

CURSO TÉCNICO SUPERIOR PROFISSIONAL - TGA; TPSI; RSI

Unidade Curricular: MATEMÁTICA

Ano Letivo: 2015/2016

3.° Teste - Parte 3 » Data: 10/02/2016

Código da prova: 1002201601

Nota: A resolução completa dos exercícios inclui a justificação do raciocínio utilizado.

Duração: 45 minutos

Nome do aluno: Número:

1. Considere a equação diferencial (ED) $\frac{dy}{dx} + A(x,y) = -y$

Das alíneas seguintes, resolva apenas uma:

- [5.00] (a) Para $A(x,y) = -yx^2$, mostre que a ED é de variáveis separáveis e determine a sua solução geral.
- [5.00] **(b)** Para $A(x,y) = -x^2y\cos(y)$ a ED é de variáveis separadas ou separáveis? Justifique. Se não for, elimine a parte do cosseno em A e determine a solução particular da ED que satisfaz a condição inicial y(0) = 1.
 - 2. Qual o valor lógico das seguintes afirmações? Justifique a sua resposta.

Das alíneas seguintes, <u>resolva apenas uma</u>:

- [5.00] (a) A equação diferencial, de menor ordem possível, que possui a família de curvas $y = c \times \exp(-x^2)$ como integral geral é dada por y' + 2xy = 0 cujo campo direcional é dado pela figura 2 e o gráfico da solução geral pela figura 1. Justifique analiticamente e graficamente a sua resposta.
- (5.00] (b) A força eletromotriz e de um circuito RL com intensidade i, resistência $R=10~\Omega({\rm ohms})$ e indutância L=0.5~h (henry), é igual à queda de tensão Ri mais a força eletromotriz de autoindução $L\frac{di}{dt}$. Assim, a intensidade de corrente i, no instante t, se $e=3\sin(2t)$ (em volts) e i=6 quando t=0 é dada pela solução particular $i(t)=\frac{609}{101}e^{-20t}-\frac{30}{101}\sin 2t+\frac{3}{101}\cos 2t$. À medida que o tempo aumenta, o termo que envolve e^{-20t} perde influência no valor da intensidade da corrente. Diz-se que este termo é o termo do estado~transitório~e~o~outro~é~o~termo~do~estado~permanente.

- 3. Considere o problema de valor inicial $y'=-2ty, \ y(0)=2, \ t\in \left[0,1.5\right]$
- (a) Verifique que $y(t) = 2\exp(-t^2)$ é a solução exata do problema.
- (b) Complete a tabela seguinte e interprete os resultados obtidos. Para o preenchimento da coluna das aproximações de Euler, deve apresentar os cálculos das iterações da aplicação da fórmula do método de Euler.

			Aproxi	mações	Erros	
		$y(t_i)$	y_i	y_i	$ y(t_i)-y_i $	$ y(t_i)-y_i $
i	t_{i}	Exata	Euler	RK2	Euler	RK2
0	0	2			0	0
1		1.5576		1.5000		0.0576
2	1					0.0142
3	1.5	0.2108	9 10 10 10 10 10 10 10 10 10 10 10 10 10	0.3750		

[0.50] (c) Qual das figuras seguintes representa graficamente uma solução do PVI dado? Justifique a sua resposta.

Figura 4

Figura 5

- [1.00] (d) Estabeleça um PVI cuja solução em modo gráfico coincide com a figura que excluiu na alínea anterior.
- [1.00] (e) Quais dos comandos seguintes em GeoGebra lhe permitiriam determinar a solução exata do PVI e a solução aproximada do mesmo.

(A) SolveODE[
$$-2xy$$
,(0,2)]

(B) SolveODE[
$$-2xy$$
, (-1.5 , 0.2108)]

(C)
$$NSolveODE[\{-2xv\}, 0, \{2\}, 1.5]$$

FORMULÁRIO						
PVI	Método de Euler	Método de Runge-Kutta (RK2)				
$(P) \begin{cases} y' = f(t, y) \\ t \in [a, b] \\ y(a) = y_0 \end{cases}$	$y_{i+1} = y_i + h \times f(t_i, y_i) \hspace{0.5cm}, \hspace{0.1cm} i = 0, 1, 2, \ldots, \label{eq:sum_eq}$	$\begin{array}{ll} n-1 & k1 = h \times f(t_i,y_i) \\ & k2 = h \times f(t_{i+1},y_i+k1) \\ & y_{i+1} = y_i + \frac{1}{2}(k1+k2),i = 0,1,2,,n-1 \end{array}$				