

在RL背景下,如何将LLM + TOOL-USING 扩展到非数学/编程领域?

Nemotron-Research-Tool-N1: Exploring Tool-Using

Language Models with Reinforced Reasoning

Shaokun Zhang^{1,2} Yi Dong¹ Jieyu Zhang³ Jan Kautz¹ Bryan Catanzaro¹ Andrew Tao¹ Qingyun Wu² Zhiding Yu¹ Guilin Liu¹

¹NVIDIA ²Pennsylvania State University ³University of Washington

简介

代码: HTTPS://GITHUB.COM/NVLABS/TOOL-N1

本文提出了Tool-N1,探索在非数学/编程领域,延续RLVR做法,让IIm学会使用tool(本文更像 function calling)提升自己的能力,为了作者设计了一个简单的二值reward function:只有response 的format和tool调用参数正确就是1,否则是0

我个人认为本文和ToolRL很像,因此直接复制:

目前LLM + Tool via RL的工作基本聚焦在数学领域,一方 面是数学题很容易验证正确性,适合RLVR,另一方面相 关的公开数据集非常丰富。本文则思考如何将LLM + Tool via RL扩展到通用领域,延续RLVR的做法,那么重点就 是如何设计reward function?

- 框架: verl
- 实验对象: Qwen2.5-7B/14B-Instruct
- 强化学习算法: GRPO
- reward function: kl loss + 一个二值(0, 1) reward, 二 值指的是只有response的format和tool调用正确就是1,

否则是0

 $\int 1$, if FormatCorrect $(O_t) \wedge \texttt{ToolCallMatch}(a_t, a_t^*)$

 $\mathcal{L}_{\mathsf{GRPO}}(\theta) = \mathbb{E}_{(c_t, \mathcal{Z})} \, \mathbb{E}_{O^i \sim \mathcal{O}} \, \Big| \, \min \Big(\rho_i A_i, \, \mathsf{clip}(\rho_i, 1 - \epsilon, 1 + \epsilon) A_i \Big)$ $-\beta \operatorname{KL}(\pi_{\theta} \| \pi_{\operatorname{old}})$, where $\rho_i = \frac{\pi_{\theta}(O^i \mid c_t, \mathcal{Z})}{\pi_{\operatorname{old}}(O^i \mid c_t, \mathcal{Z})}$

REWARD

Training Data

Query:

I'm considering investing and I'd like to know what's happening in the market right now. Could you get me the top market trends in the US?

Tools:

- 1. calculate_sales_tax
- 2. get_futures_prices
- 3. market_trends

Summarize Rule-Based Reward Policy Model Preprocess Policy Learning Correct Format KL Loss Rollout Calculate Rewards <think>...<tool call> market trends (id="us") <tool call> X Format Error <think>... <think> <tool_call>market_trends (id="uk") <tool_call> X Tool-Calling Error <think> I will utilize the market_trends api tool... <think> <tool_call> ✓ Correct market trends api (id="us") <tool call>

Strong performance **Highlight** ✓ Fully Open-Source

Thorough Recipe exploration

No Reasoning Supervisions ✓ No Extra distillation ✓ Simple Data Pipeline

Simple Binary Reward Exact Tool Match via Dict Better OOD Generalization

	Non-Live				Live				Overall		
Models	Simple	Multiple	Parallel	Parallel Multiple	Simple	Multiple	Parallel	Parallel Multiple	Non-live	Live	Overall
GPT-40	79.42	95.50	94.00	83.50	84.88	79.77	87.50	75.00	88.10	79.83	83.97
GPT-4o-mini	80.08	90.50	89.50	87.00	81.40	76.73	93.75	79.17	86.77	76.50	81.64
GPT-3.5-Turbo-0125	77.92	93.50	67.00	53.00	80.62	78.63	75.00	58.33	72.85	68.55	70.70
Gemini-2.0-Flash-001	74.92	89.50	86.50	87.00	75.58	73.12	81.25	83.33	84.48	81.39	82.94
DeepSeek-R1	76.42	94.50	90.05	88.00	84.11	79.87	87.50	70.83	87.35	74.41	80.88
Llama3.1-70B-Inst	77.92	96.00	94.50	91.50	78.29	76.16	87.50	66.67	89.98	62.24	76.11
Llama3.1-8B-Inst	72.83	93.50	87.00	83.50	74.03	73.31	56.25	54.17	84.21	61.08	72.65
Qwen2.5-7B-Inst	75.33	94.50	91.50	84.50	76.74	74.93	62.50	70.83	86.46	67.44	76.95
xLAM-2-70b-fc-r (FC)	78.25	94.50	92.00	89.00	77.13	71.13	68.75	58.33	88.44	72.95	80.70
ToolACE-8B (FC)	76.67	93.50	90.50	89.50	73.26	76.73	81.25	70.83	87.54	78.59	82.57
Hammer2.1-7B (FC)	78.08	95.00	93.50	88.00	76.74	77.4	81.25	70.83	88.65	75.11	81.88
Tool-N1-7B	77.00	95.00	94.50	90.50	82.17	80.44	62.50	70.83	89.25	80.38	84.82
Tool-N1-14B	80.58	96.00	93.50	92.00	84.10	81.10	81.25	66.67	90.52	81.42	85.97

Table 2: Comparison on the BFCL (last updated on 2025-04-13). Average performance is calculated using the official script. The best results in each category are highlighted in **bold**, while the second-best are <u>underlined</u>.

Here is a list of functions in JSON format that you can invoke:

<tools> {tools} </tools>. In each action step, you MUST:

1. Think about the reasoning process in the mind and enclosed your reasoning within <think> </think> XML tags. 2. Then, provide a json object with function names and arguments within <tool call> </tool_call> XML tags. i.e., <tool call>["name": <function-name>, "arguments": <args-json-object>, "name": <function -name2>, "arguments": <args-json-object2>, ...]</tool call>

3. Make sure both the reasoning and the tool call steps are included together in one single reply.

A complete reply example is: <think>To address the query, I need to send the email to Bob and then buy the banana through walmart.</think> <tool_call> ["name":"email", "arguments":"receiver": "Bob", "content": "I will bug banana through walmart", "name": "walmart", "arguments": "input": "banana"] </tool call>. Please make sure the type of the arguments is correct.

感觉本文和TOOLRL很像,因此同样的思考内容就不写了。单 说一点,上面是论文给出的THINKING TEMPLATE,不清楚是 不是我对"EACH ACTION STEP"理解的不对,看起来是指定让 LLM的RESPONSE包含两部分,THINK和TOOL调用参数,为什 么LLM一定要有这种固定的输出格式呢?难道不可以 <THINK>

... </THINK> <TOOL_CALL> ... </TOOL_CALL> <THINK> ... </THINK>? 换句话说,LLM应该自己决定在何时插入TOOL调 用,调用TooL几次。我觉得这样的使用场景才更合理。当然 一下本文训练集(TOOLACE, XLAM)似乎就明白了,因为 它们就是这样的格式。