Colles semaine 6 : Représentations matricielles des endomorphismes

La correspondance canonique $\mathcal{M}_{n,p}(\mathbb{R}) \longleftrightarrow \mathcal{L}(\mathbb{R}^p,\mathbb{R}^n)$

On construit un **isomorphisme d'espaces vectoriels** $\Phi: \mathcal{M}_{n,p}(\mathbb{R}) \xrightarrow{\sim} \mathcal{L}(\mathbb{R}^p,\mathbb{R}^n)$, comme suit :

Applic^{on} linéaire associée à une matrice

Matrice canonique d'une applin $\mathbb{R}^n \to \mathbb{R}^p$

Soit l'application $\Phi: (\mathcal{M}_{n,p}(\mathbb{R}) \to \mathcal{L}(\mathbb{R}^p,\mathbb{R}^n))$

Sa réciproque est $\Phi^{-1}: \left\{ \mathcal{L}(\mathbb{R}^p, \mathbb{R}^n) \to \mathcal{M}_{n,p}(\mathbb{R}) \right\}$ $f \mapsto \operatorname{Mat}_{\operatorname{can}}(f)$

associée à A s'écrit : $\begin{cases} \mathbb{R}^n \to \mathbb{R}^p \\ \vec{X} \mapsto A \cdot \vec{X}, \end{cases}$

$$\operatorname{Mat}_{\operatorname{can}}(f) = \left[\begin{array}{ccc} \uparrow & \uparrow & & \uparrow \\ f(\vec{e}_1) & f(\vec{e}_2) & \cdots & f(\vec{e}_p) \\ \downarrow & \downarrow & & \downarrow \end{array} \right]$$

Endomorphismes: représentation matricielle dans une base 2

Soit $f: E \rightarrow E$ un endomorphisme de E.

C'est la matrice (a_{ij}) définie par :

Soit
$$f: E \to E$$
 un endomorphisme de E .
Soit $\mathcal{B} = (\vec{u}_1, \dots \vec{u}_n)$ une base de E .
La matrice de f dans la base \mathcal{B} est notée $\operatorname{Mat}_{\mathcal{B}}(f) = \begin{bmatrix} \uparrow & \uparrow & \uparrow & \uparrow \\ f(\vec{u}_1) f(\vec{u}_2) & \cdots & f(\vec{u}_n) \\ \downarrow & \downarrow & \downarrow \end{bmatrix} \to \operatorname{selon} \vec{u}_1$

$$\vdots$$

$$C'\text{est la matrice } (a_{ij}) \text{ définie par :}$$

$$\forall j \in [1, n], \quad f(\vec{u}_j) = a_{1j} \cdot \vec{u}_1 + a_{2j} \cdot \vec{u}_2 + \dots + a_{nj} \cdot \vec{u}_n.$$

Similitude, relation de changement de base

▶ **Matrices semblables** Soient $A,B \in \mathcal{M}_n(\mathbb{R})$ deux matrices.

On dit que A,B sont **semblables** s'il existe $P \in \mathcal{M}_n(\mathbb{R})$ **inversible** telle que : $A \cdot P = P \cdot B$

• **Opérations** La relation de similitude est compatible avec : produit, puissances, inversion.

Pour deux bases
$$\mathcal{B}$$
 et \mathcal{B}' , on a la relation :
$$\underbrace{\operatorname{Mat}_{\mathcal{B}}(f)}_{\text{ancienne matrice}} = \underbrace{\operatorname{Pas}_{\mathcal{B}' \leadsto \mathcal{B}}}_{\text{nouvelle matrice}} = \underbrace{\operatorname{Pas}_{\mathcal{B}' \leadsto \mathcal{B}}}_{\text{nouvelle matrice}} = \underbrace{\operatorname{Pas}_{\mathcal{B}' \leadsto \mathcal{B}}}_{\text{nouvelle matrice}} = \underbrace{\operatorname{Pas}_{\mathcal{B}' \leadsto \mathcal{B}'}}_{\text{nouvelle matrice}} =$$

Interprétation

Deux matrices semblables $A = P \cdot B \cdot P^{-1}$ représentent le même endomorphisme.

(dans deux bases différentes, avec la matrice de passage P.)

Traduction endomorphismes \longleftrightarrow matrices

Soit $f \in \mathcal{L}(E)$ et $A = \operatorname{Mat}_B(f)$ sa matrice dans une base. Menus exemples de traductions :

▶ **Automorphisme** [f est un automorphisme de E (f bijectif)] \iff [A est inversible].

(et A^{-1} est la matrice de f^{-1})

Relations entre endomorphismes

Exple des polynômes annuleurs : $[(f-\mathrm{Id})^2 \circ (f-2\mathrm{Id}) = 0_{\mathcal{L}(E)}] \iff [(A-I_n)^2 \cdot (A-2I_n) = 0_{\mathcal{M}_n(\mathbb{R})}].$

Sous-espaces associés

Recherche de sous-espaces Ker(f), Im(f) par les analogues pour A, puis traduction $\mathbb{R}^n \rightsquigarrow E$.

5 Les questions de cours

1. La correspondance canonique $\mathcal{M}_{n,p}(\mathbb{R}) \longleftrightarrow \mathcal{L}(\mathbb{R}^p,\mathbb{R}^n)$.

2. Décomposition d'un vecteur $\vec{v} \in E$ dans une base $\mathcal{B} = (\vec{u}_1, ..., \vec{u}_n)$. Définition de $\mathrm{Mat}_{\mathcal{B}}(f)$.

3. Compatibilité de la relation de similitude avec les opérations matricielles.

4. La relation de changement de bases.

5. Définition du noyau et de l'image d'une application linéaire, d'une matrice.

