# PreCalculus-Limit at Infinity (Learning Target LF)

APMA Faculty University of Virginia

July 15, 2024

## Technique 1: "Guess"

Technique 1: "Guess" the limit works well sometimes and can be tried before applying any other specific technique.

### Example

Find  $\lim e^{\frac{1}{x}}$ 

**Solution:** take x values very big, eg.  $x = 1000, 10000, 100000, \cdots$ , we can see that the power  $\frac{1}{x} \to 0$ , so the limit is like  $e^0$ , which is 1.

Similarly, by plugging in some values tending to  $+\infty$  or  $-\infty$ , we can get

Note: 
$$sgn(a) = 1$$
 if  $a > 0$  and  $sgn(a) = -1$  if  $a < 0$ .

1. 
$$\lim_{x\to\infty} \mathbf{e}^x = \infty$$
 &  $\lim_{x\to-\infty} \mathbf{e}^x = 0$ 

2. 
$$\lim_{x\to\infty} \ln(x) = \infty$$
 &  $\lim_{x\to0^+} \ln(x) = -\infty$  6.  $n \text{ odd}$ :  $\lim_{x\to\infty} x^n = \infty$  &  $\lim_{x\to\infty} x^n = -\infty$ 

3. If 
$$r > 0$$
 then  $\lim_{x \to \infty} \frac{b}{x^r} = 0$ 

4. If 
$$r > 0$$
 and  $x^r$  is real for negative  $x$   
then  $\lim_{x \to -\infty} \frac{b}{x^r} = 0$ 

5. 
$$n \text{ even} : \lim_{x \to +\infty} x^n = \infty$$

6. 
$$n \text{ odd}$$
:  $\lim_{x \to \infty} x^n = \infty$  &  $\lim_{x \to -\infty} x^n = -\infty$ 

7. 
$$n \text{ even}: \lim_{x \to \pm \infty} a x^n + \dots + b x + c = \operatorname{sgn}(a) \infty$$

8. 
$$n \text{ odd}: \lim_{x\to\infty} a x^n + \dots + b x + c = \operatorname{sgn}(a) \infty$$

9. 
$$n \text{ odd}$$
:  $\lim_{x \to -\infty} a x^n + \dots + c x + d = -\operatorname{sgn}(a) \infty$ 

# Technique 2: Compare the Growth Speed

### Find limits of the type of $\pm \frac{\infty}{\infty}$ by Technique 2

when  $x\to\infty$ , here is a list of functions in order of their rate of growth to  $+\infty$ , quickest to slowest:

$$x!, \dots, 4^{x}, 3^{x}, e^{x}, 1.5^{x}, \dots, x^{4}, x^{3}, x^{2}, x * logx, x, logx, \dots, 3, 2, 1$$

by category, it is

 $\textit{factorial} \gg \textit{exponential} \gg \textit{algebraic} \gg \textit{logarithmic} \gg \textit{constant}$ 

Then 
$$\lim_{x \to \pm \infty} \frac{n(x)}{d(x)} = \lim_{x \to \pm \infty} \frac{\text{dominant term of } n(x)}{\text{dominant term of } d(x)}$$
,

### Example

$$\lim_{x \to \infty} \frac{4^x - x^7 + 2x}{x! + x^{10} - 1} = \lim_{x \to \infty} \frac{4^x}{x!}$$

# Find limits of the type of $\pm_{\infty}^{\infty}$ by Technique 2

Case 1: If the numerator n(x) grows faster than the denominator d(x), then  $\lim_{x \to +\infty} \frac{n(x)}{d(x)} = +\infty$  or  $-\infty$ 

#### Examples:

- a.  $\lim_{x \to \infty} \frac{3x^5 + x^2 5}{6 + x + 7x^2} = \lim_{x \to \infty} \frac{3x^5}{7x^2} = \lim_{x \to \infty} \frac{3}{7}x^3 = \infty$ whereas  $\lim_{x \to -\infty} \frac{3x^5 + x^2 - 5}{6 + x + 7x^2} = \lim_{x \to -\infty} \frac{3}{7}x^3 = -\infty$
- b.  $\lim_{x\to\infty} \frac{x!-\log x+1}{2^x+3x^5-5\log x} = \lim_{x\to\infty} \frac{x!}{2^x} = +\infty$  [Note that  $\lim_{x\to-\infty} \frac{x!-\log x+1}{2^x+3x^5-5\log x}$  is meaningless since x! is not defined for negative values.]
- c.  $\lim_{x\to\infty} 2x^4 5x + 3 = +\infty$  (Note that  $\lim_{x\to-\infty} 2x^4 5x + 3 = +\infty$  as well [why?])

# Find limits of the type of $\pm \frac{\infty}{\infty}$ by Technique 2

Case 2: If the numerator n(x) grows slower than the denominator d(x), then  $\lim_{x \to +\infty} \frac{n(x)}{d(x)} = 0$ 

#### Examples:

- a.  $\lim_{x \to \infty} \frac{5 x^3 2x^2 + 7x 13}{12 2x + x^4} = \lim_{x \to \infty} \frac{5x^3}{x^4} = \lim_{x \to \infty} \frac{5}{x} = 0$
- b.  $\lim_{x \to -\infty} \frac{6x \log x + 5x 2}{2^x \mp 2x 14 \log x} = \lim_{x \to -\infty} \frac{6x \log x}{2^x} = 0$
- Case 3: If the numerator n(x) grows the same as the denominator d(x), then  $\lim_{x \to +\infty} \frac{n(x)}{d(x)} = \frac{\text{leading coefficients of } n(x)}{\text{leading coefficients of } d(x)}$

#### Examples:

- a.  $\lim_{x\to\infty} \frac{3x^3 2x^2 + x 4}{4 + 2x 5x^3} = \lim_{x\to\infty} \frac{3x^3}{-5x^3} = \lim_{x\to\infty} \frac{3}{-5} = -\frac{3}{5}$
- b.  $\lim_{x\to\infty} \frac{\frac{1}{2}2^x}{\frac{3}{4}2^x \log x + 4} = \frac{1/2}{3/4} = \frac{2}{3}$



# Technique 3: L'Hôpital's Rule

### Find limits of the type of $\pm \frac{\infty}{\infty}$ by Technique 3: L'Hôpital's Rule

If the limit  $\lim_{x\to\pm\infty}\frac{f(x)}{g(x)}$  is the type of  $\pm\frac{\infty}{\infty}$ , and  $\lim_{x\to\pm\infty}\frac{f'(x)}{g'(x)}$  exist and  $g'(x)\neq 0$ , then

$$\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \lim_{x \to \pm \infty} \frac{f'(x)}{g'(x)}$$

### Example

Find the limit  $\lim_{x\to\infty} \frac{x^2}{2^x}$ 

$$\lim_{x \to \infty} \frac{x^2}{2^x} = \frac{\infty}{\infty}$$

Using L'Hôpital's Rule:

$$\lim_{x \to \infty} \frac{x^2}{2^x} = \lim_{x \to \infty} \frac{2x}{2^x \ln 2} = \frac{2}{\ln 2} \lim_{x \to \infty} \frac{x}{2^x} = \frac{\infty}{\infty}$$

Using L'Hôpital's Rule again:

$$\frac{2}{\ln 2} \lim_{x \to \infty} \frac{x}{2^x} = \frac{2}{\ln 2} \lim_{x \to \infty} \frac{1}{2^x \ln 2} = \frac{2}{(\ln 2)^2} \lim_{x \to \infty} \frac{1}{2^x} = \frac{2}{(\ln 2)^2} * 0 = 0$$

