Principles and problems of de novo genome assembly

Karin Lagesen

Norwegian Veterinary Institute

What is this thing called 'genome assembly'?

Some materials adapted from slides provided by Lex Nederbragt

What is a genome assembly?

A hierarchical data structure

that maps the sequence data

to a putative reconstruction of the target

Miller et al 2010, Genomics 95 (6): 315-327

Algorithms

All are graph-based

Graph-theory!

All are graph-based Read 1 Read 2 Overlap Overlap Aligned reads Aligned reads Aligned reads Acceptation Acceptation Control Consensus contig Acceptation Acceptation Control Consensus contig Acceptation Contig Accepta

Algorithms Hamiltonian path – a path that contains all the nodes Figure 1 Genome 1 A Figure 1 Figure 1 Figure 1 Figure 2 Figure 1 Figur

https://www.cbcb.umd.edu/research/assembly_primer

Algorithms

Many flavors

Two most used

- Overlap Layout Consensus
- de Bruijn graph

http://www.waialuasodaworks.com/images/flavors2009.jpg

Overlap-Layout-Consensus

Developed for Sanger-type reads (longer reads)

Overlap-Layout-Consensus

Steps

- Overlap computation
- Layout: graph simplification
- Consensus: sequence

Overlap-Layout-Consensus

Overlap phase: find "similar enough" reads Comparing all against all: expensive

Trick for finding "similar enough" reads:

Split reads into k-mers

K-mer: substring of length *k* from a longer string

- Make list over which read has which k-mers
- If two reads share k-mers, test for similarity

de Bruijn graphs

Developed outside of DNA-related work

K-1 bases overlap

- Best solution for short(er) reads

C de Bruijn Graph GAC ACC CCT CTA TAC ACA CAA AAG AGT GTC TCC CCG Schatz M C et al. Genome Res. 2010;20:1165-1173

Overlap Graph de Bruijn Graph de Bruijn Graph Long read assemblers Repeats depends on read length Read coherency, placements kept Tangled by high coverage Mike Schatz

Why is genome assembly such a difficult problem?

4) Lots of tools to choose from

First generation 1 kb High accuracy Sanger	ARACHNE [70], Atlas [71], CAP3 [72], Celera [73], Euler [74], JAZZ [75], Minimus [76], MIRA [77], phrap [78], Phusion [79], SUTTA [80], TIGR [81]
Second generation 25-300 bp High accuracy 454, IonTorrent, Solexa, SOLID	ABySS [82, 83], ALLPATHS [84], BASE [85], CABOG [86], Edena [87], EPGA [88], Euler-SR [89], Gossamer [90], IDBA [91], ISEA [92], JR-Assembler [93], LightAssembler [94], Meraculous [95], MIRA [77], Newbler [96], PCAP [97], PERGA [98], Platanus [99], PE-Assembler [100], QSRA [101], Ray [102], Readjoiner [103], SGA [104], SHARGCS [105], SOAPdenovo [106], SOAPdenovo [107], SPAdes [108], SparseAssembler [109], SSAKE [110], SUTTA [80], Taipan [111], VCAKE [112], Velvet [113]
Third generation 10-100,000+ kb PacBio CLR, Nanopore	Canu [114], FALCON [115], Flye [116], HINGE [117], MECAT [118], MECAT2 [118], miniasm [119], NECAT [120], NextDenovo [121], Ra [122], Raven [123], Shasta [124], SMARTdenovo [125], wtdbg [126], wtdbg [127]
15-25 kb High accuracy PacBio HiFi,	Flye [116], HiCanu [128], hifiasm [129], IPA [130], LJA [131], mdBG [132], MBG [133], NextDenovo [121], Peregrine [134], Raven [123], wtdbg2 [127]

Guiglielmoni, et. al. Peer Comm. J. 2022

Assembly with noisy single molecule sequencing data

Usage of long reads

- Problem: higher error rates
- Overlaps more difficult/expensive to find
- OLC more commonly used than for 2nd generation data

Long read assembly strategies

- Alt 0: Scaffolding short read asms
- Alt 1: Correct reads, then assemble
- Alt 2: Assemble reads, then correct

Correct, assemble

- Do pairwise comparison, find shorter reads that support the longer
- Align supporting reads, correct longer reads
- Overlap-Layout-Consensus on corrected reads
- Polish assembly

Short read error correction C PacBio-only Assembly PacBio-only Assembled Contigs Assembled contigs, scaffolded and filled (see 1D) Powers et.al., BMC genomics 2013

Assemble, correct

- Compare reads, find overlaps
- Assemble reads, knowing things will be wrong
- Align reads to assembly
- Correct assembly

Questions?