Unsupervise\self-supervised learning

Self-supervised

Есть много неразмеченных данных

Задача: научить хорошие векторные представления об изображениях на неразмеченных данных

Генеративный подход

DC gan

используем выходы из дискриминатора

как семплируем фичи или DC gan?

Дискриминативный подходы

учим предсказывать контекст для изображения

https://arxiv.org/pdf/1505.05192.pdf

Question 1:

Question 2:

X = (); Y = 3

Patch 1 Patch 2

сеть легко запоминает тривиальное решение задачи

- задаем расстояние между патчами
- оодаст расстояние темру на на
- сдвиг центра патчи

color projection или dropping

Initial layout, with sampled patches in red

Image layout is discarded

We can recover image layout automatically Cannot recover layout with color removed

SimCLR

SimCLR: аугментации

Figure 4. Illustrations of the studied data augmentation operators. Each augmentation can transform data stochastically with some internal parameters (e.g. rotation degree, noise level). Note that we *only* test these operators in ablation, the *augmentation policy used to train our models* only includes *random crop* (with flip and resize), color distortion, and Gaussian blur. (Original image cc-by: Von.grzanka)

SimCLR: обучение

A contrastive loss function defined for a contrastive prediction task. Given a set $\{\tilde{x}_k\}$ including a positive pair of examples \tilde{x}_i and \tilde{x}_j , the contrastive prediction task aims to identify \tilde{x}_i in $\{\tilde{x}_k\}_{k\neq i}$ for a given \tilde{x}_i .

$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}, \quad (1)$$

$$\operatorname{sim}(\boldsymbol{u}, \hat{\boldsymbol{v}}) = \boldsymbol{u}^{\top} \boldsymbol{v} / \|\boldsymbol{u}\| \|\boldsymbol{v}\|$$

Algorithm 1 SimCLR's main learning algorithm.

```
input: batch size N, constant \tau, structure of f, g, \mathcal{T}.
for sampled minibatch \{x_k\}_{k=1}^N do
   for all k \in \{1, \ldots, N\} do
       draw two augmentation functions t \sim T, t' \sim T
       # the first augmentation
       \tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)
       h_{2k-1} = f(\tilde{x}_{2k-1})
                                                            # representation
       z_{2k-1} = g(h_{2k-1})
                                                                  # projection
       # the second augmentation
       \tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)
       h_{2k} = f(\tilde{x}_{2k})
                                                            # representation
       \boldsymbol{z}_{2k} = g(\boldsymbol{h}_{2k})
                                                                  # projection
    end for
   for all i \in \{1, \dots, 2N\} and j \in \{1, \dots, 2N\} do
        s_{i,j} = \mathbf{z}_i^{\mathsf{T}} \mathbf{z}_i / (\|\mathbf{z}_i\| \|\mathbf{z}_i\|) # pairwise similarity
   end for
   define \ell(i,j) as \ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} 1_{\{k \neq i\}} \exp(s_{i,k}/\tau)}
   \mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[ \ell(2k-1,2k) + \ell(2k,2k-1) \right]
    update networks f and q to minimize \mathcal{L}
end for
return encoder network f(\cdot), and throw away g(\cdot)
```

SimCLR: результаты

Method	Architecture	Label fraction	
		1%	10%
		Top 5	
Supervised baseline	ResNet-50	48.4	80.4
Methods using other labe	l-propagation:		
Pseudo-label	ResNet-50	51.6	82.4
VAT+Entropy Min.	ResNet-50	47.0	83.4
UDA (w. RandAug)	ResNet-50	- 1	88.5
FixMatch (w. RandAug)	ResNet-50	_	89.1
S4L (Rot+VAT+En. M.)	ResNet-50 (4 \times)	- 1	91.2
Methods using representa	tion learning only:		
InstDisc	ResNet-50	39.2	77.4
BigBiGAN	RevNet-50 $(4\times)$	55.2	78.8
PIRL	ResNet-50	57.2	83.8
CPC v2	ResNet-161(*)	77.9	91.2
SimCLR (ours)	ResNet-50	75.5	87.8
SimCLR (ours)	ResNet-50 $(2\times)$	83.0	91.2
SimCLR (ours)	ResNet-50 $(4\times)$	85.8	92.6

Method	Architecture	Param (M)	Top 1	Top 5
Methods using R	esNet-50:			
Local Agg.	ResNet-50	24	60.2	-
MoCo	ResNet-50	24	60.6	-
PIRL	ResNet-50	24	63.6	-
CPC v2	ResNet-50	24	63.8	85.3
SimCLR (ours)	ResNet-50	24	69.3	89.0
Methods using o	ther architectures.			
Rotation	RevNet-50 (4×)	86	55.4	-
BigBiGAN	RevNet-50 (4×)	86	61.3	81.9
AMDIM	Custom-ResNet	626	68.1	-
CMC	ResNet-50 (2 \times)	188	68.4	88.2
MoCo	ResNet-50 $(4\times)$	375	68.6	-
CPC v2	ResNet-161 (*)	305	71.5	90.1
SimCLR (ours)	ResNet-50 $(2\times)$	94	74.2	92.0
SimCLR (ours)	ResNet-50 $(4\times)$	375	76.5	93.2

Table 6. ImageNet accuracies of linear classifiers trained on representations learned with different self-supervised methods.

Table 7. ImageNet accuracy of models trained with few labels.