Variabile legate și libere

Definiția 2.22

Fie $\varphi = \varphi_0 \varphi_1 \dots \varphi_{n-1}$ o formulă a lui \mathcal{L} și x o variabilă.

- ▶ spunem că variabila x apare legată pe poziția k în φ dacă $x = \varphi_k$ și există $0 \le i \le k \le j \le n-1$ a.î. (i,j)-subexpresia lui φ este o subexpresie a lui φ de forma $\forall x \psi$;
- > spunem că x apare liberă pe poziția k în φ dacă $x = \varphi_k$, dar x nu apare legată pe poziția k în φ ;
- ightharpoonup x este variabilă legată (bounded variable) a lui φ dacă există un k a.î. x apare legată pe poziția k în φ ;
- ightharpoonup x este variable) a lui φ dacă există un k a.î. x apare liberă pe poziția k în φ .

Exemplu

Fie $\varphi = \forall x(x = y) \rightarrow x = z$. Variabile libere: x, y, z. Variabile legate: x.

Variabile legate și libere

Notație: $FV(\varphi) := \text{mulțimea variabilelor libere ale lui } \varphi$.

Definiție alternativă

Mulțimea $FV(\varphi)$ a variabilelor libere ale unei formule φ poate fi definită și prin inducție pe formule:

$$FV(\varphi) = Var(\varphi)$$
, dacă φ este formulă atomică; $FV(\neg \varphi) = FV(\varphi)$; $FV(\varphi \rightarrow \psi) = FV(\varphi) \cup FV(\psi)$; $FV(\forall x \varphi) = FV(\varphi) \setminus \{x\}$.

Notație: $\varphi(x_1,\ldots,x_n)$ dacă $FV(\varphi)\subseteq\{x_1,\ldots,x_n\}$.

Interpretarea termenilor și formulelor

Propoziția 2.23

Pentru orice \mathcal{L} -structură \mathcal{A} și orice interpretări $e_1, e_2 : V \to \mathcal{A}$, pentru orice termen t,

dacă
$$e_1(v)=e_2(v)$$
 pentru orice variabilă $v\in Var(t)$, atunci $t^{\mathcal{A}}(e_1)=t^{\mathcal{A}}(e_2).$

Propoziția 2.24

Pentru orice \mathcal{L} -structură \mathcal{A} , orice interpretări $e_1, e_2 : V \to A$, pentru orice formulă φ ,

dacă
$$e_1(v) = e_2(v)$$
 pentru orice variabilă $v \in FV(\varphi)$, atunci $\mathcal{A} \models \varphi[e_1] \iff \mathcal{A} \models \varphi[e_2]$.

Echivalențe și consecințe logice

Propoziția 2.25

Pentru orice formule φ , ψ și orice variabilă $x \notin FV(\varphi)$,

$$\varphi \quad \exists x \varphi \qquad (15)$$

$$\varphi \quad \exists \forall x \varphi \qquad (16)$$

$$\forall x (\varphi \land \psi) \quad \exists \varphi \land \forall x \psi \qquad (17)$$

$$\forall x (\varphi \lor \psi) \quad \exists \varphi \lor \forall x \psi \qquad (18)$$

$$\exists x (\varphi \land \psi) \quad \exists \varphi \land \exists x \psi \qquad (19)$$

$$\exists x (\varphi \lor \psi) \quad \exists \varphi \lor \exists x \psi \qquad (20)$$

$$\forall x (\varphi \to \psi) \quad \exists \varphi \to \forall x \psi \qquad (21)$$

$$\exists x (\varphi \to \psi) \quad \exists \varphi \to \exists x \psi \qquad (22)$$

$$\forall x (\psi \to \varphi) \quad \exists \varphi \to \varphi \qquad (23)$$

$$\exists x (\psi \to \varphi) \quad \exists \varphi \to \varphi \qquad (24)$$

Dem.: Exercițiu.

Definiția 2.26

O formulă φ se numește enunț (sentence) dacă $FV(\varphi) = \emptyset$, adică φ nu are variabile libere.

Notație: Sent_L:= mulțimea enunțurilor lui \mathcal{L} .

Propoziția 2.27

Fie φ un enunț. Pentru orice interpretări $e_1, e_2: V \to A$,

$$\mathcal{A} \vDash \varphi[e_1] \Longleftrightarrow \mathcal{A} \vDash \varphi[e_2]$$

Dem.: Este o consecință imediată a Propoziției 2.24 și a faptului că $FV(\varphi) = \emptyset$.

Definiția 2.28

O \mathcal{L} -structură \mathcal{A} este un model al lui φ dacă $\mathcal{A} \models \varphi[e]$ pentru o (orice) evaluare $e: V \to A$. Notație: $\mathcal{A} \models \varphi$

Fie x o variabilă a lui \mathcal{L} și u termen al lui \mathcal{L} .

Definiția 2.29

Pentru orice termen t al lui \mathcal{L} , definim $t_x(u) := expresia obținută din t prin înlocuirea tuturor aparițiilor lui <math>x$ cu u.

Propoziția 2.30

Pentru orice termen t al lui \mathcal{L} , $t_x(u)$ este termen al lui \mathcal{L} .

- Vrem să definim analog $\varphi_x(u)$ ca fiind expresia obținută din φ prin înlocuirea tuturor aparițiilor libere ale lui x cu u.
- De asemenea, vrem ca următoarele proprietăți naturale ale substituției să fie adevărate:

$$\vDash \forall x \varphi \to \varphi_{\mathsf{X}}(u) \quad \mathsf{si} \quad \vDash \varphi_{\mathsf{X}}(u) \to \exists x \varphi.$$

Apar însă probleme.

Fie
$$\varphi:=\exists y\neg(x=y)$$
 și $u:=y$. Atunci $\varphi_{x}(u)=\exists y\neg(y=y)$. Avem

- Pentru orice \mathcal{L} -structură \mathcal{A} cu $|A| \geq 2$ și pentru orice $a \in A$, $\mathcal{A} \models \forall x \varphi$.
- $ightharpoonup \varphi_{\times}(u)$ nu este satisfiabilă.

Fie x o variabilă, u un termen și φ o formulă.

Definiția 2.31

Spunem că x este liberă pentru u în φ sau că u este substituibil pentru x în φ dacă pentru orice variabilă y care apare în u, nici o subformulă a lui φ de forma $\forall y\psi$ nu conține apariții libere ale lui x.

Observație

x este liberă pentru u în φ în oricare din următoarele situații:

- u nu conține variabile;
- $ightharpoonup \varphi$ nu conține variabile care apar în u;
- ightharpoonup nici o variabilă din u nu apare legată în φ ;
- ightharpoonup x nu apare în φ ;
- $ightharpoonup \varphi$ nu conține apariții libere ale lui x.

Fie x o variabilă, u termen și φ o formulă a.î. x este liberă pentru u în φ .

Definiția 2.32

 $\varphi_{x}(u) := expresia obținută din <math>\varphi$ prin înlocuirea tuturor aparițiilor libere ale lui x cu u.

Spunem că $\varphi_x(u)$ este o substituție liberă.

Propoziția 2.33

 $\varphi_{\mathsf{X}}(\mathsf{u})$ este formulă a lui \mathcal{L} .

Noțiunea de substituție liberă evită problemele menționate anterior și se comportă cum am aștepta.

Propoziția 2.34

Pentru orice termeni u₁ și u₂ și orice variabilă x,

(i) pentru orice termen t,

$$\vDash u_1 = u_2 \to t_{\scriptscriptstyle X}(u_1) = t_{\scriptscriptstyle X}(u_2).$$

(ii) pentru orice formulă φ a.î. x este liberă pentru u_1 și u_2 în φ ,

$$\vDash u_1 = u_2 \to (\varphi_{\mathsf{X}}(u_1) \leftrightarrow \varphi_{\mathsf{X}}(u_2)).$$

Propoziția 2.35

Fie φ o formulă și x o variabilă.

(i) Pentru orice termen u substituibil pentru x în φ ,

$$\vDash \forall x \varphi \to \varphi_{\mathsf{X}}(u), \qquad \vDash \varphi_{\mathsf{X}}(u) \to \exists x \varphi.$$

(ii)
$$\vDash \forall x \varphi \rightarrow \varphi$$
, $\vDash \varphi \rightarrow \exists x \varphi$.

(iii) Pentru orice simbol de constantă c,

$$\vDash \forall x \varphi \rightarrow \varphi_{\mathsf{X}}(c), \qquad \vDash \varphi_{\mathsf{X}}(c) \rightarrow \exists x \varphi.$$

În general, dacă x si y sunt variabile, φ și $\varphi_x(y)$ nu sunt logic echivalente: fie \mathcal{L}_{ar} , \mathcal{N} și $e:V\to\mathbb{N}$ a.î. e(x)=3, e(y)=5, e(z)=4. Atunci

$$\mathcal{N} \vDash (x < z)[e], \text{ dar } \mathcal{N} \not\vDash (x < z)_x(y)[e].$$

Totuși, variabilele legate pot fi substituite, cu condiția să se evite conflicte.

Propoziția 2.36

Pentru orice formulă φ , variabile distincte x și y a.î. $y \notin FV(\varphi)$ și y este substituibil pentru x în φ ,

$$\exists x \varphi \vDash \exists y \varphi_x(y)$$
 $\forall x \varphi \vDash \forall y \varphi_x(y).$

Folosim Propoziția 2.36 astfel: dacă $\varphi_x(u)$ nu este substituție liberă (i.e. x nu este liberă pentru u în φ), atunci înlocuim φ cu o formulă φ' logic echivalentă a.î. $\varphi'_x(u)$ este substituție liberă.

Definiția 2.37

Pentru orice formulă φ și orice variabile y_1, \ldots, y_k , varianta y_1, \ldots, y_k -liberă φ' a lui φ este definită recursiv astfel:

- ightharpoonup dacă φ este formulă atomică, atunci φ' este φ ;
- dacă $\varphi = \neg \psi$, atunci φ' este $\neg \psi'$;
- dacă $\varphi = \psi \rightarrow \chi$, atunci φ' este $\psi' \rightarrow \chi'$;
- ightharpoonup dacă $\varphi = \forall z \psi$, atunci

$$\varphi'$$
 este
$$\begin{cases} \forall w \psi_z'(w) & \textit{dac} \ \textit{z} \in \{y_1, \dots, y_k\} \\ \forall \textit{z} \psi' & \textit{altfel}; \end{cases}$$

unde w este prima variabilă din șirul $v_0, v_1, \ldots,$ care nu apare în ψ' și nu este printre y_1, \ldots, y_k .

Definiția 2.38

 φ' este variantă a lui φ dacă este varianta y_1, \ldots, y_k -liberă a lui φ pentru anumite variabile y_1, \ldots, y_k .

Propoziția 2.39

- (i) Pentru orice formulă φ , dacă φ' este o variantă a lui φ , atunci $\varphi \vDash \varphi'$;
- (ii) Pentru orice formulă φ și orice termen t, dacă variabilele lui t se află printre y_1, \ldots, y_k și φ' este varianta y_1, \ldots, y_k -liberă a lui φ , atunci $\varphi'_{\mathsf{x}}(t)$ este o substituție liberă.

Definiția 2.40

O formulă care nu conține cuantificatori se numește liberă de cuantificatori ("quantifier-free").

Definiția 2.41

O formulă φ este în formă normală prenex dacă

$$\varphi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \psi,$$

unde $n \in \mathbb{N}$, $Q_1, \ldots, Q_n \in \{\forall, \exists\}$, x_1, \ldots, x_n sunt variabile și ψ este formulă liberă de cuantificatori. Formula ψ se numește matricea lui φ și $Q_1x_1Q_2x_2\ldots Q_nx_n$ este prefixul lui φ .

Exemple de formule în formă normală prenex:

- Formulele universale: $\varphi = \forall x_1 \forall x_2 \dots \forall x_n \psi$, unde ψ este liberă de cuantificatori
- Formulele existențiale: $\varphi = \exists x_1 \exists x_2 \dots \exists x_n \psi$, unde ψ este liberă de cuantificatori

Fie φ o formulă și t_1, \ldots, t_n termeni care nu conțin variabile din φ . Notăm cu $\varphi_{x_1,\ldots,x_n}(t_1,\ldots,t_n)$ formula obținută din φ substituind toate aparițiile libere ale lui x_1,\ldots,x_n cu t_1,\ldots,t_n respectiv.

Notații: $\forall^c = \exists$, $\exists^c = \forall$.

Teorema 2.42 (Teorema de formă normală prenex) Pentru orice formulă φ există o formulă φ^* în formă normală

prenex a.î. $\varphi \vDash \varphi^*$ și $FV(\varphi) = FV(\varphi^*)$.

Dem.: Aplicăm inducția pe formule. Avem următoarele cazuri:

- φ este formulă atomică. Atunci $\varphi^* := \varphi$.
- $\varphi = \neg \psi$ și, conform ipotezei de inducție, există o formulă $\psi^* = Q_1 x_1 \dots Q_n x_n \psi_0$ în formă normală prenex a.î. $\psi \vDash \psi^*$ și $FV(\psi) = FV(\psi^*)$. Definim

$$\varphi^* := Q_1^c x_1 \dots Q_n^c x_n \neg \psi_0.$$

Atunci φ^* este în formă normală prenex, $\varphi^* \vDash \neg \psi^* \vDash \neg \psi = \varphi$ și $FV(\varphi^*) = FV(\psi^*) = FV(\psi) = FV(\varphi)$.

• $\varphi=\psi\to\chi$ și, conform ipotezei de inducție, există formulele în formă normală prenex

$$\psi^* = Q_1 x_1 \dots Q_n x_n \psi_0, \quad \chi^* = S_1 z_1 \dots S_m z_m \chi_0$$

a.î. $\psi \vDash \psi^*$, $FV(\psi) = FV(\psi^*)$, $\chi \vDash \chi^*$ și $FV(\chi) = FV(\chi^*)$. Notăm cu V_0 mulțimea tuturor variabilelor care apar în ψ^* sau χ^* . Fie $\tilde{\psi^*}$ (resp. $\tilde{\chi^*}$) varianta V_0 -liberă a lui ψ^* (resp. χ^*). Atunci

$$\tilde{\psi}^* = Q_1 y_1 \dots Q_n y_n \tilde{\psi}_0, \quad \tilde{\chi}^* = S_1 w_1 \dots S_m w_m \tilde{\chi}_0,$$

unde $y_1, \ldots, y_n, w_1, \ldots, w_m$ sunt variabile care nu apar în V_0 , $\tilde{\psi_0} = \psi_{0_{X_1,\ldots,X_n}}(y_1,\ldots,y_n)$ și $\tilde{\chi_0} = \chi_{0_{Z_1,\ldots,Z_m}}(w_1,\ldots,w_m)$. Conform Propoziției 2.39.(i), $\tilde{\psi^*} \vDash \psi^*$ și $\tilde{\chi^*} \vDash \chi^*$. De asemenea, $FV(\tilde{\psi^*}) = FV(\psi^*)$ și $FV(\tilde{\chi^*}) = FV(\chi^*)$.

Definim

$$\varphi^* := Q_1^c y_1 \dots Q_n^c y_n S_1 w_1 \dots S_m w_m (\tilde{\psi}_0 \to \tilde{\chi}_0).$$

Atunci φ^* este în formă normală prenex, $FV(\varphi^*) = FV(\varphi)$ și

$$\varphi^* \quad \exists \quad \tilde{\psi}^* \to \tilde{\chi}^*$$

$$\exists \quad \psi^* \to \chi^*$$

$$\exists \quad \psi \to \chi = \varphi.$$

• $\varphi = \forall x \psi$ și, conform ipotezei de inducție, există o formulă ψ^* în formă normală prenex a.î. $\psi \vDash \psi^*$ și $FV(\psi) = FV(\psi^*)$. Definim $\varphi^* := \forall x \psi^*$.

47

 $\mathsf{Fie}\;\mathcal{L}\;\mathsf{un}\;\mathsf{limbaj}\;\mathsf{de}\;\mathsf{ordinul}\;\hat{\mathsf{intai}}\;\mathsf{care}\;\mathsf{conține}$

- b două simboluri de relații unare R, S și două simboluri de relații binare P, Q;
- ightharpoonup un simbol de funcție binară g;
- două simboluri de constante c, d.

Exemplu

Să se găsească o formă normală prenex pentru

$$\varphi := \exists y (g(y,z) = c) \land \neg \exists x (f(x) = d)$$

Avem

$$\varphi \quad \exists y (g(y,z) = c \land \neg \exists x (f(x) = d))$$

$$\exists y (g(y,z) = c \land \forall x \neg (f(x) = d))$$

$$\exists y \forall x (g(y,z) = c \land \neg (f(x) = d))$$

Prin urmare, $\varphi^* = \exists y \forall x (g(y,z) = c \land \neg (f(x) = d))$ este o formă normală prenex pentru φ .

Exemplu

Să se găsească o formă normală prenex pentru

$$\varphi := \neg \forall y (S(y) \to \exists z R(z)) \land \forall x (\forall y P(x, y) \to f(x) = d).$$

Avem că

$$\varphi \ \ \exists y \neg (S(y) \rightarrow \exists z R(z)) \land \forall x (\forall y P(x,y) \rightarrow f(x) = d)$$

$$\exists y \neg \exists z (S(y) \rightarrow R(z)) \land \forall x (\forall y P(x,y) \rightarrow f(x) = d)$$

$$\exists y \neg \exists z (S(y) \rightarrow R(z)) \land \forall x \exists y (P(x,y) \rightarrow f(x) = d)$$

$$\exists y \forall z \neg (S(y) \rightarrow R(z)) \land \forall x \exists y (P(x,y) \rightarrow f(x) = d)$$

$$\exists y \forall z (\neg (S(y) \rightarrow R(z)) \land \forall x \exists y (P(x,y) \rightarrow f(x) = d))$$

$$\exists y \forall z \forall x (\neg (S(y) \rightarrow R(z)) \land \exists y (P(x,y) \rightarrow f(x) = d))$$

$$\exists y \forall z \forall x (\neg (S(y) \rightarrow R(z)) \land \exists v (P(x,v) \rightarrow f(x) = d))$$

$$\exists y \forall z \forall x \exists v (\neg (S(y) \rightarrow R(z)) \land (P(x,v) \rightarrow f(x) = d))$$

$$\varphi^* = \exists y \forall z \forall x \exists v (\neg (S(y) \rightarrow R(z)) \land (P(x,v) \rightarrow f(x) = d)) \text{ este o formă normală prenex pentru } \varphi.$$