Respuestas Repaso Primer Parcial-2

1)

e.
$$Dom_f=R-\{0\}$$
 $C^0=\left\{-rac{1}{2^{rac{2}{3}}}
ight\}$ $C^+=(-rac{1}{2^{rac{2}{3}}},0)$ $C^-=\left(-\infty\;;\;-rac{1}{2^{rac{2}{3}}}
ight)\cup R^+$

- f. x = 0 asíntota vertical
- g. f es creciente en $(-\infty, 0)$ y en $(0; \frac{1}{2})$ f es decreciente en $(\frac{1}{2}; +\infty)$ f(1/2) valor máximo relativo
- intervalos de concavidad positiva: $\left(-\frac{1}{2},0\right)$

intervalos de concavidad negativa : $\left(-\infty; -\frac{1}{2\sqrt{3}}\right) \cup \left(0; +\infty\right)$

 $\left(-\frac{1}{2};\mathbf{0}\right)$ punto de inflexión

e. $Img_f = R$

b)
$$f(x) = \frac{x^2}{x^2-4} - \frac{4}{3}$$

• $Dom_f = R - \{-2, 2\}$ $C^0 = \{-4, 4\}$ $C^+ =$

 ${\it C}^-=(-\infty\ ;\ -4)\cup(-2,2)\cup(4+\infty)$ $x=2\ ; x=-2$ asíntotas verticales y=-1/3 asíntota horizontal

- f es creciente en $(-\infty, -2)$ y en (-2; 0)
- f es decreciente en (0,2) y en $(2; +\infty)$

intervalos de concavidad negativa: (-22)

intervalos de concavidad positiva : $(-\infty; -2) \cup (2; +\infty)$

•
$$Img_f = \left(-\infty; -\frac{4}{3}\right] \cup \left(-\frac{1}{3}; +\infty\right)$$

c)
$$f(x) = e^{-x^2}$$

- $\begin{array}{ll} \bullet & Dom_f = R & C^0 = \emptyset & C^+ = R \\ \bullet & y = 0 & \text{as\'intota horizontal} \\ \bullet & f \ es \ creciente \ en \ (-\infty, 0) & f \ es \ decreciente \ en \ (0; \ +\infty) \end{array}$

f(0) valor máximo relativo

• intervalos de concavidad negativa: $\left(-\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}\right)$

intervalos de concavidad positiva : $\left(-\infty\;;\;-\frac{1}{\sqrt{2}}\right)\cup\left(\frac{1}{\sqrt{2}}\;;\;+\infty\right)$

$$Img_f = (0; 1]$$

c)
$$f(x) = x^2 \cdot \ln(x)$$

• $Dom_f = R^+ = (0; +\infty)$ $C^0 = \{1\}$

$$C^0 = \{1\}$$
 $C^+ =$

$$(1; +\infty)$$
 $C^- = (0; 1)$

- No posee asíntotas
- f es creciente en $\left(\frac{1}{\sqrt{e}}; +\infty\right)$ f es decreciente en $\left(0; \frac{1}{\sqrt{e}}\right)$

 $f\left(rac{1}{\sqrt{e}}
ight)$ valor mínimo relativo

• intervalos de concavidad negativa: $\left(0; \frac{1}{\sqrt{e^3}}\right)$

intervalos de concavidad positiva : $\left(\frac{1}{\sqrt{\rho^3}}; +\infty\right)$

$$\left(rac{1}{\sqrt{e^3}}\,;f\left(rac{1}{\sqrt{e^3}}
ight)
ight)$$
 punto de inflexión

•
$$Img_f = \left[-\frac{1}{2e} ; +\infty \right)$$

d)
$$f(x) = (x-1)e^{\frac{1}{x-3}}$$

- $Dom_f = R \{3\}$ $C^0 = \{1\}$ $C^+ = (1;3) \cup (3:+\infty)$
- $\boldsymbol{c}^{-}=(-\infty;\ \mathbf{1})$
 - x = 3 asíntota vertical

y = x asíntota oblicua

• f es creciente en $(-\infty; 2)$ y en $(5; +\infty)$

f es decreciente en (2; 3) y en (3, 5)

- f(5) valor mínimo relativo f(2) valor máximo relativo
 - intervalos de concavidad negativa: $\left(-\infty; \frac{13}{5}\right)$

intervalos de concavidad positiva : $\left(\frac{13}{5};3\right) \cup \left(3+\infty\right)$

 $\left(\frac{13}{5}; f\left(\frac{13}{5}\right)\right)$ punto de inflexión

2)

a.
$$f(x) = 3x^4 - \frac{3x^2}{2}$$

 $Dom_f = [-1; 0]$

f es creciente en $\left(-rac{1}{2};0
ight)$ f es decreciente en $\left(-1,-rac{1}{2}
ight)$

 $f\left(-rac{1}{2}
ight)$ valor mínimo absoluto f(0) valor máximo absoluto

a.
$$f(x) = e^{-x^2}$$

$$Dom_f = [-1; 2]$$

f es creciente en (-1,0) f es decreciente en (0; 2)

f(0) valor máximo absoluto

f(2) valor mínimo absoluto

3)
$$a = 1$$
 $f'(-1) = \frac{1}{4}$

- 4) 1
- 5) 1/e
- 6) 6/e

7)
$$x = 1$$
 y $x = 3$

8)
$$(-\infty; -1) \cup (\frac{1}{2}; +\infty)$$

- 9) $1/\pi$
- 10)

a.
$$f'(x) = 9cos^2(e^{-x}).sen(e^{-x}).e^{-x} + \frac{12x}{x^2+1}$$

b. $f'(x) = \frac{3x^4+9+(x^5+9x)\ln(2)}{2^{-x+5}\sqrt{x^4+9}}$
c. $f(x) = (senx)^{x^2+x}$

b.
$$f'(x) = \frac{3x^4 + 9 + (x^5 + 9x)\ln(2x)}{2^{-x+5}\sqrt{x^4+9}}$$

c.
$$f(x) = (sen x)^{x^2 + x}$$

$$f'(x) = (senx)^{x^2+x} \cdot [(x^2+x) \cdot cotg(x) + (2x+1) \cdot \ln(senx)]$$

11)

a)
$$f'(x) = \frac{1}{2\sqrt{x+4}}$$

a)
$$f'(x) = \frac{1}{2\sqrt{x+4}}$$

b) $f'(x) = -\frac{15}{(5x-1)^2}$