Chapitre 8

Ensemble relations et lois de compo

Table des matières

Ι	Théorie naïve des ensembles	2
II	Applications	7
TTI	I Relations binaires	15

Première partie

Théorie naïve des ensembles

Définition: Un ensemble est une collection finie ou infinie d'objets de même nature ou non. L'ordre de ces objets n'a pas d'importance.

Exemple: 1. $\{1, x \mapsto x^2, \{1\}\}$ est un ensemble : ses éléments dont l'entier 1, la fonction $x\mapsto x^2$ et un ensemble contenant uniquement 1 (un singleton).

2. $\mathbb N$ est un ensemble infini

Remarque (Notation):

Soit E un ensemble et x un objet de E.

On écrit $x \in E$ ou bien $x \ni E$.

Remarque (A Paradoxe):

On note Ω l'ensemble de tous les ensembles. Alors, $\Omega\in\Omega.$

Ce n'est pas le cas de tous les ensembles :

 $\mathbb{N} \not \in \mathbb{N}$ car \mathbb{N} n'est pas un entier

On distingue donc 2 types d'ensembles :

- ceux qui vérifient $E \not\in E$, on dit qu'ils sont <u>ordinaires</u>
- ceux qui vérifient $E \in E$, on dit qu'ils sont extra-ordinaires

On note ${\cal O}$ l'ensemble de tous les ensembles ordinaires.

- Supposons O ordinaire. Alors, $O \notin O$
- Or, O est ordinaire et donc $O \in O$ $\mbox{\em 4}$
- Supposons O extra-ordinaire.
 - Alors $O \in O$ et donc O ordinaire $\mbox{\it \xspace d}$

C'est un paradoxe

Pour éviter ce type de paradoxe, on a donné une définition axiomatique qui explique quelles sont les opérations permettant de combiner des ensembles pour en faire un autre.

Définition: Soit E un ensemble et F un autre ensemble. On dit que E et F sont <u>égaux</u> (noté E = F) si E et F contiennent les mêmes objets.

Exemple: 1. $E = \{1, 2, 3\}$ et $F = \{3, 2, 1, 2\}$

On a bien E = F.

2.
$$\mathbb{N} \neq \mathbb{Z} \operatorname{car} \begin{cases} -1 \in \mathbb{Z} \\ -1 \notin \mathbb{N} \end{cases}$$

On a bien
$$E = F$$
.
2. $\mathbb{N} \neq \mathbb{Z}$ car $\begin{cases} -1 \in \mathbb{Z} \\ -1 \notin \mathbb{N} \end{cases}$
3. $E = \{0, \{0\}\} \neq \{0\} = F$
car $\begin{cases} \{0\} \in E \\ \{0\} \notin F \end{cases}$
mais, $F \in E$

 $\textbf{D\'efinition:} \quad \text{L'ensemble } \underline{\text{vide}}, \, \text{not\'e} \, \varnothing \, \, \text{est le seul ensemble à n'avoir aucun \'el\'ement}.$

Définition: Soient E et F deux ensembles. On dit que F est <u>inclus</u> dans E, noté $F \subset E$ ou $E \supset F$ si tous les éléments de F sont aussi des éléments de E.

$$\forall x \in F, x \in E$$

Proposition: Pour tout ensemble $E, \varnothing \subset E$

Preuve (par l'absurde): Si $\varnothing \not\subset E$ alors $\exists x \in \varnothing, x \not\in E$: une contradiction \not

Exemple: 1. $E = \{1, 2, 3\}$ et $F = \{1, 3\}$ On a $F \subset E$ mais pas $E \subset F$ car $\begin{cases} 2 \in E \\ 2 \notin F \end{cases}$

2.
$$F = \{0\}$$
 et $E = \{0, \{0\}\}$

$$-F \in E \text{ car } \{0\} \in E$$

$$-F \subset E \text{ car } 0 \in E$$

3.
$$E = \{\{0\}\}; F = \{0\}$$

$$\begin{array}{ll}
 & F \not\subset E \text{ car } 0 \not\in E \\
 & F \in E
\end{array}$$

$$\begin{array}{ll} 4. & E = \{ \{\{0\}\}\}; F = \{0\} \\ & - & F \not\in E \\ & - & F \not\subset E \\ \end{array}$$

$$-F \not\in E$$

$$-F \not\subset E$$

$$-\varnothing \subset F$$

 $--\varnothing\subset E$

Définition: Soit E un ensemble. On peut former <u>l'ensemble de toutes les parties de</u> \underline{E} (une partie de E est un ensemble F avec $F \subset E$). On le note $\mathscr{P}(E)$

$$A\in \mathscr{P}(E) \iff A\subset E$$

Exemple: 1. $E = \{42\}$

Les sous-ensembles de E sont \emptyset et $\{42\} = E$ donc

$$\mathscr{P}(E) = \{\varnothing, \{42\}\}\$$

$$2. \ \mathscr{P}(\varnothing) = \{\varnothing\}$$

3.
$$E = \{0, 1\}$$
 donc $\mathcal{P}(E) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$

Définition: Soit E un ensemble et $A, B \in \mathscr{P}(E)$

1. La <u>réunion</u> de A et B est

$$A \cup B = \{x \in E \mid x \in A \text{ ou } x \in B\}$$

2. L'<u>intersection</u> de A et B est

$$A \cap B = \{ x \in E \mid x \in A \text{ et } x \in B \}$$

3. Le complémentaire de A dans E est

$$E \setminus A = \{x \in E \mid x \not\in A\} = C_E A$$

4. La différence symétrique de A et B est

$$A\Delta B = \{x \in E \mid (x \in A \text{ et } x \notin B) \text{ ou } (x \notin A \text{ et } x \in B)\}$$
$$= (A \cup B) \setminus (A \cap B)$$

Proposition: Soit E un ensemble et $A, B, C \in \mathscr{P}(E)$

```
1. A \cap A = A
                                                                 10. A \cup E = E
2. \ B \cap A = A \cap B
                                                                 11. (E \setminus A) \setminus A = E \setminus A
3. A \cap (B \cap C) = (A \cap B) \cap C
                                                                 12. E \setminus (E \setminus A) = A
4. \ A\cap\varnothing=\varnothing
                                                                 13. E \setminus \emptyset = E
5. A \cap E = A
                                                                 14. E \setminus E = \emptyset
6. A \cup A = A
                                                                 15. A \cup (B \cap C) = (A \cup B) \cap (A \cup C)
7. B \cup A = A \cup B
                                                                 16. A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
8. A \cup (B \cup C) = (A \cup B) \cup C
                                                                 17. E \setminus (A \cup B) = (E \setminus A) \cap (E \setminus B)
9. A \cup \varnothing = A
                                                                 18. E \setminus (A \cap B) = (E \setminus A) \cup (E \setminus B)
```

```
Preuve: 16. A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
              Soit x \in A \cap (B \cup C) donc x \in A et x \in B \cup C
               <u>Cas 1</u> x \in B, alors x \in A \cap B et donc x \in (A \cap B) \cup (A \cap C)
               Cas 2 x \in C, alors x \in A \cap C et donc x \in (A \cap B) \cup (A \cap C)
               On a prouvé
                                                A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)
            - \text{ Soit } x \in (A \cap B) \cup (A \cap C)
               \underline{\mathrm{Cas}\ 1}\ x\in A\cap B\ \mathrm{donc}\ x\in A\ \mathrm{et}\ x\in B\ \mathrm{donc}\ x\in B\cup C\ \mathrm{et}\ \mathrm{donc}\ x\in A\cap (B\cup C)
                \underline{\text{Cas 2}} \ \ x \in A \cap C \ \text{donc} \ x \in A \ \text{et} \ x \in C \ \text{donc} \ x \in B \cup C \ \text{et} \ \text{donc} \ x \in A \cap (B \cup C)
               On a prouvé
                                                A\cap (B\cup C)\supset (A\cap B)\cup (A\cap C)
   17. E \setminus (A \cup B) = (E \setminus A) \cap (E \setminus B)
               Montrons que x \in E \setminus (A \cup B) \implies x \in (E \setminus A) \cap (E \setminus B)
               Soit x \in E \setminus (A \cup B) donc x \notin A \cup B
                — Si x \in A, alors x \in A \cup B \notin
                     donc x \not\in A i.e. x \in E \setminus A
                — Si x \in B alors, x \in A \cup B \notin
                     Donc x \notin B i.e. x \in E \setminus B
               On en déduit que x \in (E \setminus A) \cap (E \setminus B)
          -x \in (E \setminus A) \cap (E \setminus B). Montrons que x \in E \setminus (A \cup B)
               On suppose que x \notin E \setminus (A \cup B) donc x \in A \cup B
               — Si x \in A, on a une contradiction car x \in E \setminus A
               — Si x \in B, on a une contradiction car x \in E \setminus B
               donc x \in E \setminus (A \cup B)
```

6

Deuxième partie

Applications

Définition: Une <u>application</u> f est la donnée de

- un ensemble E appelé ensemble de départ
- un ensemble F appelé ensemble d'arrivée
- une fonction qui associe à tout élément \overline{x} de E un unique élément de F noté f(x) L'application est notée

$$f: E \longrightarrow F$$

 $x \longmapsto f(x)$

Exemple: 1. Soit $\mathscr P$ le plan (affine) et $A\in\mathscr P$. Soit $\mathscr D$ l'ensemble des droites.

$$f: \mathscr{P} \setminus \{A\} \longrightarrow \mathscr{D}$$

$$B \longmapsto (AB)$$

2. $E=\mathscr{C}^1$ ([0,1], \mathbb{R}) l'ensemble des fonctions à valeurs réelles de classe \mathscr{C}^1 sur [0,1] $F=\mathscr{C}^0$ ([0,1], \mathbb{R})

$$\varphi: E \longrightarrow F$$
$$f \longmapsto f'$$

3. $E = \mathcal{C}^1([0,1], \mathbb{R})$ et $F = \mathbb{R}$

$$\varphi: E \longrightarrow F$$

$$f \longmapsto f'\left(\frac{1}{2}\right)$$

4. E = [0, 1] et $F = \mathcal{C}^0([0, 1], \mathbb{R})$

$$\varphi: E \longrightarrow F$$
$$x \longmapsto \int_a^x t^2 \ln(t) \ dt$$

5.

$$\varphi: \mathscr{C} \setminus \{N\} \longrightarrow (d)$$
$$M \longmapsto M'$$

6.

Définition: Soit $f: E \to F$ une application. On dit que f est

- $\underline{\text{injective}}$ si tout élément de F a au plus un antécédant par f
- bijective si tout élément de F a un unique antécédant par f
- surjective si tout élément de F a au moins un antécédant par f

1. L'application n'est ni injective ni surjective Exemple (suite des exemples précédents):

 B_1 et B_2 sont deux antécédants de d_1 d_2 n'a pas d'antécédant par f

2. L'application n'est pas injective :

 $-f: x \mapsto x$ est continue $-x \mapsto \frac{x^2}{2} \text{ et } x \mapsto \frac{x^2}{2} + 42 \text{ sont deux antécédants de } f.$ Mais, l'application est surjective d'après le théorème fondamental de l'analyse

- 3. L'application n'est pas injective ($x\mapsto 0$ et $x\mapsto 42$ sont deux antécédants de 0) mais elle est surjective $(\forall x \in \mathbb{R}, x \mapsto ax \text{ est un antécédant de } a)$.
- 4. L'application est injective mais pas surjective (les images sont des primitives de $x\mapsto$ $x^2 \ln(x)$
- 5. et 6. sont bijectives

Définition: Soit $f: E \to F$ et $g: F \to G$. L'application notée $g \circ f$ est définie par

$$g\circ f: E \longrightarrow G$$

$$x \longmapsto g(f(x))$$

On dit que c'est la $\underline{\text{compos\'ee}}$ de f et g.

Proposition: Soient $f: E \to F, g: F \to G, h: G \to G$. Alors, $h \circ (g \circ f) = (h \circ g) \circ f$

Preuve:

Par définition, $g \circ f : E \to F$ donc $h \circ (g \circ f) : E \to H$

et $h \circ g : F \to H$ donc $(h \circ g) \circ f : E \to H$ Soit $x \in E$.

$$h \circ (g \circ f)(x) = h(g \circ f(x))$$
$$= h(g(f(x)))$$

$$(h \circ g) \circ f(x) = h \circ g(f(x))$$
$$= h(g(f(x)))$$

Donc,
$$h \circ (g \circ f)(x) = (h \circ g) \circ f(x)$$

Remarque (\bigwedge Attention): En général, $g \circ f \neq f \circ g$

$$\text{Par exemple, } f: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R}^+ \\ x & \longmapsto & x^2 \end{array} \text{ et } g: \begin{array}{ccc} \mathbb{R}^+ & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \sqrt{x} \end{array}$$

Alors,
$$f \circ g : \begin{array}{ccc} \mathbb{R}^+ & \longrightarrow & \mathbb{R}^+ \\ x & \longmapsto & x \end{array}$$
 et $g \circ f : \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & |x| \end{array}$

donc $f \circ g \neq g \circ f$

Proposition: Soient $f: E \to F$ et $g: F \to G$

- 1. Si $g \circ f$ est injective, alors f est injective
- 2. Si $g\circ f$ est surjective, alors g est surjective
- 3. Si f et g sont surjectives, alors $g \circ f$ est surjective
- 4. Si f et g sont injectives, alors $g\circ f$ est injective

Preuve: 1. On suppose $g \circ f$ injective. On veut montrer que f est injective. Soient $(x,y) \in E^2$. On suppose f(x) = f(y). Montrons que x = y.

Comme f(x) = f(y) g(f(x)) = g(f(y)) i.e. $g \circ f(x) = g \circ f(y)$

Comme f(x) = f(y), g(f(x)) = g(f(y)) i.e. $g \circ f(x) = g \circ f(y)$ Or, $g \circ f$ injective donc x = y

2. On suppose $g \circ f$ surjective. On veut montrer que g est surjective. Soit $y \in G$. On cherche $x \in F$ tel que g(x) = y.

Comme $g \circ f : E \to G$ surjective, y a un antécédant $z \in E$ par $g \circ f$. On pose $x = f(z) \in F$ et on a bien g(x) = y

- 3. On suppose f et g injectives. Montrons que $g \circ f$ injective. Soient $x,y \in E$. On suppose $g \circ f(x) = g \circ f(y)$. Montrons x = y On sait que g(f(x)) = g(f(y)). Comme g est injective, f(x) = f(y) et comme f
- est injective, x = y4. On suppose f et g surjectives. Soit $g \in G$. On cherche $x \in E$ tel que $g \circ f(x) = g$ Comme g est surjective, g a un antécédant g est surjectives, g a un antécédant g est surjectives.

On en déduit $g\circ f(x)=g(f(x))=g(z)=y$

Remarque: $f: E \longrightarrow F$

$$f$$
 injective \iff $\Big(\forall (x,y) \in E^2, f(x) = f(y) \implies x = y \Big)$

 Π

Définition: Soit $f: E \to F$ une <u>bijection</u>. L'application $\begin{cases} F & \longrightarrow & E \\ y & \longmapsto & \text{l'unique antécédant} \end{cases}$ de y par f est la <u>réciproque</u> de f notée f^{-1}

Proposition: Soient $f: E \to F$ et $g: F \to E$

$$\begin{cases}
f \circ g = \mathrm{id}_F \\
g \circ f = \mathrm{id}_E
\end{cases} \iff \begin{cases}
f \text{ bijective} \\
f^{-1} = g
\end{cases}$$

Preuve (déjà faite):

Définition: Soit $f: E \to F$

1. Soit $A\in \mathscr{P}(E).$ L'image directe de A par f est

2. Soit $B\in \mathscr{P}(F).$ L'<u>image réciproque</u> de B par f est

Remarque:

$$\begin{array}{ll} - & y \in f(A) \iff \exists x \in A, y = f(x), \\ - & x \in f^{-1}(B) \iff f(x) \in B. \end{array}$$

Proposition: Soient $f: E \to F$, $A \in \mathscr{P}(E)$ et $F \in \mathscr{P}(F)$.

- 1. $f^{-1}(f(A)) \supset A$,
- 2. Si f est injective alors $f^{-1}(f(A)) = A$,
- 3. $f(f^{-1}(B)) \subset B$,
- 4. Si f est surjectuve, alors $f(f^{-1}(B) = B$.

Preuve: 1. Soit $x \in A$. Montrons que $x \in f^{-1}\big(f(A)\big)$ i.e. montrons que $f(x) \in f(A)$. Comme $x \in A$, $f(x) \in f(A)$.

2. On suppose f injective. Montrons que $f^{-1}(f(A)) = A$. Soit $x \in f^{-1}(f(A))$, montrons que $x \in A$. On sait que $f(x) \in f(A)$. Donc, il existe $a \in A$ tel que f(x) = f(a). Or, f est injective et donc x = a. On en déduit que $x \in A$. D'après 1., on sait que $f^{-1}(f(A)) \supset A$. On a montré $f^{-1}(f(A)) \subset A$. Donc

$$f^{-1}(f(A)) = A.$$

- 3. Soit $y \in f(f^{-1}(B))$. Montrons $y \in B$. On sait qu'il existe $x \in f^{-1}(B)$ tel que y = f(x). On a donc $f(x) \in B$ et donc $y \in B$.
- 4. On suppose f surjective, montrons $B \subset f(f^{-1}(B))$. Soit $y \in B$, montrons $y \in f(f^{-1}(B))$. On cherche $x \in f^{-1}(B)$ tel que y = f(x). C'est à dire, on cherche $x \in E$ tel que $f(x) \in B$ et y = f(x). On sait que f est surjective donc y a un antécédant $x \in E$ tel que $B \ni y = f(x)$.

antécédant $x \in E$ tel que $B \ni y = f(x)$. On vient de montrer $B \subset f(f^{-1}(B))$ et on a montré dans 3. que $B \supset f(f^{-1}(B))$. On en déduit que

$$f(f^{-1}(B)) = B.$$

Proposition: Soit $f: E \to F$ et $(A, B) \in \mathscr{P}(F)^2$. Alors

$$\begin{cases} f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B), & (1) \\ f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B). & (2) \end{cases}$$

Preuve:

Soit $x \in E$.

$$\begin{split} x \in f^{-1}(A \cup B) &\iff f(x) \in A \cup B \\ &\iff f(x) \in A \text{ ou } f(x) \in B \\ &\iff x \in f^{-1}(A) \text{ ou } x \in f^{-1}(B) \\ &\iff x \in f^{-1}(A) \cup f^{-1}(B). \end{split}$$

$$\begin{aligned} x \in f^{-1}(A \cap B) &\iff f(x) \in A \cap B \\ &\iff f(x) \in A \text{ et } f(x) \in B \\ &\iff x \in f^{-1}(A) \text{ et } x \in f^{-1}(B) \\ &\iff x \in f^{-1}(A) \cap f^{-1}(B). \end{aligned}$$

Proposition: Soient $f: E \to F$ et $(A, B) \in \mathscr{P}(E)^2$.

- 1. $f(A \cap B) \subset f(A) \cap f(B)$
- 2. Si f est injective, $f(A \cap B) = f(A) \cap f(B)$
- 3. $f(A \cup B) = f(A) \cup f(B)$.

Preuve: 1. Soit $y \in f(A \cap B)$. Soit $x \in A \cap B$ tel que y = f(x). Comme $x \in A$, $f(x) \in f(A)$ et comme $x \in B$, $f(x) \in f(B)$ et donc $y \in f(A) \cap f(B)$

2. On suppose f injective. Soit $y \in f(A) \cap f(B)$. Comme $y \in f(A)$, il existe $a \in A$ tel que y = f(a). Comme $y \in f(B)$, il existe $b \in B$ tel que y = f(b).

Comme f est injective, a=b et donc $a\in A\cap B$. On en déduit que

$$y = f(a) \in f(A \cap B).$$

3. Soit $y \in F$. Alors

$$\begin{split} y \in f(A \cup B) &\iff \exists x \in A \cup B; y = f(x) \\ &\iff (\exists x \in A \text{ ou } \exists x \in B), y = f(x) \\ &\iff y \in f(A) \text{ ou } y \in f(B) \\ &\iff y \in f(A) \cup f(B). \end{split}$$

Remarque (Contre-exemple pour 2.):
Cas d'une application qui n'est pas injective

On pose $A = \mathbb{R}_*^+$, $B = \mathbb{R}_*^-$ et

$$f: \mathbb{R} \longrightarrow \mathbb{R}^+$$

 $x \longmapsto x^2$

On a $A \cap B = \emptyset$ donc $f(A \cap B) = \emptyset$.

Or,
$$\begin{cases} f(A) = \mathbb{R}_*^+ \\ f(B) = \mathbb{R}_*^+ \end{cases} \text{donc } f(A) \cap f(B) = \mathbb{R}_*^+.$$

On a

$$f(A \cap B) \neq f(A) \cap f(B)$$
.

Définition: Soit $f: E \to F$ et $A \in \mathscr{P}(E)$.

La restriction de f à A est

$$f_{|A}:A\longrightarrow F$$

$$x\longmapsto f(x)a$$

On dit aussi que f est <u>un prolongement</u> de $f_{|A}$.

Remarque (Notation):

L'ensemble des applications de E dans F est noté F^E .

Exemple:

 $g_{|\mathbb{R}^*}=f.$ $\mathbb{R} \longrightarrow \mathbb{R}$ L'applications h: $x \longmapsto \begin{cases} \frac{1}{x} & \text{si } x \neq 0 \\ 1 & \text{si } x=0 \end{cases}$ est un autre prolongement de f.

Troisième partie

Relations binaires

Définition: Soit E un ensemble. Un <u>relation (binaire)</u> sur E est un prédicat définit sur E^2 .

Exemple: 1. Avec $E = \mathbb{C}$, = est une relation binaire,

- 2. Avec $E = \mathbb{R}, \leq$ est une relation binaire,
- 3. Avec E l'humanité et la relation binaire \wedge :

 $x \wedge y \iff x$ et y ont la même mère.

Définition: Soit E un ensemble, \diamond une relation sur E. On dit que \diamond est un relation d'équivalence si

 $1. \ \forall x \in E, x \, \diamond \, x,$

 $(\underline{\text{r\'efl\'ectivit\'e}})$

 $2. \ \forall x, y, \in E, x \diamond y \implies y \diamond x,$

(symétrie)

3.
$$\forall x, y, z \in E$$
, $\begin{cases} x \diamond y \\ y \diamond z \end{cases} \implies x \diamond z$

(transitivité)

Exemple:

Avec $E = \mathbb{Z}$ et

$$x \diamond y \iff x \equiv y \ [3]$$

"♦" est une relation d'équivalence.

Remarque

Le but d'une relation d'équivalence est d'identifier des objets différents.

Définition: Soit E un ensemble et \diamond une relation d'équivalence sur E. Soit $x \in E$. La classe de x (modulo \diamond) est

$$\mathscr{C}\!\ell \diamond (x) = \mathscr{C}\!\ell(x) = \overline{x} = \{y \in E \mid y \diamond x\}.$$

Exemple: 1. Avec $E = \mathbb{C}$ et $\diamond = "="$,

$$\forall z \in \mathbb{C}, \overline{z} = \mathscr{C}\ell(z) = \{z\}.$$

2. Avec $E = \mathbb{Z}$ et $\diamond =$ congruence modulo 5, on a

$$\begin{split} \overline{0} &= \{5k \mid k \in \mathbb{Z}\} \\ \overline{2} &= \{5k+2 \mid k \in \mathbb{Z}\} \\ \overline{4} &= \{5k+4 \mid k \in \mathbb{Z}\} \end{split} \qquad \qquad \overline{3} = \{5k+3 \mid k \in \mathbb{Z}\}$$

On constate que

$$x \equiv y \ [5] \iff \overline{x} = \overline{y}.$$

Proposition: Soit E un ensemble muni d'une relation d'équivalence \diamond . Alors

$$\forall x, y \in E, x \diamond y \iff \overline{x} = \overline{y}.$$

Preuve:

Soient $x, y \in E$.

- On suppose $x \diamond y$. Soit $z \in \overline{x}$. On sait que $z \diamond x$ et $y \diamond x$. Par transitivité, on en déduit que $z \diamond y$ et donc $z \in \overline{y}$.
- Soit $z \in \overline{y}$, donc $y \diamond z$. Or $x \diamond y$. Comme \diamond est symétrique, on a $y \diamond x$ et par transitivité, on a donc $z \diamond x$. Donc $z \in \overline{x}$.
- On suppose $\overline{x}=\overline{y}.$ \diamond réfléctive donc $x\diamond x$ et donc $x\in \overline{x}=\overline{y}$ donc $x\in \overline{y}$ et donc

HORS-PROGRAMME

Définition: Soit E un ensemble et \diamond une relation d'équivalence.

L'ensemble

$$\{\overline{x} \mid x \in E\} = E/\diamond$$

est appelé quotient de E modulo \diamond .

Exemple: 1. $E = \mathbb{Z}$ et $\diamond =$ congruence modulo 5 :

$$E/\diamond = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\} = \mathbb{Z}/5\mathbb{Z}$$

2. Construction de Q

On suppose avoir déjà construit $\mathbb Z$ mais pas $\mathbb Q$: on veut donc donner un définition de p/q sans parler de division.

On pose

$$E = \mathbb{Z} \times \mathbb{N}^* = \{ (p, q) \mid p \in \mathbb{Z}, q \in \mathbb{N}^* \}.$$

Soit \sim la relation définie par

$$(p,q) \sim (p',q') \iff pq' = p'q$$

Montrons que \sim est une relation d'équivalence.

- Soient $(p,q) \in E$. \sim est réfléctive car $(p,q) \sim (p,q) \iff pq = pq$.
- Soient $(p,q), (p',q') \in E$. On suppose $(p,q) \sim (p',q')$.

$$(p,q) \sim (p',q') \iff pq' = p'q$$

 $\iff p'q = pq'$
 $\iff (p',q') \sim (p,q)$

Donc \sim est symétrique. — Soient $(p,q), (p',q'), (p'',q'') \in E$. On suppose

$$\begin{cases} (p,q) \sim (p',q') \\ (p',q') \sim (p'',q'') \end{cases}$$

On sait que

$$(p,q) \sim (p'',q'') \iff pq'' = p''q$$

$$\begin{cases} pq' = qp' \\ p'q'' = p''q' \end{cases} \quad \text{donc } pq'p'q'' = p'q'p''q'$$

Donc

$$p'q'(pq'' - p''q) = 0$$

et donc

$$p' = 0$$
 ou $pq'' - p''q = 0$

Si
$$p'=0$$
, alors $\begin{cases} pq'=0\\ p''q'=0 \end{cases}$ et donc $\begin{cases} p=0\\ p''=0 \end{cases}$. On a donc

$$pq'' = 0 = p''q$$

Si $p' \neq 0$, on a pq'' - p''q = 0 et donc

$$pq'' = p''q$$

On a donc $(p,q) \sim (p'',q'')$.

On pose $\mathbb{Q} = E/\sim \text{et}$

$$\forall (p,q) \in E, \ \frac{p}{q} = \mathscr{C}\!\ell\left((p,q)\right).$$

Ainsi,

$$\begin{split} \frac{p}{q} &= \frac{p'}{q'} \iff \mathscr{C}\!\ell\left((p,q)\right) = \mathscr{C}\!\ell\left((p',q')\right) \\ &\iff (p,q) \sim (p',q') \\ &\iff pq' = p'q \end{split}$$

3. Construction de $\mathbb Z$ à partir de $\mathbb N$

On pose $E=\mathbb{N}\times\mathbb{N}^*$ et \sim la relation $(p,q)\sim(p',q')\iff p+q'=p'+q.$ \sim est une relation d'équivalence. On pose donc $\mathbb{Z}=\mathbb{N}/\sim$ et pour $n\in\mathbb{N}$, on définit n par $\mathscr{C}((n,0))$ et -n par $\mathscr{C}((0,n))$.

4. Constrution de $\mathbb C$ à partir de $\mathbb R$

On pose E l'ensemble des polynômes à coefficients réels $(E=\mathbb{R}[X])$ et \diamond la relation d'équivalence

$$P \diamond Q \iff P \equiv Q \left[x^2 + 1 \right]$$

On pose $\mathbb{C} = E/\diamond$.

Il manque une partie du cours ici

Définition: Soit E un ensemble et $(A_i)_{i\in I}$ une famille de parties de E.

On dit que $(A_i)_{i\in I}$ est une partition de E si

$$\begin{cases} E = \bigcup_{i \in I} A_i \\ \forall i \neq j, A_i \cap A_j = \varnothing \end{cases}$$

On a donc

$$\forall x \in E, \exists! i \in I, x \in A_i.$$

Proposition: Soit E un ensemble muni d'une relation d'équivalence \diamond . Les classes

d'équivalences de E modulo \diamond forment une partition de E.

 $Preuve: \quad - \text{ Soit } x \in E. \text{ On sait que } x \diamond x \text{ donc } \overline{x} \ni x. \text{ On a montré } E \subset \bigcup \ \overline{y}.$

- $\quad \forall y \in E, \overline{y} \subset E \text{ donc } E \supset \left(\bigcup_{\substack{y \in E \\ z \in E}} \overline{y}\right).$
- Soit $x, y \in E$ tel que $\overline{x} \neq \overline{y}$. Montrons que $\overline{x} \cap \overline{y} = \emptyset$. Soit $z \in \overline{x} \cap \overline{y}$. $z \in \overline{x}$ donc $z\,\diamond\,x.$ De même, $z\in\overline{y}$ donc $z\,\diamond\,y.$ Par transitivité, $x\,\diamond\,y$ et donc $\overline{x}=\overline{y}$: une

Proposition: Soit E un ensemble et $(A_i)_{i\in I}$ une partition de E telle que

$$\forall i \in I, A_i \neq \emptyset.$$

Alors il existe une relation d'équivalence \diamond telle que pour tout $i \in I$, A_i est une classe d'équivalence modulo \diamond .

Preuve:

Soit \diamond la relation définie par

$$x \diamond y \iff \exists i \in I, \begin{cases} x \in A_i \\ y \in A_i \end{cases}$$

- Soit $x \in E$. Comme $E = \bigcup_{i \in I} A_i$, il existe $i \in I$ tel que $x \in A_i$ donc $x \diamond x$.
- Soient $x, y \in E$. On suppose $x \diamond y$. Soit $i \in I$ tel que $\begin{cases} x \in A_i \\ y \in A_i \end{cases}$ donc $\begin{cases} y \in A_i \\ x \in A_i \end{cases}$
- Soit $x, y, z \in E$. On suppose $x \diamond y$ et $y \diamond z$.

Soit
$$i \in I$$
 tel que
$$\begin{cases} x \in A_i \\ y \in A_i \end{cases}$$

Soit
$$j \in I$$
 tel que
$$\begin{cases} y \in A_j \\ z \in A_j. \end{cases}$$

Soit $i \in I$ tel que $\begin{cases} x \in A_i \\ y \in A_i. \end{cases}$ Soit $j \in I$ tel que $\begin{cases} y \in A_j \\ z \in A_j. \end{cases}$ On a donc $y \in A_i \cap A_j$. Si $i \neq j$, alors $y \in \varnothing$: une contradiction. Donc i = j et donc $\begin{cases} x \in A_i \\ z \in A_i \end{cases}$. On en déduit que $x \diamond z$. \diamond est une relation $z \in A_i$.

Ainsi \diamond est une relation d'équivalence.

— Soit $i \in I$ et soit $x \in A_i \neq \emptyset$.

$$\overline{x} = \{ y \in E \mid y \diamond x \} = \{ y \in E \mid y \in A_i \} = A_i.$$

Définition: Soit E un ensemble et \diamond . On dit que \diamond est une <u>relation d'ordre</u> sur E si 1. \diamond est réfléctive $(\forall x \in E, x \diamond x)$,

19

2. \diamond est <u>anti-symétrique</u>:

$$\forall x, y \in E, \quad \begin{cases} x \diamond y \\ y \diamond x \end{cases} \implies x = y,$$

3. \diamond est transitive $(\forall x, y, z \in E, (x \diamond y \text{ et } y \diamond z) \implies x \diamond z)$.

En général, la relation \diamond est notée \leqslant ou \preccurlyeq . On dit aussi que (E,\diamond) est un <code>ensemble ordonné</code>.

Exemple: 1. (\mathbb{R}, \leq) est un ensemble ordonné.

- 2. $(\mathscr{P}(E), \subset)$ est un ensemble ordonné.
- 3. $(\mathbb{N}, |)$ est un ensemble ordonné.
- 4. $(MP2I, \preccurlyeq)$ avec

$$x \preccurlyeq y \iff$$
 note de $x \leqslant$ note de y

n'est un ensemble ordonné car \preccurlyeq n'est pas anti-symétrique.

5. $E = \mathbb{N}^2$ et \leq définie par

$$(x,y) \preccurlyeq (x',y') \iff x < x' \text{ ou } \begin{cases} x = x' \\ y \leqslant y' \end{cases}$$

 (E, \preceq) est un ensemble ordonné.

Définition: Soit (E,\leqslant) un ensemble ordonné. Soient $x,y\in E.$ On dit que x et y sont comparables si

$$x \leqslant y$$
 ou $y \leqslant x$.

On dit que \leqslant est un <u>ordre total</u> si tous les éléments de E sont comparables 2 à 2.

Exemple: — (\mathbb{R}, \leqslant) est totalement ordonné

- $(\mathscr{P}(E), \subset)$ n'est pas totalement ordonné en général :
- Soient $a, b \in E$ avec $a \neq b$. $\{a\}$ et $\{b\}$ ne sont pas comparables.
- $(\mathbb{N},|)$ n'est pas totalement ordonné :
 - $2 \nmid 5$ et $5 \nmid 2$ donc 2 et 5 ne sont pas comparables.

Définition: Soit (E, \leq) un ensemble ordonné, $A \in \mathcal{P}(E)$ et $M \in E$. On dit que \underline{A} est majorée par \underline{M} , que \underline{M} majore \underline{A} ou que \underline{M} est un majorant de \underline{A} si

$$\forall a \in A, a \leqslant M.$$

Soit $m \in E$. On dit que \underline{A} est minorée par \underline{m} , que \underline{m} minore \underline{A} ou que \underline{m} est un minorant de A si

$$\forall a \in A, m \leqslant a.$$

Il manque une partie du cours ici

Exemple: 1. $E = \mathbb{R}$ muni de \leq et A = [2, 5].

On sait que $\sup A=5$ car

$$\forall x \in A, x \leqslant 5$$

et

$$\forall y \leqslant 5, \quad 5 > \frac{y+5}{2} > y$$

donc y ne majore pas A.

2. $E = \mathbb{R}$ avec \leq et A =]2, 5[. $A \not\ni \sup A = 5$ par le même raisonement.

- 3. $E=\mathbb{N}^*$ avec | et $A=\{p,q\}$ avec $p\neq q\in E.$ sup $A=\mathrm{PPCM}(p,q)=p\vee q$ (c.f. chapitre 10 arithmétique)
- 4. $\mathscr{P}(E)$ avec \subset et $A=\{P,Q\}$ avec $P,Q\in\mathscr{P}(E)$ et $P\neq Q.$ sup $A=P\cup Q.$
- 5. $E = \{0,1\} \times \mathbb{Z}$ muni de \leqslant défini par

$$(x_1, y_1) \le (x_2, y_2) \iff x_1 < x_2 \text{ ou } \begin{cases} x_1 = x_2 \\ y_1 \le y_2 \end{cases}$$

et $A=\{0\}\times \mathbb{Z}.~(x,y)$ majore $A\iff x=1$ donc A est majorée mais n'a pas de borne supérieure.

Proposition: Soit (E, \leqslant) un ensemble ordonné et $A \in \mathscr{P}(E)$. Si A a une borne supérieure, alors celle-ci est unique. On la note sup A.

Preuve:

Soit M_1 et M_2 deux bornes supérieures de A.

Donc M_2 majore A. Comme M_1 est une borne supérieure de A, on a $M_1 \leqslant M_2$.

De même, on en déduit que $M_2 \leq M_1$.

Comme \leq est antisymétrique, $M_1 = M_2$.