Functions of several variables

Guoning Wu

March 3, 2020

1 The Space \mathbb{R}^m and the Most Important Classed of its Subsets

1.1 The Set \mathbb{R}^m and the distant in it

We make the convention that \mathbb{R}^m denotes the set of ordered m-tuples (x^1, x^1, \dots, x^m) of real numbers $x^i \in \mathbb{R}$.

The function:

$$d(x_1, x_2) = \sqrt{\sum_{i=1}^{m} (x_1^i - x_2^i)^2}$$

obviously has the following properties:

- 1. $d(x_1, x_2) \ge 0$;
- 2. $d(x_1, x_2) = 0 \iff x_1 = x_2$
- 3. $d(x_1, x_2) = d(x_2, x_1)$;
- 4. $d(x_1, x_2) \le d(x_1, x_3) + d(x_3, x_2);$

A function defined on pairs of points (x_1, x_2) of a set X and possessing the properties 1,2,3,4 is called a **metric or distance on** X.

1.2 Open and Closed Sets in \mathbb{R}^m

Definition 1.1. For each $\delta > 0$, the set

$$B(a,\delta) = \{ x \in \mathbb{R}^m \, | \, d(a,x) < \delta \, \}$$

is called the ball with center $a \in \mathbb{R}^m$ of radius δ or the δ -neighborhood of the point $a \in \mathbb{R}^m$.

Definition 1.2. A set $G \subset \mathbb{R}^m$ is open in \mathbb{R}^m if for every point $x \in G$ there is a ball $B(a, \delta)$ such that $B(a, \delta) \subset G$.

Definition 1.3. An open set in \mathbb{R}^m containing a given point is called a neighborhood of that point in \mathbb{R}^m .

Examples 1. \mathbb{R}^m is an open set in \mathbb{R}^m .

Examples 2. The empty set \emptyset contains no points at all is an open set in \mathbb{R}^m .

Examples 3. A ball B(a;r) is an open set in \mathbb{R}^m .

Definition 1.4. The set $F \subset \mathbb{R}^m$ is closed in \mathbb{R}^m if its complement $F^C = \mathbb{R}^m \setminus F$ is open in \mathbb{R}^m .

Examples 4. The set $\bar{B}(a;r) = \{x \in \mathbb{R}^m | d(a,x) \leq r\}, r \geq 0 \text{ is a close set.}$

Proposition 1.1. 1. The union $\bigcup_{\alpha \in A} G_{\alpha}$ of the sets of any system $\{G_{\alpha}, \alpha \in A\}$ of open sets in \mathbb{R}^m is an open set in \mathbb{R}^m .

- 2. The intersection $\bigcap_{i=1}^{n} G_i$ of a finite number of open sets in \mathbb{R}^m is an open set in \mathbb{R}^m .
- 3. The intersection $\bigcap_{\alpha \in A} F_{\alpha}$ of the sets of any system $\{F_{\alpha}, \alpha \in A\}$ of closed sets in \mathbb{R}^m is an closed set in \mathbb{R}^m .
- 4. The union $\bigcup_{i=1}^{n} F_i$ of a finite number of closed sets in \mathbb{R}^m is an closed set in \mathbb{R}^m .

Definition 1.5. In relation to a set $E \subset \mathbb{R}^m$ a point is

- 1. **an interior point** if some neighborhood of it is contained in E;
- 2. an exterior point if it is a interior point of the complement of E in \mathbb{R}^m ;
- 3. a boundary point if it is neither an interior nor an exterior point of *E*.

Definition 1.6. A set $K \subset \mathbb{R}^m$ is compact if form every covering of K by sets that are open in \mathbb{R}^m one can extract a finite covering.

Examples 5. A closed interval $[a,b] \subset \mathbb{R}$ is compact by the finite covering lemma.

2 Limits and Continuity of Functions of Several Variables

2.1 The Limit of a Function

In the next few sections we shall be consider functions $f: X \to \mathbb{R}^n$ defined on subsets of \mathbb{R}^m .

Definition 2.1. A point $A \in \mathbb{R}^n$ is the **limit of the mapping** $f: X \to \mathbb{R}^n$ over a base \mathcal{B} in X if for every neighborhood V(A) of the point there exists an element $B \in \mathcal{B}$ of the base whose image f(B) is contained in V(A).

In brief,

$$\lim_{\mathcal{B}} f(x) = A := \forall V(A), \exists B \in \mathcal{B}, f(B) \subset V(A)$$

.

Examples 6.
$$\lim_{(x,y)\to(2,1)} x^2 + xy + y^2 = 7$$

Examples 7. $\lim_{(x,y)\to(0,0)} f(x,y) = 0$, where

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0) \end{cases}$$

Theorem 2.1. $\lim_{\substack{P \to P_0 \\ P \in D}} f(P) = A$ 的充要條件是:對於D 的任意子集E,只

要 P_0 是E的聚點,就有

$$\lim_{\substack{P \to P_0 \\ P \in E}} f(P) = A$$

Corollary 2.2. 設 $E_1 \subset D$, P_0 是 E_1 的聚點,若 $\lim_{\substack{P \to P_0 \\ P \in E_1}} f(P)$ 不存在,則 $\lim_{\substack{P \to P_0 \\ P \in D}} f(P)$

Corollary 2.3. 設 $E_1, E_2 \subset D, P_0$ 是它們的聚點,若 $\lim_{\substack{P \to P_0 \\ P \in E_1}} f(P) = A_1$, $\lim_{\substack{P \to P_0 \\ P \in E_1}} f(P) = A_2$,但 $A_1 \neq A_2$,則 $\lim_{\substack{P \to P_0 \\ P \in P_0}} f(P)$ 不存在。

Examples 8. $\lim_{(x,y)\to(0,0)} f(x,y)$, where

$$(x,y) \rightarrow (0,0)$$

$$\left\{ \begin{array}{c} xy \\ 2 & 2 \end{array} \right. (x,y)$$

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0) \end{cases}$$

2.2 Continuity of a Function of Several Variables and Properties of Continuous Function

Let E be a subset of \mathbb{R}^m and $f: E \to \mathbb{R}^n$ be a function defined on E with values in \mathbb{R}^n .

Definition 2.2. The function $f: E \to \mathbb{R}^n$ is a continuous at $a \in E$ if for every neighborhood V(f(a)) of the value f(a) that the function assumes at a, there exists a neighborhood $U_E(a)$ of a in E whose image $f(U_E(a))$ is contained in V(f(a)).

Thus $f: E \to \mathbb{R}^n$ is continuous at $a \in E \iff \forall V(f(a)), \exists U_E(a), s.t. f(U_E(a)) \subset V(f(a))$.

It follows from the definition above that the mapping $f: E \to \mathbb{R}^n$ defined by the relation

$$(x^1, x^2, \dots, x^m) = x \mapsto y = (y^1, y^2, \dots, y^n) = (f^1(x^1, x^2, \dots, x^n), \dots, f^n(x^1, x^2, \dots, x^n))$$

is continuous at a point if and only if each of the function $y^i = f^i(x^1, x^2, \dots, x^m)$ is continuous at that point.

Local properties of continuous functions

- a) A mapping $f: E \mapsto \mathbb{R}^n$ is continuous at a point $a \in E$ if and only is $\omega(f; a) = 0$.
- b) A mapping $f: E \mapsto \mathbb{R}^n$ is continuous at a point $a \in E$ is bounded in some neighborhood $U_E(a)$ of that point.
- c) If the mapping $g: Y \mapsto \mathbb{R}^k$ of the set $Y \subset \mathbb{R}^n$ is continuous at a point $y_0 \in Y$ and the mapping $f: X \mapsto Y$ of the set $X \subset \mathbb{R}^m$ is continuous at a point $x_0 \in X$ and $f(x_0) = y_0$, then the mapping $g \circ f: X \mapsto \mathbb{R}^k$ is defined, and is continuous at $x_0 \in X$.

Global Properties of Continuous function.

- a) If a mapping $f: K \mapsto \mathbb{R}^n$ is continuous on a compact set $K \subset \mathbb{R}^m$, then it is uniformly continuous on K.
- b) If a mapping $f: K \mapsto \mathbb{R}^n$ is continuous on a compact set $K \subset \mathbb{R}^m$, then it is bounded on K.
- c) If a mapping $f: K \mapsto \mathbb{R}^n$ is continuous on a compact set $K \subset \mathbb{R}^m$, then it assumes its maximal and minimal values at some point of K.
- d) If a mapping $f: K \to \mathbb{R}^n$ is continuous on a connected set $E \subset \mathbb{R}^m$ and assumes the values f(a) = A and f(b) = B at points $a, b \in E$, then for any C between A and B, there is a point $c \in E$ at which f(c) = C.

3 作業

1. 求下列函數的極限

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{1+x^2+y^2}{x^2+y^2}$$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{\sqrt{1+x^2+y^2}-1}$$

(d)
$$\lim_{(x,y)\to(0,0)} (x+y)\sin\frac{1}{x^2+y^2}$$

(e)
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2}$$

2. 討論下列函數在點(0,0)的重極限與累次極限

(a)
$$f(x,y) = \frac{y^2}{x^2 + y^2}$$

(b)
$$f(x,y) = (x+y)\sin\frac{1}{x}\sin\frac{1}{y}$$

(c)
$$f(x,y) = \frac{x^2y^2}{x^2y^2 + (x-y)^2}$$

(d)
$$f(x,y) = y \sin \frac{1}{x} + x \sin \frac{1}{y}$$

3. 討論下列函數的連續性

(a)
$$f(x,y) = \tan(x^2 + y^2)$$

(b)
$$f(x,y) = \lfloor x + y \rfloor$$

(c)
$$f(x,y) = \begin{cases} \frac{\sin xy}{\sqrt{x^2 + y^2}}, & x^2 + y^2 \neq 0\\ 0, & x^2 + y^2 = 0 \end{cases}$$

(d)
$$f(x,y) = \begin{cases} 0, x \text{ is an irrational number} \\ y, x \text{ is a rational number} \end{cases}$$