Operating Systems Devices and Busses

Me

May 3, 2016

Peripheral Component Interconnect Motivation

- PCI впервые была предложена в 1992 компанией Intel
 - в это время получили распространение ОС с GUI (Windows 3.1, OS/2);
 - GUI требует высокой пропускной способности;
 - другая задача предоставить универсальный стандарт для подключения устройств;
 - PCI устройства имеют более или менее одинаковый интерфейс;

Peripheral Component Interconnect Motivation

- PCI впервые была предложена в 1992 компанией Intel
 - в это время получили распространение ОС с GUI (Windows 3.1, OS/2);
 - GUI требует высокой пропускной способности;
 - другая задача предоставить универсальный стандарт для подключения устройств;
 - PCI устройства имеют более или менее одинаковый интерфейс;
- Шины использовавшиеся до РСІ:
 - ISA 16 MB/s;
 - EISA 32 MB/s;
 - VLB 127 MB/s;

Peripheral Component Interconnect Overview

Figure: PCI Local Bus Overview

Peripheral Component Interconnect

- Все устройства соединеные через РСІ пользуются одним протоколом:
 - каждая передача состоит из двух или более фаз: адресаная фаза и, собственно, одна или более передача данных (впрочем нас это не сильно волнует);
 - в каждой передаче участвуют два устройства: Master и Target;
 - данные передаются, если оба устройства подтвердили готовность;

Peripheral Component Interconnect Addressing

- PCI определеяет три различных адресных пространства:
 - пространство памяти (Memory Address Space) отображается физическую память;
 - пространство ввода/вывода (I/O Address Space) отображается на порты ввода/вывода (команды in/out в x86);
 - конфигурационное пространство (Configuration Address Space) может отображаться как на память, так и на I/O Space, но обычно используют память;

- Каждое (почти) устройство должно поддерживать Configuration Address Space:
 - каждое устройство предоставляет некоторое пространство из 256 байт;
 - это пространство имеет фиксированный заголовок;
 - через Address Space возможно идентифицировать, отслеживать состояние и даже конфигурировать устройство

16 15)	
Device ID		Vendor ID		00h
Status		Command		04h
	Class Code	•	Revision ID	08h
BIST	Header Type	Lat. Timer	Cache Line S.	0Ch
Base Address Registers				10h
				14h
				18h
				1Ch
				20h
				24h
Cardbus CIS Pointer				28h
Subsystem ID		Subsystem Vendor ID		2Ch
Expansion ROM Base Address				30h
Reserved			Cap. Pointer	34h
Reserved				38h
Max Lat.	Min Gnt.	Interrupt Pin	Interrupt Line	3Ch

Figure: PCI Device Structure

Peripheral Component Interconnect Device Identification

- Vendor ID идентифицирует производителя, назначеяется специальной организацией (PCI SIG);
- Device ID и Revision ID иденифицируют конкретное устройство, определяются производителем;
- вы можете получить эту информацию не зная ничего об устройстве и даже не имея драйвера устройства:
 - зная эту информацию вы можете автоматически найти и загрузить нужный драйвер;

Peripheral Component Interconnect Device Control

Figure: PCI Command Register Layout

- Command Register осуществялет базовое управление:
 - запишите 0 и устройство будет игнорировать обращения вне Configuration Address Space;
 - отдельные биты могут поддерживаться или нет;

Peripheral Component Interconnect Device Configuration

- Главная особенность PCI заключается в конфигурируемости:
 - теперь устройство больше не привязано к конкретным адресам в памяти, в пространстве ввода/вывода или прерываниям;
 - эта информация доступна ОС в унифичрованном виде через Configuration Address Space;

Peripheral Component Interconnect Device Configuration

- Главная особенность PCI заключается в конфигурируемости:
 - теперь устройство больше не привязано к конкретным адресам в памяти, в пространстве ввода/вывода или прерываниям;
 - эта информация доступна ОС в унифичрованном виде через Configuration Address Space;
- Например:
 - Interrupt Line говорит какой номер прерывания использует устройство;
 - Base Address Registers позволяют указать/узнать на какие адреса в памяти или в I/O Space отображены регистры и буферы устройства;

Peripheral Component Interconnect Base Addresses

• Устройство:

- устройству могут быть нужны какие-то участки памяти или I/O Space для работы или общения с драйвером;
- оно описывает размер и тип этих участков в Base Address Registers;

Peripheral Component Interconnect Base Addresses

• Устройство:

- устройству могут быть нужны какие-то участки памяти или I/O Space для работы или общения с драйвером;
- оно описывает размер и тип этих участков в Base Address Registers;
- BIOS (или другое ПО запускаемое при старте системы):
 - определяет количество памяти в системе;
 - перечисляет устройства в системе и выделяет им память и записывает адрес в специальном формате в Base Address Registers;
 - создает карту памяти и передает ее ОС;

Peripheral Component Interconnect Interrupt Sharing

- PCI шина может использовать до 4 различных прерываний (забывая про MSI):
 - естественно, вы не можете выделить по прерыванию на устройство;
 - естественно, какие-то устройства будут использовать одно прерывание;
 - PCI устройства должны предоставить возможность проверить, сгенерировало ли оно прерывание или нет;
 - но стандарт PCI не определяет каким образом драйвер устройства должен это знать;

- Configuration Address Space содержит структуры не зависимые от железа:
 - это хорошо для драйверов PCI драйвер в хорошо спроектированной ОС не требует портирования на разные архитектуры;

- Configuration Address Space содержит структуры не зависимые от железа:
 - это хорошо для драйверов РСІ драйвер в хорошо спроектированной ОС не требует портирования на разные архитектуры;
- Способ доступа к Configuration Address Space зависит от архитектуры
 - а еще от версии PCI (их уже довольно не мало);
 - хорошо спроектирвоанная ОС скрывает эти детали;

- Адрес в Configuration Address Space состоит из:
 - номера шины в системе может быть несколько шин PCI:
 - номера слота на шине к одной шине может быть подключено несколько устройств;
 - функции специфичное для PCI понятие, PCI устройство может предоставлять несколько "функций";
 - смещение внутри PCI Device Structure;

- Conventional PCI (или просто PCI) в IBM PC использует I/O порты:
 - для задания адреса 32 битный порт с адресом 0хСF8;
 - для чтения/записи данных 32 битный с адресом 0xCFC;

- Conventional PCI (или просто PCI) в IBM PC использует I/O порты:
 - для задания адреса 32 битный порт с адресом 0хСF8;
 - для чтения/записи данных 32 битный с адресом 0xCFC;
- PCI Express отображает Configuration Address Space в память
 - найти базовый адрес можно в одной из таблиц ACPI (MCFG);