Markowetz Lab, Integrative Cancer Biology @ Cancer Research UK Cambridge Institute, University of Cambridge, UK

Mathematical and Computational Oncology

From tumor kinetics to therapy outcome

Dr. Ing. Cristian Axenie

Head of Audi Konfuzius Institute Ingolstadt Lab Lecturer at Technische Hochschule Ingolstadt Staff Research Engineer at Huawei Research Center

AKII Lab

Open Lab Initiative / Cancer Research UK

Joint Group Meeting Report

Date, time, location

Tuesday, 8th of December 2020, 10:30 – 12:00 (UK), online

<u>Participants</u>

Markowetz Lab, Integrative Cancer Biology @ Cancer Research UK Cambridge Institute, University of Cambridge, UK

Axenie Lab, Audi Konfuzius-Institut Ingolstadt Lab @ Technical University of Ingolstadt, Germany

<u>Talks</u>

Integrative radiogenomics to predict response to neoadjuvant therapy in ovarian cancer, Dr. Mireia Crispin-Ortuzar

Mathematical and Computational Oncology: From tumor kinetics to therapy outcome, Dr. Cristian Axenie

AKII Lab Team

DR. CRISTIAN AXENIE, GROUP LEADER, PI IN AI AND ML

PROF. DR. THOMAS GRAUSCHOPF, PLIN VR

GHEORGHE LISCA, PHD STUDENT

XIAORUI DU, PHD STUDENT

Helios Klinikum München West

Akademisches Lehrkrankenhaus der Ludwig-Maximilians-Universität München

Daria Kurz

Leitende Oberärztin

Gynäkologisches Krebszentrum

Interdisziplinäres Brustzentrum

CRISTOBAL RODRIGUEZ, BA STUDENT

ARMIN BECHER, RESEARCH ASSISTANT

SEBASTIAN POHL, MSC STUDENT

STEFAN SCHIECHEL, BA STUDENT

MARTIN KUNZ, BA STUDENT

AKII Lab Origins

AKII Lab Profile

Overview

A Framework for Mathematical and Computational Oncology

A Framework for Mathematical and Computational Oncology

Interacting Computational Maps

Core model

Core model internals

Learning capabilities I

Learning capabilities II

Extensibility

Tumor growth data

Peculiarities of data:

- Small
- Unevenly sampled
- High-variability
- Heterogeneous
- Model selection is hard
- Determines treatment

Growth kinetics of Fortner Plasmacytoma 1 tumors. Points represent mean volume of subcutaneous tumor implants in mice, error bars represent +/-1 standard error of the mean at each point. Data from Simpson-Herren et al. Cancer Chemotherapy Rep 54(3)

Tumor growth models

Model	Equation
Logistic	$\frac{dN}{dt} = \alpha N - \beta N^2$
Bertalanffy	$\frac{dN}{dt} = \alpha N^{\lambda} - \beta N$
Gompertz	$\frac{dN}{dt} = N(\beta - \alpha \ln N)$
Holling	$\frac{dN}{dt} = \frac{\alpha N}{k+N} - \beta N$

Parameters:

N - cell population size (or volume),

 α - growth rate,

 β - cell death rate,

 λ - nutrient limited proliferation rate,

k - carrying capacity of cells.

Instantiating the model

Experimental dataset setup

1 Breast (MDA-MB-231) Fluorescence imaging 7 2x/wd 2 Breast (MDA-MB-435) Digital Caliper 14 2x/wd	req.
2 Breast (MDA-MB-435) Digital Caliper 14 2x/w	veek
	veek
3 Lung Caliper 10 $7x/w$	veek
4 Leukemia Microscopy 23 7x/w	veek

Metric	Equation	
SSE	$\sum_{i=1}^{N} \left(\frac{y^i - y_m^i}{\frac{\sigma_i}{\sigma_i}} \right)$	Evaluation metrics for tumor growth models.
RMSE	$\sqrt{\frac{SSE}{N-p}}$	We consider:
sMAPE	$\frac{1}{N} \sum_{i=1}^{N} \left(2 \frac{ y^i - y_m^i }{(y^i + y_m^i)} \right)$	N - number of measurements,
AIC	$Nln(\frac{SSE}{N}) + 2p$	σ - standard deviation of data,
BIC	$Nln(\frac{SSE}{N}) + ln(N)p$	p - number of parameters of the model.

I	Evaluation Metric	es (smaller value	is better)			Eval	uation Me	etrics (small	ler value	is better	:)
Dataset/Model	SSE RMSE	sMAPE AIC	BIC Ra	nk ^a	Dataset/Mo	odel	SSE RM	SE sMAPE	AIC	C BIO	C Rank ^a
Breast cancer 20					Lung cancer[6]						
Logistic	7009.6 37.4423	1.7088 52.3639	52.2557	2	Logistic	44.5261	2.2243	1.5684 1	9.3800	20.1758	2
Bertalanffy	8004.9 44.7350	1.7088 55.2933	55.1310	5	Bertalanffy	54.1147	2.6008	1.5684 2	3.5253	24.7190	5
Gompertz	$7971.8\ 39.9294$	1.7088 53.2643	53.1561	4	Gompertz	53.2475	2.4324	1.5684 2	1.3476	22.1434	4
Holling	$6639.1\ 40.7403$	1.4855 53.9837	53.8215	3	Holling	50.6671	2.5166	1.5361 2	2.8012	23.9949	3
GLUECK	119.3 4.1285	0.0768 19.8508	19.8508	1	GLUECK	3.6903	0.5792	0.2121 -1	2.0140 -	12.0140	1
Breast ^c cancer[26]					Leukemia[23]						
Logistic	0.2936 0.1713	0.1437 -40.5269	-39.5571	4	Logistic 2	23.7271	3.2640	1.6368 5	6.3235	58.5944	2
Bertalanffy	0.2315 0.1604	0.1437 -41.3780	-39.9233	2	Bertalanffy 2	73.6770	3.6992	1.6368 69	2.9585	66.3649	5
Gompertz	0.3175 0.1782	0.1437 -39.5853	-38.6155	5	Gompertz 2	59.9277	3.5182	1.6368 59	9.7729	62.0439	4
Holling	0.2699 0.1732	0.1512 -39.5351	-38.0804	3	Holling 2	48.5784	3.5255	1.6001 6	0.7461	64.1526	3
GLUECK	0.0977 0.0902	0.0763 -57.7261	-57.7261	1	GLUECK	35.2541	1.2381	0.3232	9.8230	9.8230	1

 ^a Calculated as best in 3/5 metrics.
 ^b MDA-MB-231 cell line

 $[^]c$ MDA-MB-435 cell line

Phenotypical transitions of tumors in DCIS

In typical cancer **phenotypic state space**, **quiescent** cancer cells (**Q**) can become **proliferative** (**P**) or **apoptotic** (**A**).

Can we learn **phenotypical transitions** from timeseries of raw immunohistochemistry and morphometric data?

$$\alpha_P = \frac{\frac{1}{\tau_P}(PI + PI^2) - \frac{1}{\tau_A}AIPI}{1 - AI - PI}$$

$$\alpha_A = \frac{\frac{1}{\tau_A}(AI - AI^2) + \frac{1}{\tau_P}AIPI}{1 - AI - PI}$$

where, τ_P is the cells cycle time, τ_A cells apoptosis time, PI proliferation index and AI apoptosis index.

Phenotypical transitions of tumors in DCIS

Can we learn phenotypical transitions from timeseries of raw immunohistochemistry and morphometric data?

CHIMERA

Combining Mechanistic Models and Machine Learning for Chemotherapy-Surgery Sequencing

Formalizing therapy sequencing

If we consider f(V) the tumor growth model and P(t, V) the pharmacokinetics of the chemotherapeutic drug, we can formalize the two sequences as following:

• Sequence 1: Adjuvant setting, where size before surgery is $\frac{dv_1}{dt} = f(v_1), v_1(0) = V_0, t \in [0, t_0]$ and size after surgery is

$$\frac{dV_1}{dt} = f(V_1) - P(t, V_1), V_1(t_0) = e^{-k_S} v_1(t_0), t \in [t_0, t_f].$$

In this case, the final volume of the tumor is $V_{adj} = V_1(t_f)$.

• **Sequence 2**: **Neoadjuvant** setting, where the size before chemotherapy onset is $\frac{dv_2}{dt} = f(v_2), v_2(0) = V_0, t \in [0, t_0]$ and the size after chemotherapy onset is

$$\frac{dV_2}{dt} = f(V_2) - P(t, V_2), V_2(t_0) = v_2(t_0), t \in [t_0, t_f]$$
 respectively.

Hence, for the neoadjuvant sequence, the final volume of the tumor is $V_{neoadj} = e^{-k_s}V_2(t_f)$.

Tumor growth models

Model	Equation
Logistic	$\frac{dN}{dt} = \alpha N - \beta N^2$
Bertalanffy	$\frac{dN}{dt} = \alpha N^{\lambda} - \beta N$
Gompertz	$\frac{dN}{dt} = N(\beta - \alpha \ln N)$
Holling	$\frac{dN}{dt} = \frac{\alpha N}{k+N} - \beta N$

Parameters:

N - cell population size (or volume),

 α - growth rate,

 β - cell death rate,

 λ - nutrient limited proliferation rate,

k - carrying capacity of cells.

Pharmacokinetics models

In our study, we use the data from the computational model of **Paclitaxel pharmacokinetics** of Kuh et al. 2000 [8], due to its wide use in **breast cancer chemotherapy schemes**.

The model describes the factors that determine the kinetics of **Paclitaxel uptake**, **binding**, and **efflux** from cells

$$\frac{dc(t)}{dt} = \left[\frac{-A + \sqrt{A^2 + 4K_{d,m}c_m(t)}}{2} - \frac{-B + \sqrt{B^2 + 4(1 + NSB)K_{d,c}c(t)}}{2(1 + NSB)} \right] \frac{CL_f}{V_{onecell}} - k_{cellnumber}c(t)$$

where:

- *V*_{onecell} is the average cell volume
- ICN is the initial cell number
- *NSB* is the proportionality constant for non-saturable binding sites in cells
- $k_{cellnumber}$ is the rate constant for changes in cell number
- A is a function of the constant for drug binding to proteins in medium $K_{d,m}$
- B is a function of the constant for drug binding to proteins in cells
- CL_f is the clearance of free drug by passive diffusion, on a per cell basis
- c_m concentration of drug in the medium, calculated as:

$$\frac{dc_m(t)}{dt} = \left[\frac{-A + \sqrt{A^2 + 4K_{d,m}c_m(t)}}{2} - \frac{-B + \sqrt{B^2 + 4(1 + NSB)K_{d,c}c(t)}}{2(1 + NSB)} \right] \frac{CL_f ICNe^{k_{cellnumber}t}}{V_m}$$

Learning tumor growth

Learning pharmacokinetics

Chemotherapy-Surgery Sequencing

Let's consider the MCF-7 cell line dataset from Tan et al. 2015 [16] described in our Experimental setup. We use the derivations for V_{neoadj} and V_{adj} and fill in with the decoded values from the learnt tumor growth f(V) and learnt pharmacokinetics P(t,V).

Model (Biological Parameters) Log-kill hypothesis Norton-Simon hypothesis Gompertz
$$(\beta, K, \upsilon) \qquad V_{neoadj} < V_{adj} \qquad V_{neoadj} < V_{adj}$$
 CHIMERA
$$(\text{none}) \qquad V_{neoadj} < V_{adj} \qquad V_{neoadj} > V_{adj}$$
 *Holds only if $c(t) = \int_{t_0}^{t_f} c(s) ds < t_f - t_0$.

CHIMERA uses learnt tumor growth and pharmacokinetics to infer the most appropriate sequence of therapy, consistent with its mechanistic counterparts, but without extensive biological parametrization.

Chemotherapy regimen planning

Context

Chemotherapy regimens are chosen primarily based on:

- empirical data from clinical trials
- patient's form and subtype of cancer
- progression to metastases
- high-risk indications
- prognosis

Problem

Challenges in successfully **predicting the effectiveness** (i.e. size of the tumor after **neoadjuvant chemotherapy**) of any particular chemotherapy plan for any given patient **before the initiation of the regimen**.

Tumor > 2.0 cm, clinically node-positive, locally advanced, inflammatory

*

Neoadjuvant chemotherapy

Dual anti-HER2 regimens: Consider in patients with hormone receptor–negative disease and in patients with symptomatic local disease.

•T + H + pertuzumab → FEC (preferred)

or

•TCH + pertuzumab (if cardiac risk factors, other contraindications to anthracycline)

or

•P + H + pertuzumab → FEC

or

•P + H + pertuzumab → AC

or

 $T + H + pertuzumab \rightarrow AC$

Single anti-HER2 regimens

•AC → PH

or

•TCH

Surgery

Ļ

H to complete 1 yr

Tumor growth models

Growth under chemotherapy

Model instantiation

Learning unperturbed tumor growth

Experimental dataset setup

Dataset	Cancer Type	Data Type	Data Points	Data Freq.
1	MDA-MB-231 cell line	Fluorescence imaging	7	2x/week
2	MDA-MB-435 cell line	Digital Caliper	14	2x/week
3	MCF-7 cell line	Caliper	8	1x/week
4	LM2-4LUC+ cell line	Digital Caliper	10	3x/week

Learning perturbed tumor growth

Dataset/Model	SSE	RMSE	sMAPE
MDA-MB-231 cell line cancer [29]			
Logistic	7009.6	37.4423	1.7088
Bertalanffy	8004.9	44.7350	1.7088
Gompertz	7971.8	39.9294	1.7088
PERFECTO	119.3	4.1285	0.0768
MDA-MB-435 cell line cancer [15]			
Logistic	0.2936	0.1713	0.1437
Bertalanffy	0.2315	0.1604	0.1437
Gompertz	0.3175	0.1782	0.1437
PERFECTO	0.0977	0.0902	0.0763
MCF-7 cell line cancer [30]			
Logistic	3.0007	0.7072	1.0607
Bertalanffy	3.2943	0.8117	1.0607
Gompertz	3.1909	0.7293	1.0607
PERFECTO	0.7669	0.3096	0.2615
LM2-4LUC+ cell line cancer [31]			
Logistic	45.6032	2.3876	1.4816
Bertalanffy	56.0739	2.8303	1.4816
Gompertz	53.2428	2.5798	1.4816
PERFECTO	0.2009	0.1417	0.0365
I-SPY2 Trial [32]	• • • • • • • • • • • • • • • • • • • •	•••••	*******
Logistic	248.3735	11.1439	1.7833
Bertalanffy	259.0963	16.0963	1.7834
Gompertz	260.3747	11.4100	1.7883
PERFECTO	0.8650	0.4650	0.0389

PROFILE EXTRACTION
FROM CLINICAL INSIGHTS
FOR SMART INDIVIDUALIZED ONCOLOGY

Data

309 Patients, 16 Clinical Features (https://simulacrum.healthdatainsight.org.uk/)

T_BEST	N_BEST	M_BEST	AGE	ER_SCORE	PR_SCORE	MORPH_ICD10_O2_DESC	GRADE_DESC	ER_STATUS_DESC	PR_STATUS_DESC	HER2_STATUS_DESC	HISTOLOGY_DESC
2	1	0	46.00	0	0	Intraductal carcinoma, noninfiltrating/Infiltr	3 / III / POORLY DIFFERENTIATED	Negative	Negative	Positive	DUCT INFILTRATING CARCINOMA
2	0	0	83.00	8	8	Intraductal carcinoma, noninfiltrating/Infiltr	2 / II / MODERATELY DIFFERENTIATED	Positive	Positive	Negative	DUCT INFILTRATING CARCINOMA
2	3a	1	79.00	8	6	Intraductal carcinoma, noninfiltrating/Infiltr	2 / II / MODERATELY DIFFERENTIATED	Positive	Positive	Negative	DUCT INFILTRATING CARCINOMA
1c	0	0	75.00	8	8	Intraductal carcinoma, noninfiltrating/Infiltr	2 / II / MODERATELY DIFFERENTIATED	Positive	Positive	Negative	DUCT INFILTRATING CARCINOMA
1c	0	0	85.00	8	8	Lobular carcinoma	2 / II / MODERATELY DIFFERENTIATED	Positive	Positive	Negative	CA LOBULAR NOS
1c	0	0	60.00	8	6	Lobular carcinoma	2 / II / MODERATELY DIFFERENTIATED	Positive	Positive	Negative	CA LOBULAR NOS
1b	0	0	68.00	8	8	Intraductal carcinoma, noninfiltrating/Infiltr	3 / III / POORLY DIFFERENTIATED	Positive	Positive	Positive	DUCT INFILTRATING CARCINOMA
1b	0	0	75.00	0	0	Intraductal carcinoma, noninfiltrating/Infiltr	3 / III / POORLY DIFFERENTIATED	Negative	Negative	Negative	DUCT INFILTRATING CARCINOMA
1c	0	0	65.00	8	7	Lobular carcinoma	2 / II / MODERATELY DIFFERENTIATED	Positive	Positive	Negative	CA LOBULAR NOS
1c	0	0	55.00	0	0	Intraductal carcinoma, noninfiltrating/Infiltr	3 / III / POORLY DIFFERENTIATED	Negative	Negative	Negative	DUCT INFILTRATING CARCINOMA

Data

309 Patients, 16 Clinical Features

_DOSE_PER_ADMINISTRATION	REGIMEN_OUTCOME_SUMMARY ACTUAL_	MAPPED_REGIMEN	WEIGHT_AT_START_OF_REGIMEN	HEIGHT_AT_START_OF_REGIMEN
160.00	0	Trial Unspecified	77.60	1.65
200.00	0	CMF	74.00	1.57
135.00	0	Trastuzumab Subcutaneous	64.00	1.50
120.00	0	FEC 100	67.40	1.55
1000.00	0	Trastuzumab 21 day loading dose	79.00	1.72
1000.00	0	FEC + TRASTUZUMAB	73.00	1.71
142.00	0	FEC 60 OR 75 + DOCETAXEL	70.70	1.49
800.00	0	Carboplatin + Paclitaxel (3 weekly)	58.00	1.70
140.00	0	CMF IV (28 day)	119.00	1.62
800.00	0	Carboplatin + Paclitaxel (3 weekly)	62.00	1.62

Model performance

Fine tuned ensemble model (Interacting Computational Maps + XGBoost)

Model insights

Sample positive patient data

Model insights

Sample negative patient data

Probability that the patient has Toxicity

Next steps

From binary decision to toxicity levels

Include drugs QSTR (Quantitative Structure Toxicity Relation) molecular descriptor information

Quantitatively predict the clinical incidence of CIPN based solely upon molecular descriptor information from QSTR (i.e. identification that the number of aromatic nitrogens was a frequent and sensitive molecular predictor observed in the developed machine learning models of CIPN).

Drug	Incidence of Peripheral Neuropathy (Non-Transformed)
Almotriptan	2.08
Amiodarone	2.38
Gemcitabine	9.00
Aprepitant	0.50
Vinorelbine	25.00
Deterrelal	
Betaxolol	1.00
Bexarotene	1.00 0.50
_	
Bexarotene	0.50
Bexarotene Bicalutamide	0.50 3.50

Docetaxel	30.00
Doxorubicin	0.50
Dronedarone	1.33
Enalapril	0.75
Eribulin	35.98
Etoposide	1.50
Etravirine	2.80
Exemestane	0.60
Flecainide	1.08
Fludarabine	4.41
Fluoxetine	0.50

Miglustat	3.03
Nelarabine	12.00
Paclitaxel	71.00
Pazopanib	0.85
Pemetrexed	29.00
Pentamidine	0.50
Pergolide	0.50
Pomalidomide	10.28
Ponatinib	10.86
Propafenone	1.97
Ramipril	0.50

60 FDA approved anti-neoplastic drugs.

Note: 0 – 100 Scale of predicted toxicity (clinical trials I - III)

From binary decision to toxicity levels

Include Body Composition Measures (CT-based body composition analysis)

Subtype	N (%) / mean (SD)
HR positive/HER2 negative	87 (57.6)
HR negative/HER2 negative	37 (24.5)
HR positive /HER2 positive	14 (9.3)
HR negative/HER2 positive	13 (8.6)
Stage	
Stage I-II	65 (43.0)
Stage III	86 (57.0)
Treatment characteristics	
Neoadjuvant	87 (57.6)
Adjuvant	64 (42.4)
Taxane	
Paclitaxel	142 (94.0)
Carbo-Paclitaxel	4 (2.6)
Abraxane	3 (2.0)
Carbo-Docetaxel	1 (0.7)
Docetaxel	1 0.7)
Trastuzumab	27 (17.9)
Bevacizumab	2 (1.3)
g-CSF	126 (83)
Body composition measures (means)	
Skeletal Muscle Index (cm ² /m ²)	44.72 (6.86)
Skeletal Muscle Density (Hounsfield Units)	36.38 (8.88)
Skeletal Muscle Gauge (Arbitrary Units)	1612 (423)
Body Mass Index (kg/m²)	28.78 (6.5)
Body Surface Area (m ²)	1.87 (0.26)
Lean Body Mass (kg)	41.94 (5.42)
Subcutaneous fat density (Hounsfield Units)	-99.80 (6.25)

Common Terminology Criteria for Adverse Events v4.0 for Toxicity

- Grade 1 Mild;
- Grade 2 Moderate;
- Grade 3 Severe or medically significant but not immediately life threatening;
- Grade 4 Life threatening consequences;
- Grade 5 Death.

Shachar et al. Clinical Cancer Research 23.14 (2017)

A Framework for Mathematical and Computational Oncology

Interacting Computational Maps

PROFILE EXTRACTION
FROM CLINICAL INSIGHTS
FOR SMART INDIVIDUALIZED ONCOLOGY