浙江大学 2014 - 2015 学年秋冬学期

《概率论与数理统计》期末考试试卷

课程号: 061B9090, 开课学院: 数学系, 任课教师: ____

考试试卷: A 卷 4、B 卷(清在选定项上打 4)

考试形式; 闭 4、开卷(请在选定项上打 4),允许带<u>计算器</u>入场

考试日期: 2015 年 1 月 26 日, 考试时间: 120 分钟

诚信考试,沉着应考,杜绝违纪。

请注意:本试卷共六大题,四页,两大张。 请勿将试卷拆开或撕页!如发生此情况责任自负!

遊		
ને<		
描		
EI		
[1]		
1 [
l		
题序	得分	评卷人

注: $\Phi(1) = 0.84$, $\Phi(1.22) = 0.89$, $\Phi(1.64) = 0.95$, $\Phi(1.96) = 0.975$, $\Phi(2) = 0.98$, $t_{0.025}(6) = 2.45$, $t_{0.025}(7) = 2.36$, $t_{0.05}(13) = 2.16$, $t_{0.025}(15) = 2.13$, $F_{0.025}(6,7) = 5.12$, $F_{0.025}(7,6) = 5.70$, $F_{0.643}(6,7) = 0.728$. - 填空题(每小格 3 分,共 36 分):

- 设随机事件 A与B 独立, P(A)=0.4, P(A∪B)=0.64, 则 P(B)=
 P(Ā|A∪B)=
- 2. 某公交车站单位时间等车的人数 X 服从泊松分布 π(4),则单位时间内"至少有 2 人等车"的概率为 _______,独立观察 3 个单位时间,则恰好有 2 个单位时间内出现"至少有 2 人等车"的概率为______

共4页第1页

4. 设总体 $X \sim N(\mu, 1), \mu$ 未知, $X_1, ..., X_2$,为来自X 的简单随机样本, \bar{X} 是样本均值,则 $P(5|\bar{X} - \mu| \le 1) = \dots$,若 $a(\bar{X} - X_1)^2 \sim \chi^2(1)$,则 $a = \dots$

6. 研究某企业生产某种产品的产量和单位成本,数据资料如下;

月份	Τ.	2	ಣ	4	വ	9	7	8	6	10
产量x(千件)	5.5	4	4.6	5.2	6.3	6.9	6.2	7.1	7.8	8.2
单位成本 y(元/件)	72	78	79	73	71	69	68	89	65	61

经计算 $\bar{x} = 6.18, \bar{y} = 70.4, s_{x} = 16.756, s_{y} = -64.72, s_{y} = 272.4$ 。 设一元线性回归模型为

 $y_i \sim N(\alpha + eta x_i, \sigma^2), i = 1, ..., n$,则回归方程 $\hat{y} = _$

i=1,2. 求 $(1)(X_1,X_2)$ 的联合分布律及 X_2 的边际分布律; $(2)X_1$ 与 X_2 的相关系数 $\rho_{X_1X_2}$

三.(14 分)设随机变量X 的概率密度 $f(x)=egin{cases} e^{-x},&x>0,\\0,&x\leq0. \end{cases}$ 在X=x时,Y 的条件概率密

 $\tilde{\mathcal{B}} f_{I|X}(y|x) = \begin{cases} e^{-(y-x)}, & y > x, \\ 0, & y \le x. \end{cases}, \quad \tilde{\pi} (1) P(X > 2|X > 1), \quad (2) P(Y \le 2|X = 1), \quad (3)$

P(Y < 3X), (4) Y 的边际概率密度 $f_{Y}(y)$.

四.(10分)某地一出租车司机每天的净收入为 X 元,已知 E(X)=240,D(X)=1800,假设他两个月工作50 天,每天的净收入相互独立,Y (单位:元)表示他两个月的净收入,求他的净收入超过11700元的概率近似值.假设工作时由于种种原因出现违章罚款,车辆损坏等需要支付费用,设两个月中支出费用 Z (元)的分布律如下:P(Z=1800)=0.01,P(Z=900)=0.05,P(Z=300)=0.5,P(Z=0)=0.44.设 Y 与 Z 相互独立,以 U=Y-Z 表示他两个月的实际收入,求他的实际收入依然超过11700元的概率近似值.

五. (12 分) (1) 设总体 X 的概率密度 $f(x;\theta) = \begin{cases} \theta x^{-\theta-1}, & x>1, \\ 0, & x\leq 1. \end{cases}$ X>1, X>1, X>1, X>1, X>1, X>1, X>1, X=1, X

六、(16 分)设两种不同型号灯的寿命(单位: 千小时)X 与 Y 独立,均服从正态分布, $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, 现从这两个总体中独立抽取两个样本 X_1, \ldots, X_7 和 Y_1, \ldots, Y_8 , 记样本均值分别为 $\overline{X}, \overline{Y}$, 样本方差分别为 S_1^2, S_2^2 。(1) 若 $\sigma_1^2 = \sigma_2^2 = \sigma^2$, 用 $S_w^2 = \frac{6}{13} S_1^2 + \frac{7}{13} S_2^2$ 估计 σ^2 , 求均方误差 $Mse(S_w^2) = E[(S_w^2 - \sigma^2)^2]$ 。(2) 若实际测得数据 如下:

	2.69	
2.67	2.61	
2.48	2. 78	
2, 55	2.48	
2.43	2.58	
2, 51	2, 52	
2.39	2.74	
2.54	2.56	
X	Y	

计算 x,y,s_1^2,s_2^2 ,求在显著水平 0.05 下检验假设 H_0 : $\sigma_1^2=\sigma_2^2,H_1$: $\sigma_1^2
eq \sigma_2^2$,并计算 P_- 值,

(3) 用(2) 中的数据,假设 $\sigma_1^2=\sigma_2^2=\sigma^2$,求 $\mu_1-\mu_2$ 的置信度为95%的双侧置信区间.