Riassunto documentazione gyro

I2C comunica attraverso 2 segnali: SDA (serial data) e SCL (serial clock). Questi segnali tipicamente hanno bisogno di un pull-up a VDD. La frequenza massima del bus è 400 kHz.

L'MPU ha la possibilità di avere 2 indirizzi: b110100X, il bit meno significativo è determinato dal livello logico al pin AD0, se è basso allora l'indirizzo sarà b1101000, se alto: b1101001

Start, stop

Il master invia un comando di start allo slave quando vuole trasmettere/ricevere dati:

start: SDA passa da alto a basso mentre SCL è alto. (il bus è considerato impegnato fino a quando il master manda il comando di stop)

stop: SDA passa da basso a alto mentre SCL è alto.

Figure 5. Example of START and STOP Condition

Trasmissione dati

Un bit per clock dell'SCL sulla linea SDA (prima il bit più significativo). I2C comunica mandato i dati in byte SDA deve essere stabile durante la fase in cui SCL è alto, altrimenti viene interpretato come un comando.

Figure 6. Example of Single Byte Data Transfer

ACK e NACK

Ogni byte di dati è seguito da un bit di ACK dal ricevitore.

Prima che il ricevitore possa mandare l'ACK il trasmettitore deve lasciare l'SDA.

per inviare l'ACK: il ricevitore deve abbassare l'SDA durante la fase bassa del 9 periodo di clock (quello dell'ACK) in modo SDA sia stabile basso durante la fase alta del 9 periodo del clock.

Se SDA rimane alto durante la 9 fase del clock viene interpretato come NACK.

Acknowledge on the I²C Bus

Se uno slave è occupato e non può trasmettere o ricevere un altro byte di dati finché non viene eseguita un'altra attività, può mantenere SCL LOW, forzando così il master in uno stato di attesa. Il normale trasferimento dati riprende quando lo slave è pronto e rilascia la linea di clock.

I2C data

Mandare/ricevere dati comporta la scrittura/lettura dei registri dello slave.

Ogni byte di dati deve essere seguito da un ACK

Scrivere nel registro dello slave

Per scrivere sul bus I2C il master manda una condizione di start seguita dall'indirizzo dello slave (7 bit) e dal bit che indica se vuole leggere o scrivere (0 per scrivere), dopodiché il master rilascia SDA. Dopo che lo slave ha inviato l'ACK il master manda l'indirizzo del registro dello slave su cui vuole scrivere. Dopo che lo slave ha inviato l'ACK il master invia i dati da scrivere nel registro (8 bit). Quando il master riceve l'ACK dallo slave termina la trasmissione con il comando di stop.

Se si vuole scrivere in più di un registro (quindi scrivere più di un byte) il master può continuare a mandare byte di dati (sempre dopo la ricezione dell'ACK) e lo slave scriverà automaticamente i dati nel registro successivo.

Figure 8 shows an example of writing a single byte to a slave register.

Master Controls SDA Line
Slave Controls SDA Line

Write to One Register in a Device

Figure 8. Example I²C Write to Slave Device's Register

Single-Byte Write Sequence

Master	S	AD+W		RA		DATA		Р
Slave			ACK		ACK		ACK	

Burst Write Sequence

Master	S	AD+W		RA		DATA		DATA		Р
Slave			ACK		ACK		ACK		ACK	

Leggere dal registro dello slave

Molto simile alla scrittura.

Il master inizia la trasmissione con il comando start e invia l'indirizzo dello slave con cui vuole comunicare seguito dal bit di R/W =0 (significa write). Una volta che lo slave ha inviato l'ACK il master invia l'indirizzo del registro che vuole leggere dallo slave (8 bit). Dopo che lo slave ha mandato l'ACK il master manda un altro comando START seguito dall'indirizzo dello slave e dal bit R/W

= 1 (significa read). Adesso lo slave manderà l'ACK e il master rilascerà il bus SDA continuando però a fornire il clock allo slave. Adesso lo slave invierà i bit del registro al master e il master invierà un ACK allo slave al termine di ogni byte di dati in modo da far capire allo slave che il master è pronto a ricevere altri dati. Una volta che il master ha ricevuto tutti i byte che si aspetta manderà un NACK allo slave per comunicargli di interrompere la trasmissione e di rilasciare il bus. Il master invierà, di seguito al NACK, un comando di stop.

Figure 9. Example I²C Read from Slave Device's Register

Single-Byte Read Sequence

Master	S	AD+W		RA		S	AD+R			NACK	Р
Slave			ACK		ACK			ACK	DATA		

Burst Read Sequence

Master	S	AD+W		RA		S	AD+R			ACK		NACK	Р
Slave			ACK		ACK			ACK	DATA		DATA		

MPU 6050

Schematics (gy 521)

Registro 25: sample rate divider

Frequenza di campionamento giroscopio:

Veloce: DLPCFG=0,7 8kHz **Lenta**: DLPCFG=1,2,3,4,5,6 1kHz

Frequenza di campionamento accelerometro:

1kHz

La frequenza di campionamento dell'output è calcolata definendo un Sample Rate Divider, impostato negli 8 bit del registro 25 La frequenza di campionamento dell'output è definita dalla seguente formula:

Sample Rate= Gyroscope output rate / (1+sample rate divider)

[dato che l'output dell'accelerometro è a 1kHz per frequenze di campionamento dell'output maggiori di 1kHz potrebbe dare in output lo stesso valore più volte]

Il registro 25 (SMPLRT_DIV) è un valore a 8 bit unsigned

Registro 26: Configurazione

Type: Read/Write

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1A	26		-	EXT	_SYNC_SET	[2:0]	D	LPF_CFG[2:0]

Questo registro si compone di 2 valori:

- EXT_SYNC_SET: non ho capito bene cosa sia, credo serva per collegare altri sensori all'MPU (non dovrebbe interessarci)
- DLPF_CFG: questo valore serve per configurare il Digital Low Pass Filter per il giroscopio e l'accelerometro

DLPF_CFG	Acceleror (F _s = 1k			Gyroscope	•
	Bandwidth (Hz)	Delay (ms)	Bandwidth (Hz)	Delay (ms)	Fs (kHz)
0	260	0	256	0.98	8
1	184	2.0	188	1.9	1
2	94	3.0	98	2.8	1
3	44	4.9	42	4.8	1
4	21	8.5	20	8.3	1
5	10	13.8	10	13.4	1
6	5	19.0	5	18.6	1
7	RESERVED		RESER	8	

Bit 7 and bit 6 are reserved.

[sinceramente non credo servirà molto per quello che dobbiamo fare]

Sono tutti valori unsigned a 3 bit

Registro 27: Configurazione del giroscopio

(GYRO_CONFIG)

Type: Read/Write

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1B	27	XG_ST	YG_ST	ZG_ST	FS_S	EL[1:0]	-	-	-

Questo registro è usato per triggerare il self-test del giroscopio e configurare il range della scala del'output del giroscopio. Il self test serve per capire se il giroscopio funziona entro i limiti di fabbricazione (non ci serve)

Mentre FS_SEL serve per selezionare il range della scala dell'output del giroscopio:

FS_SEL	Full Scale Range
0	± 250 °/s
1	± 500 °/s
2	± 1000 °/s
3	± 2000 °/s

I bit da 2 a 0 sono riservati FS_SEL: 2 bit unsigned

Registro 28: configurazione accelerometro

Type: Read/Write

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1C	28	XA_ST	YA_ST	ZA_ST	AFS_S	EL[1:0]		-	

Stessa cosa del registro 27

AFS SEL selezione il range della scala dell'output dell'accelerometro

AFS_SEL	Full Scale Range
0	± 2g
1	± 4g
2	± 8g
3	± 16g

I bit da 2 a 0 sono riservati AFS_SEL: 2 bit unsigned

Registro 55: INT Pin / Bypass Enable Configuration

(INT_PIN_CFG)

Type: Read/Write

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
37	55	INT_LEVEL	INT_OPEN	LATCH _INT_EN	INT_RD _CLEAR	FSYNC_ INT_LEVEL	FSYNC_ INT_EN	I2C _BYPASS EN	-

Questo registro serve per configurare il comportamento dei segnali di interrupt provenienti dall'MPU 6050. Inoltre è usato anche per settare il pin FSYNC per essere usato come interrupt e per abilitare il bypass del bus I2C ausiliario (permette al master sul bus I2C primario di comunicare con gli slave sul bus I2C ausiliario e di conseguenza abilita l'output del clock)

FSYNC sulla scheda gy 521 si trova sempre a ground quindi non possiamo usarlo I parametri che ci possono interessare sono:

INT_LEVEL: se è a 0 allora l'interrupt sul pin INT è attivo alto, se a 1 è attivo basso

INT_OPEN: se è a 0 allora INT è configurato come push-pull (può andare sia a HIGH che a LOW a noi interessa questo, va bene per un solo dispositivo collegato), se è a 1 viene configurato come open-drain (può andare solo a terra LOW, e serve una resistenza di pull-up, serve se più dispositivi sono collegati contemporaneamente)

LATCH_INT_EN: se a 0 quando viene attivato l'interrupt viene emesso un impulso di 50 micro-secondi, quando è messo a 1 INT è mantenuto attivo fino a quando l'interrupt non viene pulito.

INT_RD_CLEAR: quando è a 0, lo stato dell'interrupt è pulito solamente leggendo INT_STATUS (registro 58), quando è a 1 lo stato dell'interrupt è pulito ad ogni operazione di read.

Registro 56: interrupt enable

(INT_ENABLE)

Type: Read/Write

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
38	56				FIFO _OFLOW	I2C MST _INT_EN			DATA _RDY_EN

A noi interessa **DATA_RDY_EN**, quando è impostato a 1 viene generato un interrupt ogni volta che sono pronti nuovi dati da leggere (provenienti dal giroscopio, dall'accelerometro o dal sensore di temperatura).

Registro 58: interrupt status

(INT_STATUS)

Type: Read Only

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
3A	58				FIFO _OFLOW	I2C MST _INT			DATA _RDY_INT

Questo registro mostra lo stato dell'interrupt di ogni origine. <u>ogni bit viene pulito una volta che viene letto il registro</u> Il bit va a 1 quanto viene generato un interrupt da quella origine.

Registri da 59 a 64: misure dell'accelerometro

(ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H, ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L)

Type: Read Only

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
3B	59		ACCEL_XOUT[15:8]							
3C	60		ACCEL_XOUT[7:0]							
3D	61		ACCEL_YOUT[15:8]							
3E	62		ACCEL_YOUT[7:0]							
3F	63		ACCEL_ZOUT[15:8]							
40	64		ACCEL_ZOUT[7:0]							

Questi registri contengono le misurazioni più recenti dell'accelerometro

I dati delle misurazioni dei vari sensori sono scritti in registri interni alla velocità del sampling rate e vengono copiati sui registi user-faced solo quando l'interfaccia seriale è inattiva per garantire che un burst di lettura legga i dati registrati nello stesso istante. (se non sono usati burst di lettura ciò non è garantito, in questo caso l'utente è responsabile di assicurarsi che i dati siano corretti controllando il Data Ready interrupt).

Sensibilità:

AFS_SEL	Full Scale Range	LSB Sensitivity
0	±2g	16384 LSB/g
1	±4g	8192 LSB/g
2	±8g	4096 LSB/g
3	±16g	2048 LSB/g

ogni valore a 16 bit è in complemento a 2

Registri da 65 a 66: misurazioni della temperatura

(TEMP_OUT_H, TEMP_OUT_L)

Type: Read Only

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
41	65		TEMP_OUT[15:8]						
42	66		TEMP_OUT[7:0]						

Stessa storia dei registri dell'accelerometro

La temperatura in gradi centigradi è calcolata nel modo seguente: temp C = (TEMP_VALUE (valore a 16 bit signed))/ 340 + 36,53

Registri da 67 a 72: misurazioni del giroscopio

 $(\mathsf{GYRO_XOUT_H},\,\mathsf{GYRO_XOUT_L},\,\mathsf{GYRO_YOUT_H},\,\mathsf{GYRO_YOUT_L},\,\mathsf{GYRO_ZOUT_H},\,\mathsf{GYRO_ZOUT_L})\\ \textbf{Type: Read Only}$

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
43	67				GYRO_XOUT	T[15:8]					
44	68		GYRO_XOUT[7:0]								
45	69		GYRO_YOUT[15:8]								
46	70		GYRO_YOUT[7:0]								
47	71		GYRO_ZOUT[15:8]								
48	72		GYRO_ZOUT[7:0]								

Sensibilità per ogni scala:

FS_SEL	Full Scale Range	LSB Sensitivity
0	± 250 °/s	131 LSB/°/s
1	± 500 °/s	65.5 LSB/°/s
2	± 1000 °/s	32.8 LSB/°/s
3	+ 2000 °/e	16 4 I SR/°/e

ogni valore a 16 bit è in complemento a 2

Registro 104: signal path reset

(SIGNAL_PATH_RESET)

Type: Write Only

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
68	104			-			GYRO RESET	ACCEL RESET	TEMP RESET

Questo registro è usato per resettare i filtri dei dati di giroscopio, accelerometro e temperatura (resetta le parti di processazione dei dati interne)

Questo registro non pulisce i registri dei sensori. Inoltre inizializza l'interfaccia seriale.

Bit da 3 a 7 sono riservati

GYRO_RESET: quando messo a 1 resetta i filtri del giroscopio

(lo stesso vale per gli altri 2 registri)

Registro 106: User Control

(USER_CTRL)

Type: Read/Write

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
6A	106		FIFO_EN	I2C_MST _EN	I2C_IF _DIS	-	FIFO _RESET	I2C_MST _RESET	SIG_COND _RESET

12C IF DIS va sempre lasciato a 0

Ci interessa solo **SIG_COND_RESET**: quando messo a 1 questo bit resetta i filtri di ogni sensore e ripulisce tutti i registri dei sensori. Torna automaticamente a 0 dopo che il reset è stato triggerato.

Registro 107: power management 1

(PWR_MGMT_1)

Type: Read/Write

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
6B	107	DEVICE _RESET	SLEEP	CYCLE		TEMP_DIS		CLKSEL[2:0]	

Questo registro consente di configurare la power mode e l'origine del clock, inoltre ha un bit per resettare l'intero dispositivo e uno per disabilitare il sensore di temperatura.

SLEEP: impostandolo a 1 l'MPU 6050 viene messo in sleep mode (consumando meno).

CYCLE: quando è impostato a 1 mentre SLEEP è a 0 l'MPU 6050 ciclerà tra sleep mode e svegliarsi per registrare un singolo campione di dati dall'accelerometro ad una certa frequenza determinata da LP_WAKE_CONTROL (registro 108).

CLKSEL: come clock può essere selezionato: un oscillatore interno da 8MHz, clock basato sul giroscopio o un origine esterna (32.768kHz, 19.2 MHz square wave). Quando è selezionato il clock interno da 8MHz l'MPU 6050 può operare in low power mode con il giroscopio disabilitato. All'accensione è scelto come clock default quello interno da 8 MHz, però è consigliabile utilizzare un clock basato sul giroscopio o uno esterno per migliorarne la stabilità. (dato che noi utilizzeremo principalmente il giroscopio è consigliato utilizzare il clock del giroscopio che è più preciso)

CLKSEL	Clock Source				
0	Internal 8MHz oscillator				
1	PLL with X axis gyroscope reference				
2	PLL with Y axis gyroscope reference				
3	PLL with Z axis gyroscope reference				
4	PLL with external 32.768kHz reference				
5	PLL with external 19.2MHz reference				
6	Reserved				
7	Stops the clock and keeps the timing generator in reset				

DEVICE_RESET: quando settato a 1 viene effettuato un reset completo di ogni registro. Il valore ritorna a 0 dopo il reset **TEMP_DIS**: quando settato a 1 viene disabilitato il sensore di temperatura

Registro 108: power management 2

(PWR_MGMT_2)

Type: Read/Write

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
6C	108	LP_WAKE_	CTRL[1:0]	STBY_XA	STBY_YA	STBY_ZA	STBY_XG	STBY_YG	STBY_ZG

Questo registro è usato per configurare la frequenza di wake up in low power mode. Inoltre serve per mettere in standby singoli assi dell'accelerometro e del giroscopio.

Se si sta usando un clock generato dal giroscopio e quell'asse viene messo in standby si passerà automaticamente al clock interno da 8MHz

STBY_XA, STBY_YA, STBY_XG, STBY_YG, STBY_ZG: se uno di questi bit viene messo a 1 viene disabilitato l'asse del sensore corrispondente

Registro 117: Who am I

Type: Read Only

.,,,									
Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
75	117	-		WHO_AM_I[6:1]					

Contiene i 6 bit più significativi dell'indirizzo del dispositivo (il 7 bit è definito dal pin AD0)

[questo è quello che ho ritenuto più importante, per qualsiasi cosa che non riguarda i registri guardale il pdf con la product specification]