CME 253A

Introduction to High Performance Computing and Parallel (GPU) Computing

STANFORD SUMMER SESSION 1

24 June 2019 | Y2E2 111

Ludovic Räss

Stanford University, Department of Geophysics Iraess@stanford.edu

CME 235A - Course information

Objectives | design a 3D parallel GPU Stokes / Elastic wave solver

- Resources
- Class schedule
- Course format
- Assignments
- Final project

CME 235A - Course information

Resources

• Online resources:

Stanford canvas: https://canvas.stanford.edu/courses/103823

- Course material (slides and codes) will be uploaded to canvas prior (if needed) and after (in general) each session.
- Do not hesitate to contact me if needed

email: lraess@stanford.edu

Slack: Ludovic Räss

CME 235A - Course information

Class schedule

- We will meet for 5 sessions:
 - Monday June 24 > Introduction + Matlab examples
 - Wednesday June 26 > GPU computing
 - Monday July 1 > Performance evaluation
 - Wednesday July 3 > Projects: 3D Elastic waves or Stokes flow
 - Monday July 15 > Final discussion
- 3:30pm to 5:20pm
- Location: Y2E2 111

CME 235A - Course information

Course format

- This course is a "hands-on" and is therefore interactive and dynamic
- General session structure: 1/ introduction to new material or next steps
 2/ quiet working time where you can ask for help/questions
- The assignment will be determined before the end of each session

CME 235A - Course information

Assignments

- Finalise the material and step we discussed in class
- Assignments will be given by the end of each session for the next one
- If you have to leave earlier or cannot attend a session, information will be available on Canvas or contact me via email (Iraess@stanford.edu)

CME 235A - Course information

Final project

- Objective: 3D GPU accelerated Stokes / elastic wave propagation solver
- Hand in: 1a/ Short presentation (few slides) about project [preferred]
 (motivation, results, your background, what you learned, what was difficult)
 1b/ Concise report including similar material as a presentation [alternative]
 2 / Commented codes ready to run and produce a figure
- During the last session (or part of it) we will have time for a short presentations of everyone's project results in short presentation format

CME 235A - Course information

Technicalities and computing resources

- Used software: Matlab (Octave or Python are also an option)
 CUDA + C
- Laptop with Unix shell (native in Linux and macOS, install Putty under windows)
- Optional sftp file transfer software (Filezilla, cyberduck, Transmit, ...)
- Account on CEES mazama GPU servers

Please give me your SUNet ID if you are attending the class but are not registered in Stanford Canvas - for GPU cluster account

CME 235A - Course information

Questions so far?

CME 253A

Introduction to High Performance Computing and Parallel (GPU) Computing

STANFORD SUMMER SESSION 1

24 June 2019 | Y2E2 111

Ludovic Räss

Stanford University, Department of Geophysics Iraess@stanford.edu

Session 1 - PDEs

Today's agenda

Lecture: Introduction - scientific GPU computing

Programming: 1/ diffusion and acoustic wave propagation in 1D
 2/ loop vs vectorised approach

Tasks: 1/ from 1D to 2D and 3D

2/2D acoustic to elastic

3/2D elastic to viscous

4/2D viscous vectorised to loop

Session 1 - PDEs

Today's agenda

• Lecture: Introduction - scientific GPU computing

Programming: 1/ diffusion and acoustic wave propagation in 1D
 2/ loop vs vectorised approach

Tasks: 1/ from 1D to 2D and 3D

2/2D acoustic to elastic

3/2D elastic to viscous

4/2D viscous vectorised to loop

What is a GPU

- Graphical Processing Unit (to paint the screen)
- Many small cores all doing the same job
- Large chip, close to memory
- High memory bandwidth important for PDEs!

Why to use a GPU

- Serial vs parallel execution > loop vs vectorised code
- Simultaneous calculations > increased concurrency
- Order of magnitude higher memory bandwidth & flop/s count

15 TFlop/s

700 GB/s

Supercomputing available on your desk!

Why to use a GPU

- HPC and supercomputing on your desktop
- World's fasted supercomputer Summit features
 27'648 Nvidia V100 GPUs
- Future exascale machines all feature GPUs (Intel + AMD)

Räss et al., 2018. Nature Scientific Reports

Programming the GPU: CUDA

- CUDA: provides vectorised indexes to C / C++ for parallel execution
- Building elements: thread, block, grid
- Max. 1024 threads per block!
- Assign one thread per grid point
- All threads read the same code loop bounds > if statements

Session 1 - PDEs

Today's agenda

• Lecture: Introduction - scientific GPU computing

Programming: 1/ diffusion and acoustic wave propagation in 1D
 2/ loop vs vectorised approach

Tasks: 1/ from 1D to 2D and 3D

2/2D acoustic to elastic

3/2D elastic to viscous

4/2D viscous vectorised to loop

1/ diffusion and acoustic wave propagation in 1D

Diffusion Acoustic wave $\frac{1}{k} \frac{\partial P}{\partial t} =$ $\rho \frac{\partial v_x}{\partial t} = -\frac{\partial P}{\partial x}$ % Physics % Physics Lx = 10;Lx = 10;= 1; D = 1;rho = 1;% Numerics % Numerics nx = 100;nx = 100;dx = Lx/nx;nt = 200;dx = Lx/nx; $dt = dx^2/D/2.1;$ nt = 200;x = (-Lx+dx)/2:dx:(Lx-dx)/2;dt = dx/sqrt(k/rho)/2.1;% Initial conditions = (-Lx+dx)/2:dx:(Lx-dx)/2; $T = \exp(-x.^2);$ % Initial conditions $= \exp(-x.^2);$ = [0*P 0];

Initial gaussian perturbation

1/ diffusion and acoustic wave propagation in 1D

Finite-difference method

$$\frac{\partial A}{\partial x} \approx \frac{A(ix+1) - A(ix)}{\Delta x}$$

CFL time step stability for diffusion and wave propagation

$$CFL_{diff} = \frac{\min(\Delta x_i)^2}{D \ 2.1 n_{dim}}$$

$$CFL_{acoust} = \frac{\min(\Delta x_i)}{\sqrt{k/rho} \ 2.1}$$

Staggered grid for computation

2/ loop vs vectorised approach

Replace all vectorised statements by for loops

Vectorised version	Loop version
<pre>V(2:end-1) = V(2:end-1) - dt*diff(P)/dx/rho;</pre>	<pre>for ix = 2:nx V(ix) = V(ix) - dt*(P(ix)-P(ix-1))/dx/rho; end</pre>

Session 1 - PDEs

Today's agenda

• Lecture: Introduction - scientific GPU computing

Programming: 1/ diffusion and acoustic wave propagation in 1D
 2/ loop vs vectorised approach

- Tasks: 1/ from 1D to 2D and 3D
 - 2/2D acoustic to elastic
 - 3/2D elastic to viscous
 - 4/2D viscous vectorised to loop

Task 1/ from 1D to 2D

	Diffusion	Acoustic wave
1D	$\frac{\partial T}{\partial t} = -\frac{\partial q_x}{\partial x}$	$\frac{1}{k}\frac{\partial P}{\partial t} = -\frac{\partial v_x}{\partial x}$
	$q_x = -D\frac{\partial T}{\partial x}$	$\rho \frac{\partial v_x}{\partial t} = -\frac{\partial P}{\partial x}$
	$\frac{\partial T}{\partial t} = -\left(\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y}\right)$	$\frac{1}{k}\frac{\partial P}{\partial t} = -\left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y}\right)$
2D	$q_x = -D\frac{\partial T}{\partial x}$	$\rho \frac{\partial v_x}{\partial t} = -\frac{\partial P}{\partial x}$
	$q_y = -D\frac{\partial T}{\partial y}$	$\rho \frac{\partial v_y}{\partial t} = -\frac{\partial P}{\partial y}$
hint	[x2,y2] = ndgrid(x,y);	[x2,y2] = ndgrid(x,y);

Initial gaussian perturbation

Task 1/ from 2D to 3D

	Diffusion	Acoustic wave
2D	$\frac{\partial T}{\partial t} = -\left(\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y}\right)$ $q_x = -D\frac{\partial T}{\partial x}$ $q_y = -D\frac{\partial T}{\partial y}$	$\frac{1}{k}\frac{\partial P}{\partial t} = -\left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y}\right)$ $\rho \frac{\partial v_x}{\partial t} = -\frac{\partial P}{\partial x}$ $\rho \frac{\partial v_y}{\partial t} = -\frac{\partial P}{\partial y}$
3D	$\frac{\partial T}{\partial t} = -\left(\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + \frac{\partial q_z}{\partial z}\right)$ $q_x = -D\frac{\partial T}{\partial x}$ $q_y = -D\frac{\partial T}{\partial y}$ $q_z = -D\frac{\partial T}{\partial z}$	$\frac{1}{k}\frac{\partial P}{\partial t} = -\left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}\right)$ $\rho \frac{\partial v_x}{\partial t} = -\frac{\partial P}{\partial x}$ $\rho \frac{\partial v_y}{\partial t} = -\frac{\partial P}{\partial y}$ $\rho \frac{\partial v_z}{\partial t} = -\frac{\partial P}{\partial z}$

Task 2/ 2D acoustic to elastic

Acoustic waves	Elastic waves
$\frac{1}{k}\frac{\partial P}{\partial t} = -\left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y}\right)$	$\frac{1}{k}\frac{\partial P}{\partial t} = -\left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y}\right)$
$\rho \frac{\partial v_x}{\partial t} = -\frac{\partial P}{\partial x}$	$\rho \frac{\partial v_x}{\partial t} = -\frac{\partial P}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y}$
$\rho \frac{\partial v_y}{\partial t} = -\frac{\partial P}{\partial y}$	$\rho \frac{\partial v_y}{\partial t} = -\frac{\partial P}{\partial y} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{xy}}{\partial x}$
	$\frac{\partial \tau_{xx}}{\partial t} = 2G \left(\frac{\partial v_x}{\partial x} - \frac{1}{3} \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} \right) \right)$
	$\frac{\partial \tau_{yy}}{\partial t} = 2G \left(\frac{\partial v_y}{\partial y} - \frac{1}{3} \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} \right) \right)$
	$\frac{\partial \tau_{xy}}{\partial t} = 2G \frac{1}{2} \left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} \right)$

Task 3/ 2D elastic to viscous

Elastic waves	Viscous flow
$\frac{1}{k}\frac{\partial P}{\partial t} = -\left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y}\right)$	$\frac{1}{k}\frac{\partial P}{\partial t} = -\left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y}\right)$
$\rho \frac{\partial v_x}{\partial t} = -\frac{\partial P}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y}$	$\rho \frac{\partial v_x}{\partial t} = -\frac{\partial P}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y}$
$\rho \frac{\partial v_y}{\partial t} = -\frac{\partial P}{\partial y} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{xy}}{\partial x}$	$\rho \frac{\partial v_y}{\partial t} = -\frac{\partial P}{\partial y} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{xy}}{\partial x}$
$\frac{\partial \tau_{xx}}{\partial t} = 2G \left(\frac{\partial v_x}{\partial x} - \frac{1}{3} \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} \right) \right)$	$\tau_{xx} = 2\eta \left(\frac{\partial v_x}{\partial x} - \frac{1}{3} \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} \right) \right)$
$\frac{\partial \tau_{yy}}{\partial t} = 2G \left(\frac{\partial v_y}{\partial y} - \frac{1}{3} \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} \right) \right)$	$\tau_{yy} = 2\eta \left(\frac{\partial v_y}{\partial y} - \frac{1}{3} \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} \right) \right)$
$\frac{\partial \tau_{xy}}{\partial t} = 2G \frac{1}{2} \left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} \right)$	$\tau_{xy} = 2\eta \frac{1}{2} \left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} \right)$

Task 4/ 2D viscous vectorised to loop

Use linear 1D indexing in 2D and 3D:

$$P(ix,iy) => P(ix+iy*nx)$$

 $P(ix,iy,iz) => P(ix+iy*nx+iz*nx*ny)$

Check bounds with loop start and end index

Outlook - Session 2

- Topic: Intro to GPU computing
- Programming: Wave propagation in 1D and 2D (GPU CUDA C version)
- Tasks: 2D and 3D acoustic, elastic and/or viscous

Mandatory for session 2: 2D acoustic/elastic/viscous loop code.

Please give me your SUNet ID if you are attending the class but are not registered in Stanford Canvas - for GPU cluster account

That's it for today

- wp.unil.ch/geocomputing/
- Iraess@stanford.edu

