Intervalles et droite réelle

Définition d'un intervalle. L'ensemble des nombres réels compris entre a (inclus) et b (inclus) est appelé **intervalle** et se note [a; b]. a et b sont **les bornes de l'intervalle**. Les autres types d'intervalles sont :

Ensemble des réels x tels que	Signification	Notation	Représentation
$a \le x \le b$	x est entre a inclus et b inclus	$x \in [a; b]$	a b
$a < x \le b$	x est entre a exclus et b inclus	$x \in]a;b]$	a b
$a \le x < b$	x est entre a inclus et b exclus	$x \in [a; b[$	a b
a < x < b	x est entre a exclus et b exclus	$x \in]a;b[$	a b
$x \ge a \text{ (ou } a \le x)$	x est supérieur ou égal à a	$x \in [a; +\infty[$	
x > a (ou a < x)	x est (strictement) supérieur à a	$x \in]a; +\infty[$	
$x \le b \text{ (ou } b \ge x)$	x est inférieur ou égal à a	$x \in]-\infty;b]$	
x < b (ou b > x)	x est (strictement) inférieur ou égal à a	$x \in]-\infty; b[$	—————————————————————————————————————

Définition. $-\infty$ et $+\infty$ se disent respectivement « **moins l'infini** » et « **plus l'infini** ». Le crochet est toujours vers l'extérieur en $+\infty$ et $-\infty$.

Définition. L'ensemble des nombres réels \mathbb{R} est $]-\infty;+\infty[$. L'ensemble des nombres réels <u>positifs</u> s'écrit \mathbb{R}_+ ou $[0;+\infty[$ et l'ensemble des nombres réels <u>négatifs</u> s'écrit \mathbb{R}_- ou $]-\infty;0]$.

Définition. L'intersection de deux intervalles I et J est l'ensemble noté $I \cap J$ qui contient les nombres qui appartiennent à I et à J.

Définition. L'union de deux intervalles I et J est l'ensemble noté $I \cup J$ qui contient les nombres qui appartiennent à I ou à J.

Exemple. Si I = [0; 12] et J = [3; 20], $I \cap J = [3; 12]$ et $I \cup J = [0; 20]$.

Définition. L'ensemble des réels <u>non nuls</u> s'écrit \mathbb{R}^* ou $]-\infty$; $0[\cup]0$; $+\infty[$ ou $\mathbb{R}\setminus\{0\}$.

Définition de la valeur absolue. Etant donné un réel a, on définit |a|=a si $a\geq 0$, |a|=-a si $a\leq 0$.

Exemple. |3| = 3; |-4| = 4; |-1,5| = 1,5; |5,6| = 5,6. La valeur absolue « enlève » le signe –.

Définition. La distance entre deux réels a, b quelconques est d(a; b) = |a - b|

(Car si a > b c'est a - b, et si a < b c'est b - a).

Exemples. d(2.5; 7) = |2.5 - 7| = |-4.5| = 4.5.

d(1;-3) = |1 - (-3)| = |4| = 4.

Propriété. Pour $x, a \in \mathbb{R}$ et $r \in \mathbb{R}_+$ on a : $|x - a| \le r \Leftrightarrow x \in [a - r; a + r]$

