## SPIN GEOMETRY CONFERENCE COURSE

JEFFREY JIANG

WEEK 1

**Exercise 1.1.** Prove  $SL_n(\mathbb{R})$  and O(n) are manifolds

**Exercise 1.2.** What is the "shape" of  $SL_2(\mathbb{R})$ ?

**Exercise 1.3.** Prove that

$$O(2) = \left\{ \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta \cos \theta \end{pmatrix} \right\} \cup \left\{ \begin{pmatrix} \cos \theta \sin \theta \\ \sin \theta - \cos \theta \end{pmatrix} \right\}$$

The first set consists of rotations and the second set consists of reflections. Which rotations commute? Which reflections commute? Do reflections commute with reflections?

**Exercise 1.4.** Investigate O(3). What is it's "shape?"

WEEK 2

**Exercise 2.1.** What is the derivative of det?

**Exercise 2.2.** Explore the exponetial map  $\mathfrak{sl}_2(\mathbb{R}) \to SL_2(\mathbb{R})$ 

**Exercise 2.3.** Prove that every element of O(n) can be written as the composition of at most n reflections about hyperplanes in  $\mathbb{R}^n$ .

*Proof.* We do this by induction. For n=1, this is obvious, since  $O(1)\cong \pm 1$ . The assuming that this holds for dimension n-1, Let  $A\in O(n)$ , and let  $v\in \mathbb{R}$ . We want to construct a hyperplane reflection R such that RAv=v, which is obtained by taking R to be the hyperplane reflection about the bisector of v and Av. More explicitly, take R to be the hyperplane reflection about the vector

$$\frac{Av - v}{\|Av - v\|}$$

which is given by the equation

$$Rw = w - 2 \frac{\langle Av - v, v \rangle}{\langle Av - v, Av - v \rangle} (Av - v)$$

Computing its action on v, we get

$$Rv = v - 2 \frac{\langle Av - v, v \rangle}{\langle Av - v, Av - v \rangle} (Av - v)$$

$$= v - \frac{2\langle Av, v \rangle - 2\langle v, v \rangle}{2\langle v, v \rangle - 2\langle Av, v \rangle} (Av - v)$$

$$= v + Av - v$$

$$= Av$$

Then since R is its own inverse (being a reflection), we have that RAv = v, so RAv fixes v and its orthogonal complement.

TODO insert motivation of  $A_n^{\pm}$ 

**Definition 2.4.** Define  $A_n^{\pm}$  to be the unital algebra generated by  $\mathbb{R}^n$  such that  $\xi^2 = \pm 1$ . and  $\xi \eta = \eta \xi$ . Determine the sign of  $\eta \xi$ . Explore these algebras. Find  $A \pm_1, A_2^{\pm} \dots$  What are they isomorphic to? Can you identify O(n) as a subgroup?

1

## Week 3

**Exercise 3.1.** Classify the algebras  $A_n^+$  (we messed these up week 2).

Exercise 3.2. Prove that

$$\{e_{i_1}e_{i_2}\dots e_{i+k} \mid 1 \le i_1 < i_2 < \dots < i_k \le n\}$$

is a basis for  $A_n^{\pm}$ .

2

**Exercise 3.3.** Modify the isomorphisms found for  $A_n^-$  by choosing  $\mathbb{Z}/2\mathbb{Z}$  gradings for the domains and codomains such that the isomorphisms are now isomorphisms as superalgebras.

**Exercise 3.4.** Construct a tensor product for super vector spaces and superalgebras.

**Exercise 3.5.** Explore the "shape" of the group

$$G = \langle v \mid ||v|| = 1 \rangle \subset (A_n^-)^{\times}$$

and the nature of the surjection  $G \rightarrow O(n)$ . What is the kernel of this map?

## WEEK 2

**Exercise 4.1.** Define  $\varphi:A_n^\pm\to A_n^\pm$  by  $\varphi(v)=-v$  and  $\varphi(vw)=(wv)$  (i.e.  $\varphi$  reverses products), and extending linearly to sums. Does  $\varphi(x)\cdot x$  define a norm on  $A_n^\pm$ ?

**Exercise 4.2.** Let (A, ||||) be a normed  $\mathbb{R}$ -algebra such that  $||ab|| \le ||a|| ||b||$  for all  $a, b \in A$ . Show that the multiplicative units form an open subset.

We note that an algebra element  $a \in A$  determines a linear map  $L_a: A \to A$  by left multiplication, i.e.  $L_a(b) = ab$ . By fixing a basis for A as a vector space, we get an assignment  $a \mapsto M_a$ , where  $M_a$  is the matrix for  $L_a$  in this basis. We claim that an element  $a \in A$  is a unit iff  $\det M_a \neq 0$ . To see this, we note that if  $L_a$  is not invertible, then a certainly cannot be, since otherwise  $L_{a^{-1}}$  would be an inverse. For the other direction, we note that if a is not a unit, then  $L_a$  is not surjective, since  $1_A$  is not in the image. We then claim that this mapping  $a \mapsto M_a$  is continuous. Do do this, define a norm on the space of linear maps on A by

$$||M|| = \sup_{v \in A} \frac{||Mv||}{||v||}$$

Then given  $a, b \in A$ , we compute

$$||M_{a-b}|| = \sup_{v \in A} \frac{||(a-b)v||}{||v||}$$
  
 $\leq \sup_{v \in A} \frac{||a-b|| ||v||}{||v||}$   
 $\leq ||a-b||$ 

So as  $b \to a$ , we have that  $||M_{a-b}|| \to 0$  as well, so this mapping is continuous. Therefore, the mapping  $a \mapsto \det M_a$  is then continuous, which makes the group of units  $A^{\times}$  an open set, being the preimage of the open set  $\mathbb{R} - \{0\}$ .

One thing to note is that the argument we use to show that  $a \mapsto M_a$  is continuous works with any norm such that  $||ab|| \le c ||a|| ||b||$  for any constant c. Therefore, we have a small lemma regarding finite dimensional algebras with an inner product.

**Lemma.** Let A be an n-dimensional algebra with inner product  $\langle \cdot, \cdot \rangle$ , and let  $\| \cdot \|$  denote the norm induced by the inner product  $\| x \|^2 = \langle x, x \rangle$ . Then for all  $xy \in A$ , we have

$$||xy|| \le n^5 |\Gamma| ||a|| ||b||$$

where  $\Gamma$  denotes the structure constant of maximal magnitude with respect to a fixed orthonormal basis.

*Proof.* Fix a basis  $\{e_i\}$  for A, and let  $c_{ij}^k$  denote the structure constants where

$$e_i e_j = c_{ij}^k e_k$$

Then let  $x = a^i e_i$  and  $y = b^j e_i$ . We then compute

$$\begin{aligned} \|xy\|^2 &= \langle a^i b^j e_i e_j, a^\ell b^m e_\ell e_m \rangle \\ &= \langle a^i b^j c^k_{ij} e_k, a^\ell b^m c^n_{\ell m} e_n \rangle \\ &= a^i a^\ell b^j b^m c^k_{ij} c^n_{\ell m} \langle e_k, e_n \rangle \\ &\leq a^i a^\ell b^j b^m \Gamma^2 n \\ &\leq n^{5/2} \Gamma^2 \|a\| \|b\| \end{aligned}$$

Because of this, we have that for the Clifford algebras  $A_n^\pm$ , the mapping from algebra elements to linear maps on the algebra is continuous, regardless of our choice of inner product. We can then use this to define a nicer norm on the Clifford algebras. First fix an arbitrary inner product and denote the induced norm  $\|\cdot\|_1$ . Then define

$$||a|| = \sup_{v \in A_n^{\pm}} \frac{||av||_1}{||v||_1}$$

which gives us a submultiplicative norm, so the group of units is an open subset.

We now want to prove that G is a topological group. To do this, it suffices to show that multiplication and inversion are continuous on  $A_n^{\pm}$ . For multiplication, fix  $c,d \in A$ , and suppose we have  $a,b \in A$  such that

$$||a-c|| < \varepsilon$$
  $||b-d|| < \varepsilon$ 

for small  $\varepsilon > 0$ . Then we have

$$||ab - cd|| = ||ab - ad + ad - cd||$$

$$= ||a(b - d) + (a - c)d||$$

$$\leq ||a(b - d)|| + ||(a - c)d||$$

$$\leq ||a|| ||b - d|| + ||a - c|| ||d||$$

$$\leq (||a|| + ||d||)\varepsilon$$

$$\leq (||a - c + c|| + ||d||)\varepsilon$$

$$\leq (||a - c|| + ||c|| + ||d||)\varepsilon$$

$$\leq (\varepsilon + ||c|| + ||d||)\varepsilon$$

so multiplication is continuous at (c,d). For inversion,

**Exercise 4.3.** An algebra A is called a *matrix algebra* if there exists an isomorphism  $A \cong \operatorname{End}(V)$  for some vector space V. Which  $A_n^{\pm}$  are matrix algebras?

**Exercise 4.4.** Given a unital associative algebra *A* and left *A*-modules *M* and *N*, how would you form the direct sum? Can you tensor them? What if *A* was a super algebra and *M*, *N* super vector spaces?

**Exercise 4.5.** Let V be a vector space and  $b: V \times V \to V$  a bilinear form. We want to construct the Clifford algebra Cliff(V, b) as the "best" associative unital  $\mathbb{R}$ -algebra generated by V subject to the relation

$$v_1v_2 + v_2v_1 = 2b(v_1, b_2)1_A$$

where  $1_A$  denotes the multiplicative unit in A.

We claim that the above relation is equivalent to the relation  $v^2 = b(v, v)1_A$ . To see this, we first note that the above condition implies this when we take  $v_1 = v_2$ . Then for the other direction, consider

$$(v_1 + v_2)^2 = v_1 v_2 + v_2 v_1 + v_1^2 + v_2^2$$

JEFFREY JIANG

We then apply our relation, giving us

$$b(v_1 + v_2, v_1 + v_2) = v_1v_2 + v_2v_1 + b(v_1, v_1) + b(v_2, v_2)$$

$$\implies b(v_1 + v_2, v_1 + v_2) - b(v_1, v_1) - b(v_2, v_2) = v_1v_2 + v_2v_1$$

Then applying polarization, we arrive at the desired identity.

With this, we want to construct  $\operatorname{Cliff}(V,b)$  as the unital algebra satisfying our relation and subject to no others (other than bilinearity of multiplication). Therefore, we can consider the quotient of the tensor algebra  $\mathcal{T}(V)$  by the ideal  $(v^2-b(v,v))$  to construct  $\operatorname{Cliff}(V,b)$ . To characterize it, we think of it as the universal such algebra containing V subject to our relation. Since it is subject to no other relations, we expect this object to be *initial*. It should have a map into every other such algebra satisfying this relation. In other words, for every algebra A with an inclusion  $j:V\hookrightarrow A$  such that  $j(v_1)j(v_2)+j(v_2)j(v_1)=2b(v_1,v_2)1_A$ , we get a unique map  $\operatorname{Cliff}(V,b)\to A$  such that the following diagram commutes



We claim that this characterizes the Clifford algebra up to unique isomorphism. Let A be another algebra with map  $j:V\hookrightarrow A$  satisfying the same property we gave above. From the universal property of  $\mathrm{Cliff}(V,b)$ , we get a unique map  $\mathrm{Cliff}(V,b)\to A$ . Likewise, the inclusion  $V\hookrightarrow \mathrm{Cliff}(V,b)$  gives us a unique map  $A\to \mathrm{Cliff}(V,b)$ . We claim that these two maps are inverses. We note that both maps are given by  $v\mapsto j(v)$   $j(v)\mapsto v$  and extending to products and sums, so we have that they are inverses.

We now want to verify that the construction  $\mathcal{T}(V)/(v^2-b(v,v))$  satisfies this universal property, i.e. the Clifford algebra exists. Given an algebra A with a map  $j:V\hookrightarrow A$  satisfying  $j(v)^2-b(v,v)=0$ , define the map  $\mathcal{T}(V)\to A$  by  $v\mapsto j(v)$  and extending linearly and to products. Then the ideal  $(v^2-b(v,v))$  lies in the kernel of this map, so the map factors through uniquely through  $\mathcal{T}(V)/(v^2-b(v,v))$ , so it satisfies the property we laid out.