Apuntes

"MAT2505 - Ecuaciones Diferenciales Parciales"

Docente: Carlos Román

Apuntes: Sebastián Sánchez

Índice

1.	Preliminares: Teoria de medida	1
	Preliminares: Cálculo Multivariable 2.1. Fórmula de Green-Gauss	3 3
3.	Distribuciones	4
4.	Ecuación de Laplace	6
	4.1. Solución Fundamental	6
	4.2. Propiedades de Funciones Armónicas	10
	4.3. Regularidad	13
	09 de Marzo 202	23

1. Preliminares: Teoría de medida

Para un conjunto X, decimos que una colección de subconjuntos M de X es una sigma álgebra si contiene a X y es cerrado bajo complementos y uniones numerables. En símbolos:

$$X \in M$$
; $A \in M \Longrightarrow A^c \in M$; $A_1, A_2, \dots, M \Longrightarrow \bigcup_{n \ge 1} A_n \in M$.

El par (X, M) se dice espacio medible y los elementos de M son los conjuntos medibles.

Los espacios topológicos tienen una sigma álgebra inducida por sus abiertos (la sigma álgebra más pequeña que contiene a todos los abiertos), llamada σ -álgebra de Borel y denotada por $\mathscr{B}(X)$. Para X,Y espacios topológicos con sus respectivas sigma álgebras, decimos que $f:X\to Y$ es una función medible si $f^{-1}(A)$ es un conjunto medible para todo A abierto.

Decimos que $m: X \to \mathbb{R}_{\geq 0}$ es una *función de medida* si el vacío tiene medida cero y la medida de una unión (numerable) disjunta de conjuntos medibles es la suma de la medida de los conjuntos. En símbolos:

$$m(\varnothing) = 0$$
 y $m\left(\bigcup_{n\geq 1} A_i\right) = \sum_{n\geq 1} m(A_i) \operatorname{con} A_1, A_2, \dots$ disjuntos.

A la tripleta (X, M, m) se le dice *espacio de medida*.

Casi siempre trabajaremos en \mathbb{R}^n y la medida estándar para esta será la medida de Lebesgue. Esta le asigna a los intervalos su largo (en \mathbb{R}) y se extiende a \mathbb{R}^n como la medida que le asigna a los n-cubos su volumen.

Decimos que un conjunto es despreciable si tiene medida nula. Cuando una propiedad se cumple salvo un conjunto de medida nula, decimos que la propiedad se cumple casi en todas partes o *m*-ctp.

Una función indicatriz $\chi_A : X \to [0,1]$ se define por

$$\chi_A(x) = \begin{cases} 1, x \in A \\ 0, x \notin A \end{cases}.$$

Una función simple es una combinación lineal finita de funciones indicatrices:

$$s = \sum_{n=1}^{N} a_n \chi_{A_n}(x), \quad A_n \in M, a_n \in \mathbb{R}_{\geq 0}.$$

Definimos la integral de una función simple como

$$\int s \, \mathrm{d}m = \sum_{n=1}^{N} a_n m(A_n).$$

Para una función positiva f la integral se define por

$$\int f \, \mathrm{d}m = \sup_{s < f} \int s \, \mathrm{d}m,$$

donde el supremo se toma sobre todas las funciones simples menores a f.

Para una función con signo f definimos $f^+ = \max\{0, f\}$ y $f^- = \max\{0, -f\}$, de esta forma, $f = f^+ - f^-$ y la integral de f es

$$\int f \, \mathrm{d}m = \int f^+ \, \mathrm{d}m - \int f^- \, \mathrm{d}m.$$

Obsérvese que $|f| = f^+ + f^-$. Decimos que una función es integrable si $\int |f| < \infty$.

Al conjunto de funciones integrables lo denotamos por L^1 y en general el conjunto L^p se define como

$$L^p := \left\{ f \colon X \to \mathbb{R} \mid \left(\int |f|^p \, \mathrm{d}m \right)^{1/p} < \infty \right\}.$$

2. Preliminares: Cálculo Multivariable

Empezaremos fijando notación. Para $\Omega \subset \mathbb{R}^n$ abierto decimos que $\partial \Omega$ es de clase \mathscr{C}^k si para todo $x_0 \in \partial \Omega$ existe un r > 0 y una función $\gamma \colon \mathbb{R}^{n-1} \to \mathbb{R}$ de clase \mathscr{C}^k tal que

$$\Omega \cap B(x_0, r)$$

$$\parallel$$

$$\{(x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R} : x_n > \gamma(x')\} \cap B(x_0, r).$$

Es decir, Ω localmente se ve como la región sobre el grafo de una función k-veces continuamente diferenciable.

Si $\partial\Omega$ es de clase \mathscr{C}^1 podemos definir su vector normal exterior unitario mediante la fórmula:

$$\hat{\mathbf{n}}(x_0) = \frac{1}{\sqrt{|\nabla \gamma(x')| + 1}} \begin{pmatrix} \nabla \gamma(x') \\ -1 \end{pmatrix}.$$

Para funciones $u \in \mathcal{C}^1(\overline{\Omega})$ definimos su derivada normal por

$$\partial_{\mathbf{\hat{n}}} u(x) \coloneqq \nabla u(x) \cdot \mathbf{\hat{n}}(x), \quad x \in \partial \Omega.$$

2.1. Fórmula de Green-Gauss

Recordaremos algunas fórmulas del cálculo multivariable que usaremos durante el curso. En particular a continuación se muestra el Teorema de la divergencia, la fórmula de integración por partes y las fórmulas de Green. Todas estas integrales relacionan la densidad de flujo de un campo vectorial con la integral sobre el contorno de una región.

Teorema de la divergencia: (1) Si $u \in \mathscr{C}^1(\overline{\Omega})$, entonces

$$\int_{\Omega} \partial_{x_i} u = \int_{\partial \Omega} u \, \hat{\mathbf{n}}^i.$$

donde $\hat{\mathbf{n}}^i$ es la iésima coordenada del vector normal.

(2) Si
$$F \in \mathscr{C}^1(\overline{\Omega}, \mathbb{R}^n)$$
 entonces

$$\int_{\Omega} \nabla \cdot F = \int_{\partial \Omega} F \cdot \hat{\mathbf{n}}.$$

Como consecuencia del Teorema de la Divergencia tenemos la fórmula de **Integración por partes**: Si u y v son funciones en $\mathscr{C}^1(\overline{\Omega})$, entonces

$$\int_{\Omega} \partial_{x_i} u \, v = -\int_{\Omega} u \, \partial_{x_i} v + \int_{\partial \Omega} u \, v \, \hat{\mathbf{n}}^i.$$

Para funciones $u \in \mathcal{C}^2(\overline{\Omega})$. definimos el Laplaciano como:

$$\Delta u = \nabla^2 u = \nabla \cdot \nabla u = \sum_{i=1}^n \partial_{x_i}^2 u.$$

De las fórmulas anteriores obtenemos las **Fórmulas de Green**: Para $u, v \in \mathscr{C}^2(\overline{\Omega})$ se tiene que la **primera fórmula de Green**:

$$\int_{\Omega} \nabla^2 u = \int_{\partial\Omega} \partial_{\hat{\mathbf{n}}} u.$$

Además, la fórmula de integración por partes se cumple con gradientes, esto se conoce como segunda fórmula de Green:

$$\int_{\Omega} \nabla u \nabla v + u \Delta v = \int_{\partial \Omega} u \, \partial_{\hat{\mathbf{n}}} v.$$

Más aún, tenemos la tercera fórmula de Green.

$$\int_{\Omega} u \, \Delta v - v \, \Delta u = \int_{\partial \Omega} u \, \partial_{\hat{\mathbf{n}}} v - v \, \partial_{\hat{\mathbf{n}}} u.$$

En coordenadas polares tenemos que, para $f \colon \mathbb{R}^n \to \mathbb{R}$ una función continua y Riemann-integrable se cumple

$$\int_{\mathbb{R}^n} f = \int_0^\infty \int_{\partial B(0,r)} f \, dS.$$

En particular,

$$\frac{\mathrm{d}}{\mathrm{d}r} \int_{B(x_0,r)} f = \int_{\partial B(x_0,r)} f \, \mathrm{d}S.$$

3. Distribuciones

Sea Ω un abierto en \mathbb{R}^n y sea \mathscr{D} la familia de funciones suaves con soporte compacto sobre Ω . En símbolos,

$$\mathscr{D} := \{ \varphi \colon \Omega \to \mathbb{R} \mid \varphi \in \mathscr{C}^{\infty}_{C}(\Omega) \}.$$

Intuitivamente, estas son las funciones que se hacen cero al infinito. Además, definimos las funciones **localmente integrables** como:

$$L^1_{\mathrm{loc}} \coloneqq \left\{ f \colon \Omega o \mathbb{R} \mid orall K \subset \Omega ext{ compacto, se tiene que } \int_K |f| < \infty
ight\}.$$

La gracia de las funciones localmente integrables es que nos permitimos trabajar con funciones sin mucha regularidad. En este mismo sentido viene la siguiente definición.

Definición 1: (Derivada parcial débil)

Decimos que $f \in L^1_{\mathrm{loc}}$ tiene una derivada parcial débil si existe $g \in L^1_{\mathrm{loc}}$ tal que

$$\forall \psi \in \mathscr{D} \text{ se tiene que } \int_{\Omega} f \partial_{x_i} \psi = - \int_{\Omega} g \psi.$$

Denotamos a g por $\partial_{x_i} f$.

Para funciones diferenciables la derivada débil coincide con la derivada usual casi en todas partes. Entenderemos de aquí en adelante que cuando hablemos de derivadas siempre nos referiremos a las derivadas en el sentido débil.

Definición 2: (Distribución)

Una distribución es un funcional lineal $u \colon \mathscr{D} \to \mathbb{R}$ que es continuo en el sentido siguiente: En todo compacto K de Ω existe un entero no negativo j y un real no negativo C tal que para toda función φ en \mathscr{D} con supp $(\varphi) \subset K$ se cumple que

$$|u(\varphi)| \le C \sup_{|\alpha| < j} |\partial^{\alpha} \varphi(x)|$$

donde $\alpha=(lpha_1,\ldots,lpha_n)\in\mathbb{Z}_{>0}^n$ es un multi-índice con $|lpha|=lpha_1+\cdots+lpha_n$ y

$$\partial^{\alpha} = \partial_{x_1}^{\alpha_1} \partial_{x_2}^{\alpha_2} \cdots \partial_{x_n}^{\alpha_n}$$

Anotamos $u(\varphi) = \langle u, \varphi \rangle$. Además, decimos que j es el orden de la distribución.

EJEMPLO 1: Algunas distribuciones

1. Toda función f localmente integrable define una distribución u_f definida por:

$$u_f(\boldsymbol{\psi}) = \langle u_f, \boldsymbol{\psi} \rangle = \int_{\Omega} f \boldsymbol{\psi}.$$

En efecto, para K un compacto en Ω que contiene al soporte de una función $\psi \in \mathscr{D}$ se tiene que

$$|\langle u_f, \psi \rangle| \leq \int_{\Omega} |f \psi| \leq \underbrace{\int_{K} |f| \sup_{K} |\psi|}_{K}.$$

Notando que $\psi = \partial^0 \psi$ tenemos la fórmula de la definición. Además, vemos que esta distribución tiene orden cero.

Cada función $u \in L^1_{loc}$ define un única distribución (única en el sentido de medida, es decir, ctp). Así que por abuso del lenguaje a veces se hablamos de u refiriéndonos a la distribución que induce.

2. Para un punto a de Ω definimos el funcional lineal δ_a como la evaluación. En símbolos:

$$\delta_a(\psi) = \langle \delta_a, \psi \rangle = \psi(a) \quad \forall \psi \in \mathscr{D}.$$

La distribución δ_a se conoce como **delta de dirac**. Para ver que es distribución, notemos que si K es un compacto en Ω que contiene al soporte de $\psi \in \mathcal{D}$ entonces

$$|\langle \delta_a, \psi \rangle| \leq \sup_K |\psi|.$$

5

Esta distribución también es de orden cero.

3. Similar al anterior, definimos $\partial_{x_i} \delta_a$ como (menos) la evaluación de la derivada en el punto a. En símbolos:

$$\partial_{x_i}\delta_a(\psi)=\langle\partial_{x_i}\delta_a,\psi\rangle=-\langle\delta_a,\partial_{x_i}\delta_a\rangle=-\partial_{x_i}\psi.$$

El menos sale porque en la igualdad de enmedio usamos integración por partes. Para ver que es distribución, sea K un compacto en Ω que contenga al soporte de $\psi \in \mathcal{D}$. Luego,

$$|\langle \partial_{x_i} \delta_a, \psi \rangle| \leq \sup_{\kappa} |\partial_{x_i} \psi|.$$

Vemos que esta distribución es de orden uno.

Definimos el **espacio de distribuciones** \mathcal{D}' en Ω como la colección de funcionales lineales continuos sobre \mathcal{D} i.e. El espacio dual de \mathcal{D} .

Proposición 1.

Si u es una distribución en Ω , entonces $\partial_{x_i}u$ también lo es, donde $\partial_{x_i}u$ se define como

$$\langle \partial_{x_i} u, \psi \rangle := -\langle u, \partial_{x_i} \psi \rangle \quad \forall \phi \in \mathscr{D}.$$

Y en general, se tiene que $\partial^{\alpha} u \in \mathcal{D}'$ con

$$\langle \partial^{\alpha} u, \psi \rangle := (-1)^{|\alpha|} \langle u, \partial^{\alpha} \psi \rangle \quad \forall \phi \in \mathscr{D}.$$

4. Ecuación de Laplace

En esta sección estudiaremos la ecuación de Laplace,

$$\Delta u = 0. \tag{1}$$

donde $u \in \mathscr{C}(\overline{\Omega})$ con Ω un abierto en \mathbb{R}^n . Esta ecuación es un caso particular de la *ecuación de Poisson*

$$-\Delta u = f$$
.

Las soluciones a la ecuación de Laplace se conocen como funciones armónicas. Notése que el gradiente de *u* define un campo vectorial donde a cada punto del espacio se le asocia un vector que apunta en la dirección de máximo cambio. Ahora, que este campo tenga divergencia nula en todo punto nos dice que el campo *u* en cada punto tiene un valor muy parecido al promedio de los valores de los puntos cercanos.

4.1. Solución Fundamental

Primero analizaremos la estructura de las soluciones, dígase, si u es solución de (1) entonces ¿qué podemos decir de u?

Simetrías Con simetrías nos referimos a aquellos invariantes bajo cambios en el dominio. Por ejemplo, tenemos que *u* es invariante bajo dilataciones/contracciones (siempre y cuando sigan en el dominio):

$$\Delta u(\lambda x) = \lambda^2 \partial_{x_1}^2 u(\lambda x) + \lambda^2 \partial_{x_2}^2 u(\lambda x) = 0, \quad x \in \Omega.$$

Más especificamente, si A es una transformación lineal ortogonal de Ω en Ω tendremos que

$$\Delta u(\lambda Ax) = \lambda^2 A^2 \partial_{x_1}^2 u(\lambda Ax) + \lambda^2 A^2 \partial_{x_2}^2 u(\lambda Ax) = 0, \quad x \in \Omega.$$

Con esta idea en mente buscaremos soluciones radiales, es decir, supondremos que u es de la forma:

$$u(x) = v(||x||) = v(r),$$

para alguna función *v* de una variable. Ahora necesitamos expresar la ecuación de Laplace en términos de la nueva función. Por la regla de la cadena,

$$\partial_{x_i} v(||x||) = \partial_{x_i} r \partial_r v(r).$$

Como $r = \sqrt{x_1^2 + \dots + x_n^2}$ tenemos que $\partial_{x_i} r = x_i/r$. Derivando de nuevo,

$$\partial_{x_i}^2 v(\|x\|) = \partial_{x_i} \left(\frac{x_i}{r} \partial_r v \right) = \frac{1}{r} v' - \frac{x_i^2}{r^3} v' + \frac{x_i^2}{r^2} v''.$$

Así que la ecuación de Laplace se lee,

$$\Delta u(x) = 0 \iff \sum_{i=1}^{n} \frac{1}{r} v' - \frac{x_i^2}{r^3} v' + \frac{x_i^2}{r^2} v'' = 0 \iff (n-1) \frac{v'}{r} + v'' = 0.$$

La EDO es separable así que nos queda,

$$\frac{v''}{v'} = \frac{1-n}{r} \implies v' = c_0 r^{1-n} \implies v = \begin{cases} c_1 \log r + c_2 & , n = 2\\ \frac{c_1}{(n-2)r^{n-2}} + c_2 & , n \ge 3 \end{cases}.$$

A modo de resumen, tenemos que para cualquier elección de constantes c_1, c_2 la función v(r) satisface $\Delta v(r) = 0$.

Proposición 1.

Podemos elegir las constantes tal que $-\Delta v = \delta_0$.

DEMOSTRACIÓN Notése que el lado derecho y el lado izquierdo son objetos distintos, por lo que esta igualdad la entenderemos en el sentido de distribuciones. Este es el abuso de notación que mencionamos antes.

Para facilitar los cálculos, primero "normalizamos" v,

$$\Phi(r) = \begin{cases} -\frac{1}{2\pi} \log r &, n = 2\\ \frac{1}{n\alpha(n)(n-2)r^{n-2}} &, n \geq 3 \end{cases}$$

donde $\alpha(n)$ es el volumen de la bola unitaria en \mathbb{R}^n .

La afirmación es equivalente a probar que $-\Delta_x \Phi = \delta_0$. Primero probaremos que Φ está en L^1_{loc} y luego mostraremos que la distribución inducida se comporta como δ_0 .

 $\Phi \in L^1_{loc}$: Primero veamos el caso $n \ge 3$. La función Φ se va a cero en el infinito y de hecho está bien acotada para $r \ge 1$, por lo que el posible problema está cerca del origen. Así que acotando eso estamos listos.

$$\int_{B(0,1)} \Phi(|x|) dx = \int_0^1 \int_{\partial B(0,r)} \Phi(r) dS dr$$
$$= n\alpha(n) \int_0^1 \Phi(r) r^{n-1} dr$$
$$= \frac{1}{(n-2)} \int_0^1 \frac{1}{r} dr < \infty$$

Puesto que $f(x) = 1/|x|^{\alpha}$ es convergente en la bola unitaria si y solo si $\alpha < n$.

Para n=2: Si $r\geq 1$ estamos lidiando con una función continua así que es localmente integrable. Por lo tanto, el problema está cerca del cero.

$$\left| \int_{B(0,1)} \Phi(|x|) \, dx \right| = \left| \int_0^1 \int_{\partial B(0,1)} \Phi(r) \, dS \, dr \right|$$
$$= \left| 2\pi \int_0^1 \Phi(r) r \, dr \right|$$
$$= \left| -\int_0^1 \log(r) r \, dr \right| < \infty$$

 $-\Delta u_{\Phi} = \delta_0$: Ya que Φ es localmente integrable induce una distribución u_{Φ} dada por:

$$\langle u_{\Phi}, \psi \rangle = \int_{\mathbb{R}} \Phi \psi \qquad \forall \psi \in \mathscr{D}.$$

En particular tenemos que $\Delta_x u_{\Phi}$ es una distribución actuando de la siguiente forma:

$$\langle -\Delta u_{\Phi}, \psi \rangle = -\langle u_{\Phi}, \Delta \psi \rangle = \int_{\mathbb{R}^n} \Phi \Delta \psi \qquad \forall \psi \in \mathscr{D}.$$

Notemos que

$$-\Delta_{x}\Phi = \delta_{0} \iff \langle -\Delta u_{\Phi}, \psi \rangle = \langle \delta_{0}, \psi \rangle$$
$$\iff -\int_{\mathbb{R}^{n}} \Phi \Delta \psi = \psi(0).$$

Por lo tanto, debemos probar esto último. De nuevo tenemos que separar los casos entre n=2 y $n\geq 3$.

Para n=2: Como cero es un punto problemático, separaremos la integral entre la bola de radio ε y el resto. Es decir,

$$\int_{\mathbb{R}^n} \Phi \Delta \psi = \underbrace{\int_{B} \Phi \Delta \psi}_{I_1} + \underbrace{\int_{\mathbb{R}^n \setminus B} \Phi \Delta \psi}_{I_2},$$

donde B es la bola centrada en el origen de radio ε . Para I_1 tenemos que

$$\begin{aligned} |I_1| &\leq \|\Delta \psi\|_{\infty} \left| \int_B u \right| \\ &\leq \|\Delta \psi\|_{\infty} \left| \int_0^{\varepsilon} \log(r) r dr \right| \\ &\leq \|\Delta \psi\|_{\infty} \varepsilon^2 |\log \varepsilon| \xrightarrow{\varepsilon \to 0} 0. \end{aligned}$$

Para I_2 : Consideremos $R \gg 1$ tal que $\text{supp}(\Delta \psi) \subset B(0,R) =: B_R$. Luego,

$$I_2 = \int_{B_R \setminus B_{\mathcal{E}}} \Phi \Delta \psi = \int_{B_R \setminus B_{\mathcal{E}}} (\Delta \Phi) \psi + \int_{\partial B_R \setminus B_{\mathcal{E}}} (\Phi \partial_{\hat{\mathbf{n}}} \psi - \psi \partial_{\hat{\mathbf{n}}} \Phi).$$

Como Φ es armónica lejos de cero nos queda

$$I_2 = \underbrace{-\int_{\partial B_R \setminus B_{oldsymbol{arepsilon}}} \psi \partial_{\hat{\mathbf{n}}} \Phi}_{J_1} + \underbrace{\int_{\partial B_R \setminus B_{oldsymbol{arepsilon}}} \Phi \partial_{\hat{\mathbf{n}}} \psi}_{J_2}.$$

Para J_2 : Notemos que

$$|J_2| \leq \|\partial_{\hat{\mathbf{n}}}\psi\|_{\infty} \left| \int_{\partial B_{\varepsilon}} \Phi \right| \leq \|\partial_{\hat{\mathbf{n}}}\psi\|_{\infty} \begin{cases} |\log \varepsilon|\varepsilon &, n=2\\ \varepsilon &, n\geq 3 \end{cases}.$$

Para J_1 : Notemos que $\hat{\mathbf{n}}(x) = -x/|x|$ y por lo tanto

$$\partial_{\hat{\mathbf{n}}}\Phi = \nabla\Phi \cdot \hat{\mathbf{n}} = \frac{1}{n\alpha(n)|x|^{n-1}}.$$

Luego,

$$J_1 = -rac{1}{nlpha(n)|x|^{n-1}}\int_{\partial B_c}\psi = -\int_{\partial B_c}\psi \xrightarrow{arepsilon o 0} -\psi(0).$$

Con esto probamos que $\Delta_x \Phi = \delta_0$ en el sentido de las distribuciones.

20 DE MARZO 2023

Teorema 1.

Para $f \in \mathscr{C}^2_{\mathbb{C}}(\mathbb{R}^n)$, definimos su convolución como

$$\Phi * f(x) := \int_{\mathbb{R}^n} \Phi(x - y) f(y) \, dy,$$

donde Φ es la solución fundamental de la ecuación de Laplace. Entonces,

1.
$$\Phi * f \in \mathscr{C}^2(\mathbb{R}^n)$$
 y

$$2. -\Delta(\Phi * f) = f.$$

DEMOSTRACIÓN Pongamos $u = \Phi * f$. Haciendo un cambio de variables tenemos que

$$u(x) = \int_{\mathbb{R}^n} \Phi(y) f(x - y) \, dy.$$

Luego,

$$\partial_{x_i} u(x) = \lim_{h \to 0} \int_{\mathbb{R}^n} \Phi(y) \left[\frac{f(x - y + he_i) - f(x - y)}{h} \right] dy.$$

Como $f \in \mathscr{C}^2_C$, se cumplen las hipótesis del Teorema de Convergencia Dominada (TCD). Explícitamente,

$$f_n(x) = \frac{f(x + (1/n)e_i) - f(x)}{1/n}$$

converge puntualmente a $\partial_{x_i} f(x)$ que es continua. Además, $f_n(x)$ es acotada y tiene soporte compacto, así que $|f_n(x)| < C1_K(x)$ donde K es un compacto que contiene al soporte de $f_n(x)$, 1_K es la función indicatriz de K y C una constante positiva. Como $C1_K(x)$ es integrable y domina a la sucesión, sigue que,

$$\partial_{x_i} u(x) = \int_{\mathbb{R}^n} \Phi(y) \partial_{x_i} f(x - y) \, dy.$$

Análogamente obtenemos que

$$\partial_{x_i}^2 u(x) = \int_{\mathbb{R}^n} \Phi(y) \partial_{x_i}^2 f(x - y) \, dy.$$

El lado derecho es continuo para cada $i=1,\ldots,n$, así que $u\in\mathscr{C}^2$. Más aún, $\Delta u(x)$ se ve como es una distribución de Φ y probamos anteriormente que actúa como δ_0 , así que,

$$\Delta u(x) = \int_{\mathbb{R}^n} \Phi(y) \Delta_x f(x - y) \, dy = -f(x).$$

4.2. Propiedades de Funciones Armónicas

Para una función u en B(x,r) definimos

$$\oint_{B(x,r)} u(y) \, dy := \frac{1}{|B(x,r)|} \int_{B(x,r)} u(y) \, dy = \frac{1}{\alpha(n)r^n} \int_{B(x,r)} u(y) \, dy.$$

De manera análoga, si u está definida sobre $\partial B(x,r)$ definimos

$$\int_{\partial B(x,r)} u(y) \, dS(y) := \frac{1}{|\partial B(x,r)|} \int_{\partial B(x,r)} u(y) \, dS(y) = \frac{1}{n\alpha(n)r^{n-1}} \int_{\partial B(x,r)} u(y) \, dS(y).$$

Teorema 2: Fórmula de la Media

Sea Ω un abierto en \mathbb{R}^n . Si $u \in \mathscr{C}^2(\Omega)$ es armónica, entonces para toda bola $\overline{B(x,r)} \subset \Omega$ se tiene que

$$u(x) = \int_{\partial B(x,r)} u(y) \, dS(y) = \int_{B(x,r)} u(y) \, dy.$$

Además, si pedimos que u también sea continua en la clausura de Ω podemos tomar bolas abiertas $B(x,r) \subset \Omega$.

DEMOSTRACIÓN Sea $x \in \Omega$. Para r > 0 denotamos por B_r a la bola centrada en x de radio r. Definimos

$$\phi(r) = \begin{cases} \oint_{\partial B_r} u(y) \, dS(y) & , r \neq 0 \\ u(x) & , r = 0. \end{cases}$$

Nótese que ϕ es continua. Haremos un cambio de variables para que la integral esté sobre la bola unitaria. Consideremos $T: \partial B(0,1) \to \partial B_r$ dado por $z \mapsto x + rz$. El Jacobiano es

$$|\det DT(z)| = \begin{vmatrix} r & 0 & \cdots & 0 \\ 0 & r & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r \end{vmatrix} = r^{n-1}.$$

Luego,

$$\phi(r) = \frac{1}{n\alpha(n)r^{n-1}} \int_{\partial B_r} u(y) dS(y)$$

$$= \frac{1}{n\alpha(n)r^{n-1}} \int_{\partial B(0,1)} u(x+rz)r^{n-1} dS(z)$$

$$= \oint_{\partial B(0,1)} u(x+rz) dS(z).$$

Ahora probaremos que $\phi(r)$ es constante, y por lo tanto $\phi(r) = \phi(0) = u(x)$. Vamos a ello.

$$\phi'(r) \stackrel{TCD}{=} \int_{\partial B(0,1)} \nabla u(x+rz) \cdot z \, dS(z)$$

$$= \int_{\partial B_r} \nabla u(y) \cdot \frac{y-z}{r} \, dS(y)$$

$$= \int_{\partial B_r} \nabla u(y) \cdot \hat{\mathbf{n}} \, dS(y)$$

$$\stackrel{2.1}{=} \frac{1}{|\partial B_r|} \int_{B_r} \nabla^2 u(y) \, dS(y) = 0.$$

Ahora, esto nos da la igualdad sobre las fronteras. Para pasar a la integral sobre el volumen notemos que

$$\int_{B_r} u(y) \, dS(y) = \frac{1}{|B_r|} \int_{B_r} u(y) \, dS(y)
= \frac{1}{|B_r|} \int_0^r \int_{\partial B(x,t)} u(y) \, dS(y) \, dt
= \frac{1}{|B_r|} \int_0^r u(x) |\partial B(x,t)| \, dt = u(x).$$

Concluyéndose la demostración.

21 DE MARZO 2023

Teorema 3: Caracterización de Funciones Armónicas

Si $u \in \mathscr{C}^2(\Omega)$ satisface la propiedad de la media, entonces es armónica.

DEMOSTRACIÓN

Teorema 4: Principio del Máximo

Sea Ω un subconjunto de \mathbb{R}^n abierto y acotado. Si $u \in \mathscr{C}^2(\Omega) \cap \mathscr{C}(\overline{\Omega})$ es una función armónica, entonces

1. El máximo de la función se alcanza en la frontera.

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u.$$

2. Si además Ω es conexo y el máximo se alcanza dentro de Ω , entonces u es constante.

$$\exists x \in \Omega \mid u(x) = \max_{\overline{\Omega}} u \implies u(x) = c \qquad c \in \mathbb{R}.$$

El primer punto es el principio débil y el segundo el fuerte. Nótese que el segundo vale incluso si Ω no es acotado.

DEMOSTRACIÓN

Corolario 1.: (Unicidad en Poisson para dominios acotados con datos de borde)

Si $\Omega \subset \mathbb{R}^n$ abierto y acotado, entonces existe a lo más una solución $u \in \mathscr{C}^2(\Omega) \cap \mathscr{C}(\Omega)$ del problema

$$\begin{array}{rcl} -\Delta u &= f & , \ \mathrm{en} \ \Omega \\ u &= g & , \ \mathrm{en} \ \partial \Omega \end{array},$$

donde f y g son funciones continuas en Ω y $\partial \Omega$ respectivamente.

DEMOSTRACIÓN

EJEMPLO 2

1. En $\Omega = \mathbb{R}^n \setminus \overline{B(0,1)}$, el problema

$$\Delta u = 0$$
, en Ω
 $u = 0$, en $\partial \Omega$,

No tiene solución única. En efecto, u = 0 y

$$u(x) = \begin{cases} \log 1/|x| & , n = 2\\ 1/|x|^{n-2} - 1, n \ge 3 \end{cases},$$

son dos soluciones.

2. En $\Omega = \mathbb{R}^n_+ \coloneqq \left\{ (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R}_+ \right\}$, el problema

$$\Delta u = 0$$
, en Ω
 $u = 0$, en $\partial \Omega$,

tampoco tiene solución única, pues u = 0 y $u = x_n$ son solución.

Teorema 5: de Liouville

Si $u: \mathbb{R}^n \to \mathbb{R}$ es una función armónica y acotada, entonces es constante.

DEMOSTRACIÓN

Corolario 2.

Para $n \geq 3$ y $f \in \mathscr{C}^2_C(\mathbb{R}^n)$, se tiene que toda solución acotada u del problema

$$-\Delta u = f$$

es de la forma $u(x) = \Phi * f(x) + C$.

4.3. Regularidad

Convolución y Regularización

Para $\Omega \subset \mathbb{R}^n$ abierto, definimos el conjunto

$$\Omega_{\varepsilon} := \{ x \in \Omega \mid (x, \partial \Omega) > \varepsilon \}, \quad \varepsilon > 0.$$

Además, definimos $\eta \in \mathscr{C}^\infty_C(\mathbb{R}^n)$ como

$$\eta(x) = \begin{cases} C \exp(\frac{1}{|x|^2 - 1}, |x| < 1, \\ 0, |x| \ge 1, \end{cases}$$

donde C es una constante tal que

$$\int_{\mathbb{R}^n} \eta(x) = 1.$$