1 Счетность множества рациональных чисел, несчетность множества действительных чисел

Утверждение. Множество \mathbb{Q} счетно, \mathbb{R} - несчетно.

Доказательство. Докажем, что $\mathbb Q$ счетно. Каждое число из $\mathbb Q$ представимо в виде несократимой десятичной дроби $\frac{p}{q}$, где $p \in \mathbb Z$, а $q \in \mathbb N$. Составим таблицу таких чисел следующим образом:

	0	1	-1	2	-2	
1	$\frac{0}{1}$	$\frac{1}{1}$	$-\frac{1}{1}$	$\frac{2}{1}$	$-\frac{2}{1}$	
2	$\frac{0}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{2}{2}$	$-\frac{2}{2}$	
3	$\frac{0}{3}$	$\frac{1}{3}$	$-\frac{1}{3}$	$\frac{2}{3}$	$-\frac{2}{3}$	
						٠

Теперь пойдем снизу вверх по диагоналям и будем присваивать дробям номера по порядку: $\frac{0}{1}$ присваиваем 1, $\frac{1}{1}$ присваиваем 2, $\frac{0}{2}$ - было, значит пропускаем, $-\frac{1}{1}$ - 3 и так далее. Таким образом мы строим биекцию между натуральными и рациональными числами, а значит $\mathbb{Q} \cong \mathbb{N}$, следовательно \mathbb{Q} - счетно.

Теперь докажем несчетность \mathbb{R} от противного. Предположим, что \mathbb{R} счетно, а значит и отрезок $[0,1] \subset \mathbb{R}$. Тогда мы можем выписать все числа из отрезка [0,1] в таблицу и пронумеровать их:

1	$0,\alpha_{1_1}\alpha_{1_2}\alpha_{1_3}\dots$
2	$0,\alpha_{2_1}\alpha_{2_2}\alpha_{2_3}\dots$
3	$0, \alpha_{3_1}\alpha_{3_2}\alpha_{3_3}\dots$

Тогда составим такое число $0, \delta_1 \delta_2 \delta_3 \dots$, что

$$\delta_i = egin{cases} 0, \ ext{ecли} \ lpha_{i_i} = 9 \ lpha_{i_i} + 1, \ ext{иначe} \end{cases}$$

Тогда полученное число будет отличаться от i-того в i-й цифре, поэтому его в таблице не будет. Противоречие. Таким образом $\mathbb R$ несчетно.

2 Теорема о существовании точной верхней (нижней) грани множества

Теорема. Каждое непустое множество $X \subset \mathbb{R}$, ограниченное сверху (снизу) имеет точную верхнюю (нижнюю грань)

Доказательство. Пусть $S \subset \mathbb{R}$ - множество всех верхних граней множества X, тогда

$$\forall x \in X, \ \forall s \in S : x \le s$$

Пользуясь теоремой о полноте действительных чисел, получаем, что

$$\exists c \in \mathbb{R} : \forall x \in X, \ \forall s \in S : x \leq c \leq s$$

Тогда c - искомая mочная верхняя грань. Существование точной нижней грани доказывается аналогично.

CTP. 2

3 Бесконечно малые последовательности их свойства. Арифметические операции со сходящимися последовательностями

Определение. Последовательность $\{x_n\}_{n=1}^{\infty}$ называется бесконечно малой тогда и только тогда, когда $\lim_{n\to\infty}x_n=0$ (последовательность сходится к нулю)

Теорема. Если $\{x_n\}$ - бесконечно малая последовательность, то последовательность $\{\frac{1}{x_n}\}$ - бесконечно большая.

Доказательство. Пусть $\{x_n\}$ - бесконечно малая последовательность, тогда:

$$\forall \epsilon > 0 \,\exists N \in \mathbb{N} \,\forall n > N : |x_n| < \epsilon$$

$$|x_n| < \epsilon \Leftrightarrow \left|\frac{1}{x_n}\right| > \frac{1}{\epsilon}$$

Значит

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N : |\frac{1}{x_n}| > \frac{1}{\epsilon} \Leftrightarrow \lim_{n \to \infty} \frac{1}{x_n} = +\infty$$

Из этого следует, что $\{\frac{1}{x_n}\}$ - бесконечно большая.

Теорема. Сумма бесконечно малых последовательностей есть бесконечно малая последовательность.

Доказательство. Пусть $\{x_n\}$ и $\{y_n\}$ - бесконечно малые последовательности. Тогда

$$\forall \epsilon > 0 \,\exists N_1 \in \mathbb{N} \,\forall n > N_1 : |x_n| < \frac{\epsilon}{2}$$

$$\forall \epsilon > 0 \ \exists N_2 \in \mathbb{N} \ \forall n > N_2 : |y_n| < \frac{\epsilon}{2}$$

Тогда

$$\forall \epsilon > 0 \ \exists N = \max(N_1, N_2) \ \forall n > N : |x_n + y_n| \leq_{\text{(неравенство треугольника)}} |x_n| + |y_n| < \epsilon$$

Это означает, что последовательность $\{x_n+y_n\}$ является бесконечно малой

Теорема. Произведение бесконечно малой последовательности на ограниченную есть бесконечно малая последовательность.

Доказательство. Пусть $\{x_n\}$ - бесконечно малая, а $\{y_n\}$ - ограниченная. Тогда

$$\exists M \in \mathbb{R} : \forall n \in \mathbb{N} |y_n| \le M$$

$$\forall \epsilon > 0 \,\exists N_1 \in \mathbb{N} \,\forall n > N_1 : |x_n| < \frac{\epsilon}{M}$$

Тогда

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N}, \forall n > N : |x_n \cdot y_n| = |x_n| \cdot |y_n| < \frac{\epsilon}{M} \cdot M = \epsilon$$

Это означает, что последовательность $\{x_n \cdot y_n\}$ является бесконечно малой

Теорема. (Арифметические свойства сходящихся последовательностей) Пусть $\{x_n\}$ и $\{y_n\}$ сходящиеся последовательности, а $\lim_{n\to\infty} x_n = a$ и $\lim_{n\to\infty} y_n = b$, то справедливы следующие равенства:

1.
$$\lim_{n\to\infty}(x_n+y_n)=a+b$$

$$2. \lim_{n\to\infty} (x_n - y_n) = a - b$$

3.
$$\lim_{n\to\infty} (x_n \cdot y_n) = a \cdot b$$

4.
$$\lim_{n\to\infty}(\frac{x_n}{y_n})=\frac{a}{b}$$
 (только если $\forall n\in\mathbb{N}:y_n\neq 0\land b\neq 0)$

Доказательство.

1) Из условия следует, что

$$\forall \epsilon > 0, \exists N_1 \in \mathbb{N}, \forall n > N_1 : |x_n - a| < \frac{\epsilon}{2}$$
$$\forall \epsilon > 0, \exists N_2 \in \mathbb{N}, \forall n > N_1 : |y_n - b| < \frac{\epsilon}{2}$$

тогда,

$$\forall \epsilon > 0, \exists N = \max(N1, N2) \in \mathbb{N}, \forall n > N : |x_n + y_n - a - b| \le |x_n - a| + |y_n - b| < \epsilon$$

$$\lim_{n \to \infty} (x_n + y_n) = a + b$$

3) Аналогично, переход:

$$|x_n \cdot y_n - a \cdot b| = |x_n \cdot y_n - a \cdot y_n + a \cdot y_n - a \cdot b| \le |y_n| |x_n - a| + |a| |y_n - b|$$
 y_n ограниченна числом $M \Rightarrow |x_n \cdot y_n - a \cdot b| \le |M| |x_n - a| + |a| |y_n - b|$

При $N=max(N_1(rac{\epsilon}{2|M|}),N_2(rac{\epsilon}{2|a|}))$ получаем:

$$|x_n \cdot y_n - a \cdot b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

4 Свойства пределов, связанные с неравенствами

Теорема. (О зажатой последовательности) Если $\{x_n\}, \{y_n\}, \{z_n\}$ - сходящиеся последовательности, причем $\forall n: x_n \leq y_n \leq z_n$ и $\lim_{x \to \infty} x_n = \lim_{x \to \infty} z_n = l$, то $\lim_{x \to \infty} y_n = l$

Доказательство.

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n > N : |x_n - l| < \epsilon \Leftrightarrow \epsilon - l < x_n < \epsilon + l$$

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n > N : |z_n - l| < \epsilon \Leftrightarrow \epsilon - l < z_n < \epsilon + l$$

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n > N : \epsilon - l < x_n \le y_n \le z_n < \epsilon + l \Leftrightarrow |y_n - l| < \epsilon$$

Теорема. Если последовательности $\{x_n\}$ и $\{y_n\}$ имеют пределы $\lim_{n\to\infty} x_n = a$ и $\lim_{n\to\infty} y_n = b$ соответственно, то если $\exists N, \ \forall n > N : x_n \leq y_n, \ \text{то } a \leq b$

Доказательство. От противного. Пусть a > b, тогда из определения предела:

$$\forall \epsilon > 0, \ \exists N_1 \in \mathbb{N}, \forall n > N_1 : \epsilon - a < x_n < \epsilon + a$$

$$\forall \epsilon > 0, \ \exists N_2 \in \mathbb{N}, \forall n > N_2 : \epsilon - b < y_n < \epsilon + b$$

Тогда зафиксируем $\epsilon = \frac{a-b}{2} > 0$:

$$\exists N = max(N_1, N_2), \ \forall n > N : y_n < b + \frac{a-b}{2} = a - \frac{a-b}{2} < x_n$$

Противоречие.

5 Теорема о пределе ограниченной монотонной последовательности

Теорема. Если последовательность монотонно возрастает (убывает) и ограниченна сверху (снизу), то она имеет предел, причем он является точной верхней (нижней) гранью.

Доказательство. Если последовательность $\{x_n\}$ ограниченна сверху, то она имеет точную верхнюю грань M такую, что:

$$\forall n \in \mathbb{N} : x_n \le M \Rightarrow \forall \epsilon > 0 : x_n < M + \epsilon$$

$$\forall \epsilon > 0, \exists N : M - \epsilon < x_N$$

Так как последовательность $\{x_n\}$ монотонно возрастает, то:

$$\forall \epsilon > 0, \exists N, \forall n > N : M - \epsilon < x_n$$

Тогда:

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n > N : |x_n - M| < \epsilon$$

Таким образом, M - предел $\{x_n\}$. Аналогично доказывается для последовательности, ограниченной снизу.

6 Число е

Теорема. Пределом последовательности $(1+\frac{1}{n})^n$ называется число e.

Доказательство. Возьмем последовательность $y_n = (1 + \frac{1}{n})^{n+1}$. Докажем, что она монотонно убывает.

$$\frac{y_{n-1}}{y_n} = \frac{\left(1 + \frac{1}{n-1}\right)^n}{\left(1 + \frac{1}{n}\right)^{n+1}} = \left(\frac{n}{n-1}\right)^n \left(\frac{n}{n+1}\right)^{n+1} = \frac{n^{2n} \cdot n}{(n^2 - 1)^n (n+1)} = \frac{n^2}{(n^2 - 1)^n (n+1)} = \frac$$

Таким образом, $\{y_n\}$ монотонно убывает, при этом все ее члены неотрицательны, а значит она ограниченна снизу. Тогда по теореме Вейерштрасса она имеет предел. Тогда:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = \lim_{n \to \infty} y_n \cdot \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)} = \lim_{n \to \infty} y_n \cdot 1 = \lim_{n \to \infty} y_n = e$$

Значит $\{(1+\frac{1}{n})^n\}$ тоже сходится.

7 Теорема Кантора о вложенных отрезках

Теорема. Пересечение вложенных отрезков $[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$ всегда непустое множество. При этом если длины отрезков стремятся к нулю, то их пересечение - точка.

Доказательство. Рассмотрим монотонно возрастающую, ограниченную последовательность $\{a_n\}$ и монотонно убывающую, ограниченную последовательность $\{b_n\}$. По теореме Вейерштрасса, $\{a_n\}$ имеет точную верхнюю грань p, а $\{b_n\}$ - точную нижнюю грань q. Так как $\forall x \in \{a_n\}, \forall y \in \{b_n\}: x \leq y$, то $p \leq q$. Тогда отрезок [p,q] - есть пересечение вложенных отрезков.

Предположим, что существуют две различные точки M_1 и M_2 принадлежащие пересечению вложенных отрезков, длины которых стремятся к нулю. Тогда:

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n > N : |a_n - b_n| < \epsilon$$

Зафиксируем $\epsilon = \frac{|M_1 - M_2|}{2}$, тогда существует такой вложенный отрезок, длина которого не превышает ϵ , а значит и расстояния от M_1 до M_2 . Тогда, очевидно, отрезок не может покрыть обе точки одновременно.

8 Подпоследовательности. Два определения частичного предела

Определение. Подпоследовательностью $\{x_n\}$ называется такая последовательность $\{x_{n_k}\}$, что $\{n_k\}$ - монотонно возрастающая последовательность натуральных чисел.

Определение. Частичным пределом последовательности $\{x_n\}$ - называют предел ее подпоследовательности.

Определение. Число $l \in \mathbb{R}$ называется частичным пределом последовательности $\{x_n\} \Leftrightarrow \forall \epsilon > 0, \forall N \in \mathbb{N}, \exists n > N: |x_n - l| < \epsilon$

Утверждение. Оба определения частичного предела эквивалентны.

Доказательство. (В одну сторону) Пусть

$$\lim_{x_{n_k}} = l \Leftrightarrow \forall \epsilon > 0, \exists K \in \mathbb{N}, \forall k > K : |x_{n_k} - l| < \epsilon$$

Тогда $\forall N \in \mathbb{N}$ можно выбрать $K \in \mathbb{N}$ так, что $\forall k > K : n_k > N$, а это значит, что:

$$\forall \epsilon > 0, \forall N \in \mathbb{N}, \exists n > N : |x_n - l| < \epsilon$$

(В другую сторону) Пусть l - частичный предел последовательности $\{x_n\}$, тогда:

$$\forall \epsilon > 0, \forall N \in \mathbb{N}, \exists n > N : |x_n - l| < \epsilon$$

Тогда построим последовательность $\{x_{n_k}\}$ следующим образом:

$$\epsilon := 1 \quad \exists n_1 \in \mathbb{N} \quad |x_{n_1} - l| < 1$$
 $\epsilon := 1/2 \quad \exists n_2 > n_1 \quad |x_{n_2} - l| < 1/2$

Тогда по построению

$$\forall \epsilon > 0, \exists K \in \mathbb{N}, \forall k > K : |x_{n_k} - l| < \epsilon$$

9 Теорема о трёх определениях верхнего и нижнего пределов

Определение. Верхним пределом $\overline{\lim}_{n\to\infty}x_n$ называется наибольший из частичных пределов $\{x_n\}$.

Определение. Нижним пределом $\underline{\lim}_{n\to\infty} x_n$ называется наименьший из частичных пределов $\{x_n\}$.

Теорема. (3 определения нижнего и верхнего пределов) Для любой ограниченной последовательности $\{x_n\}$ существует верхний предел $L = \overline{\lim}_{n\to\infty} x_n$ и нижний предел $l = \underline{\lim}_{n\to\infty} x_n$. При этом данное определение эквивалентно следующим двум:

1.

$$(\forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \forall n > N : x_n < L + \epsilon) \land (\forall \epsilon > 0 \; \forall N \in \mathbb{N} \; \exists n > N : x_n > L - \epsilon)$$
$$(\forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \forall n > N : x_n > l - \epsilon) \land (\forall \epsilon > 0 \; \forall N \in \mathbb{N} \; \exists n > N : x_n < l + \epsilon)$$

2.
$$L = \overline{\lim}_{n \to \infty} \sup\{x_n, x_{n+1}, \ldots\}$$
 $l = \underline{\lim}_{n \to \infty} \inf\{x_n, x_{n+1}, \ldots\}$

Доказательство. Пусть $s_n = \sup\{x_n, x_{n+1}, \ldots\}$. Очевидно, что $s_n \leq s_{n-1}$ и что $s_n \geq \inf\{x_n\}$. Тогда по теореме Вейерштрасса $\{s_n\}$ сходится.

$$L := \lim_{n \to \infty} s_n = \lim_{n \to \infty} \sup\{x_n, x_{n+1}, \ldots\} = \inf\{s_n\}$$

Докажем справедливость первого определения.

$$\lim_{n \to \infty} s_n = L \Leftrightarrow \forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \forall n > N : |s_n - L| < \epsilon \Leftrightarrow x_n \le s_n < L + \epsilon$$
$$L = \inf\{s_n\} \Leftrightarrow \forall N \in \mathbb{N} \; s_{N+1} = \sup\{x_{N+1}, x_{N+2}, \ldots\}$$

Так как $L = \inf\{s_n\}$, то $L \leq s_{N+1}$.

$$\forall \epsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N : x_n = \sup\{x_n, x_{n+1}, \ldots\} \ge \sup\{x_{N+1}, x_{N+2}, \ldots\} = s_{N+1} > s_{N+1} - \epsilon = L - \epsilon$$

Отсюда:

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N : x_n < L + \epsilon$$

 $\forall \epsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N : x_n > L - \epsilon$

Докажем в обратную сторону. Будем строить последовательность следующим образом $(N(\epsilon)$ - такое число N, что $\forall n>N: x_n < L+\epsilon$ - первая часть первого пункта):

$$\epsilon := 1 \qquad \exists n_1 > N(1) \qquad |x_{n_1} - L| < 1$$

$$\epsilon := 1/2 \quad \exists N_2 = \max(N(1/2), n_1) \quad \exists n_2 > N_2 : |x_{n_2} - L| < 1/2$$

Таким образом, мы доказали, что L является частичным пределом x_n . Теперь докажем, что L является наибольшим частичным пределом. Пусть у нас есть любая подпоследовательность $\{y_n\}$ последовательности $\{x_n\}$ такая, что $\lim_{n\to\infty}y_n=t$. Из первой первой части первого пункта следует, что

$$\forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \forall n > N : y_n < L + \epsilon \Rightarrow t \leq L + \epsilon$$

Тогда $\forall \epsilon > 0 \ t \leq L + \epsilon \Rightarrow t \leq L$, а это значит, что L - наибольший из частичных пределов.

10 Теорема Больцано-Вейерштрасса

Теорема. Любая ограниченная последовательность $\{x_n\}$ содержит в себе сходящуюся подпоследовательность $\{x_{n_k}\}$.

Доказательство. Так как последовательность $\{x_n\}$ ограниченна, то найдутся A_1 и B_1 такие, что $\forall n \in \mathbb{N} : A_1 \leq x_n \leq B_1 \Leftrightarrow x_n \in [A_1, B_1]$. Выберем $M_1 = \frac{A_1 + B_1}{2}$, и в $[A_1, M_1]$ лежит бесконечное число элементов $\{x_n\}$, то зададим $A_2 := A_1; B_2 = M_1$. Иначе, бесконечное число элементов $\{x_n\}$ лежит в $[M_1, B_1]$, тогда выберем $A_2 := M_1; B_2 := B_1$. Таким образом мы получим систему стягивающих отрезков, длины которых стремятся к нулю. Теперь построим последовательность $\{x_{n_k}\}$ следующим образом:

$$k = 1$$
 $\exists n_1 \in \mathbb{N} : x_{n_1} \in [A_1, B_1]$
 $k = 2$ $\exists n_2 \in \mathbb{N} : x_{n_2} \in [A_2, B_2], n_2 > n_1$
...

По теореме Кантора о стягивающих отрезках пересечение отрезков с длинами стремящимися к нулю есть некоторая точка C. Тогда, так как $x_{n_k} \in [A_k, B_k]$, то $\lim_{k \to \infty} x_{n_k} = C$.

11 Критерий Коши сходимости числовой последовательности

Теорема. Последовательность сходится тогда и только тогда, когда она фундаментальна.

Доказательство. (Сходимость ⇒ фундаментальность)

Пусть $\{x_n\}$ - сходится, $\lim_{n \to \infty} x_n = A$, тогда:

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N : |x_n - A| < \epsilon/2$$

$$\forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \forall n > N \; \forall p \in \mathbb{N} : |x_{n+p} - A| < \epsilon/2$$

Отсюда:

$$\forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \forall n > N \; \forall p \in \mathbb{N} : |x_{n+p} - x_n| \le |x_{n+p} - A| + |-x_n + A| < \epsilon$$

(Фундаментальность \Rightarrow сходимость) Пусть поледовательность $\{x_n\}$ фундаментальна, тогда:

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N \ \forall p \in \mathbb{N} : |x_{n+p} - x_n| < \epsilon \Rightarrow x_n - \epsilon < x_{n+p} < x_n + \epsilon$$
$$\epsilon := 1 \qquad \exists N \in \mathbb{N} \ \forall n > N : x_{N+1} - 1 < x_n < x_{N+1} + 1$$

Значит последовательность $\{x_n\}$ - ограниченна, тогда по теореме Больцано-Вейерштрасса она имеет сходяющуюся подпоследовательность $\{x_{n_k}\}$.

$$\exists A : \forall \epsilon > 0 \ \exists K \in \mathbb{N} \ \forall k > K : |x_{n_k} - A| < \epsilon/2$$

$$n_k > n_K \ge n \Rightarrow n_k = n + p \Rightarrow \forall p \in \mathbb{N} : |x_{n+p} - A| < \epsilon/2$$

Из фундаментальности следует:

$$\forall \epsilon > 0 \ \exists N_1 \in \mathbb{N} \ \forall n > N_1 : |x_{n+p} - x_n| < \epsilon/2$$

Тогда:

$$\forall \epsilon > 0 \ \exists N = max(N_1, K) \ \forall n > N : |x_n - A| \le |x_n - x_{n+p}| + |x_{n+p} - A| < \epsilon$$

12 Определение предела функции в точке в терминах окрестностей (по Коши) и в терминах последовательностей (по Гейне), их эквивалентность

Определение. (по Коши) Пусть функция f(x) определена в проколотой окрестности точки x_0 . Тогда пределом f(x) в точке x_0 называют такое число A, что:

$$\forall \epsilon > 0 \; \exists \delta > 0 : \forall x \in \mathring{U}_{\delta}(\epsilon) : f(x) \in U_{\epsilon}(A)$$

Определение. (По Гейне) Пределом функции f(x) в точке x_0 называют число A такое, что:

$$\forall \{x_n\} \in D(f) \setminus \{x_0\} : \lim_{n \to \infty} x_n = x_0, \lim_{n \to \infty} f(x_n) = A$$

13 Критерий Коши существования предела функции

Теорема. Конечный предел функции f(x) в точке x_0 существует тогда и только тогда, когда:

$$\forall \epsilon > 0 \ \exists \delta : \forall x_1, x_2 \in U_{\delta}(x_0) : |f(x_1) - f(x_2)| < \epsilon$$

Доказательство. (\Rightarrow) Пусть для функции f(x) в точке x_0 существует конечный предел. Тогда:

$$\forall \epsilon > 0 \ \exists \delta : \forall x \in U_{\delta}(x_0) : |f(x) - A| < \epsilon/2$$

$$\forall \epsilon > 0 \ \exists \delta : \forall x_1, x_2 \in U_{\delta}(x_0) : |f(x_1) - f(x_2)| \le |f(x_1) - A| + |A - f(x_2)| < \epsilon$$

 (\Leftarrow) Возьмем последовательность $\{y_n\}$ такую, что $\lim_{n\to\infty}y_n=x_0$. Тогда $\{f(y_n)\}$ - фундаментальна, а значит сходится и имеет предел A. Возьмем любую другую последовательность $\{z_n\}$, $\lim_{n\to\infty}z_n=x_0$, $\lim_{n\to\infty}f(z_n)=A'$. Построим из этих двух последовательностей новую: $\{s_n\}=\{y_1,z_1,y_2,z_2\ldots\}$. Она так же сходится к x_n , а предел $\{f(s_n)\}$ равен A''. Но тогда предел любой ее подпоследовательности равен $A''\Rightarrow A=A'=A''$

14 Существование односторонних пределов у монотонных функций

Теорема. Пусть функция f(x) монотонна и определена на некотором интервале (a,b), то для любой точки существуют пределы слева и справа.

Доказательство. Пусть f(x) монотонно возрастает на (a,b). Зафиксируем точку $x_0 \in (a,b)$, тогда из монотонности получаем, что:

$$\forall x \in (a, x_0) : f(x) \le f(x_0)$$

Множество значений на (a, x_0) ограниченно сверху, следовательно по определению точной верхней грани $\exists M = \sup_{x \in (a, x_0)} f(x)$ такое, что:

1.
$$\forall x \in (a, x_0) : f(x) \leq M$$

2.
$$\forall \epsilon > 0 \ \exists N = N(\epsilon) \in (a, x_0) : f(N) > M - \epsilon \Rightarrow \forall n \geq N : f(n) > M - \epsilon$$

Тогда возьмем $\delta(\epsilon) = N(\epsilon) - x_0$:

$$\forall \epsilon > 0 : \exists \delta = \delta(\epsilon) : \forall x \in (x_0 - \delta, x_0) : f(x) \in (M - \epsilon, M)$$

$$\forall \epsilon > 0 : \exists \delta \ \forall x \in (x_0 - \delta, x_0) : f(x) \in U_{\epsilon}(M)$$

Аналогично доказывается для предела справа.

15 Непрерывность функции в точке. Непрерывность сложной функции

Определение. Если функция f(x) определена в некоторой окрестности точки x_0 и $\lim_{x\to x_0} f(x) = f(x_0)$, то функция f(x) называется непрерывной в точке x_0 .

Определение. Если функция f(x) определена в некоторой окрестности точки x_0 и $\lim_{x\to x_0-0} f(x) = f(x_0)$, то функция f(x) называется непрерывной слева в точке x_0 .

Определение. Если функция f(x) определена в некоторой окрестности точки x_0 и $\lim_{x\to x_0+0} f(x) = f(x_0)$, то функция f(x) называется непрерывной справа в точке x_0 .

Определение. Если $\lim_{x\to x_0} f(x) \neq f(x_0)$, и $\exists \lim_{x\to x_0-0} f(x), \lim_{x\to x_0+0} f(x)$, то x_0 называется точкой разрыва I рода, иначе II рода.

Определение. Если $\lim_{x\to x_0} f(x) \neq f(x_0)$, и $\exists \lim_{x\to x_0-0} f(x) = \lim_{x\to x_0+0} f(x)$, то x_0 называется точкой устранимого разрыва.

Определение. Если хотя бы один односторонний предел (правый или левый) равен бесконечности, то x_0 называется точкой бесконечного разрыва.

Теорема. Если функция f непрерывна в точке x_0 , а функция g непрерывна в точке $f(x_0)$, то $g \circ f$ непрерывна в точке x_0 .

Доказательство. Из определений непрерывности f и g следует:

$$\forall \epsilon > 0 \; \exists p > 0 : \forall f(x) \in U_p(f(x_0)) : q(f(x)) \in U_{\epsilon}(q(f(x_0)))$$

$$\forall \epsilon > 0 \; \exists \delta > 0 : \forall x \in U_{\delta}(x_0) : f(x) \in U_{\epsilon}(f(x_0)) \Rightarrow \forall p : \exists \delta > 0 : \forall x \in U_{\delta}(x_0) : f(x) \in U_p(f(x_0))$$

Отсюда

$$\forall \epsilon > 0 \ \exists \delta > 0 : \forall x \in U_{\delta}(x_0) : g(f(x)) \in U_{\epsilon}(g(f(x_0)))$$

А это значит, что $g \circ f$ непрерывна в x_0

16 Ограниченность функции, непрерывной на отрезке

Теорема. Функция, непрерывная на отрезке [a, b] ограничена на [a, b].

Доказательство. Пусть функция неограничена сверху, тогда

$$\forall \epsilon > 0 \ \exists x \in [a, b] : f(x) > \frac{1}{\epsilon}$$

$$\forall \epsilon > 0 \ \exists x_{\frac{1}{\epsilon}} \in [a, b] : f(x_{\frac{1}{\epsilon}}) > \frac{1}{\epsilon}$$

Будем брать $\epsilon = 1, \frac{1}{2}, \frac{1}{3}$ Получим последовательность $\{x_n\}$ такую, что $f(x_n) > x_n$, $x_n \in [a,b]$. Тогда $\{x_n\}$ ограничена, и по теореме Больцано-Вейерштрасса можно выделить подпоследовательность $\{x_{n_k}\}$ сходящуюся к $x_0 \in [a,b]$. Тогда из непрерывности следует $\lim_{k\to\infty} f(x_{n_k}) = f(x_0)$. Но $f(x_{n_k}) > n_k \ge k \to \infty$. Противоречие.

17 Достижение точной верхней и точной нижней граней функцией, непрерывной на отрезке

Теорема. Если функция f ограниченна на отрезке [a,b] и существуют такие точки s и p, что $f(s) = \sup_{x \in [a,b]} f(x)$ и $f(p) = \inf_{x \in [a,b]} f(x)$, то $s,p \in [a,b]$

Доказательство. Пусть $M = \sup_{x \in [a,b]} f(x)$, тогда:

$$\forall \epsilon > 0 \ \exists x = x(\epsilon) \in [a, b] : M - \epsilon < f(x) \le M$$

Подставляя $\epsilon=1,\frac{1}{2},\frac{1}{3}\dots$ найдем такую последовательность $\{x_n\},$ что $x_n=x(\frac{1}{n}).$ Тогда:

$$\forall n \in \mathbb{N} : M - \frac{1}{n} < f(x_n) \le M$$

По теореме о промежуточной последовательности

$$\lim_{n \to \infty} f(x_n) = M$$

По построению последовательность ограничена, поэтому по теореме Больцано-Вейерштрасса мы можем выделить подпоследовательность $\{x_{n_k}\}$ сходящуюся к x_0 . Так как x_0 непрерывна, то:

$$\lim_{k \to \infty} f(x_{n_k}) = f(x_0) = M$$

(Аналогичное доказательство для нижней грани).

18 Теорема о промежуточных значениях непрерывной функции

Теорема. Пусть f непрерывна на отрезке [a,b], тогда

$$\forall A = f(x_1) < B = f(x_2) \ x_1, x_2 \in [a, b] \ \forall C \in [A, B] \ \exists c \in [a, b] : f(c) = C$$

Доказательство. Рассмотрим частный случай, когда A < C = 0 < B. Зададим первый отрезок так: $[A_1, B_1] = [x_1, x_2]$. Теперь рассмотрим точку $M = \frac{f(A_1) + f(B_1)}{2}$.

- 1. Если f(M) = 0, то мы нашли такое c = M, что f(c) = C
- 2. Если f(M) < 0, то строим новый вложенный отрезок $[A_2, B_2] = [M, B_1]$
- 3. Иначе строим $[A_2, B_2] = [A_1, M]$

Продолжаем строить следующие отрезки подобным образом. Так, мы либо найдем искомое c, либо построим систему стягивающихся отрезков $\{[A_n,B_n]\}$ такую, что их длины стремятся к нулю, а значит (по Кантору) их пересечением будет точка d. Так как $\lim_{n\to\infty} f(A_n) = \lim_{n\to\infty} f(B_n) = 0$ по построению, а $f(A_n) < f(d) < f(B_n)$, то f(d) = 0, значит d - есть наша искомая точка c.

В общем случае можно рассматривать вспомогательную функцию F(x) = f(x) - C и искать точку для нее.