Difficulty Level **Question**	
Hint	
Easy (20)	
1. Reverse a string Use	the `split`, `reverse`, and `join`
methods.	
2. Check if a number is even or odd	Use the modulus
operator `%`.	
3. Find the largest number in an array	Use `Math.max`
and `apply` or the spread operator.	
Count the number of vowels in a string	Create a set of
vowels and count occurrences using `forEach` or `filter`.	
5. Find the factorial of a number	Use a loop or
recursion to multiply numbers from 1 to `n`.	
6. Check if a string is a palindrome	Compare the string
with its reverse.	
7. Sum all numbers in an array	Use `reduce`
method to accumulate the sum.	
8. Find the average of numbers in an array	Divide the
sum of elements by the length of the array.	
9. Remove duplicates from an array	Use a `Set` or
filter with `indexOf`.	
10. Find the length of a string	Use the `length`
property of the string.	l loo the
11. Check if a string contains a specific substring 'includes' method.	Use the
	Use the
12. Convert a string to lowercase `toLowerCase` method.	ose the
13. Convert a string to uppercase	 Use the
`toUpperCase` method.	Ose tile
14. Concatenate two strings	Use the `+`
operator or `concat` method.	Ose the '
15. Find the maximum value in an object	Use
`Object.values` combined with `Math.max`.	030
16. Check if an array is sorted	Compare the array
to its sorted version.	
17. Count the number of words in a string	Split the
string by spaces and count the resulting array's length.	
18. Find the index of a specific element in an array	Use the
`indexOf` method.	
19. Replace all occurrences of a substring in a string	g Use the
`replace` method with a global regular expression.	
20. Remove whitespace from the beginning and en	d of a string
Use the `trim` method.	-
Medium (30) 1. Merge two sorted arrays	Use two
pointers to compare and merge arrays.	

2. Find the median of an array	Sort the array
and find the middle value or average of the two middle values.	Soft the diray
3. Implement a basic calculator	Use switch
cases or if-else to handle different operations.	OSC SWITCH
4. Check if two strings are anagrams	Sort both
strings and compare them.	3011 80111
5. Rotate an array to the right by `k` positions	Use array
slicing and concatenation.	OSC diray
6. Remove all falsy values from an array	Use `filter`
method with a Boolean callback.	OSC IIICI
7. Implement a queue using two stacks	Use one
stack for enqueue and another for dequeue operations.	OSC ONC
8. Find the longest substring without repeating characters	Use a
sliding window technique or a hash set.	036 0
9. Check if a number is a prime number	Check
divisibility up to the square root of the number.	CITCOR
10. Find all pairs in an array that sum up to a specific value	Use a
hash set to track seen values or nested loops.	O3C u
11. Find the intersection of two arrays	Use a `Set` or
`filter` method to find common elements.	OSC U SCC OI
12. Check if a string is a valid number	Use regular
expressions or `isNaN` to validate.	OSC TEGUIAI
13. Calculate the nth Fibonacci number	Use
recursion or iteration with memoization.	OSC
14. Flatten a nested array	Use recursion or
`flat` method if supported.	ose recursion of
15. Convert a number to its binary representation	Use
`toString(2)` method for binary conversion.	030
16. Find the common elements between two arrays	Use
`filter` with a `Set` or hash map.	030
17. Implement a basic todo list	Use arrays to
store tasks and methods to add, remove, or display them.	ose arrays to
18. Find the longest word in a string	Split the string
and use `reduce` to find the longest word.	Split the string
19. Calculate the power of a number	Use
`Math.pow` method or exponentiation operator `**`.	030
20. Check if a string contains only digits	Use a regular
expression or `isNaN` with `parseInt`.	OSC a regular
21. Find the unique elements in an array	Use a `Set` or
`filter` method.	OSE a SEL OI
22. Implement a simple debounce function	Use
`setTimeout` to delay function execution.	O3E
23. Count the number of occurrences of each character in a string	
Use an object or `Map` to count characters.	•
24. Find the first non-repeating character in a string	Use a
hash map to count characters and find the first with count '1'.	03E a
25. Convert a binary string to a decimal number	Use
`parseInt` with base `2`.	036
26. Implement a simple event emitter	Use an object
·	ose an object
to store event listeners and trigger them.	

27. Determine the longest sequence of consecutive numb	ers in an array
Use a loop to find and track the length of sequences.	
28. Check if a string is a valid email address	Use a regular
expression to validate email format.	
29. Count the number of elements in an array greater tha	n a specific value
Use `filter` method with a comparison.	
30. Implement a basic throttle function	Use
`setTimeout` to limit the rate of function execution.	
Advanced (50)	
'	ne nodes and methods for
insertion, deletion, and traversal.	
2. Find the shortest path in a graph	Use Dijkstra's or
A* algorithm.	
3. Solve the N-Queens problem	Use
backtracking to place queens on a chessboard.	
4. Implement a binary search tree	Define nodes
and methods for insertion, search, and traversal.	
5. Find all permutations of a string	Use recursion or
iterative algorithms to generate permutations.	
6. Perform a depth-first search on a tree	Use recursion
or stack to explore nodes.	
7. Implement a priority queue	Use a heap or
priority queue data structure.	
8. Solve the knapsack problem	Use dynamic
programming to solve the problem.	
9. Find the longest common subsequence of two strings	Use
dynamic programming to compare subsequences.	
10. Implement a hash table	Define hash
functions and handle collisions.	
11. Solve the traveling salesman problem	Use
dynamic programming or approximation algorithms.	
12. Implement a red-black tree	Define nodes
and balancing methods for the tree.	
13. Solve the Sudoku puzzle	Use backtracking
to fill in the grid.	_
14. Perform a breadth-first search on a graph	Use a
queue to explore nodes level by level.	
15. Implement a LRU (Least Recently Used) cache	Use a
doubly linked list and a hash map to maintain order.	
16. Solve the maximum subarray problem	Use
Kadane's algorithm to find the maximum sum subarray.	
17. Calculate the minimum spanning tree	Use
Kruskal's or Prim's algorithm.	
18. Find the shortest path between two nodes in a graph	Use
Dijkstra's or Bellman-Ford algorithm.	030
19. Implement a Trie (prefix tree)	Define nodes and
methods for insertion and search.	Define nodes and
20. Solve the Longest Increasing Subsequence problem	Use
dynamic programming to find the increasing subsequence.	030
aynamic programming to find the moreusing subsequence.	

21. Find all subsets of a set	Use recursion or bit
manipulation to generate subsets.	
Advanced (50) 22. Implement a segment tree	Use a
tree structure to store range-based data for efficient queries.	
23. Solve the rod cutting problem	Use dynamic
programming to maximize the profit from cutting.	
24. Implement an AVL tree	Use rotations to
maintain balance after insertion and deletion.	
25. Find the strongly connected components in a graph	Use
Kosaraju's or Tarjan's algorithm.	
26. Implement the Rabin-Karp string matching algorithm	Use
hashing to find patterns in the string.	
27. Solve the convex hull problem	Use Graham's
scan or Jarvis's march algorithm.	
28. Implement a machine learning algorithm from scratch	Start
with simple algorithms like linear regression or k-nearest neighbors.	
29. Solve the sequence alignment problem	Use
dynamic programming techniques like Needleman-Wunsch or Smith-Waterm	nan.
30. Implement a real-time data processing system	Use
streams or event-driven architectures to handle real-time data.	
31. Solve the minimal spanning tree problem using Kruskal's algo	orithm
Sort edges and use a union-find structure to build the tree.	
32. Implement a real-time collaborative editing system	Use
operational transformations or CRDTs (Conflict-free Replicated Data Types).	
33. Solve the multidimensional knapsack problem	Use
dynamic programming with multiple constraints.	
34. Implement an efficient search algorithm for large datasets	
Explore algorithms like binary search, B-trees, or Bloom filters.	
35. Solve the cycle detection problem in a graph	Use depth
first search or Union-Find to detect cycles.	
36. Implement a distributed computing framework	
Consider using message passing or MapReduce for distributed processing.	
37. Solve the optimal task scheduling problem	Use
dynamic programming or greedy approaches depending on constraints.	
38. Implement a real-time recommendation system	Use
collaborative filtering, content-based filtering, or a hybrid approach.	
39. Solve the large-scale optimization problem	Use
optimization algorithms like simulated annealing, genetic algorithms, or grad	
40. Implement a data compression algorithm	Start with
simple techniques like Huffman coding or LZW compression.	
41. Solve the data clustering problem	Use algorithms
like K-means, DBSCAN, or hierarchical clustering.	
42. Implement a robust error correction algorithm	Explore
algorithms like Hamming codes, Reed-Solomon codes, or convolutional codes	
43. Solve the multi-agent system problem	Use game
theory, distributed algorithms, or reinforcement learning.	

44. Implement a predictive analytics model	Use
statistical methods or machine learning models like regression or decision trees.	•
45. Solve the large-scale data integration problem	Use ETL
processes, schema matching, or data lakes for integration.	
46. Implement a distributed ledger technology	Explore
blockchain technologies or consensus algorithms like Paxos or Raft.	
47. Solve the network flow problem using advanced algorithms	
Use the Ford-Fulkerson or Edmonds-Karp algorithm.	
48. Implement a decentralized system	Use peer-to-
peer networks, distributed hash tables, or consensus protocols.	
49. Solve the probabilistic data structure problem	Explore
data structures like Bloom filters, Count-Min Sketch, or HyperLogLog.	
50. Implement an artificial intelligence algorithm	Start with
simple AI algorithms like A* search, minimax, or reinforcement learning.	
Very Advanced (100) 1. Solve the complex network analysis problem	
	staction or
Use graph theory and network analysis techniques like centrality, community de	etection, or
clustering coefficients.	Fynlara
2. Implement an advanced cryptography algorithm	Explore
elliptic curve cryptography, RSA, or AES encryption algorithms.	Hea
3. Solve the distributed database problem	Use
consensus protocols, sharding, or NoSQL databases for large-scale data manage	
4. Implement a large-scale graph processing system	Consider
frameworks like Apache Giraph, GraphX, or Neo4j for graph processing.	Han Hadaan
5. Solve the big data analysis problem	Use Hadoop,
Spark, or data warehousing solutions to manage and analyze big data.	LL.
6. Implement a scalable web application	Use
microservices, load balancing, and distributed databases to handle high traffic.	LL - ADINAA
7. Solve the time-series forecasting problem	Use ARIMA,
exponential smoothing, or machine learning models like LSTM.	
8. Implement a sophisticated search engine	Use
indexing, crawling, and ranking algorithms like PageRank or BM25.	
9. Solve the resource allocation problem	Use linear
programming, greedy algorithms, or dynamic programming to optimize resource	
10. Implement a real-time streaming data system	Use
Apache Kafka, Spark Streaming, or Flink for handling real-time data streams.	A .1 .1
11. Solve the robust machine learning problem	Address
overfitting, handle noisy data, and implement ensemble methods like Random F	orests or Gradient
Boosting.	
12. Implement a complex event processing system	Use
rules-based systems or event-driven architectures to handle complex events.	
13. Solve the advanced data warehousing problem	Use ETL
processes, OLAP cubes, or data lake architectures for large-scale data storage ar	
14. Implement a high-performance computing system parallel processing, distributed computing, or GPU acceleration for intensive cor	Use

15. Solve the distributed algorithm problem	Explore
algorithms like distributed consensus, leader election, or distributed sorting.	Explore
16. Implement a scalable cloud infrastructure	Use cloud
orchestration tools like Kubernetes, Terraform, or AWS to manage resources.	
17. Solve the secure communication problem	
Implement protocols like SSL/TLS, PGP, or secure APIs for encrypted communicati	on.
18. Implement an advanced data mining algorithm	Use
algorithms like Apriori for association rule learning, or SVMs for classification task	
19. Solve the complex system simulation problem	Use
simulation frameworks or languages like SimPy, AnyLogic, or MATLAB for modelin	
systems.	18 complex
20. Implement a high-availability system	Use
redundant systems, failover strategies, or load balancing for uptime.	030
21. Solve the advanced anomaly detection problem	Use
statistical methods, machine learning, or deep learning for detecting anomalies.	Ose
22. Implement a large-scale machine learning pipeline	Use
distributed frameworks like TensorFlow, PyTorch, or Apache Spark MLlib.	Ose
23. Solve the real-time data visualization problem	Use tools
·	use tools
like D3.js, Plotly, or real-time dashboards to visualize streaming data.	l la sadla
24. Implement a complex web crawler	Handle
dynamic content, rate limits, and large-scale data extraction using a robust crawle	
25. Solve the advanced recommendation engine problem	Use
collaborative filtering, matrix factorization, or deep learning to improve recomme	
26. Implement a sophisticated data integration system	Use
schema matching, ETL processes, or APIs to integrate data from multiple sources.	
27. Solve the high-dimensional data analysis problem	Use
dimensionality reduction techniques like PCA, t-SNE, or LDA for analysis.	
28. Implement a scalable search index	Use inverted
indexes, term frequency-inverse document frequency (TF-IDF), or Elasticsearch fo	r efficient
search.	
29. Solve the large-scale event processing problem	Use
event-driven architectures or complex event processing engines for handling ever	nts at scale.
30. Implement a robust data security system	Use
encryption, secure authentication, and access control mechanisms for protecting	data.
31. Solve the distributed transaction management problem	Use
two-phase commit, distributed locking, or eventual consistency for managing tran	sactions across
systems.	
32. Implement a high-performance data retrieval system	Use
caching, indexing, or in-memory databases for fast data access.	
33. Solve the advanced pattern recognition problem	Use
machine learning models, neural networks, or image processing techniques for pa	ittern
recognition.	
34. Implement a real-time analytics platform	Use
streaming data platforms, real-time databases, and visualization tools for live ana	lytics.
35. Solve the large-scale text analysis problem	Use natural
language processing (NLP), text mining, or sentiment analysis techniques for text	analysis.
<u> </u>	·
Certainly! Here's the continuation and completion of the table with hints included	
ce. ta, There is the continuation and completion of the table with finits included	••

26. Implement an advanced recommendation algorithm	
Use collaborative filtering, matrix factorization, or neural networks for improving	
recommendations.	
27. Solve the high-dimensional data clustering problem	Use
dimensionality reduction techniques like PCA before applying clustering algorithms.	
28. Implement a secure multi-party computation protocol	
Research cryptographic protocols that allow computation on encrypted data.	
29. Solve the computational biology problem	Use
algorithms for sequence alignment, phylogenetic trees, or protein structure prediction	
30. Implement a neural network from scratch	-
Understand backpropagation and gradient descent to train your network.	
31. Solve the large-scale distributed machine learning problem	
Implement distributed training using frameworks like TensorFlow or PyTorch on mul-	tiple nodes.
32. Implement a blockchain consensus algorithm	Study
algorithms like Proof of Work, Proof of Stake, or Practical Byzantine Fault Tolerance (,
33. Solve the advanced graph traversal problem	Explore
algorithms for traversing large or complex graphs, like Bidirectional Search or Iterativ	•
	Jse a
combination of storage and processing frameworks to handle and query large datase	
35. Solve the problem of real-time fraud detection	Use
anomaly detection models or real-time data analysis tools to identify fraudulent activ	
36. Implement an efficient document retrieval system	Use
inverted indexing, ranking algorithms, and caching for quick retrieval of relevant doc	
37. Solve the multi-armed bandit problem	Research
the trade-off between exploration and exploitation in decision-making algorithms.	rtesear orr
38. Implement a complex scheduling algorithm	Explore
scheduling algorithms like Round Robin, Priority Scheduling, or Multi-Level Queue Sc	•
39. Solve the real-time traffic prediction problem	Use
machine learning models like time-series forecasting or deep learning for predicting	
patterns.	
40. Implement a distributed hash table (DHT)	Research
consistent hashing and peer-to-peer systems for distributed data storage and retriev	
41. Solve the problem of optimizing neural network architecture	
Experiment with hyperparameter tuning, network pruning, or neural architecture sea	arch
algorithms.	
	Study
cryptographic protocols that ensure privacy and integrity in electronic voting system.	,
43. Solve the problem of developing a large-scale recommendation system.	
Implement and optimize algorithms like collaborative filtering and content-based filt	
44. Implement a predictive maintenance system	Use IoT
data, machine learning, and time-series analysis to predict equipment failures before	
happen.	•
45. Solve the problem of data integration across heterogeneous system	ıs
Use data mapping, schema matching, and ETL processes to integrate data from vario	
46. Implement a high-performance key-value store	
Research and implement in-memory databases like Redis or LevelDB for fast key-value	ue storage.
47. Solve the multi-objective optimization problem	Use
algorithms like genetic algorithms or particle swarm optimization to handle multiple	
	-

- 48. Implement a decentralized identity management system
 Study blockchain-based identity systems or decentralized authentication protocols like OAuth 2.0.
- 49. Solve the problem of building a secure multi-tenant cloud environment Use virtualization, containerization, and strong access control mechanisms for security.
- 50. Implement an algorithm for detecting communities in large-scale social networks Explore algorithms like Girvan-Newman, Louvain, or Infomap for detecting communities in networks.
- 51. Solve the problem of large-scale natural language processing Use distributed computing and advanced NLP models like BERT, GPT, or transformers for large datasets.
- 52. Implement an efficient distributed file system Study systems like Hadoop's HDFS or Google File System for storing and processing large files across multiple nodes.
- 53. Solve the problem of optimizing large-scale parallel computing Use task scheduling algorithms, load balancing, and data partitioning for efficient parallel computation.
- 54. Implement a real-time stock trading system Combine data streaming, real-time analytics, and low-latency trading algorithms for financial markets.
- 55. Solve the problem of secure data sharing in distributed systems Implement cryptographic protocols for secure data exchange and storage in distributed environments.
- 56. Implement a robust fraud detection system Use machine learning, anomaly detection, and real-time data analysis to detect fraudulent activities.
- 57. Solve the problem of building a scalable microservices architecture Use service discovery, API gateways, and container orchestration for managing microservices at scale.
- 58. Implement a high-availability distributed system Use techniques like replication, failover, and quorum-based systems to ensure system reliability and availability.
- 59. Solve the problem of large-scale video streaming Optimize content delivery networks (CDNs), video compression, and buffering strategies for scalable streaming.
- 60. Implement an advanced AI-driven chatbot Use natural language understanding (NLU), dialogue management, and reinforcement learning for intelligent responses.
- 61. Solve the problem of real-time multiplayer game synchronization Implement efficient networking protocols, state synchronization, and latency compensation techniques.
- 62. Implement a secure end-to-end encryption protocol for messaging apps Research and implement encryption protocols like Signal Protocol for secure messaging.
- 63. Solve the problem of building a decentralized marketplace
 blockchain technology, smart contracts, and decentralized storage for a secure marketplace
 platform.
- 64. Implement a distributed AI model training system
 Use federated learning, data parallelism, and model compression for training AI models across multiple devices.
- 65. Solve the problem of building a real-time financial analytics platform Use streaming data, machine learning models, and real-time visualization for financial market analysis.
- 66. Implement a robust IoT device management system

 Use
 MQTT, CoAP, and device shadowing techniques for managing large fleets of IoT devices.

- 67. Solve the problem of optimizing distributed databases for large-scale transactions Use sharding, indexing, and replication strategies to optimize distributed databases for high-volume transactions.
- 68. Implement a high-performance neural network inference engine Research and implement optimizations like quantization, pruning, and hardware acceleration for fast inference.
- 69. Solve the problem of scaling blockchain networks Use sharding, layer-2 solutions, or alternative consensus mechanisms to scale blockchain networks.
- 70. Implement a secure and efficient smart contract platform
 Use formal verification, gas optimization, and secure coding practices to develop reliable smart contracts.
- 71. Solve the problem of large-scale real-time fraud detection Combine anomaly detection, machine learning, and streaming analytics for scalable fraud detection systems.
- 72. Implement an AI-powered recommendation engine for e-commerce Use collaborative filtering, deep learning, and contextual data for personalized product recommendations.
- 73. Solve the problem of building a decentralized social media platform Use blockchain, IPFS, and decentralized identity for a secure and private social media platform.
- 74. Implement a scalable real-time chat application Use WebSockets, message queues, and distributed databases for scalable real-time messaging.
- 75. Solve the problem of real-time video analytics Use computer vision, edge computing, and streaming data for analyzing video feeds in real-time.
- 76. Implement a large-scale image classification system Use convolutional neural networks (CNNs) and distributed training for large-scale image classification.
- 77. Solve the problem of building a secure multi-cloud infrastructure Use cloud security best practices, identity and access management, and encryption for securing multi-cloud deployments.
- 78. Implement a decentralized finance (DeFi) protocol Research and develop smart contracts, tokenomics, and decentralized exchanges (DEXs) for DeFi applications.
- 79. Solve the problem of building a scalable content delivery network (CDN) Use caching, load balancing, and edge computing for efficient content distribution.
- 80. Implement a secure and scalable voting system for large-scale elections Use blockchain, cryptographic protocols, and secure identity verification for an election voting system.
- 81. Solve the problem of building a scalable recommendation system Implement and optimize recommendation algorithms, handling big data and providing personalized suggestions.
- 82. Implement an AI-driven predictive maintenance system Use machine learning, IoT data, and time-series analysis for predicting equipment failures before they occur.
- 83. Solve the problem of building a scalable decentralized storage solution Use blockchain, distributed hash tables, and secure encryption for decentralized data storage.
- 84. Implement a large-scale recommendation engine for real-time personalization Use collaborative filtering, deep learning models, and A/B testing to optimize real-time recommendations.
- 85. Solve the problem of securing distributed AI models Use techniques like differential privacy, federated learning, and homomorphic encryption for secure AI models.

- 86. Implement a multi-cloud deployment strategy for high availability Use cloud-agnostic tools, CI/CD pipelines, and disaster recovery planning for multi-cloud deployments.
- 87. Solve the problem of optimizing deep learning models for edge devices Use model quantization, pruning, and efficient architectures like MobileNet for deployment on edge devices.
- 88. Implement a decentralized AI system Combine blockchain, federated learning, and privacy-preserving techniques for decentralized AI solutions.
- 89. Solve the problem of building a large-scale distributed search engine Implement distributed indexing, ranking algorithms, and efficient query processing for scalable search systems.
- 90. Implement a secure and scalable IoT ecosystem Use secure communication protocols, device authentication, and data encryption for a scalable IoT ecosystem.
- 91. Solve the problem of building a distributed ledger for secure financial transactions Research and implement consensus algorithms, transaction validation, and cryptographic security for ledgers.
- 92. Implement an Al-driven fraud detection system for financial institutions Use advanced machine learning models, anomaly detection, and real-time data analysis for fraud detection.
- 93. Solve the problem of building a large-scale autonomous vehicle control system Combine sensor fusion, real-time decision-making algorithms, and advanced control systems for autonomous vehicles.
- 94. Implement a secure end-to-end encryption system for cloud storage Use advanced encryption protocols, key management, and secure access controls for cloud data security.
- 95. Solve the problem of optimizing neural networks for large-scale image processing Use distributed computing, GPU acceleration, and data parallelism for efficient image processing at scale.
- 96. Implement a scalable and secure distributed consensus protocol Research Byzantine Fault Tolerance, Raft, or Paxos algorithms for achieving consensus in distributed systems.
- 97. Solve the problem of building a scalable real-time analytics platform Use data streaming, distributed processing, and real-time visualization tools for scalable analytics solutions.
- 98. Implement an AI-powered content recommendation system Use deep learning, natural language processing, and user behavior analysis for personalized content recommendations.
- 99. Solve the problem of optimizing large-scale distributed databases for high availability Use techniques like replication, sharding, and consensus algorithms to ensure database availability.
- 100. Implement a scalable AI-driven customer support chatbot Use natural language understanding, sentiment analysis, and real-time learning for responsive customer support.

This table completes the 200 JavaScript coding problems categorized by difficulty level, along with hints to guide you through solving each problem. These problems should help you significantly improve your problem-solving skills and understanding of advanced programming concepts.8