Pengyu (Steven) Kan

Contact Information Email: pkan2@jhu.edu

EDUCATION

Johns Hopkins University

Sep. 2021 - Current

 $Doctor\ of\ Philosophy\ in\ Computer\ Science.$

Advisor : Professor René Vidal.

University of Wisconsin, Madison

Sep. 2016 - May 2020

Bachelor of Science in Computer Science, Mathematics and Economics. Certificate in Physics.

GPA: 3.99/4.0

Research in deep learning and computer vision, including adversarial and robust models for deep learning, optimization methods and geometric models.

Publications

[1] Towards Diffeomorphism Invariant Convolution Neural Networks

Pengyu Kan, Rudrasis Chakraborty, Vishnu Suresh Lokhande, Vikas Singh Differential Geometry in Computer Vision and Machine Learning workshop. 2021.

[2] A Guided Latent Dirichlet Allocation Approach to Investigate Real-time Latent Topics of Twitter Data during Hurricane Laura

Sulong Zhou, **Pengyu Kan**, Qunying Huang, Janet Silbernagel *Journal of Information Science*. 2021.

[3] Application of Image Segmentation in Surface Water Extraction of Freshwater Lakes using Radar Data

Sulong Zhou, **Pengyu Kan**, Janet Silbernagel, Jiefeng Jin ISPRS Int. J. Geo-Inf. 2020, 9, 424.

[4] Conditional Gradient Optimizer

Pengyu Kan, Vishnu Lokhande

Tensorflow Addons

RESEARCH EXPERIENCE

Transformer-based Detector for Pedestrians and Tiny Scale Objects Dec. 2022 - Current

- Advisor : Prof. René Vidal
- Design computation and memory efficient transformer-based object detector
- Enable adaptive ability across different scales of objects, specifically on tiny scale objects
- ullet Improve generalization and robustness under poor-weather backgrounds and adversarial noises

Transformer-based Masked Adversarial Defenses to Patch Attacks Sep. 2021 - Nov. 2022

- Advisor : Prof. René Vidal
- Studied adversarial robustness of attention mechanism and transformer-based architectures in image classification and object detection tasks
- Compared with convolution-based models, including ResNet and Faster-RCNN
- Designed Masked Adversarial Defenses with randomness specifically targeting adversarial patch attacks
- Achieved comparable adversarial robustness to state-of-the-art defenses, in a more efficient training process

[Paper under Review]

Diffeomorphism Invariant Layer for Neural Network

Aug. 2020 - May. 2021

- Advisors: Prof. Vikas Singh and Dr. Rudrasis Chakraborty
- Designed and implemented equiconv and invariant layers for Neural Network to handle diffeomorphism deformation in input images
- Applied over ResNet and ConvNet and tested on Fashion MNIST, CIFAR10, SVHN, STL10 and CelebA datasets
- Compared with baseline models, including the Spatial Transformation model, CPAB Spatial Transformation model and Rotational Equivariance CNN model
- Test accuracy outperformed baseline models in cases of small scale affine and homography deformation by around 10% on CIFAR10 and around 20% on STL10
 [Accepted DiffCVML 2021][Published Paper]

Latent Dirichlet Allocation (LDA) Method for Analyzing Twitter Data on Disaster Management Aug. 2020 - Dec. 2020

- Collaborator : Dr. Sulong Zhou
- Applied Natural Language Processing (NLP) and the LDA method to extract topic and situational awareness (SA) information from Twitter data during the 2020 Hurricane Laura
- Proposed general workflow to access SA information from Twitter with four main steps, including data collection, preprocessing, LDA with guided approach and latent topic clusters
- Used the NLTK package for data preprocessing, including tokenizing, removing stop words and lemmatizing
- Evaluated the selected latent topics with the Coherence Value model and PyLDAvis Visualization tool
- Found 7 main topics among these tweets and their temporal trends during the 10-day period of the Hurricane Laura [Published Paper] [Code]

Adversarial Deep Metric Learning

April 2020 - Jan. 2021

- Advisors : Prof. Earlence Fernandes and Prof. Somesh Jha
- Formulated adversarial attack toward Deep Metric Learning (DML) model
- Addressed the issue of data dependence for the distance-based loss function for DML model
- Tested robustness of traditionally trained and adversarial trained DML model toward PGD,
 FGSW, and Carlini & Wagner's attack on ResNet over CUB200, CARS196 and SOP datasets
- Applied attacks separately targeting on the positive anchor points, positive data points and negative datapoints in the triplet loss for the DML
- Observed weak robustness of traditionally trained DML model and higher accuracy of adversarial trained model under these attacks
- Applied high dimensional Gaussian samples with our proposed adversarial trained model and embedded them into 2d space to illustrate the effect of adversarial training [Pre-print]

Frank Wolfe Method for Area Under ROC (AUROC) Problem Feb. 2020 - Aug. 2020

- Advisors: Prof. Vikas Singh and Prof. Sathya N. Ravi
- Reformed AUROC problem based on the Riemann sum and as a constrained saddle point optimization problem, under 1 norm constraint for the Lagrangian multiplier
- Compared performance of Frank Wolfe method with conventional SGD solution toward this saddle point optimization problem over MNIST, CIFAR10, CIFAR100 dataset on ResNet, Deep CNN and Kernel method
- Observed higher AUROC score over the validation set by 0.04 on CIFAR10 and ResNet with using Frank Wolfe method than conventional SGD solution for this constrained saddle point problem
- Applied Block Frank Wolfe method and added calibration loss term to reduce the convergence gap between our proposed method and the conventional SGD solution

The Otsu Method for Water Imaging Classification

Dec. 2019 - May 2020

- Collaborator : Dr. Sulong Zhou
- Applied the Otsu Method on radar reading and satellite images to classify water
- \bullet Tested on the radar values of the Poyang Lake over years to classify the water regions, with an evaluation accuracy of 91%
- Analyzed the changing pattern of the freshwater area of Poyang Lake over years to help for freshwater resource preservation [Published Paper]

Conditional Gradient (CG) Optimizer

March 2019 - Jan. 2020

- Advisors : Prof. Vikas Singh and Prof. Sathya N. Ravi
- Implemented and contributed CG Optimizer with Frobenius norm and Nuclear norm to Tensor-Flow Addons Package
- Provided an alternative optimizer for constrained optimization problems and alternative approach
 of regularization for deep learning, through considering hard penalty of constraints
- Wrote tutorial for CG Optimizer on MNIST Dataset and compared its performance with SGD
- Took responsibility of maintenance and improvement of the CG Optimizer [Documentation] [Conditional Gradient Optimizer] [Tutorial]

Tutoring Experience

Peer Mentor, University of Wisconsin - Madison

Sep. 2018 - May 2020

Algorithms (CS 577): Held office hours and explained concepts of Algorithms to students; provided feedback on students' homework

Artificial Intelligence (CS 540): Held office hours to explain concepts and ideas related to machine learning and provided examples for better understanding

Academic Mentor, Center of Academic Excellence

Sep. 2017 - May 2019

Helped first - year minority students get used to college study; Tutored college students with Java and object-oriented programming; Provided extra coding exercises and examples from real life to improve students' interest

Volunteer Tutor, AmeriCorps

Sep. 2016 - May 2017

Tutored high school students in Geometry and Algebra; Provided weekly feedback of students success and adjusted challenge level of exercise

Awards

Phi Beta Kappa Honor Society	2019
UW-Madison Juli Plant Grainger Scholarship in Economics	2019
UW-Madison Undergraduate Scholarship for Summer Study	2018, 2019
UW-Madison Meek Bishop Scholarship in Economics	2018
Mathematical Contest in Modeling 2018 Honorable Mention	2018
Dean's List	2016 - 2019
College of Letters & Science General Scholarship	2017

SKILLS

Programming languages: Python, Java, C++, C Deep learning framework: PyTorch, Tensorflow

Languages: English, Chinese

Relevant Coursework

Machine Learning, Deep Learning, Computer Vision, Vision as Bayesian Inference, Non-linear Optimizations, Matrix Analysis, Bayesian Statistics, Linear Programming, Algorithms, Numerical Analysis,

Analysis, Number Theory, Stochastic Process