Tema d'esame del 6 Novembre 2007 - Esercizio 2

Il circuito illustrato in figura ha due amplificatori operazionali ideali, tre resistenze $R_1=120~\Omega,~R_2=100~\Omega$ e $R_3=150\Omega,$ e una capacità C=4.7~nF.

A. Si ricavi la tensione di uscita v_{OUT} in funzione della tensione di ingresso v_{IN} .

Essendo il circuito composto da due amplificatori operazionali in cascata, lo possiamo spezzare in due circuiti più semplici nel nodo 1, evidenziato in blu nella precedente figura. A questo punto si risolve la prima parte del circuito, calcolando v_{OUT_1} .

Essendo l'amplificatore operazionale ideale, vale il principio di terra virtuale:

- [1] v^+ v^- = 0.
- [2] $v^+ = v^-$.
- [3] $v^+ = v_{IN} = v^-$.

Applicando la KCL (Kirchhoff Current Law) al nodo 1 posso scrivere:

- $[4] i_{C}$ i_{1} = 0.
- [5] $i_C = i_1$.

Utilizzando la legge di Ohm posso calcolare i_1 :

[6]
$$i_1 = \frac{v_1}{R_1}$$
;

Poichè la tensione applicata ad un bipolo è pari alla differenza tra la tensione applicata al nodo positivo e quello negativo, calcolo v_1 usando l'equazione [3]:

[7]
$$v_1 = v^- - 0 = v_{IN}$$
;

e la sostituisco nell'equazione [6]:

[8]
$$i_1 = \frac{v_{IN}}{R_1}$$
;

allo stesso modo calcolo anche la tensione applicata al condensatore:

[9]
$$v_C = v_{OUT_1} - v^-;$$

[10]
$$v_C = v_{OUT_1} - v_{IN}$$
.

e la corrente nel condensatore:

[11]
$$i_C = C \frac{dv_c}{dt}$$

[12]
$$i_C = C \frac{d(v_{OUT_1} - v_{IN})}{dt}$$

e la corrente nel condensatore:
$$[11] \ i_C = C \frac{dv_c}{dt};$$
 a cui sostituisco l'equazione [9]:
$$[12] \ i_C = C \frac{d(v_{OUT_1} - v_{IN})}{dt}.$$
 Ora, utilizzando le equazioni [5], [6] e [12] posso scrivere:
$$[13] \ \frac{v_{IN}}{R_1} = C \frac{d(v_{OUT_1} - v_{IN})}{dt}.$$

Fattorizzo entrambi i membri per
$$\frac{1}{C}$$
:
$$[14] \frac{v_{IN}}{R_1} \cdot \frac{1}{C} = C \frac{d(v_{OUT_1} - v_{IN})}{dt} \cdot \frac{1}{C};$$
ed intengro entrambi i membri:

[15]
$$\int \frac{v_{IN}}{R_1C} = \int \frac{d(v_{OUT_1} - v_{IN})}{dt}.$$
ottenendo:

citenendo:
$$[16] \ v_{OUT_1} - v_{IN} = \frac{1}{R_1 C} \int v_{IN} dt.$$
 Risolvo rispetto a v_{OUT_1} :

[17]
$$v_{OUT_1} = \frac{1}{R_1 C} \left(v_{IN} + \int v_{IN} dt \right).$$

Risolvo ora la seconda parte del circuito assumendo come tensione di ingresso v_{OUT_1} .

Anche in questo caso posso applicare il principio di terra virtuale:

[18]
$$v^+$$
 - v^- = 0;

[19]
$$v^+ = v^-$$
.

Ed essendo il terminale v^+ collegato al terminale di terra:

[20]
$$v^+ = v^- = 0$$
.

Ora utilizzo la KCL al nodo 1, scrivendo:

[21]
$$i_2 = i_3$$
.

Calcolo la tensione nei bipoli R₂ed R₃ scrivendo:

[22]
$$v_2 = v^- - v_{IN_2};$$

[24]
$$v_3 = v_{OUT} - v^-;$$

che utilizzando l'equazione [20] diventano:

[23]
$$v_2 = -v_{IN_2}$$
.

[25]
$$v_3 = v_{OUT}$$
.

Grazie alla legge di Ohm ed alle equazioni [23] e [24], calcolo le correnti i_2 e

 i_3 :

$$[26] \ i_2 = -\frac{v_{IN_2}}{R_2}$$

$$[26] i_2 = -\frac{v_{IN_2}}{R_2};$$
$$[27] i_3 = \frac{v_{OUT}}{R_3}.$$

Sostituisco le equazioni [26] e [27] nell'equazione [21] ottenendo: $[28] - \frac{v_{IN_2}}{R_2} = \frac{v_{OUT}}{R_3}.$ e risolvo rispetto a v_{OUT} fattorizzando R_3 :

$$[28] - \frac{v_{IN_2}}{R_2} = \frac{v_{OUT}}{R_3}$$

$$[29] R_3 \cdot \left(-\frac{v_{IN_2}}{R_2}\right) = \frac{v_{OUT}}{R_3} \cdot R_3;$$

[30]
$$v_{OUT} = -\frac{R_3}{R_2} \cdot v_{IN_2}$$

[30] $v_{OUT} = -\frac{R_3^{'}}{R_2} \cdot v_{IN_2}$. Posso infine sostituire a v_{IN_2} l'equazione [17] ottenendo:

[31]
$$v_{OUT} = -\frac{R_3}{R_2} \cdot \left(v_{IN} + \frac{1}{R_1 C} \int v_{IN} dt \right).$$

B. Si calcoli la tensione di uscita $v_{OUT}(t)$ quando la tensione di ingresso è data dalla funzione $v_{IN}(t) = V_0 \sin 2\pi f_0 t$, con $V_0 = 1$ V e f_0 = 50 kHz.

Calcolare v_{OUT} in funzione di v_{IN} significa sostituire $v_{IN}(t) = V_0 \sin 2\pi f_0 t$ nell'equazione [31] precedentemente calcolata, calcolando anche l'integrale che caratterizza v_{IN} .

[32]
$$\int v_{IN}dt = -V_0 2\pi f_0 \cos 2\pi f_0 t$$
.

Ora sostituisco le equazioni di v_{IN} e $\int v_{IN}dt$ nell'equazione [31] ed ottengo:

[33]
$$v_{OUT} = -\frac{V_0 R_3}{R_2} \cdot \left(\sin 2\pi f_0 t - \frac{1}{R_1 C} 2\pi f_0 \cos 2\pi f_0 t \right).$$