Unsupervised Learning Methods Problem Set III – PCA and KPCA

Due: 16.05.2022

Guidelines

- Answer all questions (PDF + Jupyter notebook).
- You must type your solution manual (handwriting is not allowed).
- Submission in pairs (use the forum if needed).
- You may submit the entire solution in a single ipynb file (or in PDF + ipynb files).
- You may (and should) use the forum if you have any questions.
- Good luck!

1 Eigendecomposition

- Let $\mathbf{A} \in \mathbb{R}^{d \times d}$ be a square matrix.
- Let $u \in \mathbb{R}^d$ be an eigenvector with eigenvalue λ , that is, $Au = \lambda u$.
- Let $\mathbf{v} = \alpha \mathbf{u}$ where $\alpha \neq 0$.

1.1

Is \boldsymbol{v} an eigenvector of \boldsymbol{A} ?

If so, find its corresponding eigenvalue.

If not, give a counterexample.

Solution:

Type your solution here...

- Let $\mathbf{A} \in \mathbb{R}^{d \times d}$ be a square matrix.
- Let $u_1, u_2 \in \mathbb{R}^d$ where $\langle u_1, u_2 \rangle = 0$ be eigenvectors with the same eigenvalue λ , that is, $Au_1 = \lambda u_1$ and $Au_2 = \lambda u_2$.

1.2

Prove or disprove:

 $u = u_1 + u_2$ is an eigenvector of A.

Solution:

Type your solution here... $\,$

• Let $A \in \mathbb{R}^{d \times d}$ be a diagonalizable matrix, that is, $A = U \Lambda U^{-1}$ where Λ is a diagonal matrix.

1.3

Show that:

$$\operatorname{Tr}\left\{oldsymbol{A}
ight\} = \sum_{i=1}^{d} \lambda_{i}\left(oldsymbol{A}
ight)$$

where $\lambda_{i}\left(\boldsymbol{A}\right) = \boldsymbol{\Lambda}\left[i,i\right]$ is the *i*th eigenvalue of \boldsymbol{A} .

Solution:

Type your solution here... $\,$

- Let $\mathbf{A} \in \mathbb{R}^{d \times d}$ be a diagonalizable matrix.
- Let $\{(\boldsymbol{u}_i, \lambda_i)\}_{i=1}^d$ be the set of eigen-pairs, that is, $\boldsymbol{A}\boldsymbol{u}_i = \lambda_i \boldsymbol{u}_i$.
- Let $\widetilde{\boldsymbol{A}} = \boldsymbol{R} \boldsymbol{A} \boldsymbol{R}^T$ where $\boldsymbol{R} \in \mathbb{R}^{d \times d}$ is orthogonal, that is $\boldsymbol{R}^T \boldsymbol{R} = \boldsymbol{I}_d$.

1.4

Find $\left\{\left(\tilde{\boldsymbol{u}}_{i}, \tilde{\lambda}_{i}\right)\right\}_{i=1}^{d}$ the set of eigen-pairs of $\widetilde{\boldsymbol{A}}$ (such that: $\widetilde{\boldsymbol{A}}\widetilde{\boldsymbol{u}}_{i} = \tilde{\lambda}_{i}\widetilde{\boldsymbol{u}}_{i}$).

Solution:

Type your solution here...

Similarity

• Two (square) matrices $\boldsymbol{A} \in \mathbb{R}^{d \times d}$ and $\boldsymbol{B} \in \mathbb{R}^{d \times d}$ are called similar, namely, $\boldsymbol{A} \sim \boldsymbol{B}$, if exists an (invertible) matrix $\boldsymbol{P} \in \mathbb{R}^{d \times d}$ such that:

$$\boldsymbol{B} = \boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{-1}$$

1.5

Prove that if A is diagonalizable and $A \sim B$, then, A and B share the same set of eigenvalues, namely:

$$\boldsymbol{A} \sim \boldsymbol{B} \implies \left\{ \lambda_i \left(\boldsymbol{A} \right) \right\}_{i=1}^d = \left\{ \lambda_i \left(\boldsymbol{B} \right) \right\}_{i=1}^d$$

Solution:

Type your solution here...

SPD matrices

A symmetric matrix $\mathbf{S} = \mathbf{S}^T$ is an Symmetric Positive Definite (SPD), namely $\mathbf{S} \succ 0$ if either:

- 1. $\lambda_i(\mathbf{S}) > 0$ for all i.
- 2. $\mathbf{v}^T \mathbf{S} \mathbf{v} > 0$ for all $\mathbf{v} \neq \mathbf{0}$.

1.6

Prove that the two conditions are equivalent, that is:

$$\lambda_i(\mathbf{S}) > 0 \iff \mathbf{v}^T \mathbf{S} \mathbf{v} > 0 \quad \forall \mathbf{v} \neq \mathbf{0}$$

Solution:

Type your solution here...

• Let $S \succ 0$ be an SPD matrix.

1.7

Prove or disprove:

 S^{-1} is an SPD matrix.

Solution:

Type your solution here...

• Let $S \succ 0$ be an SPD matrix.

1.8

Prove or disprove:

The SVD $S = U\Sigma V^T$ is also an eigendecomposition.

Solution:

Type your solution here...

2 PCA

Full PCA

- Consider the data $\mathcal{X} = \left\{ \boldsymbol{x}_i \in \mathbb{R}^D \right\}_{i=1}^N$ with mean $\boldsymbol{\mu}_x \in \mathbb{R}^D$ and covariance $\boldsymbol{\Sigma}_x \in \mathbb{R}^{D \times D}$.
- Let $\Sigma_x = U \Lambda U^T$ be the eigendecomposition of Σ_x .
- Let $\boldsymbol{z}_i = \boldsymbol{U}^T (\boldsymbol{x}_i \boldsymbol{\mu}_r)$.

2.1

Prove that:

- 1. The mean of $\mathcal{Z} = \{z_i\}_{i=1}^N$ is zero, that is, $\mu_z = \frac{1}{N} \sum_{i=1}^N z_i = 0$.
- 2. The covariance of \mathcal{Z} is diagonal, that is Σ_z is diagonal.
- 3. $\|\boldsymbol{x}_i \boldsymbol{x}_j\|_2 = \|\boldsymbol{z}_i \boldsymbol{z}_j\|_2$ for all i and j .

Solution:

- Consider the data $\{\boldsymbol{x}_i \in \mathbb{R}^{10}\}_{i=1}^{10}$ and its corresponding matrix $\boldsymbol{X} \in \mathbb{R}^{10 \times N}$.
- Let Σ_x be the covariance matrix where all eigenvalues of Σ_x are unique.
- Let $\{z_i \in \mathbb{R}^3\}_{i=1}^N$ be the low-dimensional representation obtained by applying PCA from \mathbb{R}^{10} to \mathbb{R}^3 .
- Let $\{\tilde{z}_i \in \mathbb{R}^2\}_{i=1}^N$ be the low-dimensional representation obtained by applying PCA from \mathbb{R}^{10} to \mathbb{R}^2 .

2.2

Prove or disprove:

$$\tilde{\boldsymbol{z}}_i = \begin{bmatrix} \alpha_1 & 0 & 0 \\ 0 & \alpha_2 & 0 \end{bmatrix} \boldsymbol{z}_i$$

where $\alpha_1, \alpha_2 \in \{-1, 1\}$.

Solution:

Type your solution here...

Geometric PCA

• Let $U_d \in \mathbb{R}^{D \times d}$ be a full rank matrix (with $d \leq D$).

2.3

Show that exists an invertible matrix $M \in \mathbb{R}^{d \times d}$ such that $O = U_d M \in \mathbb{R}^{D \times d}$ is semi-orthogonal, that is:

$$\boldsymbol{O}^T \boldsymbol{O} = \boldsymbol{I}_d$$

Hint: Use SVD.

Solution:

Type your solution here...

- Consider the data $X \in \mathbb{R}^{D \times N}$ with zero mean $X \mathbf{1}_N = \mathbf{0} \in \mathbb{R}^D$ and covariance $\Sigma_x = \frac{1}{N} X X^T \in \mathbb{R}^{D \times D}$.
- Consider the following optimization problems:
- 1. Reconstruction error minimization:

$$\begin{cases} \arg\min_{\boldsymbol{U}_d \in \mathbb{R}^{D \times d}} \left\| \boldsymbol{X} - \boldsymbol{U}_d \boldsymbol{U}_d^T \boldsymbol{X} \right\|_F^2 \\ \text{s.t. } \boldsymbol{U}_d^T \boldsymbol{U}_d = \boldsymbol{I}_d \end{cases}$$

2. Variance maximization:

$$\begin{cases} \arg\max_{\boldsymbol{U}_d \in \mathbb{R}^{D \times d}} \operatorname{Tr} \left\{ \boldsymbol{U}_d^T \boldsymbol{\Sigma}_x \boldsymbol{U}_d \right\} \\ \text{s.t. } \boldsymbol{U}_d^T \boldsymbol{U}_d = \boldsymbol{I}_d \end{cases}$$

2.4

Prove that both problems have the same optimal solution U_d^{\star} .

Solution:

Type your solution here...

PCA analysis

- Consider the data $\{\boldsymbol{x}_i \in \mathbb{R}^D\}_{i=1}^N$ with mean $\boldsymbol{\mu}_x \in \mathbb{R}^D$ and covariance $\boldsymbol{\Sigma}_x \in \mathbb{R}^{D \times D}$.
- Let $\boldsymbol{U}_d \in \mathbb{R}^{D \times d}$ be a semi-orthogonal matrix, that is, $\boldsymbol{U}_d^T \boldsymbol{U}_d = \boldsymbol{I}_d$.
- Let $\boldsymbol{z}_i = \boldsymbol{U}_d^T \left(\boldsymbol{x}_i \boldsymbol{\mu}_x \right) \in \mathbb{R}^d$.
- Let $\hat{\boldsymbol{x}}_i = \boldsymbol{U}_d \boldsymbol{z}_i + \boldsymbol{\mu}_x \in \mathbb{R}^D$.
- Let $\epsilon_i = \boldsymbol{x}_i \hat{\boldsymbol{x}}_i \in \mathbb{R}^D$.

2.5

Prove that:

$$\operatorname{Tr}\left\{\mathbf{\Sigma}_{x}\right\} = \operatorname{Tr}\left\{\mathbf{\Sigma}_{z}\right\} + \operatorname{Tr}\left\{\mathbf{\Sigma}_{\epsilon}\right\}$$

where:

- $\Sigma_z \in \mathbb{R}^{d \times d}$ is the covariance of $\{z_i\}_{i=1}^N$.
- $\Sigma_{\epsilon} \in \mathbb{R}^{D \times D}$ is the covariance of $\{\boldsymbol{\epsilon}_i\}_{i=1}^N$.

Solution:

• Let $U_d \in \mathbb{R}^{D \times d}$ be the top d eigenvectors corresponding to the d largest eigenva	lues of Σ_x
--	--------------------

2.6

Show that:

$$\operatorname{Tr}\left\{ \mathbf{\Sigma}_{\epsilon}
ight\} =\sum_{i=d+1}^{D}\lambda_{i}\left(\mathbf{\Sigma}_{x}
ight)$$

where $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_D$

Solution:

Type your solution here...

High-dimensional data PCA

- Consider the data $\boldsymbol{X} \in \mathbb{R}^{D \times N}$ where D > N.
- Let $\Sigma_x \in \mathbb{R}^{D \times D}$ be the empirical covariance.

2.7

- Provide a (tight) upper bound on the number of non-zero eigenvalues of Σ_x .
- Consequently, can you apply PCA to $\boldsymbol{X} \in \mathbb{R}^{D \times N}$ to obtain $\boldsymbol{Z} \in \mathbb{R}^{d \times N}$ with d < D such that there is no loss of information? Explain your answer.

Solution:

Type your solution here...

Rank minimization

- Let $\mathbf{A} \in \mathbb{R}^{D \times N}$.
- Consider the following rank minimization problem:

$$\begin{cases} \min_{\boldsymbol{M} \in \mathbb{R}^{D \times N}} \|\boldsymbol{A} - \boldsymbol{M}\|_F^2 \\ \text{s.t. } \operatorname{rank}(\boldsymbol{M}) \leq d \end{cases}$$

2.8

- Solve the optimization problem.
- Write your final solution using the (truncated) matrices obtained by the SVD decomposition of \boldsymbol{A} , namely, $\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T$.

Hints:

- 1. Any matrix $M \in \mathbb{R}^{D \times N}$ with rank (M) = d can be written as M = BC where:
 - (a) $\boldsymbol{B} \in \mathbb{R}^{D \times d}$
 - (b) $\boldsymbol{C} \in \mathbb{R}^{d \times N}$

use this result to formulate (and solve) an equivalent unconstrained problem.

2. There is a strong connection to PCA (no need to start from scratch).

Solution:

Type your solution here...

2.9 Implementation and applications

Solve this section in the attached notebook.

3 KPCA

Centering matrix

• Let $J = I - \frac{1}{N} \mathbf{1} \mathbf{1}^T \in \mathbb{R}^{N \times N}$ be the centering matrix.

3.1

Prove that J is idempotent, that is, $J^2 = J$.

In words, applying J twice gives the same results as applying it once.

Solution:

Type your solution here...

Kernel matrix

• Let $\boldsymbol{X} \in \mathbb{R}^{D \times N}$ and let:

$$oldsymbol{\Sigma}_x := oldsymbol{X} oldsymbol{X}^T$$

$$\boldsymbol{K}_x := \boldsymbol{X}^T \boldsymbol{X}$$

Let $(\boldsymbol{u}_i, \lambda_i)$ be an eigen-pair of Σ_x such that $\Sigma_x \boldsymbol{u}_i = \lambda_i \boldsymbol{u}_i$ with $\lambda_i > 0$.

3.2

- 1. Show that λ_i is an eigenvalue of \boldsymbol{K}_x as well.
- 2. Find its corresponding eigenvector such that $\mathbf{K}_x \mathbf{w}_i = \lambda_i \mathbf{w}_i$.

Solution:

Type your solution here... $\,$

Kernel functions

• Let $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ and consider $\{\boldsymbol{x}_i \in \mathbb{R}^d\}_{i=1}^N$.

3.3

Show that if k can be written as an inner product, that is

$$k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) = \left\langle \phi\left(\boldsymbol{x}_{i}\right), \phi\left(\boldsymbol{x}_{j}\right) \right\rangle$$

for some ϕ , then, the matrix defined by:

$$\boldsymbol{K}_{x}\left[i,j\right]=k\left(\boldsymbol{x}_{i},\boldsymbol{x}_{j}\right)$$

is an SPSD matrix, namely, $\mathbf{K}_x \succeq 0$.

Solution:

Type your solution here...

ullet Let $oldsymbol{x}_i, oldsymbol{x}_j \in \mathbb{R}^d$ and consider:

$$k_1 (\boldsymbol{x}_i, \boldsymbol{x}_j) = \left(1 + \boldsymbol{x}_i^T \boldsymbol{x}_j\right)^2$$

 $k_2 (\boldsymbol{x}_i, \boldsymbol{x}_j) = \boldsymbol{x}_i^T A \boldsymbol{x}_j$

where $\mathbf{A} \succ 0$.

3.4

Prove or disprove:

- 1. k_1 is a kernel function.
- 2. k_2 is a kernel function.

Solution:

• Consider $\left\{ \boldsymbol{x}_i \in \mathbb{R}^d \right\}_{i=1}^N$, and consider the kernel:

$$k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) := \left\langle \boldsymbol{\phi}_{i}, \boldsymbol{\phi}_{j} \right\rangle$$

where $\boldsymbol{\phi}_{i} = \phi\left(\boldsymbol{x}_{i}\right)$ for all i for some ϕ .

• Let:

$$\tilde{k}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) := \left\langle \boldsymbol{\phi}_{i} - \boldsymbol{\mu}_{\phi}, \boldsymbol{\phi}_{j} - \boldsymbol{\mu}_{\phi} \right\rangle$$

be the centered version, where:

$$oldsymbol{\mu}_{\phi} = rac{1}{N} \sum_{i=1}^{N} oldsymbol{\phi}_{i}$$

3.5

Show that \tilde{k} can be written using only k, without using ϕ and μ_{ϕ} explicitly.

Solution:

Type your solution here...

• Let $\boldsymbol{K}_x \in \mathbb{R}^{N \times N}$ be a kernel matrix, that is:

$$\boldsymbol{K}_{x}\left[i,j\right]=k\left(\boldsymbol{x}_{i},\boldsymbol{x}_{j}\right)$$

for some kernel function k.

• Let $\widetilde{\boldsymbol{K}}_x$ be the centered version, that is:

$$\widetilde{m{K}}_x = m{J}m{K}_xm{J}$$

where $\boldsymbol{J} = \boldsymbol{I} - \frac{1}{N} \boldsymbol{1} \boldsymbol{1}^T$.

3.6

Prove or disprove:

 \mathbf{K}_{x} is an SPD matrix (that is, all eigenvalues are strictly positive).

Solution:

Out of sample extension

- Let $K_x \in \mathbb{R}^{N \times N}$ be the kernel matrix obtained from the training set $\mathcal{X} = \{x_i \in \mathbb{R}^D\}_{i=1}^N$.
- Let $Z \in \mathbb{R}^{d \times N}$ be the low-dimensional representation obtained by applying KPCA, that is:

$$oldsymbol{Z} = oldsymbol{\Sigma}_d oldsymbol{V}_d^T$$

where $V\Sigma^2V^T = JK_xJ$ is an eigendecomposition (see lecture notes).

• Let $\boldsymbol{X}^{\star} \in \mathbb{R}^{D \times N^{\star}}$ be a set of new unseen data-points.

3.7

Write an expression (in a matrix form) for $\mathbf{Z}^{\star} \in \mathbb{R}^{d \times N^{\star}}$, the KPCA out of sample extension applied to \mathbf{X}^{\star} .

Solution:

Type your solution here...

- Let $\mathcal{X} = \{x_i\}_{i=1}^N$ be the training set.
- Let $\mathcal{Z} = \{z_i\}_{i=1}^N$ be the representation obtained by KPCA (training encoding).
- Consider a new point x^* where $x^* = x_k$ for some $k \leq N$.
- Let z^* be the out of sample encoding applied to x^* .

3.8

Prove of disprove:

$$oldsymbol{z}^{\star} = oldsymbol{z}_k$$

Solution:

Type your solution here...

3.9 Implementation and applications

Solve this section in the attached notebook.

