Math 115B Homework #7

Nathan Solomon

February 28, 2025

Problem 0.1.	
Problem 0.2.	
\mathbf{a})	
p)	
c)	
Problem 0.3.	
Problem 0.4.	
a)	
o)	
Problem 0.5.	
\mathbf{a})	
o)	
c)	
Problem 0.6.	
Problem 0.7.	

Problem 0.8.

Problem 0.9.

Math 115B: Linear Algebra

Homework 7

Due: Wednesday, March 5 at 11:59pm PT

- All answers should be accompanied with a full proof as justification unless otherwise stated.
- Homeworks should be submitted through Gradescope, which can be found on the course Canvas (Bruin Learn) page.
- As always, you are welcome and encouraged to collaborate on this assignment with other students in this course! However, answers must be submitted in your own words.
- Unless otherwise stated k denotes an arbitrary field and all vector spaces are over k. All inner product spaces are defined over a field F which is either \mathbb{R} or \mathbb{C} .
- You are welcome to use results of previous problems on later problems, even if you do not solve the previous parts.
- 1. $(\frac{-}{10})$ Prove all orthogonal projections are self adjoint.
- 2. $(\frac{-}{2+9+9})$ Let T be an orthogonal (unitary) operator on a finite-dimensional real (respectively, complex) inner product space V. If W is a T-invariant subspace of V, prove the following:
 - (a) $T|_W$ is an orthogonal (respectively, unitary) operator on W.
 - (b) W^{\perp} is a T-invariant subspace of V. (Hint: use the fact that $T|_{W}$ is one-to-one and onto to conclude that for any $\vec{w} \in W$, $T^{*}(\vec{w}) = T^{-1}(\vec{w}) \in W$.)
 - (c) $T|_{W^{\perp}}$ is an orthogonal (respectively, unitary) operator.
- 3. $(\frac{-}{15})$ Let V be a real inner product space of dimension two. Prove that rotations, reflections and compositions of rotations and reflections are orthogonal operators.
- 4. $(\frac{-}{5+5})$ For any real number $\theta \in \mathbb{R}$, let $A_{\theta} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$.
 - (a) Prove that $L_{A_{\theta}}$ is a reflection.
 - (b) Find the subspace of \mathbb{R}^2 about which $L_{A_{\theta}}$ reflects.
- 5. $(\frac{-}{5+5+5})$ For any real number $\theta \in \mathbb{R}$, define $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ to be the linear transformation given by left multiplication by the matrix $\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$.
 - (a) Prove that any rotation on \mathbb{R}^2 is of the form R_{θ} for some $\theta \in \mathbb{R}$.
 - (b) Prove that $R_{\theta}R_{\theta'}=R_{\theta+\theta'}$ for any $\theta,\theta'\in\mathbb{R}$.
 - (c) Show that any two rotations on \mathbb{R}^2 commute.

- 6. $(\frac{-}{10})$ Prove that no orthogonal operator on a two dimensional real inner product space can be both a rotation and a reflection.
- 7. $(\frac{-}{10})$ Let V be a finite-dimensional real inner product space. Define $T:V\to V$ via the formula $T(\vec{v})=-\vec{v}$. Prove that T is a direct sum of rotations if and only if the dimension of V is even.
- 8. $(\frac{-}{10})$ Let V be a real inner product space of dimension 2. For any $\vec{v}, \vec{w} \in V$ such that $||\vec{v}|| = ||\vec{w}|| = 1$, show that there exists a unique rotation R on V such that $R(\vec{v}) = \vec{w}$.
- 9. $(\frac{1}{N_0 \text{ points but it's a pretty fun exercise so you should still try it}})$ For a given positive integer n, define the *special unitary group* SU_n to be the set of $n \times n$ unitary complex matrices which have determinant one. Construct a bijection of sets between SU_2 and the 3-sphere $S^3 := \{x \in \mathbb{R}^4 : ||x|| = 1\}$.

¹In other words, there exists some T-invariant subspaces $W_1,...,W_m$ such that $V=W_1\oplus...\oplus W_m$ and such that $T|_{W_i}:W_i\to W_i$ is a rotation for all $i\in\{1,2,...,m\}$.