# CẦU TRÚC DỮ LIỆU VÀ GIẢI THUẬT



# Cấu trúc dữ liệu cây tổng quát (Tree)



## Nội dung



- I. Tổng quan về cấu trúc cây
- II. Cây tổng quát
- III. Cấu trúc liên kết cho cây tổng quát
- IV. Bài tập

# I. Tổng quan về cấu trúc cây



Cây – Cấu trúc dữ liệu phi tuyến (Trees-Non-linear data structures)







#### Cây gia phả



**Figure 6.1:** A family tree showing some descendents of Abraham, as recorded in Genesis, chapters 25–36.

#### Cây biểu diễn các tổ chức





#### Cây biểu diễn hệ thống files

#### Cấu trúc của cuốn sách





Figure 6.4: An ordered tree associated with a book.

Cây mô tả sự phân chia hệ thống files

Cây thể hiện cấu trúc của một cuốn sách



#### Cây quyết định

#### Cây biểu diễn biểu thức toán học



Cây quyết định tuyển nhân viên

Một cây nhị phân biểu diễn một biểu thức. Cây này biểu diễn biểu thức ((((3+1)\*3/((9-5)+2))-((3\*(7-4))+6)). Giá trị được kết hợp lại tại nút trong có nhãn "/" là 2.



#### Cây cú pháp

 $S \rightarrow XY$   $X \rightarrow XA \mid a \mid b$   $Y \rightarrow AY \mid a$  $A \rightarrow a$ 



#### Tổng kết: Cây là cách tổ chức dữ liệu rất hữu dụng trong rất nhiều ứng dụng khác nhau









Data structures trees

# II. Cây tổng quát



#### Cây là gì?

- □ Cây là một tập các nút với quan hệ cha-con (parent-child) giữa các nút. Trong đó có một nút được gọi là gốc và nó không có cha.
- ☐ Trong khoa học máy tính, một cây là một mô hình trừu tượng của cấu trúc phân cấp.
- □Các ứng dụng:
  - Tổ chức biểu đồ
  - Hệ thống file
  - Các môi trường lập trình ...

## Một số khái niệm



- ☐ Gốc (root): gốc là nút không có nút cha (vd: A)
- ☐ Nút trong: Nút có ít nhất một nút con (Vd: A, B, C, F)
- ☐ Nút ngoài (lá): nút không có nút con (Vd: E, I, J, K, G, H, D)
- □ Đô sâu của một nút:
  Nút gốc có độ sâu là 0, nếu nút cha có độ sâu là h thì nút con có độ sâu là h+1
- ☐ Chiều cao của cây: là giá trị lớn nhất của độ sâu của tất cả các nút (3)

Cây con: Cây bao gồm một số nút của một cây ban đầu



#### Cấu trúc dữ liệu cây



Định nghĩa: Cấu trúc dữ liệu cây là một cấu trúc dữ liệu phi tuyến, trừu tượng, phân cấp có quan hệ cha con giữa hai node kề nhau gồm:

- Một node gốc không có cha
- Và các cây con của nó sao cho 1 node bất kỳ đều có duy nhất một đường đi tới gốc do mỗi node có duy nhất 1 cha.

#### Cấu trúc dữ liệu cây



- ☐ Chúng ta quản lý các nút thông qua địa chỉ của chúng.
- ☐ Các phương thức chung:
  - int size()
  - int isEmpty()
- ☐ Các phương duyệt cây:
  - void preorder(Node\*)
  - void inorder(Node\*)
  - void postorder(Node\*)
- ☐ Các phương thức truy cập:
  - Địa chỉ root()

- Các phương thức truy vấn:
  - int isInternal(Node\*)
  - int isExternal(Node\*)
  - int isRoot(Node\*)
- Thêm vào đó là những phương thức cập nhật được định nghĩa trong các cấu trúc dữ liệu tạo Tree ADT (Node tạo cây)
- Phương thức thêm phần tử vào cây.
  - void insert(Node\* parent, Element e)
- Phương thức xóa phần tử
  - void remove(Node\*);

#### Duyệt cây gồm 3 cách



- ☐ Preorder (tiền thứ tự)
  - Gốc rồi đến các cây con
- ☐ Inorder (trung thứ tự)
  - Con cả đến Gốc rồi các con còn lại
- ☐ Postorder (Hậu thứ tự)
  - Các con rồi đến gốc

#### Duyêt theo thứ tự trước –preorder traversal



- Duyệt cây là cách đi thăm các nút của cây theo một hệ thống
- ☐ Duyệt theo thứ tự trước, tức là: nút cha được thăm trước sau đó thăm các nút con, cháu, ...

```
Algorithm preOrder(v)

If(v!=null)

visit(v)

for mỗi nút con w của v

preorder (w)
```



#### Ví dụ: Duyệt theo thứ tự trước





Thăm cây theo thứ tự trước (preorder). Trong đó cây con được thăm theo thứ tự từ trái qua phải

# Bài tập: Hãy chỉ ra thứ tự thăm các nút của cây dưới đây bằng cách sử dụng phương pháp duyệt theo thứ tự trước?





#### Duyệt theo thứ tự giữa - inorder Traversal



- ☐ Duyệt theo thứ tự giữa, tức là: nút con được thăm trước sau đó thăm nút cha
- ☐ Ứng dụng: Tính toán không gian sử dụng bởi các files và các thư mục con

Algorithm inOrder(v)

If(v!=null)

w = con cả của v

inOrder(w)

visit(v)

for mỗi nút con w1#w của v

inOrder (w1)



#### Duyệt theo thứ tự sau - PostOrder Traversal



- ☐ Duyệt theo thứ tự sau, tức là: nút con được thăm trước sau đó thăm nút cha
- ☐ Ứng dụng: Tính toán không gian sử dụng bởi các files và các thư mục con

```
Algorithm postOrder(v)

If(v!=null)

for mỗi nút con w của v

postOrder (w)

visit(v)
```



## Hệ thống files





# Bài tập: Chỉ ra thứ tự duyệt cây dưới đây bằng cách sử dụng phương pháp duyệt theo thứ tự sau?





#### Ví dụ duyệt cây trong bài mọi con đường về không



☐ Bài toán

http://laptrinhonline.club/problem/tichpxduyetzero

☐ Code tham khảo

https://ideone.com/hPjctB

# III. Cấu trúc liên kết cho cây tổng quát



- ☐ Mỗi nút là một đối tượng, đang lưu trữ:
  - Phần tử (Element)
  - Nút cha (Parent node)
  - Lưu dãy địa chỉ của các nút con
- ☐ Mỗi nút thể hiện một ví trí trong ADT cây





# Cấu trúc dữ liệu một TreeNode của cây tổng qu

- Thuộc tính
  - Object elem
  - TreeNode \*Parent
  - List< TreeNode \*>Child
- Phương thức
  - TreeNode \*getParent()
  - void setParent(TreeNode\*)
  - TreeNode \*getChild(int i)
  - void insertChild(Object elem)
  - List< TreeNode\*> getChild() //tra lai thuoc tinh child
  - Object getElem()
  - void setElem(Object o)

# Cấu trúc cây tổng quát



- ☐ Thuộc tính
  - TreeNode \* root
- Các phương thức truy cập:
  - TreeNode \*root()

- ☐ Phương thức
  - int size()
  - int isEmpty()
  - int isInternal(TreeNode \*)
  - int isExternal(TreeNode \*)
  - int isRoot(TreeNode \*)
  - void preOrder(TreeNode \*, void (\*visit)(TreeNode \*))
  - void inOrder(TreeNode \*, void (\*visit)(TreeNode \*))
  - void postOrder(TreeNode \*, void (\*visit)(TreeNode \*))
  - void insert(TreeNode \*parent, element)
  - void remove(TreeNode\*);

#### IV. Bài tập



- 1. Xây dựng lớp biểu diễn Cây tổng quát
- 2. Cài đặt thuật toán thêm node vào cây
- 3. Cài đặt các thuật toán duyệt cây.
- Xây dựng lớp ứng dụng tạo cây, duyêt cây in các phần tử của cây lên màn hình



# Hết