Quantization (rounding off)

- The sampled signal is still analog through though discretised in time.
- Therefore it has to be passed through Quantizer to be discretised in amplitude.

"Quantization is the process of transforming the sample amplitude $m(nT_s)$ of a message signal m(t) at time $t = nT_s$ into a discrete amplitude $v(nT_s)$ taken from a finite set of possibilities"

- The definition assumes that *quantizer* is *memoryless* and *instantaneous*
- It means that the transformation at time $t = nT_s$ is not affected by earlier or later samples of the message signal m(t)

Quantization

• Amplitude quantization is shown below as the process of transforming the sample amplitude of a message signal into discrete amplitudes taken from a finite set of possible amplitudes.

Quantization Levels

- Sampling results in a series of pulses of varying amplitude values ranging between two limits: a min and a max.
- The amplitude values are infinite between the two limits.
- We need to map the infinite amplitude values onto a finite set of known values.
- This is achieved by dividing the distance between min and max into L zones, each of height Δ .

Step Size
$$(\Delta) = \frac{(max - min)}{L}$$

- The midpoint of each zone is assigned a value from 0 to L-1 (resulting in L values)
- Each sample falling in a zone is then approximated to the value of the midpoint.

Quantization Zones

Assume we have a voltage signal with amplitudes

$$V_{min} = -20V \ and \ V_{max} = +20V$$

- We want to use L = 8 quantization levels.
- Zone width or Step Size:

Step Size
$$(\Delta) = \frac{(20 - (-20))}{8} = 5$$

- The 8 zones are: -20 to -15, -15 to -10, -10 to -5, -5 to 0, 0 to +5, +5 to +10, +10 to +15, +15 to +20
- The midpoints are: -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5

Quantization: Assigning Codes to Zones

- Each zone is then assigned a binary code.
- The number of bits required to encode the zones, or the number of bits per sample as it is commonly referred to, is obtained as follows:

$$n_b = log_2 L = log_2 8 = 3$$
$$n_b = 3$$

- The 8 zone (or level) codes are therefore: 000,001,010,011,100,101,110,and 111
- Assigning codes to zones:
- 000 will refer to zone -20 to -15
- 001 to zone -15 to -10,etc.

Quantization and encoding of a sampled signal

Quantization **Assign Closest** Level n

Each quantization level corresponds to a unique combination of bits. The analog signal is transmitted/ stored as a stream of bits and reconstructed when required.

Each quantization level corresponds to a unique combination of bits. The analog signal is transmitted/ stored as a stream of bits and reconstructed when required.

It is quite apparent that the quantized signal is not exactly the same as the original analog signal. There is a fair degree of quantization error here. However; as the number of quantization levels is increased the quantization error is reduced and the quantized signal gets closer and closer to the original

Quantization

It is quite apparent that the quantized signal is not exactly the same as the original analog signal. There is a fair degree of quantization error here. However; as the number of quantization levels is increased the quantization error is reduced and the quantized signal gets closer and closer to the original signal

Types of Quantization

There are two types of quantization:

Uniform Quantization:

- Step or Difference between two quantization levels remain constant over the complete amplitude range.
- So the maximum quantization error also remains same which causes problems at some amplitude levels

Non-Uniform Quantization:

- Step size or Difference between two quantization levels are different
- And mostly the relation between them is logarithmic

Quantizer Characteristics

- There are two types Quantizer Characteristics for uniform quantization.
- They are Mid-Rise type and Mid-Tread type.

Fig 1: Mid-Rise type Uniform Quantization

Fig 2: Mid-Tread type Uniform Quantization

Quantizer Characteristics

- The **Mid-Rise** type is so called because the origin lies in the middle of a raising part of the stair-case like graph.
- The quantization levels in this type are even in number.

Fig 1: Mid-Rise type Uniform Quantization

Quantizer Characteristics

- The **Mid-tread** type is so called because the origin lies in the middle of a tread of the staircase like graph.
- The quantization levels in this type are odd in number.

Fig 2: Mid-Tread type Uniform Quantization

- The difference between an input value and its quantized value is called a **Quantization Error**.
- A **Quantizer** is a logarithmic function that performs Quantization.
- An analog-to-digital converter (ADC) works as a quantizer

Quantization Noise

- It is a type of quantization error, which usually occurs in analog audio signal, while quantizing it to digital.
- For example, in music, the signals keep changing continuously, where a regularity is not found in errors.
- Such errors create a wideband noise called as Quantization Noise.

• The following figure illustrates an example for a quantization error, indicating the difference between the original signal and the quantized signal.

For an input m of continuous amplitude which symmetrically occupies the range $[-m_{max}, m_{max}]$ and assuming a uniform quantizer of midrise type, the step size will be

$$\Delta = \frac{2m_{max}}{L}$$

Here, L is the total number of levels

- The quantization error Q will have its sample value bounded by $-\frac{\Delta}{2} \le q < \frac{\Delta}{2}$
- The probability density function of a quantization noise is given by

$$f_Q(q) = \begin{cases} \frac{1}{\Delta}, & -\frac{\Delta}{2} \le q < \frac{\Delta}{2} \\ 0, & otherwise \end{cases}$$

- The mean of the quantization noise is zero
- The variance will be: $\sigma_Q^2 = E[Q^2] = \frac{\Delta^2}{12}$
- If R denotes the number of bits per sample, then $L=2^R$ or $R=\log_2 L$
- Don further substituting the above equations, we also get

$$\Delta = \frac{2m_{max}}{2^R}$$
 and $\sigma_Q^2 = \frac{1}{3}m_{max}^22^{-2R}$

If P denote the average power of the original message m(t), then,

$$SQNR = \frac{P}{\sigma_Q^2} = (\frac{3P}{m_{max}^2})2^{2R}$$

Analog to Digital Conversion Blocks in DCS

Summary

- Model of digital communication system and bandwidth of signals
- Sampling
- Types of Sampling
- Quantization
- Types and Characteristics of Quantization
- Quantization error and Quantization noise
- Reconstruction of a message from its samples