





### リカレントニューラルネットワーク (Recurrent Neural Network, RNN)

・任意の長さの系列を扱うことができる



# LSTM (Long Short-Term Memory)

- ・単純な RNN の問題点
  - 勾配消失問題
  - ・長距離の依存関係をとらえられない
- Long Short-Term Memory (LSTM)



$$\begin{split} i_t &= \sigma \left( W^{(i)} x_t + U^{(i)} h_{t-1} + b^{(i)} \right) \\ f_t &= \sigma \left( W^{(f)} x_t + U^{(f)} h_{t-1} + b^{(f)} \right) \\ o_t &= \sigma \left( W^{(o)} x_t + U^{(o)} h_{t-1} + b^{(o)} \right) \\ \widetilde{c}_t &= \tanh \left( W^{(\widetilde{c})} x_t + U^{(\widetilde{c})} h_{t-1} + b^{(\widetilde{c})} \right) \\ c_t &= i_t \circ \widetilde{c}_t + f_t \circ c_{t-1} \\ h_t &= o_t \circ \tanh \left( c_t \right) \end{split}$$





# RNNと自然言語処理

- ・自然言語処理では文字や単語の系列を扱う
  - ・言語モデル、品詞タグ付け、固有表現認識、機械翻訳、etc.
- 例)言語モデル
  - ・ 次の単語を予測



### 品詞タグ付け

・文中の各単語に品詞情報を付与 Paul Krugman, a professor at Princeton University, was awarded the Nobel Prize in Economics on Monday.

品詞タグ

NN: 名詞

NNP: 固有名詞

DT: 限定詞

IN: 前置詞

VBD: 動詞(過去形)

VBN: 動詞(過去分詞)

7.

# Bidirectional LSTM (BiLSTM)

- ・2つのRNN(順方向と逆方向)
  - ・左右両方向の文脈情報を捉えられる



# BiLSTMによる品詞タグ付け

- ・学習データ
  - Wall Street Journal コーパス: 約40,000文



→ CRF 層を追加 (Huang et al., 2015; Ma and Hovy, 2016)

# チャンキング(shallow parsing)

- ・文をフラットな句に分割
- ・再帰的な分割は行わない

# チャンキング (shallow parsing)

He reckons the current account deficit will narrow to BNP BVP BNP INP INP BVP IVP BPP only # 1.8 billion in September . BNP INPINP INP BPP BNP O

- ・各単語に対するタグ付けの問題に変換できる
  - B: チャンクの先頭
  - 1: チャンクの中(先頭以外)
  - · O: チャンクの外

# 固有表現認識 (named entity recognition)

The peri-kappa B site mediates human immunodeficiency virus type 2 enhancer activation in monocytes ...

- 文中の固有表現を認識
- チャンキングと同様、系列ラベリングの問題として 処理できる

### 構文解析

- · 依存構造(dependency structure)
  - ・文中の単語間の関係をグラフで表す
    - ・係り元(dependent)から係り先(head, 主辞)へのエッジ
    - ・ (矢印を逆向きに描くことも多い)
  - ・係り受け構造とも呼ばれる



# Shift-Reduce法による依存造解析

- · Shift-Reduce 法
  - ・バッファー(buffer)
    - 解析前の単語列を格納
  - ・スタック(stack)
    - 解析後の依存構造を格納
  - ・アクション (action)
    - · Shift
- バッファーの先頭の単語をスタックに移動
  - · Reduce
- ・スタックトップの2つの単語の間にエッジを生成

## Shift-Reduce 法



| OPERATION                   | STACK   | BUFFER |
|-----------------------------|---------|--------|
| Shift<br>ReduceL<br>ReduceR | saw dog |        |

### Shift-Reduce 法

- 学習モデル
  - Stack LSTM (Dyer et al., 2015)
  - FFNN + ビーム探索 + Early Update (Andor et al., 2016)
  - BiLSTM (Kiperwasser & Goldberg, 2016)

#### Stack LSTM



### 構文解析



### 構文解析

· 句構造解析

VP

NP

NNP

VBZ

DT

NN

John has a dog

(S (NP NNP )NP (VP VBZ (NP DT NN )NP )VP . )S

### Recurrent Neural Network Grammar (RNNG) (Dyer et al., 2016)

|    | Gramina (                                    |                                | Action |
|----|----------------------------------------------|--------------------------------|--------|
|    | 入力文: The hungry cat meows .                  | Buffer + 1 meows   .           | NT(S)  |
|    |                                              | The   hungry   cat   meows   . | NT(NP) |
|    | Stack                                        | I hungry cut I                 | SHIFT  |
| 0  | Is                                           | The   hungry   cat   mes       | SHIFT  |
| 1  | (S   (NP                                     | hungry   cat   meows   .       | SHIFT  |
| 3  | (S   (NP   The                               | cat   meows   .                | REDUCE |
| 4  | IS I (NP   The hungry                        | meows   .                      | NT(VP) |
| 5  | IS I (NP   The hungry   Cut                  | meows  .                       | SHIFT  |
| 6  | IS I INP   The hungry   Cut)                 | meows  .                       | REDUCE |
| 7  | The LUND I The hungry   Cat) (VI             |                                | SHIFT  |
| 8  | to I IND I The hungry   cat) (VI             |                                | REDUCE |
| 9  | Is I IND   The hungry   cat) (VI IIIco       |                                | KEDOCE |
| 10 | Is I IND   The hungry   cat) (VF Income)     |                                |        |
| 11 | (S   (NP   The hungry   cat) (VP meows)   .) |                                |        |

### Recurrent Neural Network Grammar (RNNG) (Dyer et al., 2016)



# 構文解析の精度

| 依存構造解析                                                                                                                                 | UAS  | LAS  |
|----------------------------------------------------------------------------------------------------------------------------------------|------|------|
|                                                                                                                                        | 92.9 | 90.6 |
| パーザー<br>Turbo parser (Martins et al., 2013)                                                                                            | 94.6 | 92.8 |
|                                                                                                                                        | 95.4 | 93.8 |
| SyntaxNet (Andor et al., 2010)  Deep Biaffine Attention (Dozat and Manning, 2016)  Recurrent Neural Network Grammar (Dyer et al. 2016) | 95.8 | 94.6 |

### • 句構造解析

| 句構造解析                                               | F1 score |  |
|-----------------------------------------------------|----------|--|
| パーザー                                                | 90.1     |  |
| a ded refined CEG (Petrov and Klein, 2007)          | 91.1     |  |
| Devesion Symbol-refined TSG (Shindo et al. 2012)    | 93.6     |  |
| Recurrent Neural Network Grammar (Dyer et al. 2016) |          |  |

## マルチタスク学習

- Joint Many-Task Model (Hashimoto et al., 2016)
  - ・5つのタスクを同時学習



## ニューラル機械翻訳

- ・エンコーダ・デコーダモデル (Sutskever et al., 2014)
  - Encoder RNN
- ・翻訳元の文を読み込み、実数値ベクトルに変換
  - Decoder RNN
    - ・実数値ベクトルから翻訳先言語の文を生成



# アテンション (Bahdanau et al., 2015)

・翻訳先の各単語を選択する際に翻訳元の文のどこ に注目するのかを動的に決定

### 翻訳元の各単語の隠れ状態の加重平均

$$C_i = \sum_{j=1}^{T_i} \alpha_{ij} h_j$$

重み(すべて足すと1)

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$$

 $e_{ij} = FeedForwardNN(s_{i-1}, h_i)$ 

