Linear Regression

David Robinson

Simple Linear Regression involves one independent variable and one dependent variable.

$$y = \theta_0 + \theta_1 x_1$$

Multiple Linear Regression involves multiple independent variables and one dependent variable

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Gradient Descent

Gradient descent is an iterative optimization algorithm used to minimize the cost function $J(\theta)$ by updating the model parameters θ .

Update Rule

For each parameter θ_i ,

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Optimization Process

- 1. Start with random initial values for θ .
- 2. Compute the cost function $J(\theta)$.
- 3. Update θ using the update rule.
- 4. Repeat until the cost function converges.

Normal Equation

The **Normal Equation** is an analytical method to solve for the parameters θ without using iterative methods like gradient descent.

$$\theta = (X^T X)^{-1} X^T y$$

Gradient Descent vs. Normal Equation

Gradient Descent

- 1. You need to choose learning rate.
- 2. It is an iterative approach that updates parameters until convergence.
- 3. Works for almost every loss function.
- 4. Efficient for datasets with large numbers of features, as it does not require matrix inversion.

Normal Equation

- $1.\,$ No need to choose learning rate.
- 2. It is an analytical method and provides a solution in one shot.
- 3. You need to compute $(X^TX)^{-1}$, an $n \times n$ matrix, where n is the number of features.
- 4. Time complexity is $O(n^3)$ so it is computationally expensive for a large n.
- 5. Only works for least squares loss.