Logica e Modelli Computazionali

Operazioni e Espressioni Regolari

Marco Console

Ingegneria Informatica e Automatica, Sapienza Università di Roma

Operazioni Regolari

Operazioni su Linguaggi

- Definizione. Un linguaggio è un insieme di stringhe
- Dati due linguaggi \mathcal{L}_1 , \mathcal{L}_2 possiamo costruire altri linguaggi applicando le seguenti operazioni
- Operazioni Insiemistiche.
 - **Unione.** \mathcal{L}_1 ∪ $\mathcal{L}_2 = \{ s \mid s \in \mathcal{L}_1 \text{ oppure } s \in \mathcal{L}_2 \}$
 - Intersezione. $\mathcal{L}_1 \cap \mathcal{L}_2 = \{ s \mid s \in \mathcal{L}_1 \ e \ s \in \mathcal{L}_2 \}$
 - Complemento. $\overline{\mathcal{L}_1} = \{ s \mid s \notin \mathcal{L}_1 \}$
- Operazioni su Stringhe.
 - Concatenazione. $\mathcal{L}_1 \circ \mathcal{L}_2 = \{ c_1 \dots c_k d_1 \dots d_l \mid c_1 \dots c_k \in \mathcal{L}_1 \ e \ d_1 \dots d_l \in \mathcal{L}_2 \}$
 - Star. $\mathcal{L}_1^* = \{ s_1 \dots s_k \mid con \ k \ge 0 \ e \ s_1 \dots s_k \in \mathcal{L}_1 \}$

Operazioni su Linguaggi Regolari

- Definizione 2. Un linguaggio \mathcal{L} è detto regolare se esiste un ASFD A tale che $L(A) = \mathcal{L}$
- Teorema 1. Dati due linguaggi regolari \mathcal{L}_1 , \mathcal{L}_2 tutti i seguenti linguaggi sono regolari.
 - **1.** Unione. $\mathcal{L}_1 \cup \mathcal{L}_2 = \{ s \mid s \in \mathcal{L}_1 \text{ oppure } s \in \mathcal{L}_2 \}$
 - **2.** Intersezione. $\mathcal{L}_1 \cap \mathcal{L}_2 = \{ s \mid s \in \mathcal{L}_1 \ e \ s \in \mathcal{L}_2 \}$
 - 3. Complemento. $\overline{\mathcal{L}_1} = \{ s \mid s \notin \mathcal{L}_1 \}$
 - **4.** Concatenazione. $\mathcal{L}_1 \circ \mathcal{L}_2 = \{ c_1 ... c_k d_1 ... d_l \mid c_1 ... c_k \in \mathcal{L}_1 \ e \ d_1 ... d_l \in \mathcal{L}_2 \}$
 - **5.** Star. $\mathcal{L}_1^* = \{ s_1 \dots s_k \mid con \ k \geq 0 \ e \ s_1 \dots s_k \in \mathcal{L}_1 \}$
- Tali operazioni vengono spesso chiamate operazioni regolari

Automi Epsilon

- Per dimostrare Teorema 1, introduciamo la famiglia ε-ASFND di Automi a Stati Finiti
 - Come vedremo gli ε-ASFND sono equivalenti agli ASFND e quindi agli ASFD ☺
 - Utilizzare questi automi nelle nostre prove le renderà molto più snelle
 - Inoltre (Sipser, 2022) utilizza questa definizione per gli ASFND
- **Definizione**. Un ϵ -ASFND $A = < \Sigma, Q, \delta, q_0, F >$ è un ASFND tale che
 - 1. $\Sigma = \{a_1, ..., a_n\}$ è l'*alfabeto* di input, assumiamo che il simbolo ϵ non sia in Σ ;
 - 2. Q è un insieme finito detto insieme degli stati;
 - 3. $I \in Q$ è lo stato iniziale;
 - 4. $F \subseteq Q$ è un *insieme degli stati finali*;
 - 5. $\delta: Q \times \Sigma \cup \{\epsilon\} \to P(Q)$ è una funzione da $Q \times (\Sigma \cup \{\epsilon\})$ a P(Q), chiamata funzione di transizione
- Intuitivamente, un ε-ASFND può cambiare stato utilizzando una transizione col simbolo ε senza consumare un simbolo della stringa dell'input.
 - Se utilizzando una transazione con simbolo ϵ se disponibile nello stato

Esecuzioni di un Automa a Pila – Preliminari

- Sia s una stringa sull'alfabeto Σ tale che $\epsilon \notin \Sigma$ e T $\subseteq \Sigma$ un alfabeto.
- Definizione. La restrizione di s ad Σ' ($s_{|T}$) è la stringa ottenuta eliminando da s tutti i simboli $c \notin T$
- **Definizione**. Una ϵ -estensione di s è una stringa s' sull'alfabeto $\Sigma \cup \{\epsilon\}$ tale che $s'_{|\Sigma} = s$
 - La restrizione di s' su Σ coincide con s
 - In altre parole, s' può aggiungere solamente il simbolo ϵ ad s ma un numero arbitrario di volte
- Esempio. La restrizione $s_{|T}$ della stringa s = "asd" su $\Sigma = \{a, s, d\}$ all'alfabeto $T = \{a, d\}$ è la stringa "ad"
- **Esempio**. La stringa $s' = "a\epsilon s\epsilon d"$ è una ϵ -estensione di s = "asd" su $\Sigma = \{a, s, d\}$ $s'|_{\Sigma} = s$
- **Esempio**. La stringa s'' = "aessed" non è una e-estensione di s = "asd" su $\Sigma = \{a, s, d\}$ $s''_{|\Sigma} = "assd"$

- Siano $A = <\Sigma, Q, \delta, I, F > \text{un } \epsilon\text{-ASFND e } s = "c_1c_2 \dots c_n" \in \Sigma^* \text{ una stringa con } |s| = n$
- Definizione. Una esecuzione di A su S è una sequenza $(q_1, ..., q_{k+1}) \in Q^{k+1}$ di k+1 elementi di Q tale che esiste una ϵ -estensione " $x_1x_2 ... x_k$ " di s tale che
 - $-q_1 = I$ (intuitivamente, il primo stato è quello iniziale)
 - $q_{i+1} \in \delta(q_i, x_i)$ per i = 1, ..., k (intuitivamente, ogni stato appartiene all'insieme di quelli che possono essere raggiunti consumando il simbolo corrente della ϵ -estensione considerata)
- Definizione. Una esecuzione di $(q_1, ..., q_{k+1})$ di A su S è accettante se il suo stato finale q_k è in F

Linguaggio Riconosciuto

- **Definizione**. Dato un ϵ -ASFND $A = < \Sigma, Q, \delta, q_0, F > e$ una stringa $x \in \Sigma^*$
 - x è accettata da A se esiste almeno una esecuzione accettante di A su x
 - Altrimenti, x è rifiutata

• Definizione. Sia $A=<\Sigma, Q, \delta, q_0, F>$ un ϵ -ASFND . Il linguaggio riconosciuto da A è il linguaggio L(A) sull'alfabeto Σ tale che

$$L(A) = \{x \in \Sigma^* \mid x \text{ è accettata da } A\}$$

- Domanda. È vero che ogni linguaggio riconosciuto da un ε-ASFND è regolare?
 - Ovvero, possiamo sempre definire un ASFD equivalente a un ASFND?

Equivalenza

- Teorema. Per ogni ϵ -ASFND A esiste un ASFND A' tale che L(A) = L(A')
- Corollario. Il linguaggio riconosciuto da un è ε-ASFND è regolare
- Dimostrazione. L'idea della dimostrazione è quella di costruire un ASFND A' equivalente a A
- **Definizione**. Uno stato $q' \in Q$ è ϵ -ragiungibile da $q \in Q$ in A se esiste una sequenza di stati $(q_1, q_2, ..., q_n) \in Q^n$ tale che
 - $-q_1 \in \delta(q,\epsilon)$
 - $q_i \in \delta(q_{i-1}, \epsilon)$ per i = 2, ..., n
 - $q' \in \delta(q_n, \epsilon)$
- Intuizione. q' ∈ Q è ε-ragiungibile da q ∈ Q se può essere raggiunto solo con passi ε, senza cioè consumare simboli dell'input
- Definizione. La ϵ -chiusura E(q, A) di $q \in Q$ su A è l'insieme di tutti gli stati ϵ -raggiungibili da q in A

(q,σ)	$\delta(q,\sigma)$	(q,σ)	$\delta(q,\sigma)$
(q_0,ϵ)	$\{q_1, q_2\}$	(q_3,ϵ)	$\{q_3\}$
(q_0, a)	$\{q_5\}$	(q_3,a)	$\{q_3\}$
(q_0, b)	$\{q_{5}\}$	(q_3,b)	$\{q_{5}\}$
(q_1,ϵ)	$\{q_1\}$	(q_4,ϵ)	$\{q_4\}$
(q_1, a)	$\{q_1\}$	(q_4, a)	$\{q_5\}$
(q_1,b)	$\{q_{5}\}$	(q_4,b)	$\{q_4\}$
(q_2,ϵ)	$\{q_2\}$	(q_5,ϵ)	$\{q_{5}\}$
(q_2,a)	$\{q_4\}$	(q_5,a)	$\{q_5\}$
(q_2,b)	$\{q_2\}$	(q_5,b)	$\{q_{5}\}$

(q,σ)	$\delta(q,\sigma)$	(q,σ)	$\delta(q,\sigma)$
(q_0,ϵ)	$\{q_1,q_2\}$	(q_3,ϵ)	$\{q_3\}$
(q_0,a)	$\{q_5\}$	(q_3,a)	$\{q_3\}$
(q_0, b)	$\{q_5\}$	(q_3,b)	$\{q_5\}$
(q_1,ϵ)	$\{q_1\}$	(q_4,ϵ)	$\{q_4\}$
(q_1,a)	$\{q_1\}$	(q_4, a)	$\{q_5\}$
(q_1,b)	$\{q_5\}$	(q_4,b)	$\{q_4\}$
(q_2,ϵ)	$\{q_2\}$	(q_5,ϵ)	$\{q_5\}$
(q_2,a)	$\{q_4\}$	(q_5,a)	$\{q_5\}$
(q_2,b)	$\{q_2\}$	(q_5,b)	$\{q_5\}$

STATO CORRENTE

 q_0

(q,σ)	$\delta(q,\sigma)$	(q,σ)	$\delta(q,\sigma)$
(q_0,ϵ)	$\{q_1,q_2\}$	(q_3,ϵ)	$\{q_3\}$
(q_0, a)	$\{q_5\}$	(q_3,a)	$\{q_3\}$
(q_0, b)	$\{q_5\}$	(q_3,b)	$\{q_5\}$
(q_1,ϵ)	$\{q_1\}$	(q_4,ϵ)	$\{q_4\}$
(q_1,a)	$\{q_1\}$	(q_4, a)	$\{q_5\}$
(q_1,b)	$\{q_5\}$	(q_4, b)	$\{q_4\}$
(q_2,ϵ)	$\{q_2\}$	(q_5,ϵ)	$\{q_5\}$
(q_2,a)	$\{q_4\}$	(q_5,a)	$\{q_5\}$
(q_2,b)	$\{q_2\}$	(q_5,b)	$\{q_5\}$

STATO CORRENTE

 q_5

(q,σ)	$\delta(q,\sigma)$	(q,σ)	$\delta(q,\sigma)$
(q_0,ϵ)	$\{q_1,q_2\}$	(q_3,ϵ)	$\{q_3\}$
(q_0, a)	$\{q_5\}$	(q_3,a)	$\{q_3\}$
(q_0,b)	$\{q_5\}$	(q_3,b)	$\{q_5\}$
(q_1,ϵ)	$\{q_1\}$	(q_4,ϵ)	$\{q_4\}$
(q_1,a)	$\{q_1\}$	(q_4, a)	$\{q_5\}$
(q_1,b)	$\{q_5\}$	(q_4,b)	$\{q_4\}$
(q_2,ϵ)	$\{q_2\}$	(q_5,ϵ)	$\{q_5\}$
(q_2,a)	$\{q_4\}$	(q_5,a)	$\{q_5\}$
(q_2,b)	$\{q_2\}$	(q_5,b)	$\{q_5\}$

STATO CORRENTE

 q_5

(q,σ)	$\delta(q,\sigma)$	(q,σ)	$\delta(q,\sigma)$
(q_0,ϵ)	$\{q_1,q_2\}$	(q_3,ϵ)	$\{q_3\}$
(q_0, a)	$\{q_5\}$	(q_3,a)	$\{q_3\}$
(q_0,b)	$\{q_5\}$	(q_3,b)	$\{q_5\}$
(q_1,ϵ)	$\{q_1\}$	(q_4,ϵ)	$\{q_4\}$
(q_1,a)	$\{q_1\}$	(q_4,a)	$\{q_5\}$
(q_1,b)	$\{q_5\}$	(q_4,b)	$\{q_4\}$
(q_2,ϵ)	$\{q_2\}$	(q_5,ϵ)	$\{q_5\}$
(q_2,a)	$\{q_4\}$	(q_5,a)	$\{q_5\}$
(q_2,b)	$\{q_2\}$	(q_5,b)	$\{q_5\}$

STATO CORRENTE

 q_5

STATO CORRENTE

 q_5

Esecuzione non Accettante

(q,σ)	$\delta(q,\sigma)$	(q,σ)	$\delta(q,\sigma)$
(q_0,ϵ)	$\{q_1,q_2\}$	(q_3,ϵ)	$\{q_3\}$
(q_0, a)	$\{q_5\}$	(q_3,a)	$\{q_3\}$
(q_0, b)	$\{q_5\}$	(q_3,b)	$\{q_5\}$
(q_1,ϵ)	$\{q_1\}$	(q_4,ϵ)	$\{q_4\}$
(q_1, a)	$\{q_1\}$	(q_4, a)	$\{q_5\}$
(q_1,b)	$\{q_5\}$	(q_4,b)	$\{q_4\}$
(q_2,ϵ)	$\{q_2\}$	(q_5,ϵ)	$\{q_5\}$
(q_2,a)	$\{q_4\}$	(q_5,a)	$\{q_5\}$
(q_2,b)	$\{q_2\}$	(q_5,b)	$\{q_5\}$

STATO CORRENTE

 q_0

(q,σ)	$\delta(q,\sigma)$	(q,σ)	$\delta(q,\sigma)$
(q_0,ϵ)	$\{q_1,q_2\}$	(q_3,ϵ)	$\{q_3\}$
(q_0,a)	$\{q_5\}$	(q_3,a)	$\{q_3\}$
(q_0,b)	$\{q_5\}$	(q_3,b)	$\{q_5\}$
(q_1,ϵ)	$\{q_1\}$	(q_4,ϵ)	$\{q_4\}$
(q_1,a)	$\{q_1\}$	(q_4,a)	$\{q_5\}$
(q_1,b)	$\{q_5\}$	(q_4,b)	$\{q_4\}$
(q_2,ϵ)	$\{q_2\}$	(q_5,ϵ)	$\{q_5\}$
(q_2,a)	$\{q_4\}$	(q_5,a)	$\{q_5\}$
(q_2,b)	$\{q_2\}$	(q_5,b)	$\{q_5\}$

STATO CORRENTE

 q_1

(q,σ)	$\delta(q,\sigma)$	(q,σ)	$\delta(q,\sigma)$
(q_0,ϵ)	$\{q_1,q_2\}$	(q_3,ϵ)	$\{q_3\}$
(q_0,a)	$\{q_5\}$	(q_3,a)	$\{q_3\}$
(q_0,b)	$\{q_5\}$	(q_3,b)	$\{q_5\}$
(q_1,ϵ)	$\{q_1\}$	(q_4,ϵ)	$\{q_4\}$
(q_1,a)	$\{q_1\}$	(q_4,a)	$\{q_5\}$
(q_1,b)	$\{q_5\}$	(q_4, b)	$\{q_4\}$
(q_2,ϵ)	$\{q_2\}$	(q_5,ϵ)	$\{q_5\}$
(q_2,a)	$\{q_4\}$	(q_5,a)	$\{q_5\}$
(q_2,b)	$\{q_2\}$	(q_5,b)	$\{q_5\}$

STATO CORRENTE

 q_1

(q,σ)	$\delta(q,\sigma)$	(q,σ)	$\delta(q,\sigma)$
(q_0,ϵ)	$\{q_1,q_2\}$	(q_3,ϵ)	$\{q_3\}$
(q_0, a)	$\{q_5\}$	(q_3,a)	$\{q_3\}$
(q_0, b)	$\{q_5\}$	(q_3,b)	$\{q_5\}$
(q_1,ϵ)	$\{q_1\}$	(q_4,ϵ)	$\{q_4\}$
(q_1, a)	$\{q_1\}$	(q_4, a)	$\{q_5\}$
(q_1,b)	$\{q_5\}$	(q_4,b)	$\{q_4\}$
(q_2,ϵ)	$\{q_2\}$	(q_5,ϵ)	$\{q_5\}$
(q_2,a)	$\{q_4\}$	(q_5,a)	$\{q_5\}$
(q_2,b)	$\{q_2\}$	(q_5,b)	$\{q_5\}$

STATO CORRENTE

 q_3

(q,σ)	$\delta(q,\sigma)$	(q,σ)	$\delta(q,\sigma)$
(q_0,ϵ)	$\{q_1, q_2\}$	(q_3,ϵ)	$\{q_3\}$
(q_0, a)	$\{q_5\}$	(q_3,a)	$\{q_3\}$
(q_0,b)	$\{q_5\}$	(q_3,b)	$\{q_5\}$
(q_1,ϵ)	$\{q_1\}$	(q_4,ϵ)	$\{q_4\}$
(q_1,a)	$\{q_1\}$	(q_4, a)	$\{q_5\}$
(q_1,b)	$\{q_5\}$	(q_4,b)	$\{q_4\}$
(q_2,ϵ)	$\{q_2\}$	(q_5,ϵ)	$\{q_5\}$
(q_2,a)	$\{q_4\}$	(q_5,a)	$\{q_5\}$
(q_2,b)	$\{q_2\}$	(q_5,b)	$\{q_5\}$

STATO CORRENTE

 q_5

(q,σ)	$\delta(q,\sigma)$	(q,σ)	$\delta(q,\sigma)$
(q_0,ϵ)	$\{q_1,q_2\}$	(q_3,ϵ)	$\{q_3\}$
(q_0, a)	$\{q_5\}$	(q_3,a)	$\{q_3\}$
(q_0,b)	$\{q_5\}$	(q_3,b)	$\{q_5\}$
(q_1,ϵ)	$\{q_1\}$	(q_4,ϵ)	$\{q_4\}$
(q_1,a)	$\{q_1\}$	(q_4, a)	$\{q_5\}$
(q_1,b)	$\{q_5\}$	(q_4,b)	$\{q_4\}$
$_2,\epsilon)$	$\{q_2\}$	(q_5,ϵ)	$\{q_5\}$
(2,a)	$\{q_4\}$	(q_5,a)	$\{q_5\}$
(q_2,b)	$\{q_2\}$	(q_5,b)	$\{q_5\}$

INPUT

 ϵ A B B

STATO CORRENTE

 q_5

(q,σ)	$\delta(q,\sigma)$	(q,σ)	$\delta(q,\sigma)$
(q_0,ϵ)	$\{q_1,q_2\}$	(q_3,ϵ)	$\{q_3\}$
(q_0, a)	$\{q_5\}$	(q_3,a)	$\{q_3\}$
(q_0, b)	$\{q_5\}$	(q_3,b)	$\{q_5\}$
(q_1,ϵ)	$\{q_1\}$	(q_4,ϵ)	$\{q_4\}$
(q_1, a)	$\{q_1\}$	(q_4, a)	$\{q_5\}$
(q_1,b)	$\{q_5\}$	(q_4,b)	$\{q_4\}$
(q_2,ϵ)	$\{q_2\}$	(q_5,ϵ)	$\{q_5\}$
(q_2,a)	$\{q_4\}$	(q_5,a)	$\{q_5\}$
(q_2,b)	$\{q_2\}$	(q_5,b)	$\{q_5\}$

STATO CORRENTE

 q_0

(q,σ)	$\delta(q,\sigma)$	(q,σ)	$\delta(q,\sigma)$
(q_0,ϵ)	$\{q_1,q_2\}$	(q_3,ϵ)	$\{q_3\}$
(q_0, a)	$\{q_5\}$	(q_3,a)	$\{q_3\}$
(q_0, b)	$\{q_5\}$	(q_3,b)	$\{q_5\}$
(q_1,ϵ)	$\{q_1\}$	(q_4,ϵ)	$\{q_4\}$
(q_1,a)	$\{q_1\}$	(q_4, a)	$\{q_5\}$
(q_1,b)	$\{q_5\}$	(q_4,b)	$\{q_4\}$
(q_2,ϵ)	$\{q_2\}$	(q_5,ϵ)	$\{q_5\}$
(q_2,a)	$\{q_4\}$	(q_5,a)	$\{q_5\}$
(q_2,b)	$\{q_2\}$	(q_5,b)	$\{q_5\}$

STATO CORRENTE

 q_1

(q,σ)	$\delta(q,\sigma)$	(q,σ)	$\delta(q,\sigma)$
(q_0,ϵ)	$\{q_1,q_2\}$	(q_3,ϵ)	$\{q_3\}$
(q_0,a)	$\{q_5\}$	(q_3,a)	$\{q_3\}$
(q_0,b)	$\{q_5\}$	(q_3,b)	$\{q_5\}$
(q_1,ϵ)	$\{q_1\}$	(q_4,ϵ)	$\{q_4\}$
(q_1,a)	$\{q_1\}$	(q_4,a)	$\{q_5\}$
(q_1,b)	$\{q_5\}$	(q_4, b)	$\{q_4\}$
(q_2,ϵ)	$\{q_2\}$	(q_5,ϵ)	$\{q_5\}$
(q_2,a)	$\{q_4\}$	(q_5,a)	$\{q_5\}$
(q_2,b)	$\{q_2\}$	(q_5,b)	$\{q_5\}$

STATO CORRENTE

 q_4

(q,σ)	$\delta(q,\sigma)$	(q,σ)	$\delta(q,\sigma)$
(q_0,ϵ)	$\{q_1, q_2\}$	(q_3,ϵ)	$\{q_3\}$
(q_0, a)	$\{q_5\}$	(q_3,a)	$\{q_3\}$
(q_0,b)	$\{q_5\}$	(q_3,b)	$\{q_5\}$
(q_1,ϵ)	$\{q_1\}$	(q_4,ϵ)	$\{q_4\}$
(q_1, a)	$\{q_1\}$	(q_4, a)	$\{q_5\}$
(q_1,b)	$\{q_5\}$	(q_4,b)	$\{q_4\}$
(q_2,ϵ)	$\{q_2\}$	(q_5,ϵ)	$\{q_5\}$
(q_2,a)	$\{q_4\}$	(q_5,a)	$\{q_5\}$
(q_2,b)	$\{q_2\}$	(q_5,b)	$\{q_5\}$

STATO CORRENTE

 q_4

(q,σ)	$\delta(q,\sigma)$	(q,σ)	$\delta(q,\sigma)$
(q_0,ϵ)	$\{q_1,q_2\}$	(q_3,ϵ)	$\{q_3\}$
(q_0,a)	$\{q_5\}$	(q_3,a)	$\{q_3\}$
(q_0,b)	$\{q_5\}$	(q_3,b)	$\{q_5\}$
(q_1,ϵ)	$\{q_1\}$	(q_4,ϵ)	$\{q_4\}$
(q_1,a)	$\{q_1\}$	(q_4, a)	$\{q_5\}$
(q_1,b)	$\{q_5\}$	(q_4,b)	$\{q_4\}$
(q_2,ϵ)	$\{q_2\}$	(q_5,ϵ)	$\{q_5\}$
(q_2,a)	$\{q_4\}$	(q_5,a)	$\{q_5\}$
(q_2,b)	$\{q_2\}$	(q_5,b)	$\{q_5\}$

STATO CORRENTE

 q_4

(q,σ)	$\delta(q,\sigma)$	(q,σ)	$\delta(q,\sigma)$
(q_0,ϵ)	$\{q_1,q_2\}$	(q_3,ϵ)	$\{q_3\}$
(q_0,a)	$\{q_5\}$	(q_3,a)	$\{q_3\}$
(q_0,b)	$\{q_5\}$	(q_3,b)	$\{q_5\}$
(q_1,ϵ)	$\{q_1\}$	(q_4,ϵ)	$\{q_4\}$
(q_1,a)	$\{q_1\}$	(q_4, a)	$\{q_5\}$
(q_1,b)	$\{q_5\}$	(q_4, b)	$\{q_4\}$
$q_2,\epsilon)$	$\{q_2\}$	(q_5,ϵ)	$\{q_5\}$
(q_2,a)	$\{q_4\}$	(q_5,a)	$\{q_5\}$
(q_2,b)	$\{q_2\}$	(q_5,b)	$\{q_5\}$

INPUT

ε A B B B

STATO CORRENTE

 q_4

Esecuzione Accettante

(q,σ)	$\delta(q,\sigma)$	(q,σ)	$\delta(q,\sigma)$
(q_0,ϵ)	$\{q_1,q_2\}$	(q_3,ϵ)	$\{q_3\}$
(q_0, a)	$\{q_5\}$	(q_3,a)	$\{q_3\}$
(q_0, b)	$\{q_5\}$	(q_3,b)	$\{q_5\}$
(q_1,ϵ)	$\{q_1\}$	(q_4,ϵ)	$\{q_4\}$
(q_1, a)	$\{q_1\}$	(q_4, a)	$\{q_5\}$
(q_1,b)	$\{q_5\}$	(q_4, b)	$\{q_4\}$
(q_2,ϵ)	$\{q_2\}$	(q_5,ϵ)	$\{q_5\}$
(q_2,a)	$\{q_4\}$	(q_5,a)	$\{q_5\}$
(q_2, b)	$\{q_2\}$	(q_5,b)	$\{q_5\}$

ϵ -Estensione dell'Input

ϵ A B B

Esecuzione

q_2	q_4	q_4	q_4	q_4	q_4

Esecuzione Accettante

(q,σ)	$\delta(q,\sigma)$	(q,σ)	$\delta(q,\sigma)$
(q_0,ϵ)	$\{q_1,q_2\}$	(q_3,ϵ)	$\{q_3\}$
(q_0, a)	$\{q_5\}$	(q_3,a)	$\{q_3\}$
(q_0, b)	$\{q_5\}$	(q_3,b)	$\{q_5\}$
(q_1,ϵ)	$\{q_1\}$	(q_4,ϵ)	$\{q_4\}$
(q_1, a)	$\{q_1\}$	(q_4,a)	$\{q_5\}$
(q_1,b)	$\{q_5\}$	(q_4, b)	$\{q_4\}$
(q_2,ϵ)	$\{q_2\}$	(q_5,ϵ)	$\{q_5\}$
(q_2,a)	$\{q_4\}$	(q_5,a)	$\{q_5\}$
(q_2, b)	$\{q_2\}$	(q_5,b)	$\{q_5\}$

ϵ -Estensione dell'Input

ϵ	Α	В	В	В

Esecuzione

q_1	q_1	q_3	q_5	q_5	q_5

Esecuzione Accettante

ϵ -Estensione	dell'Input
------------------------	------------

Δ	R	R	R
$\overline{}$			

Esecuzione

q_5	$ q_5$	q_5	q_5	q_5

(q,σ)	$\delta(q,\sigma)$	(q,σ)	$\delta(q,\sigma)$
(q_0,ϵ)	$\{q_1, q_2\}$	(q_3,ϵ)	$\{q_3\}$
(q_0, a)	$\{q_5\}$	(q_3,a)	$\{q_3\}$
(q_0, b)	$\{q_5\}$	(q_3,b)	$\{q_5\}$
(q_1,ϵ)	$\{q_1\}$	(q_4,ϵ)	$\{q_4\}$
(q_1, a)	$\{q_1\}$	(q_4,a)	$\{q_5\}$
(q_1,b)	$\{q_5\}$	(q_4, b)	$\{q_4\}$
(q_2,ϵ)	$\{q_2\}$	(q_5,ϵ)	$\{q_5\}$
(q_2, a)	$\{q_4\}$	(q_5,a)	$\{q_5\}$
(q_2,b)	$\{q_2\}$	(q_5,b)	$\{q_5\}$

Esecuzione NON Accettante

Equivalenza – Costruzione

- Teorema. Per ogni ϵ -ASFND A esiste un ASFND A' tale che L(A) = L(A')
- **Dimostrazione.** Definiamo $A = < \Sigma, Q, \delta', q_0, F >$ a partire da A cambiando solo la funzione di transizione (per eliminare le ϵ -transizioni)
- **Definiamo** $\delta': Q \times \Sigma \to P(Q)$ tale che $\delta'(q, a)$ coincide con l'unione degli insiemi degli stati raggiungibili dalla ϵ -chiusura di q in A. Più formalmente

$$\delta'(q, a) = \bigcup_{k \in E(q, A)} \delta'(k, a)$$

- Per concludere la prova dimostriamo L(A) = L(A'). Forniamo solo una intuizione.
- 1. Se $s \in L(A)$, esiste una esecuzione accettante X di A per s e quindi una ϵ -estensione s' di s con le proprietà desirate. Possiamo utilizzare s' per dimostrare che X è anche una accettante di A' su s.
- 2. Se $s \in L(A')$, esiste una esecuzione accettante X di A' per s. Possiamo dimostrare che X è una esecuzione accettante di A su s costruendo una ϵ -estensione s' di s.

Dimostrazione Teorema 1 – Osservazione Generale

- Teorema 1. Dati due linguaggi regolari \mathcal{L}_1 , \mathcal{L}_2 tutti i seguenti linguaggi sono regolari.
 - **1.** Unione. $\mathcal{L}_1 \cup \mathcal{L}_2 = \{ s \mid s \in \mathcal{L}_1 \text{ oppure } s \in \mathcal{L}_2 \}$
 - **2.** Intersezione. $\mathcal{L}_1 \cap \mathcal{L}_2 = \{ s \mid s \in \mathcal{L}_1 \ e \ s \in \mathcal{L}_2 \}$
 - **3.** Complemento. $\overline{\mathcal{L}_1} = \{ s \mid s \notin \mathcal{L}_1 \}$
 - **4.** Concatenazione. $\mathcal{L}_1 \circ \mathcal{L}_2 = \{ c_1 ... c_k d_1 ... d_l \mid c_1 ... c_k \in \mathcal{L}_1 e d_1 ... d_l \in \mathcal{L}_2 \}$
 - **5.** Star. $\mathcal{L}_1^* = \{ s_1 \dots s_k \mid con \ k \geq 0 \ e \ s_1 \dots s_k \in \mathcal{L}_1 \}$
- Dimostrazione. Dobbiamo dimostrare le cinque proposizioni separatamente.
- Tutte le proposizioni hanno la stessa forma. Se \mathcal{L}_1 , \mathcal{L}_2 sono regolari allora anche $\mathcal{L}_1 \star \mathcal{L}_2$ lo è
 - Proprietà di chiusura della famiglia dei linguaggi regolari
- Per tutte le proposizioni utilizzeremo la seguente strategia di prova.
 - Se \mathcal{L}_1 , \mathcal{L}_2 sono regolari allora esistono due ASFD A_1 e A_2 tali che $\mathcal{L}_1 = L(A_1)$ e $\mathcal{L}_2 = L(A_2)$
 - Dimostreremo che A_1 e A_2 possono essere composti per formare un ASFND A tale che $L(A) = L_1 \star L_2$

Dimostrazione Proposizione 1.1 (1/3)

- Proposizione 1.1. Siano \mathcal{L}_1 , \mathcal{L}_2 linguaggi regolari. Il linguaggio $\mathcal{L}_1 \cup \mathcal{L}_2$ è regolare (unione)
- Dimostrazione. Procediamo con la nostra strategia di prova
- Se \mathcal{L}_1 , \mathcal{L}_2 sono regolari allora esistono due ASFD A_1 e A_2 tali che $\mathcal{L}_1 = L(A_1)$ e $\mathcal{L}_2 = L(A_2)$
- Procediamo a costruire un ASFND A tale che L(A) = L₁ ∪ L₂
- 1. Assumiamo $A_1 = <\Sigma_1, Q_1, \delta_1, q_0^1, F_1 > e$ $A_2 = <\Sigma_2, Q_2, \delta_2, q_0^2, F_2 > tali che <math>Q_1 \cap Q_2 = \emptyset$
- 2. Definiamo l'ASFND $A = < \Sigma, Q, \delta, q_0, F >$ come segue:
 - $-\Sigma = \Sigma_1 \cup \Sigma_2$ (alfabeto)
 - $-Q = Q_1 \cup Q_2 \cup \{q_0\} \text{ con } q_0 \notin Q_1 \cup Q_2 \text{ (stati)}$
 - $F = F_1 \cup F_2$

Dimostrazione Proposizione 1.1 (2/3)

- La funzione di transizione δ è definita come segue
 - $-\delta(q,a) = \{\delta_1(q,a)\}, se q \in Q_1$
 - $-\delta(q,a) = \{\delta_2(q,a)\}, se q \in Q_2$
 - $\delta(q_0, \epsilon) = \{q_0^1, q_0^2\}$
 - $\delta(q_0, x) = \{\}, per ogni x \in \Sigma_1 \cup \Sigma_2$
 - $\delta(q, \epsilon) = \{\}, per ogni q \in Q_1 \cup Q_2$

Dimostrazione Proposizione 1.1 (3/3)

- Per concludere la prova, osserviamo quanto segue
 - 1. $L(A_1) \cup L(A_2) \supseteq L(A)$. Se $s \in L(A)$, allora esiste una esecuzione accettante per A su s la ϵ -estensione ϵs di s tale che $s \in A_1$ oppure $s \in A_2$. Ne consegue che $s \in L(A_1) \cup L(A_2)$
 - 2. $L(A_1) \cup L(A_2) \subseteq L(A)$. Se $s \in L(A_1) \cup L(A_2)$, allora esiste una esecuzione accettante per A_1 (oppure A_2) su s. Sia $(q_0^i, q_1^i, ..., q_n^i)$ tale esecuzione. Per costruzione, $(q_0, q_0^i, q_1^i, ..., q_n^i)$ è una esecuzione accettante per ϵs . Ne consegue che $s \in L(A)$

Dimostrazione Proposizione 1.4 (1/3)

- Proposizione 1.1. Siano \mathcal{L}_1 , \mathcal{L}_2 linguaggi regolari. Il linguaggio $\mathcal{L}_1 \circ \mathcal{L}_2$ è regolare (concat)
- Dimostrazione. Procediamo con la nostra strategia di prova
- Se \mathcal{L}_1 , \mathcal{L}_2 sono regolari allora esistono due ASFD A_1 e A_2 tali che $\mathcal{L}_1 = L(A_1)$ e $\mathcal{L}_2 = L(A_2)$
- Procediamo a costruire un ASFND A tale che $L(A) = L_1 \circ L_2$
- 1. Assumiamo $A_1 = <\Sigma_1, Q_1, \delta_1, q_0^1, F_1 > e$ $A_2 = <\Sigma_2, Q_2, \delta_2, q_0^2, F_2 > tali che <math>Q_1 \cap Q_2 = \emptyset$
- 2. Definiamo l'ASFND $A = < \Sigma, Q, \delta, q_0^1, F >$ come segue:
 - $-\Sigma = \Sigma_1 \cup \Sigma_2 \text{ (alfabeto)}$
 - $Q = Q_1 \cup Q_2 \cup \{q_*\} \text{ con } q_* \notin Q_1 \cup Q_2 \text{ (stati)}$
 - $F = F_2$

Dimostrazione Proposizione 1.4 (2/3)

- La funzione di transizione δ è definita come segue
 - $-\delta(q,a) = \{\delta_1(q,a)\}, seq \in Q_1 \ e \ a \in \Sigma_1$
 - $\delta(q, a) = \{\delta_2(q, a)\}, se q \in Q_2 \ e \ a \in \Sigma_2$
 - $\delta(q, \epsilon) = \{ \}, seq \in (Q_1 \cup Q_2) \backslash F_1$
 - $\delta(q, \epsilon) = \{q_{\star}\}, seq \in F_1$
 - $\delta(q_{\star}, \epsilon) = \{q_0^2\}$

Dimostrazione Proposizione 1.4 (3/3)

- Per concludere la prova, osserviamo quanto segue
 - 1. $L(A_1) \cap L(A_2) \supseteq L(A)$. Se st $\in L(A)$, allora esiste una esecuzione accettante per A sulla ϵ -estensione $s\epsilon\epsilon t$ di s tale che s $\in A_1$ e s $\in A_2$. Ne consegue che s $\in L(A_1) \cap L(A_2)$
 - 2. $L(A_1) \cap L(A_2) \subseteq L(A)$. Se $st \in L(A_1) \cap L(A_2)$, allora esiste una esecuzione accettante per A_1 su s e per A_2) su s. Siano $(q_0^1, q_1^1, ..., q_n^1)$ e $(q_0^2, q_1^2, ..., q_m^2)$ tali esecuzioni. Per costruzione $(q_0^1, q_1^1, ..., q_n^1, q_\star, q_0^2, q_1^2, ..., q_m^2)$ è una esecuzione accettante per $s \in L(A)$ consegue che $st \in L(A)$

Dimostrazione Proposizione 1.5 (1/3)

- Proposizione 1.5. Sia \mathcal{L}_1 un linguaggio regolari. Il linguaggio \mathcal{L}_1^* è regolare (star)
- Dimostrazione. Procediamo con la nostra strategia di prova
- Se \mathcal{L}_1 è regolare allora esistono un ASFD $A_1 = <\Sigma_1, Q_1, \delta_1, q_0^1, F_1 >$ tali che $\mathcal{L}_1 = L(A_1)$
- Procediamo a costruire un ASFND A tale che $L(A) = \mathcal{L}_1^*$
- 1. Definiamo l'ASFND $A = < \Sigma_1, Q, \delta, q_0, F >$ come segue:
 - $Q = Q_1 \cup \{q_0, q_*\} \operatorname{con} q_0, q_* \notin Q_1 \text{ (stati)}$
 - $F = \{q_0\} \cup F_1$
 - $-q_0 \notin Q_1$

Dimostrazione Proposizione 1.5 (2/3)

- La funzione di transizione δ è definita come segue
 - $\delta(q, a) = \{\delta_1(q, a)\}$, per ogni $q \in Q_1 \ e \ a \in \Sigma_1$
 - $\delta(q, \epsilon) = \{ \}, seq \in Q_1 \backslash F_1$
 - $\delta(q, \epsilon) = \{q_0\}, seq \in F_1$
 - $\delta(q_0, \epsilon) = \{q_0^1\}$
 - $\delta(q_0, a) = \{ \} \text{ per ogni } a \in \Sigma_1$

Dimostrazione Proposizione 1.5 (3/3)

- Per concludere la prova, dimostriamo che $s \in L(A)$ se e solo se $s \in L(A_1)^*$
- Consideriamo due casi distinti.
- Caso |s| = 0. $s \in L(A_1)^*$ e $s \in L(A)$ per costruzione.
- Caso |s| > 0.
 - 1. $L(A) \subseteq L(A_1)^*$. Se $s_1s_2 \dots s_k \in L(A)$, allora esiste una esecuzione accettante per A sulla ϵ -estensione $\epsilon s_1 \epsilon s_2 \dots \epsilon s_k$ della stringa $s_1s_2 \dots s_k$. Possiamo concludere che $s_1, s_2, \dots, s_k \in L(A_1)$, e dunque $s \in L(A_1)^*$
 - 2. $L(A) \supseteq L(A_1)^*$ Se $s = s_1 s_2 \dots s_k \in L(A_1)^*$, allora esiste una esecuzione accettante di A_1 per s_i , per ogni $i = 1, \dots, k$. Quindi la ϵ -estensione $\epsilon s_1 \epsilon s_2 \dots s_k$ di $s_1 s_2 \dots s_k$ è accettata da A. Possiamo concludere che $s_1 s_2 \dots s_k \in L(A)$.

Espressioni Regolari

Le Espressioni Regolari

- Introduciamo adesso una nuova notazione, questa volta di natura algebrica, per definire i linguaggi.
- Def: Sia Σ un alfabeto, e sia O = {+, *, (,), ·, Ø} con O ∩ Σ = Ø. Una espressione regolare su Σ è stringa r non vuota su Σ ∪ O tale che r è uguale a una delle seguenti
 - 1. Ø
 - 2. $r \in \Sigma$
 - 3. (s+t), dove sia s che t sono espressioni regolari su Σ
 - 4. $(s \cdot t)$, dove sia s che t sono espressioni regolari su Σ
 - 5. $(s)^*$, dove s è una espressione regolari su Σ

Corrispondenza tra Espressioni Regolari e Linguaggi

- Le espressioni regolari consentono di rappresentare linguaggi mediante una opportuna interpretazione dei simboli che le compongono.
- La seguente tabella mostra la corrispondenza tra un'espressione regolare e il linguaggio che essa rappresenta

Espr. regolari	Linguaggi
Ø	Λ
a	$\{a\}$
(s+t)	$\mathcal{L}\left(s\right)\cup\mathcal{L}\left(t\right)$
$(s \cdot t)$	$\mathcal{L}\left(s\right)\circ\mathcal{L}\left(t\right)$
s^*	$(\mathcal{L}\left(s\right))^{*}$

Assunzioni

- Come già fatto per le stringhe, alcune volte scriveremo st al posto di $s \cdot t$.
- Assumendo che il simbolo * abbia precedenza sul simbolo · e questo abbia precedenza sul simbolo +, e tenendo conto dell'associatività di queste operazioni, si possono spesso eliminare alcune parentesi
 - Esempio: L'espressione regolare $(a + (b \cdot (c \cdot d)))$ su $\{a, b, c, d\}$ si può scrivere come a + bcd
- Inoltre, per questioni di succintezza, utilizzeremo $(r)^+$ per indicare $r(r)^*$, dove r è un'espressione regolare su un alfabeto Σ
- N.B: il linguaggio {ε} può essere descritto dall'espressione regolare Ø*

Espressioni Regolari – Esercizio 1

Definire il linguaggio L(r) rappresentanto dall'espressione regolare $r=(a+b)^*a$ sull'alfabeto $\{a,b\}$

Esercizio Espressioni Regolari 1 – Soluzione

Definire il linguaggio L(r) rappresentato dall'espressione regolare $r=(a+b)^*a$ sull'alfabeto $\{a,b\}$

$$L((a + b)^*a) = L((a + b)^*) \circ L(a) =$$

$$(L(a + b))^* \circ L(a) =$$

$$(L(a) \cup L(b))^* \circ L(a) =$$

$$(\{a\} \cup \{b\})^* \circ \{a\} =$$

$$\{a, b\}^* \circ \{a\} = \{x \mid x \in \{a, b\}^+ \ e \ x \ termina \ con \ a\}$$

Espressioni Regolari – Esercizio 2

Sia
$$\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, .\}$$

Definire un'espressione regolare r su Σ che rappresenta tutti i numeri razionali

Espressioni Regolari – Esercizio 2

Sia $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, .\}$

Definire un'espressione regolare r su Σ che rappresenta tutti i numeri razionali

((1+2+3+4+5+6+7+8+9)(0+1+2+3+4+5+6+7+8+9)*+0).(0+1+2+3+4+5+6+7+8+9)*+0)

Relazione tra Espressioni Regolari e ASF(N)D

- Dimostreremo ora che la classe dei linguaggi accettati da automi a stati finiti
 coincide con quella dei linguaggi descritti da espressioni regolari ovvero che...
- Teorema. Le espressioni regolari descrivono tutti e soli i linguaggi regolari
- Prova. In termini più precisi dimostreremo che
- 1. Per ogni espressione regolare r esiste un ϵ -ASFND A_r che riconosce il linguaggio descritto da r, ovvero tale che $L(r) = L(A_r)$
- 2. Viceversa, per ogni **ASFD** A esiste una espressione regolare r_A che descrive il linguaggio riconosciuto da A, ovvero tale che $L(A) = L(r_A)$

ASFND catturano le Espressioni Regolari – Parte 1

- Per ogni espressione regolare r esiste un ASFD A_r che riconosce il linguaggio descritto da r, ovvero tale che $L(r) = L(A_r)$
- Consideriamo una espressione regolare r su un alfabeto Σ , ovvero r è di una delle tre forme:
 - 1. $r = \emptyset$, 2. $r \in \Sigma$, 3. r = (s + t), oppure $r = (s \cdot t)$, oppure $r = (s)^*$, dove sia s che t sono espressioni regolari su Σ
- I casi 1. e 2. sono triviali. Rimane quindi da dimostrare il caso 3. Per costruzione di L(r), è quindi sufficiente dimostrare quanto segue:
 - a) Dati due ASFD A_1 e A_2 , esiste un ASFD A tale che $L(A) = L(A_1) \cup L(A_2)$
 - Proposizione 1.1 dimostrata in precedenza
 - b) Dati due ASFD A_1 e A_2 , esiste un ASFD A tale che $L(A) = L(A_1) \circ L(A_2)$
 - Proposizione 1.4 dimostrata in precedenza
 - c) Dato un ASFD A, esiste un ASFD A' tale che $L(A') = (L(A))^*$
 - Proposizione 1.5 dimostrata in precedenza

Le Espressioni Regolari catturano gli ASFD – Parte 2

- Per ogni ASFD A esiste una espressione regolare r_A che descrive il linguaggio riconosciuto da A, ovvero tale che $L(A) = L(r_A)$
- Esiste un algoritmo che dato un ASFND costruisce una espressione regolare equivalente tramite una serie di passi di semplificazione
 - 1. Elimina gli stati dell'ASFND uno a uno e...
 - 2. Li rimpiazza con archi che rappresentano espressioni regolari equivalenti
- Non vedremo i dettagli della prova… ©
- Ma vedremo l'algoritmo ;)

Da ASFND a Espressione Regolare – Algoritmo

- **Definizione.** Un grafo etichettato sul linguaggio \mathcal{L} è una coppia G = (N, E) dove
 - N è un insieme (detto insieme dei nodi di G)
 - E è un insieme di terne (n_1, n_2, e) dove $n_1, n_2 \in N$ e $e \in \mathcal{L}$ (detto insieme degli archi di G)
- **Definizione.** Sia $A = < \Sigma, Q, \delta, q_0, F > \text{un } \epsilon\text{-ASFND.}$ Il **grafo indotto da** A è il grafo etichettato (Q, E) tale che $E = \{(q, q', e) \mid q' \in \delta(q, e)\}$
 - Sostanzialmente è il grafo indotto dal diagramma degli stati dell'automa

Da ASFND a Espressione Regolare – Algoritmo

- Input un ASFND $A = < \Sigma$, Q, δ , q_0 , F > 0
- Una Espressione Regolare r
- 1. Sia G = (N, E) il grafo indotto da A
- 2. Aggiungi a G i nodi n_{in} , $n_{out} \notin N$ e gli archi (n_{in}, q_0, ϵ) e (q_f, n_{out}, ϵ) , per ogni $q_f \in F$
- 3. Finché (|N| > 2 oppure |E| > 1) (G contiene più di 2 nodi o più di un arco) esegui i seguenti passi
 - 1. Per ogni coppia di nodi $x, y \in N$ (non necessariamente distinti)
 - 1. Sia $E = \{e_1, e_2, ..., e_k\}$ l'insieme delle etichette di tutti gli archi da x a y (archi paralleli)
 - 2. Rimuovi tutti gli archi da x a y
 - **3.** Aggiungi un arco da x a y con l'etichetta $(e_1) \cup (e_2) \cup \cdots \cup (e_k)$
 - 2. Scegli un nodo $n \in N$ che non sia n_{in} o n_{out}
 - 1. Per ogni coppia di archi $e_{in}^n = (x, n, e) \in E$ e $e_{out}^n = (n, y, e') \in E$ (e_{in}^n entrante in n, e_{out}^n uscente da n)
 - 1. Aggiungi un arco $(x, y, (e) \circ (e_n)^* \circ (e'))$ dove e_n è l'etichetta <u>dell'unico</u> cappio di n (se esiste)
 - 2. Rimuovi da *G n* e tutti gli archi entranti e uscenti da *n*
- 4. Restituisci l'etichetta dell'unico arco in *G*

$$((\epsilon) \circ (\epsilon)) \cup ((\epsilon) \circ ((a) \cup (k)) \circ (b) \circ ((c) \circ ((a) \cup (k)) \circ (b))^* \circ ((c) \circ (\epsilon)))$$

$$(\epsilon) \cup (((a) \cup (k)) \circ (b) \circ ((c) \circ ((a) \cup (k)) \circ (b))^* \circ (c))$$

$$(((a) \cup (k)) \circ (b) \circ (c))^*$$

Le Espressioni Regolari catturano gli ASFD – Parte 2

- Per ogni ASFD A esiste una espressione regolare r_A che descrive il linguaggio riconosciuto da A, ovvero tale che $L(A) = L(r_A)$
- Proposizione. L'algoritmo che abbiamo mostrato con input A produce una espressione regolare r_a tale che $L(A) = L(r_A)$
- Dimostrazione. Dobbiamo dimostrare due proprietà.
 - 1. L'algoritmo termina per ogni input. Banale, il numero di stati decresce sempre di uno.
 - 2. L'algoritmo ritorna l'espressione regolare corretta. L'intuizione dietro alla prova formale è che ogni volta che rimuoviamo uno stato X costruiamo le espressioni regolari che sono definite da X e i suoi vicini nel grafo indotto dall'automa

Altre Proprietà di Chiusura

Altre Proprietà di Chiusura

- Precedentemente, abbiamo dimostrato che la famiglia dei linguaggi regolari è chiusa rispetto:
 - L'unione (Proposizione 1.1)
 - La concatenazione (Proposizione 1.4)
 - L'iterazione (Proposizione 1.5)

- Dobbiamo ancora dimostrare che la classe dei linguaggi regolari è chiusa anche rispetto:
 - La complementazione
 - L'intersezione

Chiusura rispetto la Complementazione

- Dato un ASFD $A = < \Sigma, Q, \delta, q_0, F >$, esiste un ASFD A' tale che $L(A') = \overline{L(A)} = \Sigma^* \setminus L(A)$
- Sia $A = < \Sigma, Q, \delta, q_0, F >$ un ASFD. Definiamo adesso l'ASFD A' nel seguente modo $A' = < \Sigma', Q', \delta', q'_0, F' >$ tale che:
 - $-\Sigma'=\Sigma$
 - -Q'=Q
 - $q_0' = q_0$
 - $-\delta'=\delta$
 - $-F'=Q\setminus F$
- E' immediato verificare che $L(A') = \overline{L(A)} = \Sigma^* \setminus L(A)$. Più precisamente, ogni stringa che porta l'automa A in uno stato finale porterà l'automa A' in uno stato non finale; viceversa, ogni stringa che porta l'automa A in uno stato non finale porterà l'automa A' in uno stato finale

Chiusura rispetto l'Intersezione

Dati due ASFD A_1 e A_2 , esiste un ASFD A tale che $L(A) = L(A_1) \cap L(A_2)$

Dimostrazione: Basta applicare la legge di De Morgan, ovvero

$$L(A_1) \cap L(A_2) = \overline{\overline{L(A_1)} \cup \overline{L(A_2)}}$$