Modelos Lineares Generalizados para Dados Espaciais (MLGDE)

Kally Chung

Prof. Paulo Justiniano Ribeiro Jr

Prof. Wagner Bonat

04 de Fevereiro de 2020

UFPR - PPGMNE/LEG

I CidWeek

Table of contents

- 1. Introdução
- 2. Modelo Geral
- 3. Modelo Linear Generalizado para Dados Espaciais
- 4. Análise de Dados
- 5. Conclusão

Introdução

Introdução

- Dados geoestatísticos gaussianos: contínuos e de distribuição simétrica.
 - Krigagem,
 - Método da verossimilhança.
- Dados geoestatísticos não gaussianos: dados binários, contagem, contínuos com cauda pesada, contínuos assimétricos, entre outros.
 - Modelo Linear Generalizado Espacial (MLGE) Gotway & Stroup, 1997 [4],
 - Modelo Linear Generalizado Misto (MLGM) Bonat & RibeiroJr, 2015 [1],
 - Modelo de Regressão de Cópula Gaussiana (MRCG) Masarotto & Varin, 2017 [8]

2

Modelo Geral

Modelo Geral

- Considere N observações, n_{β} parâmetros de regressão e n_d parâmetros de dispersão.
- Modelo geral, conforme Liang & Zeger, 1986 [7]:

$$E[\mathbb{Y}] = \mu = g^{-1}(\mathbb{X}\beta),$$

$$Var[\mathbb{Y}] = C = V^{1/2}\Omega V^{1/2}$$

- onde g(.) é função de ligação,
- $V_{N \times N}$ é a matriz de variância,
- $\Omega_{N\times N}$ é a matriz de covariância.

Modelo Linear Generalizado para

Dados Espaciais

MLGDE

• Definição de $C = V^{1/2}\Omega V^{1/2}$:

$$V(p) = diag(v(p)) = diag(\mu^{p}),$$

$$\Omega(\tau) = \Omega(\tau_{0}, \tau_{1}, \tau_{2}) = \tau_{0}R(\tau_{1}) + \tau_{2}I.$$

- onde $v(p) = \mu^p$ é função de variância, da família Tweedie, (Jørgensen, 1987 [6]),
- $\tau = (\tau_0, \tau_1, \tau_2)$ é a contribuição $\tau_0 \ge 0$, o alcance $\tau_1 \ge 0$ e o efeito pepita $\tau_2 \ge 0$ (Diggle & Ribeiro Jr (2007) [2]),
- $R(d_{ij}, \tau_1)_{N \times N}$ é definida pela função de correlação espacial ρ .
 - Exponencial ou Matern $\kappa = 0.5$:

$$ho(d_{ij}, au_1) = exp\left(-rac{d_{ij}}{ au_1}
ight).$$

 Para mais funções de correlação espacial, verificar Diggle & Ribeiro Jr (2007) [2].

4

Estimação (Holst & Jørgensen, 2015 [5])

- Seja a estimação dos parâmetros $\theta = (\beta, \lambda) = (\beta, p, \tau_0, \tau_1, \tau_2)$.
- Problema: resolver

$$\varphi = (\varphi_{\beta}, \varphi_{\lambda}) = \begin{cases} \varphi_{\beta} = D^{T} C(\mathbb{Y} - \mu) = 0 \\ \varphi_{\lambda_{i}} = tr(W_{\lambda_{i}}(rr^{T} - C)) = 0 \end{cases}, \lambda_{i} = p, \tau_{0}, \tau_{1}, \tau_{2}$$

- onde $D_{N \times n_{\beta}} = \nabla_{\beta} \mu$,
- $W_{\lambda_i} = C^{-1} \frac{\partial C}{\partial \lambda_i} C^{-1}$,
- resíduo $r = \mathbb{Y} \mu$.

Algoritmo Chaser(Holst & Jørgensen, 2010 [5])

Método Iterativo baseado no Fisher Scoring

$$\begin{split} \boldsymbol{\beta}^{(i+1)} &= \boldsymbol{\beta}^{(i)} - S_{\boldsymbol{\beta}}^{-1}(\boldsymbol{\beta}^{(i)}, \boldsymbol{\lambda}^{(i)}) \; \varphi_{\boldsymbol{\beta}}(\boldsymbol{\beta}^{(i)}, \boldsymbol{\lambda}^{(i)}) \\ \boldsymbol{\lambda}^{(i+1)} &= \boldsymbol{\lambda}^{(i)} - S_{\boldsymbol{\lambda}}^{-1}(\boldsymbol{\beta}^{(i+1)}, \boldsymbol{\lambda}^{(i)}) \; \varphi_{\boldsymbol{\lambda}}(\boldsymbol{\beta}^{(i+1)}, \boldsymbol{\lambda}^{(i)}) \end{split}$$

- onde $S_{\beta} = -D^T C^{-1} D$,
- $S_{\lambda_{i,j}} = -tr\left(C^{-1}\frac{\partial C}{\partial \lambda_i}C^{-1}\frac{\partial C}{\partial \lambda_j}\right)$, com $\lambda_i = p, \tau_0, \tau_1, \tau_2$.

Correção de Viés(Holst & Jørgensen, 2015 [5])

- A equação quasi-score $\varphi_{\lambda_i} = tr(W_{\lambda_i}(rr^T C))$ é viesada se os parâmetros de β são desconhecidos.
- Para fazer a correção de viés,

$$b_{\lambda_{i}} = -tr(J_{\beta}^{\lambda_{i}}J_{\beta}^{-1}) = -tr\left(J_{\beta}^{\lambda_{i}}\frac{\partial J_{\beta}}{\partial \lambda_{i}}\right)$$

onde $J_{\beta}^{-1} = S_{\beta}^{-1}V_{\beta}S_{\beta}^{-T},$

$$V_{\beta} = Var[\varphi_{\beta}] = D^{T}C^{-1}D.$$

• Desenvolvendo algebricamente b_{λ_i} , tem-se

$$b_{\lambda_i} = -tr(D^T W_{\lambda_i} DS_{\beta}^{-T}).$$

• Fazendo a correção de viés em φ_{λ} , tem-se:

$$\widetilde{\varphi}_{\lambda_i}(\beta, \lambda) = \varphi(\beta, \lambda) + b_{\lambda_i}(\beta, \lambda)
= tr(W_{\lambda_i}(rr^T - C)) - tr(D^T W_{\lambda_i} DS_{\beta}^{-T}).$$

Reparametrização

Fazendo

$$\Omega = \tau_0 \left(\rho(\tau_1) + \frac{\tau_2}{\tau_0} I \right) = \tau_0 (\rho(\tau_1) + \tau_2^* I) = \tau_0 \Delta,$$

$$\cot \Delta = \begin{bmatrix} 1 + \tau_2^* & \rho(d_{12}, \tau_1) & \cdots & \rho(d_{1N}, \tau_1) \\ \rho(d_{21}, \tau_1) & 1 + \tau_2^* & \cdots & \rho(d_{2N}, \tau_1) \\ \vdots & \vdots & \ddots & \vdots \\ \rho(d_{N1}, \tau_1) & \rho(d_{N2}, \tau_1) & \cdots & 1 + \tau_2^* \end{bmatrix},$$

considera-se a seguinte reparametrização:

$$\gamma = (\gamma_0, \gamma_1, \gamma_2) = (\ln \tau_0, \ln \tau_1, \ln \tau_2^*) = \left(\ln \tau_0, \ln \tau_1, \ln \frac{\tau_2}{\tau_0}\right)$$

Parâmetros Iniciais

- Para β inicial, considera-se o usual modelo linear generalizado (MLG),
- Para p inicial, utiliza-se p = 0 se os dados são contínuos ou p = 1 se os dados são de contagem,
- Considera-se γ_2 empiricamente como 20% da dispersão encontrada no *MLG*.
- Calcula-se a função $\varphi_{\lambda}(\beta,\gamma_1)$ e considera-se γ_1^{lnic} tal que $\varphi_{\lambda}(\beta,\gamma_1^{lnic})=0$.
- Encontrado o valor de γ_1^{Inic} , calcula-se

$$\hat{\gamma_0} = \begin{cases} \ln\left(\frac{r^T\Delta^{-1}r}{N}\right) & \text{, sem correção de viés} \\ \ln\left(\frac{r^T\Delta^{-1}r}{N-n_\beta}\right) & \text{, caso contrário} \end{cases}.$$

Erro Padrão da Estimação

• Seja $\hat{\theta}=(\hat{\beta},\hat{\lambda})$ a estimativa de θ , então a distribuição assintótica de $\hat{\theta}$ é

$$\hat{\theta} \sim N(\theta, J_{\theta}^{-1}),$$

- ullet em que $J_{ heta}^{-1}=S_{ heta}^{-1}V_{ heta}S_{ heta}^{-T}$,
- $S_{\theta} = \begin{bmatrix} S_{\beta} & S_{\beta,\lambda} \\ S_{\lambda,\beta} & S_{\lambda} \end{bmatrix} = \begin{bmatrix} E[\nabla_{\beta}\varphi_{\beta}(\beta,\lambda)] & E[\nabla_{\lambda}\varphi_{\beta}(\beta,\lambda)] \\ E[\nabla_{\beta}\varphi_{\lambda}(\beta,\lambda)] & E[\nabla_{\lambda}\varphi_{\lambda}(\beta,\lambda)] \end{bmatrix},$
- $V_{\theta} = \begin{bmatrix} V_{\beta} & V_{\beta,\lambda} \\ V_{\lambda,\beta} & V_{\lambda} \end{bmatrix} = \begin{bmatrix} V_{\beta} & V_{\lambda,\beta}^{\mathsf{T}} \\ V_{\lambda,\beta} & V_{\lambda} \end{bmatrix}.$
- Para calcular o erro padrão EP_{θ} ,

$$EP_{\theta} = \sqrt{diag(J_{\theta}^{-1})}.$$

Predição (Gotway & Stroup [4])

- Seja $\mathbb{Y} = (Y_1(s_1), Y_2(s_2), \dots, Y_N(s_N))^T$ a variável resposta das observações nas localidades s_1, s_2, \dots, s_N .
- Predizer os valores para $\mathbb{Y}_{l} = (Y(l_1), Y(l_2), \dots, Y(l_{n_u}))^T$ dos n_u locais não observados l_1, l_2, \dots, l_{n_u} .
- Para a predição, usa-se o estimador tipo krige através de MLGE, dado por

$$\hat{\mathbb{Y}}_I = \hat{\mu}(I) + C_{I,s}C_s^{-1}(\mathbb{Y} - \hat{\mu}(s))$$

- onde $Var\begin{bmatrix} \mathbb{Y} \\ \mathbb{Y}_I \end{bmatrix} = \begin{bmatrix} C_s & C_{s,I} \\ C_{I,s} & C_I \end{bmatrix} = \begin{bmatrix} C_s & C_{I,s}^T \\ C_{I,s} & C_I \end{bmatrix}$,
- $\hat{\mu}(s)$ e $\hat{\mu}(l)$ são os valores preditos pelos parâmetros β 's da regressão.

Análise de Dados

Conjunto de dados - Rongelap ([3])

 Medições da contaminação residual de césio de testes nucleares no Atol Rongelap, um atol das Ilhas Ralik, pertencente às Ilhas Marshall, na Micronésia.

Figure 1: Mapeamento dos 157 locais de medições do resíduo césio ao longo do Atol. Existem 4 regiões da ilha com maior quantidade de medições.

Comparação de MLG com MLGDE

- Conjunto de dados usado: Rongelap.
- Parâmetros estimados: $\theta = (\beta, \lambda) = (\beta_0, \tau_0)$ com outros parâmetros de dispersão $p = 1, \tau_1 = 1, \tau_2 = 0$ fixados.
- O parâmetro de potência p=1 na família Tweedie indica a variância da distribuição de probabilidade Poisson.
- Quando $\tau_2 = 0$, então a matriz de correlação é $\rho = I$, indicando que os dados são independentes.

Table 1: Estimativas e erros padrões dos parâmetros de β_0 e de τ_0 no MLG e MLGDE nas duas primeiras linhas e os valores de quasi-score nas duas últimas linhas. O erro padrão de τ_0 não é informado no sumário da função glm de R.

	MLG		MLGDI	MLGDE com corr.	
	Estim.	E.Padrão	Estim.	E.Padrão	
β_0	2.0140	0.0283	2.0140	0.0283	
$ au_0$	378.815	NA	378.8142	47.4193	
φ_{β}			-2.884 <i>e</i> -	09	
φ_{λ}			9.516 <i>e</i> — 1	.3	

Reparametrização

- Conjunto de dados usado: Rongelap.
- Considerou-se a estimação de todos os parâmetros:

$$\theta = (\beta, \lambda) = (\beta, p, \tau_0, \tau_1, \tau_2).$$

Table 2: Estimativas e erros padrões de parâmetros obtido com o *MLGDE*, tanto com a correção de viés e sem.

MLGDE sem corr.		MLGDE	MLGDE com corr.	
Estim.	E.Padrão	Estim.	E.Padrão	
1.9770	0.0670	1.9757	0.0770	
1.7321	0.3613	1.7472	0.3324	
0.3720	1.0271	0.3627	0.9269	
312.6222	234.5627	408.5757	306.2242	
0.7766	2.2867	0.7020	1.9089	
56.5830		59.7487		
	Estim. 1.9770 1.7321 0.3720 312.6222 0.7766	Estim. E.Padrão 1.9770 0.0670 1.7321 0.3613 0.3720 1.0271 312.6222 234.5627 0.7766 2.2867	Estim. E.Padrão Estim. 1.9770 0.0670 1.9757 1.7321 0.3613 1.7472 0.3720 1.0271 0.3627 312.6222 234.5627 408.5757 0.7766 2.2867 0.7020	

Figure 2: Função usada para determinar τ_1 inicial para o conjunto de dados Rongelap, sem correção de viés. Reforça-se que a função é similar para *MLGDE* com a correção de viés.

Figure 3: Valores de quasi-score ao longo das iterações do algoritmo Chaser no caso de MLGDE sem correção de viés. Observe que φ_{β} é estável ao longo das iterações, enquanto φ_{λ} cresce e depois cresce e estabiliza. Este comportamento ocorre também para o caso de MLGDE com correção.

Figure 4: Mapa do atol Rongelap ilustrado por meio dos valores preditos, obtidos com a estimativa sem a correção de viés. O mapa predito com os parâmetros estimados com a correção de viés é muito similar a este apresentado.

Conjunto de dados - CTC ([9])

 O indicador da capacidade da troca de Cátions (CTC) é importante pois mede a qualidade do solo e auxilia na decisão de quais produtos usar no solo antes de um plantio.

Figure 5: Mapa do local das 212 medidas do conjunto de dados de *CTC*, além de ter uma noção do valor do indicador a partir do raio do círculo.

Comparação da Verossimilhança com MLGDE

- Conjunto de dados usado: CTC.
- Tem-se os parâmetros $\theta = (\beta, \lambda) = (\beta_0, \tau_0, \tau_1)$ com outros parâmetros de dispersão $\rho = 0, \tau_2 = 0$ fixados.
- Com p = 0, usa-se a variância da distribuição gaussiana, conforme a família Tweedie.

Table 3: Estimativas e erros padrões de parâmetros entre *MLGDE* sem a correção de viés e a inferência por meio do método da máxima verossimilhança nas três primeiras linhas, além do valor inicial de τ_1 encontrado para o algoritmo Chaser na última linha.

	Máxima Veros.		MLGDE sem corr.
	Estim.	E.Padrão	Estim. E.Padrão
β_0	2.9349	NA	2.9349 0.1173
$ au_0$	1.9201	NA	1.9201 0.1972
$\overline{ au_1}$	0.4343	NA	0.4343 0.0939
$ au_1$ inicial			0.4323

Table 4: Estimativas e erros padrões de parâmetros entre MLGDE e a inferência por meio do método da verossimilhança restrita nas três linhas iniciais e o valor inicial de τ_1 encontrado para o algoritmo Chaser na última linha.

	Veros. Restrita		MLGDE	MLGDE com corr.	
	Estim.	E.Padrão	Estim.	E.Padrão	
β_0	2.9355	NA	2.9355	0.1189	
$ au_0$	1.9380	NA	1.9380	0.1997	
$ au_1$	0.4469	NA	0.4469	0.0951	
$ au_1$ inicial			0.4464		

Figure 6: Função para obtenção de τ_1 inicial em *MLGDE* com a correção de viés, que é a raiz da função φ_{λ} . Esta função é similar também para a obtenção de τ_1 inicial em *MLGDE* com correção de viés.

Figure 7: Mapa do *CTC* resultante dos valores preditos, a partir das estimativas da Tab. 4, isto é, com a correção de viés. O mapa predito a partir dos parâmetros obtidos com a estimação sem a correção de viés é muito similar a este apresentado.

Reparametrização

- Conjunto de dados usado: CTC.
- Tem-se os parâmetros $\theta = (\beta, \lambda) = (\beta_0, \tau_0, \tau_1, \tau_2)$ com o parâmetro de dispersão p = 0 fixado.

Table 5: Estimativas e erros padrões de parâmetros obtido com o *MLGDE*, tanto com a correção de viés e sem.

	MLGDE sem corr.		MLGDE com corr.
	Estim.	E.Padrão	Estim. E.Padrão
β_0	2.9517	0.1488	2.9540 0.1542
$ au_0$	1.0750	0.4661	1.0885 0.4452
$ au_1$	1.0385	0.5135	1.1006 0.5266
$ au_2$	0.8194	0.5000	0.8304 0.4749
$ au_1$ inicial	0.7364		0.7646

Figure 8: Valores de quasi-score ao longo das iterações do algoritmo Chaser no caso de *MLGDE* com correção de viés. Observe que φ_{β} é estável ao longo das iterações, enquanto φ_{λ} cresce e depois cresce e estabiliza. Este comportamento ocorre também para o caso de *MLGDE* sem correção.

Figure 9: Mapa do *CTC* resultante dos valores preditos, a partir das estimativas da Tab. 5, isto é, com a correção de viés. O mapa predito a partir dos parâmetros obtidos com a estimação sem a correção de viés é muito similar a este apresentado.

Figure 10: À esquerda, mapa do *CTC* predito com 3 parâmetros (τ_0, τ_1, τ_2) e à direita, mapa com 2 parâmetros (τ_0, τ_1) .

Conclusão

Conclusão

- O objetivo da construção de MLGDE é a abrangência do modelo para lidar com dados independentes, gaussianos e, também não gaussianos.
- Além da abrangência, MLGDE se mostrou estável, preciso, além de eficiente.

Trabalhos futuros

- Análise de dados com dados binários,
- Testar outros métodos para fazer a estimação,
- Trabalhar no MLGDE caso multivariado.

References

- [1] Wagner Hugo Bonat and Paulo Justiniano Ribeiro Jr. Practical likelihood analysis for spatial generalized linear mixed models. *Environmetrics*, 27(2):83–89, 2016.
- [2] Peter J Diggle and Paulo Justiniano Ribeiro Jr. *Model-based Geostatistics*. Springer, New York, NY, 2007.
- [3] Peter J Diggle, Rana Moyeed, and Jonathan A. Tawn. Model-based geostatistics (with discussion). Journal of the Royal Statistical Society: Series C (Applied Statistics), 47:299–350, 1998.
- [4] C A Gotway and W W Stroup. A generalized linear model approach to spatial data analysis and prediction. *Journal of Agricultural*, *Biological*, and *Environmental Statistics*, 2(2):157–178, 1997.

References ii

- [5] René Holst and Bent Jørgensen. Generalized linear longitudinal mixed models with linear covariance structure and multiplicative random effects. *Chilean Journal of Statistics*, 6(1):15–36, 2015.
- [6] Bent Jørgensen. Exponential dispersion models. *Journal of the Royal Statistical Society. Series B (Methodological)*, 49(2):127–162, 1987.
- [7] Kung-Yee Liang and Scott L. Zeger. Longitudinal data analysis using generalized linear models. *Biometrika*, 73(1):13–22, 1986.
- [8] Guido Masarotto and Cristiano Varin. Gaussian copula regression using r. *Journal of Statistical Software*, 77(8):1–26, 2017.
- [9] Paulo Justiniano Ribeiro JR. Ctc dataset: http://www.leg.ufpr.br/geor/tutorials/da-tasets/ctc.dat, 2004. Accessed on 2019-11-28.

Obrigada!