Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° semestre 2020

Ayudantía 15

12 de Mayo MAT1106 - Introducción al Cálculo

1) Muestre que si una sucesión converge a 0, entonces está acotada.

Demostración. Si x_n converge a 0, para todo $\varepsilon > 0$ existe un n_0 natural tal que para todo $n \ge n_0$ se cumple $|x_n| < \varepsilon$. Tomando $\varepsilon = 1$, existe un n_1 natural tal que para todo $n \ge n_1$ se cumple $|x_n| < 1$. Como los términos faltantes son finitos, por una ayudantía anterior tenemos lo pedido.

2) Muestre que $\sqrt{n+1} - \sqrt{n}$ converge a 0.

Demostración. Notemos que

$$\sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

Notar que $\frac{1}{\sqrt{n+1}+\sqrt{n}} < \frac{1}{2\sqrt{n}}$.

Sea $\varepsilon > 0$. Esto implica que $\varepsilon^{-1} > 0$. Como $\sqrt{n} \to \infty$, tenemos que existe un n_0 natural tal que para todo $n \ge n_0$ se cumple $\sqrt{n} > \varepsilon^{-1}$. Como $2\sqrt{n} > \sqrt{n}$ tenemos que $2\sqrt{n} > \varepsilon^{-1}$. Luego, tenemos $\frac{1}{2\sqrt{n}} < \varepsilon$ para todo $n \ge n_0$. Así, tenemos que

$$\left| \frac{1}{\sqrt{n+1} + \sqrt{n}} \right| = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{2\sqrt{n}} < \varepsilon$$

3) Muestre que $x_n = \frac{\sin(n)}{n}$ converge a 0.

1

Demostración. Sabemos que $|\sin(n)| \le 1$. Luego, tenemos que

$$|x_n| = \left| \frac{\sin(n)}{n} \right| \le \left| \frac{1}{n} \right|$$

Sea $\varepsilon > 0$. Como $n^{-1} \to 0$, tenemos que existe un n_0 tal que para todo $n \ge n_0$ se cumple $|n^{-1}| < \varepsilon$. Por transitivad tenemos que $|x_n| < \varepsilon$, por lo que $x_n \to 0$.

4) Sea $\{x_n\}_{n\in\mathbb{N}}$ una sucesión tal que $0 < x_n$ para todo n natural. Muestre que $x_n \to \infty \Leftrightarrow \frac{1}{x_n} \to 0$.

Demostración. Probaremos las dos implicancias:

 \Longrightarrow Sea $\varepsilon > 0$. Notar que $\varepsilon^{-1} > 0$. Como $x_n \to \infty$, existe un n_0 natural tal que para todo $n \ge n_0$, se cumple $x_n > \varepsilon^{-1}$. Como ambos términos son positivos, esto implica que $\frac{1}{x_n} < \varepsilon$. Como $\left| \frac{1}{x_n} \right| = \frac{1}{x_n}$, tenemos lo pedido.

Análogo al anterior.

5) Muestre que $x_n = 1 - \sum_{k=1}^n \frac{9}{10^k}$ converge a 0.

Demostración. Notar que

$$\sum_{k=1}^{n} \frac{1}{10^k} = 9 \sum_{k=1}^{n} \frac{9}{10^k} = 9 \left(\frac{\frac{1}{10^{n+1}} - \frac{1}{10}}{1 - \frac{1}{10}} \right) = 9 \left(\frac{\frac{1}{10^n} - 1}{9} \right) = \frac{1}{10^n} - 1.$$

Así, tenemos que

$$x_n = 1 - \sum_{k=1}^{n} \frac{1}{10^k} = 1 + \left(\frac{1}{10^n} - 1\right) = \frac{1}{10^n}$$

Como sabemos que $\frac{1}{10^n} \to 0$ cuando $n \to \infty$, tenemos lo pedido.