Tópicos de Matemática Discreta

	prova escrita A — 25 de janeiro de 2014 —————	duração: 2 horas —
nome:		número
	I.	

Em cada exercício deste grupo, assinale a **única** afirmação verdadeira. Cada resposta certa vale 1,25 valores e cada resposta errada desconta 0,25 valores.

- 1. Sejam A um subconjunto de \mathbb{N} e f uma função de \mathbb{Z} em A.
 - (a) Se 3 e 5 são elementos de A e $f(\{1,2,3\}) = \{3,5\}$ então f não é sobrejetiva.
 - (b) Se 3 e 5 são elementos de A e $f^{\leftarrow}(\{3,5\})=\{1,2\}$ então f é injetiva.
- (c) Se $A = \{3, 5\}$ então f não é bijetiva.
- 2. Sejam $f,\,g$ e has funções de $\mathbb N$ para $\mathbb N$ definidas por:

$$f(n) = n + 3;$$
 $g(n) = 2n;$ $h(n) = \begin{cases} 1, \text{ se } n \text{ \'e par} \\ 2, \text{ se } n \text{ \'e impar.} \end{cases}$

- (a) $f \circ g$ é uma função constante.
- (b) $(h \circ g \circ f)(5) = 1.$
- (c) $(h \circ f \circ g)(\{1, 2, 4, 5\}) = \{1, 2\}.$
- **3.** Sejam $A = \{1, 2, 3\}$ e $B = \{a, b, c, d\}$. Considere as relações binárias $R = \{(1, a), (1, d), (2, a), (2, c)\}$ e $S = \{(a, 1), (a, 3), (b, 2), (c, 2), (d, 3)\}$ de A para B e de B para A, respetivamente.
 - (a) $R^{-1} \cap S = \{(1, a), (2, c)\}.$
 - (b) $R \circ S = \{(a,d), (b,c), (b,a), (c,a)\}.$
 - (c) Não existe nenhum $x \in A$ tal que $(3, x) \in S \circ R$.
- 4. Considere a matriz $A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$.
- (a) Se G = (V, E) tem A como matriz de incidência, então G tem 2 vértices de grau par e 2 vértices de grau ímpar.
- (b) Existe uma árvore que tem A como matriz de incidência.
- (c) Existe um grafo simples que tem A como matriz de adjacência.

JUSTIFICAÇÕES GRUPO I

$$\begin{array}{ccc}
A & & & & & & \\
A & \\
A & &$$

(a) Se
$$A = \{3,5\}$$
 e f é tal que $f(n) = \{3\}$ se m é par , entar $f(\{1,2,3\}) = \{3,5\}$. Além disso, f é sobrejetiva.

Por isso, (a) $m \neq 0$ é verdadeira.

(b) Da afirmação apenas sabemos que
$$\{f(1), f(2)\} = \{3,5\}$$
.
Anim, $f(1) \neq f(2)$, mas ino mão significa que f seja
injetiva.

De factor, se
$$A=IN$$
 e $f: \mathbb{Z} \longrightarrow A$, tensor $2 \longmapsto 5$ $n \in \mathbb{Z} \setminus \{1,2\} \longmapsto 7$

que f mos i injetive e, no entanto, $f = \{1,2\}$. A dir margé (b) i folsa

(c) Se A = {3,5}, então A é um conjunto finito.

Sendo f: Z → A ums função, of numa podrá ser bijetiva.

De facto, f(m) = 3 ou f(m) = 5, pare todo n ∈ Z.

Portanto, f mão é injetiva.

A afirmação (e) é verdedirs.

2. (a)
$$(f \circ g)(n) = f(g(n)) = f(zm) = 2n+3$$

note i constante!

A afinmous (c) e false.

(b)
$$(h \circ g \circ f)(5) = (h \circ g)(f(5)) = (h \circ g)(5+3) =$$

= $h(g(8)) = h(2\times8) = h(16) = 1$.

A afirmació (b) i virdedirs.

(c)
$$(h \circ f \circ g)(m) = (h \circ f)(g(m)) = (h \circ f)(2m) =$$

$$= h(f(2m)) = h(2m+3) = 2.$$

$$= 2m+3 i$$
imper force todo m.

Logo, (hofog)
$$(11,2,4,5)$$
 = $\{2\}$.
A afinmous (c) i falsa.

3.

(a)
$$R^{-1} = \{(a,1),(d,1),(a,2),(c,2)\}$$

 $S = \{(a,1),(a,3),(b,2),(c,2),(d,3)\}$
 $R^{-1} \cap S = \{(a,1),(c,2)\}.$
A aformació (a) i false.

(b)
$$RoS = \{(a,a), (a,d), (b,a), (b,c), (c,a), (c,c)\}$$

 $\neq \{(a,d), (b,c), (b,c), (c,a)\}$
A afin macos (b) i false.

(c) $SoR = \left\{ (1,1), (1,3), (2,1), (2,3), (2,2) \right\}$ logo, mass exists menhum <math>x tal que $(3,x) \in SoR$.

A afinmaçs (c) i vardeduirs.

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Esta matriz nunca foduia ser ums matriz de adjacencia de um grafo simples pois tem elementos diagonais diferentes de o e mos é simétrica $(A \neq A^T)$. Logo, a afirmaçõe (c) e false.

Pensando em A como uma matriz de incidência de um grafo simples, Teremos 4 vertices e 4 arestas.

Como nume arvor, o número de virtius é superior ao número de austas, a afirmação (b) é falsa.

A firmició eje verdedición :

Gran $(N_3) = 2$ gran $(N_2) = 2$ gran $(N_3) = 3$ gran $(N_4) = 1$

Em G be dois vatius de gran par a dois vatius de gran émpon. Em cada exercício deste grupo, apresente a sua resposta sem justificar.

1. [1 valor] Indique naturais $a, b, c \in d$ tais que o diagrama

seja o diagrama de Hasse do conjunto parcialmente ordenado ($\{a,b,c,d,2,12\}$,|), em que | representa a relação "divide".

$$a = 10$$
 $b = 40$ $c = 4$ $d = 3$

- 2. [3 valores] Considere $A = \{a, b, c, d, 2, 12\}$ e (A, ρ) , um c.p.o. cujo diagrama de Hasse é o diagrama dado no exercício anterior. Seja $X = \{a, c, d\}$. Indique:
- (b) o conjunto dos majorantes de X:
- (c) os elementos minimais de X: a_1c_1d .
- (d) um subconjunto Y de A tal que $\sup(Y) = c$: $\left\{2,c\right\}$ $\left\{c\right\}$
- 3. [2 valores] Seja R a relação de equivalência em $A=\{1,3,4,8,10,13\}$ definida por x R y se x-y é múltiplo de 3.
- (a) $[1]_R = \frac{\{1, 4, 10, 13\}}{}$
- (b) $A/R = {\begin{cases} \{1,4,10,13\}, \\ \{3\}, \{3\} \end{cases}}$
- 4. [3 valores] Considere o grafo G = (V, E) representado por

(a) Indique um caminho elementar de a para d de comprimento 7.

(b) Indique um caminho simples de a a d que não seja elementar.

(c) Indique um ciclo com vértice inicial g.

111.

Responda às questões deste grupo justificando convenientemente as suas respostas.

1. [2 valores] Mostre que $(2^n)^2 - 1$ é um múltiplo de 3 para todo $n \in \mathbb{N}$.

I. Se M=1,
$$(2^{m})^{2}-1 = 2^{2}-1 = 3$$
.
Como 3 é múltiple de 3, $\mathcal{P}(1)$ é radadirs.

II. Sija MEIN tal que
$$P(m)$$
 i verdadirs, i.e.,
$$(2^m)^2 - 1 = 3\pi \quad \text{para algum } n \in IN. \quad (H.I).$$

Queremos mostrar que

Timos

$$(2^{m+1})^{2} - 1 = 2^{2m+2} - 1 = 2^{2m} \times 2^{2} - 1$$

$$= 4 \times 2^{2m} - 1$$

$$= 4 \times (3\lambda + 1) - 1 = 12\lambda + 3$$

$$= 3 \times (4\lambda + 1)$$

$$(2^{m})^{2} - 1 = 3\lambda$$

$$= 3 \times (4\lambda + 1)$$

$$= 3 \times (4\lambda + 1)$$

Logo, 22m=31+1

Portanto, P(n+1) é rudodirs.

Por I. II, ple Principio de l'uducisse em IN, Pins i radedira pue todo MEIN

2. [2 valores] Considere o conjunto $A = \{1, 2, 3, 4\}$. Seja R a menor relação de ordem parcial em A tal que $(1, 3), (3, 2), (3, 4) \in R$. Determine R.

Se Ré uma relação de ordem porcial então R tim de ser reflexiva, antimimétrice e transitiva.

Pare que l'seja reflexiva, tenso de ter (1,1), (2,2), (3,3), (4,4) ER.
Pelo emmeiado, temos de ter (1,3), (3,2), (3,4) ER

Como $(1,3) \in \mathbb{R}$ e $(3,2) \in \mathbb{R}$, $(1,2) \in \mathbb{R}$. pare que \mathbb{R} reje tronsitiva, e necessório ter $(1,2) \in \mathbb{R}$. $(1,3) \in \mathbb{R}$ e $(3,4) \in \mathbb{R}$, $(1,3) \in \mathbb{R}$ e $(3,4) \in \mathbb{R}$, $(1,3) \in \mathbb{R}$ e $(1,3) \in \mathbb{R}$ e $(3,4) \in \mathbb{R}$, (1,3) , (3,2) , (3,4) , (1,2) , (1,4), (1,4) , (1,4), (1,4) , (1,4) , (1,4), (1,4) , (1,4) , (1,4), (1,4) , (1,4) , (1,4), (1,4) , (1,4) , (1,4) , (1,4), (1,4) , (1,4) , (1,4) , (1,4), (1,4) , (1,4) , (1,4) , (1,4), (1,4) , (1,4) , (1,4) , (1,4), (1,4) , (1,4) , (1,4) , (1,4) , (1,4), (1,4) , (1,4) , (1,4) , (1,4) , (1,4), (1,4) , (1,4) , (1,4) , (1,4) , (1,4), (1,4) , (1,4) , (1,4) , (1,4) , (1,4), (1,4) , (1,4) , (1,4) , (1,4) , (1,4), (1,4) , (1,4) , (1,4) , (1,4) , (1,4), (1,4) , (1,4) , (1,4) , (1,4) , (1,4), (1,4) , (1,4) , (1,4) , (1,4) , (1,4), (1,4) , (1,4) , (1,4) , (1,4) , (1,4), (1,4) , (1,4) , (1,4) , (1,4) , (1,4), (1,4) , (1,4) , (1,4) , (1,4) , (1,4) , (1,4), (1,4) , (1,4) , (1,4) , (1,4) , (1,4) , (1,4), (1,4) , (1,4) , (1,4) , (1,4) , (1,4) , (1,4), (1,4) , (1,4) , (1,4) , (1,4) , (1,4), (1,4) , (1,4

Tomando R= {(1,1), (2,2), (3,3), (4,4), (1,3), (3,2), (3,4), (4,2), (1))},
timos que R é reflexira, antissimitaica (se a + b = (0,b) \in R, enteré (4,0) \delta R,
e transition (ROR=R).

3. [2 valores] Considere o grafo do exercício 4 do grupo II. Mostre que G é bipartido.

Syonn X = { a, c, e, g} &
Y = { b, d, b, h}. Temos que
{x, y} i vms particus dos conjunto
dos verticos de G e menhum vertice de
X i adjacente a outro vertice de X,
porsando - no mesomo para os verticos
de Y. A seguinte representação de
6 mostre que G é bijantido;

