

数值分析

主讲教师: 贺慧霞

北京航空航天大学数学科学学院

第六章 数值积分

6.4 复化求积公式

Composited Newton-Cotes formula

一、复化求积公式

Newton – Cotes公式
$$\int_a^b f(x)dx \approx \sum_{k=0}^n \lambda_k^{(n)} f(x_k)$$

其中
$$c_k^{(n)} = \frac{(-1)^{n-k}}{nk!(n-k)!} \int_0^n \left[\prod_{\substack{j=0 \ j\neq k}}^n (t-j) \right] dt$$

因为高阶N-C公式不稳定,为了提高的精度,将区间[a,b]分为若干个小子区间,在每个小子区间上使用低阶的Newton-Cotes公式,这种方法称为 复化求积公式.

二、复化梯形公式

设f(x)在区间[a,b]上有二阶连续导数,取等距节点

$$x_k = a + kh, \quad k = 0, 1, \dots, n, h = \frac{b-a}{n}$$

在每个子区间 $[x_k, x_{k+1}]$ 上的梯形公式为

$$\int_{x_k}^{x_{k+1}} f(x) dx = \frac{h}{2} [f(x_k) + f(x_{k+1})] - \frac{h^3}{12} f''(\eta_k)$$

相加可得
$$\int_a^b f(x)dx = \frac{h}{2} \sum_{k=0}^{n-1} [f(x_k) + f(x_{k+1})] - \frac{h^3}{12} \sum_{k=0}^{n-1} f''(\eta_k)$$

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} [f(a) + f(b) + 2 \sum_{k=1}^{n-1} f(a+kh)]$$

截断误差分析:

在区间
$$[x_k, x_{k+1}]$$
上, $R_k = -\frac{h^3}{12} f''(\eta_k)$, $\eta_k \in [x_k, x_{k+1}]$ 整体误差为 $R_n = \sum_{k=0}^{n-1} R_k = \sum_{k=0}^{n-1} (-\frac{h^3}{12}) f''(\eta_k)$

利用 $h = \frac{b-a}{n}$ 和 $\frac{1}{n}\sum_{k=0}^{n-1}f''(\eta_k) = f''(\eta)$ $\eta \in [a,b]$

得到复化梯形公式的截断误差是:

$$R(T_n) = -\frac{b-a}{12}h^2f''(\eta) = O(h^2)$$

数值稳定性分析: 复化梯形公式求积系数 λ_k 满足 $\sum_{k=0}^n |\lambda_k| = nh = b - a$

复化梯形公式具有数值稳定性.

三、复化Simpson公式

Simpson公式要求奇数个节点,故取n = 2m个等距节点

$$x_k = a + kh, \quad k = 0, 1, \dots, 2m, h = \frac{b-a}{2m}$$

在每个子区间[x_{2i-2}, x_{2i}]上的Simpson公式为

$$\int_{x_{2i-2}}^{x_{2i}} f(x)dx = \frac{h}{3} [f(x_{2i-2}) + 4f(x_{2i-1}) + f(x_{2i})] - \frac{(2h)^5}{2880} f^{(4)}(\eta_i)$$

相加可得
$$\int_a^b f(x)dx = \frac{h}{3} \sum_{i=1}^m [f(x_{2i-2}) + 4f(x_{2i-1}) + f(x_{2i})] - \frac{(2h)^5}{2880} \sum_{i=1}^m f^{(4)}(\eta_i)$$

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} [f(a) + f(b) + 4\sum_{i=1}^{m} f(x_{2i-1}) + 2\sum_{i=1}^{m} f(x_{2i})]$$

因为 $f^{(4)}(x)$ 在[a,b]上连续,故存在 $\eta \in [a,b]$,使

$$f^{(4)}(\eta) = \frac{1}{m} \sum_{i=1}^{m} f^{(4)}(\eta_i)$$
,则

$$R_8 = -\frac{(2h)^5}{2880} m f^{(4)}(\eta) = -\frac{(b-a)^5}{2880 m^4} f^{(4)}(\eta) = -\frac{b-a}{180} h^4 f^{(4)}(\eta)$$

利用定积分定义可知,只要f(x)在区间[a,b]上可积,则当 $m \to \infty$ 时,

复化Simpson公式右端收敛于积分值 $\int_a^b f(x) dx$

复化Simpson公式求积系数 λ_k 满足 $\sum_{k=0}^n |\lambda_k| = 2mh = b - a$

所以复化Simpson公式具有数值稳定性.

复化梯形公式和复化Simpson公式都不是插值型求积公式.

【例】当用复化梯形公式与复化辛普森公式计算积分 $\int_0^1 e^x dx$ 的近似值时,

若要求误差不超过 $\frac{1}{2}$ × 10^{-4} ,问至少各取多少个节点?

解:
$$(1)$$
 由 $f(x) = e^x$, $f''(x) = f^{(4)}(x) = e^x$, 得

$$\max_{0 \le x \le 1} |f''(x)| = e = M_2, \max_{0 \le x \le 1} |f^{(4)}(x)| = e = M_4$$

$$|R(T_n)| = \left| -\frac{(b-a)}{12} h^2 f''(\eta) \right| = \left| -\frac{1}{12n^2} f''(\eta) \right|$$

$$\leq \frac{1}{12n^2} e^{\frac{1}{2}} \times 10^{-4} \qquad \text{解得} \qquad n > 67.3$$

用复化梯形公式n至少取68, 节点至少取n+1=69个。

解: (2)由
$$f(x) = e^x$$
, $f''(x) = f^{(4)}(x) = e^x$, 得

$$\max_{0 \le x \le 1} |f''(x)| = e = M_2, \max_{0 \le x \le 1} |f^{(4)}(x)| = e = M_4$$

$$|R(S_n)| = \left| -\frac{(b-a)}{180} h^4 f^{(4)}(\eta) \right| = \left| -\frac{1}{180n^4} f^{(4)}(\eta) \right|$$

$$\leq \frac{1}{180n^4} e^{\frac{1}{2}} \times 10^{-4}$$

解得 n > 2.1

用复化辛普森公式 n 至少取 3,节点至少取 2n+1=7个.

这说明使用复化梯形公式计算量比复化辛普森公式大得多

积分公式收敛阶数的定义

设复化积分公式为

$$I(f) = \int_a^b f(x) dx \approx S_n(f)$$

若存在常数p ≥ 1和c ≥ 0使对于任何n有

$$|I(f)-S_n(f)| \leq ch^p$$

成立,则称积分近似值序列 $\{S_n(f)\}$ 是P阶收敛的

四、区间逐次分半法

区间逐次分半法的两个好处: (1) 前面的计算没有浪费;

(2) 精度的控制不再需要高阶导数.

用 T_m 表示积分区间[a,b]被分为 $n = 2^m$ 等分后形成的复化梯形值,

这时的步长为
$$h_m = \frac{(b-a)}{2^m}$$
.

由复化梯形公式(6.12)的右端,得

$$T_{m-1} = \frac{h_{m-1}}{2} \Big[f(a) + f(b) + 2 \sum_{k=1}^{2^{m-1}-1} f(a+kh_{m-1}) \Big]$$

$$T_m = \frac{h_m}{2} \Big[f(a) + f(b) + 2 \sum_{k=1}^{2^{m-1}} f(a+kh_m) \Big] = \frac{h_m}{2} \Big[f(a) + f(b) + 2 \sum_{i=1}^{2^{m-1}-1} f(a+2ih_m) + 2 \sum_{i=1}^{2^{m-1}} f(a+(2i-1)h_m) \Big]$$

由截断误差表达式(6.13),可知

$$I(f) - T_m = -\frac{(b-a)^3}{12 \times 2^{2m}} f''(\eta_1), \quad \eta_1 \in [a,b]$$

$$I(f) - T_{m+1} = -\frac{(b-a)^3}{12 \times 2^{2m-2}} f''(\eta_2), \quad \eta_2 \in [a,b]$$

当 m 较大时, $f''(\eta_1) \approx f''(\eta_2)$, 由此可推出

$$I(f) - T_m \approx \frac{4}{3} (T_{m+1} - T_m)$$

对于预先要求的精度 $\varepsilon > 0$,只要满足下式即可:

$$|T_{m+1}-T_m|<\frac{3}{4}\varepsilon,$$

外推算法的基本思路

在科学与工程计算中,很多算法与步长h有关,特别是数值积分、数值微分和微分方程数值解的问题。对于这些算法,我们可以通过外推技巧提高计算精度。

例1 计算π的近似值。

由函数 $\sin x$ 的 Taylor展开式有 $n\sin\frac{\pi}{n} = \pi - \frac{\pi^3}{3!n^2} + \frac{\pi^5}{5!n^5} - \cdots$ 若记 $h = \frac{\pi}{6}$, $F(h) = 6\sin\frac{\pi}{6}$,则有

$$F(h) = \pi - \frac{\pi}{6}h^2 + \frac{\pi}{120}h^4 - \cdots$$
 $F(\frac{h}{2}) = \pi - \frac{\pi}{6}\frac{h^2}{4} + \frac{\pi}{120}\frac{h^4}{16} - \cdots$

由此构造新的表达式
$$F_1(h) = \frac{4F(\frac{h}{2}) - F(h)}{3} = \pi - \frac{\pi}{120} \frac{1}{4} h^4 + \cdots$$

五、Richardson外推算法

理查逊外推法是数值方法中常用的一种加速收敛技术 设用步长为h的算法F(h)去逼近某个量F*,若F*和F(h) 之间的截断误差有渐近展开式:

$$F^* - F(h) = a_1 h^{p_1} + a_2 h^{p_2} + \cdots + a_k h^{p_k} + \cdots = O(h^{p_1}),$$

其中 $p_k > p_{k-1} > \cdots > p_1 > 0$,

将展开式中的h用qh代替,q满足 $1-q^{p_1} \neq 0$,则

$$F^* - F(qh) = a_1(qh)^{p_1} + a_2(qh)^{p_2} + \cdots + a_k(qh)^{p_k} + \cdots$$

用q^P乘原式两端再与此式相减得到:

$$(1-q^{p_1}) \quad \mathbf{F}^* - (F(qh) - q^{p_1}F(h)) = a_2(q^{p_2} - q^{p_1})h^{p_2} + \cdots + a_k(q^{p_k} - q^{p_1})h^{p_k} + \cdots$$

用q^P乘原式两端再与此式相减得到:

$$(1-q^{p_1}) \quad \mathbf{F}^* - (F(qh) - q^{p_1}F(h)) = a_2(q^{p_2} - q^{p_1})h^{p_2} + \cdots + a_k(q^{p_k} - q^{p_1})h^{p_k} + \cdots$$

整理后得到:

$$F^* - \frac{F(qh) - q^{p_1}F(h)}{1 - q^{p_1}} = a_2 \left(\frac{q^{p_2} - q^{p_1}}{1 - q^{p_1}}\right)h^{p_2} + \dots + a_k \left(\frac{q^{p_k} - q^{p_1}}{1 - q^{p_1}}\right)h^{p_k} + \dots = O(h^{p_2})$$

这个过程我们称为用F(h)和F(qh)做了一次外推,得到的新公式,记为F(h)

$$F_1(h) = \frac{F(qh) - q^{p_1}F(h)}{1 - q^{p_1}}$$

显然有, $F^* - F_1(h) = \overline{a_2}h^{p_2} + \overline{a_3}h^{p_3} + \cdots + \overline{a_k}h^{p_k} + \cdots = O(h^{p_2})$

截断误差阶数从 h^{P_1} 变为 h^{P_2} ,且 $p_2 > p_1$.

类似可定义 $F_2(h) = \frac{F_1(qh) - q^{p_2}F_1(h)}{1 - q^{p_2}}$,则 $F_j(h)$ 逼近 F^* 的精度提高到了 P_3 .

定义
$$F_{j}(h)$$
:
$$\begin{cases} F_{0}(h) = F(h) \\ F_{j}(h) = \frac{F_{j-1}(qh) - q^{p_{j}}F_{j-1}(h)}{1 - q^{p_{j}}}, j = 1, \dots, m. \end{cases}$$

定理6.4,如果F(h)逼近 F^* 的误差由

$$F^* - F(h) = a_1 h^{p_1} + a_2 h^{p_2} + a_3 h^{p_3} + \cdots + a_k h^{p_k} + \cdots = O(h^{p_1})$$

给出,则 $F_i(h)$ 逼近 F^* 的截断误差为

$$F^* - F(h) = a_{j+1}^{(j)} h^{p_{j+1}} + a_{j+2}^{(j)} h^{p_{j+2}} + \cdots$$

其中 $a_k^{(j)}(k \ge j+1)$ 是与h无关的常数.

$\diamondsuit F_0(h) = F(h)$

$$(1)F_0(q^m h) = F(q^m h), m = 1, 2, \cdots$$

$$(2)F_{j}(h) = \frac{F_{j-1}(q^{m-j+1}h) - q^{p_{j}}F_{j-1}(q^{m-j}h)}{1 - q^{p_{j}}}, j = 1, \dots, m.$$

理查逊外推算法流程

六、龙贝格(Romberg)方法

龙贝格(Romberg)算法是将理查逊(Richardson)外推法应用于数值积分,由低精度求积公式推出高精度求积公式的算法。

复化梯形公式的截断误差有展开式

$$\int_{a}^{b} f(x)dx - T_{n} = a_{2}h^{2} + a_{4}h^{4} + \dots + a_{2k-2}h^{2k-2} + O(h^{2k})$$

由R外推可得龙贝格积分法(逐次分半加倍法或梯形公式外推法):

$$\begin{cases}
T_0(h) = T(h) \\
T_m(h) = \frac{2^{2k} T_{m-1}(h/2) - T_{m-1}(h)}{2^{2m} - 1}
\end{cases}
T_k(h) 的 计算误差为 O(h^{2(k+1)}).$$

设 $T_0^{(k)}$ 表示二分k次后求得的梯形值,且以 $T_m^{(k)}$ 表示序列 $\{T_0^{(k)}\}$ 的m次加速值.

则有
$$T_m^{(k)}(h) = \frac{2^{2k} T_{m-1}^{(k-1)}(h/2) - T_{m-1}^{(k)}(h)}{2^{2m} - 1}, k = 1, 2, \dots$$

龙贝格外推算法流程

8阶收敛 2阶收敛 4阶收敛 6阶收敛

 $\varepsilon > 0$ 是预先给定的精度水平.

【例2】 用 Romberg 积分法计算积分 $\int_{1}^{2} e^{\frac{1}{x}} dx$ 的近似值,要求 $|T_{m}^{(3)} - T_{m-1}^{(3)}| / |T_{m}^{(3)}| \le 10^{-5}$ 。

解 在算法(6.22)中,取 $a=1,b=2,f(x)=e^{\frac{1}{x}}$,进行迭代,迭代情况见表 6-5。

表 6-5 例 6 计算结果

$T_m^{(0)}$	T _m ⁽¹⁾	$T_m^{(2)}$	T _m (3)
2. 183 501 550			
2.065 617 795	2,026 323 210		
2.031 892 868	2.020 651 226	2. 020 273 094	
2.023 049 868	2,020 102 201	2. 020 065 599	2. 020 062 306
2. 020 808 583	2,020 061 487	2. 020 058 773	2.020 058 665

因 $|T_1^{(3)}-T_0^{(3)}|/|T_1^{(3)}|<10^{-5}$,故得

$$T_{m}^{(k)}(h) = \frac{2^{2k} T_{m-1}^{(k-1)}(h)^{2} \frac{1}{2^{2m} - 1} T_{m-1}^{(k)}(h)}{2^{2m} - 1}, k = 1, 2, \cdots$$

本讲课程结束

北京航空航天大学数学科学学院

作业

教材第177页习题: 12、15、17、19、20

