Liveness analysis over automatic transition systems (with applications to LTL model checking)

Anthony Widjaja To

LFCS, School of Informatics, University of Edinburgh

(Joint work with Leonid Libkin)

Introduction: verification

Intro

Outline

Background

Our model

Our results

- Abstract model: states + evolution rules
- Properties: safety, liveness, ...
- Classical approach:
 - ◆ Finite-state models
 - state-space exploration

Infinite-state models

Intro

Outline

Background

Our model

Our results

Future work

Why consider these models?

Infinite-state models

Intro

Outline

Background

Our model

Our results

Future work

Why consider these models?

- More convenient abstraction. Sources of infinity:
 - unbounded number of finite processes
 - unbounded stacks or FIFO queues
 - unbounded integer/real variables
 - unbounded discrete/continuous clocks
- State explosion problem: might help

Problem: undecidability

Intro

Outline

Background

Our model

Our results

Future work

Find decidable subclasses

Intro

Outline

Background

Our model

Our results

- Find *decidable subclasses*
 - pushdown systems, prefix-recognizable systems
 - Petri nets
 - ◆ Timed systems
- Find good *semantic restriction*, e.g., well-structuredness.

Intro

Outline

Background

Our model

Our results

- Find decidable subclasses
 - pushdown systems, prefix-recognizable systems
 - Petri nets
 - Timed systems
- Find good *semantic restriction*, e.g., well-structuredness.
- Semi-algorithms for general setting

Intro

Outline

Background

Our model

Our results

Future work

- Find *decidable subclasses*
 - pushdown systems, prefix-recognizable systems
 - Petri nets
 - Timed systems
- Find good *semantic restriction*, e.g., well-structuredness.
- Semi-algorithms for general setting

Warning: these directions are complementary and should not be competing against each other

Aim of our work

Intro

Outline

Background

Our model

Our results

Future work

Verification: model ⊨ property?

- Our model: general framework + semantic condition
- property: liveness, LTL-expressible

Aim of our work

Intro

Outline

Background

Our model

Our results

Future work

Start with a general framework

Aim of our work

Intro

Outline

Background

Our model

Our results

Future work

Start with a general framework

Overview of our results

Intro

Outline

Background

Our model

Our results

Future work

Key points:

- A uniform explanation for decidable liveness for many classes of infinite systems.
- Applications to decidable LTL model checking.
- Seems to work reasonably well in practice.

Outline

Intro

Outline

Background

Our model

Our results

- Background
 - Which properties?
 - A cursory glance of known approaches and results
- Our model
 - automatic transition systems
- Our results
 - Recurrent reachability
 - Application to LTL model checking

Intro Outline

Background

properties Survey

Our model

Our results

Future work

Background

Transition systems (TSs)

Intro Outline

Background

properties Survey

Our model

Our results

Future work

Intuition: configurations + evolution rules

More formally: structures of the form

$$S = \langle S, \{ \rightarrow_a \}_{a \in \Gamma} \rangle$$

where:

- \blacksquare S is a set of configurations,
- \blacksquare Γ is a set of action labels, and
- $\longrightarrow_a \subseteq S \times S$ is a transition relation labeled a.

Common properties

Intro Outline

Background

properties

Survey

Our model

Our results

- Safety: no bad things will happen.
- Liveness: good things will eventually happen.
- More generally, LTL-expressible properties

Common properties

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

- Safety: no bad things will happen.
- Liveness: good things will eventually happen.
- More generally, LTL-expressible properties

We will instead study recurrent reachability

Common properties

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

- Safety: no bad things will happen.
- Liveness: good things will eventually happen.
- More generally, LTL-expressible properties

We will instead study recurrent reachability

- Intuitively: the acceptance condition of Büchi automata
- Liveness and LTL model checking can be reduced to it

Recurrent reachability

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

Does there exist an infinite path from START visiting T infinitely often?

Intro Outline

Background properties

Survey

Our model

Our results

Future work

Recall two approaches:

- Decidable subclasses
- General frameworks

Intro Outline

Background properties

Survey

Our model

Our results

Future work

Recall two approaches:

- Decidable subclasses
 - Pushdown systems
 - Prefix-recognizable systems
 - Petri nets
 - Reversal-bounded counter systems
 - ◆ Timed systems
 - **•** ...
- General frameworks

Intro Outline

Background properties

Survey

Our model

Our results

Future work

Recall two approaches:

- Decidable subclasses
 - Pushdown systems
 - Prefix-recognizable systems
 - Petri nets
 - Reversal-bounded counter systems
 - ◆ Timed systems
 - **•** ...
- General frameworks
 - ♦ Impose semantic restriction
 - Semi-algorithms

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

Recall two approaches:

- Decidable subclasses
- General frameworks

I will survey a general framework called *regular* model checking

Intro Outline

Background

properties

Survey

Our model

Our results

- Use finite automata/transducers to generate TSs:
 - Configurations = words over Σ
 - lacktriangle Transitions = pairs of words over Σ
 - Automata represent sets of configurations
 - Transducers represent transition relations

Intro Outline

Background

properties

Survey

Our model

Our results

- Use finite automata/transducers to generate TSs:
 - Configurations = words over Σ
 - lacktriangle Transitions = pairs of words over Σ
 - Automata represent sets of configurations
 - ◆ Transducers represent transition relations
- Many different variants depending on transducers' types

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

- Use finite automata/transducers to generate TSs:
 - Configurations = words over Σ
 - lacktriangle Transitions = pairs of words over Σ
 - Automata represent sets of configurations
 - ◆ Transducers represent transition relations
- Many different variants depending on transducers' types

"Transducers" must determine if a given pair $(v,w)\in \Sigma^* \times \Sigma^*$ is a transition

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

- Use finite automata/transducers to generate TSs:
 - Configurations = words over Σ
 - lacktriangle Transitions = pairs of words over Σ
 - Automata represent sets of configurations
 - ◆ Transducers represent transition relations
- Many different variants depending on transducers' types

"Transducers" must determine if a given pair $(v,w)\in \Sigma^* \times \Sigma^*$ is a transition

Next: popular transducers' type

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

■ NFAs over $\Sigma \times \Sigma$

Intro Outline

Background

properties

Survey

Our model

Our results

- NFAs over $\Sigma \times \Sigma$
- Given a pair $(v, w) \in \Sigma^* \times \Sigma^*$, how to check whether (v, w) is a transition?

Intro Outline

Background

properties

Survey

Our model

Our results

- NFAs over $\Sigma \times \Sigma$
- Given a pair $(v,w) \in \Sigma^* \times \Sigma^*$, how to check whether (v,w) is a transition?
- Example: v = aaabab, w = babbba

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

■ NFAs over $\Sigma \times \Sigma$

- Given a pair $(v,w) \in \Sigma^* \times \Sigma^*$, how to check whether (v,w) is a transition?
- Example: v = aaabab, w = babbba

v

w

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

- NFAs over $\Sigma \times \Sigma$
- Given a pair $(v,w) \in \Sigma^* \times \Sigma^*$, how to check whether (v,w) is a transition?
- Example: v = aaabab, w = babbba

aaabab babbba

Intro Outline

Background

properties

Survey

Our model

Our results

- NFAs over $\Sigma \times \Sigma$
- Given a pair $(v,w) \in \Sigma^* \times \Sigma^*$, how to check whether (v,w) is a transition?
- Example: v = aaabab, w = babbba

$$\left[\begin{array}{c} a \\ b \end{array}\right] \left[\begin{array}{c} a \\ a \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] \left[\begin{array}{c} b \\ b \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] \left[\begin{array}{c} b \\ a \end{array}\right]$$

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

- NFAs over $\Sigma \times \Sigma$
- Given a pair $(v,w) \in \Sigma^* \times \Sigma^*$, how to check whether (v,w) is a transition?
- Example: v = aaabab, w = babbba

$$\left[\begin{array}{c} a \\ b \end{array}\right] \left[\begin{array}{c} a \\ a \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] \left[\begin{array}{c} b \\ b \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] \left[\begin{array}{c} b \\ a \end{array}\right]$$

This is a word over $\Sigma \times \Sigma$

Length-preserving transducers: example

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

A *simple token-passing protocol* with 7 processes:

T N N N N N

Length-preserving transducers: example

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

A *simple token-passing protocol* with 7 processes:

T N N N N N

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

A *simple token-passing protocol* with 7 processes:

T N N N N N

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

A *simple token-passing protocol* with 7 processes:

T N N N N N

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

A *simple token-passing protocol* with 7 processes:

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

A *simple token-passing protocol* with 7 processes:

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

A *simple token-passing protocol* with 7 processes:

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

A *simple token-passing protocol* with 7 processes:

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

A *simple token-passing protocol* with 7 processes:

N N T N N N

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

A *simple token-passing protocol* with 7 processes:

N N T N N N

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

A *simple token-passing protocol* with 7 processes:

N N N T N N

Intro Outline

Background properties

Survey

Our model

Our results

Future work

Description of the protocol for each $m \in \mathbb{N}$:

- lacktriangleright m processes linearly ordered.
- Each process can either hold a token or not.
- At any given step, a process is chosen by the scheduler:
 - 1. If it holds a token, it can pass its token to its right process that *does not hold a token*
 - 2. It can remain *idle*
- Initially: only one token in the system

Intro Outline

Background properties

Survey

Our model

Our results

Future work

Description of the protocol for each $m \in \mathbb{N}$:

- lacksquare m processes linearly ordered.
- Each process can either hold a token or not.
- At any given step, a process is chosen by the scheduler:
 - 1. If it holds a token, it can pass its token to its right process that *does not hold a token*
 - 2. It can remain *idle*
- Initially: only one token in the system

Verify for each $m \in \mathbb{N}$: system cannot have more than one token.

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

- Configurations: $\{N, T\}^*$
- Starting configurations: N^*TN^*
- Bad configurations: two or more tokens $(N+T)^*T(N+T)^*T(N+T)^*$

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

- Configurations: $\{N, T\}^*$
- Starting configurations: N^*TN^*
- Bad configurations: two or more tokens $(N+T)^*T(N+T)^*T(N+T)^*$
- Idle transitions: $\left(\left[\begin{smallmatrix} N \\ N \end{smallmatrix} \right] + \left[\begin{smallmatrix} T \\ T \end{smallmatrix} \right]\right)^*$
- Pass_token transitions: $\left(\left[\begin{smallmatrix} N \\ N \end{smallmatrix} \right] + \left[\begin{smallmatrix} T \\ T \end{smallmatrix} \right] \right)^* \left[\begin{smallmatrix} T \\ N \end{smallmatrix} \right] \left[\begin{smallmatrix} N \\ T \end{smallmatrix} \right] \left(\left[\begin{smallmatrix} N \\ N \end{smallmatrix} \right] + \left[\begin{smallmatrix} T \\ T \end{smallmatrix} \right] \right)^*$

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

- Configurations: $\{N, T\}^*$
- Starting configurations: N^*TN^*
- Bad configurations: two or more tokens $(N+T)^*T(N+T)^*T(N+T)^*$
- Idle transitions: $\left(\left[\begin{smallmatrix} N \\ N \end{smallmatrix} \right] + \left[\begin{smallmatrix} T \\ T \end{smallmatrix} \right]\right)^*$
- Pass_token transitions: $\left(\left[\begin{smallmatrix} N \\ N \end{smallmatrix} \right] + \left[\begin{smallmatrix} T \\ T \end{smallmatrix} \right] \right)^* \left[\begin{smallmatrix} T \\ N \end{smallmatrix} \right] \left[\begin{smallmatrix} N \\ T \end{smallmatrix} \right] \left(\left[\begin{smallmatrix} N \\ N \end{smallmatrix} \right] + \left[\begin{smallmatrix} T \\ T \end{smallmatrix} \right] \right)^*$
- Verify: START confs. cannot reach BAD confs.

Summary of this RMC variant

Intro Outline

Background

properties

Survey

Our model

Our results

- Configurations = words over Σ
- Automata represent sets of configurations
- Transducers represent transition relations

Summary of this RMC variant

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

- Configurations = words over Σ
- Automata represent sets of configurations
- Transducers represent transition relations

Some facts:

- Safety, liveness, recurrent reachability are undecidable.
- Successful semi-algorithms for safety are available.

Summary of this RMC variant

Intro Outline

Background

properties

Survey

Our model

Our results

Future work

- Configurations = words over Σ
- Automata represent sets of configurations
- Transducers represent transition relations

Some facts:

- Safety, liveness, recurrent reachability are undecidable.
- Successful semi-algorithms for safety are available.

Observe: each connected component is finite, i.e., *infinite* paths must visit one state infinitely often.

Intro Outline

Background

Our model

Our results

Future work

Our model

Automatic transition systems

Intro Outline

Background

Our model

Our results

Future work

- Use more general transducers
- Well-studied in automata community, but not in verification community.
- More suitable for modeling infinite systems, especially when liveness needs to be verified.

Note: Liveness for general infinite systems might have non-looping infinite witnessing paths

Intro Outline

Background

Our model

Our results

- an NFA over $\Sigma_{\perp} \times \Sigma_{\perp}$, where $\Sigma_{\perp} = \Sigma \cup \{\perp\}$.
- Input: any pair of words $(v, w) \in \Sigma^* \times \Sigma^*$
- **Example:** (aaabab, bab)

Intro Outline

Background

Our model

Our results

- an NFA over $\Sigma_{\perp} \times \Sigma_{\perp}$, where $\Sigma_{\perp} = \Sigma \cup \{\perp\}$.
- Input: any pair of words $(v,w) \in \Sigma^* \times \Sigma^*$
- \blacksquare Example: (aaabab, bab)

Intro Outline

Background

Our model

Our results

- an NFA over $\Sigma_{\perp} \times \Sigma_{\perp}$, where $\Sigma_{\perp} = \Sigma \cup \{\perp\}$.
- Input: any pair of words $(v, w) \in \Sigma^* \times \Sigma^*$
- \blacksquare Example: (aaabab, bab)

Intro Outline

Background

Our model

Our results

- an NFA over $\Sigma_{\perp} \times \Sigma_{\perp}$, where $\Sigma_{\perp} = \Sigma \cup \{\perp\}$.
- Input: any pair of words $(v,w) \in \Sigma^* \times \Sigma^*$
- \blacksquare Example: (aaabab, bab)

$$\left[\begin{array}{c} a \\ b \end{array}\right] \left[\begin{array}{c} a \\ a \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] \left[\begin{array}{c} b \\ \bot \end{array}\right] \left[\begin{array}{c} a \\ \bot \end{array}\right] \left[\begin{array}{c} b \\ \bot \end{array}\right]$$

Intro Outline

Background

Our model

Our results

Future work

- an NFA over $\Sigma_{\perp} \times \Sigma_{\perp}$, where $\Sigma_{\perp} = \Sigma \cup \{\perp\}$.
- Input: any pair of words $(v,w) \in \Sigma^* \times \Sigma^*$
- \blacksquare Example: (aaabab, bab)

$$\left[\begin{array}{c} a \\ b \end{array}\right] \left[\begin{array}{c} a \\ a \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] \left[\begin{array}{c} b \\ \bot \end{array}\right] \left[\begin{array}{c} a \\ \bot \end{array}\right] \left[\begin{array}{c} b \\ \bot \end{array}\right]$$

This is a word over $\Sigma_{\perp} \times \Sigma_{\perp}$

Intro Outline

Background

Our model

Our results

Future work

- an NFA over $\Sigma_{\perp} \times \Sigma_{\perp}$, where $\Sigma_{\perp} = \Sigma \cup \{\perp\}$.
- Input: any pair of words $(v,w) \in \Sigma^* \times \Sigma^*$
- \blacksquare Example: (aaabab, bab)

$$\left[\begin{array}{c} a \\ b \end{array}\right] \left[\begin{array}{c} a \\ a \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] \left[\begin{array}{c} b \\ \bot \end{array}\right] \left[\begin{array}{c} a \\ \bot \end{array}\right] \left[\begin{array}{c} b \\ \bot \end{array}\right]$$

This is a word over $\Sigma_{\perp} \times \Sigma_{\perp}$

Conclusion: can recognize non-length preserving relations

Automatic transition systems: definition

Intro Outline

Background

Our model

Our results

$$\mathcal{S} = (S, \{ \to_a \}_{a \in \Gamma})$$

- $S = \Sigma^*$ for some finite Σ
- $\rightarrow_a \subseteq \Sigma^* \times \Sigma^*$ is recognized by a synchronous transducer over Σ called (*regular relation*)

A concrete example: infinite binary tree

Intro Outline

Background

Our model

Our results

Future work

$$\mathfrak{T} = \langle \{0,1\}^*; \mathsf{succ}_0, \mathsf{succ}_1 \rangle$$
:

$$lacksquare$$
 succ $_1=\left(\left[egin{array}{c}0\0\end{array}
ight]+\left[egin{array}{c}1\1\end{array}
ight]
ight)^*\cdot\left[egin{array}{c}\bot\1\end{array}
ight].$

Note: $(\operatorname{succ}_0 \cup \operatorname{succ}_1)^*$ is also a regular relation.

More examples

Intro Outline

Background

Our model

Our results

- Pushdown systems
- Prefix-recognizable systems
- Petri nets
- Turing machines
- Lossy channel systems
- Counter systems
- Discrete-time systems

Length-preserving vs. general transducers

Intro Outline

Background

Our model

Our results

- Safety checking: general case reducible to length-preserving case
- Not possible for liveness!!!
- Non-looping infinite paths exist in general
 - Sometimes uncountably many of them exist

Intro Outline

Background

Our model

Our results

The ideal
Sem. cond.
Recur. reach
Omitted results

Future work

Our results

What we propose to do

Intro Outline

Background

Our model

Our results

The ideal

Sem. cond. Recur. reach Omitted results

Future work

The class of automatic transition systems

What we propose to do

Intro Outline

Background

Our model

Our results

The ideal

Sem. cond.
Recur. reach
Omitted results

Future work

The class of automatic transition systems

Remember: without further restrictions \iff undecidable

Our semantic condition

Intro Outline

Background

Our model

Our results

The ideal

Sem. cond.

Recur. reach Omitted results

Future work

The transitive closure relation

$$\rightarrow^+:=(\bigcup_{a\in\Gamma}\rightarrow_a)^+$$
 is effectively regular (C1)

Convention: use \mathcal{R}^+ to denote the transducer for \rightarrow^+

Our semantic condition

Intro Outline

Background

Our model

Our results

The ideal

Sem. cond.

Recur. reach
Omitted results

Future work

Why is this reasonable?

- 1. Satisfied by many subclasses of automatic TSs, e.g.,
 - pushdown systems
 - prefix-recognizable systems
 - reversal-bounded counter systems
 - discrete-time systems
 - communication-free nets (BPPs)
- 2. Semi-algorithms computing \mathcal{R}^+ exist for restricted classes of automatic transition systems, e.g., those which are Presburger-definable.

Recurrent reachability: more precisely

Intro Outline

Background

Our model

Our results

The ideal

Sem. cond.

Recur. reach

Omitted results

Future work

Does there exist an infinite path from a regular set START visiting a regular set T infinitely often?

Notation: Rec(T) := [EGFT]

Our main result

Intro Outline

Background

Our model

Our results

The ideal

Sem. cond.

Recur. reach

Omitted results

Future work

Theorem (LPAR'08): Over automatic systems satisfying C1: recurrent reachability is decidable in time $O(|\mathsf{START}| \times |T|^2 \times |\mathcal{R}^+|^3)$.

Our main result

Intro Outline

Background

Our model

Our results

The ideal

Sem. cond.

Recur. reach

Omitted results

Future work

Theorem (LPAR'08): Over automatic systems satisfying C1: recurrent reachability is decidable in time $O(|\mathsf{START}| \times |T|^2 \times |\mathcal{R}^+|^3)$.

Furthermore:

- lacksquare A "small" NFA for Rec(T) can be efficiently constructed
- A "small" symbolic representation for a witnessing infinite path can be efficiently constructed

How to apply our results

Intro Outline

Background

Our model

Our results

The ideal Sem. cond.

Recur. reach

Omitted results

Future work

Example 1:

Systems = subclass of aut. TSs satisfying (C1)

Property = Recurrent reachability

Example 2: (semi-algorithmic)

 $\mathsf{Systems} \quad = \quad \mathsf{all} \; \mathsf{aut}. \; \mathsf{TSs}$

Property = Recurrent reachability

How to apply our results: LTL

Intro Outline

Background

Our model

Our results

The ideal Sem. cond.

Recur. reach

Omitted results

Future work

Example 3:

Systems = subclass of aut. TSs satisfying (C1)

AND closed under product with NFAs

Property = LTL-expressible

Example 4: (semi-algorithmic)

Systems = all aut. TSs

Property = LTL-expressible

How to apply our results (cont.)

Intro Outline

Background

Our model

Our results

The ideal Sem. cond.

Recur. reach

Omitted results

Classes	Automatic	$Regular \to^+$	Closure
Pushdown	Yes	Yes	Yes
Prefix-rec	Yes	Yes	Yes
D-time sys.	Yes	Yes	Yes
Rev-bc. sys.	Yes	Yes	Yes
Petri nets	Yes	No	Yes
BPPs	Yes	Yes	No
Turing mc.	Yes	No	Yes
Count sys.	Yes	No	Yes

Some more corollaries

Intro Outline

Background

Our model

Our results

The ideal

Sem. cond.

Recur. reach

Omitted results

Future work

Recurrent reachability:

- Pushdown systems: PTIME
- Prefix-recognizable systems: EXPTIME
- BPP: EXPTIME
- D-time rev-b. counter systems with one free counter:
 EXPTIME (double exponential in the number of clocks)
 - NEW

Some more corollaries

Intro Outline

Background

Our model

Our results

The ideal

Sem. cond.

Recur. reach

Omitted results

Future work

Recurrent reachability:

- Pushdown systems: PTIME
- Prefix-recognizable systems: EXPTIME
- BPP: EXPTIME
- D-time rev-b. counter systems with one free counter:
 EXPTIME (double exponential in the number of clocks)
 - NEW

LTL model checking:

- Pushdown systems: $2^{O(|\varphi| \times \log(|\mathcal{S}|))}$
- Prefix-rec: $2^{O(|\varphi| \times |\mathcal{S}|)}$
- D-time rev-b counter systems with one free counter: EXPTIME (double exponential in the number of clocks and $|\varphi|$) NEW

Proof ideas for our theorem

Intro Outline

Background

Our model

Our results

The ideal

Sem. cond.

Recur. reach

Omitted results

Future work

Theorem (LPAR'08): Over automatic systems satisfying C1: recurrent reachability is decidable in time $O(|\mathsf{START}| \times |T|^2 \times |\mathcal{R}^+|^3)$.

Proof Ideas: If $w \in Rec(T)$, it can have two kinds of witnessing paths:

- \blacksquare Looping (L): visits a configuration in T twice.
- Non-looping (NL): never visits a configuration in T twice.

Looping witnessing path (easy case)

Intro Outline

Background

Our model

Our results

The ideal

Sem. cond.

Recur. reach

Omitted results

- $Arr Rec_1(T) := \{ w \in Rec(T) : \text{ with (L)-witnessing path } \}.$
- Each $w \in Rec_1(T)$ has *lasso-shaped* witnessing path

- Since we have \mathcal{R}^+ , an NFA for $Rec_1(T)$ is easy to construct.
 - lacktriangle Guess a word in T and check for reachability

Intro Outline

Background

Our model

Our results

The ideal

Sem. cond.

Recur. reach

Omitted results

- $Arr Rec_2(T) := \{ w \in Rec(T) : \text{ with (NL)-wit. path } \}.$
- Since we have \mathcal{R}^+ , need only know initial point and the points in T

Intro Outline

Background

Our model

Our results

The ideal

Sem. cond.

Recur. reach

Omitted results

- $Arr Rec_2(T) := \{ w \in Rec(T) : \text{ with (NL)-wit. path } \}.$
- Since we have \mathcal{R}^+ , need only know initial point and the points in T

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \dots \rightarrow s_{78} \rightarrow s_{79} \rightarrow s_{80} \rightarrow \dots$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \dots$$

$$T \qquad \qquad T \qquad \qquad T \qquad \dots$$

Intro Outline

Background

Our model

Our results

The ideal

Sem. cond.

Recur. reach

Omitted results

- $Arr Rec_2(T) := \{ w \in Rec(T) : \text{ with (NL)-wit. path } \}.$
- Since we have \mathcal{R}^+ , need only know initial point and the points in T

$$s_0 \to^+ s_1 \to^+ s_{78} \to^+ s_{79} \to^+ \dots$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \dots$$

$$T \qquad T \qquad T \qquad \dots$$

Intro Outline

Background

Our model

Our results

The ideal

Sem. cond.

Recur. reach

Omitted results

Future work

- $Arr Rec_2(T) := \{ w \in Rec(T) : \text{ with (NL)-wit. path } \}.$
- Since we have \mathcal{R}^+ , need only know initial point and the points in T

$$s_0 \to^+ s_1 \to^+ s_{78} \to^+ s_{79} \to^+ \dots$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \dots$$

$$T \qquad T \qquad T \qquad \dots$$

Note: every infinite subsequence of a witnessing sequence, which does not omit s_0 , is still a witnessing sequence

Intro Outline

Background

Our model

Our results

The ideal Sem. cond.

Recur. reach

Omitted results

Future work

aaabaab

aab

aaaaaaaaaaaaaaaaabab

ababaaaa

ababaaaababa

aaabaaa

. . .

(NL)-witnessing sequence

Intro Outline

Background

Our model

Our results

The ideal Sem. cond.

Recur. reach

Omitted results

Future work

Choose a *strictly increasing* subsequence

In summary we have:

Intro Outline

Background

Our model

Our results

The ideal Sem. cond.

Recur. reach

Omitted results

s_0	ε	ε	ε	• • •
$s_{1,1}$	$s_{1,2}$	ε	ε	• • •
$s_{2,1}$	$S_{2,2}$	$s_{2,3}$	ε	
$s_{3,1}$	$s_{3,2}$	$s_{3,3}$	$s_{3,4}$	ε
:	:	:	:	٠.

Intro Outline

Background

Our model

Our results

The ideal

Sem. cond.

Recur. reach

Omitted results

Future work

Look	at	first	CO	lumn ((excep	ot '	for	s_0):

s_0	ε	ε	ε	• • •
$s_{1,1}$	$s_{1,2}$	ε	ε	• • •
$s_{2,1}$	$S_{2,2}$	$s_{2,3}$	ε	• • •
$s_{3,1}$	$S_{3,2}$	$s_{3,3}$	$s_{3,4}$	ε
÷	:	:	:	14.

Observation: There exists $\beta_0 \in \Sigma^*$ with $|\beta_0| = |s_0|$ and $\beta_0 = s_{j,1}$ for infinitely many $j \in \mathbb{Z}_{>0}$

Intro Outline

Background

Our model

Our results

The ideal Sem. cond.

Recur. reach

Omitted results

Future work

Choose subsequence s_0 followed by all these s_j 's:

s_0	ε	ε	ε	• • •
β_0	$s'_{1,2}$	ε	ε	• • •
β_0	$s'_{2,2}$	$s'_{2,3}$	ε	
β_0	$s_{3,2}'$	$s_{3,3}'$	$s'_{3,4}$	ε
1	:	:	:	1.

Observation: This is still an (NL)-witnessing sequence.

Intro Outline

Background

Our model

Our results

The ideal

Sem. cond.

Recur. reach

Omitted results

Future work

Now disregard the first row and first column:

s_0	ε	ε	ε	• • •
β_0	$s'_{1,2}$	ε	ε	
β_0	$s_{2,2}'$	$s_{2,3}'$	ε	
β_0	$s_{3,2}'$	$s_{3,3}'$	$s_{3,4}'$	ε
:	:	:	:	100

Observation: We can repeat the same procedure with $s_{1,2}^{\prime}$ as the starting point.

Intro Outline

Background

Our model

Our results

The ideal

Sem. cond.

Recur. reach

Omitted results

Future work

In summary, we obtain the following (NL)-seq:

s_0	ε	ε	ε	
β_0	α_1	ε	ε	
β_0	β_1	α_2	ε	
β_0	β_1	eta_2	α_3	ε
:	:	:	eta_3	٠.
			:	

Intro Outline

Background

Our model

Our results

The ideal Sem. cond.

Recur. reach

Omitted results

Future work

In summary, we obtain the following (NL)-seq:

s_0	ε	ε	ε	
β_0	α_1	ε	ε	• • •
β_0	eta_1	α_2	ε	• • •
β_0	eta_1	β_2	α_3	ε
:	:	:	eta_3	٠
			:	

This (NL)-seq can be represented as:

$$\begin{bmatrix} s_0 \\ \beta_0 \end{bmatrix} \# \begin{bmatrix} \alpha_1 \\ \beta_1 \end{bmatrix} \# \begin{bmatrix} \alpha_2 \\ \beta_2 \end{bmatrix} \# \dots$$

Key: we need to construct a Büchi automaton recognizing such sequences.

Finishing the proof

Intro Outline

Background

Our model

Our results

The ideal Sem. cond.

Recur. reach

Omitted results

Future work

Construct this Büchi automaton:

- lacksquare Need to also "compress" the runs of T and \mathcal{R}^+
- lacktriangle Compressing runs of T: same as before
- lacktriangle Compressing runs of \mathcal{R}^+ : use Ramsey theory

Construct the NFA for $Rec(T) := Rec_1(T) \cup Rec_2(T)$:

- Use the Büchi automaton
- Not-so-difficult automata constructions

Our main result (again)

Intro Outline

Background

Our model

Our results

The ideal Sem. cond.

Recur. reach

Omitted results

Future work

Theorem (LPAR'08): Over automatic systems satisfying C1: recurrent reachability is decidable in time $O(|\mathsf{START}| \times |T|^2 \times |\mathcal{R}^+|^3)$.

Our main result (again)

Intro Outline

Background

Our model

Our results

The ideal

Sem. cond.

Recur. reach

Omitted results

Future work

Theorem (LPAR'08): Over automatic systems satisfying C1: recurrent reachability is decidable in time $O(|\mathsf{START}| \times |T|^2 \times |\mathcal{R}^+|^3)$.

Furthermore:

- "small" NFA for Rec(T) can be efficiently constructed
- "small" symbolic representation for a witnessing infinite path can be efficiently constructed
- Many applications and LTL

Our main result (again)

Intro Outline

Background

Our model

Our results

The ideal

Sem. cond.

Recur. reach

Omitted results

Future work

Theorem (LPAR'08): Over automatic systems satisfying C1: recurrent reachability is decidable in time $O(|\mathsf{START}| \times |T|^2 \times |\mathcal{R}^+|^3)$.

Furthermore:

- "small" NFA for Rec(T) can be efficiently constructed
- "small" symbolic representation for a witnessing infinite path can be efficiently constructed
- Many applications and LTL

Advice for you: try our theorem first when you want to solve LTL model checking over infinite systems

Omitted results

Intro Outline

Background

Our model

Our results

The ideal

Sem. cond.

Recur. reach

Omitted results

- Initial experimental results
 - fully-automatically verify freedom from (global) starvation for various cache coherence protocols
- Results for tree-automatic systems

Intro Outline

Background

Our model

Our results

Future work

Future work

Intro Outline

Background

Our model

Our results

- Experimental results
- Develop semi-algorithms for computing \mathcal{R}^+ for general automatic systems
- Find other subclasses of aut. TSs satisfying (C1)

Future work

Intro Outline

Background

Our model

Our results

Future work

- Experimental results
- Develop semi-algorithms for computing \mathcal{R}^+ for general automatic systems
- Find other subclasses of aut. TSs satisfying (C1)

THANK YOU!!