STAC58: 2017 Assignment 4 - Solutions

1. (8.2.4)

(a) Let C be the 0.975-confidence interval for μ . Then, $P_{\mu}(C) = 0.975$. The size of the test is the rejecting probability of H_0 . Hence, the size is $\alpha = P_0(0 \notin C) = 1 - P_0(C) = 1 - 0.975 = 0.025$.

(b) The confidence interval C is $[\bar{x} - z_{0.9875}/\sqrt{20}, \bar{x} + z_{0.9875}/\sqrt{20}]$. Since $\bar{x} \sim N(\theta, 1/20)$ if θ is true, the power function is given by

$$\beta(\theta) = P_{\theta}(0 \notin C) = P_{\theta}(\bar{x} < -z_{0.9875}/\sqrt{20} \text{ or } \bar{x} > z_{0.9875}/\sqrt{20})$$
$$= \Phi(-(z_{0.9875} + \theta)/\sqrt{20}) + 1 - \Phi((z_{0.9875} - \theta)/\sqrt{20}).$$

2. (8.2.16) Without loss of generality, assume $\mu_0 = 0$. Then for $H_0: \sigma^2 = \sigma_0^2$ versus $H_a: \sigma^2 = \sigma_1^2$, the UMP size α test rejects H_0 whenever

$$\frac{L\left(\sigma_{1}^{2} \mid x_{1}, \dots, x_{n}\right)}{L\left(\sigma_{0}^{2} \mid x_{1}, \dots, x_{n}\right)} = \frac{\sigma_{1}^{-2n} \exp\left\{-\frac{1}{2\sigma_{1}^{2}} \sum_{i=1}^{n} x_{i}^{2}\right\}}{\sigma_{0}^{-2n} \exp\left\{-\frac{1}{2\sigma_{0}^{2}} \sum_{i=1}^{n} x_{i}^{2}\right\}} > c_{0}$$

or, equivalently, whenever $n\left(\sigma_0^2 - \sigma_1^2\right) + \frac{1}{2}\left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right)\sum_{i=1}^n x_i^2 > \ln c_0$ or, using $\sigma_0^2 < \sigma_1^2$, whenever

$$\frac{1}{\sigma_0^2} \sum_{i=1}^n x_i^2 > \frac{2}{\sigma_0^2} \left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2} \right)^{-1} \left(\ln c_0 - n \left(\sigma_0^2 - \sigma_1^2 \right) \right).$$

Under H_0 we have that $\frac{1}{\sigma_0^2}\sum_{i=1}^n x_i^2 \sim \chi^2(n)$, so the test is to reject whenever $\frac{1}{\sigma_0^2}\sum_{i=1}^n x_i^2 > x_{1-\alpha}$, where $x_{1-\alpha}$ is the $(1-\alpha)$ th quantile of the $\chi^2(n)$ distribution. Since the test does not involve σ_1^2 , it is UMP size α for $H_0: \sigma^2 = \sigma_0^2$ versus $H_a: \sigma^2 > \sigma_0^2$. The power function of this test is given by $P_{\sigma^2}\left(\frac{1}{\sigma_0^2}\sum_{i=1}^n x_i^2 \geq x_{1-\alpha}\right) = P_{\sigma^2}\left(\frac{1}{\sigma^2}\sum_{i=1}^n x_i^2 \geq \frac{\sigma_0^2}{\sigma^2}x_{1-\alpha}\right) = P\left(Z \geq \frac{\sigma_0^2}{\sigma^2}x_{1-\alpha}\right)$ where $Z = \left(\sum_{i=1}^n x_i^2\right)/\sigma^2 \sim \chi^2(n)$, so the power function is increasing in σ^2 . This implies that the above test is of size α for $H_0: \sigma^2 \leq \sigma_0^2$ versus $H_a: \sigma^2 > \sigma_0^2$. Now suppose φ is also size α for $H_0: \sigma^2 \leq \sigma_0^2$ versus $H_a: \sigma^2 > \sigma_0^2$. Then φ is also size α for $H_0: \sigma^2 = \sigma_0^2$ versus $H_a: \sigma^2 > \sigma_0^2$ and so must have its power function uniformly less than or equal to the power function for the above test when $\sigma^2 > \sigma_0^2$. This implies that the above test is UMP size α for $H_0: \sigma^2 \leq \sigma_0^2$ versus $H_a: \sigma^2 > \sigma_0^2$.

3. (8.3.4) From Example 7.1.1 we have that the posterior distribution of θ is Beta $(n\bar{x} + \alpha, n(1 - \bar{x}) + \beta)$. The Bayes rule is given by the posterior mean and this is evaluated in Example 7.2.2 to be $(n\bar{x} + \alpha)/(n + \alpha + \beta)$.

4. (8.3.9) Suppose $T(s) \in \{\theta_1, \theta_2\}$ for each s. The Bayes rule will minimize

$$E_{\Pi} (P_{\theta} (T(s) \neq_{\theta})) = E_{\Pi} (E_{\theta} (1 - I_{\{\theta\}} (T(s))))$$

= 1 - E_{\Pi} (E_{\theta} (I_{\{\theta\}} (T(s)))) = 1 - E_{M} (E_{\Pi(\cdot \mid s)} (I_{\{\theta\}} (T(s)))).

Therefore, the Bayes rule at s is given by T(s) which maximizes

$$E_{\Pi(\cdot \mid s)} \left(I_{\{\theta\}} \left(T(s) \right) \right) = \Pi \left(\{\theta_1\} \mid s \right) I_{\{\theta_1\}} \left(T(s) \right) + \Pi \left(\{\theta_2\} \mid s \right) I_{\{\theta_2\}} \left(T(s) \right)$$

and this is clearly given by

$$T(s) = \begin{cases} \theta_1 & \Pi(\{\theta_1\} \mid s) > \Pi(\{\theta_2\} \mid s) \\ \theta_2 & \Pi(\{\theta_2\} \mid s) > \Pi(\{\theta_1\} \mid s) \end{cases}$$

and when $\Pi(\{\theta_1\} \mid s) = \Pi(\{\theta_2\} \mid s)$ we can take T(s) to be either θ_1 or θ_2 . So the Bayes rule is given by the posterior mode.

5. (7.2.22) The posterior distribution of μ given σ^2 is the $N(\mu_x, (n+1/\tau_0^2)^{-1} \sigma^2)$ distribution where μ_x is given by (7.1.7). The posterior distribution of σ^2 is the Gamma($\alpha_0 + n/2, \beta_x$) distribution, where β_x is given by (7.1.8). Therefore, the integral (7.2.2) is given by

$$\psi_0^{-2} \int_0^\infty \frac{1}{\sqrt{2\pi}} \left(n + \frac{1}{\tau_0^2} \right)^{1/2} \exp\left(-\frac{\lambda}{2} \left(n + \frac{1}{\tau_0^2} \right) \left(\psi_0^{-1} \lambda^{-\frac{1}{2}} - \mu_x \right)^2 \right) \times \frac{(\beta_x)^{\alpha_0 + n/2}}{\Gamma\left(\alpha_0 + n/2\right)} \lambda^{\alpha_0 + n/2 - 1} \exp\left(-\beta_x \lambda \right) d\lambda.$$