Logistic regression, curvilinear regression, and the interpretation of results

Amm Quamruzzaman
ISF, UC Berkeley
March 29, 2022

Outline

- I. Introduction
- II. The problem of classification
- III. When to use which type of logistic regression?
- IV. Simple or binomial logistic regression
- V. Multinomial logistic regression
- VI. Ordinal or ordered logistic regression
- VII. Interpretation of results
- VIII.Curvilinear or logistic?

I. Introduction

• While linear regression is good for prediction, we cannot use it to solve a problem of classification in the outcome (DV).

II. The problem of classification

- Binary classification (0 or 1): When the outcome variable has only two categories, such as success or failure, high or low, etc.
 - Use simple or binomial logistic or logit or probit regression.
- Multinomial classification: When the outcome has multiple categories but no rank order, such as you can go to college (academic), trade school (vocational), or into the workforce (general) based on your SES.
 - Must use multinomial logistic regression.
- Ordinal classification: The DV has multiple categories with a rank order, such as on a 0-5 scale; low, medium, high; unemployed, part-time employed, full-time employed, etc.
 - Use ordinal or ordered logistic regression.

III. When to use which type of logistic regression?

• Depends on:

Types of Logistic Regression Models

	Binomial Logistic	Multinomial Logistic	Ordinal Logistic
	Regression	Regression	Regression
Number of Categories for			
Response Variable	2	3 or more	3 or more
Does Order of Categories Matter?	No	No	Yes

- Sometimes, logistic regression is problematic when the IVs are categorical based on some arbitrary categories (e.g., age from continuous to uneven categories like young, adult, old).
- In this case, curvilinear regression can be a better fit to the data [example at the end].

IV. Simple or binomial logistic regression

- Simple logistic regression is like simple linear regression.
- But the curve is constructed using the natural logarithm of the "odds" of the DV, rather than the probability.
- By this transformation, the logistic regression equation can be written in terms of an odds ratio.
- Taking the natural log of both sides, we can write the equation in terms of log-odds (logit).
- The coefficient (b_1) is the amount the logit (log-odds) changes with a one unit change in x.

$$\frac{p}{1-p} = \exp(b_0 + b_1 x) \quad logit(p) = \ln\left(\frac{p}{1-p}\right)$$

$$ln\left(\frac{p}{1-p}\right) = b_0 + b_1 x \qquad p = \frac{1}{1 + e^{-logit(p)}}$$

V. Multinomial logistic regression

- Like multiple linear regression, logistic regression can handle any number of numerical and/or categorical variables.
- If the DV is a categorical variable with more than two categories where order does not matter, we can write:

$$\hat{P}(Y_i = \text{academic}) = \frac{\exp[-5.0391 + 0.1099x_i]}{1 + \exp[-5.0391 + 0.1099x_i] + \exp[2.8996 - 0.0599x_i]}$$

$$\hat{P}(Y_i = \text{vocational}) = \frac{\exp[2.8996 - 0.0599x_i]}{1 + \exp[-5.0391 + 0.1099x_i] + \exp[2.8996 - 0.0599x_i]}$$

$$\hat{P}(Y_i = \text{general}) = \frac{1}{1 + \exp[-5.0391 + 0.1099x_i] + \exp[2.8996 - 0.0599x_i]}$$

$$p = \frac{1}{1 + e^{-(b_0 + b_1 x_1 + b_2 x_2 + \dots + b_p x_p)}}$$

VI. Ordinal or ordered logistic regression

- Suppose, in a survey the proportions of respondents who would answer "poor", "fair", "good", "very good", and "excellent" health are respectively p1, p2, p3, p4, p5.
- The logarithms of the odds of answering in certain ways are:

poor,
$$\log \frac{p_1}{p_2 + p_3 + p_4 + p_5}$$
, 0

poor or fair,
$$\log \frac{p_1+p_2}{p_3+p_4+p_5}$$
, 1

poor, fair, or good,
$$\log \frac{p_1+p_2+p_3}{p_4+p_5}$$
,

$$\text{poor, fair, good, or very good,} \quad \log \frac{p_1 + p_2 + p_3 + p_4}{p_5}, \quad 3$$

VII. Interpretation of results

```
use https://stats.idre.ucla.edu/stat/data/hsb2, clear
generate honcomp = (write >=60) ——This classification is arbitrary
logit honcomp female read science
Iteration 0: log likelihood = -115.64441
Iteration 1: log likelihood = -84.558481
Iteration 2:
            log likelihood = -80.491449
                                         Iteration log or LL
           log likelihood = -80.123052
Iteration 3:
Iteration 4: log likelihood = -80.118181
             log likelihood = -80.11818
Iteration 5:
                                           Number of obs =
Logit estimates
                                                                 200
                                           LR chi2(3) = 71.05
Prob > chi2 = 0.0000
Log likelihood = -80.11818
                                           Pseudo R2 = 0.3072
    honcomp | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    female 1.482498 .4473993 3.31 0.001
                                                  .6056111 2.359384
              .1035361 .0257662 4.02 0.000 .0530354 .1540369
      read
    science |
            .0947902 .0304537 3.11 0.002 .035102 .1544784
              -12.7772 1.97586
                                   -6.47
                                         0.000
                                                  -16.64982
                                                            -8.904589
      cons
```

VII. Interpretation of results...

- The coefficients are given in log-odds units.
- They are often difficult to interpret, so they are often converted into odds ratios, by using "logistic" command or writing "or" option if you use "logit" command.
- Alternatively, use "probit" that gives you coefficients like OLS.

Odds ratio <1
means less likely,
whereas >1 means
more likely. OR
cannot be negative.

VIII. Curvilinear or logistic?

- If existing theory suggests a curvilinear pattern, do not use logistic function; use a curvilinear model (usually, by adding a squared or cubed term to the linear regression equation).
- Theory: The probability of being diagnosed with diabetes is low in early life, then it accelerates at later ages, finally slowing down.

VIII. Curvilinear or logistic?

 Curvilinear regression fits the observed probabilities better than logit (log-odds of linear coefficients).

