A novel Echo State Network algorithm

Aleix Espuña Fontcuberta and Saikat Chatterjee

June 8, 2020

This documentation presents a novel variation of the classical Echo State Network (ESN) algorithm, which is used to predict signal continuations.

Equations

The novel algorithm we are presenting takes a time series of M scalars $Y = \{y_0, y_1...y_{M-1}\}$ and it tries to make a jump τ in the future and predict q values $\{\hat{y}_{M+\tau-q+1}, \hat{y}_{M+\tau-q+2}...\hat{y}_{M+\tau}\}$, where $\tau \geq q-1$. We use an Echo State Network (ESN) architecture: a neural network made of a large reservoir of N neurons $(N \approx 1000)$ whose state $\mathbf{x}_n \in \mathcal{R}^N$ evolves in time. The equation that updates a state \mathbf{x}_n to a new state \mathbf{x}_{n+1} is the following:

$$\mathbf{x}_{n+1} = \tanh(W_{res}\mathbf{x}_n + W_{fb}\mathbf{y}_n^p) \tag{1}$$

The matrix $W_{res} \in \mathcal{R}^{N \times N}$ contains all the inner connections of the reservoir. It must be sparse, to speed up computation, and with a spectral radius lower than 1. Its non-zero values remain fixed and they must be initialized from a uniform or normal random distribution between [-1,1]. The feedback matrix $W_{fb} \in \mathcal{R}^{N \times p}$ contains fixed random weights between [-1,1] (uniform or normal distribution) connecting the vector $\mathbf{y}_n^p \in \mathcal{R}^p$ to the reservoir. The spectral radius of the product by its transpose $W_{fb}^T W_{fb}$ must be lower than 1, which helps to provide stability to the update equation (not guaranteed). Finally, the vector $\mathbf{y}_n^p \equiv \{y_n, y_{n-1}, y_{n-2}, ... y_{n-(p-1)}\}$, with $n \geq p-1$, contains the present value y_n and its history of size p-1.

1 Teacher forcing

The goal of teacher forcing is to find a prediction function capable to map a state \mathbf{x}_n to a vector $\mathbf{y}_{n+\tau}^q \equiv \{y_{n+\tau}, y_{n+\tau-1}, y_{n+\tau-2}, ... y_{n+\tau-(q-1)}\}$, with $\tau \geq q-1$. We will do it by choosing a linear predictor $h(\mathbf{x}_n) = \hat{\mathbf{y}}_{n+\tau}^q = W_{out}\mathbf{x}_n + \mathbf{b}$. The matrix $W_{out} \in \mathcal{R}^{q \times N}$ and the intercept $\mathbf{b} \in \mathcal{R}^q$ are found by solving a ridge regression:

$$W_{out}, \mathbf{b} = argmin\left(\sum_{n=p}^{M-\tau-1} \left(||\mathbf{y}_{n+\tau}^q - \hat{\mathbf{y}}_{n+\tau}^q||^2\right) + \beta\left(||W_{out}||^2 + ||\mathbf{b}||^2\right)\right)$$
(2)

To be able to solve Eq.(2) we must first generate all states \mathbf{x}_n from n=p to $n=M-\tau-1$. This is done by initializing $\mathbf{x}_{p-1}=0$ and running Eq.(1) from n=p-1 to $n=M-\tau-1$. It is convenient however, to run Eq.(1) until we obtain the final state \mathbf{x}_M , as we will use it to predict $\hat{\mathbf{y}}_{M+\tau}^q$ once Eq.(2) has been solved.

2 Predicting

Once we have generated the final state \mathbf{x}_M and also solved Eq.(2), we can obtain the set of predicted values $\hat{\mathbf{y}}_{M+\tau}^q = \{\hat{y}_{M+\tau}, \hat{y}_{M+\tau-1}, \hat{y}_{M+\tau-2}, ... \hat{y}_{M+\tau-(q-1)}\}$ by just computing $h(\mathbf{x}_M) = \hat{\mathbf{y}}_{M+\tau}^q = W_{out}\mathbf{x}_M + \mathbf{b}$.

3 Algorithm overview

Training data:

• The training time series $Y = \{y_0, y_1...y_{M-1}\}.$

Goal:

• Predict the values $\hat{Y} = \{\hat{y}_{M+\tau-q+1}, \hat{y}_{M+\tau-q+2}...\hat{y}_{M+\tau}\}$

Input parameters:

- The time series history p sent to the reservoir.
- The jump in the future τ .
- The history q of the prediction.
- The regularization β .

Restrictions:

- $\tau \geq q-1$
- $p + \tau < M 1$.
- Matrix $W_{res} \in \mathbb{R}^{N \times N}$ must be sparse (e.g. 10 non-zero values per row)
- $\rho(W_{res}) < 1$ (Spectral radius)
- $\rho(W_{fb}^T W_{fb}) < 1$, with $W_{fb} \in \mathcal{R}^{N \times p}$
- W_{res}, W_{fb} initialized from a uniform or random distribution $\in [-1, 1]$

Definitions:

- $\mathbf{y}_n^p \equiv \{y_n, y_{n-1}, y_{n-2}, ... y_{n-(p-1)}\}$
- $\mathbf{y}_{n+\tau}^q \equiv \{y_{n+\tau}, y_{n+\tau-1}, y_{n+\tau-2}, \dots y_{n+\tau-(q-1)}\}$

• $\hat{\mathbf{y}}_{n+\tau}^q = W_{out}\mathbf{x}_n + \mathbf{b}$; with $W_{out} \in \mathcal{R}^{q \times N}$ and $\mathbf{b} \in \mathcal{R}^q$.

Compute:

- 1. Initialize $\mathbf{x}_{p-1} = 0$, W_{fb} , W_{res} .
- 2. From n = p 1 to n = M 1, run: $\mathbf{x}_{n+1} = \tanh(W_{res}\mathbf{x}_n + W_{fb}\mathbf{y}_n^p)$
- 3. Solve: W_{out} , $\mathbf{b} = argmin\left(\sum_{n=p}^{M-\tau-1} ||\mathbf{y}_{n+\tau}^q \hat{\mathbf{y}}_{n+\tau}^q||^2 + \beta(||W_{out}||^2 + ||\mathbf{b}||^2)\right)$
- 4. Evaluate $\hat{\mathbf{y}}_{M+\tau}^q = W_{out}\mathbf{x}_M + \mathbf{b}$

The vector $\hat{\mathbf{y}}_{M+\tau}^q$ contains the sequence \hat{Y} in reversed order.