NATIONAL UNIVERSITY OF SINGAPORE

FINAL ASSESSMENT FOR CS2105 – INTRODUCTION TO COMPUTER NETWORKS

(Semester 1: AY2016/2017)

Time allowed: 2 hours								
INSTRUCTIONS TO CANDIDATES								
1. This assessment paper co	ontains SEVEN questions and comprises TWELVE printed pages.							
2. This is an OPEN BOOK ass	2. This is an OPEN BOOK assessment. The maximum possible score is 60 marks .							
3. Calculators are allowed, b	out not laptops, PDAs, or other electronic devices.							
4. Fill in your student number	4. Fill in your student number <u>clearly</u> below.							
STUDENT NO:								

For examiners' use only								
Question	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Total
Max	20	5	4	7	6	7	11	60
Score								

Q2	[Total: 5 marks]
(a)	[1 mark] If generator is k -bit long, CRC will be bits long.
(b)	[2 marks] If every person in a group of 5 needs to communicate with every other person
	in another group of 10 people secretly, the number of secret keys required is
	if symmetric key cryptography is used and if public key cryptography is used.
(c)	[2 marks] A host has just been plugged into the network. It has no information about the network it joins and is trying to get an IP address. List down two protocols that are involved in this process.
Q3	. [Total: 4 marks]
HTI Ass	webpage contains a base HTML file and two images referenced by the base HTML file. The ML file is 728 bytes and the two images are 413 bytes and 1719 bytes respectively. Sume link rate is 1 Mbps, propagation delay between the Web server and the client is 46 liseconds and the Web server has only one output queue.
HT ⁻ of	client downloads the webpage from the Web server over an existing TCP connection. TP/1.1 (persistent HTTP with pipelining) is used. HTTP/TCP headers and ACK packets are negligible size. How long (in milliseconds) will it take for the client to download the bpage? Briefly show how you work out the answer.

Q4. [Total: 7 marks]

Consider the following constellation diagram.

	- F // - F //		496.00
		200	

rate of transn	nission?			

(c) [3 marks] In the above diagram, neighbouring signals differ by one bit only. In no more than 60 words, explain the advantage of such a design.

Q5.	[Total: 6 marks]
Q 3.	[Total. o marks

Two hosts A and B are separated by two routers R_1 and R_2 . Different links have different MTUs as illustrated in the following diagram. Suppose host A sends an IP datagram of 1,500 bytes (inclusive of 20 bytes of IP header) to host B. This datagram is not a fragment.

MTU = 1,500	(P)	MTU = 836	MTU = 372	
	$\binom{N_1}{2}$	n ₂		В

(a) [2 marks] Fill in the following table for the missing information of the IP fragments send by router R_1 .

(List fragments in the increasing order of offset; use as many rows as necessary)

Fragments	Length of fragment	Offset	Flag
1			
2			
3			

(b) [3 marks] Fill in the following table for the missing information of the IP fragments send by router R_2 .

(List fragments in the increasing order of offset; use as many rows as necessary)

Fragments	Length of fragment	Offset	Flag
1			
2			
3			
1 100			

(c)) [1 mark] Suppose one of the IP fragments received by router R_2 is corr	rupted, will R
	signal R_1 for retransmission? Answer "yes" or "no".	

1		
I .		
1		
I .		
I .		
I .		
The William Committee of the Committee o		

[Total: 7 marks]

onto the	and B are accessing a shared medium with propagation delay of 300 bit times them (i.e., propagation delay equals to the amount of time to transmit 300 bits link). A and B each have a frame of 1,000 bits (including all headers and B) to send to each other.
	rks] In the worst case, how many bits would A have sent out when it detects in? Briefly show how you work out the answer.
with b $K = 0$ and ot	[ks] Suppose both A and B attempt to transmit at time $t=0$. CSMA/CD protocoack-off intervals of multiples of 512 bits is used. After the first collision, A draws and B draws $K=1$ in the exponential back-off protocol. Ignore the jam signather unmentioned delays. At what bit time will A 's packet be successfully received Briefly show how you work out the answer. If the information given in the
questi	on is insufficient to derive the answer, explain why it is so.
questi	on is insufficient to derive the answer, explain why it is so.
questi	on is insufficient to derive the answer, explain why it is so.
questi	on is insufficient to derive the answer, explain why it is so.
questi	
questi	

Q6.

Q7	•	[Total: 11 ma	rks]
(a)	direct lir	e and a destination are separated by 20,000 kilometers and are connected back of 2 Mbps. The propagation speed over the link is 2.5*10 ⁸ meters/s. ends a file of 3,000,000 bytes using protocol rdt 2.2. Assume MSS is 2,000 byte theader and ACKs are of negligible size.	The
	it t	marks] If no packet is corrupted during transmission, how long (in seconds) dake for the source to receive the 20 th ACK? Briefly show how you work out swer.	
	ave	marks] If 10% of the packets are corrupted, how long (in seconds) will it take erage, for the source to know the file is successfully delivered to the destinat numing retransmission is always successful? Briefly show how you work out swer.	ion,

i.	[3 marks] Given that propagation delay is d , all packets are l bits long and				
(transmission rate is r bps, express throughput with given parameters.				
ii.	[4 marks] Suppose the source just receives an ACK packet with sequence nur				
	k. What are the smallest and largest possible values of the source's <i>send_base</i> before this ACK packet is received? Briefly describe the scenarios that lead to smallest and largest values.				

This page is intentionally left blank. Do **NOT** use it for your rough work. Use it ONLY if you need extra space for your answer, in which case please indicate the **question number clearly**.

		1
		1
		1
		1
		1
		1
		1
		1
		1
		1
		i
		1
1		

This page is intentionally left blank.

Do **NOT** use it for your rough work.

Use it ONLY if you need extra space for your answer, in which case please indicate the **question number clearly**.

	7
	١
	١
	ı
	ı
	١
	ı
	١
	1
	١
	ı
	1
	١
	١
1	
	ı
	ı
1	
	ı
1	
	ı
	ı
1	
	ı
	ı
	l
ı	

=== END OF PAPER ===