Math Notes

Sidharth Baskaran

March 12, 2022

Table of Contents

1	Integer Mathematics			
	1.1	Last Digit Property		
	1.2	Modular arithmetic		
	1.3	Divisibility Rules		
	1.4	Prime Numbers		
	1.5	Factors		

Preface

These notes are meant to be a resource for discrete and fundamental mathematics essential for competitive programming and general-purpose problemsolving. The resources used are chiefly EECS70: Discrete Mathematics and Probability and the AoPS Volume 1 book. An emphasis is placed on proof techniques as well.

1 Integer Mathematics

1.1 Last Digit Property

To find the last digit of the sum of product of two integers, we simply apply the operation to the last digit of each contributing integer.

Example 1. To find the last digit of $7^{42} + 42^7$, we break the answer down to the sum of the last digit of each number.

$$7^{42} = 7^2 \cdot (7^4)^{10} \qquad 42^7 \implies 2^7 = 128 \implies 8$$
$$\implies 9 \cdot 1^{10}$$
$$\implies 9$$

1.2 Modular arithmetic

A modulo equation $R = a \mod b$ can be expressed as a = kb + R. Typically, $a \ge 0$ but if we consider a < 0, then it must be that R > 0 and k < 0 because R must be in the set of *residues*, which we have as positive.

A complete set of residues $\{a_0, a_1, \dots, a_{m-1}\}$ (aka a covering system) exist if

$$a_i \equiv i \mod m$$

To denote equivalence of a number a in mod b, we say

$$a \equiv c \mod b$$

Example 2. The last digit problem is simplified, for one can apply the mod operation prior to performing the main operation.

$$7^{42} \equiv 7^2 \mod 10$$
 $42^7 \equiv 2^7 \mod 10$
 $\equiv 9 \mod 10$ $\equiv 8 \mod 10$

There are useful properties of modular congruences. Let $a \equiv b \mod m$ and $p \equiv q \mod m$. Then, $\forall c \in \mathbb{Z}_+$:

$$a + c \equiv b + c \mod m \tag{1}$$

$$a - c \equiv b - c \mod m \tag{2}$$

$$ac \equiv bc \mod m$$
 (3)

$$a^c \equiv b^c \bmod m \tag{4}$$

$$(a+p) \equiv (b+q) \bmod m \tag{5}$$

$$ap \equiv bq \bmod m \tag{6}$$

1.3 Divisibility Rules

1.3.1 Divisibility by 2, 4, 8

To test divisibility by 4 and 8, the last 2 and 3 digits respectively must be divisible by 4 and 8 respectively. This is because 4 divides a multiple of 100 and 8 a multiple of 1000. This is proven by breaking the number into its base 10 composition.

Checking a number *n* for 8, we use the fact that $1000^k \equiv 0 \mod 8$.

$$n \equiv 100a + 10b + c \mod 8$$

So check if the hundreds, tens and unit places are divisible by 8. Similar argument for 4.

1.3.2 Divisibility by 3

Note that $100 \equiv 10 \cdot 10 \mod 3 \equiv 1 \cdot 1 \mod 3$. In general we can say that $10^n \equiv 1 \mod 3$. If we take for example the 4-digit number abcd:

$$abcd \equiv 10^3 \cdot a + 10^2 \cdot b + 10c + d \mod 3$$
$$\equiv a + b + c + d \mod 3$$

Thus, if $a + b + c + d \equiv 0 \mod 3$, abcd is divisible by 3.

1.3.3 Divisibility by 5

The number must end in either 0 or 5.

1.3.4 Divisibility by 6

The number must be both divisible by 2 and 3.

1.3.5 Divisibility by 7

If we desire to test some n, note that we can write n = 10a + b. Multiplying by 2 does not change the divisibility by 7, so $2n = 20a + 2b \implies n = \frac{20a + 2b}{2} = \frac{21a - (a - 2b)}{2}$. Then, it follows that

$$n \equiv \frac{21a - (a - 2b)}{2} \mod 7$$
$$\equiv 2b - a \mod 7$$

1.3.6 Divisibility by 9

Similar to 3, $10^n \equiv 1 \mod 9$. Using the same methods as for divisibility by 3, we conclude that the sum of digits in a number must be divisible by 9.

1.3.7 Divisibility by 11

We can break a number *N* into

$$N = 10^{n} a_{n} + 10^{n-1} a_{n-1} + \dots + a_{0}$$

For 10^k , if k is odd, then, $10^k \equiv -1 \mod 11$ else if even $10^k \equiv 1 \mod 11$. Let us assume n is even, then

$$N \equiv a_n - a_{n-1} + a_{n-2} - a_{n-3} + \dots + a_0 \mod 11$$

$$\equiv (a_n + a_{n-2} + \dots + a_0) - (a_{n-1} + a_{n-3} + \dots + a_1) \mod 11$$

So $N \equiv 0 \mod 11$ if the difference of even and odd-indexed digit sums is divisble by 11.

1.4 Prime Numbers

A number can be broken into the product of its prime factors. Note that the largest factor of a number N must be less than or equal to \sqrt{N} . There are also infinite prime numbers.

Proof. Suppose there exist a finite number of primes $p_1, p_2, ..., p_n$. We know that a prime number is only divisible by unity and itself. Then, suppose we have $P = \prod_{i=1}^{n} p_i + 1$. P is not divisible by any of the primes, only itself or 1. But since $P \ge 1$ it must have a prime factorization, so the list we initially provided does not cover all of the primes.

1.5 Factors

Greatest common factor (GCF) is the greatest common factor between two numbers. Can find by taking product of all prime numbers common to both. Expressed as (a,b) = c where c = gcf(a,b). When (a,b) = 1, they are relatively prime.

Least common multiple is smallest number that divides both numbers evenly. Expressed as [a,b] = c where c = lcm(a,b). Easily found by observing prime factorization and creating a set which contains the factors of either number, and the largest exponent if the bases are the same. Identical to finding the least common denominator.