Probabilités

Chapitre 3 : Concentration de la mesure

Lucie Le Briquer

Sommaire

T	Introduction	1
2	Fonctions de concentration	3
3	Concentration ensembliste et concentration des fonctions Lipschitziennes	4
4	De log-Sobolev à la concentration	6
5	Vecteurs gaussiens	7
6	Applications : opérateurs et matrices Gaussiennes	9

Introduction 1

On travaille sur \mathbb{R}^n en ayant en tête que n est grand. On note \mathcal{B}_2^n la boule Euclidienne de rayon $1\ (B_2^n=\{\|x\|_2\leq 1\}).$

Un calcul (en TD) vous montrera que si on cherche le rayon $r_n > 0$ tel que $Vol(r_n \mathcal{B}_2^n) = 1$ alors $r_n \sim c \sqrt{n}$ (où c est une constante nmérique.)

$$\operatorname{Vol}(\mathcal{B}) = 1$$
. Si $r < r_n$, $\operatorname{Vol}(r\mathcal{B}_2^n) = \operatorname{Vol}(\frac{r}{r_n}\mathcal{B}) = (\frac{r}{r_n})^n \xrightarrow[n \to +\infty]{} 0$

$$\begin{aligned} \operatorname{Vol}(\mathcal{B}) &= 1. \text{ Si } r < r_n, \operatorname{Vol}(r\mathcal{B}_2^n) = \operatorname{Vol}(\frac{r}{r_n}\mathcal{B}) = (\frac{r}{r_n})^n \xrightarrow[n \longrightarrow +\infty]{} 0 \\ \operatorname{Si par exemple} & r = (1 - \varepsilon)r_n \text{ avec } \varepsilon \in [0, 1] \text{ on a } (\frac{r}{r_n})^n \sim (1 - \varepsilon)^n \xrightarrow[n \longrightarrow +\infty]{} 0 \text{ très vite.} \end{aligned}$$

La boule de rayon $(1-\varepsilon)r_n$ est de volume presque nul (en grande dimension). Toute la masse est concentrée dans une couronne finie.

Regardons $\mathcal{B}_{\infty}^{n} = [-1, 1]^{n}$. Dans \mathcal{B}_{∞}^{n} il y a des points de la forme $(\pm 1, ..., \pm 1)$ qui sont à distance (Euclidienne) \sqrt{n} de l'origine, donc très éloignés de l'origine. D'autre part, on a des points comme (1, 0, ..., 0) qui sont à distance 1 de l'origine.

$$\operatorname{Vol}(\mathcal{B}_{\infty}^n) = 2^n$$

$$r < r_n \sim \sqrt{n}$$
 $\operatorname{Vol}((r\mathcal{B}_2^n) \cap \mathcal{B}_{\infty}^n) \le \operatorname{Vol}(r\mathcal{B}_2^n) \xrightarrow[n \to +\infty]{} 0$

Ainsi toute la masse du cube est concentrée autour des sommets.

Soit $\mathcal{A} \subseteq \mathbb{R}^n$ compact. Définissons l'épaissi t de \mathcal{A} comme :

$$\mathcal{A}_t = \{x \in \mathbb{R}^n | d(x, \mathcal{A}) < t\}$$
$$= \mathcal{A} + t\mathcal{B}_2^n$$
$$= \{x + ty | x \in \mathcal{A} \text{ et } y \in \mathcal{B}_2^n\}$$

Soit $\mathcal{A} \subseteq \mathbb{R}^n$, soit \mathcal{B} la boule Euclidienne ayant le même volume que \mathcal{A} (Vol $(\mathcal{A}) = \text{Vol}(\mathcal{B})$)

$$\begin{aligned} \operatorname{Vol}(\mathcal{A}_t)^{1/n} &= \operatorname{Vol}(\mathcal{A} + t\mathcal{B}_2^n)^{1/n} \\ &\geq \operatorname{Vol}(\mathcal{A})^{1/n} + \operatorname{Vol}(t\mathcal{B}_2^n)^{1/n} & \operatorname{Brunn-Minkowski} \text{ (TD)} \\ &= \operatorname{Vol}(\mathcal{B})^{1/n} + \operatorname{Vol}(t\mathcal{B}_2^n)^{1/n} \end{aligned}$$

Si $\mathcal{B} = r\mathcal{B}_2^n$ (i.e. \mathcal{B} est de rayon r)

$$\operatorname{Vol}(\mathcal{A}_t) = r \operatorname{Vol}(\mathcal{B}_2^n)^{1/n} + t \operatorname{Vol}(\mathcal{B}_2^n)^{1/n}$$
$$= (r+t) \operatorname{Vol}(\mathcal{B}_2^n)^{1/n}$$
$$= \operatorname{Vol}(\underbrace{(r+t)\mathcal{B}_2^n}_{\mathcal{B}_t})^{1/n}$$

On a montré que $\operatorname{Vol}(\mathcal{A}_t)^{1/n} \geq \operatorname{Vol}(\mathcal{B}_t)^{1/n}$

Si on définit $\operatorname{Vol}(\partial \mathcal{A}) = \liminf_{t \to 0} \frac{\operatorname{Vol}(\mathcal{A} + t\mathcal{B}_2^n) - \operatorname{Vol}(\mathcal{A})}{t}$, on vient de montrer que $\operatorname{Vol}(\partial \mathcal{A}) \geq \operatorname{Vol}(\partial \mathcal{B})$ (où \mathcal{B} boule Euclidienne de même volume que \mathcal{A}).

À volume fixé, les boules Euclidiennes sont celles qui ont la plus petite mesure de bord. On appelle ceci inégalité isopérimétrique.

Ici on a travaillé sur \mathbb{R}^n , avec la métrique Euclidienne et la mesure de Lebesgue, on pourrait étudier ce phénomène dans d'autres cas.

Donnons un autre exemple : prenons S^{n-1} la sphère unité de \mathbb{R}^n . On munit S^{n-1} de la métrique géodésique (i.e. d(x,y) correspond au plus petit arc les reliant).

Il existe une unique mesure sur S^{n-1} invariante par rotation.

On définit pour $A \subseteq S^{n-1}$:

$$\tilde{\sigma} = \text{Vol}(\{tu|t \in [0,1], u \in A\})$$

On prend $\mu = \frac{\tilde{\sigma}}{\tilde{\sigma}(S^{n-1})}$ mesure de probabilité.

Phénomène isopérimétrique démontré par Lévy : "À mesure fixée, les coupes sphériques sont celles qui ont le plus petit périmètre."

 $\forall A \subseteq S^{n-1}$, et B une coupe sphérique telle que $\mu(A) = \mu(B)$ alors $\mu(A_t) \ge \mu(B_t)$.

Ainsi si A est telle que $\mu(A) \ge \frac{1}{2}$ alors en prenant B au moins une demi-sphère, et en calculant on trouve :

$$\mu(A_t^C) \le e^{-\frac{(n-1)t^2}{2}}$$

On voit le lien entre inégalité isopérimétrique et phénomène de concentration. Si A a beaucoup de masse $(\geq \frac{1}{2})$, alors dès qu'on s'éloigne de A, la masse décroît très rapidement.

2 Fonctions de concentration

Définition 1 (espace métrique de probabilité) -

Un triplet (X,d,μ) est un espace métrique de probabilité (epm) si (X,d) est un espace métrique et μ est une probabilité.

Remarque.

La tribu borélienne sur X est la plus petite tribu engendrée par les ouverts de X.

Exemples.

- $-S^{n-1}$ muni de la métrique géodésique et de la probabilité μ définie dans l'introduction
- \mathbb{R}^n muni de la métrique Euclidienne et de la mesure Gaussienne γ_n
- Ω_n muni de la métrique de Hamming et de la mesure uniforme σ_n

- **Définition 2** (r-voisinage) —

Si (X,d) est un espace métrique, on définit le r-voisinage de tout ensemble $A\subseteq X$ par :

$$A_r = \{ x \in X \mid d(x, A) < r \}$$

et donc $A_r^C = \{x \in X \mid d(x, A^C) \ge r\}$

- **Définition 3** (fonction de concentration) —

Soit (X, d, μ) un espace métrique de probabilité. La fonction de concentration $\alpha_{(X,d,\mu)}$ de (X,d,μ) est donnée par :

$$\forall r > 0, \quad \alpha_{(X,d,\mu)}(r) = \sup \left\{ \mu(A_r^C) \mid A \subseteq X, \mu(A) \ge \frac{1}{2} \right\}$$

Remarques.

- La fonction de concentration est la meilleure (la plus petite) fonction $\alpha: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ telle que $\forall \subseteq X$ et $\forall r \ge 0, \mu(A_r^C) \le \alpha(r), \mu(A) \ge \frac{1}{2}$
- Si $r > \text{Diam}(X, d) = \sup\{d(x, y) \mid x, y \in X\}$ alors $\alpha_{(X, d, \mu)}(r) = 0$
- Si $r \longrightarrow +\infty$ on devrait avoir $\alpha_{(X,d,\mu)}(r) \longrightarrow 0$
- $\alpha_{(X,d,\mu)}$ sert juste à majorer $\mu(A_r^C)$. On s'intéresse alors à trouver des majorations de α et non la calculer explicitement.
- On notera parfois α_{μ} à la place de $\alpha_{(X,d,\mu)}$

Définition 4 (concentration Gaussienne / exponentielle) -

 (X,d,μ) a une concentration Gaussienne (respectivement exponentielle) si $\exists~c,C>0$ (constantes) telles que :

$$\alpha_{(X,d,\mu)}(r) \leq C e^{-cr^2} \qquad \quad (\text{respectivement } \alpha_{(X,d,\mu)}(r) \leq C e^{-cr})$$

3 Concentration ensembliste et concentration des fonctions Lipschitziennes

Remarque.

Pour (X,d) un EPM, $f: X \longrightarrow \mathbb{R}$ est Lipschitzienne si $\exists c$ telle que :

$$\forall x, y \in X, \quad |f(x) - f(y)| \le cd(x, y)$$

On définit $\|f\|_{Lip}$ la meilleure (plus petite) constante c pour laquelle on a cette relation. f est 1-Lipschitzienne si $\|f\|_{Lip} \le 1$

- **Définition 5** (médiane) —

Si f est μ -intégrable on dit que $m_f \in \mathbb{R}$ est une médiane de f si :

$$\mu(\{f \le m_f\}) \ge \frac{1}{2}$$
 et $\mu(\{f \ge m_f\}) \ge \frac{1}{2}$

- **Proposition 1** (conc. ensembliste \Rightarrow conc. des fonctions Lip autour de la médiane) -

 (X, d, μ) EMP avec une fonction de concentration α_{μ}

Alors $\forall f: X \longrightarrow \mathbb{R}$ Lip de médiane m_f , on a :

$$\mu(\{f \le m_f - r\}) \le \alpha_\mu \left(\frac{r}{\|f\|_{Lip}}\right) \quad \text{et} \quad \mu(\{f \ge m_f + r\}) \le \alpha_\mu \left(\frac{r}{\|f\|_{Lip}}\right)$$

Ainsi:

$$\mu(\{|f - m_f| \ge r\}) \le 2\alpha_\mu \left(\frac{r}{\|f\|_{Lip}}\right)$$

Preuve.

On peut supposer que $||f||_{Lip}=1$. Soit $A=\{f\leq m_f\}$, par définition de m_f , on a $\mu(A)\geq \frac{1}{2}$. Calculons A_r :

$$A_r = \{ x \in X | d(x, A) < r \} \subset \{ x \in X | f(x) < m_f + r \}$$

Donc $A_r^c \supset \{x \in X, f(x) \ge m_f + r\}$. Concentration ensembliste $\Rightarrow \mu(A_r^c) \le \alpha(r)$. Les autres cas s'en déduisent de manière similaire.

Proposition 2 (réciproque) —

 (X,d,μ) un e.m.p et $\alpha:\mathbb{R}_+\to\mathbb{R}_+$ tel que $\forall f:X\to\mathbb{R}$ lipschitzienne de médiane $m_f,\,\forall r>0$ on a :

$$\mu(\{f \ge m_f + r\}) \le \alpha \left(\frac{r}{\|f\|_{Lip}}\right)$$

Alors pour tout $A \subseteq X$ tel que $\mu(A) \ge \frac{1}{2}$, on a

$$\forall r > 0, \mu(A_r^c) \leq \alpha(r)$$

Ainsi $\alpha_{(X,d,\mu)} \leq \alpha$

Preuve.

Soit $A \subseteq X$ tel que $\mu(A) \ge \frac{1}{2}$. On prend f(x) = d(x, A), alors f est 1-Lip (par l'inégalité triangulaire).

$$A_r = \{x | d(x, A) < r\} = \{f < r\} \text{ et } A \subseteq \{f = 0\}$$

 $\mu(A) \geq \frac{1}{2} \Rightarrow \mu(\{f=0\}) \geq \frac{1}{2} \Rightarrow 0$ est une médiane de f

$$\mu(A_r^c) = \mu(\{f \ge r\}) = \mu(\{f \ge m_f + r\}) \le \alpha(r)$$

Proposition 3

 (X, d, μ) e.m.p et $\alpha : \mathbb{R}_+ \to \mathbb{R}_+$ tel que $\forall f$ Lip, on a :

$$\mu\left(f \ge \int f d\mu + r\right) \le \alpha\left(\frac{r}{\|f\|_{Lip}}\right), \forall r \ge 0$$

Alors, $\forall A \subseteq X$ tel que $\mu(A) > 0$, on a :

$$\mu(A_r^c) \le \alpha(\mu(A)r)$$

Ainsi, si α décroissante, on a $\alpha_{(X,d,\mu)} \leq \alpha(\frac{r}{2})$

Preuve.

Soit $A \subseteq X$, $\mu(A) > 0$. Soit r > 0. Prenons $F_r(x) = \min(d(x, A), r)$ qui est 1-Lip.

$$\int F_r d\mu = \int_{A^c} F_r d\mu \le r\mu(A^c)$$

$$\mu(A_r^c) = \mu(\{F \ge r\}) = \mu(\{F \ge r\mu(A^c) + r\mu(A)\}) \le \mu\left(\{F \ge \int F d\mu + r\mu(A)\}\right)$$

Donc $\mu(A^c) \le \alpha(r\mu(A))$

4 De log-Sobolev à la concentration

Théorème

 $(\mathbb{R}^n, \|.\|_2, \mu)$ emp satisfaisant ILS_c alors :

$$\forall f \ 1 - \text{lipschitzienne}, \quad \mu\left(\left\{f \geq \int f d\mu + r\right\}\right) \leq e^{-r^2/c}$$

en particulier, l'espace a une concentration Gaussienne.

Preuve.

Soit f 1-Lipschitzienne ; on peut supposer que f est différentiable et que $|\nabla f| \leq 1$. Soit $\lambda \in \mathbb{R}$ et $g(x) = \exp\left(\frac{\lambda f(x)}{2}\right)$.

$$\operatorname{ISL}_{c} \grave{a} g \qquad \operatorname{Ent}_{\mu}(g^{2}) \leq c \int |\nabla g|^{2} d\mu$$

$$\operatorname{Ent}(g^{2}) = \int g^{2} \ln g^{2} d\mu - \int g^{2} d\mu \ln \int g^{2} d\mu$$

$$= \int \lambda f e^{\lambda f} d\mu - \int e^{\lambda f} d\mu \ln \int e^{\lambda f} d\mu$$

À finir.

Corollaire

L'espace Gaussien a une concentration Gaussienne. Plus précisément :

$$\forall f \ 1 - \text{lipschitzienne}, \quad \mu\left(\left\{f \geq \int f d\mu + r\right\}\right) \leq e^{-r^2/2}$$

- Théorème

 $\forall f: \{-1,1\}^n \longrightarrow \mathbb{R}$, on définit :

$$v = \max_{x \in \{-1,1\}^n} \frac{1}{2} \sum_{i=1}^n (f(x) - f(\tau_i(x)))^2$$

On a

$$\sigma_n\left(\left\{f \ge \int f d\sigma_n + r\right\}\right) \le e^{-r^2/v}$$

 σ_n mesure uniforme sur le cube discret.

Cours du 31 mars

5 Vecteurs gaussiens

Définition 6 (vecteur gaussien) —

On dit que $X \in \mathbb{R}^n$ est un vecteur gaussien si $\forall \theta \in S^{n-1}, <\theta | X>$ est une gaussienne.

Proposition 4 ——

Si $X = (X_1, \dots, X_n)$ avec $\{X_i\}$ indépendantes gaussiennes, alors X est un vecteur gaussien.

Preuve.

 $\forall \theta \in S^{n-1}, <\theta | X> = \sum_{i=1}^n \theta_i X_i$ est une somme de gaussiennes indépendantes donc est gaussien.

Remarque.

X Gaussien standard \Rightarrow ses coordonnées sont Gaussiennes indépendantes.

Définition 7 (covariance) —

On appelle covariance du vecteur $X=(X_1,\ldots,X_n)$ la matrice $\Sigma\in\mathcal{M}_n\mathbb{R}$ définie par $\Sigma_{i,j}=\mathrm{Cov}(X_i,X_j)$

Remarque.

 Σ est symétrique et a pour diagonale les variances.

Pour simplifier, on va supposer que X est centrée : $(\mathbb{E}(X_i, X_j))_{\{i,j\}} = \mathbb{E}(X^t X)$ est donc positive.

- Proposition

X vecteur aléatoire de matrice de covariance Σ $n \times n$. A $k \times n$. Alors AX vecteur gaussien de matrice de covariance $A\Sigma A^k$.

Proposition

A matrice symétrique définie positive. Alors la loi du vecteur Gaussien centré de matrice de covariance A a une densité / mesure de Lesbesgue de \mathbb{R}^n donnée par :

$$\frac{1}{(\sqrt{2\pi})^k \sqrt{\det A}} \exp\left(-\frac{1}{2} < A^{-1}x, x > \right)$$

Proposition

X Gaussien centré dans \mathbb{R}^n , matrice de covariance Σ . Si θ_1, θ_2 sont 2 directions $\in S^{n-1}$ alors $\langle X, \theta_1 \rangle$ et $\langle X, \theta_2 \rangle$ sont indépendates ssi $\theta_1 \perp \theta_2$ ($\Leftrightarrow \text{cov}(\langle X, \theta_1 \rangle, \langle \theta_2, X \rangle) = 0$).

6 Applications : opérateurs et matrices Gaussiennes

G une matrice $N \times n$ dont les entrées sont des variables aléatoires Gaussiennes i.i.d. $\mathcal{N}(0,1)$. On peut aussi voir G comme un vecteur Gaussien dans \mathbb{R}^{nN} .

$$G: \mathbb{R}^n \longrightarrow \mathbb{R}^N$$

On cherche l'action de l'application G. Regardons G comme un opérateur :

$$G: l_2^n \longrightarrow l_2^N$$

où $l_2^n = (\mathbb{R}^n, \|.\|_2)$

 $\forall x \in S^{n-1}$:

$$Gx = \sum_{i=1}^{N} \langle x, L_i(G) \rangle e_i = \begin{pmatrix} \vdots \\ \langle x, L_i(G) \rangle \\ \vdots \end{pmatrix}_N$$

Gx est un vecteur Gaussien standard (i.e. $\mathcal{N}(0, Id)$) car :

$$\mathbb{E}(\langle L_i(G), x \rangle) = 0$$

$$\mathbb{E}(\langle L_i(G), x \rangle^2) = ||x||_2^2 = 1$$

donc Gx a des entrées indépendantes $\sim \mathcal{N}(0,1) \Rightarrow Gx \sim \mathcal{N}(0,Id_{\mathbb{R}^N})$.

Si on s'intéresse à G en tant qu'opérateur de l_2 dans l_2 on aimerait trouver α et β tels que :

$$\forall x \in \mathbb{R}^n, \qquad \alpha \left\| x \right\|_2 \leq \left\| Gx \right\|_2 \leq \beta \left\| x \right\|_2$$

$$\mathbb{E}(\|Gx\|_{2}^{2}) = \sum_{i=1}^{N} \mathbb{E}(\langle L_{i}(G), x \rangle^{2}) = N \|x\|_{2}^{2}$$

or
$$\mathbb{E}(\|Gx\|_2^2) = \mathbb{E}(x^t G^t G x)$$

De plus:

$$G^{t}G = \begin{pmatrix} \vdots & & \vdots \\ L_{1}(G) & & L_{N}(G) \\ \vdots & & \vdots \end{pmatrix} \begin{pmatrix} \dots & L_{1}(G) & \dots \\ & & & \\ \dots & L_{N}(G) & \dots \end{pmatrix} = \sum_{i=1}^{N} L_{i}(G)L_{i}(G)^{t}$$

Donc:

$$\mathbb{E}(G^t G) = \sum_{i=1}^N \mathbb{E}(L_i(G)L_i(G)^t)$$
$$= \sum_{i=1}^N \text{Cov}(L_i(G))$$
$$= NId_{\mathbb{R}^n}$$

On a de façon similaire : $\mathbb{E}(GG^t) = nId_{\mathbb{R}^N}$

Le β correspond à la norme de G où :

$$\|G\| = \|G\|_{2 \to 2} = \sup_{\|x\|_2 \le 1} \|Gx\|_2 = \sup_{\|x\|_2 \le 1} \sqrt{< Gx, Gx>} = \sup_{\|x\|_2 \le 1} \sqrt{< G^*Gx, x>} = \lambda_{\max}((G^*G)^{1/2})$$

De la même façon α correspondrait à :

$$\inf_{\|x\|_2=1} \|Gx\|_2 = \lambda_{\min}((G^*G)^{1/2})$$

Définition 8 (valeurs singulières) –

Étant donnée une matrice A de $N \times n$, on définit les valeurs singulières de A (et on note $s_i(A)$) les valeurs propres de $(A^*A)^{1/2}$

Remarques.

- si A est symétrique, les valeurs singulières de A sont les valeurs absolues des valeurs propres.
- les valeurs singulières sont une interprétation géométrique puisqu'on vient de voir que $\forall x \in \mathbb{R}^n$:

$$s_{\min}(A) \|x\|_2 \le \|Ax\|_2 \le s_{\max}(A) \|x\|_2$$

- A injective $\Leftrightarrow s_{\min}(A) > 0$ du coup si n > N, $s_{\min}(A) = 0$ et le nombre de valeurs singulières non nulles est égal au rang de A

Supposons que $n \leq N$, on a :

$$s_{\min}(A)B_2^N \subseteq AB_2^N \subseteq s_{\max}(A)B_2^N$$

(si $y \in AB_2^n$, y = Ax avec $x \in B_2^n$ donc $||Ax||_2 \le s_{\max}(A)$ d'où $y = Ax \in s_{\max}(A)B_2^N$ si $s_{\min}(A) = 0$, rien à dire ; sinon A est inversible, on fait comme au dessus)

Définition 9 (nombre de conditionnement) -

Le nombre de conditionnement de A est :

$$\kappa(A) = \frac{s_{\max}(A)}{s_{\min}(A)}$$

Remarque.

- si $\kappa(A) = 1$ alors A est multiple d'une isométrie (i.e. application qui conserve les normes)
- si $\kappa(A)$ est proche de 1 (ou d'une constante = ne dépend pas de la dimension) on dit que A est bien conditionnée

Reprenons G. On a $\mathbb{E}(G^*G) = NId_{\mathbb{R}^n}$ donc en moyenne G est une isométrie. Montrons maintenant que G est une isométrie avec une grande probabilité à l'aide des inégalités de concentration.

Proposition 5 ——

 $G\ N\times n$ Gaussienne. On note :

$$m = \int_{\mathbb{R}^N} \|x\| \, d\gamma_N(x) \qquad \text{où } \|.\| \text{ est n'importe quelle norme}$$
$$= \mathbb{E}(\|g\|) \quad \text{où } g \sim \mathcal{N}(0, Id_{R^N})$$
$$= \mathbb{E}(\|Gu\|) \quad \forall u \in S^{n-1}$$

Soit b>0 tq $\|.\|\leq b\,\|.\|_2$. Alors $\forall S$ ensemble fini de $\mathbb{R}^n,$ on a :

$$\mathbb{P}\left(\left\{\forall y \in S, (1-\varepsilon)m \left\|y\right\|_{2} \leq \left\|Gy\right\| \leq (1+\varepsilon)m \left\|y\right\|_{2}\right\}\right) \geq 1 - 2|S| \exp\left(-\frac{m^{2}\varepsilon^{2}}{4b^{2}}\right)$$

Preuve.

 $\forall y\in S^{n-1}, \text{ posons } E_y=\{\|\|Gy\|-m\|y\|_2\|>\varepsilon m\|y\|_2\}=\{\|\|Gy\|-\mathbb{E}(\|Gy\|)\|>\varepsilon m\}.$ On cherche à montrer que :

$$\mathbb{P}\left(\bigcap_{y\in S} \overline{E_y}\right) \ge 1 - 2|S| \exp\left(-\frac{m^2 \varepsilon^2}{4b^2}\right)$$

 $(\mathbb{R}^N, \gamma_N, \|.\|_2)$ est un espace Gaussien (il a une concentration Gaussienne). Soit $f: \left\{ \begin{array}{ccc} \mathbb{R}^N & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \|x\| \end{array} \right.$ est b-Lipschitzienne. Donc :

$$\gamma_N\left(\left\{\left|f(x)-\int fd\gamma_N\right|>r
ight\}
ight)\leq 2\exp\left(-rac{r^2}{2b^2}
ight)$$

Donc:

$$\mathbb{P}(E_y) = \mathbb{P}(\{|\left\|Gy\right\| - m\left\|y\right\|_2| > \varepsilon m\left\|y\right\|_2\}) \leq 2\exp\left(-\frac{\varepsilon^2 m^2}{2b^2}\right)$$

D'où:

$$\mathbb{P}\left(\bigcup_{y \in S} E_y\right) \le 2|S| \exp\left(-\frac{\varepsilon^2 m^2}{2b^2}\right)$$

Remarques.

- ceci redonne le lemme de Johnson-Linderstrauss
- si $\|.\|=\|.\|_2,$ alors b=1 et $m=\mathbb{E}\|y\|_2$ ($\leq (\mathbb{E}(\|y\|_2^2)^{1/2})$ de l'ordre de \sqrt{n}

Retour à notre but : estimer les valeurs singulières de ${\cal G}.$ On aimerait que :

$$(1 - \varepsilon) \le s_{\min}(G) \le s_{\max}(G) \le 1 + \varepsilon$$
$$(1 - \varepsilon) \le \inf_{s \in S^{n-1}} \|Gx\|_2 \le \sup_{s \in S^{n-1}} \|Gx\|_2 \le 1 + \varepsilon$$

- Définition 10 (réseau) ————

Pour $\varepsilon>0,$ on dit qu'un ensemble fini $S\subseteq S^{n-1}$ est un $\delta\text{-réseau}$ de S^{n-1} si :

$$\forall x \in S^{n-1}, \exists y \in S \text{ tq } ||x - y||_2 \le \delta$$

Lemme 6

 $\forall \delta>0,$ on peut trouver S un $\delta\text{-réseau tel que }|S|\leq \left(1+\frac{2}{\delta}\right)^n$

Preuve.

 $S=\{y_1,...,y_s\}\subset S^{n-1}$ un ensemble δ -séparé (i.e. $\forall i\neq j, \|y_i-y_j\|_2>\delta)$ et maximal (i.e. $\forall y\in S^{n-1},\,S\cup\{y\}$ n'est pas δ -séparé).

Smaximal $\Rightarrow S$ est un $\delta\text{-réseau}$

Les boules $\mathcal{B}(y_i, \delta/2)$ sont disjointes.

$$\bigcup_{i=1}^{s} \mathcal{B}(y_i, \delta/2) \subseteq \mathcal{B}(0, 1 + \delta/2)$$

$$\operatorname{Vol}\left(\bigcup_{i=1}^{s} \mathcal{B}(y_i, \delta/2)\right) \leq \operatorname{Vol}(\mathcal{B}(0, 1 + \delta/2))$$

$$\sum_{i=1}^{s} \operatorname{Vol}(\mathcal{B}(y_i, \delta/2)) \leq \operatorname{Vol}(\mathcal{B}(0, 1 + \delta/2))$$

$$s \operatorname{Vol}(\mathcal{B}_2(0, \delta/2)) \leq \operatorname{Vol}(\mathcal{B}_2(0, 1 + \delta/2))$$

Théorème 7

 $G \ N \times n$ avec n < c N où $c \ll 1$ est une constante. On a :

$$\mathbb{P}\left(c_1\sqrt{n} \le s_{\min}(G) \le s_{\max}(G) \le c_2\sqrt{n}\right) \ge 1 - e^{-cN}$$

où c_1, c_2 sont des constantes universelles. Donc G est bien conditionnée.

Preuve.

Soit $\varepsilon \in [0,1]$.

$$(1 - \varepsilon)m \le s_{\min}(G) \le s_{\max}(G) \le (1 + \varepsilon)m$$

où $m = \mathbb{E}(\|g\|_2)$ où $g \sim \mathcal{N}(0, Id_{\mathbb{R}_N})$

$$\Leftrightarrow | \|Gx\|_2 - m| \le \varepsilon \quad \forall x \in S^{n-1}$$

On doit montrer que:

$$\Gamma = \mathbb{P}\left(\exists x \in S^{n-1}/|\|Gx\|_2 - m| > \varepsilon m\right) \quad \text{est petite}$$

$$\leq \mathbb{P}\left(\exists x \in S^{n-1}/|\|Gx\|_2 - m| > \varepsilon m \text{ et } \|G\| \leq (1+\varepsilon)m\right) + \mathbb{P}(\|G\| > (1+\varepsilon)m)$$

Soit S un δ -réseau de S^{n-1} (δ spécifié plus tard). Soit $x \in S^{n-1}$ tel que $|\|Gx\|_2 - m| > \varepsilon m$. Soit $y \in S$ tl que $\|x - y\|_2 \le \delta$

$$\begin{split} | \left\| Gy \right\|_2 - m | &= | \left\| Gx - G(x-y) \right\|_2 - m | \\ &\geq | \left\| Gx \right\|_2 - m | - \left\| G(x-y) \right\|_2 \\ &\geq \varepsilon m - (1+\varepsilon) m \delta \\ \text{d'où} \quad | \left\| Gy \right\|_2 - m | > (\varepsilon - (1+\varepsilon) \delta) m \end{split}$$

De plus:

$$||G|| \le (1+\varepsilon) \Rightarrow \exists x \in S^{n-1} \text{ tq } ||G|| = ||Gy|| \ge (1+\varepsilon)m$$

Soit $y \in S$ tel que $||x - y||_2 \le \delta$, $||Gy|| = ||Gx - G(x - y)|| \ge ||Gx|| - ||G|| \delta = (1 - \delta) ||Gx||$.

Donc:

$$\Gamma \leq \mathbb{P}\Big(\exists y \in S/|\left\|Gy\right\|_2 - m| > (\varepsilon - (1+\varepsilon)\delta)m\Big) + \mathbb{P}\Big(\exists y \in S/\left\|Gy\right\|_2 - m \geq (1+\varepsilon)(1-\delta)m\Big)$$

Prenons $\delta = \varepsilon/3$ (on a modifié une inégalité, prendre un bon delta)

$$\Gamma \leq 2 \sum_{y \in S} \mathbb{P}\left(\left| \left\| Gy \right\|_2 - 1 \right| \geq \frac{\varepsilon m}{3} \right)$$

Pareil que dans la proposition : on trouve $N = n(\varepsilon)$ pour avoir presque une isométrie.

- **Théorème 8** (Dvoretsty) -----

 $E=(\mathbb{R}^n,\|.\|)$; $\kappa(E)=\left(\frac{m}{b}\right)^2$ où b est la constante de Lipschitz de $\|.\|$ par rapport à $\|.\|_2$ et $m=\int\|x\|\,d\gamma_n(x).$ Alors :

 $\forall \varepsilon \in [0,1], \text{ on a}:$

$$l_2^{\kappa} \stackrel{1+\varepsilon}{\hookrightarrow} E \quad \text{avec} \quad \kappa = \frac{c\varepsilon^2}{\ln(1+\frac{1}{\varepsilon})} \kappa(E)$$

i.e. $\exists T : \mathbb{R}^n \longrightarrow \mathbb{R}^{\kappa}$ tel que :

$$(1-\varepsilon)\mathcal{B}_2^{\kappa} \subseteq T(\mathcal{B}_E) \subseteq (1+\varepsilon)\mathcal{B}_2^{\kappa}$$

Remarque.

 $\forall K$ convexe, sym, compacte d'intérieur non vide

$$(1-\varepsilon)\mathcal{B}_2^{\kappa} \subseteq K \cup F_{dim\kappa} \subseteq 1 + \varepsilon \mathcal{B}_2^{\kappa}$$

 $\kappa(E) \ge \log n$