Control System Design for Automated Driving

Lecture 06

Simulink Model of Vehicle Longitudinal Dynamics

Simulink Model of Vehicle Longitudinal Dynamics

트랜스미션 제어

수동 변속기

운전자가 차량에 걸리는 다양한 부하의 변동폭에 맞추어 클러치를 이용하여 주행에 필요한 적절한 회전 수 및 출력을 얻는데 필요한 기어를 결정.

자동변속기

차량속도와 엔진의 상태에 따라서차량이 스스로 적절한 기어로 변경

• 장점

- 빈번한 레버조작이 필요없고 가속시 쇼크가 적음
- 조작 실수에 의한 엔진 과부하 및 정지의 우려가 적음

• 단점

 유체를 매개로 하여 동력을 전달함으로써 전달 효율이 나쁘고 연비도 수동 변속기에 비하여 떨어짐.

자동변속기의 특징

- ▶ 토크 컨버터
 - 수동 변속기의 클러치의 역할

Fluid coupling

• 컨버터 내의 오일을 매체로 엔진의 힘을 트랜스미션에 전달

https://www.youtube.com/watch?v=DnMpuQNOvMQ&list=PLl_6ykl8IQsToOd9mpJvvEa_rleAet38B&index=7

자동변속기의 특징

- 기어비와 토크의 관계
 - Geometric relation

$$r_1\theta_1 = r_2\theta_2 \implies$$

 $r_1\theta_1 = r_2\theta_2 \implies \frac{\theta_2}{\theta_1} = \frac{r_1}{r_2} = \frac{N_1}{N_2}$

Conservation of work

$$T_1\theta_1 = T_2\theta_2 \Longrightarrow$$

$$T_1\theta_1 = T_2\theta_2 \Longrightarrow \frac{T_2}{T_1} = \frac{\theta_1}{\theta_2} = \frac{N_2}{N_1}$$

Torque relation

$$\therefore \frac{T_2}{T_1} = \frac{N_2}{N_1}$$

Transmission Control Unit

- Transmission Control Unit (TCU)
 - 입력신호를 받아 변속시에 필요한 Solenoid Valve를 제 어함으로서 자동으로 변속이 이루어지도록 제어
 - 입력값
 - Vehicle Speed Sensor
 - Wheel Speed Sensor
 - Throttle Position Sensor
 - Turbine Speed Sensor
 - Transmission Fluid Temperature Sensor
 - 기타 (Transmission Mode, Cruise Control SW, 등)
 - 연비향상, 변속 시 충격완화를 최소화하여 승차감을 향상 시키기 위하여 적절한 제어를 수행

변속 패턴

- ▶ TCU에 프로그램에 의한 변속패턴
 - Up-shift : 1, 2, 3, 4 차례로 변속
 - Down-shift : 4, 3, 2, 1 차례로 변속
 - Kick-down Shift : Throttle 개도를 85% 이상 작동시켜 강제적으로 Down-shift 시켜 구동력을 얻는 것
 - 최근에는 차량이 원하는만큼 가속하지 못할 때 (예: 경사길) 자동으로 Down-shift 시킬 수 있도록 프로그램 함. 그 외 다양한 프로그램 모드 기능을 제공

Transmission Model

- Assumption
 - No torque converter and no transmission loss.
 - Instant switching with respect to vehicle speed

Transmission Model

Transmission Model

- Relational operator
 - Perform specified relational operation on inputs.
 - Operation
 - == : True if the first input is equal to the second input
 - < : True if the first input is less than the second input
 - >= : True if the first input is greater or equal to the second input
 - Vector Example
 - [2,4,6,8]>[2] = [0 1 1 1]

엔진제어시스템 (Engine Management System, EMS)

- ECU (Electronic Control Unit)
 - 각종 센서로 부터 정보를 받아들여 제어와 관련된 Actuator를 구동하는데 필요한 연산을 수행.

엔진제어시스템의 개발

- ▶ 과거 EMS 구성
 - 기계적인 제어시스템 (크랭크와 연 동된 캠 및 벨트 기반)을 사용
 - 복잡한 구조로 인하여 제작 및 유 지가 어려움
 - 강화되어가는 배기가스 및 연비를 만족시키기 위한 정밀한 엔진제어 가 어려움

▶ 최신 EMS 개발

- ECU에 내장된 제어프로그램을 이용하여 기존의 기계식 제어시스템에 비해 적은 수의 부품으로 정밀한제어가 가능
- 반도체 및 마이크로 컴퓨터의 발달로 제어부품의 가격이 낮아지고 신뢰도 역시 비약적으로 향상됨.

엔진제어시스템 개발동향

▶ 배기가스의 문제

- 가솔린이 완전연소하면 주성분은 질소(N2), 이산화탄소 (CO2), 수증기(H2O) 로 분해됨
- 그러나 실제 연소과정을 통해서는 불완전연소로 인해 일 산화탄소, 질소산화물과 탄화수소 등의 각종 배기가스가 발생함.

연료절감의 문제

- 만일 완전연소가 가능하더라도 온실가스로 알려진 이산 화탄소의 발생량을 억제하기 위하여서는 연료의 소모량 을 줄이는 것만이 가능함
- 정밀한 엔진제어를 통하여 연비향상 및 이산화탄소 발생 량을 줄이기 위한 대책이 마련되어야 함

Engine Model

- Generally provided by the manufacturer.
- Output torque is a function of many variables such as air pressure, temperature engine speed and throttle angles.

Simplified map as a function of throttle angle

and engine speed only.

Engine Model

- Simulink Model
 - With the assumption of no transmission loss

Engine Model

2d Lookup Table Example

Run Vehicle Longitudinal Model Simulation

First, run Setup_Lincoln_model.m file to initialize vehicle parameters

Slider Gain Block

Use of Scroll Bar to determine the ratio of the gain.

User can adjust gain instantly using Graphical

Slider Gain

Low

Help

High

Close

User Interface

To Workspace Block

Save the variable to Matlab Workspace.

We
Engine Speed
Te
Ft
Engine Torque
tractive_force
v
Vehicle Speed
Acceleration
W
Pb
Wheel Speed
Brake Pressure

- Save Format
 - Structure with Time
 - Variable.time
 - Variable.signals.values
 - Structure
 - Time data is not saved
 - Array
 - · Only values are saved
- Open "ToWorkspace.mdl" file to test different format.

Plotting Simulation Result

Run result_plot.m file to analyze the simulation results.

Four subplots of "Vehicle Speed", "Engine Speed", "Acceleration", "Brake Pressure" will

be drawn.

Plotting Simulation Result

Traction Force and Wheel Slip

Same tractive force due to the assumption that even weight distribution between front and rear wheels

→ Not realistic !!

Push the break with its max

Slide the break gain to 1.

ABS Control

ABS Control Result

