support Vector Machine Supervised Mr Algorithm : (Mainly wed yor) Jused for both (classification) & Regression 3 Non-Probablistic clasifier. 3 Both linearly & non-linearly seperable data - Marginal distance 13 closes to the 3D-7 Plane 10 - Thoushold AD-> hyperplane 20 line D -> Dimension.

- Linearly Separable data 3 support vectors. D Marginal lines (passes through Support vectors) 3 Optimal hyperplane: far from the training data pts (line has max, maginal distance) dim of SVM:-To get an optimal hyperplane which has maximum marginal distance

	Date
son of Maginal lin	e in -ve side
w ^r x +b	
fan of Marginal line	in +ve side
$w^{\intercal}x+6$	<u> </u>
son of hyperplane u	Tx +6 = 0 [Assume lane passes through original
Distance - WTx+10	$=$) $\chi_1 - \chi_2 = 2$
() W7(2+b)	(-) Max = 2
W(X,TQ)	α
SVM - Non Linearly &	seperable data en 10 data) fext = 24
8 ×	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2 2 × × × × × × × × × × × × × × × × × ×	X X X -2 16 1 2 3 -2 9

	Date
Jenction (kernel function)	mathematica
Kernel function - Used to a the lower dimensional data higher dimensional data & linearity	orwest a to a find the
Jinds the altruhp in dimension using kernel functi	
Transforms the data required form	cnto
kernel function:	
1) RBF - Radial Basis function	infinite dimen
2) Sigmoid (neural n/w) -> not	t used in 5VM
3) Linear (Linearly seperable d	

4) Polynomial (lineae eqn) AD > 5D.

Had Margin Classifier 50ft Margin Classifier.
Therhold pouttier pouttier 000000 - Doesn't accept errors. -> accepts error in in the training phase the training phase. we will have more comes (to have generalized in festing phase. result), to have lie Overfit less error on the testing phase Hyper Parameter: -) Defines the architecture of a model Just Training of model is controlled by Hyper parameter. -> Parameter of SVM used 'C's Gramma' -> c -> the penalty given for every misclassification,

Date
Creating the model -> Value - c.
higher penalty = less error in training phase (had
Lower Penalty = more error Undefit
-> Optimal value for C> Use hype parameter turing.
Hyper Pavametex Tuning will be done to find optimal value for hyperpavameter to improve the model performance
Gamma:-
Jet define the curvature of hyperplant
Gamma - 0.1, 0.01, 0.001, 0-0001
C 2 021, 0.01, 0.001, 0.0001.
-> which combination will give better score for ex. (Gamma = 0.001, C=0.01) is the better score

Date
Cross - Validation (EV):-
It takes entire data for Training
* Testing In CV Score if Std x 0.05 then the model is good.
Types Deave one out cv (200cv)
This method gives you Low bias e high variance
Bias -> errors for Training data Vaciance -> errors for new data
-) Drawback of LOOK
> Overfilting > High Computational process. -> Time consuming
2) K-Folds Max: K= 10 No of folds Descally 3 or 8

Balanced data while doing the Hyper Pavameter Tuning Technique D Grid Spaech CV D Randomized Search CV O GRid Bouch CV. C = [0.1, 0.01, 0.001] G = [0.1, 0.01, 0.001]Try with all the combinations & find the combinations which gives good score. @ Randomized Search CV. Randomly picks some of combinations & checks which combinations give good some