Integralrechnung

Aufgabe 1

Sei $D = [0,1] \times [-\frac{1}{2},0] \times [0,\frac{1}{3}]$ und $f : \mathbb{R}^3 \to \mathbb{R}$ definiert durch $f(x_1,x_2,x_3) = (x_1 + 2x_2 + 3x_3)^2$. Berechnen sie $\int_D f dx$.

Aufgabe 2

Skizzieren Sie den Bereich $B=\{(x,y)\in\mathbb{R}^2:y\geq 2-x^2,\ 2y\leq x+4,\ y\geq x,\ x\geq 0\}$ und berechnen Sie das Doppelintegral

$$\int \int_{B} \left(1 - \frac{2x}{y} \right) dF$$

Aufgabe 3

Berechnen Sie $\int_C f(x) ds$, $\mathbf{x} = (x, y, z)^T \in \mathbb{R}^3$ für $f(x) = x^2 + y^2 + \frac{1}{z}$ und den Kurvenbogen C mit der Parameterdarstellung $x(t) = (\cos t, \sin t, \cosh t)^T$, $0 \le t \le 2\pi$

Aufgabe 4

Gegeben ist die Schraubenlinie $\mathbf{S}(t)=r\left(\begin{array}{c}\cos t\\\sin t\\2t\end{array}\right)$, $0\leq t\leq 4\pi$

- a) Berechnen Sie deren Länge
- b) Bestimmen Sie das Kurvenintegral

$$\int_{S} \mathbf{V}(\mathbf{x}).d\mathbf{x} \text{ für } \mathbf{V}(\mathbf{x}) = \begin{pmatrix} xy \\ yz \\ zx \end{pmatrix}$$

Aufgabe 5

Das beschränkte Gebiet G der x,y Ebene sei berenzt durch die $x-{\rm Achse}$, die $y-{\rm Achse}$ sowie die Geraden x+y=1 und x+y=2

- a) Skizzieren sie G
- b) Bestimmen sie den Bereich S der u,v-Ebene, der durch die Koordinatentransformation $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x(u,v) \\ y(u,v) \end{pmatrix} = \begin{pmatrix} \frac{1}{2}(u+v) \\ \frac{1}{2}(u-v) \end{pmatrix}$ aus G entsteht und skizierre S

c) Man berechne $x_u y_v - x_v y_u$

d) Man berechne
$$\int \int_G exp\left(\frac{x-y}{x+y}\right) dxdy$$

Aufgaben 6

Berechnen Sie den Flächeninhalt des beschränkten Bereichs im \mathbb{R}^2 , der begrenzt wird durch die Parabeln

$$x = \frac{1}{2}(1 - y^2);$$
 $x = \frac{1}{2}(y^2 - 1);$ $x = \frac{1}{2}(4 - \frac{y^2}{4})$

mit Hilfe der Transforamtion (von Parabelkoordinaten(u, v) auf kathersichen Koordinaten (x, y))

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x(u,v) \\ y(u,v) \end{pmatrix} = \begin{pmatrix} \frac{1}{2}(u^2 - v^2) \\ \frac{1}{2}(uv) \end{pmatrix}, \quad u > 0$$

Aufgabe 7

Berechnen Sie die Volume und Trägheitsmomente bzgl. der Achsen eines Ellipsoids $E=\{(x,y,z);\ \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\leq 1\}$ mit den Halbachsen a,b,c und der Massendichte $\varrho\equiv 1$ mit Hilfe der Transformation auf ein (r,φ,θ) -Koordinatensystem

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x(r, \varphi, \theta) \\ y(r, \varphi, \theta) \\ z(r, \varphi, \theta) \end{pmatrix} = \begin{pmatrix} ar\cos\varphi\cos\theta \\ br\sin\varphi\cos\theta \\ cr\sin\theta \end{pmatrix}, \quad 0 \le r, \quad 0 \le \varphi \le 2\pi, \quad -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$

Aufgabe 8

Gegeben sei ein Zylinder $Z=\{(x,y,z):\in\mathbb{R}^3,\ x_1^2+x_2^2\leq 4,\ 0\leq x_3\leq 1\}$ mit den Massendichte $\varrho(x_1,x_2,x_3)=2-x_3$

- a) Berechnen Sie die Gesamtmasse von Z
- b) Bestimmen Sie den Schwerpunkt von Z

Aufgabe 9

Berechnen Sie das Volumen des Körpers K, der begrenzt wird von der Sphäre $x_1^2 + x_2^2 + x_3^2 = 16$ und dem Kegel $x_3 = \sqrt{x_1^2 + x_2^2}$ Hinweis: Führen Sie Kugelkoordinaten ein.