可靠性工程 2022-2023学年第一学期

密度函数之间的关系图 (并标明计算公式)。

一、填空题(20分,每空2分)			
1、在可靠性工程中,系统根据是否可	修分为	和	o
2、产品在规定时间 t 内和规定条件下,	丧失规定功能的	的概率称为产品	品的。
3、故障树的基本构图元素和	o		
4、可靠性预计结果是可靠性分配与指	标调整的	°	
5、直接原因是导致产品功能故障的产	品自身的那些物	为理、化学或 ^生	生物变化过程
等,又称。			
6、截尾寿命试验可以分为	和	o	
7、寿命随机变量的数学期望显示其	趋势。		
二、简答题(20分,每题10分)			
(1) 画出产品寿命分布的可靠度函数	、失效率函数、	累计故障函数	数与寿命概率

本资源免费共享 收集网站 nuaa.store

(2) 简述步加加速试验的实施过程及特点,并画出示意图。

三、计算题

某产品故障分布概率密度函数如下:

$$P(t) = \frac{3t^2}{10^9}, 0 \le t \le 1000h$$

计算该产品(1)在保修期 200h 内发生故障的概率是多少(2) MTTF(3)可靠度为 0.95 时的设计寿命

四、计算题

某混联系统如下图所示,由 4 个独立部件组成,每个部件可靠度都为 $R_i = 0.9$ 。

分别计算(a)、(b)的可靠度

五、计算题

如图所示一复杂系统可靠性框图,运用全概率方法简化问题,指定从 e 弧开始,画出部件 e 正常和失效情况下的子网络图,并给出最小路集。

本资源免费共享 收集网站 nuaa.store

六、计算题

故障树底事件故障率为10-3, 求(1)最小割路集(2)顶事件发生概率。

七、计算题(5分)

由两台设备(失效率 λ_i ,i=1,2)与一组维修人员(修复率 μ)组成的串联可修系统。请定义马尔科夫型可修系统,写出转移概率矩阵,画状态转移图。

本资源免费共享 收集网站 nuaa.store

参考答案:

- 一、1、可修系统;不可修系统
- 2、故障概率
- 3、事件;逻辑门
- 4、基础
- 5、故障机理
- 6、定时截尾实验; 定数截尾实验
- 7、平均寿命(?)
- \equiv , (1)

(2) 步加试验:选择一组加速应力水平: S1,S2,···,Sk,它们都高于正常应力水平 S0,即 S0<S1<····<Sk。试验开始时,将所有受试样品至于应力水平 S1 下进行寿命试验,直到规定的试验时间 t1 或规定的失效数 r 为止;然后把应力水平提高到 S2,将未失效的样品在应力水平 S2 下继续进行寿命试验,如此继续下去,直到规定的试验时间或有一定数量的样品发生失效为止。

$$\equiv$$
, (1) $F(200) = \int_{0}^{200} \frac{3t^2}{10^9} dt = \left[\frac{t^3}{10^9}\right]_{0}^{200} = 0.008$

(2)
$$MTTF = \int_{0}^{1000} \frac{3t^2}{10^9} t dt = \left[\frac{3t^4}{4 \times 10^9} \right]_{0}^{1000} = 750h$$

(3)
$$R(t) = 1 - F(t) = 1 - \frac{t^3}{10^9} = 0.95$$

 $t_{0.95} = \sqrt[3]{1 - 0.95} \times 10^3 = 368.4 \text{h}$

$$\square$$
, (a) $R = 1 - (1 - R_i)^4 = 1 - 0.0001 = 0.9999$

(b)
$$R = (1 - (1 - R)^2)^2 = (1 - 0.01)^2 = 0.9801$$

五、

最小路集{ab}{cd}{aed}{ceb}

六、(1) 最小割集{X1X2},{X3},{X4},{X2X5X6}

(2) 概率图法

123\456	100	101	111	110	010	011	001	000	
001									
011	Х3								
111									
101									
100		X4							
110						X1X2			
010		Λ4				X2X5X6			
000									

七、状态转移矩阵
$$\mathbf{A} = \begin{bmatrix} \lambda_1 + \lambda_2 & \lambda_1 & \lambda_2 \\ \mu & -\mu & 0 \\ \mu & 0 & -\mu \end{bmatrix}$$

状态转移图: