Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

ЛАБОРАТОРНАЯ РАБОТА № 5

по курсу «Дискретные системы управления»

СИНТЕЗ ДИСКРЕТНЫХ АЛГОРИТМОВ УПРАВЛЕНИЯ

Вариант № 2

Авторы работ: Кирбаба Д.Д.

Группа: R3438

Преподаватель: Краснов А.Ю.

Санкт-Петербург

СОДЕРЖАНИЕ

1.	Цель работы	3
2.	Постановка задачи	3
3.	Ход работы	4
1.	Исходные данные	4
2.	Модель описания движения исходного непрерывного объекта	4
3.	Дискретное описание объекта	5
4.	Дискретная модель входного воздействия	5
5.	Моделирование модели входного воздействия	7
6.	Синтез управляющих воздействий	8
7.	Моделирование замкнутой системы	10
8.	Дискретная модель внешних воздействий	13
9.	Моделирование внешнего возмущающего воздействия	14
10	0. Синтез алгоритма управления	15
11	. Моделирование замкнутой системы	16
4.	Выволы	19

1. Цель работы

Ознакомление с принципами синтеза дискретных регуляторов систем автоматического управления, работающих в режиме слежения.

2. Постановка задачи

Задана модель непрерывного объекта, описываемая следующим образом:

$$\begin{cases} \dot{x} = Ax + B\epsilon + B_f f \\ y = Cx \end{cases},$$

где ϵ — управляющее воздействие, f — возмущающее воздействие.

Требуется перевести модель в дискретный вид и по заданным дискретным моделям задающего и возмущающего воздействии синтезировать закон слежения объекта за задающим воздействием в виде

$$u(k) = K_{oc}e(k) + L_g\xi_g(k) - L_f\xi_f(k),$$

где L_g — матрица коэффициентов прямых связей по задающему воздействию, L_f — матрица коэффициентов прямых связей по возмущающему воздействию.

С данными управляющими воздействиями необходимо проверить достижение цели управления:

$$\lim_{t\to\infty}e(k)=0.$$

3. Ход работы

1. Исходные данные

Рисунок 1. Вид ОУ.

k_1	a_0^1	T_1	ξ	k_2	a_0^2	T_2	T
1	0	0	0	0.5	1	0.95	0.5

Таблица 1. Параметры ОУ.

2. Модель описания движения исходного непрерывного объекта Форма BB:

$$y = \frac{k_1}{(T_2 p + a_0^2)p} (k_2 u - f)$$
$$\ddot{y} + \frac{a_0^2}{T_2} \dot{y} = \frac{k_1 k_2}{T_2} u - \frac{k_1}{T_2} f$$

Запишем в канонической управляемой форме:

$$\begin{cases} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -\frac{a_0^2}{T_2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u - \begin{bmatrix} 0 \\ \frac{1}{k_2} \end{bmatrix} f \\ y = \begin{bmatrix} k_1 k_2 / T_2 & 0 \end{bmatrix} x \end{cases}$$

3. Дискретное описание объекта

$$A_d = \sum_{i=0}^{\infty} \frac{A^i T^i}{i!}, \qquad B_d = \sum_{i=1}^{\infty} \frac{A^{i-1} T^i}{i!} B, \qquad B_{df} = \sum_{i=1}^{\infty} \frac{A^{i-1} T^i}{i!} B_f$$

Вычислим приближенное значение дискретных матриц при $i = \overline{0,5}$.

$$A_d = \begin{bmatrix} 1 & 0.38 \\ 0 & 0.59 \end{bmatrix}, \qquad B_d = \begin{bmatrix} 0.1057 \\ 0.388 \end{bmatrix}, \qquad B_{df} = \begin{bmatrix} 0.211 \\ 0.777 \end{bmatrix}.$$

Итого, дискретный вид:

$$\begin{cases} x(k+1) = A_d x(k) + B_d u(k) + B_{df} f(k) \\ y(k) = C x(k) \end{cases}$$

4. Дискретная модель входного воздействия

Входное воздействие может быть представлено в виде:

1.
$$g(k) = A_q \sin \omega_q kT$$

2.
$$g(k) = g_0 + g_1 kT$$

${g}_0$	g_1	A_g	ω_g	f_0	f_1	A_f	ω_f
4	0	0	0	1.5	4.5	0	0

Таблица 2. Параметры входного воздействия.

Построим математическую модель командного генератора для дискретного гармонического сигнала

$$g(k) = A_q \cdot \sin(\omega_q kT).$$

Воспользуемся методом последовательного взятия разностей

$$\begin{aligned} \xi_{g_1}(k) &= A_g \sin \left(\omega_g kT\right) \\ g(k+1) &= A_g \sin \left(\omega_g T\right) \cdot \cos \left(\omega_g kT\right) + g(k) \cdot \cos \left(\omega_g T\right) \\ \xi_{g_2}(k) &= g(k+1) \end{aligned}$$

$$g(k+2) = \frac{\sin(2\omega_g T)}{\sin(\omega_g T)} \cdot (g(k+1) - g(k) \cdot \cos(\omega_g T)) + g(k) \cdot \cos(2\omega_g T)$$
$$g(k+2) = -g(k) + 2\cos(\omega_g T) \cdot g(k+1)$$

Получили следующую систему уравнений:

$$\begin{cases} \xi_{g_1}(k+1) = \xi_{g_2}(k) \\ \xi_{g_2}(k+1) = -g(k) + 2\cos(\omega_g T) \cdot g(k+1) \\ g(k) = \xi_{g_1}(k) \end{cases}$$

Таким образом, дискретная модель командного генератора имеет вид:

$$\begin{bmatrix} \xi_{g_1}(k+1) \\ \xi_{g_2}(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 2\cos\left(\omega_g T\right) \end{bmatrix} \begin{bmatrix} \xi_{g_1}(k) \\ \xi_{g_2}(k) \end{bmatrix},$$

$$g(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \xi_{g_1}(k) \\ \xi_{g_2}(k) \end{bmatrix}, \qquad \xi_g(0) = \begin{bmatrix} 0 \\ A_g sin(\omega_g T) \end{bmatrix}.$$

$$\Gamma_g = \begin{bmatrix} 0 & 1 \\ -1 & 2\cos\left(\omega_g T\right) \end{bmatrix}, \qquad H_g = \begin{bmatrix} 1 & 0 \end{bmatrix}.$$

Аналогичным образом, построим модель для дискретного линейного воздействия

$$\begin{bmatrix} \xi_{g_1}(k+1) \\ \xi_{g_2}(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} \xi_{g_1}(k) \\ \xi_{g_2}(k) \end{bmatrix},$$

$$g(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \xi_{g_1}(k) \\ \xi_{g_2}(k) \end{bmatrix}, \qquad \xi_g(0) = \begin{bmatrix} g_0 \\ g_0 + g_1 T \end{bmatrix}.$$

$$\Gamma_g = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}, \qquad H_g = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

После подстановки заданных по условию параметров будем иметь следующую модель:

$$\Gamma_g = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}, \qquad H_g = \begin{bmatrix} 1 & 0 \end{bmatrix},$$

которая при различных начальных условиях будет реализовывать различные входные воздействия:

$$\xi_g(0) = \begin{bmatrix} 4\\4 \end{bmatrix} \rightarrow g(k) = 4$$

$$\xi_g(0) = \begin{bmatrix} 0\\0 \end{bmatrix} \rightarrow g(k) = 0$$

5. Моделирование модели входного воздействия

Рисунок 3. Входное воздействие при $\xi_g(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Рисунок 4. Входное воздействие при $\xi_g(0) = {4 \brack 4}$.

Как видно по графикам, выход дискретной модели генератора соответствует требуем аналитическим выражениям. Их можно варьировать при различных начальных условиях.

6. Синтез управляющих воздействий

Синтезируем управляющие воздействия, обеспечивающие слежение за входных воздействием с нулевой установившейся ошибкой, а также обеспечим оптимальность замкнутой системы по времени.

Проверим ОУ на управляемость:

$$rank \begin{bmatrix} 0.1 & 0.25 \\ 0.39 & 0.23 \end{bmatrix} = 2$$

ОУ полностью управляем.

Вид модели ошибок:

$$e(k+1) = A_d e(k) - B_d u + B_d L_g \xi_g(k)$$

Найдем матрицу согласования размерностей векторов состояния дискретного объекта управления и модели входного воздействия M_g и матрицу прямых связей L_a :

$$\begin{cases} H_g = CM_g \\ B_d L_g = M_g \Gamma_g - A_d M_g \end{cases}$$

$$\begin{cases} M_g = \begin{bmatrix} 1.9 & 0 \\ -3.8 & 3.8 \end{bmatrix} \\ L_g = \begin{bmatrix} -4 & 4 \end{bmatrix}$$

Из условия оптимальности замкнутой системы сформируем эталонную модель:

$$\begin{cases} \xi(k+1) = \Gamma_d \xi(k) \\ \nu(k) = H_d \xi(k) \end{cases}$$
$$\begin{cases} \Gamma_d = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \\ H_d = \begin{bmatrix} 1 & 0 \end{bmatrix} \end{cases}$$

Теперь найдем матрицу ЛСОС $K_{\rm oc}$ решив систему уравнений:

$$\begin{cases} B_d H_d = M \Gamma_d - A_d M \\ K_{oc} = H_d M^{-1} \end{cases}$$

$$\begin{cases} M = \begin{bmatrix} 0.15 & 0.6 \\ -0.65 & -1.1 \end{bmatrix} \\ K_{oc} = [-5.1457 & -2.6] \end{cases}$$

Для проверки вычислений матрицы K_{oc} найдем корни характеристического уравнения замкнутой системы:

$$eig(A_d + B_d K_{oc}) = \{0,0\}$$

Корни те же, что и у выбранной эталонной модели, значит расчет верен.

Для проверки же ошибки слежения необходимо провести моделирование замкнутой системы.

7. Моделирование замкнутой системы

Рисунок 5. Схема моделирования дискретной системы слежения за задающим воздействием.

Моделирование будем проводить при начальном условии вектора задающих воздействий $\xi_g(0) = {4 \brack 4}.$

Рисунок 6. Графики g(kT), y(kT) замкнутой системы слежения.

Рисунок 7. Графики компонент вектора ошибок замкнутой системы слежения.

Так как ошибка слежения e с течением времени стремится к нулевому значению, то есть выполняется цель управления $\lim_{t\to\infty}e(k)=0$ и заданное качество переходных процессов (оптимальность по времени) достигнуто, то можем заключить что синтезированное управление для слежения за задающим воздействием верно рассчитано.

8. Дискретная модель внешних воздействий

Внешнее воздействие может быть представлено в виде:

1.
$$f(t) = A_f \sin \omega_f t$$

2.
$$f(t) = f_0 + f_1 t$$

Построим математическую модель командного генератора для непрерывного гармонического сигнала

$$f(t) = A_f \sin \omega_f t$$

Дискретный вид:

$$f(kT) = A_f \sin \omega_f kT$$

Дискретная модель командного генератора имеет вид:

$$\begin{bmatrix} \xi_{f_1}(k+1) \\ \xi_{f_2}(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 2\cos(\omega_f T) \end{bmatrix} \begin{bmatrix} \xi_{f_1}(k) \\ \xi_{f_2}(k) \end{bmatrix},$$

$$f(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \xi_{f_1}(k) \\ \xi_{f_2}(k) \end{bmatrix}, \quad \xi_f(0) = \begin{bmatrix} 0 \\ A_f \sin(\omega_f T) \end{bmatrix}.$$

$$\Gamma_f = \begin{bmatrix} 0 & 1 \\ -1 & 2\cos(\omega_f T) \end{bmatrix}, \quad H_f = \begin{bmatrix} 1 & 0 \end{bmatrix}.$$

Аналогичным образом, построим модель для непрерывного линейного воздействия

$$f(t) = f_0 + f_1 t$$

Дискретный вид

$$f(kT) = f_0 + f_1 kT$$

Дискретная модель командного генератора имеет вид:

$$\begin{bmatrix} \xi_{f_1}(k+1) \\ \xi_{f_2}(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} \xi_{f_1}(k) \\ \xi_{f_2}(k) \end{bmatrix},$$

$$f(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \xi_{f_1}(k) \\ \xi_{f_2}(k) \end{bmatrix}, \qquad \xi_f(0) = \begin{bmatrix} f_0 \\ f_0 + f_1 T \end{bmatrix}.$$

$$\Gamma_f = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}, \qquad H_f = \begin{bmatrix} 1 & 0 \end{bmatrix}.$$

После подстановки заданных по условию параметров будем иметь следующую модель:

$$\Gamma_g = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}, \quad H_g = \begin{bmatrix} 1 & 0 \end{bmatrix},$$

которая при различных начальных условиях будет реализовывать различные входные воздействия:

$$\xi_g(0) = \begin{bmatrix} 1.5 \\ 1.5 + 4.5T \end{bmatrix} \to g(k) = 1.5 + 4.5kT$$

$$\xi_g(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \to g(k) = 0$$

9. Моделирование внешнего возмущающего воздействия

Рисунок 8. Возмущающее воздействие при $\xi_f(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Рисунок 9. Возмущающее воздействие при $\xi_f(0) = \begin{bmatrix} 1.5 \\ 1.5 + 4.5T \end{bmatrix}$.

Как видно по графикам, выход дискретной модели генератора соответствует требуем аналитическим выражениям. Их можно варьировать при различных начальных условиях.

10. Синтез алгоритма управления

Закон управления в случае ненулевых внешних воздействий будет иметь следующий вид:

$$u(k) = K_{oc}e(k) + L_g\xi_g(k) - L_f\xi_f(k),$$

где L_g — матрица коэффициентов прямых связей по задающему воздействию, L_f — матрица коэффициентов прямых связей по возмущающему воздействию.

Матрицы K_{oc} , L_g были найдены ранее, остается лишь найти матрицу L_f из выражения:

$$B_d L_f = B_{df} H_f$$
$$L_f = [2 \ 0].$$

11. Моделирование замкнутой системы

Рисунок 10. Схема моделирования системы слежения ОУ за задающим воздействием при наличии возмущений.

Моделирование выполнено при следующих начальных условиях:

$$\xi_g(0) = {4 \brack 4}, \qquad \xi_f(0) = {1.5 \brack 1.5 + 4.5T}.$$

Рисунок 11. Графики g(kT), y(kT) замкнутой системы слежения с возмущениями.

Рисунок 12. Графики компонент вектора ошибок замкнутой системы слежения с возмущениями.

Рисунок 13. График возмущающего воздействия.

Так как ошибка слежения e с течением времени стремится к нулевому значению несмотря на возмущающее воздействие, то есть выполняется цель управления $\lim_{t\to\infty}e(k)=0$ и заданное качество переходных процессов (оптимальность по времени) достигнуто, то можем заключить что синтезированное управление для слежения за задающим воздействием верно рассчитано.

4. Выводы

В данной лабораторной работе изучался синтез дискретных алгоритмов управления. Была дана передаточная функция непрерывной модели ОУ, которую требовалось перевести в дискретный вид и решить задачу слежения.

Целью управления было сведение нормы вектора ошибки от выхода системы к выходу генератора задающего воздействия к нулю, то есть

$$\lim_{t\to\infty}e(k)=\lim_{t\to\infty}(x(k)-\xi_g(k))=0.$$

Также для обеспечения определенного качества переходных процессов была синтезирована эталонная модель. По условию, необходимо было добиться оптимальности по времени, то есть корни характеристического уравнения замкнутой системы должны быть равны нулю.

В системе также присутствовали внешние возмущения, которые задавались дискретным командным генератором второго порядка.

Стоит отметить, что при формировании генераторов задающего и возмущающего воздействий использовался метод последовательного взятия разности.

В итоге, вид закона управления, следующий:

$$u(k) = K_{oc}e(k) + L_g\xi_g(k) - L_f\xi_f(k),$$

где L_g — матрица коэффициентов прямых связей по задающему воздействию, L_f — матрица коэффициентов прямых связей по возмущающему воздействию.

С помощью данного регулятора удалось достичь поставленной цели управления.