Implementação de um grafo

Gustavo Zambonin Grafos (UFSC-INE5413)

A estrutura utilizada para a implementação de um grafo assemelha-se a um mapa. Utiliza como chave um vértice e como valor um conjunto de outros vértices aos quais este se conecta. Na linguagem escolhida, Python, estas estruturas são chamadas de dict e set. A fonte utilizada para verificar a complexidade de recursos da linguagem pode ser acessada aqui.

• add_vertex

Um mapa adiciona chaves em tempo constante. O(1)

• remove_vertex

A remoção de um vértice sem conexões acontece em O(1). Caso existam arestas conectadas a ele, então é necessário iterar sobre todos os vértices existentes e verificar se o vértice está presente no conjunto de conexões. A iteração leva tempo linear, e a operação de presença tem caso médio O(1). O(n)

• connect_two_vertices

Mapear valores para chaves leva tempo constante. O(1)

• disconnect_two_vertices

Remover valores de chaves leva tempo constante. O(1)

• graph_order

A operação de tamanho de lista leva tempo constante. O(1)

• get_vertices

A iteração sobre as chaves de um mapa leva tempo linear. O(n)

• get_random_vertex

A complexidade temporal para gerar um número aleatório no módulo random em Python consegue ser constante. O método chamado na implementação presente, choice, pode ser consultado aqui. O(1)

• get_vertex_predecessors

Checar se um vértice está presente em n conjuntos leva tempo linear. O(n)

• get_vertex_sucessors

Acessar o valor de uma chave leva tempo constante. O(1)

• get_adjacent_vertices

Caso o grafo seja direcionado, unir dois conjuntos leva tempo linear. Do contrário, acessar o valor de uma chave leva tempo constante. O(n) ou O(1)

• get_vertex_indegree

Tamanho do retorno de $\texttt{get_vertex_precedessors}$. $\mathbf{O}(\mathbf{n})$

• get_vertex_outdegree

Tamanho do retorno de $get_vertex_sucessors$. O(1)

get_vertex_degree

Tamanho do retorno de $get_adjacent_vertices$. O(n) ou O(1)

• graph_regularity

Pode ser necessário iterar sobre todos os vértices. O(n)

• graph_completeness

Novamente, pode-se mostrar necessário iterar sobre a lista inteira de vértices. O(n)

transitive_closure

O número de testes será proporcional ao somatório dos graus de saída de cada vértice, ou seja, o número de arestas do grafo. $\mathbf{O}(\mathbf{m})$

- is_tree O método interno check_cycles calcula os vértices adjacentes de todos os vértices do grafo, e o retorno chama graph_connectivity. $O(n^2)$