Network Data Analytics

Table of Contents

l.	Page Rank	. 3
ш	Fyercises	4

I. Page Rank

In this exercise, you will implement the pagerank centrality.

- ✓ First, you need to run the following command (note the exclamation mark). !conda install networkx –yes
- ✓ Import required libraries and load the sample 'karate_club_graph' from networkx library.

```
import matplotlib.pyplot as plt
import networkx as nx
import numpy as| np
G = nx.karate_club_graph()
print(nx.info(G))

Name: Zachary's Karate Club
Type: Graph
Number of nodes: 34
Number of edges: 78
Average degree: 4.5882
```

✓ Calculate page rank by using simple degree centrality.

```
def simple_pagerank(G):
    p = np.array([G.degree(index) for node, index in enumerate(G.nodes())])
    return p

values = simple_pagerank(G)
nx.draw(G, cmap=plt.get_cmap('coolwarm'), node_color = values, with_labels=True)
```


✓ Take the effects of neighbours into the page rank calculation by updating the centrality of each node with the iteration.

```
def pagerank_centrality(G, iter=100):
    p = np.array([1 for i in G.nodes()])

for k in range(iter):
    for i in G.nodes():
        for j in G.nodes():
            # update the centrality
            p[i] += G.number_of_edges(i, j) * p[j] / G.degree[j]

    norm = sum(p)
    p = p / norm
    return p

values = pagerank_centrality(G)
nx.draw(G, cmap=plt.get_cmap('coolwarm'), node_color = values, with_labels=True)
```


✓ Which algorithm created a better result? Justify your choice.

II. Exercises

Given the list of nodes which are the pages matching the query "California" (gr0.California.nodes.txt) and their relationships (gr0.California.edegs.txt). Use these data to finish the following tasks.

- ✓ Load into the graph using nx.read_edgelist.
- ✓ Get a subgraph of the above graph using subgraph method.

Hint: G.subgraph(list(G.nodes())[100:150])

- ✓ Calculate page rank of the above subgraph using simple degree centrality.
- ✓ Calculate page rank of the above subgraph by updating the centrality of each node with the iteration.