1 Teorema de Wiener-Kinchin-Einstein no Caso Discreto

Processo estocástico X, WSS. Com função de autocorrelação (dada pelo intervalo): r[n] e função de covariância: c[n].

Definição de densidade espectral de potência do processo: Considere o processo $X_{[-N_1,N_1]}$ dado pelo janelamento de X:

$$X_{[-N_1,N_1]}(s) = X(s) \cdot rect(-N_1,N_1)$$

Considere ainda a DTFT do processo:

$$\widehat{X}_{[-N_1,N_1]}(s) = DTFT(X_{[-N_1,N_1]}(s))$$

$$PSD_X(f) = \lim_{N_1 \to \infty} \frac{1}{2N_1 + 1} \mathbb{E}(|\widehat{X}_{[-N_1,N_1]}^{(f)}|^2)$$

Teorema:

$$\widehat{r}(f) = PSD_X(f) = \lim_{N_1 \to \infty} \frac{1}{2N_1 + 1} \mathbb{E}(|\widehat{X}_{[-N_1, N_1]}^{(f)}|^2)$$

2 Filtragem de Processos Estocásticos

Ideia geral: Processo $X[n] \to X^{(n)}$ é entrada de um sistema LTI com resposta impulsional h[n]. Generalização de uma função de sinais $g: E_S \to E_S$ definida por g(x) = h * x para processos g(X(s)) = Y(s) = h * X(s).

Considere R_{XX} que é a função de autocorrelação de X. $R_{XX}[n_1, n_2] = \mathbb{E}[X_{n_1} \cdot X_{n_2}^*]$. Queremos a partir de R_{XX} calcular R_{YY} :

$$R_{YY}[n_1, n_2] = \mathbb{E}[X_{n_1} \cdot X_{n_2}^*]$$
 Considerando: $R_{XY}[n_1, n_2] = \mathbb{E}[X_{n_1} \cdot Y_{n_2}^*]$ (Correlação Cruzada)
$$R_{YX}[n_1, n_2] = \mathbb{E}[Y_{n_1} \cdot X_{n_2}^*]$$

$$R_{XY}[n_1, n_2] = \mathbb{E}[X_{n_1} \cdot Y_{n_2}^*] = \mathbb{E}\left[X_{n_1} \cdot \sum_{m=0}^{\infty} h^*[m]X_{n_2-m}^*\right]$$

$$R_{XY}[n_1, n_2] = \sum_{m=0}^{\infty} h^*[m]\mathbb{E}[X_{n_1} \cdot X_{n_2-m}]$$

$$R_{XY}[n_1, n_2] = \sum_{m=0}^{\infty} h^*[m]R_{XX}[n_1, n_2 - m]$$

2.1 Caso WSS

Se X é estacionário no sentido amplo (WSS), então $R_{XX}[n_1, n_2 - m]$ depende apenas de $n_2 - m - n_1$, e não de n_1 e n_2 .

$$R_{XY}[n_1, n_2] = \sum_{m = -\infty}^{\infty} h^*[m] R_{XX}[n_1, n_2 - m]$$

$$R_{XY}[n_1, n_2] = \sum_{m = -\infty}^{\infty} h^*[m] r_{XX}[n_2 - n_1 - m]$$

$$r_{XY}[n_1, n_2] = (h^* * r_{XX})_{[n_2 - n_1 - m]}$$

 R_{XY} também só depende da diferença entre os instantes considerados para o caso WSS.

Buscamos agora a autocorrelação da saída $R_{YY}[n_1, n_2]$:

$$\begin{split} R_{XY}[n_1,n_2] &= \sum_{m=0}^{\infty} h^*[m] R_{XX}[n_1,n_2-m] \\ R_{YY}[n_1,n_2] &= \mathbb{E}[Y_{n_1} \cdot Y_{n_2} \cdot *] \\ R_{YY}[n_1,n_2] &= \mathbb{E}\left[Y_{n_1} \cdot \sum_{m=-\infty}^{\infty} h^*[m] X_{n_2-m}^*\right] \\ R_{YY}[n_1,n_2] &= \sum_{m=-\infty}^{\infty} h^*[m] \cdot \mathbb{E}\left[Y_{n_1} \cdot X_{n_2-m}^*\right] \\ R_{YX}[n_1,n_2] &= \mathbb{E}[Y_{n_1} \cdot X_{n_2}^*] &= \sum_{m=-\infty}^{\infty} h[m] \cdot \mathbb{E}[X_{n_1-m} \cdot X_{n_2}^*] \\ R_{YX}[n_1,n_2] &= \sum_{m=-\infty}^{\infty} h[m] \cdot R_{XX}[n_1-m,n_2] \\ R_{YX}[n_1,n_2] &= \sum_{m=-\infty}^{\infty} h[m] \cdot \overline{r_{XX}}[(n_1-n_2)-m]] \\ R_{YX}[n_1,n_2] &= \sum_{m=-\infty}^{\infty} h[m] \cdot \overline{r_{XX}}[(n_1-n_2)-m], \overline{r_{XX}} \text{ \'e uma reversão no tempo} \\ R_{YX}[n_1,n_2] &= (h*\overline{r_{XX}})_{[n_1-n_2]} \\ r_{YX}[n] &= (h*\overline{r_{XX}})_{[n]} \\ R_{YY}[n_1,n_2] &= \sum_{m=-\infty}^{\infty} h^*[m] \cdot \mathbb{E}\left[Y_{n_1} \cdot X_{n_2-m}^*\right] \\ R_{YY}[n_1,n_2] &= \sum_{m=-\infty}^{\infty} h^*[m] \cdot R_{YX}[n_1,n_2-m] \end{split}$$

Para sinal real (WSS): $r_{YX} = h * r_{XX}$ Note que se o sinal é real e o filtro for real (WSS): $r_{XY} = h^* * r_{XX} = r_{YX} = h * r_{XX}$!

Supondo que X é real e WSS:

$$r_{YX} = h * r_{XX}$$

$$r_{YY} = h^* * r_{YX}$$

$$r_{YY} = h^* * (h * r_{XX})$$