CS243: Introduction to Algorithmic Game Theory

Crowdsourcing (Dengji ZHAO)

SIST, ShanghaiTech University, China

Outline

- Overview
- Crowdsourcing Markets
- 3 Crowdsourcing Contests
- Peer Prediction

Motivations

Overview

- Imagine you need labels for 10,000 images. How can you tackle this problem?
- Imagine you need a new software architecture for your company's inventory management system. Due to the limited budget, is it possible for you to run an online contest instead of hiring a developer to design the new system.

Crowdsourcing

Crowdsourcing describes the act of outsourcing a task or multiple tasks to a large, undefined group of workers via ar open call.

Motivations

- Imagine you need labels for 10,000 images. How can you tackle this problem?
- Imagine you need a new software architecture for your company's inventory management system. Due to the limited budget, is it possible for you to run an online contest instead of hiring a developer to design the new system.

Crowdsourcing

Crowdsourcing describes the act of outsourcing a task or multiple tasks to a large, undefined group of workers via an open call.

Examples

Overview

- Peer Production Systems No employer-employee relationships. e.g., Wikipedia.
- Paid Crowdsourcing Markets Some tasks, like labeling images, require payments to encourage contributions. e.g., Amazon Mechanical Turk.
- Crowdsourcing Contests Workers are invited to compete to submit work in response to a job posting. e.g., DARPA Red Balloon Challenge.

Outline

- Overview
- 2 Crowdsourcing Markets
- 3 Crowdsourcing Contests
- Peer Prediction

Examples: Amazon Mechanical Turk

The Setting for Crowdsourcing Platforms

Overview

- There is one requester with budget *B*, and *n* workers arrive sequentially (in a random order).
- Each worker a_i has cost $c_i \ge 0$ for each task and is willing to perform at most $t_i \ge 0$ tasks.
- The worker's utility per task if paid price p_i is $u_i = p_i c_i$. (Assume all tasks are of the same kind. e.g., labeling.)
- In every round, a new worker arrives and reports c_i and t_i.
 The requester decides how many tasks to allocate and the price per task.

Pricing Mechanisms for Crowdsourcing Platforms

- Pay $p = c_i$ per task: Not truthful!
- Pay a fixed price p* per task: May be too high (wasting budget) or too low (no enough workers)!

Target

Maximize the number of tasks that are completed without exceeding the budget and be strategy-proof.

Dynamic Pricing

Overview

Idea of Threshold Price

The mechanism calculates a threshold price p based on the reports from past workers, and then uses this price for a while (for next m workers, get allocated when cost is below p and pay p, otherwise get rejected), until the threshold price is updated again.

Algorithm: Get Threshold

An Intuition

What if the requester can know next *m* workers' type profile?

 If next m workers come with ascending costs $(c_1 \leq c_2 \leq \cdots \leq c_m)$, then after each worker comes, the requester only to consider whether it is worth to improve the price (to allocate tasks to the new arrival worker).

Algorithm: Get Threshold

Question

What if the requester can know next m workers' type profile? (assuming $c_1 \le c_2 \le \cdots \le c_m$.) What's the price p for them?

- Let x_i be the number of tasks allocated to i
- When worker 1 comes, it is always worth improving price to $p = c_1$ to allocate $x_i = t_i$.
- When worker i comes, it is worth improving price to $p = c_i$ if we can further allocate at least one more task to i. We shall check whether $c_i(1 + \sum_{j < i} x_j) \le B$ (we can afford the payments for first i agents when the price is c_i).
- Allocate as much work as possible to worker i: $x_i = \min \left\{ t_i, \lfloor B/p \rfloor \sum_{j < i} x_j \right\}$

Algorithm: Get Threshold

Simulation

But the requester cannot know the type profile of next *m* workers. She can simulate it by assuming they have the same profile with past *m* workers.

Input: the past m workers' reports $\{(c_1, t_1), \ldots, (c_m, t_m)\}.$

- Sort reports such that $c_1 \leq c_2 \leq \cdots \leq c_m$.
- Set i = 1.
- **3** While $c_i \leq B/(1 + \sum_{j < i} x_j)$ do:

 - **3** i = i + 1
- Output p for the next m workers.

Online Mechanism for Task Pricing

Question

Overview

- 1. How to decide *m*?
- 2. What's the price for first *m* workers?

Solution

m can also be determined dynamically!

Online Mechanism for Task Pricing

The Whole Pricing Mechanism (Singer and Mittal, 2011):

- First set $p_0 = \epsilon$ for the first worker.
- 2 Then we have the history of the first worker, set m = 1 and we get a price p_1 for the next worker.
- Then we have the history of the first 2 workers, set m = 2 and we get a price p_2 for the next 2 workers.
- Then we have the history of the first 4 workers, set m = 4 and we get a price p_3 for the next 4 workers.
- **5**
- Then we have the history of the first 2^k workers, set $m = 2^k$ and we get a price p_{k+1} for the next 2^k workers.
- For each bucket of workers, set $B_k = (2^{k-1}/n)B$.

Online Mechanism for Task Pricing

Theorem

Overview

The online pricing mechanism is *budget feasible* and *strategy-proof*.

What's More: Crowdsourcing Beyond Markets

Sometimes your labour is freely used!

0000000

- Overview
- Crowdsourcing Markets
- Crowdsourcing Contests
- Peer Prediction

Examples: DARPA Red Balloon Challenge

Overview

Winning Solution in DARPA Red Balloon Challenge

What's More: Sybil Attack

 If an agent pretends to be multiple agents to get more rewards, it is called Sybil attack.

Crowdsourcing Contests

Question

What's the possible Sybil attack in the winning solution in DARPA Red Balloon Challenge?

Outline

- **Peer Prediction**

Prediction Markets

Prediction Market

A prediction market is a financial market that is designed for information aggregation and prediction.

 Payoffs of the traded item is associated with outcomes of future events.

Prediction Markets

Construct a prediction market to predict an uncertain event:

- Turn an uncertain event of interest into a random variable.
- Create a financial contract, and it's payoff = value of the random variable.
- Open a market in the financial contract and attract traders to wager and speculate (gambling).

Prediction Markets

Overview

Key Aspect: payoff is uncertain!

In theory, price \approx (expectation of the random variable | all information hold by the market).

Non-Market Alternative vs. Markets

- Ask Experts
 - Identifying experts can be hard
 - Incentives
 - Combining opinions can be difficult

- Prediction Markets
 - Self-selection
 - Monetary incentive and more
 - Real-time and self-organizing

Non-Market Alternative vs. Markets

- Machine Learning
 - Need huge historical data
 - Past and future are related
 - Hard to incorporate recent new information

- Prediction Markets
 - No need for data
 - No assumption on past and future
 - Immediately incorporate new information

Incentives for Experts: Proper Scoring Rules

- Report a probability estimate: $r = Pr\{r_1, r_2, \dots, r_n\}$.
- Get payment $s_i(r)$ if outcome ω_i happens.
- Proper: incentive compatible
 - A risk neutral agent should chose $r_i = \Pr(\omega_i)$ to maximize the expected profit.
- Proper scoring rules
 - Logarithmic: $s_i(r) = a + b \log(r_i)$
 - Quadratic: $s_i(r) = a + 2br_i b\sum_i r_i^2$

Prediction Market: Risk Management

• Why buying insurance?

Overview

- If something is terrible to me, I buy a bunch of
 - \$1 if something happens; \$0 otherwise
- If something really happens, I am compensated.

Prediction Market: Risk Management

• How insurance market works?

Overview

- I am risk averse $(u(x) = \log(x))$, insurance company is risk neutral (u(x) = x). We both believe that *something* might happen with probability 0.01 and value $x = 20000 10000 \times 1$ (something happens).
- My expected utility:

$$\mathbb{E}[u] = 0.01 \times \log(10000) + 0.99 \times \log(20000) \approx 4.2980$$

My expected utility after buying \$10000 insurance for \$125:

$$\mathbb{E}[u] = 0.01 \log(10000 + 10000 - 125) + 0.99 \log(20000 - 125)$$

 $\approx 4.2983 > 4.2980$

- Expected utility of insurance company is $0.01 \times (-9875) + 0.99 \times 125 = 25 > 0$
- Both insurance company and I are happy!

Prediction Market: Risk Management

Security Market

Overview

Note, the insurance in the above example is in fact a contract

\$10000 if something happens; \$0 otherwise

 Market mechanism is to allocate risk and allow speculation among participants.

Prediction Market: Examples

Augur (www.augur.net)

Overview

Prediction Market: Examples

Successful results:

What's More: Open Questions

Overview

5 Open Questions in Prediction Markets (Wolfers and Zitzewitz, 2006)

- How to attract uninformed trader?
- How to tradeoff interest and contractability?
- How to limit manipulation?
- Are markets well calibrated on small probability?
- How to separate correlation from causation?

- Pricing Mechanisms for Crowdsourcing Markets by Yaron Singer and Manas Mittal (WWW 2013)
- Time-critical Social Mobilization
 by G Pickard, W Pan, et al. (Science 2011)
- Prediction Markets: Economics, Computation, and Mechanism Design
 by Yiling Chen (EC-tutorial 2007)