Working with Abstraction: Lab

This document defines the lab for "Java Advanced" course @ Software University. Please submit your solutions (source code) of all below described problems in Judge.

Problem 1. Rhombus of Stars

Create a program that reads a **positive integer n** as input and prints on the console a **rhombus** with size **n**:

Examples

input	output
1	*

input	output
2	*
	* *
	*

* *
* *
* * *
* *
*

input	output
4	*
	* *
	* * *
	* * * *
	* * *
	* *
	*

Hint

Create a printRow() method to easily reuse code.

Problem 2. Point in Rectangle

Create a class **Point** and a class **Rectangle**. The **Point** should hold **coordinates X** and **Y** and the **Rectangle** should hold **2 Points** – its **bottom left** and **top right** corners. In the **Rectangle** class, you should implement a **contains(Point point)** method that returns **true** or **false**, based on **whether** the **Point** given as **attribute** is **inside** or **outside** of the **Rectangle** object. Points **on the side** of a Square are considered **inside**.

Input

- On the first line read the **coordinates** of the **bottom left** and **top right** corner of the **Rectangle** in the format: "<bottomLeftX> <bottomLeftY> <topRightY>".
- On the second line, read an integer **N** and on the next **N** lines, read the **coordinates** of **points**.

Output

• For each point, print out the result of the **Contains()** method.

Examples

	input	output
0	0 3 3	true
5		true
0	0	false
0	1	false
4	4	true
5	3	
1	2	

input	output
2 -3 12 3	true
4	true
8 -1	false
11 3	false
1 1	
2 4	

input	output
5 8 12 15	false
6	true
0 0	true
5 8	true
12 15	true
8 15	true
7 15	
8 12	

Problem 3. Student System

You are given a working project for a small Student System, but the code is very poorly organized. Break up the code logically into smaller functional units - methods and classes and don't break the functionality.

The program supports the following commands:

- "Create <studentName> <studentAge> <studentGrade>" creates a new student and adds them to the repository.
- "Show <studentName>" prints on the console information about a student in the format: "<studentName> is <studentAge> years old. <commentary>", where the commentary is based on the student's grade.
- "Exit" closes the program.

Do not add any **extra validation** or **functionality** to the app!

Examples

input	output
Create Pesho 20 5.50	Pesho is 20 years old. Excellent student.
Create Mimi 18 4.50	Mimi is 18 years old. Average student.
Create Gosho 25 3	
Show Pesho	
Show Mimi	
Exit	

Problem 4. Hotel Reservation

Create a class PriceCalculator that calculates the total price of a holiday, given the price per day, number of days, the **season** and a **discount type**. The **discount type** and **season** should be **enums**.

Use the class in your main() method to read input and print on the console the price of the whole holiday.

The price per day will be multiplied depending on the season by:

- 1 during Autumn
- 2 during Spring
- 3 during Winter
- 4 during Summer

The discount is applied to the total price and is one of the following:

- 20% for VIP clients VIP
- 10% for clients, visiting for a second time SecondVisit
- 0% if there is no discount None

Input

On a single line you will receive all the information about the reservation in the format: "<pri>cePerDay> <numberOfDays> <season> <discountType>", where:

The price per day will be a valid decimal in the range [0.01...1000.00]

- The number of days will be a valid integer in range [1...1000]
- The season will be one of: Spring, Summer, Autumn, Winter
- The discount will be one of: VIP, SecondVisit, None

Output

On a **single line**, print the **total price** of the **holiday**, rounded to **2 digits** after the decimal separator.

Examples

input	output
50.25 5 Summer VIP	804.00
40 10 Autumn SecondVisit	360.00
120.20 2 Winter None	721.20

