

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 January 2001 (04.01.2001)

PCT

(10) International Publication Number
WO 01/00197 A2

(51) International Patent Classification⁷: A61K 31/00

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(21) International Application Number: PCT/US00/18029

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(22) International Filing Date: 29 June 2000 (29.06.2000)

Published:

(25) Filing Language: English

— Without international search report and to be republished upon receipt of that report.

(26) Publication Language: English

(30) Priority Data:
60/141,436 29 June 1999 (29.06.1999) US

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(71) Applicant: THE UAB RESEARCH FOUNDATION [US/US]; 700 South 20th Street, Suite 1120G, Birmingham, AL 35294 (US).

(72) Inventors: BROUILLETTE, Wayne, J.; 328 Kings Crest Lane, Pelham, AL 35124 (US). BROUILLETTE, Christie, G.; 328 Kings Crest Lane, Pelham, AL 35124 (US). DELUCAS, Lawrence, J.; 2739 Altadena Road, Birmingham, AL 35243 (US).

(74) Agents: JOHNSON, William, R. et al; Needle & Rosenberg, P.C., Suite 1200, The Candler Building, 127 Peachtree Street, N.E., Atlanta, GA 30303-1811 (US).

(54) Title: METHODS OF TREATING FUNGAL INFECTIONS WITH INHIBITORS OF NAD SYNTHETASE ENZYME

(57) Abstract: The present invention provides methods of treating or preventing fungal infections in a host comprising administering a treatment effective or treatment effective amount of a yeast NAD synthetase inhibitor compound. The invention further provides a method of killing yeast comprising administering a yeast NAD synthetase compound that selectively binds to catalytic sites in yeast whereby the yeast is killed.

WO 01/00197 A2

BEST AVAILABLE COPY

METHODS OF TREATING FUNGAL INFECTIONS WITH INHIBITORS OF NAD SYNTHETASE ENZYME

5 CROSS REFERENCE TO RELATED APPLICATIONS

This application is related to copending provisional application Serial No. 60/141,436, filed June 29, 1999, which is incorporated by reference, and claims the benefit of its earlier filing date under 35 USC Section 119(e).

10 FIELD OF THE INVENTION

The present invention relates to methods of treating fungal infections. More particularly, the present invention relates to methods of treating yeast infections with compounds that selectively target the NAD synthetase enzyme of yeast, with little or no attendant targeting of the NAD synthetase enzyme of the host.

15

BACKGROUND OF THE INVENTION

The incidence of serious fungal infections, either systemic or topical, continues to increase for plants, animals, and humans. Fungi are plant-like eukaryotes that grow in colonies of single cells, called yeasts, or in filamentous multicellular aggregates, 20 called molds. While many fungi are common in the environment and not harmful to plants or mammals, some are parasites of terrestrial plants and others can produce disease in humans and animals. When present in humans, mycotic (fungal) diseases can include contagious skin and hair infections, noncontagious systemic infections, and noncontagious foodborne toxemias. The incidence of such infections is not 25 insignificant; in the U.S. approximately 10% of the population suffers from contagious skin and hair infections. While few healthy persons develop life-threatening systemic fungal infections, immunocompromised individuals, such as found in pregnancy, congenital thymic defects, or acquired immune deficiency syndrome (AIDS), can become seriously ill. This is further illustrated by the fact that fungal infections have 30 become a major cause of death in organ transplant recipients and cancer patients.¹

Numerous antifungal agents have been developed for topical use against nonsystemic fungal infections. However, the treatment of systemic fungal infections, particularly in immunocompromised hosts, continues to be a major objective in infectious disease chemotherapy. The organisms most commonly implicated in systemic infections include *Candida* spp., *Cryptococcus neoformans*, and *Aspergillus* spp., although there are a number of emerging pathogens. The major classes of systemic drugs in use currently are the polyenes (e.g., amphotericin B) and the azoles (e.g., fluconazole). While somewhat effective in otherwise healthy patients, these agents are inadequate in severely immunocompromised individuals. Furthermore, drug resistance has become a serious problem, rendering these antifungal agents ineffective in some individuals.^{2,3}

One reason for the limited number of systemic antifungal agents relates to the fact that, unlike bacteria, which are prokaryotes, yeast and molds are eukaryotes. Thus the biochemical make-up of yeast and molds more closely resembles eukaryotic human and animal cells. In general, this has made it difficult to develop antifungal drugs which selectively target in yeast an essential enzyme or biochemical pathway that has a close analog in humans and animals.

The ability to selectively inhibit the yeast form of a biochemical target with minimal effect on the mammalian form would provide a number of new approaches to the development of systemic antifungal drugs. In a few cases, this type of approach has already been proven to provide clinically useful systemic antifungal agents. For example, the mechanism of action for fluconazole, a widely used systemic antifungal drug, involves inhibition of a fungal C-14 demethylase, a cytochrome P450 enzyme that is essential for the production of the principal fungal sterol ergosterol. Ergosterol is very similar to the mammalian steroid cholesterol, and there is a closely related mammalian C-14 demethylase enzyme for which fluconazole is a much poorer inhibitor. This selectivity for inhibition of the fungal form of the enzyme over the mammalian form has resulted in the clinical utility of fluconazole.⁴ In a further

example, preclinical studies on new antifungal agents that select for the yeast form over the mammalian form of a biochemical target include development of inhibitors for the plasma membrane ATPase⁵ and for topoisomerase I.⁶

- 5 The inventors herein previously were part of a group that developed a number of antibacterial and antimicrobial agents that were targeted to NAD synthetase, an essential enzyme found in nearly all prokaryotic and eukaryotic cells. This enzyme is essential for the biosynthesis of nicotinamide adenine dinucleotide (NAD^+), an essential cofactor in numerous enzymatic reactions. NAD synthetase catalyzes the last 10 step in both the *de novo* and salvage pathways for NAD^+ biosynthesis, which involves the transfer of ammonia to the carboxylate of nicotinic acid adenine dinucleotide (NaAD) in the presence of ATP and Mg^{+2} . The overall reaction is illustrated in Scheme 1.

Scheme 1

- 15 Prokaryotic NAD synthetase is an ammonia-dependent amidotransferase that belongs to a family of "N-type" ATP pyrophosphatases; this family also includes

asparagine synthetase and argininosuccinate synthetase.⁷ Unlike eukaryotic NAD synthetase found in yeast and mammals that can use glutamine as a source of nitrogen, the prokaryotic NAD synthetase of bacteria requires ammonia as the only nitrogen source. Furthermore, *B. subtilis* NAD synthetase, which was previously crystallized and used for drug design by the inventors, is a dimer with molecular weight around 65,000, while the yeast enzyme is multimeric and has at least 10 times larger molecular weight.⁸ These differences between eukaryotic and prokaryotic forms of NAD synthetase enzyme suggested that drugs specific for the prokaryotic enzyme could be designed, and the inventors subsequently developed inhibitors of this enzyme that are effective antibacterial and antimicrobial agents.⁹ Given these marked differences between prokaryotic and eukaryotic NAD synthetase, the inventors fully expected that the compounds would be selective for the prokaryotic NAD synthetase and would show little to no effect on eukaryotic NAD synthetase.

15 **SUMMARY OF THE INVENTION**

The present invention is based in part on the surprising discovery that NAD synthetase inhibitors are highly effective in inhibiting the growth of yeast, yet exhibited only moderate toxicity in animals. Thus, the present invention includes the use of NAD synthetase inhibitors as new antifungal agents for preventing or controlling parasitic yeast and mold infections in plants, and for the prophylactic or therapeutic treatment, topically and systemically, of fungal infections in humans and animals.

In a major aspect, the present invention provides a method of treating or preventing an antifungal infection in a host comprising administering to a host a treatment effective or treatment preventive amount of a yeast NAD synthetase enzyme inhibitor compound.

In a further aspect, the method of killing yeast with an amount of yeast NAD synthetase enzyme inhibitor to reduce or eliminate the production of NAD whereby the yeast is killed.

In yet another aspect, the invention provides a method of decreasing yeast growth, comprising contacting the yeast with an amount of a yeast NAD synthetase enzyme inhibitor effective to reduce or eliminate the production of NAD whereby yeast growth is decreased.

5

Additional advantages of the invention will be set forth in part in the description that follows, and in part will be obvious from the description, or may be learned by practice of the invention. The advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended 10 claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.

DETAILED DESCRIPTION OF THE INVENTION

15

The present invention may be understood more readily by reference to the following detailed description of preferred embodiments of the invention and the Examples included herein.

20

Before the present methods, compounds, compositions and apparatuses are disclosed and described it is to be understood that this invention is not limited to the specific synthetic methods described herein. It is to be further understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. It must be noted that, as used in the specification and 25 the appended claims, the singular forms "a," "an" and "the" include plural referents unless the context clearly dictates otherwise.

Ranges may be expressed herein as from "about" one particular value, and/or to "about" another particular value. When such a range is expressed, another embodiment 30 includes from the one particular value and/or to the other particular value. Similarly,

when values are expressed as approximations, by use of the antecedent "about," it will be understood that the particular value forms another embodiment.

- Throughout this application, where a chemical diagram has a straight line emanating from a chemical structure, such a line represents a CH₃ group. For example, in the following diagram:

o-methylbenzoic acid is represented.

- 10 The term "alkyl" as used herein refers to a branched or unbranched saturated hydrocarbon group of 1 to 24 carbon atoms, such as methyl, ethyl, *n*-propyl, isopropyl, *n*-butyl, isobutyl, *t*-butyl, octyl, decyl, tetradecyl, hexadecyl, eicosyl, tetracosyl and the like. The term "cycloalkyl" intends a cyclic alkyl group of from three to eight, preferably five or six carbon atoms.

- 15 The term "alkoxy" as used herein intends an alkyl group bound through a single, terminal ether linkage; that is, an "alkoxy" group may be defined as -OR where R is alkyl as defined above. A "lower alkoxy" group intends an alkoxy group containing from one to six, more preferably from one to four, carbon atoms.

- 20 The term "alkylene" as used herein refers to a difunctional saturated branched or unbranched hydrocarbon chain containing from 1 to 24 carbon atoms, and includes, for example, methylene (-CH₂-), ethylene (-CH₂-CH₂-), propylene (-CH₂-CH₂-CH₂-), 2-methylpropylene [-CH₂-CH(CH₃)-CH₂-], hexylene [-(CH₂)₆-] and the like. The

term "cycloalkylene" as used herein refers to a cyclic alkylene group, typically a 5- or 6-membered ring.

The term "alkene" as used herein intends a mono-unsaturated or di-unsaturated hydrocarbon group of 2 to 24 carbon atoms. Asymmetric structures such as 5 (AB)C=C(CD) are intended to include both the E and Z isomers. This may be presumed in structural formulae herein wherein an asymmetric alkene is present.

The term "alkynyl" as used herein refers to a branched or unbranched 10 unsaturated hydrocarbon group of 1 to 24 carbon atoms wherein the group has at least one triple bond.

The term "cyclic" as used herein intends a structure that is characterized by one or more closed rings. As further used herein, the cyclic compounds discussed herein 15 may be saturated or unsaturated and may be heterocyclic. By heterocyclic, it is meant a closed-ring structure, preferably of 5 or 6 members, in which one or more atoms in the ring is an element other than carbon, for example, sulfur, nitrogen, etc.

The term "bicyclic" as used herein intends a structure with two closed rings. As 20 further used herein, the two rings in a bicyclic structure can be the same or different. Either of the rings in a bicyclic structure may be heterocyclic.

By the term "effective amount" of a compound as provided herein is meant a sufficient amount of the compound to provide the desired treatment or preventive 25 effect. As will be pointed out below, the exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease that is being treated, the particular compound used, its mode of administration, and the like. Thus, it is not possible to specify an exact "effective amount." However, an appropriate effective amount may be determined by one of 30 ordinary skill in the art using only routine experimentation. It is preferred that the

effective amount be essentially non-toxic to the subject, but it is contemplated that some toxicity will be acceptable in some circumstances where higher dosages are required.

- 5 By "pharmaceutically acceptable carrier" is meant a material that is not biologically or otherwise undesirable, *i.e.*, the material may be administered to an individual along with the compounds of the invention without causing any undesirable biological effects or interacting in a deleterious manner with any of the other components of the pharmaceutical composition in which it is contained.

10

As used herein, "NAD synthetase enzyme" is defined as the enzyme that catalyzes the final reaction in the biosynthesis of NAD, namely, the transformation of NaAD into NAD. As used herein, the term "catalytic sites" are defined as those portions of the NAD synthetase enzyme that bind to substrates, and cofactors, including
15 nicotinic acid adenine dinucleotide (NaAD), NAD, adenosine triphosphate (ATP), adenosine monophosphate (AMP), pyrophosphate, magnesium and ammonia in yeast. The term "receptor site" or "receptor subsite" relates to those portions of the yeast NAD synthetase enzyme in which the yeast NAD synthetase enzyme inhibitors disclosed herein are believed to bind. For the purposes of this disclosure, the terms
20 "catalytic site," "receptor site" and "receptor subsite" may be used interchangeably.

- In one embodiment, the invention provides administering an antifungal agent to a mammal in need of such treatment or prevention. In one embodiment, the fungal agent that causes the infection is yeast. In separate embodiments of the methods of
25 administering, the antifungal agent comprises one or more compounds in Figure 1 below. In further separate preferred embodiments of the methods of administering, the antifungal agent comprises one or more of the compounds set forth in Figure 2 below. In still further separate embodiments, the compounds administered comprise one or more of the compounds of Structure 2, Structure 4, Structure 6, Structure 7, Structure 8,
30 Structure 10, or Structure 12. In yet further separate embodiments of the methods of

administering, the antifungal agent comprises one or more of the compounds denoted 1 to 1106 below.

Further provided by the invention herein is preferably a method of killing yeast
5 with an amount of yeast NAD synthetase enzyme inhibitor compound to reduce or
eliminate the production of NAD whereby the yeast is killed. A method of decreasing
yeast growth, comprising contacting the yeast with an amount of yeast NAD synthetase
enzyme inhibitor effective to reduce or eliminate the production of NAD whereby yeast
growth is decreased is also provided. With respect to the method of killing yeast, as
10 well as in the method of decreasing yeast growth, in separate embodiments of the
methods the compound comprises one or more compounds of Figure 1 below. In
further separate embodiments, the compound comprises one or more compounds of
Figure 2 below. In a further embodiment, the compound administered is a compound of
Structure 2, Structure 4, Structure 6, or Structure 7. In still further embodiments, the
15 compounds administered comprise one or more of the compounds of Structure 8,
Structure 10, or Structure 12. In yet further separate embodiments, the compounds
administered comprise one or more compounds denoted 1-1106 below.

FIGURE 1: LEAD I COMPOUNDS

5

In yet a further embodiment, the compound comprises one or more compounds of Figure 2 below ("Lead II Compounds").

FIGURE 2: LEAD II COMPOUNDS

12

14

16

17

917

921

924

936

939

941

942

19

5 In the above Figures 1 and 2, $\text{X}^- = \text{F}^-, \text{Cl}^-, \text{Br}^-, \text{I}^-, \text{acetate}, \text{or any pharmaceutically acceptable anion.}$

In one embodiment, the methods of the invention comprise administering a compound having the general structure of Structure 2:

STRUCTURE 2:

wherein:

- 5 n is an integer of from 1 to 12, R₁ - R₇ each, independently, is an H, an unsubstituted or a substituted cyclic or aliphatic group, a branched or an unbranched group, and wherein the linker is a cyclic or aliphatic, branched or an unbranched alkyl, alkenyl, or an alkynyl group and wherein the linker may also contain heteroatoms. By heteroatoms, it is meant that one or more atoms is an element other than carbon.

10

- R₁-R₇ may also be one of the following groups: an H, alkyl, alkenyl, alkynyl, or an aryl. R₁-R₇, may further be a hydroxyl, ketone, nitro, amino, amidino, guanidino, carboxylate, amide, sulfonate, or halogen or the common derivatives of these groups. Note that n may also be an integer of from 3 to 10, more preferably 5 to 9 and, still 15 more preferably 6 to 9. The tethered active molecule, e.g., in this example denoted "aryl," moieties may be the same or different.

In a further embodiment, the invention comprises administering a compound of Structure 4:

20

STRUCTURE 4:**DIMERS**

wherein:

X is a C, N, O or S within a monocyclic or bicyclic moiety, A and B represent the respective sites of attachment for the linker, n is an integer of from 1 to 12, R₁-R₇ each,

5 independently, is an H, an unsubstituted or a substituted cyclic group, or an aliphatic group, or a branched or an unbranched group, and the linker is a saturated or unsaturated cyclic group or an aliphatic branched or unbranched alkyl, alkenyl or alkynyl group, and wherein the linker may also contain heteroatoms.

10 R₁-R₇ may also be one of the following groups: an H, alkyl, alkenyl, alkynyl, or an aryl group. R₁-R₇ may also be a hydroxyl, ketone, nitro, amino, amidino, guanidino, carboxylate, amide, sulfonate, or halogen or the common derivatives of these groups. One of skill in the art would know what moieties are considered to constitute derivatives of these groups. N may also be an integer of from 3 to 10, more preferably 15 5 to 9 and, still more preferably 6 to 9.

In a further embodiment, the methods of the invention comprise administering a compound of Structure 6:

20 STRUCTURE 6:

wherein:

X is C, N, O or S, Y is C, N, O, S, carboxy, ester, amide, or ketone, A and B represent the respective sites of attachment for a linker, n is an integer of from 1 to 12, and R₁-R₇ each, independently, is an H, unsubstituted or substituted cyclic group or an aliphatic group, a branched or an unbranched group, and the linker is a saturated or unsaturated cyclic or aliphatic group, branched or unbranched alkyl, alkenyl, or alkynyl group and wherein the linker may also contain heteroatoms.

R₁-R₇ may also be one of the following groups: an H, alkyl, alkenyl, alkynyl, or 10 an aryl. R₁-R₇, may further be a hydroxyl, ketone, nitro, amino, amidino, guanidino, carboxylate, amide, sulfonate, or halogen or the common derivatives of these groups. Note that n may also be an integer of from 3 to 10, more preferably 5 to 9 and, still more preferably 6 to 9. The tethered active molecule, e.g., in this example denoted "aryl," moieties may be the same or different.

15

In a further embodiment, the methods of the invention comprise administering a compound of Structure 7:

STRUCTURE 7

20

wherein:

X is C, N, O or S, Y is C, N, O, S, carboxy, ester, amide, or ketone, A and B represent 25 the respective sites of attachment for a linker, n is an integer of from 1 to 12, and R₁-R₆ each, independently, is an H, unsubstituted or substituted cyclic group or an aliphatic

group, a branched or an unbranched group, and the linker is a saturated or unsaturated cyclic or aliphatic group, branched or unbranched alkyl, alkenyl, or alkynyl group and wherein the linker may also contain heteroatoms.

- 5 R₁-R₆ may also be one of the following groups: an H, alkyl, alkenyl, or alkynyl, or an aryl group. R₁-R₆ may also be an H, hydroxyl, ketone, nitro, amino, amidino, guanidino, carboxylate, amide, sulfonate, or halogen and the common derivatives of these groups. One of skill in the art would know what moieties are considered to constitute derivatives of these groups. N may also be an integer of from 3 to 10, more
10 10 preferably 5 to 9 and, still more preferably 6 to 9.

In a further embodiment, the methods of the invention comprise administering a compound of Structure 8:

15 **STRUCTURE 8:**

wherein:

n is an integer of from 1 to 12, R₁ is an H, methoxy, benzyloxy, or nitro and R₂ is 3-pyridyl, N-methyl-3-pyridyl, 3-quinolinyl, N-methyl-3-quinolinyl, 3-

- 20 (dimethylamino)phenyl, 3-(trimethylammonio)phenyl, 4-(dimethylamino)phenyl, 4-(trimethylammonio)phenyl, 4-(dimethylamino)phenylmethyl, or 4-(trimethylammonio)phenylmethyl.

- N may also be an integer of from 3 to 10, more preferably 5 to 9 and, still more
25 25 preferably 6 to 9.

In a further embodiment, the methods of the invention comprise administering a compound of Structure 10:

STRUCTURE 10:

5

wherein:

n is an integer of from 1 to 12, R₁ is an H, CO₂H, -OCH₃, or -OCH₂Ph, R₂ is H, CO₂H,

10 or CH=CHCO₂H, R₃ is H or CO₂H, and Y is N-linked pyridine-3-carboxylic acid, N-

linked pyridine, N-linked quinoline, or N-linked isoquinoline. N may also be an

integer of from 3 to 10, more preferably 5 to 9 and, still more preferably 6 to 9.

15 In a further embodiment, the methods of the invention comprise administering a compound of Structure 12:

STRUCTURE 12:

wherein:

20 n is an integer of from 1 to 12, R₁ is H, F, or NO₂, R₂ is H, CH₃, CF₃, NO₂, phenyl, n-

butyl, isopropyl, F, phenoxy, triphenylmethyl, methoxycarbonyl, methoxy, carboxy, acetyl, or benzoyl, R₃ is H or CF₃ and Y is N-linked pyridine-3-carboxylic acid, N-linked pyridine, N-linked quinoline, or N-linked isoquinoline. N may also be an integer of from 3 to 10, more preferably 5 to 9 and, still more preferably 6 to 9.

5

In a further embodiment, the methods of the invention comprise administering a compound of Structure 14:

STRUCTURE 14:

10

wherein:

n is an integer of from 1 to 12, R₁ is H, phenoxy, isopropyl, acetyl, or benzoyl, R₂ is

15 H or CF₃, and Y is 3-(dimethylamino)phenyl, 3-(trimethylammonio)phenyl, 4-(dimethylamino)phenyl, 4-(trimethylammonio)phenyl, 2-(phenyl)phenyl, diphenylmethyl, 3-pyridyl, 4-pyridyl, or pyridine-3-methyl. N may also be an integer of from 3 to 10, more preferably 5 to 9 and, still more preferably 6 to 9.

20

In further embodiments of the invention herein, the invention comprises administering compounds of the structures denoted in Tables 102-128 as Compounds 1-274 were synthesized utilizing the methods disclosed previously in co-pending patent application PCT/US99/00810.

25

For Compounds 1-274, structures denoted in Figure 6 as Fragments I-X each represent an active molecule, as defined previously herein, which can be included in the compounds of the present invention as further described in the respective Tables. In

Fragments I-X of Figure 6, the point of attachment for the linker compound is at the nitrogen.

In the chemical structures that follow, and as intended for the compounds of this invention, the symbol T⁻ or X⁻ designates generally the presence of an anion. As contemplated by the present invention, the type of anion in the compounds of this invention is not critical. The compounds of this invention may be comprised of any such moieties known generally to one of skill in the art or that follow from the synthesis methods disclosed in co-pending patent application PCT/US99/00810.

10

In separate embodiments of the invention herein, the methods of the invention comprise administering a compound corresponding to Structure 100:

15

Structure 100

20

wherein R' is as defined below in Figure 6:

FIGURE 6

and n is an integer of from 1 to 12. N may also be from 3 to 10, more preferably 5 to 9 and, still more preferably 6 to 9.

5

In further separate embodiments of the invention herein, the methods of the invention comprise administering a compound corresponding to the structures set out in Structure 100 and as further defined in Table 100. For those compounds that correspond to Structure 100, n may also be an integer of from 1 to 12, from 3 to 10, 10 from 5 to 9 and, still further, from 6 to 9.

STRUCTURE 100:

15

TABLE 100: SUBSTITUENT GROUPS FOR COMPOUNDS 1-24

R'	n=	3	4	5	6	7	8	9
I		1	2	3	4	5	6	7
II		8	9	10	11	12	13	14
III		15	16	17	18	19	20	21
IV						22		
V						23		
VI						24		

In the above Table, R' corresponds to a Fragment as previously defined in
 5 Figure 6 and n indicates the number of linker groups separating the two tethered active
 molecule groups in the compound.

As set out below in relation to Compounds 25 – 274, Fragments A - G are set
 out in Figure 8. The group denoted R in A-G of Figure 8 can be a benzyl group, a
 10 methyl group or a hydrogen. The point of attachment of the linker group to Fragments
 A-G is at the nitrogen group.

In one embodiment, the methods of the invention comprise administering a
 compound corresponding to compounds of Structure 101. For those compounds that
 15 correspond to Structure 101, n is an integer of from 1 to 12, more preferably from 3 to
 10, more preferably from 5 to 9 and, still more preferably from 6 to 9. The point of
 attachment of the linker group for both R1 and R' is at the respective nitrogen groups of
 each illustrated fragment.

5

Structure 101

wherein R' is:wherein R_1 is:

wherein the R group in Fragments A-G is a benzyl group, a methyl group or a hydrogen.

20

In one embodiment of the invention herein, the compounds may include the Fragments illustrated below in Figure 8.

FIGURE 8: FRAGMENTS A-G IN COMPOUNDS 25-274

20 In further separate embodiments of the invention herein, the methods of the
invention comprise administering a compound corresponding to the structures set out in
Structure 102. For those compounds that correspond to Structure 102, n is an integer of
from 1 to 12, from 3 to 10, more preferably from 5 to 9, and still more preferably from
6 to 9. In further embodiments, the compounds herein correspond to Structure 102, as
25 further set out in Table 102.

STRUCTURE 102:

30

TABLE 102: SUBSTITUENT GROUPS FOR COMPOUNDS 25-48

R'	n=	4	6	8
I		25	26	27
I*		28	29	30
II		31	32	33
III*		34	35	36
VII		37	38	39
VII*		40	41	42
VIII		43	44	45
VIII*		46	47	48

In the above Table, R' corresponds to a Fragment as previously defined in Figure 6, A corresponds to a Fragment as previously defined in Figure 8, and n indicates the number of linker groups separating Groups R' and A in the respective compounds. Groups I, II, VII, VIII each have a benzyl group and Groups I*, III*, VII*, VIII* each have a hydrogen, respectively, in the position designated R in Fragment A of Figure 8.

10 In further separate embodiments of the invention herein, the methods of the invention comprise administering a compound corresponding to the structures set out in Structure 104. For those compounds that correspond to Structure 104, n is an integer of from 1 to 12, from 3 to 10, more preferably from 5 to 9, and still more preferably from 6 to 9. In further embodiments, the compounds herein correspond to Structure 104, as 15 further set out in Table 104.

STRUCTURE 104:

5

TABLE 104: SUBSTITUENT GROUPS FOR COMPOUNDS 49-66

R' n=	4	6	8
I	49	50	51
I*	52	53	54
VII	55	56	57
VII*	58	59	60
VIII	61	62	63
VIII*	64	65	66

10 In the above Table, R' corresponds to a Fragment as previously defined in Figure 6, B corresponds to a Fragment as previously defined in Figure 8, and n indicates the number of linker groups separating Groups R' and B in the respective compounds. Groups I, VII, VIII each have a benzyl group and Groups I*, VII*, VIII* each have a hydrogen, respectively, in the position designated R in Fragment B of

15 Figure 8.

In further separate embodiments of the invention herein, the methods of the invention comprise administering a compound corresponding to the structures set out in Structure 106. For those compounds that correspond to Structure 106, n is an integer of 20 from 1 to 12, from 3 to 10, more preferably from 5 to 9, and still more preferably from 6 to 9. In further embodiments, the compounds herein correspond to Structure 106, as further set out in Table 106.

STRUCTURE 106:

5

TABLE 106: SUBSTITUENT GROUPS FOR COMPOUNDS 67-90

R'	n=	4	6	8
I		67	68	69
I*		70	71	72
II		73	74	75
III*		76	77	78
VII		79	80	81
VII*		82	83	84
VIII		85	86	87
VIII*		88	89	90

10 In the above Table, R' corresponds to a Fragment as previously defined in
 Figure 6, C corresponds to a Fragment as previously defined in Figure 8, and n
 indicates the number of linker groups separating Groups R' and C in the respective
 compounds. Groups I, II, VII, VIII each have a benzyl group and Groups I*, III*, VII*,
 VIII* each have a hydrogen, respectively, in the position designated R in Fragment C
 15 of Figure 8.

In further separate embodiments of the invention herein, the methods of the
 invention comprise administering a compound corresponding to the structures set out in
 Structure 108. For those compounds that correspond to Structure 108, n is an integer of
 20 from 1 to 12, from 3 to 10, more preferably from 5 to 9, and still more preferably from

6 to 9. In further embodiments, the compounds herein correspond to Structure 108, as further set out in Table 108.

STRUCTURE 108:

5

10

TABLE 108: SUBSTITUENT GROUPS FOR COMPOUNDS 91-108

R'	n =	4	6	8
I		91	92	93
I*		94	95	96
VII		97	98	99
VII*		100	101	102
VIII		103	104	105
VIII*		106	107	108

In the above Table, R' corresponds to a Fragment as previously defined in Figure 6, D corresponds to a fragment as previously defined in Figure 8, and n indicates the number of linker groups separating Groups R' and D in the compound. Groups I, VII, VIII each have a benzyl group and Groups I*, VII*, VIII* each have a hydrogen, respectively, in the position designated R in Fragment D of Figure 8.

15

In further separate embodiments of the invention herein, the methods of the invention comprise administering a compound corresponding to the structures set out in Structure 110. For those compounds that correspond to Structure 110, n is an integer of from 1 to 12, from 3 to 10, more preferably from 5 to 9, and still more preferably from

20

6 to 9. In further embodiments, the compounds herein correspond to Structure 110, as further set out in Table 110.

STRUCTURE 110:

5

10

TABLE 110: SUBSTITUENT GROUPS FOR COMPOUNDS 109-126

R'	n=	4	6	8
I		109	110	111
I*		112	113	114
VII		115	116	117
VII*		118	119	120
VIII		121	122	123
VIII*		124	125	126

In the above Table, R' corresponds to a Fragment as previously defined in Figure 6, E corresponds to a Fragment as previously defined in Figure 8, and n indicates the number of linker groups separating Groups R' and E in the respective compounds. Groups I, VII, VIII each have a benzyl group and Groups I*, VII*, VIII* each have a hydrogen, respectively, in the position designated R in Fragment E of Figure 8.

15

20

In further separate embodiments of the invention herein, the methods of the invention comprise administering a compound corresponding to the structures set out in Structure 112. For those compounds that correspond to Structure 112, n is an integer of from 1 to 12, from 3 to 10, more preferably from 5 to 9, and still more preferably from

6 to 9. In further embodiments, the compounds herein correspond to Structure 112, as further set out in Table 112.

STRUCTURE 112:

5

10 **TABLE 112: SUBSTITUENT GROUPS FOR COMPOUNDS 127-144**

R'	n=	4	6	8
I		127	128	129
I*		130	131	132
VII		133	134	135
VII*		136	137	138
VIII		139	140	141
VIII*		142	143	144

In the above Table, R' corresponds to a Fragment as previously defined in Figure 6, F corresponds to a Fragment as previously defined in Figure 8, and n indicates the number of linker groups separating Groups R' and F in the respective compounds. Groups I, VII, VIII each have a benzyl group and Groups I*, VII*, VIII* each have a hydrogen, respectively, in the position designated R in Fragment F of Figure 8.

20 In further separate embodiments of the invention herein, the methods of the invention comprise administering a compound corresponding to the structures set out in Structure 114. For those compounds that correspond to Structure 114, n is an integer of from 1 to 12, from 3 to 10, more preferably from 5 to 9, and still more preferably from

6 to 9. In further embodiments, the compounds herein correspond to Structure 114, as further set out in Table 114.

STRUCTURE 114:

5

10

TABLE 114: SUBSTITUENT GROUPS FOR COMPOUNDS 145-162

R' n=	4	6	8
I	145	146	147
I*	148	149	150
VII	151	152	153
VII*	154	155	156
VIII	157	158	159
VIII*	160	161	162

In the above Table, R' corresponds to a Fragment as previously defined in Figure 6, G corresponds to a Fragment as previously defined in Figure 8, and n indicates the number of linker groups separating Groups R' and G in the respective compounds. Groups I, VII, VIII each have a benzyl group and Groups I*, VII*, VIII* each have a hydrogen, respectively, in the position designated R in Fragment G of Figure 8.

20 In further separate embodiments of the invention herein, the methods of the invention comprise administering a compound corresponding to the structures set out in Structure 116. For those compounds that correspond to Structure 116, n is an integer of from 1 to 12, from 3 to 10, more preferably from 5 to 9, and still more preferably from

6 to 9. In further embodiments, the compounds herein correspond to Structure 116, as further set out in Table 116.

STRUCTURE 116:

5

10

TABLE 116: SUBSTITUENT GROUPS FOR COMPOUNDS 163-178

R'	n=	3	5	7	9
I		163	164	165	166
I*		167	168	169	170
II		171	172	173	174
III*		175	176	177	178

In the above Table, R' corresponds to a Fragment as previously defined in Figure 6, A corresponds to a Fragment as previously defined in Figure 8, and n indicates the number of linker groups separating Groups R' and A in the respective compounds. Groups I, II each have a methyl group and Groups I*, III* each have a hydrogen, respectively, in the position designated R in Fragment A of Figure 8.

20 In further separate embodiments of the invention herein, the methods of the invention comprise administering a compound corresponding to the structures set out in Structure 118. For those compounds that correspond to Structure 118, n is an integer of from 1 to 12, from 3 to 10, more preferably from 5 to 9, and still more preferably from 6 to 9. In further embodiments, the compounds herein correspond to Structure 118, as further set out in Table 118.

STRUCTURE 118:

5

TABLE 118: SUBSTITUENT GROUPS FOR COMPOUNDS 179-194

R'	n=	3	5	7	9
I		179	180	181	182
I*		183	184	185	186
II		187	188	189	190
III*		191	192	193	194

10 In the above Table, R' corresponds to a Fragment as previously defined in Figure 6, B corresponds to a Fragment as previously defined in Figure 8, and n indicates the number of linker groups separating Groups R' and B in the respective compounds. Groups I, II each have a methyl group and Groups I*, III* each have a hydrogen, respectively, in the position designated R in Fragment B of Figure 8.

15

In further separate embodiments of the invention herein, the methods of the invention comprise administering a compound corresponding to the structures set out in Structure 120. For those compounds that correspond to Structure 120, n is an integer of from 1 to 12, from 3 to 10, more preferably from 5 to 9, and still more preferably from 20 6 to 9. In further embodiments, the compounds herein correspond to Structure 120, as further set out in Table 120.

STRUCTURE 120:

5

TABLE 120: SUBSTITUENT GROUPS FOR COMPOUNDS 195-210

R'	n=	3	5	7	9
I		195	196	197	198
I*		199	200	201	202
II		203	204	205	206
III*		207	208	209	210

In the above Table, R' corresponds to a Fragment as previously defined in
 10 Figure 6, C corresponds to a Fragment as previously defined in Figure 8, and n indicates the number of linker groups separating Groups R' and C in the respective compounds. Groups I, II each have a methyl group and Groups I*, II* each have a hydrogen, respectively, in the position designated R in Fragment C of Figure 8.

15 In further separate embodiments of the invention herein, the methods of the invention comprise administering a compound corresponding to Structure 122. For those compounds that correspond to Structure 122, n is an integer of from 1 to 12, from 3 to 10, more preferably from 5 to 9, and still more preferably from 6 to 9. In further embodiments, the compounds herein correspond to Structure 122, as further set out in
 20 Table 122.

STRUCTURE 122:

5

TABLE 122: SUBSTITUENT GROUPS FOR COMPOUNDS 211-226

R'	n=	3	5	7	9
I		211	212	213	214
I*		215	216	217	218
II		219	220	221	222
III*		223	224	225	226

- In the above Table, R' corresponds to a Fragment as previously defined in Figure 6, D corresponds to a Fragment as previously defined in Figure 8, and n indicates the number of linker groups separating Groups R' and D in the respective compounds. Groups I, II each have a methyl group and Groups I, III each have a hydrogen, respectively, in the position designated R in Fragment D of Figure 8.
- 15 In further separate embodiments of the invention herein, the methods of the invention comprise administering a compound corresponding to the structures set out in Structure 124. For those compounds that correspond to Structure 124, n is an integer of from 1 to 12, from 3 to 10, more preferably from 5 to 9, and still more preferably from 6 to 9. In further embodiments, the compounds herein correspond to Structure 124, as further set out in Table 124.
- 20

STRUCTURE 124:

5

TABLE 124: SUBSTITUENT GROUPS FOR COMPOUNDS 227-242

R'	n=	3	5	7	9
I		227	228	229	230
I*		231	232	233	234
II		235	236	237	238
III*		239	240	241	242

In the above Table, R' corresponds to a Fragment as previously defined in
10 Figure 6, E corresponds to a Fragment as previously defined in Figure 8, and n indicates the number of linker groups separating Groups R' and E in the respective compounds. Groups I, II each have a methyl group and Groups I*, III* each have a hydrogen, respectively, in the position designated R in Fragment E of Figure 8.

15 In further separate embodiments of the invention herein, the methods of the invention comprise administering a compound corresponding to the structures set out in Structure 126. For those compounds that correspond to Structure 126, n is an integer of from 1 to 12, from 3 to 10, more preferably from 5 to 9, and still more preferably from 6 to 9. In further embodiments, the compounds herein correspond to Structure 126, as
20 further set out in Table 126.

STRUCTURE 126:

5

TABLE 126: SUBSTITUENT GROUPS FOR COMPOUNDS 243-258

R'	n=	3	5	7	9
I		243	244	245	246
I*		247	248	249	250
II		251	252	253	254
III*		255	256	257	258

In the above Table, R' corresponds to a Fragment as previously defined in
 10 Figure 6, F corresponds to a Fragment as previously defined in Figure 8, and n
 indicates the number of linker groups separating Groups R' and F in the respective
 compounds. Groups I, II each have a methyl group and Groups I*, III* each have a
 hydrogen, respectively, in the position designated R in Fragment F of Figure 8.

15 In further separate embodiments of the invention herein, the methods of the
 invention comprise administering a compound corresponding to the structures set out in
 Structure 128. For those compounds that correspond to Structure 128, n is an integer of
 from 1 to 12, from 3 to 10, more preferably from 5 to 9, and still more preferably from
 6 to 9. In further embodiments, the compounds herein correspond to Structure 128, as
 20 further set out in Table 128.

STRUCTURE 128:

5

TABLE 128: SUBSTITUENT GROUPS FOR COMPOUNDS 259-274

R'	n=	3	5	7	9
I		259	260	261	262
I*		263	264	265	266
II		267	268	269	270
III*		271	272	273	274

10 In the above Table, R' corresponds to a Fragment as previously defined in Figure 6, G corresponds to a Fragment as previously defined in Figure 6, and n indicates the number of linker groups separating Groups R' and G in the respective compounds. Groups I, II each have a methyl group and Groups I*, III* each have a hydrogen, respectively, in the position designated R in Fragment G of Figure 8.

15

As used herein, the following terms are defined as follows: Ph: phenyl; I-propyl= isopropyl; OPh =O-Phenyl; and diNO₂=dinitric.

20 In further embodiments, the compounds administered in the methods of the present invention correspond to compounds of the Structure 130 wherein n is an integer of from 1 to 12, from 3 to 10, from 5 to 9 and, still further, from 6 to 9. Further embodiments of the compounds corresponding to Structure 130 are set out in Table 130.

25

STRUCTURE 130:**TABLE 130: COMPOUNDS CORRESPONDING TO STRUCTURE 130**

n =	3	4	5	6	7	8	9
	275	276	277	278	279	280	281

5

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 132 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein and R is 5-H, 6-CF₃, 5-CH₃, 5,7-diF, 5,7-diNO₂, 5-Butyl, 5-iPropyl, 5-Phenyl, 5-NO₂, 5-Trityl, 5-F, 5-OPh, 5-COPh, 5-CF₃, 5-COCH₃, 5-OCH₃, 5-COOCH₃ or 5-COOH.

10

Further embodiments of the compounds corresponding to Structure 132 are set out in Table 132.

15

STRUCTURE 132:

TABLE 132: COMPOUNDS 282-389 CORRESPONDING TO STRUCTURE 132

R n=	3	4	5	6	7	8
5-H	282	283	284	285	286	287
6-CF ₃	288	289	290	291	292	293
5-CH ₃	294	295	296	297	298	299
5,7-diF	300	301	302	303	304	305
5,7-diNO ₂	306	307	308	309	310	311
5-Butyl	312	313	314	315	316	317
5-iPropyl	318	319	320	321	322	323
5-Phenyl	324	325	326	327	328	329
5-NO ₂	330	331	332	333	334	335
5-Trityl	336	337	338	339	340	341
5-F	342	343	344	345	346	347
5-OPh	348	349	350	351	352	353
5-COPh	354	355	356	357	358	359
5-CF ₃	360	361	362	363	364	365
5-COCH ₃	366	367	368	369	370	371
5-OCH ₃	372	373	374	375	376	377
5-COOCH ₃	378	379	380	381	382	383
5-COOH	384	385	386	387	388	389

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 134 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein R is 5-H, 6-CF₃, 5-CH₃, 5,7-diF, 5,7-diNO₂, 5-Butyl, 5-iPropyl, 5-Phenyl, 5-NO₂, 5-Trityl, 5-F, 5-OPh, 5-COPh, 5-CF₃, 5-COCH₃, 5-OCH₃, 5-COOCH₃, or 5-COOH. Further embodiments of the compounds corresponding to Structure 134 are set out in Table 134.

STRUCTURE 134:**TABLE 134: COMPOUNDS 390-497 CORRESPONDING TO STRUCTURE 134**

R	n=	3	4	5	6	7	8
5-H		390	391	392	393	394	395
6-CF₃		396	397	398	399	400	401
5-CH₃		402	403	404	405	406	407
5,7-diF		408	409	410	411	412	413
5,7-diNO₂		414	415	416	417	418	419
5-Butyl		420	421	422	423	424	425
5-iPropyl		426	427	428	429	430	431
5-Phenyl		432	433	434	435	436	437
5-NO₂		438	439	440	441	442	443
5-Trityl		444	445	446	447	448	449
5-F		450	451	452	453	454	455
5-OPh		456	457	458	459	460	461
5-COPh		462	463	464	465	466	467
5-CF₃		468	469	470	471	472	473
5-COCH₃		474	475	476	477	478	479
5-OCH₃		480	481	482	483	484	485
5-COOCH₃		486	487	488	489	490	491
5-COOH		492	493	494	495	496	497

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 136 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein R is 5-H, 6-CF₃, 5-CH₃, 5,7-diF, 5,7-diNO₂, 5-Butyl, 5-iPropyl, 5-Phenyl, 5-NO₂, 5-Trityl, 5-F, 5-OPh, 5-COPh, 5-CF₃, 5-COCH₃, 5-OCH₃, 5-COOCH₃, or 5-COOH. Further embodiments of the compounds corresponding to Structure 136 are set out in Table 136.

STRUCTURE 136:

TABLE 136: COMPOUNDS 498-605 CORRESPONDING TO STRUCTURE 136

R	n=	3	4	5	6	7	8
5-H		498	499	500	501	502	503
6-CF ₃		504	505	506	507	508	509
5-CH ₃		510	511	512	513	514	515
5,7-diF		516	517	518	519	520	521
5,7-diNO ₂		522	523	524	525	526	527
5-Butyl		528	529	530	531	532	533
5-iPropyl		534	535	536	537	538	539
5-Phenyl		540	541	542	543	544	545
5-NO ₂		546	547	548	549	550	551
5-Trityl		552	553	554	555	556	557
5-F		558	559	560	561	562	563
5-OPh		564	565	566	567	568	569
5-COPh		570	571	572	573	574	575
5-CF ₃		576	577	578	579	580	581
5-COCH ₃		582	583	584	585	586	587
5-OCH ₃		588	589	590	591	592	593
5-COOCH ₃		594	595	596	597	598	599
5-COOH		600	601	602	603	604	605

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 138 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein R is 5-CF₃, 5-OPh, 5-iPropyl, 5-COCH₃, or 5-COPh and Y is 3-N,N-dimethylaminophenyl (3-N,N-diCH₃), 4-N,N-dimethylaminophenyl (4-N,N-diCH₃), or 2-Ph. Further embodiments of the compounds corresponding to Structure 138 are set out in Table 138.

STRUCTURE 138:

5

TABLE 138: COMPOUNDS 606-650 CORRESPONDING TO STRUCTURE 138

R	n=	4	7	8	Y
5-CF ₃		606	607	608	3-N,N-DiCH ₃
5-CF ₃		609	610	611	4-N,N-DiCH ₃
5-CF ₃		612	613	614	2-Ph
5-OPh		615	616	617	3-N,N-DiCH ₃
5-OPh		618	619	620	4-N,N-DiCH ₃
5-OPh		621	622	623	2-Ph
5-iPropyl		624	625	626	3-N,N-DiCH ₃
5-iPropyl		627	628	629	4-N,N-DiCH ₃
5-iPropyl		630	631	632	2-Ph
5-COCH ₃		633	634	635	3-N,N-DiCH ₃
5-COCH ₃		636	637	638	4-N,N-DiCH ₃
5-COCH ₃		639	640	641	2-Ph
5-COPh		642	643	644	3-N,N-DiCH ₃
5-COPh		645	646	647	4-N,N-DiCH ₃
5-COPh		648	649	650	2-Ph

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 140 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further,

from 6 to 9 and wherein R is 5-CF₃, 5-OPh, 5-iPropyl, 5-COCH₃ or 5-COPh, and Z is CH(Ph)₂ or 3-Pyridyl. Further embodiments of the compounds corresponding to Structure 140 are set out in Table 140.

5 STRUCTURE 140:

TABLE 140: COMPOUNDS 651-680 CORRESPONDING TO STRUCTURE 140

R	n=	4	7	8	Z
5-CF ₃		651	652	653	CH(Ph) ₂
5-CF ₃		654	655	656	3-Pyridyl
5-OPh		657	658	659	CH(Ph) ₂
5-OPh		660	661	662	3-Pyridyl
5-iPropyl		663	664	665	CH(Ph) ₂
5-iPropyl		666	667	668	3-Pyridyl
5-COCH ₃		669	670	671	CH(Ph) ₂
5-COCH ₃		672	673	674	3-Pyridyl
5-COPh		675	676	677	CH(Ph) ₂
5-COPh		678	679	680	3-Pyridyl

10 In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 142 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein R is 6-CF₃, 5-OPh, 5-iPropyl, 5-COCH₃, or 5-COPh. Further embodiments of the compounds corresponding to Structure 142 are set out in Table
15 142.

STRUCTURE 142:

5 TABLE 142: COMPOUNDS 681-695 CORRESPONDING TO STRUCTURE 142

R	n=	4	7	8
6-CF ₃		681	682	683
5-OPh		684	685	686
5-iPropyl		687	688	689
5-COCH ₃		690	691	692
5-COPh		693	694	695

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 144 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, 10 from 6 to 9 and wherein R is 6-CF₃, 5-OPh, 5-iPropyl, 5-COCH₃, or 5-COPh. Further embodiments of the compounds corresponding to Structure 144 are set out in Table 144.

STRUCTURE 144:

TABLE 144: COMPOUNDS 696-710 CORRESPONDING TO STRUCTURE 144

R	n=	4	7	8
6-CF ₃		696	697	698
5-OPh		699	700	701
5-iPropyl		702	703	704
5-COCH ₃		705	706	707
5-COPh		708	709	710

In further embodiments, the compounds administered according to the methods
 5 of the present invention correspond to compounds of the Structure 146 wherein n is an integer of from 1 to 12, from 3 to 10, from 5 to 9 and, still further, from 6 to 9. Further embodiments of the compounds corresponding to Structure 146 are set out in Table 146.

10 STRUCTURE 146:

TABLE 146: COMPOUNDS 711-714 CORRESPONDING TO STRUCTURE 146

n=	3	4	5	8
	711	712	713	714

15 In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 148, as further defined in Table 148.

STRUCTURE 148:**TABLE 148: COMPOUND 715 CORRESPONDING TO STRUCTURE 148**

715

5 In further embodiments, the compounds administered according to the methods
of the present invention correspond to compounds of the Structure 150 wherein n is an
integer of from 1 to 12, from 3 to 10, from 5 to 9 and, still further, from 6 to 9. Further
embodiments of the compounds corresponding to Structure 150 are set out in Table
150.

10

STRUCTURE 150:**TABLE 150: COMPOUNDS 716-718 CORRESPONDING TO STRUCTURE 150**

n=	2	3	4
	716	717	718

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 152 wherein n is an integer of from 1 to 12, from 3 to 10, from 5 to 9 and, still further, from 6 to 9. Further embodiments of the compounds corresponding to Structure 152 are set out in Table 5 152.

STRUCTURE 152:

10

TABLE 152: COMPOUNDS 719-725 CORRESPONDING TO STRUCTURE 152

n=	3	4	5	6	7	8	9
	719	720	721	722	723	724	725

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 154 wherein n is an 15 integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein Z is CH(DiPh), 4-(N,N-dimethylamino)phenyl, CH₂CH₂-(3-pyridyl), or (2-phenyl)-phenyl. Further embodiments of the compounds corresponding to Structure 154 are set out in Table 154.

STRUCTURE 154:5 **TABLE 154: COMPOUNDS 726-729 CORRESPONDING TO STRUCTURE 154**

$Z=$	CH(DiPh)	(4-N,N-DiCH ₃)phenyl	CH ₂ CH ₂ -(3-pyridyl)	(2-phenyl)-phenyl
	726	727	728	729

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 156 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, 10 from 6 to 9 and wherein R is -OCH₃ or -OCH₂Ph. Further embodiments of the compounds corresponding to Structure 156 are set out in Table 156.

STRUCTURE 156:

15

TABLE 156: COMPOUNDS 730-739 CORRESPONDING TO STRUCTURE 156

R	n=	4	5	6	7	8
-OCH ₃		730	731	732	733	734
-OCH ₂ Ph		735	736	737	738	739

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 158 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, 5 from 6 to 9 and wherein R is -OCH₃ or -OCH₂Ph. Further embodiments of the compounds corresponding to Structure 158 are set out in Table 158.

STRUCTURE 158:

10

TABLE 158: COMPOUNDS 740-749 CORRESPONDING TO STRUCTURE 158

R	n=	4	5	6	7	8
-OCH ₃		740	741	742	743	744
-OCH ₂ Ph		745	746	747	748	749

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 160 wherein n is an 15 integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein R is -OCH₃ or -OCH₂Ph. Further embodiments of the compounds corresponding to Structure 160 are set out in Table 160.

STRUCTURE 160:**TABLE 160: COMPOUNDS 750-759 CORRESPONDING TO STRUCTURE 160**

R	n=	4	5	6	7	8
-OCH ₃		750	751	752	753	754
-OCH ₂ Ph		755	756	757	758	759

5 In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 162 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein R is -OCH₃ or -OCH₂Ph. Further embodiments of the compounds corresponding to Structure 162 are set out in Table 162.

10

STRUCTURE 162:**TABLE 162: COMPOUNDS 760-769 CORRESPONDING TO STRUCTURE 162**

R	n=	4	5	6	7	8
-OCH ₃		760	761	762	763	764
-OCH ₂ Ph		765	766	767	768	769

15

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 164 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein R is -OCH₃ or -OCH₂Ph. Further embodiments of the 5 compounds corresponding to Structure 164 are set out in Table 164.

STRUCTURE 164:

TABLE 164: COMPOUNDS 770-779 CORRESPONDING TO STRUCTURE 164

R	n=	4	5	6	7	8
-OCH ₃		770	771	772	773	774
-OCH ₂ Ph		775	776	777	778	779

10

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 166 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein R is -OCH₃ or -OCH₂Ph. Further embodiments of the 15 compounds corresponding to Structure 166 are set out in Table 166.

STRUCTURE 166:

TABLE 166: COMPOUNDS 780-789 CORRESPONDING TO STRUCTURE 166

R	n=	4	5	6	7	8
-OCH ₃		780	781	782	783	784
-OCH ₂ Ph		785	786	787	788	789

5 In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 168 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein R is -OCH₃ or -OCH₂Ph. Further embodiments of the compounds corresponding to Structure 168 are set out in Table 168.

10

STRUCTURE 168:

TABLE 168: COMPOUNDS 790-799 CORRESPONDING TO STRUCTURE 168

R	n=	4	5	6	7	8
-OCH ₃		790	791	792	793	794
-OCH ₂ Ph		795	796	797	798	799

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 170 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein R is -OCH₃ or -OCH₂Ph. Further embodiments of the 5 compounds corresponding to Structure 170 are set out in Table 170.

STRUCTURE 170:

TABLE 170: COMPOUNDS 800-809 CORRESPONDING TO STRUCTURE 170

R	n=	4	5	6	7	8
-OCH ₃		800	801	802	803	804
-OCH ₂ Ph		805	806	807	808	809

10

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 172 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein R is -OCH₃ and -OCH₂ Ph. Further embodiments of the 15 compounds corresponding to Structure 172 are set out in Table 172.

TABLE 172: COMPOUNDS 810-819 CORRESPONDING TO STRUCTURE 172

R	n=	4	5	6	7	8
-OCH ₃		810	811	812	813	814
-OCH ₂ Ph		815	816	817	818	819

In further embodiments, the compounds administered according to the methods
 5 of the present invention correspond to compounds of the Structure 174 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein R is -OCH₃ and -OCH₂ Ph. Further embodiments of the compounds corresponding to Structure 174 are set out in Table 174.

10 STRUCTURE 174:

TABLE 174: COMPOUNDS 820-829 CORRESPONDING TO STRUCTURE 174

R	n=	4	5	6	7	8
-OCH ₃		820	821	822	823	824
-OCH ₂ Ph		825	826	827	828	829

In further embodiments, the compounds administered according to the methods
 15 of the present invention correspond to compounds of the Structure 176 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein Z is 3-quinoline, 3-(N,N-dimethylamino)phenyl, or 4-(N,N-dimethylamino)phenyl. Further embodiments of the compounds corresponding to Structure 176 are set out in Table 176.

STRUCTURE 176:**TABLE 176: COMPOUNDS 830-847 CORRESPONDING TO STRUCTURE 176**

Z	n=	4	5	6	7	8	9
3-quinoline		830	831	832	833	834	835
3-(N,N-diCH ₃) phenyl		836	837	838	839	840	841
4-(N,N-diCH ₃) phenyl		842	843	844	845	846	847

5 In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 178 wherein n is an integer of from 1 to 12, from 3 to 10, from 5 to 9 and, still further, from 6 to 9. Further embodiments of the compounds corresponding to Structure 178 are set out in Table 178.

10

STRUCTURE 178:**TABLE 178: COMPOUNDS 848-853 CORRESPONDING TO STRUCTURE 178**

N=	4	5	6	7	8	9
	848	849	850	851	852	853

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 180 wherein n is an integer of from 1 to 12, from 3 to 10, from 5 to 9 and, still further, from 6 to 9. Further 5 embodiments of the compounds corresponding to Structure 180 are set out in Table 180.

STRUCTURE 180:

10

TABLE 180: COMPOUNDS 854-860 CORRESPONDING TO STRUCTURE 180

n=	2	3	4	5	6	7	8
	854	855	856	857	858	859	860

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 182 wherein n is an 15 integer of from 1 to 12, from 3 to 10, from 5 to 9 and, still further, from 6 to 9. Further embodiments of the compounds corresponding to Structure 182 are set out in Table 182.

STRUCTURE 182:

20

TABLE 182: COMPOUNDS 861-867 CORRESPONDING TO STRUCTURE 182

n=	2	3	4	5	6	7	8
	861	862	863	864	865	866	867

In further embodiments, the compounds administered according to the methods
 5 of the present invention correspond to compounds of the Structure 184 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein and R is 6-CF₃, 5-OPh, 5-CH(CH₃)₂, 5-COCH₃ or 5-COPh. Further embodiments of the compounds corresponding to Structure 184 are set out in Table 184.

10

STRUCTURE 184:**TABLE 184: COMPOUNDS 868-882 CORRESPONDING TO STRUCTURE 184**

R	n=	4	7	8
6-CF ₃		868	869	870
5-OPh		871	872	873
5-CH(CH ₃) ₂		874	875	876
5-COCH ₃		877	878	879
5-COPh		880	881	882

15

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 186 wherein n is an

integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein R is 6-CF₃, 5-OPh, 5-CH(CH₃)₂, 5-COCH₃ or 5-COPh.

Further embodiments of the compounds corresponding to Structure 186 are set out in Table 186.

5

STRUCTURE 186:

TABLE 186: COMPOUNDS 883-897 CORRESPONDING TO STRUCTURE 186

R	n=	4	7	8
6-CF ₃		883	884	885
5-OPh		886	887	888
5-CH(CH ₃) ₂		889	890	891
5-COCH ₃		892	893	894
5-COPh		895	896	897

10

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 188 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein and R is 6-CF₃, 5-OPh, 5-CH(CH₃)₂, 5-COCH₃ or 5-COPh.

15

Further embodiments of the compounds corresponding to Structure 188 are set out in Table 188.

20

STRUCTURE 188:

TABLE 188: COMPOUNDS 898-912 CORRESPONDING TO STRUCTURE 188

R	n=	4	7	8
6-CF₃		898	899	900
5-OPh		901	902	903
5-CH(CH₃)₂		904	905	906
5-COCH₃		907	908	909
5-COPh		910	911	912

5 In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 190 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein R is 6-CF₃, 5-OPh, 5-CH(CH₃)₂, 5-COCH₃ or 5-COPh.

10 Further embodiments of the compounds corresponding to Structure 190 are set out in Table 190.

STRUCTURE 190:**15 TABLE 190: COMPOUNDS 913-927 CORRESPONDING TO STRUCTURE 190**

R	n=	4	7	8
6-CF₃		913	914	915
5-OPh		916	917	918
5-CH(CH₃)₂		919	920	921
5-COCH₃		922	923	924
5-COPh		925	926	927

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 192 wherein n is an

integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein and R is 6-CF₃, 5-OPh, 5-CH(CH₃)₂, 5-COCH₃ or 5-COPh. Further embodiments of the compounds corresponding to Structure 192 are set out in Table 192.

5

STRUCTURE 192:**TABLE 192: COMPOUNDS 928-942 CORRESPONDING TO STRUCTURE 192**

R	n=	4	7	8
6-CF₃	928	929	930	
5-OPh	931	932	933	
5-CH(CH₃)₂	934	935	936	
5-COCH₃	937	938	939	
5-COPh	940	941	942	

10

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 194 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further,

15 — from 6 to 9 and R¹ is an H or -OCH₂Ph and R² is H or COOCH₃. Further embodiments of the compounds corresponding to Structure 194 are set out in Table 194.

STRUCTURE 194:

TABLE 194: COMPOUNDS 943-954 CORRESPONDING TO STRUCTURE 194

R ¹	R ²	n=	6	7	8	9
H	H		943	944	945	946
H	COOCH ₃		947	948	949	950
-OCH ₂ Ph	COOCH ₃		951	952	953	954

5 In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 196 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein R¹ is an H or a -OCH₂Ph and R² is H or COOCH₃. Further embodiments of the compounds corresponding to Structure 196 are set out in Table
10 196.

STRUCTURE 196:**15 TABLE 196: COMPOUNDS 955-966 CORRESPONDING TO STRUCTURE 196**

R ¹	R ²	n=	6	7	8	9
H	H		955	956	957	958
H	COOCH ₃		959	960	961	962
-OCH ₂ Ph	COOCH ₃		963	964	965	966

15 In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 198 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein R¹ is an H or a -OCH₂Ph and R² is H, or COOCH₃. Further embodiments of the compounds corresponding to Structure 198 are set out in Table
20 198.

STRUCTURE 198:5 **TABLE 198: COMPOUNDS 967-978 CORRESPONDING TO STRUCTURE 198**

R ¹	R ²	n=	6	7	8	9
H	H		967	968	969	970
H	COOCH ₃		971	972	973	974
-OCH ₂ Ph	COOCH ₃		975	976	977	978
OCPh ₃	COOCH ₃				1106	

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 200 wherein n is an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further, 10 from 6 to 9 and wherein R¹ is H or a -OCH₂Ph and R² is H or COOCH₃. Further embodiments of the compounds corresponding to Structure 200 are set out in Table 200.

STRUCTURE 200:

TABLE 200: COMPOUNDS 979-990 CORRESPONDING TO STRUCTURE 200

R1	R2	n=	6	7	8	9
H	H		979	980	981	982
H	COOCH ₃		983	984	985	986
OCH ₂ Ph	COOCH ₃		987	988	989	990

In further embodiments, the compounds administered according to the methods
 5 of the present invention correspond to compounds of the Structure 202A.

STRUCTURE 202A:

10

In further embodiments, the compounds administered according to the methods
 of the present invention correspond to compounds of the Structure 202A wherein n is
 an integer of from 1 to 12, more preferably, from 3 to 10, from 5 to 9 and, still further,
 from 6 to 9 and wherein R is H; 4-NO₂; 2-CONHPh; 2-NO₂; 4-[1'(4'-acetylpirperazine)];
 15 2-COCH₃; 3-OCOCH₃; 3-OCH₃; 4-COCH₃; 3-OCOPh; 2-CONH₂; 4-CH=CHCOCH₃;
 4-OCOPh; 4-CH=CHCOPh; 4-{CO-3'[2'-butylbenzo(b)furan]}; 3-NO₂; 4-[5'-(5'-
 phenylhydantoin)]; 2-CH=CHCOPh; 2-OCH₃; 4-COPh; 4-CONH₂; 3-COCH₃; 4-OPh;
 4-(N-Phthalimide); 3-(N-Morpholine); 2-(N-pyrrolidine); 2-(N-Morpholine); or 4-
 OCH₂Ph. Further embodiments of the compounds corresponding to Structure 202 are
 20 set out in Table 202.

TABLE 202: COMPOUNDS 991-1021 CORRESPONDING TO STRUCTURE 202A

R=	n=4	n=7	n=8
H	991	993	
4-NO ₂	992	994	995
2-CONHPh			996
2-NO ₂			997
4-[1'(4'-acetyl piperazine)]			998
2-COCH ₃			999
3-OCOCH ₃			1000
3-OCH ₃			1001
4-COCH ₃			1002
3-OCOPh			1003
2-CONH ₂			1004
4-CH=CHCOCH ₃			1005
4-OCOPh			1006
4-CH=CHCOPh			1007
4-{CO-3'[2'-butylbenzo(b)furan]}			1008
3-NO ₂			1009
4-[5'-(5'-phenylhydantoin)]			1010
2-CH=CHCOPh			1011
2-OCH ₃			1012
4-COPh			1013
4-CONH ₂			1014
3-COCH ₃			1015
4-Oph			1016
4-(N-phthalimide)			1017
3-(N-morpholine)			1018
2-(N-pyrrolidine)			1019
2-(N-morpholine)			1020
4-OCH ₂ Ph			1021

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 204A wherein n is an integer of from 1 to 12, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and wherein R is 4-NO₂; 2-CONHPh; 2-NO₂; 4-[1'(4'-acetyl piperazine)]; 2-COCH₃; 3-OCOCH₃; 3-OCH₃; 4-COCH₃; 3-OCOPh; 2-CONH₂; 4-CH=CHCOCH₃; 4-OCOPh; 4-CH=CHCOPh; 4-{CO-3'[2'-butylbenzo(b)furan]}; 3-NO₂; 4-[5'-(5'-phenylhydantoin)];

2-CH=CHCOPh; 2-OCH₃; 4-COPh; 4-CONH₂; 3-COCH₃; 4-OPh; 4-(N-phthalimide); 3-(N-morpholine); 2-(N-pyrrolidine); 2-(N-morpholine); or 4-OCH₂Ph. Further embodiments of the compounds corresponding to Structure 204 are set out in Table 204.

5

STRUCTURE 204A:10 **TABLE 204: COMPOUNDS 1022-1048 CORRESPONDING TO STRUCTURE 204A**

R=	
4-NO ₂	1022
2-CONHPh	1023
2-NO ₂	1024
4-[1'(4'-acetyl)piperazine)]	1025
2-COCH ₃	1026
3-OCOCH ₃	1027
3-OCH ₃	1028
4-COCH ₃	1029
3-OCOPh	1030
2-CONH ₂	1031
4-CH=CHCOCH ₃	1032
4-OCOPh	1033
4-CH=CHCOPh	1034
4-[CO-3'[2'-butylbenzo(b)furan]]	1035
3-NO ₂	1036
4-[5'-(5'-phenylhydantoin)]	1037
2-CH=CHCOPh	1038
2-OCH ₃	1039
4-COPh	1040
4-CONH ₂	1041
3-COCH ₃	1042
4-Oph	1043
4-(N-phthalimide)	1044

R=	
3-(N-morpholine)	1045
2-(N-pyrrolidine)	1046
2-(N-morpholine)	1047
4-OCH ₂ Ph	1048

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 206 wherein n is an integer of from 1 to 12, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and
5 wherein R is H; 4-NO₂; 2-CONHPh; 2-NO₂; 2-COCH₃; 3-OCH₃; 4-COCH₃; 3-OCOPh;
2-CONH₂; 4-CH=CHCOCH₃; 4-OCOPh; 4-CH=CHCOPh; 4-{CO-3'[2'-butylbenzo(b)furan]}; 3-NO₂; 2-CH=CHCOPh; 2-OCH₃; 4-COPh; 3-COCH₃; 4-OPh;
4-(N-phthalimide); or 4-OCH₂Ph. Further embodiments of the compounds corresponding to Structure 206 are set out in Table 206.

10

STRUCTURE 206:

15

TABLE 206: COMPOUNDS 1049-1068 CORRESPONDING TO STRUCTURE 206

R=	n=4	n=7	n=8
H	1049	1051	
4-NO ₂	1050	1052	1053
2-CONHPh			3054
2-NO ₂			1055
2-COCH ₃			1056
3-OCH ₃			1057
4-COCH ₃			1058
3-OCOPh			1059
2-CONH ₂			1060
4-CH=CHCOCH ₃			1061

4-OCOPh			1062
4-CH=CHCOPh			1063
4-{CO-3'[2'-butylbenzo(b)furan]}			1064
3-NO ₂			1065
2-CH=CHCOPh			1066
2-OCH ₃			1067
4-COPh			1068
3-COCH ₃			1069
4-OPh			1070
4-(N-phthalimide)			1071
4-OCH ₂ Ph			1072

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 208 wherein n is an integer of from 1 to 12, from 3 to 10, from 5 to 9 and, still further, from 6 to 9 and

5 wherein R is 4-NO₂; 2-CONHPh; 2-NO₂; 2-COCH₃; 3-OCH₃; 4-COCH₃; 3-OCOPh; 2-CONH₂; 4-CH=CHCOCH₃; 4-OCOPh; 4-CH=CHCOPh; 4-{CO-3'[2'-butylbenzo(b)furan]}; 3-NO₂; 2-CH=CHCOPh; 2-OCH₃; 4-COPh; 3-COCH₃; 4-OPh; 4-(N-phthalimide); 3-(N-morpholine); 2-(N-morpholine); or 4-OCH₂Ph. Further embodiments of the compounds corresponding to Structure 208 are set out in Table

10 208.

STRUCTURE 208:

TABLE 208: COMPOUNDS 1073-1094 CORRESPONDING TO STRUCTURE 208

R=	
4-NO ₂	1073
2-CONHPh	1074
2-NO ₂	1075
2-COCH ₃	1076
3-OCH ₃	1077
4-COCH ₃	1078
3-OCOPh	1079
2-CONH ₂	1080
4-CH=CHCOCH ₃	1081
4-OCOPh	1082
4-CH=CHCOPh	1083
4-{CO-3'[2'-butylbenzo(b)furan]}	1084
3-NO ₂	1085
2-CH=CHCOPh	1086
2-OCH ₃	1087
4-COPh	1088
3-COCH ₃	1089
4-Oph	1090
4-(N-phthalimide)	1091
3-(N-morpholine)	1092
2-(N-morpholine)	1093
4-OCH ₂ Ph	1094

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of the Structure 210 wherein R is
 5 NH₂; NMe₂; NMe₃.I; NH₂.HCl; NMe₂.HCl. Further embodiments of the compounds corresponding to Structure 210 are set out in Table 210.

STRUCTURE 210:

TABLE 210: COMPOUNDS 1095-1099 CORRESPONDING TO STRUCTURES 210

R=	
NH ₂	1095
NMe ₂	1096
NMe ₃ .I-	1097
NH ₂ .HCl	1098
NMe ₂ .HCl	1099

- In further embodiments, the compounds administered according to the methods
 5 of the present invention correspond to compounds of the Structure 212 wherein R' is PhCONH or Ph₃C and R'' is H or COOCH₃. Further embodiments of the compounds corresponding to Structure 212 are set out in Table 212.

STRUCTURE 212:

10

TABLE 212: COMPOUNDS 1100-1101 CORRESPONDING TO STRUCTURE 212

R'=	R''=	
PhCONH	H	1100
Ph ₃ C	COOCH ₃	1101

- In further embodiments, the compounds administered according to the methods
 15 of the present invention correspond to compounds of the Structure 214 wherein R is 4-hydroxyphenyl or 3-hydroxy-4-methylphenyl. Further embodiments of the compounds corresponding to Structure 214 are set out in Table 214.

STRUCTURE 214:**TABLE 214: COMPOUNDS 1102-1103 CORRESPONDING TO STRUCTURE 214**

R=	
4-hydroxyphenyl	1102
3-hydroxy-4-methylphenyl	1103

5

In further embodiments, the compounds administered according to the methods of the present invention correspond to compounds of Structure 216 wherein R' is PhCONH and R'' is H or COOCH₃ and n= 7 or 8. Further preferred embodiments of the compounds corresponding to Structure 216 are set out in Table 216.

10 STRUCTURE 216:**TABLE 216: COMPOUNDS 1104-1105 CORRESPONDING TO STRUCTURE 216**

R'=	R''=	n=	
PhCONH	H	8	1104
PhCH ₂ O	COOCH ₃	7	1105

Further embodiments of the invention include compounds having Structure 300:

Structure 300

5

wherein Y is C, N, O, S, ester, amide, or ketone, n is an integer of from 1 to 12, a is an integer from 1-3, and R₁-R₅ each, independently, is an H, unsubstituted or substituted cyclic group or an aliphatic group, a branched or an unbranched group, or an alkyl, alkenyl, or alkynyl, or an aryl group. R₁-R₂ may also be an H, hydroxyl, ketone, nitro, 10 amino, amidino, guanidino, carboxylate, amide, ester, sulfonate, halogen, alkoxy, or aryloxy group. The (CH₂)_n linker may be saturated or unsaturated and contain cyclic or aliphatic groups, branched or unbranched alkyl, alkenyl, or alkynyl substituents, and wherein the linker may also contain heteroatoms. The aryl group is an aromatic grouping which may contain one or more rings, and the quaternary nitrogen may be 15 part of the ring (as, for example, in pyridines and quinolines) or outside the ring (as, for example, in anilines and aminonaphthalenes). The value for n may also be an integer of from 3 to 10, more preferably 5 to 9 and, still more preferably 6 to 9.

Specific examples include Structure 1300

1300

5

Yet another example of suitable compounds include those having Structure 400:

Structure 400

10

wherein Y is C, N, O, S, ester, amide, or ketone; Z is C, N, O, or S; AA is a natural or unnatural stereoisomer of an α -, β -, γ -, or δ -amino acid in which the carboxyl carbonyl is attached to Z, and the amino grouping may be a primary, secondary, tertiary, or quaternary ammonium compound; n is an integer of from 1 to 12; and R₁-R₅ each,

15 independently, is an H, unsubstituted or substituted cyclic group or an aliphatic group, a branched or an unbranched group, or an alkyl, alkenyl, or alkynyl, or an aryl group. R₁-R₂ may also be an H, hydroxyl, ketone, nitro, amino, amidino, guanidino, carboxylate, amide, ester, sulfonate, halogen, alkoxy, or aryloxy group. The (CH₂)_n linker may be saturated or unsaturated and contain cyclic or aliphatic groups, branched or unbranched alkyl, alkenyl, or alkynyl substituents, and wherein the linker may also contain heteroatoms. The value for n may also be an integer of from 3 to 10, more preferably 5 to 9 and, still more preferably 6 to 9.

20

Specific examples include Structure 1230:

5

and Structure 1260:

10

In the method of killing yeast, as well as in the method of decreasing the growth of yeast, the NAD synthetase enzyme inhibitor is a compound that selectively binds with catalytic sites or subsites on a yeast NAD synthetase enzyme to reduce or eliminate the production of NAD by the yeast. In such methods, it is particularly preferable that there is little or no inhibitory activity on the host cell. For example, when the method is utilized to inhibit yeast activity in a mammal, it is preferred that there is little or no attendant affect on the NAD synthetase activity of the host. In one embodiment, the host is a mammal. In a further embodiment, the host is a plant.

20

In the methods herein, the compound is preferably administered by oral, rectal, intramuscular, intravenous, intravesicular or topical means of administration. The compounds of this invention can be administered to a cell of a subject either *in vivo* or *ex vivo*. For administration to a cell of the subject *in vivo*, as well as for administration to the subject, the compounds of this invention can be administered orally, parenterally (*e.g.*, intravenously), by intramuscular injection, by intraperitoneal injection, subcutaneous injection, transdermally, extracorporeally, topically, mucosally or the like.

Depending on the intended mode of administration, the compounds of the present invention can be in pharmaceutical compositions in the form of solid, semi-solid or liquid dosage forms, such as, for example, tablets, suppositories, pills, capsules, powders, liquids, suspensions, lotions, creams, gels, or the like, preferably in unit dosage form suitable for single administration of a precise dosage. The compositions will include, as noted above, an effective amount of the selected composition, possibly in combination with a pharmaceutically acceptable carrier and, in addition, may include other medicinal agents, pharmaceutical agents, carriers, adjuvants, diluents, etc.

Parenteral administration of the compounds of the present invention, if used, is generally characterized by injection. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution of suspension in liquid prior to injection, or as emulsions. As used herein, "parenteral administration" includes intradermal, subcutaneous, intramuscular, intraperitoneal, intravenous and intratracheal routes. One approach for parenteral administration involves use of a slow release or sustained release system such that a constant dosage is maintained. *See e.g.*, U.S. Patent No. 3,610,795, which is incorporated by reference herein. These compounds can be present in a pharmaceutically acceptable carrier, which can also include a suitable adjuvant. By "pharmaceutically acceptable," it is meant a material that is not biologically or otherwise undesirable, *i.e.*, the material may be administered to an individual along with the selected compound without causing substantial deleterious biological effects or interacting in a deleterious manner with any of the other components of the composition in which it is contained.

Routes of administration for the compounds herein are preferably in a suitable and pharmacologically acceptable formulation. When administered to a human or an animal subject, the yeast NAD synthetase enzyme inhibitor compounds of the invention herein are preferably presented to animals or humans orally, rectally, intramuscularly,

intravenously, intravesicularly or topically (including inhalation). The dosage preferably comprises between about 0.1 to about 15g per day and wherein the dosage is administered from about 1 to about 4 times per day. The preferred dosage may also comprise between 0.001 and 1 g per day, still preferably about 0.01, 0.05, 0.1, and 0.25,
5 0.5, 0.75 and 1.0 g per day. Further preferably, the dosage may be administered in an amount of about 1, 2.5, 5.0, 7.5, 10.0, 12.5 and 15.0 g per day. The dosage may be administered at a still preferable rate of about 1, 2, 3, 4 or more times per day. Further, in some circumstances, it may be preferable to administer the compounds invention continuously, as with, for example, intravenous administration. The exact amount of
10 the compound required will vary from subject to subject, depending on the species, age, weight and general condition of the subject, the particular compound used, its mode of administration and the like. Thus, it is not possible to specify an exact amount for every compound. However, an appropriate amount can be determined by one of ordinary skill in the art using only routine experimentation given the teachings herein.

15

If *ex vivo* methods are employed, cells or tissues can be removed and maintained outside the subject's body according to standard protocols well known in the art. The compounds of this invention can be introduced into the cells via known mechanisms for uptake of small molecules into cells (e.g., phagocytosis, pulsing onto
20 class I MHC-expressing cells, liposomes, etc.). The cells can then be infused (e.g., in a pharmaceutically acceptable carrier) or transplanted back into the subject per standard methods for the cell or tissue type. Standard methods are known for transplantation or infusion of various cells into a subject.

25 **EXAMPLES**

The following examples are set forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how the compositions and methods claimed herein are made and evaluated, and are intended to be purely
30 exemplary of the invention and are not intended to limit the scope of what the inventors

regard as their invention. Efforts have been made to ensure accuracy with respect to numbers (e.g., amounts, temperature, etc.) but some errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, temperature is in °C or is at room temperature, and pressure is at or near atmospheric.

5

EXAMPLE 1: NAD synthetase enzyme inhibition assay- Determination of test compound concentrations providing 50% inhibition (IC₅₀) of the maximum enzyme rate.

10 The potential inhibitory activity of the synthetic compounds was determined by the use of a coupled enzymatic assay. The coupled assay involves two steps as summarized below.

Step 1

15

Step 2

20

The final reaction mixture includes 0.2 ml of 60 mM HEPES buffer, pH 8.5, 10 mM MgCl₂, 19 mM NH₄Cl₂, 20 mM KCL, 0.1mM NaAD, 0.3% n-octyl- α -D-glucopyranoside, 1% ethanol, 1 μ g/ml NAD synthetase, 62.5 μ g/ml yeast alcohol dehydrogenase, 0.2 mM ATP and 2.5% DMSO.

25

The measurement of inhibitory activities of the test compounds was facilitated by the use of a high through-put screening system (HTS system). The HTS system utilizes an integrated Sagent 2M ORCA robotic system coordinating the functions of a Beckman Biomek 2000 liquid handler and a Molecular Devices SpectraMax Plus

spectrophotometer. The 2M ORCA robotic station is responsible for the movement of all hardware and the integration of multiple stations on the worksurface. The Biomek 2000 is programmed to perform all phases of liquid dispensing and mixing. The SpectraMax Plus spectrophotometer is equipped to monitor absorbance in a 96-well plate format.

The current assay is designed for a 96-well plate format and begins with the dispensing of 0.170 mL of reaction buffer containing 60 mM HEPES buffer, pH 8.5, 10 mM MgCl₂, 19 mM NH₄Cl₂, 20 mM KCL, 0.118 mM NaAD, 0.3% *n*-octyl- α -D-glucopyranoside, 1.18% ethanol, 1.18 μ g/ml NAD synthetase (recombinant protein from *B. subtilis*; purified), and 73.75 μ g/ml yeast alcohol dehydrogenase. Once the Biomek 2000 has completed this stage of the liquid handling, a 0.005ml volume of test compound in 100% DMSO or a 0.005ml of DMSO will be dispensed in the reaction well. The Biomek 2000 mixes these components utilizing a predefined mixing program. The reaction is initiated by the addition of 0.025ml of a solution of 1.6 mM ATP dissolved in 60 mM HEPES buffer, pH 8.5, 10 mM MgCl₂, 19 mM NH₄Cl₂, 20 mM KCL, 2.5% DMSO, and 0.3% *n*-Octyl- α -D-Glucopyranoside. The reaction is monitored by measuring the increase in absorbance at 340 nm (NADH). The linear portion of the reaction is monitored for 180 sec. The initial velocity is determined using Softmax Pro, the software supplied with the Molecular Devices SpectrMax Plus spectrophotometer.

The test compounds were supplied as a stock solution with a concentration of 50mM dissolved in 100% dimethyl sulfoxide (DMSO). An initial screen was conducted on all compounds using a 2 or 3 concentration screen. The 2 panel screen used concentrations of 0.2mM and 0.1mM for the compounds. The 3 panel screen used concentrations of 0.2mM, 0.1mM, and 0.05 mM. From the initial screen, compounds which indicated the greatest inhibitory capacity were then subjected to a wider screen of concentrations (0.1mM to 0.005mM). The IC₅₀ values for each compound were determined graphically from a plot of % inhibition versus rate.

Table 1. Enzyme Inhibition Data for Selected Compounds: Concentration of Test Compounds Producing 50% Inhibition (IC_{50}) of the NAD Synthetase Enzyme Rate

5

Compound	IC_{50} (μM)
769	20
749	25
230	12
976	20
977	10
984	20
985	15
986	10
988	10
970	20
1094	20

Example 2: Determination of minimum inhibitory concentration (MIC) against yeast.

10

Candida albicans (ATCC 10231), *Candida tropicalis* (ATCC 28707-amphotericin B-resistant) and *Candida tropicalis* (ATCC 750) from stock culture were subcultured on Sabouraud dextrose agar plates for 2 days at 37 °C in ambient air. At least 5 colonies from each of the cultures were inoculated into 3 mL of an appropriate broth and thoroughly mixed. One-tenth mL of this suspension was transferred into 10 mL of the appropriate broth and incubated on a shaking incubator at 37 °C for 5-6 hours. Each suspension of the yeast was then adjusted with sterile saline to contain approximately 5×10^8 CFU/mL.

15

Test compounds (antifungal agents) were prepared as 5 mg/mL stock solutions in 100% dimethyl sulfoxide. This was diluted 1:100 into 4 mL of diluted broth media for a starting concentration of 50 µg/mL. An additional 9 tubes were prepared with each containing 2 mL of the appropriate broth medium. Serial doubling dilutions were 5 performed for each set of 10 tubes by transferring 2 mL of test material from the first tube to the second tube, mixing thoroughly, then transferring 2 mL to the next tube and mixing, until the tenth tube. From the tenth tube, 2 mL of mixture was discarded. Each tube is then inoculated with 0.01 mL of the yeast suspension in broth. Tubes were incubated for 37 °C for 20 hours and then scored for visible growth or no visible 10 growth. The MIC is defined as the concentration of test compound (µg/mL) that completely inhibits growth of yeast. A positive control (without test compound in broth containing 1% DMSO inoculated with 0.01 mL of the suspension in broth) and a sterility control (only broth containing 1% DMSO) were incubated and evaluated under the same conditions. The MIC determinations and controls were performed in 15 duplicate. The MIC values reported in Table 2 are the mean of duplicate results.

Table 2. Minimum Inhibitory Concentration (MIC) Against Yeast

Compound	<i>Candida albicans</i> (ATCC 10231) MIC (µg/mL)	<i>Candida tropicalis</i> (ATCC 28707) MIC (µg/mL)	<i>Candida tropicalis</i> (ATCC 750) MIC (µg/mL)
769	4.7	0.098	0.098
749	1.6		
230	0.78		
976	3.1		
977	1.6		
984	0.78		
985	1.6		
986	2.3		

988	0.10	0.15	0.024
970	0.8		
1094	6.2	0.78	0.78

Example 3 In vivo toxicity: intraperitoneal (IP) dosage in mice resulting in 50% lethality (LD₅₀).

Male CD-1 mice (Charles River Labs) at age 4-6 weeks with a body weight of
 5 about 25 g were divided into groups of 5 mice each. Animals were fed with commercial diet and water *ad lib.* Each group of 5 mice received, intraperitoneally (IP), a single dosage of 0, 31.25, 62.5, 125, 250, 500, and 1,000 mg/kg compound. Test compounds were provided as 400 mg/mL stock solutions in 100% dimethyl sulfoxide (DMSO). An equivalent volume was injected into each animal. Animals were observed for 14 days
 10 following injection, and body weight was measured every other day. The LD₅₀ was determined from a plot of death rate (%) versus log dose (mg/kg).

Table 3. *In Vivo* Toxicity for Selected Antifungal Compounds In Mice.

Compound	LD ₅₀ (mg/kg)
769	43
230	47
988	135

Example 4 – IN VITRO STUDY OF INHIBITION OF GROWTH AND LETHALITY AGAINST YEAST

5

STRUCTURES OF NAD SYNTHETASE INHIBITORS USED IN THE YEAST ASSAY

Compound	Structure	IC_{50} ($\mu\text{g/mL}$) for Inhibit. of NAD Synthetase
10		
1096		100
1300		20
		66
988		25
		10
769		35
		20
1094		20

94

TABLE 4A - RESULTS FOR IN VITRO STUDY OF INHIBITION OF GROWTH AND LETHALITY AGAINST YEAST

Minimum Inhibitory Conc. (MIC; µg/mL) and Minimum Lethal Conc. (MLC; µg/mL) Susceptibility Test Against Yeast					
Cryptococcus neoformans read at 48 and 72 hrs. All others at 24 and 48 hrs.					
MIC value is read at longest time.					
Comp.	Organism	24 hr.	48 hr.	72 hr.	MLC
769	Candida albicans	2	2		
769	Candida albicans	1	4		8
769	Candida albicans	1	2		
769	Candida albicans	1	2		8
769	Candida tropicalis	0.25	0.5		
769	Candida tropicalis	0.25	0.5		2
769	Candida tropicalis	1	1		
769	Candida tropicalis	1	1		2
769	Cryptococcus neoformans		0.5	1	
769	Cryptococcus neoformans		0.5	1	2
769	Cryptococcus neoformans		0.5	0.5	
769	Cryptococcus neoformans		1	1	2
769	Torulopsis glabrata	1	2		
769	Torulopsis glabrata	1	2		2
769	Torulopsis glabrata	0.5	1		
769	Torulopsis glabrata	0.5	1		1
230	Candida albicans	1	1		
230	Candida albicans	0.5	1		1
230	Candida albicans	1	1		
230	Candida albicans	1	1		1
230	Candida tropicalis	0.5	0.5		
230	Candida tropicalis	0.5	0.5		0.5
230	Candida tropicalis	1	1		
230	Candida tropicalis	1	1		1
230	Cryptococcus neoformans		1	1	
230	Cryptococcus neoformans		1	1	2
230	Cryptococcus neoformans		1	1	
230	Cryptococcus neoformans		1	1	2
230	Torulopsis glabrata	1	2		
230	Torulopsis glabrata	2	2		2
230	Torulopsis glabrata	1	2		

230	Torulopsis glabrata	2	2		2
988	Candida albicans	1	1		
988	Candida albicans	1	1		1
988	Candida albicans	1	2		
988	Candida albicans	1	2		2
988	Candida tropicalis	0.5	0.5		
988	Candida tropicalis	1	1		1
988	Candida tropicalis	1	1		
988	Candida tropicalis	1	1		1
988	Cryptococcus neoformans			1	1
988	Cryptococcus neoformans			1	2
988	Cryptococcus neoformans			1	1
988	Cryptococcus neoformans			1	2
988	Torulopsis glabrata	2	2		
988	Torulopsis glabrata	2	2		2
988	Torulopsis glabrata	1	2		
988	Torulopsis glabrata	2	2		2
1096	Candida albicans	>32	>32		
1096	Candida albicans	>32	>32		>32
1096	Candida albicans	>32	>32		
1096	Candida albicans	>32	>32		>32
1096	Candida tropicalis	4	8		
1096	Candida tropicalis	2	16		16
1096	Candida tropicalis	>32	>32		
1096	Candida tropicalis	>32	>32		>32
1096	Cryptococcus neoformans			>32	
1096	Cryptococcus neoformans			8	16
1096	Cryptococcus neoformans			>32	>32
1096	Cryptococcus neoformans			32	32
1096	Torulopsis glabrata	>32	>32		
1096	Torulopsis glabrata	>32	>32		>32
1096	Torulopsis glabrata	>32	>32		
1096	Torulopsis glabrata	>32	>32		>32
1094	Candida albicans	1	2		
1094	Candida albicans	1	1		4
1094	Candida albicans	2	2		
1094	Candida albicans	2	2		8
1094	Candida tropicalis	0.5	0.5		
1094	Candida tropicalis	0.5	0.5		2

1094	<i>Candida tropicalis</i>	1	1		
1094	<i>Candida tropicalis</i>	1	1		4
1094	<i>Cryptococcus neoformans</i>		1	1	
1094	<i>Cryptococcus neoformans</i>		1	1	2
1094	<i>Cryptococcus neoformans</i>		1	1	
1094	<i>Cryptococcus neoformans</i>		1	1	2
1094	<i>Torulopsis glabrata</i>	0.5	1		
1094	<i>Torulopsis glabrata</i>	1	1		4
1094	<i>Torulopsis glabrata</i>	0.5	1		
1094	<i>Torulopsis glabrata</i>	1	1		4
1300	<i>Candida albicans</i>	2	4		
1300	<i>Candida albicans</i>	2	4		8
1300	<i>Candida albicans</i>	4	4		
1300	<i>Candida albicans</i>	2	4		16
1300	<i>Candida tropicalis</i>	0.25	0.5		
1300	<i>Candida tropicalis</i>	0.5	0.5		4
1300	<i>Candida tropicalis</i>	2	4		
1300	<i>Candida tropicalis</i>	4	4		8
1300	<i>Cryptococcus neoformans</i>		8	8	
1300	<i>Cryptococcus neoformans</i>		8	8	16
1300	<i>Cryptococcus neoformans</i>		8	8	
1300	<i>Cryptococcus neoformans</i>		8	8	16
1300	<i>Torulopsis glabrata</i>	16	16		
1300	<i>Torulopsis glabrata</i>	8	16		32
1300	<i>Torulopsis glabrata</i>	16	16		
1300	<i>Torulopsis glabrata</i>	8	16		32
1230	<i>Candida albicans</i>	1	2		
1230	<i>Candida albicans</i>	1	2		2
1230	<i>Candida albicans</i>	2	4		
1230	<i>Candida albicans</i>	1	2		2
1230	<i>Candida tropicalis</i>	0.5	0.5		
1230	<i>Candida tropicalis</i>	0.5	0.5		1
1230	<i>Candida tropicalis</i>	1	1		
1230	<i>Candida tropicalis</i>	1	1		1
1230	<i>Cryptococcus neoformans</i>		1	1	
1230	<i>Cryptococcus neoformans</i>		0.5	2	4
1230	<i>Cryptococcus neoformans</i>		1	1	
1230	<i>Cryptococcus neoformans</i>		1	2	4
1230	<i>Torulopsis glabrata</i>	2	2		

1230	Torulopsis glabrata	2	2		2
1230	Torulopsis glabrata	1	2		
1230	Torulopsis glabrata	2	2		2
1260	Candida albicans	2	2		
1260	Candida albicans	2	2		2
1260	Candida albicans	2	2		
1260	Candida albicans	2	2		4
1260	Candida tropicalis	1	1		
1260	Candida tropicalis	1	1		1
1260	Candida tropicalis	2	2		
1260	Candida tropicalis	2	2		2
1260	Cryptococcus neoformans			1	1
1260	Cryptococcus neoformans			1	1
1260	Cryptococcus neoformans			1	1
1260	Cryptococcus neoformans			1	1
1260	Torulopsis glabrata	2	2		
1260	Torulopsis glabrata	2	2		2
1260	Torulopsis glabrata	2	2		
1260	Torulopsis glabrata	2	2		2
1200	Candida albicans	2	2		
1200	Candida albicans	2	2		2
1200	Candida albicans	2	2		
1200	Candida albicans	2	2		2
1200	Candida tropicalis	1	1		
1200	Candida tropicalis	1	1		1
1200	Candida tropicalis	1	1		
1200	Candida tropicalis	1	1		1
1200	Cryptococcus neoformans			2	2
1200	Cryptococcus neoformans			2	2
1200	Cryptococcus neoformans			2	2
1200	Cryptococcus neoformans			2	2
1200	Torulopsis glabrata	1	2		
1200	Torulopsis glabrata	1	2		2
1200	Torulopsis glabrata	1	1		
1200	Torulopsis glabrata	1	1		1
1400	Candida albicans	>32	>32		
1400	Candida albicans	>32	>32		>32
1400	Candida albicans	>32	>32		
1400	Candida albicans	>32	>32		>32

1400	<i>Candida tropicalis</i>	16	32		
1400	<i>Candida tropicalis</i>	16	16		16
1400	<i>Candida tropicalis</i>	>32	>32		
1400	<i>Candida tropicalis</i>	>32	>32		>32
1400	<i>Cryptococcus neoformans</i>		>32	>32	
1400	<i>Cryptococcus neoformans</i>		>32	>32	>32
1400	<i>Cryptococcus neoformans</i>		>32	>32	
1400	<i>Cryptococcus neoformans</i>		>32	>32	>32
1400	<i>Torulopsis glabrata</i>	>34	>32		
1400	<i>Torulopsis glabrata</i>	>32	>32		>32
1400	<i>Torulopsis glabrata</i>	>33	>32		
1400	<i>Torulopsis glabrata</i>	>32	>32		>32
1500	<i>Candida albicans</i>	32	>32		
1500	<i>Candida albicans</i>	>32	>32		>32
1500	<i>Candida albicans</i>	32	>32		
1500	<i>Candida albicans</i>	>32	>32		>32
1500	<i>Candida tropicalis</i>	4	8		
1500	<i>Candida tropicalis</i>	4	8		8
1500	<i>Candida tropicalis</i>	32	>32		
1500	<i>Candida tropicalis</i>	>32	>32		>32
1500	<i>Cryptococcus neoformans</i>		32	32	
1500	<i>Cryptococcus neoformans</i>		32	>32	>32
1500	<i>Cryptococcus neoformans</i>		32	32	
1500	<i>Cryptococcus neoformans</i>		32	>32	>32
1500	<i>Torulopsis glabrata</i>	32	>32		
1500	<i>Torulopsis glabrata</i>	>32	>32		>32
1500	<i>Torulopsis glabrata</i>	32	>32		
1500	<i>Torulopsis glabrata</i>	>32	>32		>32
Amphotericin B	<i>Candida albicans</i>	0.5	1		
Amphotericin B	<i>Candida albicans</i>	0.5	1		
Amphotericin B	<i>Candida albicans</i>	0.5	0.5		
Amphotericin B	<i>Candida albicans</i>	0.5	0.5		
Amphotericin B	<i>Candida tropicalis</i>	2	4		
Amphotericin B	<i>Candida tropicalis</i>	2	4		
Amphotericin B	<i>Candida tropicalis</i>	0.5	0.5		
Amphotericin B	<i>Candida tropicalis</i>	0.5	1		
Amphotericin B	<i>Cryptococcus neoformans</i>		0.25	0.25	
Amphotericin B	<i>Cryptococcus neoformans</i>		0.25	0.25	
Amphotericin B	<i>Cryptococcus neoformans</i>		0.5	0.5	

100

Amphotericin B	Cryptococcus neoformans		0.25	0.25	
Amphotericin B	Torulopsis glabrata	0.5	1		
Amphotericin B	Torulopsis glabrata	0.5	1		
Amphotericin B	Torulopsis glabrata	0.5	1		
Amphotericin B	Torulopsis glabrata	0.5	0.5		
Fluconazole	Candida albicans	0.5	1		
Fluconazole	Candida albicans	0.5	2		
Fluconazole	Candida albicans	0.5	>64		
Fluconazole	Candida albicans	>64	>64		
Fluconazole	Candida tropicalis	64	>64		
Fluconazole	Candida tropicalis	>64	>64		
Fluconazole	Candida tropicalis	1	4		
Fluconazole	Candida tropicalis	1	4		
Fluconazole	Cryptococcus neoformans		>64	>64	
Fluconazole	Cryptococcus neoformans		64	64	
Fluconazole	Cryptococcus neoformans		4	4	
Fluconazole	Cryptococcus neoformans		4	4	
Fluconazole	Torulopsis glabrata	64	>64		
Fluconazole	Torulopsis glabrata	>64	>64		
Fluconazole	Torulopsis glabrata	2	8		
Fluconazole	Torulopsis glabrata	2	4		

TABLE 4B - Summary Of Minimum Lethal Concentration (MLC; µg/mL)

Plate	Compound	A	B	C	D	E	F	G	H
1	1108	4	2	4	8	4	4	2	2
2	1174	8	4	8	16	32	32	16	16
3	1072	>32	16	>32	>32	>32	>32	>32	>32
4	1127	>32	>32	>32	>32	>32	>32	>32	>32
5	0270	2	2	8	8	1	2	2	2
6	1198	2	1	2	4	2	2	2	2
7	1264	1	1	2	2	1	2	4	4
8	1274	>32	16	>32	>32	>32	>32	>32	>32
9	1308	>32	8	>32	>32	>32	>32	>32	>32
10	0951	1	1	1	2	2	2	4	4
11	0409	1	0.5	1	1	2	2	2	2
12	1197	1	1	2	2	2	2	4	4

ISOLATE**ORGANISM**

A	ATCC 750	Candida tropicalis
B	ATCC 28707	Candida tropicalis
C	KJP-000531594	Candida albicans
D	LH-000664533	Candida albicans
E	JHC-BC9951635	Torulopsis glabrata
F	ERH-BC9938274	Torulopsis glabrata
G	DLB-1027594CNC	Cryptococcus neoformans
H	SLP-BC0012854	Cryptococcus neoformans

5 The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected without departing from the scope and spirit of the invention.

10 Throughout this application, where publications are referenced, the disclosures of these publications in their entireties are hereby incorporated by reference into this application to more fully describe the state of the art to which this invention pertains.

References

1. E. G. Weinberg, "Antifungal Agents," in W. O. Foye, T. L. Lemke, and D. A. Williams, *Principles of Medicinal Chemistry*, 4th edition, Williams and Jenkins, Media, PA, 1995, pp. 803-811.
2. N. H. Georgopapadakou, *Curr. Opin. Microbiol.*, **1**, 547-557 (1998).
3. (a) A. H. Groll and T. J. Walsh, *Curr. Opin. Infect. Dis.*, **10**, 449 (1997). (b) C. A. Kauffman and P. L. Carver, *Drugs*, **53**, 539 (1997).
4. K. Richardson, "Fluconazole, an Orally Active Antifungal Agent," in C. R. Ganellin and S. M. Roberts, *Medicinal Chemistry*, 2nd ed., Academic Press, San Diego, 1993.
5. (a) B. C. Monk and D. S. Perlin, *Crit. Rev. Microbiol.*, **20**, 209 (1994). (b) B. C. Monk, A. B. Mason, T. B. Kardos, and D. S. Perlin, *Acta Biochim. Pol.*, **42**, 481 (1995).
6. (a) J. Fostel and D. Montgomery, *Antimicro. Agents Chemother.*, **39**, 586 (1995). (b) J. Fostel, D. Montgomery, and P. Lartey, *FEMS Microbiol. Lett.*, **138**, 105 (1996).
7. M. Rizzi, C. Nessi, A. Mattevi, A. Coda, M. Bolognesi, and A. Galizzi, *The EMBO Journal*, **15**, 5125-5134 (1996).
8. C. K. Yu and L. S. Dietrich, *J. Biol. Chem.*, **247**, 4794-4802 (1972).
9. W. J. Brouillet et al., "Methods of Synthesizing and Screening Inhibitors of Bacterial NAD Synthetase Enzyme, Compounds Thereof, and Methods of Treating Bacterial and Microbial Infections with Inhibitors of Bacterial NAD Synthetase Enzyme," International Patent Application No. PCT/US99/00810, International Filing Date January 14, 1999.

WHAT IS CLAIMED IS:

1. A method of treating or preventing an antifungal infection in a host comprising administering to a host a treatment effective or treatment preventive amount of a yeast NAD synthetase enzyme inhibitor compound.

2. The method of Claim 1 wherein the compound administered is selected from the group consisting of:

3. The method of Claim 1 wherein the compound administered is selected from the

105

107

109

110

917

921

924

936

939

941

942

or

4. The method of Claim 1 wherein the compound administered has Structure 2:

Structure 2

wherein n is an integer of from 1 to 12, R₁ - R₇ each, independently, is an H, an unsubstituted or a substituted cyclic or aliphatic group, or a branched or an unbranched group, and wherein the linker is a cyclic or aliphatic, branched or an unbranched alkyl, alkenyl, or an alkynyl group and wherein the linker may also contain heteroatoms.

5. The method of Claim 4 wherein n is an integer of from 3 to 10.
6. The method of Claim 4 wherein n is an integer of from 5 to 9.
7. The method of Claim 4 wherein n is an integer of from 6 to 9.
8. The method of Claim 4 wherein R₁ - R₇ each, independently, is an H, alkyl, alkenyl, alkynyl, or an aryl group.
9. The method of Claim 4 wherein R₁-R₇, each, independently, is a hydroxyl, ketone, nitro, amino, amidino, guanidino, carboxylate, amide, sulfonate, or halogen or the common derivatives of these groups.
10. The method of Claim 1 wherein the compound administered has Structure 4:

Structure 4

wherein X is a C, N, O or S within a monocyclic or bicyclic moiety, A and B represent the respective sites of attachment for the linker, n is an integer of from 1 to 12, R₁-R₇ each, independently, is an H, an unsubstituted or a substituted cyclic group, or an aliphatic group, or a branched or an unbranched group, and the linker is a saturated or unsaturated cyclic group or an aliphatic branched or unbranched alkyl, alkenyl or alkynyl group, and wherein the linker may also contain heteroatoms.

11. The method of Claim 10 wherein n is an integer of from 3 to 10.
12. The method of Claim 10 wherein n is an integer of from 5 to 9.
13. The method of Claim 10 wherein n is an integer of from 6 to 9.
14. The method of Claim 10 wherein R₁-R₇ each, independently, is an H, alkyl, alkenyl, alkynyl, or an aryl group.
15. The method of Claim 10 wherein R₁-R₇ each, independently, is a hydroxyl, ketone, nitro, amino, amidino, guanidino, carboxylate, amide, sulfonate, or halogen or the common derivatives of these groups.
16. The method of Claim 1 wherein the compound administered has Structure 6:

Structure 6

wherein X is C, N, O or S, Y is C, N, O, S, carboxy, ester, amide, or ketone, A and B represent the respective sites of attachment for a linker, n is an integer of from 1 to 12, and R₁-R₇ each, independently, is an H, unsubstituted or substituted cyclic group or an aliphatic group, a branched or an unbranched group, and the linker is a saturated or unsaturated cyclic or aliphatic group, branched or unbranched alkyl, alkenyl, or alkynyl group and wherein the linker may also contain heteroatoms.

17. The method of Claim 16 wherein n is an integer of from 3 to 10.
18. The method of Claim 16 wherein n is an integer of from 5 to 9.
19. The method of Claim 16 wherein n is an integer of from 6 to 9.
20. The method of Claim 16 wherein R₁-R₇ each, independently, is an H, alkyl, alkenyl, or alkynyl, or an aryl group.
21. The method of Claim 16 wherein R₁-R₇ each, independently, is an H, hydroxyl, ketone, nitro, amino, amidino, guanidino, carboxylate, amide, sulfonate, or halogen and the common derivatives of these groups.

22. The method of Claim 1 wherein the compound administered has Structure 7:

Structure 7

wherein X is C, N, O or S, Y is C, N, O, S, carboxy, ester, amide, or ketone, A and B represent the respective sites of attachment for a linker, n is an integer of from 1 to 12, and R₁-R₆ each, independently, is an H, unsubstituted or substituted cyclic group or an aliphatic group, a branched or an unbranched group, and the linker is a saturated or unsaturated cyclic or aliphatic group, branched or unbranched alkyl, alkenyl, or alkynyl group and wherein the linker may also contain heteroatoms.

23. The method of Claim 22 wherein n is an integer of from 3 to 10.
24. The method of Claim 22 wherein n is an integer of from 5 to 9.
25. The method of Claim 22 wherein n is an integer of from 6 to 9.
26. The method of Claim 22 wherein R₁-R₆ each, independently, is an H, alkyl, alkenyl, or alkynyl, or an aryl group.
27. The method of Claim 22 wherein R₁-R₆ each, independently, is an H, hydroxyl, ketone, nitro, amino, amidino, guanidino, carboxylate, amide, sulfonate, or halogen and the common derivatives of these groups.
28. The method of Claim 1 wherein the compound administered has Structure 8:

Structure 8

wherein n is an integer of from 1 to 12, R₁ is an H, methoxy, benzyloxy, or nitro and R₂ is 3-pyridyl, N-methyl-3-pyridyl, 3-quinolinyl, N-methyl-3-quinolinyl, 3-(dimethylamino)phenyl, 3-(trimethylammonio)phenyl, 4-(dimethylamino)phenyl, 4-(trimethylammonio)phenyl, 4-(dimethylamino)phenylmethyl, or 4-(trimethylammonio)phenylmethyl.

29. The method of Claim 28 wherein n is an integer of from 3 to 10.
30. The method of Claim 28 wherein n is an integer of from 5 to 9.
31. The method of Claim 28 wherein n is an integer of from 6 to 9.
32. The method of Claim 1 wherein the compound administered has Structure 10:

Structure 10

wherein n is an integer of from 1 to 12, R₁ is an H, CO₂H, -OCH₃, or -OCH₂Ph, R₂ is H, CO₂H, or CH=CHCO₂H, R₃ is H or CO₂H, and Y is N-linked pyridine-3-carboxylic acid, N-linked pyridine, N-linked quinoline, or N-linked isoquinoline.

33. The method of Claim 32 wherein n is an integer of from 3 to 10.
34. The method of Claim 32 wherein n is an integer of from 5 to 9.

35. The method of Claim 32 wherein n is an integer of from 6 to 9.
36. The method of Claim 1 wherein the compound administered has Structure 12:

Structure 12

wherein n is an integer of from 1 to 12, R_1 is H, F, or NO_2 , R_2 is H, CH_3 , CF_3 , NO_2 , phenyl, n-butyl, isopropyl, F, phenoxy, triphenylmethyl, methoxycarbonyl, methoxy, carboxy, acetyl, or benzoyl, R_3 is H or CF_3 and Y is N-linked pyridine-3-carboxylic acid, N-linked pyridine, N-linked quinoline, or N-linked isoquinoline.

37. The method of Claim 36 wherein n is an integer of from 3 to 10.
38. The method of Claim 36 wherein n is an integer of from 5 to 9.
39. The method of Claim 36 wherein n is an integer of from 6 to 9.
40. The method of Claim 1 wherein the compound administered has Structure 14:

Structure 14

wherein n is an integer of from 1 to 12, R_1 is H, phenoxy, isopropyl, acetyl, or benzoyl, R_2 is H or CF_3 , and Y is 3-(dimethylamino)phenyl, 3-(trimethylammonio)phenyl, 4-(dimethylamino)phenyl, 4-

(trimethylammonio)phenyl, 2-(phenyl)phenyl, diphenylmethyl, 3-pyridyl, 4-pyridyl, or pyridine-3-methyl.

41. The method of Claim 40 wherein n is an integer of from 3 to 10.
42. The method of Claim 40 wherein n is an integer of from 5 to 9.
43. The method of Claim 40 wherein n is an integer of from 6 to 9.
44. The method of Claim 1 wherein the compound administered has Structure 100:

Structure 100

wherein R' is:

and n is an integer of from 1 to 12.

45. The method of Claim 44 wherein n is an integer of from 3 to 10.
46. The method of Claim 44 wherein n is an integer of from 5 to 9.
47. The method of Claim 44 wherein n is an integer of from 6 to 9.
48. The method of Claim 1 wherein the compound administered has Structure 101:

Structure 101

wherein R' is:

wherein R1 is:

wherein the R group in Fragments A-G is a benzyl group, a methyl group or a hydrogen and wherein n is an integer of from 1 to 12.

49. The method of Claim 48 wherein n is an integer of from 3 to 10.
50. The method of Claim 48 wherein n is an integer of from 5 to 9.
51. The method of Claim 48 wherein n is an integer of from 6 to 9.
52. The method of Claim 1 wherein the compound administered has Structure 130:

Structure 130

wherein n is an integer of from 1 to 12.

53. The method of Claim 52 wherein n is an integer of from 3 to 10.
54. The method of Claim 52 wherein n is an integer of from 5 to 9.
55. The method of Claim 52 wherein n is an integer of from 6 to 9.
56. The method of Claim 1 wherein the compound administered has Structure 132:

Structure 132

wherein n is an integer of from 1 to 12 and R is 5-H, 6-CF₃, 5-CH₃, 5,7-diF, 5,7-diNO₂, 5-Butyl, 5-iPropyl, 5-Phenyl, 5-NO₂, 5-Trityl, 5-F, 5-OPh, 5-COPh, 5-CF₃, 5-COCH₃, 5-OCH₃, 5-COOCH₃ or 5-COOH.

57. The method of Claim 56 wherein n is an integer of from 3 to 10.
58. The method of Claim 56 wherein n is an integer of from 5 to 9.
59. The method of Claim 56 wherein n is an integer of from 6 to 9.
60. The method of Claim 1 wherein the compound administered has Structure 134:

Structure 134

wherein n is an integer of from 1 to 12 and R is 5-H, 6-CF₃, 5-CH₃, 5,7-diF, 5,7-diNO₂, 5-Butyl, 5-iPropyl, 5-Phenyl, 5-NO₂, 5-Trityl, 5-F, 5-OPh, 5-COPh, 5-CF₃, 5-COCH₃, 5-OCH₃, 5-COOCH₃, or 5-COOH.

61. The method of Claim 60 wherein n is an integer of from 3 to 10.
62. The method of Claim 60 wherein n is an integer of from 5 to 9.
63. The method of Claim 60 wherein n is an integer of from 6 to 9.
64. The method of Claim 1 wherein the compound administered has Structure 136:

Structure 136

wherein n is an integer of from 1 to 12 and R is 5-H, 6-CF₃, 5-CH₃, 5,7-diF, 5,7-diNO₂, 5-Butyl, 5-iPropyl, 5-Phenyl, 5-NO₂, 5-Trityl, 5-F, 5-OPh, 5-COPh, 5-CF₃, 5-COCH₃, 5-OCH₃, 5-COOCH₃, or 5-COOH.

65. The method of Claim 64 wherein n is an integer of from 3 to 10.
66. The method of Claim 64 wherein n is an integer of from 5 to 9.
67. The method of Claim 64 wherein n is an integer of from 6 to 9.
68. The method of Claim 1 wherein the compound administered has Structure 138:

Structure 138

wherein n is an integer of from 1 to 12 and R is 5-CF₃, 5-OPh, 5-iPropyl, 5-COCH₃, or 5-COPh and Y is 3-N,N-dimethylamino(phenyl), 4-N,N-

dimethylamino(phenyl), or 2-Ph.

69. The method of Claim 68 wherein n is an integer of from 3 to 10.
70. The method of Claim 68 wherein n is an integer of from 5 to 9.
71. The method of Claim 68 wherein n is an integer of from 6 to 9.
72. The method of Claim 1 wherein the compound administered has Structure 140:

Structure 140

wherein n is an integer of from 1 to 12, R is 5-CF₃, 5-OPh, 5-iPropyl, 5-COCH₃, or 5-COPh, and Z is CH(Ph)₂ or 3-Pyridyl.

73. The method of Claim 72 wherein n is an integer of from 3 to 10.
74. The method of Claim 72 wherein n is an integer of from 5 to 9.
75. The method of Claim 72 wherein n is an integer of from 6 to 9.
76. The method of Claim 1 wherein the compound administered has Structure 142:

Structure 142

wherein n is an integer of from 1 to 12 and R is 6-CF₃, 5-OPh, 5-iPropyl, 5-COCH₃, or 5-COPh.

77. The method of Claim 76 wherein n is an integer of from 3 to 10.
78. The method of Claim 76 wherein n is an integer of from 5 to 9.
79. The method of Claim 76 wherein n is an integer of from 6 to 9.

80. The method of Claim 1 wherein the compound administered has Structure 144:

Structure 144

wherein n is an integer of from 1 to 12 and R is 6-CF₃, 5-OPh, 5-iPropyl, 5-COCH₃, or 5-COPh.

- 81. The method of Claim 80 wherein n is an integer of from 3 to 10.
- 82. The method of Claim 80 wherein n is an integer of from 5 to 9.
- 83. The method of Claim 80 wherein n is an integer of from 6 to 9.
- 84. The method of Claim 1 wherein the compound administered has Structure 146:

Structure 146

wherein n is an integer of from 1 to 12.

-
- 85. The method of Claim 84 wherein n is an integer of from 3 to 10.
 - 86. The method of Claim 84 wherein n is an integer of from 5 to 9.
 - 87. The method of Claim 84 wherein n is an integer of from 6 to 9.
 - 88. The method of Claim 1 wherein the compound administered has Structure 148:

Structure 148.

89. The method of Claim 1 wherein the compound administered has Structure 150:

Structure 150

wherein R is an integer of from 1 to 12.

90. The method of Claim 89 wherein n is an integer of from 3 to 10.

91. The method of Claim 89 wherein n is an integer of from 5 to 9.

92. The method of Claim 89 wherein n is an integer of from 6 to 9.

93. The method of Claim 1 wherein the compound administered has Structure 152:

Structure 152

wherein n is an integer of from 1 to 12.

94. The method of Claim 93 wherein n is an integer of from 3 to 10.
95. The method of Claim 93 wherein n is an integer of from 5 to 9.
96. The method of Claim 93 wherein n is an integer of from 6 to 9.
97. The method of Claim 1 wherein the compound administered has Structure 154:

Structure 154

wherein Z is CH(diPh), 4-(N,N-dimethylamino)phenyl, CH₂CH₂-(3-pyridyl), or (2-phenyl)-phenyl.

98. The method of Claim 1 wherein the compound administered has Structure 156:

Structure 156

wherein n is an integer of from 1 to 12 and R is -OCH₃ or -OCH₂Ph.

99. The method of Claim 98 wherein n is an integer of from 3 to 10.
100. The method of Claim 98 wherein n is an integer of from 5 to 9.
101. The method of Claim 98 wherein n is an integer of from 6 to 9.
102. The method of Claim 1 wherein the compound administered has Structure 158:

Structure 158

wherein n is an integer of from 1 to 12 and R is -OCH₃ or -OCH₂Ph.

- 103. The method of Claim 102 wherein n is an integer of from 3 to 10.
- 104. The method of Claim 102 wherein n is an integer of from 5 to 9.
- 105. The method of Claim 102 wherein n is an integer of from 6 to 9.
- 106. The method of Claim 1 wherein the compound administered has Structure 160:

Structure 160

wherein n is an integer of from 1 to 12 and R is -OCH₃ or -OCH₂Ph.

- 107. The method of Claim 106 wherein n is an integer of from 3 to 10.
- 108. The method of Claim 106 wherein n is an integer of from 5 to 9.
- 109. The method of Claim 106 wherein n is an integer of from 6 to 9.
- 110. The method of Claim 1 wherein the compound administered has Structure 162 :

Structure 162

wherein n is an integer of from 1 to 12 and R is -OCH₃ or -OCH₂Ph.

- 111. The method of Claim 110 wherein n is an integer of from 3 to 10.
- 112. The method of Claim 110 wherein n is an integer of from 5 to 9.
- 113. The method of Claim 110 wherein n is an integer of from 6 to 9.
- 114. The method of Claim 1 wherein the compound administered has Structure 164:

Structure 164

wherein n is an integer of from 1 to 12 and R is -OCH₃ or -OCH₂Ph.

- 115. The method of Claim 114 wherein n is an integer of from 3 to 10.
- 116. The method of Claim 114 wherein n is an integer of from 5 to 9.
- 117. The method of Claim 114 wherein n is an integer of from 6 to 9.
- 118. The method of Claim 1 wherein the compound has Structure 166:

Structure 166

wherein n is an integer of from 1 to 12 and R is -OCH₃ or -OCH₂Ph.

- 119. The method of Claim 118 wherein n is an integer of from 3 to 10.
- 120. The method of Claim 118 wherein n is an integer of from 5 to 9.
- 121. The method of Claim 118 wherein n is an integer of from 6 to 9.
- 122. The method of Claim 1 wherein the compound administered has Structure 168:

Structure 168

wherein n is an integer of from 1 to 12 and R is -OCH₃ or -OCH₂Ph.

- 123. The method of Claim 122 wherein n is an integer of from 3 to 10.
- 124. The method of Claim 122 wherein n is an integer of from 5 to 9.
- 125. The method of Claim 122 wherein n is an integer of from 6 to 9.
- 126. The method of Claim 1 wherein the compound administered has Structure 170:

Structure 170

wherein n is an integer of from 1 to 12 and R is -OCH₃ or -OCH₂Ph.

- 127. The method of Claim 126 wherein n is an integer of from 3 to 10.
- 128. The method of Claim 126 wherein n is an integer of from 5 to 9.
- 129. The method of Claim 126 wherein n is an integer of from 6 to 9.
- 130. The method of Claim 1 wherein the compound administered has Structure 172:

Structure 172

wherein n is an integer of from 1 to 12 and R is -OCH₃ or -OCH₂Ph.

- 131. The method of Claim 130 wherein n is an integer of from 3 to 10.
- 132. The method of Claim 130 wherein n is an integer of from 5 to 9.
- 133. The method of Claim 130 wherein n is an integer of from 6 to 9.
- 134. The method of Claim 1 wherein the compound administered has Structure 174:

Structure 174

wherein n is an integer of from 1 to 12 and R is -OCH₃ or -OCH₂Ph.

- 135. The method of Claim 135 wherein n is an integer of from 3 to 10.
- 136. The method of Claim 135 wherein n is an integer of from 5 to 9.
- 137. The method of Claim 135 wherein n is an integer of from 6 to 9.
- 138. The method of Claim 1 wherein the compound administered has Structure 176:

Structure 176

wherein n is an integer of from 1 to 12 and Z is 3-quinoline, 3-(N,N-dimethylamino)phenyl, or 4-(N,N-dimethylamino)phenyl.

139. The method of Claim 138 wherein n is an integer of from 3 to 10.
140. The method of Claim 138 wherein n is an integer of from 5 to 9.
141. The method of Claim 138 wherein n is an integer of from 6 to 9.
142. The method of Claim 1 wherein the compound administered has Structure 178:

Structure 178

wherein n is an integer of from 1 to 12.

143. The method of Claim 142 wherein n is an integer of from 3 to 10.
144. The method of Claim 142 wherein n is an integer of from 5 to 9.
145. The method of Claim 142 wherein n is an integer of from 6 to 9.
146. The method of Claim 1 wherein the compound administered has Structure 180:

Structure 180

wherein n is an integer of from 1 to 12.

147. The method of Claim 146 wherein n is an integer of from 3 to 10.
148. The method of Claim 146 wherein n is an integer of from 5 to 9.
149. The method of Claim 146 wherein n is an integer of from 6 to 9.
150. The method of Claim 1 wherein the compound administered has Structure 182:

Structure 182

wherein n is an integer of from 1 to 12.

151. The method of Claim 150 wherein n is an integer of from 3 to 10.
152. The method of Claim 150 wherein n is an integer of from 5 to 9.
153. The method of Claim 150 wherein n is an integer of from 6 to 9.
154. The method of Claim 1 wherein the compound administered has Structure 184:

Structure 184

wherein n is an integer of from 1 to 12 and R is 6-CF₃, 5-OPh, 5-CH(CH₃)₂, 5-COCH₃ or 5-COPh.

- 155. The method of Claim 154 wherein n is an integer of from 3 to 10.
- 156. The method of Claim 154 wherein n is an integer of from 5 to 9.
- 157. The method of Claim 154 wherein n is an integer of from 6 to 9.
- 158. The method of Claim 1 wherein the compound administered has Structure 186:

Structure 186

wherein n is an integer of from 1 to 12 and R is 6-CF₃, 5-OPh, 5-CH(CH₃)₂, 5-COCH₃ or 5-COPh.

- 159. The method of Claim 158 wherein n is an integer of from 3 to 10.
- 160. The method of Claim 158 wherein n is an integer of from 5 to 9.

161. The method of Claim 158 wherein n is an integer of from 6 to 9.

162. The method of Claim 1 wherein the compound administered has Structure 188:

Structure 188

wherein n is an integer of from 1 to 12 and R is 6-CF₃, 5-OPh, 5-CH(CH₃)₂, 5-COCH₃ or 5-COPh.

163. The method of Claim 162 wherein n is an integer of from 3 to 10.

164. The method of Claim 162 wherein n is an integer of from 5 to 9.

165. The method of Claim 162 wherein n is an integer of from 6 to 9.

166. The method of Claim 1 wherein the compound administered has Structure 190:

Structure 190

wherein n is an integer of from 1 to 12 and R is 6-CF₃, 5-OPh, 5-CH(CH₃)₂, 5-COCH₃ or 5-COPh.

167. The method of Claim 167 wherein n is an integer of from 3 to 10.
168. The method of Claim 167 wherein n is an integer of from 5 to 9.
169. The method of Claim 167 wherein n is an integer of from 6 to 9.
170. The method of Claim 1 wherein the compound administered has Structure 192:

Structure 192

wherein n is an integer of from 1 to 12 and R is 6-CF₃, 5-OPh, 5-CH(CH₃)₂, 5-COCH₃ or 5-COPh.

171. The method of Claim 170 wherein n is an integer of from 3 to 10.
172. The method of Claim 170 wherein n is an integer of from 5 to 9.
173. The method of Claim 170 wherein n is an integer of from 6 to 9.
174. The method of Claim 1 wherein the compound administered has Structure 194:

Structure 194

wherein n is an integer of from 1 to 12 and R¹ is an H or -OCH₂Ph and R² is H or COOCH₃.

175. The method of Claim 174 wherein n is an integer of from 3 to 10.
176. The method of Claim 174 wherein n is an integer of from 5 to 9.
177. The method of Claim 174 wherein n is an integer of from 6 to 9.
178. The method of Claim 1 wherein the compound administered has Structure 196:

Structure 196

wherein n is an integer of from 1 to 12 and R¹ is H or -OCH₂Ph and R² is H or COOCH₃.

179. The method of Claim 178 wherein n is an integer of from 2 to 12.
180. The method of Claim 178 wherein n is an integer of from 5 to 9.
181. The method of Claim 178 wherein n is an integer of from 6 to 9.
182. The method of Claim 1 wherein the compound administered has Structure 198:

Structure 198

wherein n is an integer of from 1 to 12, and R¹ is H, -OCH₂Ph, or OCPh₃ and R² is H or COOCH₃.

183. The method of Claim 182 wherein n is an integer of from 3 to 10.
184. The method of Claim 182 wherein n is an integer of from 5 to 9.

185. The method of Claim 182 wherein n is an integer of from 6 to 9.

186. The method of Claim 1 wherein the compound administered has Structure 200:

Structure 200

wherein n is an integer of from 1 to 12 and R¹ is H or a -OCH₂Ph and R² is H or COOCH₃.

187. The method of Claim 186 wherein n is an integer of from 3 to 10.

188. The method of Claim 186 wherein n is an integer of from 5 to 9.

189. The method of Claim 186 wherein n is an integer of from 6 to 9.

190. The method of Claim 1 wherein the compound administered has Structure 202A:

Structure 202A

wherein n is an integer of from 1 to 12 and wherein R is H; 4-NO₂; 2-CONHPh; 2-NO₂; 4-[1'(4'-acetylpirperazine)]; 2-COCH₃; 3-OCOCH₃; 3-OCH₃; 4-COCH₃; 3-OCOPh; 2-CONH₂; 4-CH=CHCOCH₃; 4-OCOPh; 4-CH=CHCOPh; 4-{CO-3'[2'-butylbenzo(b)furan]}; 3-NO₂; 4-[5'-(5'-phenylhydantoin)]; 2-CH=CHCOPh; 2-OCH₃; 4-COPh; 4-CONH₂; 3-COCH₃; 4-OPh; 4-(N-phthalimide); 3-(N-morpholine); 2-(N-pyrrolidine); 2-(N-morpholine); or 4-OCH₂Ph.

191. The method of Claim 190 wherein n is an integer of from 3 to 10.
192. The method of Claim 190 wherein n is an integer of from 5 to 9.
193. The method of Claim 190 wherein n is an integer of from 6 to 9.
194. The method of Claim 1 wherein the compound administered has Structure 204A:

Structure 204A

wherein n is an integer of from 1 to 12 and wherein R is H; 4-NO₂; 2-CONHPh; 2-NO₂; 4-[1'(4'-acetyl)piperazine)]; 2-COCH₃; 3-OCOCH₃; 3-OCH₃; 4-COCH₃; 3-OCOPh; 2-CONH₂; 4-CH=CHCOCH₃; 4-OCOPh; 4-CH=CHCOPh; 4-{CO-3'[2'-butylbenzo(b)furan]}; 3-NO₂; 4-[5'-(5'-phenylhydantoin)]; 2-CH=CHCOPh; 2-OCH₃; 4-COPh; 4-CONH₂; 3-COCH₃; 4-OPh; 4-(N-phthalimide); 3-(N-morpholine); 2-(N-pyrrolidine); 2-(N-morpholine); or 4-OCH₂Ph.

195. The method of Claim 194 wherein n is an integer of from 3 to 10.
196. The method of Claim 194 wherein n is an integer of from 5 to 9.
197. The method of Claim 194 wherein n is an integer of from 6 to 9.
198. The method of Claim 1 wherein the compound administered has Structure 206:

Structure 206

wherein n is an integer of from 1 to 12 and R is H; 4-NO₂; 2-CONHPh; 2-NO₂; 2-COCH₃; 3-OCH₃; 4-COCH₃; 3-OCOPh; 2-CONH₂; 4-CH=CHCOCH₃; 4-OCOPh; 4-CH=CHCOPh; 4-{CO-3'[2'-butylbenzo(b)furan]}; 3-NO₂; 2-

$\text{CH}=\text{CHCOPh}$; 2-OCH₃; 4-COPh; 3-COCH₃; 4-OPh; 4-(N-phthalimide); or 4-OCH₂Ph.

- 199. The method of Claim 198 wherein n is an integer of from 3 to 10.
- 200. The method of Claim 198 wherein n is an integer of from 5 to 9.
- 201. The method of Claim 198 wherein n is an integer of from 6 to 9.
- 202. The method of Claim 1 wherein the compound administered has Structure 208:

Structure 208

wherein R is 4-NO₂; 2-CONHPh; 2-NO₂; 2-COCH₃; 3-OCH₃; 4-COCH₃; 3-OCOPh; 2-CONH₂; 4-CH=CHCOCH₃; 4-OCOPh; 4-CH=CHCOPh; 4-{CO-3'[2'-butylbenzo(b)furan]}; 3-NO₂; 2-CH=CHCOPh; 2-OCH₃; 4-COPh; 3-COCH₃; 4-OPh; 4-(N-phthalimide); 3-(N-morpholine); 2-(N-morpholine); or 4-OCH₂Ph.

- 203. The method of Claim 1 wherein the compound administered has Structure 210:

Structure 210

wherein R is NH₂; NMe₂; NMe₃.I; NH₂.HCl; NMe₂ or HCl .

204. The method of Claim 1 wherein the compound administered has Structure 212:

Structure 212

wherein R' is PhCONH or Ph₃C and R'' is H or COOCH₃.

205. The method of Claim 1 wherein the compound administered has Structure 214:

Structure 214

wherein R is 4-hydroxyphenyl or 3-hydroxy-4-methylphenyl.

206. The method of Claim 1 wherein the compound administered has Structure 216:

Structure 216

wherein R' is PhCONH and R'' is H or COOCH₃ and n is an integer of from 7 to 8.

- 207. The method of Claim 1 wherein the host is a mammal.
- 208. The method of Claim 1 wherein the host is a plant.
- 209. The method of Claim 1 wherein the compound administered has little or no inhibitory effect on the NAD synthetase enzyme of the host.
- 210. The method of Claim 1 comprising oral, rectal, intramuscularly, intravenous, intravesicular or topical administration.
- 211. The method of Claim 1 wherein the compound is administered in a dosage of between about 0.1 to about 15g per day and wherein the dosage is administered from about 1 to about 4 times per day.
- 212. A method of killing yeast with an amount of yeast NAD synthetase enzyme inhibitor to reduce or eliminate the production of NAD whereby the yeast is killed.
- 213. A method of decreasing yeast growth, comprising contacting the yeast with an amount of a yeast NAD synthetase enzyme inhibitor effective to reduce or eliminate the production of NAD whereby yeast growth is decreased.
- 214. The method of Claim 213 wherein the NAD synthetase enzyme inhibitor is a compound that selectively binds with one or more catalytic sites on a yeast NAD synthetase enzyme to reduce or eliminate the production of NAD by the yeast.
- 215. The method of Claim 1 wherein the compound administered has Structure 300:

Structure 300

wherein Y is C, N, O, S, ester, amide, or ketone, n is an integer of from 1 to 12, a is an integer from 1-3, and R₁-R₅ each, independently, is an H, unsubstituted or substituted cyclic group or an aliphatic group, a branched or an unbranched group, or an alkyl, alkenyl, or alkynyl, or an aryl group while R₁-R₂ may also be an H, hydroxyl, ketone, nitro, amino, amidino, guanidino, carboxylate, amide, ester, sulfonate, halogen, alkoxy, or aryloxy group, and the (CH₂)_n linker may be saturated or unsaturated and contain cyclic or aliphatic groups, branched or unbranched alkyl, alkenyl, or alkynyl substituents, and further wherein the linker may also contain heteroatoms while the aryl group is an aromatic grouping which may contain one or more rings.

216. The method of Claim 215 wherein n is an integer of from 3 to 10.
217. The method of Claim 215 wherein n is an integer of from 5 to 9.
218. The method of Claim 215 wherein n is an integer of from 6 to 9.
219. The method of Claim 1 wherein the compound administered has Structure 1300

1300

220. The method of Claim 1 wherein the compound administered has Structure 400:

Structure 400

wherein Y is C, N, O, S, ester, amide, or ketone; Z is C, N, O, or S; AA is a natural or unnatural stereoisomer of an α -, β -, γ -, or δ -amino acid in which the carboxyl carbonyl is attached to Z, and the amino grouping may be a primary, secondary, tertiary, or quaternary ammonium compound; n is an integer of from 1 to 12; and R₁-R₅ each, independently, is an H, unsubstituted or substituted cyclic group or an aliphatic group, a branched or an unbranched group, or an alkyl, alkenyl, or alkynyl, or an aryl group wherein R₁-R₂ may also be an H, hydroxyl, ketone, nitro, amino, amidino, guanidino, carboxylate, amide, ester, sulfonate, halogen, alkoxy, or aryloxy group and the $(\text{CH}_2)_n$ linker may be saturated or unsaturated and contain cyclic or aliphatic groups, branched or unbranched alkyl, alkenyl, or alkynyl substituents, and further wherein the linker may also contain heteroatoms.

221. The method of Claim 220 wherein n is an integer of from 3 to 10.
222. The method of Claim 220 wherein n is an integer of from 5 to 9.
223. The method of Claim 220 wherein n is an integer of from 6 to 9.

224. The method of Claim 1 wherein the compound administered has Structure 1230:

1230

225. The method of Claim 1 wherein the compound administered has Structure 1260:

1260

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)