```
In [ ]: import os
         import pandas as pd
        data = pd.read_csv("../../data/data.csv")
In [ ]: data
Out[]:
                    id diagnosis radius_mean texture_mean perimeter_mean area_mean sm
                842302
                                         17.99
                                                        10.38
                                                                                   1001.0
           0
                               Μ
                                                                       122.80
                842517
                               Μ
                                         20.57
                                                        17.77
                                                                       132.90
                                                                                   1326.0
           2 84300903
                                         19.69
                                                        21.25
                                                                       130.00
                                                                                   1203.0
                               Μ
           3 84348301
                                         11.42
                                                        20.38
                                                                        77.58
                                                                                    386.1
                               Μ
                                         20.29
           4 84358402
                                                        14.34
                                                                       135.10
                                                                                   1297.0
                               Μ
         564
                926424
                                         21.56
                                                        22.39
                                                                       142.00
                                                                                   1479.0
                               Μ
         565
                926682
                                         20.13
                                                        28.25
                                                                       131.20
                                                                                   1261.0
         566
                926954
                               Μ
                                         16.60
                                                        28.08
                                                                       108.30
                                                                                    858.1
         567
                927241
                                         20.60
                                                        29.33
                                                                       140.10
                                                                                   1265.0
         568
                                В
                                          7.76
                                                        24.54
                                                                        47.92
                                                                                    181.0
                 92751
        569 rows × 33 columns
In [ ]: import matplotlib.pyplot as plt
         # Plotting different groups with different colors
         for label, group in data.groupby('diagnosis'):
             plt.scatter(group['radius_mean'], group['texture_mean'], label=label)
         plt.xlabel('Radius Mean')
        plt.ylabel('Texture Mean')
        plt.title('Scatter Plot of Radius Mean vs Texture Mean by Diagnosis')
        plt.legend()
```

plt.show()

Scatter Plot of Radius Mean vs Texture Mean by Diagnosis

Out[]: array(['B', 'M', 'M'], dtype=object)

Evaluation

As part of an precise evaluation the following true classes were identified (gold standard).
• f(i1) -> benign • f(i2) -> benign • f(i3) -> malignant

	Predicted Benign	Predicted Malignant
Actual Benign	True Negative (TN)	False Positive (FP)
Actual Malignant	False Negative (FN)	True Positive (TP)

Now we fill in the confusion matrix with the given true and predicted classes:

```
1. f(i1) -> True Negative (TN)
2. f(i2) -> False Positive (FP)
3. f(i3) -> True Positive (TP)
```

	Predicted Benign	Predicted Malignant
Actual Benign	1 (TN)	1 (FP)
Actual Malignant	0 (FN)	1 (TP)

```
(1+1)/(1+1+0+1) = 0.67
```

• Accuracy: 67%

Manual Approach

The method should be done 'manually', but this would need 290,142 mathematic operations, taking up to 600 days of work. Therefore I used AI to develop a manual approach, that may help in understanding the algorithm better.

```
In [ ]: import numpy as np
        def euclidean_distance(point1, point2):
            """Calculate the Euclidean distance between two points."""
            return np.sqrt(np.sum((np.array(point1) - np.array(point2)) ** 2))
        def k_nn_manual(X_train, y_train, query_point, k=1):
            """A simple k-NN algorithm implementation."""
            distances = []
            # Calculate distance from query point to all other points
            for idx, train_point in X_train.iterrows():
                distance = euclidean_distance(query_point, [train_point['radius_mean'],
                distances.append((distance, idx))
            # Sort distances and select the nearest k neighbors
            distances.sort()
            neighbors = distances[:k]
            # Collect the classes of these nearest neighbors
            classes = [y_train.iloc[neighbor[1]] for neighbor in neighbors]
            # Return the most common class among nearest neighbors
            return max(set(classes), key=classes.count)
        # Sample Training Data
        X_train_sample = data[['radius_mean', 'texture_mean']].iloc[:100] # assuming a
        y_train_sample = data['diagnosis'].iloc[:100]
        # Query Points
        query points = [(10, 20), (40, 50), (60, 60)]
        # Classify each query point
        predictions = [k_nn_manual(X_train_sample, y_train_sample, query) for query in q
        predictions
```

```
Out[]: ['B', 'M', 'M']
In [ ]: import numpy as np
        import tensorflow as tf
        from tensorflow.keras.models import Sequential
        from tensorflow.keras.layers import Dense
        from sklearn.preprocessing import LabelEncoder
        from sklearn.preprocessing import StandardScaler
        from tensorflow.keras.layers import Activation
        # Data preparation
        X = data[['radius_mean', 'texture_mean']].values
        y = data['diagnosis'].values
        encoder = LabelEncoder()
        encoder.fit(y)
        encoded_Y = encoder.transform(y)
        print(encoded Y) # check if encoding successful
        # Scale features
        scaler = StandardScaler()
        X scaled = scaler.fit transform(X)
        model = Sequential()
        model.add(Dense(10, input_dim=2, activation='relu'))
        model.add(Dense(1, activation='sigmoid'))
        # Compile model
        model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']
        model = Sequential()
        model.add(Dense(10, input_dim=2, activation='linear'))
        model.add(Dense(1, activation='linear'))
        # Compile model
        model.compile(loss='mse', optimizer='adam', metrics=['accuracy'])
        # Fit the model
        model.fit(X_scaled, encoded_Y, epochs=100, batch_size=10, verbose=0)
        # Predicting classes for the new instances with scaled input
        new_instances_scaled = scaler.transform(new_instances)
        predictions = model.predict(new_instances_scaled)
        predicted_classes = (predictions > 0.5).astype(int)
        predicted_labels = encoder.inverse_transform(predicted_classes.flatten())
```

predicted_labels

```
0 0 0 0 0 0 0 1 1 1 1 1 1 0
1/1 [======= ] - 0s 30ms/step
Out[]: array(['B', 'M', 'M'], dtype=object)
```

Manual as in example

(0.1/0.2)

```
H1 = (0.1 * 1.7) + (0.2 * 0.58) -1.12 = -0.834 C1(B) = (-0.834 * -1.14) + 0.22 = 1.17076 C2(M) = (-0.843 * 1.14) + 0.78 = -1.17076 C1>C2->B
```

(0.4/0.5)

```
H1 = (0.4 * 1.7) + (0.5 * 0.58) -1.12 = -0.15 C1(B) = (-0.15 * -1.14) + 0.22 = 0.391 C2(M) = (-0.15 * 1.14) + 0.78 = 0.609 C2>C1->M
```

(0.6/0.6)

```
H1 = (0.6 * 1.7) + (0.6 * 0.58) -1.12 = 0.248 C1(B) = (0.248* -1.14) + 0.22 = -0.06272 C2(M) = (0.248 * 1.14) + 0.78 = 1.06272 C2>C1->M
```

from sklearn import datasets

2.2

(0.1/0.2)

Closest: [0.14/0.21] at 79°F Distance: $^{\hat{}}$ f(i1) = $(0.1 - 0.14)2 + (0.2 - 0.21)2 \approx 0.04$

79∘F

(0.5/0.1)

Closest: [0.51/0.12] at 83°F Distance: (0.5 - 0.51)2 + (0.1 - 0.12)2 \approx 0.02 83°F

(1.0/0.8)

Closest: (0.96/0.78) with 73°F Distance: $(1.0 - 0.96)2 + (0.8 - 0.78)2 \approx 0.05$

73∘F

• RMSE calculation:

- Squared errors:
 - \circ (80 79)^2 = 1
 - 95 832 = 144
 - \circ (80 73)^2 = 49
- Sum of squared errors: 1 + 144 + 49 = 194
- Mean of squared errors: 64.67
- RMSE: sqrt(64.67) => 8.04

RMSE => **8.04**.

2.3.3

[0.1/0.2]

 $H1=(0.1*1.46)+(0.2*-4.2)+12.69 = 11.996 \text{ y} = (11.996*5.49) +13.32 \approx 79.2$

79.2∘F

[0.5/0.1]

 $H1=(0.5*1.46)+(0.1*-4.2)+12.69 = 12.91 \text{ y} = (12.91*5.49) +13.32 \approx 84.2$

84.2°F

[1.0/0.8]

 $H1\!=\!(1.0\!*1.46)\!+\!(0.8\!*-4.2)\!+\!12.69 = 10.7\;y = \!(10.7\!*5.49)\;+13.32\;\approx\;72.1\;72.1^\circ$

RMSE:

- Squared errors:
 - \circ (80 79.2)^2 = 0.64
 - o (95 84.2)^2 = 116.64
 - \circ (80 72.1)^2 = 62.41

- Sum of squared errors:0.64 + 116.64 + 62.41 = 179.6
- Mean of squared errors: 179.69/3=59.90
- RMSE:sqrt{59.90} => 7.74

7.74.