MML Project Data

09/04/25

Scientific Problem

- Solar H₂ generation as green solution towards mitigating the energy crisis
 - Energy dense
 - Clean oxidation products
 - Various methods to store and transport
- Current light-driven H₂ evolution systems are
 - Expensive and/or non earth abundant materials
 - Inefficient to be implemented industrially
- No effective methods to predict what features will make good catalysts
 - Systems are complex!

PC - photocatalyst

D - sacrificial electron donor

WRC - water reduction catalyst

Homogenous hydrogen evolution using earth abundant materials in green solvent conditions (there is a decent amt of literature on this)

System components:

Photosensitizer: Fluorescein

Donor: TEA

Water Reduction Catalyst

(WRC): nickel pyridinethiolate

complexes

Solvent: 1:1 water:ethanol

High-throughput hydrogen evolution reaction configuration

Calibration Curve for H₂ Detection Films

- 108 multiwell plate sealed with colorimetric detection films
- Plates are illuminated on photoreactors that take images of plate (top and bottom)
- Python script processes images to correlate film darkness to amt of H₂ generated

Source: *Digital Discovery,* 2024, **3**, 1430-1440

Current Dataset

RNR Group 15 C=N (not in aromatic sys)

- Fluorescein as the PS, TEOA as the D
- Two metals
 - o Ni
 - o Co
- 56 ligands
 - At eight different concentrations
- 56 * 2 * 8 = 896 data points (technically thousands more if you consider the whole kinetic trace of each)
- Previous investigation with this project involved binary classification of the data (1 - h2 producer, 2 - no h2)
 - Ligands were featurized with molformer, but minimal success was achieved -> need more intentional featurization and maybe a more specific dataset

Direction of the Proposal

Experimental Goals/Work

- Find a way to see if we are actually making the complexes
 - HTP MS? Gabe has one i think
 - NMR (need a cheaper solvent to NMR)
- Extract Features from experiment besides final H2 measurement
 - Incubation time
 - Plateau time
 - Rates
 - Does a precipitate form
- Conformation w/ GC to ensure the films are giving accurate results
- Once we have a model working we can validate by running additional experiments with new ligands

Computational Goals/Work

- Some method to compute functionals for the ligands we are screening
 - Extract relevant features
 - Build a model that can use the features/determine feature importance to predict ligand behavior
- Find a database of ligands to use as test/train data

GOAL:

 Predict whether or not a ligand (feed in a SMILES) when chelated to a metal will afford a hydrogen evolution catalyst

Mechanism: CECE (C -> chemical step, E-> electrochemical step)

Step 1: Chemical (C) – Protonation

- The nickel complex undergoes protonation at the pyridyl nitrogen, which is accompanied by ligand dechelation.
- This step is reversible and supported by NMR and UV-vis data showing color and spectral changes upon acid/base addition.

Step 2: Electrochemical (E) - Reduction

- The protonated complex is reduced, likely forming a Ni(I) species.
- Cyclic voltammetry (CV) shows a new reduction wave upon acid addition, assigned to a Ni(II)—H / Ni(I)—H couple.

Step 3: Chemical (C) – Second Protonation

- A second protonation occurs, likely at the Ni–H intermediate, forming a Ni–H⁻ / N–H⁺ species.
- This step sets up the heterocoupling needed to form H₂.

Step 4: Electrochemical (E) – Second Reduction

- A second electron transfer reduces the intermediate further, facilitating H–H bond formation.
- This is proposed to be the turnover-limiting step (TOLS) of the cycle.

Ideas for descriptors

Hydride binding energy