

Gerardo Burgos

Pablo Marcelo Ferrero

Mauro Montrasi

Entendiendo nuestro negocio

Objetivo inmediato:

Determinar, de acuerdo al conjunto de datos seleccionado, (*Relevamiento de Usos de Suelo - 2017 - GCBA*) cómo se distribuyen los diferentes tipos de Usos de Suelo en el territorio de la Ciudad.

Entendiendo nuestro negocio

Objetivo a largo plazo:

Establecer la proyección de dichos usos y predecir los cambios en el mapa. Buscamos la disposición óptima de los Usos, en el tejido de la Ciudad.

Desafío 3

Workflow

EXTRACTING DATA

En primera
instancia, y una vez
fijado el objetivo a
lograr en el corto
plazo, buscamos
los conjuntos de
datasets
necesarios.

DATA PROCESING

Se eliminaron
columnas
irrelevantes y se
utilizaron métodos
reservados de
Python.
Visualizamos por
primera vez para
tener una mejor
aproximación.

DATA INTEGRATION

Procedimos a la unificación de los conjuntos de datos necesarios para validar la idea. Merge, replace, drop, concat, fillna, entre otros, de las librerias Pandas y Numpy.

ANALYTICAL MODELING

De acuerdo a nuestros datos, buscamos agrupar por categorías de manera relevante. A través del uso de modelos de clasificación KNeighborsClassifier, Cross Validation y

VALIDATION

Determinamos los algoritmos y aplicamos libreria ScikitLearn

DATA WRANGLING

DATASET Consolidado

ď.	LÁT	Long	COMUNA	PTCOM	DCOM	SUP_EDIF	ALTI	ALTF	AREA	1.00
AREA .	0.0014	0.065	-0.057	0.024	0.045	0.54	0.028	0.051	1	
ALIF.	0.11	0.31	-0.18	0.0041	0.27	0.21	0.73	1	0.051	0.75
AUTI SUP EDIF	0.061	0.18	-0.1	0.0024	0.15	0.11	1	0.73	0.028	0.50
	0.13	0.24	-0.14	0.045	0.17	1	0.11	0.21	0.54	0.25
DCOM P		0.48	-0.53	-0.2	1	0.17	0.15	0.27	0.045	- 0.00
PTCOM COMUNA	0.097	0.31	-0.085	1	-0.2	0.045	0.0024	0.0041	0.024	- 0.25
	0.43	-0.61	1	-0.085	-0.53	-0.14	-0.1	-0.18	-0.057	- 0.50
LONG	0.026	1	-0.61	0.31	0.48	0.24	0.18	0.31	0.065	- 0.75
Ā.	1	0.026	0.43	0.097	0.12	0.13	0.061	0.11	0.0014	

Corr variables s/dummies

PRIMER ACERCAMIENTO A LA VARIABLE PREDICTIVA

Optamos por la reducción de nuestra variableY, de modo que en un primer acercamiento contaba con mas de 500000 features. Finalmente, a traves de distintos pasos, damos cuenta que es posible englobarlos en 3 grandes categorías.

RESIDENCIAL, NO RESIDENCIAL, OBRA/LOTE.

VARIABLE Y.

De acuerdo con nuestro Dataframe, apuntamos a definir nuestra vector taget Y ('RAMA'), que nos habla sobre el Uso de Suelo en la matriz de features X, parcela de la ciudad.

Algoritmos

TRAIN, SPLIT, TEST.

Armamos los conjuntos de entrenamiento y test con una proporción 70-30 y una vez que el modelo está entrenado, vamos a predecir las etiquetas del conjunto de test

EVALUACIÓN, DESARROLLO Y PERFORMANCE

Calculamos accuracy sobre el conjunto de test, la matriz de confusión y visualizamos la performance.

PRUEBA 20 SAMPLES

PRECISION, ACCURACY, F1-SCORE

Elegimos el modelo óptimo que indique indicado cross validation

Instanciamos y entrenamos el modelo

Sensitivity, Specificity, Precision, Evaluamos qué accuracy obtenemos en train

Lo utilizamos para predecir en test

MATRIZ DE CONFUSIÓN

En cada iteración, instanciamos el modelo con un hiperparámetro distinto

cross_val_scores nos devuelve un array de 5 resultados, uno por cada partición que hizo automáticamente CV

Para cada valor de n_neighbours, creamos un diccionario con el valor de n_neighbours y la media y el desvío de los scores

Incorporamos los límites inferior y superior, restando y sumando el valor del desvío estándar, respectivamente

```
1 #El tema de este numero de Accuracy, es que es que sabemos que las clases intra variable no estan bien balanceadas,
```

Recall, Es el número de elementos identificados correctamente como positivos del total de positivos verdaderos.
print('Recall=',recall_score(y_test, y_pred,average='micro').round(2))

Recall= 0.86

print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
1	0.45	0.16	0.24	453
2	0.88	0.97	0.92	2847
accuracy			0.86	3300
macro avg	0.66	0.56	0.58	3300
weighted avg	0.82	0.86	0.83	3300

PASO 1

```
In [115]: ## Standarizamos la matriz de *features*
        from sklearn.preprocessing import StandardScaler
       scaler = StandardScaler()
       x1 = scaler.fit_transform(x1)
In [116]: # Verificamos que las variables ahora tengan media θ y desvío 1.
       print('Medias:', np.mean(x1, axis=0).round(2))
       print('Desvio:', np.std(x1, axis=0).round(2))
        0. 0. -0. 0. -0. 0. -0. 0. -0. 0. -0. 0. 0. 0. -0. 0. -0. 0.
        0. 0. 0. -0. 0. 0. 0. -0. 0. -0. 0. -0. 0. -0.]
        In [117]: # Importamos La clase
       from sklearn.linear_model import LogisticRegression
        # Instanciamos un objeto de esa clase
       logistic_regression = LogisticRegression()
        logistic_regression.fit(x1,y1)
Out[117]: LogisticRegression()
In [118]: logistic_regression.predict(x1)
Out[118]: array([2, 2, 2, ..., 2, 2, 2], dtype=int8)
In [119]: logistic_regression.predict_proba(x1).shape
Out[119]: (10000, 2)
       Donde la columna 0 es la probabilidad de pertenencia a la clase 0 y la columna 1 es la probabilidad de pertenencia a la clase 1
```

PASO 2

PASO 3

```
In [124]: # Usando numpy
          (y == y_pred).sum() / len(y)
Out[124]: 0.8665
In [125]: # Usando Scikit-Learn
          from sklearn.metrics import accuracy score
          accuracy_score(y, y_pred)
Out[125]: 0.8665
In [126]: logistic_regression.intercept_
Out[126]: array([2.06592299])
In [127]: logistic_regression.coef_
Out[127]: array([[ 0.03531311, -0.13597989, 0.1524142 , -0.11098254, -0.07857536,
                   0.06985277, -0.2629344 , -0.40912912, -0.09147308, -0.16642873,
                  -0.03964529, -0.02896097, -0.0702566, 0.08506617, 0.01695031,
                  -0.15109513, 0.04324969, -0.02326039, -0.09334519, -0.10139432,
                  -0.24861599, -0.02199634, -0.0246871 , 0.03307038, -0.14603362,
                  -0.05368589, 0.13524041, -0.01691365, 0.03923185, 0.10452437,
                  -0.01176175, -0.02820986, -0.13516859, -0.05199935, -0.07443382,
                  0.13189015, 0.05096412, -0.20900127, 0.08180597, 0.02365044,
                   0.1114879 , -0.27618049, 0.03274333, 0.13097081, -0.12967129,
                  -0.07213854, 0.03226942, -0.09715861, 0.09556964, 0.05012476,
                  0.04299512, 0.04750498, -0.09008318, 0.09728229, -0.05199935,
                  -0.10144161, -0.09397213, -0.01989001, 0.01695031, -0.02327127,
                  -0.06984423, -0.01080131, -0.05238509, 0.06304349, 0.19345443,
                   0.05565303, -0.01691365, 0.20645821]])
```

Naive Bayes

$$test_size = 0.33$$