UNIT TEN ARTEFACT

E-PORTFOLIO ACTIVITY: STATISTICAL WORKSHEET SUBMISSIONS

REPORT OF STATISTICAL ANALYSIS AND INTERPRETATION OF DATASETS OF FOUR DATA SETS: DIET A AND B, AGENT 1 AND 2, MALE AND FEMALE INCOME, AREA 1 AND 2

1.0 INTRODUCTION

Descriptive statistics was applied to analyse and interpret the four data sets: Diet A and B, Agent 1 and 2, Male and Female Income, and Area 1 and 2. There was an assumption that the data sets had equal variance. According to Hill, Berry, Hill and Berry (2021), descriptive statistics are crucial for simplifying datasets, applying calculations of variability or central decency, identifying outliers, and visualising data through graphs, charts, and tables. Descriptive statistics enable further statistical analysis through predictive modelling or inferential statistics (Hill, Berry, Hill & Berry, 2021).

According to Ghanad (2023), descriptive statistics is a quantitative research method. Quantitative statistics are about collecting quantifiable data, analysing, and interpreting to prove or disprove a hypothesis of the study. Quantitative statistics is systematically collecting data using an instrument, and data is collected from a sample population to answer preset research questions.

The data was analysed using a t-test paired two samples for means and analysis of variance (ANOVA) for a single factor. The paired two-sample t-test determines if the means of two related groups significantly differ. This test is usually applied to two paired small sample data sets. This, therefore, enhances the ability to efficiently and effectively compare two sample data. The single factor ANOVA is important for comparing the means of two or more groups of data sets and reduces the risk of type I error (false positive). The false positive is when the null hypothesis is incorrectly rejected. The single-factor ANOVA also helps determine the statistical difference between the variances of two or more data sets.

2.0 STATISTICAL ANALYSIS OF THE DATA SETS AND INTERPRETATION OF THE RESULTS -DIET A AND DIET B

2.1 Presentation of Analysis of Data Using Descriptive Statistics

This analysis was undertaken from a Null Hypothesis (H_0) perspective. This means that there is no difference between the means of diet A and diet B. The null hypothesis is stated below.

H₀: There is no difference in the means of diet A and diet B.

Table 2.1: Diet A

Mean	5.341
Standard Error	0.359
Median	5.642
Mode	#N/A
Standard Deviation	2.535602613
Sample Variance	6.429280612
Kurtosis	0.404479588
	-
Skewness	0.609369094
Range	11.777
Minimum	-1.715
Maximum	10.062
Sum	267.06
Count	50
Confidence Level (95.0%)	0.720610289
` ,	

Table 2.2: Diet B

Mean	3.710
Standard Error	0.391601675
Median	3.745
Mode	#N/A
Standard Deviation	2.769041999
Sample Variance	7.66759359
Kurtosis	0.652638378
	-
Skewness	0.203575964
Range	14.687
Minimum	-4.148
Maximum	10.539
Sum	185.498
Count	50
Confidence Level (95.0%)	0.786953029

Table 2.3: Two-Sample Assuming Equal Variances

	Variable 1	Variable 2
Mean	5.3412	3.70996
Variance	6.429280612	7.66759359
Observations	50	50
Pooled Variance	7.048437101	
Hypothesised Mean		
Difference	0	
df	98	
t Stat	3.072143179	
P(T<=t) one-tail	0.001375772	
t Critical one-tail	1.660551217	
P(T<=t) two-tail	0.002751544	
t Critical two-tail	1.984467455	

Table 2.4: Single Factor Analysis of Variance (ANOVA)

SUMMARY

Groups	Count	Sum	Average	Variance
Wtloss A	50	267.06	5.3412	6.429281
Wtloss B	50	185.498	3.70996	7.667594

ANOVA

Source of Variation	SS	df		MS	F	P-value	F crit
Between Groups	66.52359844		1	66.5236	9.438064	0.002752	3.938111
Within Groups	690.7468359		98	7.048437			
Total	757.2704344		99				

Summary Output

Table 2.6: Regression Statistics

Regression Statistics			
Multiple R	0.296389194		
R Square	0.087846554		
Adjusted R Square	0.078538866		
Standard Error	2.654889282		
Observations	100		

Table 2.7: Analysis of Variance (ANOVA)

	df	SS	MS	F	Significance F
Regression	1	66.52359844	66.52359844	9.438064	0.002752
Residual	98	690.7468359	7.048437101		
Total	99	757.2704344			

	Coeff icient	Stand ard		P- valu	Low er	Upp er	Lower 95.0	<i>Upper</i> 95.0	<i>Upper</i> 95.0
	S	Error	t Stat	е	95%	95%	%	%	%
				1.42					
Inter	5.34	0.3754	14.22	E-	4.59	6.08	4.596	6.086	6.600
cept	12	58043	58239	25	6116	6284	116	284	991
			-						
Diet	-		3.072	0.00	-	-	-	-	
Cod	1.63	0.5309	14317	275	2.68	0.57	2.684	0.577	0.256
е	124	77856	9	2	495	753	95	53	56

Table 2.8: Residual Output

RESIDUAL OUTPUT

Observation	Predicted Wtloss	Residuals
1	5.3412	-1.6322
2	5.3412	1.7458
3	5.3412	1.4128
4	5.3412	3.6528
5	5.3412	3.7358
6	5.3412	1.0718
7	5.3412	0.5358
8	5.3412	-2.7692
9	5.3412	2.1788
10	5.3412	1.5398
11	5.3412	1.9238
12	5.3412	-1.8642
13	5.3412	-1.5862
14	5.3412	3.4188
15	5.3412	1.6908
16	5.3412	3.7108
17	5.3412	4.7208
18	5.3412	-0.5012
19	5.3412	1.1078
20	5.3412	3.6778
21	5.3412	-7.0562
22	5.3412	-0.6232
23	5.3412	-1.3342
24	5.3412	1.8998

25	5.3412	-3.2132
26	5.3412	1.6268
27	5.3412	-0.4882
28 29	5.3412 5.3412 5.3412	-5.2862 -2.6612
30	5.3412	-1.5952
31	5.3412	1.6918
32	5.3412	-0.3082
33	5.3412	0.2278
34	5.3412	1.3708
35	5.3412	-1.6782
36	5.3412	-2.6002
37	5.3412	0.9148
38	5.3412	0.0078
39	5.3412	1.9588
40	5.3412	0.1038
41	5.3412	-0.3712
42	5.3412	-1.7282
43	5.3412	2.2268
44	5.3412	0.5198
45	5.3412	-1.1842
46 47	5.3412	-5.1382
48	5.3412 5.3412	-0.9002 0.5338
49	5.3412	0.3738
50	5.3412	-5.0612
51	3.70996	-4.79696
52	3.70996	-1.89096
53	3.70996	-3.63596
54	3.70996	-1.95496
55	3.70996	-1.82096
56	3.70996	-0.62096
57	3.70996	0.29804
58	3.70996	0.84104
59	3.70996	-2.33796
60	3.70996	-0.29696
61	3.70996	-7.85796
62	3.70996	-0.88696
63	3.70996	-0.84496
64	3.70996	0.65904
65	3.70996	2.62704
66	3.70996	2.59804
67	3.70996	-0.21596
68	3.70996	6.82904
69	3.70996	0.13004
70	3.70996	1.41304
71	3.70996	1.77504
72	3.70996	-5.60396
73	3.70996	4.30604
74	3.70996	-1.39996

75	3.70996	0.17204
76	3.70996	3.32004
77	3.70996	4.01704
78	3.70996	-3.60496
79	3.70996	-0.05996
80	3.70996	0.83704
81	3.70996	1.27504
82	3.70996	1.44904
83	3.70996	1.05004
84	3.70996	1.22404
85	3.70996	-0.60396
86	3.70996	1.88804
87	3.70996	-1.54796
88	3.70996	2.81004
89	3.70996	3.33604
90	3.70996	-1.95296
91	3.70996	-1.86196
92	3.70996	-2.61396
93	3.70996	-1.56496
94	3.70996	4.72504
95	3.70996	2.38904
96	3.70996	0.26204
97	3.70996	-1.30096
98	3.70996	-3.14096
99	3.70996	3.30304
100	3.70996	-1.11596

2.2 Interpretation of the Results of the Statistical Analysis of Diet A and B

Descriptive statistics was applied. A two-sample t-test was applied while assuming variance between diet A and B. The two-sample t-test was applied because they are two independent diets, and there is a need to find out if there is a significant statistical difference between them in terms of weight loss or weight gain between the two groups. Applying a two-sample test will provide a clear statistical insight into which diet is more effective and provide an informed decision. A single-factor ANOVA test was used to determine whether there were statistically significant differences between the mean of the unrelated groups (Diet A and B).

The mean of Diet A is 5.34, and Diet B is 3.71 for a group of 50 observations. As per the assumption of equal variance, the pooled variance for the two groups is 7.05.

The degree of freedom (df) is 98% for both groups. The standardised difference between the two means is 3.07, relative to the pooled standard error.

The p-value of the two-tailed test is 0.00275, which is less than the significance level of 0.05. This indicates that the Null Hypothesis (H₀) was rejected. The t-statistics was 3.07, exceeding the critical t-value of 1.98 for the two-tail test. This, therefore, means that the null hypothesis was also rejected.

3.0 STATISTICAL ANALYSIS OF THE DATA SETS AND INTERPRETATION OF THE RESULTS -AGENT 1 AND AGENT 2

This analysis was undertaken from a Null Hypothesis (H_0) perspective. This means that there is no difference between the means of Agent 1 and Agent 2. The null hypothesis is stated below.

H₀: There is no difference in the means of Agent 1 and Agent 2.

3.1 Presentation of Analysis of Data Using Descriptive Statistics

Table 3.1: Agent 1

Agent1			
Mean	8.25		
Standard Error	0.297081766		
Median	8.4		
Mode	8.7		
Standard Deviation	1.029121426		
Sample Variance	1.059090909		
•	-		
Kurtosis	1.682302247		
	-		
Skewness	0.158842103		
Range	2.7		
Minimum	6.8		
Maximum	9.5		
Sum	99		
Count	12		
Confidence Level			
(95.0%)	0.653872559		

Table 3.2: Agent 2

Agent2	
Mean	8.683333333
Standard Error	0.299705242
Median	9
Mode	#N/A
Standard Deviation	1.038209414
Sample Variance	1.077878788
Kurtosis	0.48577068
Skewness	-1.00867855
Range	3.4
Minimum	6.4
Maximum	9.8
Sum	104.2
Count	12
Confidence Level (95.0%)	0.659646791

Table 3.3: Two-Sample T-Test Assuming Equal Variances

t-Test: Two-Sample Assuming Equal Variances

	Agent1	Agent2
Mean	8.25	8.683333333
Variance	1.059090909	1.077878788
Observations	12	12
Pooled Variance	1.068484848	
Hypothesised Mean		
Difference	0	
df	22	
	-	
t Stat	1.026865443	
P(T<=t) one-tail	0.157821259	
t Critical one-tail	1.717144374	
P(T<=t) two-tail	0.315642517	
t Critical two-tail	2.073873068	

Table 3.4: Single Factor Analysis of Variance (ANOVA)

Anova: Single Factor

SUMMARY

				Varianc
Groups	Count	Sum	Average	е
				1.05909
Agent1	12	99	8.25	1
J			8.68333	1.07787
Agent2	12	104.2	3	9

Source of						
Variation	SS	df	MS	F	P-value	F crit
Between	1.12666		1.12666	1.05445	0.31564	4.3009
Groups	7	1	7	3	3	5
Within	23.5066		1.06848			
Groups	7	22	5			
	24.6333					
Total	3	23				

Table 3.5: Summary Output

SUMMARY OUTPUT

Regression		
Statis	tics	
Multiple	0.2288	
R	96281	
	0.0523	
R Square	93508	
	-	
Adjusted	0.1581	
R Square	85713	
Standard	3.8802	
Error	59562	
Observat		
ions	12	

•	
df SS MS F	gnifi
	nce
3.74 0.24	F
•··· •· - ·	
Regressi 7.4922 613 880 0.7	' 849
on 2 71592 6 7	21
15.0	
135.50 564	
Residual 9 77284 1	
Total 11 143	

		Standa		P-		Uppe		
	Coeffic	rd	t	valu	Lower	r	Lower	Upper
	ients	Error	Stat	е	95%	95%	95.0%	95.0%
	-		-	0.97	-		-	
	0.3174	9.9338	0.03	520	22.789	22.15	22.78	22.15
Intercept	49728	86285	196	4	5	456	95	456
	-		-	0.96	-		-	
	0.1349	2.6212	0.05	005	6.0646	5.794	6.064	5.794
Agent1	77715	30645	149	7	1	658	61	658
			0.35	0.73	-		-	
	0.9133	2.5982	152	328	4.9643	6.791	4.964	6.791
Agent2	60754	85646	4	4	7	091	37	091

Table 3.6: Residual Output

RESIDUAL OUTPUT

	Predicted	
Observation	Batch	Residuals
1	6.406788272	-5.40678827
2	7.209018528	-5.20901853
3	4.610210632	-1.61021063
4	7.351197364	-3.35119736
5	7.00249916	-2.00249916
6	5.692745766	0.307254234
7	6.159775589	0.840224411
8	5.757086298	2.242913702
9	7.093835235	1.906164765
10	6.542670457	3.457329543
11	7.27335906	3.72664094
12	6.900813638	5.099186362

3.2 Interpretation of the Results of the Statistical Analysis of Agent 1 and Agent 2

The means for Agents 1 and 2 are 8.25 and 8.68, respectively. There is a justification for equal variance because their variances are very close, 1.059 for Agent 1 and 1.078 for Agent 2. The t-stat is 1.027, and the degree of freedom (df) is 22.

As per the one-tail test, the p-value of 0.158 is more significant than the critical level of 0.05. This, therefore, means that we fail to reject the null hypothesis. This indicated no evidence that one group was less or greater than the other.

As per the two-tail test, the p-value is 0.316, more significant than the critical level of 0.05. This indicated that there was no significant difference between the two groups.

This, therefore, results in a lack of significant difference between the mean of Agents 1 and 2.

4.0 STATISTICAL ANALYSIS OF THE DATA SETS AND INTERPRETATION OF THE RESULTS –MALE AND FEMALE INCOME

This analysis was undertaken from a Null Hypothesis (H_0) perspective. This means there is no difference between the means of Male and Female Income. The null hypothesis is stated below.

H₀: There is no difference in the means of Male Income and Female Income.

4.1 Presentation of Analysis of Data Using Descriptive Statistics

Table 4.1: Male Income

Male income				
Mean	52.9133333			
Standard Error	1.97116282			
Median	52.05			
Mode	54.6			
Standard Deviation	15.2685615			
Sample Variance	233.128972			
Kurtosis	0.47064083			
Skewness	0.72494335			
Range	69.9			
Minimum	31			
Maximum	100.9			
Sum	3174.8			
Count	60			
Confidence Level				
(95.0%)	3.94428769			

Table 4.2: Female Income

Female Income			
Mean	44.2333333		
Standard Error	1.7803362		
Median	38.15		
Mode	33.4		
Standard Deviation	13.7904249		
Sample Variance	190.175819		
Kurtosis	0.35112373		
Skewness	1.09975931		
Range	52.9		
Minimum	30		
Maximum	82.9		
Sum	2654		

Count	60
Confidence Level	
(95.0%)	3.56244451

Table 4.3: Two-Sample T-Test Assuming Equal Variances

t-Test: Two-Sample Assuming Equal Variances

	Variable 1	Variable 2
Mean	52.91333333	44.23333333
Variance	233.1289718	190.1758192
Observations	60	60
Pooled Variance	211.6523955	
Hypothesised Mean		
Difference	0	
df	118	
t Stat	3.267900001	
P(T<=t) one-tail	0.000709735	
t Critical one-tail	1.657869522	
P(T<=t) two-tail	0.00141947	
t Critical two-tail	1.980272249	

Table 4.4: Single Factor Analysis of Variance (ANOVA)

Anova: Single

Factor

SUMMARY

Groups	Count	Sum	Average	Variance
MALE	60	3174.8	52.91333	233.129
FEMALE	60	2654	44.23333	190.1758

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	2260.272	1	2260.272	10.67917	0.001419	3.921478
Within Groups	24974.98	118	211.6524			
_Total	27235.25	119				

Table 4.5: Summary Output

SUMMAR Y OUTPUT

Regression Statistics				
<u> </u>	00			
	0.288			
Multiple R	081			
-	0.082			
R Square	991			
Adjusted	0.075			
R Square	219			
Standard	14.54			
Error	828			
Observati				
ons	120			
	·			

					Signifi cance
	df	SS	MS	F	F
			226	10.6	
Regressio		2260.2	0.27	791	0.0014
n	1	72	2	7	19
			211.		
		24974.	652		
Residual	118	98	4		
		27235.			
Total	119	25			

		Standa		P-		Uppe		
	Coeffi	rd	t	valu	Lower	r	Lower	Upper
	cients	Error	Stat	е	95%	95%	95.0%	95.0%
			14.6	2.33				
	61.59	4.1997	660	E-	53.276	69.90	53.27	69.90
Intercept	333	26	4	28	73	993	673	993
			-	0.00	-	-	-	-
		2.6561	3.26	141	13.939	3.420	13.93	3.420
Sex Code	-8.68	4	79	9	9	12	99	12

Table 4.6: Residual Output

RESIDUAL OUTPUT

	Predicted	
Observation	Income	Residuals
1	52.91333	-12.3133
2	52.91333	1.686667
3	52.91333	-14.3133
4	52.91333	5.286667
5	52.91333	-18.3133
6	52.91333	-10.0133
7	52.91333	14.58667
8	52.91333	26.88667
9	52.91333	1.486667
10	52.91333	-5.61333
11	52.91333	13.48667
12	52.91333	16.08667
13	52.91333	9.086667
14	52.91333	-0.41333
15	52.91333	19.68667
16	52.91333	-0.51333
17	52.91333	6.586667
18	52.91333	6.186667
19	52.91333	-16.2133
20	52.91333	1.686667
21	52.91333	-0.81333
22	52.91333	-3.01333
23	52.91333	-0.91333
24	52.91333	-5.81333
25	52.91333	-12.1133
26	52.91333	-16.4133
27	52.91333	4.186667
28	52.91333	1.186667
29	52.91333	-20.5133
30	52.91333	-18.0133
31	52.91333	11.18667
32	52.91333	1.086667
33	52.91333	-1.41333
34	52.91333	-2.11333
35	52.91333	-7.81333
36	52.91333	28.58667
37	52.91333	17.48667
38	52.91333	-13.7133
39	52.91333	-7.71333
40	52.91333	27.98667
41	52.91333	-4.31333
42	52.91333	-21.9133
43	52.91333	-20.8133
43	52.91333	-19.0133
44	JZ.31JJJ	- 13.0133

```
-21.6133
45
      52.91333
46
      52.91333
                 -1.91333
47
      52.91333
                 0.486667
48
      52.91333
                 5.386667
49
      52.91333
                 -21.5133
50
      52.91333
                 3.386667
51
      52.91333
                 -11.9133
52
      52.91333
                 -5.01333
53
      52.91333
                 -1.51333
54
      52.91333
                 -19.8133
55
      52.91333
                 21.98667
56
      52.91333
                 24.28667
57
      52.91333
                 4.986667
58
      52.91333
                 27.18667
59
      52.91333
                 -12.7133
60
      52.91333
                 47.98667
                 -11.1333
61
      44.23333
      44.23333
62
                 -8.43333
63
      44.23333
                 24.56667
64
      44.23333
                 -12.6333
65
      44.23333
                 -6.03333
      44.23333
                 -2.23333
66
67
      44.23333
                 -10.8333
68
      44.23333
                 6.066667
69
      44.23333
                 -4.63333
70
      44.23333
                 -13.5333
71
      44.23333
                 -12.9333
72
      44.23333
                 17.06667
73
      44.23333
                 -14.2333
74
      44.23333
                 -6.13333
75
      44.23333
                 12.16667
76
      44.23333
                 -8.53333
77
      44.23333
                 -12.9333
78
      44.23333
                 -3.83333
79
      44.23333
                 -12.1333
80
      44.23333
                 22.16667
81
      44.23333
                 -7.33333
                 -8.33333
82
      44.23333
83
      44.23333
                 5.366667
84
      44.23333
                 18.56667
85
      44.23333
                 0.366667
      44.23333
86
                 -11.7333
87
      44.23333
                 -10.8333
88
      44.23333
                 11.06667
89
      44.23333
                 18.46667
90
      44.23333
                 10.16667
91
      44.23333
                 -13.4333
92
      44.23333
                 4.866667
93
      44.23333
                 -2.33333
94
      44.23333
                 -11.7333
```

95	44.23333	-9.03333
96	44.23333	3.166667
97	44.23333	16.46667
98	44.23333	-11.2333
99	44.23333	-0.93333
100	44.23333	-9.43333
101	44.23333	-8.23333
102	44.23333	7.366667
103	44.23333	-12.3333
104	44.23333	-10.1333
105	44.23333	34.16667
106	44.23333	-13.8333
107	44.23333	1.066667
108	44.23333	8.366667
109	44.23333	-13.9333
110	44.23333	-7.63333
111	44.23333	8.866667
112	44.23333	-7.73333
113	44.23333	-6.43333
114	44.23333	-10.2333
115	44.23333	25.06667
116	44.23333	32.96667
117	44.23333	-11.6333
118	44.23333	38.66667
119	44.23333	-1.93333
120	44.23333	13.56667

4.2 Interpretation of the Results of the Statistical Analysis of Male and Female Income

The mean for Male Income is 52.91, and the Mean for Female Income is 44.23. The variances for the male income are 233.13 and 190.18 for the female income. This demonstrated that males' average income is higher than females'. The t-statistic is 3.27, and the degree of freedom (df) is 118. The p-value for the one tail is 0.00071, and for the two, it is 0.00142, which are all below the critical value of 0.005. The null hypothesis was rejected. This indicated a significant difference between the income of males and females.

5.0 STATISTICAL ANALYSIS OF THE DATA SETS AND INTERPRETATION OF THE RESULTS -AREA 1 AND AREA 2

This analysis was undertaken from a Null Hypothesis (H_0) perspective. This means that there is no difference between the means of Area 1 and Area 2. The null hypothesis is stated below.

 H_0 : There is no difference in the means of Area 1 and Area 2.

5.1 Presentation of Analysis of Data Using Descriptive Statistics

Table 5.1: Area 1

700				
Mean	23.33333333			
Standard Error	9.492687244			
Median	17			
Mode	#N/A			
Standard Deviation	16.44181661			
Sample Variance	270.3333333			
Kurtosis	#DIV/0!			
Skewness	1.476191507			
Range	31			
Minimum	11			
Maximum	42			
Sum	70			
Count	3			
Confidence Level				
(95.0%)	40.84373668			

Table 5.2: Area 2

Area 2					
Mean	30				
Standard Error	6.350852961				
Median	30				
Mode	#N/A				
Standard Deviation	11				
Sample Variance	121				
Kurtosis	#DIV/0!				
Skewness	0				
Range	22				
Minimum	19				

Maximum	41
Sum	90
Count	3
Confidence Level	
(95.0%)	27.32551483

Table 5.3: Two-Sample T-Test for the Means

t-Test: Paired Two Sample for Means

	Area 1	Area 2
Mean	23.33333333	30
Variance	270.3333333	121
Observations	3	3
Pearson Correlation	0.942718215	
Hypothesised Mean Difference	0	
df	2	
t Stat	-1.627576918	
P(T<=t) one-tail	0.122574322	
t Critical one-tail	2.91998558	
P(T<=t) two-tail	0.245148644	
t Critical two-tail	4.30265273	

Table 5.4: Single Factor Analysis of Variance (ANOVA)

Anova: Single

Factor

SUMMARY

Groups	Count		Sum	Average	Variance
Area 1		3	70	23.33333	270.3333
Area 2		3	90	30	121

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	66.6666667	1	66.66667	0.340716	0.590747	7.708647
Within Groups	782.6666667	4	195.6667			
Total	849.3333333	5				

Table 5.5: Summary Output

SUMMARY OUTPUT

Regression		
Statis	tics	
Multiple	0.127	
R	44007	
	0.016	
R	24097	
Square	1	
Adjusted	0.010	
R	01464	
Square	8	
•	0.770	
Standar	88495	
d Error	4	
Observa		
tions	160	

					Signifi cance
	df	SS	MS	F	F
		1.550	1.550	2.608	0.108
Regress		09920	09920	4370	29165
ion	1	6	6	19	3
		93.89	0.594		
		36507	26361		
Residual	158	9	3		
		95.44			
Total	159	375			

							1 014/0	Unno
							Lowe	Uppe
		Stand					r	r
	Coeffi	ard		P-	Lower	Uppe	95.0	95.0
	cients	Error	t Stat	value	95%	r 95%	%	%
	4.641	0.201	23.04	2.127	4.243	5.039		
	26984	39724	53493	54E-	49174	0479	4.243	5.039
Intercept	1	4	7	52	2	41	492	048
	-		-		-			
	0.198	0.122	1.615	0.108	0.441	0.044	-	
	41269	85116	06563	2916	05506	2296	0.441	0.044
Area	8	7	9	53	4	67	06	23

Table 5.6: Residential Output

RESIDUAL OUTPUT

01 "	5 " () 5	
Observation	Predicted Brand code	Residuals
1	4.442857143	-0.442857143
2	4.442857143	0.557142857
3	4.442857143	-1.442857143
4	4.442857143	-0.442857143
5	4.442857143	0.557142857
6	4.442857143	-1.442857143
7	4.442857143	0.557142857
8	4.442857143	0.557142857
9	4.442857143	0.557142857
10	4.442857143	0.557142857
11	4.442857143	-0.442857143
12	4.442857143	0.557142857
13	4.442857143	0.557142857
14	4.442857143	-1.442857143
15	4.442857143	-1.442857143
16	4.442857143	-1.442857143
17	4.442857143	-0.442857143
18	4.442857143	-1.442857143
19	4.442857143	0.557142857
20	4.442857143	-0.442857143
21	4.442857143	-1.442857143
22	4.442857143	-0.442857143
23	4.442857143	0.557142857
24	4.442857143	0.557142857
25	4.442857143	-0.442857143
26	4.442857143	-0.442857143
27	4.442857143	0.557142857
28	4.442857143	0.557142857
29	4.442857143	0.557142857
30	4.442857143	0.557142857
31	4.442857143	0.557142857
32	4.442857143	-0.442857143
33	4.442857143	-0.442857143
34	4.442857143	0.557142857
35	4.442857143	0.557142857
36	4.442857143	-0.442857143
37	4.442857143	-0.442857143
38	4.442857143	-0.442857143
39	4.442857143	0.557142857
39 40	4.442857143	0.557142857
_		
41	4.442857143	-0.442857143
42	4.442857143	0.557142857
43	4.442857143	0.557142857
44	4.442857143	0.557142857
45	4.442857143	0.557142857

46	4.442857143	0.557142857
_		
47	4.442857143	0.557142857
48	4.442857143	0.557142857
49	4.442857143	0.557142857
50	4.442857143	0.557142857
51	4.442857143	-1.442857143
52	4.442857143	0.557142857
53	4.442857143	-1.442857143
54	4.442857143	0.557142857
55	4.442857143	0.557142857
56	4.442857143	0.557142857
57	4.442857143	-1.442857143
58	4.442857143	-1.442857143
59	4.442857143	0.557142857
60	4.442857143	0.557142857
61	4.442857143	0.557142857
62	4.442857143	0.557142857
63	4.442857143	0.557142857
64	4.442857143	0.557142857
65	4.442857143	-0.442857143
66	4.442857143	0.557142857
67	4.442857143	-0.442857143
68	4.442857143	0.557142857
69	4.442857143	0.557142857
70	4.442857143	-0.442857143
71	4.24444444	-1.24444444
72 70	4.24444444	-0.24444444
73	4.24444444	-1.24444444
74 75	4.24444444	0.75555556
75 70	4.24444444	-1.24444444
76 	4.24444444	-0.24444444
77	4.24444444	0.75555556
78	4.24444444	0.75555556
79	4.24444444	-0.24444444
80	4.24444444	-0.24444444
81	4.24444444	0.75555556
82	4.24444444	-0.24444444
83	4.24444444	-0.24444444
84	4.24444444	0.75555556
85	4.24444444	0.75555556
86	4.24444444	-1.24444444
87	4.24444444	-0.24444444
88	4.24444444	-1.24444444
89	4.24444444	0.75555556
90	4.24444444	-0.24444444
91	4.24444444	0.75555556
92	4.24444444	0.75555556
93	4.24444444	-1.24444444
94	4.24444444	0.75555556
95	4.24444444	-1.24444444
33	<u>.</u>	

06	4 0444444	0 04444444
96 97	4.24444444 4.244444444	-0.244444444 0.75555556
98	4.244444444	-0.24444444
99	4.244444444	0.75555556
100	4.244444444 4.244444444	-0.24444444
101	4.244444444	0.75555556
102	4.244444444	-0.24444444
102	4.244444444	0.75555556
103	4.244444444	-0.24444444
105	4.244444444	-1.24444444
106	4.244444444	-1.24444444
107	4.244444444	0.75555556
108	4.244444444	-0.24444444
109	4.244444444	0.75555556
110	4.244444444	0.75555556
111	4.244444444	-1.24444444
112	4.244444444	-0.24444444
113	4.244444444	-0.24444444
114	4.244444444	0.75555556
115	4.2 4444444 4 244444444	0.75555556
116	4.244444444	0.75555556
117	4.244444444	0.75555556
118	4.244444444	-0.24444444
119	4.244444444	-0.24444444
		•
120 121	4.24444444	-0.24444444
	4.24444444	0.75555556
122	4.24444444	0.75555556
123	4.24444444	-0.24444444
124	4.24444444 4.24444444	-0.244444444
125	4.244444444	-1.244444444
126	4.244444444	0.75555556
127		-0.244444444 -1.244444444
128	4.24444444 4.244444444	
129		-1.24444444
130	4.24444444	-0.244444444
131	4.24444444	0.75555556
132	4.24444444	0.75555556
133	4.24444444	0.75555556
134	4.24444444	-0.24444444
135	4.24444444	0.75555556
136	4.24444444	0.75555556
137	4.24444444	-1.24444444
138	4.24444444	0.75555556
139	4.24444444	-1.24444444
140	4.24444444	-0.24444444
141	4.24444444	-0.24444444
142	4.24444444	0.75555556
143	4.24444444	0.75555556
144	4.24444444	-0.24444444
145	4.24444444	0.75555556

146	4.24444444	-1.24444444
147	4.24444444	0.75555556
148	4.24444444	-1.24444444
149	4.24444444	0.75555556
150	4.24444444	0.75555556
151	4.24444444	0.75555556
152	4.24444444	0.75555556
153	4.24444444	0.75555556
154	4.24444444	-1.24444444
155	4.24444444	-0.24444444
156	4.24444444	-1.24444444
157	4.24444444	-0.24444444
158	4.24444444	-0.24444444
159	4.24444444	0.75555556
160	4.24444444	0.75555556

5.2 Interpretation of the Results of the Statistical Analysis of Area 1 and Area 2

The mean for Area 1 is 23.33, and the Mean for Area 2 is 30. The variances for Area 1 are 270.33 and 121 for Area 2. The t-statistics is 1.628, and the degree of freedom (df) is 2. The p-value for one tail is 0.123, and the p-value is 0.245 for two tails. The critical value for one tail was 2.920, and for two tail was 4.303. For the one tail, the p-value was 0.123, more significant than 0.05; hence, we failed to reject the null hypothesis. There is no sufficient evidence that the mean for Area 1 was significantly greater or less than Area 2.

6.0 CONCLUSION

This quantitative study applied descriptive statistical techniques to analyse the four data sets: Diet A and B, Agent 1 and 2, Male and Female Income, and Area 1 and 2. An assumption of equal variance between the datasets was applied.

Regarding the analysis of Data A and B datasets, the p-values were less than the significance level of 0.05. The null hypothesis of no difference in diet A and B's means was rejected.

The analysis of Agent 1 and Agent 2 found a close variance between the two datasets, justifying the assumption of equal variance. We, therefore, fail to

reject the null hypothesis that there is no difference in the means of Agent 1 and Agent 2.

The analysis of Male and Female income demonstrated a variance between the two datasets. The incomes for males are higher than the incomes for females. We, therefore, reject the null hypothesis that there is no difference in the means of Male Income and Female Income.

The statistical analysis of Area 1 and Area 2 did not find sufficient evidence that the means of the two datasets have a significant difference. Therefore, we fail to reject the null hypothesis that there is no difference in the means of Area 1 and Area 2.

REFERENCES

Ghanad, A. (2023). An overview of quantitative research methods. *International Journal of Multidisciplinary Research and Analysis* 6 (08): 3794-3803. DOI: https://doi.org/10.47191/ijmra/v6-i8-52

Hill, R., Berry, S., Hill, R. & Berry, S. (2021) Data, Analysis and Statistics. *Guide to Industrial Analytics: Solving Data Science Problems for Manufacturing and the Internet of Things* 21-51.