طبعیا __ کے اصول

حنالد حنان يوسفزني

حبامع کامسیٹ، اسلام آباد khalidyousafzai@hotmail.com

۲۰۲۸ جنوری۲۰۲۴

عسنوان

v	پہلی کتاب کادیب حب	مڀري؛
1 2 9 1+		ا پیر ۱.۱ ۲.۱
19 rm	توانائی اور توانائی کی بقب ۱.۰.۲ طب اقت	۲ مخفی
m1 m1 mm m0	سر کز کمیت اور خطی معیار حسر کت ایک بُعد مسیں کی تصادم ۱ و وابع د مسیں تصادم	1.M r.m
4m 4m 49 2m 24 Am	ا خطی اور زادی متغیب رات کارشته ۱ مینان مینان مینان کارشته	مگر ۴ ۱.۴ ۲.۴ ۳.۴ ۴.۴
۸۷		جوابات

باب

گھ**ے**او

ا بم گھماوے متغییر

مو• اصر ،

اس حسبہ کو پڑھنے کے بعب آیے درج ذیل کے متابل ہوں گے۔

- ا. حبان پائیں گے اگر جم کے تمام ھے ایک محور کے گر دہم وقد م گومسیں، بہ استوار جم ہوگا۔ (اسس باب مسیں ایسے احسام پر گفتگو کی حبائے گا۔)
 - ۲. حبان پائیں گے کہ اندرونی حوالہ لکسیہ راور مقسر رہ بسیہ رونی حوالہ ککسیہ رکے ﷺ زاویہ ، استوار جم کازاویاتی مصام دیگا۔
 - ۳. ابت دائی اور انتقامی زاویاتی معتام کازاویاتی ہاوے ساتھ تعلی استعال کرپائیں گے۔
 - ۴. اوسط ذاوی مستی رفت از ، زاوی ہٹاو ، اور ہٹا و کو در کار دورانے کا تعسلق استعمال کریائیں گے۔
 - ۵. اوسط زاوی اسسراع، زاوی مستی رفت ار مسین تب یلی، اور اسس تب یلی کو در کار دورانیے کا تعساق استعال کرپائیں گے۔
 - ۲. حبان یائیں گے کہ حنلان گھٹری حسر کے مثبت رخ اور گھٹری دار حسر کت منفی رخ ہوگا۔
- 2. زادی معتام کو وقت کانف عسل حب نتے ہوئے، کسی بھی لیمے پر لمحساتی زادی سسمتی رفت ار اور دو مختلف وقت ول کے ﷺ اوسط زادی سسمتی رفت ارتعبین کریائیں گے۔
- ۸. زاوی معتام بالمقابل وقت کی ترسیم ہے کئی بھی لیے پر لھے آتی زاوی سنتی رفت ار اور دو مختلف و مستوں کے ﷺ اوسط زاوی سنتی رفت ارتصین کریا ئیں گے۔
 - 9. حبان پائیں گے کہ لمحساتی زادی مستی رفت ارکی ت در لمحساتی زادی رفت ارہو گا۔

باب ۲۰. گھماو

اور دو مختلف وقت کاتف عسل حبائے ہوئے، کسی بھی لمحے پر لمحت تی زاوی اسسراع اور دو مختلف و مستول کے نی اوسط
 زاوی اسسراع تعسین کریا ئیں گے۔

- اا. زاوی سنتی رفت اربالقابل وقت کی ترسیم ہے کسی بھی کھے پر لھے تی زاوی اسسراع اور دو مختلف وتستوں کے ﷺ اوسط زاوی اسسراع تعسین کریائیں گے۔
 - ۱۲. وقت کے ساتھ زادی اسراع تف عسل کا تکمل لے کر جسم کی زادی سستی رفت ارمسیں تب یلی تعسین کر پائیں گے۔ وقت کے ساتھ زادی سستی رفت ارتف عسل کا تکمل لے کر جسم کے زادی معت مسیس تب یلی تعسین کریا مکیں گے۔

كلب دى تصور

• مقسررہ محور، جو محور گھماو کہاتی ہے، کے گرد استوار جم کا گھماو ہیان کرنے کی مناطسر، جم کے اندر محور کو عصودی حوالہ لکیسر منسرض کی حباتی ہم جو جم کے ساتھ ہم متدم محور کے گرد گھومتی ہے۔ ایک مقسررہ رخ کے ساتھ اس ککیسرکاذاوی معتام θ نایاحباتا ہے۔ جب θ کی پیسائٹس ریڈیئن مسین ہو، ذیل ہوگا،

$$\theta = \frac{s}{r}$$
 (ریڈیمن ناپ

جہاں رداسس au کے دائری راہ کا توسی فناصلہ au اور ریڈینن مسین زاویہ au ہے۔

• زاوے کی درجہ مسیں اور حیکر مسیں پیسائٹس کاریڈیئن پیسائٹس سے تعالی ذیل ہے۔

ريڙينن
$$2\pi=360^\circ=1$$

ایک جیم جو محور گلمب و کور گلم کر این زادی معتام $heta_1$ سے تبدیل کر کے $heta_2$ کرے، ذیل زاوی ہٹ او سے گزر تاہے، $\Delta heta = heta_2 - heta_1$

جباں حنلانے گھٹڑی گھماوے لئے مفی ہوگا۔ جباں حنلانے گھٹڑی گھماوے لئے مفی ہوگا۔

• اگرجیم Δt دورانی مسین $\Delta \theta$ زادی سٹاو گھوہے، اسس کی اوسط زاوی ستی رفت ارول سے نام ہوگا۔

$$\omega_{\text{b.s.}} = \frac{\Delta \theta}{\Delta t}$$

جسم کی (لمحاتی) زاوی مستی رفت ار س ذیل ہوگا۔

$$\omega = \frac{\mathrm{d}\theta}{\mathrm{d}t}$$

اوسط زاوی سنتی رفتار اوس اور سنتی رفتار سن دونوں سنتی معتادیر ہیں، جن کا رخ دایاں ہاتھ صاعب ہ دیگا۔ حضاوت گھٹوی گھٹوں کی اور گھٹوں کی وار گھٹوں کی وار گھٹوں کی وار گھٹوں کی داوی سنتی رفتار کی و تدرجسم کی زادی رفتار ہوگا۔

۱٫۸٫ گھے وکے متغیبر

ا اگر ω_1 با کر ورانیہ میں جم کی زاوی سنتی رفت اور ω_1 بی بین جم کی زاوی سنتی رفت اور ω_2 بوء اسس کا اوسط زاوی استراغ اوسط نظی ہوگا ہوگا۔

$$lpha_{\mathrm{left}} = rac{\omega_2 - \omega_1}{t_2 - t_1} = rac{\Delta \omega}{\Delta t}$$

جسم کا(لمحاتی)زاویاسسراع α ذیل ہوگا۔

$$\alpha = \frac{\mathrm{d}\omega}{\mathrm{d}t}$$

اور α دونوں مستی معتاد پر ہیں۔

طبعیات کیاہے؟

جیب ہم پہلے ذکر کر چے، طبیعیات کی توجہ کا ایک مسر کز "حسر کیات" "ہے۔ تاہم، اب تک ہم صون متقیم حرکتے پربات کرتے رہے ہیں، جس مسیں جم سید ھی یاقوی لکب رپر حسر کت کر تاہے (شکل 10-10)۔ اب ہم گھاویر نظر رڈالتے ہیں، جس مسیں جم کی محور کے گرد گھومت ہے (شکل 1b.10)۔

گھاو تقسر بیباً ہر مشین مسین نظر آتا ہے، اور جب آپ دروازہ کھولتے ہیں آپ اسس کو دیکھتے ہیں۔ کھیل مسین گھاواہم کردار اداکر تا ہے، جیبا گیند کونیادہ دور چھیکنے کے لئے (گھومتے گیند کو ہوازیادہ دیر اٹھا کر سسکتی ہے)، اور کر کرئے مسین گیند توسی راہ پر چھیکنے کے لئے (گھومتے گیند کو ہوا دائیں یا بائیں دھکسیاتی ہے)۔ گھاو زیادہ اہم مسائل، جیبا عمسر رسیدہ ہوائی جہاز مسین جھی کلسیدی کردار اداکر تا ہے۔

گھاو پر بحث ہے قبل، حسر کت مسیں ملوث متغیرات متعداد نے کرتے ہیں، جیب ہم نے باب 2 مسیں مستقیم حسر کت پیں، جیب ہم نے باب 2 مسیں کے مسین مستقیم حسر کت پر بحث ہے قبل کیا۔ ہم دیکھتے ہیں کہ گھاو کے متغیرات عسین باب 2 مسیں یک اُبعدی حسر کت کے متغیرات کی طسر تاہیں؛ ایک اہم خصوصی صورت وہ ہے جبال اسراع (جو یہال زاوی اسراع ہوگا) مستقل ہو۔ ہم دیکھتے ہیں نیوٹن کا دوسر اوت عدہ زاوی حسر کت کے لئے بھی لکھا جباسات ہم اب قوت کی بجب کے ایک نئی متدار جو قوت مسروڑ کہا اور کام و حسر کی توانائی مسئلے کا اطاق بھی گھاو حسر کت پر کیا حبال کی متدار جو تو مت میں ہوگا، تاہم کھی بڑھ جی پڑھ جی کھی استعال کرنا ہوگا۔ چھی بڑھ جی کھی خود کہ ساتھ ہی گھاو حسر کت بیش کا ایک متعدار ہو زادی جود کہ اتنا ہم معمولی تبدیل کی خور در سے بیش آئے گی۔

انتباہ: اگر حب اسس باب مسین زیادہ تر حق اُق محض دوبارہ پیش کے گئے ہیں، دیکھ سے گئے ہیں جو طلب وط الب سے دو پر اتف اَق کو اسس باب مسین د شواری پیش آتی ہے۔ استذہ کرام اسس کی کئی وجو بات پیش کرتے ہیں جن مسین سے دو پر اتف اَق پایا جب اتا ہے: 1 یہ اِن عسلامت کی تعداد بہت زیادہ ہے (جنہ میں یونائی حسرون مسین لکھ کر مشکل مسین مسندید امن است ہوتا ہے)، اور 2 آپ خطی حسر کت سے زیادہ واقف ہیں (ای لئے کسرے کے ایک کونے سے دوسرے کونے تک آپ باآپ نی حب سے ہیں)، لیکن گھی او سے آپ کاواسط کم رہا ہے (ای لئے تفسری گاہ مسین دوسرے کونے تک آپ باآپ نی حب سے ہیں)، لیکن گھی او سے آپ کاواسط کم رہا ہے (ای لئے تفسری گاہ مسین آپ تفسری گھی جولے پر موار ہونے کے لئے راضی ہوتے ہیں)۔ جب ان آپ کو دشواری ہو، دیکھ میں آپ

با___ ۴. گھساو 44

مسئلے کوماے 2 کا یک بُعدی خطی مسئلہ تصور کرنے آسانی پیدا ہوتی ہے۔مشلاً،اگر آپ سے زادی مناصلہ معلوم کرنے کو کہا حبائے، وقت میں طور پر لفظ زادی کو بھول حبائیں اور دیکھیں آیاباہے کی ترقیم اور تصورات استعمال کرتے جو اب حساس کرنا آسان ہو تاہے۔

تھمیاوے متغب

ہم مقسررہ محور پر استوار جم کے گھماد پر غور کرناحیاہتے ہیں۔ استوار جمم اے مسرادوہ جم ہے جس کے ہمام ھے، جسم کی شکل وصورت تب بل کیے بغیبر، ہم ت م گوم سکتے ہیں۔مقررہ محمور 'سے مسراد وہ محورے جو حسر کت نہیں کرتی اور جس پر گھوماحب سکتا ہے۔ یوں ہم ایسے جسم پر غور نہیں کریں گے جیب سورج (جو گیسس کا کرہ ہے) جسس کے بھے ایک ساتھ حسرکت نہیں کرتے۔ ہم زمین پر اڑھکتے گیٹ دکی بھی بات نہیں کرتے چونکہ اسس کی محور خود حسر کت پذیرے (الی گین د کی حسر کت، گھیاواور متقیم حسر کت کاملاہ ہے)۔

شکل 2.10مسیں مقسر رہ محوریر، جو محور گھا**و تا گھاو کی محو**ر کہلاتی ہے، اختیاری شکل کااستوار جم گھوم رہاہے۔ حسٰالص گھساو (زاوی حسر کت)مسیں، جسم کاہر نقط۔ ایسے دائرہ پر حسر کت کرتا ہے، جس کامسر کز محور گھساویر واقع ہے،اور ہر نقطہ کسی مخصوص وقت تی وقف مسیں ایک جتنازاو ہے طے کر تا ہے۔ حنالص متنقیم حسر کت (خطی حسر کت)مسیں، جہم کاہر نقطے کسی مخصوص وقت تی دورانپ مسیں ایک جتنا خطی ف صلہ طے کر تاہے۔

آئیں باری باری خطی معت ادیر معت ام، ہیاو، سستی رفت ار، اور اسسراع کے ممیاثل زاوی معت ادیریر غور کرتے ہیں۔

زاوی مفتام

مشکل 2.10مسیں گھاوکو عصودی، جسم کے ساتھ گھومتی، جسم سے بکی حبٹری حوالہ ککسیدر دکھائی گئی ہے۔ کسی مقسررہ رخ کے س تھ، جس کوہم صفر زاورہ مقام ممانع ہیں، اسس ککسیر کازاویہ لکسیر کا زاورہ مقام مہوگا۔ شکل 3.10مسیں محور x کے مثبت رخ کے ساتھ زاوی معتام heta نایا گیاہے۔ ہند سہ سے ہم حبانتے ہیں درج ذیل ہوگا۔

$$(r_{\cdot l})$$
 $\theta = \frac{s}{r}$ (پیرنیکن ا

یہاں محور X (جو صف رزادی معتام ہے) سے حوالہ ککی رتک دائری قوسس کی لمبائی 8 ،اور دائرے کار داسس ۲ ہے۔ اسس طسرت تعسین کب اگسیازاوہ، در حب یاحب کر کی بحبائے، ریڈ پائین اسسین نایاحبا تاہے۔ ریڈ بیئن دولمب ائیول کی نسبت (تق بلی تعساق) ہے البیذا ہے بے بُعد منالص عبد د ہو گا۔ دائرے کامچیلہ 2πr ہے البیذاایک مکسل دائرے مسین 2π

> rigidbody fixedaxis' rotationaxis

zeroangularposition

angularposition

radian

۱٫۲۹٫ گھماوکے متغییر

ریڈینن ہوں گے۔

$$(\mathbf{r},\mathbf{r})$$
 $\mathbf{r} = 360^\circ = \frac{2\pi r}{r} = 2\pi r$ دينين 2π

يا

$$(r.r)$$
 $1 = 57.3^{\circ} = 0.159$ $1 = 57.3^{\circ}$

محور گھماہ پر حوالہ لکسیسر کی مکسل حپکر کے بعب ہم θ واپس صف رنہ میں کرتے۔اگر حوالہ لکسیسر صف رزاوی معتام ہے ابت داکر کے دو حپکر مکسل کرے، لکسیسر کازادی معتام $\theta = 4\pi$ ریڈ مین ہوگا۔

محور x پر حنائص مستقیم حسرک کے لئے x(t) ، یعنی مصام بالمقابل وقت، حبانے ہوئے ہم حسرک پذیر جم کے بارے مسیں وہ سب کچھ مصاوم کر سکتے ہیں جنہ میں حبانت مقصود ہو۔ ای طسرح، حنائص گھساو کے لئے $\theta(t)$ ، یعنی زاوی مصام بالمقابل وقت، حبائے ہوئے ہم گھومتے جم کے بارے مسیں وہ سب کچھ مصاوم کر سکتے ہیں جنہ میں حبانت مقصود ہو۔

زاوی هساو

اگر سشکل 3.10 کا جسم محور گھے۔ و پر سشکل 4.10 کی طسر ج گھوم کر حوالہ ککسیسر کازادی معتام θ_1 سے تبدیل کرکے θ_2 کرے، جسم کا زادی ہناو $\Delta \theta$ ذیل ہوگا۔

$$\Delta\theta = \theta_2 - \theta_1$$

زاوی ہٹاو کی ہے تعسریف سے صرف استوار جم بلکہ جم کے ہراندرونی ذرہ کے لئے درست ہے۔

گھویا ہے منفی میں ہور x پر مستقیم حسر کت کی صورت مسیں جم کا ہوا و Δx مثبت یا منفی ہوگا، جو ، کور پر جم کی حسر کت کے رخ پر مخصص ہے۔ ای طسر ہ، گھماو کی صورت مسیں جم کا زاوی ہیاو $\Delta \theta$ درج ذیل متاعبدہ کے تحت مثبت یا منفی ہوگا۔

ت عبده ۲۰۱۱ حنلان گھٹری زاوی ہٹاومثبت اور گھٹری وارہٹ اومنفی ہوگا۔

" گھسٹریال منفی ہیں" کا فعت ماس ت عدے کویادر کھنے مسیں مدد دے سکتا ہے۔ یاد رہے گھسٹری کے سسکنٹر کی سوئی کاہر ت م آپ کی زندگی کا ٹتی ہے۔

آزمائشسا

 باب ۲۰. گلماو

زاوی سستی رفت ار

منسرض کریں ایک جم وقت t_1 پر زاوی معتام θ_1 پر اور وقت t_2 پر زاوی معتام θ_2 پر ہو، جیب ششکل 4.10 مسیں دکھایا گیا ہے۔ ہم t_1 تا t_2 وصتی دورانی Δt مسیں جم کی اوسط زاوی سمتی رفتار کا ایسا کی تعسریف ذیل کرتے ہیں،

$$\omega_{\text{lost}} = \frac{\theta_2 - \theta_1}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}$$

جبال وقت دورانیہ Δt مسیں زاوی ہناو $\Delta \omega$ ہے۔ (زاوی سمتی رفت ارکے لئے یونانی حسرون جبی کا، چوٹی تکھائی مسیں ، آمنسری حسرت اومیگا سے استعال کیا حبائے گا۔) مساوات Δt مسیں Δt مسنسرے و تسریب تر کرنے نیست کی درج ذیل تحدیدی قیت حساس ہو گیجو کمجاتی زاور سمتی رفتار ω (یا مختصراً زاور سمتی رفتار) کہ بالتی ہے۔

$$\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{\mathrm{d}\theta}{\mathrm{d}t}$$

 $\theta(t)$ معلوم ہو،اسس کا تفسر ق لے کرزاوی سمتی رفت ار $\theta(t)$

چونکہ اسس جسم کے تمام ذرہے ہم متدم ہیں، لہذامساوات ۵.۴ اور مساوات ۲.۴ ناصرف مکسل گھومتے استوار جسم کے بلکہ جسم کے برزرے کے لئے درست ہیں۔ زادی سسمتی رفتار کی عصوی مستعمل اکائی ریڈیئن فی سیکنڈ (rad s⁻¹)، حرکر فی سیکنڈ (rad s⁻¹)، حرکر فی سیکنڈ (وحیکر فی منہ ہے۔

تحور x پر مثبت رخ حسر کت کرتے ہوئے ذرے کی مستی رفتار v مثبت جب منفی رخ حسر کت کی صورت مسیں منفی ہوگی۔ ای طسرح محور پر مثبت رخ (حسان شحت گھٹڑی) گھساو کی صورت مسیں استوار جسم کی زاوی مستی رفتار مثبت منفی رخ آب منفی ہوگی۔ ("گھٹڑیاں منفی ہیں"اب بھی درست ہے۔)زاوی مستی رفتار کی میں منفی ہوگی۔ ان کی میں عسامت استعال کریںگے۔
کی صدر ز**اوی رفتا**ر مجمعی اتق ہے۔ ہم زاوی رفتار کے لئے بھی میں عسامت استعال کریںگے۔

زاوی اسسراع

گوتے ہوئے جسم کی زاوی سمتی رفت ارمنتقل ہے ہونے کی صورت مسیں جسم زاوی اسراع ہے دو حیار ہوگا۔ فنسر ض کریں وقت ہوئے جسم کی زاوی سمتی رفت اور ω_1 اور ω_2 پر ω_2 ہونے وردانیہ ω_1 تا ω_2 مسیں گومتے ہوئے جسم کی اوسط زاوی اسراع اور ω_1 ہور اور ω_2 ہوردانیہ اسراع اور ω_2 کی تعسر ینسے ذیل ہے،

$$\alpha_{\text{\tiny b-yl}} = \frac{\omega_2 - \omega_1}{t_2 - t_1} = \frac{\Delta \omega}{\Delta t}$$

averageangularvelocity²

instantaneous angular velocity A

angularspeed

averageangularacceleration'*

ا بم. گھماو کے متغیر

جباں ی Δω زادی سمتی رفت رمسیں Δt کے دوران تبدیل ہے۔ لمحاتی زاوی اسراع "(یا مخصد اً زاوی اسراع)، جس کے میں زیادود کچی ہے۔ کے میں زیادود کچی ہے۔ کے میں زیادود کچی کے کہ ہیں۔

$$\alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{\mathrm{d}\omega}{\mathrm{d}t}$$

مساوات 2.4 اور مساوات ۴.۸ جم سے ہر ذرے کے لئے درست ہیں۔ زاوی اسسراع کی عصومی مستعمل اکائی ریڈیٹن فی مسر بح مسکینڈ (rad s⁻²) اور حبکر فی مسر بع مسکینڈ ہے۔

نمونی سوال ۴۰۱۱ زاوی مقام سے زاوی سمتی رفتار کا حصول

سشکل 5a.10 مسیں مت رص اپنے وسطی محور کے گر د گھوم رہاہے۔ مت رص پر حوالہ لکسیسر کازاوی معتام $\theta(t)$ ذیل ہے، جہاں t اور θ بالت رتیب سسکنڈ اور بیڈیئن مسیں ہیں، اور صف رزاوی معتام سشکل مسیں د کھیایا گیاہے۔ θ

$$\theta = -1.00 - 0.600t + 0.250t^2$$

x استعال کر کے مسئلے کو باب دی ہور پر لفظ "زاوی معتام" سے "زاوی" حنارج کر کے اور θ عسلامت کی جگ x استعال کر کے مسئلے کو باب x کو باب x کو باب x کی کیس بعدی حسر کست کے معتام کی مساوات حساصل ہو گا۔)

(۱) مت رص کازادی معتام بالمقابل وقت $t=-3.0\,\mathrm{s}$ تا $t=5.4\,\mathrm{s}$ تا کالادی معتام کی حوالہ کا معتام کی حوالہ کا دری معتام کی حوالہ کا معتام کی حوالہ کی حوالہ کی معتام کی حوالہ کی معتام کی حوالہ کی معتام کی حوالہ کی حوالہ کی معتام کی حوالہ کی معتام کی حوالہ کی معتام کی حوالہ کی حو

ا.ا. ۴ کلیدی تصور

وت رس کے زاوی معتام سے مسراد اسس پر کھینچی عوالہ ککسیہ کا معتام $\theta(t)$ ہے، جو مساوات $\theta(t)$ دیتی ہے؛ لہلہ اہم مساوات $\theta(t)$ میں پیش ہے۔

حماجہ: وت رص اور حوالہ لکسیسر کامعت م کی مخصوص کمجے پر جنا کہ بننے کے لئے ضروری ہے کہ اسس کمجے پر ہمیں θ معلوم ہوء میں اوات ویس کمجے کاوقت ڈالنے سے حساسل ہوگا۔ یوں t=-2.0 ہے بجو مساوات ہوگا۔

$$heta = -1.00 - (0.600)(-2.0) + (0.250)(-2.0)^2$$

= 1.2 rad = 1.2 rad $\frac{360^{\circ}}{2\pi} = 69^{\circ}$

یہ نتیب کہتا ہے کہ فت رض پر موجود حوالہ لکت رلحت $t=-2.0\,\mathrm{s}$ پر صنب رمت م ہے بیشت رخ (حناون یہ نتیب کہتا ہے کہ معت م وجود حوالہ لکت رکا ہے کہ معت م دکھایا گیا ہے۔ گھٹ ری t=0 کی بیش معت م دکھایا گیا ہے۔ t=0 کی بیش معت م دکھایا گیا ہے۔ t=0 کی بیش معت م میں معت میں معت م میں معت م میں معت م میں معت میں میں معت میں معت میں معت میں معت میں معت میں معت معت میں میں میں معت میں میں معت میں

instantaneous angular acceleration 11

باب ۲۰. گلم او

0.60 ریڈیئن لینی 0.45 ہو گی (منا کہ 0.5)۔ جس کھے ترسیم محور 0.5 سے گزرتی ہے، 0.5 ہو گااور حوالہ ککسیر لحاتی عسین صنے معتام پر ہو گی (منا کہ 0.5 واد 0.5)۔

کلی تصور

تف عسل کی انتہا قیمت (بیساں کم ہے کم قیمت) معسلوم کرنے کی حن طسر ہم تف عسل کا ایک گنا تفسرق لے کر صنسر کے برابرر کھتے ہیں۔

 $\theta(t)$ کاایک گناتف رق زیل ہے۔

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -0.600 + 0.500t$$

 $\theta(t)$ کی قیمت کم ہوگا۔ t سامسل ہوگاجس پر $\theta(t)$ کی قیمت کم ہوگا۔ t جامسل ہوگاجس پر t دیا ہوگا۔ t ہوگا۔ t

ی کم ہے کم قیمت حبانے کے لئے ہم مساوات t مسین میں میں وفیل دیگا۔ t

$$\theta = 0$$
ريڈينن $-.136 \approx -77.9^{\circ}$ ريڈينن $-.136 \approx -77.9^{\circ}$

θ(t) کی کم ہے کم قیمت (سشکل 5b.10 مسیں نشیب) صف رزاوی معتام سے قت رص کی زیادہ سے زیادہ گھٹڑی وار گھساوہ، جو حنا کہ 3 سے کچھ زیادہ ہوگا۔

 $t=3.0\,\mathrm{s}$ ترسیم کریں۔ مسترص کاحن کہ $t=6.0\,\mathrm{s}$ تا $t=-3.0\,\mathrm{s}$ کے خسترص کاحن کہ $t=4.0\,\mathrm{s}$ ہوئی۔ $t=4.0\,\mathrm{s}$ ہوگی۔ $t=4.0\,\mathrm{s}$ ہوگی۔ کریست کیں اور بستائیں ان کھے سے پر گھومنے کارخ اور سی کی عسلامت کسیا ہوگی۔

كلب دى تصور

 $d\theta/dt$ ہے جو صاوات ۱۰ ہم کے تحت زاوی ستی رفت ال ω سے صراد $d\theta/dt$ ہے جو صاوات ۱۰ ہم دیتی ہے۔ یوں ذیل ہوگا۔ $\omega=-0.600+0.500t$

اس تف عسل ، $\omega(t)$ ، کی ترسیم شکل 5c.10 مسیں پیش ہے۔ یہ تف عسل نطلی ہے البندا اسس کی ترسیم ایک سید ھی کئیسر ہے۔ ترسیم کی ڈھسلوان $0.500 \, \mathrm{rad} \, \mathrm{s}^{-2}$ ہور (جو دکھ یا نہیں گیا) کو ترسیم $-0.600 \, \mathrm{rad} \, \mathrm{s}^{-1}$

 $t=-2.0\,\mathrm{s}$ پربنانے کی حناطب ہم مساوات $t=-2.0\,\mathrm{s}$ پربنانے کی حناطب ہم مساوات $t=-2.0\,\mathrm{s}$ کی دنال کرذیل کر تاہیں۔

$$\omega = -1.6 \, \text{rad s}^{-1} \qquad (\text{--}1.8)$$

ا ۲۰ گھیاو کے متغیر

منفی کی عسلامت کہتی ہے کہ $t=-2.0\,\mathrm{s}$ پر تسبر ص گھٹڑی وار (منفی رخ) گھوم رہاہے (جیب سٹکل 5c.10 مسین دائیں ہاتھ حناکے مسین دکھیایا گیاہے)۔

ماوات ۱۱. γ مین $t = 4.0 \, \mathrm{s}$ ڈال کر ذیل ماصل ہوگا۔

مضم ریشت عسلامت کہتی ہے مترص مثبت رخ (منلاف گھٹڑی) گوم رہا ہے (شکل 5c.10 مسیں دایاں ہاتھ مناکہ)۔

 $\omega = 0$ ہوگا۔ جب حوالہ ککسیر، شکل 5b.10 میں $\omega = 0$ ہوگا۔ جب حوالہ ککسیر، شکل 5b.10 میں ω کی کم میں ω کی کم میں ω کی آتیہ ہوگا۔ جب فیصل کے بہتے ہوئے ہوگا۔ جب مسئل 5c.10 میں وسطی من کہ عندیہ دیتا ہے۔ شکل 5c.10 میں ω بالمقابل ω کی ترسیم پر صغیر نقطہ، جب ان ترسیم منفی (گھٹری وار) گھل وے مثبت (منلان گھٹری) گھل و کا آغیاز کرتی ہے، وہ نقطہ ہے جب ان مسیر صلح اتی رکتا ہے۔

ر) $t = 6.0 \, \text{s}$ تا $t = -3.0 \, \text{s}$ تا کرسہ ان کرس کی حسر کت بان کرس $t = 6.0 \, \text{s}$ تا کہ ان کرس کے نتائج استعال کر کے دیائے دیائے

بیان: جب ہم، 0.0 = 0.0 بیان: جب ہم کی دیکھنے کو ملتی ہے۔ یہ 0.0 = 0.0 دیڈیئن پر لمحت آل رکنے کے بعب د حنلان گھٹری گھٹری کارار اور رفت ارتسنر کارا سس کازادی معت م دوبارہ شبت ہوتا ہے۔ 0.0

نمونی سوال ۲۰۲۲ زاوی اسراع سے زاوی سمتی رفتار کا حصول

 α اور α بالت رتیب سینڈ اور ریڈیئن فی مسر کا سینڈ میں t اور α بالت رتیب سینڈ اور ریڈیئن فی مسر کا سینڈ میں t

 $\alpha = 5t^3 - 4t$

یر لئو کی زاوی سمتی رفت از au 5 rad s اور حوالہ ککے۔ t=0 ریڈیئن ہے۔

(۱) گو کی زاوی سستی رفت از $\omega(t)$ کاریاضی فعت رہ ساسل کریں؛ لیخی ایس تفعل معلوم کریں جو وقت پر زاوی سستی رفت ارکا نحص ار صریحاً دے۔ (ہم حبانے ہیں ایس تفعل موجود ہے چو نکہ گوزاوی اسسراع سے گزر رہا ہے؛ یوں اسس کی زاوی سستی رفت ارتب دیل ہوگا۔)

كلب دى تصور

 $d\omega = \alpha dt$

باب ۲۰. گھماو

للبنذا

$$\int d\omega = \int \alpha \, dt$$

ہو گاجو ذیل کے گی، جہاں C تکمل کامتقل ہے۔

$$\omega = \int (5t^3 - 4t) \, dt = \frac{5}{4}t^4 - \frac{4}{2}t^2 + C$$

 $\omega=5\,\mathrm{rad}\,\mathrm{s}^{-1}$ پر t=0 ہے؛الس معلومات کو درج بالامسیں ڈال کر:

$$5 \,\mathrm{rad}\,\mathrm{s}^{-1} = 0 - 0 + C$$

کمل کامتقل $C = 5 \, \mathrm{rad} \, \mathrm{s}^{-1}$ ساس ہوگا۔ یوں در کارتف عسل ذیل ہوگا۔

$$\omega = \frac{5}{4}t^4 - \frac{4}{2}t^2 + 5 \qquad (\text{...})$$

ریں۔ heta(t) کاریاضی فقت رہ تلاکش کریں۔ heta(t)

كلب دى تصور

 $d\theta = \omega dt$

ہو گاجس سے ذیل لکھاحب سکتاہے،

$$\theta = \int \omega \, dt = \int (\frac{5}{4}t^4 - \frac{4}{2}t^2 + 5) \, dt$$
$$= \frac{1}{4}t^5 - \frac{2}{3}t^3 + 5t + C'$$
$$= \frac{1}{4}t^5 - \frac{2}{3}t^3 + 5t + 2 \qquad (\text{---})\text{s})$$

جباں $\theta=2\,\mathrm{rad}$ پر t=0 جبانے ہوئے t=0 کی قیمت ساسل کی گئ

ا بم گھاوے متغیبر ۲۳

كسازاوي معتادير سمتيات بين؟

ہم اکسلے ذرے کامعت میں مستی رفت ار، اور اسسراع سمتیات ہے ہیان کر سکتے ہیں۔ اگر ذرہ صرف ایک محور پر حسر کست کر تا ہو، سستی ترقیم استعمال کرناضر ورست نہیں۔ ایسے ذرے کو صرف دورخ دستیاب ہیں جنہ میں مثبت اور منفی عسلامت سے ظاہر کیا حیاسکتا ہے۔

ای طسرح استوار جم متائب محور پر ، محور کے ہمسراہ دیکھتے ہوئے، صرف حنلاف گھٹڑی اور گھٹڑی وار گھوم سکتا ہے۔ان رخ کو ہم مثبت اور منفی سے ظاہر کر سکتے ہیں۔ یہاں ایک سوال اٹھت ہے: "کسیا ہم گھومتے جم کے زاوی ہٹاو، زاوی سستی رفتار، اور زاوی اسسراع کو سمتیات سمجھ سکتے ہیں؟"اسس کا جو اب ہے"جی ہاں" زاوی ہٹاوک کئے نیچے پیش انتہاہ ضرور دیکھسیں۔)

 $\frac{1}{2}\log_2 \lambda_0 \frac{1}{2} \frac{1$

زادی معتادیر سمتیات سے ظاہر کرنے کی عبادت مشکل سے ڈلتی ہے۔ ہم فوراً سوچتے ہیں کہ سمتیہ کے ہمسراہ کوئی چینز حسر کست کرے گل۔ بہاں ایسا نہیں ہوگا۔ اسس کے بحبائے کوئی چینز (جیسا استوار جسم) سمتیہ کے رخ کے گرد گھومتی ہے۔ حنائص گھاو کی دنیا مسین، سمتیہ کارخ کسی چینز کی حسر کت کارخ نہیں بلکہ گھاو کی گور دیگا۔ بہسر حیال، سمتیہ حسر کت بھی تعین کرتا ہے۔ مسزید، سے سمتیات سلجھانے کے ان تمام قواعد کی تعمیل کرتا ہے جو باب 3 مسیں پیشس کیے گئے۔ زادی اسراع کا تھی ایک سمتیہ ہے، اور سے بھی ان قواعد کی تعمیل کرتا ہے۔

اسس باب مسیں صرف مت نئے محور پر گھے و کی بات کی حبائے گا۔ ان مسیں سمتیات استعال کرنے کی ضرورت نہیں؛ ہم زاوی سستی رفت اور گھٹڑی وار گھٹڑی وار گھٹڑی وار گھٹڑی کو مثبت اور گھٹڑی وار گھٹڑی کے مختاب کو مثبت ہیں۔

زاوی ہٹاو۔ پہلے انتباہ کی بات کرتے ہیں: زاوی ہٹاو (ماسوائے انتہائی چھوٹاہٹاو) کوسمتیے ہے ظہر نہیں کسیاحبا سکتا۔ کیوں نہیں ؟ہم یقیدینا اسس کے رخ اور صدر کی بات کر سکتے ہیں، جیب شکل 6.10 مسیں زاوی سسمتی رفت ارکے لئے کسیا گیا۔ تاہم، سمتی ہے ظہر کیے حبانے کے وتابل ہونے کے لئے ضروری ہے کہ معتدار سسمتی جمع کے قواعد پر پوراالرقی ہو۔ ان قواعد مسیں ایک و سام سام کے مستوا سے کہ محتدار سسمتی جمع کرتے وقت ان کی ترتیب غیب رضروری ہے۔ زاوی ہٹاوا سس ساعدہ پر پورانہ میں ایک ورانہ ہیں ایک اس سام سام کی ہور ہے۔ ناوی ہٹاوا سس سام سے پورانہ میں ایک اس بیرانہ تا۔

شکل 7.10 مسیں دی گئی مشال پر غور کریں۔ایک کتاب کو، جو ابت دائی طور پر افتی پڑی ہے، دو مسرتب °90 زادی ہٹاوے کے گزارا گیا ہے؛ ایک مسرتب شکل 7a.10 اور دو سسری مسرتب سشکل 7b.10 کی طسرح۔ دونوں مسیں ہٹاو برابر، لسیکن ترتیب ایک نہیں، اور آحنسر مسیں کتاب ایک حبیبی سست بہند نہیں۔ دوسسری مشال ایستے ہیں۔ دایاں باب ۲۰. گلمب و

ہاتھ لٹکا کر ہتھیاں ران پر رکھسیں۔ کلائی سخت کر کے ، (1) ہازو سامنے است اٹھسائیں کہ افقی ہو، (2) اسس کو پورا دائیں لے حب ئیں، اور (3) اسس کے بعد ہاتھ والیسس نیچے ران تک لے حب ئیں۔ آپ کی ہتھیا کی اب سے رخ ہوگا۔ اگر آپ یمی عمسل السے ترتیب سے دہرائیں، آپ کی ہتھیا تی ہتھیاں کہ خوعہ السند ترتیب سے دہرائیں، آپ کی ہتھیا تی ہتھیاں کہ مخصد ہے، المباز المباد کو سمتیہ تصور نہیں کسیاحیا ساتا۔

۴.۲ متقل اسراع کے ساتھ گھیاو

نقاصد

۔۔۔ اسس همہ کو پڑھنے کے بعب آپ ذیل کے وت بل ہوں گے۔

ا. مستقل زاوی اسسراع کی صورت مسین زاوی معتام، زاوی ہاو، زاوی سستی رفت ار، زاوی اسسراع، اور گزرے دارانے کے تعلی تعلق (حبدول ۲۰۱۱) استعال کرہائیں گے۔

كليدي تصور

• مستقل زاوی اسراع (جس مسیں α مستقل ہو گا) گلماو حسر کت کی ایک اہم خصوصی صورت ہے، جس کی محب رو حسر کیا ہے۔ محب رو حسر کیا ہے۔ میاوات زمل ہیں۔

$$\omega = \omega_0 + \alpha t$$

$$\theta - \theta_0 = \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\omega^2 = \omega_0^2 + 2\alpha (\theta - \theta_0)$$

$$\theta - \theta_0 = \frac{1}{2} (\omega + \omega_0) t$$

$$\theta - \theta_0 = \omega t - \frac{1}{2} \alpha t^2$$

متقل زاوی اسسراع کا گھساو

متنقیم حسر کی مستقل خطی اسراع کی حسر کی (مشلاً، زمسین پر گر تا ہوا جیم) ایک اہم خصوصی صورت ہے۔ حید ول 1.2 مسیں اسس طسرح کی حسر کی حسر کت کو مطلمئن کرتی مساوات پیش کی گئیں۔

حنالص گھیاو مسیں مستقل زادی اسراع ایک اہم خصوصی صورت ہے؛ اسس کو مطمئن کرنے والی مطابقتی مساوات پائی حب وات پائی حب تغییرات ڈال کر حباق ہیں۔ ہم انہیں بہاں اخنہ نہیں کریں گے، بلکہ مطابقتی خطی مساوات مسیں مساوی زادی متغییرات ڈال کر انہیں پیش کرتے ہیں۔ حب دول ابھ مسین مساوات کی دونوں فہر رست (مساوات 11.2 اور مساوات 15.2 تا مساوات 18.2 بیش کی تابیں۔

یادرہے مساوات 11.2 اور مساوات 15.2 مشقل خطی اسراع کی بنیادی مساوات ہیں، جن سے فہسرست کی باقی مساوات اندند کی حباستی ہیں۔ اسس طسرح، مساوات ۱۱.۳ اور مساوات ۱۳.۳ مشقل زاوی اسراع کی بنیادی مساوات ہیں، جن سے زاوی مساوات کی فہسرست کی باقی تمسام مساوات اندند کی حباستی ہیں۔ مشقل

حبدول ۲۰۰۱ متقل خطی اسراع اور متقل زاوی اسراع کی حسر کت کی مساوات

$$iego$$
 ناوی ساوات $iego$ ie

(r.ir)
$$\theta - \theta_0 = \omega_0 t + \frac{1}{2} \alpha t^2$$
 (2.15) $x - x_0 = v_0 t + \frac{1}{2} a t^2$

$$(r.r) \omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0) (2.16) v^2 = v_0^2 + 2a(x - x_0)$$

(r.ia)
$$\theta - \theta_0 = \frac{1}{2}(\omega_0 + \omega)t$$
 (2.17) $x - x_0 = \frac{1}{2}(v_0 + v)t$

(7.14)
$$\theta - \theta_0 = \omega t - \frac{1}{2}\alpha t^2$$
 (2.18) $x - x_0 = vt - \frac{1}{2}at^2$

زادی اسراع کا سادہ مسئلہ حسل کرنے کے لئے آپ عصوماً زادی فہسرست سے (اگریہ فہسرست آپ کے پاکس موجود ہو) ایک مساوات استعال کر پائیں گے۔ آپ وہ مساوات منتخب کریں گے جس مسین صرف وہ متنخب عنب معسلوم ہوجو آپ کو در کار ہو۔ بہستر طسریق سے ہوگا کہ آپ مساوات ۱۲.۱۲ اور مساوات ۱۳.۱۳ اور مساوات حسل کریں۔ کیس اور جب ضرورت پیش آئے، انہیں بطور ہمسزاد مساوات حسل کریں۔

آزمائشس۲

(3)، $\theta = -5t^3 + 4t^2 + 6$ (برج)، $\theta = 3t - 4$ (ابرج) $\theta = -5t^3 + 4t^2 + 6$ (برج) $\theta = 3t - 4$ (ابرج) $\theta = -5t^3 + 4t^2 + 6$ (برج) $\theta = -5t^3 + 4t^3 + 6$ (برج) $\theta = -5t^3 + 4t^3 + 6$ (برج) $\theta = -5t^3 + 6t^3 + 6t^$

نمونی سوال ۲۰۰۳: ممتقل زاوی اسراع، چکی کا پایے

(۱) وقت t=0 سے کتنی دیر بعب حوالہ ککسیسر زاوی معتام t=0 سے کتنی دیر بعب حوالہ ککسیسر زاوی معتام

كليدي تصور

$$\theta - \theta_0 = \omega_0 t + \frac{1}{2} \alpha t^2$$

کا نتختا ہے اسس لئے کرتے ہیں کہ اسس مسیں صرف ایک متنب ر، t ، نامعسلوم ہے اور ہمیں یہی در کارہے۔

باب ۲۰. گھماو

 $\theta_0 = 0$ اور $\theta_0 = 0$ اور $\theta_0 = 0$ کیتے ہوئے ذیل ہوگا۔

$$10\pi\,\mathrm{rad} = (-4.6\,\mathrm{rad}\,\mathrm{s}^{-1})t + \frac{1}{2}(0.35\,\mathrm{rad}\,\mathrm{s}^{-2})t^2$$

(اکائیوں کے شباہ کی حناطب ہم 5.0 حیکر کو 10π ریڈیٹن مسین تبدیل کرتے ہیں۔)اسس دو درجی الجبرائی مساوات کو حسل کرنے ہے ذیل حساصل ہوگا۔

$$t = 32 \,\mathrm{s}$$

ان ایک بچیب بات پر خور کریں۔ جب ہم پہلی مسرت پاٹ پر نظر ڈالتے ہیں یہ منتی رخ گوم کر $\theta=0$ ست بند معتام ہے گزر تا ہے۔ اسس کے باوجود a=0 بعد ہم اسے a=0 a=0 حپکر مثبت ست بند معتام پر پاتے ہیں۔ اسس دورانے مسین ایسا کیا ہوا کہ پاٹ مثبت ست بند معتام پر ہو سکتا ہے ؟

اور
$$t=32\,\mathrm{s}$$
 اور $t=32\,\mathrm{s}$ اور $t=0$

 $\omega_0 = -4.6 \, \text{rad} \, \text{s}^{-1}$ ناوی رفت ار بے حسر کت کر تا ہے، $\omega_0 = -4.6 \, \text{rad} \, \text{s}^{-1}$ تاہم اسس کا زاوی اسراع α مثبت ہونے کی بدولت پائے منفی رخ کے جست میں الی مثبت رخ گومن شروع کر تا ہے۔ حوالہ ککسی رمثبت رخ کو کر گا ہے والہ کک والہ کا باور a کا گا رہے تا کہ مثبت رخ کے مشبت رخ مسندید a کا درنے تا کہ مثبت رخ کے دور کے دور کا درنے تا کہ مثبت رخ کہ کا دور کے دور کے دور کے دور کا دور کے دور کے دور کے دور کے دور کے دور کی کا دور کے دور کے دور کے دور کی کے دور کے د

(5)یا ہے کس وقت t پر کمحساتی رکتاہے؟

حماہے: ہم دوبارہ زاوی مساوات کی فہسرست پر نظسر ڈالتے ہیں اور ایسی مساوات لین حیات ہیں جس مسیں صون t نامعسلوم متغیسر ہو۔ تاہم، اب مساوات مسیں ω کاہونا بھی ضروری ہے، تا کہ ہم اسس کو 0 لے کر مطابقتی t کے کے حسل کریں۔ ہم مساوات t1. ہم منتخب کرتے ہیں، جوذیل دیگی۔

$$t = \frac{\omega - \omega_0}{\alpha} = \frac{0 - (-4.6 \,\text{rad}\,\text{s}^{-1})}{0.35 \,\text{rad}\,\text{s}^{-2}} = 13 \,\text{s}$$

نمونی سوال ۴۰،۴: ممتقل زاوی اسراع، پیے کی سواری

تغسری گاہ مسیں ایک بڑا پہیا جہاتے ہوئے آپ کی نظسر پہیے پر سوار ایک شخص پر پڑتی ہے جو پریشان نظسر آتا ہے۔ آپ پہیے کی زادی سسی مرکز مسیں کم کر عبیہ کے ساتھ 3.40 rad s⁻¹ کے ساتھ 20.0 حبکروں مسیں کم کر کے بہت کی زادی سسی راسس شخص کو"گھومت شخص"تصور کرنے ہے" مستقیم حسر کرتے ہیں۔ (اسس شخص کو"گھومت شخص"تصور کرنے ہے" مستقیم حسر کرتے کر تا شخص "کہنازیادہ بہستر ہوگا۔)

(۱)زاوی سنتی رفت ارکی کی کے دوران متقل زاوی اسراع کیا ہوگی؟

سے کی زادی اسراع مستقل ہے، المبذا ہم اسس کی زادی سمتی رفتار اور زادی ہاو کا تعسلق مستقل زادی اسسراع کی مساوات (مساوات ۱۲ ۱۲ مراور مساوات ۱۳ ۲۰ ۲۰) سے حسان کتے ہیں۔

حماہ: آئیں دیکھیں آیا ہم ان بنیادی مسادات کو حسل کریائیں گے۔ ابت دائی زادی سستی رفت ار $\omega=2.00\,\mathrm{rad}\,\mathrm{s}^{-1}$ اورہاوی سے آرنوی ہون اور ہاوی ہے ہورہ کے آسندر پر زاوی سے تار فت ال $\theta-\theta_0=2.00\,\mathrm{rad}\,\mathrm{s}^{-1}$ = ہے۔ ہم متقل زاوی اسراع α حبانت حیاج ہیں۔ دونوں مساوات میں وقت t پیاحب تا ہے، جس میں ضر وری نہیں ہم دلچیبی رکھتے ہوں۔

نامعلوم t حنارج کرنے کے لئے ہم مساوات tا ہم ا

$$t = \frac{\omega - \omega_0}{\alpha}$$

لکھ کرمپاوات ۱۳ ہمپیں ڈالتے ہیں۔

$$\theta - \theta_0 = \omega_0 \left(\frac{\omega - \omega_0}{\alpha}\right) + \frac{1}{2} \alpha \left(\frac{\omega - \omega_0}{\alpha}\right)^2$$

م کے لئے حسل کر کے، دی گئی معسلومات پُر کر کے، اور 20.0 حیکر کو 125.7 rad مسیں بدل کرذیل حساس ہوگا۔

$$\alpha = \frac{\omega^2 - \omega_0^2}{2(\theta - \theta_0)} = \frac{(2.00 \,\text{rad}\,\text{s}^{-1})^2 - (3.40 \,\text{rad}\,\text{s}^{-1})^2}{2(125.7 \,\text{rad})}$$
$$= -0.0301 \,\text{rad}\,\text{s}^{-2} \qquad (\text{--}1.5)$$

(___)رفت ارکتنے وقت مسیں کم کی گئی؟

 $t = \frac{1}{2}$ حیات میں، میاوات t = t سامسل کیا جا سات ہیں، میاوات t = t

$$t = \frac{\omega - \omega_0}{\alpha} = \frac{2.00 \,\text{rad s}^{-1} - 3.40 \,\text{rad s}^{-1}}{-0.0301 \,\text{rad s}^{-2}}$$
$$= 46.5 \,\text{s} \qquad (-1.8)$$

۳٫۳ خطی اور زاوی متغیب رایب کارشته

مقاصد اسس ھے کویڑھنے کے بعید آیہ ذیل کے متابل ہوں گے۔

باب ۲۰. گلماو

ا. مت ائٹ مور پر گھومتے ہوئے استوار جم کے زاوی متغیبرات (زاوی معتام، زاوی سنتی رفت ار، اور زاوی اسسراع) کا جم پر ایک ذرے، جو کسی رداسس پر پایا حب تا ہو، کے خطی متغیبرات (معتام، سنتی رفت ار، اور اسسراع) کے ساتھ تعسلق حب ان یا ئیں گے۔

۲. ممائی اسسراغ اور ردای اسسراغ مسین تمسیز کر پائیں گے، اور کی محور پر گھومتے ہوئے جہم پر موجود ذرے کے لئے بڑھتی زاوی رفت اردادی مسین دونوں کے سمتیر بسنایائیں گے۔

كليدي تصور

• گومتے جم پر محور گھماوے عصودی فناصلہ γ پرپائے حبانے والا نقطہ، رداس γ کے دائرے پر حسر کت کرتا γ کو میں ناپاحبانے گا۔ γ کا جسم زاویہ γ کھوم، بین ناپاحبانے گا۔

$$s = \theta r$$
 (ریڈینُن ناپ)

• اسس نقطے کا خطی سمتی رفت ارق وائرے کو ممساس ہو گا؛ نقطے کا خطی رفت ار ذیل ہو گا، جہساں ، جسم اور نقطے کا (ریڈیئن فی سیکنٹر)زادی رفت ارہے۔

$$v = \omega r$$
 (ریزینُناپِ)

 اس نقطے کے خطی اسراع π کے دوجھے ہوں گ؛ایک ممائی حبزواور دوسسراردائی حبزو۔ ممائی حبزوؤیل ہو گا، جباں α جم کے (ریڈیئر) فی مسرع سیکٹر مسیں)زاوی اسراع کی ت درہے۔

$$a_t = \alpha r$$
 (ریڈینن ناپ)

رداسی حبزوذیل ہو گا۔

$$a_r = \frac{v^2}{r} = \omega^2 r$$
 (ریڈیمن ناپ)

• اگرید نقط یک داوری حسر کت کرتا ہو، اسس نقطے اور جسم کادوری عسر صب T ذیل ہوگا۔

$$T = \frac{2\pi r}{v} = \frac{2\pi}{\omega}$$
 (ریزین ناپ ا

خطی اور زاوی متغیب رایب کار شته

محور گلماو کے گرد دائرے پر مستقل خطی رفتار v کے ساتھ حسر کسے کرتے ہوئے ذربے کی یکساں دائری حسر کسے پر حسب کی در دائرے پر ای محور کے گرد گلومت جم کا پر ذرہ اپنے ایک دائرے پر ای محور کے گرد گلومت ہے۔ جم کا پر ذرہ اپنے ایک دائرے پر ای محور کے گرد گلومت ہے۔ چونکہ جسم استوار (بلا کچکس) ہے، ایسے تمام ذربے ہم متدم حسل کر ایک جستنے وقت مسیں ایک حسکر مکسل کرتے ہیں؛ ان سب کی زاوی رفتار v برابر ہے۔

تاہم، ایک ذرہ جتنا تحورے دور ہوگا، اتن اس کے دائرے کامحیط بڑا ہوگا، لہٰذااسس کی خطی رفت ار ہ اتنی زیادہ ہوگا۔ گھومنے والے جھولے تاہم میں ایک خطی رفت ان سے کی زادی رفت ار سکتے ہیں۔ مسر کزے جبتنے مناصلے پر بھی آپ ہول، آپ کی زادی رفت ار سکتا ہیں۔ مسر کزے جبتنے مناصلے پر بھی آپ ہول، آپ کی زادی رفت ار سکتے ہیں۔ مسر کزے دور ہونے پر آپ کی خطی رفت ار ہ بڑھے گا۔

ہم جم پر کی مخصوص نقطے کے خطی متغیبرات s ، v ، اور a اور v ، اور a کا تعباق حبانت احباح ہیں۔ متغیبرات کی ان فہرست کار شقہ مور گھماوے نقطے کے عمودی صاصلہ r کے ذریعے ہوگا۔ یہ عمودی صاصلہ ، نقطے اور محور گھماو کے نج عصود کی کسیسر پر ناپا جب کے گا۔ یہ صاصلہ اسس دائرے کارداس r ہوگا جس پر محور گھماو کے گھماو کے گا میں معادی کسیسر پر ناپا جب کے گا۔ یہ صاصلہ اسس دائرے کارداس r ہوگا جس پر محور گھماو کے گردنقط حسر کرتا ہے۔

مفتيام

اگر استوار جہم پر تھینجی گئی حوالہ لکسے رزاویہ 6 گھوے، محور گھساوے ۴ مناصلے پر موجود جہم کے اندر نقطہ دائری قوسس پر مناصلہ ۶ طے کرے گا، جہاں ۶ کی قیمیہ مساوات ۱۰، بی ہے۔

$$(r.12)$$
 $s = \theta r$ (ریڈ بین ناپ $s = \theta r$ (ریڈ بین ناپ ا

مساوات ۱۷ مهمارا پہلی خطی وزاوی تعسلق ہے۔انتہاہ:زاویہ θ کی ناپ ریڈ بیئن مسین لاز می ہے چو نکہ درج بالامساوات زاویے کی ریڈ بیئن مسین ناپ کی تعسر یف ہے۔

رفتار

رداس ۲ کومتقل رکھ کروقت کے ساتھ مساوات ۱۷ ۴ کا تفسرق ذیل دیگا۔

$$\frac{\mathrm{d}s}{\mathrm{d}t} = \frac{\mathrm{d}\theta}{\mathrm{d}t}r$$

لىكىن، ds/dt نقطى كى خطى رفت ار (خطى ستى رفت اركى ت در)، اور dd/dt گھومتے جسم كى زاوى رفت ارسى ہے۔ يون ذيل ہوگا۔

$$v = \omega r$$
 (ریڈیمن نای $v = \omega r$

انتبه:زاوى رفت ارس لازماريدين في سيكندمسين نابي حبائ گار

استوارجم کے بتم اندرونی نقطے ایک زاوی رفت ارس سے گھو سے بین الہذا مساوات ۱۰۸ مہتی ہے زیادہ رواس ۲ پر واقع نقطے کی خطی رفت ار بہیث نقطے کی دائری راہ کو مماسی ہوگ۔ نقطے کی خطی رفت اربہیث نقطے کی دائری راہ کو مماسی ہوگ۔ اگر جم کا زاوی رفت ارس مستقل ہو، مساوات ۱۸۰۸ ہم ہتی ہے جم کے اندر نقطے کی خطی رفت ارس بھی مستقل ہوگ یوں، جم کے اندر موجود ہر نقطے بیساں دائری حسر کت کرتا ہے۔ استوار جم کے ہر اندرونی نقطے کی حسر کت کا دوری عسر مسسس کے اندر موجود ہر نقطے بیساں دائری حسر کت کرتا ہے۔ استوار جم کے ہر اندرونی نقطے کی حسر کت کا دوری عسر مسسس کا دوری عسر مساوات 35.6 نیل وی ہے۔

$$T = \frac{2\pi r}{v}$$

merrygoround"

۸۰ پایس ۲. گلمباو

 $2\pi r$ کو اسس رفت اسے تقسیم کر کے جس سے مناصلہ طے $2\pi r$ کو اسس رفت ارسے تقسیم کر کے جس سے مناصلہ طے کسیاحب نے ایک حسی کر کاوقت حساصل ہوگا۔ مساوات 0 ال کر 0 منوخ کر کے ذیل حساصل ہوگا۔

$$T = \frac{2\pi}{\omega}$$
 (بیڈیمُن ا بی ازیڈیمُن ا بی ازیڈیمُن ا

یہ معادل مساوات کہتی ہے ایک حیکر کازادی مناصلہ، 2π ریڈ مین، اسس زاوی رفت ارسے تقسیم کرکے، جس سے زاوی و ناصلہ طے کسا حیا کے ایک حیکر کاوقت مسال ہوگا۔

اسسراع

رداسس ۲ متقل رکھ کر t کے لحاظ سے مساوات ۲۱۸،۴ کا تفسر ق ذیل دیگا۔

$$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}\omega}{\mathrm{d}t}r$$

$$(r.rr)$$
 $a_t = \alpha r$ (ریڈیمن ناپ)

انت ہ: مساوات ۲۰۲۳ مسیں زاوی اسراع α کاریڈ بیٹن ناپ مسیں ہونالازم ہے۔ ساتھ ہی، جیسا مساوات 34.4 ہمیں بہت تی ہے ، دائری راہ پر گامسزن ذرے (یا نقطے) کے خطی اسراع کا (ردای مسر کز کے رخ) ردای جبزو $\frac{v^2}{r}$ ہوگا، جو گا، جو خطی سستی رفت از \overline{v} کے رخ مسیں تب یلی کاذم دار ہوگا۔ مساوات ۱۸ مسی \overline{v} ڈال کر یہ جبزو درج ذیل کھا حباسکتا ہے۔

$$(r.rr)$$
 $a_r = \frac{v^2}{r} = \omega^2 r$ (پیریمن ناپ از پریمن ناپ از پریمن

یوں، جیب سٹکل 9b.10 مسیں دکھیایا گیا ہے، استوار گھوٹے جم پر نقطے کے خطی اسسراع کے عصوماً دو حبزو ہوں گے۔ جب بھی جم کی زاوی سستی رفت ارغیب صفسہ ہو، ردای اندر کی طسر ن کاحبزو a_r موجود ہوگا (جو مساوات ۲۳۳ میں ورت ہوگا جب زاوی اسسراع غیب رصفسہ ہو۔ رق ہے)۔ ممای حبزو a_t (جو مساوات ۳۰۰ وی ہے) اسس صورت ہوگا جب زاوی اسسراع غیب رصفسہ ہو۔ a_t آزمانٹ س

گھونے والے جھولے کے حلق پر چیو نئی سیسٹھی ہے۔اگر اسس نظام (گھومٹ والا جھولا و چیو نئی) کی زاوی سسمتی رفت ارمستقل ہو، کسیا چیو نئی کا (ا)ردای اسسراع اور (ب) ممسائی اسسراع ہو گا؟ اگر س گھٹ رہی ہو، کسیا چیو نئی کا (ج)ردای اسسراع اور (د) ممسائی اسسراع ہوگا؟

نمونی سوال ۲۰۰۵: تفریح گاہ **میں ایک بڑے علقہ کی بناولے** ہمیں ایک بڑاافقی علقہ ، جس کارداس س 33.1 سے ہوگا، بنانے کو کہا گیا ہے جوانقسانی دھسرے پر جیلے گا۔ (پ جبین مسیں موجود دنیا کے سب ہے بڑے پہتے جتنا ہوگا۔) موار کے بیسرونی دیوار مسیں موجود دروازے ہو t=0 مار کے ساتھ کھٹرے ہوں گے (شکل 10a.10)۔ کے پیر جوالہ ککیسر کازاوی معتام $\theta(t)$ گھے۔ t=0 کے بیسر کازاوی معتام t=0 کے بیسر کازاوی معتام t=0 کے بیسر کازاوی معتام t=0 کے بیسر کازور تی ہے، جبال t=0 میں معتام کے بیسر کانور تی ہے، جبال t=0 میں معتام کے بیسر کانور تی ہے، جبال معتام کے بیسر کانور تی ہے، جبال کے بیسر کی بیسر کانور تی ہے، جبال کے بیسر کی بیسر کی بیسر کی بیسر کے بیسر کی بیسر کی بیسر کی بیسر کے بیسر کی بیسر

$$\theta = ct^3$$

لحبہ $z=2.30\,\mathrm{s}$ کے بعب جمولنے کے بھی رامکسل ہونے تک زاوی رفت ارمستقل رکھی حبائے گا۔ گھومت شروع ہونے کے بعب ، موارکے پاول سلے فسٹر سٹ ہیٹ اوی رفت ان وہ گرے گانہ میں؛ بلکہ وہ دیوار کے ساتھ مفبوطی سے حب گزا موسس کر کے گا۔ گھوسس کر کے گا۔ گوسس کر کے گار فی اسسراع z=1 پر شخص کی زاوی رفت ان سی منظی رفت ان z=1 روای اسسراع z=1 ہوں میں۔

كلي دى تصور

(1) مساوات T راوی رفتار w و بی ہے۔ (2) مساوات T (دائری راہ پر) خطی رفتار T اور (کور گھساو کے گرد) راوی رفتار T کا تعلق T و بی ہے۔ (3) مساوات T و بی ہے۔ (3) مساوات T و بی ہے۔ (3) مساوات T و بی ہے۔ (4) مساوات T و بی ہے۔ (5) مساوات T و بی ہے۔ (6) مساوات T و بی ہے۔ (6) مساوات T و بی ہے۔ (6) مساوات T و بی ہے۔ (8) مساوات T و بی ہے۔ (9) مساوات T و بی ہے۔ (10) میں و بی میں و بی ہے۔ (10) مساوات T و بی ہے۔ (10) میں و بی میں و بی ہے۔ (10) میں و بی میں و بی ہے۔ (10) میں و بی میں و بی ہے۔ (10) میں و بی ہے۔ (10) میں و بی میں و بی ہے۔ (10) میں و بی میں و بی ہے۔ (10) میں و بی میں و بی میں و بی میں و بی ہے۔ (10) میں و بی میں و بی ہے۔ (10) میں و بی میں و بی

حماج: آئیں ان افت دام سے گزریں۔ دیے گئے زاوی معتام تف عسل کاو متنی تفسر ت کے کر 2.20 s پُر کر کے زاوی سنتی رفت ارمعیادہ کرتے ہیں۔

$$\omega = \frac{d\theta}{dt} = \frac{d}{dt}(ct^3) = 3ct^2$$

$$= 3(6.39 \times 10^{-2} \,\text{rad s}^{-3})(2.20 \,\text{s})^2$$

$$= 0.928 \,\text{rad s}^{-1} \quad (\text{--}1\text{s})$$

مساوات ۱۸ ۱۳ س کیجے کی ذمل خطی رفت ار دگی۔

اگر حیب بید رفت از (111 km h⁻¹) تبیز ہے، ایکی رفت از تفسری گاہوں مسیں عسام ہیں، اور خطسرے کا باعث نہیں ؛ (جیب باب 2 مسیں ذکر کیا گیا) ہمارا جم اسراع کورد عمسل کرتا ہے، خطی رفت از ہم بیت ہمیں کے ساتھ بڑھے گی (تاہم یہ اضاف سے مسرعت پیسا ہیں)۔ مساوات ۲۲ ہم کہتی ہے خطی رفت از، وقت کے مسرع کے ساتھ بڑھے گی (تاہم یہ اضاف لے 2.20 s

باب ۲۰. گلماو

اسس کے بعب، مساوات ۲۵.۲۵ کاوقت تفسر ق لے کرزاوی اسسراع معسلوم کرتے ہیں۔

اب مساوات ۴۰۲۲مماسی اسراع at دیگی:

$$a_t = \alpha r = 6ctr$$

$$= 6(6.39 \times 10^{-2} \,\mathrm{rad}\,\mathrm{s}^{-3})(2.20\,\mathrm{s})(33.1\,\mathrm{m})$$

$$= 27.91 \,\mathrm{m}\,\mathrm{s}^{-2} \approx 27.9 \,\mathrm{m}\,\mathrm{s}^{-2} \qquad (\text{---}).$$

جو 2.8g ، جہاں $g=9.8\,\mathrm{m\,s^{-2}}$ برابر ہے (جو مناسب ہو گا)۔ مساوات $g=9.8\,\mathrm{m\,s^{-3}}$ برک وات $g=9.8\,\mathrm{m\,s^{-2}}$ ممائی اسراع کوقت کے ساتھ بڑھ رہاہے (تاہم سے اضاف $t=2.30\,\mathrm{s}$ پررک حبائے گا)۔ مساوات $t=2.30\,\mathrm{s}$ ہمائی اسراع کھتے کر:

$$a_r = \omega^2 r$$

 $\omega = 3ct^2$ والمسترابي $\omega = 3ct^2$

$$a_r = (3ct^2)^2 r = 9c^2t^4 r$$

$$= 9(6.39 \times 10^{-2} \,\mathrm{rad}\,\mathrm{s}^{-3})^2 (2.20\,\mathrm{s})^4 (33.1\,\mathrm{m})$$

$$= 28.49\,\mathrm{m}\,\mathrm{s}^{-2} \approx 28.5\,\mathrm{m}\,\mathrm{s}^{-2} \qquad (\text{--})\text{s}$$

جو 2.9g دیت ہے (ب بھی من سب ہے اور پُر لطف ہوگا)۔

ردای اور ممیای اسسراناً ایک دوسسرے کو عصودی میں اور سوار کے اسسراغ \vec{a} کے حبیز و میں (شکل 10b.10)۔اسسراغ \vec{a} کی تعدر ذیل ہو گی:

$$\begin{array}{c} a = \sqrt{a_r^2 + a_t^2} \\ \\ = \sqrt{(28.49\,\mathrm{m\,s^{-2}})^2 + (27.91\,\mathrm{m\,s^{-2}})^2} \\ \\ \approx 39.9\,\mathrm{m\,s^{-2}} \quad (\cup{...}) \end{array}$$

جو 4.1g کے برابر ہے (یہ یقیناً پُر لطف ہوگ!)۔ یہ تمام معتاد پر مناسب ہیں۔ اسراع تھ کی سمت بندی حبانے کے لئے ہم زاویہ θ معلوم کرتے ہیں (مشکل 10b.10)۔

$$\tan \theta = \frac{a_t}{a_r}$$

ہم ہم گھماو کی حسیر کی توانائی ۸۳

آئیں اعبدادی نتائج کے کرنے کی بحبائے ہم مساوات ۲۷.۳۸ اور مساوات ۴۸.۲۸ کے الجبرائی نتائج استعال کرتے ہیں۔

$$\theta = \tan^{-1}\left(\frac{6ctr}{9c^2t^4r}\right) = \tan^{-1}\left(\frac{2}{3ct^3}\right)$$

ریاضی نتیج کابڑاف کرہ ہے ہے کہ ہم اب دیکھ سکتے ہیں کہ (1)زاویے پر رداسس کا کوئی اثر نہیں ہو گااور (2)اسس کی قیمت t کی تیت 0 تا 2.20 ہڑھانے سے گھٹتی ہے۔ ردای اسراع (جو t^4 یر منحصر ہے) بہت جلد ممای اسراع (جو مرنے $t=2.20\,\mathrm{s}$ پرزیل ہوگا۔ $t=2.20\,\mathrm{s}$ پرزیل ہوگا۔

$$\theta = \tan^{-1}\frac{2}{3(6.39\times 10^{-2}\,\mathrm{rad}\,\mathrm{s}^{-3})(2.20\,\mathrm{s})^3} = 44.4^\circ \qquad (\text{...})$$

س. سم مستحمهاو کی حسر کی توانائی

مقاصد اسس حص۔ کو پڑھنے کے بعسد آپ درج ذیل کے متابل ہوں گے۔

ا. ذرے کا گھمیے ری جمود نقطے پر تلاسٹس کریائیں گے۔

۲. و انک محور کے گرد گھومتے ہوئے متعبد د ذرول کا کل گھمپ ری جمود تلاسٹس کرمائیں گے۔

س. گھمپ ری جمود اور زاوی رفت ارکی صورت مسیں جسم کی گھمپ ری حسر کی توانائی تعسین کریائیں گے۔

كليدي تصور

• تائب محور پر گھومتے استوار جسم کی حسر کی توانائی K ذیل ہو گی،

$$K = \frac{1}{2}I\omega^2$$
 (پیٹین ناپ)

جب اں I جم کا گھیسری جمود کہ اتا ہے، جس کی تعسریف انفٹ رادی ذروں کے نظام کے لئے درج ذیل ہے۔

$$I = \sum m_i r_i^2$$

گھياو کي حسير کي توانائي

مینز آرا کا تیبزی ہے گومت دھے ر دار پیسل یقیناً گومنے کی بن حسر کی توانائی رکھتا ہے۔ ہم اسس توانائی کو کسس طسرح بیان کر کتے ہیں؟ ہم توانائی کے عصومی کلیہ $K=rac{1}{2}mv^2$ سے پورے آرا کی حسر کی توانائی حسال نہیں کر سکتے چونکہ ے آرے کے مسر کز کمت کی حسر کی توانائی دیگا،جو صف رہے۔ باب ۲. گهماو

اسس کے بحبائے، مسینز آرا (اور کسی بھی دوسسرے گھومتے استوار جمم) کو ہم مختلف رفت ارسے حسر کت کرتے ذروں کا محبسوعی تصور کرتے ہیں۔ ان ذروں کی انفسسرادی حسر کی توانائی حساسل کی حباسکتی ہے۔ یوں گھومتے جم کی حسر کی توانائی ذیل ہوگی،

$$K = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + \frac{1}{2}m_3v_3^2 + \cdots$$

$$= \sum \frac{1}{2}m_iv_i^2$$

جہاں i وین ذرے کی کمیت m_i اور رفت اور v_i ہے۔ محبموعہ جسم کے تمام ذروں پر لیا حبائے گا۔

م اوات ۲۰۳۱ مسیں مشکل ہے ہے کہ ہر ذرے کی رفتار دوسرے سے مختلف ہو سکتی ہے۔ اسس مشکل ہے بیجنے کی دفتار دوسرے سے متعلق ہیں، جس مسین س تسام ذروں کے لئے برابرہے۔ حناطب ہم مساوات ۱۸۰۸ء سے ۳۰ ال کر ذیل کھتے ہیں، جس مسین س تسام ذروں کے لئے برابرہے۔

(r.rr)
$$K = \sum \frac{1}{2} m_i (\omega r_i)^2 = \frac{1}{2} \Big(\sum m_i r_i^2 \Big) \omega^2$$

مساوات ۱۳۲ مسیں دائیں ہاتھ تو سین مسیں بند مقدار، محور گھماوے لیاظ سے گھومتے جم کی کیت کی تقسیم پیش کرتی ہے۔ سے مقدار، محور گھماوے لیاظ سے گھومتے جم کا گھمیر کی جمود سازیا جمود کی معیار اثر سازی کہ اتا ہے، جس کو ہم I سے ظلم کرتے ہیں۔ محور گھماوے لیاظ سے جم کے I کی قیمت اٹل ہوگا۔ (انتباہ: I کی قیمت صورت بامتی ہوگا، جم کور گھماوی رائی جم کا I عصوماً مختلف ہوگا، تاہم اب بھی اسس کی قیمت مستقل ہوگا۔ I مستقل ہوگا۔ ہم کا I مستقل ہوگا۔ ہم کور گھماویر ای جم کا I عصوماً مختلف ہوگا، تاہم اب بھی اسس کی قیمت مستقل ہوگا۔

$$I = \sum m_i r_i^2$$
 (گھسے ری جمود) آ

مساوات ۲۳۲ مسین ڈال کر مطسلوب تعسلق:

حاصل کرتے ہیں۔ چونکہ $v = \omega r$ استعمال کرکے درج بالا تعساق حیاصل کرتے ہیں۔ چونکہ $v = \omega r$ کی قیمت ریڈیئن ناپ مسین کھنی ضروری ہے۔ جو دی معیار از z کی اکائی کلوگر ام مسرع مسیر z

طریقہ کار۔ اگر جہم چند ذروں پر مشتل ہو، ہم ہر ذرے کی انفسرادی حسر کی توانائی mr² تلاسش کر کے تمام کا محبموعہ، مساوات ۳۳۳ کی طسرح، لے کر جہم کا کل تھمیسری جود I معلوم کر سکتے ہیں۔ جہم کی کل تھمیسری حسر کی توانائی حبائے کے لئے معلوم شدہ I کو مساوات ۳۳۳ مسیں ڈالٹ ہوگا۔ چند ذروں کے لئے سے طسریقہ کار استعال کیا

rotationalinertia"

momentofinertia

۸۵ می وی حسر کی توانائی

حب نے گا؛ اگر جم مسین ذروں کی تعداد بہت زیادہ ہو (جیسا ایک ساخ مسین ہو گا) تب کسیا ہو گا؟ اگلے ھے مسین ہم اسس فتم کے استمرادی اجسام کونپٹنا سیکھیں گے؛ فسکر مت کریں، نستائج مسنٹوں مسین حساسل ہوں گے۔

م وات $K = \frac{1}{2}I\omega^2$ و بن العرب معنی میں استوار جم کی حسر کی توانائی $K = \frac{1}{2}I\omega^2$ و بن العرب معنی محسر کر ترب کی صورت مسیں حسر کی توانائی کلی میں کر کی توانائی کلی میں کی خوان کی کلی میں کی توانائی کلی میں کی توانائی کلی میں کی توانائی کلی میں کی توانائی کلی میں کی تعلیم دونوں کی حسر کی توانائی دوختلف توانائی کی میں دونوں حسر کی توانائی ہے، تاہم میں کر موزوں صورت ایت آئی گئی ہے۔

ہم پہلے ہم جہ چے ہیں کہ گومتے جہم کا گھیسری جود ناصر ف کیسے بلکہ کیسے کی تقسیم پر بھی مخصر ہوگا۔ آئیں ایک ایک ممثل دیکھ میں جس کو آپ حقیقتاً محسوس کر سے ہیں۔ ایک لجی اور بجساری سان ، پہلے طولی محود پر (شکل 11a.10) مشال میں دونوں صور توں مسین کیسے اور اسس کے بعد وسطی نقط ہے گزرتی اور سان کو عصودی محود پر (شکل 11b.10) گھسائیں۔ دونوں صور توں مسین کیسے ایک جتنی ہے، تاہم پہلی صور سے مسین گھسانازیادہ آسان ہوگا۔ پہلی صور سے مسین گھسازیادہ آسان ہوگا۔ پہلی صور سے مسین کی بدول سے شکل 11a.10 مسین گھسازیادہ آسان ہوگا۔ مسین کی مور سے مسین گھسازیادہ آسان ہوگا۔ مسین گھسانازیادہ آسان ہوگا۔ مسین گھسازیادہ آسان ہوگا۔

آزمائشس

تین کرہ انتصابی محورے گرد گھومتے مشکل مسین د کھائے گئے ہیں۔ ہر کمیت کے مسر کزے محور تک عسودی مناصلہ بھی دیا گیاہے۔اسس محور پر گھمیسری جمودے لحیاظ ہے کمسیوں کی درجب ہبندی کریں۔ زیادہ قیت اول د کھسیں۔

جوابات