Performance and Usage Analytics for NCAR's Climate Model – Part II Machine Learning

Lolita Mannik

Regis University

National Center for Atmospheric Research (NCAR)

Summer Internships in Parallel Computational Science (SIParCS)

NCAR December 17, 2019

Overview

- 1. Background on Community Earth System Model (CESM)
- 2. Model's configuration
- 3. Data analysis: Part 1 statistical Part 2 machine learning
- 4. Key findings
- 5. Conclusion and future work

Goal

Analyze CESM performance metadata

- □ Predict performance
- ☐ Analyze effect of a system upgrade

CESM Climate Model

- Virtual laboratory
- Freely available
- Components:
 - Atmosphere
 - Land
 - 。 Ocean
 - River
 - Sea and Land Ice
 - Wave

CESM = Community Earth System Model

Method


```
------ TIMING PROFILE ------
                : b.e21.BHIST.f09 g17.CMIP6-historical.001
2
     Case
      LID
                : 2979765.chadmin1.181015-050236
4
     Machine
                : cheyenne
     Caseroot : /gpfs/fs1/work/cmip6/cases/b.e21.BHIST.f09 g17.CMIP6-historical.001
5
                : /gpfs/fs1/work/cmip6/cases/b.e21.BHIST.f09 g17.CMIP6-historical.001/Tools
6
     Timeroot
      User
                : cmip6
               : Mon Oct 15 10:01:22 2018
8
      Curr Date
9
      grid
                : a%0.9x1.25_1%0.9x1.25_oi%gx1v7_r%r05_g%gland4_w%ww3a_m%gx1v7
      compset : HIST_CAM60_CLM50%BGC-CROP_CICE_POP2%ECO%ABIO-DIC_MOSART_CISM2%NOEVOLVE_WW3_BGC%BDRD
10
                : hybrid, continue_run = TRUE (inittype = FALSE)
11
      run type
     stop_option : nyears, stop_n = 5
12
13
     run_length : 1825 days (1825.0 for ocean)
14
                              root_pe tasks x threads instances (stride)
15
      component
                    comp_pes
17
     cpl = cpl
                 3456
                               0
                                       1152 x 3
                                                      1
                                                            (1
18
     atm = cam
                3456 0
                                       1152 x 3
     lnd = clm
                 2592
                               0
                                       864
                                            x 3
                                                      1
                                                            (1
20
     ice = cice
                    864
                               864
                                                      1
                                                            (1
                                       288
                                            x 3
21
      ocn = pop
                     768
                               1152
                                       256
                                             x 3
                                                      1
                                                            (1
```

Data Prep: Parsing

Component string = compset

Data Prep: Parsing

Component string = compset

*OBGC = Ocean Bio-geo-chemistry

- Cheyenne Supercomputer: 145,152 processors
- Upgrade: June 25-July 5, 2019
- Install SUSE Linux Enterprise Server Service Pack 4 to update security and support

Subset by ensemble (like cases) (1206 data points, 4271 sim years, 14 bases)

b.e21.B1850G.f09_g17_gl4.CMIP6-1pctCO2to4x-withism.001

- Cheyenne Supercomputer: 145,152 processors
- Upgrade: June 25-July 5, 2019
- Install SUSE Linux Enterprise Server Service Pack 4 to update security and support

Subset by ensemble (like cases)
(1206 data points, 4271 sim years, 14 ensembles)

b.e21.B1850G.f09_g17_gl4.CMIP6-1pctCO2to4x-withism.001

Mean Model Cost Before Upgrade vs.

Mean Model Cost After Upgrade

Calculated percent difference (% change) in means before and after the upgrade

Determined whether there was statistical significance in the means using Kruskal Wallis test (non-normal data)

Ensembles that span the upgrade

% Difference in Mean Model Cost

Base ID

Ensembles that span the upgrade

% Difference in Mean Model Cost

Base ID

Ensembles that span the upgrade

% Difference in Mean Model Cost

Base ID

Machine Learning

Logistic Regression Random Forest

compset_init + compset_atm + compset_ocn
+ comp_pes_atm + RandNum ~ Performance (1, 2, or 3)

Machine Learning

Random Forest

Feature Importance

Feature Importance

Unsupervised Learning K-Means

Final Report

	BaseNum		Change (%)	Prefix	ATM	OCN
Improved	101	b.e21.B1850G.f09_g17_gl4.CMIP6-piControl-withism	-10.94	1850	CAM60	POP2%ECO
	105	b.e21.BWSSP585cmip6.f09_g17.CMIP6-SSP5-8.5-WACCM	-3.8	SSP585	CAM60%WCTS	POP2%ECO%NDEP
	112	b.e21.B1850G.f09_g17_gl4.CMIP6-1pctCO2to4x-withism	-19.73	1850	CAM60%1PCT	POP2%ECO
Degraded	102	f.e21.FHIST_BGC.f09_f09_mg17.CMIP6-GMMIP	1.3	HIST	CAM60	DOCN%DOM
	104	b.e21.BWSSP370cmip6.f09_g17.CMIP6-SSP3-7.0-WACCM	11.86	SSP370	CAM60%WCTS	POP2%ECO%NDEP
	106	b.e21.BWCO2x4.f09_g17.CMIP6-G1-WACCM	11.7	1850	CAM60%WCTS%4XCO2	POP2%ECO%NDEP
	108	b.e21.B1850.f09_g17.CMIP6-DAMIP-hist-nat	27.87	1850	CAM60	POP2%ECO%ABIO_DIC
	111	b.e21.BSSP585_BPRPcmip6.f09_g17.CMIP6-esm-ssp585-ssp126-Lu	15.46	SSP585	CAM60	POP2%ECO%ABIO_DIC
	113	b.e21.BSSP245cmip6.f09_g17.CMIP6-SSP2-4.5	4.3	SSP245	CAM60	POP2%ECO%ABIO_DIC
	114	b.e21.B1850cmip6.f09_g17.DAMIP-hist-ghg	7.27	1850	CAM60	POP2%ECO%ABIO_DIC
Stayed the Same	103	f.e21.FWaerchem-piCH4.f09_g17.CMIP6-histSST-piCH4-WACCM	0.51	HIST	CAM60%WCTS%AERCHEM-piCH4	DOCN%DOM
	107	f.e21.F1850_BGC.f09_f09_mg17.CFMIP-piSST	1.59	1850	CAM60	DOCN%DOM

9 years + 3 months 483,003 runs

38,062 Unique Cases

1,406,545
Simulated
Years

1,054,615,678 CPU Hours

483,003 runs (rows)

Cleaning - drop the following rows (97,210):

No compset

No machine designation

Simulations less than one day

Model cost = 0

Processor count = 0

Machines: 26

Predictive Modeling – Linear Regression

- Compset (parsed out)
- Grid (parsed out)
- Run type
- Simulated years

For each component:

- Instances
- Tasks
- Threads
- Root

Can I predict total run time?

Predictive Modeling – Linear Regression

Mira (202 runs)

Predictive Modeling – Linear Regression

Bluewaters (305 runs)

Bluewaters - Actual vs. Predicted Run Time

Predictive Modeling – Linear Regression

Bluewaters

Predictive Modeling – Linear Regression

Cheyenne (48,313 runs)

Cheyenne - Actual vs. Predicted Run Time (Log)

Predictive Modeling – Linear Regression

compset_init + compset_atm + compset_ocn + grid_atm + grid_ocn ~ Run Time

Cheyenne (5 Features) - Actual vs. Predicted Run Time

Atmospheric Configuration vs. Cost

Cost of Atmospheric Component (CPU-Hrs/Simulated Year)

compset_init + compset_land + run_length_years
 + grid_land + grid_ocn + grid_mask ~ Run Time

Cheyenne (WCTS) - Actual vs. Predicted Run Time

CAM60%WCTS – Correlation Coefficient Importance

Importance

Conclusion

Why do we care about predicting performance?

CPU hours are expensive and limited

If scientists can enter their configuration into a form and see the expected run time, they could:

- Plan their computing allocation
- Reduce the need for test runs
- Confirm whether their model is configured correctly

Future Work

Ongoing analytics

- Model tuning on feature importance
- Track performance over time
- Track new version adoption rates
- Helps inform scientist computing budgets

Acknowledgements

John Dennis

Brian Dobbins

NCAR mentors

Alice Bertini

NCAR SQL Training

AJ Lauer

Virginia Do

NCAR intern managers

Christy Pearson

Michael Busch

Nate George

Professors at Regis University

References

Balaji, et. al. CPMIP: Measurements of Real Computational Performance of Earth System Models in CMIP6. Geoscience Model Development Issue 10. January 02, 2017. https://www.geosci-model-dev.net/10/19/2017/

Images

Unless otherwise noted, graphics are from www.vecteezy.com

Questions?

UCAR