Федеральное государственное автономное образовательное Учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет МИЭМ Департамент прикладной математики

КУРСОВАЯ РАБОТА по дисциплине «МАТЕМАТИЧЕСКИЙ АНАЛИЗ» для направления 01.03.04 «Прикладная математика»

«ЭЛЕМЕНТАРНЫЕ АСИМПТОТИЧЕСКИЕ МЕТОДЫ» «ВАРИАНТ № 40»

Выполнила: студентка группы БПМ232 Захарова Юлиана Владимировна

> Руководитель: к.ф.-м.н., доц., Белова Мария Владимировна

Задача 1

Написать асимптотическую формулу для $f(x) = \left(\frac{\sin^2 x}{x^2}\right)^{\frac{1}{x}}$, при $x \to 0$, причем в ответе должно быть менее двух членов асимптотической формулы, не считая остатка.

Решение

Представим исходную функцию в экспоненциальном виде:

$$f(x) = \left(\frac{\sin^2 x}{x^2}\right)^{\frac{1}{x}} = \exp\left(\frac{1}{x}\ln\left(\frac{\sin^2 x}{x^2}\right)\right)$$

Для функции $g(x) = sin^2(x)$ напишем разложение по формуле Тейлора:

$$g(x) = g(a) + \frac{g'(a)}{1!}(x-a) + \frac{g''(a)}{2!}(x-a)^2 + \frac{g'''(a)}{3!}(x-a)^3 + \dots$$
$$\dots + \frac{g^{(n)}(a)}{n!}(x-a)^n + O((x-a)^{n+1}), x \to a$$
$$g(x) = x^2 - \frac{x^4}{3} + \frac{2x^6}{45} + O(x^8), x \to 0$$

Основание логарифма:

$$h(x) = \frac{\sin^2 x}{x^2} = \frac{x^2 - \frac{x^4}{3} + \frac{2x^6}{45} + O(x^8)}{x^2} = 1 - \frac{x^2}{3} + \frac{2x^4}{45} + O(x^6), x \to 0$$

Заметим, что $h(x) - 1 \to 0$ в данном процессе.

Воспользуемся асимптотическим представлением логарифма:

$$\ln(1+\alpha(x)) = \alpha(x) - \frac{\alpha^2(x)}{2} + \frac{\alpha^3(x)}{3} + \dots + (-1)^{n+1} \frac{x^n}{n} + O(\alpha(x)^{n+1}), \alpha(x) \to 0$$

$$\ln(h(x)) = \ln\left(1 - \frac{x^2}{3} + \frac{2x^4}{45} + O(x^6)\right) = \left(-\frac{x^2}{3} + \frac{2x^4}{45} + O(x^6)\right) - \frac{1}{2}\left(-\frac{x^2}{3} + \frac{2x^4}{45} + O(x^6)\right)^2 + O\left(-\frac{x^2}{3} + \frac{2x^4}{45} + O(x^6)\right) = -\frac{x^2}{3} - \frac{x^4}{90} + O(x^6), x \to 0$$

Степень экспоненты:

$$p(x) = \frac{1}{x} \ln(h(x)) = \frac{1}{x} \left(-\frac{x^2}{3} - \frac{x^4}{90} + O(x^6) \right) = -\frac{x}{3} - \frac{x^3}{90} + O(x^5), x \to 0$$

Заметим, что $p(x) \to 0$ в данном процессе.

Воспользуемся асимптотическим представлением экспоненты:

$$e^{\alpha(x)} = 1 + \alpha(x) + \frac{\alpha^2(x)}{2!} + \dots + \frac{\alpha^n(x)}{n!} + O(\alpha^{n+1}(x)), \alpha(x) \to 0$$

$$e^{p(x)} = 1 - \frac{x}{3} - \frac{x^3}{90} + O(x^5) + O\left(\left(-\frac{x}{3} - \frac{x^3}{90} + O(x^5)\right)^2\right), x \to 0$$

Подводим итог:

$$f(x) = 1 - \frac{x}{3} + \frac{x^2}{18} + O(x^3), x \to 0$$

Задача 2

Написать асимптотическую формулу для $f(x) = \sqrt{x^3 + x^2} - \frac{x^3}{x^2 + 1}$, при $x \to +\infty$, причем в ответе должно быть менее двух членов асимптотической формулы, не считая остатка.

Решение

Преобразуем функцию:

$$f(x) = \sqrt{x^3 + x^2} - \frac{x^3}{x^2 + 1} = x^{\frac{3}{2}} \left(1 + \frac{1}{x} \right)^{\frac{1}{2}} - \frac{x}{1 + \frac{1}{x^2}}$$

Заметим, что $\frac{1}{x} \to +0$ при $x \to +\infty$.

Воспользуемся следующим асимптотическим соотношением:

$$(1+\alpha(x))^m = 1 + \frac{m}{1!}\alpha(x) + \dots + \frac{m(m-1)\dots(m-n+1)}{n!}\alpha^n(x) + O(\alpha^{n+1}(x)), \alpha(x) \to 0$$

И его частным случаем (m = -1):

$$\frac{1}{1+\alpha(x)} = 1 - \alpha(x) + \alpha^2(x) + \dots + (-1)^n \alpha^n(x) + O(x^{n+1}), \alpha(x) \to 0$$

Тогда первое слагаемое принимает вид:

$$h(x) = x^{\frac{3}{2}} \left(1 + \frac{1}{x} \right)^{\frac{1}{2}} = x^{\frac{3}{2}} \left(1 + \frac{1}{2x} - \frac{1}{8x^2} + O\left(\frac{1}{x^3}\right) \right) =$$

$$= x^{\frac{3}{2}} + \frac{x^{\frac{1}{2}}}{2} - \frac{1}{8x^{\frac{1}{2}}} + O\left(\frac{1}{x^{\frac{3}{2}}}\right), x \to +\infty$$

Второе слагаемое:

$$g(x) = x \cdot \frac{1}{1 + \frac{1}{x^2}} = x \left(1 - \frac{1}{x^2} + \frac{1}{x^4} + O\left(\frac{1}{x^6}\right) \right) = x - \frac{1}{x} + \frac{1}{x^3} + O\left(\frac{1}{x^5}\right), x \to +\infty$$

$$f(x) = h(x) - g(x) = x^{\frac{3}{2}} + \frac{x^{\frac{1}{2}}}{2} - \frac{1}{8x^{\frac{1}{2}}} + O\left(\frac{1}{x^{\frac{3}{2}}}\right) - \left(x - \frac{1}{x} + \frac{1}{x^3} + O\left(\frac{1}{x^5}\right)\right) =$$

$$= x^{\frac{3}{2}} + \frac{x^{\frac{3}{2}}}{2} - \frac{1}{8x^{\frac{1}{2}}} + O\left(\frac{1}{x^{\frac{1}{2}}}\right) - x + \frac{1}{x} - \frac{1}{x^3} + O\left(\frac{1}{x^5}\right), x \to +\infty$$

Подводим итог:

$$f(x) = x^{\frac{3}{2}} - x + \frac{x^{\frac{1}{2}}}{2} + O\left(\frac{1}{x^{\frac{1}{2}}}\right), x \to +\infty$$

Задача 3

Используя формулу Тейлора, найти асимптотику корней уравнения $tgx - \frac{1}{x^2} = 0$, x > 0, причем в ответе не менее двух корней асимптотики, не считая остатка.

Решение

$$tgx = \frac{1}{x^2}$$

Построим графики: y=tgx - синим, $y=\frac{1}{x^2}$ - красным.

Корни уравнения - абциссы точек пересечения графиков.

Исследуем асимптотику последовательности $\{x_n\}, n=2,3,\ldots$ Очевидно, что $x_n=\alpha_n+\pi n, \alpha_n\to 0 \ (n\to +\infty)$. Чтобы установить чему эквивалентна бесконечно малая α_n , подставим x_n в обе части равенства:

$$tg(\alpha_n + \pi n) = \frac{1}{(\alpha_n + \pi n)^2}$$

Воспользуемся периодичностью тангенса и эквивалентностью $tgx \sim x, \ x \to 0$

$$tg(\alpha_n + \pi n) = tg\alpha_n \sim \alpha_n, \ \alpha_n \to 0$$

Заметим, что $\frac{1}{(\alpha_n + \pi n)^2} \sim \frac{1}{\pi^2 n^2}$, $\alpha_n \to 0$. Тогда $\alpha_n \sim \frac{1}{\pi^2 n^2}$, $\alpha_n \to 0$.

Подводим итог:

$$x_n = \pi n + \frac{1}{\pi^2 n^2} + O\left(\frac{1}{n^2}\right), n \to +\infty$$

Задача 4

Написать асимптотическое представление функции F(x), заданной интегралом

$$F(x) = \int_{2}^{x} \sqrt{t \ln t} dt, x \to +\infty.$$

Решение

Сделаем замену:

$$F(x) = \int_{2}^{x} \sqrt{t \ln t} dt = \left\langle \ln t = z \quad t = e^{z} \right\rangle = \int_{\ln 2}^{\ln x} z^{\frac{1}{2}} e^{\frac{1}{2}z} dz = \tag{1}$$

Проинтегрируем по частям:

$$= \frac{2}{3} \int_{ln2}^{lnx} z^{\frac{1}{2}} d(e^{\frac{3}{2}z}) = \left\langle u = z^{\frac{1}{2}} \quad du = \frac{1}{2} z^{-\frac{1}{2}} dz \right\rangle = \frac{2}{3} \left(z^{\frac{1}{2}} e^{\frac{3}{2}z} \Big|_{ln2}^{lnx} - \frac{1}{2} \int_{ln2}^{lnx} z^{-\frac{1}{2}} e^{\frac{3}{2}z} dz \right)$$

Получаем:

$$F(x) = \frac{2}{3}\sqrt{\ln x} \ x^{\frac{3}{2}} - \frac{2}{3}\sqrt{\ln 2} \ 2^{\frac{3}{2}} - \frac{1}{3}\int_{\ln 2}^{\ln x} z^{-\frac{1}{2}} e^{\frac{3}{2}z} dz \tag{2}$$

Обозначим $G(x) = \int_{ln2}^{lnx} z^{-\frac{1}{2}} e^{\frac{3}{2}z} dz$, произведем аналогичные действия.

$$G(x) = \int_{\ln 2}^{\ln x} z^{-\frac{1}{2}} e^{\frac{3}{2}z} dz = \frac{2}{3} \int_{\ln 2}^{\ln x} z^{-\frac{1}{2}} d(e^{\frac{3}{2}z}) = \left\langle u = z^{-\frac{1}{2}} \quad du = -\frac{1}{2} z^{-\frac{3}{2}} dz \right\rangle =$$

$$v = e^{\frac{3}{2}z}$$

$$\frac{2}{3} \left(z^{-\frac{1}{2}} e^{\frac{3}{2}z} \Big|_{\ln 2}^{\ln x} + \frac{1}{2} \int_{\ln 2}^{\ln x} z^{-\frac{3}{2}} e^{\frac{3}{2}z} dz \right)$$

Получаем:

$$G(x) = \frac{2}{3} \frac{x^{\frac{3}{2}}}{\sqrt{lnx}} - \frac{2}{3} \frac{2^{\frac{3}{2}}}{\sqrt{ln2}} + \frac{1}{3} \int_{ln2}^{lnx} z^{-\frac{3}{2}} e^{\frac{3}{2}z} dz$$
 (3)

Рассмотрим последнее слагаемое:

$$\int_{\ln 2}^{\ln x} z^{-\frac{3}{2}} e^{\frac{3}{2}z} dz = \frac{2}{3} \int_{\ln 2}^{\ln x} z^{-\frac{3}{2}} d(e^{\frac{3}{2}z}) = \left\langle u = z^{-\frac{3}{2}} \quad du = -\frac{3}{2} z^{-\frac{5}{2}} dz \right\rangle = v = e^{\frac{3}{2}z}$$

$$= \frac{2}{3} \left(z^{-\frac{3}{2}} e^{\frac{3}{2}z} \Big|_{\ln 2}^{\ln x} + \frac{3}{2} \int_{\ln 2}^{\ln x} z^{-\frac{5}{2}} e^{\frac{3}{2}z} dz \right) \tag{4}$$

Рассмотрим подынтегральную функцию последнего слагаемого:

$$z^{-\frac{5}{2}}e^{\frac{3}{2}z} = \frac{1}{z} \cdot z^{-\frac{3}{2}}e^{\frac{3}{2}z}, \ \frac{1}{z} - \text{6.m.} \quad \Rightarrow \quad z^{-\frac{5}{2}}e^{\frac{3}{2}z} = o(z^{-\frac{3}{2}}e^{\frac{3}{2}z}), z \to +\infty$$

По теореме сравнения (т. 4):

$$\int_{\ln 2}^{\ln x} z^{-\frac{5}{2}} e^{\frac{3}{2}z} = o\left(\int_{\ln 2}^{\ln x} z^{-\frac{3}{2}} e^{\frac{3}{2}z}\right), x \to +\infty$$

Подставим результат в (4):

$$\int_{ln2}^{lnx} z^{-\frac{3}{2}} e^{\frac{3}{2}z} dz = \frac{2}{3} z^{-\frac{3}{2}} e^{\frac{3}{2}z} \Big|_{ln2}^{lnx} + o\left(\int_{ln2}^{lnx} z^{-\frac{3}{2}} e^{\frac{3}{2}z}\right) =$$

$$= \frac{2}{3} \frac{x^{\frac{3}{2}}}{(lnx)^{\frac{3}{2}}} - \frac{2}{3} \frac{2^{\frac{3}{2}}}{(ln2)^{\frac{3}{2}}} + o\left(\int_{ln2}^{lnx} z^{-\frac{3}{2}} e^{\frac{3}{2}z}\right), x \to +\infty$$

Тогда верно:

$$\int_{ln2}^{lnx} z^{-\frac{3}{2}} e^{\frac{3}{2}z} dz \sim \frac{2}{3} \frac{x^{\frac{3}{2}}}{(lnx)^{\frac{3}{2}}} - \frac{2}{3} \frac{2^{\frac{3}{2}}}{(ln2)^{\frac{3}{2}}}, x \to +\infty$$

$$\int_{ln2}^{lnx} z^{-\frac{3}{2}} e^{\frac{3}{2}z} dz = O\left(\frac{2}{3} \frac{x^{\frac{3}{2}}}{(lnx)^{\frac{3}{2}}} - \frac{2}{3} \frac{2^{\frac{3}{2}}}{(ln2)^{\frac{3}{2}}}\right), x \to +\infty$$

Подставим результат в (2):

$$F(x) = \frac{2}{3}\sqrt{\ln x} \, x^{\frac{3}{2}} - \frac{2}{3}\sqrt{\ln 2} \, 2^{\frac{3}{2}} - \frac{1}{3}\left(\frac{2}{3}\frac{x^{\frac{3}{2}}}{\sqrt{\ln x}} - \frac{2}{3}\frac{2^{\frac{3}{2}}}{\sqrt{\ln 2}}\right) + O\left(\frac{2}{3}\frac{x^{\frac{3}{2}}}{(\ln x)^{\frac{3}{2}}} - \frac{2}{3}\frac{2^{\frac{3}{2}}}{(\ln 2)^{\frac{3}{2}}}\right), \, x \to +\infty$$

$$F(x) = \frac{2}{3}\sqrt{\ln x} \ x^{\frac{3}{2}} - \frac{2}{3}\sqrt{\ln 2} \ 2^{\frac{3}{2}} - \frac{2}{9}\frac{x^{\frac{3}{2}}}{\sqrt{\ln x}} + \frac{2}{9}\frac{2^{\frac{3}{2}}}{\sqrt{\ln 2}} + O\left(\frac{2}{3}\frac{x^{\frac{3}{2}}}{(\ln x)^{\frac{3}{2}}} - \frac{2}{3}\frac{2^{\frac{3}{2}}}{(\ln 2)^{\frac{3}{2}}}\right), \ x \to +\infty$$

Задача 5

Написать асимптотическое представление функции F(x), заданной интегралом

$$F(x) = \int_{1}^{x} \sqrt{t+1}e^{\frac{1}{t}}dt, \ x \to +\infty.$$

Решение

Рассмотрим подыинтегральную функцию:

$$h(t) = \sqrt{t+1}e^{\frac{1}{t}} = t^{\frac{1}{2}}\left(1+\frac{1}{t}\right)^{\frac{1}{2}}e^{\frac{1}{t}}$$

Заметим, что $\frac{1}{t} \to 0$ при $t \to +\infty$. Тогда воспользуемся следующими асимптотическими соотношениями:

$$e^{\alpha(x)} = 1 + \alpha(x) + \frac{\alpha^{2}(x)}{2!} + \dots + \frac{\alpha^{n}(x)}{n!} + O(\alpha^{n+1}(x)), \alpha(x) \to 0$$
$$(1 + \alpha(x))^{m} = 1 + \frac{m}{1!}\alpha(x) + \dots + \frac{m(m-1)\dots(m-n+1)}{n!}\alpha^{n}(x) + O(\alpha^{n+1}(x)), \alpha(x) \to 0$$

Получаем:

$$h(t) = t^{\frac{1}{2}} \left(1 + \frac{1}{2t} - \frac{1}{8t^2} + O\left(\frac{1}{t^3}\right) \right) \left(1 + \frac{1}{t} + \frac{1}{2t^2} + O\left(\frac{1}{t^3}\right) \right) =$$

$$=t^{\frac{1}{2}}\left(1+\frac{3}{2t}+\frac{7}{8t^2}+O\left(\frac{1}{t^3}\right)\right)=t^{\frac{1}{2}}+\frac{3}{2t^{\frac{1}{2}}}+\frac{7}{8t^{\frac{3}{2}}}+O\left(\frac{1}{t^2}\right)$$

Подставим выражение и применим линейность интеграла:

$$F(x) = \int_{1}^{x} h(t)dt = \int_{1}^{x} \left(t^{\frac{1}{2}} + \frac{3}{2t^{\frac{1}{2}}} + \frac{7}{8t^{\frac{3}{2}}} + O\left(\frac{1}{t^{2}}\right)\right)dt =$$

$$= \int_{1}^{x} \left(t^{\frac{1}{2}} + \frac{3}{2t^{\frac{1}{2}}}\right)dt + \int_{1}^{x} \left(h(t) - t^{\frac{1}{2}} - \frac{3}{2t^{\frac{1}{2}}}\right)dt$$
(5)

Несобственный интеграл $\int\limits_1^\infty \left(h(t)-t^{\frac{1}{2}}-\frac{3}{2t^{\frac{1}{2}}}\right)dt$ сходится, обозначим его значение B.

Поскольку работаем с непрерывными функциями, можно воспользоваться непрерывностью интеграла:

$$\int_{1}^{x} \left(h(t) - t^{\frac{1}{2}} - \frac{3}{2t^{\frac{1}{2}}} \right) dt = \int_{1}^{\infty} \left(h(t) - t^{\frac{1}{2}} - \frac{3}{2t^{\frac{1}{2}}} \right) dt + \int_{\infty}^{x} \left(h(t) - t^{\frac{1}{2}} - \frac{3}{2t^{\frac{1}{2}}} \right) dt =$$

$$= B - \int_{x}^{\infty} \left(h(t) - t^{\frac{1}{2}} - \frac{3}{2t^{\frac{1}{2}}} \right) dt = B - \int_{x}^{\infty} \left(\frac{7}{8t^{\frac{3}{2}}} + O\left(\frac{1}{t^{2}}\right) \right) dt =$$

$$= B - \frac{7}{4x^{\frac{1}{2}}} + O\left(\frac{1}{x}\right), \ x \to +\infty$$

Подставим результат в (5) и посчитаем первое слагаемое:

$$F(x) = \int_{1}^{x} \left(t^{\frac{1}{2}} + \frac{3}{2t^{\frac{1}{2}}} \right) dt + B - \frac{7}{4x^{\frac{1}{2}}} + O\left(\frac{1}{x}\right) = \frac{2t^{\frac{3}{2}}}{3} \Big|_{1}^{x} + 3t^{\frac{1}{2}} \Big|_{1}^{x} + B - \frac{7}{4x^{\frac{1}{2}}} + O\left(\frac{1}{x}\right) = \frac{2x^{\frac{3}{2}}}{3} - \frac{2}{3} + 3x^{\frac{1}{2}} - 3 + B - \frac{7}{4x^{\frac{1}{2}}} + O\left(\frac{1}{x}\right), x \to +\infty$$

Подводим итог:

$$F(x) = \frac{2x^{\frac{3}{2}}}{3} + 3x^{\frac{1}{2}} - 3\frac{2}{3} + B - \frac{7}{4x^{\frac{1}{2}}} + O\left(\frac{1}{x}\right), \ x \to +\infty$$