Download Air Quality Dataset from Kaggle Predict Air Quality Index using Linear regression and classify it into five categories using SVM (i.e. Very good, good, moderate, poor, worst)

```
from google.colab import drive
drive.mount('/content/drive')
     Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
from sklearn.model_selection import train_test_split
from \ sklearn.linear\_model \ import \ LinearRegression
from sklearn.preprocessing import LabelEncoder
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
pd.set_option('display.max_columns', None)
pd.set_option('display.float_format', lambda x: '%.3f' % x
import warnings
warnings.filterwarnings("ignore")
df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/city_day.csv')
```

	City	Date	PM2.5	PM10	NO	NO2	NOx	NH3	со	S02
0	Ahmedabad	2015- 01-01	NaN	NaN	0.920	18.220	17.150	NaN	0.920	27.640
1	Ahmedabad	2015- 01-02	NaN	NaN	0.970	15.690	16.460	NaN	0.970	24.550
2	Ahmedabad	2015- 01-03	NaN	NaN	17.400	19.300	29.700	NaN	17.400	29.070
3	Ahmedabad	2015- 01-04	NaN	NaN	1.700	18.480	17.970	NaN	1.700	18.590
4	Ahmedabad	2015- 01-05	NaN	NaN	22.100	21.420	37.760	NaN	22.100	39.330
29526	Visakhapatnam	2020- 06-27	15.020	50.940	7.680	25.060	19.540	12.470	0.470	8.550
29527	Visakhapatnam	2020- 06-28	24.380	74.090	3.420	26.060	16.530	11.990	0.520	12.720
4										>

df.head()

df

	City	Date	PM2.5	PM10	NO	NO2	NOx	NH3	со	S02	03	Benzene	Toluene	Xylene	AQI	AQI_Bucket
(Ahmedabad	2015-01-01	NaN	NaN	0.920	18.220	17.150	NaN	0.920	27.640	133.360	0.000	0.020	0.000	NaN	NaN
1	Ahmedabad	2015-01-02	NaN	NaN	0.970	15.690	16.460	NaN	0.970	24.550	34.060	3.680	5.500	3.770	NaN	NaN
2	. Ahmedabad	2015-01-03	NaN	NaN	17.400	19.300	29.700	NaN	17.400	29.070	30.700	6.800	16.400	2.250	NaN	NaN
3	3 Ahmedabad	2015-01-04	NaN	NaN	1.700	18.480	17.970	NaN	1.700	18.590	36.080	4.430	10.140	1.000	NaN	NaN
4	Ahmedabad	2015-01-05	NaN	NaN	22.100	21.420	37.760	NaN	22.100	39.330	39.310	7.010	18.890	2.780	NaN	NaN

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 29531 entries, 0 to 29530
Data columns (total 16 columns):
# Column
                Non-Null Count Dtype
0
    City
                29531 non-null object
                29531 non-null object
1
    Date
2
    PM2.5
                24933 non-null float64
    PM10
                18391 non-null
                               float64
3
4
    NO
                25949 non-null float64
5
    NO2
                25946 non-null
                                float64
                25346 non-null
                               float64
6
    NOx
7
    NH3
                19203 non-null float64
8
    CO
                27472 non-null
                                float64
                25677 non-null
    S02
                               float64
10
    03
                25509 non-null float64
11
    Benzene
                23908 non-null float64
12
    Toluene
                21490 non-null float64
                11422 non-null float64
13 Xylene
                24850 non-null float64
14
    AQI
15 AQI_Bucket 24850 non-null object
dtypes: float64(13), object(3)
memory usage: 3.6+ MB
```

df.describe()

	PM2.5	PM10	NO	NO2	NOx	NH3	со	SI
count	24933.000	18391.000	25949.000	25946.000	25346.000	19203.000	27472.000	25677.0
mean	67.451	118.127	17.575	28.561	32.309	23.483	2.249	14.5
std	64.661	90.605	22.786	24.475	31.646	25.684	6.963	18.1
min	0.040	0.010	0.020	0.010	0.000	0.010	0.000	0.0
25%	28.820	56.255	5.630	11.750	12.820	8.580	0.510	5.6
50%	48.570	95.680	9.890	21.690	23.520	15.850	0.890	9.10
75%	80.590	149.745	19.950	37.620	40.127	30.020	1.450	15.2
max	949.990	1000.000	390.680	362.210	467.630	352.890	175.810	193.80

```
df.isnull().sum()
                      ### checking null values
     City
                        0
                       0
     Date
     PM2.5
                    4598
     PM10
                   11140
     NO
                     3582
                     3585
     NO2
     NOx
                    4185
     NH3
                    10328
     CO
                    2059
     S02
                     3854
     03
                     4022
     Benzene
                     5623
     Toluene
                     8041
     Xylene
                    18109
     AQI
                     4681
     AQI_Bucket
                     4681
     dtype: int64
df.isnull().count()
     City
                    29531
     Date
                   29531
     PM2.5
                    29531
     PM10
                   29531
     NO
                   29531
     NO2
                   29531
     NOx
                   29531
                    29531
     NH3
     CO
                   29531
     S02
                   29531
```

```
Benzene
                   29531
     Toluene
                   29531
     Xylene
                   29531
     AQI
                   29531
     AQI_Bucket
                   29531
     dtype: int64
df.shape
     (29531, 16)
data = df[['PM2.5', 'PM10', 'NO', 'NO2', 'NOx', 'NH3', 'CO', 'SO2', '03', 'Benzene', 'Toluene', 'Xylene', 'AQI']]
# Drop rows with missing values
df = df.dropna()
## label encoder
label_encoder = LabelEncoder()
df['AQI_Bucket'] = label_encoder.fit_transform(df['AQI_Bucket'])
X = df.drop(['AQI', 'AQI_Bucket', 'City', 'Date'], axis=1)
y = df['AQI_Bucket']
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

X_train

	PM2.5	PM10	NO	NO2	NOx	NH3	со	502	03	Benzene	Toluene	Xylene
4004	33.950	61.350	18.800	17.210	28.340	10.340	0.470	12.850	24.200	1.920	1.080	1.960
15405	48.680	119.710	9.410	32.910	10.060	14.760	0.140	9.660	48.790	0.050	0.770	0.240
25715	27.710	68.290	16.140	26.480	28.900	2.760	0.950	2.980	14.750	1.950	4.680	1.180
16396	62.380	109.070	8.670	34.510	24.290	14.800	0.630	5.240	32.490	0.640	3.590	0.070
16471	33.940	68.490	9.050	22.050	17.670	16.430	0.460	4.690	23.970	1.650	6.780	0.750
15839	27.830	86.250	2.800	20.050	12.920	22.110	0.570	9.660	20.790	0.370	3.670	0.480
28166	51.420	94.820	28.900	41.100	44.030	16.590	0.970	17.900	31.390	7.790	15.090	10.140
28206	68.700	106.530	3.720	26.070	16.540	12.740	1.130	8.590	70.650	5.250	6.770	4.070
28583	62.290	125.910	8.620	41.420	28.900	10.870	1.070	7.340	95.860	4.460	8.250	1.980
3728	43.930	100.620	25.340	30.820	44.510	7.940	0.020	6.340	16.430	6.220	0.970	5.190

4988 rows × 12 columns

```
y_train
     4004
              3
     15405
              1
     25715
              3
     16396
              1
     16471
              3
     15839
              3
     28166
     28206
              1
     28583
     Name: AQI_Bucket, Length: 4988, dtype: int64
# Train the linear regression model
regressor = LinearRegression()
regressor.fit(X_train, y_train)
```

```
v LinearRegression
LinearRegression()

y_pred_regression = regressor.predict(X_test)

## predict SVM

svm_classifier = SVC()

svm_classifier.fit(X_train, y_train)

y_pred_svm = svm_classifier.predict(X_test)

svm_accuracy = accuracy_score(y_test, y_pred_svm)

print("SVM Accuracy:", svm_accuracy)

SVM Accuracy: 0.8028846153846154
```