Платні дороги

В Японії міста пов'язані мережею автострад. Ця мережа складається з N міст і M автострад. Кожна автострада з'єднує два різних міста. Між містами може існувати лише одна автострада. Міста пронумеровані від 0 до N-1, а автостради пронумеровані від 0 до M-1. По кожній автостраді можна їхати в обох напрямках. З будь-якого міста можна добратись до будь-якого іншого використовуючи автостради.

Проїзд автострадами платний. Вартість проїзду залежить від **завантаженості** автостради. Вона буває **слабкою** або **сильною**. Коли завантаженість слабка, вартість складає A єн (Єни - японська валюта). Коли завантаженість сильна, вартість складає B єн. Гарантовано, що A < B. Зауважимо, що Ви знаєте величини A та B.

У Вас є пристрій, який за даними про завантаженість шляхів обчислює мінімальну вартість проїзду з міста S в місто T ($S \neq T$) за теперешніх умов завантаженості.

Однак, цей пристрій лише прототип. Значення S та T зафіксовані (тобто їх не можливо змінити на рівні пристрою) і вони вам невідомі. Ви хочете знайти значення S та T. Для цього ви плануєте подати у пристрій кілька станів завантаженості шляхів, і скористатися вартостями проїзду, що він виводить, щоб знайти S та T. Оскільки підготовка стану завантаженості обходиться не дешево, ви не бажаєте використовувати пристрій багато разів.

Деталі реалізації

Вам потрівно реалізувати наступну процедуру:

find_pair(int N, int[] U, int[] V, int A, int B)

- N: кількість міст.
- U та V: масиви довжини M, де M кількість автострад, що з'єднують міста. Для кожного i ($0 \le i \le M-1$), автострада i з'єднує міста U[i] та V[i].
- А: вартість проїзду автострадою при слабкій завантаженості.
- В: вартість проїзду автострадою при сильній завантаженості.
- Ця процедура викликається рівно 1 раз для кожного тесту.
- ullet Зауважимо, що величина M це довжина масивів, її значення можна отримати способом, зазначеним в Зауваженнях до реалізації.

Процедура find pair може викликати наступну функцію:

int64 ask(int[] w)

- ullet Довжиною w має бути M. Масив w описує стан завантаженості автострад.
- Для будь-якого i $(0 \le i \le M-1)$, w[i] задає стан завантаженості на автостраді i. Значення w[i] має бути 0, або 1.
 - \circ w[i] = 0 означає, що автострада i слабко завантажена.
 - \circ w[i] = 1 означає, що автострада i сильно завантажена.
- ullet Функція повертає найменшу сумарну вартість проїзду із міста S умісто T, за умови завантаженості, описаної масивом w.
- Цю функцію можна викликати не більше 100 разів (для кожного тесту).

find pair повинна викликати наступну процедуру, щоб повідомити відповідь:

- ullet s i t повинна бути парою міст S i T (порядок не принциповий).
- Цю процедуру потрібно викликати лише 1 раз.

Якщо якісь із описаних вимог не задовольняються, ваша програма отримає **Wrong Answer**. В іншому випадку результат буде **Accepted**, а оцінка обраховується за кількістю викликів функції ask (див. Підзадачі).

Приклад

Нехай
$$N=4$$
, $M=4$, $U=[0,0,0,1]$, $V=[1,2,3,2]$, $A=1$, $B=3$, $S=1$, i $T=3$.

Модуль перевірки викликає find_pair(4, [0, 0, 0, 1], [1, 2, 3, 2], 1, 3).

На малюнку вище, ребро з номером i відповідає автостраді i. Кілька можливих викликів ask і відповідні відповіді наведені нижче:

Виклик	Результат
ask([0, 0, 0, 0])	2
ask([0, 1, 1, 0])	4
ask([1, 0, 1, 0])	5
ask([1, 1, 1, 1])	6

Для виклику ask([0, 0, 0, 0]) завантаженість на всіх автострадах слабка і відповідна вартість складає 1. Найдешевший маршрут із міста S=1 до міста T=3 наступний: $1 \to 0 \to 3$. Сумарна вартість проїзду ним складає 2. Тому функція повертає значення 2.

Для правильної відповіді, процедура find_pair повинна викликати answer(1, 3), aбо answer(3, 1).

Файл sample-01-in.txt у zip-apxiвi, що додається відповідає описаному прикладу. Там також доступні кілька інших прикладів.

Обмеження

- 2 < N < 90000
- 1 < M < 130000
- $1 \le A < B \le 1000000000$
- ullet Для кожного $0 \leq i \leq M-1$
 - $\circ \ 0 \leq U[i] \leq N-1$
 - 0 < V[i] < N-1
 - $\circ U[i] \neq V[i]$
- $(U[i], V[i]) \neq (U[j], V[j])$ i $(U[i], V[i]) \neq (V[j], U[j])$ $(0 \leq i < j \leq M-1)$
- 3 будь-якого міста можна проїхати до будь-якого іншого, використовуючи автомагістралі.
- 0 < S < N 1
- 0 < T < N 1
- $S \neq T$

В цій задачі модуль перевірки НЕ ε адапнивним. Це означа ε , що S і T фіксуються при запуску модуля перевірки і не залежать від запитів які робить ваша програма.

Підзадачі

- 1. (5 балів) або S, або T дорівнює 0, $N \leq 100$, M = N-1
- 2. (7 балів) або S, або T дорівнює 0, M = N 1
- 3. (6 балів) M=N-1, U[i]=i, V[i]=i+1 ($0\leq i\leq M-1$)
- 4. (33 бала) M = N 1

- 5. (18 балів) A=1, B=2
- 6. (31 бал) Без додаткових обмежень.

Припустимо, що ваша програма отримала результат **Accepted**, і зробила X запитів ask. Тоді оцінка P за тест, в залежності від номеру підзадачі, обраховується наступним чином:

- Підзадача 1. P = 5.
- ullet Підзадача 2. Якщо $X \leq 60$, P = 7. Інакше P = 0.
- ullet Підзадача 3. Якщо $X \leq 60$, P = 6. Інакше P = 0.
- ullet Підзадача 4. Якщо X < 60, P = 33. Інакше P = 0.
- ullet Підзадача 5. Якщо $X \leq 52$, P = 18. Інакше P = 0.
- Підзадача 6.
 - \circ Якщо $X \leq 50$, P = 31.
 - \circ Якщо $51 \le X \le 52$, P = 21.
 - $\circ~$ Якщо $53 \leq X$, P=0.

Зверніть увагу, що результат по підзадачі обчислюється як мінімум результатів по кожному тесту цієї підзадачі.

Модуль перевірки із прикладу

Модуль перевірки з прикладу читає вхідні дані у наступному форматі:

- Рядок 1: *N M A B S T*
- Рядок 2+i ($0 \le i \le M-1$): $U[i] \ V[i]$

Якщо Ваша програма отримує результат **Accepted**, модуль перевірки виводить Accepted: q, де q - кількість викликів ask.

Якщо Ваша програма отримує результат **Wrong Answer**, він виводить Wrong Answer: MSG, де MSG може бути наступним:

- answered not exactly once: Процедура answer була викликана не рівно 1 раз.
- w is invalid: довжина w, що передано до ask не M, або w[i] не ε 0 або 1 для якогось i $(0 \le i \le M-1)$.
- more than 100 calls to ask: Функцію ask викликали більше ніж 100 разів.
- {s, t} is wrong: Процедура answer викликана з невірною парою s i t.