Interpreting Indicator Variables

Xiaoquan Liu & Yuanjing Zhu

```
In [ ]: import numpy as np
         import pandas as pd
         import statsmodels.formula.api as smf
         import matplotlib.pyplot as plt
         import seaborn as sns
         %config InlineBackend.figure_format = 'retina'
In [ ]: df = pd.read_stata('https://github.com/nickeubank/MIDS_Data/blob'
                              '/master/automobile_dataset.dta?raw=true')
         df.head()
              make price mpg rep78 headroom trunk weight length turn
Out[]:
                                                                              displacement gear ratio
                                                                                                       foreig
               AMC
                     4099
                             22
                                    3.0
                                              2.5
                                                     11
                                                           2930
                                                                    186
                                                                          40
                                                                                       121
                                                                                                 3.58 Domesti
            Concord
               AMC
                     4749
                             17
                                    3.0
                                              3.0
                                                     11
                                                           3350
                                                                    173
                                                                          40
                                                                                       258
                                                                                                 2.53 Domesti
         1
               Pacer
               AMC
                     3799
         2
                                                                                       121
                             22
                                  NaN
                                              3.0
                                                     12
                                                           2640
                                                                    168
                                                                          35
                                                                                                 3.08 Domesti
               Spirit
               Buick
                     4816
                             20
                                    3.0
                                              4.5
                                                     16
                                                           3250
                                                                    196
                                                                          40
                                                                                       196
                                                                                                 2.93 Domesti
             Century
               Buick
                     7827
                                                                                       350
                             15
                                    4.0
                                              4.0
                                                     20
                                                           4080
                                                                    222
                                                                          43
                                                                                                 2.41 Domesti
              Electra
```

Exercise 1

create a new variable named guzzler.

```
In [ ]: # create a new column called guzzler
df['guzzler'] = np.where(df['mpg'] < 18, 1, 0)

# regress price on guzzler
mod_1 = smf.ols('price ~ guzzler', data=df).fit()
mod_1.summary()</pre>
```

Dep. V	/ariable	:		price		R-s	quared:	0.379
	Model	:		OLS	Adj	. R-s	quared:	0.370
N	Method	:	Least Squ	uares		F-:	statistic:	43.90
	Date	: Th	u, 23 Feb	2023	Prob	(F-s	tatistic):	5.38e-09
	Time	:	20:1	14:05	Log	-Lik	elihood:	-678.10
No. Observ	vations	:		74			AIC:	1360.
Df Re	siduals	:		72			BIC:	1365.
Df	Model	:		1				
Covariand	се Туре	:	nonro	bust				
	C	oef	std err		t P>	t	[0.025	0.975]
Intercept	5143.0			16.44		t 	[0.025 4519.521	-
Intercept guzzler	5143.0	893	310.011		2 0.0	•	•	5766.658
guzzler	5143.0	893	312.807 634.243	16.44	2 0.0 6 0.0	000	4519.521	5766.658
guzzler	5143.0 4202.2 nibus:	893	312.807 634.243 44 Dur	16.44	2 0.0 6 0.0 atson:	000	4519.521 2937.904	5766.658
guzzler Omi	5143.0 4202.2 nibus:	893 440 37.24	312.807 634.243 44 Dur 00 Jarqu	16.44 6.62 bin-Wa	2 0.0 6 0.0 atson:	000	4519.521 2937.904 1.348	5766.658

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Holding all other variables constant, a guzzler car will be \$4202.24 more expensive than a non-guzzler car.

Exercise 2

Create a scatter plot of price against weight

From the scatter plot, we can see that guzzler cars are generally heavier and more expensive than non-guzzler cars.

Not controlling for weight might lead to omitted variable bias in the regression in Exercise 1 and the **direction of the bias is positive** (higher than real).

This is because if we don't include weight in the regression, the positive effect of weight on price will be included into the effect of guzzler on price. In other words, we would be overestimating the effect of guzzler on price. Therefore, the direction of the bias would be positive, meaning that the coefficient estimate for guzzler would be higher than real.

Exercise 3

Regress price on guzzler, weight, foreign, headroom, and displacement

	0 = 0	, neg.	2331011	resure	9			
Dep. Variable:	:		price		R-sq	uared:	0.596	
Model	:		OLS	Ad	j. R-sqı	uared:	0.566	
Method	: Le	ast Sq	uares		F-sta	tistic:	20.04	
Date	Thu, 2	23 Feb	2023	Prob	(F-sta	tistic):	3.14e-12	
Time	:	20:	14:06	Log	g-Likeli	hood:	-662.20	
No. Observations:	:		74			AIC:	1336.	
Df Residuals			68			BIC:	1350.	
Df Model:			5					
Covariance Type:	:	nonre	bust					
		coef	std	err	t	P> t	[0.025	0.975]
Intercep	t -782.	.5353	1612.	628	-0.485	0.629	-4000.484	2435.414
foreign[T.Foreign	3278	.9827	671.	826	4.881	0.000	1938.375	4619.591
guzzle	r 1977.	.1796	711.	055	2.781	0.007	558.291	3396.068
weigh	t 1.	.9634	0.	702	2.797	0.007	0.563	3.364
headroom	-736	.7997	309.	009	-2.384	0.020	-1353.418	-120.182
displacemen	t 8.	.9667	5.	819	1.541	0.128	-2.646	20.579
	00.470	_				1 100		
Omnibus:	22.179	Dur	bin-W	atson	:	1.409		
Prob(Omnibus):	0.000	Jarqı	ue-Ber	a (JB)	: 3	7.284		
Skew:	1.118		Pro	b(JB)	: 8.0	1e-09		

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.36e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Coefficient interpretation:

- Holding all other variables constant, a foreign car will be \$3278.98 more expensive than a domestic car.
- Holding all other variables constant, a guzzler car will be \$1977.18 more expensive than a non-guzzler car.
- Holding all other variables constant, 1 lb increase in weight will lead to \$1.96 increase in price.
- Holding all other variables constant, 1 inch increase in headroom will lead to \$736.80 decrease in price.
- Holding all other variables constant, 1 cubic inch increase in displacement will lead to \$8.97 increase in price.

After we control on weight, the coefficient estimate for guzzler decreases from 4202 to 1977. This confirms our prediction in Q3 that the coefficient estimate for guzzler in Q1 is overestimated. The inclusion of weight and other variables helps to explain some of the variation in price that was previously being attributed to guzzler.

Exercise 4

Create five separate indicator variables from rep78 and regress price on indicators for values 2 through 5.

Dep. Variable:	price	R-squared:	0.562
Model:	OLS	Adj. R-squared:	0.503
Method:	Least Squares	F-statistic:	9.611
Date:	Thu, 23 Feb 2023	Prob (F-statistic):	1.87e-08
Time:	20:14:06	Log-Likelihood:	-619.34
No. Observations:	69	AIC:	1257.
Df Residuals:	60	BIC:	1277.
Df Model:	8		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-3674.8333	2181.321	-1.685	0.097	-8038.125	688.458
C(rep78)[T.2.0]	1292.4864	1717.908	0.752	0.455	-2143.841	4728.814
C(rep78)[T.3.0]	1546.1189	1582.091	0.977	0.332	-1618.534	4710.771
C(rep78)[T.4.0]	1319.9236	1649.062	0.800	0.427	-1978.692	4618.539
C(rep78)[T.5.0]	1917.3066	1732.508	1.107	0.273	-1548.226	5382.839
foreign[T.Foreign]	3565.2581	815.700	4.371	0.000	1933.616	5196.901
headroom	-750.7992	351.685	-2.135	0.037	-1454.274	-47.325
weight	2.1325	0.890	2.396	0.020	0.352	3.913
displacement	15.4064	7.517	2.049	0.045	0.369	30.443

Omnibus:	16.791	Durbin-Watson:	1.414
Prob(Omnibus):	0.000	Jarque-Bera (JB):	19.847
Skew:	1.131	Prob(JB):	4.90e-05
Kurtosis:	4.335	Cond. No.	4.44e+04

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.44e+04. This might indicate that there are strong multicollinearity or other numerical problems.

The coefficient of C(rep78)[T.3.0] is 1546, which means that a car with acceptable repair record will be \$1546 more expensive than a car with very poor repair record, holding all other variables constant.

```
In [ ]: df['rep78'].value_counts()
```

```
Out[ ]: 3.0
                  30
          4.0
                  18
          5.0
                  11
          2.0
                   8
                   2
          1.0
          Name: rep78, dtype: int64
          mode try = smf.ols("price ~ C(rep78) + headroom + weight + foreign + displacement", \
                                 data=df).fit()
          mode_try.summary()
                               OLS Regression Results
Out[]:
                                                                    0.562
              Dep. Variable:
                                        price
                                                    R-squared:
                    Model:
                                         OLS
                                                Adj. R-squared:
                                                                    0.503
                   Method:
                                Least Squares
                                                     F-statistic:
                                                                    9.611
                      Date: Thu, 23 Feb 2023
                                              Prob (F-statistic): 1.87e-08
                      Time:
                                     20:14:06
                                                Log-Likelihood:
                                                                  -619.34
          No. Observations:
                                          69
                                                           AIC:
                                                                    1257.
               Df Residuals:
                                          60
                                                           BIC:
                                                                    1277.
                  Df Model:
                                           8
           Covariance Type:
                                   nonrobust
                                   coef
                                           std err
                                                        t P>|t|
                                                                     [0.025
                                                                               0.975]
                             -3674.8333 2181.321
                                                    -1.685
                                                           0.097
                                                                  -8038.125
                                                                              688.458
                   Intercept
             C(rep78)[T.2.0]
                              1292.4864
                                         1717.908
                                                    0.752
                                                           0.455
                                                                  -2143.841 4728.814
             C(rep78)[T.3.0]
                              1546.1189
                                         1582.091
                                                    0.977
                                                           0.332
                                                                  -1618.534 4710.771
             C(rep78)[T.4.0]
                              1319.9236
                                         1649.062
                                                    0.800
                                                           0.427
                                                                  -1978.692 4618.539
             C(rep78)[T.5.0]
                              1917.3066
                                         1732.508
                                                     1.107
                                                           0.273
                                                                  -1548.226
                                                                             5382.839
          foreign[T.Foreign]
                              3565.2581
                                           815.700
                                                    4.371
                                                           0.000
                                                                   1933.616 5196.901
                 headroom
                              -750.7992
                                           351.685
                                                    -2.135
                                                           0.037
                                                                  -1454.274
                                                                               -47.325
                     weight
                                  2.1325
                                             0.890
                                                    2.396
                                                           0.020
                                                                      0.352
                                                                                3.913
                                                    2.049 0.045
                                                                               30.443
               displacement
                                 15.4064
                                             7.517
                                                                      0.369
                Omnibus: 16.791
                                    Durbin-Watson:
                                                         1.414
          Prob(Omnibus):
                            0.000
                                   Jarque-Bera (JB):
                                                        19.847
                    Skew:
                            1.131
                                           Prob(JB):
                                                      4.90e-05
                 Kurtosis:
                            4.335
                                          Cond. No. 4.44e+04
```

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.44e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Exercise 5

Regress price on guzzler, foreign and their interaction, controlling for headroom, weight and displacement.

```
In [ ]: # regress price on guzzler, foreign and their interaction
        mod_5 = smf.ols("price ~ guzzler*foreign + headroom + weight + displacement", \
                         data=df).fit()
        mod 5.summary()
                          OLS Regression Results
```

Out[]:

	OLS Regression	resures	
Dep. Variable:	price	R-squared:	0.619
Model:	OLS	Adj. R-squared:	0.585
Method:	Least Squares	F-statistic:	18.15
Date:	Thu, 23 Feb 2023	Prob (F-statistic):	2.21e-12
Time:	20:14:06	Log-Likelihood:	-660.00
No. Observations:	74	AIC:	1334.
Df Residuals:	67	BIC:	1350.
Df Model:	6		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-391.7038	1588.834	-0.247	0.806	-3563.030	2779.622
foreign[T.Foreign]	2929.3402	679.319	4.312	0.000	1573.413	4285.267
guzzler	1354.9011	760.244	1.782	0.079	-162.552	2872.354
guzzler:foreign[T.Foreign]	2797.6787	1381.501	2.025	0.047	40.190	5555.167
headroom	-736.8717	302.195	-2.438	0.017	-1340.056	-133.688
weight	1.6417	0.705	2.330	0.023	0.235	3.048
displacement	12.6296	5.972	2.115	0.038	0.710	24.549

Omnibus:	26.353	Durbin-Watson:	1.421
Prob(Omnibus):	0.000	Jarque-Bera (JB):	46.874
Skew:	1.311	Prob(JB):	6.63e-11
Kurtosis:	5.885	Cond. No.	2.39e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.39e+04. This might indicate that there are strong multicollinearity or other numerical problems.

The coefficient of the interaction term is 2797.68, which means that the difference of how guzzler affects foreign and domestic cars is 2797.68. In other words, the price difference between foreign and domestic guzzler cars is (2929+2797.68), while the price difference between foreign and domestic non-guzzler cars is 2929. Therefore the extent to which the effect of guzzler on price differs depending on whether the car is foreign or domestic is the coefficient of the interaction term, which is 2797.68.

Exercise 6

The price difference between a foreign guzzler and a foreign non-guzzler is 4152.58

Exercise 7

The price difference between a domestic non-guzzler and a foreign non-guzzler is 2929.34

Exercise 8

Regress price on foreign, mpg and their interaction, controlling for headroom, weight and displacement.

Dep. Variable:	price	R-squared:	0.599
Model:	OLS	Adj. R-squared:	0.564
Method:	Least Squares	F-statistic:	16.71
Date:	Thu, 23 Feb 2023	Prob (F-statistic):	1.12e-11
Time:	20:14:06	Log-Likelihood:	-661.86
No. Observations:	74	AIC:	1338.
Df Residuals:	67	BIC:	1354.
Df Model:	6		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-1.232e+04	4465.992	-2.758	0.007	-2.12e+04	-3404.206
foreign[T.Foreign]	1.176e+04	2796.011	4.208	0.000	6184.000	1.73e+04
mpg	259.8139	109.998	2.362	0.021	40.257	479.371
foreign[T.Foreign]:mpg	-314.4806	109.360	-2.876	0.005	-532.764	-96.197
headroom	-484.5821	319.958	-1.515	0.135	-1123.222	154.058
weight	3.4327	0.856	4.008	0.000	1.723	5.142
displacement	14.4670	5.839	2.478	0.016	2.813	26.121

Omnibus:	22.563	Durbin-Watson:	1.442
Prob(Omnibus):	0.000	Jarque-Bera (JB):	33.595
Skew:	1.228	Prob(JB):	5.07e-08
Kurtosis:	5.204	Cond. No.	6.89e+04

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.89e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Coefficient interpretation of the main independent variables:

- Holding all other variables constant, a foreign car will be \$11760 more expensive than a domestic car when their mileage equals zero.
- Holding all other variables constant, 1 mpg increase in mileage will lead to \$259.81 increase in price for domestic car.
- Holding all other variables constant, 1 inch increase in headroom will lead to \$484.58 decrease in price.
- Holding all other variables constant, 1 lb increase in weight will lead to \$3.43 increase in price.
- Holding all other variables constant, 1 cubic inch increase in displacement will lead to \$14.47 increase in price.

Coefficient interpretation on the interaction term:

- Holding all other variables constant, as domestic car gets 1 mpg increase in mileage, the price will increase \$259.81. (mpg: 259.8139)
- Holding all other variables constant, as foreign car gets 1 mpg increase in mileage, the price change will be \$314.48 less than that of a domestic car. (foreign[T.Foreign]:mpg: -314.4806)
- In other words, holding all other variables constant, as foreign car gets 1 mpg increase in mileage, the price will decrease 54.67.(259.81-314.48 = 54.67\$)