

Course	ENR204 Mechanics of Rigid Bodies		Semester		Monsoon Semester 2024	
Faculty Name(s)	Bimal Das		Contact		bimal.das@ahduni.edu.in	
School	SEAS		Credits		2	
GER Category:			Teaching Pedagogy Enable:NO		P/NP Course: Can not be taken as P/NP	
Schedule	dule Section 1 09:00 am to 10:00 am		Mon	1	30-09-24 to 26-11-24	
		10:00 am to 1	10:00 am to 11:00 am		ı	30-09-24 to 26-11-24
		09:00 am to 10:00 am		Wed		30-09-24 to 26-11-24
	10:00 am to 11:00 am		Wed		30-09-24 to 26-11-24	
Prerequisite	Not Applicable OR Intermediate physics, Math					
Antirequisite	Not Applicable					
Corequisite	Not Applicable					

Course Description	Evolution of Structural Engineering, Tacoma Narrows Bridge Collapse, Continuum Mechanics and Classification Distinction between statics and dynamics.				
	Idealizations in engineering, Degree of freedom, Rigid Body and deformable body, Force and load, Transmissibility of a Force, Resolution of Forces, Body and Surface Forces, External and internal forces				
	Equilibrium of a particle, Free-Body Diagram, Equilibrium of rigid bodies, Statically indeterminacy Work, Principle of virtual work, Center of gravity of a two-dimensional body Rectangular moment of inertia, Polar moment of inertia, Radius of gyration, Parallel-axis theorem Elastic potential energy, Gravitational potential energy, Stability of equilibrium, Equilibrium in terms of potential energy, Condition for equilibrium,				
	Axial, Bending, torsion, shear load, Real-world structures				
	Definition of the beam, Slender members, Forces transmitted in a slender member,				
	Shear and bending moment in beam, Relations among load, shear, and bending moment, Torsion in a shaft				
	Average normal and shear stress, bearing stress, torsional stress, allowable stress, factor of safety, Thermal stress				
	Normal and shear strain, Poisson's ratio. elastic deformation of axially loaded members				
Course Objectives	The primary purpose of the study of engineering mechanics is to develop the capacity to predict the effects of force and motion while carrying out the creative design functions of engineering. The ability to visualize physical configurations in terms of real materials, actual constraints, and the practical limitations which govern the behavior of machines and structures. One of the primary objectives in a mechanics course is to help the student develop this ability to visualize, which is vital to problem formulation.				
Learning Outcomes	 Understand the fundamentals of mechanics of solids. Create and develop engineering sense. Identify, articulate and solve complex engineering open-ended & real-world problems. Demonstrate the fundamentals of stress and strains. Design beams & shafts, and solve problems relating to uniaxial and complex bending. Realize the concept of buckling and be able to solve the problems related to isolated bars. Understand materials testing techniques and their limitations. Work in a team. 				

Pedagogy Two lectures a week, Ask questions, Do set Problems, Project based learning, PPTs, Lecture notes, Students must be interactive in the classroom. Students Students should submit the home assignments on time. Students should be ready to work in groups. Assessment/Evaluation Mid-Semester Examination: O Assignment - 25% End Semester Examination: O Quiz - 25% O Written - 50% Attendance Policy As per Ahmedabad University Policy. Project / Assignment Details Students will be asked to do the projects within the course domain and submit a report. Project definition and expected outcomes will be well defined and discuss with students in advance Projects will be evaluated in terms of viva-voce or class presentations Course Material Additional Information		
Students should submit the home assignments on time. Students should be ready to work in groups. • Mid-Semester Examination: • Assignment - 25% • End Semester Examination: • Quiz - 25% • Written - 50% Attendance Policy As per Ahmedabad University Policy. Project / Assignment • Students will be asked to do the projects within the course domain and submit a report. • Project definition and expected outcomes will be well defined and discuss with students in advance • Projects will be evaluated in terms of viva-voce or class presentations	Pedagogy	Ask questions, Do set Problems,Project based learning,
	·	• Students should submit the home assignments on time.
Project / Assignment Details • Students will be asked to do the projects within the course domain and submit a report. • Project definition and expected outcomes will be well defined and discuss with students in advance • Projects will be evaluated in terms of viva-voce or class presentations Course Material	Assessment/Evaluation	 Assignment - 25% End Semester Examination: Quiz - 25%
Project definition and expected outcomes will be well defined and discuss with students in advance Projects will be evaluated in terms of viva-voce or class presentations Course Material	Attendance Policy	As per Ahmedabad University Policy.
		Project definition and expected outcomes will be well defined and discuss with students in advance
Additional Information	Course Material	
	Additional Information	

Session Plan

NO.	TOPIC TITLE	TOPIC & SUBTOPIC DETAILS	READINGS,CASES,ETC.	ACTIVITIES	IMPORTANT DATES
1	Introduction	Review of the methods of static, Free body diagrams,	PPTs, Text Book Chapter (TBC) 1 & 2	Lecture	
2		Equilibrium force and moment equations, Concept of simple and shear Stress	-do-		
3	Mechanical Properties of Materials	Concept of strain, Stress-strain behavior of Ductile and Brittle materials, Hooke's Law,	PPTs,TBC3	Lecture	
4		Poission\'s ratio, Shear Stress-Strain Diagram, fauilure of materials due to Creep and Fatigue	-do-		
5	Stress and Strain – Axial Loading	Saint-Venant's principle, Principle of Superposition, Elastic deformation of an Axially Loaded Member, The force method of analysis of axially loaded members	PPTs,TBC4	Lecture	
6		, Thermal Stress, Stress concentration, Thermal stress, Stress concentrations, Inelastic axial deformation	-do-		
7	Test 1	Multiple choice questions			
8	Torsion	Introduction, circular shafts, Torsion in shafts, Power transmission and induced torsion, torsion of tapered shaft	PPTs, TBC 5	Lecture	
9	Continuation	combined bending and torision, Strain energy in torsion, Introduction of Project definition and discussion of expected outcomes	-do-, PPTs	Lecture	

10		Continuation	-do	Reflections and Review, Project
11	Bending of beams	Bending of beams due to various types of loads,	PPTs, TBC 6	Lecture
12		Bending deformation of straight member, the flexure formula, Unsymmetric bending, composite beams	-do-	
13		continuation	-do-	
14	Midterm			
15	Deflection in beams and shafts	Calculating deflection in beams and shafts, slope and displacement by integration, statically indeterminate Beams,	PPTs, TBC 11	Lecture
16	Buckling of columns	Understanding critical load and buckling, Ideal column with Pin support, Column having various types of supports	PPTs, TBC 13	Lecture, Test2
17		Concentrically loaded columns, practice Q & A , Column for eccentrically loading Q & A	-do-	Lecture
18	Testing of Materials	Factor of Safety, Tensile Testing, Compression Testing, Column Testing, Fatigue Testing, Torsion Testing, Hardness Testing, Impact Testing,	Notes, PPTs	Lecture
19		Viva or PPT presentation		Reflections and Review , Project Viva,
20	End term exam			