Divide-and-Conquer: Sorting Problem

Alexander S. Kulikov

Steklov Institute of Mathematics at St. Petersburg Russian Academy of Sciences

Data Structures and Algorithms Algorithmic Toolbox

Outline

- 1 Problem Overview
- 2 Selection Sort
- Merge Sort
- 4 Lower Bound for Comparison Based Sorting
- 5 Non-Comparison Based Sorting Algorithms

Sorting Problem

Sorting

Input: Sequence $A[1 \dots n]$.

Output: Permutation A'[1...n] of A[1...n] in non-decreasing order.

Why Sorting?

- Sorting data is an important step of many efficient algorithms.
- Sorted data allows for more efficient queries.

Outline

- 1 Problem Overview
- 2 Selection Sort
- 3 Merge Sort
- 4 Lower Bound for Comparison Based Sorting
- 5 Non-Comparison Based Sorting Algorithms

- Find a minimum by scanning the array
- Swap it with the first element

- Find a minimum by scanning the array
- Swap it with the first element
- Repeat with the remaining part of the array

- Find a minimum by scanning the array
- Swap it with the first element
- Repeat with the remaining part of the array

- Find a minimum by scanning the array
- Swap it with the first element
- Repeat with the remaining part of the array

SelectionSort(A[1...n])

```
for i from 1 to n:
  minIndex \leftarrow i
  for j from i+1 to n:
     if A[j] < A[minIndex]:
        minIndex \leftarrow i
  \{A[minIndex] = min A[i \dots n]\}
  swap(A[i], A[minIndex])
  \{A[1...i] \text{ is in final position}\}
```

Online visualization: selection sort

Lemma

The running time of SelectionSort(A[1...n]) is $O(n^2)$.

Proof

n iterations of outer loop, at most n iterations of inner loop.

Too Pessimistic Estimate?

- As i grows, the number of iterations of the inner loop decreases: j iterates from i + 1 to n.
- A more accurate estimate for the total number of iterations of the inner loop is $(n-1) + (n-2) + \cdots + 1$.
- We will show that this sum is $\Theta(n^2)$ implying that our initial estimate is actually tight.

Arithmetic Series

Lemma

$$1+2+\cdots+n=\frac{n(n+1)}{2}$$

Proof

$$\frac{1}{n} \quad \frac{2}{n-1} \quad \cdots \quad \frac{n}{1} \\
 \hline
 n+1 \quad n+1 \quad \cdots \quad n+1 = n(n+1) \quad \Box$$

Alternative proof

Selection Sort: Summary

- Selection sort is an easy to implement algorithm with running time $O(n^2)$.
- Sorts in place: requires a constant amount of extra memory.
- There are many other quadratic time sorting algorithms: e.g., insertion sort, bubble sort.

Outline

- 1 Problem Overview
- 2 Selection Sort
- **3** Merge Sort
- 4 Lower Bound for Comparison Based Sorting
- 5 Non-Comparison Based Sorting Algorithms

Example: merge sort

MergeSort(A[1...n])

if n = 1: return A

 $m \leftarrow |n/2|$ $B \leftarrow \text{MergeSort}(A[1 \dots m])$

 $A' \leftarrow \text{Merge}(B, C)$

return A'

 $C \leftarrow \text{MergeSort}(A[m+1...n])$

Merging Two Sorted Arrays

Merge(B[1...p], C[1...q])

```
\{B \text{ and } C \text{ are sorted}\}
D \leftarrow \text{empty array of size } p + q
while B and C are both non-empty:
  b \leftarrow the first element of B
  c \leftarrow the first element of C
  if b < c:
    move b from B to the end of D
  else:
    move c from C to the end of D
move the rest of B and C to the end of D
return D
```


Lemma

The running time of MergeSort(A[1...n]) is $O(n \log n)$.

Proof

- The running time of merging B and C is O(n).
- Hence the running time of MergeSort(A[1...n]) satisfies a recurrence $T(n) \le 2T(n/2) + O(n)$.

Total: $cn \log_2 n$

Outline

- 1 Problem Overview
- 2 Selection Sort
- 3 Merge Sort
- 4 Lower Bound for Comparison Based Sorting
- 5 Non-Comparison Based Sorting Algorithms

Definition

A comparison based sorting algorithm sorts objects by comparing pairs of them.

Example

Selection sort and merge sort are comparison based.

Lemma

Any comparison based sorting algorithm performs $\Omega(n \log n)$ comparisons in the worst case to sort n objects.

In other words

For any comparison based sorting algorithm, there exists an array $A[1 \dots n]$ such that the algorithm performs at least $\Omega(n \log n)$ comparisons to sort A.

Decision Tree

Estimating Tree Depth

- the number of leaves ℓ in the tree must be at least n! (the total number of permutations)
- the worst-case running time of the algorithm (the number of comparisons made) is at least the depth *d*
- $d \geq \log_2 \ell$ (or, equivalently, $2^d \geq \ell$)
- thus, the running time is at least

$$\log_2(n!) = \Omega(n \log n)$$

Lemma

$$\log_2(n!) = \Omega(n \log n)$$

Proof

$$\log_2(n!) = \log_2(1 \cdot 2 \cdot \dots \cdot n)$$

$$= \log_2 1 + \log_2 2 + \dots + \log_2 n$$

$$\geq \log_2 \frac{n}{2} + \dots + \log_2 n$$

$$\geq \frac{n}{2} \log_2 \frac{n}{2} = \Omega(n \log n)$$

Outline

- 1 Problem Overview
- 2 Selection Sort
- 3 Merge Sort
- 4 Lower Bound for Comparison Based Sorting
- 5 Non-Comparison Based Sorting Algorithms

Example: sorting small integers

								<u> </u>					
				Cou	nt	2	7	3					
↓													
	1	2	3	4	5	6	7	8	9	10	11	12	

2 | 2 | 2 | 2 | 2 | 2

Example: sorting small integers

Counting Sort: Ideas

- Assume that all elements of $A[1 \dots n]$ are integers from 1 to M.
- By a single scan of the array A, count the number of occurrences of each $1 \le k \le M$ in the array A and store it in Count[k].
- Using this information, fill in the sorted array A'.

CountSort(A[1...n])

 $Count[1...M] \leftarrow [0,...,0]$ for i from 1 to n: $Count[A[i]] \leftarrow Count[A[i]] + 1$

 $\{k \text{ appears } Count[k] \text{ times in } A\}$ $Pos[1...M] \leftarrow [0,...,0]$

 $Pos[1] \leftarrow 1$ for i from 2 to M:

 $Pos[j] \leftarrow Pos[j-1] + Count[j-1]$ $\{k \text{ will occupy range } [Pos[k]...Pos[k+1]-1]\}$ for i from 1 to n:

 $Pos[A[i]] \leftarrow Pos[A[i]] + 1$

 $A'[Pos[A[i]]] \leftarrow A[i]$

Lemma

Provided that all elements of A[1...n] are integers from 1 to M, CountSort(A) sorts A in time O(n+M).

Remark

If M = O(n), then the running time is O(n).

Summary

- Merge sort uses the divide-and-conquer strategy to sort an n-element array in time $O(n \log n)$.
- No comparison based algorithm can do this (asymptotically) faster.
- One can do faster if something is known about the input array in advance (e.g., it contains small integers).