plain svm analysis

December 13, 2024

```
[1]: # Install basic modules and make sure they are available with the latest pipu
      oversion.
     # Always updating PIP could be either good or bad, you just have to choose one
      ⇒base on the situation around.
     # I use --quiet and --no-warn-script-location to hide the output of m_{V \sqcup}
      ⇔directory paths
     import sys
     import os
     !{sys.executable} -m pip install --upgrade pip matplotlib numpy_
      →tensorflow-macos tensorflow-metal scikit-learn --quiet
      →--no-warn-script-location
[2]: import os
     import glob
     import numpy as np
     from PIL import Image
     from sklearn.model_selection import train_test_split
     from sklearn.svm import SVC
     from sklearn.preprocessing import StandardScaler, LabelEncoder
     from sklearn.decomposition import PCA
     from sklearn.metrics import accuracy_score, classification_report
[6]: # Define dataset path
     dataset_path = os.path.join(os.getcwd().replace("investigation",__
      →"kaggledataset"), 'garbage_classification')
     # Load all images and labels
     image data = []
     labels = []
     class_names = sorted(os.listdir(dataset_path))
     print(f"Classes: {class_names}")
     for class_idx, class_name in enumerate(class_names):
         class_folder = os.path.join(dataset_path, class_name)
         if os.path.isdir(class_folder):
```

```
for img_file in glob.glob(os.path.join(class_folder, "*.jpg")):
                 try:
                     # Open the image, resize, and flatten
                     img = Image.open(img_file).convert("RGB").resize((256, 256))
                     flattened_img = np.array(img).flatten() # Ensure 1D array
                     image_data.append(flattened_img)
                     labels.append(class_idx)
                 except Exception as e:
                     print(f"Error loading image {img_file}: {e}")
     # Convert to NumPy arrays
     image_data = np.array(image_data, dtype="float32") / 255.0 # Normalize to_
     ⇔range [0, 1]
     labels = np.array(labels)
     # Confirm the shape of image_data
     print(f"Shape of image_data: {image_data.shape}") # Should be (num_samples, ___
      △256*256*3)
    Classes: ['battery', 'biological', 'brown-glass', 'cardboard', 'clothes',
    'green-glass', 'metal', 'paper', 'plastic', 'shoes', 'trash', 'white-glass']
    Shape of image_data: (15515, 196608)
[7]: # Split data into train/test sets
     X_train, X_test, y_train, y_test = train_test_split(
         image_data, labels, test_size=0.2, random_state=42, stratify=labels
     )
     # Standardize features
     scaler = StandardScaler()
     X_train = scaler.fit_transform(X_train) # Now X_train is 2D
     X_test = scaler.transform(X_test)
     # Apply PCA for dimensionality reduction (optional)
     pca = PCA(n components=100) # Reduce to 100 features
     X_train = pca.fit_transform(X_train)
     X test = pca.transform(X test)
[8]: # Train an SVM
     svm_model = SVC(kernel='linear', class_weight='balanced', probability=True)
     svm_model.fit(X_train, y_train)
[8]: SVC(class_weight='balanced', kernel='linear', probability=True)
[9]: # Evaluate
     y_pred = svm_model.predict(X_test)
     print(f"Accuracy: {accuracy_score(y_test, y_pred)}")
     print(classification_report(y_test, y_pred, target_names=class_names))
```

Accuracy: 0.5514018691588785

	precision	recall	f1-score	support
battery	0.42	0.60	0.49	189
biological	0.39	0.52	0.45	197
brown-glass	0.36	0.53	0.43	122
cardboard	0.51	0.59	0.55	178
clothes	0.84	0.75	0.79	1065
green-glass	0.71	0.80	0.75	126
metal	0.25	0.27	0.26	154
paper	0.45	0.47	0.46	210
plastic	0.36	0.29	0.32	173
shoes	0.42	0.28	0.34	395
trash	0.47	0.58	0.52	139
white-glass	0.37	0.30	0.33	155
accuracy			0.55	3103
macro avg	0.46	0.50	0.47	3103
weighted avg	0.57	0.55	0.55	3103

[]: