AEROCLASS TECHNOLOGIES

YR - 93 Pterodactyl Final Briefing

C1C Paul Copioli C1C Sean Gookin C1C Scott Hufford

Approved for gualic released Distribution Contraction

DIIC QUALITY INSPECTED 4

BMD TECHNICAL INFORMATION CENTER BALLISTIC MISSILE DEFENSE ORGANIZATION

19980309 021

Accession Number: 6329

Title: Aeroclass Technologies, YR-93 Pterodactyl Final Briefing

Personal Author: Copioli, P.; Gookin, S.; Hufford, S.

Comments on Document: From BMDO/DE, Washington, DC

Abstract: The Pterodactyl Mission is designed to provide localized missile defense by loitering over territory, detecting missile launches, attacking the missile with talons, reposition when required, and provide long endurance coverage.

Descriptors, Keywords: Pterodactylo Yr93 aeroclass technology design concept analysis rationale loiter detection surveillance reconnaissance reposition endurance talon canister mission profile

Pages: 56

Cataloged Date: Jan 06, 1998

Copyrighted or Not: NO

Document Type: HC

Number of Copies In Library: 000001

Record ID: 46032

INTRODUCTION

I. Problem Statement / Mission

Description

II. Design Drivers

III. Concept Description

IV. Alternate Designs

V. Design Analysis and Rationale

VI. Conclusion

Pterodactyl Mission

Provide Localized Missile Defense

- ► Loiter Over Territory
- ▶ Detect Missile Launch
- ▼ Attack Missile with Talons
- Reposition When Required
- Provide Long Endurance Coverage

RFP Mission Requirements

/ Mission Endurance

2000 hours 4000 miles

/ Mission Range

200 pounds

/ Payload

200 knots

Max Cruise Speed Energy Source

solar/electric S.M .1 to -.3

Stability

II. Design Drivers

Design Drivers

Most Restrictive Constraints

- 1. 2,000 Hour Endurance
- 2. Maximum Altitude of 80,000 feet
- a. Increased Survivability
- b. Increased Potential Energy
- 3. Highest Cruise Speed as Possible
 - a. Try for 200 knots
- 4. Minimize Power Required
- a. Reduced Fuel Cell Weight
- b. Reduced Cost

Pterodactyl Concept Description

2. Subsystem Description 1. Overall Description 3. RFP Compliance

1. Overall Description

I. Dimensions

II. Parameters

III. Mission Description

IV. Area Coverage

V. Balsa Wood Glider

VI. Key Mission Elements

VII. Performance

VIII. Constraint Diagram

Descriptive Parameters

Vertical Tails	13 ft	13 ft	7 ft	n 130 sq ft each	N/A	26.6 degrees	NACA 0009
Wings	250 ft	18 ft	4.2 ft	2775 sq ft each	22.5 each	4.7 degrees	LDL101b
Parameter	Span	Root Chord	Tip Chord	Area	Aspect Ratio	Sweep	Airfoil

Pterodactyl Mission Profile

Initial climb 3 hrs covering 100 NM

— Cruise at 80K ft for 9 hours covering 1300 NM.

V = 136 kts

— Night time glide for 3 hours to 50,000 ft.

Night time loiter at 50K ft for 9 hours.

— Day time climb for 8 hours.

— Daytime loiter at 80K ft for 4 hours.

V = 82 kts.

V = 40 kts

Key Mission Elements

- 1. Two struts per wing at fuselage intersection.
- 2. Two struts per wing at outside engine location.
- 3. All 8 struts release after take off.
- 4. 8 landing gear struts are retracted during take off.

Bombay doors Fuselage Diameter Key Mission Elements Talon Placement Rotating Drum

Talon Fires Key Mission Elements Talon Deployment Chute Deploys Talon —

Pterodactyl Performance

,	
40 or 82 kts	Velocity for Min Pwr Req
1.1 g	Sustained Turn
80,000 ft	Max Ceiling
1.6	CI Max
16 kts	Approach Speed
136 kts	Top Cruise Speed
Value	Parameter

Velocity for Minimum Power Required

for both Loiter Altitudes

 Night time loiter at 50,000 ft kts - 82

2. Day time loiter at 80,000 ft

4

Pterodactyl Constraint Diagram

AEROCLASS Technologies

2. Subsystem Description

Aerodynamic Description

II. Stability Description

II. Propulsion System Description

IV. Structures Description

V. Weights and CG

Stability Description Stability Derivative Summary

Stability Derivative	Natural Value	Required Value	Using SAS
Longitudinal			
Cmα	0.014	from -0.5 to -0.1	-0.3
Cmd	-5.15	within range	not needed
Lat-Directional			
Clb	-1.2	slightly high	not needed
ပြ	-0.06	within range	not needed
ပ်	0.001	within range	not needed
Cnr	-0.2	within range	not needed

Stability Description Results on Modes

Damping Ratio Meet Mil-Spec	no	yes	yes	yes	yes
Damping Ratio	1.21	0.29	0.32	= 414 sec	2.59
Natural Frequency	0.01	0.042	0.34	Time to 2X amp	0.00
Mode	Short Period	with SAS	Phugoid	Spiral	Dutch Roll

Propulsion System Description

System Summary

- Power Source
- Solar Cells
- i. CIS-Se (c)iiii. Effective Area = 7576 sq ft
- = 11,587 sq feetiii. Actual Area
 - **Fuel Cells**
- i. 4.0 KW H2O2
- Motors તાં
- 4 General Electric 6.0 horsepower motors
- 1900 RPM
- **Propellors** က
- 4, 16 foot diameter propellers
- 475 RPM (400 ft/sec tip speed)
- Gear box with gear ratio of 4:1

Propulsion Description Final System Efficiencies

Energy Density	2000 Watts/kg	352 W-hrs/kg	N/A	N/A	N/A	A/N
Efficiency	15%	53%	%06	%56	86%	0.374
Component	Solar Cells	Fuel Cells	Motor	Gear	Propeller	Ğ

Structures Description

Composition

- I. Wings
- A. Skin1. MYLAR skin2. solar cells
- solar cells TEDLAR covering
 - ത
- graphite/epoxy composite shell
 foam core
- Tubular Spar
- 1. +-45 degree graphite/epoxy thin tube
 - Fuselage and Vertical Tails
- Standard airframe structures

Structures Description

Finite Element Results

- Actual Results
- Top skin fails in compression
- Wing tip deflection = 22 feet
- Safety factor of 3.5
- Realistic Analysis
- Top skin is flexible in compression
- Span loading was not taken into account

Pterodactyl Final Weight Breakdown

Total Weight = 3255 lbs

RFP Compliance Table Pterodactyl Performance Report

Pterodactyl	136 kts	infinite	infinite	200 pounds	80,000 ft	Solar and Fuel Cells	-0.02
Required	200 kts	2000 hrs	4000 NM	200 pounds	70,000 ft	Solar	.1 to3
Parameter	Max Cruise Speed	Mission Endurance	Mission Range	Payload	Absolute Ceiling	Power Source	Static Margin

IV. Alternate Designs

Peregrine

I. Reference Area = 3600 sq ît II. Wing/Canard Configuration

a. Wing Area = 3600 sq ft

b. Canard Area = 1800 sq ft

c. Canard 10 ft above wing

III. 2 propellers with 2 motors per propeller

IV. No vertical stabilizers

Alternative Designs

Night Owl

Reference Area = 2550 sq ft

- Wing and Canard Configuration
- Wing Area = 2550 sq ft
- Canard Area = 400 sq ft
- Two 15 Foot Diameter Propellers
- One Motor per Propeller
- No Vertical Stabilizers

V. Configuration and Design Justification

- 1. Aerodynamic Analysis
- 2. Stability and Control
- 3. Propulsion
- 4. Weight Breakdown
- 5. RFP Compliance

Aerodynamic Analysis a. Aspect Ratio Comparisons

b. Zero lift Drag

c. Power Required vs Velocity

2. Stability Analysis
a. Longitudinal Sensitivity
b. Lateral-Directional Sensitivity

FLIGHT SIMULATOR TIME

3. Propulsion Analysis

a Fuel Cell and Battery Comparisons b. Solar Cells Considered c. Solar Cell Comparison

Propulsion Analysis

Comparisons
Ē
at
Ď
_
등
Ŏ
<u></u>
3
<u>II</u>

WEIGHT	7195.887	6167.903	3997.715	2398.629	2158.766	1635.429	1199.314	1349.229	1514.923	596,3442
Technological Maturity	Mature	Mature	Experimental	Mature	Mature	Experimental	Experimental	Experimental	Mature	Developing
Specific Energy (W - hrs/kg)	30	35	54	06	100	132	180	160	142.5	352
CELL	NiCd	Lead Acid	NiMH	Zn/AgO	NaS	Li/LiCo2	Li-FeS2	Li- Solid Polymer	H2 O2 Fuel Cell	H2 O2 Fuel Cell

Propulsion Analysis Solar Cells Considered

0.180	0.180	0.180	0.145	0.137	090.0	0.099	0.095	0.150	0.100	0.54
GaAs/Ge7	GaAs/Ge4	GaAs/Ge3.5	Silicon8	Silicon2	a-Si	CIS	Thin film Selenium I	Thin film Selenium II	CdTe	Future Cell (req. to go 200kts)
-	N	ო	4	2	9	_	ω	o	10	Fut
				e7 e4 e3.5	e7 e4 e3.5	s/Ge7 s/Ge4 s/Ge3.5 on8	s/Ge7 s/Ge4 s/Ge3.5 on2	s/Ge7 s/Ge4 s/Ge3.5 on8 on2 film Selenium I	s/Ge7 s/Ge4 s/Ge3.5 on8 on2 film Selenium I	GaAs/Ge7 GaAs/Ge4 GaAs/Ge3.5 Silicon8 Silicon2 a-Si CIS Thin film Selenium I CdTe

CONCLUSION

- Meets all RFP Requirements Except:
- →Max Cruise Speed
- Propulsion
- →Uses Solar Power and Fuel Cells
- →Uses 3 hours of night time glide to
- Solar Cell Cost is Much too High to decrease fuel cell weight
- even Consider Use