Estrategias para la exploración coordinada multi-VANT

Luis Alberto Ballado Aradias

CINVESTAV UNIDAD TAMAULIPAS

Cd. Victoria, Tamaulipas - 21 de agosto de 2023

- 1 Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Resumen

[†] Drone Inspections Based on Best Use Cases

https://enterprise-insights.dji.com/blog/complete-guide-to-drone-inspections

- Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

 Coordinación eficiente para la exploración multi-VANT

†Hardware in the loop framework proposal for a semi-autonomous car architecture in a closed route environment Curiel-Ramirez et al. (2019)

- Coordinación eficiente para la exploración multi-VANT
- Optimizar la cobertura en entornos complejos

[†]Hardware in the loop framework proposal for a semi-autonomous car architecture in a closed route environment Curiel-Ramirez et al. (2019)

- Coordinación eficiente para la exploración multi-VANT
- Optimizar la cobertura en entornos complejos
- Toma de decisiones colaborativa y asignación de tareas

[†]Hardware in the loop framework proposal for a semi-autonomous car architecture in a closed route environment Curiel-Ramirez et al. (2019)

- Coordinación eficiente para la exploración multi-VANT
- Optimizar la cobertura en entornos complejos
- Toma de decisiones colaborativa y asignación de tareas
- Evasión de obstáculos y coordinación en tiempo real

[†]Hardware in the loop framework proposal for a semi-autonomous car architecture in a closed route environment Curiel-Ramirez et al. (2019)

- Coordinación eficiente para la exploración multi-VANT
- Optimizar la cobertura en entornos complejos
- Toma de decisiones colaborativa y asignación de tareas
- Evasión de obstáculos y coordinación en tiempo real
- Fusión de información (sensores y navegación)

[†]Hardware in the loop framework proposal for a semi-autonomous car architecture in a closed route environment Curiel-Ramirez et al. (2019)

- Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Arquitectura híbrida

[†]Hardware in the loop framework proposal for a semi-autonomous car architecture in a closed route environment Curiel-Ramirez et al. (2019)

Multi-robots

Beneficios coordinación multi-VANT

- Eficiencia y cobertura
- Redundancia y tolerancia a fallos
- Adaptabilidad a entornos dinámicos
- Distribución de carga de trabajo
- Esfuerzo colaborativo

[†]Hardware in the loop framework proposal for a semi-autonomous car architecture in a closed route environment Curiel-Ramirez et al. (2019)

Panorama Planificación de trayectorias

Figura: Clasificación del enfoque de planificación de rutas¹

¹Different Cell Decomposition Path Planning Methods for Unmanned Air Vehicles - A Review Debnath et al. (2020)

Representación del ambiente 3D

Figura: Mapa probabilistico 3D¹

¹Cooperación en robots heterogeneos

- 1 Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Objetivos generales y específicos del proyecto
- Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Planteamiento del problema

Desarrollar una estrategia de exploración multi-VANT que reduzca el tiempo total de exploración dado un conjunto de \mathcal{V} vehículos aéreos no tripulados. Las capacidades limitadas de energía y sensores abordo de los VANTS les permiten navegar de forma autónoma. Teniendo en cuenta sus limitaciones de energía v la necesidad de una exploración eficiente, el objetivo es determinar la travectoria, las rutas y la asignación de tareas óptimas ó sub-óptimas.

Planteamiento del problema

Desarrollar una estrategia de exploración multi-VANT que reduzca el tiempo total de exploración dado un conjunto de \mathcal{V} vehículos aéreos no tripulados. Las capacidades limitadas de energía y sensores abordo de los VANTS les permiten navegar de forma autónoma. Teniendo en cuenta sus limitaciones de energía y la necesidad de una exploración eficiente, el objetivo es determinar la trayectoria, las rutas y la asignación de tareas óptimas ó sub-óptimas.

Retos multi-VANT

- Coordinación Establecer comunicación efectiva entre los múltiples VANTs. Intercambiar información relevante. Tener baja latencia en su comunicación.
- Planificación Los VANTs deben coordinar sus movimientos para evitar colisiones y lograr una cobertura eficiente del área objetivo.
- Asignación de tareas Se busca evitar la duplicación de esfuerzos optimizando el uso de recursos disponibles.

- Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- **5** Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

General
Diseñar una arquitectura de software descentralizada para implementar

una estrategia multi-VANT capaz de resolver los problemas de localización y coordinación en ambientes desconocidos y dinámicos para tareas de exploración en interiores.

- ① General Diseñar una arquitectura de software descentralizada para implementar una estrategia multi-VANT capaz de resolver los problemas de localización y coordinación en ambientes desconocidos y dinámicos para tareas de exploración en interiores.
- Particulares
 - Diseño de solución en base a los algoritmos reportados en la literatura.

- ① General Diseñar una arquitectura de software descentralizada para implementar una estrategia multi-VANT capaz de resolver los problemas de localización y coordinación en ambientes desconocidos y dinámicos para tareas de exploración en interiores.
- Particulares
 - Diseño de solución en base a los algoritmos reportados en la literatura.
 - Valoración propuesta (simulación de propuesta).

① General Diseñar una arquitectura de software descentralizada para implementar una estrategia multi-VANT capaz de resolver los problemas de localización y coordinación en ambientes desconocidos y dinámicos para tareas de exploración en interiores.

- 2 Particulares
 - Diseño de solución en base a los algoritmos reportados en la literatura.
 - Valoración propuesta (simulación de propuesta).
 - Comparación y análisis (escalabilidad, robustez y recursos computacionales).

- Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Metodología/Cronograma

Cuatrimestre 1 ^a			Cuatrimestre 2 ^b			Cuatrimestre 3 ^c					
1	2	3	4	1	2	3	4	1	2	3	4

^aCorrespondiente a los meses de Septiembre, Octubre, Noviembre, Diciembre del 2023

^bCorrespondiente a los meses de Enero, Febrero, Marzo, Abril del 2024

^cCorrespondiente a los meses de Mayo, Junio, Julio, Agosto del 2024

^dRevisión de alertas de trabajos relacionados sobre la exploración y colaboración multi-VANT, evaluación de aptitudes en trabajos recientes

Visualización Octomap en Simulador

Un VA

⁸Se considera un solo agente que resuelva la tarea de exploración autónoma con evación de obstáculos

^hSe considerán los múltiples-VANT que resuelva la tarea de exploración autónoma con evación de obstáculos ⁽Abierto a espacios de divulgación de acuerdo con las actividades de retribución social

- Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Estado del Arte

REFERENCIA	REPRESENTACION	BUSQUEDA	Control de trayectoria		
Cieslewski et al. (2017)[2]	Octomap	Basado en fronte- ras	Control directo de veloci- dad		
Usenko et al. (2017)[14]	Cuadrícula egocéntrica	Offline RRT*	Curvas de Bezier		
Mohta et al. (2017)[10]	mapa 3D-Local y 2D- Global	A*	Progración cuadrática		
Lin et al. (2017)[8]	3D voxel array TSDF	A*	Optimización cuadrática		
Papachristos et al. (2017)[12]	Octomap	NBVP	Control directo de velocidad		
Oleynikova et al. (2018)[11]	Voxel Hashing TSDF	NBVP	Optimización cuadrática		
Gao et al. (2018)[7]	Mapa de cuadrícula	Método de marcha rápida	Optimización cuadrática		

REFERENCIA	MAPA	Planificador de ru- tas	Control trayectoria		
Florence et al. (2018)[6]	Busqueda basada en visibilidad	2D A*	Control MPC		
Selin et al. (2019)[13]	Octomap	NBVP	Control directo de velocidad		
McGuire et al. (2019)[9]	NA	SGBA	Control directo de veloci- dad		
Collins and Michael (2020)[3]	KD Tree + Mapa en Vo- xel	Búsqueda en Grafo	Movimientos suaves		
Campos-Macías et al. (2020)[1]	Octree	RRT	Basado en contornos		
Zhou et al. (2023)[15]	Octomap HGrid	NBVP	Control directo de velocidad		

- Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Contribuciones o resultados esperados

- Documentación y códigos liberados
 - Algoritmo para la exploración multi-VANT
 - Algoritmo para la planificación de rutas multi-VANT
 - Protocolo de comunicación y coordinación descentralizados multi-VANT que formaran parte de la arquitectura de software

Contribuciones o resultados esperados

- Documentación y códigos liberados
 - Algoritmo para la exploración multi-VANT
 - Algoritmo para la planificación de rutas multi-VANT
 - Protocolo de comunicación y coordinación descentralizados multi-VANT que formaran parte de la arquitectura de software
- 2 Validación de la solución en un simulador

Contribuciones o resultados esperados

- Documentación y códigos liberados
 - Algoritmo para la exploración multi-VANT
 - Algoritmo para la planificación de rutas multi-VANT
 - Protocolo de comunicación y coordinación descentralizados multi-VANT que formaran parte de la arquitectura de software
- Validación de la solución en un simulador
- 3 Tesis impresa

Bibliografía I

- L. Campos-Macías, R. Aldana-López, R. Guardia, J. I. Parra-Vilchis, and D. Gómez-Gutiérrez. Autonomous navigation of MAVs in unknown cluttered environments. *Journal of Field Robotics*, 38(2):307–326, may 2020. doi: 10.1002/rob.21959. URL https://doi.org/10.1002/rob.21959.
- T. Cieslewski, E. Kaufmann, and D. Scaramuzza. Rapid exploration with multi-rotors: A frontier selection method for high speed flight. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 2135–2142, 2017. doi: 10.1109/IROS.2017.8206030.
- M. Collins and N. Michael. Efficient planning for high-speed may flight in unknown environments using online sparse topological graphs. In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages 11450–11456, 2020. doi: 10.1109/ICRA40945.2020.9197167.
- L. A. Curiel-Ramirez, R. A. Ramirez-Mendoza, J. Izquierdo-Reyes, M. R. Bustamante-Bello, and S. A. Navarro-Tuch. Hardware in the loop framework proposal for a semi-autonomous car architecture in a closed route environment. *International Journal on Interactive Design and Manufacturing (IJIDeM)*, 13(4): 1647–1658, Oct. 2019. doi: 10.1007/s12008-019-00619-x. URL https://doi.org/10.1007/s12008-019-00619-x.
- S. K. Debnath, R. Omar, S. Bagchi, E. N. Sabudin, M. H. A. S. Kandar, K. Foysol, and T. K. Chakraborty. Different cell decomposition path planning methods for unmanned air vehicles-a review. In *Lecture Notes in Electrical Engineering*, pages 99–111. Springer Nature Singapore, July 2020. doi: 10.1007/978-981-15-5281-6.8. URL https://doi.org/10.1007/978-981-15-5281-6.8.
- P. R. Florence, J. Carter, J. Ware, and R. Tedrake. Nanomap: Fast, uncertainty-aware proximity queries with lazy search over local 3d data, 2018.
- F. Gao, W. Wu, Y. Lin, and S. Shen. Online safe trajectory generation for quadrotors using fast marching method and bernstein basis polynomial. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages 344–351, 2018. doi: 10.1109/ICRA.2018.8462878.
- Y. Lin, F. Gao, T. Qin, W. Gao, T. Liu, W. Wu, Z. Yang, and S. Shen. Autonomous aerial navigation using monocular visual-inertial fusion. *Journal of Field Robotics*, 35(1):23–51, July 2017. doi: 10.1002/rob.21732. URL https://doi.org/10.1002/rob.21732.
- K. N. McGuire, C. D. Wagter, K. Tuyls, H. J. Kappen, and G. C. H. E. de Croon. Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment. Science Robotics, 4(35):eaaw9710, 2019. doi: 10.1126/scirobotics.aaw9710. URL https://www.science.org/doi/abs/10.1126/scirobotics.aaw9710.
- K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni, K. Saulnier, K. Sun, A. Zhu, J. Delmerico, K. Karydis, N. Atanasov, G. Loianno, D. Scaramuzza, K. Daniilidis, C. J. Taylor, and V. Kumar. Fast, autonomous flight in GPS-denied and cluttered environments. *Journal of Field Robotics*, 35 (1):101–120, Dec. 2017. doi: 10.1002/rob.21774. URL https://doi.org/10.1002/rob.21774.
- H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto. Safe local exploration for replanning in cluttered unknown environments for microaerial vehicles. *IEEE Robotics and Automation Letters*, 3(3):1474–1481, jul 2018. doi: 10.1109/lra.2018.2800109. URL https://doi.org/10.1109/lra.2018.2800109.

Bibliografía II

- C. Papachristos, S. Khattak, and K. Alexis. Uncertainty-aware receding horizon exploration and mapping using aerial robots. In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 4568–4575, 2017. doi: 10.1109/ICRA.2017.7989531.
- M. Selin, M. Tiger, D. Duberg, F. Heintz, and P. Jensfelt. Efficient autonomous exploration planning of large-scale 3-d environments. *IEEE Robotics and Automation Letters*, 4(2):1699–1706, 2019. doi: 10.1109/LRA.2019.2897343.
- V. Usenko, L. von Stumberg, A. Pangercic, and D. Cremers. Real-time trajectory replanning for MAVs using uniform b-splines and a 3d circular buffer. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, sep 2017. doi: 10.1109/iros.2017.8202160. URL https://doi.org/10.1109/iros.2017.8202160.
- B. Zhou, H. Xu, and S. Shen. Racer: Rapid collaborative exploration with a decentralized multi-uav system. *IEEE Transactions on Robotics*, 39(3):1816–1835, 2023. doi: 10.1109/TRO.2023.3236945.