Firm Dynamics in Trade

ES Summer Schools in Dynamic Structural Econometrics

Kim J. Ruhl | U. Wisconsin – Madison

August 7, 2024

Introduction: Two broad sets of questions

- Firm-level dynamics and trade
 - ► Try to understand: exporter life cycle, entry, exit
 - Roles of technology, trade barriers, uncertainty, learning
- Aggregate outcomes shaped by firm-level dynamics
 - ► How do the welfare gains from trade liberalization depend on firm-level behavior?
 - ▶ Do models with firm-level dynamics help us understand the longand short-run behavior of aggregate trade in response to changes in tariffs or over the business cycle?
 - ▶ What explains the delayed response of the trade balance to a change in the real exchange rate?

Introduction: Modeling approach

- Dynamic discrete-choice model of export market entry
- ► Embed the DDC model into two-country general equilibrium framework (capital accumulation, cross-country borrowing and lending,...)
- ▶ Use micro data to discipline parameters
 - ▶ Nested fixed point problem, Indirect inference, SMM
- Aggregate the decisions of heterogeneous firms to study "macro" questions

Outline

- 1. Data
 - Criminally brief discussion of firm export dynamics
 - ▶ Focus on entry, exit, and growth
- 2. Partial equilibrium: The canonical model
 - ▶ Dynamic firm-choice problem
- 3. General equilibrium aggregation
 - ► Embed PE model in general equilibrium
- 4. Discussion of computation, estimation
- Trade liberalization example
 - What is the payoff from all this work?

Two margins of growth

- 1. Extensive margin: Which firms export?
 - Measure as the export participation rate
 - Determined by starter and stopper rates
- 2. Intensive margin: Conditional on exporting, how much is exported?
 - ▶ Measure this as the export intensity of firm i

$$exs_{it} = \frac{exports_{it}}{sales_{it}}$$

► Evolves over the exporter's life cycle

Decomposing aggregate trade

- Firms $i = 1 \dots n$ export. Firms $i = n + 1 \dots N$ do not.
- ▶ Decompose aggregate export-sales ratio into three margins
 - 1. Extensive margin (first term on rhs)
 - 2. Intensive margin (second term on rhs)
 - 3. Exporter size premium (third term on rhs)

$$\frac{\sum\limits_{i=1}^{n} exports_{i}}{\sum\limits_{i=1}^{N} sales_{i}} = \frac{n}{N} \times \frac{n^{-1} \sum\limits_{i=1}^{n} sales_{i} \times exs_{i}}{n^{-1} \sum\limits_{i=1}^{n} sales_{i}} \times \frac{n^{-1} \sum\limits_{i=1}^{n} sales_{i}}{N^{-1} \sum\limits_{i=1}^{N} sales_{i}}$$

Consider exports to the world, exports by destination country in paper

Decomposing aggregate trade

	All values are expressed as percentages							
	United States			Colombia 100+				
Panel A	1987	2007	log diff.	1983	2013	log diff		
Export/sales	6.3	11.6	61.1	5.2	13.9	97.7		
Extensive	43.2	63.0	37.7	36.5	59.8	49.5		
Intensive	9.9	15.5	44.9	10.8	20.3	62.8		
Premium	148.0	119.5	-21.4	132.1	114.2	-14.6		
Panel B								
Starter rate	10	_		6.9	13.8			
Stopper rate	17	-		11.9	10.1			

- ightharpoonup Trade barriers fall ightarrow trade grows
- ► Extensive and intensive margins grow
- ▶ Newer, smaller exporters → size premium falls

Exporter life cycle

Export to total-sales ratio

	1	2	3	4	5	6	7	Long run
Starter	14.3	15.1	18.2	20.1	21.7	22.9	23.9	27.4
	- 7	-6	– 5	-4	-3	-2	– 1	
Stopper	22.1	23.2	21.8	19.5	18.8	19.1	16.9	

- ▶ A new exporter grows by 50 percent in its first five years
- ► An exiting firm shrinks by about 30 percent in its last five years

Model: decision problem

▶ Consider a firm *i* making a decision to export: $x_{it} = \{0, 1\}$

$$V_t = \max_{\{X_{is}\}_{s=t}^{\infty}} E_t \sum_{s=t}^{\infty} \frac{1}{1+r_s} x_{is} \left(\pi_{is}(\cdot) - f_{is}(\cdot)\right)$$

- ► Fixed export costs: f_{it} (ϵ_{it} , x_{it-1} , x_{it-2} , ..., x_{it-k}) depend on random variable and experience
- ▶ Flow profits: $\pi(x_{it}, z_{it}, d_{it})$
 - $ightharpoonup z_{it}$ = variables related to productive efficiency
 - $ightharpoonup d_{it}$ = variables related to foreign demand for firm i's variety
 - ▶ Assumes constant returns to scale, otherwise $z_{it}(s_{it}, d_{it})$ where s_{it} is sales at home

Model: foreign demand

▶ Firm i, charging price p_{it} , sells

$$d_{it}\left(p_{it}\right) = \omega_{it}\left(p_{it}\frac{\tau_{t}\xi_{t}\tilde{\xi}_{it}}{P_{t}}\right)^{-\theta}D_{t}$$

- ▶ Common factors: market size (D_t) , real exchange rate (P_t) , ad-valorem tariff (τ_t) , iceberg trade costs (ξ_t)
- ▶ Idiosyncratic factors: demand shifter (ω_{it}) and $\left(\tilde{\xi}_{it}\right)$ e.g., shipping/distribution technology
 - ▶ Two idiosyncratic factors redundant, combine into ξ_{it}
 - ▶ No congestion effects on distribution
- CES framework is common

Fixed costs

- ▶ $f(\epsilon_{it}, x_{it-1})$: only t-1 export status matters
- ▶ $f(\epsilon_{it}, 1) < f(\epsilon_{it}, 0)$: cost of entering exceeds continuation cost
- ▶ Paying the entry cost lowers iceberg cost from $\xi = \infty$ to $\xi < \infty$
- ➤ A richer model in which fixed costs depend on experience requires tracking longer history

Uncertainty

- ▶ Microeconomic $(z, \xi, f(\epsilon_{it}, x_{it-1}))$
 - ▶ Let z, ξ follow AR1 process $\left(\rho_z, \sigma_z^2, \rho_\xi, \sigma_\xi^2\right)$
 - lacktriangle Let stochastic component follow $\epsilon_{\it it}\sim\log$ Normal $(0,\sigma_\epsilon^2)$
- ▶ Macroeconomic
 - ▶ Processes for exchange rate (P_t) & demand (D_t) depend on equilibrium concept
 - \blacktriangleright In partial equilibrium (P, D) are exogenous processes
 - ► In general equilibrium, (*P*, *D*) depend on shocks and transmission (can be highly non-linear)
 - For tariffs no standard

Bellman Equation

▶ The firm solves a standard discrete-choice problem

$$V_{t}\left(x_{it-1}, z_{it}, \xi_{it}, f_{it}\right) = \max\left\{V_{t}^{0}\left(x_{it-1}, z_{it}, \xi_{it}, f_{it}\right), V_{t}^{1}\left(x_{it-1}, z_{it}, \xi_{it}, f_{it}\right)\right\}$$

- ▶ To solve this problem we will need to know
 - ▶ A firm's survival probability (δ_{it})
 - ▶ The interest rate (r_t)
- ▶ The ts capture non-stationary functions from aggregate shocks
 - Most partial equilibrium models assume stationarity

Bellman Equation

▶ Value of not exporting

$$V_{t}^{0}(x_{it-1}, z_{it}, \xi_{it}, f_{it}) = \pi_{t}(0, z_{it}, \xi_{it}) + \delta_{it} \mathop{\mathsf{E}}_{z, \xi, t} \frac{1}{1 + r_{t+1}} V_{t+1}(0, z_{it+1}, \xi_{it+1}, f_{it+1})$$

▶ Value of exporting

$$V_{t}^{1}(X_{it-1}, Z_{it}, \xi_{it}, f_{it}) = \pi_{t}(1, Z_{it}, \xi_{it}) - f_{it}(\epsilon_{it}, X_{it-1}) + \delta_{it} \mathop{\mathsf{E}}_{z, \xi, f} \frac{1}{1 + r_{t+1}} V_{t+1}(1, Z_{it+1}, \xi_{it+1}, f_{it+1})$$

► Focus on a stationary environment for now (drop *t*s)

Decision Rules

- ▶ Assume 1) f is deterministic (i.e. $\sigma_{\epsilon}=0$) and 2) export and domestic profit increasing in z
- ▶ Optimal policy is a cutoff rule $z_m(\xi)$ s.t. $x_{it} = 1$ iff $z \ge z_m(\xi)$

$$f_{m} - [\pi(1, z_{m}(\xi), \xi) - \pi(0, z_{m}(\xi), \xi)] = \frac{\delta}{1 + r} E \begin{bmatrix} V^{1}(z', \xi', f_{1}) \\ -V^{0}(z', \xi', f_{0}) \end{bmatrix}$$

$$f_{m} - \Delta \pi(z_{m}(\xi), \xi) = \frac{\delta}{1 + r} E [\Delta V(z', \xi', f_{1}, f_{0})]$$

- ▶ The LHS is the current cost of exporting net of increased profits
- ► The RHS is the future benefit (increase in market value of the firm)

Breakevens

Properties

- ▶ Crucial outcome of dynamic decision: $z_1(\xi) < z_0(\xi)$
 - Harder to break into exporting than to stay
- Consistent with data, we have
 - ► Exporter hysteresis: Firms continue exporting after conditions deteriorate
 - ▶ Low exit rate: Exporters will delay exiting to avoid paying the entry cost again
 - ► Export Premium: Exporters are larger than nonexporters
 - Increasing in the average fixed cost
 - Falling in the difference in fixed costs

Distributions

- ▶ The cutoff thresholds and the process for (z, ξ) determine the measure of firm types $\mu(z, \xi, f)$
- \blacktriangleright μ (z, ξ , f_0) [μ (z, ξ , f_1)] denotes the beginning of period non-exporters [exporters]
- ▶ The measures of current nonexporters and exporters

$$N_{N}=\int\limits_{\xi}\int\limits_{0}^{z_{0}\left(\xi\right) }\mu\left(z,\xi,f_{0}
ight) +\int\limits_{\xi}\int\limits_{0}^{z_{1}\left(\xi\right) }\mu\left(z,\xi,f_{1}
ight)$$

$$N_{X} = \int_{\xi} \int_{z_{0}(\xi)}^{\infty} \mu(z, \xi, f_{0}) + \int_{\xi} \int_{z_{1}(\xi)}^{\infty} \mu(z, \xi, f_{1})$$

▶ The export participation share is $N_X/(N_N+N_X)$

Laws of motion

$$N_X' = \delta_{X,X} \Pr (ext{continue}) N_X + \delta_{N,X} \Pr (ext{start}) N_N$$

$$N_N' = \delta_{X,N} \left[1 - \text{Pr (continue)} \right] N_X + \delta_{NN} \left[1 - \text{Pr (start)} \right] N_N + N_E$$

▶ A more careful exposition would focus on

$$\mu'(z,\xi,f) = T(\mu(z,\xi,f))$$

Distributions

Comparative static: permanent decrease in tariff rate

- ▶ Increasing entry and decreasing exit today and in the future
- ► Through law of motion trade will increase gradually

General equilibrium

- ▶ Embed the firm-decision problem into general equilibrium
- ➤ Two symmetric countries (Foreign variables with asterisks)
 - With symmetric countries and policy, trade is balanced
 - Asymmetric countries or unilateral liberalization generate international capital flows
- ▶ Also: free entry of firms, physical capital, intermediate goods

- ▶ Why general equilibrium?
 - Account for feedback through prices
 - ► Feedback typically dampens effects vis-à-vis partial equilibrium

Heterogeneous firms

- ▶ Differentiated varieties, monopolistic competition
- ➤ The differentiated-variety production function

$$y_i = \left(zk_i^{\alpha}\ell_i^{1-\alpha}\right)^{1-\alpha_x}x^{\alpha_x}$$

- ▶ k is physical capital, ℓ is labor
- ➤ x intermediate good (a composite of varieties)
- ➤ z follows an AR(1) process

Final good production

- ► Constant returns to scale, perfect competition
- ▶ Firm (a good) state is $s = (z, \xi, f)$

$$Y_t = \left[\int y_{\mathcal{H}t}(s)^{rac{ heta-1}{ heta}} \mu_t(s) \, ds + \int y_{\mathcal{F}t}(s)^{rac{ heta-1}{ heta}} \mu_t^*(s) \, ds
ight]^{rac{ heta}{ heta-1}}$$

► Final good used for consumption, physical capital investment, and intermediate goods (x)

$$Y_t = C_t + K_{t+1} - (1 - \delta)K_t + X_t$$

Household's Problem

$$\max_{C_t, K_{t+1}} E \sum_{t=0}^{\infty} \beta^t \frac{C_t^{1-\sigma}}{1-\sigma}$$
s.t. $C_t + K_{t+1} = w_t L_t + (1+r_t - \delta_k)K_t + T_t + \Pi_t$ $t = 0, 1, \dots$

$$C_t > 0, \ K_0 = \overline{K}$$

- ▶ L is the household's labor endowment (L = 1)
- ▶ r is the rental rate of capital
- w is the wage
- ➤ T is the lump-sum rebate of tariff revenue
- ► П is the profit earned by domestic firms

Estimation overview

- ► Estimation target is United States in the early 1990s
- Assume the United States is in a stationary equilibrium
- Break the parameters into two sets
 - 1. Ones chosen without solving for the model's equilibrium
 - 2. Ones that require solving for the model's equilibrium

1. External parameters

- ▶ Not estimated, but common in the literature
 - \blacktriangleright $\theta = 5$, $\sigma = 1$
- ► "Estimated" (target)
 - au au = 0.10 (average tariff rate = 10%)
 - $ightharpoonup \beta = 0.96$ (real interest rate = 4%)
 - $\delta_k = 0.1$ (physical capital depreciation rate = 10%)
 - ightharpoonup lpha = 0.3 (capital share in income = 30%)
 - $ightharpoonup lpha_x = 0.80 \left(\frac{\text{gross output}}{\text{value added}} = 2.8 \right)$

2. Internal parameters

$$z' = \rho_z z + \epsilon_z$$
 $\epsilon_z \sim N(0, \sigma_z)$
 $\xi' = \rho_\xi \xi + \epsilon_\xi$ $\epsilon_\xi \sim N(0, \sigma_\xi)$

- ▶ Discretize z into many values
- ▶ Discretize ξ into two values $\xi_H > \xi_L$, with symmetric transition prob ρ_{ξ}
- ▶ Overall, we need to estimate:

$$\gamma = \{\chi_0, \chi_1, \rho_z, \sigma_z, \mu_e, f_0, f_1, \xi_L, \xi_H, \rho_\xi\}$$

To do so, we need to solve the model.

Steady-state algorithm (for given parameter values)

- 0. Initial set up
 - ► Construct grids; Discretize continuous stochastic processes
- **1.** Guess (K, C, M), solve decision problem
 - ▶ Value/policy function iteration to convergence
 - ► Key output: Policy functions over export entry/exit
- 2. Compute stationary distribution
 - Iterate on I.o.m. using policy functions from step 1
- 3. Use stationary distribution to construct aggregates
- 4. Check for equilibrium and return to step 1 as needed
 - Capital market clearing
 - ▶ Free entry condition
 - ▶ Consumer budget constraint

A complication

- ▶ The export entry cutoffs z_0 , z_1 are generally between nodes
- ➤ Thus small changes in parameters can lead to discrete change in the mass of firms making the choice
- Can lead to instability in convergence or parameter estimation
- ► A solution: interpolate and randomize
 - ► Find the cutoffs using the value functions
 - Assume firms are distributed uniformly between the nodes and then let the decision rule be based on the share of firms that meet the threshold

Estimation algorithm

- **0.** Determine a set of moments from the data m^d
- **1.** Guess parameter vector γ
- 2. Solve for steady state (previous algorithm)
- **3.** Simulate panel of data, compute moments from model $m(\gamma)$
- 4. Compute e. Is it minimized? If not return to step 1

$$e = \left[m^d - m(\gamma)\right]' W \left[m^d - m(\gamma)\right]$$

- ▶ Code $e = f(\gamma, m^d)$
- ▶ Pass f() to your favorite minimizer (if exactly identified, NL solver)
- ▶ A good initial guess of γ helps a lot (easier said than done)

Improvements to the algorithms

- ▶ The steady-state model solution can be broken up
 - ► Solve value function and compute stationary distribution first
 - ▶ Then solve for entry and aggregate quantities
 - ▶ This is just a more complex Hopenhayn model
- ► The estimation can be broken up into steps, too
 - Some parameters can be determined without knowing the aggregates
- ► Computing moments
 - 1. Simulate a panel: can be slow, but data are from finite samples
 - Use decision rules and ergodic distributions: faster, but lose small sample aspect

Choosing moments

$$\gamma = \{\chi_0, \chi_1, \rho_z, \sigma_z, \mu_e, f_0, f_1, \xi_L, \xi_H, \rho_\xi\}$$

- ▶ Need informative moments—this can be the hard part
 - Experiment with the model, compute derivatives
 - ▶ Not typically a one-to-one mapping of moments and parameters

- ▶ $f_0, f_1 \rightarrow$ export part., stopper rate, exporter premium
- ▶ $\xi_L, \xi_H, \rho_\xi \rightarrow exs_{it}$: overall, new exporters, 5-year exporters
- ho $\rho_z, \sigma_z \rightarrow$ firm size distribution, autocorrelation of sales
- \blacktriangleright $\chi_0, \chi_1, \mu_e \rightarrow$ entrants' labor share, shutdown labor share

Estimation results: Export technology

Parameter		Calibrated value
Export entry cost	f_0/f_e	0.038
Export continuation cost	f_1/f_0	0.715
High variable trade cost	ξн	1.72
Low variable trade cost	ξL	1.07
Exporter-type persistence	$ ho_{\xi}$	0.92

- Cheap to create an exporter compared to creating a new plant
- ▶ Big difference between being a good and bad exporter
- ► Export type is persistent
- ► Exporter intensity driven by share of good and bad exporters
- ▶ Big picture: Large gain to becoming a good exporter. Not easy to do.
 - → high stopper rates; low export participation

A tariff liberalization

- Start in stationary equilibrium
- ▶ Surprise cut in tariffs to $\tau = 0$ in both countries
- ► Perfect foresight for rest of time
- Compute transition path between steady states
 - Compute the two steady states
 - ► Assume reach new steady state in T periods
 - Guess path of capital prices
 - ▶ Compute value functions, distributions for t = 0...T
 - ▶ Iterate backwards on value funcs, forward on distributions

Two versions of the model

- 1. The dynamic firm model
- 2. The static firm model
 - Static model except for capital accumulation
 - ▶ Set $f_0 = f_1 = 0$; every firm exports
 - ▶ No extensive margin dynamics
 - ▶ No forward-looking decision
 - ▶ Set $\xi_H = \xi_L = 1.62$ (match agg. export-sales ratio)
 - ▶ No intensive margin dynamics
 - ► This is essentially Krugman (1980) with heterogeneous productivity

Tariff liberalization

- Consumption
 - ▶ Dynamic: Consumption overshoots its long-run level
 - Static: Neoclassical dynamics
- ► Aggregate trade share (1-domestic share)
 - ▶ Dynamic: Slow growth (int. + ext. margins)
 - ► Static: Instant adjustment (only int. margin)

Tariff liberalization

- ► Export participation
 - ▶ Dynamic: Exporters grow gradually, driving aggregate dynamics
- ▶ Number of producers
 - ▶ Dynamic: Decreasing
 - ► Static: Small dip, then recovery

Trade liberalization with firm dynamics

- Initial equilibrium has too many firms
 - ► Imports are relatively expensive
 - Value variety, so create domestic firms
- ▶ Liberalization
 - Buy cheaper varieties from abroad
 - Need fewer domestic firms
 - ➤ Consume resources that would have gone to firm creation → overshooting in consumption
 - ▶ Takes time to build of exporters; aggregate trade grows slowly

Welfare

	Static exporters	Dynamic exporters
Long-run trade elast.	4.00	9.22
ΔC_{ss}	5.18	0.48
Δ Welfare	4.62	6.66
\triangle Welfare/ \triangle C_{ss}	0.89	13.81

- ▶ Static elasticity is $\theta 1$
- ▶ Dynamic elasticity captures exten. margin and better export tech.
- Static model delivers higher steady-state consumption...
- ▶ ... but Dynamic model has higher welfare (from overshooting)
- Static "sufficient-statistic" approach is not a good approximation to the dynamic model