

Europäisches Patentamt European Patent Office Office europeen des brevets

(11) EP 0 701 981 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 20.03.1996 Bulletin 1996/12

(21) Application number: 95113625.8

(22) Date of filing: 30.08.1995

(51) Int. Cl.⁶: **C04B 35/468**, H01B 3/12, H01G 4/12

(84) Designated Contracting States: **DE FR GB**

(30) Priority: 30.08.1994 JP 205326/94 12.12.1994 JP 307357/94 12.12.1994 JP 307358/94 13.12.1994 JP 308805/94

(71) Applicant: UBE INDUSTRIES, LTD. Ube-shi, Yamaguchi-ken 755 (JP)

(72) Inventors:

 Fukuda, Koichi Ube-shi, Yamaguchi (JP) Fujinaga, Masataka
 Ube-shi, Yamaguchi (JP)

Mitani, Atsuyuki
 Ube-shi, Yamaguchi (JP)

Takeda, Masatoshi
 Ube-shi, Yamaguchi (JP)

 Ishitobi, Shinichi Ube-shi, Yamaguchi (JP)

(74) Representative: Zumstein, Fritz, Dr. et al Zumstein & Klingseisen Patentanwälte Bräuhausstrasse 4 D-80331 München (DE)

(54) Dielectric ceramic composition

(57) A dielectric ceramic composition mainly comprises a major component which comprises barium, titanium, neodymium, samarium and oxygen and is represented by the following compositional formula:

xBaO-yTiO2-zNd2O3-tSm2O3

(wherein $0.1 \le x \le 0.2$; $0.5 \le y \le 0.8$; $0.01 \le z \le 0.2$; $0 \le t \le 0.2$, provided that x+y+z+t=1); and a minor component mainly comprising glass powder having a softening point of about 100 to about 500°C, which mainly comprises PbO, ZnO and B2O3, and GeO2, and wherein the content (a) (% by weight) of the glass powder falls within the range of 1≤a≤25 and the content (b) (% by weight) of GeO₂ falls within the range of 0.5≤b≤10, on the basis of the weight of the major component. The major component may further comprise Bi₂O₃ and the composition may comprise bismuth as a minor component. The dielectric ceramic composition can be sintered at a low temperature and exhibits excellent characteristic properties such that it has a large specific dielectric constant $\varepsilon_{r_{i}}$ a large unloaded Q and a small temperature coefficient of the resonance frequency.

Description

BACKGROUND OF THE INVENTION

5 Field of the Invention:

The present invention relates to a dielectric ceramic composition suitably used as a material for a dielectric resonator or the like.

10 Disclosure of the Prior Art:

15

35

40

45

50

There has recently been desired for the development of a small-sized and high performance dielectric resonator as integration of microwave circuits is increased. The dielectric ceramic composition used in such dielectric resonators must satisfy various requirements. For instance, the composition should have a large specific dielectric constant ϵ_n a large unloaded Q and a low temperature coefficient of resonance frequency τ_f .

As examples of such dielectric ceramic compositions, Ber. Dt. Keram. Ges., 55 (1978), Nr. 7 and JPA No. Sho 60-35406 propose dielectric ceramic compositions comprising BaO-TiO₂-Nd₂O₃ systems. Moreover, U.S. Patent No. 5,292,694 discloses a dielectric ceramic composition comprising a BaO-TiO₂-RE₂O₃ system (wherein "RE" represents a rare earth metal). In addition, JPA No. Sho 62-72558 discloses a dielectric ceramic composition comprising a BaO-TiO₂-Nd₂O₃-Bi₂O₃ system.

There have recently been developed a laminated chip condenser and a laminated dielectric resonator, which are prepared by laminating a dielectric ceramic composition. In this respect, the ceramic composition and the internal electrode have been laminated by simultaneous firing. However, it is difficult to simultaneously firing the foregoing dielectric ceramic composition and the internal electrode, since the firing temperature of the former is high on the order of 1300 to 1400 °C and therefore, electrode materials for producing laminated structures are limited to those which are proof against a high temperature such as palladium (Pd) and platinum (Pt). For this reason, there has long been desired for the development of a dielectric ceramic composition capable of being fired simultaneously with cheaper electrode materials such as silver (Ag), silver-palladium (Ag-Pd) and copper (Cu), at a low temperature of not higher than 1200°C.

SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to provide a dielectric ceramic composition which has excellent properties as a material for dielectric resonators or the like, in particular, a high dielectric constant, a high unloaded Q and low temperature-dependency of the resonance frequency and which exhibits good sinterability even if it is fired at a low temperature.

According to an aspect of the present invention, there is provided a dielectric ceramic composition which mainly comprises a major component comprising barium, titanium, neodymium, samarium and oxygen and represented by the following compositional formula:

$$xBaO-yTiO2-zNd2O3-tSm2O3$$
 (1)

(wherein $0.1 \le x \le 0.2$; $0.5 \le y \le 0.8$; $0.01 \le z \le 0.2$; $0 \le t \le 0.2$, provided that x + y + z + t = 1); and

a minor component mainly comprising glass powder, which mainly comprises PbO, ZnO and B_2O_3 , and GeO_2 , and wherein

the content (a) (% by weight) of the glass powder falls within the range of $1 \le a \le 25$ and the content (b) (% by weight) of GeO_2 falls within the range of $0.5 \le b \le 10$, on the basis of the weight of the major component.

According to another aspect of the present invention, there is provided a dielectric ceramic composition mainly comprising a major component which comprises barium, titanium, neodymium, samarium, bismuth and oxygen and is represented by the following compositional formula:

$$xBaO-yTiO2-zNd2O3-tSm2O3-wBi2O3$$
 (2)

(wherein 0.1≤x≤0.2; 0.5≤y≤0.8; 0.01≤z≤0.2; 0.01 ≤t≤0.2; 0.005≤w≤0.05, provided that x+y+z+t+w = 1); and a minor component mainly comprising glass powder, which mainly comprises PbO, ZnO and B₂O₃, and GeO₂, and wherein

the content (a) (% by weight) of the glass powder falls within the range of $1 \le a \le 25$ and the content (b) (% by weight) of GeO_2 falls within the range of $0.5 \le b \le 10$, on the basis of the weight of the major component.

The dielectric ceramic composition of the present invention may further comprise Li_2O as a minor component and the content (c) (% by weights of Li_2O falls within the range of $0.04 \le c \le 4$ on the basis of the weight of the major component.

The dielectric ceramic composition may also contain Nb₂O₅, MnO, Al₂O₃ and/or ZnO.

In the ceramic composition of this invention, the content of PbO, ZnO and B_2O_3 in the glass powder are preferably in the range of $5 \le PbO \le 90$ $5 \le B_2O_3 \le 60$ and $0 < ZnO \le 65$, more preferably $0 < ZnO \le 50$ (% by weight).

If the softening point of the glass powder is higher than about 500°C, it becomes difficult to fire at a low temperature. Although there is no limitation on the lower limit of the softening point of the glass powder, it is usually about 100°C.

It has been found that the dielectric ceramic composition of this invention has excellent characteristic properties such that it can be sintered at a low temperature and that it has a high dielectric constant, a large unloaded Q and low temperature-dependency of the resonance frequency.

The present invention is also provides a dielectric device such as a dielectric resonator and a dielectric filter, comprising the dielectric ceramic composition as above.

DETAILED DESCRIPTION OF THE INVENTION

First, the relative amounts of the oxides constituting the major component of the dielectric ceramic composition according to the present invention will be explained below. If the molar fraction of BaO exceeds the foregoing upper limit, the dielectric resonator produced from the resulting dielectric ceramic composition does not undergo any resonance. On the other hand, if it is less than the lower limit, the resulting dielectric resonator exhibits a low dielectric constant and a low unloaded Q.

If the molar fraction of TiO_2 is greater than the upper limit defined above, the resulting dielectric resonator shows a large temperature coefficient of the resonance frequency, while if it is less than the lower limit, the dielectric constant of the resulting resonator is low. Moreover, if the molar fraction of Nd_2O_3 is greater than the upper limit defined above, the resulting dielectric resonator exhibits a low dielectric constant and a low unloaded Q, while if it is less than the lower limit, the temperature coefficient of the resonance frequency observed for the resulting dielectric resonator has a tendency to increase. In addition, the molar fraction of Sm_2O_3 has an effect on the dielectric constant, the unloaded Q and the temperature coefficient of the resonance frequency of the resulting dielectric resonator and therefore, a dielectric resonator exhibiting the desired characteristic properties can be produced only when it falls within the range defined above.

In the present invention, if the content of the minor component relative to the major component, i.e., the content (a) (% by weight) of the glass powder which mainly comprises PbO, ZnO and B_2O_3 and the content (b) (% by weight) of GeO_2 are extremely high, the unloaded Q of the resulting dielectric resonator is reduced, while these contents (a) and (b) are too low or zero, it becomes difficult to fire the resulting composition at a low temperature of not higher than 1200 °C. For this reason, the content of the minor component relative to the major component, i.e., the content (a) (% by weight) of the glass powder which mainly comprises PbO, ZnO and B_2O_3 and the content (b) (% by weight) of GeO_2 are limited to the foregoing ranges, respectively. Moreover, the relative proportions of PbO, ZnO and B_2O_3 which constitute the glass powder are not particularly restricted, but if the content of ZnO is too high, the softening point of the resulting glass increases and it is difficult to fire the resulting composition at a low temperature. Accordingly, the content of ZnO in the glass powder is preferably $0 < ZnO \le 65$, more preferably $0 < ZnO \le 50$. The content of PbO and $0 \le 20$ falls preferably within $0 \le 20$ and $0 \le 2$

And, if the softening point of the minor comonent, glass powder, is higher than about 500°C, it becomes difficult to fire at a low temperature.

The dielectric ceramic composition of the present invention may further comprise, as a minor component, Li₂O such that the content (c) (% by weight) thereof falls within the range of 0.04≦c≦4. The addition of Li₂O permits a further decrease of the sintering temperature of the composition and as a result, an internal electrode of Ag can easily be formed. If the content (c) of Li₂O exceeds the upper limit defined above, the dielectric resonator produced from the resulting dielectric ceramic composition never undergoes resonance.

According to a second aspect of the present invention, there is further provided a dielectric ceramic composition which mainly comprises a major component comprising barium, titanium, neodymium, samarium, bismuth and oxygen and represented by the following compositional formula:

$$xBaO-yTiO2-zNd2O3-tSm2O3-wBi2O3$$
 (2)

(wherein 0.1≤x≤0.2; 0.5≤y≤0.8; 0.01≤z≤0.2; 0.01≤t≤0.2; 0.005≤w≤0.05, provided that x+y+z+t+w = 1); and a minor component mainly comprising glass powder, which mainly comprises PbO, ZnO and B₂O₃, and GeO₂, and wherein

the content (a) (% by weight) of the glass powder falls within the range of $1 \le a \le 25$ and the content (b) (% by weight) of GeO_2 falls within the range of $0.5 \le b \le 10$, on the basis of the weight of the major component.

If the softening point of the minor comonent, glass powder is higher than about 500°C, it becomes difficult to fire at a low temperature.

50

In this composition, if the molar fraction of $\mathrm{Bi}_2\mathrm{O}_3$ is excessively high, the resulting composition exhibits a low dielectric constant and a low unloaded Q, while if it is extremely low, the dielectric resonator produced from the resulting composition has a high temperature coefficient of the resonance frequency. In the foregoing formula (2), the proportions of x, y, z and t as well as the contents (a) and (b) of the glass powder and GeO_2 as the minor component are limited to the foregoing ranges respectively, for the same reasons discussed above in connection with the foregoing formula (1).

This dielectric ceramic composition has excellent characteristic properties like the foregoing composition according to the first aspect such that it can also be sintered at a low temperature and that it has a high dielectric constant, a large unloaded Q and low temperature-dependency of the resonance frequency.

The dielectric ceramic composition according to the second aspect of the present invention may further comprise, as a minor component, Li_2O such that the content (c) (% by weight) thereof falls within the range of $0.04 \le c \le 4$. In this case, the addition of Li_2O likewise permits a further decrease of the sintering temperature of the composition and as a result, an internal electrode of Ag can easily be formed. If the content (c) of Li_2O exceeds the upper limit defined above, the dielectric resonator produced from the resulting dielectric ceramic composition never undergoes resonance.

In the present invention (the first and second aspects), at least one member selected from the group consisting of Nb₂O₅, MnO, Al₂O₃ and ZnO may be added to the composition as the third component and this permits a further reduction in the absolute value of the temperature coefficient τ_f of the resonance frequency. If the content d (% by weight) of the third component on the basis of the major component is extremely high, the temperature coefficient τ_f of the resonance frequency increases. Therefore, the content (d) thereof falls within the range of $0 \le d \le 2$, preferably $0.1 \le d \le 2$.

Then a preferred method for preparing the dielectric ceramic composition of the present invention will be described below.

A starting material comprising various oxides constituting the major component, for instance, barium carbonate, titanium oxide, neodymium oxide, samarium oxide and, if necessary, bismuth oxide is subjected to wet blending in predetermined portions together with a solvent such as water or an alcohol. Subsequently, the solvent such as the water or the alcohol was removed, followed by pulverization of the mixture and then calcination thereof at a temperature ranging from 1000 to 1300 °C for about 1 to 5 hours in an oxygen-containing gas atmosphere (for instance, in the air). The calcined powder thus prepared is wet-blended with the minor component, i.e., the glass powder which is composed of PbO, ZnO and B₂O₃ and GeO₂, and if necessary, Li₂O and the third component, i.e., at least one member selected from the group consisting of Nb₂O₅, MnO, Al₂O₃ and ZnO in the presence of a solvent such as an alcohol. Then the solvent such as the water or the alcohol is removed and thereafter the mixture is pulverized. Moreover, the product is uniformly mixed with an organic binder such as polyvinyl alcohol, followed by drying, pulverization and pressure molding (under a pressure ranging from about 100 to 1000 kg/cm²). Thereafter, a dielectric ceramic composition represented by the foregoing compositional formula (1) or (2) can be obtained by firing the resulting molded article at a temperature ranging from 850 to 1100 °C in an oxygen-containing gas atmosphere, for instance, in the air.

The dielectric ceramic composition thus prepared may be, according to need, processed into appropriate shapes and sizes, or formed into a sheet by, for instance, the doctor blade technique followed by lamination of the sheet with an electrode and may thus be used as a material for a dielectric resonator, a dielectric substrate, a laminated element or the like.

As raw materials for barium, titanium, neodymium, samarium, niobium, bismuth, lead, zinc, boron, germanium, manganese, aluminum and lithium, there may be used, for instance, nitrates and hydroxides thereof which are converted into oxides during the firing process in addition to oxides thereof such as BaCO₃, TiO₂, Nd₂O₃, Sm₂O₃, Bi₂O₃, PbO, ZnO, B₂O₃, GeO₂, Nb₂O₅, MnO, Al₂O₃ and LiO₂

The present invention will hereinafter be described in more detail with reference to the following non-limitative working Examples and Comparative Examples.

45 Example 1

40

Barium carbonate powder (BaCO₃; 0.13 mole), titanium oxide powder (TiO₂; 0.70 mole) and neodymium oxide powder (Nd₂O₃; 0.17 mole) were charged in a ball mill together with ethanol and then subjected to wet blending for 12 hours. After the removal of the solvent from the dispersion, the mixture was pulverized and then calcined at 1250 °C in the air. Separately, glass powder A comprising 84wt% of lead oxide powder (PbO), 7 wt% of zinc oxide powder (ZnO) and 9 wt% of boron oxide powder (B₂O₃) was prepared according to the usual method. To the calcined product prepared above, there were added 2 wt% of the glass powder A comprising PbO, ZnO and B₂O₃, and 3 wt% of germanium oxide powder (GeO₂), followed by introduction of the mixture into a ball mill together with ethanol and then wet blending for 48 hours. After the removal of the solvent from the dispersion, the mixture was pulverized, followed by addition of an appropriate amount of a polyvinyl alcohol solution to the pulverized product, drying the mixture, forming it into pellets having a diameter of 12 mm and a thickness of 4 mm and then firing the pellets at 970°C for 2 hours in the air. The composition of the product and the sintering temperature thereof are summarized in the following Table 1.

The ceramic composition thus prepared was processed into pieces each having a diameter of 7 mm and a thickness of about 3 mm and inspected for the specific dielectric constant $\varepsilon_{\rm r}$, the unloaded Q and the temperature coefficient $\tau_{\rm f}$ of

the resonance frequency at a resonance frequency (ranging from 3 to 6 GHz) according to the dielectric resonance method. The results thus obtained are listed in the following Table 2.

Examples 2 to 22 and Comparative Examples 1 to 12

The same procedures used in Example 1 were repeated except that the mixing ratio of barium carbonate, titanium oxide, neodymium oxide and samarium oxide; the kinds of glass powder comprising PbO, ZnO and B_2O_3 (glass powder B: 80 wt% PbO, 10 wt% ZnO and 10 wt% B_2O_3) and the added amounts of the minor components as well as the added amount (d) of the third component were changed as detailed in Table 1 to prepare dielectric ceramic compositions and they were inspected for characteristic properties. The compositions of the products prepared in these Examples and

Comparative Examples and characteristic properties thereof are summarized in Table 2.

TABLE 1

5			C	OMPOSI <u>T</u>	ION OF	DIELECTR	IC CERAMI	C	·	CALCINATION
		Ba0	TiO ₂	Nd_2O_3	Sm_2O_3	GLASS	KIND OF	Ge0₂	d '	TEMPERATURE
		x	У	Z	t	POWDER <u>wt%</u>	GLASS	wt%	wt%	` ° C
10	EXAMPLE					W L/o				
,,,	1	0.13	0.70	0.17	0	2	A	3	_	970
	2	0.18	0.67	0.11		7	A	3	_	940
	3	0.18	0.67	0.11	0.04	10	A	3	_	915
	4	0.18	0.67	0.11	0.04	15	A	3	_	890
15	5	0.16	0.67	0.11	0.06	20	A	2	_	880
	6	0.18	0.66	0.13	0.03	5	В	5	_	990
	7	0.17	0.67	0.10	0.06	10	В	3	_	960
	8	0.16	0.65	0.17	0.02	15	В	3	_	940
20	9	0.13	0.70	0.17	0	7	A	3	-	950
	10	0.13	0.70	0.15	0.02	7	A	3	_	945
	11	0.13	0.70	0.12	0.05	7	Α	3	-	950
	12	0.14	0.71	0.04	0.11	10	A	5	_	935
0.5	13	0.17	0.66	0.17	0	10	A	5	_	925
25	14	0.17	0.66	0.17	0	10	A	7	_	915
	15	0.17	0.66	0.17	0	10	A	10	_	935
	16	0.16	0.65	0.18	0.01	7	A	3	_	940
	17	0.15	0.67	0.18	0	10	A	5	-	905
30	18	0.15	0.67	0.18	0	15	Α	3	-	875
	19	0.15	0.67	0.18	0	12	A	5	0.5(Nb2Os)	910
	20	0.15	0.67	0.18	0	12	A	5	0.5(Mn0)	915
	21	0.15	0.67	0.18	0	12	A	5	$0.5(Al_2O_3)$	920
35	22	0.15	0.67	0.18	0	12	A	5	0.5(Zn0)	910
	COMPARATIVE									
	EXAMPLE									
	1	0.05	0.75	0.19	0.01	10	A	5	-	960
40	2	0.30	0.57	0.11	0.02	10	A	3	-	935
	3	0.08	0.86	0.05	0.01	15	A	3	_	920
	4	0.15	0.45	0.39	0.01	9	A	2	-	930
	5	0.11	0.57	0.31	0.01	10	A	2	-	920
45	6	0.10	0.89	0	0.01	10	A	2	-	925
	7	0.14	0.55	0.01	0.30	5	A	3		945
	8	0.15	0.70	0.13	0.02	0	-	0	-	1420
	9	0.16	0.67	0.11	0.06	30	Α	2	-	870
50	10	0.16	0.65	0.17	0.02	30	В	3	-	860
	11	0.17	0.66	0.17	0	20	A	0	-	1160
	12	0.15	0.70	0.13	0.02	10	Α	15	-	890

6

TABLE 2

5		ELECTRIC	CHARA	CTERISTICS
		€r	Q	Tf
				ppm∕°C
	EXAMPLE			
10	1	71.0	1510	13
	2	76.0	1190	6
	3	70.0	1120	-5
	4	68.0	910	-8
15	5	65.0	660	-22
	6	74.0	1080	12
	. 7	70.0	750	-7
	8	67.0	615	-5
20	9	69.0	1305	8
	10	69.5	1180	-7
	11	68.0	975	21
	12	61.0	715	-2
25	13	68.0	1060	18
20	14	64.0	1020	14
	15	58.0	910	8
	16	71.0	1120	16
	17	62.0	1070	-46
30	18	66.0	720	-49
	19	61.0	1100	-30
	20	63.0	1120	-25
	21	62.0	1090	-32
35	22	61.0	1110	-21
	COMPARATIVE			
	EXAMPLE			
	1	44.0	150	-1
40	2		RESONA	
	3	64.0	305	140
	4 5	35.0	205	45
		43.0	80	-6
45	6	60.0	1510	86
	7	41.0	260	-31
	8	87.0	2870	18
	9	27.0	195	-7
50	10	23.0	145	7
	11	94.0	80	81
	12	41.0	220	-43

7

Example 23

15

25

30

35

40

45

50

55

Barium carbonate powder (BaCO $_3$; 0.13 mole), titanium oxide powder (TiO $_2$; 0.70 mole) and neodymium oxide powder (Nd $_2$ O $_3$; 0.17 mole) were charged in a ball mill together with ethanol and then subjected to wet blending for 12 hours. After the removal of the solvent from the dispersion, the mixture was pulverized and then calcined at 1250 °C in the air. Separately, glass powder A comprising 84wt% of lead oxide powder (PbO), 7 wt% of zinc oxide powder (ZnO) and 9 wt% of boron oxide powder (B $_2$ O $_3$) was prepared according to the usual method. To the calcined product prepared above, there were added 2 wt% of the glass powder A comprising PbO, ZnO and B $_2$ O $_3$ as well as 3 wt% of germanium oxide powder (GeO $_2$) and 1 wt% (corresponding to 0.4 wt% as expressed in terms of the amount of Li $_2$ O) of lithium carbonate powder (Li $_2$ CO $_3$), followed by introduction of the mixture into a ball mill together with ethanol and then wet blending for 48 hours. After the removal of the solvent from the dispersion, the mixture was pulverized, followed by addition of an appropriate amount of a polyvinyl alcohol solution to the pulverized product, drying the mixture, forming it into pellets having a diameter of 12 mm and a thickness of 4 mm and then firing the pellets at 955°C for 2 hours in the air. The composition of the product and the sintering temperature thereof are summarized in the following Table 3.

The ceramic composition thus prepared was inspected for various characteristic properties which were determined under the same conditions used in Example 1. The results thus obtained are listed in the following Table 5.

Examples 24 to 47 and Comparative Examples 13 to 28

The same procedures used in Example 23 were repeated except that the mixing ratio of barium carbonate, titanium oxide, neodymium oxide and samarium oxide; the kinds of glass powder as a minor component mainly comprising PbO, ZnO and B₂O₃ in the ratio listed in Table 4 and the added amounts of the minor components were changed as detailed in Table 3 to prepare dielectric ceramic compositions and they were inspected for characteristic properties. The results

thus obtained are summarized in Table 5.

				aa.m.aa.i	I T	ABLE 3	mra ann			
_		D = 0					TRIC CERA			CALCINATION
5		Ba0 x	TiO ₂	Nd ₂ O ₃	Sm ₂ O ₃ t	GLASS POWDER wt%	KIND OF GLASS	GeO₂ wt%	Li ₂ 0 wt%	TEMPERATURE °C
	EXAMPLE					 				
	23	0.13	0.70	0.17	0	2	A	3	0.4	955
10	24	0.18	0.67		0.04	7	Α	3	0.2	930
	25	0.18	0.67		0.04	10	A	3	0.2	900
	26	0.18	0.67		0.04	15	A	3	0.2	885
	27	0.16	0.67		0.06	20	Á	2	0.4	855
	28	0.18	0.66		0.03	5	В	5	0.4	970
15	29	0.17	0.67		0.06	10	В	3	0.8	940
	30	0.16	0.65		0.02	15	В	3	0.4	910
	31	0.13	0.70		0	7	Ä	3	0.4	930
	32	0.13	0.70		0.02	7	A	3	0.4	925
	33	0.13	0.70		0.05	7	A	3	0.4	925
20	34 .	0.14	0.71		0.11	10	Ä	5	0.2	930
	35	0.17	0.66		0	10	A	5	0.2	915
	36	0.17	0.66		ŏ	10	A	7	0.2	910
	37	0.17	0.66		Ŏ	10	A	1 0	0.2	930
12	38	0.16	0.65		0.01	7	Ä	3	0.2	935
25	39	0.16	0.65		0.01	7	A	3	0.4	915
	40	0.16	0.65		0.01	7	Ä	3	0.4	905
	41	0.16	0.65		0.01	7	A	3	0.8	
	42	0.15	0.67		0.01	10	A	5		885
	43	0.15	0.67		0	15	A	3	0.4	880
30	44	0.13	0.66		0	20	C	J	0.4	850
	45	0.16	0.67		0	18		_	-	950
	46	0.16	0.67		0	20	D	-	-	940
	47	0.16	0.66		0		E	c	_ 	940
35	41	0.10	0.00	0.10	U	17	F	5	0.3	850
33	COMPARA	TIVE								
	EXAMPLE									
	13	0.05	0.75	0.19	0.01	10		~	Λ.0	0.45
	14	0.30	0.73		0.01	10	A	5	0.2	945
40	15	0.08	0.86			10	A	3	0.2	930
	16	0.15	0.45		0.01	15	A	3	0.4	890
	17	0.13	0.43		0.01	9	A	2	0.6	900
	18	0.10	0.89		0.01	10	A	2	0.8	890
	19				0.01	10	A	2	0.4	910
45	20	0.14 0.15	0.55 0.70		0.30	5	Α	3	0.4	920
	21				0.02	0	-	0	0	1420
	22	0.16	0.67		0.06	30	A	2	0.4	840
	23	0.16	0.65		0.02	30	В	3	0.4	835
		0.17	0.66		0	20	A	0	0.2	1150
50	24 25	0.15	0.70		0.02	10	A	15	0.4	840
	25 26	0.16	0.65		0.01	7	A	3.	6.0	860
	20 27	0.17	0.67		0.06	10	В	3	0	960
		0.17	0.66		0	20	G	-	-	900
	28	0.15	0.70	0.13	0.02	19	Н		~	900

9

TABLE 4

KIND OF GLASS		GLASS	POWDER CO	OMPOSITION	(wt%)		SOFTENING POINT (°C)
Α	PbO (84)	ZnO (7)	B ₂ O ₃ (9)				315
В	PbO (80)	ZnO (10)	B ₂ O ₃ (10)				310
С	PbO (52)	ZnO (4)	B ₂ O ₃ (6)	GeO ₂ (31)	Li ₂ O (7)		417
D	PbO (56)	ZnO (5)	B ₂ O ₃ (6)	GeO2 (33)			480
E	PbO (51)	ZnO (4)	B ₂ O ₃ (5)	GeO ₂ (30)	Li ₂ O (6)	Sb ₂ O ₃ (4)	442
F	PbO (74)	PbF ₂ (10)	B ₂ O ₃ (9)	ZnO (7)			275
G	B ₂ O ₃ (35)	SiO ₂ (45)	Al ₂ O ₃ (10)	BaO (10)			650
н	B ₂ O ₃ (24)	SiO ₂ (35)	BaO (41)				690

TABLE 5

5		ELECTRIC	CHARA	CTERISTICS
		£ ,	Q	Tf
		C r	•	ppm/°C
	EXAMPLE			11-2
	23	75.0	1590	37
10	24	77.0	1260	21
	25	72.0	1110	10
	26	70.5	925	6
	27	69.0	660	4
15	28	78.0	1105	37
	29	72.0	790	32
	30	71.0	620	23
	31	74.0	1310	31
	32	73.5	1250	17
20	33	72.0	1000	-3
	34	63.0	720	-16
	35	70.0	1090	32
	36	66.0	1100	27
	37	61.0	980	21
25	38	73.0	1180	33
	39	75.0	1120	42
	40	78.0	1090	47
	41	74.0	820	54
30	42	66.0	1150	-19
	43	69.0	780	-20
	44	60.0	850	5
	45	61.5	920	-12
	46	61.0	1000	16
35	47	68.0	1250	<u>-8</u>
	COMPARATIVE			
	EXAMPLE	477.0	100	
	13	47.0	160	14
40	14		RESONA	
	15 16	68.0	310	166
	17	41.0 45.0	210 100	76 36
	18	65.0	320	36 110
	19	44.0	280	-2
45	20	87.0	2870	18
	21	31.0	210	19
	22	26.0	160	31
	23	96.0	100	85
	24	43.0	250	-19
50	25		RESONA	
	26	70.0	750	-7
	27		SINTER	
	28		SINTER	

11

Example 48

15

30

35

40

45

50

55

Barium carbonate powder (BaCO₃; 0.15 mole), titanium oxide powder (TiO₂; 0.675 mole), neodymium oxide powder (Nd₂O₃; 0.13 mole), samarium oxide powder (Sm₂O₃; 0.02 mole) and bismuth oxide powder (Bi₂O₃; 0.025 mole) were charged in a ball mill together with ethanol and then subjected to wet blending for 12 hours. After the removal of the solvent from the dispersion, the mixture was pulverized and then calcined at 1100°C in the air. Separately, glass powder A comprising 84wt% of lead oxide powder (PbO), 7 wt% of zinc oxide powder (ZnO) and 9 wt% of boron oxide powder (B₂O₃) was prepared according to the usual method. To the calcined product prepared above, there were added 2 wt% of the glass powder A comprising PbO, ZnO and B₂O₃, and 2 wt% of germanium oxide powder (GeO₂), followed by introducing the mixture into a ball mill together with ethanol and then wet blending for 12 hours. After the removal of the solvent from the dispersion, the mixture was pulverized, followed by addition of an appropriate amount of a polyvinyl alcohol solution to the pulverized product, drying the mixture, forming it into pellets having a diameter of 12 mm and a thickness of 4 mm and then firing the pellets at 1150 °C for 2 hours in the air. The composition of the product and the sintering temperature thereof are summarized in the following Table 6.

The ceramic composition thus prepared was inspected for various characteristic properties which were determined under the same conditions used in Example 23. The results thus obtained are listed in the following Table 6.

The ceramic composition thus prepared was processed into pieces each having a diameter of 7 mm and a thickness of about 3 mm and inspected for the specific dielectric constant $\epsilon_{\rm r}$, the unloaded Q and the temperature coefficient $\tau_{\rm f}$ of the resonance frequency at a resonance frequency (ranging from 3 to 5 GHz) according to the dielectric resonance method. The results thus obtained are listed in the following Table 7.

Examples 49 to 61 and Comparative Examples 29 to 47

The same procedures used in Example 48 were repeated except that the mixing ratio of barium carbonate, titanium oxide, neodymium oxide, samarium oxide and bismuth oxide; the kinds and the added amount of glass powder comprising PbO, ZnO and B₂O₃ (glass powder B: 80 wt% PbO, 10 wt% ZnO and 10 wt% B₂O₃) and the added amounts of the minor component GeO₂ as well as the added amount (d) of the third component were changed as detailed in Table 6 to prepare dielectric ceramic compositions and they were inspected for characteristic properties in the same manner

used in Example 48. The results thus obtained are summarized in Table 7.

TABLE 6

5				CO	MPOSIT	ION OF D	IELECTRI	C CERAMIC	l T	1	CALCINATION
		BaO	TiO ₂	Nd2O3	Sm ₂ O ₃	Bi ₂ O ₃	GLASS	KIND OF	GeO₂	d	TEMPERATURE
		x	у	Z	t	W	POWDER	GLASS	wt%	wt%	°C
							_wt%				
	EXAMPLE										
10	48	0.15	0.675	0.13	0.02	0.025	2	A	2	-	1050
	49	0.12	0.675		0.05	0.025	7	A	2	_	950
	50	0.17	0.695	0.10	0.01	0.025	10	A	2	-	930
	51	0.15	0.675		0.02	0.025	15	A	2	-	920
15	52	0.15	0.675		0.02	0.025	20	A	2	-	910
	53	0.15	0.675		0.02	0.025	10	A	3	-	930
	54	0.15	0.675	0.13	0.02	0.025	10	A	2	1(Nb2Os	
	55	0.15	0.675	0.13	0.02	0.025	10	A	2	1(Mn0)	920
	56	0.15	0.675		0.02	0.025	10	A	2	1(Al ₂ 0 ₃	
20	57	0.15	0.675		0.02	0.025	10	A	2	1(ZnO)	930
	58	0.15	0.675		0.02	0.025	3	В	3	-	1050
	59	0.12	0.675		0.05	0.025	8	В	2	-	950
	60	0.17	0.695		0.01	0.025	11	В	2	_	940
25	61	0.15	0.675	0.13	0.02	0.025	15	В	5	_	920
25	-										
	COMPARATIVE	;									
	EXAMPLE								_		0.00
	29	0.05	0.75	0.18	0.01	0.01	10	A	5	_	960
30	30	0.30	0.57	0.10	0.02	0.01	8	A	2	-	920
	31	0.08	0.85	0.05	0.01	0.01	15	A	3	-	900
	32	0.15	0.45	0.37	0.01	0.02	9	A	2	-	920
	33	0.11	0.57	0.30	0.01	0.01	10	A	2	-	930
	34	0.15	0.81	0 -	0.01	0.03	10	A	2	-	920
35	35	0.15	0.675		0	0.025	8	A	2	-	910
	36	0.12	0.545		0.30	0.025	5	A	2	-	990
	37	0.15	0.673		5 0.02	0	8	A	3	-	1030
	38	0.15	0.60	0.13	0.02	0.10	5	A	2	-	990
40	39	0.15	0.67		0.02	0.025	0	-	0	-	1350
-	40	0.15	0.67		0.02	0.025	30	A	2	-	870
	41	0.15	0.67		0.02	0.025	30	В	2	-	890
	42	0.15	0.67		0.02	0.025	8	A	0.1	-	1250
	43	0.15	0.67		0.02	0.025	8	A	15	- C(10 0	850
45	44	0.15	0.67		0.02	0.025	10	A	2	5(Nb ₂ 0	
	45	0.15	0.67		0.02	0.025	10	A	2	5(MnO)	900
	46	0.15			0.02	0.025	10	A	2	5(Al ₂ 0	
	47	0.15	0.67	5 0.13	0.02	0.025	10	A	2	5(ZnO)	900

13

50

TABLE 7

EXAMPLE EXAMPLE	5		ELECTRIC	CHARA	CTERISTICS
EXAMPLE 10 48 81.0 1150 7 49 74.0 930 -22 50 77.0 800 -12 51 77.0 1100 -13 15 52 78.0 950 -30 53 77.0 450 -14 54 76.0 820 -3 55 77.0 560 4 20 56 74.0 620 2 57 78.0 750 -8 58 80.0 1050 7 59 73.0 890 -21 61 73.0 630 -17 COMPARATIVE EXAMPLE 30 30 NO RESONANCE 31 70.0 400 130 -32 41.0 170 33 34 43.0 130 -35 35 36 46.0 240 -38 47 40 38 41.0 29 30 37 79.0 130 38 41.0 39 31 37 39 30 30 30 30 30 30 30 30 30					
## EXAMPLE ## 48					
48 81.0 1150 7 49 74.0 930 -22 50 77.0 800 -12 51 77.0 1100 -13 52 78.0 950 -30 53 77.0 450 -14 54 76.0 820 -3 55 77.0 560 4 20 56 74.0 620 2 57 78.0 750 -8 58 80.0 1050 7 59 73.0 890 -21 60 74.0 720 -11 61 73.0 630 -17 COMPARATIVE EXAMPLE 30 89 51.0 120 -12 30 NO RESONANCE 31 70.0 400 130 32 41.0 170 33 35 33 49.0 80 -15 34 43.0 130 -35 35 80.0 130 -26 36 46.0 240 -38 37 79.0 1050 33 40 38 41.0 200 33 40 38 41.0 200 33 40 39 93.0 1200 5 40 33.0 180 -7 41 29.0 150 -5 42 85.0 1100 -33 43 45.0 200 -55 44 74.0 210 25 45 77.0 250 33 50 46 72.0 220 27		EXAMPLE			
## 49	10	48	81.0	1150	7
50 77.0 800 -12 51 77.0 1100 -13 52 78.0 950 -30 53 77.0 450 -14 54 76.0 820 -3 55 77.0 560 4 56 74.0 620 2 57 78.0 750 -8 58 80.0 1050 7 59 73.0 890 -21 25 60 74.0 720 -11 61 73.0 630 -17 COMPARATIVE EXAMPLE 30 NO RESONANCE 31 70.0 400 130 32 41.0 170 33 33 49.0 80 -15 34 43.0 130 -35 35 80.0 130 -26 36 46.0 240 -38 37 79.0 1050 33 39 93.0 1200 5 40 33.0 180 -7 41 29.0 150 -5 42 85.0 1100 -33 43 45.0 200 -55 44 74.0 210 25 45 77.0 250 33 50		49	74.0		-22
51 77.0 1100 -13 52 78.0 950 -30 53 77.0 450 -14 54 76.0 820 -3 55 77.0 560 4 20 56 74.0 620 2 57 78.0 750 -8 58 80.0 1050 7 59 73.0 890 -21 25 60 74.0 720 -11 61 73.0 630 -17 COMPARATIVE EXAMPLE 30 80 80 120 -12 30 NO RESONANCE 31 70.0 400 130 32 41.0 170 33 35 33 49.0 80 -15 34 43.0 130 -26 36 46.0 240 -38 37 79.0 1050 33 39 93.0 1200 5 40 33.0 180 -7 41 29.0 150 -5 44 47.0 210 25 45 77.0 250 33 50		50	77.0		
52 78.0 950 -30 53 77.0 450 -14 54 76.0 820 -3 55 77.0 560 4 20 56 74.0 620 2 57 78.0 750 -8 58 80.0 1050 7 59 73.0 890 -21 25 60 74.0 720 -11 61 73.0 630 -17 COMPARATIVE EXAMPLE 30 NO RESONANCE 31 70.0 400 130 32 41.0 170 33 35 33 49.0 80 -15 34 43.0 130 -35 35 80.0 130 -26 36 46.0 240 -38 37 79.0 1050 33 39 93.0 1200 5 40 33.0 180 -7 41 29.0 150 -5 42 85.0 1100 -33 43 45.0 200 -55 44 74.0 210 25 45 77.0 250 33 50		51	77.0	1100	
53 77.0 450 -14 54 76.0 820 -3 55 77.0 560 4 56 74.0 620 2 57 78.0 750 -8 58 80.0 1050 7 59 73.0 890 -21 60 74.0 720 -11 61 73.0 630 -17 COMPARATIVE EXAMPLE 30 29 51.0 120 -12 30 NO RESONANCE 31 70.0 400 130 32 41.0 170 33 33 49.0 80 -15 34 43.0 130 -35 35 33 49.0 80 -15 36 46.0 240 -38 37 79.0 1050 33 39 93.0 1200 5 40 33.0 180 -7 41 29.0 150 -5 42 85.0 1100 -33 43 45.0 200 -55 44 74.0 210 25 45 77.0 250 33 50	15	52	78.0	950	-30
54 76.0 820 -3 55 77.0 560 4 56 74.0 620 2 57 78.0 750 -8 58 80.0 1050 7 59 73.0 890 -21 60 74.0 720 -11 61 73.0 630 -17 COMPARATIVE EXAMPLE 30 29 51.0 120 -12 31 70.0 400 130 32 41.0 170 33 33 49.0 80 -15 34 43.0 130 -35 35 33 49.0 80 -15 36 46.0 240 -38 37 79.0 1050 33 38 41.0 200 33 39 93.0 1200 5 40 33.0 180 -7 41 29.0 150 -5 42 85.0 1100 -33 43 45.0 200 -55 44 74.0 210 25 45 77.0 250 33 50		53	77.0		
55 77.0 560 4 56 74.0 620 2 57 78.0 750 -8 58 80.0 1050 7 59 73.0 890 -21 60 74.0 720 -11 61 73.0 630 -17 COMPARATIVE EXAMPLE 30 29 51.0 120 -12 30 NO RESONANCE 31 70.0 400 130 32 41.0 170 33 33 49.0 80 -15 34 43.0 130 -35 35 80.0 130 -26 36 46.0 240 -38 37 79.0 1050 33 38 41.0 200 33 39 93.0 1200 5 40 33.0 180 -7 41 29.0 150 -5 40 33 45.0 200 -55 44 74.0 210 25 45 77.0 250 33 50 46 72.0 220 27		54	76.0		
57 78.0 750 -8 58 80.0 1050 7 59 73.0 890 -21 60 74.0 720 -11 61 73.0 630 -17 COMPARATIVE EXAMPLE 30 29 51.0 120 -12 30 NO RESONANCE 31 70.0 400 130 32 41.0 170 33 33 49.0 80 -15 34 43.0 130 -35 35 80.0 130 -26 36 46.0 240 -38 40 33 49.0 80 130 -26 36 46.0 240 -38 40 33 41.0 200 33 39 93.0 1200 5 40 33.0 180 -7 41 29.0 150 -5 45 42 85.0 1100 -33 43 45.0 200 -55 44 74.0 210 25 45 77.0 250 33 50		55	77.0	560	4
58 80.0 1050 7 59 73.0 890 -21 60 74.0 720 -11 61 73.0 630 -17 COMPARATIVE EXAMPLE 30 29 51.0 120 -12 30 NO RESONANCE 31 70.0 400 130 32 41.0 170 33 33 49.0 80 -15 34 43.0 130 -35 35 80.0 130 -26 36 46.0 240 -38 37 79.0 1050 33 38 41.0 200 33 39 93.0 1200 5 40 33.0 180 -7 41 29.0 150 -5 42 85.0 1100 -33 43 45.0 200 -55 44 74.0 210 25 45 77.0 250 33 50	20	56	74.0	620	2
59 73.0 890 -21 60 74.0 720 -11 61 73.0 630 -17 COMPARATIVE EXAMPLE 30 29 51.0 120 -12 30 NO RESONANCE 31 70.0 400 130 32 41.0 170 33 33 49.0 80 -15 34 43.0 130 -35 35 80.0 130 -26 36 46.0 240 -38 37 79.0 1050 33 40 38 41.0 200 33 39 93.0 1200 5 40 33.0 180 -7 41 29.0 150 -5 42 85.0 1100 -33 43 45.0 200 -55 44 74.0 210 25 45 77.0 250 33 50		57	78.0	750	-8
25		58	80.0	1050	7
61 73.0 630 -17 COMPARATIVE EXAMPLE 30 29 51.0 120 -12 30 NO RESONANCE 31 70.0 400 130 32 41.0 170 33 33 49.0 80 -15 34 43.0 130 -35 35 80.0 130 -26 36 46.0 240 -38 37 79.0 1050 33 39 93.0 1200 5 40 33.0 180 -7 41 29.0 150 -5 42 85.0 1100 -33 43 45.0 200 -55 44 74.0 210 25 45 77.0 250 33 50		59	73.0	890	-21
COMPARATIVE EXAMPLE 29 51.0 120 -12 30 NO RESONANCE 31 70.0 400 130 32 41.0 170 33 33 49.0 80 -15 34 43.0 130 -35 35 80.0 130 -26 36 46.0 240 -38 37 79.0 1050 33 38 41.0 200 33 39 93.0 1200 5 40 33.0 180 -7 41 29.0 150 -5 42 85.0 1100 -33 43 45.0 200 -55 44 74.0 210 25 45 77.0 250 33 50	25	60	74.0	720	-11
EXAMPLE 29		61	73.0	630	-17
30		COMPARATIVE			
30 NO RESONANCE 31 70.0 400 130 32 41.0 170 33 33 49.0 80 -15 34 43.0 130 -35 35 80.0 130 -26 36 46.0 240 -38 37 79.0 1050 33 39 93.0 1200 5 40 33.0 180 -7 41 29.0 150 -5 42 85.0 1100 -33 43 45.0 200 -55 44 74.0 210 25 45 77.0 250 33 50		EXAMPLE			
30 NO RESONANCE 31 70.0 400 130 32 41.0 170 33 33 49.0 80 -15 34 43.0 130 -35 35 80.0 130 -26 36 46.0 240 -38 37 79.0 1050 33 39 93.0 1200 5 40 33.0 180 -7 41 29.0 150 -5 42 85.0 1100 -33 43 45.0 200 -55 44 74.0 210 25 45 77.0 250 33 50	30	29	51.0	120	-12
32 41.0 170 33 33 49.0 80 -15 34 43.0 130 -35 35 80.0 130 -26 36 46.0 240 -38 37 79.0 1050 33 38 41.0 200 33 39 93.0 1200 5 40 33.0 180 -7 41 29.0 150 -5 42 85.0 1100 -33 43 45.0 200 -55 44 74.0 210 25 45 77.0 250 33 50			NO	RESONA	NCE
33			70.0	400	130
34			41.0	170	33
34	35			80	-15
36 46.0 240 -38 37 79.0 1050 33 38 41.0 200 33 39 93.0 1200 5 40 33.0 180 -7 41 29.0 150 -5 42 85.0 1100 -33 43 45.0 200 -55 44 74.0 210 25 45 77.0 250 33 50 46 72.0 220 27				130	-35
37 79.0 1050 33 38 41.0 200 33 39 93.0 1200 5 40 33.0 180 -7 41 29.0 150 -5 42 85.0 1100 -33 43 45.0 200 -55 44 74.0 210 25 45 77.0 250 33 50 46 72.0 220 27					-26
40 38 41.0 200 33 39 93.0 1200 5 40 33.0 180 -7 41 29.0 150 -5 42 85.0 1100 -33 43 45.0 200 -55 44 74.0 210 25 45 77.0 250 33 50	•			240	-38
38 41.0 200 33 39 93.0 1200 5 40 33.0 180 -7 41 29.0 150 -5 42 85.0 1100 -33 43 45.0 200 -55 44 74.0 210 25 45 77.0 250 33 50 46 72.0 220 27	40				33
40 33.0 180 -7 41 29.0 150 -5 42 85.0 1100 -33 43 45.0 200 -55 44 74.0 210 25 45 77.0 250 33 50 46 72.0 220 27	40				33
41 29.0 150 -5 42 85.0 1100 -33 43 45.0 200 -55 44 74.0 210 25 45 77.0 250 33 50 46 72.0 220 27					5
42 85.0 1100 -33 43 45.0 200 -55 44 74.0 210 25 45 77.0 250 33 50 46 72.0 220 27					-7
43 45.0 200 -55 44 74.0 210 25 45 77.0 250 33 50 46 72.0 220 27					
44 74.0 210 25 45 77.0 250 33 50 46 72.0 220 27	45				
45 77.0 250 33 50 46 72.0 220 27					
50 46 72.0 220 27					
47 71.0 240 22	50				
		47	71.0	240	22

Example 62

55

Barium carbonate powder (BaCO $_3$; 0.13 mole), titanium oxide powder (TiO $_2$; 0.69 mole), neodymium oxide powder (Nd $_2$ O $_3$; 0.16 mole) and bismuth oxide powder (Bi $_2$ O $_3$; 0.02 mole) were charged in a ball mill together with ethanol and

then subjected to wet blending for 12 hours. After the removal of the solvent from the dispersion, the mixture was pulverized and then calcined at 1250° C in the air. Separately, glass powder A comprising 84wt% of lead oxide powder (PbO), 7 wt% of zinc oxide powder (ZnO) and 9 wt% of boron oxide powder (B₂O₃) was prepared according to the usual method. To the calcined product prepared above, there were added 2 wt% of the glass powder A comprising PbO, ZnO and B₂O₃, 3 wt% of germanium oxide powder (GeO₂) and 1 wt% (corresponding to 0.4 wt% as expressed in terms of the weight of Li₂O) of lithium carbonate powder (Li₂CO₃), followed by introduction of the mixture into a ball mill together with ethanol and then wet blending for 48 hours. After the removal of the solvent from the dispersion, the mixture was pulverized, followed by addition of an appropriate amount of a polyvinyl alcohol solution to the pulverized product, drying the mixture, forming it into pellets having a diameter of 12 mm and a thickness of 4 mm and then firing the pellets at 945°C for 2 hours in the air. The composition of the product and the sintering temperature thereof are summarized in the following Table 8.

The ceramic composition thus prepared was processed into pieces each having a diameter of 7 mm and a thickness of about 3 mm and inspected for the specific dielectric constant ε_r , the unloaded Q and the temperature coefficient τ_f of the resonance frequency at a resonance frequency (ranging from 3 to 6 GHz) according to the dielectric resonance method. The results thus obtained are listed in the following Table 9.

Examples 63 to 82 and Comparative Examples 48 to 62

The same procedures used in Example 62 were repeated except that the mixing ratio of barium carbonate, titanium oxide, neodymium oxide, samarium oxide and bismuth oxide; the kinds of glass powder comprising PbO, ZnO and B₂O₃ (glass powder B: 80 wt% PbO, 10 wt% ZnO and 10 wt% B₂O₃) and the added amounts of the minor components were changed as detailed in Table 8 to prepare dielectric ceramic compositions and they were inspected for characteristic

properties. The results thus obtained are summarized in Table 9.

TABLE 8

5				CO	ITI ZO GM	ON OF D	I ELECTR I	C CERAMIC	!		CALCINATION
		BaO	TiO ₂	Nd ₂ O ₃	Sm ₂ O ₃	Bi ₂ O ₃		KIND OF	Ge0₂	Li ₂ 0	TEMPERATURE
		x	y	2	t	W	POWDER	GLASS	wt%	wt%	°C
							_wt%				
10	EXAMPLE										
	62	0.13	0.69		0	0.02	2	A	3	0.4	945
	63	0.17	0.66		0.04	0.02	7	A	3	0.2	920
	64	0.17	0.66		0.04	0.03	10	A	3	0.2	890
	65	0.18	0.66		0.04	0.01	15	A	3	0.2	880
15	66	0.15	0.67		0.06	0.02	20	A	2	0.4	860
	67	0.17	0.66	0.12	0.03	0.02	5	В	5	0.4	960
	68	0.17	0.66	0.10	0.06	0.01	10	В	3	0.8	920
	69	0.16	0.64	0.16	0.02	0.02	15	В	3	0.4	900
20	70	0.13	0.69	0.16	0	0.02	7	A	3	0.4	920
20	7 1	0.12	0.70	0.14	0.02	0.02	7	A	3	0.4	920
	72	0.13	0.69	0.11	0.05	0.02	7	A	3	0.4	920
	73	0.14	0.70	0.04	0.10	0.02	10	A	5	0.2	920
	74	0.17	0.66	0.16	0	0.01	10	A	5	0.2	900
25	75	0.16	0.66	0.16	0	0.02	10	A	7	0.2	915
	76	0.16	0.66	0.16	0	0.02	10	A	10	0.2	920
	77	0.15	0.65	0.17	0.01	0.02	7	A	3	0.2	925
	7 8	0.15	0.65	0.17	0.01	0.02	7	A	3	0.4	905
	79	0.15	0.65	0.17	0.01	0.02	7	A	3	0.6	900
30	80	0.15	0.65	0.17	0.01	0.02	7	Α	3	0.8	875
	81	0.14	0.67	0.17	0	0.02	10	A	5	0.4	860
	82	0.14	0.67	0.17	0	0.02	15	Α	3	0.4	845
35	COMPARATIV	VE									
	EXAMPLE										
	48	0.05	0.75		0.01	0.01	10	A	5	0.2	935
	49	0.30	0.57		0.02	0.01	10	A	3	0.2	920
40	50	0.08	0.86		0.01	0.01	15	A	3	0.4	880
40	51	0.14	0.45		0.01	0.02	9	Á	2	0.6	890
	52	0.11	0.56		0.01	0.01	10	A	2	0.8	885
	53	0.10	0.87		0.01	0.02	10	A	2	0.4	905
	54	0.13	0.55		0.30	0.01	5	A	3	0.4	915
45	55	0.18		0.14	0.01		2	A	2	1.5	955
	56	0.20	0.64		0.01	0.1	7	A	3	0.4	910
	57 50	0.14	0.69		0.02	0.02	0	-	0	0	1400
	58 50	0.15	0.67		0.06	0.01	30	A	2	0.4	850
	59	0.15	0.65		0.02	0.02	30	В	3	0.4	820
50	60	0.16	0.66		0	0.02	20	A	0	0.2	1130
	61	0.14	0.70		0.02	0.01	10	A	15	0.4	835
	62 63	0.16	0.65		0.01	0.01	7	A	3	6.0	855
	บง	0.16	0.67	0.10	0.06	0.01	10	В	3	0	950

TABLE 9

5		ELECTRIC	CHARA	CTERISTICS
		€ r	Q	Τr
				ppm/°C
	EXAMPLE			
10	62	76.0	1450	35
	63	78.0	1160	18
	64	73.0	1110	5
	65	71.0	900	4
-	66	70.0	640	Ż
15	67	79.0	1050	35
	68	73.0	760	29
	69	81.0	1200	73
	70	75.0	1250	29
20	71	74.0	1050	15
	72	73.0	990	-5
	73	64.0	730	-18
	74	71.0	1100	30
25	75	67.0	1050	25
23	76	62.0	950	19
	77	74.0	1080	30
	78	76.0	1020	40
	79	79.0	1050	43
30	80	75.0	800	50
	81	68.0	1100	-22
	82	70.0	790	-22
	COMPARATIVE			
35	EXAMPLE	!		
	48	49.0	170	13
	49		RESONA	
	50	69.0	300	150
	51	43.0	190	72
40	52	47.0	90	30
	53	66.0	350	105
	54	47.0	310	-5
	55	60.0	390	47
45	56	47.0	180	-15
	57	88.0	2770	15
	58	35.0	240	23
	59	29.0	170	29
50	60	97.0	120	75
	61	45.0	230	-22
	62		RESON/	
	63	71.0	650	-10
		• •	200	- •

As has been discussed above in detail, the dielectric ceramic composition of the present invention exhibits excellent characteristic properties in that it has a large specific dielectric constant ε_n a large unloaded Q and a small temperature

coefficient of the resonance frequency and the composition is advantageous in that it can be sintered at a low temperature and that it can easily be laminated together with, for instance, an Ag, Ag-Pd or Cu internal electrode.

Claims

1. 4

 A dielectric ceramic composition mainly comprising a major component which comprises barium, titanium, neodymium, samarium and oxygen and is represented by the following compositional formula:

$$xBaO-yTiO2-zNd2O3-tSm2O3$$
 (1)

10

15

25

35

5

(wherein $0.1 \le x \le 0.2$; $0.5 \le y \le 0.8$; $0.01 \le z \le 0.2$; $0 \le t \le 0.2$, provided that x + y + z + t = 1); and

a minor component mainly comprising glass powder, which mainly comprises PbO, ZnO and B_2O_3 , and GeO_2 , and wherein

the content (a) (% by weight) of the glass powder falls within the range of $1 \le a \le 25$ and the content (b) (% by weight) of GeO_2 falls within the range of $0.5 \le b \le 10$, on the basis of the weight of the major component.

- The dielectric ceramic composition of claim 1 which further comprises Li₂O as a minor component and the content
 (c) (% by weight) of Li₂O falls within the range of 0.04≤c≤4 on the basis of the weight of the major component.
- The dielectric ceramic composition of claim 1 or 2 which further comprises at least one member selected from the group consisting of Nb₂O₅, MnO, Al₂O₃ and ZnO.
 - 4. The dielectric ceramic composition of claim 1, 2 or 3 wherein the content of PbO, ZnO and B₂O₃ are 5≤PbO≤90, 5≤B₂O₃≤60 and 0<ZnO≤65 (% by weight).</p>
 - 5. The dielectric ceramic composition of claim 4 wherein the softening point of the glass powder is about 100 °C to about 500°C.
- 6. A dielectric ceramic composition mainly comprising a major component which comprises barium, titanium, neodymium, samarium, bismuth and oxygen and is represented by the following compositional formula:

$$xBaO-yTiO2-zNd2O3-tSm2O3-wBi2O3$$
 (2)

(wherein 0.1≤x≤0.2; 0.5≤y≤0.8; 0.01≤z≤0.2; 0.01 ≤t≤0.2; 0.005≤w≤0.05, provided that x+y+z+t+w = 1); and a minor component mainly comprising glass powder, which mainly comprises PbO, ZnO and B₂O₃, and GeO₂, and wherein

the content (a) (% by weight) of the glass powder falls within the range of $1 \le a \le 25$ and the content (b) (% by weight) of GeO_2 falls within the range of $0.5 \le b \le 10$, on the basis of the weight of the major component.

- 7. The dielectric ceramic composition of claim 6 which further comprises Li₂O as another minor component and the content (c) (% by weight) of Li₂O falls within the range of 0.04≤c≤4 on the basis of the weight of the major component.
 - 8. The dielectric ceramic composition of claim 6 or 7 which further comprises at least one member selected from the group consisting of Nb₂O₅, MnO, Al₂O₃ and ZnO.

45

9. The dielectric ceramic composition of claim 6, 7 or 8 wherein the content of PbO, ZnO and B₂O₃ are 5≤PbO≤90, 5≤B₂O₃≤60, and 0<ZnO≤65 (% by weight).

10. The dielectric ceramic composition of claim 9 wherein the softening point of the glass powder is about 100 °C to about 500 °C.

11. A dielectric device such as a dielectric resonator and a dielectric filter, comprising a dielectric ceramic composition according to any one of claims 1 to 10.

EUROPEAN SEARCH REPORT

Application Number EP 95 11 3625

ategory	Citation of document with in of relevant pa	ndication, where appropriate, ssages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
A A	* abstract * DATABASE WPI	s Ltd., London, GB; TDK) , 6 March 1982 	1,11	C04B35/468 H01B3/12 H01G4/12
	Week 9207 Derwent Publication AN 92-52757 & JP-A-03 295 854 (December 1991 * abstract *	s Ltd., London, GB; SUMITOMO METAL), 26	11	
1	EP-A-0 551 100 (E.I * page 3, line 24 - claims *	.DU PONT DE NEMOURS) page 4, line 37;	6,8	
١	* the whole documen	t *	1,4,5, 9-11	TECHNICAL FIELDS
(EP-A-0 473 347 (NGK * abstract; claims * the whole documen	*	6,8	SEARCHED (Int.Cl.6) CO4B H01B
A	DATABASE WPI Week 9404 Derwent Publication AN 94-29075 & JP-A-05 334 914 (* abstract *	1,4-6,	H01G	
		-/		
	The present search report has b			
	THE HAGUE	Date of completion of the search 21 December 1995	5 Har	Examiner bron, J
X : par Y : par doc A : tec	CATEGORY OF CITED DOCUME ticularly relevant if taken alone ticularly relevant if combined with an ument of the same category hnological background 1-written disclosure	NTS T: theory or princi E: earlier patent d after the filing other D: document cited L: document cited	ple underlying the ocument, but publidate in the application for other reasons	invention ished on, or

EUROPEAN SEARCH REPORT

Application Number EP 95 11 3625

Category	Citation of document with i of relevant pa	ndication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.6)
A	DATABASE WPI Week 9416		,2,6,7	
	Derwent Publication AN 94-129441 & JP-A-06 076 627 (TAIYO YUDEN) , 18 March		
	1994 * abstract *	, is that an		
A	GB-A-2 068 931 (CEN	TRALAB INC.)		
A	EP-A-0 412 440 (OKI	ELECTRIC INDUSTRY)		
A	DATABASE WPI Week 8943			
	Derwent Publication AN 89-314692			
	& JP-A-01 234 358 (MATSUSHITA)		
		•		TECHNICAL FIELDS
				SEARCHED (Int.Cl.6)
	The present search report has b	een drawn up for all claims		
	Place of search THE HAGUE	Date of completion of the search 21 December 1995	Har	Exeminer bron, J
X : par Y : par doc	CATEGORY OF CITED DOCUME ticularly relevant if taken alone ticularly relevant if combined with an ument of the same category anological background	NTS T: theory or principle u E: earlier patent docum after the filing date D: document cited in tl L: document cited for o	inderlying the sent, but publi he application other reasons	invention shed on, or