# Reinforcement learning refresher

Content draws on material by Zico Kolter

## Learner interaction with environment



## Outline

#### 1. Markov decision processes

- 2. Reinforcement learning
- 3. Branch-and-bound as an MDP

## Markov decision processes

- MDPs defined by:
  - States
  - Actions
  - Transition probabilities
  - Rewards
- States: encode how system will evolve when taking actions
- System governed by transition probabilities  $P(s_{t+1} \mid s_t, a_t)$ 
  - Only depend on current state and action (Markov assumption)
- Agent's goal: take actions that maximize expected reward

# Markov decision processes

S: set of states (assumed for now to be discrete)

A: set of actions

Transition probability distribution  $P(s_{t+1} \mid s_t, a_t)$ Probability of entering state s' from state s after taking action a

Reward function  $R: S \to \mathbb{R}$ 

**Goal:** Policy  $\pi: S \to A$  that maximizes total (discounted) reward

#### Gridworld domain

- Goal state with reward 1
- "Bad state" with reward -100
- Actions move:
  - North with probably 0.8
  - East or west with probability 0.1
- Action that would bump into a wall leaves agent where it is

| 0 | 0 | 0 | 1    |
|---|---|---|------|
| 0 |   | 0 | -100 |
| 0 | 0 | 0 | 0    |



#### Policies and value functions

Policy is a mapping from states to actions  $\pi: S \to A$ 

#### Value function for a policy:

Expected sum of discounted rewards

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) \mid s_{0} = s, a_{t} = \pi(s_{t}), s_{t+1} \mid s_{t}, a_{t} \sim P\right]$$
Discount factor

# Bellman equation

Can also define  $V^{\pi}(s)$  recursively via the **Bellman equation**:

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P(s' \mid s, \pi(s)) V^{\pi}(s')$$

## Computing the policy value

- $v^{\pi} \in \mathbb{R}^{|S|}$  is a vector of values for each state
- $r \in \mathbb{R}^{|S|}$  is a vector of **rewards** for each state
- $P^{\pi} \in \mathbb{R}^{|S| \times |S|}$  contains the **transition probabilities** under  $\pi$   $P_{ij}^{\pi} = P(s_{t+1} = i \mid s_t = j, a_t = \pi(s_t))$
- Bellman equation can be written in vector form as

$$\boldsymbol{v}^{\pi} = \boldsymbol{r} + \gamma P^{\pi} \boldsymbol{v}^{\pi}$$

$$\Rightarrow (I - \gamma P^{\pi}) \boldsymbol{v}^{\pi} = \boldsymbol{r}$$

$$\Rightarrow \boldsymbol{v}^{\pi} = (I - \gamma P^{\pi})^{-1} \boldsymbol{r}$$

i.e., computing the policy value requires solving a linear system

# Optimal policy and value function

Optimal policy  $\pi^*$  achieves the highest value for every state  $V^{\pi^*}(s) = \max_{\pi} V^{\pi}(s)$ 

Value function is written  $V^* = V^{\pi^*}$ 

There are an exponential number of policies

⇒ Formulation is not very useful

# Optimal policy and value function

Instead, define  $V^*(s)$  using the **Bellman optimality equation** 

$$V^{\star}(s) = R(s) + \gamma \max_{a \in \mathcal{A}} \sum_{s' \in S} P(s' \mid s, a) V^{\star}(s')$$

Optimal policy is simply the action that attains this max

$$\pi^{\star}(s) = \underset{a}{\operatorname{argmax}} \sum_{s' \in S} P(s' \mid s, a) V^{\star}(s')$$

## Outline

- 1. Markov decision processes
  - i. Computing the optimal policy
    - a. Value iteration
    - b. Policy iteration
- 2. Reinforcement learning
- 3. Branch-and-bound as an MDP

# Computing the optimal policy

#### **Approach #1: value iteration**

Repeatedly update estimate of the optimal value function (according to Bellman optimality equation)

- 1.  $\hat{V}(s) \leftarrow 0, \forall s \in S$
- 2. Repeat:

$$\widehat{V}(s) \leftarrow R(s) + \gamma \max_{a \in \mathcal{A}} \sum_{s' \in S} P(s' \mid s, a) \widehat{V}(s')$$

$$V^*(s) = R(s) + \gamma \max_{a \in \mathcal{A}} \sum_{s' \in S} P(s' \mid s, a) V^*(s')$$

# Computing the optimal policy

#### **Approach #1: value iteration**

Repeatedly update estimate of the optimal value function (according to Bellman optimality equation)

- 1.  $\hat{V}(s) \leftarrow 0, \forall s \in S$
- 2. Repeat:

$$\widehat{V}(s) \leftarrow R(s) + \gamma \max_{a \in \mathcal{A}} \sum_{s' \in S} P(s' \mid s, a) \widehat{V}(s')$$

**Theorem:** Value iteration converges to optimal value:  $\hat{V} \rightarrow V^*$ 

| 0 | 0 | 0 | 1    |
|---|---|---|------|
| 0 |   | 0 | -100 |
| 0 | 0 | 0 | 0    |

Original reward function

| 0 | 0 | 0.72 | 1.81   |
|---|---|------|--------|
| 0 |   | 0    | -99.91 |
| 0 | 0 | 0    | 0      |

 $\hat{V}$  at 1 iteration

| 0.809 | 1.598 | 2.475 | 3.745  |
|-------|-------|-------|--------|
| 0.268 |       | 0.302 | -99.59 |
| 0     | 0.034 | 0.122 | 0.004  |

 $\hat{V}$  at 5 iterations

| 2.686 | 3.527 | 4.402 | 5.812  |
|-------|-------|-------|--------|
| 2.021 |       | 1.095 | -98.82 |
| 1.390 | 0.903 | 0.738 | 0.123  |

 $\hat{V}$  at 10 iterations

| 5.470 | 6.313 | 7.190 | 8.669  |
|-------|-------|-------|--------|
| 4.802 |       | 3.347 | -96.67 |
| 4.161 | 3.654 | 3.222 | 1.526  |

 $\hat{V}$  at 1000 iterations

Running value iteration with  $\gamma = 0.9$ 



Resulting policy after 1000 iterations

#### Outline

- 1. Markov decision processes
  - i. Computing the optimal policy
    - a. Value iteration
    - b. Policy iteration
- 2. Reinforcement learning
- 3. Branch-and-bound as an MDP

# Policy iteration

- 1. Initialize policy  $\pi$  randomly
- 2. Compute value of policy  $V^{\pi}$  (e.g., by solving linear system)
- 3. Update  $\pi$  to be greedy policy with respect to  $V^{\pi}$

$$\pi(s) \leftarrow \underset{a}{\operatorname{argmax}} \sum_{s' \in S} P(s' \mid s, a) V^{\pi}(s')$$

4. If policy  $\pi$  changed in last iteration, return to step 2

**Theorem:** Policy iteration converges to optimal policy:  $\pi \to \pi^*$ 

Running policy iteration with  $\gamma = 0.9$ , initialize with  $\pi(s) = \text{North}$ 

| 0 | 0 | 0 | 1    |
|---|---|---|------|
| 0 |   | 0 | -100 |
| 0 | 0 | 0 | 0    |

Original reward function

Running policy iteration with  $\gamma = 0.9$ , initialize with  $\pi(s) = \text{North}$ 

| 0.418  | 0.884  | 2.331  | 6.367  |
|--------|--------|--------|--------|
| 0.367  |        | -8.610 | -105.7 |
| -0.168 | -4.641 | -14.27 | -85.05 |

 $V^{\pi}$  at iteration 1

Running policy iteration with  $\gamma = 0.9$ , initialize with  $\pi(s) = \text{North}$ 

| 5.414 | 6.248 | 7.116 | 8.634  |
|-------|-------|-------|--------|
| 4.753 |       | 2.881 | -102.7 |
| 2.251 | 1.977 | 1.849 | -8.701 |

 $V^{\pi}$  at iteration 2

Running policy iteration with  $\gamma = 0.9$ , initialize with  $\pi(s) = \text{North}$ 

| 5.470 | 6.313 | 7.190 | 8.669  |
|-------|-------|-------|--------|
| 4.803 |       | 3.347 | -96.67 |
| 4.161 | 3.654 | 3.222 | 1.526  |

 $V^{\pi}$  at iteration 3 (converged)

#### Gridworld results

#### **Approximation of value function**

- Policy iteration: exact value function after three iterations
- Value iteration: after 100 iterations,  $||V V^*||_2 = 7.1 \cdot 10^{-4}$

#### **Calculation of optimal policy**

- Policy iteration: three iterations
- Value iteration: 12 iterations

VI converges to  $\pi^*$  long before it converges to  $V^*$  in this MDP But this property is highly MDP-specific

## Policy iteration or value iteration?

Policy iteration requires fewer iterations than value iteration

- But each iteration requires solving a linear system
- Only need to apply Bellman operator for value iteration

In practice, policy iteration is often faster

- Especially if the transition probabilities are structured (e.g., sparse)
  - ⇒ Solving linear system is efficient

## Outline

- 1. Markov decision processes
- 2. Reinforcement learning
- 3. Branch-and-bound as an MDP

# Challenge of RL

#### MDP(S, A, P, R):

- S: set of states (assumed for now to be discrete)
- A: set of actions
- Transition probability distribution  $P(s_{t+1} \mid s_t, a_t)$
- Reward function  $R: S \to \mathbb{R}$

RL twist: We don't know P or R, or too big to enumerate

#### Model-based RL

- A simple approach: just estimate the MDP from data
- Agent acts according to some policy, observes

$$s_1, r_1, a_1, s_2, r_2, a_2, \dots, s_m, r_m, a_m$$

• We form the **empirical estimate** of the MDP:

$$\widehat{P}(s' \mid s, a) = \frac{\sum_{i=1}^{m-1} \mathbf{1} \{ s_i = s, a_i = a, s_{i+1} = s' \}}{\sum_{i=1}^{m-1} \mathbf{1} \{ s_i = s, a_i = a \}}$$

$$\widehat{R}(s) = \frac{\sum_{i=1}^{m} \mathbf{1} \{ s_i = s \} r_i}{\sum_{i=1}^{m} \mathbf{1} \{ s_i = s \}}$$

• Now solve the MDP  $(S, A, \hat{P}, \hat{R})$ 

#### Model-based RL

Will converge to correct MDP (and hence correct policy)

#### **Disadvantages:**

- Requires we build the the actual MDP models
- State space may be too large

#### Outline

- 1. Markov decision processes
- 2. Reinforcement learning
  - i. Model-free RL
    - a. Temporal difference methods
    - b. Q-learning
    - c. Function approximation
  - ii. Exploration vs exploitation
- 3. Branch-and-bound as an MDP

## Model-free RL

Temporal difference methods (TD, SARSA, Q-learning): Directly learn value function  $V^{\pi}$ 

## Temporal difference (TD) methods

• Consider computing 
$$V^{\pi}$$
 via the update  $\hat{V}^{\pi}(s) \leftarrow R(s) + \gamma \sum_{s' \in S} P(s' \mid s, \pi(s)) \hat{V}^{\pi}(s')$ ,  $\forall s \in S$ 

- We're in state  $s_t$ , receive  $r_t$ , take action  $a_t = \pi(s_t)$ , end in  $s_{t+1}$
- Can't update  $\hat{V}^{\pi}$  for all s, but can we update just for  $s_t$ ?

$$\hat{V}^{\pi}(s_t) \leftarrow r_t + \gamma \sum_{s' \in S} P(s' \mid s_t, a_t) \hat{V}^{\pi}(s')$$

• ...No, still can't compute this sum

## Temporal difference (TD) methods

But,  $s_{t+1}$  is a sample from the distribution  $P(s' \mid s_t, a_t)$ 

Could perform the update  $\hat{V}^{\pi}(s_t) \leftarrow r_t + \gamma \hat{V}^{\pi}(s_{t+1})$ 

- Too "harsh" an assignment
- Assumes that  $s_{t+1}$  is the only possible next state

Instead "smooth" the update using some  $\alpha < 1$   $\hat{V}^{\pi}(s_t) \leftarrow (1 - \alpha)\hat{V}^{\pi}(s_t) + \alpha \left(r_t + \gamma \hat{V}^{\pi}(s_{t+1})\right)$ 

This is the temporal difference (TD) algorithm

# Temporal difference (TD) algorithm

```
algorithm \hat{V}^{\pi} = \mathrm{TD}(\pi, \alpha, \gamma)

initialize \hat{V}^{\pi}(s) \leftarrow 0

repeat

Observe state s and reward r

Take action a = \pi(s) and observe next state s'

\hat{V}^{\pi}(s) \leftarrow (1 - \alpha)\hat{V}^{\pi}(s) + \alpha \left(r + \gamma \hat{V}^{\pi}(s')\right)

return \hat{V}^{\pi}
```

Will converge to  $\hat{V}^{\pi}(s) \to V^{\pi}(s)$  (for all s visited often enough)

### TD experiments

Run TD on gridworld domain for 1000 episodes. Each episode:

- 10 steps
- Sampled according to policy  $\pi$
- Starting at a random state

Initialize with  $\hat{V} = R$ 

| 0 | 0 | 0 | 1    |
|---|---|---|------|
| 0 |   | 0 | -100 |
| 0 | 0 | 0 | 0    |

# TD progress



## Temporal difference (TD) algorithm

TD lets us **learn the value function** of a policy  $\pi$  directly Don't ever need to construct the MDP

But is this really that helpful?

Consider trying to execute greedy policy w.r.t. estimated  $\hat{V}^{\pi}$ 

$$\pi'(s) = \underset{a}{\operatorname{argmax}} \sum_{s' \in S} P(s' \mid s, a) \hat{V}^{\pi}(s')$$

We need a model anyway

### Outline

- 1. Markov decision processes
- 2. Reinforcement learning
  - i. Model-free RL
    - a. Temporal difference methods
    - b. Q-learning
    - c. Function approximation
  - ii. Exploration vs exploitation
- 3. Branch-and-bound as an MDP

#### **Q** functions:

Like value functions but defined over state-action pairs

$$Q^{\pi}(s,a) = R(s) + \gamma \sum_{s' \in S} P(s' \mid s,a) Q^{\pi}(s',\pi(s'))$$

I.e., Q function is the value of:

- 1. Starting in state s
- 2. Taking action a
- 3. Then acting according to  $\pi$

$$Q^{*}(s, a) = R(s) + \gamma \sum_{s' \in S} P(s' \mid s, a) \max_{a'} Q^{*}(s', a')$$
$$= R(s) + \gamma \sum_{s' \in S} P(s' \mid s, a) V^{*}(s')$$

 $Q^*$  is the value of:

- 1. Starting in state s
- 2. Taking action a
- 3. Then acting optimally

#### As with TD:

- 1. Observe s and reward r
- 2. Take action a (but not necessarily  $a = \pi(s)$ )
- 3. Observe next state s'

Estimate  $Q^*(s,a)$  as

$$\widehat{Q}^{\star}(s,a) \leftarrow (1-\alpha)\widehat{Q}^{\star}(s,a) + \alpha \left(r + \gamma \widehat{Q}^{\star}(s',a')\right)$$

 $\hat{Q}^{\star} \rightarrow Q$  if all state-action pairs seen frequently enough

#### As with TD:

- 1. Observe s and reward r
- 2. Take action a (but not necessarily  $a = \pi(s)$ )
- 3. Observe next state s'

Estimate  $Q^*(s,a)$  as

$$\widehat{Q}^{\star}(s,a) \leftarrow (1-\alpha)\widehat{Q}^{\star}(s,a) + \alpha \left(r + \gamma \widehat{Q}^{\star}(s',a')\right)$$

We can now learn an optimal policy without an MDP model  $\hat{\pi}^*(s) = \max \hat{Q}^*(s, a)$ 

## Q-learning experiments

- Run Q-Learning on gridworld for 20000 episodes
  - 10 step per episode
- Initialize with  $\hat{Q}^*(s, a) = R(s)$
- Policy (epsilon-greedy): act according to current optimal

$$\hat{\pi}^{\star}(s) = \max \hat{Q}^{\star}(s, a)$$

with probability 0.9, else act randomly

| 0 | 0 | 0 | 1    |
|---|---|---|------|
| 0 |   | 0 | -100 |
| 0 | 0 | 0 | 0    |

# Q-learning progress



### Outline

- 1. Markov decision processes
- 2. Reinforcement learning
  - i. Model-free RL
    - a. Temporal difference methods
    - b. Q-learning
    - c. Function approximation
  - ii. Exploration vs exploitation
- 3. Branch-and-bound as an MDP

### Function approximation

- How to avoid keeping track of each state?
- Major advantage to model-free RL methods: Can use function approximation to represent  $\hat{V}^{\pi}$  compactly
- Let  $\hat{V}^{\pi}(s) = f_{\theta}(s)$  be our approximator parameterized by  $\theta$
- TD update:  $\hat{V}^{\pi}(s) \leftarrow (1 \alpha)\hat{V}^{\pi}(s) + \alpha \left(r + \gamma \hat{V}^{\pi}(s')\right)$
- Update  $\theta$ : ideally  $\underset{\theta}{\operatorname{argmin}} \left( \hat{V}^{\pi}(s) f_{\theta}(s) \right)^2$
- Instead,  $\underset{\theta}{\operatorname{argmin}} \left( (1 \alpha) f_{\theta}(s) + \alpha (r + \gamma f_{\theta}(s')) f_{\theta}(s) \right)^2$  (using gradient descent)

### Function approximation

- How to avoid keeping track of each state?
- Major advantage to model-free RL methods: Can use function approximation to represent  $\hat{V}^{\pi}$  compactly
- Let  $\hat{V}^{\pi}(s) = f_{\theta}(s)$  be our approximator parameterized by  $\theta$

Can use similar approximators for the Q function

### Outline

- 1. Markov decision processes
- 2. Reinforcement learning
  - i. Model-free RL
  - ii. Exploration vs exploitation
- 3. Branch-and-bound as an MDP

### Exploration/exploitation problem

All the methods discussed so far had some condition like:

- "assuming we visit each state enough", or
- "taking actions according to some policy"

#### Fundamental question: should we

- 1. Take **exploratory** actions to get more information, or
- 2. Exploit current knowledge to perform as best we can?

### Exploration/exploitation

### **Epsilon-greedy policy:**

$$\pi(s) = \begin{cases} \max_{a} \hat{Q}^{\pi}(s, a) & \text{with probability } 1 - \epsilon \\ \text{random action} & \text{otherwise} \end{cases}$$

Want to decrease  $\epsilon$  as we see more examples, e.g.:

$$\epsilon = \frac{1}{\sqrt{n(s)}}$$
 where  $n(s)$  is the number of times we've visited state  $s$ 

### Exploration experiments

| 0 | 0 | 0 | 1    |
|---|---|---|------|
| 0 |   | 0 | -100 |
| 0 | 0 | 0 | 0    |

- Gridworld but with U([0, 1]) rewards instead of rewards above
- Initialize Q function with  $\hat{Q}(s, a) = 0$
- Run with  $\alpha=0.05$ ,  $\epsilon=0.1$ ,  $\epsilon=0$  (greedy),  $\epsilon=\frac{1}{\sqrt{n(s)}}$

### Exploration experiments



### Exploration experiments



Average reward (sliding average over past 5000 episodes) for different strategies

### Outline

- 1. Markov decision processes
- 2. Reinforcement learning
- 3. Branch-and-bound as an MDP



Action  $a_0$ : Branch on  $z_1$ 



Action  $a_1$ : Branch on  $z_6$ 



Action  $a_1$ : Explore this node

### Papers we'll read

Gasse, Maxime, et al. "Exact combinatorial optimization with graph convolutional neural networks." *NeurIPS*. (2019).

- Frame B&B variable selection as an MDP
- Use GNNs to design variable selection policies

Dai, Hanjun, Khalil, Elias, et al. "Learning combinatorial optimization algorithms over graphs." *NeurIPS'17*.

- Develop **RL algorithms** for a variety of combinatorial problems
- Suggest RL could be used for algorithm discovery