andes 决策规划个人笔记

目录

- Component
 - ExecutorComponent
 - StateMachineComponent
- 数据结构
 - WorldView
 - ReferenceLineInfo
 - BaseContext
- 工具类
 - WorldBuilder
 - NewCentralDecider
 - ExecutorManager
 - Executor & Stage & Task
- 具体场景下的Executor & Stage & Task
 - CityCruiseExecutor
 - LaneFollowCityStage
 - LKPathBoundaryDecider
 - LKFixedPiecewiseJerkPathOptimizer
- 算法原理
 - Nudge决策整体流程
 - 基于模型的Nudge决策
 - LK Path 边界生成
 - LK Path QP建模
 - 参考线相关
 - TrajectoryStitcher

Component 数据结构 算法模块 程序流程

Component

ExecutorComponent

PNC模块最外层流程

StateMachineComponent

最外层的自动驾驶模式切换相关的状态机,应该不属于pnc主体模块

数据结构

WorldView

存储决策规划相关的几乎所有其他模块传入信息,本体实例在WorldBuilder中,每帧重新构建

ReferenceLineInfo

参考线数据结构,决策规划Tasks的主要操作对象,每帧重新构建,在Tasks间传递中间数据除了参考线本身外,还整合了很多WorldView中的其他信息,并投影到参考线对应的SL坐标系下

BaseContext

整个决策规划流程主要依赖WorldView和其中的ReferenceLineInfo进行各类数据的存取。但除了障碍物, 自车、地图,

车道/参考线等基础数据外,还有许多与算法或业务逻辑相关的其他数据,这些信息统一在WorldView的Context中存取。

可以在帧间传递

每个Executor对应的具体场景,都有一个继承自BaseContext的派生类,用来更具体地定义在该场景中用到的上下文信息。

工具类

WorldBuilder

ExecutorComponent成员,用于WorldView的构建

根据更新好的一系列数据(包括且不限于ExecutorComponent的输入),

通过Build() { CreateObstacles(), BuildVehicleState(), BuildMapBundle(), BuildContext() } 构建WorldView实例。

其为WorldView的友元类,通过直接更新WorldView对象的私有成员进行构建

NewCentralDecider

在ExecutorComponent Proc流程中进行的决策,用于场景决策,确定后续使用的executor。用fsm明确定义了各状态间的转换关系。

个人理解和StateMachineComponent功能有一定重合,也负责Domain(H/U)和Func(ANP/AP/ACC/MAN)间的切换。

但其更接近执行端,还可进行具体细分场景的状态切换(LineKeeping/左右转/泊车等),并为其选择不同的执行器。

- 状态派生类定义: modules/decider/state/
- 状态机切换规则的配置: onboard/conf/new decider/

ExecutorManager

提供根据执行器类型获取对应executor的接口

Init时根据配置文件在executor table 中注册并按配置参数初始化了所有Executor

配置文件: onboard/conf/executor/executor manager.config

另外该类在Init时还在TaskFactory中用默认参数初始化了所有Task

Executor & Stage & Task

每个场景对应一个执行器,每个执行器内包含若干stage,每个stage由一系列task组成,tasks共同操作 RefLineInfo完成PNC算法

各executor及其包含stage和task的配置文件: onboard/conf/executor/

- Executor的切换由场景决策确定,Stage的切换由其内部决定,Task则按Stage中的定义顺序执行
- Stage主要用于定义各场景下不同状态需要调用的Task序列,以及状态切换规则和各种业务逻辑,故每个Stage独一无二,不被复用;

而Task作为处理较为独立问题的基础算法模块,有些Task会被多个Stage调用

• Executor在初始化时就实例化了其包含的所有Stage,而Stage通过TaskFactory获取初始化好的Task指针。所以其实在ExecutorComponent

完成Init时,所有写入配置文件的Executor/Stage/Task派生类就都已经实例化完成了,切换和调用的时候只 是在各个层级的table中取对应指针

城市场景下的主要Executor和各自的Stage跳转(仅整理用到LK Path的):

具体场景下的Executor & Stage & Task

CityCruiseExecutor

城市巡航场景执行器

实现基本架构,参考线生成,Stage切换(由其内部触发),override相关等

通过ExportMessage()对外更新Stage执行后的一些情况变化

</> CityCruiseExecutor下的Stages:

CTT

- 1 LANE_FOLLOW_CITY /
- 2 NUDGE_PREPARE_CITY / NUDGE_PROCESS_CITY / NUDGE_AWAY_CITY / NUDGE_FINISH_CITY /
- 3 LANE_CHANGE_PREPARE_CITY / LANE_CHANGE_GAMING_CITY / LANE_CHANGE_CHASING_CITY /
- 4 LANE_CHANGE_PROCESS_CITY / LANE_CHANGE_ONLANE_CITY / LANE_CHANGE_MERGE_IN_CITY /
- 5 LANE_CHANGE_RECENTER_CITY / LANE_CHANGE_FINISH_CITY /
- 6 MERGE_IN /
- 7 CROSS_LINE_NUDGE
- 8 // 这些Stages基本只在CityCruiseExecutor下被使用

Executor的源文件在modules目录下,而Context,Stage和Task则在lib下,各种业务逻辑细节也主要实现在后面三个层级内

LaneFollowCityStage

城市巡航场景下的车道线保持状态

执行tasks前:转换上下文,选取并平滑当前参考线,进行一些变道相关信息的更新

执行tasks后:各个Stage的切换判断,若均不切换则保持当前状态,进行暂停和启动判断

</> LaneFollowCityStage下的Tasks:

- C++
- 1 LK_PATH_BOUNDARY_DECIDER / LK_FIXED_PIECEWISE_JERK_PATH_OPTIMIZER /
- 2 NAVI_CIPV_DECIDER / OBSTACLE_INTERACTION_DECIDER / TRAFFIC_LIGHT_DECIDER /
 CROSSWALK_DECIDER /
- 3 LANE_CHANGE_TRAFFIC_FLOW_CALCULATOR / LANE_CHANGE_CITY_TRIGGER_DECIDER /
- 4 BORROW_LANE_NUDGE_TRIGGER_DECIDER / LANE_CHANGE_SPEED_DECIDER / ROAD_SPEED_LIMIT_DECIDER /
- 5 MERGE_IN_TRIGGER_DECIDER / NAVI_PF_SPEED_OPTIMIZER / NAVI_SPEED_OPTIMIZER
- 6 // 这些Tasks并不只在该Stage下被使用,某些Task会被许多Stages复用

Decider和Optimizer都是Task的派生类,各种Tasks又是他们的派生类

这层包装比较简单,就是在Execute()里对输入做完整性检查,然后分别调用MakeDecision()和Optimize(),派生类分别实现这两个函数即可

LKPathBoundaryDecider

计算沿参考线的横向边界,为后续优化求解提供横向上下界约束相关功能为车道保持、道内nudge、跨线nudge

输入为参考线、障碍物、自车信息,输出为沿参考线的boundary;实现方式主要为在不同场景下设计不同规则对边界进行调整

备忘录

- 画图画出的是lane、buffer、质点模型边界;未画出surface, surface为min(lane, lane 0.2(有近硬边界时), 硬边界 0.4)
- RoadBox是一定范围内硬边界的外接矩形,真正的硬边界可通过0.4的buffer找到
- 吃掉等效车宽的一定是ConvertToMassPoint上下同减
- 吃掉buffer的一定是某种NudgeLimit (or Overlap)

被调用情况

CITY CRUISE EXECUTOR:

LANE_FOLLOW_CITY、NUDGE_PREPARE_CITY、NUDGE_FINISH_CITY、LANE_CHANGE_PREPARE_CITY、

LANE CHANGE FINISH CITY, MERGE IN, CROSS LINE NUDGE

LEFT_TURN_EXECUTOR:

LEFT_TURN_APPROACH、LEFT_TURN_CRUISE

RIGHT TURN EXECUTOR:

RIGHT_TURN_PREPARE、RIGHT_TURN_PROCESS、RIGHT_TURN_FINISH、RT_BORROW_LANE_NUDGE_PREPARE、

RT_LANE_CHANGE_PREPARE、RIGHT_TURN_MERGE

SIDE_ROAD_ASSIST_EXECUTOR:

SIDE ROAD ASSIST PREPARE, SIDE ROAD ASSIST PROCESS, SIDE ROAD ASSIST FINISH

U_TURN_EXECUTOR:

U TURN CRUISE

LKFixedPiecewiseJerkPathOptimizer

根据QP问题模型和LKPathBoundaryDecider给出的boundary等约束,整理并求解QP问题

加速度检查CheckLateralAcc: 根据ref kappa & dkappa、I / dl / ddl 计算path在xy下的kappa,若max(5,adc_v)^2 * kappa < max_lateral_acc(0.9)则fallback

// lateral acc = v^2 * kappa

// lateral jerk = 2 * v * dv/dt * kappa + v^2 * ds/st * delta_kappa/ds

// lateral jerk = 2 * v * a * kappa + v^3 & dkappa

计算dkappa和lateral_jerk, 超出阈值则fallback

被调用情况和LKPathBoundaryDecider完全相同

算法原理

Nudge决策整体流程

Q:

MaintainCNLInfo()中的move_dist是指整个SL坐标系移动的dist么?

基于模型的Nudge决策

LKNudgeModel

决策模型 Light Gradient Boosting Machine

Features

- 1.后侧情况相对速度 2.侵入车道宽度
- 2.1 ego_in_turn(常量0) 3. 障碍物SL下的v_heading
 - ₽時物SL下的V_neadin 4. 类型是否为车辆
 - 5. 横向距离
 - 6. 障碍物横向速度
 - 7. 障碍物纵向长度
 - 8. 纵向距离
 - 9. 同/前侧情况相对速度 10. 横向余下空间
 - 11. 障碍物速度
 - 12. time to collision
 - 13.4 * 3

模型权重文件 conf/executor/lk_nudge_model.txt

MakeNudgeDecision()

输入feature计算模型输出

根据上帧结果做滤波 out = 0.4 out + 0.4 last_out + 0.2 last_decision

基于规则的后处理

11:34	andes 决策规划个人	.笔记 		
基于模型的Midge决策。		No.		
模型使用的基本原理	是块策树 (CAR	T. 绿复回归树	4)	
核心模型是GBDT (Gradient Boosting Deck	ston Tree)		
LGBM是GBDT一个单	较好的工程实现,是x	gbout 的针汉站	ξ.	
GBDT中的 Boosting是	种集成到方法,将单个	弱分整案 串联 以·	的成强分类等	10.
故先介绍单T CART 能	训练法程。			
CART构建				
决策树的训练与hr				
逐层生活一棵二叉树(CART)。	,核与是最低feature的	选择和最优为	割值的确定	4
记样在3=[50,…,5n]	, \$\$特征si.f=[to, ");	fm],标签Si.l	= 0/1	(/2)
从根结点开始生成,追	历外有特征,按为叶Sb	脏, 我发优点、	f ₃ sorted	=
	SE 最中值点,对位于为	最低特征		0
MSE = = = = [] (Sz. L -]			C1	62
其描述了各分割点对			逐层重复	हान
	,剪枝旅知退出条件			
	了每十节点的特征知为			为值
为其刺下的病 Si. L 的 均值	1. 送入新5即可根据1	此树产生决策结	果.	
Gradient Boosting. DT				
GBDT中B指的TURT				
若从MSE为代价函数,片	鲁联起的 订序到储	模型,则可推导	出结论女吓	
从1为学7年执行一步	CD,等价于在合面串一个			
为拟信目标的新 CART.	RP new_l = L-	- model (s.f)	具備推导不	剧地
可见每迭代一次(GD一步	的,就生成一棵 CART	,但此单棵树。	能輸出前	adares.
最终模型的新出,是	其中的有 CART 新出版	的累加之知.		

- ❷决策树系列(三): CART(分类回归树)-详细原理解析
- ☑GBDT(梯度提升决策树)——来由、原理和python实现
- ☑ 机器学习算法中 GBDT 和 XGBOOST 的区别有哪些? 知乎
- ☑【白话机器学习】算法理论+实战之LightGBM算法

使用7000多条数据训练GBDT模型,迭代100次生成100个子树串联相加,取其生成的前两个树可视化如下:LGBM中最优特征的选取不是按行进行(Level-wise),而是各节点独立进行(Leaf-wise)

整个GBDT输出是所有子树输出的和,但从单个子树的叶节点值也可看出分类的倾向,可以一定程度上对模型决策的过程进行解释

附:基于规则的Nudge决策

LK Path 边界生成

进行Nudge决策,给需要nudge的障碍物加buffer,并对其过多(影响求解或舒适性)部分进行限制。

Q:

6.2、6.3处均取较远R,理论上会得到更大的delta_I,造成更宽松的限制,是否应该取起点或中间点? kappa_coeff是否具有物理含义? 类似最大向心加速度?

EvalNudgeSafety() { // same direction } 处为什么不考虑自车速度?

LK Path QP建模

https://ku.baidu-int.com/knowledge/HFVrC7hq1Q/pKzJfZczuc/3SpBDRloU_/475mI-sSll3J1s

松勋负量 H, 新化的教的束,在明初出版中最大的ELL.

约束	L < AX L U:			, i				
A为独约类数目行×3n+m到的约束矩阵,每行表示一个独生约束。								
L	o h	A	2h	3n 3ntm	1)			
Lmino	(以上下景约束)		1		Lmaxo			
1	1				1			
L-value-	11	112.500	1		Lmaxm			
inst_l	1	(起始)			inst-l			
inst.dl.	1		1 (FR)	()	inital			
0	1		(地)		0			
0	1.	-11	- 25 - 45	Piecewse Jerk	10			
;				粉體的東	1/ 1			
0	1	-	11	- <u>AS</u> - <u>AS</u>	0			
0	-11	-85	-3-6 -3-6	Piecewise Jerk	10			
1				· . \ 物理的束	١ (١			
0	-11!		٠۵۶	-3-b/	0			
(-lba	ir re left/right ratto	brxhl mxhl	1		L.W.			
!			_voh_len	1	-			
1_16m-1	lrm!	lv×hl	r×hl		1 Llam			
	最后别为ego-bon约束,其加行, o-n中对台维热由●S对应等得到,							
拉	左右两处表示结性持续各自对应权重,left ratho+right ratho=							
	L_16和Lub与Lmin/Lman基本一致,但保留了一个Buffer的最空空间。							
		Marie Control of the State of t						

Q:

add_ego_width_constraint,为什么I用center_s, I'用rear_s?

// 3 rows in first n cols? 源自基类没改,此处其实只需一行

// 1 Compute kernel matrix, use identity matrix? 确实少减了个1,影响不大?

参考线相关

时间有限,这部分只整理了一下流程,原理细节后续用到时再补充

生成

根据WorldView生成多条参考线,更新到ReferenceLineBundle中

ReferenceLineProviderLite

调用

ReferenceLineInfoImpl:: BuildFromRoutingForProvider()

最终使用的是

ReferenceLineBuilder::
get_reference_line_infos_from_segments_meta()

其内部调用

BuildReferenceLineInfoFromLaneSegments() 生成单条参考线

简单来说就是根据车道线生成若干条参考线 具体细节比较复杂,用到时再看

选取

从WorldView的ReferenceLineBundle中的多条参考线中,选出要执行的目标参考线ego_reference_line_info_ptr_

ReferenceLineDecider

DecideReferenceLineById()中 根据FLAG选择调用 DecideCityCruiseBestReferenceLine() 或 DecideReferenceLineCanExitAndMinimalSteering()

${\bf Decide City Cruise Best Reference Line}$

一套比较复杂的参考线选择逻辑 细节待补充

平滑

对选出的自车参考线进行平滑

根据FLAG选择UrbanDPRLSmoother或ReferenceLineProcessor

优化问题具体原理和QP构建细节待补充,应该和apollo类似。决策变量为离散点xy坐标

TrajectoryStitcher

为减少轨迹规划帧间跳变的情况,当上帧轨迹存在且自车偏离轨迹不算太远时,将上帧轨迹前推一段的点作为下次规划的起点

前推的这段上帧轨迹即stitching_trajectory

细节待补充