

Charging Pricing Incentives-Enabled Coordinated Dispatching

for Improved Overall Benefits of Electric Vehicles and

Islanded Photovoltaic Charging Stations

Wenjin Yang and Hengzhao Yang* ShanghaiTech University, Shanghai, China *Email: hzyang@shanghaitech.edu.cn

Paper number: 0328

1. Introduction

- ☐ This paper considers an application scenario in which a coordinated dispatching center (CDC) coordinates the dispatching of a relatively large number of electric vehicles (EVs) to multiple photovoltaic charging stations (PVCSs) equipped with energy storage batteries (ESBs).
- ☐ This paper proposes a coordinated dispatching strategy for EVs by introducing charging pricing incentives to improve the overall benefits of all the EVs and PVCSs operating in the islanded mode.

2. Application Scenario

3. Problem Formulation

Objective function

$$\min_{\pi_{j,t}} f = \sum_{i \in \mathcal{N}} C_i$$

■ EV route cost & trip cost

$$C_{i,j} = C_{i,j}^{energy} + C_{i,j}^{time} + C_{i,j}^{charge} \ = \sum_{s_{i,j}} s_{i,j} C_{i,j}$$

■ EV route cost: energy cost

$$C_{i,j}^{energy} = \lambda lpha ig(L_{i,j}^a + L_{i,j}^big)$$

■ EV route cost: time cost

$$C_{i,j}^{time} = \eta_i \Big(t_{i,j}^{road} + t_{i,j}^{charge} \Big)$$

■ EV route cost: charging cost

$$C_{i,j}^{charge} = \sum_{t \in \left[t_{i,j}^{start}, t_{i,j}^{stop}
ight]} \pi_{j,t} P_i^{ev} \Delta t$$

Constraints

$$egin{align} P_{max}^{discharge} & \leq P_{j,t}^{b} \leq P_{max}^{charge} & orall j \in \mathcal{M}, t \in \mathcal{T} \ P_{j,t}^{pv} \gamma = rac{P_{j,t}^{load}}{\gamma} + rac{P_{j,t}^{ev}}{\gamma} + rac{P_{j,t}^{b}}{\gamma} \ P_{j,t}^{pv} \gamma - P_{j,t}^{b} \gamma = rac{P_{j,t}^{load}}{\gamma} + rac{P_{j,t}^{ev}}{\gamma} \ \sum_{j \in \mathcal{M}} s_{i,j} = 1 \ \end{array}$$

4. Simulation Setup

- \square 1000 EVs, 3 PVCSs, each PVCS array area is 2700 m^2
- ☐ Each day is partitioned into 288 time slots (5 min. per slot)
- \square SOC^{init}~U(20%, 80%), t^{init} ~ $N(144, 48^2)$ (units: time slots)

Parameter	Value	Parameter	Value
λ	$0.67 \ \text{\fine}/\text{kWh}$	P_{max}^{charge}	890 kW
α	0.13 kWh/km	$P_{max}^{discharge}$	-685 kW
η	$U(0.36, 2.88) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$P_{j,t}^{load}$	200 kW
P_i^{ev}	$7~\mathrm{kW}$	γ	0.85

5. Simulation Results

- ☐ Total cost of all the EVs is reduced by 20.61%
- □ Number of EVs with reduced trip costs is 978 out of 1000
- Before optimization: PVCS ESB power

☐ After optimization: PVCS ESB power

6. Conclusion

- Proposed dispatching strategy works as expected
- □ Total cost of all the EVs as a whole is reduced
- Safety and efficiency of the PVCSs are boosted