ARMv7 Processor Architecture (Microprocessor Summit)

David Brash

MPS-900 New Product Announcements San Francisco: 07-March-2005

The Architecture Challenge

ARM widely adopted:

2004 shipments > 1.2B units (ARMv4T & ARMv5TE based)

Rapid adoption of ARMv6 (ARM11™)

New demands and usage diversity continue

ARMv7: satisfying trends while maintaining consistency is key

Meeting the challenge with profiles

■ The Application profile (ARMv7A)

- Memory management support (MMU)
- Highest performance at low power
 - Influenced by multi-tasking OS system requirements

■ The Real-time profile (ARMv7R)

- Protected memory (MPU)
- Low latency and predictability 'real-time' needs
- Evolutionary path for traditional embedded business

■ The Microcontroller profile (ARMv7M)

- Lowest gate count entry point
- Deterministic behaviour a key priority
- Deeply embedded strong synergies with 'ARMv7R'

Arch Evolution and Key Themes

Thumb-2

- Thumb required compiler tradeoffs
 - Osize' versus 'Otime'
 - Compile by function
- Thumb-2 offers a better compiler target
 - A single ISA
 - 16-/32-bit instructions
 - Optimise for a 'static blend'

Delivering Performance and Code Density together

NEON - Advanced SIMD

Packed SIMD processing

- Integer arithmetic and single-precision FP option
 - 8-, 16-, 32- & 64-bit data types
 - (un)signed; float32; poly{8,16}

Designed for vectorising compiler support

- Register & Element/Structure (interleaved) load/stores
- Promotion/demotion of data operation results
 - Removes need for packing/unpacking instructions

■ Tightly integrated, separate execution hardware

- Register file shared with VFP
 - Used as 32 x 64-bit or 16 x 128-bit registers
- Provides a significant performance boost over ARMv6 SIMD

Adv SIMD – element LD/ST example

In General:

- LD/ST all elements to/from 1-4 registers
- LD/ST a single element or replicate (LD) within a vector
- For 2-4 element structures
 - Load/store an element to/from a set of structure vectors
 - Replicate a structure through a set of vectors
 - Load a set of structures across a set of vectors

VFPv3 – Floating Point support

■ Builds on VFPv2

- Double precision register count increased from 16 to 32
- Fixed ⇔ Float conversion instructions
 - Signed and unsigned conversions
 - Integer value: 16- or 32-bit
 - FP value: single or double
- Floating point constant loads

User traps now an architecture option (VFPv3U)

- A change of emphasis from VFPv2
- Fits in with Advanced SIMD exception-free execution

Trap free operation provides best performance & best suited to the majority of ARM target markets

Execution Environment Support

Supports JIT/DAC and AOT techniques

- JIT = 'Just in Time' compiler (real-time)
- DAC = 'Dynamic Adaptive Compilation' (real-time)
- AOT = 'Ahead of Time' compiler (install or on download)

Improved memory efficiency

- ROM, RAM and cache
- Benefits apply to down-loadable applications in RAM as well as those pre-installed in ROM

Execution Environment - Features

- New Execution state
 - Derived from Thumb-2
 - Delivers excellent code density
- Key ISA changes from Thumb-2
 - New sub-routine (handler) mechanism
 - CHKA: Array checking instruction
 - Null pointer checks on LD/ST's
- Detailed announcement later this year

ARMv7M - Motivations

Improved support for deeply embedded and microcontroller markets

- Reduced hardware / core size
- Excellent interrupt latency
- Ease of high level language programming
- Strong upwards compatibility with the general embedded business

ARMv7M – a new programmer's model

■ ARMv7A, ARMv7R

- Banked registers in privileged modes
 - SP, LR and SPSR (plus r8-r12 in FIQ mode)
- Software save/restore of registers ⇔ memory
- CP15: System control coprocessor
- ARM and Thumb-2 execution
- CP14 or CoreSight[™] debug

ARMv7M

- Only stack pointer (SP) banked
 - User/privilege support
- Save/restore ⇔ stack in hardware (r0-r3, r12, LR, PC, xPSR)
 - Supports ARM's C/C++ procedure calling standard
- Memory mapped system
 - Integral exception and interrupt control
 - Access to state, debug etc.
- Thumb-2 only
- Single-wire debug

Compatibility: ARMv7M <=> ARMv7R

OSs easily ported. Applications can be 100% compatible.

ARMv7M - features

- Integrated, vectored exception controller
 - Flexible priority scheme
 - Pre-emption and tail-chaining capabilities
- Multiple stacks
 - User/Privileged operation supported
 - Recognises growing need in the micro-controller space
 - Fits common OS and RTOS usage models
- Architected memory map includes:
 - System access: exception/interrupt control, debug
 - Bit-banding support for simple read-modify-write
 - Simplifies bit manipulation in memory
 - Optional MPU (PMSA model aligns with ARMv7R)

ARMv7M – Exceptions and Interrupts

- Features contributing to minimum latency and improved performance
 - Vectored entry
 - Push/pop to the stack in hardware
 - Flexible prioritisation scheme
- Two key interrupt latency optimisations supported
 - Late-arrival Pre-emption
 - Switches to higher priority interrupt during exception entry
 - Tail-chaining exit/entry optimisation
 - Avoids unnecessary pop + push of registers

ARMv7M – Tail-chaining example

ARM7TDMI®

- Software pre/post amble
- 26 cycles from IRQ1 -> ISR1 entered
- 42 cycles from ISR1 exit -> ISR2 entry
- 16 cycles to return from ISR2 -> interrupted code

Cortex[™]-M3

- Hardware ISR entry/exit
- 12 cycles from IRQ1 -> ISR1 entered
- 6 cycles from ISR1 exit -> ISR2 entry
- 12 cycles to return from ISR2 -> interrupted code.

The ARM Cortex™ Family

- A New family of products from ARM based on the ARMv7 Architecture, Thumb®-2 Instruction Set and AMBA[™] AXI interface specification
- Three main series
 - ARM Cortex A Series Applications CPUs focused on the execution of complex OS and user applications
 - First Product: To be announced
 - Executes ARM, Thumb-2 instructions
 - ARM Cortex R Series Deeply embedded processors focused on real-time environments
 - First Product: To be announced
 - Executes ARM, Thumb-2 instructions
 - ARM Cortex M Series Microcontroller cores focused on very cost sensitive, deterministic, interrupt driven environments
 - First Product: ARM Cortex-M3
 - Executes Thumb-2 instructions

Performance