Université François Rabelais de Tours Département de Mathématiques

Td 6: Produit vectoriel

Algèbre Semestre 4, 2022

On se place dans l'espace $E = \mathbb{R}^3$ muni du produit scalaire et de l'orientation usuels.

Exercice 1. Soient $u = 2e_1 - 3e_2 - e_3$ et $v = e_1 + 4e_2 - 2e_3$.

- 1. Calculer le produit scalaire $u \wedge v$ et vérifier que $u \wedge v$ est orthogonal à u et v.
- 2. Calculer $v \wedge u$ et $(u+v) \wedge (u-v)$.

Exercice 2. Soient $u, v, w \in \mathbb{R}^3$.

- 1. Montrer que $u \wedge (v \wedge w) = \langle u, w \rangle v \langle u, v \rangle w$. (Indication : Après avoir éliminé certains cas triviaux et à l'aide de l'algorithme de Gram-Schmidt, on trouvera une base (f_1, f_2, f_3) de \mathbb{R}^3 dans laquelle $u = a_1 f_1$, $v = b_1 f_1 + b_2 f_2$ et $w = c_1 f_1 + c_2 f_2 + c_3 f_3$ pour certains scalaires $a_1, b_1, b_2, c_1, c_2, c_3$)
- 2. En déduire que

$$u \wedge (v \wedge w) + v \wedge (w \wedge u) + w \wedge (u \wedge v) = 0$$

Exercice 3. Soit $a \neq 0$ un vecteur de \mathbb{R}^3 . On considère l'application linéaire $f : \mathbb{R}^3 \to \mathbb{R}^3$ définie par

$$f(x) = x + a \wedge x$$

- 1. Calculer l'adjoint f^* de f.
- 2. Calculer le polynôme caractéristique de f (on pourra, pour cela, choisir une base plus adaptée que la base canonique).
- 3. Montrer que f est un endomorphisme normal.
- 4. f est-il diagonalisable?