CONSEGNA SETTIMANA 9 LEZIONE 3

Threat Intelligence & IOC

Oggi analizzeremo una cattura di rete effettuata tramite Wireshark per verificare eventuali attacchi alla rete.

Prendiamo in esame questa cattura.

8 28.761629461	PCSSystemtec_fd:87:1e	PCSSystemtec_39:7d:fe	ARP	60 Who has 192.168.200.100? Tell 192.168.200.150
9 28.761644619	PCSSystemtec_39:7d:fe	PCSSystemtec_fd:87:1e	ARP	42 192.168.200.100 is at 08:00:27:39:7d:fe
10 28.774852257	PCSSystemtec_39:7d:fe	PCSSystemtec_fd:87:1e	ARP	42 Who has 192.168.200.150? Tell 192.168.200.100
11 28.775230099	PCSSystemtec fd:87:1e	PCSSystemtec 39:7d:fe	ARP	60 192.168.200.150 is at 08:00:27:fd:87:1e
12 36.774143445	192.168.200.100	192.168.200.150	TCP	74 41304 → 23 [SYN] Seq=0 Win=64240 Len=0 MSS=1460
13 36.774218116	192.168.200.100	192.168.200.150	TCP	74 56120 → 111 [SYN] Seq=0 Win=64240 Len=0 MSS=146
14 36.774257841	192.168.200.100	192.168.200.150	TCP	74 33878 → 443 [SYN] Seq=0 Win=64240 Len=0 MSS=146
15 36.774366305	192.168.200.100	192.168.200.150	TCP	74 58636 → 554 [SYN] Seq=0 Win=64240 Len=0 MSS=146
16 36.774405627	192.168.200.100	192.168.200.150	TCP	74 52358 → 135 [SYN] Seq=0 Win=64240 Len=0 MSS=146
17 36.774535534	192.168.200.100	192.168.200.150	TCP	74 46138 → 993 [SYN] Seq=0 Win=64240 Len=0 MSS=146
18 36.774614776	192.168.200.100	192.168.200.150	TCP	74 41182 → 21 [SYN] Seq=0 Win=64240 Len=0 MSS=1460
19 36.774685505	192.168.200.150	192.168.200.100	TCP	74 23 → 41304 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=
20 36.774685652	192.168.200.150	192.168.200.100	TCP	74 111 → 56120 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len
21 36.774685696	192.168.200.150	192.168.200.100	TCP	60 443 → 33878 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
22 36.774685737	192.168.200.150	192.168.200.100	TCP	60 554 → 58636 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
23 36.774685776	192.168.200.150	192.168.200.100	TCP	60 135 → 52358 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0

Possiamo notare che, dopo una **ARP request**, *l'indirizzo IP 192.168.200.100* invia consecutivamente richieste di SYN verso alcune porte note (ad esempio le porte 21, 23, 443). Questo fa presagire una possibile scansione di rete con target *l'indirizzo IP 192.168.200.150*. Questa supposizione è inoltre rafforzata dalle risposte che vengono inviate, come i pacchetti **SYN ACK** e i pacchetti **RST ACK**.

Che soluzioni si possono implementare?

Una prima soluzione potrebbe essere quella di **chiudere le porte inutilizzate**. Se questo non fosse il caso, conoscendo l'indirizzo IP dell'attaccante è possibile, tramite apposite regole del firewall, **bloccare la connessione in ingresso**.

Una best pratic, risulta comunque impostare consapevolemente delle regole del firewall in modo da poter minimizzare le possibili minacce.