goal: understand "solution" of differential/difference equations (DE) $\dot{x}/x^{+}=f(x,u)$ ref: Strogatz Ch 2 - geometric perspective

1º trajectories

· wère considering differential or différence equations (DE)

 $\dot{x} = f(x_1 u)$ or $x^+ = f(x_1 u)$

f specifies: time rate of change or specifies the "next" of each comparent

 $X \in \mathbb{R}^d$, $u \in \mathbb{R}^m$, $f : \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}^d$

 $: (x, u) \mapsto \mathring{x} \text{ or } x^{+}$

Cx: what does it mean to "solve" a DE?

def: x:[o,t] -> Rd is a trajectory (tij) for (DE)

if x(s) satisfies (DE) at every time se [0,t] = R for x

- for a differential egn:

[o,t] $\subset \mathbb{R}$ and $\forall s \in [o,t): \dot{x}(s) = f(x(s),u(s))$

-> continuous-time (CT) system

x is differentiable at time s

- for a difference egn:

$$[0,t] \subset N$$
 and $\forall s \in [0,t] : \chi(s+1) = f(\chi(s), u(s))$
 $\Rightarrow discrete - time (DT) system$
 $\Rightarrow \chi(s) = e^{As} \chi(o)$ is tig for what DE ? ($s \in R$)

 $= \frac{d}{ds} \chi(s) = \tilde{\chi}(s) = \frac{d}{ds} [e^{As} \chi(o)] = A \cdot e^{As} \chi(o) = A \cdot \chi(s)$

$$\rightarrow \chi(s) = A^{s} \chi(o) \text{ is to for what DE? (st N)}$$

$$- \chi(s+1) = A^{s+1} \chi(o) = A \cdot A^{s} \chi(o) = A \cdot \chi(s)$$

* in both cases, the "solution" of DE is a signal, ire. a function from a time domain into a vector space -> con visualize these functions in two main ways:

$$\begin{array}{c} \text{CT} \\ \text{x(s)} \\ \text$$

-> X1 "rector freld"