TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC74HC4051AP, TC74HC4051AF, TC74HC4051AFT TC74HC4052AP, TC74HC4052AF, TC74HC4052AFT TC74HC4053AP, TC74HC4053AF, TC74HC4053AFN, TC74HC4053AFT

TC74HC4051AP/AF/AFT 8 – CHANNEL ANALOG MULTIPLEXER / DEMULTIPLEXER TC74HC4052AP/AF/AFT DUAL 4 – CHANNEL ANALOG MULTIPLEXER / DEMULTIPLEXER TC74HC4053AP/AF/AFN/AFT TRIPLE 2 – CHANNEL ANALOG MULTIPLEXER / DEMULTIPLEXER

The TC74HC4051A/4052A/4053A are high speed CMOS ANALOG MULTIPLEXER/DEMULTIPLEXER fabricated with silicon gate C^2MOS technology. They achieve the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

The TC74HC4051A has an 8 channel configuration, the TC74HC4052A has a 4 channel×2 configuration and the TC74HC4053A has a 2 channel×3 configuration.

The digital signal to the control terminal turns "ON" the corresponding switch of each channel a large amplitude signal (V_{CC} - V_{EE}) can then be switched by the small logical amplitude (V_{CC} -GND) control signal.

For example, in the case of $V_{CC}=5V$, GND=0V, $V_{EE}=-5V$, signals between-5V and +5V can be switched from the logical circuit with a single power supply of 5V. As the ON-resistance of each switch is low, they can be connected to circuits with low input impedance.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.

FEATURES:

- High Speed-----t_{pd} = 15ns(typ.) at V_{CC} = 5V
- Low Power Dissipation ············· $I_{CC} = 4\mu A(Max.)$ at Ta = 25°C
- High Noise Immunity $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (Min.)
- Low ON Resistance·····R_{ON} = 50Ω (typ.)

at V_{CC}-V_{EE} = 9V

• High Noise Immunity.....THD = 0.02% (typ.)

at V_{CC} - V_{EE} = 9V

• Pin and Function Compatible with 4051/4052/4053B

TRUTH TABLE

CON	CONTROL INPUTS				"ON" CHANNEL				
INHIBIT	C*	В	Α	HC4051A HC4052A		HC4053A			
L	L	L	L	0	0X, 0Y	0X,0Y,0Z			
L	L	L	Н	1	1X, 1Y	1X,0Y,0Z			
L	L	Н	L	2	2X, 2Y	0X,1Y,0Z			
L	L	Н	Н	3	3X, 3Y	1X,1Y,0Z			
L	Н	L	L	4		0X,0Y,1Z			
L	Н	L	Н	5		1X,0Y,1Z			
L	Н	Н	L	6		0X,1Y,1Z			
L	Н	Н	Н	7		1X,1Y,1Z			
Н	Х	Х	Х	NONE	NONE	NONE			

X: Don't Care, *: Except HC4052A

(Note) The JEDEC SOP (FN) is not available in Japan.

PIN ASSIGNMENT

961001EBA2

● TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

SYSTEM DIAGRAM

The products described in this document are subject to foreign exchange and foreign trade control laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

IEC LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage Range	V _{cc}	−0.5~7	V
Supply Voltage Range	V_{CC} - V_{EE}	− 0.5~13	V
Control Input Voltage	VIN	−0.5~V _{CC} + 0.5	V
Switch I/O Voltage	V _{1/O}	$V_{EE} = 0.5 \sim V_{CC} + 0.5$	V
Control Input Diode Current	I _{ICK}	± 20	mA
I/O Diode Current	I _{IOK}	± 20	mA
Switch through Current	I _T	± 25	mA
DC V _{CC} or Ground Current	I _{cc}	± 50	mA
Power Dissipation	P _D	500 (DIP)* / 180 (SOP, TSSOP)	mW
Storage Temperature	T _{stg}	−65~150	°C

*500mW in the range of Ta= -40°C~65°C. From Ta=65°C to 85 °C a derating factor of -10mW/°C shall be applied until 300mW.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage Range	V_{cc}	2~6	V
Supply Voltage Range	V _{EE}	−6~0	٧
Supply Voltage Range	V_{CC} - V_{EE}	2~12	V
Control Input Voltage	V _{IN}	0~V _{cc}	٧
Switch I/O Voltage	V _{I/O}	$V_{EE} \sim V_{CC}$	٧
Operating Temperature	T _{opr}	−40~85	°C
Control Input Rise and Fall Time	t _r , t _f	$0 \sim 1000 (V_{CC} = 2.0V)$ $0 \sim 500 (V_{CC} = 4.5V)$ $0 \sim 400 (V_{CC} = 6.0V)$	ns

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST		1/	Т	a = 25°0	С	Ta = -40~85°C			
PARAIVIETER	STIVIBUL	CONDITION	V _{EE} (V)	V _{cc} (V)	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT	
High - Level Control Input Voltage	V _{IHC}			2.0 4.5 6.0	1.50 3.15 4.20		_ _ _	1.50 3.15 4.20		v	
Low - Level Control Input Voltage	V _{ILC}			2.0 4.5 6.0	111		0.50 1.35 1.80	_ 	0.50 1.35 1.80		
ON Resistance		$V_{IN} = V_{ILC}$ or V_{IHC} $V_{I/O} = V_{CC}$ to V_{EE} $I_{I/O} \leq 2mA$	GND - 4.5 - 6.0	4.5 4.5 6.0	111	85 55 50	180 120 100	 - -	225 150 125		
	R _{ON}	$\begin{array}{c} V_{\text{IN}} = N_{\text{ILC}} \text{ or } V_{\text{IHC}} \\ V_{\text{I/O}} = V_{\text{CC}} \text{ or } V_{\text{EE}} \\ I_{\text{I/O}} \leq 2mA \end{array}$	GND GND - 4.5 - 6.0	2.0 4.5 4.5 6.0		150 70 50 45	- 150 100 80	_ _ _	190 125 100	Ω	
Difference of ON Resistance Between Switches	$\triangle R_{ON}$	$V_{IN} = V_{ILC}$ or V_{IHC} $V_{I/O} = V_{CC}$ to V_{EE} $I_{I/O} \leq 2mA$	GND - 4.5 - 6.0	4.5 4.5 6.0	111	10 5 5	30 12 10		35 15 12		
Input / Output Leakage Current (SWITCH OFF)	l _{OFF}	$V_{OS} = V_{CC}$ or GND $V_{IS} = GND$ or V_{CC} $V_{IN} = V_{ILC}$ or V_{IHC}	GND - 6.0	6.0 6.0	_ _	<u> </u>	± 60 ± 100	<u> </u>	± 600 ± 1000	nA	
Switch Input Leakage Current (SWITCH ON)	l _{IZ}	$V_{OS} = V_{CC}$ or GND $V_{IN} = V_{ILC}$ or V_{IHC}	GND - 6.0	6.0 6.0	_ _		± 60 ± 100		± 600 ± 1000		
Control Input Current	I _{IN}	$V_{IN} = V_{CC}$ or GND	GND	6.0	_	_	±0.1	_	± 1.0		
Quiescent Supply Current	I _{CC}	V _{IN} = V _{CC} or GND	GND - 6.0	6.0 6.0	_	_	4.0 8.0	_	40.0 80.0	μΑ	

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 pF$, Input $t_r = t_f = 6 ns$, GND = 0V)

PARAMETER	SYMBOL	TEST CONDITION				Ta = 25°C			Ta = -4	UNIT	
FARAIVIETER	STIVIBOL			V _{EE} (V)	V _{CC} (V)	MIN.	TYP.	MAX.	MIN.	MAX.	OIVII
Phase difference between Input and Output	φ I/O	ALI	_ TYPES	GND GND GND – 4.5	2.0 4.5 6.0 4.5	_ _ _	25 6 5 4	60 12 10 —	_ _ _ _	75 15 13 —	
		*1	4051	GND GND GND – 4.5	2.0 4.5 6.0 4.5	_ _ _	64 18 15 18	225 45 38 —	_ _ _ _	280 56 48 —	
Output Enable Time	t _{pZL} t _{pZH}	*1	4052	GND GND GND – 4.5	2.0 4.5 6.0 4.5	_ _ _	64 18 15 18	225 45 38 —	_ _ _ _	280 56 48 —	
		*1	4053	GND GND GND – 4.5	2.0 4.5 6.0 4.5	_ _ _	50 14 12 14	225 45 38 —	_ _ _ _	280 56 48 —	ns
	t _{pLZ} t _{pHZ}	*1	4051	GND GND GND – 4.5	2.0 4.5 6.0 4.5	_ _ _	100 33 28 29	250 50 43 —	_ _ _ _	315 63 54 —	
Output Disable Time		*1	4052	GND GND GND – 4.5	2.0 4.5 6.0 4.5	_ _ _	100 33 28 29	250 50 43 —	_ _ _ _	315 63 54 —	
		*1	4053	GND GND GND – 4.5	2.0 4.5 6.0 4.5	_ _ _	95 30 26 26	225 45 38 —	_ _ _ _	280 56 48 —	
Control Input Capacitance	C _{in}	ALL	TYPES	_	_	_	5	10	_	10	
COMMON Terminal Capacitance	C _{IS}		4051 4052 4053	-5.0	5.0	_ _ _	36 19 11	70 40 20	_ _ _	70 40 20	
SWITCH Terminal Capacitance	C _{OS}		4051 4052 4053	-5.0	5.0	_ _ _	7 7 7	15 15 15	_ _ _	15 15 15	pF
Feedthrough Capacitance	C _{IOS}		4051 4052 4053	-5.0	5.0	_ _ _	0.95 0.85 0.75	2 2 2	_ _ _	2 2 2] F'
Power Dissipation Capacitance	C _{PD}	*2	4051 4052 4053	GND	5.0	_ _ _	70 71 67	_ _ _	_ _ _	_ _ _	

^{* 1:} $R_L = 1k\Omega$

Average operating current can be obtained by the equation:

$$I_{CC}$$
 (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

^{* 2:} CPD is defined as the value of the internal equivalent capacitance of IC which is calculated from the operating current consumption without load.

ANALOG SWITCH CHARACTERRISTICS (GND = 0V, Ta = 25° C)

PARAMETER	SYMBOL	TEST CONDITION	V _{EE} (V)	V _{CC} (V)	TYP.	UNIT	
Sine Wave Distortion (T.H.D)		$C_L = 50pF$	$J_{IN} = 4.0 V_{P-P}$ $J_{IN} = 8.0 V_{P-P}$ $J_{IN} = 11.0 V_{P-P}$	- 2.25 - 4.5 - 6.0	4.5	0.025 0.020 0.018	%
		Adjust f _{IN} Voltage to obtain 0dBm at V _{OS} Increase f _{IN} Frequency until dB	*1 ALL *2 4051 4052 4053	- 2.25	2.25	120 45 70 95	
Frequency Responce (Switch ON)	f _{MAX}	Meter reads $-3dB$ $R_L = 50\Omega, C_L = 10_PF$ $f_{IN} = 1MHz, Sine Wave$	*1 ALL *2 4051 4052 4053	-4.5 -6.0	6.0	70 110 150	MHz
(Sweeth Giv)	ON)		*1 ALL *2 4051 4052 4053			200 85 140 190	
Feed through Attenuation (Switch OFF)		Vin is centered at $(V_{CC} - V_{EE})$, Adjust input for $0dBm$ $R_L = 600\Omega$, $C_L = 50pF$ $f_{IN} = 1MHz$, Sine Wave	72	- 2.25 - 4.5 - 6.0	2.25 4.5 6.0	- 50 - 50 - 50	dB
Crosstalk (Control Input to Signal Output)		$R_L = 600\Omega$, $C_L = 50_PF$ $f_{IN} = 1MHz$, Square Wave (t _r = t _f = 6ns)	- 2.25 - 4.5 - 6.0	2.25 4.5 6.0	60 140 200	mV
Crosstalk (Between any switches)		Adjust V_{IN} to obtain $0dBm$ at $R_L = 600\Omega$, $C_L = 50_PF$ $f_{IN} = 1MHz$, Sine Wave	Input	- 2.25 - 4.5 - 6.0	2.25 4.5 6.0	- 50 - 50 - 50	dB

^{*1:}Input COMMON Terminal, and measured at SWITCH Terminal.

NOTE: These characteristics are determined by design of devices.

^{*2:}Input SWITCH Terminal, and measured at COMMON Terminal.

SWITCHING CHARACTERISTICS TEST CIRCUITS

 ν_{CC} 90% V_{C} 50% 10% GND V_{OH} 90% $V_{O/I}$ 50% $(S_1 = V_{CC}, S_2 = GND)$ V_{OL} t_{pZH} t_{pHZ} V_{OH} $V_{O/I}$ 50% $(S_1 = GND, S_2 = V_{CC})$ 10% t_{pZL} t_{pLZ} V_{OL}

2. CROSS TALK (CONTROL INPUT – SWITCH OUTPUT) $fin = 1 M H_Z \ duty = 50\% \ tr = tf = 6 ns$

5. CROSS TALK (BETWEEN ANY TWO SWITCHES)

C

 V_{CC}

 V_{CC}

 V_{CC} V_{CC} V_{IN} $0.1 \, \mu \, F$ V_{EE} GND $SO\Omega$ TOPF

6. FREQUENCY RESPONSE (SWITCH ON)

DIP 16PIN OUTLINE DRAWING (DIP16-P-300-2.54A)

Unit in mm

SOP 16PIN (200mil BODY) OUTLINE DRAWING (SOP16-P-300-1.27)

Unit in mm

SOP 16PIN (150mil BODY) OUTLINE DRAWING (SOL16-P-150 -1.27)

Unit in mm

TSSOP 16PIN OUTLINE DRAWING (TSSOP16-P-0044-0.65)

Unit in mm

