Coloração em Grafos 5189-32

Rodrigo Calvo rcalvo@uem.br

Departamento de Informática – DIN Universidade Estadual de Maringá – UEM

1° semestre de 2016

Uma aplicação inicial

- Problema de escalonamento de horário
 - Você é o responsável por agendar horários de aulas na universidade.
 - Seu objetivo é evitar conflitos, isto é, garantir que duas aulas quaisquer com alunos em comum ocorram em horários diferentes.
 - Para representar esta informação, você resolveu usar um grafo, onde os vértices representam as disciplinas e uma aresta entre duas disciplinas representa um conflito.

Exemplo

Quanto horários distintos são necessários?

Legenda:

- A Astronomy
- **C** Chemistry
- G Greek
- **H** History
 - **I** Italian
- L Latin
- M Music
- P Philosophy
- S Spanish

Solução

<u>Coloração</u>

 Podemos atribuir uma cor (rótulo) para cada horário (por exemplo, o horário 19:30 – 21:10 pode receber a cor azul), de forma que dois vértices adjacentes não possuam a mesma cor.

Solução

<u>Coloração</u>

 Podemos atribuir uma cor (rótulo) para cada horário (por exemplo, o horário 19:30 – 21:10 pode receber a cor azul), de forma que dois vértices adjacentes não possuam a mesma cor.

Uma coloração possível

Definições

Conjunto independente

•Um conjunto independente em um grafo G = (V, A) é qualquer subconjunto $V' \subseteq V$, tal que $u, v \in V' \Rightarrow (u, v) \notin A$

Coloração, k-coloração, k-colorível

•Uma coloração (própria) dos vértices de G = (V, A) é uma função $c : V \rightarrow \mathbf{N}$ que dado dois vértices adjacentes $u, v \in V$ quaisquer, associa-os a cores diferentes, isto é, $(u, v) \in A \Rightarrow c(u) \neq c(v)$. Uma **k-coloração** de um grafo é uma coloração que usa um total de k cores. Um grafo que possui uma k-coloração é dito **k-colorível**.

Definições

Partição em conjuntos independentes

•A função de coloração c induz uma partição no grafo G em subconjuntos independentes V_1, V_2, \ldots, V_k , na qual $V_i \cap V_j = \emptyset$ e $V_1 \cup V_2 \cup \ldots \cup V_k = V$.

Número cromático

•O número cromático de um grafo G (representado por $\chi(G)$) é o número mínimo de cores necessário para se colorir o grafo.

Complexidade do problema

•Encontrar uma coloração de vértices ótima é um problema NP-difícil (caso geral)

Limites do número cromático

- 1. $1 \leq \chi(G) \leq |V|$.
- 2. Para um grafo completo K_n , $\chi(K_n) = n$.
- 3. Se G contém um clique de tamanho k, então $\chi(G) \ge k$.
- 4. Grafos bipartidos (incluindo florestas e árvores) são 2-coloríveis.
- 5. Todo grafo planar pode ser colorido com 4 cores (Appel e Haken, 1976).
- 6. Uma coloração gulosa mostra que todo grafo pode ser colorido com uma cor a mais que o grau máximo de um vértice, $\chi(G) \le \Delta(G) + 1$.
 - $\Delta(G)$: grau máximo de um grafo G (grau do vértice de maior grau)

Algoritmo Sequencial

Entrada: Um grafo G e uma lista de vértices (ordem) v_1, v_2, \ldots, v_n .

Saída: Uma coloração de vértices $c: V_G \rightarrow \mathbf{N}$.

- 1 Para i = 1 até n faça
- 2 Seja $c(v_i)$ = o menor número de cor não usado nos vizinhos de menor índice de v_i
- 3 Devolva a coloração de vértices c.

Análise do Algoritmo Sequencial

- O algoritmo produz uma coloração própria porque evita conflitos toda vez que vai colorir um vértice.
- O tempo de execução é O(V + A).
- Quantas cores serão usadas? Depende da ordem escolhida para colorir os vértices.
- Produz uma coloração ótima se for dada uma ordenação ótima. O problema é que achar esta ordenação ótima é NP-Difícil também.
- Uma propriedade interessante é que, uma vez colorido o grafo, é possível gerar a ordem dos vértices que gera esta coloração (simplesmente listando os vértices de acordo com sua cor).
- É um algoritmo eficiente, mas não eficaz.

Algoritmo Heurístico Maior Grau

Entrada: Um grafo *G* com *n* vértices.

Saída: Uma coloração de vértices $c: V_G \rightarrow \mathbf{N}$.

- 1 Enquanto existir vértices não coloridos em G faça
- 2 Entre os vértices sem cor de maior grau, escolha o vértice v com o maior grau de coloração;
- 3 Atribua a menor cor k possível para o vértice v : c(v) = k;
- 4 Devolva a coloração de vértices c.

Grau de coloração

•É o número de cores diferentes usadas para os vértices coloridos adjacentes de v.

Outras aplicações

- Coloração de vértices
 - Alocação de faixas de frequência (rádio ou TV).
 - Colorir mapas.
 - Separação de produtos explosivos.
 - Otimização em compiladores (alocação de registradores).

- Outros problemas de coloração
 - Coloração de arestas.
 - Coloração de faces.

Exercício

 Mostre que o Algoritmo Sequencial nem sempre produz uma coloração que usa o número cromático de cores.

Exercício

• Suzana esperava 4 amigas Edite, Judite, Laura e Ana para um lanche em sua casa. Enquanto esperava preparou os seguintes lanches: Bauru, Misto quente, Misto frio e X-salada. Edite gosta de Misto frio e de X-salada. Judite de Bauru e X-salada. Laura de Misto quente e Misto frio. Ana de Bauru e Misto quente. Desenhe o grafo que modela essa situação e use esse grafo para descobrir se é possível que cada amiga de Suzana tenha o lanche que gosta.

Exercício

• Um químico deseja embarcar os produtos A, B, C, D, E, F, X usando o menor número de containers. Alguns produtos não podem ser colocados num mesmo container porque reagem. Quaisquer dos dois produtos entre A, B, C, X reagem e A reage com F, D e, E também reage com F, D. Descreva o grafo que modela essa situação e use esse grafo para descobrir o menor número de *containers* necessários para embarcar os produtos com segurança.