Professor evaluations and beauty.

Openintro - Professor evaluations and beauty: Teaching ratings

Evaluation of Teacher Productivity and Beauty.

 Beauty in the classroom: teachers' neatness and supposed pedagogical productivity.

Introduction

Data were obtained from end-of-semester evaluations of students from 463 courses taught by a sample of 94 professors at the University of Texas at Austin. In addition, six students rated the physical appearance of the professors. The result is a data frame where each row contains a different course and each column has information about the course and the professor who taught it.

Data Description

Variable	Description		
minority	Is the instructor a member of a minority group (non-Caucasian)?		
age	The teacher's age		
gender	Indicates whether the instructor was male or female.		
credits	Is the course a single credit elective?		
beauty	Rating of instructor physical appearance by a panel of six students, averaged across the six panelists, and standardized to have a mean of zero.		
eval	Overall score of the teaching evaluation of the course, on a scale of 1 (very unsatisfactory) to 5 (excellent).		
division	Is the course upper or lower division?		
native	Is the instructor a native English speaker?		
tenure	Does the instructor have the possibility of permanence?		
students	Number of students who participated in the assessment.		
allstudents	Number of students enrolled in the course.		
prof	Indicating instructor ID.		

Necessary packages and libraries:

```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
```

• Read data from .csv file with pandas

```
In [2]: teaching_ratings = 'teachingratings.csv'
data = pd.read_csv(teaching_ratings)
```

Display dataset information

• First five rows of data.

```
In [3]: data.head()
Out[3]:
             minority age
                            gender credits
                                               beauty eval division native tenure students
         0
                            female
                                             0.289916
                                                                                             24
                  yes
                        36
                                      more
                                                         4.3
                                                               upper
                                                                         yes
                                                                                  yes
          1
                  yes
                        36
                            female
                                             0.289916
                                                         3.7
                                                                                             86
                                      more
                                                               upper
                                                                         yes
                                                                                  yes
          2
                                                                                             76
                 yes
                        36
                            female
                                      тоге
                                             0.289916
                                                         3.6
                                                               upper
                                                                         yes
                                                                                  yes
         3
                        36
                            female
                                             0.289916
                                                                                             77
                                                         4.4
                  yes
                                      more
                                                               upper
                                                                         yes
                                                                                  yes
          4
                  no
                        59
                              male
                                      more -0.737732
                                                         4.5
                                                               upper
                                                                         yes
                                                                                  yes
                                                                                             17
```

• Get each variable information

```
In [4]: data.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 463 entries, 0 to 462 Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype		
0	minority	463 non-null	object		
1	age	463 non-null	int64		
2	gender	463 non-null	object		
3	credits	463 non-null	object		
4	beauty	463 non-null	float64		
5	eval	463 non-null	float64		
6	division	463 non-null	object		
7	native	463 non-null	object		
8	tenure	463 non-null	object		
9	students	463 non-null	int64		
10	allstudents	463 non-null	int64		
11	prof	463 non-null	int64		
12	PrimaryLast	463 non-null	int64		
13	vismin	463 non-null	int64		
14	female	463 non-null	int64		
15	single_credit	463 non-null	int64		
16	upper_division	463 non-null	int64		
17	<pre>English_speaker</pre>	463 non-null	int64		
18	tenured_prof	463 non-null	int64		
dtypes: float64(2), int64(11), object(6)					
memory usage: 68.9+ KB					

Get the number of rows and columns of the dataset - (number of rows, number of columns)

```
In [5]: data.shape
Out[5]: (463, 19)
```

• Descriptive statistics table

In [6]:	data.describe()

Out[6]:		age	beauty	eval	students	allstudents	ргоf	Pi
	count	463.000000	4.630000e+02	463.000000	463.000000	463.000000	463.000000	2
	mean	48.365011	6.271140e-08	3.998272	36.624190	55.177106	45.434125	
	std	9.802742	7.886477e-01	0.554866	45.018481	75.072800	27.508902	
	min	29.000000	-1.450494e+00	2.100000	5.000000	8.000000	1.000000	
	25%	42.000000	-6.562689e-01	3.600000	15.000000	19.000000	20.000000	
	50%	48.000000	-6.801430e-02	4.000000	23.000000	29.000000	44.000000	
	75%	57.000000	5.456024e-01	4.400000	40.000000	60.000000	70.500000	
	max	73.000000	1.970023e+00	5.000000	380.000000	581.000000	94.000000	

• Unique values in the "prof" variable

10/8/24, 00:11 3 de 24

• Number of unique values in the "prof" variable

In [8]: data.prof.nunique()

Out[9]: (94, 19)

Data Visualization:

• Beatuty variable distribution data: "beauty".


```
In [11]: data['beauty'].mean()
```

Out[11]: 6.271139975345787e-08

Mean, standard deviation and variance of beauty respect to gender.

• Display age variable: "age"

• Age variable Box plot.

```
In [14]: ax = sns.boxplot(y="age", data=data)

70 -
60 -
80 50 -
40 -
30 -
```

• Mean age and standard deviation of teachers in the dataset.

```
In [15]: data.agg({'age':['mean', 'std']}).reset_index()
```

 Mean age and standard deviation of teachers in the dataset by gender.

 Use the new dataset without duplicates to get the actual average age and actual standard deviation.

• Display the gender variable: "gender"

```
In [18]: plt.bar(data.gender.unique(),data.gender.value_counts(),color=['pink','bl
    plt.xlabel('Génder')
    plt.ylabel('Total')
    plt.title('Gender Distribution')
Out[18]: Text(0.5, 1.0, 'Gender Distribution')
```


• Display the tenure variable: "tenure"

```
In [19]: plt.bar(data.tenure.unique(),data.tenure.value_counts(),color=['green','r
    plt.xlabel('Tenure')
    plt.ylabel('Total')
    plt.title('Tenure Distribution')
```

Out[19]: Text(0.5, 1.0, 'Tenure Distribution')

Percentage of tenured professors by gender

```
In [20]: | tenure_count = data[data.tenure == 'yes'].groupby('gender').agg({'tenure'}
         tenure count
Out[20]:
            gender tenure
         0
            female
                      145
              male
                      216
In [21]: tenure_count['percentage'] = 100 * tenure_count.tenure/tenure_count.tenur
         tenure count
            gender tenure percentage
Out[21]:
           female
                      145
                            40.166205
          1
              male
                      216
                            59.833795
In [22]: sns.set(style='whitegrid')
         ax = sns.barplot(x='gender', y='percentage', data=tenure_count, hue='gend
         ax.set_title('Percentage of tenured techers by gender')
Out[22]: Text(0.5, 1.0, 'Percentage of tenured techers by gender')
```


• Percentage of visible minorities who are tenured professors.

```
In [23]: tenure_min = data.groupby('minority').agg({'tenure': 'count'}).reset_inde
    tenure_min['percentage'] = 100 * tenure_min.tenure/tenure_min.tenure.sum(
    tenure_min
```

Out[23]:		minority	tenure	percentage
	0	no	399	86.177106
	1	ves	64	13.822894

```
In [24]: sns.set(style='whitegrid')
   ax = sns.barplot(x='minority', y='percentage', data=tenure_min, hue='mino
   ax.set_title('Percentage of visible minorities who are tenured professors
```

Out[24]: Text(0.5, 1.0, 'Percentage of visible minorities who are tenured profess ors.')

Average evaluation score of the tenured professors

```
In [25]: data[data['tenure'] == 'yes']['eval'].median()
Out[25]: 4.0
```

Average teacher evaluation in both upper and lower division groups

Out[27]: Text(0.5, 1.0, 'Average teacher evaluation in division groups')

• Relationship between age and teacher evaluation scores.

```
In [28]: ax = sns.scatterplot(x='age', y='eval', data=data)
ax.set_title('Relation: Age and average score')
```

Out[28]: Text(0.5, 1.0, 'Relation: Age and average score')

• Relationship between age and teacher evaluation scores, broken down by gender.

```
In [29]: ax = sns.scatterplot(x='age', y='eval', hue='gender', data=data, palette=
ax.set_title('Relation: Age and average score by gender')
```

Out[29]: Text(0.5, 1.0, 'Relation: Age and average score by gender')

• Courses taught by gender

In [30]: sns.catplot(x='gender', kind='count', data=data, hue='gender', palette=['

Out[30]: <seaborn.axisgrid.FacetGrid at 0x7f3b5c8dae90>

• Beauty scores differentiated by credits Box plot

```
In [31]: ax = sns.boxplot(x='credits', y='beauty', data=data, hue='credits')
ax.set_title('Relation: Beauty scores differentiated by credits.')
```

Out[31]: Text(0.5, 1.0, 'Relation: Beauty scores differentiated by credits.')

• Histogram group of teachers by gender and seniority

```
In [32]: sns.catplot(x='gender', hue='tenure', kind='count', data=data)
```

Out[32]: <seaborn.axisgrid.FacetGrid at 0x7f3b5c909490>

• Add division as another factor to the previous histogram

Out[33]: <seaborn.axisgrid.FacetGrid at 0x7f3b56ff6d50>

• Scatterplot of age and assessment scores, broken down by gender and tenure.

Out[34]: <seaborn.axisgrid.FacetGrid at 0x7f3b56e1abd0>

• Teacher evaluation score distribution chart

```
In [35]: ax = sns.displot(data['eval'], kde = False)
```


• Teacher evaluation score distribution graph with gender as a factor

```
In [36]: sns.histplot(data[data['gender'] == 'male']['eval'], color="blue", kde=Fa
sns.histplot(data[data['gender'] == 'female']['eval'], color='pink', kde=
plt.show()
```


• Box plot: teacher age by gender

• Compare age with tenure and gender

Beauty score distribution graph with native English speaker as factor

• Horizontal box plot of instructors' age by visible minority

• Group histogram of minority tenure and gender factor

Out[41]: <seaborn.axisgrid.FacetGrid at 0x7f3b567f4250>

Changelog:

Date (DD/MM/YYYY)	Version	Description of change	
15/03/2024	0.00	Download and process	
18/03/2024	01.0	Added catplots	
19/03/2024	02.0	Bug fixes	