Termodinâmica I - 2019.1

Frederico W. Tavares e Iuri S. V. Segtovich

Proposta de trabalho computacional

Termos:

- Confere até 1.5 ponto extra na P1
- Entregar:
 - 1. Código fonte na linguagem escolhida (sugere-se python, há material auxiliar nessa linguagem, tira-se dúvidas nessa linguagem)
 - 2. Relatório individual de 1-4 páginas explicando o que foi feito, destacando os resultados parciais relevantes e apresentando os resultados finais.
- Prazo: 19/06 ("até meia noite"), improrrogável,

Pode submeter dúvidas por e-mail (iurisegtovich@gmail.com), ou submeter resultados parciais com antecedência para revisão, havendo disponibilidade.

Enunciado:

Para uma corrente de **água** pura passando pelo processo descrito na figura, utilizando a equação de estado de **Soave**, pede-se:

Calcular as propriedades termodinâmicas: \bar{V}_1 , P_2 , T_2 , \bar{V}_2 , P_3 , T_3 , \bar{V}_3 .

Calcular as variações em entropia e entalpia em cada etapa: $\Delta \bar{H}^{2-1}$, $\Delta \bar{H}^{3-2}$, $\Delta \bar{S}^{2-1}$, $\Delta \bar{S}^{3-2}$.

Calcular o calor e trabalho envolvido em cada etapa: $\mathring{Q}_{
m A}$, $\mathring{W}_{
m B}$.

Suponha que o compressor opera adiabaticamente e de forma reversível.

Estratégia:

- 1. Calcular a temperatura de saturação da substância na pressão da corrente 1 utilizando o critério de equílibrio líquido-vapor e a equação de estado cúbica apresentada. O cálculo de pressão de saturação para uma dada temperatura está demonstrado no material auxiliar.
- 2. Equacionar os processos usando entalpia e entropia residual de gás e de líquido, e integrais envolvendo a capacidade calorífica de gás ideal.

 As expressões para entalpia residual, entropia residual e capacidade calorífica de gás ideal estão demonstradas no material auxiliar, onde foram usadas para criar diagramas TXS e PXH.

 A entalpia de vaporização e a capacidade calorífica de líquido não são utilizadas explicitamente nessa abordagem.

MATERIAL AUXILIAR:

- LINK ESTÁTICO (SOMENTE LEITURA)

 https://nbviewer.jupyter.org/github/iurisegtovich/EQE359 Termodinamica I/blob/master/material

 didatico/3 5 equacao de estado cubica/aula eos puro psat SIMPLIFICADA.ipynb
- LINK INTERATIVO (COMPUTAÇÃO REMOTA, REQUER LOGIN NO GOOGLE) https://colab.research.google.com/github/iurisegtovich/EQE359 Termodinamica I/blob/master/mat erial-didatico/3-5 equação de estado cubica/aula eos puro psat SIMPLIFICADA.ipynb
- DADOS DA EQUAÇÃO DE ESTADO E DE SUBSTÂNCIAS PURAS: trabalho_eos_2019_1_ANEXOS.pdf em https://iurisegtovich.github.io/EQE359 Termodinamica I/