MODELLI E ALGORITMI PER IL SUPPORTO ALLE DECISIONI

ESERCIZIO 1. (10 punti) Sia data la rete G = (V, A) con

$$V = \{1, 2, 3, 4, 5\}$$

$$A = \{(1,2), (1,3), (2,3), (2,4), (3,4), (3,5), (4,5)\}$$

con i seguenti costi unitari di trasporto c_{ij} e capacità d_{ij}

arco	(1,2)	(1,3)	(2,3)	(2,4)	(3,4)	(3, 5)	(4,5)
c_{ij}	6	14	3	9	1	6	11
d_{ij}	7	4	6	6	7	5	8

e i seguenti valori b_i associati ai nodi

nodo	1	2	3	4	5
b_i	+8	0	0	0	-8

Verificare che alla terna

$$B = \{(1,2), (2,4), (3,5), (4,5)\}$$
 $N_0 = \{(2,3), (3,4)\}$ $N_1 = \{(1,3)\}.$

corrisponde una soluzione di base ammissibile e partire da questa per determinare una soluzione ottima e il valore ottimo per questo problema.

ESERCIZIO 2. (9 punti) Sia data la soluzione ottima di un problema di flusso massimo e quella del corrispondente problema di taglio a costo minimo. Per ciascuna delle seguenti affermazioni dire se è vera o falsa **MOTIVANDO LA RISPOSTA**:

- il valore ottimo del problema può essere aumentato aumentando opportunamente la capacità di un arco che non fa parte della soluzione ottima del problema di taglio minimo;
- può esistere un cammino orientato dalla sorgente S alla destinazione D privo di archi saturi;
- $\bullet\,$ gli archi uscenti dalla sorgente S sono tutti saturi.

ESERCIZIO 3. (6 punti) Si descriva l'algoritmo di Dijkstra, specificando sotto quali condizioni è corretto e ricavandone la complessità.

ESERCIZIO 4. (6 punti) Si dimostri la correttezza dell'algoritmo greedy per il problema Minimum Spanning Tree.