Lesson 1. Fundamentals of Graphs.

- 1. Definition and Graph Terminology.
- 2. Special Types of Graphs.
- 3. Vertex Degree.
- 4. Paths and Connectedness.
- 5. Matrix representation.

DEFINITIONS:

1. Let x, y be (not necessarily distinct) vertices in an undirected graph G = (V, E). An x-y **walk** in G is a (loop-free) finite alternating sequence

$$X = V_1, e_1, V_2, e_2, V_2, e_2, \dots V_{n-1}, e_{n-1}, V_n = y$$

of vertices and edges from G, starting at vertex x and ending at vertex y and involving the n-1 edges $e_i = \{v_i, v_{i+1}\}$, where $1 \le i \le n-2$.

EXAMPLE:

$$C = v_1 e_1 v_2 e_2 v_3 e_3 v_5 e_6 v_2 e_2 v_3 e_3 v_5 e_8 v_6$$

2. The **length** of a walk is **the number of edges** in the walk. (When n = 0, there are no edges, x = y, and the walk is called trivial. These walks are not considered very much in our work.)

EXAMPLE: The length of the walk **C** es 7.

3. Any x-y walk where x = y (and n > 1) is called a **closed walk**. Otherwise the walk is called open.

EXAMPLE:

The walk $\mathbf{C}_4 = \mathbf{v}_2 \mathbf{e}_6 \mathbf{v}_5 \mathbf{e}_7 \mathbf{v}_4 \mathbf{e}_4 \mathbf{v}_2 \mathbf{e}_1 \mathbf{v}_1 \mathbf{e}_1 \mathbf{v}_2$ is a closed walk.

Note that a walk may repeat both vertices and edges.

Consider any x-y walk in an undirected graph G = (V, E).

- 4. If **no edge** in the x-y walk is repeated, then the walk is called an x-y **trail**.
- 5. If **no vertex** of the x-y walk occurs more than once, then the walk is called an x-y **path**.
- 6. When x = y, the term **cycle** is used to describe such a closed path.

EXAMPLE:

The walk $C_2 = v_1 e_1 v_2 e_2 v_3 e_3 v_5 e_6 v_2$ is a trail of length 4.

The walk $C_3 = v_6 e_8 v_5 e_7 v_4 e_5 v_3$ is a path.

EXAMPLE:

The walk $\mathbf{C}_4 = \mathbf{v}_2 \mathbf{e}_6 \mathbf{v}_5 \mathbf{e}_7 \mathbf{v}_4 \mathbf{e}_4 \mathbf{v}_2 \mathbf{e}_1 \mathbf{v}_1 \mathbf{e}_1 \mathbf{v}_2$ is a closed walk.

 $\mathbf{e_1}$ is repeated, then $\mathbf{C_4}$ is not a trail.

 $\mathbf{v_2}$ is repeated, then $\mathbf{C_4}$ is not a path.

EXAMPLE:

The walk $C=v_2e_4v_4e_7v_5e_3v_3e_2v_2$ is a cycle.

Remark.-

These concepts are defined similarly for directed graphs with the consideration that the **directions of the arcs must agree with the direction of the path or walk**. In some books directed cycles are called **circuits**.

- 7. - Let G=(V,A) be an undirected and let u, v two vertices of G. The **Connectedness** relation in V is defined in the following way: u and v are **connected** if there is a path from u to v.
 - Let G=(V,A) be an directed and let u, v two vertices of G. The **Connectedness** relation in V is defined in the following way: u and v are **connected** if there is: a path from u to v, and a path from v to u.

EXAMPLE:

Vertices v_1 and v_6 are connected through the path $C=v_1e_1v_2e_6v_5e_8v_6$. Every pair of distinct vertices are connected.

Vertices v_1 and v_4 are connected through the paths:

$$C_1 = v_1 e_1 v_2 e_4 v_4$$

$$C_2 = v_4 e_5 v_3 e_2 v_2 e_9 v_1$$

Vertices v_4 and v_5 are not connected.

8. A graph (undirected or directed) is called **connected** if every pair of distinct vertices of the graph are connected. A graph that is not connected is called **disconnected**.

Connected graph

Disconneted graph

9. A directed graph is **weakly connected** if its associated undirected graph is connected.

THEOREM

The connectedness relation is an equivalence relation and therefore determines a partition on the set of vertices. The elements of this partition are called **connected components** of the graph.

THEOREM

A graph is connected if and only if it has only one connected component.

EXAMPLE:

connected components

EXAMPLE:

Graph H and its Connected Components H₁, H₂, and H₃

$$C_1 = \{a,b,c\}$$

$$C_2 = \{d,e\}$$

$$C_3^-=\{f,g,h\}$$

EXAMPLE:

- The graph G in Figure is connected, because for every pair of distinct vertices there is a path between them.
- There is only one connected component.

$$C=\{a,b,c,d,e,f,g\}$$

- The graph H is not connected. For instance, there is no path in H between vertices a and d.
- There are 2 connected components:

$$C_1 = \{a,b,c\}$$

$$C_2 = \{d,e,f\}$$

 \dashv

THEOREM (Undirected Graphs)

A graph is bipartite if and only if it does not contain a cycle of odd length.

EXAMPLE:

The following graph is NOT bipartite because it contains an odd cycle: $v_2v_4v_5$

12

DEFINITION:

Let G be a graph (directed or undirected) with n vertices $\{v_i\}_{i=1}^n$. The adjacency matrix A of G, with respect to this listing of the vertices, is the n x n matrix A = $[a_{ij}]$ where a_{ij} is the number o edges (arcs) from v_i to v_j . If G is undirected the loops are computed twice.

EXAMPLE:

$$A = \begin{bmatrix} 0 & 2 & 2 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 \\ 2 & 1 & 2 & 1 & 2 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \end{bmatrix} \underbrace{ \begin{bmatrix} v_2 \\ v_4 \end{bmatrix} }_{v_4} \underbrace{ \begin{bmatrix} v_2 \\ v_3 \end{bmatrix} }_{v_5} \underbrace{ \begin{bmatrix} v_2 \\ e_4 \end{bmatrix} }_{e_4} \underbrace{ \begin{bmatrix} e_4 \\ e_7 \end{bmatrix} }_{e_6} \underbrace{ A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 2 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} }_{\mathbf{z}} \mathbf{z} \mathbf{t}$$

Remarks.

- If G is undirected then A is symmetric.
- If G is undirected, and the vertex v_i has a loop, then $a_{ii}=2$. If G is directed then $a_{ii}=1$.

PROPERTIES OF THE ADJACENCY MATRIX:

1. Let G be an undirected graph with adjacency matrix A. Then, the sum of the elements of the row i (or column i) is equal to the degree of the vertex v_i.

EXAMPLE:

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 2 & 1 \\ 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \mathbf{x} = 3$$

The degree of the vertex \mathbf{x} is 3.

2. Let G be a directed graph with adjacency matrix A. Then, the sum of the elements of the **row** i is equal to the **outdegree** of the vertex v_i, and the sum of the elements of the **column** j is equal to the **indegree** of the vertex v_i.

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 2 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = 1 \quad \mathbf{d_{out}(x)=1}$$

$$\mathbf{d_{in}(z)=3}$$

3. Let G be a graph with adjacency matrix A. Then, the element (i,j) of the matrix A^r , $r \ge 1$, is equal to the number of walks from v_i to v_i of length r.

EXAMPLE:

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 2 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A^3 = \begin{bmatrix} 2 & 2 & 2 & 4 \\ 2 & 2 & 4 & 5 \\ 2 & 0 & 2 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The number of walks of length 3 from $\mathbf{v_2}$ to $\mathbf{v_3}$ is 4.

3. Let G be a graph with adjacency matrix A. Then, the element (i,j) of the matrix A^r , $r \ge 1$, is equal to the number of walks from v_i to v_j of length r.

EXAMPLE:

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 2 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A^3 = \begin{bmatrix} 2 & 2 & 2 & 4 \\ 2 & 2 & 4 & 5 \\ 2 & 0 & 2 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The number of walks of length 3 from $\mathbf{v_2}$ to $\mathbf{v_3}$ is 4.

DEFINITIONS:

1. Let G = (V,A) be an undirected graph with n vertices and m edges where $A = \{a_i\}_{i=1}^m$, and $V = \{v_i\}_{i=1}^n$. The **incidence matrix** of G is the n × m matrix

$$M = [m_{ij}] / m_{ij} = \begin{cases} 0 \text{ if } v_i \text{ is not incident with } a_j \\ 1 \text{ if } v_i \text{ is incident with } a_j \\ 2 \text{ if } a_j \text{ is a loop in } v_i \end{cases}$$

EXAMPLE:

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{matrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \end{matrix}$$

 e_1 e_2 e_3 e_4 e_5 e_6 e_7 e_8 e_9 e_{10}

Let G = (V,A) be an directed graph with n vertices and m arcs where $V = \{v_i\}_{i=1}^n$, and $A = \{a_i\}_{i=1}^m$. The incidence matrix of G is the n × m matrix

$$M = [m_{ij}] / m_{ij} = \begin{cases} 0 \text{ if } v_i \text{ is not incident with } a_j \\ 1 \text{ if } v_i \text{ is the origin vertex of } a_j \\ -1 \text{ if } v_i \text{ is the terminating vertex of } a_j \\ 2 \text{ if } a_j \text{ is a loop in } v_i \end{cases}$$

PROPERTIES OF THE INCIDENCE MATRIX:

1. Let G be an undirected graph with incidence matrix M. Then, the sum of the elements of the row i of M is equal to the degree of the vertex v_i.

EXAMPLE:

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} = 5$$

The degree of the vertices are:

$$d(v_1)=5$$
, $d(v_2)=3$, $d(v_3)=8$, $d(v_4)=2$, $d(v_5)=2$

2. Let G be an undirected graph with incidence matrix M. Then, the sum of the elements of each column of M is equal to 2.

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

3. Let G be a directed graph without loops. Then, the sum of the elements of each column of the incidence matrix is equal to 0.

$$M = \begin{bmatrix} 1 & 0 & -1 & 0 & 0 \\ -1 & -1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$\mathbf{O} \qquad \mathbf{O} \qquad \mathbf{O} \qquad \mathbf{O} \qquad \mathbf{O}$$

DEFINITIONS:

1. Let G be an undirected graph. Another way to represent a graph is to use **incidence lists**, which list the edges that are incident to each vertex of the graph.

EXAMPLE:

Incidence List

$$v: e, e, e, e, e, e \\ 1: 1: 5: 6: 7: 8$$
 $v: e, e, e, e \\ 2: 1: 2: 5$
 $v: e, e, e, e, e, e, e, e \\ 3: 2: 3: 4: 6: 7: 9: 10$
 $v: e, e \\ 4: 8: 10$
 $v: e, e \\ 5: e, e \\ 9$

2. Let G be a directed graph. The **List of Outward Arcs** of G is a table that lists, for each vertex v, the outward arcs from v. The **List of Inward Arcs** of G is the table that lists, for each vertex v, the inward arcs from v.

Outward	Arcs	Inward	Arcs	
X.	e	<i>X</i> .	e_{4}, e_{7}	
у.	$e_{2}, e_{5}e_{6}, e_{7}$	y.		
Z.	$e_{\!\scriptscriptstyle 4}$	<i>Z</i> .	e_1, e_2, e_5	
t:	e 3	t:	e_3, e_6	