

COMPUTAÇÃO GRÁFICA

Apresentação da Disciplina

Método de Avaliação

António Ramires arf@di.uminho.pt

Programa Resumido

• Teóricas

- Produção de gráficos 3D
- Transformações Geométricas
- Curvas e Superfícies
- Iluminação
- Texturas
- Análise de Desempenho
- Técnicas de Optimização

Práticas

- OpenGL
- Programação Orientada ao Evento

Produção de Gráficos 3D

Produção de Gráficos 3D

Como produzir esta imagem?

Construção de Modelos 3D

- Modelação
 - Processo de construção de um modelo recorrendo a:

- Superfícies definidas analiticamente
 - Superficies Cúbicas (ex: Bezier, NURBS)
 - Subdivisão de Superfícies

• Junção de Polígonos

 Mas, no fim do dia, quando os dados são enviados para a placa gráfica, tudo é transformado em

Triângulos

Construção de Modelos 3D

- Triângulos
 - Porquê triângulos?

Construção de Modelos 3D

- Triângulos
 - Propriedades:
 - É o polígono mais simples e tudo pode ser construído à custa de triângulos
 - Logo é suficiente
 - É garantidamente <u>convexo</u>
 - Mais fácil para "pintar"
 - É garantidamente <u>plano</u>
 - Não levanta ambiguidades

Pipeline Gráfico

- Compor a cena
 - Transformações geométricas dos vértices dos triângulos
 - Modelos são posicionados para constituir um cenário 3D
 - Câmara é posicionada para fornecer a vista pretendida
 - Projecção 3D -> 2D

Pipeline Gráfico

- Pintar a cena
 - Preenchimento da superfície dos triângulos
 - <u>Iluminação</u> e <u>Materiais</u>

Para as restantes aulas...

Transformações Geométricas

- Composição de Objectos para formar uma cena
- Câmara
- Projecções

Curvas e Superfícies

Curvas e Superfícies

- Curvas definidas a partir de pontos de controle
- Objectos e câmaras podem ser posicionados e orientados para seguir a curva

Iluminação

- Iluminação Local vs. Global
- Métodos e Algoritmos

Texturas

- Aplicação e Definição
- Amostragem
- Mapeamento do Ambiente

Análise de Desempenho

- Pipeline Gráfico
- Identificação de Estrangulamentos
- Profiling

"Premature optimization is the root of all evil."

— Donald Knuth

Técnicas de Optimização

- Eliminação de geometria não visível
- Partição espacial
- Transferências de Memória

Avaliação

Avaliação

Trabalho Prático

- Enunciado disponível no blackboard
- Valoração : 50% da nota final
- Nota mínima: 9 valores
- Grupos: até 4 elementos
- 4 Check points ao longo do semestre com entregas obrigatórias
 - código + relatório parcial
 - 6 de Março, 27 Março, 24 Abril, 15 de Maio

• Teste/Exame Teórico

- Valoração: 50% da nota final
- Nota mínima: 9 valores

Blackboard

• BlackBoard:

- Apontamentos e referências
- Enunciados (aulas práticas, trabalho)
- Bibliografia e Links
- Avisos
- Dossier da Unidade Curricular (programa, sumários, etc...)
- Pautas

Computação Gráfica

Questões?