

第九章 中央处理器(五)

秦磊华 计算机学院

- 9.7 微程序控制器设计
- 9.8 控制器设计总结

1. 微程序控制器的基本思想

- ◆微程序控制器采用存储逻辑;
- ◆采用软件方法设计硬件的技术;

节拍	控制信号(4 cycles)
T1	PC _{out} , AR _{in} , X _{in}
T2	+4, Read
Т3	Z _{out} , PC _{in} , DRE _{in,} Read
T4	DR _{out} , IR _{in}

◆仿照程序设计方法,把每条指令所需的操作控制信号编写成微指令, 存放到只读存储器(控存)中。每条机器指令对应一段微程序,机器执行程序 时依次读出指令所对应的微指令,执行其中的微操作,从而完成指令的功能。

程序

1. 微程序控制器的基本思想

T4	DR _{out} , IR _{in}				
节拍	lw (5 cycles)	sw (5 cycles)	beq (5 cycles)	add (3 cycles)	addi (3 cycles)
T1	R _{out} , X _{in}	R _{out} , X _{in}	R _{out} , X _{in}		
T2	IR(I) _{out} , A, ADD	IR(I) _{out} ,A, ADD	R _{out} , Rs/Rt, SUB, PSW _{in}		
T1	Z _{out} , AR _{in}	Z _{out} , AR _{in}	PC _{out} , X _{in}	R _{out} , X _{in}	R_{out} , X_{in}
T2	DRE _{in,} Read	R _{out} , Rs/Rt, DR _{in}	IR(A) _{out} , imm, ADD	Rs/Rt, R _{out} , ADD	IR(I)out ,A, ADD
Т3	DR _{out} , R _{in}	DRE _{out} , Write	Z _{out} , PC _{in} =PSW.equal	Z _{out} , R _{in} , RegDst	Z _{out} , R _{in}

2. 指令与微指令

指令格式与作用:

操作码字段

寻址方式

地址码字段

微指令作用?

节拍	控制信号(4 cycles)
T1	PC _{out} , AR _{in} , X _{in}
T2	+4, Read
Т3	Z _{out} , PC _{in} , DRE _{in} , Read
T4	DR _{out} , IR _{in}

一 产生指令周期某段时 间内的操作控制信号

微指令的格式?

微指令的格式与什么有关?

2. 指令与微指令

微指令的格式与什么有关?

节拍	lw (5 cycles)	sw (5 cycles)	beq (5 cycles)	add (3 cycles)	addi (3 cycles)
T1	R _{out} , X _{in}	R _{out} , X _{in}	R _{out} , X _{in}		
T2	IR(I) _{out} , A, ADD	IR(I) _{out} ,A, ADD	R _{out} , Rs/Rt, SUB, PSW _{in}		
T1	Z _{out} , AR _{in}	Z _{out} , AR _{in}	PC _{out} , X _{in}	R _{out} , X _{in}	R _{out} , X _{in}
T2	DRE _{in,} Read	R _{out} , Rs/Rt, DR _{in}	IR(A) _{out} , imm, ADD	Rs/Rt, R _{out} , ADD	IR(I)out ,A, ADD
Т3	DR _{out} , R _{in}	DRE _{out} , Write	Z _{out} , PC _{in} =PSW.equal	Z _{out} , R _{in} , RegDst	Z _{out} , R _{in}

華中科技大字 计算机科学与技术学院 School of Computer Science & Technology, HUST

3. 微指令格式

承载操作控制信号,每一位对应一个控制信号,也称微命令

3. 微指令格式

T1	PC _{out} , AR _{in} , X _{in}
T2	+4
Т3	Z _{out} , PC _{in} , DRE _{in} , Read
T4	DR _{out} , IR _{in}

与每条指令执行阶段的微指令 一同编制在同一微程序中还是 独立为一段微程序?

节拍	lw (5 cycles)	sw (5 cycles)	beq (5 cycles)	add (3 cycles)	addi (3 cycles)
T1	R _{out} , X _{in}	R _{out} , X _{in}	R _{out} , X _{in}		
T2	IR(I) _{out} , A, ADD	IR(I) _{out} ,A, ADD	R _{out} , Rs/Rt, SUB, PSW _{in}		
T1	Z _{out} , AR _{in}	Z _{out} , AR _{in}	PC _{out} , X _{in}	R _{out} , X _{in}	R _{out} , X _{in}
T2	DRE _{in,} Read	R _{out} , Rs/Rt, DR _{in}	IR(A) _{out} , imm, ADD	Rs/Rt, R _{out} , ADD	IR(I)out ,A, ADD
Т3	DR _{out} , R _{in}	DRE _{out} , Write	Z _{out} , PC _{in} =PSW.equal	Z _{out} , R _{in} , RegDst	Z _{out} , R _{in}

3. 微指令格式

顺序控制字段: 用于控制微程序中微指令的执行顺序

判别测试字段: 取指转移、测试条件状态寄存器中的相关条件

4. 微程序控制器组成原理框图(下址字段法)

4. 微程序控制器组成原理框图(下址字段法)

5. 微指令编码

T1	PC _{out} , AR _{in} , X _{in}
T2	+4
Т3	Z _{out} , PC _{in} , DRE _{in} , Read
T4	DR _{out} , IR _{in}
+++4	land (F. mandana)

- ◆一个时钟周期内的操作安排一条微指令
- ◆微指令操作控制字段的值为1表示在该时钟周期内有效
- ◆指令需多少时钟周期则对应微程序包括多少条微指令

节拍	lw (5 cycles)	sw (5 cycles)	beq (5 cycles)	add (3 cycles)	addi (3 cycles)
T1	R _{out} , X _{in}	R _{out} , X _{in}	R _{out} , X _{in}		
T2	IR(I) _{out} , A, ADD	IR(I) _{out} ,A, ADD	R _{out} , Rs/Rt, SUB, PSW _{in}		
T1	Z _{out} , AR _{in}	Z _{out} , AR _{in}	PC _{out} , X _{in}	R _{out} , X _{in}	R _{out} , X _{in}
T2	DRE _{in,} Read	R _{out} , Rs/Rt, DR _{in}	IR(A) _{out} , imm, ADD	Rs/Rt, R _{out} , ADD	IR(I)out ,A, ADD
Т3	DR _{out} , R _{in}	DRE _{out} , Write	Z _{out} , PC _{in} =PSW.equal	Z _{out} , R _{in} , RegDst	Z _{out} , R _{in}

5. 微指令编码(取指)

节拍	数据通路 (数据流)	控制信号(控制流)
T1	PC→AR, PC→X	PC _{out} , AR _{in} , X _{in}
T2	X+4 → Z	+4
T3	Z→PC, M[AR]→DR	Z _{out} , PC _{in} , DRE _{in} , Read
T4	DR→IR	DR _{out} , IR _{in}

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

5. 微指令编码(Beq) R_{out}, X_{in} R_{out}, Rs/Rt, SUB, PSW_{in}

PC_{out}, X_{in}

IR(A)_{out}, imm, ADD

Z_{out}, PC_{in}=PSW.equal

16'

5. 微指令编码(add)

5. 微指令编码(addi)

微地址与状态等价!

状态	微地址		操作控制字段												顺	序	空制	宇	段												
0	00000	1								1			1													0	0	0	0	1	
1	00001																			1						0	0	0	1	0	西北沙山亭
2	00010			1					1		1											1				0	0	0	1	1	取指微程序
3	00011		1												1									1		×	x	x	ж	x	х
4	00100				1								1													0	0	1	0	1	
5	00101					1													1							0	0	1	1	0	_
6	00110			1						1																0	0	1	1	1	Lw
7	00111										1											1				0	1	0	0	0	
8	01000		1											1												0	0	0	0	0	
9	01001				1								1													0	1	0	1	0	
10	01010					1													1							0	1	0	1	1	
11	01011			1						1																0	1	1	0	0	SW
12	01100				1							1					1									0	1	1	0	1	
13	01101							1															1			0	0	0	0	0	
14	01110				1								1													0	1	1	1	1	
15	01111				1											1	1				1				1	0	0	0	0	0	_
16	10000	1											1													1	0	0	0	1	beq
17	10001						1												1							1	0	0	1	0	
18	10010			1					1																	0	0	0	0	0	
19	10011				1								1													1	0	1	0	0	
20	10100				1												1		1							1	0	1	0	1	add
21	10101			1										1				1								0	0	0	0	0	
22	10110				1								1													1	0	1	1	1	
23	10111					1													1							1	1	0	0	0	addi
24	11000			1										1												0	0	0	0	0	

现态	lw	SW	beq	add	addi	equal	次态
S0	×	×	×	×	×		S1
S1	×	×	×	×	×		S2
S2	×	×	×	×	×		S3
S3	1						S4
S3		1					S9
S3			1				S14
S3				1			S19
S3					1		S22

现态	beq	add	addi	equal	次态
S0	x	x	x		S1
S 1	x	x	x		S2
S2	x	x	x		S 3
S 3	1				S14
S 3		1			S19
S 3			1		S22
s14					s15
s15				1	s16
s15				0	s0
s16					s17
s17					s18
s18					s0
s19					s20
s20					s21
s21					s0
s22					s23
s23					s24
s24					s0

现态	beq	add	addi	equal	次态
0000	x	x	x		0001
0001	x	x	x		0010
0010	x	x	x		0011
0011	1				0100
0011		1			1001
0011			1		1100
0100					0101
0101				1	0110
0101				0	0000
0110					0111
0111					1000
1000					0000
1001					1010
1010					1011
1011					0000
1100					1101
1101					1110
1110					0000

现态

状态寄存器

22

时钟

CLK

控存

6. 程序与微程序的动态执行过程

1 lw rt,imm(rs)
2 beq rs,rt,imm
3 add rd,rs,rt
4 sw rt,imm(rs)

23`

ı

9.7 微程序控制器设计

華中科技大学 计算机科学与技术学院 School of Computer Science & Technology, HUST

7. 微指令设计原则

- ◆有利于缩短微指令字长度
- ◆有利于减少控制存储器容量
- ◆有利于提高微程序执行速度
- ◆有利于对微指令进行修改
- ◆有利于提高微程序设计的灵活性

节拍	lw (5 cycles)	sw (5 cycles)	beq (5 cycles)	add (3 cycles)	addi (3 cycles)	
T1	R _{out} , X _{in}	R _{out} , X _{in}	R _{out} , X _{in}			
T2	IR(I) _{out} , A, ADD	IR(I) _{out} , <mark>A</mark> , ADD	R _{out} , Rs/Rt, SUB, PSW _{in}			
T1	Z _{out} , AR _{in}	Z _{out} , AR _{in}	PC _{out} , X _{in}	R _{out} , X _{in}	R_{out}, X_{in}	
T2	DRE _{in,} Read	R _{out} , Rs/Rt, DR _{in}	IR(A) _{out} , imm, ADD	Rs/Rt, R _{out} , ADD	IR(I)out ,A, ADD	
Т3	DR _{out} , R _{in}	DRE _{out} , Write	Z _{out} , PC _{in} =PSW.equal	Z _{out} , R _{in} , RegDst	Z _{out} , R _{in}	

8. 微命令编码

- ◆直接表示法
- ◆编码表示法
- ◆混合表示法

8. 微命令编码 - 直接表示法

- ◆微指令的操作控制字段每位直接表示一个微命令(微操作)
- ◆简单直观,便于输出控制,微指令长度太长,控存容量大
- ◆有减少微指令长度的办法吗?

8. 微命令编码 - 编码表示法

- ◆微指令操作控制字段现有23位,若编码则可表示8*1024*1024个微命令
- ◆微指令如果全部采用编码表示会带来哪些问题?
- ◆对我们有什么启发? □ 对微指令的部分进行编码表示

華中科技大學 计算机科学与技术学院 School of Computer Science & Technology, HUST

- 8. 微命令编码 编码表示法
- ◆ 相容性微操作和互斥性微操作

◆ 互斥性微操作

 PC_{out} , DR_{out} , R_{out} , $IR(A)_{out}$, Z_{out} , $IR(I)_{out}$ +4, ADD, SUB

8. 微命令编码 - 编码表示法

有哪些互斥性微操作?

8. 微命令编码 - 编码表示法 - 混合表示法

◆ 有利于缩短微指令长度,减少控存容量,但降低了微指令的执行速度

时序部件

内总线

Write Read

MEM

DREout

8. 微命令编码 - 编码表示法 - 混合表示法

如何准确判断互斥性微命?

T1 T2 T3	PC _{out} , AR _{in} , X _{in} +4 Z _{out} , PC _{in} , DRE _{in} , Read			PSW 运算标志 ALU SUB XADD SUB	Regs Rout RegDst
T4	DR _{out} , IR _{in}			◆ 数据流 ◆ 控制流	II r's r't r'd
T1	R _{out} , X _{in}	R_{out} , X_{in}	R _{out} , X _{in}		
T2	IR(I) _{out} , A, ADD	IR(I) _{out} ,A, ADD	R _{out} , Rs/Rt, SUB, PSW _{in}		
T1	Z _{out} , AR _{in}	Z_{out} , AR_{in}	PC _{out} , X _{in}	R _{out} , X _{in}	R _{out} , X _{in}
T2	DRE _{in,} Read	R _{out} , Rs/Rt, DR _{in}	IR(A) _{out} , imm, ADD	Rs/Rt, R _{out} , ADD	IR(I)out ,A, ADD
Т3	DR _{out} , R _{in}	DRE _{out} , Write	Z _{out} , PC _{in} =PSW.equal	Z _{out} , R _{in} , RegDst	Z _{out} , R _{in}

8. 微命令编码 - 编码表示法 - 混合表示法

- ◆ 采用如图所示的判定表
- ◆ 你能从中找到哪些互斥性微命令吗?
- ♦ (e,f,h,j)、(b,i)
- ◆若微命令控制字段只有8位,如何表示?

	e f	h j		b	i	_			
2	2:4译码 1:2译码								
	X	X	а	X	С	d	9		

微命令 微指令	а	b	С	d	е	f	g	h	i	j
μ I ₁	V	V	V	$\sqrt{}$	$\sqrt{}$					
μ l ₂	V			$\sqrt{}$		V	V			
μ I ₃								V		
μ I ₄			V							
μ I $_5$			V		$\sqrt{}$		V		V	
μ $ _{6}$	$\sqrt{}$									\checkmark
μ I $_7$			V	$\sqrt{}$				V		
μ I ₈	$\sqrt{}$	$\sqrt{}$								

(e, f, h) (b,i, j)

9. 微程序控制器组成原理框图(计数器法)

- 10. 微程序控制器与硬布线控制器对比
- ◆微程序控制器 速度慢(访控存频繁)、设计规整,简单,易于修改
- ◆硬布线控制器 执行速度快,设计复杂,不便于修改

9.8 控制器设计总结

1. 设计处理器的步骤

- 1)选定指令系统,将指令功能用RTL来表示
- 2)设计部件与通路, 根据指令功能设计功能部件, 并考虑如何互连
- 3)设计控点,确定所有功能部件,数据通路所需控制信号
- 4)分析所有指令的控制信号序列,生成指令与控制信号关系表
- 5)设计控制器
 - ◆设计微指令,微程序,地址转移逻辑,设计微程序控制器
 - ◆生成每个控制信号的逻辑表达式,设计硬布线控制器

2. 硬件设计四原则

1)简单性来自规则性

- Simplicity favors regularity
- ◆ 指令越规整设计越简单

2)越小越快

- Smaller is faster
- ◆ 面积小,传播路径小,门延迟少
- 3)加快经常性事件 (Make the common case fast)
- 4)好的设计需要适度的折衷 (Good design demands good compromises)

第五部分完