Algorytmy Ewolucyjne

Projekt 3 Michał Kwarciński

Sprawozdanie

Kacper Marchlewicz

1. Treść zadania

Zaimplementuj algorytm uczenia się liniowego klasyfikatora binarnego w przestrzeni \mathbb{R}^3 .

- Założenia:
 - Zbiór treningowy $D=\{(\bar{x}_1,y_1),(\bar{x}_2,y_2),\dots,(\bar{x}_N,y_N)\}$ dla $N=20,\bar{x}_N\in\mathbb{R}^3$ i $y_N\in\{+1,-1\}$ ma zostać wygenerowany za funkcji AEproj3_data,
 - dozwolone jest korzystanie z języków MATLAB, C++ i Python.
- Zaimplementuj algorytm uczenia się perceptronu opisany w: L. Hamel "Knowledge discovery with support vector machines", rozdział 5.1. Książka jest dostępna on-line przez stronę Biblioteki Głównej PW.
- Rozbuduj algorytm o walidację, która pozwoli badać dokładność klasyfikacji (na podstawie liczby błędów) w trakcie uczenia się perceptronu. Walidacja może polegać np. na klasyfikacji danych ze zbioru treningowego po zakończeniu każdej iteracji lub każdego cyklu uczenia się perceptronu.
- Przeprowadź uczenie się perceptronu o początkowych parametrach odpowiadającym płaszczyźnie stycznej do osi rzędnych i odciętych dla trzech różnych wartości współczynnika szybkości uczenia się. Na podstawie badań wskaż najlepszą wartość tego współczynnika.

2. Prezentacja wyników

Dane podzieliliśmy na dwa zbiory: uczący (80% wszystkich danych) i testowy (pozostałe dane).

Uczenie przeprowadziliśmy dla trzech wartości współczynnika szybkości uczenia się (0,1; 0,5; 0,9). Jak widać na poniższych zdjęciach początkowe parametry w=[0, 0, 1] i b=0 bez nauki poprawnie klasyfikowały 80% wszystkich przypadków, 75% danych uczących i 100% testowych. Wynika to z zbyt małej ilości danych testowych (tylko 4 testowe) i po prostu tak się wylosowały. Dla pierwszych danych błędnie sklasyfikowanych nastąpiła gwałtowana zmiana paramentów, która zwolniła. Po trzech iteracjach uczących (w których nastąpiła zmiana parametrów – błędnie skalsyfikowane) perceptrony nauczyły się poprawnie klasyfikować dany podzbiór. Można powiedzieć, że dane były proste do nauki. Widać, że klasy się nie pokrywały i był spory odstęp między nimi.

W przypadku, gdyby plik gif nie odtwarzał się w pliku pdf, w archiwum załączamy plik word i pliki gif

Dla eta = 0.1:

Błąd na danych uczących w trakcie uczenia, eta:

Błąd na wszytskich danych w trakcie uczenia, eta:

Dla eta = 0.5:

Błąd na danych testowych w trakcie uczenia, eta:

Błąd na danych uczących w trakcie uczenia, eta:

Dla eta = 0.9:

Błąd na danych uczących w trakcie uczenia, eta:

Błąd na danych testowych w trakcie uczenia, eta:

Zmiany parametru wagi i biasu dla klasyfikatora uczonego z parametrem eta=0.9 znajdują się na poniższej tabeli i wykresach.

iteracja	w_1	w_2	w_3	b
1	0	0	1	0
2	0	0	1	0
3	0	0	1	0
4	0	0	1	0
5	0	0	1	0
6	-1,7955	-2.1429	0,9865	-14,1917
7	-1,9454	-5.7134	1,0290	0
8	-1,9454	-5.7134	1,0290	0
9	-1,9454	-5.7134	1,0290	0
10	-1,9454	-5.7134	1,0290	0
11	-1,9454	-5.7134	1,0290	0
12	-1,9454	-5.7134	1,0290	0
13	-1,9454	-5.7134	1,0290	0
14	-1,9454	-5.7134	1,0290	0
15	-1,9454	-5.7134	1,0290	0
16	-1,9454	-5.7134	1,0290	0