Thumb[®] 16 비트 명령어 세트 빠른 참조 카드

이 카드에서는 ARM 버전 6T2 이전의 Thumb 사용 가능 프로세서에서 사용할 수 있는 모든 Thumb 명령어의 목록을 제공합니다. 또한 Thumb-2 16비트 명령어 목록도 제공합니다. 이 카드에 표시된 명령어는 다른 설명이 없는 한 Thumb-2에서 모두 16비트입니다. 레지스터는 달리 지정된 경우를 제외하고 모두 Lo(R0-R7)입니다. Hi 레지스터는 R8-R15입니다.

표기 규칙 줄이					
§	ARM 아키텍처 버전 표 참조		<le><loreglist+lr></loreglist+lr></le>	쉼표로 구분되고 중괄호 { 및 }로 묶인 Lo 레지스터 목록 + LR	
<loreglist></loreglist>	쉼표로 구분되고 중괄호 { 및 }로 묶인 Lo 레지스터 목록		<loreglist+pc></loreglist+pc>	쉼표로 구분되고 중괄호 { 및 }로 묶인 Lo 레지스터 목록 + PC	

연산		§	어셈블러	업데이트	동작	메모
이동	즉치값		MOVS Rd, # <imm></imm>	N Z	Rd := imm	imm 범위 0 ~ 255
	Lo를 Lo로 이동		MOVS Rd, Rm	N Z	Rd := Rm	LSLS Rd, Rm, #0의 동의어
	Hi를 Lo에, Lo를 Hi에, Hi를 Hi에 더하기		MOV Rd, Rm		Rd := Rm	Lo를 Lo에 더하지 않음
	임의 값을 임의 값에 더하기	6	MOV Rd, Rm		Rd := Rm	임의 레지스터를 임의 레지스터에 더하기
더하기	즉치값 3		ADDS Rd, Rn, # <imm></imm>	N Z C V	Rd := Rn + imm	imm 범위 0 ~ 7
	모든 레지스터의 Lo		ADDS Rd, Rn, Rm	N Z C V	Rd := Rn + Rm	
	Hi를 Lo에, Lo를 Hi에, Hi를 Hi에 더하기		ADD Rd, Rd, Rm		Rd := Rd + Rm	Lo를 Lo에 더하지는 않음
	임의 값을 임의 값에 더하기	T2	ADD Rd, Rd, Rm		Rd := Rd + Rm	임의 레지스터를 임의 레지스터에 더하기
	즉치값 8		ADDS Rd, Rd, # <imm></imm>	N Z C V	Rd := Rd + imm	imm 범위 0 ~ 255
	carry 포함		ADCS Rd, Rd, Rm	N Z C V	Rd := Rd + Rm + C-bit	
	값을 SP에 더하기		ADD SP, SP, # <imm></imm>		SP := SP + imm	imm 범위 0 ~ 508(워드로 정렬)
	SP의 폼 주소		ADD Rd, SP, # <imm></imm>		Rd := SP + imm	imm 범위 0 ~ 1020(워드로 정렬)
	PC의 폼 주소		ADR Rd, <label></label>		Rd := label	label 범위 PC ~ PC+1020(워드로 정렬)
빼기	Lo 및 Lo		SUBS Rd, Rn, Rm	N Z C V	Rd := Rn - Rm	
	즉치값 3		SUBS Rd, Rn, # <imm></imm>	N Z C V	Rd := Rn - imm	imm 범위 0~7
	즉치값 8		SUBS Rd, Rd, # <imm></imm>	N Z C V	Rd := Rd - imm	imm 범위 0 ~ 255
	carry 포함		SBCS Rd, Rd, Rm	N Z C V	Rd := Rd - Rm - NOT C-bit	
	SP에서 값 빼기		SUB SP, SP, # <imm></imm>		SP := SP - imm	imm 범위 0 ~ 508(워드로 정렬)
	부정		RSBS Rd, Rn, #0	N Z C V		동의어: NEGS Rd, Rn
곱하기	곱하기		MULS Rd, Rm, Rd	N Z * *	Rd := Rm * Rd	* C 및 V 플래그는 4T에서 예상할 수 없으며, §5T 이상에서는 변경되지 않음
비교			CMP Rn, Rm		Rn – Rm에서 APSR 플래그 업데이트	Lo와 Lo, Lo와 Hi, Hi와 Lo, 또는 Hi와 Hi를 비교할 수 있음
	음수		CMN Rn, Rm		Rn + Rm에서 APSR 플래그 업데이트	
	즉치값		CMP Rn, # <imm></imm>		Rn – imm에서 APSR 플래그 업데이트	imm 범위 0 ~ 255
논리	AND		ANDS Rd, Rd, Rm	N Z	$Rd := Rd \ AND \ Rm$	
	배타적 OR		EORS Rd, Rd, Rm	N Z	Rd := Rd EOR Rm	
	OR		ORRS Rd, Rd, Rm	N Z	Rd := Rd OR Rm	
	비트 지우기		BICS Rd, Rd, Rm	N Z	$Rd := Rd \ AND \ NOT \ Rm$	
	이동하지 않음		MVNS Rd, Rd, Rm	N Z	Rd := NOT Rm	
	비트 테스트		TST Rn, Rm	N Z	Rn AND Rm에서 APSR 플래그 업데이트	
시프트/회전	왼쪽으로 논리 시프트		LSLS Rd, Rm, # <shift></shift>	N Z C*	$Rd := Rm \ll shift$	허용되는 시프트는 0에서 31 사이. 시프트가 0인 경우 * C 플래그는 영향 없음
			LSLS Rd, Rd, Rs	N Z C*	Rd := Rd << Rs[7:0]	Rs[7:0]이 0인 경우 * C 플래그는 영향 없음
	오른쪽으로 논리 시프트		LSRS Rd, Rm, # <shift></shift>	N Z C	Rd := Rm >> shift	허용되는 시프트는 1에서 32 사이
			LSRS Rd, Rd, Rs	N Z C*	Rd := Rd >> Rs[7:0]	Rs[7:0]이 0인 경우 * C 플래그는 영향 없음
	오른쪽으로 산술 시프트		ASRS Rd, Rm, # <shift></shift>	N Z C	Rd := Rm ASR shift	허용되는 시프트는 1에서 32 사이
			ASRS Rd, Rd, Rs	N Z C*	Rd := Rd ASR Rs[7:0]	Rs[7:0]이 0인 경우 * C 플래그는 영향 없음
1	오른쪽으로 회전		RORS Rd, Rd, Rs	N Z C*	Rd := Rd ROR Rs[7:0]	Rs[7:0]이 0인 경우 * C 플래그는 영향 없음

Thumb 16 비트 명령어 세트 빠른 참조 카드

연산		§	어셈불러	동작	메모	
로드	즉치 오프셋 포함, 워드		LDR Rd, [Rn, # <imm>]</imm>	Rd := [Rn + imm]	imm 범위 0 ~ 124, 4의 배수	
	하프워드		LDRH Rd, [Rn, # <imm>]</imm>	Rd := ZeroExtend([Rn + imm][15:0])	31:16비트 지우기. imm 범위 0 ~ 62, 짝수	
	바이트		LDRB Rd, [Rn, # <imm>]</imm>	Rd := ZeroExtend([Rn + imm][7:0])	31:8비트 지우기. imm 범위 0~31	
	레지스터 오프셋 포함, 워드		LDR Rd, [Rn, Rm]	Rd := [Rn + Rm]		
	하프워드		LDRH Rd, [Rn, Rm]	Rd := ZeroExtend([Rn + Rm][15:0])	31:16비트 지우기	
	부호 있는 하프워드		LDRSH Rd, [Rn, Rm]	Rd := SignExtend([Rn + Rm][15:0])	31:16비트를 15비트로 설정	
	바이트		LDRB Rd, [Rn, Rm]	Rd := ZeroExtend([Rn + Rm][7:0])	31:8비트 지우기	
	부호 있는 바이트		LDRSB Rd, [Rn, Rm]	Rd := SignExtend([Rn + Rm][7:0])	31:8비트를 7비트로 설정	
	PC 기준		LDR Rd, <label></label>	Rd := [label]	label 범위 PC ~ PC+1020(워드로 정렬)	
	SP 기준		LDR Rd, [SP, # <imm>]</imm>	Rd := [SP + imm]	imm 범위 0 ~ 1020, 4의 배수	
	다중 레지스터, 기본 레지스터 포함하 지 않음		LDM Rn!, <loreglist></loreglist>	레지스터 목록 로드(Rn 포함 안 함)	항상 기본 레지스터 업데이트, 이후 증가	
	다중 레지스터, 기본 레지스터 포함		LDM Rn, <loreglist></loreglist>	레지스터 목록 로드(Rn 포함)	기본 레지스터 업데이트 안 함, 이후 증가	
저장	즉치 오프셋 포함, 워드		STR Rd, [Rn, # <imm>]</imm>	[Rn + imm] := Rd	imm 범위 0 ~ 124, 4의 배수	
	하프워드		STRH Rd, [Rn, # <imm>]</imm>	[Rn + imm][15:0] := Rd[15:0]	Rd[31:16] 무시. imm 범위 0 ~ 62, 짝수	
	바이트		STRB Rd, [Rn, # <imm>]</imm>	[Rn + imm][7:0] := Rd[7:0]	Rd[31:8] 무시. imm 범위 0 ~ 31	
	레지스터 오프셋 포함, 워드		STR Rd, [Rn, Rm]	[Rn + Rm] := Rd		
	하프워드		STRH Rd, [Rn, Rm]	[Rn + Rm][15:0] := Rd[15:0]	Rd[31:16] 무시	
	바이트		STRB Rd, [Rn, Rm]	[Rn + Rm][7:0] := Rd[7:0]	Rd[31:8] 무시	
	SP 기준, 워드		STR Rd, [SP, # <imm>]</imm>	[SP + imm] := Rd	imm 범위 0 ~ 1020, 4의 배수	
	다중 레지스터		STM Rn!, <loreglist></loreglist>	레지스터 목록 저장	항상 기본 레지스터 업데이트, 이후 증가	
푸시	푸시		PUSH <loreglist></loreglist>	전체 내림차순 스택에 레지스터 푸시		
	링크 포함 푸시		PUSH <loreglist+lr></loreglist+lr>	전체 내림차순 스택에 LR 및 레지스터 푸시		
팝	팝		POP <loreglist></loreglist>	전체 내림차순 스택에서 레지스터 팝		
	팝 및 반환	4T	POP <loreglist+pc></loreglist+pc>	레지스터 팝, PC에 로드된 주소로 분기		
	전환 포함 팝 및 반환	5T	POP <loreglist+pc></loreglist+pc>	address[0] = 0인 경우 ARM에 대해 삭제, 분기 및 변경		
If-Then	If-Then	T2	IT{pattern} {cond}	pattern에 따라 다음과 같은 최대 네 개의 명령어 조건을 만듬. pattern은 최대 세 개의 문자로 구성된 문자열임. 각 문자는 T(Then)이거나 E(Else)일 수 있음	IT 다음의 첫 번째 명령어에는 cond 조건이 적용됨. 다음 명령어는 해당 문자가 T인 경우 cond 조건이 적용되고, 해당 문자가 E인 경우 cond의 반대 조건이 적용됨 조건 필드 표 참조	
분기	조건부 분기		B{cond} <label></label>	If {cond} then PC := label	label은 현재 명령어의 -252 ~ +258바이트 내에 있어야 함 조건 필드 표 참조	
	비교, 0인 경우(0이 아닌 경우) 분기	T2	CB{N}Z Rn, <label></label>	If Rn {== !=} 0 then PC := label	label은 현재 명령어의 +4 ~ +130바이트 내에 있어야 함	
	무조건 분기		B <label></label>	PC := label	label은 현재 명령어의 2KB 내에 있어야 함	
	링크 포함 긴 분기		BL <label></label>	LR := 다음 명령어의 주소, PC := label	32비트 명령어 label은 현재 명령어의 4MB(T2: 16MB) 내에 있어야 함(T2: 16MB)	
	분기 및 전환		BX Rm	$PC := Rm \ AND \ 0xFFFFFFE$	Rm[0] = 0인 경우 ARM 상태로 변경	
	링크 포함 분기 및 전환	5T	BLX <label></label>	LR := 다음 명령어의 주소, PC := label ARM으로 변경	32비트 명령어 label은 현재 명령어의 4MB(T2: 16MB) 내에 있어야 함(T2: 16MB)	
	링크 포함 분기 및 전환	5T	BLX Rm	LR := 다음 명령어의 주소, PC := Rm AND 0xFFFFFFE	Rm[0] = 0인 경우 ARM 상태로 변경	
확장	부호 있음, 하프워드를 워드로 확장	6	SXTH Rd, Rm	Rd[31:0] := SignExtend(Rm[15:0])		
	부호 있음, 바이트를 워드로 확장	6	SXTB Rd, Rm	Rd[31:0] := SignExtend(Rm[7:0])		
	부호 없음, 하프워드를 워드로 확장	6	UXTH Rd, Rm	Rd[31:0] := ZeroExtend(Rm[15:0])		
	부호 없음, 바이트를 워드로 확장	6	UXTB Rd, Rm	Rd[31:0] := ZeroExtend(Rm[7:0])		
반전	워드의 바이트	6	REV Rd, Rm	Rd[31:24] := Rm[7:0], Rd[23:16] := Rm[15:8], Rd[15:8] := Rm[23:16], Rd[7:0] := Rm[31:24]		
	두 하프워드의 바이트	6	REV16 Rd, Rm	Rd[15:8] := Rm[7:0], Rd[7:0] := Rm[15:8], Rd[31:24] := Rm[23:1	6], Rd[23:16] := Rm[31:24]	
	하위 하프워드의 바이트, 부호 확장	6	REVSH Rd, Rm	Rd[15:8] := Rm[7:0], Rd[7:0] := Rm[15:8], Rd[31:16] := Rm[7] *	&FFFF	

Thumb 16 비트 명령어 세트 빠른 참조 카드

연산		§	어셈블러	동작	메모
프로세서	관리자 호출		SVC <immed_8></immed_8>	관리자 호출 프로세서 예외	8비트 즉치값은 명령어에 인코딩됩니다. 이전 SWI
상태 변경	프로세서 상태 변경	6	CPSID <iflags></iflags>	지정된 인터럽트 사용 안 함	
E.S.		6	CPSIE <iflags></iflags>	지정된 인터럽트 사용	
	엔디안 설정	6	SETEND <endianness></endianness>	로드 및 저장에 대한 엔디안 설정	<endianness>는 BE(빅엔디안)거나 LE(리틀엔디안)일 수 있음</endianness>
	브레이크포인트	5T	BKPT <immed_8></immed_8>	프리페치 중단 또는디버그 상태 시작	8비트 즉치값은 명령어에 인코딩됨
연산 없음	연산 없음		NOP	없음. 시간이 전혀 소요되지 않을 수 있음	ARM v6K 이상에서 Real NOP를 사용할 수 있음
힌트	이벤트 설정	T2	SEV	다중 프로세서 시스템에서 이벤트 알림	Thumb-2에서 NOP 실행. ARM v7에서 기능을 사용할 수 있음
	이벤트 대기	T2	WFE	이벤트, IRQ, FIQ, 부정확한 중단 또는 디버그 시작 요청 대기	Thumb-2에서 NOP 실행. ARM v7에서 기능을 사용할 수 있음
	인터럽트 대기	T2	WFI	IRQ, FIQ, 부정확한 중단 또는 디버그 시작 요청 대기	Thumb-2에서 NOP 실행. ARM v7에서 기능을 사용할 수 있음
	양도	T2	YIELD	대체 스레드에 제어권 양도	Thumb-2에서 NOP 실행. ARM v7에서 기능을 사용할 수 있음

조건 필드		
니모닉	설명	
EQ	같음	
NE	같지 않음	
CS / HS	carry 설정/부호 없는 높거나 같음	
CC / LO	carry 지우기/부호 없는 낮음	
MI	음수	
PL	양수 또는 0	
VS	오버플로	
VC	오버플로 없음	
HI	부호 없는 높음	
LS	부호 없는 낮거나 같음	
GE	부호 있으면서 크거나 같음	
LT	부호 있으면서 보다 작음	
GT	부호 있으면서 보다 큼	
LE	부호 있으면서 작거나 같음	
AL	항상. B{cond}에서는 사용하지 않음	

ARMv6T2 이전의 프로세서를 위한 Thumb 코드에서 cond는 조건부 분기(B{cond}) 명령어에만 나타 나고 다른 곳에는 나타나지 않아야 합니다.

Thumb-2 코드에서 cond는 이러한 명령어의 어느 곳에나(CBZ, CBNZ, CPSID, CPSIE, IT 및 SETEND 제외)에 나타날수 있습니다. 이 조건은 위의 IT 명령어(B{cond}) 명령어 제외)에 인코딩됩니다. IT 명령어가 어셈블리 언어 소스 파일에 명시적으로 지정된 경우명령어의 조건은 해당 IT 명령어와 일치해야 합니다.

ARM 아키텍처 버전					
4T	ARM 버전 4 이상의 모든 Thumb 버전				
5T	ARM 버전 5 이상의 모든 Thumb 버전				
6	ARM 버전 6 이상의 모든 Thumb 버전				
T2	ARM 버전 6 이상의 모든 Thumb-2 버전				

소유권 고지 사항

이 소유권 고지 사항의 아랫부분에서 달리 명시되지 않는 한 [®] 또는 [™] 표시가 있는 단어와 로고는 EU, 대한민국 및 기타 국가에서 ARM Limited의 등록 상표 또는 상표입니다. 이 설명서에 언급된 기타 브랜드와 이름은 해당 소 유자의 상표일 수 있습니다.

이 설명서에 포함된 전체 또는 일부 정보나 설명된 제품은 해당 저작권 소유자의 사전 서면 승인 없이는 어떤 형 태로도 개조되거나 복제될 수 없습니다.

이 설명서에 설명된 제품은 지속적으로 개발 및 개선될 수 있습니다. 이 설명서에 포함된 모든 제품 명세와 해당 사용법은 ARM의 신뢰하에 제공됩니다. 그러나 ARM에서는 상품성 또는 특정 목적에의 적합성을 비롯하여 그 밖 의 묵시적이거나 명시적인 모든 보증을 부인합니다.

이 참조 카드는 제품 사용자를 지원하는 용도로만 만들어졌습니다. ARM Ltd는 이 설명서 정보의 사용, 정보의 오류나 누락 또는 제품의 잘못된 사용에 따른 어떠한 손실이나 손상도 책임지지 않습니다.

설명서 번호

ARM QRC 0006E

변경 내역

발행판	날짜	변경된 내용
A	2004년 11월	첫 번째 릴리스
В	2005년 5월	RVCT 2.2 SP1
C	2006년 3월	RVCT 3.0
D	2007년 3월	RVCT 3.1
M	2008년 9월	RVCT 4.0