MA1521

0. Real Numbers and Functions

- Finding Maximal Domain: Exclude Q(x)=0 if the function is $\frac{P(X)}{Q(X)}$.
 Finding Maximal Range: Express x in terms of y, and see range of y. e.g. If quadratic, y will be inside a square root.

1. Limits and Continuity

- Left Limit: $\lim_{x\to c^-} f(x)$ is the value f(x) approaches when x approaches c from
- Right Limit: $\lim_{x \to c^+} f(x)$ is the value f(x) approaches when x approaches cfrom the right.
- Existence of Limit: If $\lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x) = L$, $\lim_{x \to c} f(x)$ exists with value L for c which is not an endpoint.
- · Continuity at a Point: Limit at the point exists, only consider one side if endpoint.
- Continuity on an Interval: f is continuous on an interval if f is continuous at x=cfor all c in the interval.
- Evaluation of Limits: Addition, Scaling, Product of 2 functions, Fraction.
- Composition of Limit: If g is continuous at b and $\lim_{x \to c} f(x) = b$, then $\lim_{x\to c} g(f(x)) = g(b) = g(\lim_{x\to c} f(x)).$
- Limit at Infinity: $\lim_{x \to \infty} f(x)$ is the value f(x) approaches as x tends to positive infinity. $\lim_{x\to -\infty} f(x)$ is the value f(x) approaches as x tends to negative infinity. If the limit to infinity is c, y = c is a horizontal asymptote of the graph f(x).
- Indeterminate Form of Limit: A limit that evaluates to $\frac{0}{0}$ or $\frac{\infty}{\infty}$.
- Limit to infinity of Polynomial: $\lim_{x \to \pm \infty} \frac{P(x)}{Q(x)}$ depends on the leading term $\frac{Ax^c}{Bx^d}$. If c < d, the limit is 0. If c > d, the limit is $\pm \infty$. If c = d, the limit is $\frac{A}{B}$.
- Useful Trigo Limits: $\lim_{x\to c} \frac{sin(g(x))}{g(x)} = \lim_{x\to c} \frac{g(x)}{sin(g(x))} = 1$ if $\lim_{x\to c} g(x) = 0$ (also works for tan).
- Squeeze Theorem: If $g(x) \leq f(x) \leq h(x)$, then if $\lim_{x\to c} g(x) = \lim_{x\to c} h(x) = L$, $\lim_{x\to c} f(x) = L$ at x=c.
- Intermediate Value Theorem: If f is continuous on [a,b], f(c)=k for some $c \in [a, b]$ for all k between f(a) and f(b).

2. Derivatives

- Derivative: $f'(x_0) = \lim_{h \to 0} \frac{f(x_0+h) f(x_0)}{h}$.
- Differentiability implies continuity at a point, but the converse is not necessarily true.
- Differentiability on Interval: A function f is differentiable on an interval if it is differentiable at every point in the interval.

- Standard Derivatives: For f(x), multiply result by f'(x).
 Product Rule: $\frac{d}{dx}(uv) = \frac{du}{dx}v + u\frac{dv}{dx}$.
 Quotient Rule: $\frac{d}{dx}(\frac{u}{v}) = \frac{\frac{du}{dx}v u\frac{dv}{dx}}{\frac{du}{v^2}}$.
 Derivative of Inverse Function: $(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$. Let $b = f^{-1}(a)$ so that
- $a=f(b).\ (f^{-1})'(a)=\frac{1}{f'(f^{-1}(a))}=\frac{1}{f'(b)}.$ Reciprocal of Derivative: If an inverse function exists, $\frac{dx}{dy}=\frac{1}{\frac{dy}{dx}}.$

- Derivative of Parametric Equation: $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}.$ Second Derivative of Parametric Equation: $\frac{d^2y}{dx^2} = \frac{d}{dt}(\frac{dy}{dx}) \div \frac{dx}{dt} = \frac{\frac{d}{dt}(g'(t))}{f'(t)} \div f'(t) = \frac{g''(t)f'(t) g'(t)f''(t)}{f'(t)^3}.$ Derivative of $y = f(x)^{g(x)}$: First find the derivative of lny then solve for $\frac{dy}{dx}$.
- Change of Base Formula: $log_a x = \frac{lnx}{lna}$.

3. Applications of Differentiation

- $\begin{array}{l} \bullet \text{ Tangent Equation: } y-f(x_0)=f'(x_0)(x-x_0). \\ \bullet \text{ Normal Equation: } y-f(x_0)=-\frac{1}{f'(x_0)}(x-x_0). \\ \bullet \text{ Increasing Function: } f'(x)>0 \text{ for all } x \text{ in } (a,b). \\ \bullet \text{ Decreasing Function: } f'(x)<0 \text{ for all } x \text{ in } (a,b). \\ \end{array}$

- Concave Upward: If f''(c)>0 the graph is concave upward at (c,f(c)).
- Concave Downward: If f''(c) < 0 the graph is concave downward at (c, f(c)).
- Inflection Point: Graph has a tangent line and concavity changes. At this point (c, f(c)), f''(c) = 0 if it exists.
- Absolute Maxima: x = c is an absolute maxima if $f(x) \le f(c)$ for all x in the domain of f. Minima is defined similarly.
- Local Maxima: x=c is a local maxima at x=c if $f(x) \leq f(c)$ for x in some open interval containing it. Minima is defined similarly.
- \bullet Extreme Value Theorem: If f is continuous on a closed interval [a,b], then f has an absolute maximum and minimum at some points in [a, b].
- If f is differentiable on an open interval containing x=c and f has a local extremum at x = c, then f'(c) = 0.
- Critical Point: Not an end-point and either f'(c) = 0 or f'(c) does not exist.
- Local extrema and Critical Points: If f has a local extrema at x = c, then c is a critical point of f. The converse is not necessarily true.
- First Derivative Test for Absolute Extrema: For a critical point c, if f'(x) > 0 for all x < c and f'(x) < 0 for all x > c, then c is a maximum point. If f'(x) < 0 for all x < c and f'(x) > 0 for all x > c, then c is a minimum point.
- First Derivative Test for Local Extrema: If f' does not change sign at x=c, there is no local extrema at c. If it changes from positive to negative, it is a maximum. If it changes from negative to positive, it is a minimum.
- Second Derivative Test: Suppose f is twice differentiable. Then if f'(c) = 0 and $f^{\prime\prime}(c)<0$ then c is a local maximum. If $f^{\prime\prime}(c)>0$ then c is a local minimum. If f''(c) = 0 then no conclusion can be drawn.

- L'Hôpital's Rule: If $\lim_{x \to c} \frac{f(x)}{g(x)}$ is indeterminate, then it is equivalent to $\lim_{x\to c} \frac{f'(x)}{g'(x)}$. This also holds for limits at infinity and one-sided limits.
- 0^0 : Consider $\lim_{x\to 0^+} x^x = \lim_{x\to 0^+} e^{ln(x^x)} = 1$ by applying lopital's. ∞^0 : Consider $\lim_{x\to 0^+} (\frac{2}{x})^x = 1$ using the previous result.
- 1^{∞} : Consider $\lim_{x\to 0^+} (1+x)^{\frac{1}{x}} = e$ using e^{ln} and lopital's.
- Rolle's Theorem: Let f be continuous on [a,b] and differentiable on (a,b). If f(a) = f(b), there is at least one c in (a, b) with f'(c) = 0.
- Number of solutions using Rolle's Theorem: Consider f(x) and f'(x). If f(x) has more than 1 solution, then there is f'(c) = 0 between the 2 solutions.
- Mean Value Theorem: Let f be continuous on [a, b] and differentiable on (a, b). There is at least one c in (a,b) such that $f'(c) = \frac{\hat{f}(b) - f(a)}{b-a}$.

4. Integrals

- Integral: F is an antiderivative of f on an interval I if F'(x) = f(x) for all x in I.
- Partial Fractions: Decompose $\frac{P(x)}{Q(x)}$ as a sub of simple fractions whose denominators are factors of Q(x).
- Repeated Factor: Decompose into factor and factor squared.
- Quadratic Factor: Fraction will be $\frac{Ax+B}{ax^2+bx+c}$
- Integration by Substitution: Let u=g(x) be a differentiable function with range Iand f is continuous on I. Then $\int f(g(x))g'(x)dx=\int f(u)du.$
- The Other Integration by Substitution: Let x=g(t) be a differentiable function with range I and f is continuous on I. Then $\int f(x)dx = \int f(g(t))g'(t)dt$.
- Trigonometric Substitution:

 - $\sqrt{a^2 (x+b)^2}$: $x + b = asin\theta$. $\sqrt{a^2 + (x+b)^2}$: $x + b = atan\theta$. $\sqrt{(x+b)^2 a^2}$: $x + b = asec\theta$.
- Integration by Parts: $\int f'(x)g(x)dx = f(x)\cdot g(x) \int f(x)g'(x)dx$.
- Order of Preference from Differentiate to Integration: Log, Inverse Trigo, Algebra, Trigo (Both), Exponential.

- Riemann Sum: $\int_a^b f(x)dx = \sum_{k=1}^n (\frac{b-a}{n})f(a+k(\frac{b-a}{n})).$ Fundamental Theorem of Calculus 1: $\int_a^b f(x)dx = \int_a^b F'(x)dx = F(b) F(a).$ Fundamental Theorem of Calculus 2: The function $g(x) = \int_a^x f(t)dt$ is continuous and differentiable, and g'(x)=f(x). Then $\frac{d}{dx}\int_a^{g(x)}f(t)dt=f(g(x))\cdot g'(x)$.
- Type I Improper Integral: Integral with an infinite boundary. Take the boundary of the integral replaced with a parameter. If both boundaries are infinite, split into 2 integrals about a point in between. The evaluate the limit of the integral as the parameter tends to infinity.
- · Type II Improper Integral: Integral which is not continuous on a boundary. Similar to Type I, replace boundary with a limit.

5. Applications of Integration

- Area between Curves: If $f(x) \geq g(x)$, $A = \int_a^b f(x) g(x) dx$. If not, $A=\int_a^b|f(x)-g(x)|dx.$ The same can be said about curves defined on y instead.
- Volume of Solid of Revolution by Disk Method: $V=\pi\int_a^bf(x)^2dx$.
- Between 2 curves, need to distinguish between $V=\pi\int_a^b f(x)^2-g(x)^2dx$ and $V=\pi\int_a^b (f(x)-g(x))^2 dx$ (probably wrong).
- Cylindrical Shell Method: $V=2\pi\int_a^bx|f(x)|dx$. Between 2 curves, $V = 2\pi \int_a^b x |f(x) - g(x)| dx.$
- Depending on how the function is defined and the axis to revolve around, use Disk or Cylindrical Shell Method.
- Arc Length of a Curve: $\int_a^b \sqrt{1+f'(x)^2} dx$ for y=f(x). (Or g'(y) for x=f(y)).

6. Sequences and Series

- Limit of a Sequence: Let $\{a_n\}_{n=1}^\infty$ be a sequence of real numbers. If $\lim_{n\to\infty}a_n=L$, the sequence converges to L. If it does not exist, the sequence diverges.
- Squeeze Theorem for Sequences: If $a_n \leq b_n \leq c_n$ for all n and $\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n=L$ then $\lim_{n\to\infty}b_n=L$.

 • Convergent Series: If $\sum_{n=1}^\infty a_n$ is convergent. $\lim_{n\to\infty}a_n=0$.
- n^{th} Term Test for Divergence: If $\lim_{n\to\infty}a_n$ does not exist or $\lim_{n\to\infty}a_n\neq 0$ then the series $\sum_{n=1}^{\infty} a_n$ is divergent. If it is 0, we cannot draw any conclusions.
- A series $\sum_{n=1}^{\infty} \overline{a_n}$ of nonnegative terms converges iff its partial sums are bounded
- Harmonic Series: $\sum_{n=1}^{\infty}\frac{1}{n}$ is divergent.
 Integral Test: The series $\sum_{n=1}^{\infty}a_n$ is convergent iff the improper integral $\int_{1}^{\infty} f(x)dx$ is convergent.
- P-Series: The p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent iff p>1.

 Comparison Test: Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with nonnegative terms such that $0 \le a_n \le b_n$ for all n. If $\sum_{n=1}^{\infty} b_n$ is convergent, $\sum_{n=1}^{\infty} a_n$ is also convergent. If $\sum_{n=1}^{\infty} a_n$ is divergent, $\sum_{n=1}^{\infty} b_n$ is also divergent. Ratio Test: Suppose $\sum_{n=1}^{\infty} a_n$ is a series such that $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L$. If
- $0 \le L < 1$, the series is absolutely convergent. If L > 1, the series is divergent. If L=1, the test is inconclusive.
- Root Test: Suppose $\sum_{n=1}^{\infty} a_n$ is a series such that $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L$. If $0 \le L < 1$, then the series is absolutely convergent. If L > 1, the series is divergent. If L=1, the test is inconclusive.
- ullet Alternating Series Test: If b_n is a sequence of positive numbers such that b_n is decreasing and $\lim_{n\to\infty} b_n = 0$, the alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ and $\sum_{n=1}^{\infty} (-1)^n b_n$ are convergent.

- Absolute Convergence: If $\sum_{n=1}^{\infty}|a_n|$ is convergent, then $\sum_{n=1}^{\infty}a_n$ is convergent. A conditionally convergent series is convergent but NOT absolutely convergent.
- Power Series: A power series has the form $\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots$ A power series with (x-a) instead is centered around a, and converges at x=a.
- · Radius of Convergence of Power Series: For a power series, either the series converges at only x=a, all x, or there is a positive R such that the series converges absolutely if |x - a| < R and diverges if |x = a| > R.
- Interval of Convergence: The interval [a-R,a+R] where the power series converges. However, we need to manually check the endpoints of the interval.
- Finding Radius of Convergence: For the power series $\sum_{n=1}^{\infty} c_n (x-a)^n$, if $\lim_{n \to \infty} |\frac{c_{n+1}}{c_n}| = L$ or $\lim_{n \to \infty} \sqrt[n]{|c_n|} = L$. Then L|x-a| < 1, and $R = \frac{1}{L}$. For $(x-a)^{2n}$, $L|x-a|^2 < 1$. The radius is around the center of the power series. Order of Tests:
 - Don't look like they converge to zero: Divergence Test.
 - · Check for p-series convergence.
 - · Looks like p-series or geometric series: Comparison test.
 - · Only has rationals, polynomials, radicals: Comparison or limit comparison test. However, all terms must be positive.
 - Factorials and powers of n: Ratio test, especially for factorials.
 - Can be written as $a_n = (-1)^n b_n$ or $a_n = (-1)^{n+1} b_n$. Alternating series test.
 - Can be written as $a_n = (b_n)^n$: Root test.
 - If $a_n = f(n)$ for some positive, decreasing function and $\int_a^\infty f(x)dx$ is easy to calculate: Integral test.
- Standard Series:
 - $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots$

 - $\begin{array}{l} \bullet \ e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \\ \bullet \ ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} = x \frac{x^2}{2} + \frac{x^3}{3} \dots \\ \bullet \ \ \text{Others: Derive by subbing in for } x \ (\text{e.g.} \ -x^2 \ \text{for } tan^{-1}) \ \text{or integrating.} \end{array}$
- Differentiation of Power Series: If a power series has radius of convergence R>0, the function defined by the power series is differentiable on the interval |x-a| < R,

- $f'(x) = \sum_{n=1}^{\infty} nc_n (x-a)^{n-1} \text{ and } \int f(x) dx = \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1} + C.$ Taylor Series: If a power series has a representation at x=a, the coefficients are given by $c_n = \frac{f^{(n)}(a)}{n!}$ where $f^{(n)}$ is the n^{th} differentiation. It is unique and has the form $f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^n$, (the Taylor Series of f at x=a). • Maclaurin Series: Special case of Taylor Series when a=0.

7. Vectors and Geometry of Space

- Distance Formula: $|P_1P_2| = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2 + (z_2 z_1)^2}$.
- Equation of Sphere: A sphere with center C(h,k,l) and radius r is $(x-h)^2+(y-k)^2+(z-l)^2=r^2.$
- ullet Triangle Law: The sum of 2 vectors u and v,u+v is the vector from the start of uto the end of \boldsymbol{v} if the start of \boldsymbol{v} is put at \boldsymbol{u} .
- Scalar Multiplication: $cm{u}$ is the vector whose length is |c| times of $m{u}$ and is in the same direction if c > 0 or opposite if c < 0.
- Vector Between 2 Points: The vector between $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$, \vec{AB} is $a = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$.
- · Vector Properties: Addition is commutative and associative, 0 is the additive identity, addition with negation gives 0, scalar multiplication is commutative, distributive and associative, 1 is the multiplicative identity.
- Basis Vectors: Length 1 in the direction of each axis, $i = \langle 1, 0, 0 \rangle$, $j = \langle 0, 1, 0 \rangle$, $\mathbf{k} = \langle 0, 0, 1 \rangle.$
- Unit Vector: Vector of length 1, given by $u=\frac{a}{||a||}$.
 Dot Product: For $a=\langle a_1,a_2,a_3\rangle$ and $b=\langle b_1,b_2,b_3\rangle$,
- $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3.$
- Dot Product Properties: Commutative, Distributive, Associative, 0 is identity,
- Angle Between Vectors (Dot Product): $\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| ||\mathbf{b}|| \cos \theta$.
- Orthogonal Vectors: Two vectors are orthogonal iff their dot product is 0.
- Projection: Given $a = \overrightarrow{PQ}$ and $b = \overrightarrow{PR}$, let S be the foot of perpendicular from R to a. \vec{PS} is the vector projection of b onto a, $proj_a b$. The scalar projection is the signed magnitude of the vector projection (component of ${m b}$ along ${m a}$ is $comp_{m{a}} {m{b}} = ||{m{b}}||cos{m{\theta}} = \frac{{m{a}} \cdot {m{b}}}{||{m{a}}||}. \ proj_{m{a}} {m{b}} = comp_{m{a}} {m{b}} imes \frac{{m{a}}}{||{m{a}}||} = \frac{{m{a}} \cdot {m{b}}}{{m{a}} \cdot {m{a}}} \cdot {m{a}}.$ • Distance from Point to Plane: The shortest distance from $P(x_0, y_0, z_0)$ to the plane
- ax + by + cz = d is $\frac{|ax_0 + by_0 + cz_0 d|}{\sqrt{a^2 + b^2 + c^2}}$
- Cross Product: For ${m a}=\dot{\langle a_1,a_2,a_3\rangle}$ and ${m b}=\langle b_1,b_2,b_3\rangle,$ $\mathbf{a} \times \mathbf{b} = \langle a_2b_3 - a_3b_2, -(a_1b_3 - a_3b_1), a_1b_2 - a_2b_1 \rangle$
- Orthogonal Vector to 2 other Vectors: $a \times b$ is orthogonal to both a and b.
- Angle between Vectors (Cross Product): $||\mathbf{a} \times \mathbf{b}|| = ||\mathbf{a}|| ||\mathbf{b}|| \sin \theta$.
- · Cross Product Properties: Multiplication with scalar is associative, it is distributive, and $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$.
- Parametric Equation of Line: $x=x_0+at,\,y=y_0+bt,\,z=z_0+ct.$
- · Skew Lines: Lines that are non-parallel and non-intersecting.
- Vector Equation of Plane: $\mathbf{n} \cdot (\mathbf{r} \mathbf{r}_0) = 0$ where \mathbf{n} is the normal vector.
- Linear Equation of Plane: ax + by + cz = d where $n = \langle a, b, c \rangle$.

8. Functions of Several Variables

- Derivative of Vector-Valued Function: If $r(t) = \langle f(t), g(t), h(t) \rangle$ and f, g, h are differentiable at t=a, $\mathbf{r}'(a)=\langle f'(a),g'(a),h'(a)\rangle$. Normal derivative rules apply. This gives the tangent vector at t = a.
- $oldsymbol{\cdot}$ Arc Length Formula: For the same $oldsymbol{r}$, $s = \int_a^b \sqrt{f'(t)^2 + g'(t)^2 + h'(t)^2} dt = \int_a^b ||\mathbf{r}'(t)|| dt.$

- Partial Derivative: f_x or $\frac{\partial f}{\partial x}$ is the partial derivative of f w.r.t x. That means all other variables are assumed to be constant. f_{xy} is a higher order derivative which means differentiating by x then y.
- Clairaut's Theorem: If f_{xy} and f_{yx} are both continuous, $f_{xy}(a,b) = f_{yx}(a,b)$.
- Equation of Tangent Plane: Suppose z = f(x, y). $\mathbf{n} = \langle f_x(a, b), f_y(a, b), -1 \rangle$. The equation of the tangent plane is

- $f_x(a,b)(x-a)+f_y(a,b)(y-b)-(z-f(a,b))=0.$ Chain Rule Case 1: $\frac{dz}{dt}=\frac{\partial f}{\partial x}\frac{dx}{dt}+\frac{\partial f}{\partial y}\frac{dy}{dt}.$ Works with >2 parameters as well.
- Chain Rule Case 2: If x and y have 2 parameters s and t, $\frac{dz}{ds} = \frac{\partial f}{\partial x} \frac{dx}{ds} + \frac{\partial f}{\partial y} \frac{dy}{ds}$ and $\frac{dz}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$.
- Implicit Differentiation: Suppose F(x,y,z)=0 where F is differentiable and $z=f(x,y) \text{ implicitly. Then } \frac{\partial z}{\partial x}=-\frac{F_x(x,y,z)}{F_z(x,y,z)} \text{ and } \frac{\partial z}{\partial y}=-\frac{F_y(x,y,z)}{F_z(x,y,z)}$ • Increment: If z=f(x,y), $\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y)$.
- Differentials: If $dx = \Delta x$ and $dy = \Delta y$, $dz = f_x(x,y)dx + f_y(x,y)dy$.
- Increment Approximation: For small increments,

 $\Delta z \approx dz = f_x(a,b)dx + f_y(a,b)dy = f_x(a,b)\Delta x + f_y(a,b)\Delta y.$

- 2D Directional Derivative: The Directional derivative of f in the direction of any UNIT vector $\mathbf{u} = \langle a, b \rangle$, $D_{\mathbf{u}} f(x, y) = f_x(x, y) a + f_y(x, y) b = \langle f_x, f_y \rangle \cdot \mathbf{u}$.
- Gradient: $\nabla f(x,y) = \langle f_x, f_y \rangle$.
- 3D Directional Derivative: $D_{m u}f(x_0,y_0,z_0)=m
 abla f(x_0,y_0,z_0)\cdot m u$ where $\nabla f = \langle f_x, f_y, f_z \rangle.$
- Level Curve v/s ∇f : Suppose $\nabla f(x_y,y_0) \neq 0$. Then $\nabla f(x_y,y_0)$ is perpendicular to the level curve f(x,y)=k at the point (x_0,y_0) where $f(x_0,y_0)=k$.
- Level Surface v/s f: Suppose $\nabla F(x_0, y_0, z_0) \neq 0$. Then $\nabla F(x_0, y_0, z_0) \cdot r'(t_0) = 0$, meaning they are orthogonal.
- Tangent Plane to Level Surface: $\nabla F(x_0,y_0,z_0)\cdot \langle x-x_0,y-y_0,z-z_0\rangle=0.$
- Maximizing Rate of Increase: Assume $\nabla f(P) \neq 0$. Let \boldsymbol{u} be a unit vector making an angle θ with $\triangledown f$. Then $D_{u}f(P)=||\nabla f(P)||cos\theta$. $\triangledown f(P)$ points in direction of maximum rate of increase, while $-\nabla f(P)$ points in direction of maximum rate of
- Local Extrema: If there is a local extrema at (a,b), then $f_x(a,b)=f_y(a,b)=0$.
- Critical Point: $f_x(a,b) = 0$ and $f_y(a,b) = 0$ or a partial derivative does not exist.
- Saddle Point: Critical point where every disk centered at (a, b) contains points where f(x, y) < f(a, b) and points where f(x, y) > f(a, b).
- Second Derivative Test: $D = D(a,b) = f_{xx}(a,b)f_{yy}(a,b) [f_{xy}(a,b)]^2$.
- D>0, $f_{xx}(a,b)>0$: Local Minimum.
- D > 0, $f_{xx}(a, b) < 0$: Local Maximum.
- D < 0: Saddle Point.
- D=0: No conclusion can be drawn.

9. Double Integrals

- · Volume as Double Integral: The volume of the solid that lies above a rectangle and below the surface z=f(x,y) is $V=\int\int_R f(x,y)dA.$
- Iterated Integral: $\int_a^b \int_c^d f(x,y) dy dx$ means integrating y from c to d first with xfixed then x from a to b.
- \bullet Fubini's Theorem: If f is continuous on R, then $\int_{a}^{b} \int_{c}^{d} f(x, y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy.$
- Special Case: $\int\int_R g(x)h(y)dA=(\int_a^b g(x))(\int_c^d h(y)dy)$.
 Type I Region: Region lying between graph of two continuous functions of x. Integrate by y first, then x.
- \bullet Type II Region: Region lying between graph of two continuous functions of y.Integrate by x first, then y. • Polar Coordinates: $r^2=x^2+y^2,\,x=rcos\theta,\,y=rsin\theta.$
- · Integration of Polar Coordinates:

 $\int \int_R f(x,y) dA = \int_c^d \int_a^b f(r\cos\theta,r\sin\theta) r dr d\theta$. Don't forget the extra r!

• Surface Area: $\int\int_D dS = \int\int_D \sqrt{f_x^2 + f_y^2 + 1} dA$ where f_x^2 and f_y^2 are partial derivatives.

10. Ordinary Differential Equations

- · Separable ODE:

 - $\bullet y' = f(x)g(y)$ $\bullet \frac{1}{g(y)}y' = f(x)$ $\bullet \int \frac{1}{g(y)}dy = \int f(x)dx + C.$
- Reduction to Separable Form:
 - For $y' = g(\frac{y}{x})$, sub $v = \frac{y}{x}$.
 - Then y = vx and y' = v + xv'.
 - The equation becomes v + xv' = g(v) which is separable.
 - Another useful substitution is u = ax + by + c.
- · Linear First Order ODE:
 - The standard form is y' + P(x)y = Q(x).
 - Multiply by the integrating factor $I(x) = e^{\int P(x) dx}$.
 - The equation reduces to $(y \cdot I(x))' = Q(x) \cdot I(x)$, which we can solve by integrating both sides by x.
- The Bernoulli Equation:
 - $y' + p(x)y = q(x)y^n$, where $n \neq 0, 1$.
 - Sub $u=y^{1-n}$ and find y'.
 - ullet Sub in for y' and divide by the coefficient of u' to get u' + (1-n)p(x)u = (1-n)q(x) which is a first order linear ODE.
 - · Solve the new ODE then finish the substitution.