

Section A (60 marks)

- 1. Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables.
 - (a) Suppose that the distribution is given by a probability density function/probability function $f(x,\theta)$, where $\theta \in \Theta$ is a real parameter. Define the maximum likelihood estimator of θ based on the sample X_1, X_2, \ldots, X_n .
 - (b) Suppose that the common probability density function is

$$f(x,\theta) = \frac{4\theta^4}{x^5}$$
 for $x \ge \theta$,

where $\theta > 0$. Find the maximum likelihood estimator of the parameter θ .

(8 marks)

Assignment Project Exam Help

2. Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables with a common distribution depending Sh an unknown parameter. COM

(a) Explain the method of moments to estimate the parameter θ .

Add WeChat powcoder

- (b) Suppose that the common probability density function is the same as in 1(b).
 - (i) Find a moment estimator of the parameter θ .
 - (ii) Is the estimator in (i) unbiased? Justify your answer.

(10 marks)

- 3. Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables with a common probability density function/probability function $f(x, \theta)$.
 - (a) State, without proof, the Cramér-Rao theorem for an unbiased estimator $\hat{g}(\mathbf{X})$ of $g(\theta)$, where $\mathbf{X} = (X_1, X_2, \dots, X_n)$ and $g(\theta)$ is a differentiable function of the parameter θ .
 - (b) Suppose that the common distribution is Gamma $\Gamma(4,\theta)$, that is,

$$f(x, \theta) = \frac{x^3}{6\theta^4} \exp\left(-\frac{x}{\theta}\right)$$
 for $x > 0$,

where $\theta > 0$. Find the Cramér-Rao lower bound for the variance of an unbiased estimator of θ .

(Assume that the regularity conditions are satisfied.)

(12 marks)

Assignment Project Exam Help

- 4. Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables with a common probability density function/probability function $f(x, \theta)$.
 - (a) State, without proof, the theorem about the attainment of the Cramér-Rao lower bound. Add WeChat powcoder
 - (b) Suppose that the common distribution is Bernoulli $B(1,\theta)$. Using the theorem about the attainment of the Cramér-Rao lower bound, identify the minimum variance unbiased estimator for θ .

(Assume that the regularity conditions are satisfied.)

(10 marks)

- 5. Let X_1, X_2, \ldots, X_n be random variables with a joint probability density function/probability function $f(\mathbf{x}, \theta) = f(x_1, x_2, \ldots, x_n, \theta)$, where $\theta \in \Theta$.
 - (a) Explain what is meant by saying that C is a test of size α .
 - (b) State, without proof, the Neyman-Pearson fundamental lemma.

(5 marks)

6. Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables with the common probability density function

$$f(x, \theta) = \theta \exp(-\theta x)$$
 for $x > 0$,

where θ Assignment Project Exam Help

- (a) Derive the Neyman-Pearson critical region for the test of the null hypothesis $H_0: \theta = \theta_0$ against the Site of the null hypothesis (You may assume that $2\theta \sum_{k=1}^{n} X_i$ has the $\chi^2(2n)$ distribution.)
- (b) Specify the regarded WeChat powcoder find the power of the test.

(15 marks)

NEXT PAGE

Section B (40 marks)

- 7. (a) Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables with a common probability density function/probability function $f(x,\theta)$ depending on an unknown parameter θ . Using the factorisation theorem (criterion), prove that any oneto-one function of a sufficient statistic is a sufficient statistic.
 - Suppose that the common distribution is Binomial $B(N, \theta)$, that is,

$$f(x,\theta) = \binom{N}{x} \theta^x (1-\theta)^{N-x}, \ x = 0, 1, 2, \dots, N,$$

where N is a known positive integer, $0 < \theta < 1$, and

Assignment Project Exam Help

- (i) Let $\tilde{g}(\mathbf{X})$ type $\tilde{g}(\mathbf{X})$ to $\tilde{g}(\mathbf{X})$ is an unbiased
- Show that T is complete sufficient statistic for θ . Show that
- (iii)

$$E(\tilde{g}(\mathbf{X})|T=t) = \frac{N\binom{N(n-1)}{t-1}}{\binom{Nn}{t}}$$

(you may assume that if X_1, X_2, \ldots, X_m are independent $B(N, \theta)$ random variables, then $\sum_{i=1}^{m} X_i \sim B(Nm, \theta)$).

(iv) Write down a minimum variance unbiased estimator for $q(\theta)$. Justify your answer.

(25 marks)

- 8. Let X_1, X_2, \ldots, X_n be random variables with a joint probability density function/probability function $f(\mathbf{x}, \theta) = f(x_1, x_2, \ldots, x_n, \theta)$, where $\theta \in \Theta$. Suppose that $\Theta_0 \subset \Theta$ and consider testing a null hypothesis $H_0: \theta \in \Theta_0$ against the alternative $H_1: \theta \in \Theta_1$, where $\Theta_1 = \Theta \setminus \Theta_0$.
 - (a) Explain how the Neyman-Pearson fundamental lemma can in certain cases be extended to provide a uniformly most powerful test for testing a simple null hypothesis $H_0: \theta = \theta_0$ against a composite alternative $H_1: \theta \in \Theta_1$.
 - (b) Explain the application of the likelihood ratio test to composite hypotheses.

(15 marks)

Assignment Project Exam Help https://powcoder.com Add WeChat powcoder

NEXT PAGE

Table of Standard Distributions

Binomial distribution B(n, p)

$$pf f(x,p) = \binom{n}{x} p^x (1-p)^{n-x}; \ x = 0, 1, \dots, n; \ 0
mean $E(X) = np$$$

variance
$$Var(X) = np(1-p)$$

 mgf $M(t) = ((1-p) + pe^t)^n$

Poisson distribution $P(\lambda)$

$$\begin{array}{ll} pf & f(x,\lambda) = \lambda^x e^{-\lambda}/x! \; ; \; x=0,1,2,\ldots; \; \lambda > 0 \\ mean & \mathrm{E}(X) = \lambda \\ variance & \mathrm{Var}(X) = \lambda \end{array}$$

$$mgf M(t) = \exp\{\lambda(e^t - 1)\}$$

Geometric distribution G(p)

$$pf$$
 $f(x,p) = (1-p)^{x-1} p; x = 1, 2, ...; 0$

$$\underbrace{ \text{Project Exam Help} }_{\text{variance}} \underbrace{ \underbrace{ \text{Project Exam Help} }_{\text{M(t)} = p} \underbrace{ \underbrace{ \text{Project Exam Help} }_{\text{-}(1-p)e'} }_{\text{-}(1-p)e'} , \underbrace{ \underbrace{ \text{Project Exam Help} }_{\text{-}} \underbrace{ \text{Project Exam Help} }_{\text{-}}$$

Normal distribution $N(\mu, \sigma^2)$

pdf
$$f(x, \mu, \sigma)$$
 https://powcoder.com; $\sigma > 0$
mean $E(X) = \mu$

mean
$$E(X) = \mu$$

variance $Var(X) = \sigma^2$

$$M(t) = \exp(-\frac{d^2}{WeChat powcoder})$$

Uniform distribution U(a,b)

$$\begin{array}{ll} pdf & f(x,a,b) = \frac{1}{(b-a)}; \ a \leq x \leq b; \ a < b \\ mean & \mathrm{E}(X) = (a+b)/2 \\ variance & \mathrm{Var}(X) = (b-a)^2/12 \\ mgf & M(t) = \frac{e^{bt} - e^{at}}{(b-a)t} \end{array}$$

Exponential distribution $M(\theta)$

$$pdf f(x,\theta) = \theta \exp\{-\theta x\}; x \ge 0; \theta > 0$$

$$mean E(X) = 1/\theta$$

$$variance Var(X) = 1/\theta^2$$

$$mgf M(t) = (1 - t/\theta)^{-1}$$

Gamma distribution $\Gamma(\alpha, \beta)$

$$\begin{array}{ll} pdf & f(x,\alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}\exp\left\{-\frac{x}{\beta}\right\}; \ x>0; \ \alpha,\beta \geqslant 0 \\ mean & \mathrm{E}(X) = \alpha\beta \\ variance & \mathrm{Var}(X) = \alpha\beta^2 \\ mgf & M(t) = (1-\beta t)^{-\alpha} \end{array}$$

No further copying, distribution or publication of this exam paper is permitted. By printing or downloading this exam paper, you are consenting to these restrictions.