CH4250: PROCESS ENGINEERING Project Deliverable - 2 Group: 7

Problem Statement

Chemical	Propylene		
Capacity	17,000 TPA		
Location	Chennai, Tamil Nadu		

Group Members

CH19B069	N Ashritha (Group Coordinator)
CH19B007	Ch K Koushik
CH19B012	G Sujith Kumar
CH19B051	C S Dheeraj
CH19B052	CH G S Srinivas

Table Of Contents

1	Olefin Conversion Technology
2	Process Flow diagram
3	Material Balances
	✓ Feed Streams
	✓ Mixer
	✓ Reactor
	✓ Compressor
	✓ Cooler
	✓ Distillation Columns
	✓ Heater
4	References

Olefin Conversion Technology

Problem Statement: Design a plant, for production of 17,000 TPA of Propylene plant in Chennai, Tamil Nadu, which will be profitable, safe, & environmentally benign

Propylene, also called **propene**, a colourless, flammable, gaseous hydrocarbon, C₃H₆, obtained from petroleum. Large quantities of propylene are used in the manufacture of resins, fibres, and elastomers, and numerous other chemical products

Some of the major production processes of propylene are:

- 1. Olefin conversion technology
- 2. OLEFLEX Process
- 3. Fluid catalytic cracking
- 4. CATOFIN Technology
- 5. LURGI MTP

As per the preliminary economic analysis and research on the above technologies (from deliverable 1) we have decided to go ahead with the **Olefin Conversion Technology** for production of propylene.

Olefin Conversion Technology [1]

Olefins Conversion Technology (OCT) process is the only commercial on-purpose metathesis technology for propylene production. For the production of propylene from ethylene plus butene's and pentenes, simultaneous isomerization, and metathesis reactions take place in the OCT reactor.

The main equilibrium reactions involving in OCT technology are:

- **Metathesis** Propylene is formed by the metathesis of ethylene and butene-2.
- **Isomerization** The butene-2 consumed in the metathesis reaction is formed by isomerization of butene -1.

Main Reactions

Ethylene + Butene-2 ← 2 Propylene

Butene-2 ← Butene-1

Process Flow Sheet(Using Aspen):

Design 1:

The process flowsheet consists of the following equipment:

- Feed and Recycle Streams
- Mixer
- Reactor
- Compressor
- Heater, Cooler
- Distillation Columns

Overall Material Balance

6.25 ktonne/year of ethylene is reacted with **12** ktonne/year of butylene to produce **17** ktonne/year (17,000 TPA) of propylene of **92.5%** purity

		Units			
4		Units	ETHYLENE ▼	BUTENE ▼	FINAL
	Molar Enthalpy	cal/mol	11386.7	2867.29	5492.58
F	Mass Enthalpy	cal/gm	405.89	51,1035	131.419
	Molar Entropy	cal/mol-K	-12.0104	-48,509	-31.5848
F	Mass Entropy	cal/gm-K	-0.42812	-0.864572	-0.755718
	Molar Density	mol/cc	3.94395e-06	2.88002e-05	3.74805e-05
ĕ	Mass Density	gm/cc	0.000110642	0.00161591	0.00156648
FI	Enthalpy Flow	cal/sec	80386.7	19432.5	76000.2
Þ	Average MW		28.0538	56.1075	41.7944
Þ	+ Mole Flows	kmol/hr	25.4148	24.3983	49.8128
Þ	→ Mole Fractions				
×	- Mass Flows	ktonne/year	₹ 6.25	12	18.2499
E.	ETHYL-01	ktonne/year	6.25	0	0.582604
F	1-BUT-01	ktonne/year	0	12	0.664444
	CIS-2-01	ktonne/year	0	0	0.00087286
F	PROPY-01	ktonne/year	0	0	17.002
		Units	ETHYLENE ▼	BUTENE ▼	FINAL
	- Mole Fractions				
	ETHYL-01		1	0	0.0475598
	1-BUT-01		0	1	0.0271203
-	CIS-2-01		0	0	3.56271e-05
	PROPY-01		0	0	0.925284

Feed Streams:

Assumptions:

- In OCT industrial process the feed streams of ethylene and butene contains impurities such as metals, water, oxygenates, and sulphur compounds. The ethylene feed stream can vary from dilute ethylene (typical from an FCC) to polymer-grade ethylene
- We assumed both the feeds are pure

Storage Conditions of ethylene

• Temperature: -103.2 C

• Pressure: 0.055 atm [2]

Utilised heater to bring ethylene to reaction conditions i.e., 200 C and 1atm Storage Conditions [3] of butene is almost similar to the reaction's conditions.

MIXER:

INPUT: DIST, ETHREAT, BUTENE, BTM2

OUTPUT: REACTIN – Input to reactor

ETHTREAT AND BUTENE are feed streams. DIST and BTM2 are recycle streams from the distillation columns.

Reactor:

Ethylene reacted with 2-butene, which is produced by isomerisation of 1-butene is converted to propylene by metathesis reaction. The reaction is carried out at high temperatures ($\sim 150\text{-}300\,^{\circ}\text{C}$) and low pressures ($\sim 1\text{-}2\,^{\circ}$ bar), and results in the formation of a mixture of propylene, ethylene and butenes which are then separated by distillation.

INPUT: REACTIN - OUTPUT of MIXER

OUTPUT: REACTOUT, REAOUT2

Utilised **REquil** for the reactions. Reactants are fed into the reactor to produce two outlet streams (one for liquid and other for vapor). Since the reactions are in vapor phase there is no product in the REAOUT2 stream (liquid stream).

	Rxn No.	No. Equilibrium constant		Equilibrium temperature	
			С	•	
٠	1	11.1713		600	
	2	0.917088		600	

COMPRESSOR:

INPUT - REACTOUT - Outlet of the reactor

OUTPUT-COMPOUT

The OCT reactor effluent is a gas mixture consists of unreacted ethylene, butenes and propylene. To separate these gases the products are cooled and chilled prior to entering the product recovery section.

	Total	Units	ln	Out
٠	Mole	kmol/hr	110.695	110.695
	Mass	kg/hr	3945.16	3945.16
	Enthalpy	cal/sec	406259	481956

Head developed	26541.0541	m-kgf/kg ▼	
Isentropic power requirement	285.234	kW ▼	
Inlet heat capacity ratio	1.10479		
	Inlet	Outlet	
Volumetric flow rate	43383.8	8624.15	l/min ▼
Compressibility factor	1	1	
	Isentropic	Actual	
Average volume exponent	1.09856	1.10909	
Average temperature exponent	1.09856	1.10909	

4		Units	REACTOUT →	COMPOUT -
Þ	Description			
Þ	From		REACTR	COMPRESS
>	То		COMPRESS	HEATER
Þ	Stream Class		CONVEN	CONVEN
Þ	Maximum Relative Error			
Þ	Cost Flow	\$/hr		
•	— MIXED Substream			
Þ	Phase		Vapor Phase	Vapor Phase
Þ	Temperature	С	300	410.46
Þ	Pressure	bar	2.0265	12.159

		Units	REACTOUT →	COMPOUT -
1	Molar Enthalpy	cal/mol	13212.2	15674
Þ	Mass Enthalpy	cal/gm	370.716	439.79
Þ	Molar Entropy	cal/mol-K	-12,999	-12.636
Þ	Mass Entropy	cal/gm-K	-0.364732	-0.354549
Þ	Molar Density	mol/cc	4.25257e-05	0.000213925
Þ	Mass Density	gm/cc	0.0015156	0.00762424
Þ	Enthalpy Flow	cal/sec	406259	481956
þ.	Average MW		35.6397	35.6397
Þ	+ Mole Flows	kmol/hr	110.695	110.695
þ.	+ Mole Fractions			
	- Mass Flows	ktonne/year	34.5832	34.5832
þ.	ETHYL-01	ktonne/year	14.1937	14.1937
Þ	1-BUT-01	ktonne/year	1.76701	1.76701
Þ	CIS-2-01	ktonne/year	1.62051	1.62051
Þ	PROPY-01	ktonne/year	17.002	17.002

Cooler: The compressed products from the compressor are then cooled to convert the gas mixture into liquid mixture for the separation process

INPUT: COMPOUT - Outlet of compressor

OUTPUT: DISTFEED

Distillation Column 1:

Input: DISTFEED - Outlet of cooler

Output – DIST(Distillate), BTM(Bottoms).

After cooling, the reactor effluent is sent to the recovery section, which consists primarily of two towers. The first tower separates unreacted ethylene for recycle to the OCT reactor. The second tower processes bottoms from the ethylene recovery tower to produce a polymer-grade propylene overhead product and a C -C recycle stream.[1] The outlet of the cooler is distilled to separate the liquid mixture. The distillate which consists of mainly ethylene is then recycled back to the mixer and the bottoms product are then distilled again to separate propylene and butenes. The parameters such as distillate to feed ratio, no of stages are found using the **Design specification of Aspen** in order to get required propylene purity.

Distillation Column 2:

Input: BTM – Bottoms of the distillation column 1

Output: DIST2(Distillate), BTM2(Bottoms).

The outlet of the distillation column 1 is then distilled to separate the mixture of butene and propylene. The distillate which consists of mainly

propylene and the bottoms products that consists of butenes are then recycled back to the mixer.

4		Units	BTM -	BTM2 ▼	DIST2 ▼
Þ	Description				
Þ	From		RADFRAC	RADFRAC2	RADFRAC2
Þ	То		RADFRAC2	MIXER	
)	Stream Class		CONVEN	CONVEN	CONVEN
þ.	Maximum Relative Error				
þ.	Cost Flow	\$/hr			
Þ	 MIXED Substream 				
Þ	Phase		Liquid Phase	Liquid Phase	Vapor Phase
Þ	Temperature	С	-9.70838	49.5264	-3.15471
Þ	Pressure	bar	5.06625	5.06625	5.06625
4		Units	BTM →	BTM2 →	DIST2 ▼
>	Molar Enthalpy	cal/mol	-158.274	-5327.48	4646.65
Þ	Mass Enthalpy	cal/gm	-3.66157	-94.9513	111.178
Þ	Molar Entropy	cal/mol-K	-54.7255	-72.5598	-37.6258
Þ	Mass Entropy	cal/gm-K	-1.26604	-1.29323	-0.900258
Þ	Molar Density	mol/cc	0.013143	0.0102179	0.000225685
>	Mass Density	gm/cc	0.568116	0.573301	0.0094324
þ.	Enthalpy Flow	cal/sec	-2433.35	-8190.61	64294.9
Þ	Average MW		43.2258	56.1075	41.7945
•	+ Mole Flows	kmol/hr	55.3473	5.53473	49.8126
Þ	◆ Mole Fractions				
Þ	- Mass Flows	ktonne/year	20.9721	2.72219	18.2499
Þ	ETHYL-01	ktonne/year	0.582553	1.50031e-15	0.582553
Þ	1-BUT-01	ktonne/year	1.76702	1.10255	0.664473
Þ	CIS-2-01	ktonne/year	1.62052	1.61964	0.000872878
Þ	PROPY-01	ktonne/year	17.002	2.07822e-06	17.002

Heater:

INPUT: DIST2 – Distillate of the distillation column 2

OUTPUT: FINAL - Required product

Propylene is stored at 52 C [4]. Utilized heater to heat the distillate to required temperature.

2081.9

Design-2:

Used **RPlug** reactor for the reactions.

Input: REACTIN

Output: REACTOUT

Overall, Balance:

6 ktonne/year of ethylene is reacted with 12 ktonne/year of butylene to produce 17 ktonne/year (17,000 TPA) of propylene of 94.5% purity

The material balances across other equipment are almost similar to that of design 1

References:

- 1. https://www.accessengineeringlibrary.com/content/book/9781259
 643132/chapter/chapter20?implicit-login=true
- 2. ditions
- 3. https://www.cpchem.com/sites/default/files/2020-04/1-Butene%202018%20Final.pdf
- 4. <a href="https://www.lindeus.com//media/corporate/praxairus/documents/sds/propylene-c3h6safety-data-sheet-sdsp4648.pdf?la=en#:~:text=Storage%20conditions%20%3A%20Store
 %20only%20where,be%20no%20sources%20of%20ignition.