Nom, Prénom:

SI01

Interrogation

03/2022

Exercice 1

 $A = \{a; b; c; d\}$ et $B = \{1; 2; 3\}$.

- 1. Donner 3 éléments de $A \times B$.
- **2.** Combien d'éléments comporte $A \times B$?
- 3. Combien d'éléments $\mathcal{P}(A \times B)$ possède-t-il?

Exercice 2

On définit la relation $\mathcal R$ de la manière suivante : deux entiers x et y vérifient $x\mathcal Ry$ si et seulement si $x\neq y$.

Cette relation est-elle (justifier)

- 1. réflexive?
- 2. symétrique?
- 3. antisymétrique?
- 4. transitive?

Exercice 3

1. Sur cette feuille, barrer un minimum de flèches pour que la relation soit antisymétrique.

2. Sur cette feuille, ajouter un minimum de flèches pour que la relation soit transitive.

Exercice 4

A et B sont deux parties de E. Colorier l'ensemble demandé.

1. $A \cap (B \cup C)$

2. $(A \cap B) \cup C$

Exercice 5

On considère ${\mathcal E}$ l'ensemble des list d'int en PYTHON.

Ainsi [1, 2] est un exemple d'élément de \mathcal{E} .

Sur $\mathcal E$ on définit la relation \preccurlyeq de la manière suivante :

L1 ≼ L2 signifie qu'au moins une des deux conditions suivantes est vérifiée :

- · L1[0] <= L2[0]
- $\cdot L1[0] == L2[0] \text{ and } L1[1] <= L2[1]$

- 1. Montrer que $[2, 7] \preccurlyeq [4, 1]$.
- **2.** Montrer que $[2, 7] \leq [2, 9]$.
- 3. Montrer qu'il existe une telle relation entre [5, -7] et [1, -3].
- **4.** Montrer que ≼ est réflexive.
- **5.** Montrer que ≼ est antisymétrique.
- **6.** Montrer que \leq est transitive.
- **7.** Que peut-on en déduire pour ≼?