

N89-13469

PRECEDING PAGE BLANK NOT FILMED

SLEWING AND VIBRATION CONTROL
OF
THE SCOPE

JIGUAN GENE LIN

CONTROL RESEARCH CORPORATION
LEXINGTON, MA 02175

193

OUTLINE ~~FOR SCOLE ON SLEWING~~

I. INTRODUCTION

II. STRUCTURAL VIBRATIONS IN SCOLE EXCITED BY
TIME-MINIMIZED RAPID SLEWING

-- BANG-PAUSE-BANG (BPB) CONTROL (800 LBS)

-- BANG-BANG (BB) CONTROL (0, 80, 25 LBS)

HOW BAD? ALWAYS THAT BAD?

NO FORCE MEANS LEAST EXCITATION?

III. ACTIVE DAMPING OF BPB-EXCITED VIBRATIONS
USING HIGH-PERFORMANCE MODAL DASHPOTS

DIRECT VELOCITY OUTPUT FEEDBACK REALLY CANNOT
CONTROL EXCESSIVE VIBRATIONS EFFECTIVELY, QUICKLY?

IV. COMMENTS

V. CONCLUSIONS

VI. RECOMMENDATIONS

- SCOPE PRIMARY CONTROL TASK IS:
RAPIDLY SLEW OR CHANGE THE LINE-OF-SIGHT (LOS), AND
SETTLE OR DAMP STRUCTURAL VIBRATIONS TO A REQUIRED DEGREE
- THE OBJECTIVE IS:
MINIMIZE THE TIME REQUIRED TO SLEW AND SETTLE,
UNTIL LOS REMAINS WITHIN A SPECIFIED ANGLE.
- 2-STAGE APPROACH:
FIRST: SLEW THE WHOLE STRUCTURE LIKE A RIGID BODY,
-- IN A MINIMUM TIME,
-- UNDER THE LIMITED CONTROL MOMENTS AND FORCES
THEN: DAMP THE EXCITED STRUCTURAL VIBRATIONS

- SOME PREVIOUS RESULTS ON STAGE-1 DESIGN

CASE	STRATEGY (LB-FT)	MOMENT (LB)	FORCE (DEG)	LOS ERROR (SEC)	SLEW TIME
F10	BB	10,000	0	.150	12.604
F11	BPB	10,000	800	.086	4.892
F12	BB	10,000	800	.097	3.756

- OBJECTIVE OF CURRENT STUDY
STAGE-2 DESIGN: ACTIVE CONTROL OF EXCITED VIBRATIONS

STRUCTURAL VIBRATIONS EXCITED BY
BANG-BANG-TYPE RAPID SLEW MANEUVERS

FORCE (LB)	MOMENT (LB-FT)	STRATEGY	SLEW TIME (SEC)	LOS ERROR (DEG)	DEFLECT. (FT)	ATT. DEV. (DEG)
800	10,000	.867 (B)	4.892	89.8	+114	+88.35
		3.158 (P)		OR	-113	-86.96
		.867(-B)	(NOTE 1)	133.3		
0	SAME	6.307 (B)	12.614	6.25	+5.06	+3.83
		6.307(-B)			-5.18	-4.02
80	SAME	4.416 (B)	8.832	24.7	+20.59	+15.98
		4.416(-B)			-10.83	-8.31
25	SAME	5.479 (B)	10.959	0.51	+0.25	+0.16
		5.479(-B)			-0.30	-0.30

NOTE 1. TIME OF APPLICATION IS 1.734 SEC, ONLY 35.32% OF THE SLEW TIME.

Fig. 3-1 Vibratory responses to Rapid Time-minimized Bang-Pause-Bang Slew;
a. Line-of-sight error and Mast tip deflection.

Fig. 3-1 Vibratory responses to Rapid Time-minimized Bang-Pause-Bang Slew;
b. Attitude deviations at the Shuttle (S) and the Reflector (R) ends.

Fig. 3-2 Vibratory responses to Rapid Time-minimized Bang-Bang Slew: 0 1b;
a. Line-of-sight error and Mast tip deflection.

Fig. 3-2 Vibratory responses to Rapid Time-minimized Bang-Bang Slew: 0 lb;
b. Attitude deviations at the Shuttle (S) and the Reflector (R) ends.

Fig. 3-3 Vibratory responses to Rapid Time-minimized Bang-Bang Slew: 80 lb;
a. Line-of-sight error and Mast tip deflection.

Fig. 3-3 Vibratory responses to Rapid Time-minimized Bang-Bang Slew: 80 lb;
b. Attitude deviations at the Shuttle (S) and the Reflector (R) ends.

Fig. 3-4 Vibratory responses to Rapid Time-minimized Bang-Bang Slew: 25 lb;
a. Line-of-sight error and Mast tip deflection.

Fig. 3-4 Vibratory responses to Rapid Time-minimized Bang-Bang Slew: 25 lb;
b. Attitude deviations at the Shuttle (S) and the Reflector (R) ends.

- USING NO FORCES ON REFLECTOR DOES NOT MEAN LEAST EXCITATION!
 - IF LOS ERROR IS THE ONLY CONCERN, STOP USING 800LB FORCE;
USE 25LB (VERNIER THRUSTER LEVEL) INSTEAD.
-- BUT TIME IS EQUALY IMPORTANT!!!
 - ADDITIONAL TIME OF VARIOUS LENGTH IS STILL REQUIRED
FOR DAMPING OUT THE EXCITED VIBRATIONS.
-
- VIBRATION CONTROL CHALLENGE:
CAN EXCESSIVE VIBRATIONS,
SUCH AS EXCITED BY THE 800LB RAPID SLEWING,
BE EFFECTIVELY SUPPRESSED TO A REASONABLE LEVEL
QUICKLY, SAY, IN 5 SEC?

MODAL-DASHPOT DESIGN MD1

PART 1: LINEAR VELOCITY FEEDBACK

$$\begin{bmatrix} U_7 \\ U_8 \end{bmatrix} = - G_{LVR} \begin{bmatrix} Y_{15} \\ Y_{16} \end{bmatrix}$$

$$\begin{bmatrix} U_7 \\ U_8 \end{bmatrix} = F_4 = \begin{bmatrix} \text{APPLIED FORCE ON REFLECTOR IN X-DIRECTION} \\ \text{APPLIED FORCE ON REFLECTOR IN Y-DIRECTION} \end{bmatrix}$$

$$\begin{bmatrix} Y_{15} \\ Y_{16} \end{bmatrix} = \begin{bmatrix} \text{RATE OF XZ-DEFLECTION AT REFLECTOR END} \\ \text{RATE OF YZ-DEFLECTION AT REFLECTOR END} \end{bmatrix}$$

$$G_{LVR} = \begin{bmatrix} .58420630E+01 & .43392044E+00 \\ .42038249E+00 & .69796355E+01 \end{bmatrix}$$

ADDITIONAL DAMPING RATIO DESIGNED = 0.6737, MODE 2
 = 0.6, MODE 1

2% SETTLING TIME OF 3 SEC IS DESIGNED FOR MODE 2

MODAL-DASHPOT DESIGN MD1

PART 2: ANGULAR VELOCITY FEEDBACK

$$\begin{bmatrix} U_4 \\ U_5 \\ U_6 \end{bmatrix} = -G_{AVR} \begin{bmatrix} Y_{10} \\ Y_{11} \\ Y_{12} \end{bmatrix}$$

$$\begin{bmatrix} U_4 \\ U_5 \\ U_6 \end{bmatrix} = M_4 = \begin{bmatrix} \text{APPLIED MOMENT ON REFLECTOR ABOUT X-AXIS} \\ \text{APPLIED MOMENT ON REFLECTOR ABOUT Y-AXIS} \\ \text{APPLIED MOMENT ON REFLECTOR ABOUT Z-AXIS} \end{bmatrix}$$

$$\begin{bmatrix} Y_{10} \\ Y_{11} \\ Y_{12} \end{bmatrix} = \begin{bmatrix} \text{RATE OF REFLECTOR ROLL ATTITUDE DEVIATION} \\ \text{RATE OF REFLECTOR PITCH ATTITUDE DEVIATION} \\ \text{RATE OF REFLECTOR YAW ATTITUDE DEVIATION} \end{bmatrix}$$

$$G_{AVR} = \begin{bmatrix} .24172707E+04 & .16653096E+03 & .45158162E+03 \\ .15734103E+03 & .21781213E+04 & -.72768193E+03 \\ .13433660E+04 & -.22055215E+04 & .42951681E+04 \end{bmatrix}$$

ADDITIONAL DAMPING RATIO DESIGNED = 0.03, MODES 3,4,5

INHERENT DAMPING RATIO ASSUMED = 0.003 ALL MODES

Fig. 6-1 Simulation results of vibration control design MD1;
a. Histories of applied moments and forces at the Reflector.

Fig. 6-1 Simulation results of vibration control design MD1;
b. Histories of line-of-sight error and Mast tip deflection.

Fig. 6-1 Simulation results of vibration control design MD1;
c. Histories of attitude deviations at Shuttle (S) and Reflector (R) ends

ORIGINAL PAGE IS
OF POOR QUALITY

Fig. 6-1 Simulation results of vibration control design MD1;
d. Histories of normal coordinates of the 10 modes.

SUMMARY -- MD1

LOS ERROR < 18.46° $\tau = 2.5 \text{ SEC}$
< 17.46° $\tau > 2.5 \text{ SEC}$
 $\doteq 11.79^\circ$ $\tau = 3.1 \text{ SEC}$

DEFLECTION $\leq \pm 5 \text{ FT}$ $\tau \doteq 2 \text{ SEC}$
 $\leq \pm 0.5 \text{ FT}$ $\tau = 4.2 \text{ SEC}$

2% SETTLING TIME $\leq 2.9 \text{ SEC}$

LAST PEAK REFLECTOR ATTITUDE DEVIATION:

ROLL $\doteq 0.460^\circ$

PITCH $\doteq 0.546^\circ$

YAW $\doteq 1.360^\circ$

SUMMARY -- MD1A

ADDITIONAL DAMPING RATIO RE-DESIGNED = 0.6, MODE 2

CORRESPONDING 2% SETTLING TIME FOR MODE 2 IS 3.38 SEC

$$G_{LVR} = \begin{bmatrix} .58420557E+01 & .45784262E+00 \\ .42061494E+00 & .62209375E+01 \end{bmatrix}$$

LOS ERROR \leq 16.66 $^{\circ}$ (\downarrow) $\tau \geq 1.8$ SEC

\cong 9.57 $^{\circ}$ (\downarrow) $\tau = 3.1$ SEC

DEFLECTION $\leq \pm 7.35$ FT (\uparrow) $\tau = 1.3$ SEC

$\leq \pm 0.75$ FT (\uparrow) $\tau = 3.7$ SEC

2% SETTLING TIME \cong 3 SEC

LAST PEAK REFLECTOR ATTITUDE DEVIATION:

ROLL $\cong 0.714^{\circ}$ (\uparrow)

PITCH $\cong 0.582^{\circ}$

YAW $\cong 1.399^{\circ}$

COMMENTS

- THE MODAL DASHPOT DESIGN MET THE VIBRATION CONTROL CHALLENGE FAIRLY WELL: EFFECTIVE, FAST SUPPRESSION OF EXCESSIVE VIBRATIONS
- FOR COMPLETE SUPPRESSION AND PRECISION POINTING AFTER THE QUICK SUPPRESSION,
EITHER: INCREASE THE MODAL DASHPOT FEEDBACK GAINS
OR: SWITCH TO INTEGRATED DESIGN OF LQG/LTR AND MODAL DASHPOTS
- DIRECT VELOCITY OUTPUT FEEDBACK CONTROLLERS
NEED NOT BE OF "LOW AUTHORITY", LOW PERFORMANCE.
-- ADDITIONAL DAMPING RATIO CAN BE DESIGNED TO BE AS HIGH AS TO THE OPTIMAL VALUE 0.707, IF NECESSARY;
INSTEAD OF RESTRICTING TO ONLY ABOUT 0.1
- NO MORE HIGH-GAIN PROBLEMS OF ORIGINAL CANAVIN DESIGN
- SPILLOVER IS MINIMAL: PERFORMANCE DEGRADATION UN-NOTICEABLE
SPILLOVER IS BENEFICIAL: CONCOMITANT ACTIVE DAMPING OF UNMODELED MODES
- SYSTEMATIC DESIGN METHOD FOR MODAL DASHPOTS WORKS!

CONCLUSIONS

- 2-STAGE APPROACH IS FEASIBLE AND PROMISING FOR RAPID SLEWING AND PRECISION POINTING OF SCOLE
- NOT ALL BANG-BANG TYPE OF TIME-MINIMIZED SLEW MANEUVERS WILL EXCITE LARGE STRUCTURAL VIBRATIONS IN SCOLE
- MODAL DASHPOTS CAN BE A CONCENTRATED HIGH-POWER VIBRATION CONTROL, AS WELL AS THE USUAL DIFFUSE ("BROAD-BAND"), LOW-POWER ("LOW-AUTHORITY") CONTROL

RECOMMENDATIONS

- LIMIT THE MAGNITUDE OF APPLIED FORCES ON REFLECTOR TO EITHER 25 LB
 - LEVEL OF VERNIER THRUSTERS ON THE REAL SPACE SHUTTLE
 - OR 150 LB
 - LEVEL EQUIVALENT TO THE COLD-GAS JETS OF LABORATORY SCOLE
- To complete Stage 2, add an INTEGRATED DESIGN OF LQG/LTR (LINEAR-QUADRATIC-GAUSSIAN/LOOP-TRANSFER-RECOVERY) AND MODAL DASHPOTS
- VALIDATE THE 2-STAGE APPROACH USING THE SCOLE LABORATORY FACILITY WITH A COMPREHENSIVE SEQUENCE OF INTEGRATED DESIGNS AND EXPERIMENTS COUPLING NONLINEAR RIGID-BODY MOTIONS WITH FLEXIBLE-BODY DYNAMICS

