Simple LTC Good LDPC Codes

David Ponarovsky

January 30, 2023

Abstract

We propose a new simple construction based on Tanner Codes, which yields a good LDPC testable code.

ex1. Find a simple description of the work-function algorithm in the case of uniform metric space.

ex2. Consider the following 3-point metric space, w(a,b) = 1 and $w(\cdot,c) = M$. The initial configuration is $\{b,c\}$ (2 servers). Show that randomized competitive ratio, for some value of M is $> H_2 = 1 + \frac{1}{2}$.

ex3. Show that randomized marking algorithm cannot be c-competitive against the adaptive online adversary, for c = o(k).

 $\mathbf{ex4}$ - Ski Rental. At each step, the adversary decides etiher continue or stop. Stop terminate the game. If it continues, the online algorithm decides, etiher rent or buy. Rent costs 1 Buy costs M>1. Deisgn a primal-dual randomized online ski-rental algorithm with better than 2 competitive retire

ex5. Prove Yao's minimax principle.

$$\begin{split} &\forall \text{rand. alg} \ \exists \ \sigma \\ &\mathbf{E}\left[c_{\text{alg}}\left(\sigma\right): \text{alg} \sim \tilde{\text{alg}}\right] \geq c \cdot c_{\text{base}}\left(\sigma\right) \\ &\Leftrightarrow \exists \ \text{rand. } \tilde{\sigma} \forall \text{alg} \\ &\mathbf{E}\left[c_{\text{alg}}\left(\sigma\right): \sigma \sim \tilde{\sigma}\right] \geq c \mathbf{E}\left[c_{\text{base}}\left(\sigma\right): \sigma \sim \tilde{\sigma}\right] \end{split}$$

Solution. First direction, assume through contriduction that there exists an determenstic algorithm such that for all distrubtons $\tilde{\sigma}$:

$$\mathbf{E}\left[c_{\mathrm{alg}}\left(\sigma\right):\sigma\sim\tilde{\sigma}\right]< c\mathbf{E}\left[c_{\mathrm{base}}\left(\sigma\right):\sigma\sim\tilde{\sigma}\right]$$

And that holds, in paritcular, for distribution $\tilde{\sigma}$ which suportted by a single σ . Hence, by the fact that any deterministic algorithm is also a randomized algorithm, set it to be alg and that imdetly yeilds a contrudioction. It left to show the seconed direaction, By the monotonic preporty of random variables we have that for any distribution $\tilde{\sigma}$:

$$\mathbf{E}\left[\mathbf{E}\left[c_{\mathrm{alg}}\left(\sigma\right):\mathrm{alg}\sim\tilde{\mathrm{alg}}\right]:\sigma\sim\tilde{\sigma}\right]\geq c\cdot\mathbf{E}\left[c_{\mathrm{base}}\left(\sigma\right):\sigma\sim\tilde{\sigma}\right]$$