Teorema 7.3.5

Sea $T: \mathbb{R}^n \to \mathbb{R}^m$ una transformación lineal. Suponga que C es la matriz de transformación de T respecto a las bases estándar S_n y S_m en \mathbb{R}^n y \mathbb{R}^m , respectivamente. Sea A_1 la matriz de transición de B_1 a la base S_n en \mathbb{R}^n y sea A_2 la matriz de transición de B_2 a la base S_m en \mathbb{R}^m . Si A_T denota la matriz de transformación de T respecto a las bases B_1 y B_2 , entonces

$$A_T = A_2^{-1} C A_1 (7.3.3)$$

En el ejemplo 7.3.9 se observa que la transformación lineal T respecto a la nueva base, la matriz de transformación A_T , resulta ser una matriz diagonal. Se regresará a este procedimiento de "diagonalización" en la sección 8.3. Se observará que dada una transformación de \mathbb{R}^n en \mathbb{R}^n , con frecuencia es posible encontrar una base B tal que la matriz de transformación de T respecto a B es diagonal.

Geometría de las transformaciones lineales de \mathbb{R}^2 en \mathbb{R}^2

Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ una transformación lineal con representación matricial A_T . Ahora se demostrará que si A_T es invertible, entonces T se puede escribir como una sucesión de una o más transformaciones especiales, denominadas **expansiones**, **compresiones**, **reflexiones** y **cortes**.

Expansiones a lo largo de los ejes x o y

Expansión a lo largo del eje x

Una expansión a lo largo del eje x es una transformación lineal que multiplica a la coordenada x de un

vector en
$$\mathbb{R}^2$$
 por una constante $c > 1$. Esto es $T \binom{x}{y} = \binom{cx}{y}$.

Entonces $T\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} c\\0 \end{pmatrix}$ y $T\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0\\1 \end{pmatrix}$, de manera que si $A_T = \begin{pmatrix} c&0\\0&1 \end{pmatrix}$, se tiene

$$T\begin{pmatrix} x \\ y \end{pmatrix} = A_T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} c & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} cx \\ y \end{pmatrix}.$$

En la figura 7.6 se ilustran dos expansiones.

Figura 7.6

Dos expansión en la dirección de x con c=2. c) Expansión en la dirección de y con c=4.