Projektni Zadatak br. 12

Predmet: Nelinearno programiranje i evolutivni algoritmi

Tema: PSO algoritam, "black-box"optimizacija

Data je funkcija $f(\mathbf{w})$ koju smatramo nepoznatom. Argument funkcije \mathbf{w} je vektorska veličina sa 60 dimenzija. Dakle, $\mathbf{w} = [w_1, w_2, w_3, ..., w_{59}, w_{60}]$. U datoteci $\mathsf{ann_criterion.py}$ se nalazi programski python kod koji sadrži funkciju $\mathsf{optimality_criterion}(\mathbf{w})$. Pozivanjem ove funkcije možemo da izračunamo vrednost funkcije f za dati ulazni vektor \mathbf{w} . Dakle, funkcija f je nepoznata u analitičkom smislu (nije poznata matematička formula po kojoj se računa vrednost funkcije), ali je moguće računarski evaluirati njenu vrednost za proizvoljnu vrednost argumenta \mathbf{w} . Ovu funkciju možete koristiti u svojim skriptama tako što ćete datoteku $\mathsf{ann_criterion.py}$ staviti u isti direktorijum u kom se nalazi vaša skripta, potom je uključiti u vašu skriptu na sledeći način:

```
from ann_criterion import optimality_criterion
...
result = optimality criterion(w)
```

Funkcija očekuje da argument **w** bude lista koja sadrži 60 elemenata. Da bi računarski kod dat u datoteci **ann_criterion.py** funkcionisao, neophodno je da vaša python instalacija sadrži biblioteku *numpy*. Ukoliko biblioteka nije instalirana, najjednostavnije je instalirati je koristeći sledeću naredbu:

python -m pip install numpy

Implementirati PSO algoritam i iskoristiti ga za pronalazak minimuma date funkcije f. Koristiti programski jezik python. Rešenje predstavlja tačka ${\bf w}$ u kojoj funkcija f ima minimum, kao i vrednost funkcije f u toj tački.

Dokumentovati projekat koristeći šablon za dokumentaciju dostupan na sajtu predmeta. Dokumentacija treba da sadrži između dve i pet strana A4 formata. U dokumentaciji je neophodno opisati:

- Strukturu programa
- Odabir parametara algoritma
- Rezultate algoritma