

Elizabeth Naameh

lizzynaameh@ucla.edu Data Scientist

Client:

Instacart is an online grocery delivery service and app.

Goal:

Predict which products will be in a user's next order.

Product:

A classification model that predicts whether a user will reorder a product from their purchase history in their next order.

Data:

The <u>dataset</u> is anonymized and contains a sample of over 3 million grocery orders from more than 200,000 Instacart users.

Dictionary available here.

Tools Used:

- Numpy & Pandas for data processing
- Seaborn for visualization
- Scikit-learn for machine learning

Exploratory Data Analysis

Users tend to make place orders on a weekly basis or more frequently.

Findings

Peak shopping hours are between 10am and 4p.

Peak shopping days are Saturday and Sunday (coded 0, 1).

Goal: Use user's purchase history to predict whether a product will appear in their next order.

Optimize for the Best Shopping Experience

Precision: % of products we predict to be reordered that actually are.

Low precision means users see suggested products they are actually not interested in.

Recall: % of products that are actually reordered that we predicted.

Low recall means our model is missing out on showing products that our user is interested in.

Balance to keep suggestions relevant and promote purchases.

Baseline Model

- Correct for class imbalance
- Feature 1: user's total number of orders for product
- Feature 2: percent of user's prior orders that included a given product

Tuning Our Baseline Model

- Model: Logistic Regression using a 20-20-60 train-validate-test split
- Tune for optimum threshold
- Maximize for F1 score, balance precision and recall

$$F1 = 0.38$$

Threshold of 0.694:

Precision: 0.3791, Recall: 0.3761 F1 score: 0.3778946847131695

Predicted

Feature Engineering

- Number of orders since user last purchased product
- Average difference between current order time and typical order time for product
- Percentage of user's prior products that are organic
- Product is organic
- User's total count of product orders
- Percent of user's prior orders that include product

Final Model

Random Forest using an 80-20 train-holdout split.

Precision: 0.4179, Recall: 0.4162

F1 = 0.42

Conclusions & Future Work

Our model can serve as the basis for a recommendation system.

- Engineer more predictive features.
 - o Buying velocity, time-series data
 - Aisle/category information
 - Customer segmentation
- Reduce memory usage.
- Try more sophisticated modeling techniques.
 - XGboost
 - Gradient Boosting Machines
- Extend functionality: Recommend recipes to users that align with their purchase history.

