Thursday, November 4, 2021 9:29 AM

If
$$X$$
 continuous and $Y = g(X)$ and

(1) g invertible

(2) g^{-1} different fixable

$$f_{Y}(y) = f_{X}(g^{-1}(y)) \left| \frac{dg^{-1}}{dy} \right|$$

If X is continuous w/ support X ad (Ai) partition of ad Y = g(X) so that

gi is g restricted to Ai

Dar prev. Thearn applies to each gi (gi invertible, gi differtiable)

(2) the image of Ai moder gi is

Some for all
$$i=1,...,K$$

(call this y)

then $f_y(y) = \sum_{i=1}^{K} f_x(g_i(y)) | clg_i(y) | clg_i(y) | dy |$

Ex. Chi-Squared Distribution

If $X \sim N(o_i(1))$ and $Y = X^2$

then we say y has a Chi-Sq. dist.

 y' one degree of freedom.

 $y' \sim \chi'(1)$
 $y=g(x)=\chi^2$

(ulat is PDF of Y ?, precurse $y=\chi^2$
 $y=\chi^2$

$$\begin{cases} A_{1} = (0, \infty), \ g_{1}(x) = \chi^{2}, \ g'(y) = \sqrt{y}, \ \frac{dg^{-1}}{dy} = \frac{1}{2\sqrt{y}} \\ A_{2} = (-m, 0), \ g_{1}(x) = x^{2}, \ g'(y) = -\sqrt{y}, \ \frac{dg^{-1}}{dy} = \frac{1}{2\sqrt{y}} \end{cases}$$

$$f_{\chi}(y) = f_{\chi}(g^{-1}(y)) | \frac{dg^{-1}}{dy} | + f_{\chi}(g^{-1}(y)) | \frac{dg^{-1}}{dy} |$$

$$\int f_{\chi}(x) = \sqrt{12\pi} \exp(-\chi^{2})$$

$$= f_{\chi}(\sqrt{y}) \frac{1}{2\sqrt{y}} + f_{\chi}(-\sqrt{y}) \frac{1}{2\sqrt{y}}$$

$$= \sqrt{12\pi} \exp(-\sqrt{y}^{2}) \frac{1}{2\sqrt{y}} + \frac{1}{2\pi} \exp(-(\sqrt{y})^{2}) \frac{1}{2\sqrt{y}}$$

$$= \sqrt{12\pi} \frac{1}{2\sqrt{y}} (e^{-y} + e^{-y})$$

$$= \sqrt{12\pi} \frac{1}{\sqrt{y}} e^{-y}$$

$$= \sqrt{12\pi} \frac{1}{\sqrt{y}} e^{-y}$$

Probability Integral Iransformation If X is continuous w/ CDF Fx then $F_{\chi}(\chi) \sim U(0,1)$ pf Assume flut F_X is strictly increasing (ef 1/2 = g(X) when $g = F_X$ Our CDF theorem says [CPF of U(0,1) $F_{\gamma}(y) = F_{\chi}(g(y))$ 1 + F(y)=4 $=F_{x}\left(F_{x}(y)\right)=y$ So Fy is the (DF of a U(0,1) here Y~ U(0,1). $g(\chi) \sim U(o_1) \iff g = F_{\chi}$ Generate Rondon Numbers on Computer

$$C (ef X = F_X^{-1}(Y))$$
the X has CDF F_X .

$$F_{\chi}(\chi) = 1 - e^{-\chi} = y$$

$$\Rightarrow y_{-1} = -e^{-\chi}$$

$$\Rightarrow$$
 $1-y=e^{-x}$

$$\Rightarrow (g(1-y) = -x)$$

$$\Rightarrow$$
 - $(g(i-y)=x)$

then

 $F_{\chi}(y) = -log(1-y)$

$$Z: S \rightarrow \mathbb{R}^2$$

$$CC\mathbb{R}$$

Say:
$$P((X,Y) \in C) = P(Z(C))$$

$$1/2 = 4$$
 heads among $3 flips$
then $Z = (X, Y)$

seS	Z(A)
141	(1,3)
HHT	(0,2)
HTH	(0,2)
HTT	(o', 1)
T H H	(1,2)
THT	(0.1)
TTH	(1,7)
TTT	(0,0)
THT	(0,1)

Defui Biv CDF The Biv CDF is a function

F: $\mathbb{R}^2 \to \mathbb{R}$ So that for $x,y \in \mathbb{R}$

$$F(x,y) = P(x \leq x, y \leq y)$$

Univ: F(x)=P(X≤x)

Properties of Biv CDF

- 2 lim F(x,y) = 1 (uni: $\lim_{x\to\infty} F(x) = 1$)
- $\frac{1}{3} \lim_{x \to -\infty} F(x,y) = 0$ $\lim_{x \to -\infty} F(x,y) = 0$ $\lim_{x \to -\infty} F(x,y) = 0$
- 4) F is non-decreasity and right-cts in each argument

Defu: Marginal Distributions

If (X, Y) is a Biv RV then
we say X and Y ove the marsinal
RVs and their dists are called
marsinal dists.

Theorem: Pel. btun Biv / Marginel CDFs

(1)
$$F_{y}(y) = \lim_{x \to \infty} F(x,y)$$

(2) $F_{x}(x) = \lim_{y \to \infty} F(x,y)$

Pf. $F_{x}(x) = P(x = x) = P(x = x, y = anything)$

$$= P(x = x, y = \infty)$$

$$= \lim_{y \to \infty} P(x = x, y = y)$$

$$= \lim_{y \to \infty} P(x = x, y = y)$$

$$= \lim_{y \to \infty} F(x,y)$$
(amma: (univ: $P(x > x) = 1 - F(x)$)

For Biv RUs:

$$P(x > x, y > y)$$

$$= 1 - F_{x}(x) - F_{y}(y) + F_{x}(xy)$$

