МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

имени Н.Э.Баумана кафедра «Ракетные и импульсные системы»

Курс лекций

Проектирование энергетических установок ракетного оружия

Лекция №14. Алгоритм проектирования ИДК

Лектор Старший преподаватель Федоров А.А.

Варианты исходных данных для выполнения домашнего задания

Вариант	D _{сн} ,	М _{сн} ,	V _{сн кор} , м/с	ν _{сн} , об/с	I _{кор} , Н∙с	2ф град	$t_{\rm B} = \Delta t_1$ MC	N _{кор}	n _{ду} Шт	ΔT _H °C	Способ коррекции	Констр схема (№ рис)	(m _{ду}) _{max} кг
№1	240	115	220240	79	2100 (1050x2)	120	6	4	8 (4x2)	±50	Многоимп. поперечная коррекция	Рисунок 1	2.05
№2	120	36	280300	911	1120 (560x2)	90	4	3	6 (3x2)	-10+60	- // -	Рисунок 2	1.07
№3	195	60	260280	911	375	120	4	6	6	-30+60	- // -	Рисунок 3	0.71
<u>№</u> 4	175	45	230250	68	300	90	3	4	4	±60	- // -	Рисунок 4	0.51
№5	186	85	250270	46	9000; Р=30 кН	-	810 t _д =300 мс	N	1	±50	Пропорц. поперечная коррекция	Рисунок 5	13.5
№6	81	15	360390	57	700	60	4	1	1	060	Одноимп. поперечная коррекция	Рисунок 6	1.33
№ 7	203	85	240280	79	150	120	4	6 (по 3ДУ) 12 (6 по 2 ДУ) + 6 по 1 ДУ) 18 (по 1 ДУ)	18 (3 ряда по 6 ИДК)	±60	Многоимп. поперечная коррекция	Рисунок 7	0.3
№8	195	93	370410	810	140	120	4	6 (по 3ДУ) 12 (6 по 2 ДУ) + 6 по 1 ДУ) 18 (по 1 ДУ)	18 (3 ряда по 6 ИДК)	±50	- // -	Рисунок 9	0.35
№9	220	147	380420	35	900	60	4	12	12	-10+60	- // -	Рисунок 10	1.75
№ 10	120	41	250280	79	500	120	5	6	6	-40+60	- // -	Рисунок 11	0.97
№ 11	155	45	350380	810	800 (400x2)	90	4	4	8 (4x2)	-40+60	- // -	Рисунок 12	0.78

	D	м	W		т	2φ	4 - 44	N		AT	Способ	Voycom ovovo	$(m_{Ay}^{-1})_{max}$
Вариант	D_{ch}	M _{cH} ,	V _{ch кор} ,	ν _{cн} ,	1 _{кор} ,		$t_{\rm B} = \Delta t_1$	N _{κop}	$n_{\mu y}$	ΔT_{H}		Констр схема	
	MM	КΓ	M/C	об/с	H⋅c	град	MC		ШТ	°C	коррекции	(№ рис)	ΚΓ
№ 12	210	105	210260	58	160	120	4	6 (по 3ДУ) 12 (6 по 2 ДУ) + 6 по 1 ДУ) 18 (по 1 ДУ)	18 (3 ряда по 6 ИДК)	±60	- // -	Рисунок 9	0.42
№13	250	162	300370	35	1000	60	4	12	12	-10+60	- // -	Рисунок 10	2
№14	140	40	280300	911	1200 (600x2)	90	4	3	6 (3x2)	-50+60	- // -	Рисунок 2	1.3
№ 15	200	80	350380	810	1000 (500x2)	120	4	4	8 (4x2)	-50+60	- // -	Рисунок 12	1.2
№16	220	120	300350	911	170	120	4	6 (по 3ДУ) 12 (6 по 2 ДУ) + 6 по 1 ДУ) 18 (по 1 ДУ)	18 (3 ряда по 6 ИДК)	±50	- // -	Рисунок 9	0.5
№17	190	56	230250	810	350	120	3	4	4	±50	- // -	Рисунок 4	0.65
№ 18	200	102	250270	79	11200; Р=35 кН	-	810 t _д =320 мс	N	1	±60	Пропорц. поперечная коррекция	Рисунок 5	15
№19	205	68	220240	911	400	120	4	6	6	-60+60	Многоимп. поперечная коррекция	Рисунок 3	0.85
№20*	160	45	300320	91	750	120	4	4	4	±50	- // -	Рисунок 8	1.46

^{* -} вариант №20 разбирается на семинаре

Таблица 2

Рекомендуемые принципиальные схемы ИДК к вариантам домашнего задания

№ рисунка	Принципиальная схема
№1	
№2	
№3	Зеоппа: (1 соппо на 2 ИДК)
<i>N</i> <u>o</u> 4	
№5	
№6	
№7	

№ рисунка	Принципиальная схема
№9	
№ 10	
№ 11	
<i>№</i> 12	

Таблица 3

Основные характеристики топлив

	1	Пироксилиновое	с характериет		Баллиститное		Смесевое
Показатель	П-1	П-2	П-3	Б-1	Б-2	Б-3	C-1
Плотность кг/м ³	1600	1620	1650	1610	1620	1640	1780
Сила пороха Дж/кг	1.03-106	1.04-106	1.04-106	0.92·10 ⁶	1.035·106	1.04·10 ⁶	1.02·106
Газовая постоянная Дж/(кг·К)	360	349	359	347	345	338	298
Температура торможения, К	2860	2980	2900	2655	3000	3080	3420
Показатель адиабаты	1.2	1.24	1.25	1.24	1.23	1.25	1.17
Единичный импульс, м/с	2150	2250	2200	2200	2250	2300	2600
Термохимическая константа, К	400	278	400	280	310	370	320
Скорость горения, м/с (р в МПа)	0.003p ^{0.7} (5 <p<45) 0.00046(p- 42)^{1.17}+0.0381 (45<p<60) 0.00086p (p>60)</p<60) </p<45) 	0.0000315(9.81p) ^{1.17} (20 <p<150)< td=""><td>0.000306(9.81p)^{0.78} (39<p<200)< td=""><td>0.00294p^{0.65} (30<p<80)< td=""><td>0.000198(9.81p)^{0.59} (34<p<150)< td=""><td>0.00085(9.81p)^{0.69} (16<p<150)< td=""><td>0.00595p^{0.31} (2<p<30) 0.0096p^{0.37} (30<p<80)< td=""></p<80)<></p<30) </td></p<150)<></td></p<150)<></td></p<80)<></td></p<200)<></td></p<150)<>	0.000306(9.81p) ^{0.78} (39 <p<200)< td=""><td>0.00294p^{0.65} (30<p<80)< td=""><td>0.000198(9.81p)^{0.59} (34<p<150)< td=""><td>0.00085(9.81p)^{0.69} (16<p<150)< td=""><td>0.00595p^{0.31} (2<p<30) 0.0096p^{0.37} (30<p<80)< td=""></p<80)<></p<30) </td></p<150)<></td></p<150)<></td></p<80)<></td></p<200)<>	0.00294p ^{0.65} (30 <p<80)< td=""><td>0.000198(9.81p)^{0.59} (34<p<150)< td=""><td>0.00085(9.81p)^{0.69} (16<p<150)< td=""><td>0.00595p^{0.31} (2<p<30) 0.0096p^{0.37} (30<p<80)< td=""></p<80)<></p<30) </td></p<150)<></td></p<150)<></td></p<80)<>	0.000198(9.81p) ^{0.59} (34 <p<150)< td=""><td>0.00085(9.81p)^{0.69} (16<p<150)< td=""><td>0.00595p^{0.31} (2<p<30) 0.0096p^{0.37} (30<p<80)< td=""></p<80)<></p<30) </td></p<150)<></td></p<150)<>	0.00085(9.81p) ^{0.69} (16 <p<150)< td=""><td>0.00595p^{0.31} (2<p<30) 0.0096p^{0.37} (30<p<80)< td=""></p<80)<></p<30) </td></p<150)<>	0.00595p ^{0.31} (2 <p<30) 0.0096p^{0.37} (30<p<80)< td=""></p<80)<></p<30)
Скорость горения, мм/с при T=20°C и p=50 МПа	43.3	44.3	38.4	37.4	49.1	61.1	40.8
Скорость горения, мм/с при T=20°C и p=80 МПа	68.8	76.8	55.4	50.7	74.6	84.5	48.6

10	0,5	0,5
20	0,55	0,52
30	0,65	0,59
40	0,75	0,68
50	0,79	0,71
60	0,8	0,72
70	0,8	0,72

Пример выполнения домашнего задания по проектированию импульсного двигателя коррекции

Рассмотрим пример Технического задания.

Спроектировать блок из n=4 импульсных двигателей коррекции, для поперечной коррекции вращающегося ЛА калибром D=160 мм. Количество импульсов $-N_{\kappa op}=4$. Суммарный импульс коррекции не менее $J_{\Sigma}=750$ Н·с при телесном угле коррекции $2\varphi=120^{\circ}$. Частота вращения ЛА $v_{min}...v_{max}=9...11$ об/с, скорость полета в момент коррекции $-V_{min}...V_{max}=300...320$ м/с. Время выхода двигателя на режим не более $t_{g}=4$ мс. Максимальная масса одного двигателя не более $m^{(1)}_{\partial y}=1.46$ кг. Температурный диапазон эксплуатации $T_{min}...T_{max}=-50...+50^{\circ}$ С.

В	Зариант	D _{сн} , мм	М _{сн} , кг	V _{сн кор} , м/с	ν _{сн} , об/с	I _{кор} , H·c	2ф град	t _B =∆t ₁ MC	$N_{\kappa op}$	n _{ду} ШТ	ΔT _н °C	Способ коррекции	Констр схема (№ рис)	(m _{ду} ¹) _{max} кг
	№ 19	205	68	220240	911	400	120	4	6	6	-60+60	Многоимп. поперечная коррекция	Рисунок 3	0.85
	№20*	160	45	300320	91	750	120	4	4	4	±50	- // -	Рисунок 8	1.46

^{* -} вариант №20 разбирается на семинаре

D:=0.16 м – калибр ЛА

V_{ср}:=310 м/с – средняя скорость полета в момент коррекции

v_{min}:=9 об/с – минимальная скорость вращения

v_{max}:=11 об/с – максимальная скорость вращения

 J_{Σ} :=750 Н·с – суммарный импульс коррекции

 $\phi := 1/2 \cdot 2\pi/3 -$ телесный угол коррекции

n:=4 - количество импульсных двигателей

N_{кор}:=4 – количество коррекций

t_в:=0.004 с – время выхода двигателя на режим

Т_{нтах}:=323 К – максимальная температура окружающей среды

Т_{нтіп}:=223 К – минимальная температура окружающей среды

Этапы выполнения Домашнего задания

- 1. Сформировать недостающие исходные данные
- 2. Спроектировать сопло и рассчитать газодинамические параметры на выходе
- 3. Спроектировать топливный заряд по критерию минимальной массы
- 4. Провести проверочный расчет в диапазоне заданных температур применения решить ОЗВБ
- 5. Разработать конструкцию спроектированного двигателя
- 6. Рассчитать массовые характеристики двигателя

1.1. Выбор конструктивного решения

Так как полный импульс J_{Σ} =750 H·с достаточно велик при относительно небольшом диаметре корпуса ИДК D=0.16 м, то принимается решение о симметричном продольном размещении по периферии корпуса ЛА 4-х идентичных однокамерных ТТД с центрально расположенным у каждого двигателя форкамерно-воспламенительным устройством трубчатого типа и односопловыми блоками для каждого двигателя, установленными под углом 90° относительно продольной оси ЛА.

Рисунок 1 – Компоновочное решение

1.2. Определение наружного и внутреннего диаметров корпуса ИДК

На основании предварительной прорисовки поперечного сечения ЛА с установленными ИДК, приняв толщину стенки корпуса ЛА 3мм, и назначив зазор между корпусом ЛА и ИДК 3 мм, внешний диаметр корпуса ИДК D_{κ} =0.0578 м (см. рисунок 2).

Рисунок 2 — Предварительная прорисовка поперечного заполнения корпуса ЛА

По известным значениям диаметра миделя и количества ИДК, размещаемых в одном сечении строится сектор с углом раствора равным отношению 360° к количеству ИДК. Отступив от границ сектора зазор h (может быть принят 3-5 мм на сторону), вырисовывается новый сектор (геометрическое место существования объекта), в котором размещается ИДК. В случае радиального расположения невозможно определить размеры однозначно, так как длина двигателя будет зависеть от диаметра. Необходимо в начальном приближении назначить диаметр и найти предельно возможную длину ИДК. Для ИДК с осевым расположением диаметр двигателя определяется однозначно. Также при осевом расположении нужно учесть толщину стенки корпуса ЛА и зазор между стенкой и ИДК (сумма этих размеров обозначена t).

В первом приближении назначается максимальное давление в камере двигателя р_{Imax}:=45 МПа. Тогда толщина стенки и соответственно внутренний диаметр КС могут быть найдены по следующим формулам:

 $\sigma_{\rm L}$:=1000 МПа – предел прочности материала стенки (30ХГСА)

η:=1.3 – коэффициент безопасности

$$\delta_{\rm cr} \coloneqq \eta \frac{p_{\rm Imax} D_{\kappa}}{2\sigma_{_{
m I}}} = 0.001697$$
 м

Округлим в сторону большего значения $\delta_{\rm cr}$:=1.7·10⁻³ м

$$D_{KM} := D_K - 2\delta_{CT} = 0.0544 \text{ M}$$

1.3. Определение времени работы ИДК

$$t_{\text{Imin}} := \frac{1}{v_{\text{max}}} \frac{2\phi}{2\pi} = 0.03 \text{ c}$$

$$t_{\text{Imax}} := \frac{1}{v_{\text{min}}} \frac{2\phi}{2\pi} = 0.037 \text{ c}$$

$$t_{\text{Д}} := t_{\text{Дmin}} = 0.03 \text{ c}$$

$$\xi(t_{\pi})=0.623$$

Время горения заряда топлива (первое приближение)

$$t_{\Gamma} := \frac{t_{\pi}}{4} \left(5 \cdot \xi(t_{\pi}) - 1 \right) - \frac{3}{8} t_{B} = 0.015 \text{ c}$$

Время последействия тяги

$$t_{\Pi} := t_{_{\Pi}} - t_{_{B}} - t_{_{\Gamma}} = 0.012 \text{ c}$$

1.4. Действительное значение коэффициента тяги

Назначим в первом приближении коэффициент расширения сопла:

$$\zeta := 2.0$$

Тогда теоретический коэффициент тяги может быть найден аппроксимацией таблицы:

ζ	1.4	1.6	1.8	2.0	2.2	2.4	2.6
K_{T}	1.46	1.51	1.56	1.6	1.62	1.64	1.67

$$K_T(\zeta) := 1.6$$

Введем дополнительные потери на тепло и скорость:

 $\phi_1:=0.92$ — коэффициент потерь на тепло (для развернутого на 90° сопла)

ф2:=0.95 – коэффициент потерь скорости

$$K_{II} = \varphi_1 \varphi_2 \cdot K_T(\zeta) := 1.398$$

1.5. Величина тяги на квазистационарном участке

K₁:=0.98 — коэффициент, учитывающий снижение эффективности действия тяги для вращающихся ЛА

$$K_1 = 0.92...0.98$$
 для $2\phi = \pi/3...2\pi/3$

 K_2 :=1.05 — поправка на усиление реакции выдуваемого потока на поверхность ЛА

$$K_2$$
=1.05 ... 1.3 – для сверхзвуковых скоростей полета 0.9 ... 1.05 – для дозвуковых скоростей полета

Приняв, что коррекция происходит при H=0 м ($a_{_{3B}}=340.4$ м/с), найдем число Маха:

 $M := \frac{V_{cp}}{a_{_{3B}}} = 0.901$ дозвуковая скорость полета.

Тогда необходимая тяга на квазистационарном участке равна:

$$P := \frac{J_{\Sigma}}{K_1 K_2 \xi(t_{\Lambda}) t_{\Lambda}} = 38601 \text{ H}$$

1.6. Выбор марки топлива

Для дальнейшего проектирования необходимо выбрать марку топлива. Для ИДК предпочтение необходимо отдать пироксилиновым и баллиститным топливам. Выберем марку П-1:

 $f:=1.03\cdot 10^6$ Дж/кг — сила топлива

k:=1.2 – показатель адиабаты

R:=360 Дж/кг·К – газовая постоянная продуктов сгорания

Т₀:=2860 К – температура продуктов сгорания

 $\rho_{\rm T}$:=1600 кг/м³ – плотность топлива

В_т:=400 К – термохимическая константа

Закон горения топлива задается в виде:

$$\frac{\mathrm{de}}{\mathrm{dt}} = F_1(p)F_2(\lambda)F_3(T_3)$$

где $F_1(p)$ — зависимость от давления, $F_2(\lambda)$ — поправка на возникновение эррозионного горения, $F_3(T_3)$ — поправка на начальную температуру заряда.

При проектировании ИДК, как правило, не допускается эррозионное горение. Поэтому принимается $F_2(\lambda) \approx 1$. Зависимость скорости горения от температуры может быть записана через термохимическую константу B_T :

$$F_3(T_3) = \frac{B_T}{B_T - (T_3 - T_N)}$$

где T_N=291 К – нормальная температура заряда.

Для топлива П-1 закон горения имеет вид:

$$| 0.003 \cdot \left(\frac{p}{10 \text{atm}}\right)^{0.7} \text{ if } 50 \text{atm} \le p \le 450 \text{atm}$$

$$| F_1(p) := | 0.00046 \left(\frac{p - 420 \text{atm}}{10 \text{atm}}\right)^{1.17} + 0.0381 \text{ if } 450 \text{atm}
$$| 0.00086 \frac{p}{10 \text{atm}} \text{ if } p > 600 \text{atm}$$$$

где atm:=101325 Па.

Из уравнения Бори можно вывести систему уравнений, позволяющую найти максимальное, минимальное и номинальное давления по одному заданному. В данном случае по значению максимального давления можно определить минимальное и номинальное давления в камере:

$$\begin{aligned} p_{N1} &\coloneqq 0.9 \cdot p_{Imax} & p_{m1} \coloneqq 0.6 \cdot p_{Imax} \\ \hline Given & & \\ \frac{F_{1}(p_{N1})}{p_{N1}} &= \frac{F_{1}(p_{I \ max}) \cdot F_{3} \left(T_{3 \ max}\right)}{p_{I \ max}} \\ \hline \frac{F_{1}(p_{m1})}{p_{m1}} &= \frac{F_{1}(p_{I \ max}) \cdot F_{3} \left(T_{3 \ min}\right)}{p_{I \ max} \cdot F_{3} \left(T_{3 \ min}\right)} \end{aligned}$$

$$\begin{pmatrix} p_{IN} \\ p_{Imin} \end{pmatrix} := Find(p_{N1}, p_{m1}) = \begin{pmatrix} 3.408 \cdot 10^7 \\ 2.019 \cdot 10^7 \end{pmatrix}$$

[!] Эта система не будет иметь решения для закона горения $u=u_1p$, а будет принимать начальное приближение.

2.1. Определение геометрических размеров сопла

Площадь критического сечения сопла определяется по формуле тяги:

$$F_{\text{kp}} = \frac{P}{K_{\text{g}} p_{\text{I min}}} = 8.1 \cdot 10^{-4} \text{ M}^2$$

Диаметр критического сечения равен:

$$D_{_{KP}} := \sqrt{\frac{4F_{_{KP}}}{\pi}} = 0.0321 \text{ M}$$

Для ИДК сопло в большинстве случаев коническое с прямолинейными образующими. Общие рекомендации по выбору углов наклона образующих такие же, как и для классических РДТТ. Назначим углы наклона входной (дозвуковой) и выходной частей сопла:

$$\varphi_{\text{BX}} := 45 \text{deg}$$

$$\varphi_c := 20 \deg$$

Длины участков сопла могут быть найдены по формулам:

$$L_{1} = \frac{D_{_{KM}} - \zeta_{\phi} D_{_{KP}}}{2tg\phi_{_{BX}}}$$

$$L_{2} = 0.002 \text{ [M]...D}_{_{KP}}$$

$$L_{3} = \frac{D_{_{KP}}}{2tg\phi_{_{C}}} (\zeta - 1) = 0.0441 \text{ M}$$

где ζ_{φ} — учитывает наличие дополнительного объёма с сечением на 10% больше критического для развернутых на 90° сопел (ζ_{φ} =1.05 — для развернутых сопел, ζ_{φ} =1 — для прямых сопел)

Диаметр форкамеры предсоплового объема должен быть на 10% больше по площади критического сечения. Тогда диаметр форкамеры может быть найден по формуле:

$$D_{\phi} := \sqrt{1.1} \cdot d_{\kappa p} = 0.0337 \text{ M}$$

Объем форкамеры должен быть не менее объема полусферы с диаметром камеры сгорания. Тогда длина форкамеры определится по формуле:

$$L_{\phi} := \frac{0.5 \cdot \frac{4}{3} \pi \cdot \left(\frac{D_{\kappa}}{2}\right)^{3}}{\frac{\pi \cdot D_{\phi}^{2}}{4}} = 0.057 \text{ M}$$

Рисунок 5 - Предварительная прорисовка сопла

Применительно к выбранной компоновке по полученным размерам прорисовываются внутренние обводы сопла.

Сопло выступает за габариты корпуса. Для уменьшения габарита сопла необходимо уменьшить площадь критического сечения, а следовательно увеличить давление в камере. Необходимый диаметр критического сечения находится из геометрических соображений согласно рисунку 5. Из геометрических соображений находится диаметр критического сечения, обеспечивающий возможность размещения сопла:

$$0.0451 + D_{\phi} / 2 + L_2 + L_3 = D / 2$$

$$d_{\kappa p2} := 0$$

Given

$$0.0451 + \sqrt{1.1} \cdot d_{\kappa p2} / 2 + L_2 + \frac{d_{\kappa p2}}{2 \tan(\varphi_c)} (\zeta - 1) = D / 2$$

$$d_{Kp} := Find(d_{Kp2}) = 0.0174 \text{ M}$$

Тогда во втором приближении давление в камере равно:

$$p_{\text{II N}} = \frac{4P}{K_{_{\text{II}}}\pi d_{_{\text{Kp потр}}}^2} = 116.3 \text{ M}\Pi a$$

Полученное значение выходит за границы устойчивой работы топлива П-1.

Изменим марку топлива. Выберем марку Б-3:

 $f:=1.04\cdot10^6$ Дж/кг — сила топлива

k:=1.25 – показатель адиабаты

R:=338 Дж/кг·К – газовая постоянная продуктов сгорания

Т₀:=3080 К – температура продуктов сгорания

 $\rho_{\rm T}$:=1640 кг/м³ — плотность топлива

В_т:=370 К – термохимическая константа

$$F_1(p) := 0.00085 \cdot \left(9.81 \frac{p}{10^6}\right)^{0.69} \text{ if } 16 \cdot 10^6 \le p \le 150 \cdot 10^6$$

Воспользуемся формулой Бори. В данном случае по значению номинального давления можно определить минимальное и максимальное давления в камере:

Given

$$\begin{aligned} p_{\text{max 2}} &:= 1.2 \cdot p_{\text{IIN}} \quad p_{\text{min 2}} := 0.8 \cdot p_{\text{IIN}} \\ \frac{F_{1}(p_{\text{max 2}})}{p_{\text{max 2}}} &= \frac{F_{1}(p_{\text{IIN}})}{p_{\text{IIN}} \cdot F_{3}(T_{3 \text{ max}})} \\ \frac{F_{1}(p_{\text{min 2}})}{p_{\text{min 2}}} &= \frac{F_{1}(p_{\text{IIN}})}{p_{\text{IIN}} \cdot F_{3}(T_{3 \text{ min}})} \\ \begin{pmatrix} p_{\text{IImax}} \\ p_{\text{IImin}} \end{pmatrix} &:= \text{Find}(p_{\text{max 2}}, p_{\text{min 2}}) = \begin{pmatrix} 15.22 \cdot 10^{7} \\ 7.007 \cdot 10^{7} \end{pmatrix} \end{aligned}$$

Пересчитаем зависящие от давления параметры:

$$\delta_{\rm cr} \coloneqq \eta \frac{p_{\rm II\,max} D_{\scriptscriptstyle K}}{2\sigma_{\scriptscriptstyle \rm II}} \approx 0.0057$$
 м

$$\delta_{\rm cr} \coloneqq \eta \frac{p_{\rm II\,max} D_{\scriptscriptstyle K}}{2\sigma_{\scriptscriptstyle T}} \approx 0.0041 \text{ M}$$

$$D_{KM} := D_{K} - 2\delta_{CT} = 0.0496 M$$

$$F_{Kp} = \frac{P}{K_{II}p_{IN}} = 2.374 \cdot 10^{-4} \text{ m}^2$$

$$D_{\text{kp}} := \sqrt{\frac{4F_{\text{kp}}}{\pi}} = 0.0174 \text{ M}$$

$$L_1 = \frac{D_{_{KM}} - \zeta_{\phi} D_{_{KP}}}{2tg\phi_{_{BX}}} = 0.016 \text{ M}$$

$$L_2 = 0.002 \text{ M}$$

$$L_3 = \frac{D_{\text{kp}}}{2tg\phi_c} (\zeta - 1) = 0.0239 \text{ M}$$

$$D_{\phi} := \sqrt{1.1} \cdot d_{\kappa p} = 0.0183 \text{ M}$$

$$L_{\phi} := \frac{0.5 \cdot \frac{4}{3} \pi \cdot \left(\frac{D_{\kappa}}{2}\right)^{3}}{\frac{\pi \cdot D_{\phi}^{2}}{4}} = 0.193 \text{ M}$$

2.1. Расчет газодинамических параметров в выходном сечении сопла

Безразмерная скорость потока определяется из газодинамической функции q(λ) при заданном коэффициенте расширения сопла:

$$\lambda_1 := 1.5$$

Given

$$q(\lambda_1) = \frac{1}{\zeta^2}$$

$$\lambda_a := \text{Find}(\lambda_1) = 2.07$$

Критическая скорость звука

$$a_{\kappa p} := \sqrt{\frac{2k}{k+1}RT_0} = 1076 \text{ m/c}$$

Скорость в выходном сечении сопла

$$V_a := \lambda_a a_{\kappa p} = 2226 \text{ m/c}$$

Давление в выходном сечении сопла:

$$p_a := p_{IIN} \cdot \pi(\lambda_a) = 4.595 \cdot 10^6 \text{ }\Pi a$$

Температура в выходном сечении сопла:

$$T_a := T_0 \cdot \tau(\lambda_a) = 1614 \text{ K}$$

Плотность потока в выходном сечении сопла:

$$ρ_a := \frac{p_a}{R \cdot T_a} = 8.423 \text{ kg/m}^3$$

3. Проектирование заряда

Проектирование заряда сводится к выбору топлива и формы заряда, определению параметров заряжания двигателя, а также расчету всех его геометрических размеров, параметров и характеристик.

Форма заряда должна обеспечивать максимальное заполнение корпуса двигателя при условии допустимых скоростей газового потока, омывающего заряд (не допуск эрозионного горения).

Коэффициент поперечного заполнения сечения ДУ:

$$\varepsilon_{\rm S} = \frac{F_{\rm \Sigma T op \, I\! Ia}}{F_{\rm Kam}} > 0.5$$

Рисунок 6 - Поперечное заполнение КС

Для импульсных ракетных двигателей используют только вкладные заряды, изготавливаемые чаще всего из пироксилинового или баллиститного твердого топлива. Чаще всего применяются трубчатые заряды.

Рисунок 7 - Геометрические параметры заряда

Наибольшая плотность укладки шашек многошашечного заряда определяется формулой:

$$n = 1 + 3 [(m-1) + (m-3) + (m-5) + (m-7) + ...]$$

где т – модуль, целое число шашек, укладывающееся по диаметру камеры

Рисунок 8 - Иллюстрация "модуля"

$$n(m) := \begin{vmatrix} i \leftarrow 1 \\ k \leftarrow 0 \\ \text{while } i \leq m \\ k \leftarrow k + (m-i) \\ i \leftarrow i + 2 \\ 1 + 3k \end{vmatrix}$$
Зависимость числа шашек от мо

Зависимость числа шашек от модуля

m	1	3	5	7	9	11	13	15	17	19
n	1	7	19	37	61	91	127	169	217	271

Скорость горения выбираемых топлив обычно ограничена «снизу» значениями 30-50 мм/с, так как тонкосводные элементы не могут быть бесконечно тонкими, исходя из его прочностных характеристик и технологии производства.

При выборе необходимо выбирать топливо с малой температурной чувствительностью скорости горения, а также малой эрозионной чувствительностью.

Высокое значение тяги за малый промежуток времени приводит к высоким перегрузкам, следовательно топливо должно обладать высокой механической прочностью и высокой ударной вязкостью. Наиболее подходящими являются пироксилиновые пороха.

После выбора вида и марки пороха, а также формы приступают к определению параметров заряжания.

$$A(k) := \sqrt{k \cdot \left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}}}$$

Назначается коэффициент расхода сопла

$$\mu_{c} := 0.95$$

Расход газов через сопло равен:

$$G_p := \frac{\mu_c A(k) F_{\kappa p} p_{II \text{ min}}}{\sqrt{RT_0}} = 16.913 \text{ кг/c}$$

Опорный запас топлива:

$$\omega_{\scriptscriptstyle
m T}$$
:= $G_{\rm p}$ · $t_{\scriptscriptstyle
m T}$ =0.246 кг

Проектирование заряда ИДК ведется для наихудшего случая — минимальной температуры окружающей среды. Расчетная толщина горящего свода при этом определяется по формуле:

$$e_0 := 2F_1(p_{II \text{ min}})F_3(T_{3 \text{ min}})t_{\Gamma} = 1.915 \cdot 10^{-3} \text{ M}$$

Потребная площадь горения:

$$S_{\Gamma} := \frac{\omega_{T}}{\rho_{T} u_{\Gamma \min} t_{\Gamma}} = 0.156 \text{ m}^{2}$$

Так как не существует аналитического решения по определению значения параметров n, L_3 , D_H , D_B , то будем последовательно задавать количество пороховых элементов и рассчитывать необходимые геометрические размеры. Критерием оценки каждого из вариантов будет максимальное значение коэффициента поперечного заполнения КС при непревышении параметром Победоносцева критического значения. И выполнение технологических ограничений.

Зададимся к_{кр}:=180 – критическое значение параметра Победоносцева

Зададимся значениями модуля:

$$m := (3 5 7 9 11)^T$$

Наружный диаметр заряда находится по формуле:

$$D_{H_j} = \frac{D_{KM} - dz}{m_j}$$

где dz – зазор между зарядом и стенкой. Назначим dz:=0.001 м

Внутренний диаметр заряда определяется по формуле:

$$D_{B_j} = D_{H_j} - 2e_0$$

Общее число шашек равно:

Длина заряда:

$$n_{j} = n(m_{j})$$

$$L_{3j} = \frac{S_{\Gamma}}{\pi \cdot n_{j} \left(D_{H_{j}} + D_{B_{j}}\right)}$$

Параметр Победоносцева по внутреннему каналу:

$$\kappa_{_{\mathrm{BH}_{j}}} \coloneqq \frac{4L_{_{3\,j}}}{D_{_{\mathrm{B}_{i}}}}$$

Параметр Победоносцева по наружной поверхности:

$$\kappa_{_{\text{Hap}_{_{j}}}} \coloneqq \frac{4n_{_{j}}D_{_{\text{H}_{_{j}}}}L_{_{3\,j}}}{D_{_{\text{KM}}}^{2} - n_{_{j}}D_{_{\text{H}_{_{j}}}}^{2}}$$

Коэффициент заполнения поперечного сечения:

$$\varepsilon_{S_j} \coloneqq \frac{D_{H_j}^2 - D_{B_j}^2}{D_{KM}^2} n_j$$

Критерий Шварца:

$$Sh_{j} := \frac{4F_{KP}}{\pi D_{KM}^{2} \left(1 - \varepsilon_{S_{j}}\right)}$$

Сведем все вычисления в таблицу:

m	3	5	7	9	11
n	7	19	37	61	91
D_{H} , mm	16.2	9.7	6.9	5.4	4.4
D_{B} , MM	12.4	5.9	3.1	1.6	0.6
L_3 , MM	249	167.9	133.8	117.1	109.2
$\kappa_{_{ m BH}}$	80.4	113.9	171.7	297.5	738.5
$\kappa_{_{ m hap}}$	181.2	186.4	203.1	226.3	256.8
$\mathcal{E}_{_{\mathbf{S}}}$	0.311	0.461	0.579	0.662	0.709
Sh	0.178	0.228	0.292	0.363	0.422

Увеличим зазор между зарядом и корпусом до 2 мм.

m	3	5	7	9	11
n	7	19	37	61	91
D_{H} , mm	15,9	9,5	6,8	5,3	4,3
D_{B} , MM	12,0	5,7	3,0	1,5	0,5
L_3 , MM	254,9	172,3	137,7	120,9	113,4
$\kappa_{_{ m BH}}$	84,6	121,0	185,2	330,6	905,5
$\kappa_{_{ m Hap}}$	162,2	168,8	184,9	206,9	236,0
$\varepsilon_{_{ m S}}$	0,304	0,45	0,563	0,641	0,683
Sh	0,176	0,223	0,281	0,342	0,388

Примем вариант с модулем т=7 как наиболее рациональный.

В импульсных РДТТ для уменьшения времени выхода на режим применяются форкамерные воспламенительные устройства. Такой воспламенитель представляет из себя перфорированную трубку с воспламенительным составом, размещенную в центре КС. Минимальный диаметр такого устройства составляет 7-8 мм. Следовательно для размещения воспламенителя необходимо изъять центральный пороховой элемент (-ы). В варианте с модулем 5 можно удалить один элемент, в варианте с модулем 7 – 4 элемента. Рассмотрим оба варианта.

Округлим геометрические параметры (в скобках приведены значения для варианта m=5, K – индекс выбранного варианта):

$$D_{H_I} = \frac{\text{round}(D_{H_K} \cdot 10000)}{10} = 6.8 (9.5) \text{ MM}$$

$$D_{B_{I}} = \frac{\text{round}(D_{B_{K}} \cdot 10000)}{10} = 3 (5.7) \text{ MM}$$

$$e_0 = \frac{D_{H_I} - D_{B_I}}{2} = 1.9 \text{ MM}$$

Количество шашек:

$$n=n_K-4(1)=33(18)$$

Длина заряда, обеспечивающая заданную площадь горения с убранными шашками:

$$L_{3_{I}} = \text{round} \left[\frac{S_{\Gamma} \cdot 1000000}{\pi \cdot n \left(D_{H_{I}} + D_{B_{I}} \right)} \right] = 154(182) \text{ MM}$$

Коэффициент заполнения поперечного сечения:

$$\varepsilon_{S_j} := \frac{D_{H_I}^2 - D_{B_I}^2}{\left(D_{KM} \cdot 1000\right)^2} n = 0.499 (0.422)$$