(3.1)

• Show that $V = W_1 \oplus \cdots \oplus W_m$ if and only if $V = W_1 + \cdots + W_m$ and $0 = w_1 + \cdots + w_m$, $w_k \in W_k$ implies that $w_1, \cdots, w_m = 0$.

Proof. Suppose that V is the given direct sum. Then if $0 = w_1 + \cdots + w_m$ each w_k is unique. Then $0 \in W_k$ for all k and $0 + \cdots + 0 = 0 \in V$ gives that this is the only such linear combination yielding 0, by uniqueness. Therefore $w_k = 0$ for all w_k .

Now suppose that there is a vector $v \in V$ with non unique decomposition; that is, let $w_k, z_k \in W_k$ for all k, then v is such that

$$v = w_1 + \dots + w_m = z_1 + \dots + z_m$$

where there exists a j so that $W_j \ni w_j \neq z_j \in W_j$.

Then it follows that

$$0 = 0 + \dots + 0 = v + (-v)$$

= $w_1 + \dots + w_m + -(w_1 + \dots + w_m)$
= $w_1 - z_1 + \dots + w_m - z_m$.

Since \mathbb{K} is a ring, and thus addition is commutative. Since $w_j \neq v_j$, then $w_j - v_j \neq 0$ and thus there are non-zero terms in the decomposition of 0. Therefore, $0 = d_1 + \cdots + d_m$ does not imply $d_k = 0$ for all k. Thus by contraposition we have shown the other direction. This completes the proof.

• Show that $V = U \oplus W$ iff $(U + W = V \text{ and } U \cap W = 0)$.

Proof. Suppose that $V=U\oplus W$. If $v\in U\cap W$, by definition v=u+w uniquely. Futhermore there are $u'\in U$ and $w'\in W$ so that u'=u+w=w'. Thus 0=v+(-v)=(u'-u)-w=-u+(w'-w) with $(w'-w)\in W$ and $(u'-u)\in U$. Using the uniqueness of 0 in its direct sum decomposition (u'-u)=u' and (w'-w)=w'. Therefore -w=0 and -u=0, so v=0+0 implies v=0, and $U\cap V=0$. Next $V=U\oplus W$ implies that every $v\in V$ has a unique decomposition in $U\oplus V$ and so $V\subset U+W$. On the other hand $U+W\subset V$ as $W\subset V$ and $U\subset V$ as subspaces, and therefore any combination of vectors in both need be in V as to not violate V being a \mathbb{K} -module.

In the other direction suppose that U+W=V and $U\cap W=0$. Now take $v\in V$ so that v=u+w. We will show that $u,w\in U,W$ are unique. Suppose there were $u',w'\in U,W$ with v=u'+w' and $(u,w)\neq (u',w')$ for the sake of contradiction. Then $0=v+(-v)\in U\cap V$ with 0=(u-u')+(w-w'), but one of thes terms must be non-zero by our supposition, and therefore the other must be its inverse. That is, (u-u')=-(w-w') and so $(u-u')\in W$ and $(w-w')\in U$ by U,W subspaces. So w-w'=0 and u-u'=0 by the hypothesis, which contracits $(u,w)\neq (u',w')$. Therefore the decomposition v=u+w is unique and v=u'=0 is direct.

(3.2)

• Show that Ker(T) is T-invariant.

Proof. We use the alternative definition for T-invariant given in 4.4.85. Then if $w \in Ker(T)$, T(w) = 0, and since T(T(w)) = T(0) = 0 we have $T(w) \in Ker(T)$. Therefore Ker(T) is T-invariant.

• Show that Im(T) is T-invariant.

Proof. Recall that as a subspace $Im(T) \subset V$. Then $T(Im(V)) \subset \{v \in V : v = T(w), w \in V\}$; since $w \in Im(V)$ gives us T(Im(V)). Therefore $T(Im(V)) \subset Im(v)$ and Im(V) is T-invariant.

(3.3) Let V be a vector space over \mathbb{F} , let $X, H : V \to V$ be linear, let $\alpha, \lambda \in \mathbb{F}$ be central, let $v \in V$ be an eigenvector of H with eigenvalue λ . Show that if $H \circ X - X \circ H = \alpha X$ then X(v) is an eigenvector of H with eigenvalue $\alpha + \lambda$.

Proof. Using theorem 4.2.12 we yield that λ need be central and $H(v) = \lambda v$. Then $\alpha X(v) = H \circ X(v) - X \circ H(v) = H(X(v)) - X(\lambda v)$. Then using centrality of λ we get $H(X(v)) = (\alpha + \lambda)X(v)$; and thus $\alpha + \lambda$ is an eigenvalue of H, with $X(v) \in Eig_{\lambda,H}$.

(3.4)

(3.5)

• Find the eigenvalues and eigenspaces of both L and R. ¹

Solution. For the right shift operator, every $r \in \mathbb{R}$ is an eigenvalue. To see this take $c \in \mathbb{C}^{\mathbb{N}}$ so that $c = \langle z, rz, r^2z, r^3z, \cdots \rangle$ with $z \in \mathbb{C}$. Then $R(c) = \langle rz, r^2z, r^3z, \cdots \rangle = rc$. The cooresponding eigen spaces are $Eig_{r,R} = \{\langle z, rz, r^2z, \cdots \rangle : z \in \mathbb{C}\}$.

For the left shift operator, we claim that there are no eigenvalues. To see this suppose that there were some non-zero eigenvalue, say $r = \lambda$. Then if $c \in Eig_{\lambda,L}$ non-trivially we have L(c) = rc. Take the first non-zero element in c, say c_j , and then $L(c)_j = 0$ and so it could not be that $rc_j = 0$ unless r = 0. Now suppose that r = 0 were an eigenvalue and take a non-zero eigenvector $c \in Eig_{0,L}$. Then there is a j so that $c_j \neq 0$ and then $L(c)_j = 0$, but $L(c)_{j+1} \neq 0$ which contradicts that L(c) = rc = 0. Therefore r = 0 is not an eigenvalue of L.

• Find the eigenvalues and eigenspaces of both $L|_{\ell^2(\mathbb{C})}, R|_{\ell^2(\mathbb{C})} : \ell^2(\mathbb{C}) \to \ell^2(\mathbb{C}).$

Solution. First let $T:V\to V$ as vector spaces over a division ring \mathbb{K} . Then T has no eigenvalues if and only if there are no $W\subset V$ with $T|_W=rid_W$ for some $r\in\mathbb{K}$. Therefore if E is a subspace V then $T|_E$ has no eigenvalues as any subspace of E, say I, is mereley a subspace of V expressed $I=E\cap I$. Therefore $L|_{\ell^2(\mathbb{C})}$ has no eigenvalues using this spectral subspace principle.

We apply similar reasoning as above to R. We consider all those eigenspaces which form a strict subspace of $\ell^2(\mathbb{C})$, and thus all those eigen spaces for which the series $\sum_{k=1}^{\infty} r^n z \in \mathbb{C}$ converges. Therefore r so that |r| < 1 yields convergence and therefore defines the sert of acceptable eigen values. This completes the solution.

¹Gleezy actually got the operators wrong in his notes, but I'll just keep consistent with them; that is, $L(0,1,2,\cdots) = (0,0,1,2,3,4,\cdots)$.

- (3.6) Let V be a vector space over a division ring \mathbb{F} , let $T: V \to V$ be linear, and $p \in \mathbb{F}[x]$ be a polynomial.
 - If $v \in V$ is an eigenvector with eigenvalue λ (so that $T(v) = \lambda v$) show that $[p(T)](v) = p(\lambda)v$.

Proof. As $p \in \mathbb{F}[x]$, then $p[x] = a_0 + a_1x + \cdots + a_nx^n$. So we evaluate

$$\begin{split} p[T](v) &= \left[\sum_{k=0}^n a_k T^n\right](v) \\ &= \sum_{k=0}^n a_k T^n(v) = \sum_{k=0}^n a_k \lambda^n v \\ &= \sum_{k=0}^n a_k [\lambda^n] v = \left(\sum_{k=0}^n a_k [\lambda]^n\right) v = p(\lambda) v. \end{split}$$

The above follows using associativeity of \mathbb{F} . This completes the proof.

• Let $\lambda \in \mathbb{F}$ be an eigenvalue of T and suppose that p(T) = 0. Show that $p(\lambda) = 0$

Proof. If λ is an eigenvalue of T then p(T)(v) = 0 for all v, and thus $p(\lambda)v = 0$ for all v. Since \mathbb{F} is a division ring, $p(\lambda)v = 0$ for $v \neq 0$ implies that at least $p(\lambda) = 0$.

(3.7) Let V be a finite-dimensional vector space and let $T: V \to V$ be linear with distinct eigenvalues $\lambda_1, \ldots, \lambda_m$. Show that T is diagonalizable iff $V = \bigoplus_{i=1}^m Eig_{\lambda_i}$.

Proof. Suppose T is diagonalizable then by the fundamental theorem of diagonalizability (4.3.2), this is if and only if there is a basis \mathcal{B} of V consisting of eigenvectors of T. By proposition (4.4.34) we have that

$$V = \bigoplus_{b \in \mathcal{B}} Span(b) = \bigoplus_{i=1}^{m} Eig_{\lambda_i, T}.$$

In the other direction suppose that $V = \bigoplus_{i=1}^m Eig_{\lambda_i}$. Then let \mathcal{B}_i be a basis for Eig_{λ_i} . Since V is a direct sum of the eigen spaces, then $0 = e_1 + \cdots + e_m$ implies every $e_k = 0$. Then writing e_l interms of its basis in \mathcal{B}_k , we yield that the set $\bigcup \mathcal{B}_i =: \mathcal{B}$ is linearly independent. The set also spans V since $V = \sum_{i=1}^m Eig_{\lambda_i}$. This gives \mathcal{B} a basis of V and therefore by the fundamental theorem of diagonalizability, T is diagonalizable.

(3.8) Let V be a finite-dimensional vector space over a field and let $S, T : V \to V$ be diagonalizable linear-maps. Show that S, T are simultaneously diagonalizable if and only if S and T commute.

Proof. Suppose that S, T are simultaneously diagonalizable with common basis \mathcal{B} . Then for every $v \in V$ it follow that

$$\begin{split} [S \circ T[v]]_{\mathcal{B}} &= [S \circ T]_{\mathcal{B}}[v]_{\mathcal{B}} \\ &= \left[\sum_{j=1}^n S_j^p \sum_{k=1}^n T_j^k[v]_{\mathcal{B}}^k\right]_{p=1}^n \\ &= \left[T_p^p S_p^p[v]_{\mathcal{B}}^p\right]_{p=1}^n = \left[S_p^p T_p^p[v]_{\mathcal{B}}^p\right]_{p=1}^n \\ &= \left[\sum_{j=1}^n T_j^p \sum_{k=1}^n S_j^k[v]_{\mathcal{B}}^k\right]_{p=1}^n \\ &= [T \circ S]_{\mathcal{B}}[v]_{\mathcal{B}} \end{split}$$

by the commutativity of the base field.