Soutenance de stage M2 ITA

Méthodes de *mapping* de *reads* avec indexation des *reads*

Pierre Morisse

Encadrants : M. Thierry Lecroq et M. Arnaud Lefebvre

27 avril 2017

Plan de la présentation

- Introduction
- Séquenceurs à très haut débit (NGS)
- État de l'art
- Méthode alternative à la correction de reads longs : les reads NaS
- Conclusion et perspectives
- Notre méthode

2/42

- Introduction
- Séquenceurs à très haut débit (NGS)
- État de l'art
- Méthode alternative à la correction de reads longs : les reads NaS
- Conclusion et perspectives
- Notre méthode

Contexte

- Milieu des années 2000 ⇒ Développement des séquenceurs à très haut débit (NGS)
- Production de millions de très courtes séquences appelées reads, utilisés pour résoudre des problèmes :
 - De mapping
 - D'assemblage
 - De traitement des requêtes suivantes, pour f de longueur k fixé :
 - Dans quels reads f apparaît?
 - 2 Dans combien de *reads f* apparaît?
 - Quelles sont les occurrences de f?
 - Quel est le nombre d'occurrences de f?
 - Dans quels reads f n'apparaît qu'une fois?
 - Dans combien de reads f n'apparaît qu'une fois ?
 - Quelles sont les occurrences de f dans les reads où f n'apparaît qu'une fois?

Contexte

- 7 requêtes précédentes introduites dans [Philippe et al., 2011], en complément d'un index les supportant
- Reads produits bruités ⇒ Nécessité d'une procédure de correction avant utilisation
- Nécessité d'indexer ces reads pour traiter les différents problèmes rapidement identifiée
- De nombreuses méthodes d'indexation permettant de traiter ces problèmes existent

Définitions et notations

Définitions et notations

Alphabet : $\Sigma = \{A, C, G, T\}$

Séquence : mot sur l'alphabet Σ

k-mer: facteur de longueur k d'une séquence

Contig: séquence générée par l'assemblage de plus courtes

séquences se chevauchant

Gb: Gigabases

6/42

- Introduction
- Séquenceurs à très haut débit (NGS)
- État de l'art
- Méthode alternative à la correction de reads longs : les reads NaS
- Conclusion et perspectives
- Notre méthode

7 / 42

Description

- Ont pour but de produire des séquences à partir d'un échantillon d'ADN
- Différentes technologies et plateformes ⇒ Possibilité de traiter divers problèmes de génomique
- Prix désormais abordable ⇒ Séquençage accessible à tous
- Depuis peu, séquençage de reads de plus en plus longs ⇒ Très utiles dans les problèmes d'assemblage
- Mais ces reads sont très bruités

Principaux séquenceurs

Technologie	Plateforme	Nombre de reads	Longueur	Précision (en %)	Temps	Coût (en \$)	Erreurs
Illumina	HiSeq 2500/1500	3 milliards	36 - 100	99	2 - 11 jours	740 000	Cuba
IIIuIIIIIa	MiSeq	17 millions	25 - 250	>99	4 - 27 heures	125 000	25 000 Subs.
Roche	454 GS FLX+	1 million	700	99,997	23 heures	450 000	Indels.
	454 GS Junior	1 million	400	>99	10 heures	108 000	indels.
ABI Life Technologies	5500xl SOLiD	2,8 millions	75	99,99	7 jours	595 000	Indels.
Abi Life Technologies	Ion Proton Chip I/II	60 - 80 millions	jusqu'à 200	>99	2 heures	243 000	iliueis.
Pacific Biosciences	PacBio RS	50 000	3 000 en moyenne	85	2 heures	750 000	Indels.
Oxford Nanopore	GridION	4 - 10 millions	dizaines de milliers	96	variable	variable	Indels.
Oxiora Nariopore	MinION	70 000	dizaines de milliers	70	48 heures	1 000	indeis.

9 / 42

- Introduction
- Séquenceurs à très haut débit (NGS)
- État de l'art
- Méthode alternative à la correction de reads longs : les reads NaS
- 6 Conclusion et perspectives
- Notre méthode

Méthodes de correction

Motivations

- Reads bruités
- Difficiles à utiliser
- Nécessité d'améliorer leur précision

Méthodes de correction

Principaux outils:

Outil	Structure de données	Erreurs corrigées	Nombre de <i>reads</i> (longueur)	Espace mémoire (en Mo)	Temps (en min)	Reads corrigés	
SHREC	Arbre des suffixes	subs.	1 090 946 (70)	1 500	183	88,56	
HybridSHREC	Arbre des suffixes	subs. + indels	977 971 (178)	15 000	28	98,39	
HiTEC	Table des suffixes	subs.	1 090 946 (70)	757	28	94 43	
HITEG	Table des suffixes	Subs.	4 639 675 (70)	3 210	125		
Fiona	Table des suffixes partielle	subs. + indels	977 971 (178)	2 000	15	66,76	
FIUIId	Table des suffixes partielle		2 464 690 (142)	3 000	32		
Coral	Table de hachage	subs. + indels	977 971 (178)	8 000	5	92,88	
BACER	Table de hachage	subs.	2 119 404 (75)	1 437	23	76,65	
RACER	rable de nachage		101 548 652 (457 595)	41 700	104	42,95	
BLESS	Filtres de Bloom	subs. + indels	1 096 140 (101)	11	6	84,38	
LoRDEC	Graphe de de Bruijn	subs. + indels	33 360 reads longs (2 938) et 2 313 613 reads courts (100)	960	10	85,78	

Méthodes de mapping

Motivations

- Comparer ADN d'un individu à un génome de référence
- Détection de mutations dans l'ADN séquencé
- → Détection de pathologies

Méthodes de mapping

Principaux outils:

Outil	Structure de données	Erreurs prises en compte	Nombre de reads (longueur)	Espace mémoire (en Mo)	Temps (en min)	reads mappés (en %)
MAQ	Table de hachage	subs. + indels	1 000 000 (44)	1 200	331	92,53
MrsFAST	Table de hachage	subs.	1 000 000 (100)	20 000	169	90,70
MrsFAST-Ultra	Table de hachage	subs.	2 000 000 (100)	2 000	57	91,41

Remarques

- Peu d'outils présentés ici
- De nombreux outils, n'utilisant pas de structure d'index sur les reads, existent et produisent de bons résultats

Méthodes de traitement des 7 requêtes

Applications

- Détection d'erreurs de séquençage
- Détection de mutations
- Assemblage

Méthodes de traitement des 7 requêtes

Principaux outils:

Outil	Structure de données	Nombre de reads (longueur)	Espace mémoire (en Go)	Temps R1	Temps R2	Temps R3	Temps R4
	Table des suffixes modifiée						
	+						
GkA	Table des suffixes modifiée inverse	42 400 000 (75)	20	16	25	25	0,1
	+						
	Table associant k-mer - nombre d'occurrences						
	Table de suffixes échantillonnée						
CGkA	+	42 400 000 (75)	3 - 7	1203	28	1278	28
	3 vecteurs de bits						
	Table des suffixes échantillonnée						
PgSA	+	42 400 000 (75)	1 - 4	70	58	70	58
1	Table auxiliaire d'information sur les reads et k-mers						

Remarque

Les requêtes 5-7 sont exclues du comparatifs, car non implémentées dans GkA et CGkA au moment des tests réalisés.

- Introduction
- Séquenceurs à très haut débit (NGS)
- État de l'art
- 4 Méthode alternative à la correction de reads longs : les reads NaS
- Conclusion et perspectives
- Notre méthode

Problématique

- Reads longs très utiles, notamment pour résoudre des problèmes d'assemblage longs et complexes
- Séquencer de tels reads est devenu rapide, peu coûteux et facile, notamment à l'aide de MinION
- Ces reads présentent un fort taux d'erreur
- La correction de ces reads longs par des méthodes classiques n'est pas aussi efficace que la correction de reads courts

Solution: les reads NaS

- Création de reads longs synthétiques via une approche hybride
- Peuvent atteindre une longueur de 60 000 et s'aligner sur le génome de référence avec un précision de 99,99%
- Première solution efficace permettant d'appliquer un traitement correctif aux reads longs

Solution: les reads NaS

Nous présentons ici deux méthodes de synthèse des reads NaS :

- La première [Madoui et al., 2015] nécessite d'aligner les reads courts sur les reads longs, mais également entre eux
- La deuxième, que nous avons mis en place, vise à ne déduire des informations qu'à partir de l'alignement des reads courts sur les reads longs

Reads Nanopore

La technologie Nanopore permet de séquences deux types de *reads* :

- Des reads 2D, plus longs et plus précis
- Des reads 1D, plus courts et moins précis

Jeu de données utilisé

66 492 reads longs MinION répartis en 5 ensembles comme suit :

Ensemble	Nombre de <i>reads</i>	% reads 2D	% taille totale
1	9 241	6,5	14,6
2	3 990	13,6	27,1
3	6 052	43,3	57,1
4	11 957	11,6	42,7
5	35 252	9,7	44,6

- 83,2% des reads 2D et 16,6% des reads 1D alignés
- Identité moyenne de 74,5% et 56,5%, respectivement
- Deux ensembles de 5 984 858 reads courts Illumina

Nous présentons ici la méthode pour le traitement d'un read long :

Première étape Alignement des reads courts sur le read long template template seeds

Deuxième étape

Recrutement de nouveaux reads, en alignant les reads courts entre eux

Troisième étape

Micro-assemblage de l'ensemble de reads obtenu

Quatrième étape

Obtention d'un contig

⊢ contig

En général un unique contig est produit, mais de mauvais *reads* peuvent être recrutés et produire des contigs erronés

Première étape

Construction du graphe des contigs

Troisième étape

Vérification du contig obtenu, par alignement des reads courts

```
contig
```

Résultats

- 11 275 reads NaS produits
- Longueur maximale de 59 863
- Seulement 17% des reads longs ont produit un read NaS (76,4% 2D, 8,1% 1D)
- Certains reads NaS sont plus longs que leur template de référence
- Temps de traitement : moins d'une minute en moyenne pour un read long, 7 jours au total

Résultats

- Les reads NaS produits couvrent 99,96% du génome de référence
- Identité moyenne de 99,99%
- 97% s'alignent sans erreur
- 99,2% s'alignent avec au plus une erreur

Nous présentons la méthode pour le traitement d'un read long

Principe

Alignement des *reads* courts sur le *read* long *template*, en se fixant un seuil *lmin*, pour récupérer les *reads* :

- Totalement alignés, et servant de seeds
- Avec un préfixe de longueur ≥ Imin aligné
- Avec un suffixe de longueur ≥ Imin aligné

Principe

Deux étapes d'extensions :

Recrutement de reads partiellement alignés, similaires aux seeds

Recrutement de nouveaux reads partiellement alignés, sans relation de similarité, en se fixant un nouveau seuil Imax

35 / 42

Résultats après application de notre méthode sur 9 641 reads du jeu de données précédent, avec lmin = 100 et lmax = 10:

Reads	Longueur moyenne	Précision moyenne	Contigs / read	Longueur moyenne	Précision moyenne	Template couvert
1D	2 052	56,5%	2,296	645	88,636%	72,17%
2D	10 033	74,5%	2,732	2 421	88,186%	65,93%

- Temps de traitement : moins de 10 secondes en moyenne pour un read long, 14 h 30 min au total
- Réduction du taux d'erreur à moins de 12%
- Faible taux de couverture des templates ⇒ Synthèse de contigs courts
- Notre méthode semble déjà constituer un prétraitement efficace

- Introduction
- Séquenceurs à très haut débit (NGS)
- État de l'art
- Méthode alternative à la correction de reads longs : les reads NaS
- Conclusion et perspectives
- Notre méthode

Conclusion

Nous avons donc pu

- Dresser l'état de l'art des technologies de séquençage et des solutions aux principaux problèmes concernant les reads, utilisant une structure d'index sur ces reads
- Nous pencher sur le cas des reads longs
- Introduire une méthode alternative permettant d'appliquer un traitement à ces reads avant utilisation ⇒ reads NaS
- Étudier une méthode de synthèse de *reads* NaS, et en développer une nouvelle

Perspectives

- Ajuster les paramètres de notre méthode
- Étudier plus en détails les résultats obtenus
- Dresser l'état de l'art des méthodes d'assemblage de reads, utilisant une structure d'index sur les reads

Madoui, M.-A., Engelen, S., Cruaud, C., Belser, C., Bertrand, L., Alberti, A., Lemainque, A., Wincker, P., and Aury, J.-M. (2015). Genome assembly using Nanopore-guided long and error-free DNA reads.

BMC Genomics, 16:327.

Philippe, N., Salson, M., Lecroq, T., Leonard, M., Commes, T., and Rivals, E. (2011).

Querying large read collections in main memory: a versatile data structure.

BMC bioinformatics, 12(1):242.

- Introduction
- Séquenceurs à très haut débit (NGS)
- État de l'art
- Méthode alternative à la correction de reads longs : les reads NaS
- 6 Conclusion et perspectives
- Notre méthode

Implémentation

- Ajout des seeds et reads partiellement alignés à des listes
- Tri des listes
- Parcours parallèle des listes pour effectuer les recrutements

Implémentation

