Symulator tomografu komputerowego

Maciej Handke 146549 Patryk Samelak 146535

1 Zastosowany model tomografu

W aplikacji zastosowano równoległy model tomografu

2 Zastosowany język programowania oraz dodatkowe biblioteki

Aplikacja została napisana w języku Python, wykorzystane zostały następujące biblioteki:

- streamlit
- numpy
- pydicom
- skimage

3 Opis głównych funkcji

3.1 Pozyskiwanie odczytów dla poszczególnych detektorów

```
def angle_points(self, angles, circle_center, circle_radius):
    self.angles = angles
    self.circle_center = circle_center
    self.circle_radius = circle_radius
    self.circle_x, self.circle_y = self.circle_center
    self.x = self.circle_radius * np.cos(self.angles) - self.circle_x
    self.y = self.circle_radius * np.sin(self.angles) - self.circle_y
    self.points = np.array(list(zip(self.x, self.y)))
```

3.2 Ustalanie jasności poszczególnych punktów obrazu wynikowego oraz jego przetwarzanie końcowe

```
def normalization(data):
    return (data - np.min(data)) / (np.max(data) - np.min(data))
```

3.3 Odczyt i zapis plików DICOM

```
def dicom_open(self, file_path):
    self.file_path = file_path
    self.file = dcmread(self.file_path)
    self.keys = {x for x in dir(self.file) if x[0].isupper()} -
{'PixelData'}
    self.meta = {x: getattr(self.file, x) for x in self.keys}
    self.image = self.file.pixel_array
    return self.image, self.meta
```

```
self.file = FileDataset(None, {}, preamble=b"\0" * 128)
self.file.SOPClassUID = pydicom. storage sopclass uids.CTImageStorage
self.file.StudyInstanceUID = pydicom.uid.generate uid()
self.file.FrameOfReferenceUID = pydicom.uid.generate uid()
self.file.SamplesPerPixel = 1
self.file.HighBit = 7
self.file.BitsAllocated = 8
self.file.ImagesInAcquisition = 1
self.file.InstanceNumber = 1
self.file.PixelData = self.converted image.tobytes()
```

```
with st.expander("Zapisz jako plik DICOM"):
    patient_name = st.text_input("Imie i nazwisko")
    patient_id = st.text_input("ID")
    patient_birthdate = st.date_input("Data badania")
    comment = st.text_area("Komentarz")
    patient_info = {
        "PatientName": patient_name,
        "PatientID": patient_id,
        "PatientBirthDate": str(patient_birthdate),
        "ImageComments": comment
    }
    if len(patient_name) and len(patient_id):
        file_name = f'{patient_name} {patient_id}.dcm'
    else:
        file_name = "unnamed.dcm"
    save_image = st.radio("Zapisz jako DICOM ", ["Obraz wejściowy", "Obraz wyjściowy"])
    if save_image == "Obraz wyjściowy":
        if st.button("Zapisz"):
```

```
dicom.dicom_save(file_name,
np.array(normalization(output_image[len(output_image) - 1])), patient_info)
else:
    if st.button("Zapisz"):
        dicom.dicom save(file name, image, patient info)
```

4 Sprawdzenie poprawności pliku DICOM

Poprawność utworzonych plików DICOM została zweryfikowana za pomocą

https://www.ofoct.com/viewer/dicom-viewer-online.html

Name	Value
FileMetaInformationGroupLength	206
FileMetaInformationVersion	0, 1
MediaStorageSOPClassUID	1.2.840.10008.5.1.4.1.1.2
MediaStorageSOPInstanceUID	1.2.826.0.1.3680043.8.498.68175064234929215552357451852326815133
TransferSyntaxUID	1.2.840.10008.1.2.1
ImplementationClassUID	1.2.826.0.1.3680043.8.498.1
ImplementationVersionName	PYDICOM 2.3.0
ImageType	ORIGINAL, PRIMARY, AXIAL
SOPClassUID	1.2.840.10008.5.1.4.1.1.2□
SOPInstanceUID	1.2.826.0.1.3680043.8.498.68175064234929215552357451852326815133
Modality	ст
PatientName	Jan Kowalski
PatientID	5d3Z9s0
PatientBirthDate	2022-02-24
StudyInstanceUID	1.2.826.0.1.3680043.8.498.11416398565271046217161295892647534265
SeriesInstanceUID	1.2.826.0.1.3680043.8.498.15384303311778825544997792638146779890
InstanceNumber	1
FrameOfReferenceUID	1.2.826.0.1.3680043.8.498.85246821824544757989849615191359475291
ImagesInAcquisition	1
ImageComments	Uraz
SamplesPerPixel	1
PhotometricInterpretation	MONOCHROME2
Rows	1024
Columns	1024
BitsAllocated	8
BitsStored	8
HighBit	7
PixelRepresentation	0
PixelData	0, 0, 0, 0, 0, 0, 0, 0, 0,

5 Wyniki działania programu

5.1 Shepp_logan - JPG

5.2 CT_ScoutView - DICOM

