Рачунарске мреже - писмени испит

На основу дате топологије одговорити на питања. За навођење МАС адресе искористити комбинацију име уређаја-име интерфојса, нпр. Хост1-Ф0 или Р3-Г01. Мањи број у називу рутера има мању IP адресу из опсега, нпр. адреса интерфојса Р1 у мрежи 2 је 192.168.1.149 или адреса интерфојса Р3 у мрежи 4 је 192.168.1.154. На рутеру Р4 је имплементиран NAT тако да се све приватне адресе преводе у адресу његовог интерфојса Г0/0. У мрежама гдје се напазе уређаји рутери имају прву употребљиву адресу из опсега, а уређаји последњу.

- Умплементирати статичко рутирање на свим рутерима. Руте написати у облику мрежа маска излазни интерфејс/пехt hop (next hop користити само у случајевима у којима није дозвољено кориштење излазног интерфејса). (8)
- (2) Ако се у browser хоста 1 унесе <u>www.etf.com</u>, одговорити на сљедећа питања. Напомена. АRP и DNS кеш хоста 1 су празни, статичко рутирање из питања 1 се не узима у обзир. Примјер дијела путање за наредна питања: X1 P1 P2 P4...
- (2.1) Налисати путању у оба смјера уколико су на свим рутерима имплементирани протоколи RIP и OSPF и додатно је на рутеру Р2 извршена команда: гр гоце 192.168.1.0 255.255.255.128 192.168.1.145. Објаснити. (3)
- 22 Написати путању у оба смјера уколико је на свим рутерима имплементиран протокоп RIP и додатно на рутеру Р1 извршена команда: ip route 192.168.1.156 255.255.255.255 Gig0/1. Објаснити. (3)
- 2.3) Написати путању у оба смјера уколико је на свим рутерима имплементиран протокол OSPF и додатно на рутеру Р1 извршена команда: ip route 0.0.0.0 0.0.0.0 Fa0/0/1. Објаснити (2)
- 2.4 Исписати све поруке уколико је на свим рутерима имплементиран протокол OSPF и додатно на рутеру Р1 извршена команда је route 192.168.1.128 255.255.255.240 Fa0/0/1. Поруке написати у облику Тип поруке Број мреже S. MAC D. MAC S. IP D. IP S. Port D. Port. Напомена: поруке за успостављање конекције није потребно наводити. (16)
- (2.5 Колико ARP захтјева ће бити послато од стране хоста 17 Објаснити. (2)
- 2.6) Шта је све потребно конфигурисати на хосту 1 и DNS серверу како би процес завршио успјешно. Напомена: претпоставити да су IP адресе уређаја већ постављење. (3)
- Навести називе DHCP порука у редослиједу извршавања у тренутку повезивања новог уређаја у мрежу Додатно навести парове МАС и IP адреса за сваку од порука. (3)

1.Zadatak

R1: 0.0.0.0 – 0.0.0.0 -via Gig0/1(jer Gig interfejsi su mnogo brži no Fa interfejsi..)

R2: 0.0.0.0 – 0.0.0.0 -via Gig0/1 192.168.1.0 – 255.255.255.128 via Gig0/0 192.168.1.148 -255.255.255.252 via Gig0/0

R3: 0.0.0.0 – 0.0.0.0 -via Gig0/0 192.168.1.0 – 255.255.255.128 via Gig0/1 192.168.1.144 – 255.255.255.252 via Gig0/0

R4: 0.0.0.0 – 0.0.0.0 -via Gig0/0 192.168.1.0 – 255.255.255.128 via Gig0/0 192.168.1.148 -255.255.255.252 via Gig0/1 192.168.1.144 – 255.255.255.252 via Gig0/1 192.168.1.152 – 255.255.255.252 via Gig0/1

R5: 0.0.0.0 - 0.0.0.0 -via Gig0/1

2. Zadatak

2.1)

Oba protkola!!

Gledamo u tabelu rutiranja, gledamo administrativne distance:

C-0, Static-1, OSPF-110, RIP-120, a DefaultRoute je poslednje što se gleda..

(Host1 - R1 - Host1 - R1) - R3 - R2 - R4 - DNS server - R4 - R2 - R1 - Host1 - R1 - R3 - R2 - R4 - R5 - WebServer - R5 - R4 - R2 - R1 - Host1

Caka je bila u tome da se prilikom DNS Response i HTTP Response saobraćaj odvija sa R4 na R2 pa na R1..Razlog tome je naravno posebna implementacija statičke rute na ruteru R2.

2.2)

(Host1 – R1 – Host1 – R1) – R2 – R4 – DNS Server – R4 – R2 - R1 – Host1 – R1 – R2 – R4 – R5 - WebServer – R5 – R4 – R2 – R1 – Host1

Caka je bila u tome da se statička ruta rutera R1 zanemaruje jer ista nema uticaj na putanju između izvora i destinacije...slušamo RIP..

Trik u 2.1 i 2.2 je bio da razmišljaš kao ruter, pri svakom novom slanju paketa, dužan si da pogledaš u svoju tabelu rutiranja!!

2.3) Statička ruta je Deafult Route što se poslednje gleda u tabeli rutiranja..

(Host1 - R1 - Host1 - R1) - R3 - R2 - R4 - DNS Server - R4 - R2 - R3 - R1 - Host1 - R1 - R3 - R2 - R4 - R5 - WebServer - R5 - R4 - R2 - R3 - R1 - Host1

- 2.5) Samo jedan ARP zahtjev. Prije nego što uopšte može da izađe van svoje mreže, Host1 šalje ARP Request kako bi naučio par (IP,MAC) svog Default Gateway-a.
- 2.6) Oba uređaja moraju imati ispravno podešeno IP, Subnet Mask i Default Gateway **stim još da DNS server mora imati i "A Record" tj.tabelu mapiranja tekstualnaAdresa NjenaIPAdresa!**

ARP-Request Mreža1 Host1Mac unknown Host1IP R1IP ARP-Reply Mreža1 R1Mac Host1Mac R1IP Host1IP

Idemo: Host1 - R1 - R2 - R4 - DNS

DNS-Query Mreža1 Host1Mac R1Mac Host1IP DNS_IP 1024+ 53

DNS-Query Mreža3 R1Mac R2Mac Host1IP DNS IP 1024+ 53

DNS-Query Mreža5 R2Mac R4Mac Host1IP DNS IP 1024+ 53

DNS-Query Mreža6 R4Mac DNS ServerMac Host1IP DNS IP 1024+ 53

Idemo: DNS - R4 - R2 - R3 - R1 - Host1 - NAT!!

DNS-Response Mreža6 DNSMac R4Mac DNS IP Host1IP 53 1024+

DNS-Response Mreža5 R4Mac R2Mac DNS_IP Host1IP 53 1024+

DNS-Response Mreža4 R2Mac R3Mac DNS IP Host1IP 53 1024+

DNS-Response Mreža2 R3Mac R1Mac DNS IP Host1IP 53 1024+

DNS-Response Mreža1 R1Mac Host1Mac DNS IP Host1IP 53 1024+

Slušamo OSPF!! R4(NAT!)interfejsGigO/OIP zamjeni sa WebServerIP!!

HTTP-Request Mreža1 Host1Mac R1Mac Host1IP R4(NAT!)interfejsGig0/OIP 1024+80

HTTP-Request Mreža2 R1Mac R3Mac Host1IP R4(NAT!)interfejsGig0/OIP 1024+80

HTTP-Request Mreža4 R3Mac R2Mac Host1IP R4(NAT!)interfejsGig0/OIP 1024+80

HTTP-Request Mreža5 R2Mac R4Mac Host1IP R4(NAT!)interfejsGig0/OIP 1024+80

HTTP-Request Mreža7 R4Mac R5Mac R4(NAT!)interfejsGig0/0IP WebServerIP 1024+80

HTTP-Request Mreža8 R5Mac WebServerMac R4(NAT!)interfejsGig0/OIP WebServerIP 1024+ 80

–zbog statičke rute!

Slušamo OSPF!!

HTTP-Response Mreža8 WebServerMac R5Mac WebServerIP R4(NAT!)interfejsGig0/0IP 80 1024+

HTTP-Response Mreža7 R5Mac R4Mac WebServerIP R4(NAT!)interfejsGig0/0IP Host1IP 80 1024+

HTTP-Response Mreža6 R4Mac R2Mac R4(NAT!)interfejsGig0/0IP Host1IP 80 1024+

HTTP-Response Mreža4 R4Mac R3Mac R4(NAT!)interfejsGig0/0IP Host1IP 80 1024+

HTTP-Response Mreža2 R3Mac R1Mac R4(NAT!)interfejsGig0/0IP Host1IP 80 1024+

HTTP-Response Mreža1 R1Mac Host1Mac R4(NAT!)interfejsGig0/0IP Host1IP 80 1024+

3. Zadatak.

DORA!!

1) DHCP Request	1)[DHC	P Re	que	st
-----------------	-----	-----	------	-----	----

SourceMac	SourceIP	DestinationMa	ac DestinationII	P SourcePort DestPo	
HostMac	0.0.0.0	ff.ff.ff.ff	255.255.255.255	68	67

2) DHSCP OFFER

SourceMac	SourceIP	DestinationMac	DestinationIP	SourcePort DestPort	
DHCP MAC	DHCP	HostMac	255.255.255.255	67	68

3) DHCP Request

SourceMac	SourceIP	Destination	Mac	Destination	Р	SourcePort DestPort
HostMac	0.0.0.0	ff.ff.ff.ff	255.	255.255.255	68	67

4) DHCP ACK

2) DHSCP OFFER

SourceMac	SourceIP	DestinationMac	DestinationIP	SourcePo	ort DestPort
DHCP_MAC	DHCP	HostMac	255.255.255.255	67	68