Linear Algebra

Dilip Thiagarajan

May 26, 2016

Contents

1	Groups, Rings and Fields	3
	1.1 Groups	3
	1.2 Rings	3
	1.3 Fields	3
2	Vector Spaces, Subspaces and Quotient Spaces	4
3	Spans, Linear Independence and Bases	5
4	Linear Transformations and the Isomorphism Theorems	6
	4.1 Nilpotent Transformations	6
	4.2 Projection Transformations	6
5	Matrices and Linear Systems	7
6	Applications	8
	6.1 Discrete Dynamics	8
	6.2 Markov Chains	8
	6.3 Stochastic Matrices	8
7	Determinants, Invertibility, and Eigen-theory	g
	7.1 Determinants	6
	7.2 Invertibility	6
	7.3 Eigenvalues and Eigenvectors	Ć
	7.4 Diagonalization and Similarity	
	7.5 Spectral Value Decomposition	G
8	Inner Products	10
9	Adjoints, Spectral Theorem, Principal Axis Theorem	11
10	Jordan and Rational Canonical Forms	12
	10.1 Invariant Subspaces	12
	10.2 Jordan Canonical Forms	12
	10.3 Rational Canonical Forms	12
	10.4 Applications	12

Contents	(Contents)
Conferred	Conferior

Contents (Contents)	
11 Application to Differential Equations	13
12 The Similarity Problem	14

May 26, 2016 2

Groups, Rings and Fields

The concept of mathematical sets is important in all fields of mathematics, and is especially true in linear algebra given the ubiquity of vector spaces and subspaces. As such, the idea of fields, a close analog to vector spaces, is quite important to mention in a proper reading of the topic, and thus, we begin by introducing groups, upon which we build rings, which we consequently use to build a field.

- 1.1 Groups
- 1.2 Rings
- 1.3 Fields

Vector Spaces, Subspaces and Quotient Spaces

Spans, Linear Independence and Bases

Linear Transformations and the Isomorphism Theorems

- 4.1 Nilpotent Transformations
- 4.2 Projection Transformations

Matrices and Linear Systems

Applications

At this point, we bring up some interesting applications that require only the knowledge of solving linear systems using basic row reduction operations.

- 6.1 Discrete Dynamics
- 6.2 Markov Chains
- 6.3 Stochastic Matrices

Determinants, Invertibility, and Eigen-theory

In this chapter, we'll introduce the determinant function, which is a special function (in its alternating and mulitinear characteristic) that allows us to introduce another perspective of linear transformations. More specifically, we'll look at how transformations can be inverted (i.e. when they are bijective), and see how this may be useful in developing the idea of similar transformations.

- 7.1 Determinants
- 7.2 Invertibility
- 7.3 Eigenvalues and Eigenvectors
- 7.4 Diagonalization and Similarity
- 7.5 Spectral Value Decomposition

Inner Products

Adjoints, Spectral Theorem, Principal Axis Theorem

Jordan and Rational Canonical Forms

 asdf

- 10.1 Invariant Subspaces
- 10.2 Jordan Canonical Forms
- 10.3 Rational Canonical Forms
- 10.4 Applications

Application to Differential Equations

The Similarity Problem