Multivariate Models

DS-5740 Advanced Statistics

Overview

Overview: Week 6

Overview | Week 6

Preliminaries

None

Goals for the Week

- Recap models so far
- Cover vector autoregression (VAR) models
- Cover error-correction on VAR models

Multivariate Time Series

Recap

Multivariate Time Series | Recap

Multivariate Time Series | Recap

• TSLM:

 TSLM: general model for selecting predictors, requires new data values to be specified, does not recover dynamics well (i.e., autocorrelations) but possible to include lags (i.e., distributed lag model)

ETS:

- TSLM: general model for selecting predictors, requires new data values to be specified, does not recover dynamics well (i.e., autocorrelations) but possible to include lags (i.e., distributed lag model)
- ETS: captures trend and seasonal data dynamics, differentially weights past time points, does not require new data to forecast
- ARIMA:

- TSLM: general model for selecting predictors, requires new data values to be specified, does not recover dynamics well (i.e., autocorrelations) but possible to include lags (i.e., distributed lag model)
- ETS: captures trend and seasonal data dynamics, differentially weights past time points, does not require new data to forecast
- ARIMA: captures dynamics well, requires stationarity (e.g., differencing), does not require new data to forecast
- TSLM+ARIMA:

- TSLM: general model for selecting predictors, requires new data values to be specified, does not recover dynamics well (i.e., autocorrelations) but possible to include lags (i.e., distributed lag model)
- ETS: captures trend and seasonal data dynamics, differentially weights past time points, does not require new data to forecast
- ARIMA: captures dynamics well, requires stationarity (e.g., differencing), does not require new data to forecast
- TSLM+ARIMA: captures dynamics while also allowing for predictors, requires stationarity (e.g., differencing), requires new data to forecast

Multivariate Time Series

What if we want to predict multiple variables?

Multivariate Time Series

What if we want to predict multiple variables?

Vector Autoregression

- Dynamics are often influenced by more than one variable
- While predicting one variable is useful, we often care about more than one variable
- Understanding the dynamics of multiple variables and their influence on one another can help us make better (more accurate) predictions (even for one variable!)

Autoregression

- $y_t = [3.4, 2.4, 2.3, 4.5, 4.2, 2.4]$
- $y_{t-1} = [NA, 3.4, 2.4, 2.3, 4.5, 4.2]$

Vector Autoregression

VAR(p)

$$y_{1,t} = c_1 + \phi_{11,1}y_{1,t-1} + \phi_{12,1}y_{2,t-1} + \epsilon_{1,t}$$

$$y_{2,t} = \frac{c_2}{\phi_{21,1}y_{1,t-1}} + \phi_{22,1}y_{2,t-1} + \frac{\epsilon_{2,t}}{\phi_{22,t}}$$

- \bullet $\phi_{\textit{ok},\textit{p}}$
 - o = variable being predicted (outcome)
 - k = predictor
 - p = lag

Remember stationary?

Don't actually fungeddaboutit but with VAR the data don't *need* to be stationary at the outset (but they eventually do!)

Code in {fpp3}

```
# Vector autoregression
fit_var <- housing_ts %>%
  model(
    lag 2 = VAR(
      vars(housing, unemployment, median_days,
           price_decreased, pending_listing) ~
        xreg(outlier, pandemic)
# Report fit
report(fit var)
```

	housing	median_days
lag(housing,1)	1.446	0.006
lag(housing,2)	-0.313	-0.003
lag(median_days,1)	-4.036	0.764
lag(median_days,2)	-3.846	-0.256

	housing	median_days
lag(housing,1)	1.446	0.006
lag(housing,2)	-0.313	-0.003
lag(median_days,1)	-4.036	0.764
lag(median_days,2)	-3.846	-0.256

- column = *o*
- row = k, p

	housing	median_days
lag(housing,1)	1.446	0.006
lag(housing,2)	-0.313	-0.003
lag(median_days,1)	-4.036	0.764
lag(median_days,2)	-3.846	-0.256

- In terms of $\phi_{ok,p}$, what is 1.446?
- Assume housing = outcome 1 and median_days = outcome 2

	housing	median_days
lag(housing,1)	1.446	0.006
lag(housing,2)	-0.313	-0.003
lag(median_days,1)	-4.036	0.764
lag(median_days,2)	-3.846	-0.256

- In terms of $\phi_{ok,p}$, what is 1.446?
- Assume housing = outcome 1 and median_days = outcome 2
- φ_{11,1}

	housing	median_days
lag(housing,1)	1.446	0.006
lag(housing,2)	-0.313	-0.003
lag(median_days,1)	-4.036	0.764
lag(median_days,2)	-3.846	-0.256

- In terms of $\phi_{ok,p}$, what is -3.846?
- Assume housing = outcome 1 and median_days = outcome 2

	housing	median_days
lag(housing,1)	1.446	0.006
lag(housing,2)	-0.313	-0.003
lag(median_days,1)	-4.036	0.764
lag(median_days,2)	-3.846	-0.256

- In terms of $\phi_{ok,p}$, what is -3.846?
- Assume housing = outcome 1 and median_days = outcome 2
- φ_{12,2}

Autocorrelation of residuals
fit_var %>% augment() %>%
ACF(.innov) %>% autoplot()

Re-fit with seasonal period = 12

```
# Vector autoregression
fit_var <- housing_ts %>%
  model(
  lag_2 = VAR(
    vars(housing, unemployment, median_days,
        price_decreased, pending_listing) ~
    xreg(outlier, pandemic, season(period = 12))
  )
)
```


Checking the lag in VAR

```
# Fit VAR(2)
var_2 <- vars::VAR(
   y = housing_ts[,c(
        "housing", "unemployment", "median_days",
        "price_decreased", "pending_listing"
)],
   exogen = housing_ts[,c("outlier", "pandemic")],
   type = "none", # same as {fpp3}'s VAR'
   p = 2 # lag
)
serial.test(var_2, lags.pt = 10, type = "PT.adjusted")</pre>
```

```
Portmanteau Test (adjusted)

data: Residuals of VAR object var_2

Chi-squared = 250.55, df = 200, p-value = 0.008801
```

- \bullet p < 0.05: significant residual serial correlations
- $p \ge 0.05$: non-significant residual serial correlations

Checking the lag in VAR

```
# Fit VAR(2) with season
var_2_season <- vars::VAR(
y = housing_ts[,c(
    "housing," "unemployment", "median_days",
    "price_decreased", "pending_listing"
)],
exogen = housing_ts[,c("outlier", "pandemic")],
type = "none", # same as {fpp3}'s 'VAR'
p = 2, # lag
season = 12
)
serial.test(var_2_season, lags.pt = 10, type = "PT.adjusted")</pre>
```

```
Portmanteau Test (adjusted)

data: Residuals of VAR object var_2_season

Chi-squared = 282.17, df = 200, p-value = 0.0001151
```

- \bullet p < 0.05: significant residual serial correlations
- \bullet $p \ge 0.05$: non-significant residual serial correlations

Specify the lag in VAR

```
# Vector autorearession
fit_var <- housing_ts %>%
 model(
   lag 2 = VAR(
     vars(housing, unemployment, median_days,
           price decreased, pending listing) ~
        xreg(outlier, pandemic)
    lag_10 = VAR(
      vars(housing, unemployment, median_days,
           price_decreased, pending_listing) -
        xreg(outlier, pandemic) + AR(0:10)
# Report fit
glance(fit var) %>% select(.model, AIC, AICc, BIC)
# A tibble: 2 x 4
  .model ATC ATCc
                       BTC
  <chr> <dbl> <dbl> <dbl>
1 lag 2 3489, 2575, 3680,
2 lag_10 2847. 2110. 3464.
```


Forecast

Forecast with VAR(2)

Switching over to {vars}

```
# Load fuars}
library(vars)
# VAR model with fuars}
vars var <- vars::VAR(
 v = housing_ts[,c(
    "housing", "unemployment", "median_days",
    "price decreased", "pending listing"
 )],
 exogen = housing_ts[,c("outlier", "pandemic")],
 type = "none". # same as ffpp3}'s 'VAR'
 p = 2 \# laq
# Make dummy variable matrix
dummat <- matrix(
 rep(0, 2 * 24), nrow = 24.
 dimnames = list(NULL, c("outlier", "pandemic"))
# Forecast
var_fc <- predict(vars_var, n.ahead = 24, dumvar = dummat)</pre>
```

```
# Get forecast values
fc housing <- var fc$fcst$housing
# Set up forecast as {fpp3} does
var fc <- data.frame(</pre>
  .model = "VAR".
 date = fc_var$date,
 housing = distributional::dist normal(
   mean = fc housing[, "fcst"].
    sd = fc_housing[,"CI"]
  .mean = fc housing[,"fcst"].
 fc[fc\$.model == "tslm_sig", -c(1:4)]
) %>% as tsibble(index = date)
# Add "housing" to dimnames
dimnames(var_fc$housing) <- "housing"</pre>
# Add to original forecast
fc <- bind rows(fc, var_fc)
```

Forecast housing with VAR(2)

It's been a year...


```
# Point estimates
fc %>% accuracy(housing valid)
# A tibble: 4 x 10
 .model
       .type
                                        MASE RMSSE ACF1
                 ME RMSE
                          MAE
 1 VAR
        Test 2011, 2120, 2011, 31.7 31.7
                                         NaN
                                              NaN 0.659
2 arima
       Test 772, 934, 772, 11.9 11.9
                                         NaN
                                              NaN 0.780
3 dynamic Test 854. 943. 854. 13.4 13.4
                                         NaN
                                              NaN 0.685
4 tslm_sig Test 1262. 1426. 1298. 20.0 20.7
                                         NaN
                                              NaN 0.566
# Distributional estimates
fc %>% accuracy(housing_valid, list(crps = CRPS))
# A tibble: 4 x 3
 .model
         .type crps
       <chr> <dbl>
 <chr>
1 VAR
         Test 1232
2 arima
         Test
               656.
             594.
3 dynamic Test
4 tslm_sig Test 1030.
```

Granger Causality

General Idea

- Causality can be inferred when properly considering probable causes
- Granger causality is whether the time series of some variable X
 has information that systematically predicts variable Y above
 and beyond Y's own time series

General Idea

- Causality can be inferred when properly considering probable causes
- Granger causality is whether the time series of some variable X
 has information that systematically predicts variable Y above
 and beyond Y's own time series
- Is this enough to determine actual causality?

Using VAR, Granger causality can be tested by:

- Estimating two models
 - Model 1: univariate autoregression (AR) of Y
 - Model 2: multiple regression of X of Y

Why multiple regression?

Using VAR, Granger causality can be tested by:

- Estimating two models
 - Model 1: univariate autoregression (AR) of Y
 - Model 2: multiple regression of X of Y

Why multiple regression?

- Hypotheses:
 - H₀: X does not predict Y above and beyond Y
 - H_A: X does predict Y above and beyond Y
- Compare prediction errors from the two models
 - If including past values of X significantly reduces prediction error, then Granger Causality (residuals significantly lower than without X)
 - If not, then no Granger Causality

Assumptions

- Data must be stationary (recall that this assumption is not required at the outset! for vector autoregression)
- Relationship between X and Y should be linear (also not required by vector autoregression)
- Normally distributed errors and no autocorrelations

Multivariate Time Series | Activity

Activity

Multivariate Time Series | Activity

Goal: Is there Granger causality from median_days?

- Check for stationary of all variables (if not, then make them stationary)
- Check for a linear relationship (use GGally::ggpairs)
- Perform causality() on model with cause =
 "median_days"

Multivariate Time Series | Activity

\$Granger

```
Granger causality HO: median_days do not Granger-cause housing unemployment price_decreased pending_listing
```

```
data: VAR object var_stationary
F-Test = 2.0533, df1 = 8, df2 = 275, p-value = 0.0406
```

\$Instant

HO: No instantaneous causality between: median_days and housing unemployment price_decreased pending_listing

```
data: VAR object var_stationary
Chi-squared = 13.368, df = 4, p-value = 0.009611
```

Co-integration

- Assumption of ARIMA and TSLM+ARIMA models are that the data are stationary
- For VAR, data don't need to be stationary but at some point they do
- In general, we expect that (related) time series should be moving together
- Co-integration is used to test whether this expectation is true

- Co-integration occurs with two or more non-stationary time series
 - long-run equilibrium
 - move together such that a linear combination makes the time series stationary
 - underlying common stochastic trend (stationary)

Goal: Find a stable long-run relationship between non-stationary variables such that the resultant time series *is* stationary

Formal definition

An (n \times 1) vector of variables y_t is said to be cointegrated if at least one non-zero n-element vector β_i exists such that $\beta_i'y_t$ is trend-stationary. β_i is called a cointegrating vector. If r such linearly independent vectors β_i ($i = 1, \ldots, r$ exist, we say that y_t is cointegrated with cointegrating rank r. We then define the (n \times r) matrix of cointegrating vectors $\beta = (\beta_1, \ldots, \beta_r$. The r elements of the vector $\beta'y_t$ are trend-stationary, and β is called the cointegrating matrix.

– Analysis of Integrated and Cointegrated Time Series with R (p. 79)

Johansen Procedure

- Use canonical correlations to determine if whether there is enough multicollinearity to represent the relationships in a reduced space (r)
- canonical correlation: the correlation of the linear combination(s) between two sets of variables (i.e., past values of the variable itself and other variables)
- Based on a likelihood ratio of the H₀, eigenvalues are tested against zero (critical values are provided by functions in R and Python)

Use {urca} package

```
# Cointegration
co_test <- ca.jo(
    #variables
    x = housing_ts[,c(
        "housing", "unemployment", "median_days",
        "price_decreased", "pending_listing"
)],
    type = "trace", # tends to be more conservative
    K = 2, # lag -- same as your VAR model
    spec = "longrun", # generally use "longrun"
    ecdet = "trend", # trend-stationary
    # emogeneous dummy variables
    dumvar = housing_ts[,c("outlier", "pandemic")]
)
# Summary
co_summ <- summary(co_test)</pre>
```

 Determines whether variables can be combined in a linear way that makes them stationary

Eigenvalues

```
[1] 0.62263 0.43188 0.22021 0.07314 0.02275 0.00000
```

Critical Values

```
10pct 5pct 1pct test
r <= 4 | 10.49 12.25 16.26 1.610698
r <= 3 | 22.76 25.32 30.45 6.927180
r <= 2 | 39.06 42.44 48.45 24.337982
r <= 1 | 59.14 62.99 70.05 63.917368
r = 0 | 83.20 87.31 96.58 132.133493
```

Vector-Error-Correction Model

```
# Convert VECM to VAR
vecm <- vars::vec2var(co_test, r = 1)

# Make dummy variable matrix
dummat <- matrix(
  rep(0, 2 * 24), nrow = 24
)
colnames(dummat) <- c("outlier", "pandemic")

# Forecast
vecm_fc <- predict(vecm, n.ahead = 24, dumvar = dummat)</pre>
```

Convert to tsibble

```
# Get forecast values
fc housing <- vecm fc$fcst$housing
# Set up forecast as {fpp3} does
fc vecm <- data.frame(
  .model = "VECM",
 date = var_fc$date,
 housing = distributional::dist normal(
   mean = fc housing[, "fcst"].
    sd = fc_housing[,"CI"]
  .mean = fc_housing[,"fcst"],
 fc[fc\$.model == "tslm_sig", -c(1:4)]
) %>% as tsibble(index = date)
# Add "housing" to dimnames
dimnames(fc_vecm$housing) <- "housing"</pre>
# Add to original forecast
fc <- bind rows(fc, fc_vecm)
```


Multivariate Time Series

Best of All Estimates?

Why choose one forecast?

Averaging forecasts from different models can be more accurate than a single forecast

```
# Create average of all models
average_fc <- fc %>%
mutate(date_factor = factor(date)) %>%
group_by(date_factor) %>%
summarize(all_average = as.numeric(mean(.mean))) %>%
select(all_average) %>%
as_tsibble(key = NULL, index = date)
```


Let's remove a few forecasts...

- We know VAR isn't stationary, so we can throw that forecast out
- We know plain TLSM is bad, so we can throw that out too

It's been a year...

```
# Load data
housing_validation <- read.csv("../data/housing_validation.csv")
# Convert date
housing_validation$date <- yearmonth(housing_validation$date)
# Convert to `tsibble`
housing_valid <- housing_validation %>%
as_tsibble(index = date)
```


Preference?

```
# Point estimates
fc %>%
       filter(.model != "tslm sig" & .model != "VAR") %>%
       accuracy(housing valid)
# A tibble: 3 x 10
        .model .type
                                                                            ME. RMSE
                                                                                                                         MAE
                                                                                                                                                 MPE MAPE MASE RMSSE ACF1
                                       <chr> <dhl> <dh> <dhl> <dh> <dh >dh <dh >dh <dh >dh <dh >dh <dd >dh <dd
        <chr>
1 VECM
                                        Test
                                                                     529
                                                                                            712.
                                                                                                                     587. 8.02 9.05
                                                                                                                                                                                                  NaN
                                                                                                                                                                                                                           NaN 0.776
2 arima
                                        Test 772. 934. 772. 11.9 11.9
                                                                                                                                                                                                  NaN
                                                                                                                                                                                                                          NaN 0.780
                                                                    854. 943. 854. 13.4 13.4
3 dynamic Test
                                                                                                                                                                                                  NaN
                                                                                                                                                                                                                          NaN 0.685
# Distributional estimates
fc %>%
       filter(.model != "tslm sig" & .model != "VAR") %>%
       accuracy(housing_valid, list(crps = CRPS))
# A tibble: 3 x 3
        .model .type crps
        <chr>>
                                       <chr> <dhl>
                                                                     764.
1 VECM
                                        Test
2 arima
                                        Test
                                                                     656
3 dynamic Test
                                                                    594
```

Multivariate Time Series | Additional Resources

Additional Resources

- Vector Autoregression
- Co-integration
- https://www.econometrics-with-r.org/
- Note on Why Not Use Granger Causality with VECM