Билет 21

Неопределённые выражения, сравнение порядков бесконечно малых и бесконечно больших величин, главная часть бесконечно большой и бесконечно малой величин. *Билет не проверен*

Определение Неопределённые выражения - выражения, предел которых не может быть определён.

Типы неопределённостей:

- 1. $\frac{f(x)}{g(x)}$, где $\lim f(x) = \lim g(x) = 0$
- 2. $\frac{f(x)}{g(x)}$, где $\lim f(x) = \lim g(x) = \infty$
- 3. f(x)g(x), где $\lim f(x) = 0$, а $\lim g(x) = \infty$
- 4. f(x) g(x), где $\lim f(x) = \lim g(x) = \infty$
- 5. $\{f(x)\}^{g(x)}$, где $\lim f(x) = 1$, а $\lim g(x) = \infty$
- 6. $\{f(x)\}^{g(x)}$, где $\lim f(x) = \lim g(x) = 0$
- 7. $\{f(x)\}^{g(x)}$, где $\lim f(x) = \infty$, а $\lim g(x) = 0$

Сравнение порядков бесконечно малых и бесконечно больших величин.

Пусть $\exists \{x_n\}$ и $\{y_n\}$ - две бесконечно малые

- 1. Если $existsim \lim_{n \to \infty} \frac{x_n}{y_n}$, то последовательности $\{x_n\}$ и $\{y_n\}$ несравнимы.
- 2. Если $\lim_{n\to\infty}\frac{x_n}{y_n}=p\neq 0$, то последовательности $\{x_n\}$ и $\{y_n\}$ одного порядка малости $x_n=O(y_n);y_n=O(x_n)$
- 3. Если $\lim_{n \to \infty} \frac{x_n}{y_n} = 1$, то последовательности $\{x_n\}$ и $\{y_n\}$ эквивалентны.
- 4. Если $\lim_{n \to \infty} \frac{x_n}{y_n} = 0$, то x_n величина большего порядка малости, чем y_n .
- 5. Если $\lim_{n\to\infty} \frac{x_n}{y_n} = \infty$, то y_n величина большего порядка малочти, чем x_n .

Пусть $\exists \{x_n\}$ и $\{y_n\}$ - две бесконечно большие

- 1. Если $existsim \lim_{n\to\infty} \frac{x_n}{y_n}$, то последовательности $\{x_n\}$ и $\{y_n\}$ несравнимы.
- 2. Если $\lim_{n\to\infty}\frac{x_n}{y_n}=p\neq 0$, то последовательности $\{x_n\}$ и $\{y_n\}$ одного порядка $x_n=O(y_n);y_n=O(x_n)$
- 3. Если $\lim_{n \to \infty} \frac{x_n}{y_n} = 1$, то последовательности $\{x_n\}$ и $\{y_n\}$ эквивалентны.
- 4. Если $\lim_{n \to \infty} \frac{x_n}{y_n} = \infty$, то x_n величина большего порядка малочти, чем y_n .
- 5. Если $\lim_{n \to \infty} \frac{x_n}{y_n} = 0$, то y_n величина большего порядка малости, чем x_n .

Определение

Пусть $\alpha(x)$ и $\beta(x)$ функции, определенные в некоторой проколотой окрестности точки x_0 . Если функция $\beta(x)$ представляема в виде

$$\beta(x) = \alpha(x) + o(\alpha(x)), x \to x_0$$

то функции $\alpha(x)$ называется главной частью функции $\beta(x)$ при $x \to x_0.$

Если задана функция $\beta(x)$, то ее главная часть не определяется однозначно: любая функция $\alpha(x)$ эквивалентная $\beta(x)$ является ее главной частью.

Однако, если задаваться определенным видом главной части, то главная часть указанного вида может определяться однозначно.