Write your name here Surname	Other	names
Pearson Edexcel International GCSE	Centre Number	Candidate Number
Mathemat	tics B	
Paper 2		
_		Paper Reference
Paper 2		Paper Reference 4MB0/02

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Calculators may be used.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
- Without sufficient working, correct answers may be awarded no marks.

P 4 6 9 1 3 A 0 1 3 2

Turn over ▶

Answer ALL ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 Make x the subject of the formula $y = \frac{(1-x)^2}{x} - x$
(Total for Question 1 is 4 marks)

2 (a) Find the inverse of the matrix $\begin{pmatrix} 3 & -2 \\ 5 & -1 \end{pmatrix}$

(2)

(b) Hence, or otherwise, find the value of x and the value of y that satisfy

$$\begin{pmatrix} 3 & -2 \\ 5 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 9 \end{pmatrix}$$

(4)

$$\left[\text{Inverse of matrix } \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \right]$$

(Total for Question 2 is 6 marks)

3	In 2014, the owner of a shop bought 40 000 articles at a cost of £0.56 each and sold all of the articles at £0.68 each.	
	(a) Calculate the total profit made, in £s, in selling all of the articles.	(2)
	In 2015, the owner of the shop bought 25% more of these articles than she bought in 2015	4.
	The owner paid $12\frac{1}{2}\%$ more for each article in 2015 than she did in 2014.	
	The selling price of each article in 2015 was such that the total profit made in selling all of the articles in 2015 was £200 more than the total profit made in 2014.	
	(b) Calculate the selling price, in £s, of each article in 2015.	
		(4)

In $\triangle ADE$, AD = 5 cm, AE = 8 cm and $\angle DAE = 60^{\circ}$ as shown in Figure 1.

(a) Calculate the length, in cm, of DE.

(3)

In Figure 1, D is a point on AB and E is a point on AC so that DE is parallel to BC.

BC = 10.5 cm.

(b) Calculate the length, in cm, of BD.

(2)

Given that the area of $\triangle ADE$ is 17.3 cm² to 3 significant figures,

(c) calculate the area, in cm², of $\triangle ABC$.

(2)

[Cosine rule: $a^2 = b^2 + c^2 - 2bc \cos A$]

5 f and g are two functions such that

f:
$$x \mapsto 2 - 4x$$
 where $x < 1$
g: $x \mapsto 7 - x^2$ where $x \le 0$

- (a) Write down the range of
 - (i) f
 - (ii) g

(2)

(b) Express the inverse function f^{-1} in the form $f^{-1}: x \mapsto ...$

(2)

(c) Find the value of x for which 3f(x) = 4g(x). Give your answer to 3 significant figures.

(5)

Solutions of
$$ax^2 + bx + c = 0$$
 are $x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$

Figure 2 shows $\triangle OAB$ in which $\overrightarrow{OA} = 2\mathbf{a}$ and $\overrightarrow{OB} = 12\mathbf{b}$

The point D is the midpoint of OA and the point C is the midpoint of OB.

The point E on AB is such that AE : AB = 1 : 4

- (a) Find in terms of a and b, simplifying your answers where possible,
 - (i) \overrightarrow{AB}
- (ii) \overrightarrow{AE}
- (iii) \overrightarrow{DE}

The point F is such that DEF is a straight line and $\overrightarrow{BF} = m\mathbf{a}$, where m is a scalar.

(b) Write down \overrightarrow{EF} in terms of **a**, **b** and *m*.

(1)

(4)

Given that $\overrightarrow{DE} = n\overrightarrow{EF}$, where *n* is a scalar,

(c) find the value of m and the value of n.

(5)

Question 6 continued	

Figure 3 shows solid S formed by removing a right circular cylinder of radius $\frac{1}{2}r$ cm and height h cm from a right circular cylinder of radius r cm and height h cm. Both cylinders have the same axis.

The total surface area of S is $A \text{ cm}^2$

(a) Show that
$$A = \frac{3}{2}\pi r^2 + 3\pi rh$$

The volume of S is 30 cm^3

(b) Find a formula for h in terms of π and r.

(2)

(2)

(c) Hence show that
$$A = \frac{3}{2}\pi r^2 + \frac{120}{r}$$

(2)

(d) Find the value of r, to 3 significant figures, for which the value of A is a minimum.

(4)

Area of circle =
$$\pi r^2$$
Curved surface area of a right circular cylinder = $2\pi rh$

8	Each morning, Tang takes at random one carton of juice from her fridge and drinks the juice with her breakfast. She does not return the carton to the fridge.	
	On Monday, there are 9 cartons of grapefruit juice (G) and 6 cartons of mixed fruit juice in the fridge.	(M)
	The incomplete probability tree diagram, on page 19, shows information about the juice Tang drank on Monday, Tuesday and Wednesday.	
	(a) Complete the probability tree diagram.	(4)
	(b) Calculate the probability that Tang will have	
	(i) grapefruit juice on all three mornings,	
	(ii) mixed fruit juice on at least one of the three mornings,	
	(iii) grapefruit juice on at least two of the three mornings.	
		(7)

Question 8 continued

Monday

Tuesday

Wednesday

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

- **9** The points A(2, 2), B(3, 3) and C(4, 1) are the vertices of a triangle.
 - (a) On the grid, draw and label triangle ABC

(1)

$$\mathbf{P} = \begin{pmatrix} 2 & 0 \\ 1 & -1 \end{pmatrix}$$

(b) Calculate the matrix product

$$\mathbf{P} \begin{pmatrix} 2 & 3 & 4 \\ 2 & 3 & 1 \end{pmatrix}$$

(2)

Triangle A'B'C' is the image of triangle ABC where A', B' and C' are respectively the images of the points A, B and C under the transformation with matrix P.

(c) On the grid, draw and label triangle A'B'C'

(1)

$$\mathbf{Q} = \begin{pmatrix} -1 & 0 \\ -1 & 2 \end{pmatrix}$$

Triangle A''B'''C'' is the image of triangle A'B'C' where A'', B'' and C'' are respectively the images of the points A', B' and C' under the transformation with matrix \mathbf{Q} .

(d) On the grid, draw and label triangle A''B''C''

(3)

(e) Describe fully the **single** transformation that maps triangle ABC onto triangle A''B''C''

(3)

(f) Find the matrix that represents this transformation.

(1)

Question 9	continued							
				<i>y</i>				
				4 🕇				
				+				
				2				
-8	-6	-4 	-2	0	2	4	6	8 x
				-2				
				+				
				-4-				
				-6				
				-0				

Figure 4 shows $\triangle ACE$ in which AE = 9 cm.

The point B lies on AC and the point D lies on CE so that $\angle DBC = 90^{\circ}$, $\angle BCD = 25^{\circ}$, $\angle BDA = 70^{\circ}$ and AB = 8 cm.

Calculate the length, in cm to 3 significant figures, of

(a) *AD*,

(2)

(b) BC.

(3)

(c) Calculate the size, to the nearest degree, of $\angle AEC$.

(3)

(d) Calculate the area, in cm² to 3 significant figures, of ABDE.

(5)

Question 10 continued		
	Area of triangle = $\frac{1}{2}bc \sin A$	
	Sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	

11 (a) Complete the following table for $y = 3x^3 - x^2 - 20x$ giving the values of y to one decimal place.

x	0	0.5	1	1.5	2	2.5	3
y	0.0		-18.0		-20.0		12.0

(3)

(b) On the grid, plot the points from your completed table and join them to form a smooth curve.

(3)

(c) On your grid, draw the straight line with equation y = 5x - 8

(1)

(d) Use your graphs to find the range of values of x in $0 \le x \le 3$ for which $3x^3 - x^2 - 25x + 8 < 0$

(4)

(e) By drawing a suitable straight line on your grid, explain why the equation $3x^3 - x^2 - 20x + 25 = 0$ has no solutions in $0 \le x \le 3$

(2)

30

Question 11 continued

Question 11 continued	
	(Total for Question 11 is 13 marks)
	TOTAL FOR PAPER IS 100 MARKS