Técnicas de Programação II

Árvores AVL

Sumário

- Árvores AVL
 - Definição;
 - Exemplo e contra-exemplo;
 - Balanceamento;
 - Exemplo.
- Referências

Definições

- Criada por Adelson-Velskii e Landis;
- É uma árvore de pesquisa binária balanceada
 |he hd| < 1

Definições

Em outras palavras, o valor do balanceamento de cada nó de uma árvore AVL é igual a 1, 0 ou -1.

Caso contrário, a árvore binária NÃO é AVL, pois estará desbalanceada.

Definições

Árvore Binária Balanceada

Considere

he(x) como altura da sub-árvore esquerda ehd(x) como a altura da sub-árvore direita

Para cada nível a diferença entre as alturas das sub-árvores (*abs(he-hd)*) não ultrapassa 1.

Como manter uma árvore AVL sempre balanceada após uma inclusão ou exclusão?

Através de uma operação de ROTAÇÃO

Tipos de rotação:

- Rotação simples:
 - para a direita
 - para a esquerda
- Rotação dupla:
 - para a direita
 - para a esquerda

Balanceamento

lhe - hdl Nó desbalanceado	lhe - hdl Nó filho do nó desbalanceado	Tipo de Rotação
-2	-1	Simples à esquerda
	0	Simples à esquerda
	+1	Dupla com à direita e pai à esquerda
+2	-1	Dupla com à esquerda e pai à direita
	O	Simples à direita
	+1	Simples à direita

Inserindo: 14, 15 e 16.

Inserindo: 14, 15 e 16.

Rotação simples à esquerda

Inserindo: 14, 15 e 16.

Inserindo: 13 e 12.

Inserindo: 13 e 12.

Inserindo: 13 e 12.

Rotação simples à direita

Inserindo: 11

Rotação simples à direita

Inserindo: 10

Rotação simples à direita

Inserindo: 1 e 2

2a Rotação

Inserindo: 3

2a Rotação

Inserindo: 4

Rotação Simples à direita

2a Rotação

Balanceamento

lhe - hdl Nó desbalanceado	lhe - hdl Nó filho do nó desbalanceado	Tipo de Rotação
-2	-1	Simples à esquerda
	0	Simples à esquerda
	+1	Dupla com à direita e pai à esquerda
+2	-1	Dupla com à esquerda e pai à direita
	O	Simples à direita
	+1	Simples à direita

Referências

ASCENCIO, A. F. G; ARAÚJO, G. S. **Estruturas de Dados:** algoritmos, análise da complexidade e implementações em JAVA e C/C++. São Paulo: Pearson Prentice Hall, 2010.

SZWARCFITER, J. L.; MARKENZON, L. **Estruturas de Dados e seus Algoritmos.** 2. ed. Rio de Janeiro: LTC, 1994.