Multi-channel Communications Fall 2022

Lecture 23 MIMO - OFDM

Dr. R. M. Buehrer

Introduction

- MIMO takes advantage of multipath induced spatial fading to boost capacity by opening parallel channels using multiple antennas or enhance reliability by exploiting spatial diversity
- OFDM takes advantage of multipath induced frequency-selective fading by creating parallel channels in frequency using the DFT
- Combining the two ideas makes sense since they are complementary and both take advantage of multipath
- Also temporal equalization with MIMO is very complex – combining MIMO with OFDM is needed in channels with high delay spread

MIMO-OFDM Channel Model

o The time-varying $M_r \times 1$ received signal vector

$$\mathbf{r}(t) = \sum_{k=0}^{L-1} \mathbf{H}^k(t) \mathbf{x}(t - k\Delta t) + \mathbf{n}(t)$$

o The $M_r \times N_t$ channel matrix for the kth resolvable multipath

$$\mathbf{H}^{k}(t) = \sqrt{\frac{\sigma_{k}^{2}}{N}} \sum_{i=1}^{N} \underbrace{e^{j(2\pi f_{i,k}t + \phi_{i,k})}}_{scalar} \underbrace{e^{-j\left(\frac{2\pi}{\lambda}\mathbf{d}\sin\theta_{i,k}\right)}}_{M_{r} \times 1} \underbrace{e^{-j\left(\frac{2\pi}{\lambda}\overline{\Delta}^{T}\sin\phi_{i,k}\right)}}_{1 \times N_{t}}$$

$$\sigma_{k}^{2} = P_{T}\gamma e^{-\gamma k/f_{s}} \qquad \gamma = \frac{1}{\tau_{rms}}$$

Transmitter (Horizontal Coding)

Receiver block diagram

Spatial Processing

- In the absence of Doppler, each subcarrier is orthogonal to all other subcarriers and standard spatial processing can be used
- Horizontal Encoding Detector structures
 - o Maximum Likelihood
 - o Zero-forcing
 - o MMSE
 - o SIC
 - o SIC w/MMSE/ZF
 - o Sphere decoding

Spatial Processing - With Doppler

- In the presence of Doppler spread (or frequency offset) each sub-carrier experiences ICI as well as inter-stream interference due to spatial multiplexing
- In this case we must use more sophisticated processing to detect each symbol

Go to the Board

Example

o Max
Doppler
=50Hz

- o $T_{ofdm} = 1ms$
- 0 N = 64
- O $N_t = M_r = 1$
- O QPSK
- o Delay spectrum -[1 0.9 0.7 0.5 0.25 0.15 0.1 0.05]
- No ICI or spatial interference

Example

Multi-Channel Communications ECE 6634 Fall 2022

- Max Doppler=500Hz
- o $T_{ofdm} = 1ms$
- 0 N = 64
- O $N_t = M_r = 1$
- O QPSK
- Delay spectrum [1 0.9 0.7 0.5 0.25 0.15 0.1 0.05]
- ICI but no spatial interference
- SIC applied to spatial interference

Performance

- o Max Doppler =50Hz
- $o T_{ofdm} = 1ms$
- 0 N = 64
- $ON_t = M_r = 4$
- O QPSK
- o Delay spectrum - [1 0.9 0.7 0.5 0.25 0.15 0.1 0.05]
- Spatial interference but no ICI

Example

- o Max Doppler =500Hz
- $o T_{ofdm} = 1ms$
- 0 N = 64
- O $N_t = M_r = 4$
- O QPSK
- O Delay spectrum [1 0.9 0.7 0.5 0.25 0.15 0.1 0.05]
- o ICI & spatial interference

2x1 STBC or SFBC

OFDM STBC Receiver

Go to the Board

Issues with STBC

- Due to the elongated symbol period of OFDM, the chance of channel variation between consecutive symbols is higher
- When the channel varies from one OFDM symbol to another due to Doppler
 - o STBC suffers from interference when decoding
 - Inter-carrier interference is introduced
- o The receiver structure must take into account both types of interference

Other Transmit Diversity Techniques

- One method to introduce diversity in OFDM at the transmit side is transmit diversity
- This can be accomplished multiple ways
 - Delay diversity transmit the same signal with different delays from different antennas
 - Causes intentional multipath and frequency selective fading
 - Subcarrier diversity transmit groups of subcarriers from different antennas
 - Causes frequency selective fading
- Both require coding to be used across carriers to capture the diversity

Transmit Diversity

Transmit Diversity Receiver

o Identical to standard OFDM receiver

Synchronization

- Synchronization can be accomplished as described for OFDM
- Given that the time and frequency offsets should be similar from one antenna to another (due to the use of a common oscillator), synchronization (unlike channel estimation) need not be done over all antennas separately.

Transmit Frames

Channel Estimation

- Channel estimation is performed in exactly the same way that it is in typical OFDM.
- o Differences:
 - o Since we must estimate M_rN_t frequency domain channels, we must send pilots from each transmit antenna.
 - o We must orthogonalize the pilots from each antenna. To typical ways of doing this:
 - o orthogonalize in frequency
 - o orthogonalize in time, i.e., we require that

$$\mathcal{P}^{(i)} \subseteq \mathcal{N}^{(j)} \quad \forall i \neq j \quad 1 \leq i, j \leq N_t$$

Mapping of Cell-specific Reference Signal

Conclusions

- In this lecture we have examined a few methods of combining OFDM and MIMO
- Due to the complexity of equalization in MIMO, OFDM is the typical approach to dealing with frequency selective channels when MIMO is employed
- We specifically examined spatial multiplexing, space-time coding and transmit diversity
- There are other MIMO techniques that can be employed with OFDM
 - If the channel is static the receiver processing is identical to the single carrier case, but on a carrier by carrier basis
 - If the channel is not static, the receiver processing is more complicated