Топ секретно

Анализ

Ще означаваме с Q максималния брой зададени въпроси, необходими на даден алгоритъм. Нека с A(i,k) означаваме въпроса " a_i по-малко ли е от k ?".

Подзадача 1

Този алгоритъм възстановява изцяла пермутацията a. За всеки служител i ще задаваме въпросите A(i,1), A(i,2), ..., A(i,N). Нека c е най-малката стойност, удовлетворяваща A(i,c)=false . $a_i=c-1$. Ако не съществува такава стойност c, то $a_i=N$.

Така описаният алгоритъм има $Q=N^2$. Ако спрем да питаме за дадено i, щом срещнем отговор false, получаваме алгоритъм с $Q=\frac{(N+2)(N-1)}{2}$.

Подзадача 2

Тъй като $A(i,j_1) \le A(i,j_2)$ за всеки $j_1 \le j_2$, може да се използва двоично търсене за намирането на a_i . $Q = N \cdot \lceil \log_2{(N+1)} \rceil$

Подзадача 3

В тази подзадача имаме допълнителното ограничение, че $a_i < a_{i+1}$ за всяко $0 \le i \le N-2$. Тъй като a е пермутация знаем, че $i \le a_i \le i+1$ за всяко $0 \le i \le N-1$.

Нека разгледаме каква информация ни дава отговор на въпрос от вида A(i,i+1):

- Ако A(i,i+1)=true , то $a_i=i$ и единствената възможност за $a_0,a_1,...,a_i$ е 0,1,...,i . Следователно $a_N>i$.
- Ако A(i,i+1)=false , то $a_i=i+1$ и единствената възможност за $a_i,a_{i+1},...,a_{N-1}$ е i+1,i+2,...,N . Следователно $a_N\leq i$.

Използвайки въпроси от този вид можем да използваме двоично търсене, за да намерим стойността на a_N за $Q = \lceil \log_2{(N+1)} \rceil$.

Ограничението за Q за тази подзадача е по-високо, за да може и решението на подзадача 4 да я преминава.

Подзадача 4

Първо ще разгледаме втори алгоритъм с $Q=N\cdot\lceil\log_2{(N+1)}\rceil$, който после ще покажем как да се оптимизира до $Q\le 2\cdot (N+1)+\log_2(N+1)$

Ще намерим стойността на a_N използвайки двоично търсене. Въпросът " a_N по-малко ли е от c ?" се свежда до това да се преброят останалите стойности $a_0, a_1, ..., a_{N-1}$,

които са по-малки от c и съответно A(i,c)=true . Нека означим броя им с B(c) . Тъй като в цялата редица, включвайки a_N , има точно c стойности, за които $a_i < c$, ако B(c)=c , то $a_N \ge c$, а ако B(c)=c-1 , то $a_N < c$. (винаги е вярно, че $c-1 \le B(c) \le c$).

Нека сме на итерация от двоичното търсене и знаем, че $a_N \in [l,r)$ и ще проверяваме дали $a_N \stackrel{?}{<} c$ за $c = \lfloor \frac{l+r}{2} \rfloor$. Нека се е оказало, че B(c) = c, $a_N \geq c$ и следователно $a_N \in [c,r)$. Очевидно следващите стойности c', за които ще се изчислява B(c'), задоволяват $c' \in [c,r)$. Изчислявайки B(c), ние сме открили всички индекси i, задоволяващи A(i,c) = true, и тъй като $c' \geq c$ можем да сме сигурни, че за тези индекси и A(i,c') = true. Следователно няма смисъл да задаваме повече въпроси за тях, защото можем да сме сигурни в отговора, който бихме получили.

Използвайки същите разсъждения, преди всяка итерация на двоичното търсене сме открили l индекса, такива че $A(i,c)=true \ \forall c\in [l,r)$ и N+1-r индекса, такива че $A(i,c)=false \ \forall c\in [l,r)$. Остават само (N+1)-l-(N+1-r)=r-l индекса, за които стойността на A(i,c) не ни е известна и съответно трябва да питаме системата.

На стъпка i (индексирани от 0) дължината на интервала [l,r) (и съответно r-l) е най-много $\lceil \frac{N+1}{2^i} \rceil$. Следователно:

$$\begin{split} Q &= (N+1) + \left\lceil \frac{N+1}{2} \right\rceil + \left\lceil \frac{N+1}{4} \right\rceil + \dots \\ Q &\leq (N+1) + \frac{N+1}{2} + \frac{N+1}{4} + \dots + \left\lceil \log_2\left(N+1\right) \right\rceil \\ Q &\leq (N+1) \cdot \left(1 + \frac{1}{2} + \frac{1}{4} + \dots\right) + \left\lceil \log_2\left(N+1\right) \right\rceil \\ Q &\leq 2 \cdot (N+1) + \left\lceil \log_2(N+1) \right\rceil \end{split}$$