3.4 轨道交通需求 OD 分布预测

该小节主要与高速公路进行合理分担,城际轨道交通所占比率主要与出行距离、时间、成本等有关,根据课程中学到的模型,计算其分担量。

3.4.1 广义费用度量

根据已有材料,出行费率主要根据运价率、舒适度和旅行速度三个因素计算,其具体的参数情况如下:

	高速公路 (i = 1)	国道(i=2)	铁路 (i=3)
运价率 R _i (元/人. km)	0. 275	0. 2	0. 4
舒适度 M_i	1. 34526	1. 33226	1. 54537
旅行速度 v_i (km/h)	80	50	200

直接成本和间接成本,是广义出行成本的基本构成。其中直接成本,是指出行者用直接支付或者税收等方式支付的成本,主要包括燃油费、停车费、过路费、车票等;间接成本是指运行时产生的成本,主要包括舒适性成本、安全性成本、环保性成本和时间成本等,广义出行费用函数可表示为:

$$C = \alpha TC + \beta TT + \gamma TM$$

其中: C 为广义出行费用; TC 为出行的直接经济成本,可以采用运价率来衡量; TT 为出行的时间成本,采用旅行速度来衡量; TM 为出行的舒适性成本,采用舒适度来衡量; α 、 β 、 γ 为待定系数,由于没有参考标准,我们将运价、舒适度和旅行速度视为等同的影响,即 α =1、 β =1、 γ =1:

假设时间成本为 0.05 元/分钟,出行时间设为t=d/v,其中d为距离,v为速度,则出行时间成本:

$$TT_i = \frac{0.05 * d}{v_i}$$

经济成本:

$$TC_i = R_i * d$$

舒适度成本:

$$TM_i = \frac{0.05 * d}{M_i * v_i}$$

d 取单位长度 1km,则广 1+义成本:

$$C_i = 0.05 * \frac{1 + M_i}{M_i * v_i} + R_i (\vec{\pi}/km)$$

获得广义成本如下:

高速公路 (i = 1)	国道(i=2)	铁路 (i = 3)
0. 275	0. 2	0. 4
1. 34526	1. 33226	1. 54537
1. 33	0. 83	3. 33
0. 3405395	0. 30545809	0. 42473114
	0. 275 1. 34526 1. 33	0. 275 0. 2 1. 34526 1. 33226 1. 33 0. 83

3.4.1 分担模型计算

在课程中我们学习到方式选择的分担率模型,假设有两种运输方式,根据引力模型有(仅考虑费用因素),其中为 T_{ij}^k 为第 k 种交通方式的交通量, C_{ij}^k 对应广义费用:

$$T_{ij}^k = A_i O_i B_j D_j \exp(-\beta C_{ij}^k)$$
, $k = 1,2$

则第一种运输方式的分担率为:

$$P_{ij}^{1} = \frac{T_{ij}^{1}}{T_{ij}} = \frac{\exp(-\beta C_{ij}^{k})}{\exp(-\beta C_{ij}^{1}) + \exp(-\beta C_{ij}^{2})} = \frac{1}{1 + \exp(-\beta (C_{ij}^{2} - C_{ij}^{1}))}$$

其中的 β 值需要由观察值标定,我们采用教材上的策略:

$$P_{ij}^{2} = 1 - P_{ij}^{1} = \frac{\exp\left(-\beta \left(C_{ij}^{2} - C_{ij}^{1}\right)\right)}{1 + \exp\left(-\beta \left(C_{ij}^{2} - C_{ij}^{1}\right)\right)}$$

增加回归系数:

$$\ln\left(\frac{P_{ij}^{1}}{1 - P_{ij}^{1}}\right) = \frac{1}{1 + \exp(-\beta(C_{ij}^{2} - C_{ij}^{1}) - \lambda)}$$

用线性回归标定参数 β , λ 则:

$$P_{ij}^{1} = \frac{1}{1 + \exp(-\beta(C_{ij}^{2} - C_{ij}^{1}) - \lambda)}$$

在多个选项的情况即为普通的 logit 回归,即:

$$P_{ij}^{i} = \frac{\exp(-\beta C_{ij}^{i})}{\sum_{k} \exp(-\beta C_{ij}^{k})}$$

3.4.3 综合模型分担率

在获得了费用的参数后,我们就可以基于起点终点城镇,建立分档率与费用的函数 关系,其基础参数如下:

起点城镇	终点城镇	距离 (km)	铁路分担率 (%)	C1	C2	С3
1	3	75	32. 5	25. 5404	22. 9093	31. 8548
1	13	428	94.8	145. 7509	130. 7360	181. 7849
4	10	49	20	16. 6864	14. 9674	20. 8118
3	19	155	46. 7	52. 7836	47. 3460	65. 8333
12	16	210	63. 5	71. 5132	64. 1461	89. 1935
2	17	113	43. 9	38. 4809	34. 5167	47. 9946
17	23	118	45	40. 1836	36. 0440	50. 1182
4	23	204	60.6	69. 4700	62. 3134	86. 6451

增加常数项后,我们直接基于 Stata 的 Logit 模块进行参数拟合,获得如下结果:

Logit Regression Results							
Dep. Variable Model: Method: Date: Time: converged: Covariance Ty	W	L ed, 25 Nov 03:4	ogit Df MLE Df 2020 Pse 9:49 Log- alse LL-	Observatior Residuals: Model: udo R–squ.: -Likelihood: Null: p–value:		8 5 2 0.2151 -4.3469 -5.5383 0.3038	
	coef	std err	z	P> z	[0.025	0.975]	
C1 C2 C3 intercept	-0.9958 0.6804 0.3334 -1.6007	nan 1.05e+06 4.22e+08 -0	nan 6.49e-07 7.91e-10 inf	nan 1.000 1.000 0.000	nan -2.06e+06 -8.26e+08 -1.601	nan 2.06e+06 8.26e+08 -1.601	

我们可以发现,拟合效果比较差,所以我们调整为二项 Logit 进行回归,将高速公路和国道合并为公路,成本取平均值:

	高速公路 (i = 1)	铁路 (i = 3)	C1-C3
广义成本 C_i (元/km)	0. 322998795	0. 42473114	-0. 101732345

二项拟合函数为:

$$\ln\left(\frac{P_{ij}^3}{1 - P_{ij}^3}\right) = -\beta\left(C_{ij}^1 - C_{ij}^3\right) * d - \lambda$$

起点城镇	终点城镇	距离 d(km)	铁路分担率(%)	(C1-C3)*d
1	3	75	32. 5	25. 5404
1	13	428	94. 8	145. 7509
4	10	49	20	16. 6864
3	19	155	46. 7	52. 7836
12	16	210	63. 5	71. 5132
2	17	113	43. 9	38. 4809
17	23	118	45	40. 1836
4	23	204	60. 6	69. 4700

通过 Python 的回归模块进行参数拟合,获得拟合的结果:

$$\ln\left(\frac{P_{ij}^3}{1 - P_{ij}^3}\right) = -1.641\left(C_{ij}^1 - C_{ij}^3\right) * d - 0.104$$

其拟合效果如下:

拟合结果为:

$$P_{ij}^3 = \frac{1}{1 + e^{-0.104*0.1017*d - 1.164}}$$

基于上述拟合结果,我们可以获得 OD 的铁路需求预测结果,见附录。