

5321

Final

Report 11658
March 2000

AEROJET

**Integrated Advanced Microwave Sounding Unit-A
(AMSU-A)**

Performance Verification Report

Final Comprehensive Performance Test Report

P/N 1331200-2-TST, S/N 108/A2

**Contract No. NAS 5-32314
CDRL 208**

Submitted to:

**National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771**

Submitted by:

**Aerojet
1100 West Hollyvale Street
Azusa, California 91702**

Aerojet

Report 11658
March 2000

**Integrated Advanced Microwave Sounding Unit-A
(AMSU-A)**

Performance Verification Report

Final Comprehensive Performance Test Report

P/N 1331200-2-TST, S/N 108/A2

**Contract No. NAS 5-32314
CDRL 208**

Submitted to:

**National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771**

Submitted by:

**Aerojet
1100 West Hollyvale Street
Azusa, California 91702**

Electronic Systems Plant

P.O. Box 296

Azusa, California 91702-0296

CAGE/Facility Ident: 70143

SL#335079 P/N 1331200-2-TST

Open # 8050 *B. Morgan* 3/24/99

**GENCORP
AEROJET**

**AE-26156/4E
2 Apr 1999**

Superseding AE-26156/4D
20 Jan 99

PROCESS SPECIFICATION

**METSAT/KLM/AMSU-A2, SYSTEM COMPREHENSIVE
AND LIMITED PERFORMANCE TESTS
TEST PROCEDURE**

Contract No.: NAS5-32314

Prepared for:

**NASA/Goddard Space Flight Center
Greenbelt Road
Greenbelt, MD 20771**

TABLE OF CONTENTS

Paragraph		Page
1.	SCOPE	1
1.1	Scope.....	1
1.2	Test procedure sequence	1
2.	APPLICABLE DOCUMENTS	3
2.1	Government documents	3
2.2	Non-Government documents	3
2.2.1	Aerojet documents	3
3.	REQUIREMENTS	5
3.1	General test requirements.....	5
3.1.1	Equipment and test facilities	5
3.1.2	Required procedures and operations	6
3.1.2.1	Limited performance test (LPT)	6
3.1.2.2	Comprehensive performance test (CPT).....	6
3.1.3	Inspection instructions	7
3.1.4	Test conditions	7
3.1.4.1	Standard ambient conditions	7
3.1.4.2	Test tolerances	7
3.1.4.3	Read-out accuracy	7
3.2	Detailed procedures	7
3.2.1	Responsibility for inspection	7
3.2.2	Monitoring procedures for equipment	7
3.2.3	Test preparation	7
3.2.3.1	STE connection.....	7
3.2.3.2	Signal sources	7
3.2.3.3	Signal outputs.....	8
3.2.3.4	Test software.....	8
3.2.3.5	Initial turn-on	8
3.2.3.6	Turn-off methods	9
3.2.4	Detailed performance tests.....	9
3.2.4.1	Grounding test.....	10
3.2.4.2	Power system, transient susceptibility, power quality, and instrument feedback tests	10
3.2.4.2.1	+28V main load bus test	11
3.2.4.2.1.1	+28V MLB during turn on transient	11
3.2.4.2.1.2	+28V MLB operating power.....	16
3.2.4.2.1.3	Transient susceptibility and power quality tests	17
3.2.4.2.1.3.1	Equipment setup.....	17
3.2.4.2.1.3.2	Low frequency load induced transients	17
3.2.4.2.1.3.3	High frequency load induced transients.....	17
3.2.4.2.1.4	Instrument feedback test	19
3.2.4.2.2	+28V pulse load bus test	19
3.2.4.2.2.1	PLB during the first two seconds	20
3.2.4.2.2.2	PLB measured from 2 to 4 seconds	22
3.2.4.2.2.3	PLB measured from 4 to 6 seconds	22
3.2.4.2.2.4	PLB measured from 6 to 8 seconds	23
3.2.4.2.2.5	Eight second integrated current measurement	23
3.2.4.2.2.6	PLB current in warm cal, cold cal, and nadir modes	23
3.2.4.2.2.7	PLB turn-on transient.....	23
3.2.4.2.2.8	Instrument feedback test	26
3.2.4.2.2.9	Transient susceptibility and power quality tests	28
3.2.4.2.2.9.1	Equipment setup.....	28

3.2.4.2.2.9.2	Low frequency load induced transients	28
3.2.4.2.2.9.3	High frequency load induced transients.....	28
3.2.4.2.3	Analog telemetry bus.....	30
3.2.4.2.3.1	Operating power measurements.....	30
3.2.4.2.3.2	Instrument feedback test.....	30
3.2.4.2.2.2	Transient susceptibility and power quality tests	32
3.2.4.2.3.3.1	Equipment setup	32
3.2.4.2.3.3.2	Low frequency load induced transients	32
3.2.4.2.3.3.3	High frequency load induced transients.....	32
3.2.4.2.4	+10 volt interface bus test.....	34
3.2.4.2.4.1	Operating power measurements.....	34
3.2.4.2.4.2	Instrument feedback test	36
3.2.4.2.5	Power input test for LPT.....	36
3.2.4.3	Clock, commands, and data system test	36
3.2.4.3.1	Test sequence.....	36
3.2.4.3.2	Clock signals test	36
3.2.4.3.2.1	1.248 MHz synchronization clock.....	40
3.2.4.3.2.2	C1 shift pulse verification.....	40
3.2.4.3.2.3	A1 select pulse verification.....	40
3.2.4.3.2.4	8-seconds frame sync pulse verification.....	40
3.2.4.3.2.5	Synchronization signal relationship.....	40
3.2.4.3.3	Commands and digital-B telemetry test.....	43
3.2.4.3.3.1	Module totally off.....	43
3.2.4.3.3.2	Survival heater power ON/OFF command	44
3.2.4.3.3.3	Module power connect command.....	44
3.2.4.3.3.4	Scanner commands verification.....	44
3.2.4.3.3.5	Scanner position commands verification.....	45
3.2.4.3.4	Digital-A data output test.....	45
3.2.4.3.4.1	Full scan mode.....	46
3.2.4.3.4.2	Warm cal mode.....	47
3.2.4.3.4.3	Cold cal mode	48
3.2.4.3.4.4	Nadir cal mode.....	49
3.2.4.3.5	Analog telemetry test	49
3.2.4.3.5.1	Analog TLM signals measurements connector J6	49
3.2.4.3.5.2	Analog TLM signal measurements using the STE	51
3.2.4.3.6	Test point test.....	51
3.2.4.3.6.1	Integration/hold and dump clock signals	51
3.2.4.3.6.2	Integration time (analog outputs).....	53
3.2.4.3.7	GSE mode test	55
3.2.4.3.7.1	Equipment preparation	55
3.2.4.3.7.2	GSE Mode-1	55
3.2.4.3.7.3	GSE Mode-2	56
3.2.4.3.7.4	GSE Mode-3	56
3.2.4.3.7.5	GSE Mode-4	57
3.2.4.3.7.6	GSE Mode-5	57
3.2.4.3.7.7	GSE Mode-7	57
3.2.4.4	Radiometer functional test	58
3.2.4.4.1	Relative radiometer NEAT measurements.....	58
3.2.4.4.1.1	Equipment preparation and setup configuration	58
3.2.4.4.1.2	Relative NEAT data collection	59
3.2.4.4.2	Channel identification test	62
4.	QUALITY ASSURANCE PROVISIONS.....	65
4.1	Responsibility for inspection	65
4.1.1	Test facilities.....	65

4.1.2	Electrostatic Device (ESD) handling	65
4.2	Monitoring procedures.....	65
4.2.1	Test equipment.....	65
4.2.2	Software	65
4.3	Monitoring procedures for materials.....	65
4.4	Certification	65
4.5	Test methods	65
4.5.1	Accept-reject criteria.....	65
5.	PREPARATION FOR DELIVERY	67
6.	NOTES	67
6.1	Acronyms and abbreviations.....	67
6.2	Changes.....	68

FIGURES

Figure	Page
1. Test Procedure Sequence	1
2. Signal Output at J7	8
3. Grounding Test Setup	10
4. +28V Main Load Bus Verification Setup	13
5. +28V Main Bus Load Peak Power	14
6. +28 V MLB Transient Susceptibility and Power Quality Tests Setup	18
7. Load Induced Transient (Main Bus)	19
8. +28V Pulse Load Verification Setup	21
9. Typical Load Current Waveforms from the +28V Pulse Load Bus	24
10. Example of +28V Pulse Load Bus Turn-on Transient	27
11. +28 V PLB Transient Susceptibility and Power Quality Tests Setup	29
12. Load Induced Transient (Pulse Load)	30
13. +28V Analog Telemetry Bus Test Setup	31
14. +28 Vdc Analog Telemetry Bus Ripple Current and Transient Susceptibility Test Setup	33
15. Load Induced Transient (Main Bus)	34
16. +10V Interface Bus Test Setup	35
17. +28 V Main Load Bus Test Setup (For LPT Only)	37
18. Clock Pulses Timing and Synchronization	38
19. Synchronization Interface Signals	39
20. Clock Signal and DC/DC Converter Synchronization Test Setup	41
21. Synchronization Signal Relationships Test Setup	42
22. Analog Telemetry Signal Verification Test Setup	50
23. Integration/Hold and Dump Signals Verification Test Setup	52
24. Integration Time (Analog Output) Verification Setup	54
25. NEAT Setup Configuration	60
26. Relative NEAT Measurement Test Setup	61
27. Channel Identification Setup	63
28. Radiometric Data Screen	64

TABLES

Table	Page
I. Equipment List	5
II. AMSU-A2 Performance Tests	6

TEST DATA SHEETS

TDS		Page
1	Grounding Test.....	A-2
2	+28 MLB Turn-on Transient.....	A-11
3	+28 MLB Operating Power.....	A-12
4	+28 Pulse Load Bus.....	A-13
5	+28V Analog Telemetry Bus	A-14
6	+10V Interface Bus Voltage.....	A-15
7	1.248 MHz Clock Signal Verification.....	A-16
8	"C1" Shift Pulse Verification.....	A-17
9	"A1" Select Pulse Verification.....	A-18
10	"8 Seconds" Frame Sync Pulse	A-19
11	Synchronization Signals Relationship.....	A-20
12	Synchronization Signals Relationship.....	A-22
13	Commands and Digital-B Telemetry Verification.....	A-23
14	Scanner Commands Verification.....	A-24
15	Scanner Commands Verification.....	A-25
16	Scanner Commands Verification.....	A-26
17	Scanner Positions Commands	A-27
18	Digital-A Data Output Full Scan Mode Synch Sequence, Unit I.D./Serial Number and Digital-B Serial Data Verification.....	A-28
19	Reflector Positions Section [IV].....	A-29
20	Digital-A Data Output Radiometer Data Section [V].....	A-30
21	Full Scan Mode Temperature Sensors Section [VI].....	A-31
22	Digital-A Data Output Warm Cal Mode Synch Sequence, Unit LD./Serial Number and Digital-B Serial Data Verification	A-32
23	Reflector Position Warm Cal Mode Section [IV], Reflector Position Cold Cal Mode Section [IV], Reflector Position Nadir Mode Section [IV].....	A-33
24	Digital-A Data Output Warm Cal Mode Radiometer Data Section [V].....	A-34
25	Warm Cal Mode Temperature Sensors Section [VI].....	A-35
26	Digital-A Data Output Cold Cal Mode Synch Sequence, Unit I.D./Serial Number and Digital-B Serial Data Verification	A-36
27	Digital-A Data Output Cold Cal Mode Radiometer Data Section [V]	A-37
28	Cold Cal Mode Temperature Sensors Section [VI].....	A-38
29	Digital-A Data Output Nadir Mode Synch Sequence, Unit I.D./Serial Number and Digital-B Serial Data Verification	A-39
30	Digital-A Data Output Nadir Mode Radiometer Data Section [V]	A-40
31	Nadir Mode Temperature Sensors Section [VI].....	A-41
32	Analog Telemetry Verification by Way of Connector J6	A-42
33	Analog Telemetry Signals by Way of the STE	A-43
34	Integrate/Hold and Dump Signal Verification	A-44
35	Integration Time (Analog Output) Verification	A-45
36	Digital-A/GSE Mode-1 Synch Sequence, Unit I.D./Serial Number and Digital-B Serial Data Verification.....	A-46
37	Digital A/GSE Modes-1-4 Reflector Position Section [IV]	A-47
38	Digital A/GSE Mode-1 Radiometer Data Section [V]	A-49
39	Digital A/GSE Mode-1 Temperature Sensors Section [VI]	A-50
40	Radiometer Relative NE Δ T Verification.....	A-51
40A	Channel Identification Test.....	A-52
41	Transient Susceptibility Test.....	A-53

TEST DATA SHEETS (CONT)

TDS		Page
B-1	Grounding Test	B-2
B-2	Commands and Digital-B Telemetry Verification	B-11
B-3	Scanner Commands Verification	B-12
B-4	Scanner Commands Verification	B-13
B-5	Scanner Commands Verification	B-14
B-6	Scanner Positions Commands	B-15
B-7	Digital-A Data Output Full Scan Mode Synch Sequence, Unit I.D./Serial Number and Digital-B Serial Data Verification.....	B-16
B-8	Reflector Positions Section [IV]	B-17
B-9	Digital-A Data Output Radiometer Data Section [V]	B-18
B-10	Full Scan Mode Temperature Sensors Section [VI].	B-19
B-11	Analog Telemetry Signals by Way of the STE	B-20
B-12	Radiometer Relative NEΔT Verification	B-21

This page intentionally left blank.

1. SCOPE

1.1 Scope. This specification establishes the requirements for the Comprehensive Performance Test (CPT) and Limited Performance Test (LPT) of the Advanced Microwave Sounding Unit-A2 (AMSU-A2), referred to herein as the unit. The unit is defined on Drawing 1331200.

1.2 Test procedure sequence. The sequence in which the several phases of this test procedure shall take place is shown in Figure 1, but the sequence can be in any order.

Figure 1. Test Procedure Sequence

AE-26156/4E
2 Apr 99

This page intentionally left blank.

2. APPLICABLE DOCUMENTS

2.1 Government documents. The following documents form a part of this specification to the extent specified. Unless otherwise specified, the issue shown shall apply.

STANDARDS

Military

MIL-STD-45662	Calibration Systems Requirements
---------------	----------------------------------

OTHER DOCUMENTS

S-480-79	Performance Assurance Requirements for the EOS/METSAT Integrated Programs Advanced Microwave Sounding Unit-A (AMSU-A) (PAR)
S-480-80	Performance and Operation Specification for the EOS/METSAT Integrated Programs Advanced Microwave Sounding Unit-A (AMSU-A) (POS)
GIIS-3267415	ATN-KLM General Instrument Interface Specification
UIIS-2624483	AMSU-A2 Unique Instrument Interface Specification

(Copies of government documents should be obtained as indicated in the Department of Defense Index of Specification and Standards.)

2.2 Non-Government documents. The following documents form a part of this specification to the extent specified herein. Unless otherwise specified, the issue in effect on the date of testing shall apply.

2.2.1 Aerojet documents

SPECIFICATION

AE-26002/2	Test Procedure, Subsystem, Antenna Drive for AMSU-A2
AE-26151/5	Test Procedure, EMI/EMR & EMC for the METSAT/METOP Advanced Microwave Sounding Unit-A (AMSU-A)
AE-26157	Special Test Equipment (STE), Operation and Maintenance Manual
AE-26357	Transportation Handling Procedure for the AMSU-A System Integrated Program

STANDARD

STD-2454	Requirements for Electrostatic Discharge Control
----------	--

AE-26156/4E
2 Apr 99

REPORT

10353 **Contamination Control Plan for the Advanced Microwave
Sounding Unit-A (AMSU-A)**

DRAWING

1331200 **Advanced Microwave Sounding Unit A2 (AMSU-A2)**
1335695 **Special Test Equipment**
1356655 **Console Assembly, METSAT and EOS STE**

(Copies of Aerojet documents may be obtained from GenCorp Aerojet, CAGE 70143, P.O. Box 296, Azusa, California,
91702-0296).

3. REQUIREMENTS

3.1 General test requirements

3.1.1 Equipment and test facilities. The tests described herein shall be performed at Aerojet under laboratory conditions in an EMI shielded chamber for the first and final CPT. Other tests need not be accomplished in the EMI shielded chamber. The test equipment listed in Table I shall be used when performing the tests. If the specified equipment is not available, the equipment substituted shall provide a measurement accuracy equal to or greater than that of the specified equipment. The AMSU-A Special Test Equipment (STE) shall be used for activation and control of the unit and monitoring of its performance.

Table I. Equipment List

Item	Quantity	Item Description	Mfg.	Model
01	1	Dynamic signal analyzer	Hewlett-Packard	3562A
02	1	Signal generator	Hewlett-Packard	3314A
03	1	Oscilloscope	Tektronix	2225A
04	1	9-pin breakout box	Aerojet	2536-3743/SK1358702-1
05	1	15-pin breakout box	Aerojet	2536-3744/SK1358703-1
06	2	25-pin breakout box	Aerojet	2336-3746/SK1358704-1
07	1	37-pin breakout box	Aerojet	2536-3745/SK1358705-1
08	1	Lab. general purpose power supply	Hewlett-Packard	6114
09	1	LN ₂ container	Cole	N03726-20
10	1	Spectrum analyzer	Hewlett-Packard	8590L
11	1	STE computer	Aerojet	1336695/SK1356655
12	1	STE interface cable J1	Aerojet	1335758-1
13	1	STE interface cable J2	Aerojet	1335752-1
14	1	STE interface cable J3	Aerojet	1335756-1
15	1	STE interface cable J4	Aerojet	1335755-1
16	1	STE interface cable J5	Aerojet	1335753-1
17	1	STE interface cable J6	Aerojet	1335754-1
18	1	STE interface cable J7	Aerojet	1335757-1
19	1	Current probe amp	Hewlett-Packard	AM503
20	1	Universal counter	Hewlett-Packard	5316A
21	1	Oscilloscope camera	N/A	N/A
22	1	Power supply	Power Designs	3650-S
23	1	Multimeter	Fluke	77
24	1	Plotter	Hewlett-Packard	7475A
25	1	Signal generator	Hewlett-Packard	83620B
26	1	MM-wave source module	Hewlett-Packard	83557A
27	1	Couple/detector	Hewlett-Packard	83557-60001
28	1	Spectrum analyzer	Hewlett-Packard	8563E

* For limited performance test only; item numbers 04, 06, 09, 11 through 18, and 23 are required.

3.1.2 Required procedures and operations. The unit shall be subjected to the examinations and tests specified in 3.2.4 and Table II.

3.1.2.1 Limited performance test (LPT). The Limited Performance Test shall consist of the test procedures specified in the LPT column of Table II.

3.1.2.2 Comprehensive performance test (CPT). Three versions of the Comprehensive Performance Test are identified in Table II. These are applicable for different test stages. The test procedures to be performed for each version are specified in the 1st CPT, Sub CPT, and Final CPT columns of Table II.

Table II. AMSU-A2 Performance Tests

Paragraph	Test Description	1st CPT	LPT	Sub CPT	Final CPT
3.2.4.1	Grounding Test	X	X	X	X
3.2.4.2.1.1	+28 Main Load Bus (MLB) Turn-On Transient	X			X
3.2.4.2.1.2	+28 MLB Operating Power	X	Note 1	Note 2	X
3.2.4.2.1.3	Transient Susceptibility and Power Quality Tests	X			
3.2.4.2.1.4	Instrument Feedback Test	Note 7			
3.2.4.2.2	+28 Pulse Load Bus (PLB) Test	X		Note 3	X
3.2.4.2.2.8	Instrument Feedback Test	Note 7			
3.2.4.2.2.9	Transient Susceptibility and Power Quality Tests	X			
3.2.4.2.3	+28 Analog Telemetry Bus (ATB) Test	X		X	X
3.2.4.2.3.2	Instrument Feedback Test	Note 7			
3.2.4.2.3.3	Transient Susceptibility and Power Quality Tests	X			
3.2.4.2.4	+10 V Interface Bus Test	X		X	X
3.2.4.2.4.2	Instrument Feedback Test	Note 7			
3.2.4.3.2	Clock Signals Test	X			X
3.2.4.3.3	Commands and Digital-B Telemetry Test	X	X	X	X
3.2.4.3.4	Digital-A Data Output Test	X	Note 4	Note 4	X
3.2.4.3.5	Analog Telemetry Test	X	Note 5	Note 5	X
3.2.4.3.6	Test Point Test	X		X	X
3.2.4.3.7	GSE Mode Test	X Note 6			
3.2.4.4	Radiometer Functional Test	X	X	X	X
3.2.4.4.2	Channel Identification Test	X			
Notes:					
1. 3.2.4.2.5 (Power input test for LPT).					
2. At 28V only.					
3. 3.2.4.2.2 except 3.2.4.2.2.5 through 3.2.4.2.2.7.					
4. Only full scan.					
5. STE only (3.2.4.3.5.2).					
6. GSE mode test/verification is not required and is for engineering use only.					
7. Instrument feedback test will be performed in EMI/RFI Chamber using EMI/RFI test procedure AE-26151/5.					

3.1.3 Inspection instructions. The following shall apply to all inspections performed under this specification.

- a. **Personnel familiarization:** All personnel directly concerned with the conduct of the inspection shall become familiar with the entire content of this document before beginning the tests. Each step, including all notes, warnings, and cautions, shall be understood thoroughly before starting.
- b. **Referenced documents:** Performance of the tests specified herein may require reference to the documents listed in Section 2. It is recommended that the applicable issues of these documents be available at the time and place of testing.

3.1.4 Test conditions. The following paragraphs shall apply to all testing described in this document.

3.1.4.1 Standard ambient conditions. Unless otherwise specified in a detailed method paragraph, all handling shall be performed under the following laboratory ambient conditions:

- a. Handling in accordance with AE-26357
- b. Contamination control in accordance with Report 10353
- c. Temperature: $+23 \pm 10^\circ\text{C}$
- d. Pressure: 610 to 810 torr
- e. Humidity: $50 \pm 20\%$ (no condensation)
- f. The instrument shall be placed in its protective bag (1338427) when not in use.

3.1.4.2 Test tolerances. The tolerances allowed on test conditions are intended only to provide for accuracy of such items as instrumentation and controls. Conditions shall be as close as possible to the nominal or center values specified, and in no instance shall they exceed the tolerances specified. Unless otherwise specified, the tolerances shall be within $\pm 10\%$.

3.1.4.3 Read-out accuracy. Parameters are specified either as limits or as nominal values with plus-or-minus tolerances. These limits and tolerances shall be regarded as absolute, and the inaccuracies of measuring equipment shall not be interpreted as part of measured values in such a way that out-of-limit measurements may appear in-limit.

3.2 Detailed procedures

3.2.1 Responsibility for inspection. All tests specified herein shall be performed under the cognizance of Aerojet Quality Assurance.

3.2.2 Monitoring procedures for equipment. Test equipment calibration schedules and procedures shall comply with the requirements of MIL-STD-45662. Before performing examinations and tests in accordance with this procedure, all test equipment to be used shall be verified as being within their current calibration periods. Calibration or alignment, necessary for operation of the equipment within the requirements of this document, shall be performed when required.

3.2.3 Test preparation. Perform the following preparations.

3.2.3.1 STE connection. The power sources, signal sources, and loads are provided to the unit under test by the AMSU-A Special Test Equipment (STE) (Drawing 1335695 or 1356655), in accordance with paragraph 5.2 of S-480-80. The STE is automated test equipment controlled by a MicroVax computer. The unit shall be connected to the STE in accordance with AE-26157 and the detailed test procedures in 3.2.4.

3.2.3.2 Signal sources. Signal sources required during the performance test but not provided by the STE are as follows:

- a. Cold background at LN₂ temperature at room ambient.
- b. +28 Vdc \pm 1 Vdc, 3 Amps.

3.2.3.3 Signal outputs. Signal outputs, except for the test signals at J7, shall be monitored by the STE. The signal outputs at J7 are shown in Figure 2.

3.2.3.4 Test software. AMSU-A2 bonded software shall be used to operate the STE. During initialization of the STE, as specified in AE-26157, the A2 software shall be selected. The bonded software is being selected by the STE computer automatically during initialization of the STE.

Figure 2. Signal Output at J7

3.2.3.5 Initial turn-on. When called for in the individual test procedures, turn on the unit as follows:

1. Turn on power to STE, initialize STE (per AE-26157 instructions), and turn on AMSU-A2 STE power switches. Adjust +28 V power supply by using DVM to +28.0 V \pm 0.5V at STE J1 connector pin No. 1 (+) and pin No. 3 (RTN). Use breakout box at J1 to connect the DVM.

2. Enter the serial number (decimal equivalent of the identification number provided in the UIIS) for the unit under test using AE-26157, if necessary. Verify that the Main Menu is displayed on the STE CRT terminal display. Turn off the AMSU-A2 STE power switches.
3. Connect J1 through J7 to AMSU-A2 unit.
4. Verify that the PWR and SW/TM switches on the STE power distribution unit are ON.
5. On the Main Menu, press the [2] MONITOR ONLY (type the number). The Monitor Only Menu will be displayed, with Block Monitor Data Select options shown in the middle (window) area of the screen.
6. On the Monitor Only Menu, press [14] COMMANDS. The Commands Menu will be displayed in the window area.
7. On the Commands Menu, press [9] MODULE POWER. Wait at least 18 seconds for command execution. This applies power to the unit.
8. Execute commands as necessary to obtain the following configuration:

[9] MODULE POWER =	CONNECT	ANTENNA IN COLD CAL POS =	NO [15]
[10] SURVIVAL HTR PWR =	OFF	ANTENNA IN NADIR POS =	NO [16]
[11] MODULE TOTALLY OFF =	ON	ANTENNA FULL SCAN MODE =	YES [17]
[12] SCANNER A2 POWER =	ON	COLD CAL POSITION MSB =	ZERO [18]
[13] COMPENSATOR MOTOR POWER =	ON	COLD CAL POSITION LSB =	ZERO [19]
[14] ANTENNA WARM CAL POS =	NO		
POWER [4] ON			

9. Wait at least 18 seconds and observe the commands are acknowledged by STE.
10. Verify that the STE power supply is adjusted to its normal +28.0 Vdc ± 0.5 Vdc operating voltage by using a DVM across J1-1 and J1-3. Use 25-pin breakout box at J1 to connect the DVM.
11. Verify that all breakout box switches are in the closed position.
12. After initial turn-on, execute commands and connect the unit as necessary according to the individual test procedures.

3.2.3.6 Turn-off methods. The unit can be turned off immediately by pressing [9] MODULE POWER = DISCONNECT on the Commands Menu. For a phased shutdown, press [11] MODULE TOTALLY OFF = OFF on the Command Menu or press POWER [4] OFF on any display. When connecting breakout boxes to the unit or STE connectors, verify that the unit power is off and the STE +28V power supply is manually turned off.

3.2.4 Detailed performance tests. The comprehensive performance tests for the AMSU-A2 system are to be carried out on the fully assembled and operational unit. The tests to be performed are as follows:

- a. Grounding system test.
- b. Power system test.
- c. Clock, commands and data system test.
- d. Radiometer functional test.

- e. Transient susceptibility and power quality test.
- f. Instrument feedback tests.

3.2.4.1 Grounding test. This test provides the verification of the unit grounding requirements of GIIS-3267415 Paragraph 3.1.1 and UIIS-2624483 paragraph 3.11.

1. Connect breakout boxes to each of the spacecraft interface connectors J1 through J7 as shown in Figure 3. Verify that all connectors are protected with connector savers. Verify STE is not connected to instrument.
2. Measure and record continuity or isolation between the points shown on Test Data Sheet (TDS) 1 (Appendix B, TDS B-1 for LPT).

Figure 3. Grounding Test Setup

3.2.4.2 Power system, transient susceptibility, power quality, and instrument feedback tests. The purpose of these tests is to verify power system compliance in regard to:

- a. Turn on transients
- b. Operating power
- c. Transient susceptibility

- d. Current ripple

The following DC voltage lines will be tested for the above parameters:

- e. +28V Main Load Bus (parameters a, b, c, d)
- f. +28V Pulse Load Bus (parameters a, b, c, d)
- g. +28V Analog Telemetry Bus (parameters b, c, d)
- h. +10V Interface Bus (parameters b, d)

3.2.4.2.1 +28V main load bus test

3.2.4.2.1.1 +28V MLB during turn on transient. The +28V MLB turn on transient shall be verified as follows:

1. Configure the unit and test equipment as shown in Figure 4. Verify that switches 1, 2, 14 and 15 of the breakout box are in the OPEN position. Disconnect +28 Vdc external power supply output and adjust the power supply to read 28.56 Vdc \pm 0.05 Vdc on voltmeter No. 1. Connect the power supply output as shown in Figure 4.
2. Configure the Dynamic Signal Analyzer (DSA) as follows:

Select MEAS MODE	Select INPUT COUPLE
Select Time Capture	Select CH1 DC
Select Capture Select	Select CH1 Ground
Select Capture Length; Enter 300.0; Select msec	Select INPUT TRIG
Select FREQ	Select Trig Level; Enter 100; Select mv
Select E SMPL Off	Select Arm AU
Select Freq Span; Enter 25; Select kHz	Select Ext; Select (-) Slope
Select SELECT MEAS	Select TRIG DELAY
Select Power Spec	Enter 0; Select μ Sec
Select CH1 Active	Select COORD
Select WINDOW	Select Real
Select Hann	Select VIEW INPUT
Select SOURCE	Select Time Buff
Select Source Off	Select SCALE
Select AVG	Select X Fixd Scale; Enter 0.0, 300;
Select Avg Off	Select msec
Select Tim Av Off	Select Y Fixd Scale; Enter 0.0, 80;
Select RANGE	Select mV
Select Chan 1 Range; Enter 1; Select V	Select UNITS
	Select Hz (sec)

NOTE

Prior to collecting any current data, the current meter and DSA have to be "zeroed out"; zero current reference has to be established on the DSA. Follow this interim procedure to zero reference the current meter and DSA.

- a) Select 1.0 A/ 10 mV per div. on the current amplifier.

- b) Remove the current probe from the circuit and close the probe. Place the probe in a magnetically benign location.
 - c) Adjust the "y" axis voltage range to ± 4 mV.
 - d) Place the DSA in "Free Run" Trigger and depress "Start Capture" on the DSA.
 - e) With the "capture in process", adjust the "output DC level" control on the current amplifier to indicate zero current on the DSA.
 - f) Position the current probe to its original location in accordance with Figure 4, and return the DSA to "Ext" trigger.
3. Turn the unit ON by selecting [9] MODULE POWER; setup the operating modes as defined in paragraph 3.2.3.5 (reference the command screen parameters below). If necessary, re-adjust the external power supply for 28 Vdc.

COMMANDS			
[9] MODULE POWER =	CONNECT	ANTENNA IN COLD CAL POS =	NO [15]
[10] SURVIVAL HTR PWR =	OFF	ANTENNA IN NADIR POS =	NO [16]
[11] MODULE TOTALLY OFF =	ON	ANTENNA FULL SCAN MODE =	YES [17]
[12] SCANNER A2 POWER =	ON	COLD CAL POSITION MSB =	ZERO [18]
[13] COMPENSATOR MOTOR POWER =	ON	COLD CAL POSITION LSB =	ZERO [19]
[14] ANTENNA WARM CAL POS =	NO		
POWER [4] ON			

4. Turn the unit OFF by executing command [9] MODULE POWER. Confirm the command has been executed on the STE display.
5. Start the DSA signal capture by depressing "Start Capture"; wait for the DSA message "waiting for trigger" before proceeding.
6. On the STE computer, select [9] MODULE POWER and obtain a record of the +28 MLB Turn-On current waveform. On the STE computer, select [9] MODULE POWER to turn the instrument's power OFF. Adjust the display time base and voltage sensitivity to allow for adequate current and pulse duration measurements (refer to Figure 5 for an example of per division values). Plot the obtained waveform and attach a hard copy of the scan to TDS 2.
7. Measure the Turn-On time to reach steady state current; record this value on TDS 2.
8. Compute the peak current as follows:
Multiply the maximum Y value by the current/div as selected on the current amplifier. As an example, if the current amplifier is set up to display 1.0 A/ 10 mV per division, and the maximum Y value = 46.8 mV:
$$46.8 \text{ mV} \times (1.0 \text{ mA}/10 \text{ mV}) = 4.68 \text{ amps}$$

Record this value on TDS 2.

Figure 4. +28V Main Load Bus Verification Setup

+28 Volt Main Bus Peak Power Worst Case Profile (For S/N 105 through 109)

+28 Volt Main Bus Peak Power Worst Case Profile (For S/N 105 through 109)

Figure 5. +28V Main Bus Load Peak Power

AMSU-A2 (S/N 102, 103, and 104) Main Load Bus Worst Case Turn-on Transient
at 28.56 Vdc.

AMSU-A2 (S/N 102, 103, and 104) Main Load Bus $\frac{dI}{dT}$ at Worst Case Turn-on Transient
at 28.56 Vdc.

Figure 5. +28V Main Bus Load Peak Power

9. The 1st derivative of the current waveform must be calculated. Compute the dI/dT as follows:
The most probable location of the greatest current demand is during the first positive transition after voltage application. If this is the case, expand the segment of the display and measure the greatest voltage transition in the smallest time transition. The change in voltage times the current/div as selected on the current amplifier produces the change in current. Next divide this change in current by the change in time (in microseconds). This value is dI/dT . Example:

Change in voltage 35.29 mV
Change in time (microseconds) 31.25 μ s
Current/div on current amplifier 1000 mA/ 10 mV

$$35.29 \text{ mV} \times (1000 \text{ mA} / 10 \text{ mV}) / 31.25 \mu\text{s} = 112.9 \text{ mA} / \mu\text{s}$$

10. Record the computed value on TDS 2.
11. With the multimeter, adjust the external power supply to 27.44 ± 0.05 Vdc as measured between J1-1 (high) and J1-3 (low).
12. Repeat steps 3 through 10.
13. With the multimeter, adjust the external power supply to 28.00 ± 0.05 Vdc as measured between J1-1 (high) and J1-3 (low).
14. Repeat steps 3 through 10.

3.2.4.2.1.2 +28V MLB operating power. Measure the steady state current, voltage, and power as follows:

1. Turn off the unit.
2. Insert current meter in positive lead of external power supply.
3. Turn the unit on as indicated in 3.2.3.5.
4. While monitoring voltmeter No. 1, adjust the power supply to 27.0 ± 0.1 volts (see Figure 4). Record the voltage displayed on voltmeter no. 1 on TDS 3 (MLB voltage at 27 V).
5. Record the operating current on TDS 3 using digital multimeter.
6. Compute the operating power (watts) as explained in TDS 3.
7. Adjust the power supply to 28.0 ± 0.1 volts and record voltage on TDS 3.
8. Record the operating current on TDS 3.
9. Compute the operating power (watts) as explained in TDS 3.
10. Adjust the power supply to 29.0 ± 0.1 volts and record voltage on TDS 3.
11. Record the operating current on TDS 3.
12. Compute the operating power (watts) as explained in TDS 3.
13. Adjust the power supply to 28.0 ± 0.5 Vdc.

3.2.4.2.1.3 Transient susceptibility and power quality tests. The power tests that follow will demonstrate the AMSU-A2 instrument will operate within specified parameters when the transients (low and high frequency) are applied directly to the power lines..

3.2.4.2.1.3.1 Equipment setup. Set up the test equipment and connect to the instrument as shown in Figure 6.

3.2.4.2.1.3.2 Low frequency load induced transients. The AMSU instrument shall be capable of normal operation before and after the injection of positive and negative transients into the power line at the amplitude and duration specified in Figure 7. Perform Low Frequency Load Induced Transients as follows:

1. With the exception of the external power supply, turn ON all the test equipment.
2. Place the signal generator in ARB 0 mode. With the external power supply OFF, while monitoring the oscilloscope, adjust the amplitude and frequency output of the signal generator to attain the signal characteristics as shown in Figure 7.
3. Remove the signal generator output connection from the power supply. While monitoring the external power supply dc voltage with the meter, turn the external power supply ON.
4. Turn the instrument ON and place the instrument in the modes congruent with paragraph 3.2.3.5.
5. Acquire one Full Scan Mode printout; verify the printout meets the requirements of TDS 18 thru 21. Attach printouts to TDS 41.
6. Connect the signal generator to the external power supply. Wait for the instrument to complete three scans. Remove the signal generator output to the power supply.
7. Acquire one Full Scan Mode printout; verify the printout meets the requirements of TDS 18 thru 21. Attach printouts to TDS 41.
8. Record any deviations in the functional performance of the AMSU instrument on TDS 41.

3.2.4.2.1.3.3 High frequency load induced transients. The AMSU instrument shall be capable of normal operation before and after the injection of positive and negative transients into the power line. The interfering frequencies are simulated by using the triangular wave output of the signal generator. There are three signals to be sequentially injected; the frequencies and amplitudes as produced by the signal generator and measured by the oscilloscope are:

<u>Frequency (Hz)</u>	<u>Amplitude</u>
1.43	200 mVpp
2.86	1.00 Vpp
6.67	1.50 Vpp

Perform High Frequency Load Induced Transients as follows:

1. With the exception of the external power supply, turn ON all the test equipment.
2. With the external power supply OFF, while monitoring the oscilloscope, adjust the amplitude and frequency output of the signal generator output as follows:

amplitude 200 mVpp
offset 0.000 V
frequency 1.430 Hz

Figure 6. +28 V MLB Transient Susceptibility and Power Quality Tests Setup

- Typical transients occurring a number of times per orbit are on the order of 200 mV zero-to-peak for a 1.5A load change.

Figure 7. Load Induced Transient (Main Bus)

3. Remove the signal generator output connection from the power supply. While monitoring the external power supply dc voltage with the meter, turn the external power supply ON.
4. Turn the instrument ON and place the instrument in the modes congruent with paragraph 3.2.3.5.
5. Acquire one Full Scan Mode printout; verify the printout meets the requirements of TDS 18 thru 21.
6. Connect the signal generator to the external power supply. Wait for the instrument to complete three scans. Remove the signal generator output to the power supply.
7. Acquire one Full Scan Mode printout; verify the printout meets the requirements of TDS 18 thru 21.
8. Repeat steps 2 through 4, and 6 through 7 for 2.86 Hz and 1.0 Vpp.
9. Repeat steps 2 through 4, and 6 through 7 for 6.67 Hz and 1.5 Vpp.
10. Record any deviations in the functional performance of the AMSU instrument on TDS 41.

3.2.4.2.1.4 Instrument feedback test. The instrument feedback test is performed in accordance with AE-26151/5. (See Table II.)

3.2.4.2.2 +28V pulse load bus test. The PLB shall be verified during the following intervals:

- a. First two seconds (3.2.4.2.2.1)
- b. From 2 to 4 seconds (3.2.4.2.2.2)
- c. From 4 to 6 seconds (3.2.4.2.2.3)

- d. From 6 to 8 seconds (3.2.4.2.2.4)
- e. 8 second PLB integration (current) (3.2.4.2.2.5)
- f. PLB turn-on transient (3.2.4.2.2.7).
- g. PLB current in warm cal, cold cal, and nadir modes (3.2.4.2.2.6)
- h. Instrument feedback (3.2.4.2.2.8)
- i. Transient susceptibility (3.2.4.2.2.9).

3.2.4.2.2.1 PLB during the first two seconds. The PLB operation, during the first two seconds, shall be verified as follows:

1. Configure the unit and test equipment as indicated in Figure 8. Verify that switches 5, 6, 18 and 19 of the breakout box are in the OPEN position. Disconnect +28 Vdc external power supply output and adjust the power supply to read 28.00 Vdc \pm 0.05 Vdc by using a digital voltmeter. Connect the power supply output as shown in Figure 8.
2. Configure the Dynamic Signal Analyzer (DSA) as follows:

Select MEAS MODE

- Select Time Capture
- Select Capture Select
- Select Capture Length; Enter 1; Select Record

Select FREQ

- Select Freq Span; Enter 100.0; Select Hz
- Select E SMPL Off
- Select Time Length; Enter 8.0; Select Sec

Select SELECT MEAS

- Select Power Spec
- Select CH1 Active

Select WINDOW

- Select Hann

Select SOURCE

- Select Source Off

Select AVG

- Select Avg Off
- Select Tim Av Off

Select RANGE

- Select Aut I Rng up

Select INPUT COUPLE

- Select CH1 DC
- Select CH1 Ground

Select INPUT TRIG

- Select Trig Level; Enter 1.5; Select V
- Select Arm AU
- Select Ext
- Select Slope -

Select TRIG DELAY

- Enter 0.0; Select Sec

Select COORD

- Select Real

Select VIEW INPUT

- Select Time Buff

Select SCALE

- Select X Fxid Scale; Enter 0.0, 8.0; Select Sec
- Select Y Fxid Scale; Enter -10.0, 70.0; Select mv

Select UNITS

- Select Hz (sec)

NOTE

Prior to collecting any current data, the current meter and DSA have to be "zeroed out"; zero current reference has to be established on the DSA. Follow this interim procedure to zero reference the current meter and DSA.

- a) Select 200 mA/ 10mV per div. on the current amplifier.
- b) Remove the current probe from the circuit and close the probe. Place the probe in a magnetically benign location.
- c) Adjust the "y" axis voltage range to \pm 4 mV

Figure 8. +28V Pulse Load Verification Setup

- d) Place the DSA in "Free Run" Trigger and depress "Start Capture" on the DSA.
- e) With the "capture in process", adjust the "output DC level" control on the current amplifier to indicate zero current on the DSA.
- f) Position the current probe to its original location in accordance with Figure 8, and return the DSA to "Ext" trigger.

The instrument is now ready to capture and plot 8 seconds of data.

3. Turn the unit ON by selecting [9] MODULE POWER, set up the operating modes as defined in paragraph 3.2.3.5 (reference the command screen parameters below). If necessary, re-adjust the external power supply for 28 Vdc.

[9] MODULE POWER =	CONNECT	ANTENNA IN COLD CAL POS =	NO [15]
[10] SURVIVAL HTR PWR =	OFF	ANTENNA IN NADIR POS =	NO [16]
[11] MODULE TOTALLY OFF =	ON	ANTENNA FULL SCAN MODE =	YES [17]
[12] SCANNER A2 POWER =	ON	COLD CAL POSITION MSB =	ZERO [18]
[13] COMPENSATOR MOTOR POWER =	ON	COLD CAL POSITION LSB =	ZERO [19]
[14] ANTENNA WARM CAL POS =	NO		
POWER [4] ON			

4. Start the DSA signal capture by depressing "Start Capture".
5. Obtain the first 2-second PLB current waveform by selecting zero to 2 seconds time span. Refer to Figure 9 for a typical waveform. Turn OFF the "X" cursor if it is ON. Turn the "X" cursor ON. The cursor will appear at the highest peak. Ensure this value is less than or equal to 2.2 amps. Record value on TDS 4.
6. Compute the peak current as follows:
Multiply the maximum Y value by the current/div as selected on the current amplifier. As an example, if the current amplifier is set up to display 200 mA/ 10 mV per division, and the maximum Y value = 276 mV:

$$100 \text{ mV} \times (200 \text{ mA} / 10 \text{ mV}) = 2000 \text{ mA} = 2.00 \text{ amps}$$

3.2.4.2.2.2 PLB measured from 2 to 4 seconds. The PLB operation, from 2 to 4 seconds, shall be verified as follows:

1. Change the PRE-TRIGGER DELAY setting of the dynamic signal analyzer to 1.9 seconds.
2. Obtain a hard copy of the signal displayed on the dynamic signal analyzer (refer to Figure 9 for typical waveform) and record the peak current and bus current during the integrate/hold, dump (I/H,D) time period (refer to Figure 9) data on TDS 4.

3.2.4.2.2.3 PLB measured from 4 to 6 seconds. The PLB operation, from 4 to 6 seconds, shall be verified as follows:

1. Change the PRE-TRIGGER DELAY setting of the dynamic signal analyzer to 3.9 seconds.
2. Obtain a hard copy of the signal displayed on the dynamic signal analyzer (refer to Figure 9 for typical waveform) and record the peak current and bus current during the integrate/hold, dump (I/H,D) time period (refer to Figure 9) data on TDS 4.

3.2.4.2.2.4 PLB measured from 6 to 8 seconds. The PLB operation, from 6 to 8 seconds, shall be verified as follows:

1. Change the PRE-TRIGGER DELAY setting of the dynamic signal analyzer to 5.9 seconds.
2. Obtain a hard copy of the signal displayed on the dynamic signal analyzer (refer to Figure 9 for typical waveform) and record the peak current and bus current during the integrate/hold, dump (I/H,D) time period (refer to Figure 9) data on TDS 4.

3.2.4.2.2.5 Eight second integrated current measurement. To observe the PLB integrated (8 sec.) current waveform on the dynamic signal analyzer, configure the dynamic signal analyzer as follows:

1. Select SCALE
Select X Fxd Scale; Enter 0.0, 8; Select Sec
Select Y Fxd Scale; Enter -10, 70.0; Select mV
2. Select VIEW INPUT
Select Time Record: Note – the display heading changes to read “Cap Tim Rec”
3. Select MATH
Select Next
4. Select Intgrt:
Note – the display changes to present an integrated value of the current waveform.
5. Select X (cursor)
Move the X marker to the maximum right of the display. The Y value is indicative of the integrated current value over the entire 8 second period.
6. Multiply the maximum Y value by the current/div as selected on the current amplifier, then divide by 8 seconds to acquire an average current value. As an example: if the current amplifier is set up to display 200 mA/ 10 mV per division, and the maximum Y value = 32.4 mV-sec:

$$[32.4 \text{ mV-sec} \times (200 \text{ mA} / 10 \text{ mV})]/8 \text{ sec} = 81 \text{ mA}$$

Enter the calculated integrated value on TDS 4.

3.2.4.2.2.6 PLB current in warm cal, cold cal, and nadir modes. PLB current shall be tested as follows:

1. Place the unit in warm cal mode.
2. Measure and record PLB steady state current on TDS 4 with a multimeter in the current mode.
3. Place the unit in cold cal mode and repeat step 2.
4. Place the unit in nadir mode and repeat step 2.

3.2.4.2.2.7 PLB turn-on transient

1. Configure the unit and test equipment as shown in Figure 8. Verify that switches 5, 6, 18 and 19 of the breakout box are in the OPEN position. Connect the DSA External trigger to the identified pins on the 25-pin breakout box.

Figure 9. Typical Load Current Waveforms from the +28V Pulse Load Bus

2. Configure the Dynamic Signal Analyzer (DSA) as follows:

Select MEAS MODE	Select INPUT COUPLE
Select Time Capture	Select CH1 DC
Select Capture Select	Select CH1 Ground
Select Capture Length; Enter 500.0;	Select INPUT TRIG
Select msec	Select Trig Level; Enter 1
Select FREQ	Select V
Select Freq Span; Enter 20.0; Select kHz	Select Arm AU
Select E SMPL Off	Select Ext; Select Slope(-)
Select Time Length; Enter 32.0;	Select TRIG DELAY
Select msec	Enter 0; Select μ Sec
Select SELECT MEAS	Select COORD
Select Power Spec	Select Real
Select CH1 Active	Select VIEW INPUT
Select WINDOW	Select Time Buff
Select Hann	Select SCALE
Select SOURCE	Select X Fixd Scale; Enter 0.0, 25
Select Source Off	Select msec
Select AVG	Select Y Fixd Scale; Enter -10, 470
Select Avg Off	Select mv
Select Tim Av Off	Select UNITS
Select RANGE	Select Hz (sec)
Select Chan 1 Range; Enter 1	
Select V	

NOTE

Prior to collecting any current data, the current meter and DSA have to be "zeroed out"; zero current reference has to be established on the DSA. Follow this interim procedure to zero reference the current meter and DSA.

- a) Select 200 mA/ 10 mV per div. on the current amplifier.
- b) Remove the current probe from the circuit and close the probe. Place the probe in a magnetically benign location.
- c) Adjust the "y" axis voltage range to ± 4 mV.
- d) Place the DSA in "Free Run" Trigger and depress "Start Capture" on the DSA.
- e) With the "capture in process", adjust the "output DC level" control on the current amplifier to indicate zero current on the DSA.
- f) Position the current probe to its original location in accordance with Figure 7, and return the DSA to "Ext" trigger.

3. Adjust external power supply for +28 Vdc. Turn the unit ON by selecting [9] MODULE POWER; setup the operating modes as defined in paragraph 3.2.3.5 (reference the command screen parameters below). If necessary, re-adjust the external power supply for 28 Vdc.

COMMANDS			
[9] MODULE POWER =	CONNECT	ANTENNA IN COLD CAL POS =	NO [15]
[10] SURVIVAL HTR PWR =	OFF	ANTENNA IN NADIR POS =	NO [16]
[11] MODULE TOTALLY OFF =	ON	ANTENNA FULL SCAN MODE =	YES [17]
[12] SCANNER A2 POWER =	ON	COLD CAL POSITION MSB =	ZERO [18]
[13] COMPENSATOR MOTOR POWER =	ON	COLD CAL POSITION LSB =	ZERO [19]
[14] ANTENNA WARM CAL POS =	NO		
POWER [4] ON			

4. Turn the unit OFF by executing command [9] MODULE POWER. Confirm the command has been executed on the STE display.
5. Start the DSA signal capture by depressing "Start Capture"; wait for the DSA message "waiting for trigger" before proceeding.
6. On the STE computer, select [9] MODULE POWER and obtain a record of the +28 PLB Turn on current waveform. On the STE computer, select [9] MODULE POWER to turn the instrument's power OFF. Adjust the display time base and voltage sensitivity to allow for adequate current and pulse duration measurements. Plot the obtained waveform and attach a hard copy of the scan to TDS 4. Refer to Figure 10 for an example of the expected waveform.
7. Measure the Turn-On pulse width; record this value on TDS 4.
8. Compute the peak current as follows:

Measure the maximum Y value by the current/div as selected on the current amplifier. As an example, if the current amplifier is set up to display 200 mA/ 10 mV per division, and the maximum Y value = 276 mV:

$$276 \text{ mV} \times (200 \text{ mA} / 10 \text{ mV}) = 5520 \text{ mA} = 5.52 \text{ amps}$$

Record this value on TDS 4.

9. The 1st derivative of the current waveform must be calculated. Compute the dI/dT as follows:

The most probable location of the greatest current demand is during the first positive transition after voltage application. If this is the case, expand the segment of the display and measure the greatest voltage transition in the smallest time transition. The change in voltage times the current/div as selected on the current amplifier produces the change in current. Next divide this change in current by the change in time (in microseconds). This value is dI/dT. Example:

Change in voltage 144 mV

Change in time (microseconds) 19.5 μ s

Current/div on current amplifier 200 mA/ 10 mV

$$144 \text{ mV} \times (200 \text{ mA} / 10 \text{ mV}) / 19.5 \mu\text{s} = 147.7 \text{ mA} / \mu\text{s}$$

10. Record the computed value on TDS 4.

3.2.4.2.2.8 Instrument feedback test. The instrument feedback test is performed in accordance with AE-26151/5. (See Table II.)

1 div = 2.5 ms

AMSU-A2 Pulse Load Bus Turn-on Transient

1 div = 0.01 ms

AMSU-A2 Pulse Load Bus $\frac{dV}{dT}$

Figure 10. Example of +28V Pulse Load Bus Turn-on Transient

3.2.4.2.2.9 *Transient susceptibility and power quality tests.* The tests that follow will demonstrate the AMSU-A2 instrument will operate within specified parameters when the transients (low and high frequency) are applied directly to the power lines.

3.2.4.2.2.9.1 *Equipment setup.* Set up the test equipment and connect to the instrument as shown in Figure 11.

3.2.4.2.2.9.2 *Low frequency load induced transients.* The AMSU instrument shall be capable of normal operation before and after the injection of positive and negative transients into the Pulse Load Bus power line at the amplitude and duration specified in Figure 12. Perform the Low Frequency Load Induced Transients as follows:

1. With the exception of the external power supply, turn ON all the test equipment.
2. Place the signal generator in ARB 1 mode. With the external power supply OFF, while monitoring the oscilloscope, adjust the amplitude and frequency output of the signal generator to attain the signal characteristics as shown in Figure 12.
3. Remove the signal generator output connection from the power supply. While monitoring the external power supply dc voltage with the meter, turn the external power supply ON.
4. Turn the instrument ON and place the instrument in the modes congruent with paragraph 3.2.3.5.
5. Acquire one Full Scan Mode printout; verify the printout meets the requirements of TDS 18 thru 21. Attach printouts to TDS 41.
6. Connect the signal generator to the external power supply. Wait for the instrument to complete three scans. Remove the signal generator output to the power supply.
7. Acquire one Full Scan Mode printout; verify the printout meets the requirements of TDS 18 thru 21. Attach printouts to TDS 41.
8. Record any deviations in the functional performance of the AMSU instrument on TDS 41.

3.2.4.2.2.9.3 *High frequency load induced transients.* The AMSU instrument shall be capable of normal operation before and after the injection of positive and negative transients into the power line. The interfering frequencies are simulated by using the triangular wave output of the signal generator. There are three signals to be sequentially injected; the frequencies and amplitudes as produced by the signal generator and measured by the oscilloscope are:

<u>Frequency (Hz)</u>	<u>Amplitude</u>
1.43	200 mVpp
2.86	1.00 Vpp
6.67	1.50 Vpp

Perform the High Frequency Load Induced Transients as follows:

1. With the exception of the external power supply, turn ON all the test equipment.
2. With the external power supply OFF, while monitoring the oscilloscope, adjust the amplitude and frequency output of the signal generator output as follows:

amplitude 200 mVpp
offset 0.000 V
frequency 1.430 Hz

Figure 11. +28V PLB Transient Susceptibility and Power Quality Tests Setup

Figure 12. Load Induced Transient (Pulse Load)

3. Remove the signal generator output connection from the power supply. While monitoring the external power supply dc voltage with the meter, turn the external power supply ON.
4. Turn the instrument ON and place the instrument in the modes congruent with paragraph 3.2.3.5.
5. Acquire one Full Scan Mode printout; verify the printout meets the requirements of TDS 18 thru 21.
6. Connect the signal generator to the external power supply. Wait for the instrument to complete three scans. Remove the signal generator output to the power supply.
7. Acquire one Full Scan Mode printout; verify the printout meets the requirements of TDS 18 thru 21.
8. Repeat steps 2 through 4, and 6 through 7 for 2.86 Hz and 1.0 Vpp.
9. Repeat steps 2 through 4, and 6 through 7 for 6.67 Hz and 1.5 Vpp.
10. Record any deviations in the functional performance of the AMSU instrument on TDS 41.

3.2.4.2.3 Analog telemetry bus

3.2.4.2.3.1 *Operating power measurements* The purpose of this test is to calculate the operating power of the Analog Telemetry Bus from measurements taken of the bus voltage and current.

1. Configure the instrument as shown in Figure 13.
2. Turn the instrument ON and place the instrument in the modes congruent with paragraph 3.2.3.5.
3. Measure the bus current and record on TDS 5.
4. From the measurements recorded on TDS 5, calculate the operating power for the telemetry bus and record on TDS 5.

3.2.4.2.3.2 *Instrument feedback test* The instrument feedback test is performed in accordance with AE-26151/5. (See Table II.)

Figure 13. +28V Analog Telemetry Bus Test Setup

X 3.2.4.2.3.3 *Transient susceptibility and power quality tests.* The tests that follow will demonstrate the AMSU-A2 instrument will operate within specified parameters when the transients (low and high frequency) are applied directly to the power lines.

X 3.2.4.2.3.3.1 *Equipment setup.* Set up the test equipment and connect to the instrument as shown in Figure 14 (exceptions: remove the current probe and amplifier; connect the oscilloscope to monitor output of the signal generator).

X 3.2.4.2.3.3.2 *Low frequency load induced transients.* The AMSU instrument shall be capable of normal operation before and after the injection of positive and negative transients into the power line at the amplitude and duration specified in Figure 15. Perform the Low Frequency Load Induced Transients as follows:

1. With the exception of the external power supply, turn ON all the test equipment.
2. Place the signal generator in ARB 0 mode. With the external power supply OFF, while monitoring the oscilloscope, adjust the amplitude and frequency output of the signal generator to attain the signal characteristics as shown in Figure 15.
3. Remove the signal generator output connection from the power supply. While monitoring the external power supply dc voltage with the meter, turn the external power supply ON.
4. Turn the instrument ON and place the instrument in the modes congruent with paragraph 3.2.3.5.
5. Acquire one Full Scan Mode printout; verify the printout meets the requirements of TDS 18 thru 21. Attach printouts to TDS 41.
6. Connect the signal generator to the external power supply. Wait for the instrument to complete three scans. Remove the signal generator output to the power supply.
7. Acquire one Full Scan Mode printout; verify the printout meets the requirements of TDS 18 thru 21. Attach printouts to TDS 41.
8. Record any deviations in the functional performance of the AMSU instrument on TDS 41.

X 3.2.4.2.3.3.3 *High frequency load induced transients.* The AMSU instrument shall be capable of normal operation before and after the injection of positive and negative transients into the power line. The interfering frequencies are simulated by using the triangular wave output of the signal generator. There are three signals to be sequentially injected; the frequencies and amplitudes as produced by the signal generator and measured by the oscilloscope are:

Frequency (Hz)	Amplitude
1.43	200 mVpp
2.86	1.00 Vpp
6.67	1.50 Vpp

Perform the High Frequency Load Induced Transients as follows:

1. With the exception of the external power supply, turn ON all the test equipment.
2. With the external power supply OFF, while monitoring the oscilloscope, adjust the amplitude and frequency output of the signal generator output as follows:

amplitude 200 mVpp
offset 0.000 V
frequency 1.430 Hz

Figure 14. +28 Vdc Analog Telemetry Bus Ripple Current and Transient Susceptibility Test Setup

* Typical transients occurring a number of times per orbit are on the order of 200 mV zero-to-peak for a 1.5A load change.

Figure 15. Load Induced Transient (Main Bus)

3. Remove the signal generator output connection from the power supply. While monitoring the external power supply dc voltage with the meter, turn the external power supply ON.
4. Turn the instrument ON and place the instrument in the modes congruent with paragraph 3.2.3.5.
5. Acquire one Full Scan Mode printout; verify the printout meets the requirements of TDS 18 thru 21.
6. Connect the signal generator to the external power supply. Wait for the instrument to complete three scans. Remove the signal generator output to the power supply.
7. Acquire one Full Scan Mode printout; verify the printout meets the requirements of TDS 18 thru 21.
8. Repeat steps 2 through 4, and 6 through 7 for 2.86 Hz and 1.0 Vpp.
9. Repeat steps 2 through 4, and 6 through 7 for 6.67 Hz and 1.5 Vpp.
10. Record any deviations in the functional performance of the AMSU instrument on TDS 41.

3.2.4.2.4 +10 Vdc interface bus test

3.2.4.2.4.1 Operating power measurements The purpose of this test is to calculate the operating power of the +10 Vdc Interface Bus from measurements taken of the bus voltage and current.

1. Configure the instrument as shown in Figure 16.
2. Turn the instrument ON and place the instrument in the modes congruent with paragraph 3.2.3.5.
3. Measure the bus current and record on TDS 6.
4. From the measurements recorded on TDS 6, calculate the operating power for the telemetry bus and record on TDS 6.

Figure 16. +10V Interface Bus Test Setup

3.2.4.2.4.2 *Instrument feedback test.* The instrument feedback test is performed in accordance with AE-26151/5. (See Table II.)

3.2.4.2.5 *Power input test for LPT.* For LPT, test the power input as follows:

1. Configure the unit and test equipment as indicated in Figure 17.
2. Turn the unit ON as described in 3.2.3.5.

NOTE

Do not proceed without successful completion of step 2.

3. Adjust the STE power supply such that the voltmeter across J1-1 and J1-3 reads $+28.0 \pm 0.5$ V. Record the voltage across the pin J1-1 and J1-3 and record the current at STE power supply on TDS B-1, Appendix B (LPT).
4. Turn off power by referring to 3.2.3.6.

3.2.4.3 *Clock, commands, and data system test.* This procedure verifies the clock signal, the commands, and the data requirements specified in S-480-80, GIIS IS-3267415, and UIIS IS-2624483.

3.2.4.3.1 *Test sequence.* The test sequence shall be as follows:

- a. **Clock signals verification**
- b. **Commands and Digital-B telemetry verification**
- c. **Data output verification**
 - Digital-A
 - Analog telemetry
 - Test points
- d. **GSE modes.**

3.2.4.3.2 *Clock signals test.* The following items shall be tested to verify the clock signals. Refer to Figures 18 and 19 for graphical representation of these pulses.

- a. 1.248 MHz clock
- b. 8 seconds frame pulse
- c. A1 select pulse
- d. C1 shift pulse

Figure 17. +28 V Main Load Bus Test Setup (For LPT Only)

Figure 18. Clock Pulses Timing and Synchronization

Figure 19. Synchronization Interface Signals

3.2.4.3.2.1 1.248 MHz synchronization clock. Perform the following procedures.

1. Configure the unit and the test equipment as indicated in Figure 20.
2. Connect CHANNEL-1 of the oscilloscope to the 1.248 MHz clock signal of the STE output (instrument input) as shown in Figure 20.
3. Turn the unit ON as described in 3.2.3.5.

NOTE

Do not proceed without successful completion of step 3.

4. Using the oscilloscope, measure the 1.248 MHz clock signal. Record the data and attach the photograph or plot on TDS 7.

3.2.4.3.2.2 C1 shift pulse verification. Connect CHANNEL-2 of the oscilloscope to Pin 2 of the 9-pin breakout box (P2-J2). Photograph or plot the oscilloscope display and record the information indicated on TDS 8.

3.2.4.3.2.3 A1 select pulse verification. Connect CHANNEL-2 of the oscilloscope to Pin 6 of the 9-pin breakout box (P2-J2). Photograph or plot the oscilloscope display and record the information indicated on TDS 9.

3.2.4.3.2.4 8-seconds frame sync pulse verification. Perform the following procedures.

1. Connect CHANNEL-2 of the oscilloscope to Pin 7 of the 9-pin breakout box (P2-J2). Photograph or plot the oscilloscope display and record the information indicated on TDS 10. Measure pulse repetition timing by using HP5316A Universal counter and record on TDS 10.
2. Turn the unit OFF by executing the softkey command [11] MODULE TOTALLY OFF. Leave both breakout boxes in place.
3. Turn off power by referring to 3.2.3.6.

3.2.4.3.2.5 Synchronization signal relationship. The following synchronization signal relationship shall be verified.

- a. A1 select pulse and the 8-second frame sync pulse
- b. A1 select pulse and C1 shift pulse
- c. A1 select pulse and 1.248 MHz clock.

Relationship of A1 select pulse and the 8-second frame sync pulse:

1. With the unit off, configure the unit and the test equipment as indicated in Figure 21.
2. Connect CHANNEL-1 of the oscilloscope to the breakout box, Pin 7 (8 second frame pulse).
3. Turn the unit ON as described in 3.2.3.5.

NOTE

Do not proceed without successful completion of step 3.

Figure 20. Clock Signal and DC/DC Converter Synchronization Test Setup

Figure 21. Synchronization Signal Relationships Test Setup

4. Adjust the amplitude and the trigger level of the oscilloscope for best picture.
5. Photograph or plot the oscilloscope display and attach the photograph or plot in the space provided on TDS 11, sheet 1.
6. From the photograph or plot, verify the synchronization as described in TDS 11, sheet 1. Record pass or fail.

Relationship of A1 select pulse and C1 shift pulse:

7. Connect CHANNEL-1 of the oscilloscope to the breakout box Pin 2 (C1 shift pulse).
8. Adjust the amplitude and the trigger level of the oscilloscope for best picture.
9. Photograph or plot the oscilloscope display and attach the photograph or plot in the space provided on TDS 11, sheet 2.
10. From the photograph or plot, verify the synchronization as described in TDS 11, sheet 2. Record pass or fail.

Relationship of A1 select pulse and the 1.248 clock pulse:

11. Connect CHANNEL-1 of the oscilloscope to the clock connector located at the rear of the STE (J10 of SELF TEST).
12. Adjust the amplitude and the trigger level of the oscilloscope for best picture.
13. Photograph or plot the oscilloscope display and attach the photograph or plot in the space provided on TDS 12, sheet 12.
14. From the photograph or plot, verify the synchronization as described in TDS 12. Record pass or fail.
15. Turn off the instrument by executing command [11] MODULE TOTALLY OFF.
16. Turn off the +28 V STE power supply.
17. Connect unit to STE as shown in Figure 20 without breakout boxes and test equipment.

3.2.4.3.3 Commands and digital-B telemetry test. Commands and digital-B telemetry shall be verified in accordance with the following paragraphs.

3.2.4.3.3.1 Module totally off. Commands and digital-B telemetry, with the module totally off, shall be tested as follows:

1. Turn the unit ON as described in 3.2.3.5.

NOTE

Do not proceed without successful completion of step 1.

2. From the Commands Menu, execute command [11] MODULE TOTALLY OFF to OFF mode.
3. Wait at least 18 seconds, then verify that the following events are in effect:

- a. [11] MODULE TOTALLY OFF = OFF
 - b. [12] SCANNER A2 POWER = OFF
 - c. [10] SURVIVAL HTR POWER = OFF
 - d. Antenna reflector pointing toward the warm load.
4. Record the above observations on TDS 13 (Appendix B, TDS B-2 for LPT).

3.2.4.3.3.2 Survival heater power ON/OFF command. The survival heater power ON/OFF command shall be tested as follows:

1. Execute command [10] SURVIVAL HEATER POWER to ON mode.
2. Wait at least 18 seconds. Verify that the command is in effect. Record observation on TDS 13 (Appendix B, TDS B-2 for LPT).
3. Execute command [10] SURVIVAL HEATER to OFF mode.
4. Wait at least 18 seconds. Verify that the command is in effect. Record observation on TDS 13 (Appendix B, TDS B-2 for LPT).

3.2.4.3.3.3 Module power connect command. The module power connect command shall be tested as follows:

1. Execute command [9] MODULE POWER to CONNECT mode.
2. Wait at least 18 seconds. Verify that the command is in effect. Record observation on TDS 13 (Appendix B, TDS B-2 for LPT).
3. Verify that the current at the STE power supply is 0.5 to 3.2 Amperes. Record this information on TDS 13 (Appendix B, TDS B-2 for LPT).

3.2.4.3.3.4 Scanner commands verification. The scanner commands shall be tested as follows:

1. Execute commands as necessary to obtain the following configuration:

[9] MODULE POWER =	CONNECT	ANTENNA IN COLD CAL POS =	NO [15]
[10] SURVIAL HTR PWR =	OFF	ANTENNA IN NADIR POS =	NO [16]
[11] MODULE TOTALLY OFF =	ON	ANTENNA FULL SCAN MODE =	YES [17]
[12] SCANNER A2 POWER =	ON	COLD CAL POSITION MSB =	ZERO [18]
[13] COMPENSATOR MOTOR POWER =	ON	COLD CAL POSITION LSB =	ZERO [19]
[14] ANTENNA WARM CAL POS =	NO		
POWER [4] ON			

Wait at least 18 seconds. Verify that the commands are in effect. Record observations on TDS 14 (Appendix B, TDS B-3 for LPT).

2. Execute. [12] SCANNER A2 POWER = OFF
[13] COMPENSATOR MOTOR POWER = OFF

Wait at least 18 seconds. Verify that the commands are in effect. Record observations on TDS 15 (Appendix B, TDS B-4 for LPT).

3. Execute. [12] SCANNER A2 POWER = ON
[13] COMPENSATOR MOTOR POWER = ON

Wait at least 18 seconds. Verify that the commands are in effect. Record observations on TDS 16 (Appendix B, TDS B-5 for LPT).

3.2.4.3.3.5 Scanner position commands verification. Verify scanner position command operation as follows:

1. Execute command [14] ANTENNA WARM CAL POS to YES mode.
2. Wait at least 18 seconds. Verify that the command is in effect. Record observation on TDS 17 (Appendix B, TDS B-6 for LPT).
3. Execute commands [15] ANTENNA IN COLD CAL POS to YES mode, [18] COLD CAL POSITION MSB to 0, and [19] COLD CAL POSITION LSB to 1.
4. Wait at least 18 seconds. Verify that the commands are in effect. Record observation on TDS 17 (Appendix B, TDS B-6 for LPT).
5. Execute commands [18] COLD CAL POSITION MSB to 1 and [19] COLD CAL POSITION LSB to 0.
6. Wait at least 18 seconds. Verify that the commands are in effect. Record observation on TDS 17 (Appendix B, TDS B-6 for LPT).
7. Execute commands [18] COLD CAL POSITION MSB to 1 and [19] COLD CAL POSITION LSB to 1.
8. Wait at least 18 seconds. Verify that the commands are in effect. Record observation on TDS 17 (Appendix B, TDS B-6 for LPT).
9. Execute commands [18] COLD CAL POSITION MSB to 0 and [19] COLD CAL POSITION LSB to 0.
10. Wait at least 18 seconds. Verify that the commands are in effect. Record observation on TDS 17 (Appendix B, TDS B-6 for LPT).
11. Execute command [16] ANTENNA IN NADIR POSITION to YES mode.
12. Wait at least 18 seconds. Verify that the command is in effect. Record observation on TDS 17 (Appendix B, TDS B-6 for LPT).
13. Execute command [14] ANTENNA WARM CAL POS to YES mode.
14. Wait at least 18 seconds. Verify that the command is in effect. Record observation on TDS 17 (Appendix B, TDS B-6 for LPT).

3.2.4.3.4 Digital-A data output test. The following items shall be tested to verify the digital-A data output:

- a. Full scan (3.2.4.3.4.1)
- b. Warm load (3.2.4.3.4.2)
- c. Cold cal (3.2.4.3.4.3)

d. Nadir (3.2.4.3.4.4).

For each of the above scan modes, the following parameters will be subject to pass/fail criterion:

- [I] Sync. sequence
- [II] Unit I.D. and serial number
- [III] Digital B serial data verification
- [IV] Reflector positions
- [V] Radiometric data (scene data)
- [VI] Temperature sensors.

For the cold cal mode, reflector position [IV] shall be tested for the following conditions.

- (a) Cold cal position with MSB=1 and LSB=0
- (b) Cold cal position with MSB=0 and LSB=1
- (c) Cold cal position with MSB=1 and LSB=1.

3.2.4.3.4.1 *Full scan mode.* The digital-A data output in full-scan mode shall be tested as follows:

1. Execute commands as necessary to obtain the following configuration:

[9] MODULE POWER =	CONNECT	ANTENNA IN COLD CAL POS =	NO [15]
[10] SURVIAL HTR PWR =	OFF	ANTENNA IN NADIR POS =	NO [16]
[11] MODULE TOTALLY OFF =	ON	ANTENNA FULL SCAN MODE =	YES [17]
[12] SCANNER A2 POWER =	ON	COLD CAL POSITION MSB =	ZERO [18]
[13] COMPENSATOR MOTOR POWER =	ON	COLD CAL POSITION LSB =	ZERO [19]
[14] ANTENNA WARM CAL POS =	NO		
POWER [4] ON			

- 2. Obtain a full printout of all the parameters ([I] through [VI]) described above, by typing PRINT [3] FULL.
- 3. Attach the printout to TDS 18 (Appendix B, TDS B-7 for LPT).

[I], [II], and [III] Sync, Unit ID, and Digital-B Data:

- 4. Using Page 1 of the printout, verify that elements 0001 through 0008 are within the required values specified in TDS 18 (Appendix B, TDS B-7 for LPT). Record pass or fail.

[IV] Reflector position:

- 5. Using STE procedure AE-26157; select reflector position screen, execute PRINT [2] SCREEN ONLY, and attach the data to TDS 19 (Appendix B, TDS B-8 for LPT). Verify that there is no "E" error on computer printout. Record pass or fail on TDS 19 (Appendix B, TDS B-8 for LPT).

[V] Radiometric data:

6. Using STE procedure AE-26157, select Radiometric data for CH-1 and CH-2. PRINT SINGLE [2] PAGES for each channel. From the data obtained, verify that the data are within the values specified on TDS 20. Attach the data for each channel to TDS 20 (Appendix B, TDS B-9 for LPT). Record pass or fail.

[VI] Temperature sensors:

7. Using STE procedure AE-26157, select DIG-A temperature sensor screen and PRINT SINGLE [2] PAGE. From the data obtained, verify that the values are within the specified limits on TDS 21 (Appendix B, TDS B-10 for LPT). Attach the data to TDS 21 (Appendix B, TDS B-10 for LPT). Record pass or fail.

3.2.4.3.4.2 *Warm cal mode.* The digital-A data output, in warm-cal mode shall be tested as follows:

1. Execute command [14] ANTENNA WARM CAL POS and verify command display is as follows:

[9] MODULE POWER =	CONNECT	ANTENNA IN COLD CAL POS =	NO [15]
[10] SURVIAL HTR PWR =	OFF	ANTENNA IN NADIR POS =	NO [16]
[11] MODULE TOTALLY OFF =	ON	ANTENNA FULL SCAN MODE =	NO [17]
[12] SCANNER A2 POWER =	ON	COLD CAL POSITION MSB =	ZERO [18]
[13] COMPENSATOR MOTOR POWER =	ON	COLD CAL POSITION LSB =	ZERO [19]
[14] ANTENNA WARM CAL POS =	YES		
POWER [4] ON			

2. Obtain a full printout of all the parameters ([I] through [VI]) described above, by touching the PRINT [3] FULL touch area.
3. Attach the printout to TDS 22.

[I], [II], and [III] Sync, Unit ID, and Digital-B Data:

4. Using Page 1 of the printout, verify that elements 0001 through 0008 are within the required values specified in TDS 22. Record pass or fail.

[IV] Reflector position:

5. Using STE procedure AE-26157; select reflector position screen, execute PRINT [2] SCREEN ONLY, and attach the data to TDS 23. Verify that there is no "E" error on computer printout. Record pass or fail on TDS 23.

[V] Radiometric data:

6. Using STE procedure AE-26157, select Radiometric data for channel 1 and channel 2. PRINT [2] SINGLE PAGES for each channel. From the data obtained, verify that the data are within the values specified on TDS 24. Attach the data for each channel to TDS 24. Record pass or fail.

[VI] Temperature sensors:

7. Using STE procedure AE-26157, select DIG-A temperature sensor screen and PRINT SINGLE [2] PAGE. From the data obtained, verify that the values are within the specified limits on TDS 25. Attach the data to TDS 25. Record pass or fail.

3.2.4.3.4.3 Cold cal mode. The digital-A data output, in cold-cal mode, shall be tested as follows:

1. Execute command [15] ANTENNA IN COLD CAL POS and verify command display is as follows:

[9] MODULE POWER =	CONNECT	ANTENNA IN COLD CAL POS =	YES	[15]
[10] SURVIAL HTR PWR =	OFF	ANTENNA IN NADIR POS =	NO	[16]
[11] MODULE TOTALLY OFF =	ON	ANTENNA FULL SCAN MODE =	NO	[17]
[12] SCANNER A2 POWER =	ON	COLD CAL POSITION MSB =	ZERO	[18]
[13] COMPENSATOR MOTOR POWER =	ON	COLD CAL POSITION LSB =	ZERO	[19]
[14] ANTENNA WARM CAL POS =	NO			
POWER [4] ON				

2. Obtain a full printout of all the parameters ([I] through [VI]) described above, by touching the PRINT [3] FULL touch area.
3. Attach the printout to TDS 26.

[I], [II], and [III] Sync, Unit ID, and Digital-B Data:

4. Using Page 1 of the printout, verify that elements 0001 through 0008 are within the required values specified in TDS 26. Record pass or fail.

[IV] Reflector position:

5. To test the cold cal reflector position, perform the following substeps:
 - (a) Using STE procedure AE-26157; select reflector position screen, execute PRINT [2] SCREEN ONLY, and attach the data to TDS 23. Verify that there is no "E" error on computer printout. Record pass or fail on TDS 23.
 - (b) Execute commands [18] COLD CAL POSITION MSB to 0 and [19] COLD CAL POSITION LSB to 1. Repeat substep a. then proceed to substep c.
 - (c) Execute commands [18] COLD CAL POSITION MSB to 1 and [19] COLD CAL POSITION LSB to 0. Repeat substep a., then proceed to substep d.
 - (d) Execute commands [18] COLD CAL POSITION MSB to 1 and [19] COLD CAL POSITION LSB to 1. Repeat substep a., then proceed to substep e.
 - (e) Execute commands [18] COLD CAL POSITION MSB to 0 and [19] COLD CAL POSITION LSB to 0.

[V] Radiometric data:

6. Using STE procedure AE-26157, select Radiometric data for channel 1 and channel 2. PRINT [2] SINGLE PAGES for each channel. From the data obtained, verify that the data are within the values specified on TDS 27. Attach the data for each channel to TDS 27. Record pass or fail.

[VI] Temperature sensors:

7. Using STE procedure AE-26157, select DIG-A temperature sensor screen and PRINT SINGLE [2] PAGE. From the data obtained, verify that the values are within the specified limits on TDS 28. Attach the data to

TDS 28. Record pass or fail.

3.2.4.3.4.4 Nadir cal mode. The digital-A data output, in nadir-cal mode, shall be tested as follows:

1. Execute command [16] ANTENNA IN NADIR POS and verify command display is as follows:

[9] MODULE POWER =	CONNECT	ANTENNA IN COLD CAL POS =	NO [15]
[10] SURVIAL HTR PWR =	OFF	ANTENNA IN NADIR POS =	YES [16]
[11] MODULE TOTALLY OFF =	ON	ANTENNA FULL SCAN MODE =	NO [17]
[12] SCANNER A2 POWER =	ON	COLD CAL POSITION MSB =	ZERO [18]
[13] COMPENSATOR MOTOR POWER =	ON	COLD CAL POSITION LSB =	ZERO [19]
[14] ANTENNA WARM CAL POS =	NO		
POWER [4] ON			

2. Obtain a full printout of all the parameters ([I] through [VI]) described above, by touching the PRINT [3] FULL touch area.
3. Attach the printout to TDS 29.

[I], [III], and [III] Sync, Unit ID, and Digital-B Data:

4. Using Page 1 of the printout, verify that elements 0001 through 0008 are within the required values specified in TDS 29. Record pass or fail.

[IV] Reflector position:

5. Using STE procedure AE-26157; select reflector position screen, execute "PRINT [2] SCREEN ONLY", and attach the data to TDS 23. Verify that there is no "E" error on the computer printout. Record pass or fail on TDS 23.

[V] Radiometric data:

6. Using STE procedure AE-26157, select Radiometric data for channel 1 and channel 2. "PRINT [2] SINGLE PAGES" for each channel. From the data obtained, verify that the data are within the values specified on TDS 30. Attach the data for each channel to TDS 30. Record pass or fail.

[VI] Temperature sensors:

7. Using STE procedure AE-26157, select DIG-A temperature sensor screen and "PRINT SINGLE [2] PAGE". From the data obtained, verify that the values are within the specified limits on TDS 31. Attach the data to TDS 31. Record pass or fail.

3.2.4.3.5 Analog telemetry test. The purpose of this test is to verify that the 26 analog telemetry signals are within requirements. The purpose of the analog telemetry signals is to provide information about the functionality of the subsystems during normal operation of the unit. The analog telemetry signals shall be verified in two ways: (1) by measuring the analog telemetry signals directly at the interfacing connector and (2) by use of the STE.

3.2.4.3.5.1 Analog TLM signals measurements connector J6. Measure analog TLM signals at connector J6 as follows:

1. Configure the unit and the STE as indicated in Figure 22. Verify that unit power is off prior to the installation of the breakout boxes. To turn the unit off, select the Commands Menu and execute command

"[11] MODULE TOTALLY OFF". Manually turn off the STE 28V power supply located inside the STE console.

(*) For the measurements of the temperature sensor,
use J1-10 as a ground, for the remaining analog signals
use J2-3 as a reference ground.

Figure 22. Analog Telemetry Signal Verification Test Setup

2. Turn the unit on as follows:

- (a) Turn on the STE 28V power supply.
- (b) Execute commands as necessary to achieve the following configuration:

[9] MODULE POWER =	CONNECT	ANTENNA IN COLD CAL POS =	NO [15]
[10] SURVIAL HTR PWR =	OFF	ANTENNA IN NADIR POS =	NO [16]
[11] MODULE TOTALLY OFF =	ON	ANTENNA FULL SCAN MODE =	YES [17]
[12] SCANNER A2 POWER =	ON	COLD CAL POSITION MSB =	ZERO [18]
[13] COMPENSATOR MOTOR POWER =	ON	COLD CAL POSITION LSB =	ZERO [19]
[14] ANTENNA WARM CAL POS =	NO		
POWER [4] ON			

3. Using the "28V Analog Telemetry Bus Return" (J1-10) as a reference ground, measure and record the four temperature sensor voltages in the order specified on TDS 32.
4. Using the "Signal Ground" (J2-03) as a reference ground, measure and record the remaining analog telemetry voltage levels in the order specified on TDS 32.
5. Leave the unit on in preparation for the next test.

3.2.4.3.5.2 Analog TLM signal measurements using the STE. Analog TLM signal measurements using the STE shall be taken as follows:

1. Using STE procedure AE-26157, select Analog TLM screen and execute command "PRINT [2] SCREEN ONLY". Obtain printout and verify that the data matches the values specified on TDS 33 (Appendix B, TDS B-11 for LPT). Record pass or fail.
2. Attach computer printout to TDS 33 (Appendix B, TDS B-11 for LPT).
3. Power off unit by referring to 3.2.3.6.

3.2.4.3.6 Test point test. The purpose of this test is to verify the performance of the integrator and its associated clock pulses. Figure 2 shows the integration waveform and the clock signals. Test point verification consists of the following parameters:

- a. Integration/Hold and Dump Clock Signals. (3.2.4.3.6.1)
(Time and amplitude)
- b. Integration Time (Analog Output). (3.2.4.3.6.2)
(Time and amplitude)

3.2.4.3.6.1 Integration/hold and dump clock signals. The integration/hold and dump clock signals shall be tested as follows:

1. Referring to Figure 23, configure the oscilloscope as follows:
 - (a) Channel-1 to J7-23 integration/hold clock signal (J7-26 RTN).
 - (b) Channel-2 to J7-6 dump signal clock (J7-26 RTN).

Figure 23. Integration/Hold and Dump Signals Verification Test Setup

- (c) Internal trigger mode to channel-1.
 - (d) Amplitude and Time optimized for best resolution.
2. Power on unit by referring to 3.2.3.5.
 3. Photograph or plot the oscilloscope display and attach the photograph or plot to TDS 34.
 4. From the photograph or plot, measure time and amplitude for the integrate/hold and dump clock signals. Verify that the data obtained are within the requirements specified on TDS 34 and Figure 2.
 5. Leave the equipment in place and the unit turned on in preparation for the next test.

3.2.4.3.6.2 Integration time (analog outputs). The analog outputs integration time shall be tested as follows:

1. Reconfigure the test equipment as indicated in Figure 24.
2. Connect the oscilloscope, channel-2 positive line to J7-8 of the 37-pin breakout box. Keep channel-1 of the oscilloscope connected to J7-23 and J7-26 (RTN).
3. Adjust the oscilloscope for best amplitude and time resolution. The displayed signals should look like Figure 2.
4. Photograph or plot the display and attach it to TDS 35.
5. From the photograph or plot, measure the integration time and the amplitude. Verify that the data obtained is within the requirements specified in TDS 35.
6. Connect the oscilloscope to the analog signal for channel-2 (J7-9) and repeat steps 2 through 5.
7. Leave the unit turned on and the test equipment in place in preparation for the next test.

Figure 24. Integration Time (Analog Output) Verification Setup

3.2.4.3.7 GSE mode test. The purpose of this test is to verify the data obtained from the Ground Support Equipment (GSE).

NOTE

The GSE mode test is not required and is for engineering use only.

The following modes shall be evaluated.

GSE-1 (Position: 10, 10, 10)

GSE-2 (Position: 1, 30 readings)

GSE-3 (Position: current, 30 readings)

GSE-4 (Position: 30, 30 readings)

GSE-5 (Position: 6, 30 readings)

GSE-7 (Position: required, 30 readings)

For GSE mode-1, the following parameters are subject to pass or fail criterion:

[I] Sync. sequence

[II] Unit ID and serial number

[III] Digital B serial data verification

[IV] Reflector positions

[V] Radiometric data (Scene data for channel-1 only)

[VI] Temperature sensors.

For GSE 2 through 7, only the following parameters are subject to pass or fail criterion:

[IV] Reflector position.

3.2.4.3.7.1 Equipment preparation. To place instrument in GSE mode, proceed as follows:

1. On Commands Menu, press: RETURN [1].
2. On Main Menu, select: [10] SELF TEST.
3. On Self Test Menu, select: [7] RUN GSE MODE.
(The computer will prompt: "ENTER GSE MODE (0 to 15)".)
4. Enter corresponding GSE mode under test.

3.2.4.3.7.2 GSE Mode-1. The GSE mode-1 shall be tested as follows:

[I], [II], and [III] Sync, Unit ID, and Digital B:

1. Place instrument in GSE mode-1 and obtain full printout. Using the printout, verify that elements 1 through 8 are within the values specified on TDS 36. Record pass or fail.

[IV] Reflector Positions:

2. Using STE procedure AE-26157, select reflector position screen and execute "PRINT [2] SCREEN ONLY" to obtain a printout of data. Verify that there is no "E" error on computer printout. Record pass or fail on TDS 37. Attach printout to TDS 37.

[V] Radiometric Data:

3. Using STE procedure AE-26157, select radiometric data screen for channel-1 and channel-2. Obtain a single page printout for each channel. Verify that the radiometric data is within the required values specified on TDS 38. Attach printout to TDS 38.

[VI] Temperature Sensors:

4. Using STE procedure AE-26157, select DIG-A temp. sensor data screen and execute "PRINT [2] SCREEN ONLY" to obtain a printout of the page. Verify that the temperature data are within the required values specified on TDS 39. Record pass or fail on TDS 39. Attach printout to TDS 39.

3.2.4.3.7.3 GSE Mode-2. The GSE Mode-2 shall be tested as follows:

1. Place unit in GSE Mode-2 as follows:
 - (a) On Commands Menu, press: RETURN [1].
 - (b) On Main Menu, select: [10] SELF TEST.
 - (c) On Self Test Menu, select: [7] RUN GSE MODE.
(The computer will prompt: "ENTER GSE MODE (0 to 15)".)
 - (d) Enter GSE MODE [2] at the prompt.

[IV] Reflector Positions:

2. Using STE procedure AE-26157, select reflector position screen and execute "PRINT [2] SCREEN ONLY" to obtain a printout of data. Verify that the reflector positions are within the required values specified on document AE-26002/2. Record pass or fail on TDS 37. Attach printout to TDS 37.

3.2.4.3.7.4 GSE Mode-3. The GSE Mode-3 shall be tested as follows:

1. Place unit in GSE Mode-3 as follows:
 - (a) On Commands Menu, press: RETURN [1].
 - (b) On Main Menu, select: [10] SELF TEST.
 - (c) On Self Test Menu, select: [7] RUN GSE MODE.
(The computer will prompt: "ENTER GSE MODE (0 to 15)".)
 - (d) Enter GSE MODE [3] at the prompt.

Reflector Positions:

2. Using STE procedure AE-26157, select reflector position screen and execute "PRINT [2] SCREEN ONLY" to obtain a printout of data. Verify that there is no "E" error on computer printout. Record pass or fail on TDS 37. Attach printout to TDS 37.

3.2.4.3.7.5 GSE Mode-4. The GSE Mode-4 shall be tested as follows:

1. Place unit in GSE Mode-4 as follows:
 - (a) On Commands Menu, press: RETURN [1].
 - (b) On Main Menu, select: [10] SELF TEST.
 - (c) On Self Test Menu, select: [7] RUN GSE MODE.
(The computer will prompt: "ENTER GSE MODE (0 to 15)".)
 - (d) Enter GSE MODE [4] at the prompt.

[IV] Reflector Positions:

2. Using STE procedure AE-26157, select reflector position screen and execute "PRINT [2] SCREEN ONLY" to obtain a printout of data. Verify that there is no "E" error on computer printout. Record pass or fail on TDS 37. Attach printout to TDS 37.

3.2.4.3.7.6 GSE Mode-5. The GSE Mode-5 shall be tested as follows:

1. Place unit in GSE Mode-5 as follows:
 - (a) On Commands Menu, press: RETURN [1].
 - (b) On Main Menu, select: [10] SELF TEST.
 - (c) On Self Test Menu, select: [7] RUN GSE MODE.
(The computer will prompt: "ENTER GSE MODE (0 to 15)".)
 - (d) Enter GSE MODE [5] at the prompt.

[IV] Reflector Positions:

2. Using STE procedure AE-26157, select reflector position screen and execute "PRINT [2] SCREEN ONLY" to obtain a printout of data. Verify that there is no "E" error on computer printout. Record pass or fail on TDS 37. Attach printout to TDS 37.

3.2.4.3.7.7 GSE Mode-7. The GSE Mode-7 shall be tested as follows:

1. Place unit in GSE Mode-7 as follows:
 - (a) On Commands Menu, press: RETURN [1].
 - (b) On Main Menu, select: [10] SELF TEST.
 - (c) On Self Test Menu, select: [7] RUN GSE MODE.
(The computer will prompt: "ENTER GSE MODE (0 to 15)".)

- (d) Enter GSE MODE [7] at the prompt.
- (e) Press PRINT [3] FULL. The computer will start printing 4 pages of data.

[IV] Reflector Positions:

2. Using STE procedure AE-26157, select reflector position screen and execute "PRINT [2] SCREEN ONLY" to obtain a printout of data. Verify that there is no "E" error on computer printout. Record pass or fail on TDS 37. Attach printout to TDS 37.
3. Set the STE to GSE MODE-0. Failure to do so will cause the STE to produce faulty data when in normal mode. To enter GSE Mode-0 into the computer, proceed as follows:
 - (a) Return to the Main Menu by pressing: RETURN [1].
 - (b) On Main Menu, select: [10] SELF TEST.
 - (c) On Self Test Menu, select: [7] RUN GSE MODE.
(The computer will prompt: "ENTER GSE MODE (0 to 15)".)
 - (d) Select GSE MODE [0].

3.2.4.4 Radiometer functional test. The purpose of this procedure is to verify the performance of the AMSU-A2 radiometer at the system level. This test shall consist of relative NEΔT measurements.

3.2.4.4.1 Relative radiometer NEΔT measurements. The purpose of this test is to perform a preliminary evaluation of the radiometer NEΔT at a system level. Since the STE is not in the thermal-vacuum configuration, no temperature readings from the cold load are available. To compute the NEΔT for this test, the temperature used for the cold load shall be 80 K.

The data obtained from this test are considered as "relative NEΔT" and are to be used as a diagnostic tool to verify proper operation of the A/D converters and the spacecraft interface.

The equation to determine "relative NEΔT" is as follows:

$$GAIN = \frac{Th - Tc}{M - N}$$

$$NE\Delta T = SD \times GAIN$$

where

- SD = Standard deviation of 120 samples at hot temperature
Th = Standard room temperature = deg. K
Tc = Standard LN₂ temperature = 80 K
M = Average of hot counts (120 samples)
N = Average of cold counts (30 samples)

The sequence of testing shall be as follow:

- a. Equipment preparation and setup configuration (3.2.4.4.1.1)
- b. Relative NEΔT data collection (3.2.4.4.1.2)

3.2.4.4.1.1 Equipment preparation and setup configuration. The equipment shall be setup as follows:

WARNING

The use of liquid nitrogen in a confined poorly ventilated area can cause rapid asphyxiation and death due to a lack of oxygen (oxygen concentration below 20 percent). Accidental contact with liquid nitrogen will cause severe frostbite to the eyes or skin. When handling liquid nitrogen, personnel shall observe the following safety precautions:

- a. Ensure that the work area is well ventilated to prevent excessive gas buildup.
 - b. To protect your eyes, always wear a face shield or safety goggles (safety glasses without side shields do not provide adequate protection).
 - c. To protect exposed skin, always wear a lab coat, gloves made for cryogenic work, cuffless trousers (worn outside the boots or shoes), and safety shoes.
1. Configure the test equipment and the unit as indicated in Figure 25. Connect the instrument to STE as shown in Figure 26 without breakout boxes.
 2. Execute commands as necessary to obtain the following configuration:

[9] MODULE POWER =	CONNECT	ANTENNA IN COLD CAL POS =	NO [15]
[10] SURVIVAL HTR PWR =	OFF	ANTENNA IN NADIR POS =	NO [16]
[11] MODULE TOTALLY OFF =	ON	ANTENNA FULL SCAN MODE =	NO [17]
[12] SCANNER A2 POWER =	ON	COLD CAL POSITION MSB =	ZERO [18]
[13] COMPENSATOR MOTOR POWER =	ON	COLD CAL POSITION LSB =	ZERO [19]
[14] ANTENNA WARM CAL POS =	YES		
POWER [4] ON			

3. Allow 30 minutes for the unit to stabilize.

3.2.4.4.1.2 Relative NEAT data collection. Perform the following procedures.

1. Return to the Main Menu by pressing [1] RETURN.
2. On the Main Menu, select [13] FUNCTIONAL TEST. (The STE will automatically command the unit to position the antenna reflector to the warm and cold loads as it is taking data.)
3. Wait approximately one minute to verify that the NEAT results are displayed on the screen. Obtain a printout. Repeat step 2 four times and obtain four additional printouts. Average NEAT from these five data points. Enter the values on TDS 40. Attach the printouts to TDS 40 (Appendix B, TDS B-12 for LPT).
4. Remove the cryogenic loads and associated hardware.
5. Turn off the unit by using command “[11] MODULE TOTALLY OFF”. Turn off +28 V power supply at the STE console.

Figure 25. NEAT Setup Configuration

Figure 26. Relative NEAT Measurement Test Setup

3.2.4.4.2 Channel identification test. The purpose of the channel identification test is to verify the proper final configuration/assembly of each radiometer channel from antenna input to the spacecraft interface.

1. Configure the unit and test equipment as shown in Figure 27.
2. Turn the STE main power switch ON. From the A2 directory, and at the "S" prompt, enter the command to the STE "RUN A2".
3. Turn the STE power supply panel main power switch ON.
4. Turn the STE power supply panel Q/Main switch ON.
5. Turn the power supply N/Pulse switch ON.
6. From the STE main screen, enter the STE command "[2] MONITOR ONLY". Enter the STE command "[14] COMMANDS".
7. Enter the STE command "SCANNER POWER". Wait 18 seconds before issuing the next command.
8. Enter the STE command "ANTENNA COLD CAL". Wait 18 seconds before issuing the next command. The reflector should scan to the cold calibration beam position.
9. Enter the STE command "[1] RETURN" to return to the monitor only screen.
10. Enter the STE command "[10] SCIENCE DATA". The STE should now display the science data screen. From this screen enter the STE command "[9] BEAM POSITION NN-ALL CHANNELS".
11. The STE prompts "ENTER BEAM POSITION NO (1 TO 30)". Enter "30" to show the radiometric counts data for channels 1 and 2. The STE now displays the radiometric data screen shown in Figure 28 except with a different set of count data.
12. Allow the instrument to stabilize for approximately 20 minutes. Enter the STE command "[2]" to obtain a screen only printout.
13. Configure the unit and test equipment as shown in Figure 27. Turn ON the sweeper and allow to warm up approximately 10 minutes. Make sure that the RF power is OFF during sweeper warm up.

CAUTION

Extreme care must be used when turning on RF power. When RF power is first applied the gain horn should be approximately three to four feet from the unit. The RF power setting should be no greater than -20 dBm.

14. Set the sweeper frequency to 23.80 ± 0.01 GHz and set the RF power level to -20 dBm. Position the gain horn three to four feet from the instrument so that the antenna and gain horn are approximately aligned. Rotate the gain horn, if needed, to the vertical polarization position.
15. Turn ON the RF power making sure the power level is set to -20 dBm. Allow the multiplier to warm up approximately five minutes.
16. At the STE screen, compare the radiometric data counts of channel 1 to the counts printed out at step 12. Enter the STE command "[2]" to obtain a screen only printout.

17. From the printouts obtained in steps 12 and 16 verify that the radiometric data counts for channel 1 have increased significantly, approximately 1000 or more, and that the other channels data counts have remained relatively unchanged, less than 300 counts.
18. Record the count differences on TDS 40A of channel 1 from the printouts obtained in steps 12 and 16 and attach printouts to TDS 40A.
19. Turn OFF the RF power. Return the reflector to the warm cal position.
20. Turn the STE Q/Main and N/Pulse switches to OFF.
21. Turn the STE power supply panel main power switch OFF.

Figure 27. Channel Identification Setup

AE-26156/4E
2 Apr 99

EOS	A2XX E2.EXE;4	4-MAR-98	14:53:41	SCAN NUMBER
[5]	SCIENCE DATA	ELEMENT 0000		
[6]	CONTROL/STATUS	ELEMENT 00		
[7]	ENGINEERING	ELEMENT 00		
RADIOMETRIC DATA				
BEAM POSITION 1				
CH DATA				
1 16,275				
2 16,189				
[21] UP		[22] DOWN		
POWER	OFF	CHECKSUM IN CALC	SA28	0 SA29 0
SCREEN ONLY [2]		PRINT [3] FULL	[1] RETURN	
SELECT BUTTON 2				

Figure 28. Radiometric Data Screen

4. QUALITY ASSURANCE PROVISIONS

4.1 Responsibility for inspection. Aerojet Quality Assurance shall inspect in accordance with the requirements of this test procedure and S-480-79 and S-480-80. Quality Control shall verify all test set-ups prior to start of test. Bonded software shall be used for all tests and shall be obtained from Quality Control. Quality Control shall review all test data for conformance to success criteria. The test data shall include test limits. For tests that satisfy requirements from S-480-80 on protoflight and flight units, customer representatives shall be invited to witness tests and shall be invited to review the data and show approval on the test data sheets.

4.1.1 Test facilities. Unless otherwise specified, the examinations and tests described herein shall be conducted at GenCorp Aerojet, Azusa, CA.

4.1.2 Electrostatic Device (ESD) handling. All electronic hardware shall be handled in accordance with Aerojet Standard STD-2454.

4.2 Monitoring procedures. All tests in this procedure shall be witnessed by quality control.

4.2.1 Test equipment. Test equipment calibration procedures shall comply with the requirements of MIL-STD-45662.

4.2.2 Software. Bonded software shall be used at all times.

4.3 Monitoring procedures for materials. Not applicable.

4.4 Certification. Certification for handling ESD-sensitive equipment is required for all personnel working on the assembly and test of the AMSU-A instrument.

4.5 Test methods

4.5.1 Accept-reject criteria. The accept-reject criteria for each examination or test shall be as specified in the data sheets included in each phase of the applicable test procedure. The test results shall be recorded on the data sheets to demonstrate compliance with the applicable specification requirements. Methods of analysis shall be appropriate for the parameters being inspected. It shall be the responsibility of Aerojet to review the test data and determine conformance of the unit under test to the performance requirements contained in S-480-80 and this specification.

In the event of a failure during any phase of this test procedure, the test activity shall record the required information on the Test Anomaly Record (TAR) and alert the design assurance and quality engineers. Except for failures which only represent a limited out-of-tolerance condition for a particular parameter and are not expected to interfere with the balance of the testing and which are non-destructive, the testing must be stopped until a complete description of the observed anomaly failure is documented and a Failure Analysis Strategy (FAS) is formulated, documented, and implemented to preclude loss of information or evidence that may facilitate determining the failure cause. The full set of data from the referenced tests is required in order to formulate a plan of action. The cognizant reliability engineer, quality assurance engineer, and the system or responsible test engineer shall jointly develop the FAS which must be approved by Design Assurance and Quality Assurance. Analysis and reporting shall be performed per Aerojet procedures.

This page intentionally left blank.

5. PREPARATION FOR DELIVERY

This section is not applicable to this specification.

6. NOTES

6.1 *Acronyms and abbreviations*

AMSU	Advanced Microwave Sounding Unit
ATB	Analog telemetry bus
AWG	American Wire Gage
BP	Beam Position
CAL	Calibrate
CPT	Comprehensive performance test
d	delta
DC	Direct current
DVM	Digital volt meter
EMI	Electromagnetic interference
ESD	Electrostatic Sensitive Device
EXT	External
FAS	Failure analysis strategy
GHz	Gigahertz
GIIS	General Instrument Interface Specification
GND	Ground
GSE	Ground Support Equipment
HTR	Heater
kHz	Kilohertz
LPT	Limited performance test
LSB	Least significant bit
MA	Milliamp
METSAT	Meteorological Satellite
MLB	Main load bus
MFG	Manufacturer
MMW	Millimeter wave
MS, MSEC	Millisecond
MSB	Most significant bit
MV	Millivolt
NEΔT	Noise equivalent delta temperature
PFM	Protoflight Model
PLB	Pulse load bus
PLL	Phase lock loop

PLLO	Phase lock loop oscillator
POS	Position
PWR	Power
RTN	Return
STE	Special Test Equipment
SW	
TAR	Test Anomaly Record
TDS	Test Data Sheet
TLM	Telemetry
TM	Instrument Temperature
UIIS	Unique Instrument Interface Specification
Vdc	Volts, direct current
μs	Microsecond

6.2 Changes. The outside margins of this document have been marked to indicate where modifications, deletions, or additions have been made since the previous issue. This is done solely as a convenience to users, who are cautioned to evaluate the requirements of this change and the parent standard based on the entire content as written, regardless of the marginal notations and relationship to the previous issue.

APPENDIX A

TEST DATA SHEETS

10. APPENDIX A

10.1 Scope. This appendix contains the test data sheets for all tests and inspections listed in section 3.

TDS		Page
1	Grounding Test.....	A-2
2	+28 MLB Turn-on Transient	A-11
3	+28 MLB Operating Power	A-12
4	+28 Pulse Load Bus	A-13
5	+28V Analog Telemetry Bus	A-14
6	+10V Interface Bus Voltage	A-15
7	1.248 MHz Clock Signal Verification	A-16
8	"C1" Shift Pulse Verification.....	A-17
9	"A1" Select Pulse Verification	A-18
10	"8 Seconds" Frame Sync Pulse.....	A-19
11	Synchronization Signals Relationship	A-20
12	Synchronization Signals Relationship	A-22
13	Commands and Digital-B Telemetry Verification	A-23
14	Scanner Commands Verification	A-24
15	Scanner Commands Verification	A-25
16	Scanner Commands Verification	A-26
17	Scanner Positions Commands.....	A-27
18	Digital-A Data Output Full Scan Mode Synch Sequence, Unit I.D./Serial Number and Digital-B Serial Data Verification.....	A-28
19	Reflector Positions Section [IV]	A-29
20	Digital-A Data Output Radiometer Data Section [V]	A-30
21	Full Scan Mode Temperature Sensors Section [VI].....	A-31
22	Digital-A Data Output Warm Cal Mode Synch Sequence, Unit I.D./Serial Number and Digital-B Serial Data Verification.....	A-32
23	Reflector Position Warm Cal Mode Section [IV], Reflector Position Cold Cal Mode Section [IV], Reflector Position Nadir Mode Section [IV].....	A-33
24	Digital-A Data Output Warm Cal Mode Radiometer Data Section [V].....	A-34
25	Warm Cal Mode Temperature Sensors Section [VI]	A-35
26	Digital-A Data Output Cold Cal Mode Synch Sequence, Unit I.D./Serial Number and Digital-B Serial Data Verification.....	A-36
27	Digital-A Data Output Cold Cal Mode Radiometer Data Section [V].....	A-37
28	Cold Cal Mode Temperature Sensors Section [VI]	A-38
29	Digital-A Data Output Nadir Mode Synch Sequence, Unit I.D./Serial Number and Digital-B Serial Data Verification.....	A-39
30	Digital-A Data Output Nadir Mode Radiometer Data Section [V].....	A-40
31	Nadir Mode Temperature Sensors Section [VI].....	A-41
32	Analog Telemetry Verification by Way of Connector J6	A-42
33	Analog Telemetry Signals by Way of the STE.....	A-43
34	Integrate/Hold and Dump Signal Verification	A-44
35	Integration Time (Analog Output) Verification	A-45
36	Digital-A/GSE Mode-1 Synch Sequence, Unit I.D./Serial Number and Digital-B Serial Data Verification	A-46
37	Digital A/GSE Modes-1-4 Reflector Position Section [IV].....	A-47
38	Digital A/GSE Mode-1 Radiometer Data Section [V]	A-49
39	Digital A/GSE Mode-1 Temperature Sensors Section [VI].....	A-50
40	Radiometer Relative NEAT Verification	A-51
40A	Channel Identification Test.....	A-52
41	Transient Susceptibility Test.....	A-53

TEST DATA SHEET 1 (SHEET 1 OF 9)
Grounding Test (Paragraph 3.2.4.1)

J1 of Spacecraft Interface				
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J1-1	+28V MLB	> 100k		
J1-2	+28V MLB	> 100k		
J1-3	+28V MLB RTN	> 100k		
J1-4	+28V MLB RTN	> 100k		
J1-5	+28V PLB	> 100k		
J1-6	+28V PLB	> 100k		
J1-7	+28V PLB RTN	> 100k		
J1-8	+28V PLB RTN	> 100k		
J1-9	+28V TMB	> 100k		
J1-10	28V TMB RTN	> 100k		
J1-11	NO CONNECTION	> 100k		
J1-12	NO CONNECTION	> 100k		
J1-13	CHASSIS GROUND (E1)	< 1		
J1-14	+28V MLB	> 100k		
J1-15	+28V MLB	> 100k		
J1-16	+28V MLB RTN	> 100k		
J1-17	+28V MLB RTN	> 100k		
J1-18	+28V PLB	> 100k		
J1-19	+28V PLB	> 100k		
J1-20	+28V PLB RTN	> 100k		
J1-21	+28V PLB RTN	> 100k		
J1-22	+28V TMB	> 100k		
J1-23	28V TMB RTN	> 100k		
J1-24	SAFETY HTR PWR	> 100k		
J1-25	SAFETY HTR RTN	> 100k		

TEST DATA SHEET 1 (Sheet 2 of 9)
Grounding Test (Paragraph 3.2.4.1)

J2 of Spacecraft Interface				
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J2-1	Chassis Ground (E2)	< 1		
J2-2	DATA CLOCK (C1)	> 100k		
J2-3	Signal Return	> 100k		
J2-4	No Connection	> 100k		
J2-5	DIGITAL A DATA OUT	> 100k		
J2-6	DATA ENABLE (A1)	> 100k		
J2-7	8 SEC SYNC PULSE	> 100k		
J2-8	No Connection	> 100k		
J2-9	No Connection	> 100k		

J3 of Spacecraft Interface				
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J3-1	1.248 MHz CLK	> 100k		
J3-2	1.248 MHz CLK RTN	> 100k		
J3-3	Chassis GND (E3)	< 1		

J5 of Spacecraft Interface				
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J5-1	Chassis Ground (E5)	< 1		
J5-2	MODULE PWR IND	> 100k		
J5-3	COLD CAL POS MSB (OUT)	> 100k		
J5-4	No Connection	> 100k		
J5-5	COMP MTR IND	> 100k		
J5-6	ANT IN COLD CAL POS	> 100k		
J5-7	No Connection	> 100k		
J5-8	No Connection	> 100k		
J5-9	SURV HTR ON/OFF	> 100k		
J5-10	No Connection	> 100k		
J5-11	COLD CAL POS LSB (OUT)	> 100k		
J5-12	SCANNER ON PWR IND	> 100k		
J5-13	ANT IN WARM CAL POS	> 100k		
J5-14	ANT AT NADIR POS	> 100k		
J5-15	FULL SCAN MODE	> 100k		

TEST DATA SHEET 1 (Sheet 3 of 9)
Grounding Test (Paragraph 3.2.4.1)

J4 of Spacecraft Interface				
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J4-1	Chassis Ground (E4)	< 1		
J4-2	MODULE PWR DISCONN	> 100k		
J4-3	SURVIVAL HTR ON	> 100k		
J4-4	MODULE TOTALLY OFF	> 100k		
J4-5	COMP MTR ON/OFF	> 100k		
J4-6	ANT AT COLD CAL POS	> 100k		
J4-7	No Connection	> 100k		
J4-8	ANT AT NADIR POS	> 100k		
J4-9	COLD CAL POS MSB (IN)	> 100k		
J4-10	No Connection	> 100k		
J4-11	No Connection	> 100k		
J4-12	+10V INTERFACE BUS	> 100k		
J4-13	10V INTERFACE BUS RTN	> 100k		
J4-14	MODULE PWR CONN	> 100k		
J4-15	SURVIVAL HTR OFF	> 100k		
J4-16	SCANNER PWR ON/OFF	> 100k		
J4-17	ANT AT WARM CAL POS	> 100k		
J4-18	FULL SCAN	> 100k		
J4-19	COLD CAL POS LSB (IN)	> 100k		
J4-20	No Connection	> 100k		
J4-21	No Connection	> 100k		
J4-22	No Connection	> 100k		
J4-23	No Connection	> 100k		
J4-24	+10V INTERFACE BUS	> 100k		
J4-25	10V INTERFACE BUS RTN	> 100k		

TEST DATA SHEET 1 (Sheet 4 of 9)
Grounding Test (Paragraph 3.2.4.1)

J6 of Spacecraft Interface				
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J6-1	Chassis GND (E6)	< 1		
J6-2	RF SHELF TEMP	> 100k		
J6-3	COMP. MTR. TEMP	> 100k		
J6-4	WARM LOAD TEMP	> 100k		
J6-5	No Connection	> 100k		
J6-6	No Connection	> 100k		
J6-7	No Connection	> 100k		
J6-8	SCAN MTR CURR	> 100k		
J6-9	+15V ANT DR MON	> 100k		
J6-10	+15V ANT DR MON	> 100k		
J6-11	+15V SIG PROC MON	> 100k		
J6-12	+15V SIG PROC MON	> 100k		
J6-13	L.O. #1 MON	> 100k		
J6-14	No Connection	> 100k		
J6-15	No Connection	> 100k		
J6-16	No Connection	> 100k		
J6-17	No Connection	> 100k		
J6-18	No Connection	> 100k		
J6-19	No Connection	> 100k		
J6-20	28V TMB RTN	> 100k		
J6-21	No Connection	> 100k		
J6-22	SCAN MTR TEMP	> 100k		
J6-23	No Connection	> 100k		
J6-24	No Connection	> 100k		
J6-25	No Connection	> 100k		
J6-26	No Connection	> 100k		
J6-27	COMP MTR CURR	> 100k		
J6-28	-15V ANT DR MON	> 100k		
J6-29	-15V SIG PROC MON	> 100k		
J6-30	L.O. #2 MON	> 100k		
J6-31	No Connection	> 100k		
J6-32	No Connection	> 100k		
J6-33	No Connection	> 100k		
J6-34	MIXER/AMP MON	> 100k		
J6-35	No Connection	> 100k		
J6-36	No Connection	> 100k		
J6-37	No Connection	> 100k		

TEST DATA SHEET 1 (Sheet 5 of 9)
Grounding Test (Paragraph 3.2.4.1)

J7 of Spacecraft Interface				
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J7-1	Chassis GND (E7)	< 1		
J7-2	No Connection	> 100k		
J7-3	No Connection	> 100k		
J7-4	No Connection	> 100k		
J7-5	15V RTN (2/3)	> 100k		
J7-6	DUMP TP	> 100k		
J7-7	No Connection	> 100k		
J7-8	CH1 ANALOG OUT TP	> 100k		
J7-9	CH2 ANALOG OUT TP	> 100k		
J7-10	No Connection	> 100k		
J7-11	No Connection	> 100k		
J7-12	No Connection	> 100k		
J7-13	No Connection	> 100k		
J7-14	No Connection	> 100k		
J7-15	No Connection	> 100k		
J7-16	No Connection	> 100k		
J7-17	GSE CMD LSB	> 100k		
J7-18	GSE CMD MSB-1	> 100k		
J7-19	+5VDC GSE INTERLOCK A	> 100k		
J7-20	No Connection	> 100k		
J7-21	No Connection	> 100k		
J7-22	No Connection	> 100k		
J7-23	I/H TP	> 100k		
J7-24	No Connection	> 100k		
J7-25	No Connection	> 100k		
J7-26	15V RTN (2/3)	> 100k		
J7-27	No Connection	> 100k		
J7-28	No Connection	> 100k		
J7-29	No Connection	> 100k		
J7-30	No Connection	> 100k		
J7-31	No Connection	> 100k		
J7-32	No Connection	> 100k		
J7-33	No Connection	> 100k		
J7-34	No Connection	> 100k		
J7-35	GSE CMD MSB	> 100k		
J7-36	5V RTN (1)	> 100k		
J7-37	+5VDC GSE INTERLOCK B	> 100k		

TEST DATA SHEET 1 (Sheet 6 of 9)
Grounding Test (Paragraph 3.2.4.1)

Source Pin	Destination Pin	Source Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J1-1	J1-2	+28V MLB	< 1		
J1-1	J1-14	+28V MLB	< 1		
J1-1	J1-15	+28V MLB	< 1		
J1-3	J1-4	28V MLB RTN	< 1		
J1-3	J1-16	28V MLB RTN	< 1		
J1-3	J1-17	28V MLB RTN	< 1		
J1-5	J1-6	+28V PLB	< 1		
J1-5	J1-18	+28V PLB	< 1		
J1-5	J1-19	+28V PLB	< 1		
J1-7	J1-8	28V PLB RTN	< 1		
J1-7	J1-20	28V PLB RTN	< 1		
J1-7	J1-21	28V PLB RTN	< 1		
J1-9	J1-22	+28V TMB	< 1		
J1-10	J1-23	28V TMB RTN	< 1		
J1-10	J6-20	28V TMB RTN	< 1		
J4-12	J4-24	+10V INTERFACE BUS	< 1		
J4-13	J4-25	10V INTERFACE BUS RTN	< 1		
J1-1	J1-3	+28V MLB	> 100k		
J1-1	J1-5	+28V MLB	> 100k		
J1-1	J1-7	+28V MLB	> 100k		
J1-1	J1-9	+28V MLB	> 100k		
J1-1	J1-10	+28V MLB	> 100k		
J1-1	J1-24	+28V MLB	> 100k		
J1-1	J1-25	+28V MLB	> 100k		
J1-1	J2-3	+28V MLB	> 100k		
J1-1	J4-12	+28V MLB	> 100k		
J1-1	J4-13	+28V MLB	> 100k		
J1-3	J1-5	28V MLB RTN	> 100k		
J1-3	J1-7	28V MLB RTN	> 100k		
J1-3	J1-9	28V MLB RTN	> 100k		
J1-3	J1-10	28V MLB RTN	> 100k		
J1-3	J1-24	28V MLB RTN	> 100k		
J1-3	J1-25	28V MLB RTN	> 100k		
J1-3	J2-3	28V MLB RTN	> 100k		
J1-3	J4-12	28V MLB RTN	> 100k		
J1-3	J4-13	28V MLB RTN	> 100k		

TEST DATA SHEET 1 (Sheet 7 of 9)
Grounding Test (Paragraph 3.2.4.1)

Source Pin	Destination Pin	Source Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J1-5	J1-7	+28V PLB	> 100k		
J1-5	J1-9	+28V PLB	> 100k		
J1-5	J1-10	+28V PLB	> 100k		
J1-5	J1-24	+28V PLB	> 100k		
J1-5	J1-25	+28V PLB	> 100k		
J1-5	J2-3	+28V PLB	> 100k		
J1-5	J4-12	+28V PLB	> 100k		
J1-5	J4-13	+28V PLB	> 100k		
J1-7	J1-9	28V PLB RTN	> 100k		
J1-7	J1-10	28V PLB RTN	> 100k		
J1-7	J1-24	28V PLB RTN	> 100k		
J1-7	J1-25	28V PLB RTN	> 100k		
J1-7	J2-3	28V PLB RTN	> 100k		
J1-7	J4-12	28V PLB RTN	> 100k		
J1-7	J4-13	28V PLB RTN	> 100k		
J1-9	J1-10	+28V TMB	> 100k		
J1-9	J1-24	+28V TMB	> 100k		
J1-9	J1-25	+28V TMB	> 100k		
J1-9	J2-3	+28V TMB	> 100k		
J1-9	J4-12	+28V TMB	> 100k		
J1-9	J4-13	+28V TMB	> 100k		
J1-10	J1-24	28V TMB RTN	> 100k		
J1-10	J1-25	28V TMB RTN	> 100k		
J1-10	J2-3	28V TMB RTN	> 100k		
J1-10	J4-12	28V TMB RTN	> 100k		
J1-10	J4-13	28V TMB RTN	> 100k		
J1-24	J1-25	SAFETY HTR PWR	> 100k		
J1-24	J2-3	SAFETY HTR PWR	> 100k		
J1-24	J4-12	SAFETY HTR PWR	> 100k		
J1-24	J4-13	SAFETY HTR PWR	> 100k		
J1-25	J2-3	SAFETY HTR PWR RTN	> 100k		
J1-25	J4-12	SAFETY HTR PWR RTN	> 100k		
J1-25	J4-13	SAFETY HTR PWR RTN	> 100k		
J2-3	J4-12	SIGNAL RTN	> 100k		
J2-3	J4-13	SIGNAL RTN	> 100k		
J4-12	J4-13	+10V INTERFACE BUS	> 100k		

TEST DATA SHEET 1 (Sheet 8 of 9)
Grounding Test (Paragraph 3.2.4.1)

Source Pin	Destination Pin	Source Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J2-2	J4-13	DATA CLOCK (C1)	> 2k		
J2-5	J4-13	DIGITAL A DATA OUT	> 2k		
J2-6	J4-13	DATA ENABLE (A1)	> 2k		
J2-7	J4-13	8 SEC SYNC PULSE	> 2k		
J3-1	J4-13	1.248 MHZ CLK	> 2k		
J3-2	J4-13	1.248 MHZ CLK RTN	> 2k		
J4-2	J4-13	MODULE PWR DISCONN	> 2k		
J4-3	J4-13	SURVIVAL HTR ON	> 2k		
J4-4	J4-13	MODULE TOTALLY OFF	> 2k		
J4-5	J4-13	COMP MTR ON/OFF	> 2k		
J4-6	J4-13	ANT AT COLD CAL POS	> 2k		
J4-8	J4-13	ANT AT NADIR POS	> 2k		
J4-9	J4-13	COLD CAL POS MSB (IN)	> 2k		
J4-14	J4-13	MODULE PWR CONN	> 2k		
J4-15	J4-13	SURVIVAL HTR OFF	> 2k		
J4-16	J4-13	SCANNER PWR ON/OFF	> 2k		
J4-17	J4-13	ANT AT WARM CAL POS	> 2k		
J4-18	J4-13	FULL SCAN	> 2k		
J4-19	J4-13	COLD CAL POS LSB (IN)	> 2k		
J5-2	J4-13	MODULE PWR IND	> 2k		
J5-3	J4-13	COLD CAL POS MSB	> 2k		
J5-5	J4-13	COMP MTR IND	> 2k		
J5-6	J4-13	ANT IN COLD CAL POS	> 2k		
J5-9	J4-13	SURV HTR ON/OFF	> 2k		
J5-11	J4-13	COLD CAL POS LSB	> 2k		
J5-12	J4-13	SCANNER ON PWR IND	> 2k		
J5-13	J4-13	ANT IN WARM CAL POS	> 2k		
J5-14	J4-13	ANT IN NADIR POS	> 2k		
J5-15	J4-13	FULL SCAN MODE	> 2k		

2 Apr 99

TEST DATA SHEET 1 (Sheet 9 of 9)
Grounding Test (Paragraph 3.2.4.1)

Source Pin	Destination Pin	Source Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J6-8	J4-13	SCAN MTR Curr	> 2k		
J6-9	J4-13	+15V ANT DR MON	> 2k		
J6-10	J4-13	+5V ANT DR MON	> 2k		
J6-11	J4-13	+15V SIG PROC MON	> 2k		
J6-12	J4-13	+5V SIG PROC MON	> 2k		
J6-13	J4-13	L.O. #1 MON	> 2k		
J6-20	J4-13	28V TMB RTN	> 2k		
J6-22	J4-13	SCAN MTR TEMP	> 2k		
J6-27	J4-13	COMP MTR Curr	> 2k		
J6-28	J4-13	-15V ANT DR MON	> 2k		
J6-29	J4-13	-15V SIG PROC MON	> 2k		
J6-30	J4-13	L.O. #2 MON	> 2k		
J6-34	J4-13	MIXER/AMP MON	> 2k		
J6-2	J1-10	RF SHELF TEMP	> 2k		
J6-3	J1-10	COMP MTR TEMP	> 2k		
J6-4	J1-10	WARM LOAD TEMP	> 2k		

METSAT/AMSU A2 System CPT P/N IS-1331200

Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____

LPT _____

S/N: _____

Test Systems Engineer

Date

Customer Representative
Date

Date

Quality Control

TEST DATA SHEET 2
+28 MLB Turn-on Transient (Paragraph 3.2.4.2.1.1)

At 28.56 Vdc:

Step	Parameter	Measured/ Calculated	Required		Pass/ Fail
			*	**	
7	Peak Current	Amps	<8.3 Amps	<5.7 Amps	
7	Pulse Width	ms	<100 ms	<120 ms	
7	Rate of Change (Slope): dI/dT	mA/μs	<640 mA/μs	<250 mA/μs	

At 27.44 Vdc:

Step	Parameter	Measured/ Calculated	Required		Pass/ Fail
			*	**	
7	Peak Current	Amps	<8.3 Amps	<5.7 Amps	
7	Pulse Width	ms	<100 ms	<120 ms	
7	Rate of Change (Slope): dI/dT	mA/μs	<640 mA/μs	<250 mA/μs	

At 28.00 Vdc:

Step	Parameter	Measured/ Calculated	Required		Pass/ Fail
			*	**	
7	Peak Current	Amps	<8.3 Amps	<5.7 Amps	
7	Pulse Width	ms	<100 ms	<120 ms	
7	Rate of Change (Slope): dI/dT	mA/μs	<640 mA/μs	<250 mA/μs	

* For S/N 101 through 104

** For S/N 105 through 109.

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Test Systems Engineer _____ Date _____

Customer Representative _____ Date _____
(Flight Hardware Only)

Quality Control _____

AE-26156/4E
2 Apr 99

TEST DATA SHEET 3
+28V MLB Operating Power (Paragraph 3.2.4.2.1.2)

Step	+28V MLB at 27 Volts	Measured	Units	Required	Pass/Fail
4	+28V MLB voltage at 27V (V_b) (Measured)		Volts	27.0 ± 0.1	
5	Average Current (I_V)		Amps	N/A	N/A
6	+28V MLB bus power = $I_V \times V_b$		Watts	25W max	
+28V MLB at 28 Volts					
7	+28V MLB Bus Voltage at 28V (V_b) (Measured)		Volts	28.0 ± 0.1	
8	Average Current (I_V)		Amps	N/A	N/A
9	+28V MLB Operating Power = $I_V \times V_b$		Watts	25W max	
+28V MLB at 29 Volts					
10	+28V MLB voltage at 29V (V_b) (Measured)		Volts	29.0 ± 0.1	
11	Average Current (I_V)		Amps	N/A	N/A
12	+28V MLB operating power = $I_V \times V_b$		Watts	25W max	

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Customer Representative Date
Date
(Flight Hardware Only)

Test Systems Engineer Date

Quality Control

TEST DATA SHEET 4
+28 Pulse Load Bus (Paragraph 3.2.4.2.2.1-3.2.4.2.2.7)

Peak current

Paragraph	Parameter	Measured or Calculated	Required	Pass/ Fail
3.2.4.2.2.1	From -0.1 to two seconds			
	Peak Current = I_p	____ Amps	2.2 amps max	
3.2.4.2.2.2	From 2 to 4 seconds			
	Peak Current = I_p	____ Amps	2.2 amps max	
3.2.4.2.2.3	From 4 to 6 seconds			
	Peak Current = I_p	____ Amps	2.2 amps max	
3.2.4.2.2.4	From 6 to 8 seconds			
	Peak Current = I_p	____ Amps	2.2 amps max	
3.2.4.2.2.5	Eight Sec. Integrated Current Measurement			
	Current	____ mA	none	
3.2.4.2.2.7	Turn-on Transient:			
	Turn-on pulse width	____ ms		
	Peak Current = I_p	____ Amps	≤ 9.6 Amps	
	dI/dT	____ mA/ μ s	846 mA/ μ s *	

* Refer to Figure 10.

Bus current during the L/H/D period

Paragraph	Parameter	Measured or Calculated	Pass/ Fail
3.2.4.2.2.1	From -0.1 to 2 seconds	____ mA	N/A
3.2.4.2.2.2	From 2 to 4 seconds	____ mA	N/A
3.2.4.2.2.3	From 4 to 6 seconds	____ mA	N/A
3.2.4.2.2.4	From 6 to 8 seconds	____ mA	N/A

Bus current during warm cal, cold cal, and nadir

Paragraph	Parameter	Measured	Pass/ Fail
3.2.4.2.2.6 (2)	Warm cal	____ mA	N/A
3.2.4.2.2.6 (3)	Cold cal	____ mA	N/A
3.2.4.2.2.6 (4)	Nadir	____ mA	N/A

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT

Shop Order: _____ S/N: _____

Test Systems Engineer Date

Customer Representative Date
Date
(Flight Hardware Only)

Quality Control

AE-26156/4E
2 Apr 99

TEST DATA SHEET 5
+28V Analog Telemetry Bus (Paragraph 3.2.4.2.3)

Step	Parameter	Measured/ Calculated	Required	Pass/ Fail
3	+28V ATB Bus Voltage (V_{at}) (Measured)	____ Volts	28.0 \pm .5	
3	Av. Current (I_a)	____ mA	7 mA max	
4	+28V ATB Bus Power = $I_a \times V_{at}$	____ mW	200 mW max	

METSAT/AMSU A2 System CPT P/N IS-1331200 Shop Order: _____ S/N: _____
Circle Test: 1st CPT Final CPT Sub CPT _____

Test Systems Engineer Date

Customer Representative Date
Date
(Flight Hardware Only)

Quality Control

TEST DATA SHEET 6
+10V Interface Bus Voltage (Paragraph 3.2.4.2.4.1)

Step	Parameter	Measured/ Calculated	Required	Pass/ Fail
3	Av. Current (I_a)	____ mA	10 mA max	
3	+10V Interface Bus (V_{ib}) (Measured)	____ Volts	9.0 ± 1.0 V	
4	+10 Interface Bus Power = $I_a \times V_{ib}$	____ mW	100 mW max	

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Test Systems Engineer Date

Customer Representative Date
Date
(Flight Hardware Only)

Quality Control

TEST DATA SHEET 7
1.248 MHz Clock Signal Verification (Paragraph 3.2.4.3.2.1)

1.248 CLOCK SIGNAL
ATTACH PHOTOGRAPH OR PLOT HERE

Step	Parameter	Measured/ Calculated	Required	Pass/ Fail
5	Clock Frequency	____ MHz	1.248 ±10%	
	Clock Amplitude	____ Volts	9.0 ±1.0V	

METSAT/AMSU A2 System CPT P/N IS-1331200 Shop Order: _____ S/N: _____
Circle Test: 1st CPT Final CPT Sub CPT _____

Test Systems Engineer Date

Customer Representative Date
Date
(Flight Hardware Only)

Quality Control

TEST DATA SHEET 8
"C1" Shift Pulse Verification (Paragraph 3.2.4.3.2.2)

"C1" SHIFT PULSE
ATTACH PHOTOGRAPH OR PLOT HERE

Parameter	Measured/ Calculated	Required	Pass/ Fail
Pulse Timing (A) *	_____ μ s	48 μ s \pm 10%	
Pulse Timing (B) *	_____ μ s	12 μ s \pm 10%	
Pulse Amplitude	_____ Volts	9.0 \pm 1.0V	

* Refer to Figure 18 for location of the pulse timing A and B.

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Customer Representative _____ Date _____
Date _____
(Flight Hardware Only)

Test Systems Engineer _____ Date _____

Quality Control _____

TEST DATA SHEET 9
"A1" Select Pulse Verification (Paragraph 3.2.4.3.2.3)

"A1" SELECT PULSE
ATTACH PHOTOGRAPH OR PLOT HERE

Parameter	Measured/ Calculated	Required	Pass/ Fail
Select Pulse Timing (F) *	____ μ s	961.5 μ s \pm 10%	
Select Pulse Amplitude	____ Volts	9.0 \pm 1.0V	

* Refer to Figure 18 for location of the pulse timing F

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Test Systems Engineer Date

Customer Representative Date
Date
(Flight Hardware Only)

Quality Control

TEST DATA SHEET 10
"8 Seconds" Frame Sync Pulse (Paragraph 3.2.4.3.2.4)

"8 SECONDS" FRAME SYNC PULSE
ATTACH PHOTOGRAPH OR PLOT HERE

Step	Parameter	Measured/ Calculated	Required	Pass/ Fail
1*	Frame Sync Pulse Timing	____ Sec	8 Sec \pm 10%	
	Frame Sync Pulse Timing (C)**	____ μ s	240.4 μ s \pm 10%	
	Frame Sync Pulse Amplitude	____ Volts	9.0 \pm 1.0V	

* Measure timing of 8-sec FSP by using HP 5316A Universal Counter.

** Refer to Figure 18 for location of the timing pulses for C.

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Test Systems Engineer _____ Date _____

Customer Representative _____ Date _____
Date
(Flight Hardware Only)

Quality Control _____

AE-26156/4E
2 Apr 99

TEST DATA SHEET 11 (Sheet 1 of 2)
Synchronization Signals Relationship (Paragraph 3.2.4.3.2.5)

A1 Select pulse and the 8 seconds Frame sync pulse.

ATTACH PHOTOGRAPH OR PLOT HERE

Verify that the timing between H and I is as shown in Figure 18.

TIME MEASURED: _____

TIME REQUIRED: 13.7 ms ±10%

PASS/FAIL _____

METSAT/AMSU A2 System CPT P/N IS-1331200 Shop Order: _____ S/N: _____
Circle Test: 1st CPT Final CPT Sub CPT _____

Customer Representative Date
Date
(Flight Hardware Only)

Test Systems Engineer Date

Quality Control

2 Apr 99

TEST DATA SHEET 11 (Sheet 2 of 2)
Synchronization Signals Relationship (Paragraph 3.2.4.3.2.5)

A1 Select pulse and the C1 Shift pulse.

ATTACH PHOTOGRAPH OR PLOT HERE

Verify that the timing between I and E is as shown
in Figure 18.

TIME MEASURED: _____

TIME REQUIRED: 24 μ s \pm 10%

PASS/FAIL _____

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Test Systems Engineer Date

Customer Representative Date
Date
(Flight Hardware Only)

Quality Control

AE-26156/4E
2 Apr 99

TEST DATA SHEET 12
Synchronization Signals Relationship (Paragraph 3.2.4.3.2.5)

A1 Select pulse and the 1.248 MHz clock.

ATTACH PHOTOGRAPH OR PLOT HERE

Verify that the timing between I and J is as shown
in Figure 18.

PASS/FAIL _____

METSAT/AMSU A2 System CPT P/N IS-1331200 Shop Order: _____ S/N: _____
Circle Test: 1st CPT Final CPT Sub CPT _____

Test Systems Engineer Date

Customer Representative Date
(Flight Hardware Only)

Quality Control

TEST DATA SHEET 13
Commands and Digital-B Telemetry Verification (Paragraphs 3.2.4.3.3.1, 3.2.4.3.3.2, and 3.2.4.3.3.3)

Test	Digital-B Commands Verification Via STE			Visual Inspection		Pass/Fail
	Command	Observed	Required	Observed	Required	
3.2.4.3.3.1 Module Totally Off	Scanner A2		OFF		Antenna pointing to warm load.	
	Module Power		Disconnect	N/A	N/A	
	Survival Htr. Power.		OFF		28V supply current=0	
3.2.4.3.3.2 Survival Heater Power	Survival Heater ON		ON	N/A	N/A	
	Survival Heater OFF		OFF	N/A	N/A	
3.2.4.3.3.3 Module Power Connect	Module Power		Connect		+28V DC current is between 0.5 and 3.2 amps.	

METSAT/AMSU A2 System CPT P/N IS-1331200 Shop Order: _____ S/N: _____
Circle Test: 1st CPT Final CPT Sub CPT _____

Test Systems Engineer Date

Customer Representative Date
Date
(Flight Hardware Only)

Quality Control

AE-26156/4E
2 Apr 99

TEST DATA SHEET 14
Scanner Commands Verification (Paragraph 3.2.4.3.3.4, Step 1)

Test	Digital "B" Verification			Pass/Fail
	Command	Observed	Required	
Full Scan	1 Module Power		CONNECT	
	2 Survival Heater		OFF	
	3 Scanner A2 Power		ON	
	4 Compensator Motor Power		ON	
	5 Antenna Warm Cal Pos.		NO	
	6 Antenna Cold Cal Pos.		NO	
	7 Antenna NADIR Position		NO	
	8 Antenna Full Scan		YES	
	9 Cold MSB		0	
	10 Cold LSB		0	

METSAT/AMSU A2 System CPT P/N IS-1331200 Shop Order: _____ S/N: _____
Circle Test: 1st CPT Final CPT Sub CPT _____

Test Systems Engineer Date

Customer Representative Date
(Flight Hardware Only)

Quality Control

TEST DATA SHEET 15
Scanner Commands Verification (Paragraph 3.2.4.3.3.4, Step 2)

Test	Digital "B" Verification			Pass/Fail
	Command	Observed	Required	
Full Scan	1 Module Power		CONNECT	
	2 Survival Heater		OFF	
	3 Scanner A2 Power		OFF	
	4 Compensator Motor Power		OFF	
	5 Antenna Warm Cal Pos.		NO	
	6 Antenna Cold Cal Pos.		NO	
	7 Antenna NADIR Position		NO	
	8 Antenna Full Scan		YES	
	9 Cold MSB		0	
	10 Cold LSB		0	

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Test Systems Engineer Date

Customer Representative Date
Date
(Flight Hardware Only)

Quality Control

AE-26156/4E
2 Apr 99

TEST DATA SHEET 16
Scanner Commands Verification (Paragraph 3.2.4.3.3.4, Step 3)

Test	Digital "B" Verification			Pass/Fail
	Command	Observed	Required	
Full Scan	1 Module Power		CONNECT	
	2 Survival Heater		OFF	
	3 Scanner A2 Power		ON	
	4 Compensator Motor Power		ON	
	5 Antenna Warm Cal Pos.		NO	
	6 Antenna Cold Cal Pos.		NO	
	7 Antenna NADIR Position		NO	
	8 Antenna Full Scan		YES	
	9 Cold MSB		0	
	10 Cold LSB		0	

METSAT/AMSU A2 System CPT P/N IS-1331200

Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____

S/N: _____

Customer Representative Date
Date
(Flight Hardware Only)

Test Systems Engineer Date

Quality Control

TEST DATA SHEET 17
Scanner Positions Commands (Paragraph 3.2.4.3.3.5)

Test	Digital "B" Verification			Pass/Fail
	Step/Description	Observed	Required	
Scanner Position Commands	1-Warm Cal.		YES	
	3-Cold Cal. Pos.	MSB	0	
		LSB	1	
	5-Cold Cal. Pos.	MSB	1	
		LSB	0	
	7-Cold Cal. Pos.	MSB	1	
		LSB	1	
	9-Cold Cal. Pos.	MSB	0	
		LSB	0	
	11-NADIR		YES	
	13-Warm Cal		YES	

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Test Systems Engineer Date

Customer Representative Date
Date
(Flight Hardware Only)

Quality Control

TEST DATA SHEET 18
Digital-A Data Output Full Scan Mode Synch Sequence,
Unit I.D./Serial Number and Digital-B Serial Data Verification
Sections [I], [II], and [III] (Paragraph 3.2.4.3.4.1)

Step	Element (For Ref)	Description	Recorded Value	Required Value	Pass/Fail
[I]	0001	Sync Sequence Byte 1		255	
	0002	Sync Sequence Byte 2		255	
	0003	Sync Sequence Byte 3		255	
[II]	0004	Unit I.D. and Serial N		*	
[III]	0005	Digital B Data Byte 1		2	
	0006	Digital B Data Byte 2		6	
	0007	Digital B Data Byte 3		0	
	0008	Digital B Data Byte 4		0	
* AMSU A2 Identification Words (data entered in decimal system)			Binary	Decimal	
AMSU-A2 S/N 101			00000010	2	
AMSU-A2 S/N 102			00000110	6	
AMSU-A2 S/N 103			00001010	10	
AMSU-A2 S/N 104			00001110	14	
AMSU-A2 S/N 105			00010010	18	
AMSU-A2 S/N 106			00010110	22	
AMSU-A2 S/N 107			00011010	26	
AMSU-A2 S/N 108			00011110	30	
AMSU-A2 S/N 109			00100010	34	

METSAT/AMSU A2 System CPT P/N IS-1331200 Shop Order: _____ S/N: _____
 Circle Test: 1st CPT Final CPT Sub CPT _____

Customer Representative Date
 Date
 (Flight Hardware Only)

Test Systems Engineer Date

Quality Control

TEST DATA SHEET 19
Reflector Positions Section [IV] (Paragraph 3.2.4.3.4.1)

BP	A2 Reflector		
	Position*	Required**	Pass/Fail
01			
02			
03			
04			
05			
06			
07			
08			
09			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
CC			
WC			

* Actual counts from computer printout. Rewriting counts on this data sheet is optional.

** Required position data from TDS 6 of AE-26002/2 ± 5 counts.

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT

Shop Order: _____ S/N: _____

Customer Representative
Date
(Flight Hardware Only)

Date

Test Systems Engineer Date

Quality Control

TEST DATA SHEET 20
Digital-A Data Output Radiometer Data Section [V] (Paragraph 3.2.4.3.4.1)

BP	Channel-1 (23.8 GHz)			Channel-2 (31.4 GHz)		
	Measured*	Required**	Pass/Fail	Measured*	Required**	Pass/Fail
01						
02						
03						
04						
05						
06						
07						
08						
09						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
CC						
WC						

* Actual counts from computer printout. Rewriting counts on this data sheet is optional.

** Required = $16,500 \pm 4000$ counts.

METSAT/AMSU A2 System CPT P/N IS-1331200
 Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Test Systems Engineer

Date

Customer Representative
 Date
 (Flight Hardware Only)

Date

Quality Control

TEST DATA SHEET 21
Full Scan Mode Temperature Sensors Section [VI] (Paragraph 3.2.4.3.4.1)

Thermistor Sensors		Recorded Value* (deg. C)	Required Value (deg. C)	Pass/ Fail
Element	Description			
0262	Scan Motor		25 ± 15	
0264	Feedhorn		25 ± 15	
0266	RF Mux		25 ± 15	
0268	Mixer I.F. Amp. Channel 1		25 ± 15	
0270	Mixer I.F. Amp. Channel 2		25 ± 15	
0272	Local Oscillator Channel 1		25 ± 15	
0274	Local Oscillator Channel 2		25 ± 15	
0276	Compensation Motor		25 ± 15	
0278	Subreflector		25 ± 15	
0280	DC/DC Converter		25 ± 15	
0282	RF Shelf		25 ± 15	
0284	Detector/Preamp Assembly		25 ± 15	
0286	Warm Load Center		25 ± 15	
0288	Warm Load 1		25 ± 15	
0290	Warm Load 2		25 ± 15	
0292	Warm Load 3		25 ± 15	
0294	Warm Load 4		25 ± 15	
0296	Warm Load 5		25 ± 15	
0298	Warm Load 6		25 ± 15	
0300	Temp Sensor V. Reference		**	

* Value is from the STE printout sheets. Copying data to this sheet is optional.

** Count of 24,552 +1765, -1308.

METSAT/AMSU A2 System CPT P/N IS-1331200 Shop Order: _____ S/N: _____
Circle Test: 1st CPT Final CPT Sub CPT _____

Test Systems Engineer Date

Customer Representative Date
(Flight Hardware Only)

Quality Control

TEST DATA SHEET 22
Digital-A Data Output Warm Cal Mode Synch Sequence,
Unit I.D./Serial Number and Digital-B Serial Data Verification
Sections [I], [II], and [III] (Paragraph 3.2.4.3.4.2)

Step	Element (For Ref)	Description	Recorded Value	Required Value	Pass/Fail
[I]	0001	Sync Sequence Byte 1		255	
	0002	Sync Sequence Byte 2		255	
	0003	Sync Sequence Byte 3		255	
[II]	0004	Unit I.D. and Serial N		*	
[III]	0005	Digital B Data Byte 1		4	
	0006	Digital B Data Byte 2		6	
	0007	Digital B Data Byte 3		0	
	0008	Digital B Data Byte 4		0	
* AMSU A2 Identification Words (data entered in decimal system)			Binary	Decimal	
AMSU-A2 S/N 101			00000010	2	
AMSU-A2 S/N 102			00000110	6	
AMSU-A2 S/N 103			00001010	10	
AMSU-A2 S/N 104			00001110	14	
AMSU-A2 S/N 105			00010010	18	
AMSU-A2 S/N 106			00010110	22	
AMSU-A2 S/N 107			00011010	26	
AMSU-A2 S/N 108			00011110	30	
AMSU-A2 S/N 109			00100010	34	

METSAT/AMSU A2 System CPT P/N IS-1331200 Shop Order: _____ S/N: _____
Circle Test: 1st CPT Final CPT Sub CPT _____

Test Systems Engineer Date

Customer Representative Date
Date
(Flight Hardware Only)

Quality Control

TEST DATA SHEET 23

Reflector Position Warm Cal Mode Section [IV], Reflector Position Cold Cal Mode Section [IV], Reflector Position Nadir Mode Section [IV] (Paragraphs 3.2.4.3.4.2, 3.2.4.3.4.3, 3.2.4.3.4.4)

BP	Reflector			
	Para No.	Position*	Required**	Pass/Fail
WC	3.2.4.3.4.2, Step 5			
CC	3.2.4.3.4.3, Step 5			
	a.			
	b.			
	c.			
	d.			
15	3.2.4.3.4.4, Step 5			

WC = Warm Load

CC = Cold Load

15 = Nadir Position

* Actual counts from computer printout. Rewriting counts on this data sheet is optional.

** Required position data from TDS 6 of AE-26002/2 ± 5 counts.

3.2.4.3.4.3, Step 5 Substep	MSB	LSB
a.	0	0
b.	0	1
c.	1	0
d.	1	1

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Customer Representative Date
Date
(Flight Hardware Only)

Test Systems Engineer Date

Quality Control

TEST DATA SHEET 24
Digital-A Data Output Warm Cal Mode Radiometer Data Section [V] (Paragraph 3.2.4.3.4.2)

BP	Channel-1 (23.8 GHz)				Channel-2 (31.4 GHz)			
	Element (For Ref)	Measured*	Required**	Pass/Fail	Element (For Ref)	Measured*	Required**	Pass/Fail
01	0014				0016			
02	0022				0024			
03	0030				0032			
04	0038				0040			
05	0046				0048			
06	0054				0056			
07	0062				0064			
08	0070				0072			
09	0078				0080			
10	0086				0088			
11	0094				0096			
12	0102				0104			
13	0110				0112			
14	0118				0120			
15	0126				0128			
16	0134				0136			
17	0142				0144			
18	0150				0152			
19	0158				0160			
20	0166				0168			
21	0174				0176			
22	0182				0184			
23	0190				0192			
24	0198				0200			
25	0206				0208			
26	0214				0216			
27	0222				0224			
28	0230				0232			
29	0238				0240			
30	0246				0248			
CC	0258		0		0260		0	
WC	0310		0		0312		0	

* Actual counts from computer printout. Rewriting counts on this data sheet is optional.

** Required = $16,500 \pm 4000$ counts.

METSAT/AMSU A2 System CPT P/N IS-1331200 Shop Order: _____ S/N: _____
 Circle Test: 1st CPT Final CPT Sub CPT _____

Test Systems Engineer _____ Date _____

Customer Representative _____ Date _____
 (Flight Hardware Only)

Quality Control _____

TEST DATA SHEET 25
Warm Cal Mode Temperature Sensors Section [VI] (Paragraph 3.2.4.3.4.2)

Thermistor Sensors		Recorded Value* (deg. C)	Required Value (deg. C)	Pass/ Fail
Element	Description			
0262	Scan Motor		25 ± 15	
0264	Feedhorn		25 ± 15	
0266	RF Mux		25 ± 15	
0268	Mixer I.F. Amp. Channel 1		25 ± 15	
0270	Mixer I.F. Amp. Channel 2		25 ± 15	
0272	Local Oscillator Channel 1		25 ± 15	
0274	Local Oscillator Channel 2		25 ± 15	
0276	Compensation Motor		25 ± 15	
0278	Subreflector		25 ± 15	
0280	DC/DC Converter		25 ± 15	
0282	RF Shelf		25 ± 15	
0284	Detector/Preamp Assembly		25 ± 15	
0286	Warm Load Center		25 ± 15	
0288	Warm Load 1		25 ± 15	
0290	Warm Load 2		25 ± 15	
0292	Warm Load 3		25 ± 15	
0294	Warm Load 4		25 ± 15	
0296	Warm Load 5		25 ± 15	
0298	Warm Load 6		25 ± 15	
0300	Temp Sensor V. Reference		**	

* Value is from the STE printout sheets. Copying data to this sheet is optional.

** Count of 24,552 +1765, -1308.

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Customer Representative Date
Date
(Flight Hardware Only)

Test Systems Engineer Date

Quality Control

TEST DATA SHEET 26
Digital-A Data Output Cold Cal Mode Synch Sequence,
Unit I.D./Serial Number and Digital-B Serial Data Verification
Sections [I], [II], and [III] (Paragraph 3.2.4.3.4.3)

Step	Element (For Ref)	Description	Recorded Value	Required Value	Pass/Fail
[I]	0001	Sync Sequence Byte 1		255	
	0002	Sync Sequence Byte 2		255	
	0003	Sync Sequence Byte 3		255	
[II]	0004	Unit I.D. and Serial N		*	
[III]	0005	Digital B Data Byte 1		8	
	0006	Digital B Data Byte 2		6	
	0007	Digital B Data Byte 3		0	
	0008	Digital B Data Byte 4		0	
* AMSU A2 Identification Words (data entered in decimal system)			Binary	Decimal	
AMSU-A2 S/N 101			00000010	2	
AMSU-A2 S/N 102			00000110	6	
AMSU-A2 S/N 103			00001010	10	
AMSU-A2 S/N 104			00001110	14	
AMSU-A2 S/N 105			00010010	18	
AMSU-A2 S/N 106			00010110	22	
AMSU-A2 S/N 107			00011010	26	
AMSU-A2 S/N 108			00011110	30	
AMSU-A2 S/N 109			00100010	34	

METSAT/AMSU A2 System CPT P/N IS-1331200
 Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Test Systems Engineer Date

Customer Representative Date
 Date
 (Flight Hardware Only)

Quality Control

TEST DATA SHEET 27

Digital-A Data Output Cold Cal Mode Radiometer Data Section [V] (Paragraph 3.2.4.3.4.3)
Condition: Cold Cal Position MSB=0 and Cold Cal Position LSB=0

BP	Channel-1 (23.8 GHz)				Channel-2 (31.4 GHz)			
	Element (For Ref)	Measured*	Required**	Pass/Fail	Element (For Ref)	Measured*	Required**	Pass/Fail
01	0014				0016			
02	0022				0024			
03	0030				0032			
04	0038				0040			
05	0046				0048			
06	0054				0056			
07	0062				0064			
08	0070				0072			
09	0078				0080			
10	0086				0088			
11	0094				0096			
12	0102				0104			
13	0110				0112			
14	0118				0120			
15	0126				0128			
16	0134				0136			
17	0142				0144			
18	0150				0152			
19	0158				0160			
20	0166				0168			
21	0174				0176			
22	0182				0184			
23	0190				0192			
24	0198				0200			
25	0206				0208			
26	0214				0216			
27	0222				0224			
28	0230				0232			
29	0238				0240			
30	0246				0248			
CC	0258		0		0260		0	
WC	0310		0		0312		0	

* Actual counts from computer printout. Rewriting counts on this data sheet is optional.

** Required = $16,500 \pm 4000$ counts.

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Test Systems Engineer _____ Date _____

Customer Representative _____ Date _____
Date
(Flight Hardware Only)

Quality Control _____

TEST DATA SHEET 28
Cold Cal Mode Temperature Sensors Section [VI] (Paragraph 3.2.4.3.4.3)

Thermistor Sensors		Recorded Value* (deg. C)	Required Value (deg. C)	Pass/ Fail
Element	Description			
0262	Scan Motor		25 ± 15	
0264	Feedhorn		25 ± 15	
0266	RF Mux		25 ± 15	
0268	Mixer L.F. Amp. Channel 1		25 ± 15	
0270	Mixer L.F. Amp. Channel 2		25 ± 15	
0272	Local Oscillator Channel 1		25 ± 15	
0274	Local Oscillator Channel 2		25 ± 15	
0276	Compensation Motor		25 ± 15	
0278	Subreflector		25 ± 15	
0280	DC/DC Converter		25 ± 15	
0282	RF Shelf		25 ± 15	
0284	Detector/Preamp Assembly		25 ± 15	
0286	Warm Load Center		25 ± 15	
0288	Warm Load 1		25 ± 15	
0290	Warm Load 2		25 ± 15	
0292	Warm Load 3		25 ± 15	
0294	Warm Load 4		25 ± 15	
0296	Warm Load 5		25 ± 15	
0298	Warm Load 6		25 ± 15	
0300	Temp Sensor V. Reference		**	

* Value is from the STE printout sheets. Copying data to this sheet is optional.

** Count of 24,552 +1765, -1308.

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Test Systems Engineer Date

Customer Representative Date
Date
(Flight Hardware Only)

Quality Control

TEST DATA SHEET 29
 Digital-A Data Output Nadir Mode Synch Sequence,
 Unit ID/Serial Number and Digital-B Serial Data Verification
 Sections [I], [II], and [III] (Paragraph 3.2.4.3.4.4)

Step	Element (For Ref)	Description	Recorded Value	Required Value	Pass/Fail
[I]	0001	Sync Sequence Byte 1		255	
	0002	Sync Sequence Byte 2		255	
	0003	Sync Sequence Byte 3		255	
[II]	0004	Unit I.D. and Serial N		*	
[III]	0005	Digital B Data Byte 1		16	
	0006	Digital B Data Byte 2		6	
	0007	Digital B Data Byte 3		0	
	0008	Digital B Data Byte 4		0	
* AMSU A2 Identification Words (data entered in decimal system)			Binary	Decimal	
AMSU-A2 S/N 101			00000010	2	
AMSU-A2 S/N 102			00000110	6	
AMSU-A2 S/N 103			00001010	10	
AMSU-A2 S/N 104			00001110	14	
AMSU-A2 S/N 105			00010010	18	
AMSU-A2 S/N 106			00010110	22	
AMSU-A2 S/N 107			00011010	26	
AMSU-A2 S/N 108			00011110	30	
AMSU-A2 S/N 109			00100010	34	
METSAT/AMSU A2 System CPT P/N IS-1331200 Circle Test: 1 st CPT Final CPT Sub CPT			Shop Order:	S/N:	
Customer Representative Date (Flight Hardware Only)			Test Systems Engineer	Date	
			Quality Control		

TEST DATA SHEET 30
Digital-A Data Output Nadir Mode Radiometer Data Section [V] (Paragraph 3.2.4.3.4.4)

BP	Channel-1 (23.8 GHz)				Channel-2 (31.4 GHz)			
	Element (For Ref)	Measured*	Required**	Pass/Fail	Element (For Ref)	Measured*	Required**	Pass/Fail
01	0014				0016			
02	0022				0024			
03	0030				0032			
04	0038				0040			
05	0046				0048			
06	0054				0056			
07	0062				0064			
08	0070				0072			
09	0078				0080			
10	0086				0088			
11	0094				0096			
12	0102				0104			
13	0110				0112			
14	0118				0120			
15	0126				0128			
16	0134				0136			
17	0142				0144			
18	0150				0152			
19	0158				0160			
20	0166				0168			
21	0174				0176			
22	0182				0184			
23	0190				0192			
24	0198				0200			
25	0206				0208			
26	0214				0216			
27	0222				0224			
28	0230				0232			
29	0238				0240			
30	0246				0248			
CC	0258		0		0260		0	
WC	0310		0		0312		0	

* Actual counts from computer printout. Rewriting counts on this data sheet is optional.

** Required = $16,500 \pm 4000$ counts.

METSAT/AMSU A2 System CPT P/N IS-1331200 Shop Order: _____ S/N: _____
Circle Test: 1st CPT Final CPT Sub CPT _____

Test Systems Engineer _____ Date _____

Customer Representative _____ Date _____
Date
(Flight Hardware Only)

Quality Control _____

TEST DATA SHEET 31
Nadir Mode Temperature Sensors Section [VI] (Paragraph 3.2.4.3.4.4)

Thermistor Sensors		Recorded Value* (deg. C)	Required Value (deg. C)	Pass/ Fail
Element	Description			
0262	Scan Motor		25 ± 15	
0264	Feedhorn		25 ± 15	
0266	RF Mux		25 ± 15	
0268	Mixer I.F. Amp. Channel 1		25 ± 15	
0270	Mixer I.F. Amp. Channel 2		25 ± 15	
0272	Local Oscillator Channel 1		25 ± 15	
0274	Local Oscillator Channel 2		25 ± 15	
0276	Compensation Motor		25 ± 15	
0278	Subreflector		25 ± 15	
0280	DC/DC Converter		25 ± 15	
0282	RF Shelf		25 ± 15	
0284	Detector/Preamp Assembly		25 ± 15	
0286	Warm Load Center		25 ± 15	
0288	Warm Load 1		25 ± 15	
0290	Warm Load 2		25 ± 15	
0292	Warm Load 3		25 ± 15	
0294	Warm Load 4		25 ± 15	
0296	Warm Load 5		25 ± 15	
0298	Warm Load 6		25 ± 15	
0300	Temp Sensor V. Reference		**	

* Value is from the STE printout sheets. Copying data to this sheet is optional.

** Count of 24,552 +1765, -1308.

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Test Systems Engineer Date

Customer Representative Date
(Flight Hardware Only)

Quality Control

TEST DATA SHEET 32
Analog Telemetry Verification by Way of Connector J6 (Paragraph 3.2.4.3.5.1)

From	Description	To	Measured (volts)	Required (volts)	Pass/Fail
J6-02	RF Shelf A2 Temp.	J1-10	_____	3.5V ± 2V	_____
J6-03	Comp. Motor Temp.	J1-10	_____	3.5V ± 2V	_____
J6-04	Warm Load A2 Temp.	J1-10	_____	3.5V ± 2V	_____
J6-22	A2 Scan Motor Temp.	J1-10	_____	3.5V ± 2V	_____
J6-08	Scan Motor Curr.	J2-03	_____	2.0V ± 1.0V	_____
J6-09	+15V Antenna Drive	J2-03	_____	3.5V ± 0.5V	_____
J6-10	+5V Antenna Drive	J2-03	_____	3.0V ± 0.5V	_____
J6-11	+15V Signal Processing	J2-03	_____	3.5V ± 0.25V	_____
J6-12	+5V Signal Processing	J2-03	_____	3.0V ± 0.25V	_____
J6-13	L.O. Voltage Channel 1	J2-03	_____	3.5V ± 0.5V	_____
J6-27	Comp Motor Current	J2-03	_____	2.0V ± 1.0V	_____
J6-28	-15V Antenna Drive	J2-03	_____	3.0V ± 0.5V	_____
J6-29	-15V Signal Processing	J2-03	_____	3.0V ± 0.25V	_____
J6-30	L.O. Voltage Channel 2	J2-03	_____	3.5V ± 0.5V	_____
J6-34	Mixer/IF Voltage	J2-03	_____	3.5V ± 0.5V	_____

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Test Systems Engineer _____ Date _____

Customer Representative _____ Date _____
Date
(Flight Hardware Only)

Quality Control _____

TEST DATA SHEET 33
Analog Telemetry Signals by Way of the STE (Paragraph 3.2.4.3.5.2)

Description	*	Measured (Deg. C)	Required (Deg. C)	Pass/Fail
A2 Scanner Motor	Temp	_____	25 ± 15	_____
A2 RF Shelf A2 Temp.	Temp	_____	25 ± 15	_____
A2 Warm Load	Temp	_____	25 ± 15	_____
A2 Compensator Motor	Temp	_____	25 ± 15	_____
		(mAmps)	(mAmps)	
Ant A2 Drv Motor Current		_____	150 mA max	_____
Ant A2 Comp. Motor Current		_____	150 mA max	_____
		(Volts)	(Volts)	
Signal Processor	+15V	_____	15.0V ± 0.75V	_____
Antenna Drive	+15V	_____	15.0V ± 1.5V	_____
Signal Processor	-15V	_____	-15.0V ± 0.75V	_____
Antenna Drive	-15V	_____	-15.0V ± 1.5V	_____
Mixer/IF	***	_____	*** ____ ± 0.5V	_____
Signal Processor	+5V	_____	5.0V ± 0.5V	_____
Antenna Drive	+5V	_____	5.0V ± 0.6V	_____
L.O. #1	**	_____	** ____ ± 0.5V	_____
L.O. #2	**	_____	** ____ ± 0.5V	_____

* Data from the printout sheet Page 8. Rewriting data on this space is optional.

** L.O. voltages from manufacturer data sheet for S/N 101 - S/N 104, +10V for S/N 105 - S/N 109.

*** Mixer/IF voltage: +8V for S/N 101 - S/N 104, +10V for S/N 105 - S/N 109.

METSAT/AMSU A2 System CPT P/N IS-1331200
 Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Test Systems Engineer _____ Date _____

Customer Representative _____ Date _____
 (Flight Hardware Only)

Quality Control _____

TEST DATA SHEET 34
Integrate/Hold and Dump Signal Verification (Paragraph 3.2.4.3.6.1)

ATTACH PHOTOGRAPH OR PLOT HERE

Parameter	Measured	Required	Pass/Fail
Scope Channel-1: Integration/Hold			
Time (A)*	ms	158 ms ± 10%	
Time (B)*	ms	42 ms ± 10%	
Amplitude	V	5.0 V ± 0.2V	
Scope Channel-2: Dump Signal			
Time (D)*	ms	9 ms to 15 ms	
Amplitude	V	5.0 V ± 0.2V	

* Refer to Figure 2 for waveform configuration.

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Customer Representative Date
Date
(Flight Hardware Only)

Test Systems Engineer Date

Quality Control

TEST DATA SHEET 35
Integration Time (Analog Output) Verification (Paragraph 3.2.4.3.6.2)

ATTACH PHOTOGRAPH OR PLOT HERE

J7 - pin 8 signal
Frequency: 23.8 GHz

INTEGRATION (X) *
Measured _____ ms
Required 158 ms ± 10%
Pass/Fail _____

HOLD (B-D) **
Measured _____ ms
Required 32 ms ± 10%
Pass/Fail _____

DUMP (D) *
Measured _____ ms
Required 9 ms to 15 ms
Pass/Fail _____

ATTACH PHOTOGRAPH OR PLOT HERE

J7 - pin 9 signal
Frequency: 31.4 GHz

INTEGRATION (X) *
Measured _____ ms
Required 158 ms ± 10%
Pass/Fail _____

HOLD (B-D) **
Measured _____ ms
Required 32 ms ± 10%
Pass/Fail _____

DUMP (D) *
Measured _____ ms
Required 9 ms to 15 ms
Pass/Fail _____

- * Refer to Figure 2 for waveform configuration.
** Refer to Data Sheet 34 and Figure 2.

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Test Systems Engineer _____ Date _____

Customer Representative _____ Date _____
Date
(Flight Hardware Only)

Quality Control

TEST DATA SHEET 36
Digital-A/GSE Mode-1 Synch Sequence,
Unit I.D./Serial Number and Digital-B Serial Data Verification
Sections [I], [II], and [III] (Paragraph 3.2.4.3.7.2)

Step	Element (For Ref)	Description	Recorded Value	Required Value	Pass/Fail
[I]	0001	Sync Sequence Byte 1		255	
	0002	Sync Sequence Byte 2		255	
	0003	Sync Sequence Byte 3		255	
[II]	0004	Unit I.D. and Serial N		*	
[III]	0005	Digital B Data Byte 1		0	
	0006	Digital B Data Byte 2		6	
	0007	Digital B Data Byte 3		0	
	0008	Digital B Data Byte 4		0	
* AMSU A2 Identification Words (data entered in decimal system)			Binary	Decimal	
AMSU-A2 S/N 101			00000010	2	
AMSU-A2 S/N 102			00000110	6	
AMSU-A2 S/N 103			00001010	10	
AMSU-A2 S/N 104			00001110	14	
AMSU-A2 S/N 105			00010010	18	
AMSU-A2 S/N 106			00010110	22	
AMSU-A2 S/N 107			00011010	26	
AMSU-A2 S/N 108			00011110	30	
AMSU-A2 S/N 109			00100010	34	

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____

S/N: _____

Test Systems Engineer Date

Quality Control Date

TEST DATA SHEET 37 (Sheet 1 of 2)

Digital A/GSE Modes-1-4 Reflector Position Section [IV] (Paragraphs 3.2.4.3.7.2 - 3.2.4.3.7.5)

3.2.4.3.7.2 Digital A/GSE Mode-1 Reflector Position Section [IV]

BP	Reflector			
	Note	Position*	Required**	Pass/Fail
06	1st 10 data			
WC	2nd 10 data			
CC	3rd 10 data			

3.2.4.3.7.3 Digital A/GSE Mode-2 Reflector Position Section [IV]

BP	Reflector		
	Position*	Required**	Pass/Fail
01			

3.2.4.3.7.4 Digital A/GSE Mode-3 Reflector Position Section [IV]

BP	Reflector		
	Position*	Required**	Pass/Fail

3.2.4.3.7.5 Digital A/GSE Mode-4 Reflector Position Section [IV]

BP	Reflector		
	Position*	Required**	Pass/Fail
30			

* Actual counts from computer printout. Rewriting counts on this data sheet is optional.

** Required position from TDS 6 of AE-26002/2 ± 5 counts.

*** Current Position

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Test Systems Engineer Date

Customer Representative Date
Date
(Flight Hardware Only)

Quality Control

AE-26156/4E
2 Apr 99

TEST DATA SHEET 37 (Sheet 2 of 2)
Digital A/GSE Modes-1-4 Reflector Position Section [IV] (Paragraphs 3.2.4.3.7.2 - 3.2.4.3.7.5)

3.2.4.3.7.6 Digital A/GSE Mode-5 Reflector Position Section [IV]

BP	Reflector		
	Position*	Required**	Pass/Fail
06			

3.2.4.3.7.7 Digital A/GSE Mode-7 Reflector Position Section [IV]

BP	Reflector		
	Position*	Required**	Pass/Fail
06			

* Actual counts from computer printout. Rewriting counts on this data sheet is optional.

** Required position from TDS 6 of AE-26002/2 ± 5 counts.

METSAT/AMSU A2 System CPT P/N IS-1331200 Shop Order: _____ S/N: _____
Circle Test: 1st CPT Final CPT Sub CPT _____

Customer Representative Date
Date
(Flight Hardware Only)

Test Systems Engineer Date

Quality Control

TEST DATA SHEET 38
Digital A/GSE Mode-1 Radiometer Data Section [V] (Paragraph 3.2.4.3.7.2)

BP	Channel-1 (23.8 GHz)		
	Measured*	Required**	Pass/Fail
01			
02			
03			
04			
05			
06			
07			
08			
09			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
CC		0	
WC		0	

* Actual counts from computer printout. Rewriting counts on this data sheet is optional.

** Required = $16,500 \pm 4000$ counts.

METSAT/AMSU A2 System CPT P/N IS-1331200 Shop Order: _____ S/N: _____
Circle Test: 1st CPT Final CPT Sub CPT _____

Test Systems Engineer Date

Quality Control Date

TEST DATA SHEET 39
Digital A/GSE Mode-1 Temperature Sensors Section [VI] (Paragraph 3.2.4.3.7.2)

Thermistor Sensors		Recorded Value* (deg. C)	Required Value (deg. C)	Pass/ Fail
Element	Description			
0262	Scan Motor		25 ± 15	
0264	Feedhorn		25 ± 15	
0266	RF Mux		25 ± 15	
0268	Mixer I.F. Amp. Channel 1		25 ± 15	
0270	Mixer I.F. Amp. Channel 2		25 ± 15	
0272	Local Oscillator Channel 1		25 ± 15	
0274	Local Oscillator Channel 2		25 ± 15	
0276	Compensation Motor		25 ± 15	
0278	Subreflector		25 ± 15	
0280	DC/DC Converter		25 ± 15	
0282	RF Shelf		25 ± 15	
0284	Detector/Preamp Assembly		25 ± 15	
0286	Warm Load Center		25 ± 15	
0288	Warm Load 1		25 ± 15	
0290	Warm Load 2		25 ± 15	
0292	Warm Load 3		25 ± 15	
0294	Warm Load 4		25 ± 15	
0296	Warm Load 5		25 ± 15	
0298	Warm Load 6		25 ± 15	
0300	Temp Sensor V. Reference		**	

* Value is from the STE printout sheets. Copying data to this sheet is optional.

** Count of 24,552 +1765, -1308.

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Test Systems Engineer Date

Quality Control Date

TEST DATA SHEET 40
Radiometer Relative NEΔT Verification (Paragraph 3.2.4.4.1.2)

Channel	Channel 1	Channel 2
NEΔT (Average of 5 data)		
NEΔT (specified)*	0.30 K	0.30 K
Pass/Fail**		

* For reference only.

** Use first CPT or first LPT data along with specified value for pass fail criteria.

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Customer Representative _____ Date _____
Date
(Flight Hardware Only)

Test Systems Engineer _____ Date _____

Quality Control

AE-26156/4E
2 Apr 99

TEST DATA SHEET NO. 40A
Channel Identification Test (Paragraph 3.2.4.4.2)

Channel Number	Sweeper Frequency Setting (GHz)	Polarization (H/V)	Radiometric Data (Δ Counts)	Channel Verified (Yes/No)
1	23.8	V		

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Test Systems Engineer Date

Customer Representative Date
(Flight Hardware Only)

Quality Control

TEST DATA SHEET 41
Transient Susceptibility Test (Paragraphs 3.2.4.2.1.3, 3.2.4.2.2.9, 3.2.4.2.3.3)

Test Setup Verified: _____
 Signature _____

3.2.4.2.1.3 +28V Main Bus Load-Induced Transient Test

Subpara	Step	Load Induced Transient	Functional Performance Results/Deviations	Comments/ Observations
3.2.4.2.1.3.2	8	Low frequency in accordance with Figure 7		
3.2.4.2.1.3.3	14	High frequency in accordance with Steps 7, 9, 11, and 13		

3.2.4.2.2.9 +28V Pulse Load Bus Load-Induced Transient Test

Subpara	Step	Load Induced Transient	Functional Performance Results/Deviations	Comments/ Observations
3.2.4.2.2.9.2	8	Low frequency in accordance with Figure 12		
3.2.4.2.2.9.3	14	High frequency in accordance with Steps 7, 9, 11, and 13		

3.2.4.2.3.3 +28V Analog Telemetry Bus Load-Induced Transient Test

Subpara	Step	Load Induced Transient	Functional Performance Results/Deviations	Comments/ Observations
3.2.4.2.3.3.2	8	Low frequency in accordance with Figure 7		
3.2.4.2.3.3.3	14	High frequency in accordance with Steps 7, 9, 11, and 13		

NOTE: Attach all backup data generated during the test (photos, printouts, plots, test logs, additional comments or observations, etc.) to this data sheet.

METSAT/AMSU A2 System CPT P/N IS-1331200
 Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: _____ S/N: _____

Test Systems Engineer _____ Date _____

Customer Representative _____ Date _____
 (Flight Hardware Only)

Quality Control _____

AE-26156/4E
2 Apr 99

This page intentionally left blank.

APPENDIX B

TEST DATA SHEETS FOR AMSU-A2 SYSTEM LPT

This appendix contains the test data sheets for the LPT tests and inspections listed in section 3.

<u>TDS</u>	<u>Page</u>
B-1 Grounding Test.....	B-2
B-2 Commands and Digital-B Telemetry Verification	B-11
B-3 Scanner Commands Verification.....	B-12
B-4 Scanner Commands Verification.....	B-13
B-5 Scanner Commands Verification.....	B-14
B-6 Scanner Positions Commands	B-15
B-7 Digital-A Data Output Full Scan Mode Synch Sequence, Unit ID/Serial Number and Digital-B Serial Data Verification	B-16
B-8 Reflector Positions Section [IV].....	B-17
B-9 Digital-A Data Output Radiometer Data Section [V].....	B-18
B-10 Full Scan Mode Temperature Sensors Section [VI]	B-19
B-11 Analog Telemetry Signals by Way of the STE	B-20
B-12 Radiometer Relative NEAT Verification.....	B-21

TEST DATA SHEET B-1 (SHEET 1 OF 9)
Grounding Test (Paragraph 3.2.4.1)

J1 of Spacecraft Interface				
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J1-1	+28V MLB	> 100k		
J1-2	+28V MLB	> 100k		
J1-3	+28V MLB RTN	> 100k		
J1-4	+28V MLB RTN	> 100k		
J1-5	+28V PLB	> 100k		
J1-6	+28V PLB	> 100k		
J1-7	+28V PLB RTN	> 100k		
J1-8	+28V PLB RTN	> 100k		
J1-9	+28V TMB	> 100k		
J1-10	28V TMB RTN	> 100k		
J1-11	NO CONNECTION	> 100k		
J1-12	NO CONNECTION	> 100k		
J1-13	CHASSIS GROUND (E1)	< 1		
J1-14	+28V MLB	> 100k		
J1-15	+28V MLB	> 100k		
J1-16	+28V MLB RTN	> 100k		
J1-17	+28V MLB RTN	> 100k		
J1-18	+28V PLB	> 100k		
J1-19	+28V PLB	> 100k		
J1-20	+28V PLB RTN	> 100k		
J1-21	+28V PLB RTN	> 100k		
J1-22	+28V TMB	> 100k		
J1-23	28V TMB RTN	> 100k		
J1-24	SAFETY HTR PWR	> 100k		
J1-25	SAFETY HTR RTN	> 100k		

TEST DATA SHEET B-1 (Sheet 2 of 9)
Grounding Test (Paragraph 3.2.4.1, Step 2)

J2 of Spacecraft Interface				
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J2-1	Chassis Ground (E2)	< 1		
J2-2	DATA CLOCK (C1)	> 100k		
J2-3	Signal Return	> 100k		
J2-4	No Connection	> 100k		
J2-5	DIGITAL A DATA OUT	> 100k		
J2-6	DATA ENABLE (A1)	> 100k		
J2-7	8 SEC SYNC PULSE	> 100k		
J2-8	No Connection	> 100k		
J2-9	No Connection	> 100k		

J3 of Spacecraft Interface				
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J3-1	1.248 MHz CLK	> 100k		
J3-2	1.248 MHz CLK RTN	> 100k		
J3-3	Chassis GND (E3)	< 1		

J5 of Spacecraft Interface				
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J5-1	Chassis Ground (E5)	< 1		
J5-2	MODULE PWR IND	> 100k		
J5-3	COLD CAL POS MSB (OUT)	> 100k		
J5-4	No Connection	> 100k		
J5-5	COMP MTR IND	> 100k		
J5-6	ANT IN COLD CAL POS	> 100k		
J5-7	No Connection	> 100k		
J5-8	No Connection	> 100k		
J5-9	SURV HTR ON/OFF	> 100k		
J5-10	No Connection	> 100k		
J5-11	COLD CAL POS LSB (OUT)	> 100k		
J5-12	SCANNER ON PWR IND	> 100k		
J5-13	ANT IN WARM CAL POS	> 100k		
J5-14	ANT AT NADIR POS	> 100k		
J5-15	FULL SCAN MODE	> 100k		

TEST DATA SHEET B-1 (Sheet 3 of 9)
Grounding Test (Paragraph 3.2.4.1, Step 2)

J4 of Spacecraft Interface				
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J4-1	Chassis Ground (E4)	< 1		
J4-2	MODULE PWR DISCONN	> 100k		
J4-3	SURVIVAL HTR ON	> 100k		
J4-4	MODULE TOTALLY OFF	> 100k		
J4-5	COMP MTR ON/OFF	> 100k		
J4-6	ANT AT COLD CAL POS	> 100k		
J4-7	No Connection	> 100k		
J4-8	ANT AT NADIR POS	> 100k		
J4-9	COLD CAL POS MSB (IN)	> 100k		
J4-10	No Connection	> 100k		
J4-11	No Connection	> 100k		
J4-12	+10V INTERFACE BUS	> 100k		
J4-13	10V INTERFACE BUS RTN	> 100k		
J4-14	MODULE PWR CONN	> 100k		
J4-15	SURVIVAL HTR OFF	> 100k		
J4-16	SCANNER PWR ON/OFF	> 100k		
J4-17	ANT AT WARM CAL POS	> 100k		
J4-18	FULL SCAN	> 100k		
J4-19	COLD CAL POS LSB (IN)	> 100k		
J4-20	No Connection	> 100k		
J4-21	No Connection	> 100k		
J4-22	No Connection	> 100k		
J4-23	No Connection	> 100k		
J4-24	+10V INTERFACE BUS	> 100k		
J4-25	10V INTERFACE BUS RTN	> 100k		

TEST DATA SHEET B-1 (Sheet 4 of 9)
Grounding Test (Paragraph 3.2.4.1, Step 2)

J6 of Spacecraft Interface				
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J6-1	Chassis GND (E6)	< 1		
J6-2	RF SHELF TEMP	> 100k		
J6-3	COMP. MTR. TEMP	> 100k		
J6-4	WARM LOAD TEMP	> 100k		
J6-5	No Connection	> 100k		
J6-6	No Connection	> 100k		
J6-7	No Connection	> 100k		
J6-8	SCAN MTR Curr	> 100k		
J6-9	+15V ANT DR MON	> 100k		
J6-10	+15V ANT DR MON	> 100k		
J6-11	+15V SIG PROC MON	> 100k		
J6-12	+15V SIG PROC MON	> 100k		
J6-13	L.O. #1 MON	> 100k		
J6-14	No Connection	> 100k		
J6-15	No Connection	> 100k		
J6-16	No Connection	> 100k		
J6-17	No Connection	> 100k		
J6-18	No Connection	> 100k		
J6-19	No Connection	> 100k		
J6-20	28V TMB RTN	> 100k		
J6-21	No Connection	> 100k		
J6-22	SCAN MTR TEMP	> 100k		
J6-23	No Connection	> 100k		
J6-24	No Connection	> 100k		
J6-25	No Connection	> 100k		
J6-26	No Connection	> 100k		
J6-27	COMP MTR Curr	> 100k		
J6-28	-15V ANT DR MON	> 100k		
J6-29	-15V SIG PROC MON	> 100k		
J6-30	L.O. #2 MON	> 100k		
J6-31	No Connection	> 100k		
J6-32	No Connection	> 100k		
J6-33	No Connection	> 100k		
J6-34	MIXER/AMP MON	> 100k		
J6-35	No Connection	> 100k		
J6-36	No Connection	> 100k		
J6-37	No Connection	> 100k		

TEST DATA SHEET B-1 (Sheet 5 of 9)
Grounding Test (Paragraph 3.2.4.1, Step 2)

J7 of Spacecraft Interface				
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J7-1	Chassis GND (E7)	< 1		
J7-2	No Connection	> 100k		
J7-3	No Connection	> 100k		
J7-4	No Connection	> 100k		
J7-5	15V RTN (2/3)	> 100k		
J7-6	DUMP TP	> 100k		
J7-7	No Connection	> 100k		
J7-8	CH1 ANALOG OUT TP	> 100k		
J7-9	CH2 ANALOG OUT TP	> 100k		
J7-10	No Connection	> 100k		
J7-11	No Connection	> 100k		
J7-12	No Connection	> 100k		
J7-13	No Connection	> 100k		
J7-14	No Connection	> 100k		
J7-15	No Connection	> 100k		
J7-16	No Connection	> 100k		
J7-17	GSE CMD LSB	> 100k		
J7-18	GSE CMD MSB-1	> 100k		
J7-19	+5VDC GSE INTERLOCK A	> 100k		
J7-20	No Connection	> 100k		
J7-21	No Connection	> 100k		
J7-22	No Connection	> 100k		
J7-23	I/H TP	> 100k		
J7-24	No Connection	> 100k		
J7-25	No Connection	> 100k		
J7-26	15V RTN (2/3)	> 100k		
J7-27	No Connection	> 100k		
J7-28	No Connection	> 100k		
J7-29	No Connection	> 100k		
J7-30	No Connection	> 100k		
J7-31	No Connection	> 100k		
J7-32	No Connection	> 100k		
J7-33	No Connection	> 100k		
J7-34	No Connection	> 100k		
J7-35	GSE CMD MSB	> 100k		
J7-36	5V RTN (1)	> 100k		
J7-37	+5VDC GSE INTERLOCK B	> 100k		

TEST DATA SHEET B-1 (Sheet 6 of 9)
Grounding Test (Paragraph 3.2.4.1, Step 2)

Source Pin	Destination Pin	Source Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J1-1	J1-2	+28V MLB	< 1		
J1-1	J1-14	+28V MLB	< 1		
J1-1	J1-15	+28V MLB	< 1		
J1-3	J1-4	28V MLB RTN	< 1		
J1-3	J1-16	28V MLB RTN	< 1		
J1-3	J1-17	28V MLB RTN	< 1		
J1-5	J1-6	+28V PLB	< 1		
J1-5	J1-18	+28V PLB	< 1		
J1-5	J1-19	+28V PLB	< 1		
J1-7	J1-8	28V PLB RTN	< 1		
J1-7	J1-20	28V PLB RTN	< 1		
J1-7	J1-21	28V PLB RTN	< 1		
J1-9	J1-22	+28V TMB	< 1		
J1-10	J1-23	28V TMB RTN	< 1		
J1-10	J6-20	28V TMB RTN	< 1		
J4-12	J4-24	+10V INTERFACE BUS	< 1		
J4-13	J4-25	10V INTERFACE BUS RTN	< 1		
J1-1	J1-3	+28V MLB	> 100k		
J1-1	J1-5	+28V MLB	> 100k		
J1-1	J1-7	+28V MLB	> 100k		
J1-1	J1-9	+28V MLB	> 100k		
J1-1	J1-10	+28V MLB	> 100k		
J1-1	J1-24	+28V MLB	> 100k		
J1-1	J1-25	+28V MLB	> 100k		
J1-1	J2-3	+28V MLB	> 100k		
J1-1	J4-12	+28V MLB	> 100k		
J1-1	J4-13	+28V MLB	> 100k		
J1-3	J1-5	28V MLB RTN	> 100k		
J1-3	J1-7	28V MLB RTN	> 100k		
J1-3	J1-9	28V MLB RTN	> 100k		
J1-3	J1-10	28V MLB RTN	> 100k		
J1-3	J1-24	28V MLB RTN	> 100k		
J1-3	J1-25	28V MLB RTN	> 100k		
J1-3	J2-3	28V MLB RTN	> 100k		
J1-3	J4-12	28V MLB RTN	> 100k		
J1-3	J4-13	28V MLB RTN	> 100k		

TEST DATA SHEET B-1 (Sheet 7 of 9)
Grounding Test (Paragraph 3.2.4.1, Step 2)

Source Pin	Destination Pin	Source Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J1-5	J1-7	+28V PLB	> 100k		
J1-5	J1-9	+28V PLB	> 100k		
J1-5	J1-10	+28V PLB	> 100k		
J1-5	J1-24	+28V PLB	> 100k		
J1-5	J1-25	+28V PLB	> 100k		
J1-5	J2-3	+28V PLB	> 100k		
J1-5	J4-12	+28V PLB	> 100k		
J1-5	J4-13	+28V PLB	> 100k		
J1-7	J1-9	28V PLB RTN	> 100k		
J1-7	J1-10	28V PLB RTN	> 100k		
J1-7	J1-24	28V PLB RTN	> 100k		
J1-7	J1-25	28V PLB RTN	> 100k		
J1-7	J2-3	28V PLB RTN	> 100k		
J1-7	J4-12	28V PLB RTN	> 100k		
J1-7	J4-13	28V PLB RTN	> 100k		
J1-9	J1-10	+28V TMB	> 100k		
J1-9	J1-24	+28V TMB	> 100k		
J1-9	J1-25	+28V TMB	> 100k		
J1-9	J2-3	+28V TMB	> 100k		
J1-9	J4-12	+28V TMB	> 100k		
J1-9	J4-13	+28V TMB	> 100k		
J1-10	J1-24	28V TMB RTN	> 100k		
J1-10	J1-25	28V TMB RTN	> 100k		
J1-10	J2-3	28V TMB RTN	> 100k		
J1-10	J4-12	28V TMB RTN	> 100k		
J1-10	J4-13	28V TMB RTN	> 100k		
J1-24	J1-25	SAFETY HTR PWR	> 100k		
J1-24	J2-3	SAFETY HTR PWR	> 100k		
J1-24	J4-12	SAFETY HTR PWR	> 100k		
J1-24	J4-13	SAFETY HTR PWR	> 100k		
J1-25	J2-3	SAFETY HTR PWR RTN	> 100k		
J1-25	J4-12	SAFETY HTR PWR RTN	> 100k		
J1-25	J4-13	SAFETY HTR PWR RTN	> 100k		
J2-3	J4-12	SIGNAL RTN	> 100k		
J2-3	J4-13	SIGNAL RTN	> 100k		
J4-12	J4-13	+10V INTERFACE BUS	> 100k		

TEST DATA SHEET B-1 (Sheet 8 of 9)
Grounding Test (Paragraph 3.2.4.1, Step 2)

Source Pin	Destination Pin	Source Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J2-2	J4-13	DATA CLOCK (C1)	> 2k		
J2-5	J4-13	DIGITAL A DATA OUT	> 2k		
J2-6	J4-13	DATA ENABLE (A1)	> 2k		
J2-7	J4-13	8 SEC SYNC PULSE	> 2k		
J3-1	J4-13	1.248 MHZ CLK	> 2k		
J3-2	J4-13	1.248 MHZ CLK RTN	> 2k		
J4-2	J4-13	MODULE PWR DISCONN	> 2k		
J4-3	J4-13	SURVIVAL HTR ON	> 2k		
J4-4	J4-13	MODULE TOTALLY OFF	> 2k		
J4-5	J4-13	COMP MTR ON/OFF	> 2k		
J4-6	J4-13	ANT AT COLD CAL POS	> 2k		
J4-8	J4-13	ANT AT NADIR POS	> 2k		
J4-9	J4-13	COLD CAL POS MSB (IN)	> 2k		
J4-14	J4-13	MODULE PWR CONN	> 2k		
J4-15	J4-13	SURVIVAL HTR OFF	> 2k		
J4-16	J4-13	SCANNER PWR ON/OFF	> 2k		
J4-17	J4-13	ANT AT WARM CAL POS	> 2k		
J4-18	J4-13	FULL SCAN	> 2k		
J4-19	J4-13	COLD CAL POS LSB (IN)	> 2k		
J5-2	J4-13	MODULE PWR IND	> 2k		
J5-3	J4-13	COLD CAL POS MSB	> 2k		
J5-5	J4-13	COMP MTR IND	> 2k		
J5-6	J4-13	ANT IN COLD CAL POS	> 2k		
J5-9	J4-13	SURV HTR ON/OFF	> 2k		
J5-11	J4-13	COLD CAL POS LSB	> 2k		
J5-12	J4-13	SCANNER ON PWR IND	> 2k		
J5-13	J4-13	ANT IN WARM CAL POS	> 2k		
J5-14	J4-13	ANT IN NADIR POS	> 2k		
J5-15	J4-13	FULL SCAN MODE	> 2k		

TEST DATA SHEET B-1 (Sheet 9 of 9)
Grounding Test (Paragraph 3.2.4.1, Step 2)

Source Pin	Destination Pin	Source Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J6-8	J4-13	SCAN MTR CVR	> 2k		
J6-9	J4-13	+15V ANT DR MON	> 2k		
J6-10	J4-13	+5V ANT DR MON	> 2k		
J6-11	J4-13	+15V SIG PROC MON	> 2k		
J6-12	J4-13	+5V SIG PROC MON	> 2k		
J6-13	J4-13	L.O. #1 MON	> 2k		
J6-20	J4-13	28V TMB RTN	> 2k		
J6-22	J4-13	SCAN MTR TEMP	> 2k		
J6-27	J4-13	COMP MTR CURR	> 2k		
J6-28	J4-13	-15V ANT DR MON	> 2k		
J6-29	J4-13	-15V SIG PROC MON	> 2k		
J6-30	J4-13	L.O. #2 MON	> 2k		
J6-34	J4-13	MIXER/AMP MON	> 2k		
J6-2	J1-10	RF SHELF TEMP	> 2k		
J6-3	J1-10	COMP MTR TEMP	> 2k		
J6-4	J1-10	WARM LOAD TEMP	> 2k		

Power Input Test (Paragraph 3.2.4.2.5)

Step	Parameter	Measured	Units	Required	Pass/ Fail
3	+28 V MLB Voltage (Vb) (Measured at connector J1)		Volts	28.0 ±0.5	
3	MLB Current (STE Meter)		Amps	Between 0.5 and 4.3 Amps	

METSAT/AMSU A2 System LPT P/N IS-1331200

Shop Order: _____ S/N: _____

Test Systems Engineer Date

Customer Representative

Date

Quality Control

TEST DATA SHEET B-2 (See Appendix A, Test Data Sheet 13 for CPT)
Commands and Digital-B Telemetry Verification (Paragraphs 3.2.4.3.3.1, 3.2.4.3.3.2, and 3.2.4.3.3.3)

Test	Digital-B Commands Verification Via STE			Visual Inspection		Pass/Fail
	Command	Observed	Required	Observed	Required	
3.2.4.3.3.1 Module Totally Off	Scanner A2		OFF		Antenna pointing to warm load.	
	Module Power		Disconnect	N/A	N/A	
	Survival Htr. Power.		OFF		28V supply current=0	
3.2.4.3.3.2 Survival Heater Power	Survival Heater ON		ON	N/A	N/A	
	Survival Heater OFF		OFF	N/A	N/A	
3.2.4.3.3.3 Module Power Connect	Module Power		Connect		+28V DC current is between 0.5 and 3.2 amps.	

METSAT/AMSU A2 System LPT P/N IS-1331200

Shop Order: _____ S/N: _____

Customer Representative	Date
-------------------------	------

Test Systems Engineer	Date
-----------------------	------

Quality Control

AE-26156/4E

2 Apr 99

TEST DATA SHEET B-3 (See Appendix A, Test Data Sheet 14 for CPT)
Scanner Commands Verification (Paragraph 3.2.4.3.3.4, Step 1)

Test	Digital "B" Verification			Pass/Fail
	Command	Observed	Required	
Full Scan	1 Module Power		CONNECT	
	2 Survival Heater		OFF	
	3 Scanner A2 Power		ON	
	4 Compensator Motor Power		ON	
	5 Antenna Warm Cal Pos.		NO	
	6 Antenna Cold Cal Pos.		NO	
	7 Antenna NADIR Position		NO	
	8 Antenna Full Scan		YES	
	9 Cold MSB		0	
	10 Cold LSB		0	

METSAT/AMSU A2 System LPT P/N IS-1331200

Shop Order: _____ S/N: _____

Test Systems Engineer Date

Customer Representative Date

Quality Control

TEST DATA SHEET B-4 (See Appendix A, Test Data Sheet 15 for CPT)
Scanner Commands Verification (Paragraph 3.2.4.3.3.4, Step 2)

Test	Digital "B" Verification			Pass/Fail
	Command	Observed	Required	
Full Scan	1 Module Power		CONNECT	
	2 Survival Heater		OFF	
	3 Scanner A2 Power		OFF	
	4 Compensator Motor Power		OFF	
	5 Antenna Warm Cal Pos.		NO	
	6 Antenna Cold Cal Pos.		NO	
	7 Antenna NADIR Position		NO	
	8 Antenna Full Scan		YES	
	9 Cold MSB		0	
	10 Cold LSB		0	

METSAT/AMSU A2 System LPT P/N IS-1331200

Shop Order: _____ S/N: _____

Customer Representative
Date

Date

Test Systems Engineer Date

Quality Control

TEST DATA SHEET B-5 (See Appendix A, Test Data Sheet 16 for CPT)
Scanner Commands Verification (Paragraph 3.2.4.3.3.4, Step 3)

Test	Digital "B" Verification			Pass/Fail
	Command	Observed	Required	
Full Scan	1 Module Power		CONNECT	
	2 Survival Heater		OFF	
	3 Scanner A2 Power		ON	
	4 Compensator Motor Power		ON	
	5 Antenna Warm Cal Pos.		NO	
	6 Antenna Cold Cal Pos.		NO	
	7 Antenna NADIR Position		NO	
	8 Antenna Full Scan		YES	
	9 Cold MSB		0	
	10 Cold LSB		0	

METSAT/AMSU A2 System LPT P/N IS-1331200

Shop Order: _____ S/N: _____

Customer Representative	Date	Test Systems Engineer	Date
		Quality Control	

TEST DATA SHEET B-6 (See Appendix A, Test Data Sheet 17 for CPT)
Scanner Positions Commands (Paragraph 3.2.4.3.3.5)

Test	Digital "B" Verification			Pass/Fail
	Step/Description	Observed	Required	
Scanner Position Commands	1-Warm Cal.		YES	
	3-Cold Cal. Pos.	MSB LSB	0 1	
	5-Cold Cal. Pos.	MSB LSB	1 0	
	7-Cold Cal. Pos.	MSB LSB	1 1	
	9-Cold Cal. Pos.	MSB LSB	0 0	
	11-NADIR		YES	
	13-Warm Cal		YES	

METSAT/AMSU A2 System LPT P/N IS-1331200

Shop Order: _____ S/N: _____

Test Systems Engineer Date

Customer Representative Date

Quality Control

AE-26156/4E
2 Apr 99

TEST DATA SHEET B-7 (See Appendix A, Test Data Sheet 18 for CPT)
Digital-A Data Output Full Scan Mode Synch Sequence,
Unit I.D./Serial Number and Digital-B Serial Data Verification
Sections [I], [II], and [III] (Paragraph 3.2.4.3.4.1)

Step	Element (For Ref)	Description	Recorded Value	Required Value	Pass/Fail
[I]	0001	Sync Sequence Byte 1		255	
	0002	Sync Sequence Byte 2		255	
	0003	Sync Sequence Byte 3		255	
[II]	0004	Unit I.D. and Serial N		*	
[III]	0005	Digital B Data Byte 1		2	
	0006	Digital B Data Byte 2		6	
	0007	Digital B Data Byte 3		0	
	0008	Digital B Data Byte 4		0	
* AMSU A2 Identification Words (data entered in decimal system)			Binary	Decimal	
AMSU-A2 S/N 101			00000010	2	
AMSU-A2 S/N 102			00000110	6	
AMSU-A2 S/N 103			00001010	10	
AMSU-A2 S/N 104			00001110	14	
AMSU-A2 S/N 105			00010010	18	
AMSU-A2 S/N 106			00010110	22	
AMSU-A2 S/N 107			00011010	26	
AMSU-A2 S/N 108			00011110	30	
AMSU-A2 S/N 109			00100010	34	

METSAT/AMSU A2 System LPT P/N IS-1331200

Shop Order: _____ S/N: _____

Test Systems Engineer

Date

Customer Representative

Date

Quality Control

Date

(Flight Hardware Only)

TEST DATA SHEET B-8 (See Appendix A, Test Data Sheet 19 for CPT)
Reflector Positions Section [IV] (Paragraph 3.2.4.3.4.1)

BP	A2 Reflector		
	Position*	Required**	Pass/Fail
01			
02			
03			
04			
05			
06			
07			
08			
09			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
CL			
WL			

* Actual counts from computer printout. Rewriting counts on this data sheet is optional.

** Required position from TDS 6 of AE-26002/2 ± 5 counts.

METSAT/AMSU A2 System LPT P/N IS-1331200

Shop Order: _____

S/N: _____

Test Systems Engineer

Date

Customer Representative
Date
(Flight Hardware Only)

Date

Quality Control

TEST DATA SHEET B-9 (See Appendix A, Test Data Sheet 20 for CPT)
Digital-A Data Output Radiometer Data Section [V] (Paragraph 3.2.4.3.4.1)

BP	Channel-1 (23.8 GHz)				Channel-2 (31.4 GHz)			
	Element (For Ref)	Measured*	Required**	Pass/Fail	Element (For Ref)	Measured*	Required**	Pass/Fail
01	0014				0016			
02	0022				0024			
03	0030				0032			
04	0038				0040			
05	0046				0048			
06	0054				0056			
07	0062				0064			
08	0070				0072			
09	0078				0080			
10	0086				0088			
11	0094				0096			
12	0102				0104			
13	0110				0112			
14	0118				0120			
15	0126				0128			
16	0134				0136			
17	0142				0144			
18	0150				0152			
19	0158				0160			
20	0166				0168			
21	0174				0176			
22	0182				0184			
23	0190				0192			
24	0198				0200			
25	0206				0208			
26	0214				0216			
27	0222				0224			
28	0230				0232			
29	0238				0240			
30	0246				0248			
CC	0258				0260			
WL	0310				0312			

* Actual counts from computer printout. Rewriting counts on this data sheet is optional.

** Required = $16,500 \pm 4000$ counts.

METSAT/AMSU A2 System LPT P/N IS-1331200

Shop Order: _____ S/N: _____

Test Systems Engineer Date

Customer Representative Date
Date
(Flight Hardware Only)

Quality Control

TEST DATA SHEET B-10 (See Appendix A, Test Data Sheet 21 for CPT)
Full Scan Mode Temperature Sensors Section [VI] (Paragraph 3.2.4.3.4.1)

Thermistor Sensors		Recorded Value* (deg. C)	Required Value (deg. C)	Pass/ Fail
Element	Description			
0262	Warm Load 1		25 ± 15	
0264	Warm Load 2		25 ± 15	
0266	Warm Load 3		25 ± 15	
0268	Warm Load 4		25 ± 15	
0270	Warm Load 5		25 ± 15	
0272	Warm Load 6		25 ± 15	
0274	Warm Load Center		25 ± 15	
0276	Scan Motor		25 ± 15	
0278	Compensation Motor		25 ± 15	
0280	Feedhorn		25 ± 15	
0282	RF Mux		25 ± 15	
0284	Mixer I.F. Amp. Channel 1		25 ± 15	
0286	Mixer I.F. Amp. Channel 2		25 ± 15	
0288	Subreflector		25 ± 15	
0290	DC/DC Converter		25 ± 15	
0292	RF Shelf		25 ± 15	
0294	Detector/Preampl Assembly		25 ± 15	
0296	Local Oscillator Channel 1		25 ± 15	
0298	Local Oscillator Channel 2		25 ± 15	
0300	Temp Sensor V. Reference		**	

* Value is from the STE printout sheets. Copying data to this sheet is optional.

** Count of 24,552 +1765, -1308.

METSAT/AMSU A2 System LPT P/N IS-1331200

Shop Order: _____ S/N: _____

Test Systems Engineer Date

Customer Representative Date
 (Flight Hardware Only)

Quality Control

TEST DATA SHEET B-11 (See Appendix A, Test Data Sheet 33 for CPT)
Analog Telemetry Signals by Way of the STE (Paragraph 3.2.4.3.5.2)

	Description	*	Measured (Deg. C)	Required (Deg. C)	Pass/Fail
02	A2 Scanner Motor	Temp	_____	25 ± 15	_____
04	A2 RF Shelf A2 Temp.	Temp	_____	25 ± 15	_____
05	A2 Warm Load	Temp	_____	25 ± 15	_____
			(mAmps)	(mAmps)	
08	Ant A2 Drv Motor Current		_____	150 mA max	_____
			(Volts)	(Volts)	
09	Signal Processor	+15V	_____	15.0V ± 0.75V	_____
10	Antenna Drive	+15V	_____	15.0V ± 1.5V	_____
11	Signal Processor	-15V	_____	-15.0V ± 0.75V	_____
12	Antenna Drive	-15V	_____	-15.0V ± 1.5V	_____
13	Mixer/IF	***	_____	*** ____ ± 0.5V	_____
14	Signal Processor	+5V	_____	5.0V ± 0.5V	_____
15	Antenna Drive	+5V	_____	5.0V ± 0.6V	_____
19	L.O. #1	**	_____	** ____ ± 0.5V	_____
20	L.O. #2	**	_____	** ____ ± 0.5V	_____

* Data from the printout sheet Page 8. Rewriting data on this space is optional.

** L.O. voltages from manufacturer data sheet for S/N 101 - S/N 104, +10V for S/N 105 - S/N 109.

*** Mixer/IF voltage: +8V for S/N 101 - S/N 104, +10V for S/N 105 - S/N 109.

METSAT/AMSU A2 System LPT P/N IS-1331200

Shop Order: _____ S/N: _____

Test Systems Engineer

Date

Customer Representative
Date
(Flight Hardware Only)

Date

Quality Control

TEST DATA SHEET B-12 (See Appendix A, Test Data Sheet 40 for CPT)
Radiometer Relative NEAT Verification (Paragraph 3.2.4.4.1)

Channel	Channel 1	Channel 2
NEAT (Average of 5 data)		
NEAT (specified)*	0.30 K	0.30 K
Pass/Fail**		

* For reference only.

** Use first CPT or first LPT data along with specified value for pass fail criteria.

METSAT/AMSU A2 System LPT P/N IS-1331200

Shop Order: _____ S/N: _____

Customer Representative
Date

Date

Test Systems Engineer Date

Quality Control

AE-26156/4E
2 Apr 99

This page intentionally left blank.

DOCUMENT APPROVAL SHEET

TITLE Process Specification METSAT/KLM/AMSU-A2, System Comprehensive and Limited Performance Tests Test Procedure			DOCUMENT NO. AE-26156/4E 2 April 1999
INPUT FROM:	DATE	CDRL:	SPECIFICATION ENGINEER: <i>Jm Wh</i> DATE <i>99-04-03</i>
CHECKED BY: <i>B. Karpala</i>	DATE <i>4/5/99</i>	JOB NUMBER:	DATE
APPROVED SIGNATURES			DEPT. NO. DATE
System Safety (W. Neighbors)	<i>W. O. Neighbors</i>		8331 4/6/99
Product Team Leader (A. Nieto)	<i>A. Nieto</i>		8341 4/6/99
Systems Engineer (R. Platt)	<i>R. K. Patel</i>		8311 4/6/99
Design Assurance (E. Lorenz)	<i>D. Wenz (for E. Lorenz)</i>		8331 4/5/99
Quality Assurance (R. Taylor)	<i>R. Taylor (for R. Taylor)</i>		7831 4/6/99
Technical Director/PMO (P. Patel)	<i>P. K. Patel</i>		8341 4/6/99
Released: Configuration Management (J. Cavanaugh)	<i>J. Cavanaugh</i>		8361 4/6/99
Approved as Final per customer's letter dated 6 April 1999 (ECN's CAMSU-2087 and CAMSU-2099)			
By my signature, I certify the above document has been reviewed by me and concurs with the technical requirements related to my area of responsibility.			
(Data Center) FINAL <i>Laura Coraggio 4-799</i>			

3. REQUIREMENTS

3.1 General test requirements

3.1.1 Equipment and test facilities. The tests described herein shall be performed at Aerojet under laboratory conditions in an EMI shielded chamber for the first and final CPT. Other tests need not be accomplished in the EMI shielded chamber. The test equipment listed in Table I shall be used when performing the tests. If the specified equipment is not available, the equipment substituted shall provide a measurement accuracy equal to or greater than that of the specified equipment. The AMSU-A Special Test Equipment (STE) shall be used for activation and control of the unit and monitoring of its performance.

Table I. Equipment List

Item	Quantity	Item Description	Mfg.	Model
01	1	Dynamic signal analyzer	Hewlett-Packard	3562A
02	1	Signal generator	Hewlett-Packard	3314A
03	1	Oscilloscope	Tektronix	2225A
04	1	9-pin breakout box	Aerojet	2536-3743/SK1358702-1
05	1	15-pin breakout box	Aerojet	2536-3744/SK1358703-1
06	2	25-pin breakout box	Aerojet	2336-3746/SK1358704-1
07	1	37-pin breakout box	Aerojet	2536-3745/SK1358705-1
08	1	Lab. general purpose power supply	Hewlett-Packard	6114
09	1	LN ₂ container	Cole	N03726-20
10	1	Spectrum analyzer	Hewlett-Packard	8590L
11	1	STE computer	Aerojet	1336695/SK1356655
12	1	STE interface cable J1	Aerojet	1335758-1
13	1	STE interface cable J2	Aerojet	1335752-1
14	1	STE interface cable J3	Aerojet	1335756-1
15	1	STE interface cable J4	Aerojet	1335755-1
16	1	STE interface cable J5	Aerojet	1335753-1
17	1	STE interface cable J6	Aerojet	1335754-1
18	1	STE interface cable J7	Aerojet	1335757-1
19	1	Current probe amp	Hewlett-Packard	AM503
20	1	Universal counter	Hewlett-Packard	5316A
21	1	Oscilloscope camera	N/A	N/A
22	1	Power supply	Power Designs	3650-S
23	1	Multimeter	Fluke	77
24	1	Plotter	Hewlett-Packard	7475A
25	1	Signal generator	Hewlett-Packard	83620B
26	1	MM-wave source module	Hewlett-Packard	83557A
27	1	Couple/detector	Hewlett-Packard	83557-60001
28	1	Spectrum analyzer	Hewlett-Packard	8563E

* For limited performance test only; item numbers 04, 06, 09, 11 through 18, and 23 are required.

3.1.2 Required procedures and operations. The unit shall be subjected to the examinations and tests specified in 3.2.4 and Table II.

3.1.2.1 Limited performance test (LPT). The Limited Performance Test shall consist of the test procedures specified in the LPT column of Table II.

3.1.2.2 Comprehensive performance test (CPT). Three versions of the Comprehensive Performance Test are identified in Table II. These are applicable for different test stages. The test procedures to be performed for each version are specified in the 1st CPT, Sub CPT, and Final CPT columns of Table II.

Table II. AMSU-A2 Performance Tests

Paragraph	Test Description	1st CPT	LPT	Sub CPT	Final CPT
3.2.4.1	Grounding Test	X	X	X	X
3.2.4.2.1.1	+28 Main Load Bus (MLB) Turn-On Transient	X			X
3.2.4.2.1.2	+28 MLB Operating Power	X	Note 1	Note 2	X
3.2.4.2.1.3	Transient Susceptibility and Power Quality Tests	X			
3.2.4.2.1.4	Instrument Feedback Test	Note 7			
3.2.4.2.2	+28 Pulse Load Bus (PLB) Test	X		Note 3	X
3.2.4.2.2.8	Instrument Feedback Test	Note 7			
3.2.4.2.2.9	Transient Susceptibility and Power Quality Tests	X			
3.2.4.2.3	+28 Analog Telemetry Bus (ATB) Test	X		X	X
3.2.4.2.3.2	Instrument Feedback Test	Note 7			
3.2.4.2.3.3	Transient Susceptibility and Power Quality Tests	X			
3.2.4.2.4	+10 V Interface Bus Test	X		X	X
3.2.4.2.4.2	Instrument Feedback Test	Note 7			
3.2.4.3.2	Clock Signals Test	X			X
3.2.4.3.3	Commands and Digital-B Telemetry Test	X	X	X	X
3.2.4.3.4	Digital-A Data Output Test	X	Note 4	Note 4	X
3.2.4.3.5	Analog Telemetry Test	X	Note 5	Note 5	X
3.2.4.3.6	Test Point Test	X		X	X
3.2.4.3.7	GSE Mode Test	X Note 6			
3.2.4.4	Radiometer Functional Test	X	X	X	X
3.2.4.4.2	Channel Identification Test	X			

- Notes:
1. 3.2.4.2.5 (Power input test for LPT).
 2. At 28V only.
 3. 3.2.4.2.2 except 3.2.4.2.2.5 through 3.2.4.2.2.7.
 4. Only full scan.
 5. STE only (3.2.4.3.5.2).
 6. GSE mode test/verification is not required and is for engineering use only.
 7. Instrument feedback test will be performed in EMI/RFI Chamber using EMI/RFI test procedure AE-26151/5.

TEST DATA SHEET 1 (SHEET 1 OF 9)
Grounding Test (Paragraph 3.2.4.1)

J1 of Spacecraft Interface				
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J1-1	+28V MLB	> 100k	O.L.	PASS
J1-2	+28V MLB	> 100k	O.L.	↑
J1-3	+28V MLB RTN	> 100k	O.L.	
J1-4	+28V MLB RTN	> 100k	O.L.	
J1-5	+28V PLB	> 100k	O.L.	
J1-6	+28V PLB	> 100k	O.L.	
J1-7	+28V PLB RTN	> 100k	O.L.	
J1-8	+28V PLB RTN	> 100k	O.L.	
J1-9	+28V TMB	> 100k	O.L.	
J1-10	28V TMB RTN	> 100k	O.L.	
J1-11	NO CONNECTION	> 100k	O.L.	
J1-12	NO CONNECTION	> 100k	O.L.	
J1-13	CHASSIS GROUND (E1)	< 1	0.19Ω	
J1-14	+28V MLB	> 100k	O.L.	
J1-15	+28V MLB	> 100k	O.L.	
J1-16	+28V MLB RTN	> 100k	O.L.	
J1-17	+28V MLB RTN	> 100k	O.L.	
J1-18	+28V PLB	> 100k	O.L.	
J1-19	+28V PLB	> 100k	O.L.	
J1-20	+28V PLB RTN	> 100k	O.L.	
J1-21	+28V PLB RTN	> 100k	O.L.	
J1-22	+28V TMB	> 100k	O.L.	
J1-23	28V TMB RTN	> 100k	O.L.	
J1-24	SAFETY HTR PWR	> 100k	O.L.	↙
J1-25	SAFETY HTR RTN	> 100k	O.L.	PASS

O.L. = > 40 MΩ

TEST DATA SHEET 1 (Sheet 2 of 9)
Grounding Test (Paragraph 3.2.4.1)

J2 of Spacecraft Interface				
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J2-1	Chassis Ground (E2)	< 1	0.15Ω	PASS
J2-2	DATA CLOCK (C1)	> 100k	O.L.	
J2-3	Signal Return	> 100k	O.L.	
J2-4	No Connection	> 100k	O.L.	
J2-5	DIGITAL A DATA OUT	> 100k	O.L.	
J2-6	DATA ENABLE (A1)	> 100k	O.L.	
J2-7	8 SEC SYNC PULSE	> 100k	O.L.	
J2-8	No Connection	> 100k	O.L.	
J2-9	No Connection	> 100k	O.L.	PASS

O.L. = > 40 MΩ

J3 of Spacecraft Interface				
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J3-1	1.248 MHz CLK	> 100k	O.L.	PASS
J3-2	1.248 MHz CLK RTN	> 100k	O.L.	PASS
J3-3	Chassis GND (E3)	< 1	0.12Ω	PASS

O.L. = > 40 MΩ

J5 of Spacecraft Interface				
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J5-1	Chassis Ground (E5)	< 1	0.19Ω	PASS
J5-2	MODULE PWR IND	> 100k	O.L.	
J5-3	COLD CAL POS MSB (OUT)	> 100k	O.L.	
J5-4	No Connection	> 100k	O.L.	
J5-5	COMP MTR IND	> 100k	O.L.	
J5-6	ANT IN COLD CAL POS	> 100k	O.L.	
J5-7	No Connection	> 100k	O.L.	
J5-8	No Connection	> 100k	O.L.	
J5-9	SURV HTR ON/OFF	> 100k	O.L.	
J5-10	No Connection	> 100k	O.L.	
J5-11	COLD CAL POS LSB (OUT)	> 100k	O.L.	
J5-12	SCANNER ON PWR IND	> 100k	O.L.	
J5-13	ANT IN WARM CAL POS	> 100k	O.L.	
J5-14	ANT AT NADIR POS	> 100k	O.L.	
J5-15	FULL SCAN MODE	> 100k	O.L.	PASS

O.L. = > 40 MΩ

TEST DATA SHEET 1 (Sheet 3 of 9)
Grounding Test (Paragraph 3.2.4.1)

J4 of Spacecraft Interface				
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J4-1	Chassis Ground (E4)	< 1	0.15 Ω	PASS
J4-2	MODULE PWR DISCONN	> 100k	O.L.	
J4-3	SURVIVAL HTR ON	> 100k	O.L.	
J4-4	MODULE TOTALLY OFF	> 100k	O.L.	
J4-5	COMP MTR ON/OFF	> 100k	O.L.	
J4-6	ANT AT COLD CAL POS	> 100k	O.L.	
J4-7	No Connection	> 100k	O.L.	
J4-8	ANT AT NADIR POS	> 100k	O.L.	
J4-9	COLD CAL POS MSB (IN)	> 100k	O.L.	
J4-10	No Connection	> 100k	O.L.	
J4-11	No Connection	> 100k	O.L.	
J4-12	+10V INTERFACE BUS	> 100k	O.L.	
J4-13	10V INTERFACE BUS RTN	> 100k	O.L.	
J4-14	MODULE PWR CONN	> 100k	O.L.	
J4-15	SURVIVAL HTR OFF	> 100k	O.L.	
J4-16	SCANNER PWR ON/OFF	> 100k	O.L.	
J4-17	ANT AT WARM CAL POS	> 100k	O.L.	
J4-18	FULL SCAN	> 100k	O.L.	
J4-19	COLD CAL POS LSB (IN)	> 100k	O.L.	
J4-20	No Connection	> 100k	O.L.	
J4-21	No Connection	> 100k	O.L.	
J4-22	No Connection	> 100k	O.L.	
J4-23	No Connection	> 100k	O.L.	
J4-24	+10V INTERFACE BUS	> 100k	O.L.	
J4-25	10V INTERFACE BUS RTN	> 100k	O.L.	PASS

O.L. = > 40 M Ω

TEST DATA SHEET 1 (Sheet 4 of 9)
Grounding Test (Paragraph 3.2.4.1)

J6 of Spacecraft Interface				
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J6-1	Chassis GND (E6)	< 1	0.165Ω	PASS
J6-2	RF SHELF TEMP	> 100k	O.L.	↑
J6-3	COMP. MTR. TEMP	> 100k	O.L.	
J6-4	WARM LOAD TEMP	> 100k	O.L.	
J6-5	No Connection	> 100k	O.L.	
J6-6	No Connection	> 100k	O.L.	
J6-7	No Connection	> 100k	O.L.	
J6-8	SCAN MTR CURR	> 100k	O.L.	
J6-9	+15V ANT DR MON	> 100k	O.L.	
J6-10	+15V ANT DR MON	> 100k	O.L.	
J6-11	+15V SIG PROC MON	> 100k	O.L.	
J6-12	+15V SIG PROC MON	> 100k	O.L.	
J6-13	L.O. #1 MON	> 100k	O.L.	
J6-14	No Connection	> 100k	O.L.	
J6-15	No Connection	> 100k	O.L.	
J6-16	No Connection	> 100k	O.L.	
J6-17	No Connection	> 100k	O.L.	
J6-18	No Connection	> 100k	O.L.	
J6-19	No Connection	> 100k	O.L.	
J6-20	28V TMB RTN	> 100k	O.L.	
J6-21	No Connection	> 100k	O.L.	
J6-22	SCAN MTR TEMP	> 100k	O.L.	
J6-23	No Connection	> 100k	O.L.	
J6-24	No Connection	> 100k	O.L.	
J6-25	No Connection	> 100k	O.L.	
J6-26	No Connection	> 100k	O.L.	
J6-27	COMP MTR CURR	> 100k	O.L.	
J6-28	-15V ANT DR MON	> 100k	O.L.	
J6-29	-15V SIG PROC MON	> 100k	O.L.	
J6-30	L.O. #2 MON	> 100k	O.L.	
J6-31	No Connection	> 100k	O.L.	
J6-32	No Connection	> 100k	O.L.	
J6-33	No Connection	> 100k	O.L.	
J6-34	MIXER/AMP MON	> 100k	O.L.	
J6-35	No Connection	> 100k	O.L.	
J6-36	No Connection	> 100k	O.L.	↓
J6-37	No Connection	> 100k	O.L.	PASS

O.L. = > 40MΩ

TEST DATA SHEET 1 (Sheet 5 of 9)
Grounding Test (Paragraph 3.2.4.1)

J7 of Spacecraft Interface				
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J7-1	Chassis GND (E7)	< 1	0.21 Ω	PASS
J7-2	No Connection	> 100k	O.L.	↑
J7-3	No Connection	> 100k	O.L.	
J7-4	No Connection	> 100k	O.L.	
J7-5	15V RTN (2/3)	> 100k	O.L.	
J7-6	DUMP TP	> 100k	O.L.	
J7-7	No Connection	> 100k	O.L.	
J7-8	CH1 ANALOG OUT TP	> 100k	O.L.	
J7-9	CH2 ANALOG OUT TP	> 100k	O.L.	
J7-10	No Connection	> 100k	O.L.	
J7-11	No Connection	> 100k	O.L.	
J7-12	No Connection	> 100k	O.L.	
J7-13	No Connection	> 100k	O.L.	
J7-14	No Connection	> 100k	O.L.	
J7-15	No Connection	> 100k	O.L.	
J7-16	No Connection	> 100k	O.L.	
J7-17	GSE CMD LSB	> 100k	O.L.	
J7-18	GSE CMD MSB-1	> 100k	O.L.	
J7-19	+5VDC GSE INTERLOCK A	> 100k	O.L.	
J7-20	No Connection	> 100k	O.L.	
J7-21	No Connection	> 100k	O.L.	
J7-22	No Connection	> 100k	O.L.	
J7-23	I/H TP	> 100k	O.L.	
J7-24	No Connection	> 100k	O.L.	
J7-25	No Connection	> 100k	O.L.	
J7-26	15V RTN (2/3)	> 100k	O.L.	
J7-27	No Connection	> 100k	O.L.	
J7-28	No Connection	> 100k	O.L.	
J7-29	No Connection	> 100k	O.L.	
J7-30	No Connection	> 100k	O.L.	
J7-31	No Connection	> 100k	O.L.	
J7-32	No Connection	> 100k	O.L.	
J7-33	No Connection	> 100k	O.L.	
J7-34	No Connection	> 100k	O.L.	
J7-35	GSE CMD MSB	> 100k	O.L.	
J7-36	5V RTN (1)	> 100k	O.L.	↓
J7-37	+5VDC GSE INTERLOCK B	> 100k	O.L.	PASS

O.L. = > 40 MΩ

TEST DATA SHEET 1 (Sheet 6 of 9)
Grounding Test (Paragraph 3.2.4.1)

Source Pin	Destination Pin	Source Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J1-1	J1-2	+28V MLB	< 1	0.23Ω	PASS
J1-1	J1-14	+28V MLB	< 1	0.29Ω	↑
J1-1	J1-15	+28V MLB	< 1	0.36Ω	
J1-3	J1-4	28V MLB RTN	< 1	0.22Ω	
J1-3	J1-16	28V MLB RTN	< 1	0.23Ω	
J1-3	J1-17	28V MLB RTN	< 1	0.27Ω	
J1-5	J1-6	+28V PLB	< 1	0.23Ω	
J1-5	J1-18	+28V PLB	< 1	0.27Ω	
J1-5	J1-19	+28V PLB	< 1	0.25Ω	
J1-7	J1-8	28V PLB RTN	< 1	0.23Ω	
J1-7	J1-20	28V PLB RTN	< 1	0.24Ω	
J1-7	J1-21	28V PLB RTN	< 1	0.30Ω	
J1-9	J1-22	+28V TMB	< 1	0.21Ω	
J1-10	J1-23	28V TMB RTN	< 1	0.20Ω	
J1-10	J6-20	28V TMB RTN	< 1	0.43Ω	
J4-12	J4-24	+10V INTERFACE BUS	< 1	0.36Ω	
J4-13	J4-25	10V INTERFACE BUS RTN	< 1	0.29Ω	
J1-1	J1-3	+28V MLB	> 100k	O.L.	
J1-1	J1-5	+28V MLB	> 100k	O.L.	
J1-1	J1-7	+28V MLB	> 100k	O.L.	
J1-1	J1-9	+28V MLB	> 100k	O.L.	
J1-1	J1-10	+28V MLB	> 100k	O.L.	
J1-1	J1-24	+28V MLB	> 100k	O.L.	
J1-1	J1-25	+28V MLB	> 100k	O.L.	
J1-1	J2-3	+28V MLB	> 100k	O.L.	
J1-1	J4-12	+28V MLB	> 100k	O.L.	
J1-1	J4-13	+28V MLB	> 100k	O.L.	
J1-3	J1-5	28V MLB RTN	> 100k	12.7MΩ	
J1-3	J1-7	28V MLB RTN	> 100k	399.3KΩ	
J1-3	J1-9	28V MLB RTN	> 100k	O.L.	
J1-3	J1-10	28V MLB RTN	> 100k	O.L.	
J1-3	J1-24	28V MLB RTN	> 100k	O.L.	
J1-3	J1-25	28V MLB RTN	> 100k	O.L.	
J1-3	J2-3	28V MLB RTN	> 100k	201KΩ	
J1-3	J4-12	28V MLB RTN	> 100k	7.7MΩ	✓
J1-3	J4-13	28V MLB RTN	> 100k	2.8MΩ	PASS

O.L. = > 40 MΩ

TEST DATA SHEET 1 (Sheet 7 of 9)
Grounding Test (Paragraph 3.2.4.1)

Source Pin	Destination Pin	Source Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J1-5	J1-7	+28V PLB	> 100k	O.L.	PASS
J1-5	J1-9	+28V PLB	> 100k	O.L.	↑
J1-5	J1-10	+28V PLB	> 100k	O.L.	
J1-5	J1-24	+28V PLB	> 100k	O.L.	
J1-5	J1-25	+28V PLB	> 100k	O.L.	
J1-5	J2-3	+28V PLB	> 100k	O.L.	
J1-5	J4-12	+28V PLB	> 100k	O.L.	
J1-5	J4-13	+28V PLB	> 100k	O.L.	
J1-7	J1-9	28V PLB RTN	> 100k	O.L.	
J1-7	J1-10	28V PLB RTN	> 100k	O.L.	
J1-7	J1-24	28V PLB RTN	> 100k	O.L.	
J1-7	J1-25	28V PLB RTN	> 100k	O.L.	
J1-7	J2-3	28V PLB RTN	> 100k	170K Ω	
J1-7	J4-12	28V PLB RTN	> 100k	4.5M Ω	
J1-7	J4-13	28V PLB RTN	> 100k	2.8M Ω	
J1-9	J1-10	+28V TMB	> 100k	8.2M Ω	
J1-9	J1-24	+28V TMB	> 100k	O.L.	
J1-9	J1-25	+28V TMB	> 100k	O.L.	
J1-9	J2-3	+28V TMB	> 100k	O.L.	
J1-9	J4-12	+28V TMB	> 100k	O.L.	
J1-9	J4-13	+28V TMB	> 100k	O.L.	
J1-10	J1-24	28V TMB RTN	> 100k	O.L.	
J1-10	J1-25	28V TMB RTN	> 100k	O.L.	
J1-10	J2-3	28V TMB RTN	> 100k	O.L.	
J1-10	J4-12	28V TMB RTN	> 100k	O.L.	
J1-10	J4-13	28V TMB RTN	> 100k	O.L.	
J1-24	J1-25	SAFETY HTR PWR	> 100k	O.L.	
J1-24	J2-3	SAFETY HTR PWR	> 100k	O.L.	
J1-24	J4-12	SAFETY HTR PWR	> 100k	O.L.	
J1-24	J4-13	SAFETY HTR PWR	> 100k	O.L.	
J1-25	J2-3	SAFETY HTR PWR RTN	> 100k	O.L.	
J1-25	J4-12	SAFETY HTR PWR RTN	> 100k	O.L.	
J1-25	J4-13	SAFETY HTR PWR RTN	> 100k	O.L.	
J2-3	J4-12	SIGNAL RTN	> 100k	3.8M Ω	
J2-3	J4-13	SIGNAL RTN	> 100k	2.6M Ω	↓
J4-12	J4-13	+10V INTERFACE BUS	> 100k	5.0M Ω	PASS

O.L. = > 40M Ω

TEST DATA SHEET 1 (Sheet 8 of 9)
Grounding Test (Paragraph 3.2.4.1)

Source Pin	Destination Pin	Source Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J2-2	J4-13	DATA CLOCK (C1)	> 2k	239 K Ω	PASS
J2-5	J4-13	DIGITAL A DATA OUT	> 2k	3.7 M Ω	↑
J2-6	J4-13	DATA ENABLE (A1)	> 2k	755 K Ω	
J2-7	J4-13	8 SEC SYNC PULSE	> 2k	760 K Ω	
J3-1	J4-13	1.248 MHZ CLK	> 2k	728 K Ω	
J3-2	J4-13	1.248 MHZ CLK RTN	> 2k	0L.	
J4-2	J4-13	MODULE PWR DISCONN	> 2k	240 K Ω	
J4-3	J4-13	SURVIVAL HTR ON	> 2k	767 K Ω	
J4-4	J4-13	MODULE TOTALLY OFF	> 2k	763 K Ω	
J4-5	J4-13	COMP MTR ON/OFF	> 2k	760 K Ω	
J4-6	J4-13	ANT AT COLD CAL POS	> 2k	755 K Ω	
J4-8	J4-13	ANT AT NADIR POS	> 2k	751 K Ω	
J4-9	J4-13	COLD CAL POS MSB (IN)	> 2k	753 K Ω	
J4-14	J4-13	MODULE PWR CONN	> 2k	755 K Ω	
J4-15	J4-13	SURVIVAL HTR OFF	> 2k	760 K Ω	
J4-16	J4-13	SCANNER PWR ON/OFF	> 2k	760 K Ω	
J4-17	J4-13	ANT AT WARM CAL POS	> 2k	740 K Ω	
J4-18	J4-13	FULL SCAN	> 2k	760 K Ω	
J4-19	J4-13	COLD CAL POS LSB (IN)	> 2k	758 K Ω	
J5-2	J4-13	MODULE PWR IND	> 2k	3.7 M Ω	
J5-3	J4-13	COLD CAL POS MSB	> 2k	3.7 M Ω	
J5-5	J4-13	COMP MTR IND	> 2k	3.7 M Ω	
J5-6	J4-13	ANT IN COLD CAL POS	> 2k	3.8 M Ω	
J5-9	J4-13	SURV HTR ON/OFF	> 2k	3.8 M Ω	
J5-11	J4-13	COLD CAL POS LSB	> 2k	3.7 M Ω	
J5-12	J4-13	SCANNER ON PWR IND	> 2k	3.7 M Ω	
J5-13	J4-13	ANT IN WARM CAL POS	> 2k	3.8 M Ω	
J5-14	J4-13	ANT IN NADIR POS	> 2k	3.8 M Ω	↓
J5-15	J4-13	FULL SCAN MODE	> 2k	3.8 M Ω	PASS

O.L. = > 40 M Ω

2 Apr 99

TEST DATA SHEET 1 (Sheet 9 of 9)
Grounding Test (Paragraph 3.2.4.1)

Source Pin	Destination Pin	Source Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J6-8	J4-13	SCAN MTR Curr	> 2k	3.1 MΩ	PASS
J6-9	J4-13	+15V ANT DR MON	> 2k	1.8 MΩ	↑
J6-10	J4-13	+5V ANT DR MON	> 2k	1.8 MΩ	
J6-11	J4-13	+15V SIG PROC MON	> 2k	1.6 MΩ	
J6-12	J4-13	+5V SIG PROC MON	> 2k	1.6 MΩ	
J6-13	J4-13	L.O. #1 MON	> 2k	1.6 MΩ	
J6-20	J4-13	28V TMB RTN	> 2k	O.L.	
J6-22	J4-13	SCAN MTR TEMP	> 2k	O.L.	
J6-27	J4-13	COMP MTR Curr	> 2k	2.9 MΩ	
J6-28	J4-13	-15V ANT DR MON	> 2k	1.8 MΩ	
J6-29	J4-13	-15V SIG PROC MON	> 2k	1.6 MΩ	
J6-30	J4-13	L.O. #2 MON	> 2k	1.6 MΩ	
J6-34	J4-13	MIXER/AMP MON	> 2k	1.6 MΩ	
J6-2	J1-10	RF SHELF TEMP	> 2k	14.7 KΩ	
J6-3	J1-10	COMP MTR TEMP	> 2k	14.7 KΩ	↓
J6-4	J1-10	WARM LOAD TEMP	> 2k	14.7 KΩ	PASS

O.L. = > 40 MΩ

Op. 0730

METSAT/AMSU A2 System CPT P/N IS-1331200
 Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: 335079 S/N: 108

LPT _____

2/18/00

KenShane Test Systems Engineer

2/18/00

Customer Representative Date

Quality Control

Customer Representative Date

2/18/00

TEST DATA SHEET 2
+28 MLB Turn-on Transient (Paragraph 3.2.4.2.1.1)

At 28.56 Vdc:

Step	Parameter	Measured/ Calculated	Required		Pass/ Fail
			*	**	
7	Peak Current	4.85 Amps	<8.3 Amps	<5.7 Amps	Pass
7	Pulse Width	60.9 ms	<100 ms	<120 ms	Pass
7	Rate of Change (Slope): dI/dT	192.7 mA/μs	<640 mA/μs	<250 mA/μs	Pass

At 27.44 Vdc:

Step	Parameter	Measured/ Calculated	Required		Pass/ Fail
			*	**	
7	Peak Current	4.538 Amps	<8.3 Amps	<5.7 Amps	Pass
7	Pulse Width	62.3 ms	<100 ms	<120 ms	Pass
7	Rate of Change (Slope): dI/dT	201.6 mA/μs	<640 mA/μs	<250 mA/μs	Pass

At 28.00 Vdc:

Step	Parameter	Measured/ Calculated	Required		Pass/ Fail
			*	**	
7	Peak Current	4.6 Amps	<8.3 Amps	<5.7 Amps	Pass
7	Pulse Width	62.2 ms	<100 ms	<120 ms	Pass
7	Rate of Change (Slope): dI/dT	170.1 mA/μs	<640 mA/μs	<250 mA/μs	Pass

* For S/N 101 through 104

** For S/N 105 through 109.

METSAT/AMSU A2 System CPT P/N IS-1331200
 Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: 335079 S/N: 108

OP: 0730

Ray Bellamy
 Test Systems Engineer

2-11-00

Date

Joe DeLoach
 Quality Control

2-11-00

Joseph DeLoach
 Customer Representative Date
 (Flight Hardware Only)

TEST DATA SHEET 3
+28V MLB Operating Power (Paragraph 3.2.4.2.1.2)

Step	+28V MLB at 27 Volts	Measured	Units	Required	Pass/Fail
4	+28V MLB voltage at 27V (V_b) (Measured)	27.03V	Volts	27.0 ± 0.1	PASS
5	Average Current (I_V)	.65A	Amps	N/A	N/A
6	+28V MLB bus power = $I_V \times V_b$	17.57W	Watts	25W max	PASS
+28V MLB at 28 Volts					
7	+28V MLB Bus Voltage at 28V (V_b) (Measured)	28.02V	Volts	28.0 ± 0.1	PASS
8	Average Current (I_V)	.63A	Amps	N/A	N/A
9	+28V MLB Operating Power = $I_V \times V_b$	17.65W	Watts	25W max	PASS
+28V MLB at 29 Volts					
10	+28V MLB voltage at 29V (V_b) (Measured)	29.03V	Volts	29.0 ± 0.1	PASS
11	Average Current (I_V)	.62A	Amps	N/A	N/A
12	+28V MLB operating power = $I_V \times V_b$	17.99W	Watts	25W max	PASS

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: 335079 S/N: 108

 2-19-00
Customer Representative Date
Flight Hardware Only

Op. 0730

Ken Sharpe Date 2-18-00
Test Systems Engineer 2/19/00 (7A)

Anita Narvaez Quality Control
2/19/00 (7A)

$$\Delta x = 62 \cdot 22^m \wedge \Delta y = 66 \cdot 82^m \vee x = 7, 153, 864$$

$\gamma = 46.206^m$

$$\Delta Y = 46.01 \text{ mV}$$

S/N: 335079 OP: 0730
P/N: 1331200-2-TST SN: 108

$X = 8.609 \text{ mS}$

$\Delta Y = 5.795 \text{ m}$

CAP TIM BUF

80.0

F x dXY 8. 42m

9. 23m

S/N: 335079 OP: 0730
P/N: 1331200-2-TST SN: 108

3.2.4.2.1.1 MLC Turn-on
 $\frac{di}{dt} + 28V$ TEST ENG:
FINAL CPT TAC 2 Quality Test (A)
Date: 2-19-00
Set 2000

$\Delta Y = 45$. 38mV

$X_a = 7.547 \text{ mS}$ $\Delta X = 62.$ 3mS $Y_a = 6.$ 206mV

CAP TIM BUF

80.0

$$\text{Peak Current} = 10\text{A/cm}^2 \times 15.38 \text{ mV} = 153.8 \text{ mA}$$

$$= \underline{\underline{4.538 \text{ Amperes}}}$$

10.0 m
/Di V

Real

V

1.0A/10mV

Fxxdy 0.0
0.0

3.2.4.2.1.1 SEC M& Turn-on
+ 27.44V TEST EKG: ~~May 19th~~ Date: 2-19-00

S/N: 335079 OP: 0730
PN: 1331200-2-TST SN: 108

TO52#2 Quality: ~~AMCO~~ ^{AMCO} ~~269~~ ²⁶⁹

$$X = 8.766 \text{ mS} \quad \Delta X = 15.62 \mu\text{s}$$

$$Y_d = 13.8987 \text{ mV} \quad \Delta Y_d = 31.49 \text{ mV}$$

CAP TIM BUF

S/N: 335079 OP: 0730
P/N: 1331200-2-TST SN: 108

3.2.4.2.1.1 MLC Turn-on
~~dy/dt + 22.4 V TEST ENG: 105% Quality~~
FINAL CPT ~~2200~~

9. 3m

~~dy/dt + 22.4 V TEST ENG: 105% Quality~~
Final Current ^(A) ~~2200~~

$\Delta X = 69.$ 06mS $\Delta X = 60.$ 92mS
 $\Delta Y = 6.$ 00055m $\Delta Y = 5.$ 334mV

$Y = 0.$ 0

$\Delta Y = 49.$ 5mV

CAP TIM BU_F
80. 0

10. 0
m
/Div

Revol

V

1.0 A/10mV

Fx: dXY 0. 0
SEC

S/N: 335079 OP: 0730
P/N: 1331200-2-TST SN: 108

3.2.4.2.1.1 MLB Turn-on

+ 28.56 V TEST ENIG: ~~100% Quality~~ Date: 2-12-00
CPT TDS-12 ^(A) ~~100% Quality~~ ^(A) ~~100% SMT~~ ^(A)

$X = 8.437 \text{ ms}$ $\Delta X = 15.62 \mu\text{s}$
 $Y_0 = 49.6968 \text{ m}$ $\Delta Y_0 = 30.11 \text{ mV}$

$Y = 0.0$

$\Delta Y = 49.5 \text{ mV}$

S/N: 335079 OP: 0730
P/N: 1331200-2-TST SN: 108

3.2.4.2.1.1 MLB Turn-on
digit + 28.56 V TEST ENG: 1000
F/N_A: CPT TOS ¹⁴ ₂₆₉ 2 Qual/itr: Good - (2-7-1)

8. 81 m
~~1000~~ Date: 2-11-00
CPT TOS ¹⁴ ₂₆₉ 2 Qual/itr: Good - (2-7-1)

$r = 618.18 \mu$ $\Delta Y = 43.83 mV$

3.2.4.2.1 0-2 Sec PLB Current
Peak Current OP: 0730
S/N: 335079 Date: 2-19-00
Fwd XY 0.0 Fwd Curr Date: 2-20-00
TEST ENG: John H. Green Quality: Good
(TA)

$\gamma = -109.09 \mu$ $\Delta \gamma = 824.2 \mu\text{V}$

S/N: 335079 OP: 0730
P/N: 1331200-2-TST SN: 108

TEST ENG: Balaji Date: 2-10-00
I/H, D current ^{1A}
FINAL CPT TOS-4 Quality: Good ^{1A} 20-00

$\gamma = 957.575 \mu$ $\Delta Y = 43.98 mV$

CAP TIM BUF
70.0 μ

10.0 m
/div

Real

V

500 mV
10mV

-10.0 m
/div

Fixd XY 2.0

S/N: 335079 OP: 0730
PN: 1331200-2-TST SN: 108

$$\begin{aligned} \text{Peak Current} &= 500 \text{ mAm} \times 43.98 \text{ mV} = 2199 \text{ mA} \\ &= 2.199 \text{ Amperes} \end{aligned}$$

Sec Current

4.0

TEST ENG: Sanath Jayaraman Date: 21-9-20
Qual/Tr: OK Date: 21-9-2020

$\gamma = -109.09 \mu$ $\Delta \gamma = 1.503 \text{ mV}$

Fixd XY 2.0

324.222 2-4 Sec PLB Current

-10.0 m

4.0

500mA/10mV

A.D Current = 500mA/10mV X 1.503 mV = 75.15 mA

S/N: 335079 OP: 0730
P/N: 1331200-2-TST SN: 108

TEST ENG: Patel Date: 2-19-00
Quality: Good (A)
100% Good (B)

$\gamma = 957.575 \mu$ $\Delta \gamma = 43.1 \text{ mV}$

CAP TIM BUF

70.0 μ

10.0 μ
/Div

$R_{\text{e}} = 1$

V

500 ma
 $/10 \text{ mv}$

$$\begin{aligned} \text{Peak Current} &= 500 \text{ ma} / 10 \text{ mv} \times 43.1 \text{ mV} = 2155 \text{ ma} \\ &= \underline{\underline{2155 \text{ Amperes}}} \end{aligned}$$

Fixd XY 4.0
-10.0

S/N: 335079 OP: 0730 SN: 108
P/N: 1331200-2-TST

324.22.3 4-6 Sec P₄ SEC Current

TEST ENG: Paythay Date: 2-19-00

TDS-4 FINAL CPT

Quality: Good Date: 2-20-00

$\gamma = -60$. 607μ $\Delta\gamma = 775.8 \mu\text{V}$

CAP TIM BUF

70.0 m

10.0 m
/Div

Real

V

~~500mV~~
10mV

4.0
Fixd XY

32.4.2.2.3 4-6 Sec SPCLB Current

6.0

$I_{H,D} \text{ Current} = 500\text{mA}/\text{mm} \times 775.8 \mu\text{V} = 38.79\text{mA}$

S/N: 335079 OP: 0730
P/N: -31200-2-TST SN: 108 FINAL CPT

TEST ENG: Rajeshwar Date: 2-9-00
(74)
Quality: Excellent (2000)

$\gamma = 44.3515 \text{ m}$ $\Delta \gamma = 43.93 \text{ mV}$

Reo 1

$500 \text{ mA} / 10 \text{ mV}$

-10.0

Exdxy 6.0

S/N: 335079 OP: 0730 TEST ENG: Surfacing Date: 2-16-00
P/N: 1331200-2-T5T SN: 108 TEST-4 Quality: 194 2000

$V = -60.607\mu$ $\Delta V = 484.8\mu V$

CAP TIM BUF
70.0 m

10.0 m
/ Div

Real

v

500mV/mm

-10.0 m

Fixd XY 6.0

$$I_{A,D} \text{ current} = 500 \text{mV/mm} \times 484.8 \mu V = 24.24 \text{ mA}$$

32.1.2.2.4 6-8 Sec $\frac{S}{R}$ Current

S/N: 335079 OP: 0730
P/N: 1331200-2-TST SN: 108

TEST ENG: D. H. H. Date: 2-11-00
TAS-# 7A Quality: 194 2-2000

8.0

$r = 44.303 \text{ m}$ $\Delta Y = 43.93 \text{ mV}$

S/No: 335079 OP: 0730
P/N: 1331200-2-TST SN: 108

TEST ENG: Laith Al-Husseini Date: 2-12-2000
TDS-4 Quality: Very Good ^{TA}
1942-2000

$$X = 7.0996137 \text{ sec}$$

M:CAP TIM REC
70.0T

10.0 m / 10.0

丁巳

3

~~500m~~/10mV

Fax 0.0

५

SEG Second Integrated Current Eight Second

S/N: 335079 OP: 0730
P/N: 1331200-2-TST SN: 108

8. Q
5 Eight Second Integrated Current TEST ENG: Date: 2-19-00
TEST-4 Quality: ⁷⁴
FINAL CPT ~~Quality: 1947-2000~~

$X = 8.562 \text{ mS}$ $\Delta X = 1.2787 \text{ mS}$
 $Y = -666.73 \mu$ $\Delta Y = 97.03 \text{ mV}$

CAP TIM BUF

C4701

$\gamma = 350.145 \text{ m}$ $\Delta \gamma = 350.5 \text{ mV}$

$$\text{Peak Current} = 200 \frac{\text{mA}}{\text{10mV}} \times 350.5 \text{ mV} = 7010 \text{ mA}$$

$$= 7.01 \text{ Amperes}$$

60. 0
/ 0.1 V

Real

V

$200 \frac{\text{mA}}{\text{10mV}}$

-10. 0

Fix dX Y 0. 0

2.5. 0 m SEC ON Transient

S/N: 335079 OP: 0730
 P/N: 1331200-2-TST SW: 108

32.4.2.7 PLB Turn-ON Transient
 TDS-4

TEST ENG: Johnathan Date: 2-20-00
 Quality: Good ^{2A} 19
Johnathan 2-20-00

$X = 8.656 \text{ mS}$ $\Delta X = 31.25 \mu\text{s}$
 $Y = 351.981 \text{ m}$ $\Delta Y = 2.35.4 \text{ mV}$

$\gamma = 350.145 \text{ m}$ $\Delta \gamma = 350.5 \text{ mV}$

CAP TIM BUF
470 M

50. 0
10 div

Rec 1

$$di = 200 \text{ ma} / 10 \text{ mV} \times 235.4 \text{ mV} = 4708 \text{ ma}$$

$$dift = 4708 \text{ ma} \div 31.25 \text{ msec}$$

$$= 150.6 \text{ msec}$$

$200 \text{ ma} / 10 \text{ mV}$

- 10. 0

Freq XY 8. 56m

S/N: 335079 OP: 0730
PN: 1331200-2-TST SN: 108

3.2 & 22.7 PLB SEC Turn-on

83. 69m

TEST ENG: B. J. S. Date: 2-20-00
Quality: Good ^{TA} 1992-2000

TEST DATA SHEET 4
+28 Pulse Load Bus (Paragraph 3.2.4.2.2.1-3.2.4.2.2.7)

Peak current

Paragraph	Parameter	Measured or Calculated	Required	Pass/ Fail
3.2.4.2.2.1	From -0.1 to two seconds			
	Peak Current = I_p	— Amps	2.2 amps max	
3.2.4.2.2.2	From 2 to 4 seconds			
	Peak Current = I_p	— Amps	2.2 amps max	
3.2.4.2.2.3	From 4 to 6 seconds			
	Peak Current = I_p	— Amps	2.2 amps max	
3.2.4.2.2.4	From 6 to 8 seconds			
	Peak Current = I_p	— Amps	2.2 amps max	
3.2.4.2.2.5	Eight Sec. Integrated Current Measurement			
	Current	— mA	none	
3.2.4.2.2.7	Turn-on Transient:			
	Turn-on pulse width Peak Current = I_p dI/dT	N/A ms N/A Amps 242.50 mA/ μ s	≤9.6 Amps 846 mA/ μ s *	

* Refer to Figure 10.

Bus current during the I/H,D period

Paragraph	Parameter	Measured or Calculated	Pass/ Fail
3.2.4.2.2.1	From -0.1 to 2 seconds	— mA	N/A
3.2.4.2.2.2	From 2 to 4 seconds	43.6 mA	N/A
3.2.4.2.2.3	From 4 to 6 seconds	N/A mA	N/A
3.2.4.2.2.4	From 6 to 8 seconds	N/A mA	N/A

Bus current during warm cal, cold cal, and nadir

Paragraph	Parameter	Measured	Pass/ Fail
3.2.4.2.2.6 (2)	Warm cal	N/A mA	N/A
3.2.4.2.2.6 (3)	Cold cal	N/A mA	N/A
3.2.4.2.2.6 (4)	Nadir	N/A mA	N/A

METSAT/AMSU A2 System CPT P/N IS-1331200
 Circle Test: 1st CPT Final CPT

Shop Order: 335079 S/N: 108

09.8050 *AMCO. R. H. H.* 2/25/00

J. Langford 2-25-00
 Customer Representative Date
 (Flight Hardware Only)

Date

Test Systems Engineer *Judith J. Morris* (24) 25FEB00
 Quality Control

$X = 2.0$ SEC
 $Y_0 = 4.4$. 6563mV
CAP T M BUFR
20.0 m

$\gamma = 230.301 \mu$ $\Delta \gamma = 872.7 \mu\text{V}$

10.0 m
/ 10.0 V

Read 1

V

WAVEFORM 2.0
-10.0 m

WAVEFORM 1.0

500

I/H.D. CURRENT = ~~300 mA~~ $\times 872.7 \mu\text{V} = 43.65 \mu\text{A}$
/ 0.0mV

R. Hall 2/25/00

S.O. 335079 TDS-4 P.3.2.4.2.2.2 A2 S/N 108 2/25/00
ADDITIONAL RESULTS

READ #1
OP. 8050

Judith Kerey (83)
25 FEB 00

$X = 8.547 \text{ mS}$ $\Delta X = 15.692 \mu\text{s}$
 $Y = 8.89.5466 \text{ m}$ $\Delta Y = 1.88.4 \text{ mV}$

$\gamma = 278.873 \text{ m}$ $\Delta \gamma = 277.8 \text{ mV}$

CAP TIME BUR

ms

60.0 ms
Div

Radial

V

200mV/mm

10.0 ms
Div 8.5m

P. 3.2.4.2.2.7
S.O. 335679

ADDITIONAL
TESTS

A2 8/V/108
TDS 4

Sec

8.5m

$$\delta I = 189.4 \text{ mV} \times \frac{200 \text{ mA}}{10 \text{ mV}} = 3788 \mu\text{A}$$

$$\frac{dI}{dt} = \frac{3788 \mu\text{A}}{15.62 \mu\text{s}} = 242.50 \text{ mA/}\mu\text{s}$$

TEST DATA SHEET 4
+28 Pulse Load Bus (Paragraph 3.2.4.2.2.1-3.2.4.2.2.7)

Peak current

Paragraph	Parameter	Measured or Calculated	Required	Pass/ Fail
3.2.4.2.2.1 From -0.1 to two seconds				
	Peak Current = I_p	2.19 Amps	2.2 amps max	Pass
3.2.4.2.2.2 From 2 to 4 seconds				
	Peak Current = I_p	2.19 Amps	2.2 amps max	Pass
3.2.4.2.2.3 From 4 to 6 seconds				
	Peak Current = I_p	2.155 Amps	2.2 amps max	Pass
3.2.4.2.2.4 From 6 to 8 seconds				
	Peak Current = I_p	2.196 Amps	2.2 amps max	Pass
3.2.4.2.2.5 Eight Sec. Integrated Current Measurement				
	Current	241.6 mA	none	Pass
3.2.4.2.2.7 Turn-on Transient:				
	Turn-on pulse width Peak Current = I_p dI/dT	12.87 ms 7.01 Amps 150.6 mA/ μ s	≤ 9.6 Amps 846 mA/ μ s *	PASS

* Refer to Figure 10.

Bus current during the I/H,D period

Paragraph	Parameter	Measured or Calculated	Pass/ Fail
3.2.4.2.2.1	From -0.1 to 2 seconds	41.21 mA	N/A
3.2.4.2.2.2	From 2 to 4 seconds	75.15 mA	N/A
3.2.4.2.2.3	From 4 to 6 seconds	38.79 mA	N/A
3.2.4.2.2.4	From 6 to 8 seconds	24.29 mA	N/A

Bus current during warm cal, cold cal, and nadir

Paragraph	Parameter	Measured	Pass/ Fail
3.2.4.2.2.6 (2)	Warm cal	11.2 mA	N/A
3.2.4.2.2.6 (3)	Cold cal	11.21 mA	N/A
3.2.4.2.2.6 (4)	Nadir	99.8 mA	N/A

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT

Shop Order: 335079 S/N: 108

Customer Representative
Date
(Flight Hardware Only)

2-20-00

Date

Ray Gabella 2-20-00
 Test Systems Engineer
Lorraine Morgan Quality Control
 7A 194 2-20-00

AE-26156/4E
2 Apr 99

TEST DATA SHEET 5
+28V Analog Telemetry Bus (Paragraph 3.2.4.2.3)

Step	Parameter	Measured/ Calculated	Required	Pass/ Fail
3	+28V ATB Bus Voltage (V_{at}) (Measured)	28.28 Volts	28.0 ± .5	PASS
3	Avg. Current (I_a)	1.18 mA	7 mA max	PASS
4	+28V ATB Bus Power = $I_a \times V_{at}$	33.37 mW	200 mW max	PASS

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT

O.p. 0730
Shop Order: 335079 S/N: 106

D. Brown
Customer Representative
Date
(Flight Hardware Only)

Date

Ken Shaine
Test Systems Engineer
2/19/00
Stella M. Gonzales
Quality Control
2/19/00

TEST DATA SHEET 6
+10V Interface Bus Voltage (Paragraph 3.2.4.2.4.1)

Step	Parameter	Measured/ Calculated	Required	Pass/ Fail
3	Av. Current (I_a)	7.56 mA	10 mA max	PASS
3	+10V Interface Bus (V_{ib}) (Measured)	9.08 Volts	9.0 ± 1.0 V	PASS
4	+10 Interface Bus Power = $I_a \times V_{ib}$	68.64 mW	100 mW max	PASS

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Op. 0730
Shop Order: 335079 S/N: 108

Customer Representative Date
Date
(Flight Hardware Only)

Ken Sharpe 2/19/00
Test Systems Engineer Date 00
Stella M. Gonzales 2/19/00
Quality Control

TEST DATA SHEET 7
1.248 MHz Clock Signal Verification (Paragraph 3.2.4.3.2.1)

Tek Stop: 100MS/s

25 Acqs

19 Feb 2000
21:46:49

S/N: 335079 OP: 0730 1.248 MHz Clock
P/N: 1331200-2-TST SN: 108 FINAL CPT
P 3.2.4.3.2.1 TDS 7

TEST ENG: K. Shane Date: 2/19/00
Quality Control: C. M. Daugler 7A 3/19/00
200

Step	Parameter	Measured/ Calculated	Required	Pass/Fail
5	Clock Frequency	1.248 MHz	1.248 ±10%	PASS
	Clock Amplitude	9.0 Volts	9.0 ±1.0V	PASS

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT

Shop Order: 335079 SN: 108

J. L. [Signature] 2-20-00
Customer Representative Date
(Flight Hardware Only)

Op. 0730
Ken Shane 2/19/00
Test Systems Engineer
C. M. Daugler 3/19/00
Quality Control

S/N: 335079 OP: 0730 1.248 MHz Clock
 n.s.: 12210m -> -7.57 SW: 108 FINAL C.R.T.
 TEST ENG: R. Drane Date: 2/19/00
 Quality Good 002 4 4 4

Tek Stop: 2MS/s

19 Acqs

19 Feb 2000
22:38:23

S/N: 335079 OP: 0730 "C" Shift Pulse
P/N: 1331200-2-TST SN: 108 FINAL CPT

TEST ENG: K. Shary Date: 2/19/00
Quality Control M. Ongala TA
200 7A 7m

TEST DATA SHEET 8
"C1" Shift Pulse Verification (Paragraph 3.2.4.3.2.2)

19 Feb 2000
22:38:23

S/N: 335079 OP: 0730 "C1" Shift Pulse
P/N: 1331200-2-TST SN: 108 TEST ENG: Ken Shane Date: 2/19/00
FINAL CPT Quality Control: Stella M. Murgale 7A
R314377 TDSR 200

Parameter	Measured/ Calculated	Required	Pass/ Fail
Pulse Timing (A) *	48.90 μs	48 μs ± 10%	PASS
Pulse Timing (B) *	11.15 μs	12 μs ± 10%	PASS
Pulse Amplitude	8.80 Volts	9.0 ± 1.0V	PASS

* Refer to Figure 18 for location of the pulse timing A and B.

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT

Op. 0730
Shop Order: 335079 S/N: 108

Ken Shane 2/19/00
Test Systems Engineer Date 7A
Stella M. Murgale 2/19/00 200
Quality Control

J. L. Judd 2-20-00
Customer Representative Date
Date
(Flight Hardware Only)

TEST DATA SHEET 9
"A1" Select Pulse Verification (Paragraph 3.2.4.3.2.3)

Tek STOP 100ks/s

9 Acqs

Δ: 960μs
@: 950μs

Ch2 High
8.8 V

19 Feb 2000
23:16:21

S/N: 335079 OP: 0730
PN: 1331200-2-TST SN: 108

"A1" Select Pulse
FINAL CPT
P 3.24.3.2.3 TDS9

TEST ENG: K. Shae Date: 2/19/00
Quality Control: Stella M. Margala 7A

Parameter	Measured/ Calculated	Required	Pass/ Fail
Select Pulse Timing (F) *	960 μs	961.5 μs ± 10%	PASS
Select Pulse Amplitude	8.80 Volts	9.0 ± 1.0V	PASS

* Refer to Figure 18 for location of the pulse timing F

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT

Shop Order: 335079 S/N: 108

J. Dugard
Customer Representative
Date
(Flight Hardware Only)

2-20-00
Date

Ken Shae
Test Systems Engineer
Stella M. Margala 2/19/00
AMSU 5 SEIT Date 7A
Quality Control 200

Tek Stop: 1000ks/s

△: 960μs
@: 950μs
Ch2 High
8.8 V

S/N: 335079 OP: 0730 SN: 108
n/s: 12217m->TST

"A1" Select Pulse
FINAL CPT

TEST ENG: K. Sharpe Date: 2/19/00
Quality: Initial Check Passes TA 200

Tek Stop: 200ks/s

410 Acqs

Δ : 240μs
@: -5μs

Ch2 High
8.8V

Period = 8000049 Sec
Measured by HPS36A
47109
cal file: 9-20-00

20 Feb 2000
10:46:06

3.2.4.3.2.4 8 Sec. Sync Pulse

S/N: 335079 OP: 0730

TD5-1D in, rot

TEST ENV: Autotest Date: 2-20-00
Quality: Good (2000)

TEST DATA SHEET 10
"8 Seconds" Frame Sync Pulse (Paragraph 3.2.4.3.2.4)

Step	Parameter	Measured/ Calculated	Required	Pass/ Fail
1*	Frame Sync Pulse Timing	8.000049 Sec	8 Sec ±10%	PASS
	Frame Sync Pulse Timing (C)**	240.0 μs	240.4 μs ±10%	PASS
	Frame Sync Pulse Amplitude	8.8 Volts	9.0 ±1.0V	PASS

* Measure timing of 8-sec FSP by using HP 5316A Universal Counter.

** Refer to Figure 18 for location of the timing pulses for C.

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: 335079 S/N: 108

J. Deppen Date 2-20-00
Customer Representative Date
(Flight Hardware Only)

Op: 0730
2-20-00
Test Systems Engineer
Signature 7A Date
Quality Control 194 2-20-00

TEST DATA SHEET 11 (Sheet 1 of 2)
Synchronization Signals Relationship (Paragraph 3.2.4.3.2.5)

A1 Select pulse and the 8 seconds Frame sync pulse.

Verify that the timing between H and I is as shown in Figure 18.

TIME MEASURED: 13.7 mSec

TIME REQUIRED: 13.7 ms ±10%

PASS/FAIL PASS

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT

Shop Order: 335079 S/N: 108

J. Dugard 2-20-00
Customer Representative Date
(Flight Hardware Only)

Ray Kettles 2-20-00
Test Systems Engineer Date
Mark Morgan 2-20-00
Quality Control

S/N: 335079 OP: 0730
 P/N: 1331200-2-TST SN: 108

32.4.3.2.5 8 Sec Sync & A1 Select
 TDS-11

TEST ENG:

Date: 20-02-2000
 Quality: Good
 Test No: 1A
 Date: 20-02-2000

32.4.3.2.5 8 Sec Sync & A1 Select

20 Feb 2000
11:25:22

Tek Stop: 2MS/s

110 Acqs

C1
SHIFT

J2-2

1→

A1
SELECT

J2-6

2→

20 Feb 2000
11:34:46
S/N: 335079 OP: 0730
P/N: 1331200-2-TST SN: 108 FINAL CPT

TEST ENG: Faythay Opto: 2-2000
Quality: ok Date: 19/1 2000

TEST DATA SHEET 11 (Sheet 2 of 2)
Synchronization Signals Relationship (Paragraph 3.2.4.3.2.5)

A1 Select pulse and the C1 Shift pulse.

Verify that the timing between I and E is as shown in Figure 18.

TIME MEASURED: 24.0 μSec

TIME REQUIRED: $24 \mu\text{s} \pm 10\%$

PASS/FAIL PASS

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: 335079 S/N: 108

J. Sayard 2-20-00
Customer Representative Date
Date
(Flight Hardware Only)

Ray Hulberg 2-20-00
Test Systems Engineer 7A Date
194 *John Morgan* 2-20-00
Quality Control

AE-26156/4E
2 Apr 99

TEST DATA SHEET 12
Synchronization Signals Relationship (Paragraph 3.2.4.3.2.5)

A1 Select pulse and the 1.248 MHz clock.

Verify that the timing between I and J is as shown in Figure 18.

PASS/FAIL

PASS

METSAT/AMSU A2 System CPT PN IS-1331200 Shop Order: 335079 S/N: 108
Circle Test: 1st CPT Final CPT Sub CPT

J. Dugard 2-20-00
Customer Representative Date
Date

(Flight Hardware Only)

OP: 0730

Test Systems Engineer 174 Date 2-20-00
Signature 184 2-20-00

Quality Control

TEST DATA SHEET 13
Commands and Digital-B Telemetry Verification (Paragraphs 3.2.4.3.3.1, 3.2.4.3.3.2, and 3.2.4.3.3.3)

Test	Digital-B Commands Verification Via STE			Visual Inspection		Pass/Fail
	Command	Observed	Required	Observed	Required	
3.2.4.3.3.1 Module Totally Off	Scanner A2	OFF	OFF	ANT. 1~ W.L. POSITION	Antenna pointing to warm load.	PASS
	Module Power	DISCONNECT	Disconnect	N/A	N/A	
	Survival Htr. Power.	OFF	OFF	O	28V supply current=0	PASS
3.2.4.3.3.2 Survival Heater Power	Survival Heater ON	ON	ON	N/A	N/A	PASS
	Survival Heater OFF	OFF	OFF	N/A	N/A	PASS
3.2.4.3.3.3	Module Power Connect	28.05V 1.2A	Connect	CONNECT	+28V DC current is between 0.5 and 3.2 amps.	PASS

METSAT/AMSU A2 System CPT P/N IS-1331200 Shop Order: 335079 S/N: 108
Circle Test: 1st CPT Final CPT Sub CPT _____

Customer Representative Date
Date
(Flight Hardware Only)

Op.# 0730
2-19-00
AMSU
S275
Test Systems Engineer Linda DeVito Date 2/19/00
Quality Control 275

AE-26156/4E
2 Apr 99

TEST DATA SHEET 14
Scanner Commands Verification (Paragraph 3.2.4.3.3.4, Step 1)

Test	Digital "B" Verification			Pass/Fail
	Command	Observed	Required	
Full Scan	1 Module Power	CONNECT	CONNECT	PASS
	2 Survival Heater	OFF	OFF	
	3 Scanner A2 Power	ON	ON	
	4 Compensator Motor Power	ON	ON	
	5 Antenna Warm Cal Pos.	NO	NO	
	6 Antenna Cold Cal Pos.	NO	NO	
	7 Antenna NADIR Position	NO	NO	
	8 Antenna Full Scan	YES	YES	
	9 Cold MSB	ZERO	0	
	10 Cold LSB	ZERO	0	PASS

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: 335079 S/N: 108

2-19-00
R. D. 2-19-00 AMSS TEST
Test Systems Engineer John Williams Date 2/19/00 24
Quality Control 2/19/00 275

Customer Representative
Date
(Flight Hardware Only)

TEST DATA SHEET 15
Scanner Commands Verification (Paragraph 3.2.4.3.3.4, Step 2)

Test	Digital "B" Verification			Pass/Fail
	Command	Observed	Required	
Full Scan	1 Module Power	CONNECT	CONNECT	PASS
	2 Survival Heater	OFF	OFF	
	3 Scanner A2 Power	OFF	OFF	
	4 Compensator Motor Power	OFF	OFF	
	5 Antenna Warm Cal Pos.	NO	NO	
	6 Antenna Cold Cal Pos.	NO	NO	
	7 Antenna NADIR Position	NO	NO	
	8 Antenna Full Scan	YES	YES	
	9 Cold MSB	2620	0	
	10 Cold LSB	2620	0	PASS

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT

Shop Order: 335079 S/N: 108

2-19-00

Test Systems Engineer Mike Novak Date 2/19/00 (275)
Quality Control

R. Dunn 2-19-00
Customer Representative Date
(Flight Hardware Only)

AE-26156/4E
2 Apr 99

TEST DATA SHEET 16
Scanner Commands Verification (Paragraph 3.2.4.3.3.4, Step 3)

Test	Digital "B" Verification			Pass/Fail
	Command	Observed	Required	
Full Scan	1 Module Power	CONNECT	CONNECT	PASS
	2 Survival Heater	OFF	OFF	
	3 Scanner A2 Power	ON	ON	
	4 Compensator Motor Power	ON	ON	
	5 Antenna Warm Cal Pos.	NO	NO	
	6 Antenna Cold Cal Pos.	NP	NO	
	7 Antenna NADIR Position	NP	NO	
	8 Antenna Full Scan	YES	YES	
	9 Cold MSB	2610	0	
	10 Cold LSB	2610	0	PASS

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT

Shop Order: 335074 S/N: 108

2-19-00

2-19-00
Customer Representative
Date
(Flight Hardware Only)

Test Systems Engineer Date 2/19/00
Quality Control

QA
275

TEST DATA SHEET 17
Scanner Positions Commands (Paragraph 3.2.4.3.3.5)

Test	Digital "B" Verification				Pass/Fail
	Step/Description		Observed	Required	
Scanner Position Commands	1-Warm Cal.		WARM CAL	YES	PASS
	3-Cold Cal. Pos.	MSB	2000	0	
		LSB	0NE	1	
	5-Cold Cal. Pos.	MSB	0NE	1	
		LSB	2000	0	
	7-Cold Cal. Pos.	MSB	0NE	1	
		LSB	0NE	1	
	9-Cold Cal. Pos.	MSB	2000	0	
		LSB	2000	0	
	11-NADIR		YES	YES	
	13-Warm Cal		Yes	YES	PASS

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: 335079 S/N: 108

04-0730
AMTU 0730

2-14-00

L. Danner 2-19-00
Customer Representative
Date
(Flight Hardware Only)

Date

Test Systems Engineer
Anita Novak
Quality Control

Date 2/19/00
2/22

TEST DATA SHEET 18
 Digital-A Data Output Full Scan Mode Synch Sequence,
 Unit I.D./Serial Number and Digital-B Serial Data Verification
 Sections [I], [II], and [III] (Paragraph 3.2.4.3.4.1)

Step	Element (For Ref)	Description	Recorded Value	Required Value	Pass/Fail
[I]	0001	Sync Sequence Byte 1	255	255	PASS
	0002	Sync Sequence Byte 2	255	255	
	0003	Sync Sequence Byte 3	255	255	
[II]	0004	Unit I.D. and Serial N	30	*	
[III]	0005	Digital B Data Byte 1	2	2	
	0006	Digital B Data Byte 2	6	6	
	0007	Digital B Data Byte 3	0	0	
	0008	Digital B Data Byte 4	0	0	PASS

* AMSU A2 Identification Words
(data entered in decimal system)

	Binary	Decimal
AMSU-A2 S/N 101	00000010	2
AMSU-A2 S/N 102	00000110	6
AMSU-A2 S/N 103	00001010	10
AMSU-A2 S/N 104	00001110	14
AMSU-A2 S/N 105	00010010	18
AMSU-A2 S/N 106	00010110	22
AMSU-A2 S/N 107	00011010	26
AMSU-A2 S/N 108	00011110	30
AMSU-A2 S/N 109	00100010	34

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT

Amend #1 0 per. 8050

Shop Order: 335079 S/N: 108

J. Largent 2-25-00
Customer Representative Date
Date
(Flight Hardware Only)

Ken Shae 2-24-00
Test Systems Engineer (A) Date
Judie Denney 25 FEB 00
Quality Control

AMSU	A2-30 A2.EXE	FULL SCAN MODE	24-FEB-00	19:58:18	SCAN NUMBER	206
[5]	DIGITAL A DATA	ELEMENT 0000				
[6]	DIGITAL B DATA	ELEMENT 00				
[7]	ANALOG DATA	ELEMENT 00				
			COMMANDS			
[9]	MODULE POWER =	CONNECT ANTENNA IN COLD CAL POSIT = NO	[15]			
[10]	SURVIVAL HEATER POWER =	OFF ANTENNA IN NADIR POSITION = NO	[16]			
[11]	MODULE TOTALLY OFF =	ON ANTENNA IN FULL SCAN MODE = YES	[17]			
[12]	SCANNER A2 POWER =	ON COLD CAL POSITION MSB = ZERO	[18]			
[13]	COMPENSATOR MOTOR POWER =	ON COLD CAL POSITION LSB = ZERO	[19]			
[14]	ANTENNA IN WARM CAL POSIT = NO					
	POWER [4] ON	PRINT [3] FULL	[1] RETURN			
	SELECT_TOUCHSCREEN_BUTTON_3					

Test data in support of TDS 18
 S/0 335079 Amend #1, 0 per. 8050
 A2 S/N 108 FP 3.2.4.34.1

ELEMENT	DESCRIPTION	VALUE	ELEMENT	DESCRIPTION	VALUE
1	SYNC SEQUENCE BYTE 1	11111111	138	REFLECTOR POSITION 17	3532
2	SYNC SEQUENCE BYTE 2	11111111	140	REFL POS 17 2ND LOOK	3538
3	SYNC SEQUENCE BYTE 3	11111110	142	SCENE DATA BP 17 CH	16306
4	UNIT ID AND SERIAL NO	1000000100	144	REFLECTOR POSITION 18	16708
5	DIGITAL B DATA BYTE 1	0000000100	146	REFL POS 18 2ND LOOK	13380
6	DIGITAL B DATA BYTE 2	0000000000	148	SCENE DATA BP 18 CH	16307
7	DIGITAL B DATA BYTE 3	0000000000	150	REFL POS 19 2ND LOOK	16701
8	DIGITAL B DATA BYTE 4	0000000000	152	SCENE DATA BP 19 CH	13229
9	REFLECTOR POSITION 1	5967	154	REFLECTOR POSITION 19	3234
10	REFL POS 1 2ND LOOK	5967	156	REFL POS 19 2ND LOOK	16309
11	SCENE DATA BP 1 CH	16304	158	SCENE DATA BP 19 CH	16701
12	SCENE DATA BP 2 CH	16707	160	REFLECTOR POSITION 20	30077
13	REFLECTOR POSITION 2	162	162	REFL POS 20 2ND LOOK	3082
14	REFL POS 2 2ND LOOK	164	164	SCENE DATA BP 20 CH	16304
15	SCENE DATA BP 2 CH	16305	166	SCENE DATA BP 21 CH	16703
16	REFLECTOR POSITION 3	16703	168	REFLECTOR POSITION 21	22925
17	REFL POS 3 2ND LOOK	15656	170	REFL POS 21 2ND LOOK	2932
18	SCENE DATA BP 3 CH	16709	172	SCENE DATA BP 21 CH	16311
19	REFLECTOR POSITION 4	166709	174	REFLECTOR POSITION 22	16701
20	REFL POS 4 2ND LOOK	15661	176	REFL POS 22 2ND LOOK	22773
21	SCENE DATA BP 4 CH	16310	178	SCENE DATA BP 22 CH	2779
22	REFLECTOR POSITION 5	16706	180	REFL POS 23 2ND LOOK	16309
23	REFL POS 5 2ND LOOK	15511	182	SCENE DATA BP 23 CH	16707
24	SCENE DATA BP 5 CH	16311	184	REFLECTOR POSITION 23	22622
25	REFLECTOR POSITION 6	16702	186	REFL POS 23 2ND LOOK	26279
26	REFL POS 6 2ND LOOK	15535	188	SCENE DATA BP 24 CH	16302
27	SCENE DATA BP 6 CH	16309	190	REFLECTOR POSITION 24	16699
28	REFLECTOR POSITION 7	16705	192	REFL POS 24 2ND LOOK	12469
29	REFL POS 7 2ND LOOK	15201	194	SCENE DATA BP 24 CH	2476
30	SCENE DATA BP 7 CH	16311	196	REFL POS 24 2ND LOOK	16306
31	REFLECTOR POSITION 8	16700	198	SCENE DATA BP 25 CH	16707
32	REFL POS 8 2ND LOOK	15052	200	REFLECTOR POSITION 25	12319
33	SCENE DATA BP 8 CH	16306	202	REFL POS 25 2ND LOOK	2324
34	REFLECTOR POSITION 9	16704	208	SCENE DATA BP 25 CH	16308
35	REFL POS 9 2ND LOOK	14899	210	REFLECTOR POSITION 26	16707
36	SCENE DATA BP 9 CH	16307	212	REFL POS 26 2ND LOOK	2168
37	REFLECTOR POSITION 10	16701	214	SCENE DATA BP 26 CH	16309
38	REFL POS 10 2ND LOOK	14746	216	REFLECTOR POSITION 27	12015
39	SCENE DATA BP 10 CH	16703	218	REFL POS 27 2ND LOOK	2022
40	REFLECTOR POSITION 11	16315	220	SCENE DATA BP 27 CH	16310
41	REFL POS 11 2ND LOOK	16703	222	REFLECTOR POSITION 28	16704
42	SCENE DATA BP 11 CH	16703	224	REFL POS 28 2ND LOOK	1864
43	REFLECTOR POSITION 12	14595	226	SCENE DATA BP 28 CH	1869
44	REFL POS 12 2ND LOOK	16000	228	REFLECTOR POSITION 29	16305
45	SCENE DATA BP 12 CH	16308	230	SCENE DATA BP 29 CH	16700
46	REFLECTOR POSITION 13	16707	232	REFLECTOR POSITION 29	11713
47	REFL POS 13 2ND LOOK	4443	234	REFL POS 29 2ND LOOK	1719
48	SCENE DATA BP 13 CH	4448	236	REFL POS 29 2ND LOOK	1719

AMSU A2_30 A2 .EXE

DIGITAL A DATA 24-FEB-00 19:58:20 PAGE 2

ELEMENT	DESCRIPTION	VALUE	ELEMENT	DESCRIPTION	VALUE
94 SCENE DATA BP 11 CH 1	16309	238 SCENE DATA BP 29 CH 1	16310		
96 REFLECTOR POSITION 12 CH 2	16707	240 REFLECTOR POSITION 30 CH 2	16704		
98 REFL POS 12 2ND LOOK CH 1	4291	242 REFL POS 30 2ND LOOK CH 1	1560		
100 SCENE DATA BP 12 CH 1	4297	244 SCENE DATA BP 30 CH 1	1566		
102 SCENE DATA BP 12 CH 2	16312	246 SCENE DATA BP 30 CH 2	16311		
104 REFLECTOR POSITION 13 CH 2	16702	248 REFLECTOR COLD CAL POS 1 CH 2	16708		
106 REFEL POS 13 2ND LOOK CH 1	4140	250 REFEL COLD CAL 2ND LOOK 1 CH 1	16357		
108 SCENE DATA BP 13 CH 1	4146	252 COLD CAL DATA 1 CH 1	16308		
110 SCENE DATA BP 13 CH 2	16308	254 COLD CAL DATA 1 CH 2	16317		
112 REFLECTOR POSITION 14 CH 2	16704	256 COLD CAL DATA 2 CH 2	16306		
114 REFL POS 14 2ND LOOK CH 1	3987	258 COLD CAL DATA 2 CH 1	16707		
116 SCENE DATA BP 14 CH 1	3993	260 REFLECTOR WARM CAL POS 1 CH 1	11961		
118 SCENE DATA BP 14 CH 2	16306	262 REFEL WARM CAL 2ND LOOK 1 CH 1	11961		
120 REFLECTOR POSITION 15 CH 2	16699	264 WARM CAL DATA 1 CH 1	16290		
122 REFL POS 15 2ND LOOK CH 1	3834	266 WARM CAL DATA 1 CH 2	16690		
124 SCENE DATA BP 15 CH 1	3841	268 WARM CAL DATA 2 CH 1	16692		
126 SCENE DATA BP 15 CH 2	16303	270 WARM CAL DATA 2 CH 2	16693		
128 REFLECTOR POSITION 16 CH 2	16706				
130 REFL POS 16 2ND LOOK CH 1	3685				
132 SCENE DATA BP 16 CH 1	3690				
134 SCENE DATA BP 16 CH 2	16300				
136	16709				

ELEMENT	DESCRIPTION	VALUE	TEMPERATURE DEG C
262 SCAN MOTOR 1	17218	21.26	
264 FEED HORN 1	17237	21.58	
266 RF MUX 1	17080	22.34	
268 MIXER/IF AMPLIFIER CHANNEL 1	18026	22.84	
270 MIXER/IF AMPLIFIER CHANNEL 2	18106	23.08	
272 LOCAL OSCILLATOR CHANNEL 1	17682	22.58	
274 LOCAL OSCILLATOR CHANNEL 2	18056	23.70	
276 COMPENSATION MOTOR 1	16691	22.57	
278 SUB REFLECTOR 2	17239	22.60	
280 DC/DC CONVERTER 3	18839	24.61	
282 RF SHELF 4	17643	22.12	
284 DETECTOR/PREAMP ASSEMBLY 5	17453	22.11	
286 WARM LOAD CENTER 1	21825	20.71	
288 WARM LOAD 1	21877	20.79	
290 WARM LOAD 2	21838	20.78	
292 WARM LOAD 3	21904	20.84	
294 WARM LOAD 4	22037	20.79	
296 WARM LOAD 5	22044	20.74	
298 WARM LOAD 6	21741	20.64	
300 TEMP SENSOR 7	25113		

DESCRIPTION	STATUS	STATUS	STATUS	STATUS
SCANNER POWER	ON	ON	ON	ON
COMPENSATOR MOTOR POWER	ON	ON	NO	NO
ANTENNA IN WARM CAL POSITION	NO	NO	NO	NO
ANTENNA IN COLD CAL POSITION	NO	NO	NO	NO
ANTENNA POSITION MODE	NO	NO	NO	NO
ANTENNA IN NADIR POSITION MODE	YES	YES	YES	YES
ANTENNA SCAN MODE	OFF	OFF	OFF	OFF
SURVIVAL HEATER POWER	ON	ON	ON	ON
MODULE POWER	ZERO	ZERO	ZERO	ZERO
COLD CAL POSITION MSB	ZERO	ZERO	ZERO	ZERO
COLD CAL POSITION LSB	ZERO	ZERO	ZERO	ZERO
ANALOG DATA				
DESCRIPTION	VALUE	DEG C	VALUE	DEG C
RF SHELF TEMPERATURE	213	21.6	213	21.6
COMPENSATOR MOTOR TEMPERATURE	213	21.3	213	21.3
SCANNER MOTOR TEMPERATURE	214	21.4	214	21.4
WARM LOAD TEMPERATURE	213	21.0	212	19.6
DESCRIPTION	VALUE	MA / VOLTS	MA / VOLTS	MA / VOLTS
ANTENNA DRIVE MOTOR CURRENT (AVERAGE)	102	95.06	104	96.93
COMPENSATOR MOTOR CURRENT (AVERAGE)	103	96.00	105	97.86
SIGNAL PROCESSING +15 VDC	170	15.00	170	15.00
ANTENNA DRIVE +15 VDC	173	15.26	175	15.43
SIGNAL PROCESSING -15 VDC	148	-15.00	148	-15.00
ANTENNA DRIVE -15 VDC	151	-14.85	152	-14.80
RECEIVER +10 VDC	171	10.06	171	10.06
RADIOMETER RECEIVER, PROCESSOR +5 VDC	146	5.04	146	5.04
ANTENNA DRIVE +5 VDC	148	5.06	150	5.13
GUNN DIODE OSC #1 (CHANNEL 1) VDC	172	10.00	172	10.00
GUNN DIODE OSC #2 (CHANNEL 2) VDC	171	9.94	171	9.94

AMSU A2_30 A2 .EXE

AZONIX DATA 24-FEB-00 19:58:20 PAGE 4

PRT TEMPERATURES

VARIABLE TARGET	NO.	DEG K	NO.	DEG K
601	14.00	607	20.00	
602	15.00	608	21.00	
603	16.00	609	22.00	
604	17.00	610	23.00	
605	18.00	611	24.00	
606	19.00	618	45.00	
612	39.00	619	46.00	
613	40.00	620	47.00	
614	41.00	621	48.00	
615	42.00	622	49.00	
616	43.00			
617	44.00	625	50.00	
623	25.00	626	27.00	
624	26.00			

THERMOCOUPLE TEMPERATURES

FIXED TARGET SHROUD	NO.	DEG K	NO.	DEG K
VARIABLE TARGET SHROUD	532	32.00	533	33.00
FIXED TARGET N2	515	37.00	516	38.00
VARIABLE TARGET N2	502	30.00	503	31.00
HEATER N2	507	35.00	508	36.00
FIXED TARGET FLOW METER	505	31.00	506	32.00
VARIABLE TARGET FLOW METER	504	34.00		
BASEPLATE HEATER N2	509	39.00	511	4.00
BASEPLATE N2	510	33.00	513	37.00
BASEPLATE FLOW METER	512	36.00		
ADJUNCT RADIATORS	514	35.00		
	549	38.00	554	55.00
	542	10.00	556	57.00

TEST DATA SHEET 18
 Digital-A Data Output Full Scan Mode Synch Sequence,
 Unit I.D./Serial Number and Digital-B Serial Data Verification
 Sections [I], [II], and [III] (Paragraph 3.2.4.3.4.1)

Step	Element (For Ref)	Description	Recorded Value	Required Value	Pass/Fail
[I]	0001	Sync Sequence Byte 1	255	255	PASS
	0002	Sync Sequence Byte 2	255	255	↑
	0003	Sync Sequence Byte 3	255	255	
[II]	0004	Unit I.D. and Serial N	30	*	
[III]	0005	Digital B Data Byte 1	2	2	
	0006	Digital B Data Byte 2	6	6	
	0007	Digital B Data Byte 3	0	0	↓
	0008	Digital B Data Byte 4	0	0	PASS
* AMSU A2 Identification Words (data entered in decimal system)			Binary	Decimal	
AMSU-A2 S/N 101			00000010	2	
AMSU-A2 S/N 102			00000110	6	
AMSU-A2 S/N 103			00001010	10	
AMSU-A2 S/N 104			00001110	14	
AMSU-A2 S/N 105			00010010	18	
AMSU-A2 S/N 106			00010110	22	
AMSU-A2 S/N 107			00011010	26	
AMSU-A2 S/N 108			00011110	30	
AMSU-A2 S/N 109			00100010	34	
METSAT/AMSU A2 System CPT P/N IS-1331200			Shop Order: <u>335079</u>	S/N: <u>108</u>	
Circle Test: 1 st CPT <u>Final CPT</u> Sub CPT _____			AP # <u>023</u>	AMSU S/N <u>108</u>	
<u>2-19-00</u>			2-19-00		
Customer Representative <u>D. Dunn</u>	Date	Test Systems Engineer <u>Anita Navane</u>	Date <u>2/19/00</u>		
Date (Flight Hardware Only)		Quality Control			

MSU A2-30 A2.EXE FULL SCAN MODE 18-FEB-00 23:57:24 SCAN NUMBER 192

5] DIGITAL A DATA ELEMENT 0000
6] DIGITAL B DATA ELEMENT 00
7] ANALOG DATA ELEMENT 00

9] MODULE POWER = CONNECT COMMANDS
10] SURVIVAL HEATER POWER = OFF ANTENNA IN COLD CAL POSIT = NO [15]
11] MODULE TOTALLY OFF = ON ANTENNA IN NADIR POSITION = NO [16]
12] SCANNER A2 POWER = ON COLD CAL POSITION MSB = ZERO [18]
13] COMPENSATOR MOTOR POWER = ON COLD CAL POSITION LSB = ZERO [19]
14] ANTENNA IN WARM CAL POSIT = NO
POWER [4] ON PRINT [3] FULL [1] RETURN
SELECT TOUCHSCREEN BUTTON 3

TDS# 18

F1AKL CAPT

A2-158
Y># 335074
S1.# >730

ELEMENT	DESCRIPTION	VALUE	ELEMENT	DESCRIPTION	VALUE
1	SYNC SEQUENCE BYTE	1	11111111	REFLECTOR POSITION 17	3531
2	SYNC SEQUENCE BYTE	2	11111111	REFL POS 17 2ND LOOK	3538
3	SYNC UNIT ID AND SERIAL NO	3	11111110	SCENE DATA BP 17 CH	16289
4	DIGITAL DATA BYTE 1	4	00000010	REFLECTOR POSITION 18	16715
5	DIGITAL DATA BYTE 2	5	00000010	REFL POS 18 2ND LOOK	16380
6	DIGITAL DATA BYTE 3	6	00000000	SCENE DATA BP 18 CH	3387
7	DIGITAL DATA BYTE 4	7	00000000	REFLECTOR POSITION 19	16295
8	REFLECTOR POSITION 1	8	00000000	REFL POS 19 2ND LOOK	16719
9	REFFL POS 1 2ND LOOK	9	5967	SCENE DATA BP 19 CH	3234
10	SCENE DATA BP 1	10	5967	REFLECTOR POSITION 19	16296
11	REFLECTOR POSITION 11	11	16306	REFL POS 19 2ND LOOK	16721
12	REFFL POS 11 2ND LOOK	12	16726	SCENE DATA BP 19 CH	16721
13	SCENE DATA BP 1	13	16726	REFLECTOR POSITION 20	16307
14	REFLECTOR POSITION 12	14	16726	REFL POS 20 2ND LOOK	3082
15	REFFL POS 12 2ND LOOK	15	16726	SCENE DATA BP 20 CH	16301
16	SCENE DATA BP 2	16	16726	REFLECTOR POSITION 21	16720
17	REFLECTOR POSITION 13	17	16732	REFL POS 21 2ND LOOK	22925
18	REFFL POS 13 2ND LOOK	18	16732	SCENE DATA BP 21 CH	22932
19	SCENE DATA BP 2	19	16732	REFLECTOR POSITION 21	16305
20	REFLECTOR POSITION 14	20	16739	REFL POS 21 2ND LOOK	16720
21	REFFL POS 14 2ND LOOK	21	16739	SCENE DATA BP 21 CH	16720
22	SCENE DATA BP 2	22	16739	REFLECTOR POSITION 22	16773
23	REFLECTOR POSITION 15	23	16745	REFL POS 22 2ND LOOK	22779
24	REFFL POS 15 2ND LOOK	24	16745	SCENE DATA BP 22 CH	16300
25	SCENE DATA BP 2	25	16745	REFLECTOR POSITION 23	16718
26	REFLECTOR POSITION 16	26	16756	REFL POS 23 2ND LOOK	16262
27	REFFL POS 16 2ND LOOK	27	16756	SCENE DATA BP 23 CH	627
28	SCENE DATA BP 2	28	16756	REFLECTOR POSITION 24	16293
29	REFLECTOR POSITION 17	29	16762	REFL POS 24 2ND LOOK	16714
30	REFFL POS 17 2ND LOOK	30	16762	SCENE DATA BP 24 CH	16714
31	SCENE DATA BP 2	31	16762	REFLECTOR POSITION 24	2469
32	REFLECTOR POSITION 18	32	16769	REFL POS 24 2ND LOOK	16294
33	REFFL POS 18 2ND LOOK	33	16769	SCENE DATA BP 24 CH	16294
34	SCENE DATA BP 2	34	16769	REFLECTOR POSITION 25	16716
35	REFLECTOR POSITION 19	35	16776	REFL POS 25 2ND LOOK	2324
36	REFFL POS 19 2ND LOOK	36	16776	SCENE DATA BP 25 CH	16304
37	SCENE DATA BP 2	37	16776	REFLECTOR POSITION 26	16721
38	REFLECTOR POSITION 20	38	16776	REFL POS 26 2ND LOOK	2169
39	REFFL POS 20 2ND LOOK	39	16776	SCENE DATA BP 26 CH	2174
40	SCENE DATA BP 2	40	16776	REFLECTOR POSITION 27	16313
41	REFLECTOR POSITION 21	41	16783	REFL POS 27 2ND LOOK	2022
42	REFFL POS 21 2ND LOOK	42	16783	SCENE DATA BP 27 CH	16306
43	SCENE DATA BP 2	43	16783	REFLECTOR POSITION 28	16730
44	REFLECTOR POSITION 22	44	16783	REFL POS 28 2ND LOOK	1864
45	REFFL POS 22 2ND LOOK	45	16783	SCENE DATA BP 28 CH	1869
46	SCENE DATA BP 2	46	16783	REFLECTOR POSITION 29	16310
47	REFLECTOR POSITION 23	47	16783	REFL POS 29 2ND LOOK	16725
48	REFFL POS 23 2ND LOOK	48	16783	SCENE DATA BP 29 CH	1713
49	SCENE DATA BP 2	49	16783	REFLECTOR POSITION 29	1719
50	REFLECTOR POSITION 24	50	16790	REFL POS 29 2ND LOOK	16725
51	REFFL POS 24 2ND LOOK	51	16790	SCENE DATA BP 29 CH	16725
52	SCENE DATA BP 2	52	16790	REFLECTOR POSITION 29	16725
53	REFLECTOR POSITION 25	53	16796	REFL POS 29 2ND LOOK	16725
54	REFFL POS 25 2ND LOOK	54	16796	SCENE DATA BP 29 CH	16725
55	SCENE DATA BP 2	55	16796	REFLECTOR POSITION 29	16725
56	REFLECTOR POSITION 26	56	16802	REFL POS 29 2ND LOOK	16725
57	REFFL POS 26 2ND LOOK	57	16802	SCENE DATA BP 29 CH	16725
58	SCENE DATA BP 2	58	16802	REFLECTOR POSITION 29	16725
59	REFLECTOR POSITION 27	59	16808	REFL POS 29 2ND LOOK	16725
60	REFFL POS 27 2ND LOOK	60	16808	SCENE DATA BP 29 CH	16725
61	SCENE DATA BP 2	61	16808	REFLECTOR POSITION 29	16725
62	REFLECTOR POSITION 28	62	16825	REFL POS 29 2ND LOOK	16725
63	REFFL POS 28 2ND LOOK	63	16825	SCENE DATA BP 29 CH	16725
64	SCENE DATA BP 2	64	16825	REFLECTOR POSITION 29	16725
65	REFLECTOR POSITION 29	65	16849	REFL POS 29 2ND LOOK	16725
66	REFFL POS 29 2ND LOOK	66	16849	SCENE DATA BP 29 CH	16725
67	SCENE DATA BP 2	67	16849	REFLECTOR POSITION 29	16725
68	REFLECTOR POSITION 30	68	16903	REFL POS 29 2ND LOOK	16725
69	REFFL POS 30 2ND LOOK	69	16903	SCENE DATA BP 29 CH	16725
70	SCENE DATA BP 2	70	16903	REFLECTOR POSITION 29	16725
71	REFLECTOR POSITION 31	71	16911	REFL POS 29 2ND LOOK	16725
72	REFFL POS 31 2ND LOOK	72	16911	SCENE DATA BP 29 CH	16725
73	SCENE DATA BP 2	73	16911	REFLECTOR POSITION 29	16725
74	REFLECTOR POSITION 32	74	16946	REFL POS 29 2ND LOOK	16725
75	REFFL POS 32 2ND LOOK	75	16946	SCENE DATA BP 29 CH	16725
76	SCENE DATA BP 2	76	16946	REFLECTOR POSITION 29	16725
77	REFLECTOR POSITION 33	77	16952	REFL POS 29 2ND LOOK	16725
78	REFFL POS 33 2ND LOOK	78	16952	SCENE DATA BP 29 CH	16725
79	SCENE DATA BP 2	79	16952	REFLECTOR POSITION 29	16725
80	REFLECTOR POSITION 34	80	16959	REFL POS 29 2ND LOOK	16725
81	REFFL POS 34 2ND LOOK	81	16959	SCENE DATA BP 29 CH	16725
82	SCENE DATA BP 2	82	16959	REFLECTOR POSITION 29	16725
83	REFLECTOR POSITION 35	83	16969	REFL POS 29 2ND LOOK	16725
84	REFFL POS 35 2ND LOOK	84	16969	SCENE DATA BP 29 CH	16725
85	SCENE DATA BP 2	85	16969	REFLECTOR POSITION 29	16725
86	REFLECTOR POSITION 36	86	16979	REFL POS 29 2ND LOOK	16725
87	REFFL POS 36 2ND LOOK	87	16979	SCENE DATA BP 29 CH	16725
88	SCENE DATA BP 2	88	16979	REFLECTOR POSITION 29	16725
89	REFLECTOR POSITION 37	89	16983	REFL POS 29 2ND LOOK	16725
90	REFFL POS 37 2ND LOOK	90	16983	SCENE DATA BP 29 CH	16725
91	SCENE DATA BP 2	91	16983	REFLECTOR POSITION 29	16725
92	REFLECTOR POSITION 38	92	16983	REFL POS 29 2ND LOOK	16725

ELEMENT	DESCRIPTION	VALUE	ELEMENT	DESCRIPTION	VALUE
94 SCENE DATA BP 11 CH	1	16334	238 SCENE DATA BP 29 CH	1	16309
96 REFLECTOR POSITION 12 CH	2	16734	240 REFLECTOR POSITION 30 CH	2	16728
98 REFLL POS 12 2ND LOOK SCENE DATA BP 12 CH	1	44290	242 REFEL POS 30 2ND LOOK SCENE DATA BP 30 CH	1	15660
100 SCENE DATA BP 12 CH	1	4297	244 REFEL POS 30 2ND LOOK SCENE DATA BP 30 CH	1	1566
102 SCENE DATA BP 12 CH	2	16319	246 REFLECTOR COLD CAL POS COLD CAL DATA 1	2	16304
104 REFLECTOR POSITION 13 2ND LOOK SCENE DATA BP 13 CH	1	16731	248 REFLECTOR COLD CAL POS COLD CAL DATA 1	2	16726
106 REFLL POS 13 2ND LOOK SCENE DATA BP 13 CH	2	14141	250 REFEL COLD CAL 2ND LOOK COLD CAL DATA 1	1	16357
108 SCENE DATA BP 13 CH	1	4146	252 REFEL COLD CAL 2ND LOOK COLD CAL DATA 1	1	16358
110 SCENE DATA BP 13 CH	2	16307	254 COLD CAL DATA 2	2	16296
112 REFLECTOR POSITION 14 2ND LOOK SCENE DATA BP 14 CH	1	16724	256 COLD CAL DATA 2	1	16721
114 REFLL POS 14 2ND LOOK SCENE DATA BP 14 CH	2	13987	258 COLD CAL DATA 2	2	16295
116 SCENE DATA BP 14 CH	1	3992	260 REFLECTOR WARM CAL POS REFEL WARM CAL 2ND LOOK WARM CAL DATA 1	1	11961
118 SCENE DATA BP 14 CH	2	16306	302 REFEL WARM CAL 2ND LOOK WARM CAL DATA 1	1	11960
120 REFLECTOR POSITION 15 2ND LOOK SCENE DATA BP 15 CH	1	16722	304 WARM CAL DATA 1	1	16299
122 REFLL POS 15 2ND LOOK SCENE DATA BP 15 CH	2	16834	306 WARM CAL DATA 1	2	16297
124 SCENE DATA BP 15 CH	1	3841	308 WARM CAL DATA 2	1	16297
126 REFLECTOR POSITION 16 2ND LOOK SCENE DATA BP 16 CH	2	16301	310 WARM CAL DATA 2	2	16297
128 REFLL POS 16 2ND LOOK SCENE DATA BP 16 CH	1	16721			
130 SCENE DATA BP 16 CH	2	13685			
132 SCENE DATA BP 16 CH	1	3690			
134 SCENE DATA BP 16 CH	2	16297			
136 SCENE DATA BP 16 CH	1	16719			
ELEMENT	DESCRIPTION	VALUE	TEMPERATURE	DEG C	
262 SCAN MOTOR FEED HORN		17870		22.49	
264 RF MUX		17679		22.42	
266 MIXER/IF AMPLIFIER CHANNEL 1		17548		23.23	
268 LOCAL OSCILLATOR CHANNEL 2		18503		23.75	
270 LOCAL OSCILLATOR CHANNEL 1		18545		23.92	
272 LOCAL OSCILLATOR CHANNEL 2		18472		23.50	
274 COMPENSATION MOTOR		18471		24.49	
276 SUB REFLECTOR DC/DC CONVERTER		17267		22.66	
278 RF SHELF		17775		22.61	
280 DETECTOR/PREAMP ASSEMBLY		19091		22.09	
282 WARM LOAD CENTER		18116		23.01	
284 WARM LOAD CENTER		17929		23.01	
286 WARM LOAD 1		22689		22.40	
288 WARM LOAD 2		22715		22.43	
290 WARM LOAD 3		22688		22.46	
292 WARM LOAD 4		22770		22.47	
294 WARM LOAD 5		22879		22.48	
296 WARM LOAD 6		22921		22.50	
298 TEMP SENSOR REFERENCE VOLTAGE		2617		22.36	
300 TEMP SENSOR REFERENCE VOLTAGE		25114			

MSU A2 30 A2 .EXE DIGITAL B DATA 18-FEB-04 23:57:28 PAGE 3

DESCRIPTION STATUS STATUS

ג'שנ'ה ס' ט' ג'ז'ה

DECADENT TOW

F SHELF TEMPERATURE COMPENSATOR MOTOR TEMPERATURE CANNER MOTOR TEMPERATURE ARM LOAD TEMPERATURE

DESCRIPTIVE

AMSU A2_30 A2.EXE

AZONIX DATA 18-FEB-04 23:57:28 PAGE 4

PRT TEMPERATURES

VARIABLE TARGET

NO. DEG K

601	14.00
602	15.00
603	16.00
604	17.00
605	18.00
606	19.00
612	39.00
613	40.00
614	41.00
615	42.00
616	43.00
617	44.00
623	25.00
624	26.00

FIXED TARGET

NO. DEG K

612	39.00
613	40.00
614	41.00
615	42.00
616	43.00
617	44.00
623	25.00
624	26.00

BASEPLATE

NO. DEG K

624	26.00
-----	-------

THERMOCOUPLE TEMPERATURES

NO. DEG K

532	32.00
515	37.00
502	30.00
507	35.00
505	31.00
504	34.00
509	39.00
510	33.00
512	36.00
514	35.00
549	38.00
542	10.00

ADJUNCT RADIATORS

NO. DEG K

533	33.00
516	38.00
503	31.00
508	36.00
506	2.00
511	4.00
513	37.00
554	55.00
556	57.00

TEST DATA SHEET 19
Reflector Positions Section [IV] (Paragraph 3.2.4.3.4.1)

BP	A2 Reflector		
	Position*	Required**	Pass/Fail
01	5967	5962	PASS
02	5814	5810	↑
03	5661	5658	
04	5510	5507	
05	5359	5355	
06	5207	5203	
07	5055	5052	
08	4904	4902	
09	4752	4748	
10	4600	4587	
11	4448	4445	
12	4287	4293	
13	4146	4142	
14	3985	3990	
15	3841	3838	
16	3680	3687	
17	3538	3535	
18	3387	3383	
19	3234	3232	
20	3082	3080	
21	2932	2928	
22	2774	2777	
23	2637	2635	
24	2474	2473	
25	2319	2322	
26	2168	2172	
27	2015	2018	
28	1863	1867	
29	1713	1715	
30	1561	1563	
CC	16357	16354	
WC	11961	11955	PASS

* Actual counts from computer printout. Rewriting counts on this data sheet is optional.

** Required position data from TDS 6 of AE-26002/2 ±5 counts.

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT

Shop Order: 335079 S/N: 108

Customer Representative
Date
(Flight Hardware Only)

2-20-00

Date

Test Systems Engineer

2-14-00

S/N: 108

AMSU
7
BEIT

Test Systems Engineer Date
John M. Lauer 7A 194 2-20-60
Quality Control

(

)

)

MSU A2-30 A2.EXE
5] DIGITAL A DATA FULL SCAN MODE
6] DIGITAL B DATA ELEMENT 00
7] ANALOG DATA ELEMENT 00

P	LOOK 1	LOOK 2	BP	REFLECTOR 1	REFLECTOR 2	POSITIONS	BP	LOOK 1	BP	LOOK 2	BP	LOOK 1	BP	LOOK 2	
1	5967	5967	9	4746	4752	17	3532	3538	25	2319	2324				
2	5809	5814	10	4596	4600	18	3379	3387	26	2168	2174				
3	5656	5661	11	4442	4448	19	3229	3234	27	2015	2022				
4	5506	5510	12	4291	4297	20	3076	3082	28	1863	1869				
5	5354	5359	13	4141	4146	21	2926	2932	29	1713	1719				
6	5201	5207	14	3987	3993	22	2773	2779	30	1561	1567				
7	5052	5055	15	3834	3841	23	2622	2627	CC	16357	16358				
8	4898	4904	16	3684	3690	24	2468	2476	WC	11961	11960				

POWER [4] ON
SELECT_TOUCHSCREEN_BUTTON_2 SCREEN ONLY [2] PRINT [3] FULL
[1] RETURN

TOP # 19

A2-108

FIRE CPT
J= # 335479
OP # 0730

TEST DATA SHEET 20
Digital-A Data Output Radiometer Data Section [V] (Paragraph 3.2.4.3.4.1)

BP	Channel-1 (23.8 GHz)			Channel-2 (31.4 GHz)		
	Measured*	Required**	Pass/Fail	Measured*	Required**	Pass/Fail
01	16303	16500	PASS	16725	16500	PASS
02	16303	16500	↑	16729	16500	↑
03	16304	16500		16730	16500	
04	16306	16500		16724	16500	
05	16307	16500		16728	16500	
06	16312	16500		16718	16500	
07	16308	16500		16724	16500	
08	16299	16500		16715	16500	
09	16305	16500		16721	16500	
10	16299	16500		16720	16500	
11	16323	16500		16736	16500	
12	16309	16500		16732	16500	
13	16297	16500		16724	16500	
14	16295	16500		16716	16500	
15	16291	16500		16712	16500	
16	16292	16500		16710	16500	
17	16288	16500		16707	16500	
18	16289	16500		16716	16500	
19	16290	16500		16709	16500	
20	16295	16500		16717	16500	
21	16291	16500		16714	16500	
22	16294	16500		16717	16500	
23	16289	16500		16711	16500	
24	16295	16500		16713	16500	
25	16297	16500		16715	16500	
26	16299	16500		16722	16500	
27	16297	16500		16733	16500	
28	16301	16500		16726	16500	
29	16295	16500		16726	16500	
30	16298	16500		16718	16500	
CC	16285	16500	↓	16712	16500	↓
WC	16290	16500	PASS	16720	16500	PASS

* Actual counts from computer printout. Rewriting counts on this data sheet is optional.

** Required = $16,500 \pm 4000$ counts.

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: 33579 S/N: 108

2-19-00

Test Systems Engineer

John N. Waldo 3/19/00 275

Date

Quality Control

Customer Representative

Date

Flight Hardware Only)

5] A2-30 A2.EXE FULL SCAN MODE 19-FEB-00 00:01:36 SCAN NUMBER 223

6] DIGITAL A DATA ELEMENT 0000

7] DIGITAL B DATA ELEMENT 00

7] ANALOG DATA ELEMENT 00

	RADIOMETRIC DATA				
	BP	DATA	BP	CHANNEL	DATA
1	16303	9	16305	17	16288
2	16303	10	16299	18	16289
3	16304	11	16323	19	16290
4	16306	12	16309	20	16295
5	16307	13	16297	21	16291
6	16312	14	16295	22	16294
7	16308	15	16291	23	16284
8	16299	16	16292	24	16295
21] UP	[22] DOWN				WC

POWER [4] ON SCREEN ONLY [2] PRINT [3] FULL [1] RETURN
SELECT_TOUCHSCREEN_BUTTON 2

TDS-H 20

A2-108

FINAL CPT

S/24 33507P
204 0730

1 A2-30 A2 EXE FULL SCAN MODE 19-FEB-00 00:01:43 SCAN NUMBER 224
1 DIGITAL A DATA ELEMENT 0000
1 DIGITAL B DATA ELEMENT 00
1 ANALOG DATA ELEMENT 00

	RADIOMETRIC DATA CHANNEL 2			
	BP	DATA	BP	DATA
1	16725	9	16721	17
2	16729	10	16720	18
3	16730	11	16736	19
4	16724	12	16732	20
5	16728	13	16724	21
6	16718	14	16716	22
7	16724	15	16716	23
8	116715	16	16710	24
21	UP	[22] DOWN		

POWER [4] ON SCREEN ONLY [2] PRINT [3] FULL [1] RETURN
;SELECT TOUCHSCREEN BUTTON 2

TEST DATA SHEET 21
Full Scan Mode Temperature Sensors Section [VI] (Paragraph 3.2.4.3.4.1)

Thermistor Sensors		Recorded Value* (deg. C)	Required Value (deg. C)	Pass/ Fail
Element	Description			
0262	Scan Motor	22.54	25 ± 15	PASS
0264	Feedhorn	22.50	25 ± 15	↑
0266	RF Mux	23.38	25 ± 15	
0268	Mixer I.F. Amp. Channel 1	23.93	25 ± 15	
0270	Mixer I.F. Amp. Channel 2	24.13	25 ± 15	
0272	Local Oscillator Channel 1	23.67	25 ± 15	
0274	Local Oscillator Channel 2	24.77	25 ± 15	
0276	Compensation Motor	22.75	25 ± 15	
0278	Subreflector	22.63	25 ± 15	
0280	DC/DC Converter	25.55	25 ± 15	
0282	RF Shelf	23.16	25 ± 15	
0284	Detector/Preamp Assembly	23.18	25 ± 15	
0286	Warm Load Center	22.41	25 ± 15	
0288	Warm Load 1	22.49	25 ± 15	
0290	Warm Load 2	22.46	25 ± 15	
0292	Warm Load 3	22.46	25 ± 15	
0294	Warm Load 4	22.53	25 ± 15	
0296	Warm Load 5	22.47	25 ± 15	
0298	Warm Load 6	22.32	25 ± 15	
0300	Temp Sensor V. Reference	25115	**	PASS

* Value is from the STE printout sheets. Copying data to this sheet is optional.

** Count of 24,552 +1765, -1308.

Op # 473

METSAT/AMSU A2 System CPT P/N IS-1331200
 Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: 335074 S/N: 108

AMSU
 7
 275
 2-19-00
 Test Systems Engineer John D. Nardino Date 7A
2/19/00 275
 Quality Control

R. Druen 2-19-00
 Customer Representative Date
 (Flight Hardware Only)

;U A2-30 A2.EXE FULL SCAN MODE
;] DIGITAL A DATA ELEMENT 0000 19-FEB-00 00:02:06 SCAN NUMBER 227
;] DIGITAL B DATA ELEMENT 00
/] ANALOG DATA ELEMENT 00

DIGITAL A TEMPERATURES	
DATA TEMP C	NO
17897 22.54	11 RF SHELF
17720 22.50	12 DET/PREAMP
17632 23.38	13 WARM LOAD CNTR
18601 23.93	14 WARM LOAD 1
18655 24.13	15 WARM LOAD 2
18264 23.67	16 WARM LOAD 3
18618 24.77	17 WARM LOAD 4
17315 22.75	18 WARM LOAD 5
17786 22.63	19 WARM LOAD 6
19334 25.55	THERMAL REFERENCE

SCAN MOTOR
FEED HORN
RF MUX
MIXER IF CH 1
MIXER IF CH 2
LO CHANNEL 1
LO CHANNEL 2
COMP MOTOR
SUBREFLECTOR
DC/DC CONVERTER

POWER [4] ON SCREEN ONLY [2] PRINT [3] FULL
SELECT_TOUCHSCREEN_BUTTON 2 [1] RETURN

TDS # 21

A2-108

FIRK CAP
J-# 335079
OF # 0730

TEST DATA SHEET 22
 Digital-A Data Output Warm Cal Mode Synch Sequence,
 Unit I.D./Serial Number and Digital-B Serial Data Verification
 Sections [I], [II], and [III] (Paragraph 3.2.4.3.4.2)

Step	Element (For Ref)	Description	Recorded Value	Required Value	Pass/Fail
[I]	0001	Sync Sequence Byte 1	255	255	PASS
	0002	Sync Sequence Byte 2	255	255	↑
	0003	Sync Sequence Byte 3	255	255	
[II]	0004	Unit I.D. and Serial N	30	*	
[III]	0005	Digital B Data Byte 1	4	4	
	0006	Digital B Data Byte 2	6	6	
	0007	Digital B Data Byte 3	0	0	↓
	0008	Digital B Data Byte 4	0	0	PASS
* AMSU A2 Identification Words (data entered in decimal system)			Binary	Decimal	
AMSU-A2 S/N 101			00000010	2	
AMSU-A2 S/N 102			00000110	6	
AMSU-A2 S/N 103			00001010	10	
AMSU-A2 S/N 104			00001110	14	
AMSU-A2 S/N 105			00010010	18	
AMSU-A2 S/N 106			00010110	22	
AMSU-A2 S/N 107			00011010	26	
AMSU-A2 S/N 108			00011110	30	
AMSU-A2 S/N 109			00100010	34	

METSAT/AMSU A2 System CPT P/N IS-1331200 Shop Order: 335079 S/N: 108
 Circle Test: 1st CPT Final CPT Sub CPT

[Signature] Date 2-19-00

Test Systems Engineer *[Signature]* Date 2/19/00 (7A)
 Quality Control *[Signature]* Date 2/19/00 (7A)

Customer Representative Date
 Date
 (Flight Hardware Only)

MSU A2-30 A2.EXE WARM CAL MODE 19-FEB-00 01:42:17 SCAN NUMBER 15
 5] DIGITAL A DATA ELEMENT 0000
 6] DIGITAL B DATA ELEMENT 00
 7] ANALOG DATA ELEMENT 00

 9] MODULE POWER = CONNECT COMMANDS
 10] SURVIVAL HEATER POWER = OFF ANTENNA IN COLD CAL POSIT = NO [15]
 11] MODULE TOTALLY OFF = ON ANTENNA IN NADIR POSITION = NO [16]
 12] SCANNER A2 POWER = ON COLD CAL POSITION MSB = ZERO [18]
 13] COMPENSATOR MOTOR POWER = ON COLD CAL POSITION LSB = ZERO [19]
 14] ANTENNA IN WARM CAL POSIT = YES

 POWER [4] ON SCREEN ONLY [2] PRINT [3] FULL [1] RETURN

 SELECT TOUCHSCREEN BUTTON 3

TDS # 22

A2-128
 FINAL CPT
 J-# 335>79
 SP. # >>>

ELEMENT	DESCRIPTION	VALUE	ELEMENT	DESCRIPTION	VALUE
1	SYNC SEQUENCE BYTE	1	138	REFLECTOR POSITION	17
2	SYNC SEQUENCE BYTE	2	140	REFL POS 17 2ND LOOK	111961
3	SYNC SEQUENCE BYTE	3	142	SCENE DATA BP 17 CH	116362
4	UNIT ID AND SERIAL NO	111111110	144	REFLECTOR POSITION	18
5	DIGITAL B DATA BYTE	1	146	REFL POS 18 2ND LOOK	111961
6	DIGITAL B DATA BYTE	2	148	SCENE DATA BP 18 CH	116361
7	DIGITAL B DATA BYTE	3	150	REFLECTOR POSITION	19
8	DIGITAL B DATA BYTE	4	152	REFL POS 19 2ND LOOK	111961
9	REFLECTOR POSITION 1	1	154	SCENE DATA BP 19 CH	116363
10	REFL POS 1 2ND LOOK	1	156	REFLECTOR POSITION	20
11	SCENE DATA BP 1	CH	158	REFL POS 20 2ND LOOK	111961
12	REFL POS 2 2ND LOOK	1	160	SCENE DATA BP 20 CH	116357
13	REFLECTOR POSITION 2	2	162	REFLECTOR POSITION	21
14	REFL POS 2 2ND LOOK	CH	164	REFL POS 21 2ND LOOK	111961
15	SCENE DATA BP 2	1	166	SCENE DATA BP 21 CH	116362
16	REFLECTOR POSITION 3	3	168	REFLECTOR POSITION	22
17	REFL POS 3 2ND LOOK	CH	170	REFL POS 22 2ND LOOK	111961
18	SCENE DATA BP 3	1	172	SCENE DATA BP 22 CH	116809
19	REFLECTOR POSITION 4	4	174	REFLECTOR POSITION	23
20	REFL POS 4 2ND LOOK	CH	176	REFL POS 23 2ND LOOK	111961
21	SCENE DATA BP 4	1	178	SCENE DATA BP 23 CH	116809
22	REFLECTOR POSITION 5	5	180	REFLECTOR POSITION	24
23	REFL POS 5 2ND LOOK	CH	182	REFL POS 24 2ND LOOK	111961
24	SCENE DATA BP 5	1	184	SCENE DATA BP 24 CH	116363
25	REFLECTOR POSITION 6	6	186	REFLECTOR POSITION	25
26	REFL POS 6 2ND LOOK	CH	188	REFL POS 25 2ND LOOK	111961
27	SCENE DATA BP 6	1	190	SCENE DATA BP 25 CH	116806
28	REFLECTOR POSITION 7	7	192	REFLECTOR POSITION	26
29	REFL POS 7 2ND LOOK	CH	194	REFL POS 26 2ND LOOK	111961
30	SCENE DATA BP 7	1	196	SCENE DATA BP 26 CH	116357
31	REFLECTOR POSITION 8	8	198	REFLECTOR POSITION	27
32	REFL POS 8 2ND LOOK	CH	200	REFL POS 27 2ND LOOK	111961
33	SCENE DATA BP 8	1	202	SCENE DATA BP 27 CH	116812
34	REFLECTOR POSITION 9	9	204	REFLECTOR POSITION	28
35	REFL POS 9 2ND LOOK	CH	206	REFL POS 28 2ND LOOK	111961
36	SCENE DATA BP 9	1	208	SCENE DATA BP 28 CH	116358
37	REFLECTOR POSITION 10	10	210	REFLECTOR POSITION	29
38	REFL POS 10 2ND LOOK	CH	212	REFL POS 29 2ND LOOK	111961
39	SCENE DATA BP 10	1	214	SCENE DATA BP 29 CH	116810
40	REFLECTOR POSITION 11	11	216	REFLECTOR POSITION	29
41	REFL POS 11 2ND LOOK	CH	218	REFL POS 29 2ND LOOK	111961
42	SCENE DATA BP 11	1	220	SCENE DATA BP 29 CH	116356
43	REFLECTOR POSITION 12	12	222	REFLECTOR POSITION	29
44	REFL POS 12 2ND LOOK	CH	224	REFL POS 29 2ND LOOK	111961
45	SCENE DATA BP 12	1	226	SCENE DATA BP 29 CH	116806
46	REFLECTOR POSITION 13	13	228	REFLECTOR POSITION	29
47	REFL POS 13 2ND LOOK	CH	230	REFL POS 29 2ND LOOK	111961
48	SCENE DATA BP 13	1	232	SCENE DATA BP 29 CH	116812
49	REFLECTOR POSITION 14	14	234	REFLECTOR POSITION	29
50	REFL POS 14 2ND LOOK	CH	236	REFL POS 29 2ND LOOK	111961
51	SCENE DATA BP 14	1	238	SCENE DATA BP 29 CH	116358
52	REFLECTOR POSITION 15	15	240	REFLECTOR POSITION	29
53	REFL POS 15 2ND LOOK	CH	242	REFL POS 29 2ND LOOK	111961
54	SCENE DATA BP 15	1	244	SCENE DATA BP 29 CH	116810
55	REFLECTOR POSITION 16	16	246	REFLECTOR POSITION	29
56	REFL POS 16 2ND LOOK	CH	248	REFL POS 29 2ND LOOK	111961
57	SCENE DATA BP 16	1	250	SCENE DATA BP 29 CH	116356
58	REFLECTOR POSITION 17	17	252	REFLECTOR POSITION	29
59	REFL POS 17 2ND LOOK	CH	254	REFL POS 29 2ND LOOK	111961
60	SCENE DATA BP 17	1	256	SCENE DATA BP 29 CH	116806
61	REFLECTOR POSITION 18	18	258	REFLECTOR POSITION	29
62	REFL POS 18 2ND LOOK	CH	260	REFL POS 29 2ND LOOK	111961
63	SCENE DATA BP 18	1	262	SCENE DATA BP 29 CH	116357
64	REFLECTOR POSITION 19	19	264	REFLECTOR POSITION	29
65	REFL POS 19 2ND LOOK	CH	266	REFL POS 29 2ND LOOK	111961
66	SCENE DATA BP 19	1	268	SCENE DATA BP 29 CH	116812
67	REFLECTOR POSITION 20	20	270	REFLECTOR POSITION	29
68	REFL POS 20 2ND LOOK	CH	272	REFL POS 29 2ND LOOK	111961
69	SCENE DATA BP 20	1	274	SCENE DATA BP 29 CH	116810
70	REFLECTOR POSITION 21	21	276	REFLECTOR POSITION	29
71	REFL POS 21 2ND LOOK	CH	278	REFL POS 29 2ND LOOK	111961
72	SCENE DATA BP 21	1	280	SCENE DATA BP 29 CH	116358
73	REFLECTOR POSITION 22	22	282	REFLECTOR POSITION	29
74	REFL POS 22 2ND LOOK	CH	284	REFL POS 29 2ND LOOK	111961
75	SCENE DATA BP 22	1	286	SCENE DATA BP 29 CH	116810
76	REFLECTOR POSITION 23	23	288	REFLECTOR POSITION	29
77	REFL POS 23 2ND LOOK	CH	290	REFL POS 29 2ND LOOK	111961
78	SCENE DATA BP 23	1	292	SCENE DATA BP 29 CH	116356
79	REFLECTOR POSITION 24	24	294	REFLECTOR POSITION	29
80	REFL POS 24 2ND LOOK	CH	296	REFL POS 29 2ND LOOK	111961
81	SCENE DATA BP 24	1	298	SCENE DATA BP 29 CH	116806
82	REFLECTOR POSITION 25	25	300	REFLECTOR POSITION	29
83	REFL POS 25 2ND LOOK	CH	302	REFL POS 29 2ND LOOK	111961
84	SCENE DATA BP 25	1	304	SCENE DATA BP 29 CH	116357
85	REFLECTOR POSITION 26	26	306	REFLECTOR POSITION	29
86	REFL POS 26 2ND LOOK	CH	308	REFL POS 29 2ND LOOK	111961
87	SCENE DATA BP 26	1	310	SCENE DATA BP 29 CH	116812
88	REFLECTOR POSITION 27	27	312	REFLECTOR POSITION	29
89	REFL POS 27 2ND LOOK	CH	314	REFL POS 29 2ND LOOK	111961
90	SCENE DATA BP 27	1	316	SCENE DATA BP 29 CH	116356
91	REFLECTOR POSITION 28	28	318	REFLECTOR POSITION	29
92	REFL POS 28 2ND LOOK	CH	320	REFL POS 29 2ND LOOK	111961
93	SCENE DATA BP 28	1	322	SCENE DATA BP 29 CH	116810
94	REFLECTOR POSITION 29	29	324	REFLECTOR POSITION	29
95	REFL POS 29 2ND LOOK	CH	326	REFL POS 29 2ND LOOK	111961
96	SCENE DATA BP 29	1	328	SCENE DATA BP 29 CH	116358
97	REFLECTOR POSITION 30	30	330	REFLECTOR POSITION	29
98	REFL POS 30 2ND LOOK	CH	332	REFL POS 29 2ND LOOK	111961
99	SCENE DATA BP 30	1	334	SCENE DATA BP 29 CH	116809
100	REFLECTOR POSITION 31	31	336	REFLECTOR POSITION	29
101	REFL POS 31 2ND LOOK	CH	338	REFL POS 29 2ND LOOK	111961
102	SCENE DATA BP 31	1	340	SCENE DATA BP 29 CH	116811

AMSU A2_30

A2.EXE

DIGITAL A DATA

19-FEB-0U

01:42:19

PAGE 2

ELEMENT	DESCRIPTION	VALUE	ELEMENT	DESCRIPTION	VALUE
94	SCENE DATA BP 11 CH 1	16362	238	SCENE DATA BP 29 CH 1	16358
96	REFLECTOR POSITION 1 ²	116810	240	REFLECTOR POSITION 3 ⁰	16805
98	REFL POS 12 2ND LOOK	111961	242	REFL POS 3 ⁰ 2ND LOOK	11961
100	SCENE DATA BP 12 CH 1	111961	244	SCENE DATA BP 30 CH 1	11961
102	REFLECTOR POSITION 1 ³	1163610	246	REFLECTOR COLD CAL POS	16358
104	REFL POS 13 2ND LOOK	111961	250	REFL COLD CAL 2ND LOOK	16804
106	SCENE DATA BP 13 CH 1	1163610	252	COLD CAL DATA 1	OE
108	REFLECTOR POSITION 1 ⁴	116810	254	COLD CAL DATA 2	OE
110	REFL POS 14 2ND LOOK	111961	256	REFLECTOR WARM CAL POS	0
112	SCENE DATA BP 14 CH 1	116358	302	REFL WARM CAL 2ND LOOK	0
114	REFLECTOR POSITION 1 ⁵	116812	304	WARM CAL DATA 1	OE
116	REFL POS 15 2ND LOOK	111961	306	WARM CAL DATA 2	00000
118	SCENE DATA BP 15 CH 1	116358	308		
120	REFLECTOR POSITION 1 ⁶	111961	310		
122	REFL POS 16 2ND LOOK	116813	312		
124	SCENE DATA BP 16 CH 1	116364			
126	REFL POS 16 2ND LOOK	111961			
128	SCENE DATA BP 16 CH 1	116813			
130	REFLECTOR POSITION 1 ⁶	111961			
132	REFL POS 16 2ND LOOK	116364			
134	SCENE DATA BP 16 CH 1	116813			
136	REFL POS 16 2ND LOOK	111961			

ELEMENT	DESCRIPTION	VALUE	TEMPERATURE	DEG C
262	SCAN MOTOR	18123	22.97	
264	FEED HORN	18024	23.07	
266	RF MUX	18020	24.12	
268	MIXER/IF AMPLIFIER CHANNEL 1	18794	24.34	
270	MIXER/IF AMPLIFIER CHANNEL 2	18766	24.20	
272	LOCAL OSCILLATOR CHANNEL 1	18539	24.72	
274	LOCAL OSCILLATOR CHANNEL 2	18594	23.22	
276	COMPENSATION MOTOR	17566	22.97	
278	SUB REFLECTOR	179965	25.10	
280	DC/DC CONVERTER	19097	24.11	
282	RF SHELF	18635	23.99	
284	DETECTOR/PREAMP ASSEMBLY	18509	23.10	
286	WARM LOAD CENTER	23100	23.21	
288	WARM LOAD 1	23125	23.24	
290	WARM LOAD 2	23097	23.26	
292	WARM LOAD 3	23187	23.30	
294	WARM LOAD 4	23297	23.28	
296	WARM LOAD 5	23316	23.17	
298	WARM LOAD 6	23026	23.14	
300	TEMP SENSOR REFERENCE VOLTAGE	25114		

AMSU A2_30 A2 .EXE

DIGITAL B DATA 19-FEB-04 01:42:19 PAGE 3

DESCRIPTION	STATUS	STATUS	STATUS	STATUS
:CANNER POWER	ON	ON	ON	ON
:OMPENSATOR MOTOR POWER	ON	ON	ON	ON
:NTENNA IN WARM CAL POSITION MODE	YES	YES	YES	YES
:NTENNA IN COLD CAL POSITION MODE	NO	NO	NO	NO
:NTENNA IN NADIR POSITION MODE	NO	NO	NO	NO
:NTENNA IN FULL SCAN MODE	NO	OFF	OFF	OFF
:URVIVAL HEATER POWER	ON	ON	ON	ON
:ODULE POWER	ZERO	ZERO	ZERO	ZERO
:OLD CAL POSITION MSB	ZERO	ZERO	ZERO	ZERO
:OLD CAL POSITION LSB	ZERO	ZERO	ZERO	ZERO

ANALOG DATA

DESCRIPTION	VALUE	DEG C						
:F SHELF TEMPERATURE	186	-15.8	191	-8.8	195	-3.3		
:OMPENSATOR MOTOR TEMPERATURE	185	-17.4	190	-10.5	194	-4.9		
:CANNER MOTOR TEMPERATURE	186	-17.1	190	-11.6	194	-6.1		
:NARM LOAD TEMPERATURE	186	-16.3	191	-9.4	195	-3.9		
DESCRIPTION	VALUE	MA / VOLT /						
:NTENNA DRIVE MOTOR CURRENT (AVERAGE)	2	1.86	2	1.86	2	1.86	2	1.86
:OMPENSATOR MOTOR CURRENT (AVERAGE)	2	1.86	2	1.86	2	1.86	2	1.86
:SIGNAL PROCESSING +15 VDC	142	12.58	147	13.02	151	13.36		
:ANTENNA DRIVE +15 VDC	142	12.58	147	13.02	151	13.36		
:SIGNAL PROCESSING -15 VDC	124	-16.20	128	-16.00	131	-15.85		
:ANTENNA DRIVE -15 VDC	124	-16.20	128	-16.00	131	-15.85		
:RECEIVER +10 VDC	143	8.44	147	8.67	151	8.90		
:RADIOMETER RECEIVER, PROCESSOR +5 VDC	124	4.30	128	4.44	131	4.54		
:ANTENNA DRIVE +5 VDC	122	4.20	126	4.33	129	4.43		
GUNN DIODE OSC #1 (CHANNEL 1) VDC	144	8.40	149	8.69	152	8.86		
GUNN DIODE OSC #2 (CHANNEL 2) VDC	145	8.46	149	8.69	153	8.91		

PRT TEMPERATURES

VARIABLE TARGET

	NO.	DEG K	NO.	DEG K
	601	14.00	607	20.00
	602	15.00	608	21.00
	603	16.00	609	22.00
	604	17.00	610	23.00
	605	18.00	611	24.00
	606	19.00	618	45.00
	612	39.00	619	46.00
	613	40.00	620	47.00
	614	41.00	621	48.00
	615	42.00	622	49.00
	616	43.00	625	50.00
	617	44.00	626	27.00
	623	25.00		
	624	26.00		

	NO.	DEG K	NO.	DEG K
	601	14.00	607	20.00
	602	15.00	608	21.00
	603	16.00	609	22.00
	604	17.00	610	23.00
	605	18.00	611	24.00
	606	19.00	618	45.00
	612	39.00	619	46.00
	613	40.00	620	47.00
	614	41.00	621	48.00
	615	42.00	622	49.00
	616	43.00	625	50.00
	617	44.00	626	27.00
	623	25.00		
	624	26.00		

THERMOCOUPLE TEMPERATURES

FIXED TARGET SHROUD
 VARIABLE TARGET SHROUD
 FIXED TARGET N2
 VARIABLE TARGET N2
 HEATER N2
 FIXED TARGET FLOW METER
 VARIABLE TARGET FLOW METER
 BASEPLATE HEATER N2
 BASEPLATE N2
 BASEPLATE FLOW METER

	NO.	DEG K	NO.	DEG K
	532	32.00	533	33.00
	515	37.00	516	38.00
	502	30.00	503	31.00
	507	35.00	508	36.00
	505	31.00	506	2.00
	504	34.00		
	509	39.00	511	4.00
	510	33.00	513	37.00
	512	36.00		
	514	35.00		

ADJUNCT RADIATORS

	NO.	DEG K	NO.	DEG K
	549	38.00	554	55.00
	542	10.00	556	57.00

TEST DATA SHEET 22
 Digital-A Data Output Warm Cal Mode Synch Sequence,
 Unit ID./Serial Number and Digital-B Serial Data Verification
 Sections [I], [II], and [III] (Paragraph 3.2.4.3.4.2)

Step	Element (For Ref)	Description	Recorded Value	Required Value	Pass/Fail
[I]	0001	Sync Sequence Byte 1	255	255	
	0002	Sync Sequence Byte 2	255	255	
	0003	Sync Sequence Byte 3	255	255	
[II]	0004	Unit I.D. and Serial N	30	*	
[III]	0005	Digital B Data Byte 1	4	4	
	0006	Digital B Data Byte 2	6	6	
	0007	Digital B Data Byte 3	0	0	
	0008	Digital B Data Byte 4	0	0	
* AMSU A2 Identification Words (data entered in decimal system)			Binary	Decimal	
AMSU-A2 S/N 101			00000010	2	
AMSU-A2 S/N 102			00000110	6	
AMSU-A2 S/N 103			00001010	10	
AMSU-A2 S/N 104			00001110	14	
AMSU-A2 S/N 105			00010010	18	
AMSU-A2 S/N 106			00010110	22	
AMSU-A2 S/N 107			00011010	26	
AMSU-A2 S/N 108			00011110	30	
AMSU-A2 S/N 109			00100010	34	

METSAT/AMSU A2 System CPT P/N IS-1331200 Amend #1 Oper. 8050
 Circle Test: 1st CPT Final CPT Sub CPT _____ Shop Order: 335079 S/N: 108

Customer Representative Date
 (Flight Hardware Only)

J. Sanford 2-25-00

Date

Quality Control

Test Systems Engineer Date
 269 25 FEB 00

AMSU
 6
 SEIT

371

AMSU A2-30 A2; EXE
[5] DIGITAL A DATA ELEMENT 000
[6] DIGITAL B DATA ELEMENT 00
[7] ANALOG DATA ELEMENT 00

[9] MODULE POWER = CONNECT ANTENNA IN COLD CAL POSIT = NO [15]
[10] SURVIVAL HEATER POWER = OFF ANTENNA IN NADIR POSITION = NO [16]
[11] MODULE TOTALLY OFF = ON ANTENNA IN FULL SCAN MODE = NO [17]
[12] SCANNER A2 POWER = ON COLD CAL POSITION MSB = ZERO [18]
[13] COMPENSATOR MOTOR POWER = ON COLD CAL POSITION LSB = ZERO [19]
[14] ANTENNA IN WARM CAL POSIT = YES

POWER [4] ON SCREEN ONLY [2] PRINT [3] FULL [1] RETURN
SELECT TOUCHSCREEN BUTTON 3

Test button in support of TDS 22
S10 33507 9 Amend #1 over 8050
TR 3,24,3,4,2

ELEMENT	DESCRIPTION	VALUE	ELEMENT	DESCRIPTION	VALUE
1	SYNC SEQUENCE BYTE 1	1111111	138	REFLECTOR POSITION 17	11960
2	SYNC SEQUENCE BYTE 2	1111111	140	REFL POS 17 2ND LOOK	11960
3	UNIT ID AND SERIAL NO	00011110	142	SCENE DATA BP 17 CH	16264
4	DIGITAL B DATA BYTE 1	000001100	144	REFLECTOR POSITION 18	16676
5	DIGITAL B DATA BYTE 2	000000100	146	REFL POS 18 2ND LOOK	11960
6	DIGITAL B DATA BYTE 3	000000000	150	SCENE DATA BP 18 CH	16266
7	DIGITAL B DATA BYTE 4	11960	152	REFLECTOR POSITION 19	16677
8	REFLECTOR POSITION 1	11960	154	REFL POS 19 2ND LOOK	11960
10	REFL POS 1 2ND LOOK	116269	158	SCENE DATA BP 19 CH	16266
12	SCENE DATA BP 1	1	160	REFLECTOR POSITION 20	11960
14	CH	2	162	REFL POS 20 2ND LOOK	11960
16	REFLECTOR POSITION 2	111960	164	SCENE DATA BP 20 CH	16265
20	REFL POS 2 2ND LOOK	111960	166	REFLECTOR POSITION 21	16678
22	SCENE DATA BP 2	1	168	REFL POS 21 2ND LOOK	11960
24	CH	2	170	SCENE DATA BP 21 CH	1
26	REFLECTOR POSITION 3	111960	172	REFLECTOR POSITION 22	11960
28	REFL POS 3 2ND LOOK	116262	174	REFL POS 22 2ND LOOK	11960
30	SCENE DATA BP 3	1	176	SCENE DATA BP 22 CH	1
32	CH	2	178	REFLECTOR POSITION 23	11960
34	REFLECTOR POSITION 4	111960	180	REFL POS 23 2ND LOOK	116269
36	REFL POS 4 2ND LOOK	111960	182	SCENE DATA BP 23 CH	1
38	SCENE DATA BP 4	1	184	REFLECTOR POSITION 24	16681
40	CH	2	186	REFL POS 24 2ND LOOK	11960
42	REFLECTOR POSITION 5	111960	188	SCENE DATA BP 24 CH	1
44	REFL POS 5 2ND LOOK	116265	190	REFLECTOR POSITION 25	11960
46	SCENE DATA BP 5	1	192	REFL POS 25 2ND LOOK	116679
48	CH	2	194	SCENE DATA BP 25 CH	1
50	REFLECTOR POSITION 6	111960	196	REFLECTOR POSITION 26	11960
52	REFL POS 6 2ND LOOK	116279	198	REFL POS 26 2ND LOOK	116267
54	SCENE DATA BP 6	1	200	SCENE DATA BP 26 CH	1
56	CH	2	202	REFLECTOR POSITION 27	11960
58	REFLECTOR POSITION 7	111960	204	REFL POS 27 2ND LOOK	116677
60	REFL POS 7 2ND LOOK	116277	206	SCENE DATA BP 27 CH	1
62	SCENE DATA BP 7	1	208	REFLECTOR POSITION 28	11960
64	CH	2	210	REFL POS 28 2ND LOOK	11960
66	REFLECTOR POSITION 8	111960	212	SCENE DATA BP 28 CH	1
68	REFL POS 8 2ND LOOK	116271	214	REFLECTOR POSITION 29	11960
70	SCENE DATA BP 8	1	216	REFL POS 29 2ND LOOK	116676
72	CH	2	218	SCENE DATA BP 29 CH	1
74	REFLECTOR POSITION 9	111960	220	REFLECTOR POSITION 28	16265
76	REFL POS 9 2ND LOOK	116267	222	SCENE DATA BP 28 CH	16682
78	SCENE DATA BP 9	1	224	REFLECTOR POSITION 29	11960
80	CH	2	226	REFL POS 28 2ND LOOK	11960
82	REFLECTOR POSITION 10	111960	228	SCENE DATA BP 28 CH	16265
84	REFL POS 10 2ND LOOK	116267	230	REFLECTOR POSITION 29	11960
86	SCENE DATA BP 10	1	232	REFL POS 29 2ND LOOK	11960
88	CH	2	234	REFLECTOR POSITION 29	11960
90	REFLECTOR POSITION 11	111960	236	REFL POS 29 2ND LOOK	11960
92	REFL POS 11 2ND LOOK	111960			

ELEMENT	DESCRIPTION	VALUE	ELEMENT	DESCRIPTION	VALUE
94 SCENE DATA	BP 11 CH 1	16267	238 SCENE DATA	BP 29 CH 1	16267
96 REFLECTOR POSITION	BP 12 CH 2	16679	240 REFLECTOR POSITION	BP 30 CH 2	16676
98 REFEL POS	BP 12 2ND LOOK	111960	242 REFEL POS	BP 30 2ND LOOK	111960
100 SCENE DATA	BP 12 CH 1	111960	244 SCENE DATA	BP 30 CH 1	111960
102 REFLECTOR POSITION	BP 12 CH 2	16266	246 SCENE DATA	BP 30 CH 1	16263
104 REFEL POS	BP 13 2ND LOOK	116681	248 REFEL POS	BP 30 CH 2	16677
106 SCENE DATA	BP 13 CH 1	111960	250 REFLECTOR COLD CAL POS	BP 30 CH 2	OE
108 REFEL POS	BP 13 2ND LOOK	111960	252 REFEL COLD CAL 2ND LOOK	BP 30 CH 1	OE
110 SCENE DATA	BP 13 CH 2	111960	254 COLD CAL DATA 1	BP 30 CH 1	00000
112 REFLECTOR POSITION	BP 14 CH 2	16684	256 COLD CAL DATA 2	BP 30 CH 2	00000
114 REFEL POS	BP 14 2ND LOOK	111960	260 REFEL WARM CAL POS	BP 30 CH 2	OE
116 SCENE DATA	BP 14 CH 1	111960	262 REFEL WARM CAL 2ND LOOK	BP 30 CH 1	OE
118 REFEL POS	BP 14 2ND LOOK	116267	264 WARM CAL DATA 1	BP 30 CH 1	00000
120 SCENE DATA	BP 15 CH 2	116681	266 WARM CAL DATA 2	BP 30 CH 2	00000
122 REFLECTOR POSITION	BP 15 CH 1	111960	268 WARM CAL DATA 3	BP 30 CH 1	00000
124 REFEL POS	BP 15 2ND LOOK	111960	270 WARM CAL DATA 4	BP 30 CH 2	00000
126 SCENE DATA	BP 15 CH 2	111960	272 WARM CAL DATA 5	BP 30 CH 1	00000
128 REFEL POSITION	BP 16 CH 2	116685	274 WARM CAL DATA 6	BP 30 CH 2	00000
130 REFEL POS	BP 16 2ND LOOK	111960	276 WARM CAL DATA 7	BP 30 CH 1	00000
132 SCENE DATA	BP 16 CH 1	111960	278 WARM CAL DATA 8	BP 30 CH 2	00000
134 REFEL POS	BP 16 2ND LOOK	111960	280 WARM CAL DATA 9	BP 30 CH 1	00000
136 SCENE DATA	BP 16 CH 2	116679	282 WARM CAL DATA 10	BP 30 CH 2	00000

ELEMENT	DESCRIPTION	VALUE	TEMPERATURE	DEG C
262 SCAN MOTOR		17370	21.54	
264 FEED HORN		17458	22.00	
266 RF MUX		17466	23.07	
268 MIXER/IF AMPLIFIER CHANNEL 1		18472	23.69	
270 MIXER/IF AMPLIFIER CHANNEL 2		18516	23.86	
272 LOCAL OSCILLATOR CHANNEL 1		18119	23.40	
274 LOCAL OSCILLATOR CHANNEL 2		18542	24.62	
276 COMPENSATION MOTOR		16832	21.84	
278 SUB REFLECTOR		17440	22.98	
280 DC/DC CONVERTER		19375	25.63	
282 RF SHELF/PREAMP ASSEMBLY		18033	22.85	
284 DETECTOR/PREAMP CENTER		17892	22.94	
286 WARM LOAD CENTER		22012	21.08	
288 WARM LOAD 1		22063	21.15	
290 WARM LOAD 2		22015	21.14	
292 WARM LOAD 3		22107	21.18	
294 WARM LOAD 4		22216	21.19	
296 WARM LOAD 5		22241	21.17	
298 WARM LOAD 6		21956	21.06	
300 TEMP SENSOR	REFERENCE VOLTAGE	25115	21.06	

AMSU A2_30 A2.EXE DIGITAL B DATA 24-FEB-00 20:20:27 PAGE 3

DESCRIPTION	STATUS	STATUS	STATUS	STATUS
SCANNER POWER	ON	ON	ON	ON
COMPENSATOR MOTOR POWER	ON	ON	YES	YES
ANTENNA IN WARM CAL POSITION	YES	NO	NO	NO
ANTENNA IN COLD CAL POSITION	NO	NO	NO	NO
ANTENNA IN NADIR POSITION	NO	NO	NO	NO
ANTENNA IN FULL SCAN MODE	NO	OFF	OFF	OFF
SURVIVAL HEATER POWER	OFF	ON	ON	ON
MODULE POWER	ON	ZERO	ZERO	ZERO
COLD CAL POSITION MSB	ZERO	ZERO	ZERO	ZERO
COLD CAL POSITION LSB	ZERO	ZERO	ZERO	ZERO
 ANALOG DATA				
DESCRIPTION	VALUE	DEG C	VALUE	DEG C
RF SHELF TEMPERATURE	214	23.0	214	23.0
COMPENSATOR MOTOR TEMPERATURE	213	21.3	213	21.3
SCANNER MOTOR TEMPERATURE	213	20.0	213	20.0
WARM LOAD TEMPERATURE	213	21.0	213	21.0
DESCRIPTION	VALUE	MA / VOLTS	VALUE	MA / VOLTS
ANTENNA DRIVE MOTOR CURRENT (AVERAGE)	2	1.86	2	1.86
COMPENSATOR MOTOR CURRENT (AVERAGE)	2	1.86	2	1.86
SIGNAL PROCESSING +15 VDC	170	15.00	170	15.00
ANTENNA DRIVE +15 VDC	170	15.00	169	14.91
SIGNAL PROCESSING -15 VDC	148	-15.00	148	-15.00
ANTENNA DRIVE -15 VDC	148	-15.00	148	-15.00
RECEIVER +10 VDC	171	10.06	171	10.06
RADIOMETER RECEIVER +5 VDC	146	5.04	146	5.04
ANTENNA DRIVE +5 VDC, PROCESSOR +5 VDC	145	4.96	145	4.96
GUNN DIODE OSC #1 (CHANNEL 1)	172	10.00	172	10.00
GUNN DIODE OSC #2 (CHANNEL 2)	172	10.00	172	10.00

AMSU A2_30 A2.EXE

AZONIX DATA 24-FEB-00 20:20:27 PAGE 4

PRT TEMPERATURES

VARIABLE TARGET

	DEG K
601	14.00
602	15.00
603	16.00
604	17.00
605	18.00
606	19.00
612	39.00
613	40.00
614	41.00
615	42.00
616	43.00
617	44.00
623	25.00
624	26.00

FIXED TARGET

	DEG K
612	39.00
613	40.00
614	41.00
615	42.00
616	43.00
617	44.00
623	25.00
624	26.00

BASEPLATE

THERMOCOUPLE TEMPERATURES

	DEG K
FIXED TARGET SHROUD	53.2
VARIABLE TARGET SHROUD	515
FIXED TARGET N2	502
VARIABLE TARGET N2	507
HEATER N2	505
FIXED TARGET FLOW METER	504
VARIABLE TARGET FLOW METER	509
BASEPLATE HEATER N2	512
BASEPLATE N2	514
BASEPLATE FLOW METER	35.00

ADJUNCT RADIATORS

	DEG K
549	38.00
542	10.00

	DEG K
549	38.00
542	10.00

	DEG K
549	38.00
542	10.00

TEST DATA SHEET 23

Reflector Position Warm Cal Mode Section [IV], Reflector Position Cold Cal Mode Section [IV], Reflector Position Nadir Mode Section [IV] (Paragraphs 3.2.4.3.4.2, 3.2.4.3.4.3, 3.2.4.3.4.4)

BP	Reflector			
	Para No.	Position*	Required**	Pass/Fail
WC	3.2.4.3.4.2, Step 5	11959	11955	PASS
CC	3.2.4.3.4.3, Step 5			
	a.	16358	16354	PASS
	b.	51	46	PASS
	c.	125	122	PASS
	d.	277	273	PASS
15	3.2.4.3.4.4, Step 5	3841	3838	PASS

WC = Warm Load

CC = Cold Load

15 = Nadir Position

* Actual counts from computer printout. Rewriting counts on this data sheet is optional.

** Required position data from TDS 6 of AE-26002/2 ± 5 counts.

3.2.4.3.4.3, Step 5 Substep	MSB	LSB
a.	0	0
b.	0	1
c.	1	0
d.	1	1

METSAT/AMSU A2 System CPT P/N IS-1331200
 Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: 335079 S/N: 108

J. Langford 2-20-00
 Customer Representative Date
 Date
 (Flight Hardware Only)

Ray Hertel 2-20-00
 Test Systems Engineer 7A Date
Steve Morgan 194 2-20-00
 Quality Control

\MSU A2-30 A2 EXE
[5] DIGITAL A DATA
[6] DIGITAL B DATA ELEMENT 00
[7] ANALOG DATA ELEMENT 00

FULL SCAN MODE 20-FEB-00 13:12:35 SCAN NUMBER 2688
ELEMENT 0000

3P	LOOK 1	LOOK 2	BP	REFLECTOR POSITIONS	BP LOOK 1	REFLECTOR POSITIONS	BP LOOK 2	BP	LOOK 1	LOOK 2	BP	LOOK 1	LOOK 2
1	5967	5967	9	4746	4752	17	3531	3538	25	3319	2324	2174	2168
2	5810	5813	10	4595	4600	18	3380	3387	26	2168	2174	2022	2015
3	5656	5662	11	4443	4448	19	3229	3234	27	1864	1869	1719	1714
4	5506	5511	12	4290	4297	20	3077	3082	28	1561	1567	1567	1561
5	5355	5359	13	4140	4146	21	2926	2932	29	16357	16358	16358	16357
6	5201	5207	14	3987	3993	22	2773	2779	30	11961	11960	11960	11961
7	5052	5055	15	3834	3841	23	2622	2627	CC	WC	WC	WC	WC
8	4898	4903	16	3683	3690	24	2469	2476	O	O	O	O	O

POWER [4] ON SCREEN ONLY [2] PRINT [3] FULL SELECT_TOUCHSCREEN_BUTTON_2 [1] RETURN

Q.
MSB LSB

MSU A2-30 A2,EXE FULL SCAN MODE 20-FEB-00 13:30:27 SCAN NUMBER 2812
5] DIGITAL A DATA ELEMENT 0000
6] DIGITAL B DATA ELEMENT 00
7] ANALOG DATA ELEMENT 00

3P	LOOK 1	LOOK 2	BP	REFLECTOR POSITIONS		LOOK 2	BP	LOOK 1	LOOK 2	
				LOOK 1	LOOK 2					
1	5967	5967	9	4745	4752	17	3532	3538	25	2319
2	5810	5814	10	4595	4600	18	3380	3387	26	2168
3	5656	5662	11	4443	4448	19	3229	3234	27	2015
4	5506	5511	12	4290	4297	20	3076	3082	28	1864
5	5355	5359	13	4141	4145	21	2926	2932	29	1714
6	5200	5207	14	3987	3992	22	2773	2779	30	1560
7	5051	5056	15	3834	3841	23	2621	2627	CC	151
8	4898	4904	16	3685	3690	24	2469	2476	WC	11961

POWER [4] ON SCREEN ONLY [2] PRINT [3] FULL [1] RETURN
SELECT_TOUCHSCREEN_BUTTON_2

MSB LSB
0 /

MSU A2-30 A2,EXE FULL SCAN MODE 20-FEB-00 1:14:18 SCAN NUMBER 2699

5] DIGITAL A DATA ELEMENT 00
6] DIGITAL B DATA ELEMENT 00
7] ANALOG DATA ELEMENT 00

3P	LOOK 1	LOOK 2	BP	REFLECTOR POSITIONS		BP	LOOK 1	LOOK 2
				LOOK 1	LOOK 2			
1	5969	5969	9	4746	4752	17	3531	3538
2	5809	5814	10	4595	4600	18	3380	3387
3	5657	5661	11	4443	4448	19	3228	3234
4	5506	5510	12	4290	4297	20	3077	3082
5	5355	5359	13	4140	4145	21	2926	2932
6	5201	5207	14	3987	3993	22	2773	2779
7	5052	5055	15	3834	3841	23	2622	2627
8	4899	4904	16	3684	3690	24	2469	2476

POWER [4] ON SCREEN ONLY [2] PRINT [3] FULL [1] RETURN

SELECT_TOUCHSCREEN_BUTTON2

C.
MSB LSB / O

MSU A2-30 A2 EXE FULL SCAN MODE 20-FEB-00 13:19:23 SCAN NUMBER 2733

5] DIGITAL A DATA ELEMENT 0000

6] DIGITAL B DATA ELEMENT 00

7] ANALOG DATA ELEMENT 00

P	LOOK 1	LOOK 2	BP	REFLECTOR 1	POSITIONS	LOOK 2	BP	LOOK 1	LOOK 2
				LOOK 1	BP	LOOK 1			
1	5967	5967	9	4745	4752	17	3531	3537	25
2	5809	5814	10	4595	4600	18	3380	3387	26
3	5656	5661	11	4443	4448	19	3229	3234	27
4	5506	5510	12	4291	4297	20	3076	3082	28
5	5355	5359	13	4141	4145	21	2925	2932	29
6	5200	5207	14	3987	3993	22	2774	2779	30
7	5051	5056	15	3834	3841	23	2622	2627	30
8	4899	4903	16	3685	3690	24	2469	2476	30

POWER [4] ON SCREEN ONLY [2] PRINT [3] FULL [1] RETURN
SELECT TOUCHSCREEN BUTTON 2

do

MSB LSB

/ /

4SU A2-30 A2;EXE FULL SCAN MODE 20-FEB-00 13:35:41 SCAN NUMBER 2849

5] DIGITAL A DATA ELEMENT 0000

6] DIGITAL B DATA ELEMENT 00

7] ANALOG DATA ELEMENT 00

P	LOOK 1	LOOK 2	BP	REFLECTOR 1	POSITIONS	BP	LOOK 1	BP	LOOK 2	BP	LOOK 1	BP	LOOK 2
1	5967	5967	9	4746	4752	17	3531	3537	25	2319	2324		
2	5809	5814	10	4595	4600	18	3380	3387	26	2168	2174		
3	5657	5661	11	4443	4448	19	3229	3234	27	2015	2022		
4	5507	5511	12	4290	4297	20	3077	3082	28	1864	1869		
5	5354	5359	13	4141	4145	21	2926	2932	29	1713	1719		
6	5201	5207	14	3987	3992	22	2774	2779	30	1560	1567		
7	5051	5055	15	3834	3840	23	2621	2627	30	16357	16357		
8	4899	4904	16	3684	3690	24	2469	2476	WC	11961	11960		

POWER [4] ON SCREEN ONLY [2] PRINT [3] FULL
SELECT_TOUCHSCREEN_BUTTON2 [1] RETURN

TEST DATA SHEET 24
Digital-A Data Output Warm Cal Mode Radiometer Data Section [V] (Paragraph 3.2.4.3.4.2)

BP	Channel-1 (23.8 GHz)				Channel-2 (31.4 GHz)			
	Element (For Ref)	Measured*	Required**	Pass/Fail	Element (For Ref)	Measured*	Required**	Pass/Fail
01	0014	16257	16500	PASS	0016	16694	16500	PASS
02	0022	16251	16500	↑	0024	16694	16500	↑
03	0030	16254	16500		0032	16691	16500	
04	0038	16255	16500		0040	16692	16500	
05	0046	16251	16500		0048	16697	16500	
06	0054	16251	16500		0056	16689	16500	
07	0062	16250	16500		0064	16690	16500	
08	0070	16251	16500		0072	16700	16500	
09	0078	16253	16500		0080	16693	16500	
10	0086	16257	16500		0088	16695	16500	
11	0094	16252	16500		0096	16691	16500	
12	0102	16249	16500		0104	16693	16500	
13	0110	16252	16500		0112	16694	16500	
14	0118	16253	16500		0120	16696	16500	
15	0126	16252	16500		0128	16695	16500	
16	0134	16248	16500		0136	16698	16500	
17	0142	16254	16500		0144	16697	16500	
18	0150	16252	16500		0152	16695	16500	
19	0158	16249	16500		0160	16690	16500	
20	0166	16253	16500		0168	16694	16500	
21	0174	16253	16500		0176	16695	16500	
22	0182	16256	16500		0184	16689	16500	
23	0190	16253	16500		0192	16694	16500	
24	0198	16254	16500		0200	16691	16500	
25	0206	16255	16500		0208	16693	16500	
26	0214	16256	16500		0216	16690	16500	
27	0222	16250	16500		0224	16691	16500	
28	0230	16252	16500		0232	16693	16500	
29	0238	16254	16500		0240	16694	16500	
30	0246	16255	16500		0248	16688	16500	
CC	0258	0	0	PASS	0260	0	0	↓
WC	0310	0	0	PASS	0312	0	0	PASS

* Actual counts from computer printout. Rewriting counts on this data sheet is optional.

** Required = $16,500 \pm 4000$ counts.

SI# 0730

METSAT/AMSU A2 System CPT PALIS-1331200
Circle Test: 1st CPT Final CPT Sub CPT

Shop Order: 335074 S/N: 108

2-19-00

R. Dunn 2-19-00
Customer Representative Date
Date
(Flight Hardware Only)

SU A2-30 A2:EXE WARM CAL MODE 19-FEB-00 00:57:57 SCAN NUMBER 645
5] DIGITAL A DATA ELEMENT 0000
6] DIGITAL B DATA ELEMENT 00
7] ANALOG DATA ELEMENT 00

	RADIOMETRIC DATA					
	CHANNEL	1	BP	DATA	BP	DATA
1	16257	9	16253	17	16254	25
2	16251	10	16257	18	16252	26
3	16254	11	16252	19	16249	27
4	16255	12	16249	20	16253	28
5	16251	13	16252	21	16253	29
6	16251	14	16253	22	16256	30
7	16250	15	16252	23	16253	30
8	16251	16	16248	24	16254	30
21] UP	[22] DOWN					

POWER [4] ON SCREEN ONLY [2] PRINT [3] FULL [1] RETURN
SELECT_TOUCHSCREEN_BUTTON 2

TDS # 24
Ax-108
Final Cut
J# 335>> 8.4>>

4SU A2-30 A2 :EXE
5] DIGITAL A DATA WARM CAL MODE
ELEMENT 000

6] DIGITAL B DATA ELEMENT 00

7] ANALOG DATA ELEMENT 00

	RADIOMETRIC DATA					
	CHANNEL	DATA	BP	DATA	BP	
1	16694	9	16693	17	16697	25
2	16694	10	16695	18	16695	26
3	16691	11	16691	19	16690	27
4	16692	12	16693	20	16694	28
5	16697	13	16694	21	16695	29
6	16689	14	16696	22	16689	30
7	16690	15	16695	23	16694	CC
8	16700	16	16698	24	16691	WC
21] UP	[22] DOWN					0

POWER [4] ON
SELECT TOUCHSCREEN BUTTON 2 SCREEN ONLY [2] PRINT [3] FULL [1] RETURN

TEST DATA SHEET 25
Warm Cal Mode Temperature Sensors Section [VI] (Paragraph 3.2.4.3.4.2)

Thermistor Sensors		Recorded Value* (deg. C)	Required Value (deg. C)	Pass/ Fail
Element	Description			
0262	Scan Motor	22.86	25 ± 15	PASS
0264	Feedhorn	23.12	25 ± 15	✓
0266	RF Mux	24.40	25 ± 15	
0268	Mixer I.F. Amp. Channel 1	25.09	25 ± 15	
0270	Mixer I.F. Amp. Channel 2	25.24	25 ± 15	
0272	Local Oscillator Channel 1	24.79	25 ± 15	
0274	Local Oscillator Channel 2	26.13	25 ± 15	
0276	Compensation Motor	23.09	25 ± 15	
0278	Subreflector	22.98	25 ± 15	
0280	DC/DC Converter	27.28	25 ± 15	
0282	RF Shelf	24.18	25 ± 15	
0284	Detector/Preamp Assembly	24.33	25 ± 15	
0286	Warm Load Center	22.91	25 ± 15	
0288	Warm Load 1	23.00	25 ± 15	
0290	Warm Load 2	22.97	25 ± 15	
0292	Warm Load 3	23.00	25 ± 15	
0294	Warm Load 4	23.06	25 ± 15	
0296	Warm Load 5	23.03	25 ± 15	
0298	Warm Load 6	22.89	25 ± 15	✓
0300	Temp Sensor V. Reference	25.17	**	PASS

* Value is from the STE printout sheets. Copying data to this sheet is optional.

** Count of 24,552 +1765, -1308.

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: 335078 S/N: 108

2-19-00

R. Dunn 2-19-00
Customer Representative Date
Date
(Flight Hardware Only)

Test Systems Engineer Shital Navane Date 2/19/00
Quality Control b/c

[SU] A2-30 A2 : EXE
5] DIGITAL A DATA WARM CAL MODE
6] DIGITAL B DATA ELEMENT 00
7] ANALOG DATA ELEMENT 00

		DIGITAL A	TEMPERATURES
		DATA	NO
		TEMP C	TEMP C
1)	SCAN MOTOR	18068	11 RF SHELF
2)	FEED HORN	18049	12 DET/PREAMP
3)	RF MUX	18165	13 WARM LOAD
4)	MIXER IF CH 1	19207	14 WARM LOAD CNTR
5)	MIXER IF CH 2	19234	15 WARM LOAD 1
6)	LO CHANNEL 1	18852	15 WARM LOAD 2
7)	LO CHANNEL 2	19329	16 WARM LOAD 3
8)	COMP MOTOR	17493	17 WARM LOAD 4
9)	SUBREFLECTOR	17971	18 WARM LOAD 5
10)	DC/DC CONVERTER	20236	19 WARM LOAD 6
		27.28	22 THERMAL REFERENCE

POWER [4] ON
SELECT TOUCHSCREEN BUTTON 2 SCREEN ONLY [2] PRINT [3] FULL, [1] RETURN

TOP # 25

A2-128
FINAL CPT
S1-\$ 333779 40.# 5757

AE-26156/4E
2 Apr 99

TEST DATA SHEET 26

Digital-A Data Output Cold Cal Mode Synch Sequence,
Unit ID/Serial Number and Digital-B Serial Data Verification
Sections [I], [II], and [III] (Paragraph 3.2.4.3.4.3)

Step	Element (For Ref)	Description	Recorded Value	Required Value	Pass/Fail
[I]	0001	Sync Sequence Byte 1	255	255	PASS
	0002	Sync Sequence Byte 2	255	255	↑
	0003	Sync Sequence Byte 3	255	255	
[II]	0004	Unit I.D. and Serial N	30	*	
[III]	0005	Digital B Data Byte 1	8	8	
	0006	Digital B Data Byte 2	6	6	
	0007	Digital B Data Byte 3	0	0	↓
	0008	Digital B Data Byte 4	0	0	PASS

* AMSU A2 Identification Words (data entered in decimal system)	Binary	Decimal
AMSU-A2 S/N 101	00000010	2
AMSU-A2 S/N 102	00000110	6
AMSU-A2 S/N 103	00001010	10
AMSU-A2 S/N 104	00001110	14
AMSU-A2 S/N 105	00010010	18
AMSU-A2 S/N 106	00010110	22
AMSU-A2 S/N 107	00011010	26
AMSU-A2 S/N 108	00011110	30
AMSU-A2 S/N 109	00100010	34

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: 335079 S/N: 108

2-19-00

R. D. 2-19-00
Customer Representative
Date
(Flight Hardware Only)

Date

Test Systems Engineer
Gita Navare 2/19/00 Date 2/19/00
Quality Control

AMSU A2-30 A2 EXE
[5] DIGITAL A DATA COLD CAL MODE
ELEMENT 0000
[6] DIGITAL B DATA ELEMENT 00
[7] ANALOG DATA ELEMENT 00

[9] MODULE POWER = CONNECT COMMANDS
[10] SURVIVAL HEATER POWER = OFF ANTENNA IN COLD CAL POSIT = YES [15]
[11] MODULE TOTALLY OFF = ON ANTENNA IN NADIR POSITION = NO [16]
[12] SCANNER A2 POWER = ON COLD CAL POSITION MSB = NO [17]
[13] COMPENSATOR MOTOR POWER = ON COLD CAL POSITION LSB = ZERO [18]
[14] ANTENNA IN WARM CAL POSIT = NO
POWER [4] ON SCREEN ONLY [2] PRINT [3] FULL [1] RETURN
SELECT TOUCHSCREEN BUTTON 3

TDS # 20

A2-1>
Final PT
J1,* 335079 073~

ELEMENT	DESCRIPTION	VALUE	ELEMENT	DESCRIPTION	VALUE
1	SYNC SEQUENCE	BYTE 1	11111111	REFLECTOR POSITION 17	16360
2	SYNC SEQUENCE	BYTE 2	11111111	REFL POS 17 2ND LOOK	16360
3	SEQUENCE BYTE 3		1140 SCENE DATA	BP 17 CH	16242
4	UNIT ID AND SERIAL NO		1144	REFLECTOR POSITION 18	16674
5	DIGITAL B DATA	BYTE 1	1146	REFL POS 18 2ND LOOK	16360
6	DIGITAL B DATA	BYTE 2	1148 SCENE DATA	BP 18 CH	16242
7	DIGITAL B DATA	BYTE 3	1150	REFLECTOR POSITION 19	16677
8	DIGITAL B DATA	BYTE 4	1152	REFL POS 19 2ND LOOK	16360
9	REFLECTOR POSITION 1		1154 SCENE DATA	BP 19 CH	16243
10	REFL POS 1 2ND LOOK		1156	REFLECTOR POSITION 20	16677
11	SCENE DATA	BP 1 CH	1158 SCENE DATA	BP 19 CH	16677
12	REFL POS 1 CH	1	1160	REFLECTOR POSITION 20	16360
13	REFLECTOR POSITION 2		1162 SCENE DATA	BP 20 CH	16244
14	REFL POS 2 2ND LOOK		1164 SCENE DATA	BP 20 CH	16676
15	SCENE DATA	BP 2 CH	1166	REFLECTOR POSITION 21	16360
16	REFLECTOR POSITION 3		1168 SCENE DATA	BP 21 CH	16678
17	REFL POS 3 2ND LOOK		1170 SCENE DATA	BP 21 CH	16239
18	SCENE DATA	BP 3 CH	1172	REFLECTOR POSITION 22	16360
19	REFLECTOR POSITION 4		1174 SCENE DATA	BP 22 CH	16244
20	REFL POS 4 2ND LOOK		1176 SCENE DATA	BP 22 CH	16673
21	SCENE DATA	BP 4 CH	1178 SCENE DATA	BP 23 CH	16360
22	REFLECTOR POSITION 5		1180 SCENE DATA	BP 23 CH	16244
23	REFL POS 5 2ND LOOK		1182 SCENE DATA	BP 23 CH	16673
24	SCENE DATA	BP 5 CH	1184 SCENE DATA	BP 23 CH	16360
25	REFLECTOR POSITION 6		1186 SCENE DATA	BP 23 CH	16244
26	REFL POS 6 2ND LOOK		1188 SCENE DATA	BP 23 CH	16675
27	SCENE DATA	BP 6 CH	1190 SCENE DATA	BP 23 CH	16360
28	REFLECTOR POSITION 7		1192 SCENE DATA	BP 24 CH	16243
29	REFL POS 7 2ND LOOK		1194 SCENE DATA	BP 24 CH	16674
30	SCENE DATA	BP 7 CH	1196 SCENE DATA	BP 24 CH	16360
31	REFLECTOR POSITION 8		1198 SCENE DATA	BP 24 CH	16244
32	REFL POS 8 2ND LOOK		2000 SCENE DATA	BP 25 CH	16678
33	SCENE DATA	BP 8 CH	2004 SCENE DATA	BP 25 CH	16360
34	REFLECTOR POSITION 9		2006 SCENE DATA	BP 25 CH	16244
35	REFL POS 9 2ND LOOK		2008 SCENE DATA	BP 26 CH	16672
36	SCENE DATA	BP 9 CH	2100 SCENE DATA	BP 26 CH	16360
37	REFLECTOR POSITION 10		2102 SCENE DATA	BP 26 CH	16242
38	REFL POS 10 2ND LOOK		2104 SCENE DATA	BP 27 CH	16681
39	SCENE DATA	BP 10 CH	2106 SCENE DATA	BP 27 CH	16360
40	REFLECTOR POSITION 11		2108 SCENE DATA	BP 27 CH	16240
41	REFL POS 11 2ND LOOK		2110 SCENE DATA	BP 28 CH	16675
42	REFLECTOR POSITION 12		2112 SCENE DATA	BP 28 CH	16360
43	REFL POS 12 2ND LOOK		2114 SCENE DATA	BP 28 CH	16244
44	SCENE DATA	BP 11 CH	2116 SCENE DATA	BP 28 CH	16675
45	REFLECTOR POSITION 13		2118 SCENE DATA	BP 28 CH	16360
46	REFL POS 13 2ND LOOK		2120 SCENE DATA	BP 28 CH	16242
47	SCENE DATA	BP 12 CH	2122 SCENE DATA	BP 28 CH	16681
48	REFLECTOR POSITION 14		2124 SCENE DATA	BP 28 CH	16360
49	REFL POS 14 2ND LOOK		2126 SCENE DATA	BP 28 CH	16242
50	SCENE DATA	BP 13 CH	2128 SCENE DATA	BP 28 CH	16675
51	REFLECTOR POSITION 15		2130 SCENE DATA	BP 29 CH	16360
52	REFL POS 15 2ND LOOK		2132 SCENE DATA	BP 29 CH	16244
53	SCENE DATA	BP 14 CH	2134 SCENE DATA	BP 29 CH	16675
54	REFLECTOR POSITION 16		2136 SCENE DATA	BP 29 CH	16360
55	REFL POS 16 2ND LOOK		2138 SCENE DATA	BP 29 CH	16242
56	SCENE DATA	BP 15 CH	2140 SCENE DATA	BP 29 CH	16675
57	REFLECTOR POSITION 17		2142 SCENE DATA	BP 29 CH	16360
58	REFL POS 17 2ND LOOK		2144 SCENE DATA	BP 29 CH	16244
59	SCENE DATA	BP 16 CH	2146 SCENE DATA	BP 29 CH	16675
60	REFLECTOR POSITION 18		2148 SCENE DATA	BP 29 CH	16360
61	REFL POS 18 2ND LOOK		2150 SCENE DATA	BP 29 CH	16242
62	SCENE DATA	BP 17 CH	2152 SCENE DATA	BP 29 CH	16675
63	REFLECTOR POSITION 19		2154 SCENE DATA	BP 29 CH	16360
64	REFL POS 19 2ND LOOK		2156 SCENE DATA	BP 29 CH	16244
65	SCENE DATA	BP 18 CH	2158 SCENE DATA	BP 29 CH	16675
66	REFLECTOR POSITION 20		2160 SCENE DATA	BP 29 CH	16360
67	REFL POS 20 2ND LOOK		2162 SCENE DATA	BP 29 CH	16244
68	SCENE DATA	BP 19 CH	2164 SCENE DATA	BP 29 CH	16675
69	REFLECTOR POSITION 21		2166 SCENE DATA	BP 29 CH	16360
70	REFL POS 21 2ND LOOK		2168 SCENE DATA	BP 29 CH	16244
71	SCENE DATA	BP 20 CH	2170 SCENE DATA	BP 29 CH	16675
72	REFLECTOR POSITION 22		2172 SCENE DATA	BP 29 CH	16360
73	REFL POS 22 2ND LOOK		2174 SCENE DATA	BP 29 CH	16244
74	SCENE DATA	BP 21 CH	2176 SCENE DATA	BP 29 CH	16675
75	REFLECTOR POSITION 23		2178 SCENE DATA	BP 29 CH	16360
76	REFL POS 23 2ND LOOK		2180 SCENE DATA	BP 29 CH	16244
77	SCENE DATA	BP 22 CH	2182 SCENE DATA	BP 29 CH	16675
78	REFLECTOR POSITION 24		2184 SCENE DATA	BP 29 CH	16360
79	REFL POS 24 2ND LOOK		2186 SCENE DATA	BP 29 CH	16244
80	SCENE DATA	BP 23 CH	2188 SCENE DATA	BP 29 CH	16675
81	REFLECTOR POSITION 25		2190 SCENE DATA	BP 29 CH	16360
82	REFL POS 25 2ND LOOK		2192 SCENE DATA	BP 29 CH	16244
83	SCENE DATA	BP 24 CH	2194 SCENE DATA	BP 29 CH	16678
84	REFLECTOR POSITION 26		2196 SCENE DATA	BP 29 CH	16360
85	REFL POS 26 2ND LOOK		2198 SCENE DATA	BP 29 CH	16244
86	SCENE DATA	BP 25 CH	2200 SCENE DATA	BP 29 CH	16675
87	REFLECTOR POSITION 27		2202 SCENE DATA	BP 29 CH	16360
88	REFL POS 27 2ND LOOK		2204 SCENE DATA	BP 29 CH	16242
89	SCENE DATA	BP 26 CH	2206 SCENE DATA	BP 29 CH	16672
90	REFLECTOR POSITION 28		2208 SCENE DATA	BP 29 CH	16360
91	REFL POS 28 2ND LOOK		2210 SCENE DATA	BP 29 CH	16244
92	SCENE DATA	BP 27 CH	2212 SCENE DATA	BP 29 CH	16681
93	REFLECTOR POSITION 29		2214 SCENE DATA	BP 29 CH	16360
94	REFL POS 29 2ND LOOK		2216 SCENE DATA	BP 29 CH	16242
95	SCENE DATA	BP 28 CH	2218 SCENE DATA	BP 29 CH	16675
96	REFLECTOR POSITION 30		2220 SCENE DATA	BP 29 CH	16360
97	REFL POS 30 2ND LOOK		2222 SCENE DATA	BP 29 CH	16244
98	SCENE DATA	BP 29 CH	2224 SCENE DATA	BP 29 CH	16675
99	REFLECTOR POSITION 31		2226 SCENE DATA	BP 29 CH	16360
100	REFL POS 31 2ND LOOK		2228 SCENE DATA	BP 29 CH	16244
101	SCENE DATA	BP 30 CH	2230 SCENE DATA	BP 29 CH	16675
102	REFLECTOR POSITION 32		2232 SCENE DATA	BP 29 CH	16360
103	REFL POS 32 2ND LOOK		2234 SCENE DATA	BP 29 CH	16244
104	SCENE DATA	BP 31 CH	2236 SCENE DATA	BP 29 CH	16675

AMSU A2_30 A2.EXE DIGITAL A DATA 19-FEB-0U 00:59:56 PAGE 2

ELEMENT	DESCRIPTION	VALUE	ELEMENT	DESCRIPTION	VALUE
94	SCENE DATA BP 11 CH	1	16239	SCENE DATA BP 29 CH	1
96	REFLECTOR POSITION 1 ₂	2	16682	REFLECTOR POSITION 3 ₀	2
98	REFL POS 1 ₂ 2ND LOOK		16360	REFL POS 3 ₀ 2ND LOOK	1
100	SCENE DATA BP 12 CH	1	16244	SCENE DATA BP 30 CH	1
102	REFL POS 1 ₂ 2ND LOOK		16676	REFLECTOR COLD CAL POS	1
104	REFLECTOR POSITION 1 ₃	2	16360	REFL COLD CAL 2ND LOOK	0E
106	REFL POS 1 ₃ 2ND LOOK		2250	COLD CAL DATA 1	0E
108	SCENE DATA BP 13 CH	1	16242	REFL WARM CAL POS	0E
110	REFL POS 1 ₃ 2ND LOOK		2254	WARM CAL DATA 1	0E
112	REFLECTOR POSITION 1 ₄	2	16675	COLD CAL DATA 2	CH
114	REFL POS 1 ₄ 2ND LOOK		16360	REFLECTOR WARM CAL POS	2
116	SCENE DATA BP 14 CH	1	16244	REFL WARM CAL 2ND LOOK	0E
118	REFL POS 1 ₄ 2ND LOOK		2256	WARM CAL DATA 1	0E
120	REFLECTOR POSITION 1 ₅	2	16676	WARM CAL DATA 2	CH
122	REFL POS 1 ₅ 2ND LOOK		16360	REFLECTOR WARM CAL POS	2
124	SCENE DATA BP 15 CH	1	304	REFL WARM CAL 2ND LOOK	0E
126	REFL POS 1 ₅ 2ND LOOK		306	WARM CAL DATA 1	0E
128	REFLECTOR POSITION 1 ₆	2	16239	WARM CAL DATA 2	CH
130	REFL POS 1 ₆ 2ND LOOK		16677	REFLECTOR WARM CAL POS	2
132	SCENE DATA BP 16 CH	1	16360	REFL WARM CAL 2ND LOOK	0E
134	REFL POS 1 ₆ 2ND LOOK		16677	WARM CAL DATA 1	0E
136	SCENE DATA BP 16 CH	2			

ELEMENT	DESCRIPTION	VALUE	TEMPERATURE	DEG C
262	SCAN MOTOR	18084	22.89	
264	FEED HORN	18053	23.13	
266	RF MUX	18170	24.41	
268	MIXER/IF AMPLIFIER CHANNEL 1	19214	25.10	
270	MIXER/IF AMPLIFIER CHANNEL 2	18240	25.25	
272	LOCAL OSCILLATOR CHANNEL 1	18859	24.81	
274	LOCAL OSCILLATOR CHANNEL 2	19335	26.14	
276	COMPENSATION MOTOR	17486	23.07	
278	SUB REFLECTOR	17972	22.98	
280	DC/DC CONVERTER	20238	22.28	
282	RF SHELF	18738	24.19	
284	DETECTOR/PREAMP ASSEMBLY	18630	24.34	
286	WARM LOAD CENTER	22943	22.90	
288	WARM LOAD 1	23009	22.01	
290	WARM LOAD 2	22955	22.98	
292	WARM LOAD 3	23038	23.00	
294	WARM LOAD 4	23172	23.06	
296	WARM LOAD 5	23199	22.95	
298	WARM LOAD 6	22893	22.90	
300	TEMP SENSOR REFERENCE VOLTAGE	25117	22.05	

AMSU A2_30 A2.EXE

DIGITAL B DATA 19-FEB-0U 00:59:56 PAGE 3

DESCRIPTION	STATUS	STATUS	STATUS	STATUS
CANNER POWER	ON	ON	ON	ON
COMPENSATOR MOTOR POWER	ON	ON	NO	NO
ANTENNA IN WARM CAL POSITION MODE	NO	NO	YES	YES
ANTENNA IN COLD CAL POSITION MODE	YES	YES	NO	NO
ANTENNA IN NADIR POSITION MODE	NO	NO	NO	NO
ANTENNA IN FULL SCAN MODE	NO	OFF	OFF	OFF
SURVIVAL HEATER POWER	OFF	ON	ON	ON
MODULE POWER	ON	ZERO	ZERO	ZERO
COLD CAL POSITION MSB	ZERO	ZERO	ZERO	ZERO
OLD CAL POSITION LSB	ZERO	ZERO	ZERO	ZERO
ANALOG DATA	VALUE	DEG C	VALUE	DEG C
REF SHELF TEMPERATURE	215	24.4	215	24.4
COMPENSATOR MOTOR TEMPERATURE	214	22.7	214	22.7
SCANNER MOTOR TEMPERATURE	214	21.4	214	21.4
WARM LOAD TEMPERATURE	214	22.4	214	22.4
DESCRIPTION	VALUE	MA / VOLTS	MA / VOLTS	MA / VOLTS
ANTENNA DRIVE MOTOR CURRENT (AVERAGE)	2	1.86	2	1.86
COMPENSATOR MOTOR CURRENT (AVERAGE)	2	1.86	2	1.86
SIGNAL PROCESSING +15 VDC	170	15.00	170	15.00
ANTENNA DRIVE +15 VDC	170	15.00	170	15.00
SIGNAL PROCESSING -15 VDC	148	-15.00	148	-15.00
ANTENNA DRIVE -15 VDC	148	-15.00	148	-15.00
RECEIVER +10 VDC	171	10.06	171	10.06
RADIOMETER RECEIVER, PROCESSOR +5 VDC	146	5.04	146	5.04
ANTENNA DRIVE +5 VDC	145	4.96	145	4.96
GUNN DIODE OSC #1 (CHANNEL 1) VDC	172	10.00	172	10.00
GUNN DIODE OSC #2 (CHANNEL 2) VDC	172	10.00	172	10.00

MSU A2_30 A2.EXE

PRT TEMPERATURES

RIABLE TARGET

AZONIX DATA

19-FEB-00

00:59:56

PAGE 4

	NO.	DEG K	NO.	DEG K
PRT TEMPERATURES	601	14.00	607	20.00
RIABLE TARGET	602	15.00	608	21.00
	603	16.00	609	22.00
	604	17.00	610	23.00
	605	18.00	611	24.00
XED TARGET	606	19.00	618	45.00
	612	39.00	619	46.00
	613	40.00	620	47.00
	614	41.00	621	48.00
	615	42.00	622	49.00
	616	43.00		
	617	44.00		
	623	25.00	625	50.00
	624	26.00	626	27.00
ASEPLATE				

	NO.	DEG K	NO.	DEG K
THERMOCOUPLE TEMPERATURES	532	32.00	533	33.00
IXED TARGET SHROUD	515	37.00	516	38.00
ARIABLE TARGET SHROUD	502	30.00	503	31.00
IXED TARGET N2	507	35.00	508	36.00
ARIABLE TARGET N2	505	31.00	506	2.00
EATER N2	504	34.00		
IXED TARGET FLOW METER	509	39.00	511	4.00
ARIABLE TARGET FLOW METER	510	33.00	513	37.00
ASEPLATE N2	512	36.00		
ASEPLATE N2	514	35.00		
DJUNCT RADIATORS	549	38.00	554	55.00
	542	10.00	556	57.00

TEST DATA SHEET 26
 Digital-A Data Output Cold Cal Mode Synch Sequence,
 Unit I.D./Serial Number and Digital-B Serial Data Verification
 Sections [I], [II], and [III] (Paragraph 3.2.4.3.4.3)

Step	Element (For Ref)	Description	Recorded Value	Required Value	Pass/Fail
[I]	0001	Sync Sequence Byte 1	255	255	PASS
	0002	Sync Sequence Byte 2	255	255	
	0003	Sync Sequence Byte 3	255	255	
[II]	0004	Unit I.D. and Serial N	30	*	
[III]	0005	Digital B Data Byte 1	8	8	
	0006	Digital B Data Byte 2	6	6	
	0007	Digital B Data Byte 3	0	0	↓
	0008	Digital B Data Byte 4	0	0	PASS
* AMSU A2 Identification Words (data entered in decimal system)			Binary	Decimal	
AMSU-A2 S/N 101			00000010	2	
AMSU-A2 S/N 102			00000110	6	
AMSU-A2 S/N 103			00001010	10	
AMSU-A2 S/N 104			00001110	14	
AMSU-A2 S/N 105			00010010	18	
AMSU-A2 S/N 106			00010110	22	
AMSU-A2 S/N 107			00011010	26	
AMSU-A2 S/N 108			00011110	30	
AMSU-A2 S/N 109			00100010	34	

Amend #1 Oper. 8050

METSAT/AMSU A2 System CPT P/N IS-1331200 Shop Order: 335079 S/N: 108

Circle Test: 1st CPT Final CPT Sub CPT _____

J. Lengard Date: 2-25-00
Customer Representative Date
(Flight Hardware Only)

Ken Hane Date: 2-24-00
Test Systems Engineer Quality Control
Judie Hervey Date: 25 FEB 00
AMSU 5 SETT

509

AMSU A2-30 A2.EXE
[5] DIGITAL A DATA COLD CAL MODE
ELEMENT 0000

[6] DIGITAL B DATA ELEMENT 00
[7] ANALOG DATA ELEMENT 00

[9] MODULE POWER = CONNECT COMMANDS
[10] SURVIVAL HEATER POWER = OFF ANTENNA IN COLD CAL POSIT = YES [15]
[11] MODULE TOTALLY OFF = ON ANTENNA IN NADIR POSITION = NO [16]
[12] SCANNER A2 POWER = ON COLD CAL POSITION MSB = NO [17]
[13] COMPENSATOR MOTOR POWER = ON COLD CAL POSITION LSB = ZERO [18]
[14] ANTENNA IN WARM CAL POSIT = NO
POWER [4] ON [1] RETURN
[2] PRINT [3] FULL
SELECT TOUCHSCREEN BUTTON 3

Test data in support of TDS 26
S/6 335079 Amend #1, Oper. 8050
A2 S/W 108 TR 3,24,3,4,3

ELEMENT	DESCRIPTION	VALUE	ELEMENT	DESCRIPTION	VALUE
1	SYNC SEQUENCE BYTE	1	1111111	REFLECTOR POSITION	17
2	SYNC SEQUENCE BYTE	2	1111111	REFL POS 17 2ND LOOK	16360
3	SYNC SEQUENCE BYTE	3	1111111	SCENE DATA BP 17 CH	16366
4	UNIT ID AND SERIAL NO	10011110	144	REFLECTOR POSITION	18
5	DIGITAL B DATA BYTE	1	00001000	REFL POS 18 2ND LOOK	16360
6	DIGITAL B DATA BYTE	2	00000100	SCENE DATA BP 18 CH	16267
7	DIGITAL B DATA BYTE	3	00000000	REFLECTOR POSITION	19
8	DIGITAL B DATA BYTE	4	00000000	REFL POS 19 2ND LOOK	16360
9	REFLECTOR POSITION 1	16360	SCENE DATA BP 19 CH	16268	
10	REFL POS 1 2ND LOOK	16272	REFLECTOR POSITION	20	
11	SCENE DATA BP 1	CH	16272	REFL POS 20 2ND LOOK	16360
12	REFLECTOR POSITION 2	16360	SCENE DATA BP 21 CH	16263	
13	REFL POS 2 2ND LOOK	16267	REFLECTOR POSITION	21	
14	SCENE DATA BP 2	CH	16267	REFL POS 21 2ND LOOK	16360
15	REFLECTOR POSITION 3	1	16684	SCENE DATA BP 22 CH	16266
16	REFLECTOR POSITION 3 CH	2	16684	REFLECTOR POSITION	22
17	REFL POS 3 2ND LOOK	16360	REFL POS 22 2ND LOOK	16360	
18	SCENE DATA BP 3	CH	16262	SCENE DATA BP 23 CH	16265
19	REFLECTOR POSITION 4	1	16360	REFLECTOR POSITION	23
20	REFL POS 4 2ND LOOK	16360	REFL POS 23 2ND LOOK	16360	
21	SCENE DATA BP 4	CH	16267	SCENE DATA BP 24 CH	16269
22	REFLECTOR POSITION 5	1	16685	REFLECTOR POSITION	24
23	REFL POS 5 2ND LOOK	16360	REFL POS 24 2ND LOOK	16360	
24	SCENE DATA BP 5	CH	16685	SCENE DATA BP 25 CH	16269
25	REFLECTOR POSITION 6	1	16360	REFLECTOR POSITION	25
26	REFL POS 6 2ND LOOK	16360	REFL POS 25 2ND LOOK	16360	
27	SCENE DATA BP 6	CH	16267	SCENE DATA BP 26 CH	16266
28	REFLECTOR POSITION 7	1	16687	REFLECTOR POSITION	26
29	REFL POS 7 2ND LOOK	16360	REFL POS 26 2ND LOOK	16360	
30	SCENE DATA BP 7	CH	16270	SCENE DATA BP 27 CH	16269
31	REFLECTOR POSITION 8	1	16687	REFLECTOR POSITION	27
32	REFL POS 8 2ND LOOK	16360	REFL POS 27 2ND LOOK	16360	
33	SCENE DATA BP 8	CH	16262	SCENE DATA BP 28 CH	16264
34	REFLECTOR POSITION 9	1	16687	REFLECTOR POSITION	28
35	REFL POS 9 2ND LOOK	16360	REFL POS 28 2ND LOOK	16360	
36	SCENE DATA BP 9	CH	16264	SCENE DATA BP 29 CH	16267
37	REFLECTOR POSITION 10	1	16691	REFLECTOR POSITION	29
38	REFL POS 10 2ND LOOK	16360	REFL POS 29 2ND LOOK	16360	
39	SCENE DATA BP 10	CH	16264	SCENE DATA BP 29 CH	16269
40	REFLECTOR POSITION 11	1	16689	REFLECTOR POSITION	30
41	REFL POS 11 2ND LOOK	16360	REFL POS 29 2ND LOOK	16360	

AMSU A2_30

A2.EXE

DIGITAL A DATA

24-FEB-00

20:39:03

PAGE 2

ELEMENT	DESCRIPTION	VALUE	ELEMENT	DESCRIPTION	VALUE
94	SCENE DATA BP 11 CH 1	116264	238	SCENE DATA BP 29 CH 1	16265
96	REFLECTOR POSITION 12 CH 2	116686	240	REFLECTOR POSITION 30 CH 2	16686
98	REFL POS 12 2ND LOOK	116360	242	REFL POS 30 2ND LOOK	16360
100	SCENE DATA BP 12 CH 1	116266	244	SCENE DATA BP 30 CH 1	16360
102	REFLECTOR POSITION 13 CH 2	116691	246	REFLECTOR COLD CAL POS 0E	16267
104	REFL POS 13 2ND LOOK	116360	250	REFL COLD CAL 2ND LOOK	0E
106	SCENE DATA BP 13 CH 1	116267	254	COLD CAL DATA 1 CH 1	00000
108	REFLECTOR POSITION 14 CH 2	116688	256	COLD CAL DATA 2 CH 1	00000
110	REFL POS 14 2ND LOOK	116360	260	REFLECTOR WARM CAL POS 0E	0E
112	SCENE DATA BP 14 CH 1	116267	302	REFL WARM CAL 2ND LOOK	0E
114	REFLECTOR POSITION 15 CH 2	116687	304	WARM CAL DATA 1 CH 1	00000
116	REFL POS 15 2ND LOOK	116360	306	WARM CAL DATA 2 CH 2	00000
118	SCENE DATA BP 15 CH 1	116271	308		
120	REFLECTOR POSITION 16 CH 2	116689	310		
122	REFL POS 16 2ND LOOK	116360	312		
124	SCENE DATA BP 16 CH 1	116265			
126		116687			
128		116360			
130		116689			
132		116271			
134		116912			
136		117522			

ELEMENT	DESCRIPTION	VALUE	TEMPERATURE	DEG C
262	SCAN MOTOR	17471	21.73	
264	FEED HORN	17596	22.26	
266	RF MUX	17667	23.45	
268	MIXER/IF AMPLIFIER CHANNEL 1	18698	24.12	
270	MIXER/IF AMPLIFIER CHANNEL 2	18731	24.27	
272	LOCAL OSCILLATOR CHANNEL 1	18341	23.82	
274	LOCAL OSCILLATOR CHANNEL 2	18790	25.10	
276	COMPENSATION MOTOR	16912	21.99	
278	SUB REFLECTOR	17522	22.13	
280	DC/DC CONVERTER	19574	26.01	
282	RF SHELF/PREAMP ASSEMBLY	18243	23.05	
284	DETECTOR/PREAMP CENTER	18123	23.38	
286	WARM LOAD 1	21622	21.37	
288	WARM LOAD 2	222228	21.48	
290	WARM LOAD 3	22172	21.45	
292	WARM LOAD 4	222347	21.45	
294	WARM LOAD 5	22375	21.50	
296	WARM LOAD 6	22394	21.47	
298	TEMP SENSOR REFERENCE VOLTAGE	22090	21.32	
300		25115		

AMSU A2_30 A2.EXE DIGITAL B DATA 24-FEB-00 20:39:03 PAGE 3

DESCRIPTION	STATUS	STATUS	STATUS	STATUS
SCANNER POWER	ON	ON	ON	ON
COMPENSATOR MOTOR	ON	ON	NO	ON
ANTENNA IN WARM CAL	NO	YES	YES	NO
ANTENNA IN COLD CAL	YES	NO	NO	YES
ANTENNA POSITION MODE	NO	NO	NO	NO
ANTENNA NADIR POSITION MODE	NO	NO	NO	NO
ANTENNA FULL SCAN MODE	OFF	OFF	OFF	OFF
SURVIVAL HEATER POWER	ON	ON	ON	ON
MODULE POWER	ZERO	ZERO	ZERO	ZERO
COLD CAL POSITION	MSB			
COLD CAL POSITION	LSB			

ANALOG DATA

DESCRIPTION	VALUE	DEG C	VALUE	DEG C	VALUE	DEG C	VALUE	DEG C
RF SHELF TEMPERATURE	215	24.4	215	24.4	215	24.4	215	24.4
COMPENSATOR MOTOR TEMPERATURE	213	21.3	213	21.3	213	21.3	213	21.3
SCANNER MOTOR TEMPERATURE	213	20.0	213	20.0	213	20.0	213	20.0
WARM LOAD TEMPERATURE	213	21.0	213	21.0	213	21.0	213	21.0
DESCRIPTION	VALUE	MA / VOLTS	VALUE	MA / VOLTS	VALUE	MA / VOLTS	VALUE	MA / VOLTS
ANTENNA DRIVE MOTOR CURRENT (AVERAGE)	2	1.86	2	1.86	2	1.86	2	1.86
COMPENSATOR MOTOR CURRENT (AVERAGE)	2	1.86	2	1.86	2	1.86	2	1.86
SIGNAL PROCESSING +15 VDC	170	15.00	170	15.00	170	15.00	170	15.00
ANTENNA DRIVE +15 VDC	170	15.00	170	15.00	170	15.00	170	15.00
SIGNAL PROCESSING -15 VDC	148	-15.00	148	-15.00	148	-15.00	148	-15.00
ANTENNA DRIVE -15 VDC	147	-15.05	147	-15.05	147	-15.05	147	-15.05
RECEIVER +10 VDC	170	10.00	171	10.00	171	10.00	171	10.00
RADIOMETER RECEIVER +5 VDC	146	5.04	146	5.04	146	5.04	146	5.04
ANTENNA DRIVE +5 VDC	145	4.96	145	4.96	145	4.96	145	4.96
GUNN DIODE OSC #1 VDC	172	10.00	172	10.00	172	10.00	172	10.00
GUNN DIODE OSC #2 VDC	172	10.00	172	10.00	172	10.00	172	10.00
(CHANNEL 1)			(CHANNEL 2)					

AMSU A2_30 A2.EXE

AZONIX DATA 24-FEB-00 20:39:03 PAGE 4

PRT TEMPERATURES

VARIABLE TARGET

	DEG K	DEG K
NO	14.00	14.00
601	15.00	16.00
602	16.00	17.00
603	17.00	18.00
604	18.00	19.00
605	19.00	20.00
606	20.00	21.00
612	21.00	22.00
613	22.00	23.00
614	23.00	24.00
615	24.00	25.00
616	25.00	26.00
617	26.00	27.00
623	27.00	28.00
624	28.00	29.00

FIXED TARGET

	DEG K	DEG K
613	40.00	41.00
614	41.00	42.00
615	42.00	43.00
616	43.00	44.00
617	44.00	45.00
623	45.00	46.00
624	46.00	47.00

BASEPLATE

	DEG K	DEG K
618	61.8	61.9
619	61.9	62.0
620	62.0	62.1
621	62.1	62.2
622	62.2	62.3
625	62.5	62.6
626	62.6	62.7

THERMOCOUPLE TEMPERATURES

FIXED TARGET SHROUD

VARIABLE TARGET SHROUD

FIXED TARGET N2

VARIABLE TARGET N2

HEATER N2

FIXED TARGET FLOW METER

VARIABLE TARGET FLOW METER

BASEPLATE HEATER N2

BASEPLATE N2

BASEPLATE FLOW METER

ADJUNCT RADIATORS

	DEG K	DEG K
532	32.00	32.00
515	37.00	37.00
502	30.00	30.00
507	35.00	35.00
505	31.00	31.00
504	34.00	34.00
509	39.00	39.00
510	33.00	33.00
512	36.00	36.00
514	35.00	35.00

	DEG K	DEG K
533	33.00	33.00
516	38.00	38.00
503	31.00	31.00
508	36.00	36.00
506	2.00	2.00

	DEG K	DEG K
511	4.00	4.00
513	37.00	37.00

	DEG K	DEG K
554	38.00	38.00
556	10.00	10.00

	DEG K	DEG K
554	55.00	55.00
556	57.00	57.00

TEST DATA SHEET 27

Digital-A Data Output Cold Cal Mode Radiometer Data Section [V] (Paragraph 3.2.4.3.4.3)
Condition: Cold Cal Position MSB=0 and Cold Cal Position LSB=0

BP	Channel-1 (23.8 GHz)				Channel-2 (31.4 GHz)			
	Element (For Ref)	Measured*	Required**	Pass/Fail	Element (For Ref)	Measured*	Required**	Pass/Fail
01	0014	16240	16500	PASS	0016	16682	16500	PASS
02	0022	16240	16500	↑	0024	16677	16500	↑
03	0030	16245	16500		0032	16678	16500	
04	0038	16240	16500		0040	16682	16500	
05	0046	16241	16500		0048	16677	16500	
06	0054	16231	16500		0056	16675	16500	
07	0062	16244	16500		0064	16675	16500	
08	0070	16236	16500		0072	16681	16500	
09	0078	16241	16500		0080	16681	16500	
10	0086	16239	16500		0088	16675	16500	
11	0094	16237	16500		0096	16680	16500	
12	0102	16241	16500		0104	16678	16500	
13	0110	16241	16500		0112	16677	16500	
14	0118	16240	16500		0120	16671	16500	
15	0126	16242	16500		0128	16678	16500	
16	0134	16241	16500		0136	16671	16500	
17	0142	16244	16500		0144	16675	16500	
18	0150	16240	16500		0152	16674	16500	
19	0158	16239	16500		0160	16674	16500	
20	0166	16242	16500		0168	16676	16500	
21	0174	16242	16500		0176	16671	16500	
22	0182	16244	16500		0184	16678	16500	
23	0190	16238	16500		0192	16678	16500	
24	0198	16241	16500		0200	16678	16500	
25	0206	16241	16500		0208	16683	16500	
26	0214	16238	16500		0216	16675	16500	
27	0222	16242	16500		0224	16677	16500	
28	0230	16239	16500		0232	16674	16500	
29	0238	16244	16500		0240	16680	16500	
30	0246	16238	16500		0248	16684	16500	
CC	0258	0	0	↓	0260	0	0	
WC	0310	0	0	PASS	0312	0	0	PASS

* Actual counts from computer printout. Rewriting counts on this data sheet is optional.

** Required = $16,500 \pm 4000$ counts.

04/07/99

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: 335074 S/N: 108

R. D. *[Signature]*
Customer Representative
Date
(Flight Hardware Only)

2-19-00

AMSU
7
SEIT
Test Systems Engineer Date
Chita Navano 2/19/00 12:24
Quality Control

676

SCAN NUMBER

19-TEB-00 04:02:09

COLD CAL MODE
ELEMENT 0000

AMSU A2-30 A2·EXE
[5] DIGITAL A DATA

[6] DIGITAL B DATA ELEMENT 00

卷之三

RADIO CHANNEL DATA

1	6240	9	1	6240	10	1	6240	11	1	6240	12	1	6240	13	1	6240	14	1	6240	15	1	6240	16	1	6240	17	1	6240	18	1	6240	19	1	6240	20	1	6240	21	1	6240	22	1	6240	23	1	6240	24	1	6240	25	1	6240	26	1	6240	27	1	6240	28	1	6240	29	1	6240	30	1	6240	31	1	6240	32	1	6240	33	1	6240	34	1	6240	35	1	6240	36	1	6240	37	1	6240	38	1	6240	39	1	6240	40	1	6240	41	1	6240	42	1	6240	43	1	6240	44	1	6240	45	1	6240	46	1	6240	47	1	6240	48	1	6240	49	1	6240	50
---	------	---	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----	---	------	----

```
POWER [ 4 ] ON SCREEN ONLY [ 2 ] PRINT [ 3 ] FULL      [ 1 ] RETURN  
SELECT TOUCHSCREEN BUTTON2
```

TD5 # 27
A2-1-8
FINAL CPT
D73-
D73-# 33571

677

MSU A2-30 A2, EXE
5] DIGITAL A DATA ELEMENT 0000

6] DIGITAL B DATA ELEMENT 00

7] ANALOG DATA ELEMENT 00

	BP	DATA	BP	DATA	BP	DATA	BP	DATA
1	16682	9	16681	17	16675	25	16683	
2	16677	10	16675	18	16674	26	16675	
3	16678	11	16680	19	16674	27	16677	
4	16682	12	16678	20	16676	28	16674	
5	16677	13	16677	21	16671	29	16680	
6	16675	14	16671	22	16678	30	16684	
7	16675	15	16678	23	16678	CC	0	
8	16681	16	16671	24	16678	WC	0	
	[21] UP	[22] DOWN						

POWER [4] ON SCREEN ONLY [2] PRINT [3] FULL [1] RETURN
SELECT TOUCHSCREEN BUTTON 2

TEST DATA SHEET 28
Cold Cal Mode Temperature Sensors Section [VI] (Paragraph 3.2.4.3.4.3)

Thermistor Sensors		Recorded Value* (deg. C)	Required Value (deg. C)	Pass/ Fail
Element	Description			
0262	Scan Motor	22.90	25 ± 15	PASS
0264	Feedhorn	23.14	25 ± 15	1
0266	RF Mux	24.43	25 ± 15	
0268	Mixer I.F. Amp. Channel 1	25.13	25 ± 15	
0270	Mixer I.F. Amp. Channel 2	25.28	25 ± 15	
0272	Local Oscillator Channel 1	24.83	25 ± 15	
0274	Local Oscillator Channel 2	26.16	25 ± 15	
0276	Compensation Motor	23.11	25 ± 15	
0278	Subreflector	22.98	25 ± 15	
0280	DC/DC Converter	27.29	25 ± 15	
0282	RF Shelf	24.21	25 ± 15	
0284	Detector/Preamp Assembly	24.37	25 ± 15	
0286	Warm Load Center	22.98	25 ± 15	
0288	Warm Load 1	23.01	25 ± 15	
0290	Warm Load 2	23.06	25 ± 15	
0292	Warm Load 3	23.05	25 ± 15	
0294	Warm Load 4	23.06	25 ± 15	
0296	Warm Load 5	23.09	25 ± 15	
0298	Warm Load 6	22.96	25 ± 15	X
0300	Temp Sensor V. Reference	25117	**	PASS

* Value is from the STE printout sheets. Copying data to this sheet is optional.

** Count of 24,552 +1765, -1308.

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT

Shop Order: 335029 S/N: 108

0P.

0732

2-19-00

Customer Representative

Date

Date
(Flight Hardware Only)

Test Systems Engineer
Shila Narine 2/19/00

Date

278

Quality Control

AMSU A2-30 A2.EXE
 [5] DIGITAL A DATA COLD CAL MODE
 ELEMENT 0000
 [6] DIGITAL B DATA ELEMENT 00
 ELEMENT 00
 [7] ANALOG DATA

 10 SCAN MOTOR
 11 FEED HORN
 12 RF MUX
 13 MIXER IF CH 1
 14 MIXER IF CH 2
 15 LO CHANNEL 1
 16 LO CHANNEL 2
 17 COMP MOTOR
 18 SUBREFLECTOR
 19 DC/DC CONVERTER

	DATA	DIGITAL A TEMPERATURES	DATA	TEMP C
10 SCAN MOTOR	18088	TEMP C	11 RF SHELF NO	24.21
11 FEED HORN	18062	22.90	12 DET/PREAMP	24.37
12 RF MUX	18184	23.14	13 WARM LOAD CNTR	22.98
13 MIXER IF CH 1	19227	25.43	14 WARM LOAD 1	23.08
14 MIXER IF CH 2	19253	25.13	15 WARM LOAD 2	22.92
15 LO CHANNEL 1	18872	25.28	16 WARM LOAD 3	23.06
16 LO CHANNEL 2	19349	24.83	17 WARM LOAD 4	23.05
17 COMP MOTOR	17505	26.16	18 WARM LOAD 5	23.06
18 SUBREFLECTOR	17971	23.11	19 WARM LOAD 6	22.92
19 DC/DC CONVERTER	20242	22.98	20 THERMAL REFERENCE	22.96
		27.29		25.117

POWER [4] ON SCREEN ONLY [2] PRINT [3] FULL [1] RETURN
 SELECT_TOUCHSCREEN_BUTTON 2

TDS# 28
 A2-178
 F1 MAX CPT
 2/ = 335579 >73>

TEST DATA SHEET 29
 Digital-A Data Output Nadir Mode Synch Sequence,
 Unit I.D./Serial Number and Digital-B Serial Data Verification
 Sections [I], [II], and [III] (Paragraph 3.2.4.3.4.4)

Step	Element (For Ref)	Description	Recorded Value	Required Value	Pass/Fail
[I]	0001	Sync Sequence Byte 1	255	255	PASS
	0002	Sync Sequence Byte 2	255	255	↑
	0003	Sync Sequence Byte 3	255	255	
[II]	0004	Unit I.D. and Serial N	3~	*	
[III]	0005	Digital B Data Byte 1	16	16	
	0006	Digital B Data Byte 2	6	6	
	0007	Digital B Data Byte 3	0	0	↓
	0008	Digital B Data Byte 4	0	0	PASS

* AMSU A2 Identification Words
(data entered in decimal system)

	Binary	Decimal
AMSU-A2 S/N 101	00000010	2
AMSU-A2 S/N 102	00000110	6
AMSU-A2 S/N 103	00001010	10
AMSU-A2 S/N 104	00001110	14
AMSU-A2 S/N 105	00010010	18
AMSU-A2 S/N 106	00010110	22
AMSU-A2 S/N 107	00011010	26
AMSU-A2 S/N 108	00011110	30
AMSU-A2 S/N 109	00100010	34

METSAT/AMSU A2 System CPT P/N IS-1331200
 Circle Test: 1st CPT Final CPT Sub CPT

Shop Order: 335079 S/N: 108

2-19-00

R. Dunn 2-19-00
 Customer Representative Date
 (Flight Hardware Only)

Test Systems Engineer *Smith, Navajo* 2/19/00 Date 2/19/00
 Quality Control

686

MSU A2-30 A2:EXE
5] DIGITAL A DATA NADIR MODE
ELEMENT 0000
6] DIGITAL B DATA ELEMENT 00
7] ANALOG DATA ELEMENT 00

9] MODULE POWER = CONNECT COMMANDS
10] SURVIVAL HEATER POWER = OFF ANTENNA IN COLD CAL POSIT = NO [15]
11] MODULE TOTALLY OFF = ON ANTENNA IN NADIR POSITION = YES [16]
12] SCANNER A2 POWER = ON COLD CAL POSITION MSB = ZERO [18]
13] COMPENSATOR MOTOR POWER = ON COLD CAL POSITION LSB = ZERO [19]
14] ANTENNA IN WARM CAL POSIT = NO

POWER [4] ON SCREEN ONLY [2] PRINT [3] FULL [1] RETURN

SELECT TOUCHSCREEN BUTTON 3

TOP # 29

A2-128
FINAL PT
5370
33579
5730

ELEMENT	DESCRIPTION	VALUE	ELEMENT	DESCRIPTION	VALUE
1	SYNC SEQUENCE BYTE 1	11111111	138	REFLECTOR POSITION 17	3841
2	SYNC SEQUENCE BYTE 2	11111111	140	REFL POS 17 2ND LOOK	3841
3	SYNC ID AND SERIAL NO	11011110	142	SCENE DATA BP 17 CH	1
4	DIGITAL B DATA BYTE 1	00011100	144	REFLECTOR POSITION 18	2
5	DIGITAL B DATA BYTE 2	00001100	146	REFL POS 18 2ND LOOK	1
6	DIGITAL B DATA BYTE 3	00000100	148	SCENE DATA BP 18 CH	1
7	DIGITAL B DATA BYTE 4	00000000	150	REFLECTOR POSITION 19	2
8	REFLECTOR POSITION 1	3841	152	REFL POS 19 2ND LOOK	1
10	REFL POS 1 2ND LOOK	154	SCENE DATA BP 19 CH	1	
12	SCENE DATA BP 1 CH	1	156	REFLECTOR POSITION 20	2
14	REFLECTOR POSITION 2	16247	158	REFL POS 20 2ND LOOK	1
16	REFL POS 2 2ND LOOK	16674	160	SCENE DATA BP 20 CH	1
18	SCENE DATA BP 2 CH	1	162	REFLECTOR POSITION 21	2
20	REFL POS 3 2ND LOOK	164	164	REFL POS 21 2ND LOOK	1
22	SCENE DATA BP 3 CH	1	166	SCENE DATA BP 21 CH	1
24	REFLECTOR POSITION 3	168	168	REFLECTOR POSITION 22	2
26	REFL POS 3 2ND LOOK	16678	170	REFL POS 22 2ND LOOK	1
28	SCENE DATA BP 4 CH	1	172	SCENE DATA BP 22 CH	1
30	REFLECTOR POSITION 4	16243	174	REFLECTOR POSITION 23	2
32	REFL POS 4 2ND LOOK	16676	176	REFL POS 23 2ND LOOK	1
34	SCENE DATA BP 5 CH	1	178	SCENE DATA BP 23 CH	1
36	REFLECTOR POSITION 5	13841	180	REFLECTOR POSITION 24	2
38	REFL POS 5 2ND LOOK	16241	182	REFL POS 24 2ND LOOK	1
40	SCENE DATA BP 6 CH	1	184	SCENE DATA BP 24 CH	1
42	REFLECTOR POSITION 6	16683	186	REFLECTOR POSITION 25	2
44	REFL POS 6 2ND LOOK	16245	188	REFL POS 25 2ND LOOK	1
46	SCENE DATA BP 7 CH	1	190	SCENE DATA BP 25 CH	1
48	REFLECTOR POSITION 7	16683	192	REFLECTOR POSITION 26	2
50	REFL POS 7 2ND LOOK	16245	194	REFL POS 26 2ND LOOK	1
52	SCENE DATA BP 8 CH	1	196	SCENE DATA BP 26 CH	1
54	REFLECTOR POSITION 8	16683	198	REFLECTOR POSITION 27	2
56	REFL POS 8 2ND LOOK	16244	200	REFL POS 27 2ND LOOK	1
58	SCENE DATA BP 9 CH	1	204	SCENE DATA BP 27 CH	1
60	REFLECTOR POSITION 9	13841	206	REFLECTOR POSITION 28	2
62	REFL POS 9 2ND LOOK	16243	208	REFL POS 28 2ND LOOK	1
64	SCENE DATA BP 10 CH	1	210	SCENE DATA BP 28 CH	1
66	REFLECTOR POSITION 10	13841	212	REFLECTOR POSITION 29	2
68	REFL POS 10 2ND LOOK	16244	214	REFL POS 29 2ND LOOK	1
70	SCENE DATA BP 11 CH	1	216	SCENE DATA BP 29 CH	1
72	REFLECTOR POSITION 11	13841	218	REFLECTOR POSITION 29	1
74	REFL POS 11 2ND LOOK	16244	220	REFL POS 29 2ND LOOK	1
76	SCENE DATA BP 12 CH	1	222	SCENE DATA BP 29 CH	1
78	REFLECTOR POSITION 12	13841	224	REFLECTOR POSITION 29	1
80	REFL POS 12 2ND LOOK	16244	226	REFL POS 29 2ND LOOK	1
82	SCENE DATA BP 13 CH	1	228	SCENE DATA BP 29 CH	1
84	REFLECTOR POSITION 13	13841	230	REFL POS 29 2ND LOOK	1
86	REFL POS 13 2ND LOOK	16244	232	REFLECTOR POSITION 29	1
88	SCENE DATA BP 14 CH	1	234	REFL POS 29 2ND LOOK	1
90	REFLECTOR POSITION 14	13841	236	REFL POS 29 2ND LOOK	1
92	REFL POS 14 2ND LOOK	16244	238	REFL POS 29 2ND LOOK	1

AMSU A2_30

DIGITAL A DATA

19-FEB-00 01:03:29 PAGE 2

A2 .EXE

ELEMENT	DESCRIPTION	VALUE	ELEMENT	DESCRIPTION	VALUE
94	SCENE DATA BP 11 CH 1	16245	238	SCENE DATA BP 29 CH 1	16246
96	REFLECTOR POSITION 12 CH 2	16684	240	REFLECTOR POSITION 30 CH 2	16675
98	REFL POS 12 2ND LOOK	3841	242	REFL POS 30 2ND LOOK	3841
100	REFL POS 12 2ND LOOK	3841	244	REFL POS 30 2ND LOOK	3841
102	SCENE DATA BP 12 CH 1	16243	246	SCENE DATA BP 30 CH 1	16677
104	REFLECTOR POSITION 13 CH 2	16681	248	REFLECTOR COLD CAL POS OE	000
106	REFL POS 13 2ND LOOK	3841	250	REFL COLD CAL 2ND LOOK	000
108	SCENE DATA BP 13 CH 1	16248	252	COLD CAL DATA 1 CH 1	000
110	SCENE DATA BP 13 CH 2	16677	254	COLD CAL DATA 2 CH 1	000
112	REFLECTOR POSITION 14 CH 2	13841	256	COLD CAL DATA 2 CH 1	000
114	REFL POS 14 2ND LOOK	3841	258	REFLECTOR WARM CAL POS OE	000
116	SCENE DATA BP 14 CH 1	16241	260	REFL WARM CAL 2ND LOOK	000
118	SCENE DATA BP 14 CH 2	16679	304	WARM CAL DATA 1 CH 1	000
120	REFLECTOR POSITION 15 CH 2	13841	306	WARM CAL DATA 2 CH 1	000
122	REFL POS 15 2ND LOOK	3841	308	WARM CAL DATA 2 CH 1	000
124	SCENE DATA BP 15 CH 1	16250	310	WARM CAL DATA 2 CH 1	000
126	SCENE DATA BP 15 CH 2	16678	312	WARM CAL DATA 2 CH 1	000
128	REFLECTOR POSITION 16 CH 2	13841			
130	REFL POS 16 2ND LOOK	3841			
132	SCENE DATA BP 16 CH 1	16248			
134	SCENE DATA BP 16 CH 2	16678			
136					

ELEMENT	DESCRIPTION	VALUE	TEMPERATURE	DEG C
262	SCAN MOTOR	18089	22.90	
264	FEED HORN	18064	23.15	
266	RF MUX	18186	24.44	
268	MIXER/IF AMPLIFIER CHANNEL 1	19231	25.14	
270	MIXER/IF AMPLIFIER CHANNEL 2	19258	25.29	
272	LOCAL OSCILLATOR CHANNEL 1	18876	24.84	
274	LOCAL OSCILLATOR CHANNEL 2	19352	26.17	
276	COMPENSATION MOTOR	17497	23.09	
278	SUB REFLECTOR	17977	22.99	
280	DC/DC CONVERTER	20244	22.29	
282	RF SHELF	18755	24.22	
284	DETECTOR/PREAMP ASSEMBLY	18647	24.37	
286	WARM LOAD CENTER	22995	23.01	
288	WARM LOAD 1	23038	23.06	
290	WARM LOAD 2	23010	23.09	
292	WARM LOAD 3	23082	23.09	
294	WARM LOAD 4	23189	23.13	
296	WARM LOAD 5	23240	22.98	
298	WARM LOAD 6	22934	23.09	
300	TEMP SENSOR REFERENCE VOLTAGE	25117	22.98	

AMSU A2_30	A2 .EXE	DIGITAL B DATA	19-FEB-0U	01:03:29	PAGE 3
DESCRIPTION		STATUS	STATUS	STATUS	STATUS
CANNER POWER		ON	ON	ON	ON
COMPENSATOR MOTOR POWER		ON	NO	NO	NO
NTENNA IN WARM CAL POSITION MODE		NO	NO	NO	NO
NTENNA IN COLD CAL POSITION MODE		YES	YES	YES	YES
NTENNA IN NADIR POSITION MODE		NO	NO	NO	NO
NTENNA IN FULL SCAN MODE		NO	OFF	OFF	OFF
NTENNA IN HEATER POWER		OFF	ON	ON	ON
URVIVAL HEATER		ON	ZERO	ZERO	ZERO
ODULE POWER		ZERO	ZERO	ZERO	ZERO
OLD CAL POSITION MSB					
OLD CAL POSITION LSB					
ANALOG DATA		VALUE	DEG C	VALUE	DEG C
DESCRIPTION					
F SHELF TEMPERATURE		21.6	25.7	21.6	25.7
OMPENSATOR MOTOR TEMPERATURE		21.4	22.7	21.4	22.7
CANNER MOTOR TEMPERATURE		21.5	22.8	21.5	22.8
ARM LOAD TEMPERATURE		21.4	22.4	21.4	22.4
DESCRIPTION		VALUE	MA / VOLTS	MA / VOLTS	MA / VOLTS
ANTENNA DRIVE MOTOR CURRENT (AVERAGE)		2	1.86	2	1.86
COMPENSATOR MOTOR CURRENT (AVERAGE)		2	1.86	2	1.86
SIGNAL PROCESSING +15 VDC		17.0	15.00	17.0	15.00
ANTENNA DRIVE +15 VDC		17.0	15.00	17.0	15.00
SIGNAL PROCESSING -15 VDC		14.8	-15.00	14.8	-15.00
ANTENNA DRIVE -15 VDC		14.8	-15.00	14.8	-15.00
RECEIVER +10 VDC		17.1	10.06	17.1	10.06
RADIOMETER RECEIVER, PROCESSOR +5 VDC		14.5	4.96	14.5	4.96
ANTENNA DRIVE +5 VDC		14.5	4.96	17.2	10.00
SUNN DIODE OSC #1 (CHANNEL 1)	VDC	17.2	10.00	17.2	10.00
SUNN DIODE OSC #2 (CHANNEL 2)	VDC	17.2	10.00	17.2	10.00

AMSU A2_30 A2 .EXE

AZONIX DATA 19-FEB-00 01:03:29 PAGE 4

PRT TEMPERATURES

ARIABLE TARGET

IXED TARGET

ASEPPLATE

NO.	DEG K
601	14.00
602	15.00
603	16.00
604	17.00
605	18.00
606	19.00
612	39.00
613	40.00
614	41.00
615	42.00
616	43.00
617	44.00
623	25.00
624	26.00

NO.	DEG K
612	61.8
613	61.9
614	62.0
615	62.1
616	62.2
617	62.3
623	62.5
624	62.6

THERMOCOUPLE TEMPERATURES

IXED TARGET SHROUD

ARIABLE TARGET SHROUD

IXED TARGET N2

ARIABLE TARGET N2

HEATER N2

IXED TARGET FLOW METER

ARIABLE TARGET FLOW METER

ASEPPLATE HEATER N2

ASEPPLATE N2

ASEPPLATE FLOW METER

ADJUNCT RADIATORS

NO.	DEG K
532	32.00
515	37.00
502	30.00
507	35.00
505	31.00
504	34.00
509	39.00
512	33.00
514	35.00

NO.	DEG K
533	33.00
516	38.00
503	31.00
508	36.00
506	2.00
511	4.00
513	37.00

NO.	DEG K
554	38.00
556	10.00

NO.	DEG K
554	55.00
556	57.00

TEST DATA SHEET 30
Digital-A Data Output Nadir Mode Radiometer Data Section [V] (Paragraph 3.2.4.3.4.4)

BP	Channel-1 (23.8 GHz)				Channel-2 (31.4 GHz)			
	Element (For Ref)	Measured*	Required**	Pass/Fail	Element (For Ref)	Measured*	Required**	Pass/Fail
01	0014	16247	16500	PASS	0016	16674	16500	PASS
02	0022	16245	16500	↑	0024	16677	16500	↑
03	0030	16241	16500		0032	166780	16500	
04	0038	16245	16500		0040	16680	16500	
05	0046	16247	16500		0048	16675	16500	
06	0054	16241	16500		0056	16679	16500	
07	0062	16246	16500		0064	16679	16500	
08	0070	16245	16500		0072	16678	16500	
09	0078	16247	16500		0080	16677	16500	
10	0086	16245	16500		0088	16673	16500	
11	0094	16243	16500		0096	16676	16500	
12	0102	16242	16500		0104	16676	16500	
13	0110	16245	16500		0112	16674	16500	
14	0118	16240	16500		0120	16678	16500	
15	0126	16246	16500		0128	16682	16500	
16	0134	16245	16500		0136	16680	16500	
17	0142	16245	16500		0144	16673	16500	
18	0150	16240	16500		0152	16681	16500	
19	0158	16245	16500		0160	16680	16500	
20	0166	16244	16500		0168	16679	16500	
21	0174	16244	16500		0176	16677	16500	
22	0182	16246	16500		0184	16678	16500	
23	0190	16242	16500		0192	16683	16500	
24	0198	16244	16500		0200	16684	16500	
25	0206	16247	16500		0208	16682	16500	
26	0214	16245	16500		0216	16679	16500	
27	0222	16242	16500		0224	16675	16500	
28	0230	16244	16500		0232	16680	16500	
29	0238	16244	16500		0240	16674	16500	
30	0246	16242	16500		0248	16679	16500	
CC	0258	0	0	↓	0260	0	0	↓
WC	0310	0	0	PASS	0312	0	0	PASS

* Actual counts from computer printout. Rewriting counts on this data sheet is optional.

** Required = $16,500 \pm 4000$ counts.

044-073-

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT

Shop Order: 335-079 S/N: 108

2-19-00

Test Systems Engineer *Ghita Namus* Date 2/19/00
Quality Control

R. Dunn 2-19-00
Customer Representative
Date
(Flight Hardware Only)

AMSU

A2-30 A2:EXE
[5] DIGITAL A DATA
[6] DIGITAL B DATA
[7] ANALOG DATA

NADIR MODE

ELEMENT 0000
ELEMENT 00
ELEMENT 00

19-FEB-00

01:04:21

SCAN NUMBER

693

	RADIOMETRIC DATA					
	CHANNEL		1		BP	
	BP	DATA	BP	DATA	BP	DATA
1	16247	9	16247	17	16245	25
2	16245	10	16245	18	16240	26
3	16241	11	16243	19	16245	27
4	16245	12	16242	20	16244	28
5	16247	13	16245	21	16244	29
6	16241	14	16240	22	16246	30
7	16246	15	16246	23	16242	CC
8	16245	16	16245	24	16244	WC
	[22] DOWN					0

[21] UP

POWER [4] ON SCREEN ONLY [2] PRINT [3] FULL
SELECT_TOUCHSCREEN_BUTTON_2

RETURN [1]

→ DS # 30
A2-1>3
FINAL CPT
J># 335074 >30

693

MSU A2-30 A2; EXE
5] DIGITAL A DATA NADIR MODE
ELEMENT 0000

6] DIGITAL B DATA ELEMENT 00

7] ANALOG DATA ELEMENT 00

	RADIOMETRIC DATA			
	CHANNEL	DATA	BP	DATA
	1	16674	9	16677
1	16677	10	16673	17
2	16678	11	16676	19
3	16680	12	16676	20
4	16675	13	16674	21
5	16679	14	16678	22
6	16679	15	16682	23
7	16678	16	16680	24
8	16678	[22] DOWN	16684	WC 0

21] UP

POWER [4] ON SCREEN ONLY [2] PRINT [3] FULL
SELECT TOUCHSCREEN BUTTON 2 RETURN

TEST DATA SHEET 31
Nadir Mode Temperature Sensors Section [VI] (Paragraph 3.2.4.3.4.4)

Thermistor Sensors		Recorded Value* (deg. C)	Required Value (deg. C)	Pass/ Fail
Element	Description			
0262	Scan Motor	22.90	25 ± 15	PASS
0264	Feedhorn	23.16	25 ± 15	↑
0266	RF Mux	24.45	25 ± 15	
0268	Mixer I.F. Amp. Channel 1	25.15	25 ± 15	
0270	Mixer I.F. Amp. Channel 2	25.31	25 ± 15	
0272	Local Oscillator Channel 1	24.86	25 ± 15	
0274	Local Oscillator Channel 2	26.19	25 ± 15	
0276	Compensation Motor	23.12	25 ± 15	
0278	Subreflector	23.00	25 ± 15	
0280	DC/DC Converter	27.32	25 ± 15	
0282	RF Shelf	24.24	25 ± 15	
0284	Detector/Preamp Assembly	24.39	25 ± 15	
0286	Warm Load Center	23.00	25 ± 15	
0288	Warm Load 1	23.07	25 ± 15	
0290	Warm Load 2	23.06	25 ± 15	
0292	Warm Load 3	23.09	25 ± 15	
0294	Warm Load 4	23.13	25 ± 15	
0296	Warm Load 5	23.10	25 ± 15	
0298	Warm Load 6	22.97	25 ± 15	↓
0300	Temp Sensor V. Reference	25.117	**	PASS

* Value is from the STE printout sheets. Copying data to this sheet is optional.

** Count of 24,552 +1765, -1308.

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: 335-79 S/N: 108

AMSU
26156

2-14-00

Customer Representative
Date
(Flight Hardware Only)

Date

Test Systems Engineer
Gitanjanan Date 2/19/00
Quality Control

699

19-FEB-00 01:05:09 SCAN NUMBER

AMSU	A2-30	A2:EXE	NADIR MODE
[5]	DIGITAL A DATA	ELEMENT 000	
[6]	DIGITAL B DATA	ELEMENT 00	
[7]	ANALOG DATA	ELEMENT 00	

NO	ITEM	DIGITAL A TEMPERATURES	
		TEMP C	TEMP F
1	SCAN MOTOR	DATA 18087	11 RF SHELF 22.90
2	FEED HORN	18069	12 DET/PREAMP 23.16
3	RF MUX	18193	13 WARM LOAD CNTR 24.45
4	MIXER IF CH 1	19238	14 WARM LOAD 1 25.15
5	MIXER IF CH 2	19271	15 WARM LOAD 2 25.31
6	LO CHANNEL 1	18884	16 WARM LOAD 3 24.86
7	LO CHANNEL 2	19362	17 WARM LOAD 4 26.19
8	COMP MOTOR	17512	18 WARM LOAD 5 23.12
9	SUBREFLECTOR	17983	19 WARM LOAD 6 23.00
10	DC/DC CONVERTER	20259	27.32 THERMAL REFERENCE 25117

POWER [4] ON SCREEN ONLY [2] PRINT [3] FULL [1] RETURN
 SELECT_TOUCHSCREEN BUTTON 2

TDS # 31

A2-128

FINAL CPT

J># 335>>9 >>3>

TEST DATA SHEET 32

Analog Telemetry Verification by Way of Connector J6 (Paragraph 3.2.4.3.5.1)

From	Description	To	Measured (volts)	Required (volts)	Pass/Fail
J6-02	RF Shelf A2 Temp.	J1-10	+ 4.44 ✓	3.5V ± 2V	PASS
J6-03	Comp. Motor Temp.	J1-10	+ 4.44 ✓	3.5V ± 2V	PASS
J6-04	Warm Load A2 Temp.	J1-10	+ 4.44 ✓	3.5V ± 2V	PASS
J6-22	A2 Scan Motor Temp.	J1-10	+ 4.44 ✓	3.5V ± 2V	PASS
J6-08	Scan Motor Curr.	J2-03	+ 2.24 ✓	2.0V ± 1.0V	PASS
J6-09	+15V Antenna Drive	J2-03	+ 3.72 ✓	3.5V ± 0.5V	PASS
J6-10	+5V Antenna Drive	J2-03	+ 3.32 ✓	3.0V ± 0.5V	PASS
J6-11	+15V Signal Processing	J2-03	+ 3.56 ✓	3.5V ± 0.25V	PASS
J6-12	+5V Signal Processing	J2-03	+ 3.08 ✓	3.0V ± 0.25V	PASS
J6-13	L.O. Voltage Channel 1	J2-03	+ 3.56 ✓	3.5V ± 0.5V	PASS
J6-27	Comp Motor Current	J2-03	+ 2.32 ✓	2.0V ± 1.0V	PASS
J6-28	-15V Antenna Drive	J2-03	+ 3.32 ✓	3.0V ± 0.5V	PASS
J6-29	-15V Signal Processing	J2-03	+ 3.08 ✓	3.0V ± 0.25V	PASS
J6-30	L.O. Voltage Channel 2	J2-03	+ 3.6 ✓	3.5V ± 0.5V	PASS
J6-34	Mixer/IF Voltage	J2-03	+ 3.6 ✓	3.5V ± 0.5V	PASS

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: 335079 S/N: 108

OP: 0730

Test Systems Engineer

2-20-00

7A Date
194

Quality Control

J. L. Landau
Customer Representative
Date
(Flight Hardware Only)

2-20-00

TEST DATA SHEET 33
Analog Telemetry Signals by Way of the STE (Paragraph 3.2.4.3.5.2)

Description	*	Measured (Deg. C)	Required (Deg. C)	Pass/Fail
A2 Scanner Motor	Temp	<u>21.42</u>	25 ± 15	<u>PASS</u>
A2 RF Shelf A2 Temp.	Temp	<u>24.36</u>	25 ± 15	<u> </u>
A2 Warm Load	Temp	<u>22.37</u>	25 ± 15	<u> </u>
A2 Compensator Motor	Temp	<u>22.72</u>	25 ± 15	<u>PASS</u>
		(mAmps)	(mAmps)	
Ant A2 Drv Motor Current		<u>96.93</u>	150 mA max	<u>PASS</u>
Ant A2 Comp. Motor Current		<u>97.86</u>	150 mA max	<u>PASS</u>
		(Volts)	(Volts)	
Signal Processor	+15V	<u>14.91</u>	$15.0V \pm 0.75V$	<u>PASS</u>
Antenna Drive	+15V	<u>15.43</u>	$15.0V \pm 1.5V$	<u> </u>
Signal Processor	-15V	<u>-15.00</u>	$-15.0V \pm 0.75V$	<u> </u>
Antenna Drive	-15V	<u>-14.80</u>	$-15.0V \pm 1.5V$	<u> </u>
Mixer/IF	***	<u>10.06</u>	*** $10.0 \pm 0.5V$	<u> </u>
Signal Processor	+5V	<u>5.00</u>	$5.0V \pm 0.5V$	<u> </u>
Antenna Drive	+5V	<u>5.13</u>	$5.0V \pm 0.6V$	<u> </u>
L.O. #1	**	<u>10.00</u>	** $10.0 \pm 0.5V$	<u> </u>
L.O. #2	**	<u>10.00</u>	** $10.0 \pm 0.5V$	<u>PASS</u>

* Data from the printout sheet Page 8. Rewriting data on this space is optional.

** L.O. voltages from manufacturer data sheet for S/N 101 - S/N 104, +10V for S/N 105 - S/N 109.

*** Mixer/IF voltage: +8V for S/N 101 - S/N 104, +10V for S/N 105 - S/N 109.

08.0730

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT

Shop Order: 335070 S/N: 128

Customer Representative Date
Date
(Flight Hardware Only)

Test Systems Engineer Date
Signature 01/19/00 2/19/00
Quality Control

AMSU A2-30 A2.EXE
[5] DIGITAL A DATA FULL SCAN MODE 19-FEB-00 u1:08:50 SCAN NUMBER 726
[6] DIGITAL B DATA ELEMENT 00
[7] ANALOG DATA ELEMENT 00

ANALOG DATA

1 RF SHELF	215	24.36	DEG C	9 SIGNAL PROCESSING	-15VDC	-15.00
2 COMPENSATOR MOTOR	214	22.72	DEG C	10 ANTENNA DRIVE	-15VDC	-14.80
3 SCANNER MOTOR	214	21.42	DEG C	11 RECEIVER	+10VDC	10.06
4 WARM LOAD	214	22.37	DEG C	12 RAD/RECEIVER/SIG PROC	+5 VDC	5.00
5 ANTENNA DRIVE	96.93	13	ANTENNA DRIVE	+5 VDC	5.13	
6 COMPENSATOR MOTOR CURRENT	97.86	14	GUNN DIODE OSC #1 CH 1	+5 VDC	10.00	
7 SIGNAL PROCESSING	14.91	15	GUNN DIODE OSC #2 CH 2	+5 VDC	10.00	
8 ANTENNA DRIVE	15.43					

POWER [4] ON SCREEN ONLY [2] PRINT [3] FULL [1] RETURN
SELECT_TOUCHSCREEN_BUTTON₂

TDS # 33
A2-108
FINAL CPT
JOK 335079 737

TEST DATA SHEET 34
Integrate/Hold and Dump Signal Verification (Paragraph 3.2.4.3.6.1)

S/N: 335079 OP: 0730
PN: 1331200-2-TST SN: 108

TAS-34
FINAL CPT

TEST ENG: *[Signature]* Date: 2-20-00
Quality: *[Signature]* Date: 2-20-00

Parameter	Measured	Required	Pass/ Fail
Scope Channel-1: Integration/Hold			
Time (A)*	157.9 ms	158 ms ± 10%	PASS
Time (B)*	45.15 ms	42 ms ± 10%	PASS
Amplitude	5.04 V	5.0 V ± 0.2V	PASS
Scope Channel-2: Dump Signal			
Time (D)*	12.89 ms	9 ms to 15 ms	PASS
Amplitude	5.04 V	5.0 V ± 0.2V	PASS

* Refer to Figure 2 for waveform configuration.

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT **Final CPT** Sub CPT

Shop Order: 335079 S/N: 108

J. Langford 2-20-00
Customer Representative Date
(Flight Hardware Only)

Ray H. Hargrove 2-20-00
Test Systems Engineer 7A Date
Mark W. Hansen 194 2-20-00
Quality Control

Tek Stop: 1ks/s

4 Acq's

Δ: 5.04 V
@: 6.08 V

Ch1 -width (A)
157.9ms

Ch1 +width (B)
45.15ms

Ch2 -width (D)
12.89ms

Ch2 High
5.04 V

20 Feb 2000
14:21:54

3.2.4.3.6.1 Integrator/Hold & Dump Clocks

S/N: 335079 OP: 0730
P/N: 1331200-2-TST SN: 108

TEST ENG: John Date: 2/20/00
Run/Tr: 1.0T

TEST ENG: John Date: 2/20/00
Run/Tr: 1.0T

TEST DATA SHEET 35
Integration Time (Analog Output) Verification (Paragraph 3.2.4.3.6.2)

Tek Stop 1ks/s

11 Acqs

Δ: 13ms
@: 309ms

Ch1 -width
157.9ms

Ch1 +width
44.12ms

$$\begin{aligned} \text{Hold} &= (44.12 - 13) \text{ mSec} \\ &= \underline{\underline{31.12 \text{ mSec}}} \end{aligned}$$

20 Feb 2000
14:39:41

32.4.36.1 CH1 & I/H

S/N: 335079 OP: 0730

TD5-35

TEST ENG INSTRUMENTS Date: 2-20-00
D.M./I.V. : John D. Brown (TA)

Tek Stop: 1ks/s

Δ: 12ms
@: 201ms

Ch1 -width
157.9ms

CH1 + width
45.11ms

Hold = (45.11 - 12) msec
= 33.11 msec

TEST DATA SHEET 40
Radiometer Relative NEAT Verification (Paragraph 3.2.4.4.1.2)

Channel	Channel 1	Channel 2
NEAT (Average of 5 data)	0.183	0.226
NEAT (specified)*	0.30 K	0.30 K
Pass/Fail**	PASS	PASS

* For reference only.

** Use first CPT or first LPT data along with specified value for pass fail criteria.

METSAT/AMSU A2 System CPT P/N IS-1331200
Circle Test: 1st CPT Final CPT Sub CPT _____

Shop Order: 335079 S/N: 108

094-73-

2-19-00

Customer Representative
Date
(Flight Hardware Only)

2-19-00

Test Systems Engineer Date 2/19/00 Quality Control

24
275


```

A2 .EXE A2 FUNCTIONAL TEST RESULTS 19-FEB-00 01:24:28
CH WARM TEMP WARM COUNTS COLD COUNTS GAIN DELTA T
1 296.37 16248.0 13525.0 0.079 0.175
2 296.37 16689.0 13731.0 0.073 0.199

[ 2 ] PRINT SCREEN [ 3 ] PRINT RAW DATA [ 4 ] PRINT HISTOGRAM
[ 5 ] PRINT DISTRIBUTION GRAPH
SELECT_TOUCHSCREEN_BUTTON_2

```

TO S# 40
 A2->S
 Final CPT
 S10# 335094 >P# >>30

A2 .EXE A2 FUNCTIONAL TEST RESULTS

19-FEB-00

CH	WARM TEMP	WARM COUNTS	COLD COUNTS	GAIN	DELTA T
1	296.37	16248.0	13530.0	0.080	0.188
2	296.37	16688.0	13740.0	0.073	0.220

[2] PRINT SCREEN [3] PRINT RAW DATA [4] PRINT HISTOGRAM
[5] PRINT DISTRIBUTION GRAPH
SELECT_TOUCHSCREEN_BUTTON_2
RETURN [1]

A2 FUNCTIONAL TEST RESULTS
A2.EXE 19-FEB-00 01:26:28

CH	WARM TEMP	WARM COUNTS	COLD COUNTS	GAIN	DELTA T
1	296.38	16248.0	13535.0	0.080	0.175
2	296.38	16689.0	13749.0	0.074	0.240

[2] PRINT SCREEN [3] PRINT RAW DATA [4] PRINT HISTOGRAM
[5] PRINT DISTRIBUTION GRAPH
SELECT_SCREEN_BUTTON_2
RETURN [1]

A2 .EXE A2 FUNCTIONAL TEST RESULTS 19-FEB-00

CH	WARM TEMP	WARM COUNTS	COLD COUNTS	GAIN	DELTA T
1	296.37	16247.0	13540.0	0.080	0.196
2	296.37	16688.0	13756.0	0.074	0.243

[2] PRINT SCREEN [3] PRINT RAW DATA [4] PRINT HISTOGRAM
SELECT_TOUCHSCREEN_BUTTON_2
[5] PRINT DISTRIBUTION GRAPH
RETURN [1]

A2 .EXE A2 FUNCTIONAL TEST RESULTS 19-FEB-00

CH	WARM TEMP	WARM COUNTS	COLD COUNTS	GAIN	DELTA T
1	296.38	16247.0	13541.0	0.080	0.181
2	296.38	16688.0	13758.0	0.074	0.227

01:28:20

[2] PRINT SCREEN [3] PRINT RAW DATA [4] PRINT HISTOGRAM
[5] PRINT DISTRIBUTION GRAPH
SELECT_TOUCHSCREEN_BUTTON_2

RETURN [1]

Electronic Systems Plant

P.O. Box 296

Azusa, California 91702-0296

CAGE/Facility Ident: 70143

AE-26151/5E

11 February 1999

Superseding

AE-26151/5D

22 September 1998

PROCESS SPECIFICATION

**TEST PROCEDURE,
ELECTROMAGNETIC INTERFERENCE (EMI)/
ELECTROMAGNETIC RADIATION (EMR)
AND ELECTROMAGNETIC COMPATIBILITY (EMC)
FOR THE METSAT/METOP
ADVANCED MICROWAVE SOUNDING UNIT-A
(AMSU-A)**

Contract No.: NAS5-32314

Prepared for:

**NASA/Goddard Space Flight Center
Greenbelt Road
Greenbelt, MD 20771**

TABLE OF CONTENTS

Paragraph		Page
1.	SCOPE	1
1.1	Purpose.....	1
2.	APPLICABLE DOCUMENTS.....	3
2.1	Government documents.....	3
2.1.1	NASA-Goddard Space Flight Center (GSFC).....	3
2.1.2	Military.....	3
2.2	Non-Government documents.....	4
2.2.1	Aerojet documents	4
2.2.2	Other documents	4
3.	REQUIREMENTS	5
3.1	Test facility	5
3.1.1	Test instrumentation.....	5
3.1.1.1	Meter settings.....	5
3.1.1.2	Multi-range settings.....	5
3.1.1.3	Measurement accuracies.....	5
3.1.2	Limitations and restrictions	5
3.1.3	Test setup	6
3.2	Required procedures and operations	6
3.3	Test conditions	6
3.3.1	Standard ambient conditions	6
3.3.2	Test tolerances.....	6
3.3.3	Read-out accuracy	6
3.3.4	Operation and control of test article	6
3.3.5	Control of facilities and equipment	6
3.3.5.1	General instructions.....	6
3.3.5.2	Test site and test equipment ambient levels	6
3.3.5.3	Open area testing	6
3.3.5.4	Test spectra	7
3.3.5.4.1	Specification limit and frequency criteria.....	7
3.3.5.4.2	EMI safety margins	7
3.4	Detailed procedures.....	7
3.4.1	Responsibility for inspection.....	7
3.4.2	Monitoring procedure for equipment	7
3.4.3	Pretest verifications and baseline performances.....	7
3.4.3.1	Test article functional validation.....	7
3.4.3.1.1	Pre-test functional validation.....	7
3.4.3.1.2	Test article ambient emissions profile	7
3.4.4	Functional test	7
3.4.4.1	Test setup	7
3.4.4.2	Test to be performed	8
3.4.4.2.1	Power line pin allocation.....	8
3.4.4.3	Mode of operation	9
3.4.4.4	Computer Controlled System (CCS) measurement system calibration	9
3.4.4.4.1	Spectrum analyzer	9
3.4.4.5	Susceptibility monitors	9
3.4.4.6	Pass/fail criteria	9
3.4.5	CE01/CE03 test	10
3.4.5.1	Test equipment	10
3.4.5.2	Test limits	11
3.4.5.2.1	Imposed limits	11
3.4.5.2.2	Corrected limits	11

3.4.5.3	Test procedure	11
3.4.5.3.1	Preparation	11
3.4.5.3.2	Emission measurement, 30 Hz to 20 KHz (CM & DM) - CE01	14
3.4.5.3.3	Emission measurement, 20 kHz to 50 MHz (CM & DM) - CE03	16
3.4.6	RE02 test	20
3.4.6.1	Test equipment	20
3.4.6.2	Limits.....	22
3.4.6.2.1	Allowable limits	22
3.4.6.3	Test procedure	22
3.4.6.3.1	Preparations	22
3.4.6.3.2	Test steps	22
3.4.7	RE04 test	28
3.4.7.1	Test equipment	28
3.4.7.2	Test limits	28
3.4.7.3	Test procedure	28
3.4.7.3.1	Preparations (magnetic field).....	28
3.4.7.3.2	Test steps	28
3.4.8	CS01/CS02 test.....	30
3.4.8.1	Test equipment	30
3.4.8.2	Test limits	30
3.4.8.3	Test procedure	30
3.4.8.3.1	Preparations	30
3.4.8.3.2	Test steps	33
3.4.9	CS06 test	35
3.4.9.1	Test equipment	35
3.4.9.2	Test limits	35
3.4.9.3	Test procedure	35
3.4.9.3.1	Preparations	35
3.4.9.3.2	Test steps	37
3.4.10	Radiated susceptibility test, RS03	38
3.4.10.1	Test equipment	38
3.4.10.2	Test limits	38
3.4.10.3	Test procedure	40
3.4.10.3.1	General	40
3.4.10.3.2	Preparations	40
3.4.10.3.3	Test steps	41
4.	QUALITY ASSURANCE PROVISIONS	45
4.1	Responsibility for inspection	45
4.1.1	Test facilities	45
4.2	Monitoring procedures	45
4.2.1	Test equipment	45
4.3	Monitoring procedures for materials	45
4.4	Certification.....	45
4.5	Test methods	45
4.5.1	Accept-reject criteria	45
4.5.2	General	45
4.5.2.1	Acceptance test reports	46
4.5.2.1.1	Format	46
4.5.2.1.2	Test data	46
5.	PREPARATION FOR DELIVERY	47
6.	NOTES.....	47
6.1	Intended use	47
6.2	Abbreviations and acronyms	47
6.3	Changes	48

10.	APPENDIX A - TEST INSTRUMENTATION	A-1
10.1	Test instrumentation list for EMI/EMC tests	A-1
10.2	Relative gain of the 94455-1 biconical antenna	A-1
20.	APPENDIX B - TEST DATA SHEETS	B-1
30.	APPENDIX C - EMI DATA COLLECTION	C-1
30.1	EMI data collection during the susceptibility tests	C-1
30.2	Data collection	C-1

FIGURES

Figure		Page
1.	LISN Circuit Diagram	11
2.	Narrowband Conducted Emissions Limits on Power Leads	12
3.	Conducted Emission Limit, NB, DM, CM, 28V Reg. Power Leads, PLM Instrument	13
4.	Conducted Emission Limit, NB, DM, Thermal Control Heaters	13
5a.	CE01/CE03 Test Setup (Differential Mode)	14
5b.	CE01/CE03 Test Setup (Common Mode)	17
5c.	CE01/CE03 +10 V Interface Test Setup (Differential Mode)	18
5d.	CE01/CE03 +10 V Interface Test Setup (Common Mode)	19
6.	Radiated Narrowband Limits for Electric-Field Emission Produced by Instrument	23
7.	Radiated Broadband Limits for Electric-Field Emissions Produced by Instrument	24
8.	Radiated Narrowband Limits for Electric Field Emissions METOP Only	25
9.	RE02 Test Setup	26
10.	RE04 Test Setup	29
11.	Ripple and Noise Susceptibility Limit	31
12.	CS01/CS02 Test Setup (Differential Mode)	32
13.	CS02 Common Mode Noise Test on the +28V Main Bus	34
14.	CS02 Common Mode Noise Test on the +10V Interface Bus	34
15.	CS06 Transient Waveform	36
16a.	CS06 Test Setup (Differential Mode)	37
16b.	CS06 +10 V Interface Test Setup (Differential Mode)	38
17.	RS03 Test Setup, 14 kHz to 25 MHz	40
18.	RS03 Test Setup, 200 MHz to 12 GHz	42

TABLES

Table		Page
I	Compliance Matrix.....	1
II	Power Lines Routing.....	9
III	Monitors for Susceptibility Test.....	9
IV	SARR, SARP, and DCS Receiver Channel Guard Limits.....	21
V	Functional Test for Susceptibility	33
VI	Additional Test Frequencies.....	39
A-I	Test Instrumentation List for EMI/EMC Tests.....	A-2
A-II	Relative Gain of the 94455-1 Biconical Antenna and a Tuned Dipole	A-3
A-III	EMI/EMC Test Performance Matrix (Qualification Test)	A-4

TEST DATA SHEETS

TDS		Page
1	3.4.5: CE01/CE03 Test.....	B-2
2	3.4.6: RE02 Test.....	B-6
3	3.4.7: RE04 Test.....	B-9
4	3.4.8: CS01/CS02 Test	B-12
5.	3.4.8: CS02 CM Noise Test.....	B-16
6	3.4.9: CS06 Test	B-18
7	3.4.10: RS03 Test	B-20

1. SCOPE

This document establishes the general methods and procedures for electromagnetic interference (EMI), electromagnetic radiation (EMR), and electromagnetic compatibility (EMC) testing of the Meteorological Satellite (METSAT) Advanced Microwave Sounding Unit - A (AMSU-A). The test requirements, test conditions, and procedures herein are in accordance with the applicable detail specification sheets and use the standard techniques of MIL-STD-461 and MIL-STD-462 as modified by General Instrument Interface Specification (GIIS) IS-3267415, paragraph 3.6.

1.1 Purpose. The purpose of this test procedure is to define the methods and procedures to be used to demonstrate compliance of the AMSU-A instrument with the applicable specification requirements. In this document, the test facilities, equipment, and conditions are identified, the performance criteria are defined, and step-by-step test procedures are included. Table I lists the test methods to be used and cross references the paragraphs in the requirements documents that will be satisfied by these methods and by performance of the test procedures herein.

Table I. Compliance Matrix

Test Method	Paragraph	S-480-79 Appendix D	IS-2617547	IS-2624483	IS-3267415
CE01* ^{2/}	3.4.5	3.5.2.1	3.4.2	3.4.2	3.6.1.1
CE03 ^{2/}	3.4.5	3.5.2.1	3.4.2	3.4.2	3.6.1.1
RE02 ^{1/ 2/}	3.4.6	3.5.2.1	3.4.2	3.4.2	3.6.1.4.2
RE04**	3.4.7	3.5.2.1	3.4.1	3.4.1	3.5.2
CS01	3.4.8	3.5.2.1	3.4.2	3.4.2	3.6.1.2
CS02 ^{2/}	3.4.9	3.5.2.1	3.4.2	3.4.2	3.6.1.2
CS06 ^{2/}	3.4.10	3.5.2.1	3.4.2	3.4.2	3.6.1.3
RS03 ^{2/}	3.4.11	3.5.2.1	3.4.2	3.4.2	3.6.1.5

* No emanation in the frequency range specified by this test method are present in the test sample.

** No AC emanation in the frequency range specified by this test method are present in the test sample.

1/ For Acceptance Test only. Perform electric field radiation frequency range 2010-2040 MHz (para. 3.4.6) and frequency range of Table IV.

2/ Comply with METOP specifications MO-IC-MMT-A1-0001 (AMSU-A1) and MO-IC-MMT-A2-0001 (AMSU-A2), and per Table A-III requirements.

This page intentionally left blank.

2. APPLICABLE DOCUMENTS

2.1 Government documents. The following documents of the exact issue shown, form a part of this specification to the extent specified herein.

2.1.1 NASA-Goddard Space Flight Center (GSFC)

SPECIFICATIONS

S-480-79	Performance and Operation Specification for the Advanced Microwave Sounding Unit (AMSU)
S-480-80	Performance Assurance Requirements for the Advanced Microwave Sounding Unit (AMSU)

OTHER DOCUMENTS

MO-IC-MMT-A1-0001	Advanced Microwave Sounding Unit-A1, Instrument Interface Control Document (METOP)
MO-IC-MMT-A2-0001	Advanced Microwave Sounding Unit-A2, Instrument Interface Control Document (METOP)
RCA-IS-2617547	Unique Instrument Interface Specification for the Advanced Microwave Sounding Unit Module A1 (AMSU-A1) (UIIS)
RCA-IS-2624483	Unique Interface Specification for the Advanced Microwave Sounding Unit A2 (AMSU-A2) (UIIS)
RCA-IS-3267415	ATN-KLM General Interface Specification (GIIS)

2.1.2 Military

SPECIFICATIONS

MIL-B-5087B Interim Amendment. 3 24 Dec 84	Bonding, Electrical, and Lightning Protection, for Aerospace Systems
---	---

STANDARDS

MIL-STD-461C 8 Aug 86	Electromagnetic Emission and Susceptibility Requirements for the Control of Electromagnetic Interference
MIL-STD-462 Notice 6 15 Oct 87	Electromagnetic Interference Characteristics, Measurement of
MIL-STD-463A 01 Jun 77	Definitions and System of Units, Electromagnetic Interference and Electromagnetic Compatibility Technology

MIL-STD-45662
Notice 3
14 Dec 84

Calibration Systems Requirements

(Copies of military documents required by suppliers in connection with specific procurement functions should be obtained as indicated in the Department of Defense Index of Specifications and Standards.)

2.2 Non-Government documents. The following documents form a part of this specification to the extent specified herein. Unless otherwise specified, the exact issue shown shall apply.

2.2.1 Aerojet documents

SPECIFICATIONS

AE-26156/3	AMSU-A1 System, Comprehensive Performance Test and Limited Performance Test
AE-26156/4	AMSU-A2 System, Comprehensive Performance Test and Limited Performance Test

STANDARD

STD-2454	Requirements for Electrostatic Discharge Control (Excluding Electrically Initiated Explosive Devices)
----------	--

DRAWINGS

1331200	AMSU Assembly, A2
1331720	AMSU Assembly, A1

(Copies of Aerojet documents required by suppliers in connection with specific procurement functions should be obtained from Aerojet, CAGE 70143, P.O. Box 296, Azusa, California 91702-0296.)

2.2.2 Other documents.

HP-125	Computer Controlled System Operator's Manual
HP-8566	Spectrum Analyzer Operating and Programming Manual
HP-85864A	EMI Measurement Software Operation Manual

3. REQUIREMENTS

3.1 Test facility. The test shall be conducted in a shielded enclosure with minimum dimensions of 10 feet long, 10 feet wide, and 10 feet high. The enclosure shall provide a minimum of 80 dB of attenuation to an electric field from 14 kHz to 10 GHz. The shielded test enclosure shall be serviced with 28, 10, and 5 volts DC filtered power as required.

3.1.1 Test instrumentation. The instrumentation for performance of the tests will consist of test equipment, accessories, and fixtures selected and configured for accuracy and effectiveness in accordance with the applicable requirements of MIL-STD-461 and MIL-STD-462, and the applicable test procedure. Calibration of the test instrumentation shall be current and in accordance with the applicable requirements of MIL-STD-461, MIL-STD-462, the applicable manufacturer's published data, and MIL-STD-45662. Specific instrumentation used shall be noted on the applicable test data sheets and in the final test report. Alternate instrumentation and procedures may be invoked when applicable. Specific instrumentation used for each of the EMI/EMC tests described herein shall be in accordance with Table A-1 of Appendix A.

3.1.1.1 Meter settings. Whenever possible, the range setting of measuring equipment shall be such that the meter reading is in the section of the scale as follows:

- a. Voltage and current reading: The upper one-third of the meter scale
- b. Resistance readings: The one-third section of the scale closest to the 0-ohm mark
- c. Field intensity readings: Mid-range of the meter scale.

3.1.1.2 Multi-range settings. Measurements that may be obtained on separate ranges on multi-range equipment shall be measured on each range to assure measurement continuity. Disparities in the resulting measurements of more than ± 2 dB, if occurring, shall be resolved by adoption of the highest reading obtained, or by recalibration of the item of test equipment, applicable accessories, and test setup, as warranted.

3.1.1.3 Measurement accuracies. All measurements made in accordance with this procedure shall have the following accuracies, unless otherwise specified in a particular test:

- a. Frequency accuracy: ± 2 percent
- b. Amplitude accuracy: ± 2 dB.

3.1.2 Limitations and restrictions. The following limitations and restrictions apply to the test facility and test instrumentation used in the tests described herein:

- a. Radiated emissions: If no EMI emissions above background noise levels are detected in the range of 400 MHz to 1 GHz during those tests, no measurements shall be made above 1 GHz. Otherwise, the full test range to 2 GHz shall be measured.
- b. Conducted susceptibility levels: Injected susceptibility test voltages and spike transients shall be limited to the extent that resulting test currents do not exceed the fuse steady-state current limit or normal current rating for the test article. The latter condition is a credible limit for potential external EMI sources, and is adopted as a procedural safeguard against resonance failures in test article components at levels exceeding credible input power delivery capabilities. Under these conditions, the minimum power ripple requirements of IS-3267415 shall be met.
- c. Shielded enclosure frequency range: The shielded enclosure may be limited in its use for radiated emissions measurements and radiated field susceptibility tests above 1 GHz due to unpredictable enclosure resonance occurrences, net leakage levels, and space for the installation of suitable anechoic (RF absorbing) materials. Accordingly, as a tradeoff in testing convenience versus the cost in time and materials to correct potential shielded enclosure reflections and resonances as may interfere with RE02 measurements or RS03 field generations, a clear area in one of the electronic laboratories may be utilized as an alternate test site

where such clear area complies with applicable MIL-STD-461 and MIL-STD-462 requirements. Another alternative may include testing to be performed at an outside test facility.

WARNING

No radiated field susceptibility test procedure will be initiated, or test level applied, that will risk the exposure of personnel to field strengths in excess of 2 mW/cm^2 .

- d. Radiated susceptibility safety: To support this restriction, test personnel and operating-control equipment will be stationed outside the closed illumination test chamber, or in a separate shielded chamber.

3.1.3 Test setup. The test article test instrumentation placement and dimensional relationships, with respect to facility and equipment geometries, shall be in accordance with the requirements specified in MIL-STD-461, MIL-STD-462, and the applicable specification sheet. Bonding jumpers, as required, shall be in accordance with MIL-B-5087 requirements.

3.2 Required procedures and operations. The test article shall be subjected to the examinations and tests specified in Paragraph 3.4 herein.

3.3 Test conditions. The following paragraphs shall apply to all tests performed under this document.

3.3.1 Standard ambient conditions. The tests shall be performed under temperature and pressure conditions defined in STD-2454.

3.3.2 Test tolerances. The tolerances allowed on test conditions are intended only to provide for the accuracy of such items as instrumentation and controls. Test conditions shall be as close as possible to the nominal or center values specified and in no instance shall they exceed the tolerances specified.

3.3.3 Read-out accuracy. Performance parameters are specified either as limits or as nominal values with plus-or-minus tolerances. These limits and tolerances shall be regarded as absolute, and the inaccuracies of measuring equipment shall not be interpreted as part of measured values in such a way that out-of-limit measurements may appear in-limit.

3.3.4 Operation and control of test article. The detailed operation and control of the test article, test fixtures, and supporting instrumentation applicable to each inspection specified herein are described in the applicable detail specification sheet.

3.3.5 Control of facilities and equipment

3.3.5.1 General instructions. Equipment, cables, apparatus, and personnel not actively engaged in, or otherwise essential to, the test being performed shall not be present in the shielded enclosure and associated test areas during the tests. All authorized equipment and support services necessary for the performance of the tests shall be available and operational during the tests. Nearby operating equipment found to exert a compromising influence on test performance, results, or monitoring abilities shall not be operating during affected portions of the test.

3.3.5.2 Test site and test equipment ambient levels. The ambient electromagnetic level during testing, inclusive of measuring equipment internal noise levels, measured with the test article turned off, shall be at least 6 dB below the applicable test specified limit. Where noncompliances are encountered, either the high ambient source may be traced and appropriately reduced and attenuated, or a technique based on the method of MIL-STD-462 may be used to separate and measure test article EMI emissions from high ambient levels.

3.3.5.3 Open area testing. Open area testing, as defined in MIL-STD-463, shall not be employed. However, the basic objective principles applicable to open area testing will be applied, to the extent possible, in any tests that are performed in laboratory areas outside the EMI test laboratory shielded enclosures.

3.3.5.4 *Test spectra*

3.3.5.4.1 Specification limit and frequency criteria. The test setup, including test article orientation and operation, shall be configured to accurately simulate the modes and conditions of highest emissions and lowest susceptibility thresholds, as applicable. This shall include considerations of test article operation at both the high and low extremes of the input operating voltage range. The entire specified frequency range for each applicable test shall be scanned. Attention shall be directed toward ensuring that measurements are made at the test article critical frequencies as identified in the applicable specification sheet. For susceptibility tests, swept and discrete frequency tests shall be applied in incremental steps up to either:

- a. The susceptibility threshold, if any, or
- b. 6 dB above the specified limit.

Apparent susceptibility thresholds shall be recorded, and then scanned more extensively, in order to determine the frequency band and peak envelope of the susceptibility thresholds. Susceptibility threshold determinations shall be made in accordance with the criteria given in the applicable specification sheet.

3.3.5.4.2 EMI safety margins. Following incorporation of all applicable data correction factors, electromagnetic interference safety margins (EMISM) shall be determined for both emission and susceptibility test results relative to the specified limits.

3.4 *Detailed procedures*

3.4.1 Responsibility for inspection. Test implementation and execution, approved changes, data recording, test limitations, test article performance, and related considerations in accordance with this specification, MIL-STD-461, MIL-STD-462, and the requirements of the applicable test article specification, shall be given to the government prior to the start of the EMI tests herein, so that a representative may be designated to witness the testing.

3.4.2 Monitoring procedure for equipment. Test equipment calibration schedules and procedures shall comply with the requirements of MIL-STD-45662. Before performing examinations and tests in accordance with this procedure, all test equipment shall be verified as being within its current calibration period. Calibration or alignment, necessary for operation of the equipment within the requirements of this document, shall be performed when required.

3.4.3 *Pretest verifications and baseline performances*

3.4.3.1 *Test article functional validation*

3.4.3.1.1 Pre-test functional validation. The test article shall be turned on and operated in accordance with the Relative Radiometer NEΔT Measurements procedures specified in AE-26156/3 or AE-26156/4. Compliance with the applicable criteria of these specifications shall be the basis for continuing the EMI/EMC tests. The data recorded during pre-test validation shall be used as part of the comparison baseline for subsequent evaluations of test article performance during the EMI tests.

3.4.3.1.2 Test article ambient emissions profile. Upon completion of the pre-test functional validation, the test article shall be operated in the mode specified in 3.4.4.3 or Appendix B. The steady-state EMI emissions shall be scanned using the spectrum analyzer. Significant and prominent amplitudes and frequencies shall be noted in the engineering log book for subsequent comparison with results obtained during the EMI tests that follow. This noted spectral data shall be referred to as the test article ambient EMI profile. Both conducted and radiated emissions profile measurements shall be made during the course of the EMI tests in accordance with the applicable test sequence and setups.

3.4.4 Functional test. The functional test will be run prior to the EMC test to ensure that the AMSU-A instrument is operating within specified limits. During EMC testing the AMSU-A instrument will have its diagnostic program running in a looping mode so that EMI-induced errors may be detected.

3.4.4.1 Test setup. The EMI compatibility test shall be conducted utilizing AMSU-A STE and AMSU-A/STE cables.

3.4.4.2 Test to be performed. The following tests will be performed on the indicated power lines or units (refer to Table A-III of Appendix A for further detailed explanation):

- a. Conducted Emission (CE01/CE03)
 - +28V Main Bus
 - 28V Main Bus Return

 - +28V Analog Telemetry Bus
 - 28V Analog Telemetry Bus Return

 - +28V Pulse Load Bus
 - 28V Pulse Load Bus Return

 - +10V Interface Bus
 - 10V Interface Bus Return
 - +28V Safety Heater
 - +28V Safety Heater Return

- b. Radiated Emission (RE02 and RE04 static H field)
 - AMSU-A1
 - AMSU-A2

- c. Conducted Susceptibility (CS01 and CS02)
 - +28V Main Bus
 - 28V Main Bus Return

 - +28V Analog Telemetry Bus
 - 28V Analog Telemetry Bus Return

 - +28V Pulse Load Bus
 - 28V Pulse Load Bus Return

 - +10V Interface Bus
 - 10V Interface Bus Return

- d. Conducted Susceptibility (CS06)
 - +28V Main Bus
 - 28V Main Bus Return

 - +28V Analog Telemetry Bus
 - 28V Analog Telemetry Bus Return

 - +28V Pulse Load Bus
 - 28V Pulse Load Bus Return

 - +10V Interface Bus
 - 10V Interface Bus Return

- e. Radiated Susceptibility (RS03)
 - AMSU-A1 and AMSU-A2

3.4.4.2.1 Power line pin allocation. The power lines will be routed together in order to minimize the number of tests to be performed. Each wire will be connected to a feedthrough capacitor as indicated in Table II.

Table II. Power Lines Routing

From	To
+28V Feedthrough	AMSU A1 J1-1
Capacitor Main Bus	AMSU A2 J1-1
28V Feedthrough	AMSU A1 J1-3
Capacitor Main Bus Return	AMSU A2 J1-3
+28V Feedthrough	AMSU A1 J1-5
Capacitor Pulse Load	AMSU A2 J1-5
28V Feedthrough	AMSU A1 J1-7
Capacitor Pulse Load Return	AMSU A2 J1-7
+28V Feedthrough	AMSU A1 J1-9
Capacitor Analog Telemetry Bus	AMSU A2 J1-9
28V Feedthrough	AMSU A1 J1-10
Capacitor Analog Telemetry Bus Return	AMSU A2 J1-10
+10V Feedthrough	AMSU A1 J4-12
Capacitor Interface Bus	AMSU A2 J4-12
10V Feedthrough	AMSU A1 J4-13
Capacitor Interface Bus Return	AMSU A2 J4-13

3.4.4.3 Mode of operation. Unless otherwise specified in specific test, the AMSU-A will be tested in the IN ORBIT mode of operation. This is also known as the "Full Scan Mode."

3.4.4.4 Computer Controlled System (CCS) measurement system calibration. Set up and operate all required equipment in the Computer Controlled System (CCS) in accordance with the latest revision of the operator's manual. Use the mini-floppy disks containing HP Basic 2.0, Version 3.1, of the 9836.461 system disk, and the project program disk which contains the preliminary program test routines. Verify that the CCS Operating System is the proper one to be used with the particular receiver. Install the system disk in the HP 9836 right-hand drive, and the Basic 2.0 disk in the left-hand drive.

3.4.4.4.1 Spectrum analyzer. If the HP 8566 spectrum analyzer or equivalent is used for measuring the conducted or radiated emissions, the system calibration shall be conducted in accordance with the HP Operating and Programming Manual and the HP 85864A EMI Measurement Software Operation Manual.

3.4.4.5 Susceptibility monitors. The monitors shown in Table III will be observed/recorder during the performance and susceptibility testing.

Table III. Monitors for Susceptibility Test

Susceptibility	Line/Item	Monitor
Conducted CS01, CS02, and CS06	28V Main Power, Main Load Bus	Data output all channels
	28V Pulse Load Bus	Antenna Position
Radiated RS01 and RS03	AMSU-A Enclosure	Data output all channels

3.4.4.6 Pass/fail criteria. The pass/fail criteria for the conducted and radiated emissions test shall be determined by inspection of the recorded emissions levels when compared to the specification limits. All emissions shall be on or below the specification limits. When narrowband emissions exceed the broadband limits or transient spikes exceed the narrowband or

broadband limits, the specific emission shall be identified and exempted from these criteria. The identification of broadband and narrowband emission shall be in accordance with the test methods of paragraph 4.2.6 in MIL-STD-462.

Extensive EMI testing has been conducted at both the component level and the AMSU-A sensor system level. These tests have resulted in the incorporation of hardware corrective measures and established a thorough understanding of EMI susceptibility concerns for AMSU-A system performance. The primary concern is associated with collection of radiometric data.

An STE EMI data collection program has been developed and is included in the bonded test software of the STE. Operation of the system and the EMI data collection program will be coordinated with operation of the EMI susceptibility signal sweeps.

The EMI data collected will provide about a five scan period at the beginning and end of each data collection period which will allow comparison of each channel's normal radiometric response with and without the interference present. The data will be presented in the form of noise distribution plots for each of the radiometric channels and as a summary report for all channels. These data shall be reviewed as follows:

- a. Review the summary data and identify channels with alarm counts greater than ten or channels that have sigma values that are a factor of two greater than observed in baseline checks made periodically during the test.
- b. Examine the noise distribution plots for channels identified in the above paragraph, and look for disruptions during the period when the EMI signal sweep was made. If an EMI disruption results in a peak-to-peak increase in channel noise which is less than twice the normal level or, if the disruption creates a level shift in the noise data which is equal to or less than the normal noise level, then it is acceptable (pass).
- c. Examine all remaining plots for disruptions, identify, and file the data.
- d. If any channel fails, additional sweeps will be made over a reduced frequency range and at reduced amplitudes as necessary to determine the threshold of the susceptibility.

The test will continue to establish an overall assessment of the behavior. The EQUIPMENT LIMIT (EL) column will be checked when the test equipment cannot deliver the required level. Since the test equipment meets the power requirements of MIL-STD-461 and the AMSU-A instrument is not susceptible to the output of the signal source, a check on this column indicates the unit passed the test requirement. A check in the SPECIFICATION LIMIT (SL) column indicates the AMSU-A instrument met the requirements.

3.4.5 CE01/CE03 test. This test shall measure the conducted emissions on power lines from 30 kHz to 50 MHz by measuring the current levels present in the power lines of paragraph 3.4.4.2.a or Table A-III of Appendix A, as applicable. The METOP conducted emissions will be performed in the differential and common mode.

3.4.5.1 Test equipment. The following equipment or equivalent (as defined in Table A-1) is required for this test:

- a. Computer Control System Spectrum Analyzer, HP 8566B, HP 3562B
- b. Amplifier, HP 461A, HP 8447F
- c. Feedthrough Capacitors, Solar 6512-106R. METOP will use LISN's as shown in Figure 1.
- d. Computer, HP 9836
- e. Current Probe, AIL Tech 91550-2B
- f. Printer, HP 2673A
- g. Plotter, HP 7090A
- h. Filter Box, Aerojet, T-1289992-1

$R_1, R_2 = 20 \text{ mOhm} \pm 5 \text{ mOhm}$

$R_3, R_4 = 25 \text{ Ohm} \pm 5 \%$

$R_5 = 50 \text{ kOhm} \pm 5\%$

$C_1 = 19000 \mu\text{F} \pm 5\%$

$L_1, L_2 = 2 \mu\text{H} \pm 5\%$

Figure 1. LISN Circuit Diagram

3.4.5.2 Test limits

3.4.5.2.1 Imposed limits. The level of conducted emissions permitted from 10 kHz to 50 MHz shall meet the requirements of IS-3267415. The limits are shown in Figure 2. The METOP shall meet the conducted emission limits from 30 Hz to 50 MHz as shown in Figures 3 and 4. The limits provided in Figures 3 and 4 are for information only. Data will be recorded but will not be compared against the limits. There is no pass/fail requirement.

3.4.5.2.2 Corrected limits. The imposed limits shall be adjusted by correcting for the appropriate probe factor.

3.4.5.3 Test procedure

3.4.5.3.1 Preparation

1. Connect the equipment under test as shown in Figure 5a and the power lines as indicated in 3.4.4.2.a or Table A-III of Appendix A, as applicable. Fill in data on equipment actually used in Equipment Log on Test Data Sheet (TDS) 1 in Appendix B.
2. Connect the AMSU and support equipment for a functional check.
3. Perform the functional test per the Relative Radiometer NEΔT Measurements procedures specified in AE-26156/3 or AE-26156/4, paragraph 3.2.3.5.

Figure 2. Narrowband Conducted Emissions Limits on Power Leads

Figure 3. Conducted Emission Limit, NB, DM, CM, 28V Reg. Power Leads, PLM Instrument

Figure 4. Conducted Emission Limit, NB, DM, Thermal Control Heaters (Safety Heater)

1. Feedthrough capacitor.
2. Bond to ground plane
3. Test sample situated in test fixture, 10 cm from front edge of ground plane.
4. Bond to test fixture as defined.
5. Filtered power supply terminals at screened enclosure wall.
6. Test sample interconnecting lead. Length as defined in the installation specification.
7. Power leads emulating the spacecraft configuration.
8. Interconnecting lead to monitoring equipment/test set via port-hole.
9. Test fixture DC bond to screened enclosure wall or ground plane shall be less than 2.5 milliohms.
10. Current probe connected to receiver via coaxial cable.

Figure 5a. CE01/CE03 Test Setup (Differential Mode)

4. Calibrate the receiving test equipment.
5. Before starting test, place the AMSU-A instrument in the IN ORBIT mode.

3.4.5.3.2 Emission measurement, 30 Hz to 20 kHz (CM & DM) - CE01

1. Place the 91550-1 current probe on one of the power lines listed in 3.4.4.2a or Table A-III of Appendix A, as applicable.
2. Verify that the measuring equipment is programmed to measure between 30Hz and 20 kHz. If necessary, program the signal analyzer for multi-scan and compare the measurement to the signal scan. Capture the highest level possible in each range.

3. Using the spectrum analyzer, automatically scan all narrowband data in the frequency range.
4. Photograph the cathode ray tube (CRT) presentation or make an X-Y plot. All narrowband measured data should be below the specification limit of Figures 2, 3, and 4. Record compliance with emission limits requirements on TDS 1. Set the computer to print the measured level of the signals above 30 dB above 1 μ V for reference.
5. Confirm all over limit levels by direct substitution. If any emissions exceed or near the limit, scan the frequency range that exhibits the over-the-limit levels, reduce the frequency span, reduce the measuring bandwidth to 5 or 500 Hz, and photograph the CRT presentation or make an X-Y plot.
6. Affix the test photos and calculations to TDS 1.
7. Repeat Steps 1 through 6 for all the power lines listed in 3.4.4.2.a, or Table A-III of Appendix A, or both.
8. If any narrowband signals exceed the limits, perform an ambient test.
9. With the STE Main Power off, turn the Q/Bus Power Supply voltage knob on the STE counterclockwise until the knob stops turning.
10. Connect the equipment as shown in Figure 5b. Place switches 1 through 10 and 14 through 25 in the OPEN position.
11. Turn the STE Main Power switch to ON, and turn the Q/Main and N/Pulse switches (green switches) on the STE Main Front Panel, to ON.
12. Gradually increase the Q/Bus voltage on the STE Power Supply to the 28 V level as monitored by the DVM (see Figure 5b).
13. Repeat steps 1 through 6 and 8 of this section.
14. Command the instrument power to OFF. Turn off the Main Power switch on the STE, and turn the Q/Bus Power Supply voltage knob on the STE counterclockwise until it stops turning.
15. Place the current probe and the LISN on the next power line indicated in 3.4.4.2a, or Table A-III of Appendix A, or both. Repeat steps 11 and 12.
16. Repeat steps 13 through 15 until the test is completed.
17. Change the setup configuration as depicted in Figure 5c. Place switches 12, 13, 24, and 25 to the OPEN position.
18. Connect the current probe on the +10 V Interface Line, as shown in Figure 5c.
19. Repeat steps 2 through 6 and step 8 of paragraph 3.4.5.3.2.
20. Move the current probe to the line of Terminal 13 (white terminal).
21. Repeat step 19.
22. Connect the current probe as depicted in Figure 5d.
23. Repeat step 19.

3.4.5.3.3 Emission measurement, 20 kHz to 50 MHz (CM & DM) - CE03

1. Connect the equipment as shown in Figure 5a. Apply power to the test equipment and special test equipment (STE) and place the instrument in full scan mode. Place the 91550-1 current probe on one of the power lines listed in 3.4.4.2.a, or Table A-III of Appendix A, or both.
2. Verify that the measuring equipment is programmed to measure between 30 Hz to 20 kHz or 20 kHz to 50 MHz, or both.
3. Using the spectrum analyzer, automatically scan all narrowband data in the frequency range. Print the CRT presentation.
4. Photograph the cathode ray tube (CRT) presentation or make an X-Y plot. All narrowband measured data should be below the specification limit of Figures 2, 3, and 4. Record compliance with emission limits requirements on TDS 1. Set the computer to print the measured level of the signals above 30 dB above 1 μ V for reference.
5. Confirm all over limit levels by direct substitution. If any emissions exceed or near the limit, scan the frequency range that exhibits the over-the-limit levels, reduce the frequency span, reduce the measuring bandwidth to 5 or 500 Hz, and photograph the CRT presentation or make an X-Y plot.
6. Affix the test photos and calculations to TDS 1.
7. Repeat Steps 1 through 6 for all the power lines listed in 3.4.4.2.a, or Table A-III of Appendix A, or both.
8. If any narrowband signal exceeds the limits, perform an ambient test.
9. With the STE Main Power off, turn the Q/Bus Power Supply voltage knob on the STE counterclockwise until the knob stops turning.
10. Connect the equipment as shown in Figure 5b. Place switches 1 through 10 and 14 through 25 in the OPEN position.
11. Turn the STE Main Power switch to ON, and turn the Q/Main and N/Pulse switches (green switches) on the STE Main Front Panel to ON.
12. Gradually increase the Q/Bus voltage on the STE Power Supply to the 28 V level as monitored by the DVM (see Figure 5b).
13. Repeat steps 1 through 6 and 8 of this section.
14. Command the instrument power to OFF. Turn off the Main Power switch on the STE, and turn the Q/Bus Power Supply voltage knob on the STE counterclockwise until it stops turning.
15. Place the current probe and the LISN on the next power line indicated in 3.4.4.2a, or Table A-III of Appendix A, or both. Repeat steps 11 and 12.
16. Repeat steps 13 through 15 until the test is completed.
17. Change the setup configuration as depicted in Figure 5c. Place switches 12, 13, 24, and 25 to the OPEN position.
18. Connect the current probe on the +10 V Interface Line, as shown in Figure 5c.
19. Repeat steps 2 through 6 and step 8 of paragraph 3.4.5.3.3.

20. Move the current probe to the line of Terminal 13 (white terminal).
 21. Repeat step 19.
 22. Connect the current probe as depicted in Figure 5d.
 23. Repeat step 19.

Figure 5b. CE01/CE03 Test Setup (Common Mode)

Figure 5c. CE01/CE03 +10 V Interface Test Setup (Differential Mode)

Figure 5d. CE01/CE03 +10 V Interface Test Setup (Common Mode)

3.4.6 RE02 test. This test shall measure the electric fields radiated from the AMSU equipment(s) over the frequency range of 14 kHz to 2 GHz to verify that the emissions are below the RE02 limit specified in MIL-STD-461C. In addition, the equipment will be tested for the emission of the following frequencies to verify either that the frequencies are not present or that their signal level does not exceed the test equipment sensitivity level listed for each frequency.

Frequency	Receiver/Ampl Sensitivity
59.458 MHz ± 0.5 kHz	-60 dBm
60.10 MHz ± 0.5 kHz	-60 dBm
141.360 MHz ± 0.5 kHz	-60 dBm
142.9 MHz ± 0.5 kHz	-60 dBm
282.733 MHz ± 0.5 kHz	-60 dBm
285.813 MHz ± 0.5 kHz	-60 dBm
371.921 MHz ± 0.5 kHz	-60 dBm
375.972 MHz ± 0.5 kHz	-60 dBm
624.925 MHz ± 0.5 kHz	-60 dBm
631.730 MHz ± 0.5 kHz	-60 dBm
743.841 MHz ± 0.5 kHz	-60 dBm
751.944 MHz ± 0.5 kHz	-60 dBm
121.5 MHz ± 15 kHz *	-150 dBm (Bandwidth 100 Hz)
243 MHz ± 25 kHz *	-150 dBm (Bandwidth 100 Hz)
401.650 MHz ± 50 kHz *	-150 dBm (Bandwidth 100 Hz)
406.05 MHz ± 50 kHz *	-150 dBm (Bandwidth 100 Hz)
2010-2040 MHz	-120 dBm

* METOP replaces these frequencies with the frequencies in Table IV.

3.4.6.1 Test equipment. The following equipment or equivalent (as defined in Table A-1) is required for this test:

- a. Computer Controller System, Spectrum Analyzer, HP 8566, or equivalent
- b. Amplifier, HP 8447F, or equivalent
- c. Feedthrough Capacitors, Solar 6512-106R
- d. Antenna, Active Rod, EMCO 3301B with Counterpoise, 14 kHz to 30 MHz
- e. Antenna, Biconical, Electro-Metrics BIA25, 20 to 200 MHz
- f. Antenna, Log Spiral, Electro-Metrics LCA25, 200 MHz to 1 GHz

Table IV. SARR, SARP, and DCS Receiver Channel Guard Limits

Frequency Range (MHz)	Radiation Limit (dBm)	E-Field Limit * (dB μ V/m)	Notes
118.00-120.00	-100	18.9	121.5 MHz
120.00-121.450	-125	-6	121.5 MHz
121.450-121.485	-145	-26	121.5 MHz
121.485-121.515	-150	-31	121.5 MHz
121.515-121.550	-145	-26	121.5 MHz
121.550-123.000	-125	-5.9	121.5 MHz
123.000-125.000	-100	19.2	121.5 MHz
236.000-240.000	-100	24.9	243.0 MHz
240.000-242.925	-125	0	243.0 MHz
242.925-242.975	-145	-20	243.0 MHz
242.975-243.025	-150	-25	243.0 MHz
243.025-243.075	-145	-20	243.0 MHz
243.075-246.000	-125	0.1	243.0 MHz
246.000-250.000	-100	25.3	243.0 MHz
385.100-401.100	-100	29.4	406.05 MHz
401.100-405.900	-125	4.5	406.05 MHz
405.900-406.000	-145	-15.5	406.05 MHz
406.000-406.100	-150	-20.5	406.05 MHz
406.100-406.200	-145	-15.5	406.05 MHz
406.200-411.000	-125	4.6	406.05 MHz
411.000-425.000	-100	29.9	406.05 MHz
396.000-401.500	-125	4.4	401.65 MHz
401.500-401.600	-145	-15.6	401.65 MHz
401.600-401.700	-150	-20.6	401.65 MHz
401.700-401.800	-145	-15.6	401.65 MHz
401.800-406.000	-125	4.5	401.65 MHz

* E-field limits have been calculated by METOP and are for reference only. The following formula has been applied for translating Power levels to Field strength levels.

$$E[dB\mu V/m] = P[dBm] - Gr[dBi] + 20\log(f[Hz]) - 42.7$$

where P is the received power, Gr is the gain of the receiving antenna and f is the frequency. Note that Gr has arbitrarily been set to 0 dB (isotropic) in calculating the above levels. E-field limits would have to be adjusted to reflect actual test antenna characteristics.

- g. Antenna, Double-Ridged Guide Antenna, Electro-Metrics RG180, 1-18 GHz
- h. Signal Analyzer, HP 71210C with HP 70620 Series Preamplifier
- i. Amplifier, HP 461A, or equivalent
- j. Computer, HP 9836
- k. Printer, HP 2673A
- l. Plotter, HP 7090A
- m. Filter box, Aerojet, T-1289992-1.

3.4.6.2 *Limits*

3.4.6.2.1 *Allowable limits.* The limits of the emissions shall conform to the requirements of MIL-STD-461C. The limits are shown in Figures 6 and 7. Measurements shall be made over the frequency range from 20 kHz to 1 GHz for broadband emissions and from 14 kHz to 2 GHz for narrowband emissions. The appropriate antenna and other pertinent factors are automatically included in the computer EMI test routines. The METOP instrument shall meet the electric field radiated emissions as shown in Figure 8. The limits provided in Figure 8 are for information only. Data will be recorded but will not be compared against the limits. There is no pass/fail requirement.

3.4.6.3 *Test procedure*

3.4.6.3.1 *Preparations*

1. Connect the test equipment as shown in Figure 9 with the antenna in front of either of the two units (A1 or A2), one meter away at the point of maximum interference. Fill in Equipment Log on TDS 2.

NOTE

In order to reduce ambient emissions or obtain a profile of the electric-field ambient emission spectrum, or both, and at the discretion of the test engineer, the test set can be positioned inside the test enclosure. The interconnecting cables shall be shielded or placed inside a shielded box to reduce cable length and radiations.

2. Repeat Steps 2, 3, 4, and 5 of 3.4.5.3.1.

3.4.6.3.2 *Test steps*

1. Connect the antenna to the appropriate amplifier to the receiver equipment. Verify that the AMSU interface cables used for monitoring are shielded.
2. Perform the system calibration of the HP8566 spectrum analyzer.
3. Using the HP8566, automatically scan all narrowband data from 14 kHz to 1 GHz, switching the appropriate antenna and amplifier throughout the frequency range. Set the computer to print the CRT presentation with limits.
4. All data should be below the specification limit of Figure 6. Record compliance with emission limit requirements on TDS 2. If any emissions are observed to exceed the limit line, set the computer to print the measured levels.

Figure 6. Radiated Narrowband Limits for Electric-Field Emission Produced by Instrument

Figure 7. Radiated Broadband Limits for Electric-Field Emissions Produced by Instrument

Figure 8. Radiated Narrowband Limits for Electric Field Emissions METOP Only

14 kHz to 10 GHz Antennas

Manufacturer	Model	Frequency Range
EMCO	3301B Rod	14 KHz - 30 MHz
Electro-Metrics	BIA-25 Biconical	20 MHz - 200 MHz
Electro-Metrics	LCA-25 Log Conical	200 MHz - 1 GHz
Electro-Metrics	RG-180 Horn	1 GHz - 18 GHz

Figure 9. RE02 Test Setup

5. Request all broadband data from 14 kHz to 1GHz from the computer. Plot the CRT presentation with limits.
6. All data should be below the specification limit of Figure 7. Record compliance with emission limit requirements on TDS 2. If any emissions are observed to exceed the limit line, set the computer to print the measured levels and perform ambient radiated emission tests to determine the source of the radiated emission as indicated in Step 7.
7. Turn off power to the AMSU-A power supplies. Perform a frequency scan throughout the frequency range that exceeded the limits. Turn off power to the computer, display, and printer and repeat the frequency scan through the previously tested frequency range. Print all measured ambient levels.
8. Frequencies detected to be generated from the test set components or generated by outside sources, or both, will be compared with emissions radiating from the AMSU-A equipment. Ambient frequencies will be deleted from the radiated emission of the AMSU-A equipment, as being generated outside the unit under test. The remaining frequencies should be below the specification limits.
9. Set up the double-ridged guide horn antenna one meter from the point of maximum radiation.
10. Calibrate the spectrum analyzer, HP8566.
11. Sweep throughout the frequency range of 1 GHz to 2 GHz recording the observed narrowband emission levels.
12. All data should be below the specification limit of Figure 6. Record compliance on TDS 2.
13. Repeat Steps 3 through 12 with the instrument isolated from the ground plane.
14. Activate the HP 70620 with the series amplifier. Program the analyzer for noise averaging to a minimum of eight times. Verify that the sensitivity noise level is at or below the required dBm level indicated in the list of additional discrete frequencies.
15. Connect the equipment of Step 14 to the biconical antenna and measure level at 121.5 MHz. Record on TDS 2.
16. Connect the equipment to the log conical antenna and measure level at 243 MHz, 401.65 MHz, and 406.05 MHz. Record on TDS 2.
17. The measurements of Steps 15 and 16 should be at ambient level and no narrowband frequencies above the maximum level should be detected at those frequencies.
18. Program the signal analyzer for the frequency range of 2010 to 2040 MHz. Verify that the sensitivity of the equipment meets -120 dBm throughout the 2010 to 2040 MHz range.
19. Connect the equipment of Step 18 to a double-ridged horn antenna and record the levels at the frequency range and specific frequency described in Step 18. Record on TDS 2.
20. The measurements of Step 19 should be at ambient level and no narrowband frequencies should be detected at the specified frequencies.
21. Repeat Steps 15 and 16 without the amplifier and perform a measurement of the remaining frequencies on the list of additional frequencies in paragraph 3.4.6 and Figure 8. Record on TDS 2.

22. Connect the equipment to the biconical antenna and measure the SAR frequency levels at 118.0 - 121.4 MHz and 121.5 - 125.0 MHz. Record on TDS 2.
23. Connect the equipment to the log spiral antenna and measure the SAR frequency levels specified on TDS 2, starting with the 236.0 - 240.0 MHz frequency range. Record results on TDS 2.

3.4.7 RE04 test. This test is performed to determine the level of magnetic radiation at a distance of 1 meter from the AMSU-A instrument as specified in paragraph 3.5.2 of IS-3267415.

3.4.7.1 Test equipment. The following equipment or equivalent is required for this test:

- a. Gauss Meter Model 9901 with Magna Probe BEL-MOX-99-2506, FW Bell (rental), or Analog Voltmeter, HP 4288, with 3529A Magnetometer Probe.

3.4.7.2 Test limits. The AMSU instrument shall not generate magnetic fields that exceed 100 gamma (1 milligauss) at a distance of one meter from the center of the instrument in all directions. The METOP requirement shall not generate magnetic fields that exceed 130 kgamma (1.3 gauss) at a distance of one meter from the center of the instrument in all directions. The limit for METOP is for information only. Data will be recorded but will not be compared against the limits. There is no pass/fail requirement.

3.4.7.3 Test procedure

3.4.7.3.1 Preparations (magnetic field)

1. Place the AMSU instrument in an area that provides sufficient earth magnetic field cancellation that the ambient of 1 milligauss one meter from the center of the test area is obtainable (see Figure 10).
2. Allow the gauss meter to warm up properly and calibrate the meter. Fill in equipment log on TDS 3.
3. Direct the gauss meter probe toward the area that produces the lowest gauss level measurement, below the limit and at approximately at mid height of the instrument under test.

3.4.7.3.2 Test steps

1. Move the AMSU instrument, on the wooden fixture, toward the probe to a distance of one meter from the center of the instrument to the point of the probe.
2. Rotate the instrument until the connector side is facing the probe.
3. Measure the magnetic field emissions of the AMSU instrument with the unit deactivated. Collect test data of the magnetic field intensity by rotating the equipment clockwise and taking measurements at 30 degree intervals, as a minimum. Record results and note level and location on TDS 3.
4. At the points of maximum detection, repeat measurements with the instrument activated and operating in the IN ORBIT mode. Note difference in level. If levels exceed previous measurement levels, repeat Step 2 with the unit activated.
5. Review recorded data. If measurements are within the 100 gammas (1 milligauss) at one meter from the instrument in all directions, the test is completed. If measurements exceed the limit, measure the ambient and proceed to Step 6 or Step 7.

Figure 10. RE04 Test Setup

NOTE

Measurements that exceed the 1 milligauss limit because the interconnecting cable reduces the distance between the test probe and the UUT are exempted from this requirement. (Waiver/Deviation Request/Approval, D016.)

6. In the event that the ambient level does not meet the requirement and the ambient cannot be reduced further due to facility or area limitations, a minimum of three correlatable measurements shall be made in the axis of maximum field intensity but at a shorter distance than 1 meter. The measured levels shall be able to provide an approximate field intensity when projected to the 1-meter distance requirement. Measurements and calculations of the ambient magnetic field shall be recorded and shall be part of the test data package.
7. In the event that the measured level exceeds the one milligauss required level, the measurements shall be made to determine the location of the center of the magnetic dipole moment producing the out-of-limit condition. A minimum of three correlatable measurements along an axis are required to plot the magnetic field.
8. Record all measured data, indicating level and position of the probe. Note opposing magnetic dipole moments, shield leakage, and all other pertinent data.
9. Repeat measurement within ten inches above and below the mid-height probe placement of 3.4.7.3.1 (3).

3.4.8 CS01/CS02 test. This test shall be used to determine if the AMSU system is susceptible to electromagnetic energy in the frequency range of 30 Hz to 150 kHz injected in the main power leads. The instrument shall be operated in the IN ORBIT mode. In addition, the METOP shall meet susceptible energy in the frequency range of 100 kHz to 50 MHz.

3.4.8.1 Test equipment. The following equipment or equivalent (as defined in Table A-1) is required for this test:

- a. Isolation Transformer, Solar Type 6220-1A
- b. Amplifier, McIntosh Model MC-2205
- c. Oscilloscope, Tektronix 7623
- d. Signal Generator*, HP 83623A
- e. Function Generator, HP 3325
- f. Coupling Capacitor*, Solar 7415-1
- g. Digital Voltmeter, HP 3455A.
- h. Attenuators*, HP 355 C/D
- i. Oscilloscope*, Tek TDS 380
- j. Amplifiers*, Ailtech 5001, 5020B
- k. Current Probe*, Ailtech 91550-2B
- l. Spectrum Analyzer*, HP 8566
- m. Decoupling Coil*, 20 μ H
- n. LISN* per Figure 1
- o. Filter box, Aerojet, T-1289992-1.

3.4.8.2 Test limits. The performance characteristics of the AMSU instrument shall be met when the voltage of Figure 11 in the frequency range of 30 Hz to 150 kHz is applied to the input power terminals. The METOP shall be subject to a common mode sinusoidal noise of 300 mVp-p in the frequency range of 100 kHz to 50 MHz. The limit for METOP is for information only. Data will be recorded but will not be compared against the limits. There is no pass/fail requirement.

3.4.8.3 Test procedure

3.4.8.3.1 Preparations

1. Connect the test equipment as shown in Figure 12. Fill in Equipment Log on TDS 4.
2. Repeat Steps 2, 3, 4, and 5 of 3.4.5.3.1.
3. Cognizant of the power line under test, perform the functional test for susceptibility as indicated in Table V.

* For METOP Test step 10 only.

Figure 11. Ripple and Noise Susceptibility Limit

Breakout Box Setup Configuration									Open Corresponding Switch	
Test Type	B/O Box Terminal Jumpers				Transformer tp B/O Box Connection					
	From	Row Color	To	Row Color	From	Row Color	To	Row Color		
+28 V Main Load	1	Red	2	Red	1	Red	1	White	1, 2	
	1	White	2	White						
28 V Main Load Rtn	3	Red	4	Red	3	Red	3	White	3, 4	
	3	White	4	White						
+28 V Pulse Load	5	Red	6	Red	5	Red	5	White	5, 6	
	5	White	6	White						
28 V Pulse Load Rtn	7	Red	8	Red	7	Red	7	White	7, 8	
	7	White	8	White						
+28 V Analog Telemetry					9	Red	9	White	9	
28 V Analog Telemetry Rtn					10	Red	10		10	

Figure 12. CS01/CS02 Test Setup (Differential Mode)

Table V. Functional Test for Susceptibility

Power line Under Test	Specification	Test Type	Data Monitor Point
Main Load Bus	AE-26156/3 (A1) AE-26156/4 (A2)	Relative Radiometer NE Δ T Measurements	- -
Pulse Load Bus	AE-26156/3 (A1) AE-26156/4 (A2)	- -	Warm Calibrate ** Warm Calibrate **
Analog Telemetry Bus	AE-26156/3 (A1) AE-26156/4 (A2)	- -	Full Print Data page 8 Full Print Data page 3
+10V Interface Bus	AE-26156/3 (A1) AE-26156/4 (A2)	Scanner Commands Verification (Step 1 only)	Scanner A1/A2 Power Scanner A2 Power

CAUTION

Do not connect the isolation transformer on the high side and return lines simultaneously, without loading the secondary winding of the transformer not used for test with a 1 ohm resistor.

3.4.8.3.2 Test steps

1. Apply power to all the test equipment except the power amplifier.
2. Set function generator to scan from 30 Hz to 150 kHz, with the following frequency ranges being swept at a rate of 90 seconds per range:

30 - 300 Hz	3.0 - 30.0 kHz
300 Hz - 3.0 kHz	30.0 - 150.0 kHz.
3. Set the scan mode to SINGLE Sweep.
4. Monitor the output signal with an oscilloscope and adjust the output level to the indicated voltage requirement.
5. Set the appropriate switches to the OFF position on the breakout box.
6. Apply power to the power amplifier and adjust the amplifier and generator levels to obtain levels on the display that are equal to or greater than the levels indicated in Figure 11.
7. Monitor the test sample for errors and at selected frequencies get a printout of the monitored channel's performance data.
8. Record on TDS 4 the completion of scanning of each function generator's tuning range. Record each frequency at which a failure occurs and the interference level threshold for failure.
9. Repeat Steps 5 through 8 on the power leads listed in 3.4.4.2.c, or Table A-III of Appendix A, or both.
10. The METOP instrument shall be connected as shown in Figure 13 or 14.

* One sample of room ambient NE Δ T will be measured. Alternatively, distribution measurements are to be performed.

** From STE Digital A Data Command menu

Figure 13. CS02 Common Mode Noise Test on the +28V Main Bus

Figure 14. CS02 Common Mode Noise Test on the +10V Interface Bus

11. Apply the power to the test equipment.
12. Sweep the function generator from 100 kHz to 50 MHz in a minimum of five (6) frequency bands. Each frequency range shall be swept at a 90 second rate. Perform data collection test in accordance with Appendix C during the test sweep (obtain a baseline before starting the frequency scans, and ensure that the level is as low as possible).
13. Monitor the output signal with an appropriate meter and adjust the level as required. Record on TDS 5 the completion of scanning of each function generator and voltage level range.
14. Monitor the test sample for errors.
15. Record on TDS 5 the completion of each range and each frequency at which a failure occurs and the threshold level in case of a failure to meet the requirement.

3.4.9 CS06 test. This test shall be used to determine if the AMSU system is susceptible to electromagnetic energy from a spike appearing on its ungrounded power leads. The instrument shall be operated in the IN ORBIT mode.

3.4.9.1 Test equipment. The following equipment or equivalent (as defined in Table A-1) is required for this test:

- a. Transient Generator, Solar 7054-1
- b. 10 μ F Feedthrough Capacitors, Solar 6512-106R. METOP will use LISN's as shown in Figure 1.
- c. Oscilloscope, Tektronix 7623.

3.4.9.2 Test limits. No failures shall occur when the voltage waveform of Figure 15 is applied to the input power line, at the level and polarity indicated below:

<u>Bus</u>	<u>Spike Level</u>
+28V Main Bus	10V positive, 12V negative
+28V Telemetry Bus	10V positive, 12V negative
+28V Pulse Load Bus	8V positive, 13V negative
+10V Interface Bus	1V positive, 1V negative

3.4.9.3 Test procedure

3.4.9.3.1 Preparations

1. Adjust the generator to produce the spike of Figure 15 to the level specified in 3.4.9.2.
2. Connect the test equipment per Figure 16. Place switches 1 through 23 on the Breakout Box to the OPEN position. Fill in Equipment Log on TDS 6.
3. Repeat Steps 2, 3, 4, and 5 of 3.4.5.3.1.
4. Cognizant of the power line under test, perform the functional test for susceptibility as indicated in Table III.

$-E$ = AS SPECIFIED IN 3.4.9.2.
 t = 10 MICROSECONDS.

Figure 15. CS06 Transient Waveform

Figure 16a. CS06 Test Setup (Differential Mode)

3.4.9.3.2 Test steps

1. Apply the spike at a 10 pps rate for 5 minutes to the main power line.
2. Monitor the test sample for errors.
3. Reverse the spike polarity and level as indicated in 3.4.9.2. Repeat Steps 1 and 2.
4. Record the completion of each test on TDS 6. If failures occur, record the pulse amplitude and polarity.
5. Repeat Steps 1 through 4 on the main power return line.
6. Repeat Steps 1 through 4 on the other lines listed in 3.4.4.2.d or Table A-III of Appendix A, as applicable.
7. Configure the test equipment as shown in Figure 16b. Close all switches on the Breakout Box, leaving switches 12, 13, 24, and 25 in the OPEN position.
8. Repeat steps 1 through 4.

Figure 16b. CS06 +10 V Interface Test Setup (Differential Mode)

3.4.10 Radiated susceptibility test, RS03. This test shall be used to determine if the AMSU system is susceptible to electric fields. The instrument shall be operated in the IN ORBIT mode.

3.4.10.1 Test equipment. The following equipment or equivalent is required for this test:

- a. Spectrum Analyzer, HP 8566B
- b. Frequency Synthesizer, HP 3325
- c. Amplifier, AIL-Tech Models 5001, 5020B, 3552B, and 15100B; AR 100W1000M7 (Rental)
- d. Travelling Wave Tube Amplifier (TWTA), Varian Models VZL-6941K1, VZS 6951K2, VZC 6961K2, VZM 6991K3; VZL-6942G1, VZC6962G1 (Rentals)
- e. Field Strength Sensor, IFI EFS-1
- f. Antenna, AIL-Tech Models 96003, 93490-1, and 93491-2
- g. Antenna, Ridged Guide, Electro-Metrics Model RGA-180
- h. Signal Generator, HP 83623A
- i. Digital Voltmeter, HP 3455A
- j. Electric Field Monitor, Amp Research, FM 2000, 10kHz to 1 GHz, with electric field probe PM 2000 (rental)

3.4.10.2 Test limits. The test will be performed at the radiated levels and frequencies indicated in Table VI. If susceptibility is observed at any frequency, the field strength will be lowered to determine the threshold level.

Table VI. Additional Test Frequencies

Frequency (MHz)	METSAT		METOP**	
	AMSU-A1 (V/M)	AMSU-A2 (V/M)	AMSU-A1 (V/M)	AMSU-A2 (V/M)
137.35/137.77		5.0		
137.1 *	-	-	37	32
137.5/137.62	6.9	9.0	-	-
468 *	-	-	12	18
1544.5 *	10.5	22.5	14	31
1698.0	9.8	22.5	-	-
1701.3 *	-	-	38	52
1702.5	4.8	8.2	-	-
1707.0	18.4	13.1	-	-
2230.0 *	-	-	10	10
2247.5	4.3	10.3	-	-
5250.0 *	-	-	38	45
7800.0 *	-	-	8	13
14 kHz/500 MHz *	1	1	1	1
500 MHz/1 GHz *	-	-	1	1
1/18 GHz *	-	-	2	2
* Requires modulation of the applied electric field as indicated below:				
14 kHz to 18 GHz	Amplitude modulated by a sine wave at 1 kHz with a modulation depth of 50%.			
137.1 MHz	Pulsed at 38.25 kHz PRF, 50% duty cycle.			
468 MHz	Pulsed at 1 kHz PRF, 50% duty cycle.			
1,544.5 MHz	FM, 400 kHz peak, deviation modulation index M = 1.			
1,701.3 MHz	Pulsed 2.25 MHz PRF, 50% duty cycle.			
2,2230 MHz	Pulsed 4 kHz PRF, 50% duty cycle.			
5,250.0 MHz	Pulsed width = 8.22 ms, chirp rate = -50 kHz/ms, PRF = 4.94 and pulsed width = 10.32, chirp rate = ±24 kHz/ms, PRF = 4.94.			
7,800.0 MHz	Pulsed 35 MHz PRF, 50% duty cycle.			
** For information only. There are no pass/fail requirements.				

14 kHz to 10 GHz Radiating Antennas

Manufacturer	Model	Frequency Range
AIL Tech	96003	14 kHz - 30 MHz
AIL Tech	96002	30 MHz - 200 MHz
AIL Tech	93490-1	200 MHz - 1 GHz
Electrometrics	RGA-180	1 GHz - 18 GHz

14 kHz to 10 GHz Power Amplifiers

Manufacturer	Model	Frequency Range
AIL Tech	5001	14 kHz - 10 MHz
AIL Tech	5020B	1 MHz - 200 MHz
AIL Tech	3552B	100 MHz - 520 MHz
AIL Tech	15100B	500 MHz - 1 GHz
Varian	VZL-6941K1	1 GHz - 2 GHz
Varian	VZS-6951K2	2 GHz - 4 GHz
Varian	VZC-6961K2	4 GHz - 8 GHz
Varian	VZM-6991K3	8 GHz - 18 GHz

Figure 17. RS03 Test Setup, 14 kHz to 25 MHz

3.4.10.3 Test procedure

3.4.10.3.1 General. The output of the oscillator drives a power amplifier and antenna. For frequencies below 200 MHz a field-strength sensor determines the field strength and maintains manual leveling of the power amplifier output. Above 200 MHz the output of the power amplifier shall be set, when possible, to develop 2 volts per meter up to 500 MHz. If susceptibility occurs, the level will be lowered to determine the threshold.

3.4.10.3.2 Preparations

1. Connect the test equipment as shown in Figure 17 using the broadband antenna, AIL-Tech 96003. Fill in Equipment Log on TDS 6.
2. Repeat Steps 2, 3, 4, and 5 of 3.4.5.3.1.
3. Perform the functional test for susceptibility in accordance with the Relative Radiometer NEΔT Measurements procedures specified in AE-26156/3 or AE-26156/4.

3.4.10.3.3 Test steps

1. Power on all test equipment for a 15-minute warmup.
2. Set the generator level control to REAR ONLY.
3. Adjust the signal generator for a 160mV output signal.
4. Adjust the electric field monitor to read the generated electric field on all three orthogonal axes. Since the sensitivity presented in the monitor's digital display is 1.3 V/m minimum, adjust the electric field to read 2 V/m.
5. Adjust the level to that indicated in Table VI throughout the frequency range of 14 kHz to 1 MHz, in the following steps:

14 - 50 kHz 100 - 500 kHz

50 - 100 kHz 300 - 1000 kHz.

6. As the frequency range is being scanned at a 90 sec rate, check the leveling by varying the signal drive to the power amplifier.
7. At 1 MHz, switch the antenna FUNCTION switch to the 1 to 30 MHz range.
8. Adjust the level control to the power amplifier to the required level in the frequency range of 1 MHz to 30 MHz in the following steps:

1 - 5 MHz 5 - 10 MHz 10 - 30 MHz.

9. Monitor the Function Test for each channel by performing data collection test in accordance with Appendix C. Record observation on TDS 7 and attach a printout of the monitored channels' performance data (obtain a baseline before starting the frequency scans, and ensure that the level is as low as possible).
10. Replace the broadband antenna with the biconical antenna.
11. With the frequency set at 30 MHz, adjust the output of the power amplifier for 2 volts per meter.
12. Operate the test equipment controls during the scan. Monitor the test sample for errors while scanning the frequency range between 25 and 200 MHz and recording the data as required in Step 9, using the following frequency ranges:

30 - 50 MHz 50 - 100 MHz 100 - 200 MHz.

13. Connect the test equipment as shown in Figure 18. Calibration of a radiated level with a second antenna is very time consuming and is only used for special critical frequencies. In cases where the power amplifier gain is relatively flat, the electric field will be calibrated for the required voltage at the lowest level of the

frequency spectrum. To monitor or calibrate radiated level, or both, use the electric field monitor and antennas indicated in 3.4.6.

NOTES:

1. DC BOND OF GROUND PLANE TO ENCLOSURE SHALL NOT EXCEED 2.5 MILLIOHMS.
2. MOST CABLES HAVE BEEN OMITTED FOR CLARITY.

Figure 18. RS03 Test Setup, 200 MHz to 12 GHz

14. Adjust the gain of the amplifier for 2 volts per meter field strength at 200 MHz. Monitor the level with the electric field monitor or by monitoring the power input to the antenna via a directional coupler. Set the level using the following equation:

$$P_T(\text{dBm}) = [30 \text{ dB} + 10 \log_{10}(4\pi) + 20 \log_{10} R + 20 \log_{10}(E) - 10 \log_{10}(377) - 10 \log_{10}(G_T)] \cdot [\text{Directional Coupler / Cable Losses}]$$

Where: P_T = Transmitter power (dBm)

R = Distance from transmitting antenna (meters)

E = Required electric field intensity (volts/meter)

G_T = Gain of the transmitting antenna.

(Precalculated charts for the desired field strength are available from the Test Engineer.)

15. Make a scan at this level while monitoring the spectrum analyzer to maintain the required power level in dBm.
16. If susceptibility occurs, reduce the output power of the amplifier and determine the susceptibility threshold. Record all pertinent information on TDS 7.
17. Connect the log conical (or horn) antenna as shown on in Figure 18 and connect to the appropriate amplifier.
18. Adjust the gain of the amplifier to the power level indicated in the precalculated chart to produce 2 volts per meter from 200 to 500 MHz (18 GHz for the METOP instrument) or use the calibration procedure of Step 13.
19. If susceptibility occurs, reduce the output power of the power amplifier and determine the susceptibility threshold. Record all pertinent information on TDS 7.
20. Using the appropriate antenna, repeat susceptibility testing at the specific levels and frequencies indicated in Table VI, through the frequency range of 500 MHz to 1 GHz.
21. Obtain a plot of the spectrum analyzer "Peak Search" presentation indicating frequency and attained level.
22. Record the completion of the frequency band and appropriate information in the event of a susceptibility indication.
23. Continue the test with the same set up throughout the frequency range of 500 MHz to 1 GHz at 2 volts/meter level. Use the following frequency bands:

200 – 500 MHz

500 – 1000 MHz

24. Using the horn antenna and the TWT amplifiers, cover the frequency range of 1 to 18 GHz. Use frequency range steps that provide a reasonably flat response of the amplifier.

25. Using the appropriate antenna and amplifier, perform the special frequency test indicated in Table VI.
26. Calibrate the applied field with the two antenna methods.
27. Supply the indicated frequency at the required level for 90 seconds. At the mid interval of the applied time, rotate the antenna to the other polarization.
28. Record the completion of the frequency test and all appropriate information in the event of a susceptibility indication.
29. Repeat steps 25 through 28 for the other discrete frequencies.

4. QUALITY ASSURANCE PROVISIONS

4.1 Responsibility for inspection. Aerojet Quality Assurance shall inspect in accordance with the requirements of this test procedure, S-480-79, and S-480-80. Quality Control shall verify all test set-ups prior to start of test. Bonded software shall be used for all tests and shall be obtained from Quality Control. Quality Control shall review all test data for conformance to success criteria. The test data shall include test limits. For tests that satisfy requirements from S-480-80 on protoflight and flight units, customer representatives shall be invited to monitor tests and shall be invited to review the data and show approval on the test data sheets.

4.1.1 Test facilities. Unless otherwise specified, the examinations and tests described herein shall be conducted at Aerojet Electronic Systems Division, Azusa facility.

4.2 Monitoring procedures. All tests shall be monitored by Quality Assurance.

4.2.1 Test equipment. Test equipment calibration procedures shall comply with the requirements of MIL-STD-45662.

4.3 Monitoring procedures for materials. Not applicable.

4.4 Certification. Certification for handling ESD-sensitive equipment is required for all personnel working on the assembly and test of the AMSU-A instrument per STD-2454.

4.5 Test methods

4.5.1 Accept-reject criteria. The accept-reject criteria for each examination or test shall be as specified in the data sheets included in each phase of the applicable test procedure. The test results shall be recorded on the data sheets to demonstrate compliance with the applicable specification requirements. Methods of analysis shall be appropriate for the parameters being inspected. It shall be the responsibility of Aerojet to review the test data and determine conformance of the unit under test to the performance requirements contained in S-480-80 and this specification.

In the event of a failure during any phase of this test procedure, the test activity shall record the required information on the Test Anomaly Report (TAR) and alert the design assurance and quality engineers. Except for Conducted and Radiated Emission (CE and RE) tests, which are non-destructive, the testing must be stopped until a complete description of the observed anomaly failure is documented and a Failure Analysis Strategy (FAS) is formulated, documented, and implemented to preclude loss of information or evidence that may facilitate determining the failure cause. The full spectrum of interference is required in order to formulate a plan of action. Conducted and Radiated Susceptibility (CS and RS) tests can be continued only after assuring that the data collection activity will not damage or stress any of the components of the AMSU-A instrument. The cognizant reliability engineer, quality assurance engineer, and the system or responsible test engineer shall jointly develop the FAS. Analysis and reporting shall be performed per Aerojet procedures.

4.5.2 General. A test report shall be prepared in accordance with paragraph 4.5.2.1.1 at the successful completion of testing. This report shall include all data sheets associated with the tests on the unit plus the data reduction and analysis of specific parameters required by each applicable test procedure specification obtained from screen printouts and plots, and oscilloscope photographs or magnetic recordings. During tests in which a CRT screen is to be printed or plotted and retained as a data sheet, the following annotation shall be applied:

Engineer: _____
(Signature) _____ (Date)

Quality Control: _____
(Signature) _____ (Date)

Customer representative: _____
(Signature) _____ (Date)

Test Paragraph No.: _____

Subassembly/Assembly Serial No.: _____

The report shall also include a certification statement.

4.5.2.1 *Acceptance test reports*

4.5.2.1.1 *Format.* The acceptance test report shall be prepared and shall include, as a minimum, the following:

- a. Title page
- b. Table of contents
- c. Summary
- d. Reason for test
- e. Abstract, conclusions, and recommendations
- f. References
- g. Results of tests
- h. Test data.

4.5.2.1.2 *Test data.* The test data included in the report shall be that which was obtained in the tests specified herein and recorded on the Test Data Sheets (TDS), printouts, and plots.

5. PREPARATION FOR DELIVERY

Not applicable.

6. NOTES

6.1 Intended use. The intended use of this process specification is to establish the general methods and acceptance test procedures for Electromagnetic Interference (EMI), Electromagnetic Radiation (EMR), and the Electromagnetic Compatibility (EMC) procedures for the Advanced Microwave Sounding Unit - A (AMSU-A).

6.2 Abbreviations and acronyms

AF	Audio frequency
AM	Amplitude modulated
AMSU	Advanced Microwave Sounding Unit
BB	Broadband
CCA	Card cage assembly
CCS	Computer Controlled System
CE	Conducted emissions
C.P.	Current probe
CRT	Computer screen display
CS	Conducted susceptibility
DMM	Digital multimeter
EMC	Electromagnetic compatibility
EMI	Electromagnetic interference
EMISM	Electromagnetic interference safety margin
EMR	Electromagnetic radiation
ESD	Electrostatic discharge
FAS	Failure Analysis Strategy
FM	Frequency modulated
Gen.	Generator
GFE	Government furnished equipment
GIIS	General Instrument Interface Specification
GSE	Ground Support Equipment
GSFC	Goddard Space Flight Center
HF	High frequency
HP	Hewlett-Packard
IFI	Instruments for Industry
ITT	International Telephone and Telegraph
LPT	Limited Performance Test
RE	Radiated emissions
RF	Radio frequency
RIFI	Radio interference, field intensity

RMS	Root mean squared
RS	Radiated susceptibility
SHF	Super high frequency
SP6T	Single pole six throw
SS	Solid state
STE	Special Test Equipment
TAR	Test Anomaly Report
TDS	Test Data Sheet
TWTA	Traveling wave tube amplifier
UHF	Ultra high frequency
UIIS	Unique Instrument Interface Specification
VHF	Very high frequency

6.3 Changes. The outside margins of this document have been marked to indicate where modifications, deletions, or additions have been made since the previous issue. This is done solely as a convenience to users, who are cautioned to evaluate the requirements of this change and the parent standard based on the entire content as written, regardless of the marginal notations and relationship to the previous issue.

10. APPENDIX A TEST INSTRUMENTATION

10.1 *Test instrumentation list for EMI/EMC tests.* See Table A-I.

10.2 *Relative gain of the 94455-1 biconical antenna.* The calculations for the gain of the biconical antenna and the tuned dipole antenna referenced to an isotropic radiator are listed in Table A-II. The delta difference of the antennas will provide relative gain of one with respect to the other. The basic equation for the calculations is:

$$\Delta F = 20 \log_{10} f - 10 \log_{10} G - 29.78 \text{ dB/m}$$

Where: ΔF = Antenna Factor in dB

f = Frequency in MHz

G = Gain (power ratio).

Table A-I. Test Instrumentation List for EMI/EMC Tests (Sheet 1 of 2)

Description	Manufacturer*		Test Usage			
	Name	Model No.	CE	RE	CS	RS
<u>EMI RECEIVERS AND METERS</u>						
Calculator-Controlled EMI System, 20 Hz-1 GHz, containing:	Electro-Metrics	CCS-125	X	X		
(a) EMC-10 (20 Hz-50 KHz) (b) EMC-25 (10 KHz-1 GHz) (c) HP-9836S Calculator (d) DIU-125, DSA-125, SU-125						
Spectrum Analyzer	Hewlett-Packard	8566B 9836 7090A 2678A	X			
(a) Computer						
(b) Plotter						
(c) Printer						
Oscilloscope	Tektronix	7626		X		
Gauss Meter	FW Bell	9901	X			
Digital Voltmeter	Hewlett-Packard	3455A		X		
<u>SIGNAL GENERATORS/SOURCES</u>						
Function Generator,	Hewlett-Packard	3325		X		
Sweep Generator	Wiltron	6659B		X		
RF Transient Generator	Solar Elect.	7054-1		X		X
<u>AMPLIFIERS</u>						
Audio Amplifier, 200W, 20 Hz-50 KHz	McIntosh	MC-2205				
Broadband Linear, 50W, 10-KHz-10 MHz	AIL Tech.	5001				X
Broadband Linear, 50W, 1-200 MHz	AIL Tech.	5020B				X
Broadband Linear, 50W, 100-520 MHz	AIL Tech.	3552B				X
Broadband Linear, 20W, 500-1000 MHz	AIL Tech.	15100B				X
TWTA, 20W, 1-2 GHz	Varian	VZL-6541K1				X
TWTA, 20W, 2-4 GHz	Varian	VZS-6951K2				X
TWTA, 20W, 4-8 GHz	Varian	VZC-6961K2				X
TWTA, 20W, 8-18 GHz	Varian	VZM-6991K3				X
Amplifier (Amp), 2-4 GHz	MITEQ	AFD3-025-035-13				
Amp, 60dB, 100-450 MHz, NF -1.5 dB	RHG Elect Lab	1CLW300CM	X	X		
Amplifier	Hewlett-Packard	HP8447F	X	X		
Amplifier	Hewlett-Packard	HP-461A	X	X		
<u>CURRENT FIELD PROBES</u>						
RF Current Probe, 30 Hz-100 MHz	AIL Tech	91550-1	X			
Magnetometer Probe	Hewlett-Packard	3529A		X		
Magna Probe	FW Bell	BEL-MOX-99-2506		X		
Field Strength Sensor	IFI	EFS-1				X
<u>ANTENNAS</u>						
Double-Ridged Guide Antenna, 1-18 GHz	EMCO	3115		X		X
Log Spiral Antenna, 0.2-1 GHz	AIL Tech.	93490-1		X		X
Biconical Antenna, 20-200 MHz	AIL Tech.	96002		X		
Parallel Element, 200V/m, 10 KHz-30 MHz	AIL Tech.	96003				X
Log Spiral, 200 MHz to 1 GHz	EMCO	3101		X		
Biconical, 20-200 MHz	EMCO	3104		X		
Active Rod w/Counterpoise, 14 kHz to 30 MHz	EMCO	3301B		X		

* Or Equivalent

Table A-I. Test Instrumentation List for EMI/EMC Tests (Sheet 2 of 2)

Description	Manufacturer*		Test Usage			
	Name	Model No.	CE	RE	CS	RS
COUPLERS						
Isolation Transformer, 30 Hz-250 kHz	Solar Elect.	6220-1A			X	
PERIPHERALS						
Oscilloscope Camera	Tektronix	C12		X		
Intelligent Serial Thermal Printer	Hewlett-Packard	2673A	X			
ACCESSORIES						
10 μ F Feedthrough Capacitor, 1 KHz-1 GHz	Solar Elect.	6512-106R	X	X	X	
MISCELLANEOUS						
Breakout box	Aerojet	-	X	X	X	X
EMI Filter Box	Aerojet	T-1289992-1	X	X	X	X

* Or Equivalent.

Table A-II. Relative Gain of the 94455-1 Biconical Antenna and a Tuned Dipole

Frequency (MHz)	Gain (Numeric)		
	Biconical	Tuned Dipole	Relative Biconical
25	0.036	1.472	-1.436
30	0.054	1.191	-1.137
50	0.173	1.513	-1.34
70	0.777	1.486	-0.709
100	0.617	1.555	-0.938
150	0.549	1.331	-0.782
200	1.171	1.242	-0.071

Table A-III. EMI/EMC Test Performance Matrix
(Qualification Test)

Test Method & Description	Requirement		+28V Main Bus	28V Main Bus Rtn	+28V Pulsed Bus Load	28V Pulsed Bus Load Rtn	+28V Analog Telemetry Bus	28V Analog Telemetry Bus Rtn	+10V Interface Bus	10V Interface Bus Rtn	+28V Safety Heater	28V Safety Heater Rtn	AMSU-A Instrument
	METSAT	METOP											
CE01 (30 Hz to 20 kHz) DM	X		X X X X X X X X X X X X X X										
CM	X		T T T T T T T T T T T T T T										
CE03 (20 kHz to 50 MHz) DM	X X		X X X X X X X X X X X X X X										
CM	X		T T T T T T T T T T T T T T										
CS01/CS02 (30 Hz to 150 kHz) DM	X		X X X X X X X X X X X X X X										
CS02 (100 kHz to 50 MHz) CM	X		X X X X X X X X X X X X X X										
CS06 (Spike) DM	X X		X X X X X X X X X X X X X X										
RE02 *	X X												X
RE04	X												X
RS03	X X												X

X Test performed on powerline.

T Test performed together with high side and return.

* For Acceptance only, perform electric field radiation frequency range 2010 - 2040 MHz (paragraph 3.4.6) and frequency range of Table IV.

20. APPENDIX B TEST DATA SHEETS

This appendix contains the test data sheets (TDS) for the inspections and test procedures in Section 3.

TDS	Page
1 3.4.5: CE01/CE03 Test	B-2
2 3.4.6: RE02 Test	B-6
3 3.4.7: RE04 Test	B-9
4 3.4.8: CS01/CS02 Test.....	B-12
5 3.4.8 CS02 CM Noise Test	B-16
6 3.4.9: CS06 Test.....	B-18
7 3.4.10: RS03 Test.....	B-20

TEST DATA SHEET 1 (Sheet 1 of 4)
3.4.5: CE01/CE03 Test

Test Setup Verified: _____

Signature

3.4.5.3.1 Step 1: Test Equipment Log

Item	Manufacturer	Model/ Part No.	Aerojet Inventory No.	Calibration Date	Calibration Due Date

3.4.5.3.2: Emission Measurements, 30 Hz to 20 kHz, (DM)

Step	Power Line	Band	Required	Emissions within limits?		Comments/ Observations
				Yes	No	
4	+28V Main Bus	Narrow	See Figures 2 & 3			
4	28V Main Bus Rtn	Narrow	See Figures 2 & 3			
7	+28V Telemetry Bus	Narrow	See Figures 2 & 3			
7	28V Telemetry Bus Rtn	Narrow	See Figures 2 & 3			
7	+28V PLB	Narrow	See Figures 2 & 3			
7	28V PLB Rtn	Narrow	See Figures 2 & 3			
7	+10V Interface Bus	Narrow	See Figures 2 & 3			
7	10V Interface Bus Ret	Narrow	See Figures 2 & 3			
7	Safety Heater	Narrow	See Figure 4			
7	Safety Heater Return	Narrow	See Figure 4			

NOTE: Attach all backup data generated during the test (photos, printouts, plots, test logs, additional comments or observations, etc.) to this data sheet.

Signature/Date

Unit _____

Engineer: _____

Serial No. _____

Quality Control: _____

Shop Order _____ Oper _____

Customer Representative: _____

TEST DATA SHEET 1 (Sheet 2 of 4)
3.4.5: CE01/CE03 Test

Test Setup Verified: _____
Signature _____

3.4.5.3.2: Emission Measurements, 30 Hz to 20 kHz, (CM)

Step	Power Line	Band	Required	Emissions within limits?		Comments/ Observations
				Yes	No	
4	+28V Main Bus	Narrow	See Figure 2			
7	+28V Telemetry Bus	Narrow	See Figure 2			
7	+28V PLB	Narrow	See Figure 2			
7	+10V Interface Bus	Narrow	See Figure 2			

NOTE: Attach all backup data generated during the test (photos, printouts, plots, test logs, additional comments or observations, etc.) to this data sheet.

Signature/Date

Unit _____

Engineer: _____

Serial No. _____

Quality Control: _____

Shop Order _____ Oper _____

Customer Representative: _____

TEST DATA SHEET 1 (Sheet 3 of 4)
3.4.5: CE01/CE03 Test

Test Setup Verified: _____
Signature _____

3.4.5.3.1 Step 1: Test Equipment Log

Item	Manufacturer	Model/ Part No.	Aerojet Inventory No.	Calibration Date	Calibration Due Date

3.4.5.3.2: Emission Measurements, 20 kHz to 50 MHz, (DM)

Step	Power Line	Band	Required	Emissions within limits?		Comments/ Observations
				Yes	No	
4	+28V Main Bus	Narrow	See Figures 2 & 3			
4	28V Main Bus Rtn	Narrow	See Figures 2 & 3			
7	+28V Telemetry Bus	Narrow	See Figures 2 & 3			
7	28V Telemetry Bus Rtn	Narrow	See Figures 2 & 3			
7	+28V PLB	Narrow	See Figures 2 & 3			
7	28V PLB Rtn	Narrow	See Figures 2 & 3			
7	+10V Interface Bus	Narrow	See Figures 2 & 3			
7	10V Interface Bus Ret	Narrow	See Figures 2 & 3			
7	Safety Heater	Narrow	See Figure 4			
7	Safety Heater Return	Narrow	See Figure 4			

NOTE: Attach all backup data generated during the test (photos, printouts, plots, test logs, additional comments or observations, etc.) to this data sheet.

Signature/Date

Unit _____

Engineer: _____

Serial No. _____

Quality Control: _____

Shop Order _____ Oper _____

Customer Representative: _____

TEST DATA SHEET 1 (Sheet 4 of 4)
3.4.5: CE01/CE03 TestTest Setup Verified: _____
Signature _____

3.4.5.3.1 Step 1: Test Equipment Log

Item	Manufacturer	Model/ Part No.	Aerojet Inventory No.	Calibration Date	Calibration Due Date

3.4.5.3.2: Emission Measurements, 20 kHz to 50 MHz, (CM)

Step	Power Line	Band	Required	Emissions within limits?		Comments/ Observations
				Yes	No	
4	+28V Main Bus	Narrow	See Figure 3			
7	+28V Telemetry Bus	Narrow	See Figure 3			
7	+28V PLB	Narrow	See Figure 3			
7	+10V Interface Bus	Narrow	See Figure 3			

NOTE: Attach all backup data generated during the test (photos, printouts, plots, test logs, additional comments or observations, etc.) to this data sheet.

Signature/Date

Unit _____

Engineer: _____

Serial No. _____

Quality Control: _____

Shop Order _____ Oper _____

Customer Representative: _____

TEST DATA SHEET 2 (Sheet 1 of 3)
3.4.6: RE02 Test

Test Setup Verified: _____ **Signature**

3.4.6.3.1 Step 1: Test Equipment Log

TEST DATA SHEET 2 (Sheet 2 of 3)
 3.4.6: RE02 Test (Cont)

Test Setup Verified: _____
 Signature _____

3.4.6.3.2: Emission Measurements

Step	Antenna/Frequency	Band	Required	Emissions within limits?		Comments/ Observations
				Yes	No	
4	All except Horn 14 kHz to 1 GHz	Narrow	See Figure 6			
6	All except Horn 14 kHz to 1 GHz	Broad	See Figure 7			
12	Horn, RGA-180 1 to 2 GHz	Narrow	See Figure 6			
15	Biconical, EMCO 3104 121.5 MHz with Ampl	Narrow	No narrow- band freq. > -150 dBm			
16	Log Conical, EMCO 3101 243 MHz, 401.65 MHz, & 406.05 MHz with Ampl	Narrow	No narrow- band freq. > -150 dBm			
19	Horn, RGA-180 2010 to 2040 MHz with Ampl	Narrow	No narrow- band freq. > -120 dBm			
21	Biconical/Log Conical 59.458 to 751.944 MHz	Narrow	No narrow- band freq. > -60 dBm			
21	400 to 500 MHz	Narrow	-107.1 dBm			
21	2 to 18 GHz	Narrow	Figure 3			
21	1217 to 1227 MHz	Narrow	-111.8 dBm			
21	1565 to 1614 MHz	Narrow	-111.2 dBm			
21	2051.9 to 2055 MHz	Narrow	-126.7 dBm			
21	5254.7 to 5255.3 MHz	Narrow	-122.8 dBm			
21	5450 to 5825 MHz	Narrow	-80.7 dBm			

NOTE: Attach all backup data generated during the test (photos, printouts, plots, test logs, additional comments or observations, etc.) to this data sheet.

TEST DATA SHEET 2 (Sheet 3 of 3)
3.4.6: RE02 Test (Cont)

Test Setup Verified: _____
Signature _____

3.4.6.3.2: Emission Measurements

Step	Antenna*/Frequency Range (MHz)	Band	Radiation Limit (dBm)	Emissions within limits?		Comments/ Observations
				Yes	No	
22	118.000 - 120.000	Narrow	-100 / Table IV			
22	120.000 -121.450	Narrow	-125 / Table IV			
22	121.450 - 121.485	Narrow	-145 / Table IV			
22	121.515 - 121.550	Narrow	-145 / Table IV			
22	121.550 - 123.000	Narrow	-125 / Table IV			
22	123.000 - 125.000	Narrow	-100 / Table IV			
23	236.000 - 240.000	Narrow	-100 / Table IV			
23	240.000 - 242.925	Narrow	-125 / Table IV			
23	242.925 - 242.975	Narrow	-145 / Table IV			
23	243.025 - 243.075	Narrow	-145 / Table IV			
23	243.075 - 246.000	Narrow	-125 / Table IV			
23	246.000 - 250.000	Narrow	-100 / Table IV			
23	385.100 - 401.100	Narrow	-100 / Table IV			
23	401.100 - 405.900	Narrow	-125 / Table IV			
23	405.900 - 406.000	Narrow	-145 / Table IV			
23	406.100 - 406.200	Narrow	-145 / Table IV			
23	406.200 - 411.00	Narrow	-125 / Table IV			
23	411.000 - 425.000	Narrow	-100 / Table IV			
23	396.000 - 401.500	Narrow	-125 / Table IV			
23	401.500 - 401.600	Narrow	-145 / Table IV			
23	401.700 - 401.800	Narrow	-145 / Table IV			
23	401.800 - 406.000	Narrow	-125 / Table IV			

- * All frequency ranges are to be performed with antenna in both vertical and horizontal polarization.

Signature/Date

Unit _____

Engineer: _____

Serial No. _____

Quality Control: _____

Shop Order _____ Oper _____

Customer Representative: _____

TEST DATA SHEET 3 (Sheet 1 of 3)
3.4.7: RE04 Test

Test Setup Verified: _____
Signature _____

3.4.7.3.1 Step 2: Test Equipment Log

Item	Manufacturer	Model/ Part No.	Aerojet Inventory No.	Calibration Date	Calibration Due Date

3.4.7.3.2 Step 3: Magnetic Field Emissions

Step	Direction*	Measured	Required	Mag field within limits?		Comments/ Observations
				Yes	No	
	0 degrees		See 3.4.7.2			
	30 degrees		See 3.4.7.2			
	60 degrees		See 3.4.7.2			
	90 degrees		See 3.4.7.2			
	120 degrees		See 3.4.7.2			
	150 degrees		See 3.4.7.2			
	180 degrees		See 3.4.7.2			
	210 degrees		See 3.4.7.2			
	240 degrees		See 3.4.7.2			
	270 degrees		See 3.4.7.2			
	300 degrees		See 3.4.7.2			
	330 degrees		See 3.4.7.2			

NOTE: Attach all backup data generated during the test (photos, printouts, plots, test log, additional comments or observations, etc.) to this data sheet.

* Relative to instrument connector side.

Signature/Date

Unit _____

Engineer: _____

Serial No. _____

Quality Control: _____

Shop Order _____ Oper _____

Customer Representative: _____

TEST DATA SHEET 3 (Sheet 2 of 3)
3.4.7: RE04 Test (Cont)

Test Setup Verified: _____
Signature _____

3.4.7.3.2 Step 9 (10 inches above): Magnetic Field Emissions

Step	Direction*	Measured	Required	Mag field within limits?		Comments/ Observations
				Yes	No	
	0 degrees		See 3.4.7.2			
	30 degrees		See 3.4.7.2			
	60 degrees		See 3.4.7.2			
	90 degrees		See 3.4.7.2			
	120 degrees		See 3.4.7.2			
	150 degrees		See 3.4.7.2			
	180 degrees		See 3.4.7.2			
	210 degrees		See 3.4.7.2			
	240 degrees		See 3.4.7.2			
	270 degrees		See 3.4.7.2			
	300 degrees		See 3.4.7.2			
	330 degrees		See 3.4.7.2			

NOTE: Attach all backup data generated during the test (photos, printouts, plots, test log, additional comments or observations, etc.) to this data sheet.

* Relative to instrument connector side.

TEST DATA SHEET 3 (Sheet 3 of 3)
3.4.7: RE04 Test (Cont)

Test Setup Verified: _____
Signature _____

3.4.7.3.2 Step 9 (10 inches above): Magnetic Field Emissions

Step	Direction*	Measured	Required	Mag field within limits?		Comments/ Observations
				Yes	No	
	0 degrees		See 3.4.7.2			
	30 degrees		See 3.4.7.2			
	60 degrees		See 3.4.7.2			
	90 degrees		See 3.4.7.2			
	120 degrees		See 3.4.7.2			
	150 degrees		See 3.4.7.2			
	180 degrees		See 3.4.7.2			
	210 degrees		See 3.4.7.2			
	240 degrees		See 3.4.7.2			
	270 degrees		See 3.4.7.2			
	300 degrees		See 3.4.7.2			
	330 degrees		See 3.4.7.2			

NOTE: Attach all backup data generated during the test (photos, printouts, plots, test log, additional comments or observations, etc.) to this data sheet.

* Relative to instrument connector side.

Signature/Date

Unit _____

Engineer: _____

Serial No. _____

Quality Control: _____

Shop Order _____ Oper _____

Customer Representative: _____

TEST DATA SHEET 4 (Sheet 1 of 4)
3.4.8: CS01/CS02 Test

Test Setup Verified: _____
Signature _____

3.4.8.3.1 Step 1: Test Equipment Log

Item	Manufacturer	Model/ Part No.	Aerojet Inventory No.	Calibration Date	Calibration Due Date

3.4.8.3.2: Susceptibility to Injected Electromagnetic Energy on Power Leads, 30 Hz to 150 kHz

+28V Main Power Bus

Frequency Range	Test Level (Volts)	Signal Type or Waveform	Limit Factor*			Spec Limit Criteria (Volts)	Comments/ Observations
			ST	EL	SL		

* ST = Susceptibility Threshold, EL = Equipment Limit, SL = Specification Limit

NOTE: Attach all backup data generated during the test (photos, printouts, plots, test logs, additional comments or observations, etc.) to this data sheet.

Signature/Date

Unit _____

Engineer: _____

Serial No. _____

Quality Control: _____

Shop Order _____ Oper _____

Customer Representative: _____

TEST DATA SHEET 4 (Sheet 2 of 4)
3.4.8: CS01/CS02 Test (Cont)

28V Main Bus Return

Frequency Range	Test Level (Volts)	Signal Type or Waveform	Limit Factor*			Spec Limit Criteria (Volts)	Comments/ Observations
			ST	EL	SL		

+28V Pulse Load Bus

Frequency Range	Test Level (Volts)	Signal Type or Waveform	Limit Factor*			Spec Limit Criteria (Volts)	Comments/ Observations
			ST	EL	SL		

28V Pulse Load Bus Return

Frequency Range	Test Level (Volts)	Signal Type or Waveform	Limit Factor*			Spec Limit Criteria (Volts)	Comments/ Observations
			ST	EL	SL		

* ST = Susceptibility Threshold, EL = Equipment Limit, SL = Specification Limit

TEST DATA SHEET 4 (Sheet 3 of 4)
3.4.8: CS01/CS02 Test (Cont)

+28V Analog Telemetry Bus

Frequency Range	Test Level (Volts)	Signal Type or Waveform	Limit Factor*			Spec Limit Criteria (Volts)	Comments/ Observations
			ST	EL	SL		

28V Analog Telemetry Bus Return

Frequency Range	Test Level (Volts)	Signal Type or Waveform	Limit Factor*			Spec Limit Criteria (Volts)	Comments/ Observations
			ST	EL	SL		

+10V Interface Bus

Frequency Range	Test Level (Volts)	Signal Type or Waveform	Limit Factor*			Spec Limit Criteria (Volts)	Comments/ Observations
			ST	EL	SL		

* ST = Susceptibility Threshold, EL = Equipment Limit, SL = Specification Limit

TEST DATA SHEET 4 (Sheet 4 of 4)
3.4.8: CS01/CS02 Test (Cont)

10V Interface Bus Return

Frequency Range	Test Level (Volts)	Signal Type or Waveform	Limit Factor*			Spec Limit Criteria (Volts)	Comments/ Observations
			ST	EL	SL		

* ST = Susceptibility Threshold, EL = Equipment Limit, SL = Specification Limit

TEST DATA SHEET 5 (Sheet 1 of 2)
3.4.8: CS02 Test (CM)

Test Setup Verified: _____ **Signature**

3.4.8.3.1 Step 1: Test Equipment Log

3.4.8.3.2: Susceptibility to Injected Electromagnetic Energy on Power Leads, 100 kHz to 50 MHz, CM

+28V Main Power Bus Return

* ST = Susceptibility Threshold, EL = Equipment Limit, SL = Specification Limit

NOTE: Attach all backup data generated during the test (photos, printouts, plots, test logs, additional comments or observations, etc.) to this data sheet.

Signature/Date

Unit _____

Engineer: _____

Serial No. _____

Quality Control:

Shop Order _____ Oper _____

Customer Representative:

TEST DATA SHEET 5 (Sheet 2 of 2)
3.4.8: CS02 Test, (CM) (Cont)

+28V Pulse Load Bus Return

Frequency Range	Test Level (Volts)	Signal Type or Waveform	Limit Factor*			Spec Limit Criteria (Volts)	Comments/ Observations
			ST	EL	SL		

+28V Analog Telemetry Bus Return

Frequency Range	Test Level (Volts)	Signal Type or Waveform	Limit Factor*			Spec Limit Criteria (Volts)	Comments/ Observations
			ST	EL	SL		

+10V Interface Bus Return

Frequency Range	Test Level (Volts)	Signal Type or Waveform	Limit Factor*			Spec Limit Criteria (Volts)	Comments/ Observations
			ST	EL	SL		

* ST = Susceptibility Threshold, EL = Equipment Limit, SL = Specification Limit

TEST DATA SHEET 6 (Sheet 1 of 2)
3.4.9: CS06 Test

Test Setup Verified: _____
Signature

3.4.9.3.1 Step 3: Test Equipment Log

Item	Manufacturer	Model/ Part No.	Aerojet Inventory No.	Calibration Date	Calibration Due Date

3.4.9.3.2: Susceptibility to Injected Transients on Power Leads

+28V Main Power Bus

Pulse Amplitude and Polarity	Signal Type or Waveform	Test Level	Limit Factor*			Spec Limit Criteria	Comments/ Observations
			ST	EL	SL		
10V, Positive	See Figure 9						
12V, Negative	See Figure 9						

+28V Analog Telemetry Bus

Pulse Amplitude and Polarity	Signal Type or Waveform	Test Level	Limit Factor*			Spec Limit Criteria	Comments/ Observations
			ST	EL	SL		
10V, Positive	See Figure 9						
12V, Negative	See Figure 9						

* ST = Susceptibility Threshold, EL = Equipment Limit, SL = Specification Limit

Signature/Date

Unit _____

Engineer: _____

Serial No. _____

Quality Control: _____

Shop Order _____ Oper _____

Customer Representative: _____

TEST DATA SHEET 6 (Sheet 2 of 2)
3.4.9: CS06 Test (Cont)

+28V Pulse Load Bus

Pulse Amplitude and Polarity	Signal Type or Waveform	Test Level	Limit Factor*			Spec Limit Criteria	Comments/ Observations
			ST	EL	SL		
8V, Positive	See Figure 9						
13V, Negative	See Figure 9						

+10V Interface Bus

Pulse Amplitude and Polarity	Signal Type or Waveform	Test Level	Limit Factor*			Spec Limit Criteria	Comments/ Observations
			ST	EL	SL		
10V, Positive	See Figure 9						
12V, Negative	See Figure 9						

* ST = Susceptibility Threshold, EL = Equipment Limit, SL = Specification Limit

TEST DATA SHEET 7 (Sheet 1 of 2)
3.4.10: RS03 Test

Test Setup Verified: _____ **Signature**

3.4.10.3.2 Step 1: Test Equipment Log

NOTE: Attach all backup data generated during the test (photos, printouts, plots, test logs, additional comments or observations, etc.) to this data sheet.

Signature/Date

Unit _____

Engineer: _____

Serial No.

Quality Control:

Shop Order Oper

Customer Representative:

TEST DATA SHEET 7 (Sheet 2 of 2)
3.4.10: RS03 Test (Cont)

3.4.10.3.3: Susceptibility to Radiated Electric Fields

* ST = Susceptibility Threshold, EL = Equipment Limit, SL = Specification Limit

This page intentionally left blank.

30. APPENDIX C EMI DATA COLLECTION

This Appendix contains the EMI data collection process and steps performed during EMI testing.

30.1 EMI data collection during the susceptibility tests. EMI data collection during the susceptibility tests will be accomplished by the following data collection steps.

30.2 Data collection. Actual data collection will be accomplished as described in the following steps.

1. Start data collection. From the Main menu, select command "[7] SPECIAL CYCLE CALIBRATION". The CRT screen will go into the TEST INITIALIZATION menu. Select command "[13] SCANS TO ACQUIRE". Enter 24 as the number of scans (for 90 second sweep time).
2. Select command "[16] START DATA ACQUISITION". Coordinate with the EMI equipment operator and start the sweep of the EMI frequency band being tested when the scan count reaches about (6).
3. Stop data collection. Coordinate with the EMI equipment operator such that the data collection process is stopped about (19) scans after the EMI frequency band sweep is complete. At the end of the 24 scans, the screen will change to the AMSU-A1/A2 DELTA T and CALIBRATION ACCURACY menu.
4. Display and print the data collected. Press "[2] PRINT" to print the screen. Press "[1] RETURN". The display will prompt "Do you wish to save data on disk (Y/N)?" Enter N for no.
5. The STE program will return to the AMSU-A1/A2 TEST INITIALIZATION menu. Enter command "[15] SELECT CAL PROCESS" and press the ENTER key. The program will return to the AMSU-A1/A2 CALIBRATION PROCESS SELECTION menu.
6. Print the distribution. Select "[12] PRINT DISTRIBUTION" to obtain the data plot for each sensor channel. Select "[1] RETURN" to return to the AMSU-A1/A2 TEST INITIALIZATION menu.
7. Examine each channel's response (Warm AVE) and evaluate it with the susceptibility criteria to determine if pass or fail test results were obtained. If the data passes, proceed to the next EMI test and if the data fails, repeat the test at reduced frequency range and amplitude level (using the same procedures), to establish the frequency and threshold level of AMSU performance.

AE-26151/5E
11 Feb 99

This page intentionally left blank.

DOCUMENT APPROVAL SHEET

TITLE				DOCUMENT NO.	
<u>Process Specification</u> Test Procedure, Electromagnetic Interference (EMI)/Electromagnetic Radiation (EMR) and Electromagnetic Compatibility (EMC) for the METSAT/METOP Advanced Microwave Sounding Unit – A (AMUS-A)				AE-26151/5E 11 February 1999	
INPUT FROM:	DATE	CDRL:	SPECIFICATION ENGINEER:	DATE	
L. Paliwoda		301A	G. Waki		
CHECKED BY:	DATE		JOB NUMBER:	DATE	
J. Grime			N/A		
APPROVED SIGNATURES				DEPT. NO.	DATE
Product Team Leader (L. Paliwoda) <u>L. T. Paliwoda</u>				7888	2/26/99
Technical Director/PMO (P. Patel) <u>P. R. Patel</u>				8311	2/26/99
Released: Configuration Management (J. Cavanaugh) <u>J. Cavanaugh</u>				8361	3/1/99
Approved as Final per customer's letter dated 24February 1999 (ECN CAMSU-2045)					
By my signature, I certify the above document has been reviewed by me and concurs with the technical requirements related to my area of responsibility.					
(Data Center) FINAL <u>M. L. Paliwoda 3-1-99</u>					

TEST DATA SHEET 1 (Sheet 1 of 2)
3.4.5: CE01/CE03 Test Ref }
Current Ripple Test } 2 Dec 99

Test Setup Verified: K. Daigl 12/1/99
Signature

3.4.5.3.1 Step 1: Test Equipment Log

Item	Manufacturer	Model/ Part No.	Aerojet Inventory No.	Calibration Date	Calibration Due Date
Spectrum Analyzer	HP	3562A	51225	4-12-99	4-12-00
Current Probe	All Tech	91550-28	LE09571	11-11-99	11-11-01
Plotter	HP	7470A	49222	CNR	CNR
					:

3.4.5.3.2: Emission Measurements, 30 Hz to 20 kHz, (DM)

Step	Power Line	Band	Required	Emissions within limits?		Comments/ Mode Observations	Plot
				Yes	No		
4	+28V Main Bus	Narrow	See Figures 2 & 3	✓		Full Scan	1
4	-28V Main Bus Rtn	Narrow	See Figures 2 & 3				
7	+28V Telemetry Bus	Narrow	See Figures 2 & 3	✓		Full Scan Inst Off	749
7	-28V Telemetry Bus Rtn	Narrow	See Figures 2 & 3				
7	+28V PLB	Narrow	See Figures 2 & 3	✓		Warm Cal	3
7	-28V PLB Rtn	Narrow	See Figures 2 & 3				
7	+10V Interface Bus	Narrow	See Figures 2 & 3	✓		Full Scan	5
7	-10V Interface Bus Rtn	Narrow	See Figures 2 & 3				
7	Safety Heater	Narrow	See Figure 4	✓			
7	Safety Heater Return	Narrow	See Figure 4	✓			

NOTE: Attach all backup data generated during the test (photos, printouts, plots, test logs, additional comments or observations, etc.) to this data sheet.

Signature/Date

Unit AMSU-A2 1331200-2

Engineer: J. Daigl 2 Dec 99

Serial No. 108

Quality Control: Judie Harvey IA DEC 3 2 19

Shop Order 786083 Oper 50-0-00

Customer Representative: 12-3-99

TEST DATA SHEET 1 (Sheet 3 of 4)
3.4.5: CE01/CE03 Test Ref
Current Ripple Test } 2 Dec 99

Test Setup Verified: K. Hink 12/2/99
Signature

3.4.5.3.1 Step 1: Test Equipment Log

Item	Manufacturer	Model/ Part No.	Aerojet Inventory No.	Calibration Date	Calibration Due Date
Spectrum Analyzer	HP	8566B	54861	11-20-99	6-20-00
Amplifier	HP	8447F Opt H64	C200230	9-15-99	1-15-01
Current Probe	ATI Tech	91550-2B	L509571	11-11-99	11-11-01
Computer	HP	9836	46184-15	CNR	CNR
Plotter	HP	7475A	47417	CNR	CNR
Printer	HP	26716	07202	CNR	CNR

3.4.5.3.2: Emission Measurements, 20 kHz to 50 MHz, (DM)

Step	Power Line	Band	Required	Emissions within limits?		Comments/ Mode Observations	Plot
				Yes	No		
4	+28V Main Bus	Narrow	See Figures 2 & 3	✓		Full Scan	2
4	-28V Main Bus Rtn	Narrow	See Figures 2 & 3				
7	+28V Telemetry Bus	Narrow	See Figures 2 & 3	✓		Full Scan Inst off	12 8410
7	-28V Telemetry Bus Rtn	Narrow	See Figures 2 & 3				
7	+28V PLB	Narrow	See Figures 2 & 3	✓		Warm Cal	4
7	-28V PLB Rtn	Narrow	See Figures 2 & 3				
7	+10V Interface Bus	Narrow	See Figures 2 & 3	✓		Full Scan	6
7	-10V Interface Bus Rtn	Narrow	See Figures 2 & 3				
7	Safety Heater	Narrow	See Figure 4				
7	Safety Heater Return	Narrow	See Figure 4				

NOTE: Attach all backup data generated during the test (photos, printouts, plots, test logs, additional comments or observations, etc.) to this data sheet.

Signature/Date

Unit AMSU-A2 1331200-2

Engineer: J. Hink 2 Dec 99
DEC 02/99
Quality Control: J. Hink (269)

Serial No. 108

Customer Representative: J. Hink 2 Dec 99

Shop Order 786083 Oper 50-0-00

X=16.83kHz Y= -87.626 dBVrms Dec 99

POWER SPEC1

-40.0

200+2

50 198

50 196083

Op 00-00

12/5/95

Ref 3.45

ANSU-A2

Plot 1

10 Avg 0% Ov1P Main load Bus

Fast Scan Mode

Ov1

Plot 1

dB

rms
V2

-120

Fxd Y 20 Log Hz

CURRENT RIPPLE TEST

20K

AEROJET ELECTRONIC SYSTEMS
EMISSION LEVEL [dBuA]

AERAOJET ELECTRONIC SYSTEMS
EMISSION LEVEL [dB_{UA}]

1 Dec 1999 14: 43: 12
PLOT 4

X=53.21 HZ
Y_a=-144.33 POWER SPEC
-40.0

H₂
33 dBv rms
SPEC1
2 Dec 99
10 Avg
AMSU-42
0% Ov1

Dec 99 AMSU-42 10 Avg 0% Ov1P +10V Interface Bus Full Scap Mode

AEROJET ELECTRONIC SYSTEMS
EMISSION LEVEL [dBuA]

135/2000-2
5V 108
50 786083
0P 300-0-00
FE 26151/5E
PA 34.5

2 Dec 1999 08:51:14
PLOT 6

AEREOJET ELECTRONIC SYSTEMS EMISSION LEVEL [dBUA]

2 Dec 1999 07:56:15
PLOT #

AEROJET ELECTRONIC SYSTEMS
EMISSION LEVEL [dBUA]

2 Dec 1999 08:09:11
PLOT 10

AEREOJET ELECTRONIC SYSTEMS
EMISSION LEVEL [dBUA]

2 Dec 1999 08:23:08
PLOT 12

AEROJET ELECTRONIC SYSTEMS

TEST SETUP TABLE

PG 1 OF 6

LIBRARY TEST FILE: SETUP NOT STORED

DISPLAY TITLE 1:

AMSU-A2

CONTROL PARAMETERS

Test Type	PEAK
Freq Uncert (%)	1
Min Sweep Time/Oct (sec)	3
NUMBER PAGES NOTES	0
NUMBER RANGES	4
START FREQUENCY (MHz)	.010

1 Dec 99

AMSU-A2

1381200-2

SN 108

50 786083

Op 50-0-00

AE 26151/5

RNG STOP FREQ(MHz)

TRANSDUCER

1	.2	CURRENT PROBE 91550-2B S/N 774*
2	2.0	CURRENT PROBE 91550-2B S/N 774*
3	30.0	CURRENT PROBE 91550-2B S/N 774*
4	50.0	CURRENT PROBE 91550-2B S/N 774*

(7A)
269

DISPLAY INFORMATION

PG 2 OF 6

AMPLITUDE INFO

Units Label	dBuA
Disp Ref Level	100

TEST LIMITS

Number Limits	0
---------------	---

AEROJET ELECTRONIC SYSTEMS

RANGE 1: .010 TO .2 MHz

PG 3 OF 6

AMPLIFIER

Name HP8447F OPT H64

Gain (dB) 28

INPUT PORT RIGHT

MSMT STATES

QP Bandwidth (Hz) BYPASS

SA Res Bandw (Hz) 300

Video Bandw. (Hz) 3000

Ref. Level (dBuV) 100

Int. Atten. (dB) 20

Ext. Atten. (dB) 0

NO. OF SETUPS 1

NO. SWEEPS/SETUP 1

FIRST SETUP

Msg, Sub, Continue MESSAGE

Msg: CONNECT CURRENT PROBE TO 28 dB GAIN INPT

RANGE 2: .2 TO 2.0 MHz

PG 4 OF 6

AMPLIFIER

Name HP8447F OPT H64

Gain (dB) 28

INPUT PORT RIGHT

MSMT STATES

QP Bandwidth (Hz) BYPASS

SA Res Bandw (Hz) 1000

Video Bandw. (Hz) 10000

Ref. Level (dBuV) 100

Int. Atten. (dB) 20

Ext. Atten. (dB) 0

NO. OF SETUPS 1

NO. SWEEPS/SETUP 1

FIRST SETUP

Msg, Sub, Continue CONTINUE

1 DEC 99
AMSD-12
1331200-2
SN 108
50 786083
OP 50-0-00
TE 26151/S

~~7A
269~~

AEROJET ELECTRONIC SYSTEMS

RANGE 3: 2.0 TO 30.0 MHz

PG 5 OF 6

AMPLIFIER

Name	HP8447F OPT H64
Gain (dB)	28
INPUT PORT	RIGHT
MSMT STATES	
QP Bandwidth (Hz)	BYPASS
SA Res Bandw (Hz)	3000
Video Bandw. (Hz)	30000
Ref. Level (dBuV)	90
Int. Atten. (dB)	20
Ext. Atten. (dB)	0
NO. OF SETUPS	1
NO. SWEEPS/SETUP	1
FIRST SETUP	
Msg,Sub,Continue	CONTINUE

1 Dec 99
AMSU-12
1331200-2
SN 108
30786083
OP 50-0-00
AE 26151/c
~~7A~~

7A
269

RANGE 4: 30.0 TO 50.0 MHz

PG 6 OF 6

AMPLIFIER

Name	HP8447F OPT H64
Gain (dB)	28
INPUT PORT	RIGHT
MSMT STATES	
QP Bandwidth (Hz)	BYPASS
SA Res Bandw (Hz)	3000
Video Bandw. (Hz)	30000
Ref. Level (dBuV)	90
Int. Atten. (dB)	20
Ext. Atten. (dB)	0
NO. OF SETUPS	1
NO. SWEEPS/SETUP	1
FIRST SETUP	
Msg,Sub,Continue	CONTINUE

AEROJET ELECTRONIC SYSTEMS

TRANSDUCER TABLE

TRANSDUCER TITLE CURRENT PROBE 91550-2B S/N 774*
 SIGN OF TRANSDUCER PLUS
 NUMBER OF POINTS 45

POINT	FREQUENCY(MHz)	TRANSDUCER FACTOR
1	0.010000	-9.44
2	0.012340	-8.21
3	0.016708	-5.88
4	0.023198	-3.72
5	0.027230	-2.80
6	0.036871	-1.25
7	0.044031	-0.57
8	0.060091	0.36
9	0.070728	0.73
10	0.081365	0.98
11	0.112968	1.38
12	0.132605	1.51
13	0.156079	1.62
14	0.179552	1.70
15	0.214422	1.77
16	0.292627	1.87
17	0.344427	1.91
18	0.415464	1.94
19	0.492413	1.98
20	0.569362	2.00
21	0.674331	2.02
22	0.788640	2.05
23	0.916824	2.07
24	1.256440	2.10
25	1.488080	2.12
26	1.740332	2.12
27	2.023201	2.13
28	2.772647	2.14
29	3.283820	2.14
30	3.840477	2.14
31	4.464699	2.14
32	5.291619	2.12
33	6.118539	2.11
34	7.246570	2.10
35	8.474970	2.08
36	9.852472	2.06
37	11.677278	2.03
38	13.502084	2.01
39	15.991365	1.98
40	18.702138	1.95
41	22.748663	1.90
42	26.775552	1.83
43	30.802441	1.64
44	42.766435	2.02
45	50.200602	1.92

1 Dec 99
 AMSU-A2
 1331200-2
 SN 108
 30 786083
 OP 50-0-00
 AE 26151/

7A
 269

TEST DATA SHEET 1 (Sheet 1 of 1)

3.4.5: CE01/CE03 Test Ref.
Current Ripple Test

2 Dec 99

Test Setup Verified: K. Haas 12/1/99
Signature

3.4.5.3.1 Step 1: Test Equipment Log

Item	Manufacturer	Model/ Part No.	Aerojet Inventory No.	Calibration Date	Calibration Due Date
oscilloscope	Tek	TDS380	C200083	3-4-99	1-4-01
Current Probe	Tek	46302	C200182	2-5-99	7-5-01
Current Probe Amp	Tek	TM5024	C200183	2-5-99	7-5-01
Power Supply	PDS	36505	41914	6-24-99	6-24-01

Time Domain 2 Dec 99

3.4.5.3.2: Emission Measurements, 30 Hz to 20 kHz, (DM)

Step	Power Line	Band	Required	Emissions within limits?		Comments/ Mode Observations Plot
				Yes	No	
4	+28V Main Bus	Narrow	See Figures 2 & 3	✓ ✓		Inst. Off Full Scan 1E2
4	-28V Main Bus Rtn	Narrow	See Figures 2 & 3			
7	+28V Telemetry Bus	Narrow	See Figures 2 & 3	✓		Inst Off Full Scan 7E8
7	-28V Telemetry Bus Rtn	Narrow	See Figures 2 & 3			
7	+28V PLB	Narrow	See Figures 2 & 3	✓		Inst Off Warm Cal 1E5
7	-28V PLB Rtn	Narrow	See Figures 2 & 3			
7	+10V Interface Bus	Narrow	See Figures 2 & 3	✓		Inst Off Full Scan 10
7	-10V Interface Bus Rtn	Narrow	See Figures 2 & 3			
7	Safety Heater	Narrow	See Figure 4			
7	Safety Heater Return	Narrow	See Figure 4			

NOTE: Attach all backup data generated during the test (photos, printouts, plots, test logs, additional comments or observations, etc.) to this data sheet.

Signature/Date

Unit AMCU-12 1331200-2

Engineer:

2 Dec 99

Serial No. 108

DEC 02 1999
Quality Control

Shop Order 786083 Oper 50-0-00

Judie Harvey

253

Customer Representative: 12-99

Δ: 11.4mV
@: -4mV

Ch1 Pk-Pk
11.6mV

Pulse Load Bus

Power "on", limit "off"

Cd Amp: 1 mA/Div.

AMSU-A2
1331200-2

SN 108

50 786083

6P 50-0-00

1E 26151/5E

Par 3.4.5

269

Plot 6

Ch1 Pk-Pk: 14.6mV
 @: 9.4mV

Pulse Load Bus
 Warm Cal Mode
 CP Amp: 10 mA/Div

AMSU-A2
 1331200-2
 SN 1008
 50 786083
 Op 50-0-00
 GE 26151/5E
 Par 34.5

29 Acqs

Tek Stop: 1ks/s

10mV/div

M 50ms Ch1 5 114mV

TEST DATA SHEET 2 (Sheet 1 of 3)
3.4.6: RE02 Test

Test Setup Verified: J. Hilt

Signature

3.4.6.3.1 Step 1: Test Equipment Log

Item	Manufacturer	Model/ Part No.	Aerojet Inventory No.	Calibration Date	Calibration Due Date
Signal Analyzer	HP	70004A	55147	10-19-99	5-19-00
Plotter	HP	7470A	57760	CNR	CNR
Spectrum Analyzer	HP	8566B	54861	11-20-99	6-20-00
Plotter	HP	7475A	47417	CNR	CNR
Biconical Antenna	EMCO	8110B	55361	11-11-99	11-11-00
Biconical Antenna	EMCO	93110	C200204	2-24-99	2-24-00
Double Ridged Guide Ant	Electro Metrics	RGA180	L508857	11-11-97	11-11-00
Log Spiral Ant	Electro Metrics	LCA25	L58358	2-25-99	2-25-00
Active Rod Antenna	EMCO	8301B	55363	1-7-99	1-7-00
Computer	HP	8886	46134-15	CNR	CNR
Plotter/Printer	HP	2671G	0720Z	CNR	CNR
Microwave Amplifier	HP	8449B	C200203	8-9-99	7-16-00
Amplifier	HP	8447F Opt H64	C200280	9-15-99	1-15-01

TEST DATA SHEET 2 (Sheet 2 of 3)

3.4.6: RE02 Test (Cont)

Test Setup Verified: Kyle
 Signature

3.4.6.3.2: Emission Measurements

Step	Antenna/Frequency	Band	Required	Emissions within limits?		Comments/ Observations <i>Plot</i>
				Yes	No	
4	All except Horn 14 kHz to 1 GHz	Narrow	See Figure 6	✓		52 & 53
6	All except Horn 14 kHz to 1 GHz	Broad	See Figure 7 <i>12/1/99</i>			
12	Horn, RGA-180 1 to $\frac{1}{2}$ GHz	Narrow	See Figure 6 <i>12/1/99</i>	✓		54 & 55
15	Biconical, EMCO 3104 121.5 MHz with Ampl	Narrow	No narrow- band freq. > -150 dBm	✓		7 & 8
16	Log Conical, EMCO 3101 243 MHz, 401.65 MHz, & 406.05 MHz with Ampl	Narrow	No narrow- band freq. > -150 dBm	✓		18, 25, & 31
19	Horn, RGA-180 2010 to 2040 MHz with Ampl	Narrow	No narrow- band freq. > -120 dBm	✓		34 & 35
21	Biconical/Log Conical 59.458 to 751.944 MHz	Narrow	No narrow- band freq. > -60 dBm	✓		36 thru 51
21	400 to 500 MHz	Narrow	-107.1 dBm	✓		58
21	10.2 to 18 GHz	Narrow	Figure 3 <i>12/1/99</i>	✓		56 & 57
21	1217 to 1227 MHz	Narrow	-111.8 dBm <i>12/1/99</i>	✓		58 thru 59
21	1565 to 1614 MHz	Narrow	-111.2 dBm	✓		61 & 62
21	2051.9 to 2055 MHz	Narrow	-126.7 dBm	✓		63 & 64
21	5254.7 to 5255.3 MHz	Narrow	-122.8 dBm	✓		65 & 66
21	5450 to 5825 MHz	Narrow	-80.7 dBm	✓		68 & 68

NOTE: Attach all backup data generated during the test (photos, printouts, plots, test logs, additional comment or observations, etc.) to this data sheet.

TEST DATA SHEET 2 (Sheet 3 of 3)

3.4.6: RE02 Test (Cont)

Test Setup Verified: R. Reid
Signature

3.4.6.3.2: Emission Measurements

Step	Antenna*/Frequency Range (MHz)	Band	Radiation Limit (dBm)	Emissions within limits?		Comments/ Observations <i>Plot</i>
				Yes	No	
22	118.000 - 120.000	Narrow	-100 / Table IV	✓		142
22	120.000 - 121.450	Narrow	-125 / Table IV	✓		344
22	121.450 - 121.485	Narrow	-145 / Table IV	✓		546
22	121.515 - 121.550	Narrow	-145 / Table IV	✓		940
22	121.550 - 123.000	Narrow	-125 / Table IV	✓		11412
22	123.000 - 125.000	Narrow	-100 / Table IV	✓		13414
23	236.000 - 240.000	Narrow	-100 / Table IV	✓		15
23	240.000 - 242.925	Narrow	-125 / Table IV	✓		16
23	242.925 - 242.975	Narrow	-145 / Table IV	✓		17
23	243.025 - 243.075	Narrow	-145 / Table IV	✓		19
23	243.075 - 246.000	Narrow	-125 / Table IV	✓		20
23	246.000 - 250.000	Narrow	-100 / Table IV	✓		21
23	385.100 - 401.100	Narrow	-100 / Table IV	✓		22
23	401.100 - 405.900	Narrow	-125 / Table IV	✓		23
23	405.900 - 406.000	Narrow	-145 / Table IV	✓		24
23	406.100 - 406.200	Narrow	-145 / Table IV	✓		26
23	406.200 - 411.00	Narrow	-125 / Table IV	✓		27
23	411.000 - 425.000	Narrow	-100 / Table IV	✓		28
23	396.000 - 401.500	Narrow	-125 / Table IV	✓		29
23	401.500 - 401.600	Narrow	-145 / Table IV	✓		30
23	401.700 - 401.800	Narrow	-145 / Table IV	✓		32
23	401.800 - 406.000	Narrow	-125 / Table IV	✓		33

- * All frequency ranges are to be performed with antenna in both vertical and horizontal polarization.

Signature/Date

Unit AN5U-A2 1331200-2

Engineer: J.A. 12/1/99

Serial No. 108

Quality Control: 269 02 DEC 99

Shop Order 786083 Oper 500-00

Customer Representative: 12/2/99

Plot 2

[45] 08:49:38 NOV 29, 1999 REO2 SAW & SAW

RL -40.00 dBm Ant. Vertical MKR #1 FRQ 119.063 MHz

*ATTEN 0 dB
10.00 dB/DIV

AMSU-A2 SAMPLE

138/200-2

SN 108

50 780083

OP 53-0-00

LE 221571/5E

per

54.6

~~54.6~~

(26.7)

-100
dBm

START 118.000 MHz
*RB 1.00 kHz VB 1.00 kHz
STOP 120.000 MHz
ST 6.000 sec

PLOT 3

13:37:17 NOV 24, 1999 REOZ S422 #54220
RL -80.00 dBm Ant. Horizontal MKA #1 FREQ 120.723 MHz

*ATTEN 0 dB
10.00 dB/0.1V

MARKER

120.723 MHz
-136.03 dBm

1

0

-125
dBm

1M5U-A2 SAMPLE

135/200-2

SN 108

30 7880.83

Q1 50.00

45 26.151/35

PL 4.6

7A
269

START 120.000 MHz
•RB 1.00 kHz VB 1.00 kHz

STOP 121.450 MHz
ST 4.350 sec

08:47:09 NOV 29, 1999 ~~DATA~~ ~~DATA~~

RL -80.00 dBm

Vertical

*ATTEN 0 dB

10.00 dB/DIV

MARKER

120.002 MHz

-130.61 dBm

1

0

-125

dBm

MKR #1 FRQ 120.002 MHz

-130.61 dBm

MEASU-AZ SAMPLE

1831200-2

SW 108

50 786083

010 50-0-00

1E 26451/552

Par J.F.C

(7A
269)

START 120.000 MHz
*RB 1.00 kHz VB 1.00 kHz

STOP 121.450 MHz
ST 4.350 sec

PLATE

08:44:24 NOV 29, 1999 REO2

RL -80.00 dBm

Ant. Vertical MKR #1 FRQ 121.47144 MHz

*ATTEN 0 dB
10.00 dB/DIV

MARKER

121.47144 MHz
-146.10 dBm

1

8

-145
dBm

MUSU-12 SAMPLE

1931208-2

SN 108

SD 786083

OP 50-0-00

IE 26151/15E

Par 5.4.6

121.47144 MHz

SN

SD

OP

IE

Par

START 121.450 00 MHz

*RB 30.0 Hz VB 30.0 Hz

STOP 121.485 00 MHz

ST 116.7 sec

 14:08:39 NOV 24, 1999 ~~REDO~~ ~~SARE #5150~~

RL -80.00 dBm Ant. ~~Horizontal~~ MKR #1 FRQ 121.486 28 MHz

*ATTEN 0 dB
10.00 dB/0.1V

MARKER
121.486 28 MHz
-153.27 dBm

1
0

~~1450-12 SAMPLE~~

~~1931/200-2~~

~~SN 109~~

~~50 780085~~

~~OP 50-0.00~~

~~ME 26151/5CE~~

~~PAR 3.9.2~~

~~(269)~~

-150
dBm

START 121.485 00 MHz
VB 30.0 Hz
*RB 30.0 Hz
STOP 121.515 00 MHz
ST 100.0 sec

14:55:15 NOV 24, 1999 RE02 SARE & SARE PLOT 8

RL -80.00 dBm Int. Vertical MKR #1 FRQ 121.496 18 MHz

*ATTEN 0 dB
10.00 dB/0.1V

MARKER
121.496 18 MHz
-150.71 dBm

1

0

14:14:40 NOV 24, 1999 REO2

Plot 9

RL -80.00 dBm Int. Horizontal MKR #1 FRQ 121.528 39 MHz

*ATTEN 0 dB
10.00 dB/UV

MARKER 1450-4 SAMPLE

1.53/200-2

JN 108

50 7860033

0.0 50.0-00

JE 26.351/55

Par 3.7.6

~~7A
269~~

0

1

-145
dBm

START 121.515 00 MHz
*RB 100 Hz VB 100 Hz STOP 121.550 00 MHz
ST 10.50 sec

 14:17:19 NOV 24, 1999 2502 STAFF # 54420 PLOT 11

 RL -80.00 dBm const. horizontal MKR #1 FRQ 122.732 MHz

*ÄTTEN 0 dB
10.00 dB/DIV

MARKER

4

-1/25
d/BM

7A
269

ANSWER-KEY SAMPLE

133/200-2

103

50-1

卷之三

Dec 24

卷之三

卷之三

26

11
9

卷之三

8

卷之三

卷之三

10

100

1

1

卷之三

104

1

四庫全書

1

三

TOP 123.6

三
五

START 121.550 MHz
*RB 1:00 kHz VB 1.

PLOT 12

14:28:58 NOV 24, 1999 REO2 -80.00 dBm *Vertical* MKR #1 FRQ 122.719 MHz

卷之三

三

-136.29 dBm

- 18 -

ANSWER SAMPLE

MARKER

122 719 MHz

ט' ב' ס' י' ז'

- 130 -

11

卷之三

8

-12
-180

START 121.550 MHz STOP 123.000 MHz
BB 1 00 kHz HB 1 00 kHz ST 4 350 SPC

*

14:20:04 NOV 24, 1999 ~~2002~~ ~~2002~~ ~~2002~~

P207 13

RL -40.00 dBm MKR #1 FRQ 124.888 MHz
*ATTEN 0 dB
10.00 dB/DIV

MARKER
124.888 MHz
-125.49 dBm

1

0

-100
dBm

~~4450-12 SAMPLE~~
~~125/200-2~~
~~5A 108~~
~~50 7860 Q3~~
~~01 56-0-00~~
~~1E 26151/5CE~~
~~PA 3.7.6~~

^{7A}
269

START 123.000 MHz
*RB 10.0 kHz VB 10.0 kHz
STOP 125.000 MHz
ST 60.00 msec

[7D] 14:26:20 NOV 24, 1999 REPOZ *SAR* PLOT 14

RL -40.00 dBm Ant. Vertical MKR #1 FRQ 123.643 MHz

*ATTEN 0 dB
10.00 dB/DIV

MARKER
123.643 MHz
-122.67 dBm
1
8

ANSWER SAMPLE

193/200-2

SN 108

SO 786083

OP 50-0-0-0

FE 26151/5CE

PAR 24.6

~~7A
269~~

-100
dBm

START 123.000 MHz
*RB 10.0 kHz VB 10.0 kHz
STOP 125.000 MHz
ST 60.00 msec

PLT 15

09:05:48 NOV 29, 1999 2E02 scale & start

MKR #1 FRQ 237.270 MHz

RL -40.00 dBm

*ATTEN 0 dB

10.00 dB/DIV

MARKER

237.270 MHz

-112.62 dBm

1

B

-100
dBm

AMSLU-12SAMPLE

183/200-2

SN 108

50 786083

0P 95-0-00

FE 26151/52

P2- 3.2.6

TA
269

START 236.000 MHz
*RB 300 kHz

VB 300 kHz

STOP 240.000 MHz
ST 10.00 msec

09:09:52 NOV 29, 1999 2002 S102 #5100

PLOT 16

RL -80.00 dBm

*ATTEN 0 dB

10.00 dB/DIV

MKR #1 FREQ 240.932 MHz

-132.31 dBm

MARKER

240.932 MHz

-132.31 dBm

1

-125
dBm

1450-125SAMPLE

1351206-2

5V 10G

50 7860023

OP 93-0-0-0

LE 26/151/525

PUR 3.2.6

PLT 1

2669

A

START 240.000 MHz VB 1.00 kHz
*RB 1.00 kHz ST 8.775 sec

STOP 242.925 MHz

ST 8.775 sec

09:31:20 NOV 29, 1999 2502 S422 & S420 PLOT 17

RL -80.00 dBm

*ATTEN 0 dB

10.00 dB/DIV

RL -80.00 dBm

MKR #1 FRQ 242.936 31 MHz

-146.75 dBm

MARKER

242.936 31 MHz

-146.75 dBm

1

7

-145
dBm

1450-125AMPLE

1331200-208

5N 108

50 782023

OP 50-0-00

UE 26/51/65E

22 34.2

7A
269

START 242.925 00 MHz
VB 30.0 Hz

STOP 242.975 00 MHz
ST 166.7 sec

13:22:31 NOV 30, 1999 RECD # 5422 PLOT 18

RL -80.00 dBm

*ATTEN 0 dB

10.00 dB/DIV

MARKER

242.993 56 MHz

-150.45 dBm

1

0

4450-12 SAMPLE
1351200-2

SN 108

50 786083

OP 00-0-0

1E 26151/325

PL 37.6

7A
269

-150
dBm

START 242.975 00 MHz
*RB 30.0 Hz VB 30.0 Hz

STOP 243.025 00 MHz
ST 166.7 sec

10:34:54 NOV 29, 1999 ~~2502~~ ~~2402~~ ~~2402~~

RL -80.00 dBm

*ATTEN 0 dB

10.00 dB/DIV

-145.11 dBm

MARKER

243.041 50 MHz

-145.11 dBm

1

8

-145
dBm

AMSV-A2 SAMPLE

1991200-2

ON 108

SO 786083

OP 50-0-00

4E 2C1051/5E

Car 3.4.2

(69)

START 243.025 00 MHz

*RB 30.0 Hz VB 30.0 Hz

STOP 243.075 00 MHz

ST 166.7 sec

MKR #1 FRQ 243.041 50 MHz

PLT 19

10:37:54 NOV 29, 1999 ~~REOZ~~ ~~same~~ ~~step~~ 200720

RL -80.00 dBm

*ATTEN 0 dB
10.00 dB/DIV

MKR #1 FRQ 245.196 MHz

-132.42 dBm

AM5U-P25SAMPLE

133/200-2

51 108

50 786023

49 520-0-00

48 22151/52

Per 3.4.1

-125
dBm

START 243.075 MHz
*RB 1.00 kHz VB 1.00 kHz

STOP 246.000 MHz

ST 8.775 sec

10:41:03 NOV 29, 1999 REO2 save # size # plot 21

RL -40.00 dBm

*ATTEN 0 dB

10.00 dB/DIV

MARKER

246.425 MHz

-113.37 dBm

1

8

MKR #1 FRQ 246.425 MHz

-113.37 dBm

MM5U-425SAMPLE
133/200-2

SN 108

50 786083

00 60-0-00

1E 26K51/6E

Per 3.4.6

~~7A
269~~

-100
dBm

START 246.000 MHz
*RB 100 kHz VB 100 kHz

STOP 250.000 MHz
ST 10.00 msec

10:44:34 NOV 29, 1999 RE022 SSB & SWR PLOT 22

RL -40.00 dBm

*ATTEN 0 dB

10.00 dB/DIV

RL -40.00 dBm

*ATTEN 0 dB

10.00 dB/DIV

MARKER

391.12 MHz

-113.04 dBm

1

0

-100
dBm

AM5U-AZSAMPLE

133/200-2

SN 108

SO 786083

OP 50-0-00

LE 26157/65

Per 3.4.6

START 385.10 MHz
*RB 100 kHz VB 100 kHz

STOP 401.10 MHz
ST 10.00 msec

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

4P 10:47:19 NOV 29, 1999 2502 5122 & 5120 PLOT 23

RL -80.00 dBm

MKR #1 FRQ 405.672 MHz

*ATTEN 0 dB
10.00 dB/DIV

MARKER

405.672 MHz
-132.70 dBm

1

-125
dBm

RA
269

ANALYZER SAMPLE

1581/200-2
3N 108
50 786003
0P 50-0-00
FE 26151/5E
PS 3.75C

Plot 24

NOV 29, 1999 E302 ~~SEARCH & SEIZURE~~

13:49:49 RPL-80.00 dBm

*ATTEN 0 dB
1000 dB/DIV

MARKER 405.945 145.999 9 MHz -145.999 DBm

1

三

MKR #1 FRQ 405.944 9 MHz

- 45 : 99 p. Bim

ANSU-AZSAMPLE

33/200-2
51/198

22 128
50 78.60003

00-020

45 26 131

卷之二

三

118

१४

卷之三

10

卷之三

卷之三

卷之三

卷之三

110

104

100

卷之三

10

ДР 406, 000

ST 333

START 405.000 MHz
*RB 30.0 Hz UB 30.0 Hz

卷之三

-150
dBm

PLOT 25

14:19:48 NOV 29, 1999 2502 SWEEP #5420 PLOT 26

RL -80.00 dBm

MKR #1 FRQ 406.139 3 MHz

*ATTEN 0 dB
10.00 dB/DIV

-146.00 dBm

MARKER

406.139 3 MHz
-146.06 dBm

1

5

~~ANSWER-#2 SAMPLE~~

~~133.200-2~~

~~SW 100~~

~~50 7860.83~~

~~0.0 60-0-20~~

~~AE 26/07/1995~~

~~per 0.4 c~~

-146
dBm

START 406.100 0 MHz
RB 30.0 Hz VB 30.0 Hz
*RB 30.0 Hz VB 30.0 Hz

STOP 406.200 0 MHz
ST 333.3 sec

14:25:23 NOV 29, 1999 2502 ~~SAEE & SAE~~ PLOT 28

RL -80.00 dBm

*ATTEN 0 dB
10.00 dB/DIV

MKR #1 FRQ 411.89 MHz

-128.26 dBm

MARKER

411.89 MHz
-128.26 dBm

1

8

-100
dBm

1450-125 AMPL E

133/200-2

SN 109

SD 740023

CP 50-0-00

FE 26/51/52

HR 3.4.6

100
A
66.4

START 411.00 MHz

*RB 3.00 kHz VB 3.00 kHz

STOP 425.00 MHz

ST 4.667 sec

Q 14:57:28 NOV 29, 1999 2202 SAMPLE & SAMP PLOT 30

RL -80.00 dBm

*ATTEN 0 dB
10.00 dB/DIV

MRK #1 FRQ 401.5905 MHz

MARKER
401.5905 MHz

-145.26 dBm

1

5

AMSL-AZ SAMPLE

133/200-2

54/108

50 186083

0P 50-0-0

XE 26/57/65

Par 34.2

624

-145
dBm

START 401.5000 MHz
RB 30.0 Hz VB 30.0 Hz
*RB 30.0 Hz ST 333.3 sec

STOP 401.6000 MHz
ST 333.3 sec

08:52:23 NOV 30, 1999 ~~2602~~ SAME # SAME PLOT 32

RL -80.00 dBm

*ATTEN 0 dB

10.00 dB/DIV

RL -80.00 dBm
*ATTEN 0 dB
10.00 dB/DIV

MKR #1 FRQ 401.782 9 MHz
-145.77 dBm

MARKER

401.782 9 MHz
-145.77 dBm

1

6

marker-42 SAMPLE

133/200-2

SN 108

50 286083

OP 55-0-00

15 26161/5E

42 3.4.6

~~133/200-2~~

(S/N)

-145
dBm

START 401.700 0 MHz
*RB 30.0 Hz VB 30.0 Hz

STOP 401.800 0 MHz
ST 333.3 sec

08:55:04 NOV 30, 1999

RL -80.00 dBm

*ATTEN 0 dB
10.00 dB/DIV

PLOT 33

MKR #1 FRQ 405.339 MHz

-129.24 dBm

MARKER

405.339 MHz
-129.24 dBm

1

-125
dBm

0

1M5U-A2SAMPLE

138/200-2

SN 108

SO 786023

SP 56-0-00

TE 26161/6E

Per 32.46

(138)
(108)

START 401.000 MHz
*RB 1.00 kHz VB 1.00 kHz

STOP 406.000 MHz
ST 12.60 sec

09:17:56 NOV 30, 1999 REOZ Spectral Frequency PLOT -34

RL -60.00 dBm Aot. Horizontal MKR #1 FRQ 2.030 70 GHz
*ATTEN 0 dB -127.02 dBm
10.00 dB/DIV

MARKER
2: 030 70 GHz
-127.02 dBm
1

ANALYSIS SAMPLE
135/1200-2

5M 100

50 786003

0P 80-0-00

2E 26.151 kHz

PZ 3.4.4

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

~~0P 80-0-00~~

~~2E 26.151 kHz~~

~~PZ 3.4.4~~

~~50 786003~~

BICON. HORIZONTAL 2002 Special Frequency
BEE -20 0 dBm ATTEN 10 dB

BICON. HORIZONTAL RE02 Special Frequency
REF -20.0 dBm ATTEN 10 dB MKA 59.458 301 MHz
-94.90 dBm

10 dB/

DLM
-60.0 dBm

CENTER

59.458 00 MHz
AES BW 3 kHz

VBW 10 kHz

SPAN 1.00 kHz
SWP 33.3 msec

BICON. HORIZONTAL 2E02 Special Frequency
REF -20.0 dBm ATTEN 10 dB

10 dB/
Hz

CENTER 60.100 00 MHz
RES BW 3 kHz
VBW 10 kHz

SPAN 1.00 kHz
SWP 33.3 msec

BICON. VERTICAL 2502 Spans/frequency
REF -20.0 dBm ATTN 10 dB

10 dB/
Hz

CENTER 60.100 00 MHz
RES BW 3 kHz

BICON. HORIZONTAL 2502 Spacial frequency MKR 141.359 725 MHz
REF -20.0 dBm ATTEN 10 dB

HP

10 dB/

CENTER

141.360 00 MHz
RES BW 3 kHz

BICON. VERTICAL 2602 Special Frequency

REF -20.0 dBm ATTN 10 dB

10 dB/
10 dB/

10

CENTER
141.360 00 MHz

DL
-60.0
dBm

MKR 141.359 578 MHz
-94.20 dBm

PLOT #1

AMSL-42
1351200-2
SN 108
50 186083
OP 30.0-00
4E 26151/3E
PA 3.4.4

26151/3E

WAVES WAVEFORM WAVEFORM WAVEFORM WAVEFORM WAVEFORM WAVEFORM

CENTER

141.360 00 MHz
RES BW 3 kHz

VBW 10 kHz
SPAN 1.00 kHz
SWP 33.3 msec

BICON. HORIZONTAL 2E02 Spacial Frequency MKR 142.900 392 MHz
REF -20.0 dBm ATTEN 10 dB

10 dB/
100 ms

CENTER 142.900 00 MHz
RES BW 3 kHz
VBW 10 kHz

SPAN 1.00 kHz
SWP 33.3 msec

BICON. VERTICAL REF -20.0 dBm ATTEN 10 dB Special frequency

四

10 dB /

ILLINOIS

P207 A3

1985-1200-1

卷之三

卷之三

45 26 151/5E

Par. 3.4.6

[Handwritten signature]

1

1

11

卷之三

10

三

三

卷之三

N

MKA 282.733 218 MHz
-93.10 dBm

2602 Specie/frequency
ATTEN 10 dB

LOG CONICAL
REF -20 dB

七

10 dB /

CENTER

282.733 00 MHz
BES BW 3 kHz

VBW 10 kHz

SPAN 1.00 kHz
SWP 33 msec

LOG CONICAL REF -20.0 dBm ATTEM 10 dB

10 dB/
Hz

2022 Special frequency MKA 371.920 911 MHz
-93.10 dBm

CENTER 371.921 00 MHz
RES BW 3 kHz VBW 10 kHz

SPAN 1.00 kHz
SWP 33.3 msec

LOG CONICAL REF -20.0 dBm ATTEN 10 dB MKA 375.972 MHz -94.70 dBm

10 dB/
hp

-60.0 dBm

CENTER 375.972 00 MHz SPAN 1.00 kHz
RES BW 3 kHz VBW 10 kHz SWP 33.3 msec

CENTER 624.925 00 MHz
RES BW 3 kHz VBW 10 kHz

SPAN 1.00 kHz
SWP 33.3 msec

LOG CONICAL
REF -20.0 dBm
ATTEN 10 dB

10 dB/
hp

CENTER 631.730 00 MHz
RES BW 3 kHz
VBW 10 kHz
SPAN 1.00 kHz
SWP 33.3 msec

LOG CONICAL REOZ Special Frequency MKA 743.840 545 MHz
REF -20.0 dBm ATEN 10 dB

10 dB/
Hz
DL
-60.0
dBm

24 Nov 99

10 dB/
Hz
RES BW 3 kHz VBW 10 kHz

CENTER 743.841 00 MHz SPAN 1.00 kHz
RES BW 3 kHz SWP 33.3 msec

SPAN 1.00 kHz
SWP 33.3 msec

LOG CONICAL
REF -20.0 dBm ATTEM 10 dB

CENTER 751.944 00 MHz
RES BW 3 kHz VBW 10 kHz
SPAN 1.00 kHz
SWP 33.3 msec

AEROJET ELECTRONIC SYSTEMS
EMISSION LEVEL [dB_{UV} / m]

30 Nov 1999 09: 26: 05
PLAT 52

29 Nov 1999 13:04:24
PLOT 33

AEROJET ELECTRONIC SYSTEMS
EMISSION LEVEL [dB_{UV}/m]

AEROJET ELECTRONIC SYSTEMS
EMISSION LEVEL [dBuV / m]

29 Nov 1999 09:07:42
PLOT 54

hp

133/200-2

5N/08

50 786000

OP 50-0-00

AE 26/51/5E

Par 3.4.0

269

REO2 AMSU-A2/METOP

RADIATED NARROWBAND EMISSIONS

FULL SCAN MODE/ANT. HORIZONTAL

90

70

METOP

50

30

1000

10000

EMISSION ENERGY [MHz]

hp AEROJET ELECTRONIC SYSTEMS EMISSION LEVEL [dB_{UV} / m]

29 Nov 1999 09:02:24
P207 55

FREQUENCY [MHz]

29 NOV 1999 08:37:45
PLOT 56

AEREOJET ELECTRONIC SYSTEMS
EMISSION LEVEL [dB_{UV} / m]

110

133/200-2

51/08

50 786085

OP 50-080

AE 26/51/5E

par 3.4.6

RE02 AMSU-A2/METOP

RADIATED NARROWBAND EMISSIONS

FULL SCAN MODE/ANT. HORIZONTAL

90

65

70

METOP

50

30

10000

18000

FREQUENCY [MHz]

AEROJET ELECTRONIC SYSTEMS

TEST SETUP TABLE

PG 1 OF 6

LIBRARY TEST FILE: SETUP NOT STORED

DISPLAY TITLE 1: AMSU-A2 / METOP
CONTROL PARAMETERS

Test Type	PEAK
Freq Uncert (%)	1
Min Sweep Time/Oct (sec)	3
NUMBER PAGES	0
NUMBER RANGES	4
START FREQUENCY (MHz)	.014

50 100 99
 1381200-2
 SN 108
 50 786083
 Op 50-0-00
 AB 26107/68
Test Type
 269

RNG STOP FREQ(MHz)

TRANSDUCER

1	.2	EMCO 3301 - ACTIVE MONPOLE
2	30.0	EMCO 3301 - ACTIVE MONPOLE
3	200.0	EMCO 3110 - BICONICAL (1 meter)
4	1000.0	E-M LCA-25 - LOG SPIRAL @ 1m

DISPLAY INFORMATION

PG 2 OF 6

AMPLITUDE INFO

Units Label	dBuV / m
Disp Ref Level	100

TEST LIMITS

Number Limits	1
Limit 1	NARROWBAND

AEROJET ELECTRONIC SYSTEMS

RANGE 1: .014 TO .2 MHz

PG 3 OF 6

AMPLIFIER

Name HP8447A-H64
Gain (dB) 28
INPUT PORT LEFT
MSMT STATES
QP Bandwidth (Hz) BYPASS
SA Res Bandw (Hz) 300
Video Bandw. (Hz) 3000
Ref. Level (dBuV) 100
Int. Atten. (dB) 10
Ext. Atten. (dB) 0
NO. OF SETUPS 1
NO. SWEEPS/SETUP 1

FIRST SETUP

Msg,Sub,Continue MESSAGE
Msg: CONNECT EMC0 3301 & HP8447F - 28dB INPUT

RANGE 2: .2 TO 30.0 MHz

PG 4 OF 6

AMPLIFIER

Name HP8447F-H64
Gain (dB) 28
INPUT PORT LEFT
MSMT STATES
QP Bandwidth (Hz) BYPASS
SA Res Bandw (Hz) 3E3
Video Bandw. (Hz) 30000
Ref. Level (dBuV) 100
Int. Atten. (dB) 10
Ext. Atten. (dB) 0
NO. OF SETUPS 1
NO. SWEEPS/SETUP 1

FIRST SETUP

Msg,Sub,Continue CONTINUE

30 Nov 99
1331200-2
SN 108
SO 786083
Op 50-0-00
AE 26151/5
[Handwritten signatures and initials]
269 A

AEROJET ELECTRONIC SYSTEMS

RANGE 3: 30.0 TO 200.0 MHz PG 5 OF 6

AMPLIFIER

Name HP8447F - H64
Gain (dB) 25
INPUT PORT RIGHT
MSMT STATES
QP Bandwidth (Hz) BYPASS
SA Res Bandw (Hz) 30E3
Video Bandw. (Hz) 300E3
Ref. Level (dBuV) 100
Int. Atten. (dB) 10
Ext. Atten. (dB) 0
NO. OF SETUPS 1
NO. SWEEPS/SETUP 1

FIRST SETUP

Msg, Sub, Continue MESSAGE
Msg: CONNECT BICON ANT & HP8447F 25 dB INPUT

30 Nov 77

1551200-2

SN 108

SO 786083

Op 50-0-00

AE 26151/15

RANGE 4: 200.0 TO 1000.0 MHz PG 6 OF 6

AMPLIFIER

Name HP8447F - H64
Gain (dB) 25
INPUT PORT RIGHT
MSMT STATES
QP Bandwidth (Hz) BYPASS
SA Res Bandw (Hz) 30E3
Video Bandw. (Hz) 300000
Ref. Level (dBuV) 80
Int. Atten. (dB) 10
Ext. Atten. (dB) 0
NO. OF SETUPS 1
NO. SWEEPS/SETUP 1

FIRST SETUP

Msg, Sub, Continue MESSAGE
Msg: CONNECT LOG SPIRAL & HP8447D TO RIGHT IN

AEROJET ELECTRONIC SYSTEMS

=====
TRANSDUCER TABLE
=====TRANSDUCER TITLE
SIGN OF TRANSDUCER
NUMBER OF POINTSEMCO 3301 - ACTIVE MONOPOLE
PLUS
21SO 100 99
1881200-2
SN 108
SO 786083
OP 50-0-00
AE 2615/1
RECORDED
253

POINT	FREQUENCY(MHz)	TRANSDUCER FACTOR
1	.014	13.1
2	.020	12.4
3	.040	12.3
4	.060	12.1
5	.100	12.1
6	.150	11.8
7	.200	11.7
8	.400	11.4
9	.600	11.6
10	.850	11.2
11	1.000	11.3
12	1.600	10.4
13	2.000	10.9
14	4.000	10.4
15	6.000	10.6
16	8.000	10.1
17	10.000	9.7
18	15.000	10.2
19	20.000	11.9
20	25.000	12.3
21	30.000	12.7

AEROJET ELECTRONIC SYSTEMS

TRANSDUCER TABLE

TRANSDUCER TITLE EMCO 3110 - BICONICAL (1 meter)
SIGN OF TRANSDUCER PLUS
NUMBER OF POINTS 28

POINT	FREQUENCY(MHz)	TRANSDUCER FACTOR
1	30	12.7
2	40	11.4
3	50	10.6
4	60	11.0
5	70	10.9
6	80	10.2
7	90	10.2
8	100	10.7
9	110	11.8
10	120	13.3
11	130	13.6
12	140	13.4
13	150	13.2
14	160	13.3
15	170	15.0
16	180	16.2
17	190	15.6
18	200	15.9
19	210	15.9
20	220	16.5
21	230	18.3
22	240	19.8
23	250	19.9
24	260	19.1
25	270	19.3
26	280	20.8
27	290	23.0
28	300	24.7

SO NO 99
1331200-2
SN 108
SO 786085
OP 60-0-0-
TE 26151/6

4
169

AEROJET ELECTRONIC SYSTEMS

TRANSDUCER TABLE

TRANSDUCER TITLE E-M LCA-25 - LOG SPIRAL @ 1m
 SIGN OF TRANSDUCER PLUS
 NUMBER OF POINTS 33

30 Nov 77
 1381200-2
 SN 108
 50 786083
 OP 50-0-00
 AE 2615/15.

POINT	FREQUENCY(MHz)	TRANSDUCER FACTOR
1	200	23.3
2	225	23.0
3	250	21.7
4	275	19.4
5	300	17.8
6	325	17.5
7	350	17.0
8	375	17.5
9	400	17.9
10	425	18.2
11	450	18.6
12	475	19.1
13	500	19.8
14	525	20.1
15	550	20.3
16	575	20.8
17	600	21.2
18	625	21.5
19	650	21.9
20	675	22.3
21	700	22.7
22	725	22.8
23	750	23.3
24	775	22.7
25	800	24.3
26	825	24.9
27	850	25.5
28	875	25.7
29	900	26.2
30	925	26.4
31	950	26.6
32	975	26.6
33	1000	26.8

269

AEROJET ELECTRONIC SYSTEMS

=====

LIMIT TABLE

=====

LIMIT TITLE NARROWBAND
NUMBER OF POINTS 2

POINT	FREQUENCY(MHz)	AMPLITUDE
1	.010	50
2	1000.000	50

30 Nov 99
1331200-2
SN 108
50 786083
Op 50-0-00
AE 261511

269

AEROJET ELECTRONIC SYSTEMS

TEST SETUP TABLE

PG 1 OF 5

LIBRARY TEST FILE: SETUP NOT STORED

DISPLAY TITLE 1: RE02 AMSU-A2/METOP
CONTROL PARAMETERS

Test Type	PEAK
Freq Uncert (%)	.5
Min Sweep Time/Oct (sec)	3
NUMBER PAGES NOTES	0
NUMBER RANGES	3
START FREQUENCY (MHz)	1000

RNG STOP FREQ(MHz) TRANSDUCER

1	2500	RGA 180	HORN ANTENNA
2	5700	RGA 180	HORN ANTENNA
3	10000	RGA 180	HORN ANTENNA

DISPLAY INFORMATION

PG 2 OF 5

AMPLITUDE INFO

Units Label	dBuV / m
Disp Ref Level	110

TEST LIMITS

Number Limits	1
Limit 1	METOP

29 Nov 99
1331200-2
SN 108
50 786083
Op 50-0-00
AE 26151/51

269

AEROJET ELECTRONIC SYSTEMS

RANGE 1: 1000 TO 2500 MHz

PG 3 OF 5

AMPLIFIER

Name	HP8449B
Gain (dB)	30
INPUT PORT	RIGHT
MSMT STATES	
QP Bandwidth (Hz)	BYPASS
SA Res Bandw (Hz)	10E3
Video Bandw. (Hz)	100000
Ref. Level (dBuV)	80
Int. Atten. (dB)	10
Ext. Atten. (dB)	0
NO. OF SETUPS	1
NO. SWEEPS/SETUP	1

FIRST SETUP

Msg, Sub, Continue MESSAGE

Msg: CONNECT DBL RIDGE ANT TO AMPL INPUT

RANGE 2: 2500 TO 5700 MHz

PG 4 OF 5

AMPLIFIER

Name	HP8449B
Gain (dB)	30
INPUT PORT	RIGHT
MSMT STATES	
QP Bandwidth (Hz)	BYPASS
SA Res Bandw (Hz)	100E3
Video Bandw. (Hz)	1.E+6
Ref. Level (dBuV)	80
Int. Atten. (dB)	10
Ext. Atten. (dB)	0
NO. OF SETUPS	1
NO. SWEEPS/SETUP	1

FIRST SETUP

Msg, Sub, Continue CONTINUE

29 Nov 99

1331200-2

SN 108

SO 786083

OP 00-0-00

AE 26151/SE

24
863

AEROJET ELECTRONIC SYSTEMS

=====
RANGE 3: 5700 TO 10000 MHz PG 5 OF 5
=====

AMPLIFIER

Name	HP 8448B
Gain (dB)	30
INPUT PORT	RIGHT
MSMT STATES	
QP Bandwidth (Hz)	BYPASS
SA Res Bandw (Hz)	300E3
Video Bandw. (Hz)	3.E+6
Ref. Level (dBuV)	80
Int. Atten. (dB)	10
Ext. Atten. (dB)	0
NO. OF SETUPS	1
NO. SWEEPS/SETUP	1
FIRST SETUP	
Msg, Sub, Continue	CONTINUE

29 Nov 79
1331200 - 2
SN 108
SO 786083
OP 50-0-00
AE 26151/SE

1A
266

AEROJET ELECTRONIC SYSTEMS

TEST SETUP TABLE

PG 1 OF 6

LIBRARY TEST FILE: SETUP NOT STORED

DISPLAY TITLE 1:

AMSU-A METOP

CONTROL PARAMETERS

Test Type	PEAK
Freq Uncert (%)	.5
Min Sweep Time/Oct (sec)	3
NUMBER PAGES NOTES	0
NUMBER RANGES	4
START FREQUENCY (MHz)	10000

24 Nov 89
1331200 - Z
SN 108
50786083
Op 500-00
AE26151/5E

RNG STOP FREQ(MHz)

TRANSDUCER

1	12000	RGA 180	HORN ANTENNA
2	14000	RGA 180	HORN ANTENNA
3	16000	RGA 180	HORN ANTENNA
4	18000	RGA 180	HORN ANTENNA

DISPLAY INFORMATION

PG 2 OF 6

AMPLITUDE INFO

Units Label	dBuV / m
Disp Ref Level	110

TEST LIMITS

Number Limits	1
Limit 1	METOP

AEROJET ELECTRONIC SYSTEMS

RANGE 1: 10000 TO 12000 MHz

PG 3 OF 6

AMPLIFIER

Name

Gain (dB)

0

INPUT PORT

RIGHT

MSMT STATES

QP Bandwidth (Hz)

BYPASS

SA Res Bandw (Hz)

30E3

Video Bandw. (Hz)

300000

Ref. Level (dBuV)

80

Int. Atten. (dB)

0

Ext. Atten. (dB)

0

NO. OF SETUPS

1

NO. SWEEPS/SETUP

1

FIRST SETUP

Msg, Sub, Continue MESSAGE

Msg: CONNECT HORN ANTENNA TO INPUT

RANGE 2: 12000 TO 14000 MHz

PG 4 OF 6

AMPLIFIER

Name

Gain (dB)

0

INPUT PORT

RIGHT

MSMT STATES

QP Bandwidth (Hz)

BYPASS

SA Res Bandw (Hz)

30E3

Video Bandw. (Hz)

300000

Ref. Level (dBuV)

80

Int. Atten. (dB)

0

Ext. Atten. (dB)

0

NO. OF SETUPS

1

NO. SWEEPS/SETUP

1

FIRST SETUP

Msg, Sub, Continue CONTINUE

29 Nov 99

1331200-2

SN 108

50786083

Op 50-0-00

AE 26151/5c

1A
269

AEROJET ELECTRONIC SYSTEMS

RANGE 3: 14000 TO 16000 MHz

PG 5 OF 6

29 Nov 99

1331200-2

SN 108

50 786083

Op 50-0-00

AE 26151/S

AMPLIFIER

Name

Gain (dB)

0

INPUT PORT

RIGHT

MSMT STATES

QP Bandwidth (Hz)

BYPASS

SA Res Bandw (Hz)

10E3

Video Bandw. (Hz)

100000

Ref. Level (dBuV)

80

Int. Atten. (dB)

0

Ext. Atten. (dB)

0

NO. OF SETUPS

1

NO. SWEEPS/SETUP

1

FIRST SETUP

Msg,Sub,Continue

CONTINUE

RANGE 4: 16000 TO 18000 MHz

PG 6 OF 6

AMPLIFIER

Name

Gain (dB)

0

INPUT PORT

RIGHT

MSMT STATES

QP Bandwidth (Hz)

BYPASS

SA Res Bandw (Hz)

10E3

Video Bandw. (Hz)

100000

Ref. Level (dBuV)

80

Int. Atten. (dB)

0

Ext. Atten. (dB)

0

NO. OF SETUPS

1

NO. SWEEPS/SETUP

1

FIRST SETUP

Msg,Sub,Continue

CONTINUE

AEROJET ELECTRONIC SYSTEMS

TRANSDUCER TABLE

TRANSDUCER TITLE
SIGN OF TRANSDUCER
NUMBER OF POINTS

RGA 180 HORN ANTENNA
PLUS
35

29 Nov 97
1331200-2
SN 108
50 786089
Op 50-0-00
AE 26151/5

POINT	FREQUENCY(MHz)	TRANSDUCER FACTOR
1	1000	24.6
2	1500	24.9
3	2000	27.5
4	2500	29.2
5	3000	30.9
6	3500	33.1
7	4000	32.9
8	4500	32.4
9	5000	33.8
10	5500	35.1
11	6000	35.9
12	6500	35.7
13	7000	36.3
14	7500	37.3
15	8000	36.6
16	8500	37.9
17	9000	38.8
18	9500	38.6
19	10000	38.2
20	10500	38.4
21	11000	38.9
22	11500	39.2
23	12000	39.4
24	12500	39.3
25	13000	40.5
26	13500	42.3
27	14000	41.5
28	14500	41.3
29	15000	39.8
30	15500	38.1
31	16000	38.4
32	16500	40.4
33	17000	41.9
34	17500	42.5
35	18000	45.4

-111.6
 19 dBµV/m
 (19 dBµV/m)

10:24:33 NOV 30, 1999 RE02 Special Frequency Plot 60

RL -60.00 dBm Ant. Vertical MKR #1 FRQ 1.228 70 GHz
*ATTEN 0 dB -125.93 dBm
10.00 dB/DIV

MARKER

1.228 70 GHz

-125.93 dBm

1

9

-111.8
dBm/m
(19 dBmV/m)

AM5U-AZ SAMPLE

1331200-2
5M 108
50 786083
OP 50-0-00
TE 26151/6E
par 3.4.6

START 1.217 00 GHz
*RB 3.00 kHz VB 3.00 kHz

STOP 1.257 00 GHz
ST 13.33 sec

09:15:21 NOV 30, 1999 RECO2 Special Frequency PLOT 61

RL -60.00 dBm HORIZONTAL MKR #1 FRQ 1.609 84 GHz
*ATTEN 0 dB -126.55 dBm

10.00 dB/DIV

MARKER

1.609 84 GHz
-126.55 dBm

1

8

-111.2
dBm/m
(21 dBµV/m)

AMSC-A25 AMPL E
1331200 -2
5W 10.8
50 7860023
00 60-0-00
DE 26151KSE
Par 3.4.4

START 1.565 00 GHz
*RB 3.00 kHz VB 3.00 kHz
ST 16.33 sec

STOP 1.614 00 GHz
ST 16.33 sec

-111.2
 dBm/m
 (2/dBmV/m)

10:11:07 NOV 30, 1999 REOZ Special Frequency PLOT 63

RL -60.00 dBm Ant. Horizontal MKR #1 FRQ 2.051 515 GHz
*ATTEN 0 dB
10.00 dB/DIV

MARKER

2.051 515 GHz
-132.13 dBm
1

ABOVE-AZ SAMPLE
1331200-2

SN 108

50 780083

0 50-0-00

45 26101/52

per 3.9.6

8

-126.7
dBm/m

(dBm/m)

START 2.051 000 GHz
*RB 1.00 kHz VB 1.00 kHz

STOP 2.055 000 GHz
ST 12.00 sec

[CD] 10:14:18 NOV 30, 1999 2E02 Social Frequency Plot 65

RL -60.00 dBm Ant. Horizontal MKR #1 FRQ 5.254 962 5 GHz
*ATTEN 0 dB

10.00 dB/DIV

MARKER

5.254 962 5 GHz

-134.05 dBm

1

8

ANSU-A2SAMPLE

133/208-2

SN 108

50 784083

0P 00-0-00

1E 26151/5E

per

3.4.2

~~ANSU-A2SAMPLE~~

50

784083

0P

00-0-00

1E

26151/5E

per

3.4.2

-122.8
dBm/m
(10dBuV/m)

START 5.254 700 0 GHz VB 1.00 kHz *RB 1.00 kHz
STOP 5.255 300 0 GHz ST 1.800 sec

10:43:46 NOV 30, 1999 2502 Spectra / Frequency Plot

RL -60.00 dBm Ant. Vertical. MKR #1 FRQ 5.255 125 3 GHz
*ATTEN 0 dB
10.00 dB/DIV

-122.8
dBm/m
(readout/m)

START 5.254 700 0 GHz
*RB 3.00 kHz VB 3.00 kHz
STOP 5.255 300 0 GHz
*ST 33.53 sec

[] 10:18:21 NOV 30, 1999 RE02 Special frequency PLOT 67

RL -60.00 dBm Ant. Horizontal MKR #1 FRQ 5.528 8 GHz
*ATTEN 0 dB -121.37 dBm

10.00 dB/DIV

MARKER

5.528 8 GHz
-121.37 dBm

1

6

-86.7 dBm/m
(61 dBµV/m)

AM50-428 AMPL

133/200-2
SN/108
50 186085
00 5600-00
01E 20151/5E
02r 3.4.6
~~03.04.05~~

START 5.450 0 GHz
*RB 10.0 kHz VB 10.0 kHz
STOP 5.825 0 GHz
ST 11.25 sec

FORMS

National Aeronautics and
Space Administration

Report Documentation Page

1. Report No. ---	2. Government Accession No. ---	3. Recipient's Catalog No. ---	
4. Title and Subtitle Integrated Advanced Microwave Sounding Unit-A (AMSU-A), Performance Verification Report		5. Report Date March 2000	
		6. Performing Organization Code ---	
7. Author(s) J. Linn		8. Performing Organization Report No. 11658	
		10. Work Unit No. ---	
9. Performing Organization Name and Address Aerojet 1100 W. Hollyvale Azusa, CA 91702		11. Contract or Grant No. NAS 5-32314	
		13. Type of Report and Period Covered Final	
12. Sponsoring Agency Name and Address NASA Goddard Space Flight Center Greenbelt, Maryland 20771		14. Sponsoring Agency Code ---	
15. Supplementary Notes ---			
16. ABSTRACT (Maximum 200 words) This is the Performance Verification Report, Final Comprehensive Performance Test Report, P/N 1331200-2-TST, S/N 108/A2, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).			
17. Key Words (Suggested by Author(s)) EOS Microwave System		18. Distribution Statement Unclassified --- Unlimited	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of pages	22. Price ---

NASA FORM 1626 OCT 86

PREPARATION OF THE REPORT DOCUMENTATION PAGE

The last page of a report facing the third cover is the Report Documentation Page, RDP. Information presented on this page is used in announcing and cataloging reports as well as preparing the cover and title page. Thus, it is important that the information be correct. Instructions for filling in each block of the form are as follows:

Block 1. Report No. NASA report series number, if preassigned.

Block 2. Government Accession No. Leave blank.

Block 3. Recipient's Catalog No. Reserved for use by each report recipient.

Block 4. Title and Subtitle. Typed in caps and lower case with dash or period separating subtitle from title.

Block 5. Report Date. Approximate month and year the report will be published.

Block 6. Performing Organization Code. Leave blank.

Block 7. Authors. Provide full names exactly as they are to appear on the title page. If applicable, the word editor should follow a name.

Block 8. Performing Organization Report No. NASA installation report control number and, if desired, the non-NASA performing organization report control number.

Block 9. Performing Organization Name and Address. Provide affiliation (NASA program office, NASA installation, or contractor name) of authors.

Block 10. Work Unit No. Provide Research and Technology Objectives and Plants (RTOP) number.

Block 11. Contract or Grant No. Provide when applicable.

Block 12. Sponsoring Agency Name and Address. National Aeronautics and Space Administration, Washington, D.C. 20546-0001. If contractor report, add NASA installation or HQ program office.

Block 13. Type of Report and Period Covered. NASA formal report series; for Contractor Report also list type (interim, final) and period covered when applicable.

Block 14. Sponsoring Agency Code. Leave blank.

Block 15. Supplementary Notes. Information not included

elsewhere: affiliation of authors if additional space is required for Block 9, notice of work sponsored by another agency, monitor of contract, information about supplements (file, data tapes, etc.) meeting site and date for presented papers, journal to which an article has been submitted, note of a report made from a thesis, appendix by author other than shown in Block 7.

Block 16. Abstract. The abstract should be informative rather than descriptive and should state the objectives of the investigation, the methods employed (e.g., simulation, experiment, or remote sensing), the results obtained, and the conclusions reached.

Block 17. Key Words. Identifying words or phrases to be used in cataloging the report.

Block 18. Distribution Statement. Indicate whether report is available to public or not. If not to be controlled, use "Unclassified-Unlimited." If controlled availability is required, list the category approved on the Document Availability Authorization Form (see NHB 2200.2, Form FF427). Also specify subject category (see "Table of Contents" in a current issue of STAR) in which report is to be distributed.

Block 19. Security Classification (of the report). Self-explanatory.

Block 20. Security Classification (of this page). Self-explanatory.

Block 21. No. of Pages. Count front matter pages beginning with iii, text pages including internal blank pages, and the RDP, but not the title page or the back of the title page.

Block 22. Price Code. If Block 18 shows "Unclassified-Unlimited," provide the NTIS price code (see "NTIS Price Schedules" in a current issue of STAR) and at the bottom of the form add either "For sale by the National Technical Information Service, Springfield, VA 22161-2171" or "For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402-0001," whichever is appropriate.

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188
<p>Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.</p>			
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED	
4. TITLE AND SUBTITLE Integrated Advanced Microwave Sounding Unit-A (AMSU-A), Performance Verification Report		5. FUNDING NUMBERS NAS 5-32314	
6. AUTHOR(S) J. Linn			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Aerojet 1100 W. Hollyvale Azusa, CA 91702		8. PERFORMING ORGANIZATION REPORT NUMBER 11658 March 2000	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) NASA Goddard Space Flight Center Greenbelt, Maryland 20771		10. SPONSORING/MONITORING AGENCY REPORT NUMBER ---	
11. SUPPLEMENTARY NOTES ---			
12a. DISTRIBUTION/AVAILABILITY STATEMENT ---		12b. DISTRIBUTION CODE ---	
13. ABSTRACT (Maximum 200 words) This is the Performance Verification Report, Final Comprehensive Performance Test Report, P/N 1331200-2-ITST S/N 108/A2, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).			
14. SUBJECT TERMS EOS Microwave System			15. NUMBER OF PAGES
			16. PRICE CODE ---
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT SAR

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filing in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1. Agency Use Only(Leave blank)

Block 2. Report Date Full publication date including day, month, and year, if available (e.g., 1 Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g., 10 Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume report the primary title, add volume number and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. Funding Numbers To include contract and grant numbers; may include program element number(s), project number(s), tasksnumber(s), and work unit number(s). Use the following labels:

C - Contract	PR - Project
G - Grant	TA - Task
PE - Program Element	WU - Work Unit
	Accession No.

Block 6. Author(s) Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).

Block 7. Performing Organization Name(s) and Address(es). Self-explanatory.

Block 8. Performing Organization Report Number. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es) Self-explanatory.

Block 10. Sponsoring/Monitoring Agency Reports Number (if known).

Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with ...; Trans. of ...; To be published in ... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12.a Distribution/Availability Statement Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g., NOFORN, REL, ITAR).

DOD - See DoDD 5230.24 *Distribution Statement on Technical Documents*

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12.b Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the standard Distribution for Unclassified Scientific and Technical Reports.

NASA - Leave blank.

NTIS - Leave blank.

Block 13. Abstract. Include a brief *Maximum 200 words* factual summary of the most significant information contained in the report.

Block 14. Subject Terms. Keywords or phases identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number of pages.

Block 16. Price Code. Enter appropriate price code **NTIS only**.

Block 17 - 19. Security Classifications. Self-explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.

Block 20. Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

DOCUMENT APPROVAL SHEET

AEROJET

TITLE Performance Verification Report Final Comprehensive Performance Test Report, P/N 1331200-2-TST, S/N 108/A2			DOCUMENT NO. Report 11658 March 2000
INPUT FROM: J. Linnl	CDRL: 208	SPECIFICATION ENGINEER: N/A	DATE
CHECKED BY: N/A	DATE	JOB NUMBER: N/A	DATE
APPROVED SIGNATURES			DEPT. NO.
Product Team Leader (A. Nieto)			8410 3/3/00
Systems Engineer (R. Platt)			8410 3/6/00
Design Assurance (E. Lorenz)			8410 3/7/00
Quality Assurance (R. Taylor)			7831 3-7-00
PMO/Technical (P. Patel)			8410 3/7/00
Released: Configuration Management (J. Cavanaugh)			8410 3-23-00
By my signature, I certify the above document has been reviewed by me and concurs with the technical requirements related to my area of responsibility.			
(Data Center) FINAL			

