Bounded Homopolymer Encoding

Bounded homopolymer constraints

- DNA strands are made of A,G,C,T bases
- Hard to synthesize and read strands which have long runs of consecutive repeated characters (homopolymers)
 - ATGCCTGGGGTCTACCCCCCTAAAT...
- **Goal**: Encode raw data into DNA strands which do not have long runs of repeated characters

Encoding and Decoding maps

- ullet Fix some input length n and max homopolymer run length k which is allowed
- Find encoding map $E: \{0,1\}^n \to \{A,G,C,T\}^N$ and decoding map $D: \{A,G,C,T\}^N \to \{0,1\}^n$ such that
 - For every x, E(x) has homopolymer runs of length at most k
 - For every x, D(E(x)) = x
 - Rate R = n/N is as large as possible (bits per base)

What is the best possible rate R? (Information theoretic limit)

Max homopolymer run length ($m{k}$)	Rate (n/N) as $n o\infty$ (Bits per base)
1	1.5850
2	1.9227
3	1.9823
4	1.9957
5	1.9989
∞	2

What is the best possible rate R?

- Information theoretic limit
- Our current method for no homopolymer encoding (k = 1) achieves rate R = 1.5
 - Encode 6 bits into 4 bases using base 3 conversion
- We will now show an algorithm to encode and decode efficiently achieving the information theoretic limit for any N

Max homopoly mer run length (k)	Rate (n/N) as $n o \infty$ (Bits per base)	Rate (n/N) when N $=$ 100
1	1.5850	1.58
2	1.9227	1.92
3	1.9823	1.98
4	1.9957	1.99
5	1.9989	1.99
∞	2	2

What is the optimal encoding?

- List all strings of $\{A, G, C, T\}$ of length N sorted alphabetically satisfying the run length constraint. Say there are C strings.
- Let $n = \text{ceil}(\log_2 C)$
- Encoding map:
 - E: n bit representation of $i \rightarrow i^{th}$ string in the list
- Decoding map:
 - E: i^{th} string in the list \rightarrow Bit representation of i
- This is super inefficient though!

Index	Message (x)	List of all AGCT strings with run lengths at most k $E(x)$
0	0000	AAACAAATAATA
1	0001	AAGCATAAATAA
2	0010	AAGCATAAATAA
3	0011	AAGCATCAATAA
4	0100	AAGCATGAATAA
5	0101	AAGAATAAATAA
6	0110	AAATATAAATAA
:	:	:

How to make this efficient?

- Use finite state machine to represent strings which satisfy the bounded homopolymer constraints
 - For simplicity assume that the output alphabet is also $\{0,1\}$
 - k=2, we allow at most two consecutive repeated bits
- Key Observation
 - Allowed strings of length $N \equiv$ Paths of length N starting from the 'start state' in the FSM

Efficient encoding

- Given i, find the i^{th} path P_i from the start state in alphabetical order
- Suppose we already calculated

F(s, L) = number of length-L paths from state s for all states s and lengths $L \leq N$

- These can be calculated by a dynamic program efficiently
 - E.g.: F(start,L) = F(*0,L-1)+F(*1,L-1)

Efficient encoding

- F(start,N)=F(*0,N-1)+F(*1,N-1)
 - If i < F(*0,N-1), then P_i should start with 0
 - If $i \ge F(*0,N-1)$, then P_i should start with 1
- So we can figure out the first bit using one comparison
- Now suppose i < F(*0,N-1), the first bit is one
 - The second bit of P_i can be obtained similarly
 - F(*0,N-1)=F(*00,N-2)+F(*1,N-2)
 - If i < F(*00,N-2), the second bit of P_i is also 0, else the it is 1.
- Continuing this way we can find the each bit of P_i using a constant number of comparisons.

Efficient decoding

- Given a path P of length N, find its position in the alphabetically sorted list of all paths of length N started from the start state
- Let i be the position of P
- If $P_1 = 0$, then i < F(*0, N-1)
- If $P_1 = 1$, then i > F(*0, N-1)

 Continuing this way, we can find i by comparisons.

Speeds

- About 50Mbps for encoding and 80 Mbps for decoding on a single core.
- Max run length 1 is about 3 times faster, because it is basically base 2 to base 3 conversion.
- Uses GMP multi precision library for maintaining large integers.