Respuestas Guía 5

(1)	(a)	(b)	(c)	(d)	(e)	(f)
A	V	F contraejemplo: $2.\sqrt{2}$	V	V	V	F
		¢ R				
В	V	V	V	V	V	V
С	V	V	V	V	V	V
D	F Contra ejemplo $P(x) = 3x^2 + 1 + Q(x) = -3x^2 + x$, la suma de $P(x)$ y $Q(x)$ da como resultado un polinomio de grado, por lo tanto, el resultado no pertenece al conjunto $A1$	F) contra ejemplo $0.(3x^2 + 1)$ no da como resultado un polinomio de grado 2	F el polinomio nulo no es de grado 2; no pertenece al conjunto A	V	V	F

(2) El conjunto de puntos en R² que se encuentra sobre una recta que no pasa por el origen No constituye un espacio vectorial, pues no tiene elemento neutro para la suma

(3) No cumple LCI

- (4) (a) Es un subespacio deR^2
- (b) Es un subespacio deR^2
- (c) No es un subespacio de R^3
- (d) No es un subespacio deR^2
- (e) No es un subespacio deR^3
- (f) Es un subespacio de R^{2x^2}
- (g) No es un subespacio de R^{2x^2}
- (h) No es un subespacio deR^2
- (i) No es un subespacio deR^2

(5)

No

No

Si

No

(6)

- a) \vec{v} no es C. L de \vec{u} y \vec{w}
- b) $k \in R \{1\}$

 $k = 0 \ \lor k = -1$

Para cualquier valor real de k

(7)

- a) III y IV
- b) I y II
- c) II
- (8) Subespacio : $x_1 5x_2 3x_3 = 0$

(9)

- a) $\{(\boldsymbol{z};\boldsymbol{z};\boldsymbol{z})\forall \boldsymbol{z}\in\boldsymbol{R}\}$ Constituye un subespacio vectorial de \mathbb{R}^3
- b) $S = \{(4 + z; -2 + z; z) \forall z \in R\}$ No constituye un subespacio vectorial de R³

(10)

- a) $\alpha = 5$; $\beta = -4$ es combinación lineal
- b) No es combinación lineal
- c) No es combinación lineal
- d) No es combinación lineal
- e) $\alpha = \frac{10}{13}$; $\beta = -\frac{2}{13}$; $\lambda = -\frac{5}{13}$ es combinación lineal

(11)

En R²

- a) Subespacio generado $y = -\frac{1}{2}x$ es una recta
- b) **Subespacio generado** $y = -\frac{3}{4}x$ es una recta
- c) Genera R²

En R³

- a) Subespacio generado x + 10y 3z = 0 es un plano
- b) Subespacio generado 2x + y = 0 es un plano
- c) Subespacio generado -x + y = 0; -x + z = 0 corresponden a planos cuya intersección es una recta

En R^{2x2}

a) Subespacio generado $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$

(12)

- a) $\forall k \in R \{-1\}$
- b) $\not\ni k \in R$; los vectores dados nunca son L.I.
- c) $\ni k \in R$; los vectores dados nunca son L.I.

(13)

En R²

- a) LI
- b) LD $(-2; 1) = \frac{3}{2}(1; 3) + (-\frac{7}{2})(1; 1)$
- c) LD $(-2; 1) = -\frac{1}{2}(4; -2)$

En R³

a) LI

b)
$$(2; 0; -1) = 0 \left(0; \frac{1}{2}; -\frac{1}{2}\right) + 3\left(0; \frac{2}{3}; -\frac{1}{3}\right)$$

(14)

LINEALMENTE INDEPENDIENTE: $\forall k \in R - \{-2; 0; 2\}$ LINEALMENTE DEPENDIENTE: K = -2; K = 0; k = 2

(15)

Conjunto de vectores	Espacio	Es /no es base del espacio vectorial
	vectorial	considerado
$\{(-2;4); (1;0); (3;1)\}$	\mathbb{R}^{2}	No, sobra un vector
{(1; 0; 0); (0; -1; 0)}	\mathbb{R}^3	No, dos vectores no generan \mathbb{R}^3
$\{(0;2;0);(0;0;7);(0;0;0)\}$	\mathbb{R}^{3}	No , pues contiene el vector nulo
{(2; 2); (1; 1))}	\mathbb{R}^{2}	No, son paralelos, por lo tanto, L.D.
$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} \right\}$	\mathbb{R}^{2x2}	No , tres vectores no generan \mathbb{R}^{2x2}

(16)

a)
$$(-4; -7) = -4(1; 0) - 7(0; 1)$$

b)
$$(-4; -7) = \frac{1}{5}(2; 1) + (-\frac{18}{5})(1; 2)$$

(17)

$$a)\{(1; 2; 0); (0; 1; 1)\}Dimensión2$$

$$b)\{(-3; 1; 0); (-2; 0; 1)\}$$
 Dimensión 2

$$c)\{(1;1;2)\}Dimensi\'on1$$

(18)

a) Dimensión 2

b) Dimensión: 3

c) Dimensión: 2

(19)

- a) Falso $\nexists k \in R / (2; 1; k)$ seaCL de (3;0;2) y (2;-1;-5). El sistema es incompatible.
- b) Falso. El vector nulo es L.D.
- c) Falso. Puede generarse con 3 ó más vectores
- d) No es posible determinarlo, porque no se conoce la dimensión de V
- e) Verdadero

(20)

	Base	Dimensión
a	No hay base (vector nulo)	0
b	{(1;1;1)}	1
С	{(1;2;0) (0;3;1)}	2