

CytoImageNet: A large-scale pretraining dataset for bioimage transfer learning

Stanley Z. Hua¹, Alex X. Lu², Alan M. Moses¹

University of Toronto¹, University of Toronto (Current Affiliation: Microsoft Research)²

CytoImageNet contains 890K microscopy images and 894 class

IMAGENET-1K CYTOIMAGENET # of Images 1.3 million images 890K images # of Classes 1000 classes 894 classes Source of Label Human annotated labels Metadata labels # of Channels 3 channel images (RGB) 1 channel images (grayscale)

Concatenating CytoImageNet-trained and ImageNet-trained features is the new state-of-the-art in bioimage transfer learning.

Downstream Microscopy Classification Tasks **CYCLoPs**

Natural scene images

Open-source images

Images of varying scale

Table 1. kNN accuracy using EfficientNetB0 penultimate layer features.

Microscopy images

Images from 40 open-source datasets

Images of varying scale (and rotation)

100	w/	60
	Cities.	
0	> 0	
	• 66	3 a

BBBC021

Type of Images

Source of Images

Properties

Human Cells Mechanism-Of-Action

Yeast Cells Subcellular Localization

Mouse Cells Subcellular Localization

Downstream Task	Random	ImageNet	CytoImageNet	<u>Fusion</u>
BBBC021	27.18%	83.50%	83.50%	86.41%
CYCLoPs	53.06%	68.47 %	65.19%	77.97 %
COOS7 Test Set 1	65.68%	88.87%	88.58%	94.80%
COOS7 Test Set 2	67.81%	88.93%	89.37%	95.07%
COOS7 Test Set 3	48.77%	75.91 %	65.97%	78.98 %
COOS7 Test Set 4	51.88%	82.19%	78.52%	87.47 %

Data Availability

CytoImageNet Pretraining yields useful features despite Poor Accuracy on the Validation Set.

Table 2. EfficientNetB0 Validation Accuracy

Dataset	Top-1 Validation Accuracy		
ImageNet-1K [5]	77.1%		
CytoImageNet	11.32%		

402 of the 894 labels had **no** correctly predicted images in the CytoImageNet validation set.

REFERENCES

- [1] Caicedo JC, McQuin C, Goodman A, Singh S, Carpenter AE. Weakly supervised learning of single-cell feature embeddings. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018. doi:10.1109/cvpr.2018.00970
 [2] Kraus OZ, Grys BT, Ba J, Chong Y, Frey BJ, Boone C, Andrews BJ. Automated Analysis of high-content microscopy data with Deep Learning. Molecular Systems Biology.
- 2017;13(4):924.doi:**10.15252/msb.20177551**
- [3] Pawlowski N, Caicedo JC, Singh S, Carpenter AE, Storkey A. Automating morphological profiling with generic deep convolutional networks. bioRxiv. 2016.
- [4] Huh M, Agrawal P, Efros AA. What makes ImageNet good for transfer learning? arXiv. 2016; **1608.08614**.
 [5] Tan M, Le Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In: 36th International Conference on Machine Learning (ICML 2019) Long Beach, California, USA, 9-15 June 2019. Red Hook, NY: Curran Associates, Inc; 2019.