

LOGIC and Computer Design Fundamentals

CHAPTER 4

Sequential Logic

Storage Elements and Sequential Circuit Analysis (part I)

施青松

Asso. Prof. Shi Qingsong College of Computer Science and Technology, Zhejiang University zjsqs@zju.edu.cn

Overview

□ Part 1 - Storage Elements and Analysis

- Introduction to sequential circuits
- Types of sequential circuits
- Storage elements
 - □ Latches
 - Flip-flops
- Sequential circuit analysis
 - □ State tables
 - State diagrams
 - Equivalent states
 - Moore and Mealy Models
- Part 2 Sequential Circuit Design
- □ Part 3 State Machine Design

Course Outline

Introduction to Sequential Circuits

Types of sequential circuits

Storage elements

Sequential circuit analysis

Introduction to Sequential Circuits

■ A Sequential circuit contains:

Storage elements:Latches or Flip-Flops

Combinational Logic:

- Implements a multiple-output switching function
- Inputs are signals from the outside.
- □ Outputs are signals to the outside.
- Other inputs, State or Present State, are signals from storage elements.
- The remaining outputs, Next State are inputs to storage elements.

Introduction to Sequential Circuits

□ Combinatorial Logic

- Next state function Next State = f(Inputs, State)
- Output function (Mealy)
- \square Outputs = g(Inputs, State)
- Output function (Moore)
 - \Box Outputs = h(State)

Output function type depends on specification and effects the design significantly

Course Outline

Introduction to Sequential Circuits

Types of sequential circuits

Storage elements

Sequential circuit analysis

Types of Sequential Circuits

□ Depends on the times at which:

- storage elements observe their inputs, and
- storage elements change their state

□ Synchronous

- Behavior defined from knowledge of its signals at **discrete** instances of time
- Storage elements observe inputs and can change state only in relation to a timing signal (clock pulses from a clock)

□ Asynchronous

- Behavior defined from knowledge of inputs an any instant of time and the order in continuous time in which inputs change
- If clock just regarded as another input, all circuits are asynchronous!
- Nevertheless, the synchronous abstraction makes complex designs tractable!

Discrete Event Simulation

■ In order to understand the time behavior of a sequential circuit we use discrete event simulation.

□ Rules:

- Gates modeled by an ideal (instantaneous) function and a fixed gate delay
- Any change in input values is evaluated to see if it causes a change in output value
- Changes in output values are scheduled for the fixed gate delay after the input change
- At the time for a scheduled output change, the output value is changed along with any inputs it drives

Simulated NAND Gate

Example: A 2-Input NAND gate with a 0.5 ns. delay:

- Assume A and B have been 1 for a long time
- At time t=0, A changes to a 0 at t=0.8 ns, back to 1.

t (ns)	A	В	F(I)	F	Comment
$-\infty$	1	1	0	0	A=B=1 for a long time
0	1⇒ 0	1	1 ← 0	0	F(I) changes to 1
0.5	0	1	1	1 ← 0	F changes to 1 after a 0.5 ns delay
0.8	1 ← 0	1	1⇒ 0	1	F(Instantaneous) changes to 0
0.13	1	1	0	1⇒ <mark>0</mark>	F changes to 0 after a 0.5 ns delay

Gate Delay Models

■ Suppose gates with delay n ns are represented for n = 0.2 ns, n = 0.4 ns, n = 0.5 ns, respectively:

Circuit Delay Model

- Consider a simple 2-input multiplexer:
- With function:
 - Y = A for S = 1
 - Y = B for S = 0

"Glitch" is due to delay of inverter

计算机学院 系统结构与系统软件实验室

Storing State

- What if A connected to Y?
- **Circuit becomes:**
- With function:
 - Y = B for S = 1, and Y(t) dependent on Y(t - 0.9) for S = 0

The simple combinational circuit has now become a sequential circuit because its output is a function of a time sequence of input signals!

B

Storing State (Continued)

Simulation example as input signals change with time. Changes occur every 100 ns, so that the tenths of ns delays are negligible.

Time	В	S	Y	Comment	
	1	0	0	Y "remembers" 0	
	1	1	1	Y = B when $S = 1$	
	1	0	1	Now Y "remembers" $B = 1$ for $S = 0$	
	0	0	1	No change in Y when B changes	
	0	1	0	Y = B when $S = 1$	
	0	0	0	Y "remembers" $B = 0$ for $S = 0$	
↓	1	0	0	No change in Y when B changes	

Y represent the state of the circuit, not just an output.

Storing State (Continued)

Suppose we place an inverter in the "feedback path."

- The following behavior results:
- The circuit is said to be unstable.
- For S = 0, the circuit has become what is called an oscillator. Can be used as crude clock.

В	S	Y	Comment
0	1	0	Y = B when $S = 1$
1	1	1	
1	0	1	Now Y "remembers" A
1	0	0	Y, 1.1 ns later
1	0	1	Y, 1.1 ns later
1	0	0	Y, 1.1 ns later

Course Outline

Introduction to Sequential Circuits

Types of sequential circuits

Storage elements

Sequential circuit analysis

Latches

Latches

- **many components to storing historical state:**
 - Capacitors, Inductors, a delay line, a memory, etc.
 - Latches, Triggers
- Satisfy the following three conditions can be referred to as to as latches:
 - 1. Long term maintaining a given stable state;
 - 2. There are two stable states, "0", "1";
 - 3. Under certain conditions, can change state at anytime,
 - □ ie: set to "1" is set to "0".
- □ the most simple is latch RS latch and D latch

S-R Latch

Basic (NAND) $\bar{S} - \bar{R}$ Latch

"Cross-Coupling" two
 NAND gates gives
 the S -R Latch:

Which has the time sequence behavior:
Time

S = 0, R = 0 is forbidden as input pattern

R	S	Q	Q	Comment
1	1	Q	Q	Stored state Hold
1	0	1	0	"Set" Q to 1
1	1	1	0	Now Q "remembers" 1
0	1	0	1	"Reset" Q to 0
1	1	0	1	Now Q "remembers" 0
0	0	1	1	Both go high
1	1	?	?	Stored state unknown

Basic (NOR) S – R Latch

- Cross-coupling two NOR gates gives the S – R Latch:
- Which has the time sequence

R (reset)

S (set)

T	•
haha	T/IAP.
beha	VIUI.
,	. – – -

Time

S = 1, R = 1 is
forbidden as
input pattern

<u>,</u>	R	S	Q	$\overline{\mathbf{Q}}$	Comment
	0	0	Q	Q	Stored state Hold
	0	1	1	0	"Set" Q to 1
	0	0	1	0	Now Q "remembers" 1
	1	0	0	1	"Reset" Q to 0
	0	0	0	1	Now Q "remembers" 0
	1	1	0	0	Both go low
	0	0	?	?	Stored state unknown!

Clocked S - R Latch

■ Adding two NAND gates to the basic \overline{S} - \overline{R} NAND latch gives the clocked S - R latch:

- Has a time sequence behavior similar to the basic S-R latch except that the S and R inputs are only observed when the line C is high.
- □ C means "control" or "clock".

Clocked S - R Latch (continued)

The Clocked S-R Latch can be described by a

table: s ———

C	S	R	Q(t+1)
0	X	X	holding
1	0	0	holding
1	0	1	Q=0: Reset
1	1	0	Q=1: Set
1	1	1	Indeterminate

- The table describes what happens after the clock [at time (t+1)] based on:
 - current inputs (S,R) and
 - current state Q(t).

$\overline{}$				
Q(t)	S	R	Q(t+1)	Comment
0	0	0	0	No change
0	0	1	0	Clear Q
0	1	0	1	Set Q
0	1	1	???	Indeterminate
1	0	0	1	No change
1	0	1	0	Clear Q
1	1	0	1	Set Q
1	1	1	???	Indeterminate

D Latch

D Latch

- Adding an inverter to the S-R Latch, gives the D Latch:
- Note that there are no "indeterminate" states!

Q	D	Q(t+1)	Comment
0	0	0	No change
0	1	1	Set Q
1	0	0	Clear Q
1	1	1	No Change

The graphic symbol for a

D Latch is:

The Latch Timing Problem

The Latch Timing Problem

- □ In a sequential circuit, paths may exist through combinational logic:
 - From one storage element to another
 - From a storage element back to the same storage element
- □ The combinational logic between a latch output and a latch input may be as simple as an interconnect
- □ For a clocked D-latch, the output Q depends on the input D whenever the clock input C has value 1

The Latch Timing Problem (continue

 \square Suppose that initially Y = 0.

Clock Y

- \square As long as C = 1, the value of Y continues to change!
- The changes are based on the delay present on the loop through the connection from Y back to Y.
- This behavior is clearly unacceptable.
- **□ Desired behavior**: Y changes **only once** per clock pulse

The Latch Timing Problem (continued)

- A solution to the latch timing problem is to break the closed path from Y to Y within the storage element
- □ The commonly-used, path-breaking solutions replace the clocked D-latch with:
 - a master-slave flip-flop
 - an edge-triggered flip-flop

Triggers S-R Triggers

S-R Master-Slave Flip-Flop

- ☐ Consists of two clocked S-R latches in series with the clock on the second latch inverted
- The input is observed by the first latch with C = 1

- \Box The output is changed by the second latch with C = 0
- The path from input to output is broken by the difference in clocking values (C = 1 and C = 0).
- The behavior demonstrated by the example with D driven by Y given previously is prevented since the clock must change from 1 to 0 before a change in Y based on D can occur.

S-R Master-Slave timing-1

- 1. Hold
- 2. Reset "0"
- 3. Set "1"
- 4. Hold

- hold requirement:
 - When the pulse arrives: Q = 0 and the before end of the pulse: RS = 00,
 Q should be kept to "0"
 - When the pulse arrives: Q = 1 and the before end of the pulse: RS = 00,
 - Q should be kept to "1" 大学 计算机学院 繁统结构与系统软件实验室

S-R Master-Slave timing-2

5. 1s catching

C- At the high level:

- First sampled: RS=10,Y=1
- S- Then sampled: RS=01,Y=0
- Before falling edge get:
- R- RS=00
 - At falling edge untaken:
- Y- Y=1, Hold Q: Q=0

6. 1s catching

- **Q** At rising : RS=10,Y=1
 - At falling: RS=00, Hold
 - Y=1
 At falling: RS=00,should

Hold, But Y=1,

Q Miss Hold "0", Q=1

7. RS=11, Uncertain 1s catching

In the pulse arrives before Q = 0, at the end of the pulse RS = 00, Q should be kept at "0"

计算机学院 系统结构与系统软件实验室

S-R Master-Slave timing: Integrated

1s catching

the end of the pulse RS = 00, Q should be kept at "0"

计算机学院 系统结构与系统软件实验室

Flip-Flop Problem

- □ The change in the flip-flop output is delayed by the pulse width which makes the circuit slower or
- \square S and/or R are permitted to change while C = 1
 - Suppose Q = 0 and S goes to 1 and then back to 0 with R remaining at 0
 - □ The master latch sets to 1
 - □ A 1 is transferred to the slave
 - Suppose Q = 1 and S goes to 1 and back to 0 and R goes to 1 and back to 0
 - □ The master latch sets and then resets
 - A 0 is transferred to the slave
 - This behavior is called 1s catching

D Triggers

Flip-Flop Solution

- **□** Use edge-triggering instead of master-slave
- An *edge-triggered* flip-flop ignores the pulse while it is at a constant level and triggers only during a transition of the clock signal
- Edge-triggered flip-flops can be built directly at the electronic circuit level, or
- A master-slave D flip-flop which also exhibits edge-triggered behavior can be used.

Edge-Triggered D Flip-Flop

■ The edge-triggered D flip-flop is the same as the master-slave D flip-flop

- **■** It can be formed by:
 - Replacing the first clocked S-R latch with a clocked D latch or
 - Adding a D input and inverter to a master-slave S-R flip-flop
- The delay of the S-R master-slave flip-flop can be avoided since the 1s-catching behavior is not present with D replacing S and R inputs
- The change of the D flip-flop output is associated with the negative edge at the end of the pulse
- □ It is called a *negative-edge triggered* flip-flop

Positive-Edge Triggered D Flip-Flop

■ Formed by adding inverter to clock input

- Q changes to the value on D applied at the positive clock edge within timing constraints to be specified
- Our choice as the standard flip-flop for most sequential circuits

This is an equivalent edge trigger behavior

Positive edge to maintain the blocking type D flip-flop circuit

Problem 4-3

异步控制		上升沿触发			
\overline{R}	\overline{S}	Ср	D	Q	$\overline{\mathbb{Q}}$
0	1	X	X	0	1
1	0	X	X	1	0
1	1	†	0	0	1
1	1	†	1	1	0

(c) 功能表

计算机学院 系统结构与系统软件实验室

Standard Symbols for Storage Elements

Direct Inputs

- □ At power up or at reset, all or part of a sequential circuit usually is initialized to a known state before it begins operation
- **■** This initialization is often done outside of the clocked behavior of the circuit, i.e., asynchronously.

- □ Direct R and/or S inputs that control the state of the latches within the flip-flops are used for this initialization.
- **☐** For the example flip-flop shown
 - 0 applied to R resets the flip-flop to the 0 state
 - 0 applied to S sets the flip-flop to the 1 state

Flip-Flop Timing Parameters

Flip-Flop Timing Parameters

浙江大学 计算机学院 系统结构与系统软件实验室

Flip-Flop Timing Parameters (continued)

- t_s setup time
 - Master-slave Equal to the width of the triggering pulse
 - **Edge-triggered Equal to a time interval that is** generally much less than the width of the triggering pulse
- t_h hold time Often equal to zero
- t_{px} propagation delay
 - Same parameters as for gates except
 - Measured from clock edge that triggers the output change to the output change

Summary: R-S Locker

Summary: D-Locker & Flip-Flop

Course Outline

Introduction to Sequential Circuits

Types of sequential circuits

Storage elements

Sequential circuit analysis

Sequential Circuit Analysis

General Model

- Current State at time (t) is stored in an array of flip-flops.
- Next State at time (t+1) is a Boolean function of State and Inputs.

• Outputs at time (t) are a Boolean function of State (t) and (sometimes) Inputs (t).

Example 1 (from Fig. 5-15)

• Input: x(t)

Output: y(t)

• State: (A(t), B(t))

What is the Output Function?y=

• What is the Trigger input Function?

$$\mathbf{D}_{\mathbf{A}} = \mathbf{D}_{\mathbf{B}} =$$

What is the Next State Function?

$$A(t+1)=$$

$$B(t+1)=$$

Example 1 (from Fig. 5-15) (continued)

Triggers the excitation equation:

- $\mathbf{D}_{\mathbf{A}} = \mathbf{A}(\mathbf{t})\mathbf{x}(\mathbf{t}) + \mathbf{B}(\mathbf{t})\mathbf{x}(\mathbf{t})$
- $\mathbf{D}_{\mathbf{B}} = \mathbf{\bar{A}}(\mathbf{t})\mathbf{x}(\mathbf{t})$
- Next State Function
 - A(t+1) = A(t)x(t) + B(t)x(t)
 - $\mathbf{B}(\mathbf{t}+\mathbf{1}) = \overline{\mathbf{A}}(\mathbf{t})\mathbf{x}(\mathbf{t})$
- Output Function:
 - $y(t) = \overline{x}(t)(B(t) + A(t))$

Example 1(from Fig. 5-15) (continued)

• Where in time are inputs, outputs and states defined?

State Table Characteristics

- State table a multiple variable table with the following four sections:
 - *Present State* the values of the state variables for each allowed state.
 - *Input* the input combinations allowed.
 - Next-state the value of the state at time (t+1) based on the present state and the input.
 - Output the value of the output as a function of the present state and (sometimes) the input.
- From the viewpoint of a truth table:
 - the inputs are Input, Present State
 - and the outputs are Output, Next State

Example 1: State Table (from Fig. 5-15)

The state table can be filled in using the next state and output equations:

$$A(t+1) = A(t)x(t) + B(t)x(t)$$

$$B(t+1) = \overline{A}(t)x(t)$$

$$y(t) = \overline{x}(t)(B(t) + A(t))$$

Present State	Input	Next	State	Output
A(t) B(t)	$\mathbf{x}(\mathbf{t})$	A(t+1)	B (t+1)	y(t)
0 0	0	0	0	0
0 0	1	0	1	0
0 1	0	0	0	1
0 1	1	1	1	0
1 0	0	0	0	1
1 0	1	1	0	0
1 1	0	0	0	1
1 1	1	1	0	0

Example 1: Alternate State Table

- 2-dimensional table that matches well to a K-map. Present state rows and input columns in Gray code order.
 - $\bullet \ \mathbf{A}(t+1) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{x}(t)$
 - $\mathbf{B}(\mathbf{t}+\mathbf{1}) = \overline{\mathbf{A}}(\mathbf{t})\mathbf{x}(\mathbf{t})$
 - $y(t) = \overline{x}(t)(B(t) + A(t))$

Present	Next State		Output	
State	$\mathbf{x}(\mathbf{t})=0$	$\mathbf{x}(\mathbf{t})=1$	$\mathbf{x}(\mathbf{t})=0$	$\mathbf{x}(\mathbf{t})=1$
A(t) B(t)	$\mathbf{A}(\mathbf{t}+1)\mathbf{B}(\mathbf{t}+1)$	$\mathbf{A}(\mathbf{t}\mathbf{+}1)\mathbf{B}(\mathbf{t}\mathbf{+}1)$	$\mathbf{y}(\mathbf{t})$	y(t)
0 0	0 0	0 1	0	0
0 1	0 0	1 1	1	0
1 0	0 0	1 0	1	0
1 1	0 0	1 0	1	0

State Diagrams

- The sequential circuit function can be represented in graphical form as a state diagram with the following components:
 - A circle with the state name in it for each state
 - A directed arc from the Present State to the Next State for each state transition
 - A label on each directed arc with the Input values which causes the state transition, and
 - A label:
 - On each circle with the output value produced, or
 - On each directed arc with the output value produced.

State Diagrams

- Label form:
 - On circle with output included:
 - state/output
 - Moore type output depends only on state
 - On directed arc with the output included:
 - input/output
 - Mealy type output depends on state and input

Example 1: State Diagram

- Which type?
- Diagram gets confusing for large circuits
- For small circuits, usually easier to understand than the state table

Equivalent State Definitions

• Two states are *equivalent* if their response for each possible input sequence is an identical output sequence.

• Alternatively, two states are equivalent if their outputs produced for each input symbol is identical and their next states for each input symbol are the same or equivalent.

Equivalent State Example

- Text Figure 5-17(a):
- For states S3 and S2,
 - the output for input 0 is 1 and input 1 is 0, and
 - the next state for input 0 is S0 and for input 1 is S2.

• By the alternative definition, states S3 and S2 are equivalent.

Equivalent State Example

Replacing S3 and S2 by a single state gives state diagram:

 Examining the new diagram, states S1 and S2 are equivalent since

- their outputs for input 0 is 1 and input 1 is 0, and
- their next state for input
 0 is S0 and for input
 1 is S2,
- Replacing S1 and S2 by a single state gives state diagram:

Moore and Mealy Models

 Sequential Circuits or Sequential Machines are also called *Finite State Machines* (FSMs).
 Two formal models exist:

- Moore Model
 - Named after E.F. Moore
 - Outputs are a function ONLY of states
 - Usually specified on the states.

- Mealy Model
 - Named after G. Mealy
 - Outputs are a function of inputs AND states
 - Usually specified on the state transition arcs.

Outputs

Moore and Mealy Example Tables

 Mealy Model State Diagram maps inputs and state to outputs

outputs x=1/y=0
x=0/y=0
0

Moore Model State Diagram

maps states to outputs

浙沙人曾系统结构与系统软件实验室

Moore and Mealy Example Tables

Moore Model state table maps state to outputs

Present	Next State	Output
State	x=0 $x=1$	
0	0 1	0
1	0 2	0
2	0 2	1

Mealy Model state table maps inputs and state to outputs
 Present Next State Output

Present	Next State	Output
State	x=0 $x=1$	x=0 $x=1$
0	0 1	0 0
1	0 1	0 1

Mixed Moore and Mealy Outputs

In real designs, some outputs may be Moore type and other outputs may be Mealy type.

Example: Figure 5-17(a) can be modified to

illustrate this

• State 00: Moore

• States 01, 10, and 11: Mealy

Simplifies output specification

Example 2: Sequential Circuit Analysis

Example 2: Flip-Flop Input Equations

Variables

- Inputs: None
- Outputs: Z
- State Variables: A, B, C
- Initialization: Reset to (0,0,0)
- Equations

•
$$A(t+1) =$$

$$\mathbf{Z} =$$

- B(t+1) =
- C(t+1) =

Example 2: Flip-Flop Input Equations

Variables

- Inputs: None
- Outputs: Z
- State Variables: A, B, C
- Initialization: Reset to (0,0,0)
- Equations

•
$$A(t+1) = B(t)C(t)$$
 $Z = A(t)$

•
$$\mathbf{B}(\mathbf{t}+\mathbf{1}) = \overline{\mathbf{B}}(\mathbf{t})\mathbf{C}(\mathbf{t}) + \mathbf{B}(\mathbf{t})\overline{\mathbf{C}}(\mathbf{t})$$

•
$$C(t+1) = \overline{A}(t)\overline{C}(t)$$

Example 2: State Table

$$\mathbf{X'} = \mathbf{X}(\mathbf{t} + \mathbf{1})$$

A B C	A'B'C'	Z
0 0 0		
0 0 1		
0 1 0		
0 1 1		
1 0 0		
1 0 1		
1 1 0		
1 1 1		

Example 2: State Table

$$\mathbf{X'} = \mathbf{X}(\mathbf{t} + \mathbf{1})$$

ABC	A'B'C'	\mathbf{Z}
ABC	ADC	
0 0 0	0 0 1	0
0 0 1	0 1 0	0
0 1 0	0 1 1	0
0 1 1	1 0 0	0
1 0 0	0 0 0	1
1 0 1	0 1 0	1
1 1 0	0 1 0	1
1 1 1	1 0 0	1

Example 2: State Diagram

Circuit and System Level Timing

- Consider a system comprised of ranks of flip-flops connected by logic:
- If the clock period is too short, some data changes will not propagate through the circuit to flip-flop inputs before the setup time interval begins

Circuit and System Level Timing (continued)

Timing components along a path from flip-flop to flip-flop

Circuit and System Level Timing (continued)

■ New Timing Components

- t_p clock period The interval between occurrences of a specific clock edge in a periodic clock
- t_{pd,COMB} total delay of combinational logic along the path from flip-flop output to flip-flop input
- t_{slack} extra time in the clock period in addition to the sum of the delays and setup time on a path
 - Can be either positive or negative
 - Must be greater than or equal to zero on all paths for correct operation

Circuit and System Level Timing (continued)

Timing Equations

$$t_{p} = t_{slack} + (t_{pd,FF} + t_{pd,COMB} + t_{s})$$

■ For t_{slack} greater than or equal to zero,

$$t_p \geq max \ (t_{pd,FF} + t_{pd,COMB} + t_s)$$
 for all paths from flip-flop output to flip-flop input

Can be calculated more precisely by using t_{PHL} and t_{PLH} values instead of t_{pd} values, but requires consideration of inversions on paths

Calculation of Allowable t_{pd,COMB}

- Compare the allowable combinational delay for a specific circuit:
 - a) Using edge-triggered flip-flops
 - b) Using master-slave flip-flops
- Parameters
 - $\mathbf{t}_{pd,FF}(max) = 1.0 \text{ ns}$
 - $t_s(max) = 0.3$ ns for edge-triggered flip-flops
 - $t_s = t_{wH} = 1.0$ ns for master-slave flip-flops
 - Clock frequency = 250 MHz

Calculation of Allowable t_{pd,COMB}

- Calculations: $t_p = 1/\text{clock frequency} = 4.0 \text{ ns}$
 - **Edge-triggered:**

■
$$4.0 \ge 1.0 + t_{pd,COMB} + 0.3$$

- $t_{pd,COMB} \le 2.7 \text{ ns}$
- Master-slave:

■
$$4.0 \ge 1.0 + t_{pd,COMB} + 1.0$$

 $t_{pd,COMB} \le 2.0 \text{ ns}$

- **Comparison:** Suppose that for a gate, average $t_{pd} = 0.3$ ns
 - Edge-triggered: Approximately 9 gates allowed on a path
 - Master-slave: Approximately 6 to 7 gates allowed on a path

Ch4-1

page280-293: 4-2, 4-7, 4-8, 4-11

Triggers, but it was so!

Thank you!