

Sorting in Linear Time

Lower bound for comparison sort, Non comparison sort: Counting Sort, Radix Sort

(Arlisa Yuliawati)

Introduction

- Previously learned sorting algorithms (Insertion sort, Merge sort) sort the elements by comparing them. Such sorting algorithms are called **Comparison-based sorting algorithms.**
 - Include the heapsort, quicksort and other sorting algorithms that use comparison between elements to obtain the sorted version.
- We are going to prove that any comparison-based sorting takes $\Omega(n \lg n)$ comparisons in the worst case to sort n elements.
 - Thus, algorithm that run in $\Theta(n \lg n)$ including merge sort and heap sort are asymptotically optimal
- Some sorting algorithms do not use comparison to determine the sorted order, they run in linear time. For example: Counting sort, radix sort, bucket sort. The $\Omega(n \lg n)$ lower bound does not apply to them.

Comparison

• From a list of n elements $\langle a_1, a_2, a_3, ..., a_n \rangle$, given two elements a_i and a_j , we test whether they satisfy one of the following conditions to determine their relative order.

- $a_i < a_j$
- $a_i \leq a_j$
- $a_i = a_i$
- $a_i \geq a_j$
- $a_i > a_j$

We assume that all comparisons have the form $a_i \leq a_i$

Decision Tree

- Comparison sorts can be viewed in terms of Decision Tree
 - A full binary tree that represents the comparisons between elements that are performed by a particular sorting algorithm operating on an input of a given size.
- By assuming that the input elements are distinct, we exclude the comparison " $a_i=a_j$ ", and the other comparisons are equivalent, so we only consider a comparison in form " $a_i \leq a_j$ "

Decision Tree

- Example:
 - A decision tree for **Insertion Sort** operating on three elements (a_1, a_2, a_3) . In each node, i:j denotes the comparison between a_i and a_j .

- Based on the previous decision tree:
 - Each leaf represents the permutation of n elements.
 - For a comparison sort to be correct, each of the n! permutation on n elements must appear as one of the leaves of the decision tree, and each of these leaf must be reachable from the root by a path corresponding the actual execution of the comparison sort.
 - The worst-case number of comparison is represented by the height of the decision tree. Why?
 - A lower bound on the heights of all decision trees in which each permutation appears as reachable leaf is a lower bound on the running time of any comparison sort algorithm.

Lower Bound for Comparison Sort

• Theorem:

Any comparison sort algorithm requires $\Omega(n \lg n)$ comparisons in the worst case.

• Proof:

Consider a decision tree of height h with k reachable leaves corresponds to a comparison sort of n elements.

Each of n! permutations appear as some leaves, and binary tree of height h has no more than 2^h leaves. Thus, we have $n! \le k \le 2^h$

$$n! \le 2^h$$

$$\lg n! \le h$$

$$h = \Omega(n \lg n)$$

Sorting in Linear Time

Counting Sort

• Assumption: each of the input elements is an integer in the range 0 to k. When k = O(n), then counting sort runs in $\Theta(n)$ time.

- The basic idea of counting sort:
 - For each input element x, determine the number of elements less than x.
 - Place the element x directly into its position in the output array.
 - Example: If there are 9 elements less than x, then x belongs in output position 9.

Counting Sort

```
COUNTING-SORT(A, B, k)
 1 let C[0..k] be a new array
 2 for i = 0 to k
                                            Initialize array C to all zeros
 S = C[i] = 0
 4 for j = 1 to A.length
5 C[A[j]] = C[A[j]] + 1
                                         C[i] is incremented if the current value of input array equals to i
    // C[i] now contains the number of elements equal to i.
    for i = 1 to k
         i = 1 \text{ to } k
C[i] = C[i] + C[i-1]

Keeping a running sum of the array C
     // C[i] now contains the number of elements less than or equal to i.
     for j = A.length downto 1
                                            To place each element into its sorted correct position in the
         B[C[A[j]]] = A[j]
C[A[j]] = C[A[j]] - 1
11
                                            input array B
```


Counting Sort

• Example: Counting sort on $\langle 2,5,3,0,2,3,0,3 \rangle$

(a) After line 5

(d) Line 10-12

(e) Line 10-12

(f) Sorted array B

Running time of Counting Sort

COUNTING-SORT(A, B, k)

```
let C[0...k] be a new array
   for i = 0 to k
                                         Line 2-3: \Theta(k)
   C[i] = 0
   for j = 1 to A. length
                                         Line 4-5: \Theta(n)
        C[A[j]] = C[A[j]] + 1
    // C[i] now contains the number of elements equal to i.
    for i = 1 to k
        C[i] = C[i] + C[i-1]
    // C[i] now contains the number of elements less than or equal to i.
    for j = A. length downto 1
10
         B[C[A[j]]] = A[j]
11
                                     \vdash Line 10-12: \Theta(n)
        C[A[j]] = C[A[j]] - 1
12
```

Total: $\Theta(n+k)$

Counting sort is usually used when k = O(n)

Counting sort beats the lower bound for comparison sort $\Omega(n \lg n)$

Counting Sort is Stable

- Another important point of Counting sort is that it is stable –
 numbers with the same value appear in the output array in the same
 order as they do in the input array.
 - It break ties between two elements by the rule that whichever element appears first in the input array, appears first in the output array.

• The property of stability is important only when satellite data are carried around with the element being sorted.

Counting sort is often used as subroutine in radix sort.

Exercise

• Use the procedure of Counting-Sort to illustrate the sorting process on the array $A = \langle 6,0,2,0,1,3,4,6,1,3,2 \rangle$.

• For a set of d digit numbers, this algorithm sort on the <u>least</u> significant digit first. For each digit, it use stable sorting algorithm.

329		720		720		329
457		355		329		355
657		436		436		436
839	mij))»	457	·····ij)p-	839	jj)p-	457
436		657		355		657
720		329		457		720
355		839		657		839

• The following is the procedure of Radix Sort. It assumes that each element in the n-elements array A has d digits. The sorting process starts from the lowest-order digit (1) to the highest-order digit (d).

```
RADIX-SORT(A, d)

1 for i = 1 to d

2 use a stable sort to sort array A on digit i
```

• Lemma

Given n d-digit numbers in which each digit can take on up to k possible values, RADIX-SORT correctly sorts these numbers in $\Theta(d(n+k))$ time if the stable sort it uses takes $\Theta(n+k)$ time.

When d is constant and k = O(n), we can make radix sort run in linear time. More generally, we have some flexibility in how to break each key into digits.

Lemma

Given n b-bit numbers and any positive integer $r \le b$, RADIX-SORT correctly sorts these numbers in $\Theta((b/r)(n+2^r))$ time if the stable sort it uses takes $\Theta(n+k)$ time for inputs in the range 0 to k.

Proof For a value $r \le b$, we view each key as having $d = \lceil b/r \rceil$ digits of r bits each. Each digit is an integer in the range 0 to $2^r - 1$, so that we can use counting sort with $k = 2^r - 1$. (For example, we can view a 32-bit word as having four 8-bit digits, so that b = 32, r = 8, $k = 2^r - 1 = 255$, and d = b/r = 4.) Each pass of counting sort takes time $\Theta(n + k) = \Theta(n + 2^r)$ and there are d passes, for a total running time of $\Theta(d(n + 2^r)) = \Theta((b/r)(n + 2^r))$.

- Given the values of n and b, we wish to choose the value of r, with $r \le b$, that minimize the expression $\left(\frac{b}{r}\right)(n+2^r)$.
 - If $b < \lfloor \lg n \rfloor$, then choose any value of $r \le b$ will result in $\Theta(n+2^r)$.
 - If $b \ge \lfloor \lg n \rfloor$, then choose $r = \lfloor \lg n \rfloor$ gives the best time to within a constant factor

- Radix Sort can be used to sort records of information that are keyed by multiple fields.
 - For example, to sort the date (year, month, day), ID (with specific representation of each digit).

• Note that radix sort which uses counting sort as the intermediate stable sorting algorithm does not sort in place. Thus, when primary memory is at a premium, an in-place sorting algorithm (such as quick sort) may be preferable.

Summary

- Comparison sorts are sorting algorithms that use the comparison of the input elements to obtain the sorted version.
- Any comparison-sorts take $\Omega(n \lg n)$ in the worst case.
- Non-comparison sorts do not compare the element, for example, counting sort get the correct position of each element by counting how many elements are less than or equal to it.
 - Counting sort is stable sorting algorithm, and it does not sort in place.
- Radix Sort use a stable sorting algorithm to sort its elements from the least significant digit to most significant one. Counting sort or quick sort can be the options.

- Lecturer Slides by Bapak L. Yohanes Stefanus
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, Third Edition (3rd. ed.). The MIT Press.