Cem Yuksel and John Keyser Texas A&M University

Real-time semi-transparent shadows for hair

Outline

- □ Previous Work & Motivation
- Deep Opacity Maps
- Implementation
- **□** Results
- Discussion

- □ Shadow Maps (Lance Williams, 1978)
 - Depth Map
 - Binary Decision

- Deep Shadow Maps (Lokovic and Veach 2000)
 - Multiple depths per pixel
 - Multiple opacities per pixel
 - Compress for efficiency
 - Offline

- Opacity Shadow Maps (Kim and Neumann 2001)
 - Opacity Layers
 - Interactive
 - Layering Artifacts!

- Opacity Shadow Maps (Kim and Neumann 2001)
 - Opacity Layers
 - Interactive
 - Layering Artifacts!

- □ Density Clustering (Mertens et al. 2004)
 - Per pixel layering
 - K-means clustering
 - Real-time
 - Inaccuracy Artifacts!

Motivation

- Deep Opacity Maps
 - Depth Map
 - Opacity Map
 - Real-time
 - Artifact Free!

Outline

- Previous Work & Motivation
- **□** Deep Opacity Maps
- Implementation
- Results
- Discussion

Overview

Opacity Shadow Maps

Deep Opacity Maps

- Overview
 - Pass 1: Depth Map
 - Pass 2: Opacity Map
 - Final frame rendering

□ Pass 1: Depth Map

 z_0 per pixel

□ Pass 2: Opacity Map

Layers:

$$z_0 \rightarrow z_0 + d_1$$

$$z_0 + d_1 \rightarrow z_0 + d_2$$

$$z_0 + d_2 \rightarrow z_0 + d_3$$

...

 $d_1, d_2, d_3...$ are user defined

Layer Sizes

- $= d_1$
- $d_2 d_1$
- $d_3 d_2$
- **.**..
- can be different!

Layer Sizes

- $s = d_1$
- Alternatives:
 - □ S, S, S, S, ... (constant)
 - □ s, 2s, 4s, 8s, ... (powers of 2)
 - □ s, s, 2s, 3s, 5s, .. (Fibonacci)
 - □ s, 2s, 3s, 4s, ... (linear)

- Beyond the last layer
 - Ignore?
 - Won't cast shadows
 - Add to the last layer?
 - Cast shadows on themselves
 - Increase the last layer size?
 - Reduce accuracy

Transmittance beyond the last layer should be close to zero anyway!

Outline

- Previous Work & Motivation
- Deep Opacity Maps
- **□** Implementation
- Results
- Discussion

Implementation

- Depth Map
 - can be 8-bit, 16-bit, or 32-bit
- 3 opacity layers
 - Single Texture

R: depth (z_0)

G: layer 1 opacity

B: layer 2 opacity

A: layer 3 opacity

Implementation

□ 7, 11, 15... opacity layers

Multiple Draw Buffers

 \mathbf{R}_1 : depth (z_0)

G₁: layer 1 opacity

B₁: layer 2 opacity

A₁: layer 3 opacity

R₂: layer 4 opacity

G₂: layer 5 opacity

B₂: layer 6 opacity

A₂: layer 7 opacity

Texture 1

Texture 2

. . .

Outline

- Previous Work & Motivation
- Deep Opacity Maps
- Implementation
- **□** Results
- Discussion

(10K strands – 150K lines)

Opacity Shadow Maps 16 layers (81 fps)

Opacity Shadow Maps 128 layers (2.3 fps)

Density Clustering 4 layers (73 fps)

Deep Opacity Maps 3 layers (114 fps)

(15K strands – 1M lines)

Opacity Shadow Maps 8 layers (88 fps)

Opacity Shadow Maps 256 layers (0.6 fps)

Density Clustering 4 layers (47 fps)

Deep Opacity Maps 3 layers (74 fps)

Density Clustering

Deep Opacity Maps

(10K strands – 1.5M lines)

Opacity Shadow Maps 8 layers (65 fps)

Opacity Shadow Maps 256 layers (0.5 fps)

Density Clustering 4 layers (37 fps)

Deep Opacity Maps 3 layers (50 fps)

Density Clustering

Deep Opacity Maps

Deep Opacity Maps

3 layers

3 LARGER layers

Deep Opacity Maps

3 layers

7 layers

Outline

- Previous Work & Motivation
- Deep Opacity Maps
- Implementation
- Results
- Discussion

- Direct illumination (no shadow) captured correctly
- Concentrate accuracy to where the shadow begins
- Interpolation is moved to within hair volume
- Layering artifacts are hidden
- □ Fewer layers (less memory)
- 2 pass shadow generation (fast)

□ Flickering?

Staircase Artifacts!

- □ Flickering?
 - Same as shadow maps

single look-up

multiple look-up

multiple look-up

Conclusion

- Deep Opacity Maps method
 - is simple,
 - is faster,
 - uses less memory,
 - looks better!
- □ Use it!
- Questions?