Week 4: Hecke actions

Ken Lee

Summer 2023

The goal of this talk is to give a more detailed introduction to the spherical Hecke category in preparation for the three talks on geometric Satake.

Brief recollection of week 1 talk:

- 1. Throughout, we fixed a smooth projective curve X over a base field k with characteristic zero. For simplicity, one should assume it to be \mathbb{C} . We also fix a reductive group G over k.
- 2. Bun_G is the algebro-geometric version of the double coset of adeles in unramified Langlands of function fields over a finite field.
- 3. Hecke eigenforms, which are certain functions on the double coset space of the adeles, can be constructed from decategorifying perverse sheaves on Bun_G .
- 4. Over characteristic zero, perverse sheaves and *D*-modules are equivalent by the Riemann–Hilbert correspondence. Categorical geometric Langlands takes this as the starting point.
- 5. affine Grassmannians are the algebro-geometric versions of the homogeneous space $G((t))/G[\![t]\!]$ and hence lead to the geometric version of spherical Hecke algebras Sph_G .
- 6. Given a closed point x of the curve, there is an action of Sph_G on $D\mathbf{Mod}(\mathrm{Bun}_G)$ called the automorphic Hecke action.
- 7. Given a G^L local system σ on X, there is an action of $\operatorname{Rep}_k G^L$ on $D\mathbf{Mod}(\operatorname{Bun}_G)$ called the Galois Hecke action.
- 8. Geometric Satake gives $\operatorname{Sph}_G \simeq \operatorname{Rep}_k G^L$ as tensor categories.
- 9. The automorphic Hecke action across all points can be bundled to together, giving two actions of $\operatorname{Rep}_k G^L$ on $D\mathbf{Mod}(\operatorname{Bun}_G)$.
- 10. modulo details about associativity, a Hecke eigensheaf is a D-module on Bun_G "such that" the two actions of $\operatorname{Rep}_k G^L$ coincide. ¹

This talk focuses on giving more details on (5), (6), (9).

Setup some notation:

– Aff_k denotes the opposite of the category of k-algebras.

¹We put "such that" in quotation marks because this is a structure, not a property.

– For an affine scheme $S = \operatorname{Spec} A$, D_S^{\wedge} , D_S , D_S° will denote $\operatorname{Spf} A[\![t]\!]$, $\operatorname{Spec} A[\![t]\!]$, $\operatorname{Spec} A((t))$. These are the relative formal disk, disk, punctured disk over S.

Contents

1 Arc groups, Loop groups and Affine Grassmannians 2
2 Spherical *D*-modules, Convolution 5
3 *D*-modules on quotient stacks 7
4 Relativising to the entire curve 10

1 Arc groups, Loop groups and Affine Grassmannians

Definition - Arc and loop group

The arc group of G is defined as the functor on Aff_k

$$L^+G(S) := G(D_S)$$

and the *loop group of G* is defined as the functor

$$LG(S) := G(D_S^{\circ})$$

Ideally, L^+G should be thought of as the mapping space $\underline{\mathrm{Hom}}(D,G)$ from the disk D to G, and similarly LG should be $\underline{\mathrm{Hom}}(D^\circ,G)$. The issue is $A\otimes_k k[\![t]\!] \not\simeq A[\![t]\!]$ so this is not literally true. This can be fixed by using the formal disk $D^\circ := \mathrm{Spf}\, k[\![t]\!]$ instead since $\mathrm{Spec}\, A \times \mathrm{Spf}\, k[\![t]\!] = \mathrm{Spf}\, A[\![t]\!]$ and G is affine. However, this fix does not work for the loop group LG because "one cannot Spf the topological ring A((t))".

Restricting along $D_S^{\circ} \to D_S$ defines a morphism $L^+G \to LG$ of group functors. One can show this is a closed embedding.

Lemma. The morphism $L^+G \to LG$ is a closed embedding.

Proof. Since G is affine, there exists a closed embedding $i: G \to \mathbb{A}^N$ for some finite N. Let $s: S \to LG$ be a point of the loop group. Using i, we see that s is given by N-coordinates $(s_1, \ldots, s_N) \in \mathbb{A}^N(D_S^\circ)$. The fiber product $L^+G \times_{LG} S$ is computed as the vanishing locus of the finitely many polar terms of s_1, \ldots, s_N .

Here's the answer to the question of what kind of objects are the arc and loop group.

Proposition

The arc group L^+G is a scheme and the loop group LG is an ind-affine scheme.

Proof. We define intermediate spaces: the space of n-jets L^nG is defined as a functor by

$$L^nG := \operatorname{Hom}(\operatorname{Spec} k[t]/(t^{n+1}), G)$$

Note that n=1 recovers the tangent bundle of G. It is not hard to show that in the case of $G=\mathbb{A}^1$ that L^nG is affine. Since G is affine finite type, it can be put into a cartesian square

$$\begin{array}{ccc}
G & \longrightarrow & \mathbb{A}^N \\
\downarrow & & \downarrow \\
0 & \longrightarrow & \mathbb{A}^r
\end{array}$$

Since L^n is right adjoint to $_ \times \operatorname{Spec} k[t]/(t^{n+1})$, is preserves limits so L^nG is affine. Finally, $L^+G \simeq \varprojlim_n L^nG$ is hence also affine.

Now for the loop group. It is *not* true that $LG = \underline{\text{Hom}}(D^{\circ}, G)$, but the formula

$$(LG)(S) = G(D_S^{\circ}) \stackrel{\text{Yoneda}}{\simeq} \text{Hom}(D_S^{\circ}, G)$$

still shows that L commutes with limits. By the same argument as above, we reduce to $G = \mathbb{A}^1$. One then computes

$$\mathbb{A}^1((t))(A) = \mathbb{A}^1(A((t))) = A((t)) \simeq \varinjlim_{n} A[\![t]\!] = (\varinjlim_{n} \mathbb{A}^1[\![t]\!])(A)$$

where the system we are taking colimits is

$$\mathbb{A}^1\llbracket t\rrbracket \xrightarrow{t} \mathbb{A}^1\llbracket t\rrbracket \xrightarrow{t} \cdots$$

Concretely, $\mathbb{A}^1[\![t]\!] \simeq \mathbb{A}^\mathbb{N}$ and the above transition maps shift the sequence of coefficients to the right by one. One sees from this that each copy $\mathbb{A}^1[\![t]\!]$ is the closed subscheme of the next copy of sequences where the first coefficient is zero. We have thus shown $\mathbb{A}^1((t))$ is a ind-affine scheme.

Definition – Affine Grassmannian for general *G*

Let G be an algebraic group scheme over k. For an affine S, define the groupoid $Gr_G(S)$ as follows:

- Objects are G-bundles on D_S together with a trivialisation s: Triv $\simeq P|_{D_S^\circ}$ on the punctured disk D_S° .
- A morphism $(P,s) \to (Q,t)$ is a morphism $\alpha: P \to Q$ of G-bundles on D_S respecting the trivialisations, i.e. $t=\alpha s$.

Given a map $T \to S$ of affines, there is a functor $Gr_G(S) \to Gr_G(T)$ given by pulling back along $D_T \to D_S$. The above forms a groupoid valued (pseudo-)functor on Aff_k , which we call the *affine Grassmannian of G*.

Although Gr_G is a-priori valued in groupoids, one can show that it is in fact valued in discrete groupoids by the following lemma. Hence Gr_G is equivalently a set-valued functor sending affines S to the isomorphism class of G-bundles on D_S equipped with a trivialisation over D_S° .

 $[\]overline{}^a$ Question to self: Why does Gaitsgory bother writing this using Tannaka formalism when G-bundles over D_S and D_S° are perfectly well defined?

Lemma. Let P be a G-bundle on D_S where S is affine and s: Triv $\simeq P|_{D_S^{\circ}}$ a trivialisation on the punctured disk. Suppose $\alpha: P \to P$ is an (auto)morphism of G-bundles on D_S such that $\alpha s = s$ over D_S° . Then α must be the identity.

Proof. (Example of trivial line bundle) Suppose $G = \operatorname{GL}_1$ and replace GL_1 -bundles with line bundles and consider the case of $P = \mathbb{A}^1_{D_S}$. The trivialisation s is equivalent to an element $\mathcal{O}(S)((t))^\times$. Similarly, α is equivalent to an element $\alpha \in \mathcal{O}(S)[\![t]\!]^\times$. Then we have $\alpha s = s$ as elements in $\mathcal{O}(S)((t))^\times$. Since s is a unit, $\alpha = 1$ in $\mathcal{O}(S)((t))^\times$ and hence in $\mathcal{O}(S)[\![t]\!]^\times$.

(General case) Using the same strategy as in the example, we see that we only need to prove two things :

- 1. P can be trivialised after $D_{\tilde{S}} \to D_S$ by some fpqc cover $\tilde{S} \to S$.
- 2. After (1), we can assume $P = G \times D_S$. We then need to show $G(D_S) \to G(D_S^\circ)$ is injective.

For (1), the special fiber P_0 over $\{0\}_S \simeq S$ is also a G-bundle, and hence trivialises upon passing to some fpqc cover $\tilde{S} \to S$. The trivialisation of P_0 over $\tilde{S} \simeq \{0\}_{\tilde{S}}$ extends to $D_{\tilde{S}}$ by smoothness of G.

For (2), using affinity of G we can realise G as a closed subscheme of \mathbb{A}^N for some large N. WLOG N=1. This reduces to showing $\mathbb{A}^1(D_S)\to \mathbb{A}^1(D_S^\circ)$ is injective. This is precisely the inclusion $\mathcal{O}(S)[\![t]\!]\subseteq \mathcal{O}(S)((t))$.

We now give the description of the affine Grassmannian as a homogeneous space of the loop group.

Definition

Define an action $Gr_G \times LG \to Gr_G$ as follows

$$((P,s),g)\mapsto (P,sg)$$

Proposition

The map $LG \to Gr_G$ sending $g \mapsto (Triv, g)$ is a L^+G -bundle.

Proof. We need to show the following:

- 1. L^+G acts trivially on Gr_G
- 2. the map $LG \to Gr_G$ is L^+G equivariant
- 3. For every point $(P,s): S \to \operatorname{Gr}_G$ of Gr_G with S affine, there exists an fpqc cover $\tilde{S} \to S$ such that the pullback of LG to \tilde{S} is isomorphic to the trivial L^+G bundle.

$$LG \longleftarrow LG \times_{\operatorname{Gr}_G} S \longleftarrow \tilde{S} \times L^+G$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Gr}_G \longleftarrow_{(P,s)} S \longleftarrow_{\operatorname{fpqc}} \tilde{S}$$

Goal (1) and (2) are clear. (3) follows from the fact we've already seen: there exists fpqc cover $\tilde{S} \to S$ such that $D_{\tilde{S}} \to D_S$ trivialises P.

2 Spherical *D*-modules, Convolution

[Can skip until...] I find it useful to make the following auxiliary definitions, which are not explicitly present in Gaitsgory's notes.

Definition

The stack of G-bundles on the disk is defined as by the groupoid-valued functor

$$(\operatorname{Bun}_G D)(S) := \operatorname{Hom}(D_S, BG)$$

And the stack of G-bundles on the punctured disk is defined by the groupoid-valued functor

$$(\operatorname{Bun}_G D^{\circ})(S) := \operatorname{Hom}(D_S^{\circ}, BG)$$

Recall that the definition of $\operatorname{Bun}_G X$ is the internal hom $\operatorname{\underline{Hom}}(X,BG)$. This begs the question whether $\operatorname{Bun}_G D, \operatorname{Bun}_G D^{\circ}$ are also internal homs.

1. For $\operatorname{Bun}_G D$ this is true by a combination of the Tannakian formalism and the fact that for Noetherian A with ideal I, finitely generated projective modules over $\operatorname{Spec} A_I^{\wedge}$ and $\operatorname{Spf} A_I^{\wedge}$ are equivalent :

$$\operatorname{Hom}(D_S, BG) \simeq \operatorname{Fun}_{\operatorname{ex}, \operatorname{cts}}^{\otimes}(\operatorname{Rep} G, \operatorname{QCoh} D_S) \simeq \operatorname{Fun}_{\operatorname{ex}}^{\otimes}(\operatorname{Rep}_{\operatorname{f.d.}} G, \operatorname{Perf} D_S)$$

$$\simeq \operatorname{Fun}_{\operatorname{ex}}^{\otimes}(\operatorname{Rep}_{\operatorname{f.d.}} G, \varprojlim_n \operatorname{Perf}(n \cdot 0_S))$$

$$\simeq \varprojlim_n \operatorname{Fun}_{\operatorname{ex}}^{\otimes}(\operatorname{Rep}_{\operatorname{f.d.}} G, \operatorname{Perf}(n \cdot 0_S))$$

$$\simeq \varprojlim_n \operatorname{Hom}(n \cdot 0_S, BG) \simeq \operatorname{Hom}(\varinjlim_n n \cdot 0_S, BG)$$

$$\simeq \operatorname{Hom}(S \times D^{\wedge}, BG) \simeq \operatorname{Hom}(D^{\wedge}, BG)(S)$$

2. For $\operatorname{Bun}_G D^{\circ}$ this is *not* true, again essentially because $\operatorname{Spec} A((t))$ is not computed as the fiber product $\operatorname{Spec} A \times \operatorname{Spec} k((t))$.

Definition

The local Hecke correspondence is defined as the fiber product

[... here.] Unraveling the definition, a map $S \to \operatorname{Hecke}^{\operatorname{Loc}}$ from an affine is the same as the data (P_0, P_1, α) where P_i are G-bundles on D_S and $\alpha: P_0|_{D_S^{\circ}} \simeq P_1|_{D_S^{\circ}}$. This is related to the affine Grassmannian in the following way:

Proposition

Define $\operatorname{Hecke}^{\operatorname{Loc}}_{\square}$ by the cartesian square

Then

- 1. $L^+G\backslash \operatorname{Hecke}^{\operatorname{Loc}}_{\square}/L^+G\simeq \operatorname{Hecke}^{\operatorname{Loc}}$
- 2. Hecke $^{\text{Loc}}_{\square} \simeq LG$ respecting the left and right actions of L^+G . Hence $\text{Hecke}^{\text{Loc}} \simeq L^+G \setminus \text{Gr}_G$

Proof. (1) Hecke \Box parameterises $(P_0, P_1, \alpha, s_0 : \text{Triv} \to P_0, s_1 : \text{Triv} \to P_1)$ where P_i are G-bundles on the disk. Quotienting by L^+G on both sides forgets the trivialisations s_i .

(2) We give mutual inverse functors and omit the check that it works.

$$LG \to \operatorname{Hecke}^{\operatorname{Loc}}_{\square}$$
 takes $g \in LG(S)$ to $(\operatorname{Triv}, \operatorname{Triv}, g, \mathbbm{1}, \mathbbm{1})$.
 $\operatorname{Hecke}^{\operatorname{Loc}}_{\square} \to LG$ takes an S -point $(P_0, P_1, \alpha, s_0, s_1)$ to $s_1^{-1}\alpha s_0 \in LG(S)$.

We now want to define the spherical Hecke category, which D-module version of the categorified spherical Hecke category. Ideally, we want the following definition:

$$\operatorname{Sph}_G := D\mathbf{Mod}(\operatorname{Hecke}^{\operatorname{Loc}})$$

The issue is that at this point, we only really know how to do D-modules on varieties. The idea is to use $\operatorname{Hecke}^{\operatorname{Loc}} \simeq L^+ G \backslash \operatorname{Gr}_G$, to reduce to the case of varieties. There are two parts to this reduction :

- 1. Gr_G is ind-projective, meaning we can write it as the colimit of projective varieties along closed embeddings. This will be addressed in next week's talk on the geometry of the affine Grassmannian.
- 2. D-modules on quotient stacks. It will also be shown next week that one can present Gr_G as a filtered colimit of projective varieties X_i along closed embeddings such that each X_i is L^+G -invariant and the action in fact factors through an algebraic quotient of L^+G . In preparation for that, we give a short exposition of D-modules on quotient stacks of varieties by algebraic groups in the next section.

Provided that we know how to deal with D-modules on infinite type schemes like Gr_G , LG and their quotients nice enough actions by pro-algebraic groups like L^+G , we can now define a monoidal structure on Sph_G via convolution.

Definition - Convolution product

The multiplication on the loop group induces a diagram involving $\operatorname{Hecke}^{\operatorname{Loc}}$

$$L^+G\backslash LG/L^+G \xleftarrow{p_0} L^+G\backslash LG \times^{L^+G} LG/L^+G \xrightarrow{m} L^+G\backslash LG/L^+G$$

$$L^+G\backslash LG/L^+G$$

The convolution product is defined by the following formula

$$\mathrm{Sph}_G \times \mathrm{Sph}_G \to \mathrm{Sph}_G, (\mathcal{F}_0, \mathcal{F}_1) \mapsto \mathcal{F} * \mathcal{G} := m_!(p_0^! \mathcal{F}_0 \otimes p_1^! \mathcal{F}_1)$$

and defines a monoidal structure on Sph_G .

3 D-modules on quotient stacks

Let X be a variety over k and G an algebraic group acting on X. With this, one can form the truncated Cech nerve of $X \to X/G$.

$$X \times_{X/G} X \times_{X/G} X \stackrel{-p_{01}}{\underset{-p_{02}}{\times}} X \times_{X/G} X \stackrel{-p_{0}}{\underset{-p_{1}}{\longrightarrow}} X$$

where we have the projections

$$-p_i: X \times_{X/G} X \to X, (x_0, x_1) \mapsto x_i$$

-
$$p_{ij}: X \times_{X/G} X \times_{X/G} X \to X \times_{X/G} X, (x_0, x_1, x_2) \mapsto (x_i, x_j)$$

One can show that this is precisely the usual action groupoid:

$$G\times G\times X \xrightarrow{\longrightarrow} G\times X \xrightarrow{\longrightarrow} X$$

For an affine S, an S-point of $X \times_{X/G} X$ is a triple (x_0, x_1, ϕ) where $x_i \in X(S)$ and

where ϕ is G-equivariant. The data of ϕ is equivalent to $g \in G(S)$ such that $x_1 = g \cdot x_0$.

Definition – *G*-equivariance

The category $(\operatorname{QCoh} X)^G$ of quasi-coherent sheaves on X equipped with G-equivariance is defined as follows :

- An object of $(\operatorname{QCoh} X)^G$ is a quasi-coherent sheaf $\mathcal{F} \in \operatorname{QCoh} X$ equipped with a $\phi : p_0^* \mathcal{F} \cong p_1^* \mathcal{F}$ in $\operatorname{QCoh}(X \times_{X/G} X)$ such that
 - 1. $\phi = \mathbb{1}$ when restricted to the diagonal section $\Delta : X \to X \times_{X/G} X$
 - 2. the following diagram commute in $QCoh(X \times_{X/G} X \times_{X/G} X)$:

– a morphism $\eta:(\mathcal{F},\phi)\to(\mathcal{G},\psi)$ is a morphism $\eta:\mathcal{F}\to\mathcal{G}$ in $\operatorname{QCoh} X$ such that the following commutes :

$$\begin{array}{ccc} p_0^*\mathcal{F} & \stackrel{\phi}{\longrightarrow} & p_1^*\mathcal{F} \\ p_0^*(\eta) \!\!\! \downarrow & & & \downarrow p_1^*(\eta) \\ p_0^*\mathcal{G} & \stackrel{\psi}{\longrightarrow} & p_1^*\mathcal{G} \end{array}$$

A weakly G-equivariant D-module on X is a D-module on X equipped with G-equivariance structure ϕ which is a morphism of $\mathcal{O}_G \boxtimes D_X$ -modules, where we used $G \times X \simeq X \times_{X/G} X$.

A strongly G-equivariant D-module on X is the same except we require ϕ is be a morphism of $D_{G \times X}$ -modules.

Using the equivalence of *D*-modules and crystals :

$$D\mathbf{Mod}(X) \simeq \mathrm{QCoh}\,X_{\mathrm{dR}}$$

the above definitions can be rephrased as follows:

1. The action of G on X induces an action of G on X_{dR} . Thus, we have an action groupoid for X_{dR} :

$$G \times G \times X_{\mathrm{dR}} \xrightarrow{\longrightarrow} G \times X_{\mathrm{dR}} \xrightarrow{\longrightarrow} X_{\mathrm{dR}}$$

Then a weakly G-equivariant D-module on X is equivalently a G-equivariant quasi-coherent sheaf on X_{dR} .

2. Taking de Rham spaces commutes with limits of presheaves. ¹ So $(G \times X)_{dR} = G_{dR} \times X_{dR}$. Then the action of G on X induces an action of G_{dR} on X_{dR} , giving us the action groupoid

$$G_{\mathrm{dR}} \times G_{\mathrm{dR}} \times X_{\mathrm{dR}} \xrightarrow{\longrightarrow} G_{\mathrm{dR}} \times X_{\mathrm{dR}} \xrightarrow{\longrightarrow} X_{\mathrm{dR}}$$

A strongly G-equivariant D-module on X is thus equivalently a G_{dR} -equivariant quasi-coherent sheaf on X_{dR} .

We have the following.

Proposition

There is an equivalence of categories:

$$(\operatorname{QCoh} X_{\operatorname{dR}})^{G_{\operatorname{dR}}} \simeq D\mathbf{Mod}(X/G)$$

i.e. strongly G-equivariant D-modules on X are equivalent to D-modules on X/G.

Proof. (Sketch)

First, we define the functor $(\operatorname{QCoh} X_{\operatorname{dR}})^{G_{\operatorname{dR}}} \to D\operatorname{Mod}(X/G)$. Recall for a stack \mathscr{X} , $\mathcal{D}_{\mathscr{X}}$ -modules on it are defined locally in the smooth topology \mathscr{X}_{sm} . The objects of \mathscr{X}_{sm} are pairs (S,π_S) where S is a scheme and $\pi_S:S\to\mathscr{X}$ is a smooth 1-morphism. [BD, Section 1.1.2] The morphisms between pairs (S,π_S) and $(S',\pi_{S'})$ are pairs (φ,α) where $\varphi:S\to S'$ is a smooth morphism and $\alpha:\pi_S\overset{\sim}{\to}\pi_{S'}\varphi$ is a 2-morphism, i.e., it satisfies some kind of cocycle condition. Suppose we now have a strongly equivariant D-module M on X. Goal: for each $(S,\pi_S)\in (X/G)_{sm}$, we need to give a \mathcal{D}_S -module M_S , and, given a morphism $(\varphi,\alpha):(S,\pi_S)\to (S',\pi_{S'})$ we need to give an isomorphism of \mathcal{D}_S -modules $\beta:\varphi^*M_{S'}\overset{\sim}{\to}M_S$ satisfying a cocycle condition. The data of (S,π_S) is equivalent to giving a principal G-bundle $p:P\to S$ together with a smooth G-equivariant morphism $\gamma:P\to X$.

$$P \xrightarrow{\gamma} X$$

$$\downarrow p \qquad \downarrow \qquad \qquad \downarrow$$

$$S \longrightarrow X/G \qquad (1)$$

The point now is that M pullback to a strongly equivariant D-module N on P. The G-invariant sections N^G of N then determine a \mathcal{D}_S -module M_S on S. This is because \mathcal{D}_S embeds into $(\mathcal{D}_P)^G$: if $P = G \times S$ is trivial then $\mathcal{D}_S \hookrightarrow (\mathcal{D}_{G \times S})^G$, and one can use a fpqc-local triviality of G-bundles to reduce to this case. One can check that this procedure produces a well-defined D-module on X/G.

For a quasi-inverse functor, note that amongst $(X/G)_{sm}$ are the following fiber squares

¹In fact, it commutes with colimits of presheaves too.

There are three of these second kind corresponding to the three projections p_{01} , p_{12} , p_{02} of the action groupoid of G on X. Now given a D-module $\mathscr N$ on X/G, the cartesian square of the first kind gives a D-module N on X. There are morphisms between the cartesian square of the first kind and the cartesian squares of the second kind in $(X/G)_{\mathrm{sm}}$. These produce the transition map for a strong G-equivariance structure on N and the cocycle condition for $\mathscr N$ gives the cocycle condition for the the strong G-equivariance.

4 Relativising to the entire curve

Back to Hecke actions. The previous discussion of Sph_G does not involve the curve X. Given a closed point x of the curve X and a choice $k[\![t]\!] \simeq \mathcal{O}_x^\wedge$, we can replace the disk and punctured disk around 0 in \mathbb{A}^1 by the disk and punctured disk around x in X. (If need more material, can define $D_{x_S}, D_{x_S}^\circ$.) In other words, we have isomorphisms:

$$LG \simeq L_x G$$
 $L^+G \simeq L_x^+G$

where $L_xG(S)=G(D_{x_S}^\circ)$ and $L_x^+G(S)=G(D_{x_S})$. These isomorphisms induce

$$\operatorname{Sph}_G \simeq \operatorname{Sph}_{G,x}$$

where the latter is the category of D-modules on $L_x^+G\setminus (L_xG/L_x^+G)$. From the talk in week 1, we can make an action of $\operatorname{Sph}_{G,x}$ on $D\operatorname{\mathbf{Mod}}(\operatorname{Bun}_G)$ by considering the L_x^+G -bundle $\operatorname{Bun}_{G,x}^{\operatorname{Ivl}}\to \operatorname{Bun}_G$ and the regluing action of L_xG on $\operatorname{Bun}_{G,x}^{\operatorname{Ivl}}$. I now justify my claim in week 1 that there is a way of doing all of this in families above X.

The trick is to consider the "bundle of uniformisers":

$$\widehat{X}^+(S) := \{(x,\alpha) \, | \, x \in X(S), \alpha : D_{x_S} \simeq D_S \text{ preserving } S\}$$

Examples of points of this is given by [Stacks, Tag 05D5]. The forgetful map $\widehat{X}^+ \to X$ is a bundle for the proalgebraic group $\operatorname{Aut}^+ D$ of automorphisms of D preserving 0. There is an action of $\operatorname{Aut}^+ D$ on $LG, L^+G, \operatorname{Gr}_G$

¹The action map $G \times X \to X$ is smooth because it is the composition of $G \times X \simeq G \times X, (g,x) \mapsto (g,gx)$ with the second projection.

then the relativisation precedure is twisting these using \widehat{X}^+ .

$$L_X^+G := \widehat{X}^+ \times^{\operatorname{Aut}^+D} L^+G$$

$$L_XG := \widehat{X}^+ \times^{\operatorname{Aut}^+D} LG$$

$$\operatorname{Gr}_{G,X} := \widehat{X}^+ \times^{\operatorname{Aut}^+D} \operatorname{Gr}_G$$

The final object here is called the $Beilinson-Drinfeld\ Grassmannian$ and it will play a crucial role in proving that the monoidal structure on ${\rm Sph}_G$ is symmetric, i.e. the categorification of the fact that convolution product on the spherical Hecke algebra is commutative.

References

[BD] A. Beilinson and V. Drinfeld. *Quantization of Hitchin's Integrable System and Hecke Eigensheaves*. URL: https://math.uchicago.edu/~drinfeld/langlands/QuantizationHitchin.pdf.

[Stacks] T. Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu. 2018.