Università di Venezia Ca' Foscari

Corso di Laurea in Informatica

Insegnamento integrato di Calcolo (Calcolo I, Calcolo II, Esercitazioni di Calcolo)

Prof. F. Sartoretto

Verifica scritta del 3 febbraio 2004.

Tema A CORREZIONE

Nome	е									
Cognome [
Matricola [Calco	1 1			ıla olo	 		to		

Norme generali.

Lasciare sugli attaccapanni borse e indumenti, tenere sul banco solo penne, calcolatrice e libretto universitario. Consegnare solo il fascicolo domande e il modulo risposte. Eventuali altri fogli verranno cestinati. Le risposte errate comportano un punteggio negativo. Le risposte non riportate nelle apposite caselle del modulo risposte verranno considerate nulle. Nulle saranno anche le risposte non esaurientemente giustificate, oppure scritte con grafia poco chiara. Scrivere con inchiostro indelebile nero o bleu. Il candidato si puó ritirare, purché sia passata almeno mezz'ora dall'inizio della prova, restituendo il testo del compito e il modulo risposte, dopo aver scritto su entrambi in caratteri grandi "Ritirato". La prova viene automaticamente considerata non superata e viene allontanato chi viene trovato con libri o appunti a portata di mano, anche se non sono stati consultati.

Usare una calcolatrice con display alfanumerico. Sono vietate le calcolatrici con display grafico.

La risposta "non esiste" si codifica con -1.1111E+11. Ad esempio, "non esistono punti di flesso", si codifica rispondendo x_1 =-1.1111E+11, $f(x_1)$ =-1.1111E+11, x_2 =-1.1111E+11, $f(x_2)$ =-1.1111E+11, etc.

La risposta $+\infty$ si codifica con +9.9999E+99. La risposta $-\infty$ si codifica con -9.9999E+99.

Se una domanda prevede più risposte, relative alle ascisse x_1, x_2, \ldots, x_n , bisogna ordinarle in modo che $x_1 < x_2 < \ldots < x_n$.

Indicare gli asintoti orizzontali e obliqui usando "infiniti con segno". Ad esempio, dire che y = 1/(x(x-1)) ha asintoti y = 0 in $x_1 = -\infty$, x = 0 in $x_2 = 0$, x = 1 in $x_3 = 1$.

Tabella riassuntiva:

Risposta	codice
Non esiste	-1.1111E+11
$+\infty$	+9.9999E+99
$-\infty$	-9.9999E + 99

1 Calcolo I

Test 1 Per rappresentare l'andamento del raggio idraulico della capillarità, si può usare la cosiddetta funzione J-Leverett [Bea72]

$$J(S_w) = (p_c(S_w)/\sigma)\sqrt{k/n},\tag{1}$$

dove S_w è il grado di saturazione del mezzo poroso, $p_c = p_c(S_w)$ la pressione capillare, σ la tensione di interfaccia, k la permeabilità del mezzo, n la porosità. Supponiamo che

$$p_c(S_w) = -\tan(\pi S_w/120 - \pi/2) + 4/10 = 2/5 + \cot(\pi S_w/120).$$

Ricordare che:

$$\cot(x) = \frac{1}{\tan(x)}, \quad \tan(x - \pi/2) = -\cot(x), \quad \csc(x) = \frac{1}{\sin(x)}.$$

Valore: 21.

 $x_2 =$ γE :

7D:

Domanda numero 8: Qual è la derivata di f(x)?

Domanda numero 9 : $Punti x_i, i = 1,, n in cui f(x) è continua, ma$
non derivabile: $x_1 = 9A$:, $f(x_1) =$
9B: $gC:$ $gC:$ $gC:$
9D:
Domanda numero 10: Punti estremali x_i , $i = 1,, n$, di $f(x)$. Scrivere
"1" se è un punto di massimo, "0" se di minimo, "2" se è un flesso. $x_1 =$
$f(x_1) = 10B$:
Massimo o minimo?= $10C$: ; x_2 =
$f(x_2) = 10E: $
Massimo o minimo? = $10F$: ; Valore: 20.
Domanda numero 11: Punti di flesso x_i , $i = 1,, n$, di $f(x)$. $x_1 =$
$f(x_1) = f(x_1) = f$
$x_2 = 11C:$; $f(x_2) =$
. Valore: 16.
Studiare gli asintoti del grafico di $f(x)$, siano le rette $a_i y + b_i x + c_i = 0$,
$i=1,\ldots,n,\ x_i$ le ascisse dei punti di tangenza (porre $b_i=1$ se l'asintoto è
verticale, $a_i = 1$ se l'asintoto non è verticale, $x_i = \pm \infty$, se l'asintoto è
orizzontale o obliquo).
Domanda numero 12: Asintoti: $x_1 = 12A$:
$a_1 = 12B : $; $b_1 = $
$12C:$; $c_1 = 12D:$; $x_2 =$
$12E:$; $a_2 = 12F:$; $b_2 =$
$12G:$; $c_2 = 12H:$.
Valore: 28.
Domanda numero 13: Schizzare il grafico della funzione nel riquadro
sottostante, aggiungendo anche le scale.

5

 $Sia\ q(x) = f(x) f'(x).$

Domanda numero 14: Qual è l'integrale indefinito di q(x)?

Valore: 20. Sia a = 0, b = 10, c = 20, d = 60. Sia $V(\alpha, \beta) = \int_{\alpha}^{\beta} q(x)dx$. Domanda numero 15: Quanto vale V(a, b)? V(a, b) = 15A: ; Valore: 4. Domanda numero 16: Quanto vale V(b, c)? V(b, c) = 16A: ; Valore: 4. Domanda numero 17: Quanto vale V(c, d)? V(c, d) = 17A: . Valore: 4.

Inserire qui i passaggi fondamentali del procedimento risolutivo e i risultati intermedi.

La funzione da studiare è:

$$f(x) = -\tan(\pi x/120 - \pi/2) + 4/10.$$

- Il dominio della funzione è $-\infty < x < +\infty$, $x \notin S$, $S = \{z : z = k \cdot 120, k \in \mathbb{Z}\}.$
- I limiti valgono:

$$\lim_{x \to -\infty} f(x) = \text{non esiste}, \quad \lim_{x \to +\infty} f(x) = \text{non esiste}.$$

- La periodicità della funzione è p=120. Nel seguito ci limitiamo all' intervallo [0, p].
- La funzione non è definita nei punti $x_1 = 0$ e $x_2 = p$, e risulta

$$\lim_{x \to 0+} f(x) = +\infty, \quad \lim_{x \to p-} f(x) = -\infty.$$

• La derivata è:

$$y'(x) = \frac{-\pi}{120}\csc^2(\frac{\pi x}{120}).$$

- La funzione è derivabile in tutti i punti in cui è continua.
- Non vi sono punti estremali.
- Vi è un unico punto di flesso x = 60, f(60) = 4/10.
- Gli asintoti sono le rette x = 0 e x = 120.
- Grafico della funzione:

• L' integrale indefinito di

$$q(x) = f(x) f'(x) = \frac{-\pi}{120} \left(\frac{2}{5} + \cot(\frac{\pi x}{120})\right) \csc^2(\frac{\pi x}{120})$$

$$\int q(x)dx = \{Q(x) + C, C \in \mathbb{R}\},\$$
$$Q(x) = f(x)^2/2 = \frac{1}{10}\csc^2(\frac{\pi x}{120}) \left(5 + 2\sin(\frac{\pi x}{60})\right).$$

• Gli integrali definiti valgono:

$$V(a,b) = -\infty;$$

$$V(b,c) = \frac{-4 (606 + 379 \sqrt{3})}{555 + 145 \sqrt{3}} \simeq -6.2641;$$

$$V(c,d) = \frac{90 + 83 \sqrt{3}}{-20 - 50 \sqrt{3}} \simeq -2.1928.$$

7

Test 2 Consideriamo

$$I = \int f(x)dx, \quad f(x) = |x| + 1.$$

Domanda numero 18: In base a quale teorema possiamo dire che la funzione f(x) è integrabile nell' intervallo [-10, 10]? Enunciare il teorema.

Valore: 4.

Sia

$$F_1(x) = \begin{cases} x^2/2 + x + 1, & \text{se } x \ge 0, \\ -x^2/2 + x - 1, & \text{altrimenti} \end{cases}$$

Domanda numero 19: La funzione $F_1(x)$ è una primitiva di f(x)? 1: Si: 2: No: Valore: 2.

Domanda numero 20: Giustificare la risposta precedente.

Valore: 4.

Domanda numero 21: Scrivere una primitiva $F_2(x)$ di f(x).

Valore: 8.

Domanda numero 22: Scrivere una rappresentazione di I.

Valore: 8.

Inserire qui i passaggi fondamentali del procedimento risolutivo e i risultati intermedi.

• La funzione f(x) è integrabile, perché continua. E' integrabile nell' intervallo [-10, 10] in base al teorema che afferma:

Teorema 1.1 Se una funzione è continua nell' intervallo [a, b], allora è integrabile in [a, b].

- La funzione $F_1(x)$ non è una primitiva di f(x) perché non è derivabile nel punto x = 0.
- Una primitiva di f(x) è la funzione

$$F_2(x) = \begin{cases} x^2/2 + x, & \text{se } x \ge 0, \\ -x^2/2 + x, & \text{altrimenti} \end{cases}.$$

• L' integrale indefinito è:

$$I = \{F_2(x) + C, C \in \mathbb{R}\}.$$

2 Calcolo II

Test 3 Consideriamo la funzione di due variabili

$$z(x,y) = \begin{cases} g(x,y), & se \ x \in T, \\ 0, & altrimenti \end{cases}, \tag{3}$$

dove T è il triangolo chiuso, ossia contenente i lati, nella figura 1, g(x,y)=1-x-y. Sia f(x,y)=z(x,y).

Domanda numero 23: Qual è il dominio della funzione?

Dullia	mua numero 2	 Quu	$i \in u uon$	unio aena	janzione:
23A :			< <i>x</i> <	23B:	
23C :			< <i>y</i> <	23D:	
Valore	: 8.			·	

Domanda numero 24: E' una funzione continua? 1: Si; 2: No; Valore: 2.

Domanda numero 25: E' una funzione derivabile? 1: Si; 2: No; Valore: 2.

Domanda numero 26: Qual è l'insieme dei punti M in cui non è continua?

M =

Valore: 4.

Domanda numero 27: Qual è l'insieme dei punti N in cui non è derivabile?

N =

Figura 1: Triangolo T.

Valore: 4.

Domanda numero 28: Schizzare un grafico della curva di livello z=1/2 nel riquadro sottostante, aggiungendo anche le scale.

Valore: 80.

 $Sia \ x_1 := x, \ x_2 := y.$

Domanda numero 29: Quanto vale $\frac{\partial f}{\partial x_1}$?

 $\frac{\partial f}{\partial x_1} =$

Valore: 8.

Domanda numero 30 : <i>Quanto vale</i> $\frac{3}{\partial x_2}$?
$\frac{\overline{\partial f}}{\partial x_2} =$
Valore: 8.
Calcolare la matrice Hessiana
$H(x_1, x_2) = \begin{pmatrix} f_{x_1, x_1} & f_{x_1, x_2} \\ f_{x_2, x_1} & f_{x_2, x_2} \end{pmatrix}.$
Domanda numero 31: Quanto vale H_{11} ?
$\overline{H_{11}} =$
Valore: 4.
Domanda numero 32: Quanto vale H_{12} ?
$H_{12} =$
Valore: 4.
Domanda numero 33: Quanto vale H_{21} ?
$H_{21} =$
Valore: 4.
Domanda numero 34: Quanto vale H_{22} ?
$H_{22} =$
Valore: 4.
$Sia \ {\bf a} = (1,2).$
Domanda numero 35: Quanto vale $H_{11}(\mathbf{a})$?
35A: Valore: 4.
Domanda numero 36: Quanto vale $H_{12}(\mathbf{a})$?
36A: Valore: 4.
Domanda numero 37: Quanto vale $H_{21}(\mathbf{a})$?
37A: Valore: 4.
Domanda numero 38: Quanto vale $H_{22}(\mathbf{a})$?
38A: Valore: 4.
Domanda numero 39: Quanto vale il massimo di $f(x_1, x_2)$?
39A: Valore: 2.

Inserire qui i passaggi fondamentali del procedimento risolutivo e i risultati intermedi.

Valore: 8.

Ecco un grafico della funzione¹, nel quadrato $[-2, 2]^2$.

L=

46A :

 $^{^{1}}$ Il grafico non è corretto ai bordi di T, perché il piano z=1-x-y non è raccordato con il piano z=0. Purtroppo non sono riuscito a togliere la togliere la parte spuria. Se qualcuno mi suggerisce un modo semplice per disegnare un grafico accurato, ne terrò conto

- Il dominio della funzione è tutto \mathbb{R}^2 .
- La funzione non è continua in alcuni punti del dominio.
- La funzione non è derivabile in alcuni punti del dominio.
- L' insieme dei punti in cui non è continua è:

$$M = \{(x,y) : 0 \le x \le 1, y = 0\} \cup \{(x,y) : 0 \le y \le 1, x = 0\}.$$

• L' insieme dei punti in cui non è derivabile è:

$$N = M \cup \{(x, y) : 0 \le x \le 1, y = -x + 1\}.$$

• La curva di livello z=1/2 è il segmento costituito dai punti (x,y) tali che $0 \le x \le 1, 1/2 = 1-x-y,$ ossia y=1/2-x.

Abbiamo

$$\frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial x_2} = \begin{cases} -1, & \text{se } (x, y) \in \mathring{T}, \\ \text{indefinita}, & \text{se } (x, y) \in \partial T, \\ 0, & \text{altrimenti.} \end{cases}$$

Notare che $\overset{\circ}{T}$ indica l' *interno* di T, ossia T privato del bordo, ossia ancora $\{(x,y): 0 < x < 1, 0 < y < 1 - x\}$.

- L' Hessiano è nullo in tutti i punti in cui la funzione è differenziabile.
- Il massimo della funzione è m=1, il minimo n=0.
- L'estremo superiore coincide con il massimo, quello inferiore con il minimo.
- L'equazione differenziale da risolvere è:

$$y' = -y + 1 - x.$$

• La soluzione generale dell' equazione differenziale è:

$$\bar{y}(x) = 2 - x + C \exp(-x), \quad C \in \mathbb{R}.$$

• La soluzione particolare del problema è:

$$\bar{y}(x) = 2 - x$$
.

• I limiti valgono

$$L = \lim_{x \to 1} \bar{y}(x) = 1, \quad L = \lim_{x \to +\infty} \bar{y}(x) = -\infty.$$

Riferimenti bibliografici

[Bea72] J. Bear. Dynamics of Fluids in Porous Media. Elsevier, New York, 1972.