

Grundlagenpraktikum: Rechnerarchitektur

Gruppe 104 - Abgabe zu Aufgabe A325

Viktor Bayo, Mikhail Lykov, Georgy Chomakhashvili

Lehrstuhl für Rechnerarchitektur und Parallelsysteme Fakultät der Informatik Technische Universität München

März 15. 2023

Outline

- Problemstellung
- Lösungsansatz
- Genauigkeit
- 4 Performanz

Problemstellung

- Aufgabe:
 - $\sqrt{2}$ in wählbarer Genauigkeit zu berechnen
 - Wahlweise in dezimaler oder hexadezimaler Darstellung
- Zum Beispiel:
 - □ Darstellung: Dezimal, Genauigkeit: 5 ⇒ 1.41421
 - □ Darstellung: Hexadezimal, Genauigkeit: 10 ⇒ 1.6A09E667F3

Problemstellung Theoretischer Teil

- Datenstruktur bignum
- Arithmetik
 - Addition
 - Subtraktion
 - Multiplikation
 - Karazuba Multiplikation
 - Division
 - Newton-Raphson-Verfahren

Praktischer Teil

- Berechnung der Konstante $\sqrt{2}$
 - □ Binnary Splitting
 - Newton-Raphson-Verfahren
- Analyse
 - Genauigkeit
 - Performanz

Outline

- Problemstellung
- Lösungsansatz
- Genauigkeit
- 4 Performanz

Lösungsansatz Rahmenprogramm

- Rahmenprogramm I/O-Operationen in C
- 3 Versionen:
 - ☐ Hauptimplementierung: Binary Splitting
 - □ Version 1: Binary Splitting + SIMD
 - □ Version 2: Newton—Raphson-Verfahren
- Standardwerte
- Tests

Lösungsansatz Datenstruktur bignum

- Ganzzahlen beliebiger Größe zu speichern
- Format, um die Fixkommazahlen zu speichern

 $[0].mantissa \cdot base^{exponent}$

Lösungsansatz **Addition**

Beispiel:

- \square a = 13000 a.mantissa = [1, 3] a.exponent = 5

- b = 720 b.mantissa = [7, 2]
 - b.exponent = 3

 \square result = a + b = 13720

Vorgehen:

- \square a shift = 2
- b shift = 0
- result.mantissa = 4
- result.exponent = 5

Ergebnis: $[0].1372 \cdot 10^5 = 13720$

Lösungsansatz **Subtraktion**

Beispiel:

- $\Box \ a = 13.4$ a.mantissa = [1, 3, 4]
- a.exponent = 2

- \Box b = 0.25 b.mantissa = [2, 5]
- b.exponent = 0

result = a - b = 13.15

Vorgehen:

- Extra 1
 - a shift = 1
 - b shift = 0
 - result.mantissa = 4
- result.exponent = 2

	[1]	0	0	0	0
+		1	3	4	
	1	1	3	4	0
-			0	2	5
	[1]	1	3	1	5

Ergebnis: $[0].1315 \cdot 10^2 = 13.15$

Lösungsansatz **Multiplikation**

Beispiel (Dezimal-Zahlensystem):

- \square a = 127 a.mantissa = [1, 2, 7] a.exponent = 3
- \Box b = 254 b.mantissa = [2, 5, 4] b.exponent = 3

 \square result = $a \cdot b = 32258$

Vorgehen:

- result.mantissa = 6
- result.exponent = 6
- ☐ *l*, *r* Grenzen von Mantissen

$$result.mantissa[i] = \sum_{i=1}^{r} a.mantissa[j] \cdot b.mantissa[i-j]$$
 (1)

Laufzeit: $\Theta(n^2)$

Lösungsansatz Multiplikation

$$a = 127, b = 254, carry_i = result[i]/base$$

- $result[0] = a_0 \cdot b_0 = 7 \cdot 4 = 28 \mod 10 = 8, c_0 = 2$
- $result[1] = a_0 \cdot b_1 + a_1 \cdot b_0 = 35 + 8 = 43 + c_0 = 45 \mod 10 = 5, c_1 = 4$
- $result[2] = a_0 \cdot b_2 + a_1 \cdot b_1 + a_2 \cdot b_0 = 14 + 10 + 4 = 28 + c_1 = 32 \mod 10 = 2, c_2 = 3$
- $result[3] = a_1 \cdot b_2 + a_2 \cdot b_1 = 4 + 5 = 9 + c_2 = 12 \mod 10 = 2, c_3 = 1$
- result[4] = $a_2 \cdot b_2 = 2 + c_3 = 3 \mod 10 = 3, c_4 = 0$
- $result[5] = 0 + c_4 = 0$
- $result = 8 \cdot 10^0 + 5 \cdot 10^1 + 2 \cdot 10^2 + 2 \cdot 10^3 + 3 \cdot 10^4 + 0 \cdot 10^5 = 32258$ $[0].032258 \cdot 10^6$ $32258 \cdot 10^5$

Lösungsansatz Vektorisierte Multiplikation

Vektor a:

Vektor b:

Multiplikationsvektor:

Lösungsansatz Karazuba-Multiplikation

- $a = ah + al \cdot base^{-half_size}$
- $b = bh + bl \cdot base^{-half_size}$

$$ah \cdot bh + ((ah + al)(bh + bl) - ah \cdot bh - al \cdot bl)base^{-half_size} + al \cdot bl \cdot base^{-2 \cdot half_size}$$
 (2)

Laufzeit: $O(n^{1.59})$

Lösungsansatz Division

- $\frac{a}{b} = a \cdot \frac{1}{b}, \frac{1}{b}$ Kehrwert
- Kehrwert wird mittels Newton-Raphson-Verfahren approximiert
- Vorgehen:
 - $\Box f(x) = \frac{1}{x} b$

 - $x_0 = 1$, da $[0].b \in [0.1; 1]$

Laufzeit: $O(n^{1.59})$

Lösungsansatz Newton-Raphson-Verfahren

Lösungsansatz Binary Splitting

$$\sqrt{2} = 1 + \sum_{i=1}^{\infty} \prod_{k=1}^{i} \frac{2k-1}{4k}$$
 (3)

$$S_{n_1,n_2} = \sum_{n=n_1}^{n_2-1} \prod_{k=n_1}^n \frac{2k-1}{4k} \qquad P_{n_1,n_2} = \prod_{k=n_1}^{n_2-1} 2k - 1$$
 (4)

$$Q_{n_1,n_2} = \prod^{n_2-1} 4k \qquad T_{n_1,n_2} = Q_{n_1,n_2} \cdot S_{n_1,n_2}$$
 (5)

Lösungsansatz Binary Splitting

$$P_{n_1,n_2} = \begin{cases} p(n_1) = 2n_1 - 1 & \text{if } n_1 = n_2 - 1, \\ P_{n_1,m} P_{m,n_2} & \text{otherwise} \end{cases}$$

Laufzeit: $\mathcal{O}((n \log n)^{1.59})$

Lösungsansatz

Berechnung $\sqrt{2}$ mittels Binary Splitting

$$lacksquare$$
 $\sqrt{2} pprox 1 + S_{1,n+1}$ - ergibt n binäre Nachkommastellen.

Laufzeit: $\mathcal{O}((n \log n)^{1.59})$

Lösungsansatz

Berechnung $\sqrt{2}$ mittels Newton-Raphson-Verfahren

$$f(x) = x^2 - 2.$$

$$x_{i+1} = x_i + \frac{f(x)}{f'(x)}$$

$$x_{i+1} = x_i - \frac{x^2 - 2}{2x}$$
$$= x_i + \frac{1}{2} \left(\frac{2}{x_i} - x_i \right)$$

$$x_0 = 1$$
, da $\sqrt{2} \ge 1$

Laufzeit: $\mathcal{O}(n^{1.59})$

Outline

- Problemstellung
- Lösungsansatz
- Genauigkeit
- 4 Performanz

Genauigkeit

$$\sqrt{2} - (1 + S_{1,to}) = 1 + \sum_{i=1}^{\infty} \prod_{k=1}^{i} \frac{2k - 1}{4k} - (1 + S_{1,to}) =$$

$$= \sum_{i=to}^{\infty} \prod_{k=1}^{i} \frac{2k - 1}{4k} \le \sum_{i=to}^{\infty} \left(\frac{1}{2}\right)^{i+1} = \left(\frac{1}{2}\right)^{to} \quad (6)$$

$$\prod_{k=1}^{i} \frac{2k-1}{4k} = \frac{1}{4} \prod_{k=2}^{i} \frac{2k-1}{4k} \le \frac{1}{4} \prod_{k=2}^{i} \frac{2k}{4k} = \frac{1}{4} \prod_{k=2}^{i} \frac{1}{2} \le \left(\frac{1}{2}\right)^{i+1} \tag{7}$$

Outline

- Problemstellung
- Lösungsansatz
- 3 Genauigkeit
- 4 Performanz

Performanz

