Math 481

- ► Instructor: Chenxi Wu wuchenxi2013@gmail.com
- ▶ Office: Hill 434, Office hours: 10-11 am Tu, Wed or by appointment, starting from Jan 28.
- ► Grading policy: 10% weekly homework (lowest dropped), 20% each of the two midterms, 50% final exam.
- Prerequisite: Probability. Will finish review of basic probability on Feb 12.
- Weekly assignments: 2-3 homework problems a week, grade for correctness, similar to exams. There will also be questions from textbook assigned for practice which you don't need to hand in.
- ▶ No late homework or make up midterms.

Main topics we will cover:

- ► Review of probability
- ▶ Point estimate
- p-values and hypothesis testing
- Confidence intervals
- Bayesian statistics

Bayesian and non-Bayesian approaches to statistics

- Non-Bayesian approach: Set up a null hypothesis and try to show that observation is highly unlikely if null hypothesis is true.
- ► Bayesian approach: Assume prior distribution of some parameter, calculate posterior via Bayes formula

DID THE SUN JUST EXPLODE? (IT'S NIGHT, SO WE'RE NOT SURE.)

FREQUENTIST STATISTICIAN:

BAYESIAN STATISTICIAN:

THE PROBABILITY OF THIS RESULT HAPPENING BY CHANCE IS \$\frac{1}{3c}\$=0.027.

SINCE P<0.05, I. CONCLUDE THAT THE SUN HAS EXPLODED.

Some review of basic probability

- ► Two random events A and B are called **independent** if $P(A \cap B) = P(A)P(B)$
- ▶ If A and B are two random events, P(A) > 0. The conditional probability of B when A is given is $P(B|A) = P(A \cap B)/P(A)$.

Example

Suppose you are given a coin, you flip it 5 times and get head on all 5 of them.

- Suppose the coin is fair, what is the odds that it gets head for 5 times in 5 flips?
- Null hypothesis
- p-value

WE FOUND NO

WE FOUND NO LINK BETWEEN BLUE JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN TEAL JELLY BEANS AND ACNE (P > 0.05)

GREY JELLY BEANS AND ACNE (P > 0.05).

TAN JELLY BEANS AND ACNE (P>0.05),

CYAN JELLY
BEANS AND ACNE
(P>0.05)

GREEN JELLY BEANS AND ACNE (P<0.05)

MAUVE JELLY BEANS AND ACNE (P>0.05),

WE FOUND NO LINK BETWEEN BEIGE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN LICAC JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN BLACK JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN PEACH JELLY BEANS AND ACNE (P>0.05),

WE FOUND NO LINK BETWEEN ORANGE JELLY BEANS AND ACNE (P > 0.05)

- ▶ Suppose the coin is biased and gets head at probability p.
 - ▶ What is the probability that it gets head for 5 times in 5 flips?
 - ▶ What is the *p* that maximizes this probability?
 - ► What is the range of *p* such that the probability for 5 heads in 5 flips is no less than 0.05?
- Maximum likelihood estimate (MLE)
- Confidence interval

- ➤ Suppose you pick the coin among a pile of 100 coins, 99 of which is fair and 1 has head on both sides. What is the chance of the coin being unfair given the results of the 5 flips?
- Prior and posterior

- ▶ Suppose the odds for getting a head is uniformly distributed in [0,1], given the results of the 5 flips, what do you think is the most likely value for *p*? How about the expectation?
- ► Maximum a posteriori (MAP) estimate

Basic definitions in probability

A **Probability** is a triple (S, F, P) where S is called the **sample space** denoting all possible states of the world, $F \subset \mathcal{P}(S)$ the **event space** and $P : F \to \mathbb{R}$ a real-valued function on F, such that:

- 1. *F* is closed under complement and countable union.
- 2. P is non negative.
- 3. P(S) = 1
- 4. If $\{E_i\}$ is a countable sequence of disjoint events in F, $P(\bigcup_i E_i) = \sum_i P(E_i)$.

Random variables

- ▶ A (real valued) random variable X is a function $S \to \mathbb{R}$ such that the preimage of any open interval is in F. Multivariant random variables can be defined similarly.
- The cumulative distribution function (cdf) of a random variable X is $F(x) = P(X \le x)$.
- If $F(x) = \int_{-\infty}^{x} f(t)dt$ we call f the **probability density** function (pdf)
- ▶ If there is a countable set C and $g: C \to \mathbb{R}$ such that $F(x) = \sum_{y \in C, y \le x} g(y)$ we call X discrete and g the probability distribution
- ► The **expectation** of a random variable X is defined as $E[X] = \int_S X dP$.

For those who know analysis

- A probability is a measure $P: F \to \mathbb{R}$, where F is a σ -algebra on sample space S and P(S) = 1.
- ▶ A random variable *X* is a *P*-measurable function on *S*.
- ► The expectation of a random variable X is the integral $\int_S XdP$.

Some questions

- Must the cdf of a random variable be left or right continuous?
- X is the number of heads in 2 fair coin flips. What is the cdf of X? What is the expectation of X? What is the expectation of (X - E[X])²?
- Can you write down a random variable that is neither discrete nor has a pdf?
- Can you write down a random variable which has no expectation?

Independence and conditional probability

- ▶ X and Y are 2 random variables, X and Y are independent iff $F_{X,Y}(s,t) = P(X \le s \cap Y \le t) = F_X(s)F_Y(t)$.
- If A is some event with non zero probability, $F_{X|A}(s) = P(X \le s|A) = P(X \le s \cap A)/P(A)$.
- ▶ If X and Y has joint p.d.f. $f_{X,Y}$ with non zero marginal density f_Y , then $f_{X|Y=a}(s) = f_{X,Y}(s,a)/f_Y(a)$.
- ▶ If A_i are disjoint events with non zero probabilities, $B \subset \mathbb{R}$, $P(X \in B | \cup_i A_i) = \sum_i (P(A_i)P(X \in B | A_i)) / \sum_i P(A_i)$.
- ▶ If Y has p.d.f. f_Y , $A \subset \mathbb{R}$ such that $P(Y \in A) > 0$, B is a random event, then $P(B|Y \in A) = \int_A f_Y(s)P(B|Y = s)ds/P(Y \in A)$.

Special random variables

- Discrete: Takes on countably values, has p.d.
- **Continuous**: has p.d.f.

2 random variables X and Y has the same distribution iff they have the same c.d.f., or for any $A \subset \mathbb{R}$, $P(X \in A) = P(Y \in A)$. Random variables with the same distribution are NOT necessarily the same.

Special Probability distributions

- ▶ Bernoulli distribution: $f(1) = \theta$, $f(0) = 1 \theta$.
- Binomial distribution (sum of iid Bernoulli):

$$f(x) = \binom{n}{x} \theta^{x} (1-\theta)^{n-x}, x = 0, 1, \dots, n.$$

- Negative Binomial distribution (waiting time for the k-th success of iid trials): $f(x) = {x-1 \choose k-1} \theta^k (1-\theta)^{x-k}$, $x = k, k+1, \ldots$ When k = 1 it is the **geometric** distribution.
- ► **Hypergeometric distribution** (randomly pick *n* elements at random from *N* elements, the number of elements picked from a fixed subset of *M* elements)

$$f(x) = \binom{M}{x} \binom{N-M}{n-x} \binom{N}{n}^{-1}.$$

- ▶ **Poisson distribution** (limit of binomial as $n \to \infty$, $n\theta \to \lambda$) $f(x) = \lambda^x e^{-\lambda}/x!$.
- ► Multinomial distribution $f(x_1,...x_k) = \binom{n}{x_1,...,x_k} \theta_1^{x_1}...\theta_k^{x_k}, \sum_i x_i = n, \ \theta_i\theta_i = 1.$
- Multivariate Hypergeometric distribution

$$f(x_1,\ldots,x_k) = \prod_i \binom{M_i}{x_i} \cdot \binom{N}{n}^{-1} \cdot \sum_i x_i = n,$$

$$\sum_i M_i = N.$$

Special Probability Density Functions

$$\Gamma(a) = \int_0^\infty x^{a-1} e^{-x} dx$$
. $\Gamma(k) = (k-1)!$ when $k = 1, 2, ...$

- **▶** Uniform distribution: $f(x) = \begin{cases} 1/(b-a) & x \in (a,b) \\ 0 & x \notin (a,b) \end{cases}$.
- ► Normal distribution: $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$.
- ▶ Multivariate Normal distribution: $x \in \mathbb{R}^d$, Σ positive definite $d \times d$ symmetric matrix, $f(x) = (2\pi)^{-d/2} |\Sigma|^{-1/2} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$.
- $\chi^2 \ \text{distribution } d \colon \text{ degrees of freedom. Squared sum of } d \\ \text{normal distributions: } f(x) = \begin{cases} \frac{1}{2^{d/2} \Gamma(d/2)} x^{\frac{d-2}{2}} e^{-x/2} & x > 0 \\ 0 & x \leq 0 \end{cases}.$

- **Exponential distribution** $f(x) = \begin{cases} \frac{1}{\theta}e^{-x/\theta} & x > 0 \\ 0 & x \le 0 \end{cases}$
- ► Gamma-distribution: $f(x) = \begin{cases} \frac{1}{\beta^{\alpha}\Gamma(\alpha)} x^{\alpha-1} e^{-x/\beta} & x > 0\\ 0 & x \le 0 \end{cases}$
- ▶ Beta distribution: (conjugate prior of Bernoulli distribution) $f(x) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} & x \in (0,1) \\ 0 & x \notin (0,1) \end{cases}.$

Example: If the bias of a coin p has a uniform **prior** in [0,1], after n flips there are a heads and b tails, the **posterior** will be Beta distribution with $\alpha = a + 1$, $\beta = b + 1$.

Sample mean and sample variance

 X_i i.i.d. (independent with identical distribution)

- **Sample mean**: $\overline{X} = \frac{1}{n} \sum_{i} X_{i}$
- Sample variance:

$$S^{2} = \frac{1}{n-1} \sum_{i} (X_{i} - \overline{X})^{2} = \frac{1}{n-1} (\sum_{i} X_{i}^{2} - n \overline{X}^{2}).$$

Properties:

- $ightharpoonup E[\overline{X}] = E[X_1]$
- $ightharpoonup Var(\overline{X}) = \frac{1}{n} Var(X_1)$
- lacksquare $\sqrt{rac{n}{Var(X_1)}}(\overline{X}-E[X_1])
 ightarrow \mathcal{N}(0,1)$ (Central Limit Theorem)
- ► $E[S^2] = Var(X_1)$

Assuming $X_i \sim \mathcal{N}(\mu, \sigma^2)$:

- $ightharpoonup \overline{X}$ and S^2 are independent.
- $ightharpoonup \overline{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

Proof of $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$

$$(n-1)S^{2} = \sum_{i} (X_{i} - \overline{X})^{2} = \sum_{i} ((X_{i}^{2} - E[X_{i}]) - (\overline{X} - E[\overline{X}]))^{2}$$
$$= \sum_{i} (X_{i}^{2} - E[X_{i}])^{2} - n(\overline{X} - E[\overline{X}])^{2}$$

Now divide by σ^2 , the first term is $\chi^2(n)$ and second $\chi^2(1)$.

χ^2 distribution

Definition: X_i independent, $\mathcal{N}(0,1)$, then $\sum_{i=1}^n X_i = \chi^2(n)$ PDF:

$$f(x) = \begin{cases} \frac{1}{n/2\Gamma(n/2)} x^{\frac{n-2}{2}} e^{-x/2} & x > 0\\ 0 & x \le 0 \end{cases}$$

Calculation of PDF:

$$f_{\chi^{2}(n)}(r) = \frac{d}{dr} \int_{\sum_{i} x_{i}^{2} \le r} (2\pi)^{-n/2} e^{-\sum_{i} x_{i}^{2}/2} dx_{1} \dots dx_{n}$$
$$= (2\pi)^{-n/2} e^{-r/2} \frac{d}{dr} Vol(B(\sqrt{r}))$$

Where B(x) is the ball of radius x.

t distribution

Definition: X and Y independent, $X \sim \mathcal{N}(0,1)$, $Y \sim \chi^2(n)$, then $\frac{X}{\sqrt{Y/n}} \sim t(n)$.

By LLN, when $n \to \infty$ this converges to $\mathcal{N}(0,1)$.

PDF:

$$f(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{\pi n}\Gamma(\frac{n}{2})} (1 + \frac{x^2}{n})^{-\frac{n+1}{2}}$$

Calculation of PDF of t

$$f_{t(n)}(s) = \frac{d}{ds} P(X \le s\sqrt{Y/n}) = \frac{d}{ds} \int_0^\infty dy \int_{-\infty}^{s\sqrt{y/n}} dx \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \frac{1}{2^{n/2} \Gamma(n/2)} y^{\frac{n-2}{2}} e^{-y/2}$$

$$= \int_0^\infty dy \sqrt{y/n} \frac{1}{\sqrt{2\pi}} e^{-s^2 y/2n} \frac{1}{2^{n/2} \Gamma(n/2)} y^{\frac{n-2}{2}} e^{-y/2}$$

$$= \frac{1}{\sqrt{2\pi n} 2^{n/2} \Gamma(n/2)} \int_0^\infty dy y^{\frac{n-1}{2}} e^{-y(1+\frac{s^2}{n})/2}$$

Now let $z = y(1 + \frac{s^2}{n})/2$ and it's done.

F-distribution

Definition: U and V independent, $U \sim \chi^2(m)$, $V \sim \chi^2(n)$, then $\frac{U/m}{V/n} \sim F(m,n)$ CDF:

$$f(x) = \begin{cases} \frac{\Gamma(\frac{m+n}{2})}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})} (\frac{m}{n})^{m/2} x^{m/2-1} (1 + \frac{m}{n}x)^{-\frac{m+n}{2}} & x > 0\\ 0 & x \le 0 \end{cases}$$

Strategy for calculating the PDF of $Y = g(X_i)$:

- 1. Find joint pdf of X_i
- 2. Write down the CDF of Y as a probability, hence, some integral of the pdf of X_i
- 3. Differentiate the CDF of Y.

Probability Review

- Probability, cdf and pdf for continuous random variables:
 - ▶ Probability to cdf: $F_X(t) = P(X \le t)$
 - **cdf to pdf**: $f_X(t) = \frac{d}{dt}F_X(t)$
 - **pdf** to probability: $P(X \in A) = \int_A f_X(s) ds$
- Probability, cdf and pd for discrete random variables:
 - ▶ Probability to cdf: $F_X(t) = P(X \le t)$
 - **cdf to pd**: $F_X(t) = \sum_{s < t} g_X(s)$
 - **P** pd to probability: $P(X \in A) = \sum_{s \in A} g_X(s)$
- Joint cdf/pdf/pd, independence, conditional probability.
- Expectation, variance, covariance
- LLN and CLT
- ▶ Special distributions: binomial, uniform, normal, χ^2 , etc.

Point estimates

Basic setting:

- F: a family of possible distributions (represented by a family of cdf, pdf, or pd)
- $lackbox{ heta} \ heta: \mathcal{F}
 ightarrow \mathbb{R}$ population parameter
- \triangleright $X_1, \ldots X_n$ i.i.d. with distribution $F \in \mathcal{F}$
- ▶ $\hat{\theta} = \hat{\theta}(X_1, ..., X_n)$ a function of X_i , which is an estimate of $\theta(F)$, is called a point estimate.

Example: \mathcal{F} : all distributions with an expectation, then \overline{X} is a point estimate of the expectation.

- $\hat{\theta}$ is a point estimate of θ .
 - ▶ The **bias** is $E[\hat{\theta}] \theta$. $\hat{\theta}$ is called unbiased if $E[\hat{\theta}] = \theta$.
 - ▶ The **variance** is $Var(\hat{\theta})$.
 - $\hat{\theta}$ is called **minimum variance unbiased estimate** if it has the smallest variance among all unbiased estimates.
 - ▶ $\hat{\theta}_1$ and $t\hat{heta}_2$ are two unbiased estimates, the relative efficiency is the ratio of their variance. When they are biased, one can use the mean squared error $E[(\hat{\theta} \theta)^2]$ instead.
 - $\hat{\beta}$ is called **asymptotically unbiased** if bias converges to 0 as $n \to \infty$.
 - $ightharpoonup \hat{\beta}$ is called **consistent** if $\hat{\beta}$ converges to β in distribution.

Review of definitions regarding point estimates

 $\hat{\theta}$ is a point estimate of θ

- Unbiased
- Minimal Variance Unbiased
- Asymptotically unbiased
- Consistent

Properties:

- ▶ Minimal Variance Unbiased can be verified via Cramer-Rao
- Mean squared error $E[(\hat{\theta}-\theta)^2] = E[((\hat{\theta}-E[\hat{\theta}])+(E[\hat{\theta}-\theta))^2] = Var(\hat{\theta})+(E[\hat{\theta}]-\theta)^2$
- ▶ Mean squared error \rightarrow 0 implies consistence:

$$P(|\hat{\theta} - \theta| > \epsilon) < \frac{E[(\hat{\theta} - \theta)^2]}{\epsilon^2}$$

But consistence does not imply mean squared error \rightarrow 0.

MLE

Suppose $X_i \sim F(\theta)$, i.i.d., observation is x_1, \ldots, x_k , then $\hat{\theta} = \arg \max_{\theta} L(x_1, \ldots, x_k, \theta)$.

- ▶ When F is a continuous distribution with p.d.f. $f(x,\theta)$, let $L(x_1,...,x_k,\theta) = \prod_i f(x_i,\theta)$
- ▶ When F is a discrete distribution with p.d. $g(x, \theta)$, let $L(x_1, ..., x_k, \theta) = \prod_i g(x_i, \theta)$