What's the goal?

Design	EDET DCD	CoRDIA	pre-Helena	Helena
ADC resolution	8-bit	10-bit	8-bit	10-bit
Conversion rate	10 MHz	2.5MHz	5 MHz	10 MHz
Area of one ADC	100x200 μm²	80x330 μm²	60x800 μm²	20x100 μm²
Power of one ADC	1800 μW	30 μW	700 μW	100 μW
FOM_csa (conv/sec/area)	500 Hz/μm²	95 Hz/µm²	105 Hz/μm²	5000 Hz/μm²
FOM_epc (energy/conv)	180 pJ	12 pJ	155 pJ	10 pJ
FOM_ppa (power/area)	9.0 W/cm ²	0.11 W/cm ²	1.45 W/cm ²	5.0 W/cm ²
ADC qty Mpix @ 100 KHz	10000	40000	20000	10000
ADCs total pixel rate	100 Gpx/s	100 Gpx/s	100 Gpx/s	100 Gpx/s
ADCs total data rate	800 Gb/s	1 Tb/s	800 Gb/s	1 Tb/s
ADCs total area	2.0 cm ²	10.5 cm ²	9.6 cm ²	0.2 cm ²
ADCs total power	35.0 W	1.2 W	14 W	1.0 W

What should we try tuning?

capacitor array radix ratio & repetitions

capacitor array unit & repetitions total values

capacitor array switching scheme? (monotonic is simple)

comparator architecture and strength

total ADC nominal resolution

total comparisons & time per comparison

Schematic setup: Principles


```
params = {
"ADC": {
     "bit_size": 8,
                                           # nominal resolution of the ADC (switching between netlists)
     "sampling frequency": 10.0e6.
                                           # sampling rate in Hz, used to driver clock sources
    "iitter": 0.0e-12,
                                           # aperture iitter in seconds (TBD)
                                          # enables basic gaussian noise in behavioral, and tran noise in SPICE
     "device noise": False.
"TESTBENCH": {
     "positive_input_voltages": [0.2, 1.2, 20e-6],
                                                       # start, end (incl.), and step voltage
     "negative_input_voltages": [1.2, 0.2, 20e-6],
     "use calibration": False.
                                         # account for cap error when calculating Dout (re-analog)
     "bdk file": "\"~/helena/tech/tsmc65/default_testbench_header_55ulp_linux.lib\" tt",
     "spicedir": None,
                                         # Use this to write netlist from template
    "rawdir": None,
                                         # Use this to set SPICE output dir, and to read for parsing
 "SWITCH": {
    "offset voltage": 0.0e-3.
                                         # offset voltage in Volts
     "common mode dependent offset gain": 0.0, # common mode voltage gain
    "threshold voltage noise": True,
    "type": "passive".
                                         # supports active, passive, or ideal
    "strength": 4.
 "COMP": {
    "offset voltage": 0.0e-3,
                                         # offset voltage in Volts
     "common mode dependent offset gain": 0.0, # common mode voltage gain
    "threshold voltage noise": True.
    "strength": 4.
                                         # used to size some active devices (SPICE only)
 "CDAC": {
     "positive reference voltage": 1.2,
                                         # reference voltage in Volts
     "negative reference voltage": 0.0,
                                         # reference voltage in Volts
     "reference_voltage_noise": 0.0e-3,
                                         # reference voltage noise in Volts (CDAC)
     "switching_strat": "monotonic",
                                         # {monotonic, bss} used to determined initial starting voltages
     "unit capacitance": 1e-15,
                                          # unit capacitance
    "target capacitance": None,
                                         # Used for alternative
    "array size": 8.
                                         # number of capacitor stages
     "array N M expansion": False.
                                         # Sizing strategy where
                                         # List bit positions in C array, with number of repetitions at each
     "multiple_conversions": None,
     "use_rdac": False,
                                         # Set bit position which should
                                         # set to 0 farads, if disabled
     "use_offset_cap": False,
     "use_split_cap": True,
                                         # set to 0 farads, if disabled
     "parasitic capacitance": 5.00e-14,
                                         # estimate of capacitance at output (added to SPICE and ideal)
     "settling time": 0.0e-9.
                                         # individual settling errors per capacitor?
},
```

Model parameters

Work in progress

CDAC model parameters: Switching scheme

CDAC model parameters: Capacitor calculation

LSB capacitor size
$$C_{unit} \qquad \text{typically \sim1 fF}$$

where
$$i=0,1,2,\ldots,\;(N_{CDAC}-1)$$

$$w_i=\beta^i \qquad \qquad \text{weights}$$

$$C_i=C_{unit}\cdot w_i \qquad \qquad \text{capacitor values}$$

where
$$i=0,1,2,\ldots$$
, $(N_{CDAC}-1)$
$$C_i = \frac{C_{total}}{2\cdot\beta^{(N_{CDAC}-1-i)}} \quad \text{capacitor values}$$
 $w_i = \frac{C_i}{C_0}$ weights

typically ~ 100 fF

 C_{total}

Approach #3: If we care about allowable input signal swing, account for split offset and parasitic caps

CDAC model parameters: Input voltage swings

The differential input range is limited by the CDAC and additional + parasitic caps

In this 9-bit 1.2V ref case:
$$\Delta V_{in} \approx \frac{C_{\rm dac}}{C_{\rm total}} \cdot V_{\rm ref} = \frac{136}{61+136} \cdot 1.2 = 0.826$$

Also note, non-ideal comparator has common-mode input limitation

CDAC model parameters: Settling error

Monotonic switching ameliorates RC delay, but it will still manifest as voltage error when:

Clock periods are short

Differential input voltage is large

settling_time_error =
$$e^{-\frac{1}{\tau_s \cdot f_s \cdot (N+1)}}$$

Workflow: SPICE & behavioral models use same params

Testbench parameters: Syncing input voltages and clocks

Does the behavioral model work?

Testbench: Output value calculation (i.e. 're-analog')

Testbench: Output value calculation (i.e. 're-analog')

CDAC/ADC

9-bit ADC

$$R = \sum_{i=0}^{N_{CDAC} - 1} b_i \cdot w_i$$

$$\text{cycles} = 1, 2, 3, 4, 5, 6, 7, 8$$
 weights = $w_i = w_7, w_6, w_5, w_4, w_3, w_2, w_1, w_0$ SA register = $r_i = r_7, r_6, r_5, r_4, r_3, r_2, r_1, r_0$ data out = $b_i = b_7, b_6, b_5, b_4, b_3, b_2, b_1, b_0$

SA register = $r_i = r_7, r_6, r_5, r_4, r_3, r_2, r_1, r_0$

data out = $b_i = b_8, b_7, b_6, b_5, b_4, b_3, b_2, b_1, b_0$

Behavioral vs SPICE: Linearity comparison

Behavioral vs SPICE: Linearity comparison

1 LSB errors exist

Is rounding applied at different stages?

Perhaps parasitic capacitance is throwing us off? I calculated ~50 fF for the parasitics plus

Behavioral dataframe						
	Vin	Dout	Dout_rounded			
0	-0.59999333	-98.2403072	-98.0			
1	-0.59996000	-98.2403072	-98.0			
2	-0.59992667	-98.2403072	-98.0			
3	-0.59989333	-98.2403072	-98.0			
4	-0.59986000	-98.2403072	-98.0			
35995	0.59986000	99.2403072	99.0			
35996	0.59989333	99.2403072	99.0			
35997	0.59992667	99.2403072	99.0			
35998	0.59996000	99.2403072	99.0			
35999	0.59999333	99.2403072	99.0			
S	PICE datafram					
	Vin	Dout	Dout_rounded			
0	-0.59994	-98.7403072	-99.0			
1	-0.59991	-98.7403072	-99.0			
2	-0.59988	-98.7403072	-99.0			
3	-0.59985	-98.7403072	-99.0			
4	-0.59982	-98.7403072	-99.0			
39991	0.59982	98.7403072	99.0			
39992	0.59985	98.7403072	99.0			
39993	0.59988	98.7403072	99.0			
39994	0.59991	98.7403072	99.0			
39995	0.59994	98.7403072	99.0			

Behavioral vs SPICE: Linearity comparison

How are non-binary redundant codes distributed?

What about double conversions?

The repeated conversion steps need an offset of half their weight to account for the 'bias' they introduce

```
params = {
 "ADC": {
    "bit size": 8.
                                          # nominal resolution of the ADC (switching between netlists)
     "sampling frequency": 10.0e6.
                                          # sampling rate in Hz, used to driver clock sources
    "iitter": 0.0e-12.
                                          # aperture iitter in seconds (TBD)
     "device noise": False.
                                          # enables basic gaussian noise in behavioral, and tran noise in SPICE
"TESTBENCH": {
     "positive_input_voltages": [0.2, 1.2, 20e-6],
                                                      # start, end (incl.), and step voltage
     "negative_input_voltages": [1.2, 0.2, 20e-6],
     "use calibration": False.
                                         # account for cap error when calculating Dout (re-analog)
     "bdk file": "\"~/helena/tech/tsmc65/default_testbench_header_55ulp_linux.lib\" tt",
     "spicedir": None,
                                         # Use this to write netlist from template
    "rawdir": None.
                                         # Use this to set SPICE output dir, and to read for parsing
 "SWITCH": {
    "offset voltage": 0.0e-3.
                                         # offset voltage in Volts
     "common mode dependent offset gain": 0.0, # common mode voltage gain
    "threshold voltage noise": True,
    "type": "passive".
                                         # supports active, passive, or ideal
    "strength": 4.
 "COMP": {
    "offset voltage": 0.0e-3,
                                         # offset voltage in Volts
     "common mode dependent offset gain": 0.0, # common mode voltage gain
    "threshold voltage noise": True.
    "strength": 4.
                                         # used to size some active devices (SPICE only)
},
 "CDAC": {
     "positive reference voltage": 1.2,
                                         # reference voltage in Volts
     "negative reference voltage": 0.0,
                                         # reference voltage in Volts
     "reference_voltage_noise": 0.0e-3,
                                         # reference voltage noise in Volts (CDAC)
     "switching_strat": "monotonic",
                                         # {monotonic, bss} used to determined initial starting voltages
     "unit capacitance": 1e-15,
                                          # unit capacitance
    "target capacitance": None,
                                          # Used for alternative
    "array size": 8.
                                         # number of capacitor stages
    "array N M expansion": False.
                                         # Sizing strategy where
                                         # List bit positions in C array, with number of repetitions at each
     "multiple_conversions": None,
     "use_rdac": False,
                                         # Set bit position which should
                                         # set to 0 farads, if disabled
     "use offset cap": False,
     "use_split_cap": True,
                                         # set to 0 farads, if disabled
     "parasitic capacitance": 5.00e-14, # estimate of capacitance at output (added to SPICE and ideal)
     "settling time": 0.0e-9.
                                         # individual settling errors per capacitor?
},
```

Next steps?