

Oliver Ney, Jan Bruckner, Michael Deutschen

http://comsys.rwth-aachen.de/

Aachen / COMSYS Laboratory, March 2016

Motivation

Visible Light Communication

Communication with visible light (380nm – 780nm)

Advantages

- No restrictions to radio bands
- Cheap hardware
- No known health issues

Disadvantages

- Heavy environmental noise
- High absorption rates

Motivation – Related Work

Motivation – Related Work

[3]

Initial Goals

Basic Communication

- End-to-end
- ► From Arduino to Arduino
- ► From Smartphone to Arduino

Practical Use Case

- Possibly anything
- Decided for moving toy train
 - Controlled by Smartphone via Bluetooth and VLC

Basic Communication

- Orientated on OSI model
- Bit layer
 - Hardware control to transceive signals
 - Responsible for sending single bits
 - Synchronization
- MAC layer
 - Error detection
 - Frame separation
 - Delivery control

Bit Layer

- Equal up- and downtime
 - Constant level of perceived brightness
- Slower than e.g. Manchester coding

Bit Layer - Synchronization

- Biggest problem in our project!
- First variant
 - Continuous AD conversions of the sensor input
 - Moving average to remove background noise and to detect edges
 - Analyzation of each edge on detection
 - ▶ Problems:
 - conversions caused delays
 - High number of interrupts blocked program flow
- Final variant
 - With hardware edge detection
 - Edge triggered interrupt
 - ► All edges of a period are stored and analysed afterwards

MAC Layer

16	8	8	0-248	8
0xBEEF	Flags + Length	Header CRC	Payload	Payload CRC

- Synchronization sequence to delimit frames
- Up to 31 byte per frame
- Header CRC to validate length
- Continuous repetition until the message is acknowledged
- Message buffer

Hardware Edge Detector

Hardware Edge Detector

Hardware Edge Detector

Evaluation

Distance: 12 cm

Comparison: DisneyResearch vs. Our VLC

Comparison: DisneyResearch vs. Our VLC

DisneyResearch

 Communication between several devices (CSMA)

LED for sending/receiving

Continuous AD conversion

Our VLC

 Communication between 2 Arduinos

 LED for sending, phototransistors for receiving

Hardware edge detector

Use Case

Control a LEGO train with VLC

- App communicates with a track controller via Bluetooth
 - Control turnout, speed, direction, headlights and taillights
- Track controller communicates with train via VLC
 - Signal along the track transmits data

Use Case

Hardware

18

Hardware

Hardware

20

Final Track Controller

App - TrainControl

27

Sources

- Subway Train Conductor.
 http://lego.wikia.com/wiki/Subway_Train_Conductor
- 2. Stefan Schmid, Giorgio Corbellini, Stefan Mangold, and Thomas R. Gross. 2013. LED-to-LED visible light communication networks. In *Proceedings of the fourteenth ACM international symposium on Mobile ad hoc networking and computing* (MobiHoc '13). ACM, New York, NY, USA, Pages 1-10.
- 3. Visible Light Communication. https://www.disneyresearch.com/project/visible-light-communication/