

Fast MCMC Algorithms on Polytopes

Raaz Dwivedi, Department of EECS

Yuansi Chen

Martin Wainwright

Bin Yu

Joint work with

Random Sampling

 Consider the problem of drawing random samples from a given density (known up-to proportionality)

$$X_1, X_2, \dots, X_m \sim \pi^*$$

Applications

$$\mathbb{E}[g(X)] = \int g(x) \pi^*(x) dx \approx \frac{1}{m} \sum_{i=1}^m g(X_i)$$

$$X_1, X_2, \dots, X_m \sim \pi^*$$

- Probabilities of Events
- Rare Event Simulations
- Bayesian Posterior Mean
- Volume Computation (polynomial time)

Applications

$$\mathbb{E}[g(X)] = \int g(x) \pi^*(x) dx \approx \frac{1}{m} \sum_{i=1}^m g(X_i)$$

$$X_1, X_2, \ldots, X_m \sim \pi^*$$

- Probabilities of Events
- Rare Event Simulations
- Bayesian Posterior Mean
- Volume Computation (polynomial time)

Applications

$$\min_{x \in \mathcal{K}} g(x)$$

- Zeroth order optimization: Polynomial time algorithms based on Random Walk
 - Convex optimization: Bertsimas and Vempala 2004, Kalai and Vempala 2006, Kannan and Narayanan 2012, Hazan et al. 2015
 - Non-convex optimization, Simulated Annealing: Aarts and Korst 1989, Rakhlin et al. 2015

Uniform Sampling on Polytopes

$$\mathcal{X} = \left\{ x \in \mathbb{R}^{\mathbf{d}} \mid Ax \le b \right\}$$

n linear constraints

d dimensions

Uniform Sampling on Polytopes

- Integration of arbitrary functions under linear constraints
- Mixed Integer Programming
- Sampling non negative integer matrices with specified row and column sums (contingency tables)
- Connections between optimization and sampling algorithms

Goal

Given A and b, and a starting distribution μ_0 ,

design an MCMC algorithm

that generates a random sample from uniform distribution on

$$\mathcal{X} = \left\{ x \in \mathbb{R}^{\mathbf{d}} \mid Ax \le b \right\}$$

in as few steps as possible!

Convergence Rate: Mixing time for total variation

$$\|\mu_0 P^k - \pi^*\|_{\text{TV}} \le \epsilon$$

Markov Chain Monte Carlo

- Design a Markov Chain which can converge to the desired distribution
 - Metropolis Hastings Algorithms (1950s), Gibbs Sampling (1980s)
- Simulate the Markov chain for several steps to get a sample

Markov Chain Monte Carlo

- Sampling on convex sets: Ball Walk (Lovász et al. 1990),
 Hit-and-run (Smith et al. 1993, Lovász 1999),
- Sampling on polytopes: Dikin Walk (Kannan and Hariharan 2012, Hariharan 2015, Sachdeva and Vishnoi 2016), Geodesic Walk (Lee and Vempala 2016)

Ball Walk [Lovász and Simonovits 1990]

- Propose a uniform point in a ball around x
 - reject if outside the polytope, else move to it

Ball Walk [Lovász and Simonovits 1990]

Many rejections near sharp corners

Ball Walk [Lovász and Simonovits 1990]

Mixing time depends on conditioning of the set

Can be exponential in d

$$\#steps = \mathcal{O}\left(d^2 \frac{R_{\text{max}}^2}{R_{\text{min}}^2}\right)$$

per step cost = nd

May be a variable shape ellipsoid?

Dikin Walk [Kannan and Narayanan 2012]

- Proposal $z \sim \mathcal{N}\left(x, \frac{r^2}{d}D_x^{-1}\right)$
- Another variant $z \sim \mathbb{U}\left[D_x(r)\right]$
- Accept Reject:

$$\mathbb{P}(\text{ accept } z) = \min\left\{1, \frac{P(z \to x)}{P(x \to z)}\right\}$$

Dikin Walk [Kannan and Narayanan 2012]

• Proposal
$$z \sim \mathcal{N}\left(x, \frac{r^2}{d}D_x^{-1}\right)$$

$$D_x = \sum_{i=1}^{n} \frac{a_i a_i^{\top}}{(b_i - a_i^{\top} x)^2}$$

$$A = \begin{bmatrix} -a_1^\top - \\ -a_2^\top - \\ \vdots \\ -a_n^\top - \end{bmatrix} \mathcal{K} = \{x \in \mathbb{R}^d | Ax \le b\}$$

Log Barrier Method (Optimization) [Dikin 1967, Nemirovski 1990]

Upper bounds

	Ball Walk	Dikin Walk	?	?
#Steps	$d^2 \frac{R_{\text{max}}^2}{R_{\text{min}}^2}$	nd	n = #cor	nstraints
Per Step Cost	nd	nd^2	d = #dim n >	

Slow mixing of Dikin Walk

"If any two points that are Δ apart have ρ overlap in their transition regions, then the chain mixes in $\mathcal{O}\left(\frac{1}{\Delta^2\rho^2}\right)$ steps."

-Lovász's Lemma

"If any two points that are Δ apart have ρ overlap in their transition regions, then the chain mixes in $\mathcal{O}\left(\frac{1}{\Delta^2\rho^2}\right)$ steps."

-Lovász's Lemma

For any fixed overlap ρ , we want far away points to have ρ overlapping regions, and hence large ellipsoids (contained within the polytope) are useful.

Improving Dikin Walk

Importance weighting of constraints

$$D_x = \sum_{i=1}^{n} \frac{a_i a_i^{\top}}{(b_i - a_i^{\top} x)^2}$$

$$D_{x} = \sum_{i=1}^{n} \frac{a_{i} a_{i}^{\top}}{(b_{i} - a_{i}^{\top} x)^{2}} \qquad \sum_{i=1}^{n} w_{i}(x) \frac{a_{i} a_{i}^{\top}}{(b_{i} - a_{i}^{\top} x)^{2}}$$

Improving Dikin Walk

[Kannan and Narayanan 2012]

Dikin Proposal

$$z \sim \mathcal{N}\left(x, \frac{\mathbf{r^2}}{\mathbf{d}} \mathbf{D_x^{-1}}\right)$$

$$D_x = \sum_{i=1}^{n} \frac{a_i a_i^{\top}}{(b_i - a_i^{\top} x)^2}$$

Log Barrier Method [Dikin 1967, Nemirovski 1990]

Sampling meets optimization (again!!)

[Kannan and Narayanan 2012]

Dikin Proposal

$$z \sim \mathcal{N}\left(x, \frac{\mathbf{r^2}}{\mathbf{d}} \mathbf{D_x^{-1}}\right)$$

$$D_x = \sum_{i=1}^{n} \frac{a_i a_i^{\top}}{(b_i - a_i^{\top} x)^2}$$

Log Barrier Method [Dikin 1967, Nemirovski 1990]

[Chen, D., Wainwright and Yu 2017]

Vaidya Proposal

$$z \sim \mathcal{N}\left(x, \frac{r^2}{\sqrt{nd}} V_x^{-1}\right)$$

$$V_x = \sum_{i=1}^n \left(\sigma_{x,i} + \frac{d}{n}\right) \frac{a_i a_i^\top}{(b_i - a_i^\top x)^2}$$

$$\sigma_{x,i} = \frac{a_i^\top D_x^{-1} a_i}{(b_i - a_i^\top x)^2}$$

Volumetric Barrier Method [Vaidya 1993]

Vaidya Walk [Chen, D., Wainwright, Yu 2017]

Convergence Rates

Ball Walk

Dikin Walk

Vaidya Walk

#Steps

$$d^2 \frac{R_{\text{max}}^2}{R_{\text{min}}^2}$$

nd

$$n^{0.5}d^{1.5}$$

Per Step Cost

n constraints d dimensions n > d

Convergence Rates

#dimensions = 2

#experiments = 200

#constraints = **64**

#experiments = **200**

#constraints = **64**

#experiments = **200**

#constraints = **64**

#experiments = 200

Small number of constraints: No Winner!

#constraints = **64**

#experiments = **200**

#constraints = **2048**

#experiments = **200**

#constraints = **2048**

#experiments = **200**

#constraints = 2048

#experiments = **200**

Vaidya walk wins!

#constraints = 2048

#experiments = **200**

Polytope approximation to Circle

#constraints = **5**

#constraints = 8

#constraints = **64**

#constraints = **64**

Dikin

Walk

= 2048

Can we improve further?

[Kannan and Narayanan, 2012]

Dikin Proposal

$$z \sim \mathcal{N}\left(x, \frac{\mathbf{r^2}}{\mathbf{d}} \mathbf{D_x^{-1}}\right)$$

$$D_x = \sum_{i=1}^{n} \frac{a_i a_i^{\top}}{(b_i - a_i^{\top} x)^2}$$

Vaidya Proposal

$$z \sim \mathcal{N}\left(x, \frac{\mathbf{r^2}}{\mathbf{d}} \mathbf{D_x^{-1}}\right) \qquad z \sim \mathcal{N}\left(x, \frac{r^2}{\sqrt{nd}} V_x^{-1}\right)$$

$$D_x = \sum_{i=1}^n \frac{a_i a_i^\top}{(b_i - a_i^\top x)^2} \qquad V_x = \sum_{i=1}^n \left(\sigma_{x,i} + \frac{d}{n}\right) \frac{a_i a_i^\top}{(b_i - a_i^\top x)^2}$$

$$\sigma_{x,i} = \frac{a_i^\top D_x^{-1} a_i}{(b_i - a_i^\top x)^2}$$

Log Barrier Method [Dikin 1967, Nemeirovski 1990] Vaidya's Volumetric **Barrier Method** [Vaidya 1993]

John Walk

[Kannan and Narayanan, 2012]

[Chen, D., Wainwright, Yu 2017]

Dikin Proposal

$$z \sim \mathcal{N}\left(x, \frac{\mathbf{r^2}}{\mathbf{d}} \mathbf{D_x^{-1}}\right)$$

$$D_x = \sum_{i=1}^{n} \frac{a_i a_i^{\top}}{(b_i - a_i^{\top} x)^2}$$

Vaidya Proposal

$$z \sim \mathcal{N}\left(x, \frac{r^2}{\sqrt{nd}}V_x^{-1}\right)$$

$$D_{x} = \sum_{i=1}^{n} \frac{a_{i} a_{i}^{\top}}{(b_{i} - a_{i}^{\top} x)^{2}} \qquad V_{x} = \sum_{i=1}^{n} \left(\sigma_{x,i} + \frac{d}{n} \right) \frac{a_{i} a_{i}^{\top}}{(b_{i} - a_{i}^{\top} x)^{2}} \qquad J_{x} = \sum_{i=1}^{n} j_{x,i} \frac{a_{i} a_{i}^{\top}}{(b_{i} - a_{i}^{\top} x)^{2}}$$

$$\sigma_{x,i} = \frac{a_i^\top D_x^{-1} a_i}{(b_i - a_i^\top x)^2}$$

John Proposal

$$z \sim \mathcal{N}\left(x, \frac{r^2}{d^{1.5}}J_x^{-1}\right)$$

$$J_x = \sum_{i=1}^{n} j_{x,i} \frac{a_i a_i^{\top}}{(b_i - a_i^{\top} x)^2}$$

$$j_{x,i} = \text{convex program}$$

Log Barrier Method [Dikin 1967, Nemirovski 1990] Vaidya's Volumetric **Barrier Method** [Vaidya 1993]

John's Ellipsoidal Algorithm [Fritz John 1948, Lee and Sidford 2015]

Mixing Times

n = #constraints
d = #dimensions
n > d

	Dikin Walk	Vaidya Walk	John Walk
#Steps	nd	$n^{0.5}d^{1.5}$	$d^{2.5}\log^4\frac{n}{d}$
Per Step Cost			

Mixing Times

n = #constraints
d = #dimensions
n > d

	Dikin Walk	Vaidya Walk	John Walk
#Steps	nd	$n^{0.5}d^{1.5}$	$d^{2.5}\log^4\frac{n}{d}$
Per Step Cost	nd^2	nd^2	$nd^2 \log^2 n$

Conjecture

n = #constraints
d = #dimensions
n > d

	Dikin Walk	Vaidya Walk	John Walk
#Steps	nd	$n^{0.5}d^{1.5}$	$d^2 \log^c \left(\frac{n}{d}\right)$
Per Step Cost	nd^2	nd^2	$nd^2 \log^2 n$

For the John walk, the log factors are bottleneck in practice.

"

- Numerical Experiments

Proof Idea

- Proof relies on Lovasz's Lemma
- Need to establish that near by points have similar transition distributions
- Have to show that the weighted matrices are sufficiently smooth — use of weights makes it involved

Summary

faster

faster