Regularizations

- Regularizations
 - L1: Lasso
 - Function: $CostFunction = Loss + \frac{\lambda}{2m} * \sum ||w||$
 - penalize the absolute value of the weights
 - useful for feature engineering
 - Explainable: select the important features whose weights do not equal to 0, while deletes those unimportant features' weights are equal 0
 - Laplace distribution
 - L2:Ridge
 - Function: $CostFunction = Loss + \frac{\lambda}{2m} * \sum ||w||^2$
 - λ : regularization parameter
 - Also called weight decay 权重衰减, owing to it forces the weights to decay towards
 0.
 - Gaussian distribution
 - Coding in Keras:
 - from Keras import regularizers
 - model.add(Dense(64,input_dim=64,kernel_regularizer=regularizers.l
 2(0.01)
 - Dropout(more useful in DL)
 - Concepts: At every iteration, it randomly selects some nodes, and removes them along with all of their incoming and outgoing connections.
 - use **backpropagation** to learn and update the parameters in neural network, while the nodes which are deleted not engage in the update progress.
 - the hyperparamter of dropout function: the probability (p) to choose how many nodes should be dropped.
 - Apply to <u>hidden layers and input layers</u>.
 - Ensemble learning
 - Coding:
 - from keras.layers.core import Dropout
 - model = Sequential([Dense(output_dim=hidden1_num_units, input_dim=input_num_units, activation='relu'),
 - Dropout (0.25), # we define p=0.25 as the probability of dropping
 - Dense(output_dim=output_num_units, input_dim=hidden5_num_units, activation='softmax'),])

- Data Augmentation
 - increase the size of the training data
- Early Stopping
 - cross-validation strategy, keep one part of training dataset as validation set
 - If we see the performance of validation set is getting worse, we can stop the training on model
 - Coding
 - from keras.callbacks import EarlyStopping
 - EarlyStopping(monitor='val_err', patience=5)
 - monitor: the quantity that needs to be monitored
 - 'val_err' denotes the validation error.
 - **Patience**: the number of epochs with no further improvement after which the training will be stopped.
- Concepts: to prevent the model too complex and overfitting, add penalization elements after the original loss function, improving the model's performance on the unseen data.→
 Cost Function=Loss + Regularization Term
 - In deep learning, it penalizes the weight matrices of the nodes.
 - If the regularization coefficient is too high,
 - some weight matrices nearly equal zero
 - a simplier linear network
 - slight underfitting for the training data

以上内容整理于 幕布文档