Lecture 5 – Adders

11.2

Adapted from David Harris, HMC, Blaauw, Zhang, UM and others

1

Single-Bit Addition

Half Adder

Α	В	C_{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0
		1	1
		AND	XOR

Full Adder $S = A \oplus B \oplus C$ $C_{out} = MAJ(A, B, C)$

	Α	В	С	C_{out}	S
, [0	0	0	0	0
K -{	0	0	1	0	1
	0	1	0	0	1
Р	0	1	1	1	0
	1	0	0	0	1
	1	0	1	1	0
G {	1	1	0	1	Ō
	1	1	1	1	1

PGK

- For a full adder, define what happens to carries (<u>in terms of A and B</u>)
 - Generate: $C_{out} = 1$ independent of C_{in}
 - G = A B
 - Propagate: C_{out} = C_{in}
 - $P = A \oplus B$
 - Kill: $C_{out} = 0$ independent of C_{in}
 - K = ~A ~B

3

Express Sum and Carry as a function of P, G, K

Generate (G) = AB

Propagate (P) = $A \oplus B$

$$C_o(G, P) = G + PC_i$$

$$S(G,P) = P \oplus C_i$$

Note that we will be sometimes using an alternate definition for Propagate (P) = A+ B

Which is preferred ? A + B OR A \oplus B

Second Optimization: The Mirror Adder

24 transistors

7

The Mirror Adder

- NMOS and PMOS chains are completely symmetric.
 Max of two series transistors in carry-generation circuitry.
- •When laying out cell, most critical issue is minimizing capacitance at node $C_{\rm o}$. Reduction of diffusion capacitances is particularly important.
- Capacitance at node C_o is composed of 4 diffusion capacitances,
 2 internal gate capacitances, and 6 gate capacitances in connecting adder cell
- Transistors connected to C_i are placed closest to output
- •Only transistors in carry stage have to be optimized for optimal speed. All transistors in sum stage can be min size.

The Ripple-Carry Adder

Worst case delay linear with the number of bits

$$t_p = O(N)$$

$$t_{adder} = (N-1)t_{carry} + t_{sum}$$

Goal: Make the fastest possible carry path circuit

Carry-Ripple using P and G

 $G_{i:0} = G_i + P_i \cdot (A_{i:0} G_{i-1:0})$ $G_{0:0} = C_{in}$ A. B. A.

$$G_{0:0}=C_{ii}$$

$$P_{0:0}=0$$

$$P_{0:0} = 0$$

$$C_{out,i} = G_{i:0}$$

 $t_{adder} = t_{setup} + N-1 t_{carry} + max(t_{carry}, t_{sum})$

Tree Classification

- Logic levels
- FanoutWiringPower/Area
- · Kogge-Stone: low logic levels, low fanout, high wiring
- Brent-Kung: low fanout, low wiring, high logic levels
- Sklansky: low logic levels, low wiring, high fanout

Sparse Tree Adders

- Combine PG tree and carry-select
 - Make a sparse PG Tree to only compute carries into short groups (s = 2, 4, 8, or 16 bits)
 - Use pairs of s-bit adders to precompute the sums
 - Use mux to select the correct sum based on carries from the PG tree

Sparse Tree Adders

- Small number of logic levels, lower gate count and power consumption
- Widely used in high-performance 32-64-bit high radix adders

Radix-3 Kogge-Stone sparse tree adder with s = 3

- Sparse
- High radix
 - Carry save adder 32