Algebraic Methods in Combinatorics

Solutions 5

The aim of the homework problems is to help you understand the theory better by actively using it to solve exercises. **Do not read the solutions** before you believe you have solved the problems: it ruins your best way of preparing for the exam. The purpose of this write-up is merely to provide some guideline on how solutions should look like, and to help clean up hazy arguments. For hints, feel free to consult your teaching assistant.

Problem 1: Let each vertex of $K_{\binom{n}{2k-1}}$ be a representation of a unique subset of size 2k-1 in [n]. We now colour the edges with colours $1, \ldots, k$. We colour the edge AB with colour k if $|A \cap B|$ is even and colour $1 \le i \le k-1$ if $|A \cap B| = 2i-1$. Suppose for sake of contradiction that there is a monochromatic K_{n+1} and let A_1, \ldots, A_{n+1} denote the sets composing it. If the colour is some $i \le k-1$, then Fisher's inequality implies that this is not possible, since every pair has the same intersection size and there are more than n sets. If the colour is k, then every intersection size is even and note that each set is of odd size (namely, 2k-1). Therefore, the Oddtown problem implies that this is also impossible, since there can only be at most n such sets.

Problem 2:, (a) Clearly, since each zero pattern lives in $\{0, *\}^m$, the number of zero patterns is at most 2^m . To show that this bound is tight when $m \leq n$, take the m polynomials $f_i := x_i$. We show that the number of zero patterns of $f = (f_1, \ldots, f_m)$ is 2^m . Clearly, this also implies such an example for n > m. To show that f has 2^m zero patterns, note that for all $\sigma \in \{0, *\}^m$, we can take $c = (c_1, \ldots, c_m) \in \mathbb{F}^m$ to be, for each i, so that $c_i = 0$ if $\sigma_i = 0$ and $c_i = 1$ otherwise. Then, the zero pattern of f at c is σ .

(b) First, note that $\binom{n+\sum_i d_i}{n}$ is as we know the dimension of the space of polynomials with n variables and dimension at most $\sum_i d_i$. We will then, for each zero pattern, σ associate a polynomial g_{σ} on n variables and dimension at most $\sum_i d_i$, and show that these are linearly independent, giving the desired bound on the number of zero patterns of f. Suppose σ is the zero pattern of f at some $c_{\sigma} \in \mathbb{F}^n$ and let $A_{\sigma} \subseteq [m]$ denote the set of i such that $\sigma_i = f_i(c_{\sigma}) \neq 0$ - note that this set defines σ and therefore it is unique to σ . Define $g_{\sigma} := \prod_{i \in A_{\sigma}} f_i$, which is a polynomial of dimension at most $\sum_i d_i$. Then, note that $g_{\sigma}(c_{\sigma'}) \neq 0$ if and only if $A_{\sigma} \subseteq A_{\sigma'}$. We claim that this implies that the polynomials g_{σ} are linearly independent.

Indeed, let us order the zero patterns as $\sigma_1, \sigma_2, \ldots$, and their respective certificates $c_1 :=$

 $c_{\sigma_1}, c_2 := c_{\sigma_2}, \ldots$, so that $|A_{\sigma_1}| \geq |A_{\sigma_2}| \geq \ldots$ Note now that we have that if i < j, then $g_{\sigma_i}(c_j) = 0$ since $A_{\sigma_i} \subseteq A_{\sigma_j}$ cannot hold; further, $g_{\sigma_i}(c_i) \neq 0$ for all i. As we have previously seen in the course, this implies that the polynomials are linearly independent.

- (c) Here, we apply the proof of part (b). The crucial observation is that if each zero pattern σ has support (i.e., the set A_{σ}) of size at most m-n, then each g_{σ} has dimension at most (m-n)d and therefore, the number of zero patterns is at most the dimension of the space of polynomials with n variables and dimension at most (m-n)d, which is $\binom{n+(m-n)d}{n}$ as desired.
- (d) Note that the support of a zero pattern defines the zero pattern uniquely. Moreover, there are at most $\sum_{0 \le i \le n-1} {m \choose i}$ subsets of [n] of size smaller than n, which is equal to the number of subsets of [n] of size larger than m-n. Therefore, there are at most $\sum_{0 \le i \le n-1} {m \choose i}$ possible supports of size larger than m-n, and so, at most that many such zero patterns.
 - (e) Clearly, the desired inequality is deduced if we show that if $m \leq n$, then

$$\binom{n+(m-n)d}{n} + \sum_{0 \le i \le n-1} \binom{m}{i} \le \binom{2n+(m-n)d}{n}.$$

To note this, observe first that since $m \geq n$, we have that $(m-n)d+n=md-(d-1)n \geq md-(d-1)m=m$. Hence, $\binom{n+(m-n)d}{n}+\sum_{0\leq i\leq n-1}\binom{m}{i}\leq \sum_{0\leq i\leq n}\binom{n+(m-n)d}{i}\leq \binom{2n+(m-n)d}{n}$, as desired.(a) Clearly, since each zero pattern lives in $\{0,*\}^m$, the number of zero patterns is at most 2^m . To show that this bound is tight when $m\leq n$, take the m polynomials $f_i:=x_i$. We show that the number of zero patterns of $f=(f_1,\ldots,f_m)$ is 2^m . Clearly, this also implies such an example for n>m. To show that f has 2^m zero patterns, note that for all $\sigma\in\{0,*\}^m$, we can take $c=(c_1,\ldots,c_m)\in\mathbb{F}^m$ to be, for each i, so that $c_i=0$ if $\sigma_i=0$ and $c_i=1$ otherwise. Then, the zero pattern of f at c is σ .