

Teoria dos Grafos e Computabilidade

— Isomorphism and some concepts —

Silvio Jamil F. Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais - PUC Minas

Teoria dos Grafos e Computabilidade

— Isomorphism —

Silvio Jamil F. Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory - IMScience Pontifical Catholic University of Minas Gerais - PUC Minas

Dois grafos G e H são ditos isomorfos se existir uma correspondência um-para-um entre seus vértices e entre suas arestas, de maneira que as relações de incidência são preservadas

Dois grafos G e H são ditos isomorfos se existir uma correspondência um-para-um entre seus vértices e entre suas arestas, de maneira que as relações de incidência são preservadas

Dois grafos G e H são ditos isomorfos se existir uma correspondência um-para-um entre seus vértices e entre suas arestas, de maneira que as relações de incidência são preservadas

Condições necessárias mas não suficientes para que G e H sejam isomorfos:

- mesmo número de vértices
- ► mesmo número de arestas
- mesmo número de componentes
- ► mesmo número de vértices com o mesmo grau

Condições necessárias mas não suficientes para que G e H sejam isomorfos:

- mesmo número de vértices
- ► mesmo número de arestas
- ► mesmo número de componentes
- ► mesmo número de vértices com o mesmo grau

Condições necessárias mas não suficientes para que G e H sejam isomorfos:

- mesmo número de vértices
- ► mesmo número de arestas
- mesmo número de componentes
- ► mesmo número de vértices com o mesmo grau

Não existe um algoritmo eficiente para determinar se dois grafos são isomorfos

Are these two graphs Isomorphic?

ightharpoonup vertices \Longrightarrow 5

ightharpoonup vertices \Longrightarrow 5

- ightharpoonup vertices \Longrightarrow 5
- ightharpoonup edges \implies 6

- ightharpoonup vertices \Longrightarrow 5
- ightharpoonup edges \implies 6

- ightharpoonup vertices \Longrightarrow 5
- ▶ edges \implies 6
- ightharpoonup components $\implies 1$

- \triangleright vertices \Longrightarrow 5
- ightharpoonup edges \implies 6
- ightharpoonup components $\implies 1$

- ightharpoonup vertices \Longrightarrow 5
- ▶ edges \implies 6
- ightharpoonup components $\implies 1$
- ► degrees ⇒ 2 2 2 3 4

- \triangleright vertices \Longrightarrow 5
- ightharpoonup edges \Longrightarrow 6
- ightharpoonup components $\Longrightarrow 1$
- ► degrees ⇒ 1 2 3 3 3

- ightharpoonup vertices \Longrightarrow 5
- ▶ edges \implies 6
- ightharpoonup components $\Longrightarrow 1$
- ► degrees ⇒ 2 2 2 3 4

- \triangleright vertices \Longrightarrow 5
- ightharpoonup edges \Longrightarrow 6
- ightharpoonup components $\implies 1$
- ► degrees ⇒ 1 2 3 3 3

These two graphs are NOT Isomorphic

Are these two graphs Isomorphic?

ightharpoonup vertices \Longrightarrow 5

▶ vertices ⇒ 5

- ightharpoonup vertices \Longrightarrow 5
- ▶ edges \implies 6

- ightharpoonup vertices \Longrightarrow 5
- ightharpoonup edges \implies 6

- ightharpoonup vertices \Longrightarrow 5
- ▶ edges \implies 6
- ightharpoonup components $\implies 1$

- ▶ vertices ⇒ 5
- ightharpoonup edges \implies 6
- ightharpoonup components $\implies 1$

- ightharpoonup vertices \Longrightarrow 5
- ightharpoonup edges \Longrightarrow 6
- ightharpoonup components $\Longrightarrow 1$
- ► degrees ⇒ 1 2 3 3 3

- \triangleright vertices \Longrightarrow 5
- ightharpoonup edges \Longrightarrow 6
- ightharpoonup components $\Longrightarrow 1$
- ► degrees ⇒ 1 2 3 3 3

- ightharpoonup vertices \Longrightarrow 5
- ightharpoonup edges \Longrightarrow 6
- ightharpoonup components $\Longrightarrow 1$
- ightharpoonup degrees \implies 1 2 3 3 3

- \triangleright vertices \Longrightarrow 5
- ightharpoonup edges \implies 6
- ightharpoonup components $\Longrightarrow 1$
- ightharpoonup degrees \implies 1 2 3 3 3

These two graphs are Isomorphic

Are these two graphs Isomorphic?

 \triangleright vertices \Longrightarrow 6

 \triangleright vertices \implies 6

- \triangleright vertices \implies 6
- ightharpoonup edges \Longrightarrow 5

- \triangleright vertices \implies 6
- ightharpoonup edges \Longrightarrow 5

- \triangleright vertices \implies 6
- ▶ edges \implies 5
- ightharpoonup components $\implies 1$

- ► vertices ⇒ 6
- ightharpoonup edges \Longrightarrow 5
- ightharpoonup components $\implies 1$

- \triangleright vertices \implies 6
- ightharpoonup edges \Longrightarrow 5
- ightharpoonup components $\Longrightarrow 1$
- ► degrees ⇒ 1 1 1 2 3

- ► vertices ⇒ 6
- ightharpoonup edges \Longrightarrow 5
- ightharpoonup components $\Longrightarrow 1$
- ► degrees ⇒ 1 1 1 2 3

- \triangleright vertices \implies 6
- ightharpoonup edges \Longrightarrow 5
- ightharpoonup components $\implies 1$
- ightharpoonup degrees \implies 1 1 1 2 3

- \triangleright vertices \implies 6
- ightharpoonup edges \Longrightarrow 5
- ightharpoonup components $\Longrightarrow 1$
- ightharpoonup degrees \implies 1 1 1 2 3

THESE TWO GRAPHS ARE NOT ISOMORPHIC.

- ▶ vertices ⇒ 6
- ightharpoonup edges \Longrightarrow 5
- ightharpoonup components $\Longrightarrow 1$
- ightharpoonup degrees \implies 1 1 1 2 3

- \triangleright vertices \implies 6
- ightharpoonup edges \Longrightarrow 5
- ightharpoonup components $\implies 1$
- ightharpoonup degrees \implies 1 1 1 2 3

THESE TWO GRAPHS ARE NOT ISOMORPHIC. WHY?

THE PROBLEM IS RELATED TO THE RELATIONSHIP BETWEEN THE VERTICES!!!

The gray vertices (1 and d) are adjacent to vertices with different colors

Questions?

Isomorphism and some concepts

— Isomorphism —

Teoria dos Grafos e Computabilidade

— Important concepts —

Silvio Jamil F. Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory – IMScience Pontifical Catholic University of Minas Gerais - PUC Minas

Grafo complementar

Seja G=(V,E) um grafo simples dirigido ou não-dirigido. O grafo complementar de G, denotado por C(G) ou \overline{G} , é um grafo formado da seguinte maneira:

- ▶ Os vértices de C(G) são todos os vértices de G
- ► As arestas de *C*(*G*) são exatamente as arestas que faltam em *G* para formarmos um grafo completo

Grafo complementar

Seja G=(V,E) um grafo simples dirigido ou não-dirigido. O grafo complementar de G, denotado por C(G) ou \overline{G} , é um grafo formado da seguinte maneira:

- ▶ Os vértices de C(G) são todos os vértices de G
- ► As arestas de *C*(*G*) são exatamente as arestas que faltam em *G* para formarmos um grafo completo

Exemplo 1

► Encontre um grafo com 5 vértices que seja isomorfo a seu complemento.

Grafo complementar

Seja G=(V,E) um grafo simples dirigido ou não-dirigido. O grafo complementar de G, denotado por C(G) ou \overline{G} , é um grafo formado da seguinte maneira:

- ▶ Os vértices de C(G) são todos os vértices de G
- ► As arestas de *C*(*G*) são exatamente as arestas que faltam em *G* para formarmos um grafo completo

Exemplo 1

- ► Encontre um grafo com 5 vértices que seja isomorfo a seu complemento.
- Qual o número de arestas de um grafo que é isomorfo a seu complemento?

Um grafo $G_1=(V_1,A_1)$ é dito ser subgrafo de um grafo G=(V,A) quando $V_1\subset V$ e $A_1\subset A$.

Se $G_2 = (V_2, A_2)$ é um subgrafo de $G_1 = (V_1, A_1)$ e possui toda aresta (v, w) de G_1 tal que ambos, v e w, estejam em V_2 , então G_2 é o subgrafo induzido pelo subconjunto de vértices V_2 .

Um grafo $G_1=(V_1,A_1)$ é dito ser subgrafo de um grafo G=(V,A) quando $V_1\subset V$ e $A_1\subset A$.

Se $G_2 = (V_2, A_2)$ é um subgrafo de $G_1 = (V_1, A_1)$ e possui toda aresta (v, w) de G_1 tal que ambos, v e w, estejam em V_2 , então G_2 é o subgrafo induzido pelo subconjunto de vértices V_2 .

▶ Um grafo H é dito ser um subgrafo de um grafo G $(H \subseteq G)$ se **todos** os **vértices** e todas as **arestas** de g estão em G

- ▶ Um grafo H é dito ser um subgrafo de um grafo G $(H \subseteq G)$ se **todos** os **vértices** e todas as **arestas** de g estão em G
 - ► todo grafo é subgrafo de si próprio

- ▶ Um grafo H é dito ser um subgrafo de um grafo G $(H \subseteq G)$ se **todos** os **vértices** e todas as **arestas** de g estão em G
 - ► todo grafo é subgrafo de si próprio
 - ▶ o subgrafo de um subgrafo de G é subgrafo de G

- ▶ Um grafo H é dito ser um subgrafo de um grafo G $(H \subseteq G)$ se **todos** os **vértices** e todas as **arestas** de g estão em G
 - ► todo grafo é subgrafo de si próprio
 - ▶ o subgrafo de um subgrafo de G é subgrafo de G

- ► Um grafo H é dito ser um subgrafo de um grafo G (H ⊆ G) se todos os vértices e todas as arestas de g estão em G
 - ► todo grafo é subgrafo de si próprio
 - ▶ o subgrafo de um subgrafo de G é subgrafo de G
 - ▶ um vértice simples de G é um subgrafo de G

- ► Um grafo H é dito ser um subgrafo de um grafo G (H ⊆ G) se todos os vértices e todas as arestas de g estão em G
 - ► todo grafo é subgrafo de si próprio
 - ▶ o subgrafo de um subgrafo de G é subgrafo de G
 - ▶ um vértice simples de G é um subgrafo de G
 - ▶ uma aresta simples de G (juntamente com suas extremidades) é subgrafo de G

Subgrafos disjuntos de arestas dois (ou mais) subgrafos G_1 e G_2 de um grafo G são disjuntos de arestas se G_1 e G_2 não tiverem nenhuma aresta em comum.

Subgrafos disjuntos de arestas dois (ou mais) subgrafos G_1 e G_2 de um grafo G são disjuntos de arestas se G_1 e G_2 não tiverem nenhuma aresta em comum.

 \Rightarrow G_1 e G_2 podem ter vértices em comum?

Subgrafos disjuntos de arestas dois (ou mais) subgrafos G_1 e G_2 de um grafo G são disjuntos de arestas se G_1 e G_2 não tiverem nenhuma aresta em comum.

Subgrafos disjuntos de vértices dois (ou mais) subgrafos G_1 e G_2 de um grafo G são disjuntos de vértices se G_1 e G_2 não tiverem nenhum vértice em comum.

 \Rightarrow G_1 e G_2 podem ter arestas em comum?

Seqüência de arestas seqüência alternada de vértices e arestas começando e terminando com vértice. Cada aresta é incidente ao vértice que a

precede e a antecede $Ex.: v_1 \ a \ v_2 \ a \ v_1 \ g \ v_3$

Seqüência de arestas seqüência alternada de vértices e arestas começando e terminando com vértice. Cada aresta é incidente ao vértice que a precede e a antecede

Ex.: v_1 a v_2 a v_1 g v_3

Caminho seqüência de arestas no qual nenhuma aresta aparece mais de uma vez

 $Ex.: v_1 \ a \ v_2 \ b \ v_3 \ c \ v_3 \ d \ v_4 \ e \ v_2 \ f \ v_5$

- ► Caminho aberto: vértice inicial é diferente do vértice final Ex.: v₁ a v₂ b v₃ c v₃
- Caminho fechado: caminhos que começam e terminam no mesmo vértice Ex.: v₁ a v₂ b v₃ c v₃ g v₁

Cadeias

Seja G um grafo dirigido e G´ o seu grafo não-dirigido associado. Uma cadeia em G é um caminho em G´.

Cadeias

Seja G um grafo dirigido e G´ o seu grafo não-dirigido associado. Uma cadeia em G é um caminho em G´.

g-a-f é um caminho de G´ e uma cadeia em G

TEOREMA

Se um grafo possui exatamente 2 vértices de grau ímpar, existe uma aresta entre esses dois vértices

TEOREMA

Se um grafo possui exatamente 2 vértices de grau ímpar, existe uma aresta entre esses dois vértices

Questions?

Isomorphism and some concepts

Important concepts —