Kit de survie pour les probas continues

Valentin KILIAN (IPESUP)

19 février 2023

1 Généralités

1.1 Indépendance pour les v.a.r. discrètes et/ou continues

Définition 1.1 Deux v.a.r. X et Y sont dites indépendantes si pour tous les intervalles I, J de \mathbb{R} ,

$$\mathbb{P}((X \in I) \cap (Y \in J)) = \mathbb{P}(X \in I)\mathbb{P}(Y \in J)$$

Et plus généralement : Les variables aléatoires $X_1, X_2, ..., X_n$ ($n \ge 2$) sont dites mutuellement indépendantes si pour tous les intervalles $I_1, I_2, ..., I_n$ on a

$$\mathbb{P}((X_1 \in I_1) \cap ... \cap (X_n \in I_n)) = \mathbb{P}(X_1 \in I_1)...\mathbb{P}(X_n \in I_n).$$

Une suite de v.a.r est indépendante si toute partie finie extraite de cette suite constitue une famille de v.a.r mutuellement indépendantes.

Lemme 1.2 (Lemme des coalitions) Soit $n \ge 2$ et $1 \le p \le n$. Si $X_1, X_2, ..., X_n$ sont mutuellement indépendantes alors toute fonction de $X_1, ..., X_p$ est indépendante de toute fonction de $X_{p+1}, ..., X_n$

Proposition 1.3 Si X, Y admettent des espérances et sont indépendantes alors

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y).$$

1.2 Densité d'une variable aléatoire continue

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé et X une variable aléatoire sur $(\Omega, \mathcal{T}, \mathbb{P})$.

Définition 1.4 On dit que X est une v.a.r continue (ou à densité), lorsque sa fonction de répartition F est continue sur \mathbb{R} et de classe C^1 sur \mathbb{R} sauf en un nombre fini de points.

Définition 1.5 Lorsque X est une v.a.r. continue de fonction de répartition F, alors tout fonction $f: \mathbb{R} \to \mathbb{R}$, positive telle que $\forall x \in \mathbb{R}$ où F est $C^1, f(x) = F'(x)$, est appelée une densité (ou densité de probabilité) de X et on a:

$$\forall x \in \mathbb{R}, \ F(x) = \mathbb{P}(X \leqslant x) = \int_{-\infty}^{x} f(t) dt$$

Proposition 1.6 *Soit* $f : \mathbb{R} \to \mathbb{R}$. f est une densité de probabilité d'une v.a.r. ssi :

- f n'a qu'un nombre fini de points de discontinuité
- $\forall t \in \mathbb{R}, f(t) \ge 0$
- $\int_{-\infty}^{+\infty} f(t) dt$ converge et $\int_{-\infty}^{+\infty} f(t) dt = 1$

1.3 Propriétés

Proposition 1.7 Si X est une v.a.r. à densité f, de fonction de répartition F_X , on a :

- $F_X \in \mathcal{C}^{0}(\mathbb{R}, \mathbb{R})$
- ullet F_X est de classe C^1 en tout point où f est continue et en un tel point $F_X'(x)=f(x)$
- Plus généralement, si f est continue à droite (respectivement à gauche) en x alors F_X est dérivable à droite (respt à gauche) en x
 - F_X est croissante de 0 à 1.

Proposition 1.8 Avec les même notations, si $a, b \in \mathbb{R}$

- $\mathbb{P}\left(a < X \leqslant b\right) = \int_{a}^{b} f\left(t\right) dt = F_{X}\left(b\right) F_{X}\left(a\right)$
- $\bullet \ \mathbb{P}\left(X=a\right)=0$
- $\bullet \ \mathbb{P} \left(a < X^{'} < b \right) = \mathbb{P} \left(a \leqslant X \leqslant b \right) = \mathbb{P} \left(a < X \leqslant b \right) = \mathbb{P} \left(a \leqslant X < b \right)$
- $\mathbb{P}(X > a) = \mathbb{P}(X \geqslant a) = 1 F_X(a) = \int_a^{+\infty} f(t) . dt$ $\mathbb{P}(X < b) = \mathbb{P}(X \leqslant b) = \int_{-\infty}^b f(t) dt = F_X(b)$

2 Moments d'une v.a.r à densité

Soit X une v.a.r à densité f.

2.1 Espérance

Définition 2.1 Si $\int_{-\infty}^{+\infty} t \cdot f(t) dt$ converge, on dit que X admet une espérance mathématique. Le nombre $\int_{-\infty}^{+\infty} t.f\left(t\right)dt$ est alors noté $\mathbb{E}\left(X\right)$. On l'appelle espérance de X ou moyenne de X ou moment d'ordre 1 de X.

Théorème 2.2 (Théorème de transfert) Soit q une fonction réelle. On suppose que :

- f est nulle en dehors d'un intervalle |a,b| où $-\infty \le a < b \le +\infty$
- ullet g admet un nombre fini de points de discontinuité sur ${\mathbb R}$
- $\int_{-\infty}^{+\infty} g(x).f(x).dx$ converge absolument

Alors g(X) admet une espérance et $\mathbb{E}(g(X)) = \int_a^b g(x).f(x)dx$

Remarques:

1. Si g(x) = ax + b et sous réserve de vérification des hypothèses du Th de transfet :

$$\mathbb{E}(g(X)) = \int_{-\infty}^{+\infty} g(x).f(x)dx = \int_{-\infty}^{+\infty} (ax+b).f(x)dx = a \int_{-\infty}^{+\infty} x f(x)dx + b \int_{-\infty}^{+\infty} f(x)dx$$
 ie
$$\mathbb{E}(aX+b) = a\mathbb{E}(X) + b.$$

2. Sous réserve de vérification des hypothèses : $\mathbb{E}(X^2) = \int_{-\infty}^{+\infty} x^2 \cdot f(x) dx$

Définition 2.3 On dit que X est centrée si elle admet une espérance et si $\mathbb{E}(X) = 0$

Proposition 2.4 Si X admet une espérance, alors $Y = X - \mathbb{E}(X)$ est aussi une v.a.r à densité admettant une espérance et, de plus, $\mathbb{E}(Y) = 0$. La variable Y est appelée v.a.r centrée associée à X.

Proposition 2.5 Si X et Y sont deux v.a.r à densité admettant une espérance, alors Z =aX+bY où $a,b\in\mathbb{R}$ est une v.a.r admettant aussi une espérance et $\mathbb{E}\left(Z\right)=a\mathbb{E}\left(X\right)+b\mathbb{E}\left(Y\right)$.

Proposition 2.6 (Croissance de l'espérance) Si X et Y sont deux v.a.r admettant une espérance et si $\mathbb{P}(X \leqslant Y) = 1$ alors $\mathbb{E}(X) \leqslant \mathbb{E}(Y)$

2.2 Moment d'ordre supérieur, Variance

Définition 2.7

• Si X^2 admet une espérance alors le moment d'ordre 2 est :

$$m_2(X) = \mathbb{E}(X^2)$$

• Si $\mathbb{E}(X)$ existe et si $(X - \mathbb{E}(X))^2$ admet une espérance, la variance de X est :

$$V(X) = \mathbb{E}((X - \mathbb{E}(X))^2)$$

ullet Si V(X) existe, l écart-type de X est : $\sigma(X) = \sqrt{V(X)}$

Proposition 2.8 V(X) existe ssi $\int_{-\infty}^{+\infty} (x - \mathbb{E}(X))^2 f(x) dx$ converge. On a alors :

$$V(X) = \int_{-\infty}^{+\infty} (x - \mathbb{E}(X))^2 f(x) dx$$

Proposition 2.9 (Formule de Koenig-Huyghens) Si $\mathbb{E}(X)$ existe alors : V(X) existe ssi $\mathbb{E}(X^2)$ existe et

$$V(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2.$$

Proposition 2.10 Soit X est une v.a.r continue de densité f telle que V(X) existe.

Soient $a, b \in \mathbb{R}$ avec $a \neq 0$ alors:

Y = aX + b admet une variance et $V(aX + b) = a^{2}V(X)$

Définition 2.11 On suppose que V(X) existe et est non nul. Si $\sigma(X)=1$ alors X est dite v.a.r réduite. De plus $Y=\frac{X-\mathbb{E}(X)}{\sigma(X)}$ est dite v.a.r centrée réduite associée à X.

Définition 2.12 Quand l'intégrale existe, le moment d'ordre r de X est :

$$m_r(X) = \mathbb{E}(X^r) = \int_{-\infty}^{+\infty} t^r \cdot f(t) dt$$

3 Lois usuelles

3.1 Loi uniforme

Définition 3.1 On dit que X suit la loi uniformesur [a,b] (où $a,b \in \mathbb{R}$ avec a < b) et on note $X \hookrightarrow \mathcal{U}([a,b])$ si X a pour densité : $f: \mid \mathbb{R} \longrightarrow \mathbb{R}$

$$x \longmapsto \begin{cases} 0 & \text{si } x \notin [a, b] \\ \frac{1}{b-a} & \text{si } x \in [a, b] \end{cases}$$

Proposition 3.2 X admet une espérance et une variance données par :

$$\mathbb{E}\left(X\right) = \frac{1}{2}\left(a+b\right) \;\; \text{et} \;\; V\left(X\right) = \frac{\left(b-a\right)^2}{12}$$

3

Proposition 3.3 Si $X \hookrightarrow \mathcal{U}([0,1])$, si a < b et si Y = a + (b-a)X alors $Y \hookrightarrow \mathcal{U}([a,b])$

3.2 Loi normale

Définition 3.4 On dit que X suit la loi normale de paramètres m et $\sigma^2 \in \mathbb{R}$ avec $\sigma > 0$ et on note:

note:
$$X \hookrightarrow \mathcal{N}\left(m,\sigma^2\right)$$
 si X a pour densité $f: \left| \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^2\right). \end{array} \right|$

On admet le résultat suivant :

$$\int_{-\infty}^{+\infty} e^{-\frac{u^2}{2}} du = \sqrt{2\pi}$$

Proposition 3.5 Si $X \hookrightarrow \mathcal{N}\left(m, \sigma^2\right)$ alors : $\mathbb{E}(X) = m$ et $V(X) = \sigma^2$

Définition 3.6 Loi normale centrée réduite est la loi $\mathcal{N}(0,1)$. Sa densité est

$$\varphi: x \mapsto \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

et sa fonction de répartition

$$\Phi: x \mapsto \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

Proposition 3.7 On a $\forall x \in \mathbb{R}$, $\Phi(-x) = 1 - \Phi(x)$

Proposition 3.8 Si $X \hookrightarrow \mathcal{N}\left(m, \sigma^2\right)$ alors $X^* = \frac{X - m}{\sigma}$ suit la loi $\mathcal{N}\left(0, 1\right)$ et

$$\forall x \in \mathbb{R}, \ F_X(x) = \Phi\left(\frac{x-m}{\sigma}\right).$$

Proposition 3.9 Si $X \hookrightarrow \mathcal{N}(m, \sigma^2)$, si $a \neq 0$ et si Y = a.X + b alors $Y \hookrightarrow \mathcal{N}(am + b, a^2\sigma^2)$.

Proposition 3.10 Une somme de variables aléatoires indépendantes suivant des lois normales suit une loi normale.

Loi exponentielle 3.3

Définition 3.11 On dit que X suit la loi exponentielle de paramètre $\alpha \in \mathbb{R}_+^*$ et on note :

4

Définition 3.11 On dit que
$$X$$
 suit la loi exponentielle de paramè $X \hookrightarrow \mathcal{E}(\alpha)$ si X a pour densité $f: \mid \mathbb{R} \longrightarrow \mathbb{R}$
$$x \longmapsto \begin{cases} 0 & \text{si } x < 0 \\ \alpha e^{-\alpha x} & \text{si } x \geqslant 0 \end{cases}$$

Proposition 3.12 $\mathbb{E}(X) = \frac{1}{\alpha}$ et $V(X) = \frac{1}{\alpha^2}$