ESERCITAZIONI DI LABORATORIO 16^{mo} CORSO DI FISICA I – Prof. R.C. IOTTI

Studio di moti uniformemente accelerati lungo un piano inclinato

Scopo dell'esperimento

Misure di moto uniformemente accelerato lungo un piano inclinato. Stima del coefficiente di attrito dinamico.

Materiali e strumenti utilizzati

- piano inclinato
- macchinina per il moto lungo il piano inclinato
- metro a nastro, scala graduata lungo il piano inclinato
- sensori di posizione e software di acquisizione dati (Smart Timer)

Fondamenti teorici

In assenza di attrito viscoso il moto di un punto materiale lungo un piano inclinato è uniformemente accelerato secondo la legge oraria

$$s = s_0 + v_0 t + \frac{1}{2} a t^2 \,. \tag{1}$$

L'accelerazione a a cui è sottoposto il corpo è legata all'angolo di inclinazione θ del piano rispetto all'orizzontale dalla relazione:

$$a = g\sin\theta - \mu_k g\cos\theta. \tag{2}$$

Nel caso in cui si scelgano 2 angoli di inclinazione diversi θ_1 , θ_2 , si avrà quindi:

$$a_1 = g\sin\theta_1 - \mu_k g\cos\theta_1 \tag{3}$$

$$a_2 = g\sin\theta_2 - \mu_k g\cos\theta_2 \tag{4}$$

Stimando nei due casi l'accelerazione attraverso un'analisi statistica dei dati raccolti, è possibile valutare l'accelerazione di gravità q ed il coefficiente di attrito dinamico μ_k :

$$g = \frac{a_2 \cos \theta_1 - a_1 \cos \theta_2}{\sin(\theta_2 - \theta_1)} \tag{5}$$

$$g = \frac{a_2 \cos \theta_1 - a_1 \cos \theta_2}{\sin(\theta_2 - \theta_1)}$$

$$\mu_k = \frac{a_2 \sin \theta_1 - a_1 \sin \theta_2}{a_2 \cos \theta_1 - a_1 \cos \theta_2}$$
(5)

Descrizione dell'esperienza

- a) Verificare con la bolla che il tavolo sia in piano, quindi regolare l'inclinazione θ_1 del piano inclinato (scegliere un angolo piccolo, $\theta_1 \simeq 5^{\circ}$), verificando con la bolla che non vi sia una pendenza laterale, e misurare con il metro a nastro i parametri geometrici per stimare θ_1 . Calcolare θ_1 e la corrispondente incertezza sperimentale.
- b) Posizionare il primo traguardo (quello a monte) in s_0 , a una decina di centimetri dalla sommità del piano inclinato e collegare il relativo cavo al canale 1 dello Smart Timer.
- c) Posizionare il secondo traguardo a una distanza s_1 di circa 10 cm dal primo, collegare il relativo cavo al canale 2 dello Smart Timer e misurare con il metro a nastro la distanza $\Delta s_1 = s_1 s_0$ e l'incertezza associata.
- d) Accendere il sistema di acquisizione e impostarlo su misure di **tempo** tra **2 traguardi**.
- e) Misurare per N volte ($N \geq 5$) l'intervallo di tempo t_1 impiegato dalla macchinina a percorrere lo spazio tra i due traguardi e l'incertezza associata, senza variare la distanza tra i traguardi ed avendo cura di farla partire dal punto più in alto del piano inclinato e di non imprimere alcuna forza alla partenza.
- f) Calcolare il valor medio $\overline{t_i}$ dei tempi di percorrenza e l'incertezza associata, stimata come semidispersione massima tra le misure effettuate.
- g) Ripetere n volte $(n \geq 7)$ le operazioni in (c)-(f), modificando ogni volta la distanza Δs_i $(i = 1, \dots, n)$ tra i traguardi, TENENDO FISSO IL PRIMO TRAGUARDO.
- h) Riportare su un grafico i punti sperimentali $\Delta s_i(\overline{t_i})$ per il moto di discesa della macchinina in corrispondenza dell'angolo di inclinazione θ_1 . È attesa una legge oraria parabolica, secondo (2); verificare questa ipotesi.
- i) Cambiare l'inclinazione del piano inclinato scegliendo una nuova inclinazione θ_2 ($\theta_2 \simeq 10^{\circ}$) e misurare con il metro a nastro i parametri geometrici per stimare θ_2 . Calcolare θ_2 e la corrispondente incertezza sperimentale.
- j) Ripetere le misure del moto della macchinina $(\Delta s_i' \ e \ \overline{t_i'}, \ i = 1, \dots, n)$ relative alla nuova inclinazione secondo la procedura seguita in precedenza [operazioni (c)-(h)].
- k) Determinare le accelerazioni a_1 e a_2 della macchinina durante il moto di discesa attraverso fit parabolici della relazione $\Delta s(t)$. Propagare opportunamente le incertezze per ricavare l'incertezza sperimentale su a_1 e a_2 .
- ℓ) Calcolare, a partire dalla relazione (5), il valore di g con la corrispondente incertezza sperimentale ottenuta attraverso la propagazione degli errori e confrontare con il valore atteso per l'accelerazione di gravità. Calcolare, a partire dalla relazione (6), il valore di μ_k con la corrispondente incertezza sperimentale ottenuta attraverso la propagazione degli errori.

Scheda di fine esercitazione: Entro la fine dell'esercitazione ogni gruppo dovrà consegnare una scheda con le seguenti informazioni:

- composizione del gruppo (nome, cognome e numero di matricola), con firme di presenza;
- le tabelle delle coppie di valori $(\overline{t_i}, \Delta s_i)$ e $(\overline{t_i'}, \Delta s_i')$;
- i grafici dell'andamento Δs vs t corrispondenti alle 2 inclinazioni del piano;
- eventualmente i risultati dei fit parabolici e delle stime di g e μ_k .

Relazione dell'esperimento:

La relazione dell'esperimento (non più di quattro/cinque pagine, grafici e tabelle inclusi) andrà consegnata entro e non oltre il 15 Giugno 2011. Essa deve contenere:

- frontespizio, disponibile sul portale, opportunamente compilato,
- scopo dell'esperimento,
- breve introduzione,
- descrizione dell'apparato sperimentale,
- materiali e strumenti,
- metodo di misura,
- presentazione dei risultati (tabelle, grafici),
- discussione e conclusioni.

Nota bene: ricordarsi di riportare i risultati delle misure e le relative incertezze con il numero corretto di cifre significative, approssimando secondo le convenzioni.

Formule utilizzate:

- v_0 : velocità della macchinina in corrispondenza del primo traguardo.
- Δs_i , $\Delta s_i'$: distanza tra i 2 traguardi rispettivamente per le inclinazioni θ_1 e θ_2 .
- $\overline{t_i}$, t_i' $i=1,\dots,n$: valor medio su N misure del tempo impiegato dalla macchinina a percorrere lo spazio tra i traguardi. Errore massimo: $\delta \overline{t_i} = \frac{1}{2}(t_i^{max} - t_i^{min}), \delta \overline{t_i'} = \frac{1}{2}(t_i'^{max} - t_i'^{min})$
- Formula generale per la propagazione degli errori su $f(x, y, \cdots)$:

$$\delta f = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 \delta x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \delta y^2 + \cdots}$$

• Metodo dei minimi quadrati per il fit parabolico a 2 parametri

$$y(x) = \alpha x^2 + \beta x$$

dove $x = \overline{t}$, $y = \Delta s$, $\alpha = \frac{1}{2}a$, $\beta = v_0$:

Dato un set di n punti sperimentali $\{(x_i, y_i)\}, i = 1, \dots, n$ per i quali si attende l'andamento parabolico indicato sopra, la curva $\{y(x_i)\}$ che meglio si adatta ai dati è ottenuta per i valori α , β che minimizzano la funzione

$$D(\alpha, \beta) = \sum_{i=1}^{n} \left(\alpha x_i^2 + \beta x_i - y_i \right)^2.$$

Essi corrispondono alla soluzione del sistema lineare:

$$\begin{cases} \frac{\partial D}{\partial \alpha} &= 0 \\ \frac{\partial D}{\partial \beta} &= 0 \end{cases} \Rightarrow \begin{cases} \alpha \sum_{i} x_{i}^{4} + \beta \sum_{i} x_{i}^{3} &= \sum_{i} x_{i}^{2} y_{i} \\ \alpha \sum_{i} x_{i}^{3} + \beta \sum_{i} x_{i}^{2} &= \sum_{i} x_{i} y_{i} \end{cases}$$

cioè:

$$\alpha = \frac{1}{\Delta} \left(\left(\sum_{i} x_i^2 y_i \right) \left(\sum_{i} x_i^2 \right) - \left(\sum_{i} x_i^3 \right) \left(\sum_{i} x_i y_i \right) \right)$$

$$\beta = \frac{1}{\Delta} \left(\left(\sum_{i} x_i y_i \right) \left(\sum_{i} x_i^4 \right) - \left(\sum_{i} x_i^3 \right) \left(\sum_{i} x_i^2 y_i \right) \right)$$

dove:

$$\Delta = (\sum_{i} x_{i}^{2})(\sum_{i} x_{i}^{4}) - (\sum_{i} x_{i}^{3})^{2}.$$

Per le incertezze, usare:

$$\delta^{2} y_{i} = \sigma_{y}^{2} = \frac{1}{n-2} \sum_{i=1}^{n} \left(\alpha x_{i}^{2} + \beta x_{i} - y_{i} \right)^{2}.$$

Assumendo $\frac{\delta x}{x} \ll \frac{\delta y}{y}$ (verificare la bontà dell'approssimazione!) si ricava:

$$\delta^{2} \alpha = \sum_{i} \left(\frac{\partial \alpha}{\partial y_{i}} \right)^{2} \delta^{2} y_{i} = \frac{\sigma_{y}^{2}}{\Delta} \sum_{i} x_{i}^{2}$$
$$\delta^{2} \beta = \sum_{i} \left(\frac{\partial \beta}{\partial y_{i}} \right)^{2} \delta^{2} y_{i} = \frac{\sigma_{y}^{2}}{\Delta} \sum_{i} x_{i}^{4}.$$