Inverse Problems Exercises: 2024s s06 (non-physics)

https://www.umm.uni-heidelberg.de/miism/

Notes

- Please **DO NOT** change the name of the .ipynb file.
- Please **DO NOT** import extra packages to solve the tasks.
- Please put the .ipynb file directly into the .zip archive without any intermediate folder.

Please provide your personal information

• full name (Name):

YOUR ANSWER HERE

D05b: Pseudo-inverse

```
In [ ]: import numpy as np
import matplotlib.pyplot as plt

from scipy.linalg import solve_sylvester

In [ ]: file_gaussian = 'file_gaussian.npz'
with np.load(file_gaussian) as data:
    f_true = data['f_true']
    A_psf = data['A_psf']
    list_gn = data['list_gn']
```

Imaging model

The imaging model can be represented by

$$g = h \otimes f_{ ext{true}} = A f_{ ext{true}} = \mathcal{F}^{-1} \{ \mathcal{F} \{ h \} \mathcal{F} \{ f_{ ext{true}} \} \},$$
 $g' = g + \epsilon.$

- ullet $f_{
 m true}$ is the input signal
- h is the point spread function (kernel)
- ullet \otimes is the convolution operator
- ullet A is the Toeplitz matrix of h
- ullet ${\cal F}$ and ${\cal F}^{-1}$ are the Fourier transform operator and inverse Fourier transform operator
- ullet is the additive Gaussian noise
- q is the filtered signal
- g' is the noisy signal

Downsampling

• Implement the downsampling matrix

$$D_{ ext{ds}} = egin{bmatrix} 1 & 0 & 0 & 0 & 0 & \dots \ 0 & 0 & 1 & 0 & 0 & \dots \ 0 & 0 & 0 & 0 & 1 & \dots \ & & & \dots & & \end{bmatrix}_{n/2 imes n}$$

- ullet Given the size $n_{
 m ds}$
- Implement the function get_downsampling_matrix() (using numpy.array)

Prepare the data with downsampling

- Downsample the signal in list_gn[0] and save the output in the variable gn_ds (as numpy.array)
- Calculate the system matrix with downsampling with A_psf and save the output in the variable A_ds (as numpy.array)

```
In [ ]: # This cell contains hidden tests.
```

Pseudo-inverse solutions

In the structure of Tikhonov regularization, a general solution can be written with a pseudo-inverse A^{-I} :

$$ilde{f}=A^{-I}g.$$

 A^{-I} is a matrix satisfying the following expression:

$$lpha_1(A^TA)A^{-I} + A^{-I}(lpha_2AA^T + lpha_3\operatorname{cov}(g)) = (lpha_1 + lpha_2)A^T,$$

where α_1 , α_2 , α_3 are the specific parameters. Especially,

ullet when $lpha_1=1$, $lpha_2=0$, $lpha_3=\lambda$, $\mathrm{cov}(g)=I$, it is the damped least squares

$$A^{-I} = (A^T A + \lambda I)^{-1} A^T,$$

• when $\alpha_1=0$, $\alpha_2=1$, $\alpha_3=\lambda$, $\operatorname{cov}(g)=I$, it is the damped minimum length

$$A^{-I} = A^T (A^T A + \lambda I)^{-1}.$$

Implement the pseudo-inverse calculation

- ullet Given the system matrix A
- Given the covariance cov(g)
- Given the parameter set $(\alpha_1, \alpha_2, \alpha_3)$
- Solving the Sylvester equation (using scipy.linalg.solve sylvester())
- Implement the function solve_pseudo_inverse() (using numpy.array)

Calculation the pseudo-inverse solutions

- Calculate the solutions for the downsampled data gn_ds and A_ds
- Use cov(g) = I
- Use 9 different parameter sets $(\alpha_1, \alpha_2, \alpha_3)$ as follows:

$$(1,0,0),$$
 $(0.5,0.5,0),$ $(0,1,0),$ $(1,0,0.01),$ $(0.5,0.5,0.01),$ $(0,1,0.01),$ $(1,0,0.1),$ $(0.5,0.5,0.1),$ $(0,1,0.1)$

- Save the pseudo-inverse matrices in the variable list_A_inv (as list of numpy.array)
- Save the pseudo-inverse solutions in the variable list_f_inv (as list of numpy.array)

Display the result

- Plot the outputs in list_f_inv in the same order of the parameter options in the subplots of axs
- Plot the noisy signal gn_ds at the corresponding space coordinates in each subplot
- Plot the input signal f true in each subplot
- Show the legend in each subplot

• Show the case information in the titles to the subplots

Question: Bias

In which result do you observe the bias of the solution?

• Bias means that the amplitude of the signal is changed in the solution.

YOUR ANSWER HERE

Resolution matrices and covariance matrix

The related matrices, i.e. the data resolution matrix N, the model resolution matrix R and the covariance matrix cov(f), are defined as follows:

$$N = AA^{-I}$$
 $R = A^{-I}A$ $\operatorname{cov}(f) = A^{-I}\operatorname{cov}(g)(A^{-I})^T$

- Given A, A^{-I} , cov(g)
- Implement the function get_data_resolution_matrix() (using numpy.array)
- Implement the function get_model_resolution_matrix() (using numpy.array)
- Implement the function get_cov_f() (using numpy.array)

Calculate the matrices

- Calculate the matrices for the pseudo-inverse matrices in list_A_inv
- ullet Save the data resolution matrices N in the variable ullet list_N (as ullet of ullet numpy.array)
- Save the model resolution matrices R in the variable <code>list_R</code> (as <code>list</code> of <code>numpy.array</code>)
- \bullet Save the covariance matrices $\mathrm{cov}(f)$ in the variable <code>list_cov_f</code> (as <code>list_of numpy.array</code>)

Display the result

- Plot the matrices in list_N as images in the same order of the parameter options in the subplots of axs_N
- Plot the matrices in list_R as images in the same order of the parameter options in the subplots of axs_R
- Plot the matrices in list_cov_f as images in the same order of the parameter options in the subplots of axs_cov_F
- Show the colorbar of each subplot
- Show the case information in the titles to the subplots

```
In [ ]: def get_data_resolution_matrix(A, A_I):
            :param A: System matrix.
            :param A_I: Pseudo-inverse matrix.
            :returns: Data resolutin matrix.
        # YOUR CODE HERE
        raise NotImplementedError()
        def get_model_resolution_matrix(A, A_I):
            :param A: System matrix.
            :param A_I: Pseudo-inverse matrix.
            :returns: Model resolutin matrix.
        # YOUR CODE HERE
        raise NotImplementedError()
        def get_cov_f(cov_g, A_I):
            :param cov_g: Covariance of g.
            :param A_I: Pseudo-inverse matrix.
            :returns: Covariance of f.
            0.00
        # YOUR CODE HERE
        raise NotImplementedError()
        # YOUR CODE HERE
        raise NotImplementedError()
        fig, axs_N = plt.subplots(3, 3, figsize=(15, 15))
        fig.suptitle('data resolution matrix (N)')
        # YOUR CODE HERE
        raise NotImplementedError()
        fig, axs_R = plt.subplots(3, 3, figsize=(15, 15))
        fig.suptitle('model resolution matrix (R)')
        fig.patch.set_facecolor('yellow')
        fig.patch.set_alpha(0.3)
        # YOUR CODE HERE
        raise NotImplementedError()
        fig, axs_cov_f = plt.subplots(3, 3, figsize=(15, 15))
        fig.suptitle('covariance cov(f)')
        # YOUR CODE HERE
        raise NotImplementedError()
        # * some points
           - Check whether the colorbar is shown
           - Check whether the titles are correct
In [ ]: # This cell contains hidden tests.
```

In []: # This cell contains hidden tests.

Characteristics

The characteristics, i.e. the spread of a matrix spread() and the signal size size(), are defined as follows:

$$ext{spread}(B) = \|B - I\|_2^2 = \sum_{ij} (B_{ij} - \delta_{ij})^2$$
 $ext{size}(f) = \sum_i ext{cov}(f)_{ii}$

- Implement the function get_spread() (using numpy.array)
- Implement the function get_size() (using numpy.array)

Calculate the characteristics

- Calculate the characteristics for the matrices in list_N , list_R , list_cov_f
- Save the spread $\operatorname{spread}(N)$ in the variable list_spread_N (as list)
- Save the spread $\operatorname{spread}(R)$ in the variable list_spread_R (as list)
- Save the size size(f) in the variable list_size_f (as list)
- Save the case index corresponding to the minimal $\operatorname{spread}(N)$ in the variable $\operatorname{idx_spread_N}$ (as scalar)
- Save the case index corresponding to the minimal $\operatorname{spread}(R)$ in the variable idx $\operatorname{spread}(R)$ (as $\operatorname{scalar}(R)$)
- Save the case index corresponding to the minimal size(f) in the variable idx_size_f (as scalar)

Display the result

- Plot the value pairs in list_spread_N and list_spread_R as 2D scatter points in different colors in the left subplot of axs
- Plot the value pairs in list_spread_R and list_size_f as 2D scatter points in different colors in the middle subplot of axs
- Plot the value pairs in list_size_f and list_spread_N as 2D scatter points in different colors in the right subplot of axs
- Show the legend in each subplot
- Show the case information and point values in the legend
- Highlight the cases corresponding to the minimal values in the legend

```
In [ ]: def get_spread(B):
            0.000
            :param B: Input matrix.
            :returns: Spread of the input matrix.
            # YOUR CODE HERE
            raise NotImplementedError()
        def get_size(cov_f):
            :param cov_f: Covariance of f.
            :returns: Size of f.
            # YOUR CODE HERE
            raise NotImplementedError()
        fig, axs = plt.subplots(1, 3, figsize=(15, 5))
        fig.suptitle('Characteristics')
        # YOUR CODE HERE
        raise NotImplementedError()
In [ ]: # This cell contains hidden tests.
```

Question: Selection

Which pseudo inverse do you prefer to minimize $\operatorname{spread}(N) + \operatorname{spread}(R) + \operatorname{size}(f)$?

YOUR ANSWER HERE