

From theory to practice

Running a PET analysis (without programming) on vantage6

A theoretical scenario

• An international consortium of research organizations working together on aging research.

gender	age	height	weight	isOverweight	ageGroup
М	39	152	108	False	30 - 40
М	8	118	106	False	0 - 10
М	16	161	110	True	10 - 20
М	94	110	115	True	90 - 100
М	47	117	152	True	40 - 50
F	29	127	110	True	20 - 30
М	5	95	65	False	0 - 10
М	39	142	196	False	30 - 40
F	20	189	112	False	20 - 30
F	84	145	116	False	80 - 90

The scenario – checking v6 concepts!

- Six organizations, one collaboration.
- How many nodes need to be set up?

Where are these nodes installed?

The scenario – checking v6 concepts!

The consortium (also known as the collaboration) will initially focus on two different projects, each one involving different organizations.

- Age-Related Variations in Overweight Prevalence: A Comparative Analysis Across Gender and Age Groups (AGOT2024): four organization with relevant data.
- The Effect of Gender on Height Development Across Various Age Groups (GGA2024): three organization with relevant data.

Which V6 concept is applicable here?

The scenario – checking v6 concepts!

• Two studies: GGA2024, AGOT2024.

How to conduct an analysis?

In this episode: web-based UI

Web-based UI

Log into the UI using the information provided and navigate to the administration page. Then, update your email, first name, and last name.

HINT

Use the **Users** option on the Administration panel on the left.

F SOLUTION

VANTAGE 🕠	
♠ Home	♠ / Users / User
II. Analyze	
Administration	U
	Username*
Organizations	Email*
Lusers Users	First name
Roles	First halle
{} Nodes	Last name
Algorithm store	
	Roles Researcher
	Permissions

Are the nodes on my collaboration or study ready for a federated analysis?

- Node within a collaboration: autonomously managed by its corresponding organization.
- Some could be offline.
- UI is handy for checking this!

With your researcher credentials, explore the collaboration you have access to. Check which organizations are part of it and if they are online. Then, check which organizations were assigned to each study: **AGOT2024**, **GGA2924**.

- 1. Which study is ready for a federated analysis?
- 2. If you need to perform an analysis for the study that is **not** ready, which organization you would need to contact to fix this situation?

HIN

Use the **Collaborations** option on the Administration panel on the left. A hand-drawn diagram of your collaboration and studies will be handy for the next steps!

SOLUTION

- Creating a new task:
 - You will run the partial_average function, of the Federated
 Average algorithm, on all the nodes of a study (the one with no offline nodes).

GGA2024

Running a federated algorithm

Create your first task!

- Use the *study* with **no** offline nodes.
- Give your own name to the task so you can find it later.
- Choose the Average algorithm.
- Select the *partial_average* function and all the organizations within the study.
- Choose the *default* database.
- Choose a numerical variable as the input.

The task you just requested should be listed with a 'pending' status. Once finished, download the JSON results and open them on a text editor.

What does the content of these files mean? Why the results are formatted like that?

gender	age	height	weight	isOverweight	ageGroup
М	39	152	108	False	30 - 40
М	8	118	106	False	0 - 10
М	16	161	110	True	10 - 20
М	94	110	115	True	90 - 100
М	47	117	152	True	40 - 50
F	29	127	110	True	20 - 30
М	5	95	65	False	0 - 10
М	39	142	196	False	30 - 40
F	20	189	112	False	20 - 30
F	84	145	116	False	80 - 90

The data on 'default' databases on all the nodes looks like this .

Running a federated algorithm

SOLUTION

F SOLUTION

The *partial_average* returns the two values needed by the central function of the 'federated average' algorithm, as described in Chapter 2: the number of records within the database, and their sum.

The algorithm is 'encoding' these values as a JSON document, so they can used later (e.g., by another function or program).

- Let's create yet another task.
 - This time you will run the
 central_average function, of the
 Federated Average algorithm, on
 one of the study nodes (once
 again, on the study with no offline
 nodes).

Fig Future Tech

GGA2024

Running a federated algorithm

Let's see what the central function does under the hood!

- Use the study with **no** offline nodes.
- Choose the **Average algorithm**.
- Select the *central_average* function and one of the organizations within the study.
- Choose the default database.
- Choose a numerical variable as the input.

Before submitting the request: why does the V6 UI let you select only a single organization for the central function?

Keep an eye on the Tasks section, and see how the processes are created:

Why does one of the nodes show up as a Main process and also as a Child one?

HINT

As soon your task is created, go to the task list an open it. See how 'child processes' are created.

Algorithm pseudo-code

FUNCTION partial_average(dataset, column_name)

```
1 INFO("Extracting column", column_name)
2 column_values = dataset[column_name]
3
4 INFO("Computing partials")
5 local_sum = SUM(column_values)
6 local_count = SIZE(column_values)
7
8 RETURN {"sum": local_sum, "count": local_count}
```

END FUNCTION

 Why does one of the nodes show up as a Main process and also as a Child one?

Actual python code?

https://bit.ly/v6-federated-avg

FUNCTION central_average(client, column_name)

```
study_orgs = client.study.list()
  INFO("Requesting partial computation")
   task = client.task.create(
    function = "partial average"
     column = column name
    organizations = study orgs
10
11 INFO("Waiting for results")
12 results = client.wait for results(task)
13
14 global sum = 0
15 global count = 0
16
17 FOR EACH output IN results
     global sum = global sum + output.sum
     global count = global count + output.count
20
21 average = global_sum/global_count
22
23 RETURN {"average": average}
```

END FUNCTION

VANTAGE

F SOLUTION

The **Task** with the **central_average** function, when executed by a node, requests **all** the nodes within the **Study** to run the **partial_average** one. This particular node is also part of the study, so in the end it gets his own request!

The **central_average** was designed to just consolidate the results of the **partial_average**, sent by the other nodes. Hence, it doesn't need direct access any dataset.

Double-checking core concepts...

FUNCTION partial_average(dataset, column_name)

```
1 INFO("Extracting column", column_name)
2 column_values = dataset[column_name]
3
4 INFO("Computing partials")
5 local_sum = SUM(column_values)
6 local_count = SIZE(column_values)
7
8 RETURN {"sum": local_sum, "count": local_count}
```

END FUNCTION

- Why does the central_average function, unlike partial_average, not get any dataset as an input?
- Why does the partial_average function, unlike central_average, not get any client as an input?

FUNCTION central_average(client, column_name)

```
study orgs = client.study.list()
   INFO("Requesting partial computation")
   task = client.task.create(
     function = "partial average"
     column = column name
     organizations = study orgs
9
10
11 INFO("Waiting for results")
12 results = client.wait_for_results(task)
13
14 alobal sum = 0
15 global count = 0
16
17 FOR EACH output IN results
     global sum = global sum + output.sum
     global count = global count + output.count
20
21 average = global sum/global count
22
23 RETURN {"average": average}
```

END FUNCTION

Federated Average

central_avg()
partial_avg()

Algorithm store

Problems on a node?

- What if...
 - You run the central_average function (Federated Average algorithm), on the study that has an offline node?

Running a federated algorithm

handling problems through the UI!

- Use the study that has an offline node.
- Choose the **Average algorithm**.
- Select the central_average function and an online organizations within the study.
- Choose the *default* database.
- Choose a numerical variable as the input.

Before starting the task try to speculate: what is going to happen?

FUNCTION central_average(client, column_name)

```
study orgs = client.study.list()
   INFO("Requesting partial computation")
   task = client.task.create(
     function = "partial_average"
     column = column name
     organizations = study orgs
9
10
11 INFO("Waiting for results")
12 results = client.wait_for_results(task)
13
   allow all sum = 0
   global\_count = 0
17 FOR EACH output IN results
     global sum = global sum + output.sum
     global count = global count + output.count
20
   average = global sum/global count
23 RETURN {"average": average}
```

END FUNCTION

The algorithm didn't crash.

The Central task requests all the nodes in the study to run the 'partial' function. As the server is unable to transfer this request to the offline node, this child process is kept on hold, until the node is back online.

Consequently, the Main process is also kept on hold, and the process stays with an 'Active' status indefinitely (or until the node is back online).

Problems at the code level?

- What if...
 - You run the central_average
 function (Federated Average
 algorithm), and later on a node
 gets a runtime error? (e.g., a code
 bug, unexpected input, etc.)

Running a federated algorithm

Handling problems through the UI!

- Use the study that has no offline nodes.
- Choose the **Average algorithm**.
- Select the central_average function and one of the organizations within the study.
- Choose the default database.
- Choose the ageGroup variable as the input.

Look at the error logs. What was the cause of the failure of the *partial_average*? What about the *central_average*?

gender	age	height	weight	isOverweight	ageGroup
М	39	152	108	False	30 - 40
М	8	118	106	False	0 - 10
М	16	161	110	True	10 - 20
М	94	110	115	True	90 - 100
М	47	117	152	True	40 - 50
F	29	127	110	True	20 - 30
М	5	95	65	False	0 - 10
М	39	142	196	False	30 - 40
F	20	189	112	False	20 - 30
F	84	145	116	False	80 - 90

HINT

by the Python interpreter while running the algorithm functions. Look for messages that hint the root cause of the problem.

F SOLUTION

- This time,
 the partial_average function
 on all the data nodes crashes,
 which lead to the failure of the
 Main process
 (central_average).
- The partial_average crashed while trying to parse the input as a number.
 The central_average crashed due to a division-by-zero.

Play around with other algorithms

Try to see if you can run a different algorithm than the average we have used so far:

Kaplan–Meier estimator

This time, choose the *kaplan meier* (csv) database!

