MAT2006: Elementary Real Analysis Mid-term Test

Mid-term Test Two hours, closed book.
Question 1. [20 marks] State the following theorems (proofs are not required). (a) The Least Upper Bound Property;
(b) The Archimedean Property;
(c) The Nested Interval Property;
(d) The Monotone Convergence Theorem;
(e) The Bolzano–Weierstrass Theorem;
(f) The Cauchy Criterion for sequences;
(h) The Heine–Borel Theorem.

Question 2. [15 marks]

(i) Write down the sup, inf, max and min for the sets

$$A = (0,1]; \qquad B = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}.$$

(ii) For the sequence $x_n = (-1)^n$. Write down

$$\limsup_{n \to \infty} x_n \quad \text{and} \quad \liminf_{n \to \infty} x_n.$$

(iii) Assume $\{x_n\}$ and $\{y_n\}$ are two bounded sequences. Show that

$$\limsup_{n \to \infty} x_n + \limsup_{n \to \infty} y_n \ge \limsup_{n \to \infty} (x_n + y_n).$$

Question 3. [10 marks] Using the Heine–Borel theorem to prove that any bounded infinite set must have a limit point.

Student ID:

Name:

Question 4.[15 marks] Suppose the series $\sum_{n=1}^{\infty} a_n$ converges.

- (i) Assume $a_n \geq 0$ for each $n \in \mathbb{N}$. Show that $\sum_{n=1}^{\infty} a_n^2$ also converges.
- (ii) If we don't assume $a_n \ge 0$, does $\sum_{n=1}^{\infty} a_n^2$ still converge? If so, provide a proof. If not, give an example.
 - (iii) Assume $a_n \ge 0$ and $a_{n+1} \le a_n$ for each $n \in \mathbb{N}$. Show that $\lim_{n \to \infty} na_n = 0$.

Question 5.[20 marks]

Consider the following seven sets.

 $\emptyset;$ $\mathbb{R};$ $\mathbb{Q};$ $\mathbb{I};$ [0,1]; (0,1]; C (the Cantor set).

- (i) Among the above sets, point out the finite, the countable, and the uncountable sets.
 - (ii) Among the above sets, point out the open, the closed, and the compact sets.
 - (iii) Show that any bounded open interval is F_{σ} .
 - (iv) Using the Baire Category Theorem show that \mathbb{I} is not F_{σ} .
- (v) Using part (iv), provide an example of "the countable intersection of F_{σ} sets is not F_{σ} ."

Student ID: Name:

Question 6. [20 marks]

- (i) Let A' denote the derived set of A, that is the set of all limit points of A. Show that $(A')' \subset A'$, that is A' is closed.
- (ii) Let $\{x_n\}$ be a bounded sequence and we may regard it as a set of real numbers. Let E := A' be the set of limits points of A. Show that $s = \sup E$ exists and that s is a limit point of E.
- (iii) We have shown that $\limsup_{n\to\infty} x_n = \sup E$. Prove that $\max E$ exists and that $\limsup x_n = \max E$.
- (iv) For a set B, denote by $-B = \{-x \mid x \in B\}$. Show that $-\inf B = \sup(-B)$ and that $-\min B = \max(-B)$. Use this and part (iii) to show that $\liminf_{n \to \infty} x_n = \min E$.
- (v) We have shown that $\{x_n\}$ converges if and only if $\limsup_{n\to\infty} x_n = \liminf_{n\to\infty} x_n$. Using this to show that: if every convergent subsequence of $\{x_n\}$ converge to the same limit, then $\{x_n\}$ converges.

6

Student	$ID \cdot$
Student	ID.

Student	117.
Student	117.

Student	ID:
Duddelli	11.

Ctudont	117.
Student	117.