Textbook sections: 1.2

This section explores *phase lines* and *direction fields*.

Direction Fields

Exactly the same as direction fields from BC.

Autonomous DEs

Autonomous differential equations are of the form

$$\frac{dy}{dt} = f(y).$$

Very easy to find the equilibrium points of.

Equilibrium Points

An equilibrium solution (or critical points, fixed points, stationary points, steady-state points) for a DE in y(t) satisfies y = constant.

- i.e. $\frac{dy}{dt} = 0$.
- Used in optimization problems :D

Classifications for Equilibria in Autonomous Equations

classification	intepretation
asymptotically stable	solution curves close to & on either side of y_1 converge as $t o \infty$
unstable	solution curves close to & on either side of y_1 , diverge as $t o \infty$
semi-stable	solution curves close to & on one side converges as $t \to \infty$ and away on the other side

See also: week 3 equilibrium points and week 10 equilibrium points.

Phase Lines

Phase line (or **phase portrait**) is a number line that indicates where solutions tend towards.

∃ Example

Suppose $rac{dy}{dt}=\overbrace{y(y-1)(y-2)}^{f(y)},\,y(0)\geq0,\,t\geq0.$

- 1. The equilibrium points: y = 0, 1, 2
- 2. Sketch f(y) vs y.

CALLITAL CURVEC

3. Use (1) and (2) to sketch phase line.

- 4. Use (1), (2), (3) to sketch a few solution curves (aka integral curves) for the DE.
 - At y=0,1,2, $\frac{dy}{dt}$ is 0, so it should be horizontal at those points. $\frac{dy}{dt}$ on $u\in(0,1)$ is positive, so y is increasing. etc.

