Functional Dependency

Functional Dependencies

- Constraint pada himpunan legal relation
- Mensyaratkan nilai untuk himpunan atribut tertentu menentukan nilai himpunan atribut lainnya secara unik
- Merupakan generalisasi konsep key

Functional Dependencies (Cont.)

• Misalkan R adalah skema relasi, di mana

$$\alpha \subseteq R$$
 and $\beta \subseteq R$

• Functional dependency $\alpha \to \beta$ pada skema R jika dan hanya jika untuk legal relations r(R), kapanpun terdapat dua tuple t_1 dan t_2 pada r yang mempunyai nilai α sama, juga mempunyai nilai yang sama untuk β :

$$t_1[\alpha] = t_2[\alpha] \Rightarrow t_1[\beta] = t_2[\beta]$$

• α secara fungsionalitas menentukan β , dan β secara fungsionalitas tergantung pada α

Functional Dependencies (Cont.)

- K adalah sebuah superkey untuk skema relasi R jika dan hanya jika $K \to R$
- K adalah sebuah candidate key untuk R jika dan hanya jika
 - $-K \rightarrow R$, dan
 - Tidak ada $\alpha \subset K$ di mana $\alpha \to R$
- Dengan functional dependency, dimungkinkan mengekspresikan constraint yang tidak dapat diekspresikan menggunakan superkey.

Kegunaan Functional Dependency

- Functional dependency digunakan untuk:
 - Menguji relasi apakah legal berdasarkan himpunan functional dependency tertentu
 - Jika sebuah relasi r legal berdasar himpunan functional dependency F, kondisi ini disebut sebagai r satisfies F
 - Menyatakan constraint pada himpunan legal relation
 - Kondisi di mana semua legal relation dari R satisfy himpunan functional dependency F disebut sebagai : F holds on R

Functional Dependency (lanj.)

- Sebuah functional dependency disebut trivial apabila FD tersebut dipenuhi oleh semua instan relasi
 - Contoh :
 - Customer-name, loan-number → customer-name
 - Customer-name → customer-name
 - Secara umum, $\alpha \to \beta$ trivial apabila $\beta \subseteq \alpha$

Closure Himpunan Functional Dependency

- Dalam sebuah himpunan functional dependency F, mungkin terdapat functional dependency lainnya yang didapat dari implikasi logis F
 - Contoh : jika $A \rightarrow B$ dan $B \rightarrow C$, kita dapat menyimpulkan bahwa $A \rightarrow C$
- Himpunan semua functional dependency yang diperoleh dari implikasi logis F disebut sebagai closure dari F
- Notasi closure F adalah F⁺
- Kita dapat memperoleh semua anggota F⁺ dengan menerapkan Armstrong's Axioms:

```
 \begin{array}{ll} \raiseta \beta & (\text{reflexivity}) \\ \raiseta & \text{if } \alpha \to \beta \text{, then } \gamma \, \alpha \to \gamma \, \beta \\ \raiseta & \text{if } \alpha \to \beta \text{, then } \gamma \, \alpha \to \gamma \, \beta \\ \raiseta & \text{if } \alpha \to \beta \text{, and } \beta \to \gamma \text{, then } \alpha \to \gamma \quad (\text{transitivity}) \\ \end{array}
```

- Rule tersebut:
 - Sound (men-generate hanya functional dependency yang actually hold), dan
 - Complete (men-generate semua functional dependency yang hold)

Contoh

- R = (A,B,C,G,H,I) $F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$
- Beberapa anggota F⁺:
 - $-A \rightarrow H$
 - Dengan menerapkan rule transitivity dari $A \rightarrow B$ dan $B \rightarrow H$
 - $AG \rightarrow I$
 - Dengan menerapkan rule augmentation pada $A \to C$ berupa penambahan G, sehingga didapat $AG \to CG$, kemudian menerapkan transitivity dengan $CG \to I$
 - CG \rightarrow HI
 - Didapat dari $CG \rightarrow H$ dan $CG \rightarrow I$ (union rule). Union rule diperoleh dari
 - Definisi functional dependency
 - Augmentation pada $CG \rightarrow I$ untuk mendapat $CG \rightarrow CGI$, augmentation $CG \rightarrow H$ untuk mendapat $CGI \rightarrow HI$, dan kemudian dilakukan transitivity

Closure Functional Dependency (lanj.)

• Terdapat beberapa rule tambahan untuk mempermudah penghitungan F⁺:

```
    If α → β holds and α → γ holds, then α → β γ holds (union)
    If α → β γ holds, then α → β holds and α → γ holds (decomposition)
    If α → β holds and γ β → δ holds, then α γ → δ holds (pseudotransitivity)
```

Rule di atas diperoleh dari Armstrong's Axioms

Canonical Cover

- Himpunan functional dependency dapat mempunyai redundant dependencies yang dapat disimpulkan dari functional dependency lainnya
 - Contoh : $A \rightarrow C$ redundan dalam : $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$
 - Bagian dari functional dependency mungkin redundan
 - Contoh pada RHS : $\{A \rightarrow B, B \rightarrow C, A \rightarrow CD\}$ dapat disederhanakan menjadi $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$
 - Contoh pada LHS : $\{A \to B, B \to C, AC \to D\}$ dapat disederhanakan menjadi $\{A \to B, B \to C, A \to D\}$
- Secara intuitive, canonical cover dari F adalah himpunan "minimal" functional dependency yang equivalent dengan F, tidak mempunyai redundant dependencies atau bagian dependency yang redundan

Extranous Attributtes

- Misal ada sebuah himpunan functional dependency F dan sebuah functional dependency $\alpha \to \beta$ dalam F
 - Atribut A *extranous* dalam α jika A ε α dan F mengimplikasikan (F-{α->β})U{(α -A)->β}
 - Atribut A *extranous* dalam β jika A ε β dan himpunan *functional dependency* $(F-\{\alpha->\beta\})U\{\alpha->(\beta-A)\}$ mengimplikasikan F
- Catatan: implikasi pada arah yang berlawanan bersifat trivial, karena functional dependency yang lebih kuat selalu mengimplikasikan yang lebih lemah
- Contoh; terdapat $F = \{A->C, AB->C\}$
 - B extranous dalam AB->C karena {A->C, AB->C} mengimplikasikan A->C secara logis
- Contoh: terdapat $F = \{A->C, AB->CD\}$
 - C extranous dalam AB->CD karena AB->C dapat disimpulkan walaupun C dihapus

Testing Bila Sebuah Atribut Extranous

- Terdapat sebuah himpunan functional dependency F dan functional dependency α -> β dalam F
- Untuk mentest apakah atribut A ε α extranous dalam α
 - Hitung ({α}-A)⁺ menggunakan functional dependency dalam F
 - Cek apakah ($\{\alpha\}$ -A)⁺ mengandung A, jika ya, maka A *extranous*
- Untuk mentest apakah atribut A ε β *extranous* dalam β
 - Hitung $\alpha+$ menggunakan *dependency* dari $F' = (F-\{\alpha->\beta\}) \ U \ \{\alpha->(\beta-A)\}$
 - Cek apakah α⁺ mengandung A, jika ya, maka A *extranous*

Canonical Cover

- Canonical cover untuk F adalah himpunan functional dependency Fc di mana :
 - F mengimplikasikan secara logis semua dependency dalam Fc, dan
 - Fc mengimplikasikan secara logis semua dependency dalam F, dan
 - Tidak ada functional dependency dalam Fc yang mengandung extranous attributte
 - Setiap sisi kiri functional dependency dalam Fc unik
- Untuk menghitung canonical cover F:

```
Use the union rule to replace any dependencies in F
\alpha_1 \to \beta_1 and \alpha_1 \to \beta_1 with \alpha_1 \to \beta_1 \beta_2
Find a functional dependency \alpha \to \beta with an extraneous attribute either in \alpha or in \beta
If an extraneous attribute is found, delete it from \alpha \to \beta
until F does not change
```

Contoh Penghitungan Canonical Cover

- R = (A,B,C) $F = \{A->BC, B->C, A->B, AB->C\}$
- Kombinasikan A->BC dan A->B menjadi A->BC
 - Himpunan F menjadi {A->BC, B->C, AB->C}
- A extranous dalam AB->C
 - Cek apakah dengan menghapus A dari AB->C akan mengahasilkan functional dependency yang diimplikasikan oleh functional dependency lainnya
 - Ya, karena terdapat B->C
 - Himpunan F menjadi {A->BC, B->C}
- C extranous dalam A->BC
 - Cek apakah A->C diimplikasikan oleh A->B dan functional dependency lainnya
 - Ya: dengan menerapkan transitivity pada A->B dan B->C
- Canonical cover-nya adalah : A->B, B->C