ankaj_kumar@berkeley.egu - wigy 212

322 1.29:12 AM PDT

$$\frac{dS}{S} = r \, dt + \sigma \, dW^Q$$

$$\Phi(S_T) = \begin{cases} 1 & S_T \ge K, \\ 0 & S_T < K. \end{cases}$$

The payout of a digital call option on strike K and maturity T is given by $\Phi(S_T) = \begin{cases} 1 & S_T \geq K \,, \\ 0 & S_T < 1 \end{cases}$ all one finds that $\log(\frac{S_T}{S_0}) = (r - \frac{\sigma^2}{T})^{r_T}$ $(\cdot,1)$. Then we have $S_T \geq V$

$$C(0) = e^{-rT} \mathbb{E}_0^{\mathbb{Q}} \left[\Phi(S_T) \right] = e^{-rT} \mathbb{E}_0^{\mathbb{Q}} \left[\chi_{\{S_T \ge K\}} \right] = e^{-rT} \mathbb{E}_{\mathbb{Q}} \left[\chi_{\{Z \ge -d_2\}} \right]$$

where $\chi_A(x)$ is the usual set indicator function and $d_2=\frac{\log(S_0/K)+(r-\sigma^2/2)T}{\sigma\sqrt{T}}$. Let n(z) denote the standard normal density function. We obtain $C(0)=e^{-rT}\int_{-\infty}^{\infty}\chi_{\{z\geq -d_2\}}n(z)\,dz$ $=e^{-rT}\int_{-d_2}^{\infty}n(z)\,dz$ $=e^{-rT}\int_{-\infty}^{d_2}n(z)\,dz$

$$C(0) = e^{-rT} \int_{-\infty}^{\infty} \chi_{\{z \ge -d_2\}} n(z) dz$$

$$= e^{-rT} \int_{-d_2}^{\infty} n(z) dz$$

$$= e^{-rT} \int_{-\infty}^{d_2} n(z) dz$$

$$= e^{-rT} N(d_2)$$
cumulative distribution function.
$$S, r = 0.1, \text{ and } T = 1.0, \text{ we have}$$

$$C(0) \approx \$0.434129. \tag{1}$$

 $-e \int_{-\infty} n(z) dz$ $= e^{-rT} N(d_2)$ where N(x) is the standard normal cumulative distribution function. For $S_0=100,\,K=110,\,\sigma=0.16,\,r=0.1,$ and $T=1.0\,$ we have

$$C(0) \approx \$0.434129$$
. (1

alou edu - Ma

Numerical Approximations

1, we summarize the numerical reconsuch that the approximations

re instead display to For each In Table 1, we summarize the numerical results. For the deterministic algorithms, we display the minimum value N_0 such that the approximation error is less than \$0.01 for all $N \geq N_0$. For the two Monte Carlo methods, we instead display the value of N_0 that provides an estimate of the price to within \$0.01 with 95% confidence ¹ For each N_0 , we also include the running time incurred by the executing the routine with this N_0 . In Appendix A, sample routines in Matlab for each numerical method are included.

T 11	-1	NT . 1	1.
- Lable		Numerical	roculte
Table	1.	rumenca	1 Courto

Binomial Tree	N_0 1244	$t ext{ (seconds)}$ 0.0213
Finite Difference	851	0.0523
Monte Carlo	8000	0.000534
Monte Carlo (antithetic)	500	0.000262

Matlab code

Exact solution

```
function [ exact ] = digital_call(r, T, s, S0, K)
% Black-Scholes value of a digital call
d2 = (\log(S0/K) + (r-0.5*s^2)*T)/(s*sqrt(T));
exact = exp(-r*T)*normcdf(d2);
end
```

Binomial Tree

22 1.29:12 AM PDT

```
lerkeley.edu - May 2, 2022, 1:29:12 Al
function [ price ] = digital_call_binom( N,r,T,s,S0,K )
% Binomial tree pricing of a digital call

tic
dt = T/N;
R = exp(r*dt);
u = exp(s*sqrt(dt));
                                                 wmar@berkeley.edu - May 2, 2022, es a ran-
d = 1.0/u;
q = (R-d)/(u-d);
    = zeros (N+1,1);
for i=1:N+1
    now(i) = (S0*(u^(N-i+1))*(d^(i-1)) > K);
end
for i=1:N
    prev = zeros(N-i+1,1);
    for j=1:length(prev)
        prev(j) = (1/R) * (q*now(j) + (1-q)*now(j+1));
    end
    now=prev;
end
```

slavi adil - Ma

¹These values of N_0 are approximate. Since the algorithm uses a random number generator, there is no guarantee that the 95% confidence width will be less than \$0.01 every time the routine is run with the same N_0 .

```
price = prev(1);
toc
end
A ?
                                                                                                                Interval and the state of 
                                                                                                                                                                  neg_payouts = (S0.*exp((r-0.5*s^2)*T - s*sqrt(T).*Z) > K);
```

7.29.12 AM PDT

```
function [ price ] = digital.call.fd( N,r,T,s,S0,K )
% Explicit finite difference algorithm to price a digital call
vic
= T/N;
= s*sqrt(3*k);
(k/(2*h))*(s^2*(1/h)'
1 - (k*s^2)'''
'k/'''
               a = (k/(2*h))*(s^2*(1/h + 1/2) - r);
b = 1 - (k*s^2)/(h^2) - k*r;
c = (k/(2*h))*(s^2*(1/h - 1/2))
ow = 4/2
                                                       pankaj_kumar@berkeley.edu - May 2, 2022,
                 now = ((log(S0)-N*h:h:log(S0)+N*h) > log(K));
                 for i=1:N
19:12 AM
                     prev = zeros(2*(N-i+1)-1,1);
                      for j=1:length(prev)
                          prev(j) = a*now(j)+b*now(j+1)+c*now(j+2);
                      now = prev;
                 end
                 price = prev(1);
                 toc
                 end
```

alou edu - Ma