

CS-11xx:ArhCalc

Lecţia 2:

Evaluarea performantei calculatoarelor

G Stefănescu — Universitatea București

Arhitectura sistemelor de calcul, Sem.1 Octombrie 2016—Februarie 2017

După: D. Patterson and J. Hennessy, Computer Organisation and Design

Performanta calculatoarelor

Cuprins:

- Executia programelor
- Progresul hardware-ului
- Masurarea performantei
- Programe de test (benchmark-uri)
- Concluzii

1. Sursa: Program sursă

```
swap(int v[], int k)
{int temp;
    temp = v[k];
    v[k] = v[k+1];
    v[k+1] = temp;
}
```

• în vectorul v se permută pozițiile k și k+1

2. Compilare: Program în limbajul de ansamblare (tip MIPS)

```
swap:
    muli $2, $5,4
    add $2, $4,$2
    lw $15, 0($2)
    lw $16, 4($2)
    sw $16, 0($2)
    sw $15, 4($2)
    ir $31
```

- multi înmulţire imediată; add adunare; lw/sw load/store
 word
- \$4 adresa lui v; \$5 adresa lui k; \$31 adresa de continuare; \$2,\$15,\$16 regiştri de lucru

3. Asamblor: Program în limbaj maşină binar (tip MIPS)

Asamblor (cont.)

• Codul de sus e fictiv - nu e cod MIPS real, e.g.,

trebuie simulat cu alte instrucțiuni, spre exemplu

- codul 0/1 depinde de regiştri alocaţi şi de codul instrucţiunilor;
 există convenţii standard pentru regiştri şi operaţii (e.g., \$29 = sp stack pointer; \$31 = ra return address; op = 35 1w;
 op = 43 sw, etc.)
- instrucțiunea a 2-a și ultima sunt de tip R, restul sunt de tip J; mai există instrucțiuni de tip I

Asamblor (cont.)

Există 3 tipuri de formate MIPS (pe 32 biti)

Nume	Campuri						Comentarii
Camp	6 biti	ti 5 biti 5 biti 5 biti 6 biti		toate instructiunile			
R-format	op	rs	rt	rd shamt funct		funct	instructiuni aritmetice/logice
I-format	op	rs	rt	adresa/val.imediata		ediata	transfer, branch, inst. imediată
J-format	op	adresa destinatie			natie	instructiuni salt	

unde

- R-format: op = cod operație de bază; rs = registrul sursă 1; rt = registrul sursă 2; rd = registrul destinație; shamt = "shift amount"; funct = cod funcție
- I-format: conține un "shift" de adresă, ori o valuare imediată;
- J-format: adresă de salt

Nivele Hardware/Software: O vedere simplificată (stânga) şi câteva exemple (dreapta)

Performanta calculatoarelor

Cuprins:

- Executia programelor
- Progresul hardware-ului
- Masurarea performantei
- Programe de test (benchmark-uri)
- Concluzii

Componentele calculatoarelor

Cele 5 componente clasice ale computer-ului:

- calea de date [datapath]
- control
- memorii
- intrări
- ieşiri

Combinația "datapath + control" se numește *procesor*. Toate componentele din calculatoarele din trecut și de azi intră într-una din aceste clase.

Progresul circuitelor integrate

Memorii: In medie, capacitatea memoriilor a crescut de circa 4 ori la fiecare 3 ani

.. Progresul circuitelor integrate

Chip-uri: Procedura de fabricație a chip-urilor; numai circa 25% din cele produse corespund standardelor

..Progresul circuitelor integrate

Procesorul Intel Pentium:

- Pe 91 mm² sunt 3.3mil tranzistori
- Sunt indicate componentele și plasarea lor

..Progresul circuitelor integrate

Placă de bază Intel Pentium Pro:

Glosar: IDE (Integrated Drive Electronics), ISA (Industry Standard Architecture - slot inlocuit de PCI), MIDI (Music Instrument Digital Interface), PCI (Peripherical Components Interconnect), SIMM (Single In-line Memory Module); IDE Devices (hard drive, CD-ROM)

..Progresul circuitelor integrate

Performanta statiilor de lucru (1987-1997): creştere cu circa 50% pe an (măsurate relativ la SPEC'92, programele de tip întreg și comparate cu VAX-11/780)

.. Progresul circuitelor integrate

Tendinte tehnologice:

- Circuite integrate densitatea tranzistorilor creşte cu 35% pe an, mărindu-se de 4 ori în 3 ani; mărimea capsulei creşte cu 10%-20%; cumulate, dau o creştere a numărului de tranzistori de circa 55% pe an;
- DRAM creşte densitatea cu circa 40%-60% pe an; timpul de acces se îmbunătățește mai lent, scăzând cu 1/3 la 10 ani;
- tehnologia de disk magnetic în ultima vreme, mai mult de 100% pe an;
- tehnologia de rețea 10 ani pentru trecerea de la 10Mb Ethernet la 100Mb, dar numai 5 ani de la 100Mb la 1Gb.

Glosar: DRAM (Dynamic Random-Access Memory)

Pret

Estimarea costul unui PC (1000 \$, anul 2001):

Sistem	Subsistem	Fractiune de cost
Carcasa	Cutie metal	2%
	Alimentator, ventilator	2%
	Cabluri, etc.	1%
	Ambalaj, transport	1%
	Subtotal	6%
Placa cu procesor	Procesor	22%
	DRAM (128)	5%
	Card video	5%
	Placă de baza cu I/O si retea	5%
	Subtotal	37%
I/O devices	Tastatură, mouse	3%
	Monitor	19%
	Hard disk (20GB)	9%
	DVD drive	6%
	Subtotal	37 %
Software	OS + MS Office (de baza)	20%

..Pret

Formarea pretului PC-urilor:

- costul componentelor P1
- $20\% \cdot P1 = \text{cost direct (de fabricație)}; P1 + 20\% \cdot P1 = P2$
- 33% · P2 = "gross margin" (R&D, marketing, sales, cheltuieli fixe [cladire, etc], finanțare, taxe); $P2 + 33\% \cdot P2 = P3$ [preț mediu de vânzare]
- $33\% \cdot P3 =$ "discount" (reducere pentru promoții, cumparari directe, etc); $P3 + 33\% \cdot P3 = P4$ [list price]

In concluzie, în prețul de vânzare P4 [list price] intră

47% componente +10 % costuri directe + 19 % gross margin + 25% discount

Uzual, cel mult 4%-12% din venitul unei companii merge pe R&D.

Performanta calculatoarelor

Cuprins:

- Executia programelor
- Progresul hardware-ului
- Masurarea performantei
- Programe de test (benchmark-uri)
- Concluzii

Masurarea performantei

Masurarea performantei:

- Un utilizator este interesat în *timpul de răspuns* (ori *timpul de execuție*), adică diferența dintre *începutul* și *sfârșitul* unui eveniment
- Un manager de baze de date este interesat în *gradul de utilizarea* a serverului (throughput), adică cantitatea de servicii prestate într-o unitate de timp.

.. Masurarea performantei

Masurarea performantei (cont.)

• In Unix/Linux se poate folosi comanda time spre a returna timpul, e.g.

```
time latex 102.tex
returnează
    real 0m1.490s
    user 0m0.191s
    sys 0m0.009s
```

- Timpul total (real) conţine totul, inclusiv I/O, execuţia altor programe, etc.; (0.191 + 0.009)/1.490 = 0.134; deci doar 13.4% din timpul total este CPU
- Multe măsurători ignoră timpul sistemului (sys), căci poate depinde de maşină, de sistemul de operare, etc. ceea ce face dificilă comparația între calculatoare diferite;

.. Masurarea performantei

Masurarea performantei (cont.) Autori folosesc convenția că:

- *performanța sistemelor* este în genere raportată prin timpul real când calculatorul este *neâncărcat* cu alte job-uri;
- performanță CPU este "user CPU time" pe un calculator neâncărcat.

Măsuri de performanță: Cuvintele performanță și timp de execuție se pot interschimba, mai exact

$$Performanta_X = \frac{1}{Timp Executie_X}$$

Exemple:

- Performanta_X > Performanta_Y dnd Timp Executie_X < Timp Executie_Y
- X este de n ori mai rapid ca Y dacă

$$\frac{\text{Performanta}_X}{\text{Performanta}_Y} = \frac{\text{Timp Executie}_Y}{\text{Timp Executie}_X} = n$$

Masuri de performanta (cont.) Alternativ, se poate folosi *ceasul calcula-torului*, (CPU clocks, ticks, etc.) sub forma:

- perioada ceasului (cât durează un ciclu de ceas), e.g., 2ns (NanoSecunde)
- frecvența ceasului (câte cicluri se fac în unitatea de timp), e.g. 500 MHz (MegaHertz-i)

Legatura între *timpul de execuție* și *ceas* se face folosind *numărul de cicluri CPU* pentru un program. Atunci

Timpul de execuţie (CPU)

= Nr. de cicluri de ceas × Durata unui ciclu

ori

Timpul de execuţie (CPU) =
$$\frac{\text{Nr. de cicluri de ceas}}{\text{Frecvenţa ceasului}}$$

Masuri de performanta (cont.)

- Să notăm că numărul de cicluri de ceas pentru un program depinde de numărul de instrucțiuni, dar și de *numărul mediu CPI* de cicluri necesare pentru o instrucțiune (CPI = Cycles Per Instrucțion)
- Obţinem

ori

Timp CPU = Nr. instrucțiuni \times $CPI \times$ Durata unui ciclu

$$Timp CPU = \frac{Nr. instrucțiuni \times CPI}{Frecvența ceasului}$$

Pentru o formulă mai exactă, se poate folosi numărul exact de cicluri pentru fiecare instrucțiune.

Masuri de performanta (cont.)

Comentariu - există o interdependență strânsă între componentele de mai sus, ceea ce face extrem de dificilă creşterea performanței.

Exemple:

- Putem micşora numărul de cicluri pe instrucţiune (CPI) folosind în hard instrucţiuni mai complexe; dar atunci ceasul va deveni mai lent, afectând performanţa globală
- Putem sacrifica unele instrucţiuni care se execută mai rar, în sensul de a se translata în cod neperformant; dacă câştigul în eficientizarea celor des folosite este mare, performanţa globală poate fi mai bună.

Exemplu: Dacă avem instrucțiuni de tip A,B,C care durează 1,2,3 ciclui, respectiv, care din translatările de mai jos a unei secvențe de nivel înalt este mai bună:

- 1. cea cu 2 instrucțiuni de tip A, 1 tip B, și 2 tip C, ori
- 2. cea cu 4 tip A, 1 tip B, 1 tip C?

Răspuns: Prima folosește 2+1+2=5 instrucțiuni, iar a doua 4+1+1=6. Totuși,

- 1. Nr. Cicluri Ceas₁ = $2 \times 1 + 1 \times 2 + 2 \times 3 = 10$, iar
- 2. Nr. Cicluri Ceas₂ = $4 \times 1 + 1 \times 2 + 1 \times 3 = 9$

deci a 2-a translatare este mai performantă.

MIPS/FLOPS

MIPS

- MIPS = Millions Instructions Per Second
- MIPS = $\frac{\text{nr. instructiuni}}{\text{timp_executie} \cdot 10^6}$
- O maşină mai rapidă are un MIPS mai mare

FLOPS

• FLOPS = Floarting Point Operations per Second

• MFLOPS =
$$\frac{\text{FLOPS}}{\text{timp_executie} \cdot 10^6}$$

Performanța de vârf

Performanţa de vârf (peak performance) - când sistemul este foarte încarcat)

- Intel I860
 - 2 operații floating point, respectiv 3 intreagi / pe ceas
 - la 50 MHz: 100 MFLOPS şi 150 MOPS
- MIPS R 3000
 - la 33 MHz: 16MFLOPS şi 33 MOPS
- Teoretic
 - I860 de circa 5 ori mai rapid
- SPEC benchmark
 - R3000 a fost cu 15% mai rapidă

Concluzie: Performanța de vârf nu este o măsură prea utilă!

Performanta calculatoarelor

Cuprins:

- Executia programelor
- Progresul hardware-ului
- Masurarea performantei
- Programe de test (benchmark-uri)
- Concluzii

Alegerea programelor de test

PC-uri:

• SPEC - System Performance Evolution Cooperative (SPEC'89, '92, '95, 2000); URL: www.spec.org

Servere:

• TPC - Transaction Processing Council (TPC-A '85, TPC-C'92, etc.);

URL: www.tcp.org

Embedded Computers:

• EEMBC - Embedded Microprocessor Benchmark Consortium: pe categorii, e.g., auto/industrial, consumatori, retea, birou, telecomunicaţii.

..Alegerea programelor de test

Alegerea programelor de test pentru PC-uri: Se pot folosi

- aplicații reale gcc, Word, Photoshop, etc.
- *aplicații modificate* pentru protabilitate, focus pe un aspect al performanței, etc.
- Kernels programe mici, intens utilizate din aplicații reale
- *Toy benchmarks* benchmarks cu programe mici [10-100 linii de cod], e.g. ciurul lui Erathostenes, Quicksort, etc.
- *Benchmark-uri sintetice* secvențe de cod artificiale [nu au un rezultat util]

SPEC

Benchmark-uri SPEC: (vezi şi www.spec.org)

- Evalueaza atât calculatorul, cât și compilatorul
- In tabelele de mai jos sunt incluse toate programele din SPEC'89, '92, şi '95;
- In SPEC'2000 din seturile '89 şi '92 a ramas doar câte un program (gcc şi swim), iar din setul '95 au rămas 4. Restul de 24 programe au fost abandonate pe parcurs.

Benchmark-uri SPECSPEC benchmarks (cont.1):

Benchmark name	Integer of FP	SPEC89	SPEC92	SPEC 95	SPEC 2000
gcc	integer	adopted	modified	modified	modified
espresso	integer	adopted	modified	dropped	
li	integer	adopted	modified	modified	dropped
eqntott	integer	adopted	dropped		
spice	FP	adopted	modified	dropped	
doduc	FP	adopted		dropped	
nasa7	FP	adopted		dropped	
fpppp	FP	adopted		modified	dropped
matrix300	FP	adopted	dropped		
tomcatv	FP	adopted		modified	dropped

Benchmark-uri SPECSPEC benchmarks (cont.2):

Benchmark name	Integer of FP	SPEC89	SPEC92	SPEC 95	SPEC 2000
compress	integer		adopted	modified	dropped
sc	integer		adopted	dropped	
mdljdp2	FP		adopted	dropped	
wave5	FP		adopted	modified	dropped
ora	FP		adopted	dropped	
mdljsp2	FP		adopted	dropped	
alvinn	FP		adopted	dropped	
ear	FP		adopted	dropped	
swm256 (aka swim)	FP		adopted	modified	modified
su2cor	FP		adopted	modified	dropped
hydro2d	FP		adopted	modified	dropped

Benchmark-uri SPEC (cont.3):

Benchmark name	Integer of FP	SPEC89	SPEC92	SPEC 95	SPEC 2000
go	integer			adopted	dropped
m88ksim	integer			adopted	dropped
ijpeg	integer			adopted	dropped
perl	integer			adopted	modified
vortex	integer			adopted	modified
mgrid	FP			adopted	modified
applu	FP			adopted	dropped
apsi	FP			adopted	modified
turb3d	FP			adopted	dropped

SPEC-CPU2000: Programe de tip întreg

Nume	Tip	Sursa	Descriere
gzip	integer	С	Compresie cu algoritmul Lempel-Ziv
vpr	integer	С	Plasare si rutare de circuite FPGA
gcc	integer	С	Compilator GNU cu optimizare pentru C
mcf	integer	С	Planificare combinatoriala a traficului public
crfty	integer	С	Program de jucat sah
parser	integer	С	Parser privind sintaxa limbii Engleze
eon	integer	C++	Vizualizarea probabilista a trasarii umbrelor
perlmbk	integer	С	Perl cu 4 script-uri de intrare
gap	integer	С	Pachet pentru probleme de teoria grupurilor
vortex	integer	С	Sistem de baze de date orientate pe obiecte
bzip2	integer	С	Algoritm de compresie bazat pe sortare de blocuri
twolf	integer	С	Plasare si rutare VLSI cu "simulated annealing"

(cont.)

SPEC-CPU2000 (cont.) Programe de tip FP (virgulă-mobilă)

Nume	Tip	Sursa	Descriere
wupwise	FP	F77	Cromo-dinamica cuantica cu "lattice gauge theory"
swim	FP	F77	Miscari la suprafata apei rezolvate cu diferente finite
mgrid	FP	F77	Pachet multi-grid pentru 3-dimensiuni
apply	FP	F77	Pachet pentru ecuatii diferentiale parabolice si eliptice
mesa	FP	С	Biblioteca pentru grafica 3-dimensionala
galgel	FP	F90	Dinamica fluidelor
art	FP	С	Recunoastere de imagini cu retele neurale
equake	FP	С	Propragarea undelor seismice
facerec	FP	С	Recunoasterea fetelor cu "ondulete" & identificari de grafuri
ammp	FP	С	Dinamica proteinelor in apa
lucas	FP	F90	Numere prime Mersenne
fma3d	FP	F90	Simularea ciocnirilor cu metoda elementelor finite
sixtrack	FP	F77	Proiectarea acceleratoarelor in fizica energiilor inalte
apsi	FP	F77	Simularea poluarii atmosferice

SPEC'89: Figura conţine rezultatele testelor SPEC'89, întregi pe staţia IBM Powerstation 550 cu 2 compilatoare ("performanţa" este "inversa timpului de execuţie")

SPEC'95: Spec-Integer'95, Pentium vs. Pentium Pro

SPEC'95: Spec-FP'95, Pentium vs. Pentium Pro

Performanta calculatoarelor

Cuprins:

- Executia programelor
- Progresul hardware-ului
- Masurarea performantei
- Programe de test (benchmark-uri)
- Concluzii

Concluzii

Lungime cod vs. performanță: Lungimea codului și timpul de execuție sunt necorelate.

Slide 1.43

..Concluzii

Parte vs. global:

• Imbunătățirea unei componente într-o proporție nu îmbunătățește în aceeași proporție întregul.

Performanța depinde de hardware:

Metrici care neglijează hardware-ul de tipul lungime cod, etc.
 nu sunt total obiective.

MIPS-ul e neadecvat:

• Nu consideră ponderea instrucțiunilor, variază cu programul, și poate varia invers proporțional cu performanța!

..Concluzii

Benchmark-uri sintetice:

- In programele sintetice compilatoarele pot înlătura o mare parte din cod (25%).
- Nu au relevanță pentru utilizatorul concret.
- Sfat: Execută rapid cazul frecvent!

Concluzie finală

• Timpul rămâne singura măsură obiectivă în evaluarea performanței computerelor.