Логічне виведення в логіці висловлювань. Застосування правил виведення в логіці висловлювань. Метод резолюцій. Правила виведення в численні предикатів. Методи доведення теорем.

Говорять, що формула g — логічний наслідок формул f_1 , f_2 , ..., f_n , або що g логічно випливає з f_1 , f_2 , ..., f_n , якщо в кожній інтерпретації, у якій виконується формула f_1 Λf_2 Λ ... Λf_n , формула g також виконується. Формули f_1 , f_2 , ..., f_n називають гіпотезами (аксіомами, постулатами чи засновками) формули g. Той факт, що формула g логічно випливає з f_1 , f_2 , ..., f_n , позначають f_1 , f_2 , ..., f_n $\vdash g$.

TEOPEMA 1. Формула g — логічний наслідок формул f_1 , f_2 , ..., f_n тоді й лише тоді, коли формула (($f_1 \land f_2 \land ... \land f_n$) $\rightarrow g$) загальнозначуща.

Якщо g — логічний наслідок формул f_1 , f_2 , ..., f_n , то формулу (($f_1 \land f_2 \land ... \land f_n$) $\rightarrow g$) називають логічною теоремою, а g — її висновком. У такому разі говорять, що формулу g можна вивести з формул f_1 , f_2 , ..., f_n і g — вивідна формула. Вираз f_1 , f_2 , ..., f_n $\models g$ називають правилом виведення. Тут гіпотези записано зліва від знака \models , а висновок — справа; сам знак \models має зміст "отже".

TEOPEMA 2. (принцип прямої дедукції). Формула g — логічний наслідок формул f_1 , f_2 , ..., f_n тоді й лише тоді, коли $(f_1 \wedge f_2 \wedge ... \wedge f_n \wedge \overline{g})$ — суперечність.

Правила виведення в логіці висловлювань

Розглянемо правила виведення та їх застосування в логіці висловлювань. Ці правила обгрунтовують кроки доведення логічних теорем, яке полягає в перевірці того, що висновок являє собою логічний наслідок множини гіпотез. Деякі важливі правила виведення та відповідні їм тавтології наведено в табл. 3. Для прикладу, правило виведення modus ponens має вигляд $p, p \rightarrow q \ | \ q$ та грунтується на тавтології $p \land (p \rightarrow q) \rightarrow q$.

Таблиця 1 Правила виведення та відповідні їм тавтології

Правило виведення	Тавтологія	Назва правила виведення
$p \mid p \lor q$	$p \rightarrow p \lor q$	Уведення диз'юнкції
$p \wedge q \vdash p$	$p \land q \rightarrow p$	Виключення кон юнкції
$p,q \vdash p \land q$	$((p) \land (q)) \to p \land q$	Уведення кон'юнкції
$p, p \rightarrow q \mid q$	$p \land (p \rightarrow q) \rightarrow q$	Modus ponens
$\overline{q}, p \rightarrow q \mid \overline{p}$	$q \land (p \rightarrow q) \rightarrow p$	Modus tollens
$p \rightarrow q, q \rightarrow r \mid p \rightarrow r$	$((p \to q) \land (q \to r)) \to (p \to r)$	Гіпотетичний силогізм
$p \vee q, p \vdash q$	$(p \vee q) \wedge \stackrel{-}{p} \to q$	Диз юнктивний силогізм
$p \vee q, p \vee r \vdash q \vee r$	$((p \lor q) \land (p \lor r)) \rightarrow (q \lor r)$	Резолюція

Приклад 1. Припустимо, що імплікація "Якщо падає сніг, то ми катаємося на лижах" і її гіпотеза "Падає сніг" істинні. Тоді за правилом modus ponens висновок імплікації "Ми катаємося на лижах" також істинний.

Приклад 2. Нехай істинна імплікація: "Якщо n > 3, то $n^2 > 9$ ". Отже, якщо n > 3, то за правилом modus ponens висновок $n^2 > 9$ правильний для цього n. Далі наведено декілька прикладів міркувань із використанням правил виведення, наведених у табл. 1.

Приклад 3. З'ясуємо, яке правило виведення використано в такому міркуванні: "Похо-

днішало. Отже, похолоднішало чи почав падати дощ." Нехай р — висловлювання "Похолоднішало", а q — висловлювання "Почав падати дощ". Тоді це твердження можна записати у вигляді правила введення диз юнкції $p \mid p \lor q$.

Приклад 4. З'ясуємо, яке правило виведення використано в такому міркуванні: "Похолоднішало та почав падати дощ. Отже, похолоднішало." Нехай р: "Похолоднішало", а q: "Почав падати дощ". Тоді це твердження можна записати у вигляді правила виключення кон'юнкції $p \wedge q \mid p$.

Метод резолюцій

Правило резолюції записують у вигляді $p \lor q, \overline{q} \lor s \models p \lor s$, а елементарну диз'юнкцію $p \lor s$ називають резольвентою.

Приклад 5. Побудуємо резольвенту пари елементарних диз'юнкцій $d_1 = p \vee q$ і $d_2 = p \vee s$. Ці елементарні диз'юнкції містять контрарну пару літералів p та p, які можна викреслити з d_1 і d_2 . Утворимо диз'юнкцію літералів, що залишилися. Одержимо резольвенту $q \vee s$.

Алгоритм методу резолюцій. Задано множину гіпотез $f_1, f_2, ..., f_n$ і висновок g. Алгоритм дає змогу визначити, чи являє собою формула g логічний наслідок множини гіпотез.

Крок 1. Побудувати кон'юнкцію множини гіпотез $f_1, f_2,...,f_n$ і заперечення висновку — g у вигляді $f_1 \wedge f_2 \wedge ... \wedge f_n \wedge g$. Звести отриману формулу до КНФ і записати множину її елементарних диз'юнкцій $S = \{d_1, d_2,...,d_m\}$.

Крок 2. Записати кожну елементарну диз'юнкцію множини S в окремому рядку.

Крок 3. Вибрати дві елементарні диз'юнкції, які містять контрарну пару літералів, і побудувати їх резольвенту. Записати одержану резольвенту в новому рядку, якщо в попередніх рядках іще немає такої елементарної диз'юнкції.

 $\mathit{Kpok}\ 4$. Крок 3 виконувати до отримання диз'юнкції з рангом 0. Одержання елементарної диз'юнкції з рангом 0 свідчить про те, що формулу g можна вивести з $f_1, f_2, ..., f_n$. Якщо неможливо отримати резольвенту, відмінну від елементів множини S і вже побудованих резольвент, то множина S неспростовна. Кінець.

Головну ідею методу резолюцій формулюють так: перевірити, чи містить множина елементарних диз'юнкцій S елементарну диз'юнкцію з рангом 0, яку позначають \square .

Приклад 6. Доведемо логічний наслідок формули $p \lor q, p \to r, q \to s \models r \lor s$ методом резолюцій. Для цього побудуємо формулу, невиконанність якої потрібно довести. Вона має вигляд $(p \lor q) \land (p \to r) \land (q \to s) \land \overline{(r \lor s)}$. Запишемо гіпотези у вигляді елементарних диз'юнкцій і випишемо кожну з них в окремому рядку:

- (1) $p \vee q$;
- (2) $p \rightarrow r$;
- $(3) \quad a \vee s$

Оскільки заперечення висновку $\overline{(r \lor s)} = \overline{r} \land \overline{s}$ являє собою дві елементарні диз'юнкції \overline{r} і \overline{s} із рангом 1, то їх теж випишемо в окремих рядках:

- (4) r;
- (5) s.

Послідовно побудувавши всі можливі резольвенти методом резолюцій, виведемо диз'юнкцію з рангом 0. Біля кожної резольвенти випишемо номери елементарних диз'юнкцій,

з яких її отримано:

- (6) $\frac{-}{p}$ (2), (4);
- (7) q (6), (1);
- (8) \bar{q} (3), (5);
- $(9) \Box (7), (8).$

Одержання диз'юнкції з рангом 0 доводить теорему.

Правила виведення в численні предикатів

Розглянемо деякі важливі правила виведення для формул із кванторами.

Універсальна конкретизація — це правило виведення того, що P(c) істинне для довільного елемента с з предметної області за умови, що формула $\forall x P(x)$ істинна. Наприклад, універсальну конкретизацію можна використати тоді, коли з твердження "Всі люди смертні" потрібно дійти висновку "Сократ — смертний". Тут Сократ — елемент предметної області, яка складається з усіх людей.

Універсальне узагальнення — це правило виведення, згідно з яким $\forall x P(x)$ істинне, якщо істинне P(c)для довільного с з предметної області. Це правило використовують тоді, коли на підставі істинності P(c) для кожного елемента с з предметної області твердять, що $\forall x P(x)$ істинне. Вибраний елемент с має бути довільним і не конкретизованим. Універсальне узагальнення неявно застосовують у багатьох математичних доведеннях і рідко згадують явно.

Eкзистенційна конкретизація — це правило, яке дає змогу дійти висновку про те, що на підставі істинності $\exists x P(x)$ можна твердити, що в предметній області є елемент с, для якого P(c) істинне. Зазвичай про елемент с відомо тільки те, що він існує. Із цього випливає, що можна позначити його та продовжувати міркування.

Eкзистенційне узагальнення — це правило виведення, використовуване для того, щоб на підставі істинності P(c) на якомусь елементі с з предметної області дійти висновку, що $\exists x P(x)$ істинне.

Правила виведення в численні предикатів зазначено в табл. 2.

Таблиця 2

Правило виведення	Назва
1. $\forall x P(x) \vdash P(c)$	Універсальна конкретизація
$2. P(c) \vdash \forall x P(x)$	Універсальне узагальнення
3. $\exists x P(x) \vdash P(c)$	Екзистенційна конкретизація
$4. p(c) \vdash \exists x P(x)$	Екзистенційне узагальнення

У правилах 1 і 2 елемент с предметної області довільний, а в правилах 3 та 4 в предметній області має бути принаймні один такий елемент.

Приклад 7. Доведемо, що гіпотези "Кожний, хто вивчає комп'ютерні науки, слухає курс дискретної математики" та "Марія вивчає комп'ютерні науки" дають змогу сформулювати висновок "Марія слухає курс дискретної математики". Нехай D(x): "х вивчає комп'ютерні науки", C(x): "х слухає курс дискретної математики". Тоді гіпотези — це формули $\forall x(D(x) \rightarrow C(x))$ і D(Марія), а висновок — C(Марія). Доведення висновку для введеної множини гіпотез виконаємо в такій послідовності.

- 1. $\forall x(D(x) \rightarrow C(x))$ гіпотеза.
- 2. $D(Mapin) \to C(Mapin)$ універсальна конкретизація до 1.
- 3. *D*(Марія)— гіпотеза.
- 4. C(Mapiя) modus ponens до 2 та 3

Приклад 8. Доведемо, що з гіпотез "У групі є студент, який не читав підручника" та "Всі студенти групи склали іспит" можна сформулювати висновок "Дехто з тих, хто склав іспит, не

читав підручника". Нехай C(x): "х учиться в групі", B(x): "х читав підручник" і P(x): "х склавіспит". Гіпотези — це $\exists x (C(x) \land \bar{B}(x))$ і $\forall x (C(x) \rightarrow P(x))$, а висновок — $\exists x (P(x) \land \bar{B}(x))$ Доведення — це така послідовність кроків.

- 1. $\exists x (C(x) \land \bar{B}(x))$ гіпотеза.
- 2. $C(a) \wedge \bar{B}(a)$ екзистенційна конкретизація до 1.
- 3. C(a)— виключення кон'юнкції до 2.
- 4. $\forall x (C(x) \rightarrow P(x))$ гіпотеза.
- 5. $C(a) \rightarrow P(a)$ універсальна конкретизація до 4.
- 6. P(a)— modus ponens до 3 та 5.
- 7. $\bar{B}(a)$ виключення кон'юнкції до 2.
- 8. $P(a) \wedge \bar{B}(a)$ уведення кон'юнкції до 6 і 7.
- 9. $\exists x (P(x) \land \bar{B}(x))$ екзистенційне узагальнення до 8.

Методи доведення теорем

Доведення теорем може бути доволі складним. Розглянемо різні методи доведення. Оскільки багато теорем мають вигляд імплікації, потрібно вміти доводити тавтологічність імплікації. Повторимо, що $p \to q$ істинне, окрім випадку, коли p істинне, а q — хибне. Розглянемо найзагальніші методи доведення.

Пряме доведення. Тавтологічність імплікації $p \to q$ можна довести, переконавшись, що коли припущення імплікації pістинне, то й висновок qтакож істинний.

Доведення від протилежного. Можна довести (див. задачу 5), що імплікація $p \to q$ еквівалентна кожній із формул $\bar{q} \to \bar{p}$, $(p \land \bar{q}) \to \bar{p}$, $(p \land \bar{q}) \to q$, $(p \land \bar{q}) \to F$,, де F— значення "хибність". Тому замість доведення тавтологічності $p \to q$ можна довести тавтологічність однієї з чотирьох наведених формул. Розглянемо, наприклад, імплікацію $\bar{q} \to \bar{p}$. За умови істинності \bar{q} потрібно довести істинність \bar{p} . Це найпростіший спосіб доведення теореми $p \to q$ від протилежного: ми припускаємо протилежне до того, що потрібно довести, й одержуємо суперечність із тим, що дано. У разі доведення на основі решти трьох формул ми беремо до уваги водночас і те, що дано (p), і протилежне до того, що потрібно довести (\bar{q}) , тобто $(p \land \bar{q})$. Тоді для доведення теореми $p \to q$ достатньо отримати суперечність із тим, що дано (\bar{p}) , або вивести те, що потрібно довести (q), або, нарешті, одержати суперечність $F = r \land \bar{r}$. Отже, в останньому випадку з $p \land \bar{q}$ достатньо вивести якесь висловлювання rі його заперечення \bar{r} (бо тоді мало б бути істинним висловлювання $r \land \bar{r}$, що неможливо). Останній спосіб доведення від протилежного в певному розумінні найзагальніший.

Доведення аналізом випадків. Іноді для доведення тавтологічності імплікації $p \to q$ зручно використати замість р диз'юнкцію $p_1 \lor p_2 ... \lor p_n$ як припущення імплікації, якщо р та $p_1 \lor p_2 ... \lor p_n$ еквівалентні. На основі логічної еквівалентності

$$(p_1 \lor p_2 ... \lor p_n) \rightarrow q = (p_1 \rightarrow q) \land (p2 \rightarrow q) \land ... \land (p_n \rightarrow q)$$

доведення тавтологічності імплікації $p_1 \lor p_2 ... \lor p_n \to q$ можна замінити доведенням тавтологічності кожної з n імплікацій $p_i \to q$, i = 1, 2, ... nокремо.