▼ Linear Regression Model

▼ Load the Dataset

```
import pandas as pd
df = pd.read_csv('/content/drive/MyDrive/ML Projects/Clean_Dataset.csv')
df
```

	Unnamed: 0	airline	flight	source_city	departure_time	stops	arrival_time	destination_city	class	duration	days_le
0	0	SpiceJet	SG-8709	Delhi	Evening	zero	Night	Mumbai	Economy	2.17	
1	1	SpiceJet	SG-8157	Delhi	Early_Morning	zero	Morning	Mumbai	Economy	2.33	
2	2	AirAsia	15-764	Delhi	Early_Morning	zero	Early_Morning	Mumbai	Economy	2.17	
3	3	Vistara	UK-995	Delhi	Morning	zero	Afternoon	Mumbai	Economy	2.25	
4	4	Vistara	UK-963	Delhi	Morning	zero	Morning	Mumbai	Economy	2.33	
300148	300148	Vistara	UK-822	Chennai	Morning	one	Evening	Hyderabad	Business	10.08	
300149	300149	Vistara	UK-826	Chennai	Afternoon	one	Night	Hyderabad	Business	10.42	
300150	300150	Vistara	UK-832	Chennai	Early_Morning	one	Night	Hyderabad	Business	13.83	
300151	300151	Vistara	UK-828	Chennai	Early_Morning	one	Evening	Hyderabad	Business	10.00	
300152	300152	Vistara	UK-822	Chennai	Morning	one	Evening	Hyderabad	Business	10.08	

300153 rows × 12 columns

▼ Data Preprocessing

		Unnamed: 0	duration	days_left	price
С	ount	300153.000000	300153.000000	300153.000000	300153.000000
n	nean	150076.000000	12.221021	26.004751	20889.660523
	std	86646.852011	7.191997	13.561004	22697.767366
-	min	0.000000	0.830000	1.000000	1105.000000
2	25%	75038.000000	6.830000	15.000000	4783.000000
į	50%	150076.000000	11.250000	26.000000	7425.000000
7	75%	225114.000000	16.170000	38.000000	42521.000000
ı	max	300152.000000	49.830000	49.000000	123071.000000

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 300153 entries, 0 to 300152
Data columns (total 12 columns):

Jaca	COIUMNIS (COCAI IZ	COTUMNIS).	
#	Column	Non-Null Count	Dtype
0	Unnamed: 0	300153 non-null	int64
1	airline	300153 non-null	object
2	flight	300153 non-null	object
3	source_city	300153 non-null	object
4	departure_time	300153 non-null	object
5	stops	300153 non-null	object
6	arrival_time	300153 non-null	object
7	destination_city	300153 non-null	object
8	class	300153 non-null	object
9	duration	300153 non-null	float64
10	days_left	300153 non-null	int64
11	price	300153 non-null	int64

```
dtypes: float64(1), int64(3), object(8)
      memory usage: 27.5+ MB
df.isnull().sum()
      Unnamed: 0
                             0
      airline
      flight
                             0
      source city
                             0
      {\tt departure\_time}
                             a
      stops
                             0
      arrival_time
                             0
      destination_city
                             0
      class
                             0
      duration
                             0
      days_left
                             0
      price
      dtype: int64
df.columns
     Index(['Unnamed: 0', 'airline', 'flight', 'source_city', 'departure_time',
    'stops', 'arrival_time', 'destination_city', 'class', 'duration',
    'days_left', 'price'],
             dtype='object')
df.nunique()
      Unnamed: 0
                             300153
      airline
                                   6
      flight
                                1561
      source_city
                                   6
      departure_time
                                   6
      stops
      arrival_time
                                   6
      destination_city
      class
      duration
                                 476
                                  49
      days_left
      price
                              12157
      dtype: int64
import seaborn as sns
import matplotlib.pyplot as plt
sns.barplot(x=df["airline"] , y=df["price"])
plt.title("Ticket Price By Airline")
plt.show()
```



```
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style = "white")
plt.figure(figsize=(8,6))
sns.heatmap(df.corr(numeric_only = True) , annot=True , cmap='coolwarm' , fmt='.2f' , linewidth=0.5)
plt.title('Correlation Heatmap')
plt.show()
```


Encoding Categorical Features

Converting the Categorical Columns (features with dtypes=object) into numerical features (dtypes = int64)

```
from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()

df['class'] = label_encoder.fit_transform(df['class'])

df['destination_city'] = label_encoder.fit_transform(df['destination_city'])

df['arrival_time'] = label_encoder.fit_transform(df['arrival_time'])

df['stops'] = label_encoder.fit_transform(df['stops'])

df['departure_time'] = label_encoder.fit_transform(df['departure_time'])

df['source_city'] = label_encoder.fit_transform(df['source_city'])

df['flight'] = label_encoder.fit_transform(df['flight'])

df['airline'] = label_encoder.fit_transform(df['airline'])
```

Data Scaling

▼ Separation of X (features) and Y (Target)

```
y = df["price"]
x = df.drop(columns=["price"])
     0
                 5953
     1
                 5953
                 5956
                 5955
     4
                 5955
     300148
                69265
     300149
                77105
     300150
                79099
     300151
                81585
     300152
                81585
     Name: price, Length: 300153, dtype: int64
```

Unnamed: 0 airline flight source_city departure_time stops arrival_time destination_city class duration days_le 0 SpiceJet SG-8709 Delhi Evening Night Mumbai Economy 2.17 zero 1 SpiceJet SG-8157 Delhi Early_Morning zero Morning Mumbai Economy 2.33 2 2 15-764 Delhi 2.17 AirAsia Early_Morning zero Early_Morning Mumbai Economy 3 3 Vistara UK-995 Delhi Morning zero Afternoon Mumbai Economy 2.25 4 UK-963 Delhi 2.33 4 Vistara Morning zero Morning Mumbai Economy 300148 300148 Vistara UK-822 Chennai Morning one Evening Hyderabad **Business** 10.08 300149 300149 Vistara UK-826 Chennai Night Hyderabad Business 10.42 Afternoon one 300150 300150 Vistara UK-832 Chennai Early_Morning one Night Hyderabad Business 13.83 300151 300151 10.00 Vistara UK-828 Chennai Early_Morning one Evening Hyderabad Business 300152 300152 Vistara UK-822 Chennai Morning Evening Hyderabad Business 10.08

▼ Data Spliting into Training and Test sets

300153 rows × 11 columns

▼ Encoding Categorical Features

```
from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()

x_train['class'] = label_encoder.fit_transform(x_train['class'])

x_test['class'] = label_encoder.transform(x_test['class'])

x_train['destination_city'] = label_encoder.fit_transform(x_train['destination_city'])

x_test['destination_city'] = label_encoder.transform(x_test['destination_city'])
```

```
x_train['arrival_time'] = label_encoder.fit_transform(x_train['arrival_time'])
x_test['arrival_time'] = label_encoder.transform(x_test['arrival_time'])
x_train['stops'] = label_encoder.fit_transform(x_train['stops'])
x_test['stops'] = label_encoder.transform(x_test['stops'])

x_train['departure_time'] = label_encoder.fit_transform(x_train['departure_time'])
x_test['departure_time'] = label_encoder.transform(x_test['departure_time'])

x_train['source_city'] = label_encoder.fit_transform(x_train['source_city'])
x_test['source_city'] = label_encoder.transform(x_test['source_city'])

x_train['flight'] = label_encoder.fit_transform(x_train['flight'])
x_test['flight'] = label_encoder.fit_transform(x_test['flight'])

x_train['airline'] = label_encoder.fit_transform(x_train['airline'])
x_test['airline'] = label_encoder.transform(x_test['airline'])
```

Model Phase

Building the model

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
```

Training the model

```
lr.fit(x_train , y_train)

* LinearRegression
LinearRegression()
```

Apply the model to make predictions

```
y_lr_test_pred = lr.predict(x_test)
```

Evaluating the model

```
from sklearn.metrics import mean_squared_error, r2_score

lr_test_mse = mean_squared_error(y_test , y_lr_test_pred)
lr_test_r2 = r2_score(y_test , y_lr_test_pred)

lr_results = pd.DataFrame(['Linear Regression', lr_test_mse, lr_test_r2]).transpose()
lr_results.columns = ["Method","Test MSE", "Test R2"]
lr_results

Method Test MSE Test R2

O Linear Regression 49171067.385183 0.904829
```

RandomForest

```
y_rf_test_pred = rf.predict(x_test)
from sklearn.metrics import mean_squared_error, r2_score
rf_test_mse = mean_squared_error(y_test , y_rf_test_pred)
rf_{test_r2} = r2_{score}(y_{test}, y_{rf_{test_pred}})
rf_results = pd.DataFrame(['Random Forest', rf_test_mse, rf_test_r2]).transpose()
rf_results.columns = ["Method","Test MSE", "Test R2"]
                Method
                                Test MSE Test R2
      0 Random Forest 50426665.470066 0.902399
from sklearn.tree import DecisionTreeRegressor
dt = DecisionTreeRegressor()
dt.fit(x_train , y_train)
      ▼ DecisionTreeRegressor
      DecisionTreeRegressor()
y_dt_test_pred = dt.predict(x_test)
from sklearn.metrics import mean_squared_error, r2_score
dt_test_mse = mean_squared_error(y_test , y_dt_test_pred)
dt_test_r2 = r2_score(y_test , y_dt_test_pred)
dt_results = pd.DataFrame(['Decision Tree', dt_test_mse, dt_test_r2]).transpose()
dt_results.columns = ["Method" , "Test MSE", "Test R2"]
dt_results
              Method
                              Test MSE Test R2
```

0 Decision Tree 72082945.487132 0.860484

Model Comparison

df_models = pd.concat([lr_results, rf_results, dt_results], axis=0) df_models

	Method	Test MSE	Test R2
0	Linear Regression	49171067.385183	0.904829
0	Random Forest	50426665.470066	0.902399
0	Decision Tree	72082945.487132	0.860484

df_models.reset_index(drop=True)

	Method	Test MSE	Test R2
(Linear Regression	49171067.385183	0.904829
•	Random Forest	50426665.470066	0.902399
2	2 Decision Tree	72082945.487132	0.860484

Conclusion

We can see that:

Linear Regression Model has the highest prediction accuracy with 90.48%

Random Forest Model is also great at prediciting the price of flight ticket with 90.23% accuracy.

Decision Tree Model is still efficient but has a prediction accuracy of 85% that is less accurate than "Linear regression" and "Random Forest" Models