3. Релации

"Relatable"

Март 2025

1 Преговор

Дефиниция 1 (релация). Нека A_1, \dots, A_n са множества. n-местна pелация R над декартовото прозиведение $A_1 \times A_2 \dots \times A_n$ наричаме всяко множество $R \subseteq A_1 \times \dots \times A_n$. Ако $A_1 = \dots = A_n$, то релацията е xомогенна.

Нотация 1. За *двуместни* релации вместо $(x,y) \in R$, пишем xRy.

Дефиниция 2 (свойства). За двумсетна хомогенна релация $R \subseteq A^2$ дефинираме свойствата:

- рефлексивност: $\forall a \in A : aRa$
- антирефлексивност: $\forall a \in A : \neg aRa$
- симетричност: $\forall a,b \in A, a \neq b: aRb \to bRa$ (също $\forall a,b \in A, a \neq b: aRb \leftrightarrow bRa)$
- антисиметричност: $\forall a,b \in A, a \neq b: aRb \rightarrow \neg bRa$ (също и $\forall a,b \in A: aRb \wedge bRa \rightarrow a=b$)
- ullet силна антисиметричност: $\forall a,b \in A, a \neq b: aRb \oplus bRa$
- транзитивност: $\forall a, b, c \in A : aRb \land bRc \rightarrow aRc$ (*не е необходимо a, b, c да са различни)

Дефиниция 3 (затваряне). Транзитивно затваряне на релацията $R \subseteq A^2$ е минималното множество R^+ такова, че: $R \subseteq R^+$ и R^+ е транзитивна (аналогично за рефклексивно и симетрично затваряне).

*Множеството R^+ е минимално, ако е подмножество на всички релации, изпълняващи горното изискване. (Получава се, че транзитивното затваряне на R е $R^+ = \bigcup_{n \in \mathbb{N}^+} R^n$, виждате ли умножаването на матрици?)

Лема 1. Релация е транзитивна (аналогично рефлексивна/симетрична) тстк съвпада с транзитивното (съответно рефлексивното/симетричното) си затваряне.

Дефиниция 4. Наричаме една релация $R \subseteq A^2$:

- \bullet релация на *еквивалентност* $\Leftrightarrow R$ е едновременно рефлексивна, симетрична и транзитивна;
- релация на *частична наредба* $\Leftrightarrow R$ е едновременно рефлексивна, антисиметрична и транзитивна (в частичните наредби може да има *несравними* елементи, т.е. между тях няма приоритет: $\neg aRb \land \neg bRa$);
- релация на *строга частична наредба* \Leftrightarrow R е едновременно антирефлексивна, антисиметрична и транзитивна (тук не допускаме да има равни по "старшинство" елементи);
- релация на nuneйнa наредба $\Leftrightarrow R$ е едновременно рефлексивна, силно антисиметрична и транзитивна (линейните наредби са частен случай на частичните);
- релация на $преднаредба \Leftrightarrow R$ е едновременно рефлексивна и транзитивна;

Начини за представяне на релации:

- описване в явен вид: $R = \{(a,b), (a,c), \cdots, (c,f)\}$
- чрез матрица (при двуместни релации): $M_{i,j}=1$ при iRj и 0 в противен случай.
- чрез диаграма: граф с върхове елементите, като еднопосочното ребро (v_i, v_j) е в графа точно когато $a_i R a_j$.

Дефиниция 5. Ако $R \subseteq A^2$ е частична наредба, а $R' \subseteq A^2$ е линейна наредба и $R \subseteq R'$, казваме, че: R се влага в R' или R' е линейно разширение на R (броят линейни разширения е между 1 и n!).

Дефиниция 6 (верига, контур). Ако $R \subseteq A^2$ е релация и $A = \{a_1, \cdots, a_n\}$, верига е всяка последователност $a_{i_0}, a_{i_1}, \cdots, a_{i_k}$ ($i_0, \cdots, i_k \in \{1, \cdots, n\}$), ако $a_{i_j}Ra_{i_{j+1}}$ и $a_{i_j} \neq a_{i_{j+1}} \ \forall j (0 < j < k), k \ge 0$ Ако $a_{i_0} = a_{i_n}$ и k > 0 веригата се нарича контур (всъщност оттук и горните изисквания, следва и k > 1, защо?).

Дефиниция 7. Дефинираме R^{-1} по следния начин: $bR^{-1}a \Leftrightarrow aRb$.

Дефиниция 8 (композиция на релации). Нека $R, S \subseteq A^2$ са релации, тогава дефинираме $R \circ S := \{(a,c)|\ \exists b \in A: aRb \wedge bSc\}.$

2 Основни задачи

Задача 1. Вярно ли е, че ако R е симетрична и транзитивна, то тя е рефлексивна?

Решение. Не е вярно, ето контрапример: $A = \{1, 2, 3\}, R = \emptyset$ или пък $S = \{(1, 1), (1, 2), (2, 1), (2, 2)\}.$

Задача 2. Нека $m \in \mathbb{N}^+$ е константа и $\equiv_m \subseteq \mathbb{N} \times \mathbb{N}$ е релация, като $a \equiv_m b$, ако |a-b| се дели на m. Докажете, че \equiv_m е релация на еквивалентност.

Решение. Изследваме трите свойства:

рефлексивност: Понеже $\forall n \in \mathbb{N} : |n-n| = 0$ се дели на m, то $n \equiv_m n$. \checkmark

cиметричност: Нека за някои $a,b\in\mathbb{N}$ е в сила $a\equiv_m b,$ тогава |a-b|=|b-a| се дели на m,откъдето и $b\equiv_m a.$ \checkmark

транзитивност: Нека а някой $a,b,c \in \mathbb{N}$ е в сила $a \equiv_m b \wedge b \equiv_m c$, тогава m дели |a-b| и $|b-c| \Rightarrow |a-b| = k_1 m$ и $a-b = sgn(a-b)k_1 m$, където $sgn(x) \in \{-1,0,1\}$ е знакът на x. Аналогично $b-c = sgn(b-c)k_2 m \Rightarrow |a-c| = |(a-b)+(b-c)| = |sgn(a-b)k_1 m + sgn(b-c)k_2 m| = |(sgn(a-b)k_1 + sgn(b-c)k_2)m| = |sgn(a-b)k_1 + sgn(b-c)k_2|m$, откъдето |a-c| се дели на m и $a \equiv_m c$. ■

Забележска: Всъщност няма нужда да се ограничаваме до естествени числа и да разглеждаме абсолютни стойности, можем спокойно да разглеждаме делимостта над целите числа, което значително би улеснило показването на транзитивността, но пък горното показва, че можем да се справим и без това.

Задача 3. Нека $\vdots \subseteq \mathbb{N}^+ \times \mathbb{N}^+$ е релация, като $a \vdots b$, ако $\exists c \in \mathbb{N}^+ : a = bc$. Докажете, че \vdots е релация на частична наредба.

Решение. Изследваме трите свойства за частична наредба:

рефлексивност: Понеже $\forall n \in \mathbb{N}^+ : n = n.1$, то $n \stackrel{.}{:} n. \checkmark$

антисиметричност: Нека за някои $a,b\in\mathbb{N}^+$ е в сила $a\stackrel{.}{:}b$ и $b\stackrel{.}{:}a$, тогава $a=b.c_1$ и $b=a.c_2\Rightarrow a=b.c_1$

 $a.c_1.c_2 \Rightarrow c_1.c_2 = 1 \Rightarrow c_1 = c_2 = 1 \Rightarrow a = b.1 = b.$ \checkmark транзитивност: Нека за някой $a,b,c \in \mathbb{N}^+$ е в сила $a \stackrel{.}{:} b \wedge b \stackrel{.}{:} c$, тогава $a = b.c_1$ и $b = c.c_2 \Rightarrow a = c(c_2c_1) \Rightarrow a \stackrel{.}{:} c$.

Задача 4. За $R \subseteq A^2$ да се докаже, че:

- R е симетрична тстк $R = R^{-1}$,
- R е антисиметрична тстк $R \cap R^{-1} \subseteq \{(x,x)|x \in A\};$
- R е едновременно симетрична и антисиметрична точно когато $R \subseteq \{(a,a) | a \in A\}$.

Решение.

- От дефинициите: R е симетрична тстк $\forall a,b \in A, a \neq b : aRb \leftrightarrow bRa$ тстк $\forall a,b \in A, a \neq b : aRb \leftrightarrow aR^{-1}b$. Да забележим обаче, че последното не доказва директно $R = R^{-1}$, защото имаме условие $a \neq b$. Но от дефиницията на R^{-1} за $a = b : aRb \leftrightarrow aR^{-1}b$, значи наистина е изпълнено, че $\forall a,b \in A, a \neq b : aRb \leftrightarrow aR^{-1}b$ тстк $R = R^{-1}$.
- От дефинициите: R антисиметрична тстк $\forall a,b \in A: aRb \land bRa \to a = b$ тстк $\forall a,b \in A: aRb \land R^{-1}b \to a = b$ тстк $\forall a,b \in A: ((a,b) \in R) \land ((a,b) \in R^{-1}) \to a = b$ тстк $\forall a,b \in A: (a,b) \in R \cap R^{-1} \to a = b$ тстк $\forall a,b \in A: (a,b) \in R \cap R^{-1} \to (a,b) = (a,a)$ тстк $\forall a,b \in A: (a,b) \in R \cap R^{-1} \to (a,b) \in (a,a)$ тстк $\forall a,b \in A: (a,b) \in R \cap R^{-1} \to (a,b) \in ((a,a)) \in R \cap R^{-1} \to (a,b) \in R^{-1} \to (a,b) \to (a,b)$
- 1 н.) Ползваме директно горните две подточки. Получаваме, че релацията е едновеременно симетрична и антисиметрична тстк $R = R^{-1}$ и $R \cap R^{-1} \subseteq \{(x,x)|x \in A\} \Leftrightarrow R \subseteq \{(x,x)|x \in A\}$.
 - 2 н.) Двете посоки показваме поотделно:
 - (\Leftarrow): Нека $R \subseteq \{(a,a)| a \in A\}$, тогава $\forall a \in A \ \forall b \in A : \neg aRb$, откъдето условията за симетричност $\forall a,b \in A, \underline{a \neq b} : aRb \to bRa$ и за антисиметричност $\forall a,b \in A, \underline{a \neq b} : aRb \to \neg bRa$ са тривиално изпълнени.
 - (⇒): Обратно, нека R е едновременно симетрична и антисиметрична. Нека $a \neq b$ и aRb, тогава bRa от симетричността, но същевременно и $\neg bRa$, което е противоречие. ■

Задача 5. Ако $R_1, R_2 \subseteq A^2$ са релации на еквивалентност, то релации на еквивалентност ли са:

- $R_1 \cap R_2$
- $R_1 \triangle R_2$
- $R_1 \cup R_2$
- $R_1 \circ R_2$

Решение.

- Да, ще покажем, че сечението запазва трите свойства. Нека $R = R_1 \cap R_2$: peфлексивност: от рефлексивността на $R_1, R_2, \ \forall a \in A: aR_1a \land aR_2a \equiv \forall a \in A: (a,a) \in R_1 \land (a,a) \in R_2 \equiv \forall a \in A: (a,a) \in R_1 \cap R_2$, тоест R е рефлексивна. \checkmark симетричност: Нека $a,b \in A$ и aRb. Тогава $(a,b) \in R_1 \land (a,b) \in R_2 \stackrel{\text{симетр.}}{\Rightarrow} (b,a) \in R_1 \land (b,a) \in R_2 \Rightarrow (b,a) \in R_1 \cap R_2$. \checkmark транзитивност: Нека $a,b,c \in A$ и $aRb \land bRc \Rightarrow (aR_1b \land aR_2b) \land (bR_1c \land bR_2c) \Rightarrow (aR_1b \land bR_1c) \land (aR_2b \land bR_2c) \stackrel{\text{транз.}}{\Rightarrow} aR_1c \land aR_2c \Rightarrow aRc$. \blacksquare .
- Не, рефлексивността ще бъде нарушена, ето контрапример: $A := \{1\}, R_1 = R_2 := \{(1,1)\},$ са релации на еквивалентност, но $R := R_1 \triangle R_2 = \varnothing$, защото $(1,1) \notin R$.
- Не, транзитивността може да бъде нарушена, ето контрапример: $A:=\{1,2,3\}$ и $R_1:=\{(1,2),(2,1),(1,1),(2,2),(3,3)\}$, $R_2:=\{(2,3),(3,2),(1,1),(2,2),(3,3)\}$ са релации на еквивалентност, но $R:=R_1\cup R_2=\{(1,2),(2,1),(2,3),(3,2),(1,1),(2,2),(3,3)\}$ не е, защото $(1,2)\in R\land (2,3)\in R$, но $(1,3)\notin R$.

• Всъщност $R_1 \circ R_2$ остава рефлексивна и симетрична (докажете, добро упражнение), но пък композицията не е непременно транзитивна, ето контрапример: $R_1 := \{(1,2),(2,1),(3,4),(4,3),(1,1),(2,2),(3,3),(4,4),(5,5)\},$ тогава $R := R_1 \circ R_2 = \{(1,3),(3,5),\cdots\}$, но пък $(1,5) \notin R$.

Задача 6. (*) Да се докаже, че транзитивното затваряне на релация $R \subseteq A^2$ е единствено.

Решение. Нека $F:=\{P|\ R\subseteq P\subseteq A^2\land P\$ е транзитивна $\}$ е фамилията от транзитивните "надрелации" (релации, които са надмножества) на $R.\ F$ е множество и формално може да получено с отделяне от $\mathscr{P}(A^2)$, като това множество е непразно, защото $A^2\in F.$ Тогава и $R':=\bigcap F$ е множество от наредени двойки, в частност релация. Ясно е и, че $R\subseteq R'\subseteq A^2$.

Нека $a,b,c\in R'(=\bigcap F),aR'b\wedge bR'c$. Тогава $\forall P\in F:aPb\wedge bPc\overset{\mathsf{Транз.}}{\Rightarrow}^{\mathsf{Транз.}} \forall P\in F:aPc\Rightarrow (a,c)\in \bigcap F=R',$ което доказва, че R' е транзитивна.

Получихме, че $R'\supseteq R$ е транзитивна и за всяка друга транзитивна $P\supseteq R$ е изпълнено $R'\subseteq R$, тоест е най-малка по отношение на включването. Оттук излиза, че така намереното сечение R', което е единствено (от единственост на сечението), е именно търсеното транзитивно затваряне.

Алтернативен начин е да докаже единственост е да се покаже, че транзитивното затваряне на R е $\bigcup_{n=1}^{\infty} R^n$, където $R^n = \underbrace{R \circ R \cdots \circ R}_n$, като за това би се наложило да се ползва индукция.

Лема 2. Нека $R \subseteq A^2$ е рефлексивна и транзитивна. Тогава R е частична наредба тстк няма контури.

Лема 3. Нека A е крайно множество, тогава всяка релация на частична наредба $R \subseteq A^2$ има поне един минимален и поне един максимален елемент.

Решение. Ще докажем, че съществува минимален елемент, съществуването на максимален е аналогично. Да допуснем противното, че няма такъв, тоест $\forall a \in A \ \exists b \in A \backslash \{a\} : bRa$. Нека a_0 е произволен, тогава от горното съществува $a_1 \neq a_0 : a_1Ra_0, \exists a_2 \neq a_1 : a_2Ra_1$. Така може да бъде генерирана редица $a_0, a_1, \cdots, a_{|A|}$ такава, че $\forall i < |A| : a_{i+1}Ra_i$. В редицата има |A|+1 члена, откъдето по принципа на Дирихле съществуват поне два еднакви члена, нека това са a_i, a_j . Тогава подредицата от елементи с индекси между i и j включително образува контур, което е противоречие с факта, че R е частична наредба (по горната лема).

Теорема 1 (*). За всяка частична наредба R съществува поне едно линейно разширение R' на R.

3 Релация на еквивалентност

Дефиниция 9 (клас на еквивалентност). Нека $R \subseteq A^2$ е релация на еквивалентност. За всяко $a \in A$ дефинираме $[a] = \{b \in A | aRb\}$.

Теорема 2. $F = \{[a] | a \in A\}$ е разбиване на множеството A.

Задача 7. Нека $R \subseteq A^2$ е преднаредба (транзитивна и рефлексивна), дефинираме $[a] := \{b \in A \mid aRb \wedge bRa\}$. Тогава $F := \{[a] \mid a \in A\}$ е разбиване на множеството A.

Pewehue. От дефиницията на [a] директно следва, че F е фамилия от подмножества на A, откъдето и $\bigcup F \subseteq A$. При това множествата [x] са непразни, защото $\forall x \in A : xRx \Rightarrow \forall x \in A : x \in [x]$ (от рефлексивността на R). Това ни дава и $A \subseteq \bigcup F \Rightarrow A = \bigcup F$. Получихме, че е F покриване на A. Нека $a,b \in A$ и $[a] \cap [b] \neq \emptyset \Rightarrow \exists c \in A : c \in [a] \land c \in [b] \Rightarrow (aRc \land cRa) \land (bRc \land cRb)$. Разглеждаме произволен $a' \in [a]$, тогава $aRa' \land a'Ra$. От a'Ra, aRc, cRb и транзитивността на R следва, че a'Rb,

а от bRc, cRa, aRa' следва bRa', отново по транзитивност. Така $a'Rb \wedge bRa' \Rightarrow a' \in [b]$. Но a' беше произволен елемент на [a], значи $[a] \subseteq [b]$.

По аналогичен начин (наобратно) доказваме, че $[b] \subseteq [a] \Rightarrow [a] = [b]$. Това показва, че два от така дефинираните класове се пресичат тстк когато са равни, с други думи всеки два различни класа имат празно сечение, $\forall a,b \in A: [a] \neq [b] \rightarrow [a] \cap [b] = \varnothing$, откъдето следва, че покриването е и разбиване.

Задача 8. (*) Дадено е множество X с |X| = n. Да се намери:

$$\sum_{A,B\subseteq X} |A\cap B|$$

Решение. дефинираме релацията $\sim\subseteq \mathscr{P}(X)\times\mathscr{P}(X)$. Като $(A,B)\sim (C,D)$ точно когато $(A=C\vee A=X\backslash C)\wedge (B=D\vee B=X\backslash D)$. Лесно се проверява, че \sim е релация на еквивалентност. Всеки клас на релацията се състои от четири двойки от вида: $(A,B), (A,X\backslash B), (X\backslash A,B), (X\backslash A,X\backslash B),$ всяка двойка подмножества участва в точно един такъв клас, така че класовете са $2^n.2^n/4=4^{n-1}$. Сега правим наблюдението, че всеки елемент $x\in X$ принадлежи на точно едно сечение $P\cap Q$ на двойка (P,Q) от всеки клас. Значи всеки елемент участва в 4^{n-1} такива сечения, или сумарната мощност е: $n.4^{n-1}$.

Задача 9. (*) Дадени са n точки в равнината, $n \ge 5$. Построени са n+1 различни триъгълника, да се докаже, че някои два от тях имат точно една обща точка.

Решение. Допускаме противното, тоест, че всеки два различни триъгълника имат точно 0 или 2 общи върха. Дефинираме релацията $\sim \subseteq T^2$ (T е множеството от триъгълниците), като $\triangle_1 \sim \triangle_2$ тстк \triangle_1 имат поне 2 общи върха \triangle_2 . Релацията е очевидно рефлексивна (всеки триъгълник има поне 2 общи върха със себе си) и симетрична (ако \triangle_1 има поне 2 общи върха с \triangle_2 , то и обратното е вярно).

транзитивност: Нека $\triangle_1 \sim \triangle_2$ и $\triangle_2 \sim \triangle_3$. Понеже \triangle_2 има поне 2 общи върха с \triangle_1 , както и с \triangle_3 , а самият той има 3 върха (...понеже е триъгълник, нали), то от Дирихле (2+2>3) ще има връх, който е общ и за трите триъгълника, откъдето \triangle_1 и \triangle_3 имат поне 1 общ връх. Но по допускане няма триъгълници с точно един общ връх, така че те трябва да имат поне 2 общи върха, или $\triangle_1 \sim \triangle_3$. □

Получаваме, че релацията \sim е релация на еквивалентност. Да разгледаме произволен клас на еквивалентност на тази релация, нека k е броят на различни върхове/точки на триъгълници от разглеждания клас:

- Ако k = 3, то в класа има точно 1 триъгълник;
- Ако k = 4, то в класа има не повече от 4 триъгълника с върхове измежду тези точки (все пак от 4 точки могат да се конструират не повече от $\binom{4}{2} = 4$ триъгълника);
- Ако k > 4, то в класа има не повече от k триъгълника: Нека в класа има поне 2 различни триъгълника, ABC и ABD (от дефиницията на релацията следва, че те имат две общи точки). Нека T_1 е произволна точка в разглеждания клас на еквивалентност, различна от горните 4. Ако тази точка участва в триъгълник \triangle , то твърдим, че другите две точки на този триъгълник са именно A и B. Ако не са, то от $\triangle \sim ABC$, една от точките на \triangle е C, по аналогична причина (от $\triangle \sim ABD$) една от точките на \triangle е D. Но тогава $\triangle = T_1CD$, което обаче няма поне 2 общи точки с ABC, което е невъзможно. Значи всеки триъгълник в нашия клас на еквивалентност, имащ точка T_i , която не е измежду A, B, C, D съдържа A и B. Ако всички точки в класа са $A, B, C, D, T_1, ...T_m$, то имаме не повече от 4+m=k триъгълника с върхове тези точки (понеже от A, B, C, D могат да се конструират до 4 триъгълника, а всички останали триъгълници имат вида ABT_i);

В крайна сметка (от трите случая) излиза, че броят триъгълници не би трябвало да надвишава този на точките, противоречие с условието. Значи винаги има два триъгълника с точно 1 общ връх.

5