

Sequence Listing

<110> Goddard, Audrey
Godowski, Paul J.
Gurney, Austin L.
Watanabe, Colin K.
Wood, William I.

<120> NOVEL POLYPEPTIDES HAVING SEQUENCE SIMILARITY TO CYTOKINE RECEPTORS AND NUCLEIC ACIDS ENCODING THE SAME

<130> P3121R1

<140> US 09/964,994
<141> 2001-09-26

<150> PCT/US00/08439
<151> 2000-03-30

<150> PCT/US01/06520
<151> 2001-02-28

<150> US 60/191,015
<151> 2000-03-21

<150> US 09/941,992
<151> 2001-08-28

<160> 7

<210> 1
<211> 1318
<212> DNA
<213> Homo Sapien

<400> 1
cagtttcttc atctgtaaca tcaaatgaat aataatacca atctcctaga 50
cttcataaga ggattaacaa agacaaaata tggaaaaaac ataacatggc 100
gtcccataat tattagatct tattattgac actaaaatgg cattaaaatt 150
acccaaagga agacagcatc tgtttcctct ttggcctga gctggtaaa 200
aggAACACTG gttgcctgaa cagtacact tgcaaccatg atgcctaacc 250
attgctttct aggcttcctc atcagttct tccttactgg ttagcagga 300
actcagtcaa cgcatgagtc tctgaaggct cagagggtac aatttcagtc 350
ccgaaatttt cacaacattt tgcaatggca gcctgggagg gcacttaactg 400
gcaacagcag tgtctatTTT gtgcagtaca aaatcatgtt ctcatgcagc 450
atgaaaagct ctcaccagaa gccaaGTgga tgctggcagc acatttcttg 500
taacttccca ggctgcagaa cattggctaa atatggacAG agacaatgga 550
aaaataaaaga agactgtgg ggtactcaag aactctcttg tgaccttacc 600
agtgaaacct cagacataca ggaaccttat tacgggaggg tgagggcggc 650
ctcggtctggg agctactcag aatggagcat gacGCCGCGG ttcactccct 700

ggggaaaaac aaaaatagat cctccagtca tgaatataac ccaagtcaat 750
ggctttgt tggtaattct ccatgctcca aatttaccat atagataccca 800
aaaggaaaaa aatgtatcta tagaagatta ctatgaacta ctataccgag 850
tttttataat taacaattca ctagaaaagg agcaaaaggt ttatgaaggg 900
gctcacagag cggtgaaat tgaagctcta acaccacact ccagctactg 950
tgttagtgct gaaatatatc agcccatgtt agacagaaga agtcagagaa 1000
gtgaagagag atgtgtggaa attccatgac ttgtggatt tggcattcag 1050
caatgtggaa attctaaagc tccctgagaa caggtgact cgtgttgaa 1100
ggatcttatt taaaattgtt ttgttatttt cttaaagcaa tattcactgt 1150
tacaccttgg ggacttctt gtttatccat tcttttatcc tttatattc 1200
atttgtaaac tatattgaa cgacattccc cccgaaaaat tgaatgtaa 1250
agatgaggca gagaataaaag tggtctatga aaaaaaaaaa aaaaaaaaaa 1300
aaaaaaaaaa aaaaaaaaaa 1318

<210> 2
<211> 262
<212> PRT
<213> Homo Sapien

<400> 2 Met Pro Lys His Cys Phe Leu Gly Phe Leu Ile Ser Phe Phe Leu 15
 1 5 10
 Thr Gly Val Ala Gly Thr Gln Ser Thr His Glu Ser Leu Lys Pro 30
 20 25
 Gln Arg Val Gln Phe Gln Ser Arg Asn Phe His Asn Ile Leu Gln 45
 35 40
 Trp Gln Pro Gly Arg Ala Leu Thr Gly Asn Ser Ser Val Tyr Phe 60
 50 55
 Val Gln Tyr Lys Ile Met Phe Ser Cys Ser Met Lys Ser Ser His 75
 65 70
 Gln Lys Pro Ser Gly Cys Trp Gln His Ile Ser Cys Asn Phe Pro 90
 80 85
 Gly Cys Arg Thr Leu Ala Lys Tyr Gly Gln Arg Gln Trp Lys Asn 105
 95 100
 Lys Glu Asp Cys Trp Gly Thr Gln Glu Leu Ser Cys Asp Leu Thr 120
 110 115
 Ser Glu Thr Ser Asp Ile Gln Glu Pro Tyr Tyr Gly Arg Val Arg 135
 125 130
 Ala Ala Ser Ala Gly Ser Tyr Ser Glu Trp Ser Met Thr Pro Arg 150
 140 145
 Phe Thr Pro Trp Trp Glu Thr Lys Ile Asp Pro Pro Val Met Asn 165
 155 160

Ile Thr Gln Val Asn Gly Ser Leu Leu Val Ile Leu His Ala Pro
170 175 180
Asn Leu Pro Tyr Arg Tyr Gln Lys Glu Lys Asn Val Ser Ile Glu
185 190 195
Asp Tyr Tyr Glu Leu Leu Tyr Arg Val Phe Ile Ile Asn Asn Ser
200 205 210
Leu Glu Lys Glu Gln Lys Val Tyr Glu Gly Ala His Arg Ala Val
215 220 225
Glu Ile Glu Ala Leu Thr Pro His Ser Ser Tyr Cys Val Val Ala
230 235 240
Glu Ile Tyr Gln Pro Met Leu Asp Arg Arg Ser Gln Arg Ser Glu
245 250 255
Glu Arg Cys Val Glu Ile Pro
260

<210> 3
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 3
ctggcaacag cagtgtctat tttgtgc 27

<210> 4
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 4
taagtgcctt cccaggctgc c 21

<210> 5
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 5
tcctccagtc atgaatataa cccaaatcaa tggcttttg ttggtaattc 50

tc 52

<210> 6
<211> 1705
<212> DNA
<213> Homo Sapien

<400> 6
tgaaatgact tccacggctg ggacggaaac cttccaccca cagctatgcc 50

tctgatttgt gaatggtgaa ggtgcctgtc taactttct gtaaaaagaa 100
ccagctgcct ccaggcagcc agccctcaag catcacttac aggaccagag 150
ggacaagaca tgactgtat gaggagctgc tttcgccat ttaacaccaa 200
gaagaattga ggctgcttgg gaggaaggcc aggaggaaca cgagactgag 250
agatgaattt tcaacagagg ctgcaaagcc tgtggacttt agccagaccc 300
ttctgccctc ctttgctggc gacagcctct caaatgcaga tggttgtgt 350
cccttgccctg ggttttaccc tgcttctctg gagccaggta tcaggggccc 400
agggccaaga attccactt gggccctgcc aagtgaaggg ggttgttccc 450
cagaaaactgt gggaaagcctt ctgggctgtg aaagacacta tgcaagctca 500
ggataaacatc acgagtgccc ggctgctgca gcaggaggtt ctgcagaacg 550
tctcgatgc tgagagctgt taccttgc acaccctgtt ggagttctac 600
ttgaaaactg tttcaaaaaa ccaccacaat agaacatgt aagtcaggac 650
tctgaagtca ttctctactc tggccaacaa ctttgcctc atcgtgtcac 700
aactgcaacc cagtcaagaa aatgagatgt tttccatcag agacagtgca 750
cacaggcggt ttctgctatt ccggagagca ttcaaacagt tggacgtaga 800
agcagctctg accaaagccc ttggggaaagt ggacattctt ctgacctgga 850
tgcagaaatt ctacaagctc tgaatgtcta gaccaggacc tccctcccc 900
tggcaactggt ttgttccctg tgtcatttca aacagtctcc cttcctatgc 950
tgttcactgg acacttcacg cccttgcca tgggtcccat tcttggccca 1000
ggattattgt caaagaagtc attcttaag cagcgccagt gacagtcagg 1050
gaaggtgcct ctggatgctg tgaagagtct acagagaaga ttcttgcatt 1100
tattacaact ctattnaatt aatgtcagta ttcaactga agttctattt 1150
atttgtgaga ctgttaagtta catgaaggca gcagaatatt gtccccatg 1200
cttctttacc cctcacaatc cttgccacag tgtggggcag tggatgggtg 1250
cttagtaagt acttaataaaa ctgtggtgct tttttggcc tgtctttgga 1300
ttgttaaaaa acagagaggg atgcttggat gtaaaactga acttcagagc 1350
atgaaaatca cactgtcttc tgatatctgc agggacagag cattggggtg 1400
gggtaaggt gcatctgttt gaaaagtaaa cgataaaatg tggattaaag 1450
tgcccagcac aaagcagatc ctcaataaaac atttcatttc ccacccacac 1500
tcgccagctc accccatcat cccttccct tggccctc cttttttttt 1550
tatccttagtc attcttccct aatcttccac ttgagtgtca agctgacatt 1600
gctgatggtg acattgcacc tggatgtact atccaatctg tcatgacatt 1650

ccctgcta ataaa gacaac ataa ctccaa aaaaaaaaaaaaaaaa 1700

aaaaaa 1705

<210> 7
<211> 206
<212> PRT
<213> Homo Sapien

<400> 7
Met Asn Phe Gln Gln Arg Leu Gln Ser Leu Trp Thr Leu Ala Arg
1 5 10 15
Pro Phe Cys Pro Pro Leu Leu Ala Thr Ala Ser Gln Met Gln Met
20 25 30
Val Val Leu Pro Cys Leu Gly Phe Thr Leu Leu Leu Trp Ser Gln
35 40 45
Val Ser Gly Ala Gln Gly Gln Glu Phe His Phe Gly Pro Cys Gln
50 55 60
Val Lys Gly Val Val Pro Gln Lys Leu Trp Glu Ala Phe Trp Ala
65 70 75
Val Lys Asp Thr Met Gln Ala Gln Asp Asn Ile Thr Ser Ala Arg
80 85 90
Leu Leu Gln Gln Glu Val Leu Gln Asn Val Ser Asp Ala Glu Ser
95 100 105
Cys Tyr Leu Val His Thr Leu Leu Glu Phe Tyr Leu Lys Thr Val
110 115 120
Phe Lys Asn His His Asn Arg Thr Val Glu Val Arg Thr Leu Lys
125 130 135
Ser Phe Ser Thr Leu Ala Asn Asn Phe Val Leu Ile Val Ser Gln
140 145 150
Leu Gln Pro Ser Gln Glu Asn Glu Met Phe Ser Ile Arg Asp Ser
155 160 165
Ala His Arg Arg Phe Leu Leu Phe Arg Arg Ala Phe Lys Gln Leu
170 175 180
Asp Val Glu Ala Ala Leu Thr Lys Ala Leu Gly Glu Val Asp Ile
185 190 195
Leu Leu Thr Trp Met Gln Lys Phe Tyr Lys Leu
200 205