2022년 휴먼이해인공지능 논문경진대회

MATE: 감정 분석을 위한 오디오-텍스트 혼합 모델

(MATE: Multimodal model using Audio and Text for Emotion recognition)

도래미솔 팀 홍성래 김태미 이 솔 김종우

카이스트산업및시스템공학(데이터사이언스대학원)

INDEX

01연구배경 02관련연구 03연구방법 04실험결과 05 결론 06참고문헌 멀티모달감정인식 제안모델성능 기대효과 아키텍쳐 참고문헌 연구배경 데이터전처리 결과분석 향후연구 문제정의 손실함수

01 연구배경

연구 배경

- 감정정보는의사소통의기본요소이며,사람간상호작용에중요한정보임
- 지난수년간사용자 경험연구(User Experience: UX) 분이에서 감정 인식 자동화를 위한 다양한 방법론이 제안
- 하지만, 개인은 각기다른 방식으로 감정을 표현하며, 감정은 시간에 따른 변화가 존재하기에 감정 인식 자동화는 여전히 도전적인 과제로 여겨짐[1]
- 이를 극복하기위해,최근 **인공지능의 발전**과 더불어 **인간의 감정을 자동으로 인지하는 모델**에 대한 연구가 활발하게 이루어지고 있음 오디오신호에서추출된특징정보를 Deep Neural Network(DNN)에 학습시켜음성으로부터 감정을 인식하는 연구[2] 텍스트 기반의 정보로부터 감정 정보를 인식하는 방법[3] 등이 대표적

하지만, 단일 신호기반감정인식방법은 감정 표현의 복잡성과 시간적 특징을 고려하지 못한다는 한계점을 가지고 있음 [4].

Figure 1. Russel's circumplex model of emotions.

Figure 3. EEG signal: (a) example of raw data [43]; (b) peak to peak signal amplitude evaluation technique [44].

01 연구배경

문제 정의

단일신호기반감정인식의한계

- 기존단일신호방법론들을단일데이터자체의정보에의존적
- 명백한묘사가부족한경우,주어진정보에서정확한감정을분석하기어려움
- 2개이상의신호를 동시에 이용하는 Multimodal Emotion Recognition (ER) 연구필요

Multimodal Emotion Recognition Multi-path method

- [5]는 Multi-path 방식을 통해 생성된 특징 벡터를 연결하여 모델 학습에 이용 한계점) 텍스트와 오디오의 특징을 별도로 추출, 두데이터 간의 상호 작용 반영 어려움
- Multi-path 방식은텍스트, 오디오 각각에 대한 상호 간보조 정보 학습이 어려움

특징학습이전텍스트임베딩과오디오임베딩을병합후LSTMLayer를통해하나의특징벡터를생성하는Siingle-Path방식의감정분류모델제안

"MATE; the Multimodal model using Audio and Text for Emotion recognition"

02 관련연구

멀티모달 데이터를 이용한 감정 인식 (Multimodal Emotion Recognition)

03 방법론

1) Architecture

Training of Emotion and Affective State

Extracting of feature vector

Embedding of Text and Audio data

Emotion model

- 7가지 감정에 대한 확률값을 나타내 줌.
- input : (number of layer, 2048) dialog feature vector
- output: 7가지 감정의 softmax 확률을 도출.

Affective State model

- 1~5 사이의 각성도, 긍/부정도를 예측함.
- input : dialog feature vector + Emotion feature vector
- output: 4* sigmoid(x) + 1을 적용하여 1~5 사이의 각성도, 긍/부정도 정도 도출.

LSTM

- input: 1548 dimension dialog embedding
- number of layer: 8
- output: (number of layer, 2048) dialog feature vector

Text Data

- Kobert[7](pre-trained model)을 통해 768 dimension embedding 을 추출함.

Audio Data

- Mel-spectrogram data를 2D Conv를 통해 816 dimension embedding을 추출함.

Concatenate

- Text(768) embedding과 Audio(816) embedding을 Concatenate를 진행하여 1548 dimension dialog embedding 생성.

03 방법론

2) Data preprocessing

< soft labeling >

- **10명의 평가자**의 의견에 따른 label 결정
 - 사람의 감정이 하나로 정의하기 어려운 복잡함을 가진다는 가정
 - 10명의 평가자 중 8명이 'happy'로 판단하고, 2명이 'neutral'이라고 판단했다면, 해당 데이터의 레이블 '[0.8, 0.2, 0, 0, 0, 0, 0]'으로 정의

<Script>

03 방법론

3) Loss function

- Emotion Model: Real Emotion label distribution과 Prediction Emotion label distribution을 일치 시키기 위해 KL-Divergence Loss 사용.
- Affective State Model: 1~5 사이의 척도 차이를 알기 위해 MSE Loss 사용함.
 - 1. 감정(e), 각성도(a), 긍/부정도(v)의 예측값 Loss

$$L(\hat{y}, y) = \frac{\lambda}{\lambda} * KLDiv(\hat{e}, e) + \frac{1 - \lambda}{\lambda} * (MSE(\hat{a}, a) + MSE(\hat{v}, v))$$

2. 'Neutral' Class가 대다수인 Class Imbalance를 위한 Class Balance Loss[8]

$$L(\hat{y}, y) = \lambda * {}^{\mathsf{BCE}}(\hat{e}, e) + (1 - \lambda) * (\mathsf{MSE}(\hat{a}, a) + \mathsf{MSE}(\hat{v}, v))$$

KL-Divergence Loss 대신 Binary Cross Entropy Loss를 사용

$$CB(\hat{y},y) = \frac{1}{E_{n_j}}L(\hat{y},y) = \frac{1-\beta}{1-\beta^{n_j}}L(\hat{y},y)$$
 $n_j: \text{Class } j \subseteq \text{Sample } \hat{\gamma}$
 $\beta: 0.99 \text{ (hyper parameter)}$

실험 세팅

STEP 1

파라미터 평가

- Session13~16 validation set 설정 후 파라미터 성능 비교
- 최고 성능의 파라미터 선정
- 파라미터 λ

STEP 2

최종 성능 평가

- 선정된 파라미터 모델의 5-Folds 검증 통한
 최종 성능 지표 도출
- Recall, Precision, F1 score
- Concordance Correlation Coefficient
 - CCC(A): 각성도의 CCC
 - CCC(V): 긍/부정도의 CCC

모델 성능 - Speaker

[표1Speaker에 대한 감정, 각성도, 긍/부정도 평가결과]

| Input | λ | Recall | Precision | F1 | CCC(A) | CCC(V) |
|------------|------|--------|-----------|-------|--------|--------|
| Audio+Text | 0.5 | 0.738 | 0.709 | 0.722 | 0.780 | 0.824 |
| Audio+Text | 0.66 | 0.748 | 0.719 | 0.733 | 0.745 | 0.860 |
| Audio+Text | 0.75 | 0.759 | 0.731 | 0.744 | 0.791 | 0.869 |
| Audio+Text | 0.8 | 0.696 | 0.670 | 0.682 | 0.783 | 0.803 |
| Audio | 0.66 | 0.489 | 0.466 | 0.477 | 0.540 | 0.588 |
| Text | 0.66 | 0.738 | 0.710 | 0.723 | 0.702 | 0.868 |

오디오단일신호대비텍스트단일신호사용시더높은성능지표달성 오디오또는텍스트단일신호사용대비오디오-텍스트결합시더높은성능지표달성

모델 성능 - Listener

[표2Listener에 대한 감정, 각성도, 긍/부정도 평가 결과]

| Input | λ | Recall | Precision | F1 | CCC(A) | CCC(V) |
|------------|------|--------|-----------|-------|--------|--------|
| Audio+Text | 0.5 | 0.712 | 0.683 | 0.696 | 0.746 | 0.880 |
| Audio+Text | 0.66 | 0.744 | 0.713 | 0.728 | 0.756 | 0.865 |
| Audio+Text | 0.75 | 0.740 | 0.710 | 0.724 | 0.712 | 0.870 |
| Audio+Text | 0.8 | 0.709 | 0.680 | 0.694 | 0.688 | 0.862 |
| Audio | 0.66 | 0.528 | 0.504 | 0.515 | 0.479 | 0.547 |
| Text | 0.66 | 0.728 | 0.697 | 0.711 | 0.716 | 0.861 |

오디오단일신호대비텍스트단일신호사용시더높은성능지표달성 오디오또는텍스트단일신호사용대비오디오-텍스트결합시더높은성능지표달성

감정이 각성도 및 긍/부정도 예측에 미치는 영향

[표3감정이병합되지않았을때의Speaker,Listener성능]

| | Recall | Precision | F1 | CCC(A) | CCC(V) |
|----------|--------|-----------|-------|--------|--------|
| Speaker | 0.719 | 0.690 | 0.704 | 0.751 | 0.827 |
| Listener | 0.722 | 0.692 | 0.706 | 0.689 | 0.876 |

 $\times \lambda = 0.66$

[표4감정이 병합되었을 때의 Speaker, Listener 성능]

| | Recall | Precision | F1 | CCC(A) | CCC(V) |
|----------|--------|-----------|-------|--------|--------|
| Speaker | 0.748 | 0.719 | 0.733 | 0.745 | 0.860 |
| Listener | 0.744 | 0.713 | 0.728 | 0.756 | 0.865 |

 $\times \lambda = 0.66$

Affective State Model에 감정 병합시 더높은 F1스코어및 높은 CCC(A)

최종 모델 5-Folds 검증 - Speaker

[표4Speaker모델의 5-Folds 검증성능]

| Input | Recall | Precision | F1 | CCC(A) | CCC(V) |
|-----------|--------|-----------|-------|--------|--------|
| Speaker_1 | 0.703 | 0.679 | 0.690 | 0.766 | 0.841 |
| Speaker_2 | 0.731 | 0.707 | 0.718 | 0.766 | 0.824 |
| Speaker_3 | 0.717 | 0.689 | 0.702 | 0.797 | 0.830 |
| Speaker_4 | 0.759 | 0.731 | 0.744 | 0.791 | 0.869 |
| Speaker_5 | 0.730 | 0.703 | 0.716 | 0.770 | 0.875 |
| 평균 | 0.728 | 0.702 | 0.714 | 0.778 | 0.848 |
| 표준편차 | 0.021 | 0.020 | 0.020 | 0.015 | 0.023 |

 $\times \lambda = 0.75$

Speaker 모델 5-Folds 검증 결과 0.714 ± 0.020 의 F1 스코어달성 0.778 ± 0.015 의 CCC(A), 0.848 ± 0.023 의 CCC(V) 달성

최종 모델 5-Folds 검증 - Listener

[표5Listener모델의 5-Folds 검증성능]

| Input | Recall | Precision | F1 | CCC(A) | CCC(V) |
|------------|--------|-----------|-------|--------|--------|
| Listener_1 | 0.642 | 0.617 | 0.629 | 0.754 | 0.842 |
| Listener_2 | 0.720 | 0.698 | 0.709 | 0.717 | 0.814 |
| Listener_3 | 0.650 | 0.625 | 0.636 | 0.626 | 0.778 |
| Listener_4 | 0.745 | 0.715 | 0.729 | 0.723 | 0.877 |
| Listener_5 | 0.713 | 0.685 | 0.698 | 0.735 | 0.852 |
| 평균 | 0.694 | 0.668 | 0.680 | 0.711 | 0.833 |
| 표준편차 | 0.045 | 0.044 | 0.045 | 0.050 | 0.038 |

 $\times \lambda = 0.9$, CB Loss($\beta = 0.9$)

Listener 모델 5-Folds 검증결과 0.680 ± 0.045의 F1 스코어달성 0.711 ± 0.050의 CCC(A), 0.833 ± 0.038의 CCC(V) 달성

기대 효과 및 추후 연구

의의

- 단일 신호가 아닌 **멀티모달** 데이터를 이용한 감정 인식 및 성능 개선
- Single path 방식을 통해 오디오-텍스트 간의 상호 작용을 효과적으로 반영
- Speaker와 Listener의 감정 인식 분리

한계점

- 감정 클래스 불균형 문제
- 오디오-텍스트의 정확한 의미 단위를 맞추지 못한 결합 방식

추후 연구

- Imbalance Sequential Data를 효과적으로 학습시키기 위한 방법론 연구
- 오디오-텍스트 결합 방식 고도화

06 참고문헌

참고 문헌

- [1] C. N. Anagnostopoulos, T. Iliou and I. Giannoukos, "Features and classifiers for emotion recognition from speech: A survey from 2000 to 2011", Artificial Intelligence Review, Vol. 43(2), pp. 155-177, 2012.
- [2] R. A. Khalil, E. Jones, M. I. Babar, T. Jan, M. H. Zafar and T. Alhussain, "Speech Emotion Recognition Using Deep Learning Techniques: A Review", IEEE Access, Vol. 7, pp.117327-117345, 2019.
- [3] A. J. AbdaouiAzé, S. Bringay and P. Poncelet, "Feel: a French expanded emotion lexicon.", Lang Resour Eval, Vol. 51(3), pp. 833–855, 2017.
- [4] J. Ma, H. Tang and W. L. Zheng, "Emotion Recognition using Multimodal Residual LSTM Network", 27th ACM, pp. 176–183, 2019.
- [5] K. J. Noh, C. Y. Jeong, J. Limm S. Chung and G. Kim, "Multi-Path and Group-Loss-Based Network for Speech Emotion Recognition in Multi-Domain Datasets", Sensors, Vol. 21, 2021.
- [6] Zhang, Yong, Cheng Cheng, and Yidie Zhang. "Multimodal emotion recognition using a hierarchical fusion convolutional neural network." *IEEE access* 9 (2021): 7943-7951.
- [7] Lee, Sangah, et al. "Kr-bert: A small-scale korean-specific language model." arXiv preprint arXiv:2008.03979 (2020).
- [8] C. Yin, M. Jia and T. Y. Lin, "Class-balanced loss based on effective number of samples." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019.