Sanger sequencing and phylogenetics

MMB-114
Antti Karkman

Evolution of sequencing

First generation

Second generation (next generation sequencing)

Third generation

454, Solexa, Ion Torrent, Illumina

High throughput from the parallelization of sequencing reactions

~50-500 bp fragments

PacBio Oxford Nanopore

Sequence native DNA in real time with single-molecule resolution

Tens of kb fragments, on average

500-1,000 bp fragments

Sanger sequencing

Maxam and Gilbert

Sanger chain termination

Infer nucleotide identity using dNTPs,

then visualize with electrophoresis

Short-read sequencing

Long-read sequencing

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

Sanger-sequencing

PCR - recap

Terminator nucleotides

Chain termination – dideoxy nucleotides (ddNTPs)

Terminator nucleotides

Sequencing gels

Sequencing gels

Proc. Natl. Acad. Sci. USA Vol. 74, No. 12, pp. 5463-5467, December 1977 Biochemistry

DNA sequencing with chain-terminating inhibitors

(DNA polymerase/nucleotide sequences/bacteriophage $\phi X174$)

F. SANGER, S. NICKLEN, AND A. R. COULSON

Automated Sanger-sequencing

Phylogenetics

10

Phylogeny

- Evolutionary relationship of group of organisms
- Based on heritable traits
 - DNA sequence
 - Amino acid sequence
 - Morphology

https://en.wikipedia.org/wiki/Phylogenetics#/media/File:Darwin's_finches_by_Gould.jpg

Multiple sequence alignment

Phylogenetic trees

Phylogenetic trees

Phylogenetic trees

Practicals

16S rRNA gene sequence analysis and phylogenetics

Sequence data analysis

- Go to https://www.gear-genomics.com/
- Select Teal and upload your own sequences (.ab1) one at a time
 - Inspect how much of bad sequencing data needs to be removed from both ends
 - Can you find heterozygous positions from your data
- Select Pearl and upload both sequence files
 - Inspect how much the software clipped from both ends
 - How did it resolve possible heterozygous positions
 - Download the sequence: Save user sequence (FA)

Taxonomic annotation and close relatives

- Go to https://blast.ncbi.nlm.nih.gov/
 - Paste your sequence
 - Select the rRNA/ITS databases and 16S ribosomal...
 - Hit BLAST
 - From the results select 10-20 closely related species that you want to add to your tree. You can also select outgroup sequences, if you can find some more distantly related sequences
 - Download the results
 - Add your own sequence to the file

Construct phylogenetic tree

- Go to https://www.arb-silva.de/
- Select Browser
 - Find suitable outgroup sequences. Add them to you cart.
 - When finished, download the cart and add the sequences to your own collection (fasta without gaps).
 - Put the furthest outgroup sequence first.
- Select Search → Sequence Search
 - Paste your sequence and click the Compute tree tab
 - Use the defaults, or change if you like
 - Name your job and click Run tool
 - When the job finishes, select it from the list and download the results

Modify the tree

- Go to https://itol.embl.de/
 - Upload your tree and maybe give it a name
 - Re-root the tree from your furthest outgroup, if needed
 - Change the names and modify the tree as you like.
 - When finished, export the tree as PNG (or as SVG if you want to further modify it)