Mechatronics System Design EC4.404 - S2023

Lecture 8

Nagamanikandan Govindan

Robotics Research Center, IIIT Hyderabad. nagamanikandan.g@iiit.ac.in

Preliminaries

Kinematics

- study of motion of system of particles or rigid bodies without regard to forces
 - Motion described by position and its time derivatives, velocity, acceleration, Jerk, etc.
 - ensure the functionality of the mechanism/machine

Dynamics

- Study of forces on systems in motion
- verify that the parts can withstand the induced forces

Some _____ Definitions

▶ Rigid body: A body that does not undergo deformation. A distance between any two points is invariable.

Mechanism: A device to transform one motion to another

 connection of links and joints – at least one of the link
 should be grounded.

Machine: is a collection of mechanisms to transmit substantial forces.

TYPES OF MOTION

Pure rotation:

The body possesses one point that has no motion with respect to the "stationary" frame of reference.

Pure translation:

▶ All points on the body describe parallel (rectilinear) paths.

Complex motion:

Points on the body will travel nonparallel paths, and there will be, at every instant, a center of rotation, which will continuously change location.

Mechanism design

Mechanism design involves finding a mechanism which carries out a user specified task.

The process involves selection of joint types and link dimensions.

Example – Eight-bar Theo-Jansen linkage enables robotic walking.

Definitions

Degrees of Freedom or Mobility: is equal to the number of independent parameters (measurements) that are needed to uniquely define its position in space at any instant of time.

Object on a plane = 3 parameters are required Object in a 3D space = 6 parameters

Links

Link: rigid body that possesses at least two nodes that are points for attachment to other links.

- Binary link one with two nodes.
- Ternary link one with three nodes.
- Quaternary link one with four nodes.

- A joint is a connection between two or more links (at their nodes), which allows some motion between the connected links.
- Joints (also called kinematic pairs)
 - Revolute (R) pair
 - prismatic (P) pair

The R and P pairs are the basic building blocks of all other pairs.

- Screw (H)
- Cylindrical (C)
- Spherical (S)
- ► Flat (F) pairs
- Universal (U)

Ref: L. Norton, Design of Machinery "An Introduction to the. Synthesis and Analysis of Mechanisms

Cylindric (C) joint—2 DOF

Helical (H) joint—1 DOF

Planar (F) joint—3 DOF

Spherical (S) joint—3 DOF

▶ Half joint is also called a roll-slide joint because it allows both rolling and sliding.

May roll, slide, or roll-slide, depending on friction

Planar pure-roll (R), pure-slide (P), or roll-slide (RP) joint —1- or 2 DOF (higher pair)

Friction determines the actual number of freedoms at this kind of joint. It can be pure roll, pure slide, or roll-slide

Friction

- Friction is a force **between two surfaces** that are sliding, or trying to slide, across each other.
- ▶ The intensity of frictional force varies with the state of contact.

A friction force of rolling contact is usually smaller than that of sliding contact

Revolute joint

Revolute (R) joint—1 DOF

https://en.wikipedia.org/wiki/Knuckle joint (mechanical)

Ref: L. Norton, Design of Machinery "An Introduction to the. Synthesis and Analysis of Mechanisms

Revolute joint

Sliding Joint

Prismatic (P) joint—1 DOF

Linear guides are used to lessen the friction force to transfer machine glazed paper (150 tons).

Ref: L. Norton, Design of Machinery "An Introduction to the. Synthesis and Analysis of Mechanisms

Universal joint

Spherical Joint

Spherical (S) joint—3 DOF

Ref: L. Norton, Design of Machinery "An Introduction to the. Synthesis and Analysis of Mechanisms

Kinematic Pairs - According to nature of relative motion

Rolling pair

Screw pair

Roller bearing

Spherical pair

Kinematic chains

Kinematic chain: an assemblage of rigid bodies/links, l_0 , l_1 , l_2 ... l_{n-1} connected via joints j_1 , j_2 ... j_{n-1} . Where each link l_i is attached to link l_{i+1} at joint j_{i+1}

Open Chain:

An open kinematic chain of two binary links and one joint is called

A closed mechanism will have no open attachment points or nodes and may have one or more degrees of freedom

Mechanism Types:

- Planar mechanism:
 - If all the points of a mechanism move in planes *parallel* to certain plane.
 - If the axes of hinges are *perpendicular* to the base plane

Peaucellier-Lipkin linkage, invented in 1864, was the first true planar straight line mechanism

- Spherical mechanism:
 - The axes of all joints intersect at a point.
 - ► Example Gyro.

Do not have special points or special base plane, in general, it means all the joint axes are skew to each other.

Fourbar Linkage

Kinematic Diagram

Kinematic Diagram

