A note on scale

We will use the Aitchison compositional scale (acomp):

- 1. The stats textbook recommends using acomp for count data,
 - 2. The underlying distribution is likely acomp
 - 3. The total of the composition is large enough to avoid

random selection error in counts

D21

Day 21 only (1000s)

Graphical Exploration of Composition

Untransformed Composition

CLR-transformed Composition

ILR-transformed Composition

Composition after treating missing values

Untransformed Composition

CLR-transformed Composition

ILR-transformed Composition

Testing for normality and other assumptions

Current Aitch. Composition

Count Composition (ccomp)

Centered Aitch. Composition

Centered Aitch. Composition

Descriptive Stats

Boxplot of pairwise ration

Boxplot of pairwise ration (not centered)

Univariate Approaches

Composition by factor

Composition against ...

Means and Variances from ilr(Y)~X

Ternary Diagrams of Residuals

Granu Lymph

Boxplots of Residuals

Multivariate Approaches (PCA and LDA)

