# 8 Model evaluation

## 8.1 Evaluation of binary classifiers

Binary classifiers are mathematical or computational models that classify an input data set and produce the output with two labels.

#### Evaluation of models

The performance of different models can be evaluated under the same test dataset.

- Algorithms
- Scoring schemes
- Statistical analysis

#### Test data

It should contain both homologous and non-homologous alignments.

• Positive: homologous

• Negative: non-homologous



Figure 8.1: Test dataset for homologous and non-homologous

#### Model output

Different models often output different formats of scores.

- Raw scores, bit scores, z-scores
- P-values, e-values

Threshold values are used to separate the result into positives and negatives.



Figure 8.2: Model output for homologous and non-homologous

## 8.2 Confusion matrix

The output of a model produces two false and two correct classifications.



Figure 8.3: Four outcomes of model classification

## Example of model output

A test dataset contains 10 positives and 10 negative.



Figure 8.4: An example of the four outcomes

- 7 true positives
- 8 true negatives
- 2 false positives
- 3 false negatives

#### Confusion matrix

The classification result can be formed into a matrix format.

Table 8.1: Confusion matrix

|                       |                | Te         | st data        |
|-----------------------|----------------|------------|----------------|
|                       |                | Homologous | Non-homologous |
| Model classification  | Homologous     | TP         | FP             |
| Wiodel Classification | Non-homologous | FN         | TN             |

## Example of confusion matrix

| 7 TPs | 2 FPs |
|-------|-------|
| 3 FNs | 8 TNs |

# 8.3 Basic evaluation measures

Various measures can be derived from the confusion matrix.

### Accuracy

$$\frac{TP+TN}{TP+FP+TN+FN} = \frac{TP+TN}{P+N}$$

#### Error rate

$$\frac{FP+FN}{TP+FP+TN+FN} = \frac{FP+FN}{P+N}$$



### Sensitivity, True positive rate, Recall

$$\frac{TP}{TP+FN} = \frac{TP}{P}$$



## Specificity, True negative rate

$$\frac{TN}{FP+TN} = \frac{TN}{N}$$



## Precision, Positive predictive value

$$\frac{TP}{TP + FP}$$



# 8.4 Measures with multiple thresholds

The test data set needs to be sorted by scores, and then confusion matrices can be calculated for multiple threshold values.

## Example of making confusion matrices with multiple thresholds

Test data set

| Label | N  | Р | P  | N | N  | N | P  | Р  | P  | N | Р  | N | Р  | Р  | N  | N | Р  | P  | N  | N |
|-------|----|---|----|---|----|---|----|----|----|---|----|---|----|----|----|---|----|----|----|---|
| Score | 27 | 4 | 17 | 9 | 11 | 2 | 15 | 19 | 22 | 3 | 23 | 7 | 10 | 25 | 11 | 1 | 26 | 28 | 24 | 3 |

#### Sorted test data set

| Label      | Р  | N  | Р  | P        | N  | P  | Р  | P  | Р  | Р        | N  | N  | Р  | N | N | Р | N | N | N | N |
|------------|----|----|----|----------|----|----|----|----|----|----------|----|----|----|---|---|---|---|---|---|---|
| Score      | 28 | 27 | 26 | 25       | 24 | 23 | 22 | 19 | 17 | 15       | 11 | 11 | 10 | 9 | 7 | 4 | 3 | 3 | 2 | 1 |
| Threshold  |    |    | -  | <b>↑</b> |    |    |    |    |    | <b>^</b> |    |    |    |   |   | - | 1 |   |   |   |
| Tilleshold | 1  |    |    |          |    |    | 2  |    |    |          |    |    | 3  |   |   |   |   |   |   |   |

1st threshold (score = 25.5)

| 2 TPs | 1 FPs |
|-------|-------|
| 8 FNs | 9 TNs |

2nd threshold (score = 16)

| 7 TPs | 2 FPs |
|-------|-------|
| 3 FNs | 8 TNs |

3rd threshold (score = 3.5)

| 10 TPs | 6 FPs |
|--------|-------|
| 0 FNs  | 4 TNs |

#### ROC and precision-recall

These measure are based on the confusion matrices of all possible threshold values.

- ROC (Receiver operating characteristic) plot
- Precision-recall plot



Figure 8.5: ROC and precision-recall plots

Exercise 8.1

Draw an ROC curve for the following specificity and sensitivity values.

| Threshold | Specificity | 1 - Specificity | Sensitivity |
|-----------|-------------|-----------------|-------------|
| 10        | 1           | 0               | 0           |
| 9         | 0.8         | 0.2             | 0.8         |
| 8         | 0.6         | 0.4             | 0.8         |
| 7         | 0.6         | 0.4             | 1           |
| 6         | 0.4         | 0.6             | 1           |
| 5         | 0.2         | 0.8             | 1           |
| 4         | 0           | 1               | 1           |

