The Massey Rating Method An Introduction to Sports Team Rankings

Dr. Rebin Muhammad

Montgomery College

December 6, 2023

Understanding the Massey Rating Method: Introduction

What are Ratings and Why are They Important?

- ► Ratings are numerical values assigned to entities (like sports teams) to rank them.
- ► They help in comparing performances and predicting future outcomes.
- Essential in fields like sports analytics and data science.

The Role of Linear Algebra in Ratings

How Does Linear Algebra Help in Ratings?

- ► Linear Algebra is a branch of mathematics dealing with vectors and matrices.
- It helps in organizing data and solving systems of equations, key in data analysis.
- ▶ In ratings, it's used to construct and solve rating models like the Massey method.

Massey Method: Overview

Basics of the Massey Method

- ▶ A system to rank teams based on their game performance.
- Uses points scored and conceded in games to calculate team ratings.
- Involves setting up and solving a system of linear equations.

Step 0: Gathering Data

	Duke	Miami	UNC	UVA	VT	Record	Point Different
Duke		7-52	21-24	7-38	0-45	0-4	-124
Miami	52-7		34-16	25-17	27-7	4-0	91
UNC	24-21	16-34		7-5	3-30	2-2	-40
UVA	38-7	17-25	5-7		14-52	1-3	-17
VT	45-0	7-27		52-14		3-1	90

Figure: Game score data for a small 5-team example

Step 1: Point Differential Vector (p)

Calculating Point Differentials

- Point Differential = Total points scored Total points conceded.
- ► Example calculation for a team: Scored 100 points, Conceded 80 points, Differential = 100 80 = 20.
- ► For our 5-team example, the differentials are: −124 for Duke, 91 for Miami, −40 for UNC, −17 for UVA, and 90 for VT.

Thus,
$$p = \begin{bmatrix} -124\\91\\-40\\-17\\90 \end{bmatrix}$$
 and $r = \begin{bmatrix} Duke\\Miami\\UNC\\Thus\\VT \end{bmatrix}$

Step 2: Constructing the Massey Matrix (M)

Building the Massey Matrix

- ► A square matrix where each element represents games between teams.
- ▶ Diagonal elements = Number of games played (4 for each team in our example).
- ▶ Off-diagonal elements = -1 (for each game played against other teams).
- ► Last row modified to ensure a unique solution (sum of ratings = 0).
- Example matrix:

$$M = \begin{bmatrix} 4 & -1 & -1 & -1 & -1 \\ -1 & 4 & -1 & -1 & -1 \\ -1 & -1 & 4 & -1 & -1 \\ -1 & -1 & -1 & 4 & -1 \\ -1 & -1 & -1 & -1 & 4 \end{bmatrix}$$

Resolving the Rank Deficiency in the System

- Encountered a challenge: Post several games, our matrix reached a rank of n-1, leading to infinite solutions for Mr=p.
- Objective: To derive a unique solution for team ratings.
- Solution: Massey's approach involved altering the last matrix row to all ones and the corresponding point differential vector entry to zero.
- Outcome: This change secured the matrix's rank at n, allowing us to solve the system and ascertain team ratings.
- Example: The modified system is presented as follows:

Resolving the Rank Deficiency in the System

Original System:

$$M = \begin{bmatrix} 4 & -1 & -1 & -1 & -1 \\ -1 & 4 & -1 & -1 & -1 \\ -1 & -1 & 4 & -1 & -1 \\ -1 & -1 & -1 & 4 & -1 \\ -1 & -1 & -1 & -1 & 4 \end{bmatrix}, \quad p = \begin{bmatrix} -124 \\ 91 \\ -40 \\ -17 \\ 90 \end{bmatrix}$$

Updated System:

$$M_{\text{updated}} = \begin{bmatrix} 4 & -1 & -1 & -1 & -1 \ -1 & 4 & -1 & -1 & -1 \ -1 & -1 & 4 & -1 & -1 \ 1 & 1 & 1 & 1 \end{bmatrix}, \quad p_{\text{updated}} = \begin{bmatrix} -124 \ 91 \ -40 \ -17 \ 0 \end{bmatrix}$$

Step 3: Solving the Linear System

Finding the Team Ratings

- Adjust point differentials: last element set to 0 to sum to zero.
- Solve the linear system $\bar{M}r = \bar{p}$ using matrix algebra.
- Ratings are found by solving this system.

Solving System of Equation

$$\begin{bmatrix} 4 & -1 & -1 & -1 & -1 \\ -1 & 4 & -1 & -1 & -1 \\ -1 & -1 & 4 & -1 & -1 \\ -1 & -1 & -1 & 4 & -1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -124 \\ 91 \\ -40 \\ -17 \\ 0 \end{bmatrix}$$

where x_1, x_2, x_3, x_4, x_5 represent the ratings of the teams Duke, Miami, UNC, Thus, and VT, respectively.

The Solution

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -24.8 \\ 18.2 \\ -8.0 \\ -3.4 \\ 18.0 \end{bmatrix}$$

► Teams with ratings 18.2 and 18.0 are rated as the strongest among the five.

Interpreting the Ratings

Understanding the Results

- Higher ratings indicate stronger team performance.
- Negative ratings suggest weaker performance compared to others.
- Ratings provide a basis for comparison and analysis.

Massey Ratings: Line Rating Visualization

Visual Comparison of Team Strength

Duke (-24.8)		UNC (-	-8.0)	Miami (18.2)		
-25	-20	-10	UVA (-3.4) ⁰	10	VT (18.0) 22	

Interpretation of Ratings

Understanding the Results

- ▶ Higher ratings indicate stronger team performance.
- Negative ratings reflect relatively weaker performance compared to others.
- ► The visual line rating helps in understanding the relative strength between teams.

References

Kenneth Massey. The Massey Method for Sports Rankings. Journal of Sports Analytics, 1997.

Amy N. Langville and Carl D. Meyer.

Who's #1?: The Science of Rating and Ranking.

Princeton University Press, 2012.