Curve

Curva in \mathbb{R}^n

Definizione

Si chiama curva una mappa $\gamma:I o\mathbb{R}^n$ continua, $\gamma(t):=(\gamma_1(t),\ldots,\gamma_n(t))$, I intervallo di \mathbb{R} , $\gamma_i(t):I o\mathbb{R}$ $(i=1,\ldots,n)$

Se I=[a,b], $\gamma(a)$ e $\gamma(b)$ si chiamano estremi della curva

L'insieme $\Gamma = \gamma(I) \subset \mathbb{R}^n$ si chiama **sostegno** o **supporto** della curva

 $x=(x_1,\ldots,x_n)=\gamma(t)$ si chiama **equazione parametrica** o anche legge oraria della curva

Curva chiusa

Se I=[a,b] e gli estremi coincidono, $\gamma(a)=\gamma(b)$, γ si dice chiusa

Curva semplice

 γ si dice semplice se è iniettiva, oppure se è chiusa e $\gamma:[a,b)\to\mathbb{R}^n$ è iniettiva

Curve cartesiane

 $f \in \mathrm{C}^0([a,b]), \, \gamma, \gamma^*: [a,b] o \mathbb{R}^n, \, \gamma(t) = (t,f(t)), \gamma^*(t) = (f(t),t)$ sono dette curve piane cartesiane

Q Osservazione >

Se almeno una componente γ_i è iniettiva $\implies \gamma$ è iniettiva

Orientazione di una curva semplice

Definizione

Una curva semplice $\gamma:I\to\mathbb{R}^n$ induce un'orientazione, anche detta verso, al suo sostegno Si dice che $x_1=\gamma(t_1)$ precede $x_2=\gamma(t_2)$ se $t_1< t_2$

Vettore velocità e retta tangente

Definizione

 $\gamma:I o\mathbb{R}^n$ curva, se $\gamma_i:I o\mathbb{R}$ sono derivabili in $t_0\in I$ $\gamma'(t_0):=(\gamma_1'(t_0),\ldots,\gamma_n'(t_0))$ è detto vettore velocità di γ in t_0 Se $t o t_0$ $\gamma(t)=\gamma(t_0)+\gamma'(t_0)(t-t_0)+o(t-t_0)$

Q Osservazione >

$$\gamma'(t_0) = J_\gamma(t_0)^T$$

Definizione

Se $\gamma'(t_0)
eq \underline{0}$ si chiama retta tangente a γ in $x_0 = \gamma(t_0)$ la retta $\underline{x} = \gamma(t_0) + \gamma'(t_0)(t-t_0)$

 $\gamma:I \to \mathbb{R}^n$ si dice di classe C^m se $\gamma_i \in \mathrm{C}^m(I) \ \ orall i \in \{1,\dots,n\}$

 γ si dice **regolare** se $\gamma \in \mathrm{C}^1(I)$ e $\gamma'(t) \neq 0 \ \ \forall t \in I$

Si chiama versore o direzione tangente a γ il campo vettore

$$T_{\gamma}(t) := rac{\gamma'(t)}{||\gamma'(t)||}$$

 $\gamma:[a,b] o\mathbb{R}^n$ si dice C^1 a tratti se $\exists\{a=t_0<\ldots< t_k=b\}$ suddivisione di [a,b] tale che $\gamma_j=\gamma|_{[t_{j-1},t_j]}:[t_{j-1},t_j] o\mathbb{R}^n$ è di classe C^1 e $\gamma=igcup_{j=1}^k\gamma_j$

Cambiamento di parametro

Definizione

 $\gamma:I o\mathbb{R}^n, ilde{\gamma}: ilde{I} o\mathbb{R}^n$ di classe C^1 si dicono equivalenti se $\exists \varphi: ilde{I} o I$ biiettiva tale che $\varphi\in\mathrm{C}^1(ilde{I})$, $\varphi'(au)
eq 0$ e $ilde{\gamma}(au)=\gamma(\varphi(au))\ \ \forall au\in ilde{I}$ $au\in ilde{I} o t=\varphi(au)\in I$ si dice cambiamento di parametrizzazione Inoltre $\Gamma=\gamma([a,b])= ilde{\gamma}([lpha,eta])$

Q Osservazione >

Se $\varphi(\tau)>0 \ \ \forall \tau\in ilde{I}$ allora γ e $ilde{\gamma}$ hanno lo stesso verso, altrimenti se $\varphi(\tau)<0 \ \ \forall \tau\in ilde{I}$ hanno verso opposto

Lunghezza di una curva

Definizione

 $\gamma:[a,b] o\mathbb{R}^n$ curva, $\mathcal{D}=\{a=t_0<\ldots< t_k=b\}$ suddivisione di [a,b] induce una suddivisione del sostegno di γ in k+1 punti definiti da $\gamma(t_0),\ldots,\gamma(t_k)$ e quindi k segmenti

$$[\gamma(t_{i-1}), \gamma(t_i)] := \{s \cdot \gamma(t_i) + (1-s) \cdot \gamma(t_{i-1}) : 0 \leq s \leq 1\}$$

La lunghezza della spezzata definita da $igcup_{i=1}^k [\gamma(t_{i-1}), \gamma(t_i)]$ è data da

$$L(\gamma,\mathcal{D}) := \sum_{i=1}^k ||\gamma(t_i) - \gamma(t_{i-1})|| \in [0,+\infty)$$

$$L(\gamma) := \sup_{\mathcal{D}} \{L(\gamma, \mathcal{D})\} \in [0, +\infty]$$

Se $L(\gamma) < +\infty \implies \gamma$ si dice rettificabile e $L(\gamma)$ è detta lunghezza di γ

Teorema

$$\gamma:[a,b] o\mathbb{R}^n$$
 curva, $\gamma\in\mathrm{C}^1([a,b])$ $\implies \gamma$ è rettificabile e

$$L(\gamma) = \int_a^b ||\gamma'(t)|| \, dt = \int_a^b \sqrt{\gamma_1'^2(t) + \ldots + \gamma_n'^2(t)} \, dt$$

Q Osservazione >

$$\gamma:[a.\,b] o\mathbb{R}^2$$
 curva piana cartesiana, $\gamma,f\in\mathrm{C}^1([a,b]),\,\gamma(t):=(t,f(t))$ $\Longrightarrow \gamma$ è rettificabile e $L(\gamma)=\int_a^b\sqrt{1+f'^2(t)}\,dt$

Indipendenza della lunghezza dalla parametrizzazione

Teorema

$$\gamma:[a,b] o\mathbb{R}^n, ilde{\gamma}:[lpha,eta] o\mathbb{R}^n$$
 curve di classe C^1 equivalenti $\implies L(ilde{\gamma})=L(\gamma)$

Dimostrazione >

arphi: [lpha,eta] o [a,b] cambiamento di parametrizzazione, $arphi(au) > 0 \ \ orall au \in [lpha,eta]$

$$\dots = \int_{\alpha}^{\beta} ||\tilde{\gamma}'(\tau)|| d\tau = \int_{\alpha}^{\beta} ||\gamma'(\varphi(\tau)) \cdot \varphi'(\tau)|| d\tau = \int_{\alpha}^{\beta} ||\gamma'(\varphi(\tau))|| \cdot \varphi'(\tau) d\tau$$

$$= \int_{\varphi(\alpha)}^{\varphi(\beta)} ||\gamma'(t)|| dt = \int_{a}^{b} ||\gamma'(t)|| dt = \dots$$

Q Osservazione >

Una curva C^1 a tratti $\gamma = \sum_{i=1}^k \gamma_i,\, \gamma_i: [t_{i-1},t_i] o \mathbb{R}^n$ è rettificabile e

$$L(\gamma) = \sum_{i=1}^k \int_{t_{i-1}}^{t_i} ||\gamma_i'(t)|| \, dt$$

Integrali curvilinei di prima specie

Definizione

 $\gamma:[a,b] o\mathbb{R}^n$ curva di classe C^1 , $f:\Gamma o\mathbb{R}$ continua

$$\int_{\gamma}f\,ds:=\int_{a}^{b}f(\gamma(t))\cdot||\gamma'(t)||\,dt$$

si chiama integrale curvilineo di prima specie di f lungo γ Se γ è chiusa e semplice si indica anche con $\oint_{\gamma} f \, ds$

Teorema

 $\gamma:[a,b] o\mathbb{R}^n, ilde{\gamma}:[lpha,eta] o\mathbb{R}^n$ curve di classe C^1 equivalenti, $f:\Gamma o\mathbb{R}$ continua

$$\implies \int_{ ilde{\gamma}} f \, ds = \int_{\gamma} f \, ds$$

□ Dimostrazione >

arphi: [lpha,eta] o [a,b] cambio di parametrizzazione, $arphi(au)
eq 0 \ \ orall au \in [lpha,eta]$

$$\begin{split} \dots &= \int_{\alpha}^{\beta} f(\tilde{\gamma}(\tau)) \cdot ||\tilde{\gamma}'(\tau)|| \, d\tau = \int_{\alpha}^{\beta} f(\gamma(\varphi(\tau))) \cdot ||\tilde{\gamma}'(\tau)|| \, d\tau \\ &= \int_{\alpha}^{\beta} f(\gamma(\varphi(\tau))) \cdot ||\gamma'(\varphi(\tau)) \cdot \varphi'(\tau)|| \, d\tau \\ &= \int_{\alpha}^{\beta} f(\gamma(\varphi(\tau))) \cdot ||\gamma'(\varphi(\tau))|| \cdot |\varphi'(\tau)| \, d\tau \\ &= \int_{a}^{b} f(\gamma(t)) \cdot ||\gamma'(t)|| \, dt = \dots \end{split}$$

Integrali curvilinei di seconda specie

Campo vettoriale

Definizione

Si chiama campo vettoriale su un insieme $E\subset\mathbb{R}^n$ una mappa $F:E\to\mathbb{R}^n$, $F(\underline{x})=(F_1(\underline{x}),\dots,F_n(\underline{x}))$

Forma differenziale

Definizione

 $F:E o\mathbb{R}^n$ campo vettoriale

Si chiama forma differenziale su E l'espressione formale

$$\omega = F_1 dx_1 + \cdots + F_n dx_n = \sum_{i=1}^n F_i dx_i = \langle F, d\underline{x} \rangle$$

Una forma differenziale ω su E si dice di classe C^0 (o C^1) se $F_i \in \mathrm{C}^0(E) \ \ \forall i \in \{1,\ldots,n\}$ (o $F_i \in \mathrm{C}^1(E)$)

Definizione

$$\gamma:[a,b] o E\subset\mathbb{R}^n$$
, $\gamma\in\mathrm{C}^1([a,b])$, $\omega=\langle F,d\underline{x}
angle$, $\omega\in\mathrm{C}^0(E)$

Si definisce integrale curvilineo di seconda specie di ω lungo γ

$$\int_{\gamma} \omega := \int_a^b \langle F(\gamma(t)), \gamma'(t) \rangle \, dt = \int_a^b \sum_{i=1}^n F_i(\gamma(t)) \cdot \gamma_i'(t) \, dt$$

Se γ è chiusa si indica anche con $\oint_{\gamma} \omega$

Teorema

 $E\subset\mathbb{R}^n$, $\gamma:[a,b] o E, ilde{\gamma}:[lpha,eta] o E$ curve di classe C^1 equivalenti, $ilde{\gamma}=\gamma\circarphi$

$$ullet \ arphi(au)>0 \ orall au \in [lpha,eta] \implies \int_{\gamma}\omega = \int_{ ilde{\gamma}}\omega$$

•
$$arphi(au) < 0 \;\; orall au \in [lpha, eta] \implies \int_{\gamma} \omega = - \int_{ ilde{\gamma}} \omega$$

□ Dimostrazione >

arphi: [lpha,eta] o [a,b] cambiamento di parametrizzazione, $ilde{\gamma}' = \gamma'(arphi(au)) \cdot arphi'(au)$

$$egin{aligned} \ldots &= \int_{lpha}^{eta} \langle F(ilde{\gamma}(au)), ilde{\gamma}'(au)
angle \, d au = \int_{lpha}^{eta} \langle F(\gamma(arphi(au))), \gamma'(arphi(au)) \cdot arphi(au)
angle \, d au \ &= \int_{lpha}^{eta} \langle F(\gamma(arphi(au))), \gamma'(arphi(au))
angle \cdot arphi'(au) \, d au = \int_{arphi(lpha)}^{arphi(eta)} \langle F(\gamma(t)), \gamma'(t)
angle \, dt = \ldots \end{aligned}$$

Teorema

 $\gamma:[a,b] o E\subset\mathbb{R}^n$ curva regolare, $F:E o\mathbb{R}^n$ campo vettoriale su E di classe C^0 , $\omega=\langle F,d\underline{x}\rangle$ forma differenziale

$$\implies \int_{\gamma} \omega = \int \langle F, T
angle \, ds$$

Dimostrazione >

$$\ldots = \int_a^b \langle F(\gamma(t)), \gamma'(t)
angle \, dt = \int_a^b \langle F(\gamma(t)), T(t)
angle \cdot ||\gamma'(t)|| \, dt = \ldots$$

Q Osservazione >

 $\gamma:[a,b] o E\subset\mathbb{R}^n$ regolare e semplice, $\omega=\langle F,d\underline{x}
angle$ forma differenziale si classe $\mathrm{C}^0(E)$ $\Longrightarrow\int_{\gamma}\omega=\int_{\gamma}\langle F,T_{\gamma}
angle\,ds$

Forme differenziali esatte

Definizione

 $E\subset\mathbb{R}^n$ aperto, $U\in\mathrm{C}^1(E)$, $\omega=\langle F,d\underline{x}
angle$, $F:E o\mathbb{R}^n$ $dU=\langle \nabla U,d\underline{x}
angle=rac{\partial U}{\partial x_1}dx_1+\ldots+rac{\partial U}{\partial x_n}dx_n$ viene chiamata forma differenziale di U ω si dice esatta se $\exists U:\nabla U(\underline{x})=F(\underline{x})\ \ \forall \underline{x}\in E$, equivalentemente $dU=\omega$ e U è detta **funzione potenziale** di ω (o anche di F) in E

Teorema

 $E\subset\mathbb{R}^n$ aperto, ω forma differenziale continua ed esatta su $E,\,\gamma:[a,b]\to E$ C^1 a tratti, U qualunque potenziale di ω

$$\implies \int_{\gamma} \omega = U(\gamma(b)) - U(\gamma(a))$$

Dimostrazione →

Per ipotesi $\exists U$ potenziale di ω su E tale che $\nabla U(\underline{x}) = F(\underline{x})$ $\frac{d}{dt}(U(\gamma(t))) = \langle \nabla U(\gamma(t)), \gamma'(t) \rangle = \langle F(\gamma(t)), \gamma'(t) \rangle \ \ \forall t \in [a,b]$

$$\dots = \int_a^b \langle F(\gamma(t)), \gamma'(t)
angle \, dt = \int_a^b rac{d}{dt} (U(\gamma(t))) \, dt = [U(\gamma(t))]_a^b = \dots$$

Q Osservazione >

 γ curva chiusa $\implies \oint_{\gamma} \omega = 0$

Forme differenziali chiuse

Definizione

 $E \subset \mathbb{R}^n$ aperto, $\omega = \langle F, d\underline{x} \rangle$, $F : E \to \mathbb{R}^n$, $F(\underline{x}) = (F_1(\underline{x}), \dots, F_n(\underline{x}))$, $F_i \in \mathrm{C}^1(E)$ $(i = 1, \dots, n)$ ω si dice chiusa in E se

$$rac{\partial F_i}{\partial x_j}(\underline{x}) = rac{\partial F_j}{\partial x_i}(\underline{x}) \;\; orall \underline{x} \in E, \; i,j \in \{1,\dots,n\}$$

Teorema

 $\omega \in \mathrm{C}^1(E)$

 ω esatta su $E \implies \omega$ chiusa su E

Per ipotesi $\exists U$ potenziale e $rac{\partial U}{\partial x_i}=F_i(\underline{x})$ ($i=1,\ldots,n$) Essendo $U\in\mathrm{C}^2(E)$

$$\ldots = \frac{\partial^2 U}{\partial x_j x_i}(\underline{x}) = \frac{\partial^2 U}{\partial x_i x_j}(\underline{x}) = \ldots$$

Q Osservazione >

 ω non chiusa in $E \implies \omega$ non esatta in E

Teorema

 $E\subset \mathbb{R}^n$ aperto e convesso, ovvero

$$[\underline{p},\underline{q}]:=\{t\underline{p}+(1-t)\underline{q}:0\leq t\leq_1\}\subset E\ \ orall \underline{p},\underline{q}\in E$$
 $\omega\in\mathrm{C}^1(E)$

 ω esatta in $E\iff \omega$ chiusa in E

Costruzione di un potenziale

Formula

 $E\subset\mathbb{R}^n$ convesso, $F:E o\mathbb{R}^n$ campo vettoriale, $\omega=\langle F,d\underline{x}\rangle$ forma differenziale chiusa, allora è esatta ed esiste una funzione potenziale $U:E o\mathbb{R}$ di $\omega,\,U\in\mathrm{C}^2(E):\nabla U(x)=F(x)$

Procedura, con ordine delle variabili interscambiabile:

$$U(\underline{x}) = \int F_1(\underline{x}) \, dx_1 = U_1(\underline{x}) + C_1(x_2, \dots, x_n)$$

$$rac{\partial U}{\partial x_2}(\underline{x}) = rac{\partial U_1}{\partial x_2}(\underline{x}) + rac{\partial C_1}{\partial x_2}(x_2,\ldots,x_n) = F_2(\underline{x})$$

$$\frac{\partial C_1}{\partial x_2}(x_2,\ldots,x_n) = F_2(\underline{x}) - \frac{\partial U_1}{\partial x_2}(\underline{x})$$

che è costante rispetto ad x_1

Dimostrazione >

$$\frac{\partial F_2}{\partial x_1}(\underline{x}) - \frac{\partial^2 U_1}{\partial x_1 \partial x_2}(\underline{x}) = \frac{\partial F_2}{\partial x_1}(\underline{x}) - \frac{\partial^2 U_1}{\partial x_2 \partial x_1}(\underline{x}) = \frac{\partial F_2}{\partial x_1}(\underline{x}) - \frac{\partial F_1}{\partial x_2}(\underline{x}) = 0$$

$$C_1(x_2,\ldots,x_n)=\intrac{\partial C_1}{\partial x_2}(x_2,\ldots x_n)\,dx_2=U_2(x_2,\ldots,x_n)+C_2(x_3,\ldots,x_n)$$

Iterando: $U(\underline{x}) = U_1(\underline{x}) + U_2(x_2, \dots, x_n) + \dots + U_n(x_n) + c$