# TAREA 1

#### November 15, 2020

```
[1]: using PyPlot # Este es el paquete que uso para graficar
```

#### 0.1 Euler

Mi Euler va a calcular la solucion desde x = 0 hasta x = 1, por simplicidad (para calcular la convergencia del método y estudiar los errores).

Entonces mi tamaño de paso va a ser  $h = \frac{1}{N}$ , N es el número de pasos.

El intervalo [0,1] va a estar dividido en N partes iguales. Podemos llamar a cada uno de estos puntos j=0,1,2,...,N. El punto j=0 va a ser el punto x=0. En este punto conocemos la solución y, va ser  $y(t_0)=y_0$ , la condición inicial.

El objetivo va a ser calcular la solución en los otros puntos j = 1, 2, ..., N

```
[2]: function Euler(f, t0, y0, N) #mi función se llama Euler, le doy como entradas
      → función, tiempo inic., condición inicial y número de pasos
         h=1/N #Definiendo h así, estoy diciendo que el intervalo de solucion va a_{\sqcup}
      \rightarrowser [0,1]
         ts = Float64[] #Arreglos de tiempos y de solucion aprox. Son arreglos vacíos
         ys = Float64[]
         t_actual = t0 #Como primer dato le doy el tiempo inicial
         y_actual = y0 #doy como primer dato la condición inicial evaluada en elu
      → tiempo inicial (un nuúmero)
         push!(ts, t_actual) #Empujo mi primer dato al arreglo de los tiempos (queu
      →antes de hacer esto estaba vacío)
         push! (ys, y actual) #Empujo mi primer dato al arreglo de las soluciones
      →aprox (que antes de hacer esto estaba vacío)
         for j in 1:N # voy a hacer exactamente lo mismo en los puntos que en los_u
      → que NO CONOZCO LA SOLUCIÓN
             t_nueva = t_actual + h #actualizo el tiempo, le sumo un h
             y_nueva = y_actual + f(t_actual, y_actual)*h #Calculo la aproximación au
      → la solución (EN ESTA PARTE USO EULER)
             push!(ts, t_nueva) #empujo los nuevos datos (tiempos y solucion aprox)
      \rightarrowa los arreglos
             push!(ys, y_nueva)
             t actual = t nueva #actualizo los datos para volver a empezar el ciclo
             y_actual = y_nueva
         end
```

[2]: Euler (generic function with 1 method)

Defino mi función de prueba f, con esta voy a trabajar

```
[3]: f(t, y) = 2y -1 #esta es mi función de prueba
```

[3]: f (generic function with 1 method)

### 0.2 Gráfica de la solución aproximada (obtenida por Euler)

```
[4]: Datos = Euler(f, 0, 1, 2^6) #Aplico mi función Euler al punto t0 = 0, y0 = 1. \rightarrow El resultado lo guardo en el arreglo Datos
```

```
[4]: ([0.0, 0.015625, 0.03125, 0.046875, 0.0625, 0.078125, 0.09375, 0.109375, 0.125, 0.140625 ... 0.859375, 0.875, 0.890625, 0.90625, 0.921875, 0.9375, 0.953125, 0.96875, 0.984375, 1.0], [1.0, 1.015625, 1.03173828125, 1.0483551025390625, 1.0654911994934082, 1.0831627994775772, 1.1013866369612515, 1.1201799693662906, 1.1395605934089872, 1.159546861953018 ... 3.2163635240291315, 3.301249884155042, 3.388788943034887, 3.479063597504727, 3.57215933492675, 3.668164314143211, 3.7671694489601864, 3.8692684942401923, 3.974558134685198, 4.0831380763941105])
```

```
[5]: plot(Datos[1], Datos[2], "*", label=L"h=\frac{1}{64}")
    title("Solución con Euler")
    xlabel(L"t")
    ylabel(L"y(t)")
    legend()
    grid("on");
```

[5]:



### 0.3 Solución Exacta

[7]:

Vamos a graficar la solución exacta (que se obtiene por separación de variables).



# 0.4 Comparaciones

```
[8]: figure(figsize=(20, 16))
  plot(us, vs, "b.", label = "solución exacta")
  plot(Datos[1], Datos[2], "*r", label = "Euler")
  legend(fontsize=30)
  grid("on");
```

[8]:



### 0.5 Error vs tamaño de pasos (o número)

El tamaño del error en el Método de Euler para un problema de valor inicial está en proporción al tamaño de paso, o en otras palabras, es inversamente proporcional al numero de pasos que usamos sobre un intervalo fijo.

Es decir

$$error \le C(h)^1$$

Que de hecho, se escribe

$$error = O(h)$$
 como  $N \to \infty$ 

Nótese que la potencia de h es uno. Decimos que el método de Euler es de orden uno.

### 0.5.1 Comparaciones para checar que el método de Euler es de orden uno.

En este punto tengo que escoger una norma para comparar, puedo elegir por ejemplo el máximo sobre **cada punto** el intervalo  $x \in [0, 1]$ 

Pero voy a elegir como norma la diferencia entre la solución exacta y la solución por Euler al tiempo t=1

Entonces voy a crear una función Euler2, que solo me devuelve el punto y(1). Euler2 solo va a depender del número N en que dividí el intervalo.

También hago una función que calcule la solución exacta en el intervalo [0,1] usando N+1 puntos. (Dividí al intervalo en N partes iguales). El punto 1 va a ser x=0, el punto N+1 va a ser x=1. Pero solo nos interesa la solución en el punto x=1

```
[9]: function Euler2(f, t0, y0, N)
         h=1/N
         ts = Float64[]
         ys = Float64[]
         t actual = t0
         y_actual = y0
         push!(ts, t_actual)
         push!(ys, y_actual)
         for j in 1:N
             t_nueva = t_actual + h
             y_nueva = y_actual + f(t_actual, y_actual)*h
             push!(ts, t_nueva)
             push!(ys, y_nueva)
             t_actual = t_nueva
             y_actual = y_nueva
         end
         m = length(ys)
         ys[m]
     end
```

[9]: Euler2 (generic function with 1 method)

[10]: solucion\_exacta (generic function with 1 method)

```
[11]: NS = [2^x \text{ for } x \text{ in } 6:15]

\Delta S = [abs(Euler2(f, 0, 1, x) - solucion_exacta(x)) \text{ for } x \text{ in } NS]
```

```
0.003603831525062162
```

- 0.0018029416958302846
- 0.0009017275458775842
- 0.00045092797429280296
- 0.0002254800408918456

```
[12]: plot(NS, AS, "*")
    xscale("log")
    yscale("log")
    xlabel("número N de puntos")
    ylabel("error")
    grid("on");
```

[12]:



```
[13]: HS = [1/(2^x) \text{ for } x \text{ in } 6:15]

ERROR = [abs(Euler2(f, 0, 1, x) - solucion_exacta(x)) \text{ for } x \text{ in } NS]
```

## [13]: 10-element Array{Float64,1}:

- 0.11138997307121468
- 0.05669315290111676
- 0.02860275009480251
- 0.0143662728306726

- 0.007199469294396188
- 0.003603831525062162
- 0.0018029416958302846
- 0.0009017275458775842
- 0.00045092797429280296
- 0.0002254800408918456

```
[14]: plot(HS, ERROR, "ro")
    xscale("log")
    yscale("log")
    xlabel("Tamaño de paso h")
    ylabel("error")
    grid("on");
```

[14]:



### 0.6 Conclusión.

Vemos que la gráfica (con escala logarítmica) de los errores (en el punto x=1) es una función lineal, así que el método de Euler es de orden uno.

vemos que el error está arbitrariamente cerca de cero como aumentamos el número de pasos N