

[MENU](#)[SEARCH](#)[INDEX](#)[DETAIL](#)[JAPANESE](#)[BACK](#)[NEXT](#)

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2000-295281

(43)Date of publication of application : 20.10.2000

(51)Int.Cl. H04L 12/56
H04L 12/18

(21)Application number : 11-098002 (71)Applicant : SUMITOMO ELECTRIC IND LTD

(22)Date of filing : 05.04.1999 (72)Inventor : YOSHIDA SHINICHI

(54) FLOW CONTROLLER AND FLOW CONTROLLER METHOD FOR MULTICAST PACKET

(57)Abstract:

PROBLEM TO BE SOLVED: To prevent useless transfer of multicast packets.

SOLUTION: A selective back pressure module 50 of each node grasps the number of packets that is queued at present in each transmission queue managed by a queue management module 40 and discriminates the queue to be in a congestion state when the number of packets more than a specified number is queued to each queue. When the module 50 discriminates that all transmission queues in a multicast flow reach this congestion state, the module 50 informs an adjacent upper-stream node about a back pressure denoting that the flow itself is in congestion and suppression of transmission of packets to the node is requested via a switch back plane 20 and a corresponding I/F module.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特關2000-295281

(P2000-295281A)

(43) 公開日 平成12年10月20日(2000.10.20)

(51) Int.Cl.⁷

歲別記序

F

H04L 11/20
11/18

七-77-1*

5K030
9A001

(31) 出願登号 韓願平11-98002

(71) 出願人 0000002120

(22) 出願日 平成11年4月5日(1999.4.5)

(1) 出版人 住友電気工業株式会社

(72)発明者 大阪府大阪市中央区北浜四丁目5番33号
吉田 真一
大阪市此花区島屋一丁目1番3号 住友電

(74)代理人 100064746

弁理士 深見 久郎 (外2名)

Fターム(参考) 5K030 GA13 HA08 HB11 KX13 LC01
LC11 MB15

(54) 【発明の名称】 マルチキャストパケットのフロー制御装置および方法

(57) 「要約」

【課題】 無駄なマルチキャストパケット転送を防ぐことを目的とする

【解決手段】各ノードでは、選択的パックプレッシャモジュール50はキューマネージャモジュール40が管理する各送信キューに現在キューリングされているパケット数を把握し、各キューについて規定値以上のパケットが牛くマネージャされるそのキューは幅轍状態であると判定し、あるマルチキャストフローのすべての送信キューがこの幅轍状態に達したことを判定すると、スイッチパックプレーン20および対応のI/Fモジュールを介して隣接する上流ノードに対するそのフロー自体が幅轍状態であるパケットの該ノードへの送信抑制を要求する旨のパケットを「シグナル」を印附します。

【特許請求の範囲】

【請求項1】 1つ以上のパケットのフローが定義された回線を介して相互に通信接続された複数のノードのそれぞれに設けられて、該ノードの入力側の1つ以上の入力フローのそれぞれから前記パケットを受理して処理し、前記入力フローのそれぞれについて受理された前記パケットを出力側の該入力フローに対応の1つ以上の出力フローに送出するためのマルチキャストパケットのフロー制御装置であって、前記入力フローに対応の前記1つ以上の出力フローのそれぞれに対応して設けられ、該入力フローから受理された前記パケットのデータが逐次格納されながら、次ノードに送出するために読み出されるキーを備え、前記キーの全てにおいて前記データの格納量が所定上限値を超えたときには、対応する前記入力フローに属する前記パケットの該ノードへの送信抑制を該入力フローに関する隣接上流ノードに要求することを特徴とする、マルチキャストパケットのフロー制御装置。

【請求項2】 前記マルチキャストパケットのフロー制御装置はさらに、

前記入力フローのそれぞれから前記パケットを受理するとともに、与えられる前記パケットを対応する前記出力フローに送出する送受信部と、受信調整部とを備え、

前記受信調整部は、前記キーの全てにおいて前記データの格納量が前記所定上限値を超えたときには、対応する前記入力フローに属する前記パケットの該ノードへの送信抑制を該入力フローに関する隣接上流ノードに要求するための送信抑制要求のパケットを前記送受信部に与える送信抑制要求手段を備える、請求項1に記載のマルチキャストパケットのフロー制御装置。

【請求項3】 前記マルチキャストパケットのフロー制御装置はさらに、前記キーのそれを管理しながら、与えられる送出要求に基づくキーから次に送出されるべき前記データを読み出して前記パケットとして前記送受信部に与えるとともに、送出すべき前記データが無くなり空状態に移行したキーを特定して該キーを指定する空キー通知、または前記空状態から新たに前記データが格納された状態に移行したキーを特定して該キーを指定する航空キー通知を出力するキー管理部と、前記空キー通知または前記航空キー通知を入力して、前記1つ以上のキーのうち前記空状態でなく、次に送出されるべき前記データが格納されたキーを選択して選択された該キーを特定する情報を含む前記送出要求を前記キー管理部に出力する出力調整部とを備え、

前記受信調整部はさらに、前記送受信部を介して前記送信抑制要求のパケットを入

力して、前記1つ以上のキーのうち入力された前記送信抑制要求のパケットにより指定される前記入力フローに対応のキーについて、前記空キー通知を前記出力調整部に出力する空キー通知手段を備える、請求項2に記載のマルチキャストパケットのフロー制御装置。

【請求項4】 前記受信調整部はさらに、前記送信抑制要求のパケットの送出後、前記キーの1つ以上において前記データの格納量が所定下限値を下回ったときには、対応する前記入力フローに属する前記パケットの該ノードへの送信再開を前記隣接上流ノードに要求するための送信再開要求のパケットを前記送受信部に与える送信再開要求手段を備える、請求項2または3に記載のマルチキャストパケットのフロー制御装置。

【請求項5】 前記受信調整部はさらに、前記送受信部を介して前記送信再開要求のパケットを入力して、前記1つ以上のキーのうち入力された前記送信再開要求のパケットにより指定される前記出力フローに対応のキーについて、前記空キー通知を前記出力調整部に出力する航空キー通知手段を備える、請求項4に記載のマルチキャストパケットのフロー制御装置。

【請求項6】 前記所定上限値は、前記フローを介して前記パケットを欠落させることなく伝送するために必要とされる前記キーにおける前記データの格納容量の最大値であることを特徴とする、請求項1ないし5のいずれかに記載のマルチキャストパケットのフロー制御装置。

【請求項7】 前記所定上限値は、前記1つ以上のキーのそれぞれについて個別に設定されることを特徴とする、請求項1ないし6のいずれかに記載のマルチキャストパケットのフロー制御装置。

【請求項8】 前記所定下限値は、前記1つ以上のキーのそれぞれについて個別に設定されることを特徴とする、請求項4ないし7のいずれかに記載のマルチキャストパケットのフロー制御装置。

【請求項9】 1つ以上のパケットのフローが定義された回線を介して相互に通信接続された複数のノードのそれぞれにおいて、該ノードの入力側の1つ以上の入力フローのそれぞれから前記パケットを受理して処理し、前記入力フローのそれぞれについて受理された前記パケットを出力側の該入力フローに対応の1つ以上の出力フローに送出するためのマルチキャストパケットのフロー制御方法であって、前記ノードは、前記入力フローに対応の前記1つ以上の出力フローのそれぞれに対応して設けられ、該入力フローから受理された前記パケットのデータが逐次格納されながら、次ノードに送出するために読み出されるキーを備え、

前記マルチキャストパケットのフロー制御方法は、前記キーの全てにおいて前記データの格納量が所定上

3

限値を超えたときには、対応する前記入力フローに属す前記パケットの該ノードへの送信抑制を該入力フローに関する隣接上流ノードに要求することを特徴とする、マルチキャストパケットのフロー制御方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】この発明はパケット交換網におけるマルチキャストパケットのフローを制御するためのマルチキャストパケットのフロー制御装置および方法に関し、特に、ネットワークの輻輳状態に応じて送信される情報量を制御するためのマルチキャストパケットのフロー制御装置および方法に関する。

【0002】

【從来の技術および発明が解決しようとする課題】特開昭63-209247号公報には、高速パケット交換網の輻輳制御に関して、輻輳が発生すると、隣接ノードに対してパケットの属性を指定して送信規制するための技術が開示されている。

【0003】この公報では、送信規制の対象はユニキャストパケットであり、マルチキャストパケットについての言及はない。なお、マルチキャストとは、ネットワークを通じて同一のデータ（パケット）を同時に複数のユーザ（機器）に対して配信することをいい、ユニキャストとは、ネットワークを通じて同一のデータを同時に1つのユーザ（機器）に対してのみ配信するようなデータ転送方式をいう。

【0004】また、特開平9-312655号公報には、マルチキャストコネクションにおいてのパケットのフロー制御（フローとは一連の処理の単位となるパケットの流れ）方法が示される。ここでは、コネクションの分歧ノードにおいて輻輳情報の統合処理が行なわれるが、フローの制御は送信元端末で行なわれるが、いわゆるエンドツーエンドのフロー制御である。

【0005】そのため、輻輳が発生してから輻輳発生時点（ノード）においてパケットに関するトラフィックが減少するまでの時間差が大きくなり、パケット落ち（パケットが通信路上で輻輳などにより廃棄されること）が生じる可能性がある。

【0006】また、マルチキャストフロー上のどこか1箇所で輻輳が発生すると、送信元ノードにおいて送信が抑制されるために、送信元ノードから該ノードまでのフローの経路上に輻輳部分を持たない他の受信ノードにおいても情報送信が抑制してしまうという悪影響を受けることになる。

【0007】それゆえにこの発明の目的は、無駄なマルチキャストパケット転送を防ぐマルチキャストパケットのフロー制御装置および方法を提供する。

【0008】

【課題を解決するための手段】請求項1に記載のパケットのマルチキャストパケットのフロー制御装置は1つ以

4

上のパケットのフローが定義された回線を介して相互に通信接続された複数のノードのそれぞれに設けられて、該ノードの入力側の1つ以上の入力フローのそれぞれからパケットを受理して処理し、入力フローのそれぞれについて受理されたパケットを出力側の該入力フローに対応の1つ以上の出力フローに送出するために、以下の特徴を有する。

【0009】つまり、マルチキャストパケットのフロー制御装置は、入力フローに対応の1つ以上の出力フローのそれぞれに対応して設けられ、該入力フローから受理されたパケットのデータが逐次格納されながら、次ノードに送出するために出されるキーを備える。そして、キーの全てにおいてデータの格納量が所定上限値を超えたときには、対応する入力フローに属すパケットの該ノードへの送信抑制を該入力フローに関する隣接上流ノードに要求する。

【0010】請求項2に記載のマルチキャストパケットのフロー制御装置は、請求項1に記載のマルチキャストパケットのフロー制御装置がさらに、以下の特徴を有する。

【0011】つまり、入力フローのそれぞれからパケットを受理するとともに、与えられるパケットを対応する出力フローに送出する送受信部と、受信調整部とをさらに備える。そして、受信調整部は、キーの全てにおいてデータの格納量が所定上限値を超えたときには、対応する入力フローに属すパケットの該ノードへの送信抑制を該入力フローに関する隣接上流ノードに要求するための送信抑制要求のパケットを送受信部に与える送信抑制要求手段を備える。

【0012】請求項3に記載のマルチキャストパケットのフロー制御装置は、請求項2に記載のマルチキャストパケットのフロー制御装置がさらに、以下の特徴を有する。

【0013】つまり、キーのそれぞれを管理しながら、与えられる送出要求に基づくキーから次に送出されるべきデータを読み出してパケットとして送受信部に与えるとともに、送出すべきデータが無くなり空状態に移行したキーを特定して該キーを指定する空キー通知、または空状態から新たにデータが格納された状態に移行したキーを特定して該キーを指定する既空キー通知を出力するキー管理部と、空キー通知または既空キー通知を入力して、1つ以上のキーのうち空状態でなく、次に送出されるべきデータが格納されたキーを選択して選択された該キーを特定する情報を含む送出要求をキー管理部に出力する出力調整部とをさらに備える。

【0014】そして、受信調整部はさらに、送受信部を介して送信抑制要求のパケットを入力して、1つ以上のキーのうち入力された送信抑制要求のパケットにより指定される前記入力フローに対応のキーについて、空

20

30

40

50

キュー通知を出力調整部に送出する空キュー通知手段を備える。

【0015】請求項1ないし3のそれぞれに記載の装置によれば、あるマルチキャストフローの全キューにおいてデータ格納容量が所定上限値を超えて転換状態が発生することが予想される場合にのみ、該マルチキャストフローの送信抑制が隣接上流ノードに要求される。それゆえに、送信元ノードから該ノードまでのフロー経路上に転換状態が発生していないフロー上のノードにまでパケットの送信が抑制され、該ノードでパケットが受信できないことによる支障は回避される。

【0016】また、どの宛先ノードにおいても受信されることがない可能性の高い無駄なマルチキャストパケットのデータ伝送が効果的に防止される。これにより、いずれにしても捨てられるようなパケットが伝送されて無駄に回線が使用されることが回避されて、その分、他の有効なパケット転送にバンド幅を割当てることができる。

【0017】また、転換状態に伴うパケットの送信抑制要求は、隣接上流ノードで受理されて実行されるから転換状態解消のためのパケット送信抑制を速やかに行うことができて、パケット落ちをより少なくできる。

【0018】請求項4に記載のマルチキャストパケットのフロー制御装置は、請求項2または3に記載のマルチキャストパケットのフロー制御装置がさらに以下の特徴を有する。つまり、受信調整部はさらに、送信抑制要求のパケットの送信後、キューの1つ以上においてデータの格納量が所定下限値を下回ったときには、対応する入力フローに属すパケットの該ノードへの送信再開を隣接上流ノードに要求するための送信再開要求のパケットを送信部に与える送信再開要求手段を備える。

【0019】請求項5に記載のマルチキャストパケットのフロー制御装置は、請求項4に記載のマルチキャストパケットのフロー制御装置がさらに以下の特徴を有する。つまり、受信調整部はさらに、送信部を介して送信再開要求のパケットを入力し、1つ以上のキューのうち入力された送信再開要求のパケットにより指定される出力フローに対応するキューについて、脱空キュー通知を出力調整部に送出する脱空キュー通知手段を備える。

【0020】請求項4または5によれば、送信抑制後の転換状態解消によるパケットの送信再開要求は、送信抑制要求を受理して実行した隣接上流ノード受理されて実行されるから転換状態解消後のパケット伝送再開を速やかに行うことができる。

【0021】請求項6に記載のマルチキャストパケットのフロー制御装置は、請求項1ないし5のいずれかに記載のマルチキャストパケットのフロー制御装置がさらに以下の特徴を有する。つまり、所定上限値は、フローを介してパケットを欠落させることなく伝送するために必要とされるキューにおけるデータの格納容量の最大値で

ある。

【0022】請求項7に記載のマルチキャストパケットのフロー制御装置は、請求項1ないし6のいずれかに記載のマルチキャストパケットのフロー制御装置がさらに以下の特徴を有する。つまり、所定上限値は、1つ以上のキューのそれぞれについて個別に設定される。

【0023】請求項8に記載のマルチキャストパケットのフロー制御装置は、請求項4ないし7のいずれかに記載のマルチキャストパケットのフロー制御装置がさらに以下の特徴を有する。つまり、所定下限値は、1つ以上のキューのそれぞれについて個別に設定される。

【0024】請求項6ないし8のそれぞれに記載の装置によれば、あるマルチキャストフローの各出力フローに関するパケットの送受信レートに従い所定上限値または所定下限値を任意に設定できる。

【0025】請求項9に記載のマルチキャストパケットのフロー制御方法は、1つ以上のパケットのフローが定義された回線を介して相互に通信接続された複数のノードのそれぞれにおいて、該ノードの入力側の1つ以上の入力フローのそれぞれからパケットを受理して処理し、入力フローのそれぞれについて受理されたパケットを出力側の該入力フローに対応の1つ以上の出力フローに送出するための方法である。

【0026】ノードは、入力フローに対応の1つ以上の出力フローのそれぞれに対応して設けられ、該入力フローから受理されたパケットのデータが逐次格納されながら、次ノードに送出するために読み出されるキューを備える。

【0027】方法は、キューの全てにおいてデータの格納量が所定上限値を超えたときには、対応する入力フローに属すパケットの該ノードへの送信抑制を該入力フローに関する隣接上流ノードに要求することを特徴とする。

【0028】請求項9に記載の方法によれば、あるマルチキャストフローに対応する全キューにおいてデータ格納容量が所定上限値を超えて転換状態が発生することが予想される場合にのみ、該マルチキャストフローの送信抑制が隣接上流ノードに要求される。それゆえに、送信元ノードから該ノードまでのフローの経路上に転換状態が発生していないフロー上のノードにまでパケットの送信が抑制され、該ノードでパケットが受信できないことによる支障は回避される。

【0029】また、どの宛先ノードにおいても受信されることがないことがわかっている無駄なマルチキャストパケットのデータ伝送が効果的に防止される。これにより、いずれにしても捨てられるようなパケットが伝送されて無駄に回線が使用されることが回避されて、その分、他の有効なパケット転送にバンド幅を割当てることができる。

【0030】また、転換状態に伴うパケットの送信抑制要求は、隣接上流ノードで受理されて実行されるから幅

接続状態解消のためのパケット送信抑制を速やかに行うことができる、パケット落ちをより少なくできる。

【0031】

【発明の実施の形態】本実施の形態では、パケット交換網のデータリンク層におけるマルチキャストパケットのフロー制御が示される。ここで対象とされるマルチキャストフローは、ポイントツーマルチポイントのフローであり、マルチポイントツーマルチポイントのフローは対象外とされる。

【0032】また、本実施の形態では、パケット交換網において既にマルチキャストフローが設定されていることを想定しており、マルチキャストのフローの設定方法ではマルチキャストフローがアクティブな間の遅延の追加・変更および削除、ならびにマルチキャストフローがアクティブな間の各種のパラメータの変更是想定されない。なお、ここではダイナミックなフローの変更については述べていないが、本実施の形態はダイナミックなフローの変更についても容易に対応できる。

【0033】本実施の形態では通信路上に中継装置が1台以上設置されて、パケット（あるいはセル）は転送線路上の各中継装置で処理される。これをホップバイホップと呼ぶ。

【0034】また、本実施の形態ではパックプレッシャが用いられる。パックプレッシャとは、たとえばシリアル回線の $x_0 n / x_0 f f$ のようなもので、通信の宛先機器あるいは中継装置で誤りが発生し、それ以上パケットを受信できない状態となったときに、パケット落ちを回避するために上流の機器や装置に対してパケットの送信を一時的に停止（送信抑制）させたり、これを再開させたりすることを要求する送信抑制要求および送信要求をいう。

【0035】パックプレッシャに関する要求先が隣接する機器（中継装置や通信機器）である場合は「ホップバイホップのパックプレッシャ」であり、要求先がパケット（フロー）送信元の機器（中継装置や通信機器）である場合は「エンドツーエンドのパックプレッシャ」である。また、1つの回線が複数の異なるフローにより共用されている場合に、特定フローに対してのみパックプレッシャをかけることを「選択的パックプレッシャ」と呼ぶ。

【0036】図1は、この発明の実施の形態によるパケット交換網に適用されるノードのブロック構成図である。図1にはノードにおけるマルチキャストパケットの選択的パックプレッシャを用いたフロー制御のためのブロック構成が示される。

【0037】図2は、この発明の実施の形態に適用されるパケット交換網の構成図である。図3は、図2のパケット交換網における隣接する両ノード間のフローの一例を説明する図である。

【0038】図2においてパケット交換網はパケットを

送信してデータ通信をする両端の装置（送信端および受信端の装置）となり得るエッジデバイスA1～A5およびエッジデバイス間の通信路上に設けられて伝送されるパケットに関して処理を行なう中継装置B1～B7を含む。エッジデバイスA1～A5および中継装置B1～B7を含む。エッジデバイスA1～A5および中継装置B1～B7は、以降ノードと呼ばれる。

【0039】たとえばノードB2のようにフローを入力して複数のフローに分岐して出力するが、このようなノードを分岐ノードと呼ぶ。また各ノードについて、あるフローに着目して、そのフローの上流側に位置するノードは上流ノードと呼び、下方側に位置するノードは下流ノードと呼ぶ。各ノードはCPU（中央処理装置）およびメモリを含む情報処理装置として提供される。なお、各ノードではハードウェアの設定や管理のためにソフトウェアが設けられて、パケットの転送自体はハードウェアで行なわれる。

【0040】本実施の形態で対象とされる1つ以上のパケットのフローが定義された回線を介してデータパケットを転送するためのマルチキャストフローは、ポイントツーマルチポイントの1方向フローであるが、図3に示されるようにこのフローの方向とは逆方向に選択的パックプレッシャ制御パケットが伝送される。本実施の形態では、同一隣接ノード間に各フローで共用されるパックプレッシャ制御パケット専用のフローが定義される。

【0041】図4（A）～（F）は、この発明の実施の形態に適用されるパケットのファイル構成を示す図である。図4（A）には通常の通信におけるデータ転送のための通常のデータパケットNPDが示され、図4

（B）には選択されたフローに関する送信抑制を上流ノードに要求するためのパックプレッシャ制御（送信抑制要求）パケットB1が示され、図4（C）には選択されたフローに関して送信抑制された送信の再開始を含む送信の旨を上流ノードに要求するためのパックプレッシャ制御（送信要求）パケットB2が示される。

【0042】図4（A）～（F）の各パケットはヘッダ部とデータ部を含む。ヘッダ部には一般的には該パケットに対応のフローを識別するための情報であるフローIDを含む情報が格納される。図4（A）の通常のデータパケットNPDのデータ部には伝送すべきデータの内容が格納される。図4（B）のパックプレッシャ制御（送信抑制要求）パケットB1のデータ部には送信抑制要求R1が格納される。送信抑制要求R1は該パケットB1が伝送される回線上に存在する各フローに対応するビットマップを有し、選択的パックプレッシャをかける必要がある1つ以上のフロー（フローID）のみがセットされて、送信抑制要求R1により通常のデータパケットNPDの送信が抑制されるべきフローが指定される。

ここでは、たとえばフローIDが1であるフローに関してはデータパケットNPDの送信が抑制されていることが示される。

【0043】図4（C）のパックプレッシャ制御（送信要求）パケットB P 2のデータ部には送信要求R 2が格納される。送信要求R 2は抑制された送信が再度許可されるべきフローを含む送信を許可する全フローを特定する情報を示す。ここでは、たとえばフローIDが1のフローに関して送信が許可されることが示される。

【0044】パックプレッシャ制御パケットのフォーマットにはいくつかの形式が適用できる。

【0045】送信抑制要求R 1と送信要求R 2を必要なときに直ちに送信する場合、図4（F）のパックプレッシャ制御パケットB P 5が用いられる。パックプレッシャ制御パケットB P 5には要求対象となるフローのIDがただ1つ設定される。この方式が最もも応答性がよいため、各キーの後述する上しい値を最も大きく、かつ後述する下しい値を最も小さく設定することができる。一方、フロー数が多い場合にはパックプレッシャ制御パケットB P 5の数が増えて回線の帯域が余分に消費される。また、パックプレッシャ制御パケットB P 5についてパケット落ちが生じた場合に送信抑制要求R 1がかけられた状態のままになるので、この場合はに送信抑制要求R 1のタイムアウトなどの何らかの処理を施す必要がある。

【0046】図4（F）のパックプレッシャ制御パケットB P 5のデータ部には種別と対象フローのIDと共に含まれる。種別には送信抑制要求R 1および送信要求R 2のいずれか一方が設定される。対象フローのIDには常に1つだけIDが設定される。

【0047】パックプレッシャ制御パケットB P 5の場合とは異なり、送信抑制要求R 1と送信要求R 2を必要なときに直ちに送信しない場合には、次の2つの方法が考えられる。

【0048】まず第1の方法は、図4（E）のパックプレッシャ制御パケットB P 4を用いる方式である。パックプレッシャ制御パケットB P 4はデータ部においてそのリンクに定義されているすべてのフローに対応するビットマップを有する。このビットマップは、各フローに応するビットが1ならばそのフローには送信抑制要求R 1が出ており（送信不可である）ことを示し、各フローに対応するビットが0ならば、そのフローには送信抑制要求R 1は出でていない（送信可能である）ことを示す。パックプレッシャ制御パケットB P 4は、新たに送信抑制要求R 1あるいは送信要求R 2が発生したか否かにかかわらず定期的に、たとえば0. 01秒に1回送信される。

【0049】パックプレッシャ制御パケットB P 4を用いた方式の利点は、パックプレッシャ制御パケットB P 4が何らかの原因により上流ノードに届かなかった場合でも、次に送信されるパックプレッシャ制御パケットB P 4には、そのリンクに関するすべてのパックプレッシャ制御に関する情報が設定されているため、フローが送

信抑制の状態になったまとなるといった心配がないことである。

【0050】ただし、そのリンク上に設定されているフロー数が多い場合パックプレッシャ制御パケットB P 4のサイズが大きくなり、また定期的にパックプレッシャ制御パケットB P 4を送信する必要があるから回線帯域の消費量が大きい。

【0051】第2の方法は、図4（B）～（D）のパックプレッシャ制御パケットB P 1～B P 3を用いる方式である。図4（D）のパックプレッシャ制御パケットB P 3はパックプレッシャ制御パケットB P 1とB P 2による送信抑制要求R 1と送信要求R 2を1つのパケットにて行なうものである。パックプレッシャ制御パケットB P 1～B P 3は、新たに送信抑制要求R 1あるいは送信要求R 2を送信する必要ができたときに、直ちには送出されず、一応時間待機した後送出されて、複数フローに対する送信抑制要求R 1あるいは送信要求R 2をまとめて送出するものである。なおこの場合においても、パックプレッシャ制御パケットB P 5の場合と同様にパックプレッシャ制御パケットに関してパケット落ちが生じたときの回復のための処理が必要とされる。

【0052】なお、本実施の形態では説明を簡単にするためパックプレッシャ制御パケットとしてパックプレッシャ制御パケットB P 1とB P 2を用いている。

【0053】図5は、図1の構成においてブロック間のデータおよび信号の流れを説明するための図である。図1および図5において各ノードは、CPU（中央処理装置の略）モジュール10、スイッチパックプレーン20、隣接するノードからデータを受信するためにフローごとに設けられて送受信部の1例であるI/F（インターフェースの略）モジュール31～34、キュー管理部の1例であるキュー管理モジュール40、受信調整部の1例である選択的パックプレッシャモジュール50および出力調整部の1例であるスケジューラモジュール60を含む。I/Fモジュールの数はこれに特定されない。

【0054】図5では、パケット受信用のI/FモジュールとしてI/Fモジュール31が採用されて、パケット送信用のI/FモジュールとしてI/Fモジュール34が採用されるが、これに特定されない。

【0055】また、図5では図1の選択的パックプレッシャモジュール50を構成するものとして選択的パックプレッシャモニタモジュール（以下、モニタモジュールと略す）51、選択的パックプレッシャ実行モジュール（以下、実行モジュールと略す）52および選択的パックプレッシャ送受信モジュール（以下、送受信モジュールと略す）53を含む。

【0056】図6は、フローID→IVC ID変換テーブル70の構成図である。図7は、IVC ID→OVC ID変換テーブル71の構成図である。図8は図5のキュー管理モジュール40により参照されるキュー管理テ

一ブルの内容を示す図であり、図9は図5のモニタモジュール51により参照されるキューマネージャーの内容を示す図である。

【0057】図10は、図5におけるデータパケットの受信の処理フローチャートである。図11は、図5における通常のデータパケットの送信に関する処理フローチャートである。図12は、図5の選択的パックプレッシャモニタモジュール51の処理フローチャートである。図13は、図5の選択的パックプレッシャモニタモジュール51の他の処理フローチャートである。図14は、図5における選択的パックプレッシャ制御パケットの受信の処理フローチャートである。

【0058】図10～図14のフローチャートはASIC(Application Specific ICの略)に組込まれた論理により実現される。

【0059】次に、動作について図面を参考し説明する。まず、図5の受信のI/Fモジュール31が上流ノードから図4(A)の通常のデータパケットNPDを受信する。I/Fモジュール31は図6のフローID→IVCID変換テーブル70を有する。テーブル70は図示されるように複数の異なるフローIDと、各フローIDについて1対1に対応する各フローをノード内に一意に特定するための内部処理用の識別子IVCIDとを含む。I/Fモジュール31は受信パケットNPDのヘッダ部のフローIDに基づいてフローID→IVCID変換テーブル70を検索して対応する内部処理用の識別子IVCIDを得る(図10のS1)。

【0060】I/Fモジュール31は識別子IVCIDと受信パケットデータをスイッチパックブレーン20に渡すので、スイッチパックブレーン20は受信パケットデータを自己管理する内部バッファ21に順次格納し、内部バッファ21における記憶位置、受信パケットのバイト数などの情報を含むパケット記述子211を作成して、パケット記述子211と識別子IVCIDとをキューマネージャー40に渡す(S2とS3)。

【0061】キューマネージャー40は図7のIVCID→IVCID変換テーブル71と図8のキューマネージャーテーブル72を参照する。

【0062】マルチキャストフローの場合、出力I/Fモジュールの数だけ出力I/Fモジュールを識別するための識別子IVCIDが割りられるので、IVCID→IVCID変換テーブル71は、1つの識別子IVCIDについてポイントを利用したチェーン構造により1つ以上の情報711を含む。各情報711は識別子IVCIDと対応するパケット出力用のI/Fインタフェースモジュールを特定する出力I/F特定情報712とを含む。

【0063】キューマネージャー40は、受信したパケットデータのパケット記述子212を1つ以上のキューユーを用いて管理する。キューマネージャー40で管理

される各キューユーは識別子IVCIDと1対1に対応する。キューマネージャー40は各識別子IVCIDについて受理したパケットがどの出力I/Fモジュールから出力されるかを特定するための情報を含むキューマネージャーテーブル72を参照する。

【0064】キューマネージャーテーブル72は後述するようにモニタモジュール51により参照される情報も含むが、ここでは図8に示されるようにキューマネージャー40より参照される情報のみが示される。

【0065】図8においてキューマネージャーテーブル72は複数の識別子IVCIDと、識別子IVCIDのそれぞれについて対応するキューユーに関する情報を含む。この情報には対応キューユー内に存在するパケットデータの数を示すキューユー内パケット数721、該キューユーにおけるバッファ(メモリ)の使用量を示す使用中バッファ量722、該キューユー内のパケットを出力するためのI/Fモジュールを特定する情報である出力I/F723、複数のキューユーが構成されるバッファ内において該キューユーの先頭および末尾に位置する情報を示すための情報であるキューユー先頭ポインタ724およびキューユー末尾ポインタ725を含む。

【0066】なお、各キューユーにはパケット記述子211がパケットデータとして格納される。

【0067】キューマネージャー40は、スイッチパックブレーン20からパケット記述子211と識別子IVCIDを受理すると、識別子IVCIDに基づいてIVCID→IVCID変換テーブル71を検索して対応する1つ以上の識別子IVCIDを得て(S4)、得られた識別子IVCIDのそれぞれに基づいてキューマネージャーテーブル72を検索して、対応するキューユーの末尾にそれぞれパケットデータを、すなわちスイッチパックブレーン20から受理したパケット記述子211を図8に示されるようにして登録するとともに、対応するキューユー内パケット数721、使用中バッファ量722、キューユー先頭ポインタ724およびキューユー末尾ポインタ725を更新する(S5)。

【0068】ここで、あるキューユーにパケット記述子211が1つも格納されてなければ、そのキューユーの状態は空という。

【0069】図10のS5において、空であったキューユーに新たにパケット記述子211が格納されたとき(S6でYES)、キューマネージャー40は空であって新たにパケット記述子211が加えられたキューユーに対応する識別子IVCIDをキューマネージャーテーブル72から読み出す。そして、スケジューラモジュール60に対して、そのキューユーに関するパケット送受信のためのスケジュール開始を要求するために、そのキューユーに対応して読み出された識別子IVCIDを含むスケジュール開始要求1000を渡す(S7)。

【0070】スケジューラモジュール60は複数のスケ

ジユーラ6 i (i = 1, 2, ...) を含み、各スケジューラ6 i は出力 I/F モジュールのそれぞれに対応して設けられる。各スケジューラ6 i は対応する出力 I/F モジュールのキューのみについて送受信に関するサービスを行なう。

【0071】該ノードから図4 (A) の通常のデータパケット NPD を下流ノードに送信する場合の動作について説明する。

【0072】スケジューラモジュール6 0 は所定のポリシーに基いて、次の送信されるべきデータパケット NPD のデータ (パケット記述子 211) が格納されたキュを決定する。

【0073】なお、スケジューラモジュール6 0 は、スケジュール開始要求 100 と後述するスケジュール中止要求 110 により与えられる識別子 OVCID により、どのキューが空であるか否かを判断しながら、次にパケットを送信すべきキューを決定して対応する識別子 OVCID を含むパケット送信要求 120 をキュー管理モジュール4 0 に与える。

【0074】キュー管理モジュール4 0 は、スケジューラモジュール6 0 からパケット送信要求 120 を受理すると、パケット送信要求 120 により指定された識別子 OVCID に基づきキュー管理テーブル7 2 を検索して、対応するキューのキュー先頭ポインタ 7 2 4 で指示されるパケット記述子 211 を取出して、取出されたパケット記述子 211 とともに対応するキュー管理テーブル7 2 中の識別子 OVCID と出力先 I/F 7 2 3 とをスイッチパックプレーーン 2 0 に渡す (図11の S1 0) 。

【0075】この結果、対応するキューが空になったか否か判定されて (S1 1) 、空になればスケジューラモジュール6 0 に対して、そのキューに関するパケット送受信のスケジュールを中止することを要求するために該キューに対応する識別子 OVCID を含むスケジュール中止要求 110 がスケジューラモジュール6 0 に与えられる (S1 2) 。

【0076】スケジューラモジュール6 0 は、スケジュール中止要求 110 を受理すると、対応するキューの送受信に関するスケジューリングサービスを中止するよう動作する。言い換えれば、該キューに関してパケット送信要求 120 がキュー管理モジュール4 0 に渡されないよう動作する。

【0077】スイッチパックプレーーン 2 0 は、キュー管理モジュール4 0 からパケット記述子 211 、出力先 I/F 7 2 3 および識別子 OVCID を受理するので、受理したパケット記述子 211 に基づいてバッファ 2 1 から対応の受信データ (パケットデータ) を読出して (S 1 3) 、読出されたパケットデータと受理した識別子 OVCID を出力先 I/F 7 2 3 で特定される送信の I/F モジュール3 4 に与えて、I/F モジュール3 4 は

与えられたパケットデータをデータパケット NPD として送信する (S1 4) 。このとき、I/F モジュール3 4 は、与えられる識別子 OVCID に基づいて所定の処理 (たとえば、必要とあれば送信するデータパケット NPD のフロー ID の更新など) を行なう。

【0078】選択的パックプレッシャモジュール5 0 の処理はキュー管理モジュール4 0 とスケジューラモジュール6 0 の間に介在し、両者間の情報を操作することによって選択的パックプレッシャを実現する。選択的パックプレッシャモジュール5 0 は、フローごとのバッファ使用量を監視して上流ノード側への選択的パックプレッシャ通知を生成するモニタモジュール5 1 、下流ノードからの選択的パックプレッシャ通知に対し、送信を制御する実行モジュール5 2 、および選択的パックプレッシャ通知をモニタモジュール5 1 やび実行モジュール5 2 と隣接ノードとの間でやり取りするための送受信モジュール5 3 を含む。

【0079】モニタモジュール5 1 はキュー管理テーブル7 2 を参照する。モニタモジュール5 1 により参照されるキュー管理テーブル7 2 の内容と、テーブル7 2 の内容に基いて参照されるパックプレッシャ管理テーブル7 3 の内容が図9に示される。

【0080】図9のキュー管理テーブル7 2 には複数の識別子 OVCID と、識別子 OVCID のそれぞれに対応して図8と同様にキュー内パケット数 7 2 1 および使用中バッファ量 7 2 2 を含むとともに、上しきい値 7 2 6 、下しきい値 7 2 7 およびパックプレッシャ管理テーブル7 3 の情報へのポインタ 7 2 8 が含まれる。

【0081】なお、上下しきい値 7 2 6 および 7 2 7 は、全てのキューについて一括して設定されてもよく、個別に設定されてもよい。上しきい値 7 2 6 は、対応するキュー内のパケット記述子 211 の格納容量不足によるパケット落ちを回避することのできる最大容量に設定される。

【0082】パックプレッシャ管理テーブル7 3 は複数の識別子 IVCID と、識別子 IVCID のそれぞれについて対応するキューのうち満杯でないキューの数を示すための満杯でないキューの数 7 3 1 を含む。

【0083】モニタモジュール5 1 はスイッチパックプレーーン 2 0 からキュー管理モジュール4 0 へのデータをモニタし、各キューにおいてパケットデータ (パケット記述子 211) による使用中バッファ量 7 2 2 を監視して、図12のフローチャートに従い以下のように動作する。

【0084】つまり、モニタモジュール5 1 はスイッチパックプレーーン 2 0 からキュー管理モジュール4 0 へのデータを監視しパケットデータの受信イベントごとに、スイッチパックプレーーン 2 0 から受理した識別子 IVCID に基づいて IVCID → OVCID 変換テーブル7 1 を検索して対応する1つ以上の識別子 OVCID を求

める(S20)。

【0085】そして求められた各識別子OVCIDについて、以下の処理を実行する。まず、受理したパケット記述子211に基づいて新たに受信したパケットのバイト数をキュー管理テーブル72中の対応するキューの使用中バッファ量722に加算する(S21)。

【0086】そして、使用中バッファ量が新たに上しきい値726を超えたか否か判定する(S22)。使用中バッファ量722が対応する上しきい値726を超なければ(S22でNO)、次の識別子OVCIDについて同様に処理が行なわれる。

【0087】一方、上しきい値726を超れば(S22でYES)、その識別子OVCIDに対応するポイントタ728で示されるパックプレッシャ管理テーブル73中の満杯でないキューの数731が1減算されて(S23)、その減算の結果、満杯でないキューの数731が0になったか否か判定される(S24)。0にならなければ、次の識別子OVCIDについて同様に処理が行なわれる。一方、満杯でないキューの数731が0となれば(S24でYES)、パックプレッシャ管理テーブル73において対応する識別子IVCIDで特定されて送受信モジュール53に与えられ、ここで対応するフローに対してパックプレッシャ制御(送信抑制要求)パケットが生成されて送信される(S25)。

【0088】このように、マルチキャストフローでは、各フローに対するキューが複数存在する。そこで、対応するすべてのキューの使用中バッファ量722が対応する上しきい値726を超えて該フローに関して幅狭状態となれば、そのフローに対する図4(B)のパックプレッシャ制御(送信抑制要求)パケットが生成されて送られる。

【0089】送受信モジュール53は、モニタモジュール51から送信抑制対象IVCID130が与えられるので、与えられた識別子IVCIDに基づきテーブル70から送信抑制対象フローIDを読み出し、テーブル71から情報711を読出す。そして、図4(B)のパックプレッシャ制御パケットBPI(制御対象フローIDが設定されたもの)を生成して、情報711から読出された出力I/F特定情報712とともにスイッチパックブレーン20に送る。以後、パックプレッシャ制御パケットBPIは通常のパケットと同様に扱われ、情報712で指定されるI/Fモジュール34から隣接する上流ノードに送られる。

【0090】モニタモジュール51は図12の処理とともに、図13のフローチャートに従い以下の処理も行なう。

【0091】モニタモジュール51はキュー管理モジュール40からスイッチパックブレーン20へのデータをモニタし各キューにおいてパケットデータ(パケット記述子211)による使用中バッファ量722を監視す

る。キュー管理モジュール40からスイッチパックブレーン20へのデータパケットの送信イベントごとに、モニタモジュール51は送信データパケットのバイト数をキュー管理テーブル72中の対応するキューの使用中バッファ量722から減算して使用中バッファ量722を更新する(図13のS30)。

【0092】その結果、使用中バッファ量722が対応する下しきい値727を下回ったか判断し(S31)、下回らなければ処理は終了するが、下回れば対応するパックプレッシャ管理テーブルへのポイントタ728により指示されるパックプレッシャ管理テーブル73中の満杯でないキューの数731が1だけ加算されて更新される(S32)。

【0093】そして、加算の結果、満杯でないキューの数731の値が0から1に変化したかが判断される(S33)。変化しなければ一連の処理を終了するが、変化すれば、前述のパケットBPIと同様にして対応するフローのフローIDを含む図4(C)のパックプレッシャ制御パケットBPIが作成されて、隣接する上流ノードに対して送信され該フローのデータパケットの送信が要求される(S34)。

【0094】一方、隣接する上流ノードでは図12または図13で送信されたパックプレッシャ制御パケットBPIまたはBPIが受信されるので、図10と同様な処理が行なわるとともに、図14に従う処理が実行される。

【0095】まず図14において、受信されたパックプレッシャ制御パケットBPIまたはBPIはI/Fモジュール31とスイッチパックブレーン20を介して送受信モジュール53に与えられる。

【0096】送受信モジュール53は、与えられたパックプレッシャ制御パケットBPIまたはBPI中の制御対象のフローIDを得て、これに基づいてフローID→IVCID変換テーブル70を検索して、対応する識別子IVCIDを求める(図14のS40)。

【0097】そして求められた識別子IVCIDに基づいてIVCID→OVCID変換テーブル71を検索して、制御対象のキューに対応の識別子OVCIDおよび出力I/F情報712を求める(S41)。そして、受理したパケットが送信を抑制するパックプレッシャパケットBPIである場合は求められた識別子OVCIDを用いた送信抑制対象OVCID131を実行モジュール52に与え、受理したパケットが選択的パックプレッシャパケットBPIであった場合は求められた識別子OVCIDを用いた送信対象OVCID141を実行モジュール52に与える。

【0098】実行モジュール52は、送受信モジュール53から与えられる信号を受理して内容を判別し(S42)、送信抑制対象OVCID131であればスケジューラモジュール60に対し送信抑制対象OVCID13

1により受理した識別子O V C I Dを含むスケジュール中止要求1 1 0を与える(S 4 3)、送信対象O V C I D 1 4 1を受理すれば、これにより受理した識別子O V C I Dを含むスケジュール開始要求1 0 0をスケジューラモジュール6 0に与える(S 4 4)。

【0 0 9 9】したがって、スケジューラモジュール6 0は送受信モジュール5 3および実行モジュール5 2を介して与えられる選択的パックプレッシャによるスケジュール開始/中止要求1 0 0/1 1 0に対するサービスを、キュー管理モジュール4 0および実行モジュール5 2を介して与えられるスケジュール開始/中止要求1 0 0/1 1 0と同様に処理することができる。

【0 1 0 0】上述したように、あるフローに対してパックプレッシャ制御(送信抑制要求)パケットB P 1を受けると、実際に対応するキューが使用しているバッファ量7 2 2にかかわらず、スケジューラモジュール6 0に対して該キューは空である旨のスケジュール開始要求1 1 0が通知されるから、以降、そのキューに対するサービスを停止して、該パックプレッシャ制御パケットB P 1の送信元への該フローを用いた通常のデータパケットN P D伝送が停止する。

【0 1 0 1】また、パックプレッシャ制御(送信要求)パケットB P 2を受けた場合は、実行モジュール5 2は、そのフローに対応するキューが空でなくなった旨のスケジュール開始要求1 0 0をスケジューラモジュール6 0に通知するから、スケジューラモジュール6 0によりそのキューに対するサービスを行なうことができて、送信制御されていたフローの場合は、通常のデータパケットN P Dのマルチキャストによる下流ノードへの伝送を再開することができる。

【0 1 0 2】なお、マルチキャストフローでは1つのフローに対応するキューが複数個あるが、前述したようにパックプレッシャ管理テーブル7 3中の満杯でないキューの数7 3 1が0になったか否かによりパックプレッシャ制御パケットB P 1またはB P 2を送信するようになっているから、送信抑制要求(パケットB P 1)を受けてサービスが中止されるのは、該パケットB P 1を受理したI / Fモジュールを介してデータを送出するためのキューに限定される。その他のキューについては引き続きサービスが続行される。同様に、送信要求(パックプレッシャ制御パケットB P 2)を受取った場合も、サービスが行なわれるのは、その要求(パケットB P 2)を受理したI / Fモジュールが通常のデータパケットN P Dを送出するためのキューに限定されて、その他にも送信抑制中のキューがあったとしてもサービスは再開されない。

【0 1 0 3】したがって、どの宛先ノードにおいても受信されない可能性の高い無駄なマルチキャストパケットのデータ伝送が効果的に防止される。これにより、いざれにしても捨てられるようなパケットが伝送されること

により、無駄な回線が使用されることが回避されて、その分、他の有効なパケット転送にバンド幅を割当てることができる。

【0 1 0 4】また、本実施の形態では隣接する上流ノードにパックプレッシャ制御パケットB P 1およびB P 2が与えられてこれに従う処理が実施されるから、あるノードにおいて転換が発生してから、すなわちパックプレッシャ管理テーブル7 3において満杯でないキューの数7 3 1が0となったときから、転換が発生した該ノードにおいてデータパケットに関するトラフィックが減少するまでの時間を短くできて転換状態がすばやく解消されやすくなる。

【0 1 0 5】なお、今回開示された実施の形態は全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。

【図面の簡単な説明】

【図1】この発明の実施の形態によるパケット交換網に適用されるノードのブロック構成図である。

【図2】この発明の実施の形態におけるパケット交換網の構成図である。

【図3】図2のパケット交換網における隣接する両ノード間のフローの一例を説明する図である。

【図4】(A)～(F)は、この発明の実施の形態に適用されるパケットのフィールド構成を示す図である。

【図5】図1の構成においてブロック間のデータおよび信号の流れを説明するための図である。

【図6】図5のフローI D→I V C I D変換テーブルの構成図である。

【図7】図5のI V C I D→O V C I D変換テーブルの構成図である。

【図8】図5のキュー管理モジュール4 0により参照されるキュー管理テーブルの内容を示す図である。

【図9】図5のモニタモジュールにより参照されるキュー管理テーブルの内容を示す図である。

【図10】図5におけるデータパケットの受信の処理フローチャートである。

【図11】図5における通常のデータパケットの送信に関する処理フローチャートである。

【図12】図5の選択的パックプレッシャモニタモジュールの処理フローチャートである。

【図13】図5の選択的パックプレッシャモニタモジュールの他の処理フローチャートである。

【図14】図5における選択的パックプレッシャ制御パケット受信の処理フローチャートである。

【符号の説明】

10 C P Uモジュール

20 スイッチパックブレーン

19

- 3.1～3.4 I/Fモジュール
 4.0 キュー管理モジュール
 5.0 選択的バックプレッシャモジュール
 6.0 スケジューラモジュール
 N.P.D. 通常のデータパケット

20

- B.P.1 バックプレッシャ制御(送信抑制要求)パケット
 B.P.2 バックプレッシャ制御(送信要求)パケット
 B.P.3～B.P.5 バックプレッシャ制御パケット
 なお、各図中同一符号は同一または相当部分を示す。

【図1】

【図3】

【図5】

【図6】

フレークID	IVCID
1	2
2	6
3	14
⋮	⋮

【図7】

【図4】

【図10】

【図8】

【図9】

【図11】

【図13】

【図12】

【図14】

