Kapitel 1

Reele Zahlen, Euklidische Räume und Komplexe Zahlen

1.1 Elementare Zahlen

Naturzahl $\mathbb{N}=\{0,1,2,\ldots\}$ addieren und multiplizieren LOOK TODO $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$ subtrairen Rationalzahlen $\mathbb{Q}=\left\{\frac{p}{q}\,\middle|\,p,q\in\mathbb{Z},q\neq0\right\}$ dividieren

Viele gleichungen haben keine Lösung in Q.

Before set Z, can't read, page 22

Satz 2.1

Sei $p \in \mathbb{N}$ eine Primzahl. Dann hat $x^2 = p$ keine Lösung in \mathbb{Q}

Beweis

Zum Erinnerung zwei Natürlichen Zahlen a und b sind teilfrmd (oder relativ prim) wenn es keine Natürliche Zahl ausser der Eins gibt, die beiden Zahlen teilt.

$$((a,b)=1) \rightarrow \text{grösste Gemeinsame Teiler}$$

Indirekter Beweis

Wir nehmen an: es gibt $x=\frac{a}{b}\in\mathbb{Q}$ mit $x^2=p,$ wobei a,b teilfremd und ≥ 1 sind. Dann gilt

$$a^2 = pb^2$$

woraus folgt, dass p a teilt also ist a = pk, $k \in \mathbb{N}$ und somit

$$a^2 = p^2 k^2 = pb^2 \Rightarrow pk^2 = b^2$$

woraus folgt, dass p b teilt.

1.1.1 Die Reelen Zahlen

Wir werden jetzt das System von Axiomen beschreiben das die Menge der Reelen Zahlen "eindeutig" characterisiert.

Die Menge \mathbb{R} der Reelen Zahlen ist mit zwei Verknüpfungen "+" (Addition) und "·" (Multiplikation) versehen sowie mit einer Ordnungsrelation \leq . Die axiome werden wie folgt gruppiert:

1. $(\mathbb{R}, +, \cdot)$ ist ein Koerper

Es gibt 2 Operationen (Zweistellige Verknüpfungen)

•
$$+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

 $(a,b) \to a+b$

•
$$\times : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

 $(a,b) \to a \cdot b$

und 2 ausgezeichnete Element 0 und 1 in $\mathbb R$ die folgenden Eigenschaften haben:

resize table

und Die Multiplikation ist verträglich it der Addition im Sinne des Distributivitäts-Gesetz (D)

$$\forall x, y, z \in \mathbb{R} : x(y+z) = xy + xz$$

- $(\mathbb{R}, +)$ mit A1 \rightarrow A4 ist eine Abelische Gruppe bezüglich der Addition
- $(\mathbb{R}, +, \cdot)$ mit A1 \rightarrow A4, M1 \rightarrow M4 und D ist ein Zahlkörper.

Bemerkung 2.2

Eine Menge G versetzen mit Verknüpfung + und Neutrales Element O die den obigen Eigenschaften A2 \to A4 genügen heisst Gruppe.

Eine enge K versetzen mit Verknüpfung +, · und Elementen $0 \neq 1$ die den obigen Eigenschaften A1 \rightarrow A4, M1 \rightarrow M4, D genügen heisst Körper.

Folgerung 2.3

Seien $a, b, c, d \in \mathbb{R}$

i) $a+b=a+c \Rightarrow b=c$ und O is eindeutig, d.h. Falls $z\in\mathbb{R}$ der Eigenschaften a+z=a $\forall a\in\mathbb{R}$ genügt, so folgt z=0

$KAPITEL\ 1.$ REELE ZAHLEN, EUKLIDISCHE RÄUME UND KOMPLEXE ZAHLEN

- ii) $\forall a,b\mathbb{R},\ \exists !$ (eindeutig bestimmtes) $x\in\mathbb{R}:a+x=b.$ Wir schreiben x=b-a und 0-a=-a ist das additive Inverse zu a
- iii) b a = b + (-a)
- iv) -(-a) = a
- v) Falls ab=ac und $a\neq 0 \Rightarrow b=c$ und 1 ist eindeutig, d.h. falls $x\in\mathbb{R}$ der Eigenschaften ax=a $\forall a\in\mathbb{R}$ genügt so folgt x=1
- vi) $\forall a, b \in \mathbb{R}, a \neq 0, \exists ! x \in \mathbb{R} : ax = b$. Wir schreiben $x = \frac{b}{a}$ und $\frac{1}{7}a = a^{-1}$ ist das Multiplikativ Inverse zu a.
- vii) Falls $a \neq 0 \Rightarrow (a^{-1})^{-1} = a$
- viii) $\forall a \in \mathbb{R}, \ a \cdot 0 = 0$
- ix) Falls ab = 0 dann folgt a = 0 oder b = 0

Beweis 2.3

i) Sei a + b = a + c $A4 \Rightarrow \exists y \in \mathbb{R} : a + y = 0$ $a + b = a + c \Rightarrow y + (a + b) = y + (a + c)$ $\Rightarrow (y + a) + b = (y + a) + c$ $\Rightarrow 0 + b = 0 + c \Rightarrow b = c$

Nehmen wir an, dass es $0' \in \mathbb{R}$ gibt so dass x + 0' = x, $\forall x \in \mathbb{R}$, d.h. es gibt eine zweite neutrale Element für +.

add rules to top of arrows, page 26 top

Dann 0 + 0' = 0 aber auch $A3 \Rightarrow 0 + 0 = 0 \Rightarrow 0 + 0' = 0 + 0 \Rightarrow 0 = 0'$

- ii) Seien $a,b \in \mathbb{R}$, und sei $y \in \mathbb{R}$ mit a+y=0. Definieren wir $x:=y+b\Rightarrow a+x=a+(y+b)=(a+y)+b=0+b=b$ $\Rightarrow \exists$ mindestens eine Lösung der Gleichung a+x=b. Von i) folgt dass x eindeutig bestimmt ist $a+x=b=a+x'\Rightarrow x=x'$
- iii) Seien x = b a, y = b + (-a). Wir Wollen beweisen dass x = y.

Aus i) wissen wir dass b - a eine Lösung von a + x = b

$$y + a = (b + (-a)) + a = b + ((-a) + a) = b + 0 = 0$$

 $\Rightarrow y$ ist auch eine Lösung.

Weil die Lösung von a + x = b ist eindeutig bestimmt, ist y = x

- iv)
- $\mathbf{v})$
- vi) vii)
- viii) $\forall a \in \mathbb{R}, \ a \cdot 0 = 0$ $a \cdot 0 = a(0+0) = a \cdot 0 + a \cdot 0 \Rightarrow a \cdot 0 = 0$

ix) $ab = 0 \Rightarrow a = 0$ oder b = 0Wir nehmen an: $a \neq 0$ mit Inversen a^{-1} , (a^{-1} existiert mittels M4). So folgt $b = 1 \cdot b = (a^{-1} \cdot a)$ $b = a^{-1}(a \cdot b) = a^{-1} \cdot 0 = 0$ ASK FOR BEWEISE; PAGE 27 TOP

?multipli? page 27 middle to top

KAPITEL 1. REELE ZAHLEN, EUKLIDISCHE RÄUME UND KOMPLEXE ZAHLEN

2. Ordnungsaxiome \leq

Auf $\mathbb R$ gibt es eine Relation, $\leq,$ genanten Ordnung, die folgenden Eigenschaften genügt

- (a) Reflexität: $\forall x \in \mathbb{R}, x \leq x$
- (b) Transitivität: $\forall x,y,z\in\mathbb{R}: x\leq y \land y\leq z \Rightarrow x\leq z$
- (c) Identivität: $\forall x, y \in \mathbb{R}, (x \leq y)$ und $(y \leq x) \Rightarrow x = y$
- (d) Die Ordnung ist total: $\forall x,y \in \mathbb{R}$ gilt entweder $x \leq y$ oder $y \leq x$

Die Ordnung ist konsistent mit +, und \cdot

- (a) $x \le y \Rightarrow x + z \le y + z$ $\forall x, y, z \in \mathbb{R}$
- (b) $x, y \ge 0 \Rightarrow xy \ge 0$

Mit