Chapter 1

Groups

1.1 Introduction to Groups

Definition 1.1.1. A *group* is a set G equipped with a binary operation $\cdot: G \times G \to G$ satisfying the following properties:

- (i) Associativity: For all $a, b, c \in G$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- (ii) Identity: There exists an element $e \in G$ such that for all $a \in G$, $e \cdot a = a \cdot e = a$.
- (iii) Inverses: For each $a \in G$, there exists $b \in G$ such that $a \cdot b = b \cdot a = e$.

If the operation is commutative (i.e., $a \cdot b = b \cdot a$ for all $a, b \in G$), the group is called abelian.

Example 1.1.2. The set of integers \mathbb{Z} under addition forms an abelian group, with identity element 0 and inverse -a for each $a \in \mathbb{Z}$.

Theorem 1.1.3. Let G be a group. The identity element $e \in G$ is unique.

Proof. Suppose e and e' are both identity elements. Then, for any $a \in G$, we have $a \cdot e = a$ and $e' \cdot a = a$. Consider $e \cdot e'$. Since e is an identity, $e \cdot e' = e'$. Since e' is an identity, $e \cdot e' = e$. Thus, e = e'.

1.2 Rings

Definition 1.2.1. A *ring* is a set R equipped with two binary operations, addition (+) and multiplication (\cdot) , satisfying:

- (i) (R, +) is an abelian group with identity 0.
- (ii) Multiplication is associative: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in R$.
- (iii) Distributivity: $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(b+c) \cdot a = b \cdot a + c \cdot a$ for all $a,b,c \in \mathbb{R}$.

A ring is *commutative* if multiplication is commutative. A ring has a *multiplicative identity* if there exists $1 \in R$ such that $1 \cdot a = a \cdot 1 = a$ for all $a \in R$.

Example 1.2.2. The set of integers \mathbb{Z} with standard addition and multiplication is a commutative ring with multiplicative identity 1.

1.3 Fields

Definition 1.3.1. A *field* is a commutative ring with a multiplicative identity $1 \neq 0$ in which every non-zero element $a \in F$ has a multiplicative inverse, i.e., there exists $b \in F$ such that $a \cdot b = 1$.

Example 1.3.2. The sets \mathbb{Q} , \mathbb{R} , and \mathbb{C} are fields under standard addition and multiplication. The set \mathbb{Z} is not a field, as elements like 2 have no multiplicative inverse in \mathbb{Z} .

Proposition 1.3.3. Every field is an integral domain, i.e., a commutative ring with $1 \neq 0$ and no zero divisors (if $a \cdot b = 0$, then a = 0 or b = 0).

Proof. Let F be a field, and suppose $a \cdot b = 0$ with $a \neq 0$. Since F is a field, a has a multiplicative inverse a^{-1} . Multiply both sides of $a \cdot b = 0$ by a^{-1} : $a^{-1} \cdot (a \cdot b) = a^{-1} \cdot 0$. This gives $(a^{-1} \cdot a) \cdot b = 0$, so $1 \cdot b = 0$, hence b = 0. Thus, F is an integral domain.