COMPILER DESIGN

Syntax Directed Translation

TABLEOF CONTENTS

- **□**SDD
- TYPES OF ATTRIBUTES
- ☐ ANNOTATED PARSE TREE
- □ DEPENDENCY GRAPH
- **□**SDT
- TYPES OF SDT

SDD- Syntax Directed Definitions

□SDD=CFG(Productions) + SEMANTIC RULES.

Productions

Semantic Rules

$$E \rightarrow E + T$$

$$E \rightarrow E + T$$
 E.a = E.a + T.a

$$T \rightarrow T * F$$

$$T \rightarrow T * F$$
 T.a = T.a * F.a

- ☐ Where E,T and F are grammar symbols or nodes.
- Left side productions and right side semantic rules.
- ☐ Attributes are associated with grammar symbols.
- ☐ a is the attribute and E.a is the value at node E.

TYPES OF ATTRIBUTES

☐ Synthesized Attributes

If a node takes values from its children

eg: P \rightarrow XYZ, P – Parent node, XYZ – Children nodes.

P.s = X.s

P.s = Y.s

P.s = Z.s

TYPES OF ATTRIBUTES

☐ Inherited Attribute

If a node takes values from either parent node or siblings node.

eg: $P \rightarrow XYZ$

Y.s = P.s , parent node

Y.s = X.s, left sibling

Y.s = Z.s, Right sibling

ANNOTATED PARSE TREE

- ☐ A parse tree which shows values at each nodes.
- ☐ Decorated parse tree.

Productions Semantic Rules

S> E	Print(E.val)
E> E ₁ + T	E.val = E ₁ .val + T.val
E> T	E.val = T.val
T> T ₁ * F	T.val = T ₁ .val * F.val
T> F	T.val = F.val
F> digit	F.val = digit.lexval

ANNOTATED PARSE TREE

DEPENDENCY GRAPH

DEPENDENCY GRAPH

- ☐ Flow of information among the attributes in a parse tree.
- ☐ Order of evaluation for attributes in a parse tree.
- ☐Annotated parse tree shows the value of attributes.
- ☐ Dependency graph helps to determine how those values can be computed.

SYNTAX DIRECTED TRANSLATION - SDT

□SDT= CFG(Productions) + SEMANTIC RULES

Example

 $E \rightarrow XY$

 $E \rightarrow \{\}XY$

 $E \rightarrow X\{\}Y$

 $E \rightarrow XY\{\}$

□ semantic Action – in which order the expression will be evaluated Example 4+5*3

TYPES OF SDT

S attributed SDT

L attributed SDT

acci ibacca 5D i	
) uses only synthesized Atmibutes A XYZ	i) It uses both synthesized of Inherited attribute but the production placed at left of the Attribute eq. A -> XYZ {Y·val = X·val, Z·val = Y·val X·val = A·val, Y·val = A·val
3) semantic Rules placed at the Right end of production E = E + T {E : Yal = E : Val + T : Yal }	2) It is placed anywhele in the rule A→ X \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
3) Evaluation of S-atmouted SDD, we can use Bottom up order of parse tree node	Evaluation of L-attributed SDD, done by depth first & left to right scanning