RELACJE

DEF. Relacją w produkcie $A_1 \times ... \times A_n$ (relacją n-argumentową) nazywamy dowolny podzbiór

$$R \subseteq A_1 \times \ldots \times A_n$$
.

DEF. Relację $R \subseteq A \times B$ nazywamy relacją między elementami zbioru A, a elementami zbioru B.

DEF. Relację $R \subseteq A^2 = A \times A$ nazywamy relacją w (na) zbiorze A.

DEF. Dla dowolnej 2-argumentowej R określamy zbiory:

1. Dziedzina relacji:
$$D(R) = \begin{cases} x \in A: & \exists (x, y) \in R \\ y \in B \end{cases}$$

2. Przeciwdziedzina relacji:
$$D^*(R) = \left\{ y \in B: \exists (x, y) \in R \right\}$$

4. *Pole relacji*:
$$P(R) = D(R) \cup D^*(R)$$

5. Relacja prawostronnie jednoznaczna (jednoznaczna, inaczej: jest funkcją), jeżeli

$$\forall xRy \land xRz \Rightarrow y=z$$
 $x, y, z \in \Re$

Jeżeli R jest funkcją, to D(R) nazywamy zbiorem jej argumentów, zaś $D^*(R)$ – zbiorem jej wartości. Jeżeli argumentowi x funkcja R przyporządkowuje wartość y, to mówimy, że y jest wartością funkcji R dla argumentu x, i zapisujemy to w postaci : y = R(x) (zamiast R zwykle używamy oznaczenia f).

6. Relacja R jest lewostronnie jednoznaczna (odwrotnie jednoznaczna), jeżeli:

$$\forall xRy \land zRy \Rightarrow x=z$$
 $x, y, z \in \Re$

7. Relacja, która jest lewostronnie i prawostronnie jednoznaczna jest *funkcją wzajemnie jednoznaczną*

ALGEBRA RELACJI

Niech $R, S \subseteq U$.

Na relacjach określamy następujące działania:

Suma: $R \cup S$ Iloczyn: $R \cap S$ tak jak dla zbiorów Dopelopelne: R'

Relacja *odwrotna* do relacji R:

$$R^{-1} = \{ \langle y, x \rangle : \langle x, y \rangle \in R \}$$

Mamy: $DR^{-1} = D^*R$ oraz $D^*R^{-1} = DR$

Superpozycja (złożenie) relacji R i S:

$$S \circ R = \{\langle x, y \rangle : \exists z (\langle x, z \rangle \in R \land \langle z, y \rangle \in S)\}$$

PRAWA algebry relacji:

$$\left(R^{-1}\right)^{-1} = R$$

$$(R \cup S)^{-1} = R^{-1} \cup S^{-1}$$

$$(R \cap S)^{-1} = R^{-1} \cap S^{-1}$$

$$(R')^{-1} = (R^{-1})'$$

$$(R \circ S) \circ T = R \circ (S \circ T)$$

$$(R \cup S) \circ T = (R \circ T) \cup (S \circ T)$$

$$R \circ (S \cup T) = (R \circ S) \cup (R \circ T)$$

$$(S \circ R)^{-1} = R^{-1} \circ S^{-1}$$

TYPY RELACJI W ZBIORZE

Niech $R \subset A \times A$.

Notacja:

Piszemy xRy zamiast $\langle x, y \rangle \in R$.

Piszemy $R(x_1,...,x_n)$ zamiast $\langle x_1,...,x_n \rangle \in R$

DEF. Relacja identyczności w zbiorze A:
$$I_A = \left\{ \langle x, x \rangle : x \in A \right\}$$
$$\bigvee_{x,y \in A} \left(x I_A y \longleftrightarrow x = y \right)$$

Nazwa typu	Definicja	Twierdzenie (⇔)
Zwrotna	$\bigvee_{x \in A} xRx$	$I_{\scriptscriptstyle A}\subseteq R$
Symetryczna	$\bigvee_{x,y\in A} (xRy \Rightarrow yRx)$	$R^{-1} \subseteq R \Leftrightarrow R^{-1} = R$
Przechodnia	$\bigvee_{x,y,z\in A} ((xRy \land yRz) \Rightarrow xRz)$	$R \circ R \subseteq R$
Przeciwzwrotna	$\bigvee_{x \in A} \neg (xRx)$	$R \cap I_A = \emptyset$
Przeciwsymetryczna	$\bigvee_{x,y\in A} (xRy \Longrightarrow \neg (yRx))$	$R \cap R^{-1} = \emptyset$
Antysymetryczna	$\bigvee_{x,y\in A} ((xRy \land yRx) \Rightarrow x = y)$	$R \cap R^{-1} \subseteq I_A$
Spójna	$\bigvee_{x,y\in A} (xRy \vee yRx)$	$R \cup R^{-1} = A^2$
Słabospójna	$\bigvee_{x,y\in A} (xRy \lor x = y \lor yRx)$	$R \cup I_A \cup R^{-1} = A^2$

FUNKCJE

DEF. Funkcją nazywamy dowolny podzbiór $f \subseteq A \times B$, taki że dla dowolnych $x \in A$ i $y_1, y_2 \in B$:

$$(x, y_1) \in f \land (x, y_2) \in f \implies y_1 = y_2.$$

Jeżeli $(x, y) \in f$, to : x – argument funkcji f, y – wartość funkcji f. Zamiast $(x, y) \in f$ piszemy y = f(x).

Dziedzina funkcji f (zbiór argumentów):

$$D_f = \left\{ x \in A : \exists y \in B \left(x, y \right) \in f \right\} = \left\{ x \in A : \exists y \in B \ y = f(x) \right\}$$

Przeciwdziedzina funkcji f (zbiór wartości):

$$W_f = \{ y \in B : \exists x \in A (x, y) \in f \} = \{ y \in B : \exists x \in A \ y = f(x) \}$$

DEF. Jeżeli $D_f = X$ i $W_f \subseteq Y$, to mówimy, że f jest funkcją określoną na zbiorze X i o wartościach w zbiorze Y. Piszemy $f: X \rightarrow Y$. Mówimy też, że funkcja f przekształca zbiór X w zbiór Y.

Rodzaje funkcji:

1. $f: X \to Y$ jest "na" (surjekcja), jeżeli $W_f = Y$.

Piszemy: $f: X \xrightarrow{na} Y$

Fakt: $f: D_f \xrightarrow{na} W_f$

2. $f: X \rightarrow Y$ jest różnowartościowa (injekcja), jeżeli

$$\forall x_1, x_2 \in X(x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

$$\forall x_1, x_2 \in X (x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2))$$

$$\forall x_1, x_2 \in X (f(x_1) = f(x_2) \Rightarrow x_1 = x_2)$$

Piszemy: $f: X \xrightarrow{1-1} Y$

3. $f: X \to Y$ jest wzajemnie jednoznaczna (bijekcja), jeżeli $f: X \xrightarrow{1-1, na} Y$.

Fakt: Dla funkcji różnowartościowej $f: D_f \xrightarrow{1-1, na} W_f$.

Złożenie funkcji

DEF. *Złożeniem (superpozycją)* funkcji f i g nazywamy funkcję $g \circ f$ zdefiniowaną następująco:

$$g \circ f = \{(x, z) \in D_f \times W_f : \exists y ((x, y) \in f \land (y, z) \in g)\}$$

Fakt:

1.
$$D_{g \circ f} = \{ x \in D_f : f(x) \in D_g \}$$

2.
$$(g \circ f)(x) = z \Leftrightarrow \exists y \in D_x(y = f(x) \land g(y) = z)$$

3.
$$\forall x \in D_{g \circ f} ((g \circ f)(x) = g(f(x)))$$

Własności:

1. Jeżeli f i g są funkcjami, to $g \circ f$ jest funkcją.

2.
$$D_{g \circ f} \subseteq D_f$$
 i $D_{g \circ f}^* \subseteq D_g^*$

3. Jeżeli
$$f: A \rightarrow B$$
 i $g: B \rightarrow C$, to $g \circ f: A \rightarrow C$.

4. Jeżeli $f: A \xrightarrow{1-1} B$ i $g: B \xrightarrow{1-1} C$, to $g \circ f: A \xrightarrow{1-1} C$. Jeżeli funkcje f i g są różnowartościowe, to $g \circ f$ jest różnowartościowa.

5. Jeżeli
$$f: A \xrightarrow{na} B$$
 i $g: B \xrightarrow{na} C$, to $g \circ f: A \xrightarrow{na} C$.

6. Jeżeli
$$f: A \xrightarrow{1-1, na} B$$
 i $g: B \xrightarrow{1-1, na} C$, to $g \circ f: A \xrightarrow{1-1, na} C$.

7. Jeżeli
$$f: A \xrightarrow{1-1, na} B$$
, to $f^{-1}: B \xrightarrow{1-1, na} A$.

Funkcja odwrotna

DEF. Jeżeli f jest funkcja różnowartościową, to zbiór

$$\{(y,x):(x,y)\in f\}$$

jest też funkcją (różnowartościową). Funkcję tę nazywamy funkcją *odwrotną* funkcji f i oznaczamy f^{-1} .

Fakt:

1.
$$D_{f^{-1}} = W_f$$
 $W_{f^{-1}} = D_f$

2. Dla dowolnych $x \in D_f$ i $y \in W_f$

$$f^{-1}(y) = x \Leftrightarrow f(x) = y$$

czyli

$$f^{-1}(f(x)) = x$$
 i $f(f^{-1}(x)) = x$

3. Funkcje wzajemnie odwrotne $f, f^{-1} \subseteq \Re \times \Re$ są symetryczne względem prostej y = x.

OBRAZY WYZNACZONE PRZEZ FUNKCJĘ

$$f: X \to Y$$
 $A \subset X$
 $f[A] = \{ y \in Y : \exists_{x \in X} (x \in A \land y = f(x)) \}$

Własności obrazu wyznaczonego przez funkcję:

$$1^{\circ}$$
 $f[A \cup B] = f[A] \cup f[B]$

2°
$$f[A \cap B] \subset f[A] \cap f[B]$$

 $f[A \cap B] = f[A] \cap f[B] \Leftrightarrow f$ - różnowartościowa

3°
$$f[A-B] \subset f[A] - f[B]$$

 $f[A-B] = f[A] - f[B] \Leftrightarrow f$ - różnowartościowa

$$4^{\circ} \quad A \subset B \Rightarrow f[A] \subset f[B]$$

PRZECIWOBRAZY WYZNACZONE PRZEZ FUNKCJĘ

$$f: X \to Y$$
 $C \subset Y$

$$f^{-1}[C] = \{x \in X : f(x) \in C\}$$

Własności przeciwobrazu:

1°
$$f^{-1}[C \cup D] = f^{-1}[C] \cup f^{-1}[D]$$

$$2^{\circ}$$
 $f^{-1}[C \cap D] = f^{-1}[C] \cap f^{-1}[D]$

3°
$$f^{-1}[C-D] = f^{-1}[C] - f^{-1}[D]$$

$$4^{\circ}$$
 $C \subset D \Rightarrow f^{-1}[C] \subset f^{-1}[D]$

$$5^{\circ} \quad \bigvee_{C \subset f[X]} f[f^{-1}[C]] = C$$

6°
$$\bigvee_{A\subset X}A\subset f\Big[f^{-1}\big[A\Big]\Big]$$
 $\bigvee_{A\subset X}A=f\Big[f^{-1}\big[A\big]\Big]$ $\Leftrightarrow f$ - różnowartościowa

RELACJA RÓWNOWAŻNOŚCI

Na wielkie znaczenie tych relacji w różnych dziedzinach matematyki pierwszy zwrócił uwagę G.Frege (18884 r.)

• Relację $R \subset X \times X$ nazywamy *relacją równoważności* w zbiorze X, jeżeli R jest relacją zwrotną, symetryczną i przechodnią, tzn. jeżeli spełnione są następujące warunki:

1°
$$\forall xRx$$

2° $\forall (xRy \Rightarrow yRx)$
3° $\forall (xRy \land yRz) \Rightarrow xRz$

$$[x]_{R} = \{ y \in X : R(x, y) \}$$
 czyli $y \in [x]_{R} \Leftrightarrow R(x, y).$

• Niech R będzie dowolną relacją równoważności w $X \neq \emptyset$ i

Zbiory $x \in X$ nazywamy *klasami równoważności* w X lub *klasami abstrakcji* relacji R w X.

• Niech R będzie dowolną relacją równoważności w zbiorze $X \neq \emptyset$, to

1°
$$x \in x_R$$

2° $[x]_R = [y]_R \Leftrightarrow R(x, y)$
3° $x_R \neq y_R \Rightarrow x_R \cap y_R = \emptyset$

• Zasada abstrakcji (zasada identyfikacji elementów równoważnych)

Dowolna relacja równoważności R w zbiorze $X \neq \emptyset$ ustala podział tego zbioru na rozłączne i niepuste podzbiory, mianowicie na klasy równoważności tej relacji, w taki sposób, że dwa elementy x, y zbioru X należą do tej samej klasy równoważności wtedy i tylko wtedy, gdy R(x,y).

Przy przejściu od elementów x, y zbioru X do klas równoważności $[x]_R$, $[y]_R$ relacja równoważności R zostaje zamieniona na relację równości.

Z metody identyfikacji elementów równoważnych korzysta się w matematyce bardzo często, szczególnie wtedy, gdy zachodzi potrzeba wprowadzenia nowych tworów matematycznych.

RELACJE PORZĄDKUJĄCE

1. Relacja porządkująca (częściowo-porządkująca)

Relację $R \subset X \times X$ nazywamy *porządkującą* (częściowo porządkującą) zbiór X jeżeli jest zwrotna, przechodnia i antysymetryczna, czyli jeżeli spełnia następujące warunki:

a)
$$\forall xRx$$

b)
$$\forall_{x,y,z\in X} (xRy \land yRz \Rightarrow xRz)$$

c)
$$\forall_{x,y \in X} (xRy \land yRx \Rightarrow x = y)$$

2. Relacja quasi-porządkująca

Relację $R \subset X \times X$ nazywamy *quasi-porządkującą* zbiór X, jeżeli jest zwrotna i przechodnia, czyli

a)
$$\forall xRx$$

b)
$$\bigvee_{x,y,z\in X} (xRy \wedge yRz \Rightarrow xRz)$$

3. Relacja liniowo-porządkująca

Relację dwuczłonową *R* w *X* porządkującą zbiór *X* nazywamy *liniowo-porządkującą*, jeżeli spełnia warunek spójności:

$$\bigvee_{x,y\in X} (xRy\vee yRx)$$