

IIT Madras ONLINE DEGREE

Sets

Madhavan Mukund https://www.cmi.ac.in/~madhavan

 $\begin{array}{c} \text{Mathematics for Data Science 1} \\ \text{Week 1} \end{array}$

Constructing subsets

Set comprehension

■ The subset of even integers

$$\{x \mid x \in \mathbb{Z}, x \bmod 2 = 0\}$$

- lacksquare Begin with an existing set, $\mathbb Z$
- Apply a condition to each element in that set
 - $\mathbf{x} \in \mathbb{Z}$ such that $x \mod 2 = 0$
- Collect all the elements that match the condition
- Examples
 - The set of perfect squares $\{m \mid m \in \mathbb{N}, \sqrt{m} \in \mathbb{N}\}$
 - The set of rationals in reduced form $\{p/q \mid p, q \in \mathbb{Z}, gcd(p, q) = 1\}$

Intervals

- Integers from -6 to +6 $\{z \mid z \in \mathbb{Z}, -6 \le z \le 6\}$
- Real numbers between 0 and 1
- Closed interval [0, 1] - include endpoints ${r \mid r \in \mathbb{R}, 0 \le r \le 1}$
- Open interval (0,1) - exclude endpoints ${r \mid r \in \mathbb{R}, 0 < r < 1}$
- Left open (0, 1] ${r \mid r \in \mathbb{R}, 0 < r \le 1}$

■ Union — combine X and Y, $X \cup Y$ ${a,b,c} \cup {c,d,e} = {a,b,c,d,e}$

- Union combine X and Y, $X \cup Y$ ${a,b,c} \cup {c,d,e} = {a,b,c,d,e}$
- Intersection elements common to X and Y, ${a,b,c,d} \cap {a,d,e,f} = {a,d}$

- Union combine X and Y, $X \cup Y$ $\{a, b, c\} \cup \{c, d, e\} = \{a, b, c, d, e\}$
- Intersection elements common to X and Y, $X \cap Y$ $\{a, b, c, d\} \cap \{a, d, e, f\} = \{a, d\}$
- Set difference elements in X that are not in Y, $X \setminus Y$ or X Y $\{a, b, c, d\} \setminus \{a, d, e, f\} = \{b, c\}$

- Union combine X and Y, $X \cup Y$ $\{a, b, c\} \cup \{c, d, e\} = \{a, b, c, d, e\}$
- Intersection elements common to X and Y, $X \cap Y$ $\{a, b, c, d\} \cap \{a, d, e, f\} = \{a, d\}$
- Set difference elements in X that are not in Y, $X \setminus Y$ or X Y $\{a, b, c, d\} \setminus \{a, d, e, f\} = \{b, c\}$
- Complement elements not in X, \overline{X} or X^c
 - Define complement relative to larger set, universe
 - \blacksquare Complement of prime numbers in $\mathbb N$ are composite numbers

Summary

- Sets are a standard way to represent collections of mathematical objects
- Sets may be finite or infinite
- Can carve out interesting subsets of sets
- Set operations: union, intersection, difference, complement

