ON CENTRALITY OF EVEN ORTHOGONAL K2

ANDREI LAVRENOV AND SERGEY SINCHUK

ABSTRACT. We give a short uniform proof of centrality of $K_2(\Phi, R)$ for all simply-laced root systems Φ of rank ≥ 3 .

Introduction

The aim of this paper is to establish Quillen's local-global principle and the centrality of even orthogonal K_2 for arbitrary commutative ring R.

Recall that to each reduced irreducible root system Φ and a commutative ring R one can associate a split simple simply-connected group $G_{sc}(\Phi, R)$ called a *Chevalley group*. The *elementary group* $E(\Phi, R)$ is defined as the subgroup of $G_{sc}(\Phi, R)$ generated by elementary root unipotents $t_{\alpha}(\xi)$, $\xi \in R$, $\alpha \in \Phi$, see [2, 9]. By definition, the Steinberg group $St(\Phi, R)$ is presented by generators $x_{\alpha}(\xi)$, which model the unipotents $t_{\alpha}(\xi)$, and Steinberg relations (see Section 1). Thus, there is a well-defined map $\phi \colon St(\Phi, R) \to G_{sc}(\Phi, R)$ sending $x_{\alpha}(\xi)$ to $t_{\alpha}(\xi)$ whose image is $E(\Phi, R)$.

By a theorem of Taddei (see [2]) the elementary group $E(\Phi, R)$ is a normal subgroup of $G_{sc}(\Phi, R)$ if Φ has rank at least 2. Thus, similarly to the definition of algebraic SK_1 and K_2 -functors, one can define the groups $K_1(\Phi, R)$, $K_2(\Phi, R)$ as the cokernel and kernel of ϕ :

$$1 \longrightarrow \mathrm{K}_2(\Phi, R) \longrightarrow \mathrm{St}(\Phi, R) \longrightarrow \mathrm{G}_{sc}(\Phi, R) \longrightarrow \mathrm{K}_1(\Phi, R) \longrightarrow 1.$$

It is a classical theorem of M. Kervaire and R. Steinberg that the stable Steinberg group St(R) is the universal central extension of E(R), see [12, Theorem III.5.5]. The unstable analogue of the "universality" part of this theorem has been known since 1970's for Φ of rank $\ell \geq 5$ (or even $\ell \geq 4$ for $\Phi = A_{\ell}, B_{\ell}, C_{\ell}$), see [4, 8]. However, until recently, the analogue of the "centrality" part was only known in the special case $\Phi = A_{\ell}, \ell \geq 3$ see [3, Corollary 2]. The best known result for other classical Φ was that the centrality holds "in the stable range", i. e. when the dimension of R is sufficiently small as compared to the rank of Φ , see [9, Corollary 3.4].

Recently the authors of this paper have established the centrality of $K_2(C_{\ell}, R)$ ($\ell \geq 3$) and $K_2(E_{\ell}, R)$ ($\ell = 6, 7, 8$) for arbitrary commutative ring R, see [6, 7]. In turn, the key result of this paper is the following theorem.

Theorem 1 ("Centrality of K_2 "). Let R be an arbitrary commutative ring. Then for $\ell \geq 4$ the group $K_2(D_\ell, R)$ is a central subgroup of $St(D_\ell, R)$.

Centrality of K_2 is a corollary of the following analogue of Quillen's local-global principle, very much in the same fashion as the normality theorem for the elementary subgroup is a corollary of the local-global principle for K_1 , cf. [1, Theorem 3.1].

Date: May 15, 2016.

Key words and phrases. Steinberg groups, K_2 -functor. Mathematical Subject Classification (2010): 19C09.

The authors of the present paper acknowledge the financial support from Russian Science Foundation grant 14-11-00297.

Theorem 2 ("Quillen's LG-principle for K₂"). Let Φ be an irreducible simply-laced root system of rank ≥ 3 and R be arbitrary commutative ring. Then an element $g \in \text{St}(\Phi, R[X])$ satisfying $g(0) = 1 \in \text{St}(\Phi, R)$ is trivial in $\text{St}(\Phi, R[X])$ if and only if the images $\lambda_M^*(g) \in \text{St}(\Phi, R_M[X])$ of g under localisation maps $\lambda_M \colon R \to R_M$ are trivial for all maximal ideals $M \subseteq R$.

In the special case $\Phi = A_{\ell}$, $\ell \geq 4$ the assertion of Theorem 2 was obtained by Tulenbaev, see [11, Theorem 2.1]. Despite the fact that the key ingredient in Tulenbaev's proof ("another presentation" of the Steinberg group) is available for $\Phi = A_3$, Tulenbaev's proof does not work in this case for technical reasons. On the other hand, in [7] the second-named author developed a patching technique which allowed him to deduce Theorem 2 from Tulenbaev's result in another special case $\Phi = E_{\ell}$, $\ell = 6, 7, 8$. Thus, Theorem 2 contains two cases that have not been previously known: $\Phi = A_3$ and $\Phi = D_{\ell}$, $\ell \geq 4$. We also note that recently the first-named author has obtained an analogue of Theorem 2 for $K_2(C_{\ell}, R)$ under the assumption $\ell \geq 3$, see [5].

The paper is organised as follows. After introducing the preliminaries we explain in Section 2 how the patching technique of [7] allows one to reduce Theorem 2 to the special case $\Phi = A_3$. Next, in Section 3 we describe a new "transpose-symmetric" presentation for the relative linear Steinberg group. Finally, this presentation is used in Section 4 to prove Theorem 2 in the case $\Phi = A_3$.

1. Preliminaries

Throughout this paper R denotes an associative commutative ring with identity. All commutators are left-normed, i. e. $[x, y] = xyx^{-1}y^{-1}$. We denote by R^n the free R-module with a basis e_1, \ldots, e_n and by $\operatorname{Um}(n, R)$ the subset of unimodular columns $v \in R^n$, i. e. columns whose entries generate R as an ideal.

First of all, recall that for a simply laced root system Φ of rank ≥ 2 the Steinberg group $\operatorname{St}(\Phi, R)$ is defined by generators $x_{\alpha}(r)$, $\alpha \in \Phi$, $r \in R$ and the following relations:

$$x_{\alpha}(r)x_{\alpha}(s) = x_{\alpha}(r+s),$$

$$[x_{\alpha}(r), x_{\beta}(s)] = x_{\alpha+\beta}(N_{\alpha,\beta}rs),$$

$$\alpha, \beta \in \Phi, \ \alpha + \beta \in \Phi,$$

$$[x_{\alpha}(r), x_{\beta}(s)] = 1,$$

$$\alpha, \beta \in \Phi, \ \alpha + \beta \notin \Phi.$$

Here $N_{\alpha,\beta}$ are the structure constants of Φ which are equal to ± 1 . In the case $\Phi = A_{\ell}$ we use a more common notation for root unipotents: $x_{ij}(r)$, $1 \le i \ne j \le n$, $r \in R$,

(S1)
$$x_{ij}(r)x_{ij}(s) = x_{ij}(r+s),$$

(S2)
$$[x_{ij}(r), x_{hk}(s)] = 1,$$
 for $h \neq j, k \neq i,$

(S3)
$$[x_{ij}(r), x_{jk}(s)] = x_{ik}(rs).$$

In the case $\Phi = \mathsf{A}_{\ell}$ the elementary root unipotents $t_{\alpha}(r)$ are exactly the elementary transvections $t_{ij}(r) = 1 + r \cdot e_{ij}, \ 1 \le i \ne j \le n, \ r \in R$ and the elementary subgroup $\mathsf{E}(\mathsf{A}_{n-1},R)$ is also denoted by $\mathsf{E}(n,R)$. Here 1 denotes the identity matrix and e_{ij} is the standard matrix unit. The natural projection $\phi \colon \mathsf{St}(n,R) \to \mathsf{E}(n,R)$ sends $x_{ij}(r)$ to $t_{ij}(r)$.

In [10] Suslin showed for $n \geq 3$ that the elementary group $\mathrm{E}(n,R)$ coincides with the subgroup of $\mathrm{GL}(n,R)$ generated by matrices of the form $t(u,v)=1+uv^t$ where $u\in\mathrm{Um}(n,R),\,v\in R^n$ and $u^tv=0$. Here u^t stands for the transpose of u. This result clearly implies that $\mathrm{E}(n,R)$ is normal inside $\mathrm{GL}(n,R)$. Afterwards, W. van der Kallen developed Suslin's ideas and showed for $n\geq 4$ that the Steinberg group $\mathrm{St}(n,R)$ is isomorphic to the group presented by generators

$${X(u, v) \mid u \in \mathrm{Um}(n, R), \ v \in \mathbb{R}^n, \ u^t v = 0}$$

and the following list of relations (see [3, Theorem 1]):

(K1)
$$X(u, v)X(u, w) = X(u, v + w),$$

(K2)
$$X(u, v)X(u', v')X(u, v)^{-1} = X(t(u, v)u', t(v, u)^{-1}v').$$

This presentation clearly implies that $\phi \colon \operatorname{St}(n,R) \to \operatorname{E}(n,R)$ is a central extension. Notice that we parametrize elements X(u,v) with two columns rather than with one column and one row as it is done in [3]. Our generator X(u,v) corresponds to van der Kallen's generator $X(u,v^t)$.

Recall that an ideal $I \leq R$ is called a *splitting ideal* if the canonical projection $R \twoheadrightarrow R/I$ splits as a unital ring morphism, i.e. one has $\pi \sigma = 1$.

$$0 \longrightarrow I \longrightarrow R \xrightarrow[\sigma]{\pi} R/I \longrightarrow 0$$

For a splitting ideal $I \subseteq R$ the relative Steinberg group $St(\Phi, R, I)$ can be defined as the kernel $Ker(St(\Phi, R) \rightarrow St(\Phi, R/I))$.

For arbitrary I the relative Steinberg group $\operatorname{St}(\Phi,R,I)$ is no more a subgroup of $\operatorname{St}(\Phi,R)$ and should be defined as a central extension of the above kernel. For the purposes of the present text it suffices to consider only relative Steinberg groups corresponding to splitting ideals. For more information regarding the general case we refer the reader to [7, Section 3].

2. Reduction to the case A_3

First, we make the following definition inspired by Lemmas 2.3, 3.2 of [11].

Definition 2.1. We say that the Steinberg group functor $St(\Phi, -)$ satisfies *Tulenbaev lifting* property if for any ring R and any non-nilpotent element $a \in R$ there exists a map T_{Φ} which fits into the following commutative diagram.

(2.2)
$$\operatorname{St}(\Phi, R \ltimes X R_a[X], X R_a[X]) \hookrightarrow \operatorname{St}(\Phi, R \ltimes X R_a[X])$$

$$\lambda_a^* \downarrow \qquad \qquad \lambda_a^* \downarrow \qquad \qquad \lambda_a^* \downarrow$$

$$\operatorname{St}(\Phi, R_a[X], X R_a[X]) \hookrightarrow \operatorname{St}(\Phi, R_a[X])$$

Here $R \ltimes XR_a[X]$ denotes the semidirect product of the ring R and the R-algebra $XR_a[X]$ (see e. g. [7, Definition 3.2]), λ_a^* is the morphism of Steinberg groups induced by the morphism $\lambda_a \colon R \to R_a$ of localisation by the powers of a. Notice that $XR_a[X]$ is a splitting ideal for both $R_a[X]$ and $R \ltimes XR_a[X]$.

It is clear that the image of T_{Φ} is contained in the image of the top arrow, therefore, Tulenbaev lifting property implies that the relative Steinberg groups in the left-hand side of the diagram are isomorphic.

We claim that the main results of this paper follow from Tulenbaev's lifting property.

Proposition 2.2. For any irreducible Φ of rank ≥ 2 there are implications $a) \implies b) \implies c) \implies d$.

- a) the Steinberg group functor $St(\Phi, -)$ satisfies lifting property (2.2);
- b) a dilation principle holds for $\operatorname{St}(\Phi, -)$, i. e. if $g \in \operatorname{St}(\Phi, A[X], XA[X])$ is such that $\lambda_a^*(g) = 1 \in \operatorname{St}(\Phi, R_a[X])$ then for sufficiently large n one has $\operatorname{ev}_{X=a^nY}^*(h) = 1 \in \operatorname{St}(\Phi, A[Y])$, where $\operatorname{ev}_{X=a^nY}$ denotes the unique R-algebra morphism $R[X] \to R[Y]$ sending X to a^nY ;
- c) Quillen's local global principle for K_2 holds for $St(\Phi, -)$;
- d) the centrality of K_2 holds for $St(\Phi, -)$.

Proof. The specified implications are contained in the proofs of Lemma 15, Theorem 2 and Theorem 1 of [7], respectively.

In order to construct the arrow T_{Φ} fitting in the diagram (2.2) one needs to have some direct description of the relative Steinberg group $\operatorname{St}(\Phi,R,I)$. For example, in [11] Tulenbaev uses a variant of of W. van der Kallen's "another presentation" for this purpose. The details of this approach are outlined in the next section. On the other hand, in [7] the second-named author obtained a theorem which asserts that the relative Steinberg group $\operatorname{St}(\Phi,R,I)$ can be presented as an amalgamated product of several copies of relative Steinberg groups of smaller rank.

To formulate this theorem we will need several technical definitions. For a simply laced root system Φ we denote by $\mathbf{Subsys}(\Phi)$ the category of (not necessarily irreducible) root subsystems of Φ . Its objects are all root subsystems $\Psi \subseteq \Phi$ and its morphisms are in one-to-one correspondence with inclusions of the form $\Psi_1 \subseteq \Psi_2$. It is clear that the relative Steinberg group can be turned into a functor $\mathrm{St}(-,R,I)\colon \mathbf{Subsys}(\Phi)\to \mathbf{Groups}$, cf. [7, Lemma 6].

We denote by $\mathcal{G}_{1,n}$ the full subcategory of **Subsys**(Φ) whose objects are root subsystems $\Psi \subseteq \Phi$ having type A_1 or A_n . It is easy to see that $\mathcal{G}_{1,n}$ is a directed bipartite graph whose only nonidentical morphisms are inclusions of the form $i_{\alpha,\Psi} \colon \{\alpha, -\alpha\} \subseteq \Psi \cong A_n$, for $\Psi \subseteq \Phi$. The following result has been proved in [7], see Theorem 9.

Theorem. For a simply laced irreducible root system Φ of rank ≥ 3 the group $\operatorname{St}(\Phi, R, I)$ is isomorphic as an abstract group to $\varinjlim_{\mathcal{G}_{1,3}} \operatorname{St}(-,R,I)$.

The above theorem allows one to construct the arrow T_{Φ} by means of the universal property of colimits. More precisely, one needs to construct the maps T_{Ψ} for subsystems $\Psi \subseteq \Phi$ of type A_3 and then check that relations $T_{\Psi} \circ i_{\alpha,\Psi} = T_{\Psi'} \circ i_{\alpha,\Psi'}$ hold for all Ψ, Ψ' of type A_3 containing a common root α (here $i_{\alpha,\Psi}$ denotes the obvious morphism $\mathrm{St}(\{\alpha, -\alpha\}, R, I) \to \mathrm{St}(\Psi, R, I)$). The latter check is relatively formal and, essentially, has already been made in [7] (see the proof of Lemma 14 and notice that everywhere in it A_4 's can be replaced with A_3 's). On the other hand, constructing T_{Ψ} for $\Psi = \mathsf{A}_3$ is not at all obvious and will be done in the section to follow.

Summing up the above discussion, we have shown that both Theorem 1 and Theorem 2 follow from Tulenbaev's lifting property in the special case $\Phi = A_3$.

3. YET ANOTHER PRESENTATION FOR THE RELATIVE STEINBERG GROUP.

In order to construct the arrow T Tulenbaev uses the following presentation for the relative Steinberg group, see [11, Proposition 1.6].

Proposition 3.2. For a splitting ideal I and $n \ge 4$ the group St(n, R, I) is isomorphic to the group defined by generators

$$\{X(u, v) \mid u \in E(n, R)e_1, v \in I^n, u^t v = 0\}$$

and the following set of relations:

(T1)
$$X(u, v)X(u, w) = X(u, v + w),$$

(T2)
$$X(u, v)X(u', v')X(u, v)^{-1} = X(t(u, v)u', t(v, u)^{-1}v'),$$

(T3)
$$X(ur + w, v) = X(u, vr)X(w, v) \text{ for } r \in R, (u, w) \in \text{Um}_{n \times 2}(R).$$

Moreover, the group St(n,R) decomposes into the semidirect product $St(n,R,I) \times St(n,R/I)$.

Here $\operatorname{Um}_{n\times 2}(R)$ denotes the set of $n\times 2$ unimodular matrices, i.e. matrices M such that there exists a $2\times n$ matrix N satisfying $NM=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. In the definition of the semidirect

product the group $\operatorname{St}(n,R/I)$ acts on $\operatorname{St}(n,R,I)$ by conjugation via the splitting map, i.e. ${}^{g}X(u,v)=X(\phi(\sigma(g))u,\phi(\sigma(g))^{*}v)$ for $g\in\operatorname{St}(n,R/I)$.

Proof. For the sake of completeness we present below a more detailed version of Tulenbaev's proof. Tulenbaev constructs a pair of mutually inverse maps

$$\operatorname{St}(n,R,I) \rtimes \operatorname{St}(n,R/I) \xrightarrow{\varphi} \operatorname{St}(n,R).$$

Define the map ψ by $\psi(x_{ij}(\xi)) = (X(e_i, (\xi - \pi(\xi)e_j), x_{ij}(\pi(\xi))))$. We have to check that ψ preserves relations (S1)–(S3). For example, let us check (S3). First of all, recall that in any semidirect product of groups one can compute the commutator of two elements in the following way:

$$[(a,b),(c,d)] = (a \cdot {}^bc \cdot {}^{bdb^{-1}}a^{-1} \cdot [^{b,d]}c^{-1},[b,d]).$$

For $\xi \in R$ set $\xi' = \xi - \pi(\xi)$. Specializing $a = X(e_i, \xi'e_j)$, $b = x_{ij}(\pi(\xi))$, $c = X(e_j, \eta'e_k)$, $d = x_{jk}(\pi(\eta))$ and using the definition of the conjugation action one computes the commutator $[\psi(x_{ij}(\xi), \psi(x_{jk}(\eta))]$ as follows:

$$(3.3) \quad \left(X(e_i, \xi' e_j) \cdot X(e_j + \pi(\xi)e_i, \eta' e_k) \cdot X(e_i, \pi(\eta)\xi' e_k - \xi' e_j) \cdot X(e_j, -\eta' e_k), \ x_{ik}(\pi(\xi\eta)) \right).$$

After applying additivity relations (T1), (T3) and moving the factor $X(e_i, -\xi'e_j)$ to the left hand side of the formula by means of relation (T2) one gets the following expression:

$$(X(e_j, \eta' e_k) \cdot X(e_i, (\xi' \eta' + \pi(\xi) \eta' + \pi(\eta) \xi') e_k \cdot X(e_j, -\eta' e_k), \ x_{ik}(\pi(\xi \eta)).$$

Since $\xi'\eta' + \pi(\xi)\eta' + \pi(\eta)\xi' = \xi\eta - \pi(\xi\eta)$ the above expression clearly simplifies to $\psi(x_{ik}(\xi\eta))$, as claimed. Verification of the fact that ψ preserves relations (S1), (S2) is similar to the above computation but is easier. In particular, one does not need to use relation (T3).

It remains to check that the map φ given by $\varphi((X(u,v),1)) = X(u,v), \varphi((1,x_{ij}(\xi))) = X(e_i,\sigma(\xi)e_i)$ is well-defined and inverse to ψ .

Remark 3.4. Notice that from the proof of the above proposition it follows that one could replace the family of relations (T3) in the definition of St(n, R, I) with the following smaller family:

(T3')
$$X(e_i r + e_j, e_k) = X(e_i, rae_k)X(e_j, ae_k)$$
 for $r \in R$, $a \in I$ and i, j, k distinct.

This follows from the fact that only this smaller family of relations was actually used in the construction of the map ψ (more precisely, it was used to simplify the second factor of (3.3)).

Both "another presentations" of van der Kallen and Tulenbaev are given in terms of generators parametrised by pairs of vectors, where the first one is "good" in some sense (i.e. unimodular or a column of an elementary matrix) while the second one is arbitrary. It is easy to formulate the additivity property in the second argument for these generators (cf. (K1), (T1)), while it is not so easy when it comes to the additivity in the first argument (cf. (T3)).

The construction of the homomorphism $T: St(n, R_a[X], XR_a[X]) \to St(n, R \ltimes XR_a[X])$ amounts to choosing certain elements in the group $St(n, R \ltimes XR_a[X])$ and proving that these elements satisfy relations (T1)–(T3), see [11, Lemmas 1.2 and 1.3 c)]. The main problem with this recipe is that the assumption $n \geq 5$ is essential to check that the relation (T3) holds.

It is not possible to choose arbitrary orthogonal vectors u, v as parameters for the generators because in this situation it is not even known that $t(u, v) \in E(n, R)$, see [Rao].

To generalise Tulenbaev's results for n=4 we use a more symmetric presentation with two types of generators: F(u, v) with u good and v arbitrary and S(u, v) with u arbitrary and v good. The generators F(u, v) are additive in the second component, while S(u, v) are additive in the first one. When u and v are both good we require that these two generators coincide. More formally, we make the following definition.

Definition 3.5. For $I \subseteq R$ and $n \ge 4$ define $St^*(n, R, I)$ to be the group with the set of generators

 $\{F(u, v) \mid u \in E(n, R)e_1, v \in I^n, u^t v = 0\} \cup \{S(u, v) \mid u \in I^n, v \in E(n, R)e_1, u^t v = 0\}$ subject to relations

- (R1) F(u, v)F(u, w) = F(u, v + w)
- (R2) S(u, v)S(w, v) = S(u + w, v),
- (R3) $F(u, v)F(u', v')F(u, v)^{-1} = F(t(u, v)u', t(v, u)^{-1}v'),$
- (R4) F(u, va) = S(ua, v), for all $a \in I$, $(u, v^t) = (Me_1, e_2^t M^{-1})$, $M \in E(n, R)$.

Notice that we only described how a generator F(u, v) acts via conjugation on another generator F(u', v') and have omitted three similar relations involving generators S(u, v) of the second type. The reason for this is the following lemma which asserts that the "missing" relations will follow automatically from (R1)–(R4).

Lemma 3.6. Denote by $\phi \colon \operatorname{St}^*(n, R, I) \to \operatorname{E}(n, R)$ the natural map sending $F(u, v) \mapsto t(u, v)$ and $S(u, v) \mapsto t(u, v)$. Then the following facts are true.

a) $St^*(n, R, I)$ is generated as an abstract group by the set of elements

$$\{F(u, va) \mid a \in I, (u, v^t) = (Me_1, e_2^t M^{-1}), M \in E(n, R)\};$$

b) for any $g \in St^*(n, R, I)$ one has

(R3')
$$gF(u, v)g^{-1} = F(\phi(g)u, \phi(g^{-1})^{t}v);$$

c) for any $g \in St^*(n, R, I)$ one has

(R3")
$$gS(u, v)g^{-1} = S(\phi(g)u, \phi(g^{-1})^{t}v);$$

d) there is a "transpose automorphism" defined on $St^*(n, R, I)$ satisfying

$$F(u, v)^t = S(v, u), \quad S(u, v)^t = F(v, u).$$

Proof. Let F(u, v) be an arbitrary generator of the first type and let $M \in E(n, R)$ be such that $F(u, v) = F(Me_1, M^*\tilde{v})$. Here we denote by M^* the contragradient matrix, $M^* = (M^{-1})^t$. By (R1) we have

$$F(u, v) = \prod_{k \neq 1} F(Me_1, M^*e_k \tilde{v}_k)$$

where \tilde{v}_k stands for k-th coordinate of $\tilde{v} = \sum e_i \tilde{v}_i$. Applying relations (R2), (R4) we get

$$S(u, v) = \prod_{k \neq 1} S(Ne_k \tilde{u}_k, N^* e_1) = \prod_{k \neq 1} F(Ne_k, N^* e_1 \tilde{u}_k)$$

and, thus, obtain (a). Obviously, (b) follows from (a). To prove (c) it suffices to show that

$$F(u, v)S(u', v')F(u, v)^{-1} = S(t(u, v)u', t(u, v)^*v').$$

For $S(u', v') = \prod_{k \neq 1} F(Ne_k, N^*e_1\tilde{u}_k)$ we have

$$F(u, v)S(u', v')F(u, v)^{-1} = F(u, v) \prod F(Ne_k, N^*e_1\tilde{u}_k)F(u, v)^{-1} =$$

$$= \prod F(t(u, v)Ne_k, t(u, v)^*N^*e_1\tilde{u}_k) =$$

$$= \prod S(t(u, v)Ne_k\tilde{u}_k, t(u, v)^*N^*e_1) = S(t(u, v)u', t(u, v)^*v').$$

Finally, (d) follows from (c).

Our next goal is to show for a splitting ideal $I \subseteq R$ that the group $St^*(n, R, I)$ is isomorphic to $St(n, R, I) = Ker(St(n, R) \rightarrow St(n, R/I))$. With this end we construct two mutually inverse homomorphisms

$$\operatorname{St}^*(n, R, I) \xrightarrow{\iota} \operatorname{St}(n, R, I).$$

In order to construct the arrow κ we use the presentation from Proposition 3.2. We set

$$\kappa(X(u,v)) = F(u,v), \ u \in \mathcal{E}(n,R)e_1, \ v \in I^n.$$

In view of Remark 3.4 it suffices to check that F(u, v) satisfy the relations (T1), (T2), (T3'). The validity of relations (T1), (T2) is obvious while (T3') follows from (R2) and (R4), indeed:

$$F(e_i, rae_k)F(e_j, ae_k) = S(rae_i, e_k)S(ae_j, e_k) = S(a(re_i + e_j), e_k) = F(e_ir + e_j, ae_k)S(ae_j, e_k) = S(ae_ir + e_j, e_k)S(ae_j, e_k) = S(ae_ir + e_j, e_k)S(ae_jr + e_j,$$

As for the map ι , we firsty define it as a homomorphism to the absolute group. Then we prove that the image of ι is contained in St(n,R,I). Clearly, ι should map the elements F(u,v) to van der Kallen's generators X(u, v). We should find the images for the elements S(u, v) as well. First of all, recall that van der Kallen in [3, pp. 3.8–3.10] constructs the following elements:

$$x(u, v) \in \operatorname{St}(n, R), \ u^t v = 0, \ u_i = 0 \text{ or } v_i = 0 \text{ for some } 1 \le i \le n.$$

The following definition is the "transpose" of [3, p. 3.13].

Definition 3.7. For $u \in \mathbb{R}^n$, $v \in \mathbb{E}(n,R)e_1$, $u^t v = 0$, consider the set $\overline{Y}(u,v) \subseteq \operatorname{St}(n,R)$ consisiting of all elements $y \in St(n, R)$ that admit a decomposition $y = \prod x(w^k, v)$, where $\sum u^k = u$ and $u^k = (e_p v_q - e_q v_p) c^k$ for some $c^k \in R$, $1 \le p \ne q \le n$.

Since columns of elementary matrices are unimodular, one can find $w \in \mathbb{R}^t$ such that $w^t v = 1$. It is not hard to check that

(3.7)
$$(w^t \cdot v) \cdot u = \sum_{p < q} u_{pq}, \text{ where } u_{pq} = (e_p v_q - e_q v_p) \cdot (u_p w_q - u_q w_p) \in \mathbb{R}^n,$$

therefore $\overline{Y}(u, v)$ is not empty (cf. [3, pp. 3.1–3.2]). Obviously, for $x \in \overline{Y}(u, v)$ and $y \in \overline{Y}(w, v)$ one has $xy \in \overline{Y}(u+w, v)$.

Repeating [3, pp. 3.14–3.15] verbatim one shows the following.

Lemma 3.8. For $g \in St(n, R)$ one has

- a) $g\overline{Y}(u, v)g^{-1} \subseteq \overline{Y}(\phi(g)u, \phi(g)^*v);$ b) $\overline{Y}(u, v)$ consists of exactly one element.

We denote the only element of $\overline{Y}(u,v)$ by Y(u,v). Now we can finish the definition of ι by requiring that $\iota(S(u,v)) = Y(u,v)$ for $S(u,v) \in St^*(n,R,I)$. To show that the map ι is well-defined we should check that elements X(u, v) and Y(u, v) satisfy relations (R1)-(R4) (with F's and S's replaced with X's and Y's). Only the relation (R4) is not immediately obvious.

Lemma 3.9. For
$$(u, v^t) = (Me_1, e_2^t M^{-1}), M \in E(n, R), a \in I$$
 one has $X(u, va) = Y(ua, v)$.

Proof. In view of the above lemma we only need to show that $X(e_1, e_2a) = Y(e_1a, e_2)$. This equality can be obtained by computing the commutator $[Y(-e_3, e_2), X(e_1, e_3a)]$ in two ways:

$$Y(-e_3, e_2)X(e_1, e_3a)Y(-e_3, e_2)^{-1} \cdot X(e_1, -e_3a) = X(e_1, e_2a), \text{ and}$$

 $Y(-e_3, e_2) \cdot X(e_1, e_3a)Y(e_3, e_2)X(e_1, e_3a)^{-1} = Y(e_1a, e_2).$

Since $\pi^*(\iota(F(u,v))) = X(\pi(u),0) = 1$ and $\pi^*(\iota(S(u,v))) = Y(0,\pi(v)) = 1$ we get that $\operatorname{Im}(\iota) \subseteq \operatorname{Ker}(\pi^*) = \operatorname{St}(n, R, I)$. It is clear that $\iota \kappa = \operatorname{id}$ hence κ is injective. On the other hand, κ is surjective by Lemma 3.6(a). Thus, we have demonstrated the following result.

Proposition 3.10. For a splitting ideal $I \subseteq R$ and $n \ge 4$ the groups $St^*(n, R, I)$ and St(n, R, I) are isomorphic.

4. The local-global principle for K₂

Now we turn to the main result of this paper, namely, we construct for $n \geq 4$ the map

$$T \colon \operatorname{St}(n, R_a[X], XR_a[X]) \to \operatorname{St}(n, R \ltimes XR_a[X]),$$

that fits into the diagram (2.2).

We will prove a somewhat more general result. Let B be a commutative unital ring. We call an ideal I of B uniquely r-divisible if for every $m \in I$ there exists only one $m' \in I$ such that rm' = m (we denote such m' by $\frac{m}{r}$). Clearly, I is uniquely r-divisible if and only if the restriction of the morphism of principal localisation $\lambda_r \colon R \to R_r$ to I is an isomorphism.

Theorem 3. Let B be a ring, $a \in B$ and let I be an ideal of B that is uniquely a-divisible. Then for $n \geq 4$ there exists a map $T \colon \operatorname{St}^*(n, B_a, I) \to \operatorname{St}(n, B)$ which makes the following diagram commute.

(4.1)
$$\operatorname{St}^{*}(n, B, I) \xrightarrow{\iota} \operatorname{St}(n, B)$$

$$\lambda_{a}^{*} \downarrow \qquad \qquad \downarrow \lambda_{a}^{*}$$

$$\operatorname{St}^{*}(n, B_{a}, I) \xrightarrow{\iota} \operatorname{St}(n, B_{a})$$

For a vector $u \in \mathbb{R}^n$ we denote by I(u) the ideal generated by the entries of $u \in \mathbb{R}^n$, i.e. $I(u) = \sum_{k=1}^n u_k R$. To prove Theorem 3 we follow the approach of Tulenbaev and construct yet another family of elements $X_{u,v}(a) \in \operatorname{St}(n,B)$, $a \in B$ which contains van der Kallen's generators X(u,v) as a subfamily (i.e. $X_{u,v}(1) = X(u,v)$). The key feature of this definition is that the assumption $u \in \operatorname{Um}(n,B)$ is replaced with a weaker condition $a \in I(u)$ (this is equivalent to saying that u becomes unimodular after localisation in a).

Definition 4.2. For $u \in R^n$ we denote by D(u) the set consisting of all $v \in B^n$ decomposing into a sum $v = \sum_{k=1}^N v_k$ where $v_1, \ldots, v_N \in B^n$ are such that $u^t v_k = 0$ and each v_k has at least two zero coordinates. Now for $a \in I(u)$ and $v \in D(u)$ set $X_{u,v}(a) = \prod_{k=1}^N x(u, v_k a)$.

Tulenbaev shows that the factors $x(u, v_k a)$, $1 \le k \le N$ commute, see [11, Lemma 1.1 e)]. He also shows that if v admits another decomposition $v = \sum_{j=1}^{M} v'_j$ satisfying the assumptions of Definition 4.2 then one has $\prod_{k=1}^{N} x(u, v_k a) = \prod_{j=1}^{M} x(u, v'_j a)$, see the discussion following [11, Lemma 1.1]. Thus, the elements $X_{u,v}(a)$ are well-defined. Obviously, $\phi(X_{u,v}(a)) = t(u, va)$.

Remark 4.3. From the canonical decomposition (3.7) it follows that $vb \in D(u)$ for any $b \in I(u)$ and v such that $v^tu = 0$. In particular, if I is uniquely a-divisible and $a^k \in I(u)$, then every $v \in I^n$ satisfying $v^tu = 0$ is contained in D(u).

Notice that Tulenbaev uses different notation for van der Kallen elements, e.g. he writes $X_{u,v}$ instead of X(u, v) and X(u, v) instead of x(u, v). We stick to van der Kallen's notation.

Lemma 4.4. For $u, w \in B^n$, $v, v' \in D(u)$ such that $u^t w = 0$, for $a, b \in I(u)$, $c \in B$, $g \in St(n, B)$ the following are true:

- a) $X_{u,vc}(a) = X_{u,v}(ca)$,
- b) $X_{uc,v}(ca) = X_{u,vc^2}(a)$,

- c) $X_{u,v}(a)X_{u,v'}(a) = X_{u,v+v'}(a)$,
- d) $g X_{u,wb}(a) g^{-1} = X_{\phi(q)u,\phi(q)^*wb}(a)$.

Proof. The statement of (a) is obvious from the definition, (b) follows from [11, Lemma 1.1 d)], (c) is exactly the statement of [11, Lemma 1.3 a)].

The assertion of (d) is proven in [11, Lemma 1.3b)] under the assumption $n \ge 5$. Afterwards Tulenbaev remarks that the assertion remains true for n = 4. Indeed, take $z \in B^n$ such that $z^t u = b$ and write the canonical decomposition (3.7):

$$(z^{t}u)w = \sum_{i < j} u_{ij}c_{ij}$$
, where $u_{ij} = e_{i}u_{j} - e_{j}u_{i}$, and $c_{ij} = w_{i}z_{j} - w_{j}z_{i}$.

Each $u_{ij}c_{ij}$ is orthogonal to u and, because of the assumption $n \geq 4$, has at least two zero coordinates. Thus, $X_{u,wb}(a) = \prod_{i < j} x(u, u_{ij}ac_{ij})$. It is enough to prove the assertion of (d) in the special case $g = x_{hk}(r)$. If $h \neq i, j$ or $\{h, k\} = \{i, j\}$ the vector $\phi(g)^*u_{ij}ac_{ij}$ still has two zero coordinates.

Now consider the case j = h, $i \neq k$. By [3, p. 3.12] one has

$$g x(u, u_{ij}ac_{ij})g^{-1} = x(\phi(g)u, \phi(g)^*u_{ij}ac_{ij}).$$

Set $u' = \phi(g)u$, since $\phi(g)^*u_{ij} = t_{kj}(-r) \cdot u_{ij} = e_iu_j - e_ju_i + e_kru_i = u'_{ij} + u'_{ki}r$, we obtain from [3, p. 3.11] that

$$x(\phi(g)u, \phi(g)^*u_{ij}ac_{ij}) = x(u', u'_{ij}c_{ij}a) \cdot x(u', u'_{ki}rc_{ij}a).$$

Decomposing in this fashion each factor $g x(u, u_{ij}ac_{ij})g^{-1}$ for which $\phi(g)^*u_{ij}ac_{ij}$ does not have two zero coordinates, we arrive at a product satisfying the requirements of the definition of $X_{\phi(g)u,\phi(g)^*wb}(a)$.

Since $u_{ij} = -u_{ji}$, $c_{ij} = -c_{ji}$ the case i = h, $j \neq k$ formally follows from the one just considered.

We will also need the "transposed" analogue of Tulenbaev's elements $X_{u,v}(a)$.

Definition 4.5. Let $v \in B^n$, $a \in I(v)$, and $u \in D(v)$, i. e. $u = \sum_{i=1}^M u_i$ for some u_k having two zero components such that $v^t u_k = 0$. Set $Y_{u,v}(a) = \prod_{k=1}^M x(u_k a, v)$. Similarly to Definition 4.2 this definition does not depend neither on the order of factors nor on the choice of decomposition for u.

One can repeat van der Kallen's and Tulenbaev's arguments and prove the following transposed version of Lemma 4.4. We leave the proof of this lemma to the reader.

Lemma 4.6. For u, u', w and $v \in B^n$, such that u and u' have decomposition as in the above definition, $w^t v = 0$, a, $b \in I(v)$, $c \in B$, $g \in St(n, B)$ one has

- a) $Y_{uc,v}(a) = Y_{u,v}(ca)$,
- b) $Y_{u,vc}(ca) = Y_{uc^2,v}(a)$,
- c) $Y_{u,v}(a)X_{u',v}(a) = Y_{u+u',v}(a)$,
- d) $gY_{wb,v}(a)g^{-1} = Y_{\phi(q)wb,\phi(q)^*v}(a)$.

Finally, it remains to show that for a "good" pair (u, v) the elements X and Y coincide.

Lemma 4.7. Let u, v, x, y be elements of B^n and $b, r \in B$ be such that $u^t v = 0$, $x^t y = b$, $x^t v = 0$, $u^t y = 0$ and $b \in I(u) \cap I(v)$. Then one has $X_{u,vb^4r}(b) = Y_{ub^4r,v}(b)$.

Proof. Compute $g = [Y_{-xbr,v}(b), X_{u,yb}(b)]$ in two different ways using Lemmas 4.4 and 4.6:

$$g = X_{t(xb^2r, -v)u, t(xb^2r, -v)^*ub}(b)X_{u, -yb}(b) = X_{u, yb+vb^4r}(b)X_{u, -yb}(b) = X_{u, vb^4r}(b),$$

$$g = Y_{-xbr,v}(b)Y_{t(u,ub^2)xbr,t(u,ub^2)^*v}(b) = Y_{-xbr,v}(b)Y_{xbr+ub^4r,v}(b) = Y_{ub^4r,v}(b). \quad \Box$$

Now, we are ready to construct the desired map $T: St(n, B_a, I) \to St(n, B)$.

Proof of Theorem 3. Consider $u = Me_1$, $M \in E(n, B_a)$ and $v \in I^n$ such that $u^t v = 0$. Set $w = M^*e_1$. Since $w^t u = 1$ there exist vectors \tilde{w} , $\tilde{u} \in B^n$ and a natural number m such that

$$\lambda_a(\tilde{u}) = wa^m$$
, $\lambda_a(\tilde{u}) = ua^m$ and moreover $\tilde{u}^t v = 0$ and $\tilde{w}^t \tilde{u} = a^{2m}$.

It is clear that $a^{2m} \in I(\tilde{u})$, moreover by Remark 4.3 we have $v/a^{3m} \in D(\tilde{u})$, therefore we are allowed to set $T(F(u, v)) = X_{\tilde{u}, v/a^{3m}}(a^{2m})$.

The first two assertions of Lemma 4.4 guarantee that this definition does not depend on the choice of m and the liftings \tilde{u} and \tilde{w} . Similarly, we can define $T(S(u,v)) = Y_{u/a^{3m},\tilde{v}}(a^{2m})$. In view of Lemmas 4.4 and 4.6 the map T preserves relations (R1)–(R3).

It remains to check for $u = Me_1$, $v = M^*e_2$ and $c \in I$ that

$$(4.2) T(F(u,cv)) = X_{\tilde{u},\tilde{v}c/a^{4m}}(a^{2m}) = Y_{\tilde{u}c/a^{4m},\tilde{v}}(a^{2m}) = T(S(uc,v)).$$

Here $\tilde{u}, \tilde{v} \in B^n$ are liftings of u and v such that $\lambda_a(\tilde{u}) = ua^m$, $\lambda_a(\tilde{v}) = va^m$ and $\tilde{u}^t\tilde{v} = 0$. We can also assume that m is so large that $a^{2m} \in I(\tilde{u}) \cap I(\tilde{v})$ and there exist \tilde{x}, \tilde{y} such that the following equations hold:

$$\lambda_a(\tilde{x}) = Me_3 a^m$$
, $\lambda_a(\tilde{y}) = M^* e_3 a^m$ and $\tilde{x}^t \tilde{y} = a^{2m}$, $\tilde{x}^t \tilde{v} = 0$, $\tilde{u}^t \tilde{y} = 0$.

To obtain (4.2) it remains to apply Lemma 4.7 taking $b=a^{2m},\,r=c/a^{12m}.$ Thus, the map T is well-defined.

Commutativity of the diagram (4.1) follows directly from the definitions of elements X(u, v), Y(u, v) and $X_{u,v}(a)$, $Y_{u,v}(a)$.

References

- [1] R. Basu, R. Rao, and R. Khanna. "On Quillen's local-global principle". Contemp. Math. 390 (2005), p. 17.
- [2] G. Taddei. "Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau". In: Applications of algebraic K-theory to algebraic geometry and number theory, Part II (Boulder, Colo., 1983). Vol. 55. Contemp. Math. 1986, pp. 693–710.
- [3] W. van der Kallen. "Another presentation for Steinberg groups". In: *Indag. Math.* Vol. 80. 1977, pp. 304–312.
- [4] W. van der Kallen and M. R. Stein. "On the Schur multipliers of Steinberg and Chevalley groups over commutative rings". *Math. Z.* 155.1 (1977), pp. 83–94.
- [5] A. Lavrenov. A local-global principle for symplectic K₂.
- [6] A. Lavrenov. "Another presentation for symplectic Steinberg groups". J. Pure Appl. Algebra 219 (9 2015), pp. 3755–3780.
- [7] S. Sinchuk. "On centrality of K_2 for Chevalley groups of type E_ℓ ". J. Pure Appl. Algebra 220 (2016), pp. 857–875.
- [8] M. R. Stein. "Generators, relations and coverings of Chevalley groups over commutative rings". Amer. J. Math. 93 (4 1971), pp. 956–1004.
- [9] M. R. Stein. "Stability theorems for K₁, K₂ and related functors modeled on Chevalley groups". *Japan J. Math.* 4 (1 1978), pp. 77–108.
- [10] A. Suslin. "On the structure of the special linear group over commutative rings". Math. USSR Izv. 11 (2 1977), pp. 221–238.

REFERENCES 11

- [11] M. S. Tulenbaev. "The Steinberg group of a polynomial ring". Math.~USSR~Sb.~45~(1~1983), pp. 131–144.
- [12] C. A. Weibel. *The K-book: An introduction to algebraic K-theory*. Vol. 145. Amer. Math. Soc., 2013.

 $E ext{-}mail\ address:$ avlavrenov $at\ {\it gmail.com}$

 $E ext{-}mail\ address: sinchukss}\ at\ gmail.com$