8. Let f, g be strictly inchasing on $I \subseteq \mathbb{R}$ and $f(z) \supset g(z)$ Haci. If $g \in f(x) \cap g(x)$, show that $f^{-1}(y) \subset f^{-1}(y)$.

f: I - IR g: I - IR, otwickly monetale on I -D

so fil am gil Ana strictly monetare

Ana continuous on f(I) Am g(I), Respectively

y & f(Ing(I) = f' Any g' Are continuous at y

lim f > lim g > lim f - lim g

•		

12. Let f: [0,1] - 12 8E a continuous function that ones not take on any of its values twice and with flot & flot. Show that f is strictly incheasing as [0,1].

 $f:[0,1] \rightarrow \mathbb{R}$ north move an I:=[0,1] and notes not lake the any $x_1, x_2 \in \mathbb{I}$ \Rightarrow $x_1 \neq x_2 \Rightarrow$ must be strictly inches. Since the $x_1:=0$ and $x_2:=1$ strictly of $x_2:=0$ and $x_2:=1$ strictly decreasing $x_1:=0$ and $x_2:=1$ s