Deep Learning for Natural Language Processing Convolutional Neural Network (CNN) Long Short Term Memory (LSTM)

Kais Ameur

Hubel and Wiesel Experiments (1962)

- → Insert electrodes into specific parts of the visual cortex of the cat;
- → Measurement of activation when the cat saw some basic shapes;
- → The visual Cortex is the responsible of Perception;
- → A cell of Neurons which are organized in Column

LeCun, Bottou, Bengio and Haffner (1998)

- → Introduction of Convolutional Neural Network (CNN);
- → Inspiration from Visual Cortex
- → Organization in Column of each Layer of the Neural Network Architecture

Kais Ameur 3

Convolutional Neural Network (CNN)

- □ A Feedforward Neural Network;
- □ Emulate the Visual Cortex in the Visual Perception Task;
- □ CNN have specific Layers that encodes the properties of Images
 - □ Low Level Features:
 - □ Middle Level Features:
 - □ High Level Features.
- □ MLP Vs CNN
 - □ MLP: Organization of Neurons into sequence of Layers
 - □ CNN: Organization of Neurons into sequence of 3D-Layers (called *Depth*)

Convolutional Neural Network (CNN) defines specific layers:

- → Convolutional Layer (CL)
 - ◆ Convolution Operator
 - ◆ Linear Representation (Sum of Product)
- → Pooling Layer (PL)
 - ◆ Downsampling
 - Average Operator
 - Max Operator
- → ReLU Layer (RL)
 - ♦ Help the optimization of the Gradient Descent
 - ◆ To introduce the Non-Linear Representation
- → Fully Connected Layer (FC)
 - ◆ Emulate MLP Classifiers
 - ◆ Classification Task

Convolutional Layer (CL)

- □ Convolutional Layer
 - □ based on Convolution Operator;
 - □ The most important concept in Signal Processing;
 - □ Construct the Output of any System knowing its inputs and its Impulse Response.
- ☐ From 1D to 2D Convolution
 - □ Convolution 1D for Signal Processing;
 - □ Convolution 2D for Image Processing.
- □ Convolutional Kernel
 - □ Used to be applied on Image;
 - examples of kernel are used in Image processing
 - □ Edge Detection;
 - ☐ Blurring Image:
 - ☐ Smoothing, etc.

Kais Ameur 6

Convolutional Layer (CL)

$$y[0,0] = x[-1,-1] \cdot h[1,1] + x[0,-1] \cdot h[0,1] + x[1,-1] \cdot h[-1,1]$$

$$+ x[-1,0] \cdot h[1,0] + x[0,0] \cdot h[0,0] + x[1,0] \cdot h[-1,0]$$

$$+ x[-1,1] \cdot h[1,-1] + x[0,1] \cdot h[0,-1] + x[1,1] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 + 2 \cdot 0 + 0 \cdot (-1) + 4 \cdot (-2) + 5 \cdot (-1) = -13$$

$$y[1,0] = x[0,-1] \cdot h[1,1] + x[1,-1] \cdot h[0,1] + x[2,-1] \cdot h[-1,1]$$

$$+ x[0,0] \cdot h[1,0] + x[1,0] \cdot h[0,0] + x[2,0] \cdot h[-1,0]$$

$$+ x[0,1] \cdot h[1,-1] + x[1,1] \cdot h[0,-1] + x[2,1] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 1 \cdot 0 + 2 \cdot 0 + 3 \cdot 0 + 4 \cdot (-1) + 5 \cdot (-2) + 6 \cdot (-1) = -20$$

$y[2,0] = x[1,-1] \cdot h[1,1] + x[2,-1] \cdot h[0,1] + x[3,-1] \cdot h[-1,1]$
+ $x[1,0] \cdot h[1,0] + x[2,0] \cdot h[0,0] + x[3,0] \cdot h[-1,0]$
+ $x[1,1] \cdot h[1,-1] + x[2,1] \cdot h[0,-1] + x[3,1] \cdot h[-1,-1]$
$= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 2 \cdot 0 + 3 \cdot 0 + 0 \cdot 0 + 5 \cdot (-1) + 6 \cdot (-2) + 0 \cdot (-1) = -17$

1	2	3
4	5	6
7	8	9

Input x

Kernel h

Convolutional Layer (CL)

1	2 1	1 2	3
0	0 4	<mark>0</mark> 5	6
-1	-2 7	<mark>-1</mark> 8	9

$$y[0,1] = x[-1,0] \cdot h[1,1] + x[0,0] \cdot h[0,1] + x[1,0] \cdot h[-1,1]$$

$$+ x[-1,1] \cdot h[1,0] + x[0,1] \cdot h[0,0] + x[1,1] \cdot h[-1,0]$$

$$+ x[-1,2] \cdot h[1,-1] + x[0,2] \cdot h[0,-1] + x[1,2] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 1 \cdot 2 + 2 \cdot 1 + 0 \cdot 0 + 4 \cdot 0 + 5 \cdot 0 + 0 \cdot (-1) + 7 \cdot (-2) + 8 \cdot (-1) = -18$$

1	2 2	1 3
0 4	0 5	6
-1 7	-2 8	-1 9

$$y[1,1] = x[0,0] \cdot h[1,1] + x[1,0] \cdot h[0,1] + x[2,0] \cdot h[-1,1]$$

$$+ x[0,1] \cdot h[1,0] + x[1,1] \cdot h[0,0] + x[2,1] \cdot h[-1,0]$$

$$+ x[0,2] \cdot h[1,-1] + x[1,2] \cdot h[0,-1] + x[2,2] \cdot h[-1,-1]$$

$$= 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 1 + 4 \cdot 0 + 5 \cdot 0 + 6 \cdot 0 + 7 \cdot (-1) + 8 \cdot (-2) + 9 \cdot (-1) = -24$$

1	1 2	2 3	1
4	<mark>0</mark> 5	6	0
7	-1 8	<mark>-2</mark> 9	-1

$y[2,1] = x[1,0] \cdot h[1,1] + x[2,0] \cdot h[0,1] + x[3,0] \cdot h[-1,1]$	
$+x[1,1] \cdot h[1,0] + x[2,1] \cdot h[0,0] + x[3,1] \cdot h[-1,0]$	
$+x[1,2] \cdot h[1,-1] + x[2,2] \cdot h[0,-1] + x[3,2] \cdot h[-1,-1]$	
$= 2 \cdot 1 + 3 \cdot 2 + 0 \cdot 1 + 5 \cdot 0 + 6 \cdot 0 + 0 \cdot 0 + 8 \cdot (-1) + 9 \cdot (-2) + 0 \cdot (-1) = -1$	18

1	2	3
4	5	6
7	8	9

Input x

Kernel h

-13	-20	-17
-18	-24	-18

Convolutional Layer (CL)

$y[0,2] = x[-1,1] \cdot h[1,1] + x[0,1] \cdot h[0,1] + x[1,1] \cdot h[-1,1]$
+ $x[-1,2] \cdot h[1,0] + x[0,2] \cdot h[0,0] + x[1,2] \cdot h[-1,0]$
+ $x[-1,3] \cdot h[1,-1] + x[0,3] \cdot h[0,-1] + x[1,3] \cdot h[-1,-1]$
= 0.1 + 4.2 + 5.1 + 0.0 + 7.0 + 8.0 + 0.(-1) + 0.(-2) + 0.(-1) = 13

$y[1,2] = x[0,1] \cdot h[1,1] + x[1,1] \cdot h[0,1] + x[2,1] \cdot h[-1,1]$
+ $x[0,2] \cdot h[1,0] + x[1,2] \cdot h[0,0] + x[2,2] \cdot h[-1,0]$
+ $x[0,3] \cdot h[1,-1] + x[1,3] \cdot h[0,-1] + x[2,3] \cdot h[-1,-1]$
$= 4 \cdot 1 + 5 \cdot 2 + 6 \cdot 1 + 7 \cdot 0 + 8 \cdot 0 + 9 \cdot 0 + 0 \cdot (-1) + 0 \cdot (-2) + 0 \cdot (-1) = 20$

$y[2,2] = x[1,1] \cdot h[1,1] + x[2,1] \cdot h[0,1] + x[3,1] \cdot h[-1,1]$
+ $x[1,2] \cdot h[1,0] + x[2,2] \cdot h[0,0] + x[3,2] \cdot h[-1,0]$
+ $x[1,3] \cdot h[1,-1] + x[2,3] \cdot h[0,-1] + x[3,3] \cdot h[-1,-1]$
$= 5 \cdot 1 + 6 \cdot 2 + 0 \cdot 1 + 8 \cdot 0 + 9 \cdot 0 + 0 \cdot 0 + 0 \cdot (-1) + 0 \cdot (-2) + 0 \cdot (-1) = 17$

1	2	3
4	5	6
7	8	9

Input x

1	2	1
0	0	0
-1	-2	-1

Kernel h

-13	-20	-17
-18	-24	-18
13	20	17

Convolutional Layer (CL)

Convolutional Layer (CL)

Parameters of CL

- Kernel size(K);
- Stride(S): Sliding Window (1 for CL and 1 for PL);
- Number of filters(F): Number of filters
- Zero Padding: Number of zeros to be add

32x32x3 image 5x5x3 filter convolve (slide) over all spatial locations 28

Activity

Given I an input image 32x32x3

6 Kernel Filters of 5x5x3

Pad=0

Slide=1

The result will be an activation map 28x28x6.

Explain it!

Convolutional Layer (CL)

Activity

Given I an input image 32x32x3

6 Kernel Filters of 5x5

Pad=0

Slide=1

The result will be an activation map 28x28x6.

Explain it!

$$Size_{Features\ Map} = 1 + \frac{(Size_{Input} + 2 * Padding) - Size_{Filer\ Kernel}}{Strid}$$

$$e$$
 $Size_{Features\ Map} = 1 + \frac{(32 + 2 * 0) - 5}{1}$
 $Size_{Features\ Map} = 1 + 27 = 28$

Pooling Layer (PL)

Spatial Pooling (subsampling or downsampling) reduces the dimensionality of each feature map but retains the most important information. Spatial Pooling can be of different types: Max, Average, Sum, etc.

ReLU Layer (RL)

ReLU stands for Rectified Linear Unit and is a non-linear operation. Its output is given by:

Activation Functions

Leaky ReLU
$$\max(0.1x,x)$$

Maxout $\max(w_1^Tx+b_1,w_2^Tx+b_2)$

ELU $\begin{cases} x & x \geq 0 \\ x & x \geq 0 \end{cases}$

FC Layer (FC)


```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,Conv2D,Flatten,MaxPooling2D
model = Sequential()
model.add(layers.Conv2D(256, (3, 3), activation='relu',input_shape=(227, 227, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(256, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(256, activation='sigmoid'))
model.add(layers.Dense(1, activation='sigmoid'))
```


Vertical

Horizontal

How to Design your Own CNN Architecture?

ImageNet Large Scale Visual Recognition Competition

	#conv. layers	#MACCs [millions]	#params [millions]	#activations [millions]	ImageNet top-5 error
ZynqNet CNN	18	530	2.5	8.8	15.4%
AlexNet	5	1140	62.4	2.4	19.7%
Network-in-Network	12	1 100	7.6	4.0	~19.0%
VGG-16	16	15 470	138.3	29.0	8.1%
GoogLeNet	22	1600	7.0	10.4	9.2%
ResNet-50	50	3870	25.6	46.9	7.0%
Inception v3	48	5710	23.8	32.6	5.6%
Inception-ResNet-v2	96	9210	31.6	74.5	4.9%
SqueezeNet	18	860	1.2	12.7	19.7%
SqueezeNet v1.1	18	390	1.2	7.8	19.7%

Transfer Learning as Solution for lack of data!

Deep Learning Frameworks


```
from keras import layers
          from keras import models
          from keras.layers import Dropout, MaxPooling2D, Dense, Flatten, Conv2D
          model = models.Sequential()
          model.add(layers.Conv2D(64, (3, 3), activation='relu',
                                    input shape=(227, 227, 3)))
          model.add(layers.MaxPooling2D((2, 2)))
          model.add(layers.Conv2D(128, (3, 3), activation='relu'))
          model.add(layers.MaxPooling2D((2, 2)))
          model.add(lavers.Conv2D(128, (3, 3), activation='relu'))
          model.add(lavers.MaxPooling2D((2, 2)))
          model.add(layers.Flatten())
          model.add(layers.Dense(256, activation='sigmoid'))
          model.add(layers.Dense(1, activation='sigmoid'))
              Size_{Features\ Map} = 1 + \frac{(Size_{Input} + 2 * Padding) - Size_{Filer\ Kernel}}{}
  64x3x3
                                                                   128x3x3
                                                                                                    MaxPooling
                                  MaxPooling
Stride = 1
                                                                                  128x110x110
                 64x225x225
                                                    64x112x112
                                                                 Stride = 1
                                                                                                        2x2
                                      2x2
Padding =0
                                                                 Padding =0
                                                                                          128x3x3
                                                      MaxPooling
                                          128x26x26
                                                                                         Stride = 1
                                                                                                      128x55x55
                                                          2x2
                                                                                         Padding =0
```

256

128x27x27

22

227,227,3

Thank you for your attention ©

Dr. Eng. Wael Ouarda

E-mail: wael.Ouarda@ieee.org Phone: +216 21 23 69 36

Web: http://www.crns.rnrt.tn/research-team/brain4ict

Recurrent Neural Network

An unrolled recurrent neural network.

A recurrent neural network can be thought of as multiple copies of the same network, each passing a message to a successor.

Problem of Long Term Dependecy

Long Short Term Memory

Activation Functions

especially used for models where we have to predict the probability as an output.

Since probability of anything exists only between the range of 0 and 1, sigmoid is the right choice

mainly used classification between two classes

LSTM Cell state & Gates

Step One – Forget Gate Layer

To decide what information we're going to throw away from the cell state

1 represents "completely keep this"

0 represents "completely get rid of this."

Step Two – Inpu Gate Layer

Decide what new information we're going to store in the cell state

Part 1: a sigmoid layer called the "input gate layer" decides which values we'll update

Part 2: a tanh layer creates a vector of new candidate values that could be added to the state.

Step Three – Update Cell State

- 1. Multiply the old state by the forget Gate to forget what we don't need from the previous state
- 2. Adding the new cell state new candidate Ct*input gates to construct a new state based on the new input

Step four – Output

Decide what we are going to output

output will be based on our cell state, but will be a filtered version

