GRE Math Subject Prep Course: Calculus I

June 2, 2021

1.	(Exam VI Prob 56) ¹ Let $f(x)$ be a function defined for all real x such that the coordinates of each point of its graph satisfy $ y = x^2 - x^3 $. The total number of points at which $f(x)$ must be differentiable is								
	(A)	none	(B)	1	(C) 2				
	(D)	3	(E)	infinite					
2.	(Chapter 2 Prob 13) ² What is the slope of the tangent line to the curve $xy(x+y) = x + y^4$ at the point $(1,1)$?								
	(A)	2	(B)	1	(C) 0				
	(D)	-1	(E)	-2					
3.	. (Week 1 Prob 2) ³ Evaluate $\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{x}$ for $\alpha\in\mathbb{R}$.								
	(A)	0	(B)	α	(C) 2α				
	(D)	3α	(E)	1					
4.	. (Exam VI Prob 1) Let $f(x) = \left(\frac{\sin x}{x}\right)^{1/x^2}$. Evaluate $\lim_{x \to 0^+} f(x)$. (Note: to reduce the pain of applying l'Hopital's rule again and again, try Taylor expansion.)								
		-1/6	(B)		(C) $e^{-1/6}$				
		$\ln(1/6)$	(E)						
5.	. (Exam VI Prob 36) Evaluate $\lim_{x\to\infty} \sqrt{x^2 + 2x} - x$.								
	(A)	0	(B)	1	(C) $\sqrt{2}$				
	(D)	2	(E)	∞					
		ems with "Exam I" – "Exam atics Test", 4th edition.	VI"	are taken from the REA bool	k "The Best Test Preparation for the				

²The problems with "Chapter *" are taken from "Cracking the GRE Mathematics Test", 4th Edition.

³The problems with "Week *" are taken from the GRE preparation course taught by Christian Parkinson.

- 6. (Chapter 2 Prob 20) What is the maximum area of a rectangle inscribed in a semicircle of radius a?
 - (A) $\frac{\sqrt{2}}{2}a^2$
- (B) $\frac{\sqrt{2}}{2}a^2$
- (C) a^2

- (D) $\frac{\pi}{2\sqrt{2}}a^2$
- (E) $\sqrt{2}a^2$
- 7. (Exam IV Prob 8) Let $f(x) = x^x$ with $x \in [0,1]$. (here f(0) is defined as $\lim_{x\to 0^+} f(x)$.) Determine where the minimum of f on the interval occurs.
 - (A) 1/2

(B) 1/e

(C) $1/\pi$

(D) 1/4

- (E) 0
- 8. (Week 1 Prob 3) Evaluate $\lim_{x\to 0} \frac{\cos(\beta x) 1}{x^2}$ for $\beta \in \mathbb{R}$.
 - (A) 0

(B) $\beta/2$

(C) β^2

- (D) $-\beta^2/2$
- (E) $-\beta^2$
- 9. (Week 1 Prob 4) Let c > 0. Find the minimum value of $f(x) = e^x cx$ among $x \in \mathbb{R}$.
 - (A) c

(B) $\ln(c)$

(C) $c + c \ln(c)$

- (D) $c c \ln(c)$
- (E) $c \ln(c)$
- 10. (Week 1 Prob 5) Let $f(x) = |x| + 3x^2$. What is f'(x)?
 - (A) -3

(B) -4

(C) -5

(D) -6

- (E) -7
- 11. (Week 1 Prob 6) Evaluate $\lim_{x\to 0} (x^{-2} \sin^{-2}(x))$.
 - (A) -1/2

(B) -1/3

(C) -1/4

(D) -1/5

(E) -1/6

	(A) 15	(B)	18	(C) 21	
	(D) 24	(E)	27		
13.				ifferentiable on $(-1,4)$ with $f(3)$ ossible value of $f(0)$?	= 5 and
	(A) 2	(B)	3	(C) 4	
	(D) 5	(E)	6		
14.	(Week 1 Prob 9) E	Evaluate $\lim_{x\to 0} \frac{1}{(1+$	$\frac{\sin(2x)}{(x)\ln(1+x)}.$		
	(A) 0	(B)	1	(C) 2	
	(D) 3	(E)	4		
15.	(Week 1 Prob 10) I following is necessar		h'(x) where $h'(x)$	$(x) = -g'(x)h(x)$ for all $x \in \mathbb{R}$. Wh	ich of the
	(A) f is constant	t (B)	f is non-const	cant (C) g is constant	

(D) g is non-constant (E) none of the above

12. (Week 1 Prob 7) Suppose $f(x) = 3x^2 + bx + c$ has a non-simple root at x = 2. What is f(5)?

Answer: ABBAC BCDDE BEACA