

# Universidad Rey Juan Carlos

# Teamto de Verano

Cristian Perez, Francisco Tortola, Sergio Salazar

Ada Byron 2022

7aa94f, 17 lines

import java.util.ArrayList;

import java.util.LinkedList;

import java.util.Queue;

# Graph (1)

Time:  $\mathcal{O}(E+V)$ 

Description: BFS-DFS

BFS.java

```
public class BFS {
    public static void bfs(int vertices, int start, ArrayList
         Integer>[] graf) {
        boolean[] visitados = new boolean[vertices];
        Oueue<Integer> cola = new LinkedList<>();
        cola.add(start);
        while (cola.size() > 0) {
            Integer pop = cola.remove();
            if (graf[pop] == null) continue;
            for (Integer k : graf[pop]) {
                if (!visitados[k]) {
                    cola.add(k);
                    visitados[k] = true;
                } } } }
Tarjan.java
Description: Encontrar los puntos de articulación, puentes o componentes
biconexas de un grafo
Time: \mathcal{O}\left(E+V\right)
                                                     ecc272, 58 lines
import java.io.IOException;
public class Main{
    private static final int UNVISITED = 0;
    //Todos los arrays se inicializan a n=numero de vertices
    //HashSet puede ser ArrayList
    private static HashSet<Intpair>[] graf;
   private static int[] dfs_num, dfs_low, dfs_parent,
         articulation_vertex;
    //Inicializar\ dfs\ parent\ con\ -1.
    //Para i=0 i<n : si dfs_num == UNVISITED lanzar metodo
   private static int dfsNumberCounter, dfsRoot, rootChildren,
         n, puentes;
    //Solo para los puentes
   private static LinkedList<Intpair> lista;
    //Solo Componente biconexas
    //private static LinkedList<HashSet<Integer>>> compBiconexas
          = new \ LinkedList();
    //HashSet<Integer> componenteBiconexa = new HashSet();
    private static void articulationPointAndBridge(int u) {
        //componente Biconexa. add(u):
        dfs_low[u] = dfsNumberCounter;
        dfs_num[u] = dfsNumberCounter++; // dfs_low[u] <=
             dfs\_num[u]
        for (Intpair v_w : graf[u]) {
            if (dfs_num[v_w.x] == UNVISITED) { // a tree edge
                dfs_parent[v_w.x] = u;
                if (u == dfsRoot) ++rootChildren;
                     special case, root
                articulationPointAndBridge(v_w.x);
                if (dfs_low[v_w.x] >= dfs_num[u]) // for
                     articulation point
                    articulation_vertex[u] = 1;
                    //compBiconexas.add(componenteBiconexa);
```

```
//componenteBiconexa=new HashSet<>();
                if (dfs_low[v_w.x] > dfs_num[u]) {
                     puentes++;
                     lista.add(new Intpair(Math.min(v_w.x,u),
                          Math.max(v_w.x,u)));
                dfs_low[u] = Math.min(dfs_low[u], dfs_low[v_w.x
                      ]); // update dfs_low[u]
            else if (v_w.x != dfs_parent[u]) // a back edge and
                  not direct cycle
                dfs_low[u] = Math.min(dfs_low[u], dfs_num[v_w.x]
                     ]); // update dfs_low[u]
        //compBiconexas.add(componenteBiconexa);
        //componenteBiconexa=new HashSet();
    public static void main(String[] args) throws IOException {
        //CONSTRUIR GRAFO
        for (int u = 0; u < n; ++u) {
            if (dfs_num[u] == UNVISITED) {
                dfsRoot = u; rootChildren = 0;
                articulationPointAndBridge(u);
                articulation_vertex[dfsRoot] = ((rootChildren >
                      1) ? 1 : 0); // special case
Dikistra.iava
Description: Shortest Path en un grafo ponderado
Time: \mathcal{O}\left(E * log(V)\right)
                                                       2cedb5, 20 lines
public class Dikjstra {
    public static void Dikjstra(int nodos, int inicio){
        PriorityQueue<IntPair> pq = new PriorityQueue<>();
        pq.offer(new IntPair(inicio,0)); //offer=add
        int[] dist = new int[nodos];
        Arrays.fill(dist,1000000000);
        dist[inicio]=0;
        while(!pq.isEmpty()){
            IntPair top = pq.poll(); //poll=remove
            int distop=top.d;
            int vtop=top.v;
            if(distop > dist[vtop]) continue;
            for(IntPair aux: graf[vtop]){
                int disaux=aux.d;
                int vaux=aux.v;
                if(dist[vtop]+disaux >= dist[vaux]) continue;
                dist[vaux] = dist[vtop] + disaux;
                pq.offer(new IntPair(vaux, dist[vaux]));
            } } } }
FloydWarshall.java
Description: Encontrar la minima distincia entre TODOS los pares de un
grafo, el grafo debe estar descrito por su lista de advacencia graf[][]
Time: \mathcal{O}(V^3)
                                                       ef3a6f, 11 lines
public class FloydWarshall {
    public static int[][] graf;
    public static void FW(int n) {
        for(int k=0; k<n; k++)
            for (int i=0; i<n; i++)</pre>
                for (int j=0; j<n; j++)</pre>
```

```
graf[i][j] = Math.min(graf[i][j], graf[i][k
                          ]+graf[k][j]);
TopologicalSort.java
Description: Orden en el que realizar n tareas si 1->2 implica que para
hacer 2 hace falta hacer 1
Time: \mathcal{O}(E+V)
                                                       c778ff, 25 lines
public class TopologicalSort {
    public static int n; //vertices
    public static ArrayList<Integer> list;
    public static boolean visitados[];
    public static ArrayList<Integer>[] graf;
    public static void dfs_tps(int u) {
        visitados[u]=true;
        for (Integer k : graf[u]) {
            if(!visitados[k]){
                dfs_tps(k);
        list.add(u+1);
    public static void main(String[] args) {
        for (int i=0; i<n; i++) {</pre>
            if(!visitados[i])
                dfs_tps(i);
        //Recorrido en orden inverso
        for(int i=list.size()-1;i>=0;i--){
            System.out.println(list.get(i));
        } } }
MaxFlow.iava
Description: Flujo maximo en una red de tuberias
Time: \mathcal{O}\left(V*E^2\right)
                                                      ab6cab, 64 lines
public class Max_Flow {
  HashMap<Integer, Integer>[] grafo
    public static boolean BFS(HashMap<Integer, Integer>[] grafo,
          int s, int t , int parent[], int v) {
        boolean[] visited = new boolean[v];
        visited[s]=true;
        LinkedList<Integer> cola = new LinkedList<>();
        cola.addFirst(s);
        parent[s]=-1;
        while(!cola.isEmpty()){
            int aux = cola.remove();
            for(Integer k : grafo[aux].keySet()){
                 if(!visited[k]){
                     if (k==t) {
                         parent[t]=aux;
                         return true;
                     cola.add(k);
                     parent[k]=aux;
                     visited[k]=true;
        return false;
```

# StrongConnectedComponents

```
public static int fordFulkerson(HashMap<Integer,Integer>[]
    grafo, int s, int t, int v) {
    HashMap<Integer, Integer>[] rgrafo = new HashMap[v];
    for (int i=0; i<v; i++) {</pre>
        rgrafo[i]=new HashMap<>();
        for(Integer k : grafo[i].keySet()){
            rgrafo[i].put(k,grafo[i].get(k));
    int parent[] = new int[v];
    int flujo_maximo=0;
    while (BFS (rgrafo, s, t, parent, v)) {
        int flujo=Integer.MAX_VALUE;
        int camino = t;
        while (camino!=s) {
            int aux=parent[camino];
            flujo=Math.min(flujo,rgrafo[aux].get(camino));
            camino=parent[camino];
        camino = t;
        while(camino!=s) {
            int aux=parent[camino];
            rgrafo[aux].put(camino,rgrafo[aux].get(camino)-
            if (rgrafo[aux].get(camino) == 0) {
                 rgrafo[aux].remove(camino);
            rgrafo[camino].put(aux, (rgrafo[camino].
                 containsKey(aux) ? rgrafo[camino].get(aux
                 ) : 0)+flujo);
            camino=parent[camino];
        flujo_maximo+=flujo;
    return flujo_maximo;
```

#### StrongConnectedComponents.java

Description: u-v en la misma scc si existe un camino de u a v y viceversa Time:  $\mathcal{O}\left(E+V\right)$ 

```
public class SCC {
    public static LinkedList<Integer> orden;
   public static ArrayList<Integer>[] graf ;
   public static int[] dfs_num;
   public static int[] dfs_low;
   public static boolean[] visited;
   public static int contador;
   public static int numSCC;
    public static int strongConnectedComponents(int u) {
        dfs_low[u] = dfs_num[u] = contador++;
        orden.addLast(u);
        visited[u]=true;
  int size=0:
        for(int i=0;i<graf[u].size();i++){</pre>
            int v = graf[u].get(i);
            if (dfs_num[v] ==-1) {
                size=Math.max(strongConnectedComponents(v), size
            if(visited[v])
                dfs_low[u] = Math.min(dfs_low[u], dfs_low[v]);
```

# int auxsize=0; if (dfs\_low[u] == dfs\_num[u]) { numSCC++; System.out.print("SCC "+numSCC+":"); while(true){ auxsize++; int v = orden.removeLast(); visited[v]=false; System.out.print(v+" "); if(u==v) break; System.out.println(); size=Math.max(size,auxsize) return size; public static void main(String[] args) throws IOException { orden = new LinkedList<>(); dfs\_low=new int[h]; dfs\_num=new int[h]; Arrays.fill(dfs\_num,-1); Arrays.fill(dfs low,-1); visited=new boolean[h] contador=0; numSCC=0; for(int i=0;i<V;i++) {</pre> **if**(dfs num[i]==-1){ strongConnectedComponents(i);

# Matematicas (2)

# 2.1 Ecuaciones

$$ax^2 + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Es extremos es dado por x = -b/2a.

$$ax + by = e$$

$$cx + dy = f$$

$$\Rightarrow x = \frac{ed - bf}{ad - bc}$$

$$y = \frac{af - ec}{ad - bc}$$

En general dado un sistema Ax = b, la solucion de una variable  $x_i$  es dada por

$$x_i = \frac{\det A_i'}{\det A}$$

donde  $A'_i$  es A con la *i*-esima columna remplazada por b.

# 2.2 Recurrencias

Si  $a_n = c_1 a_{n-1} + \cdots + c_k a_{n-k}$ , y  $r_1, \dots, r_k$  son raices distintas de  $x^{k} + c_{1}x^{k-1} + \cdots + c_{k}$ , hay  $d_{1}, \ldots, d_{k}$  tal que

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

Raices diferentes r se convierten en factores polinomiales, e.g.  $a_n = (d_1 n + d_2)r^n.$ 

# Trigonometria

$$\sin(v+w) = \sin v \cos w + \cos v \sin w$$
$$\cos(v+w) = \cos v \cos w - \sin v \sin w$$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$
$$\sin v + \sin w = 2\sin\frac{v+w}{2}\cos\frac{v-w}{2}$$
$$\cos v + \cos w = 2\cos\frac{v+w}{2}\cos\frac{v-w}{2}$$

$$(V+W)\tan(v-w)/2 = (V-W)\tan(v+w)/2$$

donde V, W son longitudes de angulos de lados opuestos v, w.

$$a\cos x + b\sin x = r\cos(x - \phi)$$
$$a\sin x + b\cos x = r\sin(x + \phi)$$

donde  $r = \sqrt{a^2 + b^2}$ ,  $\phi = \operatorname{atan2}(b, a)$ .

# 2.4 Geometria

### 2.4.1 Triangles

Longitudes de los lados: a, b, c

Semiperimetro: 
$$p = \frac{a+b+c}{2}$$

Area: 
$$A = \sqrt{p(p-a)(p-b)(p-c)}$$

Circumradio: 
$$R = \frac{abc}{4A}$$

Inradio: 
$$r = \frac{A}{p}$$

Longitud de la mediana (Divide el triangulo en dos triangulos con el mismo area):  $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$ 

Longitud de la bisectriz (Divide un angulo en dos):

$$s_a = \sqrt{bc \left[ 1 - \left( \frac{a}{b+c} \right)^2 \right]}$$

Teorema del seno:  $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} = \frac{1}{2R}$ Teorema del coseno:  $a^2 = b^2 + c^2 - 2bc\cos \alpha$ 

Teorema de la tangente:  $\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$ 

#### 2.4.2 Cuadrilateros

Con lados de longitud a, b, c, d, diagonales e, f, angulos de la diagonal  $\theta$ , area A y "flujo magico"  $F = b^2 + d^2 - a^2 - c^2$ :

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2f^2 - F^2}$$

Para cuadrilateros ciclicos la suma de los angulos opuestos es  $180^{\circ}$ , ef = ac + bd,  $vA = \sqrt{(p-a)(p-b)(p-c)(p-d)}$ .

URJC - Teamto de Verano

#### 2.4.3 Coordenadas esfericas



$$\begin{array}{ll} x = r \sin \theta \cos \phi & r = \sqrt{x^2 + y^2 + z^2} \\ y = r \sin \theta \sin \phi & \theta = \arccos(z/\sqrt{x^2 + y^2 + z^2}) \\ z = r \cos \theta & \phi = \arctan(y/x) \end{array}$$

# 2.5 Derivadas e Integrales

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \qquad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x\sin ax = \frac{\sin ax - ax\cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) \qquad \int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$

Integracion por partes:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

## 2.6 Sumas

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c-1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

#### 2.7 Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots, (-\infty < x < \infty)$$
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots, (-\infty < x < \infty)$$

# 2.8 Probabilidad

Sea X una variable aleatoria con probabilidad  $p_X(x)$  de tomar el valor x. Su esperanza es dada por  $\mu = \mathbb{E}(X) = \sum_x x p_X(x)$  y varianza  $\sigma^2 = V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \sum_x (x - \mathbb{E}(X))^2 p_X(x)$  donde  $\sigma$  es la desviacion estandar. Si X es una varibale contina la funcion de densidad es  $f_X(x)$  y la suma de probabilidades con  $p_X(x)$  es remplazada por la integral con  $f_X(x)$ .

La esperanza es lineal:

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

Para  $X \in Y$  independientes,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

# 2.8.1 Distribuciones discretas Binomial distribution

El numero de aciertos n independientes en experimentos si/no , donde cada acierto tiene una probabilidad de p es  $\text{Bin}(n,p), n=1,2,\ldots,0\leq p\leq 1.$ 

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mu = np, \, \sigma^2 = np(1-p)$$

Bin(n, p) es aproximadamente Po(np) para pequeños p.

# DIstribucion del primer acierto (Geometrica)

El numero de intentos necesarios hasta el primer acierto en experimentos de si/no, donde cada acierto tiene una probabilidad de p es Fs(p),  $0 \le p \le 1$ .

$$p(k) = p(1-p)^{k-1}, k = 1, 2, \dots$$
  
$$\mu = \frac{1}{p}, \sigma^2 = \frac{1-p}{p^2}$$

## DIstribucion de Poisson

El numero de eventos ocurridos en un tiempo determinado t si esos eventos ocurren con una media de  $\kappa$  independientemente del tiempo desde el ultimo suceso es  $Po(\lambda)$ ,  $\lambda = t\kappa$ .

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots$$
$$\mu = \lambda, \sigma^2 = \lambda$$

# 2.8.2 Distribuciones continuas Distribucion uniforma

Si la funcion de densidad es constante entre a y b y es 0 fuera de  $\mathrm{U}(a,b),\,a < b.$ 

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$\mu = \frac{a+b}{2}, \, \sigma^2 = \frac{(b-a)^2}{12}$$

# Distribucion exponencial

El tiempo entre eventos en un proceso de Poisson es  $\operatorname{Exp}(\lambda), \ \lambda > 0.$ 

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

$$\mu = \frac{1}{\lambda}, \, \sigma^2 = \frac{1}{\lambda^2}$$

#### Distribucion normal

Mucho de los sucesos aleatorios reales con media  $\mu$  y varianza  $\sigma^2$  son bien descritos por  $\mathcal{N}(\mu, \sigma^2)$ ,  $\sigma > 0$ .

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

If  $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$  and  $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$  then

$$aX_1 + bX_2 + c \sim \mathcal{N}(\mu_1 + \mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$$

# 2.9 Cadenas de Markov

Una Cadena de Markov es un proceso aleatorio discreto con la propiedad de que el siguiente estado depende unicamente del estado actual. Sean  $X_1, X_2, \ldots$  unas secuencia de variables aleatorias generadas por un proceso de Markov. Entonces hay una matriz de transicion  $\mathbf{P} = (p_{ij})$ , con

 $p_{ij} = \Pr(X_n = i | X_{n-1} = j)$ , y  $\mathbf{p}^{(n)} = \mathbf{P}^n \mathbf{p}^{(0)}$  es la distribucion de probabilidad para  $X_n$  (i.e.,  $p_i^{(n)} = \Pr(X_n = i)$ ), donde  $\mathbf{p}^{(0)}$  es la distribucion incial.

#### Distribucion estacionaria

 $\pi$  es una distribucion estacionaria si  $\pi = \pi \mathbf{P}$ . Si la cadena de Markov es *irreducible* (es posible ir de cualquier estado a otro), entonces  $\pi_i = \frac{1}{\mathbb{E}(T_i)}$  donde  $\mathbb{E}(T_i)$  es el tiempo esperado entre dos visitas en el estado i.  $\pi_j/\pi_i$  es el numero experado de visitas en el estado j entre dos visitas del estado i.

Para un grafo conexo, no dirigido and no-bipartito, donde la la probabilidad de transicion es uniforme entre todos los vecinos,  $\pi_i$  es proporcional al grado del nodo i.

#### **Ergodicidad**

Una cadena de Markov es *ergodica* if the asymptotic si la distribucion asintotica es independiente del estado inicial de la distribucion. Una cadena de Markov finita es ergodica si es irreducible y aperiodica (i.e., el mcd de la longitud de los ciclos es 1).  $\lim_{k\to\infty} \mathbf{P}^k = \mathbf{1}\pi$ .

#### Absorvencia

Una cadena de Markov es una A-cadena si los estados pueden ser particionados en dos conjuntos A y G, tal que todos los estados en **A** son absorventes  $(p_{ii} = 1)$ , y tdos los estados en **G** acaban en un estado absorvente deA. La probabilidad para absorver en un estado  $i \in \mathbf{A}$ , donde el estado inicial es j, es  $a_{ij} = p_{ij} + \sum_{k \in \mathbf{G}} a_{ik} p_{kj}$ . El tiempo esperado hasta la absorcion, donde el estado inicial es i, es  $t_i = 1 + \sum_{k \in \mathbf{G}} p_{ki} t_k$ .

# Data structures (3)

#### OrderStatisticTree.h

**Description:** A set (not multiset!) with support for finding the n'th element, and finding the index of an element. To get a map, change null\_type. Time:  $\mathcal{O}(\log N)$ 

```
#include <bits/extc++.h>
using namespace __gnu_pbds;
template<class T>
using Tree = tree<T, null_type, less<T>, rb_tree_tag,
   tree_order_statistics_node_update>;
void example() {
 Tree<int> t, t2; t.insert(8);
  auto it = t.insert(10).first;
  assert(it == t.lower_bound(9));
  assert(t.order_of_key(10) == 1);
  assert(t.order_of_key(11) == 2);
 assert(*t.find_by_order(0) == 8);
 t.join(t2); // assuming T < T2 or T > T2, merge t2 into t
```

#### SegmentTree.h

Description: Zero-indexed max-tree. Bounds are inclusive to the left and exclusive to the right. Can be changed by modifying T, f and unit.

Time:  $\mathcal{O}(\log N)$ 0f4bdb, 19 lines

```
struct Tree {
  typedef int T;
  static constexpr T unit = INT_MIN;
  T f(T a, T b) { return max(a, b); } // (any associative fn)
  vector<T> s; int n;
  Tree(int n = 0, T def = unit) : s(2*n, def), n(n) {}
  void update(int pos, T val) {
   for (s[pos += n] = val; pos /= 2;)
     s[pos] = f(s[pos * 2], s[pos * 2 + 1]);
  T query(int b, int e) { // query [b, e)
   T ra = unit, rb = unit;
    for (b += n, e += n; b < e; b /= 2, e /= 2) {
     if (b % 2) ra = f(ra, s[b++]);
     if (e % 2) rb = f(s[--e], rb);
    return f(ra, rb);
```

```
};
```

#### LazySegmentTree.h

struct Node {

Description: Segment tree with ability to add or set values of large intervals, and compute max of intervals. Can be changed to other things. Use with a bump allocator for better performance, and SmallPtr or implicit indices to save memory.

```
Usage: Node* tr = new Node(v, 0, sz(v));
Time: \mathcal{O}(\log N).
"../various/BumpAllocator.h"
                                                                 34ecf5, 50 lines
const int inf = 1e9;
```

```
Node *1 = 0, *r = 0;
 int lo, hi, mset = inf, madd = 0, val = -inf;
 Node (int lo, int hi):lo(lo), hi(hi) {} // Large interval of -inf
 Node (vi& v, int lo, int hi) : lo(lo), hi(hi) {
    if (lo + 1 < hi) {
      int mid = lo + (hi - lo)/2;
     1 = new Node(v, lo, mid); r = new Node(v, mid, hi);
      val = max(1->val, r->val);
   else val = v[lo];
 int query(int L, int R) {
   if (R <= lo || hi <= L) return -inf;</pre>
    if (L <= lo && hi <= R) return val;</pre>
    return max(1->query(L, R), r->query(L, R));
 void set(int L, int R, int x) {
   if (R <= lo || hi <= L) return;</pre>
   if (L <= lo && hi <= R) mset = val = x, madd = 0;</pre>
      push(), l\rightarrow set(L, R, x), r\rightarrow set(L, R, x);
     val = max(1->val, r->val);
 void add(int L, int R, int x) {
   if (R <= lo || hi <= L) return;</pre>
   if (L <= lo && hi <= R) {
      if (mset != inf) mset += x;
      else madd += x;
      val += x;
    else {
     push(), 1->add(L, R, x), r->add(L, R, x);
      val = max(1->val, r->val);
 void push() {
      int mid = lo + (hi - lo)/2;
      1 = new Node(lo, mid); r = new Node(mid, hi);
   if (mset != inf)
     1->set(lo,hi,mset), r->set(lo,hi,mset), mset = inf;
   else if (madd)
     1-add(lo,hi,madd), r-add(lo,hi,madd), madd = 0;
};
```

# UnionFind.java

Description: Conjuntos de union buscar

```
84e122, 32 lines
static class UnionFind {
        private ArrayList<Integer> p, rank, setSize;
        private int numSets;
```

```
public UnionFind(int N) {
    p = new ArrayList<>(N);
    rank = new ArrayList<>(N);
    setSize = new ArrayList<>(N);
    numSets = N;
    for (int i = 0; i < N; i++) {</pre>
        p.add(i);
        rank.add(0);
        setSize.add(1);
public int findSet(int i) {
    if (p.get(i) == i) return i;
        int ret = findSet(p.get(i)); p.set(i, ret);
        return ret; } }
public Boolean isSameSet(int i, int j) { return findSet
     (i) == findSet(j); }
public void unionSet(int i, int j) {
    if (!isSameSet(i, j)) { numSets--;
        int x = findSet(i), y = findSet(j);
        if (rank.get(x) > rank.get(y)) { p.set(y, x);
             setSize.set(x, setSize.get(x) + setSize.
        else{
            p.set(x, y); setSize.set(y, setSize.get(y)
                 + setSize.get(x));
            if (rank.get(x) == rank.get(y)) rank.set(y,
                  rank.get(y) + 1); } }
```

#### UnionFindRollback.h

**Description:** Disjoint-set data structure with undo. If undo is not needed, skip st, time() and rollback().

```
Usage: int t = uf.time(); ...; uf.rollback(t);
```

```
Time: \mathcal{O}(\log(N))
                                                      de4ad0, 21 lines
struct RollbackUF {
 vi e; vector<pii> st;
 RollbackUF(int n) : e(n, -1) {}
 int size(int x) { return -e[find(x)]; }
 int find(int x) { return e[x] < 0 ? x : find(e[x]); }</pre>
  int time() { return sz(st); }
 void rollback(int t) {
    for (int i = time(); i --> t;)
      e[st[i].first] = st[i].second;
    st.resize(t);
 bool join(int a, int b) {
    a = find(a), b = find(b);
    if (a == b) return false;
    if (e[a] > e[b]) swap(a, b);
    st.push_back({a, e[a]});
    st.push_back({b, e[b]});
    e[a] += e[b]; e[b] = a;
    return true;
};
```

#### SubMatrix.h

Description: Calculate submatrix sums quickly, given upper-left and lowerright corners (half-open).

```
Usage: SubMatrix<int> m (matrix);
m.sum(0, 0, 2, 2); // top left 4 elements \mathbf{Time:}~\mathcal{O}\left(N^2+Q\right)
```

c59ada, 13 lines

```
template<class T>
struct SubMatrix {
  vector<vector<T>> p;
  SubMatrix(vector<vector<T>>& v) {
    int R = sz(v), C = sz(v[0]);
   p.assign(R+1, vector<T>(C+1));
   rep(r, 0, R) rep(c, 0, C)
     p[r+1][c+1] = v[r][c] + p[r][c+1] + p[r+1][c] - p[r][c];
  T sum(int u, int 1, int d, int r) {
    return p[d][r] - p[d][l] - p[u][r] + p[u][l];
};
```

#### Matrix.h

Description: Basic operations on square matrices.

```
Usage: Matrix<int, 3> A;
A.d = \{\{\{1,2,3\}\}, \{\{4,5,6\}\}, \{\{7,8,9\}\}\}\};
vector < int > vec = \{1, 2, 3\};
vec = (A^N) * vec;
```

c43c7d, 26 lines

```
template < class T, int N> struct Matrix {
  typedef Matrix M;
  array<array<T, N>, N> d{};
  M operator*(const M& m) const {
    rep(i,0,N) rep(j,0,N)
     rep(k, 0, N) \ a.d[i][j] += d[i][k]*m.d[k][j];
    return a;
  vector<T> operator*(const vector<T>& vec) const {
    vector<T> ret(N);
    rep(i, 0, N) rep(j, 0, N) ret[i] += d[i][j] * vec[j];
    return ret;
  M operator^(ll p) const {
    assert (p >= 0);
   M a, b(*this);
    rep(i, 0, N) \ a.d[i][i] = 1;
    while (p) {
      if (p&1) a = a*b;
     b = b*b;
     p >>= 1;
    return a;
};
```

#### LineContainer.h

Description: Container where you can add lines of the form kx+m, and query maximum values at points x. Useful for dynamic programming ("convex hull trick").

```
Time: \mathcal{O}(\log N)
                                                        8ec1c7, 30 lines
struct Line {
 mutable 11 k, m, p;
 bool operator<(const Line& o) const { return k < o.k; }</pre>
 bool operator<(11 x) const { return p < x; }</pre>
struct LineContainer : multiset<Line, less<>>> {
  // (for doubles, use inf = 1/.0, div(a,b) = a/b)
  static const 11 inf = LLONG_MAX;
  ll div(ll a, ll b) { // floored division
    return a / b - ((a ^ b) < 0 && a % b); }
  bool isect(iterator x, iterator y) {
    if (y == end()) return x \rightarrow p = inf, 0;
   if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
    else x->p = div(y->m - x->m, x->k - y->k);
```

```
return x->p >= y->p;
 void add(ll k, ll m) {
   auto z = insert(\{k, m, 0\}), y = z++, x = y;
   while (isect(y, z)) z = erase(z);
   if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
    while ((y = x) != begin() && (--x)->p >= y->p)
     isect(x, erase(y));
 11 query(11 x) {
    assert(!empty());
    auto 1 = *lower_bound(x);
   return l.k * x + l.m;
};
```

#### Treap.h

**if** (1->y > r->y) {

l->recalc();

r->recalc();

return 1;

return r;

} else {

1->r = merge(1->r, r);

r->1 = merge(1, r->1);

auto pa = split(t, pos);

Node\* ins(Node\* t, Node\* n, int pos) {

return merge (merge (pa.first, n), pa.second);

Description: A short self-balancing tree. It acts as a sequential container with log-time splits/joins, and is easy to augment with additional data. Time:  $\mathcal{O}(\log N)$ 

```
9556fc, 55 lines
struct Node {
 Node *1 = 0, *r = 0;
 int val, y, c = 1;
 Node(int val) : val(val), y(rand()) {}
 void recalc();
int cnt(Node* n) { return n ? n->c : 0; }
void Node::recalc() { c = cnt(1) + cnt(r) + 1; }
template < class F > void each (Node * n, F f) {
 if (n) { each(n->1, f); f(n->val); each(n->r, f); }
pair<Node*, Node*> split(Node* n, int k) {
 if (!n) return {};
 if (cnt(n->1) >= k) { // "n-> val >= k" for lower_bound(k)}
    auto pa = split(n->1, k);
   n->1 = pa.second;
   n->recalc();
    return {pa.first, n};
    auto pa = split(n->r, k - cnt(n->1) - 1); // and just "k"
   n->r = pa.first;
   n->recalc();
    return {n, pa.second};
Node* merge(Node* 1, Node* r) {
 if (!1) return r;
 if (!r) return 1;
```

```
// Example application: move the range [l, r) to index k
void move(Node*& t, int 1, int r, int k) {
 Node *a, *b, *c;
 tie(a,b) = split(t, 1); tie(b,c) = split(b, r - 1);
 if (k \le 1) t = merge(ins(a, b, k), c);
 else t = merge(a, ins(c, b, k - r));
```

#### FenwickTree.h

**Description:** Computes partial sums a[0] + a[1] + ... + a[pos - 1], and updates single elements a[i], taking the difference between the old and new

**Time:** Both operations are  $\mathcal{O}(\log N)$ .

e62fac, 22 lines

```
struct FT {
 vector<ll> s;
 FT(int n) : s(n) {}
  void update(int pos, ll dif) { // a[pos] += dif
    for (; pos < sz(s); pos |= pos + 1) s[pos] += dif;</pre>
 11 query (int pos) { // sum of values in [0, pos)
   11 \text{ res} = 0:
    for (; pos > 0; pos &= pos - 1) res += s[pos-1];
    return res:
  int lower_bound(11 sum) {// min pos st sum of [0, pos] >= sum}
    // Returns n if no sum is >= sum, or -1 if empty sum is.
    if (sum <= 0) return -1;
    int pos = 0;
    for (int pw = 1 << 25; pw; pw >>= 1) {
      if (pos + pw <= sz(s) && s[pos + pw-1] < sum)</pre>
        pos += pw, sum -= s[pos-1];
    return pos;
};
```

#### FenwickTree2d.h

**Description:** Computes sums a[i,j] for all i<I, j<J, and increases single elements a[i,j]. Requires that the elements to be updated are known in advance (call fakeUpdate() before init()).

**Time:**  $\mathcal{O}(\log^2 N)$ . (Use persistent segment trees for  $\mathcal{O}(\log N)$ .)

"FenwickTree.h" 157f07, 22 lines struct FT2 { vector<vi> ys; vector<FT> ft;

```
FT2(int limx) : ys(limx) {}
 void fakeUpdate(int x, int y) {
   for (; x < sz(ys); x |= x + 1) ys[x].push_back(y);
 void init() {
   for (vi& v : ys) sort(all(v)), ft.emplace_back(sz(v));
 int ind(int x, int y) {
   return (int) (lower_bound(all(ys[x]), y) - ys[x].begin()); }
 void update(int x, int y, ll dif) {
   for (; x < sz(ys); x | = x + 1)
      ft[x].update(ind(x, y), dif);
 11 query(int x, int y) {
   11 \text{ sum} = 0;
   for (; x; x &= x - 1)
     sum += ft[x-1].query(ind(x-1, y));
   return sum;
};
```

```
RMQ.h
```

```
+ 1], ... V[b-1]) in constant time. 

Usage: RMQ rmq(values); rmq.query(inclusive, exclusive); 

Time: \mathcal{O}(|V|\log|V|+Q) 510c32, 16 lines
```

**Description:** Range Minimum Queries on an array. Returns min(V[a], V[a

```
template < class T >
struct RMQ {
  vector < vector < T >> jmp;
  RMQ (const vector < T >& V) : jmp(1, V) {
    for (int pw = 1, k = 1; pw * 2 <= sz(V); pw *= 2, ++k) {
        jmp.emplace_back(sz(V) - pw * 2 + 1);
        rep(j,0,sz(jmp[k]))
            jmp[k][j] = min(jmp[k - 1][j], jmp[k - 1][j + pw]);
    }
}
T query(int a, int b) {
    assert(a < b); // or return inf if a == b
    int dep = 31 - _builtin_clz(b - a);
    return min(jmp[dep][a], jmp[dep][b - (1 << dep)]);
}
};</pre>
```

## MoQueries.h

**Description:** Answer interval or tree path queries by finding an approximate TSP through the queries, and moving from one query to the next by adding/removing points at the ends. If values are on tree edges, change step to add/remove the edge (a, c) and remove the initial add call (but keep in).

```
Time: \mathcal{O}\left(N\sqrt{Q}\right)
void add(int ind, int end) { ... } // add a[ind] (end = 0 or 1)
void del(int ind, int end) { ... } // remove a[ind]
int calc() { ... } // compute current answer
vi mo(vector<pii> 0) {
 int L = 0, R = 0, blk = 350; // \sim N/sqrt(Q)
  vi s(sz(0)), res = s;
#define K(x) pii(x.first/blk, x.second ^ -(x.first/blk & 1))
  iota(all(s), 0);
  sort(all(s), [\&](int s, int t) \{ return K(Q[s]) < K(Q[t]); \});
  for (int qi : s) {
    pii q = Q[qi];
   while (L > q.first) add(--L, 0);
    while (R < q.second) add(R++, 1);</pre>
    while (L < q.first) del(L++, 0);
    while (R > q.second) del(--R, 1);
    res[qi] = calc();
  return res;
vi moTree(vector<array<int, 2>> Q, vector<vi>& ed, int root=0) {
  int N = sz(ed), pos[2] = {}, blk = 350; // \sim N/sqrt(Q)
  vi s(sz(Q)), res = s, I(N), L(N), R(N), in(N), par(N);
  add(0, 0), in[0] = 1;
  auto dfs = [&](int x, int p, int dep, auto& f) -> void {
   par[x] = p;
   L[x] = N;
    if (dep) I[x] = N++;
   for (int y : ed[x]) if (y != p) f(y, x, !dep, f);
   if (!dep) I[x] = N++;
   R[x] = N;
  dfs(root, -1, 0, dfs);
#define K(x) pii(I[x[0]] / blk, I[x[1]] ^ -(I[x[0]] / blk & 1))
  iota(all(s), 0);
  sort(all(s), [\&](int s, int t) \{ return K(Q[s]) < K(Q[t]); \});
  for (int qi : s) rep(end, 0, 2) {
```

int &a = pos[end], b = Q[qi][end], i = 0;

# Numerical (4)

# 4.1 Polynomials and recurrences

Polynomial.h c9b7b0, 17 lines

```
struct Poly {
  vector<double> a;
  double operator() (double x) const {
    double val = 0;
    for (int i = sz(a); i--;) (val *= x) += a[i];
    return val;
}

void diff() {
    rep(i,1,sz(a)) a[i-1] = i*a[i];
    a.pop_back();
}

void divroot(double x0) {
    double b = a.back(), c; a.back() = 0;
    for(int i=sz(a)-1; i--;) c = a[i], a[i] = a[i+1]*x0+b, b=c;
    a.pop_back();
}
};
```

#### PolyRoots.h

"Polynomial.h"

```
Description: Finds the real roots to a polynomial.
```

**Usage:** polyRoots({{2,-3,1}},-1e9,1e9) // solve  $x^2-3x+2=0$ **Time:**  $O(n^2 \log(1/\epsilon))$ 

```
vector<double> polyRoots(Poly p, double xmin, double xmax) {
 if (sz(p.a) == 2) { return {-p.a[0]/p.a[1]}; }
 vector<double> ret;
 Polv der = p;
 der.diff();
 auto dr = polyRoots(der, xmin, xmax);
 dr.push_back(xmin-1);
 dr.push_back(xmax+1);
 sort (all (dr));
 rep(i, 0, sz(dr) - 1) {
   double l = dr[i], h = dr[i+1];
   bool sign = p(1) > 0;
   if (sign ^{(p(h) > 0)}) {
     rep(it,0,60) { // while (h - l > 1e-8)
       double m = (1 + h) / 2, f = p(m);
       if ((f \le 0) ^ sign) 1 = m;
       else h = m;
     ret.push_back((1 + h) / 2);
 return ret;
```

PolyInterpolate.h

**Description:** Given n points  $(\mathbf{x}[\mathbf{i}], \mathbf{y}[\mathbf{i}])$ , computes an n-1-degree polynomial p that passes through them:  $p(x) = a[0] * x^0 + \ldots + a[n-1] * x^{n-1}$ . For numerical precision, pick  $x[k] = c * \cos(k/(n-1) * \pi), k = 0 \ldots n-1$ . **Time:**  $\mathcal{O}\left(n^2\right)$ 

```
typedef vector<double> vd;
vd interpolate(vd x, vd y, int n) {
  vd res(n), temp(n);
  rep(k,0,n-1) rep(i,k+1,n)
    y[i] = (y[i] - y[k]) / (x[i] - x[k]);
  double last = 0; temp[0] = 1;
  rep(k,0,n) rep(i,0,n) {
    res[i] += y[k] * temp[i];
    swap(last, temp[i]);
    temp[i] -= last * x[k];
  }
  return res;
}
```

#### BerlekampMassev.h

**Description:** Recovers any n-order linear recurrence relation from the first 2n terms of the recurrence. Useful for guessing linear recurrences after brute-forcing the first terms. Should work on any field, but numerical stability for floats is not guaranteed. Output will have size  $\leq n$ .

```
Usage: berlekampMassey(\{0, 1, 1, 3, 5, 11\}) // \{1, 2\}
Time: \mathcal{O}(N^2)
```

```
"../number-theory/ModPow.h"
                                                      96548b, 20 lines
vector<ll> berlekampMassey(vector<ll> s) {
 int n = sz(s), L = 0, m = 0;
 vector<11> C(n), B(n), T;
 C[0] = B[0] = 1;
 11 b = 1;
 rep(i,0,n) \{ ++m;
   11 d = s[i] % mod;
   rep(j, 1, L+1) d = (d + C[j] * s[i - j]) % mod;
   if (!d) continue;
   T = C; 11 coef = d * modpow(b, mod-2) % mod;
    rep(j, m, n) C[j] = (C[j] - coef * B[j - m]) % mod;
   if (2 * L > i) continue;
   L = i + 1 - L; B = T; b = d; m = 0;
 C.resize(L + 1); C.erase(C.begin());
 for (11& x : C) x = (mod - x) % mod;
 return C;
```

#### LinearRecurrence.h

**Description:** Generates the k'th term of an n-order linear recurrence  $S[i] = \sum_{j} S[i-j-1]tr[j]$ , given  $S[0... \ge n-1]$  and tr[0...n-1]. Faster than matrix multiplication. Useful together with Berlekamp-Massey.

Usage: linearRec( $\{0, 1\}$ ,  $\{1, 1\}$ , k) // k'th Fibonacci number Time:  $\mathcal{O}(n^2 \log k)$ 

```
typedef vector<11> Poly;
11 linearRec(Poly S, Poly tr, 11 k) {
  int n = sz(tr);

auto combine = [&](Poly a, Poly b) {
   Poly res(n * 2 + 1);
   rep(i,0,n+1) rep(j,0,n+1)
      res[i + j] = (res[i + j] + a[i] * b[j]) % mod;
  for (int i = 2 * n; i > n; --i) rep(j,0,n)
   res[i - 1 - j] = (res[i - 1 - j] + res[i] * tr[j]) % mod;
  res.resize(n + 1);
  return res;
```

```
Poly pol(n + 1), e(pol);
pol[0] = e[1] = 1;
for (++k; k; k /= 2) {
 if (k % 2) pol = combine(pol, e);
 e = combine(e, e);
11 \text{ res} = 0;
rep(i, 0, n) res = (res + pol[i + 1] * S[i]) % mod;
return res;
```

# Optimization

#### GoldenSectionSearch.h

**Description:** Finds the argument minimizing the function f in the interval [a, b] assuming f is unimodal on the interval, i.e. has only one local minimum. The maximum error in the result is eps. Works equally well for maximization with a small change in the code. See TernarySearch.h in the Various chapter for a discrete version.

```
Usage: double func(double x) { return 4+x+.3*x*x; }
double xmin = gss(-1000, 1000, func);
Time: \mathcal{O}(\log((b-a)/\epsilon))
                                                              31d45b, 14 lines
```

```
double gss(double a, double b, double (*f)(double)) {
 double r = (sgrt(5)-1)/2, eps = 1e-7;
 double x1 = b - r*(b-a), x2 = a + r*(b-a);
  double f1 = f(x1), f2 = f(x2);
  while (b-a > eps)
   if (f1 < f2) { //change to > to find maximum}
     b = x2; x2 = x1; f2 = f1;
     x1 = b - r*(b-a); f1 = f(x1);
     a = x1; x1 = x2; f1 = f2;
     x2 = a + r*(b-a); f2 = f(x2);
 return a;
```

#### HillClimbing.h

Description: Poor man's optimization for unimodal functions Receaf, 14 lines

```
typedef array<double, 2> P;
template<class F> pair<double, P> hillClimb(P start, F f) {
 pair<double, P> cur(f(start), start);
  for (double jmp = 1e9; jmp > 1e-20; jmp /= 2) {
    rep(j,0,100) rep(dx,-1,2) rep(dy,-1,2) {
     P p = cur.second;
     p[0] += dx * jmp;
     p[1] += dy*jmp;
     cur = min(cur, make_pair(f(p), p));
  return cur;
```

#### Integrate.h

Description: Simple integration of a function over an interval using Simpson's rule. The error should be proportional to  $h^4$ , although in practice you will want to verify that the result is stable to desired precision when epsilon changes. 4756fc, 7 lines

```
template<class F>
double quad(double a, double b, F f, const int n = 1000) {
 double h = (b - a) / 2 / n, v = f(a) + f(b);
 rep(i,1,n*2)
  v += f(a + i*h) * (i&1 ? 4 : 2);
  return v * h / 3;
```

```
IntegrateAdaptive.h
Description: Fast integration using an adaptive Simpson's rule.
Usage: double sphereVolume = quad(-1, 1, [](double x) {
return quad(-1, 1, [&] (double y)
return quad(-1, 1, [&](double z)
return x*x + y*y + z*z < 1; {);});});
                                                        92dd79, 15 lines
typedef double d;
#define S(a,b) (f(a) + 4*f((a+b) / 2) + f(b)) * (b-a) / 6
template <class F>
d rec(F& f, da, db, deps, dS) {
 dc = (a + b) / 2;
 d S1 = S(a, c), S2 = S(c, b), T = S1 + S2;
 if (abs(T - S) <= 15 * eps || b - a < 1e-10)
    return T + (T - S) / 15;
  return rec(f, a, c, eps / 2, S1) + rec(f, c, b, eps / 2, S2);
template<class F>
d quad(d a, d b, F f, d eps = 1e-8) {
 return rec(f, a, b, eps, S(a, b));
Simplex.h
Description: Solves a general linear maximization problem: maximize c^T x
subject to Ax \leq b, x \geq 0. Returns -inf if there is no solution, inf if there
are arbitrarily good solutions, or the maximum value of c^Tx otherwise. The
input vector is set to an optimal x (or in the unbounded case, an arbitrary
solution fulfilling the constraints). Numerical stability is not guaranteed. For
better performance, define variables such that x = 0 is viable.
Usage: vvd A = \{\{1,-1\}, \{-1,1\}, \{-1,-2\}\};
vd b = \{1, 1, -4\}, c = \{-1, -1\}, x;
T val = LPSolver(A, b, c).solve(x);
Time: \mathcal{O}(NM * \#pivots), where a pivot may be e.g. an edge relaxation.
\mathcal{O}(2^n) in the general case.
typedef double T; // long double, Rational, double + mod<P>...
typedef vector<T> vd;
typedef vector<vd> vvd;
const T eps = 1e-8, inf = 1/.0;
#define MP make pair
#define ltj(X) if (s == -1 \mid \mid MP(X[j], N[j]) < MP(X[s], N[s])) s=j
struct LPSolver {
 int m, n;
 vi N, B;
  vvd D;
 LPSolver (const vvd& A, const vd& b, const vd& c) :
    m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2), vd(n+2)) {
      rep(i, 0, m) rep(j, 0, n) D[i][j] = A[i][j];
      rep(i,0,m) { B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i]; }
      rep(j,0,n) { N[j] = j; D[m][j] = -c[j]; }
      N[n] = -1; D[m+1][n] = 1;
  void pivot(int r, int s) {
    T *a = D[r].data(), inv = 1 / a[s];
    rep(i, 0, m+2) if (i != r \&\& abs(D[i][s]) > eps) {
      T *b = D[i].data(), inv2 = b[s] * inv;
      rep(j, 0, n+2) b[j] -= a[j] * inv2;
      b[s] = a[s] * inv2;
```

rep(j,0,n+2) **if** (j != s) D[r][j] \*= inv;

D[r][s] = inv;

rep(i, 0, m+2) **if** (i != r) D[i][s] \*= -inv;

```
swap(B[r], N[s]);
bool simplex (int phase) {
  int x = m + phase - 1;
  for (;;) {
    int s = -1;
    rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);
    if (D[x][s] >= -eps) return true;
    int r = -1:
    rep(i,0,m) {
      if (D[i][s] <= eps) continue;</pre>
      if (r == -1 \mid | MP(D[i][n+1] / D[i][s], B[i])
                   < MP(D[r][n+1] / D[r][s], B[r])) r = i;
    if (r == -1) return false;
    pivot(r, s);
T solve(vd &x) {
  int r = 0;
  rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
  if (D[r][n+1] < -eps) {
    pivot(r, n);
    if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;</pre>
    rep(i, 0, m) if (B[i] == -1) {
      int s = 0;
      rep(j,1,n+1) ltj(D[i]);
      pivot(i, s);
  bool ok = simplex(1); x = vd(n);
  rep(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
  return ok ? D[m][n+1] : inf;
```

#### Matrices

#### Determinant.h

Description: Calculates determinant of a matrix. Destroys the matrix. Time:  $\mathcal{O}(N^3)$ bd5cec, 15 lines

```
double det(vector<vector<double>>& a) {
 int n = sz(a); double res = 1;
 rep(i,0,n) {
   int b = i;
   rep(j,i+1,n) if (fabs(a[j][i]) > fabs(a[b][i])) b = j;
   if (i != b) swap(a[i], a[b]), res *= -1;
   res *= a[i][i];
   if (res == 0) return 0;
    rep(j, i+1, n) {
     double v = a[j][i] / a[i][i];
      if (v != 0) rep(k, i+1, n) a[j][k] -= v * a[i][k];
 return res;
```

#### IntDeterminant.h

**Description:** Calculates determinant using modular arithmetics. Modulos can also be removed to get a pure-integer version.

```
Time: \mathcal{O}(N^3)
                                                          3313dc, 18 lines
const 11 mod = 12345;
11 det(vector<vector<11>>& a) {
  int n = sz(a); ll ans = 1;
  rep(i,0,n) {
    rep(j,i+1,n) {
```

```
while (a[j][i] != 0) { // gcd step}
     11 t = a[i][i] / a[j][i];
     if (t) rep(k,i,n)
        a[i][k] = (a[i][k] - a[j][k] * t) % mod;
      swap(a[i], a[j]);
     ans \star = -1;
  ans = ans * a[i][i] % mod;
 if (!ans) return 0;
return (ans + mod) % mod;
```

#### SolveLinear.h

**Description:** Solves A \* x = b. If there are multiple solutions, an arbitrary one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost. Time:  $\mathcal{O}\left(n^2m\right)$ 

44c9ab, 38 lines

```
typedef vector<double> vd;
const double eps = 1e-12;
int solveLinear(vector<vd>& A, vd& b, vd& x) {
 int n = sz(A), m = sz(x), rank = 0, br, bc;
  if (n) assert(sz(A[0]) == m);
  vi col(m); iota(all(col), 0);
  rep(i,0,n) {
   double v, bv = 0;
    rep(r,i,n) rep(c,i,m)
     if ((v = fabs(A[r][c])) > bv)
       br = r, bc = c, bv = v;
    if (bv <= eps) {
     rep(j,i,n) if (fabs(b[j]) > eps) return -1;
     break;
    swap(A[i], A[br]);
    swap(b[i], b[br]);
    swap(col[i], col[bc]);
    rep(j,0,n) swap(A[j][i], A[j][bc]);
   bv = 1/A[i][i];
    rep(j,i+1,n) {
     double fac = A[j][i] * bv;
     b[i] -= fac * b[i];
     rep(k, i+1, m) A[j][k] -= fac*A[i][k];
   rank++;
  x.assign(m, 0);
  for (int i = rank; i--;) {
   b[i] /= A[i][i];
   x[col[i]] = b[i];
   rep(j, 0, i) b[j] -= A[j][i] * b[i];
 return rank; // (multiple solutions if rank < m)
```

#### SolveLinear2.h

**Description:** To get all uniquely determined values of x back from Solve-Linear, make the following changes:

```
"SolveLinear.h"
                                                       08e495, 7 lines
rep(j,0,n) if (j != i) // instead of rep(j,i+1,n)
// ... then at the end:
x.assign(m, undefined);
rep(i,0,rank) {
  rep(j,rank,m) if (fabs(A[i][j]) > eps) goto fail;
 x[col[i]] = b[i] / A[i][i];
fail:; }
```

#### SolveLinearBinarv.h

**Description:** Solves Ax = b over  $\mathbb{F}_2$ . If there are multiple solutions, one is returned arbitrarily. Returns rank, or -1 if no solutions. Destroys A and b. Time:  $\mathcal{O}\left(n^2m\right)$ 

typedef bitset<1000> bs; int solveLinear(vector<bs>& A, vi& b, bs& x, int m) { int n = sz(A), rank = 0, br;  $assert(m \le sz(x));$ vi col(m); iota(all(col), 0); rep(i,0,n) { for (br=i; br<n; ++br) if (A[br].any()) break;</pre> **if** (br == n) { rep(j,i,n) if(b[j]) return -1; break; int bc = (int)A[br].\_Find\_next(i-1); swap(A[i], A[br]); swap(b[i], b[br]); swap(col[i], col[bc]); rep(j, 0, n) **if**  $(A[j][i] != A[j][bc]) {$ A[j].flip(i); A[j].flip(bc); rep(j,i+1,n) if (A[j][i]) { b[j] ^= b[i]; A[j] ^= A[i]; rank++; x = bs(); for (int i = rank; i--;) { if (!b[i]) continue; x[col[i]] = 1;rep(j,0,i) b[j] ^= A[j][i]; return rank; // (multiple solutions if rank < m)

#### MatrixInverse.h

**Description:** Invert matrix A. Returns rank: result is stored in A unless singular (rank < n). Can easily be extended to prime moduli; for prime powers, repeatedly set  $A^{-1} = A^{-1}(2I - AA^{-1}) \pmod{p^k}$  where  $A^{-1}$  starts as the inverse of A mod p, and k is doubled in each step.

Time:  $\mathcal{O}(n^3)$ ebfff6, 35 lines int matInv(vector<vector<double>>& A) { int n = sz(A); vi col(n); vector<vector<double>> tmp(n, vector<double>(n)); rep(i, 0, n) tmp[i][i] = 1, col[i] = i;rep(i,0,n) { int r = i, c = i; rep(j,i,n) rep(k,i,n)**if** (fabs(A[j][k]) > fabs(A[r][c])) r = j, c = k;if (fabs(A[r][c]) < 1e-12) return i;</pre> A[i].swap(A[r]); tmp[i].swap(tmp[r]); rep(j,0,n) swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]); swap(col[i], col[c]); double v = A[i][i];  $rep(j, i+1, n) {$ double f = A[j][i] / v;A[j][i] = 0;rep(k, i+1, n) A[j][k] -= f\*A[i][k];

rep(k,0,n) tmp[j][k] -= f\*tmp[i][k];

```
rep(j,i+1,n) A[i][j] /= v;
  rep(j,0,n) tmp[i][j] /= v;
 A[i][i] = 1;
for (int i = n-1; i > 0; --i) rep(j,0,i) {
 double v = A[j][i];
 rep(k,0,n) tmp[j][k] -= v*tmp[i][k];
rep(i,0,n) rep(j,0,n) A[col[i]][col[j]] = tmp[i][j];
```

#### Tridiagonal.h

**Description:** x = tridiagonal(d, p, q, b) solves the equation system

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_{n-1} \end{pmatrix} = \begin{pmatrix} d_0 & p_0 & 0 & 0 & \cdots & 0 \\ q_0 & d_1 & p_1 & 0 & \cdots & 0 \\ 0 & q_1 & d_2 & p_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & q_{n-3} & d_{n-2} & p_{n-2} \\ 0 & 0 & \cdots & 0 & q_{n-2} & d_{n-1} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \end{pmatrix}$$

This is useful for solving problems on the type

$$a_i = b_i a_{i-1} + c_i a_{i+1} + d_i, \ 1 \le i \le n,$$

where  $a_0, a_{n+1}, b_i, c_i$  and  $d_i$  are known. a can then be obtained from

$$\{a_i\}$$
 = tridiagonal( $\{1, -1, -1, ..., -1, 1\}, \{0, c_1, c_2, ..., c_n\}, \{b_1, b_2, ..., b_n, 0\}, \{a_0, d_1, d_2, ..., d_n, a_{n+1}\}$ ).

Fails if the solution is not unique.

If  $|d_i| > |p_i| + |q_{i-1}|$  for all i, or  $|d_i| > |p_{i-1}| + |q_i|$ , or the matrix is positive definite, the algorithm is numerically stable and neither tr nor the check for diag[i] == 0 is needed.

Time:  $\mathcal{O}(N)$ 8f9fa8, 26 lines

```
typedef double T;
vector<T> tridiagonal (vector<T> diag, const vector<T>& super,
    const vector<T>& sub, vector<T> b) {
  int n = sz(b); vi tr(n);
  rep(i, 0, n-1) {
    if (abs(diag[i]) < 1e-9 * abs(super[i])) { // diag[i] == 0
      b[i+1] -= b[i] * diag[i+1] / super[i];
      if (i+2 < n) b[i+2] -= b[i] * sub[i+1] / super[i];</pre>
      diag[i+1] = sub[i]; tr[++i] = 1;
      diag[i+1] -= super[i]*sub[i]/diag[i];
      b[i+1] -= b[i]*sub[i]/diag[i];
 for (int i = n; i--;) {
   if (tr[i]) {
     swap(b[i], b[i-1]);
      diag[i-1] = diag[i];
      b[i] /= super[i-1];
    } else {
     b[i] /= diag[i];
      if (i) b[i-1] -= b[i] * super[i-1];
 return b;
```

# 4.4 Fourier transforms

FastFourierTransform.h

**Description:** fft(a) computes  $\hat{f}(k) = \sum_{x} a[x] \exp(2\pi i \cdot kx/N)$  for all k. N must be a power of 2. Useful for convolution: conv(a, b) = c, where  $c[x] = \sum a[i]b[x-i]$ . For convolution of complex numbers or more than two vectors: FFT, multiply pointwise, divide by n, reverse(start+1, end), FFT back. Rounding is safe if  $(\sum a_i^2 + \sum b_i^2) \log_2 N < 9 \cdot 10^{14}$  (in practice  $10^{16}$ ; higher for random inputs). Otherwise, use NTT/FFTMod. **Time:**  $O(N \log N)$  with  $N = |A| + |B| (\sim 1s \text{ for } N = 2^{22})$ 

```
typedef complex<double> C;
typedef vector<double> vd;
void fft(vector<C>& a) {
  int n = sz(a), L = 31 - builtin clz(n);
  static vector<complex<long double>> R(2, 1);
  static vector<C> rt(2, 1); // (^ 10% faster if double)
  for (static int k = 2; k < n; k \neq 2) {
   R.resize(n); rt.resize(n);
   auto x = polar(1.0L, acos(-1.0L) / k);
    rep(i,k,2*k) rt[i] = R[i] = i&1 ? R[i/2] * x : R[i/2];
  vi rev(n);
  rep(i, 0, n) \ rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
  for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) rep(j, 0, k) {
     Cz = rt[j+k] * a[i+j+k]; // (25\% faster if hand-rolled)
     a[i + j + k] = a[i + j] - z;
     a[i + j] += z;
vd conv(const vd& a, const vd& b) {
  if (a.empty() || b.empty()) return {};
  vd res(sz(a) + sz(b) - 1);
  int L = 32 - __builtin_clz(sz(res)), n = 1 << L;</pre>
  vector<C> in(n), out(n);
  copy(all(a), begin(in));
  rep(i,0,sz(b)) in[i].imag(b[i]);
  fft(in);
  for (C& x : in) x \star = x;
  rep(i, 0, n) out[i] = in[-i & (n - 1)] - conj(in[i]);
  rep(i, 0, sz(res)) res[i] = imag(out[i]) / (4 * n);
  return res;
```

#### FastFourierTransformMod.h

Description: Higher precision FFT, can be used for convolutions modulo arbitrary integers as long as  $N \log_2 N \cdot \text{mod} < 8.6 \cdot 10^{14}$  (in practice  $10^{16}$  or higher). Inputs must be in [0, mod).

**Time:**  $\mathcal{O}(N \log N)$ , where N = |A| + |B| (twice as slow as NTT or FFT) "FastFourierTransform.h"

```
typedef vector<ll> v1;
template<int M> vl convMod(const vl &a, const vl &b) {
 if (a.empty() || b.empty()) return {};
  vl res(sz(a) + sz(b) - 1);
  int B=32-__builtin_clz(sz(res)), n=1<<B, cut=int(sqrt(M));</pre>
  vector<C> L(n), R(n), outs(n), outl(n);
  rep(i,0,sz(a)) L[i] = C((int)a[i] / cut, (int)a[i] % cut);
  rep(i,0,sz(b)) R[i] = C((int)b[i] / cut, (int)b[i] % cut);
  fft(L), fft(R);
  rep(i,0,n) {
   int j = -i \& (n - 1);
   outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);
   outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;
  fft(outl), fft(outs);
  rep(i, 0, sz(res)) {
    11 \text{ av} = 11(\text{real}(\text{outl}[i]) + .5), \text{ cv} = 11(\text{imag}(\text{outs}[i]) + .5);
   11 bv = 11(imag(out1[i])+.5) + 11(real(outs[i])+.5);
    res[i] = ((av % M * cut + bv) % M * cut + cv) % M;
```

```
return res;
```

# NumberTheoreticTransform.h

**Description:**  $\operatorname{ntt}(a)$  computes  $\hat{f}(k) = \sum_{x} a[x]g^{xk}$  for all k, where  $g = \sum_{x} a[x]g^{xk}$  $root^{(mod-1)/N}$ . N must be a power of 2. Useful for convolution modulo specific nice primes of the form  $2^a b + 1$ , where the convolution result has size at most  $2^a$ . For arbitrary modulo, see FFTMod. conv(a, b) = c, where  $c[x] = \sum a[i]b[x-i]$ . For manual convolution: NTT the inputs, multiply pointwise, divide by n, reverse(start+1, end), NTT back. Inputs must be in [0, mod).

```
Time: \mathcal{O}(N \log N)
"../number-theory/ModPow.h"
const 11 mod = (119 << 23) + 1, root = 62; // = 998244353
// For p < 2^30 there is also e.g. 5 << 25, 7 << 26, 479 << 21
// and 483 << 21 (same root). The last two are > 10^9.
typedef vector<ll> v1;
void ntt(vl &a) {
 int n = sz(a), L = 31 - __builtin_clz(n);
  static v1 rt(2, 1);
  for (static int k = 2, s = 2; k < n; k *= 2, s++) {
    rt.resize(n);
    ll z[] = \{1, modpow(root, mod >> s)\};
    rep(i,k,2*k) rt[i] = rt[i / 2] * z[i & 1] % mod;
 vi rev(n);
  rep(i,0,n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
  for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
     11 z = rt[j + k] * a[i + j + k] % mod, &ai = a[i + j];
     a[i + j + k] = ai - z + (z > ai ? mod : 0);
     ai += (ai + z >= mod ? z - mod : z);
vl conv(const vl &a, const vl &b) {
 if (a.empty() || b.empty()) return {};
  int s = sz(a) + sz(b) - 1, B = 32 - builtin clz(s), n = 1
  int inv = modpow(n, mod - 2);
 vl L(a), R(b), out(n);
 L.resize(n), R.resize(n);
  ntt(L), ntt(R);
  rep(i,0,n) out[-i & (n-1)] = (11)L[i] * R[i] % mod * inv %
      mod;
  ntt(out);
  return {out.begin(), out.begin() + s};
```

#### FastSubsetTransform.h

Description: Transform to a basis with fast convolutions of the form  $c[z] = \sum_{z = x \oplus y} a[x] \cdot b[y], \text{ where } \oplus \text{ is one of AND, OR, XOR.}$  The size of a must be a power of two.

```
Time: \mathcal{O}(N \log N)
```

```
464cf3, 16 lines
void FST(vi& a, bool inv) {
  for (int n = sz(a), step = 1; step < n; step *= 2) {
    for (int i = 0; i < n; i += 2 * step) rep(j,i,i+step) {
      int &u = a[j], &v = a[j + step]; tie(u, v) =
       inv ? pii(v - u, u) : pii(v, u + v); // AND
       inv ? pii(v, u - v) : pii(u + v, u); // OR
       pii(u + v, u - v);
  if (inv) for (int& x : a) x /= sz(a); // XOR only
vi conv(vi a, vi b) {
```

```
FST(a, 0); FST(b, 0);
rep(i, 0, sz(a)) a[i] *= b[i];
FST(a, 1); return a;
```

# Number theory (5)

# 5.1 Modular arithmetic

#### ModMulLL.java

**Description:** Calcula  $a \cdot b \mod c$  (or  $a^b \mod c$ ) para  $0 < a, b < c < 7.2 \cdot 10^{18}$ . Time:  $\mathcal{O}(1)$  para modmul,  $\mathcal{O}(\log b)$  para modpow

```
static int BITS=10;
//Si todos los numeros son menores a 2^k BITS=64-k;
static long po = 1 << BITS;</pre>
static long mod_mul(long a, long b, long mod) {
        long x = a * (b & (po-1)) %mod;
        while ((b >>= BITS) > 0) {
            a = (a \ll BITS) % mod;
            x += (a * (b & (po - 1))) % mod;
        return x % mod;
static long mod_pow(long a,long b, long mod) {
       long res = 1;
        a = a % mod;
        while (b > 0)
            if ((b \& 1) > 0) res = (res * a) % mod;
            b = b >> 1;
            a = (a * a) % mod;
        return res;
```

#### ModInverse.java

**Description:** Calcula x tal que a \* x = 1 mod m a y m son coprimos Time:  $\mathcal{O}(log(m))$ 

```
public class ModInverse {
    // Returns modulo inverse of a with respect to m using
         extended Euclid
    // Algorithm Assumption: a and m are coprimes, i.e., qcd(a,
          m) = 1
    static int modInverse(int a, int m)
        int m0 = m;
        int v = 0, x = 1;
        if (m == 1) return 0;
        while (a > 1) {
            // q is quotient
            int q = a / m;
            int t = m;
            // m is remainder now, process same as Euclid's
                 algo
            m = a % m;
            a = t;
            t = y;
            // Update x and y
            y = x - q * y;
            x = t;
        // Make x positive
        if (x < 0)
            x += m0;
        return x;
```

q = qs \* qs % p;

x = x \* gs % p;

```
URJC - Teamto de Verano
ModLog.h
Description: Returns the smallest x > 0 s.t. a^x = b \pmod{m}, or -1 if no
such x exists. modLog(a,1,m) can be used to calculate the order of a.
Time: \mathcal{O}(\sqrt{m})
                                                         c040b8, 11 lines
11 modLog(ll a, ll b, ll m) {
 unordered_map<11, 11> A;
  while (j <= n && (e = f = e * a % m) != b % m)
   A[e * b % m] = j++;
  if (e == b % m) return j;
  if (__gcd(m, e) == __gcd(m, b))
    rep(i, 2, n+2) if (A.count(e = e * f % m))
      return n * i - A[e];
  return -1;
ModSum.h
Description: Sums of mod'ed arithmetic progressions. modsum(to, c, k, m) = \sum_{i=0}^{\rm to-1} (ki+c)\%m. divsum is similar but for
floored division.
Time: \log(m), with a large constant.
                                                         5c5bc5, 16 lines
typedef unsigned long long ull;
ull sumsq(ull to) { return to / 2 * ((to-1) | 1); }
ull divsum(ull to, ull c, ull k, ull m) {
  ull res = k / m * sumsq(to) + c / m * to;
  k %= m; c %= m;
  if (!k) return res;
  ull to2 = (to * k + c) / m;
  return res + (to - 1) * to2 - divsum(to2, m-1 - c, m, k);
11 modsum(ull to, 11 c, 11 k, 11 m) {
 c = ((c % m) + m) % m;
  k = ((k % m) + m) % m;
  return to * c + k * sumsq(to) - m * divsum(to, c, k, m);
ModSart.h
Description: Tonelli-Shanks algorithm for modular square roots. Finds x
s.t. x^2 = a \pmod{p} (-x gives the other solution).
Time: \mathcal{O}(\log^2 p) worst case, \mathcal{O}(\log p) for most p
"ModPow.h"
                                                         19a793, 24 lines
ll sqrt(ll a, ll p) {
  a %= p; if (a < 0) a += p;
 if (a == 0) return 0;
  assert (modpow(a, (p-1)/2, p) == 1); // else no solution
  if (p % 4 == 3) return modpow(a, (p+1)/4, p);
  // a^{(n+3)/8} \text{ or } 2^{(n+3)/8} * 2^{(n-1)/4} \text{ works if } p \% 8 == 5
  11 s = p - 1, n = 2;
  int r = 0, m;
  while (s % 2 == 0)
   ++r, s /= 2;
  while (modpow(n, (p-1) / 2, p) != p-1) ++n;
  11 x = modpow(a, (s + 1) / 2, p);
  11 b = modpow(a, s, p), g = modpow(n, s, p);
  for (;; r = m) {
    11 t = b;
    for (m = 0; m < r && t != 1; ++m)
     t = t * t % p;
    if (m == 0) return x;
    11 \text{ gs} = \text{modpow}(g, 1LL \ll (r - m - 1), p);
```

```
b = b * q % p;
5.2 Primality
SieveOfEratosthenes.iava
Description: Generar primos hasta cierto límite
Time: \lim_{m \to \infty} 100'000'000 \approx 0.8 \text{ s}.
                                                      90dfae, 16 lines
public class SieveOfEratosthenes {
    static LinkedList<Integer> sieveOfErastosthenes(int n) {
        boolean prime[] = new boolean[n+1];
        LinkedList<Integer>out = new LinkedList<>();
        for(int p=2; p*p<=n; p++)
            if(!prime[p]) {
                for (int i = p * p; i <= n; i += p)
                    prime[i] = true;
        //Metemos los primos a una lista. prime[p] es falso si
             p es primo.
        for(int i=2; i<=n; i++)</pre>
            if(!prime[i])
                out.add(i);
        return out:
   }
SieveOfErastosthenesFast.java
Description: Generar primos hasta cierto límite
Time: \mathcal{O}(n)
                                                      be8dd0, 37 lines
import java.util.Vector;
class SieveOfErastosthenesFast {
    static final int MAX SIZE = 1000001;
    // SPF: quarda el factor primo mas pequeno de un numero
    //prime: vector con todos los numeros primos
    static Vector<Boolean>isprime = new Vector<>(MAX SIZE);
    static Vector<Integer>prime = new Vector<>();
    static Vector<Integer>SPF = new Vector<>(MAX SIZE);
    // method generate all prime number less then N in O(n)
    static void manipulated_seive(int N) {
        for (int i = 0; i <= N; i++) {</pre>
            isprime.add(true);
            SPF.add(2);
        // 0 and 1 are not prime
        isprime.set(0, false);
        isprime.set(1, false);
        // Fill rest of the entries
        for (int i=2; i<=N ; i++) {</pre>
            // If isPrime[i] = True then i is
            // prime number
            if (isprime.get(i)) {
                // put i into prime[] vector
                prime.add(i);
                // A prime number is its own smallest prime
                     factor
                SPF.set(i, i);
            // Remove all multiples of i*prime[j] which are not
                  prime\ by\ making\ isPrime[i*prime[j]] = false
            // and put smallest prime factor of i*Prime[j] as
                 prime[j]
            // [for exp : let i = 5, j = 0, prime[j] = 2 [ i*
                 prime[j] = 10
            // so smallest prime factor of '10' is '2' that is
                 prime[j]
            // this loop run only one time for number which are
                  not prime
```

```
for (int j = 0; j < prime.size() && i * prime.get(j</pre>
                  ) < N && prime.get(j) <= SPF.get(i); j++) {
                 isprime.set(i * prime.get(j), false);
                 // put smallest prime factor of i*prime[j]
                 SPF.set(i * prime.get(j), prime.get(j));
MillerRabin.java
Description: Determina de forma lineal si un numero es primo, funcionali-
dad grantizada para numeros menores a 7* 10**18
Usage: ModMulLL.java
Time: 7 veces la complejidad de a^b modc
                                                        e3c2be, 21 lines
static boolean miillerTest(int d, int n) {
        int a = 2 + (int) (Math.random() % (n - 4));
        int x = power(a, d, n);
        if (x == 1 \mid | x == n - 1) return true;
        while (d != n - 1) {
            x = (x * x) % n;
            d *= 2;
            if (x == 1)return false;
             if (x == n - 1) return true;
        return false;
static boolean isPrime(int n, int k) {
        if (n <= 1 | | n == 4) return false;</pre>
        if (n <= 3) return true;</pre>
        int d = n - 1;
        while (d % 2 == 0) d /= 2;
        for (int i = 0; i < k; i++) if (!miillerTest(d, n))
             return false;
        return true;
Factor.h
Description: Pollard-rho randomized factorization algorithm. Returns
prime factors of a number, in arbitrary order (e.g. 2299 -> {11, 19, 11}).
Time: \mathcal{O}\left(n^{1/4}\right), less for numbers with small factors.
"ModMulLL.h", "MillerRabin.h"
                                                        a33cf6, 18 lines
ull pollard(ull n) {
  auto f = [n] (ull x) { return modmul(x, x, n) + 1; };
  ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
  while (t++ % 40 || __gcd(prd, n) == 1) {
    if (x == y) x = ++i, y = f(x);
    if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q;
    x = f(x), y = f(f(y));
  return __gcd(prd, n);
vector<ull> factor(ull n) {
  if (n == 1) return {};
  if (isPrime(n)) return {n};
  ull x = pollard(n);
  auto 1 = factor(x), r = factor(n / x);
  l.insert(l.end(), all(r));
  return 1;
5.3 Divisibility
Euclid.iava
Description: Finds \{x, y, d\} s.t. ax + by = d = gcd(a, b). <sub>6aba01, 11 lines</sub>
static BigInteger[] euclid(BigInteger a, BigInteger b) {
  BigInteger x = BigInteger.ONE, yy = x;
  BigInteger y = BigInteger.ZERO, xx = y;
  while (b.signum() != 0) {
```

# CRT phiFunction ContinuedFractions FracBinarySearch

```
BigInteger q = a.divide(b), t = b;
b = a.mod(b); a = t;
t = xx; xx = x.subtract(q.multiply(xx)); x = t;
t = yy; yy = y.subtract(q.multiply(yy)); y = t;
}
return new BigInteger[]{x, y, a};
}
```

## CRT.java

**Description:** Teorema chino de los restos. Usa ModInverse **Time:**  $\mathcal{O}(n * loq(n))$ 

10128a, 23 lines

```
public class CRT {
    // k es el tamanyo de num[] y rem[].
    // Returns el numero minimo.
    // x tal que:
    // x \% num[0] = rem[0],

// x \% num[1] = rem[1],
    // x \% num[k-2] = rem[k-1]
    // Asumimos que: Los numeros en num[] son coprimos dos a
         dos (mcd de cada par es 1)
    static int findMinX(int num[], int rem[], int k) {
        // Compute product of all numbers
        int prod = 1;
        for (int i = 0; i < k; i++)</pre>
             prod *= num[i];
        // Initialize result
        int result = 0;
        // Apply above formula
        for (int i = 0; i < k; i++) {</pre>
            int pp = prod / num[i];
             result += rem[i] * ModInverse.modInverse(pp, num[i
        return result % prod;
    }}
```

#### 5.3.1 Identidad de Bezut

Para  $a \neq b \neq 0$ , entonces d = gcd(a, b) es el menor entero positivo para el que hay soluciones enteras de

$$ax + by = d$$

SI (x, y) es una solucion, entonces todas las soluciones enteras vienen dadas por:

$$\left(x + \frac{kb}{\gcd(a,b)}, y - \frac{ka}{\gcd(a,b)}\right), \quad k \in \mathbb{Z}$$

#### phiFunction.java

**Description:** Euler's  $\phi$  function is defined as  $\phi(n) := \#$  of positive integers  $\leq n$  that are coprime with n.  $\phi(1) = 1$ , p prime  $\Rightarrow \phi(p^k) = (p-1)p^{k-1}$ , m, n coprime  $\Rightarrow \phi(mn) = \phi(m)\phi(n)$ . If  $n = p_1^{k_1}p_2^{k_2}...p_r^{k_r}$  then  $\phi(n) = (p_1-1)p_1^{k_1-1}...(p_r-1)p_r^{k_r-1}$ .  $\phi(n) = n \cdot \prod_{p|n} (1-1/p)$ .  $\sum_{d|n} \phi(d) = n$ ,  $\sum_{1 \leq k \leq n, \gcd(k,n)=1} k = n\phi(n)/2, n > 1$  **Euler's thm:** a, n coprime  $\Rightarrow a^{\phi(n)} \equiv 1 \pmod{n}$ . **Fermat's little thm:** p prime  $\Rightarrow a^{\phi(n)} \equiv 1 \pmod{p} \ \forall a$ .

```
static int phi(int n)
   int result = n;
   for (int p = 2; p * p <= n; ++p)
   {
      if (n % p == 0) {
        while (n % p == 0) n /= p;
      }
}</pre>
```

```
result -= result / p;
}

if (n > 1) result -= result / n;
return result;
}
```

# 5.4 Fractions

#### ContinuedFractions.h

**Description:** Given N and a real number  $x \ge 0$ , finds the closest rational approximation p/q with  $p, q \le N$ . It will obey  $|p/q - x| \le 1/qN$ .

For consecutive convergents,  $p_{k+1}q_k - q_{k+1}p_k = (-1)^k$ .  $(p_k/q_k$  alternates between > x and < x.) If x is rational, y eventually becomes  $\infty$ ; if x is the root of a degree 2 polynomial the a's eventually become cyclic. Time:  $\mathcal{O}(\log N)$ 

me:  $\mathcal{O}(\log N)$  dd6c5e, 21 line

```
typedef double d: // for N \sim 1e7: long double for N \sim 1e9
pair<11, 11> approximate(d x, 11 N) {
 11 LP = 0, LQ = 1, P = 1, Q = 0, inf = LLONG_MAX; d y = x;
   ll lim = min(P ? (N-LP) / P : inf, Q ? (N-LQ) / Q : inf),
       a = (ll) floor(v), b = min(a, lim),
       NP = b*P + LP, NO = b*O + LO;
    if (a > b) {
      // If b > a/2, we have a semi-convergent that gives us a
      // better approximation; if b = a/2, we *may* have one.
      // Return {P, Q} here for a more canonical approximation.
      return (abs(x - (d)NP / (d)NQ) < abs(x - (d)P / (d)Q)) ?
        make_pair(NP, NQ) : make_pair(P, Q);
    if (abs(y = 1/(y - (d)a)) > 3*N) {
      return {NP, NQ};
   LP = P; P = NP;
   LQ = Q; Q = NQ;
```

#### FracBinarySearch.h

**Description:** Given f and N, finds the smallest fraction  $p/q \in [0,1]$  such that f(p/q) is true, and  $p,q \leq N$ . You may want to throw an exception from f if it finds an exact solution, in which case N can be removed.

Usage: fracBS([] (Frac f) { return f.p>=3\*f.q; }, 10); // {1,3} Time:  $\mathcal{O}(\log(N))$  27ab3e, 25 lines

```
struct Frac { ll p, q; };
template<class F>
Frac fracBS(F f, 11 N) {
 bool dir = 1, A = 1, B = 1;
 Frac lo{0, 1}, hi{1, 1}; // Set hi to 1/0 to search (0, N)
 if (f(lo)) return lo;
 assert (f(hi));
 while (A || B)
   11 adv = 0, step = 1; // move hi if dir, else lo
    for (int si = 0; step; (step *= 2) >>= si) {
     Frac mid{lo.p * adv + hi.p, lo.q * adv + hi.q};
     if (abs(mid.p) > N || mid.q > N || dir == !f(mid)) {
       adv -= step; si = 2;
   hi.p += lo.p * adv;
   hi.q += lo.q * adv;
   dir = !dir;
   swap(lo, hi);
   A = B; B = !!adv;
```

return dir ? hi : lo;
}

# 5.5 Ternas Pitagoricas

Las ternas pitagoricas son generadas de forma unica por

$$a = k \cdot (m^2 - n^2), \ b = k \cdot (2mn), \ c = k \cdot (m^2 + n^2),$$

con m > n > 0, k > 0,  $m \perp n$ , ni m o n par.

### 5.6 Primos

p=962592769 es  $2^{21}\mid p-1$ , puede ser util. Para hashing usar 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52-bit). Hay 78498 primos menores que 1 000 000.

Raices primitivas existen modulo cualquier potencia prima  $p^a$ , excepto para p=2, a>2, y hay muchos  $\phi(\phi(p^a))$ . Para p=2, a>2, el grupo  $\mathbb{Z}_{2^a}^{\times}$  es isomorfo a  $\mathbb{Z}_2 \times \mathbb{Z}_{2^{a-2}}$ .

# 5.7 Estimates

 $\sum_{d|n} d = O(n \log \log n).$ 

EL numero de divisores de n es cercano a 100 para n < 5e4, 500 para n < 1e7, 2000 para n < 1e10, 200 000 para n < 1e19.

#### 5.8 Mobius Function

$$\mu(n) = \begin{cases} 0 & n \text{ no tiene factores primos repetidos} \\ 1 & n \text{ tiene un numero par de factores primos} \\ -1 & n \text{ tiene un numero impar de factores primos} \end{cases}$$

Mobius Inversion:

$$g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d)g(n/d)$$

Otras formulas utiles:

La suma sobre todos los divisores positivos de n de la función de Mobius es cero excepto cuando n = 1.  $\sum_{d|n} \mu(d) = [n=1]$  (Muy util)

$$g(n) = \sum_{n|d} f(d) \Leftrightarrow f(n) = \sum_{n|d} \mu(d/n)g(d)$$

$$g(n) = \sum_{1 \le m \le n} f(\left| \frac{n}{m} \right|) \Leftrightarrow f(n) = \sum_{1 \le m \le n} \mu(m) g(\left| \frac{n}{m} \right|)$$

# Combinatorial (6)

# 6.1 Permutations

### 6.1.1 Factorial

|    |      |      |      |        |        |          | 10           |    |
|----|------|------|------|--------|--------|----------|--------------|----|
|    |      |      |      |        |        |          | 3628800      |    |
| n  | 11   | 12   | 13   | 14     | 15     | 16       | 17           |    |
| n! |      |      |      |        |        |          | 13 3.6e14    |    |
| n  | 20   | 25   | 30   | 40     | 50 1   | 00 15    | 0 171        |    |
| n! | 2e18 | 2e25 | 3e32 | 8e47 3 | e64 9e | 157  6e2 | $62 > DBL_M$ | AX |

#### IntPerm.h

**Description:** Permutation -> integer conversion. (Not order preserving.) Integer -> permutation can use a lookup table.

Time:  $\mathcal{O}\left(n\right)$ 

#### **6.1.2** Cycles

Let  $g_S(n)$  be the number of *n*-permutations whose cycle lengths all belong to the set S. Then

$$\sum_{n=0}^{\infty} g_S(n) \frac{x^n}{n!} = \exp\left(\sum_{n \in S} \frac{x^n}{n}\right)$$

### 6.1.3 Derangements

Permutations of a set such that none of the elements appear in their original position.

$$D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n = \left\lfloor \frac{n!}{e} \right\rfloor$$

#### 6.1.4 Burnside's lemma

Given a group G of symmetries and a set X, the number of elements of X up to symmetry equals

$$\frac{1}{|G|} \sum_{g \in G} |X^g|,$$

where  $X^g$  are the elements fixed by g (g.x = x).

If f(n) counts "configurations" (of some sort) of length n, we can ignore rotational symmetry using  $G = \mathbb{Z}_n$  to get

$$g(n) = \frac{1}{n} \sum_{k=0}^{n-1} f(\gcd(n,k)) = \frac{1}{n} \sum_{k|n} f(k)\phi(n/k).$$

# 6.2 Partitions and subsets

#### 6.2.1 Partition function

Number of ways of writing n as a sum of positive integers, disregarding the order of the summands.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$

$$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$$

#### 6.2.2 Lucas' Theorem

Let n, m be non-negative integers and p a prime. Write  $n = n_k p^k + ... + n_1 p + n_0$  and  $m = m_k p^k + ... + m_1 p + m_0$ . Then  $\binom{n}{m} \equiv \prod_{i=0}^k \binom{n_i}{m_i} \pmod{p}$ .

#### 6.2.3 Binomials

multinomial.h

```
Description: Computes \binom{k_1+\cdots+k_n}{k_1,k_2,\ldots,k_n} = \frac{(\sum k_i)!}{k_1!k_2!\ldots k_n!}.

11 multinomial (vi& v) {
    11 c = 1, m = v.empty() ? 1 : v[0];
    rep(i,1,sz(v)) rep(j,0,v[i])
    c = c * ++m / (j+1);
    return c;
}
```

# 6.3 General purpose numbers

#### 6.3.1 Bernoulli numbers

EGF of Bernoulli numbers is  $B(t) = \frac{t}{e^t - 1}$  (FFT-able).  $B[0, \ldots] = [1, -\frac{1}{2}, \frac{1}{6}, 0, -\frac{1}{30}, 0, \frac{1}{42}, \ldots]$ 

Sums of powers:

$$\sum_{i=1}^{n} n^{m} = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_{k} \cdot (n+1)^{m+1-k}$$

Euler-Maclaurin formula for infinite sums:

$$\sum_{i=m}^{\infty} f(i) = \int_{m}^{\infty} f(x)dx - \sum_{k=1}^{\infty} \frac{B_k}{k!} f^{(k-1)}(m)$$

$$\approx \int_{m}^{\infty} f(x)dx + \frac{f(m)}{2} - \frac{f'(m)}{12} + \frac{f'''(m)}{720} + O(f^{(5)}(m))$$

# 6.3.2 Stirling numbers of the first kind

Number of permutations on n items with k cycles.

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k), \ c(0,0) = 1$$
$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1)\dots(x+n-1)$$

c(8, k) = 8, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1 $c(n, 2) = 0, 0, 1, 3, 11, 50, 274, 1764, 13068, 109584, \dots$ 

#### 6.3.3 Eulerian numbers

Number of permutations  $\pi \in S_n$  in which exactly k elements are greater than the previous element. k j:s s.t.  $\pi(j) > \pi(j+1)$ , k+1 j:s s.t.  $\pi(j) \geq j$ , k j:s s.t.  $\pi(j) > j$ .

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n, n - 1) = 1$$

$$E(n,k) = \sum_{j=0}^{k} (-1)^{j} \binom{n+1}{j} (k+1-j)^{n}$$

# 6.3.4 Stirling numbers of the second kind

Partitions of n distinct elements into exactly k groups.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

$$S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^{n}$$

#### 6.3.5 Bell numbers

Total number of partitions of n distinct elements. B(n) = 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, .... For <math>p prime,

$$B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$$

## 6.3.6 Labeled unrooted trees

```
# on n vertices: n^{n-2}
# on k existing trees of size n_i: n_1 n_2 \cdots n_k n^{k-2}
# with degrees d_i: (n-2)!/((d_1-1)!\cdots(d_n-1)!)
```

# 6.3.7 Catalan numbers

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, \ C_{n+1} = \frac{2(2n+1)}{n+2} C_n, \ C_{n+1} = \sum_{i=1}^{n} C_i C_{n-i}$$

 $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$ 

- sub-diagonal monotone paths in an  $n \times n$  grid.
- strings with n pairs of parenthesis, correctly nested.
- binary trees with with n+1 leaves (0 or 2 children).
- ordered trees with n+1 vertices.
- ways a convex polygon with n + 2 sides can be cut into triangles by connecting vertices with straight lines.
- $\bullet$  permutations of [n] with no 3-term increasing subseq.

# Geometry (7)

# 7.1 Geometric primitives

#### Point.h

**Description:** Class to handle points in the plane. T can be e.g. double or long long. (Avoid int.)

```
template <class T> int sgn(T x) { return (x > 0) - (x < 0); }
template<class T>
struct Point {
    typedef Point P;
    T x, y;
    explicit Point(T x=0, T y=0) : x(x), y(y) {}
    bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }
    bool operator=(P p) const { return tie(x,y)==tie(p.x,p.y); }
    P operator+(P p) const { return P(x+p.x, y+p.y); }
    P operator-(P p) const { return P(x-p.x, y-p.y); }
    P operator-(T d) const { return P(x+d, y+d); }
    P operator-(T d) const { return P(x,d, y+d); }
</pre>
```

```
T dot(P p) const { return x*p.x + y*p.y; }
T cross(P p) const { return x*p.y - y*p.x; }
T cross(P a, P b) const { return (a-*this).cross(b-*this); }
T dist2() const { return x*x + y*y; }
double dist() const { return sqrt((double)dist2()); }
// angle to x-axis in interval [-pi, pi]
double angle() const { return atan2(y, x); }
P unit() const { return *this/dist(); } // makes dist()=1
P perp() const { return P(-y, x); } // rotates +90 degrees
P normal() const { return perp().unit(); }
// returns point rotated 'a' radians ccw around the origin
P rotate(double a) const {
   return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }
friend ostream& operator<<(ostream& os, P p) {
    return os << "(" << p.x << "," << p.y << ")"; }
;</pre>
```

## lineDistance.h

#### Description:

Returns the signed distance between point p and the line containing points a and b. Positive value on left side and negative on right as seen from a towards b. a==b gives nan. P is supposed to be Point<T> or Point3D<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long. Using Point3D will always give a non-negative distance. For Point3D, call .dist on the result of the cross product.



```
"Point.h" f6bf6b, 4 lines
template < class P >
double lineDist(const P& a, const P& b, const P& p) {
  return (double) (b-a).cross(p-a)/(b-a).dist();
}
```

## SegmentDistance.h

#### Description:

Returns the shortest distance between point p and the line segment from point s to e.

Usage: Point < double > a, b(2,2), p(1,1); bool on Segment = segDist(a,b,p) < 1e-10;



int.h" 5c88f4, 6 lines

```
typedef Point<double> P;
double segDist(P& s, P& e, P& p) {
   if (s==e) return (p-s).dist();
   auto d = (e-s).dist2(), t = min(d,max(.0,(p-s).dot(e-s)));
   return ((p-s)*d-(e-s)*t).dist()/d;
```

#### SegmentIntersection.h

#### Description:

If a unique intersection point between the line segments going from s1 to e1 and from s2 to e2 exists then it is returned. If no intersection point exists an empty vector is returned. If infinitely many exist a vector with 2 elements is returned, containing the endpoints of the common line segment. The wrong position will be returned if P is Point<|l> and the intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or long long.



```
out for overflow if using int or long long.

Usage: vector<P> inter = segInter(s1,e1,s2,e2);

if (sz(inter)==1)

cout << "segments intersect at " << inter[0] << end];

"Point b" "OnSegment b" 94577
```

```
set<P> s;
if (onSegment(c, d, a)) s.insert(a);
if (onSegment(c, d, b)) s.insert(b);
if (onSegment(a, b, c)) s.insert(c);
if (onSegment(a, b, d)) s.insert(d);
return {all(s)};
```

#### lineIntersection.h

#### Description:



#### sideOf.h

**Description:** Returns where p is as seen from s towards e.  $1/0/-1 \Leftrightarrow \text{left/on}$  line/right. If the optional argument eps is given 0 is returned if p is within distance eps from the line. P is supposed to be Point<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long.

```
Usage: bool left = sideOf(p1,p2,q) ==1;
"Point.h"
```

```
template < class P >
int sideOf(P s, P e, P p) { return sgn(s.cross(e, p)); }
template < class P >
int sideOf(const P& s const P& e const P& p double ens) {
```

```
template < class P>
int sideOf(const P& s, const P& e, const P& p, double eps) {
  auto a = (e-s).cross(p-s);
  double 1 = (e-s).dist()*eps;
  return (a > 1) - (a < -1);
}</pre>
```

## OnSegment.h

Description: Returns true iff p lies on the line segment from s to e. Use  $(segDist(s,e,p) \le psilon)$  instead when using Point double.

# linearTransformation.h Description:

Apply the linear transformation (translation, rotation and scaling) which takes line p0-p1 to line q0-q1 to point r. "Point.h"



3af81c, 9 lines

```
Angle.h
```

**Description:** A class for ordering angles (as represented by int points and a number of rotations around the origin). Useful for rotational sweeping. Sometimes also represents points or vectors.

```
Usage: vector<Angle> \hat{v} = \{w[0], w[0].t360() ...\}; // sorted int j = 0; rep(i,0,n) \{ while (v[j] < v[i].t180()) ++j; \} // sweeps j such that (j-i) represents the number of positively oriented triangles with vertices at 0 and i 00002.35 lines
```

```
struct Angle {
  int x, y;
 int t:
  Angle(int x, int y, int t=0) : x(x), y(y), t(t) {}
  Angle operator-(Angle b) const { return {x-b.x, y-b.y, t}; }
  int half() const {
    assert(x || v);
    return y < 0 || (y == 0 && x < 0);
 Angle t90() const { return \{-y, x, t + (half() \&\& x >= 0)\}; \}
  Angle t180() const { return {-x, -y, t + half()}; }
 Angle t360() const { return {x, y, t + 1}; }
bool operator<(Angle a, Angle b) {</pre>
  // add a. dist2() and b. dist2() to also compare distances
 return make tuple(a.t, a.half(), a.v * (11)b.x) <</pre>
         make_tuple(b.t, b.half(), a.x * (ll)b.y);
// Given two points, this calculates the smallest angle between
// them, i.e., the angle that covers the defined line segment.
pair<Angle, Angle> segmentAngles(Angle a, Angle b) {
 if (b < a) swap(a, b);
  return (b < a.t180() ?
          make_pair(a, b) : make_pair(b, a.t360()));
Angle operator+(Angle a, Angle b) { // point \ a + vector \ b
 Angle r(a.x + b.x, a.y + b.y, a.t);
 if (a.t180() < r) r.t--;</pre>
 return r.t180() < a ? r.t360() : r;</pre>
Angle angleDiff(Angle a, Angle b) { // angle b- angle a
 int tu = b.t - a.t; a.t = b.t;
 return \{a.x*b.x + a.y*b.y, a.x*b.y - a.y*b.x, tu - (b < a)\};
```

## 7.2 Circles

#### CircleIntersection.h

**Description:** Computes the pair of points at which two circles intersect. Returns false in case of no intersection.

# CircleTangents.h

**Description:** Finds the external tangents of two circles, or internal if r2 is negated. Can return 0, 1, or 2 tangents – 0 if one circle contains the other (or overlaps it, in the internal case, or if the circles are the same); 1 if the circles are tangent to each other (in which case .first = .second and the tangent line is perpendicular to the line between the centers). .first and .second give the tangency points at circle 1 and 2 respectively. To find the tangents of a circle with a point set r2 to 0.

"Point.h"

b0153d, 13 lines

```
template < class P >
vector < pair < P, P >> tangents (P c1, double r1, P c2, double r2) {
    P d = c2 - c1;
    double dr = r1 - r2, d2 = d.dist2(), h2 = d2 - dr * dr;
    if (d2 == 0 || h2 < 0) return {};
    vector < pair < P, P >> out;
    for (double sign : {-1, 1}) {
        P v = (d * dr + d.perp() * sqrt(h2) * sign) / d2;
        out.push_back({c1 + v * r1, c2 + v * r2});
    }
    if (h2 == 0) out.pop_back();
    return out;
}
```

#### CirclePolygonIntersection.h

**Description:** Returns the area of the intersection of a circle with a ccw polygon.

Time:  $\mathcal{O}(n)$ 

"../content/geometry/Point.h" alee63, 19 lines

```
typedef Point < double > P;
#define arg(p, g) atan2(p.cross(g), p.dot(g))
double circlePoly(P c, double r, vector<P> ps) {
  auto tri = [&] (P p, P q) {
    auto r2 = r * r / 2;
   Pd = q - p;
   auto a = d.dot(p)/d.dist2(), b = (p.dist2()-r*r)/d.dist2();
    auto det = a * a - b;
   if (det <= 0) return arg(p, q) * r2;</pre>
   auto s = max(0., -a-sqrt(det)), t = min(1., -a+sqrt(det));
   if (t < 0 || 1 <= s) return arg(p, g) * r2;</pre>
   P u = p + d * s, v = p + d * t;
   return arg(p,u) * r2 + u.cross(v)/2 + arg(v,g) * r2;
  auto sum = 0.0;
  rep(i, 0, sz(ps))
   sum += tri(ps[i] - c, ps[(i + 1) % sz(ps)] - c);
 return sum:
```

#### circumcircle.h

#### Description:

The circumcirle of a triangle is the circle intersecting all three vertices. ccRadius returns the radius of the circle going through points A, B and C and ccCenter returns the center of the same circle.

"Point.h"



typedef Point<double> P;
double ccRadius(const P& A, const P& B, const P& C) {
 return (B-A).dist()\*(C-B).dist()\*(A-C).dist()/
 abs((B-A).cross(C-A))/2;
}
P ccCenter(const P& A, const P& B, const P& C) {
 P b = C-A, c = B-A;
 return A + (b\*c.dist2()-c\*b.dist2()).perp()/b.cross(c)/2;

# MinimumEnclosingCircle.h

Description: Computes the minimum circle that encloses a set of points.

```
Time: expected \mathcal{O}\left(n\right)
```

# 7.3 Polygons

#### InsidePolygon.h

**Description:** Returns true if p lies within the polygon. If strict is true, it returns false for points on the boundary. The algorithm uses products in intermediate steps so watch out for overflow.

```
Usage: vector<P> v = {P{4,4}, P{1,2}, P{2,1}};
bool in = inPolygon(v, P{3, 3}, false);
Time: \mathcal{O}(n)
```

```
"Point.h", "OnSegment.h", "SegmentDistance.h"

template<class P>
bool inPolygon(vector<P> &p, P a, bool strict = true) {
   int cnt = 0, n = sz(p);
   rep(i,0,n) {
     P q = p((i + 1) % n];
   if (onSegment(p[i], q, a)) return !strict;
     //or: if (segDist(p[i], q, a) <= eps) return !strict;
   cnt ^= ((a.y<p[i].y) - (a.y<q.y)) * a.cross(p[i], q) > 0;
}
return cnt;
}
```

#### PolygonArea.k

**Description:** Returns twice the signed area of a polygon. Clockwise enumeration gives negative area. Watch out for overflow if using int as T!

"Point.h"

f12300, 6 lines

```
template < class T>
T polygonArea2(vector < Point < T >> & v) {
   T a = v.back().cross(v[0]);
   rep(i,0,sz(v)-1) a += v[i].cross(v[i+1]);
   return a;
}
```

#### PolygonCenter.h

**Description:** Returns the center of mass for a polygon.

#### Time: $\mathcal{O}(n)$

"Point.h"

```
typedef Point<double> P;
P polygonCenter(const vector<P>& v) {
   P res(0, 0); double A = 0;
   for (int i = 0, j = sz(v) - 1; i < sz(v); j = i++) {
      res = res + (v[i] + v[j]) * v[j].cross(v[i]);
      A += v[j].cross(v[i]);
   }
   return res / A / 3;
}</pre>
```

## PolygonCut.h

#### Description:

Returns a vector with the vertices of a polygon with everything to the left of the line going from s to e cut away.

```
Usage: vector<P> p = ...;
p = polygonCut(p, P(0,0), P(1,0));
```



```
"Point.h", "lineIntersection.h" f2b7d4, 13

typedef Point<double> P;
vector<P> polygonCut (const vector<P>& poly, P s, P e) {
  vector<P> res;
  rep(i,0,sz(poly)) {
    P cur = poly[i], prev = i ? poly[i-1] : poly.back();
  bool side = s.cross(e, cur) < 0;
  if (side != (s.cross(e, prev) < 0))
    res.push_back(lineInter(s, e, cur, prev).second);
  if (side)
    res.push_back(cur);
}
return res;</pre>
```

#### ConvexHull.h

#### Description:

Returns a vector of the points of the convex hull in counterclockwise order. Points on the edge of the hull between two other points are not considered part of the hull.



Time:  $\mathcal{O}(n \log n)$ 

```
typedef Point<11> P;
vector<P> convexHull(vector<P> pts) {
   if (sz(pts) <= 1) return pts;
   sort(all(pts));
   vector<P> h(sz(pts)+1);
   int s = 0, t = 0;
   for (int it = 2; it--; s = --t, reverse(all(pts)))
      for (P p: pts) {
      while (t >= s + 2 && h[t-2].cross(h[t-1], p) <= 0) t--;
      h[t++] = p;
   }
   return {h.begin(), h.begin() + t - (t == 2 && h[0] == h[1])};
}</pre>
```

#### HullDiameter.h

**Description:** Returns the two points with max distance on a convex hull (ccw, no duplicate/collinear points).

"Point.h"

c571b8. 12 lines

```
typedef Point<11> P;
array<P, 2> hullDiameter(vector<P> S) {
  int n = sz(S), j = n < 2 ? 0 : 1;
  pair<11, array<P, 2>> res({0, {S[0], S[0]}});
  rep(i, 0, j)
  for (;; j = (j + 1) % n) {
    res = max(res, {(S[i] - S[j]).dist2(), {S[i], S[j]}});
    if ((S[(j + 1) % n] - S[j]).cross(S[i + 1] - S[i]) >= 0)
        break;
    }
  return res.second;
}
```

#### PointInsideHull.h

**Description:** Determine whether a point t lies inside a convex hull (CCW order, with no collinear points). Returns true if point lies within the hull. If strict is true, points on the boundary aren't included.

#### Time: $\mathcal{O}(\log N)$

9706dc, 9 lines

"Point.h", "sideOf.h", "OnSegment.h" 71446b, 14 lines

```
typedef Point<11> P;
```

## LineHullIntersection ClosestPair kdTree FastDelaunay

```
bool inHull(const vector<P>& 1, P p, bool strict = true) {
  int a = 1, b = sz(1) - 1, r = !strict;
  if (sz(1) < 3) return r && onSegment(1[0], 1.back(), p);</pre>
  if (sideOf(1[0], 1[a], 1[b]) > 0) swap(a, b);
  if (sideOf(1[0], 1[a], p) >= r || sideOf(1[0], 1[b], p) <= -r)</pre>
   return false;
  while (abs(a - b) > 1) {
   int c = (a + b) / 2;
    (sideOf(1[0], 1[c], p) > 0 ? b : a) = c;
 return sqn(l[a].cross(l[b], p)) < r;</pre>
```

#### LineHullIntersection.h

Description: Line-convex polygon intersection. The polygon must be ccw and have no collinear points. lineHull(line, poly) returns a pair describing the intersection of a line with the polygon:  $\bullet$  (-1,-1) if no collision,  $\bullet$  (i,-1)if touching the corner i,  $\bullet$  (i, i) if along side (i, i+1),  $\bullet$  (i, j) if crossing sides (i, i+1) and (j, j+1). In the last case, if a corner i is crossed, this is treated as happening on side (i, i + 1). The points are returned in the same order as the line hits the polygon. extrVertex returns the point of a hull with the max projection onto a line.

Time:  $\mathcal{O}(\log n)$ 

```
"Point.h"
                                                     7cf45b, 39 lines
#define cmp(i,j) sqn(dir.perp().cross(poly[(i)%n]-poly[(j)%n]))
#define extr(i) cmp(i + 1, i) >= 0 \&\& cmp(i, i - 1 + n) < 0
template <class P> int extrVertex(vector<P>& poly, P dir) {
 int n = sz(poly), lo = 0, hi = n;
  if (extr(0)) return 0;
  while (lo + 1 < hi) {
   int m = (lo + hi) / 2;
   if (extr(m)) return m;
   int 1s = cmp(1o + 1, 1o), ms = cmp(m + 1, m);
    (ls < ms \mid | (ls == ms \&\& ls == cmp(lo, m)) ? hi : lo) = m;
  return lo;
#define cmpL(i) sqn(a.cross(poly[i], b))
template <class P>
array<int, 2> lineHull(P a, P b, vector<P>& poly) {
 int endA = extrVertex(poly, (a - b).perp());
  int endB = extrVertex(poly, (b - a).perp());
  if (cmpL(endA) < 0 \mid | cmpL(endB) > 0)
   return {-1, -1};
  array<int, 2> res;
  rep(i, 0, 2) {
   int lo = endB, hi = endA, n = sz(poly);
    while ((lo + 1) % n != hi) {
     int m = ((lo + hi + (lo < hi ? 0 : n)) / 2) % n;</pre>
      (cmpL(m) == cmpL(endB) ? lo : hi) = m;
   res[i] = (lo + !cmpL(hi)) % n;
    swap (endA, endB);
  if (res[0] == res[1]) return {res[0], -1};
  if (!cmpL(res[0]) && !cmpL(res[1]))
    switch ((res[0] - res[1] + sz(poly) + 1) % sz(poly)) {
     case 0: return {res[0], res[0]};
     case 2: return {res[1], res[1]};
  return res;
```

# 7.4 Misc. Point Set Problems

### ClosestPair.h

**Description:** Finds the closest pair of points.

```
Time: \mathcal{O}(n \log n)
"Point.h"
                                                        ac41a6, 17 lines
typedef Point<11> P;
pair<P, P> closest(vector<P> v) {
 assert (sz(v) > 1);
 set<P> S;
 sort(all(v), [](P a, P b) { return a.y < b.y; });</pre>
 pair<11, pair<P, P>> ret{LLONG_MAX, {P(), P()}};
 int j = 0;
 for (P p : v) {
   P d{1 + (ll)sqrt(ret.first), 0};
    while (v[j].y <= p.y - d.x) S.erase(v[j++]);</pre>
    auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d);
    for (; lo != hi; ++lo)
      ret = min(ret, \{(*lo - p).dist2(), \{*lo, p\}\});
    S.insert(p);
 return ret.second;
```

#### kdTree.h

**Description:** KD-tree (2d, can be extended to 3d)

bac5b0, 63 lines

```
typedef long long T;
typedef Point<T> P;
const T INF = numeric_limits<T>::max();
bool on x(const P& a, const P& b) { return a.x < b.x; }
bool on_y(const P& a, const P& b) { return a.y < b.y; }</pre>
struct Node {
 P pt; // if this is a leaf, the single point in it
 T x0 = INF, x1 = -INF, y0 = INF, y1 = -INF; // bounds
  Node *first = 0, *second = 0;
 T distance (const P& p) { // min squared distance to a point
    T x = (p.x < x0 ? x0 : p.x > x1 ? x1 : p.x);
    T y = (p.y < y0 ? y0 : p.y > y1 ? y1 : p.y);
    return (P(x,y) - p).dist2();
  Node (vector<P>&& vp) : pt(vp[0]) {
    for (P p : vp) {
      x0 = min(x0, p.x); x1 = max(x1, p.x);
      y0 = min(y0, p.y); y1 = max(y1, p.y);
    if (vp.size() > 1) {
      // split on x if width >= height (not ideal...)
      sort(all(vp), x1 - x0 >= y1 - y0 ? on_x : on_y);
      // divide by taking half the array for each child (not
      // best performance with many duplicates in the middle)
      int half = sz(vp)/2;
      first = new Node({vp.begin(), vp.begin() + half});
      second = new Node({vp.begin() + half, vp.end()});
};
struct KDTree {
  Node* root;
  KDTree(const vector<P>& vp) : root(new Node({all(vp)})) {}
  pair<T, P> search(Node *node, const P& p) {
    if (!node->first) {
      // uncomment if we should not find the point itself:
      // if (p = node \rightarrow pt) return \{INF, P()\};
```

return make\_pair((p - node->pt).dist2(), node->pt);

```
Node *f = node->first, *s = node->second;
    T bfirst = f->distance(p), bsec = s->distance(p);
    if (bfirst > bsec) swap(bsec, bfirst), swap(f, s);
    // search closest side first, other side if needed
    auto best = search(f, p);
    if (bsec < best.first)</pre>
     best = min(best, search(s, p));
    return best;
  // find nearest point to a point, and its squared distance
  // (requires an arbitrary operator< for Point)
 pair<T, P> nearest (const P& p) {
    return search(root, p);
};
```

#### FastDelaunav.h

Description: Fast Delaunay triangulation. Each circumcircle contains none of the input points. There must be no duplicate points. If all points are on a line, no triangles will be returned. Should work for doubles as well, though there may be precision issues in 'circ'. Returns triangles in order {t[0][0],  $t[0][1], t[0][2], t[1][0], \dots\}$ , all counter-clockwise.

```
Time: \mathcal{O}(n \log n)
"Point.h"
                                                        eefdf5, 88 lines
typedef Point<11> P;
typedef struct Ouad* O;
typedef __int128_t 111; // (can be ll if coords are < 2e4)
P arb(LLONG_MAX, LLONG_MAX); // not equal to any other point
struct Ouad {
  O rot, o; P p = arb; bool mark;
  P& F() { return r()->p; }
  Q& r() { return rot->rot; }
  O prev() { return rot->o->rot; }
  Q next() { return r()->prev(); }
bool circ(P p, P a, P b, P c) { // is p in the circumcircle?
  111 p2 = p.dist2(), A = a.dist2()-p2,
      B = b.dist2()-p2, C = c.dist2()-p2;
  return p.cross(a,b)*C + p.cross(b,c)*A + p.cross(c,a)*B > 0;
Q makeEdge(P orig, P dest) {
  Q r = H ? H : new Quad{new Quad{new Quad{new Quad{0}}}};
  H = r -> 0; r -> r() -> r() = r;
  rep(i,0,4) r = r \rightarrow rot, r \rightarrow p = arb, r \rightarrow o = i & 1 ? <math>r : r \rightarrow r();
  r->p = orig; r->F() = dest;
  return r;
void splice(Q a, Q b) {
  swap(a->o->rot->o, b->o->rot->o); swap(a->o, b->o);
Q connect(Q a, Q b) {
  Q = makeEdge(a->F(), b->p);
  splice(q, a->next());
  splice(q->r(), b);
  return q;
pair<Q,Q> rec(const vector<P>& s) {
  if (sz(s) <= 3) {
    Q = makeEdge(s[0], s[1]), b = makeEdge(s[1], s.back());
    if (sz(s) == 2) return { a, a->r() };
    splice(a->r(), b);
    auto side = s[0].cross(s[1], s[2]);
```

0 c = side ? connect(b, a) : 0;

```
return {side < 0 ? c->r() : a, side < 0 ? c : b->r() };
#define H(e) e->F(), e->p
#define valid(e) (e->F().cross(H(base)) > 0)
 O A, B, ra, rb;
 int half = sz(s) / 2;
  tie(ra, A) = rec({all(s) - half});
  tie(B, rb) = rec(\{sz(s) - half + all(s)\});
  while ((B->p.cross(H(A)) < 0 && (A = A->next())) | |
        (A->p.cross(H(B)) > 0 && (B = B->r()->o));
  Q base = connect(B->r(), A);
  if (A->p == ra->p) ra = base->r();
 if (B->p == rb->p) rb = base;
#define DEL(e, init, dir) Q e = init->dir; if (valid(e)) \
    while (circ(e->dir->F(), H(base), e->F())) { \
     0 t = e->dir; \
     splice(e, e->prev()); \
     splice(e->r(), e->r()->prev()); \
     e->o = H; H = e; e = t; \setminus
  for (;;) {
   DEL(LC, base->r(), o); DEL(RC, base, prev());
   if (!valid(LC) && !valid(RC)) break;
   if (!valid(LC) || (valid(RC) && circ(H(RC), H(LC))))
     base = connect(RC, base->r());
   else
     base = connect(base->r(), LC->r());
  return { ra, rb };
vector<P> triangulate(vector<P> pts) {
  sort(all(pts)); assert(unique(all(pts)) == pts.end());
 if (sz(pts) < 2) return {};
 Q e = rec(pts).first;
  vector<Q> q = \{e\};
  int qi = 0;
  while (e->o->F().cross(e->F(), e->p) < 0) e = e->o;
#define ADD { Q c = e; do { c->mark = 1; pts.push_back(c->p); \
 g.push back(c->r()); c = c->next(); } while (c != e); }
  ADD; pts.clear();
  while (qi < sz(q)) if (!(e = q[qi++]) -> mark) ADD;
  return pts:
```

#### 3D

#### PolyhedronVolume.h

Description: Magic formula for the volume of a polyhedron. Faces should point outwards. 3058c3, 6 lines

```
template<class V, class L>
double signedPolyVolume(const V& p, const L& trilist) {
  double v = 0;
  for (auto i : trilist) v += p[i.a].cross(p[i.b]).dot(p[i.c]);
 return v / 6;
```

Description: Class to handle points in 3D space. T can be e.g. double or 8058ae, 32 lines

template<class T> struct Point3D { typedef Point3D P; typedef const P& R; T x, y, z; explicit Point3D(T x=0, T y=0, T z=0) : x(x), y(y), z(z) {} bool operator<(R p) const {</pre>

```
return tie(x, y, z) < tie(p.x, p.y, p.z); }</pre>
 bool operator==(R p) const {
   return tie(x, y, z) == tie(p.x, p.y, p.z); }
 P operator+(R p) const { return P(x+p.x, y+p.y, z+p.z); }
 P operator-(R p) const { return P(x-p.x, y-p.y, z-p.z); }
 P operator*(T d) const { return P(x*d, y*d, z*d); }
 P operator/(T d) const { return P(x/d, y/d, z/d); }
 T dot(R p) const { return x*p.x + y*p.y + z*p.z; }
 P cross(R p) const {
   return P(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x);
 T dist2() const { return x*x + y*y + z*z; }
 double dist() const { return sqrt((double)dist2()); }
 //Azimuthal angle (longitude) to x-axis in interval [-pi, pi]
 double phi() const { return atan2(y, x); }
 //Zenith angle (latitude) to the z-axis in interval [0, pi]
 double theta() const { return atan2(sqrt(x*x+y*y),z); }
 P unit() const { return *this/(T)dist(); } //makes dist()=1
 //returns unit vector normal to *this and p
 P normal(P p) const { return cross(p).unit(); }
 //returns point rotated 'angle' radians ccw around axis
 P rotate (double angle, P axis) const {
   double s = sin(angle), c = cos(angle); P u = axis.unit();
   return u*dot(u)*(1-c) + (*this)*c - cross(u)*s;
};
3dHull.h
```

**Description:** Computes all faces of the 3-dimension hull of a point set. \*No four points must be coplanar\*, or else random results will be returned. All faces will point outwards.

5b45fc, 49 lines

```
Time: \mathcal{O}\left(n^2\right)
"Point3D.h"
typedef Point3D<double> P3;
struct PR {
  void ins(int x) { (a == -1 ? a : b) = x; }
 void rem(int x) { (a == x ? a : b) = -1; }
 int cnt() { return (a !=-1) + (b !=-1); }
 int a, b;
1:
struct F { P3 q; int a, b, c; };
vector<F> hull3d(const vector<P3>& A) {
 assert (sz(A) >= 4);
 vector<vector<PR>>> E(sz(A), vector<PR>(sz(A), {-1, -1}));
#define E(x,y) E[f.x][f.y]
  vector<F> FS:
  auto mf = [&](int i, int j, int k, int l) {
    P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
    if (q.dot(A[1]) > q.dot(A[i]))
     q = q * -1;
    F f{q, i, j, k};
    E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);
    FS.push_back(f);
 rep(i, 0, 4) rep(j, i+1, 4) rep(k, j+1, 4)
   mf(i, j, k, 6 - i - j - k);
  rep(i,4,sz(A)) {
    rep(j,0,sz(FS)) {
     F f = FS[j];
      if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
        E(a,b).rem(f.c);
        E(a,c).rem(f.b);
        E(b,c).rem(f.a);
        swap(FS[j--], FS.back());
        FS.pop_back();
```

```
int nw = sz(FS);
   rep(j,0,nw) {
     F f = FS[j];
#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i, f.c);
     C(a, b, c); C(a, c, b); C(b, c, a);
 for (F& it : FS) if ((A[it.b] - A[it.a]).cross(
   A[it.c] - A[it.a]).dot(it.q) \le 0) swap(it.c, it.b);
 return FS;
};
```

#### sphericalDistance.h

**Description:** Returns the shortest distance on the sphere with radius radius between the points with azimuthal angles (longitude) f1 ( $\phi_1$ ) and f2 ( $\phi_2$ ) from x axis and zenith angles (latitude) t1  $(\theta_1)$  and t2  $(\theta_2)$  from z axis (0 =north pole). All angles measured in radians. The algorithm starts by converting the spherical coordinates to cartesian coordinates so if that is what you have you can use only the two last rows. dx\*radius is then the difference between the two points in the x direction and d\*radius is the total distance between the points.

```
double sphericalDistance(double f1, double t1,
    double f2, double t2, double radius) {
  double dx = \sin(t2) \cdot \cos(f2) - \sin(t1) \cdot \cos(f1);
  double dv = \sin(t2) * \sin(f2) - \sin(t1) * \sin(f1);
  double dz = cos(t2) - cos(t1);
  double d = sart(dx*dx + dv*dv + dz*dz);
  return radius*2*asin(d/2);
```

# Strings (8)

#### StringMatching.iava

Description: Comprueba todas las aparicones de P en T.

Time:  $\mathcal{O}(n+m)$ debdbc, 21 lines

```
public class StringMatching {
    char[] T, P: // T = text. P = pattern
    int n, m; // n = length of T, m = length of P
    int [] b; // b = back \ table 0
    void kmpPreprocess() { // call this before calling
         kmpSearch()
        int i = 0, j = -1; b[0] = -1; // starting values
        while (i < m) { // pre-process the pattern string P
            while (j \ge 0 \&\& P[i] != P[j]) j = b[j]; // if
                 different, reset j using b
            i++; j++; // if same, advance both pointers
            b[i] = i;
   void kmpSearch() { // this is similar as kmpPreprocess(),
        but on string T
       int i = 0, j = 0; // starting values
        while (i < n) { // search through string T
            while (j \ge 0 \&\& T[i] != P[j]) j = b[j]; // if
                 different, reset j using b
            i++; j++; // if same, advance both pointers
            if (j == m) { // a match found when j == m
                System.out.printf("P is found at index %d in T\
                    n", i - j);
                j = b[j]; // prepare j for the next possible
                    match
            }}}}
```

# Trie MergeIntervals Skyline

```
Trie.java
Description: Trie
                                                     be7c4c, 51 lines
// Java implementation of search and insert operations
// on Trie
public class Trie {
    // Alphabet size (# of symbols)
    static final int ALPHABET_SIZE = 26;
    // trie node
    static class TrieNode {
       TrieNode[] children = new TrieNode[ALPHABET_SIZE];
        // isEndOfWord is true if the node represents
        // end of a word
       boolean isEndOfWord;
       TrieNode() {
            isEndOfWord = false;
            for (int i = 0; i < ALPHABET SIZE; i++)</pre>
                children[i] = null;
    static TrieNode root;
    // If not present, inserts key into trie
    // If the key is prefix of trie node,
    // just marks leaf node
    static void insert (String key) {
        int level;
        int length = key.length();
        int index;
       TrieNode pCrawl = root;
        for (level = 0; level < length; level++) {</pre>
            index = key.charAt(level) - 'a';
            if (pCrawl.children[index] == null)
                pCrawl.children[index] = new TrieNode();
            pCrawl = pCrawl.children[index];
        // mark last node as leaf
       pCrawl.isEndOfWord = true;
    // Returns true if key presents in trie, else false
    static boolean search (String key) {
        int level;
        int length = key.length();
       int index;
       TrieNode pCrawl = root;
       for (level = 0; level < length; level++) {</pre>
            index = key.charAt(level) - 'a';
            if (pCrawl.children[index] == null)
                return false;
            pCrawl = pCrawl.children[index];
        return (pCrawl != null && pCrawl.isEndOfWord);
```

# Others (9)

```
MergeIntervals.java
```

Description: Union de Intervalos

Time: O(nLog(n))

1c2569, 28 lines

```
public class MergeIntervals {
    public static void main(String[] args) throws IOException {
        ArrayList<IntPair> al = new ArrayList<>();
        for(int i=0;i<q;i++) { //Extremos de los intervalos</pre>
            al.add(new IntPair(Integer.parseInt(st.nextToken())
                 , Integer.parseInt(st.nextToken())));
        } //Ordenar de menor a mayor por el incio del intervalo
        Collections.sort(al);
```

```
Stack<IntPair> stack = new Stack<>();
        stack.push(al.get(0));
        for(int i=1;i<al.size();i++){</pre>
            IntPair top = stack.peek();
            if(top.fini<al.get(i).ini){</pre>
                stack.push(al.get(i));
            else if(top.fini<al.get(i).fini){</pre>
                top.fini=al.get(i).fini;
                stack.pop();
                stack.push(top);
        int total=0;
        while(!stack.isEmpty()){
            IntPair t= stack.pop();
            total+=(t.fini-t.ini+1);
        System.out.println(total);
Skyline.java
Description: Dado n edficios encontrar la forma/area del skyline, se devuel-
ven los vertices superior izquierdo hasta el ultimo, que es inferior derecho
Time: O(nLog(n))
                                                     6439c5, 110 lines
public class Skyline {
    public static List<IntPair> getSkyline(long[][] buildings)
        int n = buildings.length;
        List<IntPair> salida = new ArrayList<IntPair>();
        if (n == 0) return salida;
        if (n == 1) {
            long xStart = buildings[0][0];
            long xEnd = buildings[0][1];
            long y = buildings[0][2];
            salida.add(new IntPair(xStart,y));
            salida.add(new IntPair(xEnd,0));
            return salida;
        List<IntPair> leftSkyline, rightSkyline;
        leftSkyline = getSkyline(Arrays.copyOfRange(buildings,
             0, n / 2));
        rightSkyline = getSkyline(Arrays.copyOfRange(buildings,
              n / 2, n));
        return mergeSkylines(leftSkyline, rightSkyline);
   public static List<IntPair> mergeSkylines(List<IntPair>
        left, List<IntPair> right) {
        long nL = left.size(), nR = right.size();
        int pL = 0, pR = 0;
        long currY = 0, leftY = 0, rightY = 0;
        long x, maxY;
        ArrayList<IntPair> salida = new ArrayList<IntPair>();
        while ((pL < nL) && (pR < nR)) {
            IntPair pointL = left.get(pL);
            IntPair pointR = right.get(pR);
            if (pointL.ini < pointR.ini) {</pre>
                x = pointL.ini;
                leftY = pointL.alt;
                pL++;
            else {
```

```
x = pointR.ini;
            rightY = pointR.alt;
            pR++;
        maxY = Math.max(leftY, rightY);
        if (currY != maxY) {
            updateOutput(salida, x, maxY);
            currY = maxY;
    appendSkyline(salida, left, pL, nL, currY);
   appendSkyline(salida, right, pR, nR, currY);
    return salida;
public static void updateOutput(List<IntPair> output, long
    x, long y) {
    if (output.isEmpty() || output.get(output.size() - 1).
        ini != x)
        output.add(new IntPair(x,y));
        output.get(output.size() - 1).setAlt(y);
public static void appendSkyline(List<IntPair> output, List
     <IntPair> skyline, int p, long n, long currY) {
    while (p < n) {
        IntPair point = skyline.get(p);
        long x = point.ini;
        long y = point.alt;
        p++;
        if (currY != y) {
            updateOutput(output, x, y);
            currY = y;
public static void main(String[] args) {
        long [][] skyline = new long[q][3];
        //0 \rightarrow Inicio 1 \rightarrow Final 2 \rightarrow Ancho
        List<IntPair> sl = getSkyline(skyline);
        long area=0;
        for(int j=0; j<sl.size()-1; j++) {</pre>
            long a = sl.get(j).ini;
            long alt = sl.get(j).alt;
            long b = sl.qet(j + 1).ini;
            area+=((b-a)*alt);
        System.out.println(area);
public static class IntPair implements Comparable{
   long ini;
   long alt;
   public IntPair(long i, long a) {
        ini=i;
        alt=a;
   public void setAlt(long alt) {
        this.alt = alt;
    anverride
```

```
public int compareTo(Object o) {
            IntPair i = (IntPair) o;
            return (int) (this.ini-i.ini);
UnionFind.java
```

Description: Conjuntos de union buscar

84e122, 32 lines

```
static class UnionFind {
        private ArrayList<Integer> p, rank, setSize;
       private int numSets;
       public UnionFind(int N) {
            p = new ArrayList<>(N);
            rank = new ArrayList<>(N);
            setSize = new ArrayList<>(N);
            numSets = N;
            for (int i = 0; i < N; i++) {
               p.add(i);
                rank.add(0);
                setSize.add(1);
       public int findSet(int i) {
            if (p.get(i) == i) return i;
            else {
                int ret = findSet(p.get(i)); p.set(i, ret);
                return ret; } }
        public Boolean isSameSet(int i, int j) { return findSet
            (i) == findSet(j); }
        public void unionSet(int i, int j) {
            if (!isSameSet(i, j)) { numSets--;
                int x = findSet(i), y = findSet(j);
                if (rank.get(x) > rank.get(y)) { p.set(y, x);
                    setSize.set(x, setSize.get(x) + setSize.
                    get(y)); }
                else{
                    p.set(x, y); setSize.set(y, setSize.get(y)
                         + setSize.get(x));
                    if (rank.get(x) == rank.get(y)) rank.set(y,
                          rank.get(y) + 1); } }
```

# Y si no ac? (10)

#### troubleshoot.txt

62 lines Escribe algunos casos de prueba simples, si la muestra no es suficiente. Sabes los limites? Genera los casos maximos. Esta bien el uso de la memoria? Podria haber overflow? Asegurese de enviar el archivo correcto. Respuesta incorrecta: WA USA LONG Imprime tu solucion! Imprime tambien la salida de debug. Estas limpiando todas las estructuras de datos entre casos de Puede tu algoritmo manejar todo el rango de entrada? Vuelve a leer el enunciado completo del problema. Manejas todos los casos limite correctamente?

```
Has entendido correctamente el problema?
Codigo copiado incorrecto?
Alguna variable no inicializada?
Algun desbordamiento?
Variables con el mismo nombre?
Recursividad correcta?
Confundir N y M, i y j, etc.?
Estas seguro de que tu algoritmo funciona?
En que casos especiales no has pensado?
Estas seguro de que las funciones STL (Libreria estandar) que
    usas funcionan como crees?
Agrega algunas respuestas a las preguntas, tal vez vuelva a
    enviar.
Crea algunos casos de prueba para ejecutar su algoritmo.
Ve a traves del algoritmo para un caso simple.
Revisa esta lista nuevamente.
Explique su algoritmo a un compadre de equipo.
Pidele al compadre de equipo que mire tu codigo.
Salga a dar un paseillo, p. al posadero.
Es correcto su formato de salida? (incluyendo espacios en
Vuelva a escribir su solucion desde el principio o deje que un
    compadre de equipo lo haga.
Error de ejecucion (RTE):
USA LONG
Has probado todos los casos limites localmente?
Alguna variable no inicializada?
Esta leyendo o escribiendo fuera del rango de cualquier vector?
Alguna llamada que pueda fallar?
Alguna posible division por 0? (modulo 0 por ejemplo)
Alguna recursion infinita posible?
Iteradores invalidos?
Estas usando demasiada memoria?
Depuracion con reenvios (por ejemplo, seniales reasignadas,
    consulte Varios).
Tiempo limite (TLE):
Tienes posibles bucles infinitos?
Cual es la complejidad de su algoritmo?
Estas copiando muchos datos innecesarios? (Referencias)
Que tan grande es la entrada y la salida? (considere buffered
Evite el vector, el mapa. (use arrays)
Usas vectores? Cambiar a array.
Que piensan tus compadres de equipo sobre tu algoritmo?
Memoria limite excedida (MLE):
Cual es la cantidad maxima de memoria que su algoritmo deberia
Esta limpiando todas las estructuras de datos entre casos de
Vida antes que muerte. Fuerza antes que debilidad. Viaje antes
    que destino.
```