[商务智能]2016真题

一、问答(4*10)

1. 举例说明支持度与置信度的概念及计算方式 PPTch3关联分析P7-10

支持度:指项集X在记录集合D中出现的概率

Support(支持度): probability that a transaction contains X

sup(X)=IXI/n

置信度:项集X出现的情况下,项集Y在记录集合D中同时出现的条件概率,即X并Y的支持度除以X的支持度

confidence (置信度): conditional probability that a transaction having X also contains Y

Conf(X ® Y)=IXYI / IXI=sup(XY) / sup(X)

2. 说明分类与聚类的不同之处

Classification (分类),对于一个classifier,通常需要你告诉它"这个东西被分为某某类"这样一些例子,理想情况下,一个 classifier 会从它得到的训练集中进行"学习",从而具备对未知数据进行分类的能力,这种提供训练数据的过程通常叫做supervised learning (监督学习),

Clustering (聚类),简单地说就是把相似的东西分到一组,聚类的时候,我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起。因此,一个聚类算法通常只需要知道如何计算相似度就可以开始工作了,因此 clustering 通常并不需要使用训练数据进行学习,这在Machine Learning中被称作unsupervised learning (无监督学习).

3. 说明数据仓库与数据库的不同之处

数据仓库是一个面向主题的,集来成的,随时间变化,稳定的用于支持组织决策的数据集合。

数据集市是一种部门级的数据仓库,它包含的数据量较少,是面向一个部门的分析需求而建立的。

主要区别:

数据来源不同:数据仓库的数据来源于遗留系统、OLTP系统、外部数据,数据集市的数据来源于数据仓库。

范围不同:数据仓库为企业级的数据仓库,数据集市是部门级或工作组级的数据仓库。

主题不同:数据仓库的主题为企业主题,数据集市的主题为部门或特殊的分析主题。

数据粒度不同:数据仓库的数据粒度最细,数据集市的数据粒度较粗。

数据结构不同:数据仓库的数据结构为规范化结构(第3范式),数据集市的数据结构为星型模式、雪片模式、事实星座。

历史数据需求量不同:数据仓库比数据集市需要更多的历史数据。

优化方向不同:数据仓库要便于处理海量数据和数据探索,数据集市要便于访问和分析快速查询。

4. 举例说明多维数据分析的主要操作类型有哪些

切片、 切块、向上钻取、向下钻取、钻透、旋转

列如一个产品, 日期, 国家的一个三维数据表

切片:固定国家维度取一个固定值,其他维不变得到的立方体称为一个切片

切块: 固定国家维度取多个值, 其他维不变得到的立方体称为一个切块

上钻: (国家,产品,季度) 向上钻取汇总(国家,产品,年) 或者(国家,产品)

下钻: (国家,产品,年)向下展示下一层的更细的数据(国家,产品,季 度)

旋转: 行列互换提供不同的视角(product, year) 换为(location, year)

- 二、计算(2*30)
- 1. 已知交易数据库如表中例子,假设minsup=60%,minconf=80%

TID	Items
100	K, A, D, B
200	D, A, C, E, B
300	C, A, B
400	B, A, D

请用Apriori算法找出所有的频繁项集以及关联规则 17高婧, 17易龙飞

频繁项集:

C1:

{A}=100%

{B}=100%

 $\{C\}=2/4$

 $\{D\}=3/4$

{E}=1/4

{K}=1/4

L1:

 ${A},{B},{D}$

C2:

{AB}=100%

 ${AD}=3/4$

 $\{BD\}=3/4$

L2:

{AB},{AD},{BD}

{ABD}=3/4

L3:

{ABD} 关联规则:

>B=sup(AB)/sup(A)=1/1=1>80%

>D=sup(AD)/sup(A)=3/4<80%

>D=3/4<80%

B->A=1>80%

D->A=sup(AD)/sup(D)=1>80%

D->B=sup(BD)/sup(D)=1>80% AB->D=sup(ABD)/sup(AB)=3/4<80% AD->B=sup(ABD)/sup(AD)=1>80% BD->A=sup(ABD)/sup(BD)=1>80% 综上: 关联规则是A->B,B->A,D->A,D->B,AD->B,BD->A

2. 如下图所示有关温度及压力的测试记录情况 TID 温度 压力 警告1 警告2 警告3

TID	温度	压力	警告1	警告2	警告3
1	95	1105	0	0	1
2	85	1040	1	1	0
3	103	1090	1	1	1
4	97	1084	1	0	0
5	80	1038	0	1	1
6	100	1080	1	1	0
7	83	1025	1	0	1
8	86	1030	1	0	0
9	101	1100	1	1	1

假设对该数据集的连续属性采用如下离散化方法:

(1) 将每个连续属性的值域划分为三个等宽的箱

(2) 将每个连续属性的值域划分为三个箱,每个箱子包含的事务个数相同针对两个不同的离散化方法,分别构造数据集的二元化属性值(0,1)的数据集合

解: (1)

(2) 将每个连续属性的值域划分为三个箱,每个箱子包含的事务个数相同 针对两个不同的离散化方法,分别构造数据集的二元化属性值(0,1)的数据集合 解:因为需确保连续的属性值划分三个箱子,每个箱子事务个数相同,故采用 等频率分箱。

TID	警告1	按	TID	警告1
1	0	按 警 告	1	0
2	1	1	5	0
3	1	取 值	2	1
4	1	值 划 分	3	1
5	0	-71	4	1

6	1	6	1
7	1	7	1
8	1	8	1
9	1	9	1

温度. 计算度度, (103-80)/3 = 23/3
$$\approx 8$$
和1: $\{80,83,85,86\}$ 图问 $[80,88)$
和2: $\{85\}$ 图问 $[80,88]$ 图记 $[80,88]$

eg:温度	整数值	x 1	x2
箱1.[80,83,85]	0	0	0
箱2.[86,95,97]	1	0	1
箱3.[100,101.103]	2	1	0

警告1、[0,0,1],[1,1,1],[1,1,1]

TID	警告2	按	TID	警告2
1	0	按 警 告	1	0
2	1	2	4	0
3	1	取 值	7	0
4	0	划 分	8	0
5	1	W.	2	1

6	1	3	1
7	0	5	1
8	0	6	1
9	1	9	1

警告2、[0,0,0],[0,1,1],[1,1,1]

TID	警告3	按	TID	警告3
1	1	敬 言 生 口	2	0
2	0	3	4	0
3	1	取 值	6	0
4	0	划 分	8	0
5	1)J	1	1
6	0		3	1
7	1		5	1
8	0		7	1
9	1		9	1

警告3、[0,0,0],[0,1,1],[1,1,1]

知识点: 书Page82

离散化方法分:有监督(分箱法)和无监督(基于熵方法【自顶向下】、基于卡方统计方法ChiMerge【自底向上】)。

分箱离散化分为等距离(又称宽度分箱)和等频率(又称深度分箱)。

宽度分箱:将每个取值映射到等大小的区间方法。(若区间个数为k,每个区间=给定属性的(最大值-最小值)/k)。

深度分箱:将每个取值映射到一个区间,每个区间包含的取值个数大致相同。

二元化

一种分类属性二元化的简单技术如下:如果有m个分类值,则将每个原始值唯一地赋予区间[0, m 1]中的一个整数。如果属性是有序的,则赋值必须保持序关系。(注意,即使属性原来就

用整数表示,但如果这些整数不在区间[0, m 1]中,则该过程也是必需的。)然后,将这m个整数的每一个都变换成一个二进制数。由于需要n = log2m 个二进位表示这些整数,因此要使用n个二元属性表示这些二进制数。例如,一个具有5个值{awful,poor,OK,good,great}的分类变量需要三个二元变量x1、x2、x3。转换见表2-5。

表2-5 一个分类属性到三个二元属性的变换

分类	整数	х	х	Х
值	值	1	2	3
awful	0	0	0	0
poor	1	0	0	1
OK	2	0	1	0
good	3	0	1	1
great	4	1	0	0

这样的变换可能导致复杂化,如无意之中建立了转换后的属性之间的联系。例如,在表2-5中,属性x2和x3是相关的,因为good值使用这两个属性表示。此外,关联分析需要非对称的二元属性,其中只有属性的出现(值为1)才是重要的。因此,对于关联问题,需要为每一个分类值引入一个二元属性,如表2-6所示。如果结果属性的个数太多,则可以在二元化之前使用下面介绍的技术减少分类值的个数。

表2-6 一个分类属性到五个非对称二元属性的转换

分类	整数	Х	Х	Х	Х	Х
值	值	1	2	3	4	5

awful	0	1	0	0	0	0
poor	1	0	1	0	0	0
ОК	2	0	0	1	0	0
good	3	0	0	0	1	0
great	4	0	0	0	0	1

同样,对于关联问题,可能需要用两个非对称的二元属性替换单个二元属性。考虑记录人的性别(男、女)的二元属性,对于传统的关联规则算法,该信息需要转换成两个非对称的二元属性,其中一个仅当是男性时为1,而另一个仅当是女性时为1。(对于非对称的二元属性,由于其提供一个二进制位信息需要占用存储器的两个二进制位,因而在信息的表示上不太有效。