

Induction impulse with Cobra3

LEP 4.4.12 -11

Related topics

Law of induction, magnetic flux, Maxwell's equations.

Principle

A permanent magnet falls with different velocities through a coil. The change in the magnetic flux Φ generates an induced voltage impulse. The induced voltage impulse $U_{\rm SS}$ is recorded with a computer interface system. Depending on the polarity of the permanent magnet the induced voltage impulse is negative or positive.

Equipment

Equipment		
Cobra3 Basic Unit	12150.00	1
Power supply, 12 V_	12151.99	1
RS232 data cable, 9 poles	14602.00	1
Cobra3 Universal Plotter Software	14504.61	1
Forked light barrier, compact	11207.20	1
Support rod, round, $l = 600 \text{ mm}$	02037.00	1
Boss head	02043.00	3
Tripod, -PASS-	02002.55	1
Universal clamp	37715.00	1
Glass tube, $l = 300 \text{ mm}$	45126.01	1
Coil holder	06528.00	1
Coil, 600 turns, short	06522.01	1
Magnet, $d = 8$ mm, $l = 60$ mm	06317.00	1
Connecting cord, 32 A, $l = 50$ cm, red	07361.01	2
Connecting cord, 32 A, $l = 50$ cm, blue	07361.04	2
Connecting cord, 32 A, $l = 50$ cm, yellow	07361.02	1
PC, Windows [®] 95 or higher		

Fig. 2. Circuit diagram

Fig. 1. Experimental set-up

Induction impulse with Cobra3

Tasks

- 1. Measurement of the induced voltage impulse $U_{\rm SS}$ and the velocity of the falling magnet.
- 2. Evaluation of the induced voltage impulse $U_{\rm SS}$ as a function of the velocity of the magnet.
- Calculation of the magnetic flux induced by the falling magnet as a function of the velocity of the magnet.

Set-up

- According to Figs. 1 and 2.
- Adjust the light barrier in a such a manner that it is located directly above the coil The magnet must interrupt the light beam during its fall.
- The glass tube provides the magnet with reliable guidance and also insures a stable spinless fall even at larger fall heights.

Procedure

- Initiate recording of the measured values using parameters in accordance with Fig. 3.
- Depress the "Start measurement" button.
- Introduce the tip of the magnet in the glass tube, let it fall, catch it with one hand under the coil and manually terminate the measurement recording procedure.
- Measure the interruption period of the signal from channel IN 1 (light barrier) using the "Survey" icon (Fig. 4). In this case: $\Delta x = \Delta t = 26.2$ ms. With a magnet length of l = 6 cm, it follows that the velocity immediately before the magnet enters the coil is $v = l/\Delta t = 2.29$ m/s.

Fig. 3. Measurement parameters

Fig. 4. Determination of the magnet's falling velocity

– Also using the "Survey" icon, measure the total amplitude $U_{\rm SS}$ (peak to peak) of the induction voltage (Fig. 5); in this case: $U_{\rm SS}=\Delta y=2.764$ V.

- Mark unnecessary parts of the curve before and after the induction pulse and cut them out with the "Cut" icon.
- Mark the positive (F₁) and the negative (F₂) parts of the curve separately (cf. Fig. 7). Calculate the areas with the "Show integral" icon. Finally, add the values of the two partial areas (Fig. 6).

Results

– For induced voltage \boldsymbol{U} the following is true:

$$U = -n \frac{\mathrm{d} \boldsymbol{\phi}}{\mathrm{d} t}$$

where

n =Number of windings in the coil

 Φ = Magnetic flux

t = Time

Integration provides the following:

$$\phi = -\frac{1}{n} \int U \, \mathrm{d}t = B \cdot A$$

where

B = Value of the magnetic flux density

A =Cross sectional area of the coil

Fig. 5. Determination of the induction voltage U_{SS}

Fig. 6. Calculation of the magnetic induction

Induction impulse with Cobra3

LEP 4.4.12 -11

- Plot $U_{\rm SS}$ versus the falling velocity v of the magnet (Fig. 8). It is apparent that the induced voltage is proportional to the velocity: $U_{\rm ind} \sim {\rm d}\Phi/{\rm d}t$.
- It follows from Fig. 9 that the integral of the induced voltage is a constant which is not a function of the velocity of field change:

$$\Phi = B \; A$$

Remarks

- The curves in Figs. 4 to 6 are clearly asymmetrical, in particular for small falling heights. This is due to the non-constant velocity of the magnet on falling through the coil.
- When the polarity of the magnet reverses, the sign of the induction voltage changes and thus the course of the curve.

Fig. 8. Amplitude of the induced voltage $\boldsymbol{U}_{\mathrm{SS}}$ as a function of the magnet's falling velocity \boldsymbol{v}

Fig. 7. Principle of the calculation of the magnetic induction

Fig. 9. Magnetic flux Φ , determined from measurement curves according to Fig. 6, for differing magnet velocities

LEP 4.4.12 -11

Induction impulse with Cobra3

