

Paper Reading

2022.09.22 Guan Yunyi

Real-time Active Vision for a Humanoid Soccer Robot Using Deep Reinforcement Learning

Soheil Khatibi, Meisam Teimouri, Mahdi Rezaei

Key words: Deep Reinforcement Learning, Active Vision, Deep Q-Network, Humanoid Robot, RoboCup

Introduction

1. Introduction

- Main idea: adaptively optimizes the viewpoint of the robot to <u>acquire the most</u> useful landmarks for self-localization while <u>keeping the ball</u> into its viewpoint
- Task setting:
- Webots simulator: viewpoint is controlled by the actuators of the robot's head
- Environment: a Robocup soccer field

Methods

2. Settings and Process

• Predefine:

- Camera position (viewpoint): **discrete**, 10 pan \times 4 title angles $p = (\theta_{pan}, \theta_{tilt})$
- Observations: gray-scale image

 $rac{-\pi}{2} < heta_{pan} < rac{\pi}{2}$ $rac{\pi}{36} < heta_{tilt} < rac{13\pi}{36}$

- <u>State</u>: a sequence of observations
- Action: discrete, 3 degrees rotations in a certain direction
- Reward: D/D': distance to the goal position (NBV) before/after taking the action

$$Reward = \begin{cases} -2, & \text{for missing all balls} \\ sign(D' - D), & \text{elsewhere} \end{cases}$$

- In each episode: Randomize Robot and Soccer positions
 - → Find "ground truth NBV" of current position
 - → Select which action to take by DQN

2.1 Entropy-based Goal Determination

Find "ground truth NBV" of current position

```
Algorithm 1 viewpoint exploration
```

```
Input: X_t = \mathcal{N}(\mu_t, \Sigma_t), ballpose = (x_t, y_t)
                     represent the belief of the robot position using multivariate normal distribution
 1: H_{min} = \infty
 2: for each p \in P do
                                         get all observations Z from visible landmarks at the current position,
    X' = X_t
 3:
                                         each z is related to a visible landmark and represents the distance
    Z = get\_observations(X', p)
                                         and angle of the landmark to the robot.
 5:
     for each z \in Z do
            X' = apply\_UKF(X',z) for every z, update belief X' using Unscented Kalman filter
        end for
 7:
        H_{X'} = \frac{1}{2} \ln \left( |(2\pi e)\Sigma| \right) Calculate the entropy of updated belief X'
      if H_{X'} < H_{min} and
     ball\_is\_visible(X',ball\,pose) then The best viewpoint p* contains the ball and minimizes
10:
           H_{min} = H_{X'}
11:
                                                the entropy of the model
            p^{*} = p
12:
        end if
13:
14: end for
15: return p^*
```

2.2 RL Process

- Select action by DQN +PER: train the neural network from a prioritized
 experience replay in which important transitions are picked more frequently
- Input: current image (independent to the localization accuracy)
- Output: a vector of Q-values whose length equals the number of possible actions

- Episode:
- Success if reaches the goal viewpoint
- Fail if misses the ball from its field of view
- Terminates after 20 timesteps to avoid long episodes

Experiments

3.1 3 criteria

 SuccessRate: indicates how much of the desirable landmarks in the best viewpoint are observed

$$SuccessRate = \frac{|\{observed\ landmarks\}|}{|\{desired\ landmarks\}|}$$

- **Success duration**: timesteps taken to reach the goal viewpoint. 20 means not to reach the goal.
- **Ball loss duration**: timesteps taken to lose the ball. 20 means the robot has not lost the ball in that episode.

3.2 Results

Agent has been trained for 30000 timesteps

3.3 Comparison with entropy-based method

- Entropy-based methods have had the best performance in active vision tasks so far in RoboCup and similar contexts
- Different episodes start from different random positions as the self-

localization error increases

- entropy-based methods operate as a function of positions → the more localization error, the lower performance, highly dependent on the accuracy of the self localization.
- proposed method works as a function of the current input image and doesn't rely on the localization accuracy — the performance remains steady.

Limitations

4. Limitations

- The problem can be solved with newer algorithms of RL that consider the **continuous action space** such as PPO and DDPG.
- The performance of the method might be improved by passing a rough representation of the robot **position along with the image**.
- My opinion:
- RL only for achieving the goal NBV not for selecting unknown NBV
- → it is difficult to prove that the calculated best view is indeed the best using entropy minimization alone.