Kaggle Competition:

Fraud Detection Challenge

Can you detect fraudulent click traffic for mobile app ads?

Fraud Detection

Challenging:

- Imbalanced Classification
- Prediction Speed

Supervised learning:

Decision Tree

Unsupervised learning:

Clustering

Dataset Information

Basic Information

- Total 184,903,890 rows
- Interested viewers: 456,846 rows (0.24% of total data)
- Not interested viewers: 184,447,044 rows
- Time Period: 11/2017

Undersampling

Random Undersampling aims to balance class distribution by randomly eliminating majority class examples.

- Interested viewers: 5000 rows
- Not interested viewers: 10,000 rows

Random Forest Model

Feature ranking:

- 1. app (0.505252)
- 2. channel (0.202086)
- 3. ip (0.121593)
- 4. device (0.100206)
- 5. os (0.039008)
- 6. hour (0.031854)

Grid Search For Random Forest Model (1)

Precision: 0.95

Recall: 0.84

Test Set Accuracy: 0.95

Train Set Accuracy:0.93

F1: 0.89

Grid Search For Random Forest Model (2)

Area Under the Curve (AUC): 0.95

Kaggle

3 submissions for Yi Chiang Sort by		Most recent •	
All Successful Selected			
Submission and Description	Private Score	Public Score	Use for Final Score
submission_second.csv 6 hours ago by Yi Chiang	0.8831411	0.8798630	
catboost			
submission.csv hours ago by Yi Chiang	0.8912362	0.8881358	
change column names			

DEMO

http://yi-chiang.com

http://metis-3.s3-website-us-east-1.amazonaws.com/

Future Work

- Apply different imbalanced classes techniques
- Spark
- Unsupervised learning

End

Dataset Information

184,903,890 rows × 8 columns

Each row of the training data contains a click record, with the following features.

- ip: ip address of click.
- app: app id for marketing.
- device: device type id of user mobile phone (e.g., iphone 6 plus, iphone 7, huawei mate 7, etc.)
- os : os version id of user mobile phone
- channel: channel id of mobile ad publisher
- click_time: timestamp of click (UTC)
- attributed_time: if user download the app for after clicking an ad, this is the time of the app download
- is_attributed: the target that is to be predicted, indicating the app was downloaded

Recall And Precision

Recall: What percentage of people actually infested with virus were detected correctly using your device? = 20/ 30 or 66.67%

Precision: What percentage of people detected positive using your device were actually infested with

virus? = 20/40 or 50.00%

	Detected NEGATIVE Cases	Detected POSITIVE Cases	
Actual NEGATIVE Cases	50	20	
Actual POSITIVE Cases	10	20	= 30
		= 40	

Source:

https://www.quora.com/What-is-the-best-way-to-understand-the-terms-precision-and-recall?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa