4TEAM

LLM 활용 인공지능 인플루언서 만들기

OVERVIEW

Love Language Model

개요 / 배경

화면 구현

데이터 전처리

DB

ERD

Architecture

MODEL

Model Pipeline

Model 선정

Model 구조

Model 성능 평가

TO DO

Finetuning

Multi-Modality

Streaming-system

LLM(Love Language Model): 'Al 인플루언서 연애 상담 스트리밍' 플랫폼

네 명의 인플루언서와의 양방향 소통 커뮤니티

타겟

- ♥ 10대 63.8%, 20대 56.7% TV보다 유튜브 선호 (코바코, 2023)
- ♥ 20대 유튜브 이용 시간 1시간 40분 vs TV 38분 (KISDI, 2023)

연애 콘텐츠 시장

- ♥2025년 솔로지옥, 환승연애 등 연애 콘텐츠의 지속적인 인기
- ♥ 유튜브, 연예인 연애 상담 콘텐츠 수십만~백만 뷰로 성장

<썸트렌드: 프로그램별 연령대별 언급량>

연애 도메인 선정 이유

감정과 언어가 풍부한 도메인

AI 언어 모델의 '감정 이해'와 '표현 능력'을 고도화하는 데 매우 효과적 > 인간의 정서를 깊이 공감하는 '고차원적 AI'로 발전

보편성과 지속성

연애는 시대를 초월한 인간의 기본적인 욕구, 감정 유행이 없고 새로운 고민과 스토리가 생겨나는 무한한 콘텐츠의 원천

향후 교육, 심리 상담, 대인 관계 코칭 등 **감성적 소통이 중요한 모든 분야로** Al 기술 확장 가능

IP 확장 가능성

인기 사연을 바탕으로 웹툰, 웹드라마, 소설 등 2차 콘텐츠로 확장 새로운 수익원 창출, IP 가치 극대화 종합 콘텐츠 사업으로 확장 가능

스트리머 시장

- ♥ 일상생활 필수매체 스마트폰(88.3%), TV(65.1%) (KISDI, 2023)
- ♥ 유튜브의 압도적인 영향력 한국인이 오래 사용한 앱 유튜브 총 998억 분 (KISDI, 2023)
- ♀ 개인 미디어 시대 도래

스트리머 형식 선정 이유

- ♥ 실시간 시청자와의 대화, 반응 개인적인 관계 경험 제공 정서적인 유대감 강화
- ♥ 예측 불가능한 우연성을 통한 생동감, 현장감 제공 시청자들의 몰입감 극대화

기존 챗봇과 차별점

- ♥ 네 명의 인플루언서 다른 성격과 상담 스타일
- ♥ 다차원적 상호작용 챗봇, 사용자들 간의 소통
- ♥ '후원' 엔터테인먼트 요소 추가 실시간으로 AI와 소통

Strength

- AI 인플루언서 캐릭터 기반의 독보적인 경험
- 뛰어난 재생산성
- 콘텐츠 양산 및 IP 확장 용이성
- 방대한 데이터 기반 맞춤형 피드백

Weakness

- AI 답변의 한계
- 데이터 편향성 및 윤리적 문제
- 기술 개발 및 유지 보수 비용

Opportunity

- 연애/ 결혼 시장의 높은 잠재력
- AI 기술의 급격한 발전
- 글로벌 시장 진출 기회
- 미디어 콘텐츠와의 시너지

Threat

- 기존 시장 경쟁 심화
- 기술 변화에 대한 적응

SO Strategy

독보적인 AI 페르소나와 IP 확장성을 활용하여 미디어 콘텐츠와의 시너지를 극대화. 망외부성 효과 창출

✔ 사연의 콘텐츠화로 팬덤 유치:

- DB의 인기 사연들을 단편 웹툰, 웹소설 등으로 제작, 새로운 수익원을 창출
- 방송 팬을 독자로, 독자를 방송 팬으로 유인하는 강력한 선순환 구조 형성

✓ 가상 패널(Virtual Panel):

- AI 캐릭터를 인기 연애 리얼리티 프로그램에 '데이터 분석 전문 패널'로 출연
- 출연자들의 행동 패턴 분석, 다음 선택 예측 혹은 특정 행동에 대한 원인 분석을 통해 '연애도 인간만큼 잘 하는 AI'라는 인식을 대중에게 각인

단계별 성장 목표

사연자 → 일반 시청자 → 충성 팬덤 → 서비스 홍보대사로 발전시켜 자발적 확산 생태계 구축

LLM 화면 구현

Main

현재 방송 중인 스트리머가 표시

Streaming

스트리밍 화면이 송출되며, 오른쪽 채팅방에서는 AI 인플루언서와, 타사용자들과 채팅이 가능

데이터 전처리

1. 목적

- 특정 유튜버(페르소나)의 말투, 화법만을 sLLM이 학습할 수 있도록 1인 화자가 등장 하는 데이터만 남김

2. 데이터 셋 출처 및 수집 방법

- 유튜버 영상을 수집하여 음성 파일로 변환 faster-whisper 라이브러리로 자동 전사

3. 전처리 프로세스 흐름도

[유튜버 영상 크롤링] [음성 파일로 변환 (MP3 등)] [faster-whisper 자동 전사] [1인 화자 영상만 선별 ▷ 다인 등장 스크립트 삭제] [페르소나 말투 등 정의] [Few-shot prompting → QA 데이터셋 생성] [JSON 등 파일 저장]

4.1 이상치 처리

- 기준: 페르소나 외 인물 등장 영상
- 처리: 화자 혼재 스크립트 제외
- 목적: 페르소나 일관성 유지

4.2 표준화

- QA 데이터셋을 위한 Few-shot Prompting

4.3 데이터 변환 및 생성

- json.JSONDecodeError, openai

- 5. 학습 / 검증 데이터 분리
- 5.1 유사도 평가용 5.2 답변 차이성 평가용
- 6. 전처리 결과
- 전처리 후 전체 텍스트 파일 개수: 3,639개 -> 3,373개

users user

- 사용자의 기본 정보
- 사용자 개인 정보, 권한 등

chat chatroom

- 각 방송 화면의 채팅창 관련 정보
- 채팅창 개설 일자, 비활성화 일자, 호스트 ID

chat_chatmessage (채팅 메시지 테이블)

- 채팅 내역 관련 정보
- 채팅 내용, 발신 시간, 발신자 ID, 채팅방 ID

chat_chatroomlog (채팅방 입장 퇴장 로그 테이블)

• 사용자의 채팅방에 참여하고 퇴장한 내역을 기록 합니다.

ERD / Architecture

Model Pipeline

시작 (on_new_input)

- ♥♥ 일반과 슈퍼챗 큐 따로 적재 (input_message_node) 일반 채팅과 슈퍼챗을 각각 큐에 따로 저장
- ♥ ♥ 슈퍼챗 / 일반 분기 (input_message_branch) 채팅의 성격이 일반 채팅인지 슈퍼챗인지 분기하여 조건에 맞춰 노드로 이동
- ♥ 일반 메시지 의도 분류 (intent_classifier)
 - 일반 채팅의 의도를 분석하여 중요도가 제일 높은 채팅을 선별
- 일반 Tool 병렬 실행 (parallel_info_gather)
- 선별된 한 개의 채팅에 대해 tool을 병렬 적으로 실행

- ♥ 슈퍼챗 카테고리 판정 (handle_superchat)
 - 슈퍼챗 의도 분석, 선별 작업은 불필요
- ♥ 슈퍼챗 Tool 병렬 실행
 (parallel_info_gather_superchat)
 tool을 병렬적으로 실행
- ♥ ♥ 최종 답변 생성 (final_responder) 실행한 tool들을 합하여 모델이 최종 답변을 생성
- ♥ 일반 큐 비우기 (speak) 일반 채팅 큐를 비우는 역할

♥ 슈퍼챗 큐 확인 (check_pending_superchat) 답변을 생성하는 동안 입력된 슈퍼챗이 있었는지 슈퍼챗 큐를 확인하는 노드

끝 (END)

Model 선정

모델 선정 기준

- 한국어 표현력, 감정/문체 재현 능력 효율적인 파인튜닝 구조 확장성과 경량성, 실시간 응답 성능 명령어 기반(Instruct) 대화 적합성

모델명	종류	선정 이유				
		한국어 특화 초거대 언어모델,				
exaone	Transformer 기반	대규모 한국어 데이터로 학습됨				
	Decoder-only autoregressive 언어 모델	일반 영어 LLM 대비 한국어 맥락 이해, 표현 능력 우수				
		문체, 감정, 말투 등을 세밀하게 재현 가능				
SOLAR	Transformer 기반 Decoder-only 언어 모델	Instruct 형식, 챗봇 응답 형태 구현에 용이 학습 용이성 + 한국어 대화 최적화				
LLaMA	Transformer 기반 Decoder-only 언어 모델	LoRA 기반 정확한 말투 및 페르소나 재현이 가능				

페르소나 1

페르소나1	ROUGE-1	ROUGE-2	ROUGE-L	ROUGE-Ls um	BERT Score: Pre cision	BERT Score: Rec all	BERT Score: F1 Score	GPT Score
LLaMA	0.0333	0.0067	0.0333	0.0444	0.7296	0.6917	0.7101	3.17
SOLAR	0.0500	0.0067	0.0500	0.0500	0.7257	0.6771	0.7005	2.80
EXAONE	0.0356	0.0	0.0356	0.0356	0.7386	0.7107	0.7243	3.30

페르소나 2

페르소나2	ROUGE-1	ROUGE-2	ROUGE-L	ROUGE -Lsum	BERT Score: Pre cision	BERT Score: Rec all	BERT Score: F1 Score	GPT Score
LLaMA	0.0	0.0	0.0	0.0	0.7226	0.6820	0.7016	2.00
SOLAR	0.0	0.0	0.0	0.0	0.7210	0.6785	0.6990	2.07
EXAONE	0.0333	0.0	0.0333	0.0333	0.7204	0.6876	0.7035	2.13

페르소나3

페르소나3	ROUGE-1	ROUGE-2	ROUGE-L	ROUGE -Lsum	BERT Score: Pre cision	BERT Score: Rec all	BERT Score: F1 Score	GPT Score
LLaMA	0.0	0.0	0.0	0.0	0.6570	0.6100	0.6326	1.03
SOLAR	0.0315	0.0211	0.0304	0.0315	0.7027	0.6945	0.6985	2.07
EXAONE	0.0111	0.0067	0.0111	0.0111	0.6689	0.6267	0.6470	1.20

페르소나 4

페르소나4	ROUGE-1	ROUGE-2	ROUGE-L	ROUGE -Lsum	BERT Score: Pre cision	BERT Score: Rec all	BERT Score: F1 Score	GPT Score
LLaMA	0.0	0.0	0.0	0.0	0.7279	0.6946	0.7108	2.00
SOLAR	0.0	0.0	0.0	0.0	0.7291	0.6959	0.7121	2.07
EXAONE	0.0	0.0	0.0	0.0	0.7360	0.7049	0.7200	2.13

페르소나의 내면적 요소 반영 정도와 모델의 반응 속도를 고려해 각각 페르소나 별로 모델을 선정

FINE TUNING

- ♥ 하이퍼파라미터 튜닝
 - 학습률, 토큰 길이, temperature 등 조절
 - 실험군, 대조군 설정. 정량적 분석
- ♥ 평가 체계 고도화
 - 설문형식 도입, 외부 사용자로부터의 피드백 수집
 - 자연스러움, 유용성, 공감도 등 다각도 평가
 - 실제 서비스 환경 품질 검증

Multi-Modality

- ♥ 캐릭터 외형 생성 및 구체화
- 캐릭터 별 페르소나와 일치하는 외형 정의 및 구체화
 - 캐릭터 별 여러 감정에 상응하는 이미지 구현 후 방송 화면에 연계
- ♥ 캐릭터 음성 구현
 - 인플루언서별 목소리 설정 및 학습
 - 감정의 변화에 대응하는 목소리 구현

STREAMING SYSTEM

- ♥ 가이드봇 설계
 - 채팅 서비스 운영 가이드라인 정의
- 채팅창에서 가이드라인 위반을 식별하고 조치하는 가이드봇(LM) 운영 전략 수립
 - 논문 혹은 회사들의 가이드라인 참고

