We claim:

1. A compound of Formula I:

$$R^{1}$$
 C
 $CH_{2})_{a}$
 $CCH_{2})_{b}$
 R^{2}

5 wherein:

20

25

R¹ is -CN or -CONR⁴R⁵;

 R^2 is C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, C_3 - C_6 heterocycloalkyl, C_6 - C_{14} aryl, or a group of the formula:

$$R^{3e}$$
 R^{3e}
 R^{3e}

10 R^{3a}, R^{3b}, R^{3c}, R^{3d} and R^{3e} are each independently H, C₁-C₄ alkyl, C₁-C₄ alkoxy, – (CH₂)_dOH, halo, trifluoromethyl, cyano, –(CH₂)_dNR⁶R⁷, –CO(C₁-C₄ alkyl), –OCO(C₁-C₄ alkyl), –CH(OH)(C₁-C₄ alkyl), –C(OH)(C₁-C₄ alkyl)₂, –SO₂NH₂, –(CH₂)_dCONR⁸R⁹ or –(CH₂)_dCOO(C₁-C₄ alkyl);

 $R^4,\,R^5,\,R^6,\,R^7,\,R^8$ and R^9 are each independently H or $C_1\text{-}C_4$ alkyl;

15 Het is pyridyl, pyrazinyl or thienyl;

a is 1, 2, 3 or 4;

b is 1, 2 or 3;

c is 1, 2 or 3;

d is 0, 1 or 2; and

X¹ and X² are each independently CH₂ or O; or a pharmaceutically acceptable salt or solvate thereof.

2. A compound according to claim 1 wherein:

$$R^2$$
 is R^4 or Het.

3. A compound of Formula II:

wherein:

5 R¹⁰ is a group of the formula:

$$R^{136}$$
 R^{136}
 R^{136}

 R^{11} and R^{12} are each independently H or $C_{1\text{-}}C_{4}$ alkyl, with the proviso that R^{11} and R^{12} are not both H;

 R^{13a} , R^{13b} , R^{13c} , R^{13d} , and R^{13e} are each independently H, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, — (CH₂)_gOH, halo, trifluoromethyl, cyano, $-(CH_2)_gNR^{14}R^{15}$, $-CO(C_1$ - C_4 alkyl), $-OCO(C_1$ - C_4 alkyl), $-CH(OH)(C_1$ - C_4 alkyl), $-C(OH)(C_1$ - C_4 alkyl)₂, $-SO_2NH_2$, $-(CH_2)_gCONR^{16}R^{17}$ or $-(CH_2)_gCOO(C_1$ - C_4 alkyl);

 R^{14} , R^{15} , R^{16} and R^{17} are each independently H or C_1 - C_4 alkyl;

Het is pyridyl, pyrazinyl or thienyl;

15 e is 1, 2 or 3;

f is 1, 2 or 3;

g is 0, 1 or 2; and

X³ and X⁴ are each independently CH₂ or O;

or a pharmaceutically acceptable salt or solvate thereof.

4. A compound according to claim 14 wherein:

R¹⁰ is a group of the formula:

25

20

5. A compound according to claim 14 wherein:

R¹⁰ is a group of the formula:

X° is CH₂; and X⁴ is O.

6. A compound of Formula III:

wherein:

R¹⁸ is -CN or -CONR²⁰R²¹;

 $R^{1\theta}$ is C_3 - C_6 cycloalkyl, C_3 - C_6 heterocycloalkyl or $(C_6$ - C_{14} aryl)– $(C_1$ - C_4 alkyl) $_v$;

R²⁰ and R²¹ are each independently H or C₁-C₄ alkyl;

Ш

h is 1, 2, 3 or 4; and

v is 0, 1 or 2;

or a pharmaceutically acceptable salt or solvate thereof.

7. A compound selected from:

20

10

15

5

and

or a pharmaceutically acceptable salt or solvate thereof.

8. A compound selected from:

or a pharmaceutically acceptable salt or solvate thereof.

10 9. A compound selected from:

or a pharmaceutically acceptable salt or solvate thereof.

10. A compound selected from:

15

or a pharmaceutically acceptable salt or solvate thereof.

5 11. A method of treating a mammal infected with human immunodeficiency virus (HIV) comprising administering to said mammal an effective amount of a compound of Formula I:

$$R^{1}$$
 C
 N
 $CH_{2})_{a}$
 C
 $CH_{2})_{b}$
 R^{2}

wherein:

10

15

20

R1 is -CN or -CONR4R5;

 R^2 is C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, C_3 - C_6 heterocycloalkyl, C_6 - C_{14} aryl, or a group of the formula:

$$R^{3e}$$
 R^{3e}
 R

 R^{3a} , R^{3b} , R^{3c} , R^{3d} and R^{3e} are each independently H, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, – $(CH_2)_dOH$, halo, trifluoromethyl, cyano, – $(CH_2)_dNR^6R^7$, – $CO(C_1$ - C_4 alkyl), – $OCO(C_1$ - C_4 alkyl), – $C(OH)(C_1$ - C_4 alkyl), – $C(OH)(C_1$ - C_4 alkyl), – $C(OH)(C_1$ - C_4 alkyl);

 R^4 , R^5 , R^6 , R^7 , R^8 and R^9 are each independently H or C_1 - C_4 alkyl; Het is pyridyl, pyrazinyl or thienyl;

a is 1, 2, 3 or 4;

b is 1, 2 or 3;

c is 1, 2 or 3;

d is 0, 1 or 2; and

 $\rm X^1$ and $\rm X^2$ are each independently $\rm CH_2$ or O; or a pharmaceutically acceptable salt or solvate thereof.

12. A method of treating a mammal infected with human immunodeficiency virus (HIV) comprising administering to said mammal an effective amount of a compound of Formula II:

10

5

wherein:

R¹⁰ is a group of the formula:

or Het;

 R^{11} and R^{12} are each independently H or $C_1.C_4$ alkyl, with the proviso that R^{11} and R^{12} are not both H;

 $R^{13a}, \, R^{13b}, \, R^{13c}, \, R^{13d}, \, \text{and} \, R^{13e} \, \text{are each independently H, C}_1\text{-C}_4 \, \text{alkyl}, \, C_1\text{-C}_4 \, \text{alkoxy}, \, - (CH_2)_g \text{OH}, \, \text{halo, trifluoromethyl, cyano, } - (CH_2)_g \text{NR}^{14} R^{15}, \, - \text{CO}(C_1\text{-C}_4 \, \text{alkyl}), \, - \text{OCO}(C_1\text{-C}_4 \, \text{alkyl}), \, - \text{CO}(C_1\text{-C}_4 \, \text{alkyl}), \, - \text{CO}(C_1\text{-C}_4 \, \text{alkyl})_2, \, - \text{SO}_2 \text{NH}_2, \, - (CH_2)_g \text{CONR}^{16} R^{17} \, \text{or} \, - (CH_2)_g \text{COO}(C_1\text{-C}_4 \, \text{alkyl});$

20

15

 $R^{14},\,R^{15},\,R^{16}$ and R^{17} are each independently H or $C_1\text{-}C_4$ alkyl;

Het is pyridyl, pyrazinyl or thienyl;

e is 1, 2 or 3;

f is 1, 2 or 3;

g is 0, 1 or 2; and

25

X³ and X⁴ are each independently CH₂ or O;

or a pharmaceutically acceptable salt or solvate thereof.

13. A method of treating a mammal infected with human immunodeficiency virus (HIV) comprising administering to said mammal an effective amount of a compound of Formula III:

$$R^{18}$$
 $N \longrightarrow (CH_2)_h$
 R^{10}

5 wherein:

15

 R^{18} is -CN or $-CONR^{20}R^{21};$ R^{19} is $C_3\text{-}C_6$ cycloalkyl, $C_3\text{-}C_6$ heterocycloalkyl or $(C_6\text{-}C_{14} \text{ aryl})\text{-}(C_1\text{-}C_4 \text{ alkyl})\text{-};$ R^{20} and R^{21} are each independently H or $C_1\text{-}C_4$ alkyl; h is 1, 2, 3 or 4; and

10 v is 0, 1 or 2;

or a pharmaceutically acceptable salt or solvate thereof.

14. A method of treating a mammal infected with human immunodeficiency virus (HIV) comprising administering to said mammal an effective amount of a compound according to Formula IV:

wherein:

Y is a direct link, $-CH_2$ -, $-(CH_2)_2$ -, $-CH_2O$ - or $-CH_2S$ -; R^{22} is -CN or $-CONH_2$; R^{23} is a group of the formula:

5

10

- 53 **-**

or Het;

wherein

 $R^{24} \text{ and } R^{25} \text{ are each independently H, C}_1\text{-C}_4 \text{ alkyl, C}_1\text{-C}_4 \text{ alkoxy, } -(\text{CH}_2)_k\text{OH, halo, trifluoromethyl, cyano, } -(\text{CH}_2)_k\text{NR}^{26}R^{27}, -\text{CO}(\text{C}_1\text{-C}_4 \text{ alkyl), } -\text{OCO}(\text{C}_1\text{-C}_4 \text{ alkyl), } -\text{CH}(\text{OH})(\text{C}_1\text{-C}_4 \text{ alkyl), } -\text{CO}(\text{C}_1\text{-C}_4 \text{ alkyl), } -\text{CO}(\text{C}_1\text{-C}_4$

R²⁸ and R²⁷ are each independently H or C₁-C₄ alkyl;

k is 0, 1 or 2;

X⁵ and X⁶ are each independently O or CH₂;

j is 1, 2 or 3; and

Het is pyridyl, pyrazinyl or thienyl;

or a pharmaceutically acceptable salt or solvate thereof.

15. A pharmaceutical composition that is effective in treating HIV in an infected mammal comprising a pharmaceutically acceptable carrier and an effective amount of a compound of Formula IV:

$$R^{22}$$
 N
 CH_2
 Y
 R^{23}

wherein:

20

Y is a direct link, -CH₂-, -(CH₂)₂-, -CH₂O- or -CH₂S-;

R²² is -CN or -CONH₂;

R²³ is a group of the formula:

$$R^{24}$$
 $(CH_2)_j$ or Het;

25 wherein

 $R^{24} \text{ and } R^{25} \text{ are each independently H, C}_1\text{-C}_4 \text{ alkyl, C}_1\text{-C}_4 \text{ alkoxy, -(CH}_2)_k\text{OH, halo, trifluoromethyl, cyano, -(CH}_2)_k\text{NR}^{26}R^{27}, -\text{CO(C}_1\text{-C}_4 \text{ alkyl), -OCO(C}_1\text{-C}_4 \text{ alkyl), -CH(OH)(C}_1\text{-C}_4 \text{ alkyl), -CO(C}_1\text{-C}_4 \text{ alkyl)}, -\text{SO}_2\text{NH}_2, -\text{(CH}_2)_k\text{CONR}^{26}R^{27} \text{ or -(CH}_2)_k\text{COO(C}_1\text{-C}_4 \text{ alkyl);}$

 R^{26} and R^{27} are each independently H or C_1 - C_4 alkyl;

k is 0, 1 or 2;

X⁵ and X⁶ are each independently O or CH₂;

j is 1, 2 or 3; and

Het is pyridyl, pyrazinyl or thienyl;

or a pharmaceutically acceptable salt or solvate thereof.

10

5