Amendments to the Claims

Please cancel claim 1, amend claims 2 – 5 and add claim 6 without prejudice to the subject matter involved. This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1.(Canceled)
- 2. (Currently amended) A compound of formula II

wherein Y is chlorine, cyano, hydroxy, C₁-C₄alkoxy, benzyloxy, phenoxy, allyloxy, a group

or a group Q_0 , wherein Q_0 is accordingly a group Q linked to oxygen and Q, L, U_1 , R_1 , R_2 , R_3 , R_4 , R_3 , R_3 , R_3 , R_3 , R_3 and p are as defined for formula $I\underline{A}$ in claim 4 $\underline{6}$.

- 3. (Currently amended) A herbicidal and plant-growth-inhibiting composition, which comprises a herbicidally effective amount of a compound of formula IA, according to claim 4.6 on an inert carrier.
- 4. (Currently Amended) A method of controlling undesired plant growth, which comprises applying a herbicidally effective amount of a compound of formula IA, according to claim 4.6, or of a composition comprising such a compound, to the plants or to the locus thereof.

- 5. (Currently amended) A method of inhibiting plant growth, which comprises applying a herbicidally effective amount of a compound of formula IA, according to claim 4-6, or of a composition comprising such a compound, to the plants or to the locus thereof.
- 6. (New) A compound of formula IA

$$Q = \bigcup_{\substack{i=1 \ N'}}^{N'} (O)p \qquad \qquad IA \qquad .$$

wherein

L is either a direct bond, an -O-, -S-, -S(O)-, -SO₂-, -N(R_{5a})-, -SO₂N(R_{5b})-, - $N(R_{50})SO_{2^-}, -C(O)N(R_{5c})- \text{ or } -N(R_{5c})C(O)- \text{ bridge, or a } C_1$ - C_4 alkylene, C_2 - C_4 alkenylene or C_2 - C_4 alkynylene chain which may be mono- or poly-substituted by R_5 and/or interrupted once or twice by an -O-, -S-, -S(O)-, -SO₂-, -N(R_{5a})-, -SO₂N(R_{5a})-, -

 $N(R_{5e})SO_2$ -, $-C(O)N(R_{5f})$ - and/or $-N(R_{5f})C(O)$ - bridge, and when two such bridges are present those bridges are separated at least by one carbon atom, and W is bonded to L by way of a carbon atom or a $-N(R_{5e})SO_2$ - or $-N(R_{5f})C(O)$ - bridge when the bridge L is bonded to the nitrogen atom of W;

W is a 4- to 7-membered, saturated, partially saturated or unsaturated ring system U

$$(U_1)$$
 (R_8) r (U) ,

which contains a ring element U_1 , and may contain from one to four further ring nitrogen atoms, and/or two further ring oxygen atoms, and/or two further ring sulfur atoms and/or one or two further ring elements U_2 , and the ring system U may be mono- or poly-substituted at a saturated or unsaturated ring carbon atom and/or at a ring nitrogen atom by a group R_8 , and two substituents R_8 together are a further fused-on or spirocyclic 3- to 7-membered ring system which may be

unsaturated, partially saturated or fully saturated and may in turn be substituted by one or more groups R_{8a} and/or interrupted once or twice by a ring element -O-, -S-, -N(R_{8b})- and/or -C(=O)-; and

 U_1 and U_2 are each independently of the other(s) -C(=O)-, -C(=S)-, -C(=NR₆)-, -(N=O)-, -S(=O)- or -SO-:

R₃ is C₁₋₃haloalkyl;

R4 is hydrogen, methyl, chlorine or trifluoromethyl;

 R_3 is halogen, C_1 - C_3 alkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl, C_1 - C_3 alkoxy- C_1 - C_3 alkylsulfinyl, C_1 - C_3 alk

 R_{5a} , R_{5b} and R_{5e} are independently hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl or C_1 - C_3 alkoxy- C_1 - C_3 alkyl;

 R_{5d} is hydrogen, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_1 - C_3 alkynyl, C_1 - C_3 alkyl, benzyl, cyano, formyl, C_1 - C_4 alkylcarbonyl, C_1 - C_4 alkylcarbonyl, C_1 - C_4 alkylcarbonyl, C_1 - C_4 alkylcarbonyl, C_1 - C_4 alkylcarbonyl, it being possible for the phenyl-containing groups to be substituted by R_7 ;

R_{5c} and R_{5f} are each independently of the other hydrogen or C₁-C₃alkyl;

R₆ is C₁-C₆alkyl, hydroxy, C₁-C₆alkoxy, cyano or nitro;

R₇ is halogen, C₁-C₃alkyl, C₁-C₃haloalkyl, hydroxy, C₁-C₃alkoxy, C₁-C₃haloalkoxy, cyano or nitro;

each R_8 independently is hydrogen, halogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkenyl, hydroxy, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_1 - C_3 alkoxy- C_1 - C_6 haloalkylsulfonyloxy, C_1 - C_6 haloalkylsulfonyloxy, C_3 - C_6 alkenylthio, C_3 - C_6 alkynylthio, amino, C_1 - C_6 alkylamino, C_1 - C_6 alkylamino, C_1 - C_6 alkoxy- C_1 - C_3 alkyloxy- C_1 - C_3 -

each R_{7a} independently is halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, hydroxy, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, cyano or nitro;

each R_{8a} independently is halogen, C₁-C₆alkyl, C₁-C₆haloalkyl, C₃-C₆cycloalkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, hydroxy, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, mercapto,

 C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_4 alkylcarbonyl, C_1 - C_4 alkoxycarbonyl, cvano or nitro;

 R_{8b} is hydrogen, C_1 - C_3 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_1 - C_3 alkoxy- C_1 - C_3 alkyl or benzyl, it being possible for the phenyl group to be substituted by R_{7b} ;

R_{7b} is halogen, C₁-C₃alkyl, C₁-C₃haloalkyl, hydroxy, C₁-C₃alkoxy, C₁-C₃haloalkoxy, cyano or nitro;

p is 0 or 1;

r is 1, 2, 3, 4, 5 or 6;

with the provisos that

- a) R₈ and R_{8a} as halogen or hydrogenmercapto cannot be bonded to a nitrogen atom,
- b) U₁ as -C(=O)- or -C(=S)- does not form a tautomeric form with a substituent R₆ as hydrogen when the radical W is bonded to the pyridyl group by way of a C₁-C₄alkylene, C₂-C₄alkenylene or C₂-C₄alkynylene chain L that is interrupted by -O-, -S-, -S(O)-, -SO₂-, -N(R₅₆)-, -SO₂N(R₅₆)- or -N(R₅₆)SO₂-.
- c) U_1 as -C(=S)- does not form a tautomeric form with a substituent R_δ as hydrogen when the radical W is bonded to the pyridyl group by way of a –CH=CH- or -C \square C- bridge L or by way of a C_1 -C₄alkylene chain L that is interrupted by -O-, -S-, -S(O)-, -SO₂- or -N(C₁-C₄alkyl)-,
- d) U_1 as -C(=S)- or -C(=NR₆)- wherein R₆ is C_1 -C₆alkyl or C_1 -C₆alkoxy does not form a tautomeric form with a substituent R₈ as hydrogen when the radical W is bonded to the pyridyl group directly or by way of a C_1 -C₄alkylene chain L;

either

Q is a group Q₁

$$\begin{array}{c} X_1 \\ A_1 \\ A_2 \\ A_3 \end{array} O \qquad (Q_1),$$

wherein

A₁ is C(R₁₁R₁₂) or NR₁₃;

A₂ is C(R₁₄R₁₅)_m, C(O), oxygen, NR₁₆ or S(O)_a;

A₃ is C(R₁₇R₁₈) or NR₁₉;

with the proviso that A2 is other than S(O)₀ when A1 is NR13 and/or A3 is NR19;

 X_1 is hydroxy, O'M', wherein M' is a metal cation or an ammonium cation; halogen or $S(O)_nR_\theta$, wherein

m is 1 or 2;

q, n and k are each independently of the others 0, 1 or 2;

 R_9 is C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkynyl, C_3 - C_{12} allenyl, C_3 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkenyl, R_{10} - C_1 - C_{12} alkylene or R_{10} - C_2 - C_{12} alkenylene, wherein the alkylene or alkenylene chain may be interrupted by - O_7 , - $S(O)_k$ - and/or -C(O)- and/or mono- to penta-substituted by R_{20} ; or phenyl, which may be mono- to penta-substituted by R_{7c} ;

R_{7c} is halogen, C₁-C₃alkyl, C₁-C₃haloalkyl, hydroxy, C₁-C₃alkoxy, C₁-C₃haloalkoxy, cyano or nitro;

 R_{10} is halogen, cyano, rhodano, hydroxy, C_1 - C_6 alkoxy, C_2 - C_6 alkenyloxy, C_2 - C_6 alkynyloxy, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyloxy, C_1 - C_6 alkylsulfonyloxy, C_1 - C_6 alkylsulfonyloxy, C_1 - C_6 alkylsulfonyloxy, C_1 - C_6 alkylcarbonyloxy, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxy-carbonyl, benzoyl, aminocarbonyl, C_1 - C_6 alkyl-aminocarbonyl, C_3 - C_6 cycloalkyl, phenyl, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl; it being possible for the phenyl-containing groups in turn to be substituted by R_{76} :

 $R_{7d} \text{ is halogen, } C_1\text{--}C_3\text{alkyl, } C_1\text{--}C_3\text{haloalkyl, hydroxy, } C_1\text{--}C_3\text{alkoxy, } C_1\text{--}C_3\text{haloalkoxy, cyano or nitro; }$

R₂₀ is hydroxy, halogen, C₁-C₆alkyl, C₁-C₆alkyxy, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, cyano, carbamoyl, carboxy, C₁-C₄alkoxycarbonyl or phenyl; it being possible for phenyl to be substituted by R₇₆;

 $R_{7e} \ \ is \ halogen, \ C_1-C_3alkyl, \ C_1-C_3haloalkyl, \ hydroxy, \ C_1-C_3alkoxy, \ C_1-C_3haloalkoxy, \ cyano \ or \ nitro;$

 R_{11} and R_{17} are each independently of the other hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 alkylsulfonyloxy, C_3 - C_4 alkylyloxy, hydroxy- C_1 - C_4 alkyl, C_1 - C_4 alkylsulfonyloxy- C_1 - C_4 alkyl, halogen, cyano or nitro;

or, when A₂ is C(R₁₄R₁₅)_m, R₁₇ together with R₁₁ forms a direct bond or a C₁-C₃alkylene bridge;

 R_{12} and R_{18} are each independently of the other hydrogen, C_1 - C_4 alkyl or C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfinyl;

or R_{12} together with R_{11} , and/or R_{18} together with R_{17} form a C_2 - C_5 alkylene chain which may be interrupted by -O-, -C(O)-, -O- and -C(O)- or -S(O)_r;

 R_{13} and R_{19} are each independently of the other hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_4 alkenyl, C_3 - C_4 alkynyl or C_1 - C_4 alkoxy;

 $R_{14} \ is \ hydrogen, \ hydroxy, \ C_1-C_4 alkyl, \ C_1-C_4 haloalkyl, \ C_1-C_3 hydroxyalkyl, \ C_1-C_4 alkoxy-C_1-C_3-alkyl, \ C_1-C_4 alkylthio-C_1-C_3 alkyl, \ C_1-C_4 alkoxy-C_1-C_3 alkyl, \ C_1-C_4 alkoxy-C_1-C_3 alkyl, \ C_3-C_4 coxathiacycloalkyl, \ C_3-C_4 coxathiacycloalkyl, \ C_3-C_4 coxathiacycloalkyl, \ C_1-C_4 alkylaminocarbonyl \ or \ di-(C_1-C_4 alkylaminocarbonyl; \ c_1-C_4 alkylami$

or R_{14} together with R_{11} , R_{12} , R_{13} , R_{15} , R_{17} , R_{18} or R_{19} or, when m is 2, also together with R_{14} forms a direct bond or a C_1 - C_4 alkylene bridge;

R₁₅ is hydrogen, C₁-C₃alkyl or C₁-C₃haloalkyl;

 R_{16} is hydrogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_4 alkoxycarbonyl, C_1 - C_4 alkylcarbonyl or N,N-di(C_1 - C_4 alkyl)aminocarbonyl;

or

Q is a group Q2

$$X_2$$
 R_{21}
 R_{22}
 R_{22}
 R_{22}
 R_{22}
 R_{22}

wherein

R21 and R22 are hydrogen or C1-C4alkyl;

 X_2 is hydroxy, O'M', wherein M' is an alkali metal cation or ammonium cation; halogen, C_1 - C_1 2alkylsulfonyloxy, C_1 - C_1 2alkylthio, C_1 - C_1 2alkylsulfonyloxy, C_1 - C_1 2alkylsulfinyl, C_1 - C_1 2haloalkylsulfinyl, C_1 - C_1 2halo

 C_4 alkoxycarbonyl- C_1 - C_4 alkylthio, C_1 - C_4 alkoxycarbonyl- C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkoxycarbonyl- C_1 - C_4 alkylsulfonyl, benzyloxy or phenylcarbonylmethoxy; it being possible for the phenyl-containing groups to be substituted by R_{7i} :

R_{7f} is halogen, C₁-C₃alkyl, C₁-C₃haloalkyl, hydroxy, C₁-C₃alkoxy, C₁-C₃haloalkoxy, cyano or nitro;

or

Q is a group Q₃

wherein

R₃₁ is C₁-C₆alkyl, C₁-C₆haloalkyl, C₃-C₆cycloalkyl or halo-substituted C₃-C₆cycloalkyl;

R₃₂ is hydrogen, C₁-C₄alkoxycarbonyl, carboxy or a group S(O)₈R₃₃;

R₃₃ is C₁-C₆alkyl or C₁-C₃alkylene, which may be substituted by halogen, C₁-C₃alkoxy, C₂-C₃alkenyl or by C₂-C₃alkynyl; and

s is 0, 1 or 2;

or

Q is a group Q4

$$O = \begin{pmatrix} R_{41} \\ Q_4 \end{pmatrix}$$

wherein

R₄₁ is C₁-C₆alkyl, C₁-C₆haloalkyl, C₃-C₆cycloalkyl or halo-substituted C₃-C₆cycloalkyl;

or an agrochemically acceptable salt or any stereoisomer or tautomer of a compound of formula IA.