

PCM5121, PCM5122

SLAS763C - AUGUST 2012-REVISED OCTOBER 2018

PCM512x 2-V_{RMS} DirectPath[™], 112-dB and 106-dB Audio Stereo DACs With 32-Bit, 384-kHz PCM Interface

1 Features

- Register-Selectable Audio-Processing Functions up to 48-kHz f_S
 - Dynamic Range Control (DRC)
 - Equalization (EQ)
 - Filtering
- DAC Functionality to 384-kHz f_S
- · Market-Leading Low Out-of-Band Noise
- · Selectable Digital-Filter Latency and Performance
- · No DC-Blocking Capacitors Required
- Integrated Negative Charge Pump
- Intelligent Muting System; Soft Up or Down Ramp and Analog Mute for 120-dB Mute SNR
- Integrated High-Performance Audio PLL With BCK Reference to Generate SCK Internally
- Accepts 16-, 20-, 24-, and 32-Bit Audio Data
- PCM Data Formats: I²S, Left-Justified, Right-Justified, TDM / DSP
- SPI or I²C Control
- · Software or Hardware Configuration
- Automatic Power-Save Mode When LRCK and BCK are Deactivated
- 1.8-V or 3.3-V Failsafe LVCMOS Digital Inputs
- Single Supply Operation:
 - 3.3-V Analog, 1.8-V or 3.3-V Digital
- Integrated Power-On Reset
- Small28-Pin Package

2 Applications

- A/V Receivers
- DVD, BD Players
- HDTV Receivers
- Applications Requiring 2-V_{RMS} Audio Output

3 Description

The PCM512x devices are a family of monolithic CMOS-integrated circuits that include a stereo digital-to-analog converter and additional support circuitry in a small TSSOP package. The PCM512x uses the latest generation of Tl's advanced segment-DAC architecture to achieve excellent dynamic performance and improved tolerance to clock jitter.

Members of the PCM512x family integrate preset audio processing functions with programmable coefficients, allowing developers to change the characteristics of the interpolation filter, speaker EQ, dynamic range controls, and average volume control in their products.

The PCM512x provides 2.1-V_{RMS} ground-centered outputs, allowing designers to eliminate DC-blocking capacitors on the output, as well as external muting circuits traditionally associated with single supply line drivers.

The integrated line driver surpasses all other charge-pump-based line drivers by supporting loads down to 1 $k\Omega$. By supporting loads down to 1 $k\Omega$, the PCM512x can essentially drive up to 10 products in parallel (LCD TV, DVDR, AV receivers, and so forth).

The integrated PLL on the device removes the requirement for a system clock (commonly known as master clock), allowing a 3-wire I²S connection, along with reducing system EMI.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
PCM5121	TCCOD (20)	9.7 mm × 4.4 mm
PCM5122	TSSOP (28)	9.7 mm x 4.4 mm

(1) For all available packages, see the package option addendum at the end of the data sheet.

Simplified System Diagram

Table of Contents

1	Features 1		9.2 Typical Application 58
2	Applications 1	10	Power Supply Recommendations 60
3	Description 1		10.1 Power Supply Distribution and Requirements 60
4	Revision History2		10.2 Recommended Powerdown Sequence 60
5	Device Comparison 4		10.3 External Power Sense Undervoltage Protection Mode
6	Pin Configuration and Functions 5		10.4 Power-On Reset Function
	6.1 Pin Functions		10.5 PCM512x Power Modes 65
7	Specifications7	11	Layout
	7.1 Absolute Maximum Ratings 7		11.1 Layout Guidelines 66
	7.2 ESD Ratings 7		11.2 Layout Example
	7.3 Recommended Operating Conditions	12	Register Maps 67
	7.4 Thermal Information		12.1 PCM512x Register Map 67
	7.5 Electrical Characteristics	13	Device and Documentation Support 113
	7.6 Timing Requirements: SCK Input		13.1 Development Support
	7.7 Timing Requirements: XSMT		13.2 Documentation Support
	7.8 Switching Characteristics		13.3 Related Links
8	7.9 Typical Characteristics		13.4 Receiving Notification of Documentation Updates
	8.1 Overview 14		13.5 Community Resources
	8.2 Functional Block Diagram 14		13.6 Trademarks
	8.3 Feature Description14		13.7 Electrostatic Discharge Caution 113
	8.4 Device Functional Modes51		13.8 Glossary
	8.5 Programming 57	14	Mechanical, Packaging, and Orderable
9	Application and Implementation 58	7	Information
	9.1 Application Information		

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cł	nanges from Revision B (January 2016) to Revision C	ge
<u>.</u>	Added bullet item with additional description for 3-wire mode operation to Design Requirements section	58
Cl	nanges from Revision A (September 2012) to Revision B	ge
•	Changed Accepts 16-, 24-, And 32-Bit Audio Data to Accepts 16-, 20-, 24-, And 32-Bit Audio Data	. 1
•	Deleted Internal Pop-Free Control For Sample-Rate Changes Or Clock Halts, With Popless Operation	. 1
•	Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes section, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	. 1
•	Clarified Pin Functions table	5
•	Deleted redundant PLL specification in Recommended Operating Conditions	. 7
•	Deleted Intelligent clock error andfor pop-free performance in the Overview section	14
•	Added note on instruction cycle requirements.	20
•	Added note on instruction cycles in Fixed Audio Processing Flow (Program 5)	34
•	Changed Ouptut to Output	42
•	Deleted VREF mode provides 2.1V _{rms} full-scale output at both AVDD levels	42
•	Clarified clock generation explanation in Reset and System Clock Functions.	45
•	Clarified external SCK discussion in Clock Slave Mode with BCK PLL to Generate Internal Clocks (3-Wire PCM)	47
•	Deleted The PCM512x disables the internal PLL when an external SCK is supplied.	47

Submit Documentation Feedback

Cł	nanges from Original (August 2012) to Revision A	Pag	36
•	Changed the device status From: Preview To: Production		•

5 Device Comparison

Table 1. Differences Between PCM512x Devices

PART NUMBER	DYNAMIC RANGE	SNR	THD
PCM5122A	112 dB	112 dB	−93 dB
PCM5121A	106 dB	106 dB	-92 dB

Table 2. Typical Performance (3.3-V Power Supply)

PARAMETER	PCM5122 / PCM5121
SNR	112 / 106 dB
Dynamic range	112 /106 dB
THD+N at -1 dBFS	-93/ -92 dB
Full-scale single-ended output	2.1 V _{RMS} (GND center)
Normal 8x oversampling digital filter latency	20/f _S
Low latency 8x oversampling digital filter latency	3.5/f _S
Sampling frequency	8 kHz to 384 kHz
System clock multiples (f _{SCK}): 64, 128, 192, 256, 384, 512, 768, 1024, 1152, 1536, 2048, 3072	Up to 50 MHz

Submit Documentation Feedback

6 Pin Configuration and Functions

Table 3. Gain and Attenuation in Hardwired Mode

ATT PIN CONDITION (ATT2 : ATT1 : ATT0)	GAIN AND ATTENUATION LEVEL
(000)	0 dB
(001)	3 dB
(010)	6 dB
(011)	9 dB
(100)	12 dB
(101)	15 dB
(110)	−6 dB
(111)	−3 dB

6.1 Pin Functions

	PIN					
NAME	MODE, NO.		I/O	DESCRIPTION		
NAME	I ² C	SPI	HW			
CPVDD	1	1	1	-	Charge pump power supply, 3.3 V	
CAPP	2	2	2	0	Charge pump flying capacitor terminal for positive rail	
CPGND	3	3	3	-	Charge pump ground	
CAPM	4	4	4	0	Charge pump flying capacitor terminal for negative rail	
VNEG	5	5	5	0	Negative charge pump rail terminal for decoupling, -3.3 V	
OUTL	6	6	6	0	Analog output from DAC left channel	
OUTR	7	7	7	0	Analog output from DAC right channel	
AVDD	8	8	8	-	Analog power supply, 3.3 V	
AGND	9	9	9	-	Analog ground	
VCOM	10	10	ı	0	VCOM output (optional mode selected by register; default setting is VREF mode.) When in VREF mode (default), this pin ties to GND. When in VCOM mode, decoupling capacitor to GND is required.	
DEMP	_	_	10	I	HW DEMP: De-emphasis control for 44.1-kHz sampling rate: Off (Low) / On (High)	

Pin Functions (continued)

	PIN						
	MODE, NO.		I/O	DESCRIPTION			
NAME	I ² C	SPI	HW	-			
SDA	11	_	_	I/O	I ² C Data for I ² C ⁽¹⁾⁽²⁾		
MOSI		11	_		SPI Input data for SPI ⁽²⁾		
ATT2	-	_	11	I	HW Digital gain and attenuation control pin		
SCL	12	_	_		I ² C Input clock for I ² C ⁽²⁾		
MC	-	12	_	I	SPI Input clock for SPI ⁽²⁾		
ATT1	_	_	12		HW Digital gain and attenuation control pin		
GPIO5	13	13	_	1/0	I ² C, SPI General purpose digital input and output port (3)		
ATT0	-	_	13	I/O	HW Digital gain and attenuation control pin		
GPIO4	14	14	_		I ² C, SPI General purpose digital input and output port (3)		
MAST	ı	_	14	I/O	HW I ² S Master clock select pin : Master (High) BCK/LRCK outputs, Slave (Low) BCK/LRCK inputs		
GPIO3	15	15	_		I ² C, SPI General purpose digital input and output port (3)		
AGNS	_	_	15	I/O	HW Analog gain selector : 0-dB 2-V _{RMS} output (Low), -6-dB 1-V _{RMS} output (High)		
ADR2	16	_	_	1/0	I ² C 2nd LSB address select bit for I ² C		
GPIO2	-	16	_	I/O	SPI General purpose digital input and output port		
DOUT	ı	_	16	0	HW General Purpose Output (Low level)		
MODE1	17	17	17	I	Mode control selection pin (2) MODE1 = Low, MODE2 = Low: Hardwired mode MODE1 = Low, MODE2 = High: I ² C mode MODE1 = High: SPI mode		
MODE2	18	_	18		I ² C, MODE2		
MS	-	18	_	ı	SPI MS pin (chip select for SPI)		
GPIO6	19	19	_	I/O	I ² C, SPI General purpose digital input and output port		
FLT	ı	_	19	I	HW Filter select : Normal latency (Low) / Low latency (High)		
SCK	20	20	20	I	System clock input ⁽²⁾		
BCK	21	21	21	I/O	Audio data bit clock input (slave) or output (master) (2)		
DIN	22	22	22	I	Audio data input ⁽²⁾		
LRCK	23	23	23	I/O	Audio data word clock input (slave) or output (master) ⁽²⁾		
ADR1	24	-	_		I ² C LSB address select bit for I ² C		
MISO (GPIO1)	ı	24	_	I/O	SPI Primary output data for SPI readback. Secondary; general purpose digital input/output port controlled by register		
FMT	1	_	24		HW Audio format selection: I ² S (Low) / Left justified (High)		
XSMT	25	25	25	I	Soft mute control Soft mute (2) (Low) / soft un-mute (High)		
LDOO	26	26	26	-	Internal logic supply rail terminal for decoupling, 1.8 V		
DGND	27	27	27	-	Digital ground		
DVDD	28	28	28	-	Digital power supply, 3.3 V or 1.8 V		

- (1) (2) (3)
- Open-drain configuration in out mode. Failsafe LVCMOS Schmitt trigger input.
- Internal Pulldown

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT	
Cumply voltage	AVDD, CPVDD, DVDD	-0.3	3.9	V	
,	LDO with DVDD at 1.8 V	-0.3	2.25	V	
Digital input valtage	DVDD at 1.8 V	-0.3	2.25	V	
Digital input voltage	DVDD at 3.3 V	-0.3	3.9		
Analog input voltage		-0.3	3.9	V	
Operating junction temperatu	ıre, T _J	-40	130	°C	
Storage temperature, T _{stg}		-65	150	°C	

7.2 ESD Ratings

			VALUE	UNIT
\/	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	\/
V _{(ESI}	⁰⁾ discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±750	V

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

				MIN	NOM	MAX	UNIT
^	Analog power supply voltage	Referenced to AGND ⁽¹⁾	VCOM mode	3	3.3	3.46	V
A_{VDD}			VREF mode	3.2	3.3	3.46	V
_	Digital power cumply valtege	Referenced to DGND ⁽¹⁾	1.8 V DVDD	1.65	1.8	1.95	V
D_{VDD}	Digital power supply voltage		3.3 V DVDD	3.1	3.3	3.46	V
CPVDD	Charge pump supply voltage	Referenced to CPGND ⁽¹⁾		3.1	3.3	3.46	V
MCLK	Master clock frequency					50	MHz
LOL, LOR	Stereo line output load resistance			1	10		kΩ
C _{LOUT}	Digital output load capacitance				10		pF
T_J	Operating junction temperature	<u>-</u>		-40		130	°C

⁽¹⁾ All grounds on board are tied together; they must not differ in voltage by more than 0.2-V maximum, for any combination of ground

7.4 Thermal Information

		PCM512x	
	THERMAL METRIC ⁽¹⁾	RHB (TSSOP)	UNIT
		32 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	72.2	°C/W
$R_{\theta JC(top)}$	Junction-to-case(top) thermal resistance	17.5	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	35.0	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.4	°C/W
ΨЈВ	Junction-to-board characterization parameter	34.5	°C/W

⁽¹⁾ For more information about trdational and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

T₂ = 25°C AV₂₀ = CPV₂₀ = DV₂₀ = 3.3 V₂ f₂ = 48 kHz, system clock = 512 f₃ and 24-bit data (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	Resolution	·	16	24	32	Bits	
DIGIT	AL INPUT/OUTPUT				*		
_ogic I	Family: 3.3-V LVCMOS Compatible						
V _{IH}	Input logic level, high		$0.7 \times DV_{DD}$			V	
V _{IL}	Input logic level, low				$0.3 \times DV_{DD}$	V	
IH	Input logic current, high	$V_{IN} = V_{DD}$			10	μA	
IL	Input logic current, low	V _{IN} = 0 V			-10	μA	
/он	Output logic level, high	$I_{OH} = -4 \text{ mA}$	$0.8 \times DV_{DD}$			V	
/ _{OL}	Output logic level, low	I _{OL} = 4 mA			0.22 × DV _{DD}	V	
_ogic I	Family 1.8-V LVCMOS Compatible						
/ _{IH}	Input logic level, high		$0.7 \times DV_{DD}$			V	
/ _{IL}	Input logic level, low				$0.3 \times DV_{DD}$	V	
IH	Input logic current, high	$V_{IN} = V_{DD}$			10	μA	
IL	Input logic current, low	V _{IN} = 0 V			-10	μA	
/ _{OH}	Output logic level, high	$I_{OH} = -2 \text{ mA}$	$0.8 \times DV_{DD}$			V	
/ _{OL}	Output logic level, low	I _{OL} = 2 mA			0.22 × DV _{DD}	V	
OYNA	MIC PERFORMANCE (PCM MODE)(1)	(2)			•		
		f _S = 48 kHz		-93	-83		
	THD+N at -1 dB ⁽²⁾	f _S = 96 kHz		-93		dB	
		f _S = 192 kHz		-93			
		EIAJ, A-weighted, f _S = 48 kHz	108	112			
	Dynamic range ⁽²⁾	EIAJ, A-weighted, $f_S = 96 \text{ kHz}$		112		dB	
		EIAJ, A-weighted, f _S = 192 kHz		112			
		EIAJ, A-weighted, f _S = 48 kHz		112			
	Signal-to-noise ratio (2)	EIAJ, A-weighted, f _S = 96 kHz		112		dB	
		EIAJ, A-weighted, f _S = 192 kHz		112			
		EIAJ, A-weighted, f _S = 48 kHz	113	123			
	Signal-to-noise ratio with analog mute ⁽²⁾⁽³⁾	EIAJ, A-weighted, f _S = 96 kHz	113	123		dB	
	maco - · · ·	EIAJ, A-weighted, f _S = 192 kHz	113	123			
		f _S = 48 kHz	100 / 95	109 / 103			
	Channel separation	f _S = 96 kHz	100 / 95	109 / 103		dB	
		f _S = 192 kHz	100 / 95	109 / 103			

⁽¹⁾ Filter condition: THD+N: 20-Hz HPF, 20-kHz AES17 LPF Dynamic range: 20-Hz HPF, 20-kHz AES17 LPF, A-weighted Signal-to-noise ratio: 20-Hz HPF, 20-kHz AES17 LPF, A-weighted Channel separation: 20-Hz HPF, 20-kHz AES17 LPF Analog performance specifications are measured using the System Two Cascade™ audio measurement system by Audio Precision™ in the RMS mode. Output load is 10 kΩ, with 470-Ω output resistor and a 2.2-nF shunt capacitor (see *Recommended Output Filter for the PCM512x*).

Submit Documentation Feedback

⁽³⁾ Assert XSMT or both L-ch and R-ch PCM data are BPZ

Electrical Characteristics (continued)

 $T_A = 25$ °C, $AV_{DD} = CPV_{DD} = DV_{DD} = 3.3 \text{ V}$, $f_S = 48 \text{ kHz}$, system clock = 512 f_S and 24-bit data (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALO	G OUTPUT					
	Single-ended output voltage			2.1		V _{RMS}
	Gain error		-6	±2.0	6	% of FSR
	Gain mismatch, channel-to-channel		-6	±0.5	6	% of FSR
	Load impedance		5			kΩ
FILTER	CHARACTERISTICS-1: NORMAL (8)	()				
	Pass band				0.45 × f _S	kHz
	Stop band		0.55 × f _S			kHz
	Stop band attenuation		-60			dB
	Pass-band ripple				±0.02	dB
	Delay time			20 × t _S		s
FILTER	CHARACTERISTICS-2: LOW LATEN	CY (8x)				
	Pass band				0.47 × f _S	kHz
	Stop band		0.55 × f _S			kHz
	Stop band attenuation		-52			dB
	Pass-band ripple				±0.0001	dB
	Delay time			3.5 × t _S		s
FILTER	CHARACTERISTICS-3: ASYMMETRI	IC FIR (8x)			'	
	Pass band				0.4 × f _S	kHz
	Stop band		0.72 × f _S			kHz
	Stop band attenuation		-52			dB
	Pass-band ripple				±0.05	dB
	Delay time			1.2 × t _S		s
FILTER	CHARACTERISTICS-4: HIGH-ATTEN	NUATION (8x)			•	
	Pass band				$0.45 \times f_S$	kHz
	Stop band		$0.45 \times f_S$			kHz
	Stop band attenuation			-100		dB
	Pass-band ripple				±0.0005	dB
	Delay time			$33.7 \times t_S$		S
POWER	SUPPLY REQUIREMENTS					
DV_DD	Digital supply voltage	Target DV _{DD} = 1.8 V	1.65	1.8	1.95	VDC
DV_DD	Digital supply voltage	Target DV _{DD} = 3.3 V	3	3.3	3.6	VDC
AV_{DD}	Analog supply voltage		3	3.3	3.6	VDC
CPV_DD	Charge-pump supply voltage		3	3.3	3.6	VDC
		f_S = 48 kHz, input is bipolar zero data		11	14	
I_{DD}	DV _{DD} supply current at 1.8 V	f _S = 96 kHz, input is bipolar zero data		12		mA
		f _S = 192 kHz, input is bipolar zero data		14		
		f _S = 48 kHz, input is 1 kHz – 1 dBFS data		11	14	
I_{DD}	DV _{DD} supply current at 1.8 V	$f_S = 96 \text{ kHz}$, input is 1 kHz – 1 dBFS data		12		mA
		f _S = 192 kHz, input is 1 kHz – 1 dBFS data		14		
I_{DD}	DV _{DD} supply current at 1.8 V ⁽⁴⁾	$f_S = N/A$, power-down mode		0.3	0.6	mA

⁽⁴⁾ Power-down mode, with LRCK, BCK, and SCK halted at low level.

Electrical Characteristics (continued)

 $T_A = 25^{\circ}\text{C}$, $AV_{DD} = CPV_{DD} = DV_{DD} = 3.3 \text{ V}$, $f_S = 48 \text{ kHz}$, system clock = 512 f_S and 24-bit data (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
		f _S = 48 kHz, input is bipolar zero data	12	15	
I _{DD}	DV _{DD} supply current at 3.3 V	$f_S = 96 \text{ kHz}$, input is bipolar zero data	13		mA
		f _S = 192 kHz, input is bipolar zero data	15		
		f _S = 48 kHz, input is 1 kHz – 1 dBFS data	12	15	
I _{DD}	DV _{DD} supply current at 3.3 V	f _S = 96 kHz, input is 1 kHz – 1 dBFS data	13		mA
		$f_S = 192 \text{ kHz}$, input is 1 kHz – 1 dBFS data	15		
I_{DD}	DV _{DD} supply current at 3.3 V ⁽⁴⁾	$f_S = N/A$, power-down mode	0.5	0.8	mA
		$f_S = 48$ kHz, input is bipolar zero data	11	16	
I _{CC}	AV _{DD} + CPV _{DD} supply current	$f_S = 96 \text{ kHz}$, input is bipolar zero data	11		mA
		f _S = 192 kHz, input is bipolar zero data	11		
		f _S = 48 kHz, input is 1 kHz – 1 dBFS data	24	32	
I _{CC}	AV _{DD} + CPV _{DD} supply current	f _S = 96 kHz, input is 1 kHz – 1 dBFS data	24		mA
		f _S = 192 kHz, input is 1 kHz – 1 dBFS data	24		
Icc	AV _{DD} + CPV _{DD} supply current ⁽⁴⁾	f _S = N/A, power-down mode	0.2	0.4	mA
		$f_S = 48 \text{ kHz}$, input is bipolar zero data	59.4	78	
	Power dissipation, $DV_{DD} = 1.8 \text{ V}$	$f_S = 96 \text{ kHz}$, input is bipolar zero data	61.2		mW
		f _S = 192 kHz, input is bipolar zero data	64.8		
		f _S = 48 kHz, input is 1 kHz – 1 dBFS data	99	130.8	
	Power dissipation, DV _{DD} = 1.8 V	$f_S = 96 \text{ kHz}$, input is 1 kHz – 1 dBFS data	100.8		mW
		$f_S = 192 \text{ kHz}$, input is 1 kHz – 1 dBFS data	104.4		
	Power dissipation, DV _{DD} = 1.8 V ⁽⁴⁾	f _S = N/A, power-down mode	1.2		mW
		f _S = 48 kHz, input is bipolar zero data	79.2	103	
	Power dissipation, DV _{DD} = 3.3 V	f _S = 96 kHz, input is bipolar zero data	82.5		mW
		f _S = 192 kHz, input is bipolar zero data	89.1		
		f _S = 48 kHz, input is 1 kHz – 1 dBFS data	118.8	155	
	Power dissipation, $DV_{DD} = 3.3 \text{ V}$	f _S = 96 kHz, input is 1 kHz – 1 dBFS data	122.1		mW
		f _S = 192 kHz, input is 1 kHz – 1 dBFS data	128.7		
	Power dissipation, DV _{DD} = 3.3 V ⁽⁴⁾	f _S = N/A, power-down mode	2.3	4	mW

Submit Documentation Feedback

7.6 Timing Requirements: SCK Input

Figure 1 shows the timing requirements for the system clock input. For optimal performance, use a clock source with low phase jitter and noise.

			MIN	NOM	MAX	UNIT
t _{SCY}	System clock pulse cycle time		20		1000	ns
t _{SCKH}	Contain alask modes width himb	DVDD = 1.8 V	8			
	System clock pulse width, high	DVDD = 3.3 V	9			ns
t _{SCKL} System clock puls	Ourter also be a side by	DVDD = 1.8 V	8			
	System clock pulse width, low	DVDD = 3.3 V	9			ns

7.7 Timing Requirements: XSMT

		MIN	NOM	MAX	UNIT
t _r	Rise time			20	ns
t _f	Fall time			20	ns

7.8 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DATA	FORMAT (PCM MODE)					
	Audio data interface format		I ² S, left-justified, right-justified, and TDM		d, and	
	Audio data bit length		16, 20, 24, 32-bit acceptable			
	Audio data format		MSB first, twos	-complement		
f _S	Sampling frequency ⁽¹⁾		8		384	kHz
CLOCK	KS					
	System clock frequency		64, 128, 192, 2 1024, 1152, 15 f _{SCK} , up to 50 l	36, 2048, or 3	,	
	DIL input fraguency (2)	Clock divider uses fractional divide D > 0, P=1	6.7		20	MHz
	PLL input frequency ⁽²⁾	Clock divider uses integer divide D = 0, P=1	1		20	MHz

- One sample time is defined as the reciprocal of the sampling frequency. $1 \times t_S = 1 / f_S$ With the appropriate P coefficient setting, the PLL accepts up to 50 MHz. This clock is then divided to meet the \leq 20-MHz requirement. See PLL Calculation.

Figure 1. Timing Requirements for SCK Input

Figure 2. XSMT Timing for Soft Mute and Soft Un-Mute

7.9 Typical Characteristics

Consumer grade (non-Q1) devices are specified for $T_A = 25$ °C, $AV_{DD} = CPV_{DD} = DV_{DD} = 3.3$ V, $f_S = 48$ kHz, system clock = 512 f_S and 24-bit data (unless otherwise noted).

Submit Documentation Feedback

Typical Characteristics (continued)

Consumer grade (non-Q1) devices are specified for $T_A = 25$ °C, $AV_{DD} = CPV_{DD} = DV_{DD} = 3.3$ V, $f_S = 48$ kHz, system clock = 512 f_S and 24-bit data (unless otherwise noted).

ents Incorporated Submit Documentation Feedback

8 Detailed Description

8.1 Overview

The integrated PLL on the device provided adds the flexibility to remove the system clock (commonly known as master clock), allowing a 3-wire I²S connection and reducing system EMI. In addition, the PLL is completely programmable, allowing the device to become the I²S clock master and drive a DSP serial port as a slave. The PLL also accepts a non-standard clock (up to 50 MHz) as a source to generate the audio related clock (for example, 24.576 MHz).

Powersense undervoltage protection utilizes a two-level mute system. Upon clock error or system power failure, the device digitally attenuates the data (or last known good data) and then mutes the analog circuit.

Compared with existing DAC technology, the PCM512x devices offer up to 20 dB of lower out-of-band noise, reducing EMI and aliasing in downstream amplifiers/ADCs (from traditional 100-kHz OBN measurements to 3 MHz).

The PCM512x devices accept industry-standard audio data formats with 16-bit to 32-bit data. Sample rates up to 384 kHz are supported.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Terminology

Control registers in this data sheet are given by **REGISTER BIT/BYTE NAME (Page.x HEX ADDRESS).** SE refers to *single-ended* analog inputs. SCK (System Clock) and MCLK (Master Clock) are used interchangeably. Sampling frequency is symbolized by f_S . Full scale is symbolized by FS. Sample time as a unit is symbolized by t_S .

Feature Description (continued)

8.3.2 Audio Data Interface

8.3.2.1 Audio Serial Interface

The audio interface port is a 3-wire serial port with the signals LRCK, BCK, and DIN. BCK is the serial audio bit clock, used to clock the serial data present on DIN into the serial shift register of the audio interface. Serial data is clocked into the PCM512x on the rising edge of BCK. LRCK is the serial audio left/right word clock. LRCK polarity for left/right is given by the format selected.

Table 4. PCM512x Audio Data Formats, Bit Depths and Clock Rates

CONTROL MODE	FORMAT	DATA BITS	MAX LRCK FREQUENCY [f _S]	SCK RATE [x f _S]	BCK RATE [x f _S]
	I ² S/LJ	32, 24, 20, 16	Up to 192 kHz	128 – 3072	64, 48, 32
	I-S/LJ		384 kHz	64, 128	64, 48, 32
Software Control (SPI or I ² S)	TDM/DSP 32, 24, 20, 10	TDM/DSP 32, 24, 20, 16	Up to 48 kHz	128 – 3072	128, 256
(6.16.16)			96 kHz	128 – 512	128, 256
			192 kHz	128, 192, 256	128
Hardwara Cantral	l ² S/LJ	00 04 00 40	Up to 192 kHz	128 – 3072	64, 48, 32
Hardware Control	I ² S/LJ 32, 24, 20, 16	384 kHz	64, 128	64, 48, 32	

The PCM512x requires the synchronization of LRCK and system clock, but does not need a specific phase relation between LRCK and system clock.

If the relationship between LRCK and system clock changes more than ±5 SCK, internal operation (using an onchip oscillator) is initialized within one sample period and analog outputs are forced to the bipolar zero level until resynchronization between LRCK and system clock is completed.

If the relationship between LRCK and BCK are invalid more than 4 LRCK periods, internal operation (using an onchip oscillator) is initialized within one sample period and analog outputs are forced to the bipolar zero level until resynchronization between LRCK and BCK is completed.

8.3.2.2 PCM Audio Data Formats

The PCM512x supports industry-standard audio data formats, including standard I²S and left-justified. Data formats are selected via Register (Pg0Reg40). All formats require binary twos-complement, MSB-first audio data; up to 32-bit audio data is accepted.

The PCM512x also supports right-justified and TDM/DSP in software control mode. I²S, LJ, RJ, and TDM/DSP are selected using Register (Pg0Reg40). All formats require binary twos-complement, MSB-first audio data. Up to 32 bits are accepted. Default setting is I²S and 24-bit word length.

Figure 13. Left-Justified Audio Data Format

I²S Data Format; L-channel = LOW, R-channel = HIGH

Figure 14. I²S Audio Data Format

Submit Documentation Feedback

The following data formats are only available in software mode.

Right Justified Data Format; L-channel = HIGH, R-channel = LOW

Figure 15. Right-Justified Audio Data Format

TDM/DSP Data Format; L-channel = FIRST, R-channel = LAST with OFFSET = 0

Figure 16. TDM/DSP 1 Audio Data Format

NOTE

In TDM Modes, Duty Cycle of LRCK should be 1x BCK at minimum. Rising edge is considered frame start.

TDM/DSP Data Format; L-channel = FIRST, R-channel = LAST with OFFSET = 1

Figure 17. TDM/DSP 2 Audio Data Format

TDM/DSP Data Format; L-channel = FIRST, R-channel = LAST with OFFSET = N

Figure 18. TDM/DSP 3 Audio Data Format

8.3.2.3 Zero Data Detect

The PCM512x has a zero-detect function. When the device detects the continuous zero data for both left and right channels, or separate channels, Analog mutes are set to both OUTL and OUTR, or separate OUTL and OUTR. These are controlled by Page 0, Register 65, D(2:1) as shown in Table 5.

Continuous Zero data cycles are counted by LRCK, and the threshold of decision for analog mute can be set by Page 0, Register 59, D(6:4) for L-ch, and D(2:0) for Rch as shown in Table 6. Default values are 0 for both channels.

Submit Documentation Feedback

In Hardware mode, the device uses default values. By default, Both L-ch and R-ch have to be zero data for zero data detection to begin the muting process etc.

Table 5. Zero Data Detection Mode

Table 6. Zero Data Detection Time

Zero detection analog mute are disabled for L-ch

Zero detection analog mute are enabled for L-ch

ATMUTETIML / ATMUTETIMR	NUMBER OF LRCKs	TIME AT 48 kHz
0 0 0	1024	21 ms
0 0 1	5120	106 ms
0 1 0	10240	213 ms
0 1 1	25600	533 ms
100	51200	1.066 sec
1 0 1	102400	2.133 sec
110	256000	5.333 sec
111	512000	10.66 sec

8.3.3 XSMT Pin (Soft Mute / Soft Un-Mute)

Bit: 0

An external digital host controls the PCM512x soft mute function by driving the XSMT pin with a specific minimum rise time (t_r) and fall time (t_f) for soft mute and soft un-mute. The PCM512x requires t_r and t_f times of less than 20 ns. In the majority of applications, this is no problem; however, traces with high capacitance may have issues.

When the XSMT pin is shifted from high to low (3.3 V to 0 V), a soft digital attenuation ramp begins. -1-dB attenuation is then applied every sample time from 0 dBFS to $-\infty$. The soft attenuation ramp takes 104 samples.

When the XSMT pin is shifted from low to high (0 V to 3.3 V), a soft digital *un-mute* is started. 1-dB gain steps are applied every sample time from $-\infty$ to 0 dBFS. The un-mute takes 104 samples.

In systems where XSMT is not required, it can be directly connected to AVDD.

0

1 (Default)

8.3.4 Audio Processing

8.3.4.1 PCM512x Audio Processing

8.3.4.1.1 Overview

The PCM512x supports a fixed audio processing flow with programmable coefficients. (Program 5 - *Fixed Audio Processing Flow (Program 5)* of this data sheet). Details can be found below.

NOTE

At higher sampling frequencies, fewer instruction cycles are available. (For example, 512 instructions can be done in a 96-kHz frame.)

The audio processing chain can run up to 1024 instructions on every audio sample at a 48-kHz sample rate.

8.3.4.1.2 Software

Software development for the PCM512x is supported through TI's comprehensive PurePath Studio Development Environment; a powerful, easy-to-use tool designed specifically to simplify software development on the PCM512x audio platform. The Graphical Development Environment consists of a library of common audio functions that can be dragged-and-dropped into an audio signal flow and graphically connected together. The DSP code can then be assembled from the graphical signal flow with the click of a mouse.

Please visit the PCM512x product folder on www.ti.com to learn more about PurePath Studio and the latest status on available, ready-to-use DSP algorithms.

8.3.4.2 Interpolation Filter

The PCM512x provides 4 types of interpolation filters, selectable by writing to Page 0, Register 43, D(4:0).

Table 7. ROM Preset Programs

PROGRAM NUMBER	D(4:0)	DESCRIPTION	MINIMUM CYCLES
0	0 0000	Reserved	
1	0 0001	Normal x8/x4/x2/x1 Interpolation Filter ⁽¹⁾	256
2	0 0010	Low Latency x8/x4/x2/x1 Interpolation Filter ⁽¹⁾	256
3	0 0011	High Attenuation x8/x4/x2 Interpolation Filter ⁽¹⁾	512
4	0 0100	Reserved	
5	0 0101	Preset Process Flow	
6	0 0110	Reserved	
7	0 0111	Asymmetric FIR Interpolation Filter ⁽¹⁾	512
:	:	Reserved	
31	1 1111	Reserved	

⁽¹⁾ At f_s =44.1 kHz, de-emphasis filter is supported.

The PCM512x supports four sampling modes (single rate, dual rate, quad rate, and octal rate) which produce different oversampling rates (OSR) in the interpolation digital filter operation. These are shown in Table 8.

Table 8. Sampling Modes and Oversampling Rates

SAMPLING MODE	SAMPLING FREQUENCY (f _S) kHz	OVERSAMPLING RATE (OSR)
	8	
	16	
Single Rate	32	8 or 16
	44.1	
	48	
Dual Rate	88.2	4
Duai Kale	96	4
Quad Rate	176.4	2
Quau Rate	192	2
Octal Rate	384	1 (Bypass)

Table 9. Normal x8 Interpolation Filter, Single Rate

PARAMETER	CONDITION	VALUE (TYP)	VALUE (MAX)	UNIT
Filter Gain Pass Band	0 0.45 × f _S			dB
Filter Gain Stop Band	0.55 × f _S 7.455 × f _S			dB
Filter Group Delay		20 / f _s		S

Table 10. Normal x4 Interpolation Filter, Dual Rate

PARAMETER	CONDITION	VALUE (TYP)	VALUE (MAX)	UNIT
Filter Gain Pass Band	0 0.45 × f _S			dB
Filter Gain Stop Band	0.55 × f _S 3.455 × f _S			dB
Filter Group Delay		20 / f _s		S

Table 11. Normal x2 Interpolation Filter, Quad Rate

PARAMETER	CONDITION	VALUE (TYP)	VALUE (MAX)	UNIT
Filter Gain Pass Band	0 0.45 × f _S			dB
Filter Gain Stop Band	0.55 × f _S 1.455 × f _S			dB
Filter Group Delay		20 / f _s		S

Table 12. Low Latency x8 Interpolation Filter, Single Rate

PARAMETER	CONDITION	VALUE (TYP)	VALUE (MAX)	UNIT
Filter Gain Pass Band	0 0.45 × f _S			dB
Filter Gain Stop Band	0.55 × f _S 7.455 × f _S			dB
Filter Group Delay				S

Copyright © 2012–2018, Texas Instruments Incorporated Submit Documentation Feedback

Table 13. Low Latency x4 Interpolation Filter, Dual Rate

PARAMETER	CONDITION	VALUE (TYP)	VALUE (MAX)	UNIT
Filter Gain Pass Band	0 0.45 × f _S			dB
Filter Gain Stop Band	0.55 × f _S 3.455 × f _S			dB
Filter Group Delay				S

Table 14. Low Latency ×2 Interpolation Filter, Quad Rate

PARAMETER	CONDITION	VALUE (TYP)	VALUE (MAX)	UNIT
Filter Gain Pass Band	0 0.45 × f _S			dB
Filter Gain Stop Band	0.55 × f _S 1.455 × f _S			dB
Filter Group Delay				S

Table 15. Asymmetric FIR x8 Interpolation Filter, Single Rate

PARAMETER	CONDITION	VALUE (TYP)	VALUE (MAX)	UNIT
Filter Gain Pass Band	0 0.40 × f _S		±0.05	dB
Filter Gain Stop Band	0.72 × f _S 7.28 × f _S	-50		dB
Filter Group Delay		1.2 × t _s		S

Table 16. Asymmetric FIR x4 Interpolation Filter, Dual Rate

PARAMETER	CONDITION	VALUE (TYP)	VALUE (MAX)	UNIT
Filter Gain Pass Band	0 0.40 × f _S		±0.05	dB
Filter Gain Stop Band	0.72 × f _S 3.28 × f _S	-50		dB
Filter Group Delay		1.2 × t _s		S

Table 17. Asymmetric FIR x2 Interpolation Filter, Quad Rate

PARAMETER	CONDITION	VALUE (TYP)	VALUE (MAX)	UNIT
Filter Gain Pass Band	0 0.40 × f _S		±0.05	dB
Filter Gain Stop Band	0.72 × f _S 1.28 × f _S	-50		dB
Filter Group Delay		1.2 × t _s		S

Table 18. High-Attentuation x8 Interpolation Filter, Single Rate

PARAMETER	CONDITION	VALUE (TYP)	VALUE (MAX)	UNIT
Filter Gain Pass Band	0 0.45 × f _S		±0.0005	dB
Filter Gain Stop Band	0.55 × f _S 7.455 × f _S	-100		dB
Filter Group Delay		33.7 × t _S		S

Table 19. High-Attentuation x4 Interpolation Filter, Dual Rate

PARAMETER	CONDITION	VALUE (TYP)	VALUE (MAX)	UNIT
Filter Gain Pass Band	0 0.45 × f _S		±0.0005	dB
Filter Gain Stop Band	0.55 × f _S 3.455 × f _S	-100		dB
Filter Group Delay		33.7 × t _S		S

Table 20. High-Attentuation x2 Interpolation Filter, Quad Rate

PARAMETER	CONDITION	VALUE (TYP)	VALUE (MAX)	UNIT
Filter Gain Pass Band	0 0.45 × f _S		±0.0005	dB
Filter Gain Stop Band	0.55 × f _S 1.455 × f _S	-100		dB
Filter Group Delay		33.7 × t _S		S

8.3.4.3 Fixed Audio Processing Flow (Program 5)

The PCM512x implements signal processing capabilities and interpolation filtering via processing blocks. These fixed processing blocks give users the choice of how much and what type of signal processing they may use and which interpolation filter is applied.

The signal processing blocks available are:

- Biguad filters
- Multiband DRC
- Mono mixer
- Stereo mixer
- · Average volume control

Users can find more details in Purepath Studio.

NOTE

This process flow requires 1024 instruction cycles. Therefore, it will only function at sampling frequencies up to 48 kHz.

8.3.4.3.1 Filter Programming Changes

The following sequence must be followed to change the ROM program:

- 1. Enter Stand-by mode. (Set Page 0, Register 2, D(4))
- 2. Change program number. (Set Page 0, Register 43, D(4:0))
- 3. Exit Stand-by mode. (Reset Page 0, Register 2, D(4))

8.3.4.3.2 Processing Blocks - Detailed Descriptions

Figure 55 shows the fixed processing flow.

Figure 55. Preset Process Flow

Submit Documentation Feedback

Figure 56 shows a screen capture of PurePath Studio.

Figure 56. PurePath Studio Screen Capture

8.3.4.3.3 Biquad Section

The transfer function of each of the biquad filters is given by Equation 1.

$$H(z) = \frac{N_0 + 2N_1 z^{-1} + N_2 z^{-2}}{2^{23} - 2D_1 z^{-1} - D_2 z^{-2}}$$
(1)

Figure 57. Biquad Block

Table 21. Biquad Filter Coefficients

FILTER	CHANNEL	COEFFICIENT	REGISTER
		N0	C10 (Pg 44, Reg 48 ,49, 50, 51)
		N1	C11 (Pg 44, Reg 52, 53, 54, 55)
BIQUAD (1) - 1 BIQUAD (2) - 1	Lch, Rch	N2	C12 (Pg 44, Reg 56, 57, 58, 59)
	11011	D1	C13 (Pg 44, Reg 60, 61, 62, 63)
		D2	C14 (Pg 44, Reg 64, 65, 66, 67)
	Lch, Rch	N0	C15 (Pg 44, Reg 68, 69, 70, 71)
		N1	C16 (Pg 44, Reg 72, 73, 74, 75)
BIQUAD (1) - 2 BIQUAD (2) - 2		N2	C17 (Pg 44, Reg 76, 77, 78, 79)
	11011	D1	C18 (Pg 44, Reg 80, 81, 82, 83)
		D2	C19 (Pg 44, Reg 84, 85, 86, 87)

Table 21. Biquad Filter Coefficients (continued)

Table 21. Biquad Filter Coefficients (Continued)			
FILTER	CHANNEL	COEFFICIENT	REGISTER
BIQUAD (1) - 3 BIQUAD (2) - 3	Lch, Rch	N0	C20 (Pg 44, Reg 88, 89, 90, 91)
		N1	C21 (Pg 44, Reg 92, 93, 94, 95)
		N2	C22 (Pg 44, Reg 96, 97, 98, 99)
		D1	C23 (Pg 44, Reg 100, 101, 102, 103)
		D2	C24 (Pg 44, Reg 104, 105, 106, 107)
BIQUAD (1) - 4 BIQUAD (2) - 4	Lch, Rch	N0	C25 (Pg 44, Reg 108, 109, 110, 111)
		N1	C26 (Pg 44, Reg 112, 113, 114, 115)
		N2	C27 (Pg 44, Reg 116, 117, 118, 119)
		D1	C28 (Pg 44, Reg 120, 121, 122, 123)
		D2	C29 (Pg 44, Reg 124, 125, 126, 127)
BIQUAD (1) - 5 BIQUAD (2) - 5	Lch, Rch	N0	C30 (Pg 45, Reg 8, 9, 10, 11)
		N1	C31 (Pg 45, Reg 12, 13, 14, 15)
		N2	C32 (Pg 45, Reg 16, 17, 18, 19)
		D1	C33 (Pg 45, Reg 20, 21, 22, 23)
		D2	C34 (Pg 45, Reg 24, 25, 26, 27)
BIQUAD (1) - 6 BIQUAD (2) - 6	Lch, Rch	N0	C35 (Pg 45, Reg 28, 29, 30, 31)
		N1	C36 (Pg 45, Reg 32, 33, 34, 35)
		N2	C37 (Pg 45, Reg 36, 37, 38, 39)
		D1	C38 (Pg 45, Reg 40, 41, 42, 43)
		D2	C39 (Pg 45, Reg 44, 45, 46, 47)
BIQUAD (3) - 1 BIQUAD (4) - 1	Lch, Rch	N0	C40 (Pg 45, Reg 48, 49, 50, 51)
		N1	C41 (Pg 45, Reg 52, 53, 54, 55)
		N2	C42 (Pg 45, Reg 56, 57, 58, 59)
		D1	C43 (Pg 45, Reg 60, 61, 62, 63)
		D2	C44 (Pg 45, Reg 64, 65, 66, 67)
BIQUAD (3) - 2 BIQUAD (4) - 2	Lch, Rch	N0	C45 (Pg 45, Reg 68, 69, 70, 71)
		N1	C46 (Pg 45, Reg 72, 73, 74, 75)
		N2	C47 (Pg 45, Reg 76, 77, 78, 79)
		D1	C48 (Pg 45, Reg 80, 81, 82, 83)
		D2	C49 (Pg 45, Reg 84, 85, 86, 87)
BIQUAD (5) - 1 BIQUAD (6) - 1	Lch, Rch	N0	C50 (Pg 45, Reg 88, 89, 90, 91)
		N1	C51 (Pg 45, Reg 92, 93, 94, 95)
		N2	C52 (Pg 45, Reg 96, 97, 98, 99)
		D1	C53 (Pg 45, Reg 100, 101, 102, 103)
		D2	C54 (Pg 45, Reg 104, 105, 106, 107)
BIQUAD (5) - 2 BIQUAD (6) - 2	Lch, Rch	N0	C55 (Pg 45, Reg 108, 109, 110, 111)
		N1	C56 (Pg 45, Reg 112, 113, 114, 115)
		N2	C57 (Pg 45, Reg 116, 117, 118, 119)
		D1	C58 (Pg 45, Reg 120, 121, 122, 123)
		D2	C59 (Pg 45, Reg 124, 125, 126, 127)
BIQUAD (7) - 1 BIQUAD (8) - 1	Lch, Rch	N0	
			C60 (Pg 46, Reg 8, 9, 10, 11)
		N1	C61 (Pg 46, Reg 12, 13, 14, 15)
		N2	C62 (Pg 46, Reg 16, 17, 18, 19)
		D1	C63 (Pg 46, Reg 20, 21, 22, 23)
		D2	C64 (Pg 46, Reg 24, 25, 26, 27)

Submit Documentation Feedback

Table 21. Biquad Filter Coefficients (continued)

FILTER	CHANNEL	COEFFICIENT	REGISTER		
BIQUAD (7) - 2 BIQUAD (8) - 2		N0	C65 (Pg 46, Reg 28, 29, 30, 31)		
		N1	C66 (Pg 46, Reg 32, 33, 34, 35) C67 (Pg 46, Reg 36, 37, 38, 39)		
	Lch, Rch	N2	C65 (Pg 46, Reg 28, 29, 30, 31) C66 (Pg 46, Reg 32, 33, 34, 35)		
	11011	D1	C68 (Pg 46, Reg 40, 41, 42, 43)		
		D2	C67 (Pg 46, Reg 36, 37, 38, 39) C68 (Pg 46, Reg 40, 41, 42, 43)		

8.3.4.3.4 Dynamic Range Compression

Dynamic range compression (DRC) improves the overall listening experience. Typical music signals are characterized by crest factors (the ratio of peak signal power to average signal power) of 12 dB or more. To avoid audible distortion due to clipping of peak signals, the gain of the DAC channel must be adjusted so as not to cause hard clipping. As a result, the low applied gain during nominal periods causes the perception that the signal is not loud enough. To overcome this problem, the DRC in the PCM512x continuously monitors the output of the DAC Digital Volume control to detect its power level with respect to 0-dB full-scale. When the power level is low, the DRC increases the input signal gain to make it sound louder, and reduces the gain during peaks to avoid hard clipping. The DRC enables louder audio during nominal periods with a clearer, more pleasant listening experience.

The 3-band DRC function applies DRC to 3 different mono/stereo signals with 3 different time constants. The same DRC curve is applied on all the signals, enabling a multi-band DRC solution. The underlying DRC algorithm is the same as that available with the DRC component in PurePath Studio. In this instance, the DRC gain acts on each signal in time-multiplexed order, for example, 1-2-3, 1-2-3, 1-2-3.

Table 22. DRC Coefficients

COEFFICIENT	REGISTER
DRC_MB_1_DRC_1_DRCAE	C70 (Pg 46, Reg 48, 49, 50, 51)
DRC_MB_1_DRC_1_DRC1AE	C71 (Pg 46, Reg 52, 53, 54, 55)
DRC_MB_1_DRC_1_DRCAA	C72 (Pg 46, Reg 56, 57, 58, 59)
DRC_MB_1_DRC_1_DRC1AA	C73 (Pg 46, Reg 60, 61, 62, 63)
DRC_MB_1_DRC_1_DRCAD	C74 (Pg 46, Reg 64, 65, 66, 67)
DRC_MB_1_DRC_1_DRC1AD	C75 (Pg 46, Reg 68, 69, 70, 71)
DRC_MB_1_DRC_2_DRCAE	C76 (Pg 46, Reg 72, 73, 74, 75)
DRC_MB_1_DRC_2_DRC1AE	C77 (Pg 46, Reg 76, 77, 78, 79)
DRC_MB_1_DRC_2_DRCAA	C78 (Pg 46, Reg 80, 81, 82, 83)
DRC_MB_1_DRC_2_DRC1AA	C79 (Pg 46, Reg 84, 85, 86, 87)
DRC_MB_1_DRC_2_DRCAD	C80 (Pg 46, Reg 88, 89, 90, 91)
DRC_MB_1_DRC_2_DRC1AD	C81 (Pg 46, Reg 92, 93, 94, 95)
DRC_MB_1_DRC_3_DRCAE	C82 (Pg 46, Reg 96, 97, 98, 99)
DRC_MB_1_DRC_3_DRC1AE	C83 (Pg 46, Reg 100, 101, 102, 103)
DRC_MB_1_DRC_3_DRCAA	C84 (Pg 46, Reg 104, 105, 106, 107)
DRC_MB_1_DRC_3_DRC1AA	C85 (Pg 46, Reg 108, 109, 119, 111)
DRC_MB_1_DRC_3_DRCAD	C86 (Pg 46, Reg 112, 113, 114, 115)
DRC_MB_1_DRC_3_DRC1AD	C87 (Pg 46, Reg 116, 117, 118, 119)
DRC_MB_1_DRC_DRCK0	C88 (Pg 46, Reg 120, 121, 122, 123)
DRC_MB_1_DRC_DRCK1	C89 (Pg 46, Reg 124, 125, 126, 127)
DRC_MB_1_DRC_DRCK2	C90 (Pg 47, Reg 8, 9, 10, 11)
DRC_MB_1_DRC_DRCMT1	C91 (Pg 47, Reg 12, 13, 14, 15)
DRC_MB_1_DRC_DRCMT2	C92 (Pg 47, Reg 16, 17, 18, 19)
DRC_MB_1_DRC_DRCOFF1	C93 (Pg 47, Reg 20, 21, 22, 23)
DRC_MB_1_DRC_DRCOFF2	C94 (Pg 47, Reg 24, 25, 26, 27)
DRC_MB_1_MinusOne_Q22	C95 (Pg 47, Reg 28, 29, 30, 31)

Table 22. DRC Coefficients (continued)

DRC_MB_1_MinusTwo_Q22 C96 (Pg 47, Reg 32, 33, 34, 35) DRC_MB_1_Cne_M2 C97 (Pg 47, Reg 48, 49, 58, 77, 38, 39) DRC_MB_1_En_dB C98 (Pg 47, Reg 44, 45, 46, 47) DRC_MB_1_Bn_dBB C99 (Pg 47, Reg 44, 45, 46, 47) DRC_MB_1_Bn_dBB C100 (Pg 47, Reg 48, 49, 50, 51) DRC_MB_1_Bn_dBB C101 (Pg 47, Reg 56, 57, 58, 59) DRC_MB_1_Bn_dBB C102 (Pg 47, Reg 56, 57, 58, 59) DRC_MB_1_Cdbet C104 (Pg 47, Reg 66, 66, 67) DRC_MB_1_Cdbet C105 (Pg 47, Reg 68, 69, 70, 71) DRC_MB_1_Cdbet C106 (Pg 47, Reg 68, 69, 70, 71) DRC_MB_1_A/DRC_MB_1_DRC C106 (Pg 47, Reg 77, 73, 74, 75) DRC_MB_1_A/DRC_MB_1_Cdbet C107 (Pg 47, Reg 68, 69, 70, 71) DRC_MB_1_Minus_48_dB C107 (Pg 47, Reg 76, 77, 78, 79) DRC_MB_1_Minus_48_dB C108 (Pg 47, Reg 88, 89, 90, 91) DRC_MB_1_Cdbet C110 (Pg 47, Reg 88, 89, 90, 91) DRC_MB_1_Cdbet C110 (Pg 47, Reg 98, 97, 98, 99) DRC_MB_1_Cdbet C110 (Pg 47, Reg 98, 97, 98, 99) DRC_MB_1_Cdbet C110 (Pg 47, Reg 98, 97, 98, 99) DRC_MB_1_Cdbet C110 (Pg 47, Reg 98, 97, 98, 99) DRC_MB_1_Cdbet C110 (Pg 47, Reg 98, 97, 98, 99) DRC_MB_1_Cdbet C110 (Pg 47, Reg 100, 101, 102, 103) DRC_MB_1_Cdbet C110 (Pg 47, Reg 100, 101, 102, 103) DRC_MB_1_Cdbet C110 (Pg 47, Reg 100, 101, 102, 103) DRC_MB_1_Cdbet C110 (Pg 47, Reg 102, 113, 114, 115) DRC_MB_1_Cdbet C110 (Pg 47, Reg 102, 113, 114, 115) DRC_MB_1_Cdbet C110 (Pg 47, Reg 102, 113, 114, 115) DRC_MB_1_Cdbet C110 (Pg 47, Reg 102, 113, 114, 115) DRC_MB_1_Cdbet C110 (Pg 47, Reg 102, 113, 114, 115) DRC_MB_1_Cdbet C110 (Pg 47, Reg 102, 113, 114, 115) DRC_MB_1_Cdbet C110 (Pg 47, Reg 102, 113, 114, 115) DRC_MB_1_Scale1 C110 (Pg 47, Reg 102, 113, 114, 115) DRC_MB_1_Scale1 C110 (Pg 47, Reg 102, 113, 114, 115) DRC_MB_1_Scale1 C110 (Pg 48, Reg 88, 90, 01, 11) DRC_MB_1_Scale1 C110 (Pg 48, Reg 88, 90, 01, 11) DRC_MB_1_Scale1 C110 (Pg 48, Reg 88, 90, 01, 11) DRC_MB_1_Scale1 C110 (Pg 48, Reg 98, 90, 90, 11) DRC_MB_1_Scale1 C110 (Pg 48, Reg 98, 90, 90, 91) DRC_MB_1_Scale2 C110 (Pg 48, Reg 98, 90, 90, 91) DRC_MB_1_Scale2 C110 (Pg 48, Reg 98, 90, 90,	COEFFICIENT	REGISTER
DRC. MB.1. Chen DRC. MB.1. Enc. dB DRC. MB.1. Enc. dB OS9 (Pg.47, Reg. 40, 41, 42, 43) DRC. MB.1. Enc. dB OS9 (Pg.47, Reg. 43, 44, 46, 47) DRC. MB.1. Minus. Zero. dB C100 (Pg.47, Reg. 48, 49, 50, 51) DRC. MB.1. Minus. Zero. dB C101 (Pg.47, Reg. 48, 49, 50, 51) DRC. MB.1. Minus. 2ero. dB C102 (Pg.47, Reg. 52, 53, 54, 55) DRC. MB.1. Minus. 60, dB C102 (Pg.47, Reg. 60, 61, 62, 63) DRC. MB.1. J. LdB C103 (Pg.47, Reg. 60, 61, 62, 63) DRC. MB.1. LGB C104 (Pg.47, Reg. 60, 61, 62, 63) DRC. MB.1. K C105 (Pg.47, Reg. 60, 61, 62, 63) DRC. MB.1. K C105 (Pg.47, Reg. 60, 61, 62, 63) DRC. MB.1. K C105 (Pg.47, Reg. 60, 61, 62, 63) DRC. MB.1. K C105 (Pg.47, Reg. 60, 61, 62, 63) DRC. MB.1. K C105 (Pg.47, Reg. 60, 61, 62, 63) DRC. MB.1. K C105 (Pg.47, Reg. 60, 61, 62, 63) DRC. MB.1. K C105 (Pg.47, Reg. 60, 61, 62, 63) DRC. MB.1. Minus. 48, dB C107 (Pg.47, Reg. 60, 61, 62, 63) DRC. MB.1. Minus. 48, dB C108 (Pg.47, Reg. 60, 69, 70, 71) DRC. MB.1. Minus. 48, dB C109 (Pg.47, Reg. 60, 89, 70, 71) DRC. MB.1. Cl.2 C110 (Pg.47, Reg. 80, 81, 82, 83) DRC. MB.1. Cl.2 C110 (Pg.47, Reg. 80, 81, 82, 83) DRC. MB.1. Cl.2 C110 (Pg.47, Reg. 98, 99, 99) DRC. MB.1. Cl.2 C111 (Pg.47, Reg. 96, 97, 98, 99) DRC. MB.1. Cl.1 C111 (Pg.47, Reg. 96, 97, 98, 99) DRC. MB.1. Cl.1 C114 (Pg.47, Reg. 100, 101, 102, 103) DRC. MB.1. Cl.2 C116 (Pg.47, Reg. 100, 101, 102, 103) DRC. MB.1. Sl.1 C114 (Pg.47, Reg. 100, 101, 102, 103) DRC. MB.1. Sl.2 C116 (Pg.47, Reg. 108, 109, 119, 111) DRC. MB.1. Sl.1 C119 (Pg.47, Reg. 108, 109, 119, 111) DRC. MB.1. Sl.1 C119 (Pg.47, Reg. 108, 109, 119, 111) DRC. MB.1. Scale1 C119 (Pg.47, Reg. 108, 109, 119, 111) DRC. MB.1. Scale1 C119 (Pg.47, Reg. 108, 109, 119, 111) DRC. MB.1. Scale1 C119 (Pg.48, Reg. 12, 11, 114, 119) DRC. MB.1. Scale1 C119 (Pg.48, Reg. 12, 11, 114, 119) DRC. MB.1. Scale1 C119 (Pg.48, Reg. 80, 80, 10, 11) DRC. MB.1. Scale1 C119 (Pg.48, Reg. 80, 80, 10, 11) DRC. MB.1. Scale2 C119 (Pg.48, Reg. 80, 80, 10, 11) DRC. MB.1. Scale2 C119 (Pg.48, Reg.		
DRC.MB_1_En.dB DRC.MB_1_En.dB DRC.MB_1_Minus_Zero_dB C100 (Pq.47, Reg 44, 45, 46, 47) DRC.MB_1_Minus_Zero_dB C100 (Pq.47, Reg 44, 45, 46, 47) DRC.MB_1_Minus_Zero_dB C101 (Pq.47, Reg 54, 45, 45, 55) DRC.MB_1_Minus_G0_dB C102 (Pq.47, Reg 56, 57, 58, 59) DRC.MB_1_Minus_G0_dB C103 (Pq.47, Reg 66, 67, 58, 59) DRC.MB_1_122.dB C103 (Pq.47, Reg 66, 67, 58, 59) DRC.MB_1_122.dB C104 (Pq.47, Reg 64, 65, 66, 67) DRC.MB_1_12.dB C105 (Pq.47, Reg 64, 65, 66, 67) DRC.MB_1_X / DRC_MB_1_K C105 (Pq.47, Reg 64, 65, 66, 67) DRC.MB_1_x / DRC_MB_1_DRC C106 (Pq.47, Reg 72, 73, 74, 75) DRC.MB_1_x / DRC_MB_1_DRC C106 (Pq.47, Reg 94, 85, 86, 87) DRC.MB_1_dB_ C108 (Pq.47, Reg 94, 87, 89, 99) DRC.MB_1_c1_1 C111 (Pq.47, Reg 98, 99, 99) DRC.MB_1_c1_1 C112 (Pq.47, Reg 100, 101, 102, 103) DRC.MB_1_S1_1 C114 (Pq.47, Reg 104, 105, 106, 107) DRC.MB_1_S1_2 C116 (Pq.47, Reg 104, 105, 106, 107) DRC.MB_1_S1_2 C116 (Pq.47, Reg 114, 114, 115) DRC.MB_1_S1_2 C116 (Pq.47, Reg 104, 105, 106, 107) DRC.MB_1_S1_2 C116 (Pq.47, Reg 114, 114, 115) DRC.MB_1_S2_2 C116 (Pq.47, Reg 124, 114, 114, 115) DRC.MB_1_S2_3 C117 (Pq.47, Reg 104, 104, 105, 106, 107) DRC.MB_1_S2_1 C118 (Pq.47, Reg 104, 104, 105, 106, 107) DRC.MB_1_S2_2 C118 (Pq.48, Reg 24, 93, 30, 31) DRC.MB_1_S2_3 C124 (Pq.48, Reg 24, 29, 30, 31) DRC.MB_1_S2_1 C124 (Pq.48, Reg 24, 29, 30, 31) DRC.MB_1_S2_3 C125 (Pq.48, Reg 96, 61, 62, 63) DRC.MB_1_S2_3 C126 (Pq.48, Reg 96, 61, 62, 63) DRC.MB_1_S2_3 C127 (Pq.48, Reg 96, 61, 62, 63) DRC.MB_1_S2_3 C138 (Pq.48, Reg 96, 61, 62, 63) DRC.MB_1_S2_3 C139 (Pq.48, Reg 96, 61, 62, 6		
DRC_MB_1_En_dB		
DRC_MB_1_Ninus_Zero_dB		
DRC_MB_1_60_dB C101 (Pg 47, Reg 52, 53, 54, 55) DRC_MB_1_Minus_60_dB C102 (Pg 47, Reg 56, 57, 58, 59) DRC_MB_1_12_dB C103 (Pg 47, Reg 60, 61, 62, 63) DRC_MB_1_12_dB C104 (Pg 47, Reg 68, 69, 70, 71) DRC_MB_1_X / DRC_MB_1_DRC C106 (Pg 47, Reg 72, 73, 74, 75) DRC_MB_1_X / DRC_MB_1_DRC C106 (Pg 47, Reg 72, 73, 74, 75) DRC_MB_1_Minus_48_dB C107 (Pg 47, Reg 76, 77, 78, 79) DRC_MB_1_Minus_48_dB C108 (Pg 47, Reg 84, 85, 86, 87) DRC_MB_1_16_13 C109 (Pg 47, Reg 84, 85, 86, 87) DRC_MB_1_16_13 C109 (Pg 47, Reg 98, 87, 98, 99) DRC_MB_1_c1_1 C111 (Pg 47, Reg 98, 97, 98, 99) DRC_MB_1_c1_0 C112 (Pg 47, Reg 100, 101, 102, 103) DRC_MB_1_S1_1 C114 (Pg 47, Reg 108, 109, 119, 111) DRC_MB_1_S1_2 C115 (Pg 47, Reg 108, 109, 119, 111) DRC_MB_1_S1_2 C116 (Pg 47, Reg 112, 113, 114, 115) DRC_MB_1_S1_3 C118 (Pg 47, Reg 112, 113, 114, 115) DRC_MB_1_S1_3 C118 (Pg 47, Reg 120, 121, 122, 123) DRC_MB_1_S1_3 C118 (Pg 47, Reg 120, 121, 122, 123) DRC_MB_1_S1_3 C118 (Pg 47, Reg 120, 121, 122, 123) DRC_MB_1_S1_3 C118 (Pg 47, Reg 120, 121, 122, 123) DRC_MB_1_S1_3 C118 (Pg 47, Reg 120, 121, 122, 123) DRC_MB_1_S1_3 C118 (Pg 48, Reg 120, 121, 122, 123) DRC_MB_1_S1_3 C118 (Pg 48, Reg 120, 121, 122, 123) DRC_MB_1_S1_3 C118 (Pg 48, Reg 120, 121, 122, 123) DRC_MB_1_S1_3 C118 (Pg 48, Reg 120, 121, 122, 123) DRC_MB_1_S1_3 C118 (Pg 48, Reg 120, 121, 122, 123) DRC_MB_1_S2_1 C122 (Pg 48, Reg 120, 13, 14, 15) DRC_MB_1_S2_1 C122 (Pg 48, Reg 120, 13, 14, 15) DRC_MB_1_S2_1 C124 (Pg 48, Reg 120, 13, 14, 15) DRC_MB_1_S2_1 C129 (Pg 48, Reg 40, 81, 80, 91, 01, 11) DRC_MB_1_S2_1 C129 (Pg 48, Reg 40, 81, 80, 91, 01, 11) DRC_MB_1_S2_1 C129 (Pg 48, Reg 40, 81, 80, 91, 01, 11) DRC_MB_1_S2_1 C129 (Pg 48, Reg 40, 81, 80, 91, 01, 11) DRC_MB_1_S2_1 C129 (Pg 48, Reg 40, 81, 80, 91, 01, 11) DRC_MB_1_S2_1 C129 (Pg 48, Reg 40, 81, 80, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91		
DRC_MB_1_None_60_dB C102 (Pg 47, Reg 56, 57, 58, 59) DRC_MB_1_12_dB C103 (Pg 47, Reg 60, 61, 62, 63) DRC_MB_1_K C104 (Pg 47, Reg 64, 65, 66, 67) DRC_MB_1_K C104 (Pg 47, Reg 64, 65, 66, 67) DRC_MB_1_K C105 (Pg 47, Reg 72, 73, 74, 75) DRC_MB_1_X (DRC_MB_1_DRC) C106 (Pg 47, Reg 72, 73, 74, 75) DRC_MB_1_N_B_G C107 (Pg 47, Reg 78, 77, 78, 79) DRC_MB_1_G_1_3 C109 (Pg 47, Reg 84, 85, 86, 87) DRC_MB_1_1_C1_2 C110 (Pg 47, Reg 88, 89, 90, 91) DRC_MB_1_1_C1_2 C110 (Pg 47, Reg 88, 89, 90, 91) DRC_MB_1_1_C1_0 C112 (Pg 47, Reg 98, 97, 98, 99) DRC_MB_1_0_1 C111 (Pg 47, Reg 96, 97, 98, 99) DRC_MB_1_0_1 C113 (Pg 47, Reg 100, 101, 102, 103) DRC_MB_1_1_S1_1 C114 (Pg 47, Reg 100, 101, 102, 103) DRC_MB_1_1_S1_2 C114 (Pg 47, Reg 100, 101, 102, 103) DRC_MB_1_1_S1_2 C115 (Pg 47, Reg 102, 102, 114, 115) DRC_MB_1_1_S1_2 C115 (Pg 47, Reg 102, 112, 112, 114, 115) DRC_MB_1_1_S1_2 C116 (Pg 47, Reg 112, 112, 114, 115) DRC_MB_1_1_S1_2 C116 (Pg 47, Reg 122, 121, 122, 123) DRC_MB_1_1_S2_3 C119 (Pg 48, Reg 122, 132, 12		
DRC_MB_1_12_dB C103 (Pg 47, Reg 64, 65, 66, 67) DRC_MB_1_NK C106 (Pg 47, Reg 98, 69, 70, 71) DRC_MB_1_XK C106 (Pg 47, Reg 98, 69, 70, 71) DRC_MB_1_X × DRC_MB_1_DRC C106 (Pg 47, Reg 72, 73, 74, 75) DRC_MB_1_48_dB C107 (Pg 47, Reg 72, 73, 74, 75) DRC_MB_1_Minus_48_dB C108 (Pg 47, Reg 98, 89, 91, 91) DRC_MB_1_61_a C108 (Pg 47, Reg 98, 89, 90, 91) DRC_MB_1_61_a C109 (Pg 47, Reg 98, 89, 90, 91) DRC_MB_1_61_b DRC_MB_1_61_b C111 (Pg 47, Reg 98, 89, 90, 91) DRC_MB_1_61_b C112 (Pg 47, Reg 98, 89, 99, 91) DRC_MB_1_61_b DRC_MB_1_61_b C114 (Pg 47, Reg 100, 101, 102, 103) DRC_MB_1_10_1 C114 (Pg 47, Reg 100, 101, 102, 103) DRC_MB_1_10_1 C115 (Pg 47, Reg 100, 101, 102, 103) DRC_MB_1_10_2 C116 (Pg 47, Reg 118, 114, 114) DRC_MB_1_10_3 C117 (Pg 47, Reg 118, 114, 114) DRC_MB_1_10_3 C117 (Pg 47, Reg 118, 117, 118, 119) DRC_MB_1_10_3 C117 (Pg 47, Reg 120, 121, 122, 123) DRC_MB_1_10_3 C117 (Pg 47, Reg 120, 121, 122, 123) DRC_MB_1_10_3 C117 (Pg 47, Reg 120, 121, 122, 123) DRC_MB_1_10_3 C117 (Pg 47, Reg 120, 121, 134, 144, 15) DRC_MB_1_10_3 C117 (Pg 47, Reg 120, 121, 134, 15) DRC_MB_1_10_2 C119 (Pg 47, Reg 120, 121, 134, 15) DRC_MB_1_10_2 C119 (Pg 48, Reg 10, 10, 10) DRC_MB_1_10_2 C129 (Pg 48, Reg 10, 10, 10) DRC_MB_1_10_2 C129 (Pg 48, Reg 10, 10, 10) DRC_MB_1_10_2 C129 (Pg 48, Reg 10, 17, 18, 19) DRC_MB_1_10_2 C129 (Pg 48, Reg 20, 21, 22, 23) DRC_MB_1_10_2 C129 (Pg 48, Reg 38, 30, 31) DRC_MB_1_10_2 C129 (Pg 48, Reg 38, 39, 34, 39) DRC_MB_1_10_2 C129 (Pg 48, Reg 38, 39, 34, 39) DRC_MB_1_10_2 C129 (Pg 48, Reg 38, 90, 10, 11) DRC_MB_1_10_2 C129 (Pg 48, Reg 38, 90, 10, 11) DRC_MB_1_10_2 C129 (Pg 48, Reg 38, 90, 10, 11) DRC_MB_1_10_2 C129 (Pg 48, Reg 38, 90, 10, 11) DRC_MB_1_10_2 C129 (Pg 48, Reg 38, 90, 10, 11) DRC_MB_1_10_2 C129 (Pg 48, Reg 38, 90, 10, 11) DRC_MB_1_10_2 C129 (Pg 48, Reg 38, 90, 10, 11) DRC_MB_1_10_2 C129 (Pg 48, Reg 38, 90, 90, 90) DRC_MB_1_10_2 C129 (Pg 48, Reg 38, 90, 90, 90) DRC_MB_1_10_2 C129 (Pg 48, Reg 38, 90, 90, 90) DRC_MB_1_10_2		,
DRC_MB_1_Offset C104 (Pg 47, Reg 64, 65, 66, 67) DRC_MB_1_X / DRC_MB_1_x / DRC C106 (Pg 47, Reg 68, 69, 70, 71) DRC_MB_1_x / DRC_MB_1_x / DRC C106 (Pg 47, Reg 72, 73, 74, 75) DRC_MB_1_Minus_48_dB C107 (Pg 47, Reg 76, 77, 78, 79) DRC_MB_1_G1_3 C108 (Pg 47, Reg 80, 81, 82, 83) DRC_MB_1_c1_3 C109 (Pg 47, Reg 84, 85, 86, 87) DRC_MB_1_c1_3 C109 (Pg 47, Reg 98, 93, 94, 95) DRC_MB_1_c1_1 C111 (Pg 47, Reg 92, 93, 94, 95) DRC_MB_1_c1_1 C112 (Pg 47, Reg 100, 101, 102, 103) DRC_MB_1_10_1 C113 (Pg 47, Reg 100, 101, 102, 103) DRC_MB_1_10_1 C114 (Pg 47, Reg 109, 105, 106, 107) DRC_MB_1_10_2 C115 (Pg 47, Reg 108, 109, 119, 111) DRC_MB_1_10_2 C116 (Pg 47, Reg 108, 109, 111) DRC_MB_1_10_3 C117 (Pg 47, Reg 118, 114, 115) DRC_MB_1_10_3 C117 (Pg 47, Reg 112, 113, 114, 115) DRC_MB_1_10_3 C117 (Pg 47, Reg 120, 121, 122, 123) DRC_MB_1_10_2 C119 (Pg 47, Reg 120, 121, 122, 123) DRC_MB_1_10_2 C119 (Pg 48, Reg 89, 90, 10, 11) DRC_MB_1_10_2 C121 (Pg 48, Reg 12, 133, 14, 15) DRC_MB_1_10_2 C122 (Pg 48, Reg 12, 33		
DRC_MB_1_K C105 (Pg 47, Reg 68, 69, 70, 71) DRC_MB_1_X/DRC_MB_1_DRC C106 (Pg 47, Reg 76, 77, 74, 75) DRC_MB_1_MB_1_48_dB C107 (Pg 47, Reg 76, 77, 78, 79) DRC_MB_1_Hall_Minus_48_dB C108 (Pg 47, Reg 80, 81, 82, 83) DRC_MB_1_c1_3 C109 (Pg 47, Reg 88, 89, 90, 91) DRC_MB_1_c1_2 C110 (Pg 47, Reg 98, 89, 90, 91) DRC_MB_1_c1_1 C111 (Pg 47, Reg 92, 93, 94, 95) DRC_MB_1_c1_0 C112 (Pg 47, Reg 92, 93, 94, 95) DRC_MB_1_c1_0 C112 (Pg 47, Reg 910, 101, 102, 103) DRC_MB_1_S1_1 C114 (Pg 47, Reg 100, 101, 102, 103) DRC_MB_1_S1_1 C114 (Pg 47, Reg 100, 101, 102, 103) DRC_MB_1_S1_2 C115 (Pg 47, Reg 108, 109, 119, 111) DRC_MB_1_S1_2 C116 (Pg 47, Reg 108, 109, 119, 111) DRC_MB_1_S1_2 C116 (Pg 47, Reg 108, 109, 119, 111) DRC_MB_1_S1_2 C116 (Pg 47, Reg 116, 117, 118, 119) DRC_MB_1_S1_2 C118 (Pg 47, Reg 116, 117, 118, 119) DRC_MB_1_S1_2 C119 (Pg 48, Reg 8, 9, 0, 11) DRC_MB_1_S2_3 C129 (Pg 48, Reg 8, 9, 0, 11) DRC_MB_1_S2_3 C129 (Pg 48, Reg 20, 21, 22, 23) DRC_MB_1_C2_2 C122 (Pg 48, Reg 20, 21, 22, 23)		
DRC_MB_1_x/ DRC_MB_1_DRC C106 (Pg 47, Reg 72, 73, 74, 75) DRC_MB_1_48, dB C107 (Pg 47, Reg 80, 81, 82, 83) DRC_MB_1_c1_3 C109 (Pg 47, Reg 84, 85, 86, 87) DRC_MB_1_c1_3 C109 (Pg 47, Reg 84, 85, 86, 87) DRC_MB_1_c1_2 C110 (Pg 47, Reg 94, 85, 86, 87) DRC_MB_1_c1_2 C110 (Pg 47, Reg 94, 85, 86, 87) DRC_MB_1_c1_2 C111 (Pg 47, Reg 94, 85, 86, 87) DRC_MB_1_c1_0 C112 (Pg 47, Reg 94, 87, 89, 99, 91) DRC_MB_1_c1_0 C113 (Pg 47, Reg 90, 97, 89, 99) DRC_MB_1_c1_0 C114 (Pg 47, Reg 100, 101, 102, 103) DRC_MB_1_S1_1 C114 (Pg 47, Reg 100, 101, 102, 103) DRC_MB_1_S1_1 C114 (Pg 47, Reg 104, 105, 106, 107) DRC_MB_1_S1_2 C116 (Pg 47, Reg 112, 113, 114, 115) DRC_MB_1_S1_2 C116 (Pg 47, Reg 112, 113, 114, 115) DRC_MB_1_S1_3 C117 (Pg 47, Reg 112, 113, 114, 115) DRC_MB_1_S1_3 C118 (Pg 47, Reg 122, 121, 122, 123) DRC_MB_1_One_1_O17 C119 (Pg 47, Reg 122, 121, 122, 123) DRC_MB_1_S1_3 C118 (Pg 47, Reg 124, 125, 126, 127) DRC_MB_1_S1_3 C120 (Pg 48, Reg 8, 9, 10, 11) DRC_MB_1_S1_C2 C120 (Pg 48, Reg 16, 17, 18, 19) DRC_MB_1_c2_3 C122 (Pg 48, Reg 16, 17, 18, 19) DRC_MB_1_c2_1 C124 (Pg 48, Reg 20, 21, 22, 23) DRC_MB_1_C2_1 C125 (Pg 48, Reg 20, 21, 22, 23) DRC_MB_1_C2_1 C126 (Pg 48, Reg 36, 37, 38, 39) DRC_MB_1_C2_1 C127 (Pg 48, Reg 36, 37, 38, 39) DRC_MB_1_S2_1 C128 (Pg 48, Reg 36, 37, 38, 39) DRC_MB_1_S2_2 C128 (Pg 48, Reg 36, 37, 38, 39) DRC_MB_1_S2_3 C130 (Pg 48, Reg 44, 45, 46, 47) C132 (Pg 48, Reg 44, 45, 46, 47) C132 (Pg 48, Reg 44, 45, 46, 47) C132 (Pg 48, Reg 44, 45, 46, 47) C134 (Pg 48, Reg 64, 65, 66, 67) DRC_MB_1_S2_3 C134 (Pg 48, Reg 64, 65, 66, 67) DRC_MB_1_S2_1 C135 (Pg 48, Reg 64, 65, 66, 67) C136 (Pg 48, Reg 64, 65, 66, 67) C137 (Pg 48, Reg 64, 65, 66, 67) DRC_MB_1_R2_1 C138 (Pg 48, Reg 64, 65, 66, 67) C139 (Pg 48, Reg 64, 65, 66, 67) DRC_MB_1_R2_1 C139 (Pg 48, Reg 64, 65, 66, 67) DRC_MB_1_R2_1 C139 (Pg 48, Reg 64, 65, 66, 67) DRC_MB_1_R2_1 C139 (Pg 48, Reg 64, 65, 66, 67) DRC_MB_1_R2_1 C139 (Pg 48, Reg 64, 65, 66, 67) DRC_MB_1_R2_1 C139 (Pg 48, Reg 88,		
DRC_MB_1_48_dB C107 (Fg 47, Reg 76, 77, 78, 79) DRC_MB_1_Minus_48_dB C108 (Fg 47, Reg 88, 81, 82, 83) DRC_MB_1_c1_2 C109 (Fg 47, Reg 88, 89, 90, 91) DRC_MB_1_c1_2 C110 (Fg 47, Reg 88, 89, 90, 91) DRC_MB_1_c1_1 C111 (Fg 47, Reg 98, 89, 90, 91) DRC_MB_1_C1_0 C112 (Fg 47, Reg 96, 97, 98, 99) DRC_MB_1_O1_1 C113 (Fg 47, Reg 100, 101, 102, 103) DRC_MB_1_S1_1 C114 (Fg 47, Reg 104, 105, 106, 107) DRC_MB_1_S1_1 C114 (Fg 47, Reg 104, 105, 106, 107) DRC_MB_1_O1_2 C115 (Fg 47, Reg 112, 113, 114, 115) DRC_MB_1_S1_2 C116 (Fg 47, Reg 1124, 113, 114, 115) DRC_MB_1_S1_2 C116 (Fg 47, Reg 1124, 1124, 123) DRC_MB_1_S1_3 C118 (Fg 47, Reg 124, 125, 126, 127) DRC_MB_1_C1_3 C118 (Fg 47, Reg 124, 125, 126, 127) DRC_MB_1_Scale1 C120 (Fg 48, Reg 124, 125, 126, 127) DRC_MB_1_Scale1 C120 (Fg 48, Reg 12, 13, 14, 15) DRC_MB_1_C2_3 C122 (Fg 48, Reg 12, 13, 14, 15) DRC_MB_1_C2_1 C122 (Fg 48, Reg 24, 25, 26, 27) DRC_MB_1_C2_1 C124 (Fg 48, Reg 32, 33, 34, 35) DRC_MB_1_C2_1 C126 (Fg 48, Reg 38, 90, 31)		
DRC_MB_1_e1_3 C108 (Pg 47, Reg 80, 81, 82, 83) DRC_MB_1_e1_3 C109 (Pg 47, Reg 84, 85, 86, 87) DRC_MB_1_e1_1 C110 (Pg 47, Reg 98, 89, 90, 91) DRC_MB_1_e1_1 C111 (Pg 47, Reg 96, 97, 98, 99) DRC_MB_1_e1_0 C112 (Pg 47, Reg 96, 97, 98, 99) DRC_MB_1_O1_1 C113 (Pg 47, Reg 100, 101, 102, 103) DRC_MB_1_O1_2 C114 (Pg 47, Reg 100, 101, 102, 103) DRC_MB_1_S1_1 C114 (Pg 47, Reg 104, 105, 106, 107) DRC_MB_1_S1_2 C116 (Pg 47, Reg 112, 113, 114, 115) DRC_MB_1_S1_2 C116 (Pg 47, Reg 112, 113, 114, 115) DRC_MB_1_S1_3 C118 (Pg 47, Reg 122, 121, 122, 123) DRC_MB_1_S1_3 C118 (Pg 47, Reg 124, 125, 126, 127) DRC_MB_1_Scale1 C120 (Pg 48, Reg 12, 13, 14, 15) DRC_MB_1_Col_1 C120 (Pg 48, Reg 12, 13, 14, 15) DRC_MB_1_col_2 C122 (Pg 48, Reg 20, 21, 22, 23) DRC_MB_1_col_2 C123 (Pg 48, Reg 20, 21, 22, 23) DRC_MB_1_col_2 C124 (Pg 48, Reg 20, 21, 22, 23) DRC_MB_1_col_2 C126 (Pg 48, Reg 24, 25, 26, 27) DRC_MB_1_col_1 C126 (Pg 48, Reg 38, 33, 34, 35) DRC_MB_1_col_2 C126 (Pg 48, Reg 36, 37, 38, 39) <tr< td=""><td></td><td>,</td></tr<>		,
DRC_MB_1_c1_3 C109 (Pg 47, Reg 84, 85, 86, 87) DRC_MB_1_c1_2 C110 (Pg 47, Reg 98, 89, 90, 91) DRC_MB_1_c1_0 C111 (Pg 47, Reg 98, 89, 99, 98) DRC_MB_1_c1_0 C112 (Pg 47, Reg 100, 101, 102, 103) DRC_MB_1_O1_1 C113 (Pg 47, Reg 104, 105, 106, 107) DRC_MB_1_S1_1 C114 (Pg 47, Reg 104, 105, 106, 107) DRC_MB_1_S1_2 C115 (Pg 47, Reg 104, 105, 106, 107) DRC_MB_1_S1_2 C116 (Pg 47, Reg 108, 109, 119, 111) DRC_MB_1_S1_3 C118 (Pg 47, Reg 120, 121, 113, 114, 115) DRC_MB_1_S1_3 C118 (Pg 47, Reg 120, 121, 122, 123) DRC_MB_1_Scale1 C120 (Pg 48, Reg 120, 121, 122, 127) DRC_MB_1_Scale1 C120 (Pg 48, Reg 12, 13, 14, 15) DRC_MB_1_Scale1 C120 (Pg 48, Reg 12, 13, 14, 15) DRC_MB_1_Scale1 C120 (Pg 48, Reg 12, 13, 14, 15) DRC_MB_1_c2_3 C122 (Pg 48, Reg 16, 17, 18, 19) DRC_MB_1_c2_3 C122 (Pg 48, Reg 20, 21, 22, 23) DRC_MB_1_c2_1 C124 (Pg 48, Reg 28, 29, 30, 31) DRC_MB_1_c2_1 C126 (Pg 48, Reg 28, 29, 30, 31) DRC_MB_1_c2_1 C126 (Pg 48, Reg 28, 29, 33, 34, 35) DRC_MB_1_D2_2 C126 (Pg 48, Reg 48, Reg 46, 66, 67, 67) <td></td> <td></td>		
DRC_MB_1_c1_2 C110 (Fg 47, Reg 88, 89, 90, 91) DRC_MB_1_c1_1 C111 (Fg 47, Reg 92, 93, 94, 95) DRC_MB_1_c1_0 C112 (Fg 47, Reg 96, 97, 98, 99) DRC_MB_1_01_1 C113 (Fg 47, Reg 100, 101, 102, 103) DRC_MB_1_01_2 C114 (Fg 47, Reg 108, 109, 119, 111) DRC_MB_1_01_2 C115 (Fg 47, Reg 108, 109, 119, 111) DRC_MB_1_01_3 C117 (Fg 47, Reg 112, 113, 114, 115) DRC_MB_1_01_3 C117 (Fg 47, Reg 120, 121, 122, 123) DRC_MB_1_01_3 C118 (Fg 47, Reg 120, 121, 122, 123) DRC_MB_1_One_1_017 C119 (Fg 47, Reg 124, 125, 126, 127) DRC_MB_1_xx1Coeff C120 (Fg 48, Reg 12, 13, 14, 15) DRC_MB_1_xx1Coeff C121 (Fg 48, Reg 12, 13, 14, 15) DRC_MB_1_c2_3 C122 (Fg 48, Reg 16, 17, 18, 19) DRC_MB_1_c2_2 C123 (Fg 48, Reg 16, 17, 18, 19) DRC_MB_1_c2_2 C123 (Fg 48, Reg 20, 21, 22, 23) DRC_MB_1_c2_1 C124 (Fg 48, Reg 24, 25, 26, 27) DRC_MB_1_c2_0 C125 (Fg 48, Reg 28, 30, 31) DRC_MB_1_c2_0 C126 (Fg 48, Reg 28, 39, 33, 34, 35) DRC_MB_1_S2_1 C127 (Fg 48, Reg 48, Fg 56, F5, F5, F5) DRC_MB_1_S2_2 C129 (Fg 48, Reg 48, Fg 56, F5, F5, F5)		
DRC_MB_1_c1_1 DRC_MB_1_c1_0 C112 (Pg 47, Reg 92, 93, 94, 95) DRC_MB_1_c1_0 C112 (Pg 47, Reg 96, 97, 98, 99) DRC_MB_1_c1_1 C113 (Pg 47, Reg 100, 101, 102, 103) DRC_MB_1_S1_1 C114 (Pg 47, Reg 104, 105, 106, 107) DRC_MB_1_S1_1 C114 (Pg 47, Reg 104, 105, 106, 107) DRC_MB_1_S1_2 C115 (Pg 47, Reg 108, 109, 119, 111) DRC_MB_1_S1_2 C116 (Pg 47, Reg 118, 109, 119, 111) DRC_MB_1_S1_2 C116 (Pg 47, Reg 112, 113, 114, 115) DRC_MB_1_O1_3 C117 (Pg 47, Reg 122, 121, 122, 123) DRC_MB_1_O1_3 C118 (Pg 47, Reg 122, 121, 122, 123) DRC_MB_1_S1_3 C118 (Pg 47, Reg 122, 121, 122, 123) DRC_MB_1_Scale1 C120 (Pg 48, Reg 120, 121, 122, 123) DRC_MB_1_scale1 C120 (Pg 48, Reg 8, 9, 10, 11) DRC_MB_1_sc2_3 C121 (Pg 48, Reg 12, 13, 14, 15) DRC_MB_1_c2_3 DRC_MB_1_c2_2 C123 (Pg 48, Reg 16, 17, 18, 19) DRC_MB_1_c2_1 C124 (Pg 48, Reg 20, 21, 22, 23) DRC_MB_1_c2_1 C124 (Pg 48, Reg 28, 29, 30, 31) DRC_MB_1_c2_0 C125 (Pg 48, Reg 28, 29, 30, 31) DRC_MB_1_c2_0 C126 (Pg 48, Reg 32, 33, 34, 35) DRC_MB_1_Sc2_1 C127 (Pg 48, Reg 32, 33, 34, 35) DRC_MB_1_Sc2_1 C127 (Pg 48, Reg 32, 33, 34, 35) DRC_MB_1_Sc2_1 C128 (Pg 48, Reg 32, 33, 34, 35) DRC_MB_1_Sc2_1 C129 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_Sc2_2 C128 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_Sc2_3 C130 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_Sc3_3 C131 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_Sc3_3 C131 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_Sc3_3 C131 (Pg 48, Reg 48, 49, 50, 51) DRC_MB_1_Sc3_3 DRC_MB_1_Sc3_3 C131 (Pg 48, Reg 48, 49, 50, 51) DRC_MB_1_Sc3_3 DRC_MB_1_Sc3_3 C131 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R1_1 C135 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R1_2 C136 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R1_2 C136 (Pg 48, Reg 88, 89, 90, 91) DRC_MB_1_Band1_GainC C140 (Pg 48, Reg 90, 89, 89, 90, 91) DRC_MB_1_Band3_GainC C140 (Pg 48, Reg 92, 93, 94, 95)		
DRC_MB_1_c1_0 DRC_MB_1_01_1 C113 (Pg 47, Reg 96, 97, 98, 99) DRC_MB_1_S1_1 C114 (Pg 47, Reg 100, 101, 102, 103) DRC_MB_1_S1_1 C114 (Pg 47, Reg 104, 105, 106, 107) DRC_MB_1_S1_2 C115 (Pg 47, Reg 108, 109, 119, 111) DRC_MB_1_S1_2 C116 (Pg 47, Reg 112, 113, 114, 115) DRC_MB_1_S1_3 C117 (Pg 47, Reg 112, 113, 114, 115) DRC_MB_1_S1_3 C118 (Pg 47, Reg 122, 121, 122, 123) DRC_MB_1_S1_3 C119 (Pg 47, Reg 124, 125, 126, 127) DRC_MB_1_S1_3 C119 (Pg 47, Reg 124, 125, 126, 127) DRC_MB_1_S1_S1_3 C119 (Pg 48, Reg 8, 9, 10, 11) DRC_MB_1_S1_G1 DRC_MB_1_S1_G1 C120 (Pg 48, Reg 12, 13, 14, 15) DRC_MB_1_S1_G1 DRC_MB_1_S1_G1 C121 (Pg 48, Reg 12, 13, 14, 15) DRC_MB_1_S1_G1 DRC_MB_1_C2_3 C122 (Pg 48, Reg 16, 17, 18, 19) DRC_MB_1_C2_3 C123 (Pg 48, Reg 20, 21, 22, 23) DRC_MB_1_C2_1 C124 (Pg 48, Reg 24, 25, 26, 27) DRC_MB_1_C2_1 C126 (Pg 48, Reg 32, 33, 34, 35) DRC_MB_1_C2_1 C126 (Pg 48, Reg 36, 37, 38, 39) DRC_MB_1_C2_1 C127 (Pg 48, Reg 36, 37, 38, 39) DRC_MB_1_C2_2 C128 (Pg 48, Reg 40, 41, 42, 43) DRC_MB_1_C2_2 C129 (Pg 48, Reg 40, 41, 42, 43) DRC_MB_1_C2_2 C129 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_C2_3 C130 (Pg 48, Reg 56, 57, 58, 59) DRC_MB_1_S2_3 C131 (Pg 48, Reg 56, 57, 58, 59) DRC_MB_1_S2_3 C132 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_R1_1 C135 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_R1_1 C136 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_R1_1 C136 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_R2_1 C137 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_R2_1 C138 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_R2_1 C139 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_R2_1 C139 (Pg 48, Reg 80, 81, 82, 83) DRC_MB_1_R2_1 C139 (Pg 48, Reg 80, 81, 82, 83) DRC_MB_1_R2_1 C139 (Pg 48, Reg 80, 81, 82, 83) DRC_MB_1_R2_2 C139 (Pg 48, Reg 80, 81, 82, 83) DRC_MB_1_R2_1 C139 (Pg 48, Reg 80, 81, 82, 83) DRC_MB_1_Band1_GainC C140 (Pg 48, Reg 92, 93, 94, 95)		
DRC_MB_1_O1_1 C113 (Pg 47, Reg 100, 101, 102, 103) DRC_MB_1_S1_1 C114 (Pg 47, Reg 104, 105, 106, 107) DRC_MB_1_O1_2 C115 (Pg 47, Reg 108, 109, 119, 111) DRC_MB_1_O1_3 C116 (Pg 47, Reg 116, 117, 118, 119) DRC_MB_1_S1_3 C118 (Pg 47, Reg 120, 121, 122, 123) DRC_MB_1_S1_3 C119 (Pg 47, Reg 124, 125, 126, 127) DRC_MB_1_CNe_1_Q17 C119 (Pg 47, Reg 124, 125, 126, 127) DRC_MB_1_Scale1 C120 (Pg 48, Reg 8, 9, 10, 11) DRC_MB_1_x1Coeff C121 (Pg 48, Reg 16, 17, 18, 19) DRC_MB_1_c2_3 C122 (Pg 48, Reg 16, 17, 18, 19) DRC_MB_1_c2_1 C124 (Pg 48, Reg 20, 21, 22, 23) DRC_MB_1_c2_1 C124 (Pg 48, Reg 20, 21, 22, 23) DRC_MB_1_c2_1 C124 (Pg 48, Reg 22, 33, 34, 35) DRC_MB_1_c2_1 C126 (Pg 48, Reg 32, 33, 34, 35) DRC_MB_1_c2_0 C126 (Pg 48, Reg 32, 33, 34, 35) DRC_MB_1_S2_1 C127 (Pg 48, Reg 40, 41, 42, 43) DRC_MB_1_S2_2 C128 (Pg 48, Reg 40, 41, 42, 43) DRC_MB_1_S2_3 C130 (Pg 48, Reg 48, 49, 50, 51) DRC_MB_1_S2_3 C130 (Pg 48, Reg 48, 49, 50, 51) DRC_MB_1_Scale2 C130 (Pg 48, Reg 48, 49, 50, 51) <t< td=""><td></td><td></td></t<>		
DRC_MB_1_S1_1 C114 (Pg 47, Reg 104, 105, 106, 107) DRC_MB_1_O1_2 C115 (Pg 47, Reg 108, 109, 119, 111) DRC_MB_1_S1_2 C116 (Pg 47, Reg 112, 113, 114, 115) DRC_MB_1_O1_3 C117 (Pg 47, Reg 112, 113, 114, 115) DRC_MB_1_S1_3 C118 (Pg 47, Reg 120, 121, 122, 123) DRC_MB_1_One_1_Q17 C119 (Pg 47, Reg 124, 125, 126, 127) DRC_MB_1_Scale1 C120 (Pg 48, Reg 8, 9, 10, 11) DRC_MB_1_x1Coeff C121 (Pg 48, Reg 16, 17, 18, 19) DRC_MB_1_c2_3 C122 (Pg 48, Reg 16, 17, 18, 19) DRC_MB_1_c2_1 C123 (Pg 48, Reg 20, 21, 22, 23) DRC_MB_1_c2_1 C124 (Pg 48, Reg 24, 25, 26, 27) DRC_MB_1_c2_1 C124 (Pg 48, Reg 24, 25, 26, 27) DRC_MB_1_c2_1 C126 (Pg 48, Reg 32, 33, 34, 35) DRC_MB_1_C2_1 C126 (Pg 48, Reg 32, 33, 34, 35) DRC_MB_1_O2_1 C126 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_S2_2 C129 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_S2_2 C129 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_S2_3 C130 (Pg 48, Reg 56, 57, 58, 59) DRC_MB_1_S2_3 C131 (Pg 48, Reg 56, 57, 58, 59) DRC_MB_1_S2_3 C134 (Pg 48, Reg 68, 69, 70, 71)		
DRC_MB_1_O1_2 C115 (Pg 47, Reg 108, 109, 119, 111) DRC_MB_1_S1_2 C116 (Pg 47, Reg 112, 113, 114, 115) DRC_MB_1_O1_3 C117 (Pg 47, Reg 112, 113, 114, 118) DRC_MB_1_One_1_Q17 C118 (Pg 47, Reg 120, 121, 122, 126, 127) DRC_MB_1_Scale1 C120 (Pg 48, Reg 8, 9, 10, 11) DRC_MB_1_x1Coeff C121 (Pg 48, Reg 12, 13, 14, 15) DRC_MB_1_c2_3 C122 (Pg 48, Reg 20, 21, 22, 23) DRC_MB_1_c2_2 C123 (Pg 48, Reg 20, 21, 22, 23) DRC_MB_1_c2_1 C124 (Pg 48, Reg 22, 25, 26, 27) DRC_MB_1_c2_0 C125 (Pg 48, Reg 28, 29, 30, 31) DRC_MB_1_c2_1 C126 (Pg 48, Reg 28, 29, 30, 31) DRC_MB_1_C2_1 C126 (Pg 48, Reg 36, 37, 38, 39) DRC_MB_1_O2_1 C126 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_S2_2 C129 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_S2_3 C130 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_S2_2 C129 (Pg 48, Reg 48, 89, 56, 57, 58, 59) DRC_MB_1_S2_2 C129 (Pg 48, Reg 48, 49, 50, 51) DRC_MB_1_S2_3 C131 (Pg 48, Reg 48, 49, 50, 51) DRC_MB_1_S2_3 C131 (Pg 48, Reg 66, 57, 58, 59) DRC_MB_1_S2_0 C132 (Pg 48, Reg 66, 57, 58, 59) <tr< td=""><td></td><td></td></tr<>		
DRC_MB_1_S1_2 C116 (Pg 47, Reg 112, 113, 114, 115) DRC_MB_1_O1_3 C117 (Pg 47, Reg 116, 117, 118, 119) DRC_MB_1_S1_3 C118 (Pg 47, Reg 120, 121, 122, 123) DRC_MB_1_Cone_1_Q17 C119 (Pg 47, Reg 124, 125, 126, 127) DRC_MB_1_Scale1 C120 (Pg 48, Reg 8, 9, 10, 11) DRC_MB_1_xtCoeff C121 (Pg 48, Reg 12, 13, 14, 15) DRC_MB_1_c2_3 C122 (Pg 48, Reg 16, 17, 18, 19) DRC_MB_1_c2_1 C122 (Pg 48, Reg 22, 22, 23) DRC_MB_1_c2_1 C124 (Pg 48, Reg 28, 29, 30, 31) DRC_MB_1_c2_0 C125 (Pg 48, Reg 32, 33, 34, 35) DRC_MB_1_O2_1 C126 (Pg 48, Reg 36, 37, 38, 39) DRC_MB_1_O2_2 C128 (Pg 48, Reg 40, 41, 42, 43) DRC_MB_1_S2_2 C129 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_S2_2 C129 (Pg 48, Reg 48, 49, 50, 51) DRC_MB_1_S2_3 C130 (Pg 48, Reg 46, 55, 58, 59) DRC_MB_1_S2_3 C130 (Pg 48, Reg 46, 65, 67, 58, 59) DRC_MB_1_S2_3 C131 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_Scale2 C133 (Pg 48, Reg 66, 67, 58, 59) DRC_MB_1_Scale2 C133 (Pg 48, Reg 66, 67, 78, 78, 79) DRC_MB_1_R1_A1 C136 (Pg 48, Reg 64, 65, 66, 67)		
DRC_MB_1_O1_3 C117 (Pg 47, Reg 116, 117, 118, 119) DRC_MB_1_S1_3 C118 (Pg 47, Reg 120, 121, 122, 123) DRC_MB_1_One_1_Q17 C119 (Pg 47, Reg 124, 125, 126, 127) DRC_MB_1_Scale1 C120 (Pg 48, Reg 12, 13, 14, 15) DRC_MB_1_c2_3 C122 (Pg 48, Reg 16, 17, 18, 19) DRC_MB_1_c2_3 DRC_MB_1_c2_2 C123 (Pg 48, Reg 20, 21, 22, 23) DRC_MB_1_c2_1 DRC_MB_1_c2_1 C124 (Pg 48, Reg 24, 25, 26, 27) DRC_MB_1_c2_0 C125 (Pg 48, Reg 32, 33, 34, 35) DRC_MB_1_c2_1 C126 (Pg 48, Reg 32, 33, 34, 35) DRC_MB_1_S2_1 C127 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_02_2 C128 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_02_3 C130 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_S2_3 C131 (Pg 48, Reg 56, 57, 58, 59) DRC_MB_1_S2_0 DRC_MB_1_S2_0 C133 (Pg 48, Reg 56, 57, 58, 59) DRC_MB_1_Scale2 C134 (Pg 48, Reg 64, 65, 66, 67) DRC_MB_1_R1_2 C135 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R1_1 C136 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R2_1 C137 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R2_1 C138 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R2_1 C136 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_R2_1 C136 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_R2_1 C136 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_R2_1 C136 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_R2_1 C136 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_R2_1 C136 (Pg 48, Reg 88, 89, 90, 91) DRC_MB_1_Band3_GainC C140 (Pg 48, Reg 88, 89, 90, 91)		
DRC_MB_1_S1_3 C118 (Pg 47, Reg 120, 121, 122, 123) DRC_MB_1_One_1_Q17 C119 (Pg 47, Reg 124, 125, 126, 127) DRC_MB_1_Scale1 C120 (Pg 48, Reg 8, 9, 10, 11) DRC_MB_1_x1Coeff C121 (Pg 48, Reg 12, 13, 14, 15) DRC_MB_1_c2_3 C122 (Pg 48, Reg 16, 17, 18, 19) DRC_MB_1_c2_2 C123 (Pg 48, Reg 20, 21, 22, 23) DRC_MB_1_c2_1 C124 (Pg 48, Reg 24, 25, 26, 27) DRC_MB_1_c2_0 C125 (Pg 48, Reg 28, 29, 30, 31) DRC_MB_1_02_1 C126 (Pg 48, Reg 32, 33, 34, 35) DRC_MB_1_02_1 C126 (Pg 48, Reg 36, 37, 38, 39) DRC_MB_1_02_2 C128 (Pg 48, Reg 40, 41, 42, 43) DRC_MB_1_02_2 C128 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_02_3 C130 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_02_3 C130 (Pg 48, Reg 52, 53, 54, 55) DRC_MB_1_02_3 C130 (Pg 48, Reg 55, 57, 58, 59) DRC_MB_1_Sc_2a C130 (Pg 48, Reg 65, 57, 58, 59) DRC_MB_1_Scale2 C133 (Pg 48, Reg 66, 66, 67) DRC_MB_1_R2_0eff C134 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R1_1 C135 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R2_1 C136 (Pg 48, Reg 77, 78, 79) DRC_MB_1_		
DRC_MB_1_One_1_Q17 C119 (Pg 47, Reg 124, 125, 126, 127) DRC_MB_1_Scale1 C120 (Pg 48, Reg 8, 9, 10, 11) DRC_MB_1_x1Coeff C121 (Pg 48, Reg 12, 13, 14, 15) DRC_MB_1_c2_3 C122 (Pg 48, Reg 16, 17, 18, 19) DRC_MB_1_c2_1 C123 (Pg 48, Reg 20, 21, 22, 23) DRC_MB_1_c2_1 C124 (Pg 48, Reg 24, 25, 26, 27) DRC_MB_1_c2_0 C125 (Pg 48, Reg 28, 29, 30, 31) DRC_MB_1_02_1 C126 (Pg 48, Reg 32, 33, 34, 35) DRC_MB_1_52_1 C127 (Pg 48, Reg 36, 37, 38, 39) DRC_MB_1_02_2 C128 (Pg 48, Reg 40, 41, 42, 43) DRC_MB_1_02_2 C129 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_02_3 C130 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_02_3 C131 (Pg 48, Reg 52, 53, 54, 55) DRC_MB_1_00_2 C130 (Pg 48, Reg 66, 57, 58, 59) DRC_MB_1_Scale2 C131 (Pg 48, Reg 66, 66, 67) DRC_MB_1_scale2 C133 (Pg 48, Reg 64, 65, 66, 67) DRC_MB_1_R1_1 C135 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R1_2 C136 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_R2_1 C137 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_Band1_GainC C139 (Pg 48, Reg 88, 89, 90, 91) DRC_		
DRC_MB_1_Scale1 C120 (Pg 48, Reg 8, 9, 10, 11) DRC_MB_1_x1Coeff C121 (Pg 48, Reg 12, 13, 14, 15) DRC_MB_1_c2_3 C122 (Pg 48, Reg 16, 17, 18, 19) DRC_MB_1_c2_1 C123 (Pg 48, Reg 20, 21, 22, 23) DRC_MB_1_c2_1 C124 (Pg 48, Reg 24, 25, 26, 27) DRC_MB_1_c2_0 C125 (Pg 48, Reg 28, 29, 30, 31) DRC_MB_1_O2_1 C126 (Pg 48, Reg 32, 33, 34, 35) DRC_MB_1_S2_1 C127 (Pg 48, Reg 36, 37, 38, 39) DRC_MB_1_O2_2 C128 (Pg 48, Reg 40, 41, 42, 43) DRC_MB_1_S2_2 C129 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_O2_3 C130 (Pg 48, Reg 48, 49, 50, 51) DRC_MB_1_S2_3 C131 (Pg 48, Reg 52, 53, 54, 55) DRC_MB_1_Scale2 C132 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_Scale2 C133 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_R2_0 C134 (Pg 48, Reg 64, 65, 66, 67) DRC_MB_1_R1_2 C136 (Pg 48, Reg 72, 73, 74, 75) DRC_MB_1_R2_1 C137 (Pg 48, Reg 72, 77, 78, 79) DRC_MB_1_Band1_GainC C139 (Pg 48, Reg 84, 85, 86, 87) DRC_MB_1_Band2_GainC C140 (Pg 48, Reg 88, 89, 90, 91) DRC_MB_1_Band3_GainC C141 (Pg 48, Reg 92, 93, 94, 95)		
DRC_MB_1_x1Coeff C121 (Pg 48, Reg 12, 13, 14, 15) DRC_MB_1_c2_3 C122 (Pg 48, Reg 16, 17, 18, 19) DRC_MB_1_c2_2 C123 (Pg 48, Reg 20, 21, 22, 23) DRC_MB_1_c2_1 C124 (Pg 48, Reg 24, 25, 26, 27) DRC_MB_1_c2_0 C125 (Pg 48, Reg 28, 29, 30, 31) DRC_MB_1_O2_1 C126 (Pg 48, Reg 32, 33, 34, 35) DRC_MB_1_S2_1 C127 (Pg 48, Reg 36, 37, 38, 39) DRC_MB_1_O2_2 C128 (Pg 48, Reg 40, 41, 42, 43) DRC_MB_1_S2_2 C129 (Pg 48, Reg 40, 41, 42, 43) DRC_MB_1_O2_3 C130 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_O2_3 C130 (Pg 48, Reg 48, 49, 50, 51) DRC_MB_1_D0_2_3 C131 (Pg 48, Reg 52, 53, 54, 55) DRC_MB_1_D0_2_Q17 C132 (Pg 48, Reg 66, 67, 75, 85, 59) DRC_MB_1_Scale2 C133 (Pg 48, Reg 66, 67, 75, 85, 59) DRC_MB_1_Scale2 C133 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R1_1 C135 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R1_2 C136 (Pg 48, Reg 72, 73, 74, 75) DRC_MB_1_R2_1 C136 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_Band1_GainC C139 (Pg 48, Reg 88, 89, 90, 91) DRC_MB_1_Band2_GainC C140 (Pg 48, Reg 92, 93, 94, 95)		
DRC_MB_1_c2_2 C123 (Pg 48, Reg 20, 21, 22, 23) DRC_MB_1_c2_1 C124 (Pg 48, Reg 24, 25, 26, 27) DRC_MB_1_c2_0 C125 (Pg 48, Reg 28, 29, 30, 31) DRC_MB_1_O2_1 C126 (Pg 48, Reg 32, 33, 34, 35) DRC_MB_1_S2_1 C127 (Pg 48, Reg 36, 37, 38, 39) DRC_MB_1_O2_2 C128 (Pg 48, Reg 40, 41, 42, 43) DRC_MB_1_S2_2 C129 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_O2_3 C130 (Pg 48, Reg 48, 49, 50, 51) DRC_MB_1_S2_3 C131 (Pg 48, Reg 52, 53, 54, 55) DRC_MB_1_One_2_Q17 C132 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_Scale2 C133 (Pg 48, Reg 64, 65, 66, 67) DRC_MB_1_R1_1 C135 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R1_1 C135 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R2_1 C136 (Pg 48, Reg 72, 73, 74, 75) DRC_MB_1_R2_1 C137 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_Band1_GainC C139 (Pg 48, Reg 88, 89, 90, 91) DRC_MB_1_Band2_GainC C140 (Pg 48, Reg 88, 89, 90, 91) DRC_MB_1_Band3_GainC C141 (Pg 48, Reg 92, 93, 94, 95)	DRC_MB_1_x1Coeff	
DRC_MB_1_c2_2 C123 (Pg 48, Reg 20, 21, 22, 23) DRC_MB_1_c2_1 C124 (Pg 48, Reg 24, 25, 26, 27) DRC_MB_1_c2_0 C125 (Pg 48, Reg 28, 29, 30, 31) DRC_MB_1_O2_1 C126 (Pg 48, Reg 32, 33, 34, 35) DRC_MB_1_S2_1 C127 (Pg 48, Reg 36, 37, 38, 39) DRC_MB_1_O2_2 C128 (Pg 48, Reg 40, 41, 42, 43) DRC_MB_1_S2_2 C129 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_O2_3 C130 (Pg 48, Reg 48, 49, 50, 51) DRC_MB_1_S2_3 C131 (Pg 48, Reg 52, 53, 54, 55) DRC_MB_1_One_2_Q17 C132 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_Scale2 C133 (Pg 48, Reg 64, 65, 66, 67) DRC_MB_1_R1_1 C135 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R1_1 C135 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R2_1 C136 (Pg 48, Reg 72, 73, 74, 75) DRC_MB_1_R2_1 C137 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_Band1_GainC C139 (Pg 48, Reg 88, 89, 90, 91) DRC_MB_1_Band2_GainC C140 (Pg 48, Reg 88, 89, 90, 91) DRC_MB_1_Band3_GainC C141 (Pg 48, Reg 92, 93, 94, 95)	DRC_MB_1_c2_3	C122 (Pg 48, Reg 16, 17, 18, 19)
DRC_MB_1_c2_1 C124 (Pg 48, Reg 24, 25, 26, 27) DRC_MB_1_c2_0 C125 (Pg 48, Reg 28, 29, 30, 31) DRC_MB_1_O2_1 C126 (Pg 48, Reg 32, 33, 34, 35) DRC_MB_1_S2_1 C127 (Pg 48, Reg 36, 37, 38, 39) DRC_MB_1_O2_2 C128 (Pg 48, Reg 40, 41, 42, 43) DRC_MB_1_S2_2 C129 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_O2_3 C130 (Pg 48, Reg 48, 49, 50, 51) DRC_MB_1_S2_3 C131 (Pg 48, Reg 52, 53, 54, 55) DRC_MB_1_One_2_Q17 C132 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_Scale2 C133 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_X2Coeff C134 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R1_1 C135 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R2_1 C136 (Pg 48, Reg 72, 73, 74, 75) DRC_MB_1_R2_1 C137 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_R2_2 C138 (Pg 48, Reg 80, 81, 82, 83) DRC_MB_1_Band1_GainC C139 (Pg 48, Reg 88, 89, 90, 91) DRC_MB_1_Band2_GainC C141 (Pg 48, Reg 92, 93, 94, 95)	DRC_MB_1_c2_2	
DRC_MB_1_c2_0 C125 (Pg 48, Reg 28, 29, 30, 31) DRC_MB_1_O2_1 C126 (Pg 48, Reg 32, 33, 34, 35) DRC_MB_1_S2_1 C127 (Pg 48, Reg 36, 37, 38, 39) DRC_MB_1_O2_2 C128 (Pg 48, Reg 40, 41, 42, 43) DRC_MB_1_S2_2 C129 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_O2_3 C130 (Pg 48, Reg 48, 49, 50, 51) DRC_MB_1_S2_3 C131 (Pg 48, Reg 52, 53, 54, 55) DRC_MB_1_One_2_Q17 C132 (Pg 48, Reg 56, 57, 58, 59) DRC_MB_1_Scale2 C133 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_x2Coeff C134 (Pg 48, Reg 64, 65, 66, 67) DRC_MB_1_R1_1 C135 (Pg 48, Reg 72, 73, 74, 75) DRC_MB_1_R2_1 C136 (Pg 48, Reg 77, 73, 74, 75) DRC_MB_1_R2_1 C137 (Pg 48, Reg 80, 81, 82, 83) DRC_MB_1_Band1_GainC C138 (Pg 48, Reg 84, 85, 86, 87) DRC_MB_1_Band2_GainC C140 (Pg 48, Reg 92, 93, 94, 95)		C124 (Pg 48, Reg 24, 25, 26, 27)
DRC_MB_1_O2_1 C126 (Pg 48, Reg 32, 33, 34, 35) DRC_MB_1_S2_1 C127 (Pg 48, Reg 36, 37, 38, 39) DRC_MB_1_O2_2 C128 (Pg 48, Reg 40, 41, 42, 43) DRC_MB_1_S2_2 C129 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_O2_3 C130 (Pg 48, Reg 56, 57, 58, 54) DRC_MB_1_S2_3 C131 (Pg 48, Reg 56, 57, 58, 59) DRC_MB_1_One_2_Q17 C132 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_Scale2 C133 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_x2Coeff C134 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R1_1 C135 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R2_2 C136 (Pg 48, Reg 72, 73, 74, 75) DRC_MB_1_R2_1 C137 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_R2_2 C138 (Pg 48, Reg 80, 81, 82, 83) DRC_MB_1_Band1_GainC C139 (Pg 48, Reg 84, 85, 86, 87) DRC_MB_1_Band2_GainC C140 (Pg 48, Reg 92, 93, 94, 95)		
DRC_MB_1_S2_1 C127 (Pg 48, Reg 36, 37, 38, 39) DRC_MB_1_O2_2 C128 (Pg 48, Reg 40, 41, 42, 43) DRC_MB_1_S2_2 C129 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_O2_3 C130 (Pg 48, Reg 48, 49, 50, 51) DRC_MB_1_S2_3 C131 (Pg 48, Reg 52, 53, 54, 55) DRC_MB_1_One_2_Q17 C132 (Pg 48, Reg 66, 67, 58, 59) DRC_MB_1_Scale2 C133 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_x2Coeff C134 (Pg 48, Reg 64, 65, 66, 67) DRC_MB_1_R1_1 C135 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R1_2 C136 (Pg 48, Reg 72, 73, 74, 75) DRC_MB_1_R2_1 C136 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_R2_2 C138 (Pg 48, Reg 80, 81, 82, 83) DRC_MB_1_Band1_GainC C139 (Pg 48, Reg 84, 85, 86, 87) DRC_MB_1_Band2_GainC C140 (Pg 48, Reg 88, 89, 90, 91) DRC_MB_1_Band3_GainC C141 (Pg 48, Reg 92, 93, 94, 95)	DRC_MB_1_O2_1	
DRC_MB_1_02_2 C128 (Pg 48, Reg 40, 41, 42, 43) DRC_MB_1_S2_2 C129 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_02_3 C130 (Pg 48, Reg 48, 49, 50, 51) DRC_MB_1_S2_3 C131 (Pg 48, Reg 52, 53, 54, 55) DRC_MB_1_One_2_Q17 C132 (Pg 48, Reg 56, 57, 58, 59) DRC_MB_1_Scale2 C133 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_x2Coeff C134 (Pg 48, Reg 64, 65, 66, 67) DRC_MB_1_R1_1 C135 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R1_2 C136 (Pg 48, Reg 72, 73, 74, 75) DRC_MB_1_R2_1 C137 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_R2_2 C138 (Pg 48, Reg 80, 81, 82, 83) DRC_MB_1_Band1_GainC C139 (Pg 48, Reg 84, 85, 86, 87) DRC_MB_1_Band2_GainC C140 (Pg 48, Reg 88, 89, 90, 91) DRC_MB_1_Band3_GainC C141 (Pg 48, Reg 92, 93, 94, 95)		C127 (Pg 48, Reg 36, 37, 38, 39)
DRC_MB_1_S2_2 C129 (Pg 48, Reg 44, 45, 46, 47) DRC_MB_1_O2_3 C130 (Pg 48, Reg 48, 49, 50, 51) DRC_MB_1_S2_3 C131 (Pg 48, Reg 52, 53, 54, 55) DRC_MB_1_One_2_Q17 C132 (Pg 48, Reg 56, 57, 58, 59) DRC_MB_1_Scale2 C133 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_x2Coeff C134 (Pg 48, Reg 64, 65, 66, 67) DRC_MB_1_R1_1 C135 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R1_2 C136 (Pg 48, Reg 72, 73, 74, 75) DRC_MB_1_R2_1 C137 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_R2_2 C138 (Pg 48, Reg 80, 81, 82, 83) DRC_MB_1_Band1_GainC C139 (Pg 48, Reg 84, 85, 86, 87) DRC_MB_1_Band2_GainC C140 (Pg 48, Reg 88, 89, 90, 91) DRC_MB_1_Band3_GainC C141 (Pg 48, Reg 92, 93, 94, 95)	DRC_MB_1_O2_2	C128 (Pg 48, Reg 40, 41, 42, 43)
DRC_MB_1_O2_3 C130 (Pg 48, Reg 48, 49, 50, 51) DRC_MB_1_S2_3 C131 (Pg 48, Reg 52, 53, 54, 55) DRC_MB_1_One_2_Q17 C132 (Pg 48, Reg 56, 57, 58, 59) DRC_MB_1_Scale2 C133 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_x2Coeff C134 (Pg 48, Reg 64, 65, 66, 67) DRC_MB_1_R1_1 C135 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R1_2 C136 (Pg 48, Reg 72, 73, 74, 75) DRC_MB_1_R2_1 C137 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_R2_2 C138 (Pg 48, Reg 80, 81, 82, 83) DRC_MB_1_Band1_GainC C139 (Pg 48, Reg 84, 85, 86, 87) DRC_MB_1_Band2_GainC C140 (Pg 48, Reg 98, 89, 90, 91) DRC_MB_1_Band3_GainC C141 (Pg 48, Reg 92, 93, 94, 95)	DRC_MB_1_S2_2	
DRC_MB_1_One_2_Q17 C132 (Pg 48, Reg 56, 57, 58, 59) DRC_MB_1_Scale2 C133 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_x2Coeff C134 (Pg 48, Reg 64, 65, 66, 67) DRC_MB_1_R1_1 C135 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R1_2 C136 (Pg 48, Reg 72, 73, 74, 75) DRC_MB_1_R2_1 C137 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_R2_2 C138 (Pg 48, Reg 80, 81, 82, 83) DRC_MB_1_Band1_GainC C139 (Pg 48, Reg 84, 85, 86, 87) DRC_MB_1_Band2_GainC C140 (Pg 48, Reg 88, 89, 90, 91) DRC_MB_1_Band3_GainC C141 (Pg 48, Reg 92, 93, 94, 95)	DRC_MB_1_O2_3	
DRC_MB_1_One_2_Q17 C132 (Pg 48, Reg 56, 57, 58, 59) DRC_MB_1_Scale2 C133 (Pg 48, Reg 60, 61, 62, 63) DRC_MB_1_x2Coeff C134 (Pg 48, Reg 64, 65, 66, 67) DRC_MB_1_R1_1 C135 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R1_2 C136 (Pg 48, Reg 72, 73, 74, 75) DRC_MB_1_R2_1 C137 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_R2_2 C138 (Pg 48, Reg 80, 81, 82, 83) DRC_MB_1_Band1_GainC C139 (Pg 48, Reg 84, 85, 86, 87) DRC_MB_1_Band2_GainC C140 (Pg 48, Reg 88, 89, 90, 91) DRC_MB_1_Band3_GainC C141 (Pg 48, Reg 92, 93, 94, 95)		C131 (Pg 48, Reg 52, 53, 54, 55)
DRC_MB_1_x2Coeff C134 (Pg 48, Reg 64, 65, 66, 67) DRC_MB_1_R1_1 C135 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R1_2 C136 (Pg 48, Reg 72, 73, 74, 75) DRC_MB_1_R2_1 C137 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_R2_2 C138 (Pg 48, Reg 80, 81, 82, 83) DRC_MB_1_Band1_GainC C139 (Pg 48, Reg 84, 85, 86, 87) DRC_MB_1_Band2_GainC C140 (Pg 48, Reg 88, 89, 90, 91) DRC_MB_1_Band3_GainC C141 (Pg 48, Reg 92, 93, 94, 95)	DRC_MB_1_One_2_Q17	
DRC_MB_1_x2Coeff C134 (Pg 48, Reg 64, 65, 66, 67) DRC_MB_1_R1_1 C135 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R1_2 C136 (Pg 48, Reg 72, 73, 74, 75) DRC_MB_1_R2_1 C137 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_R2_2 C138 (Pg 48, Reg 80, 81, 82, 83) DRC_MB_1_Band1_GainC C139 (Pg 48, Reg 84, 85, 86, 87) DRC_MB_1_Band2_GainC C140 (Pg 48, Reg 88, 89, 90, 91) DRC_MB_1_Band3_GainC C141 (Pg 48, Reg 92, 93, 94, 95)	DRC_MB_1_Scale2	
DRC_MB_1_R1_1 C135 (Pg 48, Reg 68, 69, 70, 71) DRC_MB_1_R1_2 C136 (Pg 48, Reg 72, 73, 74, 75) DRC_MB_1_R2_1 C137 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_R2_2 C138 (Pg 48, Reg 80, 81, 82, 83) DRC_MB_1_Band1_GainC C139 (Pg 48, Reg 84, 85, 86, 87) DRC_MB_1_Band2_GainC C140 (Pg 48, Reg 88, 89, 90, 91) DRC_MB_1_Band3_GainC C141 (Pg 48, Reg 92, 93, 94, 95)		
DRC_MB_1_R1_2 C136 (Pg 48, Reg 72, 73, 74, 75) DRC_MB_1_R2_1 C137 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_R2_2 C138 (Pg 48, Reg 80, 81, 82, 83) DRC_MB_1_Band1_GainC C139 (Pg 48, Reg 84, 85, 86, 87) DRC_MB_1_Band2_GainC C140 (Pg 48, Reg 88, 89, 90, 91) DRC_MB_1_Band3_GainC C141 (Pg 48, Reg 92, 93, 94, 95)		
DRC_MB_1_R2_1 C137 (Pg 48, Reg 76, 77, 78, 79) DRC_MB_1_R2_2 C138 (Pg 48, Reg 80, 81, 82, 83) DRC_MB_1_Band1_GainC C139 (Pg 48, Reg 84, 85, 86, 87) DRC_MB_1_Band2_GainC C140 (Pg 48, Reg 88, 89, 90, 91) DRC_MB_1_Band3_GainC C141 (Pg 48, Reg 92, 93, 94, 95)		
DRC_MB_1_Band1_GainC C139 (Pg 48, Reg 84, 85, 86, 87) DRC_MB_1_Band2_GainC C140 (Pg 48, Reg 88, 89, 90, 91) DRC_MB_1_Band3_GainC C141 (Pg 48, Reg 92, 93, 94, 95)	DRC_MB_1_R2_1	C137 (Pg 48, Reg 76, 77, 78, 79)
DRC_MB_1_Band1_GainC C139 (Pg 48, Reg 84, 85, 86, 87) DRC_MB_1_Band2_GainC C140 (Pg 48, Reg 88, 89, 90, 91) DRC_MB_1_Band3_GainC C141 (Pg 48, Reg 92, 93, 94, 95)		
DRC_MB_1_Band2_GainC C140 (Pg 48, Reg 88, 89, 90, 91) DRC_MB_1_Band3_GainC C141 (Pg 48, Reg 92, 93, 94, 95)		C139 (Pg 48, Reg 84, 85, 86, 87)
DRC_MB_1_Band3_GainC C141 (Pg 48, Reg 92, 93, 94, 95)		
	DRC_MB_1_MinusOne_M1	C142 (Pg 48, Reg 96, 97, 98, 99)

Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

Table 22. DRC Coefficients (continued)

COEFFICIENT	REGISTER
DRC_MB_1_One_M1	C143 (Pg 48, Reg 100, 101, 102, 103)
DRC_MB_1_Band1_GainE	C144 (Pg 48, Reg 104, 105, 106, 107)
DRC_MB_1_Band2_GainE	C145 (Pg 48, Reg 108, 109, 110, 111)
DRC_MB_1_Band3_GainE	C146 (Pg 48, Reg 112, 113, 114, 115)
DRC_MB_1_minus_One_M2	C147 (Pg 48, Reg 116, 117, 118, 119)

8.3.4.3.5 Stereo Mixer

Three stereo inputs are mixed into one stereo output with input signal gain given by Equation 2.

$$Out_L(n) = \sum (Input_L(i,n) \bullet Gain(i))$$

where

• i=1:2,3

Figure 58 and Table 23 show the stereo mixer operation.

Figure 58. Stereo Mixer Block

Table 23. Stereo Mixer Coefficients

COEFFICIENT	REGISTER
Stereo_Mixer_1_MixGain1	C148 (Pg 48, Reg 120, 121, 122, 123)
Stereo_Mixer_1_MixGain2	C149 (Pg 48, Reg 124, 125, 126, 127)
Stereo_Mixer_1_MixGain3	C150 (Pg 49, Reg 8, 9, 10, 11)

8.3.4.3.6 Stereo Multiplexer

The Stereo Multiplexer selects one or two from 4 stereo input channels.

Figure 59. Stereo Multiplexer Block

Copyright © 2012–2018, Texas Instruments Incorporated

Submit Documentation Feedback

Table 24. Stereo Multiplexer Select Coefficient

COEFFICIENT	REGISTER
Stereo_Mux_1_MuxSelect	C152 (Pg 49, Reg 16, 17, 18, 19)

Table 25. Stereo Multiplexer Input Coefficient

COEFFICIENT	REGISTER
C_to_D_1_Coefval C_to_D_2_Coefval	C153 (Pg 49, Reg 20, 21, 22, 23)

8.3.4.3.7 Mono Mixer

The Mono Mixer computes a weighted sum of 2 input channels and produces an output.

Figure 60. Mono Mixer Block

Table 26. Mono Mixer Coefficients

COEFFICIENT	REGISTER
Mono_Mixer_1_MixGain1	C154 (Pg 49, Reg 24, 25, 26, 27)
Mono_Mixer_1_MixGain2	C155 (Pg 49, Reg 28, 29, 30, 31)

8.3.4.3.8 Master Volume Control

The Master Volume controls the volume using a linear ramp and zero crossing detection for transitions.

Table 27. Mono Mixer Coefficients

COEFFICIENT	REGISTER
Volume_ZeroX_1_volcmd	C158 (Pg 49, Reg 40, 41, 42, 43)
Volume_ZeroX_1_volout	C159 (Pg 49, Reg 44, 45, 46, 47)
Volume_ZeroX_1_volout_loudness	C160 (Pg 49, Reg 48, 49, 50, 51)
Volume_ZeroX_1_MinusOne_M2	C161 (Pg 49, Reg 52, 53, 54, 55)
Volume_ZeroX_1_workingval_1_pre_CRAM	C162 (Pg 49, Reg 56, 57, 58, 59)
Volume_ZeroX_1_volout_pre1	C163 (Pg 49, Reg 60, 61, 62, 63)
Volume_ZeroX_1_workingval_2_pre_CRAM	C164 (Pg 49, Reg 64, 65, 66, 67)
Volume_ZeroX_1_volout_pre2	C165 (Pg 49, Reg 68, 69, 70, 71)
Volume_ZeroX_1_workingval_3_pre_CRAM	C166 (Pg 49, Reg 72, 73, 74, 75)
Volume_ZeroX_1_volout_pre3	C167 (Pg 49, Reg 76, 77, 78, 79)
Volume_ZeroX_1_One_M2	C168 (Pg 49, Reg 80, 81, 82, 83)
Volume_ZeroX_1_Zero	C169 (Pg 49, Reg 84, 85, 86, 87)
MinusOne_Int	C170 (Pg 49, Reg 88, 89, 90, 91)
MinusOne_M1	C171 (Pg 49, Reg 92, 93, 94, 95)
One_M2	C172 (Pg 49, Reg 96, 97, 98, 99)
One_M1	C173 (Pg 49, Reg 100, 101, 102, 103)
Zero	C174 (Pg 49, Reg 104, 105, 106, 107)

8.3.4.3.9 Miscellaneous Coefficients

Table 28. Miscellaneous Coefficients

COEFFICIENT	REGISTER
DRC_MB_1_DataBlock	C175 (Pg 49, Reg 108, 109, 110, 111)
DRC_MB_1_CoeffBlock	C176 (Pg 49, Reg 112, 113, 114, 115)
Volume_ZeroX_1_DataBlock	C177 (Pg 49, Reg 116, 117, 118, 119)
Volume_ZeroX_1_CoeffBlock	C178 (Pg 49, Reg 120, 121, 122, 123)
plus_one	C179 (Pg 49, Reg 124, 125, 126, 127)
ADD_OF_filter_in_L	C180 (Pg 50, Reg 8, 9, 10, 11)
ADD_OF_filter_in_R	C181 (Pg 50, Reg 12, 13, 14, 15)

8.3.5 DAC Outputs

8.3.5.1 Analog Outputs

The PCM512x devices include a two-channel DAC, with single-ended outputs. The full-scale output voltage is 2.1V_{rms} with ground center output. A dc-coupled load is supported in addition to an ac-coupled load, if the load resistance conforms to the specification. The PCM512x DAC outputs on the OUTL and OUTR terminals have market-leading low out-of-band noise, which offer up to 20dB lower out-of-band noise compared with existing DAC technology.

Most applications require an external low-pass RC filter (470 Ω + 2.2nF) to provide sufficient out-of-band noise rejection. This RC filter provides the added advantage of improved protection against ESD damage.

8.3.5.2 Recommended Output Filter for the PCM512x

The diagram in Figure 61 shows the recommended output filter for the PCM512x. The new PCM512x next-generation current segment architecture offers excellent out-of-band noise, making a traditional 20-kHz low pass filter a thing of the past.

The RC settings below offer a -3-dB filter point at 153 kHz (approximately), giving the DAC the ability to reproduce virtually all frequencies through to it's maximum sampling rate of 384 kHz. A NP0/C0G type capacitor is strongly recommended for the shunt capacitor for lowest distortion.

Figure 61. Recommended Output Lowpass Filter for 10-k Ω Operation

8.3.5.3 Choosing Between VREF and VCOM Modes

VREF mode is the default configuration. This mode allows full 2.1-V_{rms} signal output. As shown in *Recommended Operating Conditions*, the minimum AVDD to avoid clipping is 3.2 V.

VCOM mode allows setting a custom common-mode voltage when required by the application. This somewhat limits the output signal swing before clipping.

8.3.5.3.1 Voltage Reference and Output Levels

The PCM512x devices have an internal, fixed band-gap reference voltage, with default operation in VREF mode. No external decoupling capacitor is required for this mode.

The PCM512x devices can be operated with a common-mode voltage output (VCOM mode) at the VCOM pin by setting Page 1, Register 1, D(0) to 1. In this mode, an external decoupling capacitor is required.

When using this DAC in VREF mode, the output-signal voltage is independent of the power-supply voltage: The D/A conversion gain in VREF mode yields a 2.1-V_{rms} output voltage with a digital full-scale input. However, in VREF mode, an output waveform may clip due to the limitations that may be present in the analog power supply voltage. On the other hand, the full-scale output voltage in VCOM mode is proportional to the analog power supply AVDD (for example, $(2.1 \times \text{AVDD} / 3.3) \text{ V}_{rms}$).

Product Folder Links: PCM5121 PCM5122

2 Submit Documentation Feedback

8.3.5.3.2 Mode Switching Sequence, from VREF Mode to VCOM Mode

Following register setting sequence is recommended for changing VREF mode to VCOM mode.

Page 0 / Register 2
 Page 1 / Register 8
 Page 1 / Register 9
 RQST = 1: Standby mode
 RCMF = 1: Fast ramp up → on
 VCPD = 0: VCOM is power on

4. Wait 3 ms with external capacitor = 1 µF

5. Page 1 / Register 8 RCMF = 0: Fast ramp up \rightarrow off

6. Page 1 / Register 1 OSEL = 1: VCOM mode
 7. Page 0 / Register 2 RQST = 0: Normal mode

8.3.5.4 Digital Volume Control

A basic digital volume control with range from 24 dB to -103 dB and mute is available on each channels by Page 0, Resister 61, D(7:0) for L-ch and Register 62, D(7:0) for R-ch. These volume controls all have 0.5-dB step programmability over most gain and attenuation ranges. Table 29 lists the detailed gain versus programmed setting for this basic volume control. Volume can be changed for both L-ch and R-ch at the same time or independently by Page 0, Register 60, D(1:0). When D(1:0) set 00 (default), independent control is selected. When D(1:0) set 01, R-ch accords with L-ch volume. When D(1:0) set 10, L-ch accords with R-ch volume. To set D(1:0) to 11 is prohibited.

NOTE

This volume control is done externally to the miniDSP and only influences the analog DAC output. Any changes to the SDOUT data should be done in the miniDSP process flow.

Table 29. Digital Volume Control Settings

GAIN SETTING	BINARY DATA	GAIN (dB)	COMMENTS
0	0000-0000	24.0	Positive maximum
1	0000-0001	23.5	
:	:	_	
46	0010-1110	1.0	
47	0010-1111	0.5	
48	0011-0000	0.0 No attenuation (default	
49	0011-0001	-0.5	
50	0011-0010	-1.0	
51	0011-0011	-1.5	
:	:	_	
253	1111-1101	-102.5	
254	1111-1110	-103 Negative maximum	
255	1111-1111	-∞ Negative infinite (Mute)	

Ramp-up frequency and ramp-down frequency can be controlled by Page 0, Register 63, D(7:6) and D(3:2) as shown in Table 30. Also Ramp-up step and ramp-down step can be controlled by Page 0, Register 63 D(5:4) and D(1:0) as shown in Table 31.

Table 30. Ramp-Up or Down Frequency

RAMP-UP SPEED	EVERY N f _S	COMMENTS	RAMP-DOWN FREQUENCY	EVERY N f _S	COMMENTS
00	1	Default	00	1	Default
01	2		01	2	
10	4		10	4	
11	Direct change		11	Direct change	

Table 31. Ramp-Up or Down Step

RAMP-UP STEP	STEP dB	COMMENTS	RAMP-DOWN STEP	STEP dB	COMMENTS
00	4.0		00	-4.0	
01	2.0		01	-2.0	
10	1.0	Default	10	-1.0	Default
11	0.5		11	-0.5	

8.3.5.4.1 Emergency Ramp-Down

Digital volume emergency ramp-down by is provided for situations such as I^2S clock error and power supply failure. Ramp-down speed is controlled by Page 0, Register 64, D(7:6). Ramp-down step can be controlled by Page 0 Register 64, D(5:4). Default is ramp-down by every f_S cycle with -4-dB step.

8.3.5.5 Analog Gain Control

Analog gain control can be selected between $2-V_{rms}$ FS (0dB) or $1-V_{rms}$ FS (-6 dB). Gain is controlled through hardware by the AGNS pin, and through software (SPI/I²C), Page 1, Register 2, D4(L-ch) / D0(R-ch).

8.3.6 Reset and System Clock Functions

8.3.6.1 Clocking Overview

The PCM512x devices have flexible systems for clocking. Internally, the device requires a number of clocks, mostly at related clock rates to function correctly. All of these clocks can be derived from the serial audio interface in one form or another.

Figure 62. Audio Flow with Respective Clocks

As shown in Figure 62 the data flows at the sample rate (f_S). Once the data is brought into the serial audio interface, it gets processed, interpolated and modulated all the way to 128 \times f_S before arriving at the current segments for the final digital to analog conversion.

The clock tree is shown in Figure 63.

Figure 63. PCM512x Clock Distribution Tree

The serial audio interface typically has 4 connections: SCK (system master clock), BCK (bit clock), LRCK (left right word clock), and DIN (data). The device has an internal PLL that is used to take either SCK or BCK and create the higher rate clocks required by the interpolating processor and the DAC clock. This allows the device to operate with or without an external SCK.

In situations where the highest audio performance is required, it is suggested that the SCK is brought to the device, along with BCK and LRCK. The device should be configured so that the PLL is only providing a clock source to the audio processing block. By ensuring that the DACCK (DAC Clock) is being driven by the external SCK source, jitter evident in the PLL (in all PLLs) is kept out of the DAC, charge pump, and oversampling system.

Everything else should be a division of the incoming SCK. This is done by setting DAC CLK Source Mux (SDAC in Figure 63) to use SCK as a source, rather than the output of the SCK/PLL Mux. Code examples for this are available in SLASE12.

When the Auto Clock Configuration bit is set (Page 0/ Register 0x25), no additional clocks configuration is required. However, when setting custom PLL values and so forth, the target output rates should match those shown in the recommended PLL values of Table 131.

8.3.6.2 Clock Slave Mode With Master and System Clock (SCK) Input (4 Wire PS)

The PCM512x requires a system clock to operate the digital interpolation filters and advanced segment DAC modulators. The system clock is applied at the SCK input and supports up to 50 MHz. The PCM512x system-clock detection circuit automatically senses the system-clock frequency. Common audio sampling frequencies in the bands of 8 kHz, 16 kHz, (32 kHz - 44.1 kHz - 48 kHz), (88.2kHz - 96kHz), (176.4 kHz - 192 kHz), and 384 kHz with ±4% tolerance are supported. Values in the parentheses are grouped when detected, (for example, 88.2 kHZ and 96 kHz are detected as *double rate*, and 32 kHz, 44.1 kHz and 48 kHz are detected as *single rate*.)

In the presence of a valid bit SCK, BCK and LRCK in software mode, the device will auto-configure the clock tree and PLL to drive the miniDSP as required.

The sampling frequency detector sets the clock for the digital filter, Delta Sigma Modulator (DSM) and the Negative Charge Pump (NCP) automatically. Table 32 shows examples of system clock frequencies for common audio sampling rates.

SCK rates that are not common to standard audio clocks, between 1 MHz and 50 MHz, are only supported in software mode by configuring various PLL and clock-divider registers. This programmability allows the device to become a clock master and drive the host serial port with LRCK and BCK, from a non-audio related clock (for example, using 12 MHz to generate 44.1 kHz [LRCK] and 2.8224 MHz [BCK]).

SAMPLING					SYST	TEM CLOCK F	REQUENCY (f _{SCK}) (MHz)				
FREQUENCY	64 f _S	128 f _S	192 f _S	256 f _S	384 f _S	512 f _S	768 f _S	1024 f _S	1152 f _S	1536 f _S	2048 f _S	3072 f _S
8 kHz	_(1)	1.024(2)	1.536 ⁽²⁾	2.048	3.072	4.096	6.144	8.192	9.216	12.288	16.384	24.576
16 kHz	_(1)	2.048(2)	3.072(2)	4.096	6.144	8.192	12.288	16.384	18.432	24.576	36.864	49.152
32 kHz	_(1)	4.096(2)	6.144(2)	8.192	12.288	16.384	24.576	32.768	36.864	49.152	_(1)	_(1)
44.1 kHz	_(1)	5.6488(2)	8.4672 ⁽²⁾	11.2896	16.9344	22.5792	33.8688	45.1584	_(1)	_(1)	_(1)	_(1)
48 kHz	_(1)	6.144 ⁽²⁾	9.216 ⁽²⁾	12.288	18.432	24.576	36.864	49.152	_(1)	_(1)	_(1)	_(1)
88.2 kHz	_(1)	11.2896 ⁽²⁾	16.9344	22.5792	33.8688	45.1584	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)
96 kHz	_(1)	12.288(2)	18.432	24.576	36.864	49.152	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)
176.4 kHz	_(1)	22.579	33.8688	45.1584	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)
192 kHz	_(1)	24.576	36.864	49.152	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)
384 kHz	24.576	49.152	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)	_(1)

Table 32. System Master Clock Inputs for Audio Related Clocks

See for clock timing requirements.

⁽¹⁾ This system clock rate is not supported for the given sampling frequency.

⁽²⁾ This system clock rate is supported by PLL mode.

8.3.6.3 Clock Slave Mode With BCK PLL to Generate Internal Clocks (3-Wire PCM)

The system clock PLL mode allows designers to use a simple 3-wire I²S audio source. The 3-wire source reduces the need for a high frequency SCK, making PCB layout easier, and reduces high frequency electromagnetic interference.

In hardwired mode, the internal PLL is disabled as soon as an external SCK is supplied.

In hardwired mode, the device starts up expecting an external SCK input, but if BCK and LRCK start correctly while SCK remains at ground level for 16 successive LRCK periods, then the internal PLL starts, automatically generating an internal SCK from the BCK reference. Specific BCK rates are required to generate an appropriate master clock. Table 33 describes the minimum and maximum BCK per LRCK for the integrated PLL to automatically generate an internal SCK.

In software mode, the user must set all the PLL registers and clock divider registers for referencing BCK. See the *Clock Generation Using the PLL* section for more information.

BCK (fs) SAMPLE F (kHz) 32 64 8 16 1.024 32 1.024 2.048 44.1 1.4112 2.8224 48 1.536 3.072 96 3.072 6.144 192 6.144 12.288 12.288 384 24.576

Table 33. BCK Rates (MHz) by LRCK Sample Rate for PCM512x PLL Operation

8.3.6.4 Clock Generation Using the PLL

The PCM512x supports a wide range of options to generate the required clocks for the DAC section as well as interface and other control blocks as shown in Figure 63.

The clocks for the PLL require a source reference clock. This clock is sourced as the incoming BCK or SCK. In software mode, a GPIO can also be used.

The source reference clock for the PLL reference clock is selected by programming the SRCREF value on Page 0, Register 13, D(6:4). The PCM512x provides several programmable clock dividers to achieve a variety of sampling rates for the DAC and clocks for the NCP, OSR, and the audio processor. OSRCK for OSR must be set at 16 f_S frequency by DOSR on Page0, Register 30, D(6:0). See Figure 63.

If PLL functionality is not required, set the PLLEN value on Page 0, Register 4, D(0) to 0. In this situation, an external SCK is required.

CLOCK MULTIPLEXER FUNCTION BITS SRCREF PLL reference Page 0, Register 13, D(6:4) **DIVIDER FUNCTION BITS DDSP** audio processor clock divider Page 0, Register 27, D(6:0) DACCK DAC clock divider Page 0, Register 28, D(6:0) **CPCK** NCP clock divider Page 0, Register 29, D(6:0) **OSRCK** OSR clock divider Page 0, Register 30, D(6:0) **DBCK** External BCK Div Page 0, Register 32, D(6:0) DLRK External LRCK Div Page 0, Register 33, D(7:0)

Table 34. PLL Configuration Registers

8.3.6.5 PLL Calculation

The PCM512x has an on-chip PLL with fractional multiplication to generate the clock frequency needed by the audio DAC, Negative Charge Pump, Modulator and Digital Signal Processing blocks. The programmability of the PLL allows operation from a wide variety of clocks that may be available in the system. The PLL input (PLLCKIN) supports clock frequencies from 1 MHz to 50 MHz and is register programmable to enable generation of required sampling rates with fine precision.

The PLL is enabled by default. The PLL can be turned on by writing to Page 0, Register 4, D(0). When the PLL is enabled, the PLL output clock PLLCK is given by Equation 3.

$$PLLCK = \frac{PLLCKIN \times R \times J.D}{P} \quad \text{or} \quad PLLCK = \frac{PLLCKIN \times R \times K}{P}$$

where

- R = 1, 2, 3,4, ..., 15, 16
- $J = 4,5,6, \dots 63$, and $D = 0000, 0001, 0002, \dots 9999$
- K = [J value].[D value]

•
$$P = 1, 2, 3, ... 15$$
 (3)

R, J, D, and P are programmable. J is the integer portion of K (the numbers to the left of the decimal point), while D is the fractional portion of K (the numbers to the right of the decimal point, assuming four digits of precision).

8.3.6.5.1 Examples:

- If K = 8.5, then J = 8, D = 5000
- If K = 7.12, then J = 7, D = 1200
- If K = 14.03, then J = 14, D = 0300
- If K = 6.0004, then J = 6, D = 0004

When the PLL is enabled and D = 0000, the following conditions must be satisfied:

- 1 MHz ≤ (PLLCKIN / P) ≤ 20 MHz
- 64 MHz ≤ (PLLCKIN x K x R / P) ≤ 100 MHz (in VREF mode)
- 72 MHz ≤ (PLLCKIN x K x R / P) ≤ 86 MHz (in VCOM mode)
- 1 ≤ J ≤ 63

When the PLL is enabled and D ≠ 0000, the following conditions must be satisfied:

- 6.667 MHz ≤ PLLCLKIN / P ≤ 20 MHz
- 64 MHz ≤ (PLLCKIN x K x R / P) ≤ 100 MHz (in VREF mode)
- 72 MHz ≤ (PLLCK IN x K x R / P) ≤ 86 MHz (in VCOM mode)
- 4 ≤ J ≤ 11
- R = 1

When the PLL is enabled,

- $f_S = (PLLCLKIN \times K \times R) / (2048 \times P)$
- The value of N is selected so that $f_S \times N = PLLCLKIN \times K \times R / P$ is in the allowable range.

Example: MCLK = 12 MHz and f_S = 44.1 kHz, (N=2048)

Select P = 1, R = 1, K = 7.5264, which results in J = 7, D = 5264

Example: MCLK = 12 MHz and $f_S = 48.0$ kHz, (N=2048)

Select P = 1, R = 1, K = 8.192, which results in J = 8, D = 1920

Values are written to the registers in Table 35.

8.3.6.5.1.1 Recommended PLL Settings

Recommended values for the PLL can be found after the register descriptions in this data sheet. Different values are defined based on the device configuration for VREF or VCOM mode.

Other configurations are possible, at your own risk.

48

Below are details of the register locations, as well as the nomenclature for the table of registers found at the end of this document.

Table 35. PLL Registers

DIVIDER	FUNCTION	BITS
PLLE	PLL enable	Page 0, Register 4, D(0)
PPDV	PLL P	Page 0, Register 20, D(3:0)
PJDV	PLL J	Page 0, Register 21, D(5:0)
PDDV	DI D	Page 0, Register 22, D(5:0)
PDDV	PLL D	Page 0, Register 23, D(7:0)
PRDV	PLL R	Page 0, Register 24, D(3:0)

Table 36. PLL Configuration Recommendations

COLUMN	DESCRIPTION
f _S (kHz)	Sampling frequency
RSCK	Ratio between sampling frequency and SCK frequency (SCK frequency = RSCK x sampling frequency)
SCK (MHz)	System master clock frequency at SCK input (pin 20)
PLL VCO (MHz)	PLL VCO frequency as PLLCK in Figure 63
Р	One of the PLL coefficients in Equation 3
PLL REF (MHz)	Internal reference clock frequency which is produced by SCK / P
M = K * R	The final PLL multiplication factor computed from K and R as described in Equation 3
K = J.D	One of the PLL coefficients in Equation 3
R	One of the PLL coefficients in Equation 3
PLL f _S	Ratio between f _S and PLL VCO frequency (PLL VCO / f _S)
DSP f _S	Ratio between audio processor operating clock rate and f _S (PLL f _S / NMAC)
NMAC	The audio processor clock divider value in Table 34
DSP CLK (MHz)	The audio processor operating frequency as DSPCK in Figure 63
MOD f _S	Ratio between DAC operating clock frequency and f _S (PLL f _S / NDAC)
MOD f (kHz)	DAC operating frequency as DACCK in Figure 63
NDAC	DAC clock divider value in Table 34
DOSR	OSR clock divider value in Table 34 for generating OSRCK in Figure 63. DOSR must be chosen so that MOD f_S / DOSR = 16 for correct operation.
NCP	NCP (negative charge pump) clock divider value in Table 34
CP f	Negative charge pump clock frequency (f _S × MOD f _S / NCP)
% Error	Percentage of error between PLL VCO / PLL f _S and f _S (mismatch error). • This number is typically zero but can be non-zero especially when K is not an integer (D is not zero). • This number may be non-zero only when the PCM512x acts as a master.

8.3.6.6 Clock Master Mode from Audio Rate Master Clock

In Master Mode, the device generates bit clock (BCK) and left-right clock (LRCK) and outputs them on the appropriate pins. To configure the device in this mode, first put the device into reset, then use registers BCKO and LRKO (Pg 0, Reg 9 0x09). Then reset the LRCK and BCK divider counters using bits RBCK and RLRK (Pg 0, Reg 12 0x0C). Finally, exit reset.

An example of this is given in register programming examples in the PCM5242 data sheet (SLASE12.)

Figure 64 shows a simplified serial port clock tree for the device in master mode.

Figure 64. Simplified Clock Tree for SCK Sourced Master Mode

In master mode, SCK is an input and BCK/LRCK are outputs. BCK and LRCK are integer divisions of SCK. Master mode with a non-audio rate master clock source will require external GPIOs to use the PLL in standalone mode.

The PLL will also need to be configured to ensure that the onchip audio processor processor can be driven at its maximum clock rate.

Register changes that need to be done include switching the device into master mode, and setting the divider ratio.

Here is an example of using 24.576 MCLK as a master clock source and driving the BCK and LRCK with integer dividers to create 48 kHz.

In this mode, the DAC section of the device is also running from the PLL output. While the PLL inside the PCM512x is one that has been specified to achieve the stated performance, using the SCK CMOS Oscillator source will have less jitter.

To switch the DAC clocks (SDAC in the Figure 63) the following registers should be modified.

- Clock Tree Flex Mode (Page 253, Registers 0x3F and 0x40)
- DAC and OSR Source Clock Register (Page 0, Reg 14) set to 0x30 (SCK input, and OSR is set to whatever the DAC source is)
- The DAC clock divider should be 16 F_S.
 - 16 x 48 kHz = 768 kHz
 - 24.576 MHz (SCK in) / 768 kHz = 32
 - Therefor, divide ratio for register DDAC (Page 0, Reg 28 0x1C) should be set to 32. The may the register is mapped gives 0x00 = 1, so 32 must be converted to 0x1F.

An example configuration can be found in the PCM5242 data sheet (SLASE12).

8.3.6.7 Clock Master from a Non-Audio Rate Master Clock

The classic example here is running a 12-MHz Master clock for a 48-kHz sampling system. Given the clock tree for the device (shown in Figure 63), a non-audio clock rate cannot be brought into the SCK to the PLL in master mode. Therefore, the PLL source must be configured to be a GPIO pin, and the output brought back into another GPIO pin.

Figure 65. Application Diagram for Using Non-Audio Clock Sources to Generate Audio Clocks

The clock flow through the system is shown in Figure 65. The newly-generated SCK must be brought out of the device on a GPIO pin, then brought into the SCK pin for integer division to create BCK and LRCK outputs.

NOTE

Pullup resistors must be used on BCK and LRCK in this mode to ensure the device does not go into sleep mode.

A code example for configuring this mode is provided in the PCM5242 data sheet (SLASE12).

8.4 Device Functional Modes

8.4.1 Choosing a Control Mode

SPI Mode is selected by connecting MODE1 to DVDD. SPI Mode uses four signal lines and allows higher-speed full-duplex communication between the host and the PCM512x device.

I²C Mode is selected by connecting MODE1 to DGND and Mode2 to DVDD. I²C uses two signal lines for half-duplex communication, and is widely used in a variety of devices.

Hardware Control Mode is selected by connecting both MODE1 and MODE2 pins to DGND. Hardware control is useful in applications that do not require on-the-fly device-reconfiguration changes in operating features such as gain or filter latency selection.

See for a comparison of pin assignments for the 28-pin TSSOP.

8.4.1.1 Software Control

8.4.1.1.1 SPI Interface

The SPI interface is a 4-wire synchronous serial port which operates asynchronously to the serial audio interface and the system clock (SCK). The serial control interface is used to program and read the on-chip mode registers.

The control interface includes MISO (pin 24), MOSI (pin 11), MC (pin 12), and MS (pin 18). MISO (Master In Slave Out) is the serial data output, used to read back the values of the mode registers; MOSI (Master Out Slave In) is the serial data input, used to program the mode registers.

Device Functional Modes (continued)

MC is the serial bit clock, used to shift data in and out of the control port by falling edge of MC, and MS is the mode control enable with LOW active, used to enable the internal mode register access. If feedback from the device is not required, the MISO pin can be assigned to GPIO1 by register control.

8.4.1.1.1.1 Register Read and Write Operation

All read/write operations for the serial control port use 16-bit data words. Figure 66 shows the control data word format. The most significant bit is the read/write bit. For write operations, the bit must be set to 0. For read operations, the bit must be set to 1. There are seven bits, labeled IDX[6:0], that hold the register index (or address) for the read and write operations. The least significant eight bits, D[7:0], contain the data to be written to, or the data that was read from, the register specified by IDX[6:0].

Figure 66 and Figure 67 show the functional timing diagram to write or read through the serial control port. MS is held at a logic-1 state until a register access. To start the register write or read cycle, set MS to logic 0. Sixteen clocks are then provided on MC, corresponding to the 16 bits of the control data word on MOSI and read-back data on MISO. After the eighth clock cycle has completed, the data from the indexed-mode control register appears on MISO during the read operation. After the sixteenth clock cycle has completed, the data is latched into the indexed-mode control register during the write operation. To write or read subsequent data, MS is set to logic 1 once (see t_{MHH} in Figure 71).

Figure 66. Control Data Word Format; MDI

NOTE

B8 is used for selection of *Write* or *Read*. Setting = 0 indicates a *Write*, while = 1 indicates a *Read*. Bits 15–9 are used for register address. Bits 7–0 are used for register data. Multiple-byte write or read (up to 8 bytes) is supported while MS is kept low. The address field becomes the initial address, automatically incrementing for each byte.

Figure 67. Serial Control Format; Write, Single Byte

Device Functional Modes (continued)

Figure 68. Serial Control Format; Write, Multiple Byte

Figure 69. Serial Control Format; Read

Figure 70. Serial Control Format; Read, Multiple Byte

Device Functional Modes (continued)

Figure 71. Control Interface Timing

Table 37. Control Interface Timing

		MIN	MAX	UNIT
t_{MCY}	MC Pulse Cycle Time	100		ns
t_{MCL}	MC Low Level Time	40		ns
t_{MCH}	MC High Level Time	40		ns
t_{MHH}	MS High Level Time	20		ns
t_{MSS}	MS ↓ Edge to MC ↑ Edge	30		ns
t_{MSH}	MS Hold Time ⁽¹⁾	30		ns
t_{MDH}	MDI Hold Time	15		ns
t _{MDS}	MDI Set-up Time	15		ns
t_{MOS}	MC Rise Edge to MDO Stable		20	ns

(1) MC falling edge for LSB to MS rising edge.

Submit Documentation Feedback

8.4.1.1.2 I²C Interface

The PCM512x supports the I²C serial bus and the data transmission protocol for standard and fast mode as a slave device.

In I²C mode, the control terminals are changed as follows.

Table 38.	I ² C	Pins	and	Fund	ctions

SIGNAL	PIN	I/O	DESCRIPTION
SDA	11	I/O	I ² C data
SCL	12	I	I ² C clock
ADR2	16	I	I ² C address 2
ADR1	24	I	I ² C address 1

8.4.1.1.2.1 Slave Address

Table 39. I²C Slave Address

MSB							LSB
1	0	0	1	1	ADR2	ADR1	R/\overline{W}

The PCM512x has 7 bits for its own slave address. The first five bits (MSBs) of the slave address are factory preset to 10011 (0x9x). The next two bits of the address byte are the device select bits which can be user-defined by the ADR1 and ADR0 terminals. A maximum of four devices can be connected on the same bus at one time. This gives a range of 0x98, 0x9A, 0x9C and 0x9E. Each PCM512x responds when it receives its own slave address.

8.4.1.1.2.2 Register Address Auto-Increment Mode

Figure 72. Auto Increment Mode

Auto-increment mode allows multiple sequential register locations to be written to or read back in a single operation, and is especially useful for block write and read operations.

8.4.1.1.2.3 Packet Protocol

A master device must control packet protocol, which consists of start condition, slave address, read/write bit, data if write or acknowledge if read, and stop condition. The PCM512x supports only slave receivers and slave transmitters.

Figure 73. Packet Protocol

Copyright © 2012–2018, Texas Instruments Incorporated

Product Folder Links: PCM5121 PCM5122

Table 40. Write Operation - Basic I²C Framework

Transmitter	М	М	М	S	М	S	М	S	S	М
Data Type	St	slave address	R/	ACK	DATA	ACK	DATA	ACK	ACK	Sp

Table 41. Read Operation - Basic I²C Framework

Transmitter	М	М	М	S	S	М	S	М	М	М
Data Type	St	slave address	R/	ACK	DATA	ACK	DATA	ACK	NACK	Sp

M = Master Device; S = Slave Device; St = Start Condition; Sp = Stop Condition

8.4.1.1.2.4 Write Register

A master can write to any PCM512x registers using single or multiple accesses. The master sends a PCM512x slave address with a write bit, a register address with auto-increment bit, and the data. If auto-increment is enabled, the address is that of the starting register, followed by the data to be transferred. When the data is received properly, the index register is incremented by 1 automatically. When the index register reaches 0x7F, the next value is 0x0. Table 42 shows the write operation.

Table 42. Write Operation

Transmitter	М	М	М	S	/	Л	S	М	S	М	S	S	М
Data Type	St	slave addr	W	ACK	inc	reg addr	ACK	write data 1	ACK	write data 2	ACK	ACK	Sp

M = Master Device; S = Slave Device; St = Start Condition; Sp = Stop Condition; W = Write; ACK = Acknowledge

8.4.1.1.2.5 Read Register

A master can read the PCM512x register. The value of the register address is stored in an indirect index register in advance. The master sends a PCM512x slave address with a read bit after storing the register address. Then the PCM512x transfers the data which the index register points to. When auto-increment is enabled, the index register is incremented by 1 automatically. When the index register reaches 0x7F, the next value is 0x0. Table 43 shows the read operation.

Table 43. Read Operation

Transmitter	М	М	М	S	1	И	S	Μ	М	Μ	S	S	Μ	М	М
Data Type	St	slave addr	W	ACK	inc	reg addr	ACK	Sr	slave addr	R	ACK	data	ACK	NACK	Sp

M = Master Device; S = Slave Device; St = Start Condition; Sr = Repeated Start Condition; Sp = Stop Condition; W = Write; R = Read; NACK = Not acknowledge

8.4.1.1.2.6 Timing Characteristics

Figure 74. Register Access Timing

Table 44. I²C Bus Timing

			MIN	MAX	UNIT	
	CCI plant frammer	Standard		100	kHz	
CL	SCL clock frequency	Fast		400	kHz	
	Due from the between a OTOD and OTADT and Piter	Standard	4.7			
BUF	Bus free time between a STOP and START condition	Fast	1.3		μs	
		Standard	4.7		μs	
_OW	Low period of the SCL clock	Fast	1.3			
	High proving of the COL short	Standard	4.0		μs	
HI.	High period of the SCL clock	Fast	600		ns	
	Octor for for for an all NOTART and Pfor	Standard	4.7		μs	
RS-SU	Setup time for (repeated)START condition	Fast	600		ns	
S-HD	Hold time for (reported) CTART and dition	Standard	4.0		μs	
RS-HD	Hold time for (repeated)START condition	Fast	600		ns	
	Data active time	Standard	250		ns	
D-SU	Data setup time	Fast	100		ns	
	Date hald time	Standard	0	900	ns	
D-HD	Data hold time	Fast	0	900		
	Disa time of COI singel	Standard	20 + 0.1C _B	1000		
SCL-R	Rise time of SCL signal	Fast	20 + 0.1C _B	300	ns	
	Rise time of SCL signal after a repeated START	Standard	20 + 0.1C _B	1000		
SCL-R1	condition and after an acknowledge bit	Fast	20 + 0.1C _B	300	ns	
	Fall time of CCL signal	Standard	20 + 0.1C _B	1000		
SCL-F	Fall time of SCL signal	Fast	20 + 0.1C _B	300	ns	
	Disa time of CDA signal	Standard	20 + 0.1C _B	1000		
SDA-R	Rise time of SDA signal	Fast	20 + 0.1C _B	300	ns	
	Fall time of SDA signal	Standard	20 + 0.1C _B	1000	20	
SDA-F	Fall time of SDA signal	Fast	20 + 0.1C _B	300	ns	
	Cotup time for CTOD condition	Standard	4.0		μs	
P-SU	Setup time for STOP condition	Fast	600		ns	
'B	Capacitive load for SDA and SCL line			400	pF	
SP	Pulse width of spike suppressed	Fast		50	ns	
/ _{NH}	Noise margin at High level for each connected device (inc	luding hysteresis)	$0.2 \times V_{DD}$		V	

8.4.2 VREF and VCOM Modes

See Choosing Between VREF and VCOM Modes for information on configuring these modes.

8.5 Programming

In software mode, the PCM512x can act as an I^2S master, generating BCK and LRCK as outputs from the SCK input.

Table 45. I²S Master Mode Registers

REGISTER	FUNCTION		
Page0, Register 9, D(0), D(4), and D(5)	I ² S Master mode select		
Register 32, D(6:0)	DCK divides and LDCK divides		
Register 33, D(7:0)	BCK divider and LRCK divider		

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The PCM512x family is flexible, and this flexibility gives rise to a number of design questions that define the design requirements for a given application.

9.2 Typical Application

Figure 75. Simplified Schematic, Hardware-Controlled Subsystem

9.2.1 Design Requirements

- Single-ended 2.1-V_{RMS} analog outputs
- 3-wire I²S interface (BCK PLL)
- Single 3.3-V supply
- When the device is configured to operate in 3-wire mode, and no clock setting is available in Table 33, short
 the BLK pin and SCLK pin. This shorting allows the device to operate in 4-wire mode, and expands the
 available autodetected SCLK configurations to those available in Table 32. Additional clock configurations are
 available in 4-wire mode by manually configuring the clock-tree, as described in the Clock Generation Using
 the PLL section.

9.2.2 Detailed Design Procedure

- Clock and PLL setup (See Reset and System Clock Functions.) Ensure incoming BCK meets minimum requirements.
- XSMT pin setup for 12-V monitoring (See External Power Sense Undervoltage Protection Mode.)
- Single-supply 3.3-V operation (See Setting Digital Power Supplies and I/O Voltage Rails.)

Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

Typical Application (continued)

9.2.3 Application Curve

Figure 76. PCM5121A FFT Plot, DC to 20 kHz With a 1-kHz, -60-dBFS Input

10 Power Supply Recommendations

10.1 Power Supply Distribution and Requirements

The PCM512x devices are powered through the pins shown in Figure 77.

Figure 77. Power Distribution Tree Within PCM512x

Table 46. Power Supply Pin Descriptions

NAME	USAGE / DESCRIPTION
AVDD	Analog voltage supply; must be 3.3 V. This powers all analog circuitry that the DAC runs on.
DVDD	Digital voltage supply. This is used as the I/O voltage control and the input to the onchip LDO.
CPVDD	Charge Pump Voltage Supply - must be 3.3 V
LDOO	Output from the onchip LDO. Should be used with a 0.1-µF decoupling cap. Can be driven (used as power input) with a 1.8-V supply to bypass the onchip LDO for lower power consumption.
AGND	Analog ground
DGND	Digital ground

10.2 Recommended Powerdown Sequence

Under certain conditions, the PCM512x devices can exhibit some pops on power down. Pops are caused by a device not having enough time to detect power loss and start the muting process.

The PCM512x devices have two auto-mute functions to mute the device upon power loss (intentional or unintentional).

10.2.1 XSMT = 0

When the XSMT pin is pulled low, the incoming PCM data is attenuated to 0, closely followed by a hard analog mute. This process takes 150 sample times (t_s) + 0.2 ms.

Because this mute time is mainly dominated by the sampling frequency, systems sampling at 192 kHz will mute much faster than a 48-kHz system.

10.2.2 Clock Error Detect

When clock error is detected on the incoming data clock, the PCM512x devices switch to an internal oscillator, and continue to the drive the output, while attenuating the data from the last known value. Once this process is complete, the PCM512x outputs are hard muted to ground.

Recommended Powerdown Sequence (continued)

10.2.3 Planned Shutdown

These auto-muting processes can be manipulated by system designs to mute before power loss in the following ways:

1. Assert XSMT low 150 t_S + 0.2 ms before power is removed.

Figure 78. Assert XSMT

2. Stop I²S clocks (SCK, BCK, LRCK) 3 ms before powerdown as shown in Figure 79.

Figure 79. Stop I²C Clocks

10.2.4 Unplanned Shutdown

Many systems use a low-noise regulator to provide an AVDD 3.3-V supply for the DAC. The XSMT Pin can take advantage of such a feature to measure the pre-regulated output from the system SMPS to mute the output before the entire SMPS discharges. Figure 80 shows how to configure such a system to use the XSMT pin. The XSMT pin can also be used in parallel with a GPIO pin from the system microcontroller/DSP or power supply.

Recommended Powerdown Sequence (continued)

Figure 80. Using the XSMT Pin

10.3 External Power Sense Undervoltage Protection Mode

NOTE

External Power Sense Undervoltage Protection Mode is supported only when $DV_{DD} = 3.3 \text{ V}$.

The XSMT pin can also be used to monitor a system voltage, such as the 24-VDC LCD TV backlight, or 12-VDC system supply using a voltage divider created with two resistors. (See Figure 81.)

- If the XSMT pin makes a transition from 1 to 0 over 6 ms or more, the device switches into external undervoltage protection mode. This mode uses two trigger levels:
 - When the XSMT pin level reaches 2 V, soft mute process begins.
 - When the XSMT pin level reaches 1.2 V, analog mute engages, regardless of digital audio level, and analog shutdown begins. (DAC and related circuitry powers down).

If XSMT is moved from 1 to 0 in 20 ns or less, then the device will interpret it as a digital controlled request to mute. It will perform a soft mute, then move to standby.

A timing diagram to show this is shown in Figure 82.

NOTE

The XSMT input pin voltage range is from -0.3 V to DVDD + 0.3 V. The ratio of external resistors must produce a voltage within this input range. Any increase in power supply (such as power supply positive noise or ripple) can pull the XSMT pin higher than DVDD + 0.3 V.

For example, if the PCM512x is monitoring a 12-V input, and dividing the voltage by 4, then the voltage at XSMT during ideal power supply conditions is 3.3 V. A voltage spike higher than 14.4 V causes a voltage greater than 3.6 V (DVDD + 0.3) on the XSMT pin, potentially damaging the device.

Providing the divider is set appropriately, any DC voltage can be monitored.

Submit Documentation Feedback

External Power Sense Undervoltage Protection Mode (continued)

Figure 81. XSMT in External UVP Mode

Figure 82. XSMT Timing for Undervoltage Protection

The trigger voltage values for the soft mute and hard mute are shown in Table 47. The range of values will vary from device to device, but typical thresholds are shown. XSMT should be set up to nominally be 3.3 V along with DVDD, but derived from a higher system power supply rail.

Table 47. Distribution of Voltage Thresholds

	MIN	TYP	MAX	UNIT
Soft Mute Threshold Voltage	2	2.2	0.9 × DVDD	V
Hard Mute Threshold Voltage	0.1 × DVDD	0.9	1.2	V

10.4 Power-On Reset Function

10.4.1 Power-On Reset, DVDD 3.3-V Supply

The PCM512x includes a power-on reset function, as shown in Figure 83. With $V_{DD} > 2.8$ V, the power-on reset function is enabled. After the initialization period, the PCM512x is set to its default reset state. Analog output will begin ramping after valid data has been passing through the device for the given group delay given by the digital interpolation filter selected.

Figure 83. Power-On Reset Timing, DVDD = 3.3 V

10.4.2 Power-On Reset, DVDD 1.8-V Supply

The PCM512x includes a power-on reset function, as shown in Figure 84. With AVDD greater than approximately 2.8 V, CPVDD greater than approximately 2.8 V, and DVDD greater than approximately 1.5 V, the power-on reset function is enabled. After the initialization period, the PCM512x is set to its default reset state.

Figure 84. Power-On Reset Timing, DVDD = 1.8 V

Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

10.5 PCM512x Power Modes

10.5.1 Setting Digital Power Supplies and I/O Voltage Rails

The internal digital core of the PCM512x devices run from a 1.8-V supply. This can be generated by the internal LDO, or by an external 1.8-V supply.

DVDD is used to set the I/O voltage, and to be used as the input to the onchip LDO that creates the 1.8 V required by the digital core.

For systems that require 3.3-V I/O support, but lower power consumption, DVDD should be connected to 3.3 V and LDOO can be connected to an external 1.8-V source. Doing so will disable the onchip LDO.

When setting I/O voltage to be 1.8 V, both DVDD and LDOO must be provided with an external 1.8-V supply.

10.5.2 Power Save Modes

The PCM512x devices offer two power-save modes: standby and power-down.

When a clock error (SCK, BCK, and LRCK) or clock halt is detected, the PCM512x device automatically enters standby mode. The DAC and line driver are also powered down.

When BCK and LRCK remain at a low level for more than 1 second, the PCM512x device automatically enters powerdown mode. Power-down mode disables the negative charge pump and bias/reference circuit, in addition to those disabled in standby mode.

When expected audio clocks (SCK, BCK, LRCK) are applied to the PCM512x device, or if BCK and LRCK start correctly while SCK remains at ground level for 16 successive LRCK periods, the device starts its powerup sequence automatically.

10.5.3 Power Save Parameter Programming

Table 48. Power Save Registers

REGISTER	DESCRIPTION
Page 0, Register 2, D(4)	Software standby mode command
Page 0, Register 2, D(0)	Software power-down command
Page 0, Register 2, D(4) and D(0)	Software power-up sequence command (required after software standby or power-down)
Page 0, Register 44, D(2:0)	Detection time of BCK and LRCK halt

11 Layout

11.1 Layout Guidelines

- The PCM512x family of devices are simple to layout. Most engineers use a shared common ground for an entire device. GND can consider AGND and DGND connected.
- Good system partitioning should keep digital clock and interface traces away from the analog outputs for highest analog performance. This reduces any high-speed clock return currents influencing the analog outputs.
- Power supply and charge pump decoupling capacitors should be placed as close as possible to the device.
- The top layer should be used for routing signals, whilst the bottom layer can be used for GND.

11.2 Layout Example

It is recommended to place a top layer ground pour for shielding around the DAC and connect to lower main PCB ground plane by multiple vias

Figure 85. PCM514x Layout Example

12 Register Maps

12.1 PCM512x Register Map

In any page, register 0 is the Page Select Register. The register value selects the Register Page from 0 to 255 for next read or write command.

Table 49. Register Map Overview

REGISTER NUMBER	DESCRIPTION
Page 0	
0	Page select register
1	Analog control register
2	Standby, Powerdown requests
3	Mute
4	PLL Lock Flag, PLL enable
5	Reserved
6	SPI MISO function select
7	De-emphasis enable, SDOUT select
8	GPIO enables
9	BCK, LRCLK configuration
10	DSP GPIO Input
11	Reserved
12	Master mode BCK, LRCLK reset
13	PLL clock source select
14 - 19	Reserved
20 - 24	PLL dividers
25, 26	Reserved
27	DSP clock divider
28	DAC clock divider
29	NCP clock divider
30	OSR clock divider
31	Reserved
32, 33	Master mode dividers
34	f _S speed mode
35, 36	IDAC (number of DSP clock cycles available in one audio frame)
37	Ignore various errors
38,39	Reserved
40, 41	I ² S configuration
42	DAC data path
43	DSP program selection
44	Clock missing detection period

Table 49. Register Map Overview (continued)

REGISTER NUMBER	DESCRIPTION
59	Auto mute time
60 - 64	Digital volume
65	Auto mute
75 - 79	Reserved
80 - 85	GPIOn output selection
86, 87	GPIO control
88, 89	Reserved
90	DSP overflow
91 - 94	Sample rate status
95 - 107	Reserved
108	Analog mute monitor
109 - 118	Reserved
119	GPIO input
120	Auto Mute flags
121	Reserved
Page 1	•
1	Output amplitude type
2	Analog gain control
3, 4	Reserved
5	Undervoltage protection
6	Analog mute control
7	Analog gain boost
8, 9	VCOM configuration
Page 44	
1	Coefficient memory (CRAM) control
Pages 44 - 52	Coefficient buffer - A (256 coeffs x 24 bits) : See Table 51
Pages 62 - 70	Coefficient buffer - B (256 coeffs x 24 bits) : See Table 52
71 - 252	Reserved
Page 253	
63, 64	Clock Flex Mode
Pages 254 - 255	Reserved

Submit Documentation Feedback Product Folder Links: PCM5121 PCM5122

The PCM512x has a register map split into multiple pages. Pages 0 and 1 control of the DAC and other on-chip peripherals. Pages 44 through 52 are used for Coefficient A memory, while Pages 62-70 are coefficient B memory. Pages 152-186 contain the miniDSP instruction memory. Page 253 is where the Clock Flex Mode register is located.

Table 50. PCM512x Register Page Structure

Page:	0	1	2-43	44-52	53-61	62-70	71-252	253	254-255
Func:	Control	Analog Control	q	Coeffient A	þ	Coeffient B	q	Clock Flex	q
Desc:	General Control and Configuration	Analog Control	Reserved	256 24-bit coefficients, 30 coefficients per page, 4 registers per coefficient	Reserved	256 24-bit coefficients, 30 coefficients per page, 4 registers per coefficient	Reserved	Clock Flex Mode	Reserved

Table 51. Coefficient Buffer-A Map

COEFF NO	PAGE NO	BASE REGISTER	BASE REGISTER + 0	BASE REGISTER + 1	BASE REGISTER + 2	BASE REGISTER + 3
C0	44	8	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C1	44	12	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C29	44	124	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C30	45	8	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C59	45	124	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C60	46	8	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C89	46	124	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C90	47	8	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C119	47	124	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C120	48	8	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C149	48	124	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C150	49	8	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C179	49	124	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C180	50	8	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C209	50	124	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C210	51	8	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C239	51	124	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C240	52	8	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C255	52	68	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.

Table 52. Coefficient Buffer-B Map

COEFF NO	PAGE NO	BASE REGISTER	BASE REGISTER + 0	BASE REGISTER + 1	BASE REGISTER + 2	BASE REGISTER + 3
C0	62	8	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C1	62	12	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C29	62	124	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C30	63	8	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C59	63	124	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C60	64	8	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C89	64	124	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C90	65	8	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C119	65	124	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C120	66	8	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C149	66	124	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C150	67	8	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C179	67	124	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C180	68	8	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C209	68	124	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C210	69	8	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C239	69	124	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C240	70	8	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.
C255	70	68	Coef(23:16)	Coef(15:8)	Coef(7:0)	Reserved.

12.1.1 Detailed Register Descriptions

12.1.1.1 Register Map Summary

Table 53. Register Map Summary

DEC	HEX	В7	В6	B5	B4	В3	B2	B1	В0
Page 0									
1	01	RSV	RSV	RSV	RSTM	RSV	RSV	RSV	RSTR
2	02	RSV	RSV	RSV	RQST	RSV	RSV	RSV	RQPD
3	03	RSV	RSV	RSV	RQML	RSV	RSV	RSV	RQMR
4	04	RSV	RSV	RSV	PLCK	RSV	RSV	RSV	PLLE
6	06	RSV	RSV	RSV	RSV	RSV	RSV	FSMI1	FSMI0
7	07	RSV	RSV	RSV	DEMP	RSV	RSV	RSV	SDSL
8	08	RSV	RSV	G6OE	G5OE	G4OE	G3OE	G2OE	G10E
9	09	RSV	RSV	BCKP	вско	RSV	RSV	RSV	LRKO
10	0A	DSPG7	DSPG6	DSPG5	DSPG4	DSPG3	DSPG2	DSPG1	DSPG0
12	0C	RSV	RSV	RSV	RSV	RSV	RSV	RBCK	RLRK
13	0D	RSV	SREF2	SREF1	SREF0	RSV	RSV	RSV	RSV
14	0E	RSV	SDAC2	SDAC1	SDAC0	RSV	RSV	RSV	RSV
18	12	RSV	RSV	RSV	RSV	RSV	GREF2	GREF1	GREF0
19	13	RSV	RSV	RSV	RSV	RSV	RSV	RSV	RQSY
20	14	RSV	RSV	RSV	RSV	PPDV3	PPDV2	PPDV1	PPDV0
21	15	RSV	RSV	PJDV5	PJDV4	PJDV3	PJDV2	PJDV1	PJDV0
22	16	RSV	RSV	PDDV13	PDDV12	PDDV11	PDDV10	PDDV9	PDDV8
23	17	PDDV7	PDDV6	PDDV5	PDDV4	PDDV3	PDDV2	PDDV1	PDDV0
24	18	RSV	RSV	RSV	RSV	PRDV3	PRDV2	PRDV1	PRDV0
27	1B	RSV	DDSP6	DDSP5	DDSP4	DDSP3	DDSP2	DDSP1	DDSP0
28	1C	RSV	DDAC6	DDAC5	DDAC4	DDAC3	DDAC2	DDAC1	DDAC0
29	1D	RSV	DNCP6	DNCP5	DNCP4	DNCP3	DNCP2	DNCP1	DNCP0
30	1E	RSV	DOSR6	DOSR5	DOSR4	DOSR3	DOSR2	DOSR1	DOSR0
32	20	RSV	DBCK6	DBCK5	DBCK4	DBCK3	DBCK2	DBCK1	DBCK0
33	21	DLRK7	DLRK6	DLRK5	DLRK4	DLRK3	DLRK2	DLRK1	DLRK0
34	22	RSV	RSV	RSV	I16E	RSV	RSV	FSSP1	FSSP0
35	23	IDAC15	IDAC14	IDAC13	IDAC12	IDAC11	IDAC10	IDAC9	IDAC8
36	24	IDAC7	IDAC6	IDAC5	IDAC4	IDAC3	IDAC2	IDAC1	IDAC0
37	25	RSV	IDFS	IDBK	IDSK	IDCH	IDCM	DCAS	IPLK
40	28	RSV	RSV	AFMT1	AFMT0	RSV	RSV	ALEN1	ALEN0
41	29	AOFS7	AOFS6	AOFS5	AOFS4	AOFS3	AOFS2	AOFS1	AOFS0
42	2A	RSV	RSV	AUPL1	AUPL0	RSV	RSV	AUPR1	AUPR0
43	2B	RSV	RSV	RSV	PSEL4	PSEL3	PSEL2	PSEL1	PSEL0
44	2C	RSV	RSV	RSV	RSV	RSV	CMDP2	CMDP1	CMDP0
59	3B	RSV	AMTL2	AMTL1	AMTL0	RSV	AMTR2	AMTR1	AMTR0
60	3C	RSV	RSV	RSV	RSV	RSV	RSV	PCTL1	PCTL0
61	3D	VOLL7	VOLL6	VOLL5	VOLL4	VOLL3	VOLL2	VOLL1	VOLL0
62	3E	VOLR7	VOLR6	VOLR5	VOLR4	VOLR3	VOLR2	VOLR1	VOLR0
63	3F	VNDF1	VNDF0	VNDS1	VNDS0	VNUF1	VNUF0	VNUS1	VNUS0
64	40	VEDF1	VEDF0	VEDS1	VEDS0	RSV	RSV	RSV	RSV
65	41	RSV	RSV	RSV	RSV	RSV	ACTL2	AMLE1	AMRE0
80	50	RSV	RSV	RSV	G1SL4	G1SL3	G1SL2	G1SL1	G1SL0
81	51	RSV	RSV	RSV	G2SL4	G2SL3	G2SL2	G2SL1	G2SL0

Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

Table 53. Register Map Summary (continued)

G3SL1 G4SL1 G5SL1 G6SL1 GOUT1 GINV1 R2OV	G3SL0 G4SL0 G5SL0 G6SL0 GOUT0
G4SL1 G5SL1 G6SL1 GOUT1 GINV1	G4SL0 G5SL0 G6SL0
G5SL1 G6SL1 GOUT1 GINV1	G5SL0 G6SL0
G6SL1 GOUT1 GINV1	G6SL0
GOUT1 GINV1	
GINV1	GOUT0
R2OV	GINV0
11201	SFOV
DTSR1	DTSR0
RSV	DTBR8
DTBR1	DTBR0
BCKval	fSval
CSRF	CERF
AMLM	AMRM
RSV	SHTM
MTST1	MTST0
FSMM1	FSMM0
PSTM1	PSTM0
GPIN1	RSV
RSV	AMFR
RSV	DAMD
RSV	EIFM
G2MC1	G2MC0
G4MC1	G4MC0
G6MC1	G6MC0
	+
b1	b0
RSV	OSEL
RSV	RAGN
UEPD	UIPD
RSV	AMCT
RSV	AGBR
RSV	RCMF
RSV	VCPD
-	+
b1	b0
ACRS	ACSW
b1	b0
2 PLLFLEX11	PLLFLEX10
	PLLFLEX20
	DTSR1 RSV DTBR1 BCKval CSRF AMLM RSV MTST1 FSMM1 PSTM1 GPIN1 RSV RSV G2MC1 G4MC1 G6MC1 b1 RSV

12.1.1.2 Page 0 Registers

Table 54. Page 0 / Register 1

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
1	01	RSV	RSV	RSV	RSTM	RSV	RSV	RSV	RSTR
Reset Value					0				0

RSV	Reserved							
	Reserved. Do not access.							
RSTM	Reset Modules							
	This bit resets the interpolation filter and the DAC modules. Since the DSP is also reset, the coefficient RAM content will also be cleared by the DSP. This bit is auto cleared and can be set only in standby mode.							
	Default value: 0							
	0: Normal							
	1: Reset modules							
RSTR	Reset Registers							
	This bit resets the mode registers back to their initial values. The RAM content is not cleared, but the execution source will be back to ROM. This bit is auto cleared and must be set only when the DAC is in standby mode (resetting registers when the DAC is running is prohibited and not supported).							
	Default value: 0							
	0: Normal							
	1: Reset mode registers							

Table 55. Page 0 / Register 2

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
2	02	RSV	RSV	RSV	RQST	RSV	RSV	RSV	RQPD
Reset Value					0				0

RSV	Reserved			
	Reserved. Do not access.			
RQST	Standby Request			
	When this bit is set, the DAC will be forced into a system standby mode, which is also the mode the system enters in the case of clock errors. In this mode, most subsystems will be powered down but the charge pump and digital power supply.			
	Default value: 0			
	0: Normal operation			
	1: Standby mode			
RQPD	Powerdown Request			
	When this bit is set, the DAC will be forced into powerdown mode, in which the power consumption would be minimum as the charge pump is also powered down. However, it will take longer to restart from this mode. This mode has higher precedence than the standby mode, that is, setting this bit along with bit 4 for standby mode will result in the DAC going into powerdown mode.			
	Default value: 0			
0: Normal operation				
	1: Powerdown mode			

Table 56. Page 0 / Register 3

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
3	03	RSV	RSV	RSV	RQML	RSV	RSV	RSV	RQMR
Reset	Value				0				0

RSV	Reserved					
	Reserved. Do not access.					
RQML	Mute Left Channel					
	This bit issues soft mute request for the left channel. The volume will be smoothly ramped down/up to avoid pop/click noise.					
	Default value: 0					
	0: Normal volume					
	1: Mute					

RQMR	Mute Right Channel
	This bit issues soft mute request for the right channel. The volume will be smoothly ramped down/up to avoid pop/click noise.
	Default value: 0
	0: Normal volume
	1: Mute

Table 57. Page 0 / Register 4

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
4	04	RSV	RSV	RSV	PLCK	RSV	RSV	RSV	PLLE
Reset	Value								1

RSV	Reserved
	Reserved. Do not access.
PLCK	PLL Lock Flag (Read Only)
	This bit indicates whether the PLL is locked or not. When the PLL is disabled this bit always shows that the PLL is not locked.
	0: The PLL is locked
	1: The PLL is not locked
PLLE	PLL Enable
	This bit enables or disables the internal PLL. When PLL is disabled, the master clock will be switched to the SCK.
	Default value: 1
	0: Disable PLL
	1: Enable PLL

Table 58. Page 0 / Register 6

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
6	06	RSV	RSV	RSV	RSV	RSV	RSV	FSMI1	FSMI0
Reset Value								0	0

RSV	Reserved
	Reserved. Do not access.
FSMI[1:0]	SPI MISO function sel
	These bits select the function of the SPI_MISO pin when in SPI mode. If the pin is set as GPIO, register readout via SPI is not possible.
	Default value: 00
	00: SPI_MISO
	01: GPIO1
	Others: Reserved (Do not set)

Table 59. Page 0 / Register 7

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
7	07	RSV	RSV	RSV	DEMP	RSV	RSV	RSV	SDSL
Reset	Value				0				0

RSV	Reserved
	Reserved. Do not access.
DEMP	De-Emphasis Enable
	This bit enables or disables the de-emphasis filter. The default coefficients are for 44.1kHz sampling rate, but can be changed by reprogramming the appropriate coefficients in RAM.

	Default value: 0
	0: De-emphasis filter is disabled
	1: De-emphasis filter is enabled
SDSL	SDOUT Select
	This bit selects what is being output as SDOUT via GPIO pins.
	Default value: 0
	0: SDOUT is the DSP output (post-processing)
	1: SDOUT is the DSP input (pre-processing)

Table 60. Page 0 / Register 8

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
8	08	RSV	RSV	G6OE	G50E	G40E	G3OE	G2OE	G10E
Reset Value				0	0	0	0	0	0

RSV	Reserved					
	Reserved. Do not access.					
G6OE	GPIO6 Output Enable					
	This bit sets the direction of the GPIO6 pin					
	Default value: 0					
	0: GPIO6 is input					
	1: GPIO6 is output					
G50E	GPIO5 Output Enable					
	This bit sets the direction of the GPIO5 pin					
	Default value: 0					
	0: GPIO5 is input					
	1: GPIO5 is output					
G40E	GPIO4 Output Enable					
	This bit sets the direction of the GPIO4 pin					
	Default value: 0					
	0: GPIO4 is input					
	1: GPIO4 is output					
G3OE	GPIO3 Output Enable					
	This bit sets the direction of the GPIO3 pin					
	Default value: 0					
	0: GPIO3 is input					
	1: GPIO3 is output					
G2OE	GPIO2 Output Enable					
	This bit sets the direction of the GPIO2 pin					
	Default value: 0					
	0: GPIO2 is input					
	1: GPIO2 is output					
G10E	GPIO1 Output Enable					
	This bit sets the direction of the GPIO1 pin					
	Default value: 0					
	0: GPIO1 is input					
	1: GPIO1 is output					

Table 61. Page 0 / Register 9

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
9	09	RSV	RSV	ВСКР	вско	RSV	RSV	RSV	LRKO
Reset	Value			0	0				0

RSV	Reserved
	Reserved. Do not access.
ВСКР	BCK Polarity
	This bit sets the inverted BCK mode. In inverted BCK mode, the DAC assumes that the LRCK and DIN edges are aligned to the rising edge of the BCK. Normally they are assumed to be aligned to the falling edge of the BCK.
	Default value: 0
	0: Normal BCK mode
	1: Inverted BCK mode
вско	BCK Output Enable
	This bit sets the BCK pin direction to output for I2S master mode operation. In I2S master mode the PCM5xxx outputs the reference BCK and LRCK, and the external source device provides the DIN according to these clocks. Use Page 0 / Register 32 to program the division factor of the SCK to yield the desired BCK rate (normally 64FS)
	Default value: 0
	0: BCK is input (I2S slave mode)
	1: BCK is output (I2S master mode)
LRKO	LRCLK Output Enable
	This bit sets the LRCK pin direction to output for I2S master mode operation. In I2S master mode the PCM5xxx outputs the reference BCK and LRCK, and the external source device provides the DIN according to these clocks. Use Page 0 / Register 33 to program the division factor of the BCK to yield 1FS for LRCK.
	Default value: 0
	0: LRCK is input (I2S slave mode)
	1: LRCK is output (I2S master mode)

Table 62. Page 0 / Register 10

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
10	0A	DSPG7	DSPG6	DSPG5	DSPG4	DSPG3	DSPG2	DSPG1	DSPG0
Reset Value		0	0	0	0	0	0	0	0

DSPG[7:0]	DSP GPIO Input
	The DSP accepts a 24-bit external control signals input. The value set in this register will go to bit 16:8 of this external input.
	Default value: 00000000

Table 63. Page 0 / Register 12

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
12	0C	RSV	RSV	RSV	RSV	RSV	RSV	RBCK	RLRK
Reset Value								0	0

RSV	Reserved
	Reserved. Do not access.
RBCK	Master Mode BCK Divider Reset
	This bit, when set to 0, will reset the SCK divider to generate BCK clock for I2S master mode. To use I2S master mode, the divider must be enabled and programmed properly.
	Default value: 0
	0: Master mode BCK clock divider is reset

	1: Master mode BCK clock divider is functional
RLRK	Master Mode LRCK Divider Reset
	This bit, when set to 0, will reset the BCK divider to generate LRCK clock for I2S master mode. To use I2S master mode, the divider must be enabled and programmed properly.
	Default value: 0
	0: Master mode LRCK clock divider is reset
	1: Master mode LRCK clock divider is functional

Table 64. Page 0 / Register 13

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
13	0D	RSV	SREF2	SREF1	SREF0	RSV	RSV	RSV	RSV
Reset Value			0	0	0				

RSV	Reserved
	Reserved. Do not access.
SREF[2:0]	PLL Reference
	This bit select the source clock for internal PLL. This bit is ignored and overriden in clock auto set mode.
	Default value: 000
	000: The PLL reference clock is SCK
	001: The PLL reference clock is BCK
	010: Reserved
	011: The PLL reference clock is GPIO (selected using Page 0 / Register 18)
	others: Reserved (PLL reference is muted)
SREF	PLL Reference
	Default value: 0

Table 65. Page 0 / Register 14

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
14	0E	RSV	SDAC2	SDAC1	SDAC0	RSV	RSV	RSV	RSV
Reset Value			0	0	0				

RSV	Reserved
	Reserved. Do not access.
SDAC[2:0]	DAC clock source
	These bits select the source clock for DAC clock divider.
	Default value: 000
	This Register requires use of the Clock Flex Register
	000: Master clock (PLL/SCK and OSC auto-select)
	001: PLL clock
	010: Reserved
	011: SCK clock
	100: BCK clock
]	others: Reserved (muted)

Table 66. Page 0 / Register 18

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
18	12	RSV	RSV	RSV	RSV	RSV	GREF2	GREF1	GREF0
Reset Value							0	0	0

RSV	Reserved							
	Reserved. Do not access.							
GREF[2:0]	GPIO Source for PLL reference clk							
	These bits select the GPIO pins as clock input source when GPIO is selected as the PLL reference clock source.							
	Default value: 000							
	This register requires use of the Clock Flex Register.000: GPIO1							
	001: GPIO2							
	010: GPIO3							
	011: GPIO4							
	100: GPIO5							
	101: GPIO6							
	others: Reserved (muted)							

Table 67. Page 0 / Register 19

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
19	13	RSV	RQSY						
Reset Value									0

RSV	Reserved
	Reserved. Do not access.
RQSY	Sync request
	This bit, when set to 1 will issue the clock resynchronization by synchronously resets the DAC, CP and OSR clocks. The actual clock resynchronization takes place when this bit is set back to 0, where the DAC, CP and OSR clocks are resumed at the beginning of the audio frame.
	Default value: 0
	0: Resume DAC, CP and OSR clocks synchronized to the beginning of audio frame
	1: Halt DAC, CP and OSR clocks as the beginning of resynchronization process

Table 68. Page 0 / Register 20

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
20	14	RSV	RSV	RSV	RSV	PPDV3	PPDV2	PPDV1	PPDV0
Reset	Value					0	0	0	0

RSV	Reserved
	Reserved. Do not access.
PPDV[3:0]	PLL P
	These bits set the PLL divider P factor. These bits are ignored in clock auto set mode.
	Default value: 0000
	0000: P=1
	0001: P=2
	1110: P=15
	1111: Prohibited (do not set this value)

Table 69. Page 0 / Register 21

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
21	15	RSV	RSV	PJDV5	PJDV4	PJDV3	PJDV2	PJDV1	PJDV0
Reset	Value			0	0	0	0	0	0

RSV	Reserved
	Reserved. Do not access.
PJDV[5:0]	PLL J
	These bits set the J part of the overall PLL multiplication factor J.D * R. These bits are ignored in clock auto set mode.
	Default value: 000000
	000000: Prohibited (do not set this value)
	000001: J=1
	000010: J=2
	111111: J=63

Table 70. Page 0 / Register 22

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
22	16	RSV	RSV	PDDV13	PDDV12	PDDV11	PDDV10	PDDV9	PDDV8
Reset	Value			0	0	0	0	0	0

Table 71. Page 0 / Register 23

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
23	17	PDDV7	PDDV6	PDDV5	PDDV4	PDDV3	PDDV2	PDDV1	PDDV0
Reset	Value	0	0	0	0	0	0	0	0

RSV	Reserved
	Reserved. Do not access.
PDDV[13:0]	PLL D (MSB)
	These bits set the D part of the overall PLL multiplication factor J.D * R. These bits are ignored in clock auto set mode.
	Default value: 0000000000000
	0 (in decimal): D=0000
	1 (in decimal): D=0001
	9999 (in decimal): D=9999
	others: Prohibited (do not set)

Table 72. Page 0 / Register 24

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
24	18	RSV	RSV	RSV	RSV	PRDV3	PRDV2	PRDV1	PRDV0
Reset	Value					0	0	0	0

RSV	Reserved
	Reserved. Do not access.
PRDV[3:0]	PLL R
	These bits set the R part of the overall PLL multiplication factor J.D * R. These bits are ignored in clock auto set mode.
	Default value: 0000
	0000: R=1
	0001: R=2
	1111: R=16

Table 73. Page 0 / Register 27

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
27	1B	RSV	DDSP6	DDSP5	DDSP4	DDSP3	DDSP2	DDSP1	DDSP0
Reset	Value		0	0	0	0	0	0	0

RSV	Reserved
	Reserved. Do not access.
DDSP[6:0]	DSP Clock Divider
	These bits set the source clock divider value for the DSP clock. These bits are ignored in clock auto set mode.
	Default value: 0000000
	0000000: Divide by 1
	0000001: Divide by 2
	1111111: Divide by 128

Table 74. Page 0 / Register 28

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
28	1C	RSV	DDAC6	DDAC5	DDAC4	DDAC3	DDAC2	DDAC1	DDAC0
Reset	Value		0	0	0	0	0	0	0

RSV	Reserved
	Reserved. Do not access.
DDAC[6:0]	DAC Clock Divider
	These bits set the source clock divider value for the DAC clock. These bits are ignored in clock auto set mode.
	Default value: 0000000
	0000000: Divide by 1
	0000001: Divide by 2
	1111111: Divide by 128

Table 75. Page 0 / Register 29

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
29	1D	RSV	DNCP6	DNCP5	DNCP4	DNCP3	DNCP2	DNCP1	DNCP0
Reset Value			0	0	0	0	0	0	0

RSV	Reserved
	Reserved. Do not access.
DNCP[6:0]	NCP Clock Divider
	These bits set the source clock divider value for the CP clock. These bits are ignored in clock auto set mode.
	Default value: 0000000
	0000000: Divide by 1
	0000001: Divide by 2
	1111111: Divide by 128

Table 76. Page 0 / Register 30

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
30	1E	RSV	DOSR6	DOSR5	DOSR4	DOSR3	DOSR2	DOSR1	DOSR0
Reset Value			0	0	0	0	0	0	0

RSV	Reserved
	Reserved. Do not access.
DOSR[6:0]	OSR Clock Divider
	These bits set the source clock divider value for the OSR clock. These bits are ignored in clock auto set mode.
	Default value: 0000000
	0000000: Divide by 1
	0000001: Divide by 2
	1111111: Divide by 128

Table 77. Page 0 / Register 32

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
32	20	RSV	DBCK6	DBCK5	DBCK4	DBCK3	DBCK2	DBCK1	DBCK0
Reset Value			0	0	0	0	0	0	0

RSV	Reserved
	Reserved. Do not access.
DBCK[6:0]	Master Mode BCK Divider
	These bits set the SCK divider value to generate I2S master BCK clock.
	Default value: 0000000
	0000000: Divide by 1
	0000001: Divide by 2
	1111111: Divide by 128

Table 78. Page 0 / Register 33

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
33	21	DLRK7	DLRK6	DLRK5	DLRK4	DLRK3	DLRK2	DLRK1	DLRK0
Reset	Value	0	0	0	0	0	0	0	0

DLRK[7:0]	Master Mode LRCK Divider
	These bits set the I2S master BCK clock divider value to generate I2S master LRCK clock.
	Default value: 00000000
	00000000: Divide by 1
	00000001: Divide by 2
	11111111: Divide by 256

Table 79. Page 0 / Register 34

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
34	22	RSV	RSV	RSV	I16E	RSV	RSV	FSSP1	FSSP0
Reset Value					0			0	0

RSV	Reserved					
	Reserved. Do not access.					
I16E	16x Interpolation					
	This bit enables or disables the 16x interpolation mode					
	Default value: 0					
	0: 8x interpolation					

	1: 16x interpolation
FSSP[1:0]	FS Speed Mode
	These bits select the FS operation mode, which must be set according to the current audio sampling rate. These bits are ignored in clock auto set mode.
	Default value: 00
	00: Single speed (FS ≤ 48 kHz)
	01: Double speed (48 kHz < FS ≤ 96 kHz)
	10: Quad speed (96 kHz < FS ≤ 192 kHz)
	11: Octal speed (192 kHz < FS ≤ 384 kHz)

Table 80. Page 0 / Register 35

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
35	23	IDAC15	IDAC14	IDAC13	IDAC12	IDAC11	IDAC10	IDAC9	IDAC8
Reset Value		0	0	0	0	0	0	0	1

Table 81. Page 0 / Register 36

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
36	24	IDAC7	IDAC6	IDAC5	IDAC4	IDAC3	IDAC2	IDAC1	IDAC0
Reset Value		0	0	0	0	0	0	0	0

IDAC[15:0]	IDAC (MSB)
	These bits specify the number of DSP clock cycles available in one audio frame. The value should match the DSP clock FS ratio. These bits are ignored in clock auto set mode.
	Default value: 0000000100000000

Table 82. Page 0 / Register 37

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
37	25	RSV	IDFS	IDBK	IDSK	IDCH	IDCM	DCAS	IPLK
Reset Value			0	0	0	0	0	0	0

RSV	Reserved							
	Reserved. Do not access.							
IDFS	Ignore FS Detection							
	This bit controls whether to ignore the FS detection. When ignored, FS error will not cause a clock error.							
	Default value: 0							
	0: Regard FS detection							
	1: Ignore FS detection							
IDBK	Ignore BCK Detection							
	This bit controls whether to ignore the BCK detection against LRCK. The BCK must be stable between 32FS and 256FS inclusive or an error will be reported. When ignored, a BCK error will not cause a clock error.							
	Default value: 0							
	0: Regard BCK detection							
	1: Ignore BCK detection							
IDSK	Ignore SCK Detection							
	This bit controls whether to ignore the SCK detection against LRCK. Only some certain SCK ratios within some error margin are allowed. When ignored, an SCK error will not cause a clock error.							
	Default value: 0							
	0: Regard SCK detection							
	1: Ignore SCK detection							
IDCH	Ignore Clock Halt Detection							

This bit controls whether to ignore the SCK halt (static or frequency is lower than acceptable) detection. When ignored an SCK halt will not cause a clock error.						
Default value: 0						
0: Regard SCK halt detection						
1: Ignore SCK halt detection						
Ignore LRCK/BCK Missing Detection						
This bit controls whether to ignore the LRCK/BCK missing detection. The LRCK/BCK need to be in low state (not only static) to be deemed missing. When ignored an LRCK/BCK missing will not cause the DAC go into powerdown mode.						
Default value: 0						
0: Regard LRCK/BCK missing detection						
1: Ignore LRCK/BCK missing detection						
Disable Clock Divider Autoset						
This bit enables or disables the clock auto set mode. When dealing with uncommon audio clock configuration, the auto set mode must be disabled and all clock dividers must be set manually. Additionally, some clock detectors might also need to be disabled. The clock autoset feature will not work with PLL enabled in VCOM mode. In this case this feature has to be disabled and the clock dividers must be set manually.						
Default value: 0						
0: Enable clock auto set						
1: Disable clock auto set						
Ignore PLL Lock Detection						
This bit controls whether to ignore the PLL lock detection. When ignored, PLL unlocks will not cause a clock error. The PLL lock flag at Page 0 / Register 4, bit 4 is always correct regardless of this bit.						
Default value: 0						
0: PLL unlocks raise clock error						
1: PLL unlocks are ignored						

Table 83. Page 0 / Register 40

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
40	28	RSV	RSV	AFMT1	AFMT0	RSV	RSV	ALEN1	ALEN0
Reset Value				0	0			1	0

RSV	Reserved						
	Reserved. Do not access.						
AFMT[1:0]	I2S Data Format						
	These bits control both input and output audio interface formats for DAC operation.						
	Default value: 00						
	00: 12\$						
	01: TDM/DSP						
	10: RTJ						
	11: LTJ						
ALEN[1:0]	I2S Word Length						
	These bits control both input and output audio interface sample word lengths for DAC operation.						
	Default value: 10						
	00: 16 bits						
	01: 20 bits						
	10: 24 bits						
	11: 32 bits						

Table 84. Page 0 / Register 41

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
41	29	AOFS7	AOFS6	AOFS5	AOFS4	AOFS3	AOFS2	AOFS1	AOFS0
Reset Value		0	0	0	0	0	0	0	0

AOFS[7:0]	I2S Shift
	These bits control the offset of audio data in the audio frame for both input and output. The offset is defined as the number of BCK from the starting (MSB) of audio frame to the starting of the desired audio sample.
	Default value: 00000000
	00000000: offset = 0 BCK (no offset)
	00000001: ofsset = 1 BCK
	00000010: offset = 2 BCKs
	11111111: offset = 256 BCKs

Table 85. Page 0 / Register 42

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
42	2A	RSV	RSV	AUPL1	AUPL0	RSV	RSV	AUPR1	AUPR0
Reset Value				0	1			0	1

RSV	Reserved					
	Reserved. Do not access.					
AUPL[1:0]	Left DAC Data Path					
	These bits control the left channel audio data path connection.					
	Default value: 01					
	00: Zero data (mute)					
	01: Left channel data					
	10: Right channel data					
	11: Reserved (do not set)					
AUPR[1:0]	Right DAC Data Path					
	These bits control the right channel audio data path connection.					
	Default value: 01					
	00: Zero data (mute)					
	01: Right channel data					
	10: Left channel data					
	11: Reserved (do not set)					

Table 86. Page 0 / Register 43

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
43	2B	RSV	RSV	RSV	PSEL4	PSEL3	PSEL2	PSEL1	PSEL0
Reset Value					0	0	0	0	1

RSV	Reserved					
	Reserved. Do not access.					
PSEL[4:0]	DSP Program Selection					
	These bits select the DSP program to use for audio processing.					
	Default value: 00001					
	00000: Reserved (do not set)					
	00001: 8x/4x/2x FIR interpolation filter with de-emphasis					
	00010: 8x/4x/2x Low latency IIR interpolation filter with de-emphasis					

00011: High attenuation x8/x4/x2 interpolation filter with de-emphasis
00100: Reserved
00101: Fixed process flow with configurable parameters
00110: Reserved (do not set)
00111: 8x Ringing-less low latency FIR interpolation filter without de-emphasis
11111: Reserved (do not set)
others: Reserved (do not set)

Table 87. Page 0 / Register 44

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
44	2C	RSV	RSV	RSV	RSV	RSV	CMDP2	CMDP1	CMDP0
Reset Value							0	0	0

RSV	Reserved
	Reserved. Do not access.
CMDP[2:0]	Clock Missing Detection Period
	These bits set how long both BCK and LRCK keep low before the audio clocks deemed missing and the DAC transitions to powerdown mode.
	Default value: 000
	000: about 1 second
	001: about 2 seconds
	010: about 3 seconds
	111: about 8 seconds

Table 88. Page 0 / Register 59

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
59	3B	RSV	AMTL2	AMTL1	AMTL0	RSV	AMTR2	AMTR1	AMTR0
Reset Value			0	0	0		0	0	0

RSV	Reserved						
	Reserved. Do not access.						
AMTL[2:0]	Auto Mute Time for Left Channel						
	These bits specify the length of consecutive zero samples at left channel before the channel can be auto muted. The times shown are for 48 kHz sampling rate and will scale with other rates.						
	Default value: 000						
	000: 21 ms						
	001: 106 ms						
	010: 213 ms						
	011: 533 ms						
	100: 1.07 sec						
	101: 2.13 sec						
	110: 5.33 sec						
	111: 10.66 sec						
AMTR[2:0]	Auto Mute Time for Right Channel						
	These bits specify the length of consecutive zero samples at right channel before the channel can be auto muted. The times shown are for 48 kHz sampling rate and will scale with other rates.						
	Default value: 000						
	000: 21 ms						
	001: 106 ms						

010: 213 ms
011: 533 ms
100: 1.07 sec
101: 2.13 sec
110: 5.33 sec
111: 10.66 sec

Table 89. Page 0 / Register 60

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
60	3C	RSV	RSV	RSV	RSV	RSV	RSV	PCTL1	PCTL0
Reset Value								0	0

RSV	Reserved					
	Reserved. Do not access.					
PCTL[1:0]	Digital Volume Control					
	These bits control the behavior of the digital volume.					
	Default value: 00					
	00: The volume for Left and right channels are independent					
	01: Right channel volume follows left channel setting					
	10: Left channel volume follows right channel setting					
	11: Reserved (The volume for Left and right channels are independent)					

Table 90. Page 0 / Register 61

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
61	3D	VOLL7	VOLL6	VOLL5	VOLL4	VOLL3	VOLL2	VOLL1	VOLL0
Reset Value		0	0	1	1	0	0	0	0

VOLL[7:0]	Left Digital Volume								
	These bits control the left channel digital volume. The digital volume is 24 dB to -103 dB in -0.5 dB ste								
	Default value: 00110000								
	00000000: +24.0 dB								
	00000001: +23.5 dB								
	00101111: +0.5 dB								
	00110000: 0.0 dB								
	00110001: -0.5 dB								
	11111110: -103 dB								
	11111111: Mute								

Table 91. Page 0 / Register 62

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
62	3E	VOLR7	VOLR6	VOLR5	VOLR4	VOLR3	VOLR2	VOLR1	VOLR0
Reset	Value	0	0	1	1	0	0	0	0

VOLR[7:0]	Right Digital Volume
	These bits control the right channel digital volume. The digital volume is 24 dB to -103 dB in -0.5 dB step.
	Default value: 00110000
	00000000: +24.0 dB

00000001: +23.5 dB ...

00101111: +0.5 dB 00110000: 0.0 dB 00110001: -0.5 dB ...

11111110: -103 dB 11111111: Mute

Table 92. Page 0 / Register 63

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
63	3F	VNDF1	VNDF0	VNDS1	VNDS0	VNUF1	VNUF0	VNUS1	VNUS0
Reset	Value	0	0	1	0	0	0	1	0

VNDF[1:0]	Digital Volume Normal Ramp Down Frequency							
	These bits control the frequency of the digital volume updates when the volume is ramping down. The setting here is applied to soft mute request, asserted by XSMUTE pin or Page 0 / Register 3.							
	Default value: 00							
	00: Update every 1 FS period							
	01: Update every 2 FS periods							
	10: Update every 4 FS periods							
	11: Directly set the volume to zero (Instant mute)							
VNDS[1:0]	Digital Volume Normal Ramp Down Step							
	These bits control the step of the digital volume updates when the volume is ramping down. The setting here is applied to soft mute request, asserted by XSMUTE pin or Page 0 / Register 3.							
	Default value: 10							
	00: Decrement by 4 dB for each update							
	01: Decrement by 2 dB for each update							
	10: Decrement by 1 dB for each update							
	11: Decrement by 0.5 dB for each update							
VNUF[1:0]	Digital Volume Normal Ramp Up Frequency							
	These bits control the frequency of the digital volume updates when the volume is ramping up. The setting here is applied to soft unmute request, asserted by XSMUTE pin or Page 0 / Register 3.							
	Default value: 00							
	00: Update every 1 FS period							
	01: Update every 2 FS periods							
	10: Update every 4 FS periods							
	11: Directly restore the volume (Instant unmute)							
VNUS[1:0]	Digital Volume Normal Ramp Up Step							
	These bits control the step of the digital volume updates when the volume is ramping up. The setting here is applied to soft unmute request, asserted by XSMUTE pin or Page 0 / Register 3.							
	Default value: 10							
	00: Increment by 4 dB for each update							
	01: Increment by 2 dB for each update							
	10: Increment by 1 dB for each update							
	11: Increment by 0.5 dB for each update							

Table 93. Page 0 / Register 64

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
64	40	VEDF1	VEDF0	VEDS1	VEDS0	RSV	RSV	RSV	RSV
Reset	Reset Value		0	0	0				

RSV	Reserved						
	Reserved. Do not access.						
VEDF[1:0]	Digital Volume Emergency Ramp Down Frequency						
	These bits control the frequency of the digital volume updates when the volume is ramping down due to clock error or power outage, which usually needs faster ramp down compared to normal soft mute.						
	Default value: 00						
	00: Update every 1 FS period						
	01: Update every 2 FS periods						
	10: Update every 4 FS periods						
	11: Directly set the volume to zero (Instant mute)						
VEDS[1:0]	Digital Volume Emergency Ramp Down Step						
	These bits control the step of the digital volume updates when the volume is ramping down due to clock error or power outage, which usually needs faster ramp down compared to normal soft mute.						
	Default value: 00						
	00: Decrement by 4 dB for each update						
	01: Decrement by 2 dB for each update						
	10: Decrement by 1 dB for each update						
	11: Decrement by 0.5 dB for each update						

Table 94. Page 0 / Register 65

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
65	41	RSV	RSV	RSV	RSV	RSV	ACTL2	AMLE1	AMRE0
Reset Value							1	1	1

RSV	Reserved						
	Reserved. Do not access.						
ACTL[2:0]	Auto Mute Control						
	This bit controls the behavior of the auto mute upon zero sample detection. The time length for zero detection is set with Page 0 / Register 59.						
	Default value: 111						
	0: Auto mute left channel and right channel independently.						
	1: Auto mute left and right channels only when both channels are about to be auto muted.						
AMLE[1:0]	Auto Mute Left Channel						
	This bit enables or disables auto mute on right channel. Note that when right channel auto mute is disabled and the Page 0 / Register 65, bit 2 is set to 1, the left channel will also never be auto muted.						
	Default value: 11						
	0: Disable right channel auto mute						
	1: Enable right channel auto mute						
AMRE	Auto Mute Right Channel						
	This bit enables or disables auto mute on left channel. Note that when left channel auto mute is disabled and the Page 0 / Register 65, bit 2 is set to 1, the right channel will also never be auto muted.						
	Default value: 1						
	0: Disable left channel auto mute						
	1: Enable left channel auto mute						

Table 95. Page 0 / Register 80

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
80	50	RSV	RSV	RSV	G1SL4	G1SL3	G1SL2	G1SL1	G1SL0
Reset	Value				0	0	0	0	0

RSV	Reserved
	Reserved. Do not access.
G1SL[4:0]	GPIO1 Output Selection
	These bits select the signal to output to GPIO1. To actually output the selected signal, the GPIO1 must be set to output mode at Page 0 / Register 8.
	Default value: 00000
	00000: off (low)
	00001: DSP GPIO1 output
	00010: Register GPIO1 output (Page 0 / Register 86, bit 0)
	00011: Auto mute flag (asserted when both L and R channels are auto muted)
	00100: Auto mute flag for left channel
	00101: Auto mute flag for right channel
	00110: Clock invalid flag (clock error or clock changing or clock missing)
	00111: Serial audio interface data output (SDOUT)
	01000: Analog mute flag for left channel (low active)
	01001: Analog mute flag for right channel (low active)
	01010: PLL lock flag
	01011: Charge pump clock
	01100: Reserved
	01101: Reserved
	01110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD
	01111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD
	010000: PLL Output/4 (Requires Clock Flex Register)
	OTHERS: RESERVED

Table 96. Page 0 / Register 81

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
81	51	RSV	RSV	RSV	G2SL4	G2SL3	G2SL2	G2SL1	G2SL0
Reset	Value				0	0	0	0	0

RSV	Reserved
	Reserved. Do not access.
G2SL[4:0]	GPIO2 Output Selection
	These bits select the signal to output to GPIO2. To actually output the selected signal, the GPIO2 must be set to output mode at Page 0 / Register 8.
	Default value: 00000
	00000: off (low)
	00001: DSP GPIO2 output
	00010: Register GPIO2 output (Page 0 / Register 86, bit 1)
	00011: Auto mute flag (asserted when both L and R channels are auto muted)
	00100: Auto mute flag for left channel
	00101: Auto mute flag for right channel
	00110: Clock invalid flag (clock error or clock changing or clock missing)
	00111: Serial audio interface data output (SDOUT)
	01000: Analog mute flag for left channel (low active)
	01001: Analog mute flag for right channel (low active)
	01010: PLL lock flag
	01011: Charge pump clock
	01100: Reserved
	01101: Reserved

01110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD
01111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD
010000: PLL Output/4 (Requires Clock Flex Register)
OTHERS: RESERVED

Table 97. Page 0 / Register 82

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
82	52	RSV	RSV	RSV	G3SL4	G3SL3	G3SL2	G3SL1	G3SL0
Reset Value					0	0	0	0	0

RSV	Reserved						
	Reserved. Do not access.						
G3SL[4:0]	GPIO3 Output Selection						
	These bits select the signal to output to GPIO3. To actually output the selected signal, the GPIO3 must be set to output mode at Page 0 / Register 8.						
	Default value: 00000						
	0000: off (low)						
	0001: DSP GPIO3 output						
	0010: Register GPIO3 output (Page 0 / Register 86, bit 2)						
	00011: Auto mute flag (asserted when both L and R channels are auto muted)						
	00100: Auto mute flag for left channel						
	00101: Auto mute flag for right channel						
	00110: Clock invalid flag (clock error or clock changing or clock missing)						
	00111: Serial audio interface data output (SDOUT)						
	01000: Analog mute flag for left channel (low active)						
	01001: Analog mute flag for right channel (low active)						
	01010: PLL lock flag						
	01011: Charge pump clock						
	01100: Reserved						
	01101: Reserved						
	01110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD						
	01111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD						
	010000: PLL Output/4 (Requires Clock Flex Register)						
	OTHERS: RESERVED						

Table 98. Page 0 / Register 83

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
83	53	RSV	RSV	RSV	G4SL4	G4SL3	G4SL2	G4SL1	G4SL0
Reset	Reset Value				0	0	0	0	0

RSV	Reserved
	Reserved. Do not access.
G4SL[4:0]	GPIO4 Output Selection
	These bits select the signal to output to GPIO4. To actually output the selected signal, the GPIO4 must be set to output mode at Page 0 / Register 8.
	Default value: 00000
	00000: off (low)
	00001: DSP GPIO4 output
	00010: Register GPIO4 output (Page 0 / Register 86, bit 3)
	00011: Auto mute flag (asserted when both L and R channels are auto muted)

00100: Auto mute flag for left channel
00101: Auto mute flag for right channel
00110: Clock invalid flag (clock error or clock changing or clock missing)
00111: Serial audio interface data output (SDOUT)
01000: Analog mute flag for left channel (low active)
01001: Analog mute flag for right channel (low active)
01010: PLL lock flag
01011: Charge pump clock
01100: Reserved
01101: Reserved
01101: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD
01111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD
010000: PLL Output/4 (Requires Clock Flex Register)

Table 99. Page 0 / Register 84

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
84	54	RSV	RSV	RSV	G5SL4	G5SL3	G5SL2	G5SL1	G5SL0
Reset	Reset Value				0	0	0	0	0

RSV	Reserved
	Reserved. Do not access.
G5SL[4:0]	GPIO5 Output Selection
	These bits select the signal to output to GPIO5. To actually output the selected signal, the GPIO5 must be set to output mode at Page 0 / Register 8.
	Default value: 00000
	00000: off (low)
	00001: DSP GPIO5 output
	00010: Register GPIO5 output (Page 0 / Register 86, bit 4
	00011: Auto mute flag (asserted when both L and R channels are auto muted)
	00100: Auto mute flag for left channel
	00101: Auto mute flag for right channel
	00110: Clock invalid flag (clock error or clock changing or clock missing)
	00111: Serial audio interface data output (SDOUT)
	01000: Analog mute flag for left channel (low active)
	01001: Analog mute flag for right channel (low active)
	01010: PLL lock flag
	01011: Charge pump clock
	01100: Reserved
	01101: Reserved
	01110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD
	01111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD
	010000: PLL Output/4 (Requires Clock Flex Register)
	OTHERS: RESERVED

Table 100. Page 0 / Register 85

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
85	55	RSV	RSV	RSV	G6SL4	G6SL3	G6SL2	G6SL1	G6SL0
Reset Value					0	0	0	0	0

RSV	Reserved							
	Reserved. Do not access.							
G6SL[4:0]	GPIO6 Output Selection							
	These bits select the signal to output to GPIO6. To actually output the selected signal, the GPIO6 must be set to output mode at Page 0 / Register 8.							
	Default value: 00000							
	00000: off (low)							
	00001: DSP GPIO6 output							
	00010: Register GPIO6 output (Page 0 / Register 86, bit 5)							
	00011: Auto mute flag (asserted when both L and R channels are auto muted)							
	00100: Auto mute flag for left channel							
	00101: Auto mute flag for right channel							
	00110: Clock invalid flag (clock error or clock changing or clock missing)							
	00111: Serial audio interface data output (SDOUT)							
	01000: Analog mute flag for left channel (low active)							
	01001: Analog mute flag for right channel (low active)							
	01010: PLL lock flag							
	01011: Charge pump clock							
	01100: Reserved							
	01101: Reserved							
	01110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD							
	01111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD							
l	010000: PLL Output/4 (Requires Clock Flex Register)							
]	OTHERS: RESERVED							

Table 101. Page 0 / Register 86

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
86	56	RSV	RSV	GOUT5	GOUT4	GOUT3	GOUT2	GOUT1	GOUT0
Reset Value				0	0	0	0	0	0

RSV	Reserved						
	Reserved. Do not access.						
GOUT5	GPIO6 Output Control						
	This bit controls the GPIO6 output when the selection at Page 0 / Register 85 is set to 0010 (register output)						
	Default value: 0						
	0: Output low						
	1: Output high						
GOUT4	GPIO5 Output Control						
	This bit controls the GPIO5 output when the selection at Page 0 / Register 84 is set to 0010 (register output)						
	Default value: 0						
	0: Output low						
	1: Output high						
GOUT3	GPIO4 Output Control						
	This bit controls the GPIO4 output when the selection at Page 0 / Register 83 is set to 0010 (register output)						
	Default value: 0						
	0: Output low						
	1: Output high						
GOUT2	GPIO3 Output Control						
	This bit controls the GPIO3 output when the selection at Page 0 / Register 82 is set to 0010 (register output)						
	Default value: 0						

	0: Output low
	1: Output high
GOUT1	GPIO2 Output Control
	This bit controls the GPIO2 output when the selection at Page 0 / Register 81 is set to 0010 (register output)
	Default value: 0
	0: Output low
	1: Output high
GOUT0	GPIO1 Output Control
	This bit controls the GPIO1 output when the selection at Page 0 / Register 80 is set to 0010 (register output)
	Default value: 0
	0: Output low
	1: Output high

Table 102. Page 0 / Register 87

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
87	57	RSV	RSV	GINV5	GINV4	GINV3	GINV2	GINV1	GINV0
Reset Value				0	0	0	0	0	0

RSV	Reserved
	Reserved. Do not access.
GINV5	GPIO6 Output Inversion
	This bit controls the polarity of GPIO6 output. When set to 1, the output will be inverted for any signal being selected.
	Default value: 0
	0: Non-inverted
	1: Inverted
GINV4	GPIO5 Output Inversion
	This bit controls the polarity of GPIO5 output. When set to 1, the output will be inverted for any signal being selected.
	Default value: 0
	0: Non-inverted
	1: Inverted
GINV3	GPIO4 Output Inversion
	This bit controls the polarity of GPIO4 output. When set to 1, the output will be inverted for any signal being selected.
	Default value: 0
	0: Non-inverted
	1: Inverted
GINV2	GPIO3 Output Inversion
	This bit controls the polarity of GPIO3 output. When set to 1, the output will be inverted for any signal being selected.
	Default value: 0
	0: Non-inverted
	1: Inverted
GINV1	GPIO2 Output Inversion
	This bit controls the polarity of GPIO2 output. When set to 1, the output will be inverted for any signal being selected.
	Default value: 0
	0: Non-inverted
	1: Inverted
GINV0	GPIO1 Output Inversion

This bit controls the polarity of GPIO1 output. When set to 1, the output will be inverted for any signal being selected.

Default value: 0
0: Non-inverted
1: Inverted

Table 103. Page 0 / Register 90

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
90	5A	RSV	RSV	RSV	L10V	R10V	L2OV	R2OV	SFOV
Reset Value									

RSV	Reserved							
	Reserved. Do not access.							
L10V	Left1 Overflow (Read Only)							
	This bit indicates whether the left channel of DSP first output port has overflow. This bit is sticky and is cleared when read.							
	0: No overflow							
	1: Overflow occurred							
R10V	Right1 Overflow (Read Only)							
	The bit indicates whether the right channel of DSP first output port has overflow. This bit is sticky and is cleared when read.							
	0: No overflow							
	1: Overflow occurred							
L2OV	Left2 Overflow (Read Only)							
	This bit indicates whether the left channel of DSP second output port has overflow. This bit is sticky and is cleared when read.							
	0: No overflow							
	1: Overflow occurred							
R2OV	Right2 Overflow (Read Only)							
	The bit indicates whether the right channel of DSP second output port has overflow. This bit is sticky and is cleared when read.							
	0: No overflow							
	1: Overflow occurred							
SFOV	Shifter Overflow (Read Only)							
	This bit indicates whether overflow occurred in the DSP shifter (possible sample corruption). This bit is sticky and is cleared when read.							
	0: No overflow							
	1: Overflow occurred							

Table 104. Page 0 / Register 91

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
91	5B	RSV	DTFS2	DTFS1	DTFS0	DTSR3	DTSR2	DTSR1	DTSR0
Reset Value									

RSV	Reserved
	Reserved. Do not access.
DTFS[2:0]	Detected FS (Read Only)
	These bits indicate the currently detected audio sampling rate.
	000: Error (Out of valid range)
	001: 8 kHz
	010: 16 kHz

	011: 32-48 kHz
	100: 88.2-96 kHz
	101: 176.4-192 kHz
	110: 384 kHz
DTSR[3:0]	Detected SCK Ratio (Read Only)
	These bits indicate the currently detected SCK ratio. Note that even if the SCK ratio is not indicated as error, clock error might still be flagged due to incompatible combination with the sampling rate. Specifically the SCK ratio must be high enough to allow enough DSP cycles for minimal audio processing when PLL is disabled. The absolute SCK frequency must also be lower than 50 MHz.
	0000: Ratio error (The SCK ratio is not allowed)
	0001: SCK = 32 FS
	0010: SCK = 48 FS
	0011: SCK = 64 FS
	0100: SCK = 128 FS
	0101: SCK = 192 FS
	0110: SCK = 256 FS
	0111: SCK = 384 FS
	1000: SCK = 512 FS
	1001: SCK = 768 FS
	1010: SCK = 1024 FS
	1011: SCK = 1152 FS
	1100: SCK = 1536 FS
	1101: SCK = 2048 FS
	1110: SCK = 3072 FS

Table 105. Page 0 / Register 92

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
92	5C	RSV	DTBR8						
Reset Value									

Table 106. Page 0 / Register 93

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
93	5D	DTBR7	DTBR6	DTBR5	DTBR4	DTBR3	DTBR2	DTBR1	DTBR0
Reset	Reset Value								

RSV	Reserved
	Reserved. Do not access.
DTBR[8:0]	Detected BCK Ratio (MSB) (Read Only)
	These bits indicate the currently detected BCK ratio, that is, the number of BCK clocks in one audio frame. Note that for extreme case of BCK = 1 FS (which is not usable anyway), the detected ratio will be unreliable.

Table 107. Page 0 / Register 94

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
94	5E	RSV	CDST	PLL-L	LrckBck	fS-SCKr	SCKval	BCKval	fSval
Reset Value									

RSV	Reserved					
	Reserved. Do not access.					
CDST	lock Detector Status (Read Only)					
	This bit indicates whether the SCK clock is present or not.					
	0: SCK is present					

	1: SCK is missing (halted)						
PLL-L	PLL locked (Read Only)						
	This bit indicates whether the PLL is locked or not. The PLL will be reported as unlocked when it is disabled.						
	0: PLL is locked						
	1: PLL is unlocked						
LrckBck	LRCK-BCK present (Read Only)						
	This bit indicates whether the both LRCK and BCK are missing (tied low) or not.						
	0: LRCK and/or BCK is present						
	1: LRCK and BCK are missing						
fS-SCKr	Sample rate SCK ratio valid (Read Only)						
	This bit indicates whether the combination of current sampling rate and SCK ratio is valid for clock auto set.						
	0: The combination of FS/SCK ratio is valid						
	1: Error (clock auto set is not possible)						
SCKval	SCK valid (Read Only)						
	This bit indicates whether the SCK is valid or not. The SCK ratio must be detectable to be valid. There is a limitation with this flag, that is, when the low period of LRCK is less than or equal to 5 BCKs, this flag will be asserted (SCK invalid reported).						
	0: SCK is valid						
	1: SCK is invalid						
BCKval	BCK valid (Read Only)						
	This bit indicates whether the BCK is valid or not. The BCK ratio must be stable and in the range of 32-256FS to be valid.						
	0: BCK is valid						
	1: BCK is invalid						
fSval	fS valid (Read Only)						
	This bit indicated whether the audio sampling rate is valid or not. The sampling rate must be detectable to be valid. There is a limitation with this flag, that is when this flag is asserted and Page 0 / Register 37 is set to ignore all asserted error flags such that the DAC recovers, this flag will be de-asserted (sampling rate invalid not reported anymore).						
	0: Sampling rate is valid						
	1: Sampling rate is invalid						

Table 108. Page 0 / Register 95

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
95	5F	RSV	RSV	RSV	LTSH	RSV	CKMF	CSRF	CERF
Reset Value									

RSV	Reserved					
	Reserved. Do not access.					
LTSH	Latched Clock Halt (Read Only)					
	This bit indicates whether SCK halt has occurred. The bit is cleared when read.					
	0: SCK halt has not occurred					
	1: SCK halt has occurred since last read					
CKMF	Clock Missing (Read Only)					
	This bit indicates whether the LRCK and BCK are missing (tied low).					
	0: LRCK and/or BCK is present					
	1: LRCK and BCK are missing					
CSRF	Clock Resync Request (Read Only)					
	This bit indicates whether the clock resynchronization is in progress.					
	0: Not resynchronizing					
	1: Clock resynchronization is in progress					

CERF	Clock Error (Read Only)
	This bit indicates whether a clock error is being reported.
	0: Clock is valid
	1: Clock is invalid (Error)

Table 109. Page 0 / Register 108

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
108	6C	RSV	RSV	RSV	RSV	RSV	RSV	AMLM	AMRM
Reset	Reset Value								

RSV	Reserved					
	Reserved. Do not access.					
AMLM	Left Analog Mute Monitor (Read Only)					
	This bit is a monitor for left channel analog mute status.					
	0: Mute					
	1: Unmute					
AMRM	Right Analog Mute Monitor (Read Only)					
	This bit is a monitor for right channel analog mute status.					
	0: Mute					
	1: Unmute					

Table 110. Page 0 / Register 109

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
109	6D	RSV	RSV	RSV	SDTM	RSV	RSV	RSV	SHTM
Reset	Reset Value								

RSV	Reserved
	Reserved. Do not access.
SDTM	Short detect monitor (Read Only)
	This bit indicates whether line output short is occuring.
	0: Normal (No short)
	1: Line output is being shorted
SHTM	Short detected monitor (Read Only)
	This bit indicates whether line output short has occurred since last read. This bit is sticky and is cleared when read.
	0: No short
	1: Line output short occurred

Table 111. Page 0 / Register 114

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
114	72	RSV	RSV	RSV	RSV	RSV	RSV	MTST1	MTST0
Reset Value									

RSV	Reserved						
	Reserved. Do not access.						
MTST[1:0]	MUTEZ status (Read Only)						
	These bits indicate the output of the XSMUTE level decoder for monitoring purpose.						
	11: 0.7 VDD ≤ XSMUTE						
	01: 0.3 VDD ≤ XSMUTE < 0.7 VDD						
	00: 0.3 VDD > XSMUTE						

Table 112. Page 0 / Register 115

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
115	73	RSV	RSV	RSV	RSV	RSV	RSV	FSMM1	FSMM0
Reset Value									

RSV	Reserved
	Reserved. Do not access.
FSMM[1:0]	FS Speed Mode Monitor (Read Only)
	These bits indicate the actual FS operation mode being used. The actual value is the auto set one when clock auto set is active and register set one when clock auto set is disabled.
	00: Single speed (FS ≤ 48 kHz)
	01: Double speed (48 kHz < FS ≤ 96 kHz)
	10: Quad speed (96 kHz < FS ≤ 192 kHz)
	11: Octal speed (192 kHz < FS ≤ 384 kHz)

Table 113. Page 0 / Register 118

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
118	76	вотм	RSV	RSV	RSV	PSTM3	PSTM2	PSTM1	PSTM0
Reset Value									

RSV	Reserved							
	Reserved. Do not access.							
вотм	DSP Boot Done Flag (Read Only)							
	This bit indicates whether the DSP boot is completed.							
	0: DSP is booting							
	1: DSP boot completed							
PSTM[3:0]	Power State (Read Only)							
	These bits indicate the current power state of the DAC.							
	0000: Powerdown							
	0001: Wait for CP voltage valid							
	0010: Calibration							
	0011: Calibration							
	0100: Volume ramp up							
	0101: Run (Playing)							
	0110: Line output short / Low impedance							
	0111: Volume ramp down							
ı	1000: Standby							

Table 114. Page 0 / Register 119

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
119	77	RSV	RSV	GPIN5	GPIN4	GPIN3	GPIN2	GPIN1	RSV
Reset Value									

RSV	Reserved
	Reserved. Do not access.
GPIN[5:0]	GPIO Input States (Read Only)
	This bit indicates the logic level at GPIO6 pin.
	0: Low
	1: High

Table 115. Page 0 / Register 120

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
120	78	RSV	RSV	RSV	AMFL	RSV	RSV	RSV	AMFR
Reset Value									

RSV	Reserved						
	Reserved. Do not access.						
AMFL	Auto Mute Flag for Left Channel (Read Only)						
	This bit indicates the auto mute status for left channel.						
	0: Not auto muted						
	1: Auto muted						
AMFR	Auto Mute Flag for Right Channel (Read Only)						
	This bit indicates the auto mute status for right channel.						
	0: Not auto muted						
	1: Auto muted						

Table 116. Page 0 / Register 121

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
121	79	RSV	DAMD						
Reset Value									0

RSV	Reserved
	Reserved. Do not access.
DAMD	DAC Mode
	This bit controls the DAC architecture to vary the DAC auditory signature.
	Default value: 0
	0: Mode1 - New hyper-advanced current-segment architecture
	1: Mode2 - Classic PCM1792 advanced current-segment architecture

Table 117. Page 0 / Register 122

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
122	7A	RSV	EIFM						
Reset Value									0

RSV	Reserved
	Reserved. Do not access.
EIFM	External Interpolation Filter Mode
	This bit enables or disables the PCM1792 External Interpolation Filter Mode. This mode is used with a PCM1792 in external digital filter mode.
	Default value: 0
	0: Normal mode
	1: External Interpolation Filter Mode

Table 118. Page 0 / Register 123

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
123	7B	RSV	G1MC2	G1MC1	G1MC0	RSV	G2MC2	G2MC1	G2MC0
Reset Value			0	0	0		0	0	0

RSV	Reserved						
	Reserved. Do not access.						
G1MC[2:0]	GPIO1 output for External Interpolation Filter Mode						
	These bits select a signal to be output to GPIO1 in External Interpolation Filter mode.						
	Default value: 000						
	000: Logic low						
	001: MS						
	010: BCK (256FS)						
	011: WDCK (8FS)						
	100: DATAL						
	101: DATAR						
	110: Raw DIN (from DIN pin)						
	111: Raw LRCK (from LRCK pin)						
G2MC[2:0]	GPIO2 output for External Interpolation Filter Mode						
	These bits select a signal to be output to GPIO2 in External Interpolation Filter mode.						
	Default value: 000						
	000: Logic low						
	001: MS						
	010: BCK (256FS)						
	011: WDCK (8FS)						
	100: DATAL						
	101: DATAR						
	110: Raw DIN (from DIN pin)						
	111: Raw LRCK (from LRCK pin)						

Table 119. Page 0 / Register 124

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
124	7C	RSV	G3MC2	G3MC1	G3MC0	RSV	G4MC2	G4MC1	G4MC0
Reset	Reset Value		0	0	0		0	0	0

RSV	Reserved						
	Reserved. Do not access.						
G3MC[2:0]	GPIO3 output for External Interpolation Filter Mode						
	These bits select a signal to be output to GPIO3 in External Interpolation Filter Mode.						
	Default value: 000						
	000: Logic low						
	001: MS						
	010: BCK (256FS)						
	011: WDCK (8FS)						
	100: DATAL						
	101: DATAR						
	110: Raw DIN (from DIN pin)						
	111: Raw LRCK (from LRCK pin)						
G4MC[2:0]	GPIO4 output for External Interpolation Filter Mode						
	These bits select a signal to be output to GPIO4 in External Interpolation Filter Mode.						
	Default value: 000						
	000: Logic low						
	001: MS						
	010: BCK (256FS)						

011: WDCK (8FS)
100: DATAL
101: DATAR
110: Raw DIN (from DIN pin)
111: Raw LRCK (from LRCK pin)

Table 120. Page 0 / Register 125

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
125	7D	RSV	G5MC2	G5MC1	G5MC0	RSV	G6MC2	G6MC1	G6MC0
Reset Value			0	0	0		0	0	0

RSV	Reserved							
	Reserved. Do not access.							
G5MC[2:0]	GPIO5 output for External Interpolation Filter Mode							
	These bits select a signal to be output to GPIO5 in External Interpolation Filter mode.							
	Default value: 000							
	000: Logic low							
	001: MS							
	010: BCK (256FS)							
	011: WDCK (8FS)							
	100: DATAL							
	101: DATAR							
	110: Raw DIN (from DIN pin)							
	111: Raw LRCK (from LRCK pin)							
G6MC[2:0]	GPIO6 output for External Interpolation Filter Mode							
	These bits select a signal to be output to GPIO6 in External Interpolation Filter mode.							
	Default value: 000							
	000: Logic low							
	001: MS							
	010: BCK (256FS)							
	011: WDCK (8FS)							
	100: DATAL							
	101: DATAR							
	110: Raw DIN (from DIN pin)							
	111: Raw LRCK (from LRCK pin)							

12.1.1.3 Page 1 Registers

Table 121. Page 1 / Register 1

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
1	01	RSV	OSEL						
Reset Value									0

RSV	Reserved
	Reserved. Do not access.
OSEL	Output Amplitude Type
	This bit selects the output amplitude type. The clock autoset feature will not work with PLL enabled in VCOM mode. In this case this feature has to be disabled via Page 0 / Register 37 and the clock dividers must be set manually.
	Default value: 0

0: VREF mode (Constant output amplitude against AVDD variation)
1: VCOM mode (Output amplitude is proportional to AVDD variation)

Table 122. Page 1 / Register 2

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
2	02	RSV	RSV	RSV	LAGN	RSV	RSV	RSV	RAGN
Reset Value					0				0

RSV	Reserved						
	Reserved. Do not access.						
LAGN	Analog Gain Control for Left Channel						
	This bit controls the left channel analog gain.						
	Default value: 0						
	0: 0 dB						
	1:-6 dB						
RAGN	Analog Gain Control for Right Channel						
	This bit controls the right channel analog gain.						
	Default value: 0						
	0: 0 dB						
	1: -6 dB						

Table 123. Page 1 / Register 5

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
5	05	RSV	RSV	RSV	RSV	RSV	RSV	UEPD	UIPD
Reset Value								0	0

RSV	Reserved
	Reserved. Do not access.
UEPD	External UVP Control
	This bit enables or disables detection of power supply drop via XSMUTE pin (External Under Voltage Protection).
	Default value: 0
	0: Enabled
	1: Disabled
UIPD	Internal UVP Control
	This bit enables or disables internal detection of AVDD voltage drop (Internal Under Voltage Protection).
	Default value: 0
	0: Enabled
	1: Disabled

Table 124. Page 1 / Register 6

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
6	06	RSV	AMCT						
Reset Value									0

RSV	Reserved					
	Reserved. Do not access.					
AMCT	Analog Mute Control					
	This bit enables or disables analog mute following digital mute.					
	Default value: 0					

_		
	0: Enabled	
	1: Disabled	

Table 125. Page 1 / Register 7

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
7	07	RSV	RSV	RSV	AGBL	RSV	RSV	RSV	AGBR
Reset Value					0				0

RSV	Reserved					
	Reserved. Do not access.					
AGBL	Analog +10% Gain for Left Channel					
	This bit enables or disables amplitude boost mode for left channel.					
	Default value: 0					
	0: Normal amplitude					
	1: +10% (+0.8 dB) boosted amplitude					
AGBR	Analog +10% Gain for Right Channel					
	This bit enables or disables amplitude boost mode for right channel.					
	Default value: 0					
	0: Normal amplitude					
	1: +10% (+0.8 dB) boosted amplitude					

Table 126. Page 1 / Register 8

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
8	08	RSV	RCMF						
Reset Value									0

RSV	Reserved						
	Reserved. Do not access.						
RCMF	/COM Reference Ramp Up						
	This bit controls the VCOM voltage ramp up speed.						
	Default value: 0						
	0: Normal ramp up, ~600ms with external capacitance = 1uF						
	1: Fast ramp up, ~3ms with external capacitance = 1uF						

Table 127. Page 1 / Register 9

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
9	09	RSV	VCPD						
Reset Value									1

RSV	Reserved					
	Reserved. Do not access.					
VCPD	Power down control for VCOM					
	This bit controls VCOM powerdown switch.					
	Default value: 1					
	0: VCOM is powered on					
	1: VCOM is powered down					

12.1.1.4 Page 44 Registers

Table 128. Page 44 / Register 1

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
1	01	RSV	RSV	RSV	RSV	ACRM	AMDC	ACRS	ACSW
Reset Value							0		0

RSV	Reserved						
	Reserved. Do not access.						
ACRM	Active CRAM Monitor (Read Only)						
	This bit indicates which CRAM is being accessed by the DSP when adaptive mode is disabled. When adaptive mode is enabled, this bit has no meaning.						
	0: CRAM A is being used by the DSP						
	1: CRAM B is being used by the DSP						
AMDC	Adaptive Mode Control						
	This bit controls the DSP adaptive mode. When in adaptive mode, only CRAM A is accessible via serial interface when the DSP is disabled (DAC in standby state), while when the DSP is enabled (DAC is run state) the CRAM A can only be accessed by the DSP and the CRAM B can only be accessed by the serial interface, or vice versa depending on the value of CRAMSTAT. When not in adaptive mode, both CRAM A and B can be accessed by the serial interface when the DSP is disabled, but when the DSP is enabled, no CRAM can be accessed by serial interface. The DSP can access either CRAM, which can be monitored at SWPMON.						
	Default value: 0						
	0: Adaptive mode disabled						
	1: Adaptive mode enabled						
ACRS	Active CRAM Selection (Read Only)						
	This bit indicates which CRAM currently serves as the active one. The other CRAM serves as an update buffer, and can accessed by serial interface (SPI/I2C)						
	0: CRAM A is active and being used by the DSP						
	1: CRAM B is active and being used by the DSP						
ACSW	Switch Active CRAM						
	This bit is used to request switching roles of the two buffers, that is, switching the active buffer role between CRAM A and CRAM B. This bit is cleared automatically when the switching process completed.						
	Default value: 0						
	0: No switching requested or switching completed						
	1: Switching is being requested						

12.1.1.5 Page 253 Registers

Table 129. Page 253 / Register 63

Dec	Hex	b7 b6		b5	b4	b3	b2	b1	b0
63	3F	PLLFLEX1 7	PLLFLEX1 6	PLLFLEX1 5	PLLFLEX1 4	PLLFLEX1	PLLFLEX1 2	PLLFLEX1 1	PLLFLEX1 0
Reset Value		0	0	0	0	0	0	0	0

PLLFLEX1[7:0]	Clock Flex Register #1
	Clock Flex Register #1. Write 0x11 to this register to allow advanced clock tree functions. See Clocking Overview section.
	Default value: 00000000

Table 130. Page 253 / Register 64

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
64	40	PLLFLEX2 7	PLLFLEX2 6	PLLFLEX2 5	PLLFLEX2 4	PLLFLEX2 3	PLLFLEX2 2	PLLFLEX2 1	PLLFLEX2 0
Reset	Value	0	0	0	0	0	0	0	0

PLLFLEX2[7:0]	Clock Flex Register #2
	Clock Flex Register #2. Write 0xFF to this register to allow advanced clock tree functions. See Clocking Overview section.
	Default value: 00000000

12.1.2 PLL Tables for Software Controlled Devices

Table 131. Recommended Clock Divider Settings for PLL as Master Clock (VREF Mode)

f _S (kHz)	RSCK	SCK (MHz)	PLL VCO (MHz)	Р	PLL REF (MHz)	M = K*R	K = J.D	R	PLL f _s	DSP f _S	NMAC	DSP CLK (MHz)	MOD f _s	MOD F (kHz)	NDAC	DOSR	% ERROR	NCP	CP F (kHz)
8	128	1.024	98.304	1	1.024	96	48	2	12288	1024	12	8.192	768	6144	16	48	0	4	1536
8	192	1.536	98.304	1	1.536	64	32	2	12288	1024	12	8.192	768	6144	16	48	0	4	1536
8	256	2.048	98.304	1	2.048	48	48	1	12288	1024	12	8.192	768	6144	16	48	0	4	1536
8	384	3.072	98.304	3	1.024	96	48	2	12288	1024	12	8.192	768	6144	16	48	0	4	1536
8	512	4.096	98.304	3	1.365	72	36	2	12288	1024	12	8.192	768	6144	16	48	0	4	1536
8	768	6.144	98.304	3	2.048	48	48	1	12288	1024	12	8.192	768	6144	16	48	0	4	1536
8	1024	8.192	98.304	3	2.731	36	36	1	12288	1024	12	8.192	768	6144	16	48	0	4	1536
8	1152	9.216	98.304	9	1.024	96	48	2	12288	1024	12	8.192	768	6144	16	48	0	4	1536
8	1536	12.288	98.304	9	1.365	72	36	2	12288	1024	12	8.192	768	6144	16	48	0	4	1536
8	2048	16.384	98.304	9	1.82	54	54	1	12288	1024	12	8.192	768	6144	16	48	0	4	1536
8	3072	24.576	98.304	9	2.731	36	36	1	12288	1024	12	8.192	768	6144	16	48	0	4	1536
11.025	128	1.4112	90.3168	1	1.411	64	32	2	8192	1024	8	11.2896	512	5644.8	16	32	0	4	1411.2
11.025	192	2.1168	90.3168	3	0.706	128	32	4	8192	1024	8	11.2896	512	5644.8	16	32	0	4	1411.2
11.025	256	2.8224	90.3168	1	2.822	32	32	1	8192	1024	8	11.2896	512	5644.8	16	32	0	4	1411.2
11.025	384	4.2336	90.3168	3	1.411	64	32	2	8192	1024	8	11.2896	512	5644.8	16	32	0	4	1411.2
11.025	512	5.6448	90.3168	3	1.882	48	48	1	8192	1024	8	11.2896	512	5644.8	16	32	0	4	1411.2
11.025	768	8.4672	90.3168	3	2.822	32	32	1	8192	1024	8	11.2896	512	5644.8	16	32	0	4	1411.2
11.025	1024	11.2896	90.3168	3	3.763	24	24	1	8192	1024	8	11.2896	512	5644.8	16	32	0	4	1411.2
11.025	1152	12.7008	90.3168	9	1.411	64	32	2	8192	1024	8	11.2896	512	5644.8	16	32	0	4	1411.2
11.025	1536	16.9344	90.3168	9	1.882	48	48	1	8192	1024	8	11.2896	512	5644.8	16	32	0	4	1411.2
11.025	2048	22.5792	90.3168	9	2.509	36	36	1	8192	1024	8	11.2896	512	5644.8	16	32	0	4	1411.2
11.025	3072	33.8688	90.3168	9	3.763	24	24	1	8192	1024	8	11.2896	512	5644.8	16	32	0	4	1411.2
16	64	1.024	98.304	1	1.024	96	48	2	6144	1024	6	16.384	384	6144	16	24	0	4	1536
16	128	2.048	98.304	1	2.048	48	48	1	6144	1024	6	16.384	384	6144	16	24	0	4	1536
16	192	3.072	98.304	1	3.072	32	32	1	6144	1024	6	16.384	384	6144	16	24	0	4	1536
16	256	4.096	98.304	1	4.096	24	24	1	6144	1024	6	16.384	384	6144	16	24	0	4	1536
16	384	6.144	98.304	3	2.048	48	48	1	6144	1024	6	16.384	384	6144	16	24	0	4	1536
16	512	8.192	98.304	3	2.731	36	36	1	6144	1024	6	16.384	384	6144	16	24	0	4	1536
16	768	12.288	98.304	3	4.096	24	24	1	6144	1024	6	16.384	384	6144	16	24	0	4	1536
16	1024	16.384	98.304	3	5.461	18	18	1	6144	1024	6	16.384	384	6144	16	24	0	4	1536
16	1152	18.432	98.304	3	6.144	16	16	1	6144	1024	6	16.384	384	6144	16	24	0	4	1536
16	1536	24.576	98.304	9	2.731	36	36	1	6144	1024	6	16.384	384	6144	16	24	0	4	1536
16	2048	32.768	98.304	9	3.641	27	27	1	6144	1024	6	16.384	384	6144	16	24	0	4	1536
16	3072	49.152	98.304	9	5.461	18	18	1	6144	1024	6	16.384	384	6144	16	24	0	4	1536
22.05	64	1.4112	90.3168	1	1.411	64	32	2	4096	1024	4	22.5792	256	5644.8	16	16	0	4	1411.2
22.05	128	2.8224	90.3168	1	2.822	32	32	1	4096	1024	4	22.5792	256	5644.8	16	16	0	4	1411.2

Copyright © 2012–2018, Texas Instruments Incorporated

Submit Documentation Feedback

Table 131. Recommended Clock Divider Settings for PLL as Master Clock (VREF Mode) (continued)

2205 192 42366 90.0168 3 1.4.11 661 32 2 4008 1024 4 22.5792 256 564.8 16 16 0 4 4 22.05 256 564.8 16 16 0 0 4 22.05 256 564.8 16 16 16 1 4006 1024 4 22.5792 256 564.8 16 10 0 4 4 22.05 256 564.8 16 10 0 4 4 22.05 256 564.8 16 10 0 4 4 22.05 256 564.8 16 10 0 4 4 22.05 256 564.8 16 10 0 4 4 22.05 256 564.8 16 10 0 4 4 22.05 256 564.8 16 10 0 4 4 22.05 256 564.8 16 10 0 0 4 4 22.05 256 564.8 16 10 0 0 4 4 22.05 256 564.8 16 10 0 0 4 4 22.05 256 564.8 16 10 0 0 4 4 22.05 256 564.8 16 10 0 0 4 4 22.05 256 564.8 16 10 0 0 4 4 22.05 256 564.8 16 10 0 0 4 4 22.05 256 564.8 16 10 0 0 4 4 22.05 256 564.8 16 10 0 0 4 4 22.05 256 564.8 16 10 0 0 4 4 22.05 256 564.8 16 10 0 0 4 4 22.05 256 564.8 16 10 0 0 4 4 22.05 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												master Groo					,				
22.05 2864 8.56468 99.3148 1 5.5646 16 16 1 4.006 1024 4 22.27792 286 896448 16 16 0 0 4 4 22.0782 286 28648 16 16 16 0 0 4 4 22.0782 286 896448 16 16 0 0 4 4 22.0782 286 28648 16 16 0 0 4 4 22.0782 286 28648 16 16 0 0 4 4 22.0782 286 28648 16 16 0 0 4 4 22.0782 286 28648 16 16 0 0 4 4 22.0782 286 28648 16 16 0 0 4 4 22.0782 286 28648 16 16 0 0 4 4 22.0782 286 28648 16 16 0 0 4 4 22.0782 286 28648 16 16 0 0 4 4 22.0782 286 28648 16 16 0 0 4 4 22.0782 286 28648 16 16 16 0 0 4 4 28.0782 28648 28648 28648 28648 28648 28648 28648 28648 28648 28648 28648 28648 28648 28648 28648 28648 28648	RSCK	SCK (MHz)		Р	PLL REF (MHz)	M = K*R	K = J.D	R	PLL f _s	DSP f _S	NMAC	DSP CLK (MHz)	MOD f _s		NDAC	DOSR	% ERROR	NCP	CP F (kHz)		
22.05 384 8.4672 90.3188 3 2.822 32 32 1 4098 1024 4 22.2792 258 5644.8 16 16 0 4 4 22.05 32 11.2399 90.3188 3 3.783 24 24 1 4096 1024 4 22.2792 258 5644.8 16 16 0 0 4 4 22.05 32.05 3644.8 16 16 0 0 4 4 22.05 3644.8 16 16 0 0 4 4 22.05 3644.8 16 16 0 0 4 4 22.05 3644.8 16 16 0 0 4 4 22.05 22.05 264 3644.8 16 16 0 0 4 4 22.05 162 22.05 264 16 0 0 0 4 4 22.05 162 22.0	192	4.2336	90.3168	3	1.411	64	32	2	4096	1024	4	22.5792	256	5644.8	16	16	0	4	1411.2		
22.05 512 11.2896 90.3168 3 3.763 24 24 1 4096 1024 4 22.5792 256 5644.8 16 16 0 4 4 22.05 788 16.0344 90.3168 3 5.645 16 16 16 1 4096 1024 4 22.5792 256 5644.8 16 16 0 4 4 22.05 1024 22.6792 256 5644.8 16 16 0 4 4 22.05 1622 22.6792 256 5644.8 16 16 0 4 4 22.05 1622 23.6792 256 5644.8 16 16 0 4 4 22.05 1622 23.6792 256 5644.8 16 16 0 4 4 22.05 1582 23.016 90.3168 9 2.822 32 32 1 4096 1024 4 22.5792 256 5644.8 16 16 0 4 4 22.05 1622 24.016 90.3168 9 3.763 24 24 1 4096 1024 4 22.5792 256 5644.8 16 16 0 4 4 4 4 4 4 4 4 4	256	5.6448	90.3168	1	5.645	16	16	1	4096	1024	4	22.5792	256	5644.8	16	16	0	4	1411.2		
22.05 7788 16.9344 90.3168 3 5.645 16 16 16 1 4096 1024 4 22.5792 266 5644.6 16 16 0 4 4 22.05 22.05 254.016 0.03.168 3 7.526 12 12 1 1 4096 1024 4 22.5792 256 5644.6 16 16 0 4 4 4 22.05 12.05 10.05 1	384	8.4672	90.3168	3	2.822	32	32	1	4096	1024	4	22.5792	256	5644.8	16	16	0	4	1411.2		
22.05 1024 22.5782 90.3168 3 7.526 12 12 1 4096 1024 4 22.5782 256 5644.8 16 16 0 4	512	11.2896	90.3168	3	3.763	24	24	1	4096	1024	4	22.5792	256	5644.8	16	16	0	4	1411.2		
22.05 1152 25.4016 90.3168 9 2.822 32 32 1 4006 1024 4 22.5792 256 5644.8 16 16 0 4	768	16.9344	90.3168	3	5.645	16	16	1	4096	1024	4	22.5792	256	5644.8	16	16	0	4	1411.2		
22.05 1536 33.8688 90.3168 9 3.763 24 24 1 4096 1024 4 22.5792 256 5644.8 16 16 0 4	1024	22.5792	90.3168	3	7.526	12	12	1	4096	1024	4	22.5792	256	5644.8	16	16	0	4	1411.2		
22.05 2048 45.1584 90.3168 9 5.018 18 18 18 1 4096 1024 4 22.6792 256 56448 16 16 0 4 4 32 32 10.024 98.304 1 1.024 98 98 48 2 3072 1024 3 32.768 192 6144 16 12 0 4 4 32 44 45 45 45 45 45 45 4	1152	25.4016	90.3168	9	2.822	32	32	1	4096	1024	4	22.5792	256	5644.8	16	16	0	4	1411.2		
32 32 1.024	1536	33.8688	90.3168	9	3.763	24	24	1	4096	1024	4	22.5792	256	5644.8	16	16	0	4	1411.2		
32 48 1.536 98.304 1 1.536 64 16 4 3072 1024 3 32.768 192 6144 16 12 0 4 32 128 4.096 98.304 1 2.048 48 24 2 3072 1024 3 3.2768 192 6144 16 12 0 4 32 128 4.096 98.304 1 4.096 24 24 1 3072 1024 3 3.2768 192 6144 16 12 0 4 32 192 6144 98.304 3 4.096 24 24 1 3072 1024 3 3.2768 192 6144 16 12 0 4 32 384 12.288 8.8304 3 5.661 18 18 1 3072 1024 3 3.2768 192 6144 16 12 0	2048	45.1584	90.3168	9	5.018	18	18	1	4096	1024	4	22.5792	256	5644.8	16	16	0	4	1411.2		
Second Color	32	1.024	98.304	1	1.024	96	48	2	3072	1024	3	32.768	192	6144	16	12	0	4	1536		
32 128 4.096 98.304 1 4.096 24 24 1 3072 1024 3 32.768 192 6144 16 12 0 4 32 192 61444 98.304 3 2.048 48 1 3072 1024 3 32.768 192 6144 16 12 0 4 32 256 8.192 98.304 3 4.096 24 24 1 3072 1024 3 32.768 192 6144 16 12 0 4 32 581 12.289 98.304 3 5.461 18 18 1 3072 1024 3 32.768 192 6144 16 12 0 4 32 152 16.384 98.304 3 8.192 12 12 1 3072 1024 3 32.768 192 6144 16 12 0 <td< td=""><td>48</td><td>1.536</td><td>98.304</td><td>1</td><td>1.536</td><td>64</td><td>16</td><td>4</td><td>3072</td><td>1024</td><td>3</td><td>32.768</td><td>192</td><td>6144</td><td>16</td><td>12</td><td>0</td><td>4</td><td>1536</td></td<>	48	1.536	98.304	1	1.536	64	16	4	3072	1024	3	32.768	192	6144	16	12	0	4	1536		
32 192 6.144 98.304 3 2.048 48 48 1 3072 1024 3 32.768 192 6144 16 12 0 4 32 256 8.192 98.304 2 4.096 24 24 1 3072 1024 3 32.768 192 6144 16 12 0 4 32 384 12.288 98.304 3 4.096 24 24 1 3072 1024 3 32.768 192 6144 16 12 0 4 32 768 24.576 98.304 3 8.192 12 12 12 1024 3 32.768 192 6144 16 12 0 4 32 1536 98.304 3 10.923 9 9 1 307.6 1024 3 32.768 192 6144 16 12 0 4 <	64	2.048	98.304	1	2.048	48	24	2	3072	1024	3	32.768	192	6144	16	12	0	4	1536		
32 256 8.192 98.304 2 4.096 24 24 1 3072 1024 3 32.768 192 6144 16 12 0 4 32 384 12.288 98.304 3 4.096 24 24 1 3072 1024 3 32.768 192 6144 16 12 0 4 32 768 24.576 98.304 3 5.192 12 12 1 3072 1024 3 32.768 192 6144 16 12 0 4 32 768 24.576 98.304 3 10.923 9 9 1 3072 1024 3 32.768 192 6144 16 12 0 4 32 11536 49.152 98.304 3 10.923 9 9 1 3072 1024 3 32.768 192 6144 16 12	128	4.096	98.304	1	4.096	24	24	1	3072	1024	3	32.768	192	6144	16	12	0	4	1536		
32 384 12.288 98.304 3 4.096 24 24 1 3072 1024 3 32.768 192 6144 16 12 0 4 32 512 16.384 98.304 3 5.461 18 18 18 1 3072 1024 3 32.768 192 6144 16 12 0 4 32 768 24.576 98.304 3 1.922 12 1 3072 1024 3 32.768 192 6144 16 12 0 4 32 1152 36.864 98.304 6 8.192 12 12 1 3072 1024 3 32.768 192 6144 16 12 0 4 32 1152 36.864 99.304 6 8.192 12 12 12 12 12 12 12 12 12 12 3 32.	192	6.144	98.304	3	2.048	48	48	1	3072	1024	3	32.768	192	6144	16	12	0	4	1536		
32 512 16.384 98.304 3 5.461 18 18 1 3072 1024 3 32.768 192 6144 16 12 0 4 32 768 24.576 98.304 3 8.192 12 12 1 3072 1024 3 32.768 192 6144 16 12 0 4 32 1152 38.844 98.304 9 4.096 24 24 1 3072 1024 3 32.768 192 6144 16 12 0 4 32 1536 49.152 98.304 6 8.192 12 12 1 3072 1024 3 32.768 192 6144 16 12 0 4 44.1 32 1.4112 90.3168 1 1.411 64 32 2 2048 1024 2 45.1584 128 564.8 16 8	256	8.192	98.304	2	4.096	24	24	1	3072	1024	3	32.768	192	6144	16	12	0	4	1536		
32 768 24.576 98.304 3 8.192 12 12 1 3072 1024 3 32.768 192 6144 16 12 0 4 32 1024 32.768 98.304 3 10.923 9 9 1 3072 1024 3 32.768 192 6144 16 12 0 4 32 1152 36.864 98.304 9 4.096 24 24 1 3072 1024 3 32.768 192 6144 16 12 0 4 44.1 32 1536 49.152 98.304 6 8.192 19 3 32.768 192 6144 16 12 0	384	12.288	98.304	3	4.096	24	24	1	3072	1024	3	32.768	192	6144	16	12	0	4	1536		
32 1024 32.768 98.304 3 10.923 9 9 1 3072 1024 3 32.768 192 6144 16 12 0 4 32 1152 36.864 98.304 9 4.096 24 24 1 3072 1024 3 32.768 192 6144 16 12 0 4 44.1 32 1.4112 90.3168 1 1.411 64 32 2 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 64 2.8224 90.3168 1 2.822 32 16 2 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 128 5644.8 16 3 2.822 32 32 1 2048 1024 2 45.1584 128 5644.8 16 8 <td>512</td> <td>16.384</td> <td>98.304</td> <td>3</td> <td>5.461</td> <td>18</td> <td>18</td> <td>1</td> <td>3072</td> <td>1024</td> <td>3</td> <td>32.768</td> <td>192</td> <td>6144</td> <td>16</td> <td>12</td> <td>0</td> <td>4</td> <td>1536</td>	512	16.384	98.304	3	5.461	18	18	1	3072	1024	3	32.768	192	6144	16	12	0	4	1536		
32 1152 36.864 98.304 9 4.096 24 24 1 3072 1024 3 32.768 192 6144 16 12 0 4 32 1536 49.152 98.304 6 8.192 12 12 1 3072 1024 3 32.768 192 6144 16 12 0 4 44.1 32 1.4112 90.3168 1 1.411 64 32 2 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 128 56448 90.3168 1 2.822 32 16 2 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 128 56448 90.3168 1 5.645 16 16 1 2048 1024 2 45.1584 128 5644.8 16	768	24.576	98.304	3	8.192	12	12	1	3072	1024	3	32.768	192	6144	16	12	0	4	1536		
32 1536 49.152 98.304 6 8.192 12 12 1 3072 1024 3 32.768 192 6144 16 12 0 4 44.1 32 1.4112 90.3168 1 1.411 64 32 2 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 64 2.8224 90.3168 1 2.822 32 16 2 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 128 5.6448 90.3168 1 5.645 16 16 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 192 8.4672 90.3168 3 2.822 32 32 1 2048 1024 2 45.1584 128 5644.8 16	1024	32.768	98.304	3	10.923	9	9	1	3072	1024	3	32.768	192	6144	16	12	0	4	1536		
44.1 32 1.4112 90.3168 1 1.4111 64 32 2 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 64 2.8224 90.3168 1 2.822 32 16 2 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 128 5.6448 90.3168 1 5.645 16 16 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 192 8.4672 90.3168 3 2.822 32 32 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 192 8.4672 90.3168 3 5.645 16 16 1 2048 1024 2 45.1584 128 5644.8 16	1152	36.864	98.304	9	4.096	24	24	1	3072	1024	3	32.768	192	6144	16	12	0	4	1536		
44.1 64 2.8224 90.3168 1 2.822 32 16 2 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 128 5.6448 90.3168 1 5.645 16 16 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 192 8.4672 90.3168 3 2.822 32 32 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 256 11.2896 90.3168 2 5.645 16 16 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 256 11.2896 90.3168 3 5.645 16 16 1 2048 1024 2 45.1584 128 5644.8 16	1536	49.152	98.304	6	8.192	12	12	1	3072	1024	3	32.768	192	6144	16	12	0	4	1536		
44.1 128 5.6448 90.3168 1 5.645 16 16 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 192 8.4672 90.3168 3 2.822 32 32 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 256 11.2896 90.3168 2 5.645 16 16 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 384 16.9344 90.3168 3 5.645 16 16 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 512 22.5792 90.3168 3 7.526 12 12 12 12 12 12 12 12 12 12 <t< td=""><td>32</td><td>1.4112</td><td>90.3168</td><td>1</td><td>1.411</td><td>64</td><td>32</td><td>2</td><td>2048</td><td>1024</td><td>2</td><td>45.1584</td><td>128</td><td>5644.8</td><td>16</td><td>8</td><td>0</td><td>4</td><td>1411.2</td></t<>	32	1.4112	90.3168	1	1.411	64	32	2	2048	1024	2	45.1584	128	5644.8	16	8	0	4	1411.2		
44.1 192 8.4672 90.3168 3 2.822 32 32 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 256 11.2896 90.3168 2 5.645 16 16 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 384 16.9344 90.3168 3 5.645 16 16 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 512 22.5792 90.3168 3 7.526 12 12 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 768 33.8688 90.3168 3 11.29 8 8 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 1024 45.1584 90.3168 3	64	2.8224	90.3168	1	2.822	32	16	2	2048	1024	2	45.1584	128	5644.8	16	8	0	4	1411.2		
44.1 256 11.2896 90.3168 2 5.645 16 16 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 384 16.9344 90.3168 3 5.645 16 16 16 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 512 22.5792 90.3168 3 7.526 12 12 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 768 33.8688 90.3168 3 11.29 8 8 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 1024 45.1584 90.3168 3 15.053 6 6 1 2048 1024 2 45.1584 128 5644.8 <td>128</td> <td>5.6448</td> <td>90.3168</td> <td>1</td> <td>5.645</td> <td>16</td> <td>16</td> <td>1</td> <td>2048</td> <td>1024</td> <td>2</td> <td>45.1584</td> <td>128</td> <td>5644.8</td> <td>16</td> <td>8</td> <td>0</td> <td>4</td> <td>1411.2</td>	128	5.6448	90.3168	1	5.645	16	16	1	2048	1024	2	45.1584	128	5644.8	16	8	0	4	1411.2		
44.1 384 16.9344 90.3168 3 5.645 16 16 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 512 22.5792 90.3168 3 7.526 12 12 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 768 33.8688 90.3168 3 11.29 8 8 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 1024 45.1584 90.3168 3 15.053 6 6 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 48 32 1.536 98.304 1 1.536 64 32 2 2048 1024 2 49.152 128 6144 16	192	8.4672	90.3168	3	2.822	32	32	1	2048	1024	2	45.1584	128	5644.8	16	8	0	4	1411.2		
44.1 512 22.5792 90.3168 3 7.526 12 12 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 768 33.8688 90.3168 3 11.29 8 8 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 1024 45.1584 90.3168 3 15.053 6 6 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 48 32 1.536 98.304 1 1.536 64 32 2 2048 1024 2 49.152 128 6144 16 8 0 4 48 64 3.072 32 16 2 2048 1024 2 49.152 128 6144 16 8 0 4	256	11.2896	90.3168	2	5.645	16	16	1	2048	1024	2	45.1584	128	5644.8	16	8	0	4	1411.2		
44.1 768 33.8688 90.3168 3 11.29 8 8 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 44.1 1024 45.1584 90.3168 3 15.053 6 6 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 48 32 1.536 98.304 1 1.536 64 32 2 2048 1024 2 49.152 128 6144 16 8 0 4 48 64 3.072 32 16 2 2048 1024 2 49.152 128 6144 16 8 0 4 48 128 6.144 98.304 1 6.144 16 16 1 2048 1024 2 49.152 128 6144 16 8 0 4 48	384	16.9344	90.3168	3	5.645	16	16	1	2048	1024	2	45.1584	128	5644.8	16	8	0	4	1411.2		
44.1 1024 45.1584 90.3168 3 15.053 6 6 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 48 32 1.536 98.304 1 1.536 64 32 2 2048 1024 2 49.152 128 6144 16 8 0 4 48 64 3.072 98.304 1 3.072 32 16 2 2048 1024 2 49.152 128 6144 16 8 0 4 48 128 6.144 98.304 1 6.144 16 16 1 2048 1024 2 49.152 128 6144 16 8 0 4 48 192 9.216 98.304 3 3.072 32 32 1 2048 1024 2 49.152 128 6144 16 8 <th< td=""><td>512</td><td>22.5792</td><td>90.3168</td><td>3</td><td>7.526</td><td>12</td><td>12</td><td>1</td><td>2048</td><td>1024</td><td>2</td><td>45.1584</td><td>128</td><td>5644.8</td><td>16</td><td>8</td><td>0</td><td>4</td><td>1411.2</td></th<>	512	22.5792	90.3168	3	7.526	12	12	1	2048	1024	2	45.1584	128	5644.8	16	8	0	4	1411.2		
48 32 1.536 98.304 1 1.536 64 32 2 2048 1024 2 49.152 128 6144 16 8 0 4 48 64 3.072 98.304 1 3.072 32 16 2 2048 1024 2 49.152 128 6144 16 8 0 4 48 128 6.144 98.304 1 6.144 16 16 1 2048 1024 2 49.152 128 6144 16 8 0 4 48 192 9.216 98.304 3 3.072 32 32 32 1 2048 1024 2 49.152 128 6144 16 8 0 4 48 192 9.216 98.304 3 3.072 32 32 1 2048 1024 2 49.152 128 6144 16 8 0 4 48 256 12.288 98.304 2 6.144	768	33.8688	90.3168	3	11.29	8	8	1	2048	1024	2	45.1584	128	5644.8	16	8	0	4	1411.2		
48 64 3.072 98.304 1 3.072 32 16 2 2048 1024 2 49.152 128 6144 16 8 0 4 48 128 6.144 98.304 1 6.144 16 16 1 2048 1024 2 49.152 128 6144 16 8 0 4 48 192 9.216 98.304 3 3.072 32 32 1 2048 1024 2 49.152 128 6144 16 8 0 4 48 192 9.216 98.304 3 3.072 32 32 1 2048 1024 2 49.152 128 6144 16 8 0 4 48 256 12.288 98.304 2 6.144 16 16 1 2048 1024 2 49.152 128 6144 16 8 0 <td>1024</td> <td>45.1584</td> <td>90.3168</td> <td>3</td> <td>15.053</td> <td>6</td> <td>6</td> <td>1</td> <td>2048</td> <td>1024</td> <td>2</td> <td>45.1584</td> <td>128</td> <td>5644.8</td> <td>16</td> <td>8</td> <td>0</td> <td>4</td> <td>1411.2</td>	1024	45.1584	90.3168	3	15.053	6	6	1	2048	1024	2	45.1584	128	5644.8	16	8	0	4	1411.2		
48 128 6.144 98.304 1 6.144 16 16 1 2048 1024 2 49.152 128 6144 16 8 0 4 48 192 9.216 98.304 3 3.072 32 32 1 2048 1024 2 49.152 128 6144 16 8 0 4 48 256 12.288 98.304 2 6.144 16 16 1 2048 1024 2 49.152 128 6144 16 8 0 4 48 384 18.432 98.304 3 6.144 16 16 1 2048 1024 2 49.152 128 6144 16 8 0 4	32	1.536	98.304	1	1.536	64	32	2	2048	1024	2	49.152	128	6144	16	8	0	4	1536		
48 192 9.216 98.304 3 3.072 32 32 1 2048 1024 2 49.152 128 6144 16 8 0 4 48 256 12.288 98.304 2 6.144 16 16 1 2048 1024 2 49.152 128 6144 16 8 0 4 48 384 18.432 98.304 3 6.144 16 16 1 2048 1024 2 49.152 128 6144 16 8 0 4	64	3.072	98.304	1	3.072	32	16	2	2048	1024	2	49.152	128	6144	16	8	0	4	1536		
48 256 12.288 98.304 2 6.144 16 16 1 2048 1024 2 49.152 128 6144 16 8 0 4 48 384 18.432 98.304 3 6.144 16 16 1 2048 1024 2 49.152 128 6144 16 8 0 4	128	6.144	98.304	1	6.144	16	16	1	2048	1024	2	49.152	128	6144	16	8	0	4	1536		
48 384 18.432 98.304 3 6.144 16 16 1 2048 1024 2 49.152 128 6144 16 8 0 4	192	9.216	98.304	3	3.072	32	32	1	2048	1024	2	49.152	128	6144	16	8	0	4	1536		
	256	12.288	98.304	2	6.144	16	16	1	2048	1024	2	49.152	128	6144	16	8	0	4	1536		
48 512 24.576 98.304 3 8.192 12 12 1 2048 1024 2 49.152 128 6144 16 8 0 4	384	18.432	98.304	3	6.144	16	16	1	2048	1024	2	49.152	128	6144	16	8	0	4	1536		
	512	24.576	98.304	3	8.192	12	12	1	2048	1024	2	49.152	128	6144	16	8	0	4	1536		
48 768 36.864 98.304 3 12.288 8 8 1 2048 1024 2 49.152 128 6144 16 8 0 4	768	36.864	98.304	3	12.288	8	8	1	2048	1024	2	49.152	128	6144	16	8	0	4	1536		

106 Submit Documentation Feedback Copyright © 2012–2018, Texas Instruments Incorporated

Table 131. Recommended Clock Divider Settings for PLL as Master Clock (VREF Mode) (continued)

f _S (kHz)	RSCK	SCK (MHz)	PLL VCO (MHz)	Р	PLL REF (MHz)	M = K*R	K = J.D	R	PLL f _s	DSP f _S	NMAC	DSP CLK (MHz)	MOD f _s	MOD F (kHz)	NDAC	DOSR	% ERROR	NCP	CP F (kHz)
48	1024	49.152	98.304	3	16.384	6	6	1	2048	1024	2	49.152	128	6144	16	8	0	4	1536
96	32	3.072	98.304	1	3.072	32	16	2	1024	512	2	49.152	64	6144	16	4	0	4	1536
96	48	4.608	98.304	3	1.536	64	32	2	1024	512	2	49.152	64	6144	16	4	0	4	1536
96	64	6.144	98.304	1	6.144	16	8	2	1024	512	2	49.152	64	6144	16	4	0	4	1536
96	128	12.288	98.304	2	6.144	16	16	1	1024	512	2	49.152	64	6144	16	4	0	4	1536
96	192	18.432	98.304	3	6.144	16	16	1	1024	512	2	49.152	64	6144	16	4	0	4	1536
96	256	24.576	98.304	4	6.144	16	16	1	1024	512	2	49.152	64	6144	16	4	0	4	1536
96	384	36.864	98.304	6	6.144	16	16	1	1024	512	2	49.152	64	6144	16	4	0	4	1536
96	512	49.152	98.304	8	6.144	16	16	1	1024	512	2	49.152	64	6144	16	4	0	4	1536
192	32	6.144	98.304	1	6.144	16	8	2	512	256	2	49.152	32	6144	16	2	0	4	1536
192	48	9.216	98.304	3	3.072	32	16	2	512	256	2	49.152	32	6144	16	2	0	4	1536
192	64	12.288	98.304	1	12.288	8	4	2	512	256	2	49.152	32	6144	16	2	0	4	1536
192	128	24.576	98.304	2	12.288	8	8	1	512	256	2	49.152	32	6144	16	2	0	4	1536
192	192	36.864	98.304	3	12.288	8	8	1	512	256	2	49.152	32	6144	16	2	0	4	1536
192	256	49.152	98.304	4	12.288	8	8	1	512	256	2	49.152	32	6144	16	2	0	4	1536
384	32	12.288	98.304	2	6.144	16	8	2	256	128	2	49.152	16	6144	16	1	0	4	1536
384	48	18.432	98.304	3	6.144	16	8	2	256	128	2	49.152	16	6144	16	1	0	4	1536
384	64	24.576	98.304	2	12.288	8	4	2	256	128	2	49.152	16	6144	16	1	0	4	1536
384	128	49.152	98.304	4	12.288	8	8	1	256	128	2	49.152	16	6144	16	1	0	4	1536

Copyright © 2012–2018, Texas Instruments Incorporated

Submit Documentation Feedback

Table 132. Recommended Clock Divider Settings for PLL as Master Clock (VCOM Mode)

f _S (kHz)	RSCK	SCK (MHz)	PLL VCO (MHz)	Р	PLL REF (MHz)	M = K*R	K = J.D	R	PLL f _s	DSP f _s	NMAC	DSP CLK (MHz)	MOD f _s	MOD F (kHz)	NDAC	DOSR	% ERROR	NCP	CP F (kHz)
8	128	1.024	73.728	1	1.024	72	36	2	9216	768	12	6.144	768	6144	12	48	0	4	1536
8	192	1.536	73.728	1	1.536	48	24	2	9216	768	12	6.144	768	6144	12	48	0	4	1536
8	256	2.048	73.728	1	2.048	36	36	1	9216	768	12	6.144	768	6144	12	48	0	4	1536
8	384	3.072	73.728	1	3.072	24	12	2	9216	768	12	6.144	768	6144	12	48	0	4	1536
8	512	4.096	73.728	2	2.048	36	36	1	9216	768	12	6.144	768	6144	12	48	0	4	1536
8	768	6.144	73.728	3	2.048	36	36	1	9216	768	12	6.144	768	6144	12	48	0	4	1536
8	1024	8.192	73.728	4	2.048	36	36	1	9216	768	12	6.144	768	6144	12	48	0	4	1536
8	1152	9.216	73.728	6	1.536	48	48	1	9216	768	12	6.144	768	6144	12	48	0	4	1536
8	1536	12.288	73.728	6	2.048	36	36	1	9216	768	12	6.144	768	6144	12	48	0	4	1536
8	2048	16.384	73.728	8	2.048	36	36	1	9216	768	12	6.144	768	6144	12	48	0	4	1536
8	3072	24.576	73.728	12	2.048	36	36	1	9216	768	12	6.144	768	6144	12	48	0	4	1536
11.025	128	1.4112	84.672	1	1.411	60	30	2	7680	960	8	10.584	512	5644.8	15	32	0	4	1411.2
11.025	192	2.1168	84.672	1	2.117	40	10	4	7680	960	8	10.584	512	5644.8	15	32	0	4	1411.2
11.025	256	2.8224	84.672	1	2.822	30	30	1	7680	960	8	10.584	512	5644.8	15	32	0	4	1411.2
11.025	384	4.2336	84.672	2	2.117	40	20	2	7680	960	8	10.584	512	5644.8	15	32	0	4	1411.2
11.025	512	5.6448	84.672	2	2.822	30	30	1	7680	960	8	10.584	512	5644.8	15	32	0	4	1411.2
11.025	768	8.4672	84.672	3	2.822	30	30	1	7680	960	8	10.584	512	5644.8	15	32	0	4	1411.2
11.025	1024	11.2896	84.672	4	2.822	30	30	1	7680	960	8	10.584	512	5644.8	15	32	0	4	1411.2
11.025	1152	12.7008	84.672	6	2.117	40	20	2	7680	960	8	10.584	512	5644.8	15	32	0	4	1411.2
11.025	1536	16.9344	84.672	8	2.117	40	40	1	7680	960	8	10.584	512	5644.8	15	32	0	4	1411.2
11.025	2048	22.5792	84.672	8	2.822	30	30	1	7680	960	8	10.584	512	5644.8	15	32	0	4	1411.2
11.025	3072	33.8688	84.672	8	4.234	20	20	1	7680	960	8	10.584	512	5644.8	15	32	0	4	1411.2
16	64	1.024	73.728	1	1.024	72	36	2	4608	768	6	12.288	384	6144	12	24	0	4	1536
16	128	2.048	73.728	1	2.048	36	36	1	4608	768	6	12.288	384	6144	12	24	0	4	1536
16	192	3.072	73.728	1	3.072	24	24	1	4608	768	6	12.288	384	6144	12	24	0	4	1536
16	256	4.096	73.728	2	2.048	36	36	1	4608	768	6	12.288	384	6144	12	24	0	4	1536
16	384	6.144	73.728	3	2.048	36	36	1	4608	768	6	12.288	384	6144	12	24	0	4	1536
16	512	8.192	73.728	4	2.048	36	36	1	4608	768	6	12.288	384	6144	12	24	0	4	1536
16	768	12.288	73.728	6	2.048	36	36	1	4608	768	6	12.288	384	6144	12	24	0	4	1536
16	1024	16.384	73.728	8	2.048	36	36	1	4608	768	6	12.288	384	6144	12	24	0	4	1536
16	1152	18.432	73.728	9	2.048	36	36	1	4608	768	6	12.288	384	6144	12	24	0	4	1536
16	1536	24.576	73.728	8	3.072	24	24	1	4608	768	6	12.288	384	6144	12	24	0	4	1536
16	2048	32.768	73.728	8	4.096	18	18	1	4608	768	6	12.288	384	6144	12	24	0	4	1536
16	3072	49.152	73.728	8	6.144	12	12	1	4608	768	6	12.288	384	6144	12	24	0	4	1536
22.05	64	1.4112	84.672	1	1.411	60	30	2	3840	960	4	21.168	256	5644.8	15	16	0	4	1411.2
22.05	128	2.8224	84.672	1	2.822	30	30	1	3840	960	4	21.168	256	5644.8	15	16	0	4	1411.2
22.05	192	4.2336	84.672	3	1.411	60	30	2	3840	960	4	21.168	256	5644.8	15	16	0	4	1411.2
22.05	256	5.6448	84.672	2	2.822	30	30	1	3840	960	4	21.168	256	5644.8	15	16	0	4	1411.2

108 Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

Table 132. Recommended Clock Divider Settings for PLL as Master Clock (VCOM Mode) (continued)

((LUL) DOOK SCK PLL VCO				DI L DEE							DOD OLK	•	MODE	, (0D F	
f _S (kHz)	RSCK	(MHz)	(MHz)	Р	PLL REF (MHz)	M = K*R	K = J.D	R	PLL f _s	DSP f _s	NMAC	DSP CLK (MHz)	MOD f _s	MOD F (kHz)	NDAC	DOSR	% ERROR	NCP	CP F (kHz)
22.05	384	8.4672	84.672	3	2.822	30	30	1	3840	960	4	21.168	256	5644.8	15	16	0	4	1411.2
22.05	512	11.2896	84.672	2	5.645	15	15	1	3840	960	4	21.168	256	5644.8	15	16	0	4	1411.2
22.05	768	16.9344	84.672	3	5.645	15	15	1	3840	960	4	21.168	256	5644.8	15	16	0	4	1411.2
22.05	1024	22.5792	84.672	4	5.645	15	15	1	3840	960	4	21.168	256	5644.8	15	16	0	4	1411.2
22.05	1152	25.4016	84.672	9	2.822	30	30	1	3840	960	4	21.168	256	5644.8	15	16	0	4	1411.2
22.05	1536	33.8688	84.672	8	4.234	20	20	1	3840	960	4	21.168	256	5644.8	15	16	0	4	1411.2
22.05	2048	45.1584	84.672	8	5.645	15	15	1	3840	960	4	21.168	256	5644.8	15	16	0	4	1411.2
32	32	1.024	73.728	1	1.024	72	36	2	2304	768	3	24.576	192	6144	12	12	0	4	1536
32	48	1.536	73.728	1	1.536	48	12	4	2304	768	3	24.576	192	6144	12	12	0	4	1536
32	64	2.048	73.728	1	2.048	36	18	2	2304	768	3	24.576	192	6144	12	12	0	4	1536
32	128	4.096	73.728	2	2.048	36	36	1	2304	768	3	24.576	192	6144	12	12	0	4	1536
32	192	6.144	73.728	3	2.048	36	36	1	2304	768	3	24.576	192	6144	12	12	0	4	1536
32	256	8.192	73.728	4	2.048	36	36	1	2304	768	3	24.576	192	6144	12	12	0	4	1536
32	384	12.288	73.728	6	2.048	36	36	1	2304	768	3	24.576	192	6144	12	12	0	4	1536
32	512	16.384	73.728	8	2.048	36	36	1	2304	768	3	24.576	192	6144	12	12	0	4	1536
32	768	24.576	73.728	6	4.096	18	18	1	2304	768	3	24.576	192	6144	12	12	0	4	1536
32	1024	32.768	73.728	8	4.096	18	18	1	2304	768	3	24.576	192	6144	12	12	0	4	1536
32	1152	36.864	73.728	9	4.096	18	18	1	2304	768	3	24.576	192	6144	12	12	0	4	1536
32	1536	49.152	73.728	12	4.096	18	18	1	2304	768	3	24.576	192	6144	12	12	0	4	1536
44.1	32	1.4112	84.672	1	1.411	60	30	2	1920	960	2	42.336	128	5644.8	15	8	0	4	1411.2
44.1	48	2.1168	84.672	1	2.117	40	10	4	1920	960	2	42.336	128	5644.8	15	8	0	4	1411.2
44.1	64	2.8224	84.672	1	2.822	30	15	2	1920	960	2	42.336	128	5644.8	15	8	0	4	1411.2
44.1	128	5.6448	84.672	1	5.645	15	15	1	1920	960	2	42.336	128	5644.8	15	8	0	4	1411.2
44.1	192	8.4672	84.672	2	4.234	20	20	1	1920	960	2	42.336	128	5644.8	15	8	0	4	1411.2
44.1	256	11.2896	84.672	2	5.645	15	15	1	1920	960	2	42.336	128	5644.8	15	8	0	4	1411.2
44.1	384	16.9344	84.672	3	5.645	15	15	1	1920	960	2	42.336	128	5644.8	15	8	0	4	1411.2
44.1	512	22.5792	84.672	4	5.645	15	15	1	1920	960	2	42.336	128	5644.8	15	8	0	4	1411.2
44.1	768	33.8688	84.672	6	5.645	15	15	1	1920	960	2	42.336	128	5644.8	15	8	0	4	1411.2
44.1	1024	45.1584	84.672	8	5.645	15	15	1	1920	960	2	42.336	128	5644.8	15	8	0	4	1411.2
48	32	1.536	73.728	1	1.536	48	24	2	1536	768	2	36.864	128	6144	12	8	0	4	1536
48	48	2.304	73.728	1	2.304	32	8	4	1536	768	2	36.864	128	6144	12	8	0	4	1536
48	64	3.072	73.728	1	3.072	24	12	2	1536	768	2	36.864	128	6144	12	8	0	4	1536
48	128	6.144	73.728	2	3.072	24	24	1	1536	768	2	36.864	128	6144	12	8	0	4	1536
48	192	9.216	73.728	3	3.072	24	24	1	1536	768	2	36.864	128	6144	12	8	0	4	1536
48	256	12.288	73.728	4	3.072	24	24	1	1536	768	2	36.864	128	6144	12	8	0	4	1536
48	384	18.432	73.728	6	3.072	24	24	1	1536	768	2	36.864	128	6144	12	8	0	4	1536
48	512	24.576	73.728	4	6.144	12	12	1	1536	768	2	36.864	128	6144	12	8	0	4	1536
48	768	36.864	73.728	6	6.144	12	12	1	1536	768	2	36.864	128	6144	12	8	0	4	1536

Submit Documentation Feedback

109

Table 132. Recommended Clock Divider Settings for PLL as Master Clock (VCOM Mode) (continued)

f _S (kHz)	RSCK	SCK (MHz)	PLL VCO (MHz)	Р	PLL REF (MHz)	M = K*R	K = J.D	R	PLL f _s	DSP f _S	NMAC	DSP CLK (MHz)	MOD f _s	MOD F (kHz)	NDAC	DOSR	% ERROR	NCP	CP F (kHz)
48	1024	49.152	73.728	8	6.144	12	12	1	1536	768	2	36.864	128	6144	12	8	0	4	1536
96	32	3.072	73.728	2	1.536	48	24	2	768	384	2	36.864	64	6144	12	4	0	4	1536
96	48	4.608	73.728	3	1.536	48	24	2	768	384	2	36.864	64	6144	12	4	0	4	1536
96	64	6.144	73.728	2	3.072	24	12	2	768	384	2	36.864	64	6144	12	4	0	4	1536
96	128	12.288	73.728	4	3.072	24	24	1	768	384	2	36.864	64	6144	12	4	0	4	1536
96	192	18.432	73.728	6	3.072	24	24	1	768	384	2	36.864	64	6144	12	4	0	4	1536
96	256	24.576	73.728	8	3.072	24	24	1	768	384	2	36.864	64	6144	12	4	0	4	1536
96	384	36.864	73.728	6	6.144	12	12	1	768	384	2	36.864	64	6144	12	4	0	4	1536
96	512	49.152	73.728	8	6.144	12	12	1	768	384	2	36.864	64	6144	12	4	0	4	1536
192	32	6.144	73.728	2	3.072	24	12	2	384	192	2	36.864	32	6144	12	2	0	4	1536
192	48	9.216	73.728	3	3.072	24	12	2	384	192	2	36.864	32	6144	12	2	0	4	1536
192	64	12.288	73.728	4	3.072	24	12	2	384	192	2	36.864	32	6144	12	2	0	4	1536
192	128	24.576	73.728	8	3.072	24	24	1	384	192	2	36.864	32	6144	12	2	0	4	1536
192	192	36.864	73.728	6	6.144	12	12	1	384	192	2	36.864	32	6144	12	2	0	4	1536
192	256	49.152	73.728	8	6.144	12	12	1	384	192	2	36.864	32	6144	12	2	0	4	1536
384	32	12.288	73.728	2	6.144	12	6	2	192	96	2	36.864	16	6144	12	1	0	4	1536
384	48	18.432	73.728	3	6.144	12	6	2	192	96	2	36.864	16	6144	12	1	0	4	1536
384	64	24.576	73.728	4	6.144	12	6	2	192	96	2	36.864	16	6144	12	1	0	4	1536
384	128	49.152	73.728	8	6.144	12	12	1	192	96	2	36.864	16	6144	12	1	0	4	1536

Product Folder Links: PCM5121 PCM5122

0 Submit Documentation Feedback

Table 133. Recommended Clock Divider Settings for SCK as Master Clock

f _S (kHz)	RSCK	SCK (MHz)	DSP f _s	NMAC	DSP CLK (MHz)	MOD f _s	MOD f (kHz)	NDAC	DOSR	NCP	CP f (kHz)
8	256	2.048	256	1	2.048	256	2048	1	16	2	1024
8	384	3.072	384	1	3.072	384	3072	1	24	2	1536
8	512	4.096	512	1	4.096	512	4096	1	32	2	2048
8	768	6.144	768	1	6.144	768	6144	1	48	4	1536
8	1024	8.192	1024	1	8.192	512	4096	2	32	2	2048
8	1152	9.216	1152	1	9.216	576	4608	2	36	4	1152
8	1536	12.288	1536	1	12.288	768	6144	2	48	4	1536
8	2048	16.384	2048	1	16.384	512	4096	4	32	2	2048
8	3072	24.576	3072	1	24.576	768	6144	4	48	4	1536
11.025	256	2.8224	256	1	2.822	256	2822.4	1	16	2	1411.2
11.025	384	4.2336	384	1	4.234	384	4233.6	1	24	4	1058.4
11.025	1152	12.7008	1152	1	12.701	384	4233.6	3	24	4	1058.4
11.025	1536	16.9344	1536	1	16.934	512	5644.8	3	32	4	1411.2
11.025	2048	22.5792	2048	1	22.579	512	5644.8	4	32	4	1411.2
11.025	3072	33.8688	3072	1	33.869	512	5644.8	6	32	4	1411.2
16	256	4.096	256	1	4.096	256	4096	1	16	2	2048
16	384	6.144	384	1	6.144	384	6144	1	24	4	1536
16	512	8.192	512	1	8.192	256	4096	2	16	2	2048
16	768	12.288	768	1	12.288	384	6144	2	24	4	1536
16	1152	18.432	1152	1	18.432	288	4608	4	18	4	1152
16	1536	24.576	1536	1	24.576	384	6144	4	24	4	1536
16	2048	32.768	2048	1	32.768	256	4096	8	16	2	2048
16	3072	49.152	3072	1	49.152	384	6144	8	24	4	1536
22.05	256	5.6448	256	1	5.645	256	5644.8	1	16	4	1411.2
22.05	384	8.4672	384	1	8.467	192	4233.6	2	12	4	1058.4
22.05	512	11.2896	512	1	11.29	256	5644.8	2	16	4	1411.2
22.05	768	16.9344	768	1	16.934	256	5644.8	3	16	4	1411.2
22.05	1024	22.5792	1024	1	22.579	256	5644.8	4	16	4	1411.2
22.05 22.05	1152 1536	25.4016 33.8688	1152 1536	1	25.402 33.869	192 256	4233.6 5644.8	6	12 16	4	1058.4 1411.2
22.05	2048	45.1584	2048	1	45.158	256	5644.8	8	16	4	1411.2
32	256	8.192	256	1	8.192	128	4096	2	8	2	2048
32	384	12.288	384	1	12.288	128	4096	3	8	2	2048
32	512	16.384	512	1	16.384	128	4096	4	8	2	2048
32	768	24.576	768	1	24.576	128	4096	6	8	2	2048
32	1024	32.768	1024	1	32.768	128	4096	8	8	2	2048
32	1152 1536	36.864 49.152	1152 1536	1	36.864 49.152	128 128	4096 4096	9	8	4	1024 1024
44.1	256	11.2896	256	1	11.29	128	5644.8	2	8	4	1411.2
44.1	384	16.9344	384	1	16.934	128	5644.8	3	8	4	1411.2
44.1	512	22.5792	512	1	22.579	128	5644.8	4	8	4	1411.2
44.1	768	33.8688	768	1	33.869	128	5644.8	6	8	4	1411.2
44.1	1024	45.1584	1024	1	45.158	128	5644.8	8	8	4	1411.2
48	256	12.288	256	1	12.288	128	6144	2	8	4	1536
48	384	18.432	384	1	18.432	128	6144	3	8	4	1536
48	512	24.576	512	1	24.576	128	6144	4	8	4	1536
48	768	36.864	768	1	36.864	128	6144	6	8	4	1536
48	1024	49.152	1024	1	49.152	128	6144	8	8	4	1536
96	192	18.432	192	1	18.432	48	4608	4	3	6	768
96	256	24.576	256	1	24.576	64	6144	4	4	4	1536
96	384	36.864	384	1	36.864	64	6144	6	4	4	1536
96	512	49.152	512	1	49.152	64	6144	8	4	4	1536

Table 133. Recommended Clock Divider Settings for SCK as Master Clock (continued)

f _S (kHz)	RSCK	SCK (MHz)	DSP f _s	NMAC	DSP CLK (MHz)	MOD f _s	MOD f (kHz)	NDAC	DOSR	NCP	CP f (kHz)
192	128	24.576	128	1	24.576	32	6144	4	2	4	1536
192	192	36.864	192	1	36.864	32	6144	6	2	4	1536
192	256	49.152	256	1	49.152	32	6144	8	2	4	1536
384	64	24.576	64	1	24.576	16	6144	4	1	4	1536
384	128	49.152	128	1	49.152	16	6144	8	1	4	1536

12.1.3 Coefficient Data Formats

All mixer gain coefficients are 24-bit coefficients using a 4.20 number format. Numbers formatted as 4.20 numbers have 4 bits to the left of the binary point and 20 bits to the right of the binary point. If the most significant bit is logic 0, the number is a positive number. If the most significant bit is a logic 1, then the number is a negative number. In this case, every bit must be inverted, a 1 added to the result.

12.1.4 Power Down and Reset Behavior

Register values including those in the Coefficient Memory and Instruction Memory should remain when the device is put into power down mode. (PG0 Reg 0x02).

Register values in the device are reset to defaults when bit 0 or 4 of (Pg0, Reg 0x01) is set to 1. Please see the register description for more information.

Product Folder Links: PCM5121 PCM5122

13 Device and Documentation Support

13.1 Development Support

For development support, see the following:

- PCM512x/4x EVM User's Guide
- Purepath Studio

13.2 Documentation Support

4.2-VRMS DirectPath™. 114-dB Audio Stereo Differential-Output DAC data sheet

13.3 Related Links

Table 134 lists guick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 134. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
PCM5121	Click here	Click here	Click here	Click here	Click here
PCM5122	Click here	Click here	Click here	Click here	Click here

13.4 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

13.5 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

13.6 Trademarks

E2E is a trademark of Texas Instruments.

System Two Cascade, Audio Precision are trademarks of Audio Precision.

All other trademarks are the property of their respective owners.

13.7 Electrostatic Discharge Caution

Copyright © 2012-2018, Texas Instruments Incorporated

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.8 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

Product Folder Links: PCM5121 PCM5122

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, see the left-hand navigation.

Submit Documentation Feedback

Copyright © 2012–2018, Texas Instruments Incorporated

Product Folder Links: PCM5121 PCM5122

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
PCM5121PW	ACTIVE	TSSOP	PW	28	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-25 to 85	PCM5121	Samples
PCM5121PWR	ACTIVE	TSSOP	PW	28	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-25 to 85	PCM5121	Samples
PCM5122PW	ACTIVE	TSSOP	PW	28	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-25 to 85	PCM5122	Samples
PCM5122PWR	ACTIVE	TSSOP	PW	28	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-25 to 85	PCM5122	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

10-Dec-2020

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Dec-2023

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
PCM5121PWR	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
PCM5122PWR	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Dec-2023

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
PCM5121PWR	TSSOP	PW	28	2000	350.0	350.0	43.0
PCM5122PWR	TSSOP	PW	28	2000	350.0	350.0	43.0

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Dec-2023

TUBE

*All dimensions are nominal

	Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
	PCM5121PW	PW	TSSOP	28	50	530	10.2	3600	3.5
ĺ	PCM5122PW	PW	TSSOP	28	50	530	10.2	3600	3.5

PW (R-PDSO-G28)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G28)

PLASTIC SMALL OUTLINE

NOTES:

- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated