

Temporal Point Processes

Johanna Maria Sommer

Advisor: Marin Biloš

July 24th 2020

Overview

- 1. Introduction
- 2. Classical Models
- 3. Advanced Models
- 4. Related Research & Outlook

Introduction

tabular data image data graph data

1. Introduction - Motivation 4

Temporal event data

- discrete events in continuous time
- time is not an index, but a random variable

Figure from De, Upadhyay & Gomez-Rodriguez: Temporal Point Processes

1. Introduction - Motivation 5

Conditional Density Function

$$f(t_{i+1}|H_{t_i})$$
 probability of next event t_{i+1} occurring in the time interval $[t, t+dt)$

Conditional Intensity Function

$$\lambda(t | H_{t_i}) = \frac{f(t_i | H_{t_i})}{1 - F(t_i | H_{t_i})}$$

$$L = \left(\prod_{i=1}^{t} \lambda^*(t_i)\right) \cdot \exp(-\Lambda^*(T)) \quad \text{with} \quad \Lambda^*(t) = \int_0^t \lambda^*(s) \, ds$$

Conditional Density Function

$$f(t_{i+1}|H_{t_i})$$
 probability of next event t_{i+1} occurring in the time interval $[t, t+dt)$

Conditional Intensity Function

$$\lambda^*(t)$$
 rate at which events come in

Likelihood Function

$$L = \left(\prod_{i=1}^{t} \lambda^*(t_i)\right) \cdot \exp(-\Lambda^*(T)) \quad \text{with} \quad \Lambda^*(t) = \int_0^t \lambda^*(s) \, ds$$

Marked TPPs

- additional discrete markers that belong to a specific event in time $\lambda^*(t, \kappa) = \lambda^*(t) * f(\kappa, H_{t_{i-1}})$
- the domain of the marks is application dependent
- the history includes the timings as well as the markers

Classical Models

Homogeneous Poisson Process

$$\lambda_{\mu}^*(t) = \mu \ge 0$$

Inhomogeneous Poisson Process

$$\lambda_{\theta}^*(t) = g_{\theta}(t) \ge 0$$

Hawkes Process

self-exciting process

$$\lambda^*(t) = \lambda_0(t) + \sum_{t_i \in H_t} \phi(t - t_i)$$

Self-correcting Process

$$\lambda^*(t) = \exp(\mu t - \sum_{t_i \in H_t} \alpha)$$

What we have seen so far

Poisson Process

- memoryless
- intensity constant or evolving according to a function
- used when events are independent of each other

Hawkes/Self-exciting Process

- intensity increases when an event occurs and then continuously decays
- leads to a clustered pattern, used in e.g. seismology

Self-correcting Process

- intensity decreases when an event occurs and then continuously increases
- leads to regular events

Problems

- making assumptions about the models functional form, model misspecification
- hard to generally specify a process
- intractable integral

Advanced Models

RMTPP

Recurrent Marked Temporal Point Processes: Embedding Event History to Vector Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, Le Song | KDD 2016

- jointly model time and marker distribution
- history is encoded by hidden cell in a recurrent layer
- learning by backpropagation through the network

$$\lambda^*(t) = \exp\left(\boldsymbol{v}^{t^{\top}} * \boldsymbol{h}_j + w^t(t - t_j) + b^t\right)$$

16

Neural Hawkes

The Neural Hawkes Process: A Neurally Self-Modulating Multivariate Point Process

Hongyuan Mei, Jason Eisner | NeurIPS 2017

- intensity evolves according to continuous-time LSTM
- learning by backpropagation

FullyNN

Fully Neural Network based Model for General Temporal Point Processes

Takahiro Omi, Naonori Ueda, Kazuyuki Aihara | NeurIPS 2019

cumulative intensity function is the output of the network

- conditional intensity can be obtained by differentiation
- generalize RNN-approaches to represent intensity in a general functional form

DSFlow & LogNormMix

Intensity-Free Learning of Temporal Point Processes
Oleksandr Shchur, Marin Biloš, Stephan Günnemann | ICLR 2020

- model the conditional density function
- model probability distribution via Normalizing Flows or a mixture model

Discussion

- FullyNN yields consistently good results, but is outperformed by LogNormMix and DSFlow
- RMTPP and Neural Hawkes fall off, most likely due to their choice of functional form
- Missing: extensive complexity and runtime analysis

To model the intensity or not to model the intensity

Pro

- the conditional intensity provides some intuition and interpretability
- easier to specify because it has less constraints

Con

- with recurrent formulations, the intensity function is not intuitive anymore
- it seems the conditional density function is easier to learn

Related Research & Outlook

Related Research

- Problem: intractable integral in the likelihood function, MLE learning
 - learn integral by a set of parameters
 - Wasserstein GAN for conditional probability distribution modelling
 - Reinforcement learning for TPPs, learning the intensity = learning the policy
- Problem: interactions between events of different types, multivariate point processes
 - model mutual excitation between marks
 - exploit sparsity inherent in multivariate point processes to increase efficiency

Future Research

- Multivariate point processes
- Alternatives to RNNs, e.g. self-attention
- Intensity-free learning
- Reinforcement learning for TPPs

Idea

Idea

dataset

Thank you for your attention.

Temporal Point Processes: A Survey

Johanna Sommer