Mathematical background

- Sets and De Morgan's laws
- Sequences and ther limits
- Infinite series
 - The geometric series
- Sums with multiple indices
- Countable and uncountable sets

Sets

A collection of distinct elements

R: real numbers infinite

$$\{x \in \mathbb{R} : \cos(x) > 1/2 \}$$

$$\phi$$
: empty set $\Omega = \phi$

$$\int_{0}^{\infty} = \phi$$

$$S^{c}$$
 $x \in S^{c}$ if $x \in JZ$,

 $x \notin S$

$$\subseteq$$

Unions and intersections

$$x \in SUT \iff x \in S \text{ on } x \in T$$
 $x \in SUT \iff x \in S \text{ and } x \in T$

$$S_n = 1, 2, ...$$

$$x \in US_n$$
 iff $x \in S_n$, for some n
 $x \in S_n$ iff $x \in S_n$, for all n

Set properties

$$\Rightarrow S \cup T = T \cup S,$$

$$\Rightarrow S \cap (T \cup U) = (S \cap T) \cup (S \cap U),$$

$$\Rightarrow (S^c)^c = S,$$

$$S \cup \Omega = \Omega,$$

$$\Rightarrow S \cup T = T \cup S,$$

$$\Rightarrow S \cap (T \cup U) = (S \cap T) \cup (S \cap U),$$

$$\Rightarrow (S^c)^c = S,$$

$$S \cup (T \cap U) = (S \cup T) \cup U,$$

$$\Rightarrow S \cup (T \cap U) = (S \cup T) \cap (S \cup U),$$

$$S \cap S^c = \emptyset,$$

$$S \cap \Omega = S.$$

S n(T n u) = (S n T) n u

De Morgan's laws

$$\frac{(snT)^{\circ} = s^{\circ}uT^{\circ}}{snT}$$

$$S \rightarrow S^{\circ} T \rightarrow T^{\circ}$$

$$S^{\circ} \rightarrow S T^{\circ} \rightarrow T$$

$$(S^{\circ} \cap T^{\circ})^{\circ} = SUT$$

$$S^{\circ} \cap T^{\circ} = (SUT)^{\circ}$$

$$\left(\bigcap_{n} S_{n}\right)^{c} = \bigcup_{n} S_{n}^{c}$$

$$\left(\bigcup_{n} S_{n}\right)^{c} = \bigcap_{n} S_{n}^{c}$$

Mathematical background: Sequences and their limits

$$a_1, a_2, a_3, \dots$$
 $i \in \mathbb{N} = \{1, 2, 3, \dots \}$

sequence a_i , $\{a_i\}$
 $a_i \in S$
 $f(i) = a_i$
 $a_i \Rightarrow a$
 $a_i \Rightarrow a$
 $i \neq a$
 $i \Rightarrow a \Rightarrow a$
 $i \Rightarrow a \Rightarrow a$
 $i \Rightarrow a \Rightarrow a$
 $a_i \Rightarrow a \Rightarrow a$

Mathematical background: When does a sequence converge?

- If $a_i \le a_{i+1}$, for all i, then either:
 - the sequence "converges to ∞ "
 - the sequence converges to some real number a

• If $|a_i - a| \le b_i$, for all i, and $b_i \to 0$, then $a_i \to a$

Mathematical background: Infinite series

$$\sum_{i=1}^{\infty} a_i = \lim_{n \to \infty} \sum_{i=1}^{n} a_i \qquad \qquad \text{provioled} \qquad \text{final exists}$$

• If $a_i \geq 0$: limit exists \leftarrow

- if terms a_i do not all have the same sign:
 - limit need not exist
 - limit may exist but be different if we sum in a different order
 - Fact: limit exists and independent of order of summation if $\sum\limits_{i=1}^\infty |a_i| < \infty$

Mathematical background: Geometric series

$$5 = \left[\sum_{i=0}^{\infty} \alpha^i = 1 + \alpha + \alpha^2 + \dots \right] = \frac{1}{1 - \alpha} \qquad |\alpha| < 1$$

$$|S=1+\sum_{i=1}^{\infty} a^{i} = 1+\alpha \sum_{i=0}^{\infty} a^{i} = 1+\alpha S \Rightarrow S(1-\alpha)=1$$

$$|S<\infty| \text{ taken for granted}$$

About the order of summation in series with multiple indices

About the order of summation in series with multiple indices

Countable versus uncountable infinite sets

- Countable: can be put in 1-1 correspondence with positive integers
 - positive integers 1,2,3,...
 - integers 0,1,-1,2,-2,3,-3,...

- rational numbers q, with 0 < q < 1

- Uncountable: not countable
 - the interval [0, 1]
 - the reals, the plane,...

The reals are uncountable

Cantor's diagonalization argument