

Reinforcement Learning

Thanh Nguyen-Tang*

^{*}Many of the slides are credited to Doina Precup at MLSS'20, Fei-Fei Li & Justin Johnson & Serena Yeung at CS231n (Stanford '17), and Rich Sutton's book

So far ... supervised learning

- $x \in \mathcal{X}$ is data input, $y \in \mathcal{Y}$: label
- Goal: Learn a function that maps from ${\mathcal X}$ to ${\mathcal Y}$
- **Examples**: classification, regression, object detection, image captioning, image segmentation

Classification

Unsupervised learning

- Data: x, no label
- Goal: Learn some underlying hidden structure of the data
- **Examples**: clustering, dimension reduction, feature learning, density estimation

Figure copyright Ian Goodfellow, 2016. Reproduced with permission.

1-d density estimation

2-d density estimation

Today: Reinforcement Learning

 Problems involve learning from interacting with an environment, which provides reward signals for each action

• **Goal**: Learn how to <u>take a sequence of</u> actions to <u>maximize the total rewards</u>

Key features of reinforcement learning

- The learner is not told what actions to take; instead, it needs to find out by trial-and-error search
- e.g., Players trained by playing thousands of simulated games, with no expert inputs on what are good moves and bad moves
- The environment is **stochastic**
- The reward may be delayed
- e.g., Player might get rewards only at the end of the game, and needs to assign credit to moves along the way (credit assignment problem)
- Learner needs to balance the need to explore its environment and exploit its current knowledge
- e.g., Player might need to try new strategies but also need to win the game

Agent-Environment Interaction Protocol

Agent and environment interact at discrete time steps t = 0,1,...,

- Agent observes state: $S_t \in S$
- Agent chooses action: $a_t \in \mathcal{A}$
- Agent gets reward: $r_t \in \mathbb{R}$
- Environment transitions into next state $s_{t+1} \in S$

Supervised learning vs. reinforcement learning

Objective: Get as much total reward as possible

Example: Cart-Pole problem

- Objective: Balance a pole on top of a movable cart
- **State**: angle, angular speed, position, horizontal velocity
- Action: horizontal force applied to the cart
- Reward: 1 at every step if the pole is upright

Robot locomotion

• Objective: Make the robot move forward

• State: Angle and position of the joints

• Action: Torques applied on joints

• Reward: 1 at each time upright + moving forward

Atari games

- Objective: play the game with highest scores
- State: Raw pixel input of game states
- Action: Game control, e.g., left, right, up, down
- **Reward**: Score increase/decease at each time step

Go Game

- Objective: win the game
- State: Position of all pieces
- Action: where to put the next piece down
- **Reward**: 1 if win at the end of the game, 0 otherwise

RL from human feedback (RLHF): Fine-tuning ChatGPT

- Objective: Fine-tune ChatGPT to make its response well-aligned with human feedback
- State: input prompt
- Action: ChatGPT's generated text
- Reward: high reward if the generated text is ranked high by a reward model that is learned from human feedback

Policy (strategy, way of behaving)

• Execute actions in environment, observe rewards, and learn policy (strategy, way of behaving) $\pi: \mathcal{S} \times \mathcal{A} \to [0,1]$

$$\pi(a|s) = \Pr(a_t = a|s_t = s)$$

• The policy can be deterministic, $\pi: \mathcal{S} \to \mathcal{A}$, with $\pi(s) = a$ giving action chosen in state s

Return

Suppose the sequence of rewards after step t is

$$r_{t+1}, r_{t+2}, \dots$$

We want to <u>compute (in policy evaluation task)</u> or <u>maximize (in control task)</u> the expected **return** \mathbb{E} G_t on each step t

- Total rewards: G_t = sum of all future rewards in the episode
- Discounted rewards: G_t = sum of all future discounted rewards
- Average rewards: G_t = average reward per time step

Policy evaluation task vs control task

• **Policy evaluation**: Given a policy π , compute the "value" of π

$$V^{\pi}(s) \coloneqq \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t} = s \right]$$

$$= \mathbb{E}_{\pi} \left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s_t = s \right]$$

• Control task: Find a policy that maximizes the expected total (discounted) rewards \mathbb{E} G_t on each step t

Episodic tasks

• **Episodic tasks**: interaction breaks naturally into episodes, e.g., plays of a game, trips through a maze

In episodic tasks, we almost always use total rewards

$$G_t = r_{t+1} + r_{t+2} + \cdots + r_T$$

where T is a final step at which a terminal state is reached

Example: Mountain car

Get to the top of the hill as quickly as possible.

reward = −1 for each step where **not** at top of hill

⇒ return = − number of steps before reaching top of hill

Return is maximized by minimizing number of steps to reach the top of the hill.

Continuing tasks

• Continuing tasks: interaction does not have natural episodes, but just going on and on

In this task class, we use discounted return

$$G_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

where $\gamma \in [0,1]$ is the discount rate.

Example: Pole balancing

Avoid **failure:** the pole falling beyond a critical angle or the cart hitting end of track

As an **episodic task** where episode ends upon failure:

reward = +1 for each step before failure

⇒ return = number of steps before failure

As a **continuing task** with discounted return:

reward = -1 upon failure; 0 otherwise

 \Rightarrow return = $-\gamma^k$, for k steps before failure

In either case, return is maximized by avoiding failure for as long as possible.

Markov decision process

- A mathematical formulation of RL problems
- Markov property: current state completely characterizes the state of the world and next state depends only on the current state and the action.
- Defined by tuple (S, A, R, P, γ)
 - *S*: set of possible states
 - A: set of possible actions
 - R: distribution of reward per each (state, action) pair
 - P: transition probability, i.e., probability of next state given current state, action
 - γ: discount factor

Markov decision process (con't)

- At time t=0, environment samples initial state $s_0 \sim p(s_0)$
- From time t = 0 until done
 - Agent selects action a_t
 - Environment samples reward $r_t \sim R(s_t, a_t)$
 - Environment samples next state $s_{t+1} \sim P(\cdot | s_t, a_t)$
 - Agent receives reward r_t and observes next state s_{t+1}
- A policy $\pi: \mathcal{S} \to \Delta(\mathcal{A})$ maps a state into a distribution over action space
- Discounted return: $G_t \coloneqq \sum_{i=0}^{\infty} \gamma^i r_{t+i+1}$
- **Objective**: Find an optimal policy π^* that maximizes G_t on each step t

Example: A simple grid world

Control objective: reach one of the terminal states (gray cells) in least number of actions

```
actions = {

1. right →

2. left →

3. up ↑

4. down ↑

}
```


Set a negative "reward" for each transition (e.g. r = -1)

Simple Grid World

Random Policy

Optimal Policy

Optimal policy π^* , formally

 Optimal policy: any policy that maximizes the expected cumulative reward

$$\pi^* \in \operatorname{argmax}_{\pi} \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | \pi \right]$$

$$s_0 \sim p_0(s_0), a_t \sim \pi(\cdot | s_t), r_t \sim R(s_t, a_t), s_{t+1} \sim P(\cdot | s_t, a_t)$$

Value functions and Q-value functions

State-value function

$$V^{\pi}(s) \coloneqq \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t} = s \right]$$

- The expected cumulative reward when following policy π , starting from state s
- Q-value function

$$Q^{\pi}(s,a) \coloneqq \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid (s_{t}, a_{t}) = (s, a) \right]$$

• The expected cumulative reward when following policy π , starting from state-action pair (s, a)

Bellman equation

Theorem:

$$\mathbf{Q}^{\pi}(s,a) = \sum_{\mathbf{r},s'} \sum_{\mathbf{a}'} \pi(\mathbf{a}'|s') p(\mathbf{r},s'|s,a) (\mathbf{r} + \gamma \mathbf{Q}^{\pi}(s',a')), \forall (s,a)$$

Optimal value functions

Optimal state-value function:

$$V^*(s) = \max_{\pi} V^{\pi}(s) \ \forall s$$

Optimal action-value function

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a) \ \forall s,a$$

Optimality Bellman equation

Theorem:

$$\mathbf{Q}^*(s, a) = \mathbb{E}_{r \sim R(s, a), s' \sim P(\cdot | s, a)} \left[r + \gamma \max_{a' \in \mathcal{A}} \mathbf{Q}^*(s', a') \right], \forall (s, a)$$

Bellman optimality equation for V^*

 The value of a state under an optimal policy must equal the expected return for the best action from that state

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$= \max_{a} \mathbb{E}[r + \gamma V^{*}(s') | s, a]$$

$$= \max_{a} \sum_{r,s'} p(r, s' | s, a)(r + \gamma V^{*}(s'))$$

• V^* is the unique solution of this system of equations

Why Optimal State-Value Functions are useful?

- Any policy that is greedy with respect to V^* is an optimal policy
- Therefore, given V^{st} , one-step-ahead search produces the long-term optimal action

E.g., back to the gridworld:

a) gridworld

b) V*

c) π_*

What about optimal action-value functions?

Given Q*, the agent does not even need to do one-step-ahead search

$$\pi_*(s) \in \operatorname{argmax}_a Q^*(s, a)$$

Dynamic programming

- Policy Evaluation
- Policy Iteration
- Value Iteration

Policy evaluation

How to compute the state-value function V^{π} for an arbitrary policy π ?

- Key idea: Use Bellman equation
- Procedure:
 - Initialize any function Q_1
 - Iteratively compute

$$Q_{t+1}(s,a) \leftarrow \sum_{r,s'} \sum_{a'} \pi(a'|s') p(r,s'|s,a) \left(r + \gamma Q_t(s',a')\right)$$

• **Result**: Q_t converges to Q^{π} when $t \to \infty$

Policy improvement

Given a policy π , how can we get a new policy π' that has **better value** than π ?

- We greedify with respect to a given the value function Q^{π}
- Let π' be a greedy policy with respect to Q^{π} , i.e., $\pi'(\operatorname{argmax}_a Q^{\pi}(s,a)|s) = 1$
- Then we have

$$V^{\pi'}(s) \ge V^{\pi}(s), \forall s$$

Policy Iteration for control task

Compute an optimal policy using Policy Evaluation and Policy Improvement

 One drawback of policy iteration is that each of its iteration involves policy evaluation

Value Iteration for control task

Value iteration algorithm: Use Bellman equation as an iterative update

$$Q_{i+1}(s,a) \leftarrow \mathbb{E}\left[r + \gamma \max_{a'} Q_i(s',a')\right]$$

• **Result**: Q_i converges to Q^* when $i \to \infty$

Drawback of Dynamic Programming

• DP require the full knowledge about the MDP

- In learning setting, we don't know MDP and must learn from experience
 - Monte Carlo methods
 - TD (temporal-difference) learning