Titanic - Machine Learning from Disaster

Sangkon Han(sangkon@pusan.ac.kr)

2023-07-06

Contents

데이터 불러오기	1
데이터 확인 및 변환	 2
변수 의미 설명	 2
EDA	3
Age	 3
Sex	 4
Fare	 5
Family on board	 7
전처리	10
모델링	11
XGBoost	 11
예측과 정답지	1 4

Kaggle의 대표적인 Competition 중 하나인 Titanic 생존자 예측에 관한 내용을 다루고 있습니다. 처음 Kaggle에 도전하시는 분들이 참고하실만한 자료가 되었으면 합니다.

데이터 불러오기

titanic competition에서는 Model을 생성하는데 사용하는 train data와 실제 예측(추정)에 사용하는 test data가 분리되어 있습니다. 여기서는 저 2개 data들을 불러와서 하나로 묶을 것 입니다. 따로 분리되어 있는데이터들을 하나로 묶는 이유는 모델링에 사용되는 입력변수들을 Feature engineering, Pre-processing 할 때 동일하게 작업하기 위해서 입니다.

```
df_titanic <-
   read_csv("data/titanic_train.csv") %>%
   rename_all(tolower)
df_titanic
```

```
## # A tibble: 891 x 12
##
     passengerid survived pclass name
                                         sex
                                                 age sibsp parch ticket fare cabin
##
            <dbl>
                     <dbl>
                           <dbl> <chr> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <chr>
                         0
                                                               0 A/5 2~ 7.25 <NA>
##
   1
                1
                                3 Braun~ male
                                                  22
                                                         1
                2
                         1
                                1 Cumin~ fema~
                                                         1
                                                               0 PC 17~ 71.3 C85
   3
                3
                                3 Heikk~ fema~
                                                               0 STON/~ 7.92 <NA>
##
                         1
                                                  26
                                                         0
##
   4
                4
                         1
                                1 Futre~ fema~
                                                  35
                                                         1
                                                               0 113803 53.1 C123
   5
               5
                         0
                                3 Allen~ male
                                                  35
                                                         0
                                                               0 373450 8.05 <NA>
##
   6
                6
                         0
                                3 Moran~ male
                                                  NA
                                                               0 330877 8.46 <NA>
                7
                         0
                                1 McCar~ male
##
   7
                                                  54
                                                               0 17463 51.9 E46
```

```
## 8
                         0
                                3 Palss~ male
                                                  2
                                                         3
                                                               1 349909 21.1 <NA>
## 9
                9
                                3 Johns~ fema~
                                                  27
                                                         0
                                                               2 347742 11.1 <NA>
                         1
## 10
               10
                                2 Nasse~ fema~
                                                  14
                                                         1
                                                               0 237736 30.1 <NA>
## # i 881 more rows
## # i 1 more variable: embarked <chr>
df_titanic_competition <-</pre>
  read_csv("data/titanic_test.csv") %>%
  rename_all(tolower)
df_titanic_competition
## # A tibble: 418 x 11
##
      passengerid pclass name
                                sex
                                        age sibsp parch ticket fare cabin embarked
            <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <chr> <dbl> <chr> <dbl> <chr> <chr> 
                                                      0 330911 7.83 <NA>
##
              892
                       3 Kelly~ male
                                       34.5
                                                0
  1
   2
##
              893
                       3 Wilke~ fema~
                                       47
                                                1
                                                      0 363272 7
                                                                     <NA>
##
  3
              894
                       2 Myles~ male
                                       62
                                                0
                                                      0 240276 9.69 <NA>
##
  4
              895
                       3 Wirz,~ male
                                       27
                                                0
                                                      0 315154 8.66 <NA>
## 5
              896
                       3 Hirvo~ fema~
                                       22
                                                1
                                                      1 31012~ 12.3 <NA>
##
  6
              897
                       3 Svens~ male
                                       14
                                                0
                                                      0 7538
                                                                9.22 <NA>
##
  7
              898
                       3 Conno~ fema~
                                       30
                                                0
                                                      0 330972 7.63 <NA>
                                                1 1 248738 29
0 0 2657 7
##
  8
              899
                       2 Caldw~ male
                                       26
                                                                     <NA>
                       3 Abrah~ fema~ 18
                                                                7.23 <NA>
## 9
              900
## 10
              901
                       3 Davie~ male
                                       21
                                                2
                                                      0 A/4 4~ 24.2 <NA> S
## # i 408 more rows
```

데이터 확인 및 변환

```
head(df_titanic)
```

```
## # A tibble: 6 x 12
     passengerid survived pclass name
                                                   age sibsp parch ticket fare cabin
                                           sex
##
           <dbl>
                     <dbl> <dbl> <chr>
                                           <chr> <dbl> <dbl> <dbl> <chr> <dbl> <chr>
## 1
                                3 Braund~ male
                                                    22
                                                                  0 \text{ A/5 } 2 \sim 7.25 < \text{NA} >
               1
                         0
                                                            1
                                                                  0 PC 17~ 71.3 C85
## 2
               2
                                1 Cuming~ fema~
                                                    38
                                                            1
                         1
## 3
               3
                                3 Heikki~ fema~
                                                    26
                                                            0
                                                                  0 STON/~ 7.92 <NA>
                         1
                                1 Futrel~ fema~
                                                    35
                                                                  0 113803 53.1 C123
## 4
               4
                         1
                                                            1
## 5
               5
                                3 Allen,~ male
                                                    35
                                                            0
                                                                  0 373450 8.05 <NA>
                         0
               6
## 6
                         Ω
                                3 Moran, ~ male
                                                    NA
                                                            0
                                                                  0 330877 8.46 <NA>
## # i 1 more variable: embarked <chr>
```

변수 의미 설명

summary(df_titanic)

```
##
    passengerid
                      survived
                                        pclass
                                                        name
                          :0.0000
                                                    Length:891
##
   Min. : 1.0
                   Min.
                                    Min.
                                          :1.000
   1st Qu.:223.5
                   1st Qu.:0.0000
                                    1st Qu.:2.000
                                                    Class : character
##
   Median :446.0
                   Median :0.0000
                                    Median :3.000
                                                    Mode :character
   Mean
         :446.0
                   Mean :0.3838
                                    Mean :2.309
                   3rd Qu.:1.0000
##
   3rd Qu.:668.5
                                    3rd Qu.:3.000
##
   Max.
          :891.0
                   Max.
                          :1.0000
                                    Max.
                                           :3.000
##
##
                                                          parch
       sex
                                          sibsp
                           age
                     Min. : 0.42 Min. :0.000
                                                            :0.0000
##
  Length:891
                                                     Min.
```

```
Class : character
                      1st Qu.:20.12
                                      1st Qu.:0.000
                                                     1st Qu.:0.0000
##
   Mode :character
                      Median :28.00
                                     Median :0.000
                                                     Median :0.0000
                           :29.70
                                      Mean :0.523
                                                     Mean
##
                      Mean
                                                           :0.3816
##
                      3rd Qu.:38.00
                                      3rd Qu.:1.000
                                                     3rd Qu.:0.0000
##
                      Max.
                             :80.00
                                      Max. :8.000
                                                     Max.
                                                            :6.0000
##
                      NA's
                             :177
##
      ticket
                           fare
                                          cabin
                                                           embarked
                            : 0.00
                                      Length:891
                                                         Length:891
##
  Length:891
                      Min.
##
   Class :character
                      1st Qu.: 7.91
                                       Class : character
                                                         Class :character
   Mode :character
                      Median : 14.45
                                      Mode :character
                                                         Mode :character
##
##
                      Mean
                           : 32.20
##
                      3rd Qu.: 31.00
##
                      Max. :512.33
##
```

변수명	해석(의미)	Туре
PassengerID	승객을 구별하는 고유 ID number	Int
Survived	승객의 생존 여부를 나타내며 생존은 1, 사망은 0 입니다.	Factor
Pclass	선실의 등급으로서 1등급(1)부터 3등급(3)까지 3개	Ord.Factor
	범주입니다.	
${f Name}$	승객의 이름	Factor
\mathbf{Sex}	승객의 성별	Factor
\mathbf{Age}	승객의 나이	Numeric
\mathbf{SibSp}	각 승객과 동반하는 형제 또는 배우자의 수를 설명하는	Integer
	변수이며 0부터 8까지 존재합니다.	
Parch	각 승객과 동반하는 부모님 또는 자녀의 수를 설명하는	Integer
	변수이며 0부터 9까지 존재합니다.	
${f Ticket}$	승객이 탑승한 티켓에 대한 문자열 변수	Factor
\mathbf{Fare}	승객이 지금까지 여행하면서 지불한 금액에 대한 변수	Numeric
${f Cabin}$	각 승객의 선실을 구분하는 변수이며 범주와 결측치가 너무	Factor
	많습니다.	
Embarked	승선항, 출항지를 나타내며 $\mathrm{C,Q,S}$ 3개 범주이다.	Factor

EDA

Age

아이들이 다른 연령대에 비해 생존율이 높은 것을 알 수 있습니다.

```
df_titanic %>%
  group_by(survived) %>%
  summarise(mean_age = mean(age, na.rm = TRUE), min_age = min(age, na.rm = TRUE), max_age = max(age, na
## # A tibble: 2 x 4
     survived mean_age min_age max_age
##
        <dbl>
                 <dbl>
                         <dbl>
                                  <dbl>
## 1
            0
                  30.6
                          1
                                     74
## 2
            1
                  28.3
                          0.42
                                     80
df_titanic %>%
  mutate(age_group = ifelse(age<15, "Children", ifelse(age>=15 & age <=64, "Working-age", "Elderly")))</pre>
  filter(!is.na(age_group)) %>%
  ggplot()+
```

```
geom_bar(mapping = aes(x = factor(age_group, level = c("Children", "Working-age", "Elderly")), fill =
labs(x = "age_group")
```


\mathbf{Sex}

```
df_titanic %>%
 group_by(survived) %>%
count(sex)
## # A tibble: 4 x 3
## # Groups: survived [2]
##
   survived sex
##
       <dbl> <chr> <int>
## 1
           0 female
## 2
           0 male
                      468
## 3
           1 female
                      233
           1 male
                      109
df_titanic %>%
ggplot()+
 geom_bar(mapping = aes(x = sex, fill = factor(survived)), position = "dodge")
```


Fare

운임이 높을수록 생존율이 높다는 것을 알 수 있습니다.

```
df_titanic %>%
  group_by(survived) %>%
  summarise(mean_fare = mean(fare, na.rm = TRUE), min_fare = min(fare, na.rm = TRUE), max_fare = max(fa
## # A tibble: 2 x 4
     survived mean_fare min_fare max_fare
##
##
        <dbl>
                  <dbl>
                           <dbl>
                                    <dbl>
## 1
                   22.1
                               0
                                     263
            0
## 2
            1
                   48.4
                               0
                                     512.
df_titanic %>%
  mutate(fare_category = ifelse(fare<20, "Low", ifelse(fare>=20 & fare <=60, "Medium", "High"))) %>%
  ggplot()+
  geom_bar(mapping = aes(x = factor(fare_category, level = c("Low", "Medium", "High")), fill = factor(s
 labs(x = "fare_category")
```


Class

상위 클래스는 다른 클래스에 비해 생존율이 높은 것을 알 수 있습니다.

```
df_titanic %>%
 group_by(survived) %>%
 count(pclass)
## # A tibble: 6 x 3
## # Groups: survived [2]
   survived pclass
##
       <dbl> <dbl> <int>
## 1
           0
                  1
## 2
                  2
                       97
           0
## 3
           0
                  3 372
## 4
                  1 136
           1
## 5
           1
                  2
                     87
## 6
           1
                      119
df_titanic %>%
 ggplot()+
 geom_bar(mapping = aes(x = factor(pclass), fill = factor(survived)), position = "dodge")+
labs(x = "class")
```


Family on board

가족 규모가 3-4명에 이르는 경우 생존율이 가장 높은 것을 알 수 있습니다.

```
df_titanic %>%
  mutate(family_on_board = sibsp + parch + 1) %>%
  group_by(survived) %>%
  count(family_on_board)
```

```
## # A tibble: 16 x 3
## # Groups:
              survived [2]
##
      survived family_on_board
##
         <dbl>
                         <dbl> <int>
##
    1
             0
                              1
                                  374
##
    2
             0
                              2
                                   72
                              3
                                   43
##
   3
             0
   4
                              4
                                    8
##
             0
                              5
##
    5
             0
                                   12
##
   6
             0
                              6
                                   19
             0
                              7
                                    8
##
   7
             0
                              8
                                    6
##
    8
##
    9
                             11
                                    7
```

```
## 10
                                   163
             1
                              1
## 11
                              2
                                    89
                              3
## 12
                                    59
## 13
                                    21
                                     3
## 14
## 15
                              6
                                     3
## 16
```

```
df_titanic <- df_titanic %>%
  mutate(family_on_board = sibsp + parch + 1)

df_titanic %>%
  group_by(family_on_board) %>%
  mutate(survival_rate = sum(survived)/n()) %>%
  ggplot(mapping = aes(x = factor(family_on_board), y = survival_rate, group = 1 ))+
  geom_point()+
  geom_line()
```


Embarkation

C 승선은 다른 승선에 비해 생존율이 높은 것 같습니다.

```
df_titanic %>%
  group_by(survived) %>%
```

```
count(embarked)
```

```
## # A tibble: 7 x 3
## # Groups: survived [2]
##
     survived embarked
##
        <dbl> <chr>
                       <int>
            0 C
## 1
                          75
## 2
            0 Q
                          47
## 3
            0 S
                         427
## 4
            1 C
                          93
                          30
## 5
            1 Q
## 6
            1 S
                         217
## 7
            1 <NA>
                           2
```

```
df_titanic %>%
  filter(!is.na(embarked)) %>%
  ggplot()+
  geom_bar(mapping = aes(x = embarked, fill = factor(survived)), position = "dodge")
```



```
df_titanic %>%
  filter(!is.na(embarked)) %>%
  ggplot()+
```


전처리

```
mice_mod <- mice(df_titanic[, c("age", "fare", "sex", "pclass", "embarked")], method='cart')</pre>
##
    iter imp variable
##
##
     1
         1 age
##
         2
     1
            age
##
         3
     1
            age
##
     1
            age
         5
##
     1
            age
     2
##
         1
            age
     2
         2
##
            age
     2
         3
##
            age
##
     2
            age
##
     2
         5
            age
##
     3
         1
            age
```

```
2 age
##
    3
##
       3 age
    3
        4 age
##
##
    3
        5 age
##
    4
        1 age
##
        2 age
##
     4
       3 age
       4 age
##
     4
##
     4
        5 age
##
     5
       1 age
##
     5
       2 age
##
    5
       3 age
        4 age
##
     5
##
    5
        5 age
mice_complete <- complete(mice_mod)</pre>
df_titanic$age <- mice_complete$age</pre>
df_titanic$age <- mice_complete$age</pre>
df_titanic$fare <- mice_complete$fare</pre>
df_titanic$sex <- mice_complete$sex</pre>
df_titanic$pclass <- mice_complete$pclass</pre>
df_titanic$embarked <- mice_complete$embarked</pre>
df_titanic <-
  df titanic %>%
  mutate(age_group = ifelse(age<15, "1", ifelse(age>=15 & age <=64, "2", "3"))) %>%
  mutate(fare_category = ifelse(fare<20, "1", ifelse(fare>=20 & fare <=60, "2", "3")))</pre>
```

모델링

XGBoost

```
df_split_xg <- initial_split(df_titanic_xg)
df_train_xg <- training(df_split_xg)
df_test_xg <- testing(df_split_xg)

xgb_spec <- boost_tree(
    trees = 1000,
    tree_depth = tune(), min_n = tune(),
    loss_reduction = tune(),
    sample_size = tune(), mtry = tune(),
    learn_rate = tune()
) %>%
    set_engine("xgboost") %>%
```

```
set_mode("classification")
xgb_grid <- grid_latin_hypercube(</pre>
  tree_depth(),
  min_n(),
  loss reduction(),
  sample_size = sample_prop(),
  finalize(mtry(), df_train_xg),
  learn_rate(),
  size = 10
)
xgb_grid
## # A tibble: 10 x 6
      tree_depth min_n loss_reduction sample_size mtry learn_rate
##
           <int> <int>
                                 <dbl>
                                             <dbl> <int>
                                                               <dbl>
## 1
              11
                    33
                             1.72e+ 1
                                             0.118
                                                       5
                                                            4.19e- 8
## 2
               2
                    30
                             4.97e- 6
                                             0.756
                                                            1.03e- 4
                                                      14
              10
                             1.71e- 6
                                             0.473
                                                           5.31e- 4
## 3
                    11
                                                      10
                             9.16e- 9
                                                           5.31e- 3
## 4
               9
                    37
                                             0.263
                                                       1
## 5
              12
                    18
                             1.43e+ 0
                                             0.398
                                                       6
                                                            1.35e- 6
## 6
               8
                   5
                             9.12e- 3
                                             0.636
                                                       4
                                                           5.85e-10
                             2.29e- 7
                                             0.889
                                                           1.99e- 2
## 7
               5
                    8
                                                       9
               5
                    22
                             2.67e- 4
                                             0.707
                                                           3.41e- 7
## 8
                                                      12
               3
                                                           4.28e- 6
## 9
                    28
                             1.43e-10
                                             0.935
                                                      12
## 10
              14
                    17
                             1.58e- 1
                                             0.340
                                                      7
                                                            4.28e-9
recipe_xg <-
  recipe(survived ~ age_group + fare_category + sex + pclass + family_on_board, data = df_train_xg)
xgb_wf <- workflow() %>%
  add_recipe(recipe_xg) %>%
  add_model(xgb_spec)
dfa_folds <- vfold_cv(df_train_xg)</pre>
doParallel::registerDoParallel()
xgb_res <- tune_grid(</pre>
  xgb wf,
  resamples = dfa_folds,
  grid = xgb_grid,
  control = control_grid(save_pred = TRUE)
best_auc <- select_best(xgb_res, "roc_auc")</pre>
best_auc
## # A tibble: 1 x 7
      mtry min_n tree_depth learn_rate loss_reduction sample_size .config
                      <int>
                                                              <dbl> <chr>
     <int> <int>
                                  <dbl>
                                                 <dbl>
                                 0.0199
                                                              0.889 Preprocessor1_Mo~
```

0.000000229

1

9 8

5

```
final_xgb <- finalize_workflow(</pre>
  xgb_wf,
  best_auc
)
fitxgb <-fit(final_xgb, data = df_train_xg)</pre>
results_xg <-
  predict(fitxgb, df_test_xg, type = 'prob') %>%
  pluck(2) %>%
  bind_cols(df_test_xg, Predicted_Probability = .) %>%
  mutate(predictedClass = as.factor(ifelse(Predicted_Probability > 0.5, 2, 1)))
roc_auc(results_xg, truth = survived, Predicted_Probability, event_level = 'second')
## # A tibble: 1 x 3
##
   .metric .estimator .estimate
    <chr> <chr>
                            0.837
## 1 roc_auc binary
roc_curve(results_xg, truth = survived,
          Predicted_Probability,
          event_level = 'second') %>%
  ggplot(aes(x = 1 - specificity,
             y = sensitivity)) +
  geom_path() +
  geom_abline(lty = 3) +
  coord_equal() +
  theme bw()
```


예측과 정답지

##

##

3

4 age

5 age fare

fare

```
mice_mod_competition <- mice(df_titanic_competition[, c("age", "fare", "sex", "pclass", "embarked")], me</pre>
##
##
   iter imp variable
        1 age fare
##
    1
##
        2 age fare
     1
##
     1
        3 age fare
##
        4 age
     1
                fare
##
     1
        5 age
                fare
     2
        1 age
##
                fare
##
     2
        2 age
                fare
     2
        3 age
##
                fare
     2
##
        4 age
                fare
##
     2
        5 age
                fare
##
     3
        1 age
                fare
        2 age
    3
##
                fare
##
    3
       3 age
                fare
```

```
##
       1 age fare
##
     4
       2 age fare
       3 age fare
##
       4 age fare
##
     4
##
     4
        5 age fare
##
     5
       1 age fare
     5
##
       2 age fare
##
     5
        3 age fare
##
     5
         4 age fare
##
         5 age fare
mice_complete_competition <- complete(mice_mod_competition)</pre>
df_titanic_competition$age <- mice_complete_competition$age</pre>
df_titanic_competition$fare <- mice_complete_competition$fare</pre>
df_titanic_competition$sex <- mice_complete_competition$sex</pre>
df_titanic_competition$pclass <- mice_complete_competition$pclass</pre>
df_titanic_competition$embarked <- mice_complete_competition$embarked</pre>
df_titanic_competition <- df_titanic_competition %>%
  mutate(family_on_board = sibsp + parch + 1) %>%
  mutate(age_group = ifelse(age<15, "1", ifelse(age>=15 & age <=64, "2", "3"))) %>%
  mutate(fare_category = ifelse(fare<20, "1", ifelse(fare>=20 & fare <=60, "2", "3")))</pre>
df_titanic_competition_xg <-</pre>
  df_titanic_competition %>%
  mutate(age_group = as.numeric(age_group),
                     fare_category = as.numeric(fare_category),
                     sex = as.numeric(ifelse(sex == "male", 1, 0)),
                     pclass = as.numeric(pclass),
                     family_on_board = as.numeric(family_on_board))
Prediction <-
  predict(fitxgb, df_titanic_competition_xg) %>%
  pluck(1) %>%
  bind_cols(df_titanic_competition_xg$passengerid, Predicted_Class = .)
Prediction_xg <-
  Prediction %>%
  mutate(Survived = Predicted_Class, PassengerId = ...1) %>%
  select(PassengerId, Survived)
write.csv(Prediction_xg, file = "Titanic_XGBoost.csv", row.names = FALSE)
```