```
In [117]:
           import pandas as pd
            import numpy as np
            import seaborn as sns
            import matplotlib.pyplot as plt
            %matplotlib inline
In [118]:
           HS = pd.read_csv('Housing dataset.csv')
In [119]:
           HS.head()
Out[119]:
                  OverallQual YearBuilt TotalBsmtSF
                                                    Electrical GrLivArea FullBath GarageType GarageC
                           7
            0
               1
                                  2003
                                                856
                                                        SBrkr
                                                                   1710
                                                                              2
                                                                                      Attchd
            1
                2
                           6
                                  1976
                                               1262
                                                        SBrkr
                                                                   1262
                                                                              2
                                                                                      Attchd
            2
                3
                           7
                                  2001
                                                920
                                                        SBrkr
                                                                   1786
                                                                              2
                                                                                      Attchd
                           7
                                  1915
                                                756
                                                        SBrkr
                                                                               1
                                                                                      Detchd
                                                                   1717
               5
                           8
                                  2000
                                               1145
                                                        SBrkr
                                                                   2198
                                                                              2
                                                                                      Attchd
In [120]:
           HS.shape
Out[120]: (1418, 13)
```

### Identifying Missing values for accuracy of analysis

```
In [121]: HS.isnull().sum().sort values(ascending=False)
Out[121]: MiscFeature
                          1366
                          1148
           Fence
                           143
           GarageType
           Electrical
                              1
           SalePrice
                              0
           GarageArea
                              0
           GarageCars
                              0
           FullBath
                              0
           GrLivArea
                              0
           TotalBsmtSF
                              0
           YearBuilt
                              0
           OverallQual
                              0
           dtype: int64
```

### Percentage missing values

```
(HS.isnull().sum()/ HS.isnull().count() *100).sort values(ascending=False)
Out[122]: MiscFeature
                          96.332863
                          80.959097
          Fence
          GarageType
                          10.084626
          Electrical
                           0.070522
          SalePrice
                           0.000000
          GarageArea
                           0.000000
          GarageCars
                           0.000000
          FullBath
                           0.000000
          GrLivArea
                           0.000000
          TotalBsmtSF
                           0.000000
          YearBuilt
                           0.000000
          OverallQual
                           0.000000
                           0.000000
          dtype: float64
```

If we have large amount of missing values in data, let say more than 50%, we need to decide to analyse data or we need to manufacture the data, then do the analysis. But in this housing dataset column 'MiscFeature' and 'Fence' has more than 80% missing data. So, I decided to drop the columns. I will fill values in 'GarageType' and 'Electrical' as percentage missing values is less than 50% and it will not harm our analysis.

| In [123]: | n [123]: HS.drop(columns=["MiscFeature","Fence"],inplace=True) |    |             |           |             |            |           |          |            |         |  |  |
|-----------|----------------------------------------------------------------|----|-------------|-----------|-------------|------------|-----------|----------|------------|---------|--|--|
| In [124]: | HS.head()                                                      |    |             |           |             |            |           |          |            |         |  |  |
| Out[124]: |                                                                |    |             |           |             |            |           |          |            |         |  |  |
|           |                                                                | ld | OverallQual | YearBuilt | TotalBsmtSF | Electrical | GrLivArea | FullBath | GarageType | GarageC |  |  |
|           | 0                                                              | 1  | 7           | 2003      | 856         | SBrkr      | 1710      | 2        | Attchd     |         |  |  |
|           | 1                                                              | 2  | 6           | 1976      | 1262        | SBrkr      | 1262      | 2        | Attchd     |         |  |  |
|           | 2                                                              | 3  | 7           | 2001      | 920         | SBrkr      | 1786      | 2        | Attchd     |         |  |  |
|           | 3                                                              | 4  | 7           | 1915      | 756         | SBrkr      | 1717      | 1        | Detchd     |         |  |  |
|           | 4                                                              | 5  | 8           | 2000      | 1145        | SBrkr      | 2198      | 2        | Attchd     |         |  |  |
|           | 4                                                              |    |             |           |             |            |           |          |            | •       |  |  |

### Both columns has been dropped

### **Remaining Missing values**

```
In [125]: HS.isnull().sum().sort_values(ascending=False)
                          143
Out[125]: GarageType
           Electrical
                            1
           SalePrice
                            0
          GarageArea
                            0
           GarageCars
           FullBath
          GrLivArea
                             0
          TotalBsmtSF
                            0
           YearBuilt
                            0
          OverallQual
                            0
           Ιd
           dtype: int64
```

#### Filling up values in Electrical and Garage type columns

```
In [126]: HS['Electrical'].mode()
Out[126]: 0
                SBrkr
           dtype: object
In [127]: | HS['Electrical'].fillna('SBrkr',inplace=True)
In [128]:
          HS.isnull().sum()
Out[128]: Id
                            0
          OverallQual
                            0
          YearBuilt
                            0
           TotalBsmtSF
           Electrical
                            0
           GrLivArea
                            0
           FullBath
                            0
          GarageType
                          143
          GarageCars
                            0
           GarageArea
           SalePrice
           dtype: int64
```

Now, it is turn for GarageType. I will use groupby function to fill missing values. I will relate GarageType by GarageCars so that we can fill values with NoGarage if there is zero cars in GarageCars column and Detchd/Attached/Builtin/CarPort/Basement/2Types where there are cars available in GarageCars

```
In [129]:
             HS.groupby('GarageType').median()
Out[129]:
                              Id OverallQual YearBuilt TotalBsmtSF GrLivArea FullBath GarageCars Garage
              GarageType
                  2Types
                           767.5
                                          5.0
                                                  1959.5
                                                                1172.0
                                                                            1698.0
                                                                                         1.5
                                                                                                      3.0
                                                                                         2.0
                                                                                                      2.0
                   Attchd 737.5
                                          7.0
                                                  1993.0
                                                                1176.0
                                                                            1565.0
                 Basment 999.0
                                          6.0
                                                  1957.0
                                                                 920.0
                                                                            1431.0
                                                                                         1.0
                                                                                                      2.0
                   BuiltIn
                           613.0
                                          7.0
                                                  2003.0
                                                                 956.0
                                                                           2035.0
                                                                                         2.0
                                                                                                      2.0
                  CarPort 535.0
                                          4.0
                                                  1962.0
                                                                 816.0
                                                                           1296.0
                                                                                         1.0
                                                                                                      2.0
                  Detchd 699.0
                                          5.0
                                                                 842.0
                                                                                         1.0
                                                                                                      1.0
                                                  1946.0
                                                                           1214.0
In [130]:
             HS.groupby('GarageType')['GarageCars'].describe()
Out[130]:
                                                            25%
                                                                   50%
                                                                        75%
                           count
                                     mean
                                                  std min
                                                                               max
              GarageType
                  2Types
                             6.0
                                  3.000000
                                            0.632456
                                                        2.0
                                                              3.0
                                                                    3.0
                                                                          3.0
                                                                                4.0
                   Attchd
                           0.008
                                  2.043750
                                             0.554274
                                                        1.0
                                                              2.0
                                                                    2.0
                                                                          2.0
                                                                                4.0
                                                                          2.0
                 Basment
                             19.0
                                  1.578947
                                            0.507257
                                                              1.0
                                                                    2.0
                                                                                2.0
                                                        1.0
                   BuiltIn
                             87.0
                                  2.252874
                                             0.614143
                                                        1.0
                                                              2.0
                                                                    2.0
                                                                          3.0
                                                                                3.0
                  CarPort
                                                                    2.0
                                                                                2.0
                             9.0
                                  1.666667
                                             0.500000
                                                        1.0
                                                              1.0
                                                                          2.0
                  Detchd
                           354.0
                                  1.539548
                                            0.592556
                                                        1.0
                                                              1.0
                                                                    1.0
                                                                          2.0
                                                                                4.0
```

# Countplot is made to identify which GarageCars belongs to GarageType

```
In [131]: sns.countplot(x='GarageType', hue='GarageCars', data=HS)
```

Out[131]: <matplotlib.axes.\_subplots.AxesSubplot at 0x18cf13cff88>



# Countplot where GarageType is missing which will tell us th value of GarageCar where GarageType is missing.

```
In [132]: sns.countplot(x='GarageCars', data=HS[HS['GarageType'].isnull()])
Out[132]: <matplotlib.axes._subplots.AxesSubplot at 0x18cf1482f88>
```



In [133]: HS[(HS['GarageType'].isnull()) & (HS['GarageCars']==0)]

Out[133]:

|      | ld   | OverallQual | YearBuilt | TotalBsmtSF | Electrical | GrLivArea | FullBath | GarageType | G |
|------|------|-------------|-----------|-------------|------------|-----------|----------|------------|---|
| 37   | 38   | 4           | 1955      | 0           | FuseP      | 1152      | 2        | NaN        |   |
| 46   | 47   | 4           | 1920      | 736         | SBrkr      | 1452      | 2        | NaN        |   |
| 73   | 74   | 4           | 1968      | 1768        | SBrkr      | 1768      | 2        | NaN        |   |
| 79   | 80   | 3           | 1915      | 1013        | SBrkr      | 1526      | 1        | NaN        |   |
| 80   | 81   | 4           | 1994      | 990         | SBrkr      | 990       | 1        | NaN        |   |
|      |      |             |           |             |            |           |          |            |   |
| 1310 | 1311 | 8           | 1872      | 684         | SBrkr      | 2358      | 2        | NaN        |   |
| 1366 | 1367 | 5           | 1985      | 833         | SBrkr      | 833       | 1        | NaN        |   |
| 1407 | 1408 | 5           | 1970      | 630         | SBrkr      | 630       | 1        | NaN        |   |
| 1408 | 1409 | 5           | 1974      | 896         | SBrkr      | 1792      | 2        | NaN        |   |
| 1411 | 1412 | 5           | 2006      | 1140        | SBrkr      | 1140      | 1        | NaN        |   |

81 rows × 11 columns

In [134]: sns.violinplot('GarageCars', 'GarageArea', data=HS[HS['GarageType'].isnull()])

Out[134]: <matplotlib.axes.\_subplots.AxesSubplot at 0x18cf170a288>



In [135]: HS['GarageType'] = np.where(HS['GarageCars']==1 & HS['GarageType'].isnull(),'D
 etchd',HS['GarageType'])
HS['GarageType'] = np.where(HS['GarageCars']==0 & HS['GarageType'].isnull(),'N
 oGarage',HS['GarageType'])

```
In [136]: HS.isnull().sum()
Out[136]: Id
                           0
           OverallQual
                          0
           YearBuilt
                          0
           TotalBsmtSF
                          0
           Electrical
           GrLivArea
                          0
           FullBath
                          0
           GarageType
                          0
           GarageCars
                          0
           GarageArea
           SalePrice
           dtype: int64
```

# Below is the plot which shows maximum number of houses under Sale Price

```
In [156]: sns.violinplot('SalePrice', data = HS)
Out[156]: <matplotlib.axes._subplots.AxesSubplot at 0x18cf2b307c8>
```



# Maximum number of houses lies between Prince range of 150000 to 200000

### Relationship Between Overall Quality and SalePrice

200000

100000

8

10

It states that Sale Price inceases as quality increases.

OverallQual

#### Relationship Between Full Bath and SalePrice

```
In [159]: plt.subplots(figsize = (16,8)) sns.boxplot(x='FullBath', y='SalePrice', data=HS)

Out[159]: <matplotlib.axes._subplots.AxesSubplot at 0x18cf2c416c8>
```

It states that Sale Price inceases as Full Bath increases.

## **Outliers Detection and Handling**

Outliers reflect a mixture of observations from a population other than the target population, analyzing data with such outliers produces biased estimations of the target population parameters. So, we will detect them nd handle accordingly.

Let's start with TotalBsmtSF column and SalePrice coulmn via scatterplot to detect and handle the outlier, so that, we can analyze the relationship between both of them.

```
In [137]: sns.scatterplot(x='TotalBsmtSF', y='SalePrice', data= HS)
Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x18cf1478b08>
```



```
In [138]: HS.sort_values(by='TotalBsmtSF', ascending = False)
Out[138]:
```

| 61<br>14<br>76<br>01 | 10<br>8<br>8<br>10<br>10 | 2008<br>2003<br>1992<br>2007<br>2008 | 6110<br>3206<br>3200<br>3138 | SBrkr<br>SBrkr<br>SBrkr<br>SBrkr | 5642<br>1629<br>3228 | 2<br>2<br>3 | Attchd<br>Attchd<br>Attchd |   |
|----------------------|--------------------------|--------------------------------------|------------------------------|----------------------------------|----------------------|-------------|----------------------------|---|
| 76<br>)1             | 8<br>10                  | 1992<br>2007                         | 3200                         | SBrkr                            |                      |             |                            |   |
| )1                   | 10                       | 2007                                 |                              |                                  | 3228                 | 3           | Attchd                     |   |
|                      |                          |                                      | 3138                         | SBrkr                            |                      |             |                            |   |
| 20                   | 10                       | 2000                                 |                              | SDIKI                            | 4676                 | 3           | BuiltIn                    |   |
|                      |                          | 2006                                 | 3094                         | SBrkr                            | 2402                 | 2           | Attchd                     |   |
|                      |                          |                                      |                              |                                  |                      |             |                            |   |
| )3                   | 4                        | 1957                                 | 0                            | SBrkr                            | 845                  | 1           | Detchd                     |   |
| 30                   | 4                        | 1930                                 | 0                            | SBrkr                            | 1092                 | 2           | NoGarage                   |   |
| 22                   | 5                        | 1950                                 | 0                            | SBrkr                            | 1048                 | 1           | Detchd                     |   |
| 15                   | 5                        | 1954                                 | 0                            | SBrkr                            | 1124                 | 1           | NoGarage                   |   |
| 0                    | 3                        | 1950                                 | 0                            | FuseF                            | 1040                 | 2           | Detchd                     |   |
|                      | 11 columns               |                                      |                              |                                  |                      |             |                            | • |
| 1                    |                          | 0 3 × 11 columns                     |                              |                                  |                      |             |                            |   |

- 1) Through graph we know there is one row in data which is effecting our presentation and analysis.
- 2) Through HS.sort\_values(by='TotalBsmtSF', ascending = False), we found that row# 1260 is outlier.

### I will drop that row!

```
In [139]: HS.drop([1260], inplace=True)
```

```
In [142]: sns.scatterplot(x='TotalBsmtSF', y='SalePrice', data= HS)
```

Out[142]: <matplotlib.axes.\_subplots.AxesSubplot at 0x18cf120bc08>



Outlier got dropped and it is looking better than the previous scatter plot and is easy to depict the relationship between SalesPrice and TotalBsmtSF.

Average Sales Price is from 100000 to 200000 till BsmtSF 1000. After that, there are changes in saleprice according to increasing BsmtSF.

## Relationship between GrLivArea and SalesPrice

```
In [144]: sns.scatterplot(x='GrLivArea', y='SalePrice', data= HS)
Out[144]: <matplotlib.axes._subplots.AxesSubplot at 0x18cf153c9c8>
```



In [146]: HS.sort\_values(by='GrLivArea', ascending = False)

Out[146]:

|      | ld   | OverallQual | YearBuilt | TotalBsmtSF | Electrical | GrLivArea | FullBath | GarageType | G |
|------|------|-------------|-----------|-------------|------------|-----------|----------|------------|---|
| 500  | 501  | 10          | 2007      | 3138        | SBrkr      | 4676      | 3        | BuiltIn    |   |
| 1147 | 1148 | 10          | 1996      | 2396        | SBrkr      | 4476      | 3        | Attchd     |   |
| 665  | 666  | 10          | 1994      | 2444        | SBrkr      | 4316      | 3        | Attchd     |   |
| 1134 | 1135 | 10          | 1995      | 1930        | SBrkr      | 3627      | 3        | Attchd     |   |
| 169  | 170  | 10          | 1892      | 1107        | SBrkr      | 3608      | 2        | Detchd     |   |
|      |      |             |           |             |            |           |          |            |   |
| 505  | 506  | 4           | 1920      | 528         | SBrkr      | 605       | 1        | NoGarage   |   |
| 27   | 28   | 4           | 1927      | 520         | SBrkr      | 520       | 1        | Detchd     |   |
| 886  | 887  | 2           | 1949      | 480         | FuseA      | 480       | 0        | Detchd     |   |
| 1066 | 1067 | 2           | 1920      | 290         | FuseF      | 438       | 1        | Detchd     |   |
| 510  | 511  | 1           | 1946      | 0           | FuseF      | 334       | 1        | NoGarage   |   |
|      |      |             |           |             |            |           |          |            |   |

1417 rows × 11 columns

In [147]: HS.drop([500], inplace=True)
sns.scatterplot(x='GrLivArea', y='SalePrice', data= HS)

Out[147]: <matplotlib.axes.\_subplots.AxesSubplot at 0x18cf15a1708>



Average Sales Price is from 100000 to 200000 till GrLivArea 2000. After that, there are changes in saleprice according to increasing GrLivArea.

In [ ]: