6/12/22, 3:50 AM Practico3.3

Practico 3.3 Backtracking

1

Modifique el codigo del algoritmo que resuelve el problema de la moneda utilizando backtracking, de manera que devuelva que monedas se utilizan, en vez de solo la cantidad.

```
fun cambio (P: Nat, M: Set of Moneda) ret res : Set of Moneda
var aux_m, cambio_aux ,cambio_aux_mas_k : Set of Moneda
    var k : moneda
    var aux_p : Nat
    aux_m : copy_set(M)
    aux_p := P
    if(aux_p = 0)
        then
            res := empty set()
    else
        if(P > 0 && !is_empty(aux_m))then
            AB0RT
             res := { infinito }
        else
             k := get(aux_p)
             elim(aux_p, k)
             cambio_aux := cambio(P, aux_p)
             cambio_aux_mas_k := add_set(k, cambio(P-k, M))
             if( k > P V set_length(cambio_aux) < set_length(cambio_aux_mas_c))then</pre>
                 res := cambio_aux
             else
//
               ( k <= P V set_length(cambio_aux) => set_length(cambio_aux_mas_c))
                 res := cambio_aux_mas_c
             destroy_set(aux_p)
        fi
    fi
end fun
Algoritmo 2020
\{-\text{ devolvemos un par } (n, l) \text{ a donde } n : \text{nat, } l : \text{List of nat } -\}
fun cambio(d:array[1..n] of nat, i,j: nat) ret r: nat x List of nat
  var r1, r2: nat x List of nat
  if j = 0 then r := (0, empty_list())
  else if i = 0 then r := (\infty, empty_list()) {- cualquier lista da igual acá -}
  else if d[i] > j then
    r := cambio(d, i-1, j)
  else
    {- acá está lo interesante -}
    r1 := cambio(d,i-1,j) {- r1 es un par -}
r2 := cambio(d,i,j-d[i]) {- r2 es un par -}
    if r1.fst < 1 + r2.fst then
      r := r1
    else
      addr(r2.snd, d[i])
      r.fst := 1 + r2.fst
      r.snd := r2.snd
    fi
end fun
```

2

En un extrano pais las denominaciones de la moneda son 15, 23 y 29, un turista quiere comprar un recuerdo pero tambien quiere conservar el mayor numero de monedas posibles. Los recuerdos 6/12/22, 3:50 AM Practico3.3

cuestan 68, 74, 75, 83, 88 y 89. Asumiendo que tiene suficientes monedas para comprar cualquiera de ellos, ¿cual de ellos elegira? ¿que monedas utilizara para pagarlo? Justificar claramente y mencionar el metodo utilizado.

- Podemos elegir 68 := $\{29, 29, 23V29\}$ o $74 := \{29, 29, 29\}$ o $75 := \{29, 29, 29\}$.
- Si bien el problema no lo dice, si se debe tener en cuenta el valor minimo a gastar la moneda sería 68, caso contrario si quisiera tener el recuerdo de mayor valor con la menor cantidad de monedas utilizadas 74.
- El metodo utilizado es seleccionar de las denominaciones la menor cantidad de monedas para pagar cada uno de los recuerdos y elegir el que gaste menos monedas.

3

Una panaderia recibe n pedidos por importes $m_1, ..., m_n$, pero solo queda en deposito una cantidad H de harina en buen estado. Sabiendo que los pedidos requieren una cantidad $h_1, ..., h_n$ de harina (respectivamente), determinar el maximo importe que es posible obtener con la harina disponible.

Resolucion:

- ullet Para cada pedido tenemos una variable i que nos indica costo m_i y la cantidad de harina necesaria h_i
- Tenemos cantidad de harina disponible j.
- La funcion $max_import(i, j)$ = "Mayor cantidad de importe de i pedidos con j harina."
- La llamada principal que nos va a devolver el valor va a ser $max_import(H, n)$ = "Maximo importe de n pedidos con H harina"

$$max_import(j,i) = egin{cases} 0 & ,j = 0 \lor i = 0 \ max_import(j,i-1) & ,j < h_i \land (j > 0 \land i > 0) \ max(max_import(j,i-1), max_import(j-h_i,i-1) + m_i) & ,j => h_i \land (j > 0 \land i > 0) \end{cases}$$

4

Usted se encuentra en un globo aerostatico sobrevolando el oceano cuando descubre que empieza a perder altura porque la lona esta levemente dañada. Tiene consigo n objetos cuyos $pesos\ p_1,...,p_n$ y $valores\ v_1,...,v_n$ conoce. Si se desprende de al menos P kilogramos lograra recuperar altura y llegar a tierra firme, y afortunadamente la suma de los pesos de los objetos supera holgadamente P. ¿Cual es el menor valor total de los objetos que necesita arrojar para llegar sano y salvo a la costa?

Resolution:

- ullet Para cada objeto n tenemos la variable i que tiene un peso p_i con valor v_i
- ullet Por otro lado tenemos weigth que es el peso actual que se necesita tirar para llegar a tierra firme
- El algoritmo $min_value(weigth, i)$ = "Menor valor posible que se puede tirar para perder weigth usando i objetos"
- La funcion principal seria $min_value(P,n)$ = "Menor valor posible al tirar P kilogramos usando n objetos."

$$min_value(weigth,i) = egin{cases} 0 &, weigth = 0 \land i > 0 \\ \infty &, weigth = > p_i \land i = 0 \\ min(min_value(weigth,i-1), min_value(weigth-p_i,i-1) + v_i) &, (weigth = > p_i \land i > 0) \end{cases}$$

5

Sus amigos quedaron encantados con el telefono satelital, para las proximas vacaciones ofrecen pagarle un alquiler por el. Ademas del dia de partida y de regreso (p_i y r_i) cada amigo ofrece un monto m_i por dia. Determinar el maximo valor alcanzable alquilando el telefono.

Resolution:

- -Cantidad de amigos total a,
- -Por otro lado una variable k que es la cantida de amigos actual que tengo para prestar, que tiene un p_k (dia de partida) ,(dia de regreso) r_k y un m_k que es monto que paga por dia
- -El algoritmo recursivo $max_money(k,p_k)$ = "Mayor valor alcanzable alquilando el telefono desde el día p_k a k amigos"
- -La llamada principal es $max_money(a, p_a)$ = "Mayor valor alcanzable alquilando el telefono desde el día (p_i) a (a) todos los amigos"

$$max_money(k,p_k) = egin{cases} 0 & ,k=0 \ max_money(k-1,p_k) & ,p_k > r_k \ max(max_money(k-1,p_k),max_money(k-1,r_k) + (r_k-p_k)*m_k) & ,p_k <= r_k \land k > 0 \end{cases}$$

6

Un artesano utiliza materia prima de dos tipos: A y B. Dispone de una cantidad MA y MB de cada una de ellas. Tiene a su vez pedidos de fabricar n productos $p_1,...,p_n$ (uno de cada uno). Cada uno de ellos tiene un valor de venta $v_1,...,v_n$ y requiere para su elaboracion cantidades $a_1,...,a_n$ de materia prima de tipo A y $b_1,...,b_n$ de materia prima de tipo B. ¿Cual es el mayor valor alcanzable con las cantidades de materia prima disponible?

Resolution:

- ullet Maxima cantida de materia prima total MA y MB
- ullet Cantidad actual de materia prima A_k y B_k
- ullet Tenemos n productos totales
- Tenemos i productos actuales tal que v_i es su valor de venta, a_i (de materia prima A) y b_i (de materia prima B)
- El algoritmo $max_value(i, A_k, B_k)$ = "Maximo valor posible de i pedidos con la cantidad disponible A_k y B_k de materia prima"
- La llamada principal es $max_value(n, MA, MB)$ = "Maximo valor posible de n pedidos con la cantidad disponible MA y MB de materia

$$max_value(i,A_k,B_k) = \begin{cases} 0 & ,i = 0 \\ max_value(i-1,A_k,B_k) & ,i > 0 \land (A_k < a_i \lor B_k < a_i \lor B_k$$

En el problema de la mochila se buscaba el maximo valor alcanzable al seleccionar entre n objetos de valores $v_1,...,v_n$ y pesos $w_1,...,w_n$, respectivamente, una combinacion de ellos que quepa en una mochila de capacidad W. Si se tienen dos mochilas con capacidades W1 y W2, ¿cual es el valor maximo alcanzable al seleccionar objetos para cargar en ambas mochilas?

Resolucion:

- Tenemos *n* objetos en total.
- Sea $W1\,\mathrm{y}\,W2\,\mathrm{la}$ capacidad maxima de cada mochila.
- Definimos i como la cantida de objetos actuales, siendo su valor (v_i) y (w_i) su peso.
- Teniendo w_1 y w_2 la capacidad actual disponible de la mochila.
- El algoritmo $max_value(i, w_1, w_2)$ va a obtener el valor maximo de i objetos para w_1 y w_2 capacidad disponible en el momento.
- La llamada principal es $max_value(i, W1, W2)$ = "Mayor valor posible de n objetos con W1 y W2 capacidad"

$$max_value(i, w_1, w_2) = \begin{cases} 0 \\ 0 \\ max_value(i-1, w_1, w_2) \\ max(max_value(i-1, w_1 - w_i, w_2) + (v_i), max_value(i-1, w_1, w_2 - w_i) + (v_i), max_value(i-1, w_1, w_2 - w_i) + (v_i), max_value(i-1, w_1, w_2) \\ max(max_value(i-1, w_1, w_2), max_value(i-1, w_1, w_2 - w_i) + (v_i)) \\ max(max_value(i-1, w_1, w_2), max_value(i-1, w_1 - w_i, w_2) + (v_i)) \end{cases}$$

• Preguntar porque no hacer MAXmax(entraw1, noentra)max(entraw2, noentra)

8

Una fabrica de automoviles tiene dos lineas de ensamblaje y cada linea tiene n estaciones de trabajo, S1,1,...,S1,n para la primera y $S2_{,1}$, ..., $S2_{,n}$ para la segunda. Dos estaciones $S1_{,i}$ y $S2_{,i}$ (para i=1,...,n), hacen el mismo trabajo, pero lo hacen con costos $a1_{,i}$ y $a2_{,i}$ respectivamente, que pueden ser diferentes. Para fabricar un auto debemos pasar por n estaciones de trabajo $S_i1,_1,S_i2,_2,...,S_in,_n$ no

6/12/22, 3:50 AM Practico3.3

necesariamente todas de la misma linea de montaje $(i_k=1,2)$. Si el automovil esta en la estacion $S_{i,j}$, transferirlo a la otra linea de montaje (es decir continuar en $S_{i',j}+1$ con i'!=i) cuesta $t_{i,j}$. Encontrar el costo minimo de fabricar un automovil usando ambas lineas.

Resolution:

- Tenemos n estaciones totales, siendo $S_{1},_{n}$ y $S_{2},_{n}$ las dos lineas de montaje.
- Sea i la estacion actual en la que estamos, y $S_{j,i}$ las estaciones en la que estamos. Sea j = 1,2.
- Tenemos $a_{i \cdot i}$ que es el costo de la estación que estamos, siendo $(a_{1 \cdot i} \vdash a_{2 \cdot i})$.
- Cambiar de estacion va a costar $t_{i,j}$
- ullet El algoritmo $min_cost(i,S_j,_i)$ ="Costo minimo de fabricar un automovil recorriendo ambas ensamblaje $S_j,_i$ por completo"
- La llamada principal $min_cost(n,S_j,n)$ ="Costo minimo de fabricar un automovil recorriendo ambas estaciones del ensamblaje S_j,n "

$$min_cost(i,S_{j},_{i}) = \begin{cases} 0 & , S_{j}._{i} = 0 \lor i = 0 \\ min(min_cost(i-1,S_{1}.i-1) + a_{1} + t_{i}._{1}), (min_cost(i-1,S_{j}._{i}-_{1})) & , i > 0 \land (a_{1} + t_{i}._{1} < a_{2}) \\ min(min_cost(i-1,S_{2}.i-1) + a_{2} + t_{i}._{2}), (min_cost(i-1,S_{j}._{i}-_{1})) & , i > 0 \land (a_{2} + t_{i}._{2} < a_{1}) \\ min(min_cost(i-1,S_{1}._{i}-_{1}), min_cost(i-1,S_{1}._{i}-_{1}) + (a_{1}._{i})) & , i > 0 \land (a_{2} + t_{i}._{2} > = a_{1}) \\ min(min_cost(i-1,S_{2}._{i}-_{1}), min_cost(i-1,S_{2}._{i}-_{1}) + (a_{2}._{i})) & , i > 0 \land (a_{1} + t_{i}._{1} > = a_{2}) \end{cases}$$

9

El juego $\setminus U \uparrow P \nearrow$ consiste en mover una ficha en un tablero de n filas por n columnas desde la fila inferior a la superior. La ficha se ubica al azar en una de las casillas de la fila inferior y en cada movimiento se desplaza a casillas adyacentes que esten en la fila superior a la actual, es decir, la ficha puede moverse a:

- · la casilla que esta inmediatamente arriba,
- la casilla que esta arriba y a la izquierda (si la ficha no esta en la columna extrema izquierda).
- la casilla que esta arriba y a la derecha (si la ficha no esta en la columna extrema derecha).

Cada casilla tiene asociado un numero entero $c_{i,j}$ (i,j=1,...,n) que indica el puntaje a asignar cuando la ficha este en la casilla. El puntaje final se obtiene sumando el puntaje de todas las casillas recorridas por la ficha, incluyendo las de las filas superior e inferior.

Determinar el maximo y el minimo puntaje que se puede obtener en el juego.

Los dos ultimos ejercicios, tambien pueden resolverse planteando un grafo dirigido y recurriendo al algoritmo de Dijkstra. ¿De que manera? ¿Seran soluciones mas eficientes?

Resolucion:

- Tenemos un tablero $T_{n,n}$ que tiene n filas y n columnas;
- Sea $T_{i,k}$ la posicion actual en la que estoy, siendo i filas y k las columnas.
- El algoritmo $max_value(T_{i,k})=$ "Minimo valor de la sumatoria de todas las casillas recorridas por la ficha desde un T_i,k incluyendo las filas

$$max_value(T_{i,k}) = \begin{cases} 0 & ,k = 0 \\ -\infty & ,i = 0 \end{cases}$$

$$max(max_value(T_{i,k}-1) + c_{i,j}, max_value(T_{i+1,k}-1) + c_{i,j}, max_value(T_{i-1,k}-1) + c_{i,j}, max_value(T_{i-1,k$$

$$max_value(T_{i,k}) = \begin{cases} 0 & , k = \\ -\infty & , i = \\ max(max_value(T_{i,k}-1) + c_{i,j}, max_value(T_{i}+1,_{k}-1) + c_{i,j}, max_value(T_{i}-1,_{k}-1) + c_{i,j} & , k > 0 \\ \infty & , i = 0 \lor i \\ min(min_value(T_{i,k}-1) + c_{i,j}, min_value(T_{i}+1,_{k}-1) + c_{i,j}, min_value(T_{i}-1,_{k}-1) + c_{i,j} & , k = > 0 \land \end{cases}$$

Si se puede

Resolution:

- · Contamos con dos lineas de ensamblaje.
- Cada linea tiene n estaciones de trabajo, (S_1,...,S_n) y (S_2,...,S_n)
- Dos estaciones hacen el mismo trabajo, pero con costos distintos(a 1i y a 2i).

6/12/22, 3:50 AM Practico3.3

• Un automovil debe pasar por n estaciones de trabajo para ser terminado, y no todas de la misma linea de ensamblaje, pasar de una estacion a otra cuesta t_ij.

- $automovil(n,a_x) = "Costo minimo de fabricar el automovil usando ambas lineas de ensamblaje".$
- Calculo la funcion teniendo en cuenta estaciones, y sus respectivos costos.