

Open Neural Network eXchange (ONNX): Accelerate and operationalize models for deployment

VINITRA SWAMY | Microsoft

CECILIA LIU | Microsoft

ASHWINI KHADE | Microsoft

ONNX

github.com/onnx onnx.ai

OPEN NEURAL NETWORK EXCHANGE

ONNX Community

Neural Network Libraries

Training frameworks **x** Deployment targets

ONNX: an open and interoperable format for ML models

ONNX

- Standard format for ML models consisting of:
 - common Intermediate Representation
 - full operator spec
- Model = graph composed of computational nodes
- Supports both DNN and traditional ML
- Backward compatible with comprehensive versioning

ONNX Runtime

aka.ms/onnxruntime

github.com/microsoft/onnxruntime

ONNX Runtime: open source high performance Inference Engine for ONNX models

- Performance focused design
- Full ONNX operator support
- Flexibility for custom operators not in the spec
- Backwards and forwards compatible to minimize versioning issues with software or model updates

Cross platform, multi language API

ONNX @ Microsoft

Up to 18.7x

Performance gains seen by Microsoft services

100s of Millions

of devices where ONNX Runtime is running

Billions

of requests handled by ONNX
Runtime across Microsoft
services

Bing With ONNX Runtime

Apply **BERT model** to every Bing search query globally making Bing results more relevant and intelligent

Inference 3-layer BERT with 128 sequence length with ONNX Runtime

- On CPU, 17x latency speed up with ~100 queries per second throughput.
- On NVIDIA GPUs, more than 3x latency speed up with ~10,000 queries per second throughput on batch size of 64

BEFORE AFTER

		Batch size	Inference on	Throughput (Query per second)	Latency (milliseconds)
СРИ	Original 3-layer BERT	1	Azure Standard F16s_v2 (CPU)	6	157
	ONNX Model	1	Azure Standard F16s_v2 (CPU) with ONNX Runtime	111	9
GPU	Original 3-layer BERT	4	Azure NV6 GPU VM	200	20
	ONNX Model	4	Azure NV6 GPU VM with ONNX Runtime	500	8
	ONNX Model	64	Azure NC6S_v3 GPU VM with ONNX Runtime + System Optimization (Tensor Core with mixed precision, Same Accuracy)	10667	6

DEMO

https://aka.ms/wids2020

Deploying ONNX Runtime to Azure ML

Resources

- ONNX: https://github.com/onnx/onnx
- ONNX Converters: https://github.com/onnx/onnxmltools/tree/master/onnxmltools
- ONNX Tutorials: https://github.com/onnx/tutorials
- ONNX Runtime: https://github.com/microsoft/onnxruntime
- ONNX Runtime Tutorials: https://github.com/microsoft/onnxruntime#examples-and-tutorials
- Performance Tuning with ONNX Runtime: https://github.com/microsoft/onnxruntime/blob/master/docs/ONNX Runtime Perf Tuning.md
- Training, Inferencing, and deployment in AzureML with ONNX models: https://aka.ms/onnxnotebooks
- Deploying to Edge and IoT devices: https://github.com/Azure-Samples/onnxruntime-iot-edge
- Windows ML: https://docs.microsoft.com/en-us/windows/ai/windows-ml/

VINITRA SWAMY |

viswamy@microsoft.com

CECILIA LIU |

ziyue.liu@microsoft.com

ASHWINI KHADE |

askhade@microsoft.com

Leverages and abstracts hardware accelerators

Accelerators for a range of hardware

Base CPU

Microsoft Linear

Algebra Subprograms

NVIDIA CUDA

NVIDIA TensorRT

DirectML (Windows)

preview

Intel nGraph

Intel MKL-DNN

Intel OpenVINO

NUPHAR
TVM/LLVM-based
model compiler

NN API (Android)

preview

NXP ARM Compute Library preview