ANALIZA PORÓWNAWCZA CEN AKCJI FIRM NVIDIA ORAZ AMD

Mackiewicz-Kubiak Aleksander Pągielska Marta

> Projekt zespołowy <u>17.01.2</u>025

karty graficzne GeForce

wartość rynkowa przekroczyła 1 bilion dolarów!

karty graficzne Radeon

procesory Ryzen

ceny zamknięcia akcji

Dane historyczne

okres 2 stycznia 2019 - 31 grudnia 2024

Dane historyczne

Dane transformowane

Dane transformowane

Podstawowe statystyki

Statystyka	NVIDIA (straty)	AMD (straty)	
Średnia	0.92	2.38	
Mediana	0.43	1.61	
Odchylenie standardowe	1.39	2.47	
Wariancja	1.95	6.12	
Minimalna wartość	0.01	0.01	
Maksymalna wartość	11.37	18.12	
Moda	0.08	0.77	

Korelacja

	Straty (AMD vs NVIDIA)	Ceny akcji (AMD vs NVIDIA)
Współczynnik Pearsona	0.169	0.783
Współczynnik Spearmana	0.149	0.908
Współczynnik Kendalla	0.101	0.726

Dopasowany rozkład SEP4 dla NVIDIA

Dopasowany rozkład SEP3 dla AMD

Wyznaczenie najlepiej dopasowanej kopuły

Kryterium/ Kopuła	Gumbela	Franka	Claytona	Normalna	t-Studenta
Loglikelihood	5.165	5.303	1.700	5.823	5.837
AIC	-8.329	-8.605	-1.400	-9.646	-7.674
BIC	-4.189	-4.465	2.740	-5.506	0.606

Wizualizacja najlepiej dopasowanej kopuły

Test Mardia

Test Andersona-Darlinga

Zmienna	Statystyka	Wartość p	Normalność
NVIDIA.close	20.40	<0.001	NIE
AMD.close	20.90	<0.001	NIE

N Alpha		Wartość Beta				
	Dane empiryczne (optimize)	Dane empiryczne (ręcznie)	Dane z kopuły (optimize)	Dane z kopuły (ręcznie)		
500	0.95	0.9203	0.9203	0.7594	0.7594	
500	0.99	0.7787	0.7787	0.7567	0.7567	
1000	0.95	0.8304	0.9039	0.9344	0.9344	
1000	0.99	0.7302	0.7302	0.8507	0.8507	

		Wartość VaR			
N	Alpha	Dane empiryczne (optimize)	Dane empiryczne (ręcznie)	Dane z kopuły (optimize)	Dane z kopuły (ręcznie)
500	0.95	3.2365	3.2366	3.4571	3.4572
500	0.99	5.0905	5.0907	5.6780	5.6781
1000	0.95	3.2109	3.2109	3.0863	3.0865
1000	0.99	5.4653	5.4653	5.6477	5.6478

```
1 #Funkcja obliczająca wartość zagrożoną (VaR)
2 compute_var <- function(beta, x, alpha = 0.05) {
3    portfolio <- beta * x[,1] + (1 - beta) * x[,2]
4    return(quantile(portfolio, probs = alpha))
5 }
6
7 #Definiowanie parametrów i inicjalizacja
8 values_N <- c(500, 1000)
9 values_Alpha <- c(0.95, 0.99)
0 betas <- seq(0, 1, by = 0.0001)
1 set.seed(5463436)</pre>
```

```
13 #Petla po różnych próbkach (N) i poziomach istotności (Alpha)
14 for (N in values N) {
15 for (alp in values Alpha) {
      # Generowanie danych symulowanych
       simulated values1 <- do.call(paste0("r", fit1$family[1]), c(list(N), fit1[fit1$parameters]))</pre>
       simulated values2 <- do.call(paste0("r", fit2$family[1]), c(list(N), fit2[fit2$parameters]))</pre>
       simulated values dist \leftarrow matrix(c(simulated values1, simulated values2), nrow = N, ncol = 2)
       simulated values copula <- rCopula(N, get(names(AIC)[which.min(AIC)])@copula)
      # Generowanie danych z kopuły
      simulated values1 <- do.call(paste0("q", fit1$family[1]), c(list(simulated values copula[, 1]),</pre>
      fit1[fit1$parameters]))
       simulated values2 <- do.call(paste0("g", fit2$family[1]), c(list(simulated values copula[, 2]),</pre>
      fit2[fit2$parameters]))
       simulated values copula changed <- data.frame(x1 = simulated values1, x2 = simulated values2)
31 #Optymalizacja wartości Beta dla danych empirycznych:
       result dist <- optimize(compute var, interval = c(0, 1), x = simulated values dist, alpha = alp)
      cat("Wartości Beta (z funkcji optimize) z danych empirycznych dla N =", N, "i Alpha =", alp,
           "wynosi", round(result dist$minimum,6))
      print empty line()
37 #Obliczanie wartości Beta dla danych empirycznych (ręcznie)
      var results1 <- data.frame(Beta = numeric(length(betas)), VaR = numeric(length(betas)))</pre>
      for (i in seg along(betas)) {
         var results \overline{1}[i, ] \leftarrow c(betas[i], compute var(betas[i], x = simulated values dist, alp))
       sorted var results1 <- var results1[order(var results1$VaR), ]
      cat("Wartości Beta (liczona ręcznie) z danych empirycznych dla N =", N, "i Alpha =",
       alp, "wynosi", round(sorted var results1$Beta[1],6), "\n")
      print empty line()
```

Wnioski

AMD: większa zmienność większe ryzyko

Współzależność nie pozwala na pełną dywersyfikację ryzyka

NVIDIA: stabilniejsza na rynku mniejsze ryzyko inwestycyjne

VaR: kopuły szacują nieco większe ryzyko