Experiments with Supercompilation on Refal

Antonina Nepeivoda Program Systems Institute of RAS

ru-STEP, Innopolis, July 9th

Introduction to the Supercompilation

Considers the set of all runs of the program on a given parameterized entry point.

- ullet unfolding: general case \longrightarrow a set of specific cases;

We denote e-parameters with u, w; and s-parameters with s.

Introductory Example

The parameterized entry point: <AllA <GenA w>>.

Refal uses CBV semantics; supercompilation uses also CBN.

Definition

One-step unfolding of the state C_0 is a transition to the states C_1, \ldots, C_n such that every computation path starting in C_0 is a path starting in C_i , prefixed with the state C_0 .

Given the (parameterized) call $f(t_1,\ldots,t_k)$ and the f definition consisting of n rules $f(P_1^i,\ldots,P_k^i)=R_i$, driving generates substitution pairs $\langle \sigma_j,\xi_j\rangle$ (if possible) unifying $f(t_1,\ldots,t_k)$ with $f(P_1^i,\ldots,P_k^i)$, thus the general case $f(t_1,\ldots,t_k)$ is specified to j cases $R_i\xi_j$, and the transitions are marked by the parameter narrowings σ_j .

State <AllA <GenA $w_1>>$ repeats <AllA <GenA w>> modulo par-renaming.

ru-STEP July 9th 2021

All the cases considered are either object expressions or folded to the known ones.

Another example: <AllB<GenBw>>

```
GenB {
    /* EMPTY */ = /* EMPTY */;
    s.x e.y = <GenB e.y>B;
}
AllB {
    /* EMPTY */ = T;
    B e.x = <AllB e.x>;
    s.x e.y = F;
}
```

The function GenB uses another order of the concatenation.

Another example: <AllB<GenBw>><A11B <GenB w>> $w \rightarrow /* EMPTY */$ <AllB <AllB * EMPTY */> <GenB $w_1>$ B> $w_1 \rightarrow /* EMPTY*/$ <AllB <Allb B> <GenB $w_2>$ BB> $w_2 \rightarrow /* \text{EMPTY} */$ $w_2 \rightarrow s_3 w_3$ <A11B <A11B BB> * EMPTY */>

No par-substitution can be built. The path requires generalization.

Folding and Generalization

Definition

State C_1 is embedded in state C_2 of the process graph, iff all the computation paths generated by C_1 are generated by C_2 .

Definition

State C_g generalises states C_1 and C_2 of the process graph, iff all the computation paths generated by both C_1 and C_2 are generated also by C_g .

Folding and Generalization

Definition

State C_1 is embedded in state C_2 of the process graph, iff $\exists \sigma$ s.t. $C_2\sigma = C_1$.

Definition

State C_g generalises the states C_1 and C_2 of the process graph, iff $\exists \sigma_1, \ \sigma_2 \ \text{s.t.} \ C_g \sigma_1 = C_1, \ C_g \sigma_2 = C_2$.

- Syntactic
- Easy-to-check

Supercompiling <AllB<GenBw>>

Definition

State C_g generalises the states C_1 and C_2 of the process graph, iff $\exists \sigma_1, \ \sigma_2 \ \text{s.t.} \ C_g \sigma_1 = C_1, \ C_g \sigma_2 = C_2$.

We require C_1 and C_2 to belong to the same path in the partial process graph.

After the generalization, the path unfolded from C_1 is deleted, and C_1 is replaced by the let -node: let σ_1 in C_g . The state C_g and the states corresponding to the rhs of σ_1 are unfolded independently.

Supercompiling <AllB<GenBw>>

Aim: solving equations $E:P_i$, where E is a parameterized expression; P_i — pattern.

Lisp-patterns — trees with non-repeated variables.

Lisp-data SCP

Refal SCP

Aim: solving equations $E:P_i$, where E is a parameterized expression; P_i — pattern.

Lisp-patterns — trees with non-repeated variables.

Lisp-data SCP	Refal SCP
linear unification problem	
solved by well-known	
unification algorithms	
(contradiction	
Answer $\{$ substitution σ	
\ DEMAND	

Aim: solving equations $E:P_i$, where E is a parameterized expression; P_i — pattern.

Lisp-patterns — trees with non-repeated variables.

Lisp-data SCP	Refal SCP
	$\begin{array}{c} \textit{nested-word equation problem} \\ \textit{no well-known algorithms} \\ \textit{Answer} \left\{ \begin{array}{c} \textit{contradiction} \\ \textit{list} \ \langle \sigma_i \rangle??? \\ \textit{DEMAND} \end{array} \right. \end{array}$

Complex Driving Example

```
Eq {
    (e.x)(e.x) = T;
    (e.x)(e.y) = F;
}
```

```
Driving \langle \text{Eq } (Aw) (wA) \rangle

\rightarrow solving "unification problem" \{\text{e.x} : Aw, \text{e.x} : wA}

\rightarrow representing solutions of Aw = wA
```

 $\rightarrow w \in A^*$.

Problem: no finite set of substitutions can specify A*.

Folding: Embedding and Generalization

Definition

State C_1 is embedded in state C_2 of the process graph, iff $\exists \sigma$ s.t. $C_2 \sigma = C_1$ ($C_2 \preceq C_1$).

Definition

State C_g generalises the states C_1 and C_2 of the process graph, iff $\exists \sigma_1, \ \sigma_2 \ \text{s.t.} \ C_g \sigma_1 = C_1, \ C_g \sigma_2 = C_2$ (i.e. $C_g \preceq C_1 \ \& \ C_g \preceq C_2$).

Lisp-data SCP

Refal SCP

Folding: Embedding and Generalization

Definition

State C_1 is embedded in state C_2 of the process graph, iff $\exists \sigma$ s.t. $C_2 \sigma = C_1$ ($C_2 \leq C_1$).

Definition

State C_g generalises the states C_1 and C_2 of the process graph, iff $\exists \sigma_1, \ \sigma_2 \ \text{s.t.} \ C_g \sigma_1 = C_1, \ C_g \sigma_2 = C_2$ (i.e. $C_g \preceq C_1 \ \& \ C_g \preceq C_2$).

Lisp-data SCP	Refal SCP
anti-unification problem	
aka most specific generalization	
solved by well-known	
algorithm since (Plotkin, 1970)	

Folding: Embedding and Generalization

Definition

State C_1 is embedded in state C_2 of the process graph, iff $\exists \sigma$ s.t. $C_2 \sigma = C_1$ ($C_2 \preceq C_1$).

Definition

State C_g generalises the states C_1 and C_2 of the process graph, iff $\exists \sigma_1, \ \sigma_2 \ \text{s.t.} \ C_g \sigma_1 = C_1, \ C_g \sigma_2 = C_2$ (i.e. $C_g \preceq C_1 \ \& \ C_g \preceq C_2$).

Lisp-data SCP	Refal SCP
anti-unification problem	
aka most specific generalization	why not mag 222
solved by well-known	why not msg???
algorithm since (Plotkin, 1970)	

Definition

 C_g is the most specific generalization of C_1 and C_2 , iff $C_g \preceq C_1 \& C_g \preceq C_2$ and $\forall C_q' (C_q' \preceq C_1 \& C_q' \preceq C_2 \Rightarrow C_q' \preceq C_g)$.

Definition

 C_g is the most specific generalization of C_1 and C_2 , iff $C_g \leq C_1 \& C_g \leq C_2$ and $\forall C'_q (C'_q \leq C_1 \& C'_q \leq C_2 \Rightarrow C'_q \leq C_g)$.

Fails: given $C_1=A$, $C_2=AA$, $C_{g_1}=Aw$, $C_{g_2}=wA$, both C_{g_1} and C_{g_2} are generalizations, but there is no σ s.t. $C_{g_2}\sigma=C_{g_1}\vee C_{g_1}\sigma=C_{g_2}$.

Definition

 C_g is the most specific generalization of C_1 and C_2 , iff $C_g \leq C_1 \& C_g \leq C_2$ and $\forall C'_q (C'_q \leq C_1 \& C'_q \leq C_2 \Rightarrow C'_q \leq C_g)$.

Fails: given $C_1=A$, $C_2=AA$, $C_{g_1}=Aw$, $C_{g_2}=wA$, both C_{g_1} and C_{g_2} are generalizations, but there is no σ s.t. $C_{g_2}\sigma=C_{g_1}\vee C_{g_1}\sigma=C_{g_2}$.

Cause: \leq is not closed *w.r.t.* the supremums on the set of the generalizations.

Definition

 C_g is a least general generalization of C_1 and C_2 , iff $C_g \leq C_1 \& C_g \leq C_2$ and $\forall C_q' (C_q' \leq C_1 \& C_q' \leq C_2 \& C_g \leq C_q' \Rightarrow C_q' \leq C_g)$.

$$C_g \preceq C_g' \ \& \ C_g' \preceq C_g \Rightarrow C_g$$
 is a renaming of C_g' ???

Definition

 C_g is a least general generalization of C_1 and C_2 , iff $C_g \preceq C_1 \& C_g \preceq C_2$ and $\forall C_g' (C_g' \preceq C_1 \& C_g' \preceq C_2 \& C_g \preceq C_g' \Rightarrow C_g' \preceq C_g)$.

$$C_g \preceq C_g' \ \& \ C_g' \preceq C_g \Rightarrow C_g$$
 is a renaming of $C_g' \ref{eq:constraints}$

No! Given $C_g=w_1w_2w_2u$ and $C_g'=w'u'$, both $C_g\preceq C_g'$ and $C_g'\preceq C_g$.

Definition

 C_g is a least general generalization of C_1 and C_2 , iff $C_g \preceq C_1 \& C_g \preceq C_2$ and $\forall C_q' (C_q' \preceq C_1 \& C_q' \preceq C_2 \& C_g \preceq C_q' \Rightarrow C_q' \preceq C_g)$.

$$C_g \preceq C_g' \ \& \ C_g' \preceq C_g \Rightarrow C_g$$
 is a renaming of $C_g' \ref{eq:constraints}$

No! Given $C_g = w_1 w_2 w_2 u$ and $C_g' = w' u'$, both $C_g \leq C_g'$ and $C_g' \leq C_g$.

Equivalence relation $C_1 \approx C_2$ based on $C_1 \preceq C_2 \& C_2 \preceq C_1$ is undefined.

Some more details

 $s \neq \mathsf{B} \to \mathsf{the}$ branches do not commute $\to \mathsf{problem}$ of the negative information propagation.

Negative constraints may require non-constant-time checking: e.g. $w \neq e.1 \, \text{Ae.2}$.

General Refal SCP Problem

The finite-substitution language (while great for Prolog and lisp-data unification) is not appropriate to represent Refal data structures.

General Refal SCP Problem

The finite-substitution language (while great for Prolog and lisp-data unification) is not appropriate to represent Refal data structures.

Possible solution:

- word equations for representing driving results;
- pattern languages for comparing states in the process graph and representing negative constraints.

Word Equations

Definition

Given a constant alphabet Σ and a variable set \mathcal{V} , a word equation is an equation $\Phi = \Psi$, where $\Phi, \Psi \in \{\Sigma \cup \mathcal{V}\}^*$. A solution to the word equation is a substitution $\sigma : \mathcal{V} \to \Sigma^*$ s.t. $\Phi \sigma$ textually coincides with $\Psi \sigma$.

Let E be xAB = BAx, where A, $B \in \Sigma$, $x \in \mathcal{V}$. Consider the sequence $\sigma_1 : x \to Bx$, $\sigma_2 : x \to \epsilon$. Then $\sigma_2 \circ \sigma_1 : x \to B$ is a solution to E: $(xAB)\sigma_1\sigma_2 = BAB = (BAx)\sigma_1\sigma_2$.

Word Equations at Work

(Abdulla et al, PLDI, 2017)

```
$ENTRY Go {
    (e.y) (e.x) (e.N) = \langle G0 (e.y) (e.x) (\langle Gram e.N \rangle) \rangle; 
Gram {
    'I' e.x = 'A' <Gram e.x> 'B';
    'S' e.x = \langle Gram e.x \rangle 'B';
    /* EMPTY */ = /* EMPTY */; }
G0
    (e.y) (e.x) (e.w) = \langle Eq ('A' e.w e.x) (e.w e.y) \rangle; }
Εq
    (e.X) (e.X) = 'T';
    (e.X) (e.Y) = 'F';
```

If 'T' is returned, then e.N must be /* EMPTY */, otherwise Awx = wy has no solution.

Word Equations at Work

(Trinh et al, CAV, 2016)

```
$ENTRY Go {
   e.p = <G0 <GramA e.p> <GramB e.p> <GramC e.p>>; }
GramA {
   'I' e.x = 'A' <GramA e.x>;
   /* EMPTY */ = /* EMPTY */; 
GramB {
   'I' e.x = 'B' <GramB e.x>;
   /* EMPTY */ = /* EMPTY */; 
GramC {
   'I' e.x = 'C' <GramC e.x>;
   /* EMPTY */ = /* EMPTY */; 
G0 { /* EMPTY */ = 'T';
   e.x 'D' = 'F';
   e.x t.y = (G0 e.x);
```

Generalization preserves information in the form of the word equations.

ru-STEP July 9th 2021

Flat Pattern Languages

Definition

Given an alphabet Σ and a pattern P, the language $\mathscr{L}(P)$ recognized by P is a set of $\Phi \in \Sigma^*$, s.t. σ : $P\sigma = \Phi$. The pattern P_1 is embedded in P_2 , if $\mathscr{L}(P_1) \subseteq \mathscr{L}(P_2)$.

If $e.x\sigma = /* EMPTY*/$ is allowed — erasing PL (EPL). Otherwise — non-erasing PL (NePL).

- EPL recognized by the constant $P \in \Sigma^*$ is $\{P\}$.
- EPL recognized by $P = e.x_1 e.x_2 ... e.x_n$ is Σ^* .

Pattern Languages at Work

replace_all-problem:

```
$ENTRY Go {
   e.q = <Check <ReplaceAB (/*EMPTY*/)e.q>>;}
ReplaceAB {
   (/*EMPTY*/)e.x 'AAB' e.y
              = <ReplaceAB (/*EMPTY*/)e.x 'A' e.y>;
   (e.z)e.x'AB'e.y = \langle ReplaceAB(e.z e.x) e.y \rangle;
   (e.x)e.Other = e.x e.Other;
Check {
   e.x1 'AB' e.x2 = 'F';
   e.Z = 'T';
```

Solved using folding and checking negative constraints in terms of the pattern languages.

Pattern Languages at Work

One more replace_all-problem:

```
$ENTRY Go {
   e.p = <Check <DelAB (/*EMPTY*/) e.p>>; }
DelAB {
   (/*EMPTY*/) 'AB' e.x2 = <DelAB (/*EMPTY*/) e.x2>;
   (e.x1 t.y1) 'AB' e.x2 = \langle DelAB (e.x1) t.y1 e.x2 \rangle;
   (e.x1) e.z t.y1 'AB' e.x2
              = <DelAB (e.x1 e.z) t.y1 e.x2>;
   (e.x1) e.x2 = e.x1 e.x2;
Check {
   e.x1'AB'e.x2 = 'F';
   e.Z = 'T';
```

Solved using folding and checking negative constraints in terms of the pattern languages.

Solving Word Equations via Supercompilation

(based on the VPT-2021 talk)

A satisfiability problem:

Given a word equation system $\mathcal{E}qs$, is there a sequence σ of variable narrowings leading to a solution of $\mathcal{E}qs$?

The history of the word equations

In theory:

- Algorithms for solving the quadratic (e.g. xAy = yAx) and one-variable word equations (Matiyasevich, 1965)
- An algorithm for solving the three-variable word equations (Hmelevskij, 1971)
- An algorithm for solving the word equations in the general case (Makanin, 1977)
- More efficient (but still worst-case doubly-exponential) algorithms (Plandowski, 2006, Jez, 2016)

The history of the word equations

In practice:

- efficient algorithms for solving the straight-line (e.g. xxx = yAz) word equations (Rümmer et al., 2014-...)
- algorithms for solving the quadratic word equations (Le et al., Lin et al., 2018)
- algorithms for solving the word equations in the case when the solution lengths are bounded (Bjørner, 2009-..., Day, 2019)

Our contribution

Our method can solve equations in some classes, in which variables may occur on the both sides and more than twice.

- One-variable word equations
- Regular-ordered word equations with repetitions:

The solvers CVC4 and Z3Str3 do not terminate on the equation ABxxyy = xxyyBA which belongs to the second class and is solvable by our method.

Encoded word equations

Definition

The set of encoded word equations Eqs is as follows.

Eqs ::= Eq Eqs | ε

Eq ::= ((Side) (Side))

Side ::= Char Side | Var Side | ε

There $Var \in \mathcal{V}$, $Char \in \Sigma$, ε is the empty word.

As a sugar, we write the encoded equation ((LHS) (RHS)) as

$$LHS = RHS;$$

and the sequence ((LHS $_1$) (RHS $_1$)). . . ((LHS $_n$) (RHS $_n$)) as

$$\langle LHS_i = RHS_i \rangle_{i=1}^n$$
.

A simple logic programming language \mathscr{L}

Definition

A (finite) narrowings sequence Narrs is defined as follows.

Narrs ::= (Narr) Narrs | ε Narr ::= 'Var \rightarrow Char Var'|'Var \rightarrow Var₁ Var'|'Var $\rightarrow \varepsilon$ '

There Var, $Var_1 \in \mathcal{V}$, $Char \in \Sigma$, $Var \neq Var_1$.

Every narrowings sequence belonging to Narrs defines a substitution $\sigma: \mathcal{V} \to (\mathcal{V} \cup \Sigma)^*$. Given $x \in \mathcal{V}$, σ is either $x \to \Phi$ or $x \to \Phi x$ where Φ does not contain x.

We consider a set of Narrs sequences as a simple acyclic logic programming language $\mathscr L$ over the data Eqs.

A simple logic programming language \mathscr{L}

Definition

A (finite) narrowings sequence Narrs is defined as follows.

Narrs ::= (Narr) Narrs |
$$\varepsilon$$

 $\mathsf{Narr} ::= \mathsf{Var} \to \mathsf{Char} \; \mathsf{Var} \mathsf{Var} \to \mathsf{Var}_1 \mathsf{Var} \to \epsilon \mathsf{Var}_1 \mathsf{Var} \to$

Compatibility of the narrowings with $\langle \Phi_1 = \Psi_1, \dots, \Phi_n = \Psi_n \rangle$:

We consider a set of Narrs sequences as a simple acyclic logic programming language $\mathscr L$ over the data Eqs.

Operational semantics of $\mathscr L$

An $\mathscr L$ interpreter $\mathsf{WI}_\mathscr L$ takes a finite sequence $(\sigma_1)(\sigma_2)...(\sigma_n)$ and a datum $\langle \Phi_i = \Psi_i \rangle_{i=1}^m$.

The call $Wl_{\mathscr{L}}((\sigma_1)(\sigma_2)...(\sigma_n)$, $\langle \Phi_i = \Psi_i \rangle_{i=1}^m$) returns T iff $\forall i, 1 \leqslant i \leqslant m (\Phi_i \sigma_1...\sigma_n = \Psi_i \sigma_1...\sigma_n)$, and F otherwise.

Given a sequence of n narrowings, the interpreter $Wl_{\mathscr{L}}$:

- does at most n steps (i.e. always terminates);
- for all equation lists $\langle \Phi_i = \Psi_i \rangle_{i=1}^m$ returns either T or F, hence $Wl_{\mathscr L}$ never falls in deadlock.

Specialization of \mathscr{L} -interpreters

Given the call Wl $_{\mathscr{L}}(P,\ \langle \Phi_{\mathfrak{i}}=\Psi_{\mathfrak{i}}\rangle_{\mathfrak{i}=1}^{n})$, we replace the \mathscr{L} -program P with a parameter $\mathcal P$ ranging over \mathscr{L} -programs. Thus, the specialization task is as follows.

$$\mathsf{WI}_{\mathscr{L}}(\mathfrak{P}, \langle \Phi_{\mathfrak{i}} = \Psi_{\mathfrak{i}} \rangle_{\mathfrak{i}=1}^{\mathfrak{n}})$$

The unfolding of this initial configuration results in a possibly infinite tree: a description of the runs of all possible \mathscr{L} -programs on $\langle \Phi_i = \Psi_i \rangle_{i=1}^n$.

- \bullet The program lengths are unknown \Rightarrow runs are described by means of graphs, which may contain loops.
- Most of the programs return F.

The verification task

Consider the following verification task over the $\ensuremath{\mathscr{L}}$ programs.

Given a word equation system $\mathcal{E}qs$, we say that the verification task succeeds iff $\mathcal{E}qs$ has solutions if and only if the residual program generated by specialization of $\mathrm{WI}_{\mathscr{L}}(\mathcal{P},\mathcal{E}qs)$ contains a function returning T.

We do not require the specialization to terminate for every system $\mathcal{E}qs$.

function name.

Residual programs: restricted Refal

```
Function definition

Definition ::= Name { Rule<sup>+</sup> }

Rule ::= Pattern = Expression;

Pattern ::= (Narr) | (Narr) ++ Pattern | e.P | ε

Expression ::= T | F | <Name e.P>

There e.P is a variable ranging over Narrs, Name is a
```

Every function definition contains a single argument, and the only variable occurring at most once in its left- and right-hand sides is e.P.

Examples

Given the equation Ax = xA, the supercompiler produces the following residual program, where the entry point is <F e.P>, and e.P is a variable ranging over Narrs.

```
F {
    ('x \rightarrow \epsilon') = T;
    ('x \rightarrow Ax') ++ e.P = <F e.P>;
    e.P = F; }
```

Given the equation Ax = xB, the residual program is as follows, where the entry point is <G e.P>.

```
G {
('x \rightarrow \epsilon') = F;
('x \rightarrow Ax') + e.P = \langle G e.P \rangle;
e.P = F; }
```

The general interpreters' structure

The function Smpl varies in the different interpreters.

- Smpl takes a constant equation list and returns a constant equation list with the same set of solutions.
- Smpl terminates on every constant equation list.

Basic interpreter $WIBase_{\mathscr{L}}$

Structure of Smpl function

Further we refer to this simplification operation as Reduce.

Input format

e.P — ranges over sequences of the rules;

 $\mathcal{E}qs$ — ranges over equations.

Go {e.P =
$$<$$
Main (e.P) ++ $<$ Smpl () ++ $&$ eqs>>; }

• Specialization of the scheme WIBase $_{\mathscr{L}}(\mathcal{P}, \Phi = \Psi)$ successfully solves all the quadratic equations $\Phi = \Psi$ (e.g. xABy = yBAx).

Splitting interpreter $WISplit_{\mathscr{L}}$

Structure of Smpl function

Input format

- The first symbol of Smpl arg (initially valued 0) is added to prevent an unwanted folding.
- Specialization of the scheme WISplit $_{\mathscr{L}}(\mathfrak{P},\langle\Phi=\Psi\rangle)$ successfully solves every regular-ordered equation with var-repetitions $\Phi=\Psi$ (e.g. xxAB=BAxx).

Counting interpreter $WICount_{\mathscr{L}}$

Finds contradictions, comparing variables and constants multisets in the left- and right-hand equation sides.

Structure of Smpl function Reduce | Left-split | Right-split | Reduce | Count

Input format

• Specialization of WICount $_{\mathscr{L}}(\mathfrak{P},\langle\Phi=\Psi\rangle)$ successfully solves every one-variable word equation $\Phi=\Psi$.

Optimality lemma

Lemma

All the folding operations in the process graph of $\text{WI}_{\mathscr{L}}(\mathcal{P}, \langle \Phi_i = \Psi_i \rangle_{i=1}^n)$ occur only on the pairs of the configurations:

where $\mathcal{P}_{\rm j}$ is a parameter, and the equation system does not contain parameters.

The lemma implies a mapping between the process graph of $WI_{\mathscr{L}}(\mathcal{P}, \langle \Phi_i = \Psi_i \rangle_{i=1}^n)$ and the solution graph of the equation list $\langle \Phi_i = \Psi_i \rangle_{i=1}^n$.

Generating the narrowings

Generating the new configuration

Transient operations

The next unfolding step

The folding

Deleting interpreter data

The solution graph

Summary of the verification results

The classes of equations not solvable by CVC4 and Z3Str3 in general but solvable by our verification scheme:

- the quadratic equations with no solution (e.g. $x_1x_2x_3ABABAB = AAABBBx_2x_3x_1$);
- the regular-ordered equations with var-repetitions and no solution (e.g. ABxxyy = xxyyBA).

The one-variable word equations not solvable by CVC4 and Z3Str3 also belong to the regular-ordered with repetitions and no solution.

Benchmark results

Benchmark	Tests	Not terminating		
		CVC4	Z3str3	$WICount_\mathscr{L}$
Track 1 (Woorpje)	200	8	13	21
Track 5 (Woorpje)	200	4	14	19
Our benchmark	50	21	28	10

Average time for WICountg: 3,5 min for one equation.

Time for CVC4 and Z3str3 is less than 2 min for all the solved equations.

Why do we lose in time?

We solve the two different tasks:

- the solvers are finding at least one solution;
- we are finding the description of all solutions.

Implications

- coefficient-free equations are always solved by the solvers;
- our method is very slow on the straight-line equations.

Conclusions

- Refal syntax is convenient for modelling string manipulating systems.
- Using the Refal-friendly structures in a supercompiler allows it to manage many string-verifying tasks.
- The two main problems:
 - complexity of the algorithms over the Refal-friendly data structures;
 - the exotic syntax is scaring for most people who does not know Refal.

Thank you for your attention!