#### Galaxy Magnitudes & Colors

Magnitude for Extended Objects
Optical & NIR filter systems
Broad properties of galaxy spectra
absorption lines (optical & NIR)
emission lines (overview)
Stellar population synthesis
Age-Sensitive colors
Metallicity-Sensitive colors
Breaking the Age+Metallicity
Degeneracy

More specifically, we define the "Petrosian ratio"  $\mathcal{R}_P$  at a radius r from the center of an object to be the ratio of the local surface brightness averaged over an annulus at r to the mean surface brightness within r:

$$\mathcal{R}_{\rm P}(r) \equiv \frac{\int_{\alpha_{\rm lo} r}^{\alpha_{\rm hi} r} dr' 2\pi r' I(r') / \left[\pi (\alpha_{\rm hi}^2 - \alpha_{\rm lo}^2) r^2\right]}{\int_0^r dr' 2\pi r' I(r') / (\pi r^2)} \,, \tag{1}$$

where I(r) is the azimuthally averaged surface brightness profile and  $\alpha_{lo} < 1$ ,  $\alpha_{hi} > 1$  define the annulus. The SDSS has adopted  $\alpha_{lo} = 0.8$  and  $\alpha_{hi} = 1.25$ .

The Petrosian radius  $r_{\rm P}$  is defined as the radius at which  $\mathcal{R}_{\rm P}(r_{\rm P})$  equals some specified value  $\mathcal{R}_{\rm P,lim}$ . The Petrosian flux in any band is then defined as the flux within a certain number  $N_{\rm P}$  of  $r^*$  Petrosian radii:

$$F_{\rm P} \equiv \int_{0}^{N_{\rm PP}} 2\pi r' \, dr' I(r') \,. \tag{2}$$

Thus, the aperture in all bands is set by the profile of the galaxy in  $r^*$  alone. The SDSS has selected  $\Re_{P,\mathrm{lim}}=0.2$  and  $N_P=2$ . The aperture  $2r_P$  is large enough to contain nearly all of the light for a typical galaxy profile (see below), so even substantial errors in  $r_P$  cause only small errors in the Petrosian flux, but small enough that sky noise in  $F_P$  is small (typical statistical errors near the flux limit of  $r^*=17.65$  are <5%). In practice, there are a number of Based on Petrosian 1976, described in Blanton et al 2001

Petrosian magnitudes partially fix this problem by defining an aperture based on  $\Sigma(r)$  that always captures the same fraction of the flux for a given profile (independent of  $\Sigma_0$  or  $r_{1/2}$ )

#### Standard Photometric Apertures

Within a fixed angular size (3" typical)

but, fraction of detected flux varies with distance

Within a limiting isophotal surface brightness

but, fraction of detected flux varies with surface brightness

Within a multiple of an isophotal surface brightness or 1st moment radius [e.g. "Kron (1980) magnitudes" -- "growing" the aperture]

better, but still surface brightness dependent

Within a "metric" aperture [e.g. a fixed number of scale lengths, Petrosian (1976) magnitudes, etc]

best, but harder to measure

### Magnitudes are defined in "systems" relative to some standard which defines m=0

The apparent magnitude  $m_R$  of the source is related to its spectral density of flux  $f_{\nu}(\nu)$  (energy per unit time per unit area per unit frequency) by

Hogg et al 2002;

$$m_{R} = -2.5 \log_{10} \left[ \frac{\int \frac{\mathrm{d}\nu_{o}}{\nu_{o}} f_{\nu}(\nu_{o}) R(\nu_{o})}{\int \frac{\mathrm{d}\nu_{o}}{\nu_{o}} g_{\nu}^{R}(\nu_{o}) R(\nu_{o})} \right] , \qquad \text{astro-ph/0210394}$$
(4)

where the integrals are over the observed frequencies  $\nu_o$ ;  $g_{\nu}^{R}(\nu)$  is the spectral density of flux for the zero-magnitude or "standard" source, which, for Vega-relative magnitudes, is Vega (or perhaps a weighted sum of a certain set of A0 stars), and, for AB magnitudes (Oke & Gunn 1983), is a hypothetical constant source with  $g_{\nu}^{AB}(\nu)=3631$  Jy (where 1 Jy =  $10^{-26}$  W m<sup>-2</sup> Hz<sup>-1</sup> =  $10^{-23}$  erg cm<sup>-2</sup> s<sup>-1</sup> Hz<sup>-1</sup>) at all frequencies  $\nu$ ; and  $R(\nu)$  describes the bandpass, as follows:

- Canonical standard is Vega, an A-star (m=0,color=0)
- Negative colors = bluer than A-star
- Other standards possible
  - G-stars = typical of galaxy spectra
  - Flat spectrum = "AB Magnitudes"

3

## Definition of AB Magnitudes: Measured relative to a flat-spectrum source with a constant flux at all frequencies

We refer throughout this paper to AB magnitudes, first defined by Oke & Gunn (1983) to measure the ratio of the number of photons included in the signal of the detector relative to that number for a flat spectrum source with  $g(\nu) = 3.631 \times 10^{-20}$  ergs cm<sup>-2</sup> s<sup>-1</sup> Hz<sup>-1</sup>. For a source with a spectrum  $f(\nu)$  the AB magnitude should be (for a perfectly calibrated AB system)

$$m_{AB} = -2.41 - 2.5 \log_{10} \left[ \frac{\int_{0}^{\infty} d\lambda \lambda f(\lambda) R(\lambda)}{\int_{0}^{\infty} d\lambda \lambda^{-1} R(\lambda)} \right]$$

$$= -48.60 - 2.5 \log_{10} \left[ \frac{\int_{0}^{\infty} d\nu \nu^{-1} f(\nu) R(\nu)}{\int_{0}^{\infty} d\nu \nu^{-1} R(\nu)} \right], \qquad (2)$$

where  $R(\lambda)$  is the fraction of photons entering the Earth's atmosphere which are included in the signal as a function of wavelength (a unitless quantity). Note that  $R(\lambda)$  can be defined even for devices which do not count photons directly (such as bolometers). This equation is written such that  $f(\lambda)$  is in units of ergs cm<sup>-2</sup> s<sup>-1</sup> Å<sup>-1</sup> and  $f(\nu)$  is in units of ergs cm<sup>-2</sup> s<sup>-1</sup> Hz<sup>-1</sup>, while  $\lambda$  is expressed in Å and  $\nu$  is expressed in Hz. The normalizations defined here mean that an object with  $f(\nu) = g(\nu) = 3631$  Jy =  $3.631 \times 10^{-20}$  ergs cm<sup>-2</sup> s<sup>-1</sup> Hz<sup>-1</sup> has all its AB magnitudes equal to zero. The  $\lambda^{-1}$  appears in the integrand of the denominator of the first equation because  $g(\lambda) = c/\lambda^2$  for a "flat spectrum" source with  $g(\nu) = 1$ . The difference in the zeropoints of the two equations simply corresponds to the factor of the speed of light c (expressed in Å s<sup>-1</sup>) in that expression for  $g(\lambda)$ .







|                                           |                      |                          |               | pe                           |                                          |                              |                         | S                            | kugita e                        | et al 199                     | λ,                                 | <sup>eff</sup> (α L<br><sub>eff</sub> (α Ly | $yr) = \frac{\int dx}{x}$        |                         | $\frac{1}{R},$ $\text{Lyr}(R(\lambda))$ $R(\lambda)$ $\text{Lyr}(R(\lambda))$ $\text{Lyr}(R(\lambda))$ |                                                                                                                                                                                             |
|-------------------------------------------|----------------------|--------------------------|---------------|------------------------------|------------------------------------------|------------------------------|-------------------------|------------------------------|---------------------------------|-------------------------------|------------------------------------|---------------------------------------------|----------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lucil<br>C 10-20 (He)                     | 1.89                 | 3.02                     | 2.28          | 1.89<br>3.97<br>3.64<br>2.90 | 1.31<br>4.12<br>4.15<br>3.60             | 1.93<br>3.82<br>3.25<br>2.44 | 3.95                    | 1.38<br>3.50<br>3.89<br>2.96 | 3.78<br>2.92<br>2.41<br>2.20    | 3.74<br>2.91<br>2.43<br>2.19  | 2.99<br>2.81<br>2.56               | 3.80<br>2.97<br>2.28                        | 3.60<br>3.28<br>2.82<br>2.43     | 3.74<br>2.90<br>2.46    | 1.54<br>3.93<br>3.12<br>2.51<br>2.19                                                                   | which are                                                                                                                                                                                   |
| c(\(\nu_{\text{eff}}^{\text{VegA}}\)^{-1} | 4363                 |                          | 6693          | 3610<br>4369<br>5365<br>6629 | 3452<br>4103<br>4663<br>5453             | 3617<br>4467<br>5982<br>7842 | 4474                    | 3519<br>3967<br>4885<br>6498 | 5075<br>6599<br>7941<br>9045    | 5160<br>6603<br>7876<br>9029  | 6388<br>6895<br>7509<br>8075       | 4477<br>6504<br>8508                        | 5381<br>5900<br>6829<br>7923     | 5113<br>6632<br>7761    | 3530<br>4748<br>6210<br>7623<br>9098                                                                   | Note — a) References are given whenever the response functions are taken from those which are stiffness from the original rough ASSO stands for America's F. Craises 1660, and Maximits for |
| J. Vega<br>J. eff                         | 6.19                 | 2.15                     | 1.87<br>0.912 | 4.30<br>6.10<br>3.75<br>1.96 | 3.24<br>7.21<br>5.68<br>3.62             | 4.32<br>5.54<br>2.64<br>1.17 | 5.73                    | 3.33<br>6.62<br>4.84<br>2.09 | 4.34<br>1.99<br>1.13<br>0.797   | 4.14<br>1.98<br>1.16<br>0.798 | 2.19<br>1.77<br>1.36<br>1.08       | 5.46<br>2.08<br>0.928                       | 3.62<br>2.73<br>1.77             | 1.96                    | 3.67<br>5.11<br>2.40<br>1.28<br>0.783                                                                  | ictions are tak                                                                                                                                                                             |
|                                           | 3709<br>4393<br>5439 | 6410                     | 6688<br>8571  | 3710<br>4407<br>5368<br>6628 | 3496<br>4119<br>4666<br>5455             | 3737<br>4537<br>5978<br>7838 | 4515                    | 3542<br>4013<br>4888<br>6496 | 5083<br>6600<br>7942<br>9071    | 5166<br>6602<br>7876<br>9054  | 6384<br>6899<br>7508<br>8077       | 4562<br>6503<br>8532                        | 5387<br>5901<br>6826<br>7906     | 5121<br>6632<br>7756    | 3594<br>4765<br>6205<br>7617                                                                           | ponse fur                                                                                                                                                                                   |
| FWHM                                      | 526<br>1008          | 1568                     | 2096          | 595<br>1028<br>823<br>969    | 363<br>197<br>176<br>244                 | 556<br>1550<br>1330<br>1786  | 1490                    | 412<br>469<br>709<br>893     | 913<br>1028<br>1604<br>1472     | 882<br>916<br>1353<br>984     | 534<br>450<br>608<br>515           | 1215<br>1373<br>1725                        | 1480<br>2050<br>1957<br>1653     | 942<br>1050<br>1469     | 556<br>1297<br>1358<br>1547<br>1530                                                                    | er the res                                                                                                                                                                                  |
| 1                                         | 3652 4448            | 8060                     | 6930<br>8785  | 3647<br>4466<br>5423<br>6712 | 3465<br>4109<br>4668<br>5459             | 3656<br>4625<br>6168<br>7953 | 4604                    | 3536<br>3992<br>4927<br>6538 | 5147<br>6659<br>8056<br>9141    | 5238<br>6677<br>7973<br>9133  | 6401<br>6904<br>7526<br>8087       | 4614<br>6585<br>8668                        | 5536<br>6102<br>6979<br>8092     | 5154<br>6696<br>7837    | 3585<br>4858<br>6290<br>7706                                                                           | wheney                                                                                                                                                                                      |
| ref <sup>®)</sup>                         | Buser 78<br>AS69     | Bessell 90<br>Bessell 90 |               |                              | Olson74<br>Matsu69<br>Olson74<br>Olson74 | Koo 85                       |                         |                              |                                 |                               |                                    |                                             |                                  |                         |                                                                                                        | aces are given                                                                                                                                                                              |
| band                                      | U3                   | $R_{\rm C}$              | $R_1$         | 3-0 2 -                      | # D= #                                   | $_{K_{K}}^{U_{K}}$           | $B_{\rm J}$ $R_{\rm F}$ | 3001                         | 82.22                           | 0, L == N                     | DCBA                               | $_{I}^{B_{1}}$                              | F555W<br>F606W<br>F702W<br>F814W | gross<br>rposs<br>rposs | ז יינ יין נפן נג'                                                                                      | Referen                                                                                                                                                                                     |
| bandpass system                           | Johnson-Morgan       | Cousins                  | Johnson       | Sandage-Smith                | Strömgren                                | Kron                         | Couch-Newell            | Thuan-Gunn                   | Schneider et al.<br>(4-shooter) | Schneider et al.<br>(Pfuei)   | Schneider et al.<br>(narrow bands) | Tyson (CCD)                                 | WFPC2                            | POSS II                 | SDSS                                                                                                   | Note — a)                                                                                                                                                                                   |















|                     |                   | INDEX DEFINITION:                      |       |                   |                           |
|---------------------|-------------------|----------------------------------------|-------|-------------------|---------------------------|
| Name                | Index Bandpass    | Pseudocontinua                         | Units | Measures*         | \\\\ : al. T.a.d: a.a.d/. |
| (2)                 | (3)               | (4)                                    | (5)   | (6)               | "Lick Indices":           |
| CN <sub>1</sub>     | 4142.125-4177.125 | 4080.125-4117.625<br>4244.125-4284.125 | mag   | C, N, (O)         |                           |
| CN <sub>2</sub>     | 4142.125-4177.125 | 4083.875-4096.375<br>4244.125-4284.125 | mag   | C, N, (O)         | Characterize              |
| Ca4227              | 4222.250-4234.750 | 4211.000-4219.750<br>4241.000-4251.000 | Å     | Ca, (C)           |                           |
| G4300               | 4281.375-4316.375 | 4266.375-4282.625<br>4318.875-4335.125 | Å     | C, (O)            | strength of optical       |
| Fe4383              | 4369.125-4420.375 | 4359.125-4370.375<br>4442.875-4455.375 | Å     | Fe, C, (Mg)       |                           |
| Ca4455              | 4452.125-4474.625 | 4445.875-4454.625<br>4477.125-4492.125 | Å     | (Fe), (C), Cr     | absorption features       |
| Fe4531              | 4514.250-4559.250 | 4504.250-4514.250<br>4560.500-4579.250 | Å     | Ti, (Si)          | •                         |
| C <sub>2</sub> 4668 | 4634.000-4720.250 | 4611.500-4630.250<br>4742.750-4756.500 | Å     | C, (O), (Si)      |                           |
| Нβ                  | 4847.875-4876.625 | 4827.875-4847.875<br>4876.625-4891.625 | Å     | $H\beta$ , $(Mg)$ |                           |
| Fe5015              | 4977.750-5054.000 | 4946.500-4977.750<br>5054.000-5065.250 | Å     | (Mg), Ti, Fe      | Age & Metallicity         |
| $Mg_1$              | 5069.125-5134.125 | 4895.125-4957.625<br>5301.125-5366.125 | mag   | C, Mg, (O), (Fe)  | ,                         |
| $Mg_2$              | 5154.125-5196.625 | 4895.125-4957.625<br>5301.125-5366.125 | mag   | Mg, C, (Fe), (O)  | Sensitive                 |
| Mgb                 | 5160.125-5192.625 | 5142.625-5161.375                      | Å     | Mg, (C), (Cr)     |                           |
| Fe5270              | 5245.650-5285.650 | 5191.375-5206.375<br>5233.150-5248.150 | Å     | Fe, C, (Mg)       |                           |
| Fe5335              | 5312.125-5352.125 | 5285.650-5318.150<br>5304.625-5315.875 | Å     | Fe, (C), (Mg), Cr |                           |
| Fe5406              | 5387.500-5415.000 | 5353.375-5363.375<br>5376.250-5387.500 | Å     | Fe                | Note that the name        |
| Fe5709              | 5696.625-5720.375 | 5415.000-5425.000<br>5672.875-5696.625 | Å     | (C), Fe           |                           |
| Fe5782              | 5776.625-5796.625 | 5722.875-5736.625<br>5765.375-5775.375 | Å     | Cr                | sometimes has no          |
| Na D                | 5876.875-5909.375 | 5797.875-5811.625<br>5860.625-5875.625 | Å     | Na, C, (Mg)       |                           |
| TiO,                | 5936.625-5994.125 | 5922.125-5948.125<br>5816.625-5849.125 | mag   | C                 | connection to what        |
| •                   |                   | 6038.625-6103.625                      |       |                   |                           |
| TiO <sub>2</sub>    | 6189.625-6272.125 | 6066.625-6141.625<br>6372.625-6415.125 | mag   | C, V, Sc          | elements are et al 199    |

| λ<br>(μm)      | Main contribution                    | Other species             | NIR absorption line IDs               |
|----------------|--------------------------------------|---------------------------|---------------------------------------|
| 1.529          | OH                                   | CN,TiI                    |                                       |
| 1.540          | OH                                   | Siı                       | •                                     |
| 1.558          | <sup>12</sup> CO                     | OH                        |                                       |
| 1.577          | <sup>12</sup> CO                     | Mg I,Fe I                 |                                       |
| 1.589          | Siı                                  | OH                        |                                       |
| 1.598          | <sup>12</sup> CO                     | Si 1, <sup>13</sup> CO    |                                       |
| 1.606          | OH                                   | 011.0                     |                                       |
| 1.619          | <sup>12</sup> CO<br><sup>12</sup> CO | OH,Ca1                    |                                       |
| 1.640          | 13CO                                 | Si I,[Fe II]              |                                       |
| 1.652          | 12CO                                 | OH<br>OH                  |                                       |
| 1.661          | Sit                                  | OH<br>OH                  | Spectrum dominated by                 |
| 1.672          | Alı                                  | H1. <sup>12</sup> CO      | Spectrum dominated by                 |
| 1.677          | Ali                                  | nı, co                    | • •                                   |
| 1.689          | OH                                   | HLCO                      | cool stars                            |
| 1.710          | MgI                                  | CO.OH                     | COOI StarS                            |
| 1.723          | OH                                   | Sit                       |                                       |
| 1.733          | Sit                                  | Hi                        |                                       |
| 2.067          | Fei                                  | ***                       |                                       |
| 2.072          | Fei                                  |                           |                                       |
| 2.081          | Fei                                  | Siı                       |                                       |
| 2.107          | MgI                                  | H <sub>2</sub> O,Si I     | Dominated by Molecules                |
| 2.117          | Alı                                  | H <sub>2</sub> ,Mg I,Fe I | Dominated by Molecules                |
| 2.136          | Siı                                  | 2. 0.                     | · · · · · · · · · · · · · · · · · · · |
| 2.146          | MgI                                  | Na I,Si I,Ca II           | and Low Ionization                    |
| 2.166          | Bry                                  | VI                        | aliu LOW IUIIZaliuli                  |
| 2.173          | ScI                                  | Fei                       |                                       |
| 2.179          | TiI                                  | Si 1,Fe 1                 | Chasica                               |
| 2.189          | Siı                                  | TiI,Fe 1                  | Species                               |
| 2.208          | Naı                                  | ScI,TiI,VI,Fe 1,Si 1      | -p                                    |
| 2.226          | Fe I                                 | ScI,TiI                   |                                       |
| 2.239          | Fei                                  | ScI                       |                                       |
| 2.248          | Fei                                  | VI,TiI                    |                                       |
| 2.263          | Cai                                  | ScI,TiI,Fe1,S1            |                                       |
| 2.281<br>2.294 | MgI<br><sup>12</sup> CO              | Caı,Feı,Sı,HF<br>Til      |                                       |
| 2.294          | 12CO                                 | 111                       |                                       |
| 2.345          | 13CO                                 |                           |                                       |





For reference:
Average galaxy colors measured for different Hubble types

**Table 2.** Average effective colours of galaxies with  $M_V < -21$ . For each colour the standard deviation and the number of used objects are also reported.

|                 | U-B    | B-V    | V-R    | V-I    | V - K  | $J-H^a$ | $H-K^{c}$ |
|-----------------|--------|--------|--------|--------|--------|---------|-----------|
| E               | 0.50   | 0.99   | 0.59   | 1.22   | 3.30   | 0.66    | 0.21      |
|                 | (0.08) | (0.05) | (0.05) | (0.07) | (0.09) | (0.05)  | (0.02)    |
|                 | 323    | 418    | 314    | 221    | 32     | 225     | 225       |
| SO.             | 0.47   | 0.97   | 0.58   | 1.20   | 3.25   | 0.66    | 0.22      |
|                 | (0.11) | (0.08) | (0.05) | (0.08) | (0.14) | (0.05)  | (0.02)    |
|                 | 287    | 344    | 227    | 158    | 13     | 235     | 235       |
| Sa              | 0.36   | 0.90   | 0.58   | 1.17   | 3.24   | 0.67    | 0.25      |
|                 | (0.19) | (0.11) | (0.08) | (0.11) | (0.18) | (0.06)  | (0.03)    |
|                 | 138    | 185    | 73     | 82     | 17     | 105     | 105       |
| Sb              | 0.22   | 0.82   | 0.57   | 1.16   | 3.21   | 0.66    | 0.25      |
|                 | (0.20) | (0.12) | (0.09) | (0.11) | (0.28) | (0.06)  | (0.03)    |
|                 | 321    | 541    | 156    | 315    | 16     | 93      | 93        |
| Sc              | 0.06   | 0.70   | 0.52   | 1.15   | 3.03   | 0.66    | 0.25      |
|                 | (0.18) | (0.13) | (0.10) | (0.15) | (0.24) | (0.07)  | (0.04)    |
|                 | 294    | 536    | 133    | 287    | 23     | 46      | 46        |
| $\mathrm{Sd}^b$ | -0.12  | 0.62   | 0.47   | 1.09   | 2.95   | 0.65    | 0.23      |
|                 | (0.16) | (0.18) | (0.13) | (0.19) | (0.32) | (0.08)  | (0.05)    |
|                 | 53     | 99     | 25     | 58     | 12     | 26      | 24        |
| [c              | -0.15  | 0.51   | 0.40   | 1.08   | 2.35   | 0.51    | 0.21      |
|                 | (0.20) | (0.17) | (0.20) | (0.30) | (0.35) | (0.10)  | (0.06)    |
|                 | 102    | 117    | 28     | 35     | 5      | 22      | 20        |

 $<sup>^</sup>a$ : The J-H and H-K colours are based also on the results in Fioc & Rocca-Volmerange (1999), where only average quantities are given. In these cases the scatter is not measured but estimated.

Mannucci et al 2001  $\stackrel{b: M_V}{\sim} No ma$ 

001 °: No magnitude selection









Basis for essentially <u>all</u> estimates of extragalactic physical quantities

(e.g., stellar mass, age, metallicity, extinction, SFRs)



#### Instantaneous burst



Luminous at early times

Fades and reddens at late times

Little spectral evolution after t>4 Gyr

Young burst can swamp light from old stars

#### Bruzual & Charlot 1993

Fig. 4.—Spectral evolution of stellar populations with different star formation rates as predicted by the isochrone synthesis model; (a) instantaneous starburst; (be eq. (2) with  $\tau = 7$  Gyr; and (d) constant star formation. In each case, the age (in Gyr) is indicated next to the spectra. Thick lines and thin lines have been used alternatively for clairly in the Salpeter IMF.















#### Stellar population synthesis (SPS):

Compilation: http://www.sedfitting.org/SED08/Models.html

- Many different publicly available codes:
  - FSPS (Conroy)
  - GISSEL (Bruzual & Charlot)
  - PEGASE (Rocca-Volmerange)
  - STARBURST99 (Leitherer)
- Various features can be added on:
  - Metallicity evolution
  - Dust
  - Emission lines







#### Stellar population synthesis:

- Limitations:
  - Quality of spectral libraries (not so good in NIR or extreme metallicities)
  - Late-stage (post-main sequence) stellar evolution
  - Cool stars

# Uncertainties in Ingredients: Various libraries, Z. = Z., 13 Cyr Various libraries, Z. = Z., 13 Cyr

Fig. 1 Evolutionary tracks of solar composition low mass stars (0.9 - 10  $M_{\odot}$ ) demonstrating the differences between four different models (as labelled): MPA08 (Weiss and Schlattl 2008), BaSTI04 (with/without overshoot; Pietrinferni et al. 2009), and Padova08 (Marigo and Girardi 2007; Marigo et al. 2008) [Courtesy S. Charlott.]

3.8

 $log (T_{eff}/K)$ 

3.6

See Conroy et al 2009, Conroy & Gunn 32010 for assessment of uncertainties

Fig. 2 Optical spectra from both theoretical and empirical stellar libraries (as labelled) demonstrating the improvement of spectral resolution over time with the associated improvement in library size [Courtesy S. Charlot].

Nice Review of Synthesis Modeling: Walcher et al 2010

#### Two basic roles for SPS models

- Predict observable properties given star formation history, metallicity, etc.
- Infer fundamental properties (SFR, stellar mass, etc) from observed spectrum.

#### The latter can be highly degenerate

However, in the age of widespread spectra+ multiwavelength data, using SPS for inference is unavoidable

(and better than most alternatives)

#### Degeneracies in SPS models

Spectra are "light weighted", favoring young ages

Old SSPs are faint and hard to detect

Complex SFH's bias inference

Higher SNR spectra, wide wavelength coverage all help

Relative measures always better than absolute

Summary: Be cautious if you need a factor of 2 rather than a factor of 10 level of accuracy!