Course Reminders

- Guest Lecture Thursday
- A3 due Friday (11:59 PM)
- Project Proposal <u>Feedback</u> Available
 - Median: 8.8/10; Mean: 8.5/10
 - Regrades: Piazza proposal-regrade; all handled by Prof Ellis
- Updates:
 - \circ Piazza separate folders for each assignment (i.e. A3 = a3 folder/tag)
 - Sam's OH: Fri 11 AM-12 PM

Project Proposal: General Themes (cont'd)

Overall:

• Excellent proposal but research question seems overly simple — you could feasibly answer your question with a single correlation table. How will your project go beyond this?

• Data:

- For each dataset chosen, the proposal should describe the observations (what each row means). This
 proposal only describes the variables for each dataset. The proposal is also missing the number of
 observations within each dataset needed for this analysis.
- It's unclear how {extra_columns} are related to your research question and hypotheses.

Background:

- Missing introduction to topic
- Missing why this question is of interest to your group
- Missing how the sources cited lead to the hypotheses of this proposal.

• Ethics:

How might potential sources of bias affect the analysis?

Inferential Analysis

Shannon E. Ellis, Ph.D UC San Diego

Department of Cognitive Science sellis@ucsd.edu

- Problem: Does Sesame Street affect kids brain development?
- **Data science question:** What is the relationship between watching Sesame Street and test scores among children?
- **Type of analysis:** Inferential analysis

Sesame Street viewership

?? Test scores

Establishing & Stating Your Null and Alternative Hypotheses Helps Guide Your Analysis

Null Hypothesis:

 H_0 : Sesame Street has *no effect* on kids brain development

<u>Alternative Hypothesis</u>:

H_a: Watching Sesame Street *has an effect* on kids' brain development

Population

Population

In our Sesame street example, the <u>population</u> would be all children

the <u>sample</u> would be the children included in the study

Population

Based on the relationship we see in our sample, we can <u>infer</u> the answer to our question in our population

Population

Inference!

So we look at Sesame street viewing and test scores in a representative sample of kids

Population

Inference!

Sample

Best guess

So we look at Sesame street viewing and test scores in a representative sample of kids

Population

Inference!

Sample

Approaches to Inference

CORRELATION

ASSOCIATION BETWEEN VARIABLES

i.e. Pearson Correlation, Spearman Correlation, chi-square test

COMPARISON OF MEANS

DIFFERENCE IN MEANS BETWEEN VARIABLES

i.e. t-test, ANOVA

REGRESSION

DOES CHANGE IN ONE VARIABLE MEAN CHANGE IN ANOTHER?

I.e. simple regression, multiple regression

NON-PARAMETRIC TESTS

FOR WHEN ASSUMPTIONS IN THESE OTHER 3 CATEGORIES ARE NOT MET

i.e. Wilcoxon rank-sum test, Wilcoxon sign-rank test, sign test

CORRELATION

ASSOCIATION BETWEEN VARIABLES

i.e. Pearson Correlation, Spearman Correlation, chi-square test

COMPARISON OF MEANS

DIFFERENCE IN MEANS BETWEEN VARIABLES

i.e. t-test, ANOVA

REGRESSION

DOES CHANGE IN ONE VARIABLE MEAN CHANGE IN ANOTHER?

I.e. simple regression, multiple regression

NON-PARAMETRIC TESTS

FOR WHEN ASSUMPTIONS IN THESE OTHER 3 CATEGORIES ARE NOT MET

i.e. Wilcoxon rank-sum test, Wilcoxon sign-rank test, sign test

"All models are wrong, but some are useful"

-George Box (British Statistician, *JASA* 1976)

Effect size (β) can be estimated using the slope of the line

Effect size (β) can be estimated using the slope of the line

The *closer* the points are to the regression line, the *less uncertain* we are in our estimate

Assumptions of linear regression

- 1. Linear relationship
- 2. Multivariate normality
- 3. No multicollinearity
- 4. No auto-correlation
- 5. Homoscedasticity

Linear regression assumes no multicollinearity. Multicollinearity occurs when the independent variables (in multiple linear regression) are too highly correlated with each other.

Autocorrelation occurs when the observations are *not* independent of one another (i.e. stock prices)

Does Poverty Percentage affect Teen Birth Rate?

Poverty Percentage

Teen Birth Rate

Null Hypothesis:

 H_0 : Poverty Rate does not affect Teen Birth Rate (β =0)

<u>Alternative Hypothesis</u>:

 H_a : Poverty Rate affects Teen Birth Rate ($\beta \neq 0$)

What is the relationship between Poverty Percentage & Teen Birth Rate?

What's your hypothesis?

	Location [‡]	PovPct [‡]	Brth15to17	Brth18to19	ViolCrime	TeenBrth
1	Alabama	20.1	31.5	88.7	11.2	54.5
2	Alaska	7.1	18.9	73.7	9.1	39.5
3	Arizona	16.1	35.0	102.5	10.4	61.2
4	Arkansas	14.9	31.6	101.7	10.4	59.9
5	California	16.7	22.6	69.1	11.2	41.1
6	Colorado	8.8	26.2	79.1	5.8	47.0
7	Connecticut	9.7	14.1	45.1	4.6	25.8
8	Delaware	10.3	24.7	77.8	3.5	46.3
9	District_of_Columbia	22.0	44.8	101.5	65.0	69.1
10	Florida	16.2	23.2	78.4	7.3	44.5
11	Georgia	12.1	31.4	92.8	9.5	55.7
12	Hawaii	10.3	17.7	66.4	4.7	38.2
13	Idaho	14.5	18.4	69.1	4.1	39.1
14	Illinois	12.4	23.4	70.5	10.3	42.2
15	Indiana	9.6	22.6	78.5	8.0	44.6
16	Iowa	12.2	16.4	55.4	1.8	32.5
17	Kansas	10.8	21.4	74.2	6.2	43.0

Normal(ish) distributions

Normal(ish) distributions

If there were a stronger effect of Poverty on Birth rate, what would β be?

p-value: the probability of getting the observed results (or results more extreme) by chance alone

What would be the p-value of you flipping 16 heads?

number of heads

12

0.0 -

Takes into account the effect size (β) and the SE

p-value: the probability of getting the observed results (or results more extreme) by chance alone

Confounding

Shoe Size !! Literacy

Shoe Size Literacy

Variable1

Variable2

Confounder

Confounding

Your analysis sees an increase in crime rate whenever popsicle sales increase. What could confound this analysis?

Confounding

What are possible confounders for our analysis of the effect of poverty on teen birth rate?

A B
I have some Not sure ideas

We'll discuss additional approaches of how to account for confounding in your analysis in the next lecture.

Spine Surgery Results

Sample: 400 patients with index vertebral fractures

Vertebroplasty	Conservative care	Relative risk (95% confidence interval)
30/200 (15%)	15/200 (7.5%)	2.0 (1.1–3.6)
	1	Eeklooks like vertebroplasty
		was way worse for patients!
subsequen	t fractures	

But wait...at time of initial fracture...

	Vertebroplasty N = 200	Conservative care N = 200
Age, y, mean ± SD	78.2 ± 4.1	79.0 ± 5.2
Weight, kg, mean ± SD	54.4 ± 2.3	53.9 ± 2.1
Smoking status, No. (%)	110 (55)	16 (8)

Age and weight are similar between groups. **Smoking Status** differs vastly.

So...let's stratify those results real quick

		No smoke	No smoke		
Conservative	RR (95% confidence	Vertebroplasty	Conservative	RR (95% confidence	
	interval)			interval)	
3/16 (19%)	1.1 (0.4, 3.3)	7/90 (8%)	12/184(7%)	1.2 (0.5, 2.9)	
		interval)	Conservative RR (95% confidence interval) Vertebroplasty	Conservative RR (95% confidence interval) Vertebroplasty Conservative	

Risk of re-fracture is now similar within group