Problemas de Errores

- (1) Considerando el formato binario de 64 bits, calcular el número decimal equivalente a los números siguientes:
- (2) Calcular los errores absoluto y relativo para las aproximaciones siguientes \hat{x} de x:

 - a. $x = \pi$, $\hat{x} = \frac{22}{7}$. b. x = e, $\hat{x} = 2.7183$. c. $x = \sqrt{3}$, $\hat{x} = 1.732$.
- (3) Realizar las operaciones siguientes de tres maneras: exactamente, cortando usando aritmética de 4 dígitos significativos y redondeando usando aritmética de 4 dígitos significativos. Comparar los errores relativos en las dos últimas maneras:
 - a. $\frac{2}{5} + \frac{1}{7}$. b. $\left(\frac{1}{5} \frac{2}{11}\right) \frac{5}{9}$.
- (4) El número e se define como e = $\sum_{n=0}^{\infty} \frac{1}{n!}$, con 0! = 1. Hallar los errores absoluto y relativo en la aproximación siguiente de e: $\sum_{n=0}^{\infty} \frac{1}{n!}$.
- (5) Dada una ecuación de segundo grado $ax^2 + bx + c = 0$, para hallar sus raíces x_{\pm} , podemos usar las fórmulas siguientes:

$$x_{\pm} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \quad x_{\pm} = \frac{-2c}{b \pm \sqrt{b^2 - 4ac}}.$$

- a. Demostrar la equivalencia de las fórmulas anteriores.
- b. Usando aritmética de 4 dígitos significativos redondeando, resolver la ecuación de segundo grado

$$1.002x^2 + 11.01x + 0.01265 = 0$$

usando la fórmula más conveniente, es decir, la que tenga menos error y calcular los errores absoluto y relativo cometidos.

- (6) Calcular la velocidad de convergencia de las sucesiones siguientes:
 - a. $\lim_{n \to \infty} \sin\left(\frac{1}{n}\right) = 0.$ b. $\lim_{n \to \infty} (\ln(n+1) \ln(n)) = 0.$
- (7) Calcular la velocidad de convergencia de las funciones siguientes cuando $h \to 0$:

 - a. $\lim_{h\to 0}\frac{\sin h}{h}=1.$ b. $\lim_{h\to 0}\frac{\sin h-h\cos h}{h}=0.$
- (8) Consideremos la sucesión de Fibonacci $F_{n+2} = F_{n+1} + F_n$, con $F_0 = F_1 = 1$. Los primeros términos de dicha sucesión serán los siguientes:

1

$$1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \dots$$

Dicha sucesión F_n puede escribirse explícitamente de la forma siguiente donde dicha fórmula puede demostrarse por inducción:

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right].$$

- a. Supongamos que tenemos $\sqrt{5}$ con un error absoluto acotado por E. Usando la fórmula de propagación del error y suponiendo que no cometemos error en las operaciones aritméticas básicas (suma, resta, producto y división), estime en función de E el error absoluto que cometemos al aplicar la fórmula explícita anterior cuando calculamos F_n .
- b. Supongamos ahora que usamos la fórmula recurrente $F_{n+2} = F_{n+1} + F_n$ y suponiendo que F_0 y F_1 tienen un error acotado por E, estime el valor del error absoluto de F_n .
- c. Considere $n = 0, 1, \dots, 50$ y E = 0.000001.
 - Calcule la sucesión \hat{F}_n del apartado a), para $n=0,1,\ldots,50$ suponiendo que $\sqrt{5}\approx 2.236069$ en el primer caso.
 - Calcule la sucesión \tilde{F}_n del apartado b), para $n=0,1,\ldots,50$ suponiendo que $F_0=F_1=1.000001$ en el segundo caso.
 - Seguidamente haga un gráfico de los errores cometidos usando los dos métodos y comprueba qué método es el mejor.
- d. ¿Podrías dar una explicación teórica al fenómeno observado en el paso anterior?