機器學習實作教育訓練

Agenda

- 資料科學的實作流程
- 探索性資料分析
 - 資料態樣
 - 遺失值
 - 異常值
 - 相關性
- 特徵工程
 - 過濾法
 - 包裝法
 - 嵌入法
- 預測模型
 - Logistic reg
 - Decision Tree
 - SVM

• • •

"數據和特徵決定了機器學習的上限, 而模型和算法只是逼近這個上限而已"

啟用 Windows 移至 [設定] 以啟用 Wi

1資料科學實作流程

"數據和特徵決定了機器學習的上限, 而模型和算法只是逼近這個上限而已"

1.確認資料態樣

型態(object、int、float)、欄位的意義與分布

- 2.檢測 異常值 和 缺失值
- 3.發掘 特徵變數之間的關係
 - (1) 特徵變數與目標變數之間的關係
 - (2)除目標變數外,特徵變數彼此之間的關係
- 4.提取或找出 重要的特徵變數 [特徵工程]
- 5.選擇合適的模型 (機器學習)-> xgboost

2 探索性資料分析

鐵達尼資料為例

目標 變數

變數(Variable)	意義(Meaning)	資料型態	
Passengerld	乘客編號	數字	
Survived	是否存活 (1:活/0:死)	離散	
Pclass	票務艙 (1:Upper,2:Middle,3:Lower)	離散	
Name	姓名	字串	
Sex	性別	離散	
Age	年齢	連續	
SibSp	在船上兄弟姊妹配偶的人數 (定義家庭關係,非家庭關係不納入)	連續	
Parch	在船上父母和子女的人數 (定義家庭關係,非家庭關係不納入)	連續	
Ticket	船票號碼	字串	
Fare	乘客票價	字串	
Cabin	船艙號碼	離散	
Embarked	登船港口	離散	

確認資料態樣

from pandas_profiling import ProfileReport report = ProfileReport(df) (jupter titanic)

Overview

Variables

Correlations

Missing values

2 探索性資料分析

遺失值

WHAT

遺失類型	定義	例子
完全隨機缺失 (Missing Completely at Random)	缺失資料與該變數的真實值無關, 與其他變數的數值也無關。	老師走在路上,不小一掉了幾張考卷,所以成績的遺失和成績無關, 和學生其他變數也無關。
條件隨機缺失 (Missing at Random)	缺失資料與其他變數有關。	一群學生的體重,發現有些人的體 重缺失,後來發現女生不喜歡寫體 重資訊,因此體重的資訊遺失與性 別相關。
非隨機缺失 (Missing not an Random)	缺失資料依賴於該變數本身。	有分收入的問卷調查,通常薪資高的人,不喜歡填有關收入資訊,所以收入資料缺失和收入高低有關。

WHY

有些程式與演算法,不容許有遺失值出現 不能影響整體的估計,填補數與已有的數的分佈、特徵應符合

HOW

可以分為刪除和補值兩類。

(1)刪除:刪除有過多缺失資料的變數(通常超過60%就會刪除)

(2)補值:

1.給定一個固定值去填補遺失值(ex:0)

2.由後往前補值 或 由前往後補值(時間性相關適用)

3.用現有的資料取平均值、中位數、眾數等進行補值

4.用預測方法補值,迴歸或機器學習

年齡變數的補值(Day35)

原資料分布

Survived = 1.0

由平均值補值會集中某些值,

1.用由前往後或由後往前補值較為平均

df['Age'] = df['Age'].fillna(df['Age'].mean())

2.由前往後補

df['Age'] = df['Age'].fillna(method='bfill')

3.由後往前補

df['Age'] = df['Age'].fillna(method = 'pad')

4.用KNN補值(Day37)

什麽是 KNN?

- K-Nearest Neighbor(KNN) 是一種無須機率分配的假設下的演算法,跟距離預測值最近的 k 個數值,來估計預測值。
- 以下圖為例, 要預測這個人是男生或女生,以這個例子來看,透過 KNN (k=4) 的預測值為女生

• 由於類別型資料,透過投票來決定預測值,因此 k 建議以奇數為主,避免掉平手的問題。

KNN 的三個步驟:

- 1.計算距離
- 2.尋找最近 k 組數值
- 3.類別型態資料以多數決 數值型態用 k 組資料的統計值 (如平均)

2 探索性資料分析

異常值

WHAT

1.偏離樣本整體數據的值,所以是採用一種 相對的概念。

2.也被稱為離群值、新奇、噪聲、偏差和例外。

WHY

因為出現異常值的原因不同,如輸入錯誤、故意離群、自然異常等了解背後的原因才能決定處理方式

HOW

1.刪除異常值:由於數據輸入錯誤、數據處理錯誤或異常值數目很少

2.數據轉換:例如對數據取對數可以減少極端值的變化

3.分離對待:如果異常值的數目比較多,在統計模型中我們應該對它們分別處理

4.替换:替换缺失值,我們也可以替換異常值。我們可以使用均值、中位數、眾數替換方法。

5.聚類:我們也可以用決策樹直接處理帶有異常值的數據(決策樹基本不會受到異常值和缺失值的影響),或是對不同的觀測值分配權重。

票價的異常值檢測

異常值檢測

3.異常檢測模型

異常檢測模型是針對整體樣本中的異常資料進行分析和挖掘,以便找到其中的異常個案和規律

孤立森林IsolationForest為例:

「企業戶每日活存餘額異常監測」為例

IsolationForest

```
from sklearn.ensemble import IsolationForest
data = df3[['amt']]
# train isolation forest
model = IsolationForest(contamination=outliers_fraction)
model.fit(data)
df3['anomaly2'] = pd.Series(model.predict(data))
a = df3.loc[df3['anomaly2'] == -1, ['date', 'amt']] #anomaly
print(f'異常個數: {len(a)}')
print(f'異常值: {a}')
異常個數: 9
異常值:
                 date
                             amt
27 2020-01-30 0.595584
118 2020-04-30 1.983515
122 2020-05-04 -1.234657
150 2020-06-01 -0.587087
169 2020-06-20 10.240702
171 2020-06-22 -5.318800
172 2020-06-23 -4.907934
173 2020-06-24 2.665800
178 2020-06-29 -2,196487
```

相關性

WHY

挖掘變數之間的關係,有助提升模型效度

HOW

相關係數

1.年龄與票價 (連續 vs 連續)

Pearson 相關係數=0.096

低度線性相關

相關係數範圍	變數之間關聯程度	
1	完全線性相關	
0.7-0.99	高度線性相關	
0.4-0.69	中度線性相關	
0.1-0.39	低度線性相關	
< 0.1	無線性相關	

2.年龄與存活 (連續 vs 離散)

eta-squared=0.005

低度相關

η ²	Interpretation
0.00 < 0.01	Negligible
0.01 < 0.06	Small
0.06 < 0.14	Medium
0.14 <= 1.00	Large

3.性別與存活 (離散 vs 離散)

Cramer's V 係數=0.543

高度相關

df*	negligible	small	medium	large
1	0 ~ .10	.10 ~ .30	.30 ~ .50	.50 or more
2	0 ~ .07	.07 ~ .21	.21 ~ .35	.35 or more
3	0 ~ .06	.06 ~ .17	.17 ~ .29	.29 or more
4	0 ~ .05	.05 ~ .15	.15 ~ .25	.25 or more
5	0 ~ .05	.05 ~ .13	.13 ~ .22	.22 or more

圖示觀察

3特徵工程

WHAT

観察我們來做一個小測驗,下面有一張圖,每一張圖的人臉,都有三種原始資料,眼睛型態,嘴巴顏色和 腐色,你能在5秒內,找出某些資料能分辨出下列三個人?請回答你使用那些方法來判斷?

WHY

透過這些特徵能把目標做清楚的分類與預測,藉此改善模型性能。特徵選擇是特徵工程裡的一個重要問題,能剔除不相關或冗餘的特徵,從而達到減少特徵個數,提高模型精確度,減少運行時間的目的。

一、特徵工程包含衍生和添加。

衍生:以現有收集的資料為主,透過探索性分析,了解資料與目標之間的關係後,產生出特徵。X^2

添加:現有收集資料以外的資訊

HOW

- 二、具體特徵選擇方法
- 1.Filter:過濾法,按照發散性或者相關性對各個特徵進行評分,設定閾值或者待選擇閾值的個數,選擇特徵。
- 2.Wrapper:包裝法,根據目標函數(通常是預測效果評分),每次選擇若干特徵,或者排除若干特徵。
- 3.Embedded:嵌入法,先使用某些機器學習的算法和模型進行訓練,得到各個特徵的權值 係數,根據係數從大到小排序選擇特徵。類似於Filter方法,但是是通過訓練來確定特徵的優 劣。

Wrapper:包裝法,根據目標函數(通常是預測效果評分),每次選擇若干特徵,或者排除若干特徵。(Day40)

運用 python 執行包裝法

Step 1: sex 離散型要先轉成數值型態

Step 2:根據目標變量是連續或離散,來決定判斷的準則。

離散型, SVC(kernel="linear")

Step 3:設定 RFE 裡面的參數

• n_features_to_select: 最後要選擇留下多少特徵。

• Step:刪除法,每一部刪除多少特徵。

Step 4:.fit(x.y):每一步都依不同的特徵組合建立模型,判斷最終要選擇那些特徵

Step 5: 透過 support_ 呈現包裝法搭配 SVC 下,選擇最好的特徵,用 True 來表示

Step 6:透過 ranking_ 呈現每個特徵對於模型的重要性,1 代表被選重的特徵,2 代表次之重要的特徵,依此類推