

Digital Logic Design

Hajar Falahati

Department of Computer Engineering IRAN University of Science and Technology

hfalahati@iust.ac.ir

Signed Numbers Representation

- Let N = $(a_{n-1} ... a_0)_2$
 - ∘ If N ≥ 0, it is represented by $(0a_{n-1} ... a_0)_2$
 - If N < 0, it is represented by $[0a_{n-1} \dots a_0]_2$

$$| (N)_2 = 2^n - (N)_2$$

IUST

Outline

- Signed and Unsigned Numbers
 - Sign magnitude
 - 2's complement
 - 1's complement

Carry and overflow

Carry- Overflow

Radix Complement Arithmetic

- Suppose we have two 8-bit number
- \bullet 181 + 75
- $(10110101)_2$ + $(01001011)_2$

Overflow Condition

- Result of an operation falls outside the range
 - Fixed number of sum bits
 - Result is not valid
 - Adding two positive numbers and the sum is negative
 - Adding two negative numbers and the sum is positive
- Consider 3 cases
 - \circ A = B + C,
 - \circ A = B C,
 - A = -B C, (where $B \ge 0$ and $C \ge 0$.)

Overflow Condition: Case 1

- A = B + C
 - $(A)_2 = (B)_2 + (C)_2$
 - If $A > 2^{n-1} 1$ (overflow)
 - It is detected by the nth bit, which is set to 1.
- Example: $(7)_{10} + (4)_{10} = ?$ using 5-bit two's complement arithmetic.
 - \circ + $(7)_{10}$ = + $(0111)_2$ = $(0, 0111)_{2cns}$
 - \circ + (4)₁₀ = +(0100)₂ = (0, 0100)_{2cns}
 - \circ (0, 0111)_{2cns} + (0, 0100)_{2cns} = (0, 1011)_{2cns} = +(1011)₂ = +(11)₁₀
 - No overflow
- Example: $(9)_{10} + (8)_{10} = ?$
 - \circ + (9)₁₀ = +(1001)₂ = (0, 1001)_{2cns}
 - \circ + (8)₁₀ = +(1000)₂ = (0, 1000)_{2cns}
 - \circ (0, 1001)_{2cns} + (0, 1000)_{2cns} = (1, 0001)_{2cns}
 - Overflow

Overflow Condition: Case 2

- A = B C
 - $(A)_2 = (B)_2 + (-(C)_2) = (B)_2 + [C]_2 = (B)_2 + 2^n (C)_2 = 2^n + (B C)_2$
 - \circ If B \geq C
 - \circ A $\ge 2^n$ and the carry is discarded.
 - $(A)_2 = (B)_2 + [C]|_{carry discarded}$
 - If **B** < **C**
 - $A = 2^n (C B)_2 = [C B]_2$ or $A = -(C B)_2$ (no carry in this case).
 - No overflow for Case 2.
- Example: $(14)_{10}$ $(9)_{10}$ = ?
 - Perform $(14)_{10} + (-(9)_{10})$
 - $(14)_{10} = +(1110)_2 = (0, 1110)_{2cns}$
 - \circ -(9)₁₀ = -(1001)₂ = (1, 0111)_{2cns}
 - $(14)_{10}$ $(9)_{10}$ = $(0, 1110)_{2cns}$ + $(1, 0111)_{2cns}$ = $(0, 0101)_{2cns}$ + carry = $+(0101)_2$ = $+(5)_{10}$

Overflow Condition: Case 2 (cont'd)

- Example: $(9)_{10} (14)_{10} = ?$ Perform $(9)_{10} + (-(14)_{10})$ $(9)_{10} = +(1001)_2 = (0, 1001)_{2cns}$ $-(14)_{10} = -(1110)_2 = (1, 0010)_{2cns}$ $(9)_{10} (14)_{10} = (0, 1001)_{2cns} + (1, 0010)_{2cns} = (1, 1011)_{2cns}$ = $-(0101)_2 = -(5)_{10}$
- Example: $(0, 0100)_{2cns}$ $(1, 0110)_{2cns}$ = ? • Perform $(0, 0100)_{2cns}$ + $(-(1, 0110)_{2cns})$ • - $(1, 0110)_{2cns}$ = two's complement of $(1,0110)_{2cns}$ = $(0, 1010)_{2cns}$ • $(0, 0100)_{2cns}$ - $(1, 0110)_{2cns}$ = $(0, 0100)_{2cns}$ + $(0, 1010)_{2cns}$ = $(0, 1110)_{2cns}$ = + $(1110)_{2}$ = + $(14)_{10}$ • + $(4)_{10}$ - $(-(10)_{10})$ = + $(14)_{10}$

Overflow Condition: Case 3

- A = -B C
 - $A = [B]_2 + [C]_2 = 2^n (B)_2 + 2^n (C)_2 = 2^n + 2^n (B + C)_2 = 2^n + [B + C]_2$
 - Carry bit (2ⁿ) is discarded.
 - An overflow can occur, in which case the sign bit is 0.
- Example: $-(7)_{10} (8)_{10} = ?$
 - Perform $(-(7)_{10}) + (-(8)_{10})$
 - \circ -(7)₁₀ = -(0111)₂ = (1, 1001)_{2cns}, -(8)₁₀ = -(1000)₂ = (1, 1000)_{2cns}
 - $-(7)_{10} (8)_{10} = (1, 1001)_{2cns} + (1, 1000)_{2cns} = (11, 0001)_{2cns} = (1, 0001)_{2cns} + carry$ = $-(1111)_2 = -(15)_{10}$
- Example: $-(12)_{10} (5)_{10} = ?$
 - Perform $(-(12)_{10}) + (-(5)_{10})$
 - \circ -(12)₁₀ = -(1100)₂ = (1, 0100)_{2cns}, -(5)₁₀ = -(0101)₂ = (1, 1011)_{2cns}
 - \circ -(12)₁₀ -(5)₁₀ = (1, 0100)_{2cns} + (1, 1011)_{2cns} =(10, 1111)_{2cns} =(0, 1111)_{2cns} + carry
 - Overflow, because the sign bit is 0.

$$(1\ 0\ 1111)_{2cns} = -(010001)_2 = -(17)_{10}$$

Overflow Condition: Sample

- A = $(25)_{10}$ and B = $-(46)_{10}$
- A + B = ?
- A B = ?
- B A = ?
- -A-B=?

Overflow Condition: Sample (cont'd)


```
• A = (25)_{10} and B = -(46)_{10}
  A = +(25)_{10} = (0,0011001)_{2cns}
  \circ -A = (1, 1100111)<sub>2cns</sub>
  B = -(46)_{10} = -(0, 0101110)_2 = (1, 1010010)_{2cns}
  \circ -B = (0, 0101110)<sub>2cns</sub>
• A+B =
  \circ (0, 0011001)<sub>2cns</sub>+(1, 1010010)<sub>2cns</sub> = (1, 1101011)<sub>2cns</sub> = -(21)<sub>10</sub>
• A-B =
  • A+(-B)= (0, 0011001)_{2cns} + (0, 0101110)_{2cns} = (0, 1000111)_{2cns} = +(71)_{10}
• B-A =
  • B+(-A)=(1, 1010010)_{2cns}+(1, 1100111)_{2cns}=(1, 0111001)_{2cns}+carry=-(0, 1000111)_{2cns}=
   -(71)_{10}
• -A-B =
  • (-A)+(-B)=(1, 1100111)_{2cns}+(0, 0101110)_{2cns}=(0, 0010101)_{2cns}+carry=+(21)_{10}
```

Note: Carry bit is discarded.

دانشگاه علم قاصنت یران

Overflow Condition: Summary

- Presenting numbers using two's complement number system:
 - Addition: Add two numbers.
 - Subtraction: Add two's complement of the subtrahend to the minuend.
 - Carry bit is discarded
 - Overflow is detected as the Table.
 - Radix complement arithmetic can be used for any radix.

Case	Carry	Sign Bit	Condition	Overflow?
B + C	0	0	$B + C \le 2^{n-1} - 1$	No
	0	1	$B + C > 2^{n-1} - 1$	Yes
B - C	1	0	$B \le C$	No
	0	1	B > C	No
-B - C	1	1	$-(B + C) \ge -2^{n-1}$ $-(B + C) < -2^{n-1}$	No
	1	0	$-(B+C) < -2^{n-1}$	Yes

Signed Numbers

O Signed and Unsigned Numbers

IUST

- Three methods
 - Sign magnitude
 - 2's complement
 - 1's complement

Diminished Radix Complemen Number System

- Consider a number (N)_r
- Diminished radix complement [N]_{r-1}

$$[N]_{r-1} = r^n - (N)_r - 1$$
 (1.10)

• One's complement (r = 2):

$$[N]_{2-1} = 2^{n} - (N)_{2} - 1$$
 (1.11)

- Example:
 - One's complement of (01100101)₂

```
 [N]_{2-1} = 2^8 - (01100101)_2 - 1 
= (100000000)_2 - (01100101)_2 - (00000001)_2 
= (10011011)_2 - (00000001)_2 
= (10011010)_2
```

Diminished Radix Complement Number systems (2)

• Example:

One's complement of (01100101)₂

```
 [N]_{2-1} = 2^8 - (01100101)_2 - 1 
= (100000000)_2 - (01100101)_2 - (00000001)_2 
= (10011011)_2 - (00000001)_2 
= (10011010)_2
```

• Example:

- Nine's complement of (40960)
- $[N]_{10-1} = 10^5 (40960)_{10} 1$ $= (100000)_{10} (40960)_{10} (00001)_{10}$ $= (59040)_{10} (00001)_{10}$ $= (59039)_{10}$

Diminished Radix Complement Number systems (2)

- Find [N]_{r-1} given (N)_r.
 - Replace each digit a_i of $(N)_r$ by r 1 a.
 - \circ r=2
 - Simplifies to complementing each individual bit of $(N)_r$.
- Radix complement and diminished radix complement of a number (N):

$$[N]_r = [N]_{r-1} + 1$$
 (1.12)

Diminished Radix Complemen Arithmetic (1)

- Operands are represented in diminished radix complement number system
- Carry is <u>added</u> to result (end-around carry).
- Example:
 - Add $+(1001)_2$ and $-(0100)_2$.
 - One's complement of +(1001) = 01001
 - One's complement of -(0100) = 11011
 - 01001 + 11011 = 100100

Diminished Radix Complemen Arithmetic (1)

- Operands are represented in diminished radix complement number system
- Carry is <u>added</u> to result (end-around carry).
- Example:
 - \circ Add +(1001)₂ and -(0100)₂.
 - One's complement of +(1001) = 01001
 - One's complement of -(0100) = 11011
 - 01001 + 11011 = 100100 (carry)

Diminished Radix Complemental Arithmetic (1)

- Operands are represented in diminished radix complement number system
- Carry is *added* to result (end-around carry).

• Example:

- \circ Add +(1001)₂ and -(0100)₂.
- One's complement of +(1001) = 01001
- One's complement of -(0100) = 11011
- 01001 + 11011 = 100100 (carry)
- Add the carry to the result: 00100 + 00001
- correct result is 00101

• Example:

- Add $+(1001)_2$ and $-(1111)_2$.
- One's complement of +(1001) = 01001
- One's complement of -(1111) = 10000
- 01001 + 10000 = 11001
- No carry, so this is the correct result
- · -(00110)

Diminished Radix Complemen Arithmetic: Sample

- Add $-(1001)_2$ and $-(0011)_2$
- Add $+(75)_{10}$ and $-(21)_{10}$
- Add $+(21)_{10}$ and $-(75)_{10}$

Diminished Radix Complemen Arithmetic: Sample (cont'd)

- Add $-(1001)_2$ and $-(0011)_2$
 - One's complement of the operands are:
 - 10110
 - 11100
 - 10110 + 11100 = 110010
 - Carry
 - Correct result is 10010 + 1 = 10011

- Add $+(21)_{10}$ and $-(75)_{10}$
 - Nine's complements of the operands are
 - 021
 - 924
 - 021 + 924 = 945
 - No carry, so this is the correct result
- Add $+(75)_{10}$ and $-(21)_{10}$
 - Nine's complements of the operands are:
 - 075
 - 978
 - 075 + 978 = 1053
 - Carry
 - Correct result is 053 + 1 = 054

Thank You

