Profiling & Parallelization

Lecture 20

Dr. Colin Rundel

Profiling & Benchmarking

profvis demo

```
1 n = 1e6
3 d = tibble(
   x1 = rt(n, df = 3),
 5 	 x2 = rt(n, df = 3),
6 x3 = rt(n, df = 3),
7 	 x4 = rt(n, df = 3),
8 	 x5 = rt(n, df = 3),
9 ) %>%
10
    mutate(y = -2*x1 - 1*x2 + 0*x3 + 1*x4 + 2*x5 + rnorm(n))
11
12 profvis::profvis(lm(y~., data=d))
```

Benchmarking - bench

```
1 d = tibble(
x = runif(10000),
y = runif(10000)
 4
5
   (b = bench::mark(
    d[d$x > 0.5, ],
    d[which(d\$x > 0.5), ],
    subset(d, x > 0.5),
10
   filter(d, x > 0.5)
11 ))
```

```
# A tibble: 4 \times 6
 expression
                              median `itr/sec` mem alloc `gc/sec`
                         min
 <bch:expr>
                    <bch:tm> <bch:tm>
                                       <dbl> <bch:byt>
                                                         <dbl>
                                                          14.9
1 d[d$x > 0.5, ] 172.36\mu s 184.01\mu s
                                        5392. 253.49KB
                                       6832. 274.31KB
2 d[which(d$x > 0.5), | 131.61\mus 145.2\mus
                                                         38.7
                                       3862. 289.55KB
3 subset(d, x > 0.5) 241.37\mus 257.11\mus
                                                         21.5
4 filter(d, x > 0.5) 1.39ms 1.43ms 693.
                                                          17.2
                                                2.06MB
```

Larger n

```
1 d = tibble(
x = runif(1e6),
y = runif(1e6)
 4
5
   (b = bench::mark(
    d[d$x > 0.5, ],
    d[which(d\$x > 0.5), ],
    subset(d, x > 0.5),
10
    filter(d, x > 0.5)
11 ))
```

```
# A tibble: 4 \times 6
 expression
                       min
                            median `itr/sec` mem alloc `gc/sec`
 <bch:expr>
                   <bch:tm> <bch:tm>
                                     <dbl> <bch:byt>
                                                    <dbl>
                           17.4ms
                                      57.0
                                                     49.4
1 d[d$x > 0.5, ]
             16.9ms
                                            13.4MB
2 d[which(d$x > 0.5), ] 13.3ms 13.5ms
                                     73.7 24.8MB
                                                    156.
3 subset(d, x > 0.5) 23.4ms 23.5ms 42.5 24.8MB
                                                     92.1
4 filter(d, x > 0.5) 17.6ms
                                      55.6
                                            24.8MB
                                                     94.5
                           18.1ms
```

bench - relative results

4 filter(d, x > 0.5) 1.32 1.34 1.31 1.86 1.91

Parallelization

parallel

Part of the base packages in R

- tools for the forking of R processes (some functions do not work on Windows)
- Core functions:
 - detectCores
 - pvec
 - mclapply
 - mcparallel & mccollect

detectCores

Surprisingly, detects the number of cores of the current system.

```
1 detectCores()
2 ## [1] 16
```

pvec

Parallelization of a vectorized function call

```
1 system.time(pvec(1:1e7, sqrt, mc.cores = 1))
2 ## user system elapsed
3 ## 0.214 0.029 0.243
4
5 system.time(pvec(1:1e7, sqrt, mc.cores = 4))
6 ## user system elapsed
7 ## 0.442 0.185 0.631
8
9 system.time(pvec(1:1e7, sqrt, mc.cores = 8))
10 ## user system elapsed
11 ## 0.532 0.389 0.372
```

pvec - bench::system_time

```
bench::system_time(pvec(1:1e7, sqrt, mc.cores = 1))
## process real
## 180ms 180ms

bench::system_time(pvec(1:1e7, sqrt, mc.cores = 4))
## process real
## 935ms 980ms

bench::system_time(pvec(1:1e7, sqrt, mc.cores = 8))
## process real
## 1.01s 1.05s
```

```
1 bench::system_time(Sys.sleep(.5))
2 ## process real
3 ## 1.93ms 500.09ms
4
5 system.time(Sys.sleep(.5))
6 ## user system elapsed
7 ## 0.001 0.000 0.500
```

```
1 cores = c(1,4,8,16)
 2 \text{ order} = 6:8
 3 f = function(x,y) {
    system.time(
    pvec(1:(10^y), sqrt, mc.cores = x)
 6 ) [3]
 7 }
 8
   res = map(
10
     cores,
     function(x) {
11
12
       map dbl(order, f, x = x)
13 }
14 ) %>%
    do.call(rbind, .)
15
16
17 rownames(res) = paste0(cores, " cores")
```

mclapply

Parallelized version of lapply

```
1 system.time(rnorm(le6))
2 ## user system elapsed
3 ## 0.101 0.007 0.107
4
5 system.time(unlist(mclapply(1:10, function(x) rnorm(le5), mc.cores = 2)))
6 ## user system elapsed
7 ## 0.148 0.136 0.106
8
9 system.time(unlist(mclapply(1:10, function(x) rnorm(le5), mc.cores = 4)))
10 ## user system elapsed
11 ## 0.242 0.061 0.052
```

```
1 system.time(unlist(mclapply(1:10, function(x) rnorm(1e5), mc.cores = 4)))
   ##
       user
            system elapsed
   ## 0.097 0.047 0.079
 3
 4
   system.time(unlist(mclapply(1:10, function(x) rnorm(1e5), mc.cores = 8)))
   ##
        user system elapsed
 6
   ## 0.193 0.076 0.040
8
   system.time(unlist(mclapply(1:10, function(x) rnorm(1e5), mc.cores = 10)))
10 ##
      user system elapsed
11 ## 0.162
            0.083 0.041
12
   system.time(unlist(mclapply(1:10, function(x) rnorm(1e5), mc.cores = 12)))
14 ##
      user system elapsed
15 ## 0.098 0.065 0.037
```

mcparallel

Asynchronously evaluation of an R expression in a separate process

```
1 m = mcparallel(rnorm(1e6))
 2 n = mcparallel(rbeta(1e6,1,1))
    o = mcparallel(rgamma(1e6,1,1))
  4
  5 \text{ str}(m)
List of 2
 $ pid: int 44778
 $ fd : int [1:2] 4 7
 - attr(*, "class")= chr [1:3] "parallelJob" "childProcess" "process"
  1 str(n)
List of 2
 $ pid: int 44779
 $ fd : int [1:2] 5 9
 - attr(*, "class")= chr [1:3] "parallelJob" "childProcess" "process"
```

mccollect

Checks mcparallel objects for completion

```
1 str(mccollect(list(m,n,o)))
List of 3
$ 44778: num [1:1000000] 0.743 0.377 -0.121 -1.024 -0.299 ...
$ 44779: num [1:1000000] 0.1747 0.4037 0.0611 0.3125 0.6287 ...
$ 44780: num [1:1000000] 0.601 0.479 2.154 0.136 1.499 ...
```

mccollect - waiting

```
1 p = mcparallel(mean(rnorm(le5)))
2 mccollect(p, wait = FALSE, 10) # will retrieve the result (since it's fast)

$`44781`
[1] -0.001510259

1 mccollect(p, wait = FALSE) # will signal the job as terminating

NULL

1 mccollect(p, wait = FALSE) # there is no longer such a job
```

NULL

doMC & foreach

doMC & foreach

Packages by Revolution Analytics that provides the foreach function which is a parallelizable for loop (and then some).

- Core functions:
 - registerDoMC
 - foreach, %dopar%, %do%

registerDoMC

Primarily used to set the number of cores used by foreach, by default uses options("cores") or half the number of cores found by detectCores from the parallel package.

```
1 options("cores")
 2 ## $cores
 3 ## NULL
 4
   detectCores()
  ## [1] 16
   getDoParWorkers()
   ## [1] 1
10
   registerDoMC(4)
   getDoParWorkers()
13 ## [1] 4
```

foreach

A slightly more powerful version of base for loops (think for with an lapply flavor). Combined with %do% or %dopar% for single or multicore execution.

```
1 for(i in 1:10) {
2    sqrt(i)
3 }
4
5 foreach(i = 1:5) %do% {
6    sqrt(i)
7 }
```

```
[[1]]
[1] 1

[[2]]
[1] 1.414214

[[3]]
[1] 1.732051
```

[[4]] [1] 2

foreach - iterators

foreach can iterate across more than one value, but it doesn't do length coercion

```
1 foreach(i = 1:5, j = 1:5) %do% {
  2 sqrt(i^2+j^2)
 3 }
[[1]]
[1] 1.414214
[[2]]
[1] 2.828427
[[3]]
[1] 4.242641
[[4]]
[1] 5.656854
\Gamma \Gamma \Gamma \Gamma \Gamma \Gamma
```

```
1 foreach(i = 1:5, j = 1:2) %do% {
2    sqrt(i^2+j^2)
3 }

[[1]]
[1] 1.414214

[[2]]
[1] 2.828427
```

foreach - combining results

```
1 foreach(i = 1:5, .combine='c') %do% {
   sqrt(i)
 3 }
[1] 1.000000 1.414214 1.732051 2.000000 2.236068
 1 foreach(i = 1:5, .combine='cbind') %do% {
   sqrt(i)
 3 }
    result.1 result.2 result.3 result.4 result.5
[1,] 1 1.414214 1.732051 2 2.236068
 1 foreach(i = 1:5, .combine='+') %do% {
 2 sqrt(i)
 3 }
```

[1] 8.382332

foreach - parallelization

Swapping out %do% for %dopar% will use the parallel backend.

```
1 registerDoMC(4)
1 system.time(foreach(i = 1:10) %dopar% mean(rnorm(1e6)))
 user system elapsed
0.276 0.024 0.093
1 registerDoMC(8)
2 system.time(foreach(i = 1:10) %dopar% mean(rnorm(1e6)))
      system elapsed
 user
0.283 0.032 0.065
1 registerDoMC(12)
2 system.time(foreach(i = 1:10) %dopar% mean(rnorm(1e6)))
       system elapsed
 user
0.309 0.045 0.054
```

furrr / future

```
1 system.time( purrr::map(c(2,2,2), Sys.sleep) )
2 ## user system elapsed
 3 ## 0.032 0.024 6.004
 4
  system.time( furrr::future map(c(2,2,2), Sys.sleep) )
  ## user system elapsed
   ## 0.110 0.028 6.066
 8
   future::plan(future::multisession) # See also future::multicore
   system.time( furrr::future map(c(2,2,2), Sys.sleep) )
      user system elapsed
12 ## 0.075 0.010 2.395
```

Example - Bootstraping

Bootstrapping is a resampling scheme where the original data is repeatedly reconstructed by taking a samples of size n (with replacement) from the original data, and using that to repeat an analysis procedure of interest. Below is an example of fitting a local regression (loess) to some synthetic data, we will construct a bootstrap prediction interval for this model.

```
1 ggplot(d, aes(x,y)) +
2     geom_point(color="gray50") +
3     geom_ribbon(
4     aes(ymin = pred_y - 1.96 * pred_y_se,
5         ymax = pred_y + 1.96 * pred_y_se),
6     fill="red", alpha=0.25
7     ) +
8     geom_line(aes(y=pred_y)) +
9     theme_bw()
```


What to use when?

Optimal use of multiple cores is hard, there isn't one best solution

- Don't underestimate the overhead cost
- Experimentation is key
- Measure it or it didn't happen
- Be aware of the trade off between developer time and run time

BLAS and LAPACK

Statistics and Linear Algebra

An awful lot of statistics is at its core linear algebra.

For example:

• Linear regession models, find

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

- Principle component analysis
 - Find T = XW where W is a matrix whose columns are the eigenvectors of X^TX .
 - Often solved via SVD Let $X = U\Sigma W^T$ then $T = U\Sigma$.

Numerical Linear Algebra

Not unique to Statistics, these are the type of problems that come up across all areas of numerical computing.

- Numerical linear algebra \neq mathematical linear algebra
- Efficiency and stability of numerical algorithms matter
 - Designing and implementing these algorithms is hard
- Don't reinvent the wheel common core linear algebra tools (well defined API)

BLAS and LAPACK

Low level algorithms for common linear algebra operations BLAS

• Basic Linear Algebra Subprograms

- Copying, scaling, multiplying vectors and matrices
- Origins go back to 1979, written in Fortran

LAPACK

- Linear Algebra Package
- Higher level functionality building on BLAS.
- Linear solvers, eigenvalues, and matrix decompositions
- Origins go back to 1992, mostly Fortran (expanded on LINPACK, EISPACK)

Modern variants?

Most default BLAS and LAPACK implementations (like R's defaults) are somewhat dated

- Written in Fortran and designed for a single cpu core
- Certain (potentially non-optimal) hard coded defaults (e.g. block size).

Multithreaded alternatives:

- ATLAS Automatically Tuned Linear Algebra Software
- OpenBLAS fork of GotoBLAS from TACC at UTexas
- Intel MKL Math Kernel Library, part of Intel's commercial compiler tools
- cuBLAS / Magma GPU libraries from Nvidia and UTK respectively

OpenBLAS Matrix Multiply (DGEMM) Performance

n	1 core	2 cores	4 cores	8 cores
100	0.001	0.001	0.000	0.000
500	0.018	0.011	0.008	0.008
1000	0.128	0.068	0.041	0.036
2000	0.930	0.491	0.276	0.162
3000	3.112	1.604	0.897	0.489
4000	7.330	3.732	1.973	1.188
5000	14.223	7.341	3.856	2.310

Matrix Multiply of (n x n) matrices - double precision

Matrix Multiply of (n x n) matrices - double precision

