```
In [1]:
          import pandas as pd
          import numpy as np
          import warnings
         warnings.filterwarnings("ignore")
In [2]:
         from statsmodels.tsa.statespace.sarimax import SARIMAX
         from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
         from statsmodels.tsa.seasonal import seasonal_decompose
          from pmdarima import auto_arima
In [3]:
          from statsmodels.stats.diagnostic import acorr ljungbox
          from statsmodels.tsa.stattools import adfuller, kpss,grangercausalitytests
In [4]:
          from sklearn.metrics import mean absolute percentage error
In [5]:
         df=pd.read csv('us data.csv',sep='\t')
                                     Income Production
Out [5]:
              Quarter Consumption
                                                         Savings Unemployment
           1 1970 Q1
                          0.618566
                                    1.044801 -2.452486
                                                         5.299014
                                                                            0.9
           2 1970 Q2
                          0.451984
                                    1.225647
                                             -0.551459
                                                         7.789894
                                                                            0.5
           3 1970 Q3
                                                        7.403984
                                                                            0.5
                         0.872872
                                    1.585154
                                             -0.358652
           4 1970 Q4
                         -0.271848 -0.239545
                                             -2.185691
                                                         1.169898
                                                                            0.7
             1971 Q1
                          1.901345
                                    1.975925
                                              1.909764
                                                        3.535667
                                                                           -0.1
         194 2018 Q2
                          0.983112
                                    0.661825
                                               1.117424 -2.723974
                                                                            0.0
         195 2018 Q3
                          0.853181
                                    0.806271
                                              1.256722 -0.085686
                                                                           -0.3
         196 2018 Q4
                                    0.695142
                          0.356512
                                              0.948148
                                                         5.031337
                                                                            0.2
         197 2019 Q1
                         0.282885
                                    1.100753 -0.488206 9.760287
                                                                           -0.1
         198 2019 Q2
                          1.113517 0.593399 -0.539949 -4.264616
                                                                           -0.1
        198 rows × 6 columns
In [6]:
         df['date']=pd.to datetime(df['Quarter'].str.replace(' ',''))
```

```
df.index.freq='QS-JAN'
df.drop('Quarter',axis=1,inplace=True)
df
```

df.set index('date',inplace=True)

Income Production

Savings Unemployment

Consumption

Out[6]:

In [8]:

date 1970-01-01 0.618566 1.044801 -2.452486 5.299014						
1970-01-01						
1070 01 01 0.010000 1.044001 2.402400 0.200014	0.9					
1970-04-01 0.451984 1.225647 -0.551459 7.789894	0.5					
1970-07-01 0.872872 1.585154 -0.358652 7.403984	0.5					
1970-10-01 -0.271848 -0.239545 -2.185691 1.169898	0.7					
1971-01-01 1.901345 1.975925 1.909764 3.535667	-0.1					
2018-04-01 0.983112 0.661825 1.117424 -2.723974	0.0					
2018-07-01 0.853181 0.806271 1.256722 -0.085686	-0.3					
2018-10-01 0.356512 0.695142 0.948148 5.031337	0.2					
2019-01-01 0.282885 1.100753 -0.488206 9.760287	-0.1					
2019-04-01 1.113517 0.593399 -0.539949 -4.264616	-0.1					
198 rows x 5 columns [7]: df.info() <class 'pandas.core.frame.dataframe'=""> DatetimeIndex: 198 entries, 1970-01-01 to 2019-04-01 Freq: QS-JAN Data columns (total 5 columns): # Column Non-Null Count Dtype</class>	df.info() <class 'pandas.core.frame.dataframe'=""> DatetimeIndex: 198 entries, 1970-01-01 to 2019-04-01 Freq: QS-JAN Data columns (total 5 columns):</class>					
0 Consumption 198 non-null float64 1 Income 198 non-null float64						
2 Production 198 non-null float64						
3 Savings 198 non-null float64 4 Unemployment 198 non-null float64						
dtypes: float64(5) memory usage: 9.3 KB						

df[['Consumption','Income']].plot(legend=True)

```
Out[8]: <AxesSubplot:xlabel='date'>
```

```
date
In [9]:
          adfuller(df['Consumption'])
         (-4.6101231449022055,
Out[9]:
          0.00012373240927130436,
          195,
          {'1%': -3.464337030867007,
            '5%': -2.876478799035722,
            '10%': -2.574733103221565},
          306.84324181648583)
In [10]:
          adfuller(df['Income'])
         (-6.7656134181274,
Out[10]:
          2.722059468837914e-09,
          4,
          193,
          \{'1\%': -3.4646940755442612,
            '5%': -2.8766348847254934,
           '10%': -2.5748163958763994},
          469.11064516885546)
In [12]:
          grangercausalitytests(df[['Consumption','Income']], maxlag=4)
         Granger Causality
         number of lags (no zero) 1
         ssr based F test:
                                                           , df denom=194, df num=1
                                    F=4.8225
                                               p=0.0293
         ssr based chi2 test:
                                 chi2=4.8970
                                               p=0.0269
                                                           , df=1
         likelihood ratio test: chi2=4.8372
                                               p=0.0279
                                                           , df=1
         parameter F test:
                                    F=4.8225
                                                           , df denom=194, df num=1
                                               p=0.0293
         Granger Causality
         number of lags (no zero) 2
         ssr based F test:
                                                           , df_denom=191, df_num=2
                                    F=1.6841
                                               p=0.1884
         ssr based chi2 test:
                                 chi2=3.4563
                                               p=0.1776
                                                           , df=2
```

```
likelihood ratio test: chi2=3.4262 , p=0.1803 , df=2
parameter F test: F=1.6841 , p=0.1884 , df_denom=191, df_num=2
Granger Causality
number of lags (no zero) 3
ssr based F test:
                        F=1.3557 , p=0.2578 , df_denom=188, df_num=3
ssr based chi2 test: chi2=4.2186 , p=0.2388 , df=3
likelihood ratio test: chi2=4.1736 , p=0.2433 , df=3
parameter F test:
                        F=1.3557 , p=0.2578 , df_denom=188, df_num=3
Granger Causality
number of lags (no zero) 4
ssr based F test:
                        F=1.6619 , p=0.1607 , df denom=185, df num=4
ssr based chi2 test: chi2=6.9711 , p=0.1374 , df=4
likelihood ratio test: chi2=6.8488 , p=0.1441 , df=4
parameter F test:
                        F=1.6619 , p=0.1607 , df_denom=185, df_num=4
```

```
Out[12]: {1: ({'ssr_ftest': (4.822459130803696, 0.029276853643505723, 194.0, 1),
             'ssr_chi2test': (4.897033241073856, 0.026902876229972755, 1),
             'lrtest': (4.837158147802484, 0.0278527586745701, 1),
             'params ftest': (4.822459130803681, 0.029276853643505945, 194.0, 1.0)},
            [<statsmodels.regression.linear model.RegressionResultsWrapper at 0x7fac2</pre>
         0443d30>,
            <statsmodels.regression.linear_model.RegressionResultsWrapper at 0x7fac2</pre>
         0443b50>,
            array([[0., 1., 0.]])]),
          2: ({'ssr ftest': (1.6840657336352534, 0.18836203572157817, 191.0, 2),
             'ssr chi2test': (3.4563024480891067, 0.17761247228772578, 2),
             'lrtest': (3.426181480907303, 0.18030764638208824, 2),
             'params ftest': (1.6840657336352338, 0.18836203572157892, 191.0, 2.0)},
           [<statsmodels.regression.linear model.RegressionResultsWrapper at 0x7fac2</pre>
         0a40ca0>,
            <statsmodels.regression.linear model.RegressionResultsWrapper at 0x7fac2</pre>
         0a408b0>,
            array([[0., 0., 1., 0., 0.],
                   [0., 0., 0., 1., 0.]]))
          3: ({'ssr ftest': (1.3557106457032684, 0.2577711331691011, 188.0, 3),
             'ssr chi2test': (4.218567700725596, 0.23880946864445363, 3),
             'lrtest': (4.173583750414082, 0.24331999598530307, 3),
             'params ftest': (1.3557106457032813, 0.2577711331690909, 188.0, 3.0)},
           [<statsmodels.regression.linear model.RegressionResultsWrapper at 0x7fac2
         0a40a60>,
            <statsmodels.regression.linear model.RegressionResultsWrapper at 0x7fac2</pre>
         0a40a30>,
            array([[0., 0., 0., 1., 0., 0., 0.],
                   [0., 0., 0., 0., 1., 0., 0.],
                    [0., 0., 0., 0., 0., 1., 0.]])]),
          4: ({'ssr_ftest': (1.6619230259179782, 0.16067012220182084, 185.0, 4),
             'ssr chi2test': (6.971093341147844, 0.137423718021706, 4),
             'lrtest': (6.848767339487097, 0.14409929266071153, 4),
             'params ftest': (1.6619230259179827, 0.16067012220181998, 185.0, 4.0)},
           [<statsmodels.regression.linear model.RegressionResultsWrapper at 0x7fac2
         0a39c10>,
            <statsmodels.regression.linear model.RegressionResultsWrapper at 0x7fac2</pre>
         0a39d60>,
            array([[0., 0., 0., 0., 1., 0., 0., 0., 0.],
                    [0., 0., 0., 0., 0., 1., 0., 0., 0.]
                    [0., 0., 0., 0., 0., 0., 1., 0., 0.],
                    [0., 0., 0., 0., 0., 0., 0., 1., 0.]]))
In [13]:
          grangercausalitytests(df[['Income','Consumption']], maxlag=4)
         Granger Causality
         number of lags (no zero) 1
         ssr based F test:
                                   F=22.7569 , p=0.0000 , df_denom=194, df_num=1
         ssr based chi2 test: chi2=23.1088 , p=0.0000
                                                           , df=1
         likelihood ratio test: chi2=21.8509 , p=0.0000 , df=1
         parameter F test:
                                   F=22.7569 , p=0.0000 , df denom=194, df num=1
         Granger Causality
         number of lags (no zero) 2
         ssr based F test:
                                   F=9.6515 , p=0.0001 , df denom=191, df num=2
         ssr based chi2 test: chi2=19.8083 , p=0.0000
                                                           , df=2
```

```
likelihood ratio test: chi2=18.8701 , p=0.0001 , df=2
parameter F test:
                        F=9.6515 , p=0.0001 , df_denom=191, df_num=2
Granger Causality
number of lags (no zero) 3
ssr based F test:
                        F=9.8899 , p=0.0000 , df_denom=188, df_num=3
ssr based chi2 test: chi2=30.7745 , p=0.0000 , df=3
likelihood ratio test: chi2=28.5747 , p=0.0000 , df=3
parameter F test:
                        F=9.8899 , p=0.0000 , df denom=188, df num=3
Granger Causality
number of lags (no zero) 4
ssr based F test:
                        F=8.9666 , p=0.0000 , df denom=185, df num=4
ssr based chi2 test: chi2=37.6113 , p=0.0000 , df=4
likelihood ratio test: chi2=34.3773 , p=0.0000 , df=4
parameter F test:
                        F=8.9666 , p=0.0000 , df_denom=185, df_num=4
```

```
{1: ({'ssr ftest': (22.756900160084378, 3.606706940851373e-06, 194.0, 1),
             'ssr chi2test': (23.108810987302178, 1.5308757911111413e-06, 1),
             'lrtest': (21.850903275624944, 2.946778497402558e-06, 1),
             'params ftest': (22.756900160084353, 3.6067069408514184e-06, 194.0, 1.0)
         },
            [<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x7fac2
         0443e50>,
            <statsmodels.regression.linear model.RegressionResultsWrapper at 0x7fac2</pre>
         0a19df0>,
            array([[0., 1., 0.]])]),
          2: ({'ssr ftest': (9.6514885484608, 0.00010161291146155666, 191.0, 2),
             'ssr chi2test': (19.80829063349023, 4.9967122603523374e-05, 2),
             'lrtest': (18.870058954110846, 7.98764511990486e-05, 2),
             'params ftest': (9.651488548460769, 0.00010161291146156023, 191.0, 2.0)}
            [<statsmodels.regression.linear model.RegressionResultsWrapper at 0x7fac2</pre>
         0a19b20>,
            <statsmodels.regression.linear_model.RegressionResultsWrapper at 0x7fac2</pre>
         0a19f10>,
            array([[0., 0., 1., 0., 0.],
                    [0., 0., 0., 1., 0.]])]),
          3: ({'ssr ftest': (9.889918695760983, 4.361586242578561e-06, 188.0, 3),
             'ssr_chi2test': (30.774481047979656, 9.482496572962478e-07, 3),
             'lrtest': (28.574728851674877, 2.7509226577650864e-06, 3),
             'params ftest': (9.889918695760993, 4.361586242578506e-06, 188.0, 3.0)},
            [<statsmodels.regression.linear model.RegressionResultsWrapper at 0x7fac2</pre>
         0a19670>,
            <statsmodels.regression.linear model.RegressionResultsWrapper at 0x7fac2</pre>
         0a40910>,
            array([[0., 0., 0., 1., 0., 0., 0.],
                    [0., 0., 0., 0., 1., 0., 0.]
                    [0., 0., 0., 0., 0., 1., 0.]])]),
          4: ({'ssr ftest': (8.966609208862248, 1.2192036448451902e-06, 185.0, 4),
             'ssr_chi2test': (37.611290519335704, 1.3477242139193173e-07, 4),
             'lrtest': (34.37725309296604, 6.235542525071482e-07, 4),
             'params ftest': (8.966609208862259, 1.2192036448451765e-06, 185.0, 4.0)}
            [<statsmodels.regression.linear model.RegressionResultsWrapper at 0x7fac2</pre>
         0a40820>,
            <statsmodels.regression.linear_model.RegressionResultsWrapper at 0x7fac2</pre>
         0a401c0>,
            array([[0., 0., 0., 0., 1., 0., 0., 0., 0.],
                    [0., 0., 0., 0., 0., 1., 0., 0., 0.]
                    [0., 0., 0., 0., 0., 0., 1., 0., 0.],
                    [0., 0., 0., 0., 0., 0., 1., 0.]])
In [31]:
          stepwise fit=auto arima(df['Production'], seasonal=False, d=0, stepwise=True,
```

```
Performing stepwise search to minimize aic
          ARIMA(2,0,2)(0,0,0)[0]
                                             : AIC=655.018, Time=0.07 sec
          ARIMA(0,0,0)(0,0,0)[0]
                                            : AIC=750.017, Time=0.00 sec
                                            : AIC=653.529, Time=0.01 sec
          ARIMA(1,0,0)(0,0,0)[0]
                                             : AIC=667.267, Time=0.01 sec
          ARIMA(0,0,1)(0,0,0)[0]
                                            : AIC=654.123, Time=0.02 sec
          ARIMA(2,0,0)(0,0,0)[0]
                                            : AIC=653.232, Time=0.01 sec
          ARIMA(1,0,1)(0,0,0)[0]
                                             : AIC=653.562, Time=0.04 sec
          ARIMA(2,0,1)(0,0,0)[0]
                                            : AIC=653.448, Time=0.02 sec
          ARIMA(1,0,2)(0,0,0)[0]
                                            : AIC=659.042, Time=0.01 sec
          ARIMA(0,0,2)(0,0,0)[0]
          ARIMA(1,0,1)(0,0,0)[0] intercept : AIC=649.179, Time=0.03 sec
          ARIMA(0,0,1)(0,0,0)[0] intercept : AIC=657.083, Time=0.02 sec
          ARIMA(1,0,0)(0,0,0)[0] intercept : AIC=650.970, Time=0.02 sec
          ARIMA(2,0,1)(0,0,0)[0] intercept : AIC=650.095, Time=0.09 sec
          ARIMA(1,0,2)(0,0,0)[0] intercept : AIC=650.303, Time=0.04 sec
          ARIMA(0,0,0)(0,0,0)[0] intercept : AIC=731.058, Time=0.01 sec
          ARIMA(0,0,2)(0,0,0)[0] intercept : AIC=652.145, Time=0.03 sec
          ARIMA(2,0,0)(0,0,0)[0] intercept : AIC=650.427, Time=0.02 sec
          ARIMA(2,0,2)(0,0,0)[0] intercept : AIC=651.946, Time=0.10 sec
         Best model: ARIMA(1,0,1)(0,0,0)[0] intercept
         Total fit time: 0.551 seconds
In [15]:
         model=SARIMAX(df['Consumption'],order=(3,0,0),seasonal order=(0,0,0,0))
          results=model.fit()
          results.summary()
         RUNNING THE L-BFGS-B CODE
         Machine precision = 2.220D-16
          N =
                         4
                               M =
                                             10
         At X0
                       O variables are exactly at the bounds
                            f= 9.02161D-01
                                               |proj g| = 1.80612D-02
         At iterate
         At iterate
                            f= 9.02121D-01
                                               |proj g| = 9.08667D-04
                       5
                                               |proj g| = 4.07846D-06
         At iterate 10
                           f = 9.02114D - 01
               = total number of iterations
              = total number of function evaluations
         Tnint = total number of segments explored during Cauchy searches
         Skip = number of BFGS updates skipped
         Nact = number of active bounds at final generalized Cauchy point
         Projg = norm of the final projected gradient
               = final function value
                              Tnint Skip Nact
            N
                 Tit
                         Tnf
                                                    Projg
             4
                   10
                          12
                                                  4.078D-06
                                                              9.021D-01
```

F = 0.90211402899708149

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL
This problem is unconstrained.

Out[15]:

SARIMAX Results

Dep. Variable: Consumption **No. Observations:** 198

Model: SARIMAX(3, 0, 0) Log Likelihood -178.619

Date: Wed, 20 Apr 2022 **AIC** 365.237

Time: 09:57:07 **BIC** 378.390

Sample: 01-01-1970 **HQIC** 370.561

- 04-01-2019

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	0.3011	0.048	6.323	0.000	0.208	0.394
ar.L2	0.2558	0.051	5.057	0.000	0.157	0.355
ar.L3	0.3229	0.056	5.729	0.000	0.212	0.433
sigma2	0.3533	0.025	13.938	0.000	0.304	0.403

Ljung-Box (L1) (Q): 0.16 Jarque-Bera (JB): 50.94

Prob(Q): 0.69 **Prob(JB):** 0.00

Heteroskedasticity (H): 0.20 Skew: -0.27

Prob(H) (two-sided): 0.00 Kurtosis: 5.43

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

At X0 0 variables are exactly at the bounds

At iterate 0 f= 9.07706D-01 |proj g|= 1.84414D-02

At iterate 5 f= 9.07663D-01 |proj g|= 9.62669D-04

* * *

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F 4 9 11 1 0 0 5.100D-06 9.077D-01 F = 0.90765521326478893

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL This problem is unconstrained.

Out [17]: SARIMAX Results

Dep. Variable: Consumption No. Observations: 194

Model: SARIMAX(3, 0, 0) Log Likelihood -176.085

Date: Wed, 20 Apr 2022 **AIC** 360.170

Time: 09:59:12 BIC 373.242

Sample: 01-01-1970 **HQIC** 365.463

- 04-01-2018

Covariance Type: opg

	coef	std err	Z	P> z	[0.025	0.975]
ar.L1	0.3016	0.048	6.264	0.000	0.207	0.396
ar.L2	0.2604	0.051	5.092	0.000	0.160	0.361
ar.L3	0.3181	0.057	5.552	0.000	0.206	0.430
sigma2	0.3572	0.026	13.759	0.000	0.306	0.408

Ljung-Box (L1) (Q): 0.15 **Jarque-Bera (JB):** 49.65

Prob(Q): 0.70 **Prob(JB):** 0.00

Heteroskedasticity (H): 0.19 Skew: -0.27

Prob(H) (two-sided): 0.00 Kurtosis: 5.42

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
In [18]: start=len(train)
  end=start+len(test)-1

In [19]: predictions=results.predict(start=start,end=end,dynamic=False).rename('SAR:

In [22]: ax=test['Consumption'].plot(legend=True)
  predictions.plot(legend=True)
```

Out[22]: <AxesSubplot:xlabel='date'>

```
Consumption
SARIMA

0.8

0.6

0.4

Q3

Q4

Q1

Q01

2019

date
```

```
In [23]: mean_absolute_percentage_error(test['Consumption'],predictions)
Out[23]: 0.6895530789585476
```

modelExog=SARIMAX(train['Consumption'],exog=train['Income'],order=(3,0,0),:

resultsExog.summary()

RUNNING THE L-BFGS-B CODE

In [26]:

* * *

resultsExog=modelExog.fit()

```
Machine precision = 2.220D-16

N = 5 M = 10
```

At X0 0 variables are exactly at the bounds

At iterate 0 f= 1.00359D+00 | proj g| = 5.34631D-01

At iterate 5 f= 8.73435D-01 |proj g|= 5.91703D-02

At iterate 10 f= 8.70844D-01 | proj g|= 1.62651D-03

* * *

```
Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value
```

* * *

N Tit Tnf Tnint Skip Nact Projg F
5 14 16 1 0 0 1.599D-06 8.708D-01
F = 0.87084105263751344

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL

This problem is unconstrained.

Out[26]:

SARIMAX Results

Dep. Variable: Consumption **No. Observations:** 194

Model: SARIMAX(3, 0, 0) Log Likelihood -168.943

Date: Wed, 20 Apr 2022 **AIC** 347.886

Time: 10:09:44 BIC 364.226

Sample: 01-01-1970 **HQIC** 354.503

- 04-01-2018

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
Income	0.1782	0.032	5.558	0.000	0.115	0.241
ar.L1	0.2171	0.054	4.003	0.000	0.111	0.323
ar.L2	0.3444	0.057	6.065	0.000	0.233	0.456
ar.L3	0.2838	0.057	4.951	0.000	0.171	0.396
sigma2	0.3321	0.025	13.041	0.000	0.282	0.382

Ljung-Box (L1) (Q): 0.42 Jarque-Bera (JB): 36.40

Prob(Q): 0.52 **Prob(JB):** 0.00

Heteroskedasticity (H): 0.22 Skew: -0.19

Prob(H) (two-sided): 0.00 Kurtosis: 5.09

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
In [27]: predictionsExog=resultsExog.predict(start=start,end=end,exog=test['Income'
In [28]: ax=test['Consumption'].plot(legend=True)
    predictions.plot(legend=True)
    predictionsExog.plot(legend=True)
```

Out[28]: <AxesSubplot:xlabel='date'>


```
In [29]: mean_absolute_percentage_error(test['Consumption'],predictionsExog)
Out[29]: 0.7201050748679051

In [32]: from statsmodels.tsa.api import VAR

In [33]: df1=df[['Consumption','Income']]
df1
```

	Consumption	Income	
date			
1970-01-01	0.618566	1.044801	
1970-04-01	0.451984	1.225647	
1970-07-01	0.872872	1.585154	
1970-10-01	-0.271848	-0.239545	
1971-01-01	1.901345	1.975925	
2018-04-01	0.983112	0.661825	
2018-07-01	0.853181	0.806271	
2018-10-01	0.356512	0.695142	
2019-01-01	0.282885	1.100753	
2019-04-01	1.113517	0.593399	

198 rows × 2 columns

Out[33]:

```
order= 1
      AIC= -1.44355774811431
      order= 2
      AIC= -1.4427021710347265
      order= 3
      AIC= -1.47905868013255
      order= 4
      AIC= -1.4929139211167433
      order= 5
      AIC= -1.555900188730903
      order= 6
      AIC= -1.5281062869097655
      order= 7
      AIC= -1.5045248025067974
      order= 8
      AIC= -1.4866123239137767
      order= 9
       AIC= -1.438980776981068
In [38]:
       modelVAR=VAR(trainVAR)
       resultsVAR=modelVAR.fit(5)
In [39]:
       resultsVAR.summary()
       Summary of Regression Results
Out[39]:
       Model:
                             VAR
      Method:
                  Wed, 20, Apr, 2022
       Date:
      Time:
                        10:30:11
       _____
                         2.00000 BIC:
189.000 HQIC:
      No. of Equations:
                                                   -1.17855
      Nobs:
                                                   -1.40303
      Log likelihood:
                         -367.326
                                 FPE:
                                                   0.211055
      AIC:
                         -1.55590
                                 Det(Omega_mle):
                                                  0.188477
      Results for equation Consumption
       ______
       =====
                     coefficient std. error
                                                  t-stat
       ______
       const
                       0.349013 0.087649
                                                   3.982
       0.000
      L1.Consumption 0.189323 0.077975
                                                   2.428
```

0.015			
L1.Income	0.108857	0.054103	2.012
0.044			
L2.Consumption	0.170980	0.080227	2.131
0.033			
L2.Income	-0.013760	0.057062	-0.241
0.809	0 206706	0 070075	2 716
L3.Consumption 0.000	0.296786	0.079875	3.716
L3.Income	-0.028260	0.055760	-0.507
0.612	0.000000	01000,00	
L4.Consumption	-0.033752	0.082758	-0.408
0.683			
L4.Income	-0.071837	0.055894	-1.285
0.199			
L5.Consumption	-0.043607	0.079010	-0.552
0.581			
L5.Income	-0.046964	0.053585	-0.876
0.381			
==========		==========	

======

Results for equation Income

______ coefficient std. error t-stat prob ______ _____ const 0.572394 0.123709 4.627 0.000 L1.Consumption 0.410378 0.110055 3.729 0.000 L1.Income -0.303253 0.076362 -3.9710.000 L2.Consumption 0.101852 0.113234 0.899 0.368 L2.Income -0.045916 0.080538 -0.5700.569 0.468458 0.112737 L3.Consumption 4.155 0.000 L3.Income -0.150672 0.078701 -1.9140.056 L4.Consumption 0.266858 0.116805 2.285 0.022 L4.Income -0.260842 0.078890 -3.306 0.001 L5.Consumption 0.111515 -0.125637 -1.1270.260 L5.Income -0.202112 0.075631 -2.672

======

0.008

Correlation matrix of residuals

Consumption Income Consumption 1.000000 0.314089

Income

0.314089 1.000000

```
In [40]:
              resultsVAR.plot acorr();
                                                 ACF plots for residuals with 2/\sqrt{T} bounds
                                                                     1.00
              1.00
              0.75
                                                                     0.75
              0.50
              0.25
              0.00
                                                                     0.00
             -0.25
                                                                     -0.25
             -0.50
             -0.75
                                                                     -0.75
             -1.00
                                                                    -1.00
                                                                                                                   10
              1.00
                                                                     1.00
              0.75
                                                                     0.75
              0.50
                                                                     0.50
              0.25
              0.00
                                                                     0.00
             -0.25
                                                                     -0.25
             -0.50
                                                                     -0.50
             -0.75
                                                                    -0.75
                                                                     -1.00
                                                                                                                   10
                                                            10
In [42]:
              lag_order=resultsVAR.k_ar
              lag_order
Out[42]:
In [44]:
              predictedValues=resultsVAR.forecast(df1.values[-lag_order:],4)
              predictedValues
```

```
Out[44]: array([[0.58313943, 0.65003969],
                [0.62821021, 0.31107678],
                 [0.76946343, 0.80071605],
                 [0.69544088, 0.75463026]])
In [45]:
          testValuesConsumption=testVAR['Consumption'].values
          testValuesConsumption
         array([0.85318135, 0.35651203, 0.28288547, 1.1135167 ])
Out[45]:
In [46]:
          testValuesIncome=testVAR['Income'].values
          testValuesIncome
         array([0.80627128, 0.69514222, 1.10075295, 0.5933995 ])
Out[46]:
In [47]:
          mean_absolute_percentage_error(testValuesConsumption,predictedValues[:,0])
         0.7935302535890587
Out[47]:
In [48]:
          mean_absolute_percentage_error(testValuesIncome,predictedValues[:,1])
         0.32263769174292994
Out[48]:
In [50]:
          resultsVAR.plot_forecast(4);
```

22/04/2022, 08:29 Lecture7USPersonalConsumption

In []: