1 CONJUNTOS DE NÚMEROS REALES

1.1. Repaso de Intervalos, Entornos y Valor Absoluto

 Se define el valor absoluto de un número como la distancia al cero. Se calcula tomando el número con signo positivo.

Distancia entre dos números: Entre a y b hay una distancia de |a-b|

Ejemplo: Determina la distancia entre los números -2 y $_4$:

2 FUNCIONES

2.1. Definición

En el lenguaje matemático se dice que y es **función** de x cuando y depende de x.

3 CARACTERÍSTICAS DE UNA FUNCIÓN

3.1. Dominio y recorrido

El conjunto de los posibles valores de la variable independiente se llama **dominio de la función** (Dom(f)); y el conjunto de valores que toma la variable dependiente, **imagen o recorrido de la función** (Im(f)).

Ejemplo $y=x^2$ o $f(x)=x^2$, x es la variable independiente e y es la variable dependiente. El $Dom(f)=\{x\in \mathbf{R}|\exists y=f(x)\}$

3.2. Crecimiento y decrecimiento

3.3. Cortes con ejes

3.4. Funciones acotadas

3.5. Funciones periódicas

3.6. Funciones inyectivas y biyectivas

3.7. Continuidad

De manera informal, una función es continua si se puede dibujar con un solo trazo, o lo que es lo mismo, sin levantar "del papel.el "bolígrafo". Para dar una definición

4 CONTINUIDAD Y LÍMITES

4.1. Límites en un punto

Dado $x_0 \neq \pm \infty$, decimos que $\lim_{x \to x_0} f(x) = l$ cuando ocurre que si x toma valores próximos al número x_0 (tanto menores como mayores), los correspondientes valores de f(x) se aproximan al número l

4.2. Límites laterales

4.2.1. Límites por la derecha

Dado $x_0 \neq \pm \infty$, decimos que $\lim_{x \to x_0^+} f(x) = l$ cuando ocurre que si x toma valores próximos al número x_0 pero mayores que él, los correspondientes valores de f(x) se aproximan al número l

4.2.2. Límites por la izquierda

Dado $x_0 \neq \pm \infty$, decimos que $\lim_{x \to x_0^-} f(x) = l$ cuando ocurre que si x toma valores próximos al número x_0 pero menores que él, los correspondientes valores de f(x) se aproximan al número l

Teorema de unicidad del límite: Dado $x_0 \neq \pm \infty$,

$$\lim_{x\to x_0} f(x) = l \leftrightarrow \lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x) = l$$

Por lo tanto si los límites laterales no coinciden, el límite no existe.

Ejemplo: Calcula el límite de la función $f(x) = \frac{1}{x}$ cuando $x \to 0$.

$$\lim_{x \to 0^{-}} \frac{1}{x} = -\infty$$

Derivatives and Integrals

Basic Differentiation Rules

1.
$$\frac{d}{dx}[cu] = cu'$$

3.
$$\frac{d}{dx}[uv] = uv' + vu'$$
5.
$$\frac{d}{dx}[c] = 0$$
7.
$$\frac{d}{dx}[x] = 1$$

$$5. \ \frac{\overline{d}}{dx}[c] = 0$$

7.
$$\frac{d}{dx}[x] = 1$$

9.
$$\frac{d}{dx}[ln \quad u] = \frac{u'}{u}$$

11.
$$\frac{d}{dt}[\sin u] = (\cos u)u'$$

13.
$$\frac{dx}{dx}[tan \quad u] = (sec^2 \quad u)u$$

15.
$$\frac{dx}{dx}[sec \ u] = (sec \ u \ tan \ u)u'$$

17.
$$\frac{du}{dx}[arcsin \quad u] = \frac{u'}{\sqrt{-1 - u^2}}$$

19.
$$\frac{d}{dx}[arctan \quad u] = \frac{u'}{1+u^2}$$

7.
$$\frac{d}{dx}[x] = 1$$

9. $\frac{d}{dx}[\ln u] = \frac{u'}{u}$

11. $\frac{d}{dx}[\sin u] = (\cos u)u'$

13. $\frac{d}{dx}[\tan u] = (\sec^2 u)u'$

15. $\frac{d}{dx}[\sec u] = (\sec u \tan u)u'$

17. $\frac{d}{dx}[\arcsin u] = \frac{u'}{\sqrt{-1 - u^2}}$

19. $\frac{d}{dx}[\arctan u] = \frac{u'}{1 + u^2}$

21. $\frac{d}{dx}[\arccos u] = \frac{u'}{|u|\sqrt{u^2 - 1}}$

$$2. \frac{d}{dx}[u \pm v] = u' \pm v'$$

4.
$$\frac{du}{dx}\left[\frac{u}{v}\right] = \frac{vu' - uv'}{v^2}$$

6.
$$\frac{d}{dx}[u^n] = nu^{n-1} \quad u$$

2.
$$\frac{d}{dx}[u \pm v] = u' \pm v'$$
4. $\frac{d}{dx}[\frac{u}{v}] = \frac{vu' - uv'}{v^2}$
6. $\frac{d}{dx}[u^n] = nu^{n-1} \quad u'$
8. $\frac{d}{dx}[|u|] = \frac{u}{|u|}(u'), \quad u \neq 0$

$$10. \ \frac{d}{dx}[e^u] = e^u \quad u'$$

12.
$$\frac{d}{dt}[\cos u] = -(\sin u)u'$$

14.
$$\frac{dd}{dx}[cot \quad u] = -(csc^2 \quad u)u'$$

16.
$$\frac{dx}{dx}[csc \quad u] = -(csc \quad u \quad cot \quad u)u'$$

18.
$$\frac{du}{dx}[arccos \quad u] = \frac{-u'}{\sqrt{1-u^2}}$$

20.
$$\frac{d}{dx}[arccot \quad u] = \frac{\sqrt{1-u'}}{1+u^2}$$

$$dx^{[1]} = |u|^{(u)}, \quad u \neq 0$$

$$10. \frac{d}{dx}[e^{u}] = e^{u} \quad u'$$

$$12. \frac{d}{dx}[\cos u] = -(\sin u)u'$$

$$14. \frac{d}{dx}[\cot u] = -(\csc^{2} u)u'$$

$$16. \frac{d}{dx}[\csc u] = -(\csc u \cot u)u'$$

$$18. \frac{d}{dx}[\arccos u] = \frac{-u'}{\sqrt{1-u^{2}}}$$

$$20. \frac{d}{dx}[\arccos u] = \frac{-u'}{1+u^{2}}$$

$$22. \frac{d}{dx}[\arccos u] = \frac{-u'}{|u|\sqrt{u^{2}-1}}$$

Basic Integration Formulas

1.
$$\int k f(u) du = k \int f(u) du$$

$$3. \int du = u + C$$

$$5. \int \frac{d}{u} = \ln|u| + C$$

11.
$$\int sec \quad u \quad du = ln \mid sec \quad u + tan \quad du \mid +C$$

15.
$$\int sec \quad u \quad tan \quad u \quad du = sec \quad u + C$$

Función	Derivada
f(x) = k	f'(x) = 0
f(x) = x	f'(x) = 1
$f(x) = x^n$	$f'(x) = n \cdot x^{n-1}$
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$
$f(x) = \sqrt[n]{x}$	$f'(x) = \frac{1}{n \cdot \sqrt[n]{x^{n-1}}}$ $f'(x) = \frac{1}{x}$ $f'(x) = \frac{1}{x} \cdot \frac{1}{\ln a}$
$f(x) = \ln x$	$f'(x) = \frac{1}{x}$
$f(x) = \log_a x$	$f'(x) = \frac{1}{x} \cdot \frac{1}{\ln a}$
$f(x) = e^x$	$f'(x) = e^x$
$f(x) = a^x$	$f'(x) = a^x \cdot \ln a$
$f(x) = \sin x$	$f'(x) = \cos x$
$f(x) = \cos x$	$f'(x) = -\sin x$
$f(x) = \tan x$	$f'(x) = \frac{1}{\cos^2 x}$

Operaciones con derivadas $y = u + v \rightarrow y' = u' + v'$

$$y = u - v \rightarrow y' = u' - v'$$

$$y = K \cdot u \to y' = K \cdot u'$$

$$y = u \cdot v \to y' = u' \cdot v + u \cdot v'$$

$$y = \frac{u}{v} \to y' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

$$y = \frac{u}{v} \rightarrow y' = \frac{u' \cdot v - u \cdot v}{v^2}$$

Regla de la cadena Dada una función compuesta:

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$

Ejemplo Dado la función f(x)