Dynamical systems. Final exam 26-01-2005

- 1. We consider the system $\dot{x} = x$, $\dot{y} = 1 + y$. Write its general solution and represent its phase portrait.
 - 2. Represent the phase portrait of $\dot{x} = 2x \sin x$.
- 3. Write the general solution of $y'' a^2y = e^{bx}$, where a > 0 and $b \in \mathbb{R}$ are parameters.
 - 4. a) Verify that $y_1 = x$ and $y_2 = e^{-2x}$ are solutions of (2x+1)y'' + 4xy' 4y = 0.
 - b) Find the maximal solution of the Initial Value Problem: $(2x+1)y'' + 4xy' 4y = (2x+1)^2$, y(0) = 1, y'(0) = 0.
- 5. Write the definitions for a fixed point of a scalar map for an asymptotically stable fixed point.
- 6. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous map and $\eta, \eta^* \in \mathbb{R}$ be such that $f^n(\eta) \to \eta^*$ as $n \to \infty$. Prove that η^* is a fixed point of f.
- 7. Let $\eta \in \mathbb{R}$ be such that $|\eta|$ is sufficiently small. Study the convergence of the sequence given by the recurrence

of the sequence given by the recurrence
$$x_{n+1} = \frac{1}{2}x_n - 3x_n^3$$
, $n \ge 0$, $x_0 = \eta$.