Introduzione ai calcolatori

Sommario

- Cosa sono le Tecnologie dell'Informazione e della Comunicazione.
- Architettura di Von Neumann e struttura di una CPU.
- Hardware e periferiche. I fattori che influiscono sulle prestazioni di un computer. La memoria.
- Codice binario e rappresentazione dell'informazione.
- Linguaggi di programmazione

Tecnologie dell'informazione e della comunicazione (TIC/ICT)

- Insieme dei metodi e delle tecniche utilizzate nella trasmissione, ricezione ed elaborazione di dati e informazioni.
- Tecnologie dell'informazione
- Telecomunicazioni

- Società dell'informazione
- attuale società post-industriale, in cui i beni immateriali prevalgono su quelli industriali.

Sistemi di elaborazione dell'informazione

- Gli elementi principali di un sistema di calcolo si suddividono in 2 categorie:
 - Hardware, rappresenta la parte fisica dell'elaboratore, costituita da componenti elettronici ed elettromeccanici
 - **Software**, costituito da tutti i programmi che consentono all'hardware di realizzare compiti specifici

Software

- Software di Base
- funzionale all"utilizzo dell'elaboratore e delle sue periferiche, comprende:
- Sistema operativo
- Programmi traduttori dei linguaggi di programmazione
- Software applicativo
- mostra all'utente il calcolatore come una macchina virtuale utilizzabile per la **risoluzione** di **problemi** specifici;
- Comprende tutte le **applicazioni adoperate dagli utenti**: videoscrittura, foglio elettronico, ecc.

Software

Sistema operativo

- È l'insieme di programmi che
 - servono alla gestione dell'hardware
 - permettono l'interazione tra l'utente e l'hardware del calcolatore.
- Alcune funzioni sono:
- Comunicare con l'utente: ricevere ed eseguire i comandi, comunicare eventuali errori
- Gestire l'allocazione della memoria e di tutte le risorse del calcolatore
- Acquisire i dati in ingresso dalla tastiera e dagli altri dispositivi di input
- Inviare i risultati al video e agli altri dispositivi di output
- Leggere e scrivere i dati nella memoria di massa

Architettura di un calcolatore

- Le componenti fondamentali della architettura dei calcolatori sono:
 - Unità centrale di elaborazione (o CPU) che preleva le istruzioni dalla memoria e le esegue, legge/scrive dati dalla memoria
 - Memoria principale (RAM, ROM) che contiene i dati e le istruzioni dei programmi
 - Memoria secondaria o di massa (HD, CD, DVD, ecc.) per memorizzare dati e programmi in maniera permanente
 - **Dispositivi di input** (tastiera, mouse, touch pad, ecc.) per l'inserimento dei dati
 - Dispositivi di output (monitor, stampante, ecc.) per ricevere i risultati

Architettura di Von Neumann

- Progettata da John Von Neumann nel 1952
- Basata sul concetto di programma memorizzato in memoria
- Sia i dati che le istruzioni del programma erano memorizzati

Architettura di Von Neumann

Memoria principale (RAM)

- Contiene dati e istruzioni che sono oggetto di elaborazione da parte del processore
- L'elemento base della Ram è la **cella di memoria**, le cui caratteristiche sono:
 - Può assumere solo due stati (0/1)
 - È possibile scrivere nella cella per cambiare lo stato
 - È possibile leggere lo stato della cella
- È organizzata come una sequenza di locazioni di memoria.
- Ogni locazione è una sequenza di n bit, in genere 8 o 16
- Ogni locazione di memoria è individuata da un indirizzo univoco che ne specifica la posizione. L'indirizzo di memoria è un numero binario intero positivo

Memoria ROM (Read Only Memory)

- È una memoria a **sola lettura**, che contiene informazioni **permanenti** e **non modificabili**
- I dati sono impostati nel chip durante il processo di fabbricazione
- È usata per **memorizzare istruzioni di sistema** come ad esempio le istruzioni necessarie per l'**avvio del sistema** operativo e per il riconoscimento di tutte le periferiche.

Memoria di Massa

• Le memorie di massa (o memorie secondarie) sono utilizzate per memorizzare grandi volumi di dati in modo persistente.

Memoria Cache

• È una memoria che usa una **tecnologia veloce** SRAM contro una più lenta DRAM della memoria principale.

• Non visibile al software, è **gestita dall'hardware**, che memorizza i dati recenti usati dalla memoria primaria.

•

• La Cache ha la funzione di aumentare le prestazioni del sistema, riducendo il traffico del bus di sistema e della memoria principale che è uno dei maggiori colli di bottiglia.

Codici di caratteri

- È un codice alfabetico, cioè un insieme di caratteri che può comprendere:
- Caratteri alfabetici minuscoli e maiuscoli ('a',...,'z','A',...,'Z');
- Caratteri numerici ('0',...,'9')
- Segni di punteggiatura (',', ':', '!', etc.)
- Altri simboli stampabili ('@', '+', etc.)
- Caratteri di controllo (NUL, FF, etc.)
- Principali codici di caratteri
 - ASCII
 - UNICODE

Codice ASCII (American Standard Code for Information Interchange)

- Sistema di codifica dei caratteri, in cui ogni simbolo dell'alfabeto è codificato in una stringa di bit.
- ASCII: 7 bit, 128 parole di codice
- ASCII esteso (Latin-1): 8 bit, 256 parole di codice

Codice ASCII (American Standard Code for Information Interchange)

	ASCII Code Chart															
	θ		_ 2	3	4	_ 5	6	7	8	9	_ A_	В	C	D	E	<u> </u>
θ	HUL	SOH	STX	ETX	EOT	EHQ	ACK	BEL	BS	HT	LF	VT	FF	CR	50	SI
ī	DLE	DC1	DC2	DC3	DC4	HAK	SYN	ETB	CAH	EM	SUB	ESC	FS	GS	RS	US
2		!	"	#	\$	96	å	-	()	ж	+	,	-	•	/
3	θ	1	2	3	4	5	6	7	8	9	:	;	٧	=	>	?
4	@	Α	В	С	D	E	F	G	Н	I	J	К	L	H	Н	0
5	P	Q	R	s	Т	U	V	W	Х	Υ	Z]	\]	^	
6	`	a	Ь	c	d	e	f	g	h	i	j	k	ι	m	n	0
7	P	q	r	s	t	u	v	W	х	у	z	{		}	~	DEL

Sistemi di numerazione

- È un insieme di simboli (cifre) e regole che assegnano ad ogni sequenza di cifre uno e un solo valore numerico. Può essere
 - non posizionale. Es. il sistema di numerazione degli antichi romani
 - posizionale. Es. il sistema di numerazione decimale

Sistemi di numerazione posizionale

- Dato un numero B > 1 detto base
- Insieme di n simboli: 0, 1, 2, ..., n-1

- Una stringa di n simboli xn-1, xn-2,, x1, x0 si interpreta come
- $xn-1*b^{n-1} + xn-2*b^{n-2} + ... x1*b^{1} + x0*b^{0}$

• Il valore rappresentato da un simbolo dipende dalla posizione del simbolo nella stringa.

Sistema di numerazione Decimale

- La base B è 10
- I simboli sono 0, 1, 2, ..., 9

- Esempio: la stringa 2014 rappresenta il numero
- $2*10^3 + 0*10^2 + 1*10^1 + 4*10^0$

Sistema di numerazione Binario

• La base B è 2. I simboli sono 0 e 1

- Esempio: la stringa binaria 11110 rappresenta il numero
- 1*2^4+ 1*2^3 + 1*2^2 + 1*2^1 + 0*2^0 (=30 in decimale)

Sistema di numerazione Decimale e Binario

Sistema in base 10	Sistema in base 2					
0	0					
1	1					
2	10					
3	11					
4	100					
5	101					
6	110					
7	111					

Conversione da Decimale a base B

- La conversione di un numero da base 10 a base B viene effettuata dividendo ripetutamente la parte intera del numero decimale per la base B, e registrando i resti delle divisioni dal basso verso l'alto, fino a ottenere un quoziente uguale a zero
- ESEMPIO
- Conversione del numero 7
- 7/2 = 3 resto 1
- 3/2 = 1 resto 1
- 1/2 = 0 resto 1
- Il numero 7 in binario è 111
- •
- Conversione del numero 14
- 14/2 = 7 resto 0
- 7/2 = 3 resto 1
- 3/2 = 1 resto 1
- 1/2 = 0 resto 1
- Il numero 14 in binario è 1110

Conversione da base B a Decimale

• Si effettua moltiplicando ogni cifra del numero per la sua base (B) elevata alla posizione in cui si trova la cifra.

- Esempio da Binario a Decimale:
- $10 = 1*2^1 + 0*2^0 = 1*2 + 0*1 = 2 + 0 = 2$
- $101 = 1*2^2 + 0*2^1 + 1*2^0 = 1*4 + 0*2 + 1*1 = 4 + 0 + 1 = 5$

Strutture logiche di informazione

- Nella rappresentazione binaria l'unità di informazione elementare è il bit.
- Strutture logiche
- Word dipende dall'architettura
- Byte 8 bit
- Half-Byte 4 bit
- Multipli delle strutture logiche
- 1 Kilobyte (KB) = 2^10 byte =1024 byte circa mille byte
- 1 Megabyte (MB) = 1024 KB circa 1 milione di byte
- 1 Gigabyte (GB) = 1024 MB circa 1 miliardo di byte
- 1 Terabyte (TB) = 1024 GB circa 1000 miliardi di byte
- 1 Petabyte (PB) = 1024 TB circa 1000000 miliardi di byte

Linguaggio di programmazione

- Un linguaggio in informatica è l'insieme di stringhe che godono di una certa proprietà.
- Grammatica è un formalismo per definire un linguaggio fornendo un metodo per la costruzione delle stringhe.
- Una **Grammatica formale** G è una **quadrupla** <**T, N, P, S**>, con
- **T** insieme (alfabeto) finito e non vuoto di simboli terminali
- N insieme (alfabeto) finito e non vuoto di simboli non terminali
- P (regole di produzione) relazione binaria finita su
- (TUN)* × N × (TUN)* x (TUN)*
- **S** (assioma) è il simbolo non terminale di inizio
- Il linguaggio generato da una grammatica è l'insieme L(G) = $\{x \mid x \text{ in } T^*, S \rightarrow x\}$

Gerarchia di livelli

- Un elaboratore è pensato come un sistema gerarchico in cui sono presenti diversi livelli di macchina virtuale interagenti fra loro
- Le diverse macchine virtuali sono via via più astratte, più alto è il livello di una macchina, più vicino è il suo linguaggio alla logica dell'utente e più lontano dalla logica dell'elaboratore reale
- La macchina reale, ovvero il livello hardware, è la macchina più efficiente ma meno flessibile

Gerarchia di livelli

Traduzione di programmi

- Per poter essere eseguito sulla macchina reale (HW), un programma scritto in linguaggio Ln deve essere **tradotto** in un programma (equivalente) scritto in un linguaggio Ln-1, a sua volta tradotto in un programma scritto in linguaggio Ln-2, e così via sino ad ottenere una traduzione in linguaggio L0 (**linguaggio macchina**) che è l'unico comprensibile dalla macchina fisica
- Ogni istruzione in linguaggio Ln è sostituita (tradotta) da una sequenza di istruzioni in linguaggio Ln-1
- Solo programmi scritti in linguaggio LO possono essere eseguiti direttamente dai circuiti elettronici di cui è
 composto l'HW, senza bisogno di traduzione
- La traduzione di programmi da un livello più alto al livello sottostante è effettuato da un particolare programma può avvenire secondo due approcci
 - Compilazione
 - Interpretazione
- ed è eseguito da un programma chiamato rispettivamente **Compilatore** o **Interprete**

Compilazione

- Dato un programma scritto in un linguaggio di programmazione (programma sorgente), ogni sua istruzione è tradotta in linguaggio macchina
- Viene generato un altro programma, detto programma oggetto, che potrà essere successivamente eseguito
- Vengono rilevati solo gli errori sintattici. Gli errori semantici saranno rilevati in fase di esecuzione

Interpretazione

- Dato un programma scritto in un linguaggio di programmazione (programma sorgente), ogni sua istruzione è tradotta in linguaggio macchina ed immediatamente eseguita
- Non viene generato il programma oggetto
- Vengono rilevati sia gli errori sintattici che semantici

Interpretazione e Compilazione

- Velocità di esecuzione
- Bassa per i linguaggi interpretati
- Alta per i linguaggi compilati

- Facilità di messa a punto dei programmi
- Alta per i linguaggi interpretati
- Bassa per i linguaggi compilati

Linguaggi di programmazione di basso livello

- Linguaggio macchina
- Un'istruzione è una stringa di bit che viene interpretata ed eseguita dalla CPU
- Esempio di istruzione: 01001001001000

- Linguaggio Assembly
- Un'istruzione è una stringa alfanumerica che viene tradotta in una corrispondente istruzione in linguaggio macchina
- Esempio di istruzione: MOV AX,12