Math 488, Assignment 2

- 1. Prove that the following statements are equivalent on the basis of ${\bf ZF}$
 - (i) Axiom of Choice,
 - (ii) Well Ordering Principle (saying that every set can be well-ordered),
 - (iii) Zorn's Lemma
- 2. Let κ be a regular uncountable cardinal. Say that a set $C \subseteq \kappa$ is closed unbounded (club) if C is closed under taking limits of transfinite sequences of elements in C and C is not bounded. Show that
 - (1) the intersection of two club sets is club
 - (2) the intersection of any family of less than κ club sequences is a club
- 3. Suppose $(C_{\alpha} : \alpha < \kappa)$ is a sequence of club subsets of a regular uncountable κ . Prove that the set $\Delta_{\alpha < \kappa} C_{\alpha} = \{\beta < \kappa : \beta \in \bigcap_{\gamma < \beta} C_{\gamma}\}$ is a club.
- 4. Let κ be a regular uncountable cardinal. Say that a subset $S \subseteq \kappa$ is stationary if $S \cap C \neq \emptyset$ for every club C. Find two disjoint stationary subsets in κ .
- 5. Say that a function $f: \kappa \to \kappa$ is regressive if $f(\alpha) < \alpha$ for all $\alpha > 0$. Prove Fodor's lemma: for any regressive function $f: \kappa \to \kappa$ (κ regular unctbl) there exists a stationary set $S \subseteq \kappa$ such that f is constant on S.