Nội dung

- Mã khối lý tưởng
- Chế độ ECB
- Mã hoá xác suất
- Chế độ CBC
- Một số chế độ mã khối dựa trên mã dòng

Mã khối lý tưởng

- Trên thực tế, người ta xem AES hoặc 3DES như hệ mã khối lý tưởng E(k,x).
- Tức là, với mỗi khoá k, ánh xạ

 $F_k(x) = E(k,x) \label{eq:fk}$ là một hoán vị ngẫu nhiên độc lập.

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Nội dung

- Mã khối lý tưởng
- Chế độ ECB
- Mã hoá xác suất
- Chế độ CBC
- Một số chế độ mã khối dựa trên mã dòng

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Các chế độ sử dụng

- Câu hỏi: Làm thế nào để mã hoá thông điệp với độ dài bất kỳ?
 (dùng AES hoặc 3DES)
- Trả lời: Dùng một trong các chế độ sau:
- "ECB" = "Electronic code book"
- "CTR" = "Counter mode"
- "CBC" = "Cipher Block Chaining"
- "OFB" = "Output Feedback" v.v.

2501CT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Hoán vị ngẫu nhiên

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG :

ECB (Electronic code book)

- Dữ liệu được chia thành các khối khối b bit, với b = kích thước khối
- Với dữ liệu không chia hết cho b bit: Thêm dãy "10..0" để độ dài thông điệp chia hết cho b.
- Phép toán padding này cho có tính khả nghịch. Nó cho phép giải

Nội dung

- Mã khối lý tưởng
- Chế độ ECB
- Mã hoá xác suất
- Chế độ CBC
- Một số chế độ mã khối dựa trên mã dòng

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

ECB không an toàn

Hình: Bên trái là Bản rõ. Ở giữa là chế độ ECB. Bên phải là Mã hoá an toàn

- Vấn đề: Nếu $x_i = x_j$ thì $y_i = y_j$
- ECB chỉ an toàn khi mã hoá dữ liệu ngẫu nhiên (Ví dụ, mã hoá các

SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

ECB: giải mã

Oscar tấn công

- 1. Oscar mở một tài khoản tại ngân hàng A và một tài khoản tại ngân hàng B
- Oscar chuyển nhiều lần 1\$ từ tài khoản của anh ta ở ngân hàng A sang tài khoản
- 3. Oscar bắt gói tin trên đường truyền và nhận được các bản mã giống nhau $B_1 \Big\| B_2 \Big\| B_3 \Big\| B_4 \Big\| B_5$

và anh ta giữ lại bản mã $B_4\,$

4. Trong tương lai, mỗi khi thấy lệnh chuyển tiền từ B_1 tới B_3 , thay block thứ 4 bởi B_4

SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Ví dụ: Chuyển tiền giữa hai ngân hàng

- Giả sử: kích thước mỗi trường là n-bit (ví dụ 128 bit)
- 'n Giả sử: khoá k_{AB} để trao đổi thông tin giữa hai ngân hàng không thay đổi thường xuyên

Mã hoá xác suất

- Mã hóa hai lần của cùng một thông điệp sẽ cho hai bản mã khác nhau
- Bản mã phải dài hơn bản rõ
- Nói một cách nôm na:

Kích thước bản rõ + "dãy bit ngẫu nhiên" Kích thước bản mã =

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG :

Nội dung

- Mã khối lý tưởng
- Chế độ ECB
- Mã hoá xác suất
- Chế độ CBC
- Một số chế độ mã khối dựa trên mã dòng

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Dạng mã hoá

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Bài tập

Hãy viết hàm giải mã cho hàm mã hoá Enc được định nghĩa bởi

```
Enc(k, m):
 r = random()
 c = AES(k, r) ⊕ m
 return (r, c)
```


Chế độ CBC

nhiên, sau đó dùng y_i như "IV" cho x_{i+1} . Gửi IV cùng với Thuật toán. Chọn IV ("initialization value") một cách ngẫu

 $IV \parallel y_0 \parallel y_1 \parallel \dots \parallel y_n$

Nội dung

- Mã khối lý tưởng
- Chế độ ECB
- Mã hoá xác suất
- Chế độ CBC
- Một số chế độ mã khối dựa trên mã dòng

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Sử dụng IV như thế nào?

- IV không cần giữ bí mật
- Nhưng phải là "nonce" = "number used only once"
- Ví dụ: IV có thể là
- ngẫu nhiên "thật"
- bộ đếm "counter" (phải được lưu trữ bởi Alice)
- $\mathsf{ID}_A \parallel \mathsf{ID}_B \parallel$ time

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

CBC: công thức đại số

• $y_{-1} = IV$

- // Khởi tạo
- $y_i = E_k(y_{i-1} \oplus x_i)$ với $i = 0, 1, \dots$

CBC: giải mã

Padding cho CBC

• Padding n byte, với n > 0,

n	
u	
п	
п	
:	
n	

- Nếu không cần pad, thêm một khối giả
- Khi giải mã, loại bỏ pad.

Nội dung

- Mã khối lý tưởng
- Chế độ ECB
- Mã hoá xác suất
- Chế độ CBC

Một số chế độ mã khối dựa trên mã dòng

Bài tập

• Hãy viết công thức đại số cho mạch giải mã của chế độ CBC.

Mã dòng

Mã dòng

Sử dụng một hàm sinh số giả ngẫu nhiên

$$G: \mathcal{K} \to \{0,1\}^n,$$

là hàm đơn định từ không gian khoá đến dãy bit độ dài n

- Mã hoá $y = E_k(x) = G(k) \oplus x$
- Giải mã $x = D_k(y) = G(k) \oplus y$

SOICT VIỆN CÒNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Output Feedback (OFB) Chế độ

- Sử dụng IV ngẫu nhiên truyền cùng bản mã
- Không cần padding

Mã dòng và mã khối

- Các chế độ mã khối trong mục này đều dựa trên nguyên lý của hệ mã dòng: mã khối an toàn được dùng xây dựng các hàm sinh số giả ngẫu nhiên

$$G(k) = E_k(0) \| E_k(1) \| \cdots \| E_k(n)$$

• Hàm mã hoá và giải mã của mã dòng đều giống nhau

$$D_k(z) = E_k(z) = G(k) \oplus z$$

Cipher Feedback (CFB) Chế độ

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

OFB: công thức đại số

- $s_{-1} := IV$
- // Khởi tạo
- $s_i := E_k(s_{i-1})$
- // Khối bit giả ngẫu nhiên
- $y_i := s_i \oplus x_i$ $v\acute{o}i i = 0, 1, 2, ...$
- SOICT VÊN CÔNG NGHỆ HÔNG TIN VÀ TRUYỀN THÔNG.

Bài tập

Hãy mô tả mạch giải mã ở dạng công thức đại số cho chế độ CFB.

CFB: công thức đại số

- $y_{-1} := IV$
- // Khởi tạo
- $s_i := E_k(y_{i-1})$
- // Khối bit giả ngẫu nhiên
- SOICT VIÊN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG • $y_i := s_i \oplus x_i$ $v\acute{\sigma}i i = 0, 1, 2, ...$

Bài tập

Hãy mô tả mạch giải mã cho chế độ CTR.

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Chế độ Counter (CTR)

- Đảm bảo IV + Ctr không bao giờ lặp lại
- Ctr được bắt đầu từ 0 cho mỗi thông điệp; và tăng (Ctr=Ctr+1) sau mỗi khối của thông điệp.

SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

<u>Bà</u>: tập

- Xét thông điệp x gồm ℰ khối AES (ví dụ ℰ = 100). Alice mã hóa x dùng chế độ CTR (với Nonce ngẫu nhiên) và truyền bản mã kết quả tới Bob.
- ullet Do mạng lỗi, khối bản mã số $\ell/2$ bị mất trong khi truyền. Mọi bản mã khác được truyền và nhận đúng.
- Khi Bob giải mã bản mã nhận được, bao nhiêu khối bản rõ sẽ bị mất?

SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

tập

IV

- Xét thông điệp x gồm ℓ khối AES (ví dụ $\ell=100$). Alice mã hóa x dùng chế độ CBC và truyền bản mã kết quả tới Bob.
- Do mạng lỗi, khối bản mã số $\ell/2$ bị mất trong khi truyền. Mọi bản mã khác được truyền và nhận đúng.
- Khi Bob giải mã bản mã nhận được, bao nhiêu khối bản rõ sẽ bị mất?

SORT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG