Prédiction des décès dus au Covid19 à l'aide de machine learning

Enzo De Carvalho

numéro d'inscription: 29448

2020-2021

Sommaire

- 1 Première approche : simple regression
 - Principe
 - Regression Linéaire
 - Optimisation d'hyperparamètres
 - Résultats avec SVR
 - Cross-validation
- 2 Approche multivariées
 - Multiregresseur : 'RegressorChain'
 - Réseau neuronal

Principe de la demarche

 \hookrightarrow le modèle \hat{g} généralise les données connues Y fournies.

Première approche : Regression linéaire

En utilisant ElasticNet

Modèle:

t les données (le temps)

$$\hat{g}_{deces}(\omega, t) = \omega_0 + \omega_1 t$$

$$\omega = \begin{pmatrix} \omega_0 \\ \omega_1 \end{pmatrix}$$
 un paramètre à déterminer

Première approche : Regression linéaire

En utilisant ElasticNet

Modèle:

t les données (le temps)

$$\hat{g}_{deces}(\omega,t) = \omega_0 + \omega_1 t$$

$$\omega = \begin{pmatrix} \omega_0 \\ \omega_1 \end{pmatrix}$$
 un paramètre à déterminer

le modèle ElasticNet détermine alors ω .

Le résultat dépend des hyperparamètres : α et ho

Première application

Prédictions entre le 2020/11/01 et 2020/12/16.

$$\rho = 0.9$$
 $\alpha = 0.1$

Figure: Résultats peu satisfaisant... (ici 11_ratio est ρ)

SVR ; Premier résultat

Modèle SVR

Hyperparamètres :

C le paramètre de régularisation

 ϵ la taille du tube de "non-pénalité"

 γ paramètre du noyeau (rbf ici)

SVR: Premier résultat

Modèle SVR

Hyperparamètres :

- C le paramètre de régularisation
- ϵ la taille du tube de "non-pénalité"
- γ paramètre du noyeau (rbf ici)

Figure: SVR avec C = 100, puis C = 100000

Validation croisée

Stratégie pour la Validation croisée

Application avec SVR

Figure: à partir du 2020/10/15, puis du 2020/11/01

 \Rightarrow Échec de géneralisation.

Prophet

Approche avec le modèle Prophet de Facebook

RegressorChain SVR

Approche multivariés avec RegressorChain

epsilon': 0.001

Réseau neuronal

Approche avec un réseau de neurone

Application avec réseau neuronal

Neural network avec 7 jour de décalage; max_iter=100k; prédit à partir du 11

('nlpregressor_nax_iter': 90000, 'nlpregressor_n.iter_no_change': 3, 'nlpregressor_tot': 0.0001}
NN: décès prédits 30 jours avec les données de 15 jours avant

Neural network avec 7 jour de décalage; max_iter=90k

Application avec réseau neuronal

	total_cas_confirmes	total_deces_hopital
total_cas_confirmes	1.000000	0.977939
total_deces_hopital	0.977939	1.000000

⇒ échec du modèle sans la courbe des cas confirmés

fonction d'objectif d'ElasticNet

ElasticNet cherche ω tel que :

$$\min_{\omega} \frac{1}{2n_{deces}} ||\hat{g}_{deces}(\omega, t) - f(t)||_2^2 + \alpha \rho |\omega| + \frac{\alpha(1-\rho)}{2} ||\omega||_2^2$$

 α et ρ les hyperparamètres définissant le modèle, f la courbe réelle des décès.

Détails sur la regression linéaire

```
lasso alpha': li/100 for i in range(10.25)
  'elasticnet alpha' : [i/100 for i in range(10,100)],
  40000
              deces reels
              valeur predites
              predictions sur les valeurs connues
  30000
  20000
  10000
      0
deces
dtype: int64
{'elasticnet__alpha': 0.1, 'elasticnet__l1_ratio': 0.9}
```