

SOLUCIÓN NUMÉRICA DE LAS ECUACIONES DE EULER DE LA DINÁMICA DE FLUIDOS MEDIANTE EL ESQUEMA DE ROE

RODRIGO RAFAEL CASTILLO CHONG

Asesorado por DR. ENRIQUE PAZOS ÁVALOS

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

ESCUELA DE CIENCIAS FÍSICAS Y MATEMÁTICAS

SOLUCIÓN NUMÉRICA DE LAS ECUACIONES DE EULER DE LA DINÁMICA DE FLUIDOS MEDIANTE EL ESQUEMA DE ROE

TRABAJO DE GRADUACIÓN
PRESENTADO A LA JEFATURA DEL
DEPARTAMENTO DE FÍSICA
POR

RODRIGO RAFAEL CASTILLO CHONG ASESORADO POR DR. ENRIQUE PAZOS ÁVALOS

AL CONFERÍRSELE EL TÍTULO DE LICENCIADO EN FÍSICA APLICADA

GUATEMALA, DICIEMBRE DE 2023

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA ESCUELA DE CIENCIAS FÍSICAS Y MATEMÁTICAS

CONSEJO DIRECTIVO INTERINO

Director M.Sc. Jorge Marcelo Ixquiac Cabrera

Representante Docente Arqta. Ana Verónica Carrera Vela

Representante Docente M.A. Pedro Peláez Reyes

Representante de Egresados Lic. Urías Amitaí Guzmán García

Representante de Estudiantes Elvis Enrique Ramírez Mérida

Representante de Estudiantes Oscar Eduardo García Orantes

Secretario Ing. Edgar Damián Ochóa Hernández

TRIBUNAL QUE PRACTICÓ EL EXAMEN GENERAL PRIVADO

Director M.Sc. Jorge Marcelo Ixquiac Cabrera

Examinador M.Sc. Osmar Obdulio Hernández Aguilar

Examinador Dr. José Rodrigo Sacahui Reyes

Examinador Dr. Juan Adolfo Ponciano Castellanos

Secretario Ing. Edgar Damián Ochoa Hernández

	Fecha
datos	
cuerpo	
despedida	
firma	
nombre	

Este archivo pdf es una muestra

AGRADECIMIENTOS

DEDICATORIA

A mí mamá, mis primas, mis tías, mis amigos, mis amigas, "El Núcleo", "Las Amebas" y las personas con las que más hablo del trabajo.

"He know, \mathbf{flow} like interstellar wind..." - MF DOOM

ÍNDICE GENERAL

ÍNDICE DE FIGURAS	III
ÍNDICE DE TABLAS	V
LISTA DE SÍMBOLOS	VII
OBJETIVOS	IX
INTRODUCCIÓN	ΧI
1. ECUACIONES DE CONSERVACIÓN Y SISTEMAS HIPERBÓ-	
LICOS DE PRIMER ORDEN	1
1.1. Ecuaciones de conservación	1
1.2. Derivación de una ecuación de conservación	2
1.3. Ecuación de advección lineal	5
2. MÉTODO DE VOLÚMENES FINITOS Y ESQUEMA DE ROE	7
3. ECUACIONES DE EULER Y APLICACIÓN DEL ESQUEMA DE ROE	9
4. COMPARACIÓN CON PYCLAW	11
5. SIMULACIONES CON DISTINTOS COEFICIENTES DE DILA- TACIÓN ADIABÁTICA	13
CONCLUSIONES	15
RECOMENDACIONES	17
BIBLIOGRAFÍA	19

ÍNDICE DE FIGURAS

ÍNDICE DE TABLAS

LISTA DE SÍMBOLOS

Símbolo	Significado
F_x $\frac{\partial f}{\partial x}$	derivada parcial de F respecto a x derivada parcial de F respecto a x
u	velocidad del gas sobre el eje x
ho	densidad del gas
p	presión del gas
e	densidad de energía interna del gas
T	temperatura del gas
U	vector de magnitudes de un gas

OBJETIVOS

General

Resolver las ecuaciones de Euler de la dinámica de fluidos para un gas ideal, con el método de volúmenes finitos, utilizando el esquema de Roe.

Específicos

- 1. Describir el método de volúmenes finitos y la motivación de su uso.
- 2. Describir el funcionamiento del esquema de Roe y su implementación en el lenguaje C++.
- 3. Comparar las soluciones obtenidas a través del programa implementado en C++ con las soluciones producidas con la librería PyClaw del lenguaje Python.
- 4. Analizar la diferencia entre simulaciones considerando gases con distintos grados de libertad, aprovechando la solución numérica obtenida a través del programa escrito en C++.

INTRODUCCIÓN

El estudio de las ecuaciones diferenciales es de gran importancia en las ciencias físicas, ya que cada teoría física se sustenta en ecuaciones diferenciales que describen el comportamiento a través del tiempo de cualquier sistema que dicha teoría busque explicar. La motivación del estudio de las ecuaciones diferenciales es encontrar soluciones generales de las mismas, principalmente a través de métodos analíticos que buscan soluciones exactas de las ecuaciones diferenciales. Sin embargo, no todas las ecuaciones diferenciales poseen soluciones exactas, lo cual motiva el estudio y desarrollo de métodos numéricos para la resolución de las mismas.

En el área de estudio del análisis numérico aplicado a ecuaciones diferenciales, existe una gran variedad de métodos y esquemas que se aplican para obtener una solución numérica, esto se debe a la amplia variedad de ecuaciones diferenciales de la física que carecen de solución analítica. Por otro lado, las ecuaciones diferenciales parciales son considerablemente más complejas que las ecuaciones diferenciales ordinarias, por lo que existen métodos más apropiados para resolver ecuaciones diferenciales que involucran funciones de varias variables.

Las ecuaciones de conservación tienen un papel importante en múltiples áreas de la física, de tal manera que se han desarrollado métodos numéricos apropiados para resolver este tipo de ecuaciones diferenciales parciales, siendo el método de volúmenes finitos el más utilizado. Un conjunto en particular de ecuaciones de conservación son las ecuaciones de Euler, que rigen la dinámica de un fluido compresible y no viscoso a partir de su ecuación de estado. Existen pocas soluciones analíticas conocidas a las ecuaciones de Euler, por lo que resolver este conjunto de ecuaciones de conservación con un método numérico apropiado resulta ser un problema interesante.

1. ECUACIONES DE CONSERVACIÓN Y SISTEMAS HIPERBÓLICOS DE PRIMER ORDEN

En este capítulo se introducen los conceptos fundamentales de las ecuaciones de conservación y sistemas hiperbólicos de primer orden. Se introduce el problema de Riemann asociado a una ecuación de conservación.

1.1. Ecuaciones de conservación

En física, una ecuación de conservación es una ecuación diferencial parcial de la siguiente forma

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}(\mathbf{U})}{\partial x} = 0 \tag{1.1}$$

o utilizando una notación más compacta para las derivadas,

$$\mathbf{U}_t + \mathbf{F}(\mathbf{U})_x = 0 \tag{1.2}$$

donde **U** es un vector n-dimensional de variables físicas que se conservan, por ejemplo, la densidad, la masa o el momentum de un medio [3]. En este texto, las variables de las que depende **U** dependen de x y t, una variable espacial y otra temporal respectivamente. Por tanto, **U** se define formalmente como $\mathbf{U} : \mathbb{R} \times \mathbb{R} \to \mathbb{R}^n$, mientras que la i-ésima variable conservada se denomina u_i , de tal manera que $\mathbf{U} = \mathbf{U}(u_1, u_2, \dots, u_n)$ [3].

La función \mathbf{F} corresponde al **flujo** de cada una de las variables involucradas en un punto (x,t) [3]. Al igual que \mathbf{U} , la función \mathbf{F} depende de las mismas variables físicas y por ende, también depende de (x,t). Sin embargo, el flujo de cada variable conservada puede tener una forma distinta, entonces es conveniente escribir a \mathbf{F} como un vector de n funciones independientes, $\mathbf{F} = (f_1, f_2, \dots, f_n)$ de tal manera que f_i es la función de flujo de la i-ésima variable conservada, u_i [3].

Una ecuación de conservación para un sistema definido en un intervalo espacial D = [a, b] necesita de condiciones iniciales para su resolución, el caso más simple a considerar es el de un problema de Cauchy [3]. En dicho caso, se debe especificar una función $\mathbf{U}_0(x)$

$$\mathbf{U}(x,0) = \mathbf{U}_0(x) \tag{1.3}$$

la cual sea válida para todo x tal que $x \in D$ y condiciones de frontera

$$\mathbf{U}(a,t) = \mathbf{U}_a \tag{1.4}$$

$$\mathbf{U}(b,t) = \mathbf{U}_b \tag{1.5}$$

con \mathbf{U}_a y \mathbf{U}_b fijos.

Otra forma de escribir una ecuación de conservación es utilizando la matriz jacobiana $\mathbf{A}(\mathbf{U})$ definida como

$$\mathbf{A}(\mathbf{U}) \equiv \begin{bmatrix} \frac{\partial f_1}{\partial u_1} & \cdots & \frac{\partial f_1}{\partial u_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial u_1} & \cdots & \frac{\partial f_n}{\partial u_n} \end{bmatrix}$$
(1.6)

de tal manera que la ecuación (1.1) se convierte en

$$\mathbf{U}_t + \mathbf{A}(\mathbf{U})\mathbf{U}_x = 0 \tag{1.7}$$

. Esta forma de escribir una ecuación de conservación es relevante ya que permite definir un **sistema hiperbólico**. Un sistema hiperbólico es una ecuación de conservación de la forma (1.7) tal que los autovalores de la matriz $\mathbf{A}(\mathbf{U})$ para todo \mathbf{U} sean reales y que dicha matriz sea diagonalizable [3]. Esto implica que existen n vectores propios linealmente independientes de $\mathbf{A}(\mathbf{U})$ [3]. Una ecuación de conservación depende de una función $\mathbf{F}(\mathbf{U})$ que, por lo general, no es una función lineal de \mathbf{U} , lo que implica que las ecuaciones de conservación son regularmente no lineales[3]. Esto también se puede inferir por la dependencia en \mathbf{U} de la matriz \mathbf{A} en la ecuación (1.7).

1.2. Derivación de una ecuación de conservación

El principio físico de una ecuación de conservación es más explícito cuando esta se deriva a través de cantidades expresadas en forma **integral**. Considerando

un ejemplo de la mecánica de fluidos, se define $M(x_1, x_2, t)$ como la cantidad de masa de un fluido que se encuentra contenido en un "tubo" unidimensional en un intervalo $[x_1, x_2]$ en un tiempo t. Si a dicho fluido se le asocia una densidad $\rho(x, t)$, entonces esta última se define de tal manera que su integral definida en un intervalo espacial sea igual a la masa contenida en ese mismo intervalo [3], i.e.,

$$M(x_1, x_2, t) = \int_{x_1}^{x_2} \rho(x, t) dx.$$
 (1.8)

Ahora, asumiendo que el tubo es cerrado e impenetrable, la cantidad de masa en una región arbitraria $[x_1, x_2]$ puede variar solamente a causa de que el fluido se desplace (fluya) a través de los puntos límites de la región, x_1 y x_2 [3]. Para cuantificar el flujo que sale o entra en una región se necesita la velocidad del fluido, v(x,t). Cabe destacar que debido a que el fluido se mueve en un espacio unidimensional, su velocidad se limita a dirigirse en el mismo sentido espacial, es decir, su velocidad tiene dirección sobre x. Entonces el flujo del fluido en un punto (x,t), F(x,t), se define como

$$F(x,t) = \rho(x,t)v(x,t) \tag{1.9}$$

[3]. Entonces, como previamente se comentó, se puede escribir la razón instantánea de cambio de masa en la región $[x_1, x_2]$ en términos del flujo entrante y saliente de la misma región

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[M(x_1, x_2, t) \right] = F(x_2, t) - F(x_1, t) \tag{1.10}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{x_1}^{x_2} \rho(x,t) \, \mathrm{d}x = \rho(x_2,t) v(x_2,t) - \rho(x_1,t) v(x_1,t)$$
(1.11)

Esta es la forma integral de una ecuación de conservación [3]. En particular, esta ecuación refleja el principio de conservación de la masa y a su vez es conocida como ecuación de continuidad. La ecuación (1.11) se puede integrar en el tiempo para conseguir expresarla independientemente de cualquier derivada, obteniendo

$$\int_{t_1}^{t_2} \frac{\mathrm{d}}{\mathrm{d}t} \int_{x_1}^{x_2} \rho(x,t) \, \mathrm{d}x \, \mathrm{d}t = \int_{t_1}^{t_2} \left[\rho(x_2,t)v(x_2,t) - \rho(x_1,t)v(x_1,t) \right] \, \mathrm{d}t \tag{1.12}$$

$$\int_{x_1}^{x_2} [\rho(x, t_2) - \rho(x, t_1)] dx = \int_{t_1}^{t_2} [\rho(x_2, t)v(x_2, t) - \rho(x_1, t)v(x_1, t)] dt.$$
 (1.13)

Asumiendo que $t_1 < t_2$, esta igualdad ofrece una expresión para la diferencia de masa contenida en la región $[x_1, x_2]$ entre los instantes t_2 y t_1 [3].

Es posible obtener una forma diferencial partiendo de la forma integral de una

ecuación de conservación, pero es necesario asumir que las funciones $\rho(x,t)$ y v(x,t) son **diferenciables**. Esta última característica que se exige en las funciones entra en conflicto cuando se estudian soluciones¹ de las ecuaciones de conservación con discontinuidades. Por lo tanto, la forma integral de las ecuaciones es utilizada al estudiar problemas con dichas características. Para convertir la ecuación en forma integral a su forma diferencial, se tienen que usar las siguientes expresiones:

$$\rho(x, t_2) - \rho(x, t_1) = \int_{t_1}^{t_2} \frac{\partial}{\partial t} \rho(x, t) dt$$
 (1.14)

y

$$\rho(x_2, t)v(x_2, t) - \rho(x_1, t_1)v(x_1, t) = \int_{x_1}^{x_2} \frac{\partial}{\partial x} \rho(x, t)v(x, t) dx$$
 (1.15)

sustituyendo estas expresiones en (1.13) se obtiene

$$\int_{t_1}^{t_2} \int_{x_1}^{x_2} \left[\frac{\partial \rho(x,t)}{\partial t} + \frac{\partial \rho(x,t)v(x,t)}{\partial x} \right] dx dt = 0.$$
 (1.16)

Puesto que la ecuación (1.16) se cumple para cualquier punto (x, t) del dominio, el integrando de la misma debe ser idénticamente cero [3]. Entonces,

$$\rho_t + (\rho v)_x = 0 \tag{1.17}$$

es la forma diferencial de la ecuación de conservación de la masa, así como se definió una ecuación de conservación en (1.2), ya que la función de flujo se definió como $F = \rho v$. Puesto que la ecuación diferencial de conservación de la masa involucra dos cantidades físicas, esta se puede resolver ya sea si se conoce previamente la función v(x,t) o si esta última se puede escribir como una función de ρ , i.e., $v = v(\rho)$. En este último caso la ecuación de conservación de la masa es una ecuación diferencial parcial únicamente para ρ [3] y toma la siguiente forma

$$\rho_t + f(\rho)_x = 0. \tag{1.18}$$

Esta última es un ejemplo de **ecuación de conservación escalar** [3] ya que solamente interviene una incógnita, ρ [3]. En caso que la velocidad v(x,t) sea una

 $^{^1\}mathrm{Dichas}$ soluciones se conocen como **soluciones débiles**, tema que se abordará a detalle más adelante.

constante α , la ecuación de conservación de la masa se convierte en:

$$\rho_t + \alpha \rho_x = 0, \tag{1.19}$$

esta ecuación se conoce como **ecuación de advección lineal** [3] o como ecuación de onda de primer orden [4].

1.3. Ecuación de advección lineal

La ecuación de advección (1.19) con la siguiente condición inicial:

$$\rho(x,0) = \rho_0(x), \qquad -\infty < x < \infty, \tag{1.20}$$

tiene como solución:

$$\rho(x,t) = \rho_0(x - \alpha t), \tag{1.21}$$

para t > 0, asumiendo que ρ_0 es una función diferenciable [3]. Esta solución se puede interpretar como la traslación de la función ρ_0 a lo largo del eje x con una velocidad α , en la misma dirección de la velocidad, es decir, a la derecha si $\alpha > 0$ y a la izquierda en caso contrario.

Se puede notar que la solución (1.21) es constante respecto al tiempo a lo largo de cada curva definida por $x - \alpha t = x_0$, para cualquier x_0 tal que $x_0 \in [-\infty, \infty]$. Dichas curvas de la forma x = x(t) son conocidas como **curvas características** de la ecuación diferencial en cuestión [3]. Las curvas características definen dominios en los que la ecuación diferencial parcial se puede escribir como una ecuación diferencial ordinaria. Dichas curvas se definen a partir de ecuaciones diferenciales ordinarias. En el caso de la ecuación de advección lineal (1.21), las características satisfacen la siguiente ecuación diferencial:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \alpha, \qquad x(0) = x_0, \tag{1.22}$$

cuya solución es: $x - \alpha t = x_0$ [3]. Para demostrar que la ecuación de advección lineal se convierte en una ecuación diferencial ordinaria a lo largo de dichas curvas, se deriva la función incógnita ρ respecto al tiempo,

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \frac{\partial\rho}{\partial t} + \frac{\partial\rho}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} \tag{1.23}$$

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \frac{\partial\rho}{\partial t} + \alpha \frac{\partial\rho}{\partial x} \tag{1.24}$$

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = 0,\tag{1.25}$$

este último paso toma efecto dado que a lo largo de las curvas características, $\frac{\mathrm{d}x}{\mathrm{d}t} = \alpha$ [3]. Se puede notar que en este último procedimiento se recuperó la ecuación diferencial en cuestión (1.21), expresada como una ecuación diferencial ordinaria y concluyó al igualar la derivada temporal a cero, consiguiendo demostrar que ρ es constante a lo largo de las características [3].

2. MÉTODO DE VOLÚMENES FINITOS Y ESQUEMA DE ROE

Se describe la estructura del método de volúmenes finitos, principalmente para resolver ecuaciones de conservación y se enfatiza su importancia al aplicarse a problemas de esta naturaleza. Se introducen los conceptos de discretización, ecuación de diferencias, esquema numérico, celda. Se comenta sobre las condiciones de estabilidad de una solución numérica.

Se exponen algunos esquemas numéricos generales aproximados. Se introduce el esquema de Roe y su relación con el problema de Riemann. Nuevamente, se utiliza como ejemplo la ecuación de Burgers para proporcionar una idea simple de la aplicación de estos esquemas.

3. ECUACIONES DE EULER Y APLICACIÓN DEL ESQUEMA DE ROE

Se explican y derivan las ecuaciones de Euler utilizando las variables generales (presión, densidad y velocidad) y variables conservadas. Se explican las ligaduras adicionales involucradas para que las ecuaciones de Euler sean aplicadas a un gas ideal poliatómico.

Se aplican los conceptos previamente descritos para una ecuación de conservación de una variable al sistema de ecuaciones de Euler. El problema de Riemann se adapta al problema de onda de choque en un tubo descrito por las ecuaciones de Euler.

Se describe el esquema de Roe implementado específicamente en la solución de las ecuaciones de Euler para un gas ideal poliatómico. Se explica la implementación del método numérico en C++. Se muestran los resultados obtenidos para un problema de condiciones iniciales en específico.

4. COMPARACIÓN CON PYCLAW

Se da una breve explicación del funcionamiento y diseño de la simulación del problema de condiciones iniciales del capítulo anterior con la librería PyClaw y se comparan los resultados obtenidos.

5. SIMULACIONES CON DISTINTOS COEFICIENTES DE DILATACIÓN ADIABÁTICA

Se comparan los resultados obtenidos en simulaciones del mismo problema de condición inicial pero con distinto coeficiente de dilatación adiabática γ , esto con el fin de obtener una intuición física, a través de la simulación, de cómo varía el comportamiento de un gas cuando el número de grados de libertad interno del mismo cambia.

CONCLUSIONES

- 1. Conclusión 1.
- 2. Conclusión 2.
- 3. Conclusión 3.

RECOMENDACIONES

- 1. Recomendación 1.
- 2. Recomendación 2.
- 3. Recomendación 3.

BIBLIOGRAFÍA

- [1] CAMERON, MARIA: «Notes on Burger's Equation», 2016. https://www.math.umd.edu/~mariakc/burgers.pdf
- [2] CLAWPACK DEVELOPMENT TEAM: «Clawpack software», 2020. doi: https://doi.org/10.5281/zenodo.4025432. Version 5.7.1. http://www.clawpack.org
- [3] LEVEQUE, RANDALL J.: Nonlinear Conservation Laws and Finite Volume Methods. pp. 1-159. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-540-31632-9, 1998. doi: 10.1007/3-540-31632-9_1. https://doi.org/10.1007/3-540-31632-9_1
- [4] PLETCHER, R.H.; TANNEHILL, J.C. y Anderson, D.: Computational Fluid Mechanics and Heat Transfer, Second Edition. Series in Computational and Physical Processes in Mechanics and Thermal Sciences. Taylor & Francis, 1997. ISBN 9781560320463.
 - https://books.google.com.gt/books?id=ZJPbtHeilCgC
- [5] ROE, P.L: «Approximate Riemann solvers, parameter vectors, and difference schemes». Journal of Computational Physics, 1981, 43(2), pp. 357-372. ISSN 0021-9991. doi: https://doi.org/10.1016/0021-9991(81)90128-5. https://www.sciencedirect.com/science/article/pii/0021999181901285
- [6] —: «Characteristic-Based Schemes for the Euler Equations». Annual Review of Fluid Mechanics, 2003, 18, pp. 337–365. doi: 10.1146/annurev.fl.18.010186. 002005.