9.15 SYMMETRY FACTORS

In quantum field theory (QFT), symmetry factors are critical for correcting overcounting in perturbative expansions. This section supplements our discussion during lectures.

ORIGIN AND DEFINITION

946

957

958

959

961

962

965

966

968

969

971

Symmetry factors arise because multiple *Wick contractions* or permutations of vertices and lines in a Feynman diagram can produce identical configurations. These redundancies are quantified by the **automorphism group** of the diagram, which consists of all transformations (vertex/line permutations, rotations, reflections) that leave the diagram topologically unchanged. The **symmetry factor** S is the order of this group: $S = |\operatorname{Aut}(G)|$. Each diagram's contribution to amplitudes is weighted by 1/S.

AUTOMORPHISM GROUPS AND EXAMPLES

The order |Aut(G)| counts distinct symmetries of a diagram. Key examples include:

- "Sunset" diagram in ϕ^3 theory (a): Two vertices connected by three lines.
 - Symmetries: Vertex swap (\mathbb{Z}_2) and permutation of three lines (S_3).
 - $|Aut(G)| = 2 \times 6 = 12 \Rightarrow S = 12.$
- Vacuum "figure-eight" diagram (b): One vertex with two loops.
 - Symmetries: Loop swaps (\mathbb{Z}_2) and independent loop flips ($\mathbb{Z}_2 \times \mathbb{Z}_2$).
 - $|Aut(G)| = 2 \times 2 \times 2 = 8 \Rightarrow S = 8.$
- Disconnected identical subdiagrams (c): Two copies of a vacuum bubble.
 - Symmetries: Swap of subdiagrams (\mathbb{Z}_2) and individual bubble symmetries.

-
$$|Aut(G)| = 2 \times (8 \times 8) = 128 \Rightarrow S = 128.$$

9.15.1 Brief Summary

972

The contribution of a diagram to the amplitude includes:

Contribution =
$$\frac{1}{S} \times (\text{Couplings}) \times (\text{Integrals}).$$
 (9.15.1)

Symmetry factors ensure that each distinct physical process is counted exactly once. Errors in *S* propagate to miscalculations of observables (e.g., cross-sections), making their correct determination essential. I directly write down the symmetry factors of many diagrams in my lecture notes and provide additional notes explaining different ways to get the symmetry factors. There is ultimately one method: carry out the functional derivative expansion in the path integral. There, you won't need to introduce symmetry factors but rather count how many ways to get the identical expression.