Robust Entanglement With A Thermal Mechanical Oscillator

Andrey A. Rakhubovsky Radim Filip

Department of Optics, Palacký University, Czech Republic

Phys. Rev. A. 91, 062317 (2015).

Quantum Optics Lab S-Pb, 13.04.2018

These slides: https://goo.gl/EvXbzE

Pressure of Light I

1619 J. Kepler De Cometis Libelli Tres 1862 J.C. Maxwell

1901

P.N. Lebedev; "Untersuchungen über die Druckkräfte des Lichtes", Annalen der Physik **6**,433 (1901)

E.F. Nichols and G.F. Hull "A preliminary communication on the pressure of heat and light radiation", Phys. Rev. 13, 307 (1901)

Pressure of Light II

1964 V.B. Braginsky, I.I. Minakova, MSU Bulletin 1, 83 (1964)

1970 V.B. Braginsky, <u>Investigation of dissipative ponderomotive effects of electromagnetic</u> radiation Soviet Physics JETP **31**, 5 (1970)

FIG. 1. Schematic diagram of the experimental arrangement: 1-laser, 2-plate-oscillator, 3-mirror, 4-magnetron, 5-ferrite valve, 6-resonator, 7-mobile piston, 8-photographic film.

Pressure of Light III

1970 A. Ashkin, Acceleration and Trapping of Particles by Radiation Pressure. Phys. Rev. Lett. **24**, 156–159 (1970).

Cavity Optomechanics

- * Radiation pressure drives mechanical motion
- ★ Mechanical displacement changes optical length of the cavity

Experimental Realizations

¹Aspelmeyer, Kippenberg and Marquardt, RMP **86**, 1391 (2014)

²Kashkanova *et al.*, Nat. Phys. **13**, 74 (2017)

Experimental Realizations

¹Aspelmeyer, Kippenberg and Marquardt, RMP **86**, 1391 (2014)

²Kashkanova *et al.*, Nat. Phys. **13**, 74 (2017)

Prize share: 1/2

Experimental Realizations

Prize share: 1/4

¹Aspelmeyer, Kippenberg and Marquardt, RMP **86**, 1391 (2014)

²Kashkanova *et al.*, Nat. Phys. **13**, 74 (2017)

Experimental Realizations

¹Aspelmeyer, Kippenberg and Marquardt, RMP **86**, 1391 (2014)

²Kashkanova *et al.*, Nat. Phys. **13**, 74 (2017)

Advantages of Optomechanics for Quantum Information

Uniform Type of Radiation Pressure

Figure source ³

Nonlinear Mechanical Potential

Strong Coupling (High Cooperativity)

Long Coherence Time

³Bagci *et al.*, Nature **507**, 81 (2014)

Advantages of Optomechanics for Quantum Information

Uniform Type of Radiation Pressure

Can Work at the Quantum Level

- ★ Can capture quantum signals
- ★ Can transduce quantum signals

Nonlinear Mechanical Potentia

Strong Coupling (High Cooperativity)

Long Coherence Time

³Bagci *et al.*, Nature **507**, 81 (2014)

Pulsed Optomechanical Entanglement I

2011 S. G. Hofer, W. Wieczorek, M. Aspelmeyer, K. Hammerer, Quantum entanglement and teleportation in pulsed cavity optomechanics. Phys. Rev. A. **84**, 052327 (2011).

Pulsed Optomechanical Entanglement II

2013 T. A. Palomaki, J. D. Teufel, R. W. Simmonds, K. W. Lehnert, Entangling Mechanical Motion with Microwave Fields. Science. **342**, 710–713 (2013).

Introduction

Optomechanics

Pulsed Optomechanics

Gaussian Entanglement

Gaussian Entanglement with Pulsed Optomechanics

Pulsed Entanglement Optomechanics 9 / 1

The Optomechanical systems

Optics

Standard quantization of the cavity field

$$E(r,t) = \sum_{p} \sum_{k} e_{p} u_{k}(r) a_{k}(t)$$

Mechanics

Displacement field

$$\mathbf{u}(\mathbf{r},t) = \sum_{n} \mathbf{u}_{n}(\mathbf{r}) \mathbf{x}_{n}(t)$$

Pulsed Entanglement Optomechanics 10 / 11

The Hamiltonian

$$H=\hbar\omega_{cav}(\hat{\ell})a^{\dagger}a+\hbar\omega_{\mathfrak{m}}b^{\dagger}b$$

Pulsed Entanglement Optomechanics 10 /

The Hamiltonian

$$\begin{split} H &= \hbar \omega_{cav}(\hat{\ell}) \alpha^{\dagger} \alpha + \hbar \omega_{\mathfrak{m}} b^{\dagger} b \\ &= \hbar \omega_{cav} \alpha^{\dagger} \alpha - \hbar \frac{\omega_{cav}}{I} \hat{\ell} \alpha^{\dagger} \alpha + \hbar \omega_{\mathfrak{m}} b^{\dagger} b \end{split}$$

Modulation of the cavity frequency

$$\omega_{cav}(\hat{\ell}) = \frac{\pi nc}{L + \hat{\ell}} \approx \frac{\pi nc}{L} \left[1 - \frac{\hat{\ell}}{L} \right] = \omega_{cav} - \hat{\ell} \frac{\omega_{cav}}{L}.$$

Pulsed Entanglement Optomechanics 10 / 1

The Hamiltonian

$$\begin{split} H &= \hbar \omega_{cav}(\hat{\ell}) \alpha^{\dagger} \alpha + \hbar \omega_{m} b^{\dagger} b \\ &= \hbar \omega_{cav} \alpha^{\dagger} \alpha - \hbar \frac{\omega_{cav}}{I} \hat{\ell} \alpha^{\dagger} \alpha + \hbar \omega_{m} b^{\dagger} b \end{split}$$

Modulation of the cavity frequency

$$\omega_{\text{cav}}(\hat{\ell}) = \frac{\pi nc}{L + \hat{\ell}} \approx \frac{\pi nc}{L} \left[1 - \frac{\hat{\ell}}{L} \right] = \omega_{\text{cav}} - \hat{\ell} \frac{\omega_{\text{cav}}}{L}.$$

$$\hat{\ell} = \sqrt{\frac{\hbar}{2m\omega_{m}}}(b + b^{\dagger})$$

$$\hat{\sigma} = \sqrt{\frac{\hbar}{2m\omega_{m}}}(a + b^{\dagger})$$

$$\hat{\Phi} = \sqrt{rac{\hbar m \omega_m}{2}} (b - b^\dagger)/i$$

$$\left[\hat{\ell},\hat{\Phi}
ight]=\mathrm{i}\hbar$$

The Hamiltonian

$$\begin{split} H &= \hbar \omega_{cav}(\hat{\ell}) \alpha^{\dagger} \alpha + \hbar \omega_{m} b^{\dagger} b \\ &= \hbar \omega_{cav} \alpha^{\dagger} \alpha - \hbar \frac{\omega_{cav}}{r} \hat{\ell} \alpha^{\dagger} \alpha + \hbar \omega_{m} b^{\dagger} b \end{split}$$

Modulation of the cavity frequency

$$\omega_{cav}(\hat{\ell}) = \frac{\pi nc}{L + \hat{\ell}} \approx \frac{\pi nc}{L} \left[1 - \frac{\hat{\ell}}{L} \right] = \omega_{cav} - \hat{\ell} \frac{\omega_{cav}}{L}.$$

In dimensionless units

$$\label{eq:Hint} H_{int} = -\hbar\omega_{cav}\frac{x_{zpf}}{I}(b+b^{\dagger})\alpha^{\dagger}\alpha = -\hbar g_{0}(b+b^{\dagger})\alpha^{\dagger}\alpha.$$

With the single-photon coupling strength

$$g_0 = \omega_{cav} \frac{x_{zpf}}{L} = \omega_{cav} \sqrt{\frac{\hbar}{2m\omega_{\mathfrak{m}}L^2}}$$

a — optical modeb — mechanical mode

$$\hat{\ell} = \sqrt{\frac{\hbar}{2m\omega_{m}}}(b + b^{\dagger}) = x_{zpf}x$$

$$\hat{\Phi} = \sqrt{\frac{\hbar m \omega_m}{2}} (b - b^{\dagger})/i$$

$$\left[\hat{\ell},\hat{\Phi}
ight]=\mathfrak{i}\hbar$$

$$x = b + b^{\dagger}; \quad p = (b - b^{\dagger})/i,$$

$$[x, p] = 2i.$$

$$Var[x]_{|0\rangle} \equiv \langle 0|(x-\bar{x})^2|0\rangle = 1.$$

Modulation of the cavity frequency

$$\omega_{cav}(\hat{\ell}) = \frac{\pi nc}{L + \hat{\ell}} \approx \frac{\pi nc}{L} \left[1 - \frac{\hat{\ell}}{L} \right] = \omega_{cav} - \hat{\ell} \frac{\omega_{cav}}{L}.$$

In dimensionless units

$$H_{int} = -\hbar\omega_{cav}\frac{x_{zpf}}{L}(b+b^{\dagger})\alpha^{\dagger}\alpha = -\hbar g_{0}(b+b^{\dagger})\alpha^{\dagger}\alpha.$$

With the single-photon coupling strength

$$g_0 = \omega_{cav} \frac{x_{zpf}}{L} = \omega_{cav} \sqrt{\frac{\hbar}{2m\omega_m L^2}}$$

With m=10 ng, $\omega_m=1$ MHz, L=10 mm,

$$x_{zpf}\sim 0.1$$
 fm, $g_0\sim 10$ Hz.

a — optical modeb — mechanical mode

$$\hat{\ell} = \sqrt{\frac{\hbar}{2m\omega_m}}(b + b^{\dagger}) = x_{zpf}x$$

$$\hat{\Phi} = \sqrt{\frac{\hbar m \omega_m}{2}} (b - b^\dagger)/i$$

$$\left[\hat{\ell},\hat{\Phi}
ight]=\mathrm{i}\hbar$$

$$x = b + b^{\dagger}; \quad p = (b - b^{\dagger})/i,$$

$$[x, p] = 2i.$$

$$\operatorname{Var}[\mathbf{x}]_{|0\rangle} \equiv \langle 0|(\mathbf{x} - \bar{\mathbf{x}})^2|0\rangle = 1.$$

Modulation of the cavity frequency

$$\omega_{cav}(\hat{\ell}) = \frac{\pi nc}{L + \hat{\ell}} \approx \frac{\pi nc}{L} \left[1 - \frac{\hat{\ell}}{L} \right] = \omega_{cav} - \hat{\ell} \frac{\omega_{cav}}{L}.$$

In dimensionless units

$$H_{int} = -\hbar\omega_{cav}\frac{x_{zpf}}{L}(b+b^{\dagger})\alpha^{\dagger}\alpha = -\hbar g_{0}(b+b^{\dagger})\alpha^{\dagger}\alpha.$$

With the single-photon coupling strength

$$g_0 = \omega_{cav} \frac{x_{zpf}}{L} = \omega_{cav} \sqrt{\frac{\hbar}{2m\omega_m L^2}}$$

With m=10 ng, $\omega_{m}=1$ MHz, L=10 mm,

$$x_{zpf}\sim 0.1$$
 fm, $g_0\sim 10$ Hz.

Too weak \Rightarrow enhance by strong pump and linearize.

a — optical modeb — mechanical mode

$$\hat{\ell} = \sqrt{rac{\hbar}{2m\omega_m}}(b+b^\dagger) = \chi_{zpf}\chi$$

$$\hat{\Phi} = \sqrt{\frac{\hbar m \omega_m}{2}} (b - b^\dagger)/i$$

$$\left[\hat{\ell},\hat{\Phi}
ight]=\mathrm{i}\hbar$$

$$x = b + b^{\dagger}; \quad p = (b - b^{\dagger})/i,$$

$$[x, p] = 2i.$$

$$\operatorname{Var}[\mathbf{x}]_{|0\rangle} \equiv \langle 0|(\mathbf{x} - \bar{\mathbf{x}})^2|0\rangle = 1.$$

Blank frame

Blank frame to center