

Universidade Federal de Minas Gerais

Departamento de Matemática - ICEX

Análise II - 2021 Lista 3

- 1. Seja $f:A\to\mathbb{R}$ integrável e seja g=f excepto num número finito de pontos. Mostre que g é integável e $\int_A f=\int_A g$.
- 2. Se $f: A \to \mathbb{R}$ é integrável, mostre que |f| é integrável e $|\int_A f| \le \int_A |f|$.
- 3. Seja $f:[0,1]\times[0,1]\to\mathbb{R}$ definida por

$$f(x,y) = \begin{cases} 0 & x \text{ irracional,} \\ 0 & x \text{ racional, } y \text{ irracional,} \\ 1/q & x \text{ racional, } y = p/q. \end{cases}$$

Mostre que f é integrável e $\int_{[0,1]\times[0,1]} f = 0$.

- 4. Se $X \subset \mathbb{R}^m$ tem medida nula e $f: X \to \mathbb{R}^m$ é localmente Lipschitz então f(X) tem medida nula em \mathbb{R}^m .
- 5. Se m < n e $f: U \to \mathbb{R}^n$ é de classe C^1 no aberto $U \subset \mathbb{R}^m$ então f(U) tem medida nula em \mathbb{R}^n .
- 6. Seja $f: A \to \mathbb{R}$ e $g: B \to \mathbb{R}$ funções limitadas não-negativas nos retângulos A, B. Defina $\varphi: A \times B \to \mathbb{R}$ pondo $\varphi(x,y) = f(x) \cdot g(y)$. Prove que

$$\overline{\int}_{A\times B}\varphi(z)dz=\overline{\int}_{A}f(x)dx\cdot\overline{\int}_{B}g(y)dy.$$

e que vale um resultado similar para integrais inferiores.

7. Seja $f: A \to \mathbb{R}$ e $g: A \to \mathbb{R}$ integráveis, prove a desigualdade de Schwarz:

$$\left[\int_A f(x)g(x)dx \right]^2 \le \int_A f(x)^2 dx \cdot \int_A g(x)^2 dx.$$

8. Sejam $A=[0,1]\times[0,1],\ A_0=A-\{(0,0)\}$ e $f:A_0\to\mathbb{R}$ a função contínua (ilimitada) definida por $f(x,y)=\frac{x-y}{(x+y)^3}$. Mostre que se tem

$$\int_0^1 dx \int_0^1 f(x,y) dy = \frac{1}{2} \quad \text{e} \quad \int_0^1 dy \int_0^1 f(x,y) dx = -\frac{1}{2}.$$

- 9. Seja $f:A\to B$ contínua tal que $|f(x)-f(y)|\geq c|x-y|$ com c>0 constante e $x,y\in A$ quaisquer. Prove que, para todo $g:B\to\mathbb{R}$ integrável, a composta $g\circ f:A\to\mathbb{R}$ é integrável.
- 10. (Principio de Cavalieri.) Sejam $X,Y \subset \mathbb{R}^{m+1}$ conjuntos J-medíveis tais que para cada $t \in \mathbb{R}$, as seções $X_t = \{x \in \mathbb{R}^m : (x,t) \in X\}$ e $Y_t = \{y \in \mathbb{R}^m : (y,t) \in Y\}$ são ainda J-medíveis e têm o mesmo volume em \mathbb{R}^m . Prove que vol(X) = vol(Y).
- 11. Dê um exemplo de uma função descontinua f para o qual a oscilação $\omega(f,x)$ é uma função contínua de x.
- 12. Se uma função $f:A\to\mathbb{R}$, limitada no retângulo $A\subset\mathbb{R}^m$, é integrável então seu gráfico tem volume zero. E a recíproca?
- 13. Seja $T = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, z \ge 0, x + y + z \le 1\}$. Mostre que

$$vol(T) = \int_0^1 dx \int_0^{1-x} dz \int_0^{1-y-z} dy = 1/6.$$

14. Se $X \subset \mathbb{R}^m$ tem volume zero, o mesmo ocorre com \overline{X} . E medida nula?

Professor Arturo Fernández

Livros de referência, Elon Lages e Michael Spivak.