CSE 6140 Final Cheat Sheet by Alexander Winkles, page 1 of 2	this holds for $r-1: f(a_{r-1}) \le f(o_{r-1})$. Then $f(o_{r-1}) \le s(o_r) \le f(o_{r-1})$.
Running Time and Growth The time complexity $T(n)$ of an a corithm is the maximum amount of time taken on any input of size. $T(n) \in \mathcal{O}(g(n)) \text{ if } \exists c > 0 \text{ and } n_0 \geq 0 \text{ and } n_0 \geq$	was chosen instead, $f(a_r) \le f(o_r)$. Now assume $k < m$ for contradiction. Then $f(a_k) \le f(o_k) \le s(o_{k+1})$ becayse O is feasible, so o_{k+1} is an option for A , which contradicts $ A = k$. Interval Partiton Goal: Find minimum number of rooms to schedule all jobs without overlaps within a room. 1: procedure Interval Partition 1: procedure Interval Partition 2: Sort by start time 3: $d \leftarrow 0$ 4: for $j = 1$ to n do
$\mathcal{O}(n!)$ naive TSP	j 5: if j compatible with class k then
Graph Representation Adjacency matrix: $n \times n$ matrix with $A_{uv} = 1$ if $(u,v) \in E$. Takes space e^2 . If $(u,v) \in E$ takes $\Theta(1)$ time dentifying all $e \in E$ takes $\Theta(n)$ time. Adjacency list: Node indexerray of lists. Takes space e^2 and e^2 takes e^2 takes e^2 (e^2 takes e	th 6: Add j to k 7: else 8: Add new class 10: Add j to $d+1$ 9: Add j to $d+1$ 10: $d \leftarrow d+1$ 10: $d \leftarrow d \leftarrow d \leftarrow d+1$ 10: $d \leftarrow d $
DULING 2: Sort by finish time	Minimize Lateness
3: $A \leftarrow \emptyset$	Goal: Schedule all jobs to minimize maximum lateness $L = \max \ell_i$.
4: $f_{j*} = 0$ 5: for $i = 1$ to n do	= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$
6: if $s_j \le f_{j*}$ then	1: procedure MinLate
7: $A \leftarrow A \cup \{j\}$	2: Sort by increasing
8: $f_{j*} = f_j$	deadline
9: return $A \triangleright \mathcal{O}(n \log n)$ Proof. Let $A: a_1,,a_k$ be the greatly solution and let $O: a_1,,a_k$ be the optimal solution. We claim that $\forall r \leq k \in \{a_r\} \leq f(a_r)$. For $r = 1$, $f(a_1)$ by greedy choice. Suppose	Assign j to $[t, t + t_j]$ See 6: $s_j \leftarrow t, f_j \leftarrow t + t_j$ The constant $t \leftarrow t + $

CSE 6140 Final Cheat Sheet

this holds for $r-1: f(a_{r-1}) \leq$

greedy has no inversions. All schedules with no inversions and no idle time have the same lateness, option for A, which contradicts because all jobs with same d come in a block of consecutive jobs if no inversions. Any reordering of these jobs with retain the last job having the lateness f - d. Let ℓ be the lateness before the swap and ℓ' be it after. $\ell'_k = \ell_k \ \forall k \neq i, j$. $\ell_i' \leq \ell_i$ for i moved earlier. $\ell_i' =$: procedure IntervalParti $f_i' - d_i = f_i - d_i \le f_i - d_i \le \ell_i$, so swapping inverted jobs does not increase max lateness. Thus there is some O with no inversions and optimal. Shortest Path from *s* to other nodes. 1: **procedure** Dijkstra $S \leftarrow \{s\}$ lassrooms from greedy. The last bom *d* is opened because job *j* 5: while $Q \neq \emptyset$ do as incompatible with d-1 rooms. 6: Q.ExtractMin() $S \leftarrow S \cup \{u\}$ $poms \ge depth$, so greedy must ha $d \ge$ depth, so solution with d =Q.ChangeKey $(v, \pi(v))$ $\pi(u) + \ell_{(u,v)}$ maximum lateness $L = \max \ell_i$. **Sort** by increasing $\pi(x) + \ell(x, y) \ge \pi(y) \ge \pi(x).$

Def. An inversion is a pair of jobs i

and j with $d_i < d_j$ but j scheduled

Proof. Note that greedy has no id-

le time, $\exists O$ with no idle time, and

before *i*.

```
no idle time by this. Since greedy
has no idle time or inversions, it
has the same lateness as O and is
Goal: Find shortest directed path
        \pi(s) = 0, \ \pi(i) = \infty, i \neq s
        Add nodes Q keys \pi(v)
            for (u, v) with v \notin S
    and \pi(u) + \ell_{(u,v)} < \pi(v) do
Proof. For each node u \in S, \pi(u)
is the shortest length of s - u. This
is trivially true for |S| = 1. Sup-
pose it is true for |S| = k \ge 1.
Let v be the next node added to
S and u - v be the chosen edge.
The shortest s-u path plus (u,v)
is an s-v path of \pi(v). Consi-
der any other s-v path P; we
will show it is not shorter than
\pi(v). Let x-y be the first edge
in P that leaves S, and let P' be
the subpath to x. P is already too
longer, for \ell(P) \ge \ell(P') + \ell(x, y) \ge
```

```
des into two nonempty sets S and
V-S.
Def. The cutset of a cut S is the
set of edges with exactly one end-
Cut Property: Let S be any subset
of nodes and let e be the min cost
edge with exactly one endpoint in
S. Then every MST contains e.
Proof. Given e from above and an
MST T^*. Suppose e \notin T^*. Then
(u, v) = e must be connected by
a path in T^* for it to be span-
ning. If we add e to T^* we create
a cycle C. Thus \exists f \in C, CutSet(S).
T' = T^* \bigcup \{e\} - \{f\} is also a span-
ning tree and c_e < c_f \Rightarrow cost(T') <
cost(T^*), which is a contradicti-
 1: procedure Prim
         for v \in V do a[v] \leftarrow \infty
        for v \in V do Q.add(v)
        S \leftarrow \emptyset
        while O \neq \emptyset do
             u = Q.PullMin()
             S \leftarrow S \cup \{u\}
             for e = (u, v) do
                 if v \notin S \& c_e <
    a[v] then
                     a[v] = c_e
Reverse-Delete
Cycle property: Let C be any cy-
cle, and let f be the max cost edge
in C. Then f \notin MST.
```

Minimum Spanning Tree

start and end nodes.

ches every vertex in G.

nodes.

Prim

node.

2:

3:

tain a cycle.

Def. A path is a sequences of ed-

ges which connects a sequence of

Def. A cycle is a path with no re-

peated nodes or edges besides the

Def. An undirected graph is a tree

if it is connected and does not con-

Def. An undirected graph is a

spanning tree if it is a tree and tou-

Goal: Given a connected graph G,

find a tree T that is spanning with

Greedily grow a tree from a root

Def. A cut is a partition of no-

minimized sum of edge weights.

Find closest pair of $z(T,0) \leftarrow \infty$ objects in different clusters and add edge between $z(0,i) \leftarrow 0$ Repeat n-k times until there are *k* clusters 6: 1) **Divide-and-Conquer** 7: Break up problems into several smaller parts and solve recursive- $\min(z(T,i),z(T-v_i,i))$

Proof. Given $f \in C$ from above

and an MST T^* . Suppose $f \in$

MST. Deleting f disconnects T^*

and creates a cut S. f is both

in C and in CutSet(S), so $\exists e \in$

C, CutSet(S). $T' = T^* \bigcup \{e\} - \{f\}$ is

also a spanning tree and $c_e < c_f \Rightarrow$

 $cost(T') < cost(T^*)$, which is a con-

Order $e \in T$ in descen-

Sort edge weights in

for $u \in V$ **do** Create $\{u\}$

if u, v in different

 $T \leftarrow T \bigcup \{e_i\}$

Merge sets con-

for i = 1 to m do

 $(u,v)=e_i$

Goal: Given set *U* of *n* objects clas-

1: **procedure** Clustering

Form a graph on U

if $T - \{e\}$ does not

tradiction.

Kruskal

6:

1: procedure

DELETE

 $T \leftarrow E$

ding order of cost

for $e \in T$ do

1: **procedure** Kruskal

descending order

 $T \leftarrow \emptyset$

sets then

taining *u*, *v*

Clustering

return T

sify into coherent groups.

with *n* clusters

disconnect T then $T - \{e\}$

Master Theorem Let T(n) be a monotonically increasing function with T(n) =aT(n/b) + f(n), T(1) = c, where $a \ge 1$, $b \ge 2$, c > 0. Then if $f(n) \in$ $\Theta(n^d)$ for $d \ge 0$: $(\Theta(n^d))$ if $a < b^a$ $T(n) = \{ \Theta(n^d \log n) \text{ if } a = b^d \}$ $\Theta(n^{\log_b a})$ if $a > b^d$ This cannot be used if T(n) is not monotone, if f(n) is not polynomial, or if b cannot be expressed as a constant. **Dynamic Programming** Breaks problem into series of overlapping sub-problems and builds up a solution. **Coin-Changing** Goal: Make minimum change for S cents with a finite supply of coins from $C = \{v_1, ..., v_n\}.$ Solve z(T,i) for minimum coins to reach $T \leq S$ with first *i* coins.

Uses memoization to use values al-

1: **procedure** CoinChange

for i = 1 to n do

for T = 1 to S do

for i = 0 to n do

for T = 1 to S do

 $z(T,i) \leftarrow z(T,i-$

if $T-v \ge 0$ then

z(T,i)

ready computed.

1: procedure MS(L)

 $T(\lceil n/2 \rceil) + T(\lfloor (n/2 \rfloor) + n$

If satisfied, $T(n) \leq n \lceil \lg n \rceil$.

MS(L), MS(R)

Combine results

Proof. Base case n = 1 is true.

Let $n_1 = |n/2|$ and $n_2 = [n/2]$.

Then $T(n) \leq T(n_1) + T(n_2) +$

 $n \leq n_1 \lceil \lg n_1 \rceil + n_2 \lceil \lg n_2 \rceil + n \leq$

 $n_1 \lceil \lg n_2 \rceil + n_2 \lceil \lg n_2 \rceil + n = n \lceil \lg n_2 \rceil + n$

 $n \le n(\lceil \lg n \rceil - 1) + n = n \lceil \lg n \rceil.$

Divide into halves *L*, *R*

n = 1

2:

T(n)

Reverse-

Recurrence:

	Let α be a mismatch cost and δ be		1: procedure $BNB(P)$	Network Flows	Augmenting path theorem: Flow
by Alexander Winkles, page 2 of 2	an unmatch cost. Then:	form an instance of A into inputs	2: $F \leftarrow \{(\emptyset, P)\}, B \leftarrow$	An abstraction for material flo-	f is a max flow \iff there are no
Weighted Interval Scheduling		for <i>B</i> and show that they give identical answers.	$(\infty, (\emptyset, P))$	wing through edges. A directed graph without parallel edges with	augmenting paths.
Weighted Interval Scheduling Goal: find maximum weight sub-	1: procedure SEQA-		3: while $F \neq \emptyset$ do	c(e) equaling the capacity of edge	Max-flow min-cut theorem : The value of the max flow is equal to
set of mutually compatible jobs.	LIGN (X,Y)	NPC Problems	4: Choose (X, Y) in F	e.	the value of the max flow is equal to
Let $p(j)$ be the largest index $i < j$	$2: \mathbf{for} i = 0 \text{ to } m \mathbf{do}$	MEC ETODIGITIS	and expand it to (X_i, Y_i)	Def. An s - t flow is a function f	have equivalence between
such that i is compatible with j .	$M[i,0] = i\delta$	Minimum Vert C	configurations	from $E \to \mathbb{R}$ that satisfies	L. Company
Then this has recurrence relation <i>OPT</i> =	3: for $j = 0$ to n do	Minimum Vertex Cover : Find the smallest subset $S \subseteq V$ such that	5: for (X_i, Y_i) do	• For $e \in E$: $0 \le f(e) \le c(e)$	1. $\exists (A,B)$ such that $v(f) =$
$ \begin{array}{ccc} OPT & = \\ 0 & i = 0 \end{array} $	$M[0,j] = j\delta$	each edge has at least one end-	6: if Solution	• For $v \in V - \{s, t\}$:	cap(A, B)
$\max\{v_j + OPT(p(j)), OPT(j-1)\}$	4: for $i = 1$ to m do	point in S.	found then	$\sum_{i=1}^{n} f(e) = \sum_{i=1}^{n} f(e)$	2. Flow f is a max flow
Bottom up algorithm:	5: for $j = 1$ to n do		7: if P then	$ \begin{array}{ccc} $	•
T	[./]1	Set Cover : Given a universe <i>U</i>	$cost(X_i) < B$ then		3. There is no augmenting
	$\min(\alpha[x_i, y_j] + M[i -$	and subsets S_i and integer k , does	$B \leftarrow (cost(X_i, (X_i, Y_i)))$	Def. The value of the flow is $v(f) = \sum_{i=1}^{n} f(x_i)$	path relative to f
1: procedure WIntSch(L)	$1,j-1$], $\delta+M[i-1,j]$, $\delta+$	there exist a collection of S_i less than k such that $\bigcup S_i = U$.	8: if Not dead end	$\sum f(e)$.	Rinartite Matchine
2: Sort by increasing f_i	M[i,j-1])	0.001 mat 0.01 = 0.	then 9: if $LB(X_i) < B$	e out of s	Bipartite Matching
3: Compute $p(i) \forall i$	7: return $M[m,n]$	3SAT : Given a conjunctive nor-	then $F \leftarrow F \bigcup \{(X_i, Y_i)\}$	Def. An s - t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.	Given an undirected, bipartite graph, find the max cardinality
$4: \qquad M[0] = 0$		mal form Φ with three literals per	then $F \leftarrow F \cup \{(X_i, Y_i)\}$ 10: return B	of V with $s \in A$ and $t \in B$. Def. The capacity of cut (A, B) is	matching.
5: for $j = 1$ to n do	Knancack	clause, find an assignment of va-	ictuiii D	$cap(A,B) = \sum_{a} c(e).$	Can be reduced to a max flow pro-
[]]	Knapsack Goal: Fill knapsack to maximize	lues to x_i so that Φ is True.		$cap(A, B) = \sum_{e \text{ out of } A} c(e).$	blem by adding nodes s, t with ed-
M[p(j)], M[j-1])	Goal: Fill knapsack to maximize total value.		Local Search	Let f be any flow and let (A, B) be	ge capacities 1.
		Independent Set: Given a graph,	In this, the algorithm starts from an initial position then iteratively	any s-t cut. Then $\int f(e) -$	Theorem: Max cardinality mat-
Longest Common Subsequence	1 77	find the largest $S \subseteq V$ with no edges between them.	moves to a neighboring position	·	ching equals value of max flow.
Goal: Given two strings, find the	1: procedure Knapsack	ges serveen mem.	using an evaluation function.	$\sum_{f(e)=v(f)} e \text{ out of A}$	Disjoint Paths
longest sequence of letters appea-	2: $\int \mathbf{for} \ w = 0 \text{ to } W \ \mathbf{do}$ M[0, w] = 0	CLIQUE: Given a graph, is there	Hill-climbing: Choose neighbor	$\sum_{e \text{ in to A}} f(e) = v(f).$	Given a directed graph and nodes
ring in both, not necessarily conti-		a completely connected subgraph	with largest improvement as next state.	e in to A Weak duality: Let <i>f</i> be any flow	<i>s,t,</i> find the max number of edge-disjoint (no edge in common) s-t
guously. c[i, i] =	3: for $i = 1$ to n do 4: for $w = 1$ to W do	of size at least k .	Stochastic: Randomize initializati-	and let (A, B) be any s-t cut. Then	paths.
*[**/]	5: if $w_i > w$ then		on step and search steps to allow	the value of the flow is at most the	Theorem: Max number edge-
$\begin{cases} c[i-1, j-1] + 1 & x_i = y_i \\ max\{c[i-1, j], c[i, j-1]\} \end{cases}$	6: M[i,w] =	HAM-CYCLE: Given an undirec-	for suboptimal choices.	capacity of the cut. Corollary: If	disjoint s-t paths equals max flow
$\{mux\{c[i-1,j],c[i,j-1]\}$	M[i-1,w]	ted graph, does there exist a sim-	Simulated Annealing: Select a neighbor at random. If it is better	v(f) = cap(A, B), then f is a max	by assigning all $c(e) = 1$.
	7: else	ple cycle that contains every node in V .	than current state, go there. Other-	flow and (A, B) is a min s-t cut. Def. A residual edge of $e =$	Network Connectivity
1: procedure $LSC(X, Y)$	8: $M[i,j] =$		wise go there with some probabi-	Def. A restauat eage of $e = (u,v)$ is $e^R = (v,u)$ with $c_f(e) = (u,v)$	Given a digraph and nodes s.t.
2: $m = len(X), n = len(Y)$	$\min(M[i-1, w], v_i + M[i-1])$	TSP : Given a set of n cities and a	lity that decreases over time.	, , , , , , , , , , , , , , , , , , ,	find min number of edges whose
3: for $i = 1$ to m do	$(1, w - w_i]$	TSP : Given a set of <i>n</i> cities and a pairwise distance function, is the-	<i>Tabu Search</i> : In each step move to best neighbor solution even if wor-	$\begin{cases} c(e) - f(e)e \in E \\ f(e) = e^{R} \in F \end{cases}$	removal disconnects s-t.
c[i,0] = 0	9: return $M[n, W]$	re a tour of length less than D.	se than current. Avoids revisiting	${f(e) \qquad e^R \in E}$	Theorem : The max number of edge-disjoint s-t paths is equal to
4: $ for j = 1 to n do $	$\Theta(nW)$	-	previously seen solutions with a		the min number of edges whose
c[0,j] = 0		Graph Coloring: Given a graph,	tabu list of forbidden attributes. Iterated LS: Generate an initial	1: procedure Ford-	removal disconnects s-t.
5: for $i = 1$ to m do	NPC	can it be minimally colored so	candidate then perform a LS on it.	Fulkerson	Choosing path with highest bott-
6: for $j = 1$ to n do	Class P consists of decision pro-	that every edge has difference no- de colors.	While termination conditions are	2: for $e \in E$ do $f(e) \leftarrow 0$	leneck capacity increases flow by
7: if $x_i = y_j$ then	blems that are solvable in poly ti-		not met, perturb current solution	3: $G_f \leftarrow \text{residual graph}$	max possible amount.
8: $c[i,j] = c[i -$	me. These problems are <i>tractable</i> . Otherwise problems are <i>intracta</i> -	Subset-Sum: Given natural num-	and do LS or return to original. Approximation	4: while $\exists s - t$ path $P \in$	
[1, j-1]+1	ble.	bers w_i and integer W, is there a	Approximation In this, performance bounds are	G_f do	
9: $\mathbf{else}c[i,j] =$	Class NP consists of problems	subset of w_i that adds up to W	guaranteed with quick run-time.	5: $f \leftarrow Aug(f,c,P)$	1: procedure Max-Flow 2: for $e \in F$ do $f(e) \leftarrow 0$
$\max(c[i-1,i],c[i,i-1])$	where a candidate solution can be	-	Def. The Ratio bound is	6: $\int Aug(f,c,r)$	2: for $e \in E$ do $f(e) \leftarrow 0$
	verified in poly time. <i>Y</i> is NP-Hard if $X \leq_p Y \forall X \in NP$.	Solving NPC	$max\left(\frac{A(x)}{OPT(X)}, \frac{OPT(X)}{A(X)}\right) \leq \rho(n)$	÷ _ ,	3: $\Delta \leftarrow \min 2^n \ge c$
	Y is NPC if $Y \in NP$ and Y is NP-	-	$Max \setminus OPT(X)' A(X) $ $= P(N)$	7: return f	4: $G_f \leftarrow \text{residual graph}$
Sequence Alignment	hard.	Branch-and-Bound	for an input <i>X</i> of size <i>n</i> . Generally $\rho(n) \ge 1$, though unless $P = NP$	8: procedure $Aug(f,c,P)$	5: while $\Delta \ge 1$ do 6: $G_f(\Delta) \leftarrow \Delta - G_{res}$
	To establish <i>Y</i> is NPC:	and evenu	$\rho(n) \ge 1$, though unless $P = NP$ this equality will not hold.	9: $b \leftarrow \text{bottleneck}(P)$ 10: $\mathbf{for} \ e \in P \ \mathbf{do}$) · /
gnment of minimum cost.	1. Show $Y \in NP$	Keeps track of best solution found	For this, you can prove that an	10: for $e \in P$ do 11: if $e \in E$ then $f(e) \leftarrow$	7: while $\exists P \in G_f(\Delta)$
<i>Def.</i> An <i>alignment M</i> is a set of or-	2. Choose <i>X</i> that is NPC and	so far (upper bound) and for each	algorithm will give a solution no	f(e) + b	do 8. $f \leftarrow aug(f \land P)$
dered pairs $x_i - y_j$ such that each	3. Prove $X \leq_p Y$	partial solution computes a lower	worse that $x * OPT$.	1 r D	8: $f \leftarrow aug(f,c,P)$ 9: update $G_{\epsilon}(\Lambda)$
item occurs in at most one pair and no crossings.	1	bound on the objective function.	Integer Linear Programming Given a_{ij} , b_i , c_i find x_j that satisfy	12: else [e^R \in E] $f(e^R) \leftarrow f(e^R) - b$	9: update $G_f(\Delta)$
Def The main was and was		If any bounds are not better than the best solution so far they are	. ,		10: $\Delta \leftarrow \Delta/2$
	that we can solve <i>A</i> using the algorithm that solves <i>B</i> . Thus <i>A</i> is		$\min c'x$ subject to $Ax \ge b$ with x integral.	13: return f	11: return <i>f</i>
	o I I I I I I I I I I I I I I I I I I I	Francu.			