Big Graph Analytics and Query Processing

Lijun Chang

University of Sydney

Short Bio

- Lecturer, The University of Sydney
 - August 2017—Present
- DECRA(Discovery Early Career Researcher Award) Fellow at UNSW
 - January 2015—July 2017
- Research Fellow, first at CUHK, then at UNSW
 - September 2011—December 2014
- PhD degree from The Chinese University of Hong Kong in August 2011, and B.Eng degree from Renmin University of China in July 2007

Short Bio

- Research Grants
 - Australian Research Council Discovery Projects:
 Efficient and Scalable Subgraph Search from Big Graphs in Cloud. AUD\$335,000
 - Australian Research Council Discovery Early Career Researcher Award: Efficient Cohesive-Subgraph Search over Large Graphs. AUD\$372,000
- Algorithmic Programming Competition Awards
 - Google Code Jam World Finals 2008, Mountain View, California, USA
 - ACM/ICPC World Finals 2006, San Antonio, Texas, USA

Requirement & Outcome

- Requirement
 - Good C/C++ programming skills and/or mathematical background
 - Optional: award in Informatics Competitions is a plus
- Anticipated Outcome after One Year
 - Submit one research paper
 - Improved programming and problem solving skills

Big Graphs

Graphs are Big (Volume)

- 302 million monthly active users
- 208 followers on average

- 1.4 billion users in 2014
- 0.4 trillion relationships in 2014

- 20 PB data/day in 2008

Graph Research Problems

- New Graph Query Semantics
 - Find meaningful results
 - Keyword search, community search
- New Indexing Techniques
 - Efficiently indexing paths, trees, and subgraphs
- New Graph Processing Algorithms
 - Speed, speed, speed
 - Many graph problems are NP-hard
- New Computational Model

New Computational Models

New Computational Models

New Computational Models

Our Work—Query Semantics

- Structural Keyword Search On Graphs
 - Given a set of keywords, find minimal connected trees and subgraphs
 - One book (Morgan & Claypool, 2009), SIGMOD'09, ICDE'11, ICDE'09a, ICDE'09b, VLDB Journal'11, TKDE'12
- Diversified Top-k Search
 - Find a set of results with minimal overlaps
 - ICDE'15, VLDB'12, VLDB Journal'15

Our Work—Indexing Techniques

- Graph/Subgraph Index
 - Given a query graph, find all the graphs in a database that are subgraphs of the query graph
 - ICDE'16
- Shortest Path & Reachability Index
 - Build indexes for fast answering shortest path and reachability queries
 - ICDE'12, VLDB Journal'12, VLDB Journal'13, TKDE'14

Our Work—Efficient Algorithms

- Dense Subgraph Discovery
 - Given a large input graph, compute subgraphs that are dense
 - SIGMOD'15, SIGMOD'13, KDD'15, Algorithmica'13
 - One book in preparation: have signed a contract with springer publisher
- Optimal Algorithms
 - We propose worst-case optimal algorithms for specific problems, e.g., linear to the query size and result size
 - SIGMOD'15, VLDB'15a, ICDE'16a, TKDE'17

Our Work—Efficient Algorithms

- Efficient Algorithms for graph primitive operations
 - Subgraph Matching (SIGMOD'16)
 - Maximum Independent Set (SIGMOD'17)
 - Graph Edit Distance (under review)
 - Maximum Clique (in preparation)
 - ...

Our Work—Computation Model

- I/O Efficient Algorithms
 - Study I/O efficient algorithms for computing SCCs and ECCs
 - SIGMOD'13, VLDB'16, VLDB Journal'15, VLDB Journal'17
- Multi-Core Algorithms
 - Multi-core algorithm for keyword query (VLDB'10)
- Distributed Algorithms
 - Scalable computation class, subgraph enumeration, (bi)connected components
 - SIGMOD'14, VLDB'15b, VLDB'17, ICDE'16c, VLDB Journal'17

Thank you!

Welcome to join me on the journey exploring big graphs!

Email: Lijun.Chang@sydney.edu.au

Homepage: <u>lijunchang.github.io</u>

Github: www.github.io/lijunchang