Matemáticas Avanzadas

Erick E. Luna Rojero

Facultad de Ingeniería División de Ciencias Básicas Universidad Nacional Autónoma de México

2003 (ver. 1.1)

Índice general

Ι	Variable compleja	7
1.	Números complejos	9
2.	Cálculo Diferencial Complejo	13
	El plano de Argand	13
	Función Compleja	14
	Límites	15
	Continuidad	15
	Derivada compleja	$\frac{16}{17}$
	Funciones Analíticas	18
	Funciones armónicas	18
3.	Funciones Complejas	21
	Función exponencial	21
	Funciónes trigonométricas	22
	Función logaritmo	22
4.	Cálculo integral complejo	25
	Integral de línea compleja	25
	Definición	25
	Integración paramétrica	26
	Teorema integral de Cauchy	26
	Independencia de la trayectoria	26
	Antiderivada	26
	Deformación	27
	Fórmula integral de Cauchy	27
	Derivadas de funciones analíticas	27
	Extensión de la fórmula integral de Cauchy para una anillo	27
5.	Series de Taylor y Laurent	29
	Sucesión compleja	29
	Sucesión de Cauchy	29
	Series Complejas	29
	Series de potencias complejas	30
	Serie de Taylor compleja	31
	Serie de Laurent compleja	31
6.	Teorema del Residuo	33
	Clasificación de singularidades	33
	Ceros de una función	33
	Teorema	33
	Residuos	34
	Teorema del Residuo	34
	Teorema del Igorida	01

ÍNDICE GENERAL 3

	Teorema: residuos y polos	34
7.	Ejercicios de variable compleja	37
II	Funciones ortogonales	43
8.	Series de Fourier	45
	Funciones ortogonales	45
	Algebra lineal	45
	Funciones	45
	Serie de Fourier	45
	Condiciones de Dirichlet	46
	Aproximación por Fourier	46
	Fourier en las discontinuidades	47
	Teorema de Parseval	47
	Simetrías	47
	Derivación e Integración de Series de Fourier	47
	Ejemplos	48
	Función Heaviside y Delta de Dirac	48
	Derivación en puntos singulares	48
O	Espectros de frecuencia discreta	51
9.	Forma compleja de las series de Fourier	51 51
	Espectros de frecuencia compleja	51
	Contenido de potencia y teorema de Parseval	52
	Contenido de potencia y teorenia de l'albertal	02
10	.Transformada de Fourier	53
	Deducción	53
	Transformada de Fourier	53
	Espectro de frecuencia continuo	53
	Transformadas seno y coseno de Fourier	54
	Convolución y correlación	54
	Ejemplos	54
TT	.Polinómios de Legendre	57
	Definición	
	Representación	
	Fórmulas de recurrencia	57
	Ortogonalidad	58
	Serie Fourier-Legendre	58
	Valores importantes	58
	Gráfica de los polinómios de Legendre	58
12	.Función Gamma	59
	Definición	59
	Representación	59
	Relaciones de Recurrencia	59
	Valores Importantes	59
13	.Funciones de Bessel	61
	Definición	61
	Representación	61
	Fórmulas de recurrencia	61
	Ortogonalidad	61
	Integral de Bessel-Fourier	62
	Gráfica	62

ÍNDICE GENERAL

Comportamiento asintótico	62
14. Ejercicios de funciones ortogonales	63
III Apéndices	65
Apéndice A: Tabla de transformada de Fourier	67
Apéndice B: Tabla de transformada seno de Fourier	68
Apéndice C: Tabla de transformada coseno de Fourier	68
Apéndice D: Referencias Bibliográficas	69

ÍNDICE GENERAL 5

Parte I Variable compleja

Números complejos

Definición

Si postulamos a la unidad imaginaria como

$$i^2 = -1$$

podemos definir a un número complejo como el símbolo

$$z = a + ib$$
,

en donde a y b son números reales.

A a la llamamos parte real de z

$$a = \operatorname{Re} z$$

y a b parte imaginaria de z

$$b = \operatorname{Im} z$$

Igualdad

Dos números complejos z=a+ib y w=c+id cumplen que

$$z = w \Leftrightarrow \{a = c \ y \ b = d\}$$

Suma

La suma de dos números complejos z=a+ib y w=c+id se define como

$$z + w = (a + ib) + (c + id)$$

 $z + w = (a + c) + i(b + d)$

Multiplicación

La multiplicación de dos números complejos z=a+ib y w=c+id se define como

$$zw = (a+ib)(c+id)$$

$$zw = (ac-bd) + i(ad+bc)$$

Complejo conjugado

El complejo conjugado de z=a+ib se denota como \bar{z} o $z^*,$ y se define por

$$\bar{z} = z^* = a - ib$$

Módulo o magnitud

El módulo o la magnitud de un número complejo z=a+ib se denota como |z| y se define como

$$|z| = \sqrt{a^2 + b^2}.$$

Theorem 1 Sean z y w dos números complejo, entonces

$$\begin{array}{rcl} z\bar{z} & = & |z|^2 \\ \hline (z+w) & = & \overline{z}+\overline{w} \\ \hline (zw) & = & \overline{z}\overline{w} \\ \hline (\frac{z}{w}) & = & \frac{\overline{z}}{\overline{w}} \end{array}$$

Cociente

El cociente de dos números complejos z=a+ib y $w=c+id\neq 0$ se define como

$$\frac{z}{w} = \frac{z\overline{w}}{w\overline{w}} = \frac{z\overline{w}}{|w|^2}$$
$$\frac{z}{w} = \frac{ac + db}{c^2 + d^2} + i\frac{bc - ad}{c^2 + d^2}$$

Plano de Argand o complejo

Podemos representar a un número complejo en un plano \mathbf{Z} , para ello definimos dos ejes ortogonales en el plano, uno de los cuales (horizontal)

9

representa a la parte real del número complejo, y el otro eje (vertical) a la parte imaginaria (ver figura). Así cualquier número complejo se puede representar como un punto del plano **Z**.

Plano de Argand

Forma polar de un número complejo

Sea z=a+ib con representación en el plano de Argad (a,b). Si definimos a r como la distancia del origen al punto (a,b) y a θ como el ángulo forma el eje horizontal con r (ver figura), de argumentos geométricos obtenemos

$$a = r \cos \theta$$
$$b = r \sin \theta$$

$$r = \sqrt{a^2 + b^2} = |z|$$

$$\theta = \tan^{-1}\left(\frac{b}{a}\right)$$

Forma polar de un número complejo

entonces

$$z = a + ib$$

$$z = r [\cos \theta + i \sin \theta]$$

$$z = |z| e^{i\theta}$$

o en forma simbólica

$$z = r \operatorname{cis}(\theta)$$
$$z = r \angle \theta$$

De las fórmulas se observa que r es la magnitud o módulo de z. A θ se le conoce como el argumento de z, y se denota $\arg(z)$, en general θ es cualquier ángulo que cumpla $\tan\theta$ es tan⁻¹ (b/a), esto es, hay un número infinito de argumentos de z. Para evitar la confusión de tener una función multivaluada se define al argumento principal de z como el θ tal que

$$-\pi < \theta < \pi$$

y se denota Arg(z).

Theorem 2 Sean z y w dos números complejos \Rightarrow

$$|zw| = |z||w|$$

$$\left|\frac{z}{w}\right| = \frac{|z|}{|w|} \text{ si } w \neq 0$$

$$\arg(zw) = \arg(z) + \arg(w)$$

$$\arg\left(\frac{z}{w}\right) = \arg(z) - \arg(w)$$

$$\arg(z) = \arg(cz) : c > 0$$

Potencias enteras de un número complejo

Sea el número complejo $z = r [\cos \theta + i \sin \theta]$ entonces

$$z^n = r^n \left[\cos (n\theta) + i \sin (n\theta) \right]$$

Potencias fraccionarias de un número complejo

Sea el número complejo $z=r\left[\cos\theta+i\sin\theta\right]$ entonces

$$z^{\frac{1}{m}} = r^{\frac{1}{m}} \left[\cos \left(\frac{\theta}{m} + \frac{2k\pi}{m} \right) + i \operatorname{sen} \left(\frac{\theta}{m} + \frac{2k\pi}{m} \right) \right]$$

$$k = 0, 1, 2, ..., m - 1; \text{ para } m \ge 1$$

al igual que en los números reales existen m posibles valores para la raíz $m - \acute{e}sima$ de z.

Theorem 3 (de Moivre) Para cualquier número entero n y cualquier real θ

$$\left[\cos\theta + i\sin\theta\right]^n = \cos(n\theta) + i\sin(n\theta)$$

Regiones en el plano

Las ecuaciones y desigualdades de una variable, z, pueden representarse como regiones en el plano.

Ejemplos

$$\operatorname{Re}(z) = \operatorname{Im}(z)$$

• |z| = 1, aquí podemos utilizar la definición de módulo, $\sqrt{a^2 + b^2} = 1$, esto es, $a^2 + b^2 = 1^2$, una circunferencia con centro en el origen y radio 1.

 $|z - z_0| \le r_0$

■ $1 < |z-1| \le 2$. En la figura se muestra al círculo interno punteado, lo que significa que la región no toca a la frontera, mientras que el círculo externo es continuo, ya que la región incluye a la frontera.

El número complejo infinito

Definimos al número complejo infinito como el que satisface

$$\begin{array}{rcl} \frac{z}{\infty} & = & 0 \\ z \pm \infty & = & \infty : z \neq \infty \\ \frac{z}{0} & = & \infty : z \neq 0 \\ z \cdot \infty & = & \infty : z \neq 0 \\ \frac{\infty}{z} & = & \infty : z \neq \infty \end{array}$$

cuando el plano de Argand incluye al punto infinito, se llama plano z extendido. Para entender mejor lo que significa el punto infinito utilizaremos la esfera numérica de Riemann. El punto z_1 es proyectado en el punto ζ_1 de la esfera de Riemann con la ayuda de un segmento de recta que une a los puntos B y z_1 . El punto z=0 de Argand es el A de la esfera de Riemann y el punto ∞ del plano de Argand es el B de la esfera de Riemann.

11

Cálculo Diferencial Complejo

El plano de Argand

Para poder estudiar el cálculo son necesarias las definiciones que a continuación se muestran:

Punto:

Conjunto: Una colección de puntos en el plano complejo.

Vecindad: Se llama vecindad (o entorno) de radio r, de un punto z_0 , al conjunto de puntos situados en el interior de un círculo de radio r centrado en z_0 , es decir la región $|z - z_0| < r$

 $Vecindad\ punteada$: Una vecindad punteada de z_0 es el conjunto de puntos tal que $0<|z-z_0|< r$

Conjunto abierto: Un conjunto abierto es aquel en el que, para todo elemento, existe una vecindad cuyos puntos pertenecen al conjunto.

Ejemplo.- |z| < 1.

Conjunto cerrado: Un conjunto cerrado es aquel en el que, para al menos un elemento, no existe una vecindad cuyos puntos pertenecen todos al conjunto.

Conjunto cerrado

Ejemplo .- $|z| \leq 1$.

Conjunto conexo: Un conjunto es conexo si dados dos puntos cualesquiera del conjunto, existe una trayectoria formada por segmentos de recta que los une, y cuyos puntos pertenecen al conjunto.

Dominio: Llamamos dominio a un conjunto abierto conexo.

Dominio simplemente conexo: Un dominio sin agujeros.

Dominio multiplemente conexo: Un dominio con agujeros.

Conjunto multiplemente conexo

Punto frontera: Es un punto tal que toda vecindad de dicho punto contiene al menos un punto que pertenece al conjunto y otro que no.

Punto interior: Es un punto tal que toda vecindad de dicho punto contiene puntos que pertenece al conjunto.

Punto exterior: Es un punto tal que toda vecindad de dicho punto no contiene puntos que pertenece al conjunto.

Región: Es la unión de un dominio y posiblemente algunos, ninguno o todos sus puntos frontera

Conjunto acotado: Un conjunto para el cual existe un círculo de radio finito que circunscribe al conjunto.

Función Compleja

Una función compleja se define como

$$w = \{z \in \mathbf{D}, w \in \mathbf{I} \mid w = f(z)\}$$

En donde \mathbf{D} es el dominio de la función en el plano \mathbf{Z} , e \mathbf{I} es la imagen de la función en el plano \mathbf{W} . Decimos que la función mapea el punto $z_1 = x_1 + iy_1 \in \mathbf{D}$ al punto $w_1 = u_1 + iv_1 \in \mathbf{I}$.

Función compleja w = f(z).

Ejemplo

$$\begin{array}{rcl} w&=&\{z\in\mathbf{D},w\in\mathbf{I}:w=|z|\}\\ \mathbf{D}&=&\{|z|\leq1\}\\\\ w=|z|=\sqrt{x^2+y^2}\\ \text{si tomamos }|z|=1=\sqrt{x^2+y^2}=1\rightarrow w=1\\\\ y\\ \text{si }|z|=0=\sqrt{x^2+y^2}=0\rightarrow w=0,\\ \text{es decir, la circunferencia unitaria con centro} \end{array}$$

es decir, la circunferencia unitaria con centro en el origen, se mapea en el segmento de recta de 0 a 1 como se muestra en la figura.

Límites

Sean una función compleja f(z) y una constante compleja L. Si para todo número real $\epsilon>0$ existe un número real $\delta>0$ tal que

$$|f(z) - L| < \epsilon$$

para todo z tal que

$$0 < |z - z_0| < \delta$$

entonces decimos que

$$\lim_{z \to z_0} f(z) = L,$$

es decir, que f(z) tiene límite L cuando z tiende a z_0 .

Límite complejo

Es fácil notar que la definición de límite real y límite complejo son muy similares, sin embargo, existen diferencias entre ellas. Para ilustrar lo anterior recuerde que en el caso real si los límites por la izquierda y por la derecha existen y son iguales, entonces el límite existe. Por otro lado, en el caso complejo, no hay sólo dos direcciones, sino un número infinito de trayectorias por las cuales z tiende a z_0 , y para que el límite exista, todos estos límites deberán existir y ser iguales.

Theorem 4 Suponga que

$$\lim_{z \to z_0} f(z) \ y \ \lim_{z \to z_0} g(z) \ existen \ \Rightarrow$$

$$\lim_{z \to z_0} \left[f\left(z\right) + g\left(z\right) \right] = \lim_{z \to z_0} f\left(z\right) + \lim_{z \to z_0} g\left(z\right)$$

$$\lim_{z \to z_0} \left[\alpha f\left(z\right) \right] = \alpha \lim_{z \to z_0} f\left(z\right) : \forall \alpha$$

$$\lim_{z \to z_0} \left[f\left(z\right) \cdot g\left(z\right) \right] = \lim_{z \to z_0} f\left(z\right) \cdot \lim_{z \to z_0} g\left(z\right)$$

$$\lim_{z \to z_0} \left[\frac{f\left(z\right)}{g\left(z\right)} \right] = \frac{\lim_{z \to z_0} f\left(z\right)}{\lim_{z \to z_0} g\left(z\right)} \sin \lim_{z \to z_0} g\left(z\right) \neq 0$$

Ejemplo

Analice al siguiente límite

$$\lim_{z \to 0} f\left(z\right) = \lim_{z \to 0} \left[\frac{x^2 + x}{x + y} + i\frac{y^2 + y}{x + y}\right]$$

tomemos dos trayectorias, la primera a lo largo del eje y acercándose por arriba, sobre esta trayectoria x=0 y el límite

$$\lim_{z \to 0} f(z) = \lim_{y \to 0} \left[i \frac{y^2 + y}{y} \right]$$
$$= \lim_{y \to 0} \left[i (y+1) \right] = i$$

la segunda a lo largo del eje x acercándose por la derecha, sobre esta trayectoria y=0 y el límite.

$$\lim_{z \to 0} f(z) = \lim_{x \to 0} \left[\frac{x^2 + x}{x} \right]$$
$$= \lim_{x \to 0} [x + 1] = 1$$

como los límites por diferentes trayectorias son diferentes el límite no existe.

El límite no existe

Continuidad

Decimos que una función $w=f\left(z\right)$ es continua en $z=z_0$ si se satisfacen las dos condiciones siguientes:

- 1. $f(z_0)$ está definido
- 2. $\lim_{z \to z_0} f(z) \exists$, y $\lim_{z \to z_0} f(z) = f(z_0)$

Theorem 5 Sean f(z) y g(z) continuas en z_0 , entonces en z_0

$$f(z) \pm g(z),$$

$$f(z) g(z),$$

$$f[g(z)] y$$

$$|f(z)|$$

son continuas y

$$\frac{f\left(z\right)}{g\left(z\right)}$$

es continua si $g(z_0) \neq 0$, además si f(z) = u(x, y) + iv(x, y), entonces

son continuas.

Ejemplo

Estudie la continuidad en z = i de la función

$$f(z) = \begin{cases} \frac{z^2+1}{z-i} & z \neq i \\ 3i & z=i \end{cases}$$

Primero se analiza si $f(z_0)$ existe, para este problema f(i) = 3i, lo que sigue es encontrar el límite

$$\lim_{z \to i} \frac{z^2 + 1}{z - i}$$

$$= \lim_{z \to i} \frac{z^2 - i^2}{z - i}$$

$$= \lim_{z \to i} \frac{(z + i)(z - i)}{z - i}$$

$$= \lim_{z \to i} (z + i)$$

$$= 2i$$

aunque el límite existe tenemos que,

$$\left(\lim_{z \to i} \frac{z^2 + 1}{z - i} = 2i\right) \neq (f(i) = 3i)$$

por lo tanto no es continua.

Derivada compleja

Dada una función de variable compleja f(z), la derivada en z_0 , se define como:

$$f'(z_0) = \frac{df}{dz}\Big|_{z_0}$$

$$= \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

$$= \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

siempre y cuando el límite exista. La definición anterior es muy similar al caso real, sin embargo, se debe tener cuidado ya que el límite complejo, es más complicado de obtener. El problema de la existencia de la derivada se estudiará más adelante.

Theorem 6 Si f y g son funciones derivables en $z_0 \Rightarrow$

$$(f+g)' = f'+g'$$

$$(\alpha f)' = \alpha f'$$

$$(f \cdot g)' = fg'+f'g$$

$$\left(\frac{f}{g}\right)' = \frac{gf'-fg'}{g^2} : g \neq 0$$

$$\frac{df [g(z)]}{dz} = \frac{df}{dg} \frac{dg}{dz}$$

Ejemplo

Si
$$f(z) = z^n$$
,

$$\frac{dz^n}{dz} = nz^{n-1}$$

Ejemplo

Sea $f(z) = \bar{z}$, pruebe que $f'(i) \not\equiv$. La definición de la derivada es:

$$f'(i) = \lim_{z \to i} \frac{\bar{z} - (-i)}{z - i}$$

$$f'(i) = \lim_{z \to i} \frac{\bar{z} + i}{z - i}$$

para analizar este límite utilizaremos dos trayectorias diferentes:

la primera sobre el eje imaginario, aquí, x=0, entonces el límite es

$$f'(i) = \lim_{z \to i} \frac{x - iy + i}{x + iy - i}$$
$$= \lim_{y \to 1} \frac{-iy + i}{iy - i}$$
$$= -\lim_{y \to 1} \frac{y - 1}{y - 1}$$
$$= -1$$

a la segunda trayectoria la definimos como la recta horizontal y = 1, en este caso el límite

$$f'(i) = \lim_{z \to i} \frac{x - iy + i}{x + iy - i}$$
$$= \lim_{x \to 0} \frac{x - i + i}{x + i - i}$$
$$= \lim_{x \to 0} \frac{x}{x}$$
$$= 1$$

como ambos límites tienen diferentes valores, la derivada no existe.

La derivada no existe

Ecuaciones de Cauchy-Riemann-(D'Alembert)

Como se mostró en ejemplos anteriores probar que la derivada existe apartir de un límite es complicado, aún en funciones sencillas. En esta sección se estudia una manera simple de probar si la derivada existe y cómo calcularla.

Suponga que la función f(z) = u(x, y) + iv(x, y)tiene derivada en $z_0 = x_0 + iy_0$, es decir,

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} \quad \exists,$$

en donde el incremento es $\Delta z = \Delta x + i\Delta y$. Si se toma el límite por dos diferentes trayectorias como se muestra en la figura

Se toman dos diferentes trayectorias

para la trayectoria I, $y = y_0$, $\Delta y = 0$ y $\Delta z = \Delta x$, entonces la derivada

$$f'(z_0) = \lim_{\Delta x \to 0} \frac{f(z_0 + \Delta x) - f(z_0)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) + iv(x_0 + \Delta x, y_0)}{-u(x_0, y_0) - iv(x_0, y_0)}$$

$$= \lim_{\Delta x \to 0} \left\{ \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x} + \frac{1}{i \frac{v(x_0 + \Delta x, y_0) - v(x_0, y_0)}{\Delta x}} \right\}$$

$$f'(z_0) = \left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \right)_{x_0, y_0}$$

para la trayectoria II, $x = x_0$, $\Delta x = 0$ y $\Delta z = i\Delta y$, entonces la derivada

$$f'(z_0) = \lim_{\Delta y \to 0} \frac{f(z_0 + i\Delta y) - f(z_0)}{i\Delta y}$$

$$= \lim_{\Delta y \to 0} \frac{-u(x_0, y_0 + \Delta y) + iv(x_0, y_0 + \Delta y)}{i\Delta y}$$

$$= \lim_{\Delta y \to 0} \frac{-u(x_0, y_0) - iv(x_0, y_0)}{i\Delta y}$$

$$= \lim_{\Delta y \to 0} \left\{ \frac{\frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{i\Delta y}}{i\Delta y} + \frac{1}{i\Delta y}$$

$$= \lim_{\Delta y \to 0} \left\{ \frac{\frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{i\Delta y}}{i\Delta y} + \frac{1}{i\Delta y} \right\}$$
eneriores promultimite es as. En esta et de probar

Si la derivada existe los límites son iguales:

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y},$$

o bien,

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \tag{2.1}$$

$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \tag{2.2}$$

Las ecuaciones 2.1 y 2.2 se conocen como las ecuaciones de **Cauchy-Riemann**, si estas ecuaciones no son válidas en algún punto, la derivada no existe en ese punto, es decir, sólo son condición necesaria, pero no suficiente, para que la derivada exista.

Theorem 7 Si tanto u y v como sus primeras derivadas parciales $\partial u/\partial x$, $\partial u/\partial y$, $\partial v/\partial x$ y $\partial u/\partial y$ son continuas en alguna vecindad de z_0 , las ecuaciones de Cauchy-Riemann son condición suficiente para que la derivada exista. El valor de la derivada es:

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$$

Forma polar de las ecuaciones 2.1 y 2.2

Algunas veces es más fácil utilizar la forma polar de una función compleja, en este caso las ecuaciones de Cauchy-Riemann tienen la forma:

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} \tag{2.3}$$

$$\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta} \tag{2.4}$$

Ejemplo

En donde es diferenciable $|z|^2$

$$|z|^2 = x^2 + y^2$$

entonces

$$u = x^2 + y^2$$
$$v = 0$$

u, v y sus derivadas son continuas en todo el plano, y las ecuaciones de Cauchy-Riemann sólo se cumplen en el origen, entonces la derivada existe únicamente en el origen y su valor es

$$f'(0) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} = 0$$

Theorem 8 Regla de L'Hôpital. Si $g(z_0) = 0$ $y \ h(z_0) = 0$, $y \ si \ g(z) \ y \ h(z)$ son diferenciables en $z_0 \ con \ h'(z_0) \neq 0$

$$\lim_{z \to z_0} \frac{g\left(z\right)}{h\left(z\right)} = \frac{g'\left(z_0\right)}{h'\left(z_0\right)}.$$

Funciones Analíticas

Decimos que una función f(z) es **analítica** en z_0 si f'(z) no sólo existe en z_0 , sino en todo punto de alguna vecindad de z_0 . Si la función es analítica en todo el plano complejo decimos que la función es **entera**.

Si una función no es analítica en z_0 , pero es analítica en al menos un punto de toda vecindad de z_0 , decimos que z_0 es una **singularidad** de la función.

Theorem 9 Si f(z) y g(z) son funciones analíticas en alguna región, entonces también son analíticas

$$f(z) \pm g(z)$$

$$f(z) \cdot g(z)$$

$$f[g(z)]$$

$$\frac{f(z)}{g(z)} si (g(z) \neq 0)$$

para la misma región.

Ejemplo

Un polinomio es entero

$$f(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z^1 + a_0$$

y una función racional

$$f(z) = \frac{a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z^1 + a_0}{b_m z^m + b_{m-1} z^{m-1} + \dots + b_1 z^1 + b_0}$$

es analítica excepto en los puntos para los que

$$b_m z^m + b_{m-1} z^{m-1} + \dots + b_1 z^1 + b_0 = 0$$

Funciones armónicas

Considere el siguiente problema, dada una función real $\phi(x,y)$, bajo que condiciones puede ser parte real o imaginaria de una función analítica?, es decir,

$$\begin{array}{rcl} f\left(z\right) & = & \phi\left(x,y\right) + iv\left(x,y\right) \\ & & 6 \\ f\left(z\right) & = & u\left(x,y\right) + i\phi\left(x,y\right) \end{array}$$

para contestar a esta pregunta considere una función analítica $f\left(z\right)=u\left(x,y\right)+iv\left(x,y\right)$. Si es analítica, u y v satisfacen la ecuaciones de Cauchy-Riemann

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \tag{2.5}$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \tag{2.6}$$

Si diferenciamos a la ecuación 2.5 respecto a x y a la 2.6 respecto a y, obtenemos

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y}$$
$$\frac{\partial^2 u}{\partial y^2} = -\frac{\partial^2 v}{\partial y \partial x}$$

Si consideramos que la función v y sus derivadas son continuas, podemos invertir el orden de derivación de los lados derechos de la ecuaciones anteriores, si sumamos ambas ecuaciones obtenemos:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

$$\nabla^2 u = 0$$

la ecuación anterior se conoce como la **Ecuación** de Laplace

Con un procedimiento similar podemos obtener:

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$
$$\nabla^2 v = 0$$

Función Armónica

Decimos que una función $\phi(x,y)$ es armónica en un dominio, si para dicho dominio se satisface la ecuación de Laplace, es decir,

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0 \qquad (2.7)$$

$$\nabla^2 \phi = 0$$

Ejemplo

La función $\phi(x,y) = x^2 - y^2$, es armónica:

$$\left(\frac{\partial^2 \phi}{\partial x^2} = 2\right) + \left(\frac{\partial^2 \phi}{\partial y^2} = -2\right) = 0$$

Theorem 10 Si una función es analítica en cierto dominio, su parte real y su parte imaginaria son funciones armónicas en dicho dominio.

Theorem 11 Dada una función real $\phi(x,y)$ armónica en un dominio simplemente conexo D, existe una función analítica en D cuya parte real es igual a $\phi(x,y)$. De manera similar existe una función analítica en D cuya parte imaginaria es igual a $\phi(x,y)$.

Función Armónica Conjugada

Dada una función armónica u(x, y), decimos que v(x, y) es la función armónica conjugada de u(x, y) si u(x, y) + iv(x, y) es analítica.

Theorem 12 Sea f(z) = u(x,y) + iv(x,y) una función analítica y sean $C_1, C_2, C_3, ..., y K_1, K_2, K_3, ...,$ constantes reales. La familia de curvas en el plano xy (real) para las que

$$u = C_i$$

es ortogonal a la familia de curvas tales que

$$v = K_i$$

es decir, una curva de una de las familias interseca a una curva de la otra familia a 90°, salvo quizá en puntos en que f'(z) = 0.

Ortogonalidad funciones armónicas conjugadas

Eiemplo

Demuestre que $\phi = x^3 - 3xy^2 + 2y$ puede ser parte real de una función analítica, encuentre la parte imaginaria y verifique que forman familias ortogonales.

Si es armónica puede ser parte real o imaginaria de una función analítica

$$\left(\frac{\partial^2 \phi}{\partial x^2} = 6x\right) + \left(\frac{\partial^2 \phi}{\partial y^2} = -6x\right) = 0$$

para encontrar la parte imaginaria utilizamos las ecuaciones Cauchy-Riemann con $u=\phi=x^3-3xy^2+2y$, es decir,

$$\frac{\partial u}{\partial x} = 3x^2 - 3y^2 = \frac{\partial v}{\partial y}$$
$$-\frac{\partial u}{\partial y} = 6xy - 2 = \frac{\partial v}{\partial x}$$

o bien,

$$\frac{\partial v}{\partial y} = 3x^2 - 3y^2$$

$$\frac{\partial v}{\partial x} = 6xy - 2$$

este sistema de ecuaciones lo podemos integrar, para ello tomamos la primera ecuación, e integramos

$$v = \int (3x^2 - 3y^2) \, \partial y$$
$$v = 3x^2y - y^3 + C(x)$$

si ahora sustuimos este resultado en la segunda ecuación

$$6xy + \frac{dC(x)}{dx} = 6xy - 2$$

$$\frac{dC(x)}{dx} = -2$$

$$C(x) = -2x + c$$

entonces,

$$v = 3x^2y - y^3 - 2x + c.$$

Sean las familias de curvas

$$u = x^{3} - 3xy_{u}^{2} + 2y_{u} = C_{i}$$

$$v = 3x^{2}y_{v} - y_{v}^{3} - 2x + c = K_{i}$$

si derivamos con respecto a x

$$3x^{2} - 3y_{u}^{2} - 6xy_{u}\frac{dy_{u}}{dx} + 2\frac{dy_{u}}{dx} = 0$$
$$3x^{2}\frac{dy_{v}}{dx} + 6xy_{v} - 3y_{v}^{2}\frac{dy_{v}}{dx} - 2 = 0$$

despejando a las derivadas

$$\frac{dy_u}{dx} = \frac{3y_u^2 - 3x^2}{2 - 6xy_u}$$

$$\frac{dy_v}{dx} = -\frac{2 - 6xy_u}{3y_u^2 - 3x^2}$$

es decir,

$$\frac{dy_u}{dx} = -\left(\frac{dy_v}{dx}\right)^{-1}$$

por lo tanto son ortogonales.

Funciones Complejas

Función exponencial

La función exponencial compleja se define como

$$e^z = e^{x+iy} = e^x (\cos y + i \sin y) \tag{3.1}$$

Theorem 13 Sean z_1, z_2 y z números complejos \Rightarrow

$$e^{z_1}e^{z_2} = e^{z_1+z_2}$$

$$(e^z)^a = e^{az} \cos a \ge 0$$

$$\frac{e^{z_1}}{e^{z_2}} = e^{z_1-z_2}$$

$$|e^z| = e^x$$

$$e^z \ne 0 : \forall z$$

$$\arg(e^z) = y + 2k\pi : k = 0, \pm 1, \pm 2, \dots$$

Analiticidad de e^z

La función e^z se puede expresar como

$$e^z = e^x \cos y + ie^x \sin y$$

entonces

$$u = e^x \cos y$$
$$v = e^x \sin y$$

y las ecuaciones de Cauchy-Riemann

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = e^x \cos y$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} = -e^x \sin y$$

se satisfacen para todo x y y, entonces como u y v y sus derivadas son continuas en todo el plano, la función e^z es analítica en todo el plano complejo, es decir, es función entera.

Derivada de e^z

La derivada de e^z la podemos obtener de

$$\frac{de^z}{dz} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$

$$= e^x \cos y + i e^x \sin y$$

$$= e^x (\cos y + i \sin y)$$

$$\frac{de^z}{dz} = e^z$$

Periodicidad de e^z

Aunque la función exponencial real no es periódica, la forma compleja de la exponencial presenta una comportamiento periódico, para mostrar ello tomemos

$$e^{z+2k\pi i} = e^{x+i(y+2k\pi)}$$

$$= e^x \left(\cos\left[y+2k\pi\right] + i\sin\left[y+2k\pi\right]\right)$$

$$= e^x \left(\cos y + i\sin y\right)$$

$$e^{z+2k\pi i} = e^z$$

por lo tanto la función exponencial es periódica con periódo imaginario $2\pi i$.

Algunos valores de e^z

Funciones Complejas 21

$$e^{0+i0} = 1$$
 $e^{i\pi/2} = i$
 $e^{i\pi} = -i$
 $e^{i3\pi/2} = -i$

Note que de la tercera igualdad $e^{i\pi} + 1 = 0$, esta igualdad contiene a los cinco números más importantes en matemáticas: $e, i, \pi, 1 y 0$.

Funciónes trigonométricas

Definimos al seno y coseno imaginarios como:

$$\operatorname{sen}(z) = \frac{e^{iz} - e^{-iz}}{2i} \tag{3.2}$$

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2} \tag{3.3}$$

además

$$\tan(z) = \frac{\sin(z)}{\cos(z)} \tag{3.4}$$

$$\sec(z) = \frac{1}{\cos(z)} \tag{3.5}$$

$$\csc(z) = \frac{1}{\operatorname{sen}(z)} \tag{3.6}$$

$$\cot(z) = \frac{\cos(z)}{\sin(z)} \tag{3.7}$$

Propiedades

${\bf Analiticidad\ de\ las\ funciones\ trigonom\'etricas}$

Las funciones sen (z) y $\cos(z)$ son analíticas por ser suma de funciones analíticas del tipo e^z .

Las funciones 3.4, 3.5, 3.6 y 3.7 son analíticas si el denominados es diferente de cero.

Derivadas de las funciones trigonométricas

$$\frac{d \operatorname{sen}(z)}{dz} = \cos(z)$$

$$\frac{d \cos(z)}{dz} = -\operatorname{sen}(z)$$

$$\frac{d \tan(z)}{dz} = \operatorname{sec}^{2}(z)$$

$$\frac{d \operatorname{sec}(z)}{dz} = \tan(z) \operatorname{sec}(z)$$

$$\frac{d \operatorname{csc}(z)}{dz} = -\cot(z) \operatorname{csc}(z)$$

Periodicidad de las funciones trigonométricas

Las funciones seno y coseno son periódicas con periódo real 2π , es decir,

$$sen(z) = sen(z + 2\pi n)$$

$$cos(z) = cos(z + 2\pi n)$$

Función logaritmo

Definimos, si $z \neq 0,$ al logaritmo de z como

$$w = \log z \Leftrightarrow z = e^w \tag{3.8}$$

De la definición tenemos que

$$z = e^{w}$$

$$re^{i\theta} = e^{u+iv}$$

$$re^{i\theta} = e^{u}e^{iv}$$

comparando

$$\begin{array}{rcl} e^u & = & r \\ e^u & = & |z| \\ u & = & \ln|z| \\ \operatorname{Re} w & = & \ln|z| \\ \operatorname{Re} \left(\log z\right) & = & \ln|z| \end{array}$$

У

$$\begin{array}{rcl} e^{iv} & = & e^{i\theta} \\ & v & = & \theta + 2n\pi : n = 0, \pm 1, \pm 2, \dots \\ & v & = & \arg{(z)} + 2n\pi \\ & \operatorname{Im}{w} & = & \arg{(z)} + 2n\pi \\ & \operatorname{Im}{(\log z)} & = & \arg{(z)} + 2n\pi \end{array}$$

entonces

22

$$w = u + iv$$

$$w = \ln|z| + i(\arg(z) + 2n\pi)$$

$$\log z = \ln|z| + i[\arg(z) + 2n\pi] \quad (3.9)$$

Theorem 14 Sean z y w números complejos diferentes de <math>cero, r un número racional y n cualquier $entero <math>\Rightarrow$

$$e^{\log(z)} = z$$

$$\log(e^z) = z + 2n\pi i$$

$$\log(zw) = \log z + \log w$$

$$\log\left(\frac{z}{w}\right) = \log z - \log w$$

$$\log(z^r) = r \log z$$

Logaritmo principal

La ecuación 3.9 representa a un conjunto infinito de números complejos, $n=0,\pm 1,\pm 2,...$, para poder definir a una función compleja (por lo tanto univaluada) tomamos sólo al argumento principal de $\log z$, y obtenemos el logaritmo principal de $\log z$, que denotamos por $\mathbf{Log}(z)$:

$$\mathbf{Log}(z) = \ln|z| + i\mathbf{Arg}(z) \tag{3.10}$$

Analiticidad del Logaritmo principal

Podemos utilizar la forma polar de $\mathbf{Log}(z)$ para estudiar su analiticidad, para ello utilizamos las ecuaciones de Cauchy-Riemann en forma polar (ecuaciones 2.3 y 2.4).

$$\mathbf{Log}(z) = \ln r + i\theta,$$

es decir,

$$u = \ln v = \theta$$

У

$$\begin{bmatrix} \frac{\partial u}{\partial r} = \frac{1}{r} \end{bmatrix} = \begin{bmatrix} \frac{1}{r} \frac{\partial v}{\partial \theta} = \frac{1}{r} \end{bmatrix}$$
$$\begin{bmatrix} \frac{\partial v}{\partial r} = 0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{r} \frac{\partial u}{\partial \theta} = 0 \end{bmatrix}$$

por lo tanto se satisfacen las ecuaciones de Cauchy-Reimann en todo el plano complejo excluyendo al origen. Por otro lado, las funciones u, v y sus derivadas, son continuas en todo el plano excepto sobre la parte negativa del eje imaginario, la razón de ello es que existe un salto de θ al cruzar esta parte del eje, si nos acercamos por abajo de él la función tiende a $-\pi$, y por arriba a π , esto es, hay una discontinuidad de tamaño

 2π . Finalmente, podemos concluir que la región de analiticidad de $\mathbf{Log}(z)$, es la zona del plano complejo que excluye al origen y a la parte negativa del eje real.

Región de analiticidad de Log(z)

Derivada de Log(z)

Para calcular la derivada de $\mathbf{Log}(z)$, partimos de

$$z = e^{w}$$

$$\frac{dz}{dz} = \frac{de^{w}}{dw} \frac{dw}{dz}$$

$$1 = e^{w} \frac{dw}{dz}$$

$$\frac{dw}{dz} = e^{-w}$$

$$\frac{dLog(z)}{dz} = e^{-Log(z)}$$

$$\frac{d}{dz} [Log(z)] = e^{Log(\frac{1}{z})}$$

$$\frac{d}{dz} [Log(z)] = \frac{1}{z}$$

entonces la derivada del logaritmo complejo existe en su región de analiticidad y su valor es

$$\frac{d}{dz}\left[Log\left(z\right)\right] = \frac{1}{z} \tag{3.11}$$

Cálculo integral complejo

Integral de línea compleja

La clase de integral que aparece con más frecuencia en variable compleja es la integral de línea compleja.

Curva suave a trozos

Una curva suave a trozos es una trayectoria formada por un número finito de arcos suaves concatenados.

Curva suave sobre la que se integra f(z)

Definimos la integral de línea como

Sea la curva suave C, que va de A hasta B en el plano complejo, se divide la curva en n arcos como se muestra en la figura, los puntos de unión tiene coordenadas $(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$. En donde la variable compleja toma los valores $z_1, z_2, ..., z_n$. Los incrementos en z se relacionan con x y y.

$$\int_{C} f(z) dz = \int_{A}^{B} f(z) dz = \lim_{n \to \infty} \sum_{k=1}^{n} f(z_{k}) \Delta z_{k}$$
(4.1)

Para evaluar esta integral de línea compleja tenemos que:

$$\begin{array}{rcl}
z & = & x + iy \\
dz & = & dx + idy
\end{array}$$

y además

$$f(z) = u(x, y) + iv(x, y)$$

sustituyendo en la integral 4.1

$$\Delta z_k = \Delta x_k + i \Delta y_k$$

si $n \to \infty$, $\Delta z_k \to 0$

Cálculo integral complejo

$$\int_{A}^{B} f(z) dz = \int_{C} \left[u(x, y) + iv(x, y) \right] (dx + idy)$$

$$= \int_{C} u dx - \int_{C} v dy + i \left[\int_{C} u dy + \int_{C} v dx \right]$$

$$i \left[\int_{C} u dy + \int_{C} v dx \right]$$

es decir, a la integral de línea compleja la convertimos cuatro integrales de línea reales.

Integración paramétrica

Otro método para calcular la integral es utilizar técnicas de integración paramétrica. Sea C la curva sobre la que hay que integrar, usamos al parámetro t para describir a la curva

$$x = x(t)$$
 y $y = y(t)$ con $t_a \le t \le t_b$ (4.3)

entonces sobre la curva

$$z(t) = x(t) + iy(t) \tag{4.4}$$

У

$$f(z) = f[z(t)] \tag{4.5}$$

y el diferencial dz en términos de dt

$$dz = \frac{dz}{dt}dt \tag{4.6}$$

entonces la integral compleja

$$\int_{C} f(z) dz = \int_{t_{a}}^{t_{b}} f[z(t)] \frac{dz}{dt} dt, \qquad (4.7)$$

se convierte en una integral real simple de la variable t.

En general existen diferentes formas de elegir a 4.3, la facilidad de hacer la integral depende en gran medida de tal elección.

Teorema integral de Cauchy

Sea $f\left(z\right)$ analítica en un dominio simplemente conexo D. Si C es cualquier curva cerrada simple en $D\Rightarrow$

$$\oint_C f(z) dz = 0 \tag{4.8}$$

D es un dominio simplemente conexo y $C \in D$.

Independencia de la trayectoria

Sea f(z) analítica en un dominio simplemente conexo D y que z_0 y $z_1 \in D$. Sean C_1 y C_2 curvas desde z_0 a z_1 en $D \Rightarrow$

$$\int_{C_1} f(z) dz = \int_{C_2} f(z) dz, \qquad (4.9)$$

es decir, $\oint f(z) dz$ es independiente de la trayectoria por lo que podemos escoger la trayectoria más fácil de integrar.

Independencia de la trayectoria

Antiderivada

Sea f(z) analítica en un dominio simplemente conexo $D.\Rightarrow$ existe una función F(z) que es analítica en D, tal que para $z\in D$

$$\frac{dF\left(z\right)}{dz} = f\left(z\right) \tag{4.10}$$

con este resultado,

$$\int_{z_1}^{z_2} f(z) dz = \int_{z_1}^{z_2} \frac{dF(z)}{dz} dz$$
$$= \int_{z_1}^{z_2} dF$$
$$= F(z_2) - F(z_1)$$

Deformación

Decimos que dos curvas C y K son homotópicas si podemos deformar a C hasta llegar a K (o K hasta llegar a C) de manera continua, es decir, sin pasar por puntos no analíticos.

Sea f(z) analítica en un dominio simplemente conexo D excepto en z_0 , sean C y K dos curvas homotópicas que encierran a $z_0 \Rightarrow$

$$\oint_C f(z) dz = \oint_K f(z) dz \qquad (4.11)$$

Teorema de la deformación

Fórmula integral de Cauchy

Sea f(z) analítica en un dominio simplemente conexo D. Sea z_0 cualquier punto de D y sea Ccualquier curva cerrada simple en D que encierra a z_0 . Entonces

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$$

es decir, la función en z_0 , esta relacionada con la función en C, este es un resultado muy importante en variable compleja. Se puede utilizar este resultado para calcular integrales si lo ponemos como

$$\oint_C \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0) \tag{4.12}$$

La ecuación 4.12 se conoce como la fórmula integral de Cauchy y es una herramienta muy poderosa para calcular integrales.

El punto z_0 está dentro de C

No se aplica la fórmula de Cauchy

Derivadas de funciones analíticas

Sea f(z) analítica en un dominio simplemente conexo D. Sea z_0 cualquier punto de D y sea C cualquier curva cerrada simple en D que encierra a z_0 . Entonces

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$$

es decir, no sólo la función en z_0 , esta relacionada con la función en C, sino sus derivadas. Este resultado se puede utilizar para calcular integrales si lo reordenamos

$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0)$$
 (4.13)

La ecuación 4.13 se conoce como la fórmula integral de Cauchy para derivadas superiores y es una herramienta muy poderosa para calcular integrales.

Extensión de la fórmula integral de Cauchy para una anillo

Un **anillo** con centro en w es un dominio acotado D, de z's que satisfacen a

$$r < |z - w| < R$$

Sea C_r la circunferencia |z - w| = r, y sea C_R la circunferencia |z - w| = R orientadas en

Cálculo integral complejo

sentido antihorario. Si $f\left(z\right)$ es analítica en $D,\,C_{r}$ y $C_{R}\Rightarrow$ para cualquier $z_{0}\in D$

$$f(z_0) = \frac{1}{2\pi i} \oint_{C_R} \frac{f(z)}{z - z_0} dz - \frac{1}{2\pi i} \oint_{C_r} \frac{f(z)}{z - z_0} dz$$
(4.14)

Fórmula de Cauchy para una anillo.

Series de Taylor y Laurent

Sucesión compleja

Definición

Una función que asigna a cada entero positivo n un número complejo. Al n-ésimo término de la sucesión lo denotamos z_n , y a la sucesión $\{z_n\}$.

$$\{z_n\}=z_1,z_2,z_3,...$$

Convergencia

Una sucesión converge a un número L, si dado cualquier disco abierto D con centro en L y radio ϵ , existe un número N positivo tal que

$$|z_n - L| < \epsilon \text{ si } n \ge N$$

y se dice que

$$\lim_{n\to\infty}z_n=L$$

si $L \not\equiv$ se dice que $\{z_n\}$ diverge.

Limites

• Sean $z_n = x_n + iy_n$ y $L = a + ib \Rightarrow$

$$\lim_{n \to \infty} z_n = L \iff \lim_{n \to \infty} x_n = a \text{ y } \lim_{n \to \infty} y_n = b$$

• Suponga que $z_n \to L$ y $w_n \to K \Longrightarrow$

$$z_n + w_n \rightarrow L + K$$

$$az_n \rightarrow aL : a \in \mathbf{C}$$

$$z_n w_n \rightarrow LK$$

$$\frac{z_n}{w_n} \rightarrow \frac{L}{K} \text{ si } w_n \neq 0 \text{ y } K \neq 0$$

Sucesión de Cauchy

Decimos que $\{z_n\}$ es una sucesión de Cauchy, si dado $\epsilon > 0$, existe un N > 0, tal que

$$|z_n - z_m| < \epsilon \text{ si } n \ge N \text{ y } m \ge N.$$

Una sucesión compleja converge si y sólo si es una sucesión de Cauchy.

Series Complejas

Definición

Sea $\{z_n\}$ una sucesión compleja. Definimos las n-ésima suma parcial S_n como la suma de los primeros n-términos de la sucesión $\{z_n\}$:

$$S_n = \sum_{j=1}^n z_j.$$

A su vez $\{S_n\}$ es una sucesión compleja. Si esta sucesión de sumas parciales converge decimos que la serie infinita:

$$\sum_{i=1}^{\infty} z_j$$

converge.

Teorema

Sea
$$z_n = x_n + iy_n \Longrightarrow$$

- 1.) $\sum_{j=1}^{\infty} z_j$ converge $\Leftrightarrow \sum_{j=1}^{\infty} x_j$ y $\sum_{j=1}^{\infty} y_j$ convergen.
- 2.) $\sum_{j=1}^{\infty} x_j \to a \text{ y } \sum_{j=1}^{\infty} y_j \to b \Leftrightarrow \sum_{j=1}^{\infty} z_j \to a + ib$.

Teorema

Si $\sum_{j=1}^{\infty} z_j$ converge $\Longrightarrow \{z_n\} \to 0$. Este resultado se utiliza para saber si la serie diverge, es decir, si $\{z_n\} \to L \neq 0$, $\sum_{j=1}^{\infty} z_j$ diverge, pero si $\{z_n\} \to 0$, el teorema no da infor-

Ejemplo.-
$$\left\{\frac{i}{n}\right\} \to 0$$
 pero $\sum_{n=1}^{\infty} \frac{i}{n}$ diverge.

Criterio de convergencia de Cauchy para

 $\sum_{j=1}^{\infty} z_j$ converge \Leftrightarrow dados $\epsilon>0,\ n>0$ y $m>0,\ \exists\ N,$ tal que si $n\geqslant N$

$$|z_{n+1} + z_{n+2} + \dots + z_{n+m}| < \epsilon$$

Convergencia absoluta

Si la serie real $\sum_{j=1}^{\infty} |z_j|$ converge, se dice que

la serie $\sum_{j=1}^{\infty} z_j$ converge absolutamente. Además si $\sum_{j=1}^{\infty} |z_j|$ converge $\Longrightarrow \sum_{j=1}^{\infty} z_j$ también converge.

Criterio de la razón

Sea $z_n \neq 0$ para cada n, y suponga que

$$\lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right| = q \Longrightarrow$$

- 1. $\sum_{n=1}^{\infty} z_n$ converge si $0 \le q < 1$.
- 2. $\sum_{n=1}^{\infty} z_n$ diverge si q > 1.

Series de potencias complejas

Definición

Sean $z_0, a_0, a_1, a_2, \dots$ números complejos dados. Una serie

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n = a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \dots$$

se llama una serie de potencias con centro en z_0 y secesión de coeficientes $\{a_n\}$. La serie empieza en la potencia 0 para permitir el término constante. La serie converge en z_0 a a_0 .

Teorema

Suponga que $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converge para $z_1 \neq z_0$. Entonces la serie converge para toda ztal que $|z - z_0| < |z_1 - z_0|$.

Disco de Convergencia

El máximo valor de R se llama radio de convergencia, y el disco que forma, disco de convergencia. Existen tres posibilidades para el radio de convergencia R.

- 1. $R \to \infty$
- R = 0
- 3. $0 < R < \infty$

Teorema

Dada la serie de potencias $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, que converge para algún $z_1 \neq z_0$, existe R (posiblemente $R \to \infty$), tal que la serie converge absolutamente si $|z - z_0| < R$, y diverge si $|z - z_0| >$

Teorema

Suponga que $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ tiene radio de convergencia R, con $R \neq 0$. Para $|z - z_0| < R$, sea $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$. Entonces:

- 1. f(z) es analítica para $|z z_0| < R$.
- Para las derivadas tenemos:

$$f'(z) = \sum_{n=1}^{\infty} na_n (z - z_0)^{n-1}$$

У

$$f^{(k)}(z) = \sum_{n=k}^{\infty} n(n-1)...(n-k+1) a_n (z-z_0)^{n-k}$$

Si C es una curva suave a pedazos cuya gráfica esta dentro del disco de convergencia de la serie de potencias

$$\int_C f(z) dz = \sum_{n=0}^{\infty} a_n \int_C (z - z_0)^n$$

Serie de Taylor compleja

Supongamos que $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ tiene radio de convergencia R. Si definimos

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

Evaluando en z_0 ,

$$f(z_0) = a_0$$
$$a_0 = f(z_0)$$

y evaluando en z_0 a la derivada k-ésima

$$f^{(k)}(z_0) = \sum_{n=k}^{\infty} n(n-1) \dots (n-k+1) a_n (0)^{n-k}$$

$$f^{(k)}(z_0) = k(k-1) \dots (1) a_k$$

$$a_k = \frac{f^{(k)}(z_0)}{k!}$$

Sustituyendo estos resultados obtenemos:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

Serie de Taylor

Una serie de Taylor con $z_0 = 0$, se llama serie de Maclaurin.

Teorema

Si f(z) es analítica en z_0 entonces tiene representación en serie de Taylor para todo z dentro un disco con centro en z_0 .

Algunas series de Taylor complejas

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$$

$$\sin z = \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2n+1}}{(2n+1)!}$$

$$\cos z = \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2n}}{(2n)!}$$

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^{n} : |z| < 1$$

$$\frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^{n} z^{n} : |z| < 1$$

Serie de Laurent compleja

Sea f(z) analítica en el anillo $r_1 < |z - z_0| < r_2$. Entonces para z en este anillo,

$$f(z) = \sum_{n=-\infty}^{n=\infty} a_n (z - z_0)^n,$$

en donde

$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(w)}{(w - z_0)^{n+1}} dw$$

y C es cualquier circunferencia $|z - z_0| = \rho$ con $r_1 < \rho < r_2$.

Anillo de Laurent

Ejemplos

$$e^{\frac{1}{z}} = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{z^n} : 0 < |z| < \infty$$

$$\frac{\cos z}{z^5} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} z^{2n-5} : 0 < |z| < \infty$$

Teorema del Residuo

Clasificación de singularidades

Si f(z) es analítica en un anillo $0 < |z - z_0| < \infty$ pero no en z_0 , decimos que f(z) tiene una singularidad aislada en z_0 .

Sea f(z) una función con una singularidad aislada en z_0 . Si desarrollamos en serie de Laurent:

$$f(z) = \sum_{n=-\infty}^{n=\infty} a_n (z - z_0)^n$$

 z_0 es:

- Una singularidad removible.- Si no aparecen potencias negativas de $z-z_0$ en la serie de Laurent.
- Una singularidad esencial.- Si aparecen una infinidad de potencias negativas de $z z_0$.
- Un polo de orden m .- Si m es un entero positivo y $(z-z_0)^{-m}$ aparece en esta serie pero no aparecen potencias más negativas $(a_{m-1} = a_{m-2} = ... = 0)$.

Ejemplos

singularidad removible

$$\frac{\sin z}{z} = \sum_{n=0}^{n=\infty} (-1)^n \frac{1}{(2n+1)!} z^{2n}$$

singularidad esencial

$$e^{1/(z-1)} = \sum_{n=0}^{n=\infty} \frac{1}{n!} \frac{1}{(z-1)^n}$$

polo de orden 3

$$\frac{1}{\left(z+i\right)^3}$$

Ceros de una función

Una función tiene un cero en z_0 si f(z) es analítica en z_0 y $f(z_0) = 0$. Decimos que una función tiene un cero de orden m en z_0 si:

$$f(z_0) = f'(z_0) = \dots = f^{(m-1)}(z_0) = 0$$

pero

$$f^{(m)}(z_0) \neq 0.$$

Ejemplo

$$z^m$$

tiene un cero de orden m en 0.

$$\sin^2(z)$$

tiene un cero de orden 2 en π .

Teorema

Sea h(z) una función con un cero de orden m en z_0 . Sea g(z) una función analítica en z_0 , o con una singularidad removible en z_0 y además

$$\lim_{z \to z_0} g(z) \neq 0$$

Teorema del Residuo

entonces:

$$f(z) = \frac{g(z)}{h(z)}$$

tiene un polo de orden m en z_0 .

Ejemplo

$$\frac{e^z}{z^3}$$

polo de orden 3 en 0.

$$\frac{\cos z}{(z-i)^5}$$

polo de orden 5 en i.

$$\frac{\cos(z)}{\sin(z)}$$

polo simple en $n\pi$.

Residuos

Si desarrollamos a f(z) en serie de Laurent

$$= \dots + \frac{a_{-2}}{(z - z_0)^2} + \frac{a_{-1}}{(z - z_0)} + a_0 + a_1 (z - z_0) + \dots$$

Definimos al residuo de f(z) en la singularidad z_0 como el coeficiente a_{-1} en su desarrollo en serie de Laurent.

$$\operatorname{Res}_{z_{0}} f\left(z\right) = a_{-1}$$

De la fórmula de los coeficientes de Laurent tenemos:

$$a_{-1} = \frac{1}{2\pi i} \oint_C f(z) \, dz$$

o bien,

$$\oint_C f(z) dz = 2\pi i a_{-1}$$

Esta última fórmula es frecuentemente usada para resolver la integral.

Ejemplo

$$\operatorname{Res}_{1} e^{1/(z-1)} = 1$$

$$\frac{i\cos(3z)}{3z} = \frac{i}{3} \frac{1}{z} \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n}}{(2n)!} \Rightarrow$$

$$\operatorname{Res}_{0} \frac{i \cos (3z)}{3z} = \frac{i}{3}$$

Teorema del Residuo

Sea f(z) analítica en un dominio D, excepto en los puntos $z_1, z_2, ..., z_n$, donde f(z) tiene singularidades. Sea C una curva cerrada suave a pedazos en D que encierra a $z_1, z_2, ..., z_n$.

$$\oint_{C} f(z) dz = 2\pi i \sum_{j=1}^{n} \operatorname{Res}_{z_{j}} f(z)$$

C encierra a las sigularidades $z_1, z_2, ..., z_n$

Ejemplos

Si C encierra al origen. Encontrar

$$\oint_C \frac{\operatorname{sen}(z)}{z^2} dz$$

tenemos que:

$$\frac{\text{sen}(z)}{z^2} = \frac{1}{z^2} \sum (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$

$$\underset{0}{\text{Res}} \frac{\text{sen}(z)}{z^2} = 1$$

 $\oint_C \frac{\operatorname{sen}(z)}{z^2} dz = 2\pi i$

Teorema: residuos y polos

Sea f(z) con un polo de orden m en z_0 . \Rightarrow

$$\operatorname{Res}_{z_{0}} f(z) = \frac{1}{(m-1)!} \lim_{z \to z_{0}} \frac{d^{m-1}}{dz^{m-1}} \left[(z - z_{0})^{m} f(z) \right]$$

esta es una forma más fácil de calcular los residuos de una función, siempre y cuando $f\left(z\right)$ tenga un polo de orden m.

Ejemplo

Si ${\cal C}$ encierra al origen. Utilizar el teorema anterior para calcular:

$$\oint_C \frac{\cos(z)}{z^2} dz$$

La función $\cos\left(z\right)/z^2$ tiene un polo de orden 2 en z=0, entonces m=2 y

$$\operatorname{Res}_{0} \frac{\cos(z)}{z^{2}} = \frac{1}{(2-1)!} \lim_{z \to 0} \frac{d}{dz} \left[(z-0)^{2} \frac{\cos(z)}{z^{2}} \right] = 0$$

entonces

$$\oint_C \frac{\cos(z)}{z^2} dz = 0$$

Teorema del Residuo 35

Ejercicios de variable compleja

1. Demuestre que

$$\overline{(z_1 - z_2)} = \overline{z}_1 - \overline{z}_2$$

$$\overline{(z_1 z_2)} = \overline{z}_1 \overline{z}_2$$

$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z}_1}{\overline{z}_2}$$

$$\mathbf{Im}(z_1 z_2) = -\mathbf{Im}(\overline{z}_1 \overline{z}_2)$$

2. Sea n un número entero $n \geq 0$. Encuentre el módulo de

$$\left(\frac{x+iy}{x-iy}\right)^n$$

3. Encuentre el argumento principal de

$$z = 2cis (2001)$$
$$z = -2cis (2001)$$

- 4. Encuentre la forma a+ib de un número complejo con r=2 y $\theta=3$.
- 5. Convierta a la forma $rcis\theta$ a

$$z = \sqrt{3} + i$$

$$z = \frac{(1+i)(-1-i\sqrt{3})}{3cis(\pi/8)}$$

6. Escriba a las siguientes expresiones en al forma a+ib

$$i^{1/2} (1-i)^{1/2} 1^{1/2}1^{-1/2}$$

7. Dibuje a las siguientes regiones en el plano complejo

$$\begin{array}{ccc} \mathbf{Im}z & \geq & \mathbf{Re}z \\ |z+3-4i| & > & 5 \\ \mathbf{Im}z & \geq & \mathbf{Re}z^2 \\ \sin|z| & \geq & \frac{1}{\sqrt{2}} \end{array}$$

- 8. Describa con una relación matemática, a los puntos que pertenecen a la circunferencia y al interior del círculo de radio 2 y centro en 3 + 4i, excepto en el centro del círculo.
- 9. Escriba a las siguientes funciones en la forma u + iv

$$(z-i)^2$$
$$(\bar{z})^{-2}+i$$

10. Escriba en términos de z y \bar{z} a

$$-2xy + i\left(x^2 - y^2\right)$$
$$x^2 + y^2$$

- 11. Estudie la forma en que $w=\sin z$ transforma a la franja $y\geq 0, \, -\pi/2\leq x\leq \pi/2.$
- 12. Demuestre que la transformación w=1/z transforma a la recta infinita $\mathbf{Im}z=1$ en un círculo en el plano w. Encuentre la ecuación del círculo.

- 13. Determine la imagen del arco semicircular $|z|=1,\ 0\leq argz\leq\pi,$ bajo la transformación w=z+1/z. Sugerencia: tome $z=e^{i\theta}.$
- 14. Identificar las imágenes de $\cos z$ de las rectas paralelas al eje real.
- 15. Determine la imagen de la banda $1 \le y \le 2$ en el plano z bajo la transformación $w = z^2$.
- 16. ¿Es la siguiente función continua en z = 3i?

$$f\left(z\right) = \left\{ \begin{array}{ll} \left(z^2 + 9\right) / \left(z - 3i\right), & z \neq 3i \\ 6i, & z = 3i \end{array} \right.$$

17. Sea f(z) = u(x,y) + iv(x,y). Suponga que existe la segunda derivada f''(z). Compruebe que

$$f''(z) = \frac{\partial^2 u}{\partial x^2} + i \frac{\partial^2 v}{\partial x^2}$$

у

$$f''(z) = -\frac{\partial^2 u}{\partial y^2} - i\frac{\partial^2 v}{\partial y^2}$$

18. ¿En que regiones del plano son analíticas las siguientes funciones?. Si existe la derivada encuentre su valor.

$$f(z) = 2z^{2} + 3$$

$$f(z) = z + z^{-1}$$

$$f(z) = -xy + \frac{i}{2}(x^{2} - y^{2})$$

$$f(z) = \frac{z^{2}}{e^{x}cosy + ie^{x}seny}$$

19. En donde es analítica la función:

$$f(z) = r \cos \theta + ir$$

- 20. ¿Para cuáles valores de n la función $x^n y^n$ es armónica?
- 21. ¿Cuáles de las siguientes funciones son armónicas?, ¿En qué dominio?

$$\phi = x + y$$

$$\phi = \frac{y}{x^2 + y^2}$$

$$\phi = e^{x^2 - y^2}$$

22. Determinar la región de analiticidad de la función

$$f(z) = \cos(\bar{z})$$

23. Sea $\phi = 6x^2y^2 - x^4 - y^4 + y - x + 1$. Compruebe que podría ser parte real o imaginaria de alguna función analítica. Si ϕ es la parte real de f(z) encuentre la parte imaginaria. Si ϕ es la parte imaginaria de f(z) encuentre la parte real.

24. Sea

$$f(z) = e^{z^2 + 1}$$

demostrar que es entera y encontrar su derivada.

25. Sea f(z) una función entera. Si

$$f'(z) = (6x^2 - 6y^2 - 2x + 3) + i(12xy - 2y)$$

con $f(0) = 2 - i$. Encuentre $f(z)$. Calcular

con f(0) = 2 - i. Encuentre f(z). Calcular f''(2-i).

- 26. Suponga que f(z) = u + iv es analítica y que g(z) = v + iu también lo es. Demuestre que u y v deben ser constantes.
- 27. Suponga que f(z) = u + iv es analítica y que $\bar{f}(z) = u iv$ también lo es. Demuestre que u y v deben ser constantes.
- 28. Encuentre a una función armónica conjugada de

$$e^x \cos y + e^y \cos x + xy$$

29. Demostrar que la función

$$f(z) = \cos x \cosh y - i \sin x \sinh y$$

es analítica en todo el plano complejo y que

$$f''\left(z\right) = -f\left(z\right)$$

30. Para la función $f(z) = (z+i)^2$, demostrar que

$$\frac{\partial (u, v)}{\partial (x, y)} = |f'(z)|^2$$

en donde este último es el jacobiano de la transformación

$$\begin{cases} u = u(x, y) \\ v = v(x, y) \end{cases}$$

31. Escriba en la forma a + ib a

$$e^{-3}e^{4i}$$

- 32. Determinar todos los valores tales que $e^{iz} = 2$.
- 33. Encuentre el valor numérico de

$$\cos\left(e^{1+i}\right)$$

- 34. Si $\cos z = 2$ obtener $\cos 2z$.
- 35. Demostrar que

$$\sin^2 z + \cos^2 z = 1$$
$$\frac{1}{2} - \frac{1}{2}\cos 2z = \sin^2 z$$
$$\cosh^2 z - \sinh^2 z = 1$$

$$e^{ie}$$

$$10i$$

$$e^{i\pi/3}$$

37. Emplee logaritmos para resolver

$$(e^z - 1)^2 = e^z$$
$$e^z = e^{2z}$$

38. Evalúe a:

$$\int_{i}^{1} \overline{z} dz$$

sobre las trayectorias

a)
$$C$$
 : $x + y = 1$
b) C : $y = (1 - x)^2$

39. Evalúe a:

$$\int e^z dz$$

a) de
$$z = 0$$
 a $z = 1$ por $y = 0$, b) de $z = 1$ a $z = 1 + i$ por $x = 1$

40. Integre

$$\int_{-1}^{1} \frac{1}{z} dz$$

por C : medio círculo unitario con centro en el origen, en el semiplano superior

41. Integre

$$\int_{1}^{i} \overline{z}^{4} dz$$

por C: círculo unitario con centro en el origen, en el primer cuadrante.

42. ¿A cuál de las siguientes integrales se aplica directamente el teorema de Cauchy-Goursat? ¿Por qué?

$$\oint_{|z|=1} \frac{\cos z}{z+2} dz$$

$$\oint_{|z+2|=2} \frac{\cos z}{z+2} dz$$

$$\oint_{|z-1|=4} \frac{\cos z}{z+2} dz$$

$$\oint_{|z+i|=1} \log z dz$$

$$\oint_{|z-1-i|=1} \log z dz$$

$$\oint_{|z|=\pi} \frac{1}{1+e^z} dz$$

$$\oint_{|z|=3} \frac{1}{1-e^z} dz$$

43. Demuestre que

$$\oint_{|z-3|=2} \frac{\log z}{(z+1)(z-3)} dz = \oint_{|z-3|=2} \frac{\log z}{4(z-3)} dz$$

44. Evalúe las siguientes integrales a lo largo de la curva $y=\sqrt{x}$

$$\int_{1\pm i}^{9+3i} e^{2z} dz$$

b)
$$\int_{1+i}^{9+3i} z \cos z dz$$

45. ¿Cuál es el error en:

$$\int_0^{1+i} \overline{z} dz = \frac{\overline{z}^2}{2} \bigg|_0^{1+i} = -i ?$$

46. Evalúe las integrales:

$$\oint \frac{dz}{e^z (z-2)}$$

alrededor de

$$\frac{x^2}{9} + \frac{y^2}{16} = 1$$

b)
$$\frac{1}{2\pi i} \oint \frac{\cos z + \sin z}{(z^2 + 25)(z+1)} dz$$

alrededor de

$$\frac{x^2}{9} + \frac{y^2}{16} = 1$$

$$\oint \frac{\cosh z}{z^2 + z + 1} dz$$

alrededor de

$$(x-1)^2 + (y-1)^2 = 1$$

d)
$$\oint \frac{\sin(e^z + \cos z)}{(z-1)^2 (z+3)} dz$$

alrededor de

$$\frac{x^2}{2} + y^2 = 1$$

47. *Calcular

$$\int_{2}^{2i} \frac{dz}{\overline{z}}$$

por el arco de circunferencia con radio 2 y centro en el origen, en sentido horario.

48. *Calcular

$$\oint_C \frac{\cos z}{(z-\pi)}$$

si C encierra a $-\pi$.

49. *Calcular la integral

$$\frac{1}{2\pi i} \oint_C \frac{e^z}{z \left(1-z\right)^3} dz$$

si C a) no encierra a z=1; b) no encierra a z=0; c) encierra a ambos.

50. *Evalúe

$$\int_C (2z + \overline{z}) \, dz$$

C: el segmento de recta que va de 1+i a 3+3i

51. *Calcular a la integral real

$$\int_0^{2\pi} \frac{3}{5 - 4\cos\theta} d\theta$$

usando el cambio de variable $z=e^{i\theta}$

52. *Calcular

$$\oint_{|z|=2} \frac{\sin z}{z^3 - 3iz^2 - 3z + i} dz$$

53. *Calcular

$$\int_C \frac{dz}{z^2 + 9}$$

con C: a) |z - 3i| = 1; b) |z + 3i| = 1; c) |z - 3i| + |z + 3i| = 10.

54. Demuestre que las siguientes series divergen en la región indicada

a)
$$\sum_{n=1}^{\infty} nz^n$$
 en $|z| \ge 1$

b)
$$\sum_{n=1}^{\infty} \frac{n}{n+1} (2z)^n \text{ en } |z| \ge 1/2$$

c)
$$\sum_{n=0}^{\infty} e^{inz}$$
 en $\mathbf{Im}(z) \le 0$

55. Use el criterio del cociente para demostrar que las siguientes series convergen

a)
$$\sum_{n=0}^{\infty} n! e^{in^2 z}$$
 en $\mathbf{Im}(z) > 0$

b)
$$\sum_{n=1}^{\infty} \frac{1}{z^n n!}$$
 en $|z| > 0$

56. Desarrolle en serie de Taylor y encuentre la región de convergencia de:

- a) $\frac{1}{z}$, alrededor de z = 1 + i
- b) $\frac{1}{(z+i)^2}$, alrededor de z=i
- c) e^z , alrededor de $z = i\pi$
- d) $z^2 + z + 1$, alrededor de z = 0
- e) $z^2 + z + 1$, alrededor de z = i

57. Encuentre los coeficientes y el disco de convergencia de:

a)
$$\frac{1}{z^4+1} = \sum_{n=0}^{\infty} c_n (z-1)^n$$

$$b) \quad \frac{1}{(1-z)} = \sum_{n=0}^{\infty} c_n z^n$$

c)
$$\frac{1}{(1-z)^2} = \sum_{n=0}^{\infty} c_n z^n$$

$$d) \quad \frac{1}{(1+z)^2} = \sum_{n=0}^{\infty} c_n z^n$$

$$e) \quad \frac{z}{(z-1)(z+2)} = \sum_{n=0}^{\infty} c_n z^n$$

$$f$$
) $\frac{z}{(z-1)(z+2)} = \sum_{n=0}^{\infty} c_n (z-1)^n$

58. Desarrolle en serie de Laurent a:

$$\frac{1}{z-3}$$

en potencias de (z-1) , determine en que región converge.

59. Desarrolle en serie de Laurent a:

$$\frac{1}{(z-1)(z-3)}$$

en potencias de (z-1) , determine en que región converge.

60. Desarrolle en serie de Laurent a:

$$\frac{1}{(z-1)z}$$

en potencias de (z-1) , determine en que región converge.

61. Desarrolle en serie de Laurent y encuentre el anillo de convergencia de:

$$\frac{1}{z^4}\cos z$$

62. Desarrolle en serie de Laurent y encuentre el anillo de convergencia de:

$$z^4 \cos \frac{1}{z}$$

63. Desarrolle en serie de Laurent y encuentre el anillo de convergencia de:

$$ze^{1/(z-1)}$$

64. Calcule los residuos de:

$$\frac{e^z}{(z^2+1)z^2}$$

65. Utilice expansiones en serie de Laurent para evaluar por el método de residuos a las integrales:

a)
$$\oint_{|z+1+i|=4} z^3 \cos \frac{1}{z} dz$$

$$\oint_{|z|=1} \frac{\sin z}{z^8} dz$$

66. Encuentre los residuos por polos e integre:

$$\oint_{|z-6|=4} \frac{1}{\sin z} dz$$

$$\oint_{|z-1|=\frac{3}{2}} \frac{e^{1/z}}{z^2 - 1} dz$$

$$\oint_{|z|=3} \frac{\sin z}{\sinh^2 z} dz$$

Parte II Funciones ortogonales

Series de Fourier

Funciones ortogonales

Algebra lineal

Sea $\mathbf{S} = \{s, \cdot, +\}$ un espacio de dimensión n en donde esta definida una operación interna:

$$s_1 \cdot s_2 \tag{8.1}$$

A cualquier elemento del espacio \boldsymbol{s} lo podemos representar como:

$$s = \sum_{i=1}^{n} \lambda_i \phi_i \tag{8.2}$$

en donde el conjunto $\{\phi_k(t)\}\$ se llama base de **S** y es linealmente independiente y ortogonal, (genera al espacio),

$$\phi_i \cdot \phi_j \left\{ \begin{array}{ll} = 0 & i \neq j \\ \neq 0 & i = j \end{array} \right. .$$

Las λ_i son constantes y se obtienen a partir de:

$$s \cdot \phi_j = \sum_{i=1}^n \lambda_i \phi_i \cdot \phi_j$$

$$s \cdot \phi_j = \lambda_j \phi_j \cdot \phi_j$$

$$\lambda_j = \frac{s \cdot \phi_j}{\phi_i \cdot \phi_i}$$
(8.3)

Funciones

El producto interno para funciones se define para el intervalo a < t < b como

$$f_{1}\left(t\right)\circ f_{2}\left(t\right)=\int_{a}^{b}f_{1}\left(t\right)f_{2}^{*}\left(t\right)dt.$$

Un conjunto de funciones $\{\phi_k(t)\}$ es ortogonal en un intervalo a < t < b si para dos funciones cualesquiera del conjunto $\phi_m(t)$ y $\phi_n(t)$, se cumple:

$$\int_{a}^{b} \phi_{m}(t) \,\phi_{n}^{*}(t) \,dt = \delta_{mn} r_{n},$$

en donde δ_{mn} es la delta de Kronecker que se define como:

$$\delta_{mn} = \begin{cases} 1 & \text{si } m = n \\ 0 & \text{si } m \neq n \end{cases} . \tag{8.4}$$

Serie de Fourier

Considere al espacio infinito de funciones periódicas con período T, (f(t) = f(t+T)) y al conjunto de funciones

$$\{1, \cos(n\omega_0 t), \sin(n\omega_0 t)\}: n = 1, 2, ...$$

en donde

$$\omega_0 = \frac{2\pi}{T}$$
. (frecuencia angular)

Series de Fourier 45

Demostremos que el conjunto es ortogonal en el intervalo -T/2 < t < T/2.

$$\int_{-\frac{T}{2}}^{\frac{T}{2}} (1) (1) dt = T$$

$$\int_{-\frac{T}{2}}^{\frac{T}{2}} 1 \cos(n\omega_0 t) dt = 0$$

$$\int_{-\frac{T}{2}}^{\frac{T}{2}} 1 \sin(n\omega_0 t) dt = 0$$

$$\int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(n\omega_0 t) \sin(m\omega_0 t) dt = 0$$

$$\int_{-\frac{T}{2}}^{\frac{T}{2}} \sin(n\omega_0 t) \sin(m\omega_0 t) dt = \delta_{mn} \frac{T}{2}$$

$$\int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(n\omega_0 t) \cos(m\omega_0 t) dt = \delta_{mn} \frac{T}{2}$$

entonces a cualquier función periódica de Ω la podemos expresar como una combinación lineal de la base $\{1, \cos(n\omega_0 t), \sin(n\omega_0 t)\}$:

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega_0 t) + \sum_{n=1}^{\infty} b_n \sin(n\omega_0 t)$$
(8.5)

en donde los coeficientes los obtenemos a partir de la ecuación (8.3)

$$\frac{1}{2}a_0 = \frac{\int_{-\frac{T}{2}}^{\frac{T}{2}}(1) f(t) dt}{\int_{-\frac{T}{2}}^{\frac{T}{2}}(1) (1) dt}$$

$$a_0 = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt \qquad (8.6)$$

$$a_n = \frac{\int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt}{\int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(n\omega_0 t) \cos(n\omega_0 t) dt}$$

$$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt \qquad (8.7)$$

$$b_{n} = \frac{\int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \operatorname{sen}(n\omega_{0}t) dt}{\int_{-\frac{T}{2}}^{\frac{T}{2}} \operatorname{sen}(n\omega_{0}t) \operatorname{sen}(n\omega_{0}t) dt}$$

$$b_{n} = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \operatorname{sen}(n\omega_{0}t) dt \qquad (8.8)$$

46

Condiciones de Dirichlet

Una función f(t) se puede representar en serie de Fourier si se cumple que:

- La función tiene un número finito de discontinuidades en un período.
- La función tiene un número finito de máximos y mínimos en un período.
- La integral del valor absoluto de la función es finita;

$$\int_{-T/2}^{T/2} |f(t)| dt < \infty.$$

Aproximación por Fourier

Sean las sumas parciales:

$$S_k(t) = \frac{a_0}{2} + \sum_{n=1}^k (a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)),$$

$$\varepsilon_k(t) = \sum_{n=k+1}^\infty (a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)),$$

la función f(t) en términos de $S_k(t)$ y $\varepsilon_k(t)$ es:

$$f\left(t\right) = S_k\left(t\right) + \varepsilon_k\left(t\right)$$

podemos aproximar a f(t) como:

$$f(t) \simeq S_k(t)$$
.

Para medir que tan buena es la aproximación $f\left(t\right)\simeq S_{k}\left(t\right)$, definimos al error cuadrático medio, E_{k} :

$$\begin{split} E_k &= \frac{1}{T} \int_{-T/2}^{T/2} \left[\varepsilon_k \left(t \right) \right]^2 dt \\ E_k &= \frac{1}{T} \int_{-T/2}^{T/2} \left[f \left(t \right) \right]^2 dt - \frac{a_0^2}{4} - \frac{1}{2} \sum_{n=1}^k \left(a_n^2 + b_n^2 \right) \end{split}$$

si E_k es pequeño la aproximación es válida.

Fenómeno de Gibbs

Cuando una función se aproxima por una serie parcial de Fourier, habrá un error considerable en las vecindad de las discontinuidades.

Series de Fourier

Ejemplo La función

 $f(t) = \begin{cases} -1 & -\pi < t < 0 \\ 1 & 0 < t < \pi \end{cases}$

$$-\frac{3-\frac{1}{2}}{2} \qquad \qquad \left(1 \qquad 0 < t < \pi\right)$$

tiene un desarrollo en serie de Fourier:

$$f(t) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin[(2n-1)t]}{(2n-1)}$$

utilizando los primeros 20 términos $f\left(t\right)\simeq \tfrac{4}{\pi}\sum_{n=1}^{20}\tfrac{\sin\left[(2n-1)t\right]}{(2n-1)}$

en este caso el error cuadrático medio será: $E_k = \frac{1}{T} \int_{-T/2}^{T/2} \left[f\left(t\right) \right]^2 dt - \frac{1}{2} \sum_{n=1}^{20} a_n^2$ $E_k = 1 - \frac{8}{\pi^2} \sum_{n=1}^{20} \frac{1}{(2n-1)^2} = 0 \;, 0 \; 1013$ los primeros 1000 $f\left(t\right) \simeq \frac{4}{\pi} \sum_{n=1}^{1000} \frac{\sin[(2n-1)t]}{(2n-1)}$

el error cuadrático medio será: $E_k = \frac{1}{T} \int_{-T/2}^{T/2} \left[f\left(t\right) \right]^2 dt - \frac{1}{2} \sum_{n=1}^{1000} a_n^2$ $E_k = 1 - \frac{8}{\pi^2} \sum_{n=1}^{1000} \frac{1}{(2n-1)^2} = 2.0264 \times 10^{-4}$

Fourier en las discontinuidades

En un punto singular t_s la serie de Fourier converge a

$$\frac{1}{2} \left[\lim_{t \to t_s} f(t) + \lim_{t_+ \to t_s} f(t) \right], \qquad (8.9)$$

es decir, aunque la función no exista en t_s , su desarrollo en serie de Fourier existe y su valor esta dado por 8.9.

Teorema de Parseval

Si a_0, a_n y b_n son los coeficientes en la expasión en serie de Fourier de la función $f\left(t\right)=f\left(t+T\right)$. Entonces:

$$\frac{1}{T} \int_{-T/2}^{T/2} |f(t)|^2 dt = \frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right)$$
(8.10)

este valor representa a la potencia contenida en la señal.

Simetrías

Con frecuencia las simetrías simplifican a los problemas matemáticos. En el caso de series de Fourier, utilizaremos a la simetría en la paridad para simplificar el problema.

Funciones pares e impares

Una función es par si se cumple que

$$f(t) = f(-t)$$

e impar si

$$f(t) = -f(-t)$$

En el caso de funciones pares el desarrollo en serie de Fourier es:

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega_0 t)$$

y para impares

$$f(t) = \sum_{n=1}^{\infty} b_n \operatorname{sen}(n\omega_0 t)$$

Es decir, sólo se necesitan calcular a_0 y a_n , para funciones pares, y sólo b_n para impares.

Derivación e Integración de Series de Fourier Derivación

Sea la serie de Fourier:

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right]$$

si derivamos término a término obtenemos:

$$f'(t) = \sum_{n=1}^{\infty} n\omega_0 \left[b_n \cos \left(n\omega_0 t \right) - a_n \sin \left(n\omega_0 t \right) \right].$$

Series de Fourier 47

El término extra que aparece al derivar, $n\omega_0$, disminuye el grado de convergencia de la serie, llegando ésta incluso a diverger. Note que la derivada sólo esta definida en donde la función es continua. La derivación en los puntos singulares se verá más adelante.

Integración

Sea la serie de Fourier

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right]$$

si integramos término a término

$$\int f(t) dt = \frac{1}{2} a_0 t + \sum_{n=0}^{\infty} \frac{1}{n\omega_0} \left[a_n \operatorname{sen} \left(n\omega_0 t \right) - b_n \cos \left(n\omega_0 t \right) \right] + C$$

El término extra que aparece al derivar $1/n\omega_0$ aumenta el grado de convergencia de la serie. La integración esta definida aún en los puntos singulares.

Ejemplos

Considere a la función

$$f(t) = \begin{cases} 0 & \text{para } -\pi < t < -\pi/2 \\ 1 & \text{para } -\pi/2 < t < \pi/2 \\ 0 & \text{para } +\pi/2 < t < \pi \end{cases}$$

$$f(t) = f(t + 2\pi)$$

Como es una función par

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega_0 t)$$

$$a_{0} = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$$

$$= \frac{1}{\pi} \left[\int_{-\pi}^{-\pi/2} 0 dt + \int_{-\pi/2}^{\pi/2} dt + \int_{\pi/2}^{\pi} 0 dt \right]$$

$$= \frac{1}{\pi} \left[\int_{-\pi/2}^{\pi/2} dt \right] = \frac{1}{\pi} t \Big|_{-\pi/2}^{\pi/2}$$

$$= \frac{1}{\pi} \left[\pi/2 - (-\pi/2) \right]$$

$$= 1$$

$$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$$
$$= \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(nt) dt$$
$$= \frac{2}{n\pi} \operatorname{sen}\left(\frac{\pi n}{2}\right)$$

o bien,

$$f(t) = \frac{1}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \operatorname{sen}\left(\frac{\pi n}{2}\right) \cos(n\omega_0 t)$$
$$= \frac{1}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{-(-1)^n}{2n-1} \cos((2n-1)t)$$

Función Heaviside y Delta de Dirac Función Heaviside, H

La función escalón o heaviside está definida por

$$H(t) = \begin{cases} 0 & \text{para } t < 0\\ 1 & \text{para } t > 0 \end{cases}$$

Delta de Dirac, δ

La delta de Dirac es una regla de selección (no es función) que se define como:

$$\delta(t) = \begin{cases} \infty & \text{para } t = 0\\ 0 & \text{para } t \neq 0 \end{cases}$$

Algunas propiedades de la delta de Dirac son:

$$\int_{-\infty}^{\infty} f(t) H(t-a) dt = \int_{a}^{\infty} f(t) dt$$

$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

$$\int_{-\infty}^{\infty} \delta(t) f(t) dt = f(0)$$

$$\int_{-\infty}^{\infty} \delta(t-a) f(t) dt = f(a)$$

$$\frac{dH(t)}{dt} = \delta(t)$$

Derivación en puntos singulares

Considere a la función f(t) que tiene discontinuidades súbitas a_1, a_2, a_3, \dots en t_1, t_2, t_3, \dots , y la función f'(t) que esta definida en todo t excepto en las discontinuidades.

Definimos a la función

$$g(t) = f(t) - \sum_{k} a_{k}H(t - t_{k})$$

La función g(t) es continua en todas partes y su derivada es

$$g'(t) = f'(t) - \sum_{k} a_k \delta(t - t_k)$$

48 Series de Fourier

o bien,

$$f'(t) = g'(t) + \sum_{k} a_k \delta(t - t_k)$$

lo anterior se conoce como la derivada generalizada de una función continua por tramos.

Series de Fourier 49

Espectros de frecuencia discreta

Forma compleja de las series de Fourier

Dada la serie de Fourier

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right]$$

podemos representar al seno y coseno en términos de la exponencial compleja:

$$\cos(n\omega_0 t) = \frac{e^{in\omega_o t} + e^{-in\omega_o t}}{2}$$
$$\sin(n\omega_0 t) = \frac{e^{in\omega_o t} - e^{-in\omega_o t}}{2i}$$

lo anterior dará el siguiente resultado:

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{in\omega_o t}$$
 (9.1)

en donde

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-in\omega_o t} dt \qquad (9.2)$$

además

$$c_0 = \frac{1}{2} a_0, \, c_n = |c_n| \, e^{i\phi_n} \, \, {\bf y} \, \, c_{-n} = |c_n| \, e^{-i\phi_n}$$

en donde:

$$|c_n| = \frac{1}{2} \sqrt{a_n^2 + b_n^2}$$

У

$$\phi_n = \tan^{-1} \left(-\frac{b_n}{a_n} \right)$$

a $|c_n|$ le llamaremos amplitud y a ϕ_n ángulo de fase

Espectros de frecuencia compleja

En realidad c_n es una función de $\omega_n = n\omega_0$. A la gráfica discreta de $|c_n|$ contra ω_n se le denomina espectro de amplitud, esta función especifica a la función periódica $f(\omega)$ en el espacio de las frecuencias, al igual que f(t) lo hace en el espacio del tiempo.

De igual forma a la gráfica de ϕ_n contra ω_n se le denomina espectro de fase.

Contenido de potencia y teorema de Parseval

Para cualquier señal periódica se define a la potencia promedio como:

$$\frac{1}{T} \int_{-T/2}^{T/2} \left[f\left(t\right) \right]^2 dt$$

el teorema de Parseval para el caso complejo relaciona a la potencia promedio con las amplitudes de la onda

$$\frac{1}{T} \int_{-T/2}^{T/2} [f(t)]^2 dt = \sum_{n=-\infty}^{\infty} |c_n|^2$$
 (9.3)

Encontrar los espectros de frecuencia para la función:

$$f(t) = \begin{cases} A & \text{para } -\frac{1}{2}d < t < \frac{1}{2}d \\ 0 & \text{para } -\frac{1}{2}T < t < -\frac{1}{2}d : \frac{1}{2}d < t < \frac{1}{2}T \end{cases}$$

para calcular c_n utilizamos:

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-in\omega_0 t} dt$$

$$= \frac{A}{T} \int_{-d/2}^{d/2} e^{-in\omega_0 t} dt$$

$$= \frac{A}{T} \frac{1}{-in\omega_0} e^{-in\omega_0 t} \Big|_{-d/2}^{d/2}$$

$$= \frac{A}{T} \frac{1}{in\omega_0} \left(e^{in\omega_0 d/2} - e^{-in\omega_0 d/2} \right)$$

$$= \frac{Ad}{T} \frac{\sin\left(\frac{n\omega_0 d}{2}\right)}{\left(\frac{n\omega_0 d}{2}\right)}$$

 $y |c_n|$

$$|c_n| = \left| \frac{Ad}{T} \frac{\operatorname{sen}\left(\frac{n\omega_0 d}{2}\right)}{\left(\frac{n\omega_0 d}{2}\right)} \right|$$

si hacemos d = 1/20, A = 5 y T = 1/4, $\omega_0 =$ 8π

$$|c_n| = \left| \frac{\operatorname{sen}\left(\frac{n\pi}{5}\right)}{\left(\frac{n\pi}{5}\right)} \right|$$

Espectro de amplitud

Transformada de Fourier

Las series de Fourier son muy útiles para estudiar funciones periódicas, por lo tanto, es natural querer extrapolar esta teoría para el caso de cualquier función.

Deducción

Sea la serie de Fourier

$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{in\omega_o t}$$

con

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-in\omega_o t} dt \ y \ T = \frac{2\pi}{\omega_o}$$

combinando ambas

$$\begin{split} f\left(t\right) &= \sum_{n=-\infty}^{\infty} \left[\frac{1}{T} \int_{-T/2}^{T/2} f\left(x\right) e^{-in\omega_{o}x} dx\right] e^{in\omega_{o}t} \\ f\left(t\right) &= \sum_{n=-\infty}^{\infty} \frac{1}{2\pi} \left[\int_{-T/2}^{T/2} f\left(x\right) e^{-in\omega_{o}x} dx\right] \omega_{o} e^{in\omega_{o}t} \end{split}$$

si hacemos $T\to\infty$, ó $\omega_o=d\omega\to 0$ y $n\omega_o\to\omega$. Obtenemos la identidad de Fourier.

$$f\left(t\right) = \int_{-\infty}^{\infty} \frac{1}{2\pi} \left[\int_{-\infty}^{\infty} f\left(x\right) e^{-i\omega x} dx \right] e^{i\omega t} d\omega$$

si definimos

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt \qquad (10.1)$$

obtenemos.

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega \qquad (10.2)$$

Transformada de Fourier

La ecuación 10.1 sirve para definir a la transformada de Fourier \mathcal{F} :

$$\mathcal{F}(f(t)) = F(\omega) \tag{10.3}$$

y la 10.2 a la antitransformada de Fourier \mathcal{F}^{-1}

$$\mathcal{F}^{-1}\left(F\left(\omega\right)\right) = f\left(t\right) \tag{10.4}$$

En general la función $F\left(\omega\right)$ es compleja y contiene la misma información que $f\left(t\right)$.

$$F\left(\omega\right) = \left|F\left(\omega\right)\right| e^{i\phi\left(\omega\right)}$$

Espectro de frecuencia continuo

A la gráfica de $|F(\omega)|$ contra ω se le llama espectro continuo de frecuencia. En esta gráfica se pueden observar si existen frecuencias preferenciales o características en la señal.

Transformada de Fourier 53

Transformadas seno y coseno de Fourier

Si la función f(t) esta definida sólo en el intervalo $t \in [0, \infty)$ definimos a la transformada seno de Fourier como

$$\mathcal{F}_{s}\left(f\left(t\right)\right) = F\left(\omega\right) = \int_{0}^{\infty} f\left(t\right) \sin\left(\omega t\right) (dt0.5)$$

$$\mathcal{F}_{s}^{-1}\left(F\left(\omega\right)\right) = f\left(t\right) = \frac{2}{\pi} \int_{0}^{\infty} F\left(\omega\right) \sin\left(\omega t\right) d\omega$$

y a la transformada coseno

$$\begin{aligned} \mathcal{F}_{c}\left(f\left(t\right)\right) &= F\left(\omega\right) = \int_{0}^{\infty} f\left(t\right) \cos\left(\omega t\right) (d\boldsymbol{\theta}.7) \\ \mathcal{F}_{c}^{-1}\left(F\left(\omega\right)\right) &= f\left(t\right) = \frac{2}{\pi} \int_{0}^{\infty} F\left(\omega\right) \cos\left(\omega t\right) d\boldsymbol{\theta}. \end{aligned}$$

Convolución y correlación

Sean $f_1(t)$ y $f_2(t)$ dos funciones dadas. La convolución de $f_1(t)$ y $f_2(t)$, esta definida por

$$f(t) = f_1(t) * f_2(t) = \int_{-\infty}^{\infty} f_1(\tau) f_2(t - \tau) d\tau$$
(10.9)

La función $f\left(t\right)$ se conoce como la función de correlación entre las funciones $f_{1}\left(t\right)$ y $f_{2}\left(t\right)$. La correlación es una medida de la similitud o interdependencia de $f_{1}\left(t\right)$ y $f_{2}\left(t\right)$ como función de un parámetro τ . La autocorrelación se define como $f_{1}\left(t\right)*f_{1}\left(t\right)$.

Propiedades

$$f_{1}(t) * f_{2}(t) = f_{2}(t) * f_{1}(t)$$

$$[f_{1}(t) * f_{2}(t)] * f_{3}(t) = f_{1}(t) * [f_{2}(t) * f_{3}(t)]$$

$$f(t - t_{1}) * \delta(t - t_{2}) = f(t - t_{1} - t_{2})$$

Teorema de convolución

Si $\mathcal{F}(f_1(t)) = F_1(\omega)$ y $\mathcal{F}(f_2(t)) = F_2(\omega)$ entonces

$$f_1(t) * f_2(t) = \mathcal{F}^{-1}[F_1(\omega) F_2(\omega)]$$
 (10.10)

$$F_1(\omega) * F_2(\omega) = 2\pi \mathcal{F} [f_1(t) f_2(t)] \qquad (10.11)$$

Ejemplos

Transformada de Fourier

1) Encontrar $\mathcal{F}\left(te^{-at^2}\right)$ y graficar su espectro de frecuencia si a=1.

sabemos que $\mathcal{F}\left(e^{-at^2}\right)=\sqrt{\frac{\pi}{a}}e^{-\omega^2/4a}$ y que $\mathcal{F}\left(tf\left(t\right)\right)=iF'\left(\omega\right)$ entonces:

$$\mathcal{F}\left(te^{-at^2}\right) = i\frac{d}{d\omega}\left[\sqrt{\frac{\pi}{a}}e^{-\omega^2/4a}\right]$$
$$\mathcal{F}\left(te^{-at^2}\right) = \frac{i\omega}{2a}\sqrt{\frac{\pi}{a}}e^{-\omega^2/4a}$$

El espectro de frecuencia

$$|F(\omega)| = \left| \frac{i\omega}{2} \sqrt{\pi} e^{-\omega^2/4} \right|$$

 $|F(\omega)| = \frac{|\omega|}{2} \sqrt{\pi} e^{-\omega^2/4}$

2) Encontrar $\mathcal{F}\left\{ \left(t-1\right)e^{-a\left(t-1\right)}H\left(t-1\right)\right\}$

$$\mathcal{F}\left\{ \left(t-2\right)e^{-a\left(t-2\right)}H\left(t-2\right)\right\}$$

$$= e^{-2i\omega}\mathcal{F}\left\{ \left(t\right)e^{-a\left(t\right)}H\left(t\right)\right\}$$

$$= e^{-2i\omega}\frac{1}{\left(i\omega+a\right)^{2}}$$

3) Encontrar $\mathcal{F}\left\{e^{-a|3t|}\right\}$

$$\mathcal{F}\left\{e^{-s|3t|}\right\}$$

$$= \frac{1}{|3|} \left[\mathcal{F}\left\{e^{-s|t|}\right\}\right]_{\omega = \frac{\omega}{3}}$$

$$= \frac{1}{|3|} \left[\frac{2s}{s^2 + \omega^2}\right]_{\omega = \frac{\omega}{3}}$$

$$= \frac{1}{|3|} \left[\frac{2s}{s^2 + \frac{\omega^2}{9}}\right]$$

Transformada inversa de Fourier

1) Obtener
$$\mathcal{F}^{-1}\left[\frac{5}{2-\omega^2+3i\omega}\right]$$

$$5\mathcal{F}^{-1}\left\{\frac{1}{(2+i\omega)(1+i\omega)}\right\}$$

$$= 5\mathcal{F}^{-1}\left\{\frac{1}{1+i\omega} - \frac{1}{2+i\omega}\right\}$$

$$= 5\left[\mathcal{F}^{-1}\left\{\frac{1}{1+i\omega}\right\} - \mathcal{F}^{-1}\left\{\frac{1}{2+i\omega}\right\}\right]$$

$$= 5\left[e^{-t}H(t) - e^{-2t}H(t)\right]$$

$$= 5H(t)\left[e^{-t} - e^{-2t}\right]$$

Convoluci'on

1) Calcular $\mathcal{F}^{-1}\left[\frac{5}{2-\omega^2+3i\omega}\right]$ utilizando el teorema de convolución

$$\begin{split} \mathcal{F}^{-1} \left\{ \frac{5}{2 - \omega^2 + 3i\omega} \right\} \\ &= 5\mathcal{F}^{-1} \left\{ \left[\frac{1}{2 + i\omega} \right] \left[\frac{1}{1 + i\omega} \right] \right\} \\ &= 5\mathcal{F}^{-1} \left\{ \mathcal{F} \left[H\left(t\right) e^{-2t} \right] \mathcal{F} \left[H\left(t\right) e^{-t} \right] \right\} \\ &= 5 \left[H\left(t\right) e^{-2t} * H\left(t\right) e^{-t} \right] \\ &= 5 \int_{-\infty}^{\infty} H\left(\tau\right) e^{-2\tau} H(t - \tau) e^{-(t - \tau)} d\tau \\ &= 5 \int_{-\infty}^{\infty} e^{-t} e^{-\tau} H\left(\tau\right) H(t - \tau) d\tau \\ &= 5 e^{-t} \int_{-\infty}^{\infty} e^{-\tau} H\left(\tau\right) H(t - \tau) d\tau \end{split}$$

pero

$$H(\tau)H(t-\tau) = \begin{cases} 0 & \text{si } \tau < 0 \text{ ó } \tau > t \\ 1 & \text{si } 0 < \tau < t \end{cases}$$

de aquí si t < 0 la segunda condición nunca se cumple, por lo tanto $H(\tau)H(t-\tau)=0$. Y para $t > 0 H(\tau) H(t-\tau) = 1$ en el intervalo $0 < \tau < t$. entonces

$$= 5e^{-t} \int_{-\infty}^{\infty} e^{-\tau} H(\tau) H(t-\tau) d\tau$$

$$= \begin{cases} 0 & \text{si } t < 0 \\ 5e^{-t} \int_{0}^{t} e^{-\tau} d\tau & \text{si } t > 0 \end{cases}$$

$$= \begin{cases} 0 & \text{si } t < 0 \\ 5e^{-t} [1 - e^{-t}] & \text{si } t > 0 \end{cases}$$

$$= H(t) 5e^{-t} [1 - e^{-t}]$$

$$= 5H(t) [e^{-t} - e^{-2t}]$$

Ecuaciones diferenciales

1) Resolver a la ecuación diferencial

$$y' - 4y = H(t) e^{-4t}$$
$$-\infty < t < \infty$$

graficar su espectro de frecuencias

aplicando la transformada de Fourier a toda la ecuación obtenemos

$$\mathcal{F}\left\{ y' - 4y = H\left(t\right)e^{-4t}\right\}$$

$$i\omega Y(\omega) - 4Y(\omega) = \frac{1}{i\omega + 4}$$

$$Y(\omega) = \frac{1}{(i\omega - 4)(i\omega + 4)}$$

$$Y(\omega) = \frac{-1}{(4 - i\omega)(4 + i\omega)}$$

$$Y(\omega) = \frac{-1}{(4^2 + \omega^2)}$$

 $Y(\omega)$ ya es la solución a la ecuación diferencial en el espacio de frecuencias, si queremos regresar al espacio del tiempo aplicamos la transformada inversa de Fourier.

$$\begin{array}{rcl} y & = & \mathcal{F}^{-1}\left[Y\left(\omega\right)\right] \\ & = & -\mathcal{F}^{-1}\left[\frac{1}{(4^{2}+\omega^{2})}\right] \\ & = & -\frac{1}{2\left(4\right)}\mathcal{F}^{-1}\left[\frac{2\left(4\right)}{(4^{2}+\omega^{2})}\right] \\ y & = & -\frac{1}{8}e^{-4|t|} \end{array}$$

Note que al resolver la ecuación diferencial no se utilizaron constantes arbitrarias, lo anterior es porque implícitamente existen dos condiciones extras:

1.
$$\int_{-\infty}^{\infty} |f(t)| dt < \infty$$

2. f(t) es continua

Su espectro de frecuencia es:

$$|Y(\omega)| = \left| \frac{-1}{(4^2 + \omega^2)} \right|$$
$$= \frac{1}{(4^2 + \omega^2)}$$

Transformada de Fourier

Transformada de Fourier

Polinómios de Legendre

Definición

Sea la ecuación diferencial de autovalores en el dominio $x \in (-1,1)$, que sólo tiene solución diferente de cero para un conjunto de n's enteras positivas:

$$(x^2 - 1) \psi'' + 2x\psi' = n(n+1) \psi$$

Las funciones $P_n(x)$ que son solución de la ecuación anterior son los polinomios de Legendre...

Representación

Las soluciones no se pueden representar de forma convencional por lo que utilizamos métodos indirectos de representación.

Función Generadora

La función generadora de los polinomios de Legendre es:

$$\frac{1}{\sqrt{1+t^2-2tx}} = \sum_{n=0}^{\infty} t^n P_n(x); \ |t| < 1$$

si desarrollamos en serie de potencias a la función generadora y comparamos potencias en t con la serie encontraremos a los polinomios de Legendre

$$\frac{1}{\sqrt{1+t^{2}-2tx}}=P_{0}\left(x\right) +P_{1}\left(x\right) t+P_{2}\left(x\right) t^{2}+...$$

de aquí:

$$P_{0}(x) = 1$$

$$P_{1}(x) = x$$

$$P_{2}(x) = \frac{1}{2}(3x^{2} - 1)$$

$$P_{3}(x) = \frac{1}{2}(5x^{3} - 3x) \dots$$

Fórmula de Rodríguez

Otra forma de obtener los polinomios de Legendre es mediante la fórmula de Rodríguez

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \left[\left(x^2 - 1 \right)^n \right]$$

Representación Integral

A partir de una integral podemos encontrar a los polinomios de Legendre

$$P_n(x) = \frac{1}{\pi} \int_0^{\pi} \left[x \pm \sqrt{x^2 - 1} \cos t \right]^n dt$$

Fórmulas de recurrencia

Las fórmulas anteriores son muy útiles en algunos casos pero son difíciles de manejar. Las siguientes relaciones permiten un cálculo más fácil

$$(n+1) P_{n+1}(x) = (2n+1) x P_n(x) - n P_{n-1}(x)$$

$$(2n+1) P_n(x) = \frac{d}{dx} [P_{n+1}(x) - P_{n-1}(x)]$$

$$(x^2 - 1) \frac{d}{dx} P_n(x) = n [x P_n(x) - P_{n-1}(x)]$$

Ortogonalidad

Las funciones de Legendre son ortogonales bajo:

$$\int_{-1}^{1} P_m(x) P_n(x) dx = \frac{2}{2m+1} \delta_{mn}$$

Serie Fourier-Legendre

A cualquier función continua definida en el dominio $x \in (-1,1)$ se le puede representar como:

$$f(x) = \sum_{n=0}^{\infty} a_n P_n(x)$$

en donde

$$a_n = \frac{n + \frac{1}{2}}{2^n n!} \int_{-1}^{1} (1 - x^2)^n \frac{d^n}{dx^n} f(x) dx$$

Valores importantes

$$P_n(0) = \begin{cases} 0 \text{ para } n \text{ impar} \\ (-1)^{n/2} \frac{(2n+1)!}{(2n)!} \text{ para } n \text{ par} \end{cases}$$

$$P_n(1) = 1$$

$$P_n(-1) = (-1)^n$$

Gráfica de los polinómios de Legendre

Función Gamma

Definición

Sea la función factorial generalizada para todos los números reales \boldsymbol{x}

$$\Gamma\left(x+1\right) = x!$$

Representación

Representación de Euler

Sea un número real que pertenece a $\{x | x > 0\}$

Relaciones de Recurrencia

$$\Gamma\left(x\right) = \int_{0}^{\infty} e^{-t} t^{x-1} dt$$

$$\Gamma(x+1) = x\Gamma(x)$$

$$\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin(\pi x)}$$

$$\Gamma(x)\Gamma(-x) = -\frac{\pi}{x\sin(\pi x)}$$

Representación de Gauss

Sea un número real que pertenece a $\{x \mid x \neq 0, -1, -2, -3, \dots\}$

Valores Importantes

$$\Gamma\left(x\right) = \lim_{n \to \infty} \frac{n! n^{x-1}}{x\left(x+1\right)\left(x+2\right) \dots \left(x+n-1\right)}$$

Gráfica de
$$\Gamma(x)$$

$$\Gamma(1) = 1$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

$$\Gamma\left(-\frac{1}{2}\right) = -2\sqrt{\pi}$$

Funciones de Bessel

Definición

Las funciones cilíndricas o de Bessel del primer tipo están definidas por la ecuación diferencial con dominio $x \in (0, a)$

$$x^2y'' + xy' + x^2y = \nu^2y \tag{13.1}$$

La solución general para esta ecuación es:

$$y = c_1 J_{\nu}(x) + c_2 J_{-\nu}(x)$$
 (13.2)

en donde $J_{\nu}\left(x\right)$ es la función de Bessel de orden ν .

Representación

Podemos representar a las funciones de Bessel como la serie:

$$J_{\nu}\left(x\right) = \sum_{i=0}^{\infty} \frac{\left(-1\right)^{i}}{i!\Gamma\left(\nu+i+1\right)} \left(\frac{x}{2}\right)^{\nu+2i}$$

o atravéz de una función generadora

$$e^{\frac{x}{2}\left(\frac{t-1}{t}\right)} = \sum_{n=-\infty}^{\infty} J_n(x) t^n$$

Fórmulas de recurrencia

$$\frac{2\nu}{x} J_{\nu}(x) = J_{\nu-1}(x) + J_{\nu+1}(x)$$

$$\frac{d}{dx} (x^{\nu} J_{\nu}(x)) = x^{\nu} J_{\nu-1}(x)$$

$$\frac{d}{dx} (x^{-\nu} J_{\nu}(x)) = -x^{-\nu} J_{\nu+1}(x)$$

$$J_{-\nu}(x) = (-1)^{\nu} J_{\nu}(x) : \nu \text{ entero}$$

Note que cuando ν es entero 13.2 deja de ser solución de 13.1, debido a que $J_{-\nu}(x)$ y $J_{\nu}(x)$ dejan de ser linealmente independientes. Entonces se propone una solución del tipo

$$y = c_1 J_{\nu}(x) + c_2 Y_{\nu}(x)$$

en donde $Y_{\nu}\left(x\right)$ son la funciones de Bessel del segundo tipo, definidas por

$$Y_{\nu}(x) = \lim_{p \to \nu} \frac{J_{p}(x)\cos(\pi p) - J_{-p}(x)}{\operatorname{sen}(px)} \quad (13.3)$$

Ortogonalidad

Las raíces α_n de la ecuación

$$J_{\nu}\left(\alpha_{n}\right)=0$$

permiten definir la ortogonalidad

$$\int_{0}^{a} J_{\nu} \left(\frac{\alpha_{n} x}{a}\right) J_{\nu} \left(\frac{\alpha_{m} x}{a}\right) x dx$$

$$= -\frac{a^{2}}{2} J_{\nu+1} (\alpha_{n}) J_{\nu-1} (\alpha_{n}) \delta_{mn}$$

Funciones de Bessel

Integral de Bessel-Fourier

$$f\left(x\right) = \int_{0}^{\infty} J_{\nu}\left(kx\right) F\left(k\right) k dk$$

en donde

$$F(k) = \int_{0}^{\infty} J_{\nu}(kx) f(x) x dx$$

Gráfica

Las funciones $J_0(x)$, $J_1(x)$, $J_2(x)$ y $J_3(x)$ línea continua y $Y_0(x)$ línea gruesa.

Comportamiento asintótico

Las funciones de bessel para \boldsymbol{x} pequeños se comporta como

$$J_n(x) = \frac{1}{2^n n!} x^n$$
$$x \sim 0$$

para x grandes

$$J_n(x) = \sqrt{\frac{2}{\pi x}} \cos\left[x - (2n+1)\frac{\pi}{4}\right]$$

Ejercicios de funciones ortogonales

- 1. Desarrolle en serie de Fourier real a la función f(t) = |t| para $(-\pi, \pi)$ y $f(t) = f(t + \pi)$ 2π).
- 2. Grafique a la función

$$\begin{array}{lcl} f(t) & = & \left\{ \begin{array}{ll} 0 & -1 < t < 0 \\ t^2 & 0 > t > 1 \end{array} \right. \\ f(t) & = & f(t+2) \end{array}$$

encuentre su desarrollo en serie de Fourier real.

- 3. Desarrolle en serie de Fourier real a la función $f(t) = cos(\pi t), -1 \le t \le 1.$
- 4. Desarrolle en serie de Fourier real a la función $f(t) = e^{2t}/2, -1 \le t \le 1.$
- 5. Grafique a la función

$$f(t) = \begin{cases} 0 & -1 < t < 0 \\ e^{-t} & 0 > t > 1 \end{cases}$$

$$f(t) = f(t+2)$$

encuentre su desarrollo en serie de Fourier compleja. Grafique al espectro de frecuen-

Encuentre la serie de Fourier compleja y el espectro de frecuencia (al menos unos de sus puntos) para:

a)
$$f(t) = t^2 : 0 \le t < 2 : f(t+2) = f(t)$$

b)
$$f(t) = \begin{cases} t, & 0 < t < 2 \\ 0, & 2 < t < 3 \end{cases} : f(t+3) = f(t)$$

- Encuentre la transformada de Fourier y grafique a la función en el espacio de frecuencias
 - a) $e^{-c(t-4)} \operatorname{sen}(b(t-4)) H(t-4)$
 - $b) \quad \frac{5\cos(\omega_0 t)}{4+t^2} + 2$
 - c) $e^{-at^2}e^{i\omega_0t}$
 - $d) \quad \frac{d}{dt} \left(e^{-3t^2} \right)$
 - e) $(t-3)e^{-4t}H(t-3)$ f) $\frac{5e^{3it}}{t^2-4t+13}$
- Encuentre la antitransformada de Fourier para
- Encuentre una solución acotada y continua para
 - a) $\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = H(t)$
 - b) $\frac{d^{2}y}{dt^{2}}+3\frac{dy}{dt}+2y=3\delta\left(t\right)$
 - Utilice la fórmula de Rodríguez para calcular $P_4(x)$.

Parte III Apéndices

Apéndice A: Tabla de transformada de Fourier

$$f(t) \Leftrightarrow F(\omega)$$
 (a1)

$$a_1 f_1(t) + a_2 f_2(t) \Leftrightarrow a_1 F_1(\omega) + a_2 F_2(\omega)$$
 (a2)

$$f(at) \Leftrightarrow \frac{1}{|a|} F\left(\frac{\omega}{a}\right)$$
 (a3)

$$f(-t) \Leftrightarrow F(-\omega)$$
 (a4)

$$f(t - t_0) \Leftrightarrow F(\omega) e^{-i\omega t_0}$$
 (a5)

$$f(t) e^{i\omega_0 t} \Leftrightarrow F(\omega - \omega_0)$$
 (a6)

$$f(t)\cos(\omega_0 t) \Leftrightarrow \frac{1}{2}F(\omega - \omega_0) + \frac{1}{2}F(\omega + \omega_0)$$
(a7)

$$f(t)\sin(\omega_0 t) \Leftrightarrow \frac{1}{2i}F(\omega - \omega_0) - \frac{1}{2i}F(\omega + \omega_0)$$
(a8)

$$F(t) \Leftrightarrow 2\pi f(-\omega)$$
 (a9)

$$f^{(n)}(t) \Leftrightarrow (i\omega)^n F(\omega)$$
 (a10)

$$\int_{-\infty}^{t} f(x) dx \Leftrightarrow \frac{1}{i\omega} F(\omega) + \pi F(0) \delta(\omega) \quad (a11)$$

$$(-it)^n f(t) \Leftrightarrow F^{(n)}(\omega)$$
 (a12)

$$f_1(t) * f_2(t) \Leftrightarrow F_1(\omega) F_2(\omega)$$
 (a13)

$$f_1(t) f_2(t) \Leftrightarrow \frac{1}{2\pi} F_1(\omega) * F_2(\omega)$$
 (a14)

$$e^{-at}H(t) \Leftrightarrow \frac{1}{i\omega + a}$$
 (a15)

$$e^{-a|t|} \Leftrightarrow \frac{2a}{a^2 + \omega^2}$$
 (a16)

$$e^{-at^2} \Leftrightarrow \sqrt{\frac{\pi}{a}} e^{-\frac{\omega^2}{4a}}$$
 (a17)

$$p_a(t) = \begin{cases} 1 & |t| < \frac{a}{2} \\ 0 & |t| > \frac{a}{2} \end{cases} \Leftrightarrow a \frac{\sin\left(\frac{\omega a}{2}\right)}{\left(\frac{\omega a}{2}\right)}$$
 (a18)

$$\frac{\sin\left(at\right)}{\pi t} \Leftrightarrow p_{2a}\left(\omega\right) \tag{a19}$$

$$te^{-at}H(t) \Leftrightarrow \frac{1}{(i\omega + a)^2}$$
 (a20)

$$\frac{t^{n-1}}{(n-1)!}e^{-at}H(t) \Leftrightarrow \frac{1}{(i\omega+a)^n}$$
 (a21)

$$e^{-at}\sin(bt)H(t) \Leftrightarrow \frac{b}{(i\omega+a)^2+b^2}$$
 (a22)

$$e^{-at}\cos(bt)H(t) \Leftrightarrow \frac{i\omega + a}{(i\omega + a)^2 + b^2}$$
 (a23)

$$\frac{1}{a^2 + t^2} \Leftrightarrow \frac{\pi}{a} e^{-a|\omega|} \tag{a24}$$

$$\frac{\cos(bt)}{a^2 + t^2} \Leftrightarrow \frac{\pi}{2a} \left[e^{-a|\omega - b|} + e^{-a|\omega + b|} \right]$$
 (a25)

$$\frac{\sin(bt)}{a^2 + t^2} \Leftrightarrow \frac{\pi}{2ai} \left[e^{-a|\omega - b|} - e^{-a|\omega + b|} \right]$$
 (a26)

$$\delta(t) \Leftrightarrow 1$$
 (a27)

$$\delta(t - t_0) \Leftrightarrow e^{-i\omega t_0}$$
 (a28)

$$\delta^{(n)}(t) \Leftrightarrow (i\omega)^n$$
 (a29)

$$H(t) \Leftrightarrow \pi\delta(\omega) + \frac{1}{i\omega}$$
 (a30)

$$H(t - t_0) \Leftrightarrow \pi \delta(\omega) + \frac{1}{i\omega} e^{-i\omega t_0}$$
 (a31)

$$1 \Leftrightarrow 2\pi\delta(\omega)$$
 (a32)

$$t^n \Leftrightarrow 2\pi i^n \delta^{(n)}(\omega)$$
 (a33)

$$e^{i\omega_0 t} \Leftrightarrow 2\pi\delta \left(\omega - \omega_0\right)$$
 (a34)

$$\cos(\omega_0 t) \Leftrightarrow \pi \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)\right] \quad (a35)$$

$$\sin(\omega_0 t) \Leftrightarrow -i\pi \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0)\right]$$
 (a36)

$$H(t)\sin(\omega_{0}t) \qquad (a37)$$

$$\Leftrightarrow \frac{\omega_{0}}{\omega_{0}^{2} - \omega^{2}} + \frac{\pi}{2i} \left[\delta(\omega - \omega_{0}) - \delta(\omega + \omega_{0})\right]$$

$$H(t)\cos(\omega_{0}t) \qquad (a38)$$

$$\Leftrightarrow \frac{i\omega_{0}}{\omega_{0}^{2} - \omega^{2}} + \frac{\pi}{2i} \left[\delta(\omega - \omega_{0}) + \delta(\omega + \omega_{0})\right]$$

$$tH(t) \Leftrightarrow i\pi\delta'(\omega) - \frac{1}{\omega^2}$$
 (a39)

$$\frac{1}{t^n} \Leftrightarrow \frac{(-i\omega)^{n-1}}{(n-1)!} \left[\pi i - 2\pi i H\left(\omega\right) \right]$$
 (a40)

$$\int_{-\infty}^{\infty} f_1(t) f_2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(\omega) F_2^*(\omega) d\omega$$
(a41)

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(\omega)|^2 d\omega \quad (a42)$$

$$\int_{-\infty}^{\infty} f(t) G(t) dt = \int_{-\infty}^{\infty} F(\omega) g(\omega) d\omega \quad (a43)$$

Apéndice B: Tabla de transformada seno de Fourier

$$f(t) \Leftrightarrow F_S(\omega)$$
 (S1)

$$\frac{1}{t} \Leftrightarrow \pi H\left(\omega\right) - \frac{\pi}{2} \tag{S2}$$

$$t^{r-1} \Leftrightarrow \Gamma(r) \omega^{-r} \sin\left(\frac{\pi r}{2}\right) : r \in (0,1)$$
 (S3)

$$\frac{1}{\sqrt{t}} \Leftrightarrow \sqrt{\frac{\pi}{2\omega}}$$
 (S4)

$$e^{-at} \Leftrightarrow \frac{\omega}{a^2 + \omega^2} : (a > 0)$$
 (S5)

$$te^{-at} \Leftrightarrow \frac{2a\omega}{(a^2 + \omega^2)^2} : (a > 0)$$
 (S6)

$$te^{-a^2t^2} \Leftrightarrow \frac{\omega\sqrt{\pi}}{4a^3}e^{-\omega^2/4a^2} : (a > 0)$$
 (S7)

$$\frac{e^{-at}}{t} \Leftrightarrow \tan^{-1}\left(\frac{\omega}{a}\right) : (a > 0)$$
 (S8)

$$\frac{t}{a^2 + t^2} \Leftrightarrow \frac{\pi}{2} e^{-a\omega} : (a > 0)$$
 (S9)

$$\frac{t}{\left(a^2+t^2\right)^2} \Leftrightarrow 2^{-3/2} \frac{\omega e^{-a\omega}}{a} : (a>0) \qquad (S10)$$

$$\frac{1}{t(a^2+t^2)} \Leftrightarrow \frac{\pi}{2} \frac{(1-e^{-a\omega})}{a^2} : (a>0)$$
 (S11)

$$e^{-t/\sqrt{2}}\sin\left(\frac{t}{\sqrt{2}}\right) \Leftrightarrow \frac{\omega}{1+\omega^4}$$
 (S12)

$$\frac{2}{\pi} \tan^{-1} \left(\frac{a}{t} \right) \Leftrightarrow \frac{1 - e^{-a\omega}}{\omega} : (a > 0)$$
 (S13)

$$\frac{4}{\pi} \frac{t}{4 + t^4} \Leftrightarrow e^{-\omega} \sin \omega \tag{S14}$$

Apéndice C: Tabla de transformada coseno de Fourier

$$f(t) \Leftrightarrow F_C(\omega)$$
 (C1)

$$t^{r-1} \Leftrightarrow \Gamma(r) \omega^{-r} \cos\left(\frac{\pi r}{2}\right) : r \in (0,1)$$
 (C2)

$$e^{-at} \Leftrightarrow \frac{a}{a^2 + \omega^2} : (a > 0)$$
 (C3)

$$te^{-at} \Leftrightarrow \frac{a^2 - \omega^2}{(a^2 + \omega^2)^2} : (a > 0)$$
 (C4)

$$e^{-a^2t^2} \Leftrightarrow \frac{\omega\sqrt{\pi}}{2a}e^{-\omega^2/4a^2}: (a>0)$$
 (C5)

$$\frac{1}{a^2 + t^2} \Leftrightarrow \frac{\pi}{2a} e^{-a\omega} : (a > 0)$$
 (C6)

$$\frac{1}{(a^2+t^2)^2} \Leftrightarrow \frac{\pi}{4} \frac{e^{-a\omega} (1+a\omega)}{a^3} : (a>0) \quad (C7)$$

$$\cos\left(\frac{x^2}{2}\right) \Leftrightarrow \frac{\sqrt{\pi}}{2} \left(\cos\left(\frac{\omega^2}{2}\right) + \sin\left(\frac{\omega^2}{2}\right)\right)$$
 (C8)

$$\sin\left(\frac{x^2}{2}\right) \Leftrightarrow \frac{\sqrt{\pi}}{2} \left(\cos\left(\frac{\omega^2}{2}\right) - \sin\left(\frac{\omega^2}{2}\right)\right)$$
(C8)

Apéndice D: Referencias Bibliográficas

- A. David Wunsch, Variable compleja con aplicaciones, Addison-Wesley Iberoamericana, 1997.
- Hwei P. Hsu, Análisis de Fourier, Addison-Wesley Iberoamericana, 1987.
- Peter V. O'Neil, Matemáticas Avanzadas para Ingeniería, Volumen II, CECSA, 1998.
- T. W. Korner, *Fourier Analysis*, Cambridge, 1995.
- G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, Miami University, 2000, 5e.