IEQB - Exercícios reatores com reação

Felipe Pinto - 61387 22/04 - 2021.1

Conteúdo

4.6

$$C_4H_{10} + \frac{13}{2}O_2 \longrightarrow 4CO_2 + 5H_2O$$

	in	out	
C_4H_{10}			
O_2		$5.12~\%~\mathrm{mol}$	
N_2	84.25 % mol	84.25 % mol	
CO_2		$10.63~\%~\mathrm{mol}$	
H_2O			
Total			

. . .

4.7

$$\mathrm{C_3H_8} + 3\,\mathrm{H_2O} \,\longrightarrow\, 3\,\mathrm{CO} + 7\,\mathrm{H_2}$$

	in (mol/min)	out (mol/min)	%out
C_3H_8	200	70	3.7
${\rm H_2O}$	900	510	27
CO		390	21
H_2		910	48
Total	1100	1880	100

$$\mathrm{mol_{H_2O\,in}}/min = \mathrm{mol_{C_3H_8\,in}} \, \frac{3\,\mathrm{mol_{H_2O\,in}}}{1\,\mathrm{mol_{C_3H_8\,in}}} * 1.5 = 200\,\frac{3}{1} * 1.5 \cong 900\,\mathrm{mol_{H_2O\,in}}$$

$$\mathrm{mol_{C_{3}H_{8}\,out}} = 200\,\mathrm{mol_{C_{3}H_{8}\,out}}\,\frac{35\,\mathrm{mol_{C_{3}H_{8}\,out}}}{100\,\mathrm{mol_{C_{3}H_{8}\,in}}} \cong 70\,\mathrm{mol_{C_{3}H_{8}\,out}}$$

$$\mathrm{mol_{H_{2}O\,out}} = 900\,\mathrm{mol_{H_{2}O\,in}} - 200\,\mathrm{mol_{C_{3}H_{8}\,in}}\,\frac{3\,\mathrm{mol_{H_{2}O\,in}}}{1\,\mathrm{mol_{C_{3}H_{8}\,in}}}\,\frac{65\,\mathrm{mol_{H_{2}O\,in}}}{100\,\mathrm{mol_{H_{2}O\,in}}} \cong 510\,\mathrm{mol_{H_{2}O\,out}}$$

$${\rm mol_{CO\,out}} = \frac{3\,{\rm mol_{CO\,out}}}{1\,{\rm mol_{C_3H_8\,in}}}\,\frac{65\,{\rm mol_{C_3H_8\,in}}}{100\,{\rm mol_{C_3H_8\,in}}}\,200\,{\rm mol_{C_3H_8\,in}} \cong 390\,{\rm mol_{CO\,out}}$$

$$\mathrm{mol_{H_2out}} = \frac{7\,\mathrm{mol_{H_2out}}}{3\,\mathrm{mol_{CO\,out}}}\,390\,\mathrm{mol_{CO\,out}} \cong 910\,\mathrm{mol_{H_2out}}$$