

REQUIREMENTS FOR REUSABILITY OF RESOURCES

EX 1: A CHOROPLETH MAP

- ... allows us to **compare** data in space
- here: percentage of population taking part in volunteering work

Works under the conditions that:

- Measures share the (attribute)
 Reference System (RS)
- Support regions share the spatial RS
- Support times are identical

EX 2: A SCATTERPLOT

... allows us to combine data

- here: Diabetes rate and Hypertension rate
- Forming a multidimensional space and a joint distribution (co-variance)

Works under the conditions that:

- Measures may have different RS
- Scale level is at least interval
- Support regions are identical
- Support times are identical

HOW CAN WE KNOW THAT IT WORKS?

Traditional metadata covers

content of product

- what?

context of production (provenance):

- who?, tools?, when?

But, ...

Whether it works depends more on how it was generated!

HOW CAN WE KNOW THAT IT WORKS?

... i.e.

- How was it observed?
 - Which reference system?
 - On which scale level?
 - Where and when was it measured?
 - What was support and what was measure?
- How was it derived?
 - How was it combined?
 - How was it compared?

TOWARDS REUSABLE SPATIO-TEMPORAL ANALYSIS

How it was observed ...

1) An LOD vocabulary for ST analysis

Scheider, Tomko (2016): Knowing whether spatio-temporal analysis procedures are applicable to datasets

How it was derived ...

2) A generative algebra for ST analysis

Scheider, Gräler, Pebesma, Stasch (2016): modeling spatiotemporal information generation