GEOMETRÍA III (Doble Grado en Ingeniería Informática y Matemáticas)

Primer Control (18/11/2021)

- 1. Consideremos un espacio afín real $(\mathcal{A}, \overrightarrow{\mathcal{A}}, \rightarrow)$ con dim $\mathcal{A} = 3$, dos puntos distintos $p, q \in \mathcal{A}$ y un plano T en A. Probar que los dos enunciados siguientes son equivalentes.
 - (a) El punto medio $m_{pq} \in T$.
 - (b) Existe una única simetría afín $f \colon \mathcal{A} \to \mathcal{A}$ tal que $f(p) = q \ \mathrm{y} \ f|_T = \mathrm{Id}_T$.

Encontrar la expresión matricial en el sistema de referencia usual \mathcal{R}_0 de \mathbb{R}^3 de la única simetría afín $f: \mathbb{R}^3 \to \mathbb{R}^3$ que fija todos los puntos del plano $T = (0, -1, 0) + L\{(1, 0, 0), (0, 1, 1)\}$ y satisface f(-1,1,0) = (3,-1,2). Dada la recta S con ecuaciones implícitas

$$x_1 + x_2 + x_3 - 1 = 2x_1 + x_2 + 1 = 0$$

en \mathcal{R}_0 , calcular además las ecuaciones implicitas de f(S).

2. Consideremos la transformación $f: \mathbb{R}^3 \to \mathbb{R}^3$ dada por la expresión matricial

$$\begin{pmatrix}
1 \\
f\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix}
\frac{1}{-4} & \frac{1}{9} & \frac{8}{9} & -\frac{1}{9} \\
4 & -\frac{4}{9} & \frac{1}{9} & -\frac{8}{9} \\
-2 & -\frac{7}{9} & \frac{4}{9} & \frac{4}{9}
\end{pmatrix} \cdot \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

Probar que f es un movimiento rígido del espacio afín euclidiano usual \mathbb{R}^3 y calcular sus elementos geométricos.

3. Sea $T = \{a, b, c\}$ un triángulo en un plano euclidiano $(\mathcal{A}, \overrightarrow{\mathcal{A}}, \rightarrow, \langle , \rangle)$ con ángulos $\hat{A}, \hat{B}, \hat{C}$ en los vértices a, b, c respectivamente. Probar que son equivalentes: 1

- $\begin{cases} \mathbf{a} & d(a,b) = d(a,c). \\ \mathbf{b} & \hat{B} = \hat{C}. \end{cases}$
 - c) La mediatriz R_a y la mediana M_a del vértice a son coincidentes.

Como consecuencia, probar que si d(a,b) = d(a,c) = d(b,c) (esto es, T es equilátero) entonces el vértice a y el baricentro B de T determinan univocamente los vertices b y c.

Todos los ejercicios tienen el mismo valor.

GEOMETRÍA III

Doble Grado en Ingeniería Informática y Matemáticas

Final Convocatoria Ordinaria (19/01/2022, Aula G-06)

1. Denotemos por $\mathbb{P}_2(\mathbb{R})$ y $\mathcal{S}_2(\mathbb{R})$ los espacios afines de los polinomios reales en la variable x de grado ≤ 2 y las matrices simétricas reales de orden 2, respectivamente.

Dados los subespacios afines

$$S = \{p(x) \in \mathbb{P}_2(\mathbb{R}) : p'(1) = 1\}$$
 y $T = \{A \in \mathcal{S}_2(\mathbb{R}) : \text{Traza}(A) = -1\},$

probar que existe una afinidad $f: \mathbb{P}_2(\mathbb{R}) \to \mathcal{S}_2(\mathbb{R})$ tal que f(S) = T y $f(-x) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Si $\mathcal{R}_0 = \{0, \{1, x, x^2\}\}\$ y $\mathcal{R}_0' = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \right\}$ denotan las correspondientes referencias usuales de $\mathbb{P}_2(\mathbb{R})$ y $\mathcal{S}_2(\mathbb{R})$, determinar

- a) $M(f, \mathcal{R}_0, \mathcal{R}'_0)$ y
- b) las ecuaciones implícitas de $f^{-1}(R)$ para $R = \{A \in \mathcal{S}_2(\mathbb{R}) : \text{Traza}(A I_2) = 0\}$.
- 2. En un espacio afín euclidiano (A, A,→, ⟨,⟩) con dim A = 3 consideramos dos puntos p₁, p₂ y una recta R tales que d(p₁, R) = d(p₂, R) > 0. Probar que existe un único movimiento rígido directo f: A → A tal que f(R) = R y f(p₁) = p₂, describiendo su naturaleza y elementos geométricos. Como consecuencia, probar que dados los puntos p₁ = (0,0,-2), p₂ = (-1,1,1) y la recta

$$R = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \colon x_2 - x_1 - 1 = x_3 - x_2 + 1 = 0\}$$

del espacio afín euclidiano \mathbb{R}^3 , existe un único movimiento helocoidal $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que f(R) = R y $f(p_1) = p_2$. Calcular $M(f, \mathcal{R}_0)$, donde \mathcal{R}_0 es la referencia canónica o usual de \mathbb{R}^3 .

- X 3. Consideremos la recta $R = (-1,0) \vee (0,1)$ en el plano euclidiano \mathbb{R}^2 , y definamos para cada $\lambda \in \mathbb{R}$ el lugar de puntos $C_{\lambda} = \{p \in \mathbb{R}^2 : d(p,R) = d(p,(\lambda,-\lambda))\}$, donde $d(\cdot,\cdot)$ indica distancia euclidea.
 - a) Probar que C_{λ} es una cónica para todo $\lambda \in \mathbb{R}$, y clasificarla afínmente.
 - b) Encontrar una referencia de \mathbb{R}^2 en la que la cónica C_1 (para $\lambda=1$) adopta su forma reducida o canónica.
- 4. Si E_1, E_2 son espacios vectoriales reales de dimensión 3 y $X_1, X_2, X_3 \subset P(E_1), Y_1, Y_2, Y_3 \subset P(E_2)$ son tripletas de rectas proyectivas distintas dos a dos concurrentes, esto es, tales que

$$X_1 \cap X_2 \cap X_3 = \{p\}, \quad Y_1 \cap Y_2 \cap Y_3 = \{q\}$$

para ciertos puntos $p \in P(E_1)$, $q \in P(E_2)$, probar que existe una homografía $f: P(E_1) \to P(E_2)$ tal que $f(X_j) = Y_j$, j = 1, 2, 3.

Como aplicación, dadas las rectas en R²

$$R_1 = \{(x_1, x_2) : x_1 = 0\}, R_2 = \{(x_1, x_2) : x_2 = 1\}, R_3 = \{(x_1, x_2) : x_1 + x_2 = 1\},$$

$$S_1 = \{(x_1, x_2) : x_1 - x_2 = 0\}, \quad S_2 = \{(x_1, x_2) : x_1 - x_2 = 1\}, \quad S_3 = \{(x_1, x_2) : x_1 - x_2 = -1\},$$

probar que existe una homografía $f\colon \mathbb{P}^2\to \mathbb{P}^2$ tal que $f(X_{R_j})=X_{S_j}$, j=1,2,3. Calcular $M(f,B_0)$, donde B_0 es la base canónica de \mathbb{R}^3 y $X_R\subseteq \mathbb{P}^2$ representa la proyectivización de R para todo subespacio afín $R\subseteq \mathbb{R}^2$.

Toda la asignatura (duración 3 horas): Preguntas 1 ó 2 (a elegir), 3 y 4 Segundo Parcial (duración 2 horas): Preguntas 3,4 Todas las preguntas tienen el mismo valor