Supporting Information for "Bayesian Functional Covariance Regression"

John Shamshoian¹, Damla Şentürk¹, Shafali Jeste², and Donatello Telesca^{1,*}

¹Department of Biostatistics, University of California, Los Angeles, California 90095, U.S.A.

² Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California 90095, U.S.A.

^{*}email: donatello.telesca@ucla.edu

1. Web Appendix A: Markov-chain monte carlo sampling algorithm

In this section we give a detailed Markov-Chain Monte Carlo (MCMC) algorithm to sample from the posterior. Let N be the number of independent functional responses and assume all response functions are observed on a common grid $T = \{t_1, \ldots, t_n\}$. Let B be an $n \times p$ matrix with $B_{ij} = b_j(t_i)$. Let X be an $N \times r(d_1)$ matrix with row i equal to $\mathbf{b}^x(\mathbf{x}_i)$. Let Ybe an $N \times n$ matrix with $Y_{ij} = y_i(t_j)$, so that each row represents one discretized functional response. Let Γ_j be an $N \times N$ diagonal matrix with rth diagonal element equal to η_{rj} for $j = 1, \ldots, k$.

(1) Update β :

Let
$$\Omega_r = \tau_{1xr} \tilde{K}_r + \tau_{1tr} \tilde{K}$$
 if $p_r > 1$. Otherwise set $\Omega_r = \tau_{1tr} K$. Construct $\Omega = \text{blkdiag}(\Omega_1, \dots, \Omega_R)$.
Let $C = \sigma^{-2} X^\top X \otimes B^\top B + \Omega$

Let
$$A = \sigma^{-2} \text{vec}[\{B^{\top}Y^{\top} - B^{\top}B(\sum_{j=1}^{k} \Lambda_j X^{\top}\Gamma_j)\}X]$$

Sample $\operatorname{vec}(\beta) \sim N(C^{-1}A, C^{-1})$

(2) Update Λ_i :

Let
$$\Omega_r = \tau_{2xr}\tilde{K}_r + \tau_{2tr}\tilde{K} + \tau_{rj}^*\phi_{rj}$$
 if $p_r > 1$. Otherwise set $\Omega_r = \tau_{2tr}K + \tau_{rj}^*\phi_{rj}$.

Construct $\Omega = \text{blkdiag}(\Omega_1, \dots, \Omega_R)$

Let
$$C = \sigma^{-2} X^{\top} \Gamma_j^2 X \otimes B^{\top} B + \Omega$$

Let
$$A = \sigma^{-2} \text{vec}[\{B^{\top}Y^{\top} - B^{\top}B(\beta + \sum_{j' \neq j} \Lambda_{j'}X^{\top}\Gamma_{j'})\}\Gamma_{j}X]$$

Sample $\Lambda_j \sim N(C^{-1}A, C^{-1})$

(3) Update η_{ij} :

Let
$$\boldsymbol{\eta}_i = (\eta_{i1}, \dots, \eta_{ik}).$$

Let \ddot{X}_i be a $p \times k$ matrix with column j equal to $\Lambda_j \boldsymbol{b}^x(\boldsymbol{x}_i)$.

Let $C = \sigma^{-2} \ddot{X}_i^{\top} B^{\top} B \ddot{X}_i + I_k$, where I_k is the $k \times k$ identity matrix.

Let
$$A = \sigma^{-2} \ddot{X}_i^{\top} \{ B^{\top} Y_i - B^{\top} B \beta \boldsymbol{b}^x(\boldsymbol{x}_i) \}$$

Sample $\boldsymbol{\eta}_i \sim N(C^{-1} A, C^{-1})$

(4) Update σ^2 :

Let
$$A = Y^{\top} - B\beta X^{\top} + \sum_{j=1}^{k} B\Lambda_j X^{\top} \Gamma_j$$

Sample $\sigma^{-2} \sim \text{Gamma}(Nn/2 + a_{\epsilon}, A \odot A/2 + b_{\epsilon})$, where \odot denotes element-wise multiplication.

(5) Update τ_{1tr} , τ_{1xr} , τ_{2tr} , τ_{2xr} :

Sample
$$\tau_{1tr} \sim \text{Gamma}\{\text{rank}(\tilde{K})/2 - 0.5, \text{vec}(\beta_r)^{\top} \tilde{K} \text{vec}(\beta_r)/2\}$$

Sample $\tau_{1xr} \sim \text{Gamma}\{\text{rank}(\tilde{K}_r)/2 - 0.5, \text{vec}(\beta_r^{\top}) \tilde{K}_r \text{vec}(\beta_r)/2\}$ (if $p_r > 1$)
Sample $\tau_{2trj} \sim \text{Gamma}\{\text{rank}(\tilde{K})/2 - 0.5, \text{vec}(\Lambda_{rj})^{\top} \tilde{K} \text{vec}(\Lambda_{rj})/2\}$
Sample $\tau_{2xrj} \sim \text{Gamma}\{\text{rank}(\tilde{K}_r)/2 - 0.5, \text{vec}(\Lambda_{rj}^{\top}) \tilde{K}_r \text{vec}(\Lambda_{rj})/2\}$ (if $p_r > 1$)

(6) Update ϕ_{ri} :

Let ϕ_{irj} denote the *i*th diagonal element of ϕ_{rj} .

Let λ_{irj} be the *i*th element of $\text{vec}(\Lambda_{rj})$.

Sample $\phi_{irj} \sim \text{Gamma}(a_{\phi} + 0.5, \tau_{rj}^* \lambda_{irj}^2 / 2 + b_{\phi})$

(7) Update δ_{r1} :

Let
$$A = \operatorname{vec}(\Lambda_{r1}^{\top})\phi_{r1}\operatorname{vec}(\Lambda_{r1})$$

Let $B = \sum_{j=2}^{k} \tau_{rj}^{*}\operatorname{vec}(\Lambda_{rj})^{\top}\phi_{rj}\operatorname{vec}(\Lambda_{rj})$
Sample $\delta_{r1} \sim \operatorname{Gamma}\{kp_{r}p/2 + a_{r0}, (A+B)/2 + 1\}$

(8) Update δ_{ri} :

Let
$$A = \sum_{j'=1}^k \tau_{rj'}^{*(j)} \operatorname{vec}(\Lambda_{rj'})^{\top} \phi_{rj'} \operatorname{vec}(\Lambda_{rj})$$
, where $\tau_{rj'}^{*(j)} = \tau_{rj'}^*$ if $j \neq j'$ and 1 otherwise.
Sample $\delta_{rj'} \sim \operatorname{Gamma}\{p_r p(k-j'+1)/2 + a_{r1}, A/2 + 1\}$

(9) Update a_{r0} :

Let $Gamma^*(x, a, b)$ denote the Gamma density evaluated at x with shape a and rate b. Let $\phi(x)$ denote the standard normal cumulative distribution function evaluated at x. Sample candidate $a_{r0}^* \sim N(a_{r0}, 1)$ until $a_{r0}^* > 0$.

Compute
$$A = \frac{\text{Gamma}^*(\delta_{r1}, a_{r0}^*, 1) \cdot \text{Gamma}^*(a_{r0}^*, 2, 1) \cdot \phi(a_{r0})}{\text{Gamma}^*(\delta_{r1}, a_{r0}, 1) \cdot \text{Gamma}^*(a_{r0}, 2, 1) \cdot \phi(a_{r0}^*)}$$

Sample $U \sim \text{Unif}(0,1)$

If $U \leq A$, accept candidate a_{r0}^* .

(10) Update a_{r1} :

Let
$$\delta_{r2}^* = \prod_{j=2}^k \delta_{rj}$$

Let $Gamma^*(x, a, b)$ denote the Gamma density evaluated at x with shape a and rate b.

Let $\phi(x)$ denote the standard normal cumulative distribution function evaluated at x.

Sample candidate $a_{r1}^* \sim N(a_{r1}, 1)$ until $a_{r1}^* > 0$.

Compute
$$A = \frac{\text{Gamma}^*(\delta_{r2}^*, a_{r1}^*, 1) \cdot \text{Gamma}^*(a_{r1}^*, 2, 1) \cdot \phi(a_{r1})}{\text{Gamma}^*(\delta_{r2}^*, a_{r1}, 1) \cdot \text{Gamma}^*(a_{r1}, 2, 1) \cdot \phi(a_{r1}^*)}$$

Sample $U \sim \text{Unif}(0,1)$

If $U \leq A$, accept candidate $a_{r_1}^*$.

(11) Update missing values of Y:

Suppose $y_i(t_i)$ is missing.

Let
$$\mu = \boldsymbol{b}(t_j)\beta \boldsymbol{b}^x(\boldsymbol{x}_i) + \sum_{j=1}^k \boldsymbol{b}(t_j)\Lambda_j \boldsymbol{b}^x(\boldsymbol{x}_i)\eta_{ij}$$

Sample
$$y_i(t_j) \sim N(\mu, \sigma^2)$$

For convenience, Table contains notation used in the main article and this document of supporting information.

[Table 1 about here.]

- 2. Web Appendix B: Additional details on posterior inference
- 3. Web Appendix C: Setting hyperparameters
- 4. Web Appendix D: Extended simulation results
- 5. Web Appendix E: Additional details on case studies

 ${\bf Table~1}\\ {\it Notation~used~in~the~main~article~and~document~of~supporting~information}.$

Name	Description	Dimension
$oldsymbol{x}_i$	Covariate vector for the <i>i</i> th functional response	$d_1 \times 1$
\boldsymbol{x}_{ir}	rth group of covariates associated with the i th functional response	
$\boldsymbol{b}^r(\boldsymbol{x}_{ir})$	rth group of covariates expanded into basis functions evaluated at x_{ir}	$p_r \times 1$
$\boldsymbol{b}^x(\boldsymbol{x}_i)$	Concatenated $\boldsymbol{b}^r(\boldsymbol{x}_{ir}), r = 1, \dots, R$	$r(d_1) \times 1$
p_r	# of basis functions for r th covariate group expansion	
$r(d_1)$	Total number of covariate basis functions used equal to $\sum_{r=1}^{R} p_r$	
$\boldsymbol{b}(t)$	Basis functions for functional dimension evaluated at t	$p \times 1$
$\mu(t, \boldsymbol{x}_i)$	Covariate-adjusted functional mean equal to $\boldsymbol{b}(t)^{\top} \beta \boldsymbol{b}^{x}(\boldsymbol{x}_{i})$	
β	Fixed effect parameter matrix equal to	