Assignment-04-Simple Linear Regression-1

1) Delivery_time -> Predict delivery time using sorting time

Build a simple linear regression model by performing EDA and do necessary transformations and select the best model using R or Python.

In [1]:

```
# import libraries
import pandas as pd
import numpy as np
import seaborn as sns
import statsmodels.formula.api as smf
```

In [2]:

dataset=pd.read_csv("C:/Users/LENOVO/Documents/Custom Office Templates/delivery_time.csv") dataset

Out[2]:

	Delivery Time	Sorting Time
0	21.00	10
1	13.50	4
2	19.75	6
3	24.00	9
4	29.00	10
5	15.35	6
6	19.00	7
7	9.50	3
8	17.90	10
9	18.75	9
10	19.83	8
11	10.75	4
12	16.68	7
13	11.50	3
14	12.03	3
15	14.88	4
16	13.75	6
17	18.11	7
18	8.00	2
19	17.83	7
20	21.50	5

EDA and Data Visualization

In [3]:

```
dataset.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21 entries, 0 to 20
Data columns (total 2 columns):
    Column
                   Non-Null Count Dtype
 #
                   -----
    Delivery Time 21 non-null
                                   float64
0
    Sorting Time
                 21 non-null
                                   int64
dtypes: float64(1), int64(1)
memory usage: 464.0 bytes
```

In [4]:

sns.distplot(dataset['Delivery Time'])

C:\Users\LENOVO\anaconda3\lib\site-packages\seaborn\distributions.py:2557: F utureWarning: `distplot` is a deprecated function and will be removed in a f uture version. Please adapt your code to use either `displot` (a figure-leve l function with similar flexibility) or `histplot` (an axes-level function f or histograms).

warnings.warn(msg, FutureWarning)

Out[4]:

<AxesSubplot:xlabel='Delivery Time', ylabel='Density'>

In [5]:

```
sns.distplot(dataset['Sorting Time'])
```

C:\Users\LENOVO\anaconda3\lib\site-packages\seaborn\distributions.py:2557: F utureWarning: `distplot` is a deprecated function and will be removed in a f uture version. Please adapt your code to use either `displot` (a figure-leve l function with similar flexibility) or `histplot` (an axes-level function f or histograms).

warnings.warn(msg, FutureWarning)

Out[5]:

<AxesSubplot:xlabel='Sorting Time', ylabel='Density'>

Feature Engineering

In [9]:

```
# Renaming Coluimns
dataset=dataset.rename({'Delivery Time':'delivery_time','Sorting Time':'sorting_time'},axis
dataset
```

Out[9]:

	delivery_time	sorting_time
0	21.00	10
1	13.50	4
2	19.75	6
3	24.00	9
4	29.00	10
5	15.35	6
6	19.00	7
7	9.50	3
8	17.90	10
9	18.75	9
10	19.83	8
11	10.75	4
12	16.68	7
13	11.50	3
14	12.03	3
15	14.88	4
16	13.75	6
17	18.11	7
18	8.00	2
19	17.83	7
20	21.50	5

Correlation Analysis

In [10]:

dataset.corr()

Out[10]:

	delivery_time	sorting_time
delivery_time	1.000000	0.825997
sorting time	0.825997	1.000000

In [11]:

```
sns.regplot(x=dataset['sorting_time'],y=dataset['delivery_time'])
```

Out[11]:

<AxesSubplot:xlabel='sorting_time', ylabel='delivery_time'>

Model Building

In [12]:

```
model=smf.ols("delivery_time~sorting_time",data=dataset).fit()
```

Model Testing

In [13]:

```
# Finding the coefficient parameters
model.params
```

Out[13]:

Intercept 6.582734 sorting_time 1.649020

dtype: float64

```
In [14]:
# Finding the tvalues and pvalues
model.tvalues, model.pvalues
Out[14]:
(Intercept
                 3.823349
                 6.387447
 sorting_time
 dtype: float64,
 Intercept
                 0.001147
 sorting_time
                 0.000004
 dtype: float64)
In [15]:
# Finding Rsquared Values
model.rsquared, model.rsquared_adj
Out[15]:
(0.6822714748417231, 0.6655489208860244)
Model Predictions
In [16]:
# Manual prediction for say sorting time 5
delivery_time=(6.582734)+(1.649020)*(5)
delivery_time
Out[16]:
14.827834
In [17]:
# Automatic Prediction for say sorting_time 5,8
new_data=pd.Series([5,8])
new_data
Out[17]:
     5
     8
dtype: int64
In [19]:
data_pred=pd.DataFrame(new_data,columns=['sorting_time'])
data pred
Out[19]:
   sorting_time
```

0 5 1 8

```
In [20]:

model.predict(data_pred)

Out[20]:

0   14.827833
1   19.774893
dtype: float64

In []:
```

Assignment-04-Simple Linear Regression-2

2) Salary_hike -> Build a prediction model for Salary_hike

In [21]:

dataset1=pd.read_csv("C:/Users/LENOVO/Documents/Custom Office Templates/Salary_Data.csv")
dataset1

Out[21]:

YearsExperience		Salary
0	1.1	39343.0
1	1.3	46205.0
2	1.5	37731.0
3	2.0	43525.0
4	2.2	39891.0
5	2.9	56642.0
6	3.0	60150.0
7	3.2	54445.0
8	3.2	64445.0
9	3.7	57189.0
10	3.9	63218.0
11	4.0	55794.0
12	4.0	56957.0
13	4.1	57081.0
14	4.5	61111.0
15	4.9	67938.0
16	5.1	66029.0
17	5.3	83088.0
18	5.9	81363.0
19	6.0	93940.0
20	6.8	91738.0
21	7.1	98273.0
22	7.9	101302.0
23	8.2	113812.0
24	8.7	109431.0
25	9.0	105582.0
26	9.5	116969.0
27	9.6	112635.0
28	10.3	122391.0
29	10.5	121872.0

EDA and Visualization

In [22]:

dataset1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30 entries, 0 to 29
Data columns (total 2 columns):

Column Non-Null Count Dtype
--- ----0 YearsExperience 30 non-null float64
1 Salary 30 non-null float64

dtypes: float64(2)

memory usage: 608.0 bytes

In [23]:

sns.distplot(dataset1['YearsExperience'])

C:\Users\LENOVO\anaconda3\lib\site-packages\seaborn\distributions.py:2557: F utureWarning: `distplot` is a deprecated function and will be removed in a f uture version. Please adapt your code to use either `displot` (a figure-leve l function with similar flexibility) or `histplot` (an axes-level function f or histograms).

warnings.warn(msg, FutureWarning)

Out[23]:

<AxesSubplot:xlabel='YearsExperience', ylabel='Density'>

In [24]:

sns.distplot(dataset1['Salary'])

C:\Users\LENOVO\anaconda3\lib\site-packages\seaborn\distributions.py:2557: F utureWarning: `distplot` is a deprecated function and will be removed in a f uture version. Please adapt your code to use either `displot` (a figure-leve l function with similar flexibility) or `histplot` (an axes-level function f or histograms).

warnings.warn(msg, FutureWarning)

Out[24]:

<AxesSubplot:xlabel='Salary', ylabel='Density'>

Correlation Analysis

In [25]:

dataset1.corr()

Out[25]:

	YearsExperience	Salary
YearsExperience	1.000000	0.978242
Salary	0.978242	1.000000

In [27]:

```
sns.regplot(x=dataset1['YearsExperience'],y=dataset1['Salary'])
```

Out[27]:

<AxesSubplot:xlabel='YearsExperience', ylabel='Salary'>

Model Building

In [29]:

model=smf.ols("Salary~YearsExperience",data=dataset1).fit()

Model Testing

In [30]:

Finding Coefficient parameters
model.params

Out[30]:

Intercept 25792.200199 YearsExperience 9449.962321

dtype: float64

```
In [31]:
```

```
# Finding tvalues and pvalues
model.tvalues, model.pvalues
```

Out[31]:

(Intercept 11.346940 YearsExperience 24.950094

dtype: float64,

Intercept 5.511950e-12 YearsExperience 1.143068e-20

dtype: float64)

In [32]:

```
# Finding Rsquared values
model.rsquared, model.rsquared_adj
```

Out[32]:

(0.9569566641435086, 0.9554194021486339)

Model Predictions

In [34]:

```
# Manual prediction for say 3 years Experience
Salary=(25792.200199)+(9449.962321)*(3)
Salary
```

Out[34]:

54142.087162

In [35]:

```
# Automatic Prediction for say 3 & 5 Years Experience
```

In [36]:

```
new_data=pd.Series([3,5])
new_data
```

Out[36]:

0 3 1 5

dtype: int64

```
In [38]:
```

```
data_pred=pd.DataFrame(new_data,columns=['YearsExperience'])
data_pred
```

Out[38]:

	YearsExperience
0	3
1	5

In [39]:

```
model.predict(data_pred)
```

Out[39]:

0 54142.087163 1 73042.011806 dtype: float64

In []: