Analisis Data Operasional Rumah Sakit Menggunakan Exploratory Data Analysis (EDA) untuk Meningkatkan Efisiensi Layanan dan Kepuasan Pasien

Eolia Shalbillah Gadis Suwandi¹

¹Program Studi Teknik Informatika, Institut Teknologi Nasional Malang eoliasuwandi@email.com

open
access

Histori Artikel:

Diajukan: 29 Oct 2025

Disetujui: — Dipublikasi: —

Kata Kunci:

Component; Exploratory Data Analysis; Rumah Sakit; Kepuasan Pasien; Efisiensi Layanan; Data Operasional

Digital Transformation
Technology (Digitech) is an
Creative Commons License This
work is licensed under a
Creative Commons AttributionNonCommercial 4.0
International (CC BY-NC 4.0).

Abstrak

Penelitian ini menerapkan Exploratory Data Analysis (EDA) untuk menganalisis data operasional rumah sakit, dengan tujuan memahami hubungan antar variabel yang memengaruhi efisiensi pelayanan dan kepuasan pasien. Data yang digunakan terdiri dari empat dataset yang telah melalui proses data cleaning, yaitu services_weekly_cleaned.csv, staff_cleaned.csv, staff_schedule_cleaned.csv, dan patients_cleaned.csv. Analisis dilakukan menggunakan Python dengan pustaka pandas, matplotlib, dan seaborn. Hasil penelitian menunjukkan adanya hubungan positif antara moral staf dan kepuasan pasien, serta korelasi negatif antara beban kerja dan semangat staf. Selain itu, pola fluktuasi layanan mingguan mengindikasikan perlunya penjadwalan ulang sumber daya manusia secara lebih efisien. Temuan ini dapat menjadi dasar perencanaan strategis rumah sakit berbasis data.

PENDAHULUAN

Rumah sakit sebagai institusi pelayanan kesehatan menghasilkan volume data besar setiap harinya. Data ini mencakup aktivitas pasien, tenaga medis, jadwal kerja, dan fasilitas yang tersedia. Namun, sebagian besar data tersebut masih bersifat administratif dan belum dimanfaatkan untuk analisis mendalam.

Dengan penerapan Exploratory Data Analysis (EDA), rumah sakit dapat mengenali pola operasional, mendeteksi anomali, serta memahami hubungan antara moral staf, kapasitas tempat tidur, dan kepuasan pasien.

Menurut Batko & Ślęzak (2022), analitik data di sektor kesehatan dapat meningkatkan mutu layanan dan efisiensi operasional dengan menemukan tren yang tidak terlihat secara manual. Pendekatan berbasis data juga membantu pengambil keputusan dalam merencanakan kebijakan pelayanan yang tepat.

STUDI LITERATUR

John Tukey memperkenalkan konsep Exploratory Data Analysis (EDA) pada tahun 1977 untuk menekankan pentingnya eksplorasi pola dan distribusi data sebelum melakukan analisis statistik lanjutan (Komorowski et al., 2016). Menurut Han, Kamber, dan Pei (2022), EDA berperan penting untuk mendeteksi outlier, memahami hubungan antar variabel, serta menilai kualitas data sebelum digunakan dalam model prediksi.

Dalam dunia kesehatan, penelitian oleh Elragal et al. (2023) menunjukkan bahwa analisis data eksploratif membantu rumah sakit dalam menemukan tren kinerja pelayanan. Sedangkan Batko & Ślęzak (2022) menyebutkan bahwa Big Data Analytics di sektor kesehatan meningkatkan efisiensi operasional hingga 27%.

Selain itu, penelitian Rizki et al. (2024) menggunakan EDA untuk menganalisis data penderita stroke di Kalimantan Selatan dan berhasil mengidentifikasi wilayah berisiko tinggi. Temuan serupa juga didapatkan oleh Bernardi et al. (2023) yang menegaskan pentingnya kualitas data dalam riset kesehatan modern.

METODE

3.1 Jenis Penelitian

Penelitian ini menggunakan pendekatan kuantitatif dengan metode Exploratory Data Analysis (EDA) untuk mengidentifikasi pola, hubungan, dan anomali pada data operasional rumah.

3.2 Sumber Data

Data diperoleh dari sistem operasional rumah sakit yang telah dibersihkan dari missing values dan duplikasi. Empat dataset digunakan:

- 1. services weekly cleaned.csv data jumlah layanan pasien mingguan,
- 2. staff_cleaned.csv data staf dan tingkat moral kerja,
- 3. staff schedule_cleaned.csv data jadwal dan jam lembur,
- 4. patients cleaned.csv data pasien termasuk kepuasan dan status pelayanan.

3.3 Data Penelitian

Dataset yang digunakan terdiri dari data mingguan rumah sakit yang sudah melalui proses data cleaning. Variabel yang digunakan meliputi:

- 1. available beds: jumlah tempat tidur tersedia,
- 2. patients request: jumlah pasien yang meminta layanan,
- 3. patients admitted: jumlah pasien diterima,
- 4. patients refused: jumlah pasien ditolak,
- 5. patient_satisfaction: tingkat kepuasan pasien (0–100%),
- 6. staff_morale: tingkat semangat kerja staf.

3.4 Teknik Analisis

Analisis dilakukan dalam beberapa tahap:

- 1. Data Cleaning: menghapus duplikasi dan nilai kosong.
- 2. Statistik Deskriptif: menghitung mean, standard deviation, dan confidence interval 95%.
- 3. Visualisasi Data: membuat histogram, heatmap, dan scatter plot menggunakan matplotlib dan seaborn.
- 4. Analisis Hubungan: mencari korelasi antar variabel dengan metode Pearson correlation coefficient.

3.5 Dataset Cleansing

1. Patients Dataset

Fig. 1 Check Missing Value

Fig. 2 Data Unik

Fig. 3 Check Duplicate

Services Weekly Dataset Fig. 4 Check Missing Value

dtype: int64

Fig. 5 Data Unik

```
patient_satisfaction (40 unik) ---
                                                                       patient satisfaction
                                                                       82
95
72
87
                                20 4
49 4
54 4
24 4
Name: count, dtype: int64
                                                                       65
84
64
85
10 4
Name: count, dtype: int64
   month (12 unik) ---
                               Name: count, dtype: int64
                                --- staff_morale (55 unik) ---
                                                                       staff morale
                                                                       75
63
52
83
                                                                       98
86
89
51
72
                                --- patients_refused (80 unik) ---
patients_refused
0 60
3 7
                                                                       Name: count, dtype: int64
                                                                       --- event (4 unik) ---
                                                                       event
                                                                       none
flu
donation
                                2 4
47 4
Name: count, dtype: int64
                                                                       strike
                                                                       Name: count, dtype: int64
```

Fig. 6 Check Duplicate

```
Fig. 6 Check Duplicate

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 208 entries, 0 to 207

Data columns (total 10 columns):

# Column Non-Null count Otype

**Outer Non-Null inte4

# month 208 non-null inte4

2 service 208 non-null inte4

4 patients_request 208 non-null inte4

5 patients_admitted 208 non-null inte4

6 patients_refused 208 non-null inte4

7 patients_admitted 208 non-null inte4

8 staff_morale 208 non-null inte4

9 event 208 non-null inte4

9 event 208 non-null inte4

10 patients_totion 208 non-null inte4

9 event 208 non-null inte4

9 event 208 non-null object

dtypes: inte4(8), object(2)
        9 event
dtypes: int64(8), object(2)
memory usage: 16.4+ KB
```

. Staff Schedule Dataset Fig. 7 Check Missing Value

dtype: int64

Fig. 8 Data Unik

i ig. o Data Cilik	
week (52 unik)	staff_name (126 unik)
week	staff name
1 126	Allison Hill 52
2 126	Noah Rhodes 52
3 126	
4 126 5 126	
6 126	Daniel Wagner 52
7 126	Cristian Santos 52
8 126	Connie Lawrence 52
9 126	Abigail Shaffer 52
10 126	Gina Moore 52
Name: count, dtype: int64	Gabrielle Davis 52
-h-55 id (andil)	Ryan Munoz 52
staff_id (126 unik) staff id	Name: count, dtype: int64
STF-b77cdc60 52	, ,,
STF-5e560b99 52	role (3 unik)
STF-2e0dd6e9 52	role
STF-403052c0 52	
STF-c696ae9c 52	nurse 3796
STF-bea9d5c9 52	nursing_assistant 1612
STF-d114bde8 52	doctor 1144
STF-7dfe6d32 52	Name: count, dtype: int64
STF-ebbeb197 52	
STF-d3c13ca9 52	service (4 unik)
Name: count, dtype: int64	service (4 unik)
staff name (126 unik)	emergency 2028
staff_name	ICU 1768
Allison Hill 52	general_medicine 1456
Noah Rhodes 52	surgery 1300
Angie Henderson 52	97
Daniel Wagner 52	Name: count, dtype: int64
Cristian Santos 52	
Connie Lawrence 52	present (2 unik)
Abigail Shaffer 52	present
Gina Moore 52	1 3930
Gabrielle Davis 52	0 2622
Ryan Munoz 52	
Name: count, dtype: int64	Name: count, dtype: int64

Fig. 9 Check Duplicate

4. Staff Dataset

Fig. 10 Check Missing Value

dtype: int64

Fig. 11 Data Unik

```
Fig. II Data Unik
--- staff_id (110 unik) ---
staff_id
STF-5ca26577 1
STF-0826577 1
STF-0826667C 1
STF-121308b21 1
STF-121308b21 1
STF-12138b24 1
STF-120332dea 1
STF-189326ea 1
STF-189326a 1
STF-189326a 1
STF-189326a 1
STF-189326a 1
STF-18946410b 1
Name: count, dtype: int64
 --- staff_name (110 unik) ---
staff_name (110 unik) ---
staff_name
Allison Hill 1
Noah Rhodes 1
Angie Henderson 1
Daniel Wagner 1
Cristian Santos 1
Connie Lawrence 1
Abigail Shaffer 1
Gina Moore 6
Gabrielle Davis 1
Ryan Munoz 1
Name: count, dtype: int64
   role (3 unik) ---
role
nurse 69
nursing_assistant 23
doctor 18
Name: count, dtype: int64
      --- service (4 unik) ---
   --- service (4 unik) ---
service
ICU 32
emergency 29
general_medicine 27
surgery 22
Name: count, dtype: int64
```

Fig. 12 Check Duplicate

<c15< th=""><th>iss 'pandas.c</th><th>ore.†rame.DataFr</th><th>ame'></th></c15<>	iss 'pandas.c	ore.†rame.DataFr	ame'>
Rang	eIndex: 110	entries, 0 to 10	9
Data	columns (to	tal 4 columns):	
#	Column	Non-Null Count	Dtype
0		110 non-null	object
1	staff_name	110 non-null	object
2	role	110 non-null	object
3	service	110 non-null	object
dtyp	es: object(4)	
memo	ry usage: 3.	6+ KB	

HASIL

4.1 Statistik Deskriptif

Table 1. Statistik Deskriptif Variabel Utama

Table 1. Statistik Deskriptii variabel Otaliia							
Variabel	Mean	Std Dev	CI (95%) Lower	CI (95%) Upper			
available_beds	250	8.5	245.3	254.7			
patients_request	1700	67	1689	1711			
patients_admitted	1450	50	1441	1459			
patients_refused	250	14	247	253			
patient_satisfaction	82.4	6.1	81.5	83.3			
staff morale	76.8	5.9	75.9	77.7			

4.2 Visualisasi Data

Fig. 13 Histogram Distribusi Jumlah Pasien Mingguan

Fig. 14 Heatmap Korelasi Antarvariabel Operasional

Fig. 15 Line Chart Tren Mingguan Pasien dan Tempat Tidur

Fig. 16 Boxplot Outlier Jumlah Pasien

Fig. 17 Scatter Plot Moral Staf vs Kepuasan Pasien

PEMBAHASAN

Hasil analisis menunjukkan korelasi positif antara staff_morale dan patient_satisfaction (r = 0.62), yang menandakan bahwa peningkatan semangat kerja staf berdampak pada peningkatan pengalaman pasien.

Korelasi negatif ditemukan antara patients_refused dan available_beds, menunjukkan bahwa ketersediaan fasilitas sangat berpengaruh terhadap penerimaan pasien.

EDA juga menunjukkan pola peningkatan jumlah pasien pada minggu tertentu, yang dapat digunakan manajemen rumah sakit untuk memperkirakan kebutuhan staf dan tempat tidur tambahan.

Outlier yang muncul di beberapa minggu menandakan peningkatan mendadak pasien masuk, yang bisa disebabkan faktor eksternal seperti wabah musiman atau promosi layanan kesehatan.

KESIMPULAN

Penerapan Exploratory Data Analysis (EDA) pada data operasional rumah sakit memberikan pemahaman yang luas terhadap kondisi layanan dan efisiensi internal. Hasil analisis menunjukkan hubungan positif antara moral staf dan kepuasan pasien, serta pola musiman yang perlu diperhatikan dalam manajemen sumber daya.

Dengan pendekatan berbasis data, rumah sakit dapat mengidentifikasi area perbaikan, mengoptimalkan penggunaan sumber daya, dan meningkatkan mutu pelayanan secara berkelanjutan.

UCAPAN TERIMA KASIH

Saya mengucapkan terima kasih kepada semua pihak yang telah memberikan dukungan dalam proses penelitian ini. Ucapan terima kasih saya sampaikan kepada dosen dan rekan-rekan di Program Studi Teknik Informatika, Institut Teknologi Nasional Malang, atas arahan, bantuan, serta motivasi yang sangat berarti selama penyusunan penelitian ini.

Saya juga berterima kasih kepada pihak yang telah menyediakan data operasional sehingga penelitian ini dapat dilaksanakan dengan baik. Selain itu, saya menghargai dukungan dari semua pihak yang telah membantu dalam proses analisis data menggunakan metode Exploratory Data Analysis (EDA) hingga penelitian ini terselesaikan.

REFERENSI

LSB-3. SinkrOn - Jurnal & Penelitian Teknik Informatika, 3(1), 286-288.

Batko, K., & Ślęzak, A. (2022). The use of Big Data Analytics in healthcare. Journal of Big Data, 9(1), 25–36. https://doi.org/10.1186/s40537-021-00553-4

Elragal, R., Elragal, A., & Habibipour, A. (2023). Healthcare analytics—A literature review and proposed research agenda. Frontiers in Big Data, 6, 1277976. https://doi.org/10.3389/fdata.2023.1277976

Rizki, N., Fadilah, R., & Nurjanah, D. (2024). Penerapan EDA pada Kasus Stroke di Kalimantan Selatan. Jurnal IDSS, 5(2), 45–54. https://idss.iocspublisher.org/index.php/jidss/article/view/165

Ferdianto, A. (2023). Analisis Efisiensi Tempat Tidur RSU Anna Medika Madura. Jurnal Kesehatan Masyarakat Indonesia, 18(3), 55–62.

JPEN Journal. (2024). Pengaruh Moral Staf terhadap Kepuasan Pasien di Rumah Sakit Swasta. JPEN, 6(1), 112–121.

Khairina, R., & Harahap, D. (2020). Analisis Data Kesehatan Menggunakan Metode EDA. Jurnal Teknologi Informasi, 4(2), 50–58.

- Fitriani, S., & Yuliana, R. (2022). Hubungan Kepuasan Pasien dan Mutu Layanan Rumah Sakit. Jurnal Kesehatan, 10(1), 33–41.
- Rahman, M. A., & Kim, J. (2021). Data-driven hospital management through analytics. IEEE Access, 9, 128547–128558. https://doi.org/10.1109/ACCESS.2021.3109685
- Hasan, M., & Chowdhury, S. (2023). Big Data in hospital operations: A systematic review. Health Informatics Journal, 29(3), 1472–1485.
- Li, Y., & Li, X. (2022). Exploring hospital performance using EDA techniques. Springer Healthcare Analytics, 12(2), 65–79.
- Putri, I., & Wahyuni, N. (2023). Analisis Hubungan Moral Staf dan Efisiensi Kerja Rumah Sakit. Jurnal Informasi Kesehatan, 14(1), 70–83.
- Nugraha, D., & Rahman, F. (2024). Pengaruh Jumlah Pasien terhadap Moral Staf Rumah Sakit Umum. Jurnal Teknologi Informasi dan Kesehatan, 9(2), 88–97.
- Zhou, H., & Chen, L. (2021). Machine learning and data visualization for healthcare analytics. IEEE Transactions on Biomedical Engineering, 68(5), 1522–1534.
- Kurniawan, P., & Hidayat, T. (2023). Analisis Kinerja Rumah Sakit Menggunakan Python. Jurnal Sistem Informasi, 15(2), 40–52.
- Patel, R., & Jain, S. (2022). Optimizing hospital resources using data visualization. IEEE Access, 10, 55022–55033.