A Bridging Model for Multi-Core Computing

L. G. Valiant

Journal of Computer and System Sciences, 2011

袁晨(180949)

陈 恳 (180958)

November 8, 2018

Contents

- Problem: It's hard to write program for parallel systems
 - resources are lacking
- Method: Multi-BSP Model
 - Bridging model
 - Multi-level model
 - Designing efficient and portable
- Discussion: parameter-aware portable algorithms
- Standard matrix multiplication
- Fast Fourier Transform
- Comparison Sorting

Challenges for multi-core architectures

Comparing with sequential system

- Underlying computational substrate is much more complex than conventional sequential computing
- Sequential algorithms are much better understood and highly optimized
- As machines differs, one optimized algorithm for one machine may not work on another
- Acceleration is limited (at best a speedup of a constant factor)

Portable Parallel Algorithms

- Portable parallel algorithms are parameter-aware
- Have to expressed as a bridging model
 - Make a bridge between programming language and computer architecture
- Necessary performance parameters should be defined
 - a prerequisite for portable parallel algorithms to be possible

From BSP* model to multi-BSP model

Bulk Synchronous Parallel model for parallel computation:

^{*} A. Tiskin, "The bulk-synchronous parallel random access machine," Theoretical Computer Science, vol. 196, no. 1, pp. 109–130, Apr. 1998.

From BSP* model to multi-BSP model

Multi-BSP model

- Hierarchical model
 - Arbitrary number of levels
 - Modeling all levels of an architecture together
- At each level, multi-BSP contains memory size as a further parameter
 - Physical limitation on the amount of memory that can be accessed in fixed time from physical location of a processor ⇒ multiple levels

Multi-BSP model: Parameters

Level i component

- p_i : number of i-1 level component
- g_i : communication bandwidth
 - (Operations a processor can do per second) / (words can be transmitted between level i component memories and level i + 1 per second)
- L_i : barrier synchronization cost for superstep i
- m_i : number of words in i^{st} component that is not in any i-1 component

Multi-BSP model: Structure

- Tree structure
 - Leaf components are processors
 - Other level contains storage capacity
 - Doesn't distinguish memory from cache
- Processor number in level i component
 - $P_i = p_1 \cdots p_i$

- Number of level i components in a level j component
 - $Q_{i,j} = p_{i+1} \cdots p_j$, for whole system(j = d): $Q_{i,d} = p_{i+1} \cdots p_d$
- Total memory available in a level i component
 - $M_i = m_i + p_i m_{i-1} + p_{i-1} p_i m_{i-2} + \dots + p_2 \dots p_{i-1} p_i m_1$
- Communication cost(level 1 to i): $G_i = g_i + g_{i-1} + g_{i-2} + \cdots + g_1$

Multi-BSP model: Assumption and Discussion

- To simplify our analysis, make assumption that for i:
 - $m_i \ge m_{i-1}$
 - $m_i \geq M_i/i$

Definition:

 $F_1 \lesssim F_2$: $\forall \varepsilon > 0$, $F_1 < (1 + \varepsilon)F_2$ $F_1 \lesssim_d$: for constant c_d , $F_1 < (1 + c_d)F_2$, c_d depending on dFor multi-BSP algorithm A*:

- Comp(A*): parallel costs of computation
- Comm(A*): parallel costs of communication
- Synch(A*): parallel costs of synchronization

Multi-BSP model: Algorithm & Parallel Costs

- To quantify the efficiency of A*, defining a baseline algorithm A, multi-BSP machine H.
 - $Comp_{seq}(A)$: total number of operations of A
 - $Comp(A) = Comm_{seq}(A)/P_d$, P_d is processor number in H
 - Comm(A): minimal comm cost for A on H
 - *Synch*(*A*): minimal synch cost of *A* on *H*
- A* is optimal with respect to A, if:
 - $Comp(A^*) \leq_d Comp(A) \& Comp_{seq}(A^*) \leq_d Comp_{seq}(A)$
 - $Comm(A^*) \lesssim_d Comm(A)$
 - $Synch(A^*) \leq_d Synch(A)$

Multi-BSP model: Architecture Requirements

- Barrier synchronization needs to be supported efficiently
 - Literatures shows that this can be done already with current architectures*
- Model should control storage explicitly
- Machines support the features of this model

11

^{*} N. Vachharajani, M. Iyer, C. Ashok, M. Vachharajani, D. I. August, and D. Connors, "Chip Multi-processor Scalability for Single-threaded Applications," SIGARCH Comput. Archit. News, vol. 33, no. 4, pp. 44–53, Nov. 2005.

Work Limited Algorithms: Definition

Definition

Straight-line program A is w(S)-limited:

- Every subset of its operations
 - uses at most S inputs
 - produces at most S outputs
 - consists of no more than w(S) operations

Work Limited Algorithms: Propositions

- For associative composition task AC(n):
 - A: linear array of n elements from a set X
 - \otimes : an associative binary operation on X
 - A specific set of disjoint contiguous subarrays of A

Proposition 1

For any n and S, any algorithm for associative composition AC(n) is (S-1) limited

Work Limited Algorithms: Propositions

• Problem $MM(n \times n)$ for multiplying two $n \times n$ matrices by standard algorithm

Proposition 2

For any n and S, the standard matrix multiplication algorithm $MM(n \times n)$ is $S^{3/2}$ -limited

Work Limited Algorithms: Propositions

 For FFT(n) the standard binary recursive algorithm for computing the one-dimensional Fast Fourier Transform on n points (n is power of 2)

Proposition 3

For any n and S the standard Fast Fourier transform algorithm FFT(n) is $2S \log_2 S$ -limited

Lower Bounds: Lemma

Lemma

Suppose W computation steps are executed of a w(S)-limited straight-line program on a Multi-BSP machine. Then for any j the total number of words transmitted between level j components and the level j+1 components to which they belong is at least

$$M_j(W/w(2M_j)-Q_j)$$

And the total number of level j component supersteps at least

$$W/w(M_j)$$

Lower Bounds: Theorem

Theorem

Suppose W(n) operations are to be performed of a w(m)- limited straight-line program A on input size n on a depth d Multi-BSP machine. Then the communication cost over the whole machine is at least

$$Comm(n,d) \gtrsim_d \sum_{i=1\cdots d-1} (W(n)/Q_i w(2M_i)) - 1) M_i g_i$$

The synchronization cost at least:

$$Synch(n,d) \gtrsim_d \sum_{i=1\cdots d-1} W(n)L_{i+1}/(Q_iw(M_i))$$

Lower Bounds: Application (I)

For associative composition:

$$AC\text{-Comm}(n,d) \gtrsim_d \sum_{i=1\cdots d-1} (n/(M_iQ_i)-1) M_ig_i$$

$$AC$$
-Synch $(n, d) \gtrsim_d \sum_{i=1\cdots d-1} nL_{i+1}/(Q_iM_i)$

For Matrices Multiplication

MM-Comm
$$(n \times n, d) \gtrsim_d \sum_{i=1 \dots d-1} (n^3 / Q_i M_i^{3/2} - 1) M_i g_i$$

MM-Synch
$$(n \times n, d) \gtrsim_d \sum_{i=1 \dots d-1} n^3 L_{i+1} / (Q_i M_i^{3/2})$$

Lower Bounds : Application (II)

For Fast Fourier Transform algorithm:

FFT-Comm
$$(n,d) \gtrsim_d \sum_{i=1\cdots d-1} (n\log n/(Q_iM_i\log M_i)-1)M_ig_i$$

FFT-Synch $\gtrsim_d \sum_{i=1\cdots d-1} n\log n L_{i+1}/(Q_iM_i\log M_i)$

For Sorting

Sort-Comm
$$(n,d) \gtrsim_d \sum_{i=1\cdots d-1} (n \log n / Q_i M_i \log M_i - 1) M_i g_i$$

Sort-Synch
$$(n, d) \gtrsim_d \sum_{i=1\cdots d-1} n \log n L_{i+1}/(Q_i M_i \log M_i)$$

Optimal Algorithms

$$AC\text{-}Comm(n,d) \lesssim_d \sum_{i=1\cdots d-1} ng_i/Q_i$$

AC-Synch
$$(n,d) \preceq_d \sum_{i=1\cdots d-1} nL_{i+1}/(Q_i m_i)$$

MM-Comm
$$(n \times n, d) \lesssim_d \sum_{i=1 \cdots d-1} (n^3 g_i/Q_i) \sum_{k=i \cdots d-1} (1/m_k^{1/2})$$

$$\lesssim_d n^3 \sum_{j=1 \cdot \cdot d-1} g_j m_j^{-1/2} / Q_j$$

$$\text{MM-Synch}(n \times n, d) \lesssim_d n^3 \sum_{j=1 \cdots d-1} L_{j+1} m_j^{-3/2} / Q_j$$

Optimal Algorithms

FFT-Comm
$$(n, 1, d) \lesssim_d \sum_{i=1\cdots d-1} (n \log n) g_i / (Q_i \log m_i)$$

FFT-Synch
$$(n, 1, d) \lesssim_d \sum_{i=1\cdots d-1} (n \log n) L_{i+1}/(Q_i m_i \log m_i)$$

Sort-Comm
$$(n,d) \preceq_d \sum_{i=1\cdots d-1} (n\log n)g_i/(Q_i\log m_i)$$

Sort-Synch
$$(n,d) \lesssim_d \sum_{i=1\cdots d-1} (n\log n) L_{i+1}/(Q_i m_i \log m_i)$$

22

Thank You