Gradient Descent

Guowei Wei Department of Mathematics Michigan State University

References:
Duc D. Nguyen's lecture notes
Wikipedia

Artificial Intelligence (AI) Stats News (Sep 10, 2019): 120 Million Workers Need To Be Retrained Because Of AI in the next three years

Gil Press

Importance of Data Science and Machine

Analytical Features for Data Science and Machine

Learning by Function (Copyright 2019 – Dresner Advisory Services) Range of regression models, from

Louis Columbus

Introduction

- In general, the loss function has no analytical solutions. We use Gradient Descent (steepest descent or gradient ascent for local maximum).
- Gradient = direction of the steepest ascent
- Find a local minimum of a function
- Often a first-order iterative optimization algorithm

General Idea

Consider a general function f(c) which can be the loss function of interest

Algorithm

Find a local minimum of a C^1 continuous f(c)

- Start with random value c^0
- Update new value:

$$c^{i+1} = c^i - \alpha \frac{\partial f(c^i)}{\partial c^i}$$

 α : **learning rate**, very small (like 0.01 or smaller)

■ Repeat until
$$\left\| \frac{\partial f(c^i)}{\partial c^i} \right\| \le \text{tolerance}$$

Making Sure Gradient Descent Working Correctly

• Function f(c) should decrease after every iteration (monotonically decreases)

Making Sure Gradient Descent Working Correctly

• Use smaller learning rate α

Very large learning rate

Making Sure Gradient Descent Working Correctly

- Feature scaling:
 - Example: assume features for the house price includes number of bedrooms and living area
 - # of bedrooms between 0 and 5
 - But living area between 1 and 5000 feet²
 - Make all features have the same level of magnitude

Application for Minimizing Loss Function

• <u>Linear regression</u>: loss function for predictor $p_{\mathbf{c}}(x) = c_0 + c_1 x$ is

$$L(c_0, c_1) = \sum_{i=1}^{M} (p(x^{(i)}) - y^{(i)})^2$$
$$= \sum_{i=1}^{M} (c_0 + c_1 x^{(i)} - y^{(i)})^2$$

Use gradient descent to $\min_{c_0,c_1} L(c_0,c_1)$

Application for Minimizing Loss Function

• Step 1: Assign initial values for c_0, c_1 :

$$c_0 = 0, c_1 = 1$$

• Step 2: Update the change in values for c_0 , c_1 :

$$c_0 \coloneqq c_0 - \alpha \frac{\partial}{\partial c_0} L(c_0, c_1)$$

$$= c_0 - \alpha \sum_{i=1}^{M} 2(c_0 + c_1 x^{(i)} - y^{(i)})$$

Step 2: (continue)

$$c_1 \coloneqq c_1 - \alpha \frac{\partial}{\partial c_1} L(c_0, c_1)$$

$$= c_1 - \alpha \sum_{i=1}^{M} 2x^{(i)} (c_0 + c_1 x^{(i)} - y^{(i)})$$

Step 3: Repeat Step 2 until it converges

Logistic regression: do it similarly

- Stochastic gradient descent (SGD):
- Herbert Robbins and Sutton Monro (1951)
- Good for large/huge data sets
 - 1) Choose an initial parameter set c and learning rate α
 - 2) Randomly shuffle samples in the training set to update *c*

$$c \coloneqq c - \alpha \frac{\partial}{\partial c} L(c, x^{(i)}, y^{(i)}), i = 1, 2, ..., M$$

(Note: no sum over *i*)

3) Repeat 2) until the convergence is reached.

SGD with momentum: accelerate SGD

$$\boldsymbol{v} \coloneqq \gamma \boldsymbol{v} + \alpha \frac{\partial}{\partial \boldsymbol{c}} L(\boldsymbol{c}, \boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)})$$
$$\boldsymbol{c} \coloneqq \boldsymbol{c} - \boldsymbol{v}$$

https://distill.pub/2017/momentum/

- Adaptive learning rates are often used.
- If multiple passes are needed, the data can be shuffled for each pass to prevent cycles.

- A Method for Stochastic Optimization (Adam) by Kingma & Ba, 2015: An efficiency version of SGD using first and second order momentum, well suited for large data set problems
- Kalman-based Stochastic Gradient Descent: SIAM Journal on Optimization. 26 (4): 2620–2648.
 arXiv:1512.01139

High-order SGD

$$egin{aligned} oldsymbol{g} &\coloneqq rac{\partial}{\partial oldsymbol{c}} Lig(c, x^{(i)}, y^{(i)} ig) & ext{(Compute gradient)} \ oldsymbol{m} &\coloneqq eta_1 oldsymbol{m} + (1 - eta_1) oldsymbol{g} & ext{(Update 1st order momentum)} \ v &\coloneqq eta_2 v + (1 - eta_2) oldsymbol{g}^2 & ext{(Update 2nd order momentum)} \ &\widehat{oldsymbol{m}} &\coloneqq rac{oldsymbol{m}}{eta_1^k} & ext{(Compute corrected-1st order momentum)} \ &\widehat{v} &\coloneqq rac{v}{eta_2^k} & ext{(Compute corrected-2nd order momentum)} \ & c &\coloneqq c - lpha rac{\widehat{oldsymbol{m}}}{\sqrt{\widehat{v}} + \epsilon} & ext{(Update parameters)} \end{aligned}$$

Adaptive Gradient Descent

Barzilai-Bowein method (for L(c) convex and $\frac{\partial}{\partial c}L(c)$ Lipschitz):

$$\boldsymbol{\alpha}^{n} = \boldsymbol{c}^{n-1} - \alpha^{n} \frac{\partial}{\partial c} L(\boldsymbol{c})$$

$$\alpha^{n} = \frac{(\boldsymbol{c}^{n} - \boldsymbol{c}^{n-1})^{T} \left[\frac{\partial}{\partial c} L(\boldsymbol{c}) \Big|_{\boldsymbol{c} = \boldsymbol{c}^{n}} - \frac{\partial}{\partial c} L(\boldsymbol{c}) \Big|_{\boldsymbol{c} = \boldsymbol{c}^{n-1}} \right]}{\left\| \frac{\partial}{\partial c} L(\boldsymbol{c}) \Big|_{\boldsymbol{c} = \boldsymbol{c}^{n}} - \frac{\partial}{\partial c} L(\boldsymbol{c}) \Big|_{\boldsymbol{c} = \boldsymbol{c}^{n-1}} \right\|^{2}}$$

Convex => the global minimum!

Other potential mathematical approaches:
Explicit Euler, implicit Euler, Crank–Nicholson,
leapfrog, Guass–Legendre Runge–Kutta, Guass–
Radau Runge–Kutta, Gauss–Lobatto Runge–Kutta,
symplectic Runge–Kutta, Adams–Bashforth, Adams–
Moulton, Strong stability preserving, hybrid multistepmultistage methods and adaptive SGD.
(http://users.math.msu.edu/users/wei/paper/p175.pdf)

Pros and Cons of Gradient Descent

Pros

- Can be applied for any dimensional space
- Nonlinear problems
- Easy to implement

Cons:

- Local optima problem
- Slowly to reach the local minimum
- Cannot be applied for discontinuous functions

- Sample noise (uncertainty in $\{y^{(i)}\}$)
- Parameter linear dependence (in $\{c_i\}$)
- Manifold properties:
 - Smoothness -- differentiability
 - Convex/concave
 - > Tangent bundle/cotangent bundle
 - Topological structure of the tangent space
 - **>** ...

Not to be confused with

- Method of steepest descent (for integrals)
- Conjugated gradient method