

Mise en service de CoMAX - 20 minutes

D1-01: Mettre en œuvre un système en suivant un protocole
D2-01: Choisir le protocole en fonction de l'objectif visé.
D2-02: Choisir les configurations matérielles et logicielles du système en fonction de l'objectif visé par l'expérimentation.
D2-03: Choisir les réglages du système en fonction de l'objectif visé par l'expérimentation.
D2-04: Choisir la grandeur physique à mesurer ou justifier son choix.

Activité 1

Expérimenter et analyser

- ☐ Prendre connaissance de la Fiche 1 (Présentation générale).
- ☐ Prendre connaissance de la Fiche 2 (Mise en œuvre du CoMAX).
 - Réaliser la « Mise sous tension » et la « connexion »
 - Manipuler (monter et descendre) la poignée du CoMAX avec et sans Boucle collaborative.
 - Désactiver la boucle collaborative.

Activité 2

Expérimenter et analyser

Synthèse

- ☐ En utilisant la fiche 3, réaliser des essais dans les conditions suivantes
 - Mode asservissement : Profil de position
 - Echelon de position demandé : 50 mm.
 - 1 échantillon toutes les 5 ms.
- ☐ Afficher les courbes de position, vitesse et courant.
- ☐ Commenter les courbes obtenues.

☐ Réaliser une synthèse dans le but d'une préparation orale :

- Expliquer brièvement le contexte industriel du système.
- Expliquer brièvement le fonctionnement du système de laboratoire.
- Réaliser une synthèse de l'activité 2.

Pour XENS – CCINP – Centrale :

Conserver des copies d'écran dans PowerPoint ou Word

Pour CCMP:

Rédiger les éléments de synthèse sur feuille, imprimer et annoter les courbes nécessaires.

Chaine fonctionnelle - 20 minutes

0bjectifs	A3-01	Associer les fonctions aux constituants.
	A3-02	Justifier le choix des constituants dédiés aux fonctions d'un système.
	A3-03	Identifier et décrire les chaines fonctionnelles du système.
	A3-04	Identifier et décrire les liens entre les chaines fonctionnelles.
	A3-05	Caractériser un constituant de la chaine de puissance.
	A3-06	Caractériser un constituant de la chaine d'information.
	D1-02	Repérer les constituants réalisant les principales fonctions des chaines fonctionnelles.
	D1-03	Identifier les grandeurs nhysiques d'effort et de flux

Expérimenter et

Synthèse

analyser

Activité 1

- ☐ Etablir la chaîne fonctionnelle du CoMAX.
- Expliquer le fonctionnement d'un codeur incrémental. Expliquer à quoi peut servir le retour de l'axe en butée basse.
- ☐ La fiche 3 préciser l'ensemble des grandeurs mesurables. Préciser les grandeurs nécessaires au fonctionnement du système réel. Donner les grandeurs mesurées et celles qui sont calculées.
- Déterminer expérimentalement ou avec les données la résolution de mesure au niveau du mouvement de translation.

☐ Réaliser une synthèse dans le but d'une préparation orale :

- Présenter la chaîne fonctionnelle sous forme de blocs.
- Préciser la nature des flux transitant entre les blocs.
- Lors de la présentation à l'examinateur, désigner les constituants sur le système.

Pour XENS - CCINP - Centrale :

garder des copies d'écran dans PowerPoint ou Word

Pour CCMP:

Rédiger les éléments de synthèse sur feuille, imprimer et annoter les courbes nécessaires.

Dimensionnement de la motorisation du robot collaboratif CoMAX – 90 minutes

Objectifs édagogiques

- **B2-10** Déterminer les caractéristiques d'un solide ou d'un ensemble de solides indéformables.
- C1-05 Proposer une démarche permettant la détermination d'une action mécanique inconnue ou d'une loi de mouvement.
- ☐ C2-07 Déterminer les actions mécaniques en statique.
- ☐ C2-08 Déterminer les actions mécaniques en dynamique dans le cas où le mouvement est imposé.
- ☐ C2-09 Déterminer la loi de mouvement dans le cas où les efforts extérieurs sont connus.

Objectif

Dans une démarcher conception, on souhaite dimensionner le moteur permettant la levée d'une charge par le robot CoMAX. On cherche donc à connaître le couple et la vitesse de rotation que doit pouvoir fournir ce moteur.

Modéliser

Activité 1

- ☐ Proposer une modélisation du CoMAX (schéma cinématique paramétré et/ou graphe de liaisons).
- ☐ Faire un bilan exhaustif des puissances intérieures.
- ☐ Faire un bilan exhaustif des puissances extérieures.

Modéliser et Expérimenter

Activité 2

- ☐ Estimer l'énergie cinétique du CoMAX. Justifier qu'on puisse ou qu'on ne puisse pas négliger certains composants dans cette étude.
 - Pour cela, on pourra exprimer la masse équivalente ramenée à l'axe de translation ou l'inertie équivalente ramenée à l'arbre moteur.

Modéliser et Expérimenter

Activité 3

- ☐ Proposer un modèle de frottement et estimer les pertes globales du système.
- ☐ Lister et estimer d'autres sources de pertes énergétiques.

Modéliser et Expérimenter

Activité 4

Quantifier l'ensemble des puissances intérieures et extérieures recensées précédemment.

Activité 5

- ☐ Estimer sur un cycle de fonctionnement la puissance instantanée consommée par le moteur. On pourra prendre les caractéristiques suivantes :
 - 3 masses
 - Profil de position
 - Phase de montée
 - Déplacement de 50 mm
 - Vitesse et accélération par défaut.
- ☐ Tracer sur le même graphe en fonction du temps :
 - la vitesse du moteur et le couple moteur issus de la modélisation ;
 - la vitesse du moteur et le couple moteur issus de l'expérimentation.
- ☐ Valider le choix de moteur effectué par le concepteur du système.

☐ Réaliser une synthèse dans le but d'une préparation orale :

- Présenter les points clés de la modélisation analytique et de la simulation associée ;
- Comparer les résultats de la simulation et les résultats expérimentaux.
- Conclure.

 \supseteq Pour XENS – CCINP – Centrale :

- Donner l'objectif des activités.
- Présenter les points clés de la modélisation.
- Présenter le protocole expérimental.
- Présenter la courbe illustrant les résultats expérimentaux et ceux de la résolution.
- Analyser les écarts.

Pour CCMP:

- Synthétiser les points précédents sur un compte rendu.
- Imprimer le graphe o ù les courbes sont superposées.