Task 1: Bigrams [50 points]

You are given a plain text file which contains a single line of text (no new line characters).

- a) Count the number of appearances of letter bigrams in the text.
- b) For a given sequence of letters $x_0x_1x_2...x_n$ and based on bigram frequencies calculated from a) find the most probable continuation consisting of three letters $y_0y_1y_2$.

Input

Input is given through command line arguments in the following order

inputTextFile	Path to the input text file
sequencesTextFile	Path to text file containing input character sequences (one per line)
	for which you need to find the continuation
outputBigramsFile	Path to output text file which should contain list of bigrams and their
	count (specified in a))
outputSequencesFile	Path to output file that should contain most probable result
	corresponding to sequences specified in b) (one per line)

Notes:

- Input file will contain only printable ASCII characters (including spaces).
- Input file will not be empty.
- The last character in the file will appear at least twice.
- Input character sequence will not contain characters that do not appear in the input file.

Output

a) Output file with bigrams should contain list of bigrams that appeared in text, and number of their appearances (one pair per line, doesn't have to be sorted), i.e.:

```
c_{00}c_{01} \ count_0
c_{10}c_{11} \ count_1
c_{20}c_{21} \ count_2
...
c_{m0}c_{m1} \ count_m
```

b) Output file with result sequence should contain the most probable resulting sequence(s), i.e.

$$x_0x_1x_2\dots x_ny_0y_1y_2$$

Notes:

- Valid values for c_{ij} and y_k are ASCII characters that appear in text file (including spaces).
- Valid values for *count*_i are positive integer numbers.
- Output folder(s) should be created if it doesn't exist.

Example

Input file:

```
+yxy +xy xy xxxxxxxy
```

Input sequence file:

+y

- a) Output file with bigram counts should contain (only) these lines:
 - + 1
 - x 2
 - +x 1
 - +y 1
 - хх б
 - xy 4
 - у 3
 - yx 1
- b) Output file with expected sequence(s):

Calling

In case you're producing Windows .exe, your program will be called like:

Bigrams.exe inputTextFile sequencesTextFile outputBigramsFile outputSequenceFile

In case of Python script:

Python bigrams.py inputTextFile sequencesTextFile outputBigramsFile outputSequenceFile

In case you write an Octave function, you should have a Bigrams.m file containing

function Bigrams (inputTextFile, sequencesTextFile, outputBigramsFile, outputSequenceFile)

which does the processing and saves the results into the output folder as described.

In case of Java:

java Bigrams inputTextFile sequencesTextFile outputBigramsFile
outputSequenceFile

or

java -jar Bigrams.jar inputTextFile sequencesTextFile
outputBigramsFile outputSequenceFile

Document update history

5/20/2016 7:04 PM: Document created