(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001 —240581 (P2001 —240581A)

(43)公開日 平成13年9月4日(2001.9.4)

(51) Int.Cl. ¹	識別記号	ΡI			Ť	-73-1*(参考)
C 0 7 C 237/42		C070	237/42			4 C 0 3 3
A 6 1 K 31/166		A 6 1 K	31/166			4C086
31/192			31/192			4C206
31/255			31/255			4H006
31/426			31/426			
. ••,	審査請求	未開求開	-	OL	(全 28 頁)	最終質に続く
(21)出願番号	特置2000-53861(P2000-53861)	(71) 出題	-	9175 薬株式	<u>-</u>	
(22)出廣日	平成12年2月29日(2000.2.29)					2丁目5番8号
(con) Interest	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(72)発明			170-170	
		(10/)	••-	-	牧幕 5丁目19	₽10−707号
		(72)発		裕美		
		(120,009			西区南別府4	丁月366番曲の
			1 -20		- 11/2/2011	1 H000 H2002
		(72)発明				
		(12/)25			須養区点 字	不計1番地の6
·			-603		SOED IN 1	1.41, 1.41, 43.0
	*.		500	7		
	•					最終頁に続く

(54) 【発明の名称】 アミノペンズアミド誘導体およびその用途

(57)【要約】

【課題】プロテインキナーゼCを活性化するアミノベンズアミド誘導体を提供する。

【解決手段】一般式(1)

(化1)

(式中、 R^1 はヒドロキシル基で置換されていてもよい アルキル基またはアルケニル基を示し、 R^2 はアルキル 基もしくはアルケニル基で置換されたカルボニル基また は式(11)

[(t2)

$$--SO_2R^4$$
 (II)

(式中R⁴ は置換されていてもよいアルキル基、あるいはアルケニル基、あるいはニトロ基またはアミノ基で置換されていてもよい芳香族炭化水素基、あるいは置換基を有するチアゾリル基を示す。〕を示し、R⁸ はヒドロ

キシメチル基、あるいはヒドロキシアミノ基で置換されていてもよいまたはエステル化されていてもよいカルボキシル基を示す。〕で表わされる化合物又はその製業学的に許容し得る塩。

【特許請求の範囲】

【韵求項1】一般式(1)

(化1)

〔式中、R¹ はヒドロキシル基で置換されていてもよい アルキル基またはアルケニル基を示し、R² はアルキル 基もしくはアルケニル基で置換されたカルボニル基また 10 は式(11)

[(£2)

$$---SO_2R^4$$
 (II)

(式中R4 は置換されていてもよいアルキル基、あるい はアルケニル基、あるいはニトロ基またはアミノ基で置 換されていてもよい芳香族炭化水素基、あるいは置換基 を有するチアゾリル基を示す。〕を示し、R® はヒドロ キシメチル基、あるいはヒドロキシアミノ基で置換され ていてもよいまたはエステル化されていてもよいカルボ キシル基を示す。〕で表わされる化合物またはその製薬 学的に許容し得る塩。

【請求項2】請求項1に記載の化合物またはその製薬学 的に許容し得る塩を有効成分として含有してなる医薬。

【調求項3】請求項1に記載の化合物またはその製業学 的に許容し得る塩を有効成分として含有してなるプロテ インキナーゼC活性化剤。

【請求項4】眼圧降下剤である請求項2に記載の医薬。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、アミノベンズアミ ド誘導体およびその製薬学的に許容し得る塩、およびア ミノベンズアミド誘導体およびその製薬学的に許容し得 る塩を有効成分とする医薬に関する。

[0002]

【従来の技術】プロテインキナーゼC(以下、PKCと 略す)は1977年 Nishizuka ら (J.Biol. Chem., 2 52巻、7603頁(1977年)) によって発見され たCa² + およびリン脂質依存性蛋白リン酸化酵素で、 細胞内情報伝達機構および細胞増殖などにおいて重要な 役割をもつことが知られている。PKCは発ガンプロモ ーターとして考えられてきたが、近年、PKC活性化剤 に対する、アルツハイマー型痴呆に対する利用可能性 [中村重信、医学のあゆみ, 145巻, 291頁 (1 998年)、F. Casamenti, C. Scali, and G. Pepeu, Eur. J. Pharmacol., 194卷, 11頁(1991 年)、L. Amaducci ら, Psychopharmacology Bulletin, 24巻, 130頁(1998年))、神経刺激伝達やチ ャンネルの修飾などシナブスの可塑性との関係〔西塚泰

好中球からのスーパーオキサイドの産生刺激(Gilbert 5, Biochemistry, 34巻3916頁(1995 年)〕、抗腫瘍活性〔Yoshida ら、Int. J. Cancer, 7 7巻、243頁(1998年)〕および眼圧下降作用 (Nagata ら, Jpn. J. Ophthalmol., 37巻, 339頁 (1993年)、Mittag ら、Invest. Ophthalmol. Vi s. Sci., 28巻、2057頁(1987年))など、種 々の医薬用途への可能性が報告されるようになってき た。しかし、PKC活性化剤の医薬用途の可能性につい ては未だ研究開発の段階である。そこで、医薬用途の可 能性の高いPKC活性化剤の開発を図るべく発明者らは

[0003]

鋭意研究を行った。

【発明が解決しようとする課題】本発明の目的は、PK C活性化作用を有する新規アミノベンズアミド誘導体お よびその製薬学的に許容し得る塩を提供することであ る。

[0004]

【課題を解決するための手段】本発明者らは、新規に抑 製したアミノベンズアミド誘導体にPKC活性化作用が 存在することを見出し本発明を完成した。

【0005】すなわち、本発明は、(1)一般式(1) [0006]

【化3】

$$R^1$$
 R^2 (1)

〔式中、R¹はヒドロキシル基で置換されていてもよい アルキル基またはアルケニル基を示し、R² はアルキル 基もしくはアルケニル基で置換されたカルボニル基また は式([])

[0007]

({t4}

$$--SO_2R^4$$
 (II)

(式中R4 は置換されていてもよいアルキル基、あるい はアルケニル基、あるいはニトロ基またはアミノ基で潤 換されていてもよい芳香族炭化水素基、あるいは置換港 を有するチアゾリル基を示す。〕を示し、R® はヒドロ キシメチル基、あるいはヒドロキシアミノ基で置換され ていてもよいまたはエステル化されていてもよいカルボ キシル基を示す。〕で表わされる化合物またはその製薬 学的に許容し得る塩、(2)上記(1)に記載の化合物 またはその製薬学的に許容し得る塩を有効成分として含 有してなる医薬、(3)上記(1)に記載の化合物また はその製薬学的に許容し得る塩を有効成分として含有し 美、化学と工業,44巻,123頁(1991年)〕、 50 てなるPKC活性化剤、および(4)眼圧降下剤である

上記(2) に記載の医薬に関する。 [8000]

【発明の実施の形態】上記一般式(I)において、R¹ で示されるヒドロキシル基で置換されていてもよいアル キル基は、通常炭素数1~20、好ましくは炭素数3~ 18の直鎖状または分枝状アルキル基を示し、具体的に は、例えばメチル基、エチル基、プロビル基、イソプロ ビル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オク チル基、ノニル基、デシル基、ウンデシル基、ドデシル 10 基、トリデシル基、テトラデシル基、ペンタデシル基、 ヘキサデシル基、ヘブタデシル基、オクタデシル基、ノ ナデシル基およびイコシル基などが挙げられる。好まし くは、イソプロピル基、n-ブチル基およびオクタデシ ル基である。

【0009】アルキル基に置換されるヒドロキシル基は 上記アルキル基のいずれの炭素に結合してもよいが、2 個のヒドロキシル基がアルキル基の隣り合う炭素に結合 するのが好ましく、例えば2、3-ジヒドロキシブチル ロキシペンチル基、2、3-ジヒドロキシヘキセニル 基、3、4ージヒドロキシヘキセニル基、4、5ージヒ ドロキシヘキセニル基、2、3-ジヒドロキシヘプチル 基、3、4-ジヒドロキシヘブチル基、4、5-ジヒド ロキシヘプチル基、5、6-ジヒドロキシヘプチル基、 2. 3-ジヒドロキシオクチル基、3.4-ジヒドロキ シオクチル基、4、5-ジヒドロキシオクチル基、5、 6-ジヒドロキシオクチル基、6.7-ジヒドロキシオ クチル基、2、3-ジヒドロキシノニル基、3、4-ジ ヒドロキシノニル基、4、5-ジヒドロキシノニル基、 5, 6-ジヒドロキシノニル基、6, 7-ジヒドロキシ ノニル基、7、8-ジヒドロキシノニル基、2、3-ジ ヒドロキシデシル基、3、4-ジヒドロキシデシル基、 4. 5-ジヒドロキシデシル基、5. 6-ジヒドロキシ デシル基、6、7-ジヒドロキシデシル基、7、8-ジ ヒドロキシデシル基、8、9-ジヒドロキシデシル基、 2, 3-ジヒドロキシウンデシル基、3, 4-ジヒドロ キシウンデシル基、4、5-ジヒドロキシウンデシル 基、5、6-ジヒドロキシウンデシル基、6、7-ジヒ ル基、8、9-ジヒドロキシウンデシル基、9、10-ジヒドロキシウンデシル基、2、3-ジヒドロキシドデ シル基、3、4-ジヒトロキシドデシル基、4、5-ジ ヒドロキシドデシル基、5、6-ジヒドロキシドデシル 基、6、7~ジヒドロキシドデシル基、7、8~ジヒド ロキシドデシル基、8、9-ジヒドロキシドデシル基、 9. 10-ジヒドロキシドデシル基、10. 11-ジヒ ドロキシドデシル基、2、3-ジヒドロキシトリデシル 基、3、4-ジヒドロキシトリデシル基、4、5-ジヒ ドロキシトリデシル基、5,8-ジヒドロキシトリデシ 50 ジヒドロキシオクタデシル基、12,13-ジヒドロキ

ル基、6、7-ジヒドロキシトリデシル基、7、8-ジ ヒドロキシトリデシル基、8、9-ジヒドロキシトリデ シル基、9、10~ジヒドロキシトリデシル基、10、 11-ジヒドロキシトリデシル基、11.12-ジヒド ロキシトリデシル基、2、3-ジヒドロキシテトラデシ ル基、3、4-ジヒドロキシテトラデシル基、4、5-ジヒドロキシテトラデシル基、5、6-ジヒドロキシテ トラデシル基、6、7ージヒドロキシテトラデシル基、 7.8-ジヒドロキシテトラデシル基、8.9-ジヒド ロキシテトラデシル基、9、10-ジヒドロキシテトラ デシル基、10、11-ジヒドロキシテトラデシル基、 11, 12-ジヒドロキシテトラデシル基、12, 13 -ジヒドロキシテトラデシル基、2、3-ジヒドロキシ ペンタデシル基、3、4-ジヒドロキシペンタデシル 基、4,5-ジヒドロキシペンタデシル基、5,6-ジ ヒドロキシベンタデシル基、6、7-ジヒドロキシベン タデシル基、7,8-ジヒドロキシベンタデシル基、 8, 9-ジヒドロキシペンタデシル基、9, 10-ジヒ ドロキシペンタデシル基、10、11-ジヒドロキシペ 基、2,3-ジヒドロキシベンチル基、3,4-ジヒド 20 ンタデシル基、11,12-ジヒドロキシベンタデシル 基、12、13~ジヒドロキシペンタデシル基、13、 14-ジヒドロキシペンタデシル基、2、3-ジヒドロ キシヘキサデシル基、3、4-ジヒドロキシヘキサデン ル基、4,5-ジヒドロキシヘキサデシル基、5,6-ジヒドロキシヘキサデシル基、6、7-ジヒドロキシヘ キサデシル基、7、8-ジヒドロキシヘキサデシル基、 8. 9-ジヒドロキシヘキサデシル基、9, 10-ジヒ ドロキシヘキサデシル基、10、11-ジヒドロキシヘ キサデシル基、11、12-ジヒドロキシヘキサデシル 基、12,13-ジヒドロキシヘキサデシル基、13, 14-ジヒドロキシヘキサデシル基、14, 15-ジヒ ドロキシヘキサデシル基、2、3-ジヒドロキシヘブタ デシル基、3、4-ジヒドロキシヘブタデシル基、4、 5-ジヒドロキシへブタデシル基、5,8-ジヒドロキ シヘプタデシル基、6、7-ジヒドロキシヘプタデシル 基、7、8-ジヒドロキシへプタデシル基、8、9-ジ ヒドロキシへブタデシル基、9、10-ジヒドロキシへ プタデシル基、10、11-ジヒドロキシヘプタデシル 基、11,12-ジヒドロキシヘブタデシル基、12, ドロキシウンデシル基、7,8-ジヒドロキシウンデシ 40 13-ジヒドロキシヘブタデシル基、13,14-ジヒ ドロキシへプタデシル基、14、15-ジヒドロキシへ ブタデシル基、15、16-ジヒドロキシへブタデシル 基、2、3-ジヒドロキシオクタデシル基、3、4-ジ ヒドロキシオクタデシル基、4、5-ジヒドロキシオク タデシル基、5、6-ジヒドロキシオクタデシル基、 6. 7-ジヒドロキシオクタデシル基、7. 8-ジヒド ロキシオクタデシル基、8、8-ジヒドロキシオクタデ シル基、9,10-ジヒドロキシオクタデシル基、1 0.11-ジヒドロキシオクタデシル基、11,12シオクタデシル基、13、14-ジヒドロキシオクタデ シル基、14、15-ジヒドロキシオクタデシル基、1 5. 16-ジヒドロキシオクタデシル基および16, 1 7-ジヒドロキシオクタデシル基などが例示される。と りわけり、10-ジヒドロキシオクタデシル基が好まし

【0010】R」で示されるアルケニル基としては、炭 素数16~20の直鎖アルケニル基が好ましく、例えば 1-ヘキサデセニル基、2-ヘキサデセニル基、3-ヘ セニル基、6-ヘキサデセニル基、7-ヘキサデセニル 基、8-ヘキサデセニル基、9-ヘキサデセニル基、1 0-ヘキサデセニル基、11-ヘキサデセニル基、12 - ヘキサデセニル基、13-ヘキサデセニル基、14-ヘキサデセニル基、15-ヘキサデセニル基、1-ヘブ タデセニル基、2-ヘプタデセニル基、3-ヘプタデセ ニル基、4-ヘプタデセニル基、5-ヘプタデセニル 基、6-ヘプタデセニル基、7-ヘプタデセニル基、8 -ヘプタデセニル基、9-ヘプタデセニル基、10-ヘ タデセニル基、13-ヘブタデセニル基、14-ヘブタ デセニル基、15-ヘブタデセニル基、16-ヘブタデ セニル基、1-オクタデセニル基、2-オクタデセニル 基、3-オクタデセニル基、4-オクタデセニル基、5 -オクタデセニル基、6-オクタデセニル基、7-オク タデセニル基、8-オクタデセニル基、9-オクタデセ ニル基、10-オクタデセニル基、11-オクタデセニ ル基、12-オクタデセニル基、13-オクタデセニル 基、14-オクタデセニル基、15-オクタデセニル 基、16-オクタデセニル基、17-オクタデセニル 基、1-ノナデセニル基、2-ノナデセニル基、3-ノ ナデセニル基、4-ノナデセニル基、5-ノナデセニル 基、6-ノナデセニル基、7-ノナデセニル基、8-ノ ナデセニル基、ターノナデセニル基、10-ノナデセニ ル基、11-ノナデセニル基、12-ノナデセニル基、 13-ノナデセニル基、14-ノナデセニル基、15-ノナデセニル基、16-ノナデセニル基、17-ノナデ セニル基、18-ノナデセニル基、1-イコセニル基、 2-イコセニル基、3-イコセニル基、4-イコセニル 基、5-イコセニル基、6-イコセニル基、7-イコセ 40 ニル基、8-イコセニル基、9-イコセニル基、10-イコセニル基、11-イコセニル基、12-イコセニル 基、13-イコセニル基、14-イコセニル基、15-イコセニル基、16-イコセニル基、17-イコセニル 基、18-イコセニル基および19-イコセニル基が挙 げられる。とりわけ9-オクタデセニル基が好ましい。 【0011】R2で示されるアルキル基で置換されたカ ルボニル基 (アルキルカルボニル基ということもある) のアルキル基は、炭素数1~4の直鎖状または分岐状の 低級アルキル基が好ましく、例えばメチル基、エチル

基、プロピル基、イソプロピル基、n-ブチル基、se cーブチル基、tertープチル基が挙げられる。とり わけメチル基が好ましい。

【0012】R*で示されるアルケニル基で置換された カルボニル基(アルケニルカルボニル基ということもあ る)のアルケニル基としては、炭素数16~18の直鎖 アルケニル基が好ましく、例えば1-ヘキサデセニル 基、2-ヘキサデセニル基、3-ヘキサデセニル基、4 - ヘキサデセニル基、5 - ヘキサデセニル基、6 - ヘキ キサデセニル基、4-ヘキサデセニル基、5-ヘキサデ 10 サデセニル基、7-ヘキサデセニル基、8-ヘキサデセ ニル基、9-ヘキサデセニル基、10-ヘキサデセニル 基、11-ヘキサデセニル基、12-ヘキサデセニル 基、13-ヘキサデセニル基、14-ヘキサデセニル 基、15-ヘキサデセニル基、1-ヘブタデセニル基、 2-ヘブタデセニル基、3-ヘブタデセニル基、4-ヘ ブタデセニル基、5-ヘブタデセニル基、6-ヘプタデ セニル基、7-ヘプタデセニル基、8-ヘプタデセニル 基、9-ヘプタデセニル基、10-ヘプタデセニル基、 11-ヘプタデセニル基、12-ヘブタデセニル基、1 ブタデセニル基、11-ヘブタデセニル基、12-ヘブ 20 3-ヘブタデセニル基、14-ヘブタデセニル基、15 - ヘプタデセニル基、16-ヘプタデセニル基、1-オ クタデセニル基、2-オクタデセニル基、3-オクタデ セニル基、4-オクタデセニル基、5-オクタデセニル 基、6-オクタデセニル基、7-オクタデセニル基、3 -オクタデセニル基、9-オクタデセニル基、10-オ クタデセニル基、11-オクタデセニル基、12-オク タデセニル基、13-オクタデセニル基、14-オクタ デセニル基、15-オクタデセニル基、16-オクタデ セニル基および17-オクタデセニル基などが挙げら 30 れ、とりわけ9-オクタデセニル基が好ましい。

> 【0013】R² で示される式(II)のR⁴ で示され るアルキル基は、炭素数1~4の直鎖状または分岐状の 低級アルキル基が好ましく、例えばメチル基、エチル 基、プロビル基、イソプロビル基、n-ブチル基、se c-ブチル基およびtert-ブチル基などが挙げられ る.

【0014】酸アルキル基には、フェニル基またはハロ ゲン基が置換していてもよい。フェニル基にはニトロ基 またはアミノ基が置換していてもよく、フェニル基の置 換したアルキル基としては、例えばベンジル基、2-二 トロベンジル基、3-ニトロベンジル基、4-ニトロベ ンジル基、2-アミノベンジル基、3-アミノベンジル 基および4-アミノベンジル基などが挙げられる。とり わけベンジル基、2-ニトロベンジル基および2-アミ ノベンジル基が好ましい。ハロゲン基には塩素、臭素、 フッ索などが挙げられる。ハロゲン基はアルキル基のい ずれの炭素に結合してもよく、例えばクロロメチル基。 ジクロロメチル基、1-クロロエチル基、2-クロロエ チル基、1、2-ジクロロエチル基、1-クロロブロビ 50 ル基、2-クロロプロピル基、3-クロロプロピル基、

プロモメチル基、1-プロモエチル基、2-プロモエチ ル基、1、2-ジブロモエチル基、1-ブロモブロビル 基 2-プロモプロビル基および3-プロモプロビル基 などが挙げれらる。とりわけ1-クロロブロビル基およ び1.2-ジブロモエチル基が好ましい。

【0015】R4 で示されるアルケニル基としては、炭 素数2~4の直鎖状または分岐状の低級アルケニル基が 挙げられ、ビニル基、1-プロペニル基、2-プロペニ ル基、1-プテニル基、2-プテニル基、3-プテニル 基、2-メチル-1-プロペニル基および2-メチル- 10 2-プロペニル基が好ましく、とりわけビニル基が好ま しい。

【0016】R4で示される芳香族炭化水素としては、 フェニル基、ナフチル基が挙げられる。これら芳香族炭 化水素に置換されていてもよいニトロ基またはアミノ基 は、芳香族炭化水素の何れの炭素に結合してもよく、ま たアミノ基はメチル基で置換されていてもよい。例えば 2-ニトロフェニル基、3-ニトロフェニル基、4-ニ トロフェニル基、2-アミノフェニル基、3-アミノフ ェニル基、4ーアミノフェニル基、2-ニトロナフチル 基、3-ニトロナフチル基、4-ニトロナフチル基、5 -ニトロナフチル基、6-ニトロナフチル基、7-ニト ロナフチル基、8-ニトロナフチル基、2-アミノナフ チル基、3-アミノナフチル基、4-アミノナフチル 基、5-アミノナフチル基、6-アミノナフチル基、7 -アミノナフチル基、8-アミノナフチル基、2-N, N-ジメチルアミノフェニル基、3-N, N-ジメチル アミノフェニル基、4-N、N-ジメチルアミノフェニ ル基、2-N, N-ジメチルアミノナフチル基、3-N. N-ジメチルアミノナフチル基、4-N, N-ジメ チルアミノナフチル基、5-N、N-ジメチルアミノナ フチル基、6-N、N-ジメチルアミノナフチル基、7 N、N-ジメチルアミノナフチル基および8-N、N - ジメチルアミノナフチル基などが挙げられる。とりわ け2-ニトロフェニル基、3-ニトロフェニル基、4-ニトロフェニル基、2-アミノフェニル基、3-アミノ フェニル基、4-アミノフェニル基および5-N, N-ジメチルアミノナフチル基が好ましい。

【0017】R4で示されるチアゾリル基の置換基はチ アゾリル基の2位または/および4位に結合し、2位に 40 【表1】 結合する置換基としては、炭素数1~4の低級アシル基

(例えばアセチル基、プロピオニル基、ブチリル基、イ ソブチリル基など)で置換されたアミノ基であり、4位 に結合する置換基としては炭素数1~4の直鎖状または 分岐状の低級アルキル基(例えばメチル基、エチル基、 プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert‐ブチル基など) が好ましい。 置換 基を有するチアゾリル基としては、例えば2-アセトア ミドー4-メチルー5-チアゾリル基などが好適に使用 できる.

【0018】R³ は末端にヒドロキシル基を有する基、 例えばヒドロキシメチル基およびカルボキシル基が好適 に使用できる。酸カルボキシル基はヒドロキシアミノ抵 で置換されていてもよく、また炭素数1~3の低級アル キル基(例えばメチル基、エチル基、プロピル基および イソプロピル基など、特に好ましくはメチル基)でエス テル化されていてもよい。

【0019】R'、R' およびR' は、上記したものを 適宜組み合わせることができる。R² が上記したアルキ ルカルボニル基の場合、R L は上記したヒドロキシル基 で置換されたアルキル基または上記したアルケニル基の 組み合わせが好ましく、R² が上記したアルケニルカル ボニル基の場合、R は上記したアルキル基の組み合わ せが好ましい。なかんずくR2のカルボニル基に置換す るアルキル基またはアルケニ基が短鎖(炭素数1~3、 以下同じ)と、R¹で示される上記した置換されていて もよいアルキル基および上記したアルケニル基が長鎖 (炭素数16~18、以下同じ)の組み合わせ、あるい はR²のカルボニル基に置換する上記したアルキル基ま たは上記したアルケニ基が長鎖と、RIで示される上記 した置換基を有していてもよいアルキル基またはアルケ ニル基が短鎖の組み合わせが好ましい。R² が上記した 式(II)である場合、RIは上記したいずれの基も好 ましく組み合わせることができるが、なかんずく R1が 上記した長鎖のヒドロキシル基で置換されていてもよい アルキル基または上記した長鎖のアルケニル基の組み合 わせが好ましい。R*は上記したR1とR2の組み合わ せにいずれも好適に組み合わせることができる。

【0020】本発明の化合物としては、例えば以下の表 の化合物が挙げられる。

9

化合物 No.	R1	R ²	R ⁸
1	シス・タ・オクタテ セニル	-SO ₂ CH ₂	-CH ₂ OH
2	シス・タ・オクタテ セニル	-COCH _a	-CH ₂ OH
3	シス・タ・オクタテ セニル	-SO ₂ -CH ₂ CH ₂ CH ₂ Cl	-CH ₂ OH
4	シス-9・オクタテ セニル	-so ₂ -cs ₂ -C	-СН₃ОН
5	シス-8-オクタテ セニル	-so ₂ -cr ₁₂ -	-СН ₂ ОН
6	シス-9-オクタテ セニル	-50,-	-СН₂ОН
7	シス-9-オクタテ セニル	-so ₂	-СН•ОН
8	シス-9-オクタテ セニル	-so ₂	-СН2ОН
. 9	シス-9-オクタデ セニル	_so _z _	-СН₂ОН
10	シス-9-オクタデ セニル	-80 ₂	-СН₂ОН
11	シス-9-オクタテ セニル	-so ₂ -s NHCOCH ₃	-СН₂ОН
12	オクタデーカニル	-so ₂ -cu ₂ -	-СН_ОН
13	1095° >1	-so ₂ -	-CH ₂ OH
14	オクタテ カニル	-so ₂ -cH ₂ -	-CH ₂ OH
15	オクタデ カニル	-SO ₂ CH ₂	-CH ₂ OH
16	9,10-ジヒドロキシオクタデシル	-SO ₂ CH ₅	-CH ₂ OH
17	9,10-ジヒドロキシオクタデシル	-SO _g -CH ₂ CH ₂ CH ₂ Cl	-CH ₂ OH
18 .	9,10-9" とト" ロキシオクタデ" シル	-50 ₂ -CH ₂ -	-CH ₂ OH
19	9,10-ジヒドロキシオクタデシカ	-so ₃ -cH ₂ -	-CH ₂ OH
20	9,10-y" th" D+y4997" yh	-so ₁ (-СН₂ОН

化合物 No.	R ¹	R ⁹	R ⁸
21	9,10-2" th" ロキジオクタテ" シル	-so ₂	-CH ₂ OH
22	9,10-y" th" ロキシオクタテ" シル	-so ₂	-СН•ОН
23	9,10-ジヒト゚ロキシオクタテ゚シル	-so _r	-CH ₂ OH
24	9,10-9" th" ロキンオクタテ" シル	-so ₂	-СН2ОН
25	9,10-9" th" D\$>\$9,7° >A	-so ₂ -SNHCOCH ₃	-СН₂ОН
26	イソフ ロピル	-CO(CH ₂) ₇ CH=CH(CH ₂) ₇ CH ₈	-CH,OH
27	n-7° f1	-CO(CH ₂),CH=CH(CH ₂),CH ₀	·CH,OH
28	9,10-y' th' 04>x1/977' >J	-80 ₂ -CH ₂ -	-CH₄OH
29	9,10-9'	-so ₂	-СН2ОН
30	9,10-9' Łト' ロキシオクタテ' シル	-so ₂	-СН₂ОН
31	シス-9-オクタテ セニル	-SO ₂ CH ₂	-COOH
32	シス-9-オクタデ セニル	-COCH,	-COOH
33	シス・タ・オククラ セニル	-SO,CH=CH,	-COOH
34	シス-9-オクタテ" セニル	—so ₂ —ch ₂ —	-COOH
35	シス・タ・ヤクテ セニル	—so ₂ —cH ₂ —	-соон
. 36	シス-9-わタデ ヒル	_so ₂	соон
37	シス・9・わタデ 七小	-so ₂	соон
38	シス-9-オクケデ セニル	-so ₂	-соон
39	シス-9-オククテ セニト	_so ₂	-соон
40	シス-9-オクタデ セニル	-50 ₃	-соон

(7)

٦	

13			14
化合物 No.	\mathbb{R}^1	R ^s	R ^s
41	シス-9-オクタテ セル	-soCH, MHCOCH,	-COOH
42	シス・8・セクタデ セント	水来	-COOH
48	9,10-9" bl" ロキシオクタデ シル	-SO ₂ -CH ₂ CH ₂	-COOH
44	9,10-9 比 叶沙村997 3万	-SO ₂ CH ₃	-COOH
45	9,10-9" th' ロキシオクタテ" シル	-COCH,	-COOH
46	9,10-9" 七十" 四十分才分分子" 沙小	-SO ₂ -CH=CH ₂	-COOH
47	9,10-ジヒドロキシオクタデシル	-SO ₂ -CH(CH ₃) ₂	-COOH
48	9,10-ジ とげ ロキシオクタデ ジル	-SO ₂ -CH ₂ CH ₂ CH ₂ Cl	-COOH
49	9,10-ジヒドロキシオクタテ゚シル	—so ₂ —сн ₂ —	-COOH
50	9,10-シ゚ヒト゚ロキシオクタテ゚シル	50 ² -CH ²	-соон
51	9,10-ን' էት' ወትንオクタテ' ንሹ	-so _z	-COOH
62	9,10-y' th' D\$>\$1997' yh	-so ₃	-соон
53	9,10-9' th' D494997' 94	-50,-	-соон
54	9,10·9' th' 04>4997' >h	-50 ₂	-соон
56	9, 10-9' th' ロキジオクタテ' シル	-so ₂ -NHCOCH ₃	-соон
56	9,10-y" th" 04>4797" >h	-80 ₁ -CH ₂ -	-соон
57	9,10-9" th" 0434797" >h	-90 ₂	-соон
58	9,10-5' th' 0454997' 5%	-so ₂	-COOH
59	9,10-9' th' 0454597' 5%	-so ₃ NH ₃	-COOH
60	9,10-y' th' D4y4797' ym	-SO ₂ -CHBrCH ₂ Br	-COOH
61	9,10-y'th' ロキシオクタラ ジル	-SO ₂ -CH ₂ CH ₃	-CONHOH

		• •	
1	5		16
化合物 No.	R1	R ²	R ⁸
62	シス-8-オクタテ セニル	-SO ₂ CH ₃	-COOCH,
63	シス-9-オクタデ セニル	-COCH ₃	-COOCH
64	シス・タ・オクタデ セニル	-SO ₈ -CH ₂ CH ₈	·COOCH,
65	シス・タ・オクタデ セニル	-SO ₂ -CH=CH ₂	-COOCH _a
66	シス-9-オクタデ セニル	-SO ₂ -CH(CH ₃) ₂	-COOCH,
67	シス-9-オクタデ セニル	-SO ₂ -CH ₂ CH ₂ Cl	-COOCH,
68	シス・タ・オクタデ セニカ	-so ₂ -cH ₂ -	·COOCH ₃
69	シス-8-オクタテ セニル	-so ₂ -ci ₁₂ -	-COOCH,
70	シス-9-オクタテ・セニル	-so ₂	-COOCH,
71	シス-9-オクタテ セニル	-so ₂	-COOCH3
72	シス-8-オクタテ、セニか	-so ₂	-COOCH ₃
78	シス-9-オクタテ セニル	-so _z	-COOCH ₃
74	シス-9-オクタテ セニル	-so _x	-COOCH ₈
75	シス-8-オクタテ、セニル	-90 ₃	-COOCH ₈
76	シス-9-オクタテ゜セニル	-so ₂ -S NHCOCH ₃	-COOCH ₃
77	イソプ ロピ ル	-CO(CH ₂) ₇ CH=CH(CH ₂) ₇ CH ₃	-COOCH ₃
78	n-プチル	-CO(CH ₂) ₇ CH=CH(CH ₂) ₇ CH ₈	-COOCH,

【0021】本発明の一般式(1)で示される化合物 * [0022] は、例えば次の合成経路により、またはこれに準じて適 30 【化5】 宜合成することができる。

【0023】[式中、R'はアルキル基またはアルケ ニル基を示し、R2 drルキル基もしくはアルケニル 基で置換されたカルボニル基または式(【 【 】) 【化6】

(11)

(式中R⁴) は置換されていてもよいアルキル基、ある 50 いはアルケニル基、あるいはニトロ基で置換されていて

18

17

もよい芳香族炭化水素基.あるいは置換基を有するチア ゾリル基を示す。〕式(III)

[0024.]

(化7)

【0025】 [式(III)中、R' は前記と同義で ある。] で表される化合物は1-メチル-2-テレフタ ル酸エステルとアルキルアミンまたはアルケニルアミン を有機溶媒中、縮合剤で縮合させることにより合成でき る。本反応に用いることができる縮合剤としては、例え ぱ1-エチル-3-(3-ジメチルアミノプロピル)カ ルポジィミド塩酸塩、N.N'-ジシクロヘキシルカルポ ジイミド、N-シクロヘキシル-N'-モルホリノエチ ルカルボジイミド、N - シクロヘキシル - N ' - (4 -ジエチルアミノシクロヘキシル) カルボジイミド、N, N'-ジェチルカルボジイミド、N,N'-ジイソプロビ ルカルボジイミド、N-エチル-N'-(3-ジメチル アミノブロビル) カルボジイミド、N.N'-カルボニル ピス(2-メチルイミダゾール)、ペンタメチレンケテ ン-N-シクロヘキシルイミン、ジフェニルケテン-N -シクロヘキシルイミンなどのような常用の縮合剤が挙 げられる。縮合はアルカリ金属炭酸水素塩などの無機塩 基、あるいはトリ(低級)アルキルアミン、ピリジン、 N-(低級)アルキルモルホリンおよび1-ヒドロキシ ベンジルトリアゾールなどの有機塩基の存在下に行って もよい。1-エチル-3~(3-ジメチルアミノプロピ ル) カルボジイミド塩酸塩と1-ヒドロキシベンジルト リアソールの組み合わせが好適である。有機溶媒として は、例えば塩化メチレン、クロロホルム、N、Nージメ チルホルムアミドおよびテトラヒドロフランなどの慣用 の溶媒あるいはそれら混合溶媒が挙げられる。好ましく は、塩化メチレンとN、N-ジメチルホルムアミドの混 合溶媒である。反応温度は、通常冷却下から加温下の範 囲であり、好ましくは、0℃~30℃の範囲である。次 に、式(|||)で表される化合物を、有機塩基存在下 で、アシルハライドまたはスルホニルハライドと反応さ せ、再結晶またはカラムクロマトグラフィーで精製する ととにより、式(1V)

[0026] (化8]

【0027】[式 (IV) 中、R¹ ゚とR² ゚は前記と 同義である。1で表される化合物を得ることができる。 本反応に使用されるアシルハライドのアシル基はR® で示されるアルキル基もしくはアルケニル基で置換され たカルポニル基と同義であり、スルホニルハライドのス ルホニル基はR2 で示される式(11))と同義であ る。これらアシル基およびスルホニル基とハロゲン原子 が結合したハライド(例えばフッ化物、塩化物、臭化 物、ヨウ化物など)はいずれも使用できるが、塩化物お よび臭化物が好ましい。有機塩基はトリエチルアミン、 トリ(低級)アルキルアミン(ジイソプロピルエチルア ミンなど)、ピリジン、ルチジン、ピコリンおよび4-ジメチルアミノビリジンなどを使用できる。有機塩基は 20 アシルハライドまたはスルホニルハライドに対し二倍当 量のトリエチルアミンまたはピリジンが好適である。反 応は、通常例えば無水ジクロロメタン、クロロホルム、 N, N-ジメチルホルムアミドまたはテトラヒドロフラ ンなどの反応に悪影響をおよぼさない慣用の溶媒または それら混合溶媒中で行うことができるが、無水テトラヒ ドロフランあるいはジクロロメタン中が好適である。反 応温度は、通常冷却下から加温下の範囲であり、好まし くは0℃~30℃の範囲である。

【0028】次に、式(IV)で表される化合物のアル 30 コキシカルボニル基を還元剤で還元し、再結晶またはカ ラムクロマトグラフィーで精製することにより、式

(V) (0029)

(1k9)

【0030】[式(V)中、R¹・とR²・は前記と同義である。]で表される化合物が得られる。この時の別元剤としては、水素化リチウムアルミニウム、水素化ジイソブチルアルミニウム、水素化ほう素リチウム、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウムおよび水素化トリス(メトキシ)ほう素ナトリウムなどが使用できるが、水素化ほう素リチウムが好ましい。反応はメタノール、エタノール、ブロバノール、イソブロバノ50ール、ブタノール、ジクロロメタン、クロロホルム、ジ

メトキシベンゼン、ベンゼン、トルエン、エチルベンゼ ン、ジエチルエーテル、ジオキサンまたはテトラヒドロ フランなど反応に悪影響をおよぼさない慣用の溶媒中で 行うことができるが、テトラヒドロフラン中が好まし い。反応温度は、通常冷却下から加温下の範囲であり、 好ましくは0℃~30℃の範囲である。

【0031】式(IV)で表される化合物のアルコキシ カルボニル基をアルカリまたは酸で加水分解することに より、式(VI)

[0032]

[(t10)

【0033】 (式 (VI) 中、R¹ とR² は前記と 同義である。]で表される化合物が得られる。アルカリ 溶液などのアルカリ水溶液を用いるが、式(IV)で表 される化合物の溶解度を増加させるためにアルカリ水溶 液にメタノール、エタノール、プロパノール、イソプロ パノール、ブタノール、ジオキサンおよびテトラヒドロ フランなどを添加した溶液も好適に利用できる。アルカ リ加水分解物は次いで塩酸および硫酸などの無機酸で処 理し遊離カルボン酸とする。反応温度は、通常、冷却下 から加温下の範囲であり、好ましくは20℃~50℃の 節囲である。酸加水分解の条件としては、一般に塩酸お よび硫酸などの無機酸を使用するが、三塩化ホウ素のよ うなルイス酸も使用できる。反応は酢酸、ギ酸溶液中で 行うのが好ましい。反応温度は、通常室温から加温下の 範囲であり、好ましくは30℃~100℃の範囲であ る.

【0034】式(VI)で表される化合物またはその反 応性誘導体を、有機塩基存在下で、ヒドロキシアミンと 反応させ、再結晶で精製するととにより、式(VII) [0035]

【化11]

【0036】[式 (VIII) 中、R' とR' は前記 と問義である。1で表される化合物を得ることができ る。式(VI)で表される化合物の反応性誘導体として は、カルボキシル基の酸ハロゲン化物、例えば、酸塩化 物が挙げられる。酸塩化物は相当するカルボン酸に塩化 50

剤(例えば塩化チオニル、三塩化リン、五塩化リンおよ び塩化オキザリルなど)を作用させ得ることができる。 本反応における有機塩基は、トリエチルアミン、ジイソ プロビルエチルアミンなどのトリアルキルアミン、ビリ ジン、ルチジン、ピコリンおよび4-ジメチルアミノビ リジンなどを使用できるが、トリエチルアミンが好適で ある。反応は、アセトン、テトラヒドロフラン、水およ びジオキサンなどあるいはそれらの混合溶媒中のいずれ でも行うことができるが、テトラヒドロフランと水の混 10 合溶媒中が好適である。反応温度は、通常冷却下から加 温下の範囲であり、好ましくは0℃~30℃の範囲であ

【0037】一般式(1)で示されるR」がヒドロキシ ル基で置換されたアルキル基は、まず式(V)乃至式 (VII) で示されるR! がアルケニル基の化合物を 合成し、ついでアルケニル基のオレフィン結合を酸化剤 で酸化することにより得ることができる。酸化剤として は、酢酸銀ーヨウ素および有機過酸(例えば過酢酸、過 ギ酸および過トリフルオロ酢酸など)を使用できる。 有 加水分解は、水酸化ナトリウムおよび水酸化カリウム水 20 機過酸は、通常30%過酸化水素水を有機酸(例えば酢 酸、ギ酸およびトリフルオロ酢酸など)に加えて調製さ れる。好ましくは、30%過酸化水素水を半酸に加えて 調製した有機過酸である。反応温度は、通常冷却下から 加温下の範囲であり、好ましくは25℃~45℃の範囲 である.

> 【0038】一般式(I)で示されるR*中、式(I 1) で示されるR⁴ がアミノ基で置換された芳香族炭化 水素は、まず式(V)乃至式(VII)で示されるR * がニトロ基で置換された化合物を合成し、次いで該 ニトロ基を還元することにより得ることができる。還元 は、接触還元あるいは亜鉛ー酢酸、鉄ー酢酸および塩化 第二すずによる還元など公知の方法を利用できるが、接 触還元または塩化第二すずが好ましい。接触還元の触媒 はバラジウムー炭素、ラネーニッケルおよび酸化白金な どが挙げられるが、好ましくはパラジウムー炭素であ る。水素圧は1気圧乃至50気圧であるが、好ましくは 1気圧乃至5気圧である。溶媒としては、アルコール類 (メタノール、エタノールなど)、エーテル類 (テトラ ヒドロフランなど)、有機酸類(酢酸など)およびごれ 40 らの混合溶媒を使用できる。反応温度は通常室温から加 温下の範囲である。 塩化第二すずを用いる還元は通常、 エタノール溶媒中で、反応温度は室温から還流温度の低 囲が好ましい。

【0039】とのようにして得られる一般式(1)で示 される化合物の製薬学的に許容し得る塩としては、例え ばナトリウム塩、カリウム塩などのアルカリ金属塩、カ ルシウム塩、マグネシウム塩などのアルカリ土類金属 塩、塩酸塩、臭化水素酸塩、硫酸塩、硝酸塩、リン酸塩 などの無機酸塩、および酢酸塩、クエン酸塩、トルエン スルホン酸塩などの有機酸塩が挙げられるがこれらに限

定されない。

【0040】さらに、本発明は、一般式(1)で示され る化合物および製薬学的に許容される塩の各種の溶媒和 や結晶多形、さらにそれらのプロドラッグも包含する。 例えば一般式(I)で示される化合物のR®がエステル 化されたカルボキシル基を有する本発明の化合物は、生 体のエステラーゼによりエステル部位が加水分解され遊 離のカルボキシとなりPKC活性が発揮、あるいはより 強いPKC活性を発揮するので本発明のプロドラッグと してとらえることもできる。

21

【0041】本発明の一般式(1)で示される化合物お よび製薬学的に許容される塩は、PKC活性化作用を有 するので、温血動物(例えばヒト、ウサギ、モルモッ ト、ラット、イヌ、ネコなど)のPKCが関与する疾 患、例えば高眼圧症、緑内障、中枢神経障害、老人性痴 呆症、アルツハイマー症、腫瘍などの予防・治療剤とし て、また好中球からのスーパーオキサイドによる免疫賦 活剤などとして経口的にあるいは非経口的に適宜に使用

【0042】本発明の一般式(1)で示される化合物ま 20 たはその製薬学的に許容し得る塩の製剤の形態として は、例えば錠剤、顆粒、散剤、カブセル剤、軟膏剤など の固形製剤および注射剤、点眼剤などの液剤が挙げられ る。いずれの製剤も、公知の方法により適宜調製すると とができる。これら製剤には、通常用いられる賦形剤 (激粉、ブドウ糖、果糖、白糖、リン酸カルシウムな ど)、結合剤(澱粉、アラビアゴム、ゼラチン溶液、ア ルギン酸ナトリウム、カルメロース液など)、崩壊剤 (澱粉、炭酸カルシウム、結晶セルロースなど)、滑沢 剤〈ステアリン酸、ステアリン酸マグネシウム、タルク 30 1-メチル-2-アミノテレフタル酸エステル(1.0 など)、吸収促進剤(チオグリコール酸、カプリン酸、 カブリル酸など)、緩衝剤(ホウ酸、ホウ砂、酢酸ナト リウム、クエン酸緩衝液、リン酸緩衝液など)、界面活 性剤(ラウリル硫酸ナトリウム、ポリソルベート80、 ポリオキシエチレン硬化ヒマシ油など)、溶解補助剤 (ラウリル硫酸ナトリウム、安息香酸ナトリウム、エチ レンジアミン、ヨウ化カリウムなど)、保存剤(塩化ベ ンザルコニウム、パラベン類、クロロブタノールな ど)、乳化剤(アラビアゴム、トラガント、ゼラチン、 ム、グリセリン、マンニトールなど)、安定化剤(エデ ト酸ナトリウム、ピロ亜硫酸ナトリウムなど)、pH調 整剤(塩酸、クエン酸、水酸化ナトリウムなど)などを 適宜使用してもよい。

【0043】本発明の一般式(1)で示される化合物ま たはその製薬学的に許容し得る塩をアルツハイマー系疾 患の予防・治療剤として使用する場合、その用量は、対 象とする疾患の種類、使用する化合物の種類、患者の年 齢、体重、症状およびその剤形などによっても異なる

約1~100mg程度投与するのがよい。また、注射剤 の場合は、成人では1日1回、約0.1~30mg程度 投与するのがよい。さらに、緑内障の疾患に眼局所投与 形態として用いる場合、本発明の一般式(1)で示され る化合物またはその製薬学的に許容し得る塩を約0.() 1 w/v%~1.0 w/v%、好ましくは約0.05 w /v%~0,5w/v%含有する点眼剤を、1回1~数 滴、1日1~6回程度点眼するのがよい。

【0044】本発明の一般式(Ⅰ)で示される化合物は 10 たはその製薬学的に許容し得る塩は、目的と必要に応じ て、本発明化合物の1種または2種以上を適宜組合わせ、 て使用することもできる。

【0045】本発明の一般式(1)で示される化合物ま たはその製薬学的に許容し得る塩は、本発明の目的に反 しない限り、その他の薬効成分を適宜組み合わせて使用 するとともできる。

[0046]

【実施例】本発明を、以下の製造例、実施例および試験 例により、さらに詳細に説明するが、本発明はこれらに より何ら限定されるものではない。なお、製造例および 実施例に述べる化合物の物性値において、核磁気共鳴ス ペクトルは Varian Gemini 2000を用いてプロトン(1)ト NMR)は 300 MHz、カーボン (11 C-NMR) は 75 MHzで測定 し、元素分析は Perkin Elmer ONS/02400、マススペク トルはJEOL JMS-AX505W、融点はヤナコ微量融点測定装 置 MP 500Vを用いて測定したものである。

【0047】製造例1

2-アミノ-4-(シス-9-オクタデセニルカルバモ イル) 安息香酸メチルエステル

g, 5. 124 mm o 1) とシス-9-オクタデセニル アミン (3.289g, 12.297mmol) のN, N-ジメチルホルムアミド (2mL)溶液に、氷冷下、 ジクロロメタン(10mL)にN-エチル-N'-(3 ージメチルアミノプロビル)カルボジイミド(1.17 9g. 6. 148mmol)と1-ヒドロキシベンゾト リアゾール (0.831g, 6.148mmol)を溶 解した溶液を滴下し、そのまま、30分間撹拌し、さら に24時間室温で撹拌した。この反応液に水(20m ポリビニルビロリドンなど)など張化剤(塩化ナトリウ 40 L)を加えた後、酢酸エチル(100mL)で抽出し、 有機相を1 N塩酸水溶液、飽和炭酸水素ナトリウム水溶 液、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで屹 燥した。無機塩をろ去後、減圧下溶媒を留去し、残渣を ヘキサン(10mL)で再結晶化することにより、無色 固体の2-アミノ-4-(シス-9-オクタデセニルカー ルバモイル) 安息香酸メチルエステル (2.04g,9 0%)を得た。

 1 H-NMR (DMSO-d₄): δ 0.80-0.82 (3H, m), 1.20-1.21 (22H, m), 1.46-1.52(2H, m), 1.90-1.96 (4H, m), 3.1 が、例えば内服剤の場合は、成人では1日数回、1回量 50 4-3.20 (2H, m), 3.77 (3H, s), 5.24-5.33 (2H, m),

4.

6.75 (2H, br s), 6.90 (1H, dd, J = 8.4, 1.5 Hz), 7.20 (1H, d, J = 1.5 Hz), 7.70 (1H, d, J = 8.4 Hz). 8.45 (1H, t, J = 5.4 Hz).

¹³C-NMR (DMSO-d₆): δ 13.9, 22.1, 26.5, 26.6 (2C), 28.5, 28.6, 28.7, 28.8, 28.9, 29.0 (2C), 29.1, 3 1.3, 31.9, 33.5, 51.5, 110.2, 112.8, 115.8, 129.6, 130.0, 130.6, 139.9, 151.0, 165.8, 167.4.

【0048】製造例2

2-アミノー4-オクタデカニルカルバモイル安息香酸 メチルエステル

製造例1のシス-9-オクタデセニルアミンの替わりに オクタデカニルアミンを用い、製造例1と同様に操作す ることにより、無色固体の2-アミノ-4-オクタデカ ニルカルパモイル安息香酸メチルエステルを得た。収率 96%.

 1 H-NMR (DMSO-d₆): δ 0.81-0.85 (3H, m), 1.20-1.21 (30H, m), 1.44-1.56(2H, m), 3.14-3.21 (2H, m), 3.7 8 (3H, s), 6.75 (2H, m), 6.89 (1H, dd, J=8.4, 1.5 Hz), 7.19 (1H, d, J = 1.5 Hz), 7.70 (1H, d, J =8.4 Hz), 8.43(1H, m).

【0049】製造例3

2-アミノ-4-イソプロピルカルバモイル安息香酸メ チルエステル

製造例1のシスーターオクタデセニルアミンの替わりに イソプロビルアミンを用い、製造例1と同様に操作する ことにより、無色固体の2-アミノー4-イソプロピル カルバモイル安息香酸メチルエステルを得た。収率88

¹H-NMR (DMSO-d_b): δ 1.12 (6H, d, J = 6.6 Hz), 3.7 dd, J = 8.4, 1.5 Hz), 7.18 (1H, d, J = 1.5 Hz), 7.71 (1H, d, J = 8.4 Hz), 8.19 (1H, d, J = 7.8 H

¹³C-NMR (DMSO-d₄): δ 22.2 (2C), 40.9, 51.5, 110. 1, 113.0, 115.9, 130.5, 140.1, 151.0, 165.2, 167.

【0050】製造例4

2-アミノー4-ブチルカルバモイル安息香酸メチルエ

製造例1のシス-9-オクタデセニルアミンの替わりに 40 ブチルアミンを用い、製造例1と同様に操作することに より、無色固体の2-アミノ-4-ブチルカルバモイル 安息香酸メチルエステルを得た。収率86%。

¹H-HMR (DMSO-d_s): δ 0.87 (3H, t, J = 7.2 Hz), 1.2 5-1.32 (2H, m), 1.44-1.49 (2H, m), 3.16-3.23 (2H, m), 3.78 (3H, s), 6.75 (2H, br s), 6.88 (1H, dd,] = 8.4, 1.5 Hz), 7.19 (1H, d, J = 1.5 Hz), 7.71 (1)H, d, J = 8.4Hz), 8.38 (1H, m).

¹¹C-NMR (DMSO-d_s): δ 13.7, 19.6, 31.1, 51.5, 110. 2, 112.9, 115.8, 130.6, 140.0, 151.0, 165.9, 167. 50 13 C-NMR (DMSO-d₄): δ 13.9, 22.1, 24.3, 26.4, 26.5,

【0051】実施例1

2-メチルスルフォニルアミノ-4-(シス-9-オク タデセニルカルバモイル) 安息香酸メチルエステル 製造例1で合成した2-アミノ-4-(シス-9-オク タデセニルカルバモイル) 安息香酸メチルエステル (3.0g, 6.747mmol)、トリエチルアミン (6.827g, 67.471mmol) の無水テトラ ヘドロフラン(20mL)溶液に、氷冷下、メチルスル 10 フォニルクロライド (1.546g.13.494mm o1)を滴下し、室温で一晩攪拌した。反応液に水(1 0mL)を加えた後、酢酸エチル(100mL)で抽出 し、有機相を1N塩酸水溶液、飽和炭酸水素ナトリウム 水溶液、飽和食塩水の順で洗浄後、無水硫酸ナトリウム で乾燥した。無機塩をろ去後、減圧下溶媒を留去し、残 **渣をシリカゲルカラムクロマトグラフィー(溶離液は酢** 酸エチルとヘキサンの混合溶媒, v/v=1:3)で精 製することにより、無色固体の2-メチルスルフォニル アミノ-4-(シス-9-オクタデセニルカルバモイ 20 ル) 安息香酸メチルエステル(0.998g、28%; 化合物62)を得た。融点: 149.0-150.9 .C.

¹H-NMR (DMSO-d_s): δ 0.82 (3H, m), 1.21-1.25 (22H, m), 1.49 (2H, m), 1.94 (4H, m), 3.17 (3H, s), 3.1 9-3.24 (2H, m), 3.88 (3H, s), 5.28-5.31 (2H, m), 7.59 (1H, dd, J = 8.1, 1.5 Hz), 7.93 (1H, d, J =1.5 Hz), 7.99 (1H, d, J = 8.1 Hz), 8.65 (1H, m), 1 0.06 (1H, s).

¹³C-NMR (DMSO-d_e): δ 13.9, 22.1, 26.4, 26.5, 26. 8 (3H, s), 4.04 (1H,m), 6.74 (2H, br s), 6.89 (1H, 30 6, 28.4, 28.6, 28.7,28.8, 28.9 (3C), 29.0, 29.1, 2 9.2, 31.3, 31.9, 52.8, 118.4, 119.4, 121.6, 129.6, 130.0, 131.1, 139.3, 140.1, 164.8, 167.1. 元索分析(C, H, N, O, S)理論值: C, 64.34; H. 8.87; N. 5.36, 実測值: C. 64.07; H. 9.00; N. 5.49.

【0052】実施例2

2-アセチルアミノー4-(シス-8-オクタデセニル カルバモイル) 安息香酸メチルエステル

実施例1のメチルスルフォニルクロライドの替わりにア セチルクロライドを用い、実施例1と同様に操作すると とにより、無色固体の2-アセチルアミノ-4-(シス -9-オクタデセニルカルバモイル)安息香酸メチルエ ステル(化合物63)を得た。収率30%。

 1 H-NMR (DMSO-d₄): δ 0.80-0.84 (3H, m), 1.21-1.25 (22H, m), 1.46-1.52(2H, m), 1.89-1.96 (4H, m), 2.1 0 (3H, s), 3.18-3.25 (2H, m), 3.84 (3H, s), 5.28-5.33 (2H, m), 7.56 (1H, dd, J = 8.4, 1.5 Hz), 7.89 (1H, d, J = 8.4 Hz), 8.47 (1H, d, J = 1.5 Hz), 8. 56 (1H, t, J = 5.1 Hz), 10.46 (1H, s).

26.6, 28.4, 28.5, 28.6, 28.7, 28.8, 28.9 (2C), 2 9.0, 29.1, 31.2, 31.9, 52.4, 120.8, 121.5,129.6 (2 C), 130.0, 130.2, 139.0, 139.3, 165.1, 167.0, 168.

25

【0053】実施例3

2-エチルスルフォニルアミノ-4-(シス-9-オク タデセニルカルバモイル) 安息香酸メチルエステル 実施例1のメチルスルフォニルクロライドの替わりにエ チルスルフォニルクロライドを用い、実施例1と同様に 操作することにより、無色固体の2 - エチルスルフォニ 10 ルカルバモイル) 安息香酸メチルエステル (化合物 8 ルアミノー4ー (シスーターオクタデセニルカルバモイ ル) 安息香酸メチルエステル(化合物64)を得た。酸 点: 74.9-77.0 ℃。収率7%。 1 H-NMR (DMSO-d₄): δ 0.82 (3H, m), 1.18 (1H, t, J = 7.5 Hz), 1.21-1.25(22H, m), 1.49(2H, m), 1.90-1.97 (4H, m), 3.18-3.26 (2H, m), 3.29 (2H,m), 3.89 (3H, s), 5.30-5.36 (2H, m), 7.58 (1H, dd, J = 8)1, 1.5 Hz), 7.95 (1H, d, J = 1.5 Hz), 8.00 (1H, d, J = 8.1 Hz, 8.65 (1H, m), 10.12 (1H, br s).¹³C-NMR (DMSO-d₆): δ 7.80, 13.8, 22.0, 26.3, 26. 4, 28.5, 28.5, 28.6, 28.7, 28.8 (4C), 28.9, 29.0, 3 1.2, 31.8, 46.1, 52.8, 118.0, 118.7, 121.3, 129.5, 130.0, 131.1, 139.4, 140.1, 164.7, 167.2. 元聚分析(C,, H,, N,O,S)理論値:C, 64.89;

H, 9.01; N, 5.22. 実測値: C, 65.00; H, 9.09;

[0054]実施例4

N, 5.32.

4-(シス-9-オクタデセニルカルバモイル)-2-ピニルスルフォニルアミノ安息香酸メチルエステル 実施例1のメチルスルフォニルクロライドの替わりに2 - クロロエチルスルフォニルクロライドを用い、実施例 1と同様に操作することにより、無色固体の4-(シス -9-オクタデセニルカルバモイル)-2-ビニルスル フォニルアミノ安息香酸メチルエステル(化合物65) を得た。融点:93.9-97.5℃。収率21%。 ¹H-NMR (DMSO-d_b): δ (1.82 (3H, m), 1.22-1.25 (22H, m), 1.49 (2H, m), 1.90-1.97 (4H, m), 3.18-3.28 (2 H, m), 3.82 (3H, s), 5.30-5.38 (2H, m), 6.20 (1H, d, J = 16.5 Hz), 6.37 (1H, d, J = 9.9 Hz), 7.16 (1)H, dd, J = 16.5, 9.9 Hz), 7.81 (1H, d, J = 1.5 Hz), 8.00 (1H, d, J = 8.1 Hz), 8.08 (1H, dd, J = 8. 1, 1.5 Hz), 8.77 (1H, t, J = 5.4 Hz), 10.18 (1H, s).

¹³C-NMR (DMSO-d_s): δ 13.4, 21.6, 25.9, 26.0, 27. 9, 28.0, 28.1, 28.2,28.3, 28.4, 28.5 (3C), 28.6, 3 0.8, 31.4, 52.3, 118.6, 119.6, 121.3, 128.5, 129. 1, 129.6, 130.5, 135.3, 138.1, 139.2, 164.1, 166.

元索分析 (C,, H,, N,O,S · 0.2 H,O) 理論值: C, 6 4.70; H, 8.68; N, 5.20, 実測值: C, 64.32; H,

8.54; N, 5.23. 【0055】実施例5

2-イソプロピルスルフォニルアミノ-4-(シス-9) - オクタデセニルカルバモイル)安息香酸メチルエステ

実施例1のメチルスルフォニルクロライドの替わりにイ ソプロピルスルフォニルクロライドを用い、実施例1と 同様に操作することにより、無色固体の2 - イソブロピ ルスルフォニルアミノー4ー(シスーターオクタデセニ 6)を得た。収率2%。

 1 H-NMR (DMSO-d₄): δ 0.82 (3H, m), 1.16 (1H, d, \mathbb{J} = 6.9 Hz), 1.20-1.24(22H, m), 1.50 (2H, m), 1.90-1.97 (4H, m), 3.15-3.29 (3H, m), 3.89 (3H,s), 5.29 (2H, m), 7.49 (1H, dd, J = 8.4, 1.5 Hz), 7.83 (1.5 Hz)H, d, J = 1.5Hz), 8.01 (1H, d, J = 8.4 Hz), 8.70 (1H, m), 9.92 (1H, s).

¹³ C-NMR (DMSO-d₄): δ 13.8, 13.9, 20.6, 21.9, 25. 8, 25.9, 26.3, 26.4, 28.3, 28.4, 28.5, 28.6, 28.7, 20 28.8, 28.9, 29.0, 31.1, 31.8, 52.6, 59.6,115.0, 11 6.0, 119.7, 129.4, 129.9, 131.3, 140.2, 144.3, 16 4.4, 167.3.

【0056】実施例6

2-(3-クロロプロビルスルフォニルアミノ)-4-(シス-9-オクタデセニルカルバモイル) 安息香酸メ チルエステル

実施例1のメチルスルフォニルクロライドの替わりに3 - クロロプロビルスルフォニルクロライドを用い、実施 例1と同様に操作することにより、無色固体の2-(3 30 -クロロプロピルスルフォニルアミノ) -4-(シス-9-オクタデセニルカルバモイル)安息香酸メチルエス テル(化合物67)を得た。収率84%。

 1 H-NMR (DMSO-d₄): δ 0.82 (3H, m), 1.21-1.25 (24H, m), 1.50 (2H, m), 1.92-1.96 (2H, m), 2.16-2.25 (2 H, m), 3.23-3.27 (2H, m), 3.77 (2H, t, J =6.3 Hz), 3.85 (3H, s), 3.86 (2H, t, J = 6.6 Hz), 5.28-5.33 (2H, m), 8.01 (1H, s), 8.02 (1H, d, J = 8.4 Hz), 8.09 (1H, d, J = 8.4 Hz), 8.77 (1H,d, J = 5.4 Hz). ¹³C-NMR (DM50-d_s): δ 13.8, 21.9, 25.7, 26.3, 26. 40 4, 26.5, 28.4, 28.5, 28.6, 28.7, 28.8 (3C), 28.9, 2 9.0, 31.1, 31.8, 42.8, 52.5, 52.8, 129.0,129.5, 12 9.9, 131.2, 131.8, 131.9, 133.0, 138.1, 163.3, 16 4.8.

【0057】実施例7

2-ベンジルスルフォニルアミノー4-(シス-9-オ . クタデセニルカルバモイル) 安息香酸メチルエステル 実施例1のメチルスルフォニルクロライドの替わりにべ ンジルスルフォニルクロライドを用い、実施例1と同様 に操作することにより、無色固体の2-ベンジルスルフ 50 ォニルアミノー4ー (シス-9-オクタデセニルカルバ

モイル) 安息香酸メチルエステル(化合物68) を得 た。収率33%。

 1 H-NMR (DMSO-d₄): δ 0.83 (3H, m), 1.22-1.26 (22H, m), 1.52 (2H, m), 1.95 (4H, m), 3.21-3.26 (2H, m), 3.81 (3H, s), 4.69 (2H, s), 5.30 (2H, m), 7.16 -7.39 (4H, m), 7.56-7.61 (2H, m), 7.98-8.00 (2H, m), 8.63 (1H, m),10.07 (1H, br s).

【0058】実施例8

2-(2-ニトロベンジルスルフォニルアミノ)-4-(シス-9-オクタデセニルカルバモイル) 安息香酸メ 10 チルエステル チルエステル

実施例1のメチルスルフォニルクロライドの替わりに2 - ニトロベンジルスルフォニルクロライドを用い、実施 例1と同様に操作することにより、無色固体の2-(2 ーニトロベンジルスルフォニルアミノ) - 4 - (シス-9-オクタデセニルカルバモイル) 安息香酸メチルエス テル(化合物69)を得た。収率15%。

 1 H-NMR (DMSO-d₄): δ 0.82 (3H, m), 1.21-1.29 (24H, m), 1.51 (2H, m), 1.94 (2H, m), 3.22-3.24 (2H, m), 3.85 (3H, s), 5.13 (2H, s), 5.24-5.33 (2H, m), 20 m), 8.60 (1H, m). 7.47 (1H, d, J = 7.2 Hz), 7.58-7.66 (3H, m), 7.88 (1H, s), 7.96-8.00 (2H, m), 8.58 (1H, m), 10.20 (1H, s).

¹³C-NMR (DMSO-d₆): δ 13.9, 22.1, 26.4, 26.5, 26. 6, 28.4, 28.6, 28.7, 28.8, 28.9, 29.0 (4C), 31.3, 3 1.9, 52.8, 54.0, 118.6, 119.4, 122.0, 122.9, 125. 3, 129.6, 130.1, 130.4, 131.0, 133.5, 134.4, 138. 7, 140.1, 149.2,164.7, 167.1.

【0059】実施例9

4-(シス-9-オクタデセニルカルバモイル)-2- 30 テル(化合物73)を得た。収率71%。 フェニルスルフォニルアミノ安息香酸メチルエステル 実施例1のメチルスルフォニルクロライドの替わりにフ ェニルスルフォニルクロライドを用い、実施例1と同様 に操作することにより、無色固体の4-(シス-9-オ クタデセニルカルバモイル)-2-フェニルスルフォニ ルアミノ安息香酸メチルエステル(化合物70)を得 た。収率81%。

 1 H-NMR (DMSO-d,): δ 0.82 (3H, m), 1.21-1.24 (22H, m), 1.46 (2H, m), 1.92-1.96 (4H, m), 3.14-3.21 (2 (6H, m), 7.85 (1H, d, J = 8.1 Hz), 7.90 (1H, s), 8.61 (1H, m), 10.33 (1H, s).

【0060】実施例10

2-(2-ニトロフェニルスルフォニルアミノ)-4-(シス-9-オクタデセニルカルバモイル) 安息香酸メ チルエステル

実施例1のメチルスルフォニルクロライドの替わりに2 - ニトロフェニルスルフォニルクロライドを用い、実施 例1と同様に操作することにより、無色固体の2-(2

9-オクタデセニルカルバモイル) 安息香酸メチルエス テル(化合物71)を得た。収率71%。

 1 H-NMR (DMSO-d₄): δ 0.82 (3H, m), 1.21 (22H, m), 1.47 (2H, m), 1.95 (4H, m), 3.17 (2H, m), 3.78 (3 H, s), 5.30 (2H, m), 7.51-7.55 (2H, m), 7.84-8.11 (5H, m), 8.65 (1H, m), 10.78 (1H, s).

【0061】実施例11

2-(3-ニトロフェニルスルフォニルアミノ)-4-(シス-9-オクタデセニルカルバモイル) 安息香酸メ

実施例1のメチルスルフォニルクロライドの替わりに3 -ニトロフェニルスルフォニルクロライドを用い、実施 例1と同様に操作することにより、無色固体の2-(3 -ニトロフェニルスルフォニルアミノ) -4-(シスー 9-オクタデセニルカルバモイル)安息香酸メチルエス テル(化合物72)を得た。収率69%。

 1 H-NMR (DMSO-d₄): δ 0.82 (3H, m), 1.20 (22H, m), 1.46 (2H, m), 1.96 (4H, m), 3.19 (2H, m), 3.78 (3 H, s), 5.30 (2H, m), 8.01 (2H, m), 8.28-8.51 (5H,

【0062】実施例12

2-(4-ニトロフェニルスルフォニルアミノ)-4-(シス-9-オクタデセニルカルバモイル) 安息香酸メ チルエステル

実施例1のメチルスルフォニルクロライドの替わりに4 ーニトロフェニルスルフォニルクロライドを用い、実施 例1と同様に操作することにより、無色固体の2-(4 ーニトロフェニルスルフォニルアミノ) -4- (シスー 9-オクタデセニルカルバモイル) 安息香酸メチルエス

¹H-NMR (DMSO-d₄): δ 0.82 (3H, m), 1.20-1.24 (22H, m), 1.47 (2H, m), 1.95 (4H, m), 3.18 (2H, m), 3.7 8 (3H, s), 5.29 (2H, m), 8.10-8.13 (2H, m), 8.22-8.25 (2H, m), 8.46-8.50 (3H, m), 8.72 (1H, m). 【0063】実施例13

2-(1-ナフチルスルフォニルアミノ)-4-(シス -9-オクタデセニルカルパモイル)安息香酸メチルエ ステル

実施例1のメチルスルフォニルクロライドの替わりに1 H, m), 3.78 (3H, s), 5.28-5.33 (2H, m), 7.53-7.65 40 ーナフチルスルフォニルクロライドを用い、実施例1と 同様に操作することにより、無色固体の2-(1-ナフ チルスルフォニルアミノ) -4-(シス-8-オクタデ セニルカルバモイル)安息香酸メチルエステル(化合物 74)を得た。収率81%。

> ¹H-NMR (DMSO-d₆): δ 0.82 (3H, m), 1.20-1.24 (22H, m), 1.46 (2H, m), 1.94 (4H, m), 3.18 (2H, m), 3.7 8 (3H, s), 5.29 (2H, m), 7.49-8.52 (10H, m), 8.55 (1H, m), 10.76 (1H, s).

【0064】実施例14

アミノ) - 4 - (シス-9-オクタデセニルカルバモイ ル) 安息香酸メチルエステル

実施例1のメチルスルフォニルクロライドの替わりに5 -ジメチルアミノ-1-ナフチルスルフォニルクロライ ドを用い、実施例1と同様に操作することにより、無色 固体の2-(5-ジメチルアミノ-1-ナフチルスルフ ォニルアミノ) -4-(シス-9-オクタデセニルカル バモイル) 安息香酸メチルエステル(化合物75)を得 た。収率93%。

 1 H-NMR (DMSO-d₄): δ 0.82 (3H, m), 1.21 (22H, m), 1.47 (2H, m), 1.95 (4H, m), 2.80-2.82 (6H, m), 3.1 7 (2H, m), 3.78 (3H, s), 5.30 (2H, m), 7.52-7.57 (3H, m), 7.95 (1H, m), 8.10-8.20 (3H, m), 8.45-8.4 7 (2H, m), 8.59(1H, m), 10.78 (1H, s).

【0065】実施例15

2-(2-アセトアミド-4-メチル-5-チアゾリル スルフォニルアミノ) -4-(シス-9-オクタデセニ ルカルバモイル) 安息香酸メチルエステル

実施例1のメチルスルフォニルクロライドの替わりに2 ーアセトアミドー4ーメチルー5ーチアゾリルスルフォ 20 ニルクロライドを用い、実施例1と同様に操作すること により、無色固体の2-(2-アセトアミド-4-メチ ルー5-チアゾリルスルフォニルアミノ) -4-(シス -9-オクタデセニルカルバモイル)安息香酸メチルエ ステル(化合物76)を得た。収率61%。

¹H-NMR (DMSO-d_s): δ C.82 (3H, m), 1.20 (22H, m), 1.46 (2H, m), 1.94 (4+, m), 2.13 (3H, s), 2.41 (3 H, s), 3.19 (2H, m), 3.78 (3H, s), 5.29 (2H, m), 7.89-7.95 (3H, m), 8.63 (1H, m), 10.43 (1H, s), 1 2.46 (1H, s).

【0066】実施例16

4-イソプロピルカルパモイル-2-(シス-9-オク タデセノイルアミノ) 安息香酸メチルエステル

製造例3で合成した2-アミノー4-イソプロピルカル パモイル安息香酸メチルエステルとシスーターオクタデ セノイルクロライドを用い、実施例1と同様に操作する ことにより、無色固体の4-イソプロピルカルバモイル -2-(シス-9-オクタデセノイルアミノ) 安息香酸 メチルエステル(化合物77)を得た。収率93%。 ¹H-NMR (DMSO-d₄): δ 0.82 (3H, m), 1.14 (6H, d, J = 6.6 Hz), 1.21-1.27(20H, m), 1.59 (2H, m), 1.92-1.97 (2H, m), 3.57-3.60 (2H, m), 3.82 (3H,s), 4.03 (1H, m), 5.30-5.34 (2H, m), 7.56 (1H, d, J = 8.1)Hz), 7.89 (1H, d, J = 8.1 Hz), 8.36 (1H, d, J = 7. 5 Hz), 8.51 (1H, s), 10.49 (1H, s).

[0067] 実施例17

4-ブチルカルバモイル-2-(シス-9-オクタデセ ノイルアミノ) 安息香酸メチルエステル

製造例3で合成した2-アミノー4-ブチルカルバモイ

ルクロライドを用い、実施例1と同様に操作することに より、無色固体の4-ブチルカルパモイル-2-(シス -9-オクタデセノイルアミノ)安息香酸メチルエステ ル(化合物78)を得た。収率59%。

 1 H-NMR (DMSO-d₄): δ 0.83-0.91 (6H, m), 1.22-1.28 (24H, m), 1.49 (2H,m), 1.60 (2H, m), 1.93 (2H, m), 2.35 (2H, t, J = 7.5 Hz), 3.23-3.27 (2H,m), 3.84 (3H, s), 5.34 (2H, m), 7.56 (1H, d, J = 8.1 Hz), 7.91 (1H, d,J = 8.1 Hz), 8.54-8.57 (2H, m), 10.5010 (1H, s).

【0068】実施例18

(16)

4-ヒドロキシメチル-3-メチルスルフォニルアミノ -N-(シス-9-オクタデセニル)ベンズアミド 実施例1で合成した2ーメチルスルフォニルアミノー4 (シス-9-オクタデセニルカルバモイル)安息香酸 メチルエステル (9.0g, 17.217mmol) を テトラヒドロフラン (50mL) に溶かし、氷冷下、デ トラヒドロほう酸リチウム (750mg, 34. 434 mmol)を加えた後、60℃で12時間攪拌した。水 (10mL)を加え、更に1時間攪拌した後、混合物を 酢酸エチル(100mL)で抽出し、有機相を1N塩酸 水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水の 順で洗浄後、無水硫酸ナトリウムで乾燥した。無機塩を ろ去後、減圧下溶媒を留去し、残渣をシリカゲルカラム クロマトグラフィー(溶離液は酢酸エチルとヘキサンの 混合溶媒, v/v=1:2:1:1;2:1の順) で精製 することにより、無色固体の4-ヒドロキシメチル-3 -メチルスルフォニルアミノ-N- (シス-9-オクタ デセニル) ベンズアミド (2.098 g, 25%; 化 30 合物1)を得た。融点:63.4-66.1℃。

¹H-NMR (DMSO-d_s): δ 0.83 (3H, m), 1.21-1.25 (24H, m), 1.48 (2H, m), 1.95 (2H, m), 3.00 (3H, s), 3.1 8-3.24 (2H, m), 4.63 (2H, s), 5.28-5.35 (2H, m), 7.51 (1H, d, J = 7.8 Hz), 7.69 (1H, dd, J = 7.8, 1.8 Hz), 7.71 (1H, d, J = 1.8 Hz), 8.43 (1H, m), 9.06 (1H, s).

¹³C-NMR (DMSO-d₄): δ 13.9, 22.1, 26.4, 26.5, 26. 6, 28.5, 28.6, 28.7,28.8, 29.0 (4C), 29.1, 29.2, 3 1.3, 31.9, 59.5, 124.1, 124.5, 127.4, 129.6, 130. 1, 134.0, 134.2, 140.7, 165.4.

FABMS: m/z理論值: 495 (MH*), 実測值: 495. 元素分析 (C,, H,, N,O,S,0.25 H,O) 理論値: C. 64.96; H, 9.38; N, 5.61, 実測値: C, 65.02; H, 9.63; N, 5.68.

【0069】実施例19

3-アセトアミド-4-ヒドロキシメチル-N-(シス -9-オクタデセニル) ベンズアミド 実施例2で合成した2-アセチルアミノ-4-(シス-

9-オクタデセニルカルバモイル) 安息香酸メチルエス ル安息香酸メチルエステルとシス-9-オクタデセノイ 50 テルを用い、実施例18と同様に操作することにより

無色固体の3-アセトアミド-4-ヒドロキシメチルー N-(シス-9-オクタデセニル)ベンズアミド(化合 物2)を得た。融点:120.5-122.4℃。収率 90%.

31

 1 H-NMR (DMSO-d₄): δ 0.81-0.85 (3H, m), 1.22-1.25 (22H, m), 1.44-1.50(2H, m), 1.92-1.97 (4H, m), 2.0 4 (3H, s), 3.17-3.23 (2H, m), 4.48 (2H, d, J = 5.4Hz), 5.28-5.32 (2H, m), 7.46 (1H, d, J = 8.1 Hz), 7.61 (1H, dd, J = 8.1, 1.2 Hz), 7.87 (1H, d, J =1.2 Hz), 8.35 (1H, t, J = 5.1 Hz), 9.37 (1H, s). ¹³C-NMR (DMSO-d₆): δ 13.8, 22.0, 23.2, 26.4, 26.5 (2C), 28.4, 28.5 (2C), 28.6, 28.7 (2C), 28.8, 28. 9, 29.0 (2C), 31.2, 31.8, 59.4, 123.3, 123.5, 129. 5, 130.0, 133.3, 134.8, 138.5, 165.5, 168.2. 元素分析 (C,, H,, N, O, · 0.25 H, O) 理論値: C, 7 2.61; H, 10.11; N, 6.05, 実測値: C, 72.52; H, 10.29; N. 6.22.

【0070】実施例20

3-(3-クロロプロピルスルフォニルアミノ)-4-ヒドロキシメチル-N-(シス-9-オクタデセニル) 20 ベンズアミド

実施例6で合成した2-(3-クロロブロビルスルフォ ニルアミノ)-4-(シス-9-オクタデセニルカルバ モイル) 安息香酸メチルエステルを用い、実施例18と 同様に操作することにより、無色固体の3-(3-クロ ロプロピルスルフォニルアミノ)-4-ヒドロキシメチ ルーN- (シスーターオクタデセニル) ベンズアミド (化合物3)を得た。収率74%。

¹H-NMR (DMSO-d₄): δ C.83 (3H, m), 1.21-1.49 (28H, 0 (4H, m), 4.64 (2H, c, J = 4.8 Hz), 5.31-5.39 (3 H, m), 7.51 (1H, d, J = 7.8 Hz), 7.68-7.71 (2H, m), 8.65 (1H, m), 9.23 (1H, s).

【0071】実施例21

3-ベンジルスルフォニルアミノ-4-ヒドロキシメチ ルーN- (シス-9-オクタデセニル) ベンズアミド 実施例7で合成した2-ベンジルスルフォニルアミノー 4~(シス~9~オクタデセニルカルバモイル)安息香 酸メチルエステルを用い、実施例18と同様に操作する ことにより、無色固体の3-ベンジルスルフォニルアミ 40 ベンズアミド ノー4-ヒドロキシメチル-N-(シス-9-オクタデ セニル) ベンズアミド (化合物4)を得た。収率73 %.

 1 H-NMR (DMSO-d₄): δ (0.83 (3H, m), 1.22-1.25 (24H, m), 1.50 (2H, m), 1.92 (2H, m), 3.21-3.27 (2H, m), 4.47 (2H, s), 4.57 (2H, s), 5.30-5.33 (2H, m), 7.33 (5H, m), 7.48 (1H, d, J = 8.1 Hz), 7.64 (1H, d, J = 8.1, 1.5Hz), 7.75 (1H, d, J = 1.5 Hz), 8.4 1 (1H, m).

(9C), 29.0, 31.1, 31.8, 57.7, 59.6, 123.0, 123.7, 123.8, 127.1, 128.0, 128.2 (2C), 129.4, 129.5, 12 9.9, 130.7 (2C), 134.0, 139.6, 165.4.

【0072】実施例22

4-ヒドロキシメチル-3-(2-ニトロベンジルスル フォニルアミノ) - N - (シス - 9 - オクタデセニル) ベンズアミド

実施例8で合成した2-(2-ニトロベンジルスルフォ ニルアミノ)-4-(シス-9-オクタデセニルカルバ 10 モイル) 安息香酸メチルエステルを用い、実施例18と 同様に操作することにより、無色固体の4-ヒドロキシ メチル-3-(2-ニトロベンジルスルフォニルアミ ノ) - N - (シス-9-オクタデセニル) ベンズアミド (化合物5)を得た。収率26%。

 1 H-NMR (DMSO-d₄): δ 0.83 (3H, m), 1.21-1.29 (24H, m), 1.50 (2H, m), 1.89-1.96 (2H, m), 3.21-3.24 (2 H, m), 4.40 (2H, s), 4.97 (2H, s), 5.34-5.38 (3H, m), 6.56 (1H, d, J = 7.5 Hz), 6.70 (1H, d, J = 8.1Hz), 6.96-7.11 (2H, m), 7.71-7.77 (2H, m), 8.00 (1H, dd, J = 8.1, 1.2 Hz), 8.40 (1H,m), 9.43 (1H, dd)

【0073】実施例23

4-ヒドロキシメチル-N-(シス-9-オクタデセニ ル) -3-フェニルスルフォニルアミノベンズアミド 実施例9で合成した4-(シス-9-オクタデセニルカ ルバモイル)-2-フェニルスルフォニルアミノ安息香 酸メチルエステルを用い、実施例18と同様に操作する てとにより、無色固体の4-ヒドロキシメチル-N-(シス-9-オクタデセニル) -3-フェニルスルフォ m), 2.04-2.15 (2H,m), 2.84-2.91 (2H, m), 3.20-3.3 30 ニルアミノベンズアミド (化合物 6) を得た。収率5 1 %.

> ¹H-NMR (DMSO-d₆): δ 0.82 (3H, m), 1.21 (24H, m), 1.45 (2H, m), 1.92 (2H, m), 3.16 (2H, m), 4.37 (2 H, d, J = 5.1 Hz), 5.06 (1H, m), 5.33 (2H,m), 7.37(1H, d, J = 8.1 Hz), 7.47-7.67 (SH, m), 7.75-7.78(2H, m), 8.30(1H, m).

【0074】実施例24

4-ヒドロキシメチル-3-(2-ニトロフェニルスル フォニルアミノ)-N-(シス-9-オクタデセニル)

実施例10で合成した2-(2-ニトロフェニルスルフ ォニルアミノ) -4- (シス-9-オクタデセニルカル バモイル) 安息香酸メチルエステルを用い、実施例18 と同様に操作することにより、無色固体の4-ヒドロキ シメチルー3-(2-ニトロフェニルスルフォニルアミ ノ) -N-(シス-9-オクタデセニル)ベンズアミド (化合物7)を得た。収率60%。

 1 H-NMR (DMSO-d₄): δ 0.83 (3H, m), 1.22 (22H, m), 1.46 (2H, m), 1.95 (4H, m), 3.16 (2H, m), 4.37 (1 ¹³C-NMR (DMSO-d₆): δ 21.9, 26.4, 28.5, 28.7, 28.9 50 H, d, J = 5.4 Hz), 5.30 (3H, m), 7.23 (1H,m), 7.41 -7.46 (2H, m), 7.55-7.59 (3H, m), 7.76 (1H, m), 8. 92 (1H. m).

33

【0075】実施例25

4-ヒドロキシメチル-3-(3-ニトロフェニルスル フォニルアミノ) - N - (シス - 9 - オクタデセニル) ベンズアミド

実施例11で合成した2-(3-ニトロフェニルスルフ ォニルアミノ) -4-(シス-9-オクタデセニルカル バモイル) 安息香酸メチルエステルを用い、実施例18 と同様に操作することにより、無色固体の4-ヒドロキ 10 シメチルー3ー(3ーニトロフェニルスルフォニルアミ ノ) -N- (シス-9-オクタデセニル) ベンズアミド (化合物8)を得た。収率65%。

 3 H-NMR (DMSO-d₄): δ 0.83 (3H, m), 1.21-1.24 (22H, m), 1.46 (2H, m),1.95 (4H, m), 3.18 (2H, m), 4.38 (2H, s), 5.30 (3H, m), 6.86-7.23 (6H, m), 7.71 (1 H, d, J = 8.4 Hz), 8.37 (1H, m).

【0076】実施例26

4-ヒドロキシメチル-3-(1-ナフチルスルフォニ ルアミノ)-N-(シス-9-オクタデセニル)ベンズ 20 アミド

実施例13で合成した2-(1-ナフチルスルフォニル アミノ)-4-(シス-9-オクタデセニルカルバモイ ル) 安息香酸メチルエステルを用い、実施例18と同様 に操作することにより、無色固体の4-ヒドロキシメチ N-3-(1-t)(シス-9-オクタデセニル) ベンズアミド (化合物 9)を得た。収率62%。

 1 H-NMR (DMSO-d₄): δ C.83 (3H, m), 1.21 (24H, m), 1.46 (2H, m), 1.95 (2H, m), 3.16 (2H, m), 4.21 (2 H, s), 4.93 (1H, s), 5.29-5.34 (2H, m), 7.46-7.78 (5H, m), 8.00-8.30 (5H, m), 8.65 (1H, m).

【0077】実施例27

3-(5-ジメチルアミノ-1-ナフチルスルフォニル アミノ) -4-ヒドロキシメチル-N-(シス-9-オ クタデセニル) ベンズアミド

実施例14で合成した2-(5-ジメチルアミノ-1-ナフチルスルフォニルアミノ)-4-(シス-9-オク タデセニルカルバモイル) 安息香酸メチルエステルを用 い、実施例18と同様に操作することにより、無色固体 40 ヒドロキシメチルーNーオクタデシルベンズアミド の3-(5-ジメチルアミノ-1-ナフチルスルフォニ ルアミノ) -4-ヒドロキシメチル-N-(シス-9-オクタデセニル)ベンズアミド(化合物10)を得た。 収率70%。

 1 H-NMR (DMSO-d₄): δ (1.83 (3H, m), 1.21 (24H, m), 1.43 (2H, m), 1.95 (4H, m), 2.80-2.81 (6H, m), 3.1 7 (2H, m), 4.28 (2H, s), 5.34 (3H, m), 7.14-7.32 (1H, m), 7.51-7.59 (4H, m), 7.55-7.59 (5H, m), 8.4 5 (1H m).

[0078] 実施例28

3-(2-アセトアミド-4-メチル-5-チアゾリル スルフォニルアミノ) -4-ヒドロキシメチル-N-(シス-9-オクタデセニル) ベンズアミド

実施例15で合成した2-(2-アセトアミド-4-メ チルー5-チアゾリルスルフォニルアミノ)-4-(シ ス-9-オクタデセニルカルバモイル) 安息香酸メチル エステルを用い、実施例18と同様に操作することによ り、無色固体の3-(2-アセトアミド-4-メチルー 5-チアゾリルスルフォニルアミノ) -4-ヒドロキシ メチル- N-(シス-9-オクタデセニル)ベンズアミ ド(化合物11)を得た。収率73%。

¹H-NMR (DMSO-d₄): δ 0.83 (3H, m), 1.21 (22H, m), 1.46 (2H, m), 1.95 (4H, m), 2.14 (2H, s), 2.41 (2 H, s), 3.18 (2H, m), 4.37 (2H, d, J = 5.1 Hz), 5.06 (1H, m), 5.30 (2H, m), 7.55-7.78 (3H, m), 8.37 (1H, m), 12.47 (1H, s).

【0079】実施例29

3-(2-アミノベンジルスルフォニルアミノ)-4-ヒドロキシメチルーN-オクタデシルベンズアミド 実施例22で合成した4-ヒドロキシメチル-3-(2) -ニトロベンジルスルフォニルアミノ) -N-(シス-9-オクタデセニル) ベンズアミド (O. 20g, O. 325mmol)を酢酸エチル (5mL) に溶かし、触 媒量 (2-5mg) のパラジウム炭素 (Pd10%) を 加えた後、水素ガス雰囲気下、常圧、室温で撹拌した。 激しい水素の吸収が認められない時点で、薄層クロマト グラフィにて反応の完結を確認し、触媒をろ去後、減圧 下溶媒を留去して、無色固体の3-(2-アミノベンジ ルスルフォニルアミノ) -4-ヒドロキシメチル-N-30 オクタデシルベンズアミド(0.137g,72%;化 合物 12) を得た。

¹H-NMR (DMSO-d₄): δ 0.83 (3H, m), 1.21-1.29 (30H, m), 1.49 (2H, m), 3.19-3.24 (2H, m), 4.35 (2H, s), 4.58 (2H, s), 5.34 (1H, m), 6.55 (1H, d, J = 8.1Hz), 6.70 (1H, d, J = 6.6 Hz), 6.95-7.05 (2H, m), 7.45 (1H, d, J = 8.4 Hz), 7.59 (1H, d, J = 8.4 Hzz), 7.76 (1H, s), 8.35 (1H, m),

【0080】実施例30

3-(2-アミノフェニルスルフォニルアミノ)-4-実施例24で合成した4-ヒドロキシメチル-3-(2 -ニトロフェニルスルフォニルアミノ) -N-(シス-9-オクタデセニル) ベンズアミドを用い、実施例29 と同様に操作することにより、無色固体の3-(2-ア ミノフェニルスルフォニルアミノ) -4-ヒドロキシメ チル-N-オクタデシルベンズアミド (化合物13)を 得た。収率92%。

¹H-NMR (DMSO-d₄): δ 0.83 (3H, m), 1.21 (28H, m), 1.46 (2H, m), 3.16 (2H, m), 4.37 (2H, d, J = 5.4 H 50 z), 5.06 (1H, m), 6.94-7.22 (4H, m), 7.41-7.59 (3

H, m), 8.12 (1H, m).

【0081】実施例31

3-ベンジルスルフォニルアミノ-4-ヒドロキシメチル-N-オクタデシルベンズアミド

35

実施例2 1 で合成した3 - ベンジルスルフォニルアミノ - 4 - ヒドロキシメチル-N- (シス-9 - オクタデセニル) ベンズアミドを用い、実施例2 9 と同様に操作することにより、無色固体の3 - ベンジルスルフォニルアミノ-4 - ヒドロキシメチル-N-オクタデシルベンズアミド(化合物 1 4)を得た。収率9 2%。

 1 H-NMR (DMSO-d_s): δ 0.83 (3H, m), 1.21-1.25 (28H, m), 1.48 (2H, m), 3.20-3.28 (4H, m), 4.48 (2H, s), 4.57 (2H, s), 7.34 (5H, m), 7.49 (1H, m), 7.66 (1H, m), 7.76 (1H, s), 8.42 (1H, m).

【0082】実施例32

4-ヒドロキシメチル-3-メチルスルフォニルアミノ -N-オクタデシルベンズアミド

実施例18で合成した4-ヒドロキシメチル-3-メチルスルフォニルアミノ-N-(シス-9-オクタデセニル)ペンズアミドを用い、実施例29と同様に操作する 20 ことにより、無色固体の4-ヒドロキシメチル-3-メチルスルフォニルアミノ-N-オクタデシルペンズアミド(化合物15)を得た。融点:81.6-83.0 °C.収率90%。

¹H-NMR (DMSO-d_s): δ C.83 (3H, m), 1.21–1.25 (30H, m), 1.49 (2H, m), 3.00 (3H, s), 3.18–3.24 (2H, m), 4.63 (2H, d, J = 5.1 Hz), 5.36 (1H, t, J= 5.1 Hz), 7.51 (1H, d, J = 7.8 Hz), 7.69 (1H, dd, J = 7.8, 1.5 Hz), 7.71 (1H, d, J = 1.5 Hz), 8.43 (1H, m), 9.06 (1H, s).

¹³C-NMR (DMSO-d_a): δ 13.9, 22.1, 26.5, 28.7, 28. 8, 29.0 (12C), 29.1,31.3, 59.5, 124.1, 124.5, 127. 3, 134.0, 134.2, 140.7, 165.4.

FABMS: m/z理輪値: 497 (MH*), 実測値: 497.

元聚分析 (C₂, H₄, N₂O₄S·0.5 H₆0) 理論値: C, 64.12: H, 9.76; N, 5.54, 実測値: C, 64.23; H, 9.57; N, 5.79.

【0083】実施例33

N-(トランス-9, 10-ジヒドロキシオクタデシル)-4-ヒドロキシメチル-3-メチルスルフォニル 40アミノベンズアミド

実施例18で合成した4-ヒドロキシメチル-3-メチルスルフォニルアミノ-N-(シス-9-オクタデセニル)ベンズアミド(0.88g,1.779mmol)を90%ギ酸(5mL)に懸濁させ、反応温度を40-45℃に保ちながら、30%の過酸化水素水(0.3mL,2.668mmol)を滴下した後、40℃でさらに1時間攪拌し、室温で一夜放置した。減圧下でギ酸と水を留去し、残渣に6Nの水酸化ナトリウム水溶液を45℃以下で少しずつ加えた後、45℃で1時間攪拌し

た。反応混合物に水(100mL)を加え、酢酸エチル(100mL)で抽出し、有機相を1 N塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。無機塩をろ去後、減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(溶離液は酢酸エチルとヘキサンの混合溶媒、v/v=2:1;4:1の順)で精製することにより、無色固体のN-(トランス-9,10-ジヒドロキシオクタデシル)-4-ヒドロキシメチル-3-メチル10スルフォニルアミノベンズアミド(0.282g,30%;化合物16)を得た。融点:93.5-93.9℃。

¹H-NMR (OMSO-d_s): δ 0.83 (3H, m), 1.22-1.25 (22H, m), 1.38 (2H, m), 1.49 (4H, m), 3.00 (3H, s), 3.1 0-3.24 (4H, m), 4.63 (2H, d, J = 5.4 Hz), 5.36 (1H, t, J = 5.4 Hz), 7.51 (1H, d, J = 8.1 Hz), 7.69 (1 H, d, J = 8.1Hz), 7.71 (1H, s), 8.43 (1H, m), 9.06 (1H, s).

¹³C-NMR (DMSO-d_a): δ 13.9, 22.1, 25.4, 25.7, 26. 5, 28.7, 28.8, 29.0 (4C), 29.1, 29.2, 29.3, 31.3, 32.2, 32.6, 59.5, 73.1, 73.8, 124.1, 124.5,127.4, 134.0, 134.2, 140.7, 165.4.

元素分析 (C₂, H₄, N₂O₄S·0.02 H₂O) 理論值: C, 61.29; H, 9.15; N, 5.29, 実測値: C, 60.89; H, 9.26; N, 5.18.

【0084】実施例34

3-(3-クロロプロピルスルフォニルアミノ)-N-(トランス-9, 10-ジヒドロキシオクタデシル)-4-ヒドロキシメチルペンズアミド

30 実施例20で合成した3-(3-クロロプロビルスルフォニルアミノ)-4-ヒドロキシメチル-N-(シス-9-オクタデセニル)ベンズアミドを用い、実施例33と同様に操作することにより、無色固体の3-(3-クロロプロビルスルフォニルアミノ)-N-(トランス-9,10-ジヒドロキシオクタデシル)-4-ヒドロキシメチルベンズアミド(化合物17)を得た。収率85%。

¹H-NMR (DMSO-d_s): δ 0.83 (3H, m), 1.22-1.47 (28H, m), 2.15-2.20 (2H,m), 2.80-2.89 (2H, m), 3.11-3.4 3 (4H, m), 3.64-3.82 (2H, m), 4.52 (2H, s), 5.20 (1H, s), 7.48 (1H, d, J = 8.1 Hz), 7.64-7.66 (2H, m), 8.49 (1H,m).

【0085】実施例35

3-ベンジルスルフォニルアミノ-N-(トランス-9、10-ジヒドロキシオクタデシル)-4-ヒドロキ シメチルベンズアミド

実施例21で合成した3-ベンジルスルフォニルアミノ -4-ヒドロキシメチル-N-(シス-9-オクタデセ ニル)ベンズアミドを用い、実施例33と同様に操作す 50 ることにより、無色固体の3-ベンジルスルフォニルア

ミノーN- (トランスー9、10-ジヒドロキシオクタ デシル) - 4 - ヒドロキシメチルベンズアミド (化合物) 18)を得た。収率26%。

37

 1 H-NMR (DMSO-d,): δ 0.83 (3H, m), 1.21 (26H, m), 1.49 (2H, m), 3.24 (2H, m), 3.57-3.60 (2H, m), 4.6 9 (2H, s), 5.22 (1H, s), 7.34 (5H, m), 7.92-8.24 (3H, m), 8.63 (1H, m), 10.07 (1H, br s).

【0086】実施例36

N-(トランス-9, 10-ジヒドロキシオクタデシ ル)-4-ヒドロキシメチル-3-(2-ニトロベンジ 10 9-オクタデセニル)ベンズアミドを用い、実施例33 ルスルフォニルアミノ) ベンズアミド

実施例22で合成した4-ヒドロキシメチル-3-(2 -ニトロベンジルスルフォニルアミノ) -N-(シス-9-オクタデセニル)ベンズアミドを用い、実施例33 と同様に操作することにより、無色固体のN-(トラン ス-9、10-ジヒドロキシオクタデシル)-4~ヒド ロキシメチル-3-(2-ニトロベンジルスルフォニル アミノ) ベンズアミド (化合物19) を得た。収率31 %.

¹H-NMR (DMSO-d₄): δ 0.83 (3H, m), 1.21 (26H, m), 20 1.48 (2H, m), 3.10-3.23 (4H, m), 4.59 (2H, s), 4. 97 (2H, s), 5.39 (1H, m), 7.51-7.81 (4H, m), 7.89-8.02 (3H, m), 8.59 (1H, m), 10.21 (1H, m).

【0087】実施例37

N-(トランス-9, 10-ジヒドロキシオクタデシ ル) -4-ヒドロキシメチル-3-フェニルスルフォニ ルアミノベンズアミド

実施例23で合成した4-ヒドロキシメチル-N-(シ ス-9-オクタデセニル)-3-フェニルスルフォニル アミノベンズアミドを用い、実施例33と同様に操作す 30 ンズアミド(化合物23)を得た。収率43%。 るととにより、無色固体のN-(トランス-9.10-ジヒドロキシオクタデシル) - 4 - ヒドロキシメチルー 3-フェニルスルフォニルアミノベンズアミド (化合物) 20)を得た。収率41%。

 1 H-NMR (DMSO-d₆): δ C.83 (3H, m), 1.21 (26H, m), 1.47 (2H, m), 3.14-3.40 (4H, m), 4.31 (2H, s), 7. 40-7.66 (6H, m), 7.75-7.78 (2H, m), 8.34 (1H, m). 【0088】実施例38

N-(トランス-9, 10-ジヒドロキシオクタデシ ルスルフォニルアミノ) ベンズアミド

実施例24で合成した4-ヒドロキシメチル-3-(2 -ニトロフェニルスルフォニルアミノ) -N-(シス-9-オクタデセニル)ベンズアミドを用い、実施例33 と同様に操作することにより、無色固体のN-(トラン ス-9,10-ジヒドロキシオクタデシル)-4-ヒド ロキシメチルー3~(2-ニトロフェニルスルフォニル アミノ) ベンズアミド (化合物21) を得た。収率41

¹H-NMR (DMSO-d_s): δ 0.83 (3H, m), 1.21-1.49 (28H, 50 7.92 (6H, m), 8.07 (1H, d, J = 8.1 Hz), 8.19 (1H,

m), 3.11-3.28 (4H,m), 4.10-4.15 (2H, m), 4.86 (1. H, m), 7.53-7.72 (4H, m), 7.76-7.92 (3H, m), 8.27 (1H, m).

【0089】実施例39

N-(トランス-9.10-ジヒドロキシオクタデシ ル) -4-ヒドロキシメチル-3-(3-ニトロフェニ ルスルフォニルアミノ) ベンズアミド

実施例25で合成した4-ヒドロキシメチル-3-(3 -ニトロフェニルスルフォニルアミノ) -N-(シスー と同様に操作することにより、無色固体のN-(トラン スー9、10-ジヒドロキシオクタデシル)-4-ヒド ロキシメチルー3ー(3-ニトロフェニルスルフォニル アミノ) ベンズアミド (化合物22) を得た。収率39 %.

 1 H-NMR (DMSO-d₄): δ 0.83 (3H, m), 1.21-1.49 (28H, m), 3.12-3.29 (4H,m), 4.10 (2H, m), 4.74 (1H, m), 7.69-8.12 (4H, m), 8.24-8.36 (3H, m), 8.73 (1H, m).

【0090】実施例40

N-(トランス-9, 10-ジヒドロキシオクタデシ ル) -4-ヒドロキシメチル-3-(1-ナフチルスル フォニルアミノ) ベンズアミド

実施例26で合成した4-ヒドロキシメチル-3-(1 -ナフチルスルフォニルアミノ) -N-(シス-9-オ クタデセニル) ベンズアミドを用い、実施例33と同様 に操作することにより、無色固体のN-(トランスー 9. 10-ジヒドロキシオクタデシル) -4-ヒドロキ シメチルー3-(1-ナフチルスルフォニルアミノ) ベ

 1 H-NMR (DMSO-d₄): δ 0.82 (3H, m), 1.20 (26H, m), 1.46 (2H, m), 3.12-3.28 (4H, m), 4.11-4.16 (2H, m), 4.22 (1H, s), 7.47-7.79 (5H, m), 7.85-8.37 (5 H, m), 8.54 (1H, m).

【0091】実施例41

4~ヒドロキシメチル-3-(5-ジメチルアミノ-1 ーナフチルスルフォニルアミノ) -N-(トランス-9, 10-ジヒドロキシオクタデシル) ベンズアミド 実施例27で合成した3-(5-ジメチルアミノ-1-ル)-4-ヒドロキシメチル-3-(2-ニトロフェニ 40 ナフチルスルフォニルアミノ)-4-ヒドロキシメチル -N-(シス-9-オクタデセニル)ベンズアミドを用 い、実施例33と同様に操作することにより、無色固体 の4-ヒドロキシメチル-3-(5-ジメチルアミノ-1-ナフチルスルフォニルアミノ)-N-(トランス-9. 10-ジヒドロキシオクタデシル) ベンズアミド (化合物24)を得た。収率20%。

> 1 H-NMR (DMSO-d,): δ 0.83 (3H, m), 1.21 (26H, m), 1.49 (2H, m), 1.95(4H, m), 3.18-3.34 (8H, m), 4.1 8 (2H, m), 4.79-4.85 (2H, m), 5.36 (1H, m), 7.68

d, J = 8.1 Hz), 8.26 (1H, s), 8.48 (1H, m). 【0092】実施例42

3-(2-アセトアミド-4-メチル-5-チアゾリル スルフォニルアミノ)-N-(トランス-9,10-ジ ヒドロキシオクタデシル) -4-ヒドロキシメチルベン ズアミド

実施例28で合成した3-(2-アセトアミド-4-メ チル-5-チアゾリルスルフォニルアミノ)-4-ヒド ロキシメチル-N-(シス-9-オクタデセニル)ベン ズアミドを用い、実施例33と同様に操作することによ 10 28)を得た。収率94%。 り、無色固体の3-(2-アセトアミド-4-メチル-5-チアゾリルスルフォニルアミノ)-N-(トランス -9, 10-ジヒドロキシオクタデシル) -4-ヒドロ キシメチルベンズアミド(化合物25)を得た。収率2 5%.

¹H-NMR (DMSO-d₄): δ 0.83 (3H, m), 1.21-1.48 (28H, m), 2.14 (3H, s), 2.41 (3H, s), 3.12-3.27 (4H, m), 4.37 (2H, m), 7.45-7.76 (3H, m), 8.17 (1H, m). 【0093】実施例43

-9-オクタデセノイルアミノ) ベンズアミド

実施例16で合成した4-イソブロビルカルバモイル-2- (シス-9-オクタデセノイルアミノ) 安息香酸メ チルエステルを用い、実施例18と同様に操作すること により、無色固体の4-ヒドロキシメチル-N-イソブ ロビルー3-(シス-9-オクタデセノイルアミノ)ベ ンズアミド(化合物26)を得た。収率59%。

 1 H-NMR (DMSO-d₄): δ C.82 (3H, m), 1.14 (6H, d, J = 6.6 Hz), 1.22 (20H, m), 1.57 (2H, m), 1.93 (2H, m), 3.57-3.60 (2H, m), 4.05 (1H, m), 4.47(2H, d, J 30 = 5.4 Hz), 5.28-5.60 (3H, m), 7.46 (1H, d, J = 8. 1 Hz), 7.63 (1H, d, J = 8.1 Hz), 7.85 (1H, s), 8.14 (1H, d, J = 7.5 Hz), 9.34 (1H, s).

【0094】実施例44

N-ブチル-4-ヒドロキシメチル-3-(シス-9-オクタデセノイルアミノ) ベンズアミド

実施例17で合成した4-プチルカルバモイル-2-(シス-9-オクタデセノイルアミノ) 安息香酸メチル エステルを用い、実施例18と同様に操作することによ り、無色固体のNープチルー4ーヒドロキシメチルー3 -(シス-9-オクタデセノイルアミノ)ベンズアミド (化合物27)を得た。収率42%。

¹H-NMR (DMSO-d,): δ 0.81-0.90 (6H, m), 1.22 (24H, m), 1.43-1.50 (2H,m), 1.58 (2H, m), 1.92 (2H, m), 2.29 (2H, m), 3.21-3.27 (2H, m), 4.47 (2H, d, J =5.1 Hz), 5.30-5.35 (3H, m), 7.46 (1H, d, J = 8.1Hz), 7.61 (1H, d, J = 8.1 Hz), 7.86 (1H, s), 8.36(1H, m), 9.34 (1H, s).

【0095】実施例45

(トランス-9, 10-ジヒドロキシオクタデシル)-4 -ヒドロキシメチルベンズアミド

実施例36で合成したN-(トランス-9、10-ジヒ ドロキシオクタデシル) - 4 - ヒドロキシメチル-3 --(2-ニトロベンジルスルフォニルアミノ) ベンズアミ ドを用い、実施例29と同様に操作することにより、無 色固体の3- (2-アミノベンジルスルフォニルアミ ノ) -N-(トランス-9, 10-ジヒドロキシオクタ デシル)-4-ヒドロキシメチルベンズアミド (化合物

¹H-NMR (DMSO-d₄); δ 0.83 (3H, m), 1.22 (26H, m), 1.50 (2H, m), 3.10-3.23 (4H, m), 4.40 (2H, s), 4. 61 (2H, s), 6.96-7.06 (4H, m), 7.51-7.77 (3H, m), 8.39 (1H, m).

【0096】実施例46

3-(2-アミノフェニルスルフォニルアミノ)-N-(トランス-9, 10-ジヒドロキシオクタデシル) -4-ヒドロキシメチルベンズアミド

実施例38で合成したN-(トランス-9, 10-ジェ 4ーヒドロキシメチルーNーイソブロビルー3ー(シス 20 ドロキシオクタデシル)-4-ヒドロキシメチルー3--(2-ニトロフェニルスルフォニルアミノ) ベンズアミ ドを用い、実施例29と同様に操作することにより、無 色固体の3-(2-アミノフェニルスルフォニルアミ ノ) - N - (トランス - 9, 10 - ジヒドロキシオクタ デシル)-4-ヒドロキシメチルベンズアミド(化合物 29)を得た。収率93%。

> 1 H-NMR (DMSO-d,): δ 0.84 (3H, m), 1.22-1.49 (28H, m), 3.11-3.28 (4H,m), 4.10-4.15 (2H, m), 7.44-7.6 0 (4H, m), 7.76-7.79 (3H, m), 8.24 (1H, m).

【0097】実施例47 3-(3-アミノフェニルスルフォニルアミノ)-N-(トランス-9、10-ジヒドロキシオクタデシル)-4-ヒドロキシメチルベンズアミド・

実施例39で合成したN-(トランス-9,10-シヒ ドロキシオクタデシル) - 4 - ヒドロキシメチル-3 -(3-二トロフェニルスルフォニルアミノ) ベンズアミ ドを用い、実施例29と同様に操作することにより、無 色固体の3-(3-アミノフェニルスルフェニルアミ ノ)-N-(トランス-9,10-ジヒドロキシオクタ デシル) - 4 - ヒドロキシメチルベンズアミド (化合物) 30)を得た。収率94%。

¹H-NMR (DMSO-d₆): δ 0.83 (3H, m), 1.21-1.49 (28H, m), 3.12-3.29 (4H,m), 4.73 (2H, m), 7.85-7.58 (4 H. m), 8.24-8.29 (3H, m), 8.61 (1H, m).

【0098】実施例48

2-メチルスルフォニルアミノ-4-(シス-9-オク タデセニルカルバモイル) 安息香酸

実施例1で合成した2-メチルスルフォニルアミノー4 (シス-9-オクタデセニルカルバモイル)安息香酸 3-(2-アミノベンジルスルフォニルアミノ) -N- 50 メチルエステル (0.11g, 0.214mmol) の

テトラヒドロフラン溶液(5mL)に6Nの水酸化カリ ウム溶液 (0. lml,0. 6mmol)を滴下し、室 温にて終夜攪拌した。反応混合物に水(10mL)を加 え、酢酸エチル(100mL)で抽出した後、得られた 水相を2N塩酸水溶液で酸性にした。析出した固体を濾 過し、水およびヘキサンで順に洗浄し、室温で乾燥さ せ、無色固体の2-メチルスルフォニルアミノー4-(シス-9-オクタデセニルカルバモイル) 安息香酸 (0.006g,56%; 化合物31)を得た。融点: 180. 9-183. 0°C.

 1 H-NMR (DMSO-d,): δ 0.83 (3H, m), 1.22-1.25 (22H, m), 1.50 (2H, m), 1.96 (4H, m), 3.20-3.21 (2H, m), 5.30 (2H, m), 7.54 (1H, dd, J = 8.1, 1.5 Hz), 7.93 (1H, d, J = 1.5 Hz), 8.05 (1H, d, J = 8.1 Hz), 8.63 (1H, m), 10.68 (1H, br s).

¹³C-NMR (DMSO-d₆): δ 13.9, 22.0, 26.4, 26.5, 28. 5, 28.7, 28.8, 28.9,29.0 (7C), 31.2, 31.9, 116.7, 118.2, 120.9, 129.6, 131.6, 140.2, 140.4,156.9, 16

元素分析 (C,, H,, N, O, S · 0.25 H, 0) 理論値: C. 63.19; H, 8.74; N, 5.46, 実測値: C, 63.05; H, 8.76; N, 5.56.

【0099】実施例49

2-アセチルアミノ-4-(シス-9-オクタデセニル カルバモイル) 安息香酸

実施例2で合成した2-アセチルアミノ-4-(シス-9-オクタデセニルカルバモイル) 安息香酸メチルエス テルを用い、実施例48と同様に操作することにより、 無色固体の2-アセチルアミノ-4-(シス-9-オク タデセニルカルバモイル) 安息香酸(化合物32)を得 30 7.59-7.68 (3H, m), 7.89 (1H, s), 7.96-8.06 (2H, た。収率69%。

 1 H-NMR (DMSO-d₄): δ 0.83 (3H, m), 1.22 (22H, m), 1.49 (2H, m), 1.96 (4H, m), 2.12 (3H, s), 3.22 (2 H, m), 5.31 (2H, m), 7.52 (1H, m), 7.96-8.06 (2H, m), 8.56 (1H, m), 10.95 (1H, s).

【0100】実施例50

4-(シス-9-オクタデセニルカルバモイル)-2-ビニルスルフォニルアミノ安息香酸

実施例4で合成した4-(シス-9-オクタデセニルカ ルバモイル) -2-ビニルスルフォニルアミノ安息香酸 40 メチルエステルを用い、実施例48と同様に操作するこ とにより、無色固体の4-(シス-9-オクタデセニル カルパモイル)-2-ビニルスルフォニルアミノ安息香 酸(化合物33)を得た。収率20%。

 1 H-NMR (DMSO-d₄): δ 0.82 (3H, m), 1.21-1.25 (22H, m), 1.48 (2H, m),1.95 (4H, m), 3.20-3.26 (2H, m), 5.30 (2H, m), 6.13 (1H, d, J = 9.9 Hz), 6.22 (1H, d, J = 16.5 Hz), 6.94 (1H, dd, J = 16.5, 9.9 Hz). 7.54 (1H, dd, J = 8.1, 1.5 Hz), 7.86 (1H, d, J =

0.17 (1H, s).

【0101】実施例51

2-ベンジルスルフォニルアミノー4~ (シス~8-オ クタデセニルカルバモイル) 安息香酸

実施例7で合成した2-ベンジルスルフォニルアミノー 4- (シス-9-オクタデセニルカルバモイル) 安息役 酸メチルエステルを用い、実施例48と同様に操作する ことにより、無色固体の2-ベンジルスルフォニルアミ ノー4- (シスー9 -オクタデセニルカルバモイル) 安 10 息香酸(化合物34)を得た。収率13%。

 3 H-NMR (DMSO-d₄): δ 0.82 (3H, m), 1.21 (22H, m), 1.51 (2H, m), 1.95 (2H, m), 3.23 (2H, m), 4.69 (2 H, s), 5.30 (2H, m), 7.17 (1H, dd, J = 6.9,1.2 Hz), 7.28-7.34 (4H, m), 7.57 (1H, dd, J = 8.1, 1.2 Hz), 7.98-8.01 (2H, m), 8.63 (1H, m), 10.07 (1H, b rs).

【0102】実施例52

2-(2-ニトロベンジルスルフォニルアミノ)-4-(シス-9-オクタデセニルカルバモイル) 安息香酸

20 実施例8で合成した2-(2-ニトロベンジルスルフォ ニルアミノ) -4-(シス-9-オクタデセニルカルバ モイル) 安息香酸メチルエステルを用い、実施例48と 同様に操作することにより、無色固体の2-(2-二ト ロベンジルスルフォニルアミノ) -4-(シス-9-オ クタデセニルカルバモイル)安息香酸(化合物35)を 得た。収率17%。

¹H-NMR (DMSO-d_b): δ 0.82 (3H, m), 1.21 (22H, m), 1.52 (2H, m), 1.94(4H, m), 3.23 (2H, m), 3.85 (3 H, s), 5.13 (2H, s), 5.30 (2H, m), 7.49 (1H, m), m), 8.59 (1H, m),10.20 (1H, s).

【0103】実施例53

2-(2-ニトロフェニルスルフォニルアミノ)-4-(シス-9-オクタデセニルカルバモイル) 安息香酸 実施例10で合成した2- (2-ニトロフェニルスルフ ォニルアミノ) -4- (シス-9-オクタデセニルカル バモイル) 安息香酸メチルエステルを用い、実施例48 と同様に操作することにより、無色固体の2-(2-二 トロフェニルスルフォニルアミノ) -4- (シス-9-オクタデセニルカルバモイル) 安息香酸(化合物36) を得た。収率18%。

 1 H–NMR (DMSO–d,): δ 0.82 (3H, m), 1.21–1.25 (22H, m), 1.46 (2H, m),1.95 (4H, m), 3.19 (2H, m), 5.30 (2H, m), 7.51 (1H, m), 7.84 (2H, m), 7.95-8.12 (4H, m), 8.55 (1H, m), 10.79 (1H, s).

【0104】実施例54

2-(3-ニトロフェニルスルフォニルアミノ)-4-(シス-9-オクタデセニルカルバモイル) 安息香酸 実施例11で合成した2-(3-ニトロフェニルスルフ 1.5 Hz), 8.02 (1H, d, J = 8.1 Hz), 8.59 (1H, m), 1 50 ォニルアミノ) -4- (シス-9-オクタデセニルカル バモイル) 安息香酸メチルエステルを用い、実施例48 と同様に操作することにより、無色固体の2-(3-二 トロフェニルスルフォニルアミノ) -4- (シス-9-オクタデセニルカルバモイル)安息香酸(化合物37) を得た。収率29%。

 1 H-NMR (DMSO-d,): δ 0.82 (3H, m), 1.21-1.24 (22H, m), 1.47 (2H, m), 1.95 (4H, m), 3.18 (2H, m), 5.30 (2H, m), 7.52 (1H, m), 7.80-7.91 (3H, m), 8.13 (1 H, m), 8.42-8.46 (2H, m), 8.56 (1H, m).

【0105】実施例55

2-(4-ニトロフェニルスルフォニルアミノ)-4-(シス-9-オクタデセニルカルバモイル) 安息香酸 実施例12で合成した2-(4-ニトロフェニルスルフ ォニルアミノ) -4-(シス-9-オクタデセニルカル バモイル) 安息香酸メチルエステルを用い、実施例48 と同様に操作することにより、無色固体の2-(4-二 トロフェニルスルフォニルアミノ) -4-(シス-9-オクタデセニルカルバモイル)安息香酸(化合物38) を得た。収率17%。

m), 1.46 (2H, m), 1.95 (4H, m), 3.17 (2H, m), 5.28 -5.33 (2H, m), 7.86-8.02 (2H, m), 8.23(1H, d, J = 8.4 Hz), 8.31-8.39 (3H, m), 8.47 (1H, m).

【0106】実施例56

2-(1-ナフチルスルフォニルアミノ)-4-(シス -9-オクタデセニルカルバモイル) 安息香酸

実施例13で合成した2-(1-ナフチルスルフォニル アミノ) - 4 - (シス-9-オクタデセニルカルバモイ ル) 安息香酸メチルエステルを用い、実施例48と同様 に操作することにより、無色固体の2-(1-ナフチル 30 スルフォニルアミノ) -4-(シス-9-オクタデセニ ルカルバモイル)安息香酸(化合物39)を得た。収率 2%.

 1 H-NMR (DMSO-d₄): δ (1.82 (3H, m), 1.21–1.24 (22H, m), 1.46 (2H, m), 1.96 (4H, m), 3.17 (2H, m), 5.30 (2H, m), 7.51-7.84 (8H, m), 8.06 (1H, m), 8.22 (1 H, m), 8.52 (1H, m), 1.0.75 (1H, s).

【0107】実施例57

2-(5-ジメチルアミノナフチルスルフォニルアミ ノ)-4-(シス-9-オクタデセニルカルバモイル) 安息香酸

実施例14で合成した2-(5-ジメチルアミノ-1-ナフチルスルフォニルアミノ) -4-(シス-9-オク タデセニルカルバモイル) 安息香酸メチルエステルを用 い、実施例48と同様に操作することにより、無色固体 の2-(5-ジメチルアミノナフチルスルフォニルアミ ノ) -4-(シス-9-オクタデセニルカルバモイル) 安息香酸(化合物40)を得た。収率18%。

¹H-NMR (DMSO-d_s): δ 0.82 (3H, m), 1.21-1.24 (22H,

(3H, s), 3.15-3.21 (2H, m), 5.28-5.33 (2H, m), 7. 50-7.58 (3H, m), 8.13 (1H, d, J = 7.5 Hz), 8.33-8.37 (2H, m), 8.46 (1H, d, J = 8.4 Hz), 8.58 (1H,

【0108】実施例58

2-(2-アセトアミド-4-メチル-5-チアゾリル スルフォニルアミノ)-4-(シス-9-オクタデセニ ルカルバモイル) 安息香酸

実施例15で合成した2-(2-アセトアミド-4-メ 10 チルー5ーチアゾリルスルフォニルアミノ)ー4ー(シ ス-9-オクタデセニルカルバモイル) 安息香酸メチル エステルを用い、実施例48と同様に操作することによ り、無色固体の2- (2-アセトアミド-4-メチルー 5-チアゾリルスルフォニルアミノ)-4-(シス-9 - オクタデセニルカルバモイル)安息香酸(化合物4 1)を得た。収率22%。

 1 H-NMR (DMSO-d₆): δ 0.82 (3H, m), 1.20-1.24 (22H, m), 1.48 (2H, m),1.94 (4H, m), 2.10 (3H, s), 2.33 (3H, s), 3.19 (2H, m), 5.29 (2H, m), 7.94-7.99 (3 ¹H-NMR (DMSO-d_s): δ C.82 (3H, m), 1.21–1.24 (22H, 20 H, m), 8.59 (1H, m), 10.43 (1H, s), 12.56 (1H, s). 【0109】実施例59

> 2-アミノー4-(シス-9-オクタデセニルカルバモ イル) 安息香酸

製造例1で合成した2-アミノー4-(シス-9-オク タデセニルカルバモイル) 安息香酸メチルエステルを用 い、実施例48と同様に操作することにより、無色固体 の2-アミノー4-(シス-9-オクタデセニルカルバ モイル) 安息香酸(化合物42)を得た。収率58%。 1 H-NMR (DMSO-d₄): δ 0.82 (3H, m), 1.21-1.24 (22H, m), 1.46 (2H, m),1.90-1.96 (4H, m), 3.14-3.21 (2 H, m), 5.28-5.31 (2H, m), 6.86 (1H, dd, J=8.1, 1. 5 Hz), 7.15 (1H, d, J = 1.5 Hz), 7.69 (1H, d, J =8.1 Hz), 8.35 (1H, t, J = 5.4 Hz).

¹³C-NMR (DMSO-d₄): δ 13.9, 22.1, 26.4, 26.6, 28. 6, 28.7, 28.8, 28.9,29.0 (4C), 29.1, 29.2, 31.3, 3 1.9, 111.2, 112.7, 115.6, 129.6, 130.1, 131.1, 13 9.7, 151.1, 165.9, 169.1.

【0110】実施例60

4-(トランス-9,10-ジヒドロキシオクタデシル カルバモイル)-2-エチルスルフォニルアミノ安息香

実施例3で合成した2-エチルスルフォニルアミノー4 -- (シス-9-オクタデセニルカルバモイル) 安息香酸 メチルエステル (1.75g, 3.26 mmol)を 90%ギ酸(5mL) に懸濁させ、反応温度を40~4 5℃に保ちながら、30%の過酸化水素水(0.55m L, 4.89mmol)を滴下した後、40℃でさらに 1時間攪拌し、室温で一夜放置した。減圧下でギ酸と水 を留去し、残渣に6Nの水酸化ナトリウム水溶液を45 m), 1.47 (2H, m),1.94 (4H, m), 2.80 (3H, s), 2.82 50 ℃以下で少しずつ加えた後、45℃で1時間攪拌した。

反応混合物に水(100mL)を加え、酢酸エチル(1 00mL)で抽出し、水相を2N塩酸水溶液で酸性にし た。析出した固体を濾過し、水およびヘキサンで順に洗 浄し、更にエタノール:水(6:5, v/v, 6mL)再. 結晶させ、室温で乾燥することにより、無色固体の4-(トランス-9, 10-ジヒドロキシオクタデシルカル バモイル) -2-エチルスルフォニルアミノ安息香酸 (1. 162g,64%; 化合物43)を得た。 融点: 82. 0-82. 5℃.

 $^{1}H-NMR$ (DMSO-d₄): δ 0.83 (3H, m), 1.17 (3H, t, J = 7.5 Hz), 1.21-1.49(28H, m), 3.19-3.34 (6H, m), 7.53 (1H, d, J = 8.1 Hz), 7.95 (1H, s), 8.04 (1H, d, J = 8.1 Hz), 8.63 (1H, m), 10.72 (1H, s). ¹³C-NMR (DMSO-d₆): δ 7.89, 13.9, 22.1, 25.5, 25. 7, 26.5, 28.7, 28.8, 28.9, 29.0 (4C), 29.1, 29.2, 3 1.3, 32.2, 45.9, 73.1, 73.8, 116.6, 117.8, 120.9, 1

元素分析 (C,, H,, N,O,S) 理論值: C, 60.41; H, 8.69; N, 5.03, 実測値: C, 60.22; H, 8.78; N, 5.07.

31.7, 140.3, 140.5, 165.0, 169.4.

【0111】実施例61

4-(トランス-9, 10-ジヒドロキシオクタデシル カルバモイル)-2-メチルスルフォニルアミノ安息香

実施例1で合成した2-メチルスルフォニルアミノ-4 - (シス-9-オクタデセニルカルバモイル) 安息香酸 メチルエステルを用い、実施例60と同様に操作すると とにより、無色固体の4-(トランス-9,10-ジヒ ドロキシオクタデシルカルバモイル) -2-メチルスル フォニルアミノ安息香酸(化合物44)を得た。収率7 30 8%.

 1 H-NMR (DMSO-d_s): δ 0.83 (3H, m), 1.21 (26H, m), 1.49 (2H, m), 3.19(3H, s), 3.23-3.26 (4H, m), 7.5 3 (1H, dd, J = 8.1, 1.5 Hz), 7.91 (1H, d, J = 1.5 Hz)z), 8.03 (1H, d, J = 8.1 Hz), 8.63 (1H, m).

¹³C-NMR (DMSO-d₆): δ 22.1, 25.7, 26.4, 26.5, 28. 7, 28.8, 28.9, 29.0 (SC), 29.2, 29.3, 31.3, 32.2, 37.2, 73.1, 73.8, 116.6, 118.4, 120.8, 131.6, 140. 1, 140.5, 165.1, 169.2.

【0112】実施例62

2-アセチルアミノ-4-(トランス-9, 10-ジヒ ドロキシオクタデシルカルバモイル) 安息香酸 実施例2で合成した2-アセチルアミノ-4-(シス-9-オクタデセニルカルバモイル) 安息香酸メチルエス テルを用い、実施例60と同様に操作することにより、 無色固体の2-アセチルアミノー4-(トランスー9, 10-ジヒドロキシオクタデシルカルバモイル) 安息香 酸(化合物45)を得た。収率58%。

 1 H-NMR (DMSO-d₄): δ 0.83 (3H, m), 1.22 (22H, m), 1.36 (2H, m), 1.49 (2H, m), 2.11 (3H, s), 3.12-3.2 50 2-(3-クロロプロピルスルフォニルアミノ) -4-

2 (4H, m), 4.14 (2H, m), 7.47 (1H, dd, J=8.1 Hz),7.97 (1H, d, J = 8.1 Hz), 8.51 (1H, m), 8.76 (1H, s), 11.40 (1H, br s).

¹³C-NMR (DMSO-d₆): δ 14.0, 22.1, 24.5, 24.9, 25. 5, 25.7, 26.4, 26.5,28.7, 28.8, 29.0 (2C), 29.1, 2 9.3, 31.3, 32.6, 33.7, 73.1, 73.8, 119.2,120.1, 12 0.7, 130.8, 139.2, 140.4, 165.6, 168.3, 168.9.

【0113】実施例63

4-(トランス-9, 10-ジヒドロキシオクタデシル カルパモイル) -2-ビニルスルフォニルアミノ安息香

実施例4で合成した4-(シス-9-オクタデセニルカ ルバモイル)-2-ビニルスルフォニルアミノ安息香酸 メチルエステルを用い、実施例60と同様に操作するこ とにより、無色固体の4-(トランス-9, 10-ジヒ ドロキシオクタデシルカルバモイル) -2-ビニルスル フォニルアミノ安息香酸(化合物46)を得た。収率3

 1 H-NWR (DMSO-d,): δ 0.83 (3H, m), 1.21-1.49 (28H, 20 m), 3.18-3.23 (2H,m),

6.15 (1H, d, J = 9.9 Hz), 6.24 (1H, d, J = 16.5 Hz), 6.95 (1H, dd, J =16.5, 9.9 Hz), 7.56 (1H, dd, J = 8.4, 1.5 Hz), 7.87 (1H, d, J = 1.5 Hz), 8.02 (1 H, d, J = 8.4 Hz), 8.62 (1H, t, J = 5.7 Hz), 10.30(1H. s).

¹³C-NMR (DMSO-d_s): δ 13.9, 22.1, 25.5, 25.7, 26. 5, 28.7, 28.8, 28.9,29.0 (3C), 29.1, 29.2, 31.3, 3 2.2, 32.6, 73.1, 73.8, 117.2, 118.5, 121.1, 129.4, 131.5, 135.7, 139.7, 140.0, 164.8, 169.3.

【0114】実施例64

4-(トランス-9、10-ジヒドロキシオクタデシル カルバモイル) -2-イソプロピルスルフォニルアミノ 安息香酸

実施例5で合成した2-イソブロビルスルフォニルアミ ノ-4-(シス-8-オクタデセニルカルバモイル)安 息香酸メチルエステルを用い、実施例60と同様に操作 することにより、無色固体の4-(トランス-9,10 -ジヒドロキシオクタデシルカルバモイル) -2-イソ プロピルスルフォニルアミノ安息香酸(化合物47)を 得た。収率25%。

¹H-NMR (DMSO-d_a): δ 0.83 (3H, m), 1.21-1.46 (34H, m), 3.17 (2H, m), 3.62 (3H, m), 6.85 (1H, d, J =8.1 Hz), 7.15 (1H, d, J = 1.5 Hz), 7.70 (1H, dd, J= 8.1, 1.5 Hz), 8.35 (1H, d, J = 5.7 Hz).

¹³C-NMR (DMSO-d_b): δ 13.9, 22.0, 25.6, 26.3, 26. 4, 28.6, 28.7, 28.9 (4C), 29.0, 29.2, 29.3, 31.2, 32.1, 32.5, 42.6, 73.0, 73.7, 111.1, 112.6,115.5, 131.0, 139.6, 151.1, 165.9, 169.0.

【0115】実施例85

(トランス-9, 10-ジヒドロキシオクタデシルカル バモイル)安息香酸

実施例6で合成した2-(3-クロロプロピルスルフォ ニルアミノ) -4- (シス-9-オクタデセニルカルバ モイル) 安息香酸メチルエステルを用い、実施例60と 同様に操作することにより、無色固体の2-(3-クロ ロプロピルスルフォニルアミノ) -4-(トランス-9, 10-ジヒドロキシオクタデシルカルパモイル) 安 息香酸(化合物48)を得た。収率29%。

m), 2.04-2.13 (2H,m), 3.18-3.44 (6H, m), 3.68 (2 H, t, J = 6.6 Hz), 7.57 (1H, d, J = 8.1 Hz), 7.98 (1H, s), 8.04 (1H, d, J = 8.1 Hz), 8.63 (1H, m), 10.75 (1H, s).

¹³C-NMR (DMSO-d₄): δ 14.0, 22.1, 25.7; 26.6, 28. 7, 28.8 29.0 (8C), 29.1, 29.3, 31.3, 32.2, 42.9, 4 8.8, 73.1, 73.8, 117.2, 118.5, 121.2, 131.7, 140. 1, 140.2, 164.9, 169.4.

【0116】実施例66

2-ベンジルスルフォニルアミノ-4-(トランス-9, 10-ジヒドロキシオクタデシルカルバモイル) 安 息香酸

実施例7で合成した2-ベンジルスルフォニルアミノー 4-(シス-9-オクタデセニルカルバモイル) 安息香 酸メチルエステルを用い、実施例60と同様に操作する ことにより、無色固体の2-ベンジルスルフォニルアミ ノー4-(トランス-9,10-ジヒドロキシオクタデ シルカルバモイル)安息香酸(化合物49)を得た。収 率50%。

m), 3.21-3.31 (4H,m), 4.27 (2H, s), 7.27-7.38 (5 H, m), 7.57 (1H, d, J = 8.4 Hz), 7.98-8.00(2H, m). 8.63 (1H, m), 10.07 (1H, br s).

【0117】実施例67

4-(トランス-9,10-ジヒドロキシオクタデシル カルバモイル) -2-(2-ニトロベンジルスルフォニ ルアミノ)安息香酸

実施例8で合成した2-(2-ニトロベンジルスルフォ ニルアミノ) -4- (シス-9-オクタデセニルカルバ モイル) 安息香酸メチルエステルを用い、実施例60と 40 同様に操作することにより、無色固体の4-(トランス -9, 10-ジヒドロキシオクタデシルカルバモイル) -2-(2-ニトロベンジルスルフォニルアミノ) 安息 香酸(化合物50)を得た。収率57%。

 3 H-NMR (DMSO-d₄): δ 0.83 (3H, m), 1.21-1.50 (28H, m), 3.17-3.24 (4H,m), 4.41 (2H, s), 7.45-7.66 (4 H, m), 7.75-7.91 (3H, m), 8.01 (1H, m).

【0118】実施例6 &

4-(トランス-9, 10-ジヒドロキシオクタデシル

実施例9で合成した4-(シス-9-オクタデセニルカ ルバモイル)-2-フェニルスルフォニルアミノ安息皆 酸メチルエステルを用い、実施例60と同様に操作する ことにより、無色固体の4-(トランス-9, 10-ジ ヒドロキシオクタデシルカルバモイル)-2-フェニル スルフォニルアミノ安息香酸(化合物51)を得た。収 率78%。

¹H-NMR (DMSO-d₆): δ 0.83 (3H, m), 1.21 (26H, m), 1 H-NMR (DMSO-d,): δ 0.82 (3H, m), 1.21–1.50 (28H, 10 1.39 (2H, m), 3.10–3.19 (4H, m), 7.56–7.62 (3H, m), 7.70-7.82 (3H, m), 8.30 (1H, m).

【0119】実施例69

4-(トランス-9, 10-ジヒドロキシオクタデシル カルバモイル) -2-(4-ニトロフェニルスルフォニ ルアミノ) 安息香酸

実施例12で合成した2-(4-ニトロフェニルスルフ ォニルアミノ) -4- (シス-9-オクタデセニルカル バモイル) 安息香酸メチルエステルを用い、実施例60 と同様に操作することにより、無色固体の4~(トラン 20 ス-9、10-ジヒドロキシオクタデシルカルパモイ ル) -2-(4-ニトロフェニルスルフォニルアミノ) 安息香酸(化合物52)を得た。収率84%。

¹H-NMR (DMSO-d₄): δ 0.83 (3H, m), 1.21-1.45 (28H, m), 3.11-3.22 (4H,m), 7.81-7.99 (2H, m), 8.13-8.2 8 (3H, m), 8.37-8.49 (3H, m).

【0120】実施例70

4-(トランス-9,10-ジヒドロキシオクタデシル カルバモイル) -2-(1-ナフチルスルフォニルアミ ノ) 安息香酸

¹H-NMR(DMSO-d。):δ 0.83 (3H, m), 1.21-1.52 (28H, 30 実施例13で合成した2-(1-ナフチルスルフォニル アミノ)-4-(シス-9-オクタデセニルカルバモイ ル)安息香酸メチルエステルを用い、実施例60と同様 に操作するととにより、無色固体の4-(トランス-9. 10-ジヒドロキシオクタデシルカルバモイル) -2-(1-ナフチルスルフォニルアミノ)安息香酸(化 合物53)を得た。収率80%。

> 1 H-NMR (DMSO-d₆): δ 0.83 (3H, m), 1.22 (26H, m), 1.38 (2H, m), 3.19-3.37 (4H, m), 7.54-7.69 (3H, m), 7.84-8.21 (7H, m), 8.64 (1H, m).

【0121】実施例71

4-(トランス-9,10-ジヒドロキシオクタデシル カルバモイル) -2-(5-ジメチルアミノ-1-ナフ チルスルフォニルアミノ) 安息香酸

実施例14で合成した2-(5-ジメチルアミノ-1-ナフチルスルフォニルアミノ) -4-(シス-9-オク タデセニルカルバモイル)安息香酸メチルエステルを用 い、実施例60と同様に操作することにより、無色固体 の4-(トランス-9, 10-ジヒドロキシオクタデシ ルカルバモイル) ~2~(5-ジメチルアミノ~1-ナ カルバモイル)-2-フェニルスルフォニルアミノ安息 50 フチルスルフォニルアミノ) 安息香酸(化合物5 4) を

得た。収率76%。

 1 H-NMR (DMSO-d₄): δ 0.82 (3H, m), 1.21-1.49 (28H, m), 2.77-2.82 (6H,m), 3.18-3.41 (4H, m), 7.08-7. 42 (2H, m), 7.51-7.70 (2H, m), 7.90-8.16(3H, m), 8.31-8.61 (3H, m).

49

【0122】実施例72

2-(2-アセトアミド-4-メチル-5-チアゾリル スルフォニルアミノ) -4-(トランス-9, 10-ジ ヒドロキシオクタデシルカルパモイル) 安息香酸

実施例15で合成した2-(2-アセトアミド-4-メ 10 58)を得た。収率99%。 チルー5ーチアゾリルスルフォニルアミノ)ー4ー(シ スーターオクタデセニルカルパモイル) 安息香酸メチル エステルを用い、実施例60と同様に操作することによ り、無色固体の2- (2-アセトアミドー4-メチルー 5-チアゾリルスルフォニルアミノ)-4-(トランス -9, 10-ジヒドロキシオクタデシルカルバモイル) 安息香酸(化合物55)を得た。収率26%。

 1 H-NMR (DMSO-d₄): δ 0.83 (3H, m), 1.21 (26H, m), 1.35 (2H, m), 2.08(3H, s), 2.38 (3H, s), 3.10-3.2 0 (4H, m), 5.29 (2H, m), 7.67-7.85 (3H, m), 8.10 (1H. m).

【0123】実施例73

2-(2-アミノベンジルスルフォニルアミノ)-4-(トランス-9, 10-ジヒドロキシオクタデシルカル パモイル) 安息香酸

実施例52で合成した2-(2-ニトロベンジルスルフ ォニルアミノ) -4- (シス-9-オクタデセニルカル バモイル) 安息香酸を用い、実施例29と同様に操作す ることにより、無色固体の2-(2-アミノベンジルス ドロキシオクタデシルカルバモイル)安息香酸(化合物 56)を得た。収率94%。

 1 H-NMR (DMSO-d₄): δ ().83 (3H, m), 1.22-1.49 (28H, m), 3.17-3.25 (4H,m), 4.54 (2H, s), 7.11-7.20 (4 H, m), 7.82-7.93 (3H, m), 8.37 (1H, m).

【0124】実施例74

2-(2-アミノフェニルスルフォニルアミノ)-4-(トランス-9, 10-ジヒドロキシオクタデシルカル バモイル) 安息香酸

ォニルアミノ) -4- (シス-9-オクタデセニルカル パモイル) 安息香酸を用い、実施例29と同様に操作す ることにより、無色固体の2-(2-アミノフェニルス ルフォニルアミノ) -4- (トランス-9, 10-ジヒ ドロキシオクタデシルカルバモイル) 安息香酸(化合物 57)を得た。収率94%。

 $^{1}\text{H-NMR}$ (DMSO-d₄): δ 0.83 (3H, m), 1.21-1.47 (28H, m), 3.15-3.22 (4H,m), 7.19-7.25 (2H, m), 7.42-7. 54 (3H, m), 7.86-7.88 (2H, m), 8.55 (1H,m).

【0125】実施例75

2-(3-アミノフェニルスルフォニルアミノ)-4-(トランス-9, 10-ジヒドロキシオクタデシルカル バモイル) 安息香酸

実施例54で合成した2-(3-ニトロフェニルスルフ *ニルアミノ) -4- (シス-9-オクタデセニルカル バモイル)安息香酸を用い、実施例29と同様に操作す ることにより、無色固体の2-(3-アミノフェニルス ルフォニルアミノ) -4-(トランス-9,10-ジヒ ドロキシオクタデシルカルバモイル)安息香酸(化合物

 1 H-NMR (DMSO-d_a): δ 0.83 (3H, m), 1.21-1.48 (28H, m), 3.19-3.23 (4H,m), 7.10-7.40 (3H, m), 8.24-8. ·29 (2H, m), 8.59-8.65 (2H, m), 8.78 (1H,m).

【0126】実施例76

2-(4-アミノフェニルスルフォニルアミノ)-4-(トランス-9, 10-ジヒドロキシオクタデシルカル バモイル) 安息香酸

実施例55で合成した2-(4-ニトロフェニルスルフ ォニルアミノ) -4-(シス-9-オクタデセニルカル 20 バモイル) 安息香酸を用い、実施例29と同様に操作す ることにより、無色固体の2-(4-アミノフェニルス ルフォニルアミノ)-4-(トランス-9,10-ジヒ ドロキシオクタデシルカルバモイル)安息香酸(化合物 59)を得た。収率98%。

 3 H-NMR (DMSO-d₄): δ 0.83 (3H, m), 1.22-1.46 (28H, m), 3.11-3.28 (4H,m), 7.51-7.55 (3H, m), 7.67-7.7 1 (2H, m), 7.94-7.98 (2H, m), 8.51 (1H, m).

【0127】実施例77

2-(1,2-ジブロモエチルスルフォニルアミノ)-ルフォニルアミノ) -4- (トランス-9, 10-ジヒ 30 4- (トランス-9, 10-ジヒドロキシオクタデシル カルバモイル) 安息香酸

実施例63で合成した4-(トランス-9,10-ジヒ・ ドロキシオクタデシルカルバモイル) -2-ビニルスル フォニルアミノ安息香酸(0.2g,0.361mmo 1) のクロロホルム (5 m L) 溶液に、氷冷下、3.4 8Mの臭素-クロロホルム溶液(0.12mL,0.4 33mmol)を滴下し、1時間攪拌した後、室温でさ らに2時間攪拌した。減圧下溶媒を留去し、得られた茶 色固体をエタノール:水(1:1, v/v, 1 mL) 再結 実施例53で合成した2-(2-ニトロフェニルスルフ 40 晶させ、室温で乾燥することにより、2-(1,2-ジ プロモエチルスルフォニルアミノ) -4~ (トランス~) 9. 10-ジヒドロキシオクタデシルカルバモイル) 安 息香酸(0.2g,78%;化合物60)を得た。

> 1 H-NMR (DMSO-d₆): δ 0.83 (3H, m), 1.21-1.49 (28H, m), 3.14-3.26 (2H,m), 3.91 (1H, dd, J = 12.0, 8.4. Hz), 4.24 (1H, dd, J = 2.0, 4.2 Hz), 5.92 (1H, d d, J = 8.4, 4.2 Hz), 7.61 (1H, dd, J = 8.1, 1.5 H z), 7.99 (1H,d, J = 1.5 Hz), 8.03 (1H, d, J = 8.1Hz), 8.62 (1H, m), 11.23 (1H, br s).

50 【0128】 実施例78

5

4-(トランス-9, 10-ジヒドロキシオクタデシル カルバモイル)-2-エチルスルフォニルアミノベンゼ ンカルボヒドロキサム酸

実施例60で合成した4-(トランス-9,10-ジヒ ドロキシオクタデシルカルバモイル) -2-エチルスル フォニルアミノ安息香酸(1.14g,2.048mm 01) とジメチルフォルムアミド(0.15g, 2.0 4 mmo 1) をジクロロメタン (5 mL) とテトラヒド ロフラン (30mL) 混合溶媒に溶かし、氷冷下、オキ サリルクロライド(1.3g,10.238mmol) を満下し、40分間撹拌した。得られた反応溶液を、ヒ ドロキシアミン塩酸塩(1.138g,16.381m mol) とトリエチルアミン(2,486g,24,5 71mmo1) のテトラヒドロフラン (10mL) と水 (2mL)溶液に加えた。室温で30分間撹拌した後、 反応混合物を2N塩酸水溶液(10mL)に注ぎ込み、 酢酸エチル(100mL)で抽出し、有機相を飽和食塩 水で洗浄後、無水硫酸ナトリウムで乾燥した。無機塩を ろ去後、減圧下溶媒を留去し、得られた黄色固体をエタ ノール: 水 (6:5, v/v, 6mL) で再結晶させ、室 温で乾燥することにより、黄色固体の4-(トランス-9. 10-ジヒドロキシオクタデシルカルバモイル) -2-エチルスルフォニルアミノベンゼンカルボヒドロキ サム酸(0.55g,47%;化合物61)を得た。 1 H-NMR (DMSO-d₄): δ (0.83 (3H, m), 1.14 (2H, t, J

* 7.42 (1H, dd, J = 8.1, 1.5 Hz), 7.70 (1H, d, J = 8.1 Hz), 7.88 (1H, d, J = 1.5 Hz), 8.51 (1H, m), 9.48 (1H, br s), 11.72 (1H, br s).

【0129】試験例1 PKC活性

(PKC活性化測定方法) PKC活性はプロメガ社製の非ラジオイムノPKC活性測定用キット 【PepTag (登録商標)】を用いた。すなわちPKCによりリン酸化されるペプチドに蛍光標識をしておき、PKCによりリン酸化されたペプチドをアガロース電気泳動で分離す10 る。泳動後のアガロースゲルの電気泳動画像をコンピューター上へ取り込み、その蛍光強度を画像解析 (NIH Image 1.61) した。解析は、プロットプロファイル (Plot Profile)を利用し、リン酸化されたペプチドとリン酸化されなかったペプチドのパンドビーク面積をそれぞれ計測した。この面積値から、りん酸化されたペプチドの割合 (P比)を計算した。PKC活性化率は、以下の式によった。

PKC活性化率 (%) = [(被検体のP比-基剤のP 比)/基剤のP比]×100

【0130】(試験結果)本発明の化合物のPKC活性化率を表2に示した。本結果は、本発明の一般式(I)で示される化合物がPKC活性化作用を有することを示す

【0131】

¹H-NMR (DMSO-d_s): δ (1.83 (3H, m), 1.14 (2H, t, J [表2] = 7.2 Hz), 1.22–1.49(28H, m), 3.15 – 3.24 (6H, m),*

化合物 No.	濃皮 (M)	PKC 活性(%)
1 2	6×10 ⁻⁶	114. 7
17	6×10^{-6}	316.7
19	6 × 1 0 - 6	128.2
26	6×10 ⁻⁶	58.5
2 9	6×10^{-8}	106.6
3 2	6×10^{-6}	152.2
3 3	6×10^{-8}	245.2
36	6×10^{-5}	182.5
3 7	6×10^{-6}	226.1
3.8	6×10^{-5}	182.5
4 1	6×10^{-8}	219.9
4 3	6×10 ⁻⁶	273.7
44	6×10^{-6}	137.0
46	6×10^{-6}	343.2
47	6×10^{-8}	298.1
49	6×10^{-6}	81.3
5 1	6 × 1 0 - 6	270.7
5 2	6×10^{-6}	190.8
5 3	6×10^{-6}	250.8
5 4	6×10^{-6}	241.0
5 8	6×10^{-6}	103.8
5 9	6 × 1 0 - 5	221.7
6 0	6 × 1 0 - 8	196.8
6 1	6×10 ⁻⁶	197. 2

[0132] および製薬学的に許容される塩は、温血動物 (例えばヒ 【発明の効果】本発明の一般式(1)で示される化合物 50 ト、ウサギ、モルモット、ラット、イヌ、ネコなど)の 神経障害、老人性痴呆症、アルツハイマー症、腫瘍など*

53

PKCが関与する疾患、例えば高眼圧症、緑内障、中枢 *の予防・治療剤として、また好中球からのスーパーオキ サイドによる免疫賦活剤などに有用である。

フロントペー	・ジの続き				
(51) Int.Cl. ¹	,	識別記号	F 1		f-72-1 (参考)
A61P	27/06		A61P 27/06		
	43/00	111	43/00	. 111	•
C07C	311/08		C 0 7 C 311/08		
	311/09		311/09		·
	311/11	•	311/11		
	311/13		311/13		•
	311/21		311/21		
	311/35		311/35		
	311/44		311/44		
C07D	277/44		C 0 7 D 277/44		
// C07C	237/30		C 0 7 C 237/30		

Fターム(参考) 4C033 AD05 AD13 AD17 AD20

4C086 AA01 AA02 AA03 BC82 MA01

MAD4 NA14 ZA02 ZA16 ZA33

ZB09 ZB26 ZC19

4C206 AA01 AA02 AA03 JA16 KA01

MA01 MA04 MA12 NA14 ZA02

ZA16 ZA33 ZB26 ZC19

4H006 AA01 AA03 AB20 BV72