AutoCap

Image Captioning in AC-215

Problem Definition

The **visually impaired** rely on screen readers to access the internet through audio. Additionally, photo album **indexing**, automatic **social media** captioning, and image **filtering** are just some of the many applications that make accurate automatic image captioning an important priority.

Proposed Solution

The objective of this model is to take an image as an input and produce a sequence of text that serves as the caption of the image. We can achieve this with a deep learning, encoder-decoder model, where the image is encoded into features that are then decoded into a sequence of text.

AutoCap Roadmap

Data Exploration

MS-COCO Dataset

330k images

5+ captions per image

Training subset

118,287 RGB images

591,753 captions

53,953 unique words

Sample images of MS-COCO train dataset

<start> A man and woman standing in front of a bar. <end>
<start> Man and woman standing outside a bar featuring happy hour! <end>
<start> A couple poses under a banner of a turkey. <end>
<start> People are standing next to each other under a turkey sign. <end>
<start> A newly married couple standing next to each other. <end>

<start> A person in an office holding an Apple cell phone. <end>
<start> A person holding an older version of an ipod. <end>
<start> Small apple cell phone image from the back of a silver case. <end>
<start> A man holding a silver colored iPhone cell phone. <end>
<start> The back of an iphone in front of a destk. <end>

<start> A couple of young men playing a game of frisbee. <end>
<start> Two men in a field by a parking lot play frisbee <end>
<start> two people playing frisbee in a park next to cars <end>
<start> Two people playing tennis together in a field. <end>
<start> Two people playing with a disc in a big grassy field. <end>

<start> A plain, empty kitchen wit a light turned on <end>
<start> A clean kitchen filled with kitchen appliances like a refrigerator and a stove. <end>
<start> A long, clean and spacious kitchen with microwave and other gazette. <end>
<start> A long kitchen filled with kitchen furniture and accessories. <end>
<start> A brown kitchen with a light on in the middle of it. <end>

Data Exploration

Baseline Modeling

- Used convolutional neural network, InceptionV3, pretrained on the ImageNet dataset to extract high-level features from the images
- Pass features to RNN to predict the next word for each caption

Baseline Modeling

Approach #1

Loss Plot

0 50 100 150 200 250

Actual: a bathroom with two different styles of toilets

Predicted: a bathroom with marble tile floor and a shower curtain

Actual: a white sink that has a necklace a rubber <unk> toothpaste and some beauty items lying around them

Predicted: a bathroom with a sink and a sink

Approach #2

10

0.9

8.0

RNN-Attention

Actual: A tan and brown clock tower with sky in the background

Predicted a clock tower next to a brick building

Transformer

Actual: living room with a sectional couch and a coffee table

Predicted: a living room with a couch and a coffee table

Final Model Stack

Web App

Deployment

Chrome Browser Extension

The AutoCap Chrome extension interfaces with the backend server API to iterate through all images without an alt attribute on a webpage, upload these images, and generate image captions. Returned captions are added to the corresponding img tag.

Future Improvements

- Leverage pre-trained GLoVe embeddings to decrease model training time and improve performance
- Add additional language models
- Create user feedback mechanism to capture caption corrections; update model weekly based on updates
- Create a similar browser extension for Safari
- Improve **security** functionality
- Develop image tagging for offensive content

The Team

Kamran Ahmed

Harvard University Program in Neuroscience

Luke Sagers

Harvard University
Computational Health Informatics

Brendan O'Leary

Harvard University School of Engineering

James Parker

Harvard Business School Harvard School of Engineering