Machine-Learning-aided Optimal Transmission Switching

Asunción Jiménez-Cordero asuncionjc@uma.es

JOINT WORK WITH: Juan Miguel Morales González Salvador Pineda Morente

oasys.uma.es

XL Congreso Nacional de Estadística e Investigación Operativa (SEIO 2023)

November 7th-10th, 2023

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 755705)

Outline

- Motivation
- 2 Methodology
- 3 Computational Experience
- 4 Conclusions and Further Research

Outline

- Motivation
- 2 Methodology
- 3 Computational Experience
- 4 Conclusions and Further Research

Mathematical Optimization

Machine Learning

Combine knowledge from both worlds

Recent reviews: Bengio et al. [2021]; Gambella et al. [2021]

Mathematical Optimization

Machine Learning

Combine knowledge from both worlds

Recent reviews: Bengio et al. [2021]; Gambella et al. [2021]

Power Systems Operations

- Balance constraints.
- Assume $b_{nm} = 1, \forall (n, m)$.
- Minimizing costs. $Cost^* = 1800 \in$.
- $p_1^* = 20, p_2^* = 80.$
- $\theta_1^* = 40, \, \theta_2^* = 60, \, \theta_3^* = 0.$
- $f_{12}^* = -20, f_{13}^* = 40, f_{23}^* = 60.$

Optimal Power Flow (OPF)

- Balance constraints.
- Assume $b_{nm} = 1, \forall (n, m)$.
- Minimizing costs. $Cost^* = 1800 \in$.
- $p_1^* = 20, p_2^* = 80.$
- $\theta_1^* = 40, \, \theta_2^* = 60, \, \theta_3^* = 0.$
- $f_{12}^* = -20, f_{13}^* = 40, f_{23}^* = 60.$

Optimal Transmission Switching

Optimal Power Flow (OPF)

- Balance constraints.
- Assume $b_{nm} = 1, \forall (n, m)$.
- Minimizing costs. $Cost^* = 1800 \in$.
- $p_1^* = 20, p_2^* = 80.$
- $\theta_1^* = 40, \, \theta_2^* = 60, \, \theta_3^* = 0.$
- $f_{12}^* = -20, f_{13}^* = 40, f_{23}^* = 60.$

Optimal Transmission Switching

- Switchable lines, \mathcal{L}_S .
- Binary variables $x_{nm}, \forall (n,m) \in \mathcal{L}_S$.
- Minimizing costs. $Cost^* = 1000 \in$.
- $p_1^* = 100, p_2^* = 0.$
- $\theta_1^* = 200, \, \theta_2^* = 100, \, \theta_3^* = 0.$

 $\begin{cases} \min \limits_{p_n,f_{nm},\theta_n,x_{nm}} & \sum_n c_n \, p_n \\ \text{s.t.} & \underbrace{p_n \leq p_n \leq \overline{p}_n, \quad \forall n \in \mathcal{N}} \\ & \sum_{(n,m) \in \mathcal{L}_n^-} f_{nm} - \sum_{(n,m) \in \mathcal{L}_n^+} f_{nm} = p_n - d_n, \quad \forall n \in \mathcal{N} \\ & f_{nm} = x_{nm} b_{nm} (\theta_n - \theta_m), \quad \forall (n,m) \in \mathcal{L}_{\mathcal{S}} \\ & -x_{nm} \overline{f}_{nm} \leq f_{nm} \leq x_{nm} \overline{f}_{nm}, \quad \forall (n,m) \in \mathcal{L}_{\mathcal{S}} \\ & f_{nm} = b_{nm} (\theta_n - \theta_m), \quad \forall (n,m) \in \mathcal{L} \setminus \mathcal{L}_{\mathcal{S}} \\ & -\overline{f}_{nm} \leq f_{nm} \leq \overline{f}_{nm}, \quad \forall (n,m) \in \mathcal{L} \setminus \mathcal{L}_{\mathcal{S}} \\ & x_{nm} \in \{0,1\}, \quad \forall (n,m) \in \mathcal{L}_{\mathcal{S}} \\ & \theta_1 = 0 \end{cases}$

 $\begin{cases} \min_{p_n, f_{nm}, \theta_n, x_{nm}} & \sum_n c_n p_n \\ \text{s.t.} & \underline{p}_n \le p_n \le \overline{p}_n, \quad \forall n \in \mathcal{N} \end{cases}$ $\sum_{(n,m)\in\mathcal{L}_n^-} f_{nm} - \sum_{(n,m)\in\mathcal{L}_n^+} f_{nm} = p_n - d_n, \quad \forall n \in \mathcal{N}$ $f_{nm} = x_{nm}b_{nm}(\theta_n - \theta_m), \quad \forall (n,m) \in \mathcal{L}_{\mathcal{S}}$ $-x_{nm}\overline{f}_{nm} \leq f_{nm} \leq x_{nm}\overline{f}_{nm}, \quad \forall (n,m) \in \mathcal{L}_{\mathcal{S}}$ $f_{nm} = b_{nm}(\theta_n - \theta_m), \quad \forall (n, m) \in \mathcal{L} \setminus \mathcal{L}_{\mathcal{S}}$ $-\overline{f}_{nm} \le f_{nm} \le \overline{f}_{nm}, \quad \forall (n,m) \in \mathcal{L} \setminus \mathcal{L}_{\mathcal{S}}$ $x_{nm} \in \{0,1\}, \quad \forall (n,m) \in \mathcal{L}_{\mathcal{S}}$ $\theta_1 = 0$

$$\begin{cases} \min \limits_{p_n,f_{nm},\theta_n,x_{nm}} & \sum_n c_n \, p_n \\ \text{s.t.} & \underbrace{p_n \leq p_n \leq \overline{p}_n, \quad \forall n \in \mathcal{N}} \\ & \sum_{(n,m) \in \mathcal{L}_n^-} f_{nm} - \sum_{(n,m) \in \mathcal{L}_n^+} f_{nm} = p_n - d_n, \quad \forall n \in \mathcal{N} \\ & \underbrace{f_{nm} = x_{nm} b_{nm} (\theta_n - \theta_m), \quad \forall (n,m) \in \mathcal{L}_{\mathcal{S}}} \\ & -x_{nm} \overline{f}_{nm} \leq f_{nm} \leq x_{nm} \overline{f}_{nm}, \quad \forall (n,m) \in \mathcal{L}_{\mathcal{S}} \\ & f_{nm} = b_{nm} (\theta_n - \theta_m), \quad \forall (n,m) \in \mathcal{L} \setminus \mathcal{L}_{\mathcal{S}} \\ & -\overline{f}_{nm} \leq f_{nm} \leq \overline{f}_{nm}, \quad \forall (n,m) \in \mathcal{L} \setminus \mathcal{L}_{\mathcal{S}} \\ & x_{nm} \in \{0,1\}, \quad \forall (n,m) \in \mathcal{L}_{\mathcal{S}} \\ & \theta_1 = 0 \end{cases}$$

- MINLP because $x_{nm}(\theta_n \theta_m)$.
- NP-hard problem.

Original constraint

$$f_{nm} = x_{nm}b_{nm}(\theta_n - \theta_m)$$

Reformulation using big-Ms

$$b_{nm}(\theta_n - \theta_m) - \overline{M}_{nm}(1 - x_{nm}) \le f_{nm} \le b_{nm}(\theta_n - \theta_m) - \underline{M}_{nm}(1 - x_{nm})$$

How to compute bigM values?

$$\underline{M}_{nm} \le \underline{M}_{nm}^{\text{OPT}} := b_{nm} \times \min_{x_{nm}=0} (\theta_n - \theta_m)$$

$$\overline{M}_{nm} \ge \overline{M}_{nm}^{\text{OPT}} := b_{nm} \times \max_{x_{nm}=0} (\theta_n - \theta_m)$$

How to compute bigM values?

$$\underline{M}_{nm} \le \underline{M}_{nm}^{\text{OPT}} := b_{nm} \times \min_{x_{nm}=0} (\theta_n - \theta_m)$$

$$\overline{M}_{nm} \ge \overline{M}_{nm}^{OPT} := b_{nm} \times \max_{x_{nm}=0} (\theta_n - \theta_m)$$

Are we done?

How to compute bigM values?

$$\underline{M}_{nm} \le \underline{M}_{nm}^{OPT} := b_{nm} \times \min_{x_{nm}=0} (\theta_n - \theta_m)$$

$$\overline{M}_{nm} \ge \overline{M}_{nm}^{OPT} := b_{nm} \times \max_{x_{nm}=0} (\theta_n - \theta_m)$$

Are we done?

• Computing optimal bigM values is as hard as solving the original problem, [Fattahi et al., 2019].

How to compute bigM values?

$$\underline{M}_{nm} \le \underline{M}_{nm}^{\text{OPT}} := b_{nm} \times \min_{x_{nm}=0} (\theta_n - \theta_m)$$

$$\overline{M}_{nm} \ge \overline{M}_{nm}^{OPT} := b_{nm} \times \max_{x_{nm}=0} (\theta_n - \theta_m)$$

Are we done?

- Computing optimal bigM values is as hard as solving the original problem, [Fattahi et al., 2019].
- We have to be happy with bounds.

How to compute bigM values?

$$\underline{M}_{nm} \le \underline{M}_{nm}^{\text{OPT}} := b_{nm} \times \min_{x_{nm}=0} (\theta_n - \theta_m)$$

$$\overline{M}_{nm} \ge \overline{M}_{nm}^{OPT} := b_{nm} \times \max_{x_{nm}=0} (\theta_n - \theta_m)$$

Are we done?

- Computing optimal bigM values is as hard as solving the original problem, [Fattahi et al., 2019].
- We have to be happy with bounds.
- Objective: Find good bounds for bigMs.

Outline

- 1 Motivation
- 2 Methodology
- 3 Computational Experience
- (4) Conclusions and Further Research

- Exact approach.
- Benchmark.
- Shortest path problem (Dijkstra).
- [Fattahi et al., 2019].

$$-\underline{M}_{nm} = \overline{M}_{nm} = b_{nm} \sum_{(k,l) \in \mathrm{SP}_{nm}} \frac{\overline{f}_{kl}}{b_{kl}}, \quad \forall (n,m) \in \mathcal{L}_{\mathcal{S}}$$

- Exact approach.
- Benchmark.
- Shortest path problem (Dijkstra).
- [Fattahi et al., 2019].

$$-\underline{M}_{nm} = \overline{M}_{nm} = b_{nm} \sum_{(k,l) \in SP_{nm}} \frac{\overline{f}_{kl}}{b_{kl}}, \quad \forall (n,m) \in \mathcal{L}_{\mathcal{S}}$$

- Exact approach.
- Benchmark.
- Shortest path problem (Dijkstra).
- [Fattahi et al., 2019].

$$-\underline{M}_{nm} = \overline{M}_{nm} = b_{nm} \sum_{(k,l) \in SP_{nm}} \frac{\overline{f}_{kl}}{b_{kl}}, \quad \forall (n,m) \in \mathcal{L}_{\mathcal{S}}$$

$$\overline{M}_{21} \ge b_{21}(\theta_2 - \theta_1) \text{ if } x_{21} = 0$$

- Exact approach.
- Benchmark.
- Shortest path problem (Dijkstra).
- [Fattahi et al., 2019].

$$-\underline{M}_{nm} = \overline{M}_{nm} = b_{nm} \sum_{(k,l) \in SP_{nm}} \frac{\overline{f}_{kl}}{b_{kl}}, \quad \forall (n,m) \in \mathcal{L}_{\mathcal{S}}$$

$$\overline{M}_{21} \ge b_{21}(\theta_2 - \theta_1) \text{ if } x_{21} = 0$$

 $(\theta_2 - \theta_1) = (\theta_2 - \theta_3) + (\theta_3 - \theta_4) + (\theta_4 - \theta_5) + (\theta_5 - \theta_1)$

- Exact approach.
- Benchmark.
- Shortest path problem (Dijkstra).
- [Fattahi et al., 2019].

$$-\underline{M}_{nm} = \overline{M}_{nm} = b_{nm} \sum_{(k,l) \in SP_{nm}} \frac{\overline{f}_{kl}}{b_{kl}}, \quad \forall (n,m) \in \mathcal{L}_{\mathcal{S}}$$

$$\overline{M}_{21} \ge b_{21}(\theta_2 - \theta_1) \text{ if } x_{21} = 0$$

$$(\theta_2 - \theta_1) = (\theta_2 - \theta_3) + (\theta_3 - \theta_4) + (\theta_4 - \theta_5) + (\theta_5 - \theta_1)$$

$$f_{23} \le \overline{f}_{23} \implies b_{23}(\theta_2 - \theta_3) \le \overline{f}_{23} \implies (\theta_2 - \theta_3) \le \overline{f}_{23}/b_{23}$$

- Exact approach.
- Benchmark.
- Shortest path problem (Dijkstra).
- [Fattahi et al., 2019].

$$-\underline{M}_{nm} = \overline{M}_{nm} = b_{nm} \sum_{(k,l) \in SP_{nm}} \frac{\overline{f}_{kl}}{b_{kl}}, \quad \forall (n,m) \in \mathcal{L}_{\mathcal{S}}$$

$$\overline{M}_{21} \ge b_{21}(\theta_2 - \theta_1) \text{ if } x_{21} = 0$$

$$(\theta_2 - \theta_1) = (\theta_2 - \theta_3) + (\theta_3 - \theta_4) + (\theta_4 - \theta_5) + (\theta_5 - \theta_1)$$

$$f_{23} \le \overline{f}_{23} \implies b_{23}(\theta_2 - \theta_3) \le \overline{f}_{23} \implies (\theta_2 - \theta_3) \le \overline{f}_{23}/b_{23}$$

$$(\theta_2 - \theta_1) \le \overline{f}_{23}/b_{23} + \overline{f}_{34}/b_{34} + \overline{f}_{45}/b_{45} + \overline{f}_{51}/b_{51}$$

- Exact approach.
- Benchmark.
- Shortest path problem (Dijkstra).
- [Fattahi et al., 2019].

$$-\underline{M}_{nm} = \overline{M}_{nm} = b_{nm} \sum_{(k,l) \in SP_{nm}} \frac{\overline{f}_{kl}}{b_{kl}}, \quad \forall (n,m) \in \mathcal{L}_{\mathcal{S}}$$

$$\overline{M}_{21} \ge b_{21}(\theta_2 - \theta_1) \text{ if } x_{21} = 0$$

$$(\theta_2 - \theta_1) = (\theta_2 - \theta_3) + (\theta_3 - \theta_4) + (\theta_4 - \theta_5) + (\theta_5 - \theta_1)$$

$$f_{23} \le \overline{f}_{23} \implies b_{23}(\theta_2 - \theta_3) \le \overline{f}_{23} \implies (\theta_2 - \theta_3) \le \overline{f}_{23}/b_{23}$$

$$(\theta_2 - \theta_1) \le \overline{f}_{23}/b_{23} + \overline{f}_{34}/b_{34} + \overline{f}_{45}/b_{45} + \overline{f}_{51}/b_{51}$$

$$\overline{M}_{21} \ge b_{21}(\overline{f}_{23}/b_{23} + \overline{f}_{34}/b_{34} + \overline{f}_{45}/b_{45} + \overline{f}_{51}/b_{51})$$

Strategy 2, Knn-D

- \bullet Data-driven approach (Knn).
- Naive approach. Learning this problem is a challenge.

Strategy 2, Knn-D

- Data-driven approach (Knn).
- Naive approach. Learning this problem is a challenge.

Algorithm

- 1) Training set $\mathcal{T} = \{(\mathbf{d}^t, \mathbf{x}^t)\}$ for $\forall t$.
- 2) For a given test demand $\mathbf{d}^{\hat{t}}$, compute K closest neighbors, \mathcal{T}_K .
- 3) Binary $\mathbf{x}^{\hat{t}}$ as the rounded mean of the binary decision values from \mathcal{T}_K to the closest integer.
- 4) Solve an LP from the OTS by fixing variables.

Strategy 3, Knn-BM

- Data-driven approach (Knn).
- One of our proposals.

Strategy 3, Knn-BM

- Data-driven approach (Knn).
- One of our proposals.

Algorithm

- 1) Training set $\mathcal{T} = \{(\mathbf{d}^t, \mathbf{x}^t)\}$ for $\forall t$.
- 2) For a given test demand $\mathbf{d}^{\hat{t}}$, compute K closest neighbors, \mathcal{T}_K .
- 3) Fixing the binary variables if there unanimity in the value among the instances in \mathcal{T}_K .
- **4)** The bigM values of the remaining variables are updated using the shortest path.
- 5) Solve the resulting MILP.

Strategy 4, Knn-B \widehat{M}

- Data-driven approach (Knn).
- One of our proposals.

Strategy 4, Knn-B \widehat{M}

- Data-driven approach (Knn).
- One of our proposals.

Algorithm

- 1) Training set $\mathcal{T} = \{(\mathbf{d}^t, \mathbf{x}^t)\}$ for $\forall t$.
- 2) For a given test demand \mathbf{d}^t , compute K closest neighbors, \mathcal{T}_K .
- 3) Fixing the binary variables if there is unanimity in the value among the instances in \mathcal{T}_K .
- 4) The bigM values of the remaining variables are updated using the angles information.

$$\overline{M}_{nm} = b_{nm} \times \max_{t \in \mathcal{T}: x_{nm}^t = 0} (\theta_n^t - \theta_m^t)$$

$$\underline{M}_{nm} = b_{nm} \times \min_{t \in \mathcal{T}: x_{nm}^t = 0} (\theta_n^t - \theta_m^t)$$

5) Solve the resulting MILP.

Outline

- Motivation
- 2 Methodology
- 3 Computational Experience
- 4 Conclusions and Further Research

Experimental Setup

- Realistic network, [Blumsack, 2006].
- 118 buses 186 lines.
- $|\mathcal{L}_S| = 69$.
- 500 instances.
- Demand follows uniform distribution in $[0.9d_n, 1.1d_n]$.
- Gurobi 9.1.2.
- Gap = 0.01%.
- Time limit: 1 hour.
- Github.

	# opt	# sub	gap-max	time (s)
BEN	500	0	-	145.44
Knn-D	0	500	14.13	0.0
Knn-BM	500	0	-	12.33
K nn-B $\widehat{\mathbf{M}}$	495	5	0.39	0.7

Table: All approaches (K = 50)

	# opt	# sub	gap-max	time (s)
BEN	500	0	-	145.44
Knn-D	0	500	14.13	0.0
Knn-BM	500	0	-	12.33
K nn-B $\widehat{\mathbf{M}}$	495	5	0.39	0.7

Table: All approaches (K = 50)

BEN vs Knn-D

- Knn-D has no optimal instances.
- \bullet Knn-D is faster.
- Max gap: 14%

	# opt	# sub	gap-max	time (s)
BEN	500	0	-	145.44
Knn-D	0	500	14.13	0.0
Knn-BM	500	0	-	12.33
K nn-B $\widehat{\mathbf{M}}$	495	5	0.39	0.7

Table: All approaches (K = 50)

BEN vs Knn-BM

- All optimal instances
- \bullet Knn-BM is faster.
- No gap.

	# opt	# sub	gap-max	time (s)
BEN	500	0	-	145.44
Knn-D	0	500	14.13	0.0
Knn-BM	500	0	-	12.33
K nn-B $\widehat{\mathbf{M}}$	495	5	0.39	0.7

Table: All approaches (K = 50)

BEN vs Knn-B \widehat{M}

- Knn-B \widehat{M} has almost all optimal instances
- Knn-B \widehat{M} is very fast.
- Small gap.

	# opt	# sub	gap-max	time (s)
BEN	500	0	-	145.44
Knn-D	0	500	14.13	0.0
Knn-BM	500	0	-	12.33
K nn-B $\widehat{\mathbf{M}}$	495	5	0.39	0.7

Table: All approaches (K = 50)

Knn-BM vs Knn-B \widehat{M}

- Knn-BM is more conservative than Knn-B \widehat{M} but slower.
- Trade-off decision.
- Competitive against existing approaches.

More details

Learning-Assisted Optimization for Transmission Switching

Salvador Pineda^{1,4*}, Juan Miguel Morales^{2,4} and Asunción Jiménez-Cordero^{3,4}

^{1*}Dept. of Electrical Engineering, University of Málaga, Spain.
²Dept. of Applied Mathematics, University of Málaga, Spain.
³Dept. of Statistics and Operations Research, University of Málaga, Spain.
⁴OASYS Research Group, University of Málaga, Spain.

*Corresponding author(s). E-mail(s): spineda@uma.es; Contributing authors: juan.morales@uma.es; asuncionjc@uma.es;

Available at:

S. Pineda, J. M. Morales and A. Jiménez-Cordero, Learning-Assisted Optimization for Transmission Switching, Submitted. Link: https://www.researchgate.net/publication/ 370058669_Learning-Assisted_Optimization_for_ Transmission_Switching.

Outline

- 1 Motivation
- 2 Methodology
- 3 Computational Experience
- 4 Conclusions and Further Research

Conclusions

- OTS is a challenging problem.
- Useful to reduce costs.
- Find good bigM values for the reformulation.
- Learning strategies.
- Tested on a real-world network.

Conclusions

- OTS is a challenging problem.
- Useful to reduce costs.
- Find good bigM values for the reformulation.
- Learning strategies.
- Tested on a real-world network.

Further research

- All switchable lines.
- Other ML approaches.

References

- Bengio, Y., Lodi, A., and Prouvost, A. (2021). Machine learning for combinatorial optimization: A methodological tour d'horizon. European Journal of Operational Research, 290(2):405-421, doi:10.1016/j.ejor.2020.07.063.
- Blumsack, S. (2006). Network topologies and transmission investment under electric-industry restructuring. Carnegie Mellon University, Pittsburgh, Pennsylvania.
- Fattahi, S., Lavaei, J., and Atamtürk, A. (2019). A bound strengthening method for optimal transmission switching in power systems. *IEEE Transactions on Power Systems*, 34(1):280-291, doi:10.1109/TPWRS.2018.2867999.
- Gambella, C., Ghaddar, B., and Naoum-Sawaya, J. (2021). Optimization problems for machine learning: A survey. European Journal of Operational Research, 290(3):807-828, doi:10.1016/j.ejor.2020.08.045.
- Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction, volume 2. Springer, New Yourk.
- Hinneck, A. and Pozo, D. (2022). Optimal transmission switching: improving exact algorithms by parallel incumbent solution generation. IEEE Transactions on Power Systems.
- Lodi, A. and Zarpellon, G. (2017). On learning and branching: A survey. TOP, 25(2):207–236, doi:10.1007/s11750-017-0451-6.
- Ruiz, P. A., Goldis, E., Rudkevich, A. M., Caramanis, M. C., Philbrick, C. R., and Foster, J. M. (2016). Security-constrained transmission topology control milp formulation using sensitivity factors. *IEEE Transactions on Power Systems*, 32(2):1597–1605.
- Yang, Z. and Oren, S. (2019). Line selection and algorithm selection for transmission switching by machine learning methods. In 2019 IEEE Milan PowerTech, pages 1–6. IEEE.

Machine-Learning-aided Optimal Transmission Switching

Asunción Jiménez-Cordero asuncionjc@uma.es

JOINT WORK WITH: Juan Miguel Morales González Salvador Pineda Morente

Thank you very much for your attention!

oasys.uma.es

XL Congreso Nacional de Estadística e Investigación Operativa (SEIO 2023)

November 7th-10th, 2023

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 755705)