

6G7V0026 Principles of Data Science

Student ID: 22547202

Name: Neha Alam Hussain

Contents

Data Understanding and Exploration	3
Overview	3
Features in the dataset	3
i. public_reference	3
ii. mileage	4
iii. reg_code	5
iv. standard_colour	6
v. standard_make	7
vi. standard_model	3
vii. vehicle_condition	g
viii. year_of_registration	g
ix. body_type	11
x. crossover_car_and_van	12
xi. fuel_type	13
xii. price	14
2. Data Processing	15
Detection of Erroneous and Missing Values	15
Handling Erroneous and Missing Values	18
Feature Engineering	20
mileage_type	20
luxury_vehicle	21
vehicle_age	22
Feature Selection	22
3. Association and Group Difference Analysis	23
Quantitative - Quantitative	23
Mileage - Price	23
Age of Vehicle - Price	24
Quantitative - Categorical	24
Mileage Type - Price	24
Luxury Vehicle - Price	25
Categorical - Categorical	26
Luxury Vehicle - Vehicle Condition	26
What are the best predictors of the price of a vehicle?	26
Mileage	26
Vehicle Condition	28
Luxury Vehicle	28
Age of Vehicle	29
Fuel Type	31
••	32
Citation	32

1. Data Understanding and Exploration

Overview

The dataset that we have been provided to work on is called **Car Sales Adverts** by AutoTrader. The dataset (adverts.csv) has 402,005 rows and 12 columns. The dataset has a total of 12 features. This dataset tells us about the characteristics of the cars that are up for sale and their prices.

The features that we can find in this dataset are public_reference, mileage, reg_code, standard_colour, standard_make, standard_model, vehicle_condition, year_of_registration, price, body_type, crossover_car_and_van, and fuel_type.

```
import pandas as pd
dataset = pd.read_csv('https://raw.githubusercontent.com/nehahussain/Ds_ML_dataset/main/adverts.csv')
print('Total number of columns: ' + str(dataset.shape[1]) + "\n" + "Total number of rows: " + str(dataset.shape[0]))
print(dataset.info())
Total number of columns: 12
Total number of rows: 402005
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 402005 entries, 0 to 402004
Data columns (total 12 columns):
                                 Non-Null Count
0 public_reference 402005 non-null int64
     mileage
                                 401878 non-null
     reg_code
                                 370148 non-null object
                             396627 non-null object
402005 non-null object
     standard colour
     standard_make
standard_model
     standard_model 402005 non-null object vehicle_condition 402005 non-null object
     year_of_registration 368694 non-null float64
price 402005 non-null int64
hody type 401168 non-null object
     body_type
                                401168 non-null object

        10
        crossover_car_and_van
        402005 non-null bool

        11
        fuel_type
        401404 non-null object

                                 401404 non-null object
dtypes: bool(1), float64(2), int64(2), object(7)
memory usage: 34.1+ MB
```

The features in the dataset provide us with details about the vehicles that are up for sale.

Features in the dataset

i. public_reference

This is a 15-digit integer value in the dataset. Every record has a unique value. This value could be the ad reference value that allows to uniquely identify each advertisement at AutoTrader.

```
In [12]: # this code statement helps us to find if there are any duplicate values in the column
pd.Series(dataset['public_reference']).is_unique
Out[12]: True
```

ii. mileage

This is a float value that tells us the number of miles that the car has been driven. It is a continuous variable. New and used cars both can have zero miles according to the dataset. This is an important feature in the dataset because miles clocked on a vehicle has an effect on the price.

The highest mileage in the dataset is 999,999 miles. The record with the highest mileage looks rather erroneous because the price of the car is 9999 as well.

```
In [39]: df = dataset.sort_values('mileage', ascending=False)

Out[39]:

public_reference mileage reg_code standard_colour standard_make standard_model vehicle_condition year_of_registration price body_type

43974 202008122406434 99999.0 63 White Vauxhall Astra USED 2013.0 9999 Hatchback
```

These are the top five records with the highest mileage in the dataset:

Cars that were new had no miles clocked on them. Hence, the lowest mileage is zero in the dataset.

The mean and standard deviation can be seen below:

```
df_mean = np.mean(dataset["mileage"])
df_std = np.std(df["mileage"])
print("Mean: " + str(round(df_mean, 2)))
print("Standard Deviation: " + str(round(df_std, 2)))

Mean: 37743.6
Standard Deviation: 34831.68
```

iii. reg_code

This feature tells us about the age of the vehicle. Instead of the entire registration code of the vehicle, only the age identifier part of the code is available in this feature. There are two types of entries that can be found in this feature: **two-digit** integers and **single** alphabets. Vehicles registered from 1963 to 2001 had their age identifier in the alphabets. After 2001, the age identifier was changed to double digits.

The distribution of the data can be seen below:

New cars that have not been registered yet have **null** values in the dataset. The age of the vehicle has an effect on the price of the car.

iv. standard_colour

This feature tells us about the color of the vehicle. The following bar plot will tell about the distribution:

There are **5378** vehicles with no color mentioned. These values are represented as empty strings in the dataset.

```
dataset['standard_colour'].isnull().sum()
5378
```

```
dataset['standard_colour'].value_counts()
Black
                86287
White
                70535
Grey
Blue
                59784
Silver
                49323
                42024
Red
Green
                 4534
Orange
                 4088
                 2097
Yellow
                 2014
Brown
Multicolour
                 1854
Beige
                 1539
Bronze
                 1330
Purple
                 1211
Gold
                  818
Pink
                  410
Turquoise
                  307
Maroon
                  159
Burgundy
                   63
Magenta
Navy
                   15
Indigo
Name: standard_colour, dtype: int64
```

v. standard_make

This feature defines the manufacturer of the vehicle. It is a categorical variable. There are a total of 110 unique manufacturers in the dataset. German automakers BMW, Audi and Volkswagen are the manufacturers of most vehicles up for sale according to the dataset.

Due to a large number of different manufacturers, only those manufacturers are included in the figure below that have more than 1000 vehicles in the entire dataset.

Luxury automakers such as Ferrari, Bugatti, and Pagani are also part of the dataset. Brands that make luxury cars tend to have higher prices.

```
x_label = []
y_label = []
for key in vc_dict.keys():
    if vc_dict[key] < 1000 and vc_dict[key] >50 :
        x_label.append(key)
        y_label.append(vc_dict[key])

plt.figure(figsize=(15, 6))
plt.bar(x_label, y_label, color ='blue',
        width = 0.8)
ax = plt.gca()
ax.set_xticklabels(labels=x_label,rotation=90);
plt.xlabel("Manufacturers")
plt.ylabel("No. of cars")
plt.title("Cars and their manufacturers")
plt.show()
```


vi. standard_model

This feature is closely related to the feature **standard_make**. It is a categorical feature. The model of the vehicle depends on the manufacturer. Volkswagen Golf has the most listings in the dataset.

```
dataset['standard model'].value counts()
dataset.groupby(['standard_make','standard_model'])
group_size = dataset.groupby(['standard_make','standard_model']).size()
group_size.sort_values(ascending=False)
standard make standard model
Volkswagen
               Golf
                                  11583
Vauxhall
               Corsa
                                  10646
Mercedes-Benz C Class
                                   8550
BMW
               3 Series
                                   8347
Volkswagen
               Polo
                                   7681
Toyota
               Mark II Blitz
                                      1
GMC
               Pickup
                                      1
Fiat
               Uno
                                      1
Toyota
               Paseo
                                      1
                                      1
Porsche
               917
Length: 1217, dtype: int64
```

vii. vehicle_condition

This is a categorical feature. It has only two possible values: **new** and **used**. This feature has an effect on the price of the vehicle. There are 370,756 used and 31,249 new vehicles.

viii. year_of_registration

This is a categorical variable that tells us the year in which the vehicle was registered. It can be used to identify the age of the vehicle as well. This feature can play a role in the price of vehicles. New vehicles do not have a year of registration value. Hence, there are missing values for new vehicles.

```
print("No. of records with no year of registration: " + str(dataset[(dataset['year_of_registration'].isna() == True)].shape[0]))
No. of records with no year of registration: 33311
```

Moreover, there are erroneous values in this column. For example, there are records where the year of registration column has values like 1015, 1515 etc. For example:

The first record in the example above has 1007 in the **year_of_registration** column. We can use the reg_code to find out the correct year of registration. The 07 in the reg_code column means that the correct year of registration is **2007**. The same method can be used to find the correct year of registration for other entries as well.

Most vehicles were registered in the following years (according to the dataset):

```
vc = dataset['year_of_registration'].value_counts()
vc.sort_values(ascending=False)
2017.0
          68790
2016.0
         43483
2019.0
          39236
          38300
2018.0
1018.0
1006.0
1008.0
1515.0
1015.0
Name: year_of_registration, Length: 84, dtype: int64
```

The top 10 years when vehicles were registered the most.

```
#Top 10years when vehicles were registered the most
vc.head(10)
2017.0
          68790
2016.0
          43483
2019.0
          39236
2018.0
          38300
2015.0
          29019
2020.0
          28683
2014.0
          23666
2013.0
          19117
2012.0
          15312
2011.0
         12614
Name: year_of_registration, dtype: int64
```

ix. body_type

This is another categorical variable. It tells us about the body type of the vehicle. The body type gives us an idea about the size of the vehicle. For example, hatchbacks are smaller cars in comparison to SUV or saloons. Vehicles with smaller body types are cheaper. We have some missing values in this column. These missing values can be attributed to the fact that they were not added when the advertisement was created.

```
dataset['body_type'].value_counts()
missing_val = dataset[dataset['body_type'].isna() == True]
print("Vehicles with missing body type: {}".format(missing_val.shape[0]))
print(dataset['body_type'].value_counts())
Vehicles with missing body type: 837
Hatchback
                         167315
Saloon
                          36641
Estate
                          24692
                          23258
Coupe
Convertible
                          16038
MPV
                          16026
Pickup
Combi Van
                             620
                             214
Limousine
Minibus
                             149
Camper
                              77
Panel Van
                              61
Window Van
Chassis Cab
Car Derived Van
Name: body_type, dtype: int64
```


x. crossover_car_and_van

This feature is a categorical variable. It populates only two types of values: True and False. There are no missing values in the column. This feature informs whether the vehicle up for sale is a crossover or a van. A crossover is a type of vehicle which is a hybrid of a hatchback and an SUV. It is smaller than an SUV but bigger than a hatchback.

xi. fuel_type

This feature is categorical and informs about the type of fuel that the vehicle uses to run. There are different fuel type options available in the dataset. Modern fuel options such as hybrids can fetch higher prices for a vehicle in comparison to a conventional petrol engine.

There are some missing values in the dataset for this particular feature as well. These are defined as empty strings in the dataset. We have one outlier in this case. There is only one vehicle up for sale that uses natural gas as its fuel type. Most vehicles use either petrol or diesel. More in-depth analysis can be found below:

```
print(dataset['fuel_type'].value_counts())
print(d"No. of missing values in fuel type column: {dataset['fuel_type'].isnull().sum()}")
vc = dataset['fuel_type'].value_counts()
vc.index = vc.index.astype(str)
vc_dict = vc.to_dict()
x_label = []
y_label = []
for key in vc_dict.keys():
    x_label.append(key)
    y_label.append(vc_dict[key])
plt.figure(figsize=(15, 6))
ax = plt.gca()
ax.set_xticklabels(labels=x_label,rotation=40);
plt.bar(x_label, y_label, color ='blue',
        width = 0.8)
plt.xlabel("Fuel Type")
plt.ylabel("No. of vehicles")
plt.title("Fuel Type of Vehicles")
plt.show()
```

```
158120
Petrol Hybrid
                          13602
Petrol Plug-in Hybrid
                           6160
                           4783
Electric
Diesel Hybrid
                           1403
Bi Fuel
                            221
Diesel Plug-in Hybrid
                            185
Natural Gas
                              1
Name: fuel type, dtype: int64
No. of missing values in fuel_type column: 601
```


xii. price

This is a quantitative variable in the dataset. This feature determines the value of the vehicle that is up for sale. It is the target variable in the dataset. The other features that we have looked at up till now play their role in affecting this particular feature of the vehicle. For example, a new sports car from a luxury brand will have a higher price than a small, used hatchback.

There are no missing values in this column. Basic stat results of raw data show that there are possibly incorrect values in the dataset. These were the findings:

```
mode_val = dataset['price'].mode()
print(f"Mean price of vehicle: {dataset['price'].mean():.2f}")
print(f"Median price of vehicle: {dataset['price'].median():.2f}")
print(f"Mode price of vehicle: {mode_val[0]:.2f}")
print(f"Standard Deviation in price of vehicle: {dataset['price'].std():.2f}")
print(f"Max price of vehicle: {dataset['price'].max():.2f}")
print(f"Min price of vehicle: {dataset['price'].min():.2f}")

Mean price of vehicle: 17341.97
Median price of vehicle: 12600.00
Mode price of vehicle: 8995.00
Standard Deviation in price of vehicle: 46437.46
Max price of vehicle: 9999999.00
Min price of vehicle: 120.00
```

The maximum value in the column looks like an incorrect entry. The same could be said about the minimum price of the vehicle. These values are too high and too low to be considered true. Hence, it is necessary to analyze them to make sure that these entries are correct.

Deep diving into the anomaly helped us to figure out that these entries are the result of incomplete or incorrect data entry. These entries are missing **reg_code** and **year_of_registration** values as well. Registration code is unique to every vehicle and is assigned to each vehicle when it is brought on the road. These cars are used, hence, this clears that these cars must have had a registration code but the data is missing.

	dataset[dataset "Count of vehic)						
Count o	of vehicles: 6										
	public_reference	mileage	reg_code	standard_colour	standard_make	standard_model	vehicle_condition	year_of_registration	price	body_type	cre
141833	202007050883898	87450.0	NaN	Red	Ferrari	250	USED	NaN	9999999	Coupe	
147188	202009103539048	100.0	NaN	Grey	Maserati	3500	USED	NaN	9999999	Convertible	
252505	202008112331147	46300.0	NaN	Blue	Ferrari	275	USED	NaN	9999999	Coupe	
305436	201812223434109	3600.0	NaN	Grey	Lamborghini	Miura	USED	NaN	9999999	Coupe	
336202	202001226429470	950.0	NaN	Black	Ferrari	LaFerrari	USED	NaN	9999999	Coupe	
336536	202006180262926	4400.0	NaN	White	Porsche	959	USED	NaN	9999999	Coupe	
4											

We decided to look further into records that had one of the lowest prices in the dataset. These entries seem to be correct, and we can keep them.

res = d res.tai	lataset.sort_val l()	lues(by=	'price',	ascending= Fals	se)						
	public_reference	mileage	reg_code	standard_colour	standard_make	standard_model	vehicle_condition	year_of_registration	price	body_type	cros
91878	202009083473638	100000.0	56	Silver	Renault	Clio	USED	2006.0	200	Hatchback	
109133	202010295564975	117500.0	52	Green	Citroen	C3	USED	2002.0	180	Hatchback	
303316	202010195173556	159000.0	X	Bronze	Honda	HR-V	USED	2000.0	150	SUV	
300445	202011015671489	89000.0	W	Green	Vauxhall	Corsa	USED	2000.0	122	Hatchback	
332532	202010315653263	78000.0	W	Blue	Citroen	Saxo	USED	2000.0	120	Hatchback	
4											-

The 9,999,999 value in the price column affects the mean and standard deviation. After omitting the six rows that had 9,999,999 price, this is what the statistics look like now:

```
df = dataset[dataset['price'] < 99999999]
temp = df.sort_values(by='price', ascending=False)
mode_val = temp['price'].mode()
print(f"Mean price of vehicle: {temp['price'].mean():.2f}")
print(f"Median price of vehicle: {temp['price'].median():.2f}")
print(f"Mode price of vehicle: {mode_val[0]:.2f}")
print(f"Standard Deviation in price of vehicle: {temp['price'].std():.2f}")
print(f"Max price of vehicle: {temp['price'].max():.2f}")
print(f"Min price of vehicle: {temp['price'].min():.2f}")

Mean price of vehicle: 17192.97
Median price of vehicle: 8995.00
Mode price of vehicle: 8995.00
Standard Deviation in price of vehicle: 25866.50
Max price of vehicle: 3799995.00
Min price of vehicle: 120.00</pre>
```

There is a big difference in the standard deviation caused due to those anomalous entries. The mean was only slightly affected in comparison.

2. Data Processing

Detection of Erroneous and Missing Values

Our initial analysis of the dataset helped us to find the following issues with the data:

- 9,999,999 in the price column for six records. It was also found that the year of registration and registration code values for those six records are also missing.
 Details regarding the erroneous values are mentioned in the 'price' subheading.
- Another erroneous value was found when looking for the maximum value in the 'mileage' column. The highest mileage in the dataset is recorded as 999,999. While clocking 999,999 miles/km on a vehicle is possible, the record raises some concerns because the asking price of the vehicle is 9,999 and the year of registration is 2013. An in-depth look at this particular record is done in the report earlier.
- Registration code column has null values. Null values are mostly for vehicles that are
 new. New vehicles for sale do not have a registration code assigned to them yet.
 However, we did find records where the vehicle condition was used but there was no
 registration code mentioned. There were null values instead. There are a total of 608
 records of this type.

There are 5,378 records that have standard_colour missing.

```
dataset[dataset['standard_colour'].isna() == True].shape[0]
5378
```

Year of registration is assigned to a vehicle as soon as it is brought onto the road. New vehicles for sale do not have a year of registration value in the dataset. They are missing in that case but due to logical reasons. However, there are 2,062 records that do not have a year of registration mentioned for them even though their condition is marked as 'USED' in the advertisement. To fix these missing values, we can use the registration code column to figure out the year of registration value. This will only be possible in cases where the registration code column is populated. There are 321 used vehicles in the dataset that do not have registration codes and years of registration added in their respective fields.

	public_reference	mileage	reg_code	standard_colour	standard_make	standard_model	vehicle_condition	year_of_registration	price	body_type
1510	202010054642656	13406.0	NaN	White	Land Rover	Range Rover Evoque	USED	NaN	26000	Coup
2631	202010235350805	1000.0	NaN	Blue	Maserati	Levante	USED	NaN	63995	SUN
4766	202003238706011	NaN	NaN	Grey	Subaru	Outback	USED	NaN	35995	Estate
6998	202010225284269	160.0	NaN	Grey	McLaren	Senna	USED	NaN	699950	Coupe
7517	202009234093511	11413.0	NaN	NaN	MINI	Convertible	USED	NaN	14400	Convertible
392499	202010064681927	83555.0	NaN	Black	Land Rover	Range Rover Sport	USED	NaN	30995	SU\
392730	202009093528195	38796.0	NaN	Grey	Rover	110	USED	NaN	3150	Saloo
396985	202001256559400	29000.0	NaN	Black	Lamborghini	Gallardo	USED	NaN	77990	Coupe
399728	202008262969804	12812.0	NaN	Silver	Rolls-Royce	Wraith	USED	NaN	159950	Coupe
400536	202010094805399	40523.0	NaN	Red	Peugeot	108	USED	NaN	5999	Hatchbac

There are 837 records that have null values in the body type column.

	public_reference	mileage	reg_code	standard_colour	standard_make	standard_model	vehicle_condition	year_of_registration	price	body_type
307	202010245377951	33287.0	63	Red	Volkswagen	Caddy	USED	2013.0	10990	NaN
625	202010255419023	55000.0	65	Grey	Vauxhall	Vivaro	USED	2015.0	10995	Nal
1256	202010225294466	18715.0	68	White	Volvo	V40	USED	NaN	16950	Nal
1643	202010305596351	24920.0	17	Blue	BMW	4 Series	USED	2017.0	21980	Nal
1929	202010155047896	10.0	70	Blue	Lotus	Elise	USED	2020.0	47775	Naf
										-
99677	202007111130539	5001.0	20	Black	Mercedes-Benz	GLC Class	USED	2020.0	36870	Nal
00624	202010285545599	322000.0	05	Black	London Taxis International	TXI	USED	2005.0	995	Nat
00643	202011015665976	10.0	NaN	White	Audi	A3	NEW	NaN	27845	Nal
00724	202008242879192	0.0	L	Silver	Porsche	911	USED	1973.0	175000	Nal
01788	202009103544825	67558.0	16	Red	Mercedes-Benz	220	USED	2016.0	12000	Nal

• There are 601 records that have null values in their fuel_type column.

• The year of registration column has some values that date back as far as 1007. This is an obvious error in data entry. On inspecting such records, it was easy to find the error. The registration code column provided the correct age and year of registration of the car. The first record in the example below has 1007 in the year_of_registration column. We can use the reg_code to find out the correct year of registration. The 07 means that the correct year of registration is 2007. The same method can be used to find the correct year of registration for other entries as well.

	taset['year_of_ [dataset['year_									
	public_reference	mileage	reg_code	standard_colour	standard_make	standard_model	vehicle_condition	year_of_registration	price	body_type
59010	202006270588110	14000.0	07	Blue	Toyota	Prius	USED	1007.0	7000	Hatchback
69516	202010155035879	96659.0	65	Black	Audi	A4 Avant	USED	1515.0	10385	Estate
84501	202009163810376	37771.0	63	Black	Smart	fortwo	USED	1063.0	4785	Coupe
114737	202008102305925	30000.0	59	Red	Toyota	AYGO	USED	1009.0	4695	Hatchback
120858	202010064654489	27200.0	66	Black	MINI	Clubman	USED	1016.0	18990	Estate
190556	202010205206488	58470.0	10	Black	Fiat	Punto Evo	USED	1010.0	3785	Hatchback
199830	202009013167637	23000.0	59	Silver	MINI	Hatch	USED	1009.0	5995	Hatchback

Handling Erroneous and Missing Values

Firstly, the six records that had 9,999,999 in the price column were removed. This was due to the erroneous price and the missing year of registration and registration code of these records.

```
# this statement drops the six records with the missing values and the erroneous price
dataset.drop(dataset['price'] == 9999999].index, inplace=True)
```

To handle missing values in our dataset, we will be using mean, median and mode to fill them. The decision to use either mean, median or mode will depend on the type of data and skewness. Categorical variables can be filled using the mode value of the column. If the feature is numeric and the data is not skewed, the mean can be used to fill the null values. Otherwise, we are going to use the median.

We ran some analysis to check for skewness in our **mileage** and **year_of_registration** column.

Moreover, there were about 17 records that had incorrect year_of_registration values (the year before the 1900s).

```
dataset[dataset["year_of_registration"]<1900]["year_of_registration"].value_counts().sum()
17</pre>
```

To fix these erroneous values, we use the reg_code column. The reg_code column has an age identifier that allows us to figure out the correct year_of_registration value. To fill the missing values in the column, a mapping was created using reg_code and information from this website [1].

The erroneous values were fixed first. Then, the missing values were filled in where the vehicle condition is used. New vehicles do not have a year of registration. Then, records that had missing reg_code and year_of_registration, in those cases, year_of_registration was filled with 2016 (median of year_of_registration).

mileage	reg_code	standard_colour	standard_make	standard_model	vehicle_condition	year_of_registration	price	body_type	crossover_car_and_van	fuel_typ
30000.0	18	Red	Vauxhall	Insignia	USED	NaN	11990	Hatchback	False	Petr
42847.0	61	Red	Honda	Jazz	USED	NaN	5695	Hatchback	False	Petr
43130.0	66	White	Land Rover	Range Rover Sport	USED	NaN	35990	SUV	False	Dies
63369.0	17	Blue	SKODA	Rapid Spaceback	USED	NaN	7490	Hatchback	False	Dies
18715.0	68	White	Volvo	V40	USED	NaN	16950	NaN	False	Petr
66287.0	63	Blue	Vauxhall	Astra GTC	USED	NaN	8400	Coupe	False	Petr
45.0	20	Silver	Land Rover	Range Rover Evoque	USED	NaN	46945	SUV	False	Dies
12522.0	67	Red	Dacia	Sandero	USED	NaN	6300	Hatchback	False	Petr
46000.0	13	Grey	Volkswagen	Caravelle	USED	NaN	22995	MPV	False	Dies
10.0	20	Blue	Vauxhall	Corsa	USED	NaN	16000	Hatchback	False	Petr

```
# Fixing year_of_registration column

reg_code_mapping = {
    '02': 2002, '03': 2003, '04': 2004, '05': 2005, '06': 2006, '07': 2007, '08': 2008, '09': 2009,
    '10': 2010, '11': 2011, '12': 2012, '13': 2013, '14': 2014, '15': 2015, '16': 2016, '17': 2017, '18': 2018, '19': 2019, '20': 2020,
    '51': 2001, '52': 2002, '53': 2003, '54': 2004, '55': 2005, '56': 2006, '57': 2007, '58': 2008, '59': 2009,
    '60': 2010, '61': 2011, '62': 2012, '63': 2013, '64': 2014, '65': 2015, '66': 2016, '67': 2017, '68': 2018, '69': 2019, '70': 2020
}

for index, row in dataset.iterrows():
    if row['reg_code'] in reg_code_mapping:
        dataset.at[index, 'year_of_registration'] = reg_code_mapping[row['reg_code']]

for index, row in dataset.iterrows():
    if pd.isnull(row['year_of_registration']) and row['vehicle_condition'] == 'USED':
        dataset.at[index, 'year_of_registration'] = 2016

# dataset[(dataset1['year_of_registration'].isna() == True) & (dataset['vehicle_condition'].isna() == 'USED')]
# the above statement will give empty dataframe to show no missing year_of_registration values for used vehicles
```

```
dataset[ (dataset['reg_code'].isna() == False) & (dataset['year_of_registration'].isna() == True)] #no result, hence its filled

public_reference mileage reg_code standard_colour standard_make standard_model vehicle_condition year_of_registration price body_type crossover_ca
```

We have handled the year of registration by reg_code, but we can not do the vice versa as we also need the months with a year of registration to use it to fill reg_code since the reg_code age identifier, changes twice a year, on the 1st of March and September [1].

The rest of the columns are categorical variables, hence, we found out their respective modes.

```
print("Mode of standard_colour: " + str(dataset['standard_colour'].mode()[0]))
print("\nMode of body_type: " + str(dataset['body_type'].mode()[0]))
print("\nMode of fuel_type: " + str(dataset['fuel_type'].mode()[0]))

Mode of standard_colour: Black

Mode of body_type: Hatchback

Mode of fuel_type: Petrol
```

The null values were then replaced with their respective values.

Since we removed the six entries, we are left with 401999 rows and the below info shows that we have dealt with all the missing values of all the features. And we have also dealt with all the missing year of registration where the vehicle condition was used, and as for the new ones having no year of registration is justified so we did not fill them.

```
dataset.info()
<class 'pandas.core.frame.DataFrame'
Int64Index: 401999 entries, 0 to 402004
Data columns (total 12 columns):
                      Non-Null Count
# Column
0 public_reference 401999 non-null int64
1 mileage 401999 non-null float64
     mileage
     reg_code
                                 370148 non-null object
     reg_code 3/014% non-null object
standard_colour 401999 non-null object
standard_make 401999 non-null object
standard_model 401999 non-null object
vehicle_condition 401999 non-null object
     year_of_registration 370750 non-null float64
     price
                                 401999 non-null int64
     body_type
                                  401999 non-null object
10 crossover_car_and_van 401999 non-null bool
11 fuel type
                                  401999 non-null object
dtypes: bool(1), float64(2), int64(2), object(7)
memory usage: 37.2+ MB
```

Feature Engineering

To help with predicting trends and patterns in our data, there can be new features engineered from existing features. Some new features were added to the dataset to provide better insights when looking at trends and averages of price when compared to different features.

mileage_type

This feature is created to provide low, medium, or high values depending on the mileage of the vehicle. Vehicles with low mileage are more likely to sell for a higher value. To check whether this trend exists in our dataset, this new feature was created.

Some analysis was required before a certain threshold could be set to decide whether the vehicle has low, medium, or high mileage. The feature engineering was done after the initial bit of data processing to add missing values and remove erroneous records.

The describe function on the mileage feature helps to provide a deep dive on the dispersion of the data.

```
dataset['mileage'].describe()
count 401982.000000
mean
          37740.549127
std
         34826.678659
             0.000000
min
25%
         10487.000000
50%
         28630.000000
75%
          56851.750000
         999999.000000
max
Name: mileage, dtype: float64
```

According to the statistics above, the average mileage of the vehicles is about 38,000. The 25th quartile is about 10,500. Hence, vehicles with mileage lesser than 30,000 were termed as 'low'. Vehicles that had mileage varying from 30,000 to 60,000 were termed as vehicles with 'medium' mileage. Lastly, vehicles with mileage greater than 60,000 were termed as 'high' mileage vehicles.

```
def categorize_mileage(mileage):
    if mileage < 30000:
        return 'low'
    elif mileage >= 30000 and mileage < 600000:
        return 'medium'
    else:
        return 'high'

dataset['mileage_type'] = dataset['mileage'].apply(categorize_mileage)</pre>
```

datase	t[['standard_m	nake','mi	leage','mil	eage_t
	standard_make	mileage	mileage_type	price
0	Volvo	0.0	low	73970
1	Jaguar	108230.0	medium	7000
2	SKODA	7800.0	low	14000
3	Vauxhall	45000.0	medium	7995
4	Land Rover	64000.0	medium	26995
402000	Peugeot	5179.0	low	10595
402001	Peugeot	110000.0	medium	2000
402002	Nissan	52760.0	medium	7250
402003	Abarth	10250.0	low	11490
402004	Audi	14000.0	low	20520

luxury_vehicle

Luxury vehicle brands are known for being expensive. Moreover, there are many other brands that make luxury models that appeal to a certain demographic. A luxury vehicle is expected to be more expensive than its non-luxury counterpart. For improved analysis of the correlation between vehicle manufacturer and price, we have made a new feature from two existing features: **standard_make** and **body_type**.

True values were set for vehicles that either belonged to luxury brands or had a body type that is considered luxury.

```
auto_manufacturers = list(dataset['standard_make'].unique())
(dataset['body_type'].isin(luxury_body_type)))
dataset[['standard_make', 'body_type', 'luxury_vehicle', 'price']]
      standard_make body_type luxury_vehicle price
                  SUV
           Jaguar
          SKODA SUV
                           False 14000
          Vauxhall Hatchback
                            False 7995
4
                           True 26995
        Land Rover SUV
402000
         Peugeot Hatchback
                           False 10595
402001
          Peugeot Hatchback
                            False 2000
          Nissan SUV
402002
                           False 7250
402003
          Abarth Hatchback
                            False 11490
      Audi Estate
402004
                            True 20520
```

vehicle_age

Age of the vehicle plays a part in the price of the vehicle. A new car will fetch a greater price than a car that is older. Except for some cases where the vehicle is rare, the price of the vehicle depreciates with age. This new feature can be a good indicator of the price of a vehicle. It is created using the year_of_registration column. To calculate the age of the vehicle, 2022 is used as the base year value. So, for example, if the year_of_registration is 2020, the vehicle age will be 2 years. New vehicles will have 0 in the column.

if els	pd.isnull(yea return 0 se: return (2022	r_of_registrati -year_of_regist	ration)	ion'].	apply(vehi	icle_age_calculation)			
dataset	t.head()									
rd_make	standard_model	vehicle_condition	year_of_registration	price	body_type	crossover_car_and_van	fuel_type	mileage_type	luxury_vehicle	vehicle_age
Volvo	XC90	NEW	NaN	73970	suv	False	Petrol Plug-in Hybrid	low	False	0.0
Jaguar	XF	USED	2011.0	7000	Saloon	False	Diesel	medium	True	11.0
SKODA	Yeti	USED	2017.0	14000	SUV	False	Petrol	low	False	5.0
Vauxhall	Mokka	USED	2016.0	7995	Hatchback	False	Diesel	medium	False	6.0
nd Rover	Range Rover Sport	USED	2014.0	26995	SUV	False	Diesel	medium	True	8.0
4)

Feature Selection

There are some features in our dataset that can be dropped as they do not provide much insight into whether they have any correlation with the price of vehicles on sale. Hence, some of the columns will be dropped from the dataset.

Firstly, public_reference will be dropped. It is a 15-digit code that is unique throughout the dataset. Each record has its unique public_reference. This ID seems to be the unique identifier for the advertisements. As this feature has no effect on the price of the vehicle, we can drop it.

Secondly, we can drop reg_code. The reason to drop reg_code is that it is similar to the year_of_registration column that is already present in the dataset. Both columns help to identify the age of the vehicle. We can choose among the two which one to use. The year_of_registration column is easier to use because it mentions the exact year while the reg_code column has codes that need to be decoded to find the exact year of registration.

Thirdly, we can drop crossover_car_and_van. This feature is very broad and does not provide enough information to be used efficiently or look for any patterns it may have with the price of the vehicle.

Lastly, we can also drop standard_model as it does not provide enough information that could be used to predict the price of the vehicle.

The final dataset should look something like this after removing some old columns and introducing some engineered features.

3. Association and Group Difference Analysis

We ran an association and group difference analysis on the variables that are present in our dataset. This allows us to get useful insights regarding the variables and the relationship between them.

Quantitative - Quantitative

Mileage - Price

We are using mileage and price for this analysis. For association analysis between the two variables, we have used Pearson's correlation coefficient. It is a statistical method that helps to determine the direction and impact of the linear relationship between the two variables. According to our tests, we were able to conclude that there was a negative linear relationship. More mileage means less price. The p-value came out to be 0. The p-value helps to evaluate that the two variables are statistically significant. In simpler terms, we can conclude that this pattern did not occur by chance.

For group difference analysis, t-test was used. The t-test result allows us to conclude whether the difference between the average of the two variable groups is significant or not. In this case, the p-value was 0. This means that the t-statistic is significant.

```
Mileage - Price

import scipy.stats as stats

mileage = dataset['mileage']
price = dataset['price']

# Association Analysis using Pearson's correlation coefficient
corr, p_value = stats.pearsonr(mileage, price)
print('Pearson correlation coefficient:', corr)
print('p-value:', p_value)

# Group Difference Analysis using a t-test
t_stat, p_value = stats.ttest_ind(mileage, price)
print('t-statistic:', t_stat)
print('p-value:', p_value)

Pearson correlation coefficient: -0.28529740453924174
p-value: 0.0
t-statistic: 300.29541400426325
p-value: 0.0
```

Age of Vehicle - Price

Another pair of variables that were selected were the age of the vehicle and the price. The age of the vehicle was calculated and added to the **vehicle_age** feature. We have used Pearson's correlation coefficient for association analysis and t-test for group difference analysis. The weak negative correlation coefficient indicates that if the age increases the price decreases.

```
vehicle_age = dataset['vehicle_age']
price = dataset['price']

# Association Analysis using Pearson's correlation coefficient
corr, p_value = stats.pearson(vehicle_age, price)
print('Pearson correlation coefficient:', corr)
print('p-value:', p_value)

# Group Difference Analysis using a t-test
t_stat, p_value = stats.ttest_ind(vehicle_age, price)
print('t-statistic:', t_stat)
print('p-value:', p_value)

Pearson correlation coefficient: -0.23083221165171208
p-value: 0.0
t-statistic: -421.264850881954
p-value: 0.0
```

Quantitative - Categorical

Mileage Type - Price

For association analysis, we use ANOVA. This will allow us to see if there is a significant difference in the means of the different groups present in our respective variables.

The group difference analysis is done using a t-test. A new column was made with the name **mileage_type_numeric**. The labels low, medium, and high were changed to 0,1 and 2 respectively. The data was transformed so that we could use the library **scipy** to get t-test results.

```
import scipy.stats as stats
def categorize_mileage_numeric(mileage):
    if mileage < 30000:
return 0
    elif mileage >= 30000 and mileage < 600000:
    else:
        return 2
dataset['mileage_type_numeric'] = dataset['mileage'].apply(categorize_mileage_numeric)
quantitative_var = dataset['price']
categorical_var = dataset['mileage_type_numeric']
# Association analysis using ANOVA
f_stat, p_value = stats.f_oneway(quantitative_var, categorical_var)
print(f'F-statistic:', f_stat.round(decimals=2))
print('p-value:', p_value)
# Group difference analysis using t-test
grouped_ttest = df.groupby(categorical_var)
print(grouped ttest.apply(lambda x: stats.ttest ind(x['price'], quantitative var, equal var=False)))
F-statistic: 177585.72
p-value: 0.0
mileage_type_numeric
                           (77.55888712844308, 0.0)
                          (-145.4423105061231, 0.0)
     (-2.6671849263098206, 0.037151610991101564)
dtvpe: object
```

The F-statistic score tells us that there is a significant difference between the mean of different groups. This means that the average price of the vehicle greatly differed on the basis of the mileage of the vehicle.

The tuple values after the F-statistic and p-value tells us the t-test results of the groups that reside in our mileage_type column. A positive t-statistic value means that the average of the first group was greater than the other group. A negative t-statistic value means that the average of the second group was larger than the first group.

Luxury Vehicle - Price

The same statistical methods will be used as above. The data will be transformed so that t-test values can be easily evaluated using the scipy library. The False value will be replaced with zero and the True value will be represented by 1.

```
def boolean to numeric(luxury vehicle):
   if luxury vehicle == False:
        return 0
    else:
        return 1
dataset['luxury_vehicle_numeric'] = dataset['luxury_vehicle'].apply(boolean_to_numeric)
quantitative_var = dataset['price']
categorical_var = dataset['luxury_vehicle_numeric']
# Association analysis using ANOVA
f_stat, p_value = stats.f_oneway(quantitative_var, categorical_var)
print(f'F-statistic:', f_stat.round(decimals=2))
print('p-value:', p_value)
# Group difference analysis using t-test
grouped_ttest = df.groupby(categorical_var)
print(grouped_ttest.apply(lambda x: stats.ttest_ind(x['price'], quantitative_var, equal_var=False)))
F-statistic: 177587.64
p-value: 0.0
luxury_vehicle_numeric
0 (-116.31191572323398, 0.0)
        (75.82062549995281, 0.0)
dtype: object
```

The high F-statistic value and the low p-value means that there is a significant difference between the means of the price of luxury vehicle groups. This is further confirmed from the results of the t-test.

Categorical - Categorical

Luxury Vehicle - Vehicle Condition

The luxury vehicle feature is a categorical feature that was engineered using the standard_make feature of the dataset. Pitting it against the vehicle condition for association and group difference analysis should give us some useful insight.

A positive chi-square value with a low p-value means that there is a significant association between the features: luxury vehicle and vehicle condition. The t-test for group difference analysis shows that there is a significant difference between the proportion of luxury cars that are new versus used.

```
luxury_vehicle = dataset['luxury_vehicle']
vehicle condition = dataset['vehicle condition']
# Association analysis using Chi-square test
chi2, p_value, degree_of_freedom, freq_dist = stats.chi2_contingency(pd.crosstab(luxury_vehicle, vehicle_condition))
print('Chi-square statistic:', chi2.round(decimals=2))
print(f"p-value: {p_value:.2f}")
vehicle_condition_dummies = pd.get_dummies(vehicle_condition)
vehicle condition new = vehicle condition dummies['NEW']
vehicle_condition_used = vehicle_condition_dummies['USED']
# t-test for New in Vehicle Condition
t_stat_new, p_value_new = stats.ttest_ind(luxury_vehicle, vehicle_condition_new)
print('NEW t-statistic:', t_stat_new.round(decimals=2))
print('NEW p-value:', p_value_new.round(decimals=2))
# t-test for Old in Vehicle Condition
t_stat_used, p_value_used = stats.ttest_ind(luxury_vehicle, vehicle_condition_used)
print('USED t-statistic:', t_stat_used.round(decimals=2))
print('USED p-value:', p_value_used.round(decimals=2))
Chi-square statistic: 522.73
p-value: 0.00
NEW t-statistic: 357.05
NEW p-value: 0.0
USED t-statistic: -604.89
USED p-value: 0.0
```

What are the best predictors of the price of a vehicle?

The analysis done up till now gives a clear picture about the features that play a significant role in the price of the vehicle. Hence, to support our findings, we will use visualizations to provide a better overall picture of how certain features are good predictors of the price of a vehicle.

Mileage

Mileage is an important feature in the dataset. This figure tells us how much the vehicle has been used in the past. This feature gives a good idea about the condition of the vehicle for sale. Hence, it should be a good indicator of the price of a vehicle.

```
# Extract the age and price variables
mileage = dataset['mileage']
price = dataset['price']

# Create the scatter plot
plt.scatter(mileage, price)
plt.xlabel('Mileage of Vehicle')
plt.ylabel('Price')
plt.title('Price vs. Mileage of Vehicle')
plt.titcklabel_format(style='plain', axis='y')
plt.ticklabel_format(style='plain', axis='x')
plt.show()
```



```
# Calculate the average price for each mileage type
average_prices = dataset.groupby('mileage_type')['price'].mean()

# Plot the average prices as a bar chart
average_prices.plot(kind='bar')
plt.xlabel('Mileage Type')
plt.ylabel('Average Price')
plt.title('Average Price by Mileage Type')
plt.show()
```


Vehicle Condition

Vehicle condition plays a vital part in deciding the price of a vehicle. New vehicles fetch a higher price than used vehicles. The statistics also prove the previous statement.

```
# Calculate the average price for each vehicle condition
average_prices = dataset.groupby('vehicle_condition')['price'].mean()

# Plot the average prices as a bar chart
average_prices.plot(kind='bar')
plt.xlabel('Vehicle Condition')
plt.ylabel('Average Price')
plt.title('Average Price by Vehicle Condition')
plt.show()
```


Luxury Vehicle

This feature was engineered using standard_make and body_type features present in the dataset. This engineered feature is a good predictor of the price of the vehicle as well. Vehicles made by specific manufacturers with certain body types have greater value than conventional vehicles.

```
# Calculate the average price for luxury vehicle
average_prices = dataset.groupby('luxury_vehicle')['price'].mean()

# Plot the average prices as a bar chart
average_prices.plot(kind='bar')
plt.xlabel('Is it a luxury vehicle?')
plt.ylabel('Average Price')
plt.title('Average Price if it is a Luxury Vehicle')
plt.show()
```


Age of Vehicle

This is an interesting feature of vehicles. It is understood that new vehicles are more expensive than older vehicles. However, after studying the dataset, we were able to conclude that the average price of the vehicle can greatly vary if the vehicle in question is antique or considered vintage. The trend shows that vehicles that are of age greater than 10 and less than 20 years have the lowest average price.

```
min_age = dataset['vehicle_age'].min().astype(int)
max_age = dataset['vehicle_age'].max().astype(int)

# Divide the age variable into bins based on the min and max values
bins = pd.cut(dataset['vehicle_age'], range(min_age, max_age+1, 10))

# Calculate the average price for each bin
average_prices = df.groupby(bins)['price'].mean()

# Plot the average prices as a bar chart
average_prices.plot(kind='bar')
plt.xlabel('Aye of Vehicle')
plt.ylabel('Average Price by Age of Vehicle')
plt.title('Average Price by Age of Vehicle')
plt.show()
```



```
# Extract the age and price variables
age = dataset['vehicle_age']
price = dataset['price']

# Create the scatter plot
plt.scatter(age, price)
plt.xlabel('Age of Vehicle')
plt.ylabel('Price')
plt.title('Price vs. Age of Vehicle')
plt.ticklabel_format(style='plain', axis='y')
plt.show()
```


Fuel Type

This feature helped to understand that modern vehicles with new fuel types such as hybrids fetch a higher price. The use of cutting-edge technology requires a lot of research and development. This actually drives up the average price of the vehicles.

```
# Calculate the average price for each fuel type
average_prices = dataset.groupby('fuel_type')['price'].mean()

# Plot the average prices as a bar chart
average_prices.plot(kind='bar')
plt.xlabel('Fuel Type')
plt.ylabel('Average Price')
plt.title('Average Price for each Fuel Type')
plt.show()
```


Citation

[1] National Numbers. (n.d.). Year of Issue. Retrieved from https://www.nationalnumbers.co.uk/dvla-guide/year-of-issue-149.htm