Aplicación para calcular la entropía de bits en iOS y Android

García García Jonathan Eduardo jgarciag1404@alumno.ipn.mx

Abstracto—Este documento es el reporte técnico, explicativo del proceso por el cúal se consiguio crear una aplicación que ejemplifique forma simple y didactica el calculo de la entropía de bits o entropía de Shannon

I. Fundamento teórico

En teória de la información, la entropía de una variable aleatoria es el promedio de la "información", "sorpresa" o "incierta" inherente a los posibles resultados de la variable. El concepto the entropía de la información fue introducido por en su artículo de 1948 "A Mathematical Theory of Communication" y frecuentemente es llamada entropía de Shannon en su honor.

Como ejemplo, considere una moneda con probabilidad p
 de caer en cara y probabilidad 1-p de caer en cruz. La entropía máxima es para
p=1/2, cuando no hay razón para esperar un resultado sobre otro, y en este caso, el lanzamiento de una moneda tiene una entropía de un bit.
 La entropía mínima es cuando
p=0o p=1, cuando el evento es conocido y la entropía es cero bits. Otros valores de p
 dan diferentes entropías entre cero y uno bits.

Fórmula:

$$H(X) = -\sum P(x_i) \log P(x_i)_{i=1}^n$$

Ejemplo.

Dada una variable discreta aleatoria , con posibles resultados , que ocurren con probabilidad la entropía de esta formalmente definida como: donde Sigma denota la suma de los posibles valores de la variable y log es el logaritmo, la elección de la base varía entre las diferentes aplicaciones. La base 2 da la unidad de bits (o "shannons"), mientras que la base e da las "unidades naturales" nat, y la base 10 da una unidad llamada "dits", "bans" o "hartleys".

II. Desarrollo

- A. Plataformas:
 - 1) iOS
 - 2) Android
- B. Framework:

Se opto por utilizar una tecnología de Desarrollo multiplataforma pues la interfaz es muy sencilla ademas de el poco tiempo de desarrollo y el deseo de abarcar dos plataformas donde y obtener exactamente el mismo resultado.

A pesar de esto se programarón funciones especificas siguiendo las reglas de cada plataforma como son:

- Acceso a la camara
- Acceso a la galeria de fotos
- Acceso a el sistema de archivos
- Vinculación de librería nativa escrita en C++ para el cálculo rápido y eficiente de la entropía

C. Calculando la entropía

Se opto por crear una librería dinámica en el caso de Android y una librería estática para el caso de ios ambas escritas en C++ Este procedimiento es llamado desde el

```
Bvoid CalculateTotalEntropy(EntropyLibrary* handle)
{
    handle->TotalEntropy = 0;
    unsigned long TotalSymbols = 0;
    for (unsigned long i = 0; i < handle->Symbols.size(); i++)
    {
        Symbol* symbol = handle->Symbols[i];
        TotalSymbols += symbol->Count;
}

for (unsigned long i = 0; i < handle->Symbols.size(); i++)
    {
        Symbol* symbol = handle->Symbols.size(); i++)
        {
              Symbol* symbol = handle->Symbols[i];
              long double count = symbol->Count;
              symbol->Frecuency = count / TotalSymbols;
              handle->TotalEntropy += (symbol->Frecuency * log2(1 / symbol->Frecuency));
        }
}
```

código de alto nivel para obtener el resultado de la entrópia y los simbolos, así como las probabilidades de cada uno mediante el uso de punteros.

Al final de el cálculo toda la memoria "insegura" es propiamente liberada. Igualmente se tiene acceso a una

```
public static float Calculate(params float[] Probabilities)
{
    IntPtr array = Marshal.AllocHGlobal(sizeof(float) * Probabilities.Length);
    Marshal.Copy(Probabilities, 0, array, Probabilities.Length);
    float ent = (float)Math.Round((EntropyLibraryWrapper.Calculate(array, Probabilities.Length) * 100));
    if (ent > 100)
    {
        ent = 100;
    }
    return ent;
}
```

libreria gráfica para el calculo de histograma y entropía por imagen

D. Capturas de pantalla de código

1) Pantalla principal

2) Pantalla para ingresar texto y calcular la entropía

3) Resultados del de la entropía del texto

12:08 🚨 😝 🕅 🕒	७ ≭	·□· ‡▼⊿ 🗎 53 %
← Results		
Entropia total: 4.30		
Character	Count	Frecuency
L	1	0.04 %
0	143	5.67 %
٧	17	0.67 %
е	236	9.36 %
	8	0.32 %
	8	0.32 %
н	3	0.12 %
Т	6	0.24 %
h	118	4.68 %
r	95	3.77 %
	474	18.80 %
1	9	0.36 %
С	28	1.11 %
1	97	3.85 %
k	16	0.63 %
i	130	5.16 %
n	131	5.20 %
t	192	7.62 %
m	40	1.59 %
g	50	1.98 %
	14	0.56 %
S	145	5.75 %
f	34	1.35 %
Α	2	0.08 %
p	30	1.19 %
а	166	6.58 %
<		

4) Entropía de una imagen

5) Resultados del de la entropía de una imagen

6) Fundamento teórico

7) Relación entre la probabilidad de dos eventos y la entropía total

III. Disponible como "Shannon Entropy" en:

AppStore

PlayStore

El código puede consultarse en Github