Đề thi Kết thúc môn học, Học kỳ 2 năm học 2019-2020 Môn: Đại số tuyến tính

Trường Đại học Công nghệ - Đại học Quốc gia Hà Nội (*Thời gian làm bài: 120 phút*)

Bài 1. (2 điểm) Cho hệ phương trình với tham số m:

$$\begin{cases} x + my - z = 1 \\ 2x + 2y - 4z = 4 \\ -x + 2y - z = 1 \end{cases}$$

- (a) Giải hệ phương trình trên với m = 0.
- (b) Biện luận số nghiệm của hệ phương trình trên theo tham số m.

Bài 2. (2 điểm) Cho

$$A = \begin{pmatrix} 1 & -3 & 1 \\ m & 2 & 0 \\ 1 & 1 & -3 \end{pmatrix}.$$

- (a) Tìm điều kiện của m để A khả nghịch. Tìm ma trận nghịch đảo của A khi m=0.
- (b) Tìm m để ma trận A có hạng bé hơn 3.

Bài 3 (2 điểm) Cho ánh xạ $T: \mathbb{R}^3 \to \mathbb{R}^3$ được xác định như sau:

$$T(x,y,z) = (y + 2z, 3y + 8z, 4z).$$

- (a) Chứng minh *T* là ánh xạ tuyến tính.
- (b) Tìm ma trân chính tắc (chuẩn tắc) của T.
- (c) Tìm một cơ sở của không gian hạch (hạt nhân) ker(T).
- (d) Véc-tơ (3,1,2) có thuộc không gian ảnh $range(T)=\operatorname{im}(T)=T(\mathbb{R}^3)$ hay không? Vì sao?
- **Bài 4.** (2 điểm) Cho V là không gian con của \mathbb{R}^3 với tích vô hướng thông thường, sinh bởi ba véc-tơ: (1,0,1),(1,1,3),(3,1,5).
 - (a) (1 diểm) Tìm một cơ sở và số chiều của V.
 - (b) (1 điểm) Tìm một cơ sở trực chuẩn của V.

Bài 5. (2 điểm)

Không sử dụng tài liệu, máy tính bảng, điện thoại thông minh. Cán bộ coi thi không giải thích gì thêm.

Đáp án: Đề số 1

Bài 1. (a) Khi m = 0, hệ phương trình đã cho là

$$\begin{cases} x - z = 1 \\ 2x + 2y - 4z = 4 \\ -x + 2y - z = 1 \end{cases}$$

Ta có

$$\left(\begin{array}{cccc} 1 & 0 & -1 & 1 \\ 2 & 2 & -4 & 4 \\ -1 & 2 & -1 & 1 \end{array}\right) \rightarrow \left(\begin{array}{ccccc} 1 & 0 & -1 & 1 \\ 0 & 2 & -2 & 2 \\ -1 & 2 & -1 & 1 \end{array}\right) \rightarrow \left(\begin{array}{ccccc} 1 & 0 & -1 & 1 \\ 0 & 2 & -2 & 2 \\ 0 & 2 & -2 & 2 \end{array}\right) \rightarrow \left(\begin{array}{ccccc} 1 & 0 & -1 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

Do vậy nghiệm của hệ là x = 1 + t, y = 1 + t và z = t với $t \in \mathbb{R}$.

(b) Biện luận số nghiệm của hệ phương trình trên theo tham số m:

Định thức của ma trận hệ số là 6m. Với $m \neq 0$ thì định thức của ma trận hệ số khác không. Do vậy hệ có nghiệm duy nhất.

Khi m = 0 thì hệ có vô số nghiệm (câu (a))

Bài 2. Dùng phép biến đổi sơ cấp về hàng đưa A về dạng sau:

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -2 & -2 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & m-4 \end{pmatrix}.$$

- (a) Hạng A bằng 3 khi và chỉ khi m = 4.
- (b) Ma trận A khả nghịch khi và chỉ khi $m \neq 4$.

Bài 3. (a) Chứng minh theo định nghĩa ánh xạ tuyến tính

(b) Ma trận cần tìm là

$$A = \left[\begin{array}{ccc} 0 & 1 & 2 \\ 0 & 3 & 8 \\ 0 & 0 & 4 \end{array} \right]$$

(c) Qua phép biến đổi sơ cấp hàng ta thu được

$$A \to \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right].$$

Nên

$$\ker T = \{(t,0,0) \colon t \in \mathbb{R}\}.$$

Vậy $\{(1,0,0)\}$ là một cơ sở của ker T và số chiều của ker T là 1.

(d) (3,1,2) không thuộc $\operatorname{im}(T)$ vì phương trình AX = b vô nghiệm với $b = (3 \ 1 \ 2)^t$.

Bài 4. a) Xét
$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 3 \\ 3 & 1 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$
.

Do đó một cơ sở của V là $\{(1,0,1),(0,1,2)\}$. Số chiều của V là 2.

b) Áp dụng trực chuẩn Gram-Schmidt vào hệ gồm hai véc-tơ $v_1=(1,0,1),\,v_2=(0,1,2),$ ta được hệ trực chuẩn

$$\left\{ \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right), \left(\frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \right\}.$$