

Fundação Getúlio Vargas

Contributors: Jean² e Gabriel Matos Content: Teoria da Probabilidade

Este material contempla um resumo dos principais tópicos da Teoria de Probabilidade, abordando as definições e os resultados necessários.

Para quaisquer correções ou apontamentos acerca desse material, não exitem em nos contatar, seguem abaixo os nossos emails:

- jeannrochasilva@gmail.com
- gplaygmg775@gmail.com

Contagem

Seguem abaixo algumas Ferramentas Úteis e Essenciais para a Contagem...

- 1. Princípio Aditivo
- 2. Princípio Fundamental da Contagem (ou Princípio Multiplicativo)
- 3. Permutações Simples
- 4. Arranjos
- 5. Permutações com Repetição
- 6. Permutações Circulares
- 7. Combinações Simples
- 8. Combinações Completas (ou Combinações com Repetiação, ou ainda Modelo de Pauzinhos e Bolinhas)
- 9. Permutações Caóticas
- 10. Contagem Dupla (ou Story Proofs)
- 11. Princípio da Indução Finita

Probabilidade

Definição 1 (Probabilidade: Caso Equiprorável). Seja $A\subset S$, com S finito. Então, a probabilidade de A é

$$P(A) = rac{|A|}{|S|}$$

Comentário: Esta definição só faz sentido em espaços finitos equiproráveis.

Definição 2 (Probabilidade: Geral). Sendo $\mathcal{P}(S)$ o conjunto de todos os subconjuntos de S, uma probabilidade em S é uma função $P:\mathcal{P}(S)\to [0,1]$ tal que

- 1. $P(\emptyset) = 0$
- 2. P(S) = 1
- 3. Se $A_1, A_2, ... \subset S$ são disjuntos, então

$$P\left(igcup_{n=1}^{\infty}A_n
ight)=igcip_{n=1}^{\infty}P(A_n)$$

Proposição 1. Seja P uma probabilidade em S. Então

- 1. $P(A^C) = 1 P(A), \forall A \subset S$
- 2. $A \subset B \Rightarrow P(A) \leq P(B), \forall A, B \subset S$
- 3. $P(A \cup B) = P(A) + P(B) P(A \cap B), \forall A, B \subset S$

A útlima propriedade pode ser generalizada para

$$P\left(igcup_{i=1}^n A_i
ight) = \sum\limits_i P(A_i) - \sum\limits_{i < j} P(A_i \cap A_j) + \sum\limits_{i < j < k} P(A_i \cap A_j \cap A_k) - ... + (-1)^{n+1} P(A_1 \cap ... \cap A_n)$$

Probabilidade Condicional

Definição 3. Dados $A, B \subset S$ tal que P(B) > 0, a probabilidade condicional de A dado que B ocorreu (ou, simplesmente, a probabilidade de B dado A) é

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Proposição 2. Dado $B \subset S$, a função $P(\cdot|B)$ é uma probabilidade.

Proposição 3 (Teorema de Bayes). Sejam $A_1, ..., A_n$ uma partição de S, Então

$$P(A_i|B) = rac{P(B|A_i)P(A_i)}{P(B)} = rac{P(B|A_i)P(A_i)}{\sum\limits_{i=1}^n P(B|A_j)P(A_j)}, orall B \subset S$$

Em particular, como A, A^C forma uma partição de S, temos

$$P(A_i|B) = rac{P(B|A)P(A)}{P(B)} = rac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^C)P(A^C)}, orall B \subset S$$

Proposição 4 (Teorema da Probabilidade Total). Sejam $A_1, ..., A_n$ uma partição de S. Então

$$P(B) = P(B|A_1)P(A_1) + ... + P(B|A_n)P(A_n), \forall B \subset S$$

Proposição 5. O Teorema de Bayes e o Teorema da Probabilidade Total admitem as seguintes versões quando o condicionamento é dado por uma intersecção de eventos

1. Teorema de Bayes:

$$P(A_i|B,C) = rac{P(B|A_i,C)P(A_i|C)}{P(B|C)} = rac{P(B|A_i,C)P(A_i|C)}{\sum\limits_{j=1}^n P(B|A_j,C)P(A_j|C)}, orall B \subset S$$

2. Teorema da Probabilidade Total

$$P(B|C) = P(B|A_1, C)P(A_1|C) + ... + P(B|A_n, C)P(A_n|C), \forall B \subset S$$

Variáveis Aleatórias Discretas

Definição 4. Seja $S = \{s_1, s_2, ..., s_n\}$ (ou $S = \{s_1, s_2, ...\}$) um espaço amostral. Uma variável aleatória é uma função $X : S \to \mathbb{R}$.

Definição 5. Uma variável aleatória X é dita discreta se a sua imagem é da forma $X(S) = \{a_1, a_2, ..., a_n\}$ (ou $X(S) = \{a_1, a_2, ...\}$). O conjunto X(S) é dito suporte e denotado Supp(X).

Distribuições

• Função de Massa de Probabilidade (Probability Mass Function)

Definição 6. A função de massa probabilidade de uma variável aleatória discreta X é a função $p_X : \mathbb{R} \to \mathbb{R}$ dada por $p_X(x) = P(X = x)$.

Comentário: Para espaços equiproráveis, isso se assemelha a uma frequência relativa, pois estamos preocupados em analisar a probabilidade que um dado valor x assume no espaço de possibilidades.

Proposição 6. Seja X uma variável aleatória discreta. Então

(a)
$$p_X(x) > 0, \forall x \in \operatorname{Supp}(X)$$
 e $p_X(x) = 0, \forall x \notin \operatorname{Supp}(X)$

(b)
$$\sum\limits_{x \in \operatorname{Supp}(X)} p_X = 1$$

• Função de Probalidade Acumulada (Acumulative Probability Function)

Definição 7. A função de probabilidade acumulada de uma variável aleatória discreta X é a função $F_X: \mathbb{R} \to \mathbb{R}$ dada por $F_X(x) = P(X \le x)$.

Proposição 7. Seja X uma variável aleatória. Então

(a)
$$x_1 \leq x_2 \Rightarrow F_X(x_1) \leq F_X(x_2)$$
 (não decrescente)

(b)
$$\lim_{x \to -\infty} F_X(x) = 0$$
 e $\lim_{x \to +\infty} F_X(x) = 1$

(c)
$$\lim_{x \to a^+} F_X(x) = F(a)$$
 (contínua à direita)

Exemplos de Distribuições Discretas

• Bernoulli: Experimento, onde a probabilidade de sucesso é p e a de fracasso é 1-p.

$$X = egin{cases} 0 & ext{se obteve fracasso} \ 1 & ext{se obteve sucesso} \end{cases}, \qquad p_X(k) = egin{cases} 1-p & ext{se } k=0 \ p & ext{se } k=1 \end{cases}$$

Notação: $X \sim \text{Bern}(p)$

ullet Binomial: n eventos independentes de Bernoulli com mesma probabilidade.

$$X=\mathrm{n}^{\mathrm{o}}$$
 de sucessos, $p_X(k)=\binom{n}{k}p^k(1-p)^{n-k}$

Notação: $X \sim \mathrm{Bin}(n,p)$

Proposição 8. $X \sim \mathrm{Bin}(n,p) \Rightarrow n - X \sim \mathrm{Bin}(n,1-p)$

• Hipergeométrica: n eventos (dependentes) de Bernoulli em uma amostra, na qual o i-ésimo evento representa uma retirada da amostra (sem reposição).

$$X=\mathrm{n}^{\mathbf{Q}}$$
 de sucessos, $p_X(k)=rac{inom{n}{k}inom{m}{t-k}}{inom{m+n}{t}}$

Notação: $X \sim { t HGeom}(m,n,t)$

Comentário: Caso houvesse reposição, teríamos n eventos independentes de Bernoulli e, portanto, uma binomial.

Proposição 9. $X \sim \mathrm{HGeom}(m,n,t) \sim \mathrm{HGeom}(t,m+n-t,m)$

• Uniforme: espaço equiprorável (S)

$$X=\mathrm{n}^{\mathbf{o}}$$
 de sucessos em $C\subset S, \qquad p_X(x)=rac{1}{|C|}$

Notação: $X \sim \mathrm{DUnif}(C)$

• Geométrica: Eventos independentes de Bernoulli com mesma probabilidade.

$$X=\mathrm{n}^{\mathbf{o}}$$
 de falhas até o $1^{\mathbf{o}}$ sucesso, $p_X(k)=(1-p)^k p$

Notação: Geom(p)

• Primeiro Sucesso: Eventos independentes de Bernoulli com mesma probabilidade.

 $X=\mathrm{n}^{\mathbf{o}}$ de tentativas até o 1º sucesso, incluindo este, $p_X(k)=(1-p)^{k-1}p$

Notação: FS(p)

• Binomial Negativa: Eventos independentes de bernoulli com mesma probabilidade.

 $X=\mathrm{n}^{\mathbf{Q}}$ de falhas até o $k^{\mathbf{Q}}$ -ésimo sucesso, $p_X(k)=inom{k+n-1}{n-1}(1-p)^np^k$

Notação: NBin(n, p)

• Poisson: Eventos que ocorrem de forma independente a uma taxa média λ .

$$X_t=\mathrm{n}^{\mathbf{o}}$$
 de ocorrências em $[0,t), \qquad p_{X_t}(k)=rac{(\lambda t)^k}{k!}e^{-\lambda t}$

Notação: $Pois(\lambda)$

Funções de Variáveis Aleatórias

Definição 8 (Não é bem uma definição). Seja $g: \mathbb{R} \to \mathbb{R}$ uma função e X uma variável aleatória. Então, a função $g(X) = g \circ X$ é a variável aleatória que mapeia $s \in S$ em $g(X(s)) \in \mathbb{R}$.

Proposição 10. Se X é uma variável aleatória discreta, então g(X) é uma variável aleatória discreta, $\forall g : \mathbb{R} \to \mathbb{R}$ função.

 $\mathbf{Proposi}$ ção 11. Seja X uma variável aleatória e $g:\mathbb{R} o \mathbb{R}$ uma função. Então

$$p_{g(X)}(y) = \sum\limits_{x:g(x)=y} P(X=x)$$

Em particular, se g é bijetiva, então

$$p_{g(X)}(y) = P(X = g^{-1}(y))$$

Definição 9 (Não é bem uma definição). Seja $g: \mathbb{R}^2 \to \mathbb{R}$ uma função e X e Y variáveis aleatórias. Então, a função $g(X,Y)=g\circ (X,Y)$ é a variável aleatória que mapeia $s\in S$ em $g(X(s),Y(s))\in \mathbb{R}$.

Comentário: É fácil generalizar essa ideia para n variáveis aleatórias.

Conexões entre as Distribuições

Definição 10. Para quaisquer variáveis aleatórias X e Z definimos a PMF condicional de X fixado Z=z como P(X=x|Z=z). Note que z é fixo, de maneira que a quantidade P(X=x|Z=z) é tratada como uma função de x.

• Binomial e Hipergeométrica:

- Se X e Y são tais que $X \sim \text{Bin}(m,p)$ e $Y \sim \text{Bin}(n,p)$, então a distribuição condicional de X dado X + Y = t é HGeom(m,n,t).
- Se $X \sim \mathrm{HGeom}(m,n,t)$ e $m+n \to +\infty$ e $p=\frac{m}{m+n}$ permanece fixo, então a distribuição de X converge para $\mathrm{Bin}(t,p)$.

• Binomial e Poisson

- Se X e Y são tais que $X \sim \text{Pois}(\lambda_1)$ e $Y \sim \text{Pois}(\lambda_2)$, então a distribuição condicional de X dado X + Y = n é $\text{Bin}(n, \lambda_1/(\lambda_1 + \lambda_2))$.
- Se $X \sim \text{Bin}(n, p)$ e $n \to +\infty$ e $\lambda = np$ permanece fixo, então a distribuição de X converge para $\text{Pois}(\lambda)$.

Independência

Definição 11. Dois eventos A e B são ditos independentes se

$$P(A \cap B) = P(A)P(B)$$

Se P(A) > 0 e P(B) > 0, isto é equivalente a P(A|B) = P(A) e P(B|A) = P(B), ou seja, tanto a probabilidade de A quanto a de B ocorrerem não sofre influência uma da outra. Mais geralmente, $A_1, A_2, ..., A_n$ (ou $A_1, A_2, ...$) eventos são independentes se para toda coleção $\{i_1, ..., i_m\}$ finita, temos

$$P(A_{i_1} \cap A_{i_2} \cap ... \cap A_{i_m}) = P(A_{i_1})...P(A_{i_m})$$

Comentário: É recomendado conhecer algum exemplo de 3 eventos $A, B \in C$ tais que $P(A \cap B \cap C) = P(A)P(B)P(C)$, mas $P(A \cap B) \neq P(A)P(B)$ ou $P(A \cap C) \neq P(A)P(C)$ ou $P(B \cap C) \neq P(B)P(C)$, e outros 3 eventos $E, F \in G$ tais que $P(E \cap F) = P(E)P(F)$, $P(E \cap G) = P(E)P(G)$, $P(F \cap G) = P(F)P(G)$, mas $P(E \cap F \cap G) \neq P(E)P(F)P(G)$.

Proposição 12. Se A e B são independentes, então A e B^C , A^C e B, e A^C e B^C também são

Definição 12 (Condicionalmente Independente). Dois eventos A e B são ditos independentes condicionalmente dado E se

$$P(A \cap B|E) = P(A|E)P(B|E)$$

Comentário: Nem sempre independência implica condicionalmente independente e vice versa.

Definição 13. X e Y são variáveis aleatórias independentes se

$$P(X \leq x, Y \leq y) = P(X \leq x)P(Y \leq y), \forall x, y \in \mathbb{R}$$

No caso discreto, isto é equivalente a

$$P(X=x,Y=y)=P(X=x)P(Y=y), orall x,y\in \mathbb{R}$$

Mais geralmente, $X_1, ..., X_n$ são variáveis aleatórias independentes se

$$P(X_1 \leq x_1, ..., X_n \leq x_n) = P(X_1 \leq x_1)...P(X_n \leq x_n), \forall x, y \in \mathbb{R}$$

Proposição 13. Se $X_1, X_2, ..., X_n$ (ou $X_1, X_2, ...$) são variáveis aleatórias independentes, então qualquer coleção $X_{i_1}, ..., X_{i_m}$ finita é independente.

Definição 14. X e Y são variáveis aleatórias identicamente distribuídas se $F_X = F_Y$. No caso discreto, isto equivale a $p_X = p_Y$.

Comentário: É recomendado conhecer algum exemplo de variáveis aleatórias X e Y que são independentes e identicamente distribuídas, que são independentes, mas não identicamente distribuídas, mas não independentes e, que não são nem independentes e nem identicamente distribuídas.

Proposição 14. Sejam $X_1, ..., X_n$ distribuições de Bernoulli independentes e identicamente distíbuidas, com distribuição $\sim \text{Bern}(p)$. Então, $X = X_1 + ... + X_n \sim \text{Bin}(n, p)$.

Proposição 15. Se X e Y são independentes e tais que $X \sim \text{Bin}(n,p)$ e $Y \sim \text{Bin}(m,p)$, então $X+Y \sim \text{Bin}(m+n,p)$.

Proposição 16. Sejam $X_1, ..., X_n$ distribuições Geométricas independentes e identicamente distíbuidas, com distribuição \sim Geom(p). Então, $X = X_1 + ... + X_n \sim \mathrm{NBin}(n,p)$.

Proposição 17. Se X e Y são independentes são tais que $X \sim \text{Pois}(\lambda_1)$ e $Y \sim \text{Pois}(\lambda_2)$, então $X + Y \sim \text{Pois}(\lambda_1 + \lambda_2)$

Definição 15. X e Y são variáveis aleatórias condicionalmente independentes dado uma variável aleatória Z se

$$P(X \leq x, Y \leq y | Z = z) = P(X \leq x | Z = z) P(Y \leq y | Z = z), orall x, y \in \mathbb{R} \; \mathrm{e} \; orall z \in \mathrm{Supp}(Z)$$

No caso discreto, tem-se a seguinte definição equivalente

$$P(X=x,Y=y|Z=z)=P(X=x|Z=z)P(Y=y|Z=z), orall x,y\in \mathbb{R} \; \mathrm{e} \; orall z\in \mathrm{Supp}(Z)$$

Esperança

Definição 16. O valor esperado de uma variável aleatória discreta X é

$$E(X) = \sum\limits_{x \in \operatorname{Supp}(X)} x P(X = x)$$

Proposição 18. Se X e Y são discretas com a mesma distribuição, então E(X) = E(Y).

Proposição 19. Sejam X e Y variáveis aleatórias e $\lambda \in \mathbb{R}$. Então

$$E(X + \lambda Y) = E(X) + \lambda E(Y)$$

Proposição 20. Se X e Y são variáveis aleatórias tais que $P(X \geq Y) = 1$, então $E(X) \geq E(Y)$, valendo a igualdade se, e somente se, P(X = Y) = 1

Proposição 21. A esperança das distribuições vistas são

1.
$$X \sim \operatorname{Bern}(p) \Rightarrow E(X) = p$$

$$2. \ X \sim \text{Bin}(n,p) \Rightarrow E(X) = np$$

3.
$$X \sim ext{HGeom}(m,n,p) \Rightarrow E(X) = rac{tm}{m+n}$$

$$4. \ \ X \sim \mathsf{DUnif}(C) \Rightarrow E(X) = \frac{\sum_{x \in \mathsf{Supp}(X)} x}{|C|}$$

5.
$$X \sim \operatorname{Geom}(p) \Rightarrow E(X) = \frac{1-p}{p}$$

$$6. \ \ X \sim \mathrm{FS}(p) \Rightarrow E(X) = \frac{1}{p}$$

7.
$$X \sim \mathrm{NBin}(n,p) \Rightarrow E(X) = rac{n(1-p)}{p}$$

8.
$$X \sim \operatorname{Pois}(\lambda) \Rightarrow E(X) = \lambda$$

Variáveis Aleatórias Indicadoras

Definição 17. Seja $A\subset S$. Então, a variável aleatória indicadora de A é a função $I_A:S\to\mathbb{R}$ dada por

$$I_A(x) = egin{cases} 1 & ext{ se } x \in A \ 0 & ext{ se } x
otin A \end{cases}$$

Proposição 22. Sejam $A, B \subset S$. Então

- $1. \ (I_A)^k = I_A$
- 2. $I_{A^C} = 1 I_A$
- 3. $I_{A \cap B} = I_A I_B$
- 4. $I_{A \cup B} = I_A + I_B I_{A \cap B}$

Proposição 23 (A ponte Fundamental). $P(A) = E(I_A)$

Proposição 24 (Desigualdades de Bonferroni). Se k é impar, então

$$I\left(igcup_{i=1}^n A_i
ight) \leq \sum\limits_{j=1}^k \left\lceil (-1)^{j+1} \sum\limits_{1 \leq i_1 < ... < i_j \leq n} I(A_{i_1} \cap ... \cap A_{i_j})
ight
ceil$$

Se k é par, então

$$I\left(igcup_{i=1}^n A_i
ight) \geq \sum\limits_{j=1}^k \left[(-1)^{j+1} \sum\limits_{1 \leq i_1 < ... < i_j \leq n} I(A_{i_1} \cap ... \cap A_{i_j})
ight]$$

O mesmo ocorre com probabilidades, em virtude da ponte fundamental.

Proposição 25. Seja X uma variável aleatória não-negativa. Então

$$E(X) = \sum\limits_{n=0}^{\infty} \left(1 - F(x)
ight)$$

(LOTUS) Lei do Estatístico Inconsciente

Proposição 26. Seja X uma variável aleatória discreta e $g:\mathbb{R}\to\mathbb{R}$ uma função. Então

$$E(g(X)) = \sum\limits_{x \in \operatorname{Supp}(X)} g(x) P(X = x)$$

Variância

Definição 18. A variância de uma variável aleatória X é definida como

$$Var(X) = E(X - E(X))^2$$

Comentário: A variância pode ser entendida como uma "medida" de o quanto dispersa está a distribuição de X em torno de sua média E(X).

Definição 19. Se X é uma variável aleatória, então seu desvio padrão é dado por

$$SD = \sqrt{Var(X)}$$

Proposição 27. Para qualquer variável aleatória X, tem-se

$$Var(X) = E(X^2) - (E(X))^2$$

Proposição 28. A variância de algumas das distribuições vistas são

1.
$$X \sim \text{Bern}(p) \Rightarrow \text{Var}(X) = p(1-p)$$

2.
$$X \sim \text{Bin}(n, p) \Rightarrow \text{Var}(X) = np(1-p)$$

$$3. \ X \sim \operatorname{Geom}(p) \Rightarrow \operatorname{Var}(X) = \frac{1-p}{p^2}$$

$$4. \ \ X \sim \mathrm{NBin}(n,p) \Rightarrow \mathrm{Var}(X) = rac{n(1-p)}{p^2}$$

5.
$$X \sim \text{Pois}(\lambda) \Rightarrow \text{Var}(X) = \lambda$$

Variáveis Aleatórias Contínuas

Introdução

Definição 20. Uma variável aleatória é dita contínua se sua função de distribuição de probabilidade (CDF) $F_X(x) = P(X \le x)$ é diferenciável, exceto possivelmente em alguns pontos.

Nota: Esta definição engloba o caso de variáveis aleatórias discretas, que apresentam saltos em pontos de sua CDF e derivada 0 fora desses pontos. Porem, não convém utilizar a derivada destas funções neste caso. Por isso, vamos considerar variáveis discretas e contínuas como objetos distintos. Daremos adiante uma definição alternativa que resolve este problema.

Definição 21. A função de densidade de probabilidade (PDF) f_X de uma variável aleatória contínua X é

$$f_X(x)=rac{d}{dx}F_X(x)=F_X'(x)$$

Nota: Nos pontos onde $F_X(x)$ não é derivável, esta definição não funciona. Por isso, a escolha dos valores de f_X nestes pontos é arbitrária, visto que não vão causar impacto nas contas. Além disso, f_X só irá existir se F_X não tiver "saltos", por isso convencionamos que ao tratar de variáveis contínuas, não haverá "saltos".

Proposição 29. A CDF de uma variável contínua X é dada por

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

Nota: Segue disto que $P(a \le X \le b) = \int_a^b f(t)dt$ e também que P(X = 0) = 0.

Proposição 30. A PDF f_X de uma variável contínua X satisfaz

- $f_X \geq 0$
- $ullet \int\limits_{-\infty}^{\infty}f_X(t)dt=1$

Reciprocamente, uma função f que satisfaz estas duas condições é a PDF de alguma variável contínua X.

Nota: Isto nos permite poder definir uma variável contínua X pela existência de uma função $f_X \geq 0$ integrável tal que sua CDF é dada por

$$F_X(x) = \int_{-\infty}^x f(t) dt$$

Daí, segue que $\int\limits_{-\infty}^{\infty}f(t)dt=1$, que não seria possível para variáveis discretas, cuja integral daria 0 (pois a derivada seria 0 em quase todo ponto)

Definição 22. A esperança de uma variável contínua X (se existir) é

$$E(X)=\int_{-\infty}^{\infty}xf_X(x)dx$$

Proposição 31 (LOTUS). A esperança de F(X), onde X é uma variável contínua e F é uma função, é

$$E(F(X)) = \int_{-\infty}^{\infty} F(x) f_X(x) dx$$

Proposição 32. A esperança de uma variável contínua não negativa X é dada por

$$E(X)=\int_0^\infty G(x)dx$$

onde $G(x) = P(X > x) = 1 - F_X(x)$ é a função de sobrevivência de X.

Nota: De modo geral, para qualquer variável contínua X, temos

$$E(X) = -\int_{-\infty}^0 F_X(x) dx + \int_0^\infty G(x) dx$$

Proposição 33. Sejam $X_1,...,X_n$ distribuições contínuas i.i.d. Então, para toda permutação $(a_1,...,a_n)$ de (1,...,n), tem-se $P(X_{a_1} < ... < X_{a_n}) = \frac{1}{n!}$.

Transformações de Localização e de Escala

Definição 23. Seja X uma variável contínua e $Y=\sigma X+\mu$, com $\sigma>0$. Então, Y é uma transformação de localização e escala de X. O parâmetro μ muda a localização e σ muda a escala.

Nota: Essa definição não será de grande interesse, mas sim a ideia de tomar variáveis da forma $Y = \sigma X + \mu$, a fim de facilitar as contas, pois, por exemplo, conhecendo-se EX e Var(X), conhece-se também $EY = E(\sigma X + \mu) = \sigma EX + \mu$ e conhecendo-se Var(X), conhece-se também $Var(X) = Var(\sigma X + \mu) = \sigma^2 Var(X)$.

O Processo de Poisson

"Considere o número de ocorrências de um certo fenômeno no decorrer do tempo, por exemplo, o número de telefonemas que chegam em uma central telefônica a uma taxa média λ . Contamos o número de telefonemas que chegam até o tempo $t \geq 0$ em uma variável aleatória X_t ". Sob certas condições (bastante razoáveis), obtemos que $X_t \sim \operatorname{Pois}(\lambda t)$. Tais condições são:

- incrementos estacionários: A probabilidade de chegada de telefonemas no intervalo (s, s+t] depende somente de t e não de s, de modo que para o cálculo das probabilidades, necessitamos somente do número de ligações que ocorrem no intervalo [0, t).
- incrementos independentes: Os números de chegadas durante intervalos disjuntos de tempo são independentes, isto é, não há qualquer relação entre o número de ligações em momentos distintos.
- as chamadas chegam sozinhas e não simultanemente: Podemos interpretar isto, em termo de probabilidades condicionais, do seguinte modo

$$\lim_{t o 0} P(ext{chegar} \; n > k \; ext{ligações em} \; (0,t] | ext{chegaram} \; k \; ext{ligações em} \; (0,t]) = 0$$

Sendo T_1 a variável aleatória que mede o tempo até a primeira ligação, temos que $T_1 \sim \text{Expo}(\lambda)$ e, também, $T_2 - T_1 \sim \text{Expo}(\lambda)$. De modo geral, $T_{n+1} - T_n \sim \text{Expo}(\lambda)$, onde T_i é a variável aleatória que mede o tempo até a i-ésima ligação. Além disso, T_2, T_3, \ldots não são exponenciais, mas são gammas (estas distribuições serão vistas a seguir). Em resumo,

- O número de ocorrências em [0, t) é distribuído por $Pois(\lambda t)$.
- O tempo entre duas ocorrências consecutivas é distribuído por Expo (λ) .

Algumas Distribuições Contínuas

Nota: Em alguns casos, vamos definir a distribuição apenas pela função de densidade pelo fato da distribuição acumulada (integral da densidade) não adimitir uma expressão em termos elementares

• Uniforme

- Intuição: Todos os valores em um intervalo (ou região) específico são igualmente prováveis.
- **Definição:** Para um intervalo [a,b], a PDF será $f_X(x)=egin{cases} rac{1}{b-a} & ext{se } a \leq x \leq b \\ 0 & ext{caso contrário} \end{cases}$

Neste caso, sua CDF será
$$F_X(x) = egin{cases} 0 & ext{se } x < a \ rac{x-a}{b-a} & ext{se } a \leq x \leq b \ 1 & ext{se } x > b \end{cases}$$

- Notação: $X \sim \mathrm{Unif}(a,b)$
- Propriedades:

$$\text{(i)} \ \ E(X) = \frac{a+b}{2}$$

(ii)
$$Var(X) = \frac{(b-a)^2}{12}$$

Nota: Se $X \sim \text{Unif}(0,1)$ e Y = (b-a)X + a, então $Y \sim \text{Unif}(a,b)$.

Normal

- Intuição: Representa fenômenos que tendem a agrupar-se em torno de uma média e, com isso, terá papel fundamental no chamado Teorema Central do Limite
- Definição: A PDF será $f_X(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $(x\in\mathbb{R})$ Neste caso, sua CDF não tem expressão em termos elementares.
- Notação: $X \sim \mathcal{N}(\mu, \sigma^2)$

- Propriedades:
 - (i) $E(X) = \mu$
 - (ii) $Var(X) = \sigma^2$
 - (iii) simetria em relação à média:
 - $\bullet \ \ f_X(\mu+x)=f_X(\mu-x)$
 - $F_X(\mu + x) = 1 F_X(\mu x)$
 - $ullet \ X \sim \mathcal{N}(\mu, \sigma^2) \Rightarrow -X \sim \mathcal{N}(-\mu, \sigma^2)$

Nota: Se $X \sim \mathcal{N}(0,1)$, que é chamada de distribuição normal-padrão, e $Y = \sigma X + \mu$, então $Y \sim \mathcal{N}(\mu, \sigma^2)$. A PDF para X, neste caso, será denotada por ϕ e a CDF por Φ . Além disso, vale também a regra dos 68-95-99.7%, que é:

- $P(|Y \mu| < \sigma) \approx 0.68$
- $P(|Y \mu| < 2\sigma) \approx 0.95$
- $P(|Y \mu| < 3\sigma) \approx 0.997$

Exponencial

- Intuição: Tempo de espera até a primeira chegada de um Processo de Poisson.
- Definição: A PDF será $f(x)=\lambda e^{-\lambda x}$ (x>0)Neste caso, sua CDF será $F_X(x)=1-e^{-\lambda x}$ (x>0)
- Notação: $X \sim { t Expo}(\lambda)$
- Propriedades:
 - (i) $E(X) = \frac{1}{\lambda}$
 - (ii) $Var(X) = \frac{1}{\lambda^2}$
 - (iii) (Falta de Memória) $P(X \geq s + t | X \geq s) = P(X \geq t), orall s, t \geq 0$

Nota: Se $X \sim \operatorname{Expo}(1)$ e $Y = \frac{1}{\lambda} X$, então $Y \sim \operatorname{Expo}(\lambda)$.

Nota: Reciprocamente a propriedade (iii), toda variável contínua não negativa com a propriedade da falta de memória é uma exponencial.

Nota: A falta de memória tem sua versão para o caso discreto e é

$$P(X \geq j + k | X \geq k) = P(X \geq t), orall j, k \in \mathbb{Z}_{+}$$

E, analogamente à propriedade (iii) e a Nota anterior, temos que a distribuição Geométrica satisfaz a propriedade e é a única dentre as discretas não-negativas que satisfazem.

• Beta

- Intuição: Generalização da uniforme.

- Definição: A PDF será

$$f(x) = rac{1}{eta(a,b)} x^{a-1} (1-x)^{b-1} \quad (0 < x < 1),$$

onde a constante $\beta(a, b)$ é tomada de modo que a PDF integre 1. Neste caso, sua CDF não tem expressão em termos elementares.

- Notação: $X \sim \text{Beta}(a,b)$

- Propriedades:

$$\text{(i)} \ \ \beta(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

(ii)
$$E(X) = \frac{a}{a+b}$$

(iii) Se a = b, a PDF é simétrica em relação a 1/2. Se a > b, a PDF é concentrada a direita de 1/2; se a < b a PDF é concentrada a esquerda de 1/2.

(iv) A distribuição beta é conjugada com a binomial, isto é, se uma parâmetro p tem distribuição a prior dado por uma beta e uma variável X, condicionada em p, tem distribuição binomial, então a distribuição posterior de p continua sendo uma beta.

Nota: Quando a=b=1, as distribuições Beta(1,1) e Unif(0,1) são a mesma distribuição.

• Gamma

- Intuição: Generalização do tempo de espera até a *n*-ésima chegada de um processo de Poisson (Exponencial).

- Definição: A PDF será

$$f(x)=rac{1}{\Gamma(a)}(\lambda x)^a e^{-\lambda x}rac{1}{x}\quad (x>0),$$

onde $\Gamma(a)$ é a função gamma avaliada em a (que é um valor tal que a PDF integre 1).

Neste caso, sua CDF não tem expressão em termos elementares.

15

- Notação: $X \sim \operatorname{Gamma}(a,\lambda)$

- Propriedades:

(i)
$$E(X) = \frac{a}{\lambda}$$

(ii)
$$\operatorname{Var}(X) = \frac{a}{\lambda^2}$$

(iii) Seja $X_1, X_2 \cdots, X_n$ variáveis alteatórias i.i.d de distribuição $\text{Expo}(\lambda)$. Então,

$$X_1 + \cdots + X_n \sim \operatorname{Gamma}(n, \lambda)$$

(iv) A distribuição gamma é conjugada com a poisson, isto é, se um parâmetro p tem distribuição a prior dada por uma gamma e uma variável X, condicionada a p, tem distribuição de poisson, então a distribuição posterior de p continua sendo uma gamma.

Nota: Quando a=1, as distribuições Gamma $(1,\lambda)$ e Expo (λ) são as mesmas

Algumas Distribuições Conjuntas

• Multinomial

- Intuição: Alocação de n objetos em k categorias onde cada alocação é feita de forma independente, com probabilidade $p_j > 0$ para a j-ésima categoria.
- Definição: Seja X_j o número de objetos alocados na j-ésima categoria. Então o vetor $X=(X_1,...,X_k)$ é dito ter distribuição multinomial de parâmetros k, n e $p=(p_1,...,p_k)$. Sua PMF conjunta é

$$P(X_1=n_1,...,X_k=n_k)=rac{n!}{n_1!n_2!\cdots n_k!}\cdot p_1^{n_1}p_2^{n_2}\cdots p_k^{n_k}$$

- Notação: $oldsymbol{X} \sim \operatorname{Mult}_k(n,oldsymbol{p})$
- Propriedades:
 - (i) $X_j \sim \text{Bin}(n, p_j)$, para j = 1, ..., k
 - (ii) $X_i + X_j \sim \mathrm{Bin}(n, p_i + p_j)$, para $i \neq j$
 - $\text{(iii) } (X_1+X_2,X_3,...,X_n) \sim \mathrm{Mult}_{k-1}(n,(p_1+p_2,p_3,...,p_n))$

$$(ext{iv}) \ (X_2,...,X_k)|X_1=n_1 \sim ext{Mult}_{k-1}(n-n_1,(p_2',...,p_k')), ext{onde } p_j'=rac{p_j}{p_2+...+p_k}$$

(v)
$$\operatorname{Cov}(X_i,X_j)=-np_ip_j$$
, para $i
eq j$

• Multivariada (MVN)

- Intuição: Conjunto de variáveis aleatórias que estão correlacionadas e distribuídas normalmente.
- **Definição:** $\mathbf{X}=(X_1,...,X_n)$ é tal que qualquer combinação linear de $X_1,...,X_n$ tem distribuição normal, ou seja, $t_1X_1+...t_nX_n$ tem distribuição normal, $\forall t_1,...,t_n \in \mathbb{R}$.
- Notação: MVN
- Propriedades:

- (i) Se $\mathbf{X} = (X_1, ..., X_n)$ é uma MVN, então qualquer subvetor é uma MVN. Por exemplo, se (X_1, X_2, X_3) é uma MVN, então (X_1, X_2) é uma MVN. Em particular, X_i tem distribuição Normal, $\forall i$.
- (ii) Se $\mathbf{X}=(X_1,...,X_n)$ e $\mathbf{Y}=(Y_1,...,Y_m)$ são MVN's e X é independente de Y, então a concatenação $(\mathbf{X},\mathbf{Y})=(X_1,...,X_n,Y_1,...,Y_m)$ é uma MVN.

Nota: Uma MVN $(X_1, ..., X_n)$ é completamente determinada pela média e a variância das componentes X_i e pela covariância entre elas $Cov(X_i, X_j)$. Por exemplo, um vetor (X, Y) com distribuição normal bivariada é completamente determinado por E(X), E(Y), Var(X), Var(Y) e Cov(X, Y). Nota: Para n=2, temos uma normal bivariada, cuja PDF conjunta é dada por

$$f_{X,Y}(x,y) = rac{1}{2\pi au} e^{-(x^2+y^2-2
ho xy)/(2 au^2)}$$

onde $ho=\operatorname{Corr}(X,Y)$ é tal que $ho\in(-1,1)$ e $au=\sqrt{1ho^2}.$

A Universalidade da Uniforme

Proposição 34. Seja F uma função estritamente crescente e que satisfaz as condições de uma CDF e seja $U \sim \text{Unif}(0,1)$. Então

- a) $X=F^{-1}(U)$ é uma variável contínua tal que $X\sim F_X=F.$
- b) Se X é uma variável contínua tal que $F_X=F$, então $F(X)\sim \mathrm{Unif}(0,1).$

Nota: Esta Proposição dá um modo prático de gerar variáveis aleatórias contínuas através de sua distribuição.

Exemplo 0.1. A distribuição logística tem CDF

$$F(x) = rac{e^x}{1+e^x}$$

Para gerar uma variável aleatória X com esta distribuição, tomemos uma variável $U \sim \mathrm{Unif}(0,1)$. Agora, vamos determinar F^{-1} . Seja y tal que F(x)=y, ou seja, $\frac{e^x}{1+e^x}=y$. Denotando e^x por z, temos $\frac{z}{1+z}=y\Leftrightarrow z=y(1+z)\Leftrightarrow z=\frac{y}{1-y}$. Assim, $x=\ln\left(\frac{y}{1-y}\right)$. Portanto, $F^{-1}(x)=\ln\left(\frac{x}{1-x}\right)$. Portanto, basta tomar $X=\ln\left(\frac{U}{1-U}\right)$.

Estatísticas de Ordem

Definição 24. Para variáveis aleatórias $X_1, X_2, ..., X_n$, as estatísticas de ordem são as variáveis aleatórias $X_{(1)}, X_{(2)}, ..., X_{(n)}$, onde

$$egin{aligned} X_{(1)} &= \min\left(X_1,...,X_n
ight) \ X_{(2)} & ext{\'e} ext{ a segunda menor das } X_1,...,X_n \ dots & & dots \ X_{(n-1)} ext{\'e} ext{\'e} ext{ a segunda maior das } X-1,...,X_n \ X_{(n)} &= \max\left(X_1,...,X_n
ight) \end{aligned}$$

Nota: Observe que $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$. Chamamos $X_{(j)}$ de j-ésima estatística de ordem. Se n é impar, $X_{((n+1)/2)}$ é a mediana amostral de X_1, \ldots, X_n . Cada uma das estatísticas de ordem é uma função de X_1, \ldots, X_n . Além disso, claramente as estatísticas de ordem são dependentes.

Proposição 35. Sejam X_1 , ..., X_n variáveis aleatórias contínuas i.i.d com CDF F. Então a CDF da j-ésima estatística de ordem $X_{(j)}$ é

$$P(X_{(j)} \leq x) = \sum\limits_{k=j}^n inom{n}{k} F(x)^k (1-F(x))^{n-k}$$

Proposição 36. Sejam $X_1, ..., X_n$ variáveis aleatórias contínuas i.i.d com PDF f. Então a PDF da j-ésima estatística de ordem $X_{(j)}$ é

$$f_{(X_{(j)})}(x) = n inom{n-1}{j-1} f(x) F(x)^{j-1} (1-F(x))^{n-j}$$

Momentos

Introdução

Definição 25. Um valor c é dito mediana de uma variável X se $P(X \le c) \ge 1/2$ e $P(X \ge c) \ge 1/2$.

Definição 26. Um valor c é dito moda de uma variável X, no caso discreto, se c maximiza a PMF de X, isto é, $P(X=c) \geq P(X=x)$ para todo $\forall x$ e, no caso contínuo, se c maximiza a PDF de X, isto é, $f_X(c) \geq f_X(x)$, $\forall x$.

Nota: Uma váriavel aleatória pode ter multiplas medianas e modas.

Proposição 37. Seja X uma variável aleatória com média μ e mediana m. Então

- ullet O valor c que minimiza o erro quadrático médio $E(X-c)^2$ é $c=\mu$.
- ullet O valor c que minimiza o erro absoluto médio E|X-c| é c=m.

Momentos

Definição 27. Seja X uma variável aleatória com média μ e variância σ^2 . Para um inteiro positivo n, dizemos que:

- ullet o *n*-ésimo momento de X é $E(X^n)$
- o *n*-ésimo momento central de X é $E[(X \mu)^n]$
- \bullet o $n\text{-}\mathrm{\acute{e}simo}$ momento padronizado de X é $E\left[\left(\frac{X-\mu}{\sigma}\right)^{n}\right]$

Nota: O primeiro momento e o segundo momento central de uma variável aleatória são, respectivamente, sua média e sua variância.

Definição 28. Dizemos que uma variável X tem distribuição simétrica com respeito a um valor c se X - c tem a mesma distribuição de c - X.

Nota: Se E(X) existir, então o valor c deve ser igual ao mesmo. Com efeito,

$$E(X) - c = E(X - c) = E(c - X) = c - E(X) \Rightarrow c = E(X)$$

Proposição 38. Seja X uma variável contínua. Então X é simétrica com respeito a μ se, e somente se, $f_X(x) = f_X(2\mu - x)$ para todo x.

Proposição 39. Seja X uma variável aleatória simétrica com respeito a μ . Então para qualquer número ímpar m, o m-ésimo momento central $E(X - \mu)^m$ (se existir) é igual a 0.

Nota: A recíproca desta proposição não é verdadeira: podem existir distribuições assimétricas com todos os momentos centrais ímpares iguais a 0.

Momentos Amostrais

Definição 29. Sejam $X_1, X_2, ..., X_n$ variáveis aleatórias i.i.d. Então

- ullet o k-ésimo momento amostral é $M=rac{\sum\limits_{j=1}^{n}X_{j}^{k}}{n}$
- ullet a média amostral \overline{X} é o primeiro momento amostral $\overline{X}=rac{\sum\limits_{j=1}^{n}X_{j}}{n}$
- ullet a variância amostral é $S^2=rac{\sum\limits_{j=1}^n(X_j-\overline{X})^2}{n-1}$

• o desvio padrão amostral é a raiz quadrada da variância amostral

Proposição 40. Sejam $X_1, X_2, ..., X_n$ variáveis aleatórias i.i.d. com média μ e variância σ^2 . Então

$$E(\overline{X}) = \mu$$

Além disso, a variância de \overline{X} é

$$\operatorname{Var}(\overline{X}) = \frac{\sigma^2}{n}$$

Proposição 41. Sejam $X_1,~X_2,~...,~X_n$ variáveis aleatórias i.i.d. com média μ e variância σ^2 . Então

$$E(S_n^2) = \sigma^2$$

Função Geradora de Momentos (MGF)

Definição 30. A função geradora de momentos (MGF) de uma variável aleatória X (se existir) é, para algum a>0, $M_X:(-a,a)\to\mathbb{R}$ dada por $M_X(t)=E(e^{tX})$, desde que a mesma seja limitada em (-a,a). Caso contrário, dizemos que a MGF não existe.

Proposição 42. O n-ésimo momento de X pode ser obtido ao avaliar a n-ésima derivada da MGF em 0, isto é,

$$E(X^n)=M^{(n)}(0)=rac{d^nM}{dt^n}\Big|_{t=0}$$

Definição 31. (MGF conjunta) A função geradora de momentos conjunta de um vetor aleatório $X = (X_1, ..., X_k)$ é a função M definida como

$$M(t) = E(e^{\langle t, X \rangle}) = E(e^{t1X_1 + ... + t_k X_k})$$

para $t=(t_1,...,t_k)\in\mathbb{R}^k$. Exigimos que a função M seja limitada em uma caixa finita $([a_1,b_1]\times...\times[a_k,b_k])$ contendo a origem. Caso contrário, dizemos a MGF conjunta não existe.

Proposição 43. A MGF de uma variável aleatória determina sua distribução. Assim, se duas variáveis aleatórias têm a mesma MGF, elas têm a mesma distribuição.

Proposição 44. Se X e Y são variáveis independentes, então

$$M_{X+Y}(t) = M_X(t) \cdot M_Y(t)$$

Proposição 45. Se X é uma variável aleatória cuja MGF existe, então

$$M_{a+bX} = e^{at} M_X(bt)$$

Exemplos de MGF's

	MGF
Bern(p)	$p+e^t$
$\operatorname{Geom}(p)$	$rac{p}{1-qe^t}, qe^t < 1$
$\boxed{ \text{Unif}(a,b) }$	$\dfrac{e^{tb}-e^{ta}}{t(b-a)}, t eq 0\; \mathrm{e}\; M(0)=1$
$\operatorname{Bin}(n,p)$	$(pe^t+q)^n$
$\operatorname{Nbin}(r,p)$	$\left(rac{p}{1-qe^t} ight)^r, qe^t < 1$
$\mathcal{N}(\mu,\sigma^2)$	$e^{\mu t + rac{1}{2}\sigma^2 t^2}$
$Expo(\lambda)$	$rac{\lambda}{\lambda-t}, t<\lambda$
MVN	$e^{t_1E(X_1)+\ldots+t_nE(X_n)+\operatorname{Var}(t_1X_1+\ldots+t_nX_n)/2}$

Função Geradora de Probabilidade (PGF)

Definição 32. A função geradora de probabilidades (PGF) de uma variável aleatória inteira e não-negativa X de PMF $p_k = P(X = k)$ é a função geradora da PMF. Por LOTUS, isto é

$$E(t^X) = \sum_{k=0}^\infty p_k t^k$$

Nota: A PGF converge para algum valor em [-1,1] para todo t em [-1,1] desde que $\sum_{k=0}^{\infty} p_k = 1$ e $|p_k t^k| \leq p_k$ para $|t| \leq 1$. Se ambas MGF e PGF existirem, para t > 0,

temos

$$E(t^X) = E(e^{X \log t})$$

que é a MGF avaliada em $\log t$.

Proposição 46. Sejam X e Y variáveis aleatórias inteiras e não-negativas, com PGFs g_X e g_Y respectivamente. Suponha que $g_X(t) = g_Y(t)$ para todo t em (-a, a), onde 0 < a < 1. Então, X e Y têm a mesma distribuição, e sua PMF pode ser obtida tomando as derivadas de g_X , isto é

$$P(X=k) = P(Y=k) = rac{g_X^{(k)}(0)}{k!}$$

Mistura de Variáveis

Distribuições Conjuntas

Definição 33. A PMF conjunta de duas variáveis aleatórias discretas X e Y é

$$p_{X,Y}(x,y) = P(X=x,Y=y)$$

A CDF conjunta de duas variáveis aleatórias X e Y é

$$F_{X,Y}(x,y) = P(X \leq x, Y \leq y)$$

A PDF conjunta de duas variáveis aleatórias contínuas X e Y, é

$$f_{X,Y}(x,y) = rac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y)$$

Distribuições Marginais

Definição 34. A PMF marginal de X, dadas as variáveis aleatórias discretas X e Y, é

$$P(X=x) = \sum_y P(X=x,Y=y)$$

A CDF marginal de X, dadas as variáveis aleatórias X e Y, é

$$F_X(x) = P(X=x) = \lim_{y o +\infty} P(X \le x, Y \le y) = \lim_{y o +\infty} F_{X,Y}(x,y)$$

A PDF marginal de X, dadas as variáveis aleatórias contínuas X e y, é

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

Distribuições Condicionais

Definição 35. A PMF condicional de Y dado X=x, onde X e Y são variáveis aleatórias discretas é

$$P(Y=y|X=x)=rac{P(X=x,Y=y)}{P(X=x)}$$

A PDF condicional de Y dado X=x, onde X e Y são variáveis aleatórias contínuas é

$$f_{Y|X}(y|x) = rac{f_{X,Y}(x,y)}{f_X(x)}$$

Proposição 47. Se X, Y são variáveis aleatórias contínuas, então

$$f_{Y|X}(y|x) = rac{f_{X|Y}(x|y)f_Y(y)}{f_X(x)}$$

Nota: A fórmula de Bayes continua valendo para uma mistura dos tipos das variáveis. Por exemplo, se X é contínua e Y é discreta, então

$$P(Y=y|X=x)=rac{f_X(x|Y=y)P(Y=y)}{f_X(x)}$$

E se X é discreta e Y é contínua, então

$$f_Y(y|X=x) = rac{P(Y=y|X=x)f_Y(y)}{P(X=x)}$$

Proposição 48. Se X, Y são variáveis aleatórias, com Y discreta, então

$$P(X \leq x) = \sum_{y} P(X \leq x | Y = y) P(Y = y)$$

Se X, Y são variáveis aleatórias, com Y contínua, então

$$P(X \leq x) = \int_{-\infty}^{\infty} P(X \leq x | Y = y) f_Y(y) dy$$

Nota: A Lei da Probabilidade Total continua valendo para uma mistura dos tipos das variáveis. Por exemplo, se X é contínua e Y é discreta, então

$$P(X \leq x) = \sum_y P(X \leq x | X = x) P(X = x)$$

E se X é discreta e Y é contínua, então

$$P(X=x)=\int_{-\infty}^{\infty}P(X=x|Y=y)f_{Y}(y)dy$$

Independência

Definição 36. Variáveis aleatórias X e Y são independentes se

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

No caso discreto, isto equivale a

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

No caso contínuo, isto equivale a

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

Proposição 49. Se a PMF conjunta de X, Y (discretas) fatora em funções não negativas $g \in h$ do seguinte modo

$$p_{X,Y}(x,y)=g(x)h(y)$$

Então, X e Y são independentes.

Se a CDF conjunta de X, Y fatora em funções não negativas g e h do seguinte modo

$$F_{X,Y}(x,y)=g(x)h(y)$$

Então, X e Y são independentes.

Se a PDF conjunta de X,Y (contínuas) fatora em funções não negativas g e h do seguinte modo

$$f_{X,Y}(x,y) = g(x)h(y)$$

Então, X e Y são independentes.

Seguem abaixos dois resultados importantes relativos a variáveis aleatórias independentes.

Proposição 50. $X \sim \text{Pois}(\lambda p)$ e $Y \sim \text{Pois}(\lambda(1-p))$ e X e Y são independentes se, e somente se, $X + Y \sim \text{Pois}(\lambda)$ e $X \mid X + Y = n \sim \text{Bin}(n, p)$.

Proposição 51. Sejam $X \sim \operatorname{Expo}(\lambda_1)$ e $Y \sim \operatorname{Expo}(\lambda_2)$ independentes. Então

$$P(X < Y) = \frac{\lambda_1}{\lambda_1 + \lambda_2}$$

LOTUS 2D

 $\mathbf{Proposiç\~{ao}}$ 52. Seja $g:\mathbb{R}^2 \to \mathbb{R}$. Então, se X e Y são discretas, então

$$E(g(X,Y)) = \sum_x \sum_y g(x,y) P(X=x,Y=y)$$

Se X e Y são contínuas, então

$$E(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dy dx$$

Nota: A ideia pode ser generalizada para n dimensões.

Covariância

Definição 37. A Covariância entre as variáveis aleatórias X e Y é

$$Cov(X, Y) = E((X - EX)(Y - EY)) = E(XY) - E(X)E(Y)$$

Proposição 53. Temos as seguintes propriedades da covariância

- Cov(X, X) = Var(X)
- Cov(X, Y) = Cov(Y, X)
- $\operatorname{Cov}(X,c) = 0, \forall c \in \mathbb{R}$
- Cov(aX, Y) = aCov(X, Y)
- Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)
- Var(X, Y) = Var(X) + Var(Y) 2Cov(X, Y)
- Se X e Y são independentes, então Cov(X,Y)=0 (A recíproca não é necessariamente verdade)

Definição 38. A correlação entre X e Y é

$$\operatorname{Corr}(X,Y) = rac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

Proposição 54. Se X e X são variáveis aleatórias, então

$$-1 \leq \operatorname{Corr}(X,Y) \leq 1$$

Tranformações

Mudanças de variáveis

Proposição 55. Seja X uma variável aleatória contínua com PDF f_X , e seja Y = g(X), onde g é diferenciável e estritamente crescente (ou estritamente decrescente). Então a PDF de Y é dada por

$$f_Y(y) = f_X(x) \left| rac{dx}{dy}
ight|$$

onde $x=g^{-1}(y)$. O suporte de Y são todos os g(x) com x no suporte de X.

Proposição 56. Seja $X = (X_1, \dots, X_n)$ um vetor aleatório contínuo com PDF conjunta f_X . Seja $g: A_0 \to B_0$ uma função invertível, onde A_0 e B_0 são conjuntos abertos de \mathbb{R}^n , A_0 contém o suporte de X, e B_0 a imagem de g.

Seja Y=g(X) e, de forma semelhante, y=g(x). Como g é invertível, também temos $X=g^{-1}(Y)$ e $x=g^{-1}(y)$.

Suponha que todas as derivadas parciais $\partial x_i/\partial y_j$ existam e sejam contínuas, então a matriz Jacobiana é formada como

$$rac{\partial oldsymbol{x}}{\partial oldsymbol{y}} = egin{pmatrix} rac{\partial x_1}{\partial y_1} & rac{\partial x_1}{\partial y_2} & \cdots & rac{\partial x_1}{\partial y_n} \ rac{\partial x_2}{\partial y_1} & rac{\partial x_2}{\partial y_2} & \cdots & rac{\partial x_2}{\partial y_n} \ dots & dots & \ddots & dots \ rac{\partial x_n}{\partial y_1} & rac{\partial x_n}{\partial y_2} & \cdots & rac{\partial x_n}{\partial y_n} \end{pmatrix}$$

Assuma também que o determinante da Jacobiana nunca é 0. Então a PDF conjunta de $oldsymbol{Y}$ é

$$f_{m{Y}} = f_{m{X}}(g^{-1}(m{y})) \cdot \left| \det rac{\partial m{x}}{\partial m{y}}
ight|$$

para $y \in B_0$ e 0 caso contrário.

Covoluções

Definição 39. Uma convolução é a soma de variáveis aleatórias independentes.

Proposição 57. Sejam X e Y variáveis aleatórias independentes e T=X+Y sua soma. Se X e Y são discretas, a PMF de T é

$$P(T=t) = \sum_x P(Y=t-x)P(X=x) = \sum_y P(X=t-y)P(Y=y)$$

Se X e Y são contínuas, a PDF de T é

$$f_T(t) = \int_{-\infty}^{\infty} f_Y(t-x) f_X(x) dx = \int_{-\infty}^{\infty} f_X(t-y) f_Y(y) dy$$

Esperança Condicional

Esperança dada um Evento

Definição 40. Seja A um evento. Se Y é uma variável aleatória discreta, então a esperança condicional de Y dado A é

$$E(Y|A) = \sum_{y} y P(Y=y|A)$$

Se Y é uma variável aleatória contínua, então a esperança condicional de Y dado A é

$$E(Y|A) = \int_{-\infty}^{\infty} y f_Y(y|A) dy$$

Nota: Uma vez que X=x é um evento, E(Y|X=x) é simplesmente a esperança de Y condicionada a este evento. Ou seja, se Y é discreta, temos que

$$E(Y|X=x) = \sum_{y} y P(Y=y|X=x)$$

e, se Y for continua,

$$E(Y|X=x)=\int_{-\infty}^{\infty}yf_{Y|X}(y|x)dy$$

Note que, neste caso, a esperança é um número.

Proposição 58. (Lei da esperança total) Sejam A_1, A_2, \dots, A_n uma partição do espaço amostral, com $P(A_i) > 0$ para todo i, e Y uma variável aleatória. Então

$$E(Y) = \sum_{i=1}^n E(Y|A_i)P(A_i)$$

Esperança dada uma Variável

Definição 41. Seja g(x) = E(Y|X = x). Definimos a esperança condicional de Y dado X como a variável aleatória g(X) e a denotamos por E(Y|X). Em outras palavras, se a realização do experimento X retorna x, então E(Y|X) retorna g(x). Nota: Note que, neste caso, a esperança é uma variável aleatória.

Proposição 59. Temos as seguintes propriedades da esperança condicional

- ullet Se X e Y são independentes, então E(Y|X)=E(Y)
- ullet Para qualquer função $h,\, E(h(X)Y|X)=h(X)E(Y|X)$
- $\bullet \ E(cY_1 + Y_2|X) = cE(Y_1|X) + E(Y_2|X) \\$
- (Lei de Adão) E(E(Y|X)) = E(Y)
- (Lei de Adão com condicionamento extra) Para quaisquer variáveis aleatórias X, Y, Z, vale

$$E(E(Y|X,Z)|Z) = E(Y|Z)$$

• (Interpretação de projeção) A variável aleatória Y - E(Y|X) é não correlacionada com h(X), para toda função h. Equivalentemente

$$E((Y - E(Y|X))h(X)) = 0$$

Nota: Y - E(Y|X) é chamada de residual em usar X para predizer Y.

Variância condicional

Definição 42. A variância condicional de Y dado X é

$$\operatorname{Var}(Y|X) = E((Y - E(Y|X))^2|X)$$

que é equivalente a

$$Var(Y|X) = E(Y^2|X) - (E(Y|X))^2$$

Proposição 60. (Lei de Eva) Para quaisquer variáveis aleatórias X e Y, vale

$$Var(Y) = E(Var(Y|X)) + Var(E(Y|X))$$

Grandes Teoremas

Desigualdades

• (Cauchy-Schwarz) Se X e Y são variáveis aleatórias com variâncias finitas, então

$$E(XY) \leq \sqrt{E(X^2)E(Y^2)}$$

ullet (Jensen) Se X é uma variável aleatória e g é uma função convexa, então

$$E(g(X)) \geq g(E(X))$$

Se g é côncava, então

$$E(g(X)) \leq g(E(X))$$

A igualdade (em ambos os casos) ocorre se g=a+bX, para alguns $a,b\in\mathbb{R}.$

• (Markov) Se X é uma variável aleatória e a > 0, então

$$P(|X| \geq a) \leq \frac{E(|X|)}{a}$$

• (Tchebychev) Se X é uma variável aleatória, com média μ e variância σ^2 e a>0, então

$$P(|X-\mu| \geq a) \leq rac{\sigma^2}{a^2}$$

• (Chernoff) Se X é uma variável aleatória e a, t > 0, então

$$P(X \geq a) \leq rac{E(e^{tX})}{e^{ta}}$$

Lei dos Grandes Números

Proposição 61 (Lei Fraca dos Grandes Números). Sejam $X_1, X_2, ...$ variáveis aleatórias i.i.d., com média μ . Então, a média amostral converge em probabilidade para μ , isto é, dado $\varepsilon > 0$, temos que

$$\left|P\left(\left|rac{X_1+...+X_n}{n}-\mu
ight|\geq arepsilon
ight)
ightarrow 0$$

Proposição 62 (Lei Forte dos Grandes Números). Sejam $X_1, X_2, ...$ variáveis aleatórias i.i.d., com média μ . Então, a média amostral converge quase certamente para μ , isto é

$$P\left(rac{X_1+...+X_n}{n}
ightarrow \mu
ight)=1$$

O Teorema Central do Limite

Proposição 63 (Teorema Central do Limite). Sejam $X_1, X_2, ...$ variáveis aleatórias i.i.d. com média μ e variância σ^2 . Então, a média amostral padronizada converge em distribuição para $\mathcal{N}(0,1)$, isto é

$$\sqrt{n}\left(rac{X_1+...+X_n}{n}-\mu \atop \sigma
ight) \stackrel{\mathcal{D}}{ o} \mathcal{N}(0,1)$$

Por uma transformação de localização-escala, segue que a média amostral é aproximadamente distribuída como uma $\mathcal{N}\left(\mu,\frac{\sigma^2}{n}\right)$, isto é

$$rac{X_1+...+X_n}{n}pprox \mathcal{N}\left(\mu,rac{\sigma^2}{n}
ight)$$