

# **Description**

The series of devices uses **Super Trench II** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of  $R_{\text{DS(ON)}}$  and  $Q_g$ . This device is ideal for high-frequency switching and synchronous rectification.

# **Application**

- DC/DC Converter
- •Ideal for high-frequency switching and synchronous rectification

### **General Features**

- $V_{DS}$  =85V, $I_D$  =260A  $R_{DS(ON)}$ =2.0m $\Omega$  , typical (TO-220)@  $V_{GS}$ =10V  $R_{DS(ON)}$ =1.8m $\Omega$  , typical (TO-263)@  $V_{GS}$ =10V
- Excellent gate charge x R<sub>DS(on)</sub> product(FOM)
- Very low on-resistance R<sub>DS(on)</sub>
- 175 °C operating temperature
- Pb-free lead plating





TO-263



**Package Marking and Ordering Information** 

|   | <b>Device Marking</b> | Device    | Device Package | Reel Size | Tape width | Quantity |
|---|-----------------------|-----------|----------------|-----------|------------|----------|
| ĺ | VST08N018-TC          | VST08N018 | TO-220C        | -         | -          | -        |
|   | VST08N018-T3          | VST08N018 | TO-263         | -         | -          | -        |

### Absolute Maximum Ratings (T<sub>C</sub>=25 ℃unless otherwise noted)

| Parameter                                        | Symbol                 | Limit      | Unit             |  |
|--------------------------------------------------|------------------------|------------|------------------|--|
| Drain-Source Voltage                             | VDS                    | 85         | V                |  |
| Gate-Source Voltage                              | Vgs                    | ±20        | V                |  |
| Drain Current-Continuous                         | I <sub>D</sub>         | 260        | A<br>A<br>A<br>W |  |
| Drain Current-Continuous(T <sub>C</sub> =100 °C) | I <sub>D</sub> (100°ℂ) | 190        |                  |  |
| Pulsed Drain Current                             | I <sub>DM</sub>        | 1000       |                  |  |
| Maximum Power Dissipation                        | P <sub>D</sub>         | 300        |                  |  |
| Derating factor                                  |                        | 2          | W/°C             |  |
| Single pulse avalanche energy (Note 5)           | E <sub>AS</sub>        | 2880       | mJ               |  |
| Operating Junction and Storage Temperature Range | $T_{J}, T_{STG}$       | -55 To 175 | °C               |  |





## **Thermal Characteristic**

| Thermal Resistance, Junction-to-Case | ReJC | 0.5 | °C/W | 1 |
|--------------------------------------|------|-----|------|---|
|--------------------------------------|------|-----|------|---|

Electrical Characteristics (T<sub>C</sub>=25°C unless otherwise noted)

| Parameter                             | Parameter Symbol Condition |                                                                      | n      | Min | Тур   | Max  | Unit |
|---------------------------------------|----------------------------|----------------------------------------------------------------------|--------|-----|-------|------|------|
| Off Characteristics                   |                            |                                                                      |        |     |       |      |      |
| Drain-Source Breakdown Voltage        | BV <sub>DSS</sub>          | V <sub>GS</sub> =0V I <sub>D</sub> =250μA                            |        | 85  |       | -    | V    |
| Zero Gate Voltage Drain Current       | I <sub>DSS</sub>           | V <sub>DS</sub> =85V,V <sub>GS</sub> =0V                             |        | -   | -     | 1    | μA   |
| Gate-Body Leakage Current             | I <sub>GSS</sub>           | V <sub>GS</sub> =±20V,V <sub>DS</sub> =0V                            |        | -   | -     | ±100 | nA   |
| On Characteristics (Note 3)           |                            |                                                                      |        |     |       |      |      |
| Gate Threshold Voltage                | V <sub>GS(th)</sub>        | V <sub>DS</sub> =V <sub>GS</sub> ,I <sub>D</sub> =250μA              |        | 2.0 | 3.0   | 4.0  | V    |
| Danier Courses Our Charles Danier and |                            | V <sub>GS</sub> =10V, I <sub>D</sub> =130A                           | TO-220 | -   | 2.0   | 2.3  | mΩ   |
| Drain-Source On-State Resistance      | R <sub>DS(ON)</sub>        |                                                                      | TO-263 |     | 1.8   | 2.3  | mΩ   |
| Forward Transconductance              | <b>g</b> FS                | V <sub>DS</sub> =5V,I <sub>D</sub> =130A                             |        |     | 200   | -    | S    |
| Dynamic Characteristics (Note4)       |                            |                                                                      |        |     |       |      |      |
| Input Capacitance                     | C <sub>lss</sub>           | V <sub>DS</sub> =40V,V <sub>GS</sub> =0V,<br>F=1.0MHz                |        | -   | 14500 | -    | PF   |
| Output Capacitance                    | Coss                       |                                                                      |        | -   | 2050  | -    | PF   |
| Reverse Transfer Capacitance          | C <sub>rss</sub>           |                                                                      |        | -   | 105   | -    | PF   |
| Switching Characteristics (Note 4)    |                            |                                                                      |        |     |       |      |      |
| Turn-on Delay Time                    | t <sub>d(on)</sub>         | $V_{DD}$ =40V, $I_{D}$ =130A<br>$V_{GS}$ =10V, $R_{G}$ =1.6 $\Omega$ |        | -   | 41    | -    | nS   |
| Turn-on Rise Time                     | t <sub>r</sub>             |                                                                      |        | -   | 37    | -    | nS   |
| Turn-Off Delay Time                   | t <sub>d(off)</sub>        |                                                                      |        | -   | 103   | -    | nS   |
| Turn-Off Fall Time                    | t <sub>f</sub>             |                                                                      |        | -   | 38    | -    | nS   |
| Total Gate Charge                     | Qg                         | )/ 40)/I                                                             | 1004   | -   | 240   | -    | nC   |
| Gate-Source Charge                    | Q <sub>gs</sub>            | V <sub>DS</sub> =40V,I <sub>D</sub> =130A,<br>V <sub>GS</sub> =10V   |        | -   | 61    |      | nC   |
| Gate-Drain Charge                     | $Q_{gd}$                   |                                                                      |        | -   | 72    |      | nC   |
| Drain-Source Diode Characteristics    |                            |                                                                      |        |     |       | J.   |      |
| Diode Forward Voltage (Note 3)        | V <sub>SD</sub>            | V <sub>GS</sub> =0V,I <sub>S</sub> =130A                             |        | -   |       | 1.2  | V    |
| Diode Forward Current                 | Is                         |                                                                      |        | -   | -     | 260  | Α    |
| Reverse Recovery Time                 | t <sub>rr</sub>            | T <sub>J</sub> = 25°C, I <sub>F</sub> = 130A                         |        | -   | 106   | -    | nS   |
| Reverse Recovery Charge               | Qrr                        | di/dt = 100A/µs <sup>(Note3)</sup>                                   |        | -   | 309   | -    | nC   |

### Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width  $\leq$  300 $\mu$ s, Duty Cycle  $\leq$  2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25  $^{\circ}\text{C}$  ,VDD=40V,VG=10V,L=0.5mH,Rg=25 $\Omega$



## **Typical Electrical and Thermal Characteristics**



Vds Drain-Source Voltage (V)

**Figure 1 Output Characteristics** 



Vgs Gate-Source Voltage (V)

**Figure 2 Transfer Characteristics** 



Figure 3 Rdson- Drain Current



T<sub>J</sub>-Junction Temperature(°C)

Figure 4 Rdson-Junction Temperature



Figure 5 Gate Charge



Vsd Source-Drain Voltage (V)

Figure 6 Source- Drain Diode Forward





**Figure 11 Normalized Maximum Transient Thermal Impedance**