ANII: Solicitud de Becas

Beca

Código: INI_X_2010_2_3069

Estado: En elaboración Ingreso: 06/03/2011

Última Modificación: 14/03/2011

Datos de Identificación

Llamado: INI 2010

Modalidad: INICIACIÓN A LA INVESTIGACIÓN

Lugar de Realización: NACIONAL

Tipo de Beca: INICIACION A LA INVESTIGACION

Subtipo de Beca: AREAS ESTRATEGICAS

Area Tecnologica

Tecnología de la Información y las Comunicaciones

Sectores / Nucleos

Medio Ambiente y Servicios ambientales Producción Agropecuaria y Agroindustrial

Software, Servicios Informáticos y Producción Audiovisual

Área del Conocimiento: Ingeniería y Tecnología

Sub Área del Conocimiento: Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la

Información

Disciplina: Control Automático y Robótica Especialidad: Sistemas Autónomos y SLAM

Fecha Prevista de Inicio: Abril 2011

Duración: 12 Meses

Dedicación Horaria Semanal: 20

Institución Donde Llevará Adelante la Beca

País: Uruguay Tipo: PUBLICA

1º Nivel: Universidad de la República

2º Nivel: Facultad de Ingeniería - UDeLaR3º Nivel / Institución: Instituto de Computación

Sigla: InCo

Ciudad: Montevideo

Dirección: Julio Herrera y Reissig 565

Teléfono: (05982) 711.0698 Página Web: www.fing.edu.uy

Nombre de la Persona de Contacto: Gonzalo Apellido de la Persona de Contacto: Tejera

E-mail de la Persona de Contacto: gtejera@fing.edu.uy

Especificación de la beca

Título del Proyecto: SLAM: Relevamiento del EDA y sus aplicaciones en la actividad agropecuaria Descripción del Plan de Trabajo:

Resumen del Proyecto

Este proyecto pretende abordar el problema de localización y cartografía simultánea (SLAM), que es una técnica utilizada por los robots y vehículos autónomos para, a partir de la exploración de un entorno parcial o totalmente desconocido, construir un mapa y al mismo tiempo hacer el seguimiento de su posición actual. Algunas de las técnicas estadísticas utilizadas en SLAM incluyen filtros de Kalman, métodos Monte Carlo y métodos de exploración/adecuación de la gama de datos. Existen también modelos de cognición espacial y navegación en ratas, que comprenden diversos módulos funcionales que capturan algunas propiedades de las estructuras del cerebro de la rata involucradas en el aprendizaje y la memoria. En este contexto se pretende estudiar las bibliotecas existentes [2], compararlas y generar, en base a estas, una plataforma flexible, simple y robusta. Se podrá trabajar con el robot Khepera III [3], la plataforma robótica Butiá [4] o el robot aspiradora Roomba 562 Pet Series [5].

Datos del estado del proyecto Fecha Inicio: 1 de Abril de 2011 Fecha Fin: 1 de Abril de 2012

Duración: 12 meses

Avance: No ha comenzado aún

Objetivos

Investigar el estado del arte respecto al problema de localización y generación de mapas Estudiar las herramientas existentes, realizar pruebas de forma de poder compararlas identificando y ponderando los aspectos más importantes. El estudio de estas herramientas se hará en forma simulada en una primera etapa. Luego se realizarán pruebas de concepto de los aspectos más importantes sobre alguna de las plataformas disponibles en el laboratorio de robótica de la Facultad de Ingeniería (Robot Butiá, Roomba, Khepera).

Generar una plataforma flexible de SLAM mediante la realización de un pequeño aporte a una de las tecnologías existente o la combinación de varias de ellas.

Realizar un estudio preliminar de la aplicabilidad de las técnicas relevadas a una actividad productiva de Uruguay en el ámbito agrario.

Resultados Esperados

Realizar un relevamiento del estado del arte sobre el problema de SLAM.

Completar una buena evaluación de las bibliotecas mencionadas.

Se espera generar dos documentos cómo salidas importantes del proyecto. El documento del estado del arte y la documentación asociada a la plataforma flexible construida.

Estudio de alto nivel de la aplicabilidad de lo estudiado a una actividad productiva en el ámbito agrario de Uruguay.

Cronograma

Tiempo Actividad

60 días Relevar sobre el estado del arte.

50 días Estudiar las bibliotecas. Realizar pruebas con las mismas y evaluarlas.

40 días Realizar pruebas de concepto con los robots reales.

60 días Crear una plataforma flexible en base a los conocimientos adquiridos.

40 días Estudio de aplicabilidad a actividad productiva en Uruguay

50 días Preparación de presentación final de resultados

Relevamiento y comprensión del problema

Durante esta fase se realizará un proceso intensivo en: análisis del problema, relevamiento de las soluciones propuestas hasta la actualidad, consolidación y sistematización en un documento que refleje el estado del arte para el problema de SLAM.

El análisis de cada solución constará de cuatro fases bien diferenciadas:

- Estudio del marco teórico de la solución
- Estudio de la implementación propuesta
- Evaluación de la factibilidad y conveniencia de probarla en una plataforma robótica real o en un simulador
- Evaluación de dicha solución.

El estudio del marco teórico permitirá entender los principios teóricos que dan base a la solución, para luego comprender el funcionamiento de la misma. Apuntaremos a utilizar como fuente principal la bibliografía más reciente (artículos, libros, noticias publicadas online) relacionada con el tópico del proyecto.

El estudio de la implementación consistirá en una revisión del código fuente y una familiarización con el entorno de funcionamiento de cada solución propuesta.

Debido a que no es posible probar todas las soluciones propuestas en plataformas robóticas, realizaremos una evaluación de la factibilidad de probar cada solución en estos entornos de trabajo.

Para realizar pruebas de desempeño (Benchmarking) de las soluciones de SLAM existentes seguiremos una metodología alineada con lo propuesto por John Hallam [6].

En las pruebas de desempeño tomaremos un enfoque basado en el desempeño final del sistema como se propone en [7], y evaluaremos aspectos acorde a los evaluados en [8]:

- Utilización de recursos.

- Precisión de localización contra localización real (ground truth)
- Robustez ante ruido en los sensores, y
- Habilidad para manejar ciclos (loop-closure).

Implementación

La implementación se realizará siguiendo un esquema iterativo incremental que tendrá como principal objetivo la creación de un prototipo que sirva de prueba de concepto sobre una posible mejora a una solución existente, o la combinación de varias de ellas.

El lenguaje a utilizar estará condicionado al lenguaje utilizado en la o las soluciones tomadas como base para este trabajo y el soporte brindado por las plataformas.

Estudio de aplicabilidad de las técnicas relevadas a una actividad productiva
Este estudio comenzará con la selección de una actividad del ámbito productivo agrario del
Uruguay a la que podría aplicar la utilización de sistemas robóticos autónomos para el
desempeño de algunas tareas que esta actividad implica.

Luego se realizarán reuniones de relevamiento con productores experimentados en la actividad seleccionada para determinar la factibilidad de la aplicación de soluciones robóticas a esta. Finalmente, se realizará un estudio de alto nivel del posible impacto de la aplicación de este tipo de soluciones, incluyendo cambios en la productividad, los costos, los riesgos y la escalabilidad.

Referencias bibliograficas

- [1] http://svnbook.red-bean.com/, accedida en Marzo 2011.
- [2] http://babel.isa.uma.es/mrpt/ y http://openslam.org/, accedidas en Marzo 2011.
- [3] http://www.k-team.com, accedida en Marzo 2011.
- [4] www.fing.edu.uy/inco/proyectos/butia, accedida en Marzo 2011.
- [5] www.irobot.com, accedida en Marzo 2011.
- [6] General Guidelines for Robotics Papers using Experiments, accedida en Marzo 2011.
- [7] http://www.heronrobots.com/EuronGEMSig/Downloads/Prague/GEMBenchForum-SLAM.pdf, accedida en Marzo 2011.
- [8] http://www-mip.onera.fr/annonces/CAR09/Jaulmes.pdf, accedida en Marzo 2011.

Aporte a las Áreas Estratégicas:

Los robots, y en particular los sistemas móviles autónomos, pueden ser utilizados para substituir a los trabajadores en tareas peligrosas, pesadas, fatigantes o monótonas. La robótica móvil autónoma comenzó a surgir en los últimos años como motivo de investigación en las universidades. El objetivo es que estos robots puedan moverse en el mundo de forma autónoma, es decir basándose principalmente en los conocimientos adquiridos durante la vida del robot, con un propósito determinado. Estos robots pueden ser empleados por ejemplo para actividades de riesgo como apagar incendios, vigilar una zona, recolectar rocas, limpiar desechos tóxicos o pueden utilizarse para actividades productivas como participar en el proceso productivo de una fábrica o realizar tareas agropecuarias.

El problema de localización y cartografía simultánea (SLAM), es una técnica utilizada por los robots y vehículos autónomos para crear un mapa dentro de un entorno desconocido y al mismo tiempo hacer el seguimiento de su posición actual, aumentando su autonomía y por ende su capacidad móvil. Algunas de las técnicas estadísticas utilizadas en SLAM incluyen filtros Kalman, Monte Carlo y utilización de técnicas de aprendizaje automático. Existen también varios modelos de cognición espacial y navegación basados en el estudio del comportamiento (etología) de las ratas, que comprenden diversos módulos funcionales que capturan algunas propiedades de las estructuras del cerebro de la rata involucradas en el aprendizaje y la memoria. En este marco, actualmente se llevan a cabo trabajos de investigación que constan en comprender los principios que subyacen al proceso de cognición espacial en las ratas para luego incorporar datos fisiológicos relativos a dicho proceso en una arquitectura robótica (por ej. RatSlam).

Existen actualmente en desarrollo sistemas robóticos destinados a participar en actividades productivas en el ámbito agrario, como por ejemplo Agrobot [1] o el robot de Energid [2]. La investigación en las tecnologías de SLAM podría permitir aumentar la eficiencia de estas soluciones o permitir nuevas aplicaciones hasta ahora no factibles. Además, mejoras en los sistemas de ubicación y generación de mapas podría permitir la implementación de estos sistemas de forma distribuida, aumentando su robustes y disminuyendo los costos de producción y mantenimiento.

De esta manera, se busca aportar mejoras a los sistemas actuales de SLAM para aumentar la movilidad y autonomía de los sistemas robóticos, permitiendo utilizar la robótica para la solución de los problemas antes mencionados.

Referencias bibliograficas

[1] Agrobot - http://www.agrobot.es

[2] Citrus Harvester - http://www.energid.com/robotic-citrus-harvester.htm

Personas Involucradas

Solicitante:

- Apellidos: LLOFRIU ALONSO

Nombres: Martin IgnacioC.Identidad: 43357725

- País de Residencia: Uruguay

- Fecha de Nacimiento: 23/09/1987

- País de Nacimiento: Uruguay

- Departamento de Nacimiento: Montevideo

- Sexo: Masculino

- Dirección: Haya de la torre 1548

- Departamento: Montevideo

Ciudad: MontevideoCódigo Postal: 11200

- Institución:

- País: Uruguay- Tipo: PUBLICA

- 1º Nivel: Universidad de la República

- 2º Nivel: Facultad de Ingeniería - UDeLaR

- 3º Nivel / Institución: Instituto de Computación

- Cargo: Estudiante

- Teléfono de Contacto: 098600335

- E-mail: mllofriu@gmail.com

Orientador:

Apellidos: TEJERA LÓPEZNombres: Gonzalo DanielC.Identidad: 37514248

- País de Residencia: Uruguay

- Institución:

País: UruguayTipo: PUBLICA

- 1º Nivel: Universidad de la República

- 2º Nivel: Facultad de Ingeniería - UDeLaR

- 3º Nivel / Institución: InCo - MINA

- Cargo: Profesor Adjunto, (Docente Grado 3 Titular, 40 horas semanales / Dedicación total)

- Teléfono de Contacto: 27114244 int 126

- E-mail: gtejera@fing.edu.uy

Co-orientador:

- Apellidos: BENAVIDES OLIVERA

- Nombres: Facundo

- C.Identidad: 33025188

- País de Residencia: Uruguay

- Institución:

País: UruguayTipo: PUBLICA

- 1º Nivel: Universidad de la República

- 2º Nivel: Facultad de Ingeniería - UDeLaR

- 3º Nivel / Institución: InCo - MINA

- Cargo: Profesor asistente (Docente Grado 2, 40 horas semanales / Dedicación total)

Teléfono de Contacto: 27122990E-mail: fbenavid@fing.edu.uy

Cronograma de Actividad

N 10	A . C . L . L	D Ita I.	01		
Nº	Actividad	Resultado	Observación		
		Esperado			
1	Investigación del	Documento del	Investigación		
	Estado del Arte	Estado del Arte	primaria sin		
			pruebas de campo		
2	Estudio de	Comprensión del	Se comprenderá el		
	bibliotecas	funcionamiento de	funcionamiento de		
	existentes	las bibliotecas	las bibliotecas		
		existentes	existentes y del		
			estado del arte de		
			las soluciones		
			existentes		
3	Pruebas de campo	Evaluación del	Se probarán las		
	en simuladores y	desempeño real de	bibliotecas sobre		
	robots reales	las bibliotecas	simuladores y		
		seleccionadas para	robots del		
		pruebas de campo	laboratorio de		
			robótica de		
			Facultad de		
			Ingeniería		
4	Generar plataforma	Plataforma de	Se busca aportar		
	de SLAM flexible	SLAM basada en	una nueva solución		
		una o varias de las	en función de la		
		bibliotecas	mejora de una		
		analizadas	biblioteca existente		
			o la combinación		
			de aspectos de		
			varias de las		
			soluciones		
			actuales		
5	Estudio de	Estudio de alto	Se elegirá una		
	aplicabilidad a	nivel de una forma	actividad		
	actividad	de aplicación del	productiva del		
	productiva en	SLAM a una	Uruguay a la que		
	Uruguay	actividad	pudiera aplicar el		
			-		

		productiva del	uso de la robótica y
		Uruguay	se realizará un
			estudio de alto
			nivel de la
			factibilidad de
			aplicar este tipo de
			soluciones y el
			posible impacto en
			la productividad,
			riesgos
			involucrados y
			capital de inversión
			necesario
6	Preparación de	Presentación de	
	presentación final	resultados	
	de resultados		

	2011					2012						
Nο	1	2	3	4	5	6	11	2	3	4	5	6
1		Х	х									
2				х								
3					x							
4						x	x					
5							x					
6								x				