Sistem Persamaan Linier

Prajanto Wahyu Adi

prajanto@live.undip.ac.id +689 6263 57775

Sistem Persamaan Linier dan Non-Linier

- SPL adalah sistem persamaan di mana semua persamaan berbentuk linier, yaitu: $a_1x_1+a_2x_2+\cdots+a_nx_n=b$
 - Contoh:

$$2x + 3y = 12$$
$$x - y = 1$$

- SPNL terdiri dari satu atau lebih persamaan non linier:
 - Contoh:

$$x^2 + y = 11 2^x - y^2 = 12$$

Solusinya lebih kompleks dan sering memerlukan metode iteratif

Metode Titik Tetap

- Metode iterasi sederhana / langsung / substitusi
- Digunakan untuk menyelesaikan SPNL
- Menyelesaikan persamaan tunggal:

$$x = g(x)$$

Langkah iteratif

$$x_{n+1} = g(x)$$

– Konvergen jika $|g'(x)| < \varepsilon$

Metode Jacobi

Setiap variabel diisolasi dari tiap persamaan

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j^{(k)} \right)$$

- setiap x_i dihitung dari nilai itersi sebelumnya
- dimana:
 - a_{ii} adalah elemen diagonal utama dari matrix koefisien
 - a_{ij} adalah elemen matrix koefisien, pada baris i dan kolom j
 - b_i adalah elemen konstanta hasil
 - *k* adalah indeks iterasi

Metode Gauss-Seidel

• Mirip dengan metode Jacobi, namun langsung menggunakan hasil $x^{(k+1)}$

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j < i} a_{ij} x_j^{(k+1)} - \sum_{j > i} a_{ij} x_j^{(k)} \right)$$

- setiap x_i dihitung dari nilai itersi sebelumnya
- dimana:
 - a_{ii} adalah elemen diagonal utama dari matrix koefisien
 - a_{ij} adalah elemen matrix koefisien, pada baris i dan kolom j
 - b_i adalah elemen konstanta hasil
 - k adalah indeks iterasi
- Lebih cepat konvergen

Metode Relaksasi / SOR (Successive Over-Relaxation)

• Variasi dari Gauss-Seidel dengan faktor relaksasi $\omega \in (0,2)$

$$x_i^{(k+1)} = (1 - \omega)x_i^{(k)} + \omega \cdot [Persamaan GS]$$

- Jika:
 - $\omega = 1$, sama dengan Gauss Seidel
 - $\omega > 1$, over relaksasi \rightarrow konvergensi cepat
 - $\omega < 1$, under relaksasi \rightarrow konvergensi stabil

Selesaikan SPL berikut:

$$2x + 3y = 12 (1)$$

$$x - y = 1 \tag{2}$$

Dengan metode:

- a) Titik langsung
- b) Jacobi
- c) Gauss-Seidel

Nilai toleransi = 0.1

a) Substitusi/eliminasi:

$$2x + 3y = 12 \tag{1}$$

$$x - y = 1 \tag{2}$$

Substitusi persamaan kedua ke persamaan pertama

$$x = y + 1$$

$$2(y+1) + 3y = 12$$
$$2y + 2 + 3y = 12$$
$$5y = 10$$
$$y = 2$$

$$x = y + 1$$
$$x = 3$$

b) Jacobi:

$$2x + 3y = 12 (1)$$

$$x - y = 1 \tag{2}$$

Ubah bentuk persamaan

$$x = y + 1$$
$$y = \frac{12 - 2x}{3}$$

- Inisiasi:
 - $x^{(0)} = 0$
 - $y^{(0)} = 0$

b) Jacobi:

$$x = y + 1$$
$$y = \frac{12 - 2x}{3}$$

- Iterasi 1

$$x^{(1)} = y^{(0)} + 1 = 0 + 1 = 1$$
$$y^{(1)} = \frac{1}{3} (12 - 2 \cdot x^{(0)}) = \frac{1}{3} (12 - 2 \cdot 0) = 4$$

– Iterasi 2

$$x^{(2)} = y^{(1)} + 1 = 4 + 1 = 5$$
$$y^{(2)} = \frac{1}{3} (12 - 2 \cdot x^{(1)}) = \frac{1}{3} (12 - 2 \cdot 1) = 3.33$$

b) Jacobi:

$$x = y + 1$$
$$y = \frac{12 - 2x}{3}$$

Iterasi 3

$$x^{(3)} = y^{(2)} + 1 = 3.33 + 1 = 4.33$$
$$y^{(3)} = \frac{1}{3} (12 - 2 \cdot x^{(2)}) = \frac{1}{3} (12 - 2 \cdot 5) = 0.67$$

Iterasi berikutnya, teruskan hingga konvergen, misal toleransi < 0.1

b) Jacobi:

Iterasi	х	У
0	0	0
1	1	4
2	5	3.333333
3	4.333333	0.666667
4	1.666667	1.111111
5	2.111111	2.888889
6	3.888889	2.592593
7	3.592593	1.407407
8	2.407407	1.604938
9	2.604938	2.395062
10	3.395062	2.263374

Iterasi	х	У
11	3.263374	1.736626
12	2.736626	1.824417
13	2.824417	2.175583
14	3.175583	2.117055
15	3.117055	1.882945
16	2.882945	1.921963
17	2.921963	2.078037
18	3.078037	2.052025
19	3.052025	1.947975
20	2.947975	1.965317
21	2.965317	2.034683

c) Gauss-Seidel:

$$2x + 3y = 12 (1)$$

$$x - y = 1 \tag{2}$$

Ubah bentuk persamaan

$$x = y + 1$$
$$y = \frac{12 - 2x}{3}$$

- Inisiasi:
 - $x^{(0)} = 0$
 - $y^{(0)} = 0$

c) Gauss-Seidel:

$$x = y + 1$$
$$y = \frac{12 - 2x}{3}$$

- Iterasi 1

$$x^{(1)} = y^{(0)} + 1 = 0 + 1 = 1$$

$$y^{(1)} = \frac{1}{3} (12 - 2 \cdot x^{(1)}) = \frac{1}{3} (12 - 2 \cdot 1) = 3.33$$

– Iterasi 2

$$x^{(2)} = y^{(1)} + 1 = 3.33 + 1 = 4.33$$
$$y^{(2)} = \frac{1}{3} (12 - 2 \cdot x^{(2)}) = \frac{1}{3} (12 - 2 \cdot 4.33) = 1.11$$

c) Gauss-Seidel:

$$x = y + 1$$
$$y = \frac{12 - 2x}{3}$$

Iterasi 3

$$x^{(3)} = y^{(2)} + 1 = 1.11 + 1 = 2.11$$
$$y^{(3)} = \frac{1}{3} (12 - 2 \cdot x^{(3)}) = \frac{1}{3} (12 - 2 \cdot 2.11) = 2.59$$

- Iterasi berikutnya, teruskan hingga konvergen, misal toleransi < 0.1

c) Gauss-Seidel:

Iterasi	X	у
0	0	0
1	1	3.333333
2	4.333333	1.111111
3	2.111111	2.592593
4	3.592593	1.604938
5	2.604938	2.263374
6	3.263374	1.824417
7	2.824417	2.117055
8	3.117055	1.921963
9	2.921963	2.052025
10	3.052025	1.965317

Konvergensi

- Tahapan merubah (menyusun ulang) persamaan sangat penting dalam metode Jacobi dan Gauss-Seidel.
 - Jika tepat → konvergensi
 - Jika tidak tepat → divergensi
- Tips
 - Susun variabel utama berada diruas kiri
 - Koefisien $a_{ii} \neq 0$ dan dominan

Konvergensi

Syarat konvergensi umum

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|$$

- Jika tidak terpenuhi:
 - Fluktiatif
 - Tidak konvergen
 - Lambat
- Solusi:
 - Pivoting
 - Gunakan metode lain, terutama metode berbasis relaksasi

Implementasi (Jacobi)

```
Input: Matriks A, vektor b, tebakan awal x, toleransi ε, maksimum iterasi N
Output: Solusi x (aproksimasi)
1) Let x old = x
2) for k = 1 until N:
     a) for i = 1 until n:
          sum = 0
          for j = 1 until n, j \neq i:
                sum = sum + A[i][j] * x_old[j]
          x_new[i] = (b[i] - sum) / A[i][i]
     b) if ||x_new - x_old|| < \epsilon:
          return x new
     c) x \text{ old} = x \text{ new}
3) return x new (hasil akhir setelah N iterasi)
```

Implementasi (Gauss-Seidel)

```
Input: Matriks A, vektor b, tebakan awal x, toleransi ε, maksimum iterasi N
Output: Solusi x (aproksimasi)
1) for k = 1 to N:
    a) Buat x_old = salin(x)
    b) Untuk i = 1 hingga n:
         sum1 = 0
         sum2 = 0
         for j = 1 to i - 1:
              for j = i + 1 hingga n:
              sum2 = sum2 + A[i][j] * x old[j] \leftarrow pakai nilai lama
         x[i] = (b[i] - sum1 - sum2) / A[i][i]
    c) Jika ||x - x \text{ old}|| < \epsilon:
         return x
2) Return x (hasil akhir setelah N iterasi)
```

Tugas

- Bentuk kelompok maksimal 3 orang
- Tentukan sebuah kasus implementasi SPL
 - Contoh kasus Load Balancing pada jaringan komputer:

Sebuah sistem cloud terdiri dari dua server utama: Server A dan Server B, yang bekerja secara paralel untuk menangani permintaan pengguna dari dua aplikasi besar, App1 dan App2

- Untuk App1, beban kerja didominasi oleh Server A, dengan rasio alokasi 10:1 terhadap Server B. Total beban App1 adalah 27 unit.
- Untuk App2, beban kerja didominasi oleh Server B, dengan rasio alokasi 1:10 terhadap Server A. Total beban App2 adalah 29
 unit

Tentukan beban ideal pada setiap Unit!

Misal:

- -x = beban kerja (unit) yang ditangani Server A
- -y = beban kerja (unit) yang ditangani Server B

Maka SPL nya adalah:

$$10x + y = 27$$
$$x + 10y = 29$$

- Implementasikan kasus tersebut pada sebuah Bahasa pemrograman. Gunakan metode Relaksasi untuk menyelesaikan kasus tersebut. Gunakan nilai ω yang berbeda dan jelaskan dampaknya terhadap solusi yang dihasilkan!
- Tuliskan laporan lalu kirim ke Kulon sebelum pertemuan berikutnya!
- Presentasikan hasil pekerjaan Anda pada pertemuan berikutnya!

Sekian

TERIMAKASIH