Devoir surveillé n°12

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

1 Si $X \sim X'$, alors $\mathbb{P}(X = n) = \mathbb{P}(X' = n)$ pour tout $n \in \mathbb{N}$. On en déduit que $G_X = G_{X'}$. Réciproquement, si $G_X = G_{X'}$, alors $\mathbb{P}(X = n) = \mathbb{P}(X' = n)$ pour tout $n \in \mathbb{N}$ par unicité du développement en série entière et donc $X \sim X'$.

Remarque. On peut utiliser l'unicité du développement en série entière puisque la série entière définissant une fonction génératrice a un rayon de convergence non nul (supérieur ou égal à 1.)

3 Posons q = 1 - p et rappelons que $G_X(t) = (q + pt)^n$.

Supposons $n \ge 2$. En se donnant des variables aléatoires Y et Z indépendantes telles que Y $\sim \mathcal{B}(n-1,q)$ et Z $\sim \mathcal{B}(1,p)$, on a $G_X = G_Y G_Z = G_{Y+Z}$ puis X $\sim Y + Z$ en utilisant les questions précédentes. De plus, Y et Z sont à valeurs dans \mathbb{N} et ni Y ni Z ne sont constantes presque sûrement. Ainsi X est décomposable.

Réciproquement, supposons que n=1. Soient Y et Z des variables aléatoires indépendantes à valeurs dans \mathbb{N} telles que $X \sim Y + Z$. Remarquons alors que si $k \geq 2$, $\{Y = k\} \subset \{X \geq k\}$ donc $\mathbb{P}(Y = k) \leq \mathbb{P}(X \geq k) = 0$ puis $\mathbb{P}(Y = k) = 0$. De même, $\mathbb{P}(Y = k) = 0$. Ainsi G_Y et G_Z sont polynomiales de degré au plus 1. Comme G_X est également polynomiale de degré 1, l'égalité $G_X = G_Y G_Z$ donne que G_Y ou G_Z est une fonction constante. Ceci signifie que Y ou Z est constante presque sûrement (en fait, nulle presque sûrement). Ainsi X n'est pas décomposable.

4 4.a Remarquons que

$$(\deg U, \deg V) \in \{(0,4), (1,3), (2,2), (3,1), (4,0)\}$$

On peut supposer sans perte de généralité que U et V sont unitaires.

Supposons que deg U = deg V = 2. Il existe alors $(a, b, c, d) \in (\mathbb{R}_+)^4$ tel que $U(T) = T^2 + aT + b$ et $V(T) = T^2 + cT + d$. En

identifiant les coefficients de A et UV, on obtient, $\begin{cases} a+c=0 \\ b+d+ac=0 \\ ad+bc=2 \end{cases}$. Comme a,b,c,d sont positifs, on obtient a=c=0 bd=1

ce qui contredit ad + bc = 2.

Supposons que deg U = 1 et deg V = 3. En écrivant U = T + a et V = T³ + bT² + cT + d, on obtient $\begin{cases} a+b=0 \\ ab+c=0 \\ c+d=2 \end{cases}$ ad=1

Comme a, b, c, d sont positifs, on obtient a = b = 0, ce qui contredit ad = 1.

De la même manière, on ne peut avoir $\deg U = 3$ et $\deg V = 1$.

Ainsi U ou V est constant.

4.b Soit X une variable aléatoire telle que $\mathbb{P}(X=0)=\frac{1}{4}$, $\mathbb{P}(X=1)=\frac{1}{2}$ et $\mathbb{P}(X=2)=\frac{1}{4}$. Soit Y et Z des variables aléatoires indépendantes suivant la loi $\mathcal{B}(1/2)$. Alors

$$G_X(T) = \frac{1}{4}T^2 + \frac{1}{2}T + \frac{1}{4} = \left(\frac{1}{2}T + \frac{1}{2}\right)^2 = G_Y(T)G_Z(T) = G_{Y+Z}(T)$$

donc $X \sim Y + Z$ et X est décomposable.

Par ailleurs, on vérifie aisément que $G_{X^2} = \frac{1}{4}A$. Soient Y et Z des variables aléatoires indépendantes à valeurs dans \mathbb{N} telles que $X^2 \sim Y + Z$. Comme X^2 est à valeurs dans [0,4], on prouve comme à la question précédente que Y et Z sont presque sûrement à valeurs dans [0,4]. Ainsi G_Y et G_Z sont polynomiales et $G_YG_Z = \frac{1}{4}A$. D'après la question précédente, G_Y ou G_Z est constante, ce qui prouve que Y ou Z est constante presque sûrement (en fait, nulle presque sûrement). Ainsi X^2 n'est pas décomposable.

5.a Pour tout $\omega \in \Omega$, il existe un unique couple d'entiers $(Q(\omega), R(\omega))$ tel que $X(\omega) = aQ(\omega) + R(\omega)$ (division euclidienne de $X(\omega)$ par a). Ceci garantit l'existence et l'unicité du couple (Q, R) demandées par l'énoncé.

5.b X est à valeurs dans [0, n-1] donc, puisque n = ab, (Q, R) est à valeurs dans $[0, b-1] \times [0, a-1]$. Par unicité du quotient et du reste d'une division euclidienne

$$\forall (q,r) \in [0,b-1] \times [0,a-1], \ \mathbb{P}((Q,R)=(q,r)) = \mathbb{P}(X=aq+r) = \frac{1}{n}$$

 $car aq + r \in [0, n - 1].$

On récupère les lois marginales à partir de la loi conjointe,

$$\begin{aligned} &\forall q \in \llbracket 0,b-1 \rrbracket \,, \; \mathbb{P}(\mathbf{Q}=q) = \sum_{r=0}^{a-1} \mathbb{P}((\mathbf{Q},\mathbf{R})=(q,r)) = \frac{a}{n} = \frac{1}{b} \\ &\forall r \in \llbracket 0,a-1 \rrbracket \,, \; \mathbb{P}(\mathbf{R}=r) = \sum_{q=0}^{b-1} \mathbb{P}((\mathbf{Q},\mathbf{R})=(q,r)) = \frac{b}{n} = \frac{1}{a} \end{aligned}$$

Autrement dit Q et R suivent des lois uniformes respectivement sur [0, b-1] et [0, a-1].

5.c Posons Y = aQ. Remarquons que Y suit une loi uniforme sur $\{ak, k \in [0, b-1]\}$. De plus,

$$\forall (k,r) \in \llbracket 0,b-1 \rrbracket \times \llbracket 0,a-1 \rrbracket, \ \mathbb{P}(\mathbf{Y}=ak,\mathbf{R}=r) = \mathbb{P}(\mathbf{X}=ak+r) = \frac{1}{n} = \frac{1}{b} \cdot \frac{1}{a} = \mathbb{P}(\mathbf{Y}=ak)\mathbb{P}(\mathbf{R}=r)$$

Ainsi Y et R sont indépendantes. De plus, $a \ge 2$ et $b \ge 2$ donc Y et R ne sont pas presque sûrement constantes. Ainsi X est décomposable.

On en déduit que

$$\mathbf{G}_{\mathbf{X}}(\mathbf{T}) = \mathbf{G}_{\mathbf{Y}}(\mathbf{T})\mathbf{G}_{\mathbf{R}}(\mathbf{T}) = \left(\frac{1}{b}\sum_{k=0}^{b-1}\mathbf{T}^{ak}\right)\left(\frac{1}{a}\sum_{r=0}^{a-1}\mathbf{T}^{r}\right)$$

6 On posera dans cette question $W(T) = \sum_{k=0}^{n-1} T^k$.

- **6.a** Supposons acquis le résultat de l'énoncé et montrons qu'alors X est indécomposable. Soient Y et Z des variables aléatoires indépendantes à valeurs dans $\mathbb N$ telles que $X \sim Y + Z$. On montre comme précédemment que Y et Z sont presque sûrement à valeurs dans [0, n-1]; on en déduit notamment que G_Y et G_Z sont des polynômes. De plus, $G_X = G_Y G_Z$. Notons α et β les coefficients dominants respectifs de G_Y et G_Z et posons $U = G_X/\alpha$ et $V = G_X/\beta$ de sorte que U et V sont unitaires. Remarquons également que $G_X = \frac{1}{n}W$. L'égalité $G_X = G_Y G_Z$ donne alors W = UV en divisant chacun des polynômes par son coefficient dominant respectif. Les coefficients de G_Y et G_Z sont positifs en tant que probabilités ; ceux de U et V le sont donc également. D'après le résultat admis, U ou V est constant donc G_Y ou G_Z également. Ceci signifie que Y ou Z est presque sûrement constante (presque sûrement nulle en fait).
- **6.b** Remarquons que W(T) = $\frac{T^n 1}{T 1}$. Ainsi W est simplement scindé sur \mathbb{C} et ses racines sont les racines $n^{\text{èmes}}$ de l'unité distinctes de 1. Comme UV = W, il existe une partie R de $\mathbb{U}_n \setminus \{1\}$ de cardinal r telle que U(T) = $\prod_{\alpha \in \mathbb{P}} (T \alpha)$. Alors

$$T^{r}U\left(\frac{1}{T}\right) = T^{r}\prod_{\omega \in \mathbb{R}}\left(\frac{1}{T} - \omega\right) = \prod_{\omega \in \mathbb{R}}(1 - \omega T) = \left(\prod_{\omega \in \mathbb{R}}\omega\right)\left(\prod_{\omega \in \mathbb{R}}\left(\frac{1}{\omega} - T\right)\right) = C\prod_{\omega \in \mathbb{R}}\left(T - \frac{1}{\omega}\right)$$

en posant $C = \prod_{\omega \in R} (-\omega) = U(0)$. Pour $\omega \in R \subset \mathbb{U}$, $\frac{1}{\omega} = \overline{\omega}$. Ainsi

$$T^{r}U\left(\frac{1}{T}\right) = C \prod_{\omega \in \mathbb{R}} \left(T - \overline{\omega}\right)$$

Comme U est à coefficients réels,

$$T^r U\left(\frac{1}{T}\right) = CU(T)$$

De plus, $|C| = \prod_{\omega \in R} |\omega| = 1$. Mais C = U(0) est le coefficient constant de U. C'est donc un réel positif et C = 1, puis $T^r U\left(\frac{1}{T}\right) = U(T)$.

On montre de la même manière que $T^sV\left(\frac{1}{T}\right) = V(T)$

6.c Comme U(T) = $T^r U\left(\frac{1}{T}\right)$, $u_k = u_{r-k}$ pour tout $k \in [[1, r-1]]$. Comme le coefficient de T^r dans W(T) vaut 1, $\sum_{k=0}^r u_{r-k} v_k = 1$, en convenant que $u_0 = u_r = v_0 = v_s = 1$. Puisque $u_r v_0 = 1$, et $u_{r-k} = u_k$, $\sum_{k=1}^r u_k v_k = 0$. Comme les termes de la somme sont positifs, $u_k v_k = 0$ pour tout $k \in [[1, r]]$.

6.d On raisonne par récurrence. Tout d'abord, $(u_0, v_0) = (1, 1) \in \{0, 1\}^2$. Supposons qu'il existe $k \in [0, r-1]$ tel que $(u_j, v_j) \in \{0, 1\}^2$ pour tout $j \in [0, k]$. Comme le coefficient de T^{k+1} dans W = UV vaut 1, on a :

$$\sum_{i=0}^{k+1} u_j v_{k+1-j} = 1$$

Puisque $u_0 = v_0 = 1$, on a donc

$$u_{k+1} + v_{k+1} + \sum_{j=1}^{k} u_j v_{k+1-j} = 1$$

Par hypothèse de récurrence, on peut affirmer que $\sum_{j=1}^k u_j v_{k+1-j} \in \mathbb{N}$ donc. De plus, u_{k+1} et v_{k+1} sont positifs. On en déduit

que $u_{k+1} + v_{k+1} \in \{0, 1\}$. Mais d'après la question précédente, l'un au moins des deux coefficients u_{k+1} et v_{k+1} est nul. On en déduit immédiatement que $(u_{k+1}, v_{k+1}) \in \{0, 1\}^2$.

Par récurrence, $(u_k, v_k) \in \{0, 1\}^2$ pour tout $k \in [0, r]$.

6.e On montre tout d'abord que $v_k \in \{0,1\}$ pour tout $k \in [0,s]$. C'est déjà vrai pour $k \in [0,r]$ d'après la question précédente. Supposons alors qu'il existe $k \in [r,s-1]$ tel que $v_j \in \{0,1\}$ pour tout $j \in [0,k]$. Le coefficient de T^{k+1} dans W = UV vaut 1. On a donc

$$\sum_{j=0}^{r} u_j v_{k+1-j} = 1$$

ou encore

$$v_{k+1} + \sum_{j=1}^{r} u_j v_{k+1-j} = 1$$

A nouveau, $\sum_{j=1}^{r} u_j v_{k+1-j} \in \mathbb{N}$ et v_{k+1} est positif donc $v_{k+1} \in \mathbb{N}$. On a donc montré que $v_k \in \{0,1\}$ pour tout $k \in [0,s]$.

Finalement n = W(1) = U(1)V(1) et $U(1) = \sum_{k=0}^{r} u_k \in \mathbb{N}$ et $V(1) = \sum_{k=0}^{r} v_k \in \mathbb{N}$. Comme n est premier, $U(1) = \sum_{k=0}^{r} u_k = 1$

ou V(1) = $\sum_{k=0}^{3} v_k = 1$. Comme U et V sont à coefficients positifs et que $u_0 = v_0 = 1$, on a donc U = 1 ou V = 1. D'après la question **6.a**, X est indécomposable.

Soit $m \in \mathbb{N}^*$. D'après le résultat admis dans l'énoncé, il existe des variables aléatoires indépendantes $X_{m,1}, \dots, X_{m,m}$ toutes constantes égales à $\frac{a}{m}$. Il est alors clair que $X \sim \sum_{i=1}^{m} X_{m,i}$. Ainsi X est infiniment divisible.

8 8.a Remarquons que

$$\bigcap_{i=1}^n \left\{ X_i > \frac{\mathsf{M}}{n} \right\} \subset \left\{ X > \mathsf{M} \right\} \subset \left\{ |X| > m \right\} = \emptyset$$

Comme les X_i sont indépendantes, on en déduit que

$$\prod_{i=1}^{n} \mathbb{P}\left(X_{i} > \frac{M}{n}\right) = 0$$

Comme les X_i sont de même loi, tous les facteurs sont égaux. Ainsi

$$\forall i \in [[1, n]], \ \mathbb{P}\left(X_i > \frac{M}{n}\right) = 0$$

puis

$$\forall i \in [1, n], \ \mathbb{P}\left(X_i \leq \frac{M}{n}\right) = 1$$

De la même manière.

$$\bigcap_{i=1}^{n} \left\{ X_i < -\frac{M}{n} \right\} \subset \left\{ X < -M \right\} \subset \left\{ |X| > m \right\} = \emptyset$$

Comme les X_i sont indépendantes, on en déduit que

$$\prod_{i=1}^{n} \mathbb{P}\left(X_{i} < -\frac{M}{n}\right) = 0$$

Comme les X_i sont de même loi, tous les facteurs sont égaux. Ainsi

$$\forall i \in [[1, n]], \ \mathbb{P}\left(X_i < -\frac{M}{n}\right) = 0$$

puis

$$\forall i \in [\![1,n]\!]\,, \ \mathbb{P}\left(X_i \geq -\frac{M}{n}\right) = 1$$

Enfin, pour tout $i \in [1, n]$, $\{|X_i| \le \frac{M}{n}\} = \{X_i \le \frac{M}{n}\} \cap \{X_i \ge -\frac{M}{n}\}$ est presque sûr en tant qu'intersection d'événements presque certains.

8.b Puisque $X_i^2 \le \frac{M^2}{n^2}$ presque sûrement,

$$\mathbb{V}(X_i) = \mathbb{E}(X_i^2) - \mathbb{E}(X_i)^2 \le \mathbb{E}(X_i^2) \le \frac{M^2}{n^2}$$

Par indépendance des X_i,

$$\mathbb{V}(X) = \sum_{i=1}^{n} \mathbb{V}(X_i) \le \frac{M^2}{n}$$

Par passage à la limite dans l'inégalité précédente lorsque $n \to +\infty$, on obtient $\mathbb{V}(X) = 0$. On en déduit que X est presque sûrement constante.

10 Soit X une variable aléatoire suivant la loi binomiale $\mathcal{B}(n, p)$.

 $\overline{\text{Si }p} \in \{0,1\}$, X est presque sûrement constante donc infiniment divisible d'après la sous-partie précedente.

Sinon X est bornée mais pas presque sûrement constante. Donc X n'est pas infiniment divisible d'après la sous-partie précedente.

11 Posons S =
$$\sum_{i=1}^{n} X_i$$
 et $\lambda = \sum_{i=1}^{n} \lambda_i$. Alors

$$G_{S}(t) = \prod_{i=1}^{n} G_{X_{i}}(t) = \prod_{i=1}^{n} e^{\lambda_{i}(t-1)} = e^{\lambda(t-1)}$$

donc $S \sim \mathcal{P}(\lambda)$.

Supposons que $X \sim \mathcal{P}(\lambda)$. Soit $m \in \mathbb{N}^*$. D'après le résultat admis en début d'énoncé, il existe des variables aléatoires X_1, \dots, X_m mutuellement indépendantes suivant la même loi $\mathcal{P}(\lambda/m)$. D'après la question précédente, $\sum_{i=1}^m X_i \sim \mathcal{P}(\lambda)$ donc $X \sim \sum_{i=1}^m X_i$. On en déduit que X est infiniment divisible.

Posons $X = \sum_{i=1}^{r} iX_i$. Soit $m \in \mathbb{N}^*$. On se donne des variables aléatoires Y_1, \dots, Y_r mutuellement indépendantes telles que $Y_i \sim \mathcal{P}(\lambda_i/m)$ pour tout $i \in [\![1,r]\!]$.

REMARQUE. Ce n'est pas exactement le résultat admis dans l'énoncé mais c'est un résultat qui est tout de même au programme et qui, de plus, est utilisé par l'énoncé!

Posons Y = $\sum_{i=1}^{r} iY_i$. D'après l'énoncé, il existe des variables aléatoires Z_1, \dots, Z_m mutuellement indépendantes suivant la même loi que Y. Posons Z = $\sum_{i=1}^{m} Z_i$. Pour tout $t \in [-1, 1]$,

$$\begin{split} \mathbf{G}_{\mathbf{Z}}(t) &= \prod_{i=1}^{m} \mathbf{G}_{\mathbf{Z}_{i}}(t) & \text{car les } \mathbf{Z}_{i} \text{ sont mutuellement indépendantes} \\ &= \mathbf{G}_{\mathbf{Y}}(t)^{m} & \text{car } \mathbf{Z}_{i} \sim \mathbf{Y} \text{ pour tout } i \in \llbracket 1, m \rrbracket \rrbracket \\ &= \left(\prod_{i=1}^{r} \mathbf{G}_{i \mathbf{Y}_{i}}(t)\right)^{m} & \text{car les } i \mathbf{Y}_{i} \text{ sont mutuellement indépendantes} \\ &= \left(\prod_{i=1}^{r} \mathbb{E}(t^{i \mathbf{Y}_{i}})\right)^{m} \\ &= \left(\prod_{i=1}^{r} \mathbf{G}_{\mathbf{Y}_{i}}(t^{i})\right)^{m} \\ &= \prod_{i=1}^{r} e^{\lambda_{i}(t^{i}-1)/m} \\ &= \prod_{i=1}^{r} G_{\mathbf{X}_{i}}(t^{i}) \\ &= \prod_{i=1}^{r} \mathbf{G}_{i \mathbf{X}_{i}}(t) \\ &= \prod_{i=1}^{r} \mathbf{G}_{i \mathbf{X}_{i}}(t) \\ &= \mathbf{G}_{\mathbf{X}}(t) & \text{car les } i \mathbf{X}_{i} \text{ sont mutuellement indépendantes} \end{split}$$

Ainsi $X \sim Z = \sum_{i=1}^{m} Z_i$. On en déduit que X est infiniment divisible.

REMARQUE. On peut en fait montrer un résultat plus général. En effet, si Y est une variable aléatoire indéfiniment divisible, alors pour tout $p \in \mathbb{N}^*$, αY est infiniment divisible. Par ailleurs, on peut montrer qu'une somme de variables aléatoires indépendantes infiniment divisibles est encore infiniment divisible. On en déduit alors que $\sum_{i=1}^r i X_i$ est infiniment divisible puisque les X_i le sont.

14 14.a Comme $B \sqcup \overline{B} = \Omega$, $A = (A \cap B) \sqcup (A \cap \overline{B})$ puis $\mathbb{P}(A) = \mathbb{P}(A \cap B) + \mathbb{P}(A \cap \overline{B})$. De même, $\mathbb{P}(B) = \mathbb{P}(B \cap A) + \mathbb{P}(B \cap \overline{A})$. On en déduit par inégalité triangulaire que

$$|\mathbb{P}(A) - \mathbb{P}(B)| = |\mathbb{P}(A \cap \overline{B}) - \mathbb{P}(B \cap \overline{A})| \leq \mathbb{P}(A \cap \overline{B}) + \mathbb{P}(B \cap \overline{A})$$

14.b D'après la question précédente, pour tout $n \in \mathbb{N}$,

$$|\mathbb{P}(X = n) - \mathbb{P}(Y = n)| \le +\mathbb{P}(\{X = n\} \cap \{Y \ne n\}) + \mathbb{P}(\{Y = n\} \cap \{X \ne n\})$$

Soit $t \in [-1, 1]$. Par inégalité trianglaire à nouveau,

$$|\mathsf{G}_{\mathsf{X}}(t)-\mathsf{G}_{\mathsf{Y}}(t)| = \left|\sum_{n=0}^{+\infty} (\mathbb{P}(\mathsf{X}=n)-\mathbb{P}(\mathsf{Y}=n))t^n\right| \leq \sum_{n=0}^{+\infty} |\mathbb{P}(\mathsf{X}=n)-\mathbb{P}(\mathsf{Y}=n)||t|^n \leq \sum_{n=0}^{+\infty} |\mathbb{P}(\mathsf{X}=n)-\mathbb{P}(\mathsf{Y}=n)|$$

On en déduit avec notre remarque initiale que

$$|G_{X}(t) - G_{Y}(t)| \le \sum_{n=0}^{+\infty} \mathbb{P}(\{X = n\} \cap \{Y \ne n\}) + \sum_{n=0}^{+\infty} \mathbb{P}(\{Y = n\} \cap \{X \ne n\})$$

Or

$$\{X \neq Y\} = \bigsqcup_{n \in \mathbb{N}} \{X = n\} \cap \{Y \neq n\} = \bigsqcup_{n \in \mathbb{N}} \{Y = n\} \cap \{X \neq n\}$$

donc

$$\mathbb{P}(\mathbf{X} \neq \mathbf{Y}) = \sum_{n=0}^{+\infty} \mathbb{P}(\{\mathbf{X} = n\} \cap \{\mathbf{Y} \neq n\}) = \sum_{n=0}^{+\infty} \mathbb{P}(\{\mathbf{Y} = n\} \cap \{\mathbf{X} \neq n\})$$

et finalement

$$|G_{\mathbf{X}}(t) - G_{\mathbf{Y}}(t)| \le 2\mathbb{P}(\mathbf{X} \ne \mathbf{Y})$$

15.a Soit $n \in \mathbb{N}$. Remarquons que $Z_n = \bigcup_{i \geq n} \{U_i \neq 0\}$. Tout d'abord, les $\{U_i \neq 0\}$ sont bien des événements car les U_i sont des variables aléatoires. On en déduit que Z_n est bien un événement en tant que réunion dénombrable d'événements. De plus, pour tout $n \in \mathbb{N}$, $Z_n = Z_{n+1} \cup \{U_n \neq 0\} \subset Z_n$ donc (Z_n) est bien décroissante pour l'inclusion. Enfin, par sous-additivité,

$$0 \le \mathbb{P}(\mathbf{Z}_n) \le \sum_{i=n}^{+\infty} \mathbb{P}(\mathbf{U}_i \ne 0)$$

Or la série $\sum \mathbb{P}(U_i \neq 0)$ converge donc la suite de ses restes converge vers 0. Ainsi $\lim_{n \to \infty} \sum_{i=n}^{+\infty} \mathbb{P}(U_i \neq 0) = 0$ puis $\lim_{n \to +\infty} \mathbb{P}(Z_n) = 0$ par encadrement.

15.b Notons F l'événement $\{i \in \mathbb{N}^* \mid U_i \neq 0\}$ est fini. Alors $\overline{F} = \bigcap_{n \in \mathbb{N}} Z_n$. Par continuité décroissante, $\mathbb{P}(\overline{F}) = \lim_{n \to +\infty} \mathbb{P}(Z_n) = 0$ puis $\mathbb{P}(F) = 1$.

15.c Notons D l'événement «S est définie». Alors $F \subset D$ donc $\mathbb{P}(F) = \mathbb{P}(D) = 1$. Par ailleurs, pour tout $n \in \mathbb{N}$, on obtient avec la question précédente :

$$\forall t \in [-1, 1], \ |G_{\mathbf{S}}(t) - G_{\mathbf{S}_n}(t)| \le 2\mathbb{P}(\mathbf{S} \ne \mathbf{S}_n)$$

puis, en notant $\|\cdot\|_{\infty}$ la norme uniforme sur [-1,1] :

$$\|\mathbf{G}_{\mathbf{S}_n} - \mathbf{G}_{\mathbf{S}}\|_{\infty} \le 2\mathbb{P}(\mathbf{S} \ne \mathbf{S}_n)$$

Comme les U_i sont à valeurs dans \mathbb{N} , elles sont positives de sorte que

$${S \neq S_n} = {S - S_n \neq 0} = \bigcup_{i \ge n} {U_i \neq 0} = Z_n$$

Ainsi

$$\|\mathbf{G}_{\mathbf{S}_n} - \mathbf{G}_{\mathbf{S}}\|_{\infty} \le 2\mathbb{P}(\mathbf{Z}_n)$$

Par encadrement, $\|G_{S_n} - G_S\|_{\infty} \xrightarrow[n \to +\infty]{} 0$ i.e. (G_{S_n}) converge uniformément vers G_S .

16 16.a Tout d'abord, $\mathbb{P}(X_i = 0) = e^{-\lambda_i}$ donc $\mathbb{P}(X_i \neq 0) = 1 - e^{-\lambda_i}$. Comme $\sum \lambda_i$ converge, $\lambda_i \xrightarrow[i \to +\infty]{} 0$ donc $\mathbb{P}(X_i \neq 0) = 1 - e^{-\lambda_i} \sim \lambda_i$. Puisque $\sum \lambda_i$ est un série à termes positifs convergente, $\sum \mathbb{P}(X_i \neq 0)$ converge également.

16.b Comme les X_i sont mutuellement indépendantes à valeurs dans \mathbb{N} , la question **15.c** montre que $\sum_{i\geq 1} X_i$ converge presque sûrement. Si on note S sa somme et S_n sa somme partielle de rang n, la même question montre que (G_{S_n}) converge uniformément vers G_S sur [-1,1]. Or pour tout $t\in [-1,1]$,

$$G_{S_n}(t) = \prod_{i=1}^n G_{X_i}(t) = \prod_{i=1}^n e^{\lambda_i(t-1)} = \exp\left((t-1)\sum_{i=1}^n \lambda_i\right) \underset{n \to +\infty}{\longrightarrow} e^{\lambda(t-1)}$$

Comme la convergence uniforme implique la convergence simple, on obtient par unicité de la limite,

$$\forall t \in [-1, 1], G_S(t) = e^{\lambda(t-1)}$$

Ainsi S $\sim \mathcal{P}(\lambda)$.

16.c Pour tout $i \in \mathbb{N}^*$, $\{iX_i \neq 0\} = \{X_i \neq 0\}$. On en déduit comme à la question précédente que $\sum_{i \in \mathbb{N}^*} iX_i$ converge presque sûrement et que la suite $\left(\prod_{i=1}^r G_{iX_i}\right)_{r \in \mathbb{N}^*}$ converge uniformément et donc simplement vers G_X sur [-1,1]. Soient $m \in \mathbb{N}^*$ et $(Y_i)_{i \in \mathbb{N}^*}$ une suite de variables aléatoires mutuellement indépendantes telles que $Y_i \sim \mathcal{P}(\lambda_i/m)$. Pour les mêmes raisons, la série $\sum_{i \in \mathbb{N}^*} iY_i$ converge presque sûrement. On note Y sa somme. A nouveau, la suite $\left(\prod_{i=1}^r G_{iY_i}\right)_{r \in \mathbb{N}^*}$ converge uniformément et donc simplement vers G_Y sur [-1,1].

On se donne ensuite $Z_1, ..., Z_m$ des variables aléatoires mutuellement indépendantes de même loi que Y. Posons $Z = \sum_{i=1}^m Z_i$. Pour tout $t \in [-1, 1]$,

$$\begin{split} \mathbf{G}_{\mathbf{Z}}(t) &= \prod_{i=1}^{m} \mathbf{G}_{\mathbf{Z}_{i}}(t) & \text{car les } \mathbf{Z}_{i} \text{ sont mutuellement indépendantes} \\ &= \mathbf{G}_{\mathbf{Y}}(t)^{m} & \text{car } \mathbf{Z}_{i} \sim \mathbf{Y} \text{ pour tout } i \in \llbracket 1, m \rrbracket \\ &= \left(\lim_{r \to +\infty} \prod_{i=1}^{r} \mathbf{G}_{i \mathbf{Y}_{i}}(t) \right)^{m} \\ &= \lim_{r \to +\infty} \left(\prod_{i=1}^{r} \mathbf{G}_{i \mathbf{Y}_{i}}(t) \right)^{m} \\ &= \lim_{r \to +\infty} \left(\prod_{i=1}^{r} \mathbf{G}_{\mathbf{Y}_{i}}(t^{i}) \right)^{m} \\ &= \lim_{r \to +\infty} \left(\prod_{i=1}^{r} e^{\lambda_{i}(t^{i}-1)/m} \right)^{m} \\ &= \lim_{r \to +\infty} \prod_{i=1}^{r} e^{\lambda_{i}(t^{i}-1)} \\ &= \lim_{r \to +\infty} \prod_{i=1}^{r} \mathbf{G}_{\mathbf{X}_{i}}(t^{i}) \\ &= \lim_{r \to +\infty} \prod_{i=1}^{r} \mathbf{G}_{i \mathbf{X}_{i}}(t) \\ &= \mathbf{G}_{\mathbf{X}}(t) \end{split}$$

Ainsi $X \sim Z = \sum_{i=1}^{m} Z_i$. On en déduit que X est infiniment divisible.

17 La suite (λ_k) est définie de manière unique par $\lambda_1 = \frac{\mathbb{P}(X=1)}{\mathbb{P}(X=0)}$ et la relation de récurrence

$$\forall k \ge 2, \ \lambda_k = \frac{1}{k\mathbb{P}(X=0)} \left(k\mathbb{P}(X=k) - \sum_{j=1}^{k-1} j\lambda_j \mathbb{P}(X=k-j) \right)$$

18 Par définition des λ_k ,

$$k\lambda_k \mathbb{P}(\mathbf{X} = 0) = k\mathbb{P}(\mathbf{X} = k) - \sum_{i=1}^{k-1} j\lambda_j \mathbb{P}(\mathbf{X} = k - j)$$

Par inégalité triangulaire et positivité des probabilités,

$$k|\lambda_k|\mathbb{P}(X=0) \le k\mathbb{P}(X=k) + \sum_{j=1}^{k-1} j|\lambda_j|\mathbb{P}(X=k-j) \le k\mathbb{P}(X=k) + k\sum_{j=1}^{k-1} |\lambda_j|\mathbb{P}(X=k-j)$$

puis

$$|\lambda_k|\mathbb{P}(\mathbf{X}=0) \le \mathbb{P}(\mathbf{X}=k) + \sum_{i=1}^{k-1} |\lambda_j|\mathbb{P}(\mathbf{X}=k-j)$$

Remarquons ensuite que pour $\ell \neq 0$, $\mathbb{P}(X = \ell) \leq 1 - \mathbb{P}(X = 0)$. Ainsi

$$\mathbb{P}(X = k) + \sum_{j=1}^{k-1} |\lambda_j| \mathbb{P}(X = k - j) \le (1 - \mathbb{P}(X = 0)) \left(1 + \sum_{j=1}^{k-1} |\lambda_j|\right)$$

19 L'inégalité précédente peut se réécrire

$$\left(1 + \sum_{j=1}^{k} |\lambda_j|\right) \mathbb{P}(\mathbf{X} = 0) \le 1 + \sum_{j=1}^{k-1} |\lambda_j|$$

En posant $u_k = 1 + \sum_{j=1}^k |\lambda_j|$, on a donc $0 \le u_k \le \frac{1}{\mathbb{P}(X=0)} u_{k-1}$. Comme $u_0 = 1$, on montre aisément par récurrence que $u_k \le \frac{1}{\mathbb{P}(X=0)^k}$ pour tout $k \in \mathbb{N}$, ce qui est le résultat attendu.

20 D'après la question précédente, pour tout $k \in \mathbb{N}$,

$$|\lambda_k| \le 1 + \sum_{j=1}^k |\lambda_j| \le \frac{1}{\mathbb{P}(X=0)^k}$$

donc

$$|\lambda_k| P(X=0)^k \le 1$$

La suite $(\lambda_k \mathbb{P}(X=0)^k)$ est donc bornée et $\rho(X) \geq \mathbb{P}(X=0)$ par définition du rayon de convergence.

21 Par dérivation terme à terme d'une série entière sur son intervalle ouvert de convergence,

$$\forall t \in]-\rho(X), \rho(X)[, \ H_X'(t) = \sum_{k=1}^{+\infty} k \lambda_k t^{k-1} = \sum_{k=0}^{+\infty} (k+1) \lambda_{k+1} t^k$$

Par ailleurs,

$$\forall t \in [-1, 1], \ G_{X}(t) = \sum_{k=0}^{+\infty} \mathbb{P}(X = k)t^{k}$$

Puisque $\sigma(X) = \min(1, \rho(X))$, on obtient par produit de Cauchy de deux séries entières :

$$\forall t \in]-\sigma(\mathbf{X}), \sigma(\mathbf{X})[, \ \mathbf{H}_{\mathbf{X}}'(t)\mathbf{G}_{\mathbf{X}}(t) = \sum_{k=0}^{+\infty} \left(\sum_{j=0}^{k} (j+1)\lambda_{j+1} \mathbb{P}(\mathbf{X}=k-j)\right) t^k$$

Mais, par changement d'indice,

$$\sum_{j=0}^{k} (j+1)\lambda_{j+1} \mathbb{P}(X=k-j) = \sum_{j=1}^{k+1} j\lambda_{j} \mathbb{P}(X=k+1-j) = (k+1)\mathbb{P}(X=k+1)$$

Ainsi

$$\forall t \in]-\sigma(X), \sigma(X)[, \ H_X'(t)G_X(t) = \sum_{k=0}^{+\infty} (k+1)\lambda_{k+1} \mathbb{P}(X=k+1)t^k = \sum_{k=0}^{+\infty} k\lambda_k t^{k-1} = G_X'(t)$$

par dérivation terme à terme de la série entière définissant G_X .

Comme G_X est solution de l'équation différentielle, $y' = H'_X y$, il existe $C \in \mathbb{R}$ tel que

$$\forall t \in]-\sigma(X), \sigma(X)[, G_X(t) = C \exp(H_X(t))$$

Comme $G_X(0) = \mathbb{P}(X = 0)$ et $H_X(0) = \ln(\mathbb{P}(X = 0))$, on obtient C = 1.

22 Comme X et Y sont indépendantes, pour tout t tel que $|t| < \min(\sigma(X), \sigma(Y))$,

$$\exp(H_{X+Y}(t)) = G_{X+Y}(t) = G_X(t)G_Y(t) = \exp(H_X(t))\exp(H_Y(t)) = \exp(H_X(t) + H_Y(t))$$

puis, par passage au logarithme,

$$H_{X+Y}(t) = H_X(t) + H_Y(t)$$

Soit $k \in \mathbb{N}^*$. ALors

$$k\mathbb{P}(X=k) = \sum_{i=1}^{k} j\lambda_{j}\mathbb{P}(X=k-j) \ge k\lambda_{k}\mathbb{P}(X=0)$$

car tous les termes de la somme sont positifs. Ainsi

$$0 \le \lambda_k \le \frac{\mathbb{P}(X = k)}{\mathbb{P}(X = 0)}$$

Comme la série $\sum \mathbb{P}(X=k)$ converge, il en est de même de la série $\sum \lambda_k$ par comparaison de séries à termes positifs.

24 Puisque $\sum \lambda_k$ converge, $\rho(X) \ge 1$. Avec la question **21**

$$\forall t \in]-1,1[, G_{\mathbf{X}}(t) = \exp(\mathbf{H}_{\mathbf{X}}(t))$$

Mais puisque les séries $\sum \mathbb{P}(X=k)$ et $\sum \lambda_k$ convergent, les séries entières $\sum \mathbb{P}(X=k)t^k$ et $\sum \lambda_k t^k$ convergent normalement sur [-1,1]. On en déduit que G_X et H_X sont continues sur [-1,1]. L'égalité précédente se prolonge alors sur [-1,1]:

$$\forall t \in [-1, 1], \ G_{\mathbf{X}}(t) = \exp(\mathbf{H}_{\mathbf{X}}(t))$$

En évaluant en 1, on obtient :

$$1 = G_{X}(1) = \exp(H_{X}(1)) = \exp\left(\ln(\mathbb{P}(X=0)) + \sum_{k=1}^{+\infty} \lambda_{k}\right)$$

Ainsi

$$\sum_{k=1}^{+\infty} \lambda_k = -\ln(\mathbb{P}(X=0))$$

25 D'après la question précédente,

$$\forall t \in [-1, 1], \ G_{X}(t) = \exp\left(\sum_{k=1}^{+\infty} \lambda_{k}(t^{k} - 1)\right)$$

Or en posant $S = \sum_{i=1}^{+\infty} iX_i$, on a prouvé à la question **16.c** que

$$\begin{split} \forall t \in [-1,1], \ G_{\mathrm{S}}(t) &= \lim_{r \to +\infty} \prod_{k=1}^{r} \mathrm{G}_{k \mathrm{X}_{k}}(t) \\ &= \lim_{r \to +\infty} \prod_{k=1}^{+\infty} \exp\left(\lambda_{k}(t^{k}-1)\right) \\ &= \lim_{r \to +\infty} \exp\left(\sum_{k=1}^{r} \lambda_{k}(t^{k}-1)\right) \\ &= \exp\left(\sum_{k=1}^{+\infty} \lambda_{k}(t^{k}-1)\right) \quad \text{par continuit\'e de l'expontentielle} \\ &= \mathrm{G}_{\mathrm{X}}(t) \end{split}$$

On en déduit que $X \sim S = \sum_{i=1}^{+\infty} iX_i$.

26. 26.a Posons $S = \sum_{k=1}^{n} X_{n,k}$. Alors $\bigcap_{k=1}^{n} \{X_{n,k} < 0\} \subset \{S < 0\}$ donc

$$\mathbb{P}\left(\bigcap_{k=1}^{n} \{X_{n,k} < 0\}\right) \le \mathbb{P}\left(\{S < 0\}\right) = 0$$

car S est à valeurs dans \mathbb{N} . Comme les $X_{n,k}$ sont indépendants et de même loi, on a donc $\mathbb{P}(X_{n,1} < 0)^n = 0$ puis $\mathbb{P}(X_{n,1} < 0) = 0$ et enfin $\mathbb{P}(X_{n,1} \ge 0) = 1$.

26.b Notons $P = \bigcap_{k=1}^{n} \{X_{n,k} \ge 0\}$. Alors $\mathbb{P}(P) = \mathbb{P}(X_{n,1} \ge 0)^n = 1$. De plus,

$$\mathbb{P}(S=0) = \mathbb{P}(\{S=0\} \cap P) + \mathbb{P}(\{S=0\} \cap \overline{P})$$

Comme $\{S = 0\} \cap \overline{P} \subset \overline{P}$,

$$0 \le \mathbb{P}(\{S = 0\} \cap \overline{P}) \le \mathbb{P}(\overline{P}) = 0$$

de sorte que $\mathbb{P}(S = 0) = \mathbb{P}(\{S = 0\} \cap P)$. Or

$${S = 0} \cap P = \bigcap_{k=1}^{n} {X_{n,k} = 0}$$

donc, comme les $X_{n,k}$ sont indépendants et de loi,

$$\mathbb{P}(\{S=0\} \cap P) = \prod_{k=1}^{n} \mathbb{P}(X_{n,k} = 0) = \mathbb{P}(X_{n,1} = 0)^{n}$$

Or $S \sim X$ donc $\mathbb{P}(S = 0) = \mathbb{P}(X = 0) > 0$. On en déduit que $\mathbb{P}(X_{n,1} = 0) > 0$.

26.c Soit $x \in \mathbb{R} \setminus \mathbb{N}$. Alors

$$\{X_{n,1} = x\} \cap \left(\bigcap_{k=2}^{n} \{X_{n,k} = 0\}\right) \subset \{S = x\}$$

Ainsi, par indépendance des $X_{n,k}$,

$$0 \le \mathbb{P}(X_{n,1} = x) \prod_{k=2}^{n} \mathbb{P}(X_{n,k} = 0) \le \mathbb{P}(S = x) = \mathbb{P}(X = x) = 0$$

puis

$$\mathbb{P}(\mathbf{X}_{n,1} = x) \prod_{k=2}^{n} \mathbb{P}(\mathbf{X}_{n,k} = 0)$$

Comme les $X_{n,k}$ sont de même loi, la question précédente montre que $\mathbb{P}(X_{n,k}=0)>0$ pour tout $k\in [\![2,n]\!]$ donc $\mathbb{P}(X_{n,1}=x)=0$. Ainsi $X_{n,1}$ est presque sûrement à valeurs dans \mathbb{N} . Comme les $X_{n,k}$ sont de même loi, elles sont toutes presque sûrement à valeurs dans \mathbb{N} .

27.a On a montré précédemment que $\mathbb{P}(X=0) = \mathbb{P}(X_{n,1}=0)^n$. Comme $\mathbb{P}(X=0) > 0$,

$$\mathbb{P}(X_{n,1} = 0) = \exp\left(\frac{1}{n}\ln(\mathbb{P}(X = 0))\right) \underset{n \to +\infty}{\longrightarrow} 1$$

27.b Soit $i \in \mathbb{N}^*$. Alors, $\{X_{n,1} = i\} \subset \overline{\{X_{n,1} = 0\}}$ donc

$$0 \le \mathbb{P}(X_{n,1} = i) \le 1 - \mathbb{P}(X_{n,1} = 0)$$

On conclut avec le théorème des gendarmes que

$$\mathbb{P}(\mathbf{X}_{n,1}=i) \xrightarrow[n \to +\infty]{} 0$$

28 28.a Comme les $X_{n,k}$ sont mutuellement indépendantes et de même loi, on peut généraliser la question **22** pour affirmer que

$$H_{\mathbf{X}} = \sum_{k=1}^{n} H_{\mathbf{X}_{n,k}} = n \mathbf{H}_n$$

28.b Notons $H_n(t) = \ln(\mathbb{P}(X_{n,1} = 0)) + \sum_{k=1}^{+\infty} \mu_k t^k$. Par unicité du développement en série entière, la question précédente montre que $\lambda_k = n\mu_k$ pour tout $k \in \mathbb{N}^*$. Par définition des μ_k et λ_k ,

$$kn\mathbb{P}(X_{n,1} = k) = \sum_{i=1}^{k} nj\mu_{j}\mathbb{P}(X_{n,1} = k - j) = \sum_{i=1}^{k} j\lambda_{j}\mathbb{P}(X_{n,1} = k - j)$$

Soit $k \in \mathbb{N}^*$. D'après la question 27,

$$\lim_{n \to +\infty} \sum_{j=1}^{k} j \lambda_j \mathbb{P}(X_{n,1} = k - j) = k \lambda_k$$

On en déduit avec la question précédente, $n\mathbb{P}(X_{n,1}=k) \xrightarrow[n \to +\infty]{} \lambda_k$. Pour tout $n \in \mathbb{N}^*$, $n\mathbb{P}(X_{n,1}=k) \ge 0$ donc $\lambda_k \ge 0$ par passage à la limite. Ceci signifie que X est λ -positive.

30 30.a Les questions précédentes montrent que si X est infiniment divisible, alors elle est λ-positive, autrement dit $(i) \implies (ii)$.

La question 25 montre que si X est λ -positive, alors il existe une suite $(X_i)_{i\in\mathbb{N}^*}$ de variables de Poisson indépendantes telle que $X \sim \sum_{i=1}^{+\infty} iX_i$, autrement dit $(ii) \implies (iii)$.

Enfin, la question **16.c** montre l'implication (iii) \implies (i).

30.b Vu la question suivante, je pense qu'il faut traiter le cas d'une variable aléatoire X à valeurs dans \mathbb{N}^* telle que $\mathbb{P}(X=1)>0$. On remarque alors que Y=X-1 est à valeurs dans \mathbb{N} et que $\mathbb{P}(Y=0)=\mathbb{P}(X=1)>0$ de sorte qu'on peut appliquer à Y le résultat de la question précédente.

Il est alors clair que X est infiniment divisible si et seulement si Y l'est. En effet, la variable aléatoire constante égale à 1 est indépendante de toute variable aléatoire.

30.c Posons Y = X - 1 de sorte que Y est à valeurs dans \mathbb{N} et $\mathbb{P}(Y = 0) = \mathbb{P}(X = 1) = p > 0$. On calcule $G_Y(t) = \frac{p}{1 - qt}$ en posant q = 1 - p puis

$$H_{Y}(t) = \ln(G_{Y}(t)) = \ln(p) - \ln(1 - qt) = \ln(p) + \sum_{k=1}^{+\infty} \frac{q^{k}}{k} t^{k}$$

Avec les notations de l'énoncé, on a donc $\lambda_k = \frac{q^k}{k} \ge 0$ pour tout $k \in \mathbb{N}^*$. On en déduit que Y est λ -positive. Ainsi Y est infiniment divisible et X également.