Dimostrazioni

Teorema dell'unicità del limite

Sia a_n una successione , vogliamo dimostrare che $\lim_{n\to\infty}a_n=l$ dove l è unico : Supponiamo (per ${
m ASSURDO}$) che

$$egin{cases} \lim_{n o\infty}a_n=l_1\ \lim_{n o\infty}a_n=l_2 \end{cases} \quad ext{con} \quad l_1
eq l_2$$

passiamo allora alla definizione di limite di successione :

$$egin{cases} orall \epsilon > 0 & \exists n_1 \in \mathbb{N}: \, |a_n - l_1| < \epsilon & orall n > n_1 \ orall \epsilon > 0 & \exists n_2 \in \mathbb{N}: \, |a_n - l_2| < \epsilon & orall n > n_2 \end{cases}$$

adesso prendiamo il massimo tra gli indici di partenza per cui valgono le due disuguaglianze lo stesso , infatti se prendo $n=\max(n_1,n_2)$, allora valgono sempre lo stesso allo stesso momento siccome vale $\forall n>n_1,n_2.$

$$egin{cases} orall \epsilon > 0 & |a_n - l_1| < \epsilon \ orall \epsilon > 0 & |a_n - l_2| < \epsilon \end{cases}$$

ma allora sicuramente abbiamo che:

$$|a_n-l_1|+|a_n-l_2|<\epsilon+\epsilon=2\epsilon$$

adesso utilizziamo la <code>DISUGUAGLIANZA</code> TRIANGOLARE e la proprietà che dice che |x|=|-x| , \implies

$$egin{aligned} |a_n-l_1|+|l_2-a_n| &\Longrightarrow |a_n-l_1+l_2-a_2| \underbrace{\leq}_{DT} |a_n-l_1|+|a_n-l_2| < 2\epsilon \ &\Longrightarrow |a_n-l_1+l_2-a_n| < 2\epsilon \implies |l_2-l_1| < 2\epsilon \end{aligned}$$

ma scegliendo $\epsilon = \frac{|l_2 - l_1|}{2} \implies |l_2 - l_1| < |l_2 - l_1| \implies ext{CONTRADDIZIONE}$

Teorema del confronto

Vogliamo dimostrare che se $a_n o l_1$, $b_n o l_2$ e

$$\exists n_0 \in \mathbb{N} \, : a_n \leq b_n \quad orall n > n_0$$

(ovvero definitivamente $a_n \leq b_n$) $\implies l_1 \leq l_2$.

Supponiamo per ASSURDO che $l_1>l_2$ e fissiamo $\epsilon=\frac{l_1-l_2}{2}>0$ (notiamo che è >0 siccome abbiamo supposto per assurdo che $l_1>l_2$) e applichiamo la definizione per i due limiti :

$$egin{cases} \exists n_1 \in \mathbb{N} : |a_n - l_1| < \epsilon & orall n > n_1 \ \exists n_2 \in \mathbb{N} : |b_n - l_2| < \epsilon & orall n > n_2 \end{cases} \Longrightarrow$$

$$\left\{ egin{aligned} \exists n_1 \in \mathbb{N} : l_1 - \epsilon < a_n < l_1 + \epsilon & orall n > n_1 \ \exists n_2 \in \mathbb{N} : l_2 - \epsilon < b_n < l_2 + \epsilon & orall n > n_2 \end{aligned}
ight.$$

ora prendiamo $n=\max(n_0,n_1,n_2)$ ovvero l'indice di partenza per cui valgono le 3 proprietà (anche che $a_n\le b_n$) e sostituiamo $\epsilon=rac{l_1-l_2}{2}$ otteniamo :

$$l_1 - rac{(l_1 - l_2)}{2} = rac{l_1 + l_2}{2} < a_n < l_1 + rac{(l_1 - l_2)}{2} = rac{3l_1 - l_2}{2}$$

$$l_2 - rac{(l_1 - l_2)}{2} = rac{3l_2 - l_1}{2} < b_n < l_2 + rac{(l_1 - l_2)}{2} = rac{l_1 + l_2}{2}$$

$$\Longrightarrow$$
 otteniamo che $b_n < rac{l_1 + l_2}{2} < a_n \implies b_n < a_n o ext{CONTRADDIZIONE}$

Teorema della permanenza del segno

Supponiamo (caso finito) che

$$\lim_{n\to\infty}a_n=l>0$$

Definiamo questo limite attraverso la definizione di limite:

$$\forall \epsilon > 0 \quad \exists n_0 \in \mathbb{N} : |a_n - l| < \epsilon \quad \forall n > n_0$$

Fissiamo

$$egin{aligned} \epsilon = rac{l}{2} > 0 \implies \exists n_0 \in \mathbb{N}: \quad |a_n - l| < rac{l}{2} \quad orall n > n_0 \implies \ \implies \exists n_0 \in \mathbb{N}: \quad l - rac{l}{2} < a_n < l + rac{l}{2} \quad orall n > n_0 \end{aligned}$$

Poiché l>0, anche $rac{l}{2}>0$, abbiamo che anche

$$a_n > 0 \quad orall n > n_0$$

cioè definitivamente (da un certo n_0 in poi), la successione a_n è positiva.

Infinitesima per limitata = 0

Vogliamo dimostrare che se

- b_n è LIMITATA
- $\lim_{n\to\infty} a_n = 0$

 $\implies \lim_{n o \infty} b_n a_n = 0$, che per definizione vuol dire che :

$$orall \epsilon > 0 \quad \exists n_0 \in \mathbb{N}: \, |b_n a_n - 0| < \epsilon \implies orall \epsilon > 0 \quad |b_n a_n| < \epsilon \quad orall n > n_0$$

Iniziamo notando che siccome b_n è LIMITATA allora per definizione $\exists M>0$ tale che :

$$|b_n| \leq M \implies -M \leq b_n \leq M \quad \forall n$$

Inoltre siccome $\lim_{n o \infty} a_n = 0 \implies$

$$orall \delta > 0 \quad \exists n_1 \in \mathbb{N} : |a_n| < \delta \quad orall n > n_1$$

utilizziamo ora una prop. dei moduli (|ab|=|a||b|) , una catena di disuguaglianze e il fatto che $|b_n|\leq M$:

$$|b_n a_n| = |b_n||a_n| \le |a_n|M$$

ora utilizziamo il fatto che $|a_n| < \delta$ e poniamo $\delta = \frac{\epsilon}{M}$, ottenendo :

$$|a_n|M \leq \delta M = rac{\epsilon}{\mathscr{M}}\mathscr{M}$$

quindi otteniamo che

$$|b_n a_n| \le |a_n| M \le \epsilon$$

Convergenza numero di nepero e

Vogliamo dimostrare che la successione $a_n=(1+rac{1}{n})^n$ è convergente a $e\in(2,3)$: Dimostriamolo in 2 step:

- 1. dimostriamo che $a_n=(1+\frac{1}{n})^n$ è STRETTAMENTE CRESCENTE 2. dimostriamo che $a_n=(1+\frac{1}{n})^n$ è SUPERIORMENTE LIMITATA \implies esiste il suo limite e vale $\sup\left\{\left(1+rac{1}{n}
 ight)^n:n\in\mathbb{N}^+
 ight\}\in\mathbb{R}$

Stretta crescenza

Quindi dobbiamo dimostrare che

$$a_n < a_{n+1} \implies \left(1+\frac{1}{n}\right)^n < (1+\frac{1}{n+1})^{n+1} \quad \forall n \geq 1$$
 esprimiamo a_n con il binomio di Newton ovvero che :

$$(a+b)^n=\sum_{k=0}^n inom{n}{k}a^{n-k}b^k$$

$$a_n=\left(1+rac{1}{n}
ight)^n=\sum_{k=0}^n inom{n}{k}rac{1}{n^k}= \ =\sum_{k=0}^n rac{n(n-1)(n-2)\dots(n-k+1)}{k!}rac{n}{n^k} = \ rac{k!}{\binom{n}{k}!}$$

$$= \sum_{k=0}^{n} \frac{1}{k!} \frac{n(n-1)(n-2)\dots(n-k+1)}{n^k} = \sum_{k=0}^{n} \frac{1}{k!} \left(\underbrace{\frac{n}{n} \underbrace{\frac{n-1}{n} \underbrace{n-2}}_{=1-\frac{1}{n}} \dots \underbrace{\frac{n-k+1}{n}}_{=1-\frac{(k-1)}{n}}}_{=1-\frac{(k-1)}{n}} \right)$$

quindi otteniamo che:

$$a_n = \sum_{k=0}^n rac{1}{k!} \left(1 \left(1 - rac{1}{n}
ight) \ldots \left(1 - rac{(k-1)}{n}
ight)
ight)$$

ora poniamo n=n+1 \Longrightarrow otteniamo :

$$a_{n+1} = \sum_{k=0}^{n+1} rac{1}{k!} igg(1 igg(1-rac{1}{n+1}igg) \ldots igg(1-rac{(k-1)}{n+1}igg)igg)$$

ora confrontiamo a_n e a_{n+1} , e quindi ci chiediamo le seguenti disuguaglianze :

$$egin{aligned} ullet 1 - rac{1}{n} \stackrel{?}{<} 1 - rac{1}{n+1} &\Longrightarrow rac{n-1}{n} < rac{n}{n+1} &\Longrightarrow \dots \Longrightarrow -rac{1}{n(n+1)} < 0
ightarrow \mathrm{SI} \ ullet 1 - rac{(k-1)}{n} & \mathrel{\displaystyle \smile} 1 - rac{(k-1)}{n+1}
ightarrow \mathrm{SI} \ &\Longrightarrow a_n < a_{n+1} \end{aligned}$$

Limitatezza superiore

Lavoriamo sulla sommatoria e otteniamo qualcosa piu grosso :

$$a_n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k}$$

notiamo (grazie anche allo step precedente) che :

$$\underbrace{\frac{1}{k!}}_{\leq 1}\underbrace{1\left(1-\frac{1}{n}\right)\ldots\left(1-\frac{(k-1)}{n}\right)}_{\leq 1}\leq \frac{1}{k!}$$

ma siccome $k! = k(k-1)(k-2)! \geq k(k-1)$ e passando ai reciproci otteniamo che

$$rac{1}{k!} \leq rac{1}{k(k-1)} = rac{1}{k-1} - rac{1}{k}$$

 \Longrightarrow

$$a_n = 1 + 1 + \sum_{k=2}^n \binom{n}{k} rac{1}{n^k} \leq 2 + \sum_{k=2}^n \left(rac{1}{k-1} - rac{1}{k}
ight)$$

dove l'ultimo termine assomiglia a una serie telescopica , siccome rimane la testa e la coda (come in un telescopio) :

$$\sum_{k=2}^{n} \left(\frac{1}{k-1} - \frac{1}{k} \right) = \left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n} \right) = 1 - \frac{1}{n}$$

quindi possiamo concludere che

$$a_n = 2 + 1 - rac{1}{n} = 3 - rac{1}{n} \le 3$$

 $\implies a_n$ ha 3 come maggiorante e dunque è LIMITATA SUPERIORMENTE .

Teorema degli zeri

Il teorema dice che sia $f:[a,b] o \mathbb{R}$ (definita in un intervallo *chiuso* e *limitato*) e che sia *CONTINUA* in |a,b|

e che $f(a)f(b) < 0 \implies \exists c \in (a,b): f(c) = 0$.

intuitivamente nel grafico abbiamo:

dove se $f(a)>0 \iff f(b)<0$ o viceversa , e che siccome la funzione è continua allora sicuramente passerà per un punto c dove assumerà valore $0.\,$

Costruiamo $\emph{ricorsivamente}$ due successioni a_n e b_n nel seguente modo (si pensi come un algoritmo da ripetere):

$$egin{cases} a_0=a\ b_0=b\ c_1=rac{a_0+b_0}{2} \end{cases}$$

dove c_1 è il punto medio del segmento \overline{ab} , quindi ci sono due possibilità :

1. Se
$$f(c_1)=0 \implies c=c_1$$
 e ho finito 2. Se $f(c_1)
eq 0 \implies$

2. Se
$$f(c_1) \neq 0 \implies$$

$$egin{cases} ext{se} & f(a_0)f(c_1) < 0 \implies a_1 = a_0\,, b_1 = c_1 \ ext{se} & f(b_0)f(c_1) < 0 \implies a_1 = c_1\,, b_1 = b_0 \ ext{(**)} \end{cases}$$

infatti graficamente (caso (*))

in questo modo considero un intervallo più piccolo $[a,b]=[a_0,c_1]$ di ricerca di questo punto dove la funzione mi farà 0.

Procedendo in questo modo ho definito una successione di intervalli $I_n=[a_n,b_n]$ tale che $I_{n+1}\subseteq I_n$ Inoltre sto garantendo che :

- 1. $f(a_n)f(b_n) < 0 \quad \forall n$
- $oldsymbol{2}$. siccome divido sempre a metà per n volte abbiamo che la lunghezza da i dell'intervallo sarà

$$b_n-a_n=\frac{b-a}{2^n}$$

Osserviamo inoltre che

• $a_0 = a \le a_1 \le a_2 \le \cdots \le a_n$

•
$$a_n \leq b_n \leq \cdots \leq b_2 \leq b_1 < b_0 = b$$

ovvero che a_n va dentro verso destra (quindi cresce) e che b_n va dentro verso sinistra e quindi decresce , quindi ottengo che ho a_n una successione crescente e limitata (siccome è maggiorata da b e minorata da a_0) e analogamente b_n è una successione decrescente e limitata.

Quindi per il teorema delle successioni monotone, per entrambe le successioni esistono i limiti :

$$egin{cases} \lim_{n o\infty}a_n=c_1 \ \lim_{n o\infty}b_n=c_2 \end{cases}$$

ora devo dimostrare solo che $c_1=c_2$ (siccome l'intervallo sarà sempre piu piccolo perché a_n entra ightarrow e b_n entra \leftarrow)

Quindi siccome devo dimostrare che $c_1=c_2=c$, allora la differenza dovrebbe fare 0 , infatti :

$$c_2-c_1=\lim_{n o\infty}b_n-\lim_{n o\infty}a_n=\lim_{n o\infty}rac{b-a}{\displaystyle\underbrace{rac{2^n}{2^n}}}=0$$

Ora dobbiamo dimostrare che f(c)=0 e quindi osservo che poiché f è **continua** in [a,b] allora per definizione di funzione continua in un intervallo :

$$egin{cases} f(c) = \lim_{n o \infty} f(a_n) \leq 0 \ f(c) = \lim_{n o \infty} f(b_n) \geq 0 \end{cases}$$

(oppure viceversa , tanto l'importante è che sappiamo per costruzione che le immagini della funzione in quei punti sono discordi tra loro e quindi il prodotto è negativo) e quindi siccome $f(c) \leq 0$ e $f(c) \geq 0$ l'unica possibilità è che f(c) = 0.

Teorema di Weiestrass

Il teorema di Weiestrass ci dice che : sia $f(x):[a,b] o \mathbb{R}$:

- Ipotesi:
 - f continua in [a,b]
- Tesi :
 - $\exists M = \max f \in \exists m = \min f$

Prima di iniziare vero e proprio la dimostrazione , notiamo che $S=\{f(x): \forall x\in [a,b]\}$ siccome è insieme non vuoto, allora sappiamo che

$$\exists s = \sup S$$

ovvero l'estremo superiore dell'insieme S. Inoltre sappiamo che esiste una successione $\{y_n\}_{n\in\mathbb{N}}$ tale che :

$$\lim_{n o\infty}y_n=s$$

Infatti nel caso $s \in \mathbb{R}$, notiamo che $orall n \in \mathbb{N}^+ \quad \exists \, y_n \in S$ tale che :

$$s-rac{1}{n} \leq y_n \leq s$$

ovvero che comunque prendiamo n troveremo sempre un y_n che sarà più grande di $s-\frac{1}{n}$ ma più piccolo di s, tutto questo per definizione di estremo superiore di un insieme. Però ora siccome $s-\frac{1}{n}\to s$ possiamo applicare il teorema dei carabinieri e concludere che anche $y_n\to s$.

Nel caso $s=+\infty$, sappiamo che $orall n\in\mathbb{N} \quad \exists\, y_n\in S$ tale che :

$$y_n \ge n$$

anche se $s=+\infty$ cadrebbe la continuità e non il teorema di Weierstrass non vale più.

Iniziamo quindi la dimostrazione costruendo una nuova successione $\{x_n\}_{n\in\mathbb{N}}\subseteq [a,b]$ tale che :

$$f(x_n)=y_n \quad orall n \in \mathbb{N}$$

Ora siccome x_n è una successione limitata allora per il <code>TEOREMA DI BOLZANO-WEIERSTRASS</code> :

$$\exists \left\{ x_{n}
ight\} _{k}\subseteq \left\{ x_{n}
ight\} _{n}:\lim_{k
ightarrow\infty}x_{n_{k}}=x_{M}\in \left[a,b
ight]$$

ovvero che esiste una sotto-successione x_{n_k} convergente di x_n .

Sappiamo inoltre , grazie alle ipotesi , che f è $\operatorname{\mathsf{continua}}$ in [a,b] , quindi abbiamo che :

$$\lim_{n o +\infty}f(x_n)=f(x_M)\in S$$

Concludiamo che quindi abbiamo:

$$s=\lim_{n o +\infty}y_n=\lim_{n o +\infty}f(x_n)=f(x_M)$$

quindi abbiamo dimostrato che:

$$f(x) \leq f(x_M) \in \mathbb{R} \quad orall x \in [a,b]$$

Teorema di Fermat

Il teorema afferma che:

- Ipotesi : sia $f:[a,b] o \mathbb{R}$
 - x_0 sia punto di minimo o massimo relativo
 - f derivabile in x_0
- ullet Tesi $\colon\Longrightarrow f'(x_0)=0$ ossia che x_0 è un punto stazionario (ovvero che la tangente in quel punto è orizzontale)

Dimostriamo nel caso x_0 sia un minimo relativo (similmente per il caso sia massimo relativo) Iniziamo notiamo che siccome f è derivabile in x_0 , allora per definizione di derivabilità in un punto , abbiamo che la derivata destra e sinistra in quel punto devono essere uguali alla derivata in quel punto :

$$f_+^\prime(x_0) = f_-^\prime(x_0) = f^\prime(x_0)$$

quindi vediamo che segno ha $f_+^\prime(x_0)$, infatti notiamo che :

$$f'_+(x_0) = \lim_{h o 0^+} = rac{f(x_0+h)-f(x_0)}{h}$$

quindi vogliamo capire che segno ha $f(x_0+h)-f(x_0)$.

Ora siccome x_0 è un minimo relativo , per definizione di minimo relativo :

$$f(x_0) \leq f(x) \quad \forall x \in (x - \delta, x + \delta)$$

quindi sicuramente $f(x_0+h) \geq f(x_0) \implies f(x_0+h) - f(x_0) \geq 0$, quindi abbiamo che :

$$f'_+(x_0) = \lim_{h o 0^+} = rac{f(x_0 + h) - f(x_0) \geq 0}{h \geq 0} \implies f'_+(x) \geq 0$$

ora similmente per $f_-^\prime(x_0)$ avremo che :

$$f_-'(x_0) = \lim_{h o 0^-} rac{f(x_0+h)-f(x_0)\geq 0}{h \leq 0} \implies f_-(x_0) \leq 0$$

ma allora abbiamo la seguente situazione di segni :

$$egin{cases} f'(x_0) = f'_+(x_0) \geq 0 \ f'(x_0) = f'_-(x_0) \leq 0 \end{cases}$$

quindi necessariamente $f^{\prime}(x_0)=0$.

Teorema di Rolle

Il teorema di Rolle afferma che:

- Ipotesi : sia $f(x):[a,b] o \mathbb{R}$
 - ullet continua in [a,b]
 - derivabile in (a,b)
 - f(a) = f(b)
- ullet Tesi $:\Longrightarrow\ \exists\,c\in(a,b):f'(c)=0$ I caso

Iniziamo osservando che grazie alle ipotesi possiamo applicare il teorema di Weiestrass infatti abbiamo che :

$$\exists x_m \in [a,b] \quad \exists \, x_M \in [a,b] : f(x_m) \leq f(x) \leq f(x_M) \quad orall x \in [a,b]$$

quindi abbiamo due casi:

1. x_m e x_M sono gli estremi $\{a,b\} \implies f(x_m) = f(x_M) \implies$ otteniamo che f è una funzione costante in (a,b), ma allora la derivata in ogni punto preso tra a e b, otteniamo che la retta tangente sarà =0 infatti avremo che

$$f'(c) = 0 \quad \forall x \in (a,b)$$

2. almeno uno dei due di x_m e x_M sono punti interni in (a,b) , ma siccome sono uno un punto di massimo e l'altro un punto di minimo , possiamo applicare il TEOREMA DI FERMAT , infatti avremo che :

$$f'(x_m) = 0 \quad \lor \quad f'(x_M) = 0$$

quindi abbiamo osservato che sia nel caso 1 che nel caso 2 , otteniamo che $\exists\,c\in(a,b):f'(c)=0$

 \Box .

Teorema di Lagrange o valor medio

Il teorema afferma che:

- Ipotesi : Sia $f:[a,b] o \mathbb{R}$
 - ullet continua in [a,b]
 - ullet derivabile in (a,b)
- Tesi: \Longrightarrow $\exists c \in (a,b): f'(c) = rac{f(b) f(a)}{b a}$

dove $\frac{f(b)-f(a)}{b-a}$ sarebbe il coefficiente angolare della retta parallela alla retta tangente nel punto (c,f(c)) :

Iniziamo considerando una funzione ausiliaria:

$$h(x)=f(x)-\left(rac{f(b)-f(a)}{b-a}(x-a)+f(a)
ight)$$

calcoliamoci h(a) , h(b) :

$$f(a) = f(a) - rac{f(b) - f(b)}{b - a}(a - a) - f(a) = f(a) - f(a) = 0 \ = f(b) - rac{f(b) - f(a)}{b - a}(b - a) - f(a) = f(b) - f(b) + f(a) - f(a) = 0 \implies h(a) = h(b) = 0$$

Ora siccome abbiamo h(a)=h(b) applichiamo il <code>TEOREMA DI ROLLE</code> , allora abbiamo che :

$$\exists\, c\in (a,b): h'(c)=0$$

(vedi dimostrazione del teorema di Rolle che va usata per dimostrare questo teorema che stiamo dimostrando).

Ora calcoliamo $h^\prime(x)$ (la derivata) e poi $h^\prime(c)$, allora abbiamo che :

$$h'(x)=f'(c)-\left(rac{f(b)-f(a)}{b-a}
ight) \implies h'(c)=f'(c)-rac{f(b)-f(a)}{b-a}$$

ma siccome siccome $h^\prime(c)=0$:

$$f'(c)-rac{f(b)-f(a)}{b-a}=0 \implies f'(c)=rac{f(b)-f(a)}{b-a}$$

ovvero proprio la nostra tesi.

 \square .

Teorema del criterio di monotonia

Il teorema afferma che:

- Ipotesi : sia f derivabile in un intervallo (a,b)
- - 1. f è CRESCENTE in $(a,b) \iff f'(x) \geq 0 \quad \forall x \in (a,b)$ 2. f è DECRESCENTE in $(a,b) \iff f'(x) \leq 0 \quad \forall x \in (a,b)$

Dimostriamo 1. (2. è simile) , per dimostrare che vale " \iff " dimostriamo prima " \implies " e poi " \iff " :

Quindi per dimostrare che $f'(x) \geq 0 \quad \forall x \in (a,b)$ dobbiamo capire che segno ha il rapporto incrementale (che sarebbe per definizione la derivata) usando l'ipotesi che f è crescente , quindi abbiamo che :

$$rac{f(x)-f(x)}{h} = egin{cases} \sec h > 0 &\Longrightarrow f(x+h) \geq f(x) &\Longrightarrow f(x+h) - f(x) \geq 0 &\Longrightarrow \left(rac{+}{+}
ight) \geq 0 \ \sec h < 0 &\Longrightarrow f(x+h) \leq f(x) &\Longrightarrow f(x+h) - f(x) \leq 0 &\Longrightarrow \left(rac{-}{-}
ight) \geq 0 \end{cases}$$

e quindi abbiamo dimostrato che f'(x) risulta sempre ≥ 0 .

Ora dobbiamo dimostrare la crescenza di f ovvero che se prendiamo due qualsiasi $x_1,x_2\in(a,b)$ basta che $x_1\leq x_2$, quindi consideriamo questi due punti , e applichiamo il **TEOREMA DI LAGRANGE** in $[x_1,x_2]\subseteq(a,b)$, siccome per ipotesi sappiamo che f è derivabile , e quindi questo implica che sia anche continua , in (a,b) e quindi lo è anche $[x_1,x_2]\subseteq(a,b)$, quindi per il teorema di Lagrange abbiamo che :

$$\exists\, c \in (x_1,x_2): f'(c) = rac{f(x_2) - f(x_1)}{x_2 - x_1}$$

quindi moltiplichiamo a destra e sinistra per per $\left(x_2-x_1
ight)$ e abbiamo che :

$$rac{f(x_2)-f(x_1)}{x_2-x_1} \implies f'(c)(x_2-x_1) = f(x_2)-f(x_1) \implies f(x_2) = f(x_1)+f'(c)(x_2-x_1)$$

ma siccome $x_2 \ge x_1 \implies x_2 - x_1 \ge 0$ e quindi se aggiungiamo qualcosa di positivo a $f(x_1)$ avremo necessariamente che :

$$f(x_2) \geq f(x_1)$$

che è proprio la crescenza di f .

 \Box .

Teorema di De l'Hospital

Il teorema di De l'Hospital afferma che :

- ullet Ipotesi : sia f e g funzioni derivabili in (x_0,x_0+r) t>0 (in un intorno destro di x_0) ($I^+(x_0)$)
 - $\lim_{x o x_0^+}f(x)=\lim_{x o x_0^+}g(x)=0$ (quindi abbiamo una forma $\left[rac{0}{0}
 ight]$)
 - $g'(x) \neq 0 \quad \forall x \in (x_0, x_0 + r)$
 - ullet $\exists \; \lim_{x o x_0^+} rac{f'(x)}{g'(x)} = L_1 \in \mathbb{R} \cup \{\pm\infty\}$
- ullet Tesi $:\Longrightarrow \, \lim_{x o x_0^+}rac{f(x)}{g(x)}=L_1$

Iniziamo la dimostrazione estendendo f e g anche in x_0 ponendo $f(x_0)=g(x_0)=0$ in questo modo rendiamo continue f e g anche in x_0 .

Ora consideriamo una successione x_n in (x_0,x_0+r) tale che $x_n o x_0^+.$

Ora notiamo che per $orall n\in \mathbb{N}^+$ vale il **TEOREMA DI CAUCHY** in $[x_0,x_n]$, che ci dice che siano f e g continue in [a,b] e derivabili in (a,b) e che $g(x)
eq 0 \quad orall x \in (a,b)$ allora sappiamo che :

$$\exists\,c\in(a,b):rac{f(b)-f(a)}{g(b)-g(a)}=rac{f'(c)}{g'(c)}$$

.Quindi applicando il teorema di Cauchy in $\left[x_0,x_n
ight]$ allora abbiamo che :

$$\exists\, c_n\in (x_0,x_n): rac{f(x_n)-f(x_0)}{g(x_n)-g(x_0)}=rac{f'(c_n)}{g'(c_n)}\quad orall n\in \mathbb{N}^+$$

ora notiamo che siccome $f(x_0)=g(x_0)=0$ (dalle ipotesi) abbiamo che :

$$rac{f(x_n) - f(x_0)}{g(x_n) - g(x_0)} = rac{f(x_n)}{g(x_n)} = rac{f'(c_n)}{g'(c_n)}$$

Ora notiamo che siccome $x_0 < c_n < x_n$ e $x_n o x_0^+$, utilizziamo il teorema dei Carabinieri e otteniamo che anche $c_n o x_0^+$.

Infine partiamo dall'ultima ipotesi di esistenza del limite della derivata delle due funzioni:

$$L_1=\lim_{x o x_0^+}rac{f'(x)}{g'(x)}$$

e notiamo che possiamo fare un "cambio di variabile" (o teorema Ponte al contrario) di x con c_n , siccome tutte e due $\to x_0^+$, quindi abbiamo che :

$$L_1 = \lim_{x o x_0^+} rac{f'(x)}{g'(x)} = \lim_{n o\infty} rac{f'(c_n)}{g'(c_n)}$$

ma grazie a Cauchy (di prima) abbiamo che:

$$L_1 = \lim_{x o x_0^+} rac{f'(x)}{g'(x)} = \lim_{n o\infty} rac{f'(c_n)}{g'(c_n)} \stackrel{=}{ ext{Teo. Cauchy}} \lim_{n o\infty} rac{f(x_n)}{g(x_n)}$$

ora rifacciamo un "cambio di variabile" di x_n con x , siccome anche in questo caso sia una che l'altra $o x_0^+$, quindi abbiamo che :

$$\lim_{n o\infty}rac{f(x_n)}{g(x_n)} \mathop{=}\limits_{x_n o x_0^+}\lim_{x o x_0^+}rac{f(x)}{g(x)}$$

quindi abbiamo dimostrato che:

$$L_1 = \lim_{x o x_0^+} rac{f'(x)}{g'(x)} = \lim_{x o x_0^+} rac{f(x)}{g(x)}$$

Formula di Taylor con resto di Peano

La formula del polinomio di Taylor con il resto di Peano ci dice che possiamo approssimare una funzione nel seguente modo :

$$f(x) = T_{n,x_0}(x) + R_{n,x_0}(x)$$

ora per capire come dimostrarlo , portiamo $T_{n,x_0}(x)$ a destra e quindi otteniamo :

$$R_{n,x_0}=f(x)-T_{n,x_0}(x)$$

ma siccome il resto di Peano è l'errore commesso dal polinomio di Taylor nell'approssimazione è definito come :

$$R_{n,x_0}(x) = o((x-x_0)^n)$$

ovvero proprio quello che vogliamo dimostrare , infatti per definizione di o-piccolo :

$$\sup_{x o x_0^+} R_{n,x_0}(x) = o((x-x_0)^n) \implies \lim_{x o x_0^+} rac{R_{n,x_0}(x)}{(x-x_0)^n} = 0$$

quindi la dimostrazione consiste nel svolgere un limite e dimostrare che fa $\mathbf{0}$. Iniziamo quindi da :

$$\lim_{x o x_0^+}rac{R_{n,x_0}(x)}{(x-x_0)^n}=\lim_{x o x_0^+}$$

Criterio della condizione necessaria per la convergenza

Se la serie $\sum_{k=0}^\infty a_k$ è convergente $\implies \lim_{n \to \infty} a_n = 0$ (quindi si fa il test del limite , se $\neq 0$ allora possiamo dire che non converge)

Per ipotesi sappiamo che la serie converge $\implies \lim_{n o \infty} S_n = S \in \mathbb{R}$

se facciamo un passo indietro e quindi per $S_{n-1} \implies \lim_{n \to \infty} S_{n-1} = S \in \mathbb{R}$ (converge lo stesso non frega niente se faccio un passo in indietro tanto $n \to \infty$) quindi abbiamo :

$$\lim_{n\to\infty} S_n - S_{n-1} = S - S = 0$$

inoltre notiamo che:

$$S_n-S_{n-1}= = (\underbrace{a_0+a_1}_{1}+\cdots+\underbrace{a_n-1}_{1}+a_n)-(\underbrace{a_0+a_1}_{1}+\cdots+\underbrace{a_{n-1}}_{n o\infty}) = a_n \implies \lim_{n o\infty}S_n-S_{n-1}=\lim_{n o\infty}a_n=0$$

Criterio di Leibniz

Il Criterio di Leibniz dice:

• IPOTESI:

Sia a_n una successione in $\mathbb R$ e

- ullet $a_n \geq a_{n+1}$ (decrescente , anche definitivamente)
- $\lim_{n o \infty} a_n = 0$
- $a_n \geq 0 \quad \forall n \in \mathbb{N}$
- TESI

La serie $\sum_{n=0}^{\infty} (-1)^n a_n < \infty$ (converge)

Dimostriamo quindi che la serie converge considerando la somma parziale $S_n=\sum_{k=0}^n (-1)^k a_k$ e quindi che il $\lim_{n\to\infty} S_n<\infty$, facciamo tutto in step :

- decrescenza di S_{2n} (somma parziale dei termini pari) : $S_{2n+2} \leq S_{2n}$ (il successivo è piu piccolo del precedente)
- crescenza di S_{2n-1} (somma parziale dei termini dispari) : $S_{2n+1} \geq S_{2n-1}$ (il successivo è piu grande del precedente)
- S_{2n} è limitata inferiormente
- S_{2n-1} è limitata superiormente
- ullet limiti di S_{2n} e S_{2n-1} sono uguali

Osserviamo prima che "andamento" ha la somma parziale e infatti notiamo che :

"Pasted image 20250624191245.png" could not be found.

$$S_n = \sum_{k=0}^n (-1)^k a_k = a_0 - a_1 + a_2 - a_3 + a_4 - a_5 + \ldots \ egin{cases} S_0 = a_0 \ S_1 = S_0 - a_1 \ S_2 = S_1 + a_2 \ S_3 = S_2 - a_3 \ S_4 = S_3 + a_4 \end{cases}$$

quindi notiamo che

$$egin{cases} S_{2n+2} = S_{2n+1} + a_{2n+2} \ S_{2n+1} = S_{2n} - a_{2n+1} \end{cases}$$

Decrescenza di S_{2n}

Notiamo che per la somma parziale pari (2n+2)

$$S_{2n+2} = \underbrace{S_{2n+1}} + a_{2n+2} = \underbrace{S_{2n} - a_{2n+1}} + a_{2n+2}$$

ma siccome per l'ipotesi che la successione è decrescente (il successivo è piu piccolo del precedente):

$$a_{2n+2} \le a_{2n+1} \implies -a_{2n+1} + a_{2n+2} \le 0$$

quindi se sommo a S_{2n} qualcosa di negativo allora il risultato sarà $\leq S_{2n}$, quindi abbiamo che :

$$S_{2n+2} = S_{2n} - a_{2n+1} + a_{2n+2} \le S_{2n} \implies S_{2n+2} \le S_{2n}$$

Crescenza di S_{2n-1}

Quindi analogamente notiamo che:

$$S_{2n+1} = \underbrace{S_{2n}} - a_{2n+1} = \underbrace{S_{2n-1} + a_{2n}} - a_{2n+1} \geq S_{2n-1} \implies S_{2n+1} \geq S_{2n-1}$$

Limitatezza superiore e inferiore

Quindi ora notiamo che:

$$S_{2n} = S_{2n-1} + a_{2n} \ge S_{2n-1} \implies S_{2n} \ge S_{2n-1}$$

quindi grazie alla decrescenza di S_{2n} (pari) e crescenza di S_{2n-1} (dispari) , e notiamo che :

$$\underbrace{S_1 \leq S_{2n-1}}_{S_{2n+1} \leq S_{2n-1}} \leq \underbrace{S_{2n} \leq S_0}_{S_{2n} \leq S_{2n+2}}$$

(questa situazione è la stessa nel disegno)

Quindi siccome S_{2n} è limitata superiormente e monotona crescente , per il teorema della successione monotona limitata inferiormente esiste il limite finito (converge) , analogamente per S_{2n-1} (ma per teorema inverso) :

$$\exists \lim_{n o \infty} S_{2n} = L_0 \quad \wedge \quad \exists \lim_{n o \infty} S_{2n-1} = L_1$$

$$L_0 = L_1$$

Per dimostrare che $L_0=L_1$, portiamo di la :

$$L_0 - L_1 = \lim_{n o \infty} (S_{2n} - S_{2n-1})$$

ma siccome:

$$S_{2n} = S_{2n-1} + a_{2n} \implies S_{2n} - S_{2n-1} = a_{2n}$$

quindi abbiamo che

$$L_0-L_1=\lim_{n o\infty}a_{2n}=0$$

dove nell'ultimo passaggio abbiamo usato l'ipotesi del criterio che $a_n o 0$.

Quindi abbiamo dimostrato che i due limiti sono uguali , e che quindi siccome le due somme parziali unendole otteniamo S_n ($\{S_{2n}\}\cup\{S_{2n-1}\}=S_n$) , abbiamo dimostrato che $S_n o L\in\mathbb{R}$ converge.

Limite notevole $\frac{\sin(x)}{x}$

Vogliamo dimostrare che $\lim_{x o 0} rac{\sin(x)}{x}=1$: quindi siccome la funzione $rac{\sin(x)}{x}$ risulta pari basta anche fare per $x o 0^+$ e notiamo che per x>0 (basta di poco infatti) , $\sin(x)\geq 0$ e quindi notiamo che

$$f(x) \le x \le an(x) = rac{\sin(x)}{\cos(x)} \implies ext{divido tutto per } \sin(x) \implies 0 \le 1 \le rac{x}{\sin(x)} \le rac{1}{\cos(x)}$$

$$\implies 1 \leq \frac{x}{\sin(x)} \leq \frac{1}{\cos(x)} \implies ext{passo per i reciproci} \implies \cos(x) \leq \frac{\sin(x)}{x} \leq 1 \implies$$

siccome

$$\underbrace{\cos(x)}_{ o 1 ext{ per } x o 0^+} \leq rac{\sin(x)}{x} \leq \underbrace{1}_{ o 1}$$

allora per il teorema dei Carabinieri anche $rac{\sin(x)}{x} o 1$ per $x o 0^+$. \Box

Disuguaglianza di Bernoulli

Vogliamo dimostrare che

$$orall n \geq 1 \; (\in \mathbb{N}^+) \quad orall x \geq -1 \quad (1+x)^n \geq 1 + nx$$

Dimostrazione per $\overline{\text{INDUZIONE}}$ su n:

$$PB: P(1) \implies (1+x)^1 \ge 1+x \implies VERO$$

 $extstyle{ iny PI}$: Sappiamo quindi da PB che $P(n): (1+x)^n \geq 1+nx$ è VERA allora dimostriamo che è VERA anche

$$P(n+1): (1+x)^{n+1} \geq 1 + (n+1)x \quad ext{per} \quad n \geq 1$$

Iniziamo e notiamo che

$$(-x)^{n+1} = (1+x)(1+x)^n \underbrace{\geq}_{P(n)} (1+x)(1+nx) = 1+nx+x+nx^2 = 1+(1+n)x+nx^2$$

quindi ora ci chiediamo se

$$1+(n+1)x+nx^2 \underbrace{\geq}_? 1+(n+1)x \implies ?= ext{si ovvio}$$

 \square .

Potenza di un binomio

Vogliamo dimostrare per INDUZIONE che

$$orall a,b\in\mathbb{R}\quad orall n\in\mathbb{N}^+\quad (a+b)^n=\sum_{k=0}^ninom{n}{k}a^{n-k}b^k$$

Partiamo con il passo base:

$$egin{align} P(1): (a+b)^1 &= \sum_{k=0}^1 inom{1}{k} a^{n-k} + b^k = \ &= inom{1}{0} a^{1-0} b^0 + inom{1}{1} a^{1-1} b^1 = \ &= a+b \implies P(n) \ \mathrm{\grave{e}} \ \mathrm{VERA} \ \end{cases}$$

Ora passiamo al passo induttivo:

- Ipotesi induttiva $o P(n): (a+b)^n = \sum_{k=0}^n inom{n}{k} a^{n-k} b^k$
- Tesi induttiva ↓

$$P(n+1): \underbrace{(a+b)^{n+1}}_{LHS} = \underbrace{\sum_{k=0}^{n+1} \binom{n+1}{k} a^{n+1-k} b^k}_{RHS}$$

Quindi iniziamo da LHS per arrivare a RHS e notiamo - utilizzando P(n) - che :

$$(a+b)^{n+1} = (a+b)(a+b)^n = (a+b)\sum_{k=0}^n inom{n}{k} a^{n-k} b^k$$

ora $\operatorname{distribuiamo} a$ e b con la sommatoria e abbiamo che :

$$(a+b)\sum_{k=0}^{n}inom{n}{k}a^{n-k}b^k = \sum_{k=0}^{n}inom{n}{k}a^{(n+1)-k}b^k + \sum_{k=0}^{n}inom{n}{k}a^{n-k}b^{k+1}$$

ora lasciamo la prima sommatoria uguale e facciamo uno "shift" di indice per la seconda sommatoria , quindi passiamo da k=0 o k=1 e quindi anche n o n+1 , ricordiamo però che ora nella seconda sommatoria ogni k diventa k-1 :

$$egin{aligned} \sum_{k=0}^n inom{n}{k} a^{(n+1)-k} b^k + \sum_{k=1}^{n+1} inom{n}{k-1} a^{n-(k-1)} b^{(k-1)+1} &= \ &= \sum_{k=0}^n inom{n}{k} a^{(n+1)-k} b^k + \sum_{k=1}^{n+1} inom{n}{k-1} a^{(n+1)-k} b^k \end{aligned}$$

ora " $tiriamo\ fuori$ " dalla prima sommatoria il primo termine (k=0) e dalla seconda sommatoria l'ultimo termine (k=n+1) (per poter "allineare" le due sommatorie e poi riunirle in una sola):

$$egin{split} inom{n}{0}a^{n+1}b^0 + \sum_{k=1}^ninom{n}{k}a^{(n+1)-k}b^k + \sum_{k=1}^ninom{n}{k-1}a^{(n+1)-k}b^k + inom{n+1}{n+1}a^{n-(n+1-1)}b^{n+1} = \ a^{n+1} + \sum_{k=1}^ninom{n}{k}a^{(n+1)-k}b^k + \sum_{k=1}^ninom{n}{k-1}a^{(n+1)-k}b^k + b^{n+1} \end{split}$$

dove nell'ultimo passaggio abbiamo utilizzato che $inom{n}{0}=inom{n+1}{n+1}=1$.

Ora siccome le due sommatorie partono e finiscono dagli stessi numeri (sono "allineate") , possiamo unirle in una sola :

$$a^{n+1} + b^{n+1} + \sum_{k=1}^n \left(\binom{n}{k} + \binom{n}{k-1}
ight) a^{n+1-k} b^k.$$

Ora utilizziamo la REGOLA DI PASCAL che dice che:

$$egin{pmatrix} n \ k \end{pmatrix} + egin{pmatrix} n \ k-1 \end{pmatrix} = egin{pmatrix} n+1 \ k \end{pmatrix}$$

quindi abbiamo che:

$$a^{n+1} + b^{n+1} + \sum_{k=1}^n inom{n+1}{k} a^{n+1-k} b^k$$

ora l'ultimo passo è "rimettere dentro" i due termini esterni tirati fuori prima, quindi dobbiamo ripartire con k=0 e finire fino a n+1 e quindi otteniamo proprio RHS :

$$\sum_{k=0}^{n+1} inom{n+1}{k} a^{n+1-k} b^k$$

 \square .

$$\sqrt{2}
ot\in\mathbb{Q}$$

Vogliamo dimostrare che $\sqrt{2}
ot\in\mathbb{Q}$ e che quindi siano a,b irriducibili , $\sqrt{2}$ non può essere scritto come $rac{a}{b}$, ma allora per dimostrare che $\sqrt{2}
otin\mathbb{Q}$, supponiamo per $ext{ASSURDO}$ che $\sqrt{2}\in\mathbb{Q}\implies\sqrt{2}$ può essere scritto come $rac{a}{b} \implies \sqrt{2} = rac{a}{b}$, ora eleviamo tutto al quadrato e quindi

$$2=rac{a^2}{b^2}\implies a^2=2b^2\implies \underbrace{a^2}_{
m pari}=\underbrace{2b^2}_{
m pari}$$
 , ma se a^2 è *pari* allora anche a è *pari* , quindi possiamo

chiamare a=2c

chiamare
$$a=2c$$
 $\implies (2c)^2=2b^2 \implies 4c^2=2b^2 \implies 2c^2=b^2 \implies \underbrace{2c^2}_{
m pari}=\underbrace{b^2}_{
m pari}$ ma se b^2 è *pari* allora

anche b è pari.

Quindi abbiamo ottenuto che sia a e b sono pari , da questo otteniamo una $\operatorname{CONTRADDIZIONE}$, siccome le nostre ipotesi erano che a e b erano "irriducibili" fra di loro , ovvero che erano $\emph{coprimi}$, ovvero che non hanno nessun divisore in comune. coprimi

Teorema della media Integrale

Il teorema della media integrale afferma che:

- Ipotesi : Sia $f:[a,b] o \mathbb{R}$
 - continua in [a,b] e quindi integrabile in [a,b]
- ullet Tesi $:\implies\exists\,c\in[a,b]:$

$$rac{1}{b-a}\int_a^b f(x)\,dx = f(c) \implies f(c)(b-a) = \int_a^b f(x)\,dx$$

Iniziamo , osservando che siccome f è continua in [a,b] allora per il <code>TEOREMA DI WEIERSTRASS</code> , sappiamo che esistono il massimo e il minimo :

$$\exists\, m,M\in\mathbb{R}: m\leq f(x)\leq M\quad orall x\in[a,b]$$

Ora possiamo osservare che se consideriamo una partizione dei soli punti $x_0 = a < b = x_1$, che **chiamiamo** σ , possiamo dire che allora che :

$$s(f,\sigma)=m(b-a)\leq \int_a^b f(x)\,dx\leq M(b-a)=S(f,\sigma)$$

ma allora dividendo tutto per (b-a) otteniamo che :

$$m \leq rac{1}{b-a} \int_a^b f(x) \, dx \leq M$$

ora siccome $\frac{1}{b-a}\int_a^b f(x)\,dx$ si trova tra m e M , per il <code>TEOREMA DEI VALORI INTERMEDI</code> abbiamo che :

$$\exists\, c\in [a,b]: f(c)=rac{1}{b-a}\int_a^b f(x)\,dx$$

 \Box .

Teorema del calcolo Integrale

Il teorema del calcolo integrale afferma che:

ullet Ipotesi : sia f continua in [a,b] e definita la funzione $I(x):[a,b] o\mathbb{R}$, dove :

$$I(x): \int_{a}^{x} f(t) dt$$

- Tesi
 - 1. I è derivabile in [a,b] e $I^{\prime}(x)=f(x)$ (ovvero che I è una primitiva di f)
 - 2. sia F una qualsiasi primitiva di f ovvero che $F^{\prime}(x)=f(x)$ allora abbiamo che :

$$\int_a^b f(x) \, dx = [F(x)]_a^b = F(b) - F(a)$$

Tesi 1

Vogliamo dimostrare che data la funzione I(x) definita come nelle ipotesi , allora I è derivabile in [a,b] ed è una primitiva di f , quindi dobbiamo "lavorare" con il rapporto incrementale di I(x) , quindi consideriamo $x,x+h\in [a,b]$ con $h\neq 0$, quindi abbiamo che

$$I'(x) = \lim_{h o 0} rac{I(x+h)-I(x)}{h} =
onumber \ = rac{1}{h}igg[\int_a^{x+h}f(t)\,dt-\int_a^xf(t)\,dtigg] =
onumber \ = rac{1}{h}igg[\int_a^xf(t)\,dt+\int_x^{x+h}f(t)\,dt-\int_a^xf(t)\,dtigg]$$

quindi otteniamo che:

$$\lim_{h o 0}rac{1}{h}\int_x^{x+h}f(t)\,dt$$

ora osserviamo che possiamo applicare il <code>TEOREMA DELLA MEDIA INTEGRALE</code> in [x,x+h] , quindi otteniamo che :

$$\exists\, c(h)\in [x,x+h]:\ f(c(h))=rac{1}{\cancel{x}+h-\cancel{x}}\int_x^{x+h}f(t)\,dt$$

ma siccome $x \leq c(h) \leq x+h$ allora per confronto anche c(h) o x per h o 0 , quindi otteniamo che:

$$I'(x)=\lim_{h o 0}rac{1}{h}\int_x^{x+h}f(t)\,dt=\lim_{h o 0}f(c(h))=f(x)$$

ovvero proprio la nostra tesi 1...

Tesi 2

Vogliamo dimostrare che se prendiamo una qualsiasi primitiva di f ovvero F allora possiamo usare la formula (mostrata nella tesi 2.) per calcolare l'integrale. Quindi per dimostrare la tesi 2, possiamo partire dal fatto che F è una primitiva , quindi vuol dire che F(x) = I(x) + c , siccome anche I(x) per 1. è una primitiva di f .

Quindi possiamo osservare che:

$$F(b)-F(a)=I(b)+ \cancel{x}-I(a)-\cancel{x} \mathop= \limits_{\det\operatorname{def}\operatorname{di}\operatorname{I}(\operatorname{x})} = \int_a^b f(x)\,dt - \underbrace{\int_a^a f(x)\,dx}_{=0} = \int_a^b f(x)\,dx$$

ovvero la nostra tesi 2 .

 \square .

Teorema del confronto integrale

Il teorema afferma che:

- Ipotesi : siano f e g funzioni
 - continue in [a,b) con $b\in\mathbb{R}\cup\{\pm\infty\}$
 - integrabili in $[a,t] \quad orall \, t \in (a,b)$
 - $0 \le f(x) \le g(x) \quad \forall x \in [a,b)$
- - se $\int_a^b g(x)\,dx$ converge $\Longrightarrow \int_a^b f(x)\,dx$ converge se $\int_a^b f(x)\,dx$ diverge $\Longrightarrow \int_a^b g(x)\,dx$ diverge

Osservazione preliminare

Prima di dimostrare il teorema abbiamo bisogno di una osservazione fondamentale, ovvero che : sia $f:[a,b) o \mathbb{R}$ con $b\in\mathbb{R}\cup\{\pm\infty\}$, e tale che f sia integrabile in qualsiasi punto $c\in[a,b)$ (ovvero che comunque prendo un punto $c \in [a,b)$ posso fare l'integrale della funzione) e $f(x) \geq 0 \quad orall x \in [a,b)$, sappiamo che anche la funzione integrale F(t) , definita come :

$$F(t) = \int_a^t f(x) \, dx$$

sarà crescente in $|a,b\rangle$.

Infatti se considero due punti t_1, t_2 tale che $a \leq t_1 < t_2 < b$ allora ottengo che :

$$F(t_2) - F(t_1) = \int_{t_1}^{t_2} f(x) \, dx \geq 0 \implies F(t_2) \geq F(t_1)$$

dove nell'ultimo passaggio deduciamo che anche $\int_{t_1}^{t_2} f(x)\,dx \geq 0$ siccome anche la funzione $f(x) \geq 0$ in [a,b).

(inoltre notiamo che partiamo da $F(t_2)-F(t_1)$ per capire che segno ha in modo da dedurre che è crescente , ovvero che comunque prendo due punti $t_1 < t_2$ devo ottenere che $F(t_2) \geq F(t_1)$)

Quindi se ho una funzione F(t) crescente in [a,b] , allora ammette limite :

$$\lim_{t o b^-} F(t) = \lim_{t o b^-} \int_a^t f(x)\,dx = \int_a^b f(x)\,dx$$

Dimostrazione

Ora dimostriamo il teorema considerando due funzioni F(t) e G(t) nel seguente modo :

$$F(t) = \int_a^t f(x) \, dx \quad \wedge \quad G(t) = \int_a^t g(x) \, dx$$

ora siccome abbiamo la relazione (ipotesi) che $0 \le f(x) \le g(x) \quad \forall x \in [a,b)$, allora necessariamente con $a \le t < b$ abbiamo che anche le due funzioni definite seguono la stessa "relazione" :

$$0 \le F(t) \le G(t) \implies 0 \le \int_a^t f(x) \, dx \le \int_a^t g(x) \, dx$$

ma siccome grazie all'osservazione preliminare e alla permanenza del segno dei limiti , sappiamo che : F(t), G(t) sono funzioni crescenti allora ammettono limiti , quindi avremo che :

$$0 \leq \lim_{t o b^-} \int_a^t f(x) \, dx \leq \lim_{t o b^-} \int_a^t g(x) \, dx$$

ma per definizione di integrale improprio otteniamo che:

$$0 \le \int_a^b f(x) \, dx \le \int_a^b g(x) \, dx$$

e da questo otteniamo la tesi.

Teorema del confronto integrali - serie

