Math2001 Answer to Homework 7

Exercise 3.23

When k = 1, m(n1) = mn = (mn)1.

By induction, suppose associativity holds for k, then consider the case k+1. There is m(n(k+1)) = m(nk+n) = m(nk) + mn = (mn)k + mn = mn(k+1). Therefore, associativity holds for all $k \in \mathbb{N}$.

Exercise 3.24

 $m_1 + n_2 = n_1 + m_2$ and $k_1 + l_2 = l_1 + k_2$ imply $(m_1 + n_1)(k_1 + l_2) = (m_1 + n_1)(l_1 + k_2)$ and $(m_1 + n_2)(k_2 + l_2) = (m_2 + n_1)(k_2 + l_2)$. They furtherly imply that $[m_1k_1 + n_1l_1, m_1l_1 + n_1k_1] = [m_1k_2 + n_1l_2, m_1l_2 + n_1k_2]$ and $[m_1k_2 + n_1l_2, m_1l_2 + n_1k_2] = [m_2k_2 + n_2l_2, m_2l_2 + n_2k_2]$. By transitivity of equivalence relationship, there is $[m_1k_1 + n_1l_1, m_1l_1 + n_1k_1] = [m_2k_2 + n_2l_2, m_2l_2 + n_2k_2]$.

Exercise 3.25

(2) Distributivity: Suppose a = [m, n], b = [k, l], c = [s, t].

(a+b)c=[m+k,n+l][s,t]=[(m+k)s+(n+l)t,(m+k)t+(n+l)s], and ac+bc=[m,n][s,t]+[k,l][s,t]=[ms+nt,mt+ns]+[ks+lt,kt+ls]=[ms+nt+ks+lt,mt+ns+kt+ls]. By distributivity in natural numbers, there is [(m+k)s+(n+l)t,(m+k)t+(n+l)s]=[ms+nt+ks+lt,mt+ns+kt+ls], thus (a+b)c=ac+bc.

a(b+c) = [m,n][k+s,l+t] = [m(k+s)+n(l+t),m(l+t)+n(k+s)], and ab+ac = [m,n][k,l]+[m,n][s,t] = [mk+nl,ms+nt]+[ms+nt,mt+ns] = [mk+nl+ms+nt,ms+nt+mt+ns]. By distributivity in natural numbers, [m(k+s)+n(l+t),m(l+t)+n(k+s)] = [mk+nl+ms+nt,ms+nt+mt+ns], thus a(b+c) = ab+ac.

(3) Associativity: Suppose a = [m, n], b = [k, l], c = [s, t].

a(bc) = [m, n][ks + lt, kt + ls] = [m(ks + lt) + n(kt + ls), m(kt + ls) + n(ks + lt)] = [m(ks) + m(lt) + n(kt) + n(ls), m(kt) + m(ls) + n(ks) + n(lt)].

(ab)c = [mk + nl, ml + nk][s, t] = [(mk + nl)s + (ml + nk)t, (mk + nl)t + (ml + nk)s] = [(mk)s + (nl)s + (ml)t + (nk)t, (mk)t + (nl)t + (ml)s + (nk)s]. By associativity in natural numbers, there is a(bc) = (ab)c.

(4) Commutativity: Suppose a = [m, n], b = [k, l].

ab = [mk + nl, ml + nk] and ba = [km + ln + lm + kn]. By commutativity in \mathbb{N} , ab = ba.

(5) One: It suffices to show that a1 = a. Suppose a = [m, n] and 1 = [l+1, l]. a1 = [m, n][l+1, l] = [m(l+1) + nl, ml + n(l+1)] = [ml + nl + m, ml + nl + n]. Since (ml+nl+n) + m = (ml+nl+m) + n, there is a1 = a.

Exercise 3.26

Since -c > 0, according to Prop 3.4.3.(8) $a > b \iff (-c)a > (-c)b$. Meanwhile, $(-c)a > (-c)b \iff -c(a-b) > 0 \iff c(b-a) > 0 \iff ac < bc$. Therefore, $a > b \iff ac < bc$.

Exercise 3.31

By Prop 3.5.2.(5), there exists -t for t such that (-t) + t = 0. Hence r = (r + t) + (-t) = (s + t) + (-t) = s + (t + (-t)) = s.

By Prop 3.5.2.(8), there exists reciprocal t^{-1} for t. Hence $r = rtt^{-1} = stt^{-1} = s(tt^{-1}) = s$.

Exercise 3.32

If $r=0=\frac{0}{1}$, suppose $s=\frac{a}{b}$, then $rs=\frac{0}{1}\cdot\frac{a}{b}=\frac{0}{b}=0$. Likewise for the case s=0. If rs=0, suppose $r=\frac{a}{b}$ and $s=\frac{c}{d}$, then ac=0 implies a=0 or c=0. Thus r=0 or s=0.

Exercise 3.34

Firstly, we show that |rs| = |r||s|. If rs > 0, then either r and s are both positive or they are both negative. In the first case, we have |r||s| = rs = |rs|. In the second case, there is $|r||s| = (-r)(-s) = (-1)^2 rs = rs = |rs|$. Besides, if rs < 0, then one of them if negative and another one is positive. Thus |r||s| = -rs = |rs|.

Since |r+s| and |r|+|s| are both positive, it is equivalent to show that $|r+s|^2 \le (|r|+|s|)^2$. $(|r|+|s|)^2 - |r+s|^2 = (r^2+s^2+2|r||s|) - (r^2+s^2+2rs) = 2(|rs|-rs) \ge 0$. Hence $|r+s|^2 \le (|r|+|s|)^2$ holds.

 $|r| < s \iff -s < r < s$: Suppose |r| < s holds. Then we have $s > |r| \ge 0$. If r > 0, -s < 0 < r < s. If r < 0, then -r < s. Multiply -1 on both sides there is -s < r. It can be concluded that -s < r < 0 < s.

Suppose -s < r < s holds. If r > 0, then |r| = r < s. If ri0, then |r| = -r < s by -s < r.

Exercise 3.35

If r > s, then $\max\{r, s\} = r$, $\min\{r, s\} = s$. Thus $\max\{r, s\} + \min\{r, s\} = r + s$ and $\max\{r, s\} - \min\{r, s\} = r - s$. If r < s, then $\max\{r, s\} = s$, $\min\{r, s\} = r$. Thus $\max\{r, s\} + \min\{r, s\} = s + r = r + s$ and $\max\{r, s\} - \min\{r, s\} = s - r = -(r - s)$.

Therefore, $\max\{r, s\} + \min\{r, s\} = r + s, \max\{r, s\} - \min\{r, s\} = |r - s|$.