МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Введение в анализ данных.

Студент гр. 3341	 Моисеева А.Е.
Преподаватель	 Иванов Д.В.

Санкт-Петербург

2024

Цель работы

Цель работы — изучить возможности анализа данных с использованием классификатора из библиотеки *sklearn*. В частности, необходимо узнать, как обучать модели классификации данных и оценить качество классификации. Требуется реализовать код, который будет обрабатывать данные о винах.

Задание

Вы работаете в магазине элитных вин и собираетесь провести анализ существующего ассортимента, проверив возможности инструмента классификации данных для выделения различных классов вин.

Для этого необходимо использовать библиотеку sklearn и встроенный в него набор данных о вине.

1) Загрузка данных:

Реализуйте функцию load_data(), принимающей на вход аргумент $train_size$ (размер обучающей выборки, *no умолчанию равен 0.8*), которая загружает набор данных о вине из библиотеки sklearn в переменную wine. Разбейте данные для обучения и тестирования в соответствии со значением train_size, следующим образом: ИЗ данного набора запишите train_size данных из data, взяв при этом только 2 столбца в переменную X_train и train_size данных поля target в y_train. В переменную X test положите оставшуюся часть данных из data, взяв при этом только 2 столбца, а в у test — оставшиеся данные поля target, в этом вам поможет функция train_test_split модуля sklearn.model_selection (в качестве состояния рандомизатора функции train_test_split необходимо указать 42.).

В качестве результата верните X train, X test, y_train, y_test.

Пояснение: X_train, X_test - двумерный массив, y_train, y_test. — одномерный массив.

2) Обучение модели. Классификация методом k-ближайших соседей:

Реализуйте функцию train_model(), принимающую обучающую выборку (два аргумента - X_train и y_train) и аргументы n_neighbors и weights (значения по умолчанию 15 и 'uniform' соответственно), которая создает экземпляр классификатора KNeighborsClassifier и загружает в него данные X_train, y_train с параметрами n_neighbors и weights.

В качестве результата верните экземпляр классификатора.

3) Применение модели. Классификация данных

Реализуйте функцию predict(), принимающую обученную модель классификатора и тренировочный набор данных (X_{test}) , которая выполняет классификацию данных из X_{test} .

В качестве результата верните предсказанные данные.

4) Оценка качества полученных результатов классификации.

Реализуйте функцию estimate(), принимающую результаты классификации (y test), И истинные метки тестовых данных которая считает отношение предсказанных результатов, совпавших c «правильными» в у test к общему количеству результатов. (или другими словами, ответить на вопрос «На сколько качественно отработала модель в процентах»).

В качестве результата верните полученное отношение, округленное до 0,001. В отчёте приведите объяснение полученных результатов.

Пояснение: так как это вероятность, то ответ должен находиться в диапазоне [0, 1].

5) Забытая предобработка:

После окончания рабочего дня перед сном вы вспоминаете лекции по предобработке данных и понимаете, что вы её не сделали...

Реализуйте функцию scale(), принимающую аргумент, содержащий данные, и аргумент mode - тип скейлера (допустимые значения: 'standard', 'minmax', 'maxabs', для других значений необходимо вернуть None в качестве результата выполнения функции, значение по умолчанию - 'standard'), которая обрабатывает данные соответствующим скейлером.

В качестве результата верните полученные после обработки данные.

В отчёте приведите (чек-лист преподавателя):

- описание реализации 5и требуемых функций
- исследование работы классификатора, обученного на данных разного размера
 - о приведите точность работы классификаторов, обученных на данных от функции load_data со значением аргумента train_size из списка: 0.1, 0.3, 0.5, 0.7, 0.9
 - о оформите результаты пункта выше в виде таблицы
 - о объясните полученные результаты
- исследование работы классификатора, обученного с различными значениями $n_neighbors$
 - $_{\circ}$ приведите точность работы классификаторов, обученных со значением аргумента *n_neighbors* из списка: 3, 5, 9, 15, 25
 - в качестве обучающих/тестовых данных для всех классификаторов возьмите результат *load_data* с аргументами по умолчанию (учтите, что для достоверности результатов обучение и тестирование классификаторов должно проводиться на одних и тех же наборах)
 - о оформите результаты в виде таблицы
 - о объясните полученные результаты
- исследование работы классификатора с предобработанными данными
 - о приведите точность работы классификаторов, обученных на данных предобработанных с помощью скейлеров из списка: StandardScaler, MinMaxScaler, MaxAbsScaler
 - о в качестве обучающих/тестовых данных для всех классификаторов возьмите результат *load_data* с аргументами по

умолчанию - учтите, что для достоверности сравнения результатов классификации обучение должно проводиться на одних и тех же данных, поэтому предобработку следует производить после разделения на обучающую/тестовую выборку.

- о оформите результаты в виде таблицы
- о объясните полученные результаты

Выполнение работы

Для получения исходных данных и последующего их анализа была использована библиотека *sklearn*.

Функции:

load data(train size=0.8):

Описание: функция загружает набор данных о вине из библиотеки *sklearn* и разделяет его на обучающую и тестовую выборки.

Параметры: $train_size$ — доля данных, которая будет использоваться для обучения (по умолчанию 0.8).

Результат: X_{train} , x_{test} — двумерные массивы, содержащие данные для обучения и тестирования соответственно; y_{train} , y_{test} — одномерные массивы, содержащие метки классов для обучения и тестирования соответственно.

train model(X train, y train, n neighbors=15, weights='uniform'):

Описание: функция создает и обучает классификатор KNeihborsClassifier на предоставленных обучающих данных.

Параметры: X_train — двумерный массив, содержащий обучающие данные; y_train — одномерный массив, содержащий метки классов для обучения; $n_tilde{n}$ — количество ближайших соседей, используемых в классификаторе (по умолчанию 15); weights — схема взвешивания соседей (по умолчанию 'uniform').

Результат: возвращает обученную модель KNeighborsClassifier.

predict(model, X_test):

Описание: функция выполняет предсказание классов для тестовых данных с использованием обученной модели.

Параметры: model – обученная модель KNeighborsClassifier; X_test – двумерный массив, содержащий тестовые данные.

Результат: возвращает массив предсказанных меток классов.

scale(data, mode='standard'):

Описание: функция выполняет масштабирование данных с использованием одного из трех скейлеров: *StandardScaler, MinMaxScaler, MaxAbsScaler*.

Параметры: data — двумерный массив, содержащий данные для масштабирования; mode — тип скейлера (по умолчанию — 'standard', кроме того может быть 'minmax', 'maxabs').

Результат: возвращает масштабированные данные.

Исследование работы классификатора, обученного на данных разного размера

train_size	accuracy
0.1	0.379
0.3	0.8
0.5	0.843
0.7	0.815
0.9	0.722

Таблица 1. Результаты работы классификатора, обученного на выборке разного размера

Точность классификатора увеличивается с ростом объёма обучающей выборки. Однако, после какого-то порога видно, что модель начинает переобучаться, от чего точность падает. По итогу, самую высокую точность мы получаем при train_size == 0.5.

Исследование работы классификатора, обученного с различными значениями n_neighbors

train_size	accuracy
3	0.861
5	0.833
9	0.861
15	0.861
25	0.833

Таблица 2. Результаты работы классификатора, обученного с различными значениями n neighbors

Изменение значений n_neighbors практически не влияет на точность.

Исследование работы классификатора с предобработанными данными

mode	accuracy
Without scale	0.861
Standard	0.889

Minmax	0.806
Maxabs	0.75

Таблица 3. Результаты работы классификатора с предобработанными данными в различных режимах scale

Предобработка данных с использованием StandardScaler показала наилучшие результаты. Этот скейлер нормализует данные, устраняя смещения и масштабируя их, что помогает модели лучше улавливать закономерности в данных. MinMaxScaler и MaxAbsScaler также улучшают точность по сравнению с необработанными данными, но не дают таких же высоких результатов, как StandardScaler.

Разработанный код см. в приложении А.

Выводы

Были изучены возможности анализа данных с использованием классификатора из библиотеки *sklearn*. В результате работы была реализована модель классификации методом k-ближайших соседей для анализа данных о винах. Модель показала высокую точность классификации, что свидетельствует о хорошем качестве работы классификатора.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.py

```
import numpy as np
     from sklearn.datasets import load wine
     from sklearn.model selection import train test split
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.preprocessing import StandardScaler, MinMaxScaler,
MaxAbsScaler
     def load data(train size=0.8):
         wine = load wine()
         X = wine.data[:, :2]
         y = wine.target
         X train, X test, y train, y test = train test split(X, y,
train size=train size, random state=42)
         return X train, X test, y train, y test
     def
               train model(X train,
                                    y_train, n_neighbors=15,
weights='uniform'):
         model
                = KNeighborsClassifier(n neighbors=n neighbors,
weights=weights)
         model.fit(X train, y train)
         return model
     def predict(model, X test):
         predictions = model.predict(X test)
         return predictions
     def estimate(predictions, y test):
         accuracy = np.mean(predictions == y test)
         return round(accuracy, 3)
     def scale(data, mode='standard'):
         if mode == 'standard':
             scaler = StandardScaler()
         elif mode == 'minmax':
             scaler = MinMaxScaler()
```

```
elif mode == 'maxabs':
    scaler = MaxAbsScaler()
else:
    return None
scaled_data = scaler.fit_transform(data)
return scaled_data
```