Outdoor Localization using GPS

Amitangshu Pal

https://www.shutterstock.com/nb/video/clip-13833572-localization-gps-navigation-path-finding-city-routing https://commons.wikimedia.org/wiki/File:Earth_Orbits.svg

Various Application Areas

Sector	Specific Analytical Focus
Agriculture	Precision agriculture technologies and practices
Electricity	Electrical system reliability and efficiency
Finance	Time stamps for high-frequency trading
Location-based services	Smartphone apps and consumer devices that use location services to deliver services and experiences
Mining	Efficiency gains, cost reductions, and increased accuracy
Maritime	Navigation, port operations, fishing, and recreational boating
Oil and gas	Positioning for offshore drilling and exploration
Surveying	Productivity gains, cost reductions, and increased accuracy in professional surveying
Telecommunications	Improved reliability and bandwidth utilization for wireless networks
Telematics	Efficiency gains, cost reductions, and environmental benefits through improved vehicle dispatch and navigation

Sends navigation messages at ~50 bps

☐ Transmits satellites exact location

Radio waves travel at the speed of light. If GPS signal leaves satellite at time "T"...

(t,...)

$$t_s = T$$

...and is picked up by the receiver at time "T + 3."

Then distance between satellite and receiver = "3 times the speed of light"

GPS Localization (Trilateration)

$$(x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2 = r_1^2$$

$$(x - x_2)^2 + (y - y_2)^2 + (z - z_2)^2 = r_2^2$$

$$(x - x_3)^2 + (y - y_3)^2 + (z - z_3)^2 = r_3^2$$

$$(x - x_4)^2 + (y - y_4)^2 + (z - z_4)^2 = r_4^2$$

$$2(x_2 - x_1)x + 2(y_2 - y_1)y + 2(z_2 - z_1)z = (r_1^2 - r_2^2) - (x_1^2 - x_2^2) - (y_1^2 - y_2^2) - (z_1^2 - z_2^2)$$

$$2(x_3 - x_2)x + 2(y_3 - y_2)y + 2(z_3 - z_2)z = (r_2^2 - r_3^2) - (x_2^2 - x_3^2) - (y_2^2 - y_3^2) - (z_2^2 - z_3^2)$$

$$2(x_4 - x_3)x + 2(y_4 - y_3)y + 2(z_4 - z_3)z = (r_3^2 - r_4^2) - (x_3^2 - x_4^2) - (y_3^2 - y_4^2) - (z_3^2 - z_4^2)$$

$$AX = \begin{bmatrix} 2(x_2 - x_1) & 2(y_2 - y_1) & 2(z_2 - z_1) \\ 2(x_3 - x_2) & 2(y_3 - y_2) & 2(z_3 - z_2) \\ 2(x_4 - x_3) & 2(y_4 - y_3) & 2(z_4 - z_3) \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} (r_1^2 - r_2^2) - (x_1^2 - x_2^2) - (y_1^2 - y_2^2) - (z_1^2 - z_2^2) \\ (r_2^2 - r_3^2) - (x_2^2 - x_3^2) - (y_2^2 - y_3^2) - (z_2^2 - z_3^2) \\ (r_3^2 - r_4^2) - (x_3^2 - x_4^2) - (y_3^2 - y_4^2) - (z_3^2 - z_4^2) \end{bmatrix} = B$$

Hundreds of kms of errors due to unsynchronized clocks

Sends navigation messages at ~50 bps

☐ Transmits satellites exact location

Radio waves travel at the speed of light. If GPS signal leaves satellite at time "T"...

$$t_s = T$$

...and is picked up by the receiver at time "T + 3."

Then distance between satellite and receiver = "3 times the speed of light"

$$(x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2 = (r_1 - \Delta)^2$$

$$(x - x_2)^2 + (y - y_2)^2 + (z - z_2)^2 = (r_2 - \Delta)^2$$

$$(x - x_3)^2 + (y - y_3)^2 + (z - z_3)^2 = (r_3 - \Delta)^2$$

$$(x - x_4)^2 + (y - y_4)^2 + (z - z_4)^2 = (r_4 - \Delta)^2$$

$$(x - x_5)^2 + (y - y_5)^2 + (z - z_5)^2 = (r_5 - \Delta)^2$$

$$2(x_2 - x_1)x + 2(y_2 - y_1)y + 2(z_2 - z_1)z = (r_1^2 - r_2^2) - 2(r_1 - r_2)\Delta - (x_1^2 - x_2^2) - (y_1^2 - y_2^2) - (z_1^2 - z_2^2)$$

$$2(x_3 - x_2)x + 2(y_3 - y_2)y + 2(z_3 - z_2)z = (r_2^2 - r_3^2) - 2(r_2 - r_3)\Delta - (x_2^2 - x_3^2) - (y_2^2 - y_3^2) - (z_2^2 - z_3^2)$$

$$2(x_4 - x_3)x + 2(y_4 - y_3)y + 2(z_4 - z_3)z = (r_3^2 - r_4^2) - 2(r_3 - r_4)\Delta - (x_3^2 - x_4^2) - (y_3^2 - y_4^2) - (z_3^2 - z_4^2)$$

$$2(x_5 - x_4)x + 2(y_5 - y_4)y + 2(z_5 - z_4)z = (r_4^2 - r_5^2) - 2(r_4 - r_5)\Delta - (x_4^2 - x_5^2) - (y_4^2 - y_5^2) - (z_4^2 - z_5^2)$$

$$AX = \begin{bmatrix} 2(x_2 - x_1) & 2(y_2 - y_1) & 2(z_2 - z_1) & 2(r_1 - r_2) \\ 2(x_3 - x_2) & 2(y_3 - y_2) & 2(z_3 - z_2) & 2(r_2 - r_3) \\ 2(x_4 - x_3) & 2(y_4 - y_3) & 2(z_4 - z_3) & 2(r_3 - r_4) \\ 2(x_5 - x_4) & 2(y_5 - y_4) & 2(z_5 - z_4) & 2(r_4 - r_5) \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ \Delta \end{bmatrix} = \begin{bmatrix} (r_1^2 - r_2^2) - (x_1^2 - x_2^2) - (y_1^2 - y_2^2) - (z_1^2 - z_2^2) \\ (r_2^2 - r_3^2) - (x_2^2 - x_3^2) - (x_2^2 - x_3^2) - (y_2^2 - y_3^2) - (z_2^2 - z_3^2) \\ (r_3^2 - r_4^2) - (x_3^2 - x_4^2) - (y_3^2 - y_4^2) - (z_3^2 - z_4^2) \\ (r_4^2 - r_5^2) - (x_4^2 - x_5^2) - (y_4^2 - y_5^2) - (z_4^2 - z_5^2) \end{bmatrix} = B$$

Sources of Inaccuracies

$$Ax = b$$
$$A\hat{x} = \hat{b}$$

$$A^T e = 0 \rightarrow A^T (b - A\hat{x}) = 0 \rightarrow A^T A\hat{x} = A^T b$$

$$\hat{x} = (A^T A)^{-1} A^T b$$

GPS Localization (Minimize Mean Square Error)

$$Ax = b$$
$$A\hat{x} = \hat{b}$$

$$||\mathbf{A}\mathbf{x} - \mathbf{b}||_{2}^{2} = (\mathbf{A}\mathbf{x} - \mathbf{b})^{\mathrm{T}}(\mathbf{A}\mathbf{x} - \mathbf{b}) = \mathbf{x}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} - 2\mathbf{x}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}\mathbf{b} + \mathbf{b}^{\mathrm{T}}\mathbf{b}$$

$$2\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} - 2\mathbf{A}^{\mathrm{T}}\mathbf{b} = 0 \Leftrightarrow \mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$$

$$x = (A^{T}A)^{-1}A^{T}b$$

1-3 meters of errors

GPS Localization (Minimize Mean Square Error)

$$Ax = b$$
$$A\hat{x} = \hat{b}$$

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$

$$||\mathbf{A}\mathbf{x} - \mathbf{b}||_{2}^{2} = (\mathbf{A}\mathbf{x} - \mathbf{b})^{\mathrm{T}}(\mathbf{A}\mathbf{x} - \mathbf{b}) = \mathbf{x}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} - 2\mathbf{x}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}\mathbf{b} + \mathbf{b}^{\mathrm{T}}\mathbf{b}$$

$$2\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} - 2\mathbf{A}^{\mathrm{T}}\mathbf{b} = 0 \Leftrightarrow \mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$$

$$x = (A^{T}A)^{-1}A^{T}b$$

1-3 meters of errors

$$GDOP = \frac{\Delta(\text{Output Location})}{\Delta(\text{Measured Data})}$$

