Serial No.: 10/596,126

Amendment After NON-FINAL OFFICE ACTION

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior revisions and listings of claims in the

application.

Listing of Claims:

1. (Withdrawn) A growth method of nitride semiconductor layer comprising: a first

step for growing a first nitride semiconductor layer on an $A1_xGa_vIn_{1-x-v}N$ ($0 \le x \le 1$, $0 < y \le 1$,

 $0 < x + y \le 1$) layer;

a second step for reducing the thickness of the first nitride semiconductor layer by growth

interruption; and,

a third step for growing a second nitride semiconductor layer having a band gap energy

higher than that of the first nitride semiconductor layer on the first nitride semiconductor layer

with the reduced thickness.

2. (Withdrawn) The growth method of nitride semiconductor layer in claim 1,

wherein at the first step, an In source and a nitrogen source is used for growing the first nitride

semiconductor layer.

3. (Withdrawn) The growth method of nitride semiconductor layer in claim 2,

wherein an Ga source is further used for the first nitride semiconductor layer and the amount of

the Ga source is very small as compared to the amount of the In source.

2

Serial No.: 10/596,126

Amendment After NON-FINAL OFFICE ACTION

4. (Withdrawn) The growth method of nitride semiconductor layer in claim 3, wherein at the second step, the growth interruption is performed by supplying the nitrogen

source with the supply of the In source intercepted.

5. (Withdrawn) The growth method of nitride semiconductor layer in claim 2,

wherein at the second step, the growth interruption is performed by supplying the nitrogen

source with the supply of the In source intercepted.

6. (Withdrawn) The growth method of nitride semiconductor layer in claim 1,

wherein at the second step, the reduced first nitride semiconductor layer has a quantum well

structure.

7. (Withdrawn) The growth method of nitride semiconductor layer in claim 1,

wherein at the first step, the first nitride semiconductor layer is grown at a temperature of 700°C

to 800°C.

(Withdrawn) The growth method of nitride semiconductor layer in claim 1, 8.

wherein the temperature of the first nitride semiconductor during the growth and the growth

interruption is maintained.

9. (Withdrawn) The growth method of nitride semiconductor layer in claim 1,

wherein at the second step, the growth interruption time is equal to or less than 60 seconds.

3

Serial No.: 10/596,126

Amendment After NON-FINAL OFFICE ACTION

10. (Withdrawn) The growth method of nitride semiconductor layer in claim 1, wherein the second nitride semiconductor layer is grown at a temperature equal to or higher than that of the first nitride semiconductor layer.

11. (Currently Amended) A nitride semiconductor light emitting device <u>for emitting</u> <u>ultraviolet light comprising</u>:

a substrate;

at least one nitride semiconductor layer grown on the substrate and including a top layer of $A1_xGa_yIn_{1-x-y}N$ ($0\le x\le 1$, $0< y\le 1$, $0< x+y\le 1$);

a single quantum well layer grown on the top layer of $A1_xGa_yIn_{1-x-y}N$ ($0\le x\le 1$, $0< y\le 1$, $0< x+y\le 1$), the quantum well layer being made of In-rich InGaN resulting from the lattice mismatch with the top layer of $A1_xGa_yIn_{1-x-y}N$ ($0\le x\le 1$, $0< y\le 1$, $0< x+y\le 1$) and Ga in the In-rich InGaN being mainly supplied from the top layer of $A1_xGa_yIn_{1-x-y}N$ ($0\le x\le 1$, $0< y\le 1$, $0< x+y\le 1$); and,

an additional nitride semiconductor layer grown on the In-rich InGaN quantum well layer and having a band gap energy higher than that of the In-rich InGaN quantum well layer;

wherein the In-rich InGaN quantum well layer comprises an In-rich region formed of $In_xGa_{1-x}N$, where x in the In-rich region of the quantum well layer is greater than 0.5 and less than or equal to 0.8 within a range of 0.5 to 0.8, a first compositional grading region with In content increasing between the top layer of $A1_xGa_yIn_{1-x-y}N$ ($0 \le x \le 1$, $0 < y \le 1$, $0 < x + y \le 1$) and the In-rich region, and a second compositional grading region with In content decreasing between the

Serial No.: 10/596,126

Amendment After NON-FINAL OFFICE ACTION

In-rich region and the additional nitride semiconductor layer wherein the second compositional grading region substantially overlies the first compositional grading region,

wherein the light emitting device is configured to emit ultraviolet light using said In-rich InGaN quantum well layer,

wherein the quantum well layer is grown using an In source and a nitrogen source, and the thickness of the quantum well is reduced by growth interruption which is performed by supplying the nitrogen source with the supply of the In source intercepted to flatten the surface of the quantum well layer.

12. (Previously Presented) The nitride semiconductor light emitting device in claim 11, wherein the quantum well layer is formed of $In_xGa_{1-x}N$ and x in the In-rich region of the quantum well layer is equal to or more than 0.6.

13-14. (Cancelled)

- 15. (Original) The nitride semiconductor light emitting device in claim 11, wherein the thickness of the quantum well is equal to or less than 2nm.
 - 16. (Cancelled)
- 17. (Previously Presented) The nitride semiconductor light emitting device in claim 11, wherein the additional nitride semiconductor is formed of $Al_vGa_{1-v}N$ ($0 \le y \le 1$).

Serial No.: 10/596,126

Amendment After NON-FINAL OFFICE ACTION

18. (Previously Presented) The nitride semiconductor light emitting device in claim 11, further comprising at least one barrier layer of Al_vGa_{1-v}N (0≤y≤1) adjacent to the quantum well layer and having a band gap energy higher than that of the additional nitride semiconductor layer.

- 19. (Original) The nitride semiconductor light emitting device in claim 18, wherein the at least one barrier layer of $Al_vGa_{1-v}N$ ($0 \le y \le 1$) has a thickness equal to or less than 5nm.
- 20. The nitride semiconductor light emitting device in claim 18, (Original) wherein the quantum well layer and the at least barrier layer of Al_yGa_{1-y}N (0≤y≤1) are alternately laminated to form a multi-quantum well structure.
- 21. (Previously Presented) The nitride semiconductor light emitting device in claim 20, wherein the pairs of the quantum well and the at least barrier layer of Al_yGa_{1-y}N $(0 \le y \le 1)$ are equal to or less than 100 pairs.
- 22. (Previously Presented) The nitride semiconductor light emitting device in claim 11, wherein the top layer of $Al_xGa_yIn_{1-x-y}N$ ($0 \le x \le 1$, $0 < y \le 1$, $0 < x + y \le 1$) is GaN.
- 23. (Original) The nitride semiconductor light emitting device in claim 12, x in the In-rich region of the quantum well layer is equal to or less than 0.7.