Route B — Pin Summary & H^5 Appendix Which Pin structure to use, and an explicit $H^5(BG_{\rm int}; \mathbb{Z}_2)$ basis supporting the p+q=5 line

Evan Wesley, with Octo White, Claude, Gemini, and O3

August 5, 2025

Abstract

This modular note has two parts. Part I (Pin Summary): a practical guide to selecting the correct Pin structure for the Standard Model on non-orientable backgrounds and to including the appropriate Route B addenda. Part II (H^5 Appendix): an explicit construction of generators in $H^5(BG_{\rm int};\mathbb{Z}_2)$ for $G_{\rm int}=(SU(3)\times SU(2)\times U(1)_Y)/\mathbb{Z}_6$, justifying the degree-5 witnesses on the AHSS p+q=5 diagonal and strengthening Subcase B of the Pin⁻ addendum.

Contents

1	Par	t I. Pin Summary: which module to include	1
	1.1	Minimal recipe (copy/paste)	2
	1.2	Guidance for readers/referees	2
2	Part II. $H^5(BG_{\mathrm{int}};\mathbb{Z}_2)$ Appendix		2
	2.1	Constructing z_3 via LHS (explicit)	2
	2.2	Two canonical degree-5 generators	3
	2.3	No hidden degree-5 from Sq^1 of degree-4	3
	2.4	Rank bound for H^5 and robustness of the $E^{5,0}$ panel	3
	2.5	Test backgrounds for pairing	3

Notation

We write $G_{\text{int}} = (SU(3) \times SU(2) \times U(1)_Y)/\mathbb{Z}_6$. Cohomology is with \mathbb{Z}_2 coefficients. We use the standard classes

 $a_2 \in H^2(U(1)_Y), \quad b_2 \in H^2 \text{ (weak } SO(3) \text{ obstruction)}, \quad x_4 \in H^4(SU(2)), \quad y_4 \in H^4(SU(3)),$

and the degree-3 transgression $z_3 \in H^3$ from the $\mathbb{Z}_2 \subset \mathbb{Z}_6$ quotient.

Part I. Pin Summary: which module to include 1

The choice between Pin⁺ and Pin⁻ depends on how time reversal is implemented on fermions in the theory. Our framework is modular: you can include both addenda and defer the physical choice until the end. In either case, the Route B machinery furnishes a seven-generator witness on the p+q=5 diagonal and hence r=7.

1.1 Minimal recipe (copy/paste)

Place these files next to your main .tex and include as needed:

```
% Core rigorous Pin^+ witness (r >= 7):
\input{routeB_rigorous_addendum.tex}

% Deep differential controls (Steenrod-form d_2, LHS transgression z_3):
\input{routeB_deep_differentials_addendum.tex}

% Pin^- companion (ABK-based), with subcases for _1^{Pin^-}:
\input{mobius_routeB_pinminus_addendum.tex}
```

1.2 Guidance for readers/referees

- Pin⁺ track: Use when your time-reversal implementation matches the MT Pin⁺ bordism. The rigorous addendum establishes rank₂ $\Omega_5^{\text{Pin}^+}(BG_{\text{int}}) \geq 7$ with explicit protection against differentials and independence tests.
- Pin⁻ track: Use when your time-reversal matches MT Pin⁻. The ABK generator $\Omega_2^{\text{Pin}^-} \simeq \mathbb{Z}_8$ drives the $E^{3,2}$ witness. Subcase A ($\Omega_1^{\text{Pin}^-} \cong \mathbb{Z}_2$) yields the same eight-candidate set and ≥ 7 survivors. Subcase B shows how to maintain the lower bound using the $E^{5,0}$ panel and optional $E^{0,5}$.
- Either track $\Rightarrow r = 7$. Once rank₂ ≥ 7 is established, least action sets m = r, and monotonicity of $2^m 1 m + 3$ with the observed 123 decades forces m = 7.

2 Part II. $H^5(BG_{\mathrm{int}}; \mathbb{Z}_2)$ Appendix

We justify the degree-5 cohomology used for the $E_2^{5,0}$ panel: at least two independent classes, $a_2 \smile z_3$ and $b_2 \smile z_3$, exist and form a robust basis for our witness construction.

2.1 Constructing z_3 via LHS (explicit)

Consider the central extension $1 \to \mathbb{Z}_6 \to \tilde{G} \to G_{\rm int} \to 1$ with $\tilde{G} = SU(3) \times SU(2) \times U(1)_Y$. Passing to classifying spaces gives a fibration

$$B\mathbb{Z}_6 \longrightarrow B\tilde{G} \xrightarrow{\pi} BG_{\text{int}}.$$
 (1)

The LHS (or Serre) spectral sequence with \mathbb{Z}_2 coefficients has $E_2^{p,q} = H^p(BG_{\mathrm{int}}; H^q(B\mathbb{Z}_6; \mathbb{Z}_2)) \Rightarrow H^{p+q}(B\tilde{G}; \mathbb{Z}_2)$. Since mod 2 sees only the $\mathbb{Z}_2 \subset \mathbb{Z}_6$, we have $H^*(B\mathbb{Z}_6; \mathbb{Z}_2) \cong \mathbb{Z}_2[\xi_2]$ with deg $\xi_2 = 1$. The fundamental transgression yields

$$d_2(\xi_2) = z_3 \in H^3(BG_{\text{int}}; \mathbb{Z}_2), \qquad \pi^*(z_3) = 0 \in H^3(B\tilde{G}; \mathbb{Z}_2).$$
 (2)

By naturality, z_3 restricts trivially to BU(1), BSU(2), BSU(3), but survives on the electroweak quotient $B((SU(2) \times U(1)_Y)/\mathbb{Z}_2)$. See [Bro82; BT82; McC01] for the LHS/Serre setup.

2.2 Two canonical degree-5 generators

Let $a_2 \in H^2(BG_{\text{int}}; \mathbb{Z}_2)$ be the mod-2 reduction of c_1 from $U(1)_Y$, and $b_2 \in H^2$ the weak-sector obstruction w_2 (effective SO(3) bundle) induced by the $\mathbb{Z}_2 \subset \mathbb{Z}_6$ quotient. Then define

$$\alpha_5 := a_2 \smile z_3, \qquad \beta_5 := b_2 \smile z_3 \in H^5(BG_{\text{int}}; \mathbb{Z}_2).$$
 (3)

These are nonzero on the electroweak subgroup $H_{\text{EW}} = B((SU(2) \times U(1)_Y)/\mathbb{Z}_2)$ and vanish on the simple factors (since z_3 does).

Lemma 2.1 (Independence of α_5, β_5). The classes $\alpha_5, \beta_5 \in H^5(BG_{\text{int}}; \mathbb{Z}_2)$ are linearly independent.

Proof. Restrict to $H_{\rm EW}$. There, both a_2 and the weak w_2 (giving b_2) are nontrivial, and the transgression z_3 is present. The Künneth formula and naturality show that $\{a_2 \smile z_3, b_2 \smile z_3\}$ embed as independent generators in $H^5(BH_{\rm EW};\mathbb{Z}_2)$. If $\gamma \alpha_5 + \delta \beta_5 = 0$ with $\gamma, \delta \in \mathbb{Z}_2$, the restriction implies $\gamma = \delta = 0$.

2.3 No hidden degree-5 from Sq^1 of degree-4

A potential source of extra degree-5 classes is Sq^1 applied to degree-4 classes. We rule this out for the three degree-4 generators used in the Route B construction:

Lemma 2.2. For
$$h_4 \in \{x_4, y_4, a_2^2\} \subset H^4(BG_{\text{int}}; \mathbb{Z}_2)$$
, one has $Sq^1(h_4) = 0$.

Proof. Each of x_4, y_4, a_2^2 is the mod-2 reduction of an integral class: x_4 reduces $c_2(SU(2)), y_4$ reduces $c_2(SU(3))$, and a_2^2 reduces $c_1(U(1)_Y)^2$. On spaces whose $H^4(-;\mathbb{Z})$ is torsion-free in these components (true for compact Lie-group classifying spaces in low degrees), the Bockstein β is zero, and $Sq^1 = \text{red}_2 \circ \beta$ vanishes [Hat02, Ch. III]. Hence no new degree-5 classes arise from Sq^1 of our degree-4 generators.

2.4 Rank bound for H^5 and robustness of the $E^{5,0}$ panel

From Lemmas 2.1 and 2.2 we conclude:

Proposition 2.1. $H^5(BG_{\rm int}; \mathbb{Z}_2)$ has rank at least 2 with independent generators α_5, β_5 . Moreover, in the AHSS for $\Omega_*^{\rm Pin^{\pm}}$, a single $d_2: E_2^{3,1} \to E_2^{5,0}$ (source rank 1) can kill at most one linear combination, so at least one of $\{\alpha_5, \beta_5\}$ survives to E_{∞} .

2.5 Test backgrounds for pairing

Let $M^5 = N^3 \times \Sigma^2$ with Pin structure on N^3 and appropriate bundles on Σ^2 . Choose $f: M^5 \to BG_{\rm int}$ such that $f^*(z_3)$ detects the \mathbb{Z}_2 on N^3 (the LHS transgression), and on Σ^2 either $f^*(a_2)$ or $f^*(b_2)$ is nontrivial. Then

$$\langle (a_2 \smile z_3), f_*[M] \rangle = 1, \qquad \langle (b_2 \smile z_3), f_*[M] \rangle = 0$$

for the a_2 choice, and vice versa for the b_2 choice. This proves independence by explicit Kronecker pairings and underlines the robustness of the $E^{5,0}$ witnesses.

Outcome for Route B

The H^5 appendix guarantees a solid degree-5 panel in the AHSS. Paired with the degree-4 and degree-3 constructions and the differential controls in the separate addenda, this yields the seven survivors on p+q=5 for either Pin choice. Least action then sets m=r=7, fixing $\rho_{\Lambda}=\rho_P \, 10^{-123}$.

References

\

- [BT82] Raoul Bott and Loring W. Tu. Differential Forms in Algebraic Topology. Springer, 1982.
- [Bro82] Kenneth S. Brown. Cohomology of Groups. Springer, 1982.
- [Hat02] Allen Hatcher. Algebraic Topology. 2002.
- [McC01] John McCleary. A User's Guide to Spectral Sequences. 2nd ed. Cambridge Univ. Press, 2001.