Notes on NEWUOA

Zaikun Zhang *

June 11, 2021 9:39pm

Algorithm 0.1 OPTimization based on Interpolation Models (OPTIM)

?(alg:optim)? $\frac{1}{\text{Input }\Delta_0 \in (0,+\infty), \, \tau > 0, \, m \in \{n+2,n+3,\ldots,(n+1)(n+2)/2\}, \, \text{and} \, \mathcal{X}_0 \subset \mathbb{R}^n \text{ with } |\mathcal{X}_0| = m \text{ and } \kappa(\mathcal{X}_0) \leq \kappa_0. \, \text{ Set } Q_{-1} = 0 \text{ and } k = 0.$

- 1. Model construction. Pick $Q_k \in \{Q \in \mathcal{Q} : Q(x) = f(x) \text{ for all } x \in \mathcal{X}_k\}$.
- 2. Trust-region step evaluation. Define $x_k = \operatorname{argmin}\{f(x) : x \in \mathcal{X}_k\}$. Calculate

$$x_k^+ \approx \operatorname{argmin}\{Q_k(x) : \|x - x_k\| \le \Delta_k\}. \tag{0.1) ? eq:xget?}$$

If $||x_k^+ - x_k|| < \alpha \Delta_k$, then set $\Delta_{k+1} = \theta \Delta_k$. Otherwise, update Δ_k to Δ_{k+1} according to $r_k = [f(x_k) - f(x_k^+)]/[Q_k(x_k) - Q_k(x_k^+)]$.

3. Interpolation set update. If $||x_k^+ - x_k|| \ge \alpha \Delta_k$, then calculate

$$x_k^- \approx \operatorname{argmin}\{\kappa(\mathcal{X}_k \cup x_k^+ \setminus x) : x \in \mathcal{X}_k\}, \tag{0.2} \ \text{?eq:xdrop?}$$

and set $\mathcal{X}_{k+1} = \mathcal{X}_k \cup x_k^+ \setminus x_k^-$ if $r_k > 0$ or $\kappa(\mathcal{X}_k \cup x_k^+ \setminus x_k^-) \le \kappa_0$.

4. Geometry improvement. If $||x_k^+ - x_k|| < \alpha \Delta_k$, or $||x_k^+ - x_k|| > \alpha \Delta_k$ but $r_k \leq 0$ and $\kappa(\mathcal{X}_k \cup x_k^+ \setminus x_k^-) > \kappa_0$, then calculate

$$y_k^- = \operatorname{argmax}\{\|y - x_k\| : y \in \mathcal{X}_k\},$$
 (0.3) ?eq:ydrop?

$$y_k^+ \approx \operatorname{argmin}\{\kappa(\mathcal{X}_k \cup y \setminus y_k^-) : \|y - x_k\| \le \Delta_k\}, \tag{0.4) ?eq:yget?}$$

and set $\mathcal{X}_{k+1} = \mathcal{X}_k \cup y_k^+ \setminus y_k^-$.

^{*}Hong Kong Polytechnic University, zaikun.zhang@polyu.edu.hk

Algorithm 0.2 NEWUOA

?\(\alg:\text{newwoa}\)?\(\frac{\text{Input } \Delta_0 \in (0,+\infty), \tau > 0, m \in \{n+2,n+3,\ldots,(n+1)(n+2)/2\}, \text{ and } \mathcal{\mathcal{K}}_0 \subseteq \mathbb{R}^n \text{ with } |\mathcal{\mathcal{K}}_0| = m \) and \(\kappa(\mathcal{K}_0) \leq \kappa_0\). Set \(Q_{-1} = 0\) and \(k = 0\).

- 1. Model construction. Pick $Q_k \in \{Q \in \mathcal{Q} : Q(x) = f(x) \text{ for all } x \in \mathcal{X}_k\}$.
- 2. Trust-region step evaluation. Define $x_k = \operatorname{argmin}\{f(x) : x \in \mathcal{X}_k\}$. Calculate

$$x_k^+ \approx \operatorname{argmin}\{Q_k(x): \|x-x_k\| \leq \Delta_k\}. \tag{0.5) ? \underline{\texttt{eq}: xgetn}?}$$

If $||x_k^+ - x_k|| < \rho_k/2$, then set $s_k = 1$; otherwise, set $s_k = 0$. If $s_k = 1$ and the errors in recent models are sufficiently small, then set $r_k = 1$; otherwise, set $r_k = 0$. If $s_k = 1$ and $r_k = 0$, then set $\Delta_{k+1} = \max\{\Delta_k/10, \rho_k\}$. If $s_k = 0$, then calculate $r_k = [f(x_k) - f(x_k^+)]/[Q_k(x_k) - Q_k(x_k^+)]$, and update Δ_k to Δ_{k+1} according to r_k .

3. Interpolation set update. If $s_k = 0$, then calculate

$$x_k^- \approx \operatorname{argmin}\{\kappa(\mathcal{X}_k \cup x_k^+ \setminus x) : x \in \mathcal{X}_k\}, \tag{0.6} \ \text{?eq:xdropn?}$$

and set $\hat{\mathcal{X}}_k = \mathcal{X}_k \cup x_k^+ \setminus x_k^-$ if $r_k > 0$ or $\kappa(\mathcal{X}_k \cup x_k^+ \setminus x_k^-) \le \kappa_0$.

4. Geometry improvement. If $s_k = 1$ or $r_k < 1/10$, then set

$$y_k^- = \operatorname{argmax}\{\|y - x_k\| : y \in \hat{\mathcal{X}}_k\}. \tag{0.7} ? \underline{\mathsf{eq}} : \underline{\mathsf{ydropn}}?$$

If $||y_k^- - x_k|| \ge 2\Delta_{k+1}$, then define $\bar{\Delta}_k = \max\{\rho_k, \min\{||y_k^- - x_k||/10, \Delta_{k+1}/2\}\}$, calculate

$$y_k^+ \approx \operatorname{argmin}\{\kappa(\hat{\mathcal{X}}_k \cup y \setminus y_k^-) : \|y - x_k\| \le \bar{\Delta}_k\}, \tag{0.8} ? \underline{\mathsf{eq}} : \underline{\mathsf{ygetn}}?$$

and set $\mathcal{X}_{k+1} = \hat{\mathcal{X}}_k \cup y_k^+ \setminus y_k^-$.

5. **Resolution enhancement**. If $\mathbf{r}_k = 1$, then reduce ρ_k by about a factor of 10 to obtain ρ_{k+1} , and set $\Delta_{k+1} = \max\{\rho_{k+1}/2, \rho_k\}$. If $\mathbf{r}_k = 0$, then set $\rho_{k+1} = \rho_k$.