幾何学II 演習の解説 (12/10)

1

(1) まず n=1 のときを考えます . $S^1=\{z\in\mathbb{C}\,|\,|z|=1\}$ と考えて , $f_1:S^1\to S^1$ を

$$f_1(z) = z^2$$

とおくと , これは写像度 2 です . これを示すために , S^1 の二つの単体分割 K, L を次のように定義します . K は

- 頂点: $a_m = e^{\frac{m\pi i}{3}}$, $0 \le m \le 5$,
- 辺: $e_m = [a_m a_{m+1}]$, $0 \le m \le 5$,

またLは

- 頂点: $b_m = e^{\frac{2m\pi i}{3}}$, $0 \le m \le 2$,
- $\mathfrak{D}: e'_m = [b_m b_{m+1}]$, $0 \le m \le 2$,

とします (添字はそれぞれ $\bmod 6, \bmod 3$) . S^1 をそれぞれ六角形 , 三角形 に分割している訳です .

 $H_1(S^1)\cong\mathbb{Z}$ の生成元 α_1 は,それぞれの場合について, $\alpha_1=e_0+\dots+e_5=e_0'+e_1'+e_2'$ と表されます.ところが, $f_1:|K|\to|L|$ と見なすとき, f_1 は単体写像を与えていて

$$(f_1)_*e_0 = (f_1)_*e_3 = e'_0,$$

$$(f_1)_*e_1 = (f_1)_*e_4 = e_1',$$

$$(f_1)_*e_2 = (f_1)_*e_5 = e_2'$$

となっていますから, $(f_1)_*(e_0+\cdots+e_5)=2(e_0'+e_1'+e_2')$,つまり $(f_1)_*\alpha_1=2\alpha_1$ ということになり,写像度が2であることがわかります.

以下 , 帰納的に $f_n:S^n\to S^n$ で $\deg f_n=2$ のものを構成します . そのために懸垂というものを導入しましょう .

一般の位相空間 X に対し , その懸垂 ($\mathrm{suspension}$) S(X) とは

$$S(X) := X \times [-1, 1] / \sim,$$

ただし

$$(x,t) \sim (y,u) \Leftrightarrow (x,t) = (y,u)$$
 \$\tau t \(u = \pm 1

と定義されます.これは , X の錘 c(X) を X のところで二つ張り合わせたものになっています:

また,連続写像 $f:X \to Y$ があると,その懸垂 $S(f):S(X) \to S(Y)$ が

$$S(f)([x,t]) = [f(x),t]$$

で定義されます(well-defined であることを確かめてみて下さい). $X=S^{n-1}$ に対して懸垂 $S(S^{n-1})$ を考えると, $S^{n-1}\times[-1,1]$ の両端 $S^{n-1}\times\{\pm 1\}$ を一点に潰したものですから,それは S^n に同相です:

従って, $f_{n-1}:S^{n-1}\to S^{n-1}$ があると,その懸垂として $f_n=S(f_{n-1}):S^n\to S^n$ を定義することができます.

位相空間 X が単体分割を持つとき,その懸垂 S(X) は自然な単体分割を持ちます.つまり, $\{\sigma\}$ を X の単体の集合とするとき,頂点」(商を取る前の $X \times \{\pm 1\}$ にあたる二点)を P_\pm として, $\{P_\pm * \sigma\}$ 及びその辺単体を全て合

わせたものが S(X) の単体分割を与えています . 錘 c(X) のときも同様の考察をしたのを思い出して下さい .

 S^1 に上で与えた単体分割 K を考えます.この単体分割が導く $S^2=S(S^1)$ の単体分割は,

• 0 単体: a_i (0 < i < 5), P_+ ,

• $1 \not\sqsubseteq 4$: $[a_i a_{i+1}]$, $[P_+ a_i]$, $[P_- a_i]$ (0 < i < 5),

• 2 単体: $\Delta_{i\pm} := [P_{\pm}a_i a_{i+1}]$ ($0 \le i \le 5$)

を持つようなものです.この単体分割で $H_2(S^2)$ を計算してみます.まず

$$\partial \left(\sum_{i=0}^{5} \Delta_{i+} \right) = \partial \left(\sum_{i=0}^{5} [P_{+} a_{i} a_{i+1}] \right)$$

$$= -\sum_{0 \le i \le 5} [a_{i} a_{i+1}] + \sum_{0 \le i \le 5} [P_{+} a_{i+1}] - \sum_{0 \le i \le 5} [P_{+} a_{i}]$$

$$= -\sum_{0 \le i \le 5} [a_{i} a_{i+1}]$$

です.第2項と第3項が打ち消しあっています.また

$$\partial \left(\sum_{i=0}^{5} \Delta_{i-} \right) = \partial \left(\sum_{i=0}^{5} [P_{-}a_{i}a_{i+1}] \right)$$

$$= -\sum_{0 \le i \le 5} [a_{i}a_{i+1}] + \sum_{0 \le i \le 5} [P_{-}a_{i+1}] - \sum_{0 \le i \le 5} [P_{-}a_{i}]$$

$$= -\sum_{0 \le i \le 5} [a_{i}a_{i+1}]$$

です.やはり第2項と第3項が打ち消しあっています.以上から

$$\sum_{i=0}^{5} \Delta_{i+} - \sum_{i=0}^{5} \Delta_{i-}$$

が $H_2(S^2) \cong \mathbb{Z}$ の生成元 α_2 を与えています.

一方, S^1 の単体分割 L からも同様に S^2 の単体分割が得られます.これは

• 0 単体: b_i (0 < i < 2), P_+ ,

• 1 Ψ 体: $[b_ib_{i+1}]$, $[P_+b_i]$, $[P_-b_i]$ ($0 \le i \le 2$),

• 2 単体: $\Delta_{i\pm} := [P_{\pm}b_ib_{i+1}]$ ($0 \le i \le 2$)

を持つようなものです. K の場合と全く同様に

$$\sum_{i=0}^{2} \Delta'_{i+} - \sum_{i=0}^{2} \Delta'_{i-}$$

が α_2 を与えています.

懸垂 $f_2:S(|K|) \to S(|L|)$ を考えます. f_2 は単体写像を定めています.実際,懸垂の定義から

$$(f_2)_* P_{\pm} = P_{\pm}$$

で,また懸垂を取る前は

$$(f_1)_* a_0 = (f_1)_* a_3 = b_0,$$

 $(f_1)_* a_1 = (f_1)_* a_4 = b_1,$
 $(f_1)_* a_2 = (f_1)_* a_5 = b_2$

でしたから , 頂点は頂点に移っています . また S(|K|) の 1 単体についても , $[P_{\pm}a_i]$ の形のものについては , やはり懸垂の定義により

$$(f_2)_*[P_{\pm}a_0] = (f_2)_*[P_{\pm}a_3] = [P_{\pm}b_0],$$

$$(f_2)_*[P_{\pm}a_1] = (f_2)_*[P_{\pm}a_4] = [P_{\pm}b_1],$$

$$(f_2)_*[P_{\pm}a_2] = (f_2)_*[P_{\pm}a_5] = [P_{\pm}b_2]$$

です . $e_i=[a_ia_{i+1}]$ の形のものについては $(f_1)_*$ のときと同様です . 従って 1 単体は 1 単体に移っていることになります . 2 単体に対しても同様に

$$(f_2)_* \Delta_{0\pm} = (f_2)_* \Delta_{3\pm} = \Delta'_{0\pm},$$

$$(f_2)_* \Delta_{1\pm} = (f_2)_* \Delta_{4\pm} = \Delta'_{1\pm},$$

$$(f_2)_* \Delta_{2+} = (f_2)_* \Delta_{5+} = \Delta'_{2+}$$

です.特に2単体の行き先に注目すれば

$$(f_2)_* \left(\sum_{i=0}^5 \Delta_{i+} - \sum_{i=0}^5 \Delta_{i-}\right) = 2\left(\sum_{i=0}^2 \Delta'_{i+} - \sum_{i=0}^2 \Delta'_{i-}\right)$$

つまり $(f_2)_*\alpha_2 = 2\alpha_2$ がわかり, 従って $\deg f_2 = 2$ です.

以下同様に , 帰納的に進みます . 即ち , S^{n-1} の二つの単体分割 K_{n-1}, L_{n-1} で , それぞれ n-1 単体

$$\{\sigma_i\}_{1 \le i \le 6 \cdot 2^{n-2}}, \quad \{\sigma'_j\}_{1 \le j \le 3 \cdot 2^{n-2}}$$

を持ち,その総和がともに $H_{n-1}(S^{n-1}) \cong \mathbb{Z}$ の生成元 α_{n-1} で,しかも

$$(f_{n-1})_* \sigma_m = (f_{n-1})_* \sigma_{m+3 \cdot 2^{n-1}} = \sigma'_m, \quad 1 \le m \le 3 \cdot 2^{n-2}$$

を満たすようなものがあったとします.このとき , 懸垂 $S(S^{n-1})=S^n$ の単体分割 $K_n,\,L_n$ として , n 単体

$$\{P_{\pm} * \sigma_i\}_{1 \le i \le 6 \cdot 2^{n-2}}, \quad \{P_{\pm} * \sigma_i'\}_{1 \le i \le 3 \cdot 2^{n-2}}$$

を持つようなものが導かれます(n 単体の数はそれぞれ $6\cdot 2^{n-1}$, $3\cdot 2^{n-1}$ です). それぞれの場合について,その総和は $H_n(S^n)\cong \mathbb{Z}$ の生成元 β_n になっており,しかも懸垂 f_n は単体写像 $f_n:K_n\to L_n$ を与え,

$$(f_n)_* P_{\pm} * \sigma_m = (f_n)_* P_{\pm} * \sigma_{m+3 \cdot 2^{n-2}} = P_{\pm} * \sigma'_m, \quad 1 \le m \le 3 \cdot 2^{n-2}$$

となることが懸垂の性質からわかります.これは $(f_n)_*\beta_n=2\beta_n$ を意味し,従って $\deg f_n=2$ です.以上の構成は一般の写像度 $n\in\mathbb{Z}$ に対して同様に行うことができます.

(2) 対称変換 r の写像度は, $\deg r=(-1)^{n+1}$ でした.n が偶数なら $\deg r=-1$ ですから,写像度 1 である恒等写像とはホモトピックではあり得ません.n が奇数のときは,r と恒等写像の間のホモトピーを次のように作ることができます.(1) と同様に $S^n\subset\mathbb{R}^{n+1}$ と考えて, $f:S^n\times I\to S^n$ を

$$f(x,t) = \begin{pmatrix} \cos \pi t & -\sin \pi t \\ \sin \pi t & \cos \pi t \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix}$$

で定義すれば , $f(x,0)=x,\,f(x,1)=r(x)$ です . 上記の行列は SO(n+1) の元ですから , 特に右辺は S^n の点を定めています .

(3) g(x) の対蹠点 r(g(x)) を考えます.もし f(x)=g(x) だと,f(x) と r(g(x)) を結ぶ最短経路(大円)は無数にあり得ますが,ここでは $f(x)\neq g(x)$ なので,f(x) と r(g(x)) を結ぶ最短経路(大円)は唯一つに定まります.これに沿って f(x) と r(g(x)) を繋げば求めるホモトピーを得ます.具体的には

$$h(x,t) = \frac{(1-t)f(x) + tr(g(x))}{|(1-t)f(x) + tr(g(x))|}$$

とします、分母は \mathbb{R}^{n+1} の通常のノルムです、もし分母が 0 になるとすると

$$(1-t)f(x) = -tr(g(x)) = t(g(x))$$

ですから,ノルムを考えると t=1/2 で f(x)=g(x) しかあり得ませんが,仮定からそのようなことは起こりません.従って h を定義することができます.|h(x,t)|=1 ですから確かに S^n への連続写像で,h(x,0)=f(x),h(x,1)=r(g(x)) です.

これで $f \sim r \circ g$ がわかりました . $\deg r = (-1)^{n+1}$ でしたから

$$\deg f = \deg r \circ g = \deg r \cdot \deg g = (-1)^{n+1} \deg g$$

を得ます.

(4) $g=id_{S^n}$ は (3) の条件を満たしています . $\deg id_{S^n}=1$ ですから , (3) で得た式に代入すれば結果を得ます .

(5) 対偶を示します.もし f(x)=-x を満たす x が存在しないとすれば,g=r が (3) の条件を満たすことになりますから, $f\sim -r$ です.ところが-r とは恒等写像に他なりませんから $f\sim id_{S^n}$ です.よってその写像度は $\deg f=1$ です.

2

(1) ホモトピーは

$$h(z,s) = (1-s)z^{n} + s(z^{n} + a_{1}z^{n-1} + \dots + a_{n}) = z^{n} + s\sum_{k=1}^{n} a_{k}z^{n-k}$$

で与えられます. $h: S \times [0,1] \to \mathbb{C} - 0$ でなければなりませんが

$$|h(z,t)| \ge |z^n| - s(|a_1 z^{n-1}| + \dots + |a_{n-1} z| + |a_n|)$$

$$> t^n - s(|a_1| + \dots + |a_{n-1}| + |a_n|)t^{n-1}$$

$$= t^{n-1}(t - s(|a_1| + \dots + |a_n|)) \ge 0$$

ですから,確かに $h(z,s)\in\mathbb{C}-0$ です.上の評価では,三角不等式と $|z|=t>\max\{1,|a_1|+\cdots+|a_n|\}$ を用いています.

(2) $D=\{z\in\mathbb{C}\,|\,|z|\leq t\}$ とおくと $\partial D=S$ です.f(z)=0 となる z が存在しないと仮定すれば $0\not\in f(D)$ です.よって f(D) は $\mathbb{C}-0$ の中で可縮です.実際

$$H(f(z),s) = f(sz)$$

とおけば,H(f(z),1)=f(z), H(f(z),0)=f(0) ですから,H が $id_{f(D)}$ と一点写像 f(0) の間のホモトピーです.任意の w について $f(w)\neq 0$ なので,H は確かに $\mathbb{C}-0$ への写像になっています.

このことから,ホモトピー同値 $\mathbb{C}-0\sim\partial D\sim S^1$ のもとで $f|_S:S^1\to S^1$ とみなしたとき,その写像度は 0 です.ところが $f\sim g$ ですから $\deg f=\deg g=n$ となり矛盾です.