Probability

Jonathan Gai

February 22, 2022

Contents

1	For	mal Setup	1					
	1.1	Examples of Probability Spaces	3					
	1.2	Combinatorial Analysis	4					
	1.3	Random Walks	5					
	1.4	Properties of Probability Measures	6					
	1.5	Bonferroni Inequalities	8					
	1.6	Counting with IEP	9					
	1.7	Independence	11					
	1.8	Conditional Probability	12					
	1.9	Law of Total Probability & Bayes' Formula	13					
2	Dis	crete Random Variables	16					
	2.1	Discrete Probability Distributions	17					
	2.2	More Than One RV	18					
Lecture 1: Probability Space								
E :	xamp	ble. If we have a die with outcomes $1, 2, \ldots, 6$.						
	1. P	$(2) = \frac{1}{6}$						
2. $\mathbb{P}(\text{multiple of } 3) = \frac{2}{6} = \frac{1}{3}$								
	3. P	(pair or a multiple of 3) = $\frac{4}{6} = \frac{2}{3}$						

1 Formal Setup

We try to define a probability space rigorously in this section.

Definition 1.1 (Probability Space). We have the following,

- 1. Sample space Ω , a set of outcomes.
- 2. \mathcal{F} , a collection of subsets of Ω (called events).
- 3. \mathcal{F} is a σ -algebra if
 - (a) **F1**: $\Omega \in \mathcal{F}$
 - (b) **F2**: if $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$
 - (c) **F3**: For all countable collections $\{A_n\}$ in \mathcal{F} , $\cup_n A_n \in \mathcal{F}$.

Given σ -algebra \mathcal{F} on Ω , function $\mathbb{P}: \mathcal{F} \to [0,1]$ is a probability measure if

- 1. **P1**: The probability function is nonnegative.
- 2. **P2**: $\mathbb{P}(\Omega) = 1$
- 3. **P3**: For all countable collection $\{A_n\}$ of disjoint events in \mathcal{F} , we have $\mathbb{P}(\cup_n A_n) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$.

Then $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space.

Problem. Why $\mathbb{P}: \mathcal{F} \to [0,1]$, not $\mathbb{P}: \Omega \to [0,1]$?

We will justify the definition in the following examples.

Example. When Ω is finite or countable,

- 1. In general: $\mathcal{F} = \mathcal{P}(\Omega)$.
- 2. $\mathbb{P}(2)$ is shorthand for $\mathbb{P}(\{2\})$.
- 3. \mathbb{P} is determined by $\mathbb{P}(\{w\}), \forall w \in \Omega$.

Remark. When Ω is uncountable, a probability space behaves differently, as shown in the following example.

Example. If $\Omega = [0, 1]$, and we want to choose a real number, all equally likely.

If $\mathbb{P}\{0\} = \alpha > 0$, then $\mathbb{P}(\{0,1,\frac{1}{2},\ldots,\frac{1}{n}\} = n\alpha)$. This cannot happen if n large, because we would have $\mathbb{P} > 1$. So $\mathbb{P}(\{0\}) = 0$ or undefined.

Example. When Ω is infinitely countable (e.g., $\Omega = \mathbb{N}$ or $\Omega = \mathbb{Q} \cap [0,1]$), however, it is not possible to choose uniformly. Suppose it is possible, there are two possibilities

• If $\mathbb{P}(\{\omega\}) = \alpha \quad \forall \omega \in \Omega$,

then
$$\mathbb{P}(\Omega) = \sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = \infty$$
. \nleq

• If $\mathbb{P}(\{\omega\}) = 0 \quad \forall \omega \in \Omega$,

then
$$\mathbb{P}(\Omega) = \sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = 0.$$
 \nleq

So it is not possible to have one such uniform probability space. But that's fine as there exists many other interesting probability measures on a infinite countably set.

Property. From the axioms, we want to prove the following properties of a probability space.

1. $\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$.

Proof.
$$A, A^c$$
 disjoint. $A \cup A^c = \Omega$. So $\mathbb{P}(A) + \mathbb{P}(A^c) = \mathbb{P}(\Omega) = 1$

- 2. $\mathbb{P}(\varnothing) = 0$
- 3. If $A \subseteq B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- 4. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

1.1 Examples of Probability Spaces

Example. Here we list some concrete examples of probability spaces.

1. Ω finite, $\Omega = \{w_1, \dots, w_n\}$, $\mathcal{F} = \text{all subsets under uniform choice.}$

$$\mathbb{P}: \mathcal{F} \to [0,1], \mathbb{P}(A) = \frac{|A|}{|\Omega|}$$
. In particular: $\mathbb{P}(\{w\}) = \frac{1}{|\Omega|} \forall w \in \Omega$.

2. If we are choosing without replacement n indistinguishable marbles that are labelled $\{1, \ldots, n\}$. Pick $k \leq n$ marbles uniformly at random.

Here we have
$$\Omega = \{A \subseteq \{1, \dots, n\}, |A| = k, |\Omega| = \binom{n}{k}\}$$
.

3. If we have a well-shuffled deck of cards, and we uniformly chose permutation of 52 cards.

$$\Omega = \{\text{all permutations of 52 cards}\}. |\Omega| = 52!.$$

Then we have

$$\mathbb{P}(\text{first three cards have the same suit}) = \frac{52 \cdot 12 \cdot 11 \cdot 49!}{52!} = \frac{22}{425}.$$

Lecture 2: Finite Probability Space

22 Jan. 11:00

Example (Coincidental Birthday). There we have n people, what is the probability that at least two share a birthday? To be precise, we first make the following assumptions,

- No leap years; (365 days in a year)
- All birthdays are equally likely.

We have the probability space

$$\Omega = \{1, \dots, 365\}^n$$

$$\mathcal{F} = \mathcal{P}(\Omega)$$

 $A = \{ \text{at least 2 people share birthday} \}$

 $A^c = \{ \text{all } n \text{ birthdays are different} \}.$

So we have the probability

$$\mathbb{P}(A^c) = \frac{365 \times 364 \times \ldots \times (365 - n - 1)}{365^n},$$

$$\mathbb{P}(A) = 1 - \frac{365 \times 364 \times \ldots \times (365 - n - 1)}{365^n}.$$

Remark.

• We note several special n values,

n = 22 : $\mathbb{P}(A) \approx 0.479$ n = 23 : $\mathbb{P}(A) \approx 0.507$ $n \ge 366$: $\mathbb{P}(A) = 1$

- The probability of birthday is not equal in real life though. It is more likely to be born about 9 months after christmas.
- Sometimes it would be easier to calculate the probability of the complement of an event.

1.2 Combinatorial Analysis

If Ω is a finite set such that $|\Omega| = n$,

Problem. How many ways to partition Ω into k disjoint subsets $\Omega_1, \ldots \Omega_k$ with $|\Omega_i| = n_i \ (\sum_{i=1}^k n_i = n)$?

The total number of ways M is

$$M = \binom{n}{n_i} \binom{n - n_1}{n_2} \binom{n - n_1 - n_2}{n_3} \cdots \binom{n - n_1 - n_2 \cdots - n_{k-1}}{n_k}$$

$$= \binom{n}{n_i} \binom{n - n_1}{n_2} \binom{n - n_1 - n_2}{n_3} \cdots \binom{n_k}{n_k}$$

$$= \frac{n!}{n!(n - n_1)!} \times \frac{(n - n_1)!}{n_2!(n - n_1 - n_2)!} \times \cdots \times \frac{(n - n_1 - n_2 - \cdots - n_{k-1})!}{x_k!0!}$$

$$= \frac{n!}{n_1!n_2! \cdots n_k!}$$

$$= \binom{n}{n_1, n_2, \dots, n_k}$$

which is called the *multinomial coefficient*, and denoted by the last term in the equations.

Remark. The ordering of the subsets do matter in this setting.

Figure 1: Random Walks

1.3 Random Walks

We have the following uniform probability space

$$\Omega = \{ (x_0, x_1, \dots, x_n) \mid x_0 = 0, |x_k - x_{k-1}| = 1, k = 1, \dots, n \},$$

$$|\Omega| = 2^n.$$

Problem. What's $\mathbb{P}(x_n = 0)$ and $\mathbb{P}(x_n = n)$?

We have $\mathbb{P}(x_n = n) = \frac{1}{2^n}$.

When n is odd, $\mathbb{P}(x_n = 0) = 0$ because after every step the value changes parity. To find the probability when n is even, we need to choose $\frac{n}{2}$ ks for which $x_k = x_{k-1} + 1$, and the rest $x_k = x_{k-1} - 1$. So

$$\mathbb{P}(x_n = 0) = 2^{-n} \binom{n}{n/2}$$
$$= \frac{n!}{2^n [(\frac{n}{2})!]^2}.$$

Problem. What happens when n is large?

We next present Stirling's Formula, and we adopt the following notation for the time being.

Notation. If (a_n) , b_n are two sequences, we say $a_n \sim b_n$ as $n \to \infty$ if $\frac{a_n}{b_n} \to 1$ as $n \to \infty$.

Theorem 1.1 (Stirling's Formula).

$$n! \sim \sqrt{2\pi} n^{n+\frac{1}{2}} e^{-n}$$
 as $n \to \infty$.

We also have the weaker version

$$\log(n!) \sim n \log n$$
.

Lecture 3 25 Jan. 11:00

Proof. We have

$$\log(n!) = \log 2 + \log 3 + \ldots + \log n.$$

So

$$\underbrace{\int_{1}^{n} \log x dx} \leq \log(n!) \leq int_{1}^{n+1} \log x dx$$

$$\underbrace{n \log n - n + 1}_{n \log n} \leq \log(n!) \leq \underbrace{(n+1) \log(n+1) - n}_{n \log n}.$$

 $\log(n!)$ is sandwiched between the lower and upper integrals, so $\log(n!)$ must be approximately $n \log n$ as well. In this calculation, these facts helped

- 1. $\log x$ is increasing, so it's easier to bounded by the integrals.
- 2. $\log x$ has a nice integral. So the integrals have closed forms.

(Ordered) Compositions

Definition 1.2. A composition of m with k parts is sequence $(m1, \ldots, m_k)$ of non-negative integers with $\sum_{i=1}^k m_i = m$.

We use stars and bars. There are m stars and k-1 bars, and

$$\#$$
Compositions = $\binom{m+k-1}{m}$.

1.4 Properties of Probability Measures

Recall Definition (1.1). We prove the following properties.

Property.

1. Countable sub-additivity

Let $(A_n)_{n>1}$ sequence of events in \mathcal{F} . Then

$$\mathbb{P}(\cup_{n\geq 1} A_n) \leq \sum_{n\geq 1} \mathbb{P}(A_n).$$

Proof. We rewrite $\cup_{n\geq 1}$ as a disjoint union.

Define
$$B_1 = A_1$$
 and $B_n = A_n \setminus (A_1 \cup \ldots \cup A_{n-1})$.

So

- $\bullet \cup_{n>1} B_n = \cup_{n>1} A_n,$
- $(B_n)_{n>1}$ disjoint (by construction),
- $B_n \subseteq A_n \implies \mathbb{P}(B_n) \le \mathbb{P}(A_n)$.

And we have

$$\mathbb{P}(\cup_{n\geq 1}A_n) = \mathbb{P}(\cup_{n\geq 1}B_n) = \sum_{n\geq 1}\mathbb{P}(B_n) = \sum_{n\geq 1}\mathbb{P}(A_n).$$

2. Continuity $(A_n)_{n\geq 1}$ increasing sequence of events in \mathcal{F} that is $A_n\subseteq A_{n+1}$ for all n.

In fact,
$$\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(\cup_{n\geq 1} A_n)$$
.

Proof. We reuse the B_n s, and we have

- $\bullet \ \sqcup_{k=1}^n B_k = A_n,$
- $\bullet \ \cup_{n>1} B_n = \cup_{n>1} A_n.$

So we have

$$\mathbb{P}(A_n) = \sum_{k=1}^n \mathbb{P}(B_k) \to \sum_{k>1} \mathbb{P}(B_k) = \mathbb{P}(\cup_{n\geq 1} B_n) = \mathbb{P}(\cup_{n\geq 1} A_n).$$

3. Inclusion-Exclusion Principle

Background:
$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$
.

Similarly, for $A, B, C \in \mathcal{F}$,

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(B \cap C) - \mathbb{P}(C \cap A) + \mathbb{P}(A \cap B \cap C).$$

The full Inclusion-Exclusion principle statement is the following. Let $A_1, \ldots, A_n \in \mathcal{F}$, then

$$\mathbb{P}(\cup_{i=1}^{n} A_{i}) = \sum_{i=1}^{n} \mathbb{P}(A_{i}) - \sum_{1 \leq i_{1} < i_{2} \leq n} \mathbb{P}(A_{i_{1}} \cap A_{i_{2}}) + \dots + (-1)^{n+1} \mathbb{P}(A_{1} \cap \dots \cap A_{n})$$

$$= \sum_{I \subseteq \{1,\dots,n\}} (-1)^{|I|+1} \mathbb{P}(\cap_{i \in I} A_{i}).$$

Lecture 3: Inclusion-Exclusion Principle

27 Jan. 2022

Proof. We used induction. The n=2 case is proved in the example sheet.

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \mathbb{P}\left(\left(\bigcup_{i=1}^{n-1} A_{i}\right) \bigcup A_{n}\right)$$

$$= \mathbb{P}\left(\bigcup_{i=1}^{n-1} A_{i}\right) + \mathbb{P}(A_{n}) - \mathbb{P}\left(\left(\bigcup_{i=1}^{n-1} A_{i}\right) \bigcap A_{n}\right).$$

Note that for $J \subseteq \{1, \ldots, n-1\}$,

$$\bigcap_{i \in J} (A_i \cap A_n) = \bigcap_{i \in J \cup \{n\}} A_i.$$

The inductive statement tells us

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{\substack{J \subseteq \{1, \dots, n-1\}\\ J \neq \emptyset}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i \in J} A_{i}\right) + \mathbb{P}(A_{n})$$

$$- \sum_{\substack{J \subseteq \{1, \dots, n-1\}\\ J \neq \emptyset}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i \in J} A_{i}\right)$$

$$= \sum_{\substack{I \subseteq \{1, \dots, n-1\}\\ I \neq \emptyset}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_{i}\right) + \mathbb{P}(A_{n})$$

$$+ \sum_{\substack{I \subseteq \{1, \dots, n-1\}\\ n \in I, |I| \ge 2}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_{i}\right)$$

$$= \sum_{\substack{I \subseteq \{1, \dots, n\}\\ n \in I, |I| \ge 2}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_{i}\right).$$

1.5 Bonferroni Inequalities

Problem. What if you truncate Inclusion-Exclusion Principle?

Recall countable subadditivity states that $\mathbb{P}(\cup A_i) \leq \sum \mathbb{P}(A_i)$, also known as union bound. We have the following inequalities.

•
$$\mathbb{P}(\bigcup_{i=1}^{n} A_i) \le \sum_{k=1}^{r} (-1)^{k+1} \sum_{i_1 < \dots < i_k} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k})$$
 when r is odd;

•
$$\mathbb{P}(\bigcup_{i=1}^n A_i) \ge \sum_{k=1}^r (-1)^{k+1} \sum_{i_1 < \dots < i_k} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k})$$
 when r is even.

Problem. When is it good to truncate at, for example, r = 2?

Proof. We induct on r and n. When r is odd

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) + \mathbb{P}(A_{n}) - \mathbb{P}\left(\bigcup_{i=1}^{n-1} (A_{i} \cap A_{n})\right)$$

$$\leq \sum_{\substack{J \subseteq \{1, \dots, n-1\}\\1 \leq |J| \leq r}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i \in J} A_{i}\right) + \mathbb{P}(A_{n})$$

$$- \sum_{\substack{J \subseteq \{1, \dots, n-1\}\\1 \leq |J| \leq r-1}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i \in J} A_{i}\right)$$

$$\leq \sum_{\substack{I \subseteq \{1, \dots, n\}\\1 \leq |I| \leq r}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_{i}\right).$$

And a similar argument follows when r is even.

1.6 Counting with IEP

Inclusion Exclusion Principle gives up a route to solve questions that do not have a closed form answer.

When we have a uniform probability measure on Ω with $|\Omega| < \infty$,

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|} \ \forall A \subseteq \Omega.$$

Then $\forall A_1, \ldots, A_n \subseteq \Omega$,

$$|A_1 \cup \ldots \cup A_n| = \sum_{k=1}^n (-1)^{n+1} \sum_{i_1 < \ldots < i_k} |A_{i_1} \cap \ldots \cap A_{i_k}|,$$

and similarly for Bonferroni inequalities.

Example. We count the number of surjections $f:\{1,\ldots,n\}\to\{1,\ldots,m\}$ with $n\geq m$.

We have the probability space and event

$$\Omega = \{ f : \{1, \dots, n\} \to \{1, \dots, m\} \},\$$

$$A = \{ f : \text{Im}(f) = \{1, \dots, m\} \}.$$

For all $i \in \{1, ..., m\}$, let $B_i = \{f \in \Omega \mid i \notin \text{Im}(f)\}$. We have the following key observations:

- $\bullet \ A = B_1^c \cap \dots B_m^c = (B_1 \cup \dots \cup B_m)^c.$
- $|B_{i_1} \cap \ldots \cap B_{i_k}|$ is nice to calculate, and we have

$$|B_{i_1} \cap \ldots \cap B_{i_k}| = |\{f \in \Omega \mid i_1, \ldots, i_k \notin \text{Im}(f)\}| = (m-k)^n.$$

So by IEP, we have

$$|B_1 \cup \ldots \cup B_m| = \sum_{k=1}^m (-1)^{k+1} \sum_{i_1 < \ldots < i_k} |B_{i_1} \cap \ldots \cap B_{i_k}|$$
$$= \sum_{k=1}^m (-1)^{k+1} {m \choose k} (m-k)^n.$$

So
$$|A| = m^n - \sum_{k=1}^m (-1)^{k+1} {m \choose k} (m-k)^n = \sum_{k=0}^m (-1)^k {m \choose k} (m-k)^n$$
.

Lecture 5: Independence

29 Jan. 2022

Example (Derangements). We try to find the number of permutations with no fixed points, for a Secret Santa for example. We have the sample space and event

$$\Omega = \{ \text{permutations of } \{1, \dots, n\} \},$$

$$D = \{ \sigma \in \Omega \mid \sigma(i) \neq i \ \forall i = 1, \dots, n \}.$$

For all $i \in 1, ..., n$, let $A_i = \{ \sigma \in \Omega \mid \sigma(i) = i \}$.

Problem. Is $\mathbb{P}(D)$ large or small when $n \to \infty$.

Similar to the last example, $D = A_1^c \cap ... \cap A_n^c = (\bigcup_{i=1}^n A_i)^c$, and

$$\mathbb{P}(A_{i_1} \cap \ldots \cap A_{i_k}) = \frac{(n-k)!}{n!}.$$

So by IEP, we have

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{i_{1} < \dots < i_{k}} \mathbb{P}(A_{i_{1}} \cap \dots \cap A_{i_{k}})$$
$$= \sum_{k=1}^{n} (-1)^{k+1} \binom{n}{k} \frac{(n-k)!}{n!}.$$

So
$$\mathbb{P}(D) = 1 - \mathbb{P}(\bigcup_{i=1}^{n} A_i) = 1 - \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k!} = \sum_{k=0}^{n} \frac{(-1)^k}{k!}.$$

In fact, when
$$n \to \infty$$
, $\mathbb{P}(D) \to \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} = e^{-1} \approx 0.37$.

Note. What if instead $\Omega' = \{\text{all functions } f : \{1, \dots, n\} \to \{1, \dots, n\}\}$?

We have $D = \{ f \in \Omega' \mid f(i) \neq i \ \forall i = 1, \dots, n \}$, and

$$\mathbb{P}(D) = \frac{(n-1)^n}{n^n} = (1 - \frac{1}{n})^n \to e^{-1}.$$

Can we just say $\mathbb{P}(D) = (\frac{n-1}{n})^n$? We would need independence to say that.

Also note that f(i) is a random quantity associated to Ω . We will study these later as a random variable.

We are allowed to toss a fair coin n times, but we can't toss an unfair coin n times so far.

1.7 Independence

Definition 1.3. Events $A, B \in \mathcal{F}$ are independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$
. (denoted as $A \perp \!\!\! \perp B$)

A countable collection of events (A_n) is *independent* if for all distinct i_1, \ldots, i_k , we have

$$\mathbb{P}(A_{i_1} \cap \ldots \cap A_{i_k}) = \prod_{j=1}^k \mathbb{P}(A_{i_j}).$$

Remark. Pairwise independence does not imply independence.

Example. If we have the uniform probability space

$$\Omega = \{ (H, H), (H, T), (T, H), (T, T) \},\$$

and $\mathbb{P}(\{\omega\}) = \frac{1}{4}$ for all $\omega \in \Omega$. And we define the following events

$$A = \text{first coin } H = \{(H, H), (H, T)\}$$

$$B =$$
second coin $H = \{(H, H), (T, H)\}$

$$C = \text{same outcome} = \{(H, H), (T, T)\}$$

Note that probability of each of these happening is $\mathbb{P}(A) = \mathbb{P}(B) = \mathbb{P}(C) = \frac{1}{2}$, and $A \cap B = A \cap C = B \cap C = \{(H, H)\}$, so they are pairwise independent. But

$$\mathbb{P}(A \cap B \cap C) = \frac{1}{4} \neq \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C).$$

The three events are not independent.

Example.

• If we have $\Omega' = \{\text{all functions } f: \{1, \dots, n\} \to \{1, \dots, n\}\}$, and let $A_i = \{f \in \Omega' \mid f(i) = i\}$. Then,

$$\mathbb{P}(A_i) = \frac{n^{(n-1)}}{n^n} = \frac{1}{n}$$

$$\mathbb{P}(A_{i_1} \cap \ldots \cap A_{i_k}) = \frac{n^{n-k}}{n^n} = \frac{1}{n^k} = \prod_{i=1}^k \mathbb{P}(A_{i_i}).$$

Here, (A_i) are independent events.

• If we have $\Omega = \{ \sigma \mid \text{ permutation of } \{1, \ldots, n\} \}$, and let $A_i = \{ \sigma \in \Omega \mid \sigma(i) = i \}$. Then,

$$\mathbb{P}(A_i) = \frac{n^{(n-1)}}{n^n} = \frac{1}{n}$$
$$\mathbb{P}(A_i \cap A_j) = \frac{(n-1)!}{n!} = \frac{1}{n(n-1)} \neq \mathbb{P}(A_i)\mathbb{P}(A_j).$$

Here, (A_i) are not independent.

Property.

1. If A is independent of B then A is also independent of B^c .

Proof.
$$\mathbb{P}(A \cap B^c) = \mathbb{P}(A) - \mathbb{P}(A \cap B)$$

 $= \mathbb{P}(A) - \mathbb{P}(A)\mathbb{P}(B)$
 $= \mathbb{P}(A)(1 - \mathbb{P}(B))$
 $= \mathbb{P}(A)\mathbb{P}(B^c).$

2. A is independent of $B = \Omega$ and of $C = \emptyset$.

Proof.
$$\mathbb{P}(A \cap \Omega) = \mathbb{P}(A) = \mathbb{P}(A)\mathbb{P}(\Omega)$$
, and $A \perp \emptyset$ by part 1.

3. $\mathbb{P}(B) = 0$ or 1 Then A is independent of B.

1.8 Conditional Probability

Definition 1.4 (Conditional Probability). If we have a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ as before. Consider $B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$, and we have $\mathbb{P}(A)$, The *conditional probability of* A *given* B is

$$\mathbb{P}(A \mid B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

We can interpret this informally as the probability of A if we know B happened.

Example. If A, B are independent events,

$$\mathbb{P}(A\mid B) = \frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A)\mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A).$$

Informally, we know that if A, B are independent, then knowing where B happened doesn't affect probability of A.

Lecture 6 1 Feb. 2022

Property.

- 1. $\mathbb{P}(A \mid B) \ge 0$.
- 2. $\mathbb{P}(B \mid B) = \mathbb{P}(\Omega \mid B) = 1$.
- 3. (A_n) disjoint events in \mathcal{F} , we claim

$$\mathbb{P}(\cup_{n\geq 1} A_n \mid B) = \sum_{n\geq 1} \mathbb{P}(A_n \mid B).$$

Proof.
$$\mathbb{P}(\cup_{n\geq 1}A_n\mid B)=\frac{\mathbb{P}((\cup_nA_n)\cap B)}{\mathbb{P}(B)}$$

$$=\frac{\mathbb{P}(\cup_n(A_n\cap B))}{\mathbb{P}(B)} \quad \text{numerator is a disjoint union}$$

$$=\frac{\sum\limits_n\mathbb{P}(A_n\cap B)}{\mathbb{P}(B)}=\sum\limits_{n\geq 1}\mathbb{P}(A_n\mid B).$$
To prove it, we used the definition, and applied P1. P2. P3 to numerator

To prove it, we used the definition, and applied P1, P2, P3 to numerator.

4. $\mathbb{P}(\cdot \mid B)$ is a function from $\mathcal{F} \to [0,1]$ that satisfies the rules to be a probability measure in Ω . It is often useful to restrict the function to

$$\Omega' = B$$

$$\mathcal{F}' = \mathcal{P}(B),$$

especially in finite/ countable setting. Then $(\Omega', \mathcal{F}', \mathbb{P}(\cdot \mid B))$ also satisfies rules to be a probability measure on Ω' .

We have

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B \mid A)$$

$$\mathbb{P}(A_1 \cap A_2 \cap \dots \cap A_n) = \mathbb{P}(A_1)\mathbb{P}(A_2 \mid A_1)\mathbb{P}(A_3 \mid A_1 \cap A_2)$$

$$\dots \mathbb{P}(A_n \mid A_1 \cap \dots \cap A_{n-1})$$

Example. Uniform permutation $(\sigma(1), \sigma(2), \dots, \sigma(n)) \in \Sigma_n$. We claim that

$$\mathbb{P}(\sigma(k) = i_k \mid \sigma(1) = i, \dots, \sigma(k-1) = i_{k-1})$$

$$= \begin{cases} 0, & \text{if } i_k \in \{i, \dots, i_{k-1}\} \\ \frac{1}{n-k+q}, & \text{if otherwise} \end{cases}$$

Proof. We have

$$\mathbb{P}(\sigma(k) = i_k \mid \sigma(1) = i_1, \dots, \sigma(k-1) = i_{k-1})$$

$$= \frac{\mathbb{P}(\sigma(1) = i_1, \dots, \sigma(k) = i_k)}{\mathbb{P}(\sigma(1) = i_1, \dots, \sigma(k-1) = i_{k-1})}$$

$$= \frac{\frac{(n-k)!}{n!}}{\frac{(n-k+1)!}{n!}} = \frac{1}{n-k+1}.$$

1.9Law of Total Probability & Bayes' Formula

Definition 1.5. $(B_1, B_2, ...) \subseteq \Omega$ is a partition of Ω if $\Omega = \bigcup_n B_n$ and (B_n) are disjoint.

Theorem 1.2. (B_n) a finite or countable partition of Ω with $B_n \in \mathcal{F}$ for all n such that $\mathbb{P}(B_n) > 0$. Then for all $A \in \mathcal{F}$:

$$\mathbb{P}(A) = \sum_{n} \mathbb{P}(A \mid B_n) \mathbb{P}(B_n).$$

This is also called "Partition Theorem".

Proof. Note that $\bigcup_n (A \cap B_n) = A$. So we have

$$\mathbb{P}(A) = \sum_{n \ge 1} \mathbb{P}(A \cap B_n) = \sum_n \mathbb{P}(A \mid B_N) \mathbb{P}(B_n).$$

Theorem 1.3 (Bayes' Formula). With the same setup as above, we have

$$\mathbb{P}(B_n \mid A) = \frac{\mathbb{P}(A \cap B_N)}{\mathbb{P}(A)} = \frac{\mathbb{P}(A \mid B_n)\mathbb{P}(B_n)}{\sum_{m} \mathbb{P}(A \mid B_m)\mathbb{P}(B_m)}.$$

Rephrasing for n=2, we have $\mathbb{P}(B\mid A)\underbrace{\mathbb{P}(A)}_{given} = \underbrace{\mathbb{P}(A\mid B)\mathbb{P}(B)}_{given} = \mathbb{P}(A\cap B)$.

Example. Lecture course has $\frac{2}{3}$ of the lectures on weekdays and $\frac{1}{3}$ on weekends. We have

$$\mathbb{P}(\text{forget notes} \mid \text{weekday}) = \frac{1}{8}$$

$$\mathbb{P}(\text{forget notes} \mid \text{weekend}) = \frac{1}{2}$$

What is $\mathbb{P}(\text{weekend} \mid \text{forget notes})$?

We have $B_1 = \{\text{weekday}\}\$ and $B_2 = \{\text{weekend}\}\$ and $A = \{\text{forget notes}\}\$. So we have

$$\mathbb{P}(A) = \frac{2}{3} \cdot \frac{1}{8} + \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{12} + \frac{1}{6} = \frac{1}{4}.$$

And by Bayes' Formula, we have

$$\mathbb{P}(B_2 \mid A) = \frac{\frac{1}{3} \cdot \frac{1}{2}}{\frac{1}{4}} = \frac{2}{3}.$$

Example (Disease testing). If p are infected and 1-p are not, and we have

$$\mathbb{P}(\text{positive} \mid \text{infected}) = 1 - \alpha$$

$$\mathbb{P}(\text{positive} \mid \text{not infected}) = \beta.$$

Ideally, you want both α, β to be small. Of course, we want p to be small as well. We want to find $\mathbb{P}(\text{infected} \mid \text{positive})$. By LTP, we have

$$\mathbb{P}(\text{positive}) = p(1 - \alpha) + (1 - p)\beta.$$

Using Bayes', we have

$$\mathbb{P}(\text{infected} \mid \text{positive}) = \frac{p(1-\alpha)}{p(1-\alpha) + (1-p)\beta}.$$

Suppose $p \ll \beta$, we have $p(1-\alpha) \ll (1-p)\beta$. The probability is approximately $\frac{p(1-\alpha)}{(1-p)\beta} \sim \frac{p}{\beta}$ which is small.

Example (Simpson's Paradox). If the scientists want to know if jelly beans make your tongue change color? Studies give results:

Oxford	Oxford		No change	% change
Blue		15	22	41 %
Green		5	8	38 %
Cambridge				
$\operatorname{Cambrid}$	ge	Change	e No change	e % change
$\frac{\text{Cambrid}}{\text{Blue}}$	ge	Change 10	No change	e % change 77 %

but if you add them up, you get

Total	Change	No change	% change
Blue	25	25	50 %
Green	28	22	56~%.

Lecture 7 3 Feb. 2022

We continue from the Simpson's Paradox example. Let $A = \{\text{change color}\}$, $B = \{\text{blue}\}$, $B^c = \{\text{green}\}$, $C = \{\text{Cambridge}\}$ and $C^c = \{\text{Oxford}\}$. We have

$$\mathbb{P}(A \mid B \cap C) > \mathbb{P}(A \mid B^c \cap C)$$
$$\mathbb{P}(A \mid B \cap C^c) > \mathbb{P}(A \mid B^c \cap C^c).$$

But it is not true that $\mathbb{P}(A \mid B) > \mathbb{P}(A \mid B^c)$. LTP for conditional probabilities is the following. Suppose C_1, C_2, \ldots is a partition of B, and we have

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A \cap (\cup_n C_n))}{\mathbb{P}(B)}$$

$$= \frac{\mathbb{P}(\cup_n (A \cap C_n))}{\mathbb{P}(B)} = \frac{\sum_n \mathbb{P}(A \cap C_n)}{\mathbb{P}(B)}$$

$$= \frac{\sum_n \mathbb{P}(A \mid C_n) \mathbb{P}(C_n)}{\mathbb{P}(B)} = \sum_n \mathbb{P}(A \mid C_n) \frac{\mathbb{P}(B \cap C_n)}{\mathbb{P}(B)}$$

So in conclusion, we have

$$\mathbb{P}(A \mid B) = \sum_{n} \mathbb{P}(A \mid C_{n}) \mathbb{P}(C_{n} \mid B).$$

Special Case:

- If all $\mathbb{P}(C_n)$ are equal, then $\mathbb{P}(C_n \mid B)$ are all equal.
- If $\mathbb{P}(A \mid C_n)$ are all equal. Note that $\sum_n \mathbb{P}(C_n \mid B) = 1$. Then we have

$$\mathbb{P}(A \mid B) = \mathbb{P}(A \mid C_n).$$

Example. Uniform permutation $(\sigma(1), \sigma(2), \ldots, \sigma(52)) \in \Sigma_{52}$ ("well-shuffled cards"). We call $\{1, 2, 3, 4\}$ the aces. We consider $A = \{\sigma(1), \sigma(2) \text{ aces}\}$, and $B = \{\sigma(1) \text{ ace}\} = \{\sigma(1) \leq 4\}$, $C_i = \{\sigma(1) = i\}$.

Note $\mathbb{P}(A \mid C_i) = \mathbb{P}(\sigma(2) \in \{1, 2, 3, 4\} \mid \sigma(1) = i) = \frac{3}{51}$ for $i \leq 4$ by previous example. And we have $\mathbb{P}(C_i) = \frac{1}{52}$. So we have $\mathbb{P}(A \mid B) = \frac{3}{51}$. In total, we have

$$\mathbb{P}(A) = \mathbb{P}(B) \times \mathbb{P}(A \mid B) = \frac{4}{52} \times \frac{3}{51}.$$

2 Discrete Random Variables

Motivation: Roll two dices. $\Omega = \{1, \dots, 6\}^2 = \{(i, j) \mid 1 \le i, j \le 6\}$. If we restrict attention to first dice $\{(i, j) \mid i = 3\}$; sum of dices $\{(i, j) \mid i, j \le 4, i \text{ or } j = 4\}$.

Goal: "Random real-valued measurements".

Definition 2.1. A discrete random variable X (often denoted by RV) on a probability space $(\Omega, \mathcal{F}, \mathbb{P}())$ is a function $X : \Omega \to \mathbb{R}$ such that

- 1. $\{\omega \in \Omega \mid X(\omega) = x\} \in \mathcal{F}$.
- 2. $\operatorname{Im}(X)$ is finite or countable (subset of \mathbb{R}).

We can write $\{\omega \in \Omega \mid X(\omega) = x\}$ as $\{X = x\}$. So $\mathbb{P}(X = x)$ is valid. And the image is often \mathbb{Z} or $\{0,1\}$ for example, instead of $\{\text{Heads, Tails}\}$.

If Ω is finite or countable, and $\mathcal{F} = \mathcal{P}(\Omega)$, both requirements hold automatically.

Example (Part II Applied Probability). If we consider the arrival problem, we have $\Omega = \{\text{countable subsets } (a_1, a_2, \dots) \text{ of } (0, \infty)\}$. Then,

$$N_t$$
 = number of arrivals by time t
= $|\{a_i \mid a_i \le t\}| \in \{0, 1, 2, ...\}$

is a discrete RV for each time t.

Definition 2.2. The *probability mass function* (p.m.f.) of discrete RV X is the function $p_X : \mathbb{R} \to [0,1]$ given by

$$p_X(x) = \mathbb{P}(X = x) \quad \forall x \in \mathbb{R}.$$

Note.

• If $x \notin \text{Im}(X)$ (that is, $X(\omega)$ never takes value x), then

$$p_X(x) = \mathbb{P}(\omega \in \Omega \mid X(\omega) = x) = \mathbb{P}(\varnothing) = 0.$$

•
$$\sum_{x \in \text{Im}(X)} p_X(x) = \sum_{x \in \text{Im}(x)} \mathbb{P}(\{\omega \in \Omega \mid X(\omega) = x\})$$
$$= \mathbb{P}(\bigcup_{x \in \text{Im}(X)} \{\omega \in \Omega \mid X(\omega) = x\}) = \mathbb{P}(\Omega) = 1$$

2 DISCRETE RANDOM VARIABLES

Example (Indicator Function). Event $A \in \mathcal{F}$, define $\mathbf{1}_A : \omega \to \mathbb{R}$ by

$$\mathbf{1}_{A}(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

called the *indicated function* of A. $\mathbf{1}_A$ is a discrete RV with $\text{Im}(\mathbf{1}) = \{0, 1\}$. The probability mass function is

$$\begin{split} p_{\mathbf{1}_A}(1) &= \mathbb{P}(\mathbf{1}_A = 1) = \mathbb{P}(A) \\ p_{\mathbf{1}_A}(0) &= \mathbb{P}(\mathbf{1}_A = 0) = \mathbb{P}(A^c) = 1 - \mathbb{P}(A) \\ p_{\mathbf{1}_A}(x) &= 0 \quad \forall x \notin \{0,1\}. \end{split}$$

It encodes "did A happen" as a real number.

Remark. Given a probability mass function, we can always construct a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a RV defined on it with this pmf.

- $\Omega = \operatorname{Im}(X)$. That is, $\{x \in \mathbb{R} \mid p_X(x) > 0\}$;
- $\mathcal{F} = \mathcal{P}(\Omega)$;
- $\mathbb{P}(\{x\}) = p_X(x)$ and extend it to all $A \in \mathcal{F}$.

Lecture 8 5 Feb. 2022

2.1 Discrete Probability Distributions

We first start with distributions with Ω finite.

2.1.1 Bernoulli Distribution ("biased coin toss")

We have $X \sim \text{Bern}(p)$ with $p \in [0, 1]$, and

$$Im(X) = \{0, 1\}$$

$$p_X(1) = \mathbb{P}(X = 1) = p$$

$$p_X(0) = \mathbb{P}(X = 0) = 1 - p.$$

Example. $\mathbf{1}_A \sim \text{Bern}(p)$ with $p = \mathbb{P}(A)$.

2.1.2 Binomial Distribution

We have $X \sim \text{Bin}(n,p)$ with $n \in \mathbb{Z}^+, p \in [0,1]$. ("Toss coin n times, count number of heads") We have

$$Im(X) = \{0, 1, \dots, n\}$$

$$p_X(k) = \mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}.$$

Do check that $\sum_{k=0}^{n} p_X(k) = 1$ by binomial expansion. Next, we consider $\Omega = \mathbb{N}$. ("Ways of choosing a random integer")

2 DISCRETE RANDOM VARIABLES

2.1.3 Geometric Distribution ("Waiting for success")

We have $X \sim \text{Geom}(p)$ with $p \in (0,1]$. ("Toss a coin with $\mathbb{P}(\text{head}) = p$ until a head appears. Count how many trials were needed") So

$$Im(X) = \{1, 2 \dots\}$$

$$p_X(k) = \mathbb{P}((n-1) \text{ failures, then success on last}) = (1-p)^{k-1}p.$$

Indeed, we have

$$\sum_{k \ge 1} (1-p)^{k-1} p = p \sum_{\ell \ge 0} (1-p)^{\ell} = \frac{p}{1-(1-p)} = 1.$$

Alternatively, we can count how many failures before a success. So

$$Im(Y) = \{0, 1, 2, \ldots\}$$

$$p_Y(k) = \mathbb{P}(k \text{ failures, then success on next}) = (1-p)^k p.$$

Similarly, we have

$$\sum_{k>0} (1-p)^k p = 1.$$

2.1.4 Poisson Distribution

We have $X \sim \text{Po}(\lambda)$ (or $\text{Poi}(\lambda)$ with parameter λ), and

$$Im(X) = \{0, 1, 2, \ldots\}$$

$$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}.$$

Note that $\sum_{k\geq 0} \mathbb{P}(X=k) = e^{-\lambda} \sum_{k\geq 0} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1$.

Motivation: Consider $X_n \sim \text{Bin}(n, \frac{\lambda}{n})$, we split time interval $[0, \lambda]$ into n small intervals. If the probability of arrival in each interval is p, and independent across intervals. The total number of arrivals is X_n , and note by fixing k and taking $n \to \infty$,

$$\mathbb{P}(X_n = k) = \binom{n}{k} (\frac{\lambda}{n})^k (1 - \frac{\lambda}{n})^{n-k}$$

$$= \frac{n!}{n^k (n-k)!} \times \frac{\lambda^k}{k!} \times (1 - \frac{\lambda}{n})^n \times (1 - \frac{\lambda}{n})^{-k}$$

$$\to 1 \times \frac{\lambda^k}{k!} \times e^{-\lambda} \times 1 = e^{-\lambda} \frac{\lambda^k}{k!}.$$

2.2 More Than One RV

Motivation: Roll a die, and the outcome is $X \in \{1, 2, 3, 4, 5, 6\}$. If we consider the events

$$A = \{1 \text{ or } 2\}, B = \{1 \text{ or } 2 \text{ or } 3\}, C = \{1 \text{ or } 3 \text{ or } 5\}.$$

We have

$$\mathbf{1}_A \sim \mathrm{Bern}(\frac{1}{3}), \ \mathbf{1}_B \sim \mathrm{Bern}(\frac{1}{2}), \ \mathbf{1}_C \sim \mathrm{Bern}(\frac{1}{2}).$$

Note $\mathbf{1}_A \leq \mathbf{1}_B$ for all outcomes, but $\mathbf{1}_A \leq \mathbf{1}_C$ is not true for all outcomes.

2 DISCRETE RANDOM VARIABLES

Definition 2.3. X_1, \ldots, X_n discrete RVs, then we say X_1, \ldots, X_n are *independent* if

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \mathbb{P}(X_1 = x_1) \cdots \mathbb{P}(X_n = x_n) \quad \forall x_1, \dots, x_n \in \mathbb{R}.$$

Remark. It suffices to check that $\forall x_i \in \text{Im}(X_i)$.

Example. X_1, \ldots, X_n independent RVs each with the Bern(p) distribution. We study $S_n = X_1 + \cdots + X_n$. Then

$$\mathbb{P}(S_n = k) = \sum_{\substack{x_1 + \dots + x_n = k \\ x_i \in \{0,1\}}} \mathbb{P}(X_1 = x_1, \dots, X_n = x_n)$$

$$= \sum_{\substack{x_1 + \dots + x_n = k \\ x_i \in \{0,1\}}} \mathbb{P}(X_1 = x_1) \dots \mathbb{P}(X_n = x_n) \text{ by independence}$$

$$= \sum_{\substack{x_1 + \dots + x_n = k \\ x_i \in \{0,1\}}} p^{|\{i|x_i = 1\}|} (1-p)^{|\{i|x_i = 0\}|}$$

$$= \sum_{\substack{x_1 + \dots + x_n = k \\ x_i \in \{0,1\}}} p^k (1-p)^{n-k}$$

$$= \binom{n}{k} p^k (1-p)^{n-k}.$$

So $S_n \sim \text{Bin}(n, k)$.

Example. Consider the uniform permutation $(\sigma(1), \ldots, \sigma(n))$ of the integers $1, 2, \ldots, n$. We claim that $\sigma(1)$ and $\sigma(2)$ are not independent.

It suffices to find i_1, i_2 such that

$$\mathbb{P}(\sigma(1) = i_1, \sigma(2) = i_2) \neq \mathbb{P}(\sigma(1) = i_1)\mathbb{P}(\sigma(2) = i_2).$$

For example,

$$\mathbb{P}(\sigma(1) = 1, \sigma(2) = 1) = 0 \neq \mathbb{P}(\sigma(1) = 1)\mathbb{P}(\sigma(2) = 1) = \frac{1}{n} \cdot \frac{1}{n}.$$

We also have that if X_1, \ldots, X_n are independent, $\forall A_1, \ldots, A_n \in \mathbb{R}$ countable,

$$\mathbb{P}(X_1 \in A_1, \dots, X_n \in A_n) = \mathbb{P}(X_1 \in A_1) \cdots \mathbb{P}(X_n \in A_n).$$