

DALYKO (MODULIO) APRAŠAS

Dalyko (modulio) pavadinimas	Kodas
KOMPIUTERIŲ ARCHITEKTŪRA	

Dėstytojas (-ai)	Padalinys (-iai)
Koordinuojantis: Marius Liutvinavičius	Vilniaus universiteto Matematikos ir informatikos fakultetas
Kitas (-i): dr. Gintautas Tamulevičius	Akademijos g. 4
	LT-08663 Vilnius

Studijų pakopa	Dalyko (modulio) lygmuo	Dalyko (modulio) tipas
Pirmoji	1/1	Privalomasis

Įgyvendinimo forma	Vykdymo laikotarpis	Vykdymo kalba (-os)		
Auditorinė	1 semestras	Lietuvių		

Reikalavimai studijuojančiajam				
Išankstiniai reikalavimai:	Gretutiniai reikalavimai (jei yra):			

Dalyko (modulio) apimtis	Visas studento darbo	Kontaktinio darbo	Savarankiško darbo
kreditais	krūvis	valandos	valandos
5	133	64	69

Dalyko (modulio) tikslas: studijų programos ugdomos kompetencijos						
Dalyko tikslas yra supažindinti studentus su kompiuterių architektūra ir jų funkcionavimo principais.						
Dalyko (modulio) studijų siekiniai	Studijų metodai	Vertinimo metodai				
Suvokti kompiuterių architektūros pagrindus ir jų funkcionavimo principus bei paaiškinti jų taikymą praktinėje veikloje. Suprasti ir gebėti paaiškinti pagrindinių kompiuterio įtaisų (procesorių, atminties, įvedimo ir išvedimo įrenginių) struktūrą ir veikimo principus. Taip pat suprasti kompiuterinių sistemų našumo metrikas.	Paskaitos Literatūros analizė Praktinių užduočių sprendimas Pranešimų rengimas	Teorinis atsiskaitymas (su atvirojo ir uždarojo tipo klausimais) Praktinės užduotys Studento pranešimas pasirinkta tema				
Suprasti informacijos kodavimo principus. Studijuojant kompiuterių aritmetiką išmokti atlikti įvairias matematines operacijas skirtingose skaičiavimo sistemose, taip pat taikyti loginius elementus ir operacijas su jais. Įsisavinti tekstinės, grafinės, garsinės ir video informacijos kodavimo principus.	Paskaitos Literatūros analizė Praktinių užduočių sprendimas	Teorinis atsiskaitymas (su atvirojo ir uždarojo tipo klausimais) Praktinės užduotys				
Suprasti sistemų integracijos principus bei gebėti taikyti sprendimus įvairių problemų sprendimui.	Paskaitos Praktinių užduočių sprendimas	Teorinis atsiskaitymas (su atvirojo ir uždarojo tipo klausimais) Praktinės užduotys				
Susipažinti su pagrindiniais operacinių sistemų sandaros bei veikimo principais, išmokti apibūdinti ir paaiškinti operacinėse sistemose naudojamas procesų, atminties, įvedimo-išvedimo, failų sistemos valdymo funkcijas bei jas realizuojančius algoritmus. Suprasti MS Windows, UNIX ir Apple OS X operacinių sistemų veikimo principus.	Paskaitos Literatūros analizė Praktinių užduočių sprendimas Pranešimų rengimas	Teorinis atsiskaitymas (su atvirojo ir uždarojo tipo klausimais) Praktinės užduotys Studento pranešimas pasirinkta tema				
Sugebėti paaiškinti paskirstytų sistemų architektūrą ir veikimo principus, mokėti projektuoti ir įgyvendinti algoritmus daugiaprocesorinėse sistemose.	Paskaitos Praktinių užduočių sprendimas Pranešimų rengimas	Teorinis atsiskaitymas (su atvirojo ir uždarojo tipo klausimais) Praktinės užduotys Studento pranešimas pasirinkta tema				

	Kontaktinio darbo valandos		os	Sav	arankiškų studijų laikas ir užduotys				
Temos	Paskaitos	Konsultacijos	Seminarai	Pratybos	Laboratoriniai darbai	Praktika	Visas kontaktinis darbas	Savarankiškas darbas	Užduotys
Pagrindinės kompiuterių architektūros sąvokos. Kompiuterių struktūra ir funkcijos. Kompiuterių vystymosi raida. Kompiuterių kartos ir klasifikacija.	2				2		4	4	Literatūros analizė, praktinių užduočių atlikimas
2. Informacijos kodavimas (tekstinė, grafinė, garsinė, video informacija). Sveikų bei realių skaičių ir simbolių atvaizdavimas kompiuteryje.	2				2		4	2	Literatūros analizė, praktinių užduočių atlikimas
3. Skaičiavimo sistemos. Matematinės operacijos įvairiose skaičiavimo sistemose. Loginiai elementai ir operacijos. Loginės schemos.	2				2		4	2	Literatūros analizė, praktinių užduočių atlikimas
4. Procesorių struktūra ir veikimo principai.	4				4		8	6	Literatūros analizė, praktinių užduočių atlikimas
5. Kompiuterio atminties sistema. Atminties įrenginiai jų charakteristikos. Magistralės. Kompiuterio našumo metrikos.	4				4		8	6	Literatūros analizė, praktinių užduočių atlikimas
6. Kompiuterio įvedimo išvedimo sistema.	2				2		4	6	Literatūros analizė, praktinių užduočių atlikimas
7. Sisteminė ir taikomoji programinė įranga. Pagrindiniai operacinių sistemų sandaros bei veikimo principai, valdymo funkcijos bei jas realizuojantys algoritmai. MS Windows, UNIX ir Apple OS X operacinės sistemos.	4				4		8	6	Literatūros analizė, praktinių užduočių atlikimas, programinės įrangos funkcijų įsisavinimas
8. Paskirstytų sistemų architektūra.	4				4		8	8	Literatūros analizė, praktinių užduočių atlikimas (lygiagrečiųjų skaičiavimų taikymas)
9. Virtualių mašinų architektūra. Debesų kompiuterijos veikimo principai.	4				4		8	6	Literatūros analizė, praktinių užduočių atlikimas
10. Sistemų integracijos sprendimų kūrimo principai.	4				4		8	6	Literatūros analizė, praktinių užduočių atlikimas
11. Pranešimo pasirinkta tema rengimas ir pristatymas								3	Literatūros analizė, pranešimo rengimas
12. Pasiruošimas egzaminui								14	Literatūros analizė
Iš viso	32				32		64	69	

Vertinimo strategija	Svoris proc.	Atsiskaity mo laikas	Vertinimo kriterijai
Praktinės užduotys (U)	30%	≥5 kartus per semestrą	Auditorijoje naudojant kompiuterius atliekamos praktinės užduotys pagal dėstytojo pateiktus nurodymus. Kiekvienas darbas vertinamas pažymiu dešimties balų skalėje. Gale semestro skaičiuojamas vertinimų vidurkis.
Savarankiškas pranešimas pasirinkta tema (P)	10%	Nustatytu laiku	Kiekvienas studentas pristato pranešimą pasirinkta tema (pasiūlyta dėstytojo arba pasirinkta savarankiškai). Pranešimas vertinamas pažymiu dešimties balų skalėje.
Koliokviumas (K)	25%	10 savaitė	Koliokviumą sudaro skirtingo sudėtingumo atvirojo ir uždarojo tipo klausimai iš teorinės kurso medžiagos išnagrinėtos iki koliokviumo datos. Vertinama pažymiu dešimties balų skalėje proporcingai teisingai atsakytų klausimų kiekiui.
Egzaminas (E)	35%	Sesijos metu	Egzaminą sudaro skirtingo sudėtingumo atvirojo ir uždarojo tipo teoriniai klausimai bei praktinės užduotys iš viso kurso medžiagos. Vertinama pažymiu dešimties balų skalėje proporcingai teisingai atsakytų klausimų kiekiui.

Naudojama dešimtbalė proporcinė įgytų žinių vertinimo sistema. Gavus egzamino įvertinimą ≥5 – dalykas įskaitomas, gavus <5 – neįskaitomas, studentui leidžiama perlaikyti. Studijų dalyko galutinio įvertinimo (GV) formulė:

$$GV = 0.3*U + 0.10*P + 0.25*K + 0.35*E$$
, kur

K – koliokviumo pažymys,

E – egzamino pažymys,

P – savarankiško pranešimo pažymys,

U- praktinių užduočių pažymys.

 $U = (U_1 + U_2 + U_3 + ... + U_n)/n$ – praktinių užduočių vertinimo vidurkis, kur $n \ge 5$;

Autorius	Leidimo metai	Pavadinimas	Periodinio leidinio Nr. ar leidinio tomas	Leidimo vieta ir leidykla ar internetinė nuoroda
Privalomoji literatūra				
Stallings W.	2019	Computer Organization and Architecture: Designing for Performance		Boston: Pearson
Englander, Irv	2014	The Architecture of Computer Hardware and System Software: An Information Technology Approach, 5th Edition		New York: Wiley
Urbanavičius, Vytautas	2007	Kompiuteriai ir jų architektūra		Vilnius : Technika
Papildoma literatūra				
Winkler, Joachim R.	2011	Securing the cloud: cloud computer security techniques and tactics		Amsterdam: Elsevier
Portnoy, M.	2012	Virtualization essentials		Indianapolis: J. Wiley & Sons
Tarnoff, David L.	2007	Computer Organization and Design Fundamentals		Interaktyvus: http://faculty.etsu.edu/tarn off/ntes2150.html

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
Computer Architecture	

Lecturer(s)	Department(s) where the course unit (module) is	
	delivered	
Coordinator: Marius Liutvinavičius	Vilnius University Faculty of Mathematics and Informatics	
Other(s): dr. Gintautas Tamulevičius	Akademijos str. 4	
	LT-08663 Vilnius	

Study cycle	Type of the course unit (module)
First	Compulsory

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
face-to-face	1 st semester	Lithuanian

Requirements for students				
Prerequisites: Additional requirements (if any):				

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	133	64	69

Purpose of the course unit (module): programme competences to be developed					
The objective is to introduce the students to the computer architecture and operating principles.					
Learning outcomes of the course unit (module)	Teaching and	Assessment methods			
	learning methods				
Ability to describe basics of computer architecture and their operating principles. Also understand and know how to explain the structure and operational principles of the main computer elements (processor, memory, input and output devices). Know the main performance metrics. Understand the principles and challenges of systems integration and be able to apply various solutions Understand the architecture and operational principles of parallel computing systems. Know how to apply the algorithms in multiprocessor environments. Ability to analyse the high performance technical infrastructure, computational job management and queuing principles, estimate the update with respect to computational workload.	Lectures, literature analysis, practical work, working in a group, preparation of presentation	Practical tasks, presentation, exam.			

			Contact hours						elf-study work: time and assignments	
Content: breakdown of the topics		Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work placement	Contact hours	Self-study hours	Assignments
1.	Basic terms of computer architecture. The	2				2		4	4	Literature analysis,
	evolution of computers. Computer generations and classification.									practical tasks
2.	Information coding (textual, graphical,	2				2		4	2	Literature analysis,
	video). Representation of integer numbers,									practical tasks
	real numbers and symbols.									
3.	Mathematical operations in different computing systems. Logical elements and operations with them.	2				2		4	2	Literature analysis, practical tasks

Total	32		3	32	64	69	
12. Preparation for exam						14	Literature review
11. Presentation of selected topic						3	Presentation
10. The development of system integration solutions.	4		,	4	8	6	Literature analysis, practical tasks
9. Virtual machines. Cloud computing	4			4	8	6	Literature analysis, practical tasks
8. The architecture of parallel computing systems	4			4	8	8	Literature analysis, practical tasks
7. Operating systems and software. MS Windows, UNIX and Apple OS X.	4			4	8	6	Literature analysis, practical tasks
6. Input/output devices.	2			2	4	6	Literature analysis, practical tasks
5. Memory system. Memory devices and their characteristics. Performance metrics.	4			4	8	6	Literature analysis, practical tasks
4. The structure and operating principles of processor.	4			4	8	6	Literature analysis, practical tasks

Assessment	Weight,	Deadline	Assessment criteria
strategy	%		
Practical tasks	30	≥5 times during the course	Students perform practical tasks in computer class according to presented requirements. Each task is evaluated by mark from 1 to 10. At the end of the course the average of all marks is calculated.
Presentation	10	At determined time	Each student makes presentation of selected topic. The presentation is evaluated by mark from 1 to 10.
Colloquium	25	10 th week	The colloquium consists of different difficulty open and closed questions. The colloquium is evaluated by mark from 1 to 10.
Exam	35	During the session	The exam consists of different difficulty open and closed questions and practical cases. It covers all course materials. The exam is evaluated by mark from 1 to 10

The minimum mark for exam is 5. If mark lower than 5 is got, student must retake the exam. The formula for final mark (FM): FM = 0.25*C + 0.1*P + 0.3*T + 0.35*E, where C - Mark for colloquium, E - Mark for exam, P - Mark for presentation, T - Mark for practical tasks. $T = (T_1 + T_2 + T_3 + ... + T_n)/n$ — the average of marks for practical cases, where $n \ge 5$;

Author	Year of publica tion	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsory reading				
Stallings W.	2019	Computer Organization		Boston: Pearson
		and Architecture:		
		Designing for Performance		
Englander, Irv	2014	The Architecture of		New York: Wiley
		Computer Hardware and		
		System Software: An		
		Information Technology		
		Approach, 5th Edition		
Urbanavičius, Vytautas	2007	Kompiuteriai ir jų		Vilnius: Technika
		architektūra		
Optional reading				
Winkler, Joachim R.	2011	Securing the cloud:		Amsterdam: Elsevier
		cloud computer security		
		techniques and tactics		
Portnoy, M.	2012	Virtualization essentials		Indianapolis: J. Wiley &
				Sons
Tarnoff, David L.	2007	Computer Organization		http://faculty.etsu.edu/tar
		and Design Fundamentals		noff/ntes2150.html