

# Parallel Algorithms

Patrick Cozzi
University of Pennsylvania
CIS 565 - Fall 2015



# Agenda

- Parallel Algorithms
  - □ Parallel Reduction
  - □ Scan (Naive and Work-Efficient)
  - □ Stream Compression
  - □ Summed Area Tables
  - □ Radix Sort



- Given an array of numbers, design a parallel algorithm to find the sum.
- Consider:
  - □ *Arithmetic intensity*: compute to memory access ratio



- Given an array of numbers, design a parallel algorithm to find:
  - □ The sum
  - □ The maximum value
  - □ The product of values
  - □ The average value
- How different are these algorithms?



- Reduction: An operation that computes a single result from a set of data
- Parallel Reduction: Do it in parallel. Obviously



Example. Find the sum:

0 1 2 3 4 5 6 7















- Similar to brackets for a basketball tournament
- log(n) passes for n elements





- $\blacksquare d = 0, 2^{d+1} = 2$
- $2^{d+1} 1 = 1$
- $2^{d} 1 = 0$

```
for d = 0 to log_2n - 1

for all k = 0 to n - 1 by 2^{d+1} in parallel x[k + 2^{d+1} - 1] += x[k + 2^d - 1];

// In this pass, for k = (0, 2, 4, 6)

// x[k + 1] += x[k];
```





- $\blacksquare d = 1, 2^{d+1} = 4$
- $2^{d+1} 1 = 3$
- $2^{d} 1 = 1$

```
for d = 0 to log_2n - 1

for all k = 0 to n - 1 by 2^{d+1} in parallel x[k + 2^{d+1} - 1] += x[k + 2^d - 1];

// In this pass, for k = (0, 4)

// x[k + 3] += x[k + 1];
```



### 10

- $\blacksquare d = 2, 2^{d+1} = 8$
- $2^{d+1} 1 = 7$
- $2^{d} 1 = 3$

```
for d = 0 to log_2n - 1

for all k = 0 to n - 1 by 2^{d+1} in parallel x[k + 2^{d+1} - 1] += x[k + 2^d - 1];

// In this pass, for k = (0)

// x[k + 7] += x[k + 3];
```





■ Note the +=

- for d = 0 to  $log_2n 1$ for all k = 0 to n - 1 by  $2^{d+1}$  in parallel  $x[k + 2^{d+1} - 1] += x[k + 2^d - 1];$
- The array is modified in place





#### All-Prefix-Sums

- All-Prefix-Sums
  - □ Input
    - Array of *n* elements: [\* 0, \* 1,..., \* n-1]
    - Binary associate operator: ⊕
    - Identity: /
  - $\square$  Outputs the array: [1,  $\alpha_0$ , ( $\alpha_0$ )  $\bigoplus_{\alpha_1$ ),..., ( $\alpha_0$ )  $\bigoplus_{\alpha_1}$   $\bigoplus_{\alpha_1, \ldots, \alpha_n}$



#### All-Prefix-Sums

- Example
  - □ If ⊕ is addition, the array
    - **•** [3 1 7 0 4 1 6 3]
  - □ is transformed to
    - **•** [0 3 4 11 11 15 16 22]
- Seems sequential, but there is an efficient parallel solution



Exclusive Scan: Element j of the result does not include element j of the input:

```
■ In: [3 1 7 0 4 1 6 3]
■ Out: [0 3 4 11 11 15 16 22]
```

Inclusive Scan (Prescan): All elements including j are summed

```
■ In: [3 1 7 0 4 1 6 3]
■ Out: [3 4 11 11 15 16 22 25]
```



How do you generate an exclusive scan from an inclusive scan?

```
Input: [3 1 7 0 4 1 6 3]
Inclusive: [3 4 11 11 15 16 22 25]
Exclusive: [0 3 4 11 11 15 16 22]
// Shift right, insert identity
```

How do you go in the opposite direction?



#### Use cases

- □ Stream compaction
- □ Summed-area tables for variable width image processing
- □ Radix sort
- □ ...



 Used to convert certain sequential computation into equivalent parallel computation

| Sequential |                                    | Parallel |                                                                                      |
|------------|------------------------------------|----------|--------------------------------------------------------------------------------------|
| 01.        | out[0] = 0;                        | 01.      | <pre>forall j in parallel do   temp[j] = f(in[j]); all_prefix_sums(out, temp);</pre> |
| 02.        | <b>for</b> j from 1 to n <b>do</b> | 02.      |                                                                                      |
| 03.        | out[j] = out[j-1] + f(in[j-1]);    | 03.      |                                                                                      |



Design a parallel algorithm for inclusive scan

```
□In: [3 1 7 0 4 1 6 3]
```

```
□Out: [3 4 11 11 15 16 22 25]
```

- Consider:
  - Total number of additions



Single thread (Sequential Scan) is trivial:

```
01. out[0] := 0

02. for k := 1 to n do

03. out[k] := in[k-1] + out[k-1]
```

- n adds for an array of length n
- How many adds will our parallel version have?



#### Naive Parallel Scan



```
for d = 1 to log_2n

for all k in parallel

if (k \ge 2^{d-1})

x[k] = x[k - 2^{d-1}] + x[k];
```

- Is this exclusive or inclusive?
- Each thread
  - Writes one sum
  - Reads two values



Naive Parallel Scan: Input

0 1 2 3 4 5 6 7

- 0 1 2 3 4 5 6 7

```
for d = 1 to log_2n

for all k in parallel

if (k >= 2^{d-1}) 25

x[k] = x[k - 2^{d-1}] + x[k];
```



```
for d = 1 to log_2n

for all k in parallel

if (k >= 2^{d-1}) 26

x[k] = x[k - 2^{d-1}] + x[k];
```



```
for d = 1 to log_2n

for all k in parallel

if (k >= 2^{d-1}) 27

x[k] = x[k - 2^{d-1}] + x[k];
```



```
for d = 1 to log_2n

for all k in parallel

if (k >= 2^{d-1}) 28

x[k] = x[k - 2^{d-1}] + x[k];
```



```
for d = 1 to log_2n

for all k in parallel

if (k >= 2^{d-1}) 29

x[k] = x[k - 2^{d-1}] + x[k];
```



```
for d = 1 to log_2n

for all k in parallel

if (k >= 2^{d-1}) 30

x[k] = x[k - 2^{d-1}] + x[k];
```



```
for d = 1 to log_2n

for all k in parallel

if (k >= 2^{d-1}) 31

x[k] = x[k - 2^{d-1}] + x[k];
```



```
for d = 1 to log_2n

for all k in parallel

if (k >= 2^{d-1}) 32

x[k] = x[k - 2^{d-1}] + x[k];
```

■ Naive Parallel Scan: d = 1,  $2^{d-1} = 1$ 





Recall, it runs in parallel!

```
for d = 1 to log_2n

for all k in parallel

if (k >= 2^{d-1}) 33

x[k] = x[k - 2^{d-1}] + x[k];
```

■ Naive Parallel Scan: d = 1,  $2^{d-1} = 1$ 



Recall, it runs in parallel!

for d = 1 to 
$$log_2n$$
  
for all k in parallel  
if (k >=  $2^{d-1}$ ) 34  
 $x[k] = x[k - 2^{d-1}] + x[k];$ 



```
for d = 1 to log_2n

for all k in parallel

if (k >= 2^{d-1}) 35

x[k] = x[k - 2^{d-1}] + x[k];
```



■ Naive Parallel Scan: d = 2, 2<sup>d-1</sup> = 2



**Consider only** k = 7

```
for d = 1 to log_2n

for all k in parallel

if (k \ge 2^{d-1}) 36

x[k] = x[k - 2^{d-1}] + x[k];
```

### м

### Scan

■ *Naive Parallel Scan*: d = 2, 2<sup>d-1</sup> = 2



```
for d = 1 to log_2n

for all k in parallel

if (k >= 2^{d-1}) 37

x[k] = x[k - 2^{d-1}] + x[k];
```

### м

### Scan

■ *Naive Parallel Scan*: d = 3, 2<sup>d-1</sup> = 4



```
for d = 1 to log_2n

for all k in parallel

if (k >= 2^{d-1}) 38

x[k] = x[k - 2^{d-1}] + x[k];
```

### .

#### Scan

■ *Naive Parallel Scan*: d = 3, 2<sup>d-1</sup> = 4



■ Consider only k = 7

for d = 1 to 
$$log_2n$$
  
for all k in parallel  
if  $(k \ge 2^{d-1})$  39  
 $x[k] = x[k - 2^{d-1}] + x[k];$ 



### Scan

Naive Parallel Scan: Final





- Number of adds
  - □ Sequential Scan: (n)
  - □ Naive Parallel Scan: O(nlog₂(n))
- How can we make it faster?



- Balanced binary tree
  - □n leaves = log₂n levels
  - □ Each level, d, has 2d nodes





- Balanced binary tree
  - □n leaves = log₂n levels
  - Each level, d, has 2<sup>d</sup> nodes





- Use a balanced binary tree (in concept) to perform Scan in two phases:
  - □ Up-Sweep (Parallel Reduction)



#### Up-Sweep

```
// Same code as our Parallel Reduction for d=0 to \log_2 n-1 for all k=0 to n-1 by 2^{d+1} in parallel x[k+2^{d+1}-1] += x[k+2^d-1];
```



#### Up-Sweep

```
// Same code as our Parallel Reduction for d = 0 to log_2n - 1 for all k = 0 to n - 1 by 2^{d+1} in parallel x[k + 2^{d+1} - 1] += x[k + 2^d - 1];
```





- □ "Traverse" back down tree using partial sums to build the scan in place.
  - Set root to zero
  - At each pass, a node passes its value to its left child, and sets the right child to the sum of the previous left child's value and its value



### .

### Work-Efficient Parallel Scan

- "Traverse" back down tree using partial sums to build the scan in place.
  - Set root to zero
  - At each pass, a node passes its value to its left child, and sets the right child to the sum of the previous left child's value and its value













### 10

#### Work-Efficient Parallel Scan





- Up-Sweep
  - □O(n) adds
- Down-Sweep
  - □O(n) adds
  - □O(n) swaps



- Stream Compaction
  - ☐ Given an array of elements
    - Create a new array with elements that meet a certain criteria, e.g. non null
    - Preserve order





- Stream Compaction
  - ☐ Given an array of elements
    - Create a new array with elements that meet a certain criteria, e.g. non null
    - Preserve order





- Stream Compaction
  - □ Used in path tracing, collision detection, sparse matrix compression, etc.
  - □ Can reduce bandwidth from GPU to CPU





- Stream Compaction
  - Step 1: Compute temporary array containing
    - 1 if corresponding element meets criteria
    - 0 if element does not meet criteria





- Stream Compaction
  - □ Step 1: Compute temporary array



1



- Stream Compaction
  - □ Step 1: Compute temporary array





- Stream Compaction
  - □ Step 1: Compute temporary array



1 0 1



- Stream Compaction
  - □ Step 1: Compute temporary array

- a b c d e f g h
- 1 0 1 1 0 0 1 0



- Stream Compaction
  - □ Step 1: Compute temporary array



It runs in parallel!



- Stream Compaction
  - □ Step 1: Compute temporary array

- a b c d e f g h
- 1 0 1 1 0 0 1
- It runs in parallel!



- Stream Compaction
  - □ Step 2: Run exclusive scan on temporary array





- Stream Compaction
  - □ Step 2: Run exclusive scan on temporary array



- □ Scan runs in parallel
- What can we do with the results?



- Stream Compaction
  - □ Step 3: Scatter
    - Result of scan is index into final array
    - Only write an element if temporary array has a 1



- Stream Compaction
  - □ Step 3: Scatter



Scan result: 0

Final array:

0 1 2 3



- Stream Compaction
  - □ Step 3: Scatter



Final array:

0 1 2 3



- Stream Compaction
  - □ Step 3: Scatter



Final array: a C



- Stream Compaction
  - □ Step 3: Scatter



Final array: a c d ...



- Stream Compaction
  - □ Step 3: Scatter



Final array: a c d g

0 1 2 3



- Stream Compaction
  - □ Step 3: Scatter



Final array:



O 1 2 3 ■ Scatter runs in parallel!



#### Stream Compaction

- Stream Compaction
  - □ Step 3: Scatter



Final array: a c d g

<sup>0</sup> <sup>1</sup> <sup>2</sup> <sup>3</sup> ■ Scatter runs in parallel!



Summed Area Table (SAT): 2D table where each element stores the sum of all elements in an input image between the lower left corner and the entry location.



#### Example:



$$(1+1+0)+(1+2+1)+(0+1+2)=9$$



- Benefit
  - Used to perform different width filters at every pixel in the image in constant time per pixel
  - ☐ Just sample four pixels in SAT:

$$s_{filter} = \frac{s_{ur} - s_{ul} - s_{lr} + s_{ll}}{w \times h},$$



- Uses
  - Approximate depth of field
  - □ Glossy environment reflections and refractions

































85















## How would implement this on the GPU?



# How would compute a SAT on the GPU using inclusive scan?



#### ■ Step 1 of 2:



One inclusive scan for each row



#### ■ Step 2 of 2:



One inclusive scan for each column, bottom to top



- Efficient for small sort keys
  - □ k-bit keys require k passes



- Each radix sort pass partitions its input based on one bit
- First pass starts with the least significant bit (LSB). Subsequent passes move towards the most significant bit (MSB)





Example input:



First pass: partition based on LSB





Second pass: partition based on middle bit





Final pass: partition based on MSB



98



#### Completed:





#### Completed:





■ Where is the parallelism?



- 1. Break input arrays into tiles
  - □ Each tile fits into shared memory for an SM
- 2. Sort tiles in *parallel* with *radix sort*
- Merge pairs of tiles using a parallel bitonic merge until all tiles are merged.

Our focus is on Step 2



- Where is the parallelism?
  - □ Each tile is sorted in parallel
  - Where is the parallelism within a tile?



- Where is the parallelism?
  - □ Each tile is sorted in parallel
  - Where is the parallelism within a tile?
    - Each pass is done in sequence after the previous pass. No parallelism
    - Can we parallelize an individual pass? How?
  - Merge also has parallelism



- Implement spilt. Given:
  - □ Array, i, at pass n:

```
    100
    111
    010
    110
    011
    101
    001
    000
```

□ Array, **b**, which is true/false for bit **n**:

Output array with false keys before true keys:

```
100 010 110 000 111 011 101 001
```



Step 1: Compute e array





Step 2: Exclusive Scan e

| i array | 000 | 001 | 101 | 011 | 110 | 010 | 111 | 100 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|
| b array | 0   | 1   | 1   | 1   | 0   | 0   | 1   | 0   |
| e array | 1   | 0   | 0   | 0   | 1   | 1   | 0   | 1   |
| f array | 3   | 3   | 3   | 3   | 2   | 1   | 1   | 0   |

#### Step 3: Compute totalFalses



#### Parallel Radix Sort

Step 4: Compute t array

t[i] = i - f[i] + totalFalses

### Parallel Radix Sort

Step 4: Compute t array

$$t[0] = 0 - f[0] + totalFalses$$
  
 $t[0] = 0 - 0 + 4$   
 $t[0] = 4$ 

f[0]: số thẳng 0 phía trước 4: tổng số thẳng 0

totalFalset9= 4

### Parallel Radix Sort

Step 4: Compute t array

$$t[1] = 1 - f[1] + totalFalses$$
  
 $t[1] = 1 - 1 + 4$   
 $t[1] = 4$ 

totalFalses= 4

### Parallel Radix Sort

Step 4: Compute t array

$$t[2] = 2 - f[2] + totalFalses$$
  
 $t[2] = 2 - 1 + 4$   
 $t[2] = 5$ 

### Parallel Radix Sort

Step 4: Compute t array

t[i] = i - f[i] + totalFalses

### Parallel Radix Sort

Step 5: Scatter based on address d

| i array                | 000 | 001 | 101 | 011 | 110 | 010 | 111 | 100 |
|------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| b array                | 0   |     | 1   | 1   | 0   | 0   | 1   | 0   |
| e array                | 1   | ) 0 | 0   | 0   | 1   | 1   | 0   | 1   |
| f array                | 3   | 3   | 3   | 3   | 2   | 1   | 1   | 0   |
| t array                | 8   | 5 7 | 6   | 5   | 5   | 5   | 4   | 4   |
| d[i] = b[i] ? t[i] : f |     |     |     |     |     |     |     | 0   |

114

f[i]

### Parallel Radix Sort

Step 5: Scatter based on address d

| i array                | 001 000 | 101 | 011 | 110 | 010 | 0 111 | 100 |
|------------------------|---------|-----|-----|-----|-----|-------|-----|
| b array                | 1 0     | 1   | 1   | 0   | 0   | 1     | 0   |
| e array                | 0 1     | 0   | 0   | 1   | 1   | 0     | 1   |
| f array                | 3 3     | 3   | 3   | 2   | 1   | 1     | 0   |
| t array                | 7 8     | 6   | 5   | 5   | 5   | 4     | 4   |
| d[i] = b[i] ? t[i] : i |         |     |     |     |     | 4     | 0   |

115

f[i]

### Parallel Radix Sort

Step 5: Scatter based on address d

| 100 111 | 010 | 110 011 | 101 | 001 | 000 | i array                   |
|---------|-----|---------|-----|-----|-----|---------------------------|
| 0 1     | 0   | 0 1     | 1   | 1   | 0   | b array                   |
| 1 0     | 1   | 1 0     | 0   | 0   | 1   | e array                   |
| 0 1     | 1   | 2 3     | 3   | 3   | 3   | f array                   |
| 4       | 5   | 5 5     | 6   | 7   | 8   | t array                   |
| 0 4     | 1   |         |     |     |     | d[i] = b[i] ? t[i] : f[i] |

116

### Parallel Radix Sort

Step 5: Scatter based on address d

| i array         | 000 | 001 | 101 | 011 | 110 | 010 | 00 111 | 100 |
|-----------------|-----|-----|-----|-----|-----|-----|--------|-----|
| b array         | 0   | 1   | 1   | 1   | 0   | 0   | 1      | 0   |
| e array         | 1   | 0   | 0   | 0   | 1   | 1   | . 0    | 1   |
| f array         | 3   | 3   | 3   | 3   | 2   | 1   | ) 1    | 0   |
| t array         | 8   | 7   | 6   | 5   | 5   | 5   | 4      | 4   |
| d[i] = b[i] ? t | 3   | 7   | 6   | 5   | 2   | 1   | ) 4    | 0   |

117



#### Parallel Radix Sort

Step 5: Scatter based on address d





### Parallel Radix Sort

Step 5: Scatter based on address d





#### Parallel Radix Sort

Given k-bit keys, how do we sort using our new split function?

Once each tile is sorted, how do we merge tiles to provide the final sorted array?



## Summary

- Parallel reduction, scan, and sort are building blocks for many algorithms
- An understanding of parallel programming and GPU architecture yields efficient GPU implementations