Tradeoffs in Polarimeter Design

J. Scott Tyo
ECE Department, University of New Mexico
Albuquerque, NM 87131-1356
tyo@ece.unm.edu

maintaining the data needed, and of including suggestions for reducing	llection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu ald be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 00 MAR 2003		2. REPORT TYPE N/A		3. DATES COVERED -		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Tradeoffs in Polarimeter Design				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ECE Department, University of New Mexico Albuquerque, NM 87131-1356				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT lic release, distributi	on unlimited				
13. SUPPLEMENTARY NO See also ADM2015	OTES 29., The original do	cument contains col	or images.			
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF: 17. LIM				18. NUMBER OF PAGES	19a. NAME OF	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT SAR	38	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Presentation Outline

- System Dimensionality
 - Example Applications and Methods
- Data Collection Strategies
 - Serial -vs- Parallel
 - Rotating -vs- Non-Rotating Optics
 - Active -vs- Passive
- System Optimization

Multi-Dimensional Stokes Polarimetry

1-D Polarimetry

Contrast Enhancement in Photography (e.g. Duntley, 1974; Gilbert, 1964)

3-D Linear Polarimetry

Target Identification (Halaijan and Hallock, 1972; Walraven, 1977; Duggin 2002; Wolff, et al., 1994; etc.)

2-D Polarization Difference

Scatter Mitigation, Contrast Enhancement (Tyo, *et al.*,1996; Silverman and Strange, 1996)

4-D Stokes Vector Imaging

Target Identification (Soloman, 1981; Chipman, *et al.*, 1997; etc.)

1-D Polarimetry - Photography

- •Linear polarization filters are used extensively in photography to maximize the contrast between the subject and the background
- •Maximum utility when the scattering background provides a high degree of linear polarization, as when a scattering medium is illimunated at right-angles to the direction of observation
- •Beneficial with skybackground, underwater, in fog or dust, etc.

Tradeoffs for 1-D Polarimetry

pros

- No images to register
- Can be optimized in near-real time
- Linear or circular

cons

- 3 dimensions of polarization blindness
- Image features vary as system is tuned
- No quantitative polarization result

Experimental Setup for 2-D PDI

Prepared Targets

В

Step-by-Step PDI (2-D)

Tradeoffs for 2-D Polarimetry

pros

- 2 images to register
- Can be optimized in nearreal time
- Linear polarization (can be used with circular too)
- Projects noise into orthogonal dimension, suppresses biases

cons

- 2 dimension of polarization blindness
- Image Registration
- Image features vary as system is tuned

2-D Polarization Images

Polarization Bias

Horizontal Pixel Position

3-D Linear Polarimetry

- Measures the first three Stokes parameters
- Needs 3 or more measurements
- Can physically or electro-optically rotate

3-D Polarimetric Images

Back-Illuminated dielectric sphere with full 3-D colorimetric representation

Revisiting the earlier scene (Note – color axis reversed)

Tradeoffs for 3-D Polarimetry

pros

- Linear polarization (can be used with circular as s_0 , s_1 , s_3)
- Provides angle of polarization, DOLP

cons

- 1 dimension of polarization blindness
- Image Registration
- Image features vary as system is tuned
- 3-D noise can corrupt data presentation

Benefits of 2-D -vs- 3-D

Robust Representations in Scattering Media

2-D 3-D

Full Stokes Vector Polarimeter Design

Data Collection can be either SERIAL or PARALLEL

Polarimetric images of sphere and cylinder

Variable Retardance Polarimetry

Tradeoffs for 4-D Polarimetry

pros

- Provides full Stokes
 Vector Information
- No polarization blindness

cons

- Must collect at least 4 images (registration, spatiotemporal resolution)
- Requires circular polarization optics (expensive, difficult)

And What About Spectropolarimetry?

- •Optical layout of a full Stokes vector, hyperspectral polarimeter for use in the visible
- •Coupled a spatial shear modified Sagnac interferometer with a variable retardance polarimeter
- •Approximately 80 bands across 450 750 nm

Experimental Images

Scan Lines

Stack of Cylinders

Spatio-Spectral s₀ "Images" Stack of Cylinders

Spatio-Spectral Stokes "Images" Clear Cylinder

Tradeoffs for Spectropolarimetry

pros

- Provides Stokes vector information *at all* wavelengths
- Can calibrate out spectral dependence of optics
- Can be used as a spectrometer

cons

- Huge data storage and alignment issues
- Requires circular polarization optics (expensive, difficult)
- Major spatio-temporal resolution bottleneck
- Extremely low optical throughput
- Little or no evidence for highly spectrally resolved polarization information

Active Polarimetry

pros

- Can use polarization even when signature is depolarizing
- Can use in any wavelength regime (radar, lidar, etc.)
- Provides up to 16 dimensional information
- Can control illumination to maximize utility

cons

- System complexity
- Very low spatiotemporal resolution
- Difficult to do "broadband"
- Provides up to 16 dimensional information

Polarimeter Optimization

- There is an optimum configuration for *every* 2-D, 3-D, and 4-D polarimeter design, as well as active systems
- Depends on the strategy used and the number of measurement made
- Improper design of system can provide unnecessarily low SNR and oversensitivity to optical calibration issues

How Do We Detect Stokes Vector?

- Problem: Optical detectors are typically photon counters Generally Pol-insensitive
 - We can only measure $s_0!$
- Solution: Design an optical system that modifies s_0 based on the input polarization
 - Infer $s_0 s_3$ from intensity measurements

Polarimetric analysis – Variable Retardance

The Stokes vector of the emergent light is

$$\mathbf{S}_{o} = \mathbf{M}_{LP}(\theta) \mathbf{M}_{VR}(\phi_{2}, \delta_{2}) \mathbf{M}_{VR}(\phi_{1}, \delta_{1}) \mathbf{S}_{i}$$
With Intensity $I = \mathbf{M}_{1}^{T} \cdot \mathbf{S}_{i}$

Vary parameters to form a linear system:

$$\mathbf{I} = \mathbf{A} \cdot \mathbf{S}_i$$

Polarimetric analysis (cont.)

The input Stokes vector is obtained by inversion:

$$\mathbf{S}_i = \mathbf{A}^{-1} \cdot \mathbf{I} = \mathbf{B} \cdot \mathbf{I}$$

B is termed the "Synthesis Matrix" as it is used to reconstruct the Stokes Parameters

Simulated Images

Simulated Images - Original Parameters

Simulated Images - Optimized System

General Optimization

2-D Linear Polarization

3-D Linear

3-D Linear, 4 Measurements

4-D Stokes Vector

References for Optimization

- 1. Azzam, *et al.*, "General analysis and optimization of the four-detector photopolarimeter," *JOSA A* **5**:681 (1988)
- 2. Ambirijan and Look "Optimum angles for a polarimeter: Part I," *Opt. Eng.* **34**: 1651 (1995)
- 3. Ambirijan and Look "Optimum angles for a polarimeter: Part I," *Opt. Eng.* **34**: 1655 (1995)
- 4. Tyo, "Optimum Linear Combination Strategy For A *N*-Channel Polarization Sensitive Vision Or Imaging System," *JOSA A* **15**:359 (1998)
- 5. @ARTICLE{sabatke ol,
- 6. Sabatke, *et al.*, "Optimization of Retardance for a Complete Stokes
- 7. Polarimeter," *Opt. Lett.* **25**:802 (2000)
- 8. Tyo, "Noise equalization in Stokes Parameter Images obtained by use of variable retardance polarimeters," *Opt. Lett.* **25**: 1198 (2000)
- 9. Tyo, "Design of optimal polarimers: maximization of SNR and minimization of systematic errors," *Appl. Opt.* **41**:619 (2002)
- 10. Smith, "Optimization of a dual-rotating-retarder Mueller matrix polarimeter," *Appl. Opt.* **41**:2488 (2002)

Design of Optimum Polarimeters

- The optimum set of parameters provides maximum information per measurement, i.e. these measurements are maximally decorrelated
- For Variable Retardance Polarimetry, a non-unique optimum parameter set will equalize the noise in the three Stokes images
- Rotating retarder systems the optimum retardance is 132° not 90°
- Rotating retarder systems the optimum angles are at $\pm 15.1^{\circ}, \pm 51.7^{\circ}$
- A new set of optimum settings must be computed for situations with a polarization bias (Tyo, *et al.*, 1996)
- In principle, such a set of optimum parameters exists for *any* polarimetry strategy
 - N-channel Linear Polarimetry (Tyo, 1998)
 - Variable Retardance Polarimetry (Tyo and Turner, 1999)
 - Rotating Compensator (Ambirajan and Look, 1995; Sweatt, et al., 1999)