DMCI0099.ST25.txt SEQUENCE LISTING

	<110>	Pod	vkin-Frenkel dstolski, Ar kon, Richard	ndrzej											
	<120>	Van	illin Biosyr	nthetic Pat	hway Enzyme	From Vanil	la Planifolia								
	<130>	DMCI0099													
	<150> <151>		462,576 0-05-22												
	<150> <151>		/US98/14895 3-07-15												
	<150> <151>		052,604 7-07-15												
	<150> <151>		272,415 1-02-28		-										
j.d	<160>	25	•												
	<170>	Pate	entIn versio	on 3.1											
*	<210> <211> <212> <213>	1 1071 DNA Van:	l illa planifo	olia											
	<400>	1													
a C		_	_		ttcctggtct			60							
					tccgttacac			120							
Q					cgccacgcct			180							
	cgcaggt	acg	ggaagagcta	cggatcggag	gaggagatca	agaagaggtt	cgggatcttc	240							
§ Nai	gtggaga	aatc	tagcgtttat	ccggtccact	aatcggaagg	atctgtcgta	taccctagga	300							
	atcaaco	caat	tcgccgacct	gacctgggag	gaattccgga	ccaatcgcct	tggtgcggcg	360							
	cagaact	gct	cggcgactgc	gcatggaaac	caccggtttg	tcgatggcgt	gcttcctgta	420							
	acgaggo	gatt	ggagggagca	agggatagtg	agccctgtaa	aggaccaagg	aagctgtgga	480							
	tcttgct	gga	ctttcagtac	tactggagca	ctagaggctg	catatacaca	gctaactgga	540							
	aagagca	acat	cattatctga	acagcaactt	gtggactgtg	cctcagcatt	caataacttt	600							
	ggatgca	aatg	gaggtttgcc	ttcccaagcc	tttgaatacg	ttaagtacaa	tggaggcatc	660							
	gacacaç	gaac	agacttatcc	ataccttggt	gtcaatggta	tctgcaactt	caagcaggag	720							
	aatgtt	ggtg	tcaaggtcat	tgattcgata	aacatcaccc	tgggtgctga	ggatgagttg	780							
	aagcato	gcag	tgggcttggt	gcgtccagtt	agcgttgcat	ttgaggttgt	gaaaggtttc	840							
	aatctgt	aca	agaaaggtgt	atacagcagt	gacacctgtg	gaagagatcc	aatggatgtg	900							
	aaccaco	gcag	ttcttgccgt	cggttatgga	gtcgaggacg	ggattcctta	ttggctcatc	960							

aagaactcat ggggtacaaa ttggggtgac aatggctact ttaagatgga actcggcaag 1020
aacatgtgtg gtgttgcaac ttgcgcatct tatcccattg tggctgtgta g 1071

<210> 2

<211> 352

<212> PRT

<213> Vanilla planifolia

<400> 2

Met Ala Ala Lys Leu Leu Phe Phe Leu Leu Phe Leu Val Ser Ala Leu $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Ser Val Ala Leu Ala Gly Phe Glu Glu Asp Asn Pro Ile Arg Ser Val 20 25 30

Thr Gln Arg Pro Asp Ser Ile Glu Pro Ala Ile Leu Gly Val Leu Gly 35 40 45

Ser Cys Arg His Ala Phe His Phe Ala Arg Phe Ala Arg Arg Tyr Gly
50
55
60

V

Lys Ser Tyr Gly Ser Glu Glu Glu Ile Lys Lys Arg Phe Gly Ile Phe 65 70 75 80

Val Glu Asn Leu Ala Phe Ile Arg Ser Thr Asn Arg Lys Asp Leu Ser

85

90

95

Tyr Thr Leu Gly Ile Asn Gln Phe Ala Asp Leu Thr Trp Glu Glu Phe

Tyr Thr Leu Gly Ile Asn Gln Phe Ala Asp Leu Thr Trp Glu Glu Phe
100 105 110

Arg Thr Asn Arg Leu Gly Ala Ala Gln Asn Cys Ser Ala Thr Ala His 115 120 125

Gly Asn His Arg Phe Val Asp Gly Val Leu Pro Val Thr Arg Asp Trp 130 135 140

Arg Glu Gln Gly Ile Val Ser Pro Val Lys Asp Gln Gly Ser Cys Gly 145 150 155 160

Ser Trp Thr Phe Ser Thr Thr Gly Ala Leu Glu Ala Ala Tyr Thr Gln
165 170 175

Leu Thr Gly Ser Thr Leu Ser Glu Gln Gln Leu Val Asp Cys Ala Ser 180 185 190

Ala Phe Asn Asn Phe Gly Cys Gly Gly Leu Pro Ser Gln Ala Phe Glu 195 200205

Tyr Val Lys Tyr Asn Gly Gly Ile Asp Thr Glu Gln Thr Tyr Pro Tyr 215 Leu Gly Val Met Gly Ile Cys Asn Phe Lys Gln Glu Asn Val Gly Val Lys Val Ile Asp Ser Ile Asn Ile Thr Leu Gly Ala Glu Asp Glu Leu 245 250 Lys His Ala Val Gly Leu Val Arg Pro Val Ser Val Ala Phe Glu Val Val Lys Gly Phe Asn Leu Tyr Lys Lys Gly Val Tyr Ser Ser Asp Thr Cys Gly Arg Asp Pro Met Asp Val Asn His Ala Val Leu Ala Val Gly Tyr Gly Val Glu Asp Gly Ile Pro Tyr Trp Leu Ile Lys Asn Ser Trp Ф Gly Thr Asn Trp Gly Asp Asn Gly Tyr Phe Lys Met Glu Leu Gly Lys 330 1 F Asn Met Cys Gly Val Ala Thr Cys Ala Ser Tyr Pro Ile Val Ala Val T. 3<211> 7<212> PRT<213> Artificial Sequence<220><223> Novel Sequence <210> <400> Gly Val Leu Pro Val Thr Arg <210> 4 13 <211> <212> PRT <213> Artificial Sequence <220> <223> Novel Sequence <400> 4 Asn Ser Trp Gly Thr Asn Trp Gly Asp Asn Gly Tyr Phe <210> 5 <211> 6 <212> PRT <213> Artificial Sequence <220>

DMCI0099.ST25.txt

```
<223> Novel Sequence
  <400> 5
  Gly Phe Asn Leu Tyr Lys
  <210>
          6
  <211>
         8
  <212>
         PRT
  <213>
         Artificial Sequence
  <220>
  <223>
         Novel Sequence
  <400>
  Gln Gly Ile Val Ser Pro Val Lys
<210>
         7
<211>
= <212>
         20
         DNA
= \2-
= <213>
         Artificial Sequence
ũ
气 <220>
<223>
         Primer la 5
= <220>
<sup>₽</sup> <221>
         misc_feature
<222>
         (3)..(3)
[] <223>
         N= Inosine
N
<220>
<221>
         misc_feature
C <222>
         (6)...(6)
TU <223>
         N= Inosine
  <220>
  <221>
         misc_feature
  <222>
         (9)...(9)
  <223>
         N= Inosine
  <220>
  <221>
         misc_feature
  <222>
         (12)...(12)
  <223>
         N= Inosine
  <220>
  <221>
         misc_feature
         (15)..(15)
  <222>
  <223>
         N=I
  <220>
  <221>
         misc_feature
  <222>
         (18)...(18)
  <223>
         N=I
  <400> 7
  ggngtnctnc cngtnacncg
```

20

```
<210>
         8
  <211>
         20
  <212>
         DNA
  <213>
         Artificial Sequence
  <220>
  <223>
         Primer la 5
  <220>
  <221>
         misc_feature
  <222>
         (3)...(3)
  <223>
         N= Inosine
  <220>
  <221>
         misc_feature
  <222>
         (6)..(6)
  <223>
         N= Inosine
  <220>
  <221>
         misc feature
<222>
         (9)..(9)
  <223>
         N= Inosine
= <220>
Q <221>
         misc_feature
(12)..(12)
₹ <222>
<223>
         N= Inosine
<u>l</u>
  <220>
一 <221>
         misc feature
≡ <222> (15)..(15)
(223>
         N= Inosine
N
ក្ស <220>
  <221>
         misc_feature
(18)^{-}. (18)
C <223>
         N= Inosine
N
  <400> 8
  cgngtnacng gnagnacncc
                                                                            20
  <210>
         9
  <211>
         41
  <212>
         DNA
         Artificial Sequence
  <220>
  <223>
         Primer 2a 5
  <220>
  <221>
         misc_feature
  <222>
         (3)..(3)
  <223>
         N= t or c
  <220>
  <221>
         misc_feature
  <222>
         (6)..(6)
  <223>
         N= Inosine
```

Page 5

<220>

```
<221>
         misc feature
  <222>
         (12)...(12)
         N= Inosine
  <223>
  <220>
  <221>
         misc_feature
  <222>
         (15)...(15)
  <223>
         N= Inosine
  <220>
  <221>
         misc_feature
  <222>
         (18)...(18)
  <223>
         N= t or c
  <220>
         misc_feature (24)..(24)
  <221>
  <222>
  <223>
         N= Inosine
  <220>
  <221>
         misc feature
  <222>
          (27)..(27)
  <223>
         N= t or c
= <220>

☐ <221>

         misc_feature
ѿ <222>
         (30)..(30)
         N= t or c
  <223>
<220>
└<221>
         misc_feature
= <222>
         (33)..(33)
<223>
         N= Inosine
□ <220>
TU <221>
         misc_feature
[4] <222>
         (36)^{-}.(36)
1 <223>
         N= t or c
<221>
         misc_feature
  <222>
         (39)...(39)
  <223>
         N= t or c
  <400> 9
                                                                            41
  aantcntggg gnacnaantg gggnganaan ggntanttna a
  <210>
         10
  <211>
          42
  <212>
         DNA
  <213>
         Artificial Sequence
  <220>
  <223>
         Primer 2b 5
  <220>
  <221>
         misc_feature
  <222>
          (1)...(1)
         N= c or t
  <223>
  <220>
  <221>
         misc feature
```

```
<222>
          (4)..(4)
   <223>
          N= g or a
  <220>
   <221>
          misc_feature
   <222>
          (7)..(7)
   <223>
          N= g or a
   <220>
          misc_feature
   <221>
   <222>
          (10)..(10)
  <223>
          N= Inosine
  <220>
          misc_feature
  <221>
  <222>
          (13)..(13)
  <223>
          N= g or a
  <220>
  <221>
          misc_feature
   <222>
          (16)...(16)
   <223>
          N= g or a
<220>
<221>
          misc_feature
a <222>
          (19)^{-}...(19)
<u>~</u> <223>
          N= Inosine
, ac. 1
  <220>
<221>
          misc_feature
├ <222>
          (25) ... (25)
₽ <223>
          N=g or a
= <220>
  <221>
TU <222>
          misc_feature
          (28)..(28)
TU <223>
          N= Inosine
Q
(220)
[] <221>
<222>
          misc_feature
          (31)..(31)
  <223>
          N= Inosine
  <220>
  <221>
          misc_feature
   <222>
          (37) ... (37)
         N= Inosine
  <223>
  <220>
   <221>
          misc_feature
  <222>
          (40) . . (40)
  <223>
          N= g or a
  <400>
                                                                              42
  nttnaantan centtntene eccanttngt neeccangan tt
   <210>
          11
   <211>
          17
   <212>
          DNA
          Artificial Sequence
  <220>
```

```
<223> Primer 3a 5
  <220>
          misc_feature
  <221>
  <222>
          (3)...(3)
  <223>
          N= Inosine
  <220>
  <221>
          misc_feature
  <222>
          (6)...(6)
  <223>
         N= t or c
  <220>
         misc_feature
  <221>
  <222>
          (9)...(9)
  <223>
         N= t or c
  <220>
  <221>
          misc_feature
  <222>
          (12)...(12)
  <223>
          N= Inosine
<220>
  <221>
          misc_feature
= <222>
          (15)...(15)
☐ <223>
         N= t or c
M
  <400> 11
  ggnttnaanc tntanaa
                                                                               17
4.]
<u></u>
<del>=</del> <210>
          12
<sub>E</sub> <211>
          18
a <212>
          DNA
ក្ប <213>
          Artificial Sequence
N
  <220>
(i)
4 <223>
          Primer 3b5
ΠIJ
  <220>
  <221>
         misc_feature
  <222>
          (1)..(1)
  <223>
          N= c or t
  <220>
  <221>
          misc feature
  <222>
          (4)..(4)
  <223>
          N= g or a
  <220>
  <221>
         misc_feature
  <222>
          (7)...(7)
  <223>
         N= Inosine
  <220>
  <221>
          misc_feature
  <222>
          (10)...(10)
  <223>
          N= g or a
  <220>
  <221>
          misc feature
  <222>
         (13)...(13)
  <223> N= g or a
```

```
<220>
  <221>
        misc_feature
  <222>
        (16)..(16)
  <223> N= Inosine
  <400> 12
                                                                       18
  nttntanagn ttnaancc
  <210>
        13
  <211>
        31
  <212>
        DNA
  <213>
        Artificial Sequence
  <220>
  <223>
        4HBS Pla
  <400> 13
                                                                       31
  ggaattccat atggcagcta agctcctctt c
  <210>
         14
= <211>
         27
DNA
1 <213> Artificial Sequence
<220>
L
  <223>
         4HBS Plb
≡ <400> 14
                                                                       27
🗖 cgcggatccc tacacagcca caatggg
N
  <210>
         15
□ <211>
         29
<212>
        DNA
TU <213>
         Artificial Sequence
  <220>
  <223>
        4HBS P2a
  <400> 15
                                                                       29
  cccatatgct tcctgtaacg agggattgg
  <210>
         16
  <211>
         30
  <212>
        DNA
  <213>
        Artificial Sequence
  <220>
  <223>
        4HBS P3b
  <400> 16
  cccctcgaga tggcagctaa gctcctcttc
                                                                       30
  <210>
        17
  <211> 28
```

```
<212>
         DNA
  <213>
        Artificial Sequence
  <220>
  <223> 4HBS P3b
  <400> 17
                                                                       28
  cccactagt ctacacagcc acaatggg
  <210>
        18
  <211>
  <212>
        Artificial Sequence
  <220>
  <223> Oligo 1
  <400> 18
                                                                       34
  gtatctgagc tcaaaaatgg cagctaagct cctc
  <210>
        19
Q <211>
         34
Ø <212>
        DNA
<213>
        Artificial Sequence
  <220>
<223>
        Oligo 2
<400> 19
                                                                       34
🔁 catagaggat ccctacacag ccacaatggg ataa
20
a <211>
         360
N <212>
        PRT
  <213>
        Arabidopsis thaliana
  <400> 20
  Met Ser Ala Lys Thr Ile Leu Ser Ser Val Val Leu Val Leu Val
                  5
                                     10
  Ala Ala Ser Ala Ala Ala Asn Ile Gly Phe Asp Glu Ser Asn Pro Ile
  Arg Met Val Ser Asp Gly Leu Arg Glu Val Glu Glu Ser Val Ser Gln
          35
  Ile Leu Gly Gln Ser Arg His Val Leu Ser Phe Ala Arg Phe Thr His
  Arg Tyr Gly Lys Lys Tyr Gln Asn Val Glu Glu Met Lys Leu Arg Phe
                                         75
```

				_					DMCI0099.ST25.txt							
	Ser	Ile	Phe	Lys	Glu 85	Asn	Leu	Asp	Leu	Ile 90	Arg	Ser	Thr	Asn	Lys 95	Lys
	Gly	Leu	Ser	Tyr 100	Lys	Leu	Gly	Val	Asn 105	Gln	Phe	Ala	Asp	Leu 110	Thr	Trp
	Gln	Glu	Phe 115	Gln	Arg	Thr	Lys	Leu 120	Gly	Ala	Ala	Gln	Asn 125	Cys	Ser	Ala
	Thr	Leu 130	Lys	Gly	Ser	His	Lys 135	Val	Thr	Glu	Ala	Ala 140	Leu	Pro	Glu	Thr
	Lys 145	Asp	Trp	Arg	Glu	Asp 150	Gly	Ile	Val	Ser	Pro 155	Val	Lys	Asp	Gln	Gly 160
	Gly	Cys	Gly	Ser	Cys 165	Trp	Thr	Phe	Ser	Thr 170	Thr	Gly	Ala	Leu	Glu 175	Ala
		_		180					185					190	Ser	
**************************************	GIn	Gln	Leu 195	Val	Asp	Суѕ	Ala	Gly 200	Ala	Phe	Asn	Asn	Tyr 205	Gly	Cys	Asn
F.On	GLY	Gly 210	Leu	Pro	Ser	Gln	Ala 215	Phe	Glu	Tyr	Ile	Lys 220	Ser	Asn	Gly	Gly
U C	225					230					235				Thr	240
	Lys	Phe	Ser	Ala	Glu 245	Asn	Val	Gly	Val	Gln 250	Val	Leu	Asn	Ser	Val 255	Ser
	Ile	Thr	Leu	Gly 260	Ala	Glu	Asp	Glu	Leu 265	Lys	His	Ala	Val	Gly 270	Leu	Val
	Arg	Pro	Val 275	Ser	Ile	Ala	Phe	Glu 280	Val	Ile	His ,	Ser	Phe 285	Arg	Leu	Tyr
	Lys	Ser 290	Gly	Val	Tyr	Thr	Asp 295	Ser	His	Cys	Gly	Ser 300	Thr	Pro	Met	Asp
	Val 305	Asn	His	Ala	Val	Leu 310	Ala	Val	Gly	Tyr	Gly 315	Val	Glu	Asp	Gly	Val 320
	Pro	Tyr	Trp	Leu	Ile 325	Lys	Asn	Ser	Trp	Gly 330	Ala	Asp	Trp	Gly	Asp 335	Lys

Gly Tyr Phe Lys Met Glu Met Gly Lys Asn Met Cys Gly Ile Ala Thr 340 345 350

Cys Ala Ser Tyr Pro Val Val Ala 355 360

<210> 21

<211> 362

<212> PRT

<213> Hordeum vulgare

<400> 21

Ala Ala Val Ala Val Ala Ser Ser Ser Ser Phe Ala Asp Ser Asn Pro 20 25 30

Ile Arg Pro Val Thr Asp Arg Ala Ala Ser Thr Leu Glu Ser Ala Val

35
40
45

Leu Gly Ala Leu Gly Arg Thr Arg His Ala Leu Arg Phe Ala Arg Phe

Leu Gly Ala Leu Gly Arg Thr Arg His Ala Leu Arg Phe Ala Arg Phe 50 55 60

Ala Val Arg Tyr Gly Lys Ser Tyr Glu Ser Ala Ala Glu Val Arg Arg 65 70 75 80

Arg Phe Arg Ile Phe Ser Glu Ser Leu Glu Glu Val Arg Ser Thr Asn 85 . 90 95

Arg Lys Gly Leu Pro Tyr Arg Leu Gly Ile Asn Arg Phe Ser Asp Met

100 105 110

Ser Trp Glu Glu Phe Gln Ala Thr Arg Leu Gly Ala Ala Gln Thr Cys 115 120 125

Ser Ala Thr Lys Gly Asn His Leu Met Arg Asp Ala Ala Leu Pro 130 135 140

Glu Thr Lys Asp Trp Arg Glu Asp Gly Ile Val Ser Pro Val Lys Asn 145 150 155 160

Gln Ala His Cys Gly Ser Cys Trp Thr Phe Ser Thr Thr Gly Ala Leu 165 170 175

Glu Ala Ala Tyr Thr Gln Ala Thr Gly Lys Asn Ile Ser Leu Ser Glu 180 185 190

Gln Gln Leu Val Asp Cys Ala Gly Gly Phe Asn Asn Phe Gly Cys Asn Page 12

195

I

D

Gly Gly Leu Pro Ser Gln Ala Phe Glu Tyr Ile Lys Tyr Asn Gly Gly 215 Ile Asp Thr Glu Glu Ser Tyr Pro Tyr Lys Gly Val Asn Gly Val Cys 230 235 His Tyr Lys Ala Glu Asn Ala Ala Val Gln Val Leu Asp Ser Val Asn 250 Ile Thr Leu Asn Ala Glu Asp Glu Leu Lys Asn Ala Val Gly Leu Val Arg Pro Val Ser Val Ala Ala Phe Gln Val Ile Asp Gly Phe Arg Gln Tyr Lys Ser Gly Val Tyr Thr Ser Asp His Cys Gly Thr Thr Pro Asp 290 295 Asp Val Asn His Ala Val Leu Ala Val Gly Tyr Gly Val Glu Asn Gly 315 320 305 310 Val Pro Tyr Trp Leu Ile Lys Asn Ser Trp Gly Ala Asp Trp Gly Asp 335 Asn Gly Tyr Phe Lys Met Glu Met Gly Lys Asn Met Cys Ala Ile Ala 345 Thr Cys Ala Ser Tyr Pro Val Val Ala Ala <210> 22 <211> 360 <212> PRT <213> Nicotiana tobaccum Met Ser Arg Phe Ser Leu Leu Leu Ala Leu Val Val Ala Gly Gly Leu Phe Ala Ser Ala Leu Ala Gly Pro Ala Thr Phe Ala Asp Glu Asn Pro Ile Arg Gln Val Val Ser Asp Gly Leu His Glu Leu Glu Asn Ala Ile 40

Leu Gln Val Val Gly Lys Thr Arg His Ala Leu Ser Phe Ala Arg Phe

60

Page 13

55

	Ala 65	His	Arg	Tyr	Gly	Lys 70	Arg	Tyr	Glu	Ser	Val 75	Glu	Glu	Ile	Lys	Gln 80
	Arg	Phe	Glu	Val	Phe 85	Leu	Asp	Asn	Leu	Lys 90	Met	Ile	Arg	Ser	His 95	Asn
	Lys	Lys	Gly	Leu 100	Ser	Tyr	Lys	Leu	Gly 105	Val	Asn	Glu	Phe	Thr 110	Asp	Leu
	Thr	Trp	Asp 115	Glu	Phe	Arg	Arg	Asp 120	Arg	Leu	Gly	Ala	Ala 125	Gln	Asn	Cys
	Ser	Ala 130	Thr	Thr	Lys	Gly	Asn 135	Leu	Lys	Val	Thr	Asn 140	Val	Val	Leu	Pro
	Glu 145	Thr	Lys	Asp	Trp	Arg 150	Glu	Ala	Gly	Ile	Val 155	Ser	Pro	Val	Lys	Asn 160
	Gln	Gly	Lys	Cys	Gly 165	Ser	Cys	Trp	Thr	Phe 170	Ser	Thr	Thr	Gly	Ala 175	Leu
II. I	Glu	Ala	Ala	Tyr 180	Ser	Gln	Ala	Phe	Gly 185	Lys	Gly	Ile	Ser	Leu 190	Ser	Glu
		Gln	Leu 195	Val	Asp	Cys	Ala	Gly 200	Ala	Phe	Asn	Asn	Phe 205	Gly	Cys	Asn
	Gly	Gly 210	Leu	Pro	Ser	Gln	Ala 215	Phe	Glu	Tyr	Ile	Lys 220	Ser	Asn	Gly	Gly
	Leu 225	Asp	Thr	Glu	Glu	Ala 230	Tyr	Pro	Tyr	Thr	Gly 235	Lys	Asn	Gly	Leu	Cys 240
	Lys	Phe	Ser	Ser	Glu 245	Asn	Val	Gly	Val	Lys 250	Val	Ile	Asp	Ser	Val 255	Asn
	Ile	Thr	Leu	Gly 260	Ala	Glu	Asp	Glu	Leu 265	Lys	Tyr	Ala	Val	Ala 270	Leu	Val
	Arg	Pro	Val 275	Ser	Ile	Ala	Phe	Glu 280	Val	Ile	Lys	Gly	Phe 285	Lys	Gln	Tyr
	Lys	Ser 290	Gly	Val	Tyr	Thr	Ser 295	Thr	Glu	Cys	Gly	Asn 300	Thr	Pro	Met	Asp
	Val 305	Asn	His	Ala	Val	Leu 310	Ala	Val	Gly		Gly 315 ge 1		Glu	Asp	Gly	Val 320

Pro Tyr Trp Leu Ile Lys Asn Ser Trp Gly Ala Asp Trp Gly Asp Glu 325 330 335

Gly Tyr Phe Lys Met Glu Met Gly Lys Asn Met Cys Gly Val Ala Thr 340 . 345 . 350

Cys Ala Ser Tyr Pro Val Val Ala 355 360

<210> 23

<211> 360

<212> PRT

<213> Zea mays

<400> 23

N

Met Ala Pro Arg Arg Leu Leu Val Leu Ala $^{\circ}$ Val Val Ala Leu Ala Ala $^{\circ}$ 1 10 15

Pro Val Thr Asp Arg Ala Ala Ser Ala Leu Glu Ser Thr Val Phe Ala 35 40 45

Ala Leu Gly Arg Thr Arg Asp Ala Leu Arg Phe Ala Arg Phe Ala Val
50 55 60

Arg Tyr Gly Lys Ser Tyr Glu Ser Ala Ala Glu Val His Lys Arg Phe 65 70 75 80

Arg Ile Phe Ser Glu Ser Leu Gln Leu Val Arg Ser Thr Asn Arg Lys 85 90 95

Gly Leu Ser Tyr Arg Leu Gly Ile Asn Arg Phe Ala Asp Met Ser Trp 100 105 110

Glu Glu Phe Arg Ala Thr Arg Leu Gly Ala Ala Gln Asn Cys Ser Ala 115 120 125

Thr Leu Thr Gly Asn His Arg Met Arg Ala Ala Ala Val Ala Leu Pro 130 135 140

Glu Thr Lys Asp Trp Arg Glu Asp Gly Ile Val Ser Pro Val Lys Asn 145 150 . 155 160

Gln Gly His Cys Gly Ser Cys Trp Thr Phe Ser Thr Thr Gly Ala Leu 165 170 175

				100					100					100		
	Gln	Gln	Leu 195	Val	Asp	Cys	Gly	Leu 200	Ala	Phe	Asn	Asn	Phe 205	Gly	Cys	Asn
	Gly	Gly 210	Leu	Pro	Ser	Gln	Ala 215	Phe	Glu	Tyr	Ile	Lys 220	Tyr	Asn	Gly	Gly
	Leu 225	Asp	Thr	Glu	Glu	Ser 230	Tyr	Pro	Tyr	Gln	Gly 235	Val	Asn	Gly	Ile	Ser 240
	Lys	Phe	Lys	Asn	Glu 245	Asn	Val	Gly	Val	Lys 250	Val	Leu	Asp	Ser	Val 255	Asn
		Thr	Leu	Gly 260	Ala	Glu	Asp	Glu	Leu 265	Lys	Asp	Ala	Val	Gly 270	Leu	Val
	□ □ Arg	Pro	Val 275	Ser	Val	Ala	Phe	Glu 280	Val	Ile	Thr	Gly	Phe 285	Arg	Leu	Tyr
;	U V Lys	Ser 290	Gly	Val	Val	Thr	Ser 295	Asp	His	Cys	Gly	Thr 300	Thr	Pro	Met	Asp
:	3	Asn	His	Ala	Val	Leu 310	Ala	Val	Gly	Tyr	Gly 315	Val	Glu	Asp	Gly	Val 320
	na.										_					

Glu Ala Ala Tyr Thr Gln Ala Thr Gly Lys Pro Ile Ser Leu Ser Glu

Pro Tyr Trp Leu Ile Lys Asn Ser Trp Gly Ala Asp Trp Gly Asp Glu
325
330
335

Gly Tyr Phe Lys Met Glu Met Gly Lys Asn Met Cys Gly Val Ala Thr 340 345 350

Cys Ala Ser Tyr Pro Ile Val Ala 355 360

<210> 24

<211> 363

<212> PRT

<213> Zea mays

<400> 24

Met Ala His Arg Arg Ile Ile Leu Leu Leu Ala Val Ala Val Ala 1 5 10 15

Ala Thr Ser Ala Val Ala Ala Ala Ser Ser Gly Phe Asp Asp Ser Asn 20 25 30

	Pro	Ile	Arg 35	Pro	Val	Thr	Asp	Arg 40				25.t Ala		Glu	Ser	Thr
	Val	Phe 50	Ala	Ala	Leu	Gly	Arg 55	Thr	Arg	Asp	Ala	Leu 60	Arg	Phe	Ala	Arg
	Phe 65	Ala	Val	Arg	Tyr	Gly 70	Lys	Ser	Tyr	Glu	Ser 75	Ala	Ala	Glu	Val	His 80
	Lys	Arg	Phe	Arg	Ile 85	Phe	Ser	Glu	Ser	Leu 90	Gln	Leu	Val	Arg	Ser 95	Thr
	Asn	Arg	Lys	Gly 100	Leu	Ser	Tyr	Arg	Leu 105	Gly	Tyr	Asn	Arg	Phe 110	Ala	Asp
= ,	Met	Ser	Trp 115	Glu	Glu	Phe	Arg	Ala 120	Thr	Arg	Leu	Gly	Ala 125	Ala	Gln	Asn
	Cys	Ser 130	Ala	Thr	Leu	Thr	Gly 135	Asn	His	Arg	Met	Arg 140	Ala	Ala	Ala	Val
	Ala 145	Leu	Pro	Glu	Thr	Lys 150	Asp	Trp	Arg	Glu	Asp 155	Gly	Ile	Val	Ser	Pro 160
		Lys	Asn	Gln	Gly 165	His	Cys	Gly	Ser	Cys 170	Trp	Thr	Phe	Ser	Thr 175	Thr
	Gly	Ala	Leu	Glu 180	Ala	Ala	Tyr	Thr	Gln 185	Ala	Thr	Gly	Lys	Pro 190	Ile	Ser
		Ser	Glu 195	Gln	Gln	Leu	Val	Asp 200	Cys	Gly	Phe	Ala	Phe 205	Asn	Asn	Phe
	Gly	Cys 210	Asn	Gly	Gly	Leu	Pro 215	Ser	Gln	Ala	Phe	Glu 220	Tyr	Ile	Lys	Tyr
	Asn 225	Gly	Gly	Leu	Asp	Thr 230	Glu	Glu	Ser	Tyr	Pro 235	Tyr	Gln	Gly	Val	Asn 240
	Gly	Ile	Cys	Lys	Phe 245	Lys	Asn	Glu	Asn	Val 250	Gly	Val	Lys	Val	Leu 255	Asp
	Ser	Val	Asn	Ile 260	Thr	Leu	Gly	Ala	Glu 265	Asp	Glu	Leu	Lys	Asp 270	Ala	Val
	Gly	Leu	Val 275	Arg	Pro	Val	Ser	Val 280	Ala	Phe	Glu	Val	Ile 285	Thr	Gly	Phe

Arg Leu Tyr Lys Ser Gly Val Tyr Thr Ser Asp His Cys Gly Thr Thr 290 295 300

Pro Met Asp Val Asn His Ala Val Leu Ala Val Gly Tyr Gly Val Glu 305 310 315 320

Asp Gly Val Pro Tyr Trp Leu Ile Lys Asn Ser Trp Gly Ala Asp Trp 325 330 335

Gly Asp Glu Gly Tyr Phe Lys Met Glu Met Gly Lys Asn Met Cys Gly 340 345 350

Val Ala Thr Cys Ala Ser Tyr Pro Ile Val Ala 355 360

<210> 25

<211> 362

<212> PRT

├─ <213> Oryza sativa

<400> 25

Met Ala His Arg Arg Ile Ile Leu Leu Leu Ala Val Ala Ala Val Ala 5 10 15 15

Ala Thr Ser Ala Val Ala Ala Ala Ser Ser Gly Phe Asp Asp Ser Asn 20 25 30

TPro Ile Arg Ser Val Thr Asp His Ala Ala Ser Ala Leu Glu Ser Thr
U 35 40 45

W

Val Ile Ala Ala Leu Gly Arg Thr Arg Gly Ala Leu Arg Phe Ala Arg 50 55 60

Phe Ala Val Arg Gly His Lys Arg Tyr Gly Asp Ala Ala Glu Val Gln 65 70 75 80

Arg Arg Phe Arg Ile Phe Ser Glu Ser Leu Glu Leu Val Arg Ser Thr 85 90 95

Asn Arg Arg Gly Leu Pro Tyr Arg Leu Gly Ile Asn Arg Phe Ala Asp 100 105 110

Met Ser Trp Glu Glu Phe Gln Ala Ser Arg Leu Gly Ala Ala Gln Asn 115 120 125

Cys Ser Ala Thr Leu Ala Gly Asn His Arg Met Arg Asp Ala Pro Ala 130 140

Leu Pro Glu Thr Lys Asp Trp Arg Glu Asp Gly Ile Val Ser Pro Val Page 18

145 150 160 155 Lys Asp Gln Gly His Cys Gly Ser Cys Trp Pro Phe Ser Thr Thr Gly Ser Leu Glu Ala Arg Tyr Thr Gln Ala Thr Gly Pro Pro Val Ser Leu 185 Ser Glu Gln Gln Leu Ala Asp Cys Ala Thr Arg Tyr Asn Asn Phe Gly 200 Cys Ser Gly Gly Leu Pro Ser Gln Ala Phe Glu Tyr Ile Lys Tyr Asn Gly Gly Leu Asp Thr Glu Glu Ala Tyr Pro Tyr Thr Gly Val Asn Gly 🖊 Ile Cys His Tyr Lys Pro Glu Asn Ala Gly His Lys Val Leu Asp Ser Val Asn Ile Thr Leu Val Ala Glu Asp Glu Leu Lys Asn Ala Val Gly 260 265 Leu Val Arg Pro Val Ser Val Ala Phe Gln Val Ile Asn Gly Phe Arg 275 Met Tyr Lys Ser Gly Val Tyr Thr Ser Asp His Cys Gly Thr Ser Pro O Met Asp Val Asn His Ala Val Leu Ala Val Gly Tyr Gly Val Glu Asn

Gly Val Pro Tyr Trp Leu Ile Lys Asn Ser Trp Gly Ala Asp Trp Gly 325 330 335

Asp Asn Gly Tyr Phe Thr Met Glu Met Gly Lys Asn Met Cys Gly Ile 340 345 350

Ala Thr Cys Ala Ser Tyr Pro Ile Val Ala 355 360