Proyecto Vida Artificial

Wilson Andres Piravaguen Serrano

Contenido

- 1. Introducción
- 2. Plantas/Comida
- 3. Pieles (Turing Morph)
- 4. Transformación Afín
- 5. Movimiento
- 6. Algoritmo Genético
- 7. Demo
- 8. Resultados
- 9. Conclusiones

Introducción

- Simulación de un ambiente con dos especies, Peces(presas) y
 Tiburones(depredadores), ambos definidos por un código genético y con capacidad de reproducción.
- Los peces se alimentan de un recurso natural(plantas) y los tiburones se comen a las peces.

Plantas/Comida

- La comida sigue el modelo Sugarscape con tasa de crecimiento constante.
- Presencia de estaciones en el hemisferio norte y sur.
- Plantas decorativas generadas a partir de un L-System.

n=5,
$$\delta$$
=20°
F
F \rightarrow F[+F]F[-F][F]

n=7,
$$\delta$$
=20° X X \rightarrow F [+X] F [-X] +X F \rightarrow FF

n=4,
$$\delta$$
=22.5°
F
F \rightarrow FF-[-F+F+F]+
[+F-F-F]

n=5,
$$\delta$$
=22.5° X X \rightarrow F-[[X]+X]+F[+FX]-X F \rightarrow FF

Pieles (Turing Morph)

Modelo de Gray-Scott

$$\frac{\partial u}{\partial t} = D_u \nabla^2 u - uv^2 + F(1 - u),$$

$$\frac{\partial v}{\partial t} = D_v \nabla^2 v + uv^2 - (F + k)v.$$

Generación de pieles a partir de 5 parámetros distintos.

Transformación Afín

Esquilado en X

Atributo de nacimiento.

Escalado

 Ocurre durante el transcurso de la vida del pez.

Movimiento

 Peces y Tiburones siguen las 3 reglas definidas en el algoritmo de Boids de Craig Reynolds.

Peces

- Huir (Separation)
- Buscar Comida (Cohesión)

Tiburones

Cazar (Cohesión)

Algoritmo Genético

Cruce

- El código genético es un arreglo en donde cada elemento representa un gen.
- Cruce de 1-Punto.

Mutación

• Se realiza con probabilidad 1/len(cromosoma).

Demo

Resultados

Resultados

Conclusiones

- Los peces se adaptaron al ambiente para poder sobrevivir.
- La simulación es muy sensible a las condiciones iniciales.
- A partir de reglas simples pueden emerger patrones y comportamientos complejos.

Gracias