AMATH 568

Advanced Differential Equations

Homework 8

Lucas Cassin Cruz Burke

Due: March 8, 2023

1. Consider the inverted pendulum dynamics:

$$y'' + (\delta + \epsilon \cos \omega t) \sin y = 0$$

(a) Perform a Floquet analysis (computationally) of the pendulum with continuous forcing $\cos \omega t$.

Solution: We can use Python's solve-ivp function to directly solve this equation for different values of δ , ϵ , and ω . For each triple $(\delta, \epsilon, \omega)$ we solve the system twice on the interval $t \in [0, \frac{2\pi}{\omega}]$ to find $y_1(t)$ and $y_2(t)$ with initial conditions

$$y_1(0) = y_2'(0) = 1$$

$$y_2(0) = y_1'(0) = 0$$

We can then use these to define the Floquet discriminant Γ as a function of the parameters δ , ϵ , and ω .

$$\Gamma(\delta, \epsilon, \omega) = y_1(T) + y_2'(T)$$

The stability of the periodic solutions for $(\delta, \epsilon, \omega)$ depends on the condition

$$|\Gamma(\delta, \epsilon, \omega)| < 2$$

Having defined this function in Python, we can directly compute Γ for different values of δ , ϵ and ω to determine the dependence of the stability on these parameters.

(b) Evaluate for what values of δ , ϵ , and ω , the pendulum is stabilized.

Solution: Using the function defined in (a) for numerically computing the Floquet discriminant we can explore the parameter space and see how stability is impacted by ϵ, δ , and ω .

Figures 1, 2 and 3 show the dependence of the Floquet analysis on the underlying parameters. Figure 1 shows the real value of the Γ , Figure 2 shows the absolute value $|\Gamma|$ For small values of ω , and Figure 3 shows which values satisfy the stability condition $|\Gamma| > 2$.

We observe from these pictures the existence of three behavioral regimes depending on the relative size of ω to δ and ϵ .. For small values of $\omega \ll \delta$, ϵ we observe the clearest shift in stabilization behavior depending on the relative magnitudes of ϵ and δ . For $\delta > \epsilon$ we observe a quasi-periodic structure in the Floquet discriminant Γ and the pendulum is stabilized for most parameter values. Conversely, for $\epsilon > \delta$ the stabilization structure appears chaotic for $\omega \ll 1$, or at least, the structure cannot be resolved efficiently using this method. However as ω grows to $\omega \sim \delta$, ϵ we observe new phenomena in the $\epsilon > \delta$ region including pattern formation (see $\omega = 0.02$) and eventual coherence (see $\omega = 0.2$) into a near-uniformly divergent solution.

Our observations in the $\omega \gg \delta$, ϵ regime agree with the analytical results which predict the pendulum stabilizing for $\omega \to \infty$. Indeed, we see that $\Gamma \to 2$ for all ϵ, δ , implying neutral stability.

Figure 1: Value of Floquet discriminant $|\Gamma(\delta, \epsilon, \omega)|$ for various parameter values.

Figure 2: Absolute value of Floquet discriminant $|\Gamma(\delta, \epsilon, \omega)|$ for various parameter values.

Figure 3: Stability of periodic solutions for parameters $(\delta, \epsilon, \omega)$. Yellow pixels correspond to stabilized pendulum.