Einführung und Ziele

In diesem Kapitel wird auf die Aufgabenstellung, die funktionalen Anforderung, dies das Produkt beschriebt sowie auch die Qualitätsziele eingegangen. Ausserdem werden die Stakeholder und ihre Erwartungshaltung definiert. Dies soll einen Überblick über die Rahmenbedingungen des Systems bieten.

Aufgabenstellung

In der Aufgabenstellung wird dies näher angeschaut und das Produkt erläutert.

Was ist "Produktname"?

Wie genau das Stromnetz aufgebaut wissen wenige, mit der steigenden "Awareness" bezüglichem der effizienten Stromnutzung und auch der optimalen Verteilung des Stroms innerhalb des Netzes an die jeweiligen Endnutzer. bzw. zur Abstraktion in unserem Fall Häuser.

Unser Produkt, mit dem Namen "Produktname" soll diese optimale Verteilung, basierend auf dem "Max-flow-Algorithmus" anschaulich dargestellt werden.

- Thematisiert die Komplexität der Verteilung von Strom im Stromnetz
- Interaktiver Umgang mit den einzelnen "Edges" und den "Kapazitäten"
- Die optimale Verteilung wird als anstrebendes Ergebniss dem Nutzer übergeben. Der Spieler versucht also durch überlegen, selber auf die beste Verteilungs-möglichkeit zu kommen.

Wesentliche Features

Die wesentlichen Features sind:

- Strategisches Spiel, bzw. "Quiz".
- Wiederspielbarkeit bzw. "replayability", da Anpassung auf den eigenen Wissenstand möglich, da Levelauswahl vorhanden.
- Wissensübertrag, Verständniss bezüglich Stromnetz wird erhört.

Qualitätsziele

Die Qualitätsziele umfassen die wichtigsten Qualitätsanforderung an das Spiel mit dem Namen "Produktname". Sie sind nach Priorität in der folgenden Tabelle geordnet.

Table 1. Qualitätsziele

Qualitätsziel	Motivation und Beschreibung
Benutzbarkeit:	Der Aufwand der Nutzung für die User sollte minimal sein.

Zuverlässigkeit:	Unser System soll die zugewiesene Funktion in einem, von uns noch zu definierenden Zeitfenster erledigen.
Robustheit:	Da mit greifbaren Teilen, Knöpfen und Spielfiguren gespielt werden kann, sollen diese Robust und gleichzeitig "wartbar" sein.
Effizienz:	Da unser Spiel live demonstriert wird, ist es wichtig, dass die Berechnungen schnell erledigt werden

Auszug aus den Produktzielen unserer Confluence Seite

Table 2. Produktziele

ID	Name	Beschreibung	Messung	Soll-Wert	
	Kurzer Name des Ziels	Beschreibung des Zieles im Detail, inkl. in welcher Situation bzw. durch wen das Ziel erreicht werden soll.	Wie in einer Demo/Nutzerte st die Zielerreichung überprüft werden soll	Schwellwert, um auszusagen "Ziel ist erreicht."	

jeden Menschen.14 Jährige haben ein Bewusstsein für eine nachhaltige Energienutzung entwickelt oder erweitert.	201	Bewusstsein & Energienutzung	der Ausstellung der Primeo Energie AG in Münchenstein sollen ein Bewusstsein für die Nutzung von Strom entwickeln. Ziel ist es, dass Strom nicht als Selbstverständli chkeit angeschaut wird und man dadurch sparsamer und bewusster mit Energie/Strom umgeht. Im Allgemeinen betrifft dies nicht nur Primeo Energie AG, sondern jeden Menschen.14 Jährige haben ein Bewusstsein für eine nachhaltige Energienutzung entwickelt oder	auf Papier funktioniert	Der Durchschnitt des Fragenbogens soll bei 3.5 von 5 Sternen sein.	
--	-----	------------------------------	--	----------------------------	--	--

<i>Z</i> 02	Unterhaltung	Wer das Produkt nutzt, soll während des Spielens unterhalten werden und Spass daran haben, das gestellte Problem spielerisch zu lösen. So haben die Besucher:innen der Ausstellung der Primeo Energie AG in Münchenstein eine positive Tätigkeit erlebt - der Besuch der Ausstellung wird somit emotional positiv gewertet.Habe ich Spass? Qualität Vergleich mit Alternativen. Subjektive Wahrnehmung des Spasses/Unterh altung	Es wird ein Counter eingeführt, der misst, wie viele Levels gespielt wurden.dann dito wie oben	Die Spieler spielen mehr als 1 Level bei unserem Produkt.	
-------------	--------------	--	--	---	--

Z03	Max Flow Problem	Das mathematische Problem (Max Flow Problem) soll den Spielern näher gebracht werden. Benötigt ein Ort im Stromnetz mehr Energie, muss ein optimaler Weg für die Energie vom Herstellungsort bis zur Senke berechnet werden. Dahei	Die Spieler scannen den QR-Code um auf eine Website mit Informationen über das Max Flow Problem zu gelangen	10% der Spieler besuchen die Website	
		berechnet werden. Dabei hilft das Max Flow Problem.			

Stakeholder

Table 3. Stakeholders des Arc42 Document

Wer?	Interesse, Bezug
Softwarearchitektinnen und -architekten:	Erfahrungen über das Unterhalten und erstellen eines Arc42 Dokuments sammeln.
Entwicklerinnen und Entwickler:	Dokumentieren der Entwicklung eines Projekts
Kunde:	Unterstützung der Kreation eines spannenden Max-flow-basierten Spiel

Table 4. Stakeholders Projekt

Stakeholder	Ansprechspersonen	Charakterisierung und Hintergrund	Bedürfnisse
Art des Stakeholders	Name, e-Mail	Eigenschaften, Fähigkeiten, Geräte, Wissen, Erfahrungen, etc., die in die Nutzung des Produkts gebracht werden. Evtl. Verweise auf Dokumente/URL.	Mögliche Ziele, Anforderungen, Einschränkungen, die das Produkt attraktiv machen.

Stakeholder	Ansprechspersonen	Charakterisierung und Hintergrund	Bedürfnisse
Kunde	Andreas Vogt, andreas.vogt@fhnw.ch	Vertritt Primeo Energie AG, war in den letzten 3 Jahren bereits Kunde bei der FHNW und hat Board Games und Arcade Games in Auftrag gegeben.	Spielerischer Faktor des Spiels muss gewährleistet sein, erneuerbare Energien müssen eine Rolle spielen. Muss das Max Flow Problem beinhalten
Auftraggeber (FHNW)	Barbara Scheuner, barbara.scheuner@fhn w.ch	nimmt jährlich Aufträge an, welche realisierbar für das Projekt IP12 sind. Eine Jury wird das Produkt am Ende bewerten.	Erfüllung von Deadlines und Abgabeterminen.
Qualitätsmanager	Joshua Brehm, joshua.brehm@student s.fhnw.ch	Verantwortlich für die Entwicklung und Einhaltung der Qualitätsstandarts. Hat bereits in der IT- Branche gearbeitet.	klarer Informationsfluss, Mitarbeit von Teammitgliedern
Projektmanager	Shane Zulauf, shane.zulauf@students. fhnw.ch	Verantwortlich für das initiieren, Planen, Steuern, Kontrollieren und Abschliessen des Projekts. Hat bereits ein Projekt geleitet.	Mitarbeit von Teammitgliedern, Einhaltung von Terminen

Features

Table 5. Features

ID	Name	Wichtigkeit	Aufwand	Kurzbeschr eibung	Ziele	Implementi erung
F101	RFID Daten auslesen	high	high	Das System sollte die vom User gelegten Bausteine auslesen können.	Spieler können ihren Spielzug auf dem Spielfeld realisieren	RFID reading in Java

ID	Name	Wichtigkeit	Aufwand	Kurzbeschr eibung	Ziele	Implementi erung
F102	Kontrollleuc hte neben den Gebäuden	high	low	Knotenpunkt e besitzen eine Kontrollleuc hte, damit der Spieler erkennen kann, ob seine Lösung erlaubt ist. Auch kann mit der Kontrollleuc hte der Startpunkt und Zwischen- /Endpunkt angezeigt werden.	System hat die möglichkeit dem User seinen Fehler darzustellen.	LED auf dem Spielfeld sind alle einzeln Ansteuerbar.
F103	Levelauswah	high	high	Auf einem Touch Bildschirm werden Buttons für verschieden e Levels dargestellt. Mit drücken auf den Bildschirm auf einen Button wird ein Level ausgewählt. Das System weiss somit welches vordefiniert e Level dem User dargestellt werden soll.	System gibt dem User die Möglichkeit das Spiel, an seinen gewollten Schwierigkei tsgrad anzupassen.	Touch-Bildschirm

ID	Name	Wichtigkeit	Aufwand	Kurzbeschr eibung	Ziele	Implementi erung
F04	Physische Spielanleitu ng	medium	low	Auf dem Holz des Board Games ist die Spielanleitu ng zum Spiel geschrieben.	_	Laserdruck auf Holz, Klebstoff auf Holz
F05	Touch Screen	medium	high	Mithilfe eines Touch Screens kann die Levelauswah l betätigt werden, der Highscore kann angezeigt werden und bei einem Fehler des Spielers kann dies auch angezeigt werden.	Der Spieler tippt auf den Bildschirm, um weitere Level spielen zu können	programmie rung auf RPi,

Randbedingungen

2.1 Technische Randbedingungen

Die Randbedingungen umfassen technische und organisatorische Randbedingungen des Projektes

Randbedingung	Erläuterung, Hintergrund
Hardwareausstattung	Das Projekt sollte auf einem 1,5 GHz 64-Bit ARM Cortex-A72 Quad-Core-Prozessors funktionieren. Dieser Computer bringt eigene Begrenzungen bezüglich Performance und den diversen Ausgabemöglichkeiten mit.
Betrieb auf einem Embedded System bzw mit Raspbian OS	Das Projekt muss auf Rasbian OS laufen.
Implementierung in Java 17	Der Code soll grösstenteils in Java implementiert und geschrieben werden
Pi4j	Die Applikation soll mit der offiziellen Pi4J Library entwickelt werden.
Testing & JUnit5	Das Testing-Framework ist zu übernehmen. Dokumentieren von funktionstüchtigen Tests im Gitlab Repository
Coding Conventions	https://www.oracle.com/technetwork/java/ codeconventions-150003.pdf - Kapitel 2, 5, 6, 7, 8, 9 und 10
Source Code & Version Control	Eigenes Gitlab-Project. https://gitlab.fhnw.ch/ip12-22vt/ip12- 22vt_netzwerkkapazitaeten
Architekturdokumentation	Arc42
Zeitplan	Genauer Nötig: Sommer 2023
Qualitätsanforderung	Das Projekt soll weiter, nicht funktionale Anforderungen beinhalten und umsetzen: TODO
SQLite DB	Vorgegebene Datenbank
Entwicklungsumgebung	Intellij IDEA - Professional Edition (Students)
Internet Verbindung	Wichtig zu beachten, Falls kein Internet vorhanden, müssen wichtige Dinge in den "Cache" gespeichert werden (Wetter API)
Dokumentation	Das ganze Projekt sollte gründlich dokumentiert werden. Dies beinhaltet Aspekte wie z.B: Spielablauf, Inbetriebnahme und die Wartung des Systems

2.2 Organisatorische Randbedingungen

Randbedingung	Erläuterung, Hintergrund
Team	Shane Zulauf (PM) Adrian Miller (IM) Erhan Bilgili (Test-Manager) Ron Gürber (RE) Tim Hoffmann (DEV) Maik Degen (SA) Joschua Brehm (QM)
Zeitplan	Genauer Nötig 12.09.22 - Start 28.11 03.12.22 - Projektwoche im Team 20.02.23 - Start FS23
Vorgehensmodell	Entwicklung risikogetrieben, iterativ und inkrementell. Zur Dokumentation der Architektur kommt arc42 zum Einsatz. Eine Architekturdokumentation gegliedert nach dieser Vorlage ist zentrales Projektergebnis.
Entwicklungswerkzeuge	Entwurf mit Stift und Papier, UML - Diagramme im Enterprise Architect. Arbeitsergebnisse zur Architekturdokumentation gesammelt auf dem Gitlab sowohl auch dem Confluence Wiki. Erstellung der Java-Quelltexte in IntelliJ.
Testing	JUnit-Testing für die Sicherstellung der Software. "Test-driven development".

2.3 Konventionen

Konventionen	Erläuterung, Hintergrund	
Architekturdokumentation	Gliederung nach dem deutschen arc42-Template auf dem Gitlab.	
Kodierrichtlinien für Java	Java Coding Conventions basierend auf Oracle	
Sprache (Deutsch vs. Englisch)	Grundsätzlich wird die Benennung von Dingen (Schnittstellen und Komponenten) in Diagrammen auf Deutsch verfasst. Im Fachbereich der Grafentheorie bezüglich Max-flow-Problem werden, wenn möglich alle Englische begriffe auf Deutsch übersetzt und ausführlich erklärt. **	

Kontextabgrenzung

In der Kontextabgrenzung werden folgende Fragen beantwortet: Welche Nachbarsysteme existieren.+ Wie sehen diese Grenzen aus.

Allgemeine definierung des Scopes des Projekts.

Fachlicher Kontext

Der fachliche Kontext definiert alle Kommunikationsbeziehung des Systems. (Ein- und Ausgabedaten)

Das Projekt "PROJEKTNAME" interagiert im jetzigen Stand nur mit einer externen Schnittstelle, der Wetter API. Sonst wird ausschliesslich mit dem menschlichen Benutzer interagiert.

[Context-Diagramm] | ./images/Outside_Template.bmp

Nutzer:

Unser "Spiel" wird zwischen dem User und dem System gespielt. Das System übernimmt die Rolle des "Gegners". Jede Aktion von dem User wird vom System überprüft und bewertet. (Eingabe möglich? - Eingabe entspricht Maxflow?)

Wetter API (Fremdystem)

Integration der Wetter-API für die Kalkulation der Stromproduktion in späteren Levels

Ein- und Ausgabearten des Systems

Table 1. Dokumentation Ein- und Ausgabewerte

Kommunikationsa rt	Eingabe	Ausgabe
Veränderung der Kapazitäten	RFID-Chip mit Datenhinterlegung im SQLite DB	Visuelle Bestätigung des Inputs (LEDS)
Auswahl eines neuen Levels	Touchscreen eingabe	Visuelle Darstellung Spielfeld ändert sich.
Maxflow Ergebnis	Konstante Überprüfung innerhalb des Systems. Touchscreen bestätigung	Visuelle Darstellung mithilfe LEDS
-	-	-
-	-	-
-	-	-

Table 2. Technische Schnittstellen

Schnittstelle	Beschreibung	Mapping
GPIOPins	Raspberry Pi 4 (rev. B) besitzt 26 ansteuerbare GPIOPins	LEDS, Schalter?, TODO
Stromversorgung	Raspberry Pi 4 (rev. B) besitzt ein USB- Netzteil mit 5 Volt und 3 Ampere mit USB-Typ-C (Steckverbindung)	-
USB	Raspberry Pi 4 (rev. B) hat 4 USB 3.0 Ports und 2 USB 2.0 Ports	TODO
Touchscreen	Raspberry Pi (4 rev. B) besitzt zwei Micro-HDMI Displayanschlüsse.	Darstellung von Levelauswahl und Eingabe

Lösungsstrategie

Erreichen der Qualitätsziele

Table 1. Erreichen der Qualitätsziele

Qualitätsziel	Entscheide zur Erfüllung	
Funktionale Eignung	Gestaltung sollte interkativ sein	
	Funktional korrekt erstellt	
Wartbarkeit	Verwendet Komponenten, welche bereits markterprobt sind.	
	Aus diesem Grund auch einfach in der Beschaffung	
Zuverlässigkeit	Testing mithilfe von Unitstests	
	Zuverlässige Komponenten (RFID - TO-DO) / Weiteres Testing (mit mehreren RFID (interference) nötig)	

Bausteinsicht

Das System wird in einzelne Bausteine unterteilt. Die Bausteinsicht zeigt diese Bausteine auf und verdeutlicht diese Abhängigkeit.

Whitebox Gesamtsystem

Die genauere Zerlegung des Gesamtsystems wird in diesem Abschnitt genauer untersucht.

TODO: Create Diagrams

[Hierarchie in der Bausteinsicht] | 05_building_blocks-DE.png

Ebene 1 ist die Whitebox-Beschreibung des Gesamtsystems, zusammen mit Blackbox-Beschreibungen der darin enthaltenen Bausteine.

Ebene 2 zoomt in einige Bausteine der Ebene 1 hinein. Sie enthält somit die Whitebox-Beschreibungen ausgewählter Bausteine der Ebene 1, jeweils zusammen mit Blackbox-Beschreibungen darin enthaltener Bausteine.

Ebene 3 zoomt in einige Bausteine der Ebene 2 hinein, usw.

Weiterführende Informationen

Risiken und technische Schulden

ID	Risiken	Risiko "LEVEL"
I001	RFID interference, Da wir vor haben, mehrere RFID Reader zu nutzen, besteht das Risiko von grosser interference. Die Praktische anwendung haben wir noch nicht untersucht (nur small scale testing).	High, lösbar mit viel Testing
1002	Erste Erfahrung mit Implementation eines Maxflow problems, da implementierung und Verständniss kompliziert, hoher aufwand.	High, viel know-how noch nachzuholen
1003	Verbindung technischer Komponenten (Verkabelung, Löten), Touchscreen, LED's	High, da know-how noch zu erarbeiten ist.
1004	Absturz aufgrund von Memory- Leaks.	medium, Problem sollte bis zur Live-demonstration, nach genug Testing "low" sein.
I004	Bezüglich Qualitätsziele: Sinnvolle Generation des Schwierigkeitsgrads vom Maxflowproblem. Abschätzung der Stärke	medium
1005	Implementierung der Wetter API, basierend auf Qualitätszielen: Sollte Offline verfügbar sein. (Caching der Daten)	low
I008	-	-
1009	-	-
I010	-	-
I011	-	-