Lecture 22: t-tests

Issue: Wald tests with small n

The Wald test for a population mean μ relies on

$$Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{s} \approx N(0, 1)$$

- $Z_n \stackrel{d}{\to} N(0,1)$ as $n \to \infty$
- But for small n, Z_n is not normal, even if $X_1, \ldots, X_n \overset{iid}{\sim} N(\mu, \sigma^2)$

What is the exact distribution of $\frac{\sqrt{n}(X_n-\mu)}{s}$?

t-tests

If $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, then

$$\frac{\sqrt{n}(\overline{X}_n - \mu)}{s} \sim t_{n-1}$$

Class activity

Type I error rate with Normal distribution:

Class activity

Wald test vs. *t*-test:

Philosophical question

- Position 1: We should always use a Wald test to test hypotheses about a population mean
- Position 2: We should always use a t-test to test hypotheses about a population mean

With which position do you agree?

t distribution

If $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, then

$$\frac{\sqrt{n}(\overline{X}_n - \mu)}{s} \sim t_{n-1}$$

Definition: Let $Z \sim N(0, 1)$ and $V \sim \chi_d^2$ be independent.

Then
$$S_{2} = \frac{1}{n!} \sum_{i=1}^{2} (x_{i} - \bar{x})^{2}$$

$$T = \frac{Z}{\sqrt{V/d}} \sim t_{d} = \sqrt{\frac{2_{i}(x_{i} - \bar{x})^{2}}{\sigma^{2}(n-1)}}$$
Apply: $I_{1} = \frac{Z}{\sqrt{V/d}} \sim t_{d}$

$$I_{2} = \frac{Z}{\sqrt{V/d}} \sim t_{d} = \sqrt{\frac{2_{i}(x_{i} - \bar{x})^{2}}{\sigma^{2}(n-1)}}$$

$$I_{3} = \frac{Z}{\sqrt{V/d}} \sim t_{d} = \sqrt{\frac{2_{i}(x_{i} - \bar{x})^{2}}{\sigma^{2}(n-1)}}$$

$$I_{4} = \frac{Z}{\sqrt{V/d}} \sim t_{d} = \sqrt{\frac{2_{i}(x_{i} - \bar{x})^{2}}{\sigma^{2}(n-1)}}$$

$$I_{5} = \sqrt{\frac{2_{i}(x_{i} - \bar{x})^{2}}{\sigma^{2}(n-1)}} \sim t_{d} = \sqrt{\frac{2_{i}(x_{i} - \bar{x})^{2}}{\sigma^{2}(n-1)}}$$

$$I_{6} = \sqrt{\frac{2_{i}(x_{i} - \bar{x})^{2}}{\sigma^{2}(n-1)}} \sim t_{d} = \sqrt{\frac{2_{i}(x_{i} - \bar{x})^{2}}{\sigma^{2}(n-1)}} \sim t_{d} = \sqrt{\frac{2_{i}(x_{i} - \bar{x})^{2}}{\sigma^{2}(n-1)}}$$

$$I_{6} = \sqrt{\frac{2_{i}(x_{i} - \bar{x})^{2}}{\sigma^{2}(n-1)}} \sim t_{d} = \sqrt{\frac{2_{i}(x_{i} - \bar{x})^{2}}{\sigma^{2}($$

Now,
$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{x_1 - x_1}{\sqrt{2}} \right)^2 + \frac{1}{\sqrt{2}} \left(\frac{x_1 - x_1$$

$$= \underbrace{\left\{ \left(\frac{X_{i} - \overline{X}}{\sigma} \right)^{2} + \left(\frac{\overline{X} - M}{\sigma} \right)^{2} + 2 \left(\frac{X_{i} - \overline{X}}{\sigma} \right) \left(\frac{\overline{X} - M}{\sigma} \right)^{2} + 2 \left(\frac{\overline{X}$$

7 (XX)2

 $S\left(\frac{x_{i}-x}{a}\right)^{2} = S\left(\frac{x_{i}-x}{a}+x-x\right)^{2}$

 $\xi_{0}\left(x_{0}-\overline{x}\right)=0$

t-distribution

Cochran's theorem

Let $Z_1, \ldots, Z_n \stackrel{iid}{\sim} N(0, 1)$, and let $Z = [Z_1, \ldots, Z_n]^T$. Let $A_1, \ldots, A_k \in \mathbb{R}^{n \times n}$ be symmetric matrices such that $Z^T Z = \sum_{i=1}^k Z^T A_i Z$, and let $r_i = rank(A_i)$. Then the

following are equivalent:

- $r_1 + \cdots + r_k = n$
- The $Z^T A_i Z$ are independent
- Each $Z^T A_i Z \sim \chi_{r_i}^2$

Application to t-tests

Let
$$Z_{i} = X_{i} \xrightarrow{X_{i}} X_{i} \xrightarrow{X_{i}} X_{i} = X_{i} \xrightarrow{X_{i}}$$

1-n=(A)= n-1

ranh (Az) = 1

 $\sim \chi^2$

 $\left\{ \sum_{i} \left(\frac{x_{i} - \overline{x}}{\sigma} \right)^{2} = \sum_{i} \left(\overline{z}_{i} - \overline{z} \right)^{2} = \sum_{i} \left(\overline{z}_{i} - \overline{z} \right)^{2} \right\}$

$$\frac{2!(\overline{2}; -\overline{2})^{2}}{2!(\overline{2}; -\overline{2})} + 2!(\overline{2}; -\overline{2}) + 2!($$