Competishun

52/6, Opposite Metro Mas Hospital, Shipra Path, Mansarovar

Date: 29/04/2024

Time: 3 hours Max. Marks: 300

PRATHAM-1_MCT-1 (24-25)

Physics

Single Choice Question

Q1
$$\int \frac{dx}{(3x+5)}$$
 is:

- a) $\ln (3x+5) + C$

- **b)** $\frac{-3}{(3x+5)^2}$ + C **c)** $\ln (3x+5)^3$ + C **d)** $\frac{\ln (3x+5)}{3}$ + C
- The displacement and the increase in the velocity of a moving particle in the time Q2 interval of t to (t+1)s are 125m and 50m/s, respectively. The distance travelled by the particle in $(t+2)_m^{th}$ s is m.
 - a) 170 m

b) 173 m

c) 175 m

d) 165 m

- If $y = \frac{1}{x^4}$ then, $\frac{dy}{dx}$ will be:

c) $-\frac{4}{x^5}$

The position of a particle as a function of time t, is given by **Q4** $x(t) = at + bt^2 - ct^3$

where a, b and c are constants. When the particle attains zero acceleration, then its velocity will be:

a) $a + \frac{b^2}{4c}$

b) $a + \frac{b^2}{3a}$

c) $a + \frac{b^2}{2a}$

- **d)** $a + \frac{b^2}{a^2}$
- A particle of mass m projected with a velocity 'u' making an angle of 30° with the Q5 horizontal. The magnitude of angular momentum of the projectile about the point of projection when the particle is at its maximum height h is:

b) $\frac{\sqrt{3}}{2} \frac{mu^2}{a}$

d) zero

- If $y = 3t^2 4t$; then minima of y will be at: Q6

c) 2/3

d) 4/3

If
$$y = \sin(x) + \ln(x^2) + e^{2x}$$
 then $\frac{dy}{dx}$ will be:

a)
$$\cos x + \frac{2}{x} + e^{2x}$$

a)
$$\cos x + \frac{2}{x} + e^{2x}$$
 b) $\cos x + \frac{2}{x} + 2e^{2x}$

c)
$$-\cos x + \frac{2}{x^2} + e^{2x}$$

d)
$$-\cos x - \frac{2}{x^2} + 2e^{2x}$$

Q8 If
$$y = \frac{\ell nx}{x}$$
 then $\frac{dy}{dx}$ will be:

a)
$$\frac{1-\ell nx}{x}$$

b)
$$\frac{1+\ell nx}{2}$$

c)
$$\frac{1-\ell nx}{2}$$

d)
$$\frac{\ell nx-1}{x^2}$$

Q9
$$\cos^2 37^{\circ} + \sin^2 53^{\circ}$$
 is

c)
$$\frac{18}{25}$$

d)
$$\frac{32}{25}$$

Q10 If
$$y = \sin(x) + \ln(x^2) + e^x$$
 then $\frac{dy}{dx}$ will be:

a)
$$\cos x - \frac{2}{x} + e^x$$

b)
$$\cos x + \frac{2}{x} + e^x$$

c)
$$-\cos x + \frac{2}{x} + e^{x}$$

a)
$$\cos x - \frac{2}{x} + e^x$$
 b) $\cos x + \frac{2}{x} + e^x$ c) $-\cos x + \frac{2}{x} + e^x$ d) $-\cos x - \frac{2}{x} + e^x$

Q11
$$y = (x + 1) (3x + 1)$$
, find $\frac{dy}{dx}$

b)
$$3x + 3$$

d)
$$6x + 4$$

Q12 Slope of graph
$$y = \tan x$$
 drawn between y and x, at $x = \frac{\pi}{4}$ is :

d)
$$\frac{1}{\sqrt{2}}$$

A particle moving in a circle of radius R with uniform speed takes time T to complete one revolution. If this particle is projected with the same speed at an angle
$$\theta$$
 to the horizontal, the maximum height attained by it is equal to 4R. The angle of projection θ is then given by:

a)
$$\sin^{-1} \left[\frac{2 g T^2}{\pi^2 R} \right]^{\frac{1}{2}}$$

b)
$$\sin^{-1} \left[\frac{\pi^2 R}{2 \sigma T^2} \right]^{\frac{1}{2}}$$

c)
$$\cos^{-1} \left[\frac{2gT^2}{\pi^2 R} \right]^{\frac{1}{2}}$$

$$\sin^{-1} \left[\frac{2gT^2}{\pi^2 R} \right]^{\frac{1}{2}} \qquad b) \qquad \sin^{-1} \left[\frac{\pi^2 R}{2gT^2} \right]^{\frac{1}{2}} \qquad c) \qquad \cos^{-1} \left[\frac{2gT^2}{\pi^2 R} \right]^{\frac{1}{2}} \qquad d) \qquad \cos^{-1} \left[\frac{\pi R}{2gT^2} \right]^{\frac{1}{2}}$$

The maximum value of function :
$$f(x) = 3\sin x + 4\cos x$$
 is :

b)
$$\frac{7}{\sqrt{2}}$$

Q15
$$|\overrightarrow{A}| = 10, |\overrightarrow{B}| = 20$$
 and angle between two vectors A and B. $\theta = 60^{\circ}$ then $\overrightarrow{A} \cdot \overrightarrow{B}$ will be.

a) 100

b) 200

c) 500

d) 250

Q16 If
$$\overset{
ightarrow}{A} is2\hat{i} + 4\hat{j}$$
 and $\overset{
ightarrow}{B} is3\hat{i} + 2\hat{k}$ then $(\overset{
ightarrow}{A} + \overset{
ightarrow}{B})$ is :

a)
$$5\hat{i}+4\hat{j}+2\hat{k}$$
 b) $5\hat{i}+6\hat{j}$ c) $5\hat{i}+6\hat{k}$

b)
$$5\hat{i}+6\hat{j}$$

c)
$$5\hat{i} + 6\hat{k}$$

d)
$$5\hat{i}+4\hat{k}+2\hat{j}$$

For More tellaterial Join: @JEEAdvanced 2026

Q17 Ship A is sailing towards north-east with velocity $\vec{v} = 30\hat{i} + 50\hat{j}$ km/hr where \hat{i} points east and \hat{j} , north. Ship B is at a distance of 80 km east and 150 km north of Ship A and is sailing towards west at 10 km/hr. A will be at minimum distance from B in:

a) 2.2 hrs.

b) 4.2 hrs.

c) 3.2 hrs.

d) 2.6 hrs.

Train A and train B are running on parallel tracks in the opposite directions with speeds of 36 km/hour and 72 km/hour, respectively. A person is walking in train A in the direction opposite to its motion with a speed of 1.8 km/ hour. Speed (in ms⁻¹) of this person as observed from train B will be close to: (take the distance between the tracks as negligible)

a) 30.5 ms^{-1}

b) 29.5 ms^{-1}

c) 31.5 ms^{-1}

d) 28.5 ms^{-1}

Three vectors of equal magnitude A are inclined at an angle of 60° with each other. The magnitude of the resultant will be:

a) zero

b) A

c) $A\sqrt{6}$

d) 2A

If $|\overrightarrow{A} \times \overrightarrow{B}| = \sqrt{3} \overrightarrow{A} \cdot \overrightarrow{B}$, then the value of $|\overrightarrow{A} - \overrightarrow{B}|$ is:

a) $(A^2 + B^2 - AB)^{1/2}$ b) $(A^2 + B^2 - \frac{AB}{\sqrt{3}})^{1/2}$ c) (A - B) d) $(A^2 + B^2 - AB)^{1/2}$

Numerical

- **Q21** Maximum value of $f(x) = \sin x + \cos x$ is \sqrt{n} then find the value of n:
- The angle that the vector $\overset{
 ightarrow}{A}=(3\hat{i}+4\hat{j})$ makes with y-axis is θ (in degree) then find the value of θ :
- **Q23** The resultant of two vectors of magnitudes 3A and A acting at angle θ (in degree) is $\sqrt{13}$ A. The value of angle ' θ ' is :
- Three forces acting on a body are shown in the figure. To have the resultant force only along the y-direction, the magnitude of the minimum additional force (in N) needed along OX is F then find value of 10 F. (Round off to the Nearest Integer)

Q25 The component of vector $A=2\hat{i}+3\hat{j}$ along the vector $\hat{i}+\hat{j}$ is $\frac{x}{\sqrt{2}}$ then find the value of x:

For More Laterial Join: @JEEAdvanced_2026

- **Q26** The angle (in degree) made by vector $\hat{i} + \hat{j}$ with x-axis is -
- Q27 If velocity of particle is given by $v = 2t^4$ then its acceleration (dv/dt) at any time t will be given by xt^3 then find the value of x:
- **Q28** The position of a particle moving along the y-axis is given as $y = 3t^2 t^3$ where y is in metres and t is in sec. The time (in sec.) when the particle attains maximum positive position will be
- **Q29** Slope of graph $y = \tan x$ drawn between y and x, at $x = \frac{\pi}{4}$ is :
- **Q30** If $y = (1 + x^{1/8}) (1 + x^{1/4}) (1 x^{1/8})$ then $\frac{dy}{dx} = -\frac{1}{n\sqrt{x}}$ then find the value of n:

Chemistry

Single Choice Question

Sing	ile Choice Question
Q31	In Bohr's stationary orbits: a) electron do not move b) electron move emitting radiation c) energy of the electron remains constant d) angular momentum of the electron is $\frac{n}{2\pi}$
Q32	For any H like system, the ratio of velocities of I, II and III orbit $v_1:v_2:v_3$ is: a) $1:2:3$ b) $1:\frac{1}{2}:\frac{1}{3}$ c) $3:2:1$ d) $1:1:11$
Q33	What is the molecular weight of a substance, each molecule of which contains 9 carbon atoms, 13 hydrogen atoms and $2.23 \times 10^{-23} \mathrm{g}$ of other component? a) 134.42 amu b) 170 amu c) 270.08 amu d) 200 amu
Q34	In Rutherford's scattering experiment an α -particle is projected with K.E. = 4 MeV, minimum distance upto which this α -particle can reach to the nucleus of Cu nucleus-(atomic number of Cu = 29) a) 2.08×10^{-14} m b) 2.08×10^{-15} m c) 1.04×10^{-14} m d) 1.04×10^{-15} m
Q35	An electron in an atom jumps in such a way that its kinetic energy changes from x to $\frac{x}{9}$. The change in its potential energy will be-
	a) $\frac{x}{9}$ b) $\frac{16x}{9}$ c) $9x$ d) $\frac{9}{16}x$
Q36	The potential energy of an electron in He ⁺ ion is – 12.09 eV. In which excited state, the electron is present? a) First b) Second c) Third d) Fourth
Q37	The threshold wavelength for ejection of electrons from a metal is 330 nm. The work function for the photoelectric emission from the metal is $(h = 6.6 \times 10^{-34} \text{ J-s})$ a) $1.2 \times 10^{-18} \text{J}$ b) $6.0 \times 10^{-19} \text{ J}$ c) $1.2 \times 10^{-20} \text{J}$ d) $6.0 \times 10^{-12} \text{ J}$
Q38	Photoelectric emission is observed from a surface for frequencies v_1 and v_2 of incident radiations $(v_1 > v_2)$. If the maximum K.E. of photoelectrons in two cases are in the ratio of 2:1, then threshold frequency v_0 is given by a) $v_2 - v_1$ b) $2v_1 - v_2$ c) $2v_2 - v_1$ d) $v_2 - v_1$
Q39	a) $\frac{v_2 - v_1}{2}$ b) $\frac{2v_1 - v_2}{(2-1)}$ c) $\frac{2v_2 - v_1}{(2-1)}$ d) $v_2 - v_1$ An isotone of ${}_{32}\text{Ge}^{76}$ is: (i) ${}_{32}\text{Ge}^{77}$ (ii) ${}_{33}\text{As}^{77}$ (iii) ${}_{34}\text{Se}^{77}$ (iv) ${}_{34}\text{Se}^{78}$ a) (ii) & (iii) b) (i) & (ii) c) (ii) & (iv) d) (ii) & (iii) & (iv)

Which excited state of Be³⁺ has the same orbit radius as that of the ground state of hydrogen atom?

a) 3

b) 2

c) 4

d) 1

According to Einstein's photoelectric equation, the graph between the kinetic energy of photoelectrons ejected and the frequency of incident radiations is –

The IUPAC name of compound $CH_3 - C(CH_3)_2 - CH_2 - CH = CH_2$ is

a) 2, 2-Dimethylpent-4-ene

b) 2, 2-Dimethyl-2-pentene

c) 1, 1, 1-Trimethylbut-3-ene

d) 4, 4-Dimethylpent-1-ene

Q43 IUPAC name of $CH_3CH_2C(Br) = CH - Cl$ is :

a) 2-Bromo-1-chlorobut-1-ene

b) 1-Chloro-2-bromobut-1-ene

c) 3-Chloro-2-bromobut-1-ene

d) 3-Bromo-4-chlorobut-3-ene

The correct IUPAC name of 2-ethyl-3-pentyne is:

- a) 3-methyl hexyne-4
- **b)** 4-ethyl pentyne-2
- c) 4-methyl hexyne-2

d) None of these

The IUPAC name of the compound is:

- a) 1-amino-1-phenyl-2-methyl propane
- **b)** 2-methyl-1-phenyl-propane amine
- c) 2-methyl-1-amino-1-phenyl propane
- d) 1-isopropyl-1-phenyl methyl amine

Number of 3° carbon and 1° hydrogen respectively in the following structure are:

a) 3, 21

b) 3, 23

c) 2, 18

d) 3,18

Q47 The general molecular formula of nitroalkanes is:

- a) $C_n H_{2n} NO_2$ b) $C_{n+1} H_{2n+3} NO_2$ c) $C_{n+1} H_{2n} NO_2$ d) $C_{n+1} H_{2n+2} NO_2$

Q48 IUPAC name of the following compound will be

$$CH_3 - CH = C - CH_2 - CH_3$$

e | CH₂ - CH₂ - CH

- a) 3-Ethyl-2-hexene
- **b)** 3-Propyl-2-hexene
- c) 3-Propyl-3-hexene

d) 4-Ethyl-4-hexene

Total number of neutrons present in 4 g of heavy water (D_2O) is : (Where N_A represents Avogadro's number)

a) $2.4 N_A$

b) $4 N_{\Delta}$

c) $1.2 N_A$

d) $2 N_A$

An element is found in nature in two isotopic forms with mass numbers (A-1) and (A+3). If the average atomic mass of the element is found to be A, then the relative abundance of the heavier isotope in the nature will be:

a) 66.6%

b) 75%

c) 25%

d) 33.3%

Numerical

Q51 Ratio of energies to two photons of 3000 Å to 2400 nm is x : 1. Give value of x

The energy of second Bohr orbit of the hydrogen atom is -328 kJ mol⁻¹. Hence, the energy of fourth Bohr orbit would be (report magnitude in kJ mol⁻¹)

An electron in nth orbit of Li²⁺ moves to the Ist orbit of ion. In this process it emits two photons of energy 22.95 eV and 91.8 eV. Find value of n (orbit in which electron was present initially).

A gaseous mixture contains $SO_3(g)$ and $CH_4(g)$ in 25 : 1 ratio by mass. What is ratio of total number of atoms present in $SO_3(g)$ to total number of atoms present in $CH_4(g)$ in the mixture

A gaseous mixture is composed of equal number of moles of CH_4 , C_2H_6 and C_2H_2 . Determine the average molecular mass of mixture (in amu).

What volume (in mL) of liquid H_2O_2 has same number of molecules as there are number of molecules in 22.4 ml $H_2O(g)$ at 2 atm and 546 K. [Given : Density of liquid $H_2O_2 = 6.8 \times 10^{-3}$ gm/ml]

A certain dye absorbs 4000 Å and fluoresces at 8000 Å. These being wavelengths of maximum absorption that under given conditions 50% of the absorbed energy is emitted. Calculate the ratio of the no. of quanta emitted to the number absorbed.

Q58 For a wave, frequency is 10 Hz and wavelength is 2.5 m. How much linear distance (in km) will it travel in 40 seconds

How many allylic C-atom are present in following compound CH₃
CH₃—CH—CH—CH—CH—CH—CH—C(CH₃)₃

Q60 In the following compound, the number of primary (1°) carbon is:

CH₃ CH₃-CH-C-CH₂-CH₃ CH₃ CH₃

Mathematics

Single Choice Question

Q61	The sum	of all t	the real	values	of x	satisfying	the equation	$2^{(x-1)(x^2+5x-50)} =$: 1
-----	---------	----------	----------	--------	------	------------	--------------	--------------------------	-----

a) -5

b) 14

c) -4

d) 16

The set of all real values of x for which
$$\frac{(x+1)^2(x-3)^4(x-5)^5(x-4)^8(x-2)}{x(x^2-4)(x-6)^2} \leq 0$$

a) $(-\infty, -1) \cup (0, 5]$

b) $(-\infty, -2) \cup (0, 5] \cup \{1\}$

- c) $(-\infty, -2) \cup (0, 2) \cup (2, 5]$
- d) $(-\infty, -2) \cup (0, 2) \cup (2, 5] \cup \{-1\}$

- a) a = 6 and b = 5 b) a = 4 and b = 0 c) a = 4 and b = 5 d) a = 3 and b = 0
- **Q64** If a, b > 0 such that $a^{3-x}.b^{5x} = a^{x+5}b^{3x}$, then x log $(\frac{b}{a}) =$
 - a) log a

b) a

c) b

d) log b

Q65 If
$$\frac{log_5(x^2-5x+7)}{log_5(0.001)}$$
 >0 , then

- a) $x \in (2, 3)$ b) $x \in (-\infty, \infty)$ c) $x \in (-\infty, 2) \cup (3, \infty)$ d) $x \in (3, 4)$

Q66 If
$$\log_{1/3} \left(\frac{3x-1}{x+2} \right) < 1$$
 then x must lie in the interval

- a) $(-\infty,-2)\cup\left(\frac{5}{8},\infty\right)$ b) $\left(-2,\frac{5}{8}\right)$ c) $\left(-\infty,-2\right)\cup\left(\frac{1}{3},\frac{5}{8}\right)$ d) $\left(-2,\frac{1}{3}\right)$

The inequality
$$\left(\frac{1}{2}\right)^{x^6-2x^4} < 2x^2$$
 is valid for x belongs to :

b) $(0, \infty)$

c) $(-\infty, -1) \cup (-1, \infty)$

d) $(-\infty, -1) \cup (-1, 0) \cup (0, 1) \cup (1, \infty)$

Q68 Let S = {x ∈ R : x ≥ 0 and
$$2|\sqrt{x}-3|+\sqrt{x}(\sqrt{x}-6)+6=0$$
}. Then S :

- a) contains exactly two elements
- b) contains exactly four elements.

c) is an empty set.

- d) contains exactly one element
- **Q69** The number of positive integers satisfying the equation $x + \log_{10} (2^x + 1) = x \log_{10} 5$ $+\log_{10}6$ is
 - **a)** 0

b) 1

c) 2

d) infinite

Q70 The value of x satisfying |x-4|+|x-9|=5, is

- **a)** x = 4, 9 **b)** $4 \le x \le 9$ **c)** $x \le 4 \text{ or } x \ge 9$
- d) None of these

For More tellaterial coloin: @JEEAdvanced 2026

Q71	Let $A = \{x \in R : x + 1 < 2\}$	$\{x\}$ and B = $\{x \in \mathbb{R} : x-1 \ge 2\}$. Then which one of
	the following statements i	s NOT true?

a)
$$A - B = (-1,1)$$

a)
$$A - B = (-1,1)$$
 b) $B - A = R - (-3,1)$ c) $A \cap B = (-3,-1]$

c)
$$A \cap B = (-3,-1]$$

d)
$$A \cup B = R - [1,3)$$

Q72 In a class of 140 students numbered 1 to 140, all even numbered students opted Mathematics course, those whose number is divisible by 3 opted Physics course and those whose number is divisible by 5 opted Chemistry course. Then the number of students who did not opt for any of the three courses is:

Q73 If $\log_{0.3} (x - 1) < \log_{0.09} (x - 1)$, then x lies in the interval

a)
$$(2, \infty)$$
 b) $(1, 2)$

c)
$$(-2, -1)$$

d) None of these

Q74 If x = 1998! then value of the expression
$$\frac{1}{\log_2 x} + \frac{1}{\log_3 x} + \dots + \frac{1}{\log_{1998} x}$$
 equals:

Q75 If A is any set, then

a)
$$A \cup A' = \phi$$

a) $A \cup A' = \phi$ b) $A \cup A' = U$ c) $A \cap A' = U$ d) None of these

Q76 If A and B be any two sets, then $(A \cap B)'$ is equal to

c)
$$A \cap B$$

Q77 If A and B are two sets, then $A \cup B = A \cap B$ if-

a)
$$A \subset B$$

b)
$$B \subset A$$

c)
$$A = B$$

a) $A \subseteq B$ b) $B \subseteq A$ c) A = B d) none of these

Q78 If
$$x = \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots + \dots + \infty}}}$$
 then x is equal to :
a) $\frac{1 + \sqrt{5}}{2}$ **b)** $\frac{1 - \sqrt{5}}{2}$ **c)** $\frac{1 \pm \sqrt{5}}{2}$

a)
$$\frac{1+\sqrt{5}}{2}$$

b)
$$\frac{1-\sqrt{5}}{2}$$

c)
$$\frac{1 \pm \sqrt{5}}{2}$$

d) None of these

A survey shows that 73% of the persons working in an office like coffee, whereas 65% like tea. If x denotes the percentage of them, who like both coffee and tea, then x cannot be:

The number of integral solutions x of $\log_{\left(x+\frac{7}{2}\right)} \left(\frac{x-7}{2x-3}\right)^2 \ge 0$ is

a) 6

b) 8

d) 7

Numerical

Q81 The number N = $\frac{\log_5 250}{\log_{50} 5} - \frac{\log_5 10}{\log_{1250} 5}$ when simplified reduces to a natural number N. find N

For More tellaterial 2010 in: @JEEAdvanced 2026

- Q82 The number $N = 6log_{10}2 + log_{10}31$ lies between two successive integers whose sum equals —
- Q83 The number of solutions of the equation $log_4(x-1) = log_2(x-3)$ is
- **Q84** The number of real roots of the equation $\sqrt{x^2-4x+3} + \sqrt{x^2-9} = \sqrt{4x^2-14x+6}$ is :
- Q85 If sum of all solutions of the equation $(x^{log_{10}3})^2 (3^{log_{10}x}) 2 = 0$ is a^{log_bc} where a,b,c \in N & a, b are prime numbers then a² × b equals
- Q86 The number of real solutions of equation $x^{\log_{x^2}} + x^2 = 3x$ is
- Q87 If $f(x) = x^4 2x^3 + 3x^2 ax + b$ is a polynomial such that when it is divided by (x 1) and (x + 1) the remainders are 5 and 19 respectively. If f(x) is divided by (x 2), then remainder is-
- Q88 Number of values of x for which $\frac{8^x + 27^x}{12^x + 18^x} = \frac{7}{6}$
- Q89 Let N = $\frac{4^5 + 4^5 + 4^5 + 4^5}{3^5 + 3^5 + 3^5}$. $\frac{6^5 + 6^5 + 6^5 + 6^5 + 6^5 + 6^5}{2^5 + 2^5}$ then the value of $\log_2 N = 1$
- **Q90** If $x = \sqrt{7 + 4\sqrt{3}}$, then $x + \frac{1}{x}$ is equal to

Answer Key

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	D	С	С	В	Α	С	В	С	D	В
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	D	Α	Α	С	Α	Α	D	В	С	Α
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	2	37	60	0	5	45	8	2	2	2
Que.	31	32	33	34	35	36	37	38	39	40
Ans.	С	В	Α	Α	В	В	В	С	С	В
Que.	41	42	43	44	45	46	47	48	49	50
Ans.	С	D	Α	С	В	Α	В	Α	D	С
Que.	51	52	53	54	55	56	57	58	59	60
Ans.	8	82	4	4	24	5	1	1	3	5
Que.	61	62	63	64	65	66	67	68	69	70
Ans.	С	D	В	Α	Α	Α	D	Α	В	В
Que.	71	72	73	74	75	76	77	78	79	80
Ans.	В	В	Α	С	В	В	С	Α	В	Α
Que.	81	82	83	84	85	86	87	88	89	90
Ans.	2	7	1	1	12	1	10	2	12	4