Algebruh AMI(нь) четыре

Содержание

1	Лекция 1. Нильпотентный Жордан	3
	1.1 Нильпотентные операторы	. 5
2	Лекция 2. Жордановы приколы и не только	7
3	Лекция 3. Не смотрела(не читал(не писал))	13
	3.1 Единственность жордановой формы	. 13
	3.2 Линейные и билинейные функции	. 15
4	Лекция 4. Геометрия 9 класс	18
	4.1 Замена базиса в билинейной форме	. 18
	4.2 Пространства со скалярным произведением	. 19
	4.3 Ортогональное дополнение	. 21
	4.4 Положительная определенность	. 23
5	Лекция 5. Комплексифицируемся	23
	5.1 Полуторалинейные формы	. 26
	5.2 Операторы в евклидовых и унитарных постранствах	. 27
	5.2.1 Сопряженный оператор	. 27

6	Лек	кция 6. 24 личности линейного оператора	28
	6.1	Оценка квадратичной формы	29
	6.2	Ортогональные и унитарные операторы	29
7	Лек	кция 7. Разложи меня полностью	33
	7.1	Полярное разложение	33
	7.2	Сингулярное разложение	35
	7.3	ые пространства	36
8	Лек	кция 8. Элвин и проективные преобразования	37
	8.1	Проективные пространства	40
9	Bce		44

1 Лекция 1. Нильпотентный Жордан

Задача: классифицировать линейные операторы, т.е. выделить по одному(простому) представителю в каждом классе сопряженности: $A \sim CAC^{-1}$. Другими словами найти хороший базис, в котором [\mathcal{A}] как можно проще.

Что такое оператор с диагональной матрицей?

$$[\mathcal{A}]_{v_i} = \begin{pmatrix} a_1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_n \end{pmatrix} \iff \exists v_1, \dots, v_n - \text{ базис, что } \mathcal{A}(v_i) = a_i v_i$$

Definition 1.1. Собственное число и вектор

Пусть $A \in Lin(V, V), v \in V, v \neq 0, \lambda \in K : A(v) = \lambda v.$

 λ — собственное число оператора, а v - собственный вектор.

To ects λ - c.y. $\iff \exists v \in V \setminus 0: \mathcal{A}(v) = \lambda v.$

Definition 1.2. Диагонализуемая матрица

Матрица A — диагонализуема, если $\exists C: CAC^{-1}$ — диагональная \iff у опертора есть базис из собственных векторов.

Как искать собственные числа или вектора? Знаем $\lambda \Rightarrow Av = \lambda v - \text{СЛУ}$, т.е. решаем ОСЛУ $(\mathcal{A} - \lambda E)x = 0$.

Как найти собственное число оператора?

Theorem 1.1. Характеризация собственных чисел

 λ — собственное число оператора $\iff \lambda$ — корень многочлена степени n=dimV : $\chi_A(t)=det(A-tE)\in K[t].$

Доказательство. Пусть λ — собств. число оператора $\iff \exists v \neq 0: \ \mathcal{A}(v) = \lambda v \iff$

$$\exists c_1 = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \neq 0 : Ac_1 = \lambda Id(c_1) \iff (A - \lambda E) \cdot c_1 = 0 \iff \exists v \in ker(A - \lambda E) \neq 0 \iff A - \lambda E$$
 — необратима $\iff det(A - \lambda E) = 0$

Corollary. Собственных чисел не больше dim V.

Definition 1.3. Характеристический многочлен

 $\chi_A(t)=det(A-tE)$ — характеристический многочлен оператора $\mathcal{A}.$

В текущих терминах некорректное определение.

Lemma 1.1.

 $\chi_A(t)$ — не зависит от базиса оператора.

Доказательство. Хотим $det(A - tE) = det(CAC^{-1} - tE)$.

$$det(A - tE) = det(C(A - tE)C^{-1}) = det(CAC^{-1} - tE)$$

НЮАНС: мы знаем факт про произведение определителей для матриц над полем, но у нас тут многочлены K[t], но $K[t] \subset K(t)$ которое поле.

Lemma 1.2. ЛНЗ собственных векторов

 $\mathcal{A} \in Lin(V,V)$. Собственные вектора, соотвествующие попарно различным собственным числам ЛНЗ.

Доказательство. $Av_i = \lambda_i v_i, \ v_i \neq 0, \lambda_i \neq \lambda_j \Rightarrow v_1, v_2, \dots, v_k - \Pi H3.$

Делаем индукцию по количеству:

База: $k=1, v_1 \neq 0 \Rightarrow ЛНЗ$ по определению.

Переход: $k \to k+1$. Для k знаем. Пусть k+1 ЛЗ. Значит $\exists a_i \sum_{i=1}^{k+1} a_i v_i = 0$.

С одной стороны — $A(\sum_{i=1}^{k+1} a_i v_i) = 0$, с другой — $\sum_{i=1}^{k+1} \lambda_{k+1} a_i v_i = 0$.

 $A(\sum_{i=1}^{k+1}a_iv_i)=\sum_{i=1}^{k+1}\lambda_ia_iv_i=0\Rightarrow\sum_{i=1}^k(\lambda_i-\lambda_{k+1})a_iv_i=0$ (сумма до k т.к. последнее слагаемое =0).

Но все лямбды разные $(\lambda_i - \lambda_{k+1} \neq 0)$, поэтому по индукции все $a_i = 0$.

Theorem 1.2. Достаточное условие диагонализуемости

 $A \in Lin(V,V)$. Пусть $\chi_A(t) = (-1)^n \prod_{i=1}^n (t-\lambda_i), \ \lambda_i \neq \lambda_j$. Тогда оператор диагонализуем: есть базис из собвственных векторов.

Доказательство. $\lambda_1, \ldots \lambda_n$ — корни $\chi \Rightarrow$ это собственные числа $\exists v_i \neq 0: Av_i = \lambda_i v_i \Rightarrow v_1, v_2, \ldots, v_n$ — ЛНЗ по лемме, а тогда и базис.

Remark. $Had \ \mathbb{C}$ почти все матрицы диагонализуемы (у большинства многочленов нет кратных корней)

Возникают некие проблемы:

- 1. Кратные корни.
- 2. Мы не всегда над $\mathbb C$
- 3. χ_A может быть трудно посчитать (или лень).
- 4. (Не будем это делать) V может быть бесконечномерным.

Remark 1.1.

V — бесконечномерно \Rightarrow может не быть собственного вектора (даже над комплами). $V = \mathbb{C}[x]$. $\mathcal{A} = f \cdot x$. Очев у такого оператора нет собственных векторов, т.к. он повышает степень.

Что за проблема с кратными корнями?

Definition 1.4. Алгебраическая и геометрическая кратность

 $\mathcal{A} \in Lin(V,V), \ \lambda$ — корень χ_A . Алгебраическая кратность $m_{alg}(\lambda)$ — его кратность в χ_A .

Геометрическая кратность $m_{geom}(\lambda) - \dim V_{\lambda}$, где $V_{\lambda} = \{x \in V \mid Ax = \lambda x\} = ker(A - \lambda E)$ — собственное подпространство. Другими словами это макс. количество ЛНЗ собственных векторов, отвечающих λ .

Lemma 1.3.

 $m_{geom} \le m_{alg}$

Доказательство. $m_{geom} = k \Rightarrow \exists v_1, v_2, \dots, v_k - \text{ЛНЗ}$ из собственных векторов отвечающих λ . Дополним до базиса: $v_1, v_2, \dots, v_k, \dots, v_n$. В этом базисе $[\mathcal{A}] = A = \begin{pmatrix} \lambda E_k & C \\ 0 & B \end{pmatrix}$. Значит

$$\chi_A = det(A - tE) = \chi_B \cdot (\lambda - t)^k \Rightarrow m_{alg} \ge m_{geom}$$

Theorem 1.3. Критерий диагонализуемости

 $\mathcal{A} \in Lin(V,V)$, тогда следующие условия равносильны.

1. \mathcal{A} – диагонализуем

2. $\chi_A = \prod (t - \lambda_i)$, и $\forall i \ m_{alg}(\lambda_i) = m_{geom}(\lambda_i)$

Доказательство. $1 \Rightarrow 2$

Возьмем базис $v_1,\ldots,v_n:\ A(v_i)=\lambda_iv_i\Rightarrow [A]=\begin{pmatrix} \lambda_1&0&\ldots&0\\0&\lambda_2&\ldots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\ldots&\lambda_n \end{pmatrix}\Rightarrow \chi_A=\prod(\lambda_i-t),$ тогда

 $m_{alg}(\lambda_i)$ — количество λ_i в наборе, пусть k.

НУО $\lambda_1,\ \lambda_2,\ \dots\lambda_k=\lambda,\$ и $A(v_i)=\lambda v_i.$ Но они ЛНЗ, а значит геом. кратность $\geq k.$ Но по лемме $\leq k.$ Значит равны!

 $2 \Rightarrow 1$.

Пусть $\mu_1, \dots \mu_k$ — все различные лямбды. Мы знаем, что $m_{alg}(\mu_i) = m_{geom}(\mu_i)$. Тогда $\sum m_{geom}(\mu_i) = \sum m_{alg}(\mu_i) = n \Rightarrow \exists v_1^j, \dots, v_{m_{alg}(\mu_j)}^j$ — ЛНЗ собсвтенные вектора для μ_j (а всего n по всем j).

Теперь докажем, что все такие вектора ЛНЗ:

 $\sum a_{ij}v_i^j=0\iff \sum_j\sum_i a_{ij}v_i^j=0=\sum_j v^j$, где $v^j=\sum a_{ij}v_i^j$ — тоже с.в. для μ_j . По лемме v^j ЛНЗ, значит все равны 0, значит и a_{ij} равны, потому что в каждой сумме слагаемые ЛНЗ по условию. Нашли n ЛНЗ векторов — базис. А тогда матрица диагонализуема.

1.1 Нильпотентные операторы

Definition 1.5. Нильпотентный оператор

 \mathcal{A} — нильпотентный, если $\exists n \in \mathbb{N} : \mathcal{A}^n = 0.$

Мы знаем, что если матрица строго верхнетреугольна, то она нильпотента.

Proposition 1.1. С.ч. нильпотентного оператора

 \mathcal{A} — нильпотентный $\mathcal{A}^k=0.$ λ — собственное число $\mathcal{A}\Rightarrow\lambda=0.$ $\mathcal{A}(v)=\lambda v\Rightarrow\mathcal{A}^k(v)=\mathcal{A}(\mathcal{A}(\ldots\mathcal{A}(v)))=\lambda^k v,$ но $\mathcal{A}^k=0,$ $\mathcal{A}^k(v)=0\Rightarrow\lambda^k v=0,$ $v\neq0\Rightarrow\lambda=0$

Exercise 1.1.

 \mathcal{A} — нильпотентный $\iff \chi_A = (-1)^n t^n$

Remark. $A - \partial u$ агонализуема, а также нильпотента, тогда A = 0

Definition 1.6. Жорданова цепочка

Жорданова цепочка — это
$$v_1, \ldots, v_k \in V, \ A(v_i) = v_{i+1}, \ A(v_k) = 0$$
 $v_1 \overset{A}{\to} v_2 \overset{A}{\to} \ldots \overset{A}{\to} v_k \overset{A}{\to} 0.$

Remark. A — нильпотентна, тогда $\forall v \in V$ — начало цепочки

Definition 1.7. Жорданов базис

Жорданов базис — базис из непересекающихся жордановых цепочек.

Пусть есть Жорд. базис:
$$\begin{cases} v_1^1 \to v_1^2 \to \cdots \to 0 \\ \dots \\ v_k^1 \to v_k^2 \to \cdots \to 0 \end{cases}$$

Тогда [
$$\mathcal{A}$$
] в этом базисе - блочно-диагональная с блоками =
$$\begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} = J_k$$
 (единицы

под главной диагональю и 0 иначе).

Такой блок называется жордановой матрицей.

Вся матрица [A] состоит из единичек под диагональю и иногда нулями (под последним столбцом каждого блока). Такая формула называется **Жорданова форма нильпотентого оператора**.

Theorem 1.4. Канонический вид нильпотентного оператора

У любого нильпотентого оператора есть Жорданов базис, т.е. нильпотентная матрица приводится к жордановой форме.

Доказательство. Пусть v_1,v_2,\ldots,v_n — базис V. Положим $v_1=v_1^1,\ v_2=v_2^1,\ldots,\ v_n=v_n^1$ и построим для них Жордановы цепочки, т.е. $v_i^l=A(v_i^{l-1}),$ пока не получим 0.

Получили набор $\{v_j^i\}$ жордановых цепочек. Он порождающий (т.к. содержит базис).

Будем перестраивать такой набор, чтобы получился ЛНЗ и остался порождающим.

Шаг: покажем, что если текущая система ЛЗ, то количество векторов в ней можно уменьшить с сохранением порождаемости.

Дано:
$$\begin{cases} v_1^1 \to v_1^2 \to \cdots \to v_1^{j_1} \to 0 \\ \dots \\ v_k^1 \to v_k^2 \to \cdots \to v_k^{j_k} \to 0 \end{cases}$$

Пусть они ЛЗ, т.е. $\sum_{i,j} a_{ij} v_j^i = 0$ (не все a_{ij} равны 0).

Упростим, применив A столько раз к равенству, чтобы остались только последние вектора из цепочек:

Получим такую, выбросив нули: $\sum a_{j_j,j}v_j^{j_j}=0$

Новые обозначения: $a_{j_i,j} = a_{j_m,m}^m$, т.е. $\sum a_{j_m}^m v_m^{j_m} = 0$.

Рассмотрим самую короткую из цепочек — первую н.у.о.

$$0 = \sum a_{j_m}^m v_m^{j_m} = \sum a_{j_m}^m A^{j_1-1}(v_m^{j_m-j_1+1}) = A^{j_1-1}(\sum a_{j_m}^m v_m^{j_m-j_1+1}) = A^{j_1-1}(a_{j_1}^1 v_1^1 + \sum_{m>1} a_{j_m}^m v_m^{j_m-j_1+1})$$

Можем поделить на $a_{i_1}^1$ для простоты.

Была цепочка, начинающася с v_1^1 длины j_1 . Выполним замену: $v_1^1 \to v_1^1 + \sum_{m>1} a_{j_m}^m v_m^{j_m - j_1 + 1}$ и построим новую цепочку. Её длина по равенству выше будет не больше $j_1 - 1$.

Надо проверить, что новая система всё ещё порождающая — очев (нет):

Новая оболочка: $\langle v_1^1 + \sum_{m>1} a_{j_m}^m v_m^{j_m-j_1+1}, v_1^2 + \sum_{m>1} a_{j_m}^m v_m^{j_m-j_1+1}, \ldots \rangle$. Она получилась многократной заменой вида: $\langle v_1 + \sum a_i v_i, v_2, \ldots, v_n \rangle = \langle v_1, \ldots, v_n \rangle$, т.е. у нас ничего не меняется.

Получили порождающий набор цепочек меньшего размера. Делаем много таких шагов, пока не получим ЛНЗ, т.е. придём в базис

Example 1.1. Пример вычисления жорданова базиса

$$v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow 0$$

$$v_5 \rightarrow v_4 \rightarrow v_3 \rightarrow 0$$

$$A(v_4) - A(v_6) = 0 \Rightarrow A(v_4 - v_6) = 0 \Rightarrow v_6 \mapsto v_4 - v_6$$
, т.е. уменьшили длину на 1.

 $v_5\mapsto v_5-v_1\to v_4-v_2\to 0$, и ура победа, мы молодцы

2 Лекция 2. Жордановы приколы и не только

Definition 2.1. Инвариантное подпространство

 \mathcal{A} — лин оператор на $V,\,U \leq V.\,\,U$ — инвариантно, если $\mathcal{A}(U) \subset U \iff \forall u \in U \,\,\mathcal{A}(u) \in U$

Example 2.1.

- $1. \langle u \rangle$ инвариантно (\mathcal{A} -инвариантно) $\iff A(u) = ku \iff u$ собсвтенный вектор.
- $2. v_1, ..., v_k$ жорданова цепочка, тогда её лин оболочка инвариантна.
- 3. $Ker \mathcal{A}$, $Im \mathcal{A}$ инв. пространства

Remark. $U-\mathcal{A}$ -инвариантно, т.е. $Im(\mathcal{A}|_U)\subset U$. Таким образом определен оператор $\mathcal{A}|_U\in Lin(U,U)$

Lemma 2.1. Матрица оператора с инвариантным подпространством

Пусть $\mathcal{A} \in Lin(V, V)$, U — инвариатное подпространство размерности k.

И взяли базис u_i V, первые k которого являеются базисом U, тогда матрица оператора

в этом базисе имеет блочно верхнетреугольный вид: $\begin{pmatrix} [\mathcal{A}_{|U}] & B \\ 0 & C \end{pmatrix}$

Доказательство. U — инв. тогда $\forall u_i, \ i \in [1,k]: \ \mathcal{A}(u_i) = \sum_{j=1}^k a_j u_j = a_1 u_1 + \ldots + 0 u_n \Rightarrow i$ -й

столбец (до k) нашей матрицы будет иметь вид: $\begin{bmatrix} \vdots \\ a_k \\ 0 \\ \vdots \end{bmatrix}$

$$\begin{pmatrix} a_1 \\ \vdots \\ a_k \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Proposition 2.1.

Пусть в условиях утверждения лин оболочка оставшихся векторов — тоже инвариатное подпространство. То есть $V = U \oplus U'$. Тогда матрица оператора также имеет блочно-

диагональный вид
$$\begin{pmatrix} [\mathcal{A}_{|U}] & 0 \\ 0 & [\mathcal{A}_{|U'}] \end{pmatrix}$$

Аналогично для $V = \bigoplus U_i$

Если таких пространств будет ровно n одномерных, тогда матрица будет диагональной.

В общем случае, если матрица имеет вид $\begin{pmatrix} \lambda & 0 \\ 0 & [\mathcal{A}_{|U'}] \end{pmatrix}$, тогда лин оболочка $u_1,...,u_k$ — инв.

подпространство и $A = [\mathcal{A}|_{\langle u_1, \dots, u_k \rangle}]$. А какой смысл матрицы C?

Рассмотрим [
$$\mathcal{A}$$
] = $\begin{pmatrix} 1 & 5 & 6 \\ 0 & 1 & 2 \\ 0 & 3 & 4 \end{pmatrix}$

1. $Av_1 = v_1$

 $2. \mathcal{A}v_2 = 5v_1 + v_2 + 3v_3.$

Матрицу $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ получим, если "вычеркнем слагаемые с v_1 ". Другими словами $\mathcal{A}v_2=v_2+3v_3$ с точностью до слагаемого из $U=\langle v_1 \rangle$. Формализуем это.

Definition 2.2. Факторпространство

V — пространство, $U \leq V$ — подпространство, в частности подгруппа по сложению, тогда рассматриваем V/U, а это факторгруппа, мы всегда её можем рассмотреть, т.к. у нас любая подгруппа нормальная(сложение коммутативно).

Определим. $k\overline{v} = \overline{kv}, \ \forall v \in V, \ k \in K$ — умножение на константу.

Доказательство. Проверим корректность.

$$\overline{v_1} = \overline{v_2} \Rightarrow v_1 - v_2 \in U \Rightarrow k(v_1 - v_2) \in U \Rightarrow \overline{kv_1} = \overline{kv_2}$$

Отсюда получилось векторное пространство V/U.

Example 2.2.

 $V = \mathbb{R}^2, \ U = \langle u \rangle$ — прямая.

 $\overline{v} = v + U$ — прямая, параллельная U.

Тогда V/U — пространство всех таких прямых, параллельных U.

Пусть теперь $\mathcal{A} \in Lin(V, V)$, U — инвариантное подпространство, тогда возникает оператор $\overline{\mathcal{A}}: V/U \to V/U: \overline{\mathcal{A}}(\overline{v}) = \overline{\mathcal{A}(v)}$

 \mathcal{A} оказательство. Провреяем корректность. $\overline{v_1} = \overline{v_2} \Rightarrow \overline{\mathcal{A}(v_1)} = \overline{\mathcal{A}(v_2)}$, но это просто переформулировка инвариантности: $v_1 - v_2 \in U \Rightarrow \mathcal{A}(v_1 - v_2) \in U \Rightarrow \mathcal{A}(v_1) - \mathcal{A}(v_2) \in U \Rightarrow \overline{\mathcal{A}(v_1)} = \overline{\mathcal{A}(v_2)}$ $\overline{\mathcal{A}}$ линеен очев.

Очев пишем всегда, кроме случаев, когда не очев (ну или когда надо в доказательстве только черточки проставить) (c)

Example 2.3.

Пусть у \mathcal{A} есть базис из одной жордановой цепочки длины $k: v_1 \to v_2 \to \cdots \to v_k \to 0$. Какое здесь есть норм инв. подпространство? Например $\langle v_{k-1}, v_k \rangle = U$.

Рассмотрим $V/U: \overline{v_1} \to \overline{v_2} \to \cdots \to \cdots \overline{v_{k-2}} \to 0$

 ${\bf y}$ него будет такой базис: взяли эти ${\bf y}$ вектора, дополнили до базиса и поставили чёрточки.

Lemma 2.2. Базис фактор пространства

 $v_1, ..., v_n$ — базис $V, v_1, ..., v_k$ — базис U.

Тогда $\overline{v_{k+1}},...,\overline{v_n}$ — базис V/U

 $\ensuremath{\mathcal{A}\!\mathit{okaзатeльcmso}}.$ Lem $\overline{v_{k+1}},...,\overline{v_n}$ —- порождающий набор:

$$\forall \overline{v} \in V/U = \overline{\sum_{i=1}^{n} a_i v_i} = \overline{0} + \overline{\sum_{k=1}^{n} a_i v_i} = \sum_{k=1}^{n} a_i \overline{v_i}$$

Линейнонезависимость:

Пусть $\sum_{k=1}^n a_i \overline{v_i} = 0 \Rightarrow \overline{\sum_{k=1}^n a_i v_i} = 0 \Rightarrow \sum_{k=1}^n a_i v_i \in \langle v_1,...,v_k \rangle$, но у нас базис, такого не может быть $\Rightarrow a_i = 0$

Proposition 2.2.

 $\mathcal{A} \in Lin(V,V), \, U$ — инвариантное пространство, $u_1,...,u_k$ — базис $U,\, u_1,...,u_n$ — базис V, тогда

$$[\mathcal{A}] = \begin{pmatrix} [\mathcal{A}_U]_{u_1,\dots,u_k} & * \\ 0 & [\overline{\mathcal{A}}_{V/U}]_{\overline{u_{k+1}},\dots,\overline{u_n}} \end{pmatrix}$$

 $Доказательство. \ k+1$ -й столбец матрицы:

$$\mathcal{A}(u_{k+1}) = \sum_{i=1}^n a_{i,k+1} u_i \Rightarrow \overline{A}(\overline{u_{k+1}}) = \overline{\sum_{i=1}^k a_{i,k+1} u_i + \sum_{i=k+1}^n a_{k+i} v_{k+i}} = \sum_{i=k+1}^n a_{i,k+1} \overline{u_i}$$
— ровно первый столбец $[\overline{\mathcal{A}}_{V/U}]_{\overline{u_{k+1}},\dots,\overline{u_n}}$

Theorem 2.1. Гамильтона-Кэли

$$\mathcal{A} \in Lin(V, V) \Rightarrow \chi_{\mathcal{A}}(\mathcal{A}) = 0 \in Lin(V, V)$$

Доказательство. $\chi_{\mathcal{A}}(t) = det(A - tE) \Rightarrow \chi_{\mathcal{A}}(\mathcal{A}) = det0 = 0.$

Увы, это все обман. Надо доказывать нормально.

Example 2.4. Тут не будет доказательства

$$A \in M_2(K) \Rightarrow A \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow \chi_A(t) = t^2 - (a+d)t + ad - bc$$
, тогда наша (недоказанная) теорема говорит, что $A^2 - (a+d)A + (ad-bc)E = 0 \Rightarrow A^2 = (a+d)A - (ad-bc)E$

Definition 2.3. След

 $tr(A) - \pm$ коэффициент при $t^{n-1} -$ сумма корней $\chi(t)$ (сумма с.ч.), но с другой стороны мы знаем, что $\chi_A = \chi_{CAC^{-1}} \Rightarrow tr(A) = tr(CAC^{-1}) \Rightarrow$ он будет равен сумме элементов на диагонали (прямое вычисление определителя A - tE).

А теперь реальное доказательство.

Достаточно доказать для матриц. Будем считать, нуо, что K — алг. замкнуто(ничего не изменится, если мы будем думать что мы в большем поле). Делаем индукцию по dimV.

$$\mathcal{A}:\mathbb{C}^n\to\mathbb{C}^n$$
. $\chi_A(t)=(t-\lambda)\cdot\chi_1(t)$. Значит $\exists v\in\mathbb{C}^n,\ \mathcal{A}(v)=\lambda v,$ и пусть $v,v_2,...,v_n$ — базис \mathbb{C}^n .

Тогда мы знаем, что
$$[\mathcal{A}] = \begin{pmatrix} \lambda & \dots \\ 0 & [\overline{A}|_{V/\langle v \rangle}] \end{pmatrix}$$
. Отсюда видим, что $\chi_A(t) = (\lambda - t) \cdot \chi_{\overline{A}|_{V/\langle v \rangle}}(t) \Rightarrow \chi_{\overline{A}|_{V/\langle v \rangle}}(t) = -\chi_1(t)$

По индукционному предположению $\chi_{\overline{A}}(\overline{A})=0$. Это значит

$$\forall \overline{u} \in V/\langle v \rangle \Rightarrow \chi_{\overline{A}}(\overline{A})(\overline{u}) = 0 \iff \chi_{\overline{A}}(A)(u) \in \langle v \rangle$$

To есть $\forall u \in V : \chi_{\overline{A}}(A)(u) = kv$

$$\chi_A(A)(u) = ((t - \lambda)\chi_1(t))(A)(u) = (A - \lambda Id)\chi_{\overline{A}}(A)(u) = k(A(v) - \lambda v) = k(\lambda v - \lambda v) = 0$$

Example 2.5. Проверяем теоерму ручками

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$$
. $\chi(t) = (t-a)(t-c)$. Хотим $(A-aId) \cdot (A-cId) = 0$.

Ймеем: $\mathcal{A}v_2 = bv_1 + cv_2$ и $\mathcal{A}v_1 = av_1$. Поэтому $(A - c)v_2 = bv_1$, $(A - c)v_1 = (a - c)v_1$. В любом случае $(A - cId)(V) \subset \langle v_1 \rangle$. А $(A - aId)(v_1) = 0$.

Вообще говоря χ_A раскладывается на неприводимые множители. И это разложение дает разложение пространства на инвариантные!

Lemma 2.3.

 $\mathcal{A} \in Lin(V,V), \ f \in K(t), \ f(\mathcal{A}) = 0, \ f = f_1 \cdot f_2, \ gcd(f_1,f_2) = 1,$ тогда $V = V_1 \oplus V_2, \ V_i$ — инвариантно и $V_i = Ker(f_i(A)).$

Доказательство. $(f_1,f_2)=1\Rightarrow\exists g_1,g_2:\ g_1f_1+g_2f_2=1$ Подставим $A:f_1(A)g_1(A)+f_2(A)g_2(A)=Id$

Подставим произвольный вектор: $v \in V$: $f_1(A)g_1(A)(v) + f_2(A)g_2(A)(v) = v$, первое слагаемое назовём v_2 , а второе v_1 . Мы получили $v_2 + v_1 = v$.

Заметим, что $f_2(A)(v_2) = f_2(A)(f_1(A)g_1(A)(v)) = f(A)g_1(A)(v) = 0$ т.к. f(A) = 0. То есть $v_2 \in Ker(f_2(A)) = V_2$. Аналогично $v_1 \in Ker(f_1(A))$.

Итак, $\forall v \in V \ v = v_1 + v_2$, где $v_1 \in V_1, v_2 \in V_2$.

Осталось проверить, что $V_1 \cap V_2 = \{0\}$ Пусть $w \in V_1 \cap V_2$. Тогда по равенству в начале:

$$w = g_1(A)f_1(A)(w) + g_2(A)f_2(A)(w)$$
, каждое из таких слагаемых равно 0, т.к. $w \in Ker(f_i(A)) \Rightarrow w = 0$

Corollary. Пусть $f = f_1 \cdot \dots \cdot f_k$, они все попарно взаимнопросты и f(A) = 0, тогда $V = V_1 \oplus V_2 \oplus \dots \oplus V_k$, где $V_i = Ker(f_i(A))$

Доказательство. $(f_1, f_2 \dots f_k) = 1 \Rightarrow V = Ker f_1(A) \oplus Ker f_2 \dots f_n(A)$. Возникает $A' = A | Ker f_2 \dots f_n(A)$, причем $(f_2 \dots f_n)(A') = 0$ Дальше по индукции.

Example 2.6.

Пусть у нас оператор диагонализуем и $f(t) = (t - a_1)(t - a_2)(t - a_3)$ с с.в. v_1, v_2, v_3 . Тогда что такое V_i ? $V_i = Ker((t - a_i)\mathcal{A}) = Ker(\mathcal{A} - a_iId) = \langle v_i \rangle$.

Тогда $V = \langle v_1 \rangle \oplus \langle v_2 \rangle \oplus \langle v_2 \rangle$

Proposition 2.3. Итог

 $\mathcal{A}\in Lin(V,V),\ \chi_A(t)=\prod p_i^{a_i},\ p_i$ — неприводимый. $V=\bigoplus Ker(p_i^{a_i}(\mathcal{A}))=\bigoplus V_i$ все инвариантные и $p_i^{a_i}(\mathcal{A}|_{V_i})=0$

Пусть теперь $K = \mathbb{C} \Rightarrow p_i = t - \lambda_i$

Definition 2.4. Корневое подпространство

$$Ker(t-\lambda_i)^{a_i}(\mathcal{A})=W_{\lambda_i}=Ker(\mathcal{A}-\lambda_i Id)^{a_i}$$
 — корневое подпространство Тогда $V=igoplus_{\lambda-\text{ с.ч.}}W_{\lambda}$

Выберем базис в каждом W_{λ} , тогда их объединение базис V.

В этом базисе
$$[\mathcal{A}]=egin{pmatrix} A_{W_{\lambda_1}} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & A_{W_{\lambda_k}} \end{pmatrix}$$

Рассмотрим $W_{\lambda} = \ker(\mathcal{A} - \lambda_i Id)^{a_i}$. $B_i = (\mathcal{A} - \lambda_i Id)\big|_{W_{\lambda}}$. Тогда $B_i^{a_i} = 0$. То есть B_i — нильпотентный. Знаем, что там есть базис из жордановых цепочек. В нем B состоит из 1 под диагональю почти везде. А $[\mathcal{A}]_{W_{\lambda}} = \lambda_i Id + B_i$.

Итого: существует базис т.ч. Из таких матрица имеет вид бочно-диагональный с блоками

$$\begin{pmatrix} \lambda & 0 & 0 & \dots & 0 \\ 1 & \lambda & 0 & \dots & 0 \\ 0 & 1 & \lambda & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda \end{pmatrix}$$
 Это называется жорданова форма оператора \mathcal{A} .

Theorem 2.2. Жорданова форма оператора

Любой оператор над С имеет жорданову форму.

Переформулировка: $\forall A \in M_n(\mathbb{C}) \exists C \in GL_n(\mathbb{C}) : CAC^{-1}$ в жордановой форме.

Примечание: Жорданова форма единственна с точностью до перестановки.

Proposition 2.4.

Новые жордановы цепочки:

$$v_1 \stackrel{\mathcal{A}-\lambda E}{\to} v_2 \stackrel{\mathcal{A}-\lambda E}{\to} \dots \stackrel{\mathcal{A}-\lambda E}{\to} v_k \stackrel{\mathcal{A}-\lambda E}{\to} 0$$

То есть $A(v_k) = \lambda v_k, \ A(v_{k-1}) = \lambda v_{k-1} + v_k$ и так далее

3 Лекция 3. Не смотрела(не читал(не писал))

Example 3.1. Возведение в степень

Хотим A^n . Приведем к жордановой форме $J=CAC^{-1}\Rightarrow A^n=CJ^nC^{-1}$. Достаточно научиться считать J^n . $J^n=diag(J^n_1,\ldots,J^n_k)$

Пусть
$$J_i = J(k, \lambda) = \begin{pmatrix} \lambda & 0 & 0 & \dots & 0 \\ 1 & \lambda & 0 & \dots & 0 \\ 0 & 1 & \lambda & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda \end{pmatrix} = \lambda E + J(k, 0)$$

$$J^n = (\lambda E + J_0)^n = \sum_{l} \binom{n}{l} \lambda^{n-l} \cdot E \cdot J_0$$

Что такое J_0^k ? $J_0(e_i) = e_{i+1}$ и $J_0(e_k) = 0$. То есть $J^l(e_i) = e_{i+l}$ — матрица выглядит так: единички опустилась на l диагоналей вниз.

Подставляем в бином
$$J(\lambda,k)^n = \begin{pmatrix} \lambda^n & 0 & \dots & 0 & 0 \\ \binom{n}{1}\lambda^{n-1} & \lambda^n & \dots & 0 & 0 \\ \dots & \dots & \ddots & \dots & \dots \\ \binom{n}{n-2}\lambda^2 & \binom{n}{n-3}\lambda^3 & \dots & \lambda^n & 0 \\ \binom{n}{n-1}\lambda^1 & \binom{n}{n-2}\lambda^2 & \dots & \binom{n}{1}\lambda^{n-1} & \lambda^n \end{pmatrix}$$

Отсюда можно оценить, как растут коэффициенты A^n при $n \to \infty$. Примерно так же, как коэф-ты J^n . То есть $\lambda^n p(n)$, где $|\lambda|$ - максимален.

При каких условиях $A^n \to \infty$? Ответ: если $max|\lambda| > 1$ или $max|\lambda| = 1$ и есть жорданова клетка размера > 1 с $|\lambda| = 1$.

3.1 Единственность жордановой формы

Знаем: $A \in M_n(\mathbb{C})$, то $\exists C : C^{-1}AC = diag(J(k_1, \lambda_1), \dots, J(k_s, \lambda_s))$

То есть A соответствует неупорядоченный набор(не множество! пары могут совпадать) $\{(k_i, \lambda_i)\}$.

Вопрос: могут ли два набора соответствовать одному оператору?

Ответ: нет! Этот набор однозначно выражается через исходный оператор $\mathcal{A}.$

Доказательство. Рассмотрим $f(k,\lambda) = \dim Im(\mathcal{A} - \lambda Id)^k - \dim Im(\mathcal{A} - \lambda Id)^{k+1}$ (какие-то ранги каких-то матриц).

Как она связана с жордановой формой?

Блочно-диагональная структура J соответствует разбиению на инвариантные пространства. Пусть это $V_1, \ldots V_s$. То есть $[\mathcal{A}_{|v_i}] = J(k_i, \lambda_i)$ и $V = \bigoplus V_i$.

 V_i инвариантны относительно $(\mathcal{A} - \lambda Id)^m$ тоже $(V_i$ инвариантно относительно \mathcal{A} по условию и относительно Id всегда). Поэтому $dim(Im(\mathcal{A} - \lambda Id)^m) = \sum dim(Im(\mathcal{A} - \lambda Id)^m_{|V_i})$ (т.к. $Im(\mathcal{A} - \lambda Id)^m = \bigoplus Im(\mathcal{A} - \lambda Id)^m_{|V_i}$).

Поэтому $f(k,\lambda) = \sum_{i} dim(Im(\mathcal{A} - \lambda Id)_{|V_{i}}^{k}) - dim(Im(\mathcal{A} - \lambda Id)_{|V_{i}}^{k+1})$

Посчитаем каждое слагаемое.

$$J(k_i, \lambda_i) - \lambda E_{k_i} = \begin{pmatrix} \lambda_i - \lambda & 0 & \dots & 0 & 0 \\ 1 & \lambda_i - \lambda & \dots & 0 & 0 \\ \dots & \dots & \ddots & \dots & \dots \\ 0 & 0 & \dots & \lambda_i - \lambda & 0 \\ 0 & 0 & \dots & 1 & \lambda_i - \lambda \end{pmatrix}$$

Случай 1. $\lambda_i \neq \lambda$ - невырожденная матрица, значит у любой её степени ранг k_i и соответствующая разность 0.

Случай 2. Тогда это просто нильпотентный блок (1 под диагональю). Её ранг $k_i - 1$ и при каждом умножении ранг уменьшается на 1. Значит

$$rk(J(k_i, \lambda_i) - \lambda_i E_{k_i})^k = dim Im(J(k_i, \lambda_i) - \lambda_i E_{k_i})^k = k_i - k_i$$

Значит
$$dim(Im(\mathcal{A} - \lambda Id)_{|V_i}^k) - dim(Im(\mathcal{A} - \lambda Id)_{|V_i}^{k+1}) = \begin{cases} 1, \text{ при } k < k_i \\ 0, \text{ иначе} \end{cases}$$

Итак, разность = 1 при $\lambda_i = \lambda$ и $k_i > k, \, 0$ иначе.

Значит $f(k,\lambda) = |\{(k_i,\lambda_i)|\ k_i > k\ \lambda_i = \lambda\}|$, то есть $|\{i\ |\ (k_i,\lambda_i) = (k,\lambda)\}| = f(k-1,\lambda) - f(k,\lambda)$. Значит набор восстанавливается однозначно по \mathcal{A} .

Что делать, если K не алгебраически замкнуто?

Идея: $\mathcal{A} \in Lin(V, V)$. Рассмотрим $v \in V$ - произвольный. Рассмотрим $v_0 = v, v_1 = \mathcal{A}v, v_2 = \mathcal{A}^2v, \dots$ Пространство конечномерное, поэтому найдется такое k, что набор v_0, \dots, v_k станет линейнозависимой. То есть $v_k = \sum a_i v_i = \sum a_i \mathcal{A}^i(v)$.

матрицей

Lemma 3.1.

$$\langle v_0,\dots,v_{k-1}
angle$$
 - k -мерное инвариантное подпространство $\begin{pmatrix} 0 & 0 & \dots & 0 & a_0 \\ 1 & 0 & \dots & 0 & a_1 \\ 0 & 1 & \dots & 0 & a_2 \\ \dots & \dots & \ddots & \dots & \dots \\ 0 & 0 & \dots & 1 & a_{k-1} \end{pmatrix}$

Definition 3.1. Циклическое подпространство

 $\langle v_0,\ldots,v_{k-1}\rangle$ называется циклическим подпространством порожденным v. Обозначаем $\langle v\rangle_{\mathcal{A}}$. Соответствующая матрица называется Фробениусовой клеткой.

Exercise 3.1.

$$\chi_{\mathcal{A}_{|\langle v \rangle_{\mathcal{A}}}}(t) = t^k - \sum_{i=0}^{k-1} a_i t^i$$

Remark 3.1.

Случайный выбор v даст скорее всего $\langle v \rangle_{\mathcal{A}} = V$. В этом случае не нашли мы никакого инвариантного подпространства, зато нашли характеристический многочлен.

Иначе нашли нетривиальное инвариантное подпространство и характеристический многочлен на нем — какой-то множитель $\chi_{\mathcal{A}}(t)$

Theorem 3.1. Фробениусова форма

Пусть $\chi_{\mathcal{A}}(t) = p_1 \dots p_k$, где p_i — неразложимые и все различны.

Тогда у \mathcal{A} существует базис т.ч. $[\mathcal{A}] = diag(F_1, \ldots, F_k)$, где F_i - фробениусова клетка, соответствующая многочлену p_i .

To есть $p_i = \sum b_i t^i$, то последний столбец $F_i - b_i$

Доказательство. Знаем, что если $\chi_A = \prod p_i$ и $(p_i, p_j) = 1$, то $V = \bigoplus V_i$, где $V_i = ker(p_i(\mathcal{A}))$.

В соответствующем базисе, составленном из базисов V_i матрица \mathcal{A} имеет блочно-диагональный вид $diag(\mathcal{A}_{|V_i})$. Осталось доказать, что можно выбрать базисы V_i так, чтобы сужение на V_i имело вид фробениусовой клетки для многочлена p_i .

Возьмем вектор $v \in V_i$ и построим его циклическое пространство = $\langle v_0, \dots, v_{s-1} \rangle$.

$$v_s = \mathcal{A}^s(v) = \sum a_j \mathcal{A}^j(v)$$
, то есть $\mathcal{A}^s - \sum a_j \mathcal{A}^j(v) = 0$. То есть $f(t) \atop (t^s - \sum a_j t^j)} (\mathcal{A})(v) = 0$

Знаем, что f(A)(v) = 0 и знаем, что $p_i(A)(v) = 0$, т.к. $v \in V_i = ker(p_i(A))$.

Докажем, что $f = p_i$.

Поделим p_i на f с остатком. $p_i = fq + r$, где deg(r) = t < s = deg(f).

Мы знаем, что $r(\mathcal{A})(v) = p_i(\mathcal{A})(v) - q(\mathcal{A}) \circ f(\mathcal{A})(v) = 0.$

Итак, $r(\mathcal{A})(v)=0=\sum c_iA^i(v)$. То есть $v,\mathcal{A}(v),\ldots,A^r(v)$ - линейнозависимы - противоречие

с выбором s. Значит r = 0. То есть $p_i : f$, но p_i неприводим, поэтому $f = p_i$.

 $v \in V_i$ — инвариантно, значит и $W_i = \langle v \rangle_{\mathcal{A}} \subset V_i$.

Осталось понять, что $W_i = V_i$.

$$V = \bigoplus V_i \Rightarrow dim(V) = \sum dimV_i \ge \sum dimW_i = \sum deg(p_i) = deg(\prod p_i) = deg\chi_{\mathcal{A}} = dimV_i$$

Значит везде равенства! То есть W_i — все V_i , а значит фробениусовы клетки те самые матрицы сужения.

Здесь есть липа: мы брали $v^i \in V_i$. Важно, что мы брали не нулевой вектор. А почему мы уверены, что $V_i \neq \{0\}$?

Пусть $\chi_{\mathcal{A}} = p_i q$. Мы знаем, что $p_i(\mathcal{A})q(\mathcal{A}) = 0$. Значит $\forall v \ p_i(\mathcal{A})q(\mathcal{A}) = 0 \Rightarrow ker(p_i(\mathcal{A})) \supset Im(q(\mathcal{A}))$. Если $q(\mathcal{A}) \neq 0 \Rightarrow ker(p_i(\mathcal{A})) \neq 0$.

А почему $q(A) \neq 0$? Перейдем в алгебраическое замыкание и рассмотрим λ — корень $p_i(A)$. $q(\lambda) \neq 0$ т.к. они взаимнопросты. То есть $q(A) = \prod (t - \lambda_i)$ и $\lambda_i \neq \lambda$.

Значит есть
$$v:A(v)=\lambda v.$$
 Но $q(\mathcal{A})(v)=\prod (\lambda-\lambda_i)(v)\neq 0.$

3.2 Линейные и билинейные функции

Definition 3.2. Двойственное пространство

Пусть V — в.п. над K. Назовем $V^* = Lin(V,K)$ — двойственным к V пространством.

Example 3.2.

Пусть $V = K^n$. И мы знаем, что $\forall f \in Lin(V,K)$ это умножение на матрицу. В данном случае $A_f = (a_1, \ldots, a_n)$. То есть $f(x) = \sum a_i x_i$ — линейная функция от n переменных. $(K^n)^* = {}^n K$. Понятно, что они изоморфны, но есть нюансы...

Считаем, что $dimV < \infty$. Зафиксируем базис e_i .

Definition 3.3. Двойственный базис

Двойственный базис это набор элементов $e^i \in V^*$ т.ч. $e^i(e_j) = \delta_{ij} = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$

Такие существуют и единственны. И это действительно базис V^{st}

Доказательство. Линейная независимость: пусть $\sum a_i e^i = 0$. Применим это к $e_j: \sum a_i e^i(e_j) = a_j = 0 \Rightarrow \forall j \ a_j = 0$

Это n векторов в n-мерном пространстве \Rightarrow базис.

Remark 3.2.

Пусть e_1, \ldots, e_n — базис $V. \ v \in V$ и a_i его координаты.

Тогда $a_i = e^i(v)$.

Ясно, что соответствие $e_i \mapsto e^i$ задает изоморфизм V и V^* . Но он неканонический: если выберем другой базис, то изоморфизм изменится.

Факт: канонического изоморфизма нет...

Example 3.3.

Рассмотрим $(V^*)^* = Lin(Lin(V,K),K)$ - второе двойственное протсранство. Оно уже канонически изоморфно V.

 $i:V \to V^{**}.\ v \in V \mapsto f_v:V^* \to K.$ Т.ч. $f_v(g)=g(v).$ Это дейсвительно изоморфизм(упр).

Definition 3.4. Билинейное отображение

V — в.п. над K. Билинейное отображение $f: V \times V \to W$ — отображение линейное по каждому аргументу.

В случае, когда $W=K,\,f$ называется билинейной функцией (формой).

Definition 3.5. Матрица Грамма

Пусть v_i — базис V. Пусть $a_{ij} = f(v_i, v_j)$. Возьмем $v, w \in V$, $v = \sum x_i v_i$, $w = \sum y_i v_i$. Тогда $f(v, w) = f(\sum x_i v_i, \sum y_j v_j) = \sum_{i,j} x_i y_j f(v_i, v_j) = \sum_{i,j} a_{ij} x_i y_j$.

Матрица $A = (a_{ij})$ называется матрицей билинейной формы или матрицей Грама.

В матричной записи $f(v,w) = \sum a_{ij}x_iy_j = x^TAy$, где x,y - столбцы координат v,w.

Definition 3.6. Симметричная билинейная форма

Симметричная билинейная форма: $f: V \times V \to K$ билинейная, т.ч. f(x,y) = f(y,x).

Lemma 3.2. Восстановление билинейной по квадратичной

$$f$$
 — сим $\iff f(v_i, v_j) = f(v_j, v_i) \iff A_f = A_f^T$.

Доказательство. Понятно, что если $A = A^T$, то $f(y,x) = y^T A x = y^T A^T (x^T)^T = (x^T A y)^T = x^T A y$, так как последнее это просто число...

Definition 3.7. Квадратичная форма

Пусть f — сим. билинейная форма. Рассмотрим $q:V\to K,\ q(v)=f(v,v)$. Это называется квадратичная форма, ассоциированная с f.

Lemma 3.3.

Пусть характеристика поля не 2, тогда f однозначно восстанавливается по q.

Доказательство.

$$f(u+v, u+v) = f(u, u) + 2f(u, v) + f(v, v) \Rightarrow f(u, v) = \frac{q(u+v) - q(u) - q(v)}{2}$$

В координатах
$$f(x,y) = \sum a_{ij} x_i y_j$$
. $q(x) = \sum_{ij} a_{ij} x_i x_j = \sum a_{ii} x_i^2 + 2 \sum_{i < j} a_{ij} x_i x_j$.

Example 3.4.

$$f o q(x) = x_1^2 + 2x_2^2 + 3x_1x_3$$
. Матрица Грама: $\begin{pmatrix} 1 & 0 & \frac{3}{2} \\ 0 & 2 & 0 \\ \frac{3}{2} & 0 & 0 \end{pmatrix}$, а $f = x_1y_1 + 2x_2y_2 + \frac{3}{2}x_1y_3 + \frac{3}{2$

 $\frac{3}{2}x_3y_1$.

B матричном виде $q(x) = x^T A x$.

Пусть f — билинейная форма. Заметим, что если зафиксируем один аргумент, то получим линейную функцию. Поэтому $\forall v \in V \mapsto f_v(x) = f(v,x) \in V^*$. Таким образом построили отображение $i: V \to V^*$. Это линейное отображение (трив, очев, упр).

Верно ли, что это изоморфизм? Не всегда! f(x,y)=0 билинейная функция...

Definition 3.8. Невырожденная функция

f называется невырожденной, если $i_f: V \to V^*$ изоморфизм.

Lemma 3.4. Равносильные условия невырожденности

Следующие условия расносильны:

- 1. f невырождена
- $2. A_f$ невырождена
- 3. He существует $x \in V$, $x \neq 0$, т.ч. f(x,y) = 0

Доказательство. $1 \iff 3$.

 i_f - изоморфизм \iff инъекция \iff $Ker(i_f)=0$ \iff $\{v\mid f(v,y)=0\}=\{0\}.$ Ровно условние 3.

Если A_f вырождена, существует $x: x^T A_f = 0 \Rightarrow \forall y \, x^T A_f y = 0.$

Если невырожден, и $x: x^T A y = 0 \ \forall y$. То $x^T A = 0 \Rightarrow A$ вырождена.

4 Лекция 4. Геометрия 9 класс

Definition 4.1. Ядро билинейной формы

$$f(x,y) = 0 \ \forall y \in V \iff x^T A y = 0 \ \forall y \iff x^T A = 0.$$

Если f — симметричная, то условие выше значит, что $Ax = 0 \iff x \in Ker(A)$.

Такие x называются ядром билинейной формы.

To есть f невырождена \iff ядро $\{0\}$.

Example 4.1.

$$f(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}) = x_1 y_1 + x_1 y_2 + x_2 y_1 + x_2 y_2 = (x_1 + x_2)(y_1 + y_2)$$

Она очевидно вырождена: например её матрица имеет не полный ранг. Тождественный 0 получается при $x_1 = -x_2$.

4.1 Замена базиса в билинейной форме

Если есть пространство размерности n, то оператор на V задает при выборе базиса $A \in M_n$. Точно таким же образом билинейная форма при выборе базиса задается $B \in M_n$. А существует ли соответствие между операторами и формами?? Мы получили по оператору матрицу, а по матрице форму. Можем обойтись без шага с матрицами?

Есть ли естественное соответствие между операторами и билинейными формами? Ответ: HET. Это тензоры разных типов (по comments)

Заменим базим у оператора: $A \leadsto C^{-1}AC$, а билинейная форма преобразуется по другой формуле:

Пусть f — билинейная форма, v_i, v_i' — базисы V. A — матрица f в v_i . И пусть $C = C_{v' \to v}$ (если x координаты в v', то Cx — координаты в v, другими словами $(v_1', \ldots, v_n') = (v_1, \ldots, v_n)C$).

Как изменится A? Пусть \widetilde{A} — матрица в базисе v_i' . Тогда должно выполняться $f(x,y) = (Cx)^T A(Cy)$. С другой стороны $f(x,y) = x^T \widetilde{A}y$. Итого $x^T \widetilde{A}y = x^T C^T A Cy$ для любых x,y. Отсюда следует $\widetilde{A} = C^T A C(\mathbf{CTAC})$ (следует потому что можем подставлять e_i, e_j и получать компоненты матрицы)

4.2 Пространства со скалярным произведением

Definition 4.2. Евклидово пространство

Евклидовым пространством называется пара (V, (-, -)), где V — векторное пространство над \mathbb{R} , а (-, -) — билинейная форма симметричная и положительно определенная:

- 1. (x,y) = (y,x) симметричность
- 2. $(x_1 + bx_2, y) = (x_1, y) + b(x_2, y)$ билинейность
- 3. $(x,x) \ge 0, \forall x \in V$ причем $(x,x) = 0 \iff x = 0$ положительная определенность

Example 4.2.

Возьмем \mathbb{R}^n . Знаем f(x,y) — сим и билинейна $\iff f = \sum_{i,j} a_{ij} x_i y_j$, где $a_{ij} = a_{ji} (A = A^T)$.

Что означает в терминах A условие 3? Будет потом...

Отдельный пример $f(x,y) = \sum_i x_i y_i$ — стандартное скалярное произведение.

 $f(x,x) = \sum x_i^2$ — очевидно выполняется положительная определенность.

 $f(x,y) = \overline{x_1}y_1 + x_2y_2 + \frac{1}{2}(x_1y_2 + x_2y_1)$ тоже скалярное произведение для \mathbb{R}^2 .

Definition 4.3. Hopma

Пусть V — евклидово. Положим $\forall v \in V \|x\| = \sqrt{(x,x)}$

Положим $\forall u,v \in V \ d(u,v) = \|u-v\|$ задает метрическое пространство на V

Lemma 4.1. KБШ

V — евклидово. Тогда $\forall u,v \mid (u,v) \mid \leq \|u\| \|v\|$. А если достигается равенство, то u,v - линейно зависимы.

Доказательство. В случае если какой-то вектор равен 0, то все очевидно...

Иначе заметим, что $\forall t \in \mathbb{R} (u - tv, u - tv) \ge 0.$

$$(u, u) - 2t(u, v) + t^{2}(v, v) > 0$$

Значит это квадратный трехчлен с положительным старшим коэффициентом: дискриминант ≤ 0 .

$$D = 4(u, v)^{2} - 4(u, u)(v, v) \le 0 \iff (u, v) \le ||u|| ||v||$$

В случае равенства D=0, а значит есть $t:(u-tv,u-tv)=0\iff u=tv.$

Proposition 4.1. Угол между векторами и ортогональность

Из КБШ следует неравенство треугольника для норм:

$$||u-v|| + ||v-w|| \ge ||u-w|| \iff ||p|| + ||q|| \ge ||p+q||$$

Возведем в квадрат, сократим и получим КБШ.

КБШ также говорит, что $|\frac{(u,v)}{\|u\|\|v\|}| \le 1$ для не нулевых u,v. Значит $\exists \alpha \in [0,\pi] : \cos(\alpha) = \frac{(u,v)}{\|u\|\|v\|}$. Будем называть это **углом между векторами.**

Частные случаи: $|\cos \alpha| = 1 \iff$ в КБШ равенство. То есть угол равен 0 или $\pi \iff$ коллинеарны. А если $\cos \alpha = 0$, то u, v называются ортогональными.

Definition 4.4. Ортогональный и ортонормированный базис

V — евклидово. Базис v_1,\ldots,v_n называется ортогональным, если $(v_i,v_j)=0$ при $i\neq j$ и называется ортонормированным, если $(v_i, v_j) = \delta_{ij}$ т.е. $||v_i|| = 1$

Remark 4.1. Ван

Любой вектор можно отнормировать: пусть $v \neq 0 \in V$. Рассмотрим $e = \frac{v}{\|v\|}$, тогда $(e,e) = (\frac{v}{\|v\|}, \frac{v}{\|v\|}) = \frac{1}{\|v\|^2} (v, v) = 1.$

При этом $\forall u \ (v, u) = 0 \iff (e, u) = 0$ очев.

Мораль такая: ортогональный базис легко превратим в ортонормированный.

Remark 4.2. Ty

Если есть ОНБ - e_i и $v = \sum_i a_i e_i$, то

$$(v, e_i) = (\sum a_j e_j, e_i) = \sum a_j (e_j, e_i) = a_i$$

Умеем быстро считать скалярное произведение = умеем быстро раскладывать по базису

Remark 4.3. Фри

 e_i - ОНБ $\iff ((e_i,e_j))_{ij}=E$ — матрица Грамма единичная.

Remark 4.4. Φ op

Если $x,y \in V$ и выбран ортонормированный базис, то $(x,y) = x^T E y = x^T y$ — стандартное скалярное произведение.

20

В частности $\|x\| = \sqrt{\sum x_i^2}$ — "
n-мерный Пифагор"

Remark 4.5. Т. Пифагора

Пусть $u, v \in V$, и (u, v) = 0. Тогда $||u \pm v||^2 = ||u||^2 + ||v||^2$.

Доказательство очев: раскроем скобочки.

В любом ли евклидовом пространстве есть ортонормированный базис? Ответ: ДА.

Theorem 4.1. Ортогонализация Грамма-Шмидта

Пусть V — евклидово. v_1,\ldots,v_n - базис. Тогда \exists ОНБ e_1,\ldots,e_n т.ч. $\langle e_1,\ldots,e_k\rangle=\langle v_1,\ldots,v_k\rangle\ \forall k$.

Exercise 4.1.

Если потребовать дополнительно $(e_i, v_i) > 0$, то такой e_1, \ldots, e_n единственный

Доказательство. Строим e_1, e_2, \dots последовательно.

Шаг 1.
$$e_1 = \frac{v_1}{\|v_1\|}$$
. Очевидно $\|e_1\| = 1$ и $\langle e_1 \rangle = \langle v_1 \rangle$.

Пусть построены e_1, \ldots, e_k с нужными свойствами. Хотим e_{k+1} т.ч. $||e_{k+1}|| = 1$, $(e_i, e_{k+1}) = 0$ и $\langle e_1, \ldots, e_{k+1} \rangle = \langle v_1, \ldots, v_{k+1} \rangle$

Уже знаем, что $\langle e_1, \dots, e_k \rangle = \langle v_1, \dots, v_k \rangle$. Значит $\langle e_1, \dots, e_k, v_{k+1} \rangle = \langle v_1, \dots, v_k, v_{k+1} \rangle$.

Рассмотрим $\widetilde{v}_{k+1} = v_{k+1} + \sum_{i=1}^{k} a_i e_i$. При этом $\langle e_1, \dots, e_k, v_{k+1} \rangle = \langle e_1, \dots, e_k, \widetilde{v}_{k+1} \rangle$.

 $(\widetilde{v}_{k+1}, e_j) = (v_{k+1}, e_j) + a_j$. Положим $a_j = -(v_{k+1}, e_j)$. Тогда $(\widetilde{v}_{k+1}, e_j) = 0$.

Положим $e_{k+1} = \frac{\widetilde{v}_{k+1}}{\|\widetilde{v}_{k+1}\|}$.

Proposition 4.2.

Любые два n-мерных Евклидовых пространства изометричны. То есть $\exists f: V_1 \to V_2$ т.ч. f — изомофризм в.п. и (u,v)=(f(u),f(v))(а значит сохраняет и расстояния и углы и все все все, что определяется через скалярное произведение)

Доказательство. В любых двух есть ОНБ. Пусть e_i — в V_1 , а f_i — в V_2 . Рассмотрим $\varphi(e_i) = f_i$ — изоморфизм в.п.(базис переходит в базис) и при этом $\forall u,v \in V_1$

$$(u,v) = \sum_{i} u_i v_i = (f(u), f(v))$$

Т.к. $u = \sum u_i e_i \Rightarrow f(u) = \sum u_i f_i$ — константы не поменялись, скалярное произведение стандартное.

4.3 Ортогональное дополнение

Definition 4.5. Ортогональное дополнение

Пусть f — сим. билинейная форма на V над K. $U \leq V$. Тогда ортогональное дополнение к U это $U^{\perp} = \{w \in V \mid f(w,u) = 0, \ \forall u \in U\}$

Remark 4.6.

Ясно, что U^{\perp} это тоже подпространство(даже если U не подпространство): $(w_1,u)=0$, $(w_2,u)=0 \Rightarrow (w_1+aw_2,u)=0$ по билинейности.

Theorem 4.2.

f — сим. билинейная форма на $V.~U \leq V,~dimV = n,~dimU = k.$ Тогда

- 1. $dim U^{\perp} \ge n k, (U^{\perp})^{\perp} \supset U$
- 2. Пусть f невырождена, тогда $dim U^{\perp} = n k$ и $(U^{\perp})^{\perp} = U$
- 3. V евклидово, а f его скалярное, тогда $V = U \oplus U^{\perp}$

Доказательство. 3) Зафиксируем ОНБ $U = \langle e_1, \dots, e_k \rangle$. Как-то дополним до базиса всего V и ортогонализуем по т. Г-Ш(не меняя первые k). Получили e_i — ОНБ V. Тогда $U^{\perp} = \langle e_{k+1}, \dots, e_n \rangle \Rightarrow dim U^{\perp} = n - k$ и V разбито в прямую сумму.

Доказываем $U^{\perp} = \langle e_{k+1}, \dots, e_n \rangle$: пусть $v = \sum_{i=1}^k a_i e_i + \sum_{k=1}^n a_i e_i$. Тогда $v \in \langle e_{k+1}, \dots, e_n \rangle \iff$ первой суммы нет $\iff (v, e_i) = 0$, где $i \leq k \iff (v, \sum_{i=1}^k b_i e_i) = 0 \iff v \in U^{\perp}$

1) $U \subset (U^{\perp})^{\perp}$ по определению т.к. f(u, w) = 0, для $u \in U$ и $w \in U^T \Rightarrow u \in (U^{\perp})^{\perp}$.

Пусть $U=\langle u_1,\ldots,u_k\rangle$ дополним до базиса V и рассмотрим линейную $\phi:V\to K^k$ т.ч.

$$v \mapsto \begin{pmatrix} f(v, u_1) \\ \vdots \\ f(v, u_k) \end{pmatrix}$$

To ect $dim Im(\phi) \leq k \Rightarrow dim(Ker(\phi)) \geq n - k$, a $Ker(\phi) = U^{\perp}$

2) Пусть f невырождена. Ищем $v = \sum x_i u_i$ т.ч. $f(\sum x_i u_i, u_j) = 0$ для $j \leq k$.

Имеем СЛУ $\sum_{i=1}^{n} a_{ij}x_i = 0$ для $j = 1, \dots, k$. k уравнений, а коэффициенты — первые k строк матрицы Грамма. A невырождена \Rightarrow первые k строк линейно независимы \Rightarrow пространство решений n - k мерно.

Размерность $(U^{\perp})^{\perp}=n-dim(U^{\perp})=n-(n-k)=k$ и содержит k мерное подпространство - U. Значит они равны.

Заметим, что в Евклидовом случае $U\cap U^\perp=\{0\}$ т.к. если $u\in U^\perp, u\in U\Rightarrow (u,u)=0.$

Remark 4.7. очевупр

Пусть V — евклидово пространство. $V_1, V_2 \leq V$. Тогда

$$(V_1 \oplus V_2)^{\perp} = V_1^{\perp} \cap V_2^{\perp}$$

$$(V_1 \cap V_2)^{\perp} = V_1^{\perp} \oplus V_2^{\perp}$$

Доказательство. $v \in V_1^{\perp} \cap V_2^{\perp} \Rightarrow (v, v_1) = 0 \land (v, v_2) = 0 \Rightarrow (v, v_1 + v_2) = 0 \Rightarrow v \in (V_1 \oplus V_2)^{\perp}$ Аналогично $V_1^{\perp} \oplus V_2^{\perp} \subset (V_1 \cap V_2)^{\perp}$

Очев замечание $X \leq Y \Rightarrow X^{\perp} \geq Y^{\perp}$.

Мы поняли, что $(V_1^{\perp} \cap V_2^{\perp}) \subset (V_1 \oplus V_2)^{\perp}$. Применим ещё раз ортогональность: $(V_1^{\perp} \cap V_2^{\perp})^{\perp} \supset (V_1 \oplus V_2)$

Получили каку, далее упр

Definition 4.6. Расстояние от точки до пространства

Пусть V — евклидово, $U \leq V$, $v \in V$. По определению положим $d(v,U) = \inf_{u \in U} d(v,u)$ Пусть $v = v_u + v_\perp (\exists !$ т.к. $V = U \oplus U^\perp)$, где $v_u \in U$, а $v_\perp \in U^\perp$. Тогда $d(v,v_u) = \min_{u \in U} (d(v,u)) = d(v,U)$

 v_u называется проекцией на U, а v_\perp ортогональной составляющей.

Доказательство. inf достигается.

$$|d(v,u)|^2 = \|v-u\|^2 = \left\| (v-v_u) + (v_u-u) \right\|^2 = \|(v-v_u)\|^2 + \|(v_u-u)\|^2 \ge \|(v-v_u)\|^2$$

4.4 Положительная определенность

Пусть $f:V \to V$ — симм. билинейная форма, V — в.п. над \mathbb{R} . $f=\sum a_{ij}x_iy_j$

Как понять, является ли f скалярным произведением. Конкретнее: является ли f положительно определенной.

Понимаем f — скалярное произведение \iff \exists матрица перехода C: $C^TAC = E$. т.к. есть ОНБ в котором матрица E.

Если есть ОНБ $\Rightarrow f(x,y) = \sum x_i y_i$ в этом базисе $\Rightarrow f$ – положительно определена.

Заметим, что у матрицы есть определитель

$$1 = det(E) = det(C^T A C) = det(C)^2 det(A)$$

То есть если f положительно определена, то $\det(A)>0$

Более того: рассмотрим любую симметричную подматрицу A(выбираем строки и столбцы с одинаковыми номерами). Тогда это матрица просто сужение $f|_{\langle e_{i_1},\dots,e_{i_k}\rangle}$ — все ещё положительно определена. Значит определитель такой подматрицы тоже >0.

Theorem 4.3. Критерий Сильвестра

f положительно определена $\iff \forall k=1,\ldots,n\ det(A_k)>0$, где A_k — подматрица из первых k строчек и столбцов — угловой минор.

5 Лекция 5. Комплексифицируемся

Theorem 5.1. Критерий Сильвестра

f — симметричная билинейная форма, A — матрица Грама.

Тогда f — положительно определена \iff \forall k=1..n $det A_k>0,$ A_k — матрица из первых k столбцов и строк.

 $Доказательство. \Rightarrow$. Уже доказали.

 \Leftarrow : Пусть q — соответствующая квадратичная. Индукция по размерности V:

База: n = 1 — очев. $q(x) = ax^2$ — положительно определена $\iff a > 0$

Переход: $n \to n+1$.

 $v_1, \ldots, v_n, v_{n+1}$ — базис.

Рассмотрим $f_{|\langle v_1,\dots,v_n\rangle}$ — имеет матрицу Грама A_n (в базисе $v_1,\dots v_n$)

Угл. миноры: $det(A_1), \ldots, det(A_n) > 0 \Rightarrow$ по индукции $f_{|\langle v_1, \ldots v_n \rangle}$ — положительно определена $\Rightarrow f_{|\langle v_1, \ldots v_n \rangle}$ — скалярное произведение $\Rightarrow \exists e_1, \ldots e_n$ — ОНБ для $\langle v_1, \ldots, v_n \rangle$ относительно f.

Рассмотрим: e_1,\dots,e_n,v_{n+1} — базис V. В нём f имеет матрицу Грама вида: $\begin{pmatrix} E & x^T \\ x & a \end{pmatrix}$ —

единичная матрица + какой-то последний столбец $(x=(a_1,\ldots,a_n)).$

Рассмотрим $\tilde{e}_{n+1} = v_{n+1} - \sum a_i e_i$

Теперь $\forall j = 1 \dots n \ (\widetilde{e}_{n+1}, e_j) = (v_{n+1}, e_j) - \sum a_i(e_i, e_j) = a_j - a_j = 0$. Ясно, что $e_1, \dots, e_n, \widetilde{e}_{n+1}$ — базис V. Т.е. матрица Грама в новом базисе будет равна: $\begin{pmatrix} E & 0 \\ 0 & \widetilde{a} \end{pmatrix} = \widetilde{A}$

Заметим, что $\widetilde{a} = det(\widetilde{A}) = det(C^TAC) = (detC)^2 \cdot detA_{n+1} > 0$ Т.е. в базисе $e_1, \dots, e_n, \widetilde{e}_{n+1}$: $q(x) = 1 \cdot x_1^2 + \dots + 1 \cdot x_n^2 + \widetilde{a} \cdot x_{n+1}^2 > 0$

Proposition 5.1. Разложение Холецкого

f — сим. билинейная форма с матрицей A, тогда

f — положительно определена $\iff \exists \ C$ — невырожденная, т.ч. $A = C^T C$.

Замечание: $C^T C$ — всегда симметрична.

Доказательство. f – положительно определена \iff \exists базис, в котором матрица Грама единична \iff $\exists C$ — невыр., т.ч. $A=C^TEC=C^TC$

Первая равносильность: \Rightarrow – ортогонализация Г-Ш. Обратно очев.

Lemma 5.1.

 $f:V\times V\to K$ — билинейная форма, V— в.п. над $K(char K\neq 2),$ симметричная, невырожденная.

Тогда существует ортогональный базис v_1, \dots, v_n , т.ч. что матрица Грама имеет вид:

$$\begin{pmatrix} a_1 & 0 & \dots & 0 & 0 \\ 0 & a_2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & a_{n-1} & 0 \\ 0 & 0 & \dots & 0 & a_n \end{pmatrix}$$
 и все $a_i \neq 0$.

Доказательство. Потом(наверное)

Lemma 5.2. Теорема Лагранжа

Любая симметричная билинейная форма имеет ортогональный базис.

Доказательство. $Kerf = KerA = \{v \in V \mid f(u, v) = 0, \forall u \in V\}$

Возьмём базис $v_1,...,v_k\ Kerf$. Дополним его до базиса V.

Поймем, что $f_{|\langle v_{k+1},\dots,v_n\rangle}$ — невырождена.

Пусть $v \in Ker(f_{|\langle v_{k+1}, \dots, v_n \rangle}) \Rightarrow f(v, v_i) = 0, \ i = k+1, \dots, n, \ a$ также $f(v, v_i) = 0, \ i = 1..k$ т.к. $v_i \in Ker \ f \Rightarrow f(v, u) = 0, \ \forall \ u \in V \Rightarrow v \in Ker \ f = \langle v_1, \dots, v_k \rangle \Rightarrow v = 0$ т.к. $v \in \langle v_{k+1}, \dots, v_n \rangle$ изначально.

Тогда в $\langle v_{k+1}, \dots, v_n \rangle$ есть базис u_{k+1}, \dots, u_n ортогональны относительно $f \Rightarrow v_1, \dots, v_k, u_{k+1}, \dots, u_n$ — ортогональный базис.

Example 5.1. Контрпример

 $q(x_1,x_2)=x_1x_2$ нет ортогонального базиса над $\mathbb{Z}/2\mathbb{Z}(\mathrm{ynp})$.

Были бы над \mathbb{R} сделали бы замену: $x_1x_2 = (y_1 + y_2)(y_1 - y_2) = y_1^2 - y_2^2$.

Lemma 5.3.

Если $K = \mathbb{R}$, то для любой билинейно симметричной f существует базис т.ч. матрица грамма имеет вид диагональной, где сначала идут сколько то 1, потом сколько-то -1 и несколько 0. То есть $f(x_1, \ldots, x_n) = \sum x_i^2 - \sum x_i^2$.

Если $K=\mathbb{C}$, то без -1, только $\sum x_i^2$.

Доказательство. Пусть v_1, \ldots, v_n — ортогональный базис(есть по т. Лагранжа). Отнормируем его. Если $f(v_i, v_i) = 0$, то $e_i = v_i$. Если $f(v_i, v_i) = a^2$, то $e_i = \frac{v_i}{a}$. Если $f(v_i, v_i) = -a^2$, то $e_i = \frac{v_i}{a}$. В любом случае будет $f(e_i, e_i) = \text{sign}(f(v_i, v_i))$. Значит матрица будет иметь на диагонали 1, -1 и 0.

Если $K = \mathbb{C}$, то любое не нулевое число это квадрат какого-то числа, поэтому везде единички(и нули).

Proposition 5.2.

В \mathbb{C} матрица имеет вид $\begin{pmatrix} E_k & 0 \\ 0 & \mathbf{0} \end{pmatrix} = A_k$. $k = rk(A_k) = rk(C^TA_kC)$. Следовательно k однозначно определено.

Над \mathbb{R} . A имеет вид $\begin{pmatrix} E_k & 0 & 0 \\ 0 & -E_l & 0 \\ 0 & 0 & \mathbf{0} \end{pmatrix}$. Понятно, что k+l=rk(A) тоже однозначно определено.

Theorem 5.2. Закон инерции квадратичных форм

Пара чисел k, l единственны для A.

Доказательство. Это следует из того, что

$$k = \max(\dim U \mid U \leq V, f_{|U} - -$$
положительно определена)

Значит и l определяется точно как rk(A) - k.

Рассмотрим $v_1, \ldots, v_k, v_{k+1}, \ldots, v_l, \ldots, v_n$ – соответствующий базис, в котором форма так выглядит. Рассмотрим $f_{|\langle v_1, \ldots, v_k \rangle}$ имеет матрицу E_k . Значит искомый максимум $\geq k$.

Рассмотрим $U=\langle v_{k+1},\dots,v_n\rangle.\ dim U=n-k.$ Пусть max>k. То есть $\exists W\leq V$ т.ч. $\dim W>k$ и $f_{|W}$ — положительно определена.

Заметим, что $\dim(W\cap U) = -\dim(W+U) + \dim W + \dim U \ge -n + n - k + k + 1 = 1$. То есть существует $v \ne 0 \in W\cap U$. Тогда f(v,v) > 0 т.к $v \in W$. Но $v = \sum_{i=k+1}^n a_i v_i$ и $f(v,v) = \sum_{i=k+1}^n -a_i^2 \le 0$. Противоречие.

Не возвращаемся к лемме. Опять...

5.1 Полуторалинейные формы

Хотим что-то типа Евклидовой структуры над \mathbb{C} . Проблема в том, что в \mathbb{C}^n $f(x,y) = \sum x_i y_i$ – симметрическая билинейная форма. Нет положительной определенности(f(x,x) может быть чем угодно). f(ix,ix) = -f(x,x) для любой билинейной формы...

Правильное скалярное произведение $f(x,y) = \sum x_i \overline{y_i}$.

Definition 5.1. Полуторалинейная форма

Пусть $f:V\times V\to\mathbb{C}$,где V -в.п. над \mathbb{C} . f называется полуторалинейной, если

- 1. f(x+y,z) = f(x,z) + f(y,z)
- 2. f(z, x + y) = f(z, x) + f(z, y)
- 3. f(ax, y) = af(x, y)
- 4. $f(x,ay) = \overline{a}f(x,y)$ полулинейность по 2 аргументу

Аналогично в \mathbb{C}^n f - полуторалинейна $\iff f = \sum a_{ij} x_i \overline{y_j}$.

Положительноопределенной, если $f(x, x) \in \mathbb{R}_+$ для $x \neq 0$.

Эрмитова, если f(x,y) = f(y,x)

Definition 5.2. Унитарное пространство

Унитарным называется пара (V, f), где V – в.п. над \mathbb{C} , а f – (полутора)линейная, эрмитова, положительноопределенная форма на нем(скалярное произведение).

Аналогично определяем $||x|| = \sqrt{(x,x)}$. d(x,y) = ||x-y|| – метрика.

V над \mathbb{C} , f – полуторалинейная, v_1, \ldots, v_n – базис. $A = ((v_i, v_j))_{ij}$ — матрица Грамма. В координатах $f(x, y) = x^T A \overline{y}$. А формула перехода к другому базису $\widetilde{A} = C^T A \overline{C}$.

Ортогонализация Γ -Ш, существование OHБ, ортогональное дополнение — все как в Евклидовых пространствах.

Definition 5.3. Эрмитовость

Было $A^T=A$. А сейчас $(e_i,e_j)=\overline{(e_j,e_i)}$. То есть $A^T=\overline{A}$ — эрмитова матрица

Возвращаемся к старой лемме:

Доказательство. f — невырожденная симметричная билинейная форма на V, $charK \neq 2 \Rightarrow \exists$ ортогональный базис.

Индукция по dimV. База очев.

Переход $n \to n+1$. f невырождена $\Rightarrow f \neq 0$. То есть $\exists x, y : f(x,y) \neq 0$.

 $f(x,y) = \frac{f(x+y,x+y) - f(x,x) - f(y,y)}{2} \neq 0$. Значит хотя бы одно слагаемое не 0. То есть $\exists v_1 \, f(v_1,v_1) \neq 0$.

Мы знаем, что если f невырождена, то $dimU^{\perp} = dimV - \dim U$. В качестве U берем $\langle v_1 \rangle$. Тогда $\dim U^{\perp} = n + 1 - 1 = n$. При этом $v_1 \notin U^{\perp}$ т.к. $f(v_1, v_1) \neq 0$.

$$v_2, \dots, v_{n+1}$$
 — базис $U^{\perp} \Rightarrow v_1, \dots, v_{n+1}$ — базис V .

Заметим, что $f_{|U^{\perp}}$ — невырожденная. Если $\exists u \in U^{\perp}$ т.ч. f(u,v) = 0 для $v \in U^{\perp}$, то $f(u,v_i) = 0$ для всех v_i , а значит f(u,V) = 0 — противоречие с невырожденностью.

В U^{\perp} существует ортогональный базис. Добавим к нему v_1 . Получим ортогональный базис V.

5.2 Операторы в евклидовых и унитарных постранствах

5.2.1 Сопряженный оператор

Definition 5.4. Сопряженный оператор

V — евклидово или унитарно, $A \in Lin(V,V)$. Тогда сопряженый к $\mathcal A$ оператор это такой $\mathcal B \in Lin(V,V)$, что $\forall x,y \in V \ (\mathcal A x,y) = (x,\mathcal B y)$.

Обозначается \mathcal{A}^* .

Почему он существует и единственен?

Напоминание: Если V евклидово(в комплексном аналогично с точностью до знака сопряженности где-то), (-,-) — невырожденная форма задает изоморфизм между V и V^* . $y \mapsto f_y(x) = (x,y)$. Это изоморфизм. То есть $\forall f \in V^* \; \exists ! y \; f = f_y$.

Теперь рассмотрим $g_y(x) = (Ax, y) \in V^*$. Значит $\exists ! z : g_y = f_z$ то есть $\forall x \ (Ax, y) = (x, z)$. z = B(y). Это соответствие линейный оператор. Доказали существование и единственность.

Proposition 5.3. Явная формула для \mathcal{A}^*

 $K = \mathbb{R}/\mathbb{C}$. Пусть e_i — ОНБ. A матрица \mathcal{A} в этом базисе. Ясно, что $\forall x, y \ (Ax, y) = (x, A^*y) \iff (Ae_i, e_j) = (e_i, A^*e_j)$ для базисных.

$$(Ae_i, e_j) = (\sum_k a_{ki}e_k, e_j) = a_{ji} = (e_i, A^*e_j)$$

Пусть $A^*e_j=(b_{ij})$. Тогда

$$(e_i, A^*e_j) = (e_i, \sum b_{kj}e_k) = \overline{b_{ij}}$$

То есть $A^* = \overline{A}^T$ — сопряженная матрица

Итого: сопряженные матрицы это матрицы сопряженных операторов **в ортонормиро**ванных базисах. Упр написать в общем базисе.

Definition 5.5. Самосопряженный оператор

Оператор называется самосопряженным, если $A^* = A$ то есть (Ax, y) = (x, Ay).

В ОНБ это $A = \overline{A}^T \iff A^T = \overline{A}$ — эрмитова матрица.

Над \mathbb{R} просто симметричная матрица, то есть симметричной билинейной формы.

Lemma 5.4. Собственные числа самосопряженного оператора

Пусть V — унитарное пространство. \mathcal{A} — самосопряженный оператор. λ — с.ч. $\mathcal{A} \Rightarrow \lambda \in \mathbb{R}$.

Доказательство. Пусть $v: \mathcal{A}(v) = \lambda v$

$$\lambda(v,v) = (\mathcal{A}(v),v) = (v,\mathcal{A}(v)) = \overline{\lambda}(v,v)$$

T.K. $(v, v) \neq 0 \Rightarrow \lambda = \overline{\lambda}$.

Lemma 5.5.

Пусть \mathcal{A} — самосопряженный в евклидовом пространстве, тогда $\chi_{\mathcal{A}}(t) = \prod (t - \lambda_i)$. $\lambda_i \in \mathbb{R}$.

Доказательство. Пусть A — матрица в ОНБ. Тогда $A = A^T$. Рассмотрим A как матрицу в $M_n(\mathbb{C})$. Тогда $\overline{A} = A = A^T$. Значит \mathcal{A} самосопряженная в унитарном. А там все вещественные.

Lemma 5.6.

Пусть $\mathcal{A}-$ самосопряженный. $U\leq V-$ инвариантное, тогда U^\perp тоже инвариантно.

Доказательство. Пусть $x \in U^{\perp}$. $\forall y \in U \ (A(x), y) = (x, A(y)) = 0$ т.к. $A(y) \in U$. Значит $A(x) \in U^{\perp}$.

6 Лекция 6. 24 личности линейного оператора

Theorem 6.1.

 \mathcal{A} — самосопряжен \iff \exists OHB из собственных векторов с вещественными собственными числами.

Матричная переформулировка: [\mathcal{A}] диагональная в некотором OHБ.

Доказательство. Индукция по $\dim V = n$. n = 1 очев. (в унитарном случае $c = \overline{c} \Rightarrow c \in \mathbb{R}$).

Замечание: если V — евкл. или унитарно и $U \leq V$ — инвариантное, а \mathcal{A} самосопряженный, то U тоже евклидово или унитарно и $\mathcal{A}|_U$ самосопряженный.

Переход $n \to n+1$: пусть dimV = n+1. По леммам сусществует вещественное с.ч. λ_1 . Пусть e_1 — с.в. для λ_1 единичной длины.

 $\langle e_1 \rangle \leq V$ — инвариантно $\Rightarrow \langle e_1 \rangle^\perp$ тоже инвариантно $\dim = n+1-1=n$. По индукционному предположению в $\langle e_1 \rangle^\perp$ существует ОНБ из с.в. e_2, \ldots, e_{n+1} . Добавим туда e_1 и победим! Обратно очев.

Remark. $U - uheapuahmho \Rightarrow U^{\perp} - uheapuahmho$.

Если для \mathcal{A} такое верно, то он диагонализуем.

6.1 Оценка квадратичной формы

Пусть есть $q(x) = \sum_{i,j} a_{ij} x_i x_j$. И есть стандартная $q_0(x) = \sum_i x_i^2 = ||x||^2$. Хотим $c: q(x) \leq cq_0(x)$.

Example 6.1.

Пусть $q(x) = x_1 x_2 \le \frac{1}{2} (x_1^2 + x_2^2)$ и это лучшая константа!

Theorem 6.2.

Выполнено $q(x) \le c \cdot q_0(x) \iff c \ge \lambda_n$, где λ_n — максимальное с.ч.

Доказательство. Пусть A — матрица Грамма $q,\ A=A^T.$ То есть это также матрица самосопряженного оператора в $\mathbb{R}^n.$

Заметим, что $(Ax,x)=\sum_{i=1}^n (Ax)_i x_i=\sum_{i=1}^n \sum_{j=1}^n a_{ij}x_j x_i=\sum_{i,j} a_{ij}x_i x_j=q(x).$

Пусть e_i — ОНБ из с.в. с с.ч. $\lambda_1, \ldots, \lambda_n$. Все вещественные, поэтому упорядочим по возрастанию.

 $x = \sum_{i} b_{i} e_{i}$. Получим, что $(Ax, x) = (A(\sum_{i} b_{i} e_{i}), \sum_{i} b_{i} e_{i}) = \sum_{i} \lambda_{i} b_{i}^{2} \le \lambda_{n} \sum_{i} b_{i}^{2} = \lambda_{n} \|x\|^{2}$.

Итого $q(x) \leq \lambda_n ||x||^2$. При этом равнество достигается при $x = e_n$, поэтому константы меньше нет.

Remark 6.1. Тривочев

Аналогично:

 $|q(x)| \le |\lambda_k| ||x||^2$, где λ_k — максимальное по модулю.

Если q — положительно определена, тогда с.ч. > 0.

Если q — полоижтельно определенная форма, тогда $q(x) \ge \lambda_0 \|x\|^2$, где λ_0 — минимальное с.ч.

6.2 Ортогональные и унитарные операторы

Definition 6.1. Ортогональный/унитарный оператор

Пусть $\mathcal A$ оператор на V — евклидвово/унитарно. $\mathcal A$ называется ортогональным/унитарным, если выполнено одно из равносильных утверждений

- 1. Сохраняет скалярное произведение: (Ax, Ay) = (x, y)
- 2. Сохраняет длины (Ax, Ax) = (x, x)
- 3. \mathcal{A} обратим и $\mathcal{A}^* = \mathcal{A}^{-1}$
- 4. $A*A^*=E, A\overline{A}^T=E,$ где A- матрица $\mathcal A$ в ОНБ.
- 5. \mathcal{A} переводит ОНБ в ОНБ
- 6. \exists ОНБ который ${\cal A}$ переводит в ОНБ

Доказательство. Равносильности утверждений:

 $1 \to 2$ трив $2 \to 1$ следует т.к. $(x,y) = \frac{1}{2}((x+y,x+y)-(x,x)-(y,y)) = (\mathcal{A}x,\mathcal{A}y)$

 $1 \to 3$ Если $Ax = 0 \Rightarrow (Ax, Ax) = 0 \Rightarrow (x, x) = 0 \Rightarrow x = 0$. То есть ядро $\{0\}$, значит обратима. $(\mathcal{A}x, y) = (\mathcal{A}x, \mathcal{A}\mathcal{A}^{-1}y) = (x, \mathcal{A}^{-1}y)$.

$$3 \to 1: (Ax, Ay) = (x, A^{-1}Ay) = (x, y).$$

 $3 \rightarrow 4$ т.к. $A^* = \overline{A}^T$ в ОНБ.

$$5 \to 6$$
 очев. $1 \to 5$: $(Ae_i, Ae_j) = (e_i, e_j) = \delta_{ij} \Rightarrow Ae_i - \text{OHB}$.

$$6 \to 1$$
: $(\mathcal{A}(\sum a_i e_i), \mathcal{A}(\sum b_i e_i)) = \sum_{i} a_i b_i (\mathcal{A}e_i, \mathcal{A}e_j) = \sum_i a_i b_i = (\sum a_i e_i, \sum b_i e_i)$

Вернемся к теореме о самосопряженных операторах в \mathbb{R} . $\mathcal{A}-\text{c.c.}$, значит $[\mathcal{A}]-\text{симметричная}$ в некотором ОНБ. Теорема говорит, что \mathcal{A} диагональна в некотором ОНБ. То есть $C^{-1}AC$ — диагональная. При этом C не просто матрица перехода, а матрица перехода между ОНБ, поэтому она ортогональна $C^{-1}=C^T$. Поэтому C^TAC .

Доказали, что любая квадратичная форма приводится к каноническому(диагональному) виду ортогональным преобразованием(грубо говоря поворотом системы координат).

$$\sum a_{ij}x_ix_j \leadsto \sum c_ix_i^2$$
, где c_i — с.ч. матрицы (a_{ij}) .

Но у квадратичной формы неоднозначно определены с.ч. так как при замене у матрицы Грамма меняется определитель... Но если зафиксировать ОНБ то все хорошо.

Remark 6.2.

 $O_n = \{A \in M_n(K) \mid AA^T = E\}$ — группа ортогональных матриц(а ещё столбцы A образуют ОНБ).

 $U_n = \{A \in M_n(\mathbb{C}) \mid A\overline{A}^T = E\}$ — группа унитарных матриц.

То есть композиция орт/унит это матрица того же типа!

Самосопряженные — группа по сложению, но не умножению, да и почти не обратимы... $SO_n = \{A \in O_n \mid \det(A) = 1\}, SU_n$ аналогично.

Заметим, что если $A \in O_n$, то $\det(AA^T) = \det(E) = 1 \Rightarrow \det(A) = \pm 1$. То есть $O_n = SO_n \cup SO_n * E'$ (по факту SO_n — индекса 2), где E' единичная, но $e_{11} = -1$.

 SO_n — отображения, сохраняющие ориентацию, а второе слагаемое — меняющие ориентацию.

Remark 6.3. Ориентация

Зададим на множестве базисов в \mathbb{R}^n отношение эквивалентности: $(e_1, \dots, e_n) \sim (f_1, \dots, f_n) \iff (f_1, \dots, f_n)^T = C \cdot (e_1, \dots, e_n)^T$, где $\det C > 0$.

У него ровно два класса эквивалентности. Т.к. $f \not\sim g \not\sim h \Rightarrow f \sim h$ (произведение матриц с отрицательными определителями). Первый класс — правильно ориентированные базисы, второй — неправильные.

Понятно, что $\det(A) > 0$, тогда она сохраняет ориентацию любого базиса. Если < 0, то меняет.

Если e_1, \ldots, e_n — правильный базис и применим к нему(переставим местами) транспозицию (или любую нечетную перестановку), то получим неправильный.

А ещё любые два ориентированных базиса можно непрерывно перевести друг в друга!

Lemma 6.1. С.ч. ортогональных/унитарных операторов

Пусть V — евкл/унит, \mathcal{A} — ортог/унит. λ — с.ч. \mathcal{A} . Тогда $|\lambda|=1$. В частности \mathcal{A} — ортог, тогда с.ч. ± 1 .

Доказательство. Пусть v - с.в.

$$(Av, Av) = (v, v) \Rightarrow \lambda * \overline{\lambda}(v, v) = (v, v) \Rightarrow \lambda * \overline{\lambda} = 1$$

To есть $|\lambda|^2 = 1$.

Lemma 6.2.

Пуст $U \leq V$ — инвариантно относительно \mathcal{A} — ортог/унит. Тогда U^{\perp} тоже инвариантно

Доказательство. Пусть $v \in U^{\perp}$. $\forall u \in U : (\mathcal{A}v, u) = (v, \mathcal{A}^{-1}u) = 0$ т.к. $\mathcal{A}^{-1}(u) \in u$. (если $\mathcal{A}: V \to V$ обратим и U инвариантно, значит $\mathcal{A}(U) = U$ и $\mathcal{A}^{-1}(U) = U$)

Theorem 6.3.

 \mathcal{A} — унитарный, V — унитарн<mark>ый</mark> \Rightarrow существует базис из с.в.

Матричная форма: \mathcal{A} унитарный \iff \exists ОНБ в котором матрица имеет вид диагональной с элементами $e^{i\alpha_i}$

Доказательство. Точно также как для самосопряженных

Матричная форма $\Rightarrow |\lambda| = 1 \Rightarrow \lambda = e^{i\alpha_i}$.

$$\Leftarrow c = \overline{c}^{-1}$$
 для $c = e^{i\varphi}$.

Theorem 6.4.

V — евклидово, \mathcal{A} — ортог \iff существует ОНБ в котором матрица имеет диагональный вид: сначала идут ± 1 — с.ч, а потом блоки 2 на 2 $\begin{pmatrix} \cos(\alpha_i) & -\sin(\alpha_i) \\ \sin(\alpha_i) & \cos(\alpha_i) \end{pmatrix}$, соответствующий матрице поворота.

Proposition 6.1. Геометрический смысл

Если все 1, но в i-м месте -1. Тогда это зеркальная симметрия относительно $\langle e_i \rangle^\perp$.

Если есть один блок 2 на 2 в позициях i, i+1, а остальное 1, то это матрица поворота в плоскости $\langle e_i, e_{i+1} \rangle$ относительно "n-2 мерной оси".

Итого: любое ортогональное преобразование это композиция двумерных поворотов в попарно ортогональных плоскостях и зеркальной симметрии.

 \mathcal{A} оказательство. Выберем ОНБ и в нем $A=[\mathcal{A}]\in M_n(\mathbb{R})\subset M_n(\mathbb{C})$ т.ч. $A^T=A^{-1}$.

Рассмотрим её как $A: \mathbb{C}^n \to \mathbb{C}^n$ $x \to Ax$ — унитарный оператор. Существует базис из с.в.

У A есть $\chi_A(t)=(t-1)^k(t+1)^l(t-\mu_1)^{k_1}(t-\overline{\mu})^{k_1}\dots$ (крастности μ и $\overline{\mu}$ совпадают т.к. $\chi_A(t)\in\mathbb{R}[t]$).

Что значит, что ОНБ из с.в? $\mathbb{C}^n = V_1 \oplus V_{-1} \oplus V_{\mu_1} \oplus V_{\overline{\mu}_1} \dots$ где $V_a = \{x \in \mathbb{C}^n \mid Ax = ax\}$. При этом эти пространства попарно ортогональны.

Будем искать вещественный базис $e_1,e_2\in\mathbb{C}^n$ т.ч. $e_i\in\mathbb{R}^n$.

 $V_1 = Ker(A - E)$ — множество решений СЛУ с вещественными коэффициентами. Ясно, что можно выбрать вещественный базис(а так как размерности над \mathbb{R} и \mathbb{C} равны(ранг матрицы не поменялся от увеличения поля), то он же будет базисом ядра и в \mathbb{C}^n). С V_{-1} то же самое.

Заметим, что $u \in V_{\mu_i}$ то u = v + iw, где $v, w \in \mathbb{R}^n$. Поэтому $\overline{u} \in V_{\overline{\mu}_i}$.

Действительно: пусть $\mu_1 = a + bi$. Тогда A(v + iw) = (a + bi)(v + iw) = A(v) + A(iw).

$$av - bw + i(aw + bv) = A(v) + iA(w)$$

При этом $A(v), A(w) \in \mathbb{R}^n$, поэтому можем приравнять Im, Re. Получим (*): $\begin{cases} av - bw = A(v) \\ aw + bv = A(w) \end{cases}$

В частности A(v - iw) = av - bw - i(aw + bv) = (a - bi)(v - iw) – что и хотели заметить.

Пусть v_1+iw_1,\ldots,v_k+iw_k — базис V_{μ_i} . Тогда v_1-iw_1,\ldots,v_k-iw_k — базис $V_{\overline{\mu}_i}$.

Т.к. при сопряженнии сохраняется линейная зависимость $\sum z_k(v_k-iw_k)=0 \iff \sum \overline{z}(v_k+iw_k)=0.$

Тогда набор $v_1, \ldots, v_k \Rightarrow w_1, \ldots, w_k$ — базис $V_{\mu_i} \oplus V_{\overline{\mu_i}}$. Они очевидно порождают каждый элемент базиса и их ровно 2k как и размерность $V_{\mu_i} \oplus V_{\overline{\mu_i}}$.

В итоге получили новый вещественный базис $1 \leadsto v_1, \ldots, v_r, -1 \leadsto v_{r+1}, \ldots, v_s$ и $\mu_i, \overline{\mu}_i \leadsto v_1^{\mu_i}, \ldots, v_{k_i}^{\mu_i}, w_1^{\mu_i}, \ldots, w_{k_i}^{\mu_i}$. И все вместе это базис \mathbb{C}^n (заменили базис в каждом слагаемом) \Longrightarrow базис \mathbb{R}^n .

Мы знаем, что $V_1, V_{-1}, V_{\mu_i} \oplus V_{\overline{\mu_i}}$ попарно ортогональны. Значит вектора из разных групп ортогональны.

Вектора внутри группы: пусть v_k+iw_k был ортогональный базис V_{μ_i} . Тогда $v_1,\ldots,v_k,w_1,\ldots,w_k$ — ортогональны.

 $(v_k \pm i w_k, v_l \pm i w_l) = 0$ Если сложим, то получим $(2v_k, v_l \pm i w_l) = 0$ и $(2w_k, v_l \pm i w_l) = 0 \Rightarrow (v_k, v_l) = 0, (v_k, w_l) = 0$. При $k \neq l$.

Вспомним про систему (*). Посмотрим на $\langle w_k, v_k \rangle$ — очев инвариантное подпространство. с

матрицей $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$. Значит $a = \cos(\alpha)$ и $b = \sin(\alpha)$ т.к. $\mu_k = a + bi$ и $|\mu_k| = 1$. Значит в новом

базисе \mathcal{A} приводится ровно к описанному виду.

Осталось понять, что w_k, v_k ортогональны и $|v_k| = |w_k|$. Тогда можем их одновременно отнормировать и матрица сохранится.

$$(v_k + iw_k, v_k - iw_k) = (v_k, v_k) - (w_k, w_k) + i(v_k, w_k) + i(w_k, v_k) = 0.$$

0 т.к. $v_k+iw_k\in V_\mu,\,v_k-iw_k\in V_\mu$ и они ортогональны.

То есть
$$\begin{cases} (v_k, w_k) = 0 \\ (v_k, v_k) - (w_k, w_k) = 0 \end{cases}$$

Example 6.2. Частные случаи

$$\mathbb{R}^2$$
: $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - Id$, $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ — осевая симметрия, $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ — центральная симметрия, $\begin{pmatrix} \cos(a) & -\sin(a) \\ \sin(a) & \cos(a) \end{pmatrix}$ — поворот.

 \hat{SO}_2 — только повороты(включая тождественый), она же группа углов, она же единичная окружность в \mathbb{C} , она же $\mathbb{R}/2\pi\mathbb{R}$.

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos(a) & -\sin(a) \\
0 & \sin(a) & \cos(a)
\end{pmatrix}, \begin{pmatrix}
-1 & 0 & 0 \\
0 & \cos(a) & -\sin(a) \\
0 & \sin(a) & \cos(a)
\end{pmatrix} - O_3.$$

$$SO_3 \sim \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos(a) & -\sin(a) \\
0 & \sin(a) & \cos(a)
\end{pmatrix}$$

Следствие: в нечетномерном пространстве у движения всегда есть неподвижная ось!

7 Лекция 7. Разложи меня полностью

Резюме: $A \in Lin(V, V)$, V над \mathbb{R} .

Классы операторов:

- 1. $A = A^*$. Тогда есть ОНБ из с.в.
- 2. $A^* = A^{-1}$. Тогда есть ОНБ т.ч. матрица диагональная из 1, -1 и блоков 2 на 2 матриц поворотов

7.1 Полярное разложение

Есть $z \in \mathbb{C} = \mathbb{R}^2$. Рассмотрим $A_z(x) = zx$ — линейный оператор $\mathbb{R}^2 \to \mathbb{R}^2 (z \neq 0)$ (преобразвание подобия). Знаем, что $z = r(\cos(\alpha) + i\sin(\alpha))$ $(r > 0, \alpha \in (0, 2\pi))$. Значит A можно представить как композицию поворота и растяжения(гомотетии).

Хотим перенести в \mathbb{R}^n что-то такое.

Definition 7.1. Положительный самосопряженный оператор

 $\mathcal{A} \in Lin(V,V), V$ над $\mathbb{R}, \mathcal{A} = \mathcal{A}^*.$ И $(\mathcal{A}x,x) > 0 \ \forall x \neq 0$ (любой вектор отколняется не более чем на $\frac{\pi}{2}$).

Обозначаем $\mathcal{A} > 0$

Lemma 7.1.

Пусть $A = A^*$. Тогда $A > 0 \iff$ все $\lambda_i > 0$.

Доказательство. Есть q(x) = (Ax, x) — квадратичная форма на V с матрицей [\mathcal{A}] (в ОНБ). Таким образом $\mathcal{A} > 0 \iff q(x)$ — положительно определена.

С другой стороны существует ОНБ т.ч. $[\mathcal{A}]$ — диагональная с с.ч.

Критерий Сильвестра: q(x) — положительно определена \iff все уголвые миноры матрицы >0, а они равны $\lambda_1, \lambda_1\lambda_2$ и т.д.

Theorem 7.1.

 \mathcal{A} — положительный, самосопряженный. Тогда $\exists ! \mathcal{B}$, положительный и самосопряженный т.ч. $\mathcal{B}^2 = \mathcal{A}$

Доказательство. Пусть e_1, \ldots, e_n — базис из с.в. \mathcal{A} . $\mathcal{A}e_i = \lambda_i e_i$, где $\lambda_i > 0$.

Определим $\mathcal{B}e_i = \sqrt{\lambda_i}e_i$. Понятно, что тогда $\mathcal{B}^2e_i = \lambda e_i = \mathcal{A}e_i$.

Пусть $\widehat{\mathcal{B}}$ т.ч. $\widehat{\mathcal{B}}^2 = \mathcal{A}$. Существует f_i — базис т.ч. $\widehat{\mathcal{B}}(f_i) = \mu_i f_i$. Но $\widehat{\mathcal{B}}^2(f_i) = \mu_i^2 f_i = \mathcal{A} f_i$. Значит f_i — с.в. \mathcal{A} и $\mu_i^2 = \lambda_j \Rightarrow \mu_i = \sqrt{\lambda_j}$.

Более формально:

Пусть $\lambda_1, \ldots, \lambda_k$ — различные с.ч. Тогда знаем, что $V = V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_k}$.

Ha V_{λ_i} : $\mathcal{B}(x) = \sqrt{\lambda_i}x$, a $\mathcal{A}(x) = \lambda_i x$.

С другой стороны $V = W_{\lambda_1} \oplus \cdots \oplus W_{\lambda_k}$. И $\widehat{\mathcal{B}}(x) = \sqrt{\lambda_i}(x)$.

Отсюда $W_{\lambda_i} \leq V_{\lambda_i}$, но раз у нас разложение в прямую сумму, то везде равенство и на каждом $\mathcal{B} = \widehat{\mathcal{B}}$.

Lemma 7.2.

$$(ABx, y) = (Bx, A^*y) = (x, B^*A^*y) \Rightarrow B^*A^* = (AB)^*$$

Theorem 7.2. Полярное разложение

Пусть \mathcal{A} — невырожденный оператор над V. Тогда $\exists !\ S$ — положительный, самосопряженный, U — ортогональный т.ч. $\mathcal{A} = S \circ U$. И $\exists !\ S'$ — положительный, самосопряженный, U' — ортогональный т.ч. $\mathcal{A} = U' \circ S'$.

Доказательство. Единственность:

Пусть $\mathcal{A} = S \circ U$. Рассмотрим $\mathcal{A} \circ \mathcal{A}^* = S \circ U \circ (S \circ U)^* = S \circ U \circ U^* \circ S^* = S \circ S^* = S^2$.

 $\mathcal{A} \circ \mathcal{A}^*$ положительный и самосопряженный:

 $(\mathcal{A} \circ \mathcal{A}^*)^* = \mathcal{A} \circ \mathcal{A}^*.$ $(\mathcal{A} \mathcal{A}^* x, x) = (\mathcal{A}^* x, \mathcal{A}^* x) > 0$ т.к. $\mathcal{A}^* (x) \neq 0 (\mathcal{A}^*$ невырождена т.к. такая $\mathcal{A}).$

То есть S определяется однозначно как корень из $\mathcal{A} \circ \mathcal{A}^*$. Но тогда и $U = S^{-1} \circ \mathcal{A}$.

Существование: пусть $S^2=\mathcal{A}\circ\mathcal{A}^*$ и $U=S^{-1}\mathcal{A}$. Тогда понятно, что $\mathcal{A}=S\circ U$. S- положительный и с.с. по построению.

$$U^* \circ U = (S^{-1} \circ \mathcal{A})^* \circ S^{-1} \circ \mathcal{A} = \mathcal{A}^* \circ S^{-1}^* \circ S^{-1} \circ \mathcal{A} = \mathcal{A}^* S^{-2} \mathcal{A} = \mathcal{A}^* (\mathcal{A} \circ \mathcal{A}^*)^{-1} \circ \mathcal{A} = Id$$

 $\mathcal{A} = U' \circ S'$ аналогично упр(рассмотреть $\mathcal{A}^* \circ \mathcal{A}$).

Пользовались: $(S^{-1})^* = (S^*)^{-1}$:

$$(S^*(S^{-1})^*u, v) = ((S^{-1})^*u, Sv) = (u, v) \Rightarrow S^*(S^{-1})^* = E$$

Remark 7.1.

Для произвольного \mathcal{A} $\exists S, U$: $\mathcal{A} = SU$, где U ортогональна, а S — с.с. и неотрицательна($(Ax, x) \geq 0 \iff \lambda_i \geq 0$). И разложение не единственно.

Пример: $0 = 0 \circ U$, U где у U любая ортогональная, 0 - c.c. неотрицательная.

Proposition 7.1. Геометрический смысл доказанного

Любое линейное преобразование это копмозиция 2-мерных поворотов, зеркальных симметрий и растяжения вдоль перпендикулярных осей.

7.2 Сингулярное разложение

Пусть $\mathcal{A}: U \to V$ — линейное. Тогда $[\mathcal{A}]_{u_i,v_i}$ — матрица линеного отображения. Мы знаем, что $\exists u_i, v_i$ — базисы, что $[\mathcal{A}]$ полуединичная.

Definition 7.2. Сопряженное отображение

 $\mathcal{A}: U \to V$ — линейное, тогда сопряженное отображение \mathcal{A}^* , если $(Au,v)=(u,A^*v)$ $\forall u \in U, v \in V$. Оно существует и $[A^*]=[A]^T$ в ОНБ. Проверяется также, как и для U=V.

Элитное пояснение: $U \to V$ и есть оператор. Тогда возникает отображение \mathcal{A}' : $V^* \to U^*$ $f \mapsto f \circ A$. Так как U, V евклидово, то есть изомофризм $U \cong U^*, V \cong V^*$.

 $\mathcal{B} = i_U^{-1} \circ \mathcal{A}' \circ i_V$. Тогда $\mathcal{B} = A^*$. (очень полезное упр)

Theorem 7.3.

Пусть U, V — евклидовы. Тогда \exists ОНБ u_i, v_i т.ч. $[\mathcal{A}]_{u_i, v_i}$ диагональная с элементами ≥ 0 .

Доказательство. Рассмотрим $\mathcal{A}^* \circ \mathcal{A} : U \to U$ и он неотрицательный и самосопряженный. $(\mathcal{A}^* \mathcal{A} x, x) = (\mathcal{A} x, \mathcal{A}^{**} x) = (\mathcal{A} x, \mathcal{A} x) \geq 0$. Значит существует ОНБ в U т.ч. e_1, \ldots, e_n т.ч. $\mathcal{A}^* \mathcal{A} e_i = \mu_i^2 e_i$, где $\mu_i \geq 0$.

Пусть $\mathcal{A}e_i = f_i \in V$ для $\mu_i \neq 0$. Если $\mu_i = 0 \Rightarrow \mathcal{A}^* \circ \mathcal{A}e_i = 0 \iff (\mathcal{A}^* \circ \mathcal{A}e_i, e_i) = 0 \iff (\mathcal{A}e_i, \mathcal{A}e_i) = 0 \Rightarrow \mathcal{A}e_i = 0$. H.y.o. $e_1 \to f_1, \dots, e_k \to f_k$ а остальные в 0.

 f_1, \ldots, f_k попарно ортогональны: $(f_i, f_j) = (\mathcal{A}e_i, \mathcal{A}e_j) = (e_i, \mu_j^2 e_j) = 0$. Отнормируем их и дополним до ОНБ всего пространства. $(f_i, f_i) = \mu_i$. То есть новый ОНБ это $\widehat{f}_i = \frac{f_i}{\mu_i^2}$. Или же $\mathcal{A}(e_i) = f_i = \mu_i \widehat{f}_i$

Definition 7.3. Сингулярные числа

 μ_i — корни из с.ч. $\mathcal{A}^* \circ A$ — называются сингулярными числами оператора \mathcal{A} .

Remark 7.2. Матричная переформулировка

Пусть $A \in M_{m,n}(\mathbb{R})$.

- 1. Полярное разложение: Пусть m=n. Тогда $\exists \ S=S^T, \ U=U^{-T}$ т.ч. A=SU.
- 2. Сингулярное разложение: $\exists \ U \in O_n(\mathbb{R}), V \in O_m(\mathbb{R})$ ортогональные матрицы т.ч. A = UDV, где D диагональная.

Доказательство. 2. Пусть A матрица линейного отображения в двух ОНБ $\mathbb{R}^n \to \mathbb{R}^m$. Существуют e_1, \dots, e_n и f_1, \dots, f_m из доказанной теоремы. Причем $A \mapsto D$ — диагональная с сингулярными числами. $A = CD\widehat{C}$, где C, \widehat{C} — матрицы перехода между ОНБ — ортогональные.

7.3 ые пространства

Definition 7.4. Аффинное пространство

Пусть V- в.п. над K. Тогда аффинное пространство над V это множество A+ отображение $A\times V\to A$: $(a,b)\to a+v$ (откладывание вектора от точки) т.ч.

- 1. $(a + v_1) + v_2 = a + (v_1 + v_2)$
- a + 0 = a
- 3. $\forall a, b \in A \exists ! v \in V : a + v = b$ Обозначается он b a.

Первые две аксиомы задают действие (V, +) на A. А 3 задает регулярность действия.

Definition 7.5. Векторизация

Пусть A — аффинное пространство над $V, a \in A$. Векторизация A это отображение(биективное) $A \to V \colon b \to b - a$.

По факту мы лишь фиксируем точку как начало координат a и сопоставляем точкам радиус-вектор $b-a\ldots$

Обознаение $b \mapsto \overrightarrow{b}_a$

Lemma 7.3. Формула замены

Пусть $c \in A$. Ясно, что $\forall b \ b-c=(b-a)+(a-c)$. То есть $\overrightarrow{b}_c=\overrightarrow{b}_a+(a-c)=\overrightarrow{b}_a+\overrightarrow{ac}$ — фиксированный вектор.

Таким образом аффинное пространство снабжено множеством векторизаций.

Lemma 7.4.

Пусть $x_1, \ldots, x_n \in K$ т.ч. $\sum x_i = 1$ и $a_1, \ldots, a_n \in A$. Тогда $\sum x_i a_i$ — точка т.е. $a + \sum x_i \overrightarrow{a_i}_a$ — не зависит от a.

Если $a_1, \ldots, a_n \in A$ и $x_1, \ldots, x_n \in K$ и $\sum x_i = 0$. То $\sum x_i a_i$ — вектор. То есть $\sum x_i \overrightarrow{a_i}_a$ — не зависит от a.

Т.о. $\exists \frac{a+b}{2}$ — середина отрезка ab. $\exists a+b-c$ — точка, a+b-2c — вектор. a+b???

Доказательство. Пусть $a \mapsto c$. Тогда $c + \sum x_i \overrightarrow{a_i}_c = c + \sum x_i (\overrightarrow{a_i}_a + \overrightarrow{ca}) = c + \sum x_i \overrightarrow{ca} + \sum x_i \overrightarrow{a_i}_a = c + \sum x_i \overrightarrow{a_i}_a = a + \sum x_i \overrightarrow{a_i}_a$ $\sum x_i \overrightarrow{a_i}_c = \sum x_i (\overrightarrow{a_i}_a + \overrightarrow{ca}) = 0 * \overrightarrow{ca} + \sum x_i \overrightarrow{a_i}_a = \sum x_i \overrightarrow{a_i}_a$

Definition 7.6. Аффинное отображение

Пусть $f:A\to A$ — отображение. f называется аффинным, если отображение Df: $\overrightarrow{ab}\mapsto \overrightarrow{f(a)f(b)}$ — линейно и в частности \exists .

Example 7.1.

Пусть $v \in V$. $t_v : A \to A$: $t_v(a) = a + v$. Тогда $\overrightarrow{a + v}, \overrightarrow{b + v} = \overrightarrow{ab}$. То есть D(f) = Id — параллельный перенос.

Пусть $c \in A$. B — какой-то линейный оператор на V. Векторизуем $A \underset{vect_c}{\rightarrow} V \underset{B}{\rightarrow} V \underset{vect_c^{-1}}{\rightarrow} A$ — аффинное. Тогда Df = B.

$$\overrightarrow{f(a)f(b)} = f(b) - f(a) = B(b-c) - B(a-c) = B(a-b) = B(\overrightarrow{ab})$$

Remark 7.3.

То же самое для $f:A\to B$, где A,B — аффинные.

Definition 7.7. Аффинное подпространство

Пусть A — аффинное. $B\subset A$ — аффинное подпространство, если B — линейное подпространство A при некоторой векторизации. То есть $\exists b\in A$ т.ч. $\{\overrightarrow{bx}\mid x\in B\}=U\leq$ — подпространство V.

Заменим b на c. Тогда $\{\overrightarrow{bx}\} \mapsto \{\overrightarrow{bx} + \overrightarrow{cb}\}$. Если $\overrightarrow{cb} \in U$, то получили то же самое подпространство. Иначе $\{u+r \mid u \in U\}$ — элемент V/U. В любом случае $U=\{\overrightarrow{xy}: x,y \in B\}$. То есть U однозначно определено пр B.

Example 7.2. Аффинная оболочка

Пусть $a_1, \ldots, a_{k+1} \in A$. Рассмотрим $\{\sum x_i a_i \mid \sum x_i = 1\}$ — аффинная оболочка $Aff(a_1, \ldots, a_{k+1})$. Это аффинное подпространство: векторизуем относительно a_1 . $\sum x_i a_i = a_1 + \sum x_i \overrightarrow{a_i}_{a_1} = a_1 + \sum x_i \overrightarrow{(a_i - a_1)}$ соответствует $\langle a_1 - a_1, \ldots, a_{k+1} - a_1 \rangle$ не более чем k мерное подпространство.

Definition 7.8. Аффинно независимые

 $\underbrace{a_1,\ldots,a_{n+1}}_{(a_i-a_1)}$ аффинно независимые, если они порождают n-мерное пространство \iff

8 Лекция 8. Элвин и проективные преобразования

Пусть $(U, \overrightarrow{U}), (V, \overrightarrow{V})$ — аффинные пространства.

A:U o V — аффинно, если $\exists\overrightarrow{A}:\overrightarrow{U} o\overrightarrow{V}$ т.ч. \overrightarrow{A} — линейно.

 $A(b)=A(a)+\overrightarrow{A}(\overrightarrow{ab})(\Rightarrow \forall c\,A(c)+\overrightarrow{A(cb)}=A(a)+A(\overrightarrow{ac})+A(\overrightarrow{cb})=A(a)+\overrightarrow{A}(\overrightarrow{ab}))$ — не зависим от начала координат.

Если векторизовать $U, V: a \to 0$ $A(a) \to 0$ то $A \mapsto \overrightarrow{A}$.

В координатах $U = \mathbb{R}^n$, $V = \mathbb{R}^m$. $A(0) = (a_1, \dots, a_n)^T = a$. Тогда $A(x) = a + \overrightarrow{A}(x)$ т.е. аффинное это отображение вида $x \mapsto Ax + b$.

Proposition 8.1.

 $\mathcal{A}:U\to V$ — аффинно, тогда $l\subset U$ прямая $\mathcal{A}(l)$ — прямая или точка.

Доказательство. Выберем начало координат на l, тогда l становится одномерным векторным подпространством \overrightarrow{U} . 1-мерное пространство при линейном переходит либо в одномерное либо в 0.

При параллелльном переносе прямая переходит в прямую, а 0 в точку.

Proposition 8.2.

 $f:U\to U$ — аффинное и биективное \Rightarrow сохраняет прямые. Кроме того, если есть две точки $A,C,B\in AB$ на одной прямой и их образы на другой прямой A'=f(A),C'=f(C),B'=f(B).

Если $AB = \overrightarrow{x}$, $AC = k\overrightarrow{x}$, $A'B' = \overrightarrow{y}$, $A'C' = k\overrightarrow{y}$. Условно, $\frac{\overrightarrow{AC}}{\overrightarrow{AB}} = \frac{\overrightarrow{A'C'}}{\overrightarrow{A'B'}}$ — сохраняет отношения отрезков на прямой а также на параллельных прямых.

Theorem 8.1.

Если $K=\mathbb{R},\ dim V\geq 2$ и $A:V\to U$ сохраняет прямые. Тогда A — аффинно. Без доказательства.

Theorem 8.2.

Пусть U, V — аффинные пространства. $dimU = n. \ u_1, \ldots, u_{n+1} \in U, \ v_1, \ldots, v_{n+1} \in V$ и они аффинно независимы. Тогда $\exists ! \ f : U \to V$ — аффинное т.ч. $f(u_i) = v_i$.

Доказательство. Хотим, чтобы $f(u_1) = v_1$. Скажем, что u_1, v_1 — начала координат U, V. Тогда необходимо и достаточно, чтобы f — линейно и $f(\overline{u_1u_k}) = \overrightarrow{v_1v_k}$.

Но из аффинной независимости следует, что $\overrightarrow{u_1u_i}$ — базис U. $\exists !f$ линейный мы уже знаем. \Box

Definition 8.1. Аффинная эквивалентность

U — аффинное подпространство. $V_1, V_2 \subset U$ — аффинно эквивалентны, если $\exists f$ — биекция т.ч. $f(V_1) = V_2$. И это очевидно отношение эквивалентности(композиция аффинных — аффинна, Id — аффинно, f — аффинно $\Rightarrow f^{-1}$ тоже)

Example 8.1.

Любые два треугольника в \mathbb{R}^2 аффинно эквивалентны.

Вершины треугольника аффинно независимы(не лежат на 1 прямой). Значит по теореме $\exists f$ переводящая вершины одного в вершины другого. А если точки переходят, то и остальные части треугольника тоже.

Exercise 8.1.

А с четырехугольниками? Нет! Трапеция и параллелограмм не эквивалентны(пересекающиеся противоположные стороны)

Более точно: $ABCD \sim A'B'C'D' \iff \frac{AO}{OC} = \frac{A'O'}{O'C'}$ и $\frac{BO}{OD} = \frac{B'O'}{O'D'}$, где O — пересечение диагоналей. ⇒ очев.

 \Leftarrow Точно $ABC \sim A'B'C'$ и если сохраняются расстояния выше, то $O \to O'$ и $D \to D'$ автоматически.

Definition 8.2. Квадрика

Квадрика в
$$K^n$$
 это $K = \{x \in K^n | \sum a_{ij}x_ix_j + \sum b_ix_i + c = 0\}$
Уравнение $x^TQx + Bx + c = 0$, где Q — квадратная матрица, B — строка

Насколько уравнение упрощается аффинным преобразованием? Можем преобразовать $x \mapsto$ Cx + D и подставить:

$$(Cx+D)^TQ(Cx+D)+B(Cx+D)+c=0$$

$$x^TC^TQCx \\ +(D^TQC+D^TQC+BC)x+\ldots \\ _{\text{константы}}=0$$
 квадратичная форма

Если Q невырождена, то QC тоже. Поэтому можем подобрать D т.ч. $2D^TQC + BC = 0$.

Вывод: пусть у квадрики квадратичная часть Q невырождена, тогда линейная часть убивается аффинным преобразованием. И тогда квадритка задается $\sum a_{ij}x_ix_i+c=0$. А это можем превартить в сумму квадратов, как кадратичную форму.

В \mathbb{R} любая невырожденная квадрика аффинно эквивалентна $\sum x_i^2 - \sum x_i^2 = c$.

Proposition 8.3. Классификация кривых 2 порядка в \mathbb{R}^2 с невырожденной кв. формой

- $1. \ x_1^2+x_2^2=c>0 \ -\text{ окружность}$ $2. \ x_1^2+x_2^2=0 \ -\text{ точка}$ $3. \ x_1^2+x_2^2=c<0-\varnothing$ $4. \ x_1^2-x_2^2=c\neq 0 \ -\text{ гипербола}$

- 5. $x_1^2 x_2^2 = 0$ пара прямых

Пусть Q вырождена. dim = n. k < n. Уравнение моежм привести к $\sum_{i=1}^{k} \lambda_i x_i^2 + \sum_{i=1}^{n} \mu_i x_i + c = 0$.

Если $\mu_i = 0$, значит можем считать что форма невырожденная, но в меньшем пространстве. Иначе координатные функции $x_1, \ldots, x_k, \sum \mu_i x_i - \Pi H 3$ элементы V^* . Его можно дополнить до базиса V^* и взять двойственный к нему. Тогда уравнение превратится $\sum^k \lambda_i x_i^2 + x_{k+1} + c = 0$.

То есть любая вырожденная квадрика эквивалентна $x_{k+1} = \sum_{i=1}^{k} \lambda_i x_i^2 + c$ и можем избавиться от константы заменив $x_{k+1} = x_{k+1} - c$.

В \mathbb{R}^2 и rkQ=1: $x_2=x_1^2+c$ — парабола. Либо rkQ=0 и тогда $x_2=c$ — прямая.

Пропущен случай $x_1^2 = c$ — либо пустое множество(c < 0), либо две параллельных прямых(c > 0)(0), либо двойная прямая(c=0).

Итого квадрики в \mathbb{R} бывают такие $\sum_{i=1}^{l} x_i^2 - \sum_{i=l+1}^{k} = c$ либо $\sum_{i=1}^{l} x_i^2 - \sum_{i=l+1}^{k} x_j^2 = x_{l+1}$. Геометрически они отличаются тем, что в первом случае если $x_1, \ldots, x_n \in K \iff -x_1, \ldots, -x_n \in K$

K — есть центр симметрии(центральные квадрики).

Proposition 8.4. Квадрики в \mathbb{C}

В С квадрики:

- 1. $x_1^2 + x_2^2 = 1$
- $2. \ x_1^{2} x_2^{2} = -1$
- $3. \ x_1^{\frac{1}{2}} x_2^{\frac{1}{2}} = 0$
- 4. $x_1^2 = x_2$

В \mathbb{C} элипсы эквивалентны гиперболам(1,2) (3,4) отдельные типы: у параболы нет центра симметрии, а 3 — два линейных пространства).

8.1 Проективные пространства

Зачем: аффинное(евклидово) пространство очень сложное. Две прямые пересекаются в одной точке(или нет), две окружности пересекаются по $0,1,2,\infty$. Два элипса — $0,1,2,3,4,\infty$. Хотим упростить мир возможных конфигураций.

Мотивация 2: Хотим расширить группу преобразований. Рассмотрим центральную проекцию:

Посмотрим на преобразование $A \mapsto A'$ и так для всех точек на l_1 — центральная проекция из P.

Оно не аффинно — не сохраняет отношения на прямой. $\frac{AB}{BC} \neq \frac{A'B'}{B'C'}$. При этом сохраняется двойное отношение: $\frac{|AB||CD|}{|AC||BD|} = \frac{|A'B'||C'D'|}{|A'C'||B'D'|}$.

Но есть нюанс... $E \in l_1$, $PE||l_2 \Rightarrow f(E) = E'$ не определено. $F \in l_2$, $PF||l_1 \Rightarrow f^{-1}(F)$ не определено. Но если устремить A к бесконечности, то $f(A) \to F$. Причем без разницы в какую бесконечность... Надо пополнить l_1, l_2 точкой ∞ . Тогда проекция становится биекцией.

Возьмем прямую через точку $O \in l$. Если $l / |\alpha|$, то l пересекает α в единственной точке. Получили биекцию между прямыми $O \in l, l / |\alpha|$ с точками α .

Если параллельна, то она соответствует какому-то направлению α . Будем говорить, что она соответствует бесконечно удаленной точке, соответствующая классу эквивалентных прямых.

Definition 8.3. Проективное пространство

Пусть K — поле. $n \in \mathbb{N}$. n-мерное проективное пространство $K\mathbb{P}^n = \{$ множество одномерных подпространств в $K^{n+1}\} = (K^{n+1} \setminus \{0\}) / \sim$, где \sim — лежат на одной прямой: $a \sim b \iff \exists \lambda \neq 0 : \lambda a_i = b_i$. Обозначаем $(x_0, x_1, \ldots, x_n) = [x_0 : \cdots : x_n]$ — однородные координаты.

Remark. $[1:2:0:2] = [2:4:0:4] - o\partial Ha$ точка $K\mathbb{P}^3$

Выберем какуют-то координату, например x_0 : $A_0 = \{[x_0 : \cdots : x_n] \in KP^n | x_0 \neq 0\}$. Построим биекцию $A_0 \to K^n$:

 $[x_0:\dots:x_n]=[1:\frac{x_1}{x_0}:\dots:\frac{x_n}{x_0}]\mapsto (\frac{x_1}{x_0},\dots,\frac{x_n}{x_0})=y.$ y_i — аффинные координаты в т. $[x_0:\dots:x_n].$

Можем сказать, что $K\mathbb{P}^n=K^n\cup\{[0:x_1:\cdots:x_n]\}$, где второе назовем бесконечно удаленной точкой в направлении (x_1,\ldots,x_n) .

Proposition 8.5. Прямая в проективном пространстве

Прямая в $\mathbb{RP}^2 - l_{a,b,c} = \{[x:y:z] \mid ax+by+cz=0\}$ (не все коэф. равны 0)

Она соответствует плоскости в \mathbb{R}^3 . При этом $l_{a,b,c} \cap \{[1:y:z]\} = \{[1:y:z]|a+by+cz=0\}$

— прямая $l'_{a,b,c} \in \mathbb{R}^2$. По факту $l_{a,b,c} = l'_{a,b,c} \cup \{[0:y:z]|by+cz=0\} = l'_{a,b,c} \cup \{[0:-c:b]\}$. То есть прямая в \mathbb{RP}^2 — прямая + бесконечно удаленная точка [0:-c:b].

В \mathbb{RP}^2 если есть система $\begin{cases} ax + by + cz = 0 \\ ex + fy + gz = 0 \end{cases}$ имеет одномерное решение \Rightarrow пересечение

двух прямых — одна точка $[x_0:y_0:z_0]$

Значит любые две(различные) прямые пересекаются в единственной точке.

Definition 8.4. Проективное преобразование

Проективное преобразование $A: K\mathbb{P}^n \to K\mathbb{P}^n$ задается $A([x_0:\dots:x_n]) = A(\overline{x}) = \overline{\mathcal{A}(x)}$, где $\mathcal{A} \in Lin(K^{n+1},K^{n+1})$ и невырожденное.

Вырожденное преобразование какой-то вектор переводит в 0, но точки $[0:\cdots:0]$ не существует по определению.

Example 8.2.

$$n=1.$$
 Есть $\mathcal{A}:K^2 \to K^2-$ линейное $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} ax+by \\ cx+dy \end{pmatrix}$

Тогда на $R\mathbb{P}^1$ $[x:y]\mapsto [ax+by:cx+dy]$. А на \mathbb{R}^1 : $[1:y]\mapsto [a+by:c+dy]=[1:\frac{c+dy}{a+by}]$ — дробнолинейное преобразование. То есть в аффинных координатах $y\mapsto rac{c+dy}{a+bu}$

Theorem 8.3.

Следующие условия равносильны:

- 1. $f: l_1 \to l_2$ проективно
- 2. В координатах $f(y) = \frac{k+ly}{m+ny}$
- 3. f сохраняет двойные отношения

 $1 \iff 2$ почти упражнение выше. Остальное следует из того, что и те и те однозначно задаются значением в трех точках. Если f сохраняет двойные отношения, то значение в 4 точке можем узнать через фиксированные 3. (точнее упр)

В общем случае $\forall n+2$ точек общего положения задает проективное преобразование т.ч. $x_i \mapsto y_i$.

Проективная эквивалентность менее жесткая. В \mathbb{R}^2 имеем $x^2 + y^2 = 1/0$, $x^2 - y^2 = -1$, $x^2=y$. Вложим $\mathbb{R}^2 \to \mathbb{RP}^2$ в том смысле, что $(x,y)\mapsto [1:x:y]$. Обратное отображение $[x:y:z]\mapsto (\frac{y}{x},\frac{z}{x}),$ если $x\neq 0.$

Перепишем в однородных координатах: $x_1 = \frac{y}{x}, x_2 = \frac{z}{x}$. Получим

- 1. $y^2 + z^2 = x^2$
- 2. $u^2 z^2 = x^2$
- 3. $y^2 = zx$

Видим, что первые два теперь одно и то же(просто перестановка координат). В 3 можно сделать замену $y^2 = u^2 - v^2$, z = (u + v), x = (u - v) — то же самое.

 $\mathbb{RP}^2 = \mathbb{R}^2 \cup \{[x:y:z] \mid x=0\}$, где второе это бесконечно удаленная прямая L_{∞} .

Итак, элипс $\cap L_{\infty}$ — пусто, гипербола $\cap L_{\infty}$ —две точки(две асимптоты), а парабола касается(вертикальная асимптота).

В скольки точках пересекаются два элипса? Или две кривые 2 порядка?

Две непересекающиеся окружности задают систему уравнений без решений в \mathbb{R} , но имеет решение в С.

Если окружности концентрические, то они не пересекаются и в С. А в проективном...

$$\begin{cases} x^2 + y^2 = 1 \\ x^2 + y^2 = 2 \end{cases} \Rightarrow \begin{cases} x^2 + y^2 = z^2 \\ x^2 + y^2 = 2z^2 \end{cases}$$
 имеет решение $[1:\pm i:0]$ — две комплексные бесконечно удаленные точки.

42

На самом деле нет непересекающихся прямых...

Theorem 8.4. Недотеорема Безу

Кривая m-го порядка и кривая n-го порядка пересекаются в n*m точках.

Theorem 8.5. Теорема Безу

Пусть $F(x,y,z), \quad G(x,y,z)$ — однородные многочлены степени m и n соответственно (т.е. $F(x,y,z)=\sum k_{a,b}x^ay^bz^{m-a-b}$, степени мономов равны) от 3 переменных. F(x,y,z)=0 это уравнение кривой m-го порядка в \mathbb{CP}^2 : $\sum k_{a,b}x^ay^bz^{m-a-b}$. В аффинных координатах $\sum k_{a,b}(\frac{x}{z})^a(\frac{y}{z})^b$ — многочлен от 2 переменных степени $\leq m$ Кривая m-го порядка это $\{(x,y):f(x,y)=0,deg(f)=m\}$ в K^2 или $\{[x:y:z]|F(x,y,z)=0,deg(F)=m,F$ — однородный $\}$. В \mathbb{CP}^2 кривые порядка m,n без общих компонент пересекаются ровно в m*n точках с учетом кратности. То есть система $\begin{cases} F(x,y,z)=0 \\ G(x,y,z)=0 \end{cases}$ имеет ровно mn решений с точностью до пропорциональности (F(x,y,z)=0) F(kx,ky,kz)=0. Что значит кратность пересечения? Пока не знаем в общем случае... Важно, что gcd(F,G)=1 (нет общих компонент).

Theorem 8.6. Слабая аффинная версия

$$f,g\in K[x,y],\,(f,g)=1.$$
 Тогда $egin{cases} f=0 \\ g=0 \end{cases}$ имеет не более чем $deg(f)\cdot deg(g)$ решений.

9 Bce

