documentclass: ltjsarticle title: すごいレポート author: 寿限無 header-includes:

• \usepackage[margin=1in]{geometry}

実験データ解析演習 最終レポート

2610180082 2年1組 No. 39 水野 響

グループ番号:1

共同メンバー:藤浪真尋,山崎大知

テーマ

主成分分析で天候に大きく寄与する成分を見つける サポートベクターマシーンで新潟のお米の収量と その気候の関連性を調べる

原理

主成分分析

書くかぁ...

サポートベクターマシン

書くかぁ...

データ

米の収量 10aあたりの収量 出典:eStat 天気 日照時間, 気温, 湿度, 降水量, 風速, 雲量 出典:気象庁

手法

6次元の気候データを主成分分析により2次元に圧縮した. 収量を480 (t)以上の年を豊作とし, ラベルを豊作の年を1, 不作の年を0としてラベル付けをした. 主成分分析した2次元データと固有ベクトルを月ごとにプロットした. 第一主成分と第二主成分の配列を用意した. 主成分をtrainデータとtestデータを7:3の割合で分割した. サポートベクターマシーンを学習させた. サポートベクターマシーンの正答率を求めた. 横軸を第一主成分, 縦軸を第二主成分としてデータをプロットし, サポートベクターマシーンの分類結果を可視化した. 以上を12ヶ月分同様に行った. result配列を用意し, 月ごとの第一主成分と第二主成分とサポートベクターマシーンの正答率を格納した.

結果

画像を貼り付ける? 操作hogeによる散布図が図hogeである. 操作hugaによる散布図が図hugaである.

月ごとの第一主成分と第二主成分とサポートベクターマシーンの正答率が表hugaである.

	PC1	PC2	SVM_score
mont	:h		
1	0.948290	0.049088	0.529412
2	0.841302	0.151448	0.352941
3	0.726571	0.266117	0.588235
4	0.707992	0.285218	0.705882
5	0.718615	0.278711	0.882353
6	0.835200	0.163343	0.529412
7	0.907491	0.091873	0.588235
8	0.902660	0.096692	0.352941
9	0.906668	0.092054	0.3520961

 10
 0.867753
 0.129710
 0.235294

 11
 0.953945
 0.043966
 0.470588

 12
 0.965803
 0.031950
 0.5882

考察

第二主成分の寄与率が高い月はSVMの正答率が高い。特に5月はSVMの正答率が高い。それら以外はあてになる分析結果とはいえない。 固有ベクトルから、4月5月は日照時間が多い方が良いと考えられる。 データをもっとよく観察して、ある程度仮説を立てるべきだった。