Stability and Generalization of (Gradient-Based) Bilevel Programming in Hyperparameter Optimization

Chongxuan Li
Gaoling School of AI, Renmin University of China

Fan Bao

Guoqiang Wu

Jun Zhu

Bo Zhang

Outline

Background on hyperparameter optimization

- Two approaches for hyperparameter optimization:
 - Search-based cross validation
 - Gradient-based bilevel programming

• Stability and generalization for gradient-based bilevel programming

Conclusion and discussion

Background on hyperparameter optimization

Learning paradigm

Informally, a *learning algorithm* optimizes the *model parameters* according to a *certain loss* on a sample called *training set*, and hopefully, the optimized model will perform well on *unseen data of the same task*.

Statistical learning theory

Goal: minimize expected risk with respect to a target distribution

- Algorithm: minimize empirical risk on a sample following the target distribution
 - The examples in the sample are independent and identically distributed
- Empirical risk is an (unbiased) Monte Carlo estimate of expected risk
 - Gap is caused by the randomness of the finite-size sample

- Theoretical guarantee by concentration inequalities
 - With a high probability over the draw of the sample, the gap is small

Hyperparameters

• Model parameters: optimized by the learning algorithm on the training set

- Hyperparameters: specified as inputs to the learning algorithm
 - Model selection
 - Weight of regularizations, number of parameters, topology of neural networks
 - Others
 - Learning rate, mini-batch size, data coefficients, parameter initialization

• Hyperparameters are selected (or optimized) on a validation set

Learning paradigm with hyperparameter optimization

Outer level: seek the best hyperparameter on validation data

Inner level: seek the best parameter on training data given hyperparameter

Trained parameters given current hyperparameters

Two approaches for hyperparameter optimization

Classical search-based cross validation

A two-dim example

Classical search-based cross validation

Get T prefixed hyperparameters by grad search or random search

Outer level:

Inner level: for each hyperparameter

Get the corresponding parameters by (approximate) empirical

risk minimization (e.g. using SGD) on training set

Select the best parameter-hyperparameter pair on validation set

Existing theory: a high probability bound of expected risk based on empirical risk on validation set.

Search-based cross validation in practice

- Search based CV is simple and widely used in research and industry
 - Number of hyperparameters is around $10^{0} \sim 10^{2}$

- Curse of dimensionality
 - The search does not leverage the validation data and thus inefficient
 - The search space grows exponentially with respect to the number of hyperparameters

Explicitly use the information of validation data during search to scale up

Gradient-based bilevel programming

Initialize parameters and hyperparameters

Outer level:

Inner level: given the current hyperparameter

Update parameters by GD or SGD of K steps on training set

Update hyperparameters by GD or SGD of 1 step on validation set

(trained parameters are functions of hyperparameters)

Output the hyperparameter-parameter pair after T steps of outer level

Gradient-based bilevel programming

- It is referred to as unrolled differentiation (UD)
 - UD exploits the gradient information on validation data during search
 - For scalability and efficiency, SGD is preferable
 - Large scale HO: number of hyperparameters $10^4 \sim 10^6$

- Examples of UD
 - Differentiable neural architecture search [1]
 - Feature learning [2]
 - Data reweighting for imbalanced or noisy samples [3]

Theory of UD

Franceschi et al., Bilevel Programming for Hyperparameter Optimization and Meta-Learning, ICML 2018.

- Optimization: existence of optimal solution and convergence are proved
- Generalization: no rigorous analysis and there exist mysterious behaviors

For a large K and T, the algorithm may overfit to the validation set: test accuracy decreases when optimizing the validation loss.

Motivation

- This talk takes a first step towards analyzing UD in the perspective of statistical learning theory and answering the following questions rigorously:
 - Can we obtain certain learning guarantees for UD and explain its practical behavior?
 - When should we prefer UD over classical CV approaches in a theoretical perspective?
 - Can we develop new algorithms that improve UD with theoretical guarantee?

Stability and generalization for gradient-based bilevel programming

Settings and notations

• Data space Z, parameter space Θ , hyperparameter space Λ

- Target distribution D, S is a i.i.d. sample drawn from D
 - Two samples: S^{tr} of size n and S^{val} of size m
- Loss function $L: \Theta \times \Lambda \times Z \rightarrow [a, b]$
 - $L_z(\lambda, \theta)$ denotes the value of L evaluated on example z given λ, θ
- HO algorithm $A: \mathbb{Z}^n \times \mathbb{Z}^m \to \Theta \times \Lambda$, the output is denoted as $A(S^{tr}, S^{val})$
 - Randomized HO algorithm outputs a random variable on $\Theta \times \Lambda$

Risks and generalization gap

• Expected risk of $(\lambda, \theta) \in \Lambda \times \Theta$ with respect to a target distribution D

$$R(\lambda, \theta) = \mathop{\mathbb{E}}_{z \sim D} [L_z(\lambda, \theta)]$$

• Empirical risk of $(\lambda, \theta) \in \Lambda \times \Theta$ on validation set $S^{\text{val}} = \{z_1, ..., z_m\}$

$$\widehat{R}^{\text{val}}(\lambda,\theta) = \frac{1}{m} \sum_{i=1}^{m} L_{z_i}(\lambda,\theta)$$

Our goal is to bound the generalization gap

$$|R(\lambda^{UD}, \theta^{UD}) - \hat{R}^{\text{val}}(\lambda^{UD}, \theta^{UD})|$$

Gradient-based bilevel programming

Initialize λ_0 and θ_0

Outer level: for t = 0, ..., T - 1

Inner level: for k = 0, ..., K - 1

$$\theta_{k+1}^t \leftarrow \theta_k^t - \eta_k^t \times \nabla_{\theta} \hat{R}^{tr} (\lambda_t, \theta, S^{tr})|_{\theta = \theta_k^t}$$
(SGD)

$$\lambda_{t+1} \leftarrow \lambda_t - \alpha_t \times \nabla_{\lambda} \hat{R}^{\text{val}} (\lambda, \theta_K^t(\lambda), S^{\text{val}})|_{\lambda = \lambda_t} \text{ (SGD)}$$

Output $A^{UD}(S^{tr}, S^{val}) \leftarrow (\lambda_T, \theta_K^T)$

Notion of stability

Bao et al. Stability and Generalization of Bilevel Programming in Hyperparameter Optimization, NeurIPS 2021.

Definition 1: A randomized HO algorithm A is β -uniformly stable on validation in expectation if for all validation datasets S^{val} , $S^{\prime \, \mathrm{val}} \in \mathbb{Z}^m$ such that S^{val} , $S^{\prime \, \mathrm{val}}$ differ in at most one sample, we have

$$\forall S^{\mathrm{tr}} \in Z^{n}, \forall z \in Z, \underset{A}{\mathsf{E}} \big[L_{z} \big(A \big(S^{\mathrm{tr}}, S^{\mathrm{val}} \big) \big) - L_{z} \big(A \big(S^{\mathrm{tr}}, S^{\prime} \,^{\mathrm{val}} \big) \big) \big] \leq \beta.$$

- Stable: a small perturbation in data won't change the loss of the algorithm too much (risks are losses averaged by different data)
- Uniform: there exists a stability coefficient for all configurations
- On valuation: HO seeks the best pair based on validation performance
- In expectation: randomness in algorithm (e.g. SGD)

Stability based generalization bound

Bao et al. Stability and Generalization of Bilevel Programming in Hyperparameter Optimization, NeurIPS 2021.

Theorem 1 (Generalization bound of a uniformly stable algorithm)

Suppose a randomized HO algorithm A is β -uniformly stable on validation in expectation , then

$$\left| \underset{A,S^{\text{tr}},S^{\text{val}}}{\mathbb{E}} \left[R(A(S^{\text{tr}},S^{\text{val}})) - \widehat{R}^{\text{val}}(A(S^{\text{tr}},S^{\prime \text{val}})) \right] \right| \leq \beta.$$

- The proof follows Definition 1 and convexity of f(x) = |x|.
- The theorem holds for any stable algorithm, not restricted to UD
- It is algorithm dependent, not a uniform bound (e.g., complexity based)
- It is an expectation bound, not a high probability bound.
 - Here a high probability bound is nontrivial because of A is random

Stability of UD

Bao et al. Stability and Generalization of Bilevel Programming in Hyperparameter Optimization, NeurIPS 2021.

Theorem 2 (Stability of UD with SGD, informal) Suppose the outer level optimization (depending on $\hat{\theta}$ (λ)) is L-Lipschitz continuous and γ -Lipschitz smooth w.r.t. λ . Then, UD with SGD (T steps and a sufficiently small learning rate) is β -uniformly stable on validation in expectation with $\beta = \tilde{O}(\frac{1}{m}L^{\frac{1}{1+\gamma}}T^{\frac{\gamma}{1+\gamma}})$, which is increasing w.r.t. L and γ .

- Proof follows the stability analysis of SGD in nonconvex optimization [5]
- Consider outer level steps and size of validation set, $\beta = \tilde{O}\left(\frac{T^{\kappa}}{m}\right)$, $\kappa < 1$
- Requirement of the inner level optimization
 - It should result in a smooth outer level optimization problem
 - It does not necessarily be gradient-based

Smoothness of inner level optimization

- Theorem 3 (Smoothness of UD, informal) Under smoothness assumptions on model and loss, if the inner level problem is solved with K steps SGD with learning rate η , then the outer level optimization as a function of λ is Lipschitz continuous with $L = \tilde{O}((1 + \eta)^K)$ and Lipschitz smooth with $\gamma = \tilde{O}((1 + \eta)^{2K})$.
 - Proof follows the smoothness assumptions on model and loss function
 - In terms of inner level steps, $\beta = \tilde{O}((1+\eta)^{2K}/m)$
 - In nonconvex optimization (e.g., using DNNs), it is tight w.r.t. K
 - Improved results under stronger assumptions
 - If the inner level optimization is convex, $\beta = O(K^2)$
 - If the inner level optimization is strongly convex, $\beta = O(1)$

Implication: explaining the practical behavior of UD

UD may overfit to validation set given a large K. $\beta = \tilde{O}((1+\eta)^{2K})$

The results agree with existing work and support our theory

Regularized UD is more stable

Outer level:
$$\lambda^* = \arg\min_{\lambda \in \Lambda} \hat{R}^{\text{val}}(\lambda, \theta^*(\lambda), S^{val}) + \frac{\mu}{2} ||\lambda||_2^2$$

Inner level:
$$\theta^*(\lambda) = \arg\min_{\theta \in \Theta} \hat{R}^{tr}(\lambda, \theta, S^{tr}) + \frac{\nu}{2} ||\theta||_2^2$$

- Proposition 1 (Stability of regularized UD, informal) Under the same assumptions in Theorem 2 and Theorem 3, if μ and ν are sufficiently small, then regularized UD has a smaller stability coefficient.
 - $\beta = \tilde{O}(T^{\kappa}/m)$ with a smaller κ related to μ
 - $\beta = \tilde{O}((1+c\eta)^{2K}/m)$ with a smaller c related to ν

Regularized UD is more stable

Regularizations of both λ and θ can relieve overfitting

There is no clear winner of Reg-outer (λ) and Reg-inner (θ)

Search-based cross validation

Get λ_1 , ... λ_T by grad search or random search

For
$$k = 1, ..., K$$

$$\theta_{k+1}^t \leftarrow \theta_k^t - \eta_k^t \times \nabla_{\theta} \hat{R}^{tr} (\lambda_t, \theta, S^{tr})|_{\theta = \theta_k^t}$$
(SGD)

Select the t^* on validation set and $A^{CV}(S^{tr}, S^{val}) \leftarrow (\lambda_{t^*}, \theta_K^{t^*})$

• A classical result: with a probability at least $1-\delta$, the following holds

$$\forall t \in [1, T], \qquad R(\lambda_t, \theta_K^t) \le \hat{R}^{\text{val}}(\lambda_t, \theta_K^t) + \sqrt{\frac{\log T + \log 2/\delta}{2m}}$$

Including t^* , namely $A^{CV}(S^{tr}, S^{val})$

Expectation bound for classical CV

Theorem 3 (Expectation bound of CV, informal) Given any prefixed T hyperparameters, the following holds for CV algorithm

$$\left| \underset{S^{\text{tr}}, S^{\text{val}}}{\mathbb{E}} \left[R \left(A^{CV} \left(S^{\text{tr}}, S^{\text{val}} \right) \right) - \widehat{R}^{\text{val}} \left(A^{CV} \left(S^{\text{tr}}, S'^{\text{val}} \right) \right) \right] \right| \leq O(\sqrt{\log T / m}).$$

- The expectation bound has the same order as the classical high probability bound
- Trade-off between CV and UD
 - Validation error: UD has smaller validation error
 - Generalization gap:
 - CV is $O(\sqrt{\log T})$ while UD is $\tilde{O}((1+\eta)^{2K})$ or $\tilde{O}(T^{\kappa})$
 - CV is $O(\sqrt{1/m})$ while UD is $\tilde{O}(1/m)$

Implication on CV

Cross validation with grad search hardly overfits

In our experiments, CV is worse than UD because the validation loss is high

Conclusion and discussion

Conclusion

- We present a stability and generalization analysis of SGD-based bilevel programming in hyperparameter optimization
 - A long inner loop is unstable and can make UD overfit to validation
 - When the validation set is of relatively large size, the inner loop and outer loop are reasonably short, UD is better than CV (in expectation)
 - Regularization terms at both levels improve stability and obtain a better learning guarantee if the validation performance remains

Future work

• Tighter bounds with advanced techniques

- Comparison with bounds on training data
 - Optimal split of train-validation data
- High probability bounds

- Other algorithms
 - Implicit differentiation

Thanks!

Email: chongxuanli@ruc.edu.cn

Homepage: https://gsai.ruc.edu.cn/chongxuan

Office: 中国人民大学信息楼 343

Additional references

- Credit of the GIF in the first page: Karen Pleasant, https://www.pavlovsk.org/a-tutorial-on-optimizing-particle-swarm-in-python/
- Credit of the figure in page 4: Simon Claus Stock et al., A system approach for closed-loop assessment
 of neuro-visual function based on convolutional neural network analysis of EEG signals.
- Credit of the figure in page 10: Peter Worcester, https://medium.com/@peterworcester_29377/a-comparison-of-grid-search-and-randomized-search-using-scikit-learn-29823179bc85
- [1] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv preprint arXiv:1806.09055, 2018.
- [2] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel programming for hyperparameter optimization and meta-learning. In International Conference on Machine Learning, pages 1568–1577. PMLR, 2018.
- [3] Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated backpropagation for bilevel optimization. In The 22nd International Conference on Artificial Intelligence and Statistics, pages 1723–1732. PMLR, 2019.
- [4] Mohri M, Rostamizadeh A, Talwalkar A. Foundations of machine learning [M]. MIT press, 2018.
- [5] Hardt M, Recht B, Singer Y. Train faster, generalize better: Stability of stochastic gradient descent[C]//International Conference on Machine Learning. PMLR, 2016: 1225-1234.