1.14 Geometry Shortest Distance be-1.31 Matrix gauss mod 2 15 **Contents** 1.32 Template build system tween two points 1.15 Geometry geometry 2d 1.33 Template sos-dp 1 1 1.16 Geometry half plane 1.34 Template template yatin 16 Black-Magic Black Magic . . . 1.17 Graph min vertex cover 1.35 dp opti 1D-1D(convex) Black-Magic Fast Integer IO . . 1.36 dp opti CHT Normal 17 1.18 Math Berleykamp 1.37 dp opti CHT dynamic 17 1.19 Math CRT Data Structure DSU on tree . . . 1.38 dp opti Knuth 1.20 Math Determinant Data Structure Roll back 1.21 Math Fast Subset Transform . . 1.39 dp opti Li Chao Data Structure centroid 1.22 Math Gray code Data Structure hashmap 1.23 Math Linear Sieve 1.41 flow global min cut Data Structure hld 1.24 Math Primitive Root 1.42 flow hungarian emaxx FFT fft 1.25 Math Segmented Sieve 1.43 flow mcmf with negative cycle. FFT ntt 1.26 Math euclid gcd 1.44 range query Fenwick 1.10 FFT polynomial 1.27 Math integer factorization po-1.45 string AhoCorasick 1.11 Geometry Convex Hull 1.46 string circular lcs 1.12 Geometry Minkowski Sum . . . 1.28 Math prime list 1.47 string suffix Array 1.13 Geometry Point in convex poly-1.29 Math prime test miller rabin . . 1.48 string suffix Automaton 1.30 Matrix gauss any mod 1.49 string z kmp manacher gon Mobius Inversion: summands. | # with degrees d_i : $(n-2)!/((d_1-1)!\cdots(d_n-1)!)$ $p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1) / 2) p(n - k(3k - 1) / 2)$ $g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d)g(n/d)$ $B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$ $p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$ Other useful formulas/forms: 1 1 $\sum_{d|n} \mu(d) = [n = 1]$ (very useful) $g(n) = \sum_{n|d} f(d) \Leftrightarrow f(n) = \sum_{n|d} \mu(d/n)g(d)$ 1.1 Black-Magic Black Magic $g(n) = \sum_{1 \le m \le n} f(\left| \frac{n}{m} \right|) \Leftrightarrow f(n) =$ p(n) 1 1 2 3 5 7 11 15 22 30 627 \sim 2e5 \sim 2e8 #pragma GCC optimize("03,unroll-loops,no- $\sum_{1 \le m \le n} \mu(m) g(\left| \frac{\overline{n}}{m} \right|)$ stack-protector")

#pragma GCC target("sse,sse2,sse3,ssse3,

sse4,popcnt,abm,mmx,avx,tune=native")

on n vertices: n^{n-2}

positive integers, disregarding the order of the |# on k existing trees of size n_i : $n_1 n_2 \cdots n_k n^{k-2}$

Number of ways of writing n as a sum of

```
typedef tree<int, null_type, less<int>,
   rb_tree_tag,
            tree_order_statistics_node_update 1.3 Data Structure DSU on tree
                >set t:
typedef cc_hash_table<int, int> umap_t;
#include <ext/rope>
using namespace __gnu_cxx;
int main() {
 rope<char> r[2];
 r[1] = r[0]; // persistenet
 string t = "abc";
 r[1].insert(0, t.c_str());
 r[1].erase(1, 1);
 cout \langle\langle r[1].substr(0, 2);
```

1.2 Black-Magic Fast Integer IO

```
static char buf[1 << 19]; // size : any</pre>
   number geq than 1024
static int idx = 0;
static int bytes = 0;
static inline int _read() {
 if (!bytes || idx == bytes) {
   bytes = (int)fread(buf, sizeof(buf[0]),
        sizeof(buf), stdin);
   idx = 0;
 }
 return buf[idx++];
}
static inline int _readInt() {
 int x = 0, s = 1;
 int c = _read();
 while (c \le 32) c = read();
 if (c == '-') s = -1, c = _read();
 while (c > 32) x = 10 * x + (c - '0'), c
     = read():
 if (s < 0) x = -x;
 return x;
```

```
int cnt[maxn]:
void dfs(int v, int p, bool keep) {
 int mx = -1, bigChild = -1;
 for (auto u : g[v])
   if (u != p \&\& sz[u] > mx) mx = sz[u],
       bigChild = u;
 for (auto u : g[v])
   if (u != p && u != bigChild)
     dfs(u, v, 0);
 if (bigChild != -1)
   dfs(bigChild, v, 1);
 for (auto u : g[v])
   if (u != p && u != bigChild)
     for (int p = st[u]; p < ft[u]; p++)</pre>
         cnt[col[ver[p]]]++;
 cnt[col[v]]++;
 if (keep == 0)
   for (int p = st[v]; p < ft[v]; p++) cnt
       [col[ver[p]]]--;
```

1.4 Data Structure Roll back

```
/**If undo is not needed, skip st, time()
   and rollback().
* Usage: int t = uf.time(); ...; uf.
    rollback(t);
 * Time: $0(\log(N))$*/
struct RollbackUF {
 vi e:
 vector<pii> st;
 RollbackUF(int n) : e(n, -1) {}
 int size(int x) { return -e[find(x)]; }
 int find(int x) { return e[x] < 0 ? x :
     find(e[x]): }
 int time() { return sz(st); }
```

```
void rollback(int t) {
   for (int i = time(); i-- > t;) e[st[i].
       first] = st[i].second:
   st.resize(t):
 }
 bool join(int a, int b) {
   a = find(a), b = find(b);
   if (a == b) return false;
   if (e[a] > e[b]) swap(a, b);
   st.push_back({a, e[a]});
   st.push_back({b, e[b]});
   e[a] += e[b];
   e[b] = a;
   return true;
 }
};
```

1.5 Data Structure centroid

```
struct Graph {
  vector<vector<int>> adj;
  Graph(int n) : adj(n + 1) {}
  void add_edge(int a, int b, bool directed
       = false) {
    adi[a].pb(b);
   if (!directed) adj[b].pb(a);
 }
};
struct Centroid {
  vector<int> stree, parent;
  void _dfs(vector<vector<int>> &adj, ll x,
       11 par = -1) {
    stree[x] = 1, parent[x] = par;
   for (auto &p : adj[x]) {
     if (p != par) {
       _{dfs(adj, p, x)};
       stree[x] += stree[p];
```

```
}
int decompose(Graph &G, Graph &cd, 11
   root = 1) {
 int n = G.adj.size() - 1;
 stree.resize(n + 1);
 parent.resize(n + 1);
 _dfs(G.adj, root);
 vector<bool> done(n + 1);
 return construct(G, cd, done, root);
int construct(Graph &G, Graph &cd, vector
   <bool> &done, ll root) {
 while (true) {
   11 \text{ maxm} = 0, \text{ ind} = -1;
   for (auto &x : G.adj[root]) {
     if (!done[x] && stree[x] > maxm) {
       maxm = stree[x]:
       ind = x;
     }
   if (maxm <= stree[root] / 2) {</pre>
     done[root] = true:
     for (auto &p : G.adj[root]) {
       if (!done[p]) {
         11 x = construct(G, cd, done, p)
         cd.add_edge(x, root);
         // root is parent of x is
             centroid tree
         // cd.parent[x] = root;
     return root;
   } else {
     11 temp = stree[root];
     stree[root] -= stree[ind];
```

```
stree[ind] = temp;
    root = ind;
}
}
}
```

1.6 Data Structure hashmap

```
#include <bits/extc++.h> /** keep-include
    */
// To use most bits rather than just the
    lowest ones:
struct chash { // large odd number for C
    const uint64_t C = ll(4e18 * acos(0)) |
        71;
ll operator()(ll x) const { return
        __builtin_bswap64(x*C); }
};
__gnu_pbds::gp_hash_table<ll,int,chash> h
      ({},{},{},{},{1<<16});</pre>
```

1.7 Data Structure hld

```
void dfs2(vector<vector<int>> &adj, int x
 tin[x] = timer++;
  order.push_back(x);
 for (auto &p : adj[x]) {
   if (p == pars[x]) continue;
   nxt[p] = (p == adj[x][0] ? nxt[x] : p)
   dfs2(adj, p);
  tout[x] = timer;
HLD(vector<vector<int>> &adj, int N, int
   root = 1)
   : sz(N + 5),
     tin(N + 5).
     tout(N + 5),
     nxt(N + 5),
     level(N + 5),
     pars(N + 5),
     timer(0) {
  int n = adj.size() - 1;
 level[root] = 0;
  dfs(adj, root);
  dfs2(adj, root);
  // build segment tree on "order" here
 // ST.resize(order.size());
 // ST.build(0, 0, order.size()-1, order
     );
int path_query(int a, int b) {
  int N = order.size();
 // int answer = -INFINT;
 while (nxt[a] != nxt[b]) {
   if (level[nxt[a]] < level[nxt[b]])</pre>
       swap(a, b);
```

1.8 FFT fft

```
using cd = complex<double>;
const double PI = acos(-1):
void fft(vector<cd> &a, bool invert) {
 int n = a.size();
 for (int i = 1, j = 0; i < n; i++) {
   int bit = n \gg 1:
   for (; j & bit; bit >>= 1) j ^= bit;
   j ^= bit;
   if (i < j) swap(a[i], a[j]);</pre>
 for (int len = 2; len <= n; len <<= 1) {</pre>
   double ang = 2 * PI / len * (invert ?
       -1:1);
   cd wlen(cos(ang), sin(ang));
   for (int i = 0; i < n; i += len) {</pre>
     cd w(1):
     for (int j = 0; j < len / 2; j++) {
       cd u = a[i + j], v = a[i + j + len /
            21 * w:
       a[i + j] = u + v;
       a[i + j + len / 2] = u - v;
```

```
w *= wlen:
   }
 }
 if (invert) {
   for (cd &x : a) x /= n;
}
vector<int> multiply(vector<int> const &a,
    vector<int> const &b) {
 vector<cd> fa(a.begin(), a.end()), fb(b.
     begin(), b.end());
 int n = 1:
 while (n < a.size() + b.size()) n <<= 1;</pre>
 fa.resize(n):
 fb.resize(n):
 fft(fa. false):
 fft(fb, false);
 for (int i = 0; i < n; i++) fa[i] *= fb[i
     ];
 fft(fa. true):
 vector<int> result(n):
 for (int i = 0; i < n; i++) result[i] =</pre>
     round(fa[i].real());
 return result;}
```

1.9 FFT ntt

```
const int mod = 7340033;
const int root = 5;
const int root_1 = 4404020;
const int root_pw = 1 << 20;

const int mod = 998244353;
const int root = 3;
const int root_1 = 332748118;
const int root_pw = 1 << 23;
const int root = generator(mod);</pre>
```

```
const int root_1 = mod_inv(root, mod);
void fft(vector<int>& a, bool invert) {
 for (int len = 2: len <= n: len <<= 1) {
   int wlen = invert ? root 1 : root:
   for (int i = len; i < root_pw; i <<= 1)</pre>
     wlen = (int)(1LL * wlen * wlen % mod);
   for (int i = 0; i < n; i += len) {</pre>
     int w = 1;
     for (int j = 0; j < len / 2; j++) {</pre>
       int u = a[i + j], v = (int)(1LL * a[
           i + j + len / 2] * w % mod);
       a[i + j] = u + v < mod ? u + v : u +
           v - mod:
       a[i + j + len / 2] = u - v >= 0 ? u
           -v: u-v+mod:
       w = (int)(1LL * w * wlen % mod):
   }
 if (invert) {
   int n_1 = inverse(n, mod);
   for (int& x : a) x = (int)(1LL * x *
       n_1 \% mod);
 }
```

1.10 FFT polynomial

```
namespace algebra {
const int inf = 1e9;
const int magic = 500; // threshold for
    sizes to run the naive algo
namespace fft {
const int maxn = 1 << 18;
typedef double ftype;
typedef complex<ftype> point;
```

```
const ftype pi = acos(-1);
template <typename T>
void mul(vector<T> &a, const vector<T> &b)
   {
 static const int shift = 15, mask = (1 <<</pre>
       shift) - 1;
 size_t n = a.size() + b.size() - 1;
  while (__builtin_popcount(n) != 1) {
   n++;
 a.resize(n);
 for (size_t i = 0; i < n; i++) {</pre>
   A[i] = point(a[i] & mask, a[i] >> shift
       );
   if (i < b.size()) {</pre>
     B[i] = point(b[i] & mask, b[i] >>
          shift):
   } else {
     B[i] = 0;
   }
 }
 fft(A, C, n);
 fft(B, D, n):
 for (size_t i = 0; i < n; i++) {</pre>
   point c0 = C[i] + conj(C[(n - i) \% n]);
   point c1 = C[i] - conj(C[(n - i) \% n]);
   point d0 = D[i] + conj(D[(n - i) \% n]);
   point d1 = D[i] - conj(D[(n - i) \% n]);
   A[i] = c0 * d0 - point(0, 1) * c1 * d1;
   B[i] = c0 * d1 + d0 * c1;
 fft(A, C, n);
 fft(B, D, n);
 reverse(C + 1, C + n);
 reverse(D + 1, D + n);
 int t = 4 * n:
 for (size_t i = 0; i < n; i++) {</pre>
```

```
int64_t A0 = llround(real(C[i]) / t);
   T A1 = llround(imag(D[i]) / t);
   T A2 = llround(imag(C[i]) / t);
   a[i] = A0 + (A1 << shift) + (A2 << 2 *
       shift):
 }
 return:
} // namespace fft
template <typename T>
struct poly {
 poly inv(size_t n) const { // get inverse
      series mod x^n
   assert(!is_zero());
   poly ans = a[0].inv();
   size_t a = 1;
   while (a < n) {
     poly C = (ans * mod_xk(2 * a)).substr(
         a. 2 * a):
     ans -= (ans * C).mod_xk(a).mul_xk(a);
     a *= 2;
   return ans.mod_xk(n);
 }
 pair<poly, poly> divmod_slow(
     const poly &b) const { // when divisor
          or quotient is small
   vector<T> A(a);
   vector<T> res;
   while (A.size() >= b.a.size()) {
     res.push_back(A.back() / b.a.back());
     if (res.back() != T(0)) {
       for (size_t i = 0; i < b.a.size(); i</pre>
           ++) {
         A[A.size() - i - 1] -= res.back()
             * b.a[b.a.size() - i - 1]:
       }
```

```
A.pop_back();
  std::reverse(begin(res), end(res));
  return {res, A};
pair<poly, poly> divmod(
    const polv &b) const { // returns
        quotiend and remainder of a mod b
  if (deg() < b.deg()) {</pre>
    return {poly{0}, *this};
  int d = deg() - b.deg();
  if (min(d, b.deg()) < magic) {</pre>
    return divmod_slow(b);
 }
  poly D = (reverse(d + 1) * b.reverse(d
      + 1).inv(d + 1)
              .mod xk(d + 1)
              .reverse(d + 1, 1);
  return \{D, *this - D * b\};
poly log(size_t n) { // calculate log p(x
    ) mod x^n
  assert(a[0] == T(1));
  return (deriv().mod_xk(n) * inv(n)).
      integr().mod_xk(n);
}
poly exp(size_t n) { // calculate exp p(x
    ) mod x^n
  if (is_zero()) {
    return T(1);
  assert(a[0] == T(0));
  poly ans = T(1);
  size ta = 1:
  while (a < n) {
```

```
poly C = ans.log(2 * a).div_xk(a) -
       substr(a, 2 * a);
   ans -= (ans * C).mod xk(a).mul xk(a):
   a *= 2:
 return ans.mod_xk(n);
poly pow(size_t k, size_t n) { //
   calculate p^k(n) mod x^n
 if (is_zero()) {
   return *this;
 if (k < magic) {</pre>
   return pow_slow(k, n);
 int i = leading_xk();
 T j = a[i];
 poly t = div_xk(i) / j;
 return bpow(j, k) * (t.log(n) * T(k)).
     exp(n).mul_xk(i * k).mod_xk(n);
vector<T> chirpz_even(T z, int n) { // P
    (1), P(z^2), P(z^4), ..., P(z^2(n-1))
 int m = deg();
 if (is_zero()) return vector<T>(n, 0);
 vector<T> vv(m + n);
 T zi = z.inv(); T zz = zi * zi;
 T cur = zi;T total = 1;
 for (int i = 0; i \le max(n - 1, m); i
     ++) {
   if (i <= m) vv[m - i] = total;</pre>
   if (i < n) vv[m + i] = total;
   total *= cur; cur *= zz;
 poly w = (mulx_sq(z) * vv).substr(m, m)
     + n).mulx_sq(z);
```

```
vector<T> res(n):
 for (int i = 0; i < n; i++) res[i] = w[</pre>
 return res:
vector<T> chirpz(T z, int n) { // P(1), P
    (z), P(z^2), \ldots, P(z^{(n-1)})
  auto even = chirpz_even(z, (n + 1) / 2)
 auto odd = mulx(z).chirpz_even(z, n /
     2);
 vector<T> ans(n);
 for (int i = 0; i < n / 2; i++) {</pre>
   ans[2 * i] = even[i]; ans[2 * i + 1] =
       odd[i]:}
 if (n \% 2 == 1) ans [n - 1] = even.back
     ();
 return ans;
template <typename iter>
vector<T> eval(vector<poly> &tree, int v,
    iter 1.
             iter r) { // auxiliary
                  evaluation function
 if (r - l == 1) return {eval(*1)};
 else {
   auto m = 1 + (r - 1) / 2;
   auto A = (*this % tree[2 * v]).eval(
       tree, 2 * v, 1, m);
   auto B = (*this \% tree[2 * v + 1]).
       eval(tree, 2 * v + 1, m, r);
   A.insert(end(A), begin(B), end(B));
   return A; }
vector<T> eval(vector<T> x) { // evaluate
    polynomial in (x1, ..., xn)
 int n = x.size();
```

```
if (is_zero())return vector<T>(n, T(0))
   vector<poly> tree(4 * n);
   build(tree, 1, begin(x), end(x));
   return eval(tree, 1, begin(x), end(x));
 template <typename iter>
 poly inter(vector<poly> &tree, int v,
     iter 1, iter r, iter ly,
           iter ry) { // auxiliary
               interpolation function
   if (r - 1 == 1) {
     return {*ly / a[0]};
   } else {
     auto m = 1 + (r - 1) / 2;
     auto my = ly + (ry - ly) / 2;
     auto A = (*this \% tree[2 * v]).inter(
         tree, 2 * v, 1, m, ly, my);
     auto B = (*this \% tree[2 * v + 1]).
         inter(tree, 2 * v + 1, m, r, my,
         ry);
     return A * tree[2 * v + 1] + B * tree
         [2 * v]:
template <typename T, typename iter>
poly<T> build(vector<poly<T>> &res, int v,
   iter L,
            iter R) { // builds evaluation
                 tree for (x-a1)(x-a2)...(x
                -an)
 if (R - L == 1) {
   return res[v] = vector<T>{-*L, 1};
 } else {
   iter M = L + (R - L) / 2:
```

```
return res[v] = build(res, 2 * v, L, M)
        * build(res, 2 * v + 1, M, R);
 }
}
template <typename T>
poly<T> inter(
   vector<T> x,
   vector<T> y) { // interpolates minimum
       polynomial from (xi, yi) pairs
  int n = x.size();
  vector<poly<T>> tree(4 * n);
 return build(tree, 1, begin(x), end(x))
     .deriv()
     .inter(tree, 1, begin(x), end(x),
         begin(y), end(y));
}
}; // namespace algebra
using namespace algebra;
typedef poly<base> polyn;
```

1.11 Geometry Convex Hull

```
return o < 0 || (include_collinear && o</pre>
     == 0);
bool ccw(pt a, pt b, pt c, bool
   include_collinear) {
 int o = orientation(a, b, c);
 return o > 0 || (include_collinear && o
     == 0);
void convex_hull(vector<pt>& a, bool
   include_collinear = false) {
 if (a.size() == 1) return;
  sort(a.begin(), a.end(),
      [](pt a, pt b) { return make_pair(a.x | }
          , a.y) < make_pair(b.x, b.y); });
  pt p1 = a[0], p2 = a.back();
 vector<pt> up, down;
 up.push_back(p1);
 down.push_back(p1);
 for (int i = 1; i < (int)a.size(); i++) {</pre>
   if (i == a.size() - 1 || cw(p1, a[i],
       p2, include_collinear)) {
     while (up.size() >= 2 &&
            !cw(up[up.size() - 2], up[up.
               size() - 1], a[i],
               include_collinear))
       up.pop_back();
     up.push_back(a[i]);
   if (i == a.size() - 1 || ccw(p1, a[i],
       p2, include_collinear)) {
     while (down.size() >= 2 &&
            !ccw(down[down.size() - 2],
               down[down.size() - 1], a[i],
                include collinear))
```

```
down.pop_back();
  down.push_back(a[i]);
}

if (include_collinear && up.size() == a.
    size()) {
  reverse(a.begin(), a.end());
  return;
}
a.clear();
for (int i = 0; i < (int)up.size(); i++)
    a.push_back(up[i]);
for (int i = down.size() - 2; i > 0; i--)
    a.push_back(down[i]);
```

1.12 Geometry Minkowski Sum

```
void reorder_polygon(vector<pt>& P) {
 size_t pos = 0;
 for (size_t i = 1; i < P.size(); i++) {</pre>
   if (P[i].y < P[pos].y || (P[i].y == P[</pre>
       pos].v \&\& P[i].x < P[pos].x)) pos =
       i;}
 rotate(P.begin(), P.begin() + pos, P.end
      ());
vector<pt> minkowski(vector<pt> P, vector<</pre>
   pt> Q) {
 // the first vertex must be the lowest
 reorder_polygon(P);reorder_polygon(Q);
 // we must ensure cyclic indexing
 P.push_back(P[0]);P.push_back(P[1]);
 Q.push_back(Q[0]);Q.push_back(Q[1]);
 // main part
 vector<pt> result; size_t i = 0, j = 0;
 while (i < P.size() - 2 || j < Q.size() -</pre>
      2) {
```

1.13 Geometry Point in convex polygon

```
struct pt {
 long long x, y;
 pt() {}
 pt(long long _x, long long _y) : x(_x), y
     (_y) \{ \}
 pt operator+(const pt &p) const { return
     pt(x + p.x, y + p.y); }
 pt operator-(const pt &p) const { return
     pt(x - p.x, y - p.y); }
 long long cross(const pt &p) const {
     return x * p.y - y * p.x; }
 long long dot(const pt &p) const { return
      x * p.x + y * p.y; }
 long long cross(const pt &a, const pt &b)
      const {
   return (a - *this).cross(b - *this);
 long long dot(const pt &a, const pt &b)
     const {
   return (a - *this).dot(b - *this);
 long long sqrLen() const { return this->
     dot(*this); }
};
bool lexComp(const pt &1, const pt &r) {
 return 1.x < r.x || (1.x == r.x && 1.y <
     r.y);
}
```

```
int sgn(long long val) { return val > 0 ? 1
     : (val == 0 ? 0 : -1); }
vector<pt> seq;
pt translation;
int n;
bool pointInTriangle(pt a, pt b, pt c, pt
    point) {
 long long s1 = abs(a.cross(b, c));
 long long s2 =
     abs(point.cross(a, b)) + abs(point.
         cross(b, c)) + abs(point.cross(c,
         a));
 return s1 == s2;
void prepare(vector<pt> &points) {
 n = points.size();
 int pos = 0;
 for (int i = 1; i < n; i++) {</pre>
   if (lexComp(points[i], points[pos]))
       pos = i;
 }
 rotate(points.begin(), points.begin() +
     pos, points.end());
 n--;
  seq.resize(n);
 for (int i = 0; i < n; i++) seq[i] =</pre>
     points[i + 1] - points[0];
 translation = points[0];
bool pointInConvexPolygon(pt point) {
 point = point - translation;
 if (seq[0].cross(point) != 1 &&
```

```
sgn(seq[0].cross(point)) != sgn(seq
       [0].cross(seq[n-1]))
 return false:
if (seq[n-1].cross(point) != 0 \&\&
   sgn(seq[n - 1].cross(point)) != sgn(
       seq[n - 1].cross(seq[0]))
  return false;
if (seq[0].cross(point) == 0) return seq
    [0].sqrLen() >= point.sqrLen();
int 1 = 0, r = n - 1;
while (r - 1 > 1) {
 int mid = (1 + r) / 2;
 int pos = mid;
 if (seq[pos].cross(point) >= 0)
   1 = mid:
  else
   r = mid:
}
int pos = 1;
return pointInTriangle(seq[pos], seq[pos
   + 1], pt(0, 0), point);
```

1.14 Geometry Shortest Distance between two points

```
vector<pt> t;

void rec(int 1, int r) {
  if (r - 1 <= 3) {
    for (int i = 1; i < r; ++i) {
      for (int j = i + 1; j < r; ++j) {
         upd_ans(a[i], a[j]);
      }
    }
}</pre>
```

```
sort(a.begin() + 1, a.begin() + r,
      cmp_y());
 return:
}
int m = (1 + r) >> 1;
int midx = a[m].x;
rec(1, m);
rec(m, r);
merge(a.begin() + 1, a.begin() + m, a.
    begin() + m, a.begin() + r, t.begin()
     cmp_y());
copy(t.begin(), t.begin() + r - 1, a.
    begin() + 1);
int tsz = 0;
for (int i = 1; i < r; ++i) {</pre>
  if (abs(a[i].x - midx) < mindist) {</pre>
   for (int j = tsz - 1; j >= 0 && a[i].y
        - t[j].y < mindist; --j)
     upd_ans(a[i], t[j]);
   t[tsz++] = a[i];
}
```

1.15 Geometry geometry 2d

```
pt translate(pt v, pt p) { return p + v; }
pt scale(pt c, double factor, pt p) {
   return c + (p - c) * factor; }
pt rot(pt p, double a) { return p * polar
   (1.0, a); }
pt perp(pt p) { return {-p.y, p.x}; }
pt linearTransfo(pt p, pt q, pt r, pt fp,
   pt fq) {
 return fp + (r - p) * (fq - fp) / (q - p)
T dot(pt v, pt w) { return (conj(v) * w).x;
T cross(pt v, pt w) { return (conj(v) * w).
   y; }
bool isPerp(pt v, pt w) { return dot(v, w)
   == 0: }
double angle(pt v, pt w) {
 return acos(clamp(dot(v, w) / abs(v) /
     abs(w), -1.0, 1.0);
T orient(pt a, pt b, pt c) { return cross(b
    - a, c - a); }
bool inAngle(pt a, pt b, pt c, pt p) {
 assert(orient(a, b, c) != 0);
 if (orient(a, b, c) < 0) swap(b, c);
 return orient(a, b, p) >= 0 && orient(a,
     c, p) <= 0;
double orientedAngle(pt a, pt b, pt c) {
 if (orient(a, b, c) >= 0)
   return angle(b - a, c - a);
 else
   return 2 * M_PI - angle(b - a, c - a);
bool isConvex(vector<pt> p) {
```

```
bool hasPos = false, hasNeg = false;
 for (int i = 0, n = p.size(); i < n; i++)</pre>
   int o = orient(p[i], p[(i + 1) \% n], p
       [(i + 2) \% n]):
   if (o > 0) hasPos = true;
   if (o < 0) hasNeg = true;</pre>
 return !(hasPos && hasNeg);
bool half(pt p) {
 // true if in blue half
 assert(p.x != 0 || p.y != 0); // the
     argument of (0,0) isundefined
 return p.y > 0 || (p.y == 0 && p.x < 0);
void polarSort(vector<pt> &v) {
 sort(v.begin(), v.end(), [](pt v, pt w) {
   return make_tuple(half(v), 0, sq(v)) <</pre>
          make_tuple(half(w), cross(v, w),
              sq(w));
 }):
void polarSortAround(pt o, vector<pt> &v) {
 sort(v.begin(), v.end(), [=](pt v, pt w)
   return make_tuple(half(v - o), 0) <</pre>
          make_tuple(half(w - o), cross(v -
               o, w - o));
 });
struct line {
 pt v;
 T c:
 // From direction vector v and offset c
 line(pt v, T c) : v(v), c(c) {}
 // From equation ax+by=c
```

```
line(T a, T b, T c) : v(\{b, -a\}), c(c) \{\}
 // From points P and Q
 line(pt p, pt q) : v(q - p), c(cross(v, p
     )) {}
 // Will be defined later:
  // - these work with T = int
 T side(pt p) { return cross(v, p) - c; }
  double dist(pt p) { return abs(side(p)) /
       abs(v); }
  double sqDist(pt p) { return side(p) *
     side(p) / (double)sq(v); }
 line perpThrough(pt p) { return {p, p +
     perp(v)}; }
  bool cmpProj(pt p, pt q) { return dot(v,
     p) < dot(v, q); }
 line translate(pt t) { return {v, c +
     cross(v, t)}; }
 line shiftLeft(double dist) { return {v,
     c + dist * abs(v); }
  bool inter(line 11, line 12, pt &out) {
   T d = cross(11.v, 12.v);
   if (d == 0) return false:
   out =
       (12.v * 11.c - 11.v * 12.c) / d; //
           requires floating-point
           coordinates
   return true;
 }
  pt proj(pt p) { return p - perp(v) * side
     (p) / sq(v); }
 pt refl(pt p) { return p - perp(v) * T(2)
       * side(p) / sq(v); }
};
line bisector(line 11, line 12, bool
   interior) {
```

```
assert(cross(11.v, 12.v) != 0); // 11 and
      12 cannot be parallel!
 double sign = interior ? 1 : -1:
 return {12.v / abs(12.v) + 11.v / abs(11.
     v) * sign,
        12.c / abs(12.v) + 11.c / abs(11.v)
             ) * sign};
bool inDisk(pt a, pt b, pt p) { return dot( | )
   a - p, b - p) \le 0;
bool onSegment(pt a, pt b, pt p) {
 return orient(a, b, p) == 0 && inDisk(a,
     b, p);
bool properInter(pt a, pt b, pt c, pt d, pt
    &out) {
 double oa = orient(c, d, a), ob = orient(
     c, d, b), oc = orient(a, b, c),
        od = orient(a, b, d);
 // Proper intersection exists iff
     opposite signs
 if (oa * ob < 0 \&\& oc * od < 0) {
   out = (a * ob - b * oa) / (ob - oa):
   return true;
 return false:
struct cmpX {
 bool operator()(pt a, pt b) const {
   return make_pair(a.x, a.y) < make_pair(</pre>
       b.x, b.y);
 }
};
set<pt, cmpX> inters(pt a, pt b, pt c, pt d
   ) {
 pt out:
```

```
if (properInter(a, b, c, d, out)) return
     {out}:
 set<pt, cmpX> s;
 if (onSegment(c, d, a)) s.insert(a);
 if (onSegment(c, d, b)) s.insert(b);
 if (onSegment(a, b, c)) s.insert(c);
 if (onSegment(a, b, d)) s.insert(d);
 return s;
double segPoint(pt a, pt b, pt p) {
 if (a != b) {
   line 1(a, b);
   if (l.cmpProj(a, p) && l.cmpProj(p, b))
        // if closest toprojection
     return l.dist(p);
   // output distance toline
 return min(abs(p - a), abs(p - b)); //
     otherwise distance to A or B
double segSeg(pt a, pt b, pt c, pt d) {
 pt dummy;
 if (properInter(a, b, c, d, dummy))
     return 0;
 return min({segPoint(a, b, c), segPoint(a
     , b, d), segPoint(c, d, a),
            segPoint(c, d, b)});
double areaTriangle(pt a, pt b, pt c) {
   return abs(cross(b - a, c - a)) / 2.0;
double areaPolygon(vector<pt> p) {
 double area = 0.0;
 for (int i = 0, n = p.size(); i < n; i++)</pre>
   area += cross(p[i], p[(i + 1) % n]); //
        wrap back to 0 if i == n-1
```

```
}
 return abs(area) / 2.0;
}
// true if P at least as high as A (blue
bool above(pt a, pt p) { return p.y >= a.y;
// check if [PQ] crosses ray from A
bool crossesRay(pt a, pt p, pt q) {
 return (above(a, q) - above(a, p)) *
      orient(a, p, q) > 0;
}
// if strict, returns false when A is on
    the boundary
bool inPolygon(vector<pt> p, pt a, bool
    strict = true) {
 int numCrossings = 0;
 for (int i = 0, n = p.size(); i < n; i++)</pre>
   if (onSegment(p[i], p[(i + 1) % n], a))
        return !strict:
   numCrossings += crossesRay(a, p[i], p[(
       i + 1) % n]);
 return numCrossings & 1; // inside if odd
       number of crossings
}
double angleTravelled(pt a, pt p, pt q) {
 // remainder ensures the value is in [-pi
 return remainder(arg(q - a) - arg(p - a),
       2 * M_PI);
int windingNumber(vector<pt> p, pt a) {
 double ampli = 0;
 for (int i = 0, n = p.size(); i < n; i++)</pre>
```

```
ampli += angleTravelled(a, p[i], p[(i +
        1) % n]);
 return round(ampli / (2 * M_PI));
pt circumCenter(pt a, pt b, pt c) {
 b = b - a, c = c - a; // consider
     coordinates relative to A
 assert(cross(b, c) != 0); // no
     circumcircle if A,B,C aligned
 return a + perp(b * sq(c) - c * sq(b)) /
     cross(b, c) / T(2);
int circleLine(pt o, double r, line l, pair
    <pt, pt> &out) {
 double h2 = r * r - 1.sqDist(o);
 if (h2 >= 0) {
   // the line touches the circle
   pt p = 1.proj(o);
                                   // point
   pt h = 1.v * sqrt(h2) / abs(1.v); //
       vector parallel to 1, oflength h
   out = \{p - h, p + h\};
 return 1 + sgn(h2);
int circleCircle(pt o1, double r1, pt o2,
   double r2, pair<pt, pt> &out) {
 pt d = o2 - o1;
 double d2 = sq(d);
 if (d2 == 0) {
   assert(r1 != r2);
   return 0;
     concentric circles
 double pd = (d2 + r1 * r1 - r2 * r2) / 2:
      // = |0 1P| * d
```

```
double h2 = r1 * r1 - pd * pd / d2;
     = h2
 if (h2 >= 0) {
   pt p = o1 + d * pd / d2, h = perp(d) *
       sqrt(h2 / d2);
   out = \{p - h, p + h\};
 return 1 + sgn(h2);
int tangents(pt o1, double r1, pt o2,
   double r2, bool inner,
           vector<pair<pt, pt>> &out) {
 if (inner) r2 = -r2;
 pt d = o2 - o1;
 double dr = r1 - r2, d2 = sq(d), h2 = d2
     - dr * dr;
 if (d2 == 0 || h2 < 0) {
   assert(h2 != 0):
   return 0;
 }
 for (double sign : {-1, 1}) {
   pt v = (d * dr + perp(d) * sqrt(h2) *
       sign) / d2;
   out.push_back(\{01 + v * r1, 02 + v * r2\}
       });
 return 1 + (h2 > 0);
} // namespace geometry_2d
```

1.16 Geometry half plane

```
const long double eps = 1e-9, inf = 1e9;
struct Point {
  long double x, y;
  explicit Point(long double x = 0, long
      double y = 0) : x(x), y(y) {}
```

```
friend Point operator+(const Point& p,
     const Point& q) {
   return Point(p.x + q.x, p.y + q.y);
 friend Point operator-(const Point& p,
     const Point& q) {
   return Point(p.x - q.x, p.y - q.y);
 friend Point operator*(const Point& p,
     const long double& k) {
   return Point(p.x * k, p.y * k);
 friend long double dot(const Point& p,
     const Point& q) {
   return p.x * q.x + p.y * q.y;
 friend long double cross(const Point& p,
     const Point& q) {
   return p.x * q.y - p.y * q.x;
 }
};
struct Halfplane {
  Point p, pq;
 long double angle;
  Halfplane() {}
  Halfplane(const Point& a, const Point& b)
      : p(a), pq(b - a) {
   angle = atan21(pq.y, pq.x);
  bool out(const Point& r) { return cross(
     pq, r - p) < -eps; }
  bool operator<(const Halfplane& e) const
     { return angle < e.angle; }
```

```
friend Point inter(const Halfplane& s,
     const Halfplane& t) {
   long double alpha = cross((t.p - s.p),
       t.pq) / cross(s.pq, t.pq);
   return s.p + (s.pq * alpha);
};
vector<Point> hp_intersect(vector<Halfplane</pre>
   >& H) {
 Point box[4] = {Point(inf, inf), Point(-
     inf, inf), Point(-inf, -inf),
                Point(inf, -inf)};
 for (int i = 0; i < 4; i++) {</pre>
   Halfplane aux(box[i], box[(i + 1) % 4])
   H.push_back(aux);
 }
 sort(H.begin(), H.end());
 deque<Halfplane> dq;
 int len = 0:
 for (int i = 0; i < int(H.size()); i++) {</pre>
   while (len > 1 && H[i].out(inter(dq[len
        - 1], dq[len - 2]))) {
     dq.pop_back();
     --len;
   while (len > 1 && H[i].out(inter(dq[0],
        dq[1]))) {
     dq.pop_front();
     --len;
   if (len > 0 && fabsl(cross(H[i].pq, dq[
       len - 1].pq)) < eps) {
```

```
// Opposite parallel half-planes that
       ended up checked against each
       other.
   if (dot(H[i].pq, dq[len - 1].pq) <</pre>
       0.0) return vector<Point>();
   if (H[i].out(dq[len - 1].p)) {
     dq.pop_back();
     --len;
   } else
     continue;
 }
  dq.push_back(H[i]);
 ++len;
}
while (len > 2 && dq[0].out(inter(dq[len
    - 1], dq[len - 2]))) {
 dq.pop_back();
  --len;
while (len > 2 && dq[len - 1].out(inter())
    dq[0], dq[1]))) {
  dq.pop_front();
  --len;
if (len < 3) return vector<Point>();
vector<Point> ret(len);
for (int i = 0; i + 1 < len; i++) {</pre>
  ret[i] = inter(dq[i], dq[i + 1]);
ret.back() = inter(dq[len - 1], dq[0]);
return ret:
```

1.17 Graph min vertex cover

```
/**
 * Description: Simple bipartite matching
    algorithm. Graph $g$ should be a list
 * of neighbors of the left partition, and
    $btoa$ should be a vector full of
 * -1's of the same size as the right
    partition. Returns the size of the
 * matching. $btoa[i]$ will be the match
    for vertex $i$ on the right side, or
 * $-1$ if it's not matched. Time: O(VE)
    Usage: vi btoa(m, -1); dfsMatching(g,
 * btoa); Description: Finds a minimum
    vertex cover in a bipartite graph. The
 * size is the same as the size of a
    maximum matching, and the complement
    is a
 * maximum independent set*/
bool find(int j, vector<vi>& g, vi& btoa,
   vi& vis) {
 if (btoa[j] == -1) return 1;
 vis[j] = 1;
 int di = btoa[j];
 for (int e : g[di])
   if (!vis[e] && find(e, g, btoa, vis)) {
     btoa[e] = di;
     return 1;
 return 0;
int dfsMatching(vector<vi>& g, vi& btoa) {
 vi vis:
 rep(i, 0, sz(g)) {
   vis.assign(sz(btoa), 0);
   for (int j : g[i])
     if (find(j, g, btoa, vis)) {
```

```
btoa[j] = i;
      break;
 }
 return sz(btoa) - (int)count(all(btoa),
vi cover(vector<vi>& g, int n, int m) {
 vi match(m, -1);
 int res = dfsMatching(g, match);
 vector<bool> lfound(n, true), seen(m);
 for (int it : match)
   if (it != -1) lfound[it] = false;
 vi q, cover;
 rep(i, 0, n) if (lfound[i]) q.push_back(i
     );
 while (!q.empty()) {
   int i = q.back();
   q.pop_back();
   lfound[i] = 1;
   for (int e : g[i])
     if (!seen[e] && match[e] != -1) {
       seen[e] = true:
      q.push_back(match[e]);
 rep(i, 0, n) if (!lfound[i]) cover.
     push_back(i);
 rep(i, 0, m) if (seen[i]) cover.push_back
     (n + i);
 assert(sz(cover) == res);
 return cover;
```

1.18 Math Berleykamp

```
vector<ll> berlekampMassey(vector<ll> s) {
  int n = sz(s), L = 0, m = 0;
  vector<ll> C(n), B(n), T;
```

```
C[0] = B[0] = 1:
11 b = 1:
rep(i.0.n) \{ ++m:
 ll d = s[i] \% mod;
 rep(j,1,L+1) d = (d + C[j] * s[i - j]) %
 if (!d) continue;
 T = C; ll coef = d * modpow(b, mod-2) %
 rep(j,m,n) C[j] = (C[j] - coef * B[j - m]
     1) % mod;
 if (2 * L > i) continue;
 L = i + 1 - L; B = T; b = d; m = 0;
C.resize(L + 1); C.erase(C.begin());
for (11& x : C) x = (mod - x) \% mod:
return C;
typedef vector<ll> Poly;
11 linearRec(Poly S, Poly tr, 11 k) {
int n = sz(tr):
 auto combine = [&](Poly a, Poly b) {
 Poly res(n * 2 + 1);
 rep(i,0,n+1) rep(j,0,n+1)
  res[i + j] = (res[i + j] + a[i] * b[j])
      % mod;
 for (int i = 2 * n; i > n; --i) rep(j,0,n
  res[i - 1 - j] = (res[i - 1 - j] + res[i
      ] * tr[i]) % mod;
 res.resize(n + 1);
 return res;
}:
```

```
Poly pol(n + 1), e(pol);
pol[0] = e[1] = 1;
for (++k; k; k /= 2) {
if (k % 2) pol = combine(pol, e);
e = combine(e, e);
11 \text{ res} = 0;
rep(i,0,n) res = (res + pol[i + 1] * S[i])
return res;
```

1.19 Math CRT

```
for (int i = 0; i < k; ++i) {</pre>
   x[i] = a[i];
   for (int j = 0; j < i; ++j) {
       x[i] = r[j][i] * (x[i] - x[j]);
       x[i] = x[i] % p[i];
       if (x[i] < 0)
           x[i] += p[i];
   }
}
```

1.20 Math Determinant

```
11 det(vector<vector<11>>& a) {
 int n = sz(a); ll ans = 1;
 rep(i,0,n) {
 rep(j,i+1,n) {
  while (a[j][i] != 0) { // gcd step
   11 t = a[i][i] / a[i][i];
   if (t) rep(k,i,n)
    a[i][k] = (a[i][k] - a[j][k] * t) % mod int g(int n) { return n ^ (n >> 1); }
   swap(a[i], a[j]);
   ans *= -1;
```

```
}
 ans = ans * a[i][i] % mod:
 if (!ans) return 0:
return (ans + mod) % mod;
```

1.21 Math Fast Subset Transform

```
void FST(vi& a, bool inv) {
for (int n = sz(a), step = 1; step < n;
    step *= 2) {
 for (int i = 0; i < n; i += 2 * step) rep</pre>
     (i,i,i+step) {
  int &u = a[j], &v = a[j + step]; tie(u,
      v) =
   inv ? pii(v - u, u) : pii(v, u + v); //
   // inv ? pii(v, u - v) : pii(u + v, u);
        // OR /// include-line
   // pii(u + v, u - v);
                                        //
       XOR /// include-line
 }
// if (inv) for (int& x : a) x \neq sz(a);
    // XOR only /// include-line
vi conv(vi a, vi b) {
FST(a, 0); FST(b, 0);
rep(i,0,sz(a)) a[i] *= b[i];
FST(a, 1); return a;
```

1.22 Math Grav code

```
int rev_g(int g) {
 int n = 0:
 for (; g; g >>= 1) n ^= g;
```

```
return n;
```

1.23 Math Linear Sieve

```
const int N = 10000000:
vector<int> lp(N + 1);
vector<int> pr;
for (int i = 2; i <= N; ++i) {
 if (lp[i] == 0) {
   lp[i] = i;
   pr.push_back(i);
 for (int j = 0; j < (int)pr.size() && pr[</pre>
     j] <= lp[i] && i * pr[j] <= N; ++j) {
   lp[i * pr[j]] = pr[j];
```

1.24 Math Primitive Root

```
int generator(int p) {
 vector<int> fact;
 int phi = p - 1, n = phi;
 for (int i = 2; i * i <= n; ++i)</pre>
   if (n % i == 0) {
     fact.push_back(i);
     while (n \% i == 0) n /= i;
 if (n > 1) fact.push_back(n);
 for (int res = 2; res <= p; ++res) {</pre>
   bool ok = true;
   for (size_t i = 0; i < fact.size() &&</pre>
       ok; ++i)
     ok &= powmod(res, phi / fact[i], p) !=
          1:
   if (ok) return res;
 }
 return -1;
```

```
}
```

1.25 Math Segmented Sieve

```
vector<char> segmentedSieve(long long L,
   long long R) {
 // generate all primes up to sqrt(R)
 long long lim = sqrt(R);
 vector<char> mark(lim + 1, false);
 vector<long long> primes;
 for (long long i = 2; i <= lim; ++i) {
   if (!mark[i]) {
     primes.emplace_back(i);
     for (long long j = i * i; j <= lim; j</pre>
         += i) mark[j] = true;
   }
 }
 vector<char> isPrime(R - L + 1, true);
 for (long long i : primes)
   for (long long j = max(i * i, (L + i -
       1) / i * i); j <= R; j += i)
     isPrime[i - L] = false:
 if (L == 1) isPrime[0] = false:
 return isPrime;
```

1.26 Math euclid gcd

```
int gcd(int a, int b, int& x, int& y) {
  x = 1, y = 0;
  int x1 = 0, y1 = 1, a1 = a, b1 = b;
  while (b1) {
    int q = a1 / b1;
    tie(x, x1) = make_tuple(x1, x - q * x1)
    ;
    tie(y, y1) = make_tuple(y1, y - q * y1)
    ;
    tie(a1, b1) = make_tuple(b1, a1 - q * b1);
```

```
}
return a1;
}
```

1.27 Math integer factorization polard rho brent

long long f(long long x, long long c, long

```
long mod) {
 return (mult(x, x, mod) + c) % mod;
long long brent(long long n, long long x0 =
    2, long long c = 1) {
 long long x = x0;
 long long g = 1;
 long long q = 1;
 long long xs, y;
 int m = 128:
 int 1 = 1;
 while (g == 1) {
   v = x:
   for (int i = 1; i < 1; i++) x = f(x, c,
        n);
   int k = 0;
   while (k < 1 && g == 1) {
     for (int i = 0; i < m && i < 1 - k; i
         ++) {
       x = f(x, c, n);
       q = mult(q, abs(y - x), n);
     g = gcd(q, n);
     k += m:
   1 *= 2:
 if (g == n) {
```

```
do {
    xs = f(xs, c, n);
    g = gcd(abs(xs - y), n);
    } while (g == 1);
}
return g;
}
```

1.28 Math prime list

```
999999937

NTT Prime: 998244353 = 119 * 2^23 + 1.

Primitive root: 3. 985661441 = 235 * 2^22 + 1. Primitive root: 3.

1012924417 = 483 * 2^21 + 1.

Primitive root: 5.
```

1.29 Math prime test miller rabin

```
using u64 = uint64_t;
using u128 = __uint128_t;
bool check_composite(u64 n, u64 a, u64 d,
    int s) {
 u64 x = binpower(a, d, n);
 if (x == 1 \mid \mid x == n - 1) return false;
 for (int r = 1; r < s; r++) {
   x = (u128)x * x % n;
   if (x == n - 1) return false;
 return true;
};
bool MillerRabin(u64 n) { // returns true
    if n is prime, else returns false.
 if (n < 2) return false;
 int r = 0:
 u64 d = n - 1;
 while ((d & 1) == 0) {
```

```
d >>= 1;
  r++;
}

for (int a : {2, 3, 5, 7, 11, 13, 17, 19,
      23, 29, 31, 37}) {
  if (n == a) return true;
  if (check_composite(n, a, d, r)) return
      false;
}
return true;
```

1.30 Matrix gauss any mod

```
int gauss(vector<vector<int> > &a, vector<</pre>
    int> &ans) {
 int n = (int)a.size():
 int m = (int)a[0].size() - 1:
 vector<int> where(m, -1);
 for (int col = 0, row = 0; col < m && row</pre>
       < n: ++col) {
   int sel = row:
   for (int i = row; i < n; ++i)</pre>
     if (a[i][col] > a[sel][col]) sel = i;
   if (a[sel][col] == 0) continue;
   for (int i = col; i <= m; ++i) swap(a[</pre>
       sel][i], a[row][i]);
   where[col] = row;
   for (int i = 0; i < n; ++i)
     if (i != row) {
       int c = a[i][col] * mod_inv(a[row][
           col], mod) % mod;
       for (int j = col; j <= m; ++j) {</pre>
         a[i][j] = (a[i][j] - a[row][j] * c
              % mod + mod) % mod;
       }
     }
```

1.31 Matrix gauss mod 2

```
const int N = 500:
int gauss(vector<bitset<N> > a, int n, int
   m. bitset<N>& ans) {
 vector<int> where(m, -1);
 for (int col = 0, row = 0; col < m && row</pre>
      < n; ++col) {
   for (int i = row; i < n; ++i)</pre>
     if (a[i][col]) {
       swap(a[i], a[row]);
       break;
   if (!a[row][col]) continue;
   where [col] = row;
   for (int i = 0; i < n; ++i)
     if (i != row && a[i][col]) a[i] ^= a[
         rowl:
   ++row:
```

```
}
ans.reset();
for (int i = 0; i < m; ++i)
   if (where[i] != -1) ans[i] = a[where[i
        ]][m] / a[where[i]][i];
for (int i = 0; i < n; ++i) {
   int sum = (ans & a[i]).count();
   if (sum % 2 != a[i][m]) return 0;
}
for (int i = 0; i < m; ++i)
   if (where[i] == -1) return 2;
return 1;
}</pre>
```

1.32 Template build system

```
"g++ -std=c++17 -Wshadow -Wall -fsanitize=
    address,undefined"
"-static-libasan -g3 -fno-omit-frame-
    pointer -fmax-errors=2"
"g++ -std=c++17 -Ofast -Wl,-z,stack-size
    =412943040 "
```

1.33 Template sos-dp

```
for (int i = 0; i < (1 << N); ++i) F[i] = A
   [i];
for (int i = 0; i < N; ++i)
  for (int mask = 0; mask < (1 << N); ++
    mask) {
   if (mask & (1 << i)) F[mask] += F[mask
        ^ (1 << i)];}</pre>
```

1.34 Template template yatin

```
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
```

```
template <typename T>
using ordered_set =
   tree<T, null_type, less<T>, rb_tree_tag
       , tree\_order\_statistics\_node\_update
#define all(x) x.begin(), x.end()
#define fix(f, n) std::fixed << std::</pre>
    setprecision(n) << f
#define start_clock()
 auto start_time = chrono::
     high_resolution_clock::now(); \
 auto end_time = start_time;
#define measure()
 end_time = chrono::high_resolution_clock
     ::now():
 cerr << (end_time - start_time) / std::</pre>
     chrono::milliseconds(1) << "ms" \</pre>
      << endl:
mt19937_64 rng(chrono::steady_clock::now().
    time_since_epoch().count());
struct custom_hash {
 static uint64_t splitmix64(uint64_t x) {
   x += 0x9e3779b97f4a7c15;
   x = (x ^ (x >> 30)) * 0
       xbf58476d1ce4e5b9;
   x = (x ^ (x >> 27)) * 0
       x94d049bb133111eb;
   return x ^ (x >> 31);
  size_t operator()(uint64_t x) const {
```

1.35 dp opti 1D-1D(convex)

```
// Monge condition : a < bc <d.
// Convex Monge condition : f(a,c)+f(b,d)f(
   a.d)+f(b.c)
// Concave Monge condition : f(a,c)+f(b,d)f
    (a,d)+f(b,c)
// Totally monotone : a < bc <d,
// Convex totally monotone : f(a,c)f(b,c) f
    (a,d) f (b,d)
// Concave totally monotone : f(a,c)f(b,c)
    f (a,d) f (b,d)
// Usually f(i,j) is something like dpi+
   cost(i+1,j) or cost(i,j).
struct Node {
 ll p, l, r; // p is the best transition
     point for dp[1], dp[1+1], ..., dp[r]
};
deque<Node> dq;
dp[0] = 0;
dq.push_back({0, 1, n});
for (int i = 1; i <= n; ++i) {</pre>
 dp[i] = f(dq.front().p, i)
```

```
// r == i implies that this Node
           is useless later, so pop it
       if (dq.front().r == i) dq.
           pop_front();
// else update 1
else dq.front().1++;
// find l, r for i
// f(i, dq.back().1) < f(dq.back().p, dq.
    back().1) implies the last Node in
// deque is useless
while (!dq.empty() && f(i, dq.back().l) <</pre>
     f(dq.back().p, dq.back().1))
  dq.pop_back();
// we know that r=n, now we need to find
// l=i+1 as deque is empty
if (dq.empty()) dq.push_back({i, i + 1, n
    });
// find 1 by binary search
else {
  int l = dq.back().l, r = dq.back().r;
  while (1 < r) {
   int mid = r - (r - 1) / 2;
   if (f(i, mid) < f(dq.back().p, mid))</pre>
     r = mid - 1;
   else
     1 = mid;
  dq.back().r = 1;
  // 1 == n means that i is useless
  if (1 != n) dq.push_back({i, 1 + 1, n})
}
```

1.36 dp opti CHT Normal

vector<point> hull, vecs;

```
void add_line(ftype k, ftype b) {
 point nw = \{k, b\}:
 while (!vecs.empty() && dot(vecs.back(),
     nw - hull.back()) < 0) {
   hull.pop_back();
   vecs.pop_back();
 }
 if (!hull.empty()) {
   vecs.push_back(1i * (nw - hull.back()))
 }
 hull.push_back(nw);
int get(ftype x) {
 point query = \{x, 1\};
 auto it = lower_bound(vecs.begin(), vecs.
     end(), query,
                      [](point a, point b)
                          { return cross(a,
                          b) > 0; \});
 return dot(query, hull[it - vecs.begin()
     ]);
}
```

1.37 dp opti CHT dynamic

```
// * Description: Container where you can
   add lines of the form kx+m, and query
// maximum values at points x.
#pragma once

struct Line {
  mutable ll k, m, p;
  bool operator<(const Line& o) const {
    return k < o.k; }
  bool operator<(ll x) const { return p < x
    ; }
};</pre>
```

```
struct LineContainer : multiset<Line, less</pre>
   <>> {
 // (for doubles, use inf = 1/.0, div(a,b)
      = a/b)
 static const ll inf = LLONG_MAX;
 ll div(ll a, ll b) { // floored division
   return a / b - ((a \hat{b}) < 0 \&\& a \% b);
 bool isect(iterator x, iterator y) {
   if (y == end()) return x -> p = inf, 0;
   if (x->k == y->k)
     x->p = x->m > y->m ? inf : -inf;
     x->p = div(y->m - x->m, x->k - y->k);
   return x->p >= y->p;
 void add(ll k. ll m) {
   auto z = insert(\{k, m, 0\}), y = z++, x
       = y;
   while (isect(y, z)) z = erase(z);
   if (x != begin() && isect(--x, y))
       isect(x, y = erase(y));
   while ((y = x) != begin() \&\& (--x)->p
       >= y->p) isect(x, erase(y));
 11 query(11 x) {
   assert(!empty());
   auto 1 = *lower_bound(x);
   return 1.k * x + 1.m;
};
```

1.38 dp opti Knuth

```
int solve() {
  int N;
  int dp[N][N], opt[N][N];
  auto C = [&](int i, int j) {};
```

```
for (int i = 0; i < N; i++) {</pre>
  opt[i][i] = i;
for (int i = N - 2: i >= 0: i--) {
  for (int j = i + 1; j < N; j++) {
    int mn = INT_MAX;
    int cost = C(i, j);
    for (int k = opt[i][j - 1]; k <= min(j</pre>
         - 1, opt[i + 1][i]); k++) {
     if (mn >= dp[i][k] + dp[k + 1][j] +
          cost) {
       opt[i][j] = k;
       mn = dp[i][k] + dp[k + 1][i] +
           cost;
    }
    dp[i][j] = mn;
}
```

1.39 dp opti Li Chao

```
typedef long long ftype;
typedef complex<ftype> point;
#define x real
#define y imag

ftype dot(point a, point b) { return (conj(
    a) * b).x(); }

ftype f(point a, ftype x) { return dot(a, {
    x, 1}); }
const int maxn = 2e5;

point line[4 * maxn];

void add_line(point nw, int v = 1, int l =
    0, int r = maxn) {
```

```
int m = (1 + r) / 2;
  bool lef = f(nw, 1) < f(line[v], 1);
  bool mid = f(nw, m) < f(line[v], m);</pre>
 if (mid) {
   swap(line[v], nw);
  if (r - 1 == 1) {
   return:
 } else if (lef != mid) {
   add_line(nw, 2 * v, 1, m);
 } else {
   add_line(nw, 2 * v + 1, m, r);
}
ftype get(int x, int v = 1, int l = 0, int
   r = maxn) {
 int m = (1 + r) / 2:
 if (r - 1 == 1) {
   return f(line[v], x);
 } else if (x < m) {
   return min(f(line[v], x), get(x, 2 * v,
        1. m)):
 } else {
   return min(f(line[v], x), get(x, 2 * v
       + 1, m, r));
 }
}
```

1.40 flow dinic

```
struct FlowEdge {
  int v, u;
  long long cap, flow = 0;
  FlowEdge(int v, int u, long long cap) : v
          (v), u(u), cap(cap) {}
};
struct Dinic {
```

```
const long long flow_inf = 1e18;
vector<FlowEdge> edges;
vector<vector<int>> adj;
int n. m = 0:
int s, t;
vector<int> level, ptr;
queue<int> q;
Dinic(int n, int s, int t) : n(n), s(s),
   t(t) {
 adj.resize(n);
 level.resize(n);
 ptr.resize(n);
void add_edge(int v, int u, long long cap
   ) {
  edges.emplace_back(v, u, cap);
  edges.emplace_back(u, v, 0);
 adj[v].push_back(m);
 adj[u].push_back(m + 1);
 m += 2:
bool bfs() {
 while (!q.empty()) {
   int v = q.front();
   q.pop();
   for (int id : adj[v]) {
     if (edges[id].cap - edges[id].flow <</pre>
          1) continue;
     if (level[edges[id].u] != -1)
         continue;
     level[edges[id].u] = level[v] + 1;
     q.push(edges[id].u);
   }
 }
```

```
return level[t] != -1;
}
long long dfs(int v, long long pushed) {
  if (pushed == 0) return 0;
  if (v == t) return pushed;
 for (int& cid = ptr[v]; cid < (int)adj[</pre>
      v].size(); cid++) {
    int id = adj[v][cid];
   int u = edges[id].u;
    if (level[v] + 1 != level[u] || edges[
        id].cap - edges[id].flow < 1)</pre>
     continue;
    long long tr = dfs(u, min(pushed,
        edges[id].cap - edges[id].flow));
    if (tr == 0) continue;
    edges[id].flow += tr;
    edges[id ^ 1].flow -= tr;
    return tr;
 }
  return 0;
}
long long flow() {
 long long f = 0;
 while (true) {
    fill(level.begin(), level.end(), -1);
   level[s] = 0;
    q.push(s);
    if (!bfs()) break;
    fill(ptr.begin(), ptr.end(), 0);
    while (long long pushed = dfs(s,
        flow_inf)) {
     f += pushed;
   }
 }
  return f:
```

```
}
};
```

1.41 flow global min cut

```
/* Description: Find a global minimum cut
    in an undirected graph, as represented
 * by an adjacency matrix. Time: O(V^3) */
pair<int, vi> globalMinCut(vector<vi> mat)
 pair<int, vi> best = {INT_MAX, {}};
 int n = sz(mat);
 vector<vi> co(n);
 rep(i, 0, n) co[i] = {i};
 rep(ph, 1, n) {
   vi w = mat[0];
   size_t s = 0, t = 0;
   rep(it, 0, n - ph) { // O(V^2) \rightarrow O(E)
       log V) with prio. queue
     w[t] = INT_MIN;
     s = t, t = max_{element}(all(w)) - w.
         begin();
     rep(i, 0, n) w[i] += mat[t][i];
   best = min(best, {w[t] - mat[t][t], co[
       t]});
   co[s].insert(co[s].end(), all(co[t]));
   rep(i, 0, n) mat[s][i] += mat[t][i];
   rep(i, 0, n) mat[i][s] = mat[s][i];
   mat[0][t] = INT_MIN;
 return best;
```

1.42 flow hungarian emaxx

```
// a[1....n] [1....m] -> cost function
// n<=m with n people having to assign m
    jobs</pre>
```

```
vector\langle int \rangle u(n + 1), v(m + 1), p(m + 1),
    way(m + 1);
for (int i = 1; i <= n; ++i) {</pre>
 i = [0]a
 int j0 = 0;
 vector<int> minv(m + 1, INF);
 vector<char> used(m + 1, false);
  do {
   used[i0] = true;
   int i0 = p[j0], delta = INF, j1;
   for (int j = 1; j <= m; ++j)
     if (!used[j]) {
       int cur = a[i0][j] - u[i0] - v[j];
       if (cur < minv[j]) minv[j] = cur,</pre>
           way[i] = i0;
       if (minv[j] < delta) delta = minv[j</pre>
           ], j1 = j;
   for (int j = 0; j <= m; ++j)
     if (used[j])
       u[p[j]] += delta, v[j] -= delta;
     else
       minv[j] -= delta;
   j0 = j1;
 } while (p[j0] != 0);
 do {
   int j1 = way[j0];
   p[j0] = p[j1];
   j0 = j1;
 } while (j0);
vector<int> ans(n + 1);
for (int j = 1; j \le m; ++j) ans[p[j]] = j;
int cost = -v[0]:
```

1.43 flow mcmf with negative cycle

```
// Push-Relabel implementation of the cost-
   scaling algorithm
// Runs in O( <max_flow> * log(V *
   max_edge_cost) = O(V^3 * log(V * C))
// 3e4 edges are fine.
// Operates on integers, costs are
   multiplied by N!!
#include <bits/stdc++.h>
using namespace std;
template <typename flow_t = int, typename</pre>
   cost_t = int>
struct mcSFlow {
 struct Edge {
   cost_t c;
   flow_t f;
   int to, rev:
   Edge(int _to, cost_t _c, flow_t _f, int
        rev)
       : c(_c), f(_f), to(_to), rev(_rev)
 };
 static constexpr cost_t INFCOST =
     numeric_limits<cost_t>::max() / 2;
 cost_t eps;
 int N, S, T;
 vector<vector<Edge> > G;
 vector<unsigned int> isq, cur;
 vector<flow_t> ex;
 vector<cost_t> h;
 mcSFlow(int _N, int _S, int _T) : eps(0),
      N(_N), S(_S), T(_T), G(_N) {}
 void add_edge(int a, int b, cost_t cost,
     flow_t cap) {
   assert(cap >= 0);
```

```
assert(a >= 0 && a < N && b >= 0 && b <
       N):
  if (a == b) {
   assert(cost >= 0):
   return;
  cost *= N;
  eps = max(eps, abs(cost));
  G[a].emplace_back(b, cost, cap, G[b].
      size());
  G[b].emplace_back(a, -cost, 0, G[a].
      size() - 1);
void add_flow(Edge &e, flow_t f) {
  Edge &back = G[e.to][e.rev];
  if (!ex[e.to] && f) hs[h[e.to]].
      push_back(e.to);
  e.f -= f:
  ex[e.to] += f;
  back.f += f;
  ex[back.to] -= f;
vector<vector<int> > hs:
vector<int> co;
flow_t max_flow() {
  ex.assign(N, 0);
 h.assign(N, 0);
 hs.resize(2 * N);
  co.assign(2 * N, 0);
  cur.assign(N, 0);
 h[S] = N;
  ex[T] = 1;
  co[0] = N - 1;
  for (auto &e : G[S]) add_flow(e, e.f);
  if (hs[0].size())
   for (int hi = 0: hi >= 0:) {
     int u = hs[hi].back():
```

```
hs[hi].pop_back();
     while (ex[u] > 0) \{ // discharge u \}
       if (cur[u] == G[u].size()) {
         h[u] = 1e9:
         for (unsigned int i = 0; i < G[u</pre>
             ].size(); ++i) {
           auto &e = G[u][i];
           if (e.f \&\& h[u] > h[e.to] + 1)
             h[u] = h[e.to] + 1, cur[u] =
                i;
          }
         }
         if (++co[h[u]], !--co[hi] && hi
          for (int i = 0; i < N; ++i)
             if (hi < h[i] && h[i] < N) {</pre>
              --co[h[i]];
              h[i] = N + 1;
             }
         hi = h[u];
       } else if (G[u][cur[u]].f && h[u]
           == h[G[u][cur[u]].to] + 1)
         add_flow(G[u][cur[u]], min(ex[u
             ], G[u][cur[u]].f));
       else
         ++cur[u];
     while (hi >= 0 && hs[hi].empty()) --
         hi;
 return -ex[S];
void push(Edge &e, flow_t amt) {
 if (e.f < amt) amt = e.f;
 e.f -= amt;
 ex[e.to] += amt:
```

```
G[e.to][e.rev].f += amt;
  ex[G[e.to][e.rev].to] -= amt;
void relabel(int vertex) {
  cost_t newHeight = -INFCOST;
 for (unsigned int i = 0; i < G[vertex].</pre>
      size(); ++i) {
   Edge const &e = G[vertex][i];
   if (e.f && newHeight < h[e.to] - e.c)</pre>
     newHeight = h[e.to] - e.c;
     cur[vertex] = i;
 h[vertex] = newHeight - eps;
static constexpr int scale = 2;
pair<flow_t, cost_t> minCostMaxFlow() {
  cost_t retCost = 0;
 for (int i = 0; i < N; ++i)</pre>
   for (Edge &e : G[i]) retCost += e.c *
        (e.f):
  // find max-flow
 flow_t retFlow = max_flow();
 h.assign(N, 0);
  ex.assign(N, 0);
  isq.assign(N, 0);
  cur.assign(N, 0);
  queue<int> q;
 for (; eps; eps >>= scale) {
   // refine
   fill(cur.begin(), cur.end(), 0);
   for (int i = 0; i < N; ++i)
     for (auto &e : G[i])
       if (h[i] + e.c - h[e.to] < 0 && e.
           f) push(e, e.f):
   for (int i = 0; i < N; ++i) {</pre>
```

```
if (ex[i] > 0) {
     q.push(i);
     isq[i] = 1;
   }
 }
 // make flow feasible
 while (!q.empty()) {
   int u = q.front();
   q.pop();
   isq[u] = 0;
    while (ex[u] > 0) {
     if (cur[u] == G[u].size()) relabel
         (u);
     for (unsigned int &i = cur[u],
         max_i = G[u].size(); i < max_i</pre>
         : ++i) {
       Edge &e = G[u][i];
       if (h[u] + e.c - h[e.to] < 0) {
         push(e, ex[u]);
         if (ex[e.to] > 0 \&\& isq[e.to]
             == 0) {
           q.push(e.to);
           isq[e.to] = 1;
         if (ex[u] == 0) break;
   }
 if (eps > 1 && eps >> scale == 0) {
   eps = 1 << scale;</pre>
 }
for (int i = 0; i < N; ++i) {</pre>
 for (Edge &e : G[i]) {
   retCost -= e.c * (e.f);
 }
```

1.44 range query Fenwick

1.45 string AhoCorasick

```
template<int ALPHABET = 26, int LOW = 'a'>
struct AhoCorasick {
  struct Node {
   int next[ALPHABET], link, parent;
   char ch; bool ends;
  Node(int par = -1, char c = LOW - 1):
     parent(par), ch(c), link(-1), ends(
     false) {
   for(int i=0; i<ALPHABET; i++)</pre>
```

```
next[i] = -1:
}:
vector<Node> nodes:
int root;
AhoCorasick(): root(0), nodes(1) {}
void add_string(string &s, int idx) {
int cur = root;
for(auto c: s) {
 if(nodes[cur].next[c - LOW] == -1)
  nodes.push_back(Node(cur, c)), nodes[
      cur].next[c - LOW] = (int)nodes.size
      ()-1;
  cur = nodes[cur].next[c - LOW];
nodes[cur].leaves.push_back(idx), nodes[
     curl.ends = true:
void build_links() {
queue<int> q; q.push(0);
 while(!q.empty()) {
 int fr = q.front(); q.pop();
  if(nodes[fr].parent <= 0) {</pre>
  nodes[fr].link = 0;
  for(int i=0; i<ALPHABET; i++)</pre>
   if(nodes[fr].next[i] == -1)
    if(nodes[fr].parent == -1)
     nodes[fr].next[i] = 0;
    else
     nodes[fr].next[i] = nodes[nodes[fr].
         link].next[i];
   else
    q.push(nodes[fr].next[i]);
 }
  else {
  nodes[fr].link = nodes[nodes[fr].
      parent].link].next[nodes[fr].ch -
```

```
LOW];
for(int i=0; i<ALPHABET; i++)
  if(nodes[fr].next[i] == -1)
    nodes[fr].next[i] = nodes[nodes[fr].
        link].next[i];
  else
    q.push(nodes[fr].next[i]);
}
}
}</pre>
```

1.46 string circular lcs

```
#define L O #define LU 1 #define U 2
0};
int al. bl:
char a[MAXL * 2], b[MAXL * 2]; // 0-indexed
int dp[MAXL * 2][MAXL];
char pred[MAXL * 2][MAXL];
inline int lcs_length(int r) {
 int i = r + al, j = bl, l = 0;
 while (i > r) {
   char dir = pred[i][j];if (dir == LU) 1
       ++;
   i += mov[dir][0]; j += mov[dir][1];}
 return 1;
}
inline void reroot(int r) { // r = new base
    row
 int i = r, j = 1;
 while (j <= bl && pred[i][j] != LU) j++;</pre>
 if (j > bl) return; pred[i][j] = L;
 while (i < 2 * al && j <= bl) {
   if (pred[i + 1][j] == U) {
     i++;pred[i][j] = L;
   } else if (j < bl && pred[i + 1][j + 1]</pre>
        == LU) {
```

```
i++; j++; pred[i][j] = L;
   } else j++;
 }
int cyclic_lcs() {
 // a, b, al, bl should be properly filled
 char tmp[MAXL];
 if (al > bl) {
   swap(al, bl);strcpy(tmp, a);
   strcpy(a, b);strcpy(b, tmp);}
  strcpy(tmp, a);strcat(a, tmp);
 // basic lcs
 for (int i = 0; i <= 2 * al; i++) {</pre>
   dp[i][0] = 0; pred[i][0] = U;
 }
 for (int j = 0; j <= bl; j++) {
   dp[0][i] = 0;pred[0][i] = L;}
 for (int i = 1; i <= 2 * al; i++) {
   for (int j = 1; j <= bl; j++) {</pre>
     if (a[i - 1] == b[j - 1])
       dp[i][j] = dp[i - 1][j - 1] + 1;
     else
       dp[i][j] = max(dp[i - 1][j], dp[i][j]
            - 1]);
     if (dp[i][j - 1] == dp[i][j])
       pred[i][j] = L;
     else if (a[i - 1] == b[j - 1])
       pred[i][i] = LU;
     else
       pred[i][j] = U;
   }
 }
 int clcs = 0;
 for (int i = 0; i < al; i++) {</pre>
   clcs = max(clcs, lcs_length(i));reroot(
       i + 1):
 a[al] = '\0':
```

```
return clcs;}
```

1.47 string suffixArray

```
const int MAXLEN = 4e5 + 5;
template <int ALPHABET = 26, int LOW = 'a'>
struct SuffixArray {
 vector<int> sa, order, lcp, locate;
 vector<vector<int>> sparse;
 string _s;
 SuffixArray() {}
 void build(string s) {
   s += (char)(LOW - 1);
   int n = s.size();
   _s = s;
   sa.resize(n);
   order.resize(n);
   vector<vector<int>> pos(ALPHABET + 1);
   for (int i = 0; i < n; i++) pos[s[i] -
       LOW + 1].push_back(i);
   int idx = -1, o_idx = -1;
   for (int i = 0; i < ALPHABET + 1; i++)</pre>
     o_{idx} += (pos[i].size() > 0);
     for (auto& x : pos[i]) order[x] =
         o_idx, sa[++idx] = x;
   int cur = 1;
   while (cur < n) {</pre>
     cur *= 2;
     vector<pair<int, int>, int>> w(n)
     vector<int> cnt(n), st(n), where(n);
     for (int i = 0; i < n; i++) {</pre>
       int from = sa[i] - cur / 2 + n;
       if (from >= n) from -= n:
       w[i] = {{order[from], order[sa[i]]},
            from}:
```

```
cnt[order[from]]++;
     where[from] = i;
   for (int i = 1; i < n; i++) st[i] = st</pre>
        [i - 1] + cnt[i - 1]:
   for (int i = 0; i < n; i++) sa[st[w[i</pre>
       ].first.first]++] = w[i].second;
   order[sa[0]] = 0;
   for (int i = 1; i < n; i++)
     order[sa[i]] = order[sa[i - 1]] +
                   (w[where[sa[i]]].first
                         != w[where[sa[i -
                       1]]].first);
 }
}
void build_lcp() {
 int n = sa.size();
 lcp.resize(n);
 locate.resize(n);
 for (int i = 0; i < n; i++) locate[sa[i</pre>
     ]] = i:
 for (int i = 0; i < n - 1; i++) {
   int wh = locate[i], up = sa[wh - 1];
   if (i > 0) lcp[wh] = max(lcp[wh], lcp[
       locate[i - 1]] - 1);
   while (s[i + lcp[wh]] == s[up + lcp[
       wh]]) ++lcp[wh];
 }
void build_sparse() {
 int n = _s.size();
 sparse.resize(20, vector<int>(n));
 for (int i = 0; i < n; i++) sparse[0][i</pre>
     ] = lcp[i];
 for (int i = 1, len = 2; i < 20; i++,
     len *= 2)
```

```
for (int j = 0; j + len <= n; j++)</pre>
       sparse[i][j] = min(sparse[i - 1][j],
            sparse[i - 1][j + len / 2]);
 int find_lcp(int a, int b) {
   if (a == b)
     return _s.size() - 1 - a; //-1 because
          sentinel is added to string
   a = locate[a];
   b = locate[b];
   if (a > b) {
     swap(a, b);
   a++;
   int which = log2(b - a + 1);
   return min(sparse[which][a], sparse[
       which] [b - (1 << which) + 1]);
 }
};
```

1.48 string suffixAutomaton

```
template <int MAXLEN = 1000000>
struct SuffixAutomaton {
 struct node_SA {
   int len, link, cnt;
   int next[26]; // map<char, int> next;
   node_SA() {
     for (int i = 0; i < 26; i++) next[i] =
          -2;
   }
 };
 vector<node_SA> v;
 int sz, last;
 SuffixAutomaton(int MAX_SIZE = MAXLEN) :
     sz(1), last(0), v(2 * MAX_SIZE + 5) {
   v[0].len = 0, v[0].link = -1;
 }
 int minlen(const int& idx) {
```

```
return (v[idx].link == -1 ? 0 : v[v[idx
     ].link].len + 1);
int minlen(const node_SA& n) {
 return (n.link == -1 ? 0 : v[n.link].
     len + 1);
void add_char(char c) {
 int cur = sz++;
 v[cur].len = v[last].len + 1;
 v[cur].cnt = 1;
 int temp = last;
  while (temp != -1 && v[temp].next[c - '
     a'] == -2) {
   v[temp].next[c - 'a'] = cur;
   temp = v[temp].link;
 if (temp == -1)
   v[cur].link = 0;
  else {
   int nx = v[temp].next[c - 'a'];
   if (v[temp].len + 1 == v[nx].len)
     v[cur].link = nx:
   else {
     int clone = sz++;
     v[clone].len = v[temp].len + 1;
     v[clone].link = v[nx].link;
     for (int i = 0; i < 26; i++) v[clone
         ].next[i] = v[nx].next[i];
     while (temp != -1 && v[temp].next[c
         - 'a'] == nx) {
       v[temp].next[c - 'a'] = clone;
       temp = v[temp].link;
     v[nx].link = v[cur].link = clone;
   }
 }
```

```
last = cur;
}
void build(std::string& s) {
  for (char c : s) add_char(c);
}
};
```

1.49 string z kmp manacher

```
vector<int> z(n, 0);
 z[0] = n;
 for (int i = 1, l = 0, r = 0; i < n; i++)
   z[i] = max(0, min(r - i + 1, z[i - 1]))
   while (s[i + z[i]] == s[z[i]]) ++z[i];
   if (i + z[i] - 1 > r) 1 = i, r = i + z[
       i] - 1;
 }
 return z;
pair<vector<int>, vector<int>> manacher(
   const string &s) {
 string t = "\$";
 for (auto c : s) t += c, t += ', '; //
     Only odd manacher will do the trick
     now
 int N = (int)t.size();
 vector<int> ans(N, 1);
 int l = 1, r = 1;
```

```
for (int i = 1; i < N; i++) {</pre>
                  ans[i] = max(0, min(r - i, ans[l + (r - i), ans[l + (r 
                  while (t[i - ans[i]] == t[i + ans[i]])
                                      ++ans[i];
                if (i + ans[i] > r) l = i - ans[i], r =
                                          i + ans[i];
        vector<int> odd, even;
        for (int i = 1; i < N - 1; i++) {
                if (i & 1)
                           odd.push_back(1 + 2 * ((ans[i] - 1) /
                                               2));
                  else
                           even.push_back(2 * (ans[i] / 2));
       }
        return {odd, even}; // odd[i] : length of
                                  palindrome centred at ith character
} // even[i]: length of palindrome centred
                         after ith character (0-indexed)
```