BROUILLON - INÉGALITÉS ISOPÉRIMÉTRIQUES RESTREINTES AUX POLYGONES

CHRISTOPHE BAL

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

Date: 18 Jan. 2025 - 29 Jan. 2025.

Fait 1. Soit $\mathcal{L} = A_1 A_2 \cdots A_n$ une n-ligne. La fonction qui à un point Ω du plan associe $\mu_1^n(\Omega; \mathcal{L}) = \sum_{i=1}^n \det \left(\overrightarrow{\Omega A_i'}, \overrightarrow{\Omega A_{i+1}'} \right)$ est indépendante du point Ω . Dans la suite, cette quantité indépendante de Ω sera notée $\mu_1^n(\mathcal{L})$.

 $D\acute{e}monstration$. Soit M un autre point du plan. $\mu_1^n(\Omega;\mathcal{L})$

$$= \sum_{i=1}^{n} \det \left(\overrightarrow{\Omega A_{i}'}, \overrightarrow{\Omega A_{i+1}'} \right)$$

$$= \sum_{i=1}^{n} \det \left(\overrightarrow{\Omega M} + \overrightarrow{M A_{i}'}, \overrightarrow{\Omega M} + \overrightarrow{M A_{i+1}'} \right)$$

$$= \sum_{i=1}^{n} \det \left(\overrightarrow{\Omega M}, \overrightarrow{\Omega M} \right) + \det \left(\overrightarrow{\Omega M}, \overrightarrow{M A_{i+1}'} \right) + \det \left(\overrightarrow{M A_{i}'}, \overrightarrow{\Omega M} \right) + \det \left(\overrightarrow{M A_{i}'}, \overrightarrow{M A_{i+1}'} \right)$$

$$= \sum_{i=1}^{n} \det \left(\overrightarrow{\Omega M}, \overrightarrow{M A_{i+1}'} \right) + \sum_{i=1}^{n} \det \left(\overrightarrow{M A_{i}'}, \overrightarrow{\Omega M} \right) + \mu_{1}^{n}(M; \mathcal{L})$$

$$= \mu_{1}^{n}(M; \mathcal{L}) + \sum_{i=2}^{n+1} \det \left(\overrightarrow{\Omega M}, \overrightarrow{M A_{i+1}'} \right) - \det \left(\overrightarrow{\Omega M}, \overrightarrow{M A_{i}'} \right)$$

$$= \mu_{1}^{n}(M; \mathcal{L}) + \det \left(\overrightarrow{\Omega M}, \overrightarrow{M A_{n+1}'} \right) - \det \left(\overrightarrow{\Omega M}, \overrightarrow{M A_{1}'} \right)$$

$$= \mu_{1}^{n}(M; \mathcal{L})$$

Fait 2. Soit $\mathcal{L} = A_1 A_2 \cdots A_n$ une n-ligne. Pour $k \in [1; n]$, la n-ligne $\mathcal{L}_j = B_1 B_2 \cdots B_n$, où $B_i = A'_{k+i-1}$, vérifie $\mu_1^n(\mathcal{L}) = \mu_1^n(\mathcal{L}_k)$. Dans la suite, cette quantité commune sera notée $\mu(\mathcal{L})$.

 $D\acute{e}monstration$. Il suffit de s'adonner à un petit jeu sur les indices de sommation.

Fait 3. Soit $\mathcal{L} = A_1 A_2 \cdots A_n$ une n-ligne. La n-ligne $\mathcal{L}^{op} = B_1 B_2 \cdots B_n$, où $B_i = A_{n+1-i}$, vérifie $\mu(\mathcal{L}^{op}) = -\mu(\mathcal{L})$.

 $D\acute{e}monstration$. Soit Ω un point quelconque du plan. $\mu(\mathcal{L}^{op})$

$$= \sum_{i=1}^{n} \det \left(\overrightarrow{\Omega B_{i}'}, \overrightarrow{\Omega B_{i+1}'} \right)$$

$$= \sum_{i=1}^{n} \det \left(\overrightarrow{\Omega A_{n+1-i}'}, \overrightarrow{\Omega A_{n-i}'} \right)$$

$$= \sum_{j=0}^{n-1} \det \left(\overrightarrow{\Omega A_{j+1}'}, \overrightarrow{\Omega A_{j}'} \right)$$

$$= \sum_{j=1}^{n} \det \left(\overrightarrow{\Omega A_{j+1}'}, \overrightarrow{\Omega A_{j}'} \right)$$

$$= -\sum_{j=1}^{n} \det \left(\overrightarrow{\Omega A_{j+1}'}, \overrightarrow{\Omega A_{j+1}'} \right)$$

$$= - \mu(\mathcal{L})$$

Fait 4. Soit $\mathcal{L} = A_1 A_2 \cdots A_n$ une n-ligne. La quantité $\frac{1}{2} |\mu(\mathcal{L})|$ ne dépend ni du sens de parcours de \mathcal{L} , ni du point de départ choisi. Le lle sera notée AireGe(\mathcal{L}), et nommée « aire généralisée » de la n-ligne \mathcal{L} .

Démonstration. C'est une conséquence directe des faits 2 et 3.

^{1.} Le lecteur pardonnera les abus de langage utilisés.

Pour notre démonstration finale, nous aurons besoin de savoir que AireGe(\mathcal{P}) = Aire(\mathcal{P}) pour tout n-gone \mathcal{P} . 2 Ceci est évident dans le cas convexe, car il suffit de choisir l'isobarycentre G de $A_1, A_2, ..., A_n$ pour le calcul de AireGe(\mathcal{P}) : en effet, avec ce choix, tous les déterminants det $(\overline{GA'_i}, \overline{GA'_{i+1}})$ ont le même signe. Dans le cas non-convexe, les choses se compliquent a priori, car nous ne maîtrisons plus les signes des déterminants. Heureusement nous avons le résultat fort suivant qui est un pas important pour atteindre notre but.

Fait 5. Soit un n-gone \mathcal{P} . On suppose la n-ligne $\mathcal{L} = A_1 A_2 \cdots A_n$ associée à \mathcal{P} telle que les points $A_1, A_2, ..., A_n$ soient parcourus dans le sens trigonométrique, ou anti-horaire. Une telle n-ligne sera dite « positive ». ³ Sous cette hypothèse, nous avons $\mu(\mathcal{L}) \geq 0$.

Démonstration. Le théorème de triangulation affirme que tout n-gone est triangulable comme dans l'exemple très basique suivant qui laisse envisager une démonstration par récurrence en retirant l'un des triangles ayant deux côtés correspondant à deux côtés consécutifs du n-gone (pour peu qu'un tel triangle existe toujours).

Le théorème de triangulation admet une forme forte donnant une décomposition contenant un triangle formé de deux côtés consécutifs du n-gone. 4 Nous dirons qu'une telle décomposition est « à l'écoute ». Ce très mauvais jeu de mots fait référence à la notion sérieuse « d'oreille » pour un n-gone : une oreille est un triangle inclus dans le n-gone, et formé de deux côtés consécutifs du n-gone. L'exemple suivant donne un n-gone n'ayant que deux oreilles : ceci montre que l'existence d'une oreille ne va pas de soi. 5

Nous allons raisonner par récurrence sur $n \in \mathbb{N}_{>3}$.

^{2.} Nous obtenons ainsi la généralisation de l'aire géométrique usuelle au cas des polygones croisés.

^{3.} Bien noté que cette notion ne peut exister lorsqu'on considère un polygone croisé. De façon cachée, nous utilisons le célèbre théorème de Jordan, dans sa forme polygonale.

^{4.} En pratique, cette forme forte est peu utile, car elle aboutit à un algorithme de recherche trop lent.

^{5.} On démontre que tout n-gone admet au minimum deux oreilles.

• Cas de base. Soit ABC un triangle où les sommets A, B et C sont parcourus dans le sens trigonométrique.

Si l'on connait le lien entre déterminant et produit vectoriel, il n'y a rien à faire. Pour les autres, il existe une méthode élégamment brutale : par une rotation directe, qui ne change pas le signe du déterminant, on se ramène au cas où A(0;0), B(AB;0) et $C(x_C;y_C)$, de sorte que det $(\overrightarrow{AB},\overrightarrow{AC}) = AB \cdot y_C$.

• **Hérédité.** Soient un n-gone \mathcal{P} , avec $n \in \mathbb{N}_{>3}$, et $\mathcal{L} = A_1 A_2 \cdots A_n$ une n-ligne positive qui lui est associée. On peut supposer que $A_{n-1}A_nA_1$ est une oreille du n-gone \mathcal{P} .

 $A_{n-1}A_nA_1$ n'est pas une oreille.

Notons \mathcal{P}' le k-gone associé à la k-ligne $\mathcal{L}' = A_1 \cdots A_{n-1}$ où k = n-1 vérifie $k \in \mathbb{N}_{\geq 3}$. Par hypothèse, \mathcal{L}' est positive. Nous arrivons aux calculs élémentaires suivants en utilisant $\Omega = A_1$ comme point de calcul de $\mu(\mathcal{L})$.

$$= \sum_{j=1}^{n} \det \left(\overrightarrow{A_1} \overrightarrow{A_j}, \overrightarrow{A_1} \overrightarrow{A_{j+1}} \right)$$

$$= \sum_{j=1}^{n-2} \det \left(\overrightarrow{A_1} \overrightarrow{A_j}, \overrightarrow{A_1} \overrightarrow{A_{j+1}} \right) + \det \left(\overrightarrow{A_1} \overrightarrow{A_{n-1}}, \overrightarrow{A_1} \overrightarrow{A_n} \right) + \det \left(\overrightarrow{A_1} \overrightarrow{A_n}, \overrightarrow{A_1} \overrightarrow{A_{n+1}} \right)$$

$$= \sum_{j=1}^{n-2} \det \left(\overrightarrow{A_1} \overrightarrow{A_j}, \overrightarrow{A_1} \overrightarrow{A_{j+1}} \right) + \det \left(\overrightarrow{A_1} \overrightarrow{A_{n-1}}, \overrightarrow{A_1} \overrightarrow{A_n} \right) + \det \left(\overrightarrow{A_1} \overrightarrow{A_n}, \overrightarrow{A_1} \overrightarrow{A_1} \right)$$

$$= \sum_{j=1}^{n-2} \det \left(\overrightarrow{A_1} \overrightarrow{A_j}, \overrightarrow{A_1} \overrightarrow{A_{j+1}} \right) + \det \left(\overrightarrow{A_1} \overrightarrow{A_{n-1}}, \overrightarrow{A_1} \overrightarrow{A_n} \right)$$

$$= \sum_{j=1}^{n-2} \det \left(\overrightarrow{A_1} \overrightarrow{A_j}, \overrightarrow{A_1} \overrightarrow{A_{j+1}} \right) + \det \left(\overrightarrow{A_1} \overrightarrow{A_{n-1}}, \overrightarrow{A_1} \overrightarrow{A_n} \right)$$

$$= \mu(\mathcal{L}') + \mu(A_{n-1} A_n A_1)$$

$$\det \left(\overrightarrow{A_1} \overrightarrow{A_{n-1}}, \overrightarrow{A_1} \overrightarrow{A_1} \right) = 0$$

Par hypothèse de récurrence, nous savons que $\mu(\mathcal{L}') \geq 0$, et comme $A_{n-1}A_nA_1$ est une oreille de \mathcal{P} , la 3-ligne $A_{n-1}A_nA_1$ est forcément positive, d'où $\mu(A_{n-1}A_nA_1) \geq 0$ d'après le cas de base. Nous arrivons bien à $\mu(\mathcal{L}) \geq 0$, ce qui permet de finir aisément la démonstration par récurrence.

Fait 6. Pour tout n-gone \mathcal{P} , nous avons: AireGe(\mathcal{P}) = Aire(\mathcal{P}).

Démonstration. Faisons une preuve par récurrence.

- Cas de base. C'est immédiat.
- **Hérédité.** Reprenons les notations de la démonstration du fait $5: \mathcal{P}$ est un n-gone , avec $n \in \mathbb{N}_{>3}$, $\mathcal{L} = A_1 A_2 \cdots A_n$ une n-ligne positive qui lui est associée, $A_{n-1} A_n A_1$ une oreille du n-gone \mathcal{P} , \mathcal{P}' le k-gone associé à la k-ligne $\mathcal{L}' = A_1 \cdots A_{n-1}$ où k = n-1 vérifie $k \in \mathbb{N}_{\geq 3}$, avec \mathcal{L}' positive. Nous arrivons aux calculs élémentaires suivants.

Fait 7. Si une n-ligne \mathcal{L} non dégénérée n'est pas un n-gone, donc est un polygone croisé, alors on peut construire un n-gone \mathcal{P} tel que $\operatorname{Perim}(\mathcal{P}) = \operatorname{Perim}(\mathcal{L})$ et $\operatorname{AireGe}(\mathcal{P}) > \operatorname{AireGe}(\mathcal{L})$.

 $D\acute{e}monstration.~XXXX$

Fait 8. Soit $n \in \mathbb{N}_{\geq 3}$ un naturel fixé. Considérons tous les n-gones de périmètre fixé. Parmi tous ces n-gones, il en existe au moins un d'aire maximale.

Démonstration. Ce qui suit nous donne plus généralement l'existence d'un n-gone, au moins, maximisant l'aire généralisée parmi toutes les n-lignes de périmètre fixé p. Ce résultat plus fort convient d'après le fait 6.

- On munit le plan d'un repère orthonormé direct $(O; \vec{\imath}, \vec{\jmath})$.
- On considère $\mathcal Z$ l'ensemble des n-lignes $\mathcal L=A_1A_2\cdots A_n$ vérifiant les propriétés suivantes. ⁶
 - (1) $\operatorname{Perim}(A_1 A_2 \cdots A_n) = p$
 - $(2) A_1(0;0)$
- Nous notons ensuite $\mathcal{G} \subset \mathbb{R}^{2n}$ l'ensemble des uplets $(x(A_1); y(A_1); \ldots; x(A_n); y(A_n))$ correspondant aux coordonnées des sommets A_i de n-lignes appartenant à \mathcal{Z} .
- \mathcal{G} est clairement fermé dans \mathbb{R}^{2n} . De plus, il est borné, car les coordonnées des sommets des n-lignes considérées le sont. En résumé, \mathcal{G} est un compact de \mathbb{R}^{2n} .
- Nous définissons la fonction $s: \mathcal{G} \to \mathbb{R}_+$ qui à un uplet de \mathcal{G} associe l'aire généralisée de la n-ligne qu'il représente. Cette fonction est continue comme valeur absolue d'une fonction polynomiale en les coordonnées.
- Finalement, par continuité et compacité, on sait que s admet un maximum sur \mathcal{G} . Or, un tel maximum ne peut être atteint en une k-ligne dégénérée, clairement, ni en un polygone croisé d'après le fait 7, donc un tel maximum sera obtenu avec un n-gone. That's all folks!

Fait 9. Soit $n \in \mathbb{N}_{\geq 3}$ un naturel fixé. Considérons tous les n-gones de périmètre fixé. Parmi tous ces n-gones, un seul est d'aire maximale, c'est le n-gone régulier.

Démonstration. Ceci découle directement des faits ?? et 8. Ici s'achève notre joli voyage.

^{6.} Le mot « Zeile » est une traduction possible de « ligne » en allemand.