

Robotics – Planning and Motion

COMP52815

Email: fatemeh.Rekabi-bana@durham.ac.uk

Room: MCS 1005a

Learning Objectives

What is ROS?

Robotic Operating System

Open Source Set of Libraries Let us Develop and Manage A Modular Framework

Philosophy:

The development of a new robotic system relies on:

- Modularity: using ready modules (sensors, actuators, etc.) instead of making everything from scratch.
- **Distributed computation:** each module (software or hardware) may need an independent computational resource.
- **Robustness and Reliability:** it is necessary to ensure all the modules work together consistently regardless of uncertainties or disturbances.
- **Scalability:** adding new features, expanding the capability domain, and even making new products based on the current design led us to consider scalability in the development process.

Features:

Features:

Tools

ROS Documents

Documentation

ROS Wiki:

https://wiki.ros.org/Documentation

ROS Robots:

https://robots.ros.org/

ROS2 Documents:

https://docs.ros.org/en/foxy/index.html

ROS Main Concepts:

Node

- Single-purposed executable programs
- Independently worked and managed
- They are written using a ROS library

Message

 Data structure for communication between nodes

Topics

- A customised message dedicated to transferer data on the network
- Nodes can subscribe/publish all the Topics on the network

ROS Main Concepts:

Service

- Synchronous inter node transactions
- (blocking RPC): ask for something and wait for it

Action

 standardized interface for interfacing with non-interrupting tasks

ROS Main Concepts:

Parameter Server

- A shared dictionary that is accessible via network
- Best used for static data such as configuration parameters

Master

 Provides connection information to nodes so that they can transmit messages to each other

Packages

- Software in ROS is organized into packages
- A package contains one or more nodes, documentation, messages, services, ...

ROS2 Ecosystem:

Visualisation Tools (RVIZ)

Simulation Tools (GAZEBO)

Available Cross-Platform libraries and community support

ROS Applications in robotics:

Algorithms:

navigation,
manipulation, and
swarm robotics.

Real-world use cases:

delivery robots, drones, and healthcare robots

Industrial applications:

self-driving cars, precision agriculture, and collaborative robots Advanced use cases in real-time systems (ROS2)

ROS2 and its advantages:

ROS/ROS2 and Al Integration:

➤ Tools and frameworks for AI integration into robotic systems for tasks like perception, decision-making, and learning

Summary

- Introduction to ROS
- Main ROS concept
- ROS2 features and advantages over ROS

