PART 1 The Tate Pairing

Definition 3. A pairing on an elliptic curve E is a bilinear map $e:A\times B\to \mathbb{F}_q^*$, where A and B are subgroups of E. We say e is non-degenerate when for every $a\in A$, there is at least one $b\in B$ such that $e(a,b)\neq 1$, and vice versa. We say e is alternating when A=B and for every $a\in A$ we have e(a,a)=1.

1

The Weil Pairing

The iconic pairing, that always helps us when we are dealing with m-torsion E[m],

$$e_m: E[m] \times E[m] \to \mu_m$$

where $\mu_m = \{ \zeta \in \overline{\mathbb{F}_q}^* \mid \zeta^m = 1 \}$. The m-Weil pairing is bilinear, non-degenerate, and alternating.

Destructive use: the MOV attack on elliptic curves, reducing elliptic-curve DLOG to \mathbb{F}_q^* -DLOG.

Constructive use* in isogeny-based cryptography: decomposing $K \in E[m]$ into K = [a]P + [b]Q for a given basis P, Q for E[m].

Lefty and His Gang (1987)

^{*} Many other applications are out of scope for this talk, such as their uses in identity-based cryptography and more generally the whole field of pairing-based cryptography.

PART 1 The Tate Pairing

Definition 3. A pairing on an elliptic curve E is a bilinear map $e:A\times B\to \mathbb{F}_q^*$, where A and B are subgroups of E. We say e is non-degenerate when for every $a\in A$, there is at least one $b\in B$ such that $e(a,b)\neq 1$, and vice versa. We say e is alternating when A=B and for every $a\in A$ we have e(a,a)=1.

1

The Weil Pairing

The iconic pairing, that always helps us when we are dealing with m-torsion E[m],

$$e_m: E[m] \times E[m] \to \mu_m$$

where $\mu_m = \{ \zeta \in \overline{\mathbb{F}_q}^* \mid \zeta^m = 1 \}$. The m-Weil pairing is bilinear, non-degenerate, and alternating.

Destructive use: the MOV attack on elliptic curves, reducing elliptic-curve DLOG to \mathbb{F}_q^* -DLOG.

Constructive use* in isogeny-based cryptography: decomposing $K \in E[m]$ into K = [a]P + [b]Q for a given basis P, Q for E[m].

2

The Tate-Lichtenbaum Pairing

My favourite pairing, deep connection to division by [m], the crucial insight for this work.

$$t_m: E[m](\mathbb{F}_q) \times E(\mathbb{F}_q)/[m]E(\mathbb{F}_q) \rightarrow \mu_m.$$

The (reduced) m-Tate pairing is bilinear. When $\mu_m \subseteq \mathbb{F}_q^*$, it is also non-degenerate.

Destructive use: the Frey-Rück attack, using the idea from the MOV attack with the Tate pairing.

Constructive use* in isogeny-based cryptography: finding bases for E[m], computing Sylow- ℓ torsion, navigating isogeny volcanoes, and so on... See [1].

^{*} Many other applications are out of scope for this talk, such as their uses in identitybased cryptography and more generally the whole field of pairing-based cryptography.