Pole Shed App Ver 01 2022

 Job No.:
 Lance Wilkin - 1
 Address:
 220 Spur Road West, Colyton 4775, New Zealand
 Date:
 02/12/2024

 Latitude:
 -40.188806
 Longitude:
 175.641713
 Elevation:
 120 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N1	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	3	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	4 m
Wind Region	NZ2	Terrain Category	2.43	Design Wind Speed	38.74 m/s
Wind Pressure	0.9 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Farthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Open

For roof Cp,i = 0.6579

For roof CP,e from 0 m To 3.5 m Cpe = -0.9 pe = -0.58 KPa pnet = -1.09 KPa

For roof CP,e from 3.5 m To 7 m Cpe = -0.5 pe = -0.32 KPa pnet = -0.83 KPa

For wall Windward Cp, i = 0.6597 side Wall Cp, i = -0.5717

For wall Windward and Leeward $\,$ CP,e $\,$ from 0 m $\,$ To 22.5 m $\,$ Cpe = 0.7 $\,$ pe = 0.55 KPa $\,$ pnet = 1.09 KPa

For side wall $\,$ CP,e $\,$ from 0 m $\,$ To 3.5 m $\,$ Cpe = $\,$ pe = -0.51 $\,$ KPa $\,$ pnet = 0.03 $\,$ KPa

Maximum Upward pressure used in roof member Design = $1.09\ \text{KPa}$

Maximum Downward pressure used in roof member Design = $0.70\ \mathrm{KPa}$

Maximum Wall pressure used in Design = 1.09 KPa

Maximum Racking pressure used in Design = 0.98 KPa

Design Summary

Rafter Design Internal

Internal Rafter Load Width = 4500 mm Try Rafter 2x360x63 LVL13

 $Moisture\ Condition = Dry\ (Moisture\ in\ timber\ is\ less\ than\ 16\%\ and\ timber\ does\ not\ remain\ in\ continuous\ wet\ condition\ after\ installation)$

 $K1 \; Short \; term = 1 \qquad K1 \; Medium \; term = 0.8 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 1.00 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 1.00 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 1.00 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 1.00 \; Long \; term = 0.6 \; Long$

K8 Upward =1.00 S1 Downward =5.90 S1 Upward =5.90

Shear Capacity of timber =5.3 MPa Bending Capacity of timber =48 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	14.87 Kn-m	Capacity	60.82 Kn-m	Passing Percentage	409.01 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	44.06 Kn-m	Capacity	81.1 Kn-m	Passing Percentage	184.07 %
Mo.9D-WnUp	-38.11 Kn-m	Capacity	-101.38 Kn-m	Passing Percentage	266.02 %
V _{1.35D}	6.72 Kn	Capacity	77.32 Kn	Passing Percentage	1150.60 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	19.91 Kn	Capacity	103.08 Kn	Passing Percentage	517.73 %
V0 9D-WnLin	-17.22 Kn	Canacity	-128.86 Kn	Passing Percentage	748.32 %

Deflections

Modulus of Elasticity = 11000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 19.26 mmDeflection under Dead and Service Wind = 30.32 mm Limit by Woolcock et al, 1999 Span/240 = 37.50 mm Limit by Woolcock et al, 1999 Span/100 = 90.00 mm

Reactions

Maximum downward =19.91 kn Maximum upward = -17.22 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 3

Calculations as per NZS 3603:1993 Amend 2005 clause $4.4\,$

Joint Group for Rafters =J2 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

 $K11=12.6\ \mbox{fpj}=22.7\ \mbox{Mpa}$ for Rafter with effective thickness = 126 mm

For Parallel to grain loading

 $K11=2.0 \ \mbox{fcj}=36.1 \ \mbox{Mpa}$ for Pole with effective thickness = 100 mm

Capacity under short term loads = 43.67 Kn > -17.22 Kn

Girt Design Front and Back

Second page

Pole Shed App Ver 01 2022

Girt's Spacing = 0 mm Girt's Span = 2250 mm Try Girt SG8 Dry

Moisture Condition = Wet (Moisture in timber is less than 18% and timber does not remain in continuous wet condition after installation)

Shear Capacity of timber =3 MPa Bending Capacity of timber =14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 $M_{Wind+Snow}$ 0.00 Kn-m Capacity NaN Kn-m Passing Percentage NaN % $V_{0.9D-WinUp}$ 0.00 Kn Capacity 0.00 Kn Passing Percentage NaN %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = $NaN\ mm$

Limit by Wookock et al, 1999 Span/100 = 22.50 mm

 $Sag\ during\ installation = NaN\ mm$

Reactions

Maximum = 0.00 kn

Girt Design Sides

 ${\it Girt's Spacing} = 0 \; mm \qquad \qquad {\it Girt's Span} = 2250 \; mm \qquad \qquad {\it Try Girt SG8 Dry}$

Moisture Condition = Wet (Moisture in timber is less than 18% and timber does not remain in continuous wet condition after installation)

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 0.00 Kn-m Capacity NaN Kn-m Passing Percentage NaN % $V_{0.9D\text{-Wall-p}}$ 0.00 Kn Capacity 0.00 Kn Passing Percentage NaN % NaN %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = NaN mm Limit by Woolcock et al. 1999 Span/100 = 22.50 mm

Sag during installation = NaN mm

Reactions

Maximum = 0.00 kn

Middle Pole Design

Geometry

 200 SED H5 (Minimum 225 dia. at Floor Level)
 Dry Use
 Height
 3700 mm

 Area
 35448 mm2
 As
 26585.7421875 mm2

 Ix
 100042702 mm4
 Zx
 941578 mm3

 Iy
 100042702 mm4
 Zx
 941578 mm3

Lateral Restraint 1300 mm c/c

Loads

Total Area over Pole = 20.25 m2

Dead 5.06 Kn Live 5.06 Kn Wind Down 14.18 Kn 0.00 Kn Snow 13.20 Kn-m Moment wind 1.00 Phi 0.8 K8 K1 snow 0.8 K1 Dead 0.6

K1wind Material

 Peeling
 Steaming
 Normal
 Dry Use

 fb =
 36.3 MPa
 fs =
 2.96 MPa

 fc =
 18 MPa
 fp =
 7.2 MPa

 ft =
 22 MPa
 E =
 9257 MPa

Capacities

 PhiNcx Wind
 510.45 Kn
 PhiMnx Wind
 27.34 Kn-m
 PhiVnx Wind
 62.96 Kn

 PhiNcx Dead
 306.27 Kn
 PhiMnx Dead
 16.41 Kn-m
 PhiVnx Dead
 37.77 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.53 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.28 < 1 \text{ OK}$

3/4

Deflection at top under service lateral loads = 29.63 mm < 37.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

 $\begin{array}{lll} Ds = & 0.6 \text{ mm} & \text{Pile Diameter} \\ L = & 1700 \text{ mm} & \text{Pile embedment length} \end{array}$

fl = 3000 mm Distance at which the shear force is applied t2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 13.20 Kn-m Shear Wind = 4.40 Kn

Pile Properties

Safety Factory 0.55

Hu = 9.31 Kn Ultimate Lateral Strength of the Pile, Short pile

 $Mu = \\ 16.87 \text{ Kn-m} \qquad \qquad \text{Ultimate Moment Capacity of Pile}$

Checks

Applied Forces/Capacities = $0.78 \le 1 \ OK$

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

 $Ks \ (Lateral \ Earth \ Pressure \ Coefficient) for \ cast \ into \ place \ concrete \ piles = 1.5$

 $Formula\ to\ calculate\ Skin\ Friction = Safecty\ factor\ (0.55)\ x\ Density\ of\ Soil(18)\ x\ Height\ of\ Pile(1700)\ x\ Ks(1.5)\ x\ 0.5\ x\ tan(30)\ x\ Pi\ x\ Dia\ of\ Pile(0.6)\ x\ Height\ of\ Pile(1700)\ x\ Height\ of\ Pile(1700)\$

Skin Friction = 23.34 Kn

Weight of Pile + Pile Skin Friction = 27.76~Kn

Uplift on one Pile = 17.52 Kn

Uplift is ok