# **Summary | Riemann Integration**

### Introduction

#### **Interval**

Let I=[a,b]. Length of the interval |I|=b-a.

# **Disjoint interval**

When 2 intervals don't share any common numbers.

# Almost disjoint interval

When 2 intervals are disjoint or intersect only at a common endpoint.

# **Riemann Integral**

Let  $f-[a,b] o \mathbb{R}$  is a bounded (not necessarily continuous) function on a closed, bounded (compact) interval.

Riemann integral of f is:  $\int_a^b f$ 

# **Definite integral**

When a,b are constants.

## Indefinite integral

When  $oldsymbol{a}$  is a constant but  $oldsymbol{b}$  is replaced with  $oldsymbol{x}$ .

### **Partition**

Let I be a non-empty, compact interval (closed and bounded). A partition of I is a finite collection  $\{I_1,I_2,\ldots,I_n\}$  of almost disjoint, non-empty, compact sub-intervals whose union is I.

A partition is determined by the endpoints of all sub-intervals:

$$a = x_0 < x_1 < \cdots < x_n = b.$$

A partition can be denoted by:

- its intervals  $P = \{I_1, I_2, \dots, I_n\}$
- the endpoints of its intervals  $P = \{x_0, x_1, \dots, x_n\}$

#### **Riemann Sum**

Let

- +  $f:[a,b] o\mathbb{R}$  is a bounded function on the compact interval I=[a,b] with  $M=\sup_I f$  and  $m=\inf_I f$  .
- $P = \{I_1, I_2, \dots, I_n\}$
- $M_k = \sup_{I_k} f = \sup \left\{ f(x) : x \in [x_{k-1}, x_k] \right\}$
- $m{\cdot} \ \ m_k = \inf_{I_k} f = \inf \left\{ f(x) : x \in [x_{k-1}, x_k] \right\}$

### **Upper riemann sum**

$$U(f;P) = \sum_{k=1}^n M_k |I_k|$$

#### Lower riemann sum

$$L(f;P) = \sum_{k=1}^n m_k |I_k|$$

$$m_k < M_k \implies L(f;P) \le U(f;P)$$

When  $P_1, P_2$  are any 2 partitions of I:  $L(f; P_1) \leq U(f; P_2)$ 

## Refinements

Q is called a refinement of  $P\iff$  if P and Q are partitions of [a,b] and  $P\subseteq Q$ .

When  $oldsymbol{Q}$  is a refinement of  $oldsymbol{P}$ :

$$L(f; P) \le L(f; Q) \le U(f; Q) \le U(f; P)$$

#### (i) Note

If  $P_1$  and  $P_2$  are partitions of [a,b], then  $Q=P_1\cup P_2$  is a refinement of both  $P_1$  and  $P_2$ . In that case:

$$L(f;P_1) \leq L(f;Q) \leq U(f;Q) \leq U(f;P_2)$$

# **Upper & Lower integral**

Let  $\mathbb P$  be the collection of all possible partitions of the interval [a,b].

## **Upper Integral**

$$U(f)=\inf\left\{U(f;P);P\in\mathbb{P}
ight\}=\overline{\int_a^bf}$$

## **Lower Integral**

$$L(f)=\sup\left\{L(f;P);P\in\mathbb{P}
ight\}=\underline{\int_a^bf}$$

For a bounded function f, always  $L(f) \leq U(f)$ 

# Riemann Integrable

A bounded function  $f:[a,b] o \mathbb{R}$  is Riemann integrable on [a,b] **iff** U(f)=L(f). In that case, the Riemann integral of f on [a,b] is denoted by  $\int_a^b f(x)\,\mathrm{d}x$ .

## Reimann Integrable or not

| Function                            | Yes or No? | Proof hint                                                                   |
|-------------------------------------|------------|------------------------------------------------------------------------------|
| Unbounded                           | No         | By definition                                                                |
| Constant                            | Yes        | $orall P 	ext{ (any partition) } L(f;P) = U(f;P)$                           |
| Monotonically increasing/decreasing | Yes        | Take a partition such that $\Delta x < \delta = rac{\epsilon}{f(b) - f(a)}$ |
| Continuous                          | Yes        | Take a partition such that $\Delta x < \delta = rac{\epsilon}{2(b-a)}$      |

#### (i) Note

If the set of points of discontinuity of a bounded function  $f:[a,b] o \mathbb{R}$  is finite, then f is Riemann integrable on [a, b].

#### (i) Note

If the set of points of discontinuity of a bounded function  $f:[a,b] o \mathbb{R}$  is finite number of limit points, then f is integrable on [a,b].

A function may have infinitely many discontinuous points, but if the set of all discontinuous points have finite number of limit points, then f is integrable on [a,b].

# **Cauchy Criterion**

#### Theorem

A bounded function f:[a,b] o R is Riemann integrable  ${\sf iff}$  for every  $\epsilon>0$  there exists a partition  $P_{\epsilon}$  of [a,b], which may depend on  $\epsilon$ , such that:

$$U(f,P\epsilon)-L(f,P\epsilon)\leq \epsilon$$

- To prove  $\implies$  : consider  $L(f)-rac{\epsilon}{2}$  and  $U(f)+rac{\epsilon}{2}$  To prove  $\iff$  : consider  $L(f;P) < L(f) \wedge U(f) < U(f;P)$

 $f:[a,b] o \mathbb{R}$  is integrable on [a,b] when:

- The set of points of discontinuity of a bounded function  $\, m{f} \,$  is finite.
- The set of points of discontinuity of a bounded function  $\, m{f} \,$  is finite number of limit points. (may have infinite number of discontinuities) :::

# Theorems on Integrability

#### **Theorem 1**

Suppose  $f:[a,b] o \mathbb{R}$  is bounded, and integrable on [c,b] for all  $c\in (a,b)$ . Then f is integrable on [a, b]. Also valid for the other end.

- (i) Proof Hint  $\hbox{- Isolate a partition on the required end.}$   $\hbox{- Choose $x_1$ or $x_{n-1}$ such that $\Delta x < \frac{\epsilon}{4M}$ where $M$ is an upper or lower bound.}$

#### Theorem 2

Suppose  $f:[a,b] o \mathbb{R}$  is bounded, and continuous on [c,b] for all  $c\in (a,b)$ . Then f is integrable on  $\left[a,b\right]$ . Also valid for the other end.

**↑ TODO: Proof Hint** 

This PDF is saved from https://s1.sahithyan.dev