一、单项选择题(本大题共 27 分,每小题 3 分) 1. 弹簧振子在光滑水平面上作简谐振动时,弹性力在 1/4 个周期内所作的功为			$(\mathbf{A}) a = \frac{1}{2} b.$	(B) $a=2b$.	
(A) kA^2 . (B) $\frac{1}{2}kA^2$. (C) $(1/4)kA^2$. (D) 0.	[]	(C) $a=b$.	(D) $a=3 b$.	[]
2			8. 把一个静止质量为 n	n_0 的粒子,由静止加速到 $v=0.6c$ (c 为	真空中光速)需作的功等于
2. 一平面简谐波在弹性媒质中	中传播,在某一瞬时,媒质中某质元正处	于负方向的端点时,	(A) $0.18m_0c^2$.	(B) 1.25 m_0c^2 .	
此时它的速度和加速度是			(C) $0.36m_0c^2$.	(D) $0.25 m_0 c^2$.	[]
(A) 速度为零,加速度最	大. (B) 速度为零,加速度也为等				
(C) 速度最大,加速度也:	最大. (D) 速度最大,加速度为零.	. []		沿 x 轴正向传播,若光的波长的不确定 子的 x 坐标的不确定量至少为	:量Δλ =10 ⁻³ Å,则利用不确定关
3. 一列机械横波在 t 时刻的波形	ド曲线如图所示,则该时刻能量为最大值	的媒质质元的位置是:	(A) 25 cm.	(B) 50 cm.	
(A) o', b, d, f. (F	B) a, c, e, g.	[]	(C) 250 cm.	(D) 500 cm.	[]
(C) o' , d. (D)	0) b, f.	波速 u , 时刻 t			
$\Lambda \longrightarrow \Lambda$			二、填空题(本大题共 25 分) 10. (本题 3 分)相干光满足的条件是 1);		
		$g_{\iota} x$			
	0	c = c	2)	; 3)	o
4. 沿着相反方向传播的两列村	$oxedsymbol{H}$ 一 t $oxedsymbol{H}$ 干波,其表达式为	o J	11 (未販 2 八) 加田	单缝夫琅和费衍射的第一级暗纹发生在	%射角20 ⁰ 的宝点 L 66用单角
	(x/λ) $\eta_2 = A\cos 2\pi(\nu t + x/\lambda)$.				的初用30 的刀叫工,加用平仓
叠加后形成的驻波中,波节的位	•	Г 1	光波长 $\lambda = 500 nm$,见	则平线见及入。	
	_				
(A) $x = \pm k\lambda$.	(B) $x = \pm \frac{1}{2}k\lambda$ (D) $x = \pm (2k+1)\lambda/4$.			光垂直入射在偏振片 P 上,以入射光线	
` '	. ,			寸 光 是	
(C) $x = \pm \frac{1}{2}(2k+1)\lambda$	(D) $x = \pm (2k+1)\lambda/4$.			则将看到明暗交替变化,但不出现全暗	
其中的 k = 0, 1, 2, 3, …					
5. 一辆机车以 30 m/s 的速度驶察者听到的声音频率是(空气中	近一位静止的观察者,如果机车的汽笛的 中声速为 330 m/s)	场率为 550 Hz,此观	13. (本题 3 分) 应用布 的起偏振角为	ī儒斯特定律可以测介质的折射率.某种4 。	勿质的折射率为 1.48,则此介质
(A) 500Hz.	(B) 504 Hz.		14 (木駒 4 分) 右一词	速度为 u 的宇宙飞船沿 x 轴正方向飞行,	飞舰业昆夂右—个脉冲坐循车
(C) 605 Hz.	(D) 600 Hz.	[]		者测得船头光源发出的光脉冲的传播速	
人 加图完二、沙 龙头1的亚石台	(名水系克) 卧扩托卧窗斗 - 奶杏饼上	以上工业人主五二 社	*** * * * * * * * * * * * * * * * * * *	于船头的观察者测得船尾光源发出的光	
	$oldsymbol{L}$ 色光垂直入射在折射率为 n_2 的薄膜上, $oldsymbol{\mathfrak{E}}$ 为 $oldsymbol{e}$,而且 $n_1 \! > \! n_2 \! > \! n_3$,则两束反射光右		的传播速度大小为	·	$n_1 \bigvee \bigvee \lambda$
	$2\pi n_2e$ / λ .	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
(C) $(4\pi n_2 e / \lambda) + \pi$. (D)					n_2
(C) (1002 C) 10) 110 (D)					n_3
	数级次的主极大都恰好在单缝衍射的暗约 逢宽度 a 和相邻两缝间不透光部分宽度 b				

15. (本题 4 分) 如图所示,一频率为 ν 的入射光子与起始静止的自由电子发生碰撞和散射. 如果散射光子的频率为 ν' ,反冲电子的动量为p,则在与入射光子平行的方向上的动量守恒定律的分量形式为_____.

- 三、计算题(本大题共48分)
- 17. (本题 8 分) 质量为 2 kg 的质点, 按方程 $x = 0.2 \sin[5t (\pi/6)]$ (SI)沿着 x 轴振动. 求:
 - (1) t=0 时,作用于质点的力的大小;
 - (2) 作用于质点的力的最大值和此时质点的位置.

18. (本题 6 分)两个物体作同方向、同频率、同振幅的简谐振动. 在振动过程中,每当第一个物体经过位移为 $A/\sqrt{2}$ 的位置向平衡位置运动时,第二个物体也经过此位置,但向远离平衡位置的方向运动. 试利用旋转矢量法求它们的相位差.

- 19. (本题 10 分) 图示一平面余弦波在 t=0 时刻与 t=2 s 时刻的波形图. 已知波速为 u,求
 - (1) 坐标原点处介质质点的振动方程;
 - (2) 该波的波动表达式.

20. (本题 7 分) 如图所示, S_1 , S_2 为两平面简谐波相干波源. S_2 的相位比 S_1 的相位超前 $\pi/4$, 波长 $\lambda = 8.00$ m, $r_1 = 12.0$ m, $r_2 = 14.0$ m, S_1 在 P 点引起的振动振幅为 0.30 m, S_2 在 P 点引起的振动振幅为 0.20 m,求 P 点的合振幅.

