Apprentissage profond et représentation latente de séquences peptidiques

Rémy Sun sous la direction de François Coste

Département d'informatique ENS Rennes

XTRA 2016

Quelles applications pour les protéines?

- Apprentissage profond?
 - Pourquoi l'apprentissage « profond » ?
 - Entraînement non-supervisé : Autoencodeurs et représentations latentes
 - Architectures standards
- Application aux protéines
 - Qu'est-ce-qu'une protéine?
 - Etat de l'art
 - Traiter des séquences peptidiques
 - Architectures entrainées & résultats

Quelles applications pour les protéines?

- Apprentissage profond?
 - Pourquoi l'apprentissage « profond » ?
 - Entraînement non-supervisé : Autoencodeurs et représentations latentes
 - Architectures standards
- Application aux protéines
 - Qu'est-ce-qu'une protéine?
 - Etat de l'art
 - Traiter des séquences peptidiques
 - Architectures entrainées & résultats

Plan

- Apprentissage profond?
 - Pourquoi l'apprentissage « profond » ?
 - Entraînement non-supervisé : Autoencodeurs et représentations latentes
 - Architectures standards
- Application aux protéines
 - Qu'est-ce-qu'une protéine?
 - Etat de l'art
 - Traiter des séquences peptidiques
 - Architectures entrainées & résultats

Une unité de calcul à paramètres optimisables

- Entrée A, poids W, biais b
- Transformation linéaire WA + b
- Activation non-linéaire f
- Apprentissage de W et b
 - Par rétropropagation sur la distance à l'objectif

Représentation hiérarchiques par couches

- Plusieurs couches de neurones
- Hiérarchie : plusieurs niveaux de représentations
- Evanouissement de gradient
- Grands ensembles d'entraînement

Représentation hiérarchiques par couches

- Plusieurs couches de neurones
- Hiérarchie : plusieurs niveaux de représentations
- Evanouissement de gradient
- Grands ensembles d'entraînement

Plan

- Apprentissage profond?
 - Pourquoi l'apprentissage « profond » ?
 - Entraînement non-supervisé : Autoencodeurs et représentations latentes
 - Architectures standards
- Application aux protéines
 - Qu'est-ce-qu'une protéine?
 - Etat de l'art
 - Traiter des séquences peptidiques
 - Architectures entrainées & résultats

- Non supervisé
- Encodage/Décodage
- Représentation latente
- Eviter d'encoder l'identité
 - Compression
 - Bruitage
 - Régularisation

- Non supervisé
- Encodage/Décodage
- Représentation latente
- Eviter d'encoder l'identité
 - Compression
 - Bruitage
 - Régularisation

7/23

- Non supervisé
- Encodage/Décodage
- Représentation latente
- Eviter d'encoder l'identité
 - Compression
 - Bruitage
 - Régularisation

- Non supervisé
- Encodage/Décodage
- Représentation latente
- Eviter d'encoder l'identité
 - Compression
 - Bruitage
 - Régularisation

Plan

- Apprentissage profond?
 - Pourquoi l'apprentissage « profond » ?
 - Entraînement non-supervisé : Autoencodeurs et représentations latentes
 - Architectures standards
- Application aux protéines
 - Qu'est-ce-qu'une protéine?
 - Etat de l'art
 - Traiter des séquences peptidiques
 - Architectures entrainées & résultats

Réseaux Convolutionnels : recherche de caractéristique

- Filtres de caractéristiques
- Permet d'isoler des caractéristiques locales

Réseaux récurrents : tenir compte de l'ordre d'apparition

- Dépendance temporelles
- Sortie + état caché persistant (boucle de rétroaction)
- Réseau « profond »à une couche
- Pas de dépendances hiérarchiques
- Unité LSTM (Long Short-Term Memory)

Réseaux récurrents : tenir compte de l'ordre d'apparition

- Dépendance temporelles
- Sortie + état caché persistant (boucle de rétroaction)
- Réseau « profond »à une couche
- Pas de dépendances hiérarchiques
- Unité LSTM (Long Short-Term Memory)

Plan

- Apprentissage profond?
 - Pourquoi l'apprentissage « profond » ?
 - Entraînement non-supervisé : Autoencodeurs et représentations latentes
 - Architectures standards
- Application aux protéines
 - Qu'est-ce-qu'une protéine?
 - Etat de l'art
 - Traiter des séquences peptidiques
 - Architectures entrainées & résultats

Une molécule chimique

- Acide aminés : molécules chimiques
- Structure primaire : chaîne d'acides aminés
- Structure secondaire : structures locales formé par les acides (hélices- α , brins- β , ...)
- Structure tertiaire : forme tridimensionnelle

Plan

- Apprentissage profond?
 - Pourquoi l'apprentissage « profond » ?
 - Entraînement non-supervisé : Autoencodeurs et représentations latentes
 - Architectures standards
- Application aux protéines
 - Qu'est-ce-qu'une protéine?
 - Etat de l'art
 - Traiter des séquences peptidiques
 - Architectures entrainées & résultats

Succès en :

 Reconnaissance d'image, langages naturels, prédiction de sentiments, données bio-médicales, représentation, ...

- Prédiction de structures secondaires et locales
 - Heffernan R. et al. 2015 Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.
 - Spencer M et al. 2015 A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
 - •
- Classification de protéines selon différents critéres
 - Jian-Wei L. et al. 2013 Predicting protein structural classes with autoencoder neural networks

Succès en :

 Reconnaissance d'image, langages naturels, prédiction de sentiments, données bio-médicales, représentation, ...

- Prédiction de structures secondaires et locales
 - Heffernan R. et al. 2015 Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.
 - Spencer M et al. 2015 A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
- Classification de protéines selon différents critéres
 - Jian-Wei L. et al. 2013 Predicting protein structural classes with autoencoder neural networks

Succès en :

 Reconnaissance d'image, langages naturels, prédiction de sentiments, données bio-médicales, représentation, ...

- Prédiction de structures secondaires et locales
 - Heffernan R. et al. 2015 Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.
 - Spencer M et al. 2015 A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
- Classification de protéines selon différents critéres
 - Jian-Wei L. et al. 2013 Predicting protein structural classes with autoencoder neural networks

Succès en :

 Reconnaissance d'image, langages naturels, prédiction de sentiments, données bio-médicales, représentation, ...

- Prédiction de structures secondaires et locales
 - Heffernan R. et al. 2015 Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.
 - Spencer M et al. 2015 A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
- Classification de protéines selon différents critéres
 - Jian-Wei L. et al. 2013 Predicting protein structural classes with autoencoder neural networks

Succès en :

 Reconnaissance d'image, langages naturels, prédiction de sentiments, données bio-médicales, représentation, ...

- Prédiction de structures secondaires et locales
 - Heffernan R. et al. 2015 Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.
 - Spencer M et al. 2015 A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
- Classification de protéines selon différents critéres
 - Jian-Wei L. et al. 2013 Predicting protein structural classes with autoencoder neural networks

- Succès en :
 - Reconnaissance d'image, langages naturels, prédiction de sentiments, données bio-médicales, représentation, ...
- Protéines :
 - Prédiction de structures secondaires et locales
 - Heffernan R. et al. 2015 Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.
 - Spencer M et al. 2015 A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
 - ...
 - Classification de protéines selon différents critéres
 - Jian-Wei L. et al. 2013 Predicting protein structural classes with autoencoder neural networks

- Succès en :
 - Reconnaissance d'image, langages naturels, prédiction de sentiments, données bio-médicales, représentation, ...
- Protéines :
 - Prédiction de structures secondaires et locales
 - Heffernan R. et al. 2015 Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.
 - Spencer M et al. 2015 A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
 - ...
 - Classification de protéines selon différents critéres
 - Jian-Wei L. et al. 2013 Predicting protein structural classes with autoencoder neural networks

- Succès en :
 - Reconnaissance d'image, langages naturels, prédiction de sentiments, données bio-médicales, représentation, ...
- Protéines :
 - Prédiction de structures secondaires et locales.
 - Heffernan R. et al. 2015 Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.
 - Spencer M et al. 2015 A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
 - Classification de protéines selon différents critéres
 - Jian-Wei L. et al. 2013 Predicting protein structural classes with autoencoder neural networks

Plan

- Apprentissage profond?
 - Pourquoi l'apprentissage « profond » ?
 - Entraînement non-supervisé : Autoencodeurs et représentations latentes
 - Architectures standards
- Application aux protéines
 - Qu'est-ce-qu'une protéine?
 - Etat de l'art
 - Traiter des séquences peptidiques
 - Architectures entrainées & résultats

Traiter des fragments courts pour étudier des chaînes longues

- Tâche sur une chaîne longue : prédiction de classe structurale (SCOPe 2.6, 40%)
 - Travaux usuels : représentation par vecteur de fréquence des protéines augmenté
 - Découpage de la chaîne en fragments courts
- Etude sur les séquences peptidiques
- Représentation de l'acide a_i par $V = (v_k)$ où $v_i = 1$ et $v_k = 0 (k \neq i)$

Plan

- Apprentissage profond?
 - Pourquoi l'apprentissage « profond » ?
 - Entraînement non-supervisé : Autoencodeurs et représentations latentes
 - Architectures standards
- Application aux protéines
 - Qu'est-ce-qu'une protéine?
 - Etat de l'art
 - Traiter des séquences peptidiques
 - Architectures entrainées & résultats

Autoencodeurs

- Entraînement sur des fragments de taille 11
- Augmentation de la taille de l'ensemble d'entraînement de 13500 à 700 000
- Espace latent à 20 dimensions
- Encodeur récurrent à 3 couches
- Décodeur récurrent

Les représentation latentes présentent des corrélations remarquables

- Dimensions liées dans l'espace latent
- Corrélation de coordonnées à l'hydropathie, à la charge ...
- Pas de corrélation à la structure secondaire observées . . .

Les représentation latentes présentent des corrélations remarquables

- Dimensions liées dans l'espace latent
- Corrélation de coordonnées à l'hydropathie, à la charge ...

Pas de corrélation à la structure secondaire observées , E , E = nac

Les représentation latentes présentent des corrélations remarquables

- Dimensions liées dans l'espace latent
- Corrélation de coordonnées à l'hydropathie, à la charge ...
- Pas de corrélation à la structure secondaire observées

Classificateur de classe structurales

- Tâche : classifier les classes structurales des protéines
- Classificateur convolutionnel
- Premières couches pré-entraînées
- Validation de la représentation latente acquise

Les représentations latentes sont exploitables par un classificateur structural

- Comparaison favorable au même classificateur non pré-entrainé :
 - Atteinte plus rapide de la précision maximale
 - Précision maximale plus élevée
- Pertinence de la représentation latente

Les représentations latentes sont exploitables par un classificateur structural

- Comparaison favorable au même classificateur non pré-entrainé :
 - Atteinte plus rapide de la précision maximale
 - Précision maximale plus élevée
- Pertinence de la représentation latente

Les représentations latentes sont exploitables par un classificateur structural

- Comparaison favorable au même classificateur non pré-entrainé :
 - Atteinte plus rapide de la précision maximale
 - Précision maximale plus élevée
- Pertinence de la représentation latente

- L'apprentissage profond permet de détecter des structure hiérarchiques ou temporelles.
- Problème particulier : Pas assez d'exemples labélisés et chaînes très longues.
- Apparition de corrélations entre la représentation latente et des caractéristiques des séquences peptidiques.
- Perspectives
 - Utilisation d'autres architectures utilisées en langages naturels.
 - Influence des hyper paramètres.

- L'apprentissage profond permet de détecter des structure hiérarchiques ou temporelles.
- Problème particulier : Pas assez d'exemples labélisés et chaînes très longues.
- Apparition de corrélations entre la représentation latente et des caractéristiques des séquences peptidiques.
- Perspectives
 - Utilisation d'autres architectures utilisées en langages naturels.
 - Influence des hyper paramètres.

- L'apprentissage profond permet de détecter des structure hiérarchiques ou temporelles.
- Problème particulier : Pas assez d'exemples labélisés et chaînes très longues.
- Apparition de corrélations entre la représentation latente et des caractéristiques des séquences peptidiques.
- Perspectives
 - Utilisation d'autres architectures utilisées en langages naturels.
 - Influence des hyper paramètres.

- L'apprentissage profond permet de détecter des structure hiérarchiques ou temporelles.
- Problème particulier : Pas assez d'exemples labélisés et chaînes très longues.
- Apparition de corrélations entre la représentation latente et des caractéristiques des séquences peptidiques.
- Perspectives
 - Utilisation d'autres architectures utilisées en langages naturels.
 - Influence des hyper paramètres.

- L'apprentissage profond permet de détecter des structure hiérarchiques ou temporelles.
- Problème particulier : Pas assez d'exemples labélisés et chaînes très longues.
- Apparition de corrélations entre la représentation latente et des caractéristiques des séquences peptidiques.
- Perspectives
 - Utilisation d'autres architectures utilisées en langages naturels.
 - Influence des hyper paramètres.

- L'apprentissage profond permet de détecter des structure hiérarchiques ou temporelles.
- Problème particulier : Pas assez d'exemples labélisés et chaînes très longues.
- Apparition de corrélations entre la représentation latente et des caractéristiques des séquences peptidiques.
- Perspectives
 - Utilisation d'autres architectures utilisées en langages naturels.
 - Influence des hyper paramètres.

- L'apprentissage profond permet de détecter des structure hiérarchiques ou temporelles.
- Problème particulier : Pas assez d'exemples labélisés et chaînes très longues.
- Apparition de corrélations entre la représentation latente et des caractéristiques des séquences peptidiques.
- Perspectives
 - Utilisation d'autres architectures utilisées en langages naturels.
 - Influence des hyper paramètres.

 Désactiver aléatoirement des neurones

- Eliminer la concentration d'information
- Faire travailler tout le réseau
- Généraliser la représentation apprise
- Permet d'entraîner ad nauseam

⊗⊗⊗⊗⊗⊗⊗

(b) After applying dropout.

- Désactiver aléatoirement des neurones
- Eliminer la concentration d'information
- Faire travailler tout le réseau
- Généraliser la représentation apprise
- Permet d'entraîner ad nauseam

(b) After applying dropout.

- Désactiver aléatoirement des neurones
- Eliminer la concentration d'information
- Faire travailler tout le réseau
- Généraliser la représentation apprise
- Permet d'entraîner ad nauseam

(b) After applying dropout.

- Désactiver aléatoirement des neurones
- Eliminer la concentration. d'information
- Faire travailler tout le réseau
- Généraliser la représentation apprise
- Permet d'entraîner ad

(b) After applying dropout.

- Désactiver aléatoirement des neurones
- Eliminer la concentration d'information
- Faire travailler tout le réseau
- Généraliser la représentation apprise
- Permet d'entraîner ad nauseam

23 / 23