Week 12 Continuous Assessment

1803086

May 12, 2021

1. 2. $d(x, y, z) = 1 \iff x = y = 1 \text{ or } x = z = 0$ (a) $d(x,y,z) = (x \land y) \lor (\neg x \land \neg z)$ $\equiv \neg(\neg(x \land y) \land \neg(\neg x \land \neg z))$ $\equiv \neg((\neg x \vee \neg y) \wedge (x \vee z))$ $\equiv \neg((\neg x \land x) \lor (\neg x \land z) \lor (\neg y \land x) \lor (\neg y \land z))$ $\equiv \neg(\neg x \land z) \land \neg(\neg y \land x) \land \neg(\neg y \land z)$ $\equiv (x \lor z) \land (y \lor x) \land (y \lor \neg z)$ (b) i. $x \lor y \Longleftrightarrow$ d(0,d($d(\neg x, \neg y, d(x, x, x)),$ $d(\neg x, \neg y, d(x, x, x)),$ $d(\neg x, \neg y, d(x, x, x))$ $,d(\neg x,\neg y,d(x,x,x)))$ Where: $\bullet \ \neg x = d(0, d(x, x, x), x)$ $\bullet \ \neg y = d(0, d(y, y, y), y)$

3. By the change-of-basis theorem

ii. $x \wedge y \iff d(x, y, d(x, x, x))$

Let the circuits Ω_1 defined using the operators $\{\neg, \land, \lor\}$ and let the circuits defined over $\{d, 0\}$ be the set Ω_2

for each circuit $c_i \in \Omega_1$ let there be an equivalent circuit $c_i' \in \Omega_2$ of size s_i and depth l_i which computes c_i . Also let $s = \max_i s_i$ and $l = \max_i l_i$.

Given a circuit $C \in \Omega_1$, we can construct a logically equivalent circuit $C' \in \Omega_2$ by replacing all non-source nodes labelled with c_i by the circuit c_i' .

With $\Omega_1 = \{\neg, \lor, \land\}$ and $\Omega_2 = \{0, d\}$ we can show that every Ω_1 circuit C can be polynomially transformed to a Ω_2 circuit C'.

for the operator \neg , we have seen in (b) that this can be transformed into d(0, d(x, x, x), x). This node can therefore be replaced with a circuit of depth 6.

The operator \vee has been shown to be equivalent to the Ω_2 circuit of depth 9.

The \wedge operator has been shown to be equivalent to a Ω_2 circuit of depth 6.

Therefore we can see that in this case l = 9 and so the depth of C' is at most $9 \cdot \text{depth}(C)$ which is in O(depth(C))