PRÁCTICO- LÓGICA

Ejercicios

- 1) Cuáles de las expresiones son proposiciones, dando en cada caso su valor de verdad. Entre las que no lo fueran reconocer las funciones proposicionales.
 - a. 2 + 3 = 5
 - b. Todo cuadrado es un rombo
 - c. X + 2 = 6
 - d. Qué día es hoy?
 - e. 20 es múltiplo de 4
 - f. Todo número entero es un número natural.
 - g. No molestar
 - h. Todo número racional es un número real
 - i. x 2y < 0
 - j. x es un número par
- 2) Sean las funciones proposicionales:
 - a. P(x): x es impar

Hallar el valor de la proposición resultante cuando:

- X = -4
- X = 5
- b. P(x,y): x es divisor de y

Hallar el valor de la proposición resultante cuando:

$$X = -2, y = 6$$

$$X = 5, y = 8$$

- 3) Sean p, q, r las proposiciones
- p: hoy es feriado
- q: mañana es laborable
- r: hoy es lunes

Escribir en forma simbólica

- a. Hoy es feriado y mañana es laborable, o, hoy es lunes y mañana es laborable
- b. Si hoy es feriado, entonces hoy no es lunes y mañana es laborable.-
- c. Si hoy es lunes y mañana es laborable, entonces hoy es feriado.
- d. Mañana es laborable y hoy no es feriado, ó hoy es lunes
- 4) Siendo p: tengo un perro y q: tengo un gato; escribir en lenguaje corriente las expresiones simbólicas siguientes

c. -p
$$\Lambda$$
 -q

5) Construir las tablas de verdad correspondientes a:

c.
$$-(p \land q)$$

- 6) En el ejercicio anterior hay una proposición equivalente a p \rightarrow q encuéntrela.-
- 7) Demostrar las siguientes equivalencias enunciadas en teoría

b.
$$p \land p \equiv p, p \lor p \equiv p$$

c.
$$p V q \equiv q V p, p \Lambda q \equiv q \Lambda p$$

d.
$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$
, $(p \land q) \land r \equiv p \land (q \land r)$

e.
$$(p \lor q) \land r \equiv (p \land r) \lor (q \land r), (p \land q) \lor r \equiv (p \lor r) \land (q \lor r)$$

$$f. - (p \lor q) \equiv -p \land -q$$

8) Construir las tablas de verdad correspondientes a las proposiciones que se dan

a.
$$q \rightarrow p$$

b.
$$-p \rightarrow q$$

c. p
$$\rightarrow$$
 -q

a.
$$q \rightarrow p$$
 b. $-p \rightarrow q$ c. $p \rightarrow -q$ d. $(-p) \rightarrow (-q)$

$$e. - (a \rightarrow p)$$

e.
$$\neg (q \rightarrow p)$$
 f. $(\neg q) \rightarrow (\neg p)$ g. $\neg (p \rightarrow q)$

$$g. -(p \rightarrow q)$$

- 9) Demostrar que:
 - a. p Λ p implica p
 - b. p V q no implica p
 - c. -p implica $p \rightarrow q$
- 10) Escribir los condicionales recíproco, contrario y contra reciproco de los siguientes condicionales directos:
 - a. Si un número par es divisible por 3 entonces es múltiplo de 6.
 - b. ABCD tiene sus lados opuestos paralelos entonces ABCD es un rectángulo.
- 11) Verificar que los siguientes bicondicionales son tautologías.

a.
$$(p \rightarrow q) \leftrightarrow (-p \rightarrow -q)$$

b.
$$(q \rightarrow p) \leftrightarrow (-p \rightarrow -q)$$

12) Negar los siguientes condicionales

a.
$$x > 5 \rightarrow x^2 > 25$$

$$b. a < b \rightarrow a + b < b + c$$

13) Dibujar los circuitos correspondientes a las siguientes proposiciones

b.
$$(p \land q) \lor -q$$

c.
$$(p \land \neg q) \rightarrow r$$

d.
$$(p \rightarrow q) \land (q \rightarrow p)$$

e.
$$(p \land r) \rightarrow (-q \lor r)$$

14) Escribir las proposiciones correspondientes a los siguientes circuitos

15) Negar las siguientes proposiciones:

$$\exists x / P(x) V - Q(x)$$

$$\forall x: P(x) \to Q(x)$$

$$\forall x : \exists \ y : x * y = 0$$

16) Considerar las siguientes funciones proposicionales:

$$P(x): x^2 - 3x + 6 = 0$$

$$Q(x):x^2>2$$

$$R(x):x^3 + 1 = (x+1)^3$$

Convertirlas por medio de los cuantificadores $\forall y \exists y \text{ decir si las proposiciones son verdaderas } of son falsas, cuando <math>x = \mathbb{Z}$.