Fizika - ne rizika: Trumpas įvadas į rizikos fiziką

Aleksejus Kononovičius

VU Teorinės fizikos ir astronomijos instituto doktorantas, aleksejus.kononovicius@gmail.com

2012-10-18

Fizika ir socialiniai mokslai

Fizika:

- valdomi eksperimentai
- dalelės negyvos
- empirinė analizė
- tikslas suprasti ir paaiškinti

iš paprastų į sudėtingus

Socialiniai mokslai:

- nevaldomi eksperimentai
- dalelės gyvos
- bendros idėjos
- tikslas sprendimai

(ne)laimei sudėtinga

Eksperimentai - biologija I

Bandos jausmas - skruzdės prieš žmones

Eksperimentai - biologija II

Lyderystė gyvūnų kolonijose

Eksperimentai - biologija III

Lyderystė: žmonių eksperimentas

Išvada: 200 žmonių buvo nuvesti "kur reikia" vos 10 lyderių.

Eksperimentai - biologija IV

Kapucino požiūris į nelygybę

Frans de Waal pranešimo ištrauka (http://youtube.com/watch?v=g8mynrRd7Ak).

Eksperimentai - finansai I

Tiesiog eksperimentai biržoje galėtų kainuoti kiek per daug...

Dalyviai žino kokybinę informaciją apie rinką, kad kaina nustatoma sąžiningai, praeities istoriją. Dalyviai negali tarpusavyje bendrauti. Sėkmingi dalyviai gauna atlygį.

Eksperimentai - finansai II

O kaip jame sekėsi ekonomistams?

Frydmano hipotezė: "Iracionalūs agentai praras visus pinigus ir bus išvaryti iš rinkos racionalių agentų."

Eksperimentai ir **empirinė analizė** - eismas I

Daug nevaldomų eksperimentų kartais atstoja valdomą

Eksperimentai ir empirinė analizė - eismas II

Elementarus modelis sukonstruotas iš duomenų ir jo papildymas eksperimentu

Eksperimentai ir empirinė analizė - eismas III

Automobiliniai kamščiai

Empirinė analizė - skirstiniai I

Pareto principas ir Zipfo dėsnis: turtas, miestų ir ežerų dydis, nusikalstamumas

Empirinė analizė - skirstiniai II

Tik keli pavyzdžiai iš finansų rinkų...

$$r(t) = \ln P(t) - \ln P(t - \Delta t)$$

Sandorių skaičius per 5 min

Didelio sužadinimo trukmės

Didelių sužadinimų "dydžiai"

Empirinė analizė - dinamika

Ilga atmintis arba rožinis triukšmas arba 1/f triukšmas

Ilga atmintis:

$$C(\tau) \sim \tau^{-\gamma}, \quad \gamma \to 0.$$

$$S(f) = |\mathcal{F}[x(t)]|^2 \sim f^{-\beta}, \quad \beta \approx 1.$$

Stochastinis modeliavimas I

Kas tai? Kam to reikia?

Trumpa istorija:

- 1827 m. R. Browno stebėjimai,
- 1900 m. L. Bachelier "Theory of speculation",
- 1905-1906 m. Einšteinas ir Smoluchovskis
- 1908 m. J. Perrin eksperimentas

"Gražus" deterministinis modelis:

$$M\ddot{x}_0 = -F(x_0, \dot{x}_0) + \sum_{i=1}^N F_i(x_0, x_i, \dot{x}_0, \dot{x}_i).$$

O jei N yra 10^{23} eilės? Nepraktiška! Stochastinis modelis:

$$M\ddot{x} = -F(x_0, \dot{x}_0) + \xi(t), \quad \Rightarrow \quad dx = f(x, t)dt + g(x, t)dW.$$

Stochastinis modeliavimas II

Ką nuveikė mūsų grupė? Universalus 1/f modelis.

Prasminga išmesti priklausomybę nuo laiko:

$$dx = f(x)dt + g(x)dW.$$

Viena sąlyga dėl skirstinio:

$$\frac{\partial_x p(x)}{p(x)} = 2 \left[\frac{f(x)}{g^2(x)} - \frac{\partial_x g(x)}{g(x)} \right].$$

Antroji sąlyga yra spektrinis tankis. Formaliai neužrašoma.

Rezultatas:

$$dx = \left(\eta - \frac{\lambda}{2}\right) x^{2\eta - 1} dt + x^{\eta} dW.$$

$$p(x) \sim x^{-\lambda}$$
, $S(f) \sim 1/f^{\beta}$, $\beta = 1 + \frac{\lambda - 3}{2(\eta - 1)}$

Stochastinis modeliavimas III

Ką nuveikė mūsų grupė? Sudėtingesnis modelis.

$$dx = \left(\eta - \frac{\lambda}{2} - \frac{x^2}{x_{max}^2}\right) \frac{\left(1 + x^2\right)^{\eta - 1}}{\left(1 + \epsilon\sqrt{1 + x^2}\right)^2} x dt + \frac{\left(1 + x^2\right)^{\frac{\eta}{2}}}{1 + \epsilon\sqrt{1 + x^2}} dW.$$

Stochastinis modeliavimas IV

Ką veikia mūsų grupė? Didelių sužadinimų statistika.

Agentų modeliavimas I

Kas tai? Kam to reikia?

Fizikoje sąveikauja dalelės, socialinėse sistemose žmonės. Kurdami modelius mes juos supaprastiname, o tuos supaprastinimus bendrai galėtume vadinti **agentais**.

Stochastiniai modeliai - atkuria dinamiką, bet vienareikšmiškai nepaaiškina vyksmo!

Agentų modeliavimas II

Kas daroma? Esminė kryptis - mikroskopinis paaiškinimas

- fizikinių modelių taikymai,
- elementarių modelių kūrimas ir taikymas,
- empirinių pastebėjimų taikymai,
- dirbtiniai neuronų tinklai,
- genetinis apmokymas.

Agentų modeliavimas III

Ką veikia mūsų grupė? Kirmano agentų modelio taikymai I

Elementarus matematinis modelis:

$$\begin{array}{lcl} p(X \rightarrow X+1) & = & [(N-X)\sigma_1 & + & hX(N-X)]\Delta t, \\ p(X \rightarrow X-1) & = & [X\sigma_2 & + & hX(N-X)]\Delta t. \end{array}$$

Jei maisto šaltinius laikyti prekybos strategijomis, tai:

$$dy = \left[\varepsilon_1 + y \frac{2 - \varepsilon_2}{\tau(y)}\right] (1 + y) dt_s + \sqrt{\frac{2y}{\tau(y)}} (1 + y) dW_s.$$

Agentų modeliavimas IV

Ką veikia mūsų grupė? Kirmano agentų modelio taikymai II

Tinklų modeliavimas I

Kas tai? Kam to reikia?

- Kaip sparčiai paplis liga?
 Kaip efektyviai stabdyti jos plitimą?
- O kaip informacija? Kokia geriausia jos paskleidimo strategija?
- Kas nutiks, jei vienas sistemos elementas žlugs?
 Sistema atlaikys ar irgi žlugs?

Tinklų modeliavimas II

Pavyzdžiai - transportas

Tinklų modeliavimas III

Visuomenės organizacija

Tinklų modeliavimas IV

Konkreti problema - LPL problema

Kodėl LPL yra ir civilizuoto pasaulio rykštė? Juk dauguma žmonių turi iki 6-12 partnerių per visą gyvenimą.

Lemiamą vaidmenį suvaidina tinklo struktūra - didieji tinklo mazgai.

FuturICT - rizikos fizikos (ir viso pasaulio) ateitis?

"Šiandien apie visata mes žinome daugiau nei apie visuomenę. Yra pats laikas pradėti naudoti sukauptos informacijos galia tirti socialinį ir ekonominį gyvenimą Žemėje ir atrasti darnios plėtros ateityje galimybes. Derindami geriausius pažinimo rezultatus kartu mes galime įveikti XXI amžiaus iššūkius." (FuturICT šūkis)

http://www.futurict.eu http://www.futurict-baltic.eu http://www.futurict.lt

Ačiū už dėmesį

aleksejus.kononovicius@gmail.com

http://mokslasplius.lt/rizikos-fizika, http://futurict.lt

