Imperfect Markets versus Imperfect Regulation in US Electricity Generation

Cicala (2022), AER

Environmental Reading Group session 13

Nov 10, 2023

 Introduction
 Measure
 Empirical Results
 Conclusion

 ◆○
 ○○○
 ○○○
 ○○

Context

US electricity grid consists of power-control-areas (PCAs).

- Before: monopoly or balancing authority controls transmission line.
- Treatment: local PCA cedes controls of transmission to independent system operator and then participants wholesale electricity market where price is determined by a centralized auction.
 - **60%** of US installed power capacity has been market-based dispatch by 2012.

Research Question

Introduction

- Compare costs & benefits between "Regulation" and "Market" in US electricity Market. Market efficiency vs. Market power
 - Generation costs
 - Trade gains
- DID, Treatment: market liberalization (11 events).

Identification Challenge

 PCAs are not segmented. ⇒ trade leads to biased estimates.

Decompose generation cost:

- Out-of-merit order costs
- Gains from trade

 Introduction
 Measure
 Empirical Results
 Conclusion

 ○○
 ○○
 ○○
 ○○
 ○○
 ○○

Out-of-merit Order

Panel A. Out-of-merit costs

- Q_{pt}: generation of PCA p in hour t.
- Observed Costs: $C_{pt}(Q_{pt}) = \sum_{i=0}^{N_{pt}} c_{pt}(i) q_{pt}(i)$.
- Merit Order Costs: $C_{pt}^*(Q_{pt}) = \sum_{i=0}^{Q_{pt}} c_{pt}(i).$
- Out-of-Merit costs: a unit is used to meet demand but while there is cheaper alternative.

$$O_{pt}(Q_{pt}) = C_{pt}(Q_{pt}) - C_{pt}^*(Q_{pt}).$$

Gains from Trade

Panel B. Gains from trade

- Lpt: load of PCA p in hour t.
- $G_{pt}^*(L_{pt},Q_{pt}) = \\ C_{pt}^*(L_{pt}) C_{pt}^*(Q_{pt}) + c_{pt}(i = Q_{pt}) * [(Q_{pt} L_{pt}].$
- Gray area: transmission costs

Production Cost Decomposition

$$\sum_{p} C_{pt}(Q_{pt}) = \sum_{p} O_{pt}(Q_{pt}) - \sum_{p} G_{pt}^{*}(L_{pt} + Q_{pt}) + \sum_{p} C_{pt}^{*}(L_{pt}) + \sum_{p} [c_{pt}(i = Q_{pt}) - c_{t}(i = Q_{t})] * [Q_{pt} - L_{pt}]$$
(1)

Data

- Hourly unit-level generation and load from 1999-2012, for 98 PCAs.
- Fuel costs
- Capacities
- Heat efficiency
- Out-of-merit calculated by original data

Methodology

Difference-in-difference (DD):

$$y_{pt} = \tau D_{pt} + \gamma_{pm} + \delta_{tr} + \lambda_{pm} Log(L_{pt}) + \kappa_{pm} Log[C_{pt}^*(L_{pt})] + \eta \chi_{pt} + \varepsilon_{pt}$$
 (2)

 y_{pt}

- log(gains from trade)
- log(out-of-merit costs)
- log(trade volume)
- log(MWh out-of-merit)

 Introduction
 Measure
 Empirical Results
 Conclusion

 ○○
 ○○
 ○○
 ○○

Randomization

TABLE 1—SUMMARY STATISTICS FOR POWER CONTROL AREAS BY EVENTUAL MARKET ADOPTION

	1999			2012		
	Adopt markets	No markets	Difference of means	Adopt markets	No markets	Difference of means
Quantities (GWh)						
Load	10.98 [8.72]	9.94 [7.45]	1.03 (0.90)	11.83 [9.24]	10.94 [8.20]	0.90 (0.98)
Generation	10.50 [8.59]	10.49 [7.93]	0.01 (0.94)	11.08 [8.98]	11.63 [8.90]	-0.54 (1.02)
Net trade volume	1.27 [1.31]	1.49 [2.03]	-0.23 (0.13)	1.76 [1.79]	1.49 [2.17]	0.28 (0.16)
Out-of-merit Generation	2.43 [1.98]	2.07 [1.87]	0.37 (0.22)	2.69 [2.10]	3.04 [2.60]	-0.36 (0.28)
Observations	525,600	332,880	1,719,312	527,040	333,792	1,719,312
Costs (thousands of US\$)						
Observed	136.55 [122.39]	116.72 [102.32]	19.83 (12.09)	192.38 [170.39]	202.68 [178.21]	-10.30 (19.57)
Out-of-merit Costs Gains from trade	29.63 [38.55] 2.56 [10.36]	19.24 [19.54] 3.84 [10.46]	10.38 (3.40) -1.27 (0.57)	37.30 [44.47] 8.74 [54.80]	41.92 [40.00] 6.45 [30.43]	-4.62 (4.65) 2.29 (2.44)

Result I

Panel B. log(gains from trade) Market dispatch	0.448 (0.071)	0.461 (0.072)	0.470 (0.066)	0.437 (0.065)
First neighbor Market dispatch				0.032 (0.079)
Second neighbor Market dispatch				0.011 (0.072)
$log(L_{pl})$		Yes	Yes	Yes
$log\left(C_{p\ell}^*(l_{p\ell})\right)$ Clusters PCAs R^2	16,412 98 0.501	16,412 98 0.559	Yes 16,412 98 0.582	Yes 16,412 98 0.583
Observations	8,475,828	8,475,828	8,475,828	8,475,828
Panel C. log(out-of-merit costs) Market dispatch	-0.130 (0.029)	-0.114 (0.028)	-0.155 (0.025)	-0.180 (0.026)
First neighbor Market dispatch				-0.008 (0.032)
Second neighbor Market dispatch				-0.009 (0.025)
log(load) log(load merit cost)		Yes	Yes Yes	Yes Yes
Clusters	16,437	16,437	16,437	16,437
PCAs R ²	98 0.862	98 0.870	98 0.879	98 0.880
Observations	11,618,837	11618,837	11,618,837	11,618,837

- gains from trade: 55% increase = 44 log points
- out-of-merit costs reduction: 16% = 18 log points
- $log(y) log(x) = \tau \Rightarrow \frac{y-x}{x} = e^{\tau} 1$

 Introduction
 Measure
 Empirical Results
 Conclusion

 ○○
 ○○○
 ○○○
 ○○

(2)

Result II

TABLE 3—IMPACT OF MARKET DISPATCH ON QUANTITIES

(1)

• trade volume: 25% increase

out-of-merit production reduction: 5%

	(1)	(2)	(3)	(4)
Panel A. log(trade volume)				
Market dispatch	0.168	0.149	0.211	0.226
	(0.033)	(0.033)	(0.031)	(0.031)
First neighbor				0.044
Market dispatch				(0.036)
Second neighbor				0.009
Market dispatch				(0.032)
$log(L_{vi})$		Yes	Yes	Yes
$log(C_{pt}^*(L_{pt}))$			Yes	Yes
Clusters	16,464	16,464	16,464	16,464
PCAs	98	98	98	98
R^2	0.537	0.568	0.584	0.585
Observations	12,004,719	12,004,719	12,004,719	12,004,719
Panel B. log(MWh out-of-merit)				
Market dispatch	-0.072	-0.073	-0.054	-0.055
	(0.013)	(0.013)	(0.013)	(0.014)
First neighbor				-0.023
Market dispatch				(0.016)
Second neighbor				0.026
Market dispatch				(0.013)
$log(L_{pt})$		Yes	Yes	Yes
$log(C_{pt}^*(L_{pt}))$			Yes	Yes
Clusters	16,440	16,440	16,440	16,440
PCAs	98	98	98	98
n2	0.000	0.006	0.001	0.001

 Introduction
 Measure
 Empirical Results
 Conclusion

 ○○
 ○○○
 ○○○○
 ○○

Wrap-up

- This papers quantifies the effect of adopting market-based dispatch compared to monopolistic dispatch with regulation.
- Results support market liberalization:
 - 16% reduction in out-of merit costs,
 - increasing gains from trade by 55%,
 - a reduction in production costs of between \$3 and \$5 billion per year $\approx 5\%$ total variable cost reduction.

 Introduction
 Measure
 Empirical Results
 Conclusion

 ○○
 ○○○○
 ○○○○
 ○○○○

Reference

Cicala, S. (2022). Imperfect markets versus imperfect regulation in US electricity generation. American Economic Review, 112(2), 409-441.

