Esho raz ob etom

Let M be (super)manifold. Consider $\Pi^{\varepsilon}(T^*M)$, $\varepsilon = 0, 1$; if $\varepsilon = 0$ this is just T^*M , and if $\varepsilon = 1$ this is just ΠT^*M .

There is canonical Poisson ε -bracket $[-,-]_{\varepsilon}$ on $\Pi^{\varepsilon}T^{*}M$ this is just canonical *even* Poisson bracket on $T^{*}M$ and this is just canonical *odd* Poisson bracket (antibracket, Buttin bracket) on $\Pi T^{*}M$.

Let H be an arbitrary function of parity p on $\Pi^{\varepsilon}T^{*}M$ which obeys classical master equation

(Notice that in the case if $p = \varepsilon$ then master- equation is obeyed automatically.)

Proposition Let H be an arbitrary function of parity $p = \varepsilon + 1$ on $\Pi^{\varepsilon}T^{*}M$ which obeys classical master equation

$$[H,H]_{\varepsilon}=0$$
.

Then the function H defines

a) homotopy ε -Poisson bracket

$$[\emptyset]_{\varepsilon}$$
, $[-,-]_{\varepsilon}$, $[-,-,-]_{\varepsilon}$, $[-,-,\dots,-]_{\varepsilon}$, ...