Uniformed Services University of the Health Sciences Department of Anesthesiology

Total Body Water (TBW)

- Varies with age, gender, body habitus
- 55% body weight in males
- 45% body weight in females
- 80% body weight in infants
- Less in obese: fat contains little water

Body Water Compartments

- Intracellular water: 2/3 of TBW
- Extracellular water: 1/3 TBW
 - Extravascular water: 3/4 of extracellular water
 - Intravascular water: 1/4 of extracellular water

Fluid and Electrolyte Regulation

- Volume Regulation
 - Arginine-Vasopressin (Antidiuretic Hormone)
 - Renin/angiotensin/aldosterone system
 - Baroreceptors in carotid arteries and aorta
 - Stretch receptors in atrium and juxtaglomerular aparatus
 - Cortisol

Fluid and Electrolyte Regulation

- Plasma Osmolality Regulation
 - Arginine-Vasopressin (ADH)
 - Central and Peripheral osmoreceptors
- Sodium Concentration Regulation
 - Renin/angiotensin/aldosterone system
 - Macula Densa of JG apparatus

Preoperative Evaluation of Fluid Status

- Factors to Assess:
 - mental status
 - h/o intake and output
 - blood pressure: supine *and* standing
 - heart rate
 - skin turgor
 - urinary output
 - serum electrolytes/osmolarity

Orthostatic Hypotension

- Systolic blood pressure decrease of greater than 20mmHg from supine to standing
- Indicates fluid deficit of 6-8% body weight
 - Heart rate should increase as a compensatory measure
 - If no increase in heart rate, may indicate autonomic dysfunction or antihypertensive drug therapy

Perioperative Fluid Requirements

- The following factors must be taken into account:
- Maintenance fluid requirements
- NPO and other deficits: NG suction, bowel prep
- Third space losses
- Replacement of blood loss
- Special additional losses

Maintenance Fluid Requirements

- Insensible losses such as evaporation of water from respiratory tract, sweat, feces, urinary excretion. *Occurs continually*.
- Adults: approximately 1.5 ml/kg/hr
- "4-2-1 Rule"
 - 4 ml/kg/hr for the first 10 kg of body weight
 - 2 ml/kg/hr for the second 10 kg body weight
 - 1 ml/kg/hr subsequent kg body weight
 - Extra fluid for fever, tracheotomy, denuded surfaces

NPO and other deficits

- NPO deficit = number of hours NPO x maintenance fluid requirement.
- Bowel prep may result in up to 1 L fluid loss.
- Measurable fluid losses, e.g. NG suctioning, vomiting, ostomy output.

Third Space Losses

- Isotonic transfer of ECF from functional body fluid compartments to non-functional compartments.
- Depends on location and duration of surgical procedure, amount of tissue trauma, ambient temperature, room ventilation.

Replacing Third Space Losses

- Superficial surgical trauma: 1-2 ml/kg/hr
- Minimal Surgical Trauma: 3-4 ml/kg/hr
 - head and neck, hernia, knee surgery
- Moderate Surgical Trauma: 5-6 ml/kg/hr
 - hysterectomy, chest surgery
- Severe surgical trauma: 8-10 ml/kg/hr (or more)
 - AAA repair, nehprectomy

Blood Loss

- Replace *3 cc* of crystalloid solution per cc of blood loss (crystalloid solutions leave the intravascular space)
- When using blood products or colloids replace blood loss volume per volume

Other factors

- Ongoing fluid losses from other sites:
 - gastric drainage
 - ostomy output
 - diarrhea
- Replace volume per volume with crystalloid solutions

Example

- 62 y/o male, 80 kg, for hemicolectomy
- NPO after 2200, surgery at 0800, received bowel prep
- 3 hr. procedure, 500 cc blood loss
- What are his estimated intraoperative fluid requirements?

Example (cont.)

- Fluid deficit: 1.5 ml/kg/hr x 10 hrs = 1200 ml + 1000 ml for bowel prep = 2200 ml total deficit: (Replace 1/2 first hr, 1/4 2nd hr, 1/4 3rd hour).
- <u>Maintenance</u>: 1.5 ml/kg/hr x 3hrs = 360mls
- Third Space Losses: 6 ml/kg/hr x 3 hrs = 1440 mls
- Blood Loss: $500\text{ml} \times 3 = 1500\text{ml}$
- **Total** = 2200+360+1440+1500=5500mls

Intravenous Fluids:

- Conventional Crystalloids
- Colloids
- Hypertonic Solutions
- Blood/blood products and blood substitutes

Crystalloids

- Combination of water and electrolytes
 - Balanced salt solution: electrolyte composition and osmolality similar to plasma; example: lactated Ringer's, Plasmlyte, Normosol.
 - Hypotonic salt solution: electrolyte composition lower than that of plasma; example: D₅W.

Colloids

- Fluids containing molecules sufficiently large enough to prevent transfer across capillary membranes.
- Solutions stay in the space into which they are infused.
- Examples: hetastarch (Hespan), albumin, dextran.

Hypertonic Solutions

- Fluids containing sodium concentraions greater than normal saline.
- Available in 1.8%, 3%, 5%, 7.5%, 10% solutions.
- Hyperosmolarity creates a gradient that draws water out of cells; therefore, cellular dehydration is a potential problem.

Composition

Fluid	Osmo- lality	Na	Cl	K
D5W	253	0	0	0
0.9NS	308	154	154	0
LR	273	130	109	4.0
Plasma-lyte	294	140	98	5.0
Hespan	310	154	154	0
5% Albumin	308	145	145	0
3% Saline	1027	513	513	0

Clinical Evaluation of Fluid Replacement

- 1. Urine Output: at least 1.0 ml/kg/hr
- 2. Vital Signs: BP and HR normal (How is the patient doing?)
- 3. Physical Assessment: Skin and mucous membranes no dry; no thirst in an awake patient
- 4. Invasive monitoring; CVP or PCWP may be used as a guide
- 5. Laboratory tests: periodic monitoring of hemoglobin and hematocrit

Summary

- Fluid therapy is critically important during the perioperative period.
- The most important goal is to maintain hemodynamic stability and protect vital organs from hypoperfusion (heart, liver, brain, kidneys).
- All sources of fluid losses must be accounted for.
- Good fluid management goes a long way toward preventing problems.

Transfusion Therapy

- 22 million blood components administered annually in U.S.
 - (pRBC's, whole blood, fresh frozen plasma, platelets, etc.) .
- 12,000,000 units of pRBC's annually
 - 60% of transfusions occur perioperatively.
 - responsibility of transfusing perioperatively is with the anesthesiologist.

When is Transfusion Necessary?

- "Transfusion Trigger": Hgb level at which transfusion should be given.
 - Varies with patients and procedures
- Tolerance of acute anemia depends on:
 - Maintenance of intravascular volume
 - Ability to increase cardiac output
 - Increases in 2,3-DPG to deliver more of the carried oxygen to tissues

Oxygen Delivery

- Oxygen Delivery (DO₂) is the oxygen that is delivered to the tissues
- DO_2 = Cardiac Output (CO) x Oxygen Content (CaO₂)
- Cardiac Output (CO) = HR x SV
- Oxygen Content (CaO₂):
 - (**Hgb** x 1.39) O_2 saturation + $PaO_2(0.003)$
 - Hgb is the main determinant of oxygen content in the blood

Oxygen Delivery (cont.)

- Therefore: $DO_2 = HR \times SV \times CaO_2$
- If HR or SV are unable to compensate, Hgb is the major deterimant factor in O₂ delivery
- Healthy patients have excellent compensatory mechanisms and can tolerate Hgb levels of 7 gm/dL.
- Compromised patients may require Hgb levels above 10 gm/dL.

Blood Groups

	Antigen on	Plasm	a		<u>Inci</u>	<u>dence</u>
Blood Group	<u>erythrocy</u>	<u>te</u>	Antiboo	<u>dies</u>	White	African-
					<u>Americ</u>	<u>cans</u>
A	A	Anti-B		40%	27%	
В	В	Anti-A		11	20	
AB	AB	None		4	4	
O	None	Anti-A		4 5	49	
		Anti-B				
Rh	Rh				42	17

Department of Anesthesiology Uniformed Services University of the Health Sciences

Cross Match

- Major:
 - Donor's erythrocytes incubated with recipients plasma
- Minor:
 - Donor's plasma incubated with recipients erythrocytes
- Agglutination:
 - Occurs if either is incompatible
- Type Specific:
 - Only ABO-Rh determined; chance of hemolytic reaction is 1:1000 with TS blood

Type and Screen

- Donated blood that has been tested for ABO/Rh antigens and screened for common antibodies (not mixed with recipient blood).
 - Used when usage of blood is unlikely, but needs to be available (hysterectomy).
 - Allows blood to available for other patients.
 - Chance of hemolytic reaction: 1:10,000.

Component Therapy

- A unit of whole blood is divided into components;
 Allows prolonged storage and specific treatment of underlying problem with increased efficiency:
 - packed red blood cells (pRBC's)
 - platelet concentrate
 - fresh frozen plasma (contains all clotting factors)
 - cryoprecipitate (contains factors VIII and fibrinogen; used in Von Willebrand's disease)
 - albumin
 - plasma protein fraction
 - leukocyte poor blood
 - factor VIII
 - antibody concentrates

Packed Red Blood Cells

- 1 unit = 250 ml. Hct. = 70-80%.
- 1 unit pRBC's raises Hgb 1 gm/dL.
- Patient hemoglobin levels down to 7 gm/dL are generally tolerated if intravascular volume is maintained.
- Mixed with saline: LR has Calcium which may cause clotting if mixed with pRBC's.

Platelet Concentrate

- Treatment of thrombocytopenia
- Intraoperatively used if platlet count drops below 50,000 cells-mm³ (lab analysis).
- 1 unit of platelets increases platelet count 5000-10000 cells-mm^{3.}
- Risks:
 - Sensitization due to HLA on platelets
 - Viral transmission

Fresh Frozen Plasma

- Plasma from whole blood frozen within 6 hours of collection.
 - Contains coagulation factors except platelets
 - Used for treatment of isolated factor deficiences, reversal of Coumadin effect, TTP, etc.
 - Used when PT and PTT are >1.5 normal
- Risks:
 - Viral transmission
 - Allergy

Complications of Blood Therapy

- Transfusion Reactions:
 - <u>Febrile</u>; most common, usually controlled by slowing infusion and giving antipyretics
 - <u>Allergic</u>; increased body temp., pruritis, urticaria. Rx: antihistamine, discontinuation. Examination of plasma and urine for free hemoglobin helps rule out hemolytic reactions.

Complications of Blood Therapy (cont.)

• Hemolytic:

- Wrong blood type administered (oops).
- Activation of complement system leads to intravascular hemolysis, spontaneous hemorrhage.
- Signs: hypotension, fever, chills, dyspnea, skin flushing, substernal pain. Signs are easily masked by general anesthesia.
- Free Hgb in plasma or urine
- Acute renal failure
- Disseminated Intravascular Coagulation (DIC)

Treatment of Acute Hemolytic Reactions

- Immediate discontinuation of blood products
- Maintenance of urine output with crystalloid infusions
- Administration of mannitol or Furosemide for diuretic effect

Complications (cont.)

- Transmission of Viral Diseases:
 - Hepatitis C; 1:30,000 per unit
 - Hepatitis B; 1:200,000 per unit
 - HIV; 1:450,000-1:600,000 per unit
 - 22 day window for HIV infection and test detection
 - CMV may be the most common agent transmitted, but only effects immunocompromised patients
 - Parasitic and bacterial transmission very low

Other Complications

- Decreased 2,3-DPG with storage: ? Significance
- Citrate: metabolism to bicarbonate; Calcium binding
- Microaggregates (platelets, leukocytes): micropore filters controversial
- Hypothermia: warmers used to prevent
- Coagulation disorders: massive transfusion (>10 units) may lead to dilution of platelets and factor V and VIII.
- DIC: uncontrolled activation of coagulation system

Autologous Blood

- Pre-donation of patient's own blood prior to elective surgery
- 1 unit donated every 4 days (up to 3 units)
- Last unit donated at least 72 hrs prior to surgery
- Reduces chance of hemolytic reactions and transmission of blood-bourne diseases
- Not desirable for compromised patients

Administering Blood Products

- Consent necessary for elective transfusion
- Unit is checked by 2 people for Unit #, patient ID, expiration date, physical appearance.
- pRBC's are mixed with saline solution (not LR)
- Products are warmed mechanically and given slowly if condition permits
- Close observation of patient for signs of complications
- If complications suspected, infusion discontinued, blood bank notified, proper steps taken.

Alternatives to Blood Products

- Autotransfusion
- Blood substitutes

Autotransfusion

- Commonly known as "Cell-saver"
- Allows collection of blood during surgery for re-administration
- RBC's centrifuged from plasma
- Effective when > 1000ml are collected

Blood Substitutes

- Experimental oxygen-carrying solutions: developed to decrease dependence on human blood products
- Military battlefield usage initial goal
- Multiple approaches:
 - Outdated human Hgb reconstituted in solution
 - Genetically engineered/bovine Hgb in solution
 - Liposome-encapsulated Hgb
 - Perflurocarbons

Blood Substitutes (cont.)

- Potential Advantages:
 - No cross-match requirements
 - Long-term shelf storage
 - No blood-bourne transmission
 - Rapid restoration of oxygen delivery in traumatized patients
 - Easy access to product (available on ambulances, field hospitals, hospital ships)

Blood Substitutes (cont.)

- Potential Disadvantages:
 - Undesirable hemodynamic effects:
 - Mean arterial pressure and pulmonary artery pressure increases
 - Short half-life in bloodstream (24 hrs)
 - Still in clinical trials, unproven efficacy
 - High cost

Transfusion Therapy Summary

- Decision to transfuse involves many factors
- Availability of component factors allows treatment of specific deficiency
- Risks of transfusion must be understood and explained to patients
- Vigilance necessary when transfusing any blood product