install.packages("tm")
install.packages("wordcloud")
install.packages("e1071")
library(tm)
library(e1071)
library(e1071)
super separate of control of the co library(mlbench) install.packages("dplyr") library(dplyr) library(ggplot2) library(KernelKnn) data(ionosphere, package 'KernelKnn') help(iris) iris_dataset<-iris ionosphere = ionosphere[, -2] ionosphere = ionosphere[, -2] X = scale(ionosphere[, -c(34)]) y = ionosphere[, -(34)]) y = as.numeric(y) train.idx = sample(1:length(y), round(length(y) * 0.75)) test.idx = setdiff(1:length(y), train.idx) library(reshape2) data("BostonHousing") housing <- BostonHousing View(iris_dataset) head(iris_dataset,7) sms_spam_df < read.csv(file="E:\\sms_spam.csv",stringsAsFactors=F)
View(sms_spam_df)
str(sms_spam_df) str(housing) colnames(iris_dataset)<-c("Sepal.Length","Petal.Width","Petal.Length","Petal.Width housing %>% ggplot(aes(x = medv)) +sms_corpus <-VCorpus(VectorSource(sms_spam_df\$text)) "Species") train.labels = y[train.idx] test.labels = y[train.idx] head(iris dataset.5) stat_density() + labs(x = "Median Value (\$1000s)", y = print(sms corpus) print(sms_corpus)
inspect(sms_corpus[1:2])
inspect(sms_corpus[1:2])
inspect(sms_corpus_corpus, content_transformer(tolower))
clean_corpus <- tm_map(clean_corpus, removeNumbers)
clean_corpus <- tm_map(clean_corpus, removeNumbers)
istopwords()[1:15]
clean_corpus <- tm_map(clean_corpus, removeWords, stopwords()]
istopwords()[1:15]
clean_corpus <- tm_map(clean_corpus, removeWords, stopwords())
clean_corpus <- tm_map(clean_corpus, stripwhitespace) "Density", title = "Density Plot of Median Value House Price in Boston") + library(caret) createDataPartition(iris_dataset\$Species, p=0.80, list=FALSE)
testset <- iris_dataset[-index,]
trainset <- iris_dataset[index,] theme_minimal() accuracy = function (y_true, preds) { out = table(v true max.col(preds, ties.method =
"random"))
acc = sum(diag(out))/sum(out) summary(housing\$medv) housing %>% select(c(crim, rm, age, rad, tax, lstat, medy)) %>% select(c(crim, rm, age, rad, tax, lstat, medy)) %>% ggplot(aes(x = value, y = medy, colour = variable)) + geom_point(alpha = 0.7) + geom_point(alpha = 0.7) + facet_wrap(-variable, scales = "free", med = 7) + facet_wrap(-variable, scales = 7) + facet_wrap(-variable, scales = 7) + facet_wrap(-variable, scales = 7) + facet_wrap(-vari acc predictions = KernelKnn(train, test, clean_corpus <- trn_map(clean_corpus, stripWhitespace) inspect(clean_corpus[1:3]) sms_dtm <- DocumentTermMatrix(clean_corpus) str(sms_dtm) train.labels, k = 5, method = 'euclidean', weights_function = NULL, levels(trainset\$Species) hist(trainset\$Sepal.Width) regression = F. spam_indices <- which(sms_spam_df\$type == ncol = 2) + labs(x = "Variable Value", y = "Median House Price (\$1000s)") + Levels = unique(y)) par(mfrow=c(1,4)) "spam")
ham_indices <- which(sms_spam_df\$type == "ham") acc = accuracy(test.labels, predictions)
paste('Accuracy is ', acc)
predictions = KernelKnn(train, test, ham_indices < which(sms_spam_df8ype == "ham") wordcloud(clean_corpus[ham_indices], min.freq=40) wordcloud(clean_corpus[ham_indices], min.freq=40) sms_raw_train < sms_spam_df11:4169.] sms_raw_test < sms_spam_df1470:5559.] sms_dtm_train < sms_dtm[1:4169.] sms_dtm_test < sms_dtm[4170:5559.] sms_corpus_train < clean_corpus[1:4169] sms_corpus_train < clean_corpus[1:4169] sms_corpus_test < clean_corpus[1:4169] sms_corpus_test < clean_corpus[1:4169] sms_corpus_test < clean_corpus_test < c for(i in 1:4) { boxplot(trainset[,i], main=names(trainset)[i]) theme_minimal() library(ggplot2) library("caret") train.labels, set.seed(123) #random number k = 10. g <- ggplot(data=trainset, aes(x = Petal.Length, y = Petal.Width)) method = 'canberra',
weights_function =
'epanechnikov', retal.wtmn) print(g) g <-g + geom_point(aes(color=Species, shape=Species)) + xlab("Petal Length") + ylab("Petal Width") + geom_smooth(method="lm") reint(a) to_train <- createDataPartition(y = housing\$medv, p = 0.75, list = FALSE) regression = F, Levels = unique(y)) acc = accuracy(test.labels, predictions) to_test<-createDataPartition(y=housing\$medv, p=0.25,list=FALSE) train <- housing[to_train,] test <- housing[to_test,] knn = KernelKnnCV(X, y, k = 9, folds = 5, method = 'canberra', 5)
sms_train <- DocumentTermMatrix(sms_corpus_train, control=list(dictionary = five_times_words))
sms_test <- DocumentTermMatrix(sms_corpus_test, control=list(dictionary = five_times_words)) print(g) $first_lm <- lm(\ medv \sim crim \ +rm \ +tax \\ +lstat, \ data = train)$ print(g)
box <- ggplot(data=trainset, aes(x=Species,
y=Sepal.Length)) +
geom_boxplot(aes(fill=Species)) +
ylab("Sepal.Length") + lm1_rsqu control=list(dictionary control=list(
five_times_words))
convert_count <- function(x) {
 y <- ifelse(x > 0, 1,0) summary(first_lm)\$r.squared ggtitle("Iris Boxplot") + stat summary(fun.y=mean, geom="point", shape=5, print(paste("First linear model has an r-squared value of ", round(Im1_rsqu, 3), c = neise(x > 0, 1,0)
v <- factor(y, levels=c(0,1), labels=c("No", "Yes"))</pre> print(box) unlist(lapply(1:length(knn\$preds), second_lm <- lm(log(medv) ~ crim +rm library(ggthemes) function(x)
accuracy(y[knn\$folds[[x]]], library(ggthemes)
histogram <- ggplot(data=iris, aes(x=Sepal.Width)) +
geom_histogram(binwidth=0.2, color="black",
aes(fill=Species)) +
xlab("Sepal Width") +
ylab("Frequency") +
ggtitle("Histogram of Sepal Width")+
theme_conomist()
print(histogram) sms_train <- apply(sms_train, 2, convert_count) sms_test <- apply(sms_test, 2, convert_count) + tax +lstat, data = 1 lm2 rsqu <knn\$preds[[x]]))) im2_rsqu <summary(second_lm)\$r.squared
print(paste("Our second linear model has
an r-squared value of ", round(lm2_rsqu,
3), sep = ""))</pre> sms_classifier <- naiveBayes(sms_train, paste('Accuracy is ', mean(acc_cv))
paste('Accuracy is ', acc) sms_classiner<- naiveBayes(sms_train, factor(sms_raw_train\$type)) sms_test_pred<- predict(sms_classifier, newdata=sms_test) k=table(sms_test_pred, sms_raw_test\$type) abs(mean(second_lm\$residuals)) .. $accuracy = sum(diag(k))/sum(k)*100 \\ accuracy$ library(ggthemes)
facet <- ggplot(data=trainset, aes(Sepal.Length, y=Sepal.Width, color=Species))+
geom_point(aes(shape=Species), size=1.5) +
geom_smooth(method="lm") +
ylab("Sepal Length") +
ylab("Sepal Width") +
ggtitle("Faceting") +
theme fivethirtovight() + predicted <- predict(second_lm, newdata = test)
results <- data.frame(predicted = exp(predicted), original = test\$medv) results %>% ggplot(aes(x = predicted, y = original)) theme_fivethirtyeight() + facet_grid(. ~ Species) # Along rows geom_point() + geom_point() +
stat_smooth() +
labs(x = "Predicted Values", y =
"Original Values", title = "Predicted vs.
Original Values") +
theme_minimal() print(facet) 'p;;;o'