Politechnika Poznańska Wydział Elektryczny Instytut Automatyki i Inżynierii Informatycznej

Maciej Marciniak Damian Filipowicz

Projekt i wykonanie systemu kontroli ruchu i zarządzania dostępem do pomieszczeń

Praca dyplomowa inżynierska

promotor: dr inż. Ewa Idzikowska

Karta Pracy Damian Filipowicz

Temat pracy dyplomowej inżynierskiej

Uczelnia:	Politechnika Poznańska	Profil kształcenia:	ogólnoakad	emicki
Wydział:	Elektryczny	Forma studiów:	stacjonarne	
Kierunek:	Informatyka	Poziom studiów:	I stopnia	
Specjalność:	Bezpieczeństwo systemów informatycznych		й	
nputerowe, urządzenia i pochodzenia.	ny się samodzielnie wykonać pracę w zakresie wyst pp.), które zostaną wykorzystane w pracy, a nie będą mo Imię i nazwisko	jego/naszego autorstwa, b	eędą w odpowiedr Nr albumu	ni sposób zaznaczone i będzie podane ż Data i podpis
Student:	Maciej MARCINIAK		121996	30.10.2017 Marin
Student:	Damian FILIPOWICZ		122002	
Tytuł pracy:	Projekt oraz implementacja systemu kontro zespołowy)	oli ruchu i zarządzan	ia dostępem d	o pomieszczeń (projekt
Wersja angielska tytułu:	Design and implementation of movement c	ontrol and access to	spaces manaş	gement system (team project)
Dane wyjściowe:	Jeff Forcier, Paul Bissex, Wesley Chun, Adrian Kaehler, Gary Bradski, OpenCV biblioteki OpenCV*, Helion 2017			
Zakres pracy:	Projekt i implementacja serwera system Realizacja wewnętrznego PKI służącege zamka fizycznego od strony urzędów ce Oprogramowanie sterownika zamka fizy Realizacja oprogramowania do zliczania	o do podpisywania c rtyfikujących systen rcznego.	yfrowo kluczy nu.	dostępowych dla sterownika
Termin oddania pracy:	31 stycznia 2018			·
Promotor:	dr inż. Ewa Idzikowska			
Jednostka organizacyjna promotora:	Instytut Automatyki, Robotyki i Inżynierii	Informatycznej	-	
	Z-ca DYREKTORA INSTYTUTU Automatyki, Robotyki i Inżypierii Informatycznej dr. Jerzy Bartoszek		Wyd	PRODZIEKAN Iziału Elektrycznego echniku oznańskiej

dr hab. podpis Pziekanaj Tomczewski Poznań, 30 października 2017 miejscowość, data

3

Poznan University of Technology Faculty of Electrical Engineering Institute of Control and Information Engineering

Design and implementation of movement control and access to spaces management

system by Maciej Marciniak Damian Filipowicz

Abstract

Streszczenie

Spis treści

1	$\mathbf{W}_{\mathbf{S}^1}$	tęp	8						
	1.1	Cel i zakres pracy	8						
	1.2	Plan pracy	8						
	1.3	Metodyka pracy grupowej	8						
2	Opi	s dziedziny przedmiotowej pracy	10						
	2.1	Pojęcia i definicje	10						
	2.2	Stan wiedzy	10						
	2.3	Stan pracy wykonany w ramach zajęć przedmiotowych	11						
3	Zar	ys idei systemu <i>Inteligentny zamek</i>	18						
	3.1	Schemat ideowy systemu Inteligentny zamek	18						
	3.2	Opis składowych systemu	18						
	3.3	Podmioty systemu	18						
4	$\mathbf{W}\mathbf{y}$	Vybór technologii informatycznych 2							
	4.1	Urządzenie sterujące	20						
	4.2	Aplikacja serwera	20						
	4.3	Aplikacja mobilna	20						
	4.4	Moduł zliczania osób	20						
	4.5	System kontroli wersji	20						
	4.6	Prowadzenie dokumentacji	20						
5	\mathbf{Pro}	jekt systemu <i>Inteligentny zamek</i>	21						
	5.1	Diagramy UML	21						
		5.1.1 Diagramy przypadków użycia	21						
		5.1.2 Diagramy sekwencji systemu	21						
		5.1.3 Projekt bazy danych	21						
		5.1.4 Diagramy klas	21						
	5.2	Uproszczony schemat elektryczny systemu	21						
	5.3	Komunikacja modułów systemu z aplikacją serwera	21						

		5.3.1	Komunikaty HTTPRequest pomiędzy aplikacją mobilną, a serwerem	21
		5.3.2	Komunikaty HTTPRequest pomiędzy urządzeniem steru-	
			jącym, a serwerem	21
	5.4		koły komunikacji pomiędzy urządzeniem	
		v	ącym i aplikacją mobilną	22
	5.5		ejs graficzny systemu	22
		5.5.1	Widoki aplikacji mobilnej	22
		5.5.2	Widoki strony internetowej systemu	22
		5.5.3	Komunikacja człowiek-interfejs	22
		5.5.4	Kolorystyka systemu	22
	5.6	Bezpie	eczeństwo systemu	$2\overline{2}$
		5.6.1	Projekt infrastruktury klucza publicznego (PKI) $\ \ldots \ \ldots$	22
		5.6.2	Poufność	22
		5.6.3	Dostępność	22
		5.6.4	Integralność	22
6	Imp	olemen	tacja	23
	6.1	Aplika	ıcja mobilna	23
		6.1.1	Interfejsy programistyczne	2
		6.1.2	Przechowywanie danych	2
		6.1.3	Graficzna implementacja	23
		6.1.4	Walidacja danych wprowadzanych przez użytkownika	23
	6.2	Aplika	acja serwerowa	23
		6.2.1	Strona internetowa	23
		6.2.2	Wybrane fragmenty kodu	23
	6.3	Urząd	zenie sterujące - objaśnienie całe kodu programu	2
	6.4	Modu	ł zliczania osób - wybrane fragmenty kodu	23
	6.5	Wnios	ki	23
7	Bez	piecze	ństwo systemu <i>Inteligentny zamek</i>	24
•	7.1	=	iki kryptograficzne	2
	7.2		ności systemu (OWASP Top 10)	24
	7.3		agrożenia występujące w systemie	$\frac{2}{2}$
	1.0	типе 2	agiozoma występujące w systemme	~~

	7.4 Możliwości zabezpiezpieczenia systemu	24
	7.5 Wnioski	24
8	Wdrożenie i testowanie systemu Inteligentny zamek	25
	8.1 Środowisko testowe	25
	8.2 Testy jednostkowe	25
	8.3 Wizualizacja działania systemu <i>Inteligentny zamek</i>	25
	8.4 Wnioski	25
9	Podsumowanie	26
	9.1 Dalsze perspektywy rozwoju projektu	26
$\mathbf{S}_{\mathbf{I}}$	ois rysunków	28
$\mathbf{S}_{\mathbf{I}}$	pis tabel	28
10) Dodatki	29
	10.1 Instalacja systemu Inteligentny zamek	29
	10.2 Instrukcja użytkownika systemu Inteligentny zamek	29

1 Wstęp

1.1 Cel i zakres pracy

Celem pracy jest projekt i implementacja systemu kontroli ruchu oraz zarządzania dostępem do pomieszczeń. System ma na celu zamianę sposobu zarządzania dostępem w budynkach z starszych modeli opartych na fizycznych zamkach z kluczami fizycznymi, bądź systemów opartych na kartach magnetycznych na system posługujący się urządzeniami mobilnymi z system operacyjnym android. Głównym celem jest usprawnienie w uzyskiwaniu dostępu do pomieszczeń dzięki wyeliminowaniu konieczności posiadania przy sobie wielu kluczy fizycznych oraz sytuacji, w których użytkownik zapomniał klucza lub karty magnetycznej i nie mógł uzyskać dostępu poprzez możliwość przenoszenia uprawnień między telefonami. Dodatkowo nasz projekt ma usprawniać takie elementy jak zarządzanie dostępem do wielu pomieszczeń oraz kontrolą osób przebywających w danym pomieszczeniu.

W kwestii bezpieczeństwa systemu naszym zadaniem było spełnienie wymagania dotyczących zabezpieczeń systemu poprzez zastosowanie szeregu funkcji kryptograficznych przy procesie uwierzytelniania jak i przy generowaniu kluczy takich jak np. funkcje skrótu, SSH, algorytmów szyfrowania asymetrycznego oraz zastosowania infrastruktury klucza publicznego.

Zakres pracy w tworzeniu projektu orz implementacji obejmował takie elementy jak zaprojektowanie oraz stworzenie aplikacji klienckjiek, aplikacji serwerowej, oprogramowania do zliczania osób w pomieszceniu, oprogramowania służącego do przyznawania fizycznego dostępu do pomiezcenia oraz strony internetowej.

1.2 Plan pracy

Plan pracy został podzielony na trzy etapy.

- Pierwszy etap polegał na udoskonaleniu projektu który był wykonywany w ramach przedmiotu projekt zespołowy oraz omówieniu szczegółów kluczowych wykonywanych w dalszej części.
- Drugi etap polegał na implementacji danego projektu w
- Trzecim i ostatnim etapem było przetestowanie działania całego systemu oraz naprawienie wykrytych błędów.

1.3 Metodyka pracy grupowej

Metodyka użyta podczas pracy grupowej była oparta o model kaskaodowy składajaćy się z etapów takich jak:

- Planowanie systemu
- Analiza systemu
- Projekt systemu
- Implementacja
- Testowanie
- Wdrożenie i pielęgnacja produktu

Uzasadnieniem wyboru takiej metodyki jest fakt używania takich metodyk podczas dużych projektów inżynierskich oraz brak koniecznośći pokazywania fragmentów działająćego systemu podczas tworzenia pracy inżynierskiej. W początkowej fazie ważniejsze było dla nas określenie specyfiki wymagań systemu oraz sam projekt aniżeli implementacja systemu.

2 Opis dziedziny przedmiotowej pracy

2.1 Pojęcia i definicje

W dokumencie tym posługiwać się będziemy następującymi pojęciami:

Klucz dostępowy - jest to klucz publiczny z pary kluczy prywartny publiczny. Używany jest on do odszyfrowania wiadomości wysłanej z aplikacji mobilnej do urządzenia sterujacego.

Klucz szyfrujący jest to klucz prywatny wygenerowany podczas tworzenia pary kluczy publiczny prywatny. Używane jest on do szyfrowania wiadomości wysyłanej z aplikacji mobilnej do urządzenia sterującego

para kluczy szyfrujących- jest to para kluczy (prywatny oraz publiczny) generowanych podczas rejestracji oraz wymiany klucza dostępowego.

Inteligentny zamek - system obsługujący otwieranie elektrozamka bądz serwomechanizmu.

2.2 Stan wiedzy

Przed przystąpieniem do projektu zrobiliśmy porównanie systemów zbliżonych do naszego który na dany moment istniały. I tak doszliśmy do wniosku że wszystkie systemy inteligentnych zamków wykonane przez firmy takie jak Gerda Lock czy Danalock zostały wykonane typowo dla użytku domowego a nie tak jak nasz projekt inżynierski który jest przeznaczony do zarządzania w budynkach o wielu pomieszczeniach z różnym stopniem dostępu. Opis wraz z porównaniem poszcególnych systemów znajduje się w tabelach poniżej.

Tabela 1 zawiera porównanie firm pod względem otwierania zamka

Tabela 1: Tabela porównania otwierania zamków

	NOKI	August	DanaLock	Gerda
				Lock
zarządzanie wieloma zam-	brak	tak	brak	brak
kami z jednej aplikacji				
otwieranie zamka przy po-	brak	brak	tak	brak
mocy strony WWW				
inne sposoby otwarcia	brak in-	brak in-	brak	tak
zamka niż aplikacja	formacji	formacji		
automatyczne zamykanie	brak in-	tak	tak	tak
zamka	formacji			
tryb otwierania zamka au-	tak	brak	tak	tak
tomatycznie				

tryb otwierania zamka po	brak	tak	tak	tak
zezwoleniu przyciskiem				

Tabela 2 zawiera porównanie firm pod względem zasilania i montażu

Tabela 2: Tabela porównania zasialania i montażu

	NOKI	August	DanaLock	Gerda
				Lock
zasilanie zewnętrzne (z	brak	brak	brak	brak
sieci)				
zasilanie bateryjne (pod-	podstawow	e podstawow	e podstawow	e podstawowo
stawowe/awaryjne)				
sposób montażu	nakłądka	nakłądka	nakłądka	nakłądka
	na zamek	na zamek	na zamek	na zamek

Tabela 3 zawiera porównanie firm pod względem dziennika zdarzeń oraz powiadomień

Tabela 3: Tabela porównania zasialania i montażu

	NOKI	August	DanaLock	Gerda
				Lock
podgląd kto otworzył	brak in-	brak	brak	tak
	formacji			
powiadomienie o otwar-	brak	brak	brak	tak
ciu drzwi (ogólnie i przez				
daną osobę)				
powiadomienie o nieau-	tak	brak	brak	tak
toryzowanych próbach				
otwarcia				

2.3 Stan pracy wykonany w ramach zajęć przedmiotowych

W ramach zajęć projektowych oraz laboratoryjnych o nazwe Projekt Zespołowy prowadzonych z mgr. Michałem Apolinarskim oraz dr Ewą Idzikowską zostały wykonane następujace fragmenty systemu: Aplikacja mobilna została wykonana dla wersji andorida minimum 4.4 KitKat w stopniu umożliwiającym takie funkcjonalnośći jak:

- Logowanie
- Rejestracja

- Rejestracja wraz z tworzeniem pary kluczy dostępowych publiczny prywatny
- Generowanie nowego certyfikatu
- Pobieranie certyfikatów z serwera
- Zarządznanie certyfikatami użytkownika
- Zarządzanie prośbami o rejestracje
- Wnioskowanie o certyfikat nowy

Dodatkowo zostało napisane api do obsługi połączenia bluetooth oraz w każdym widoku któy korzystał z połaczenia z serwerem były napisane fragmenty kodu. Funkcje te oraz kod zostały napisane bez uwzględnienia wzorców architektoniczncych (wszystko co dotyczyło danego widoku było w jednej klasie), posiadały szereg błędów powodujaćych niestabilne działąnie systemu oraz posiadały metody z systemu android które były określane przez środowisko android stuido jako "deprecatedćo mogło przy nowszych wersjach androida powodować wadliwe działanie systemu. Z racji pisania pod wersje systemu android 4.4 wygląd różni się od tego który został zaimplementowany w pracy inżynierskiej. Ponieżej przedstawiono wygląd aplikacji w stanie początkowym(????).

Aplikacja serwerowa posiadałą następujące rest api

- api służące do pobierania certyfikatu
- api służące do informowania o statusie certyfikatu
- api służące do logowania użytkownika
- api służące do rejstracji uzytkownika
- api służące do wylogowania użytkownika
- api służące do pobrania wszystkich certyfikatów użytkowników
- api służące do pobrania listy wszystkich zamków
- api służące do pobrania listy wszystkich uzytkownikóW systemu
- api służące do zmiany hasła
- api służące do pobrania histori użycia zamków
- api służące do pobrania listy oczekujących certyfikatów
- $\bullet\,$ api służące do pobrania listy oczekujących użytkowników na zarejestrowanie
- api służące do generowania nowego certyfikatu

- api służące do określenia decyzji administratorwa w stosunku do danego oczekującego certyfikatu
- api służące do określenia decyzji administratorwa w stosunku do danego oczekującego użytkownika na zarejestrowanie

Wszystkei te api zwracały odpowiednio albo odpowiednie dane albo wartość Invalid. Ponadto posiadały szereg niedopatrzeń powodujących wadliwe działanie systemu w szcególnych przypadkach.

Baza danych składała się z 5 tabel o następujących wartośćiac

- USERS przechowuje dane użytkowników oraz dane niezbędne przy weryfikacji logowania,
- LOCKS zawiera informacje na temat dostępnych w systemie zamków,
- ACCESS TO LOCKS archiwizuje próby użycia certyfikatów,
- LOCKS KEYS zawiera wszystkie klucze dostępowe użytkowników,
- WAIT_LOCKS_KEYS przetrzymuje klucze dostępowe oczekujące na zatwierdzenie przez administratora.

Wiersz tabeli USERS zawierał:

- ID_USER unikalny identyfikator (klucz główny) użytkownika składający się z 10 cyfr,
- LOGIN unikalna nazwa użytkownika niezbędna podczas logowania, zawierająca nie więcej niż 255 znaków,
- PASSWORD hasło zapisane w postaci skrótu, potrzebne do autoryzacji dostępu użytkownikowi,
- **PUBLIC_KEY** klucz publiczny użytkownika potrzebny do podpisu cyfrowego,
- NAME imię użytkownika,
- SURNAME nazwisko użytkownika,
- IS_ADMIN pole boolowskie wskazujące czy dany użytkownik jest administratorem czy nie,
- TOKEN generowany ciąg pseudolosowy klucz sesji logowania,
- ISACTIVATED pole boolowskie oznaczające, czy dane konto jest zaakceptowane (aktywowane) przez administratora.

Zamek opisywany był poprzez kolumny:

- ID_LOCK unikalny identyfikator (klucz główny) zamka składający się z 10 cyfr,
- NAME unikalna nazwa zamka,
- \bullet MAC_ADDRESS adres fizyczny urządzenia sterującego zamkiem,
- LOCALIZATION nieobowiązkowe pole opisujące fizyczne położenie zamka,
- \bullet \mathbf{ADMIN} \mathbf{KEY} wartość klucza awaryjnego dla administratora.

Klucz dostępowy składał się z:

- ID_KEY unikalny identyfikator (klucz główny) klucza dostępowego składający się z 10 cyfr,
- ID LOCK klucz obcy do tabeli przechowującej dostępne zamki,
- ID_USER klucz obcy do tabeli przechowującej dane użytkownika, jest to pole służące do określenia kto utworzył klucz dostępu,
- KEY unikalna wartość certyfikatu dostępu,
- FROM data od której obowiązuje klucz,
- TO data do której obowiązuje klucz,
- ISACTUAL data wygaśnięcia klucza, jeśli równa TO, oznacza to że klucz utracił ważność z powodu czasu, jeśli różna oznacza, to że zablokowano z innego powodu ważność,
- MONDAY słowne określenie, w których godzinach zostanie przyznany dostęp w poniedziałki,
- TUESDAY słowne określenie, w których godzinach zostanie przyznany dostęp we wtorki,
- **WEDNESDAY** słowne określenie, w których godzinach zostanie przyznany dostęp w środy,
- THURSDAY słowne określenie, w których godzinach zostanie przyznany dostęp w czwartki,
- FRIDAY słowne określenie, w których godzinach zostanie przyznany dostęp w piątki,
- **SATURDAY** słowne określenie, w których godzinach zostanie przyznany dostęp w soboty,
- SUNDAY słowne określenie, w których godzinach zostanie przyznany dostęp w niedziele,
- IS_PERNAMENT zmienna boolowska oznaczająca czy dostęp jest zawsze,
- NAME imię osoby, której dotyczy certyfikat,
- **SURNAME** nazwisko osoby, której dotyczy certyfikat.

W tabeli archiwizującej akcje na zamku znajdowały się takie dane jak:

• ID — unikalny identyfikator (klucz główny) akcji wykonanej na certyfikacie składający się z 10 cyfr,

- ID_KEY klucz obcy do tabeli przechowującej klucze dostępowe, dzięki tej informacji możemy uzyskać dane o zamku, który został otwierany jak również do kogo należał klucz,
- DATE dokładna data z godziną użycia klucza dostępowego,
- ACCESS binarna flaga informująca czy dostęp został przyznany czy odmówiony.

Tabela WAIT LOCKS KEYS składa się z:

- ID_KEY unikalny identyfikator (klucz główny) oczekującego certyfikatu,
- ID_LOCK klucz obcy do tabeli LOCKS, oznacza zamek do którego jest zgłaszana prośba dostępu,
- ID_USER klucz obcy do tabeli USERS, oznacza użytkownika który zgłasza prośbę o dostęp do zamka.

W ramach przedmiotu ochrona danych zostały zaimplementowane w systemie fragmenty PKI takie jak:

- Certyfikat klucza dostępowego
- generowanei nowego Certyfikatu uzytkownika
- blokowanie uzytkownika systemu

Funkcje te zostały napisane zarówno po stronie aplikacji mobilnej jak i aplikacji serwerowej. Ponadto po stronie androida został opracowany sposób przechowywania klucza prywatnego w formie zaszyfrowanego pliku hasłem uzytkownika.

3 Zarys idei systemu Inteligentny zamek

3.1 Schemat ideowy systemu Inteligentny zamek

3.2 Opis składowych systemu

Nasz system składa się z 5 elementów.

Pierwszym z nich jest Urządzenei sterujące w którego skład wchodzą Raspberry Pi 3 oraz serwomechanizm/zamek elektroniczny, jest weryfikacja klucza cyfrowego przesyłanego przez urzadzenie mobilne oraz otwieranie zamka przy pozytywnym wyniku weryfikacji. Oprogramowanie mikrokomputera obejmuje system Linux raspbian-jessie oraz szereg podprogramów napisanych w jezyku Python. Skrypty programów łacza sie do serwera w celu pobrania informacji o poprawnosci i dacie waznosci certyfikatu dostepu. Jesli dane beda poprawne to zostaje wysterowany serwomechanizm (lub wysłany impuls do elektrozamka), który otwiera zamek, w przeciwnym przypadku uzytkownik zostanie poinformowany o odmowie dostepu, a nieudana próba dostania sie do systemu zarejestrowana zostanie w bazie danych wraz z danymi własciciela klucza.

Drugim elementem jest Aplikacja mobilna napisana na platforme Android która ma na celu przechowywanie w pamieci smartfona kluczy cyfrowych uzytkownika oraz mozliwosc interakcji uzytkownika z systemem.

Kolejnym z elementów jest serwer wraz z stroną internetową. Rola serwera w tym systemie jest przechowywanie danych dostepowych w bazie danych My-SQL oraz wykonywanie operacji zleconych przez administratora bądż użytkownika systemu. Dodatkowo serwer obsługuje strone internetową która wyświetla na bieżąco historię uzycia zamków w systemie.

Przedostatnim elementem składowym systemu jest baza danych która przechowuje wszystkie kluczwoem informacje systemu oraz udostępnia je serwerowi.

Ostatnim z skłądowych systemu jest oprogramowanie zliczajaće ilość sobó w danym pomieszceniu wraz z kamerą której zadnaiem jest obliczanie informacji o aktualnyej liczbie osBó w danym pomieszczeniu.

3.3 Podmioty systemu

W pracy inżynierskiej można wyodrębnić następujące podmioty:

- Użytkownik niezalogowany jest to użytkownik któy posiada aplikacje mobilną na swoim urządzeniu lecz nie wykonał procesu logowania,
- **Użytkownik niezarejestrowany** jest to użytkownik któy wysłał prośbę o zarejestrowanie lecz nie jest ona jeszcze zatwierdzona,

- Użytkownik zalogowany jest to uzytkownik któy przeszedł poprawnie proces logowania. Posiada on ograniczoną funkcjonalność aplikacji
- Administrator jest to użytkownik zalogowany który posiada uprawnienia administratora co wiaże się z pełnym dostępem do funkcji aplikacji mobilnej,
- Serwer jest to oprogramowanie zarządzajaće całym systemem,
- **Urządzenie sterujące** jest to oprogramowanie zarządzajaće dostępem fizycznym do pomieszczeń,
- Oprogramowanie zliczające jest to oprogramowanie zwracajaće w czasie rzeczywistym ilość osóB przebywających w danym pomieszczeniu,

4 Wybór technologii informatycznych

- 4.1 Urządzenie sterujące
- 4.2 Aplikacja serwera
- 4.3 Aplikacja mobilna
- 4.4 Moduł zliczania osób
- 4.5 System kontroli wersji
- 4.6 Prowadzenie dokumentacji

5 Projekt systemu Inteligentny zamek

- 5.1 Diagramy UML
- 5.1.1 Diagramy przypadków użycia
- 5.1.1.1 Aplikacja mobilna
- 5.1.1.2 Aplikacja serwera
- 5.1.1.3 Urządzenie sterujące
- 5.1.1.4 Moduł zliczania osób
- 5.1.2 Diagramy sekwencji systemu
- 5.1.2.1 Aplikacja mobilna
- 5.1.2.2 Aplikacja serwera
- 5.1.2.3 Urządzenie sterujące
- 5.1.2.4 Moduł zliczania osób
- 5.1.3 Projekt bazy danych
- 5.1.4 Diagramy klas
- 5.1.4.1 Aplikacja mobilna
- 5.1.4.2 Aplikacja serwera
- 5.1.4.3 Urządzenie sterujące
- 5.1.4.4 Moduł zliczania osób
- 5.2 Uproszczony schemat elektryczny systemu
- 5.3 Komunikacja modułów systemu z aplikacją serwera
- 5.3.1 Komunikaty HTTPRequest pomiędzy aplikacją mobilną, a serwerem
- 5.3.2 Komunikaty HTTPRequest pomiędzy urządzeniem sterującym, a serwerem

- 5.4 Protokoły komunikacji pomiędzy urządzeniem sterującym i aplikacją mobilną
- 5.5 Interfejs graficzny systemu
- 5.5.1 Widoki aplikacji mobilnej
- 5.5.2 Widoki strony internetowej systemu
- 5.5.3 Komunikacja człowiek-interfejs
- 5.5.3.1 Komunikaty tekstowe
- 5.5.3.2 Symbolika ikon
- 5.5.3.3 Znaczenie kolorystyki
- 5.5.4 Kolorystyka systemu
- 5.6 Bezpieczeństwo systemu
- 5.6.1 Projekt infrastruktury klucza publicznego (PKI)
- 5.6.1.1 Idea PKI
- 5.6.1.2 Urzedy certyfikujące
- 5.6.1.3 Klient systemu
- 5.6.2 Poufność
- 5.6.3 Dostępność
- 5.6.4 Integralność

6 Implementacja

- 6.1 Aplikacja mobilna
- 6.1.1 Interfejsy programistyczne
- 6.1.2 Przechowywanie danych
- 6.1.3 Graficzna implementacja
- 6.1.4 Walidacja danych wprowadzanych przez użytkownika
- 6.2 Aplikacja serwerowa
- 6.2.1 Strona internetowa
- 6.2.2 Wybrane fragmenty kodu
- 6.3 Urządzenie sterujące objaśnienie całe kodu programu
- 6.4 Moduł zliczania osób wybrane fragmenty kodu
- 6.5 Wnioski

- 7 Bezpieczeństwo systemu Inteligentny zamek
- 7.1 Techniki kryptograficzne
- 7.2 Podatności systemu (OWASP Top 10)
- 7.3 Inne zagrożenia występujące w systemie
- 7.4 Możliwości zabezpiezpieczenia systemu
- 7.5 Wnioski

- 8 Wdrożenie i testowanie systemu Inteligentny zamek
- 8.1 Środowisko testowe
- 8.2 Testy jednostkowe
- 8.3 Wizualizacja działania systemu $Inteligentny\ zamek$
- 8.4 Wnioski

- 9 Podsumowanie
- 9.1 Dalsze perspektywy rozwoju projektu

Literatura

Spis rysunków

Spis tablic

1	Tabela porównania otwierania zamków	10
2	Tabela porównania zasialania i montażu	1
3	Tabela porównania zasialania i montażu	1

- 10 Dodatki
- $10.1 \quad {\rm Instalacja~systemu}~ Inteligentny~ zamek$
- 10.2 Instrukcja użytkownika systemu $Inteligentny\ zamek$

11 Załączniki

Do pracy dołączono płytę CD-ROM zawierającą:

- treść pracy w pliku PDF,
- $\bullet\,$ treść pracy w formacie LATEX,
- implementację systemu $Inteligentny\ zamek,$
- $\bullet\,$ kody uruchomieniowne systemu $Inteligentny\ zamek.$