1

Oxidación reducción

• Estequiometría redox

- 1. 100 g de NaBr se tratan con ácido nítrico concentrado de densidad 1,39 g/cm³ y riqueza 70 % en masa, hasta reacción completa. Sabiendo que los productos de la reacción son Br₂, NO₂, NaNO₃ y agua:
 - a) Ajusta las semirreacciones que tienen lugar por el método del ion-electrón, la ecuación iónica y la molecular.
 - b) Calcula el volumen de ácido nítrico consumido.

Datos: $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

(A.B.A.U. extr. 19)

 $\textbf{Rta.:} \ \ a) \ 2 \ Br^{\text{-}}(aq) \ + \ 2 \ NO_{3}^{\text{-}}(aq) \ + \ 4 \ H^{\text{+}}(aq) \\ \longrightarrow \ Br_{2}(l) + \ 2 \ NO_{2}(g) \ + \ 2 \ H_{2}O(l);$

 $2 \text{ NaBr}(aq) + 4 \text{ HNO}_3(aq) \longrightarrow \text{Br}_2(l) + 2 \text{ NO}_2(g) + 2 \text{ NaNO}_3(aq) + 2 \text{ H}_2O(l); b) V = 126 \text{ cm}^3 \text{ HNO}_3.$

Datos Cifras significativas: 3

Masa de bromuro de sodio $m({\rm NaBr}) = 100~{\rm g}$ Disolución de ácido nítrico: densidad $\rho = 1{,}39~{\rm g/cm^3}$

riqueza r = 70,0 %

Masa molar del bromuro de sodio M(NaBr) = 103 g/molMasa molar del ácido nítrico $M(HNO_3) = 63.0 \text{ g/mol}$

Incógnitas

Volumen de disolución de HNO₃ que reacciona

V

Solución:

a) Se escriben las semirreacciones iónicas:

Oxidación: $2 \text{ Br}^- - 2 \text{ e}^- \rightarrow \text{Br}_2$

Reducción: $(NO_3)^- + 2 H^+ + e^- \rightarrow NO_2 + H_2O$

Se obtiene la ecuación iónica ajustada multiplicando la segunda semirreacción por 2 y sumando:

$$2 Br^{-} + 2 (NO_3)^{-} + 4 H^{+} \rightarrow Br_2 + 2 NO_2 + 2 H_2O$$

Para obtener la ecuación global, se suma a cada lado $2 \text{ Na}^+ \text{ y } 2 (\text{NO}_3)^-$, y se combinan los iones para formar los compuestos:

$$2 \text{ NaBr(aq)} + 4 \text{ HNO}_3(\text{aq}) \rightarrow \text{Br}_2(\text{l}) + 2 \text{ NO}_2(\text{g}) + 2 \text{ NaNO}_3(\text{aq}) + 2 \text{ H}_2\text{O(l)}$$

b) Se calcula la cantidad de bromuro de sodio que hay en 100 g:

$$n=100$$
 g NaBr $\frac{1 \text{ mol NaBr}}{103 \text{ g NaBr}} = 0,972 \text{ mol NaBr}$

Se calcula la cantidad de ácido nítrico necesaria para reaccionar con esa cantidad de bromuro de sodio, mirando la ecuación ajustada de la reacción:

$$n'=0,972 \text{ mol NaBr} \frac{4 \text{ mol HNO}_3}{2 \text{ mol NaBr}} = 1,94 \text{ mol HNO}_3$$

Se calcula el volumen de disolución ácido nítrico del 70 % y densidad 1,39 g/cm³ que contiene esa cantidad:

$$V=1,94 \text{ mol HNO}_3 = \frac{63.0 \text{ g HNO}_3}{1 \text{ mol HNO}_3} = \frac{100 \text{ g D HNO}_3}{70.0 \text{ g HNO}_3} = \frac{1 \text{ cm}^3 \text{ D HNO}_3}{1,39 \text{ g D HNO}_3} = 126 \text{ cm}^3 \text{ D HNO}_3$$

La mayor parte de las respuestas puede calcularse con la hoja de cálculo <u>Quimica (es)</u>
Las instrucciones para lo manejo de esta hoja de cálculo pueden verse en el enlace <u>instrucciones</u>.
Para ir a la hoja donde resolver un problema de reacciones redox, puede elegir una de estas opciones:

- Vaya al índice, buscando el enlace Indice en la zona superior derecha y pulsando la tecla [Ctrl] mientras presiona sobre <u>Indice</u>. En el índice, pulse la tecla [Ctrl] mientras presiona sobre a celda <u>Reacciones redox</u> de **Oxidación reducción**.

Escriba las fórmulas químicas en las celdas de color blanco con borde verde y los datos en las celdas de color blanco con borde azul. Pulse en las celdas de color naranja para elegir entre las opciones que se presentan.

DATOS:

		Reactivos —	→	Produ	ıctos	
NaBr	HNO₃		Br_{2}	NO ₂	NaNO ₃	H ₂ O
Calcular:	volu	men disolución	HNO ₃	$[HNO_3] =$	70	% masa
			'	 Densidad	1,39	g/cm³
necesarios	para reacc	ionar con		•		
	100 g		NaBr			
RESULTADOS	:	'				
Ajuste ion	-electrón					
Oxidación	$2~\mathrm{Br}^{\scriptscriptstyle{-}}$		- 2 e^- →	Br_2		×1
Reducción	$(NO_3)^-$	+ 2 H ⁺	$+ e^- \rightarrow$	NO_2	+ H ₂ O	×2
	2 Br ⁻	+ 2 (NO ₃) ⁻	+ 4 H ⁺ →	Br ₂	+ 2 NO ₂	+ 2 H ₂ O
Ecuación a	ijustada:					
2 NaBr + 4	$HNO_3 \rightarrow Br_2$	+ 2 NO ₂ + 2 NaN	$O_3 + 2 H_2O$			
n(NaB	r) = (),972 mol		$n(HNO_3) =$	1,94	1 mol
				$V(HNO_3) =$	126	6 cm³ (D)

Electrolisis

- 1. Durante el electrolisis del cloruro de magnesio fundido:
 - a) ¿Cuántos gramos de Mg se producen cuándo pasan 8,80·10³ culombios a través de la célula?
 - b) ¿Cuánto tiempo se tarda en depositar 0,500 gramos de Mg con una corriente de 25,0 amperios?
 - c) ¿Cuántos litros de cloro se obtendrán en el punto (b) a una presión de 1,23 atm y a una temperatura de 27 $^{\circ}$ C.
 - d) Escribe los procesos electrolíticos que ocurren en el ánodo y en el cátodo.

(P.A.U. sep. 00)

Rta.: a)
$$m = 1{,}11$$
 g de Mg; b) $t = 159$ s; c) $V = 0{,}412$ dm³;
d) ánodo: 2 Cl⁻ \rightarrow Cl₂ + 2 e⁻; cátodo: Mg²⁺ + 2 e⁻ \rightarrow Mg.

Datos Cifras significativas: 3 $Q = 8.80 \times 10^3 \text{ C}$ Carga eléctrica que atraviesa la celda (apdo. a) Masa de magnesio depositada (apdo. b) m(Mg) = 0.500 gIntensidad que atraviesa la celda (apdo. b) I = 25.0 AGas cloro: p = 1,23 atmpresión temperatura $T = 27 \, ^{\circ}\text{C} = 300 \, \text{K}$ Constante de los gases ideales $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ Masa atómica del magnesio M(Mg) = 24.3 g/mol

Incógnitas

Masa de magnesio depositada cuando pasan $8,80 \times 10^3$ C m(Mg)

Tiempo que se tarda en depositar 0,500 g de Mg

Volumen de gas cloro desprendido V

Otros símbolos

Cantidad de sustancia (número de moles)

Solución:

a) Se calcula la cantidad de electrones equivalente a la carga de 8,80×10³ C:

$$n(e) = 8,80 \cdot 10^{3} \text{ C} \frac{1 \text{ mol e}}{9,65 \cdot 10^{4} \text{ C}} = 0,912 \text{ mol e}$$

La reacción en el cátodo es:

$$Mg^{2+} + 2 e^{-} \longrightarrow Mg$$

n

Se calcula la masa de magnesio depositada, mirando la ecuación ajustada de la reacción:

$$m(Mg) = 0.0912 \text{ mol e } \frac{1 \text{ mol Mg}}{2 \text{ mol e}} \frac{24.3 \text{ g Mg}}{1.00 \text{ mol Mg}} = 1.11 \text{ g Mg}$$

b) Se calcula la cantidad de magnesio que hay en 0,500 g

$$n(Mg)=0,500 \text{ g Mg} \frac{1,00 \text{ mol Mg}}{24,3 \text{ g Mg}}=0,0206 \text{ mol Mg}$$

Se calcula la cantidad de electrones necesaria para que se deposite todo el magnesio, mirando la ecuación ajustada de la reacción:

$$n(e)=0,0206 \text{ mol Mg} \frac{2 \text{ mol e}}{1 \text{ mol Mg}}=0,0412 \text{ mol e}$$

Se calcula la carga eléctrica equivalente:

$$Q = 0.041 \text{ 2mol e} \cdot \frac{9.65 \cdot 10^4 \text{ C}}{1 \text{ mol e}} = 3.98 \cdot 10^3 \text{ C}$$

Se calcula el tiempo con la expresión de la intensidad:

$$I = \frac{Q}{t}$$
 $\Rightarrow t = \frac{Q}{I} = \frac{3.98 \cdot 10^3 \text{ C}}{25 \text{ A}} = 159 \text{ s}$

c) La reacción de electrolisis es:

$$MgCl_2 \rightarrow Mg(s) + Cl_2(g)$$

Se calcula la cantidad de cloro, mirando la ecuación ajustada de la reacción:

$$n(Cl_2) = n(Mg) = 0.0206 \text{ mol } Cl_2$$

Se calcula el volumen de cloro, medido a 1,23 atm y 27 °C, suponiendo comportamiento ideal para el gas:

$$V = \frac{n \cdot R \cdot T}{p} = \frac{0,0206 \text{ mol } \text{Cl}_2 \cdot 0,0820 \text{ atm} \cdot \text{dm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 300 \text{ K}}{1,23 \text{ atm}} = 0,412 \text{ dm}^3 = 412 \text{ cm}^3 \text{ Cl}_2$$

d) La reacción en el ánodo es la de oxidación: $2 \text{ Cl}^- \to \text{Cl}_2 + 2 \text{ e}^-$ La reacción en el cátodo es la de reducción: $Mg^{2+} + 2 \text{ e}^- \to Mg$

La mayor parte de las respuestas puede calcularse con la hoja de cálculo <u>Quimica (es)</u>
Las instrucciones para lo manejo de esta hoja de cálculo pueden verse en el enlace <u>instrucciones</u>.
Para ir a la hoja donde resolver un problema de electrolisis, puede elegir una de estas opciones:

• Busque la pestaña ☐ Electrolisis en la zona inferior. Si no está a la vista, pulse varias veces en el icono ▶ de la pestaña ☐ ◀ ◀ ▶ ▶ ☐, situada en la zona inferior izquierda, hasta que aparezca por la derecha la pestaña ☐ Electrolisis. Luego Pulse sobre esa pestaña.

• Vaya al índice, buscando el enlace Indice en la zona superior derecha y pulsando la tecla [Ctrl] mientras presiona sobre <u>Indice</u>. En el índice, pulse la tecla [Ctrl] mientras presiona sobre a celda <u>Electrolisis</u> de **Oxidación reducción**.

Escriba las fórmulas químicas en las celdas de color blanco con borde verde y los datos en las celdas de color blanco con borde azul. Pulse en las celdas de color naranja para elegir entre las opciones que se presentan.

DATOS:

Cuestiones y problemas de las <u>Pruebas de evaluación de Bachillerato para el acceso a la Universidad</u> (A.B.A.U. y P.A.U.) en Galicia.

Respuestas y composición de Alfonso J. Barbadillo Marán.

Algunos cálculos se hicieron con una hoja de cálculo de LibreOffice del mismo autor.

Algunas ecuaciones y las fórmulas orgánicas se construyeron con la extensión <u>CLC09</u> de Charles Lalanne-Cassou. La traducción al/desde el gallego se realizó con la ayuda de *traducindote*, y del traductor de la CIXUG.

Se procuró seguir las <u>recomendaciones</u> del Centro Español de Metrología (CEM). Se consultó al Copilot de Microsoft Edge y se tuvieron en cuenta algunas de sus respuestas en las cuestiones.

Actualizado: 30/09/24

Sumario

											•		
\boldsymbol{c}	XI	\mathbf{n}	1 C	'TC	TA	D	\mathbf{r}	AT 1	\mathbf{r}	\sim t	n	N	Г

1. 100 g de NaBr se tratan con ácido nítrico concentrado de densidad 1,39 g/cm³ y riqueza 70 % en masa, hasta reacción completa. Sabiendo que los productos de la reacción son Br ₂ , NO ₂ , NaNO ₃ y
agua:
a) Ajusta las semirreacciones que tienen lugar por el método del ion-electrón, la ecuación iónica y la molecular
b) Calcula el volumen de ácido nítrico consumido
Electrolisis
1. Durante el electrolisis del cloruro de magnesio fundido:2
a) ¿Cuántos gramos de Mg se producen cuándo pasan 8,80·10³ culombios a través de la célula?
b) ¿Cuánto tiempo se tarda en depositar 0,500 gramos de Mg con una corriente de 25,0 amperios?
c) ¿Cuántos litros de cloro se obtendrán en el punto (b) a una presión de 1,23 atm y a una temperatura de 27 °C
d) Escribe los procesos electrolíticos que ocurren en el ánodo y en el cátodo