



118 -

GENERATE TRANSITION DELAY FAULT SCAN
PATTERNS FOR THE REMAINING UNDETECTED FAULTS
AND CROSS-CLOCK DOMAIN FAULTS

120 -

RE-ORDER THE SET OF TRANSITION DELAY FAULT
SCAN TEST PATTERNS FOR THE REMAINING
UNDETECTED FAULTS AND CROSS-CLOCK DOMAIN
FAULTS ACCORDING TO THE NUMBER OF FAULTS
EACH TEST PATTERN CAN DETECT AND TRUNCATE
THE SET OF TRANSITION DELAY FAULT SCAN TEST
PATTERNS TO RETAIN THE TEST PATTERNS THAT CAN
DETECT 90 PERCENT OF THE TOTAL NUMBER OF
FAULTS CALCULATED FOR THE SET

122 -

CALCULATE THE TOTAL NUMBER OF TRANSITION DELAY FAULT TEST PATTERNS GENERATED IN STEPS 114 AND 118 AND SAVE FOR FUTURE REFERENCE

124 -

EVALUATE THE SETS OF TRANSITION DELAY FAULT TEST PATTERNS GENERATED IN STEPS 114 AND 118 TO DETERMINE THE STUCK-AT FAULT COVERAGE

126 -

ORDER THE SETS OF TRANSITION DELAY FAULT TEST PATTERNS GENERATED IN STEPS 114 AND 118 ACCORDING TO STUCK-AT FAULT COVERAGE

128 -

GENERATE A PLOT OF STUCK-AT FAULT COVERAGE AS A FUNCTION OF THE NUMBER OF TRANSITION DELAY FAULT TEST PATTERNS IN THE ORDERED SET

130 -

ESTIMATE THE NUMBER OF TOP-OFF STUCK-AT FAULT TEST PATTERNS FROM AN ANALYSIS OF THE PLOTS GENERATED FROM THE TABLES IN FIG. 2 AND FIG. 4





FIG.\_1D

|                  |                  |                  | 200              |
|------------------|------------------|------------------|------------------|
| 32 50.71% 4179   | 1088 92.37% 3123 | 2144 95.97% 2067 | 3200 97.14% 1011 |
| 64 60.29% 4147   | 1120 92.55% 3091 | 2176 96.02% 2035 | 3232 97.17% 979  |
| 96 65.85% 4115   | 1152 92.77% 3059 | 2208 96.08% 2003 | 3264 97.20% 947  |
| 128 69.67% 4083  | 1184 92.93% 3027 | 2240 96.14% 1971 | 3296 97.22% 915  |
| 160 73.00% 4051  | 1216 93.12% 2995 | 2272 96.17% 1939 | 3328 97.23% 883  |
| 192 75.47% 4019  | 1248 93.27% 2963 | 2304 96.23% 1907 | 3360 97.24% 851  |
| 224 77.42% 3987  | 1280 93.43% 2931 | 2336 96.27% 1875 | 3392 97.25% 819  |
| 256 78.96% 3955  | 1312 93.57% 2899 | 2368 96.31% 1843 | 3424 97.26% 787  |
| 288 80.22% 3923  | 1344 93.73% 2867 | 2400 96.36% 1811 | 3456 97.28% 755  |
| 320 81.37% 3891  | 1376 93.86% 2835 | 2432 96.41% 1779 | 3488 97.29% 723  |
| 352 82.30% 3859  | 1408 93.97% 2803 | 2464 96.45% 1747 | 3520 97.30% 691  |
| 384 83.22% 3827  | 1440 94.09% 2771 | 2496 96.49% 1715 | 3552 97.32% 659  |
| 416 84.04% 3795  | 1472 94.21% 2739 | 2528 96.56% 1683 | 3584 97.33% 627  |
| 448 84.86% 3763  | 1504 94.31% 2707 | 2560 96.61% 1651 | 3616 97.34% 595  |
| 480 85.55% 3731  | 1536 94.41% 2675 | 2592 96.64% 1619 | 3648 97.35% 563  |
| 512 86.24% 3699  | 1568 94.52% 2643 | 2624 96.67% 1587 | 3680 97.35% 531  |
| 544 86.79% 3667  | 1600 94.61% 2611 | 2656 96.71% 1555 | 3712 97.36% 499  |
| 576 87.29% 3635  | 1632 94.72% 2579 | 2688 96.75% 1523 | 3744 97.37% 467  |
| 608 87.84% 3603  | 1664 94.82% 2547 | 2720 96.78% 1491 | 3776 97.37% 435  |
| 640 88.30% 3571  | 1696 94.90% 2515 | 2752 96.80% 1459 | 3808 97.38% 403  |
| 672 88.68% 3539  | 1728 95.00% 2483 | 2784 96.84% 1427 | 3840 97.39% 371  |
| 704 89.08% 3507  | 1760 95.09% 2451 | 2816 96.87% 1395 | 3872 97.39% 339  |
| 736 89.47% 3475  | 1792 95.18% 2419 | 2848 96.90% 1363 | 3904 97.40% 307  |
| 768 89.85% 3443  | 1824.95.27% 2387 | 2880 96.92% 1331 | 3936 97.41% 275  |
| 800 90.18% 3411  | 1856 95.34% 2355 | 2912 96.94% 1299 | 3968 97.42% 243  |
| 832 90.51% 3379  | 1888 95.43% 2323 | 2944 96.96% 1267 | 4000 97.42% 211  |
| 864 90.76% 3347  | 1920 95.51% 2291 | 2976 97.00% 1235 | 4032 97.43% 179  |
| 896 91.03% 3315  | 1952 95.58% 2259 | 3008 97.03% 1203 | 4064 97.43% 147  |
| 928 91.30% 3283  | 1984 95.66% 2227 | 3040 97.05% 1171 | 4096 97.44% 115  |
| 960 91.51% 3251  | 2016 95.73% 2195 | 3072 97.06% 1139 | 4128 97.44% 83   |
| 992 91.76% 3219  | 2048 95.79% 2163 | 3104 97.08% 1107 | 4160 97.45% 51   |
| 1024 91.95% 3187 | 2080 95.86% 2131 | 3136 97.10% 1075 | 4192 97.45% 19   |
| 1056 92.16% 3155 | 2112 95.91% 2099 | 3168 97.12% 1043 | 4211 97.45% 0    |

FIG.\_2





**FIG.\_3** 



FIG.\_5

```
1408 74.26% 5592 3458 91.08% 3542 5570 92.26% 1430 7682 92.66% -682
1440 74.35% 5560 3490 91.13% 3510 5602 92.27% 1398 7714 92.66% -714
1472 74.45% 5528 3522 91.17% 3478 5634 92.28% 1366 7746 92.67% -746
1504 74.53% 5496 3554 91.20% 3446 5666 92.29% 1334 7778 92.67% -778
1536 74.60% 5464 3586 91.23% 3414 5698 92.29% 1302 7810 92.67% -810
1568 80.41% 5432 3618 91.26% 3382 5730 92.30% 1270 7842 92.68% -842
1600 80.89% 5400 3650 91.29% 3350 5762 92.31% 1238 7874 92.68% -874
1632 81.13% 5368 3682 91.33% 3318 5794 92.31% 1206 7906 92.68% -906
1664 81.28% 5336 3714 91.35% 3286 5826 92.32% 1174 7938 92.69% -938
1696 81.39% 5304 3746 91.38% 3254 5858 92.32% 1142 7970 92.69% -970
1728 81.48% 5272 3778 91.42% 3222 5890 92.33% 1110 8002 92.69% -1002
1760 81.55% 5240 3810 91.44% 3190 5922 92.34% 1078 8034 92.70% -1034
1792 84.11% 5208 3842 91.46% 3158 5954 92.34% 1046 8066 92.70% -1066
1824 84.37% 5176 3874 91.49% 3126 5986 92.34% 1014
                                                  8098 92.70% -1098
1856 84.51% 5144 3906 91.51% 3094 6018 92.35% 982
                                                   8130 92.71% -1130
1888 84.59% 5112 3938 91.54% 3062 6050 92.35% 950
                                                   8162 92.71% -1162
1920 85.79% 5080 3970 91.56% 3030 6082 92.36% 918
                                                   8194 92,72% -1194
1952 86.07% 5048 4002 91.58% 2998 6114 92.41% 886
                                                   8226 92.72% -1226
1984 86.22% 5016 4034 91.61% 2966 6146 92.42% 854
                                                   8258 92.73% -1258
2016 86.31% 4984 4066 91.62% 2934 6178 92.43% 822
                                                   8290 92.73% -1290
2048 86.38% 4952 4098 91.64% 2902 6210 92.44% 790
2080 86.43% 4920 4130 91.66% 2870 6242 92.44% 758
2112 86.93% 4888 4162 91.68% 2838 6274 92.45% 726
```

FIG.\_4B