Package 'popstudy'

October 18, 2023

```
Version 1.0.1
Depends R (>= 3.5.0)
Maintainer Cesar Gamboa-Sanabria <info@cesargamboasanabria.com>
Description The use of overparameterization is proposed with combinatorial analy-
      sis to test a broader spectrum of possible ARIMA models.
      In the selection of ARIMA models, the most traditional methods such as correlograms or oth-
      ers, do not usually cover many alternatives to define the number of coefficients to be esti-
      mated in the model, which represents an estimation method that is not the best.
      The popstudy package contains several tools for statistical analysis in demography and time se-
      ries based in Shryock research (Shry-
      ock et. al. (1980) <a href="https://books.google.co.cr/books?id=80o6AQAAMAAJ">https://books.google.co.cr/books?id=80o6AQAAMAAJ</a>).
Imports ggplot2, magrittr, lubridate, dplyr, tidyr, stats, demography,
      forecast, ggpubr, moments, grid, DescTools, rcompanion, utils,
      corrr, Hmisc, corrplot, correlation, parallel, here, stringr,
      scales, rainbow, Rdpack
License GPL-3
Encoding UTF-8
RdMacros Rdpack
LazyData true
URL https://www.cesargamboasanabria.com
RoxygenNote 7.2.3
Suggests testthat, snow
NeedsCompilation no
Author Cesar Gamboa-Sanabria [aut, mdc, cph, cre]
      (<https://orcid.org/0000-0001-6733-4759>)
Repository CRAN
Date/Publication 2023-10-17 23:50:02 UTC
```

Title Applied Techniques to Demographic and Time Series Analysis

Type Package

40

Index

R topics documented:

anonymous
Beers
births_deaths
CEB
correlate_df
CR_births
CR_deaths
CR_fertility_rates_1950_2011
CR_mortality_rates_1950_2011
CR_mortality_rates_2010_2015
CR_populations_1950_2011
CR_populations_1950_2015
CR_women_childbearing_age_1950_2011
descriptive_plot
Ecuador1990
El_Badry
grouped_age_CR_pop
growth_exp
growth_linear
growth_logistic
karup_king
karup_king_factors
Lexis
Lifetable
mortality_projection
Moultrie
Myers
netmigration_projection
op.arima
Panama1990
popstudy
population_projection
project_structure
read_from_dir
required_packages
Sprague
TFR_projection
- •

anonymous 3

|--|--|

Description

Anonymizing a data frame by avoiding vulnerability to a rainbow table attack.

Usage

```
anonymous(data, ID, string_length = 15, SEED = NULL)
```

Arguments

data.frame. A dataset with the a variable to change its values.

ID character. A string with the variable name to change its values.

string_length numeric. It defines the string length of the new identification variable.

SEED to be passed to set.seed to keep the the same new id's.

Value

anonymous function returns a list with two data frames:

data original data with the new variable

dictionary data frame with the original variable and the new one

Author(s)

Cesar Gamboa-Sanabria

References

Oechslin P (2003). "Making a Faster Cryptanalytic Time-Memory Trade-Off." In Boneh D (ed.), *Advances in Cryptology - CRYPTO 2003*, 617–630. ISBN 978-3-540-45146-4.

```
library(dplyr)
df <- select(mutate(mtcars, id=rownames(mtcars)), id, !contains("id"))
anonymous(df, ID="id", string_length = 5, SEED=160589)</pre>
```

4 Beers

Beers

Beers multipliers

Description

Method to open five-year grouped ages into specific ages.

Usage

```
Beers(data, ...)
```

Arguments

data data.drame. It contains at least two variables: five-year grouped ages and popu-

lation.

.. Arguments to be passed to dplyr::select, i.e., age and population, respec-

tively.

Value

Beers returns a data.frame with specific ages and populations.

Author(s)

Cesar Gamboa-Sanabria

References

Shryock HS, Siegel JS, Larmon EA, of the Census USB (1980). *The Methods and Materials of Demography*, number v. 1 in The methods and materials of demography. Department of Commerce, Bureau of the Census. https://books.google.co.cr/books?id=80o6AQAAMAAJ.

See Also

Sprague

```
Beers(Ecuador1990, age, population)
```

births_deaths 5

births_deaths

Births and deaths data

Description

Simulated data for Lexis Diagram examples.

Usage

```
data("births_deaths")
```

Format

The format is: List of 2 \$ births: tibble [32 x 3] (S3: tbl_df/tbl/data.frame) ...\$ sex : chr [1:32] "male" "male" "male" "male"\$ date_reg: Date[1:32], format:\$ births : num [1:32] 121558 126446 130839 130911 127524 ... \$ deaths: tibble [112 x 4] (S3: tbl_df/tbl/data.frame) ...\$ sex : chr [1:112] "male" "male" "male" "male"\$ date_reg: Date[1:112], format:\$ age : num [1:112] 0 0 0 0 0 0 0 0 0 0\$ deaths : num [1:112] 11411 10494 10814 9872 9457 ...

Examples

```
data(births_deaths)
summary(births_deaths)
```

CEB

Children Ever Born Data

Description

Children Ever Born Data from Bolivia's 2001 Census data.

Usage

```
data("CEB")
```

Format

A data frame with 27 observations on 8 variables for each five-year grouped age.

Source

https://www.ine.gob.bo/

```
data(CEB)
summary(CEB)
```

6 correlate_df

correlate_df

correlate_df

Description

Compute correlations in a data frames.

Usage

```
correlate_df(data, keep_class = NULL)
```

Arguments

data data.frame. A dataset with the variables to correlate.

keep_class list. A list that contains desire classes for specyfic variables.

Details

correlate_df takes data.frame class objects and works only with numeric, factor, and ordered class variables, so a previous data cleaning is needed for optimal results. A variable is considered nominal when it is a factor variable with more than two levels, and it is no ordered. When a numeric variable has only two different values, it is considered a binary variable. Also, when a factor variable has only two levels, it is regarded as a binary variable. The computed correlation will depend on the paired-variables class: Pearson method when both variables are numeric, Kendall correlation with a numeric and an ordinal variable, point-biserial with a numeric and a binary variable, Polychoric correlation with two ordinal variables, Tetrachoric correlation when both are binary, Rank-Biserial when one is ordinal, and the other is binary; and Kruskal's Lambda with one binary and one nominal, or both nominal variables. A Gaussian linear model is fitted to estimate the multiple correlation coefficient in the specific cases of one nominal variable and another numerical or ordered, so the user should take it carefully.

Value

correlate_df function returns a list with three objects: A data-frame with the correlation matrix and two correlation plots.

Author(s)

Cesar Gamboa-Sanabria

References

Khamis H (2008). "Measures of Association: How to Choose?" *Journal of Diagnostic Medical Sonography*, **24**(3), 155-162. doi:10.1177/8756479308317006.

CR_births 7

Examples

```
df <- data.frame(cont1=rnorm(100),
cont2=rnorm(100),
ordi1=factor(sample(1:5, 100, replace = TRUE), ordered = TRUE),
ordi2=factor(sample(1:7, 100, replace = TRUE), ordered = TRUE),
bin1=rbinom(100, 1, .4),
bin2=rbinom(100, 1, .6),
nomi1=factor(sample(letters[1:8], 100, replace = TRUE)),
nomi2=factor(sample(LETTERS[1:8], 100, replace = TRUE)))
correlate_df(df)</pre>
```

CR_births

CR_births

Description

Births registers in Costa Rica.

Usage

```
data("CR_births")
```

Format

A data frame with 8434 observations on the following 2 variables.

```
date_reg a Date
births a numeric vector
```

Source

https://inec.cr/

```
data(CR_births)
summary(CR_births)
```

CR_deaths

CR_deaths

Description

Deaths registers in Costa Rica.

Usage

```
data("CR_deaths")
```

Format

A data frame with 229462 observations on the following 3 variables.

```
date_reg a Date
age a numeric vector
deaths a numeric vector
```

Source

https://inec.cr/

Examples

```
data(CR_deaths)
summary(CR_deaths)
```

```
CR_fertility_rates_1950_2011
```

Costa Rica fertility rates

Description

Fertility rates for Costa Rica 1950-2011.

Usage

```
data("CR_fertility_rates_1950_2011")
```

Format

A data frame with 2170 observations on the following 3 variables.

```
Year a numeric vector

Age a numeric vector

Female a numeric vector with fertility rates
```

Source

https://inec.cr/

Examples

```
data(CR_fertility_rates_1950_2011)
summary(CR_fertility_rates_1950_2011)
```

```
CR_mortality_rates_1950_2011
```

Costa Rica mortality rates

Description

Mortality rates for Costa Rica 1950-2011.

Usage

```
data("CR_mortality_rates_1950_2011")
```

Format

A data frame with 2170 observations on the following 4 variables.

Year a numeric vector

Age a numeric vector

Female a numeric vector with female mortality rates

Male a numeric vector with male mortality rates

Total a numeric vector with total mortality rates

Source

https://inec.cr/

```
data(CR_mortality_rates_1950_2011)
summary(CR_mortality_rates_1950_2011)
```

```
CR_mortality_rates_2010_2015
```

Costa Rica Mortality Rates

Description

Mortality rates for Costa Rica in 2010-2015

Usage

```
data("CR_mortality_rates_2010_2015")
```

Format

A data frame with 7656 observations on the following 4 variables.

Year a numeric vector

Age a numeric vector

Female a numeric vector with female mortality rates

Male a numeric vector with male mortality rates

Source

https://inec.cr/

Examples

```
data(CR_mortality_rates_2010_2015)
summary(CR_mortality_rates_2010_2015)
```

```
CR_populations_1950_2011
```

Costa Rica population

Description

Estimated y projected populations for Costa Rica 1950-2011.

Usage

```
data("CR_populations_1950_2011")
```

Format

A data frame with 7656 observations on the following 4 variables.

Year a numeric vector

Age a numeric vector

Female a numeric vector with female population

Male a numeric vector with male population

Total a numeric vector with total population

Source

https://inec.cr/

Examples

```
data(CR_populations_1950_2011)
summary(CR_populations_1950_2011)
```

CR_populations_1950_2015

Costa Rica population

Description

Estimated y projected populations for Costa Rica 1950-2015.

Usage

```
data("CR_populations_1950_2015")
```

Format

A data frame with 7656 observations on the following 4 variables.

Year a numeric vector

Age a numeric vector

Female a numeric vector with female population

Male a numeric vector with male population

Source

https://inec.cr/

```
data(CR_populations_1950_2015)
summary(CR_populations_1950_2015)
```

12 descriptive_plot

```
CR_women_childbearing_age_1950_2011

Costa Rica population
```

Description

Estimated y projected populations for Costa Rica 1950-2011.

Usage

```
data("CR_women_childbearing_age_1950_2011")
```

Format

A data frame with 7656 observations on the following 4 variables.

Year a numeric vector

Age a numeric vector

Female a numeric vector with women of reproductive age population

Source

https://inec.cr/

Examples

```
data(CR_women_childbearing_age_1950_2011)
summary(CR_women_childbearing_age_1950_2011)
```

descriptive_plot

descriptive_plot

Description

Plot density with descriptive statistics for numerical values.

Usage

```
descriptive_plot(data, ..., labels = NULL, ylab = "Density")
```

Arguments

```
data data.frame.
```

... additional arguments to be passed to dplyr::select().

labels A vector with x-axis labels.

ylab y-axis label.

Ecuador1990 13

Value

descriptive_plot function returns a plot with density and descriptive statistics.

Author(s)

Cesar Gamboa-Sanabria

Examples

```
df \leftarrow data.frame(var1=rpois(50, 6), var2=rgamma(50, shape=5, rate=.4), var3=rnorm(50, 10)) descriptive_plot(df, var1, var3)
```

Ecuador1990

Ecuador1990

Description

Ecuador census data in 1990 by grouped ages.

Usage

```
data("Ecuador1990")
```

Format

A data frame with 21 observations on the following 4 variables.

```
age a factor with levels 0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-94 95-99 100+
```

male a numeric vector with males population

female a numeric vector with female population

population a numeric vector Ecuador population

Source

https://microdata.worldbank.org/index.php/catalog/499

```
data(Ecuador1990)
summary(Ecuador1990)
```

14 El_Badry

El_Badry El-Badry method	El_Badry	El-Badry method	
--------------------------	----------	-----------------	--

Description

The method corrects the zero parity omission error.

Usage

```
El_Badry(data, age, CEB, childs, req_ages = NULL)
```

Arguments

data	data.drame. It contains at least three variables: five-year grouped ages, number of childs and Children Ever Born (CEB).
age	variable name in data of the five-year grouped age.
CEB	variable name in data with number of Children Ever Born .
childs	variable name in data with the number of childs for each five-year grouped age and number of Children Ever Born.
req_ages	optional character string that specifies the five-year grouped age to estimates the intercept.

Value

Moultrie returns a list with two elements: a data.frame with corrected children for each number of Children Ever Born and five-year grouped ages and a data.frame with combinations of five-year grouped age to estimate intercept, slope, and R-squared. By default, the method uses the best value of R-squared to apply the El Badry correction.

Author(s)

Cesar Gamboa-Sanabria

References

Moultrie TA, Dorrington RE, Hill AG, Hill K, Timæus IM, Zaba B (2013). *Tools for demographic estimation*. International Union for the Scientific Study of Population.

See Also

CEB Moultrie

grouped_age_CR_pop 15

Examples

```
CEB_data <- tidyr::gather(CEB, ages, childs, -Children_Ever_Born)
results <- Moultrie(CEB_data, ages, childs, Children_Ever_Born)
CEB_data <- tidyr::pivot_wider(results, names_from=age, values_from=childs)
CEB_data <- tidyr::gather(CEB_data, ages, children, -CEB)
El_Badry(CEB_data, ages, CEB, children)</pre>
```

grouped_age_CR_pop

grouped_age_CR_pop

Description

Costa Rica population by 5-year-group ages in 2011.

Usage

```
data("grouped_age_CR_pop")
```

Format

A data frame with 16 observations on the following 2 variables.

```
age an ordered factor with levels 0-4<5-9<10-14<15-19<20-24<25-29<30-34<35-39<40-44<45-49<50-54<55-59<60-64<65-69<70-74<75 and more pop a numeric vector with the populaion
```

Source

https://inec.cr/

```
data(grouped_age_CR_pop)
str(grouped_age_CR_pop)
```

growth_exp

growth_exp Exponential growth

Description

Assuming an exponential behavior estimates the population size at time t, the growth rate, or population at time 0.

Usage

```
growth_exp(Nt = NULL, N0 = NULL, r = NULL, t0, t, time_interval, date = FALSE)
```

Arguments

Nt	numeric. The population at time t. If null and date = FALSE, then estimate the population at time t.
N0	numeric. The population at time 0 . If null and date = FALSE, then estimate the population at time 0 .
r	numeric. The growth rate. If null and date = FALSE, then estimate the growth rate for the time period $[t0,t]$.
t0	numeric. An object of class character with the date for the first population.
t	numeric. An object of class character with the date for the second population.
time_interval	character. A string with the time interval to calculate Delta_t.
date	logical. If TRUE, then estimates the moment t when Nt reaches a specific value.

Value

growth_exp returns a data frame with N0, Ntr, t0, t, delta, and time_interval for desire parameters.

Author(s)

Cesar Gamboa-Sanabria

References

Shryock HS, Siegel JS (2013). *The Methods and Materials of Demography*, Studies in Population. Elsevier Science. ISBN 9781483289106, https://books.google.co.cr/books?id=HVW0BQAAQBAJ.

See Also

```
growth_linear, growth_logistic
```

growth_linear 17

Examples

```
# According to the Panama census in 2000-05-14,
# the population was 2,839,177. In 2010-05-16, the census
# calculates 3,405,813 population.
# To get r:
growth_exp(N0=2839177, Nt=3405813, t0="2000-05-14", t="2010-05-16", time_interval = "years")
# To get Nt at 2000-06-30:
growth_exp(N0=2839177, r=0.0182, t0="2000-05-14", t="2000-06-30", time_interval = "years")
# The time when the population will be 5,000,000.
growth_exp(N0=2839177, Nt=5000000, r=0.0182, t0="2000-05-14", date=TRUE)
```

growth_linear

Linear growth

Description

Assuming an linear behavior, estimates the population size at time t, the growth rate, or population at time 0.

Usage

```
growth_linear(
  Nt = NULL,
  N0 = NULL,
  r = NULL,
  t0,
  t,
  time_interval,
  date = FALSE
)
```

Arguments

Nt	numeric. The population at time t. If null and date = FALSE, then estimate the population at time t.
NØ	numeric. The population at time 0 . If null and date = FALSE, then estimate the population at time 0 .
r	numeric. The growth rate. If null and date = FALSE, then estimate the growth rate for the time period $[t0,t]$.
t0	numeric. An object of class character with the date for the first population.

18 growth_linear

t numeric. An object of class character with the date for the second population.

time_interval character. A string with the time interval to calculate Delta_t.

date logical. If TRUE, then estimates the moment t when Nt reaches a specific value.

Value

growth_linear returns a data frame with N0, Ntr, t0, t, delta, and time_interval for desire parameters.

Author(s)

Cesar Gamboa-Sanabria

References

Shryock HS, Siegel JS (2013). *The Methods and Materials of Demography*, Studies in Population. Elsevier Science. ISBN 9781483289106, https://books.google.co.cr/books?id=HVW0BQAAQBAJ.

See Also

```
growth_exp,growth_logistic
```

```
# According to the Panama census at 2000-05-14,
# the population was 2,839,177. In 2010-05-16, the census
# calculates 3,405,813 population.
# To get r:
growth_linear(N0=2839177, Nt=3405813, t0="2000-05-14", t="2010-05-16", time_interval = "years")
# To get Nt at 2000-06-30:
growth_linear(N0=2839177, r=0.0182, t0="2000-05-14", t="2000-06-30", time_interval = "years")
# The time when the population will be 5,000,000.
growth_linear(N0=2839177, Nt=5000000, r=0.0182, t0="2000-05-14", date=TRUE)
```

growth_logistic 19

Description

Given two pivots and limits, estimates the growth assuming a logistic behavior.

Usage

```
growth_logistic(pivot_values, pivot_years, upper, lower, t)
```

Arguments

```
pivot_values numeric. Reference values to estimate, like TFR for two specific years.

pivot_years numeric. Reference years to estimate for both values in pivot_values.

upper numeric. Upper asymptotic value.

lower numeric. Lower asymptotic value.

t numeric. Year to get logistic value.
```

Value

growth_logistic returns the logistic estimation for specified year.

Author(s)

Cesar Gamboa-Sanabria

References

Shryock HS, Siegel JS (2013). *The Methods and Materials of Demography*, Studies in Population. Elsevier Science. ISBN 9781483289106, https://books.google.co.cr/books?id=HVW0BQAAQBAJ.

See Also

```
growth_exp, growth_linear
```

```
# Given TFR values 3.32 and 2.85 for the years 1986 and 1991, respectively,
# estimate the TFR in 1987 assuming 1.5 as lower limit and 8 as upper limit.
growth_logistic(pivot_values = c(3.32, 2.85), pivot_years = c(1986, 1991),
upper = 8, lower=1.5, t=1987)
```

20 karup_king

karup_king

karup_king

Description

Separate grouped-age data to simple ages data using Karup-King separation factors.

Usage

```
karup_king(data)
```

Arguments

data

data.frame. A dataset with two variables: age, the group age each 5 years; and pop, the population for that age.

Value

karup_king function returns a a data frame with separated simple ages.

Author(s)

Cesar Gamboa-Sanabria

References

Shryock HS, Siegel JS, Larmon EA, of the Census USB (1980). *The Methods and Materials of Demography*, number v. 2 in The Methods and Materials of Demography. U.S. Department of Commerce, Bureau of the Census. https://books.google.co.cr/books?id=SuXrAAAMAAJ.

See Also

```
grouped_age_CR_pop
```

Examples

karup_king(grouped_age_CR_pop)

karup_king_factors 21

karup_king_factors

karup_king_factors

Description

Karup-King separation factors.

Usage

```
data("karup_king_factors")
```

Format

A data frame with 76 observations on the following 7 variables.

age a character vector with simple ages

- f1 a numeric vector, Karup-King factor
- f2 a numeric vector, Karup-King factor
- f3 a numeric vector, Karup-King factor
- d1 a numeric vector, used in karup_king function, do not edit by hand
- d2 a numeric vector, used in karup_king function, do not edit by hand
- d3 a numeric vector, used in karup_king function, do not edit by hand

References

Shryock HS, Siegel JS, Larmon EA, of the Census USB (1980). *The Methods and Materials of Demography*, number v. 2 in The Methods and Materials of Demography. U.S. Department of Commerce, Bureau of the Census. https://books.google.co.cr/books?id=SuXrAAAMAAJ.

Examples

```
data(karup_king_factors)
str(karup_king_factors)
```

Lexis

Lexis diagram

Description

Plot a Lexis Diagram from births and deaths data for a given year, month, and day with specific simple ages.

22 Lexis

Usage

```
Lexis(
  deaths_data,
  births_data,
  first.date = NULL,
  choose_year,
  choose_month,
  choose_day,
  ages,
  factors = NULL
)
```

Arguments

deaths_data	data.frame. A dataset with three variables: date_reg, the registered death date, age, the age of decease; and deaths, the deaths number for that date. See CR_deaths.
births_data	data data.frame. A dataset with two variables: date_reg, the registered birth date; and births, the births number for that date. See CR_births.
first.date	character. Optional argument that specifies the first date of interest.
choose_year	numeric. The year from which the countdown begins until the desired minimum age is reached.
choose_month	numeric. The month from which the countdown begins until the desired minimum age is reached.
choose_day	numeric. The day from which the countdown begins until the desired minimum age is reached.
ages	numeric. An ages vector to plot the diagram.
factors	numeric. Optional argument to set specific factors to set alpha and delta sections in Lexis Diagram.

Value

Lexis function returns a list with two objects: diagram, the Lexis diagram; and deaths, the estimated deaths number.

Author(s)

Cesar Gamboa-Sanabria

References

Rau R, Bohk-Ewald C, Muszynska MM, Vaupel JW (2017). *Visualizing Mortality Dynamics in the Lexis Diagram*, The Springer Series on Demographic Methods and Population Analysis. Springer International Publishing. ISBN 9783319648200, https://books.google.co.cr/books?id=ttpCDwAAQBAJ.

Lifetable 23

Examples

```
Lexis(CR_deaths, CR_births, choose_year=2011, choose_month=1, choose_day=1, ages=0:9)$diagram
##Lexis diagram with specific factors
data("births_deaths")
Births <- dplyr::filter(births_deaths$births, sex=="male")
Deaths <- dplyr::filter(births_deaths$deaths, sex=="male")
Lexis(deaths_data=Deaths, births_data=Births, first.date = "1999-01-01",
choose_year=2007, choose_month=1, choose_day=1, ages=0:4,
factors = c(.2,.41,.47,.48,.48))$diagram</pre>
```

Lifetable

Life Table

Description

Estimates a lifetable from mortality rates and population data.

Usage

```
Lifetable(
  rates,
  pops,
  sex,
  max_age = NULL,
  first_year,
  threshold,
  jump,
  element = c("mx", "qx", "lx", "dx", "Lx", "Tx", "ex", "rx"),
  ...
)
```

Arguments

rates	character. A character string that specifies mortality data path. The dataset is a .txt file like CR_mortality_rates_2010_2015.
pops	character. A character string that specifies population data path. The dataset is a .txt file like CR_populations_1950_2015.
sex	character. "female" or "male".
max_age	numeric. Desire omega age. If NULL, Lifetable function takes the dataset's maximum age.
first_year	numeric. First year to start estimation.
threshold	numeric. Maximum forecast year.
jump	character. Same purpose to jumpchoice argument in forecast function.

24 mortality_projection

```
element character. Wanted estimation element, one of "mx", "qx", "lx", "dx", "Lx", "Tx", "ex" or "rx".

... additional arguments to be passed to read.demogdata, such as label.
```

Value

Lifetable function returns a list with both data frames, wide and long format, for specified element in argument element for desire years.

Author(s)

Cesar Gamboa-Sanabria

References

Wunsch G, Mouchart M, Duchêne J (2002). *The Life Table: Modelling Survival and Death*, European Studies of Population. Springer Netherlands. ISBN 9781402006388, https://books.google.co.cr/books?id=ySex55d4nlsC.

Examples

```
## Not run:
write.table(CR_mortality_rates_2010_2015,
file = "CR_mortality_rates_2010_2015.txt",
sep = "\t", row.names = FALSE, quote = FALSE)

write.table(CR_populations_1950_2015,
file = "CR_populations_1950_2015.txt",
sep = "\t", row.names = FALSE, quote = FALSE)

Lifetable("CR_mortality_rates_2010_2015.txt", "CR_populations_1950_2015.txt",
sex="female", first_year=2011, threshold=2150, jump="actual", max_age = 100,
element="ex", label="CR")

## End(Not run)
```

mortality_projection mortality_projection

Description

Forecasting mortality rates.

mortality_projection 25

Usage

```
mortality_projection(
  mortality_rates_path,
  total_population_path,
  omega_age,
  horizon,
  first_year_projection,
  ...
)
```

Arguments

Value

mortality_projection returns an object of class fmforecast with with both female and male mortality projections and the components of demography::forecast.lca().

Author(s)

Cesar Gamboa-Sanabria

```
## Not run:
library(dplyr)

data(CR_mortality_rates_1950_2011)

#CR_mortality_rates_1950_2011 %>%

#write.table(.,
#file = "CR_mortality_rates_1950_2011.txt",
#sep = "\t",
#row.names = FALSE,
#col.names = TRUE,
#quote = FALSE)
```

26 Moultrie

```
data(CR_populations_1950_2011)

#CR_populations_1950_2011 %>%

#write.table(.,

#file = "CR_populations_1950_2011.txt",

#sep = "\t",

#row.names = FALSE,

#col.names = TRUE,

#quote = FALSE)

#result <- mortality_projection(mortality_rates_path = "CR_mortality_rates_1950_2011.txt",

#total_population_path = "CR_populations_1950_2011.txt",

#omega_age = 115, first_year_projection = 2011, horizon = 2150)</pre>

## End(Not run)
```

Moultrie

Moultrie rule for Children Ever Born

Description

Moultrie's proposal for correction of Children Ever Born in five-year grouped ages.

Usage

```
Moultrie(data, ...)
```

Arguments

data data.drame. It contains at least three variables: five-year grouped ages, number of childs and Children Ever Born (CEB).
... Arguments to be passed to dplyr::select, i.e., five-year grouped ages, number of childs and Children Ever Born.

Value

Moultrie returns a data.frame with corrected childs for each number of Children Ever Born and five-year grouped ages.

Author(s)

Cesar Gamboa-Sanabria

References

Moultrie TA, Dorrington RE, Hill AG, Hill K, Timæus IM, Zaba B (2013). *Tools for demographic estimation*. International Union for the Scientific Study of Population.

Myers 27

See Also

```
CEB El_Badry
```

Examples

```
CEB_data <- tidyr::gather(CEB, ages, childs, -Children_Ever_Born)
results <- Moultrie(CEB_data, ages, childs, Children_Ever_Born)
tidyr::pivot_wider(results, names_from=age, values_from=childs)</pre>
```

Myers

Myer's Blended Index

Description

An upgrade over the Whipple index allows analyzing digit's attraction (or repulsion) from 0 to 9.

Usage

```
Myers(data, ...)
```

Arguments

data data.drame. It contains at least two variables: specific ages and population.

Arguments to be passed to dplyr::select, i.e., age and population, respectively.

Value

Myers returns a list with two objects:

Mmat a data.frame with specific digits index

MI the Myer's Blend Index.

Author(s)

Cesar Gamboa-Sanabria

References

Shryock HS, Siegel JS, Larmon EA, of the Census USB (1980). *The Methods and Materials of Demography*, number v. 1 in The methods and materials of demography. Department of Commerce, Bureau of the Census. https://books.google.co.cr/books?id=80o6AQAAMAAJ.

Examples

```
results <- Myers(Panama1990, age, pop)
results$Mmat
results$MI</pre>
```

netmigration_projection

netmigration_projection

Description

Forecasting net migration.

Usage

```
netmigration_projection(
  mortality_rates_path,
  TFR_path,
  total_population_path,
  WRA_path,
  omega_age,
  horizon,
  first_year_projection
)
```

Arguments

Value

netmigration_projection returns an object of class fmforecast with the forecast netmigration models and the components of demography::forecast.fdmpr().

Author(s)

Cesar Gamboa-Sanabria

```
## Not run:
library(dplyr)
data(CR_mortality_rates_1950_2011)
#CR_mortality_rates_1950_2011 %>%
#write.table(.,
#file = "CR_mortality_rates_1950_2011.txt",
\#sep = "\t",
#row.names = FALSE,
\#col.names = TRUE,
#quote = FALSE)
data(CR_populations_1950_2011)
#CR_populations_1950_2011 %>%
#write.table(.,
#file = "CR_populations_1950_2011.txt",
\#sep = "\t",
#row.names = FALSE,
#col.names = TRUE,
#quote = FALSE)
data(CR_fertility_rates_1950_2011)
#CR_fertility_rates_1950_2011 %>%
#write.table(.,
#file = "CR_fertility_rates_1950_2011.txt",
\#sep = "\t",
#row.names = FALSE,
\#col.names = TRUE,
#quote = FALSE)
data(CR_women_childbearing_age_1950_2011)
#CR_women_childbearing_age_1950_2011 %>%
#write.table(.,
#file = "CR_women_childbearing_age_1950_2011.txt",
\#sep = "\t",
#row.names = FALSE,
#col.names = TRUE,
#quote = FALSE)
```

op.arima

```
#result <- netmigration_projection(mortality_rates_path = "CR_mortality_rates_1950_2011.txt",
#total_population_path = "CR_populations_1950_2011.txt",
#TFR_path = "CR_fertility_rates_1950_2011.txt",
#WRA_path = "CR_women_childbearing_age_1950_2011.txt",
#omega_age = 115, first_year_projection = 2011, horizon = 2150)</pre>
## End(Not run)
```

op.arima

op.arima

Description

Estimates the best predictive ARIMA model using overparameterization.

Usage

```
op.arima(
    arima_process = c(p = 1, d = 1, q = 1, P = 1, D = 1, Q = 1),
    seasonal_periodicity,
    time_serie,
    reg = NULL,
    horiz = 12,
    prop = 0.8,
    training_weight = 0.2,
    testing_weight = 0.8,
    parallelize = FALSE,
    clusters = detectCores(logical = FALSE),
    LAMBDA = NULL,
    ISP = 100,
    ...
)
```

Arguments

op.arima 31

training_weight

numeric. Importance weight for the goodness of fit and precision measures in

the training dataset.

testing_weight numeric. Importance weight for the goodness of fit and precision measures in

the testing dataset.

parallelize logical. If TRUE, then use parallel processing.

clusters numeric. The number of clusters for the parallel process.

LAMBDA Optionally. See forecast::Arima() for details.

ISP numeric. Overparameterization indicator to filter the estimated models in the

(0,100] interval.

... additional arguments to be passed to forecast::Arima().

Value

op. arima returns an object of class list with the following components:

arima_models all models defined by the arima_process argument.

final_measures goodness of fit and precision measures for each model.

bests a sorted list with the best ARIMA models.
best_model a list of "Arima", see forecast::Arima()

Author(s)

Cesar Gamboa-Sanabria

References

Gamboa-Sanabria C (2022). *La Sobreparametrizacion en el ARIMA: una aplicacion a datos costar-ricenses*. Master's thesis, Universidad de Costa Rica.

```
op.arima(arima_process = c(2,1,2,2,1,2),
time_serie = AirPassengers,
seasonal_periodicity = 12, parallelize=FALSE)
```

32 popstudy

Panama1990

Panama1990

Description

Panama census data in 1990 by specific ages.

Usage

```
data("Panama1990")
```

Format

A data frame with 100 observations on the following 2 variables.

```
age a character vector with specific ages
```

pop a numeric vector with population for each age

Source

https://ccp.ucr.ac.cr/

Examples

data(Panama1990)
summary(Panama1990)

popstudy

popstudy Package

Description

Applied techniques to demographic and time series analysis.

Author(s)

Cesar Gamboa-Sanabria <info@cesargamboasanabria.com>

population_projection 33

```
population_projection population_projection
```

Description

Forecasting population using the components method.

Usage

```
population_projection(...)
```

Arguments

 $\dots \qquad \qquad \text{required arguments for mortality_projection, TFR_projection and net migration_projection.}$

Value

population_projection returns an object of class list with the following components:

```
mort mortality projections from mortality_projection.
```

fert fertility projections from TFR_projection.

mig netmigration projections from netmigration_projection.

pop the national projections by sex and year.

Author(s)

Cesar Gamboa-Sanabria

See Also

mortality_projection TFR_projection netmigration_projection

```
## Not run:
library(dplyr)
data(CR_mortality_rates_1950_2011)

#CR_mortality_rates_1950_2011 %>%
#write.table(.,
#file = "CR_mortality_rates_1950_2011.txt",
#sep = "\t",
#row.names = FALSE,
#col.names = TRUE,
```

34 project_structure

```
#quote = FALSE)
data(CR_populations_1950_2011)
#CR_populations_1950_2011 %>%
#write.table(.,
#file = "CR_populations_1950_2011.txt",
\#sep = "\t",
#row.names = FALSE,
#col.names = TRUE,
#quote = FALSE)
data(CR_fertility_rates_1950_2011)
#CR_fertility_rates_1950_2011 %>%
#write.table(.,
#file = "CR_fertility_rates_1950_2011.txt",
\#sep = "\t",
#row.names = FALSE,
\#col.names = TRUE,
#quote = FALSE)
data(CR_women_childbearing_age_1950_2011)
#CR_women_childbearing_age_1950_2011 %>%
#write.table(.,
#file = "CR_women_childbearing_age_1950_2011.txt",
\#sep = "\t",
#row.names = FALSE,
#col.names = TRUE,
#quote = FALSE)
#result <- population_projection(mortality_rates_path = "CR_mortality_rates_1950_2011.txt",</pre>
#total_population_path = "CR_populations_1950_2011.txt",
#TFR_path = "CR_fertility_rates_1950_2011.txt",
#WRA_path = "CR_women_childbearing_age_1950_2011.txt",
#omega_age = 115, first_year_projection = 2011, horizon = 2020)
## End(Not run)
```

Description

project_structure

Create a basic structure for a project repo.

project_structure

read_from_dir 35

Usage

```
project_structure()
```

Value

project_structure does not return a value, it only creates basic diretories and files in the current working directory/repository.

Author(s)

Cesar Gamboa-Sanabria

Examples

```
## Not run:
project_structure()
## End(Not run)
```

read_from_dir

read_from_dir

Description

Get full path from a file.

Usage

```
read_from_dir(file, path = NULL)
```

Arguments

file The file name.

path The file location.

Value

read_from_dir returns an object of class character with the normalizaed path for a file.

Author(s)

Cesar Gamboa-Sanabria

36 required_packages

Examples

```
## Not run:
file.create("test_file.txt")
read_from_dir("test_file.txt")
## End(Not run)
```

required_packages

required_packages

Description

Install/load the required packages from CRAN.

Usage

```
required_packages(...)
```

Arguments

.. packages names.

Value

required_packages does not return a value, it only install and load the desired packages.

Author(s)

Cesar Gamboa-Sanabria

```
## Not run:
#If you need to install and load the tidyr, dplyr and ggplot2 packages, run the following line:
#required_packages(tidyr, dplyr, ggplot2)
## End(Not run)
```

Sprague 37

Sprague

Sprague multipliers

Description

Method to open five-year grouped ages into specific ages.

Usage

```
Sprague(data, ...)
```

Arguments

data.drame. It contains at least two variables: five-year grouped ages and popu-

lation.

... Arguments to be passed to dplyr::select, i.e., age and population, respec-

tively.

Value

Sprague returns an object of class data.frame with population for specific ages.

Author(s)

Cesar Gamboa-Sanabria

References

Shryock HS, Siegel JS, Larmon EA, of the Census USB (1980). *The Methods and Materials of Demography*, number v. 1 in The methods and materials of demography. Department of Commerce, Bureau of the Census. https://books.google.co.cr/books?id=80o6AQAAMAAJ.

See Also

Beers

```
Sprague(Ecuador1990, age, population)
```

38 TFR_projection

TFR_projection T_{i}

TFR_projection

Description

Forecasting total fertility rates.

Usage

```
TFR_projection(TFR_path, WRA_path, horizon, first_year_projection, ...)
```

Arguments

Value

TFR_projection returns an object of class fmforecast with the forecast fertility rates and the components of demography::forecast.fdm().

Author(s)

Cesar Gamboa-Sanabria

```
library(dplyr)

data(CR_fertility_rates_1950_2011)

#CR_fertility_rates_1950_2011 %>%

#write.table(.,

#file = "CR_fertility_rates_1950_2011.txt",

#sep = "\t",

#row.names = FALSE,

#col.names = TRUE,

#quote = FALSE)

data(CR_women_childbearing_age_1950_2011)
```

TFR_projection 39

```
#CR_women_childbearing_age_1950_2011 %>%
#write.table(.,
#file = "CR_women_childbearing_age_1950_2011.txt",
#sep = "\t",
#row.names = FALSE,
#col.names = TRUE,
#quote = FALSE)

#result <- TFR_projection(TFR_path = "CR_fertility_rates_1950_2011.txt",
#WRA_path = "CR_women_childbearing_age_1950_2011.txt",
#omega_age = 115, first_year_projection = 2011, horizon = 2150)</pre>
```

Index

* datasets	El_Badry, 14, 27
births_deaths, 5 CEB, 5 CR_births, 7	forecast, 23 forecast::Arima(), 25, 31, 38
CR_deaths, 8 CR_fertility_rates_1950_2011, 8 CR_mortality_rates_1950_2011, 9 CR_mortality_rates_2010_2015, 10 CR_populations_1950_2011, 10 CR_populations_1950_2015, 11 CR_women_childbearing_age_1950_2011, 12	grouped_age_CR_pop, 15, 20 growth_exp, 16, 18, 19 growth_linear, 16, 17, 19 growth_logistic, 16, 18, 19 karup_king, 20, 21 karup_king_factors, 21
Ecuador1990, 13 grouped_age_CR_pop, 15 karup_king_factors, 21	Lexis, 21 Lifetable, 23
Panama1990, 32 anonymous, 3	mortality_projection, 24, 33 Moultrie, 14, 26 Myers, 27
Beers, 4, <i>37</i> births_deaths, 5	netmigration_projection, 28, 33
CEB, 5, 14, 27	op.arima,30
COR_births, 7, 22 CR_deaths, 8, 22 CR_fertility_rates_1950_2011, 8 CR_mortality_rates_1950_2011, 9 CR_mortality_rates_2010_2015, 10, 23 CR_populations_1950_2011, 10 CR_populations_1950_2015, 11, 23 CR_women_childbearing_age_1950_2011, 12	Panama1990, 32 popstudy, 32 popstudy-package (popstudy), 32 population_projection, 33 project_structure, 34 read.demogdata, 24 read_from_dir, 35 required_packages, 36
<pre>demography::forecast.fdm(), 38 demography::forecast.fdmpr(), 28 demography::forecast.lca(), 25 descriptive_plot, 12 dplyr::select(), 12</pre>	set.seed, 3 Sprague, 4, 37 TFR_projection, 33, 38
Ecuador1990. 13	