San Francisco | March 4-8 | Moscone Center

SESSION ID: CRYP-W03

Lossy Trapdoor Permutations with Improved Lossiness

Benedikt Auerbach,

Ruhr University Bochum

Eike Kiltz, RUB Bertram Poettering, RHUL Stefan Schoenen, UDE

Agenda

- Index-dependent and index-independent lossy trapdoor permutations
 - Lossy trapdoor permutations
 - From index-dependence to index-independence
 - Instantiations in the RSA setting
- An all-but-one lossy trapdoor permutations from Phi-hiding
 - All-but-one lossy trapdoor permutations
 - Prime family generators
 - Instantiation from Phi-hiding

Lossy Trapdoor Permutations (LTP)

Index-independent Domains [PeiWat08]

Syntax

- Instance Generation
 - Injective mode: (id,td) ← Gen(1)
 - Lossy mode: (id, \bot) ← Gen(0)
- Domain D
- Function Evaluation

-
$$F(id, \cdot): D \longrightarrow D$$

- Function Inversion
 - $F^{-1}(td,\cdot): D \longrightarrow D$

Lossy Trapdoor Permutations (LTP)

Index-dependent Domains [FGKRS13]

Syntax

- Instance Generation
 - Injective mode: (id,td) ← Gen(1)
 - Lossy mode: (id, \bot) ← Gen(0)
- Domains D(id)⊆D
- Function Evaluation
 - $F(id, \cdot)$: D(id) → D(id)
- Function Inversion
 - $F^{-1}(td, \cdot)$: $D(id) \longrightarrow D(id)$

Lossy Trapdoor Permutations (LTP)

Index-dependent Domains [FGKRS13]

Example: LTP from Phi-Hiding

- Instance Generation
 - RSA modulus id=(N,e), td=(N,d)
 - Injective mode: $gcd(\varphi(N),e)=1$
 - Lossy mode: $e \mid \varphi(N)$
- Domains $D(id) = \mathbb{Z}/N\mathbb{Z}$, $D = [2^k]$
- Function Evaluation
 - $F(id,x)=x^e \mod N$
- Function Inversion
 - $F^{-1}(td,y) = y^d \bmod N$

Lossy Trapdoor Permutations

Security Properties

I) Lossiness

• LTP is lossy with lossiness factor L if for all $(id, \perp) \leftarrow Gen(0)$

$$|F(id,D(id))| \leq |D(id)| / L$$

- Example
 - $-e \mid \varphi(N)$
 - Then $x \mapsto x^e \mod N$ is roughly eto-1

II) Lossy Mode ≈c Injective Mode

- id and id' computationally indistinguishable for
 - (id,td) ← Gen(1)
 - (id', \bot) ← Gen(0)
- Example
 - Equivalent to Phi-hiding assumption
 - $(N,e)\approx c(N,e')$ where $gcd(\varphi(N),e)=1$, $e' \mid \varphi(N)$

Applications

- Applications of LTPs
 - One-way functions
 - CPA-secure encryption
 - CCA-secure encryption
 - Hedged encryption
 - ...
- Some of the constructions require index-independence

From Index-dependence to Indexindependence

- Give transformation from index-dep. LTP to index-indep. LTP
 - Generalization of construction from [HOT04] for extending range of RSA one-way permutation
- Transformation
 - In:
 - LTP (Gen,F,F^{-1}) with index-dependent domains $D(id)\subseteq D$
 - Permutation family $\pi_{id}: D \longrightarrow D$ with $\pi_{id}(D \setminus D(id)) \subseteq D(id)$
 - Out:
 - LTP (Gen',F',F'-1) with index-independent domain D
 - Instance Generation: Gen'=Gen

Working principle of function evaluation

Security of the construction

- Correctness: √
- Lossy mode ≈c injective mode: √
- Lossiness:
 - Theorem: If (Gen,F,F^{-1}) is L-lossy then (Gen',F',F^{-1}') is L/2-lossy
 - Idea behind construction: Every element of D is permuted with $F(id, \cdot)$ at least once

Example: Index-independent LTP from Phi-hiding

Instantiations

Comparison to the index-indep. LTPs from [FGKRS13]:

Assumption	D	D(id) (index-dep.)	<i>L</i> [FGKRS13]	L (our transform)
Phi-hiding	[2 ^k]	$\mathbb{Z}/\mathbb{N}\mathbb{Z}$	2	2 ^{k/4}
Quadratic Residuosity	[2 ^k]	$\mathbb{Z}/\mathbb{N}\mathbb{Z}$	4/3	2
Composite Residuosity	$[2^{k(s+1)}]$	$\mathbb{Z}/N^{s+1}\mathbb{Z}$	2 ^{(k-1)s-k/2-1}	2 ^{(k-1)s-2}

An All-but-one Lossy Trapdoor Permutation from Phi-hiding

All-but-one Lossy Trapdoor Permutations

Index-independent Domains [PeiWat08]

Syntax

- Branch set Br
- Instance generation
 - Pick branch br*∈Br
 - Instance (id,td) ← $Gen(br^*)$
- Domain D
- Function evaluation
 - $F(br,id,\cdot): D \longrightarrow D$
- Function inversion (for br≠br*)
 - $F^{-1}(br,td,\cdot): D \longrightarrow D$

All-but-one Lossy Trapdoor Permutations

Index-dependent Domains

Syntax

- Branch set Br
- Instance generation
 - Pick branch br*∈Br
 - Instance (id,td) ← $Gen(br^*)$
- Domains D(id)⊆D
- Function evaluation
 - $F(br,id,\cdot)$: $D(id) \rightarrow D(id)$
- Function inversion (for br≠br*)
 - $F^{-1}(br,td,\cdot): D(\mathrm{id}) \longrightarrow D(\mathrm{id})$

All-but-one Lossy Trapdoor Permutations Security

I) Lossy on br*

ABO is lossy with lossiness factor L:
 For all br* and (id,td) ← Gen(br*)

$$|F(br^*,id,D(id))| \leq |D(id)| / L$$

II) Hidden Lossy Branch

- id and id' are computationally indistinguishable for
 - (id,td) ← Gen(br₀)
 - (id',td') ← $Gen(br_1)$

An ABO from Phi-hiding

Idea of our construction

- Branches $Br \sim \{p_1, ..., p_m\}$ set of primes
- Instance generation
 - For branch p* sample N s.t.
 - $\circ p^* | \varphi(N)$
 - $gcd(\varphi(N),p_i)=1$ for $p_i\neq p^*$
- Domains $D(id) = \mathbb{Z}/N\mathbb{Z}$

- Function evaluation
 - $F(p,N,x) = x^p \mod N$
- Function inversion
 - $-d=p^{-1} \mod \varphi(N)$
 - $F^{-1}(p,N,x)=x^d \mod N$

Prime Family Generators

- Problem: Cannot directly use $\{p_1,...,p_m\}$
 - Inefficient
 - Restricts admissible RSA moduli N
- Solution: Prime Family Generator (PFG)
 - Maps [m] to set of primes $\{p_1,...,p_m\}$
 - Particular choice of p_i depends on seed sd
 - Recover *i*-th prime with algorithm $p_i \leftarrow PGet(sd,i)$
- Instantiation via d-wise independent hash functions
 - similar to construction from [CMS99]
 - different security properties

An ABO from Phi-hiding

Our construction

- Branches Br=[m]
- Instance generation for branch br*
 - Sample sd for PFG
 - p^* ← PGet(sd, br^*)
 - Sample N such that
 - $\circ p^* | \varphi(N)$
 - $gcd(\varphi(N),p_{br})=1$ for $p_{br}\neq p^*$
 - id=(sd,N), $td=(sd,N,\varphi(N))$
- Domains $D(id) = \mathbb{Z}/N\mathbb{Z}$

- Function evaluation F(br,id,x)
 - p ← PGet(sd,br)
 - Return x^p mod N
- Function inversion F⁻¹(br,td,y)
 - *p* ← *PGet*(*sd*,*br*)
 - $-d=p^{-1} \mod \varphi(N)$
 - Return y^d mod N

An ABO from Phi-hiding

Security of the construction

- Hidden lossy branch under a variant of Phi-hiding
- Lossiness factor L=2^{k/4}
- Index-independent variant via our transform

Summary

Summary

- From index-dependence to index-independence
 - We give a transform from index-dep. LTPs to index-indep. LTPs
 - Preserves indistinguishability
 - Preserves lossiness up to factor of 2
 - Applicable to several instantiations in the RSA setting
- An all-but-one lossy trapdoor permutation from Phi-hiding
 - First known construction from Phi-hiding
 - Builds on prime family generators

