Mapping Reducibility

Alyssa Lytle

Fall 2025

1 Mapping Reducibility

The goal of this lesson is formalize the concept of reducibility

We will define the mapping reducibility of problem A to problem B as the ability to define a function mapping from A to B.

1.1 Computability

First let's define the type of function we will be talking about here.

Definition: Computable Function

A function $f: \Sigma^* \to \Sigma^*$ is a *computable function* if some turing machine M, on every input w, halts with just f(w) on its tape.

Example:

Show that m + n is a computable function.

One thing to note: a computable function can be a transformation of a machine description. In other words, a TM can take a string description of a turing machine M as input and return a string description of another machine M'.

1.2 Mapping Reducibility

Definition: Mapping Reducible

Language A is mapping reducible to language B, denoted $A \leq_m B$, if there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$

The function of f is called the *reduction* from A to B.

If A is the solution set of one problem, and B is the solution set to another problem, we can convert questions about membership in A to questions about membership in B!

1.3 Reducibility + Decidability

If $A \leq_m B$ and B is decidable, then A is decidable.

If $A \leq_m B$ and A is undecidable, then B is undecidable.

Example: The Halting Problem (Again)

Let's again show $HALT_{TM}$ is undecidable by showing A_{TM} can be reduced to $HALT_{TM}$. Recall:

 $A_{TM} = \{\langle M, w \rangle | M \text{ is a Turing Machine and accepts } w \}$

 $HALT_{TM} = \{\langle M, w \rangle | M \text{ is a Turing Machine and halts on input } w \}$

For a reminder, here is our previous proof: We know that A_{TM} is undecidable. So, we need to show that A_{TM} is reducible to $HALT_{TM}$.

Assume we have a TM R that decides $HALT_{TM}$. We will use R to construct a TM S that decides A_{TM} .

S = "On input $\langle M, w \rangle$:

- 1. Run TM R on input $\langle M, w \rangle$
- 2. If R rejects, reject.
- 3. If R accepts, simulate M on w until it halts.
- 4. If M has accepted, accept; if M has rejected, reject."

Our solution is very similar.

We construct a machine F that computes a reduction f.

In this case, we're inputting a suggested solution to the A_{TM} , $\langle M, w \rangle$, and outputting a suggested solution to $HALT_{TM}$, $\langle M', w' \rangle$.

In order for f to be a reduction, it must be true that $\langle M, w \rangle \in A_{TM} \iff f(\langle M, w \rangle) \in HALT_{TM}$.

Essentially this means f will have to construct a machine M' such that:

"M accepts w if and only if M' halts on w"

and moreover

"M rejects w if and only if M' loops forever on w".

Here, we actually don't need to change the input, so we will see that

 $\langle M, w \rangle \in A_{TM} \iff \langle M', w \rangle \in HALT_{TM}.$

F = "On input $\langle M, w \rangle$:

1. Construct the following machine M'.

M' = "On input x:

- 1. Run M on x
- 2. If M accepts, accept.
- 3. If M rejects, enter a loop."
- 2. Output $\langle M', w \rangle$.

Example:

Let's do a basic reducibility proof and then show that it's mapping reducible.

 $E_{TM} = \{\langle M \rangle | M \text{ is a Turing Machine and } L(M) \neq \emptyset \}$ and

 $EQ_{TM} = \{\langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are Turing Machines and } L(M_1) = L(M_2) \}$

Let's assume we know E_{TM} is undecidable, and let's use that to show EQ_{TM} is also undecidable. So, we assume there exists a TM R that decides EQ_{TM} and show that it can be used to build a TM S that solves E_{TM} .

Here, we will design it so L(S) is the set of all TMs with an emtpty language. (All $\langle M \rangle$ such that M is a Turing Machine and $L(M) = \emptyset$).

This design is pretty straightforward:

S = "On input $\langle M \rangle$:

- 1. Run TM R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
- 2. If R accepts, accept.
- 3. If R rejects, reject."

Doing this as a mapping reducibility just takes a few extra steps.

We want to construct machine F that computes reduction f such that $\langle M \rangle \in E_{TM} \iff f(\langle M \rangle) \in EQ_{TM}$

F = "On input $\langle M \rangle$:

- 1. Construct the machine M_1 that rejects all inputs.
- 2. Output $\langle M, M_1 \rangle$."