

Universidade Tecnológica Federal do Paraná Campus Campo Mourão

Curso: Bacharelado em Ciência da Computação

Disciplina: Arquitetura e Organização de Computadores

Prof. Dr. João Fabrício Filho

Monitor: Matheus H. Coitinho Loss

Os exercícios foram adaptados do livro

Patterson, David A. Hennessy, John L. Organização e Projeto de Computadores. Disponível em: Minha Biblioteca, (5a. edição). Grupo GEN, 2017.

1 Considere a seguinte instrução:

addi \$s0,\$s1,1

- a) Quais são os valores dos sinais de controle gerados pelo controle no Datapath (Figura ao final do documento) para esta instrução?
- b) Quais recursos (blocos) do datapath realizam uma função útil para essa instrução?
- c) Quais recursos (blocos) do datapath produzem saídas, mas suas saídas não são usadas para essa instrução? Quais recursos não produzem saídas para ela?
- 2 <§3.2> Mostre no diagrama do caminho de dados monociclo o valor de todos os sinais de controle e de dados utilizados pela instrução addi \$s0,\$s1,1. Considerando que todas as instruções anteriores foram executadas com o estado inicial apresentado.

3 Transforme as instruções a seguir em sua representação hexadecimal, com base na tabela ao final do documento.
a) add \$t0, \$s0, \$s1 b) sub \$t0, \$s0, \$s1 c) lw \$t2, 0(\$s3) d) slt \$t5, \$s3, \$s2
4 Assinale nas tabelas os valores de sinais de controle em cada instrução nas próximas questões. Todos os campos devem possuir um valor. Assim, assinale 0 quando o valor não importa.
a) add \$t0, \$s1, \$s2
$\operatorname{RegDst} \ \ \ \ \ \ \ \ \ \ \ \ \$
WriteReg $\boxed{}0$ $\boxed{}1$
$MemRead \boxed{0} \boxed{1}$
MemWrite $\boxed{0}$ $\boxed{1}$
$MemToReg \boxed{0} \boxed{1}$
$\mathbf{Branch} \boxed{ } 0 \boxed{ } 1$
$J_{\mathrm{ump}} \ \Box 0 \ \Box 1$
b) lw \$t0, 0(\$s2)
RegDst \square_0 \square_1
$ ext{WriteReg} \boxed{0} \boxed{1}$
$\operatorname{MemRead} \square 0 \square 1$
$\text{MemWrite } \boxed{0} \boxed{1}$
$MemToReg \ \ \ \ \ \ \ \ \ \ \ \ \$
$ \begin{array}{c c} \text{MemToReg} & \boxed{0} & \boxed{1} \\ \text{Branch} & \boxed{0} & \boxed{1} \end{array} $
Branch $\square 0 \square 1$
$\begin{array}{c c} \text{Branch} & \boxed{0} & \boxed{1} \\ \text{Jump} & \boxed{0} & \boxed{1} \end{array}$
Branch 0 1 Jump 0 1 c) beq \$t0, \$zero, FIM
Branch
Branch
Branch
Branch

d) sw \$t0, 256(\$s4)			
RegDst	$\Box 0 \Box 1$		
${\bf WriteReg}$	$\square 0 \ \square 1$		
MemRead	$\square 0 \ \square 1$		
${\bf MemWrite}$	$\square 0 \square 1$		
${\bf MemToReg}$	$\Box 0 \Box 1$		
Branch	$\square 0 \square 1$		
Jump	$\square 0 \square 1$		
e) ori \$t0	, \$s1, \$s2		
e) ori \$t0 ${ m RegDst}$, \$s1, \$s2		
•			
m RegDst	01		
m RegDst $ m WriteReg$	$ \begin{array}{c c} \hline 0 & \hline 1 \\ \hline 0 & \hline 1 \end{array} $		
RegDst WriteReg MemRead	$ \begin{array}{c c} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array} $		
RegDst WriteReg MemRead MemWrite	$ \begin{array}{c c} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array} $		
RegDst WriteReg MemRead MemWrite MemToReg	$ \begin{array}{c c} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array} $		

OPCODE	Mnemônico	Ação	FUNCT
000000	ADD rd, rs, rt	rd = rs + rt	100000
000000	AND rd, rs, rt	$rd = rs \wedge rt$	100100
000000	NOR rd, rs, rt	$rd = \neg(rs \lor rt)$	100111
000000	OR rd, rs, rt	$rd = rs \vee rt$	100101
000000	SLT rd, rs, rt	rd = rs < rt	101010
000000	SUB rd, rs, rt	rd = rs - rt	100010
000000	XOR rd, rs, rt	$rd = rs \oplus rt$	100110
001000	ADDI rt,rs,imm	rt = rs + imm	Х
000100	BEQ rs,rt,offset	$if(rs == rt)pc += offset \ll 2$	Х
000101	BNE rs,rt,offset	$if(rs! = rt)pc + = offset \ll 2$	Х
000010	J target	$pc = pc_upper (target \ll 2)$	Х
000011	JAL target	$ra = pc$; $pc = pc_upper (target \ll 2)$	Х
000000	JR rs	pc = rs	001000
100011	LW rt,offset(rs)	rt = Mem[offset + rs]	Х
101011	SW rt,offset(rs)	Mem[offset + rs] = rt	Х

Número	
0	
2-3	
4-6	
8-15	
16-23	
24-25	
29	
31	