

TPL0102-EP

SLIS149 - JUNE 2014

TPL0102-EP 256-Taps Dual-Channel Digital Potentiometer With Non-Volatile Memory

Features

- Dual-Channel, 256-Position Resolution
- Non-Volatile Memory Stores Wiper Settings
- 2-mm × 2-mm, 14-Pin TSSOP Package
- 100-kΩ End-to-End Resistance (TPL0102-100)
- Fast Power-Up Response Time to Wiper Setting: <100 µs
- ±0.5 LSB INL, ±0.25 LSB DNL (Voltage-Divider
- 4 ppm/°C Ratiometric Temperature Coefficient
- I²C-Compatible Serial Interface
- 2.7- to 5.5-V Single-Supply Operation
- ±2.25 to ±2.75 V Dual-Supply Operation
- Operating Temperature Range From -40°C to 125°C
- ESD Performance Tested Per JESD 22
 - 2000-V Human Body Model (A114-B, Class II)
- Supports Defense, Aerospace, and Medical Applications
 - Controlled Baseline
 - One Assembly and Test Site
 - One Fabrication Site
 - Available in Extended (Q) Temperature –40°C to 125°C
 - Extended Product Life Cycle
 - **Extended Product-Change Notification**
 - **Product Traceability**

2 Applications

- Adjustable Gain Amplifiers and Offset Trimming
- Adjustable Power Supplies
- Precision Calibration of Set Point Thresholds
- Sensor Trimming and Calibration
- Mechanical Potentiometer Replacement

Description

The TPL0102-EP is a two-channel, linear-taper digital potentiometer with 256 wiper positions. Each potentiometer can be used as a three-terminal potentiometer or as a two-terminal rheostat. The TPL0102-EP-100 has an end-to-end resistance of 100 kΩ.

TPL0102-EP has non-volatile (EEPROM) which can be used to store the wiper position. The internal registers of the TPL0102-EP can be accessed using the I²C interface.

The TPL0102-EP is available in a 14-pin TSSOP package with a specified temperature range of -40°C to 125°C.

Device Information⁽¹⁾

ORDER NUMBER	PACKAGE	BODY SIZE (NOM)
TPL0102- 100QPWREP	TSSOP (14)	5.00 mm × 4.40 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

4 Functional Block Diagram

Table of Contents

1	Features 1		8.1 Overview	12
2	Applications 1		8.2 Functional Block Diagram	12
3	Description 1		8.3 Feature Description	13
4	Functional Block Diagram 1		8.4 Device Functional Modes	22
5	Revision History		8.5 Register Maps	23
6	Pin Configuration and Functions	9	Application and Implementation	26
7	_		9.1 Application Information	26
1	Specifications		9.2 Typical Application	26
	7.1 Absolute Maximum Ratings	10	Layout	27
	7.2 Handling Ratings		10.1 Layout Example	
	7.3 Recommended Operating Conditions	11	Device and Documentation Support	
	7.4 Thermal Information		11.1 Trademarks	
	7.5 Electrical Characteristics		11.2 Electrostatic Discharge Caution	29
	7.6 Operating Characteristics		11.3 Glossary	
	7.7 Timing Requirements	12	Mechanical, Packaging, and Orderable Information	
8	Detailed Description 12		IIIO III atioi	28

5 Revision History

DATE	REVISION	NOTES
June 2014	*	Initial release.

6 Pin Configuration and Functions

Pin Functions

ı	PIN		DESCRIPTION				
NAME	NO.	1/0	DESCRIPTION				
НА	1	I/O	High pin of potentiometer A				
LA	2	I/O	Low pin of potentiometer A				
WA	3	I/O	Wiper pin of potentiometer A				
НВ	4	I/O	High pin of potentiometer B				
LB	5	I/O	Low pin of potentiometer B				
WB	6	I/O	per pin of potentiometer B				
A2	7	I	Address bit 2				
VSS	8	Power	Negative or GND power supply pin				
SDA	9	I/O	I ² C data I/O				
SCL	10	I	I ² C clock input				
GND	11	_	Ground				
A1	12	I	Address bit 1				
A0	13	I	Address bit 0				
VDD	14	Power	Positive power supply pin				

7 Specifications

7.1 Absolute Maximum Ratings (1)(2)(3)

		MIN	MAX	UNIT
V _{DD} to GND		-0.3	7	V
V_{SS} to GND	Supply voltage	-7	0.3	V
V_{DD} to V_{SS}			7	V
V_H , V_L , V_W	Voltage at resistor pins	$V_{SS} - 0.3$	$V_{DD} + 0.3$	V
V_{I}	Digital input voltage	-0.3	$V_{DD} + 0.3$	V
I _H , I _L , I _W	Pulse current		±20	mA
	Continuous current		±2	mA

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

7.2 Handling Ratings

		MIN	MAX	UNIT
T _{stg}	Storage temperature range	-65	150	°C

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V_{DD} , V_{SS}	Single supply operation (V _{SS} = 0 V)	2.7	5.5	V
	Dual supply operation	±2.25	±2.75	V
V_H , V_L	Pin voltage	V _{SS}	V_{DD}	V
V_{IH}	Voltage input high (SCL, SDA, A0, A1, A2)	$0.7 \times V_{DD}$	5.5	V
V_{IL}	Voltage input low (SCL, SDA, A0, A1, A2)	0	$0.3 \times V_{DD}$	V
I _W	Wiper current		±2	mA
TJ	Junction temperature	-40	125	°C

STRUMENTS

⁽²⁾ The algebraic convention, whereby the most negative value is 2
(3) All voltages are with respect to ground, unless otherwise specified. The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

7.4 Thermal Information

		TPL0102-EP	
	THERMAL METRIC ⁽¹⁾		UNIT
		14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance (2)	112.9	
R _{0JC(top)}	Junction-to-case (top) thermal resistance (3)	39.9	
$R_{\theta JB}$	Junction-to-board thermal resistance (4)	55.9	9000
ΨЈТ	Junction-to-top characterization parameter ⁽⁵⁾	3.5	°C/W
ΨЈВ	Junction-to-board characterization parameter ⁽⁶⁾	55.2	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance ⁽⁷⁾	N/A	

- (1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
- (2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
- (3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
- (4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
- (5) The junction-to-top characterization parameter, ψ_{JT} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).
- (6) The junction-to-board characterization parameter, ψ_{JB} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).
- (7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

7.5 Electrical Characteristics

 V_{DD} = 2.7 to 5.5 V, V_{SS} = 0 V, V_{H} = V_{DD} , V_{L} = GND, T_{J} = -40° C to 125°C (unless otherwise noted). Typical values are at V_{DD} = 5 V, T_{J} = 25°C (unless otherwise noted).

	PARAMETER	TEST CONDITI	ONS	MIN	TYP	MAX	UNIT
R _{TOT}	End-to-end resistance (Between H and L pins)	TPL0102-100		80	100	120	kΩ
R _H , R _L	Pin resistance				60	200	Ω
R _W	Wiper resistance				25	120	Ω
C _H , C _L ⁽¹⁾⁽²⁾	Pin capacitance				22		pF
$C_W^{(1)(2)}$	Wiper capacitance				16		pF
I _{LKG}	Pin leakage current	$V_H = V_{SS}$ to V_{DD} , $V_L =$ Floating or $V_L = V_{SS}$ to V_{DD} , $V_H =$ Floating			0.1	1	μA
TC _R	Resistance temperature coefficient	Input Code = 0x80h			92		ppm/°C
R _{TOT,MATCH}	Channel-to-channel resistance match				0.1		%
VOLTAGE DIV	IDER MODE						
INL ⁽³⁾⁽⁴⁾	Integral non-linearity			-0.5		0.5	LSB
DNL ⁽³⁾⁽⁵⁾	Differential non-linearity			-0.25		0.25	LSB
ZS _{ERROR} (6) (7)	Zero-scale error			0	0.1	2	LSB
FS _{ERROR} (6)(8)	Full-scale error			-2	-0.1	0	LSB
V _{MATCH} ^{(6) (9)}	Channel-to-channel matching	Wiper at the same tap position at all H and same voltage at		-2		2	LSB
TC _V	Ratiometric temperature coefficient	Wiper set at mid-scale			4		ppm/°C
BW	Bandwidth	TPL0102-100	Wiper set at midscale $C_{LOAD} = 10 \text{ pF}$		229		kHz
T _{SW}	Wiper setting time	TPL0102-100			3.6		μS
THD	Total harmonic distortion	$V_H = 1 V_{RMS}$ at 1 kHz, $V_L = (V_{DD} - V_{SS})/2$, Measurement at W	TPL0102-100		0.03		%
X _{TALK}	Crosstalk	$f_{\rm H}$ = 1 kHz, V _L = GND, Measurement at W			-82		dB

(1) Pin and wiper capacitance extracted from self admittance of three port network measurement

$$Y_{ii} = \frac{I_i}{V_i} \Big|_{V_k = 0 \text{ for } k \neq i}$$

(2) Digital Potentiometer Macromodel

- $LSB = (V_{MEAS[code\ 255]} V_{MEAS[code\ 0]}) / 255$ $INL = ((V_{MEAS[code\ x]} V_{MEAS[code\ 0]}) / LSB) [code\ x]$ $DNL = ((V_{MEAS[code\ x]} V_{MEAS[code\ x-1]}) / LSB) 1$ $IDEAL_LSB = (V_H V_L) / 256$ (4)
- (6)
- (7) ZS_{ERROR} = V_{MEAS[code 0]} / IDEAL_LSB (8) FS_{ERROR} = [(V_{MEAS[code 255]} (V_H V_L)) / IDEAL_LSB] + 1 (9) V_{MATCH} = (V_{MEAS_A[code x]} V_{MEAS_B[code x]}) / IDEAL_LSB

STRUMENTS

Electrical Characteristics (continued)

 V_{DD} = 2.7 to 5.5 V, V_{SS} = 0 V, V_{H} = V_{DD} , V_{L} = GND, T_{J} = -40°C to 125°C (unless otherwise noted). Typical values are at V_{DD} = 5 V, T_{J} = 25°C (unless otherwise noted).

PARAMETER TEST CONDITIONS		NS	MIN	TYP	MAX	UNIT		
RHEOSTAT MODE (Measurements between W and L with H not connected, or between W and H with L not connected)								
RINL ⁽¹⁰⁾⁽¹¹⁾	Integral non-linearity			-1		1	LSB	
RDNL ⁽¹⁰⁾ (12)	Differential non-linearity			-0.5		0.5	LSB	
R _{OFFSET} (13) (14)	Offset			0	0.2	2	LSB	
R _{MATCH} (13)(15)	Channel-to-channel matching			-2		2	LSB	
RBW	Bandwidth	Code = 0x00h, L Floating, Input applied to W, Measure at H, C _{LOAD} = 10 pF	TPL0102-100		54		kHz	

- (10) RLSB = $(R_{MEAS[code\ 255]} R_{MEAS[code\ 0]}) / 255$ (11) RINL = $((R_{MEAS[code\ x]} R_{MEAS[code\ 0]}) / RLSB) [code\ x]$ (12) RDNL = $((R_{MEAS[code\ x]} R_{MEAS[code\ x-1]}) / RLSB) 1$ (13) IDEAL_RLSB = $R_{TOT} / 256$

- (14) R_{OFFSET} = R_{MEAS[code 0]} / IDEAL_RLSB (15) R_{MATCH} = (R_{MEAS_A[code x]} R_{MEAS_B[code x]}) / IDEAL_RLSB

- (1) See data sheet for absolute maximum and minimum recommended operating conditions.
- Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect life).
- (3) Enhanced plastic product disclaimer applies.

Figure 1. TPL0102-EP Electromigration Fail Mode/Wirebond Life Derating Chart

TEXAS INSTRUMENTS

7.6 Operating Characteristics

 V_{DD} = 2.7 to 5.5 V, V_{SS} = 0 V, V_{H} = V_{DD} , V_{L} = GND, T_{J} = -40° C to 125°C (unless otherwise noted). Typical values are at V_{DD} = 5 V, T_{J} = 25°C (unless otherwise noted).

	PARAMETER	TEST CONDITION	IS	MIN	TYP	MAX	UNIT
			-40°C		0.2	1.5	
I _{DD(STBY)}	V _{DD} standby current	$V_{DD} = 2.75 \text{ V}, V_{SS} = -2.75 \text{ V},$ I^2C interface in standby mode	25°C			1	μΑ
		1 C Interface in standby mode	125°C			16	
			-40°C	-1.5	-0.2		
I _{SS(STBY)}	V _{SS} standby current	$V_{DD} = 2.75 \text{ V}, V_{SS} = -2.75 \text{ V},$ I^2C interface in standby mode	25°C	-1			μΑ
		1 6 Interface in Stariday mode	125°C	-16			
		V 075 V V 075 V	-40°C		0.2	1.5	
$I_{\rm DD(SHUTDOWN)}$	V _{DD} shutdown current	$V_{DD} = 2.75 \text{ V}, V_{SS} = -2.75 \text{ V},$ I^2C interface in standby mode	25°C			1	μΑ
		. C interface in claridary interest	125°C			16	
		V 075 V V 075 V	-40°C	-1.5	-0.2		
I _{SS(SHUTDOWN)}	V _{SS} shutdown current	$V_{DD} = 2.75 \text{ V}, V_{SS} = -2.75 \text{ V},$ I^2C interface in standby mode	25°C	-1			μΑ
			125°C	-16			
I _{DD}	V _{DD} current during non-volatile write	$V_{DD} = 2.75 \text{ V}, V_{SS} = -2.75 \text{ V}$				350	μΑ
I _{SS}	V _{SS} current during non-volatile write	$V_{DD} = 2.75 \text{ V}, V_{SS} = -2.75 \text{ V}$		-350			μΑ
I _{LKG-DIG}	Digital pins leakage current (A0, A1, A2, SDA, and SCL)			-1		1	μΑ
V_{POR}	Power-on recall voltage	Minimum V _{DD} at which memory reca		2		V	
EEPROM SPEC	IFICATION						
	EEPROM endurance				1000		Cycles
	EEPROM retention				100000		Hours
t_{WC}	Non-volatile write cycle time				20		ms
WIPER TIMING	CHARACTERISTICS						
t_{WRT}	Wiper response time	SCL falling edge of last bit of wiper on new position	data byte to wiper		600		ns
t _{SHUTDOWNREC}	Wiper position recall time from shut- down mode	SCL falling edge of last bit of ACR of stored position and H connection	data byte to wiper		800		ns
t _D	Power-up delay	V _{DD} above V _{POR} , to wiper initial valu completed, and I ² C interface in stan			35	100	μs
C _{IN}	Pin capacitance	A0, A1, A2, SDA SCL pins			7		pF
I ² C INTERFACE	SPECIFICATIONS	-				'	
V _{IH}	Input high voltage			0.7 × V _{DD}		5.5	V
V _{IL}	Input low voltage			0		0.3 × V _{DD}	V
V _{OL}	Output low voltage	SDA pin, I _{OL} = 4 mA				0.4	V
C _{IN}	Pin capacitance	A0, A1, A2, SDA SCL pins			7		pF

7.7 Timing Requirements

 V_{DD} = 2.7 to 5.5 V, V_{SS} = 0 V, V_{H} = V_{DD} , V_{L} = GND, T_{J} = -40° C to 125°C (unless otherwise noted). Typical values are at V_{DD} = 5 V, T_{J} = 25°C (unless otherwise noted).

		STANDARD MODE I ² C BUS		FAST MODE I ²	BUS	UNIT
		MIN	MAX	MIN	MAX	UNIT
I ² C INTER	RFACE TIMING REQUIREMENTS					
f_{SCL}	I ² C clock frequency	0	100	0	400	kHz
t _{SCH}	I ² C clock high time	4		0.6		μs
t _{SCL}	I ² C clock low time	4.7		1.3		μs
t _{sp}	I ² C spike time	0	50	0	50	ns
t _{SDS}	I ² C serial data setup time	250		100		ns
t _{SDH}	I ² C serial data hold time	0		0		ns
t _{ICR}	I ² C input rise time		1000	$20 + 0.1C_b^{(1)}$	300	ns
t _{ICF}	I ² C input fall time		300	$20 + 0.1C_b^{(1)}$	300	ns
t _{ICF}	I ² C output fall time, 10- to 400-pF bus		300	20 + 0.1C _b ⁽¹⁾	300	ns
t _{BUF}	I ² C bus free time between stop and start	4.7		1.3		μs
t _{STS}	I ² C start or repeater start conditions setup time	4.7		1.3		μs
t _{STH}	I ² C start or repeater start condition hold time	4		0.6		μs
t _{SPS}	I ² C stop condition setup time	4		0.6		μs
t _{VD(DATA)}	Valid data time, SCL low to SDA output valid		1		1	μs
t _{VD(DATA)}	Valid data time of ACK condition, ACK signal from SCL low to SDA (out) low		1		1	μs

⁽¹⁾ C_b = total capacitance of one bus line in pF

-2

-40

-20

SLIS149 - JUNE 2014 www.ti.com

7.8 Typical Characteristics

NSTRUMENTS

Figure 2. IDD Standby Current vs Temperature

40

Free-Air Temperature (°C)

60

IDD(STBY) Current

1.6 Shutdown Current (µA) 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -40 -20 0 20 40 60 80 100 120 Free-Air Temperature (°C) C003

Figure 3. ISS Standby Current vs Temperature

Figure 4. IDD Shutdown Current vs Temperature

Figure 5. ISS Shutdown Current vs Temperature

Figure 6. IDD Current (Non-Volatile Write) vs Temperature

Figure 7. ISS Current (Non-Volatile Write) vs Temperature

Typical Characteristics (continued)

Figure 8. Wiper Resistance (RW) vs Temperature

Figure 10. Zero-Scale Error vs Temperature

Figure 11. Full-Scale Error vs Temperature

Figure 12. Offset vs Temperature

TEXAS INSTRUMENTS

8 Detailed Description

8.1 Overview

The TPL0102-EP is a two-channel, linear-taper digital potentiometer with 256 wiper positions. Each potentiometer can be used as a three-pin potentiometer or as a two-pin rheostat. The TPL0102-EP-100 has an end-to-end resistance of 100 k Ω .

The TPL0102-EP has non-volatile memory (EEPROM) which can be used to store the wiper position. When the device is powered down, the last value stored in the IVR register will be maintained in the non-volatile memory. When power is restored, the contents of the IVR register are recalled and loaded into the corresponding WR register to set the wipers to the initial position. The internal registers of the TPL0102-EP can be accessed using the I²C interface.

The position of the wiper pin is controlled by the value in the WR 8-bit register. When the WR contains all zeroes, the wiper pin W is closest to its L (low) pin. As the value of the WR increases from all zeroes to all ones (255 decimal), the wiper moves monotonically from the position closest to L to the position closest to H. At the same time, the resistance between W and L increases monotonically, whereas the resistance between W and H decreases monotonically.

8.2 Functional Block Diagram

8.3 Feature Description

Table 1. Summary of Features

Feature	TPL0102-EP
Number of potentiometers	2
Digital interface	I ² C
Steps	256
Wiper memory	Non-volatile
Taper	Linear
End-to-end resistance	100 kΩ
End-to-end resistance tolerance	20%
Wiper resistance	25 Ω (typ)

8.3.1 Potentiometer Pin Description

8.3.1.1 HA, HB, LA, LB

The high (HA, HB) and low (LA, LB) pins of the TPL0102-EP are equivalent to the fixed pins of a mechanical potentiometer. The H and L pins do not have any polarity restrictions, i.e. H can be at a higher voltage than L, or L can be at a higher voltage than H. The WA and WB pins are the wipers and equivalent to the movable pin of a mechanical potentiometer. The position of the wiper is set using the WR register. With the WR register set to 255 decimal, the wiper is closest to the H pin, and with the WR register set to 0, the wiper is closest to the L pin.

8.3.1.2 SDA, SCL

SDA is a bi-directional serial data input/output pin for I²C communication. SDA is an open drain output and requires an external pull-up resistor.

SCL is the serial clock input for I²C communication. SCL requires an external pull-up resistor.

8.3.1.3 A0, A1, A2

These inputs are used to set the last three bits of the I²C address of the device. By using different values for A0, A1, A2, up to eight TPL0102-EP devices can be used on the same I²C bus.

I²C Write to A Register

Figure 13. I²C Interface

The following is a sample sequence to set wipers of both potentiometers at mid-scale. Assume A0, A1, and A2 are 0 and device has just been powered up.

Method 1: First Write 0x80 to IVRA and then write 0x80 to IVRB Register

Method 2: Perform a multi byte write to IVRA and IVRB Register

Figure 14. tl²C Interface Example

8.3.2 Standard I²C Interface Details

The bidirectional I²C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to a positive supply via a pullup resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

I²C communication with this device is initiated by the master sending a start condition, a high-to-low transition on the SDA input/output while the SCL input is high (see Figure 15). After the start condition, the device address byte is sent, MSB first, including the data direction bit (R/W). This device does not respond to the general call address. After receiving the valid address byte, this device responds with an ACK, a low on the SDA input/output during the high of the ACK-related clock pulse

Figure 15. Definition of Start and Stop Conditions

The data byte follows the address ACK. The R/W bit is kept low for transfer from the master to the slave. The data byte is followed by an ACK sent from this device. Data are output only if complete bytes are received and acknowledged. The output data is valid at time (tpv) after the low-to-high transition of SCL, during the clock cycle for the ACK. On the I²C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high pulse of the clock period, as changes in the data line at this time are interpreted as control commands (start or stop) (see Figure 16).

Figure 16. Bit Transfer

A stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the master (see Figure 15).

The number of data bytes transferred between the start and the stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before the receiver can send an ACK bit.

A slave receiver that is addressed must generate an ACK after the reception of each byte. The device that acknowledges has to pull down the SDA line during the ACK clock pulse so that the SDA line is stable low during the high pulse of the ACK-related clock period (see Figure 17). Setup and hold times must be taken into account.

Figure 17. Acknowledgment on the I²C Bus

2014

8.3.3 Ideal Resistance Values

Figure 18.

Table 2 shows the ideal values for DPOT with end-to-end resistance of 100 k Ω . The absolute values of resistance can vary significantly, but the ratio (R_{WL} / R_{HW}) is extremely accurate.

Table 2.

Step	Binary	R _{WL} (kΩ)	R _{HW} (kΩ)	R _{WL} / R _{HW}
0	0	0.00	100.00	0.00
1	1	0.39	99.61	0.00
2	10	0.78	99.22	0.01
3	11	1.17	98.83	0.01
4	100	1.56	98.44	0.02
5	101	1.95	98.05	0.02
6	110	2.34	97.66	0.02
7	111	2.73	97.27	0.03
8	1000	3.13	96.88	0.03
9	1001	3.52	96.48	0.04
10	1010	3.91	96.09	0.04
11	1011	4.30	95.70	0.04
12	1100	4.69	95.31	0.05
13	1101	5.08	94.92	0.05
14	1110	5.47	94.53	0.06
15	1111	5.86	94.14	0.06
16	10000	6.25	93.75	0.07
17	10001	6.64	93.36	0.07
18	10010	7.03	92.97	0.08
19	10011	7.42	92.58	0.08
20	10100	7.81	92.19	0.08
21	10101	8.20	91.80	0.09
22	10110	8.59	91.41	0.09
23	10111	8.98	91.02	0.10
24	11000	9.38	90.63	0.10
25	11001	9.77	90.23	0.11
26	11010	10.16	89.84	0.11
27	11011	10.55	89.45	0.12
28	11100	10.94	89.06	0.12
29	11101	11.33	88.67	0.13
30	11110	11.72	88.28	0.13
31	11111	12.11	87.89	0.14

Step	Binary	R _{WL} (kΩ)	R _{HW} (kΩ)	R _{WL} / R _{HW}
32	100000	12.50	87.50	0.14
33	100001	12.89	87.11	0.15
34	100010	13.28	86.72	0.15
35	100011	13.67	86.33	0.16
36	100100	14.06	85.94	0.16
37	100101	14.45	85.55	0.17
38	100110	14.84	85.16	0.17
39	100111	15.23	84.77	0.18
40	101000	15.63	84.38	0.19
41	101001	16.02	83.98	0.19
42	101010	16.41	83.59	0.20
43	101011	16.80	83.20	0.20
44	101100	17.19	82.81	0.21
45	101101	17.19	82.42	0.21
46	101110	17.97	82.03	0.22
47	101111	18.36	81.64	0.22
48	110000	18.75	81.25	0.22
49				0.23
	110001 110010	19.14	80.86	
50		19.53	80.47	0.24
51	110011	19.92	80.08	0.25
52	110100	20.31	79.69	0.25
53	110101	20.70	79.30	0.26
54	110110	21.09	78.91	0.27
55	110111	21.48	78.52	0.27
56	111000	21.88	78.13	0.28
57	111001	22.27	77.73	0.29
58	111010	22.66	77.34	0.29
59	111011	23.05	76.95	0.30
60	111100	23.44	76.56	0.31
61	111101	23.83	76.17	0.31
62	111110	24.22	75.78	0.32
63	111111	24.61	75.39	0.33
64	1000000	25.00	75.00	0.33
65	1000001	25.39	74.61	0.34
66	1000010	25.78	74.22	0.35
67	1000011	26.17	73.83	0.35
68	1000100	26.56	73.44	0.36
69	1000101	26.95	73.05	0.37
70	1000110	27.34	72.66	0.38
71	1000111	27.73	72.27	0.38
72	1001000	28.13	71.88	0.39
73	1001001	28.52	71.48	0.40
74	1001010	28.91	71.09	0.41
75	1001011	29.30	70.70	0.41
76	1001100	29.69	70.31	0.42
77	1001101	30.08	69.92	0.43
78	1001110	30.47	69.53	0.44

01	D'	D (I-O)	D (I-O)	D /D
Step	Binary	R _{WL} (kΩ)	R _{HW} (kΩ)	R _{WL} / R _{HW}
79	1001111	30.86	69.14	0.45
80	1010000	31.25	68.75	0.45
81	1010001	31.64	68.36	0.46
82	1010010	32.03	67.97	0.47
83	1010011	32.42	67.58	0.48
84	1010100	32.81	67.19	0.49
85	1010101	33.20	66.80	0.50
86	1010110	33.59	66.41	0.51
87	1010111	33.98	66.02	0.51
88	1011000	34.38	65.63	0.52
89	1011001	34.77	65.23	0.53
90	1011010	35.16	64.84	0.54
91	1011011	35.55	64.45	0.55
92	1011100	35.94	64.06	0.56
93	1011101	36.33	63.67	0.57
94	1011110	36.72	63.28	0.58
95	1011111	37.11	62.89	0.59
96	1100000	37.50	62.50	0.60
97	1100001	37.89	62.11	0.61
98	1100010	38.28	61.72	0.62
99	1100011	38.67	61.33	0.63
100	1100100	39.06	60.94	0.64
101	1100101	39.45	60.55	0.65
102	1100110	39.84	60.16	0.66
103	1100111	40.23	59.77	0.67
104	1101000	40.63	59.38	0.68
105	1101001	41.02	58.98	0.70
106	1101010	41.41	58.59	0.71
107	1101011	41.80	58.20	0.72
108	1101100	42.19	57.81	0.73
109	1101101	42.58	57.42	0.74
110	1101110	42.97	57.03	0.75
111	1101111	43.36	56.64	0.77
112	1110000	43.75	56.25	0.78
113	1110001	44.14	55.86	0.79
114	1110010	44.53	55.47	0.80
115	1110011	44.92	55.08	0.82
116	1110100	45.31	54.69	0.83
117	1110101	45.70	54.30	0.84
118	1110110	46.09	53.91	0.86
119	1110111	46.48	53.52	0.87
120	1111000	46.88	53.13	0.88
121	1111001	47.27	52.73	0.90
122	1111010	47.66	52.34	0.91
123	1111011	48.05	51.95	0.92
124	1111100	48.44	51.56	0.94
125	1111101	48.83	51.17	0.95

Copyright © 2014, Texas Instruments Incorporated

SLIS149 - JUNE 2014 www.ti.com

Step	Binary	R _{WL} (kΩ)	R _{HW} (kΩ)	R _{WL} / R _{HW}
126	1111110	49.22	50.78	0.97
127	1111111	49.61	50.39	0.98
128	10000000	50.00	50.00	1.00
129	10000001	50.39	49.61	1.02
130	10000010	50.78	49.22	1.03
131	10000011	51.17	48.83	1.05
132	10000100	51.56	48.44	1.06
133	10000101	51.95	48.05	1.08
134	10000110	52.34	47.66	1.10
135	10000111	52.73	47.27	1.12
136	10001000	53.13	46.88	1.13
137	10001001	53.52	46.48	1.15
138	10001010	53.91	46.09	1.17
139	10001011	54.30	45.70	1.19
140	10001100	54.69	45.31	1.21
141	10001101	55.08	44.92	1.23
142	10001110	55.47	44.53	1.25
143	10001111	55.86	44.14	1.27
144	10010000	56.25	43.75	1.29
145	10010001	56.64	43.36	1.31
146	10010010	57.03	42.97	1.33
147	10010011	57.42	42.58	1.35
148	10010100	57.81	42.19	1.37
149	10010101	58.20	41.80	1.39
150	10010110	58.59	41.41	1.42
151	10010111	58.98	41.02	1.44
152	10011000	59.38	40.63	1.46
153	10011001	59.77	40.23	1.49
154	10011010	60.16	39.84	1.51
155	10011011	60.55	39.45	1.53
156	10011100	60.94	39.06	1.56
157	10011101	61.33	38.67	1.59
158	10011110	61.72	38.28	1.61
159	10011111	62.11	37.89	1.64
160	10100000	62.50	37.50	1.67
161	10100001	62.89	37.11	1.69
162	10100010	63.28	36.72	1.72
163	10100011	63.67	36.33	1.75
164	10100100	64.06	35.94	1.78
165	10100101	64.45	35.55	1.81
166	10100110	64.84	35.16	1.84
167	10100111	65.23	34.77	1.88
168	10101000	65.63	34.38	1.91
169	10101001	66.02	33.98	1.94
170	10101010	66.41	33.59	1.98
171	10101011	66.80	33.20	2.01
172	10101100	67.19	32.81	2.05

Step	Binary	R _{WL} (kΩ)	R _{HW} (kΩ)	R _{WL} / R _{HW}
173	10101101	67.58	32.42	2.08
174	10101110	67.97	32.03	2.12
175	10101111	68.36	31.64	2.16
176	10110000	68.75	31.25	2.20
177	10110001	69.14	30.86	2.24
178	10110010	69.53	30.47	2.28
179	10110011	69.92	30.08	2.32
180	10110100	70.31	29.69	2.37
181	10110101	70.70	29.30	2.41
182	10110110	71.09	28.91	2.46
183	10110111	71.48	28.52	2.51
184	10111000	71.88	28.13	2.56
185	10111001	72.27	27.73	2.61
186	10111010	72.66	27.34	2.66
187	10111011	73.05	26.95	2.71
188	10111100	73.44	26.56	2.76
189	10111101	73.83	26.17	2.82
190	10111110	74.22	25.78	2.88
191	10111111	74.61	25.39	2.94
192	11000000	75.00	25.00	3.00
193	11000001	75.39	24.61	3.06
194	11000010	75.78	24.22	3.13
195	11000011	76.17	23.83	3.20
196	11000100	76.56	23.44	3.27
197	11000101	76.95	23.05	3.34
198	11000110	77.34	22.66	3.41
199	11000111	77.73	22.27	3.49
200	11001000	78.13	21.88	3.57
201	11001001	78.52	21.48	3.65
202	11001010	78.91	21.09	3.74
203	11001011	79.30	20.70	3.83
204	11001100	79.69	20.31	3.92
205	11001101	80.08	19.92	4.02
206	11001110	80.47	19.53	4.12
207	11001111	80.86	19.14	4.22
208	11010000	81.25	18.75	4.33
209	11010001	81.64	18.36	4.45
210	11010010	82.03	17.97	4.57
211	11010011	82.42	17.58	4.69
212	11010100	82.81	17.19	4.82
213	11010101	83.20	16.80	4.95
214	11010110	83.59	16.41	5.10
215	11010111	83.98	16.02	5.24
216	11011000	84.38	15.63	5.40
217	11011001	84.77	15.23	5.56
218	11011010	85.16	14.84	5.74
219	11011011	85.55	14.45	5.92

Step	Binary	R _{WL} (kΩ)	R _{HW} (kΩ)	R _{WL} / R _{HW}
220	11011100	85.94	14.06	6.11
221	11011101	86.33	13.67	6.31
222	11011110	86.72	13.28	6.53
223	11011111	87.11	12.89	6.76
224	11100000	87.50	12.50	7.00
225	11100001	87.89	12.11	7.26
226	11100010	88.28	11.72	7.53
227	11100011	88.67	11.33	7.83
228	11100100	89.06	10.94	8.14
229	11100101	89.45	10.55	8.48
230	11100110	89.84	10.16	8.85
231	11100111	90.23	9.77	9.24
232	11101000	90.63	9.38	9.67
233	11101001	91.02	8.98	10.13
234	11101010	91.41	8.59	10.64
235	11101011	91.80	8.20	11.19
236	11101100	92.19	7.81	11.80
237	11101101	92.58	7.42	12.47
238	11101110	92.97	7.03	13.22
239	11101111	93.36	6.64	14.06
240	11110000	93.75	6.25	15.00
241	11110001	94.14	5.86	16.07
242	11110010	94.53	5.47	17.29
243	11110011	94.92	5.08	18.69
244	11110100	95.31	4.69	20.33
245	11110101	95.70	4.30	22.27
246	11110110	96.09	3.91	24.60
247	11110111	96.48	3.52	27.44
248	11111000	96.88	3.13	31.00
249	11111001	97.27	2.73	35.57
250	11111010	97.66	2.34	41.67
251	11111011	98.05	1.95	50.20
252	11111100	98.44	1.56	63.00
253	11111101	98.83	1.17	84.33
254	11111110	99.22	0.78	127.00
255	11111111	99.61	0.3	255.00

TEXAS INSTRUMENTS

8.4 Device Functional Modes

VOLTAGE DIVIDER MODE

RHEOSTAT MODE A

RHEOSTAT MODE B

Figure 19. Digital Potentiometer Configurations

8.5 Register Maps

8.5.1 Slave Address

Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 2	Bit 0 (LSB)
1	0	1	0	A2	A1	A0	R/W

8.5.2 TPL0102-EP Register Maps

REGISTER ADDRESS (HEX)	NON-VOLATILE	VOLATILE
0	IVRA	WRA
1	IVRB	WRB
2	General purpose	N/A
3	General purpose	N/A
4	General purpose	N/A
5	General purpose	N/A
6	General purpose	N/A
7	General purpose	N/A
8	General purpose	N/A
9	General purpose	N/A
Α	General purpose	N/A
В	General purpose	N/A
С	General purpose	N/A
E	General purpose	N/A
D	General purpose	N/A
F	Reserved	
10	N/A	ACR

8.5.3 IVRA (Initial Value Register for Potentiometer A)

Register address: 00H

Factory programmed value: 80H Type: non-volatile write/read

NAME	SIZE (BITS)	DESCRIPTION
IVRA	8	Non-volatile register to store wiper position for potentiometer A

8.5.4 WRA (Wiper Resistance Register for Potentiometer A)

Register address: 00H Reset value: same as IVRA • Type: volatile write/read

Copyright © 2014, Texas Instruments Incorporated

NAME	SIZE (BITS)	DESCRIPTION
WRA	8	Volatile register to change wiper position for potentiometer A

8.5.5 IVRB (Initial Value Register for Potentiometer B)

Register address: 01H

Factory programmed value: 80HType: non-volatile write/read

NAME	SIZE (BITS)	DESCRIPTION
IVRB	8	Non-volatile register to store wiper position for potentiometer B

8.5.6 WRB (Wiper Resistance Register for Potentiometer B)

Register address: 01HReset value: same as IVRBType: volatile write/read

NAME	SIZE (BITS)	DESCRIPTION
WRB	8	Volatile register to change wiper position for potentiometer B

8.5.7 ACR (Access Control Register)

Register address: 00HReset value: 40H

Type: non-volatile write/read

NAME	SIZE (BITS)	DESCRIPTION											
IVRA	8	Non-volatile register to store wiper position for potentiometer A											
ACD	0	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
ACR	0	VOL	SHDN	WIP	0	0	0	0	0				
Default Value		0	1	0	0	0	0	0	0				

SIZE (BITS)	DESCRIPTION
VOL 0: Non-volatile registers (IVRA, IVRB) are accessible. Value written to also written to the corresponding WRi.	
	1: Only volatile registers (WRi) are accessible.
1	0: Shut-down mode is enabled. Potentiometers are in shut-down mode. (see Figure 20)
	1: Shut-down mode is disabled
	0: Non-volatile write operation is not in progress
1	1: Non-volatile write operation is in progress (it is not possible to write to the WRi or ACR while WIP = 1)
	1 1 1

NSTRUMENTS

Figure 20. Potentiometer in Shut-Down Mode

TEXAS INSTRUMENTS

9 Application and Implementation

9.1 Application Information

In a simple operational amplifier configuration, like the one found in Figure 21, the TPL0102-EP is used to control the gain and offset voltage of the operational amplifier. Using the TPL0102-EP in a rheostat mode (like Rheostat Mode A in Figure 19), the gain setting of the negative feedback loop can be adjusted freely. To have maximum control of the offset voltage correction of the operational amplifier, the voltage divider mode can be used; giving the user an increased amount of control and precision for systems sensitive to DC offset.

9.2 Typical Application

Figure 21. Offset Voltage and Gain Adjustment

10 Layout

www.ti.com

10.1 Layout Example

Figure 22. TPL0102-EP Layout (Top Layer)

TEXAS INSTRUMENTS

Layout Example (continued)

Figure 23. TPL0102-EP Layout (Bottom Layer)

11 Device and Documentation Support

11.1 Trademarks

All trademarks are the property of their respective owners.

11.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPL0102-100QPWREP	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	EL-100EP	Samples
V62/14613-01XE	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	EL-100EP	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

10-Dec-2020

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPL0102-100QPWREP	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

*All dimensions are nominal

Device		Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
	TPL0102-100QPWREP	TSSOP	PW	14	2000	356.0	356.0	35.0

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated