The square of any integer can be written as 3s or 3s + 1 for some integer s.

In symbols: $\forall n \in \mathbb{Z} \ \exists s \in \mathbb{Z} \ (n^2 = 3s) \lor (n^2 = 3s + 1)$

Proof:

Suppose n is an arbitrary integer.

[Note: We must show that we can write n^2 as either 3(int) or 3(int) + 1. However, we don't have any information about n other than being an integer, so we're stuck. We will use the QRT to get unstuck.]

By the quotient-remainder theorem, there exists an integer q such that n = 3q or n = 3q + 1 or n = 3q + 2.

Case 1: Assume n = 3q.

$$n^2 = (3q)^2$$
 by substitution
= $3(3q^2)$ by algebra

Let $s = 3q^2$. s is an integer by closure of the integers under multiplication and addition.

Therefore, $n^2 = 3s$.

Case 2: Assume n = 3q + 1.

$$n^2 = (3q+1)^2$$
 by substitution
= $9q^2 + 6q + 1$ by algebra
= $3(3q^2 + 2q) + 1$ by algebra

Let $s = 3q^2 + 2q$. s is an integer by closure of the integers under multiplication and addition.

Therefore, $n^2 = 3s + 1$.

Case 3: Assume n = 3q + 2.

$$n^2 = (3q+2)^2$$
 by substitution
 $= 9q^2 + 12q + 4$ by algebra
 $= 9q^2 + 12q + 3 + 1$ by algebra
 $= 3(3q^2 + 4q + 1) + 1$ by algebra

Let $s = 3q^2 + 4q + 1$. s is an integer by closure of the integers under multiplication and addition.

Therefore, $n^2 = 3s + 1$.

The QRT tells us that one of these three cases must apply, and in each case, we have proved that $n^2 = 3s$ or $n^2 = 3s + 1$ for some integer s.