

Varianta 37

Subiectul I.

- $\mathbf{a)} \quad S_{OBC} = 6.$
- **b**) $V_{OABC} = 4$.

c)
$$-\frac{\sqrt{2}}{2} = \cos 1 - \frac{\sqrt{2}}{2} < 0$$
.

- **d**) 13
- e) Ecuația tangentei în A la parabolă este y = x + 1.
- **f**) $z \in \{-i, i\}.$

Subjectul II.

1

$$\mathbf{a)} \quad x \in \left\{ \frac{1}{3}, 9 \right\}.$$

- **b**) 1.
- c) Suma căutată este egală cu 0.
- **d**) Probabilitatea căutată este p=1
- e) Propoziția este falsă.
- 2.
- **a**) f(0) = 0.

b)
$$f'(x) = \frac{2x^3 + 3x^2}{(x+1)^2}, \forall x \in \mathbb{R} \setminus \{-1\}.$$

c)
$$x \in \left\{-\frac{3}{2}, 0\right\}$$
.

$$\mathbf{d)} \lim_{x \to \infty} \frac{f(x)}{x^2} = 1.$$

e)
$$\int_{0}^{1} f'(x) dx = \frac{1}{2}$$
.

Subjectul III.

- a) Calcul direct.
- b) Se demonstrează prin inducție, folosind punctul a).
- **c**) Pentru t = 0 și k = 2007, din **b**) obținem $(A(0))^{2007} = A(2006)$.
- d) Se folosește punctul a).
- e) Evident.
- f) Folosind subpunctele anterioare, se verifică uşor axiomele grupului.

g) Dacă mulțimea $N \neq \{A(-1)\}$ este un subgrup al grupului (G, \cdot) , atunci există $n \in \mathbb{Z}$, $n \neq -1$, astfel încât $A(n) \in N$.

Prin inducție se demonstrează că $\forall k \in \mathbb{N}^*, (A(n))^k \in \mathbb{N}$.

Deoarece puterile naturale nenule ale matricei A(n) sunt elemente distincte două câte două ale lui N, mulțimea N este infinită.

Subjectul IV.

a)
$$g'(x) = -\frac{(\sqrt{x}-1)^2}{2x\sqrt{x}}$$
, $h'(x) = \frac{(x-1)^2}{x(x+1)^2}$, $\forall x \ge 1$.

b) $\forall x \ge 1$, $g'(x) \le 0 \le h'(x)$, adică funcția g e strict descrescătoare pe $[1, \infty)$ și funcția h e strict crescătoare pe $[1, \infty)$, deci $\forall x \ge 1$, $g(x) \le g(1) = 0 = h(1) \le h(x)$.

c) Pentru t > 1, funcția f este o funcție Rolle pe intervalul [1, t].

Din teorema lui Lagrange pentru funcția f,

$$\exists c(t) \in (1, t), \text{ astfel ca} \frac{f(t) - f(1)}{t - 1} = f'(c(t)) \iff \frac{1}{c(t)} = \frac{\ln t}{t - 1}.$$

d) Pentru t > 1, din punctul **b**), avem că $g(t) < 0 < h(t) \Leftrightarrow$

$$\iff \ln t - \frac{t-1}{\sqrt{t}} < 0 < \ln t - \frac{2(t-1)}{t+1} \iff \frac{2(t-1)}{t+1} < \ln t < \frac{t-1}{\sqrt{t}}.$$

e) Din punctul **c**), avem că pentru t > 1, $\ln t = \frac{t-1}{c(t)}$ și înlocuind în **d**) obținem concluzia.

f) Presupunem contrariul, deci că există un polinom $P \in \mathbf{R}[X]$ astfel încât $\forall x > 1, c(x) = P(x)$.

Din punctul **e**) rezultă că $\forall x > 1$, $\frac{\sqrt{x}}{x^2} < \frac{P(x)}{x^2} < \frac{x+1}{2x^2}$, de unde deducem că $grad(P) \le 1$, așadar există $a, b \in \mathbf{R}$ astfel încât P(X) = aX + b.

Obținem $c(x) = \frac{x-1}{\ln x} = ax + b$, $\forall x > 1$, deci c'(x) = a, $\forall x > 1$, fals.

g) Înlocuind t cu t^2 în inegalitatea din stânga dedusă la punctul **e**) și integrând,

deducem:
$$1.7 < \frac{7}{4} \le \int_{\frac{3}{2}}^{2} \frac{t^2 - 1}{\ln t} dt$$
 (1)

Înmulțind cu t+1>0 inegalitatea din dreapta de la la punctul e), și integrând,

deducem:
$$\int_{\frac{3}{2}}^{2} \frac{t^2 - 1}{\ln t} dt \le \frac{91}{48} < 1.9$$
 (2)

Din (1) și (2) rezultă concluzia.