

Dynamic Memory Induction Network for Few-Shot Text Classification

本篇论文由北京阿里巴巴达摩院与加拿大皇后大学联合发表于2020ACL

Content

- 01 Background
- Dynamic Memory Induction Networks
- **Experiments and Analysis**
- Personal Conclusions

1.Background

- 1. Few-shot classification-weight generator based on attention
- 2. Cosine-similarity based ConvNet recognition model.

Spyros Gidaris and Nikos Komodakis. 2018. Dynamic few-shot visual learning without forgetting. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4367–4375

1.1 Key Challenges

Problems

- 1. data sparseness
- 2. key information is lost to induce class-level representation
- 3. static memory
- 4. <u>instance-level diversity</u>

Solutions

- 1. data augmentation
- 2. extract transferable knowledge by meta-learning
- 3. memory component
- 4. query-aware methods
- 1. J. Salamon and J. P. Bello, Deep Convolutional Neural Networks and Data Augmentation for Environmental Sound Classification, in IEEE Signal Processing Letters
- 2. Tianyu Gao, Xu Han, Zhiyuan Liu, and Maosong Sun. Hybrid attention-based prototypical networks for noisy few-shot relation classification. In AAAI-19

DMIN

Episode Meta-Training

- Select C classes
- C-way K-Shot Support Set
- C-way Query set

2.2 Pre-trained Encoder

BERT: a multi-layer bidirectional Transformer encoder based on the original Transformer model

Using Google BERT-Base model as text encoder, fine-tune the model in training procedure

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding https://arxiv.org/abs/1810.04805 Attention Is All You Need https://arxiv.org/abs/1706.03762

DMR

Algorithm 1 Dynamic Memory Routing Process

```
Require: r, q and
                                  memory
     \{m_1, m_2, ..., m_n\}
Ensure: v = v_1, v_2, ..., v_l, q'
 1: for all m_i, v_i do
 2: \hat{m}_{ij} = squash(W_j m_i + b_j)
 3: \hat{q}_i = sqush(W_iq + b_i)
 4: \alpha_{ij} = 0
       p_{ij} = tanh(PCCs(\hat{m}_{ij}, \hat{q}_j))
 6: end for
 7: for r iterations do
 8: d_i = softmax(\alpha_i)
 9: \hat{v}_j = \sum_{i=1}^n (d_{ij} + p_{ij}) \hat{m}_{ij}
10: v_i = squash(\hat{v}_i)
11: for all i, j: \alpha_{ij} = \alpha_{i,j} + p_{ij}\hat{m}_{ij}v_j
      for all j: \hat{q}_j = \frac{\hat{q}_j + v_j}{2}
12:
        for all i, j: p_{ij} = tanh(PCCs(\hat{m}_{ij}, \hat{q}_j))
14: end for
15: q' = concat[v]
16: Return q'
```


2.4 Query-enhanced Induction Module / Similarity Classifier

$$e'_{c,s} = DMR(W_{base}, e_{c,s})$$
 $e_c = DMR(\{e'_{c,s}\}_{s=1,...,K}, e_q)$

Model	5-way Acc.		10-way Acc.	
	1-shot	5-shot	1-shot	5-shot
BERT	30.79±0.68	63.31±0.73	23.48 ± 0.53	61.18±0.82
ATAML	54.05 ± 0.14	72.79 ± 0.27	39.48 ± 0.23	61.74 ± 0.36
Rel. Net	59.19 ± 0.12	78.35 ± 0.27	44.69 ± 0.19	67.49 ± 0.23
Ind. Net	60.97 ± 0.16	80.91 ± 0.19	46.15 ± 0.26	69.42 ± 0.34
HATT	60.40 ± 0.17	79.46 ± 0.32	47.09 ± 0.28	68.58 ± 0.37
LwoF	$63.35{\pm}0.26$	78.83 ± 0.38	48.61 ± 0.21	69.57 ± 0.35
DMIN	65.72±0.28	82.39±0.24	49.54 ±0.31	72.52 ± 0.25

Table 1: Comparison of accuracy (%) on miniRCV1 with standard deviations.

Model	Iteration	1 Shot	5 Shot
w/o DMM	3	81.79	90.19
w/o QIM	3	82.37	90.57
DMIN	1	82.70	90.92
DMIN	2	82.95	91.18
DMIN	3	83.46	91.75

Table 3: Ablation study of accuracy (%) on ODIC in a 5-way setup.

Model	5-way Acc.		10-way Acc.	
	1-shot	5-shot	1-shot	5-shot
BERT	38.06±0.27	64.24±0.36	29.24±0.19	64.53±0.35
ATAML	79.60 ± 0.42	88.53 ± 0.57	63.52 ± 0.34	77.36 ± 0.57
Rel. Net	79.41 ± 0.42	87.93 ± 0.31	$64.36{\pm}0.58$	78.62 ± 0.54
Ind. Net	81.28 ± 0.26	89.67 ± 0.28	64.53 ± 0.38	80.48 ± 0.25
HATT	81.57 ± 0.47	89.27 ± 0.58	65.75 ± 0.61	81.53 ± 0.56
LwoF	79.52 ± 0.29	87.34 ± 0.34	65.04 ± 0.43	80.69 ± 0.37
DMIN	83.46 ±0.36	91.75 ±0.23	67.31±0.25	82.84 ±0.38

Table 2: Comparison of accuracy(%) on ODIC with standard deviations.

Figure 2: Effect of the Dynamic Memory Module in a 10-way 5-shot setup.

4. Personal Conclusions

- find a mistake in this paper
- the DMIN can also be used in VC
- the DMR of DMIN solves the problem of static memory by dynamic routing algorithm.
- QIM improves the problem of instance-level diversity

Thanks. And Your Slogan Here.

Speaker name and title

Date