Náhodné udalosti a operácie s nimi.

- 1. Nech A, B, C sú náhodné udalosti. Pomocou A, B, C vyjadrite náhodnú udalosť spočívajúcu v tom, že
 - a) nastane len udalost' A (teda spomedzi A, B, C nastane len A)
 - b) nastane A a B, a pritom C nenastane
 - c) nastanú všetky tri udalosti (teda A, B, C nastanú súčasne)
 - d) nastane práve jedna z nich
 - e) nastane aspoň jedna z nich
 - f) nastanú práve dve z nich
 - g) nenastane žiadna z nich
- 2. Náhodný pokus spočíva v hode tromi kockami: modrou, červenou a žltou. Zvoľme náhodné udalosti takto:
 - M_i na modrej padne *i* bodov (i = 1, 2, ..., 6)
 - C_j na červenej padne j bodov (j = 1, 2, ..., 6)
 - Z_k na žltej padne k bodov (k = 1, 2, ..., 6).

Pomocou M_i, C_i, Z_k vyjadrite udalosti:

- a) na modrej a aj na červenej padne aspoň 5 bodov
- b) na každej kocke padne párne číslo
- c) na všetkých padne to isté číslo
- d) aspoň na jednej padne 6
- e) aspoň na dvoch padne 6
- 3. Náhodný pokus spočíva v hode tromi kockami: modrou, červenou a žltou. Za výsledok pokusu považujme usporiadanú trojicu (i, j, k) bodov, ktoré padli na modrej, červenej, resp. žltej. Zrejme množina Ω všetkých možných výsledkov má 216 prvkov. Označme náhodné udalosti ako v predchádzajúcej úlohe, t.j.
 - M_i na modrej padne *i* bodov
 - C_i na červenej padne *j* bodov
 - Z_k na žltej padne k bodov.

Vyjadrite udalosti M_i , C_i , Z_k ako podmnožiny množiny Ω . Zistite, koľko prvkov majú udalosti

- a) $(M_5 \cup M_6) \cap (C_5 \cup C_6)$
- b) $(M_2 \cup M_4 \cup M_6) \cap (C_2 \cup C_4 \cup C_6) \cap (Z_2 \cup Z_4 \cup Z_6)$
- c) $(M_1 \cap C_1 \cap Z_1) \cup (M_2 \cap C_2 \cap Z_2) \cup (M_3 \cap C_3 \cap Z_3) \cup ... \cup (M_6 \cap C_6 \cap Z_6)$
- d) $M_6 \cup C_6 \cup Z_6$
- e) $(M_6 \cap C_6) \cup (M_6 \cap Z_6) \cup (C_6 \cap Z_6)$
- 4. Náhodný pokus spočíva v hode tromi označenými mincami. Označme
 - A_i ... na *i*-tej minci padol znak, i = 1, 2, 3

Pomocou udalostí A₁, A₂, A₃ vyjadrite náhodné udalosti

- B ... znak padne len na prvej a tretej minci
- C ... padnú práve dva znaky
- D ... padnú najviac dva znaky
- E_i ... znak padne len na *i*-tej minci
- 5. Náhodný pokus spočíva v hode tromi označenými mincami. Za výsledok pokusu považujme usporiadanú trojicu symbolov Z, C. Množina Ω všetkých možných výsledkov má 8 bodov. Vyjadrite udalosti z predchádzajúcej úlohy ako podmnožiny množiny Ω .

- 6. Obvod je vytvorený súčiastkami a_1 , a_2 , a_3 podľa schémy na obrázku. Nech A_i je náhodná udalosť spočívajúca v tom, že počas doby T súčiastka a_i nezlyhá. Pomocou A_i vyjadrite náhodné udalosti spočívajúce v tom, že počas doby T
 - a) zlyhá práve jedna súčiastka
 - b) zlyhajú práve dve súčiastky
 - c) nezlyhá žiadna súčiastka
 - d) obvodom bude počas doby T pretekať prúd.

- 7. Systém pozostáva z dvoch blokov typu I a troch blokov typu II. Náhoda ovplyvňuje fungovanie, resp. nefungovanie jednotlivých blokov. Označme udalosti takto:
 - A_i i-tý blok typu I funguje
 - B_i *j*-tý blok typu II funguje.

Nasledujúce udalosti zapíšte pomocou A_i, B_i

- a) udalosť C spočívajúcu v tom, že funguje len druhý blok typu I a len tretí blok typu II
- b) udalosť D (núdzového režimu), ktorý nastáva, ak funguje práve jeden blok typu I a súčasne práve jeden blok typu II
- c) udalosť E spoľahlivého režimu, ktorý vyžaduje fungovanie aspoň jedného bloku typu I a súčasne fungovanie aspoň dvoch blokov typu II.
- 8. Systém pozostáva z dvoch blokov typu I a troch blokov typu II. Náhoda ovplyvňuje fungovanie, resp. nefungovanie jednotlivých blokov. Možné stavy systému považujeme za možné výsledky "experimentu s náhodou" a jednotlivé stavy (teda výsledky) môžeme zachytiť usporiadanými 5-ticami núl a jednotiek. Napr. stav systému, keď

funguje druhý blok typu I a prvé dva bloky typu II označíme 5-ticou (0, 1, 1, 1, 0). Nech A_i , B_j sú náhodné udalosti z predchádzajúcej úlohy, t.j.

- A_i *i*-tý blok typu I funguje
- B_i *j*-tý blok typu II funguje.

Zistite z koľkých stavov pozostávajú udalosti

- a) $C = A_1' \cap A_2 \cap B_1' \cap B_2' \cap B_3$
- b) D =

$$(A_{1} \cap A_{2}' \cap B_{1} \cap B_{2}' \cap B_{3}') \cup (A_{1} \cap A_{2}' \cap B_{1}' \cap B_{2} \cap B_{3}') \cup (A_{1} \cap A_{2}' \cap B_{1}' \cap B_{2}' \cap B_{3}) \cup (A_{1}' \cap A_{2} \cap B_{1} \cap B_{2}' \cap B_{3}') \cup (A_{1}' \cap A_{2} \cap B_{1}' \cap B_{2} \cap B_{3}') \cup (A_{1}' \cap A_{2} \cap B_{1}' \cap B_{2}' \cap B_{3})$$

c)
$$E = (A_1 \cup A_2) \cap [(B_1 \cap B_2) \cup (B_1 \cap B_3) \cup (B_2 \cap B_3)]$$

- 9. Náhodný pokus spočíva v hádzaní pripináčikom dovtedy, kým nedopadne hrotom nahor. Navrhnite priestor možných výsledkov tak, aby bolo možné modelovať nasledujúce udalosti
 - a) v pokuse sa bude hádzať aspoň štyri razy
 - b) počet hodov v pokuse bude párne číslo
- 10. Náhodný pokus spočíva v hádzaní hracou kockou dovtedy, kým nepadne šestka. Navrhnite priestor možných výsledkov tak, aby bolo možné modelovať nasledujúce udalosti
 - a) pokus končí tretím hodom, pričom v každom hode padnú aspoň štyri body
 - b) pokus končí štvrtým hodom, a pritom v každom hode padne párne číslo
 - c) v pokuse sa bude hádzať aspoň štyri razy
 - d) počet hodov v pokuse bude nepárny

Všimnime si, že pre modelovanie udalostí z c), d) môžeme priestor možných výsledkov voliť jednoduchšie ako v prípade modelovania udalostí v a), b).

Poznámka. Množinové operácie \cap a \cup sú nám dobre známe (a vieme, že sú to komutatívne a asociatívne operácie). Pripomíname, že platia oba distributívne zákony, t.j. platí

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \qquad \qquad A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Operáciu komplementu budeme označovať ako A', t.j. $A' = \{ \omega \in \Omega \mid \omega \notin A \}$. Často využijeme známe DeMorganove zákony

$$(A \cap B)' = A' \cup B'$$
 $(A \cup B)' = A' \cap B'$

Operácia množinového rozdielu je definovaná takto:

$$A \setminus B = A \cap B'$$
, t.j. $A \setminus B = \{ \omega \in A \mid \omega \notin B \}$

- 11. Ukážte, že platia rovnosti (pomôžte si Vennovými diagramami).
 - a) $A \cup B = A \cup (A' \cap B)$
 - b) $A' \cup (A \cap B) = A' \cup B$
 - c) $A \cap (A \cap B)' = A \cap B'$
 - d) $(A \cup B) \cap (A \cup B') = A$
- 12. Rozhodnite o platnosti vzťahov
 - a) $A \setminus (B \setminus C) = (A \setminus B) \setminus C$
 - b) $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$
 - c) $(A \cup B) \setminus C = A \cup (B \setminus C)$
 - d) $(A \setminus B) \cap (C \setminus B) = (A \cap C) \setminus (B \cap C)$
- 13. Spolužiačky Danka a Janka prichádzajú ráno do triedy náhodne v čase od 7:45 do 8:00, čo môžeme interpretovať tak, že príchod (každej z nich) je náhodný bod intervalu [0, 15]. Modelujme náhodný pokus, ktorého výsledkom ω je dvojica časov (t_D , t_J), kde t_D je čas príchodu Danky do triedy, t.j. $t_D \in [0, 15]$ a t_J je čas príchodu Janky ($t_J \in [0, 15]$).

Priestor všetkých možných výsledkov je štvorec [0, 15] x [0, 15]. Modelujte podmnožinami štvorca nasledujúce náhodné javy spočívajúce v tom, že

- a) Danka prišla po 7:50 a Janka pred 7:50
- b) Danka prišla pred 7:55 a Janka medzi 7:50 a 7:55
- c) Danka prišla skôr ako Janka
- d) Danka čakala na Janku, ale nie viac ako 5 minút
- e) Jedna čakala na druhú, ale nie viac ako 5 minút.

Výsledky:

Úloha 1.

- a) $A \cap B' \cap C'$ b) $A \cap B \cap C'$ c) $A \cap B \cap C$ d) $(A \cap B' \cap C') \cup (A' \cap B \cap C') \cup (A' \cap B' \cap C)$
- e) $A \cup B \cup C$ f) $(A \cap B \cap C') \cup (A \cap B' \cap C) \cup (A' \cap B \cap C)$ g) $A' \cap B' \cap C'$

Úloha 2.

Výsledky úlohy 2 sa dajú nájsť v zadaní úlohy 3.

Úloha 3.

Ukážme (pre ilustráciu) vyjadrenie napr. M₃, C₆ a Z₂.

$$M_3 = \{ (3, j, k) : j, k \in \{1, 2, ..., 6\} \}, M_3 \text{ má } 36 \text{ prvkov},$$

$$C_6 = \{ (i, 6, k) : i, k \in \{1, 2, ..., 6\} \}, C_6 \text{ má tiež 36 prvkov},$$

$$Z_2 = \{ (i, j, 2) : i, j \in \{1, 2, \dots, 6\} \}$$
, aj Z_2 má 36 prvkov.

b) 27 c) 6 d)
$$91(=216-125)$$

Úloha 4.

Napr.
$$B = A_1 \cap A_2' \cap A_3$$
, $C = (A_1 \cap A_2 \cap A_3') \cup (A_1 \cap A_2' \cap A_3) \cup (A_1' \cap A_2 \cap A_3)$

Úloha 5.

Napr. $B = \{(Z, C, Z)\}$, udalosť B je elementárna, tvorí ju práve jeden výsledok pokusu.

 $C = \{ (Z, Z, C), (Z, C, Z), (C, Z, Z) \}$, udalosť C tvoria tri výsledky pokusu.

Úloha 6.

- a) $(A_1 \cap A_2 \cap A_3) \cup (A_1 \cap A_2 \cap A_3) \cup (A_1 \cap A_2 \cap A_3)$
- b) $(A_1' \cap A_2' \cap A_3) \cup (A_1' \cap A_2 \cap A_3') \cup (A_1 \cap A_2' \cap A_3')$
- c) $A_1 \cap A_2 \cap A_3$
- d) $(A_1 \cup A_2) \cap A_3$

Úloha 7.

Odpovede nájdete vo formulácii úlohy 8.

Úloha 8.

- a) $C = \{(0, 1, 0, 0, 1)\}$, teda C pozostáva len z jedného stavu.
- b) D pozostáva zo šiestich stavov.
- c) E pozostáva z dvanástich stavov.

Úloha 9.

$$\Omega = \{ (1), (0, 1), (0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 0, 1) \dots \} =$$

$$= \{ \omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \dots \}.$$

- a) { ω_4 , ω_5 , ω_6 , ... }
- b) { ω_2 , ω_4 , ω_6 , ω_8 , ... }

Úloha 10.

$$\Omega = \{ (6), (1,6), (2,6), (3,6), \dots, (5,6), (1,1,6), (1,2,6), (1,3,6), \dots, (5,5,6), (1,1,1,6), \dots \}$$

- a) $A = \{ (i, j, 6) : i, j \in \{4, 5\} \}, A \text{ má 4 prvky.}$
- b) B = { (i, j, k, 6) : $i, j, k \in \{2, 4\}$ }, B má 8 prvkov.
- c) $C = (\{(6), (1,6), (2,6), \dots, (5,6), (1,1,6), (1,2,6), (1,3,6), \dots, (5,5,6)\})'$. C je nekonečná.
- d) $D = \{ (6), (1, 1, 6), (1, 2, 6), ..., (5, 5, 6), (1, 1, 1, 1, 6), (1, 1, 1, 2, 6), ..., (5, 5, 5, 5, 6), ... \}$