Data Analysis: Statistical Modeling and Computation in Applications

<u>Help</u>

sandipan_dey ~

<u>Course</u>

Progress

<u>Dates</u>

Discussion

Resources

5. Statistics of random walk

☐ Bookmark this page

Exercises due Nov 10, 2021 17:29 IST Completed

To compute the basic statistics (mean, variance, covariance) of the random walk, it is useful to write X_t as a sum of the perturbations $\{W_h\}_{h=1}^t$ that accumulate over time:

$$egin{array}{ll} X_t &= X_{t-1} + W_t \ &= \left[X_{t-2} + W_{t-1}
ight] + W_t \ &dots \ &dots \ &= X_0 + \sum_{h=1}^t W_h. \end{array}$$

Similarly, for the random walk with drift Y_t we have:

$$egin{aligned} Y_t &= \delta + Y_{t-1} + W_t \ &= \delta + \left[\delta + Y_{t-2} + W_{t-1}
ight] + W_t \ &dots \ &= \delta \cdot t + Y_0 + \sum_{h=1}^t W_h. \end{aligned}$$

Using these representations we can find the marginal mean function, the covariance function and the autocorrelation function:

$$egin{aligned} \mu_X\left(t
ight) &= \mathbf{E}\left[X_t
ight] \ &= \mathbf{E}\left[X_0 + \sum_{h=1}^t W_h
ight] \ &= \mathbf{E}\left[X_0
ight] \end{aligned}$$

since W_t is white noise and has mean zero.

$$egin{aligned} \sigma_X^2\left(t
ight) &= \mathsf{Var}\left(X_t
ight) \ &= \mathsf{Var}\Big(X_0 + \sum_{h=1}^t W_h\Big) \ &= \mathsf{Var}\left(X_0
ight) + \sum_{h=1}^t \left[2\mathsf{Cov}\left(X_0, W_h
ight) + \mathsf{Var}\left(W_h
ight)
ight] + 2\sum_{1 \leq h < j \leq t} \mathsf{Cov}\left(W_h, W_j
ight) \ &= \mathsf{Var}\left(X_0
ight) + t \cdot \sigma_W^2 \end{aligned}$$

since W_h is uncorrelated with X_0 and with W_j for j
eq h.

$$egin{aligned} \gamma_X\left(s,t
ight) &= \mathsf{Cov}\left(X_s,X_t
ight) \ &= \mathsf{Cov}\Big(X_0 + \sum_{h=1}^s W_h,\; X_0 + \sum_{h=1}^t W_h\Big) \ &= \mathsf{Var}\left(X_0
ight) + \sum_{h=1}^{\min(s,t)} \mathsf{Var}\left(W_h
ight) \ &= \mathsf{Var}\left(X_0
ight) + \min\left(s,t
ight) \cdot \sigma_W^2 \end{aligned}$$

since W_h is uncorrelated with X_0 and with W_j for j
eq h.

Note that typically X_0 is assumed to be deterministic, thus $\mathsf{Var}(X_0) = 0$.

Statistics of random walk

3/3 points (graded)

Let X be a random walk with random perturbations that have $\sigma_W^2=1$.

Compute γ_X (5, 10).

5 **✓ Answer:** 5

Compute γ_X (10, 15).

10 **Answer:** 10

Does the autocovariance function $\gamma_{X}\left(s,t
ight)$ only depend on time gap |s-t|?

True

Solution:

From the above calculations, $\gamma_X(5,10) = \min(5,10) \cdot 1 = 5$ and $\gamma_X(10,15) = 10$. Therefore, the autocovariance of a random walk is not stationary since the gap between time stamps in these two computations is the same but the covariances are different.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Statistics of random walk with drift

As an exercise, repeat the calculation for the marginal mean function $\mu_Y(t) = \mathbf{E}[Y_t]$, the marginal variance function $\sigma_Y^2(t) = \mathsf{Var}(Y_t)$ and the autocovariance function $\gamma_Y(s,t) = \mathsf{Cov}(Y_s,Y_t)$ of the random walk with drift Y_t .

Computation of marginal mean, marginal variance, and autocovariance function

From the expression above we have

$$egin{aligned} \mu_{Y}\left(t
ight) &= \mathbf{E}\left[\delta t + Y_{0} + \sum_{h=1}^{t}W_{h}
ight] \ &= \delta t + \mathbf{E}\left[Y_{0}
ight] \end{aligned}$$

by linearity of expectation and zero mean property of white noise.

$$\mathsf{Var}\left(Y_{t}
ight) = \mathsf{Var}\Big(Y_{0} + \delta t + \sum_{t=1}^{t} W_{t}\Big)$$

$$= \mathsf{Var}\Big(Y_0 + \sum_{h=1}^t W_t\Big)$$

$$=\mathsf{Var}\left(Y_{0}
ight)+t\sigma_{W}^{2}$$

by property of the variance (that a shift of a distribution does not change the spread of the distribution) and assumptions about white noise.

Similarly, $\mathsf{Cor}\left(Y_t,Y_s\right) = \mathsf{Var}\left(Y_0\right) + \min\left(t,s\right)\sigma_W^2$.

<u>Hide</u>

Random walk and stationarity

2/2 points (graded)

False

Is the random walk with drift process stationary?

True			

Is the random walk process stationary?

_____ True

Solution:

False. The random walk is not stationary because the variance is growing with time and the autocovariance depends on the smallest of the two time stamps rather than on the difference.

Submit

You have used 1 of 1 attempt

Answers are displayed within the problem

Differencing random walk

2/2 points (graded)

Consider the first difference $abla Y_t$ of a random walk Y_t with drift.

Calculate the marginal mean function $\mu_{\nabla Y}(t)$, the marginal variance function $\sigma_{\nabla Y}^2(t)$ and the autocovariance function $\gamma_{\nabla Y}(s,t)$ of ∇Y_t .

Select all correct statements.

 $igcup
abla Y_t$ is random walk

 $igvee VY_t$ is white noise plus constant ($\delta + W_t$)

 $ightharpoonup \mu_{
abla Y}\left(t
ight)$ is constant

 $ec{arphi} \; \sigma^2_{
abla Y} \left(t
ight)$ is constant

 $igwedge \gamma_{
abla Y}\left(s,t
ight) =0$

 \bigcap $\gamma_{
abla Y}\left(s,t
ight)$ is constant, but not necessarily 0

Is $abla Y_t$ a stationary time series?

True

Solution:

The first difference of the random walk is $\nabla Y_t = Y_t - Y_{t-1} = \delta + W_t$ white noise. Therefore $\mu_{\nabla Y}(t) = \delta$ is constant, $\sigma^2_{\nabla Y}(t) = \sigma^2_W$ is constant, and $\gamma_{\nabla Y}(s,t) = 0$ for $s \neq t$. Yes, a shifted white noise $\{\delta + W_t\}$ is a stationary time series.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

(Optional) Estimations of random walk model

0 points possible (ungraded)

If X_t is a random walk, would our estimators $\hat{\sigma}_X^2\left(1\right)$ and $\hat{\gamma}_X\left(h\right)$ be consistent for σ_X^2 and $\gamma_X\left(1,h\right)$?

True

False

Solution:

No, consistency of the estimated acf function requires stationarity which random walk does not have.

We can illustrate this with a plot of an estimated acf:

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>