INTRODUÇÃO AO ESTUDO DE REDES NEURAIS ARTIFICIAIS

MÓDULO REDES NEURAIS NO MATLAB

Laboratório de Conexionismo e Ciências Cognitivas L3C
Grupo SICRES
INE - UFSC

Objetivo

 Oferecer ao aluno uma introdução ao software MATLAB e ao toolbox de Redes Neurais, descrevendo comandos dicas e exemplos de utilização.

Ambiente MATLAB

- MATLAB → MATrix LABoratory
- Programação baseada em Matrizes
- Vetores e escalares também podem ser considerados matrizes, 1xN, Nx1, 1x1

Definindo uma Matriz Explicitamente

- Elementos de uma linha são separados por espaços ou vírgulas.
- O final de cada linha é indicado por um <ENTER> ou ponto-e-vírgula.
- A lista de elementos é delimitada por colchetes [].

Definindo uma Matriz Explicitamente

Exemplo:

```
>> A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]
A =
```

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

Operações em Matrizes

': transposição de uma matriz>> A'

$$A =$$

Indexação de Matrizes

 Matriz Bidimensional: A(i,j) é o elemento da i-ésima linha, j-ésima coluna

$$A = 16$$
 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

$$A(2,3) = 11$$

Indexação de Matrizes

Soma dos Elementos da 2º Linha:

$$\Rightarrow$$
 $A(2,1) + A(2,2) + A(2,3) + A(2,4)$

Redimensionamento Automático

O Operador ':' (dois pontos)

```
>> 1:10
ans =
    1 2 3 4 5 6 7 8 9 10

>> 1:3:27
ans =
    1 4 7 10 13 16 19 22 25
```

O Operador ':' e Matrizes

- A(1:m, n): primeiros m elementos da n-ésima coluna
- A(:, n): todos os elementos da n-ésima coluna
- A(:, end): todos os elementos da última coluna
- A(m, 1:n): primeiros n elementos da m-ésima linha
- A(m,:): todos os elementos da m-ésima linha
- A(end,:): todos os elementos da última linha

O Operador ':' e Matrizes

Funções de Criação de Matrizes

- zeros: matriz de zeros
- ones: matriz de uns
- rand: matriz de números aleatórios com distribuição uniforme
- randn: matriz de números aleatórios com distribuição normal (Gaussiana)

Álgebra Linear para Matrizes

- + : soma
- : subtração
- / : divisão de matrizes
- * : multiplicação de matrizes
- ^ : potência de uma matriz
- inv: inversa de uma matriz

Operadores Aritméticos para Matrizes

■ + : soma

- : subtração

./ : divisão elemento a elemento

.* : multiplicação elemento a elemento

. : potência elemento a elemento

Redes Neurais no MATLAB

- Duas formas de utilização:
 - Linhas de comando, e m-files
 - Interface gráfica (NNTool)

Redes Neurais no MATLAB

- Duas formas de utilização:
 - Linhas de comando, e m-files
 - Interface gráfica (NNTool)

Passos para a Criação de uma Rede Neural

- Definir os padrões
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Passos para a Criação de uma Rede Neural

- Definir os padrões
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Definindo os Padrões

- >> angulo=-pi:pi/15:pi;
- >> seno=sin(angulo);

Passos para a Criação de uma Rede Neural

- Definir os padrões
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Inicializando a Rede Neural

- net=newff([minmax(angulo)], [5 1],...
 {'tansig', 'tansig'}, 'traingdm');
 - newff define uma rede MLP (feedforward)
 - minmax pega os valores mínimos e máximos do padrão de entrada
 - [51] 5 neurônios na camada hidden e 1 na camada de saída
 - 'tansig' função de saida dos neurônios
 - 'traingdm' treinamento batch gradiente descendente com momento

Funções de Ativação

purelin Linear

logsigSigmóide

tansig
 Tangente hiperbólica

satlin(s)
 Linear com saturação

Algoritmos de Treinamento

- traingd → Gradient descent backpropagation
- traingdm → Gradient descent backpropagation commomentum
- traingda → Gradient descent backpropagation com taxa adaptativa
- traingdx → Gradient descent backpropagation com momentum e taxa adaptativa
- trainIm → Levenberg-Marquardt backpropagation (default)
- trainrp → Resilient backpropagation (Rprop)

Passos para a Criação de uma Rede Neural

- Definir os padrões
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Definindo parâmetros de treinamento

- net.trainParam.epochs = 3000; Número máx. de épocas
- net.trainParam.goal = 1e-3; Erro final desejado
- net.trainParam.lr = 0.1; Taxa de aprendizado
- net.trainParam.show = 25; Atualização da tela (épocas)
- net.trainParam.mc = 0.9; Taxa de momento

Definindo parâmetros de treinamento

- net.trainParam.epochs = 100; Número máx. de épocas
- net.trainParam.goal = 1e-8; Erro final desejado
- net.trainParam.lr = 0.01; Taxa de aprendizado
- net.trainParam.show = 25; Atualização da tela (épocas)
- net.trainParam.mc = 0.9; Taxa de momento
- net.trainParam.lr_inc = 1.05; Taxa de incremento da lr
- net.trainParam.lr_dec = 0.7; Taxa de decremento da lr
- net.trainParam.max_perf_inc = 1.04; Incremento máximo do erro

Passos para a Criação de uma Rede Neural

- Definir os padrões
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Treinando a Rede Neural

net = train(net, angulo, seno);

Passos para a Criação de uma Rede Neural

- Definir os padrões
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Testando a Rede Neural

- c = sim(net, angulo);
- plot(angulo,seno,'r.',angulo,c,'k*');

Testando a Rede Neural

- A=-pi:pi/306:pi;
- C=sim(net,A);
- plot(angulo,seno,'r.',angulo,C,'k-');

- Dividir os padrões disponíveis em três conjuntos:
 - treinamento (70%): matrizes Ptrain, Ttrain
 - teste (20%): matrizes Ptest, Ttest
 - validação (10%): matrizes Pvalid, Tvalid

- Gera conjunto de treinamento:
 - >> angulo=-pi:pi/15:pi;
 - >> seno=sin(angulo);
- Gera conjunto de validação:
 - >> val.P =-pi+pi/7:pi/6:pi;
 - \Rightarrow val.T = sin(val.P);
 - >> plot(angulo, seno, 'b.', val.P, val.T, 'ro');

 Treina a rede neural incluindo a validação como critério de parada

```
    >> net=newff([minmax(angulo)],[15,1],...
    {'tansig', 'tansig'}, 'traingdm');
    >> net.trainParam.show = 25;
    >> net.trainParam.epochs = 300000;
    >> net.trainParam.max_fail = 50;
    >> [net,tr]=train(net,p,t,[],[],val);
```

 Treina a rede neural incluindo a validação como critério de parada

 Treina a rede neural incluindo a validação como critério de parada

Redes Neurais no MATLAB

- Duas formas de utilização:
 - Linhas de comando, e m-files
 - Interface gráfica (NNTool)

Interface Gráfica NNTool

Passos para a Criação de uma Rede Neural

- Definir os padrões
- Criar a rede
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Passos para a Criação de uma Rede Neural

- Definir os padrões
- Criar a rede
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Passos para a Criação de uma Rede Neural

- Definir os padrões
- Criar a rede
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Visualizando a Rede Neural

Visualizando a Rede Neural

Passos para a Criação de uma Rede Neural

- Definir os padrões
- Criar a rede
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Inicializando a Rede Neural

Inicializando a Rede Neural

Passos para a Criação de uma Rede Neural

- Definir os padrões
- Criar a rede
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Definindo parâmetros de treinamento

Definindo parâmetros de treinamento

Definindo parâmetros de treinamento

Passos para a Criação de uma Rede Neural

- Definir os padrões
- Criar a rede
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Passos para a Criação de uma Rede Neural

- Definir os padrões
- Criar a rede
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Exportando os Dados

Exportando os Dados

FIM DO MÓDULO REDES NEURAIS NO MATLAB