SARS-CoV-2 bioinformatics Training

Bioinformatics Quality Control

George Githinji

11th October 2020

KEMRI Wellcome Trust

Sample preparation

Sample collection

- Time
- Proper sampling

Sample transportation

- Time
- Cold chain

Laboratory methods and storage

SARS-CoV-2 Detection Method

- Metagenomics approaches
- Amplicon based approaches
 - Pooled amplicon-based methods

- Sequencing platforms
 - ONT
 - Illumina

NGS process control and Quality check checkpoints

What quality measures are we interested with?

Degree of contamination

- Genome completeness
 - Proportion on non-N bases

- Sequence accuracy
 - Per base accuracy
 - Concensus accuracy

Why do we care?

- Contamination will read to misinterpretation of the results
 - For SARS-CoV-2 this might have serious consequences on policy
- Incomplete genomes are difficult to analyse
 - Lineage misassignment
 - Lack of phylogenetic signal

- Might be difficult to submit to public repositories
 - Genbank
 - GISAID

Viral load and genome completeness

Increasing Cycle threshold values

Accessing the accuracy of the genomes

Reference Mismatch support

Mixed positions

- Contamination?
- High Ct samples?
- Within host variation?

Frame-shifts

Frame shift insertion

- Contamination?
- High Ct samples?
- Within host variation?

Sample contamination

Always include controls in your sequencing run

Negative control

You don't expect to see or assemble a genome from negative control

Positive control

• Will assist to troubleshoot in case of suspected contamination

Questions

Thank you