Exercice 17.4

Dans un plan α vertical, on donne un point Ω et une droite d. On considère le cercle γ de centre Ω et de rayon r=6 situé dans le plan α . Construire en deuxième projection les points d'intersection de d avec γ et les tangentes à γ en ces points. Puis représenter γ_2 .

Pour faire apparaître le cercle γ en vraie grandeur, on rabat le plan vertical α sur π_2 autour de α'' .

Dans le plan α rabattu, le cercle γ apparaît en vraie grandeur. Les diamètres AB et CD sont respectivement parallèle et perpendiculaire à la charnière.

En deuxième projection, A_2B_2 et C_2D_2 sont les axes de l'ellipse γ_2 . On construit D_2 par affinité à l'aide de la droite (BD), puis C_2 par symétrie.

On construit la droite rabattue d_0 à l'aide du point invariant de d et d'un autre point. Par exemple le point d'intersection de d avec le diamètre AB.

On en déduit les points d'intersection P et Q de d avec γ . D'abord dans le plan α rabattu, puis en deuxième projection.

Voici les tangentes à γ en P et Q, dans le plan α rabattu, puis en deuxième projection.

On trace l'ellipse γ_2 à l'aide du rectangle circonscrit et des deux tangentes.

