Generalized Linear Models and Maximum Likelihood

"The trouble with normal is that it always gets worse"

Samuel Robinson, Ph.D.

November 19, 2020

Motivation

What are Generalized Linear Models? (GLMs)

- Meet the exponential family
 - Normal, t, Binomial, Poisson
 - Negative Binomial, Beta, Gamma
- Probability and Likelihood
- Tricksy hobbitses!
 - · Zero-inflated models, occupancy models

Problem: not everything is normal

- Some types of data can never be transformed to make the residuals normal
- Solution: use the distribution that generates the data!

But how do I know which distribution to use?

Time to meet the family!

The Normal Distribution (aka Gaussian)

- Imagine many random + and - numbers added together
- If you do this many times:
 - Most cancel out (somewhere around 0)
 - Few are far away from 0 (tails of distribution)
- Common in nature, because of many small + and factors adding together
 - e.g. Height is driven by many sets of genes

The Normal Distribution - scary math!

• 2 parameters: mean (μ) and standard deviation (σ)

$$p(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

- Probability distribution function (PDF) for the Normal distribution
- Tells you about the probability of getting some number given μ and σ

Example: what is the probability of getting a 4, if the mean is 5 and SD is 1?

$$p(4|5,1) = \frac{1}{1\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{4-5}{1})^2}$$
$$= \sim 0.24$$

In R, this is easy:

```
#d stands for "density"
dnorm(x=4,mean=5,sd=1)
```

[1] 0.2419707

The Normal/Gaussian Distribution

- \bullet Probability of x changes with μ and σ
- Left: $\sigma = 1$, Right: $\sigma = 3$

The Binomial Distribution

- Imagine you have 10 coins, and you flip them all
- If you do this many times:
 - Most will be about 5 heads, 5 tails
 - Few will be 1 head, 9 tails (or reverse)
- Common in nature where outcomes are binary
 - e.g. 10 seeds from a plant, how many will germinate?

