CURSUL 7: SPAŢII VECTORIALE

G. MINCU

1. Subspațiul vectorial generat de o submulțime

Definiția 1. Fie V un k-spațiu vectorial și $M \subset V$. Prin k-subspațiul vectorial al lui V generat de M înțelegem cel mai mic (în sensul incluziunii) k-subspațiu vectorial al lui V care conține submulțimea M.

Vom nota k-subspaţiul vectorial al lui V generat de M cu $_k < M >$. Dacă $M = \{v_1, v_2, \ldots, v_n\}$, vom folosi, în loc de $_k < \{v_1, v_2, \ldots, v_n\} >$, notaţia $_k < v_1, v_2, \ldots, v_n >$.

Propoziția 1. Fie V un k-spațiu vectorial și $M \subset V$. Atunci,

$$_{k} < M > = \bigcap_{\substack{W \le_{k}V \\ W \supset M}} W.$$

Propoziția 2. Fie V un k-spațiu vectorial și $M \subset V$. Atunci,

$$_{k} < M > = \{a_{1}x_{1} + \dots + a_{n}x_{n} : n \in \mathbb{N}^{*}, \ a_{1}, \dots, a_{n} \in k, \ x_{1}, \dots, x_{n} \in M\}.$$

Observația 1. Dacă $v \in V$, atunci k < v > = kv.

Definiția 2. Dacă V este un k-spațiu vectorial, iar $v \in V \setminus \{0\}$, atunci k < v > se numește **dreapta vectorială** determinată de v în V.

Observația 2. Dacă $v_1, v_2, \dots, v_n \in V$, atunci

$$_{k} < v_{1}, v_{2} \dots, v_{n} > = \{a_{1}v_{1} + a_{2}v_{2} \dots + a_{n}v_{n} : a_{1}, \dots, a_{n} \in k\}.$$

Observația 3. Fie V un k-spațiu vectorial.

- (i) Dacă $V_1, V_2 \leq_k V$, atunci $_k < V_1 \cup V_2 > = V_1 + V_2$.
- (ii) Mai general, dacă pentru orice $i \in I$ avem $V_i \leq_k V$, atunci

$$_{k} < \bigcup_{i \in I} V_{i} > = \sum_{i \in I} V_{i}.$$

2. SISTEM DE GENERATORI PENTRU UN SPAŢIU VECTORIAL

Definiția 3. Fie V un k-spațiu vectorial. Submulțimea G a lui V se numește **sistem de generatori** al lui V dacă $_k < G >= V$.

Definiția 4. k-spațiul vectorial V se numește finit generat dacă el admite un sistem finit de generatori.

G. MINCU

2

Observația 4. Submulțimea G a k-spațiului vectorial V este sistem de generatori pentru V dacă și numai dacă orice vector din V se poate scrie sub formă de combinație liniară de elemente ale lui G.

Observația 5. Submulțimea G a k-spațiului vectorial V este sistem de generatori pentru V dacă și numai dacă $V = \sum_{g \in G} kg$.

Exemplul 1. Dacă V este un k-spațiu vectorial, atunci V este sistem de generatori pentru V.

Exemplul 2. Dacă a este un element nenul al corpului k, atunci $\{a\}$ este sistem de generatori pentru k.

Exemplul 3. Mulțimea tuturor monoamelor în variabilele X_1, X_2, \ldots, X_n constituie un sistem de generatori pentru $_k k[X_1, X_2, \ldots, X_n]$.

Observația 6. Dacă G este un sistem de generatori al k-spațiului vectorial V, iar $G \subset G' \subset V$, atunci și G' este sistem de generatori pentru V.

3. DEPENDENȚĂ ȘI INDEPENDENȚĂ LINIARĂ

Definiția 5. Fie V un k-spațiu vectorial, iar $v_1, v_2, \ldots, v_n \in V$. Spunem că vectorii v_1, v_2, \ldots, v_n sunt **liniar dependenți** dacă există $a_1, a_2, \ldots, a_n \in k$, nu toți nuli, astfel încât $a_1v_1 + a_2v_2 \cdots + a_nv_n = 0$. În caz contrar, vectorii v_1, v_2, \ldots, v_n se numesc **liniar independenți**.

Observația 7. În condițiile definiției anterioare, v_1, v_2, \dots, v_n sunt liniar independenți dacă și numai dacă

$$\forall a_1, a_2, \dots, a_n \in k \ a_1v_1 + a_2v_2 \dots + a_nv_n = 0 \Rightarrow a_1 = a_2 = \dots = a_n = 0.$$

Definiția 6. Fie V un k-spațiu vectorial, iar $M \subset V$. Spunem că M este **liniar dependentă** (sau **legată**) dacă ea conține o submulțime finită liniar dependentă. Spunem că M este **liniar independentă** (sau **liberă**) dacă ea nu este liniar dependentă.

Observația 8. Submulțimea M a k-spațiului vectorial V este liniar independentă dacă și numai dacă orice submulțime finită a sa este liniar independentă.

Observația 9. Dacă L este o submulțime liniar independentă a kspațiului vectorial V, iar $L' \subset L$, atunci L' este liniar independentă.

Din teoria sistemelor de ecuații liniare obținem cu uşurință următorul criteriu de verificare a independenței liniare a unor vectori:

Propoziția 3. k un corp comutativ. Vectorii $v_1, v_2, \ldots, v_n \in k^n$ sunt liniar independenți dacă și numai dacă determinantul componentelor lor este nenul.

Teorema schimbului. Fie V un k-spaţiu vectorial, $G = \{g_1, g_2 \dots, g_n\} \subset V$ un sistem de generatori, iar $L = \{l_1, l_2, \dots, l_r\} \subset V$ un sistem liniar independent. Atunci, $r \leq n$ şi, după o eventuală renumerotare a elementelor lui G, $\{l_1, l_2, \dots, l_r, g_{r+1}, g_{r+2} \dots, g_n\}$ este sistem de generatori pentru V.

4. bază și dimensiune

Definiția 7. Submulțimea B a k-spațiului vectorial V se numește bază dacă ea este și sistem de generatori, și sistem liniar independent.

Observația 10. Submulțimea B a k-spațiului vectorial V este bază pentru V dacă și numai dacă orice vector din V se scrie în mod unic sub formă de combinație liniară de elemente ale lui B.

Observația 11. Submulțimea B a k-spațiului vectorial V este bază pentru V dacă și numai dacă $V = \sum_{b \in B} kb$.

Exemplul 4. $\{1\}$ este bază pentru k.

Exemplul 5. Dacă $e_1 = (1, 0, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots e_n = (0, 0, \dots, 0, 1),$ atunci $\{e_1, e_2, \dots, e_n\}$ este o bază pentru k^n .

Definiția 8. Baza din exemplul anterior se numește baza canonică a lui $_kk^n$.

Exemplul 6. Notând cu E_{ij} matricea care are 1 pe poziția i, j și 0 în rest, $\{E_{ij}: 1 \leq i \leq m, 1 \leq j \leq n\}$ este bază pentru ${}_k\mathcal{M}_{m,n}(k)$.

Definiția 9. Baza din exemplul anterior se numește baza canonică a lui ${}_k\mathcal{M}_{m,n}(k)$.

Exemplul 7. $\{1, X, X^2, \ldots\}$ este k-bază a lui k[X].

Definiția 10. Baza din exemplul anterior se numește baza canonică a lui $_kk[X]$.

Teorema 1. Fie ${}_kV$ un spaţiu vectorial, $L\subset V$ un sistem liniar independent şi G un sistem de generatori al lui V cu proprietatea $L\subset G$. Atunci, există o bază B a lui V cu proprietatea $L\subset B\subset G$.

4 G. MINCU

Demonstrație în cazul în care G este finit: Fie m cel mai mare număr natural cu proprietatea că G admite submulțimi liniar independente de cardinal m care conțin pe L (există astfel de m, deoarece G este finită!) și fie B o astfel de submulțime. Atunci, orice $g \in G \setminus B$ se scrie ca o combinație liniară de elemente din B, deoarece altminteri ar fi contrazisă definiția lui m. Rezultă că B este și sistem de generatori, deci este bază a lui V. \square

Teorema 2. Din orice sistem de genratori al unui spaţiu vectorial se poate extrage o bază.

Teorema 3. Orice sistem liniar independent al unui spațiu vectorial se poate completa la o bază.

Teorema 4. Orice spațiu vectorial admite baze.

Temă: Demonstrați teoremele 2, 3 și 4 folosind teorema 1!

Teorema 5. Orice două baze ale aceluiași spațiu vectorial au același cardinal.

Demonstrație în cazul spațiilor finit generate: Fie $_kV$ un spațiu vectorial finit generat și B_1 și B_2 baze ale sale. Privim B_1 ca fiind sistem de generatori, iar B_2 ca fiind sistem liniar independent, aplicăm teorema schimbului, și obținem $|B_2| \leq |B_1|$. Schimbând rolurile lui B_1 și B_2 , obținem și $|B_1| \leq |B_2|$, de unde egalitatea dorită. \square

Definiția 11. Prin **dimensiunea** unui spațiu vectorial înțelegem cardinalul unei baze a acestuia.

Vom nota dimensiunea k-spațiului vectorial V cu dim $_k V$.

Definiția 12. Spațiul vectorial $_kV$ se numește finit dimensional dacă dimensiunea sa este finită, și infinit dimensional în caz contrar.

Exemplul 8. Conform exemplului 4, $\dim_k k = 1$.

Exemplul 9. Conform exemplului 5, $\dim_k k^n = n$.

Exemplul 10. Conform exemplului 6, $\dim_k \mathcal{M}_{m,n}(k) = mn$.

Exemplul 11. Conform exemplului 7, $\dim_k k[X] = \aleph_0$.

Observația 12. $_kk$, $_kk^n$ și $_k\mathcal{M}_{m,n}(k)$ sunt finit dimensionale; $_kk[X]$ este infinit dimensional.

REFERENCES

- [1] T. Dumitrescu, Algebra, Ed. Universității din București, 2006.
- [2] I. D. Ion, N. Radu, Algebra, Ed. Universității din București, 1981.
- [3] C. Năstăsescu, C. Niţă, C. Vraciu, Bazele algebrei, Ed. Academiei, Bucureşti, 1986.