1、实验名称及目的

基础实验: (1) 复现四旋翼飞行器的 Simulink 仿真,分析控制分配器的作用; (2) 记录姿态的阶跃响应,并对开环姿态控制系统进行扫频以绘制 Bode 图,分析闭环姿态控制系统的稳定裕度: (3) 完成四旋翼硬件在环仿真。

2、实验原理

姿态控制是多旋翼飞行中的关键问题,而 PID (比例-积分-微分)控制器是常用的控制算法之一。下面是多旋翼姿态控制器 PID 控制器的工作原理的解释:

- 1、比例 (Proportional) 控制: 比例控制是 PID 控制器的基本组成部分。它通过测量目标值(期望姿态)与实际值(传感器测量的当前姿态)之间的误差,乘以一个比例增益参数(Kp),得到一个补偿量。该补偿量与误差成正比,用于修正飞行器的输出,使其朝着期望姿态调整。比例控制可以实现快速响应,但可能导致超调和稳态误差。
- 2、积分(Integral)控制:积分控制主要用于消除比例控制中的稳态误差。积分控制器根据姿态误差的累积值,乘以一个积分增益参数(Ki),得到一个补偿量。这个补偿量用于纠正由于比例控制导致的稳态误差。积分控制可以使系统追踪期望姿态更准确,但如果参数不恰当,可能会导致系统过度抖动或震荡。
- 3、微分(Derivative)控制:微分控制主要用于减小系统的超调和抑制振荡。微分控制器根据姿态误差的变化率(导数),乘以一个微分增益参数(Kd),得到一个补偿量。这个补偿量用于预测系统未来的状态变化趋势,并减小响应的快速变化。微分控制可以提高系统的稳定性和响应速度,但过大的微分增益可能引入噪声或引发不稳定性。

PID 控制器通过组合比例、积分和微分控制三个分量,综合考虑当前误差、稳态误差和系统的动态响应,以实现姿态控制。PID 控制器的输出将用于调整多旋翼飞行器的控制输入(例如电机转速),使其姿态逐渐趋向目标值,并保持稳定飞行。

详细内容请参考上层路径文献[3]第 09 讲_实验五_姿态控制器设计实验.pptx,文献[4] 第 11 讲_底层飞行控制 V2.pptx。

3、实验效果

以多旋翼的姿态模型为依据,建立了常见的 PID 控制方法,并在 MATLAB 的 Simulink 中完成姿态控 制器的设计,并在 RflySim 中显示仿真效果。

4、文件目录

	文件夹/文件名称		说明
HIL	icon	FlightGear.png	FlightGear硬件图片。
		pixhawk.png	Pixhawk 硬件图片。
		F450.png	F450飞机模型图片。
	AttitudeControl_HIL.slx		Simulink 仿真模型文件。

	Init_control.m		控制器初始化参数文件。
Sim	icon	UE_Logo.jpg	UE 软件的 Logo
		Init.m	模型初始化参数文件。
		FlightGear.png	FlightGear硬件图片。
		pixhawk.png	Pixhawk 硬件图片。
		SupportedVehicleTypes.pdf	机架类型修改说明文件。
		F450.png	F450飞机模型图片。
	AttitudeControl _Sim.slx		Simulink 仿真模型文件。
	Init_control.m		控制器初始化参数文件。
	log_data_sfun.mexw64		
	icon	SupportedVehicleTypes.pdf	
		FlightGear.png	FlightGear 硬件图片。
		pixhawk.png	Pixhawk 硬件图片。
tune		Init.m	模型初始化参数文件。
		F450.png	F450飞机模型图片。
		SupportedVehicleTypes.pdf	机架类型修改说明文件。
	AttitudeControl _tune.slx		Simulink 仿真模型文件。
	Init_control.m		控制器初始化参数文件。

5、运行环境

序号	软件要求	硬件要求	
1, 4	长日安 本	名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版	Pixhawk 6C 飞控 ²	1
3	MATLAB 2017B 及以上	遥控器 [®]	1
		遥控器接收器	1
		数据线、杜邦线等	若干

- ①: 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html
- ②: 须保证平台安装时的编译命令为: px4_fmu-v6c_default, 固件版本为: 1.13.3。其他配套飞控请见: http://doc.rflysim.com/hardware.html
- ③: 本实验演示所使用的遥控器为: 天地飞 WFLY-ET10、配套接收器为: WFLY-RF209 S。遥控器相关配置见: http://doc.rflysim.com/hardware.html

6、实验步骤

Step 1:

软件在环仿真——控制分配器。

打开 MATLAB 软件,在 MATLAB 中打开" \e5-AttitudeCtrl\e5.1\Sim\Init_control.m"文件,点击运行。同时 Simulink 文件 "AttitudeControl_Sim.slx"将会自动打开。

Step 2:

打开 RflySim3D 软件。

Step 3:

点击 Simulink"开始仿真"按钮开始仿真。此时可以在 RflySim3D 中观察多旋翼的状态。

图 Pitch 角度响应

图 经过控制分配后的 PWM 值

Step 4:

软件在环仿真——稳定裕度。

运行"\e5-AttitudeCtrl\e5.1\tune\Init_control.m"文件, "AttitudeControl_tune.slx"文件自动打开。

Step 5:

在 "Control System" - "AttitudeControl" 子模块中可见如图所示的姿态控制系统模型。

设置信号的输入输出点:选中信号线,点击鼠标右键,选择"Linear Analysis Points"如图选择输入或输出

设置效果如图

Step 6:

roll_pitch_d

选择 Simulink 上面菜单中的"Analysis"-"Control Design"-"Linear Analysis",在弹出的窗口中选择"LINEAR ANALYSIS",如图所示。

点击"Bode",即可得到Bode图,如图所示。

右键点击曲线,选择"Characteristic"- "All Stability Margins',可以看到截止频率、幅值裕度和相角裕度等。

Step 7:

软件在环仿真——阶跃响应。

先初始化"AttitudeControl_tune.slx"文件。设置信号的输入输出点: 选中信号线,点击鼠标右键,选择"Linear Analysis Points"—输入选"Open-loop Input"; 输出点设置最后选择 Output Measurement。

进入 Simulink 的"Linear Analysis"界面,点击"Step"即可得到阶跃响应曲线。

7、硬件在环仿真实验步骤

Step 1:

将遥控器与遥控器接收器对码完成并在飞控中插入 SD 卡后,如图将遥控器接收机和 飞控连接好。

注意: 电源线接线顺序从上到下依次为黑红黄

Step 2:

打开"e5\e5.1\HIL\AttitudeControl_HIL.slx"文件。 值得注意的是,"Control System"模块和软件在环仿真相同。

Step 3:

在 Simulink 的下方点击 View diagnostics 指令,即可弹出诊断对话框,可查看编译过程。 在诊断框中弹出 Build process completed successfully,即可表示编译成功,左图侧为生成的编译报告。

Step 4:

用 USB 数据线链接飞控与电脑。在 MATLAB 命令行窗口输入: PX4Upload 并运行, 弹出 CMD 对话框,显示正在上传固件至飞控中,等待上传成功。

Step 5:

上传成功后,在 QGC 中校准遥控器并设置飞行模式,完成后双击打开"*\桌面\RflyToo ls\HITLRun.lnk"或"*\PX4PSP\RflySimAPIs\HITLRun.bat"文件,在弹出的 CMD 对话框中输入插入的飞控 Com 端口号,即可自动启动 RflySim3D、CopterSim、QGroundControl 软件,等待 CopterSim 的状态框中显示: PX4: GPS 3D fixed & EKF initialization finished。

```
PX4: Init MAVLink
CopterSim: CopterID is 1, PX4 SysID is 1
PX4: Awaiting GPS/EKF fixed for Position control...
PX4: Enter Manual Mode!
PX4: Found firmware version: 1.12.3dev
PX4: Command ARM/DISARM ACCEPTED
PX4: Command REQUEST_AUTOPILOT_VERSION ACCEPTED
PX4: EKF2 Estimator start initializing...
PX4: GPS 3D fixed & EKF initialization finished.
```

Step 6:

遥控器的设置如下图,通过控制不同的通道即可在 RflySim3D 中观察到无人机的飞行姿态,完成硬件在环仿真。

Step 7:

通过 CH5 解锁之后,在 RflySim3D 中即可看到飞机正常起飞,通过 Step 12 中 CH1~C

H4 调整飞机姿态和高度。

8、参考文献

- [1]. 全权,杜光勋,赵峙尧,戴训华,任锦瑞,邓恒译.多旋翼飞行器设计与控制[M],电子工业出版 社,2018.
- [2]. 全权,戴训华,王帅.多旋翼飞行器设计与控制实践[M],电子工业出版社, 2020.
- [3]. 第 09 讲_实验五_姿态控制器设计实验.pptx.
- [4]. 第 11 讲_底层飞行控制 V2.pptx.

9、常见问题

Q1: 无

A1: 无