Homoclinic Orbits Near the Hamiltonian-Hopf Bifurcation in the Suspension Bridge Equation

Eric Sandin Vidal, Jan Bouwe van den Berg

The Good

Initial Setting

We start from the PDE that models the deflection of the roadway in a suspension bridge

$$\frac{\partial^2 U}{\partial T^2} = -\frac{\partial^4 U}{\partial X^4} - e^U + 1$$

and we focus on traveling wave solutions U(T,X)=u(X-cT) describing a disturbance u propagating at velocity c along the surface of the bridge.

By taking t = X - cT we reach the ODE

$$u'''' + c^2 u'' + e^u - 1 = 0.$$

Due to the reversibility symmetry of the PDE we can focus on symmetric solutions for each $\beta = c^2 \in (0, 2)$.

It is known that there exists a symmetric homoclinic orbit for all parameter values $\beta \in (0, 1.9]$ as seen in [2, 5]. The goal is to extend this result to the rest of the interval (0,2).

Methodology

The idea is to construct a similar Computer Assisted Proof (CAP) as in [5]. We split the problem into two parts:

- A rigorous parameterization of the local (un)stable manifolds at the equilibrium $0 \in \mathbb{R}^4$.
- Solving a boundary value problem for the part of the orbit between the local invariant manifolds by using continuation and Chebyshev series.

For smaller values of β the boundary value problem is the most difficult part, as the orbit makes a bigger and bigger excursion away from the origin. However, for values of β close to 2 it is more difficult to obtain the local (un)stable manifold of the origin, as the real part of the eigenvalues tends to zero.

The Hamiltonian-Hopf Bifurcation Problem

When β approaches 2, the eigenvalues of the system tend to purely imaginary, leading to a Hamiltonian-Hopf bifurcation in which the invariant manifolds and the homoclinic connection collapse to the origin. Thus, the spectral gap becomes smaller as β approaches 2.

The parameterization of the manifolds is in terms of a series expansion. The decay rate of the terms in the series is proportional to the spectral gap. When $\beta \to 2$ this makes the estimates blow up.

The Ugly

The Bad

Rescaling Approach

To circumvent the bifurcation problem, we can search for a time rescaling in which the small manifolds are magnified to a standard size. To continue the CAP from there, we should find explicit approximations for such manifolds.

Normal Form Transformation

The approach used in [1] uses the normal form of the corresponding Hamiltonian of the RTBP problem to find a first approximation of the manifolds and prove their connection. For our case we use the Hamiltonian of the suspension bridge equation with two degrees of freedom

$$H = p_2^2 + p_1 p_2 - \frac{1}{2} \left(q_2 - \frac{1}{2} (\beta + 2) q_1 \right)^2 q_2 + e^{q_1} - q_1.$$

The linearization A is diagonalizable for $\beta < 2$ but not for $\beta = 2$.

$$\begin{pmatrix}
-\frac{\sqrt{-\beta - \sqrt{\beta^2 - 4}}}{\sqrt{2}} & 0 & 0 & 0 \\
0 & \frac{\sqrt{-\beta - \sqrt{\beta^2 - 4}}}{\sqrt{2}} & 0 & 0 \\
0 & 0 & -\frac{\sqrt{-\beta + \sqrt{\beta^2 - 4}}}{\sqrt{2}} & 0 \\
0 & 0 & 0 & \frac{\sqrt{-\beta + \sqrt{\beta^2 - 4}}}{\sqrt{2}}
\end{pmatrix} \xrightarrow{\beta \to 2} \begin{pmatrix}
-i & 1 & 0 & 0 \\
0 & -i & 0 & 0 \\
0 & 0 & i & 1 \\
0 & 0 & 0 & i
\end{pmatrix}$$

The Versal Normal Form

As seen in [3] and introduced by Arnold, the versal normal form allows for a smooth transition in β that agrees with the usual normal form at $\beta = 2$.

$$\Lambda = \begin{pmatrix}
-\frac{i}{2}\sqrt{\beta+2} & 0 & 0 & -\frac{\beta-2}{4} \\
0 & \frac{i}{2}\sqrt{\beta+2} & -\frac{\beta-2}{4} & 0 \\
0 & 1 & \frac{i}{2}\sqrt{\beta+2} & 0 \\
1 & 0 & 0 & -\frac{i}{2}\sqrt{\beta+2}
\end{pmatrix} \xrightarrow{\beta \to 2} \begin{pmatrix}
-i & 0 & 0 & 0 \\
0 & i & 0 & 0 \\
0 & 1 & i & 0 \\
1 & 0 & 0 & -i
\end{pmatrix}$$

For that we need to find the transformation matrix R in terms of β such that $R^{-1}AR = \Lambda$. We also need the change to be symplectic, so $R^TJR = J$.

Polar Change of Coordinates and Rescaling

Following [4] we can focus on the few first terms of the normal form and apply a polar change of coordinates to understand better the dynamics.

$$\begin{cases} \dot{r} = R, & \dot{R} = \frac{\Theta^2}{r^3} - \frac{(\beta - 2)r}{4} + \eta r \\ \dot{\theta} = 1 + \frac{\Theta}{r^2}, & \dot{\Theta} = 0. \end{cases}$$

With this information we can also rescale the system by a factor related to $2-\beta$ so that as $\beta \to 2$ the size of the manifolds is fixed. This yields an approximate expression for the manifolds: $R^2 = \frac{1}{2}\eta(r^2 - r^4)$ where η is the coefficient of the first nonlinear term in the normal form.

The Manifolds and the Orbit

It is shown in [1] that the invariant manifolds intersect for every β near 2. With this information we can craft an initial approximation for our CAP.

Figure 1. Left: Manifolds in terms of the radius and its momentum in polar coordinates. They shrink to 0 when $\beta \to 2$. Right: The local manifolds (blue). The homoclinic orbit (red).

References

- [1] Patrick D McSwiggen and Kenneth R Meyer. The evolution of invariant manifolds in hamiltonian-hopf bifurcations. Journal of Differential Equations, 189(2):538-555, 2003.
- [2] Sanjiban Santra and Juncheng Wei. Homoclinic solutions for fourth order traveling wave equations. SIAM journal on mathematical analysis, 41(5):2038–2056, 2009.
- [3] Dieter Schmidt. Versal normal form of the hamiltonian function of the restricted problem of three bodies near 14. Journal of computational and applied mathematics, 52(1-3):155-176, 1994.
- [4] AG Sokolskii. On the stability of an autonomous hamiltonian system with two degrees of freedom in the case of equal frequencies. Prikladnaia Matematika I Mekhanika, 38:791-799, 1974.
- [5] Jan Bouwe van den Berg, Maxime Breden, Jean-Philippe Lessard, and Maxime Murray. Continuation of homoclinic orbits in the suspension bridge equation: a computer-assisted proof. Journal of Differential Equations, 264(5):3086-3130, 2018.