CSC 2515: Introduction to Machine Learning Lecture 2: Decision Trees

Amir-massoud Farahmand¹

University of Toronto and Vector Institute

¹Credit for slides goes to many members of the ML Group at the U of T, and beyond, including (recent past): Roger Grosse, Murat Erdogdu, Richard Zemel, Juan Felipe Carrasquilla, Emad Andrews, and myself.

Table of Contents

Decision Trees

2 Basics of Information Theory

3 Back to Decision Trees

Today

• KNN: Good method with reasonable theoretical guarantees, but not very explainable.

Decision Trees

- ► Simple but powerful learning algorithm
- ▶ More explainable; somehow similar to how people make decisions
- One of the most widely used learning algorithms in Kaggle competitions
- ▶ Lets us introduce ensembles, a key idea in ML
- Useful Information Theoretic concepts (entropy, mutual information, etc.)

Skills to Learn:

- Basic concepts of information theory
- Decision trees

Intro ML (UofT) CSC2515-Lec2 3 / 41

- Decision trees make predictions by recursively splitting on different attributes according to a tree structure.
- Example: classifying fruit as an orange or lemon based on height and width

- For continuous attributes, split based on less than or greater than some threshold
- Thus, input space is divided into regions with boundaries parallel to axes
- The decision tree defines a function:

$$f(\mathbf{x}) = \sum_{i=1}^{r} w_i \mathbb{I}\{\mathbf{x} \in R_i\}$$

Intro ML (UofT) CSC2515-Lec2 6 / 41

Example with Discrete Inputs

• What if the attributes are discrete?

Example	Input Attributes									Goal	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = \mathit{Yes}$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	$y_2 = No$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	$y_3 = \textit{Yes}$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4 = \textit{Yes}$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	$y_6 = Yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	$y_7 = No$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	$y_8 = \textit{Yes}$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = \mathit{No}$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = \mathit{No}$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	$y_{11} = No$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12} = Yes$

1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
3.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range (\$, \$\$, \$\$\$).
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
10.	WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Attributes:

Decision Tree: Example with Discrete Inputs

• Possible tree to decide whether to wait (T) or not (F)

- Internal nodes test attributes
- Branching is determined by attribute value
- Leaf nodes are outputs (predictions)

Intro ML (UofT) CSC2515-Lec2 9 / 41

Expressiveness

- Discrete-input, discrete-output case:
 - ▶ Decision trees can express any function of the input attributes
 - ightharpoonup Example: For Boolean functions, the truth table row ightharpoonup path to leaf

- ▶ Q: What is the decision tree for AND and OR?
- Continuous-input, continuous-output case:
 - ► Can approximate any function arbitrarily closely

[Slide credit: S. Russell]

Intro ML (UofT) CSC2515-Lec2 10 / 41

Decision Tree: Classification and Regression

- Each path from root to a leaf defines a region R_m of input space
- Let $\{(\mathbf{x}^{(m_1)}, t^{(m_1)}), \dots, (\mathbf{x}^{(m_k)}, t^{(m_k)})\}$ be the training examples that fall into R_m

• Classification tree:

- discrete output, i.e., $y \in \{1, \dots, C\}$.
- ▶ leaf value y^m typically set to the most common value in $\{t^{(m_1)}, \ldots, t^{(m_k)}\}$, i.e.,

$$y^m \leftarrow \mathop{\mathrm{argmax}}_{t \in \{1, \dots, C\}} \sum_{m_i} \mathbb{I}\{t = t^{(m_i)}\}.$$

Decision Tree: Classification and Regression

- Each path from root to a leaf defines a region R_m of input space
- Let $\{(x^{(m_1)}, t^{(m_1)}), \dots, (x^{(m_k)}, t^{(m_k)})\}$ be the training examples that fall into R_m

• Regression tree:

- continuous output, i.e, $y \in \mathbb{R}$.
- ▶ leaf value y^m typically set to the mean value in $\{t^{(m_1)}, \dots, t^{(m_k)}\}$

Note: We will focus on classification.

How do we Learn a DecisionTree?

- How do we construct a useful decision tree?
- We want to find a "simple" tree that explains data well.
 - ▶ Simple: Minimal number of nodes
 - ▶ There should be enough samples per region

Learning Decision Trees

Learning the simplest (smallest) decision tree which correctly classifies training set is an NP complete problem (see Hyafil & Rivest'76).

- Resort to a greedy heuristic!
- Start with empty decision tree and complete training set
 - ▶ Split (i.e., partition dataset) on the "best" attribute.
 - ▶ Recurse on subpartitions
- When should we stop?
- Which attribute is the "best"?
 - ▶ We define a notion of gain of a split
 - Gain is defined based on change in some criteria before and after a split.
 - Various notions of gain

Learning Decision Trees

Which attribute is the "best"?

- Let us choose the accuracy (i.e., misclassification error L the number of incorrect classifications) as the criteria, and define the accuracy gain.
- Let us define accuracy gain:
 - ▶ Suppose that we have region R. Denote the loss of that region as L(R).
 - ▶ We split R to two regions R_1 and R_2 .
 - ▶ What is the accuracy of the split regions?

Intro ML (UofT) CSC2515-Lec2 15 / 41

Learning Decision Trees

- Misclassification loss before the split: L(R)
- Misclassification loss after the split:

$$\frac{|R_1|}{|R|}L(R_1) + \frac{|R_2|}{|R|}L(R_2)$$

• Accuracy gain is

$$L(R) - \frac{|R_1|L(R_1) + |R_2|L(R_2)}{|R|}$$

• Note: Different splits lead to different accuracy gains.

Choosing a Good Split

Accuracy is not always a good measure to decide the split. Why?

• Is this split good? Accuracy gain is

$$L(R) - \frac{|R_1|L(R_1) + |R_2|L(R_2)}{|R_1| + |R_2|} = \frac{49}{149} - \frac{50 \times 0 + 99 \times \frac{49}{99}}{149} = 0$$

• But we have reduced our uncertainty about whether a fruit is a lemon!

Intro ML (UofT) CSC2515-Lec2 17 / 41

Choosing a Good Split

- We can use uncertainty as the criteria, and use gain in the certainty (or gain in the reduction of uncertainty) to decide the split
- How can we quantify uncertainty in prediction for a given leaf node?
 - ► All examples in leaf have the same class: good (low uncertainty)
 - ► Each class has the same number of examples in leaf: bad (high uncertainty)
- Idea: Use counts at leaves to define probability distributions, and use information theory to measure uncertainty

Basics of Information Theory

Flipping Two Different Coins

Q: Which coin is more uncertain?

Quantifying Uncertainty

Entropy is a measure of expected "surprise": How uncertain are we of the value of a draw from this distribution?

$$H(X) = -\mathbb{E}_{X \sim p}[\log_2 p(X)] = -\sum_{x \in X} p(x)\log_2 p(x)$$

$$-\frac{8}{9}\log_2\frac{8}{9} - \frac{1}{9}\log_2\frac{1}{9} \approx \frac{1}{2} \qquad -\frac{4}{9}\log_2\frac{4}{9} - \frac{5}{9}\log_2\frac{5}{9} \approx 0.99$$

- Averages over information content of each observation
- Unit = **bits** (based on the base of logarithm)
- A fair coin flip has 1 bit of entropy Intro ML (UofT)

Entropy

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log_2 p(x)$$

- Q: What is the entropy of a uniform distribution over $\mathcal{X} = \{1, \dots, N\}$?
- Q: What is the entropy of a distribution concentrated on one of the outcomes (that is, p = (1, 0, 0, ..., 0))?
- Q: What is the distribution of a Bernoulli random variable with probability of 1 being p (and 1 p for 0)?

22 / 41

Intro ML (UofT) CSC2515-Lec2

Entropy

- "High Entropy":
 - ▶ Variable has a uniform-like distribution
 - ▶ Flat histogram
 - ▶ Values sampled from it are less predictable
- "Low Entropy"
 - Distribution of variable has peaks and valleys
 - ▶ Histogram has lows and highs
 - ▶ Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]

Entropy of a Joint Distribution

• Example: $\mathcal{X} = \{\text{Raining, Not raining}\}, \ \mathcal{Y} = \{\text{Cloudy, Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

$$\begin{split} H(X,Y) &= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log_2 p(x,y) \\ &= -\frac{24}{100} \log_2 \frac{24}{100} - \frac{1}{100} \log_2 \frac{1}{100} - \frac{25}{100} \log_2 \frac{25}{100} - \frac{50}{100} \log_2 \frac{50}{100} \\ &\approx 1.56 \mathrm{bits} \end{split}$$

Q: What weather condition has 2 bits of information?

Specific Conditional Entropy

• Example: $\mathcal{X} = \{\text{Raining, Not raining}\}, \mathcal{Y} = \{\text{Cloudy, Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• What is the entropy of cloudiness Y, given that it is raining?

$$H(Y|X = \text{raining}) = -\sum_{y \in \mathcal{Y}} p(y|\text{raining}) \log_2 p(y|\text{raining})$$
$$= -\frac{24}{25} \log_2 \frac{24}{25} - \frac{1}{25} \log_2 \frac{1}{25}$$
$$\approx 0.24 \text{bits}$$

• We used $p(y|x) = \frac{p(x,y)}{p(x)}$ and $p(x) = \sum_{y} p(x,y)$ (sum in a row)

Conditional Entropy

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• The expected conditional entropy:

$$H(Y|X) = \mathbb{E}_{X \sim p(x)}[H(Y|X)]$$

$$= \sum_{x \in \mathcal{X}} p(x)H(Y|X = x)$$

$$= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log_2 p(y|x)$$

$$= -\mathbb{E}_{(X,Y) \sim p(x,y)}[\log_2 p(Y|X)]$$

$$(1)$$

Conditional Entropy

 \bullet Example: $\mathcal{X} = \{\text{Raining, Not raining}\}, \, \mathcal{Y} = \{\text{Cloudy, Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

 What is the entropy of cloudiness, given the knowledge of whether or not it is raining?

$$\begin{array}{lcl} H(Y|X) & = & \displaystyle\sum_{x\in\mathcal{X}} p(x)H(Y|X=x) \\ \\ & = & \displaystyle\frac{1}{4}H(\mathrm{cloudy}|\mathrm{raining}) + \frac{3}{4}H(\mathrm{cloudy}|\mathrm{not\ raining}) \\ \\ & \approx & 0.75\ \mathrm{bits} \end{array}$$

Conditional Entropy

- Some useful properties for the discrete case:
 - ▶ *H* is always non-negative.
 - Chain rule: H(X,Y) = H(X|Y) + H(Y) = H(Y|X) + H(X).
 - ▶ If X and Y independent, then X does not tell us anything about Y: H(Y|X) = H(Y).
 - ▶ If X and Y independent, then H(X,Y) = H(X) + H(Y).
 - ▶ But Y tells us everything about Y: H(Y|Y) = 0.
 - ▶ By knowing X, we can only decrease uncertainty about Y: $H(Y|X) \le H(Y)$.

Exercise: Verify these!

The figure is reproduced from Fig 8.1 of MacKay, Information Theory, Inference, and $\dots\,$.

Information Gain

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• How much information about cloudiness do we get by discovering whether it is raining?

$$I(X;Y) = IG(Y|X) = H(Y) - H(Y|X)$$

 $\approx 0.25 \text{ bits}$

- This is called the information gain in Y due to X, or the mutual information of Y and X
- If X is completely uninformative about Y: IG(Y|X) = 0
- If X is completely informative about Y: IG(Y|X) = H(Y)
- Information gain measures the informativeness of a variable, which is exactly what we desire in a decision tree attribute!

Intro ML (UofT) CSC2515-Lec2 29 / 41

Back to Decision Trees

Revisiting Our Original Example

• What is the information gain of this split?

- Let Y be r.v. denoting lemon or orange, B be r.v. denoting whether left or right split taken, and treat counts as probabilities.
- Root entropy: $H(Y) = -\frac{49}{149} \log_2(\frac{49}{149}) \frac{100}{149} \log_2(\frac{100}{149}) \approx 0.91$
- Leafs entropy: H(Y|B = left) = 0, $H(Y|B = \text{right}) \approx 1$.

$$IG(Y|B) = H(Y) - H(Y|B)$$

$$= H(Y) - \{H(Y|B = \text{left})\mathbb{P}(B = \text{left}) + H(Y|B = \text{right})\mathbb{P}(B = \text{right})\}$$

$$\approx 0.91 - (0 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3}) \approx 0.24 > 0.$$

Constructing Decision Trees

- At each level, one must choose:
 - 1. which variable to split.
 - 2. possibly where to split it.
- Choose them based on how much information we would gain from the decision! (choose attribute that gives the highest gain)

Decision Tree Construction Algorithm

- Simple, greedy, recursive approach, builds up tree node-by-node
- Start with empty decision tree and complete training set
 - ▶ Split on the most informative attribute, partitioning dataset
 - Recurse on subpartitions
- Possible termination condition: end if all examples in current subpartition share the same class

Back to Our Example

Example	Input Attributes									
Literipie	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60

1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
3.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range (\$, \$\$, \$\$\$).
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
10	WaitEstimate, the wait estimated by the best (0.10 minutes, 10.30, 30.60, > 60)

Attributes:

[from: Russell & Norvig]

 $\begin{aligned} & \text{Goal} \\ & \textit{WillWait} \\ & y_1 = \text{Yes} \\ & y_2 = \text{No} \\ & y_3 = \text{Yes} \\ & y_4 = \text{Yes} \\ & y_5 = \text{No} \\ & y_6 = \text{Yes} \\ & y_8 = \text{Yes} \\ & y_9 = \text{No} \\ & y_{10} = \text{No} \\ & y_{11} = \text{No} \\ & y_{12} = \text{Yes} \end{aligned}$

Attribute Selection

$$\begin{split} IG(Y) &= H(Y) - H(Y|X) \\ IG(type) &= 1 - \left[\frac{2}{12}H(Y|\text{Fr.}) + \frac{2}{12}H(Y|\text{It.}) + \frac{4}{12}H(Y|\text{Thai}) + \frac{4}{12}H(Y|\text{Bur.})\right] = 0 \\ IG(Patrons) &= 1 - \left[\frac{2}{12}H(0,1) + \frac{4}{12}H(1,0) + \frac{6}{12}H(\frac{2}{6},\frac{4}{6})\right] \approx 0.541 \end{split}$$

Which Tree is Better?

What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
 - ► Avoid over-fitting training examples.
 - We need enough samples in each region to confidently determine the output.
 - ► Computational efficiency (avoid redundant, spurious attributes)
 - ► Human interpretability
- "Occam's Razor": find the simplest hypothesis that fits the observations
 - ▶ Useful principle, but not obvious how to formalize simplicity.
 - ▶ We shall encounter some other ways to formalize simplicity.
 - See Domingos, 1999, "The role of Occam's razor in knowledge discovery"
- We desire small trees with informative nodes near the root

Intro ML (UofT) CSC2515-Lec2 37 / 41

Decision Tree Miscellany

- Problems:
 - ▶ You have exponentially less data at lower levels
 - ▶ A large tree can overfit the data
 - Greedy algorithms do not necessarily yield the global optimum
 - ▶ Mistakes at top-level propagate down tree
- Handling continuous attributes
 - ▶ Split based on a threshold, chosen to maximize information gain
- There are other criteria used to measure the quality of a split, e.g., Gini index
- Trees can be pruned in order to make them less complex
- Decision trees can also be used for regression on real-valued outputs. Choose splits to minimize squared error, rather than maximize information gain.

Comparison to K-NN

Advantages of decision trees over K-NN

- Good with discrete attributes
- Easily deals with missing values (just treat as another value)
- Robust to scale of inputs; only depends on ordering
- Good when there are lots of attributes, but only a few are important
- Fast at test time
- More interpretable

Comparison to K-NN

Advantages of k-NN over decision trees

- Able to handle attributes/features that interact in complex ways
- Can incorporate interesting distance measures, e.g., shape contexts.

Summary

- There are ways to make Decisions Trees much more powerful (using a technique called Bagging (Bootstrap Aggregating), though at the cost of losing some useful properties such as interpretability. We get to them later.
- Next we get to more modular approaches to designing ML methods.