Electrostatics

Course- PHY 2105 / PHY 105 Lecture 19

Md Shafqat Amin Inan

Coulomb's Law

The electrostatic force between two charged object is directly proportional to the product of the amount of charges and inversely proportional to the square of the distance between them

$$k = \frac{1}{4\pi\varepsilon_0}$$

- Experimental law
- Valid for point charges only
- ❖ Obeys Inverse Square Law
- ❖ Valid for only charges at rest

Electrostatic constant,
$$k = 9 \times 10^9 \frac{Nm^2}{C^2}$$

Permittivity constant,
$$\varepsilon_0 = 8.854 \times 10^{-12} \ \frac{C^2}{Nm^2}$$

Electric Field

A charge has an effect on its surroundings. The area where it has an effect is generally called an *Electric field*. If any other charge enters that area, it feels an electrostatic Coulomb force.

The electric force on a charged body is exerted by the electric field created by other charged bodies.

$$F = q_0 E$$

$$\overrightarrow{E} = rac{1}{4\piarepsilon_0}rac{q}{r^2}\;\widehat{r}$$

for point test charges only

Electric Potential & Potential Energy

Relationship between work and potential energy:

$$\boldsymbol{W}_{\boldsymbol{a}\to\boldsymbol{b}} = \boldsymbol{U}_{\boldsymbol{a}} - \boldsymbol{U}_{\boldsymbol{b}} = -(\boldsymbol{U}_{\boldsymbol{b}} - \boldsymbol{U}_{\boldsymbol{a}}) = -\Delta \boldsymbol{U}$$

The electric potential *V* at a point *P* in the electric field of a charged object is

$$V = \frac{-W_{\infty}}{q_0} = \frac{U}{q_0}$$

where is the work that would be done by the electric force on a positive test charge q0 were it brought from an infinite distance to P, and U is the electric potential energy that would then be stored in the test charge—object system

Change in electric potential: $\Delta V = V_f - V_i$

Change in system potential energy: $\Delta \pmb{U} = \pmb{q} \Delta \pmb{V} = \pmb{q} (\pmb{V_f} - \pmb{V_i})$

Equipotential Surfaces

An **equipotential surface is** an imaginary surface or a real, physical surface where no net work *W* is done on a charged particle by an electric field when the particle moves between two points *i* and *f* on the same equipotential surface

When two electron moves from A to B along an electric field line in below figure, the electric field does $3.94x10^{-19}$ J of work on it. What are the electric potential differences (i) V_B-V_A , (ii) V_C-V_A , and (iii) V_C-V_B ?

Potential Due to a Charged Particle

To find the potential of the charged particle, we move this test charge out to infinity.

$$V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$

$$V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$

$$V = \sum_{i=1}^n V_i = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^n \frac{q_i}{r_i}$$
 (*n* charged particles).

Potential at points of finite distances

$$\Delta V = -\int_{a}^{b} \frac{kq}{r^{2}} dr = kq \left[\frac{1}{a} - \frac{1}{b} \right]$$

Calculate the electric potential at a point P, located at the centre of the square of point charges shown in the figure.

- (a) An electron is to be accelerated from 3x10^6 m/s to 8x10^6 m/s. Through what potential difference must the electron pass to accomplish this?
- (b) (b) Through what potential difference must the electron pass if it is to be slowed from 8x10^6 m/s to a halt?

(a) **EXECUTE:**
$$K_1 + qV_1 = K_2 + qV_2$$
, $q(V_2 - V_1) = K_1 - K_2$; $q = -1.602 \times 10^{-19}$ C.
 $K_1 = \frac{1}{2} m_e v_1^2 = 4.099 \times 10^{-18}$ J; $K_2 = \frac{1}{2} m_e v_2^2 = 2.915 \times 10^{-17}$ J. $\Delta V = V_2 - V_1 = \frac{K_1 - K_2}{T} = 156$ V.

EVALUATE: The electron gains kinetic energy when it moves to higher potential.

(b) EXECUTE: Now
$$K_1 = 2.915 \times 10^{-17}$$
 J, $K_2 = 0$. $V_2 - V_1 = \frac{K_1 - K_2}{q} = -182$ V.

EVALUATE: The electron loses kinetic energy when it moves to lower potential.

Figure below shows a rectangular array of charged particles fixed in place, with distance a=39.0 cm and the charges shown as integer multiples of $q_1=3.40$ pC and $q_2=6.00$ pC. With V=0 at infinity, what is the net electric potential at the rectangle's center?

A neutral water molecule in its vapor state has an electric dipole moment of magnitude 15×10 -30 Cm. If the molecule is placed in an electric field of 7.5×104 N/C, what maximum torque can the field exert on it?

Potential due to an infinite line charge

$$V_a - V_b = \int_a^b \vec{E} \cdot d\vec{l} = \int_a^b E_r dr = \frac{\lambda}{2\pi\epsilon_0} \int_{r_a}^{r_b} \frac{dr}{r} = \frac{\lambda}{2\pi\epsilon_0} \ln \frac{r_b}{r_a}$$

Potential Gradient

At each point, the potential gradient points in the direction in which *V* increases most rapidly with a change in position. Hence at each point the direction of is the direction in which *V* decreases most rapidly and is always perpendicular to the equipotential surface through the point. Moving in the direction of the electric field means moving in the direction of decreasing potential

$$V_a - V_b = \int_b^a dV = -\int_a^b dV$$
$$V_a - V_b = \int_a^b \vec{E} \cdot d\vec{l}$$

