Assignment: Riju Sathyan

Real-world scenario The project uses the following data sets to demonstrate the various learnings throughout the course.

Source Description	Source/File Name	Source Link
Premier League Standings 22 Seasons	EPL_standings_2000- 2022.csv	https://www.kaggle.com/datasets/quadeer15sh/premier-league-standings-11-seasons-20102021
Champion League History - UK Teams	Wiki page table	https://en.wikipedia.org/wiki/English_football_clubs_in_internatio
Diabetes Data	diabetes.csv	https://www.kaggle.com/code/mathchi/diagnostic-a-patient-has-diabetes/data
4		•

Importing Data: Web Scraping & Analysing Data

```
import requests
import pandas as pd
import numpy as np
import re
import matplotlib.pyplot as plt
import seaborn as sns

# This Wiki sourced dataset is being used to validate the information in the other d
url = 'https://en.wikipedia.org/wiki/English_football_clubs_in_international_competi
page = requests.get(url)
df_wiki = pd.read_html(url)
df_wiki[3] #Check the correct table from Wiki Page is being picked up
```

Out[1]:	Season		Club	Progress Score		Opponents	Venue(s)
	o 1955– 56		None entered	None entered	None entered	None entered	None entered
	1	1956– 57	Manchester United	Semi- finals	3–5	Real Madrid	1–3 at Santiago Bernabéu2–2 at Old Trafford
	2 1957– 58		Manchester United	Semi- finals	2–5	Milan	2–1 at Old Trafford0–4 at San Siro
	3	1958– 59	Manchester United	First round	NaN	Young Boys	Walkover – United withdrawn by the Football Le
	4	1958– 59	Wolverhampton Wanderers	First round	3–4	Schalke 04	2–2 at Molineux1–2 at Glückauf- Kampfbahn
	•••						
	139	2020– 21	Chelsea	Winners	1–0	Manchester City	Estádio do Dragão
	140	2021– 22	Manchester United	Round of 16	1–2	Atlético Madrid	1–1 at Wanda Metropolitano0–1 at Old Trafford
	141	2021– 22	Chelsea	Quarter- finals	4–5 (a.e.t.)	Real Madrid	1–3 at Stamford Bridge3–2 at Santiago Bernabéu
	142	2021– 22	Manchester City	Semi- finals	5–6 (a.e.t.)	Real Madrid	4–3 at Etihad Stadium1–3 at Santiago Bernabéu

	Season	Club	Progress	Score	Opponents	Venue(s)
143	2021– 22	Liverpool	Final	0–1	Real Madrid	Stade de France

144 rows × 6 columns

```
In [2]:
         # Only Season & Club of relevance for this exercise
         df_wiki[3][['Season','Club']].info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 144 entries, 0 to 143
        Data columns (total 2 columns):
             Column Non-Null Count Dtype
         0
             Season 144 non-null
                                      object
             Club 144 non-null
                                      object
        dtypes: object(2)
        memory usage: 2.4+ KB
In [3]:
         df_wiki[3][['Season','Club']].describe()
Out[3]:
                 Season
                                   Club
                                    144
                    144
         count
                                     19
        unique
                    67
           top 2005–06 Manchester United
           freq
                     5
                                     31
In [4]:
         #Create new dataframe to check for referential integrity of Season column
         df_SeasonsCL = pd.DataFrame(df_wiki[3]['Season'], columns=['Season'])
         df_SeasonsCL['Season'] = df_SeasonsCL['Season'].str.replace('-','-')
         #Use Regex to check for inconsistent text formats
         df\_SeasonsCL['DQ\_Season'] = df\_SeasonsCL['Season'].str.contains(r'\d\d\-\d\s',
         print(df SeasonsCL.loc[df SeasonsCL['DQ Season'] == False])
                Season DQ Season
        42 1990-91[a]
                            False
        53
             1999-2000
                             False
        54
             1999-2000
                             False
        55
             1999-2000
                             False
In [5]:
         #Update incorrectly formatted values
         df_SeasonsCL.loc[42,['Season']] = '1990-91'
         df_SeasonsCL.loc[53,['Season']] = '1999-00'
         df_SeasonsCL.loc[54,['Season']] = '1999-00'
         df SeasonsCL.loc[55,['Season']] = '1999-00'
In [6]:
         #Create a dataframe with CL season unique values, sort columns and then create a PL
```

ie this seasons CL entrants qualified from last seasons Premier League final stand
df seasons = pd.DataFrame(df SeasonsCL['Season'].unique(), columns=['CL Season'])

df_seasons.rename({'CL Season': 'Season CL'}, axis=1, inplace=True)

df_seasons.sort_values(by=['Season CL'])

```
df_seasons['Season PL']= df_seasons.shift(1) #shift rows, so create one season quali
#Create a CL Season to Premier League (PL) qualification mapping dictionary &
sm_d={}

# Iterate over column names & create dictionary
for i,j in df_seasons.iterrows():
    sm_d[df_seasons['Season CL'][i]] = df_seasons['Season PL'][i]
```

```
In [7]:
# Create new data frame with Season & Club
zipped = list(zip(df_SeasonsCL['Season'], df_wiki[3]['Club']))
df_English_teams_qualified = pd.DataFrame(zipped, columns=['Season','Club'])
df_English_teams_qualified.rename({'Season': 'Season CL'}, axis=1, inplace=True)

df_English_teams_qualified['Season PLq'] = ''

# Iterate over Champions League Season and add appropriate Premier League Qualificat
for i,j in df_English_teams_qualified.iterrows():
    df_English_teams_qualified['Season PLq'][i] = sm_d[df_English_teams_qualified['Season PLq'][i] = sm_d[df_English_teams_qualified]
df_English_teams_qualified.drop('Season CL', axis=1, inplace=True)
df_English_teams_qualified.tail(99)
```

Club Season PLq Out[7]: 45 Manchester United 1992-93 **46** Manchester United 1993-94 Blackburn Rovers 47 1994-95 **48** Manchester United 1995-96 49 Newcastle United 1996-97 139 Chelsea 2019-20 **140** Manchester United 2020-21 141 Chelsea 2020-21 142 Manchester City 2020-21

99 rows × 2 columns

Liverpool

143

Importing Data: Import CSV & Analysing Data

2020-21

```
In [8]:
        #Import League data from csv
        df_EPLs = pd.read_csv("datasets/EPL_standings_2000-2022.csv")
        df EPLs.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 440 entries, 0 to 439
        Data columns (total 12 columns):
        #
            Column
                                        Non-Null Count Dtype
            -----
                                         -----
        0
            Season
                                         440 non-null
                                                        object
         1
            Pos
                                        440 non-null
                                                        int64
                                        440 non-null
                                                        object
            Team
```

```
Pld
           3
                                                440 non-null
                                                                 int64
           4
               W
                                                440 non-null
                                                                 int64
           5
               D
                                                440 non-null
                                                                 int64
           6
                                                440 non-null
                                                                 int64
               L
           7
               GF
                                                440 non-null
                                                                  int64
           8
               GΑ
                                                440 non-null
                                                                 int64
           9
                                                440 non-null
                                                                 int64
               GD
           10
               Pts
                                                440 non-null
                                                                 int64
               Qualification or relegation
                                               440 non-null
                                                                 object
          dtypes: int64(9), object(3)
          memory usage: 41.4+ KB
 In [9]:
           df_EPLs = df_EPLs[~df_EPLs['Season'].isin(['2021-22'])]
In [10]:
           df EPLs.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 420 entries, 0 to 419
          Data columns (total 12 columns):
           #
               Column
                                                Non-Null Count
                                                                 Dtype
                ____
                                                -----
           0
               Season
                                                420 non-null
                                                                 object
           1
                                                                 int64
               Pos
                                                420 non-null
           2
               Team
                                                420 non-null
                                                                 object
           3
               Pld
                                                420 non-null
                                                                 int64
           4
               W
                                                420 non-null
                                                                 int64
           5
                                                420 non-null
               D
                                                                 int64
           6
                                                420 non-null
                                                                 int64
               1
           7
                                                420 non-null
               GF
                                                                 int64
           8
                                                420 non-null
               GΑ
                                                                 int64
           9
                                                420 non-null
               GD
                                                                 int64
           10
                                                420 non-null
               Pts
                                                                 int64
               Qualification or relegation 420 non-null
                                                                 object
          dtypes: int64(9), object(3)
          memory usage: 42.7+ KB
In [11]:
           df_EPLs.describe()
Out[11]:
                        Pos
                              Pld
                                          W
                                                      D
                                                                  L
                                                                            GF
                                                                                       GA
                                                                                                  GD
          count
                420.000000
                             420.0
                                   420.000000 420.000000
                                                          420.000000
                                                                     420.000000
                                                                                420.000000
                                                                                           420.000000
                  10.500000
                              38.0
                                    14.245238
                                                9.509524
                                                           14.245238
                                                                      50.735714
           mean
                                                                                 50.735714
                                                                                              0.000000
                   5.773158
                               0.0
                                     5.956834
                                                2.821230
                                                            5.509753
                                                                      15.598457
                                                                                 12.723202
                                                                                             25.647696
             std
                   1.000000
                              38.0
                                     1.000000
                                                2.000000
                                                            0.000000
                                                                      20.000000
                                                                                 15.000000
                                                                                            -69.000000
            min
           25%
                              38.0
                                    10.000000
                                                                      40.000000
                   5.750000
                                                8.000000
                                                           10.000000
                                                                                 42.000000
                                                                                            -18.250000
            50%
                  10.500000
                              38.0
                                    13.000000
                                                9.000000
                                                           15.000000
                                                                      47.000000
                                                                                 51.000000
                                                                                             -6.500000
           75%
                              38.0
                  15.250000
                                    18.000000
                                               11.000000
                                                           18.000000
                                                                      59.250000
                                                                                 59.000000
                                                                                             16.500000
            max
                  20.000000
                              38.0
                                    32.000000
                                               17.000000
                                                           29.000000
                                                                     106.000000
                                                                                 89.000000
                                                                                             79.000000
In [12]:
           #Convert text field to Boolean for Champion League qualification usgin regex
           df_EPLs['CLQ_chk'] = df_EPLs['Qualification or relegation'].str.contains(r'(?=.*[Qq]
```

df EPLs

Out[12]:

	Season	Pos	Team	Pld	w	D	L	GF	GA	GD	Pts	Qualification or relegation	CLQ_chk
0	2000- 01	1	Manchester United	38	24	8	6	79	31	48	80	Qualification for the Champions League first g	True
1	2000- 01	2	Arsenal	38	20	10	8	63	38	25	70	Qualification for the Champions League first g	True
2	2000- 01	3	Liverpool	38	20	9	9	71	39	32	69	Qualification for the Champions League third q	True
3	2000- 01	4	Leeds United	38	20	8	10	64	43	21	68	Qualification for the UEFA Cup first round[a]	False
4	2000- 01	5	Ipswich Town	38	20	6	12	57	42	15	66	Qualification for the UEFA Cup first round[a]	False
•••													
415	2020- 21	16	Brighton & Hove Albion	38	9	14	15	40	46	-6	41	Not Applicable	False
416	2020- 21	17	Burnley	38	10	9	19	33	55	-22	39	Not Applicable	False
417	2020- 21	18	Fulham	38	5	13	20	27	53	-26	28	Relegation to the EFL Championship	False
418	2020- 21	19	West Bromwich Albion	38	5	11	22	35	76	-41	26	Relegation to the EFL Championship	False
419	2020- 21	20	Sheffield United	38	7	2	29	20	63	-43	23	Relegation to the EFL Championship	False

420 rows × 13 columns

In [13]:

df_EPLs.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 420 entries, 0 to 419
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Season	420 non-null	object
1	Pos	420 non-null	int64
2	Team	420 non-null	object
3	Pld	420 non-null	int64
4	W	420 non-null	int64
5	D	420 non-null	int64
6	L	420 non-null	int64
7	GF	420 non-null	int64
8	GA	420 non-null	int64
9	GD	420 non-null	int64
10	Pts	420 non-null	int64
11	Qualification or relegation	420 non-null	object
12	CLO chk	420 non-null	bool

0

```
dtypes: bool(1), int64(9), object(3)
```

memory usage: 43.1+ KB

```
In [14]:
    df_ETQ_Teams_Unique = pd.DataFrame(df_English_teams_qualified['Club'].unique(), colu
    df_EPLs_Teams_Unique = pd.DataFrame(df_EPLs['Team'].unique(), columns=['Original_EPL
    df_ETQ_Teams_Unique
```

Out[14]:		Original_ETQ_Name
	0	None entered
	1	Manchester United
	2	Wolverhampton Wanderers
	3	Burnley
	4	Tottenham Hotspur
	5	Ipswich Town
	6	Everton
	7	Liverpool
	8	Manchester City
	9	Leeds United
	10	Arsenal
	11	Derby County
	12	Nottingham Forest
	13	Aston Villa
	14	Banned
	15	Blackburn Rovers
	16	Newcastle United
	17	Chelsea
	18	Leicester City

```
In [15]:
    df_Team_Names_Map = pd.merge(df_EPLs_Teams_Unique, df_ETQ_Teams_Unique, left_on=['Or
    df_Team_Names_Map['Match_chk'] = np.where((df_Team_Names_Map['Original_EPLs_Name'] =
    df_Team_Names_Map
```

out[15]:		Original_EPLs_Name	Original_ETQ_Name	Match_chk
	0	NaN	None entered	False
	1	Manchester United	Manchester United	True
	2	Wolverhampton Wanderers	Wolverhampton Wanderers	True
	3	Burnley	Burnley	True
	4	Tottenham Hotspur	Tottenham Hotspur	True
	5	Ipswich Town	lpswich Town	True
	6	Everton	Everton	True
	7	Liverpool	Liverpool	True

	Original_EPLs_Name	Original_ETQ_Name	Match_chk
8	Manchester City	Manchester City	True
9	Leeds United	Leeds United	True
10	Arsenal	Arsenal	True
11	Derby County	Derby County	True
12	NaN	Nottingham Forest	False
13	Aston Villa	Aston Villa	True
14	NaN	Banned	False
15	Blackburn Rovers	Blackburn Rovers	True
16	Newcastle United	Newcastle United	True
17	Chelsea	Chelsea	True
18	Leicester City	Leicester City	True

In [16]:

df_final_table = pd.merge(df_EPLs, df_English_teams_qualified, left_on=['Season','Te
df_final_table.head()

Out[16]:

•		Season	Pos	Team	Pld	W	D	L	GF	GA	GD	Pts	Qualification or relegation	CLQ_chk	Club
	0	2000- 01	1	Manchester United	38	24	8	6	79	31	48	80	Qualification for the Champions League first g	True	Manchester United
	1	2000- 01	2	Arsenal	38	20	10	8	63	38	25	70	Qualification for the Champions League first g	True	Arsenal
	2	2000- 01	3	Liverpool	38	20	9	9	71	39	32	69	Qualification for the Champions League third q	True	Liverpool
	3	2000- 01	4	Leeds United	38	20	8	10	64	43	21	68	Qualification for the UEFA Cup first round[a]	False	NaN
	4	2000- 01	5	Ipswich Town	38	20	6	12	57	42	15	66	Qualification for the UEFA Cup first round[a]	False	NaN

In [17]:

Validate the Champions league qualification is the same from both underlying data
print("Unmatched Team Names: ", df_final_table.loc[(df_final_table['Club'].isna()) &

Unmatched Team Names: 0

```
Final Submission - Riju Sathyan
In [18]:
           df_final_table.drop(['Club','Season PLq', 'Qualification or relegation'], axis=1, in
           df final table.rename({'CLQ chk': 'CL Qualified'}, axis=1, inplace=True)
           df_final_table.head()
Out[18]:
             Season Pos
                                     Team
                                           Pld W
                                                    D
                                                        L GF GA
                                                                   GD
                                                                       Pts CL Qualified
             2000-01
                          Manchester United
                                            38
                                               24
                                                    8
                                                        6
                                                           79
                                                               31
                                                                    48
                                                                        80
                                                                                   True
             2000-01
                       2
                                   Arsenal
                                            38
                                               20
                                                   10
                                                        8
                                                           63
                                                               38
                                                                    25
                                                                        70
                                                                                   True
             2000-01
                       3
                                  Liverpool
                                               20
                                                    9
                                                        9
                                                           71
                                                               39
                                                                    32
                                                                        69
                                                                                   True
          2
                                            38
             2000-01
                               Leeds United
          3
                                            38
                                               20
                                                    8
                                                       10
                                                           64
                                                               43
                                                                    21
                                                                        68
                                                                                  False
             2000-01
                       5
                              Ipswich Town
                                            38 20
                                                      12 57
                                                               42
                                                                    15
                                                                        66
                                                                                  False
                                                    6
In [19]:
           df_final_table.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 420 entries, 0 to 419
          Data columns (total 12 columns):
           #
               Column
                              Non-Null Count Dtype
                              420 non-null
           0
               Season
                                               object
           1
                              420 non-null
                                               int64
           2
               Team
                              420 non-null
                                               object
           3
                              420 non-null
               Pld
                                               int64
           4
                              420 non-null
                                               int64
               W
           5
                              420 non-null
                                               int64
               D
           6
                              420 non-null
               L
                                               int64
           7
               GF
                              420 non-null
                                               int64
           8
                              420 non-null
               GA
                                               int64
           9
                              420 non-null
               GD
                                               int64
           10
              Pts
                              420 non-null
                                               int64
           11 CL Qualified 420 non-null
                                               bool
          dtypes: bool(1), int64(9), object(2)
          memory usage: 39.8+ KB
In [25]:
           plt.figure(figsize=(15,8))
           ax = sns.countplot(x=df_final_table[df_final_table['CL Qualified'] == True]['Team'],
                               order=df final table[df final table['CL Qualified'] == True]['Tea
           ax.set(title='Champions League Qualifications 2000-2021')
           ax.set yticks(range(21))
           for p in ax.patches:
               height = p.get_height()
               ax.text(x = p.get_x()+(p.get_width()/2), y = height+0.25, s = '{:.0f}'.format(h
```

plt.show()

plt.savefig('plots/PL2000-21 most qualifications countplot.png')

Manchester United

Chelsea

Arsenal

Team

Manchester City Tottenham Hotspur Newcastle United

```
In [26]:
          def get_teams():
               ''This function accesses the df final table and returns stats all the Team name
          that played in the Premier League between 2000-2021.
              df_teams_unique = df_final_table['Team'].unique()
              df_teams_unique = np.sort(df_teams_unique)
              return df_teams_unique
          def get_history(my_team):
               '''This function accesses the df final table and returns stats on Champions Leag
          Pass in the team name as the parameter. The returned results will be in the form of
          (i) Team name (use get_teams(), for a full list)
          (ii) Seasons where team qualified
          (iii) Seasons where team did not qualify
          (iv) To seasons in Premier League over the period of the dataset
          (v) Lowest points to achieve qualification
          (vi) Highest points when team did not qualify
              df qualified = df final table[(df final table['CL Qualified'] == True) & (df fin
              qualified = df_qualified.shape[0]
              qualified_min_points = df_qualified['Pts'].min()
              df_dnq = df_final_table[(df_final_table['CL Qualified'] == False) & (df_final_ta
              dnq = df dnq.shape[0]
              dnq max points = df dnq['Pts'].max()
              total seasons = qualified + dnq
              return (my team, qualified, dnq, total seasons, qualified min points, dnq max po
```

```
In [27]: print(get_history.__doc__)
```

This function accesses the df_final_table and returns stats on Champions League qual ification between 2000-2021..

Pass in the team name as the parameter. The returned results will be in the form of a tuple, and contain:

(i) Team name (use get_teams(), for a full list)

Leicester City

(iv) To seasons in Premier League over the period of the dataset

Machine Learning

(ii) Seasons where team qualified

(iii) Seasons where team did not qualify

(v) Lowest points to achieve qualification(vi) Highest points when team did not qualify

```
In [30]:
          # Import necessary modules
          from scipy import stats
          from sklearn.model_selection import train_test_split
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.tree import DecisionTreeClassifier
          from sklearn import svm
          from sklearn.neighbors import KNeighborsClassifier
          from sklearn.metrics import accuracy score
          from sklearn.metrics import classification_report
          from sklearn.metrics import confusion matrix
          from sklearn import metrics
          from sklearn.model_selection import GridSearchCV
          #from sklearn.preprocessing import StandardScaler
          #from sklearn.metrics import f1 score
          #from sklearn.preprocessing import MinMaxScaler
          #from sklearn.metrics import classification report
          #from sklearn.metrics import roc auc score
```

```
In [31]:
    # Load dataset
    df = pd.read_csv("datasets/diabetes.csv")
    df
```

Out[31]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	A
	0	6	148	72	35	0	33.6	0.627	
	1	1	85	66	29	0	26.6	0.351	
	2	8	183	64	0	0	23.3	0.672	
	3	1	89	66	23	94	28.1	0.167	

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	A
4	0	137	40	35	168	43.1	2.288	
•••								
763	10	101	76	48	180	32.9	0.171	
764	2	122	70	27	0	36.8	0.340	
765	5	121	72	23	112	26.2	0.245	
766	1	126	60	0	0	30.1	0.349	
767	1	93	70	31	0	30.4	0.315	

768 rows × 9 columns

← →

In [32]:

Print DataFrame information
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

In [33]:

Print summary statistics
df.describe()

Out[33]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedi c
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	

In [34]:

#Univariate analysis

```
columns = df.columns
counter = 1

f = plt.figure(figsize=(20,10))

for col in df.columns[0:-1]:
    f.add_subplot(2,4,counter)
    sns.boxplot(x=df[col])
    counter = counter + 1
```



```
In [35]:
    col_dq = ["Glucose", "BloodPressure", "SkinThickness", "Insulin", "BMI"] # Zero preganc
    df[col_dq] = df[col_dq].replace(['0',0], np.nan)
    df.isnull().sum()
```

Pregnancies 0 Out[35]: 5 Glucose 35 BloodPressure SkinThickness 227 Insulin 374 BMI 11 DiabetesPedigreeFunction 0 0 Age Outcome 0 dtype: int64

In [36]:

df.describe()

Out[36]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabetes Pedi <u>c</u>
	count	768.000000	763.000000	733.000000	541.000000	394.000000	757.000000	
	mean	3.845052	121.686763	72.405184	29.153420	155.548223	32.457464	
	std	3.369578	30.535641	12.382158	10.476982	118.775855	6.924988	
	min	0.000000	44.000000	24.000000	7.000000	14.000000	18.200000	
	25%	1.000000	99.000000	64.000000	22.000000	76.250000	27.500000	
	50%	3.000000	117.000000	72.000000	29.000000	125.000000	32.300000	
	75%	6.000000	141.000000	80.000000	36.000000	190.000000	36.600000	

max			BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedi
	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	
4)
	ol_dq] = df[escribe()	col_dq].fi	llna(df[col_d	q].median())			
37]:	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedi _c
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	121.656250	72.386719	29.108073	140.671875	32.455208	
std	3.369578	30.438286	12.096642	8.791221	86.383060	6.875177	
min	0.000000	44.000000	24.000000	7.000000	14.000000	18.200000	
25%	1.000000	99.750000	64.000000	25.000000	121.500000	27.500000	
50%	3.000000	117.000000	72.000000	29.000000	125.000000	32.300000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	
4							>
		t(2,4,coun	: ter)				
	sns.boxplot(counter = co	x=df[col])					
	sns.boxplot(x=df[col]) unter + 1	ter)	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	80 100 120	20 40	60 80 100
	sns.boxplot(counter = co	x=df[col]) unter + 1	100 125 150 175 20	20 40 60 Blood			60 80 100 cinThickness

```
outlier_column_name = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', '
In [40]:
           outlier_column_upper_limit = []
           outlier_column_lower_limit = []
           #Calculate upper and lower limits for outliers
           for c in outlier_column_name:
               upper limit = df[c].quantile(0.995)
               outlier column upper limit.append(upper limit)
               lower_limit = df[c].quantile(0.005)
               outlier_column_lower_limit.append(lower_limit)
               print(c, "upper limit: ",upper_limit)
               print(c, "lower limit: ", lower_limit)
               print(" # upper outliers:" , df[df[c] > upper_limit].shape[0] )
print(" # lower outliers:" , df[df[c] < lower_limit].shape[0] )</pre>
               print("")
           #Remove outliers
           for x in range(len(outlier_column_name)):
               df = df.loc[(df[outlier_column_name[x]] <= outlier_column_upper_limit[x]) &</pre>
                            (df[outlier_column_name[x]] >= outlier_column_lower_limit[x]) ]
          Pregnancies upper limit: 13.16499999999964
          Pregnancies lower limit: 0.0
           # upper outliers: 4
           # lower outliers: 0
          Glucose upper limit: 197.0
          Glucose lower limit: 60.34
           # upper outliers: 2
           # lower outliers: 4
          BloodPressure upper limit: 110.0
          BloodPressure lower limit: 39.67
           # upper outliers: 2
           # lower outliers: 4
          SkinThickness upper limit: 54.3299999999993
          SkinThickness lower limit: 9.67
           # upper outliers: 4
           # lower outliers: 4
          Insulin upper limit: 582.4649999999992
          Insulin lower limit: 18.0
           # upper outliers: 4
           # lower outliers: 3
          BMI upper limit: 53.49699999999936
          BMI lower limit: 18.9845
           # upper outliers: 4
           # lower outliers: 4
          DiabetesPedigreeFunction upper limit: 1.933259999999991
          DiabetesPedigreeFunction lower limit: 0.087505
           # upper outliers: 4
           # lower outliers: 4
In [41]:
           df.describe()
Out[41]:
                Pregnancies
                               Glucose BloodPressure SkinThickness
                                                                      Insulin
                                                                                   BMI DiabetesPedic
          count
                 726.000000 726.000000
                                          726.000000
                                                        726.000000 726.000000 726.000000
```

In [42]:

	Final Submission - Riju Sathyan						
	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedi
nean	3.851240	121.763085	72.549587	28.960055	137.747934	32.371350	
std	3.265691	29.510518	11.412136	8.065751	75.030466	6.386259	
min	0.000000	61.000000	44.000000	10.000000	18.000000	19.100000	
25%	1.000000	100.000000	64.000000	25.000000	125.000000	27.600000	
50%	3.000000	117.000000	72.000000	29.000000	125.000000	32.300000	
75%	6.000000	140.000000	80.000000	32.000000	125.750000	36.375000	
max	13.000000	197.000000	110.000000	54.000000	579.000000	52.900000	
)
nt64I ata d # (s 'pandas.co Index: 726 e columns (tot Column	entries, 0 t	o 767	Count Dtype			
0 F	regnancies		726 non-ni	ull int64			
1 6	Glucose		726 non-ni	ull float6	54		
	BloodPressur		726 non-ni				
	SkinThicknes	SS	726 non-ni				
	Insulin BMI		726 non-ni 726 non-ni				
	oni DiabetesPedi	greeFunctio					
	∖ge	. B. cc. acc.	726 non-ni				
	Outcome		726 non-ni	ull int64			
	s: float64(6 / usage: 56.)				
<pre>memory usage: 56.7 KB f = plt.figure(figsize=(20,10)) counter =1</pre>							
for c	ol in df co	Jumns[0·8]·					

```
In [43]:
          for col in df.columns[0:8]:
              f.add_subplot(2,4,counter)
              sns.boxplot(x=df[col])
              counter = counter + 1
```



```
In [44]:
            ax = sns.countplot(x='Outcome', data=df)
            for p in ax.patches:
             ax.annotate('\{:.0f\}'.format(p.get_height()), (p.get_x()+0.35, p.get_height()+10)) \\ ax.set(ylim=(0, 550), xlabel=['O=Non Diabetic','1=Diabetic']) 
            ax.set(title='Count of Outcomes: Non-Diabetics vs Diabetics')
            plt.savefig('plots/Diabetes outcome countplot.png')
            plt.show()
```



```
In [45]:
          #correlation matrix and the heatmap
          plt.subplots(figsize=(12,5))
          table_correlation=df.corr()
          sns.heatmap(table_correlation,annot=True,cmap='RdPu')
          plt.title('Correlation between the variables')
          plt.xticks(rotation=45)
          plt.savefig('plots/diabetes correlation matrix heatmap.png')
```

Out[46]:

Out[47]:

In [46]: df[df['Outcome'] == 0].describe() # Non-diabetic stats

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedi ç
count	475.000000	475.000000	475.000000	475.000000	475.000000	475.000000	
mean	3.353684	111.387368	71.073684	27.806316	125.741053	31.012211	
std	3.037939	24.045523	11.258791	8.353753	64.582416	6.184380	
min	0.000000	61.000000	44.000000	10.000000	18.000000	19.100000	
25%	1.000000	94.000000	64.000000	23.000000	95.000000	26.000000	
50%	2.000000	108.000000	72.000000	29.000000	125.000000	30.800000	
75%	5.000000	125.000000	78.000000	31.000000	125.000000	35.300000	
max	13.000000	194.000000	110.000000	54.000000	545.000000	47.900000	

In [47]:

df[df['Outcome'] == 1].describe() # Diabetic stats

:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedi c
	count	251.000000	251.000000	251.000000	251.000000	251.000000	251.000000	
	mean	4.792829	141.398406	75.342629	31.143426	160.470120	34.943426	
	std	3.474033	28.942160	11.197238	7.002524	87.323961	5.967176	
	min	0.000000	78.000000	48.000000	12.000000	29.000000	22.900000	
	25%	2.000000	118.500000	68.000000	29.000000	125.000000	30.850000	
	50%	4.000000	139.000000	74.000000	29.000000	125.000000	34.100000	
	75%	7.500000	165.500000	82.000000	35.000000	165.000000	38.200000	
	max	13.000000	197.000000	110.000000	51.000000	579.000000	52.900000	
	4							•

```
d0_ap_stats = stats.pearsonr(df[df['Outcome'] == 0]['Age'],
In [48]:
                                        df[df['Outcome'] == 0]['Pregnancies'])
          d1_ap_stats = stats.pearsonr(df[df['Outcome'] == 1]['Age'],
                                        df[df['Outcome'] == 1]['Pregnancies'])
          sns.set()
          sns.set_style("whitegrid")
          fig, ax = plt.subplots(1,3, figsize=(18, 7),sharey=True)
          sns.regplot(x='Age',
                      y='Pregnancies',
                      data=df[df['Outcome'] == 0],
                      ax=ax[0],
                      color='darkseagreen'
          plt.text(-94, 13, "r={:0.2f}".format(d0_ap_stats[0]), horizontalalignment='right', s
          plt.text(-94, 12.4, "p-value={:0.2f}".format(d0_ap_stats[1]), horizontalalignment='r
          sns.regplot(x='Age',
                      y='Pregnancies',
                      data=df[df['Outcome'] == 1],
                      ax=ax[1],
                      color='tomato'
                      );
          plt.text(-3, 13, "r={:0.2f}".format(d1_ap_stats[0]), horizontalalignment='right', si
          plt.text(-3, 12.4, "p-value={:0.2f}".format(d1_ap_stats[1]), horizontalalignment='ri
          sns.scatterplot(x='Age',
                          y='Pregnancies',
                          data=df,
                          hue='Outcome',
                          ax=ax[2],
                          palette=['darkseagreen','tomato'],
                          alpha=0.7)
          plt.legend(title='Diabetes', loc='upper right', labels=['Diabetic', 'Not Diabetic'])
          ax[0].set(xlim=(15, 90))
          ax[0].set_title("Non-Diabetic population")
          ax[1].set(xlim=(15, 90))
          ax[1].set_title("Diabetic population")
          ax[2].set(xlim=(15, 90))
          ax[2].set_ylabel("Skin Thickness")
          ax[2].set title("Whole population")
          plt.savefig('plots/Age-Pregnancies regplot + scatterplot.png')
          plt.show()
```



```
d0_ap_stats = stats.pearsonr(df[df['Outcome'] == 0]['BMI'],
                             df[df['Outcome'] == 0]['SkinThickness'])
d1_ap_stats = stats.pearsonr(df[df['Outcome'] == 1]['BMI'],
                             df[df['Outcome'] == 1]['SkinThickness'])
sns.set()
sns.set_style("whitegrid")
fig, ax = plt.subplots(1,3, figsize=(18, 7),sharey=True)
sns.regplot(x='BMI',
            y='SkinThickness',
            data=df[df['Outcome'] == 0],
            ax=ax[0],
            color='darkseagreen'
plt.text(-43, 13, "r={:0.2f}".format(d0_ap_stats[0]), horizontalalignment='right', s
plt.text(-43, 11, "p-value={:0.2f}".format(d0_ap_stats[1]), horizontalalignment='rig
sns.regplot(x='BMI',
            y='SkinThickness',
            data=df[df['Outcome'] == 1],
            ax=ax[1],
            color='tomato'
            );
plt.text(5, 13, "r={:0.2f}".format(d1_ap_stats[0]), horizontalalignment='right', siz
plt.text(5, 11, "p-value={:0.2f}".format(d1_ap_stats[1]), horizontalalignment='right
sns.scatterplot(x='BMI',
                y='SkinThickness',
                data=df,
                hue='Outcome',
                ax=ax[2],
                palette=['darkseagreen','tomato'],
                alpha=0.7)
plt.legend(title='Diabetes', loc='lower right', labels=['Diabetic', 'Not Diabetic'])
ax[0].set(xlim=(15, 55))
ax[0].set_title("Non-Diabetic population")
ax[1].set(xlim=(15, 55))
ax[1].set_title("Diabetic population")
ax[2].set(xlim=(15, 55))
ax[2].set_ylabel("Skin Thickness")
ax[2].set title("Whole population")
plt.savefig('plots/BMI-SkinThickness regplot + scatterplot.png')
plt.show()
```



```
ax = sns.displot(x=df['Glucose'],hue=df['Outcome'], kde=True, palette=['darkseagreen']
plt.legend(title='Diabetes', loc='upper right', labels=['Diabetic', 'Not Diabetic'])
plt.axvline(x=df['Glucose'][df['Outcome'] == 0].mean(),
            color='darkseagreen', linewidth=3, linestyle = 'dotted')
plt.axvline(x=df['Glucose'][df['Outcome'] == 1].mean(),
            color='tomato', linewidth=3, linestyle = 'dotted')
plt.text(108, 90, "Non-Diabetic Mean ={:0.1f}".format(df['Glucose'][df['Outcome'] ==
         fontsize=10,color='darkseagreen', horizontalalignment='right', size=12)
plt.text(144, 90, "Diabetic Mean ={:0.1f}".format(df['Glucose'][df['Outcome'] == 1].
         fontsize=10,color='tomato', horizontalalignment='left', size=12)
ax.set(title='Glucose Levels by Diabetic Type')
ax.set(xlim=(50, 205))
ax.set(ylim=(0, 100))
ax.fig.set figwidth(12)
ax.fig.set_figheight(8)
plt.savefig('plots/Glucose-Outcome displot.png')
```



```
In [51]:
    glucose0 = df['Glucose'][df['Outcome'] == 0]
    glucose1 = df['Glucose'][df['Outcome'] == 1]

    print('Non diabetic: mean=%.3f stdv=%.3f' % (np.mean(glucose0), np.std(glucose0)))
    print('Diabetic: mean=%.3f stdv=%.3f' % (np.mean(glucose1), np.std(glucose1)))

Non diabetic: mean=111.387 stdv=24.020
    Diabetic: mean=141.398 stdv=28.884
```

```
In [52]:
    stat, p = stats.ttest_ind(glucose0, glucose1)
    print("Calculated value=%.4f " % (stat))
    print("p-value : %.4f\n"% (p))
    print("Test the null hypothesis (H0): both data sets have the same mean.")
    # interpret
    alpha = 0.01
    if p > alpha:
        print('Result: Same distributions (fail to reject H0)')
```

```
else:
                 print('Result: Different distributions (reject H0)')
         Calculated value=-14.8826
         p-value : 0.0000
         Test the null hypothesis (H0): both data sets have the same mean.
         Result: Different distributions (reject H0)
In [53]:
         X = df.drop(['Outcome'], axis=1)
         y = df['Outcome']
         # Split into training and test set
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.4, random_st
         # Create dictionary to store results
         model results = {}
In [56]:
         ### MODEL FIT & PREDICTIONS USING DEFAULT PARAMETERS ####
         models =[('RDF', RandomForestClassifier(n_estimators=100, random_state = 999), True)
                  ('DTC', DecisionTreeClassifier(random_state = 999), True),
                  ('SVM' , svm.SVC(kernel='linear'), False),
                  ('KNN' , KNeighborsClassifier(), False)]
         for name, model, fi_flag in models:
             clf = model
             clf.fit(X_train, y_train)
             y_pred=clf.predict(X_test)
             model_accuracy = metrics.accuracy_score(y_test, y_pred)
             model_results[name] = {"pre hypertuning/default accuracy score": model_accuracy}
             if fi flag == True :
                 feature_imp = pd.Series(clf.feature_importances_,index=X.columns,name=name).
                 print("Feature Importance: ",name)
                 print(feature imp)
                 print('')
         Feature Importance: RDF
         Glucose
                                   0.303646
         BMI
                                   0.138453
                                   0.124576
         Age
        DiabetesPedigreeFunction
                                   0.110892
         BloodPressure
                                   0.090488
         Insulin
                                   0.084993
         Pregnancies
                                   0.081874
         SkinThickness
                                   0.065078
        Name: RDF, dtype: float64
         Feature Importance: DTC
         Glucose
                                   0.371929
         BMI
                                   0.130469
                                   0.105302
         Age
         Pregnancies
                                   0.100608
         BloodPressure
                                   0.089122
         Insulin
                                   0.074707
         SkinThickness
                                   0.066267
        DiabetesPedigreeFunction
                                   0.061594
```

Name: DTC, dtype: float64

```
In [58]:
          ### HYPERPARAMETER TUNING ####
          #####################################
          params_RDF = {'criterion':['gini','entropy'],
                        'n_estimators':list(range(10,100,10)),
                        'min_samples_leaf':[1,2,3],
                        'min_samples_split':[3,4,5,6,7],
                        'random_state':[999],
                        'n_jobs':[-1]}
          params_DTC = {'max_features': ['auto', 'sqrt', 'log2'],
                       'min_samples_split': list(range(2,15)),
                       'min_samples_leaf':list(range(1,11)),
                       'random_state':[999]}
          params_SVM = \{'C': [6,7,8,9,10,11,12],
                        'kernel': ['linear','rbf']}
          params_KNN = {'n_neighbors':list(range(1,30)),
                         'leaf_size': list(range(1,30)),
                        'p': [1,2]}
          models_ht =[('RDF', RandomForestClassifier(), params_RDF),
                      ('DTC', DecisionTreeClassifier(random state = 999), params DTC),
                      ('SVM', svm.SVC(), params_SVM),
                      ('KNN', KNeighborsClassifier(), params_KNN)
                     1
          for name, model, params in models_ht:
              grid = GridSearchCV(model, param_grid=params, n_jobs=-1)
              grid.fit(X_train,y_train)
              #model_results[name].update({"hyper tuning best parameters": grid.best_params_})
              print(name, "Best Hyper Parameters:\n",grid.best_params_)
              prediction=grid.predict(X_test)
              accuracy_score = metrics.accuracy_score(prediction,y_test)
              print(name, "Accuracy:", accuracy_score)
              model_results[name].update({"post hypertuning accuracy score": accuracy_score})
              print("##")
         RDF Best Hyper Parameters:
          {'criterion': 'gini', 'min_samples_leaf': 2, 'min_samples_split': 3, 'n_estimator
         s': 90, 'n jobs': -1, 'random state': 999}
         RDF Accuracy: 0.7353951890034365
         ##
         DTC Best Hyper Parameters:
          {'max_features': 'log2', 'min_samples_leaf': 1, 'min_samples_split': 7, 'random_sta
         te': 999}
         DTC Accuracy: 0.6529209621993127
         ##
         SVM Best Hyper Parameters:
          {'C': 9, 'kernel': 'linear'}
         SVM Accuracy: 0.7250859106529209
         ##
         KNN Best Hyper Parameters:
          {'leaf size': 1, 'n neighbors': 8, 'p': 2}
         KNN Accuracy: 0.7147766323024055
In [59]:
          for i in model results:
```

accuracy_change = model_results[i]['post hypertuning accuracy score'] - model_re
model_results[i].update({"improvement in accuracy score": accuracy_change})

```
In [60]:
    df_model_results = pd.DataFrame(model_results)
    df_model_results = df_model_results.T
    df_model_results
```

Out[60]:		pre hypertuning/default accuracy score	post hypertuning accuracy score	improvement in accuracy score
	RDF	0.728522	0.735395	0.006873
	DTC	0.690722	0.652921	-0.037801
	SVM	0.725086	0.725086	0.000000
	KNN	0.694158	0.714777	0.020619
In []:				