DS342 - Data Analytics

Lecture 4
Finding Relationships
among Variables

Introduction

- The primary interest in data analysis is usually in relationships between variables.
 - The most useful numerical summary measure is correlation.
 - The most useful graph is a scatterplot.
 - To break down a numerical variable by a categorical variable, it is useful to create side-by-side box plots.
 - Excel's® pivot table breaks down one variable by others so that all sorts of relationships can be uncovered very quickly.
- The diagram in the file **Data Analysis Taxonomy.xlsx** gives you the big picture of which analyses are appropriate for which data types and which tools are best for performing the various analyses.

Relationships Among Categorical Variables

- The most meaningful way to examine relationships between two categorical variables is with counts and corresponding charts of the counts.
 - You can find counts of the categories of either variable separately, as well as counts of the joint categories of the two variables.
 - Corresponding percentages of totals and charts help tell the story.
- It is customary to display all such counts in a table called a crosstabs (for crosstabulations). This is also sometimes called a contingency table.

Example 3.1: × ■ Smoking Drinking.xlsx (slide 1 of 2)

- Objective: To use a crosstabs to explore the relationship between smoking and drinking.
- Solution: Data set lists the smoking and drinking habits of 8761 adults.
- Categories have been coded "N," "O," "H," "S," and "D" for "Non," "Occasional," "Heavy," "Smoker," and "Drinker."

\mathcal{A}	A	В	С
1	Person	Smoking	Drinking
2	1	NS	OD
3	2	NS	HD
4	3	os	HD
5	4	HS	ND
6	5	NS	OD
7	6	NS	ND
8	7	NS	OD
9	8	NS	ND
10	9	os	HD
11	10	HS	HD

Example 3.1: × ■ Smoking Drinking.xlsx (slide 2 of 2)

- To create the crosstabs, enter the category headings in Excel and use the COUNTIFS function to fill the table with counts of joint categories.
- Next, sum across rows and down columns to get totals.
- Then express the counts as percentages of row and percentages of column.

4	E	F	G	Н	É
1	Crosstab	s from COUN	TIFS formu	ılas	
2	2.				
3		NS	OS	HS	Total
4	ND	2118	435	163	2716
5	OD	2061	1067	552	3680
6	HD	733	899	733	2365
7	Total	4912	2401	1448	8761
8	S.				
9	Shown as				
10	S	NS	OS	HS	Total
11	ND	78.0%	16.0%	6.0%	100.0%
12	OD	56.0%	29.0%	15.0%	100.0%
13	HD	31.0%	38.0%	31.0%	100.0%
14	2.	7A 19			
15	Shown as	percentage	s of colum	n	
16	2.	NS	OS	HS	
17	ND	43.1%	18.1%	11.3%	
18	OD	42.0%	44.4%	38.1%	
19	HD	14.9%	37.4%	50.6%	
20	Total	100.0%	100.0%	100.0%	

Relationships Among Categorical Variables and a Numerical Variable

- The comparison problem is one of the most important problems in data analysis. It occurs whenever you want to compare a numerical measure across two or more subpopulations.
 - Examples:
 - The subpopulations are males and females, and the numerical measure is salary.
 - The subpopulations are different regions of the country, and the numerical measure is the cost of living.
 - The subpopulations are different days of the week, and the numerical measure is the number of customers going to a particular fast-food chain.

Example 3.2: Baseball Salaries 2011 Extra.xlsx (slide 1 of 2)

- Objective: To learn methods for breaking down baseball salaries by various categorical variables.
- Solution: Data set contains the same 2011 baseball data examined previously, as well as several extra categorical variables.

	Α	В	С	D	E	F	G	Н	Î	J
7		Salary (Catcher)	Salary (Designated Hitter)	Salary (First Baseman)	Salary (Infielder)	Salary (Outfielder)	Salary (Pitcher)	Salary (Second Baseman)	Salary (Shortstop)	Salary (Third Baseman)
8	One Variable Summary	Baseball 2011 Data	Baseball 2011 Data	Baseball 2011 Data	Baseball 2011 Data	Baseball 2011 Data	Baseball 2011 Data	Baseball 2011 Data	Baseball 2011 Data	Baseball 2011 Data
9	Mean	\$2252780.70	\$7110181.88	\$5452236.81	\$3162678.71	\$4018200.30	\$2943853.37	\$2776197.15	\$2852726.28	\$4309856.85
10	Std. Dev.	\$3539587.29	\$4783000.51	\$6692183.63	\$5795695.23	\$5210328.15	\$4043494.94	\$3387236.65	\$3564560.06	\$5943914.21
11	Median	\$850000.00	\$4250000.00	\$2000000.00	\$428600.00	\$1250000.00	\$1095000.00	\$1000000.00	\$1350000.00	\$2050000.00
12	Minimum	\$414000.00	\$2020000.00	\$414000.00	\$414000.00	\$414000.00	\$414000.00	\$414000.00	\$414000.00	\$414000.00
13	Maximum	\$23000000.00	\$13000000.00	\$23125000.00	\$16174974.00	\$26187500.00	\$24285714.00	\$15285714.00	\$14729364.00	\$32000000.00
14	Count	69	8	42	7	152	413	59	47	46
15	1st Quartile	\$424000.00	\$2500000.00	\$427500.00	\$414000.00	\$443000.00	\$431500.00	\$425000.00	\$425400.00	\$478000.00
16	3rd Quartile	\$3000000.00	\$12000000.00	\$7410655.00	\$2285677.00	\$6000000.00	\$3750000.00	\$4500000.00	\$4300000.00	\$5500000.00

X

Example 3.2:

Baseball Salaries 2011 Extra.xlsx (slide 2 of 2)

Create side-by-side boxplots, by selecting Box-Whisker Plot from the Summary Graphs dropdown list and filling in the resulting dialog box.

Elements of Boxplots

- 1. The box itself, from bottom to top, extends from the first quartile to the third quartile, so it contains the middle 50% of the data. (Box plots from some software packages are shown horizontally rather than vertically. Then the *width* of the box indicates the middle 50% of the data.)
- 2. The horizontal line inside the box represents the median, and the x inside the box represents the mean.
- 3. The lines from either end of the box, also called whiskers, extend as far as the most distant data value within 1.5 IQRs (interquartile ranges) of the box.
- 4. Any data values beyond the whiskers are called outliers and are shown as

individual points.

Relationships Among Numerical Variables

- To study relationships among numerical variables, a new type of chart, called a scatterplot, and two new summary measures, correlation and covariance, are used.
- These measures can be applied to any variables that are displayed numerically.
- However, they are appropriate only for truly numerical variables, not for categorical variables that have been coded numerically.

Scatterplots

- A scatterplot is a scatter of points, where each point denotes the values of an observation for two selected variables.
 - It is a graphical method for detecting relationships between two numerical variables.
 - The two variables are often labeled generically as X and Y, so a scatterplot is sometimes called an X-Y chart.
 - The purpose of a scatterplot is to make a relationship (or the lack of it) apparent.

Example 3.3: X GolfStats.xlsx (slide 1 of 2)

- **Objective**: To use scatterplots to search for relationships in the golf data.
- **Solution**: Data set includes an observation (stats) for each of the top 200 earners on the PGA Tour.
- From Charts, select scatterplot. (Age Vs Events and Age Vs. Earnings of 2011)

- sal	А	В	С	D	E	F	G	Н	1	J	K	L	M	N
1	Rank	Player	Age	Events	Rounds	Cuts Made	Top 10s	Wins	Earnings	Yards/Drive	Driving Accuracy	Greens in Regulation	Putting Average	Sand Save Pct
2	1	Luke Donald	34	19	67	17	14	2	6,683,215	284.1	64.3	67.3	1.7	59.1
3	2	Webb Simpson	26	26	98	23	12	2	6,347,354	296.2	61.9	69.8	1.731	52
4	3	Nick Watney	30	22	77	19	10	2	5,290,674	301.9	58.2	66.9	1.738	48.1
5	4	K.J. Choi	41	22	75	18	8	1	4,434,691	285.6	62	65.9	1.787	55.6
6	5	Dustin Johnson	27	21	71	17	6	1	4,309,962	314.2	57.2	68.4	1.759	41.5
7	6	Matt Kuchar	33	24	88	22	9	0	4,233,920	286.2	64.7	67	1.735	58.9
8	7	Bill Haas	29	26	92	22	7	1	4,088,637	296.6	63.6	69.4	1.775	43.9
9	8	Steve Stricker	44	19	69	18	5	2	3,992,785	288.8	62.5	66	1.71	52.1
10	9	Jason Day	24	21	73	18	10	0	3,962,647	302.6	54.7	64.9	1.737	61
11	10	David Toms	45	23	79	16	7	1	3,858,090	279.1	71.8	66.6	1.749	55.9

Example 3.3: GolfStats.xlsx (slide 2 of 2)

Trend Lines in Scatterplots

- Once you have a scatterplot, Excel enables you to superimpose one of several trend lines on the scatterplot.
 - A trend line is a line or curve that "fits" the scatter as well as possible.
 - This could be a straight line, or it could be one of several types of curves.
- To do this, right-click on any point in the chart, select Add Trendline, and fill out the resulting dialog box.

Scatterplot with Trend Line and Equation Superimposed

(slide 1 of 4)

- Correlation and covariance measure the strength and direction of a linear relationship between two numerical variables.
 - The relationship is "strong" if the points in a scatterplot cluster tightly around some straight line.
 - If this straight line rises from left to right, the relationship is positive and the measures will be positive numbers.
 - If it falls from left to right, the relationship is negative and the measures will be negative numbers.
 - The two numerical variables must be "paired" variables.
 - They must have the same number of observations, and the values for any observation should be naturally paired.

(slide 2 of 4)

Covariance is essentially an average of products of deviations from means.

 $Covar(X, Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{n-1}$

- Excel has a built-in COVAR function, that calculates covariances automatically.
- Covariance has a serious limitation as a descriptive measure because it is very sensitive to the *units* in which X and Y are measured.

(slide 3 of 4)

Correlation is a unitless quantity that is unaffected by the measurement scale.

$$Correl(X, Y) = \frac{Covar(X, Y)}{Stdev(X) \times Stdev(Y)}$$

- ▶ The correlation is always between -1 and +1.
 - The closer it is to either of these two extremes, the closer the points in a scatterplot are to a straight line.
- Excel has a built-in CORREL function, that calculates correlations automatically.

(slide 4 of 4)

- Three important points about scatterplots, correlations, and covariances:
 - A correlation is a single-number summary of a scatterplot. It never conveys as much information as the full scatterplot.
 - You are usually on the lookout for large correlations, those near -1 or +1.
 - Do not even try to interpret covariances numerically except possibly to check whether they are positive or negative. For interpretive purposes, concentrate on correlations.

Example 3.3 (Continued) X GolfStats.xlsx (slide 1 of 2)

- Objective: To use correlations to understand relationships in the golf data.
- Solution: Create a table of correlations by selecting Correlation and Covariance from the Summary Statistics dropdown list.
- Fill in the resulting dialog box and check Correlations.

d	Α	В	С	D	E	F	G	H	1	J	K
7		Age	Events	Rounds	Cuts Made	Earnings	Yards/Drive	Driving Accuracy	Greens in Regulation	Putting Average	Sand Save Pct
8	Correlation Table	2011 Data	2011 Data	2011 Data	2011 Data	2011 Data					
9	Age	1.000									
10	Events	-0.094	1.000								
11	Rounds	-0.117	0.965	1.000							
12	Cuts Made	-0.175	0.748	0.884	1.000						
13	Earnings	-0.209	0.139	0.282	0.533	1.000					
14	Yards/Drive	-0.396	-0.008	0.040	0.140	0.238	1.000				
15	Driving Accuracy	0.294	0.050	0.071	0.046	-0.056	-0.666	1.000			
16	Greens in Regulation	-0.031	-0.114	-0.002	0.214	0.400	0.090	0.241	1.000		
17	Putting Average	0.170	0.118	-0.082	-0.316	-0.461	0.000	0.115	0.045	1.000	
18	Sand Save Pct	0.220	-0.143	-0.090	0.027	0.161	-0.358	0.156	0.050	-0.306	1.000

Example 3.3 (Continued)

GolfStats.xlsx (slide 2 of 2)

You can learn more about a correlation by creating the corresponding scatterplot.

Pivot Tables

- The pivot table is an Excel tool that allows you to break data down by categories.
- Sometimes pivot tables are used to display tables of counts, often called crosstabs or contingency tables.
- However, crosstabs typically list only counts, whereas pivot tables can list counts, sums, averages, and other summary measures.
- PivotTables allows you to create custom summaries and charts of key information in the data.

Constructing PivotTables

Click inside your database

Insert >

Tables >

PivotTable

The wizard creates a blank PivotTable as shown.

PivotTable Field List

Select and drag the fields to one of the PivotTable areas:

- Report Filter
- Column Labels
- Row Labels
- Σ Values

Example 3.4: Elecmart Sales.xlsx (slide 1 of 2)

- **Objective**: To use pivot tables to break down the customer order data by a number of categorical variables.
- **Solution**: Data set contains data on 400 customer orders during several months for Elecmart company.
- Create a pivot table by clicking the PivotTable button on the Insert ribbon.

-24	A	В	С	D	E	F	G	Н	1	J
1	Date	Day	Time	Region	Card Type	Gender	Buy Category	Items Ordered	Total Cost	High Item
2	6-Mar	Tue	Morning	West	ElecMart	Female	High	4	\$136.97	\$79.97
3	6-Mar	Tue	Morning	West	Other	Female	Medium	1	\$25.55	\$25.55
4	6-Mar	Tue	Afternoon	West	ElecMart	Female	Medium	5	\$113.95	\$90.47
5	6-Mar	Tue	Afternoon	NorthEast	Other	Female	Low	1	\$6.82	\$6.82
6	6-Mar	Tue	Afternoon	West	ElecMart	Male	Medium	4	\$147.32	\$83.21
7	6-Mar	Tue	Afternoon	NorthEast	Other	Female	Medium	5	\$142.15	\$50.90
8	7-Mar	Wed	Evening	West	Other	Male	Low	1	\$18.65	\$18.65
9	7-Mar	Wed	Evening	South	Other	Male	High	4	\$178.34	\$161.93
10	7-Mar	Wed	Evening	West	Other	Male	Low	2	\$25.83	\$15.91
11	8-Mar	Thu	Morning	MidWest	Other	Female	Low	1	\$18.13	\$18.13
12	8-Mar	Thu	Morning	NorthEast	ElecMart	Female	Medium	2	\$54.52	\$54.38
13	8-Mar	Thu	Afternoon	South	Other	Male	Medium	2	\$61.93	\$56.32
14	9-Mar	Fri	Morning	NorthEast	ElecMart	Male	High	3	\$147.68	\$96.64
15	9-Mar	Fri	Afternoon	NorthEast	Other	Male	Low	1	\$27.24	\$27.24

Example 3.4: Elecmart Sales.xlsx (slide 2 of 2)

- 54	A	В		С
1				
2				
3	Time 💌	Region	-	Sum of Total Cost
4	■ Afternoon	MidWest	86	3187.16
5		NorthEas	t	8159.78
6		South		5729.72
7		West		7188.94
8	Afternoon Tot		24265.6	
9	■ Evening	MidWest		2552.89
10		NorthEas	t	5941.49
11		South		3864.12
12		West		6475.8
13	Evening Total			18834.3
14	■ Morning	MidWest		3878.22
15		NorthEas	t	5084.57
16		South		3835.86
17		West		5628.66
18	Morning Total			18427.31
19	Grand Total			61527.21

Hiding Categories (Filtering)

- You can filter out any items in a pivot table that you don't want to see.
 - Click the Row Labels dropdown arrow of the active field and check the items you want to filter on.
 - A pivot table with hidden categories is shown below.

1	A	В	С
1			
2			
3	Time J	Region 🗐	Sum of Total Cost
4	■Afternoon	MidWest	3187.16
5		South	5729.72
6		West	7188.94
7	Afternoon Tot	al	16105.82
8	■ Morning	MidWest	3878.22
9		South	3835.86
10		West	5628.66
11	Morning Total		13342.74
12	Grand Total		29448.56

Sorting on Values or Categories

- It is easy to sort in a pivot table, either by the numbers in the Values area or by the labels in a Rows or Columns field.
 - To sort by the numbers in the Values area, right-click any number and select Sort.
 - To sort on the labels of a Rows or Columns field, right-click any of the categories and select Sort.
 - You can also click the dropdown arrow for the field and get the dialog box that allows both sorting and filtering.

Changing Locations of Fields (Pivoting)

- You can choose where to place variables in a pivot table.
 - For example, to place the Region variable in the Columns area, drag the Region button from the Rows area of the PivotTable Fields pane to the Columns area.

	Α	В	С	D	E	F
1						
2						
3	Sum of Total C	ost Column Labels 🔻				
4	Row Labels	▼ MidWest	NorthEast	South	West	Grand Total
5	Morning	3878.22	5084.57	3835.86	5628.66	18427.31
6	Afternoon	3187.16	8159.78	5729.72	7188.94	24265.6
7	Evening	2552.89	5941.49	3864.12	6475.8	18834.3
8	Grand Total	9618.27	19185.84	13429.7	19293.4	61527.21

Changing Field Settings

- You can change various settings in the Field Settings dialog box.
 - To get to this dialog box:
 - Click the Field Setting button on the Analyze/Options ribbon.
 - OR right-click any of the pivot table cells and select the Field Settings item.
 - The pivot table with Value Field Settings changed to Average is shown below.

	Α	В	С	D	E	F
1	Day	(Multiple Items)				
2	D-1					
3	Average of Total Cost	Column Labels				
4	Row Labels	MidWest	NorthEast	South	West	Grand Total
5	Morning	\$157.11	\$139.05	\$153.59	\$158.51	\$154.01
6	Afternoon	\$73.97	\$145.48	\$143.51	\$159.97	\$144.79
7	Evening	\$82.45	\$192.46	\$163.23	\$193.91	\$175.66
8	Grand Total	\$118.08	\$163.43	\$152.24	\$170.72	\$158.14