[CLAIMS]

10

15

20

25

30

- A heat-sensitive lithographic printing plate precursor comprising a support having a hydrophilic surface and an oleophilic coating, provided on the hydrophilic surface, said coating comprising
 - an infrared light absorbing agent and
 - a polymer which comprises a phenolic monomeric unit wherein the phenyl group of the phenolic monomeric unit is substituted by a group having the structure -N=N-Q, wherein the -N=N- group is covalently bound to a carbon atom of the phenyl group and wherein Q is an aromatic group.
- 2. A lithographic printing plate precursor according to claim 1 wherein Q is a group comprising at least one heteroatom.
- A lithographic printing plate precursor according to claim 2 wherein said heteroatom is a nitrogen, an oxygen or a sulfur atom.
 - 4. A lithographic printing plate precursor according to claims 1, 2, or 3 wherein Q has the structure $-A-(T)_{\rm R}$ wherein A is a mono-cyclic 5- or 6-membered aromatic group or a
 - 5- or 6-membered aromatic ring annelated with another ring system,

wherein n is an integer, selected between 0 and the maximum available positions on the aromatic group A,

wherein each T group is selected from $-SO_2-NH-R^1$, $-NH-SO_2-R^4$,

$$-CC-NR^{1}-R^{2}$$
, $-NR^{1}-CO-R^{4}$, $-NR^{1}-CO-NR^{2}-R^{3}$, $-NR^{1}-CS-NR^{2}-R^{3}$,

$$-NR^{\frac{1}{2}}-CO-O-R^{\frac{1}{2}}$$
, $-O-CO-NR^{\frac{1}{2}}-R^{\frac{2}{2}}$, $-O-CO-R^{\frac{4}{2}}$, $-CO-O-R^{\frac{2}{2}}$, $-CO-R^{\frac{3}{2}}$, $-SO_3-R^{\frac{1}{2}}$,

$$-O-SO_2-R^4$$
, $-SO_2-R^1$, $-SO-R^4$, $-P(=O)(-O-R^1)(-O-R^2)$,

$$-O-R$$
 (=0) (-O-R¹) (-O-R²), $-NR^1-R^2$, $-O-R^2$, $-S-R^2$, $-N=N-R^4$, $-CN$, $-NO_2$,

a halogenide or -M-R¹, wherein M represents a divalent linking group containing 1 to 8 carbon atoms,

5

10

15

20

25

wherein R^1 , R^2 and R^3 are each independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R⁴ and R⁵ are selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein at least two groups selected from each R¹ to R⁵ together represent the necessary atoms to form a cyclic structure.

5. A lithographic printing plate precursor according to any of claims 1 to 3 wherein the -N=N-Q group comprises the following formula

$$-N=N$$

wherein X is CR³, NR⁴ or N,

wherein Y denotes the necessary atoms to form a 5- or 6-membered aromatic ring, said atoms being selected from the group consisting of ${\rm CR}^3$, ${\rm NR}^4$, N, S or O,

wherein each R^1 , R^2 and R^3 is selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, $-SO_2-NH-R^5$, $-NH-SO_2-R^7$, $-CO-NR^5-R^6$, $-NR^5-CO-R^7$, $-O-CO-R^7$, $-CO-O-R^5$, $-CO-R^5$, $-SO_3-R^5$, $-SO_2-R^5$, $-SO-R^7$, -P(=O) ($-O-R^5$) ($-O-R^6$), $-NR^5-R^6$, $-O-R^5$, $-S-R^5$, -CN, $-NO_2$, halogen or $-M-R^5$, wherein M represents a divalent linking group containing 1 to 8 carbon atoms,

wherein R⁴, R⁵ and R⁶ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl,

10

15

20

25

heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, wherein R⁷ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

or wherein at least two groups selected from each \mbox{R}^1 to \mbox{R}^7 together represent the necessary atoms to form a cyclic structure.

6. A lithographic printing plate precursor according to any of claims 1 to 3 wherein the -N=N-Q group comprises the following formula

$$-N=N$$

$$SO_{2}-N$$

$$Z^{\frac{1}{2}}$$

$$Z^{\frac{1}{2}}$$

$$Z^{\frac{1}{2}}$$

$$Z^{\frac{1}{2}}$$

$$Z^{\frac{1}{2}}$$

$$Z^{\frac{1}{2}}$$

wherein Z^1 and Z^2 are independently selected from CR^1 or N, wherein R^1 is selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, wherein n is 0, 1, 2, 3 or 4, wherein m is 0, 1, 2 or 3,

wherein R^2 and R^3 are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, $-SO_2-NH-R^4$, $-NH-SO_2-R^6$, $-CO-NR^4-R^5$, $-NR^4-CO-R^6$, $-O-CO-R^6$, $-CO-O-R^4$, $-SO_3-R^4$, $-SO_2-R^4$, $-SO_2-R^4$, $-SO_3-R^6$, $-P(=O)(-O-R^4)(-O-R^5)$, $-NR^4-R^5$, $-O-R^4$, $-S-R^4$, -CN, $-NO_2$, halogen or $-M-R^4$, wherein M represents a divalent linking group containing 1 to 8 carbon atoms,

wherein R^4 and R^5 are independently selected from hydrogen or an

5

10

15

20

25

optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, wherein R^6 is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein at least two groups selected from each R^1 to R^6 together represent the necessary atoms to form a cyclic structure.

7. A lithographic printing plate precursor according to any of claims 1 to 3 wherein the -N=N-Q group comprises the following formula

$$-N=N$$

$$\begin{bmatrix} R^1 \end{bmatrix}_{D}$$

wherein n is 0, 1, 2, 3, 4 or 5, wherein each R^1 is selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, $-SO_2-NH-R^2$, $-NH-SO_2-R^4$, $-CO-NR^2-R^3$, $-NR^2-CO-R^4$, $-O-CO-R^4$, $-CO-O-R^2$, $-CO-R^2$, $-SO_3-R^2$, $-SO_2-R^2$, $-SO-R^4$, $-P(=O)(-O-R^2)(-O-R^3)$, $-NR^2-R^3$, $-O-R^2$, $-S-R^2$, -CN, $-NO_2$, a halogen or $-M-R^2$, wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R^2 and R^3 are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, wherein R^4 is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

WO 2004/035310

or wherein at least two groups selected from each \mbox{R}^1 to \mbox{R}^4 together represent the necessary atoms to form a cyclic structure.

8. A lithographic printing plate precursor according to any of claims 1 to 3 wherein the -N=N-Q group comprises the following formula

$$-N=N-X$$
 $[R^1]_n$

5

10

15

20

25

wherein n is 0, 1, 2, 3 or 4,

wherein each R^1 is selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, $-SO_2-NH-R^2$, $-NH-SO_2-R^4$, $-CO-NR^2-R^3$, $-NR^2-CO-R^4$, $-O-CO-R^4$, $-CO-O-R^2$, $-CO-R^2$, $-SO_3-R^2$, $-SO_2-R^2$, $-SO-R^4$, -P(=O) $(-O-R^2)$ $(-O-R^3)$, $-NR^2-R^3$, $-O-R^2$, $-S-R^2$, -CN, $-NO_2$, a halogen or $-M-R^2$, wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein X is O, S or NR^5 ,

wherein R², R³ and R⁵ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, wherein R⁴ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

or wherein at least two groups selected from each \mbox{R}^1 to \mbox{R}^5 together represent the necessary atoms to form a cyclic structure.

9. A lithographic printing plate precursor according to any of claims 1 to 3 wherein the -N=N-Q group comprises the following

formula

5

10

15

20

25

$$-N=N$$

$$\begin{bmatrix} N & N & N \\ N & N & N \end{bmatrix}$$

wherein n is 0, 1, 2 or 3,

wherein each R^1 is selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, $-SO_2-NH-R^2$, $-NH-SO_2-R^4$, $-CO-NR^2-R^3$, $-NR^2-CO-R^4$, $-O-CO-R^4$, $-CO-O-R^2$, $-CO-R^2$, $-SO_3-R^2$, $-SO_2-R^2$, $-SO-R^4$, $-P(=O)(-O-R^2)(-O-R^3)$, $-NR^2-R^3$, $-O-R^2$, $-S-R^2$, -CN, $-NO_2$, a halogen or $-M-R^2$, wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R^2 , R^3 , R^5 and R^6 are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R⁴ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

or wherein at least two groups selected from each \mbox{R}^1 to \mbox{R}^4 together represent the necessary atoms to form a cyclic structure,

or wherein $\ensuremath{\text{R}}^5$ and $\ensuremath{\text{R}}^6$ together represent the necessary atoms to form a cyclic structure.

10.A lithographic printing plate precursor according to any of claims 1 to 3 wherein the -N=N-Q group comprises the following formula

WO 2004/035310 PCT/EP2003/050664

$$-N=N$$

$$\begin{bmatrix} R^1 \end{bmatrix}_n$$

$$\begin{bmatrix} R^2 \end{bmatrix}_m$$

wherein m is 0, 1, 2 or 3, wherein m is 0, 1, 2, 3 or 4,

5

10

15

20

wherein each R^1 and R^2 are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, $-SO_2-NH-R^3$, $-NH-SO_2-R^5$, $-CO-NR^3-R^4$, $-NR^3-CO-R^5$, $-O-CO-R^5$, $-CO-O-R^3$, $-CO-R^3$, $-SO_3-R^3$, $-SO_2-R^3$, $-SO_2-R^5$, $-P(=O)(-O-R^3)(-O-R^4)$, $-NR^3-R^4$, $-O-R^3$, $-S-R^3$, -CN, $-NO_2$, a halogen or $-M-R^3$, wherein M represents a divalent linking group containing 1 to 8 carbon atoms.

wherein R^3 and R^4 are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, wherein R^5 is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

or wherein at least two groups selected from each $\ensuremath{\text{R}}^1$ to $\ensuremath{\text{R}}^5$ together represent the necessary atoms to form a cyclic structure.

11.A : thographic printing plate precursor according to any of claims 1 to 3 wherein the -N=N-Q group comprises the following formula

WO 2004/035310 PCT/EP2003/050664

- 64 -

$$-N=N$$

$$\begin{bmatrix} R^1 \end{bmatrix}_n$$

$$\begin{bmatrix} R^6 \end{bmatrix}$$

wherein n is 0, 1, 2 or 3,

5

10

15

wherein each R^1 is selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, $-SO_2-NH-R^2$, $-NH-SO_2-R^4$, $-CO-NR^2-R^3$, $-NR^2-CO-R^4$, $-O-CO-R^4$, $-CO-O-R^2$, $-CO-R^2$, $-SO_3-R^2$, $-SO_2-R^2$, $-SO-R^4$, $-P(=O)(-O-R^2)(-O-R^3)$, $-NR^2-R^3$, $-O-R^2$, $-S-R^2$, -CN, $-NO_2$, a halogen or $-M-R^2$, wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R^2 , R^3 , R^5 and R^6 are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R⁴ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

or wherein at least two groups selected from each \mbox{R}^1 to \mbox{R}^6 together represent the necessary atoms to form a cyclic structure.

20 12.A lithographic printing plate precursor according to any of claims 1 to 3 wherein the -N=N-Q group comprises one of the following formula: - 65 -

$$H_3C$$
 $N O = S$
 $N O = N$
 $N O = N$
 $N O = N$

WO 2004/035310

- 66 -

$$-N_{\rm N} - \sqrt{N_{\rm H}}$$

10

15

20

25

- 5 13.A lithographic printing plate precursor according to any of the preceding claims, wherein said polymer comprising a phenolic monomeric unit is a novolac, resol or polyvinylphenol.
 - 14.A lithographic printing plate precursor according to any of the preceding claims, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
 - 15.A lithographic printing plate precursor according to claim 14, wherein said dissolution inhibitor is selected from
 - an organic compound which comprises at least one aromatic group and a hydrogen bonding site, and/or
 - a polymer or surfactant comprising siloxane or perfluoroalkyl units .
 - 16.Use of a polymer which comprises a phenolic monomeric unit wherein the phenyl group of the phenolic monomeric unit is substituted by a group having the structure -N=N-Q wherein the -N=N- group is covalently bound to a carbon atom of the phenyl group and wherein Q is an aromatic group, in a coating of a positive working heat-sensitive lithographic printing plate precursor, further comprising
 - an infrared absorbing agent and

WO 2004/035310 PCT/EP2003/050664

- 67 -

- a dissolution inhibitor,
 for increasing the chemical resistance of the coating against
 printing liquids and press chemicals.
- 17.A lithographic printing plate precursor according to any of claims 1 to 13, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precusor.
- 18.Use of a polymer which comprises a phenolic monomeric unit

 wherein the phenyl group of the phenolic monomeric unit is
 substituted by a group having the structure -N=N-Q wherein the
 -N=N- group is covalently bound to a carbon atom of the phenyl
 group and wherein Q is an aromatic group,
 in a coating of a negative working heat-sensitive lithographic
 printing plate precursor, further comprising
 - an infrared absorbing agent,
 - a latent Brönsted acid and
 - an acid-crosslinkable compound,

for increasing the chemical resistance of the coating against printing liquids and press chemicals.

25

5

30