

Juin 2018

Antoine Grosnit et Yassin Hamaoui

1 UNE MODÉLISATION SIMPLIFIÉE

1.1 Prix négatifs

1.1.1 • Simulation par un Monte-Carlo naïf

infP < 0 On commence par un modèle simple où on simule M processus de Poisson associés à notre modèle. On détermine ensuite $P_{est} = \mathbb{P}(\inf_{t \leq T} P_t < 0)$ par un Monte-Carlo naïf qui consiste à utiliser l'estimateur : $P_{est} = \frac{1}{M} \sum 1_{\inf_{t \leq T} P_t < 0}$

Pour obtenir un intervalle de confiance, on utilise le résultat qui affirme que : $\sqrt{M}(\frac{1}{M}\sum 1_{\inf_{t\leq T}P_t<0} - \mathbb{P}(\inf_{t\leq T}P_t<0)) \Rightarrow N(0,\mathbb{P}(\inf_{t\leq T}P_t<0)(1-\mathbb{P}(\inf_{t\leq T}P_t<0))$

Alors un intervalle de confiance à 0.95 est donné par : $[P_{est} - 2*P_{est}(1-P_{est}); P_{est} + 2*P_{est}(1-P_{est})]$ On regroupe les résultats pour différents paramètres dans le tableau suivant :

Tableau: P0; i = 0ou3; $M = 10^6$; Pest; Intervalled econf

1.1.2 • Simulation par changement de loi

Il s'agit maintenant d'utiliser une méthode qui permet d'évaluer correctement la probabilité quand l'évènement est rare et que le résultat donné par un Monte-Carlo naïf n'est plus pertinent (ce qui est ici le cas pour $P_0=35$. On va alors procéder à un changement de loi via la transformation d'Esscher. L'idée de cette technique est de modifier les probabilités de manière à rendre l'évènement étudiée moins rare. Dans ce cas, on veut que le prix diminue. Il faut donc que les sauts négatifs soient privilégiés.

DESCRIPTION DE LA TRANSFORMATION DESSCHER

On choisit θ qui minimise la variance de l'estimation de la probabilité. Pour cela, on commence par tracer P_{est} en fonction de θ . On obtient le graphique suivant :

INSERER GRAPHIQUE.

On note alors un plateau dans la région A COMPLETER. On cherche dans un deuxième temps le θ de cette région qui minimise la variance de l'estimation. On obtient $\theta = ACOMPLETER$

TABLEAU DE RESULTAT $M1=86*10^6~M3=50*10^6~i=1, i=3~theta=opt, P0=10~theta=valopt, P0=35$

1.1.3 • MÉTHODE DE SPLITTING VIA MCMC

Pour estimer la probabilité que le prix devienne négatif pour des grandes valeurs de P_0 (ici, $P_0 = 35$), nous mettons également en oeuvre la méthode de splitting et chaînes de Markov avec rejet qui est adaptée à la modélisation simplifiée des prix par un processus de Poisson composé caractéristique (λ, ν) (où ν est la loi de J_n).

On a $N = (N_t)_{t>=0}$ processus de Poisson homogène de paramètre λ et (J_n) v.a. i.i.d. On procède donc comme pour l'exercice 3. du TP4:

- on se donne des seuils $-1 = p_K < ... < p_1 < p_0 = P_0$.
- pour k = 1, ...K, on approche $\mathbb{P}(\inf_{t \leq T} P_t \leq p_k | \inf_{t \leq T} P_t \leq p_{k-1})$ par un estimateur $\widehat{\pi}_k$

— estimer $\mathbb{P}(\inf_{t \leq T} P_t < 0))$ par $\prod_1^K \widehat{\pi}_k$.

1.2 CALCUL DU QUANTILE

1.2.1 • Simulation par un Monte-Carlo naïf

Dans cette partie on veut estimer des quantiles du prix final p_T à différents niveaux. Une première approche consiste à utiliser l'estimateur des quantiles empiriques. Il s'agit donc de simuler différentes M processus de Poisson et de réordonner les prix finaux obtenus par ordre croissant : $p_T^1, p_T^2..., p_T^M$. Le quantile empirique au niveau α est alors : $p_T^{\lceil M\alpha \rceil}$

On obtient les résultats suivants pour différents paramètres : $i = 1ou3, P0 = 35, alpha = 10^{-4}, 5, 6$ box plot + histogramme

1.2.2 • Simulation par changement de loi

Dans cette partie, on veut estimer le quantile à des niveaux plus extrêmes (10^{-5} ou 10^{-6}) ce qui nécessite d'avoir recours à un changement de loi car la méthode naïve n'aboutit pas un résultat exploitable. L'idée est de nouveau utiliser la transformation d'Esscher, déterminer le paramètre θ qui minimise la variance puis effectuer le quantile en utilisant le résultat suivant du cours : Pour $X_1, ..., X_n$ simulés sous $\mathbb{Q}: Q(\alpha) = \inf_x \left\{ \frac{1}{n} \sum_{i=1}^n \frac{p(X_i)}{q(X_i)} \mathbf{1}_{X_i \geq x} \geq \alpha \right\}$

On implémente cela en triant les prix puis en leur affectant leur poids (correspondant à la normalisation calculée précédemment).

On obtient les résultats suivants pour différents paramètres : $i=1ou3, P0=35, alpha=10^-4, 5, 6$ box plot + histogramme

2 SUPERPOSITION DE PROCESSUS

2.1 Prix négatifs

2.1.1 • Simulation par un Monte-Carlo naïf

On procède de la même manière qu'à la section précédente en simulant M fois l'évolution du prix qui est la somme d'un processus de Poisson et d'un processus déterministe (mis à part sa première valeur) qui alterne entre saut positif et saut négatif.

On obtient les résultats suivants : Tableau : P0; i = 0ou3; $M = 10^6$; Pest; Intervalled econf

2.1.2 • Simulation par MCMC

2.2 Calcul du quantile

2.2.1 • Simulation par un Monte-Carlo naïf

De la même qu'au calcul de quantile avec le processus précédent, on obtient les résultats suivants :

2.2.2 • Simulation par MCMC

3

MODÉLISATION MARKOVIENNE

3.1 Quelques propriétés

— Signe de α_+ et α_-

Dans le cadre de cette modélisation on considère que \hat{J}_n est une chaîne de Markov de matrice de transition : $\hat{Q} = \begin{pmatrix} \frac{1+\alpha_+}{2} & \frac{1-\alpha_+}{2} \\ \frac{1-\alpha_-}{2} & \frac{1+\alpha_-}{2} \end{pmatrix}$ Cela s'interprete en termes probabilistes par : $\mathbb{P}(\hat{J}_{n+1} = 1 \mid \hat{J}_n = 1) = \frac{1+\alpha_+}{2}$ et on veut que cette probabilité soit inférieure à $\frac{1}{2}$ pour modéliser le retour

à la moyenne. On a donc : $\alpha_+ < 0$. Par le même argument : $\alpha_- < 0$ A partir de maintenant (et sauf mention contraire) $\alpha_+ = \alpha_- = \alpha$.

 $- \mathbb{P}(\hat{J}_n \hat{J}_{n+1} = 1) \simeq \frac{1+\alpha}{2}$

On considère dans la suite que $\alpha=-0.875$ (donné par l'article de référence). On simule simplement la suite des signes $hat J_n$ en respectant la loi de transition donnée par la matrice. En utilisant la loi des grands nombres, on obtient bien : $\mathbb{P}(\hat{J}_n\hat{J}_{n+1}=1)\simeq 0.0625\simeq \frac{1+\alpha}{2}$

3.2 Prix négatifs

3.2.1 • Simulation par un Monte-Carlo naïf

On va simuler la suite des prix et utiliser la loi des grands nombres pour estimer la probabilité que le prix devienne négatif. On obtient les résultats suivants :

3.2.2 • Simulation par changement de loi

3.3 CALCUL DU QUANTILE

3.3.1 • Simulation par un Monte-Carlo naïf

On utilise la simulation obtenue précédemment pour déterminer le quantile grâce au quantile empirique.

3.3.2 • Simulation par changement de loi

4 LIMITE MACROSCOPIQUE