ÉPREUVE de MATHÉMATIQUES 2

CCP PSI 2009

Partie I.

- **I.1.1.** On a $x_1 = \sin(\theta)$, $x_2 = 2 x_1 \cos(\theta) = \sin(2\theta)$, on peut donc conjecturer la propriété $(\mathcal{R}_p) : x_p = \sin(p\theta)$ pour tout $p \in \mathbb{N}^*$, et on le prouve par récurrence "double" :
 - les assertions (\mathcal{R}_1) et (\mathcal{R}_2) sont vraies, *cf.* ci-dessus ;
 - soit $p \in \mathbb{N}^*$, supposons (\mathcal{R}_p) et (\mathcal{R}_{p+1}) , c'est-à-dire $x_p = \sin(p\theta)$ et $x_{p+1} = \sin((p+1)\theta)$, on a alors

$$x_{p+2} = -x_p + 2x_{p+1} \cos(\theta) = -\sin(p\theta) + 2\sin((p+1)\theta) \cos(\theta)$$
$$= -\sin(p\theta) + \left[\sin((p+2)\theta) + \sin(p\theta)\right] = \sin((p+2)\theta),$$

et l'assertion (\mathcal{R}_{p+2}) est vérifiée, ce qui achève la récurrence.

I.1.2. On a
$$x_{n+1} = 0 \iff \sin((n+1)\theta) = 0 \iff \theta = \frac{k\pi}{n+1} \quad (k \in \mathbf{Z}).$$

I.2.1. On a
$$A_n(t)=\begin{pmatrix}2t&1&&&&(0)\\1&2t&1&&&\\&1&\ddots&\ddots&\\&&\ddots&\ddots&1\\(0)&&&1&2t\end{pmatrix}$$
, matrice tridiagonale symétrique.

On calcule $d_1(t) = 2t$, $d_2(t) = 4t^2 - 1$, $d_3(t) = 8t^3 - 4t$, $d_4(t) = 16t^4 - 12t^2 + 1$.

- **1.2.2.** Un développement par rapport à la première colonne, puis un développement par rapport à la première ligne dans le deuxième terme obtenu conduisent à la relation $d_n(t) = 2t d_{n-1}(t) + d_{n-2}(t)$ pour tout $n \ge 3$. On montre alors par une récurrence double que, pour tout n entier naturel non nul, la fonction d_n est polynomiale de degré n, et de coefficient dominant 2^n .
- **I.3.1.** Démonstration par récurrence "double" sur n. La propriété est vraie pour n=1 et n=2: en effet, $d_1(\cos\theta)=2\cos\theta=\frac{\sin 2\theta}{\sin\theta}$ et $d_2(\cos\theta)=4\cos^2\theta-1=\frac{\sin 3\theta}{\sin\theta}$ par un petit calcul trigonométrique facile laissé à l'improbable lecteur. Si elle est vraie aux rangs n et n+1 avec $n\geq 1$, alors

$$d_{n+2}(\cos \theta) = 2 \cos \theta \cdot d_{n+1}(\cos \theta) - d_n(\cos \theta)$$

$$= \frac{2 \cos \theta \cdot \sin(n+2)\theta - \sin(n+1)\theta}{\sin \theta}$$

$$= \frac{\sin(n+3)\theta}{\sin \theta}$$

(c'est le même calcul qu'à la question I.1. à un décalage d'indice près). Voilà!

1.3.2. On a donc $d_n(\cos \theta) = 0 \iff \sin((n+1)\theta) = 0 \iff \theta = \frac{k\pi}{n+1}$, avec $k \in [1, n]$ puisque $\theta \in]0, \pi[$.

$$\mathbf{I.4.1.}\ A_n(0) - \lambda \ I_n = \begin{pmatrix} -\lambda & 1 & & & (0) \\ 1 & -\lambda & 1 & & & \\ & 1 & \ddots & \ddots & & \\ & & \ddots & \ddots & 1 \\ (0) & & & 1 & -\lambda \end{pmatrix} = A_n \left(-\frac{\lambda}{2} \right), \ \mathrm{donc} \ \ \chi_n(\lambda) = d_n \left(-\frac{\lambda}{2} \right).$$

I.4.2. Pour
$$k \in [1, n]$$
, posons $\lambda_k = -2 \cos\left(\frac{k\pi}{n+1}\right) = 2 \cos\left(\frac{(n+1-k)\pi}{n+1}\right)$, on a alors $\chi_n(\lambda_k) = d_n\left(\cos\frac{k\pi}{n+1}\right) = 0$ d'après les questions **I.3.2.** et **I.4.1.** ci-dessus. Les réels λ_k ,

 $1 \le k \le n$ sont donc valeurs propres de la matrice $A_n(0)$. Mais ces réels sont deux à deux distincts (car la fonction – cos est strictement croissante sur $[0,\pi]$, donc $\lambda_1 < \lambda_2 < \cdots < \lambda_n$), donc on a obtenu ainsi toutes les valeurs propres de la matrice $A_n(0)$ qui est d'ordre n. Ainsi, $\operatorname{Sp} \left(A_n(0) \right) = \{\lambda_1, \cdots, \lambda_n\}$. On peut en déduire au passage que la matrice $A_n(0)$ est diagonalisable sur $\mathbb R$ et que ses sous-espaces propres sont de dimension un. Sa plus grande valeur propre est $\rho = \lambda_n = -2 \, \cos \left(\frac{n\pi}{n+1} \right) = 2 \, \cos \left(\frac{\pi}{n+1} \right)$.

I.4.3. Posons
$$\theta = \frac{\pi}{n+1}$$
. Le vecteur $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \sin \theta \\ \sin 2\theta \\ \vdots \\ \sin n\theta \end{pmatrix}$ est non nul et vérifie, d'après la

question I.1., la relation

$$(A_n(0) - \rho I_n) X = \begin{pmatrix} -2\cos\theta & 1 & & & (0) \\ 1 & -2\cos\theta & 1 & & & \\ & 1 & \ddots & \ddots & & \\ & & \ddots & \ddots & 1 \\ & & & 1 & -2\cos\theta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ -x_{n+1} \end{pmatrix} = 0$$

puisque $x_{n+1} = \sin \frac{(n+1)\pi}{n+1} = 0$. Ce vecteur X est donc vecteur propre de la matrice $A_n(0)$ associé à la valeur propre $\rho = 2\cos \left(\frac{\pi}{n+1}\right)$, et ses coordonnées sont strictement positives puisque la fonction sinus est strictement positive sur $]0,\pi[$.

Partie II.

II.1.1. Si φ est un automorphisme orthogonal de \mathbb{R}^n , on a $\|\varphi(x)\| = \|x\|$ pour tout x, d'où évidemment $\|\varphi\| = 1$.

II.1.2. Soit
$$i_0 \in [\![1,n]\!]$$
 tel que $|\alpha_{i_0}| = \max_{i \in [\![1,n]\!]} |\alpha_i|$. Soit $x = x_1 e_1 + \dots + x_n e_n \in \mathbb{R}^n$; alors $||x||^2 = \sum_{i=1}^n x_i^2$, puis $\delta(x) = \alpha_1 x_1 e_1 + \dots + \alpha_n x_n e_n$ et $||\delta(x)||^2 = \sum_{i=1}^n \alpha_i^2 x_i^2 \le \alpha_{i_0}^2 ||x||^2$, on a donc $||\![\delta |\![]]| = \sup_{x \neq 0} \frac{||\delta(x)||}{||x||} \le |\alpha_{i_0}|$. Enfin, $||e_{i_0}|| = 1$ et $\delta(e_{i_0}) = \alpha_{i_0} e_{i_0}$, donc $||\delta(e_{i_0})|| = |\alpha_{i_0}|$, ce qui prouve que $||\![\delta |\![]]| = \sup_{||u|| \le 1} ||\delta(u)|| = |\alpha_{i_0}| = \max_{i \in [\![}], n]||\alpha_i|$.

- II.1.3. Si $f \in \mathcal{L}(\mathbb{R}^n)$ est autoadjoint, il existe une base orthonormale $\mathcal{B} = (e_1, \dots, e_n)$ de \mathbb{R}^n dans laquelle f est représenté par une matrice diagonale diag $(\lambda_1, \dots, \lambda_n)$, où les λ_i sont les valeurs propres de f. D'après II.1.2. ci-dessus, on a alors $|||f|| = \max_{i \in [1,n]} |\lambda_i| = \max_{\lambda \in \operatorname{Sp}(f)} |\lambda|$.
- **II.2.1.** On sait (théorème du cours) que toute application bilinéaire en dimension finie est continue. L'application $B: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ définie par B(u,v) = (l(u)|v) est donc pour cette raison continue. De plus, l'application $\Delta: \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^n$ définie par $\Delta(u) = (u,u)$ est continue car elle est linéaire en dimension finie. Donc l'application $\Phi = B \circ \Delta$ est continue sur \mathbb{R}^n comme composée de fonctions continues. Remarque : l'application Φ est

la forme quadratique associée à la forme bilinéaire symétrique B, et on peut dire aussi que l est l'endomorphisme autoadjoint associé à la forme bilinéaire symétrique B dans l'espace euclidien \mathbb{R}^n muni du produit scalaire canonique.

La sphère unité S de \mathbb{R}^n est compacte, car c'est un fermé borné en dimension finie (S est fermé car c'est l'image réciproque de la partie fermée $\{1\}$ de \mathbb{R} par l'application norme $N: x \mapsto \|x\|$ qui est continue sur \mathbb{R}^n car elle est 1-lipschitzienne). L'application Φ , continue sur le compact S, y atteint donc un maximum.

II.2.2. Comme ||u|| = ||v|| = 1 et (u|v) = 0, on a

$$||w||^2 = \frac{1}{\alpha^2} (||v||^2 + t^2 ||u||^2) = \frac{1 + t^2}{\alpha^2}$$

et $w \in S \iff \alpha^2 = 1 + t^2$.

On a alors $\Phi(w) \leq \Phi(v)$, soit $\Phi\left(\frac{v+tu}{\sqrt{1+t^2}}\right) \leq \Phi(v)$, et ceci pour tout réel t, donc

$$\forall t \in \mathbb{R}$$
 $\frac{1}{1+t^2} \left(l(v+tu)|v+tu \right) \le \left(l(v)|v \right).$

En développant et en tenant compte du caractère autoadjoint de l, on obtient, après simplifications :

$$\forall t \in \mathbb{R} \qquad \left(\Phi(v) - \Phi(u)\right) t^2 - 2\left(l(v)|u\right) t \ge 0. \tag{*}$$

On peut conclure en considérant deux cas :

- si $\Phi(u) = \Phi(v)$, on a $\forall t \in \mathbb{R}$ (l(v)|u) $t \leq 0$, ce qui entraı̂ne (l(v)|u) = 0;
- si $\Phi(u) < \Phi(v)$, le premier membre de (*) est un trinôme toujours positif, donc son discriminant est négatif ou nul, soit $(l(v)|u)^2 \le 0$, donc (l(v)|u) = 0.

On vient de prouver que le vecteur l(v) est orthogonal à tout vecteur orthogonal à v, donc $l(v) \in \left(\left(\operatorname{Vect}(v)\right)^{\perp}\right)^{\perp} = \operatorname{Vect}(v)$, donc v est un vecteur propre pour l'endomorphisme l.

- II.2.3. On a ||x|| = 1 et $l(x) = \lambda x$, donc $\Phi(x) = (l(x)|x) = \lambda ||x||^2 = \lambda$, et $\rho = \Phi(v)$ par le même calcul. Donc $\lambda \leq \rho$ puisque $\Phi(v) = \max_{u \in S} \Phi(u) \geq \Phi(x)$.
- **II.3.1** On a $l(x) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{i,j} x_{j} \right) e_{i}$, puis $\Phi(x) = \left(l(x) | x \right) = \sum_{i,j} a_{i,j} x_{i} x_{j}$. Donc

$$|\Phi(x)| = \Big| \sum_{i,j} a_{i,j} x_i x_j \Big| \le \sum_{i,j} a_{i,j} |x_i| |x_j| = \Phi(x^+).$$

II.3.2. Si $x \in S$, alors $x^+ \in S$, donc $\Phi(x^+) \le \max_{u \in S} \Phi(u) = \rho$, mézôssi $\Phi(x^+) \ge |\Phi(x)| = |\rho| \ge \rho$.

Des inégalités $\rho \leq |\rho| \leq \Phi(x^+) \leq \rho$, on déduit que tous les membres de cette inégalité sont égaux, donc $\rho = \Phi(x^+)$, et $\rho \geq 0$ puisque $\rho = |\rho|$.

II.4. Si $x \in S$ vérifie $l(x) = \lambda x$, alors $\Phi(x) = \lambda$, donc $|\lambda| = |\Phi(x)| \le \Phi(x^+) \le \max_{u \in S} \Phi(u) = \rho$. Donc $|\lambda| \le \rho$, et $\rho = \max_{\lambda \in \operatorname{Sp}(l)} \lambda = \max_{\lambda \in \operatorname{Sp}(l)} |\lambda|$. **II.5.** On a $x^+ \in S$ et $|\Phi(x^+)| \ge |\Phi(x)| = |\rho| = \rho = \max_{u \in S} \Phi(u)$, donc $|\Phi(x^+)| = \max_{u \in S} \Phi(u)$, ce qui entraı̂ne $l(x^+) = \rho x^+$ d'après II.2.2.

Montrer $x^+ > 0$ revient à prouver que $x_i \neq 0$ pour tout i. Si ce n'était pas le cas, en posant $I = \{i \in [\![1,n]\!] \mid x_i = 0\}$ et $J = \{i \in [\![1,n]\!] \mid x_i \neq 0\}$, on a urait une partition de l'ensemble $[\![1,n]\!]$ (c'est-à-dire $I \neq \emptyset$, $J \neq \emptyset$, $I \cap J = \emptyset$, $I \cup J = [\![1,n]\!]$); la relation

 $l(x^+) = \rho x^+$ s'écrit $\forall i \in [1, n]$ $\sum_{j=1}^n a_{i,j} |x_j| = \rho |x_i|$. Pour tout indice $i \in I$, on aurait

donc $\sum_{i=1}^{n} a_{i,j}|x_j| = \sum_{i \in J} a_{i,j}|x_j| = 0$ et chaque terme de la somme étant positif, on déduirait

 $\forall j \in J \quad a_{i,j} = 0$ puisque $|x_j| \neq 0$; on aurait donc une partition $\{I,J\}$ de l'ensemble $[\![1,n]\!]$ telle que $\forall (i,j) \in I \times J \quad a_{i,j} = 0$, ce qui est contraire à l'hypothèse. Cela prouve $x^+ > 0$.

II.6. Le vecteur $w = \frac{y}{\|y\|}$ est dans S et $l(w) = \rho w$, donc $w^+ > 0$ d'après **II.5.**, ce qui signifie que les coordonnées du vecteur w sont toutes non nulles, en particulier $w_1 \neq 0$, donc $y_1 \neq 0$.

Si le vecteur $z = x - \frac{x_1}{y_1}y$ est non nul, alors le vecteur $u = \frac{z}{\|z\|}$ appartient à S, et il vérifie $l(u) = \rho u$, donc $u^+ > 0$, donc $u_1 \neq 0$, donc $z_1 = x_1 - \frac{x_1}{y_1}y_1 \neq 0$, ce qui est absurde. On a donc z=0, ce qui signifie que x et y sont colinéaires. Deux vecteurs propres de l pour la valeur propre ρ sont toujours colinéaires, donc le sous-espace propre est de dimension au plus 1. Comme $\operatorname{Ker}(l-\rho\operatorname{id})\neq\{0\}$ d'après **II.2.2.**, ce sous-espace propre est donc de dimension 1.

Remarque. Cela montre au passage, avec II.5., que ce sous-espace propre admet un vecteur directeur strictement positif.

II.7. De $l(x) = \lambda x$, on déduit, pour tout i, $\lambda = \frac{1}{x_i} \sum_{i=1}^n a_{i,j} x_j \ge 0$.

Si on avait $\lambda \neq \rho$, les sous-espaces propres de l pour les valeurs propres λ et ρ seraient orthogonaux (car l est autoadjoint), et si y > 0 est un vecteur directeur de $E_{\rho}(l)$, on a

 $(x|y) = \sum_{i=1} x_i y_i = 0$, ce qui est absurde, les x_i et y_i étant tous strictement positifs. Donc

II.8. La matrice A est symétrique réelle, à coefficients positifs ou nuls et, s'il existait une partition $\{I,J\}$ de [1,n] telle que $a_{i,j}=0$ pour tout $(i,j)\in I\times J$, en choisissant un indice k appartenant à I (puisque $I \neq \emptyset$), on aurait $k+1 \in I$ puisque $a_{k,k+1} = 1 \neq 0$, puis $k+2 \in I$ et ainsi de suite jusqu'à $n \in I$, puis $1 \in I$ car $a_{n,1} = 1 \neq 0$, et ainsi de suite jusqu'à $k-1 \in I$, finalement I = [1, n], ce qui est absurde : la matrice A vérifie donc les conditions (1) et (2) de l'énoncé.

Par ailleurs, le vecteur $x = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ vérifie x > 0 et Ax = 2x. De la question **II.7.**, on déduit