4.1 Antiderivatives

What function has derivative f(x)?

What function has derivative f(x)?

If F'(x) = f(x), we call F(x) an antiderivative of f(x).

What function has derivative f(x)?

If F'(x) = f(x), we call F(x) an antiderivative of f(x).

Examples

 $\frac{d}{dx}[x^2] = 2x$, so x^2 is an <u>antiderivative</u> of 2x.

 $\frac{d}{dx}[x^2+5] = 2x$, so x^2+5 is (also) an <u>antiderivative</u> of 2x.

What function has derivative f(x)?

If F'(x) = f(x), we call F(x) an antiderivative of f(x).

Examples

 $\frac{d}{dx}[x^2] = 2x$, so x^2 is an <u>antiderivative</u> of 2x.

 $\frac{d}{dx}[x^2 + 5] = 2x$, so $x^2 + 5$ is (also) an <u>antiderivative</u> of 2x.

What is the most general antiderivative of 2x?

What function has derivative f(x)?

If F'(x) = f(x), we call F(x) an antiderivative of f(x).

Examples

 $\frac{d}{dx}[x^2] = 2x$, so x^2 is an <u>antiderivative</u> of 2x.

 $\frac{d}{dx}[x^2+5] = 2x$, so x^2+5 is (also) an <u>antiderivative</u> of 2x.

What is the most general antiderivative of 2x?

 $x^2 + c$, where we understand c as some constant (a number not depending on x).

ANTIDERIVATIVES

Find the most general antiderivative for the following equations.

$$f(x) = 17$$

$$f(x) = m$$

where m is a constant.

ANTIDERIVATIVES

Find the most general antiderivative for the following equations.

$$f(x) = 17$$

$$17x + c$$

$$f(x) = m$$

where m is a constant.

$$mx + c$$

	di	ff	ere	ntia	tion	fact
_	- 4	г	21	_		

antidifferentiation fact antideriv of 2*x* :

 $\frac{\mathrm{d}}{\mathrm{d}x}[x^2] = 2x \qquad \Longrightarrow \qquad$

 $x^2 + c$

antidifferentiation fact

$$\frac{\mathrm{d}}{\mathrm{d}x}[x^2] = 2x \qquad \Longrightarrow \qquad$$

antideriv of 2x: $x^2 + c$

antideriv of *x*:

differentiation fact		antidifferentiation i	fact
$\frac{\mathrm{d}}{\mathrm{d}x}[x^2] = 2x$	\Longrightarrow	antideriv of 2x:	$x^2 + c$
		antideriv of <i>x</i> :	$\frac{1}{2}x^2 + c$

differentiation fact

antidifferentiation fact

$$\frac{\mathrm{d}}{\mathrm{d}x}[x^2] = 2x \qquad \Longrightarrow$$

antideriv of
$$2x$$
: $x^2 + c$

antideriv of
$$x$$
: $\frac{1}{2}x^2 + c$

Check:
$$\frac{d}{dx} \left[\frac{1}{2} x^2 + c \right] =$$

differentiation fact

antidifferentiation fact

$$\frac{\mathrm{d}}{\mathrm{d}x}[x^2] = 2x \qquad \Longrightarrow$$

antideriv of
$$2x$$
: $x^2 + c$

antideriv of *x*:
$$\frac{1}{2}x^2 + c$$

Check:
$$\frac{d}{dx} \left[\frac{1}{2} x^2 + c \right] = x$$

differentiation fact			
$\frac{\mathrm{d}}{\mathrm{d}x}[x^2] = 2x$			

 $\frac{\mathrm{d}}{\mathrm{d}x}[x^4] = 4x^3$

antidifferentiation fact

antideriv of 2x: $x^2 + c$

antideriv of
$$x$$
: $\frac{1}{2}x^2 + c$

Check:
$$\frac{d}{dx} \left[\frac{1}{2}x^2 + c \right] = x$$

$$\frac{\mathrm{d}}{\mathrm{d}x}[x^3] = 3x^2 \qquad =$$

$$\Longrightarrow$$

$$\frac{\mathrm{d}}{\mathrm{d}x}[x^5] = 5x^4 \qquad =$$

antideriv of x^n :

differentiation fact		antidifferentiation fact
$\frac{\mathrm{d}}{\mathrm{d}x}[x^2] = 2x$	\Longrightarrow	antideriv of $2x$: $x^2 + c$
		antideriv of x : $\frac{1}{2}x^2 + c$
		Check: $\frac{d}{dx} \left[\frac{1}{2}x^2 + c \right] = x$
$\frac{\mathrm{d}}{\mathrm{d}x}[x^3] = 3x^2$	\Longrightarrow	antideriv of $3x^2$: $x^3 + c$ antideriv of x^2 : $\frac{1}{3}x^3 + c$
$\frac{\mathrm{d}}{\mathrm{d}x}[x^4] = 4x^3$	\Longrightarrow	antideriv of $4x^3$: $x^4 + c$ antideriv of x^3 $\frac{1}{4}x^4 + c$
$\frac{\mathrm{d}}{\mathrm{d}x}[x^5] = 5x^4$	\Longrightarrow	antideriv of $5x^4$: $x^5 + c$ antideriv of x^4 : $\frac{1}{5}x^5 + c$
		antideriv of x^n : $\frac{1}{n+1}x^{n+1} + c$
		Check: $\frac{d}{dx} \left[\frac{1}{n+1} x^{n+1} + c \right] = x^n$

Power Rule for Antidifferentiation

The most general antiderivative of x^n is $\frac{1}{n+1}x^{n+1} + c$ if $n \neq -1$

$$ightharpoonup \frac{\mathrm{d}}{\mathrm{d}x}$$

$$= x^5$$

$$ightharpoonup \frac{\mathrm{d}}{\mathrm{d}x}$$

$$=x^3$$

$$ightharpoonup \frac{\mathrm{d}}{\mathrm{d}x}$$

$$\bigg] = \frac{1}{2}x^3$$

Power Rule for Antidifferentiation

The most general antiderivative of x^n is $\frac{1}{n+1}x^{n+1} + c$ if $n \neq -1$

$$ightharpoonup \frac{\mathrm{d}}{\mathrm{d}x}$$

$$\bigg] = 5x^2 - 15x + 3$$

$$ightharpoonup \frac{\mathrm{d}}{\mathrm{d}x}$$

$$\bigg] = 13 \left(5x^{14} - 3x^{3/7} + 52e^x \right)$$

$$f(x) = \cos x$$

$$f(x) = \sin x$$

$$f(x) = \sec^2 x$$

$$f(x) = \frac{1}{1 + x^2}$$

$$f(x) = \frac{1}{1 + x^2 + 2x}$$

$$f(x) = \cos x$$

$$\sin x + c$$

$$f(x) = \sin x$$

$$-\cos x + c$$

$$f(x) = \sec^2 x$$

$$\tan x + c$$

$$f(x) = \frac{1}{1 + x^2}$$

 $\arctan x + c$

$$f(x) = \frac{1}{1 + x^2 + 2x}$$

$$\frac{-1}{x+1}$$

$$f(x) = 17\cos x + x^5$$

$$f(x) = \frac{23}{5 + 5x^2}$$

$$f(x) = \frac{23}{5 + 125x^2}$$

$$f(x) = 17\cos x + x^5$$

$$17\sin x + \frac{1}{6}x^6 + c$$

$$f(x) = \frac{23}{5 + 5x^2}$$

$$\frac{23}{5}$$
 arctan $x + c$

$$f(x) = \frac{23}{5 + 125x^2}$$

$$\frac{23}{25}\arctan(5x)+c$$

$$f(x) = \frac{1}{x}, \ x > 0$$

$$f(x) = 5x^2 - 32x^5 - 17$$

$$f(x) = \csc x \cot x$$

$$f(x) = \frac{5}{\sqrt{1 - x^2}} + 17$$

$$f(x) = \frac{1}{x}, \ x > 0$$

 $\ln x + c$

$$f(x) = 5x^2 - 32x^5 - 17$$

$$\frac{5}{3}x^3 - \frac{16}{3}x^6 - 17x + c$$

$$f(x) = \csc x \cot x$$

$$-\csc x + c$$

$$f(x) = \frac{5}{\sqrt{1-x^2}} + 17$$

$$5 \arcsin x + 17x + c$$

Antiderivative of $\sin x \cos x$:

```
A. \cos x \sin x + c
```

B.
$$-\cos x \sin x + c$$

C.
$$\sin^2 x + c$$

D.
$$\frac{1}{2}\sin^2 x + c$$

$$E. \frac{1}{2}\cos^2 x \sin^2 x + c$$

Antiderivative of $\sin x \cos x$:

- A. $\cos x \sin x + c$
- B. $-\cos x \sin x + c$
- C. $\sin^2 x + c$
- D. $\frac{1}{2}\sin^2 x + c$
- $E. \frac{1}{2}\cos^2 x \sin^2 x + c$

Antiderivative of $\sin x \cos x$:

- A. $\cos x \sin x + c$
- B. $-\cos x \sin x + c$
- C. $\sin^2 x + c$
- D. $\frac{1}{2}\sin^2 x + c$
- $E. \frac{1}{2}\cos^2 x \sin^2 x + c$

In general, antiderivatives of x^n have the form $\frac{1}{n+1}x^{n+1}$. What is the single exception?

- A. n = -1
- B. n = 0
- C. n = 1
- D. n = e
- E. n = 1/2

Antiderivative of $\sin x \cos x$:

A.
$$\cos x \sin x + c$$

B.
$$-\cos x \sin x + c$$

C.
$$\sin^2 x + c$$

D.
$$\frac{1}{2}\sin^2 x + c$$

$$E. \frac{1}{2}\cos^2 x \sin^2 x + c$$

In general, antiderivatives of x^n have the form $\frac{1}{n+1}x^{n+1}$. What is the single exception?

A.
$$n = -1$$

B.
$$n = 0$$

C.
$$n = 1$$

D.
$$n = e$$

E.
$$n = 1/2$$

Suppose the velocity of a particle at time t is given by $v(t) = t^2 + \cos t + 3$. What function gives its position?

A.
$$s(t) = 2t - \sin t$$

$$B. \ s(t) = 2t - \sin t + c$$

C.
$$s(t) = t^3 + \sin t + 3t + c$$

D.
$$s(t) = \frac{1}{3}t^3 + \sin t + 3t + c$$

E.
$$s(t) = \frac{1}{3}t^2 - \sin t + 3t + c$$

Suppose the velocity of a particle at time t is given by $v(t) = t^2 + \cos t + 3$. What function gives its position?

A.
$$s(t) = 2t - \sin t$$

B.
$$s(t) = 2t - \sin t + c$$

C.
$$s(t) = t^3 + \sin t + 3t + c$$

D.
$$s(t) = \frac{1}{3}t^3 + \sin t + 3t + c$$

E.
$$s(t) = \frac{1}{3}t^2 - \sin t + 3t + c$$

Suppose the velocity of a particle at time t is given by $v(t) = t^2 + \cos t + 3$. What function gives its position?

A.
$$s(t) = 2t - \sin t$$

B.
$$s(t) = 2t - \sin t + c$$

C.
$$s(t) = t^3 + \sin t + 3t + c$$

D.
$$s(t) = \frac{1}{3}t^3 + \sin t + 3t + c$$

E.
$$s(t) = \frac{1}{3}t^2 - \sin t + 3t + c$$

Suppose the velocity of a particle at time t is given by $v(t) = t^2 + \cos t + 3$, and its position at time 0 is given by s(0) = 5.

What function gives its position?

A.
$$s(t) = \frac{1}{3}t^3 + \sin t + 3t$$

B.
$$s(t) = \frac{1}{3}t^3 + \sin t + 3t + 5$$

C.
$$s(t) = \frac{1}{3}t^3 + \sin t + 3t + c$$

D.
$$s(t) = 5t + c$$

E.
$$s(t) = 5t + 5$$

Suppose the velocity of a particle at time t is given by $v(t) = t^2 + \cos t + 3$. What function gives its position?

A.
$$s(t) = 2t - \sin t$$

B.
$$s(t) = 2t - \sin t + c$$

C.
$$s(t) = t^3 + \sin t + 3t + c$$

D.
$$s(t) = \frac{1}{3}t^3 + \sin t + 3t + c$$

E.
$$s(t) = \frac{1}{3}t^2 - \sin t + 3t + c$$

Suppose the velocity of a particle at time t is given by $v(t) = t^2 + \cos t + 3$, and its position at time 0 is given by s(0) = 5. What function gives its position?

A.
$$s(t) = \frac{1}{3}t^3 + \sin t + 3t$$

B.
$$s(t) = \frac{1}{3}t^3 + \sin t + 3t + 5$$

C.
$$s(t) = \frac{1}{3}t^3 + \sin t + 3t + c$$

D.
$$s(t) = 5t + c$$

E.
$$s(t) = 5t + 5$$

Find all functions f(x) with f(1) = 5 and $f'(x) = e^{3x+5}$.

Find all functions f(x) with f(1) = 5 and $f'(x) = e^{3x+5}$.

Antiderivative of e^{3x+5} is $\frac{1}{3}e^{3x+5} + c$. So we only need to solve for c.

$$5 = f(1) = \frac{1}{3}e^{3+5} + c$$

implies

$$c = 5 - \frac{e^8}{3}$$

So

$$f(x) = \frac{1}{3}e^{3x+5} + 5 - \frac{e^8}{3}$$

Let Q(t) be the amount of a radioactive isotope in a sample. Suppose the sample is losing $50e^{-5t}$ mg per second to decay. If $Q(1) = 10e^{-5}$ mg, find the equation for the amount of the isotope at time t.

Let Q(t) be the amount of a radioactive isotope in a sample. Suppose the sample is losing $50e^{-5t}$ mg per second to decay. If $Q(1)=10e^{-5}$ mg, find the equation for the amount of the isotope at time t.

We have

$$\frac{dQ}{dt} = -50e^{-5t}$$

Note the negative, since our sample is getting smaller.

Then antidifferentiating, we find $Q(t) = 10e^{-5t} + c$ for some constant c.

Then since $Q(1) = 10e^{-5}$, we see c = 0.

$$Q(t) = 10e^{-5t}$$

Suppose f'(t) = 2t + 7. What is f(10) - f(3)?

Suppose
$$f'(t) = 2t + 7$$
. What is $f(10) - f(3)$?

From antidifferentiation, we have $f(t) = t^2 + 7t + c$. Then

$$f(10) - f(3) = [100 + 70 + c] - [9 + 21 + c] = 170 - 30 = 140$$