Lec 33 实数集连续性的五个等价命题

33.1 五个等价命题

1.

定理 33.1

确界存在原理: 有上(下)界的非空实数集 E 必有上(下)确界 $\sup E(\inf E)$.

 \odot

2.

定理 33.2

单调有界极限存在准则: 若数列 $\{a_n\}$ 单调增 (减) 且有上 (下) 界,则 $\{a_n\}$ 收敛.且 $\lim_{n\to\infty} a_n = \sup a_n (\inf a_n)$.

3.

定理 33.3

闭区间套定理: 若 $\{[a_n,b_n]\}$ 是一列闭区间, 满足 $[a_n,b_n]\supset [a_{n+1},b_{n+1}], n=1,2,\cdots,$ 且 $\lim_{n\to\infty}(b_n-a_n)=0$, 则存在唯一的实数 ξ , 使得 $\xi\in [a_n,b_n], n=1,2,\cdots.$

4.

定理 33.4

列紧性原理: 若 $\{a_n\}$ 有界且含无穷多项,则 $\{a_n\}$ 必有收敛子列 $\{a_{n_k}\}$.

 \bigcirc

5.

定理 33.5

柯西 (Cauchy) 准则: 数列 $\{a_n\}$ 收敛的充要条件是: 对 $\forall \varepsilon > 0, \exists N \in N^*, \forall n, m > N, |a_n - a_m| < \varepsilon.$

证明

- $1 \Rightarrow 2$ 设 a_n 单减且有下界 $m, a_n \geqslant m > m \varepsilon, \forall n \in N^*$, 由确界存在原理, $E = \{a_n\}$ 有下确界, 记为 $a = \inf E$, 则 $a \geqslant m$, 且 $\forall \varepsilon > 0, \exists N \in N^*, \forall n > N, a \varepsilon < a_n \leqslant a$, 即 $|a_n a| < \varepsilon$. 由定义, $\lim_{n \to \infty} a_n = a = \inf \{a_n\}$.
- $2 \Rightarrow 3$ 所有区间的左端点构成的数列 $\{a_n\}$ 是单调递增有上界的,故有极限,记为 a,即 $\lim_{n \to \infty} a_n = a$. 同理, 所有区间的右端点构成的数列 $\{b_n\}$ 是单调递减有下界的,故有极限,记为 b,即 $\lim_{n \to \infty} b_n = b$. 因此 $a b = \lim_{n \to \infty} (a_n b_n) = 0$,即 a = b.即证存在 $\xi = a = b$. 若存在另一实数 $\eta \in [a_n, b_n], n = 1, 2, \cdots$,则 $\xi \leqslant \eta \leqslant \xi$,即 $\xi = \eta$. 故唯一性得证.
- $3 \Rightarrow 4$ 设 $|a_n| < M$, 取 $[\alpha_1, \beta_1] = [-M, M]$,将其二分为 $[\alpha_1, \beta_1] = [\alpha_1, \frac{\alpha_1 + \beta_1}{2}] \cup [\frac{\alpha_1 + \beta_1}{2}, \beta_1]$,两个子区间中至少有一个子区间包含无穷多个 a_n 的项,记为 $[\alpha_2, \beta_2]$,重复上述过程,得到 $[\alpha_1, \beta_1] \supset [\alpha_2, \beta_2] \supset \cdots$,且 $\lim_{n \to \infty} (\beta_n \alpha_n) = \frac{M (-M)}{2^n} = 0$,由闭区间套定理,存在

唯一的实数 ξ , 使得 $\xi \in [\alpha_n, \beta_n], n = 1, 2, \cdots$.

然后构造收敛子列 $\{a_{n_k}\}$, 令 $n_1 = 1$, 由于区间 $[\alpha_2, \beta_2]$ 中包含无穷多个 a_n 的项, 可以找到 $n_2 > n_1$, 使得 $a_{n_2} \in [\alpha_2, \beta_2]$, 以此类推, 可以找到 $n_3 > n_2 > n_1$, 使得 $a_{n_3} \in [\alpha_3, \beta_3]$, 重复此过程, 得到一个收敛子列 $\{a_{n_k}\}$.

 $4 \Rightarrow 5$ 必要性是容易证明的,因为 $\{a_n\}$ 收敛,对于任意的一个正数 ε ,存在整数 N,使得当 m,n > N 时 $|a_m - a| < \frac{\varepsilon}{2}$, $|a_n - a| < \frac{\varepsilon}{2}$,因此就有 $|a_m - a_n| < \varepsilon$.

下面证明充分性. 对于正数 $\varepsilon = 1$, 存在整数 N_1 , 使得当 $m, n > N_1$ 时, 有 $|a_m - a_n| < 1$.

$$M = \max(|a_1|, |a_2|, \dots, |a_{N_1}|, |a_{N_1+1}|),$$

则有 $|a_n| \leq M$, $n=1,2,\ldots$ 这说明 $\{a_n\}$ 是有界的. 由列紧性原理**??** 存在收敛的子列 $\{a_{n_k}\}$. 因为 $\{a_n\}$ 是 Cauchy 列,所以对于任意意定的 ε ,存在整数 N_2 ,使得当 $m,n>N_2$ 时,有 $|a_m-a_n|<\frac{\varepsilon}{2}$. 对于这个 ε ,因为 $\lim a_{n_k}=a$,存在一个整数 K,使得当 k>K 时,有 $|a_{n_k}-a|<\frac{\varepsilon}{2}$;特別取一个 n_k 使得 $n_k>N_2$ 且 $n>N_2$ 时,

$$|a_n - a| \le |a_n - a_{n_k}| + |a_{n_k} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

所以, $\lim_{n\to\infty} a_n = a$.

例 33.1 证明确界原理推连续性.

证明 由 $Y \neq \emptyset$, 故 X 有上界, 由确界原理, X 有上确界, 同理 Y 有下确界, 记 $c_1 = \sup X$, $c_2 = \inf Y$, (目标: 找到 $c, s.t. \forall a \in X, b \in Y, a \leq c \leq b$)

- 1. 若 $c_1 \in X$,则取 $c = c_1$.
- 2. 若 $c_1 \notin X$, 则 $c_1 \in Y$. $c_2 \in Y \Rightarrow c = c_2$; $c_2 \notin Y \Rightarrow c_2 \in X$, $c_2 < c_1$ 这与 $\forall x \in X, y \in Y, x < y$ 矛盾.

Cauchy 收敛准则的强大之处在于, 它不要求事先猜出极限值. 也正是如此, 在我们说明一个数列发散的时候, 通常不利用极限定义的否定形式 (可以自行尝试一下这有多么繁琐), 而是利用 Cauchy 收敛准则的否命题.

命题 33.1 (Cachuy 收敛准则的否命题)

设数列 $\{a_n\}$, 则 $\{a_n\}$ 发散的充要条件是: 存在 $\varepsilon_0 > 0$, 使得对 $\forall N \in N^*$, 存在 $n_0 > N$, 使得 $m, n > n_0$ 时, 有 $|a_m - a_n| \ge \varepsilon_0$.

33.2 例题

例 33.2 收敛的数列 $\{a_n\}$ 被称为 "Cauchy 列"或"基本列".

- 1. 设 $a_n = 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2}, n \in \mathbb{N}^*$, 证明 $\{a_n\}$ 是 Cauchy 列;
- 2. 设 $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}, n \in \mathbb{N}^*$, 证明 $\{a_n\}$ 不是 Cauchy 列.

解

- 1. $\forall \varepsilon > 0, \exists n_0 \in N^*,$ 使 $\frac{1}{n_0} < \varepsilon,$ 对 $\forall m > n > n_0,$ 有 $|a_m - a_n| = \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{m^2} < \frac{1}{n(n+1)} + \dots + \frac{1}{(m-1)m} = \frac{1}{n} - \frac{1}{m} < \frac{1}{n_0} < \varepsilon.$ 依 Cauchy 收敛准则, $\{a_n\}$ 是 Cauchy 列.
- 2. 对 $\varepsilon_0 = \frac{1}{2}$, $\forall N \in N^*$, 取 n > N, m = 2n, 则 m > n > N, 两 $|a_m a_n| = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+2}$ $\cdots + \frac{1}{2n} > \frac{1}{2} = \varepsilon_0, \text{ 故 } \{a_n\} \ \text{不是 Cauchy 列}.$ 作业 ex1.2:17(2)(3)(4),24;CH1:3(1),7,9,10(2),11.