# Noise Analysis Optomechanical Cavity

Leon Oleschko 31.12.2024

> Modeling Quantum Hardware: open dynamics and control Universität Konstanz

#### **Problem Statement**



"Cavity optomechanics", Aspelmeyer et al. 2014 Quantum Optomechanics, Bowen et al. 2015

#### Hamiltonian

Optical Cavity  $\hat{a}$ ,  $\omega_o(\hat{x}_{\mathsf{mech}}) = \omega_o + \frac{g}{\omega_o}\hat{x}_{\mathsf{mech}}$ ; mechanical oscillations  $\hat{b}$ ,  $\omega_m$ ; coupling g; Drive E,  $\omega_L$ 

$$H = \underbrace{\omega_o \ a^\dagger a}_{\text{Cavity}} + \underbrace{\omega_m \ b^\dagger b}_{\text{Mechanical}} - \underbrace{g \ a^\dagger a \ (b + b^\dagger)}_{\text{Interaction}} + \underbrace{i(E a^\dagger e^{-i\omega_L t} - E^* a e^{i\omega_L t})}_{\text{Drive}}$$

### Hamiltonian

Optical Cavity  $\hat{a}$ ,  $\omega_o(\hat{x}_{\mathsf{mech}}) = \omega_o + \frac{g}{\omega_o}\hat{x}_{\mathsf{mech}}$ ; mechanical oscillations  $\hat{b}$ ,  $\omega_m$ ; coupling g; Drive E,  $\omega_L$ 

$$H = \underbrace{\omega_o \ a^\dagger a}_{\text{Cavity}} + \underbrace{\omega_m \ b^\dagger b}_{\text{Mechanical}} - \underbrace{g \ a^\dagger a \ (b + b^\dagger)}_{\text{Interaction}} + \underbrace{i(E a^\dagger e^{-i\omega_L t} - E^* a e^{i\omega_L t})}_{\text{Drive}}$$

Rotating Wave Approximation at  $\omega_L$  with  $\Delta = \omega_o - \omega_L$ ,  $a \to a e^{i\omega_L t}$ :

$$H_{\text{RWA}} = \Delta \ a^{\dagger} a + \omega_m \ b^{\dagger} b - g \ a^{\dagger} a \ (b^{\dagger} + b) + i(Ea^{\dagger} - E^* a)$$

 $\hbar = 1$ 

Quantum Optomechanics, Bowen et al. 2015 (2.3.1)

## Hamiltonian Linearization

$$H_{\text{RWA}} = \Delta \ a^{\dagger} a + \omega_m \ b^{\dagger} b - g \ a^{\dagger} a \ (b^{\dagger} + b) + i (E a^{\dagger} - E^* a)$$

Linearize  $a = \alpha + \delta a$ ,  $b = \beta + \delta b$ ; with  $\alpha, \beta$  steady state.

$$H_{\text{Interaction}} = -g \ a^{\dagger} a \ (b^{\dagger} + b)$$

$$\approx -\underbrace{g|\alpha|}_{G} (\delta a + \delta a^{\dagger}) \ (\delta b + \delta b^{\dagger} + 2\beta) + \mathcal{O}(a^{2} + \delta a \delta a^{\dagger})$$

# Dissipation