STAT5003

Week 9: Tree and Ensemble methods

Dr. Qiuzhuang Sun

Readings and I functions covered

- **1** readings
 - Tree methods covered in Chapter 8 in James, Witten, Hastie, and Tibshirani (2013)
- **R** functions
 - tree::tree (Create Regression and Decision trees)
 - o base::sample (Bagging)
 - ranger::ranger (construct random forests)
 - gbm::gbm (Gradient boosting machines)

Regression/Decision Trees

Decision tree for regression

- Baseball player salary data: how would you stratify it?
 - Salary is colour-coded (NA values coded grey).

Decision tree

• Overall, the tree segments the players into three regions of predictor space:

$$\circ R_1 = \{X \mid \text{Years} < 4.5\}$$

$$\circ \ R_2 = \{X \mid \mathrm{Years} \geq 4.5, \ \mathrm{Hits} < 117.5\}$$

$$\circ R_3 = \{X \mid \text{Years} \ge 4.5, \text{ Hits} \ge 117.5\}$$

Terminology for trees

- In keeping with the tree analogy:
 - \circ The regions R_1 , R_2 , and R_3 are known as terminal nodes.
 - Decision trees are typically drawn upside down, in the sense that the leaves are at the bottom of the tree.
 - The points along the tree where the predictor space is split are referred to as internal nodes.
- In the Baseball player salary tree, the two internal nodes are indicated by the text Years < 4.5 and Hits > 117.5.

Interpretation of Results

- Years is the most important factor in determining Salary:
 - Players with less experience earn lower salaries than more experienced players.
- Given that a player is less experienced:
 - The number of **Hits** that he made in the previous year seems to play little role in his **Salary**.
- Among players who have been in the major leagues for five or more years:
 - The number of Hits made in the previous year does affect Salary.
 - Players who made more Hits last year tend to have higher salaries.
- Obviously an over-simplification:
 - Compared to some other classification models (such as a regression model), it is easy to display, interpret, and explain.
 - Even easier than linear regression; you can interpret the decision tree to your grandparents:

Details on tree building process

- In theory, the decision regions could have any shape.
- However, we choose to divide the predictor space into high-dimensional rectangles, or boxes, for simplicity and for ease of interpretation of the resulting predictive model
- The goal is to find boxes R_1, \ldots, R_J that minimizes the residual sum of squares (RSS), given by:

$$\sum_{j=1}^J \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

 $\circ \; \hat{y}_{R_{i}}$ is the mean response for the training observations within the $j^{ ext{th}}$ box

Tree building with recursive binary splitting

- It is computationally **infeasible** to consider every possible partition of the feature space into J boxes
- Take a top-down, greedy approach that is known as recursive binary splitting
- The approach is **top-down** because it begins at the top of the tree and then successively splits the predictor space
 - Each split is indicated via two new branches further down on the tree
- It is **greedy** because at each step of the tree-building process, the best split is made at that particular step, rather than looking ahead and picking a split that will lead to a better tree in some future step

Using Decision Trees for prediction

- We divide the predictor space:
 - \circ That is, the set of possible values for X_1, X_2, \ldots, X_p , into J distinct and non-overlapping regions, R_1, R_2, \ldots, R_J .
- For every observation that falls into the region R_j , we make the same prediction, which is simply the mean of the response values for the training observations in R_j .

Decision trees for classification

- Very similar to a regression tree
 - Exception being the prediction of a qualitative response rather than a quantitative one.
- For a classification tree
 - Inspect the region that the observation belongs and predict the most commonly occurring class in that region.

Gini index

- Just as in the regression setting, we use recursive binary splitting to grow a classification tree.
- In the classification setting, RSS cannot be used as a criterion for making the binary splits.
- Alternative measure such as Gini index is used instead.
- The Gini index is defined by

$$G = \sum_{j=1}^J \sum_{k=1}^K {\hat p}_{jk} (1 - {\hat p}_{jk}).$$

 \circ \hat{p}_{jk} represents the proportion of training observations in the $j^{ ext{th}}$ region that are from the $k^{ ext{th}}$ class.

Gini index

- The Gini index is a measure of total variance across the K classes.
 - \circ It takes on a small value if all of the \hat{p}_{jk} values are close to zero or one.
 - This occurs when there is a clear majority class!
- For this reason the Gini index is referred to as a measure of node **purity**.
 - A small value indicates that a node contains predominantly observations from a single class.

Entropy

• An alternative to the Gini index is entropy, given by

$$D = -\sum_{j=1}^J \sum_{k=1}^K {\hat p}_{jk} \log {\hat p}_{jk}$$

• It turns out that the Gini index and the Entropy are very similar numerically

Tree vs linear model

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.

Advantages and disadvantages of trees

Advantages:

- Trees are very easy to explain to people
- Some people believe that decision trees closely relate to human decision-making
- Trees can be displayed graphically
- Can handle different data types and doesn't require scaling

Disadvantages:

• Trees do not have the same level of predictive accuracy as some of the other regression and classification approaches we have discussed

A single decision tree is prone to over-fitting

Ensemble methods via bootstrapping

Ensemble of trees

• An alternative is available than just relying on one tree and hope we make the right decision at each split

Ensemble Methods

- Take a sample of Decision Trees into account
- Calculate which features to use at each split
- Make final prediction model using the **aggregated** result from an **ensemble** of trees

Bagging (Bootstrap Aggregating)

- Bootstrap aggregating, or bagging, is a general purpose procedure for reducing the variance of a statistical learning method.
 - It is particularly useful and frequently used in the context of decision trees.
- Recall that given a set of n independent observations Z_1, \ldots, Z_n each with a variance of σ^2 :
 - The variance of the mean \overline{Z} is given by σ^2/n .
- In other words, averaging a set of observations reduces variance.
- Since it is typically not possible to have access to multiple training sets:
 - We can use **bootstrapping** to create multiple training sets.

Bagging continued

- Use bootstrapping to take repeated samples from a (single) training data set.
- In this approach, we generate *B* different bootstrapped training data sets.
 - \circ Train our method of the $b^{ ext{th}}$ bootstrapping set in order to obtain $\widehat{f}_b^*(x)$, the prediction at a point x.
- Average all the observations to obtain:

$$\widehat{f}(x) = rac{1}{B} \sum_{b=1}^B \widehat{f}_b^*(x).$$

• This is called bagging.

Out of bag error estimation

- It turns out that there is a very straightforward way to estimate the test error of a bagged model.
- Recall that the key to bagging is that trees are repeatedly fit to bootstrapped subsets of the observations.
 - One can show that on average, each bagged tree makes use of around 2/3 of the observations when the sample size n is large.
- The remaining 1/3 of the observations not used to fit a given bagged tree are referred to as the out-of-bag (OOB) observations.
- ullet We can predict the response for the $i^{
 m th}$ observation using each of the trees in which that observation was OOB.
 - \circ This will yield around B/3 predictions for the i^{th} observation, which we average.
 - \circ This estimate is essentially the leave-one-out (LOO) cross-validation error for bagging, if B is large.

From bagging to Random Forest

- Random forests (sometimes) provide an improvement over bagged trees by way of a small tweak that decorrelates the trees. This reduces the variance when we average the trees.
- As in bagging, we build a number of decision trees on bootstrapped training samples.
- But when building these decision trees, each time a split in a tree is considered, a random selection of m predictors is chosen as split candidates from the full set of p predictors.
 - \circ The split is allowed to use only one of those m predictors.
- A fresh selection of m predictors is taken at each split, and typically we choose $m \approx \sqrt{p}$.
 - That is, the number of predictors considered at each split is approximately equal to the square root of the total number of predictors.

Random Forest algorithm pseudocode

```
Set number of models to build, B
for i = 1 to B
   Generate a boostrap sample of the original data
   Train a tree model on this sample where
   for each split
        Randomly select m (< p) of the original predictors
        select the best predictor among the m predictors and parition the data
   endfor
endfor</pre>
```


Ensemble methods via boosting

Boosting

- Like bagging, boosting is a general approach that can be applied to many statistical learning methods for regression or classification. We only discuss boosting for decision trees.
- Recall that bagging involves creating multiple copies of the original training data set using the bootstrap, fitting a separate decision tree to each copy, and then combining all of the trees in order to create a single predictive model.
- Notably, each tree is built on a bootstrap data set, independent of other trees.
- Boosting works in a similar way, except that the trees are grown sequentially.
 - Each tree is grown using information from previously grown trees.

Idea behind boosting

- Unlike fitting a single large decision tree to the data, which amounts to *fitting the data hard* and potentially overfitting, the boosting approach instead *learns slowly*.
- Given the current model, we fit a decision tree to the residuals form the model. We then add this new decision tree into the fitted function in order to update the residuals.
- Each of these trees can be rather small which have just a few terminal nodes.
- By fitting small trees to the residuals, we slowly improve $\widehat{f}(x)$ in areas where it does not perform well.
- There is a shrinkage parameter λ that slows the process down even further, allowing more and different shaped trees to attack the residuals.

Boosting for regression trees

- 1. Set $\widehat{f}\left(x
 ight)=0$ and $r_{i}=y_{i}$ for all i in the training set
 - $\circ r_i$ denotes the $i^{ ext{th}}$ residual, and y_i is the outcome
- 2. For $b = 1, 2, \dots, B$:
 - \circ Fit a tree \widehat{f}_b with d splits (d+1) terminal nodes) to the new training data (X,r)
 - That is, *r* is the new response value
 - \circ Update \widehat{f} by adding in a shrunken version of the new tree
 - $lacksquare \widehat{f}(x) \leftarrow \widehat{f}(x) + \lambda \widehat{f}_b(x)$
 - Update the residuals
 - $lacksquare r_i \leftarrow r_i \lambda \widehat{f}_b(x)$
- 3. Compute the final model

$$\widehat{f}\left(x
ight) = \sum_{i=1}^{B} \lambda \widehat{f}_{b}(x)$$

Parameters to tune in boosting

- Number of trees B
- The shrinkage parameter λ : a small positive number
 - Typical values are between 0.01 and 0.001
- Number of split *d* in each tree
 - Controls the complexity of the boosted ensemble
 - \circ If d=1, then the tree is just a stump. This actually usually works quite well

Other boosting algorithms

- AdaBoost
- Stochastic gradient boosting
- XGBoost

AdaBoost

- Short for Adaptive Boosting, one of the first boosting algorithms for classification
- Convert a set of weak classifiers into a strong one
- Basic idea
 - At each iteration, reweight the data to place more weight on data points that the classifier got wrong
- At the end, combine all the weak classifiers by taking a weighted combination
 - Put more weight on the weak classifiers with the higher accuracies

AdaBoost plot

Final Model

Stochastic gradient boosting

- Use the idea behind bagging
- In each iteration of stochastic boosting, a sample of the training set instead of the full training set is used
- Instead of a bootstrap sample (with replacement), the algorithms samples a fraction of the training set
- This introduced randomness can improve performance
- Paper by Friedman (2002) covers this technique

Stochastic gradient boosting plot

0.5

Fraction randomly sampled

0.6

1.0

0.1

0.2

0.3

• Taken from Friedman (2002)

XGBoost

- XGBoost is short for eXtreme Gradient Boosting
- It is a library for high performance gradient boosting models written in C++ with implementations in Python, R, and Julia
- Designed for speed: up to 10 times faster than the gbm package
- Has been very popular in recent years and has won a number of machine learning competitions (especially on tabular data)
- Supports regularization
- Can handle missing data

Bagging vs Boosting

- ullet Both ensemble methods get N learners from 1 learner
 - Built independently for bagging
 - Built sequentially for boosting
- Trees built in boosting are weak learners (sometimes just a stump) while trees in Random Forest have higher complexity
- Fewer parameters to tune in Random Forest, many more in Boosting (depending on which variation you are using)
- ullet Both combine outputs from N trees

Summary

- Decision trees are simple and interpretable models for regression and classification.
- However, they are often not competitive with other methods in terms of prediction accuracy.
- Bagging, random forests, and boosting are good methods for improving the prediction accuracy of trees.
 - They work by growing many trees on the training data and then combining the predictions of the resulting ensemble of trees.
- The latter two methods, random forests and boosting, are among the state-of-the-art methods for supervised learning.
 - Their results can be difficult to interpret.
 - But we can still get relative importance of each predictor (read the example code).

References

Friedman, J. H. (2002). "Stochastic gradient boosting". In: Computational statistics & data analysis 38.4, pp. 367-378.

James, G., D. Witten, T. Hastie, et al. (2013). *An introduction to statistical learning*. Vol. 112. Springer.