# P170M109 Computational Intelligence and Decision Making

**Unsupervised Learning** 



### **Machine Learning Approaches**

- Supervised learning learning from input-output pairs to map from input to output
- Unsupervised learning learning patterns without explicit feedback
- Reinforcement learning learning from a series of reinforcements (rewards or punishments)
- Semi-supervised learning learning from few labeled examples and a large collection of unlabeled examples
- •



# **Machine Learning Approaches**

|              | Supervised Learning                                           | Unsupervised<br>Learning                                                                         | Reinforcement<br>Learning                                                            |
|--------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Dataset      | fixed; correct<br>(expected answer is<br>given)               | fixed; no label or class information given; no explicit feedback                                 | incremental; feedback<br>(reward) about the<br>value of the action in<br>environment |
| Objective    | predict answers for new examples                              | extracting information                                                                           | find a suite of actions to maximize its accumulated reward                           |
| Applications | regression<br>(prediction);<br>classification;<br>translation | feature extraction;<br>data compression;<br>series modeling;<br>clustering;<br>anomaly detection | game playing;<br>robot navigation                                                    |



#### **Advantages of Unsupervised Learning**

- No labels needed annotating (manual labeling) large datasets is expensive;
- No prior knowledge is needed about how many or what classes the data should be divided into.
- Enables to gain insight into the structure of data (correlations and relationships of attributes) before designing a model in supervised learning.



#### **Example**



#### **Customer segmentation.**

**Given:** data on the buying patters of all customers of a grocery store.

Objective: suggest special offers or plan store layout.

Unsupervised learning is applied to identify buying patters.

For example, those who:

- buy coloring pencils, also buy children's books
- buy frozen food, also buy snacks



#### Clustering

- Partitioning the entire dataset based on some similarity criterion (distance)
- Finding unknown groups of elements so that data within a group (or else, cluster) are similar to each other and dissimilar to data from other clusters

#### Applied in:

- Detecting groups of data across multiple attributes
- Data reduction tasks (data compression, noise smoothing, outlier detection, dataset partition).



#### **Classes of Clustering Methods**

- Hierarchical methods
  - Agglomerative clustering (start with a singleton clusters and merge with respect to the similarity criterion)
  - <u>Divisive clustering</u> (start with all elements in one cluster and divide in several partitions in each step)
- K-means methods
- Graph theory methods



#### Literature

Rebala, Gopinath, Ajay Ravi, and Sanjay Churiwala. *An Introduction to Machine Learning*. Springer, 2019.

•••

Chapter 6, Clustering

• • •



https://link.springer.com/book/10.1007%2F978-3-030-15729-6

Use KTU VPN or perform search through <a href="https://vb.ktu.edu">https://vb.ktu.edu</a> (uses SSO login and proxy to access full text document)



#### Given:

S – set of elements

K – Number of clusters

#### **Method:**

**Step 1:** Select K initial centers of clusters  $C_1$ ,  $C_2$ , ...,  $C_K$ .

**Step 2:** Assign each element  $X \in S$  to the cluster  $C_i$   $(1 \le i \le K)$  with the closest center.

**Step 3:** Recalculate the centroids in each cluster  $C_j$   $(1 \le j \le K)$  in which element was added or removed.

**Step 4:** Repeat the steps 2 and 3 until the algorithm converges.





Number of clusters = 3













#### How to...

- evaluate similarity (distance, cost function)?
- choose number of clusters?
- initialize centroids?



#### K-Means Clustering. How to evaluate similarity?

**Euclidean distance:** 

$$d_j = \sqrt{\sum_{i=1}^{j} (X_i - C_i^j)^2}$$

 $d_j$  - distance of element X to the center  $\mathcal{C}^J$ 



Standardization (or normalization) is important!





### K-Means Clustering. How to choose number of clusters?

- Elbow method
- Silhouette method
- Gap statistic method

• ...



#### K-Means Clustering. How to choose number of clusters?

#### Elbow method:

- plot cost function vs number of clusters;
- look for a change of slope from steep to shallow.

Inexact!







#### K-Means Clustering. How to initialize centroids?

#### **Suggested solutions:**

- Randomly partition data into K non-empty clusters and calculate centroids.
- Randomly select K elements from the dataset to represent clusters.
- Select K elements from the dataset to represent clusters.
  The elements should be as far as possible from each other difficult to implement in high dimensions.



## K-Means Clustering. Is it suitable for all datasets?







#### K-Means Clustering. Is it suitable for all datasets?







#### **Strengths:**

simple implementation.

#### Weaknesses:

- applicable only to data objects in a continuous space.
- the number of clusters K must be specified in advance.
- not suitable to discover clusters with non-convex shapes as it can only find hyper-spherical clusters.
- sensitive to outliers.



#### Literature

David Forsyth. *Applied Machine Learning*. Springer, 2019.

•••

8.2.2 Clustering -> Soft Assignment

...



https://www.springer.com/gp/book/9783030181130



Let's say, You are clustering images based on it's extracted numerical features, and the results are:



What difficulties may occur during data analysis?







Using standard k-means clustering each point (feature vector) must belong to exactly one cluster!



Let's assign point  $\mathbf{x}_i = \{ \pmb{x_1}, ..., \pmb{x_n} \}$  to cluster centers with weights  $\pmb{\omega_{i,j}}$ . Here

- $\mathbf{x}_i$  -point represented features vector, where  $i \in [1, N]$ , here N number of points
- $\omega_{i,i}$  connects point i with cluster center j.
- $j \in [1, c]$ , where c is total number of clusters
- all weights are non-negative:  $\omega_{i,j} \geq 0$
- each point should carry a total weight of 1. It means:  $\sum_{j} oldsymbol{\omega_{i,j}} = 1$



i.e. we have image represented by it's features as  $\mathbf{x}_i$  vector. Here one part of image is urban area, another part is forest. One of the scenarios after clustering that image would have similar weights in two clusters, it means:  $\boldsymbol{\omega}_i = \{\mathbf{0}, ..., \boldsymbol{\omega}_k, ..., \boldsymbol{\omega}_l, ..., \mathbf{0}\}$  – here  $\boldsymbol{k}, \boldsymbol{l}$  is the clusters represented forest and urban area (in this case  $\boldsymbol{\omega}_k \approx \boldsymbol{\omega}_l \approx \mathbf{0.5}$ ).



$$\Phi(\boldsymbol{\omega},\mathbf{c}) = \sum_{i,j} \boldsymbol{\omega}_{i,j} \left[ \left( x_i - c_j \right)^T \left( x_i - c_j \right) \right]$$

Relation between  $\omega$ ,  $\mathbf{c}$ :

 $d_{i,j} = \|(x_i - c_j)\|$  - distance between point and cluster center

 $\sigma$  – scaling parameter ( $\sigma > 0$ )

$$S_{i,j} = e^{-rac{d_{i,j}^2}{2\sigma^2}}$$

affinity between the point i and the center j. It is large, if they are close in  $\sigma$  units, and small if they are far apart



Now to obtain weights of a particular point, we ensure that sum of cluster weights is equal to 1

$$\omega_{i,j} = \frac{S_{i,j}}{\sum_{l=1}^k S_{i,l}}$$

Finally, re-estimated cluster centers could be as:

$$\frac{\sum_{i} \omega_{i,j} \mathbf{x}_{i}}{\sum_{i} \omega_{i,j}}$$

Basically, k-means algorithm is a special case of soft assignment, when  $\sigma \to 0$ 



#### **Algorithm**

Choose k initial points  $c_i$  and assign it as initial cluster centers and:

Repeat until converge

1. For each pair of data point and cluster compute affinity  $S_{i,j}=e^{-rac{d_{i,j}^2}{2\sigma^2}}$ 

2. Compute soft-weight connections  $\boldsymbol{\omega_{i,j}} = \frac{s_{i,j}}{\sum_{l=1}^k s_{i,l}}$ 

3. Get new center for each cluster  $m{c_i} = rac{\sum_i m{\omega_{i,j}} m{x_i}}{\sum_i m{\omega_{i,j}}}$ 

#### **Code example**

k-means clustering example

kMeansClusteringExample.ipynb



#### TODO:

- 1. use different initial data distributions
- 2. try random centroid initialization
- 3. try clustering with real dataset
- 4. implement selection of number of clusters



#### Code example

**Dataset preparation** example for LD2 (image cropping and feature extraction)





# **Questions?**

