Density estimation

Parametric

Non-parametric

- 1. Kernel density (Parzen)
- 2. Nearest-neighbourhood

Parametric estimation

Parametric density estimation

- Generate histogram from the given data
- Look @ the shape
- Try to guess the distributions
- Popular distributions
 - Gaussian
 - Poisson
 - Uniform

Gaussian distribution – mean and standard deviation

$$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Defined from $-\infty$ to $+\infty$

Same mean – different standard deviations

Same standard deviation – different means

Standard normal deviation

- Make, $\sigma = 1$
- Area under the curve becomes 1
- can be used as probability measure

Area under the normal curve

Poisson's distribution

$$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$$

Estimate the distribution parameters

- After guessing distribution, estimate the distribution parameters
- Gaussian
 - Estimate μ and σ
- Poisson
 - Estimate λ

Conclusion from the previous slide

•As age increases people more prone for Calcium deficiency

If you are > 50 years "Drink Bournvita"

Horlicks Advertisement: from the previous slide

 People in 40-49 age group more prone for Calcium deficiency

If you are 40-49 "Drink Horlicks"

Let us start a company "Garlicks"

Garlicks advertisement: from the previous slide

•A recent study shows that people in 35-44 age group also more prone for Calcium deficiency

9	500
12	1000
16	5000
19	4500
22	6000
23	5500
28	8000
30	7800
37	11000
41	23000
44	25000
49	30000
56	44000

Histogram - problems

- Histogram shape depends on the bin width
- Change the bin width shape also changes
- Suppose bin width is constant. Is histogram unique? – NO
 - -0-2; 2-4; 4-6; ... are bins & bin width = 2
 - -1-+1; 1-3; 3-5; ... are bins & bin width=2
- Bin origin is another problem

Bin width

- Smoothing parameter
 - A smaller binwidth leads to a relatively jagged histogram
 - A larger binwidth results in a smoother looking histogram

Bin edge

- Sensitivity of the histogram to the placement of the bin edge
- Average shifted histogram:
 - Averages several histograms based on shifts of the bin edges

Sample No.	Value
1	-2.1
2	-1.3
3	-0.4
4	1.9
5	5.1
6	6.2

If the histogram is pdf then

- $f(x) = limit (h \rightarrow 0) 1/(2h)$. P(x-h < X < x+h)
- Area under the bins should add up to 1
- Window size
 - More the window width more number of points will fall
- Weight for one point in the window
 - Inversely proportional to the number of points (n)
 - Also inversely proportional to window size
 - Bigger the window size many points will fall within window i.e. lesser weight for one point
 - Smaller the window size few points will fall within window i.e. lesser weight for one point

- Histogram ≡ stacking boxes
 - One box width is 2h
 - One box height 1/(2hn)
- Total box width = 2h
- Total box height = N*[1/(2hn)] where N is the number of points within the window
- If there are M boxes then
 - Area of all the M boxes = 1
- Box height is the density estimate

Histogram

- -4 to -2; -2 to 0; 0 to 2; 2 to 4; & 4 to 6 into sub-intervals or bins which cover the range of the data
- •E.g. 6 bins each of width
 - One data point falls inside this interval
 - -n = 6 and 2h = 2 i.e. h = 1
 - -Height = 1/(2nh) = 1/12
 - -1 point in a bin \rightarrow Place 1 box of height 1/12
 - -2 points in a bin \rightarrow Place two boxes (2 x 1/12)
 - -And so on...
 - -Area of one box = 2 x 1/12 = 1/6
 - -Area of six boxes = 6x1/6

Algorithm

- n data points {X₁, X₂, ..., X_n}
- Box center is x
- Box width x-h to x+h
- When a data point X_i will fall with in this window?
- If $(|x-X_i|/h) < 1$ then X_i falls within the window otherwise does not fall
 - i.e. all the data points are weighted by a weighting function w(|x-X_i|/h)
 - If the argument is <1 then X_i is given weightage of 1/(2nh) otherwise zero

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} w \left(\frac{x - X_i}{h} \right)$$

$$w(x) = \frac{1}{2} if |x| < 1$$

$$= 0 \quad otherwise$$

Non-parametric estimation

Non-parametric estimation

- If we are not able to guess the distribution
 - May be we have two peaks or more than two peaks
- Kernel density estimation

Impact of Bin width (Δ)

- Green is the correct distribution
- When ∆ = 0.04
 or 0.25,
 Histogram do not
 reflect the green

Density estimate

- Imagine continuous distribution
- We got certain points
- Interested in estimating the distribution of data from the given data

Kernel estimator

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} k \left(\frac{x - X_i}{h} \right)$$

Parzen window estimator: Use normal Gaussian

Example

Given a set of five data points x1 = 2, x2 = 2.5, x3 = 3, x4 = 1 and x5 = 6

Find <u>Parzen probability density function</u> (pdf) estimates at x = 3, using the Gaussian function with $\sigma = 1$ as window function

Algorithm

x1 = 2, x2 = 2.5, x3 = 3, x4 = 1 and x5 = 6

- 1. Place a Gaussian at x=2 i.e. $\mu=2$
- 2. Find its value @ x=3
- 3. Place a Gaussian at x=2.5 i.e. $\mu=2.5$
- 4. Find its value @ x=3
- 5. ..
- 6. ..
- 7. ..
- 8. ..
- 9. Place a Gaussian at x=6 i.e. $\mu = 6$
- 10. Find its value @ x=3

Gaussian with $\mu = 2$

Find value x=3

$$\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_1-x)^2}{2}\right)$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(2-3)^2}{2}\right) = 0.2420$$

Gaussian with $\mu = 2.5$

Find value x=3

$$\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_2-x)^2}{2}\right)$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(2.5-3)^2}{2}\right) = 0.3521$$

Gaussian with $\mu = 3$

Find value x=3 (we get maximum value)

$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_3 - x)^2}{2}\right) = 0.3521$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{3}{2}\right) = 0.3521$$

$$= 0.3989$$

Gaussian with $\mu = 1$

Find value x=3

$$\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_4-x)^2}{2}\right)$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(2\pi^{2} - 3)^{2}}{2}\right) = 2534$$

Gaussian with $\mu = 6$

$$\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_5 - x)^2}{2}\right) \\
= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(2.5 - 3)^2}{6}\right) = 0.3521 \\
0.0044$$

$$p(x = 3) = (0.2420 + 0.3521 + 0.3989$$

+0.0540 + 0.0044)/5 = 0.2103

x1 = 2, x2 = 2.5, x3 = 3, x4 = 1 and x5 = 6

What is p(3)? Answer is 0.21

Given: x1 = 2, x2 = 2.5, x3 = 3, x4 = 1 and x5 = 6

What is p(x) in general?
Answer is the estimated curve

Kernel density estimate based on five observations

Parzen Window

- Number of data points (n)
- n Gaussian computations to calculate the density @ a point
- To find density @ n points we need n x n i.e. n² calculations
- Instead of 1 dimensional data if we have d d dimensional then we need d times more computations.

Sa mpl e No.	Val ue
1	-2.1
2	-1.3
3	-0.4
4	1.9
5	5.1
6	6.2

Histogram-based Density

Parzen window-based Density

Kernel density estimation

- •Normal kernel with variance 2.25 on each of the data points x_i
- •Kernels are summed to make the kernel density estimate

Bandwidth

Variance/bandwidth of kernel – free parameter

Important parameter – decides the smoothness of estimation

Gray: True distribution

Black: appropriate estimation

red: too small bandwidth

green: too high bandwidth

Parzen density estimation - problems

- kernel width (h) is fixed in all regimes
 - High density regime
 - Low density regime
- Large h in high density regime over smoothing
- Low h in low density region noisy estimates

Nearest-neighbour methods

- kernel width (h) NOT fixed
 - High density regime low h
 - Low density regime high k
- In other words choose h to accommodate fixed points

