QUANTUM FISHER INFORMATION AS A TOOL FOR DETECTING TOPOLOGICAL PHASES

Sunny Pradhan, Federico Dell'Anna, Elisa Ercolessi

QUANTUM Group @ University of Bologna, Italy INFN, Sezione di Bologna, Italy

Multipartite entanglement

n-separability

$$|\psi\rangle = \underbrace{|\phi_1\rangle\otimes\cdots\otimes|\phi_n\rangle}_{\text{factorizes in }n\text{ terms}}$$

• k-party entanglement

$$|\psi\rangle = \bigotimes_{i} |\phi_{i}\rangle$$
, $|\phi_{i}\rangle$ involves at most k parts

Quantum Fisher Information

limit to the achievable precision in a phase estimation protocol $\rho \to \rho(\theta)$

$$(\Delta \theta)^2 \ge \frac{1}{mF} \ge \frac{1}{mF_Q}$$

- F: Fisher information
- FQ: quantum Fisher information
- $f_Q = F_Q/L$: QFI density

Entanglement criterion

$$f_Q[\rho_{k-\mathrm{ent}}, \hat{H}_{\mathrm{lin}}] \leq k$$

 $ho_{k-\mathrm{ent}}$ input state with $k-\mathrm{party}$ entanglement \hat{H}_{lin} linear interferometer

We look at the multipartite entanglement structure of symmetry protected topological phases using quantum Fisher information of non-local operators

ı

Long-range Kitaev chain

one-dimensional p-wave superconductor with **long-range coupling** \sim 1/ r^{lpha}

$$H = \sum_{j} \left[-tc_{j}^{\dagger}c_{j+1} - \mu \left(c_{j}^{\dagger}c_{j} - \frac{1}{2} \right) + \frac{\Delta}{2} \sum_{r} \left[\frac{1}{r^{\alpha}}c_{j}^{\dagger}c_{j+r} \right] + \text{h.c.} \right]$$

QFI of non-local spin degrees of freedom

•
$$\sigma_j^+ = c_j^{\dagger} e^{i\pi \sum_{i < j} c_i^{\dagger} c_i}$$
, $\sigma_j^- = e^{i\pi \sum_{i < j} c_i^{\dagger} c_i} c_j$

•
$$\hat{H}_{lin}^{\rho} = \sum_{j} \sigma_{i}^{\rho}$$
, $\rho = x, y$

We look at the scaling of $f_Q[|gs\rangle$, $\hat{H}_{\rm lin}^{\rho}]$ with the system size L

The scaling can be computed analytically using **Toeplitz determinants**

Bilinear-Biquadratic model

most general SU(2)-invariant isotropic spin-1 Hamiltonian

$$H = J \sum_{i} \left[\mathbf{S}_{i} \cdot \mathbf{S}_{i+1} - \beta (\mathbf{S}_{i} \cdot \mathbf{S}_{i+1})^{2} \right] = J' \sum_{i} \left[\cos \theta \mathbf{S}_{i} \cdot \mathbf{S}_{i+1} - \sin \theta (\mathbf{S}_{i} \cdot \mathbf{S}_{i+1})^{2} \right]$$

QFI of string operators

•
$$\widetilde{S}_{j}^{z} = \left(e^{i\pi \sum_{i < j} S_{i}^{z}}\right) S_{j}^{z}$$

•
$$\hat{O} = \sum_{j} \widetilde{S}_{i}^{z}$$

We look at the scaling of $f_Q[|gs\rangle$, $\hat{O}]$ with the system size L

