

INGENIERÍA EN GESTIÓN PETROLERA

TESIS DE LICENCIATURA

PERSPECTIVA DE LA CONTRIBUCIÓN DE LOS BIOCOMBUSTIBLES PARA DISMINUIR EL CONSUMO DE COMBUSTIBLES FÓSILES EN EL DEPARTAMENTO DE TARIJA

ENZO ESPER ESTRADA

Tesis de licenciatura para optar al grado de Licenciatura en Ingeniería en Gestión Petrolera

Tarija-Bolivia

2020

ÍNDICE

	1.1	ANTECEDENTES	1
	1.2	DELIMITACIÓN	3
	1.2.	1 Límite sustantivo	3
	1.2.	2 Límite temporal	3
	1.2.3	3 Límite geográfico	3
	1.3	PLANTEAMIENTO DEL PROBLEMA	5
	1.4	FORMULACIÓN DEL PROBLEMA	5
	1.5	OBJETIVOS	5
	1.5.	1 Objetivo general	5
	1.5.2	2 Objetivos específicos	5
	1.6	JUSTIFICACIÓN	6
	1.6.	1 Justificación científica	6
	1.6.2	2 Justificación social	7
	1.6.3	3 Justificación económica	7
	1.6.4	4 Justificación metodológica	7
2	MAF	RCO TEORICO	8
	2.1	DEFINICIONES	8
	2.1.	1 Energía	8
	2.1.	Clasificación de las fuentes de energía	8
	2.1.3	3 Combustibles fósiles	g
	2.1.4	4 Diésel oíl	10
	2.1.	Gas natural vehicular (GNV)	10
	2.1.6	Gasolina	11
	2.1.	7 Octanaje	12
	2.1.8	§ Índice de cetano	13
	2.1.9	Poder calorífico	13
	2.1.	10 Temperatura de ignición	14
	2.1.	11 Punto de inflamación	15
	2.1.	12 Emisiones de residuos al ambiente	16
	2.1.	13 ¿Qué es la biomasa?	17
	2.1.	14 Tipos de biomasa	18
	2.1.	15 Biocombustibles	20
	2.1.	16 Clasificación de biocombustibles	20
	2.1.	17 Tipos de biocombustibles	21
	2.2	MARCO LEGAL	25

	2.2.1	Ley de Medio Ambiente 1333	. 25
	2.2.2	Ley de Aditivos de Origen Vegetal	. 26
	2.2.3	Ministerio de Hidrocarburos y Energía	. 26
	2.2.4	Balance energético nacional (BEN)	. 27
	2.2.5	Ley General de Transporte el 16 de agosto de 2011.	. 27
	2.2.6	Asociación de Productores de Oleaginosas y Trigo (ANAPO)	
3	MARCO	METODOLÓGICO DE LA INVESTIGACIÓN	. 28
	3.1 TIPO	O DE ESTUDIO	. 28
	3.1.1	Investigación exploratoria	. 28
	3.1.2	Investigación descriptiva	. 28
	3.2 DISI	EÑO DE INVESTIGACIÓN	. 28
	3.2.1	No experimental	. 28
	3.2.2	Cualitativo	. 29
	3.2.3	Longitudinal	. 29
	3.3 HIP	ÓTESIS	. 29
	3.3.1	Identificación de variables	. 29
	3.3.2	Definición conceptual	. 30
	3.3.3	Operacionalización de variables	. 30
	3.4 POE	BLACIÓN, MUESTRA Y MUESTREO	. 30
	3.4.1	Muestreo probabilístico	. 31
	3.5 TÉC	NICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS	. 31
	3.5.1	Técnicas	. 31
	3.5.2	Instrumentos	. 31
	3.6 ELA	BORACIÓN DE INSTRUMENTOS Y VALIDACIÓN	. 32
4	COMBUS	STIUBLES FÓSILES VS. BIOCOMBUSTIBLES	. 33
	4.1 CON	MBUSTIBLES FÓSILES	. 33
	4.1.1	Diésel oíl	. 34
	4.1.2	Gas natural vehicular (GNV)	. 36
	4.1.3	Gasolina	. 36
	4.2 BIO	COMBUSTIBLES	
	4.2.1	Biodiésel	. 41
	4.2.2	Bioetanol	. 44
		SLAS DE COMPARACIÓN ENTRE COMBUSTIBLES FÓSILES	
		SLAS DE VENTAJAS Y DESVENTAJAS DE COMBUSTIBLES FÓSILES	
		BLA DE COMPARACIÓN DE RENDIMIENTO Y CONTAMINACIÓN ENT	
	COMBUST	IBLES FÓSILES Y BIOCOMBUSTIBLES	. 78

5	FUE 80	NTES ALTERNATIVAS DE BIOCOMBUSTIBLES EN EL DEPARTAMENTO DE TARI	IJΑ
	5.1	ACEITE	80
	5.2	GIRASOL	81
	5.2.1	Zonas de cultivo de girasol en Bolivia	84
	5.2.2	Producción, rendimiento y superficie del girasol	85
	5.3	SOYA	
	5.3.	Zonas de cultivo de soya en Bolivia	89
	5.3.2	Producción, rendimiento y superficie de la soya	91
	5.4	CAÑA DE AZUCAR	92
	5.4.	Cadena productiva del azúcar en Bolivia	94
	5.4.2		
	5.4.3	Ingenio azucarero en Tarija	95
	5.4.4	Producción de azúcar y alcohol	98
	5.4.5	Zonas de cultivo y cosecha de azúcar en Tarija1	00
	5.4.6	Producción, rendimiento y superficie de la caña de azúcar	01
6	ANÁ	LISIS E INTERPRETACIÓN DE DATOS1	03
	6.1 BIOCC	ANÁLISIS ECONÓMICO DEL PRECIO DE LOS COMBUSTIBLES FÓSILES Y LOS MBUSTIBLES	
	6.2	FABRICACIÓN Y CARACTERISTICAS DEL COMBUSTIBLE SUPER ETANOL 92 1	04
	6.2.	Fabricación del combustible súper etanol 921	04
	6.2.2	2 Características del combustible súper etanol 92 1	06
	6.3	ACEPTACION DEL BIOCOMBUSTIBLE EN BOLIVIA 1	07
	6.3.	Departamentos de Bolivia en los que se vende el combustible súper etanol 92 1	07
	6.3.2	Consumo de combustibles en Bolivia 1	07
	6.3.3	Aceptación del producto por parte de consumidores1	09
		PERSPECTIVA DE LOS BIOCOMBUSTIBLES AL AÑO 2030 E INTERPRETACIÓN S1	
	6.4.	Biodiésel1	10
	6.4.2	2 Bioetanol1	21
7	CON	ICLUSIONES Y RECOMENDACIONES1	28
	7.1	CONCLUSIONES	28
	7.2	RECOMENDACIONES 1	28
ВІ	IBLIOG	RAFÍA/WEBGRAFIA	

ÍNDICE DE FIGURAS

FIGURA N° 1.1: MAPA DE BOLIVIA	4
FIGURA N° I.2: MAPA DEL DEPARTAMENTO DE TARIJA	4
FIGURA N° II.1: BIOMASA	18
FIGURA N° II.2: TIPOS DE BIOMASA	20
FIGURA N° II.3: BIOGAS	23
FIGURA N° II.4: CICLO DEL BIODIESEL	25
FIGURA NºV.1: ZONAS DE CULTIVO DE GIRASOL EN BOLIVIA	85
FIGURA NºV.2: ZONAS SOYERAS EN SANTA CRUZ	89
FIGURA NºV.3: PROCESO PRODUCTIVO DEL AZÚCAR DE CAÑA	93
FIGURA NºV.4: CADENA PRODUCTIVA DEL AZÚCAR EN BOLIVIA	94
FIGURA NºV.5: PARTICIPACIÓN DE INGENIOS AZUCAREROS EN LA PRODUCCIÓN AZÚCAR	
FIGURA NºV.6 ZONAS DE CULTIVO DE CAÑA EN TARIJA	. 100
FIGURA NºVI.1: FABRICACIÓN DEL SÚPER ETANOL 92	. 105
FIGURA NºVI.2: DISPERSIÓN DE PRODUCCIÓN DE GIRASOL 1998-2019	. 111
FIGURA NºVI.3: DISPERSIÓN DE PRODUCCIÓN DE SOYA 1998-2019	. 116
FIGURA NºVI.4: DISPERSIÓN DE CAÑA DE AZÚCAR 1998-2019	. 122
ÍNDICE DE TABLAS	
TABLA N° IV.1: ESPECIFICACIONES TÉCNICAS DIESEL OÍL	34
TABLA N° IV.2: ESPECIFICACIONES TÉCNICAS GASOLINA ESPECIAL	37
TABLA N° IV.3: ESPECIFICACIONES TÉCNICAS GASOLINA PREMIUM	39
TABLA N° IV.4: ESPECIFICACIONES TÉCNICAS BIODIESEL	42
TABLA N° IV.5: ESPECIFICACIONES TÉCNICAS BIOETANOL	44
TABLA N° IV.6: COMPARACIÓN DIÉSEL Y BIODIESEL	45
TABLA N° IV.7: COMPARACIÓN DE BIODIESEL Y BIOETANOL	49
TABLA N° IV.8: COMPARACIÓN GNV Y BIODIESEL	52
TABLA N° IV.9: COMPARACIÓN GNV Y BIOETANOL	54
TABLA N° IV.10: COMPARACIÓN GASOLINA Y BIODIESEL	57
TABLA N° IV.11: COMPARACIÓN GASOLINA Y BIOETANOL	60
TABLA N° IV.12: VENTAJAS Y DESVENTAJAS DEL DIÉSEL Y BIODIESEL	63
TABLA N° IV.13: VENTAJAS Y DESVENTAJAS DEL DIÉSEL Y BIOETANOL	66
TABLA N° IV.14: VENTAJAS Y DESVENTAJAS DEL GNV Y BIODIESEL	69
TABLA N° IV.15 VENTAJAS Y DESVENTAJAS DEL GNV Y BIOETANOL	72
TABLA N° IV.16: VENTAJAS Y DESVENTAJAS DE LA GASOLINA Y EL BIODIESEL	74
TABLA Nº IV.17: VENTAJAS Y DESVENTAJAS DE LA GASOLINA Y EL BIOETANOL	76

ΓABLA №V.1: PRODUCCIÓN, RENDIMIENTO Y SUPERFICIE DEL GIRASOL EN BOLIVIA	80
ΓABLA NºV.2: PRODUCCIÓN, RENDIMIENTO Y SUPERFICIE DEL GIRASOL EN TARIJA	80
ΓABLA NºV.3: EVOLUCIÓN DE PRODUCCIÓN, RENDIMIENTO Y SUPERFICIE DE LA SOY BOLIVIA	
ΓABLA NºV.4: EVOLUCIÓN DE PRODUCCIÓN, RENDIMIENTO Y SUPERFICIE DE LA SOY ΓARIJA	
ΓABLA NºV.5: ZONAS ZAFRERAS EN TARIJA	9
ΓABLA NºV.6: CAÑA MOLIDA POR INGENIO EN BOLIVIA	9
TABLA NºV.7: PRODUCCIÓN DE AZÚCAR EN BOLIVIA, POR INGENIO EN QUINTALES	9
ΓABLA N°V.8: PRODUCCIÓN, RENDIMIENTO Y SUPERFICIE DE CAÑA DE AZÚCAR EN BO 	
TABLA NºV.9: PRODUCCIÓN, RENDIMIENTO Y SUPERFICIE DE CAÑA DE AZÚCAR EN TÆ	
TABLA NºVI.1: PRECIO MERCADO INTERNO DE LOS PRODUCTOS REGULADOS CONSUMIDOR FINAL	
ΓABLA NºVI.2: CONSUMO DE COMBUSTIBLES EN BOLIVIA	. 10
ΓABLA NºVI.3: PRODUCCIÓN DE GIRASOL A NIVEL NACIONAL 1999-2019	. 11
ΓABLA NºVI.4: PERSPECTIVA DE PRODUCCIÓN DE GIRASOL A NIVEL NACIONAL AL AÑO 	
ΓABLA №VI.5: PERSPECTIVA DE PRODUCCIÓN DE GIRASOL DEL DEPARTAMENTO ΓARIJA AL AÑO 2030	
ΓABLA №VI.6: PERSPECTIVA DE PRODUCCIÓN DE GIRASOL DEL DEPARTAMENTO ΓARIJA DESTINADA AL BIODIESEL AL AÑO 2030	
ΓABLA NºVI.7: PERSPECTIVA DE LA CANTIDAD DE BIODIESEL QUE SE PUEDE PRODU¢ BASE DE GIRASOL AL AÑO 2030	
ΓABLA NºVI.8: PRODUCCIÓN DE SOYA A NIVEL NACIONAL 1998-2019	. 11
TABLA NºVI.9: PERSPECTIVA DE PRODUCCIÓN DE SOYA A NIVEL NACIONAL AL AÑO	
ΓABLA NºVI.10: PERSPECTIVA DE LA PRODUCCIÓN DE SOYA DEL DEPARTAMENT0 ΓARIJA AL AÑO 2030	
ΓABLA NºVI.11: PERSPECTIVA DE LA PRODUCCIÓN DE SOYA DEL DEPARTAMENT0 ΓARIJA DESTINADA AL BIODIESEL AL AÑO 2030	
ΓABLA №VI.12: PERSPECTIVA DE LA CANTIDAD DE BIODIESEL QUE SE PUEDE PROD A BASE DE SOYA AL AÑO 2030	
ΓABLA NºVI.13: PRODUCCIÓN DE AZUCAR A NIVEL NACIONAL 1998-2019	. 12
ΓABLA NºVI.14: PERSPECTIVA DE PRODUCCIÓN DE CAÑA DE AZÚCAR A NIVEL NACIO AL AÑO 2030	
ΓABLA NºVI.15: PERSPECTIVA DE LA PRODUCCIÓN DE CAÑA DE AZUCAR DEPARTAMENTO DE TARIJA AL AÑO 2030	
TABLA NºVI.16: PERSPECTIVA DE LA PRODUCCIÓN DE CAÑA DE AZUCAR DESTINAD BIOETANOL EN EL DEPARTAMENTO DE TARIJA AL AÑO 2030	

	TABLA NºVI.17: PERSPECTIVA DE LA CANTIDAD DE BIOETANOL QUE SE F EN EL DEPARTAMENTO DE TARIJA AL AÑO 2030
	ÍNDICE DE ESQUEMAS
82	ESQUEMA Nº V.1: PRODUCTOS DE LA PIPA DE GIRASOL
83	ESQUEMA Nº V.2: EXTRACCIÓN DEL ACEITE CRUDO DE GIRASOL
	ESQUEMA Nº V.3: APROVECHAMIENTO DE LA SEMILLA DE SOYA EN LA ACEITE
98	ESQUEMA NºV.4: DISPOSICIÓN DE LA CAÑA DE AZÚCAR

CAPÍTULO I INTRODUCCIÓN

1.1 ANTECEDENTES

La historia de los biocombustibles se inicia a fines del siglo XIX y nace prácticamente con el uso de los hidrocarburos como fuente de energía. La idea de usar aceites vegetales como combustible para motores de combustión interna, data de 1893. En ese año el Dr. Rudolf Diesel, desarrolló el primer motor diésel cuyo prototipo ya estaba previsto que funcionara con aceites vegetales, como por ejemplo el aceite de maní, que en las primeras pruebas funcionó bien.

Durante la década de los 90, se abrieron muchas plantas en muchos países europeos, las compañías Renault, Peugeot y otros productores han certificado sus motores para la utilización parcial con biodiesel, mientras se trabaja para implantar un biodiesel del 50%. Durante el año 1998 se identificaban 21 países con proyectos comerciales de biodiesel. En septiembre del año 2005, Minnesota fue el primer estado estadounidense que obligaba un uso de, al menos, un 2% de biodiesel.

En la actualidad, los biocombustibles, en especial el biodiesel, han tomado popularidad debido a la situación ambiental presente en todo el mundo a consecuencia de las emisiones de gases de efecto invernadero de otros combustibles. Con los años se desarrolló y mejoró su proceso de producción, así como su uso comercial e industrial, buscando que hoy en día sea viable, sobre todo económicamente, para sustituir en la mayoría de lo posible a los tan contaminantes combustibles fósiles.

Bolivia ingresa a la era del biocombustible el año 2018. El sector agroindustrial comercializará en el primer año 80 millones de litros de etanol a YPFB, volumen que evitará la importación de gasolina por aproximadamente Bs 400 millones en el primer año, según establece el memorándum firmado entre el Ministerio de Hidrocarburos, la estatal petrolera y la Federación de Empresarios Privados de Santa Cruz. El presidente Evo Morales, asistió a la firma del presente documento.

Entre los impactos que se esperaba, estaba incorporar etanol a la matriz energética, impulsar la política de seguridad energética a través de una reducción gradual de

importaciones de combustibles, reducir la subvención por reemplazo de gasolina importada con etanol, garantizar el abastecimiento de combustible, fortalecer los lazos entre el sector privado y el Estado.

Además de incrementar la producción de caña de azúcar, sustituir hasta 380 millones de litros de gasolina importada al 2025 por etanol, dinamizar la economía a través de la inversión de \$us. 1.600 millones y generar 27 mil nuevos empleos.

En Tarija, en el marco de la diversificación de los productos que ofrece el sector hidrocarburífero, la soberanía y seguridad energética del país, a fines de 2018, el vicepresidente del Estado, Álvaro García Linera, participó en el acto de inauguración de la comercialización de la gasolina Súper Etanol 92, y de una planta de mezcla, en la ciudad de Tarija, lo que beneficiará a los sectores agrícolas, agroindustrial y al empresariado privado y estatal.

De acuerdo a los datos proporcionados por el Ministerio de Hidrocarburos, se tiene previsto reducir las importaciones de aditivos en al menos 13 % en la gestión de 2019 y hasta un 30 % para el año 2025.

El objetivo de ésta investigación es demostrar las características más destacadas e importantes de los biocombustibles, que aporten beneficios y recurso energético a la ciudad de Tarija, comparando las características de los biocombustibles con las características o beneficios de los combustibles fósiles y así poder determinar si este tipo de energía alternativa puede ayudar a disminuir el consumo de combustibles fósiles en el sector automotor del Departamento de Tarija, analizando las ventajas y los inconvenientes de los biocombustibles e identificando el tipo de tecnología adecuado para el Departamento de Tarija.

1.2 DELIMITACIÓN

1.2.1 Límite sustantivo

El proyecto está sustentado mediante los conocimientos obtenidos en todo el periodo universitario y en el siguiente marco legal.

- Ley 1333
- Ley de Aditivos de Origen Vegetal
- Ministerio de Hidrocarburos y Energía
- Ley General de Transporte del 16 de agosto de 2011.
- Balance energético nacional
- Asociación de Productores de Oleaginosas y Trigo (ANAPO)

1.2.2 Límite temporal

El tiempo estimado para realizar dicha investigación es desde mayo del 2019 hasta marzo del año 2020, tomando en cuenta información para la investigación desde el año 1998 hasta la actualidad

1.2.3 Límite geográfico

La investigación se la llevará a cabo en el Departamento de Tarija – Bolivia.

Tarija es uno de los nueve departamentos que forman el Estado Plurinacional de Bolivia. Su capital es la homónima Tarija.

Está ubicado en el extremo sur del país, limitando al norte con Chuquisaca, al este con Paraguay, al sur con Argentina, y al oeste con Potosí.

Rio Branco

Microrycjion de Guajaja Mirim

Ji-Parana

RONDONIA

Caccal

Heath National

Anacon

Reserve

Parque

Nacional

Maldonado

Puno

La Paz

Bolivia

Santa Cruz

de la Sierra

Parque

Nacional del Gran Chaco

Kaga-lya

Villa Imperial

La Paz

Calama

Villa Imperial

Vyuni

Tarija

Yacuubac

La Rio Branco

Arica

Arica

Rondon

Rolim de

Moura

Villenia

Tinidad

Rolim de

Moura

Villenia

Tarija

Caccret

Arica

La Paz

Caccret

Nacional del

Gran Chaco

Kaga-lya

Calama

Tarija

Yacuubac

La Rio Branco

Rolim de

Moura

Tinidad

Rolim de

Moura

Tinidad

Rolim de

Moura

Comodoro

Rolim de

Moura

Tinidad

Rolim de

Macional del

Gran Chaco

Kaga-lya

Calama

San Rangon de

La Rusya Oran

FIGURA N° I.1: MAPA DE BOLIVIA

Fuente: Google Maps

FIGURA N° I.2: MAPA DEL DEPARTAMENTO DE TARIJA

Fuente: Google Maps

1.3 PLANTEAMIENTO DEL PROBLEMA

El problema identificado es que la ciudad de Tarija depende en gran cantidad de los combustibles fósiles en el sector vehicular, debido al desconocimiento que se tiene desconocimiento de las potencialidades energéticas que tiene la ciudad de fuentes de energía alternativa. Al ser los combustibles fósiles recursos agotables, provoca la necesidad de buscar nuevas fuentes de energía alternativas, de investigar sobre sustitos para el abastecimiento vehicular como los biocombustibles y la conveniencia de que los mismos puedan ayudar a disminuir el uso de combustibles fósiles.

1.4 FORMULACIÓN DEL PROBLEMA

¿Mediante la investigación de los biocombustibles y el análisis de los beneficios y desventajas de dichas energías, se puede determinar la contribución de estas nuevas fuentes de energía alternativas para disminuir el uso de combustibles fósiles en el Departamento de Tarija?

1.5 OBJETIVOS

1.5.1 Objetivo general

Investigar las ventajas e inconvenientes de las fuentes de energía alternativas biocombustibles, mediante el análisis de sus potencialidades que pueden generar y así definir si puede disminuir el uso de combustibles fósiles en los vehículos en el Departamento de Tarija.

1.5.2 Objetivos específicos

 Realizar un análisis técnico entre el uso de combustibles fósiles y los biocombustibles a través de un cuadro comparativo identificando sus ventajas y desventajas.

- Determinar si la fuente de energía alternativa biocombustible es competente en el Departamento de Tarija identificando sus variables de ahorro y desarrollo energético.
- Realizar un análisis económico del precio en el mercado de los combustibles fósiles y los biocombustibles para poder determinar su viabilidad en el Departamento de Tarija.

1.6 JUSTIFICACIÓN

El objetivo de esta investigación es recopilar información del consumo de combustibles fósiles en el Departamento de Tarija e información acerca de los biocombustibles. Para determinar si estas fuentes de energía alternativa pueden ayudar a disminuir el consumo de combustibles fósiles en la cuidad, es importante indagar y comparar los beneficios e inconvenientes de cada una para poder transmitir estos resultados.

Debido a la dependencia de combustibles fósiles que existe en la ciudad de Tarija, es importante la búsqueda de nuevas fuentes de energía; se ha encontrado diversas fuentes renovables y amigables con el planeta, que pueden contribuir con el desarrollo de la ciudad de Tarija, por esta razón se decide investigar sobre los biocombustibles, los cuales podrían llegar a mostrar ventajas realmente esperanzadoras frente a las energías más empleadas actualmente.

1.6.1 Justificación científica

El IDAE (Instituto para la Diversificación y Ahorro de la Energía) apunta que por su carácter autóctono, el uso de las energías renovables, este tipo de energías "verdes" contribuyen a disminuir la dependencia del país de los suministros externos, aminoran el riesgo de un abastecimiento poco diversificado y favorecen el desarrollo tecnológico y la creación de empleo.

Se obtendrán nuevos conocimientos de acuerdo a la comparación entre los combustibles fósiles y fuentes de energía alternativa biocombustibles, además que servirá como referente para futuras investigaciones que tengan características similares.

1.6.2 Justificación social

Los ciudadanos del Departamento de Tarija se beneficiarán con la generación de fuentes laborales, como la producción de biocombustibles que demanda mano de obra, las oportunidades de desarrollo para incrementar el empleo podrían desempeñar un rol importante en el esfuerzo que se hace para impulsar el desarrollo rural.

1.6.3 Justificación económica

Se generará nuevos ingresos económicos para el Departamento de Tarija, diseñar una estrategia de desarrollo para permitir la expansión del crecimiento económico, la expansión de los sistemas energéticos de los biocombustibles, tendrían un papel influyente en el mejoramiento socioeconómico.

1.6.4 Justificación metodológica

La aplicación de este trabajo, una vez que sea demostrado su validez y confiabilidad podrá ser utilizado como base en la elaboración de análisis de energías renovables, metodología de recolección de datos y planteamiento de variables para el uso adecuado de las energías renovables en el Departamento de Tarija.

CAPÍTULO II MARCO TEÓRICO

2 MARCO TEÓRICO

2.1 DEFINICIONES

2.1.1 Energía

La energía es la capacidad que tienen los cuerpos para producir trabajo: trabajo mecánico, emisión de luz, generación de calor, etc.

La energía puede manifestarse de distintas formas: gravitatoria, cinética, química, eléctrica, magnética, nuclear, radiante, etc., existiendo la posibilidad de que se transformen entre sí, pero respetando siempre el principio de conservación de la energía (Energías renovables y eficiencia energética, 2008).

2.1.2 Clasificación de las fuentes de energía

Las fuentes de energía pueden clasificarse, atendiendo a su disponibilidad, en renovables y no renovables:

- Las energías renovables son aquellas cuyo potencial es inagotable, ya que provienen de la energía que llega a nuestro planeta de forma continua, como consecuencia de la radiación solar o de la atracción gravitatoria de la Luna. Son fundamentalmente la energía hidráulica, solar, eólica, biomasa, geotérmica y las marinas.
- Las energías no renovables son aquellas que existen en la naturaleza en una cantidad limitada. No se renuevan a corto plazo y por eso se agotan cuando se utilizan. La demanda mundial de energía en la actualidad se satisface fundamentalmente con este tipo de fuentes energéticas: el carbón, el petróleo, el gas natural y el uranio.

Desde el punto de vista de la utilización de la energía, podemos clasificar la energía en primaria, secundaria y útil (Energías renovables y eficiencia energética, 2008).

- Energía primaria: es la que se obtiene directamente de la naturaleza y corresponde a un tipo de energía almacenada o disponible, como por ejemplo el petróleo, el carbón, el gas natural, el uranio y las energías renovables.
- Energía secundaria (también conocida como energía final): se obtiene a partir de transformaciones de la energía primaria. Ejemplos de esta categoría son la electricidad o la gasolina.
- Energía útil: es la que obtiene el consumidor después de la última conversión realizada por sus propios equipos de demanda, como por ejemplo la energía mecánica gastada en un motor, la luminosa en una bombilla, etc.

2.1.3 Combustibles fósiles

Los combustibles fósiles son fuentes de energía que han estado presentes en la Tierra y que han sido sometidos al calor y a la presión de la corteza terrestre durante cientos de millones de años. Se formaron a partir del proceso natural de descomposición anaeróbica (organismo que no requiere de oxígeno) de organismos muertos y enterrados.

Se llaman combustibles fósiles a aquellas materias primas emplea en combustión que se han formado a partir de las plantas y otros organismos vivos que existieron en tiempos remotos en la Tierra. El carbón en todas sus variedades, el petróleo y el gas natural (Combustibles Fósiles – Características, origen, aplicaciones y efectos secundarios, 2019).

- El carbón, el lignito y la turba, tienen su origen en los restos oceánicos de árboles y plantas de bosques que se hundieron en el agua de pantanos, se pudrieron como consecuencia de la acción del agua y las bacterias, se fueron cubriendo poco a poco de capas sucesivas de fangos que solidificaron y se convirtieron en rocas.
- El petróleo, procede principalmente de la descomposición bacteriana de restos animales y vegetales, principalmente plancton, en grasas, que existían en las proximidades de lagos y mares. Al depositarse en el fondo de éstos, o al ser cubiertos por las aguas, lo fueron también por capas de sedimentos,

- descomponiéndose y dando origen a productos combustibles en estado líquido, como el petróleo o el gas natural.
- El gas natural, es parte de la familia de hidrocarburos, al igual que el petróleo, se forma en el subsuelo profundo en sedimentos con alto contenido de materia orgánica y denominados "roca madre". Este proceso tiene lugar en extensas regiones geológicas denominadas cuencas sedimentarias.

2.1.4 Diésel oíl

El carburante o combustible diésel, también conocido como gasóleo o gasoil, es un producto que se obtiene a partir de la destilación y la purificación del petróleo crudo. Este combustible se emplea en los motores diésel, creados por el mencionado ingeniero alemán en 1893: se trata de motores de combustión interna en los cuales, por la elevada temperatura que registra el aire comprimido en su cilindro, el combustible se auto inflama cuando es inyectado en la cámara. Un vehículo diésel, por su parte, utiliza esta clase de motor y funciona con el mencionado combustible (Definición de diésel, s.f.).

Es una mezcla de hidrocarburos que se obtiene por destilación fraccionada del petróleo entre 250 °C y 350 °C a presión atmosférica. Una de las especificaciones principales es el índice de cetano de acuerdo a la especificación debe ser de 45 pero la refinería produce con mayor calidad con índice aproximadamente de 55. El diésel tiene más energía por unidad de volumen que la gasolina, lo que, sumado a la mayor eficiencia de los motores diésel, contribuye a que su rendimiento sea mayor (YPFB, s.f.).

2.1.5 Gas natural vehicular (GNV)

El Gas Natural Vehicular (GNV) es un gas natural empleado como combustible vehicular que se encuentra sometido a compresión para su posterior almacenamiento en cilindros de GNV. Este combustible es considerado como un producto diferente al Gas Natural que el Concesionario suministra por la Red de Distribución (Ficha técnica Gas Natural, s.f.).

El gas natural vehicular, se diferencia del gas que llega a nuestros hogares debido a que es comprimido hasta alcanzar una presión de 200 bar con el objeto de ser almacenado en cilindros (¿Qué es GNV?, s.f.).

El Gas Natural ha sido aceptado como una energía con un gran potencial de desarrollo futuro y de hecho la Conferencia Mundial de la Energía celebrada en Tokio el año 1995 declaró al gas natural como el combustible alternativo con mejores opciones de desarrollo para su masificación a futuro, debido a su abundancia, comodidad, seguridad, bajo costo de extracción, transporte y distribución, y el bajo nivel de contaminación que genera.

2.1.6 Gasolina

Es una mezcla de hidrocarburos derivada del petróleo que se utiliza como combustible en motores de combustión interna con encendido a chispa convencional o por compresión (DiesOtto), así como aplicaciones en estufas, lámparas, limpieza con solventes y otras más. La gasolina, en Argentina, Paraguay y Uruguay se conoce como nafta (del árabe naft), en Chile como bencina.

Tiene una densidad de 680 g/L (un 20% menos que el gasoil, que tiene 850 g/L). Un litro de gasolina tiene una energía de 34,78 megajulios, aproximadamente un 10% menos que el gasoil, que posee una energía de 38,65 megajulios por litro de carburante. Sin embargo, en términos de masa, la gasolina tiene 3,5% más de energía (Definición gasolina, s.f.).

La gasolina se obtiene del petróleo en una refinería. En general se obtiene a partir de la nafta de destilación directa, que es la fracción líquida más ligera del petróleo (exceptuando los gases). La nafta también se obtiene a partir de la conversión de fracciones pesadas del petróleo (gasoil de vacío) en unidades de proceso denominadas FCC (craqueo catalítico fluidizado) o hidrocraqueo. La gasolina es una mezcla de cientos de hidrocarbonos individuales desde C4 (butanos y butenos) hasta C11 como, por ejemplo, el metilnaftalen.

• Gasolina especial

Es un líquido inflamable, ligero, compuesto por una serie de hidrocarburos volátiles obtenidos del petróleo. Es de color cristalino amarillento y olor característico. Su principal característica es el octanaje o grado de resistencia a la compresión antes de su detonación o ignición -de 85 octanos-. Es un producto sin plomo (YPFB, s.f.).

Gasolina premium

Es también un líquido inflamable, producto sin plomo y mayor octanaje - 95 octanos-, es de color purpura con la cual se la identifica en el mercado, formulada para automóviles con convertidor catalítico y motores de alta relación de compresión (YPFB, s.f.).

2.1.7 Octanaje

El octanaje o índice de octano, también se denomina RON (por sus siglas en inglés, Research Octane Number), es una escala que mide la capacidad antidetonante del combustible (como la gasolina) a detonar cuando se comprime dentro del cilindro de un motor. Las dos referencias que definen la escala son el heptano lineal, que es el hidrocarburo que más detona, al que se asigna un octanaje de 0, y el 2,2,4-trimetilpentano o isoctano, que detona poco, al que se asigna un valor de 100. Su utilidad radica en que la eficacia del motor aumenta con altos índices de compresión, pero solamente mientras el combustible utilizado soporte ese nivel de compresión sin sufrir combustión prematura o detonación.

Algunos combustibles (como el GLP, GNL, etanol y metanol, entre otros) poseen un índice de octano mayor de 100. Utilizar un combustible con un octanaje superior al que necesita un motor no lo perjudica ni lo beneficia. Si se tiene previsto que un motor vaya a usar combustible de octanaje alto, puede diseñarse con una relación de compresión más alta y mejorar su rendimiento (Definición octanaje, s.f.).

Si un combustible no posee el índice de octano suficiente en motores con elevadas relaciones de compresión (están comprendidas entre 8'5 y 10'5), se producirá el "autoencendido" de la mezcla, es decir, la combustión es demasiado rápida y dará lugar a una detonación prematura en la fase de compresión, que hará que el pistón

sufra un golpe brusco y reducirá drásticamente el rendimiento del motor, llegando incluso a provocar graves averías. A este fenómeno también se le conoce entre los mecánicos como picado de bielas o pistoneo o cascabeleo.

Dicho índice de octano se obtiene por comparación del poder antidetonante de la gasolina con el de una mezcla patrón compuesta de heptano e isoctano. Al isoctano se le asigna un poder antidetonante de 100 y al heptano de 0, de modo que, por ejemplo, una gasolina de 95 octanos se correspondería en su capacidad antidetonante a una mezcla con el 95% de isoctano y el 5% de heptano (Definición octanaje, s.f.).

Hay tres clases de octanajes:

- Research Octane Number (RON) Octanaje medido en el laboratorio.
- Motor Octane Number (MON) Octanaje probado en un motor estático.
- Road ON Octanaje probado en la carretera.

2.1.8 Índice de cetano

El número de cetano, contrariamente al número de octano, es un índice que se utiliza para caracterizar la volatilidad y facilidad de inflamación de los combustibles utilizados en los motores diésel (Definición número de cetano, s.f.).

El numero o índice de cetano tiene relación con el tiempo que transcurre entre la inyección de combustible y el inicio de la combustión (intervalo de encendido). Si el número de cetano es mayor la combustión es de calidad la ignición es rápida, con un quemado total y uniforme. Si el número de cetano es menor, se retrasa la ignición y por el contrario, se quema rápidamente produciendo altas presiones y dando lugar a un ruido excesivo, aumentando las emisiones, reducción en el rendimiento del vehículo y aumento de la fatiga del motor. Humo y ruido excesivos son problemas comunes en los vehículos diésel, especialmente bajo condiciones de arranque en frío (Octanos y Cetanos, índice de los combustibles, s.f.).

2.1.9 Poder calorífico

El poder calorífico de un combustible es la cantidad de energía desprendida en la reacción de combustión, referida a la unidad de masa de combustible.

Es la cantidad de calor que entrega un kilogramo, o un metro cúbico, de combustible al oxidarse en forma completa.

El poder calorífico expresa la energía máxima que puede liberar la unión química entre un combustible y el comburente y es igual a la energía que mantenía unidos los átomos en las moléculas de combustible, menos la energía utilizada en la formación de nuevas moléculas en las materias (generalmente gases) formadas en la combustión (Poder Calorífico, s.f.).

La magnitud del poder calorífico puede variar según como se mida. Según la forma de medir se utiliza la expresión poder calorífico superior (PCS) y poder calorífico inferior (PCI).

- Poder calorífico superior (PCS): Es la cantidad total de calor desprendido en la combustión completa de 1 Kg de combustible cuando el vapor de agua originado en la combustión está condensado y se contabiliza, por consiguiente, el calor desprendido en este cambio de fase.
- Poder calorífico inferior (PCI): Es la cantidad total de calor desprendido en la combustión completa de 1 kg de combustible sin contar la parte correspondiente al calor latente del vapor de agua de la combustión, ya que no se produce cambio de fase, y se expulsa como vapor (Poder Calorífico, s.f.).

2.1.10 Temperatura de ignición

La temperatura de ignición es aquella temperatura mínima que se requiere para que una sustancia, en contacto con suficiente cantidad de oxígeno, esté en combustión de manera sostenida y espontánea, es decir, sin que haya la necesidad de añadir calor externo. Como tal, en la temperatura de ignición se alcanza la energía suficiente para que se active la combustión (Significado de ignición, 2019).

Como punto de ignición se conoce aquella temperatura en la que una sustancia combustible líquida produce vapores suficientes para mantener la combustión una vez esta se ha iniciado. Por lo general, el punto de ignición está por debajo de la temperatura de vaporización y algunos grados por encima del punto de inflamación.

Como fuente de ignición se denomina aquella fuente de energía que, en caso de entrar en contacto con una sustancia combustible y de estar en presencia de una concentración de oxígeno suficiente, puede producir un incendio. Una fuente de ignición puede ser una superficie caliente, como radiadores, calefactores o estufas; puede provenir de chispas de origen mecánico, producidas a partir de fricciones, choques o abrasiones de materiales férreos, así como de corrientes eléctricas.

Como sistema de ignición se denomina, de manera general, el conjunto de mecanismos que interactúan para activar la ignición, es decir, para encender la mezcla de aire y combustible en una cámara de combustión interna, así como para controlar el proceso de combustión. Sistemas de ignición se emplean en el encendido en vehículos automotores (bobina de encendido), calentadores de agua, cohetes, etc. (Significado de ignición, 2019).

2.1.11 Punto de inflamación

El punto de inflamación es la temperatura a la que un líquido se quemará y continuará ardiendo. El punto de inflamación implica la existencia de una chispa o cualquier otra fuente de ignición con suficiente calor para calentar el líquido hasta incendiarlo (¿Qué es el punto de inflamación y por qué es importante?, s.f.).

El punto de inflamación (a veces llamado "flash point") es la temperatura mínima a la que un material desprende vapores que, mezclados con el aire, se pueden encender en presencia de una fuente de ignición o fuente de calor externa (Blog de la materia Seguridad IV - Prevención y Extinción de Incendios, s.f.).

Otra versión, simple, no tan precisa pero que ayuda a entender el concepto dice que el punto de inflamación es la temperatura más baja a la que estando un material, sus vapores forman con el aire una mezcla capaz de inflamarse.

Sea una o la otra, son equivalentes, lo cierto es que si a esa temperatura se retira de la cercanía del material la fuente de ignición externa, la llama se retrae y se apaga.

Si la temperatura se aumenta por encima de la de inflamación el material alcanzará un valor de temperatura tal que si se acerca una fuente externa de calor se encenderá (estoy por encima de la temperatura de flashpoint) pero si se retira la fuente externa la llama se sostendrá por sí sola. A esa temperatura se la llama temperatura de incendio (A veces mencionada como "fire point") también aunque de manera imprecisa (pero muy común en nuestro país) se la llama temperatura de ignición.

La temperatura de inflamación es siempre menor que la de ignición o temperatura de incendio (Blog de la materia Seguridad IV - Prevención y Extinción de Incendios, s.f.).

2.1.12 Emisiones de residuos al ambiente

Descarga a la atmósfera continua o discontinua de materias, sustancias o formas de energía procedentes, directa o indirectamente, de cualquier fuente susceptible de producir contaminación atmosférica (RAE, s.f.).

Los contaminantes que se liberan en la atmósfera pueden dividirse en tres grandes categorías según su fuente de emisión (PAOT, s.f.):

- Emisiones que proceden de fuentes móviles (sector del transporte). Las más importantes, junto al bióxido de carbono (CO2), son los óxidos de nitrógeno (NOx), el monóxido de carbono (CO) y los hidrocarburos (HC), que pueden ser compuestos orgánicos volátiles y no volátiles, partículas de hollín y derivados de precursores de HC y NOx y como consecuencia de una fotooxidación, el ozono (03).
- Emisiones que proceden de fuentes fijas (industria, hogares, agricultura y vertederos). Las más importantes, junto con el CO2 son el bióxido de azufre (SO2), los NOx, los HC, las partículas de hollín y los metales pesados, los clorofluorocarbonos (CFC) y el metano (CH4).
- Emisiones que surgen de la producción de energía. Las más importantes, junto con el CO2 son el SO2 y las partículas de hollín.

Las concentraciones elevadas de estos gases y de los contaminantes producidos por reacción química en la atmósfera o en el suelo son nocivas para la salud humana, producen corrosión en diferentes materiales y causan daños a la vegetación, así como perjuicios a la agricultura y la silvicultura (PAOT, s.f.).

Las principales emisiones a la atmósfera de gases efecto invernadero también se las puede clasificar de la siguiente manera (Emisiones, vertidos y residuos, s.f.):

- Emisiones directas derivadas de la combustión de combustibles para la obtención de energía.
- Emisiones directas derivadas del consumo de combustible que es utilizado para el funcionamiento de maquinaria, vehículos, equipos auxiliares como grupos electrógenos e instalaciones temporales, calderas de gasóleo y gas, etc. Ocurren en fuentes que son propiedad de la organización o están controladas por la misma.
- Emisiones indirectas procedentes de la generación de electricidad adquirida y consumida por las organizaciones.

2.1.13 ¿Qué es la biomasa?

La energía del Sol es utilizada por las plantas para sintetizar la materia orgánica mediante el proceso de fotosíntesis (Energías renovables y eficiencia energética, 2008).

Esta materia orgánica puede ser incorporada y transformada por los animales y por el hombre. El término biomasa abarca un conjunto muy heterogéneo y variado de materia orgánica y se emplea para denominar a una fuente de energía basada en la transformación de la materia orgánica utilizando, normalmente, un proceso de combustión.

FIGURA N° II.1: BIOMASA

Fuente: (La biomasa: producir energía con un sistema ecológico, s.f.)

2.1.14 Tipos de biomasa

a) Biomasa natural

Fundamentalmente la leña procedente de árboles que crecen de forma espontánea (sin ser cultivados), la cual ha sido tradicionalmente utilizada por el hombre para calentarse y cocinar. Sin embargo, no se debe hacer un aprovechamiento sin control de este tipo de biomasa ya que se podrían destruir sus ecosistemas, que constituyen una reserva de incalculable valor. Sí se pueden, y deben, utilizar los residuos de las partes muertas, restos

de podas y clareos, etc., puesto que, además, así se evitan posibles incendios.

La biomasa natural constituye la base del consumo energético de muchos países en vías de desarrollo, pero su sobreexplotación está ocasionando el aumento de la desertización (Energías renovables y eficiencia energética, 2008).

b) Biomasa residual

Se produce en explotaciones agrícolas, forestales o ganaderas; también se generan residuos orgánicos en la industria y en núcleos urbanos, denominados en este último caso RSU (Residuos Sólidos Urbanos).

Además de producir electricidad, que puede hacer que las instalaciones sean autosuficientes aprovechando sus propios recursos (como, por ejemplo, en granjas, serrerías, industrias papeleras o depuradoras urbanas), generan un beneficio adicional, a veces más valorado que la propia generación de electricidad, que es el evitar la degradación del medioambiente eliminando estos residuos.

c) Cultivos energéticos

En estos casos los terrenos y los agricultores no se dedican a producir alimentos sino a obtener cultivos que se aprovechan energéticamente (Energías renovables y eficiencia energética, 2008). Entre otros, podemos distinguir los siguientes tipos:

- Cultivos tradicionales: son cultivos que normalmente se utilizan para la alimentación. Este tipo de explotaciones tiene el inconveniente de que compiten con el uso alimentario.
- Cultivos no alimentarios: son cultivos que pueden plantarse en terrenos en los que es difícil cultivar productos tradicionales.

FIGURA N° II.2: TIPOS DE BIOMASA

Fuente: (¿Toda la biomasa es leña? Otros tipos de biomasa, s.f.)

2.1.15 Biocombustibles

Los biocombustibles, o también denominados biocarburantes, son mezclas de sustancias de origen orgánico que se utilizan como combustibles para la obtención de energía. Derivan de la biomasa, es decir, de materia orgánica que se origina y se acumula durante procesos biológicos como la fotosíntesis (Qué son los biocombustibles, ventajas y desventajas, 2018).

Los biocarburantes son combustibles producidos a partir de la materia orgánica que procede de cultivos, residuos agrícolas, forestales, industriales y urbanos. Su uso permite reducir el consumo de los combustibles tradicionales, además de fomentar el sector agrario (Producción y usos de los biocarburantes, 2015).

2.1.16 Clasificación de biocombustibles

Los biocombustibles se pueden clasificar en tres grandes grupos en función de la materia prima empleada y el proceso de producción: biocombustibles de primera,

segunda y tercera generación (Qué son los biocombustibles, ventajas y desventajas, 2018).

a) Biocombustibles de primera generación

Son aquellos que tienen su origen en cultivos agrícolas empleados en la obtención de productos para el consumo humano tales como el azúcar, el almidón, el aceite vegetal como el aceite de palma o grasas animales. Los sistemas de producción son más simples y económicos, sin embargo, tiene serias limitaciones pues podrían poner en peligro el suministro de alimentos, así como la biodiversidad.

b) Biocombustibles de segunda generación

Surgen ante la gran demanda de biocombustibles y se obtienen a partir de biomasa de naturaleza lignocelulósica, es decir, de naturaleza leñosa o fibrosa. Por este motivo, aunque supongan un ahorro en las emisiones, su producción es más costosa y complicada que la de los de primera generación. Este grupo de biocombustibles se produce con cultivos que no se destinan a la alimentación o que se consideran desperdicios como aceite usado, tallos, cáscaras de fruta, envolturas o vainas o virutas de madera.

c) Biocombustibles de tercera generación

También proceden de la biomasa de productos no comestibles o desechos, pero en esta categoría se incluyen además las microalgas. En este caso para su producción se emplean técnicas de biología molecular.

2.1.17 Tipos de biocombustibles

a) Bioetanol

El bioetanol se genera a través de la fermentación alcohólica de los azúcares que se encuentran en algunas especies vegetales como pueden ser la caña de azúcar, la remolacha o algunas especies cereales (Qué son los biocombustibles, ventajas y desventajas, 2018).

El bioetanol procede de la fermentación de materia orgánica con gran contenido en almidón, como el maíz, la remolacha o la caña de azúcar. Mediante este proceso se obtiene biocarburante (un 30%) y una pasta que se puede convertir en alimento para ganado (un 70%) (Producción y usos de los biocarburantes, 2015).

El bioetanol se produce por la fermentación de los azúcares contenidos en la materia orgánica de las plantas. En este proceso se obtiene el alcohol hidratado, con un contenido aproximado del 5% de agua, que tras ser deshidratado se puede utilizar como combustible.

Principalmente se utilizan tres familias de productos para la obtención del alcohol:

- Azucares, procedentes de la caña o la remolacha, por ejemplo.
- Cereales, mediante la fermentación de los azúcares del almidón.
- Biomasa, por la fermentación de los azúcares contenidos en la celulosa y hemicelulosa.

b) Biogas

Es un gas compuesto principalmente por metano y dióxido de carbono. Se origina a través de la descomposición de materia orgánica biodegradable en ausencia de oxígeno. Este proceso no se realiza para generar biogás, sino que el biocarburante es un producto del tratamiento de la materia biodegradable en las plantas de tratamientos de residuos (Producción y usos de los biocarburantes, 2015).

FIGURA N° II.3: BIOGAS

Fuente: (¿Qué es el Biogás?, 2017)

c) Biodiesel

El biodiesel, en cambio, se produce a partir de aceites vegetales como el aceite de colza, la soja, la canola, la jatrofa. Además, estas especies vegetales se cultivan con el fin de ser utilizados como biodiesel (Qué son los biocombustibles, ventajas y desventajas, 2018).

Es un biocarburante líquido que está preparado a base de aceites vegetales y grasas animales, siendo la colza, el girasol y la soja las materias primas más utilizadas para este fin. Las materias primas utilizadas convencionalmente en la producción de biodiesel, han sido los aceites de semillas oleaginosas como el girasol y la colza, la soja y el coco, y los aceites oleaginosos como la palma, ya que estos recursos son de fácil manejo y gran porcentaje de propiedades para biocombustibles, gracias a los aceites que el girasol posee.

La definición de biodiésel propuesta por las especificaciones ASTM (American Society for Testing and Material Standard, asociación internacional de normativa de calidad) lo describe como ésteres monoalquílicos de ácidos grasos de cadena larga derivados de lípidos renovables tales como aceites vegetales o grasas de animales, y que se emplean en motores de ignición de compresión. Sin embargo, los ésteres más utilizados, como veremos más adelante, son los de metanol y etanol (obtenidos a partir de la transesterificación de cualquier tipo de aceites vegetales o grasas animales o de la esterificación de los ácidos grasos) debido a su bajo coste y sus ventajas químicas y físicas.

A continuación, se detallan las principales materias primas para la elaboración de biodiesel (Vicente 1998, 2001):

- Aceites vegetales convencionales
 - Aceite de girasol
 - Aceite de colza
 - Aceite de soja
 - Aceite de coco
 - Aceite de palma
- Aceites vegetales alternativos
 - Aceite de Brassica carinata
 - Aceite de Cynara curdunculus
 - Aceite de Camelina sativa
 - Aceite de Crambe abyssinica
 - Aceite de Pogianus
 - Aceite de Jatropha curcas
- Aceites de semillas modificadas genéticamente
 - Aceite de girasol de alto oleico
- Grasas animales
 - Sebo de vaca
 - Sebo de búfalo
- Aceites de fritura usados

- Aceites de otras fuentes
 - Aceites de producciones microbianas
 - Aceites de microalgas

FIGURA N° II.4: CICLO DEL BIODIESEL

Fuente: (Biodiésel y nuestro Medio Ambiente, 2012)

d) Hidrobiodiesel

También denominado HVO por sus siglas en inglés, de Hydrotreated Vegetable Oil, un hidrocarburo resultante del tratamiento de aceites vegetales o grasas animales con hidrógeno, bien en unidades dedicadas a ello, o bien mediante tecnologías de coprocesado en refinerías (Biocarburantes, s.f.).

2.2 MARCO LEGAL

2.2.1 Ley de Medio Ambiente 1333

La presente Ley tiene por objeto la protección y conservación del medio ambiente y los recursos naturales, regulando las acciones del hombre con relación a la naturaleza y promoviendo el desarrollo sostenible con la finalidad de mejorar la calidad de vida de la población.

2.2.2 Ley de Aditivos de Origen Vegetal

Establece el marco normativo que permita la producción, almacenaje, transporte, comercialización y mezcla de Aditivos de Origen Vegetal, con la finalidad de sustituir gradualmente la importación de Insumos y Aditivos, y Diésel Oil, precautelando la seguridad alimentaria y energética con soberanía.

2.2.3 Ministerio de Hidrocarburos y Energía

Objetivos Estratégicos Institucionales

- **01** Garantizar el suministro de energía de servicios básicos y derivados de hidrocarburos con regulación de precios y tarifas.
- **02** Ejercer los procesos de formulación seguimiento y evaluación de planes y/o políticas hidrocarburíferas identificando las prioridades de acuerdo al sector.
- **03** Formular, implementar y promover planes y/o políticas de eficiencia energética en el sector hidrocarburífero, que garanticen una producción y consumo racional, sostenible en armonía con el medio ambiente.
- **04** Implementar y promover la gestión socio ambiental que garantice la sostenibilidad ambiental y social del uso de recursos hidrocarburíferos.
- **05** Promover el cambio de la matriz energética, la investigación aplicada y desarrollo de nuevas tecnologías.
- **06** Promover la generación de otras fuentes de ingresos a través del incremento del valor agregado, garantizando su sostenibilidad en el corto, mediano y largo plazo.
- **07** Promover y desarrollar mecanismos para la generación de excedentes destinados a la exportación.
- **08** Desarrollar y fortalecer la capacidad institucional, implementándola de manera transparente, oportuna, eficaz y eficiente.

09 Gestionar los recursos y viabilizar las acciones necesarias para la efectiva ejecución del PEI 2016-2020 del Ministerio de Hidrocarburos.

2.2.4 Balance energético nacional (BEN)

Objetivo

Llevar a cabo actividades de diagnóstico, planificación, difusión, control y seguimiento al sector energético; constituyéndose en el Instrumento de Información Estadística Nacional ante organismos internacionales (OLADE, UNASUR, etc.).

2.2.5 Ley General de Transporte el 16 de agosto de 2011.

Tiene por objeto establecer los lineamientos normativos generales técnicos, económicos, sociales y organizacionales del transporte, considerado como un Sistema de Transporte Integral

La norma en su artículo 191 establece que sólo se permite la importación de vehículos que cumplan con la Norma de Emisiones Atmosféricas EURO II y posteriormente se debe llegar a la Norma EURO IV.

2.2.6 Asociación de Productores de Oleaginosas y Trigo (ANAPO) Objetivos Institucionales

- Representar y defender los derechos e intereses de los productores dedicados al cultivo de las oleaginosas y del trigo.
- Cooperar a sus asociados, en la producción y comercialización de granos (oleaginosas y trigo).
- Promover el desarrollo de las oleaginosas y del trigo, para el abastecimiento del mercado interno.
- Promover prácticas agrícolas conservacionistas, que permitan el mejoramiento de los niveles de rendimiento del grano, con estándares internacionales de calidad.
- Gestionar ante los poderes públicos, la promulgación de Normas que tiendan a proteger, fortalecer y fomentar la producción de las oleaginosas y del trigo.

CAPÍTULO III MARCO METODOLÓGICO DE LA INVESTIGACIÓN

3 MARCO METODOLÓGICO DE LA INVESTIGACIÓN

3.1 TIPO DE ESTUDIO

3.1.1 Investigación exploratoria

La investigación exploratoria está dirigida a la recolección, análisis, sistematización e interpretación de datos obtenidos.

La entrevista se realizó a personas o profesionales que conocen el tema, con toda la información recopilada se pudo realizar el análisis cualitativo, a través de las respectivas conclusiones obtenidas.

3.1.2 Investigación descriptiva

El objetivo de esta investigación es describir las características o propiedades del objeto o fenómeno que será investigado.

Se describirán las ventajas y desventajas de las fuentes de energías renovables biocombustibles.

3.2 DISEÑO DE INVESTIGACIÓN

3.2.1 No experimental

La investigación no experimental es aquella que se realiza sin manipular deliberadamente variables. Se basa fundamentalmente en la observación de fenómenos tal y como se dan en su contexto natural para analizarlos con posterioridad. En este tipo de investigación no hay condiciones ni estímulos a los cuales se expongan los sujetos del estudio. Los sujetos son observados en su ambiente natural.

Se observaron los lugares de interés (estación de servicio) cómo se dan en su contexto natural.

3.2.2 Cualitativo

El método de investigación cualitativa permite recoger información basada en la observación de comportamientos naturales, discursos, respuestas abiertas para la posterior interpretación de significados.

Se observó el lugar y se obtuvo información de los lugares de interés, como zonas de producción para materia prima de biocombustibles (por ejemplo, para bioetanol Bermejo), estaciones de servicio para comprobar el mayor consumo de combustibles fósiles en los vehículos, para posteriormente analizar la información obtenida.

3.2.3 Longitudinal

Se emplea cuando el interés del investigador es analizar cambios a través del tiempo en determinadas variables o en las relaciones entre estas. Recolectan datos a través del tiempo en puntos o períodos especificados, para hacer inferencias respecto al cambio, sus determinantes y consecuencias.

Se recolectaron datos de los lugares de interés (zonas de producción de materia prima y estaciones de servicio) en diferentes momentos.

3.3 HIPÓTESIS

El Departamento de Tarija es dependiente de los combustibles fósiles y al identificar el potencial de fuentes de energías alternativas biocombustibles que sería más favorable para su desarrollo, se podría generar un cambio de matriz energética y por ende disminuir el consumo de combustibles fósiles.

3.3.1 Identificación de variables

Las variables dependiente e independiente son las dos variables principales de cualquier experimento o investigación. La independiente (VI) es la que cambia o es controlada para estudiar sus efectos en la variable dependiente (VD). La dependiente es la variable que se investiga y se mide.

Pueden ser vistas entonces como causa (variable independiente) y efecto (variable dependiente). La independiente es controlada por el experimentador, mientras que la dependiente cambia en respuesta a la independiente.

- Ampliar o autosuficiencia de la matriz energética (VI).
- Disminuir el consumo de combustibles fósiles (VD).

3.3.2 Definición conceptual

- Mejorando la eficiencia energética en base al uso de la tecnología más adecuado de los recursos naturales (VI).
- Cambio de matriz energética de los combustibles fósiles a energía renovable que nos ayuden a mitigar el cambio climático y efecto invernadero que se produce (VD).

3.3.3 Operacionalización de variables

En la operacionalización de variables se identifican las dimensiones o categorías en las que se puede subdividir aplicando indicadores que evidencien u objetivasen su contenido.

Se tiene como propósito obtener los datos requeridos para determinar el reemplazo y/o reducción del consumo de combustibles fósiles en la ciudad de Tarija, en base a la organización y análisis de los resultados obtenidos, y como consecuencia del proceso de investigación a realizar.

3.4 POBLACIÓN, MUESTRA Y MUESTREO

Esta investigación es aplicada al Departamento de Tarija en una extensión de 37,623 km² y una población de 563.000 habitantes, determinando como muestra un porcentaje del parque automotor, que en el Departamento de Tarija cuenta con 102.203 vehículos hasta el año 2017 según el INE.

3.4.1 Muestreo probabilístico

Muestreo aleatorio simple

Para este tipo de muestreo se tomó en cuenta para la recopilación de datos una parte de la población (una muestra), misma que sirvió de parámetro para realizar una tabla de comparaciones entre la energía fósil y las energías renovables (Biocombustibles), analizando las ventajas y desventajas de estas.

3.5 TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS

La técnica que se utilizó para la investigación es la entrevista y el instrumento es la guía de entrevista.

3.5.1 Técnicas

3.5.1.1 Entrevista

Una entrevista es un intercambio de ideas, opiniones mediante una conversación que se da entre una, dos o más personas donde un entrevistador es el designado para preguntar. El objetivo de las entrevistas es obtener determinada información, ya sea de tipo personal o no.

La entrevista se realizó a personas o profesionales que conocen el tema, con toda la información recopilada se pudo realizar el análisis cualitativo, a través de las respectivas conclusiones obtenidas.

3.5.2 Instrumentos

3.5.2.1 Guía de entrevista

Es una ayuda de memoria para el entrevistador, tanto en un sentido temático (ayuda a recordar los temas de la entrevista) como conceptual (presenta los tópicos de la entrevista en un lenguaje cotidiano, propio de las personas entrevistadas).

Se utilizó esto para dar lugar al surgimiento de nuevas preguntas durante el desarrollo de la entrevista.

3.6 ELABORACIÓN DE INSTRUMENTOS Y VALIDACIÓN

- Libros
- Apuntes
- Computadora
- Grabación

CAPÍTULO IV COMBUSTIBLES FÓSILES VS. BIOCOMBUSTIBLES

4 COMBUSTIUBLES FÓSILES VS. BIOCOMBUSTIBLES

Las energías renovables son fuentes de energía limpias, inagotables y crecientemente competitivas. Se diferencian de los combustibles fósiles principalmente en su diversidad, abundancia y potencial de aprovechamiento en cualquier parte del planeta, pero sobre todo en que no producen gases de efecto invernadero, causantes del cambio climático, ni emisiones contaminantes. Además, sus costes evolucionan a la baja de forma sostenida, mientras que la tendencia general de costes de los combustibles fósiles es la opuesta, al margen de su volatilidad coyuntural (Energías renovables, s.f.).

Bolivia tiene un potencial para la generación de energías renovables que no es aprovechado en su totalidad, (ver ANEXO 1)

4.1 COMBUSTIBLES FÓSILES

La mayor parte de la energía empleada actualmente en el mundo proviene de los combustibles fósiles. Se utilizan en el transporte, para generar electricidad, para calentar ambientes, para cocinar, etc. (Introducción: Combustibles fósiles y biocombustibles, 2011).

Los combustibles fósiles son tres: petróleo, carbón y gas natural, y se formaron hace millones de años, a partir de restos orgánicos de plantas y animales muertos. Durante miles de años de evolución del planeta, los restos de seres que lo poblaron en sus distintas etapas se fueron depositando en el fondo de mares, lagos y otros cuerpos de agua. Allí fueron cubiertos por capa tras capa de sedimento. Fueron necesarios millones de años para que las reacciones químicas de descomposición y la presión ejercida por el peso de esas capas transformasen a esos restos orgánicos en gas, petróleo o carbón.

Los combustibles fósiles son recursos no renovables: no se reponen por procesos biológicos como por ejemplo la madera. En algún momento, se acabarán, y tal vez sea necesario disponer de millones de años de una evolución y descomposición similar para que vuelvan a aparecer (Introducción: Combustibles fósiles y biocombustibles, 2011).

4.1.1 Diésel oíl

Es una mezcla de hidrocarburos que se obtiene por destilación fraccionada del petróleo entre 250 °C y 350 °C a presión atmosférica. Una de las especificaciones principales es el índice de cetano de acuerdo a la especificación debe ser de 45 pero la refinería produce con mayor calidad con índice aproximadamente de 55. El diésel tiene más energía por unidad de volumen que la gasolina, lo que, sumado a la mayor eficiencia de los motores diésel, contribuye a que su rendimiento sea mayor (YPFB, s.f.).

TABLA N° IV.1: ESPECIFICACIONES TÉCNICAS DIESEL OÍL

PRUEBA	ORIENTE (*)		OCCID	OCCIDENTE		MET	TODO AS	MTS
PRUEDA	MIN.	MAX.	MIN.	MAX.	UNIDAD	Altern.1	Altern.2	Altern.3
Gravedad								
específica a	0.79	0.88	0.80	0.88		D-1298	D-4052	
15.6/15.6°C								
Corrosión								
lámina de		3		3		D-130		
cobre		3		3		D-130		
(3h/100°C)								
Azufre total		0.5		0.5	% peso	D-1266	D-4294	D-2622
Punto de		(*)		-1.1(30)	°C (°F)	D-97		
escurrimiento		()		-1.1(30)	O(F)	D-97		
Punto de	38(100.4)		38(100.4)		°C (°F)	D-93		
inflamación	30(100.4)		36(100.4)		C(1)	D-93		
Apariencia	Crista	alina	Crista	alina		Visual		
Viscosidad								
cinemática a	1,7	5.5	1.7	5.5	cSt	D-445	D-7042	
40°C								
Índice de	45		45			D-976	D-4737	
cetano (**)	75		75			D-910	ייים	

COMBUSTIBLES FÓSILES VS. BIOCOMBUSTIBLES

Número de cetano	42		42			D-613		
Residuo carbonoso Ramsbotton del 10% de residuo destilado		0.30		0.30	% peso	D-524	D-189	D-4530
Cenizas		0.02		0.02	% peso	D-482		
Agua y sedimentos		0.05		0.05	% peso	D-1796	D-2709	
Destilación Engler (760 mmHg) (***) 90% vol.	282(540)	382(720)	282(540)	382(720)	°C (°F)	D-86		
Poder calorífico	Infor	Informar		mar	BTU/lb	D-4868	D-240	
Color ASTM	Infor	mar	Infor	mar		D-1500		
Contenido de aromáticos totales	Infor	Informar		mar	% Vol	D-1319		

Zona Oriente	Ene-Feb- Mar	Abril	May-Jun-Jul- Ago	Sep	Oct- Nov	Dic
Punto de escurrimiento	12(53,6)	7(44,6)	3(37,4)	7(44,6	9(48,2)	12(53,6)

^(*) Se considera Oriente a los departamentos de Santa Cruz, Beni y Pando y las zonas tropicales de La Paz, Cochabamba, Chuquisaca y Tarija. (*) Occidente el resto de los departamentos.

Fuente: (ANH, Especificaciones técnicas, s.f.)

^(***) Se deberá cumplir la especificación de índice de cetano y número de cetano.

4.1.2 Gas natural vehicular (GNV)

El Gas Natural Vehicular (GNV) es un gas natural empleado como combustible vehicular que se encuentra sometido a compresión para su posterior almacenamiento en cilindros de GNV. (Gas Natural Vehicular (GNV)).

Existen dos tipos de gas natural aplicado a la automoción, el primero es el Gas Natural Comprimido (GNC) y el segundo es el Gas Natural Licuado (GNL).

El GNC se almacena a alta presión (aproximadamente 200 bares) y su uso está destinado principalmente a vehículos ligeros y otros pesados como los autobuses. En cambio, el GNL se almacena en estado líquido gracias a su criogenización a - 161°C de temperatura. De este modo, puede utilizarse en transporte pesado de larga distancia, ya que proporciona una mayor autonomía. (GNC o GNV: historia, ventajas e inconvenientes, s.f.)

4.1.3 Gasolina

Gasolina especial

Es un líquido inflamable, ligero, compuesto por una serie de hidrocarburos volátiles obtenidos del petróleo. Es de color cristalino amarillento y olor característico. Su principal característica es el octanaje o grado de resistencia a la compresión antes de su detonación o ignición de 85 octanos. Es un producto sin plomo (YPFB, s.f.).

TABLA N° IV.2: ESPECIFICACIONES TÉCNICAS GASOLINA ESPECIAL

	VERA	ANO (*)	INVIE	RNO (*)	UNIDAD		METOD	O ASTM	
PRUEBA	MIN.	MAX.	MIN.	MAX.	UNIDAD	Altern.1	Altern.2	Altern.3	Altern.4
Gravedad									
específica a	Info	ormar	Info	rmar		D-1298	D-4052		
15.6/15.6°C									
Relación									
V/L=20 (760	56(133)		51(124)		°C (°F)	D-5188	D-2533		
mmHg)									
Tensión de									
vapor de Reid	7	9	7	9.5	Psig	D-323	D-4953	D-5191	
a 100°F(38°C)									
Contenido de		0.013		0.013	g Pb/ It	D-3237	D-5059		
plomo (**)		0.013		0.013	g i b/ it	D 3231	D 3003		
Gomas		5		5	mg/100ml	D-381			
existentes				3	ilig/Toolili	D-301			
Azufre total		0.05		0.05	% peso	D-1266	D-2622	D-4294	
Octanaje RON	8	35		l	85	D-2699			
Octanaje	Info	ormar	Informar			D.2700			
MON	11110	, iii ai	11110	iiiai		D.2700			
Índice									
antidetonante	Info	rmar	Informar						
(RON+MON)/2									
Color	Incolo	ra a ligera	amente a	amarillo		Visual			
Apariencia	Cris	talina	Cris	talina		Visual			
Poder	Info	ormar	Info	rmar	BTU/lb	D-240			
calorífico	11110	IIIIai	11110	ıllıal	D1 0/10	D-240			
Destilación									
Engler (760						D-86			
mmHg) (***)									
10% vol.		65(149)		60(140)	°C (°F)				
50% vol.	77(170)	118(245)	77(170)	116(240)	°C (°F)				
90% vol.		190(374)		185(365)	°C (°F)				

COMBUSTIBLES FÓSILES VS. BIOCOMBUSTIBLES

Punto final	225(437)	225(437)	°C (°F)				
Residuos	2	2	%Vol				
Contenido de							
aromáticos	42	42	% vol.	D-1319	D-5134	D-5769	D-6729
totales							
Contenido de	18	18	% vol.	D-1319	D-5134	D-6729	
olefinas		10	70 10	2 1010	2 0101	2 0.20	
Contenido de	3	3	% vol.	D-4053	D-5134	D-3606	D-5769
benceno			70 10		2 0.0.	2 3333	2 0.00
Contenido de	18	18	mg Mn/ lt	D-3831			
manganeso				2 000.			
Contenido de	2.7	2.7	% peso	D-2504	D-4815		
oxígeno			, 5 F 666		1 .010		

^(*) Verano se define del 1º de septiembre al 31 de marzo e invierno del 1º de abril al 31 de agosto.

Fuente: (ANH, Especificaciones técnicas, s.f.)

Gasolina premium

Es también un líquido inflamable, producto sin plomo y mayor octanaje - 95 octanos-, Es de color purpura con la cual se la identifica en el mercado, formulada para automóviles con convertidor catalítico y motores de alta relación de compresión (YPFB, s.f.).

^(**) El contenido de plomo especificado es un valor intrínseco de la materia prima, sin haberse adicionado cantidad alguna del mismo con fines de mejorar su octanaje.

TABLA N° IV.3: ESPECIFICACIONES TÉCNICAS GASOLINA PREMIUM

PRUEBA		NO (*)		ERNO	UNIDAD), (OO 2.11	METOD		
PRUEDA	MIN.	MAX.	MIN.	MAX.	UNIDAD	Altern.1	Altern.2	Altern.3	Altern.4
Gravedad									
específica a	Info	rmar	Info	rmar		D-1298	D-4052		
15.6/15.6°C									
Tensión de									
vapor de Reid	7	9	7	9.5	psig	D-323	D-4953	D-5191	
а	,	3	,	9.0	psig	D-323	D- 4 333	D-3131	
100°F(37,8°C)									
Relación									
V/L=20 (760	56(133)		51(124)		°C (°F)	D-5188	D-2533	D-4814	
mmHg)									
Contenido de		0.013		0.013	g Pb/lt	D-3237	D-5059		
plomo (**)		0.013		0.013	g i b/it	D-3231	D-3039		
Gomas		5		5	mg/100ml	D-381			
existentes		3		3	ilig/ roomi	D-301			
Azufre total		0.05		0.05	% peso	D-1266	D-2622	D-4294	
Octanaje RON	95		95			D-2699			
Octanaje MON	Info	rmar	Info	rmar		D-2700			
Indice									
antidetonante	Info	rmar	Info	rmar					
(RON+MON)/2									
Color	Vic	oleta	Vio	leta		Visual			
Apariencia	Cris	talina	Cris	talina		Visual			
Poder	Info	rmar	Info	rmar	BTU/lb	D-240			
calorífico	11110	IIIIai	11110	IIIIai	B10/ID	D-240			
Destilación									
Engler (760						D-86			
mmHg) (***)									
10% vol.		65(149)		60(140)	°C (°F)				

COMBUSTIBLES FÓSILES VS. BIOCOMBUSTIBLES

50% vol.	77(170)	118(245)	77(170)	116(240)	°C (°F)				
90% vol.		190(374)		185(365)	°C (°F)				
Punto final		225(437)		225(437)	°C (°F)				
Residuo		2		2	% vol.				
Contenido de									
aromáticos		48		48	% vol.	D-1319	D-5134	D-5769	D-6729
totales									
Contenido de		18		18	% vol.	D-1319	D-5134	D-6729	
olefinas		10		10	70 VOI.	ט-וטופ	D-3134	D-0729	
Contenido de		3		3	% vol.	D-4053	D-5134	D-3606	D-5769
benceno		3		3	/6 VOI.	D-4000	D-3134	D-3000	ט-3709
Contenido de		18		18	mg Mn/ lt	D_3931			
manganeso		10		10	ing wii/ it	ו ניסט-ם			
Contenido de		2.7		2.7	% peso	D-2504	D-4815		
oxigeno		2.1		2.1	70 hean	D-2004	D-4013		

^(*) Verano se define del 1º de septiembre al 31 de marzo e invierno del 1º de abril al 31 de agosto.

Fuente: (ANH, Especificaciones técnicas, s.f.)

^(**) El contenido de plomo especificado es un valor intrínseco de la materia prima, sin haberse adicionado cantidad alguna del mismo con fines de mejorar su octanaje.

4.2 BIOCOMBUSTIBLES

Los biocombustibles se producen orgánicamente y a diferencia de los combustibles fósiles son una fuente de energía renovable.

Los biocombustibles provienen de la biomasa: materia orgánica originada en un proceso biológico, espontáneo o provocado, utilizable como fuente de energía (Introducción: Combustibles fósiles y biocombustibles, 2011).

Para la obtención de los biocombustibles se pueden utilizar especies de uso agrícola tales como el maíz o la mandioca, ricas en carbohidratos, o plantas oleaginosas como la soja, girasol y palmas. También se pueden emplear especies forestales como el eucalipto y los pinos.

Al utilizar estos materiales se reduce el CO2 que es enviado a la atmósfera terrestre ya que estos materiales van absorbiendo el CO2 a medida que se van desarrollando, mientras que emiten una cantidad similar que los combustibles convencionales en el momento de la combustión (Introducción: Combustibles fósiles y biocombustibles , 2011).

4.2.1 Biodiésel

El biodiesel es un biocarburante líquido producido a partir de los aceites vegetales y grasas animales, siendo la colza, el girasol y la soja las materias primas más utilizadas para este fin. Las propiedades del biodiesel son prácticamente las mismas que las del gasóleo de automoción en cuanto a densidad y número de cetano. Además, presenta un punto de inflamación superior. Por todo ello, el biodiesel puede mezclarse con el gasóleo para su uso en motores e incluso sustituirlo totalmente si se adaptan éstos convenientemente (Biodiésel, s.f.).

Con los aceites vegetales, se contribuye de manera significativa al suministro energético sostenible, lo que permite reducir la dependencia del petróleo, incrementando la seguridad y diversidad en los suministros, así como el desarrollo socioeconómico del área rural (producción de oleaginosas con fines energéticos), y la conservación de nuestro medio ambiente. No contiene prácticamente nada de azufre.

Durante su combustión produce menor cantidad de CO2 que aquel que absorben las plantas para su crecimiento (ciclo cerrado de CO2). El dióxido de carbono CO2 que emite a la atmósfera el Biodiesel durante la combustión es neutro, ya que es el mismo que captó la planta oleaginosa utilizada para extraer el aceite durante su etapa de crecimiento. Con lo cual, la combustión de Biodiesel no contribuye al efecto invernadero, es neutra y ayuda a cumplir el protocolo de Kyoto.

TABLA N° IV.4: ESPECIFICACIONES TÉCNICAS BIODIESEL

IADEA N IV	. 	ACIONES TECH	ites	
		LIM	iites	
Propiedad	Unidad	Mínimo	Máximo	Método de ensayo
Contenido de éster a	% (m/m)	95,6 b		EN 14103
Densidad a 15°C c	Kg/m ²	860	900	EN ISO 3675
Viscocidad a 40°C d	Mm ²	3,50	5,00	EN ISO 3104
Punto de inflamación	°C	120	-	prEN ISO3679 e
Contenido de azufre	Mg/kg	-	10,0	prEN ISO 20846 prEN ISO 20884
Residuo de carbón (en 10% de residuo destilado) ^f	% (m/m)	-	0,30	EN ISO 10370
Índice de cetano ^g		51,0		EN ISO 5165
Contenido de cenizas sulfatadas	% (m/m)	-	0,02	ISO 3987
Contenido de agua	Mg/kg	-	500	EN ISO 12937
Contaminación total	Mg/kg	-	24	EN 12662
Corrosión de la tira de cobre (3h a 50°C)	Clasificación	Clase 1		EN ISO 2160
Estabilidad a la oxidación 110°C	Horas	6,0	-	EN 14112
Índice de ácido	Mg KOH/g		0,50	EN 14104

COMBUSTIBLES FÓSILES VS. BIOCOMBUSTIBLES

Índice de yodo	g de yodo/100g	120	EN 14111
Éster de metilo de ácido linoleico	% (m/m)	12,0	EN 14103
Ésteres de metilo poli-insaturados ⁱ (> = a 4 dobles enlaces)	% (m/m)	1	
Contenido de metanol	% (m/m)	0,20	EN 14110
Contenido de monoglicéridos	% (m/m)	0,80	EN 14105
Contenido de diglicéridos	% (m/m)	0,20	EN 14105
Contenido de triglicéridos ^j	% (m/m)	0,20	EN 14105
Glicerol libre j	% (m/m)	0,02	EN 14105 EN 14106
Glicerol total	% (m/m)	0,25	EN 14105
Metales de grupo I (Na+K) ^k	Mg/kg	5,0	EN 14108 EN 14109
Metales de grupo II (Ca+Mg)	Mg/kg	5,0	ptEN 14538
Contenido de fósforo	Mg/kg	10,0	EN 14107

Fuente: (Biocarburantes líquidos: Biodiesel y Bioetanol)

4.2.2 Bioetanol

El alcohol etílico o etanol es un producto químico obtenido a partir de la fermentación de los azucares que se encuentran en los productos vegetales, tales como cereales, remolacha, caña de azúcar o biomasa. Estos azúcares están combinados en forma de sacarosa, almidón, hemicelulosa y celulosa. Las plantas crecen gracias al proceso de fotosíntesis, en el que la luz del sol, el dióxido de carbono de la atmósfera, el agua y los nutrientes de la tierra forman moléculas orgánicas complejas como el azúcar, los hidratos de carbono y la celulosa, que se concentra en la parte fibrosa la planta.

El etanol se usa en mezclas con la gasolina en concentraciones del 5 o el 10%, E5 y E10 respectivamente, que no requieren modificaciones en los motores actuales (Bioetanol, s.f.).

El bioetanol por sus características ayuda a mitigar los efectos del calentamiento global, pues reduce las emisiones de gases de efecto invernadero en comparación con los combustibles fósiles, lo cual mejora la calidad del aire de las ciudades.

TABLA N° IV.5: ESPECIFICACIONES TÉCNICAS BIOETANOL

Características	Unidades	Mé	todo	Especificación	
Our dotter isticus	Omaacs	ASTM *	ABNT/NBR **	Lapcomodolom	
Aspecto	_	Visual	_	Limpio y sin	
Alapeoto		Viodai		impurezas	
Color	-	Visual	-	Incoloro	
Acidez total	Mg/L	D 1613	9866	30 máx.	
(ácido acético)	IVI9/L	D 1013	3000		
Conductividad	μs/m	D 1125	10547	500 máx.	
eléctrica	μο/π	D 1120	10047	Joo max.	
Masa					
específica a 20	${\sf Kg}/m^3$	D 4052	5992	791.5 máx.	
°C					
Grado	⁰INPM	_	5992	99.3 min.	
alcohólico	II VI IVI		0002	33.3 111111.	

Grado de	%vol	D 512	13993	3 máx.
hidrocarburos	/6VOI	D 312	13993	S IIIax.
lon cloruro	Mg/kg	D 5501	10894/10895	1.1
Grado de etanol	%vol	-	-	99.3 min.
Ion sulfato	Mg/kg	-	10894/12120	4.3 máx.
Hierro	Mg/kg	-	113331	5.5 máx.
Sodio	Mg/kg	-	10422	2.2 máx.
Cobre	Mg/kg	-	10893	0.07 máx

ASTM Internacional *

Associaciao Brasileira de Normas Técnicas **

Fuente: (Factores previos involucrados en la producción de bioetanol, aspectos a considerar, 2014)

4.3 TABLAS DE COMPARACIÓN ENTRE COMBUSTIBLES FÓSILES Y BIOCOMBUSTIBLES

En la ciudad de Tarija existe un gran parque automotor, desde autos nuevos o bien cuidados hasta micros desgastados que emiten gran cantidad de gases proveniente de los combustibles fósiles. Se realizó una comparación de los combustibles fósiles y biocombustibles para los vehículos, desde su composición, su tipo de energía, su poder calorífico y otras características.

TABLA N° IV.6: COMPARACIÓN DIÉSEL Y BIODIESEL

PROPIEDADES	COMBUSTIBLE FÓSIL	BIOCOMBUSTIBLE		
THOTIED/IDEO	DIESEL OÍL	BIODIESEL		
COMPOSICIÓN	Aproximadamente de un	El biodiésel es un		
	75 % de hidrocarburos	biocarburante líquido		
	saturados	producido a partir de los		
	(principalmente parafinas	aceites vegetales y		
	incluyendo isoparafinas y	grasas animales, siendo		
	cicloparafinas) y un 25 %	la colza, el girasol y la		
	de hidrocarburos	soja las materias primas		
	aromáticos (incluyendo			

	naftalenos y	más utilizadas para este
	alcalobencenos).	fin.
DENSIDAD	0,837 g/cm ³	0,88 g/cm3
PODER CALORÍFICO	18.397Btu/lb (PCI) -	15.993,12Btu/lb (PCI)
	19.676Btu/lb (PCS)	
FACTORES DE	El diésel está formado por	Uno de los principales
ALMACENAMIENTO	varios elementos, entre	problemas del biodiesel
	ellos la parafina, un	es su estabilidad
	compuesto que aumenta	química, durante
	el poder calorífico del	almacenamiento por
	combustible pero que en	largos períodos de
	condiciones de	tiempo, el que no sólo se
	temperaturas súper bajas	encuentra en contacto
	se puede llegar a	con materiales propios de
	solidificar formando	los contenedores, sino
	pequeños cristales de	también expuesto a
	parafina.	diferentes condiciones
		ambientales, lo que
		produce reacciones de
		oxidación, formación de
		ácidos indeseables y por
		ende depósitos en los
		tanques que pueden
		causar la obstrucción de
		filtros de combustible en
		los sistemas de
		inyección en motores
		diésel, disminuyendo
		significativamente la
		calidad del
		biocombustible, no sólo

		en términos energéticos
		sino también ambientales
		ya que al momento de la
		combustión, se genera un
		incremento de emisiones
		atmosféricas
		contaminantes, gases de
		efecto invernadero como
		lo son monóxido de
		carbono (CO),
		compuestos orgánicos
		volátiles (COV,
		especialmente
		aldehídos). Asimismo la
		producción de material
		particulado y aumento de
		óxidos de nitrógeno
		(NO _x), los cuales debido a
		su alta reactividad
		contribuyen con la
		formación de lluvia ácida
		y smog.
TEMPERATURA DE		
IGNICION		
TIPO DE ENERGIA	No renovable	Renovable
PUNTO DE	52°C a 96°C	120°C
INFLAMACION		
AGENTES	Los gases de escape de	El biodiesel es un
CONTAMINANTES	diésel son un tipo de	combustible que reduce
	contaminación que surge	la contaminación porque
	de la combustión de	las emisiones netas de

combustible diésel en maquinarias pesadas, camiones, autobuses, trenes, barcos y algunos automóviles.

Los generadores diésel y los equipos construcción que utilizan diésel también pueden ser fuentes importantes de gases de escape de diésel en una comunidad. Los gases de escape son una mezcla de diferentes tipos de gases Contienen partículas. partículas muy pequeñas hollín así como también de sustancias químicas nocivas como arsénico benceno, У óxidos de nitrógeno.

dióxido de carbono (CO₂) y de dióxido sulfuroso (SO₂) se reducen un 100 por ciento.

Los óxidos de nitrógeno	
de los gases de escape	
de diésel se unen con el	
calor y la luz del sol en el	
aire para formar el ozono	
a nivel del suelo o el	
smog, otro contaminante	
del aire nocivos.	

Fuente: Elaboración propia

TABLA N° IV.7: COMPARACIÓN DE BIODIESEL Y BIOETANOL

PROPIEDADES	COMBUSTIBLE FÓSIL	BIOCOMBUSTIBLE
T KOT IEDADEO	DIESEL OÍL	BIOETANOL
COMPOSICIÓN	Aproximadamente de un	El alcohol etílico o etanol
	75 % de hidrocarburos	es un producto químico
	saturados	obtenido a partir de la
	(principalmente parafinas	fermentación de los
	incluyendo isoparafinas y	azúcares que se
	cicloparafinas) y un 25 %	encuentran en los
	de hidrocarburos	productos vegetales,
	aromáticos (incluyendo	tales como cereales,
	naftalenos y	remolacha, caña de
	alcalobencenos).	azúcar, sorgo o biomasa.
		Estos azúcares están
		combinados en forma de
		sacarosa, almidón,
		hemicelulosa y celulosa.
DENSIDAD	0,837 g/cm ³	0,789g/cm3
PODER CALORÍFICO	18.397Btu/lb (PCI) -	11.587Btu/lb (PCI) -
	19.676Btu/lb (PCS)	12.832Btu/lb (PCS)
FACTORES DE	El diésel está formado por	Cualquier gran volumen
ALMACENAMIENTO	varios elementos, entre	de combustible de etanol

	ellos la parafina, un	desnaturalizado se
	compuesto que aumenta	almacenará en tanques
	el poder calorífico del	de almacenamiento de
	combustible pero que en	acero al carbono
	condiciones de	convencionales, tales
	temperaturas súper bajas	como los que son
	se puede llegar a	adecuados para gasolina
	solidificar formando	y otros combustibles
	pequeños cristales de	inflamables. El
	parafina.	combustible de etanol
		desnaturalizado también
		se puede almacenar en
		tanques de
		almacenamiento de
		acero inoxidable, estos
		tanques son menos
		comunes.
TEMPERATURA DE		360°C
IGNICION		
TIPO DE ENERGIA	No renovable	Renovable
PUNTO DE	52°C a 96°C	13°C
INFLAMACION		
AGENTES	Los gases de escape de	El etanol es una fuente de
CONTAMINANTES	diésel son un tipo de	combustible que arde
	contaminación que surge	formando dióxido de
	de la combustión de	carbono y agua, como la
	combustible diésel en	gasolina sin plomo
	maquinarias pesadas,	convencional.
	camiones, autobuses,	Como aditivo de la
	trenes, barcos y algunos	gasolina, el etanol al ser
	automóviles. Los	más volátil, se lleva

generadores diésel y los equipos de construcción que utilizan diésel también pueden ser fuentes importantes de gases de escape diésel en una comunidad. Los gases de escape son una mezcla de diferentes tipos de gases partículas. Contienen partículas muy pequeñas de hollín así como también de sustancias químicas nocivas como benceno, arsénico У óxidos de nitrógeno. Los óxidos de nitrógeno de los gases de escape de diésel se unen con el calor y la luz del sol en el aire para formar el ozono a nivel del suelo o el smog, otro contaminante del aire nocivos.

consigo gasolina, lanzando así más compuestos orgánicos volátiles (VOC's).

Fuente: Elaboración propia

TABLA N° IV.8: COMPARACIÓN GNV Y BIODIESEL

	COMBUSTIBLE FÓSIL	BIOCOMBUSTIBLE
PROPIEDADES	GNV	BIODIESEL
COMPOSICIÓN	El componente principal	El biodiésel es un
	del gas natural es el	biocarburante líquido
	"metano" (CH ₄) una	producido a partir de los
	combinación química del	aceites vegetales y
	carbono con el hidrógeno.	grasas animales, siendo
	Consta, en esencia, de un	la colza, el girasol y la
	80 - 99 % de metano	soja las materias primas
	(CH ₄). El resto está	más utilizadas para este
	constituido por adiciones	fin.
	de dióxido de carbono,	
	nitrógeno e hidrocarburos	
	menos pesados.	
DENSIDAD	777 g/m ³	0,88 g/cm3
PODER CALORÍFICO	20.267Btu/lb (PCI) -	15.993,12Btu/lb (PCI)
	22.453Bty/lb (PCS)	
FACTORES DE	Almacenamiento GNC:	Uno de los principales
ALMACENAMIENTO	Para contar con una	problemas del biodiesel,
	capacidad de llenado	es su estabilidad
	suficiente para la	química durante
	operatividad con gas	almacenamiento por
	natural, se procede a	largos períodos de
	comprimir con este	tiempo, el que no sólo se
	método el gas natural	encuentra en contacto
	hasta 200 bares como	con materiales propios de
	máximo.	los contenedores, sino
	Para este tipo de	también expuesto a
	almacenamiento se	diferentes condiciones
	necesitan depósitos lo	ambientales, lo cual va a

suficientemente
resistentes para soportar
estas elevadas
presiones. Este tipo de
almacenamiento es el
utilizado por los vehículos
propulsados por gas
natural.

Almacenamiento GNL: En virtud de que el gas natural siempre encuentra en el estado de agregación gaseoso se procede enfriarlo а intensamente con este método. El gas natural se licúa a una temperatura de 161 °C bajo cero y se puede almacenar en ese Para estado. el almacenamiento У transporte se necesitan depósitos frigoríficos especiales. Este método se aplica principalmente para el almacenamiento del gas natural estaciones fijas y no para propulsar vehículos.

producir reacciones de oxidación, formación de ácidos indeseables y por ende depósitos en los tanques que pueden causar la obstrucción de filtros de combustible en los sistemas de inyección en motores diésel, disminuvendo significativamente la del calidad biocombustible, no sólo en términos energéticos sino también ambientales ya que en el momento de la combustión, se genera incremento un de emisiones atmosféricas contaminantes, gases de efecto invernadero como monóxido lo son de carbono (CO), compuestos orgánicos volátiles (COV, especialmente aldehídos). Asimismo la producción de material particulado y aumento de óxidos de nitrógeno (NO_x), los cuales debido a

		su alta reactividad
		contribuyen con la
		formación de lluvia ácida
		y smog.
TEMPERATURA DE	482°C – 632°C	
IGNICION		
TIPO DE ENERGIA	No renovable	Renovable
PUNTO DE		120°C
INFLAMACION		
AGENTES	Sulfuro de hidrógeno	El biodiesel es un
CONTAMINANTES	(H ₂ S)	combustible que reduce
	Dióxido de azufre (SO ₂)	la contaminación porque
	Dióxido de carbono (CO ₂)	las emisiones netas de
	Sulfuro de carbonilo	dióxido de carbono (CO ₂)
	(COS)	y de dióxido sulfuroso
	Disulfuro de carbono	(SO ₂) se reducen un 100
	(CS ₂)	por ciento.
	Mercaptanos (RSH)	
	Nitrógeno (N ₂)	
	Mercurio (Hg)	

Fuente: Elaboración propia

TABLA N° IV.9: COMPARACIÓN GNV Y BIOETANOL

PROPIEDADES	COMBUSTIBLE FÓSIL	BIOCOMBUSTIBLE
T NOT ILD/IDEO	GNV	BIOETANOL
COMPOSICIÓN	El componente principal	El alcohol etílico o etanol
	del gas natural es el	es un producto químico
	"metano" (CH ₄) una	obtenido a partir de la
	combinación química del	fermentación de los
	carbono con el hidrógeno.	azúcares que se
	Consta, en esencia, de un	encuentran en los

	80 - 99 % de metano	productos vegetales,
	(CH ₄). El resto está	tales como cereales,
	constituido por adiciones	remolacha, caía de
	de dióxido de carbono,	azúcar, sorgo o biomasa.
	nitrógeno e hidrocarburos	Estos azúcares están
	menos pesados.	combinados en forma de
		sacarosa, almidón,
		hemicelulosa y celulosa.
DENSIDAD	777 g/m ³	0,789g/cm3
PODER CALORÍFICO	20.267Btu/lb (PCI) -	11.587Btu/lb (PCI) -
	22.453Bty/lb (PCS)	12.832Btu/lb (PCS)
FACTORES DE	Almacenamiento GNC:	Cualquier gran volumen
ALMACENAMIENTO	Para contar con una	de combustible de etanol
	capacidad de llenado	desnaturalizado se
	suficiente para la	almacenará en tanques
	operatividad con gas	de almacenamiento de
	natural se procede a	acero al carbono
	comprimir con este	convencionales, tales
	método el gas natural	como los que son
	hasta 200 bares como	adecuados para gasolina
	máximo.	y otros combustibles
	Para este tipo de	inflamables. El
	almacenamiento se	combustible de etanol
	necesitan depósitos lo	desnaturalizado también
	suficientemente	se puede almacenar en
	resistentes para soportar	tanques de
	estas elevadas	almacenamiento de
	presiones. Este tipo de	acero inoxidable, estos
	almacenamiento es el	tanques son menos
	utilizado por los vehículos	comunes.

	propulsados por gas	
	natural.	
	Almacenamiento GNL:	
	En virtud de que el gas	
	natural siempre se	
	encuentra en el estado de	
	agregación gaseoso se	
	procede a enfriarlo	
	intensamente con este	
	método. El gas natural se	
	licúa a una temperatura	
	de 161 °C bajo cero y se	
	puede almacenar en ese	
	estado. Para el	
	almacenamiento y	
	transporte se necesitan	
	depósitos frigoríficos	
	especiales. Este método	
	se aplica principalmente	
	para el almacenamiento	
	del gas natural en	
	estaciones fijas y no para	
	propulsar vehículos.	
TEMPERATURA DE	482°C – 632°C	360°C
IGNICION		
TIPO DE ENERGIA	No renovable	Renovable
PUNTO DE		13°C
INFLAMACION		
AGENTES	Sulfuro de hidrógeno	El etanol es una fuente de
CONTAMINANTES	(H ₂ S)	combustible que arde
	Dióxido de azufre (SO ₂)	formando dióxido de

Dióxido de carb	ono (CO ₂)	carbono y agua, como la
Sulfuro de	carbonilo	gasolina sin plomo
(COS)		convencional.
Disulfuro de	carbono	
(CS ₂)		
Mercaptanos (R	(SH)	
Nitrógeno (N ₂)		
Mercurio (Hg)		
		Como aditivo de la
		gasolina, el etanol al ser
		más volátil, se lleva
		consigo gasolina,
		lanzando así más
		compuestos orgánicos
		volátiles (VOC's).
Farmer Claberra		

Fuente: Elaboración propia

TABLA N° IV.10: COMPARACIÓN GASOLINA Y BIODIESEL

PROPIEDADES	COMBUSTIBLE FÓSIL	BIOCOMBUSTIBLE
	GASOLINA	BIODIESEL
COMPOSICIÓN	La gasolina se obtiene del	El biodiésel es un
	petróleo en una refinería.	biocarburante líquido
	En general se obtiene a	producido a partir de los
	partir de la nafta de	aceites vegetales y
	destilación directa, que es	grasas animales, siendo
	la fracción líquida más	la colza, el girasol y la
	ligera del petróleo soja las materias pri	
	(exceptuando los gases).	más utilizadas para este
	La nafta también se	fin.
	obtiene a partir de la	

	conversión de fracciones	
	pesadas del petróleo	
	(gasoil de vacío) en	
	unidades de proceso	
	denominadas FCC	
	(craqueo catalítico	
	fluidizado) o	
	hidrocraqueo.	
	La gasolina es una	
	mezcla de cientos de	
	hidrocarbonos	
	individuales desde C ₄	
	(butanos y butenos) hasta	
	C ₁₁ como, por ejemplo, el	
	metilnaftaleno.	
DENSIDAD	0,745 g/cm ³	0,88 g/cm3
PODER CALORÍFICO	18.679Btu/lb (PCI) -	15.993,12Btu/lb (PCI)
	20.007Btu/lb (PCS)	
FACTORES DE	La gasolina es un	Uno de los principales
ALMACENAMIENTO	combustible de muy alta	problemas del biodiesel
	peligrosidad que requiere	es su estabilidad
	especial cuidado, pero	química durante
	que con las indicaciones	almacenamiento por
	pertinentes es posible su	largos períodos de
	almacenaje de manera	tiempo, donde éste no
	segura en un 99 %	sólo se encuentra en
	dejando el 1% como	contacto con materiales
	factor humano.	propios de los
		contenedores, sino
		también expuesto a
		diferentes condiciones

En lo que se refiere a carros tienen una capacidad promedio de 45-50 lts. y las motos 10-20 lts.

ambientales, lo cual va a producir reacciones de oxidación, formación de ácidos indeseables y por ende depósitos en los tanques que pueden causar la obstrucción de filtros de combustible en los sistemas de inyección en motores diésel, disminuyendo significativamente la calidad del biocombustible, no sólo en términos energéticos sino también ambientales ya que en el momento de la combustión, se genera un incremento de atmosféricas emisiones contaminantes, gases de efecto invernadero como monóxido de lo son carbono (CO), compuestos orgánicos volátiles (COV, especialmente aldehídos). Asimismo la producción de material particulado y aumento de óxidos de nitrógeno

		(NO _x), los cuales debido a
		su alta reactividad
		contribuyen con la
		formación de lluvia ácida
		y smog.
TEMPERATURA DE	456°C	
IGNICION		
TIPO DE ENERGIA	No renovable	Renovable
PUNTO DE	-40°C	120°C
INFLAMACION		
AGENTES	El Monóxido de Carbono	El biodiesel es un
CONTAMINANTES	Los Hidrocarburos	combustible que reduce
	Los Óxidos de Nitrógeno	la contaminación porque
	El Plomo	las emisiones netas de
		dióxido de carbono (CO ₂)
		y de dióxido sulfuroso
		(SO ₂) se reducen un 100
		por ciento.

TABLA N° IV.11: COMPARACIÓN GASOLINA Y BIOETANOL

PROPIEDADES	COMBUSTIBLE FÓSIL	BIOCOMBUSTIBLE
T NOT ILDADEO	GASOLINA	BIOETANOL
COMPOSICIÓN	La gasolina se obtiene del	El alcohol etílico o etanol
	petróleo en una refinería.	es un producto químico
	En general se obtiene a	obtenido a partir de la
	partir de la nafta de	fermentación de los
	destilación directa, que es	azúcares que se
	la fracción líquida más	encuentran en los
	ligera del petróleo	productos vegetales,
	(exceptuando los gases).	tales como cereales,

	La nafta también se	remolacha, caía de
	obtiene a partir de la	azúcar, sorgo o biomasa.
	conversión de fracciones	Estos azúcares están
	pesadas del petróleo	combinados en forma de
	(gasoil de vacío) en	sacarosa, almidón,
	unidades de proceso	hemicelulosa y celulosa.
	denominadas FCC	
	(craqueo catalítico	
	fluidizado) o	
	hidrocraqueo. La gasolina	
	es una mezcla de cientos	
	de hidrocarbonos	
	individuales desde C ₄	
	(butanos y butenos) hasta	
	C ₁₁ como, por ejemplo, el	
	metilnaftaleno.	
DENSIDAD	0,745 g/cm ³	0,789g/cm3
PODER CALORÍFICO	18.679Btu/lb (PCI) -	11.587Btu/lb (PCI) -
	20.007Btu/lb (PCS)	12.832Btu/lb (PCS)
FACTORES DE	La gasolina es un	Cualquier gran volumen
ALMACENAMIENTO	combustible de muy alta	de combustible de etanol
	peligrosidad que requiere	desnaturalizado se
	especial cuidado, pero	almacenará en tanques
	que con las indicaciones	de almacenamiento de
	pertinentes es posible su	acero al carbono
	almacenaje de manera	convencionales, tales
	segura en un 99 %	como los que son
	dejando el 1% como	
	factor humano.	y otros combustibles
		inflamables.

carros tienen una capacidad promedio de 45-50 lts. y las motos 10-20 lts. TEMPERATURA DE 16NICION TIPO DE ENERGIA No renovable Renovable PUNTO DE 10S Hidrocarburos Los Óxidos de Nitrógeno EI Plomo EI Plomo EI Plomo EI etanol es una fuente de carbono dióxido de carbono y agua, como la gasolina sin plomo convencional. Como aditivo de la gasolina, el etanol al ser más volátil, se lleva consigo gasolina, lanzando así más		En lo que se refiere a	El combustible de etanol
45-50 lts. y las motos 10- 20 lts. tanques de almacenamiento de acero inoxidable, estos tanques son menos comunes. TEMPERATURA DE IGNICION TIPO DE ENERGIA No renovable PUNTO DE INFLAMACION AGENTES CONTAMINANTES El Monóxido de Carbono Los Hidrocarburos Los Óxidos de Nitrógeno El Plomo El Plomo El Plomo El etanol es una fuente de combustible que arde formando dióxido de carbono y agua, como la gasolina sin plomo convencional. Como aditivo de la gasolina, el etanol al ser más volátil, se lleva consigo gasolina,		·	
45-50 lts. y las motos 10- 20 lts. tanques de almacenamiento de acero inoxidable, estos tanques son menos comunes. TEMPERATURA DE IGNICION TIPO DE ENERGIA No renovable PUNTO DE INFLAMACION AGENTES CONTAMINANTES El Monóxido de Carbono Los Hidrocarburos Los Óxidos de Nitrógeno El Plomo El Plomo El Plomo El etanol es una fuente de combustible que arde formando dióxido de carbono y agua, como la gasolina sin plomo convencional. Como aditivo de la gasolina, el etanol al ser más volátil, se lleva consigo gasolina,		capacidad promedio de	se puede almacenar en
20 lts. almacenamiento de acero inoxidable, estos tanques son menos comunes. TEMPERATURA DE IGNICION TIPO DE ENERGIA PUNTO DE -40°C INFLAMACION AGENTES CONTAMINANTES El Monóxido de Carbono Los Hidrocarburos Los Óxidos de Nitrógeno El Plomo El Plomo El etanol es una fuente de combustible que arde formando dióxido de carbono y agua, como la gasolina sin plomo convencional. Como aditivo de la gasolina, el etanol al ser más volátil, se lleva consigo gasolina,			
TEMPERATURA DE IGNICION TIPO DE ENERGIA No renovable Renovable PUNTO DE INFLAMACION AGENTES CONTAMINANTES El Monóxido de Carbono Los Hidrocarburos Los Óxidos de Nitrógeno El Plomo El etanol es una fuente de combustible que arde formando dióxido de carbono y agua, como la gasolina sin plomo convencional. Como aditivo de la gasolina, el etanol al ser más volátil, se lleva consigo gasolina,		-	·
TEMPERATURA DE IGNICION TIPO DE ENERGIA PUNTO DE INFLAMACION AGENTES CONTAMINANTES El Monóxido de Carbono Los Hidrocarburos Los Óxidos de Nitrógeno El Plomo El etanol es una fuente de combustible que arde formando dióxido de carbono y agua, como la gasolina sin plomo convencional. Como aditivo de la gasolina, el etanol al ser más volátil, se lleva consigo gasolina,			
TEMPERATURA DE IGNICION TIPO DE ENERGIA PUNTO DE -40°C INFLAMACION AGENTES CONTAMINANTES El Monóxido de Carbono Los Hidrocarburos Los Óxidos de Nitrógeno El Plomo El Plomo Carbono y agua, como la gasolina sin plomo convencional. Como aditivo de la gasolina, el etanol al ser más volátil, se lleva consigo gasolina,			•
TIPO DE ENERGIA PUNTO DE INFLAMACION AGENTES CONTAMINANTES El Monóxido de Carbono Los Hidrocarburos Los Óxidos de Nitrógeno El Plomo El Plomo El Plomo El etanol es una fuente de combustible que arde formando dióxido de carbono y agua, como la gasolina sin plomo convencional. Como aditivo de la gasolina, el etanol al ser más volátil, se lleva consigo gasolina,	TEMPEDATUDA DE	4560C	
TIPO DE ENERGIA PUNTO DE INFLAMACION AGENTES CONTAMINANTES El Monóxido de Carbono Los Hidrocarburos Los Óxidos de Nitrógeno El Plomo El Plomo El etanol es una fuente de combustible que arde formando dióxido de carbono y agua, como la gasolina sin plomo convencional. Como aditivo de la gasolina, el etanol al ser más volátil, se lleva consigo gasolina,		450°C	300°C
PUNTO DE INFLAMACION AGENTES CONTAMINANTES El Monóxido de Carbono Los Hidrocarburos Los Óxidos de Nitrógeno El Plomo El etanol es una fuente de combustible que arde formando dióxido de carbono y agua, como la gasolina sin plomo convencional. Como aditivo de la gasolina, el etanol al ser más volátil, se lleva consigo gasolina,		No venevable	Danavahla
INFLAMACION AGENTES CONTAMINANTES El Monóxido de Carbono Los Hidrocarburos Los Óxidos de Nitrógeno El Plomo El etanol es una fuente de combustible que arde formando dióxido de carbono y agua, como la gasolina sin plomo convencional. Como aditivo de la gasolina, el etanol al ser más volátil, se lleva consigo gasolina,			
AGENTES El Monóxido de Carbono Los Hidrocarburos Los Óxidos de Nitrógeno El Plomo El etanol es una fuente de combustible que arde formando dióxido de carbono y agua, como la gasolina sin plomo convencional. Como aditivo de la gasolina, el etanol al ser más volátil, se lleva consigo gasolina,		-40°C	13°C
CONTAMINANTES Los Hidrocarburos Los Óxidos de Nitrógeno El Plomo Carbono y agua, como la gasolina sin plomo convencional. Como aditivo de la gasolina, el etanol al ser más volátil, se lleva consigo gasolina,	INFLAMACION		
Los Óxidos de Nitrógeno El Plomo formando dióxido de carbono y agua, como la gasolina sin plomo convencional. Como aditivo de la gasolina, el etanol al ser más volátil, se lleva consigo gasolina,	AGENTES	El Monóxido de Carbono	El etanol es una fuente de
El Plomo carbono y agua, como la gasolina sin plomo convencional. Como aditivo de la gasolina, el etanol al ser más volátil, se lleva consigo gasolina,	CONTAMINANTES	Los Hidrocarburos	combustible que arde
gasolina sin plomo convencional. Como aditivo de la gasolina, el etanol al ser más volátil, se lleva consigo gasolina,		Los Óxidos de Nitrógeno	formando dióxido de
convencional. Como aditivo de la gasolina, el etanol al ser más volátil, se lleva consigo gasolina,		El Plomo	carbono y agua, como la
Como aditivo de la gasolina, el etanol al ser más volátil, se lleva consigo gasolina,			gasolina sin plomo
gasolina, el etanol al ser más volátil, se lleva consigo gasolina,			convencional.
más volátil, se lleva consigo gasolina,			Como aditivo de la
consigo gasolina,			gasolina, el etanol al ser
			más volátil, se lleva
lanzando así más			consigo gasolina,
			lanzando así más
compuestos orgánicos			compuestos orgánicos
volátiles (VOC's).			
			, ,

4.4 TABLAS DE VENTAJAS Y DESVENTAJAS DE COMBUSTIBLES FÓSILES Y BIOCOMBUSTIBLES

Los combustibles fósiles tienen ventajas en relación al rendimiento de los vehículos, pero presentan varias desventajas para el medio ambiente, los biocombustibles, a pesar de ser una energía más limpia puede presentar desventajas en el sentido de rendimiento o en cuanto al precio al ser más costosa. A continuación, se presentan tablas determinando algunas ventajas y desventajas de los combustibles fósiles y biocombustibles.

TABLA N° IV.12: VENTAJAS Y DESVENTAJAS DEL DIÉSEL Y BIODIESEL

COMBUSTIBLE FÓSIL		BIOCOMBUSTIBLE	
DIESEL OÍL		BIODIESEL	
VENTAJAS	DESVENTAJAS	VENTAJAS	DESVENTAJAS
Durabilidad: Esto	Pese a que	Al ser de origen	Se solidifica a bajas
se debe a que el	emite menos	vegetal, es un	temperaturas, lo cual
proceso de	CO ₂ que los de	combustible	hace que se formen
combustión de un	gasolina, no	respetuoso con	cristales que pueden
motor diésel se	pueden reducir	el medio	llegar a taponar las
realiza por	las emisiones de	ambiente. La	tuberías de
compresión de aire,	óxido de	materia prima	combustible.
mientras que el	nitrógeno (NO _x)	es ecológica y	
motor de gasolina	ni de partículas	se produce a	
necesita una	(PM). Son estas	partir de	
mezcla de aire y	últimas las que	semillas	
gasolina para	afectan	cultivadas de	
generar la explosión	básicamente al	diferentes	
en el interior de los	aparato	plantas, como la	
pistones. Como	respiratorio. Sin	colza, la soja o	
consecuencia	embargo, el uso	el girasol.	
existe menos	de filtros de	Incluso es	
desgaste de las	partículas (que	posible fabricar	

partes internas del	las atrapa y las	biodiésel a partir	
propulsor y mayor	quema), los	de aceites	
durabilidad en el	catalizadores de	reciclados	
tiempo.	acumulación	procedentes de	
	(retiene y	la hostelería o	
	elimina el 85%	de industrias	
	del NOx), los	alimentarias.	
	catalizadores de		
	urea SCR (que		
	elimina el 95%		
	del NOx) y los		
	motores con		
	menor relación		
	de compresión		
	(como los		
	Skyactiv de		
	Mazda), son		
	elementos que		
	mejoran esa		
	desventaja.		
Autonomía. Un		No contiene	Pierde parte de sus
motor diésel puede		azufre, por lo	propiedades a corto
recorrer el doble de		que no	plazo, algo que no
kilómetros con los		contribuye al	sucede con los
mismos litros de		efecto	combustibles fósiles.
carburante que uno		invernadero. El	
de gasolina.		azufre es uno	
Sucede porque la		de los	
densidad del diésel		componentes	
es mayor y por lo		del gasoil y,	
tanto ofrece un		aunque en el	

menor consumo (en	mercado se	
,		
torno al 30%).	pueden	
	encontrar	
	combustibles	
	con baja carga	
	de azufre, estas	
	variantes	
	provocan una	
	pérdida de	
	lubricación que	
	pueden afectar	
	al rendimiento	
	del motor.	
Fiable: En su	Genera menos	Suele resultar más
esencia es un motor	emisiones de	caro que el gasoil,
más simple que el	gases	aunque esto depende
de gasolina ya que	contaminantes y	de su origen y su
no dispone de	sustancias	modo de elaboración.
bujías ni distribuidor	perjudiciales	
ni rotores. Sus	para la salud,	
piezas son más	como dióxido de	
robustas y por eso	carbono, hollín	
tienen mayor	o benceno.	
aguante.		
Fuerza: Un diésel	Se puede	No se puede utilizar
genera mucho par	transportar con	en todos los motores
ya que trabaja a	más facilidad	del mercado.
bajas revoluciones.	que el diésel y	Emplear biodiésel en
Eso permite	es más	un motor que no está
empujar o arrastrar	biodegradable.	preparado para ello
con más fuerza y		puede provocar

con	menos		diferentes problemas:
desgaste.			desde averías en los
			inyectores hasta
			daños más graves en
			la parte interna del
			motor (pistones,
			bielas, árbol de levas,
			etc).

TABLA N° IV.13: VENTAJAS Y DESVENTAJAS DEL DIÉSEL Y BIOETANOL

COMBUSTIB	LE FÓSIL	ВІОСО	MBUSTIBLE
DIESEL	. OÍL	BIO	ETANOL
VENTAJAS	DESVENTAJAS	VENTAJAS	DESVENTAJAS
Durabilidad: Esto	Pese a que	Es una fuente	El costo de
se debe a que el	emite menos	de energía	producción es más
proceso de	CO ₂ que los de	renovable y por	alto que el de la
combustión de un	gasolina, no	lo tanto	gasolina.
motor diésel se	pueden reducir	inagotable.	
realiza por	las emisiones de		
compresión de aire,	óxido de		
mientras que el	nitrógeno (NOx)		
motor de gasolina	ni de partículas		
necesita una	(PM). Son estas		
mezcla de aire y	últimas las que		
gasolina para	afectan		
generar la explosión	básicamente al		
en el interior de los	aparato		
pistones. Como	respiratorio. Sin		
consecuencia	embargo, el uso		
existe menos	de filtros de		
desgaste de las	partículas (que		

partes internas del	las atrapa y las		
propulsor y mayor	quema), los		
durabilidad en el	catalizadores de		
tiempo.	acumulación		
	(retiene y		
	elimina el 85%		
	del NOx), los		
	catalizadores de		
	urea SCR (que		
	elimina el 95%		
	del NOx) y los		
	motores con		
	menor relación		
	de compresión		
	(como los		
	Skyactiv de		
	Mazda), son		
	elementos que		
	mejoran esa		
	desventaja.		
Autonomía. Un		Emite entre un	Se consigue muy
motor diésel puede		40% y 80%	poco combustible en
recorrer el doble de		menos de gases	comparación al
kilómetros con los		invernaderos	terreno explotado
mismos litros de		que los	
carburante que uno		combustibles	
de gasolina.		fósiles.	
Sucede porque la			
densidad del diésel			
es mayor y por lo			
tanto ofrece un			

menor consumo (en		
torno al 30%).		
Fiable: En su	Revitalizan las	El uso de pesticidas y
esencia un motor	economías	herbicidas
más simple que el	rurales.	
de gasolina ya que		
no dispone de		
bujías ni distribuidor		
ni rotores. Sus		
piezas son más		
robustas y por eso		
tienen mayor		
aguante.		
Fuerza: Un diésel	Reduce la	Tiene una
genera mucho par	dependencia	sostenibilidad
ya que trabaja a	del petróleo.	cuestionable dado
bajas revoluciones.		que para su
Eso permite		producción se
empujar o arrastrar		necesitan
con más fuerza y		combustibles fósiles.
con menos		
desgaste.		

	El etanol actúa	El etanol se consume
	como u	de un 25% a un 30%
	anticongelante	más rápidamente que
	en los motores	, la gasolina.
	mejorando e	ı
	arranque de	ı
	motor en frío	/
	previniendo e	ıl
	congelamiento.	

TABLA N° IV.14: VENTAJAS Y DESVENTAJAS DEL GNV Y BIODIESEL

COMBUSTIBLE FÓSIL		BIOCOMBUSTIBLE			
GNV		BIODIESEL			
VENTAJAS	DESVENTAJAS	VENTAJAS	DESVENTAJAS		
Cualquier tipo de	El vehículo	Al ser de origen	Se solidifica a		
motor se puede	convertido a gas	vegetal, es un	bajas		
convertir a gas, tanto	pierde entre el	combustible	temperaturas, lo		
diésel como gasolina.	4% y el 12% de	respetuoso con el	cual hace que se		
	la potencia,	medio ambiente.	formen cristales		
	según su	La materia prima	que pueden llegar		
	tamaño y estado	es ecológica y se	a taponar las		
	del motor.	produce a partir	tuberías de		
		de semillas	combustible.		
		cultivadas de			
		diferentes			
		plantas, como la			
		colza, la soja o el			
		girasol. Incluso es			
		posible fabricar			
		biodiésel a partir			
		de aceites			

		reciclados	
		procedentes de la	
		hostelería o de	
		industrias	
		alimentarias.	
Ahorra entre el 44% y	El cilindro donde	No contiene	Pierde parte de
el 55% de	se almacena el	azufre, por lo que	sus propiedades
combustible.	gas es bastante	no contribuye al	a corto plazo, algo
	grande,	efecto	que no sucede
	reduciendo así	invernadero. El	con los
	el espacio de	azufre es uno de	combustibles
	almacenamiento	los componentes	fósiles.
	del vehículo.	del gasoil y,	
		aunque en el	
		mercado se	
		pueden encontrar	
		combustibles con	
		baja carga de	
		azufre, estas	
		variantes	
		provocan una	
		pérdida de	
		lubricación que	
		pueden afectar al	
		rendimiento del	
		motor.	
Precio mucho menor	Requiere que el	Genera menos	Suele resultar
al de los otros tipos de	motor, las	emisiones de	más caro que el
combustible.	válvulas y los	gases	gasoil, aunque
	trenes estén en	contaminantes y	esto depende de
	estado óptimo,	sustancias	su origen y su

	porque el gas	perjudiciales para	modo de
	exige mucho	la salud, como	elaboración.
	más del	dióxido de	
	funcionamiento	carbono, hollín o	
	de éste, que con	benceno.	
	gasolina.		
Menor emisión de	El peso que	Se puede	No se puede
sustancias	aporta el cilindro	transportar con	utilizar en todos
contaminantes.	de gas, en	más facilidad que	los motores del
	algunos carros	el diésel y es más	mercado.
	puede afectar la	biodegradable.	Emplear biodiésel
	suspensión y		en un motor que
	disminuir el		no está preparado
	rendimiento del		para ello puede
	vehículo.		provocar
			diferentes
			problemas: desde
			averías en los
			inyectores hasta
			daños más
			graves en la parte
			interna del motor
			(pistones, bielas,
			árbol de levas,
			etc).
Su estado gaseoso le			
permite tener mejor			
reacción con el aire y			
por ende mejor			
combustión.			

Es más apropiado		
que la gasolina, para		
vehículos de alta		
compresión porque		
tiene mayor octanaje.		

TABLA N° IV.15 VENTAJAS Y DESVENTAJAS DEL GNV Y BIOETANOL

COMBUSTIBL	E FÓSIL	BIOCOME	BUSTIBLE	
GNV		BIOET	ANOL	
VENTAJAS	DESVENTAJAS	VENTAJAS DESVENTAJA		
Cualquier tipo de	El vehículo	Es una fuente de	El costo de	
motor se puede	convertido a gas	energía renovable	producción es	
convertir a gas, tanto	pierde entre el	y por lo tanto	más alto que el de	
diésel como gasolina.	4% y el 12% de	inagotable.	la gasolina.	
	la potencia,			
	según su			
	tamaño y estado			
	del motor.			
Ahorra entre el 44% y	El cilindro donde	Emite entre un	Se consigue muy	
el 55% de	se almacena el	40% y 80%	poco combustible	
combustible.	gas es bastante	menos de gases	en comparación	
	grande,	invernaderos que	al terreno	
	reduciendo así	los combustibles	explotado.	
	el espacio de	fósiles.		
	almacenamiento			
	del vehículo.			
Precio mucho menor	Requiere que el	Revitalizan las	El uso de	
al de los otros tipos de	motor, las	economías pesticidas		
combustible.	válvulas y los	rurales. herbicidas		
	trenes estén en			

	estado óptimo,		
	porque el gas		
	exige mucho		
	más del		
	funcionamiento		
	de éste, que con		
	gasolina.		
Menor emisión de	El peso que	Reduce la	Tiene una
sustancias	aporta el cilindro	dependencia del	sostenibilidad
contaminantes.	de gas, en	petróleo.	cuestionable
	algunos carros		dado que para su
	puede afectar la		producción se
	suspensión y		necesitan
	disminuir el		combustibles
	rendimiento del		fósiles.
	vehículo.		
Su estado gaseoso le		El etanol actúa	El etanol se
permite tener mejor		como un	consume de un
reacción con el aire y		anticongelante en	25% a un 30%
por ende mejor		los motores,	más rápidamente
combustión.		mejorando el	que la gasolina
		arranque del	
		motor en frío y	
		previniendo el	
		congelamiento.	
Es más apropiado			
que la gasolina, para			
vehículos de alta			
compresión porque			
tiene mayor octanaje.			

TABLA N° IV.16: VENTAJAS Y DESVENTAJAS DE LA GASOLINA Y EL BIODIESEL

COMBUSTIB	LE FÓSIL	BIOCOMBUSTIBLE		
GASOL	INA	BIODIESEL		
VENTAJAS	DESVENTAJAS	VENTAJAS	DESVENTAJAS	
El octanaje y la	Durante el	Al ser de origen	Se solidifica a bajas	
volatilidad que tiene	proceso de	vegetal, es un	temperaturas, lo cual	
la gasolina ofrecen	combustión de	combustible	hace que se formen	
al motor del	la gasolina se	respetuoso con	cristales que pueden	
automóvil: Arranque	crean varios	el medio	llegar a taponar las	
en frío, potencia	gases dañinos	ambiente. La	tuberías de	
máxima en la	para el medio	materia prima	combustible.	
aceleración, no	ambiente, gases	es ecológica y		
dilución de aceite y	como el dióxido	se produce a		
funcionamiento	de carbono, el	partir de		
silencioso y normal	óxido de	semillas		
al operar el motor.	nitrógeno, el	cultivadas de		
	monóxido de	diferentes		
	carbono y las	plantas, como la		
	moléculas de	colza, la soja o		
	hidrocarburos	el girasol.		
	que no se	Incluso es		
	queman durante	posible fabricar		
	la combustión y	biodiésel a		
	que también se	partir de aceites		
	lanzan a la	reciclados		
	atmósfera junto	procedentes de		
	con el resto de	la hostelería o		
	gases	de industrias		
	contaminantes.	alimentarias.		

El motor que usa	No contiene	El azufre es uno de
gasolina como	azufre, por lo	los componentes del
combustible trabaja	que no	gasoil y, aunque en el
de forma más	contribuye al	mercado se pueden
silenciosa, rápida y	efecto	encontrar
es más fácil de	invernadero.	combustibles con
reparar que el motor		baja carga de azufre,
diésel.		estas variantes
		provocan una pérdida
		de lubricación que
		pueden afectar al
		rendimiento del
		motor.
En términos	Genera menos	Pierde parte de sus
generales, los autos	emisiones de	propiedades a corto
que usan gasolina	gases	plazo, algo que no
son más baratos.	contaminantes	sucede con los
Los presupuestos	y sustancias	combustibles fósiles.
necesarios en	perjudiciales	
cuanto a	para la salud,	
mantenimiento y	como dióxido de	
reemplazo de partes	carbono, hollín	
son también más	o benceno.	
económicos.		
	Se puede	Suele resultar más
	transportar con	caro que el gasoil,
	más facilidad	aunque esto depende
	que el diésel y	de su origen y su
	es más	modo de elaboración.
	biodegradable	

	No se pue	de utilizar
	en todos lo	s motores
	del	mercado.
	Emplear bid	odiésel en
	un motor qu	ue no está
	preparado	para ello
	puede	provocar
	diferentes p	roblemas:
	desde aver	ías en los
	inyectores	hasta
	daños más	graves en
	la parte ir	iterna del
	motor	(pistones,
	bielas, árbo	l de levas,
	etc).	

TABLA N° IV.17: VENTAJAS Y DESVENTAJAS DE LA GASOLINA Y EL BIOETANOL

COMBUSTIB	LE FÓSIL	BIOCOMBUSTIBLE	
GASOL	INA	BIO	ETANOL
VENTAJAS	DESVENTAJAS	VENTAJAS	DESVENTAJAS
El octanaje y la	Durante el	Es una fuente	El costo de
volatilidad que tiene	proceso de	de energía	producción es más
la gasolina ofrecen	combustión de	renovable y por	alto que el de la
al motor del	la gasolina se	lo tanto	gasolina.
automóvil: Arranque	crean varios	inagotable.	
en frío, potencia	gases dañinos		
máxima en la	para el medio		
aceleración, no	ambiente, gases		
dilución de aceite y	como el dióxido		
funcionamiento	de carbono, el		

silencioso y normal	óxido de		
al operar el motor.	nitrógeno, el		
	monóxido de		
	carbono y las		
	moléculas de		
	hidrocarburos		
	que no se		
	queman durante		
	la combustión y		
	que también se		
	lanzan a la		
	atmósfera junto		
	con el resto de		
	gases		
	contaminantes.		
El motor que usa		Emite entre un	Se consigue muy
gasolina como		40% y 80%	poco combustible en
combustible trabaja		menos de gases	comparación al
de forma más		invernaderos	terreno explotado.
silenciosa, rápida y		que los	
es más fácil de		combustibles	
reparar que el motor		fósiles.	
diésel.			
En términos		Revitalizan las	El uso de pesticidas y
generales, los autos		economías	herbicidas
que usan gasolina		rurales.	
son más baratos.			
Los presupuestos			
necesarios en			
cuanto a			
mantenimiento y			

reemplazo de partes				
son también más				
económicos.				
	Reduce	la	Tiene	una
	dependencia		sostenibilidad	
	del petróleo.		cuestionable	dado
			que para	su
			producción	se
			necesitan	
			combustibles fós	siles.
	El etanol actú	ia	El etanol se con	sume
	como u	ın	de un 25% a un	30%
	anticongelante		más rápidament	e que
	en los motore	s,	la gasolina	
	mejorando	el		
	arranque d	el		
	motor en frío	у		
	previniendo	el		
	congelamiento			

4.5 TABLA DE COMPARACIÓN DE RENDIMIENTO Y CONTAMINACIÓN ENTRE COMBUSTIBLES FÓSILES Y BIOCOMBUSTIBLES

	COMBUSTIBLES			BIOCOMBUSTIBLES
	FÓSILES			
RENDIMIENTO	Un vehículo con gasolina		olina	Según pruebas realizadas
	puede	reflejar	un	estatales y especialistas
	consumo	de 12 km/L		se recorre 20% más con
				súper etanol 92 que con
				gasolina especial, es decir

		que si con gasolina se
		recorre 100 Km con súper
		etanol se recorrerá 120
		km.
		Comparando con el otro
		cuadro 14,4 Km/L
CONTAMINACIÓN	Uno de los gases que	Las emisiones de gases
	permiten el efecto	de efecto invernadero se
	invernadero es el CO2	minimizan, las energías
	(dióxido de carbono). La	renovables hacen que se
	quema de combustibles	reduzca la emisión de
	fósiles provoca una	estos gases que
	mayor emisión de dióxido	contribuyen a procesos de
	de carbono.	cambio climático.
	La combustión de	La producción de
	combustibles fósiles	biocombustibles es que se
	libera gran cantidad de	usa en gran magnitud
	óxidos de azufre y	zonas agrícolas, además
	nitrógeno que reaccionan	que los productos para el
	con gases de la	consumo humano tal vez
	atmósfera, y precipitan	dejen de ser de calidad
	en forma de ácidos	porque se le daría
	(sulfúrico y nítrico)	prioridad a la venta de
	incrementando la	estos productos para la
	acidificación de agua en	generación de
	general.	biocombustibles.
	Fuente: Flahoración propia	

CAPÍTULO V FUENTES ALTERNATIVAS DE BIOCOMBUSTIBLES EN EL DEPARTAMENTO DE TARIJA

5 FUENTES ALTERNATIVAS DE BIOCOMBUSTIBLES EN EL DEPARTAMENTO DE TARIJA

En el Departamento de Tarija, existe poca información sobre el potencial que se tiene para la producción de biocombustibles; a continuación, se describen algunos productos que pueden servir como materia prima para la obtención de biocombustibles.

5.1 ACEITE

Se entiende por aceite, a todas aquellas sustancias que son estructuralmente grasas y que se obtienen a través del prensado de determinada materia prima y que en condiciones ambientales (20°C) es líquido (Cadena productiva del aceite comestible, 2011).

Los aceites pueden usarse en diferentes situaciones o para diferentes actividades, aunque en la mayoría de los casos su función (debido a su composición) tiene que ver con la lubricación y la humectación grasa en un espacio o en una combinación de ingredientes. Normalmente, los aceites más comunes son los que se usan en la gastronomía tanto para unir las preparaciones como también para darles mayor consistencia y sabor.

El término "aceite" tiene origen árabe y se ha establecido, desde tiempos inmemoriales, principalmente al aceite que proviene de la aceituna o del olivo. Sin embargo, hoy la palabra aceite se puede usar para una amplia variedad de líquidos grasos que pueden o no ser comestibles (Cadena productiva del aceite comestible, 2011).

Una de las características más importantes del aceite es, que no es soluble en agua. Esto hace que ambos elementos nunca se pueden mezclar y deban ser integrados a través de otros ingredientes en el caso de su uso en la gastronomía.

De acuerdo a su uso, se pueden distinguir tres tipos de aceites:

Aceites combustibles

Constituidas por una variedad de mezclas líquidas de color amarillento a pardo claro, provenientes del petróleo crudo, o de sustancias vegetales

(biodiesel/ biocombustibles). Ciertas sustancias químicas que se encuentran en ellos pueden evaporarse fácilmente, en tanto otras pueden disolverse más fácilmente en agua. Son producidos por diferentes procesos de refinación, dependiendo de los usos a que se designan. Pueden ser usados como combustibles para motores, lámparas, calentadores, hornos y estufas, también como solventes. Algunos aceites combustibles comunes incluyen al querosén, el aceite diesel, el combustible para aviones de reacción, el aceite de cocina y el aceite para calefacción. Se distinguen uno del otro por la composición de hidrocarburos, los puntos de ebullición, los aditivos químicos y los usos.

Aceites minerales

Se utiliza esta denominación, para aceites obtenidos por refinación del petróleo y cuyo uso es el de lubricantes. Se usan ampliamente en la industria metalmecánica y automotriz. Estos aceites se destacan por su viscosidad, su capacidad de lubricación frente a la temperatura y su capacidad de disipar el calor, como es el caso de los aceites térmicos (ejemplo: Downterm).

Aceites comestibles

Provienen tanto del reino animal como del vegetal, tal como su nombre lo indica, son aceites que han sido o siguen siendo utilizados en el consumo humano. Existen diversos aceites animales, como los aceites de ballena, de foca o de hígado de bacalao que han llegado a consumirse, pero actualmente en la cocina sólo se utilizan aceites vegetales, extraídos de semillas, de frutas o de raíces (Cadena productiva del aceite comestible, 2011).

5.2 GIRASOL

La planta de girasol, también conocido como mirasol, cuyo nombre científico es Helianthus annuus, debe su nombre vulgar, al fototropismo positivo, es decir a la característica de su inflorescencia de moverse constantemente, para recibir de frente la radiación solar (Cadena productiva del aceite comestible, 2011).

El girasol es una planta herbácea de la familia de las Compuestas (Asteraceae), originario de América y se utiliza en la fabricación de aceite de cocinar. Además, es

FUENTES ALTERNATIVAS DE BIOCOMBUSTIBLES EN EL DEPARTAMENTO DE TARIJA

muy utilizada como alimento, a través del consumo de sus semillas, tras un pequeño proceso en el que se tuestan.

La materia prima de industrialización es la semilla, alrededor de ella se establecen la mayor parte de los productos de industrialización (Cadena productiva del aceite comestible, 2011):

Aceite crudo

Harinas proteicas

Cáscara

Borras
oleínas

Productos finales

Destilados de
desodorización

Aceite refinado
desodorizado

ESQUEMA Nº V.1: PRODUCTOS DE LA PIPA DE GIRASOL

Fuente: (Cadena productiva del aceite comestible, 2011)

ESQUEMA Nº V.2: EXTRACCIÓN DEL ACEITE CRUDO DE GIRASOL

Fuente: (Cadena productiva del aceite comestible, 2011)

5.2.1 Zonas de cultivo de girasol en Bolivia

Las zonas productoras de girasol más importantes de Bolivia, están localizadas en los departamentos de Cochabamba (Valles Meso térmicos), Sucre, Santa Cruz de la Sierra (Llanos tropicales) y Tarija (Chaco semi tropical seco y húmedo), con alturas desde 448 m hasta los 2.584 m.s.n.m. y una precipitación pluvial que varía de 497 a 1.350 mm, concentrada en los meses de noviembre a abril y una temperatura media anual de 16.5°C a 23.9°C.

Bolivia, pese a tener cuatro departamentos para el cultivo del girasol, el 95% de la producción se concentra en el departamento de Santa Cruz, siendo el 5% restante, irrelevante en la contabilización de las estadísticas industriales de producción (Cadena productiva del aceite comestible, 2011).

Así como en la soya, el cultivo del girasol en Santa Cruz, se distribuye en dos zonas: la zona éste y la zona integrada.

La zona éste, está compuesta por los municipios de Pailón, Cuatro Cañadas, San Julián, El Puente, Guarayos y San José de Chiquitos. La zona integrada, está compuesta por la zona del Sur Integrado, Central Integrada, Montero – Okinawa, Minero – Peta Grande, Montero – Yapacaní. En promedio la Zona Este, cultiva el 95% y el otro 5% lo constituye la Zona Integrada (Cadena productiva del aceite comestible, 2011).

La siembra y cosecha abarca el periodo llamado "campaña de invierno" (se siembra en junio y/o Julio, y se cosecha en octubre y/o noviembre).

Pando
Beni
Cochabamba
Santa Cruz
Oruro
Potosí Chuquisaca
Tarija

FIGURA NºV.1: ZONAS DE CULTIVO DE GIRASOL EN BOLIVIA

Fuente: (Cadena productiva del aceite comestible, 2011)

5.2.2 Producción, rendimiento y superficie del girasol

Bolivia, pese a tener cuatro departamentos para el cultivo del girasol, el 95% de la producción se concentra en el departamento de Santa Cruz, siendo el 5% restante, irrelevante en la contabilización de las estadísticas industriales de producción.

Desde de los años 2008-2009, hasta los años 2016-2017 la disminución de la producción de girasol se fue acentuando, aproximadamente en esos 9 años la producción de girasol decreció en un 68%.

Actualmente, Tarija solo aporta aproximadamente el 0,0015% de la producción total de girasol en Bolivia.

TABLA NºV.1: PRODUCCIÓN, RENDIMIENTO Y SUPERFICIE DEL GIRASOL EN BOLIVIA

AÑOS	PRODUCCIÓN (Tm)	RENDIMIENTO (Tm/Ha)	SUPERFICIE (Ha)
1998-1999	95.685	0,943	101.500
1999-2000	110.000	0,846	130.000
2000-2001	150.000	1,111	135.000
2001-2002	173.345	0,972	178.300
2002-2003	78.000	0,584	133.500
2003-2004	92.000	1,108	83.000
2004-2005	76.300	0,857	89.000
2005-2006	120.300	1,211	99.350
2006-2007	173.300	1,070	162.000
2007-2008	298.642	1,152	259.218
2008-2009	354.056	1,411	250.872
2009-2010	311.100	1,320	235.685
2010-2011	152.927	1,071	142.791
2011-2012	225.469	1,020	221.040
2012-2013	278.102	0,974	285.525
2013-2014	198.566	1,023	194.082
2014-2015	105.540	1,022	103.284
2015-2016	102.023	0,695	146.816
2016-2017	68.417	0,675	101.320
2017-2018	121.177	1,114	108.750
2018-2019	136.779	1,249	109.540

Fuente: (INE, 1998-2019)

TABLA NºV.2: PRODUCCIÓN, RENDIMIENTO Y SUPERFICIE DEL GIRASOL EN TARIJA

AÑOS	PRODUCCIÓN (Tm)	RENDIMIENTO (Tm/Ha)	SUPERFICIE (Ha)
1998-1999	-	-	-
1999-2000	-	-	-
2000-2001	•	-	•
2001-2002	-	-	-
2002-2003	•	-	•
2003-2004	-	-	-
2004-2005	-	-	-
2005-2006	-	-	-
2006-2007	-	-	-
2007-2008	2	0,5	4
2008-2009	1	0,400	2

FUENTES ALTERNATIVAS DE BIOCOMBUSTIBLES EN EL DEPARTAMENTO DE TARIJA

2000 2010	4	0.470	2
2009-2010	l	0,470	
2010-2011	1	0,479	2
2011-2012	1	0,480	2
2012-2013	1	0,484	2
2013-2014	1	0,495	2
2014-2015	1	0,500	2
2015-2016	2	0,640	3
2016-2017	2	0,667	3
2017-2018	2	0,667	3
2018-2019	2	0,813	3

Fuente: (INE, 1998-2019)

5.3 SOYA

La planta de la soya es una planta herbácea anual, de primavera-verano, cuyo ciclo vegetativo oscila de tres a siete meses y de 40 a 100 cm de envergadura. Las hojas, los tallos y las vainas son pubescentes, variando el color de los pelos de rubio a pardo más o menos grisáceo. Su tallo es rígido y erecto, adquiere alturas variables, de 0,4 a 1,5 metros, según variedades y condiciones de cultivo.

Pese a los múltiples usos de la semilla de soya, el mayor aprovechamiento que se verifica, es la obtención del aceite crudo; alrededor de su procesamiento se van constituyendo otros productos aprovechables por el hombre (Cadena productiva del aceite comestible, 2011)

ESQUEMA Nº V.3: APROVECHAMIENTO DE LA SEMILLA DE SOYA EN LA OBTENCIÓN DEL ACEITE

Fuente: (Cadena productiva del aceite comestible, 2011)

5.3.1 Zonas de cultivo de soya en Bolivia

Zonas Soyeras en Santa Cruz

Nuflo de Miguel de Velasco

Chiquitos

Zona del Norte Integrado

Zona de Expansión del Este

FIGURA NºV.2: ZONAS SOYERAS EN SANTA CRUZ

Fuente: (Cadena productiva del aceite comestible, 2011)

En Bolivia, el cultivo de soya se ha desarrollado exclusivamente en el Departamento de Santa Cruz de la Sierra, existiendo además algunas plantaciones en Tarija y Chuquisaca.

Toda la producción comercial de soya se origina en el Departamento de Santa Cruz, en la que se identifican dos áreas con características diferentes: Este y Norte de Santa Cruz (Cadena productiva del aceite comestible, 2011).

FUENTES ALTERNATIVAS DE BIOCOMBUSTIBLES EN EL DEPARTAMENTO DE TARIJA

- El Este de Santa Cruz, también conocido como "Las Tierras Bajas del Este", presenta suelos aluviales de buena fertilidad natural, francos limosos, uniformes, con comunidades vegetales de Chaco y suficientes lluvias en primavera-verano, posee aproximadamente 400.000 hectáreas cultivadas con soya, producidas principalmente por el segmento de medianos y grandes productores. En esta zona, también se concentra la gran mayoría de los silos y plantas de procesamiento para toda la cadena productiva.
- El Norte, conocido como "norte integrado", presenta suelos overos, en gran parte sobre paleo cauces, de moderada fertilidad natural sobre vegetación de Yungas y con mayor régimen de lluvias; en esta región es posible realizar dos cosechas al año en gran parte debido a napas muy cerca de la superficie y a la muy baja probabilidad de heladas invernales, tiene aproximadamente 250.000 hectáreas de cultivo de soya y agrupa al segmento de pequeños productores campesinos que en su conjunto suman unas 8,000 productores, constituyéndose de esta manera en el grupo más numeroso de los productores de soya en Bolivia.

En Bolivia se realizan dos cultivos anuales: en verano, se siembra en noviembre y diciembre, y se cosecha en marzo y abril; mientras que en invierno, se siembra en junio y julio, y se cosecha en octubre y noviembre (Cadena productiva del aceite comestible, 2011).

La zafra de verano genera aproximadamente el 75% de la producción boliviana. Los rendimientos dependen de las condiciones del suelo y especialmente del régimen de lluvias, y en promedio están un poco por arriba de las dos toneladas por hectárea.

Dentro del proceso de cultivo de la soya, se presentan exclusivamente tres hechos que van en desmedro de los intereses nacionales: la producción en territorio nacional con capitales extranjeros, la producción de soya transgénica y la erosión de las tierras de cultivo de soya.

5.3.2 Producción, rendimiento y superficie de la soya

La producción de la soya, está radicado fundamentalmente en Santa Cruz y se desglosa en dos cosechas anuales, una de las cuales se siembra en el año anterior. Por este proceso, precisamente, se conoce a las producciones como cosecha de verano y cosecha de invierno (Cadena productiva del aceite comestible, 2011).

En relación a los otros departamentos involucrados, se pude mencionar que su cultivo incluye a pequeñas superficies, de las cuales la más relevante se encuentra al sur de Tarija, fundamentalmente con destino a la producción de semilla de calidad (menos de 10.000 hectáreas), cuyo volumen de producción representa el 1,3% de la producción nacional, mientras que Chuquisaca alcanza el 0.2%.

TABLA NºV.3: EVOLUCIÓN DE PRODUCCIÓN, RENDIMIENTO Y SUPERFICIE DE LA SOYA EN BOLIVIA

PROPUGGIÓN PENDIMIENTO CURERFICIE				
AÑOS	PRODUCCIÓN	RENDIMIENTO	SUPERFICIE	
7	(Tm)	(Tm/Ha)	(Ha)	
1998-1999	957.412	1,536	623.280	
1999-2000	1.190.283	1,940	613.459	
2000-2001	1.148.405	1,878	611.630	
2001-2002	1.243.269	1,959	634.575	
2002-2003	1.583.549	2,321	682.393	
2003-2004	1.584.284	1,972	803.356	
2004-2005	1.688.569	1,797	939.456	
2005-2006	1.614.831	1,701	949.114	
2006-2007	1.640.705	1,662	987.254	
2007-2008	1.238.509	1,472	841.651	
2008-2009	1.698.443	1,798	944.623	
2009-2010	1.934.394	2,077	931.436	
2010-2011	2.319.524	2,243	1.034.235	
2011-2012	2.429.109	2,196	1.106.025	
2012-2013	2.645.777	2,073	1.276.344	
2013-2014	2.814.321	2,194	1.282.455	
2014-2015	3.105.938	2,348	1.322.992	
2015-2016	3.203.992	2,398	1.336.042	
2016-2017	2.671.046	2,114	1.263.702	
2017-2018	2.818.897	2,144	1.314.925	
2018-2019	2.990.845	2,155	1.387.973	

Fuente: (INE, 1998-2019)

FUENTES ALTERNATIVAS DE BIOCOMBUSTIBLES EN EL DEPARTAMENTO DE TARIJA

Haciendo la relación correspondiente entre la producción de Bolivia y el Departamento de Tarija a fines del año 2019, nos dice que, hasta fines de este año, el Departamento de Tarija aporta aproximadamente el 0,78 % a la producción total de soya en Bolivia.

TABLA NºV.4: EVOLUCIÓN DE PRODUCCIÓN, RENDIMIENTO Y SUPERFICIE DE LA SOYA EN TARIJA

AÑOS	PRODUCCIÓN (TM)	RENDIMIENTO (Tm/Ha)	SUPERFICIE (Ha)
1998-1999	7.315	1,744	4.194
1999-2000	9.645	1,982	4.867
2000-2001	8.613	1,856	4.641
2001-2002	9.619	1,756	5.476
2002-2003	11.409	1,873	6.091
2003-2004	12.695	1,773	7.159
2004-2005	12.862	1,836	7.004
2005-2006	14.435	1,921	7.516
2006-2007	13.795	1,858	7.423
2007-2008	15.921	1,956	8.141
2008-2009	19.079	2,034	9.379
2009-2010	18.185	1,963	9.263
2010-2011	20.071	2,008	9.994
2011-2012	22.006	2,115	10.406
2012-2013	22.034	2,145	10.271
2013-2014	21.813	2,183	9.991
2014-2015	22.984	2,110	10.893
2015-2016	20.986	2,133	9.839
2016-2017	19.435	1,970	9.867
2017-2018	22.010	2,200	10.006
2018-2019	23.262	2,125	10.945

Fuente: (INE, 1998-2019)

5.4 CAÑA DE AZUCAR

La caña es un cultivo de zonas tropicales o subtropicales del mundo. Requiere agua y suelos adecuados para crecer bien. Es una planta que asimila muy bien la radiación solar, teniendo una eficiencia cercana a 2% de conversión de la energía incidente en biomasa. Un cultivo eficiente puede producir 100 a 150 toneladas de caña por hectárea por año (con 14% a 17% de sacarosa, 14% a 16% de fibra y 2% de otros productos solubles).

La caña se propaga mediante la plantación de trozos de caña, de cada nudo sale una planta nueva idéntica a la original; una vez plantada la planta crece y acumula azúcar en su tallo, el cual se corta cuando está maduro. La planta retoña varias veces y puede seguir siendo cosechada. Estos cortes sucesivos se llaman "zafras". La planta se deteriora con el tiempo y por el uso de la maquinaria que pisa las raíces, así que se debe replantar cada siete a diez años, aunque existen cañaverales de 25 o más años de edad (Cadena productiva del azúcar, 2010).

Bagazo a fabrica Tachos de Evaporador cocimiento de Papel o a energia Clarificador Conductora Trapiche Transporte Principal Jarabe Espuma <u>/</u>% Cañaveral Mesa de Filtros Jugo Alimentación Centrífugas Torre Evaporación Sulfitación Tolva Torre Cal Cocimiento Cristalizador Centrífugas Tanque de Envasado Encalado Bolsas para venta Agua Caliente Vagón Tanque de Az ucar Crudo Refundición

FIGURA NºV.3: PROCESO PRODUCTIVO DEL AZÚCAR DE CAÑA

Fuente: (Cadena productiva del azúcar, 2010)

5.4.1 Cadena productiva del azúcar en Bolivia

Los eslabones de la cadena productiva, prácticamente se agrupan en cuatro: la producción primaria (producción de la materia prima), la producción industrial (obtención del azúcar como tal), la distribución y comercialización, y finalmente, el consumidor final del producto (Cadena productiva del azúcar, 2010).

Cañaveral Cosecha Factoria Distribución
Producción Primaria Producción Industrial Comercialización

Comercialización

Consumidor
Final
Consumidor

FIGURA NºV.4: CADENA PRODUCTIVA DEL AZÚCAR EN BOLIVIA

Fuente: (Cadena productiva del azúcar, 2010)

5.4.2 Distribución de zonas zafreras en Tarija

La extensión de caña de azúcar abarca 9 zonas y 27 sub-zonas, de acuerdo a la siguiente relación:

TABLA NºV.5: ZONAS ZAFRERAS EN TARIJA

ZONA	PROVINCIA	SUB ZONAS(*)
1	Campo	Campo Grande río Bermejo y Campo Grande río Tarija
	Grande	
2	Porcelana	Porcelana Bordo y Porcelana Bajo
3	La Talita	
4	Arrozales	
5	El Nueve	Quebrada El Nueve y Quebrada El Cinco
SU	IB TOTAL	
6	Colonia	Colonia Linares Centro, Costa Rica, Quebrada Chica,
	Linares	Arrayanal y El Toro

7	Barredero	Barredero, San Telmo río Tarija, Volcán y Nogalitos río
		Tarija
8	Trementinal	
9	Camino a Tarija	Candado Chico, Candado Grande, Quebrada Santa Rosa, La Florida, Flor de Oro, Naranjo dulce, Los Pozos, San Telmo río Bermejo, La Goma, El Salado y Nogalitos

Fuente: (Cadena productiva del azúcar, 2010)

5.4.3 Ingenio azucarero en Tarija

En Bolivia, actualmente existen 5 ingenios con una capacidad instalada conjunta de 50.000 toneladas de Caña por día. Cuatro de ellos se encuentran en el Departamento de Santa Cruz: Ingenio Azucarero "Roberto Barbery Paz" (UNAGRO), Planta Industrial Don Guillermo (ex La Bélgica), Ingenio Azucarero San Aurelio e Ingenio Azucarero Guabirá S.A., y uno en el Departamento de Tarija: Ingenio Azucarero Moto Méndez (Industria Agrícola de Bermejo S.A.).

5.4.3.1 Ingenio azucarero Moto Méndez (Industria Agrícola de Bermejo S.A.)

El Ingenio Azucarero de Bermejo fue fundado en el año 1968 como empresa estatal descentralizada dependiente de la Corporación Boliviana de Fomento (CBF), pero con la desaparición de ésta, en agosto de 1985, pasó a depender de la Corporación de Desarrollo de Tarija (CODETAR).

Con todo, tampoco fue muy largo este período y, debido a la vigencia de la descentralización administrativa, quedó durante años bajo la tuición de la Prefectura del Departamento de Tarija (Cadena productiva del azúcar, 2010).

1998, representó un punto de inflexión, pues el Ingenio fue transferido al sector privado mediante la conformación de una sociedad de economía mixta entre la Prefectura, los trabajadores del ingenio y el sector cañero de Bermejo. La Prefectura, sin embargo, terminó por vender sus acciones en partes iguales a los otros dos socios. Así se llegó hasta el 3 de diciembre de 2001, momento en el que, por discrepancias, los trabajadores del ingenio adquirieron el 100 por ciento de las acciones del sector cañero, constituyéndose desde entonces en una Sociedad

Anónima y en los únicos propietarios de esa enorme industria azucarera. Actualmente el ingenio se llama "Ingenio Azucarero Moto Méndez", patrocinado por la "Industria Agrícola de Bermejo S.A.).

A esta fecha, tiene una capacidad de molienda, aproximadamente de 6.000 [Tm/día].

Este ingenio se caracteriza por la producción de azúcar blanco directo que es una azúcar no refinada con trazas de minerales, que tiene alguna característica alimenticia y que es la preferida en el mercado del sur del país, también produce azúcar crudo libre de dextranas para el mercado internacional y alcohol de 96 grados, para el mercado internacional principalmente.

La azúcar para el mercado interno se empaca en bolsas de polipropileno con recubrimiento interior de plástico, en presentaciones de 46 kilos, 50 kilos y 11.5 kilos. El producto para el mercado internacional se puede además manejar a granel, especialmente si se trata de azúcar crudo.

En cuanto al alcohol se maneja a granel, se transporta en camiones cisterna y va todo al mercado internacional (Cadena productiva del azúcar, 2010).

La temporada de zafra, dura alrededor de 150 días, la misma que inicia generalmente entre los meses de abril o mayo, con una movilización en promedio de 5000 personas, cada zafrero tiene como ayudantes, por lo general, a adolescentes que el rubro son conocidos como "cuartas", ellos son los encargados de sacar las hierbas y suciedad de la caña, así como su consolidación en paquetes de 5 toneladas aproximadamente. Las jornadas laborales pueden desarrollarse hasta en 14 horas, desde las 03:00 hasta las 18:00, con un periodo de descanso de 1 hora a medio día. Los rendimientos de cosecha pueden variar de 3 a 4 [Tm/día], llegando a percibir remuneraciones que van desde los 22.5 a 23.5 [Bs/Tm]. Respecto a los "cuartas", pueden llegar a recibir hasta 500 [Bs/mes], fuera del servicio de alimentación, la cual corre a cuenta del productor.

El transporte de la caña, desde los lugares de cosecha hasta los ingenios mismos, son asumidos por los productores, los mismos que se verifican en vehículos que

cargan desde 2 a 6 paquetes, cada paquete de 5 [Tm] (o sea de 10 a 30 Tm). El costo de transporte oscila entre 8 y 35 [Bs/Tm], en función de la distancia al ingenio, la misma que puede variar hasta 60 [Km] como promedio.

De 1985 al 2001, el pago de la materia prima, puesta en planta, se verificó como maquila, con el 60.6% del azúcar producido para el productor y 39.4% para el ingenio, con los subproductos correspondientes, a favor del ingenio (Cadena productiva del azúcar, 2010)

A partir del 2001, se empezó a pagar por peso y pureza de jugo de la caña, estableciéndose como valor mínimo del jugo en 75%. En razón a esta modalidad los precios de compra variaron entre 118 [Bs/Tm] y 165 [Bs/Tm].

La capacidad de molienda del ingenio es de 6.000 [Tm/día]

Uno de los problemas que enfrenta el ingenio azucarero en esta región, es la falta de materia prima, siendo que muchos productores prefieren vender su producto, al ingenio azucarero "El Tabacal" (Argentina), debido a los mayores precios de pago.

TABLA NºV.6: CAÑA MOLIDA POR INGENIO EN BOLIVIA

AÑOS	GUABIRA (Tm)	LA BÉLGI CA (Tm)	SAN AURELIO (Tm)	UNAGRO (Tm)	TOTAL SANTA CRUZ (Tm)	TOTAL BERMEJO (Tm)	TOTAL NACIONAL (Tm)
2000	892.156	620.847	530.374	857.953	2.901.330	345.503	3.246.833
2001	1.201.793	721.230	743.522	1.024.024	3.690.569	493.249	4.183.818
2002	1.319.652	789.142	790.134	1.159.764	4.058.692	405.126	4.463.818
2003	1.287.631	672.605	761.710	1.176.695	3.898.641	560.489	4.459.130
2004	1.539.415	758.827	763.211	1.253.620	4.315.073	574.673	4.889.746
2005	1.538.526	682.100	628.945	1.053.268	3.902.839	600.710	4.503.549
2006	1.878.991	834.982	1.075.979	1.275.284	5.065.236		
2007	1.895.215	927.683	1.217.750	1.399.945	5.440.593		
2008	2.194.314	974.753	1.507.890	1.405.262	6.082.219		

Fuente: (Cadena productiva del azúcar, 2010)

5.4.4 Producción de azúcar y alcohol

De acuerdo a los antecedentes de las unidades productivas, se deduce que la caña de azúcar se destina a dos usos finales: a la obtención de azúcar como tal y a la obtención del alcohol. El alcohol tiene dos opciones de fabricación: una como consecuencia de la fermentación de la melaza (sub producto originado de la fabricación de azúcar) y la otra, mediante la disposición del jugo de caña. Este último proceso es utilizado exclusivamente por el ingenio Guabirá.

ESQUEMA NºV.4: DISPOSICIÓN DE LA CAÑA DE AZÚCAR

Fuente: (Cadena productiva del azúcar, 2010)

Los rendimientos promedios para la obtención de azúcar, en los dos departamentos productores varia, de acuerdo a la siguiente relación:

Santa Cruz: 1.85 [qq azúcar/Tm caña]

Tarija: 2.50 [qq azúcar/Tm caña]

Las variables para la producción de alcohol como subproducto de la obtención del azúcar, son (Cadena productiva del azúcar, 2010):

 1 tonelada de melaza produce 230 litros de alcohol, 1 tonelada métrica de caña de azúcar produce entre 30 a 40 [Kg] de melaza.

TABLA NºV.7: PRODUCCIÓN DE AZÚCAR EN BOLIVIA, POR INGENIO EN

AÑOS	GUABIRA (qq)	LA BELGICA	BELGICA AURELIO		TOTAL SANTA CRUZ (qq)	TOTAL BERMEJO	TOTAL NACIONAL
		(qq)	(44)		CKUZ (qq)	(qq)	(qq)
2000	1.870.209	1.162.082	1.040.730	1.785.100	5.858.121	893.775	6.751.896
2001	2.405.352	1.322.557	1.413.844	2.060.500	7.202.253	1.281.400	8.483.653
2002	2.705.021	1.510.229	1.610.585	2.426.225	8.252.060	1.015.491	9.267.551
2003	2.198.189	1.227.876	1.490.302	2.301.950	7.218.317	1.441.449	8.659.766
2004	2.900.640	1.524.843	1.574.672	2.580.510	8.580.665	1.436.016	10.016.681
2005	2.531.762	1.303.315	1.231.168	2.206.541	7.272.786	1.488.143	8.760.929
2006	2.800.262	1.509.512	2.095.856	2.353.163	8.758.793	1.378.785	10.137.578
2007	2.591.866	1.592.807	2.286.730	2.568.016	9.039.419	1.216.981	10.256.400
2008	2.911.298	1.565.545	2.785.995	2.636.477	9.899.315	1.174.117	11.073.432
2009	3.102.190	1.546.908	2.441.880	3.409.739	10.500.717	1.167.000	11.667.717

QUINTALES

Fuente: (Cadena productiva del azúcar, 2010)

FIGURA NºV.5: PARTICIPACIÓN DE INGENIOS AZUCAREROS EN LA PRODUCCIÓN DE AZÚCAR

Fuente: (Cadena productiva del azúcar, 2010)

5.4.5 Zonas de cultivo y cosecha de azúcar en Tarija

El clima característico de la región es templado con veranos calurosos, de subhúmedo a húmedo, con una precipitación fluvial de 1,203.7 mm., de las cuales un 88% se distribuyen entre los meses de noviembre a abril. La zona se ve delimitada en su territorialidad por el río Bermejo al oeste y el río Tarija al este, ambos demarcan la frontera con la república Argentina, la altitud promedio de la zona es de 420 metros sobre el nivel del mar, presentando un paisaje con montañas y riberas que confluyen en la unión de los dos ríos.

La principal actividad productiva de la zona es la caña de azúcar, le sigue en importancia los cítricos, maíz, maní y yuca que abastecen el mercado regional (Cadena productiva del azúcar, 2010).

También se dan, el criado de ganado bovino, ovino, caprino y aves de corral, y la explotación piscícola en menor escala. La ciudad de Bermejo se asienta en la ribera este del río Bermejo, con una extensión de 4 Km2, a su frente se encuentra la localidad de Aguas Blancas (Argentina), con la que mantiene un constante vínculo a través de un sistema de transporte fluvial (chalanas), que une ambas riberas, y que moviliza un gran contingente de personas y el comercio informal.

FIGURA NºV.6 ZONAS DE CULTIVO DE CAÑA EN TARIJA

Fuente: (Cadena productiva del azúcar, 2010)

5.4.6 Producción, rendimiento y superficie de la caña de azúcar

La zona de producción de caña de azúcar en el Departamento de Tarija está ubicada en la Provincia Arce, más propiamente en el municipio de Bermejo y parte del municipio de Padcaya, capital de dicha Provincia; ambos ubicados al sur de la provincia.

El rendimiento hasta hace unos 10 años era de 60 [Tm/ha], ahora estos valores, oscila alrededor de 50 [Tm/ha]. Considerando un rendimiento promedio de 55 [Tm/ha] se puede calcular la producción de caña de azúcar en el departamento.

TABLA NºV.8: PRODUCCIÓN, RENDIMIENTO Y SUPERFICIE DE CAÑA DE AZÚCAR EN BOLIVIA

AÑOS	PRODUCCIÓN (Tm)	RENDIMIENTO (Tm/Ha)	SUPERFICIE (Ha)
1998-1999	3.431.599	41,001	83.695
1999-2000	3.476.587	41,171	84.442
2000-2001	4.650.335	50,549	91.996
2001-2002	4.842.205	47,995	100.889
2002-2003	5.117.205	49,438	103.508
2003-2004	5.200.069	49,570	104.903
2004-2005	5.019.228	47,376	105.945
2005-2006	5.712.942	50,460	113.217
2006-2007	6.354.636	47,431	133.977
2007-2008	7.387.704	49,652	148.791
2008-2009	7.396.184	49,729	148.730
2009-2010	5.335.735	37,362	142.813
2010-2011	5.494.370	40,864	134.455
2011-2012	7.241.104	50,522	143.326
2012-2013	8.064.683	53,607	150.442
2013-2014	7.598.630	51,081	148.758
2014-2015	7.192.512	49,450	145.449
2015-2016	7.374.751	50,509	146.009
2016-2017	8.731.676	55,590	157.074
2017-2018	9.215.146	55,913	164.812
2018-2019	9.558.472	54,736	174.630

Fuente: (INE, 1998-2019)

Haciendo la relación correspondiente entre la producción de Bolivia y el Departamento de Tarija a fines del año 2019, nos dice que, hasta fines de este año, el Departamento de Tarija aporta aproximadamente el 5,65 % a la producción total de caña de azúcar en Bolivia.

TABLA NºV.9: PRODUCCIÓN, RENDIMIENTO Y SUPERFICIE DE CAÑA DE AZÚCAR EN TARIJA

~	PRODUCCIÓN	RENDIMIENTO	SUPERFICIE
AÑOS	(Tm)	(Tm/Ha)	(Ha)
1998-1999	508.908	41,817	12.170
1999-2000	362.755	32,740	11.080
2000-2001	498.630	41,449	12.030
2001-2002	408.236	35,269	11.575
2002-2003	563.197	47,956	11.744
2003-2004	577.813	48,926	11.810
2004-2005	599.103	50,472	11.870
2005-2006	587.717	50,301	11.684
2006-2007	605.856	52,378	11.567
2007-2008	627.625	54,605	11.494
2008-2009	428.041	40,385	10.599
2009-2010	389.068	40,495	9.608
2010-2011	391.329	40,684	9.619
2011-2012	391.544	40,715	9.617
2012-2013	391.034	40,885	9.564
2013-2014	424.085	44,044	9.629
2014-2015	436.327	45,015	9.693
2015-2016	446.869	45,506	9.820
2016-2017	473.363	46,600	10.158
2017-2018	477.734	49,210	9.708
2018-2019	539.921	57,187	9.441

Fuente: (INE, 1998-2019)

CAPÍTULO VI ANÁLISIS E INTERPRETACIÓN DE DATOS

6 ANÁLISIS E INTERPRETACIÓN DE DATOS

6.1 ANÁLISIS ECONÓMICO DEL PRECIO DE LOS COMBUSTIBLES FÓSILES Y LOS BIOCOMBUSTIBLES

En el Departamento de Tarija desde el mes noviembre del 2018 se comercializa en algunas estaciones de servicio la gasolina súper etanol 92, que es la mezcla de gasolina con un máximo de 12% de etanol, como aditivo.

Es un precio competente para el mercado interno dado que su precio es de 4,50 Bs/L y no está subvencionado, a diferencia de los combustibles fósiles que si están subvencionados y sus precios rondan entre 3,74 Bs/L (gasolina especial) a 4,79 Bs/L (gasolina Premium) para los vehículos.

El costo para YPFB que paga a los ingenios Guabirá, Aguaí y UNAGRO hasta un 26,7% más por el etanol (alcohol anhidro) que el precio en el mercado de Brasil, líder regional en la producción.

El precio que reciben los ingenios actualmente, es de 71 centavos de dólar por litro, un valor que fue fijado por la estatal con los cañeros mediante negociación, mientras que en el vecino país es de 52 centavos de dólar (precio al 1 de noviembre de 2018).

En Argentina, el valor que se paga a los ingenios por el litro de etanol es de 62 centavos de dólar. En Paraguay, el precio es de 63 centavos de dólar.

TABLA NºVI.1: PRECIO MERCADO INTERNO DE LOS PRODUCTOS
REGULADOS AL CONSUMIDOR FINAL

PREC	PRECIOS MERCADO INTERNO DE LOS PRODUCTOS REGULADOS AL CONSUMIDOR FINAL										
Gestión	GASOLINA ESPECIAL	GASOLINA PREMIUM	GASOLINA SÚPER 91	GASOLINA SÚPER ETANOL 92	GASOLINA DE AVIACIÓN	DIESEL	JET FUEL NACIONAL	GLP	KEROS ENE	GAS OIL	GNV
	Bs/L	Bs/L	Bs/L	Bs/L	Bs/L	Bs/L	Bs/L	Bs/Kg	Bs/L	Bs/L	Bs/m ³
Dec-10	3.74	4.79	-	-	4.57	3.72	2.77	2.25	2.72	1.10	1.66
Dec-11	3.74	4.79	-	-	4.57	3.72	2.77	2.25	2.72	1.10	1.66
Dec-12	3.74	4.79	-	-	4.57	3.72	2.77	2.25	2.72	1.10	1.66
Dec-13	3.74	4.79	-	-	4.57	3.72	2.77	2.25	2.72	1.10	1.66
Dec-14	3.74	4.79	-	-	4.57	3.72	2.77	2.25	2.72	1.10	1.66
Dec-15	3.74	4.79	-	-	4.57	3.72	2.77	2.25	2.72	1.10	1.66

ANÁLISIS E INTERPRETACIÓN DE DATOS

Dec-16	3.74	4.79	-	-	4.57	3.72	2.77	2.25	2.72	1.10	1.66
Dec-17	3.74	4.79	-	-	4.57	3.72	2.77	2.25	2.72	1.10	1.66
Dec-18	3.74	4.79	4.40	4.50	4.57	3.72	2.77	2.25	2.72	1.10	1.66
Nov-19	3.74	4.79	4.40	4.50	4.57	3.72	2.77	2.25	2.72	1.10	1.66
May-20	3.74	4.79	4.40	4.50	4.57	3.72	2.77	2.25	2.72	1.10	1.66

Fuente: (ANH, Precios finales al consumidor, s.f.)

6.2 FABRICACIÓN Y CARACTERISTICAS DEL COMBUSTIBLE SUPER ETANOL 92

6.2.1 Fabricación del combustible súper etanol 92

Es un nuevo combustible introducido en el mercado boliviano desde el 1 de noviembre del año 2019.

Un decreto supremo reglamentario autoriza la mezcla de gasolina con un máximo de 12% de etanol, como aditivo.

Se obtiene de la siguiente manera:

El alcohol anhidro (libre de agua) es extraído de la caña de azúcar y para su producción pasa por varios procesos:

- a) Fermentación: La fermentación alcohólica es un proceso anaeróbico realizado por las levaduras.
- **b) Destilación**: La destilación es la operación de separar, mediante calor, los diferentes componentes líquidos de una mezcla.
- c) Desulfuración: Eliminación del anhídrido sulfuroso (SO2) presente en el alcohol bruto.
- **d) Deshidratación:** El alcohol pasa a través de un sistema que le quita el agua restante (se captan las moléculas de agua), el alcohol puro sin el agua, se lo denomina alcohol anhidro.
- **e) Desmetilización:** Proceso en el que el alcohol ya deshidratado (99,9%) ve separado de su contenido de metanol.

Posteriormente a este proceso, pasa luego a ser mezclado con la gasolina y obtener así el nuevo combustible verde (Bioetanol, s.f.).

Fuente: (¿Qué tan conveniente es la gasolina Súper etanol 92?, 2018)

6.2.2 Características del combustible súper etanol 92

- ✓ La gasolina Súper Etanol 92 está compuesta por un 12% de etanol anhidro y 88% de gasolina base.
- ✓ Reducción hasta en 40 por ciento de emisiones de gases de efecto invernadero, esto se debe a que el nuevo carburante contendrá un 12 por ciento de etanol (líquido incoloro, de olor fuerte e inflamable que se obtiene por la destilación de productos en fermentación), un aditivo que, al ser oxigenante, reduce la producción de dióxido de carbono.
- ✓ Este nuevo producto no tiene afecciones sobre el motor de los vehículos, puesto que se trata de gasolina normal potenciada con alcohol anhidro, lo que hace más factible la combustión y potencia de los motores.
- ✓ Al contener un alto octanaje permite arrancar motores en frío y permite que los vehículos tengan más potencia, paralelamente reduciendo el impacto de invernadero ocasionados por la emisión de gases tóxicos, estableciendo una cantidad mínima de producción en este nuevo combustible.
- ✓ El porcentaje de etanol (12%), incrementa el octanaje de la gasolina, que es una escala que mide la capacidad antidetonante del carburante cuando se comprime dentro del cilindro de un motor.
- ✓ La eficacia del motor incrementa mientras más alto es el índice de octanaje, con la gasolina convencional, la combustión es prematura.
- ✓ Durabilidad, ya que rinde 20% más que la gasolina tradicional.
- ✓ Al ser un combustible amigable puede cuidar y limpiar el motor de los autos, por lo que extenderá su vida útil.
- ✓ El octanaje de 92 de este biocombustible brinda mayor potencia al momento de la combustión, por lo que se descartan problemas cuando los vehículos recorrerán las cuestas.
- ✓ Beneficios para el Gobierno porque es un producto sin subvención, para la generación de fuentes de trabajo, para los propietarios de los surtidores, ya que no tienen que realizar ningún tipo de adecuación para poder comercializar este producto, para el medio ambiente por su reducción de

emisiones y para el consumidor porque tiene un 20% más de rendimiento y la diferencia de precio es de menos de 1 boliviano (precio/calidad).

6.3 ACEPTACIÓN DEL BIOCOMBUSTIBLE EN BOLIVIA

6.3.1 Departamentos de Bolivia en los que se vende el combustible súper etanol 92

Es un nuevo combustible introducido en el mercado boliviano desde el 1 de noviembre del año 2019, actualmente el combustible súper etanol 92 se vende en 58 diferentes Estaciones de Servicio de todo el país de Bolivia, se dividen de la siguiente manera:

- √ 35 Estaciones de Servicio en Santa Cruz
- √ 12 Estaciones de Servicio en Cochabamba
- √ 6 Estaciones de Servicio en La Paz
- ✓ 5 Estaciones de Servicio en Tarija (Estación de servicio "Don Daniel", estación de servicio "Moto Méndez" S.R.L., estación de servicio "Panamericano", estación de servicio Telpel y estación de servicios El Portillo S.R.L.)

6.3.2 Consumo de combustibles en Bolivia

El mercado automotor en Bolivia es bastante antiguo, hasta el año 2018, el 83% de vehículos tenía más de 23 años, por lo tanto, se trataba de un parque obsoleto, no eficiente y con alto grado de contaminación (El mercado automotor boliviano es VIEJO Y CONTAMINANTE, 2018).

Cuando se dice no eficiente, se está hablando de que Bolivia tiene un alto consumo de litros de gasolina por cada 100Km que recorre, que es el indicador más relevante a la hora de medir los avances en la eficiencia energética de los automóviles, como sostiene un informe de la CEPAL sobre monitoreo de la eficiencia energética en América Latina.

El consumo de combustibles en Bolivia es de vital importancia para el sector automotor, se estima que por día en el país se consumen 10 millones de litros de combustible entre gasolina y diésel.

TABLA NºVI.2: CONSUMO DE COMBUSTIBLES EN BOLIVIA

		Combustibles						
. ~	Gasolina	Diésel Oil	GNV	Súper				
Años	especial	(L/mes)	(m³/mes)	etanol 92				
	(L/mes)			(L/mes)				
2018 - 2019	115.000.000	127.000.000	48.000.000	6.000.000				
2019 - 2020	157.000.000	167.000.000	62.000.000*	7.800.000*				

(*) Son valores aproximados, tomando en cuenta un aumento del 30 %. Para calcular el porcentaje se calculó la diferencia entre la cantidad final y la inicial, luego se calcula que porcentaje representa esta diferencia con respecto a la cantidad inicial, a través de una regla de tres simple.

Fuente: Elaboración propia

Bolivia hasta principios del año 2020 se estima que comercializaba aproximadamente 7.800.000 L/mes de súper etanol 92, como este combustible está compuesto de 88% de gasolina y 12% de alcohol anhídrido, esto nos quiere decir que 650.000 L corresponden al alcohol anhídrido (12%).

Producción de Súper etanol 92 en Bolivia 7.800.000 L/mes _____ 12 % Alcohol anhídrido 650.000 L/mes de alcohol anhídrido

Como en Bolivia solo son 4 los departamentos que comercializan este combustible, se calculan un aproximado que comercializa cada departamento.

Producción de Súper etanol 92 en Bolivia 7.800.000 → 4 Departamentos

Tarija comercializaría 1.950.000 L/mes aproximadamente

Aproximadamente Tarija comercializa 1.950.000 L/mes de súper etanol 92, del cual el 12% representa al alcohol anhídrido.

Tarija Súper etanol 92 1.950.000 L/mes 12% Alcohol anhídrido
162.500 L/mes de alcohol anhídrido

Esto quiere decir que Tarija necesita aproximadamente 162.500 L/mes de alcohol anhídrido para poder llevar a cabo la mezcla con la gasolina y satisfacer el mercado interno.

6.3.3 Aceptación del producto por parte de consumidores

A pesar de que el nuevo biocombustible ingresó al mercado a fines de 2018, algunas personas, talleres mecánicos y/o negocios de venta de vehículos desconocen las características de este nuevo carburante y si afectará a los motorizados, debido a la falta de información.

La llegada de este nuevo producto tuvo una gran aceptación por parte de empresas e importadoras de vehículos, debido que tienen un conocimiento con mayor profundidad acerca de los biocombustibles, en este caso, del súper etanol 92 y sus características.

- La importadora Imcruz, consideró, en un pronunciamiento difundido a través de las redes sociales, que la Súper 92 es amigable con el medio ambiente. "Ratificamos el respaldo y garantía a nuestros clientes, dado que todos los vehículos que comercializa Imcruz en Bolivia han sido fabricados atendiendo las necesidades de los bolivianos, las características de nuestras carreteras y combustibles", señala el comunicado difundido.
- Toyosa S.A. expresó su satisfacción "ante la producción e inicio de comercialización de la nueva gasolina Súper Etanol 92, que tiene como propósito renovar el parque automotor boliviano a través de un combustible de 92 octanos amigable para el medio ambiente" (Importadoras recomiendan el uso de la gasolina Súper Etanol 92, 2018).
- Andar Motors SRL, destacó el desarrollo y producción del nuevo combustible que al margen de ajustarse a las normas vigentes permite la importación de vehículos de alta gama "producidos específicamente para normas bolivianas, generando fuentes de empleos y ahorros para el país". "Consideramos que este gran proyecto, es un verdadero aporte del Gobierno Nacional y los empresarios para beneficio de todos los bolivianos", señala el documento oficial de Andar Motors difundido a través de las redes sociales.

6.4 PERSPECTIVA DE LOS BIOCOMBUSTIBLES AL AÑO 2030 E INTERPRETACIÓN DE DATOS

6.4.1 Biodiésel

6.4.1.1 Girasol

Para realizar la perspectiva se tomaron en cuenta datos del INE), (ver Anexo 2) y posteriormente cálculos que se verán más adelante:

TABLA NºVI.3: PRODUCCIÓN DE GIRASOL A NIVEL NACIONAL 1999-2019

AÑOS	PRODUCCIÓN TOTAL DE BOLIVIA (Tm)	ТІЕМРО
1998-1999	95.685	1
1999-2000	110.000	2
2000-2001	150.000	3
2001-2002	173.345	4
2002-2003	78.000	5
2003-2004	92.000	6
2004-2005	76.300	7
2005-2006	120.300	8
2006-2007	173.300	9
2007-2008	298.642	10
2008-2009	354.056	11
2009-2010	311.100	12
2010-2011	152.927	13
2011-2012	225.469	14
2012-2013	278.102	15
2013-2014	198.566	16
2014-2015	105.540	17
2015-2016	102.023	18
2016-2017	68.417	19
2017-2018	121.177	20
2018-2019	136.779	21

Fuente: (INE, 1998-2019)

Mediante el uso del diagrama de dispersión que permite analizar si existe algún tipo de relación entre dos variables, con datos conocidos hasta el 2018, se pudo realizar la predicción o perspectiva al año 2030, estimando su producción.

FIGURA NºVI.2: DISPERSIÓN DE PRODUCCIÓN DE GIRASOL 1998-2019

Fuente: Elaboración propia

Con la ecuación que nos genera la línea de regresión lineal, se reemplazaron los datos que se quieren conocer en la ecuación para poder determinar cuánto seria su producción, siendo producción (Y) y tiempo (X).

TABLA NºVI.4: PERSPECTIVA DE PRODUCCIÓN DE GIRASOL A NIVEL NACIONAL AL AÑO 2030

AÑOS	PRODUCCIÓN TOTAL DE BOLIVIA (Tm)	TIEMPO
2019-2020	179.397,4	22
2020-2021	180.893,6	23
2021-2022	182.389,8	24
2022-2023	183.886	25
2023-2024	185.382,2	26
2024-2025	186.878,4	27
2025-2026	188.374,6	28
2026-2027	189.870,8	29
2027-2028	191.367	30

2028-2029	192.863,2	31
2029-2030	194.359,4	32

Fuente: Elaboración propia

Para la pespectiva al año 2030 en el Departamento de Tarija, se utilizó diferentes porcentajes, donde la produccion total de cada año es el 100% de produccion de girasol a nivel nacional; del cual según la investigación realizada, comparando la produccion de Bolivia y la producción de Tarija, el departamento aporta aproximadmente el 0,0015% a la producción total de girasol en Bolivia; de este nuevo total se extrae el 1% para determinar la produccion de girasol que se puede destinar a la produccion de biocombustibles en el Departamento de Tarija.

Se toma en cuenta el 1% de la producción total del departamento de Tarija porque seria con lo mínimo que se podria destinar a la producción de biocombustibles, ya que el 99% de la porducción es destinado para abastecer al mercado interno o externo.

TABLA NºVI.5: PERSPECTIVA DE PRODUCCIÓN DE GIRASOL DEL DEPARTAMENTO DE TARIJA AL AÑO 2030

AÑOS	PRODUCCIÓN TOTAL DE BOLIVIA (Tm)	*PRODUCCIÓN DEL DEPARTAMENTO DE TARIJA (Tm)
2019-2020	179.397,4	2,690961
2020-2021	180.893,6	2,713404
2021-2022	182.389,8	2,735847
2022-2023	183.886	2,75829
2023-2024	185.382,2	2,780733
2024-2025	186.878,4	2,803176
2025-2026	188.374,6	2,825619
2026-2027	189.870,8	2,848062
2027-2028	191.367	2,870505

2028-2029	192.863,2	2,892948
2029-2030	194.359,4	2,915391

(*) 0,0015% de la producción a nivel nacional

Fuente: Elaboración propia

TABLA NºVI.6: PERSPECTIVA DE PRODUCCIÓN DE GIRASOL DEL DEPARTAMENTO DE TARIJA DESTINADA AL BIODIESEL AL AÑO 2030

AÑOS	PRODUCCION DEL DEPARTAMENTO DE TARIJA (Tm)	*PRODUCCIÓN DEL DEPARTAMENTO DE TARIJA DESTINADA AL BIODIESEL (Tm)
2019-2020	2,691	0,02691
2020-2021	2,713	0,027134
2021-2022	2,74	0,027358
2022-2023	2,758	0,027583
2023-2024	2,781	0,027807
2024-2025	2,803	0,028032
2025-2026	2,826	0,028256
2026-2027	2,848	0,028481
2027-2028	2,871	0,028705
2028-2029	2,893	0,028929
2029-2030	2,915	0,029154

(*) 1% de la producción total aportada por el dpto. de Tarija

Fuente: Elaboración propia

Para determinar la cantidad de biocombustible que se puede aprovechar con los datos obtenidos de la producción que seria destinada a su producción, se utilizó la formula de la densidad:

$$\rho = \frac{m}{v}$$

$$0.88 \frac{g}{cm^3} = \frac{m}{1.000cm^3}$$

$$m = 0.88g*1.000$$

$$m = 880g*\frac{1Tm}{1.000.000g}$$

$$m = 0.00088Tm$$

Esta fórmula da como resultado que para la producción de 1 litro de biodiesel se requiere de 0,00088 Tm de girasol.

En base a esta relación se realizó la siguiente tabla:

TABLA NºVI.7: PERSPECTIVA DE LA CANTIDAD DE BIODIESEL QUE SE PUEDE PRODUCIR A BASE DE GIRASOL AL AÑO 2030

AÑOS	PRODUCCION DESTINADA AL BIODIESEL (Tm)	*CANTIDAD DE VOLUMEN (L)
2019-2020	0,02691	30,5791
2020-2021	0,027134	30,83414
2021-2022	0,027358	31,08917
2022-2023	0,027583	31,3442
2023-2024	0,027807	31,59924
2024-2025	0,028032	31,85427
2025-2026	0,028256	32,10931
2026-2027	0,028481	32,36434
2027-2028	0,028705	32,61938
2028-2029	0,028929	32,87441
2029-2030	0,029154	33,12944

^(*) Se divide la producción destinada al biocombustible con el resultado obtenido en la fórmula de la densidad (0,00088 Tm)

Fuente: Elaboración propia

Tomando en cuenta datos obtenidos en la investigación realizada nos dice que:

GIRASOL - BOLIVIA				
AÑOS PRODUCCIÓN RENDIMIENTO SUPERFICIE				
2018-2019 136.779 Tm 1,249 Tm/Ha 109.540 Ha				

Según los cálculos realizados en la perspectiva del girasol al año 2030, nos dice que para la producción de 1 litro de biodiesel se requiere aproximadamente de 0,00088 Tm, por lo tanto:

El resultado nos dice que para la producción de 0,00088 Tm de girasol se requieren de 0,00070 Ha. lo que equivale a 7 m².

6.4.1.2 Soya

Para realizar la perspectiva se tomaron en cuenta datos del INE (ver Anexo 2) y posteriormente cálculos que se verán más adelante:

TABLA NºVI.8: PRODUCCIÓN DE SOYA A NIVEL NACIONAL 1998-2019

AÑOS	PRODUCCIÓN TOTAL DE BOLIVIA (Tm)	TIEMPO
1998-1999	957.412	1
1999-2000	1.190.283	2
2000-2001	1.148.405	3
2001-2002	1.243.269	4
2002-2003	1.583.549	5
2003-2004	1.584.284	6
2004-2005	1.688.569	7
2005-2006	1.614.831	8

2006-2007	1.640.705	9
2007-2008	1.238.509	10
2008-2009	1.698.443	11
2009-2010	1.934.394	12
2010-2011	2.319.524	13
2011-2012	2.429.109	14
2012-2013	2.645.777	15
2013-2014	2.814.321	16
2014-2015	3.105.938	17
2015-2016	3.203.992	18
2016-2017	2.671.046	19
2017-2018	2.818.897	20
2018-2019	2.990.845	21

Fuente: (INE, 1998-2019)

Mediante el uso del diagrama de dispersión que permite analizar si existe algún tipo de relación entre dos variables, con datos conocidos hasta el 2018, se pudo realizar la predicción o perspectiva al año 2030, estimando su producción.

FIGURA NºVI.3: DISPERSIÓN DE PRODUCCIÓN DE SOYA 1998-2019

Fuente: Elaboración propia

Con la ecuación que nos genera la línea de regresión lineal, se reemplazaron los datos que se quieren conocer en la ecuación para poder determinar cuánto seria su producción, siendo producción (Y) y tiempo (X).

TABLA NºVI.9: PERSPECTIVA DE PRODUCCIÓN DE SOYA A NIVEL NACIONAL AL AÑO 2030

AÑOS	PRODUCCIÓN TOTAL DE BOLIVIA (Tm)	TIEMPO
2019-2020	3.232.108	22
2020-2021	3.341.858	23
2021-2022	3.451.608	24
2022-2023	3.561.358	25
2023-2024	3.671.108	26
2024-2025	3.780.858	27
2025-2026	3.890.608	28
2026-2027	4.000.358	29
2027-2028	4.110.108	30
2028-2029	4.219.858	31
2029-2030	4.329.608	32

Fuente: Elaboración propia

Para la pespectiva al año 2030 en el Departamento de Tarija se utilizó diferentes porcentajes, donde la producción total de cada año es el 100% de produccion de soya a nivel nacional; del cual según la investigación realizada, comparando la producción de Bolivia y la producción de Tarija, se observa que el Departamento de Tarija aporta aproximadmente el 0,78% a la producción total de girasol en Bolivia, volviendose este porcentaje el 100% de producción de soya del Departamento de Tarija; de este nuevo total se extrae el 1% para determinar la produccion de soya que se se puede destinar a la produccion de biocombustibles en el Departamento de Tarija.

Se toma en cuenta el 1% de la producción total del Departamento de Tarija, porque seria lo mínimo que se podria destinar a la producción de biocombustibles, ya que el 99% de la porducción es destinado para abastecer al mercado interno o externo.

TABLA NºVI.10: PERSPECTIVA DE LA PRODUCCIÓN DE SOYA DEL DEPARTAMENTO DE TARIJA AL AÑO 2030

AÑOS	PRODUCCIÓN TOTAL DE BOLIVIA (Tm)	*PRODUCCIÓN DEL DEPARTAMENTO DE TARIJA (Tm)
2019-2020	3.232.108	25.210,44
2020-2021	3.341.858	26.066,49
2021-2022	3.451.608	26.922,54
2022-2023	3.561.358	27.778,59
2023-2024	3.671.108	28.634,64
2024-2025	3.780.858	29.490,69
2025-2026	3.890.608	30.346,74
2026-2027	4.000.358	31.202,79
2027-2028	4.110.108	32.058,84
2028-2029	4.219.858	32.914,89
2029-2030	4.329.608	33.770,94

(*) 0,78% de la producción a nivel nacional

Fuente: Elaboración propia

TABLA NºVI.11: PERSPECTIVA DE LA PRODUCCIÓN DE SOYA DEL DEPARTAMENTO DE TARIJA DESTINADA AL BIODIESEL AL AÑO 2030

AÑOS	PRODUCCIÓN	*PRODUCCIÓN
	DEL	DEL

	DEPARTAMENTO DE TARIJA (Tm)	DEPARTAMENTO DE TARIJA DESTINADA AL BIODIESEL (Tm)
2019-2020	25.210,44	252,1044
2020-2021	26.066,49	260,6649
2021-2022	26.922,54	269,2254
2022-2023	27.778,59	277,7859
2023-2024	28.634,64	286,3464
2024-2025	29.490,69	294,9069
2025-2026	30.346,74	303,4674
2026-2027	31.202,79	312,0279
2027-2028	32.058,84	320,5884
2028-2029	32.914,89	329,1489
2029-2030	33.770,94	337,7094

(*) 1% de la producción total aportada por el dpto. de Tarija

Fuente: Elaboración propia

Para determinar la cantidad de biocombustible que se puede aprovechar con los datos obtenidos de la producción, se utilizo la fórmula de la densidad:

$$\rho = \frac{m}{v}$$

$$0,88 \frac{g}{cm^3} = \frac{m}{1.000cm^3}$$

$$m = 0,88g*1.000$$

$$m = 880g* \frac{1Tm}{1.000.000g}$$

$$m = 0,00088Tm$$

Esta fórmula da como resultado que para la producción de 1 litro de biodiesel se requiere de 0,00088 Tm de soya.

En base a esta relación se realizó la siguiente tabla:

TABLA NºVI.12: PERSPECTIVA DE LA CANTIDAD DE BIODIESEL QUE SE PUEDE PRODUCIR A BASE DE SOYA AL AÑO 2030

AÑOS	PRODUCCIÓN DEL DEPARTAMENTO DE TARIJA DESTINADA AL BIODIESEL (Tm)	*CANTIDAD DE VOLUMEN (L)
2019-2020	252,1044	286.482,3
2020-2021	260,6649	296.210,1
2021-2022	269,2254	305.938
2022-2023	277,7859	315.665,8
2023-2024	286,3464	325.393,7
2024-2025	294,9069	335.121,5
2025-2026	303,4674	344.849,3
2026-2027	312,0279	354.577,2
2027-2028	320,5884	364.305
2028-2029	329,1489	374.032,9
2029-2030	337,7094	383.760,7

^(*) Se divide la producción destinada al biocombustible con el resultado obtenido en la fórmula de la densidad (0,00088 Tm)

Fuente: Elaboración propia

Tomando en cuenta datos obtenidos en la investigación realizada, se tiene que:

SOYA - BOLIVIA			
AÑOS PRODUCCIÓN RENDIMIENTO SUPERFICIE			
2018-2019	2.990.845 Tm	2,155	1.387.973 Ha

Según los cálculos realizados en la perspectiva de la soya al año 2030, para la producción de 1 litro de biodiesel se requiere aproximadamente de 0,00088 Tm, por lo tanto:

2.990.845 Tm → 1.387.973 Ha

El resultado indica que para la producción de 0,00088 Tm de soya se requiere de 0,00041 Ha. lo que equivale a 4 m².

6.4.2 Bioetanol

6.4.2.1 Caña de azúcar

Para realizar la perspectiva se tomaron en cuenta datos del INE (ver Anexo 2) y posteriormente cálculos que se mostrarán más adelante:

TABLA NºVI.13: PRODUCCIÓN DE AZUCAR A NIVEL NACIONAL 1998-2019

AÑOS	PRODUCCIÓN TOTAL DE BOLIVIA (Tm)	TIEMPO
1998-1999	3.431.599	1
1999-2000	3.476.587	2
2000-2001	4.650.335	3
2001-2002	4.842.205	4
2002-2003	5.117.205	5
2003-2004	5.200.069	6
2004-2005	5.019.228	7
2005-2006	5.712.942	8
2006-2007	6.354.636	9
2007-2008	7.387.704	10
2008-2009	7.396.184	11
2009-2010	5.335.735	12
2010-2011	5.494.370	13
2011-2012	7.241.104	14
2012-2013	8.064.683	15
2013-2014	7.598.630	16
2014-2015	7.192.512	17
2015-2016	7.374.751	18
2016-2017	8.731.676	19
2017-2018	9.215.146	20
2018-2019	9.558.472	21

Fuente: (INE, 1998-2019)

Mediante el uso del diagrama de dispersión que permite analizar si existe algún tipo de relación entre dos variables, con datos conocidos hasta el 2018, se pudo realizar la predicción o perspectiva al año 2030, estimando su producción.

CAÑA DE AZÚCAR y = 260692x + 4E+06 $R^2 = 0.8432$

FIGURA NºVI.4: DISPERSIÓN DE CAÑA DE AZÚCAR 1998-2019

Fuente: Elaboración propia

Con la ecuación que genera la línea de regresión lineal, se reemplazaron los datos que se quieren conocer en la ecuación para poder determinar cuánto seria su producción, siendo producción (Y) y tiempo (X)

TABLA NºVI.14: PERSPECTIVA DE PRODUCCIÓN DE CAÑA DE AZÚCAR A NIVEL NACIONAL AL AÑO 2030

AÑOS	PRODUCCIÓN TOTAL DE BOLIVIA (Tm)	TIEMPO
2019-2020	9.735.224	22
2020-2021	9.995.916	23
2021-2022	10.256.608	24
2022-2023	10.517.300	25
2023-2024	10.777.992	26
2024-2025	11.038.684	27
2025-2026	11.299.376	28
2026-2027	11.560.068	29
2027-2028	11.820.760	30
2028-2029	12.081.452	31

2029-2030	12.342.144	32
-----------	------------	----

Fuente: Elaboración propia

Para la proyección al año 2030 en el Departamento de Tarija, se utilizó diferentes porcentajes, donde la produccion total de cada año es el 100% de producción de azucar a nivel nacional; del cual se saca un 5,65% que es el aporte del Departamento de Tarija a la producción total de azúcar, volviendose el 100% de producción de azucar del Departamento de Tarija; de este nuevo total se extrae el 1% para determinar la producción de azúcar que se destinara a la producción de biocombustibles en el Departamento de Tarija.

Se toma en cuenta el 1% de la producción total del Departamento de Tarija, porque seria lo mínimo que se podria destinar a la producción de biocombustibles, ya que el 99% de la porducción es destinado para abastecer al mercado interno o externo.

TABLA NºVI.15: PERSPECTIVA DE LA PRODUCCIÓN DE CAÑA DE AZUCAR DEL DEPARTAMENTO DE TARIJA AL AÑO 2030

AÑOS	PRODUCCIÓN TOTAL DE BOLIVIA (Tm)	*PRODUCCIÓN DEL DEPARTAMENTO DE TARIJA (Tm)
2019-2020	9.735.224	545.172,5
2020-2021	9.995.916	559.771,3
2021-2022	10.256.608	574.370
2022-2023	10.517.300	588.968,8
2023-2024	10.777.992	603.567,6
2024-2025	11.038.684	618.166,3
2025-2026	11.299.376	632.765,1
2026-2027	11.560.068	647.363,8
2027-2028	11.820.760	661.962,6
2028-2029	12.081.452	676.561,3
2029-2030	12.342.144	691.160,1

(*) 5,65% de la producción a nivel nacional.

Fuente: Elaboración propia

TABLA NºVI.16: PERSPECTIVA DE LA PRODUCCIÓN DE CAÑA DE AZUCAR DESTINADA AL BIOETANOL EN EL DEPARTAMENTO DE TARIJA AL AÑO 2030

AÑOS	PRODUCCIÓN DEL DEPARTAMENTO DE TARIJA (Tm)	*PRODUCCIÓN DEL DEPARTAMENTO DE TARIJA DESTINADA AL BIOETANOL
2019-2020	545.172,5	5.451,725
2020-2021	559.771,3	5.597,713
2021-2022	574.370,0	5.743,7
2022-2023	588.968,8	5.889,688
2023-2024	603.567,6	6.035,676
2024-2025	618.166,3	6.181,663
2025-2026	632.765,1	6.327,651
2026-2027	647.363,8	6.473,638
2027-2028	661.962,6	6.619,626
2028-2029	676.561,3	6.765,613
2029-2030	691.160,1	6.911,601

(*) 1% de la producción total aportada por el departamento de Tarija

Fuente: Elaboración propia

Para determinar la cantidad de etanol que se puede aprovechar con los datos obtenidos de la producción que seria destinada al bioetanol, se utilizó la formula de la densidad:

$$\rho = \frac{m}{v}$$

ANÁLISIS E INTERPRETA

$$0,789 \frac{g}{cm^3} = \frac{m}{1.000cm^3}$$

$$m = 0,789g*1.000$$

$$m = 789g*\frac{1Tm}{1.000.000g}$$

$$m = 0,000789Tm$$

Esta ecuación da como resultado que para la producción de 1 litro de etanol se requiere de 0,000789 Tm de caña de azúcar.

En base a esta relación se realizó la siguiente tabla:

TABLA NºVI.17: PERSPECTIVA DE LA CANTIDAD DE BIOETANOL QUE SE PUEDE PRODUCIR EN EL DEPARTAMENTO DE TARIJA AL AÑO 2030

AÑOS	PRODUCCIÓN DESTINADA AL BIOETANOL (Tm)	*CANTIDAD DE VOLÚMEN (L)
2019-2020	5.451,725	6.909.665
2020-2021	5.597,713	7.094.693
2021-2022	5.743,7	7.279.722
2022-2023	5.889,688	7.464.750
2023-2024	6.035,676	7.649.779
2024-2025	6.181,663	7.834.807
2025-2026	6.327,651	8.019.836
2026-2027	6.473,638	8.204.864
2027-2028	6.619,626	8.389.893
2028-2029	6.765,613	8.574.922
2029-2030	6.911,601	8.759.950

^(*) Se divide la producción de Tarija destinada al bioetanol con el valor obtenido en la ecuación (0,000789 Tm).

Fuente: Elaboración propia

Tomando en cuenta datos obtenidos en la investigación realizada, se tiene que:

CAÑA DE AZÚCAR - BOLIVIA										
AÑOS PRODUCCIÓN RENDIMIENTO SUPERFICIE										
2018-2019	9.558.472 Tm	54,736 Tm/Ha	174.630 Ha							

Según los cálculos realizados en la perspectiva de la caña de azúcar al año 2030, indica que para la producción de 1 litro de bioetanol se requiere aproximadamente de 0,000789 Tm, por lo tanto:

El resultado nos dice que para la producción de 0,00088 Tm de soya se requiere de 0,0000144 Ha. lo que equivale a 0,144 m².

Según los datos calculados en la perspectiva de la caña de azúcar al año 2030, se observa que:

CAÑA DE AZÚCAR								
AÑOS CANTIDAD DE VOLÚMEN								
2019-2020	6.909.665							
2029-2030	8.759.950							

Haciendo una relación de los datos obtenidos entre la producción de caña de azúcar y el súper etanol 92, da como resultado lo siguiente:

Tarija comercializa 1.950.000 L/mes de súper etanol 92, el 12 % serian 162.500 L/mes de alcohol anhídrido; según los cálculos realizados para determinar la prospección, el año actual se podrían producir aproximadamente 575.805,42 L/mes de alcohol.

Realizando la relación correspondiente, se tiene:

162.500 L/mes de alcohol anhídrido	3,54 más de cumplimiento con la
575.805,42 L/mes de alcohol	demanda interna

Este resultado nos quiere decir que se cumple y se excede (aproximadamente 4 veces más) con la demanda de la cantidad necesaria para la mezcla de este biocombustible.

ANÁLISIS E INTERPRETACIÓN DE DATOS

A fines del año 2018 YPFB pagaba a los ingenios de Guabirá, Aguaí y UNAGRO hasta un 26,7% más por el etanol (alcohol anhidro) que el precio en el mercado de Brasil, líder regional en la producción (YPFB comienza la venta de la Súper Etanol 92 en Tarija, 2018).

El precio que recibian los ingenios es de 71 centavos de dólar por litro, un valor que fue fijado por la estatal con los cañeros mediante negociación (precio al 1 de noviembre de 2018).

CAPÍTULO VII CONCLUSIONES Y RECOMENDACIONES

7 CONCLUSIONES Y RECOMENDACIONES

7.1 CONCLUSIONES

- Se realizó una comparación entre los combustibles fósiles y biocombustibles donde se determinó que los biocombustibles tienen la capacidad o el potencial para generar un rendimiento óptimo en los vehículos del Departamento de Tarija.
- Los biocombustibles como generador de energía para los vehículos en el Departamento de Tarija son competentes en el mercado, dado que se tiene como referencia al "súper etanol 92" que tiene un 20% más de recorrido y su precio no es muy elevado en comparación al de los combustibles fósiles. En cuanto al ahorro y desarrollo energético también es viable, porque se da una eficiencia energética, dado que es una energía que cuida el medio ambiente, disminuye las emisiones de gases como el CO2, además de ser una energía que aporta para el desarrollo sostenible del Departamento de Tarija.
- Se realizó la comparación de precios entre los combustibles fósiles y los biocombustibles que ya se comercializan en el mercado para el sector vehicular del Departamento de Tarija, pudiéndose determinar que la variación de precios no es tan elevada entre uno y otro, la diferencia es de 0,76 Bs/L tomando como referencia la gasolina especial y el súper etanol 92.
- Dado que el precio del combustible súper etanol 92 es competente para el Departamento de Tarija y que su rendimiento genera que se recorra un 20% más de km. la generación e implementación de otros biocombustibles pueden ayudar a disminuir el consumo de combustibles fósiles en el Departamento de Tarija.
- Con los resultados obtenidos de las proyecciones se pudo determinar que Tarija actualmente tiene mayor potencial en la producción de caña de azúcar y podría cumplir con la demanda interna del departamento en combustibles que ya están en el mercado como lo es el súper etanol 92.

7.2 RECOMENDACIONES

 Darle mayor importancia a la investigación de nuevas alternativas a los combustibles fósiles en los vehículos, para que gradualmente se pueda disminuir el uso de estos combustibles y también aumentar la matriz energética del Departamento de Tarija, además para que los biocombustibles no sean sólo para el sector automotriz, sino también para la generación de energía.

- Buscar asesoría profesional, para determinar un lugar o lugares en el Departamento de Tarija donde se pueda invertir para la implementación de plantas para el desarrollo de biocombustibles.
- Reactivación de cultivos para la producción de biocombustibles, lo cual generaría un crecimiento económico y crecimiento laboral.
- Incentivar a la población del Departamento de Tarija al uso del combustible súper etanol 92, brindando mayor información de sus ventajas.

BIBLIOGRAFÍA/ WEBGRAFÍA

BIBLIOGRAFÍA/WEBGRAFIA

- ¿Qué es el Biogás? (25 de 10 de 2017). Obtenido de Technoinventors: https://www.technoinventors.com/que-es-el-biogas/
- ¿Qué es el punto de inflamación y por qué es importante? (s.f.). Obtenido de MicroCare Electronics: https://electronics.microcare.com/es/resources/faqs/que-es-el-punto-de-inflamacion-y-por-que-es-importante/
- ¿Qué es GNV? (s.f.). Obtenido de GNV.cl: http://www.gnv.cl/sobre_gnv
- ¿Qué tan conveniente es la gasolina Súper etanol 92? (23 de 11 de 2018). Obtenido de Pagina Siete: https://www.paginasiete.bo/economia/2018/11/23/que-tan-conveniente-es-la-gasolina-super-etanol-92-201056.html#!
- ¿Toda la biomasa es leña? Otros tipos de biomasa. (s.f.). Obtenido de AEFECC: https://www.aefecc.es/como-se-produce-la-biomasa-y-que-tipos-hay/
- A partir de hoy, Tarija entra a la era de los biocombustibles con la comercialización de la gasolina Súper Etanol 92. (09 de 11 de 2018). Obtenido de Vicepresidencia del Estado Plurinacional de Bolivia: https://www.vicepresidencia.gob.bo/A-partir-de-hoy-Tarija-entra-a-la-era-de-los-biocombustibles-con-la
- ANH. (s.f.). Especificaciones técnicas. Obtenido de Agencia Nacional de Hidrocarburos: https://www.anh.gob.bo/InsideFiles/Referencia/DafExep/ANH-14-2014.pdf
- ANH. (s.f.). *Precios finales al consumidor*. Obtenido de Agencia Nacional de Hidrocarburos: https://www.anh.gob.bo/w2019/contenido.php?s=13
- Biocarburantes. (s.f.). Obtenido de Instituto para la Diversificación y ahorro de la Energía: https://www.idae.es/tecnologias/energias-renovables/uso-termico/biocarburantes
- Biocarburantes líquidos: Biodiesel y Bioetanol. (s.f.). En J. M. García Camús, & J. Á. García Laborda. Obtenido de http://www.madrid.org/bvirtual/BVCM001698.pdf
- Biodiésel. (s.f.). Obtenido de Plantas de biomasa: http://www.plantasdebiomasa.net/biodies.html
- Biodiésel y nuestro Medio Ambiente. (22 de 05 de 2012). Obtenido de Eco Inteligencia: https://www.ecointeligencia.com/2012/05/biodiesel-y-nuestro-medio-ambiente/
- Bioetanol. (s.f.). Obtenido de Plantas de biomasa: http://www.plantasdebiomasa.net/bioetan.html

- Bioetanol. (s.f.). Obtenido de Plantas de Biomasa: http://www.plantasdebiomasa.net/bioetan.html
- Blog de la materia Seguridad IV Prevención y Extinción de Incendios. (s.f.).

 Obtenido de Seguridadcuatro.blogspot:
 http://seguridadcuatro.blogspot.com/2010/03/punto-de-inflamacion-flash-point.html
- Bolivia ingresa a la era del biocombustible y YPFB dejará de importar 80 millones de litros de gasolina . (08 de 03 de 2019). Obtenido de YPFB: https://www.ypfb.gob.bo/en/medio-ambiente/14-noticias/841-bolivia-ingresa-a-la-era-del-biocombustible-y-ypfb-dejar%C3%A1-de-importar-80-millones-de-litros-de-gasolina-2.html
- Cadena productiva del aceite comestible. (2011). Obtenido de Autoridad de Fiscalización y Control Social de Empresas: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjcucH1gI7mAhX8HbkGHfjEDuQQFjAAegQIAhAC&url=https%3A%2F%2Fwww.autoridadempresas.gob.bo%2Fdescargas%3Fdownload%3D29%3Acadena-productiva-del-aceite-comestible&usg=AOvVa
- Cadena productiva del azúcar. (2010). Obtenido de Autoridad de Fiscalización y Control Social de Empresas.
- Combustibles Fósiles Características, origen, aplicaciones y efectos secundarios. (23 de 05 de 2019). Obtenido de El blog verde: https://elblogverde.com/los-combustibles-fosiles/
- Definición de diésel. (s.f.). Obtenido de Definición.de: https://definicion.de/diesel/
- Definición gasolina. (s.f.). Obtenido de EcuRed: https://www.ecured.cu/Gasolina
- Definición número de cetano. (s.f.). Obtenido de SabeloTodo: http://www.sabelotodo.org/automovil/numcetano.html
- Definición octanaje. (s.f.). Obtenido de Boletín agrario: https://boletinagrario.com/ap-6,octanaje,617.html
- El mercado automotor boliviano es VIEJO Y CONTAMINANTE. (07 de 2018).

 Obtenido de Energia Bolivia:

 http://www.energiabolivia.com/index.php?option=com_content&view=article
 &id=5178:el-mercado-automotor-boliviano-es-viejo-ycontaminante&catid=38&Itemid=113
- Emisiones, vertidos y residuos. (s.f.). Obtenido de SACYR: http://www.sacyr.com/informes/InformeRSC2011/es/08_emisiones_vertidos _y_residuos_01.htm

- Energías renovables. (s.f.). Obtenido de Acciona: https://www.acciona.com/es/energias-renovables/
- Energías renovables y eficiencia energética. (2008). Canarias: InstitutoTecnológico de Canarias, S.A.
- Factores previos involucrados en la producción de bioetanol, aspectos a considerar. (02 de 05 de 2014). Obtenido de Scielo: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-49992014000200008
- Ficha técnica Gas Natural. (s.f.). Obtenido de https://zonasegura.seace.gob.pe/documentos/documentos/FichaSubInv/816 461507rad79DAF.pdf
- Gas Natural Vehicular (GNV). (s.f.). Obtenido de Boletín Informativo de IosAgentes Autorizados por Osinergmin: http://www.osinergmin.gob.pe/seccion/centro_documental/gas_natural/Documentos/Comercializacion/GNV/Boletin%20Informativo%20de%20los%20agentes%20GNV-2016-1_revisado.pdf
- GNC o GNV: historia, ventajas e inconvenientes . (s.f.). Obtenido de Motor.es: https://www.motor.es/que-es/gnc
- Historia de los biocombustibles, biodiesel. (22 de 11 de 2016). Obtenido de biocombustiblesdotblog: https://biocombustiblesdotblog.wordpress.com/2016/11/22/contenido-destacado-2/
- Importadoras recomiendan el uso de la gasolina Súper Etanol 92. (13 de 11 de 2018). Obtenido de YPFB: https://www.ypfb.gob.bo/es/informacion-institucional/noticias/982-importadoras-recomiendan-el-uso-de-la-gasolina-s%C3%BAper-etanol-92.html
- INE. (1999-2018). *Agricultura*. Obtenido de Instituto Nacional de Estadística: https://www.ine.gob.bo/index.php/estadisticas-por-actividad-economica/industria-manufacturera-y-comercio-4
- Introducción: Combustibles fósiles y biocombustibles . (24 de 07 de 2011). Obtenido de Biocombustibles: bioetanol y biodiésel.blogspot: http://biocombustiblesbioetanolybiodisel.blogspot.com/2011/07/introduccion-combustibles-fosiles-y.html
- La biomasa: producir energía con un sistema ecológico. (s.f.). Obtenido de Estructuras bioclimáticas avanzadas S. L.: http://ebasl.es/producir-energia-con-la-biomasa/

- Octanos y Cetanos, índice de los combustibles. (s.f.). Obtenido de Prueba de ruta: https://www.pruebaderuta.com/octanos-y-cetanos.php
- PAOT. (s.f.). Tipos de emisiones de contaminantes atmosféricos. Obtenido de Procuraduría Ambiental y del Ordenamiento Territorial: http://www.paot.org.mx/centro/ine-semarnat/informe02/estadisticas_2000/compendio_2000/03dim_ambiental/03_01_Atmosfera/data_atmosfera/RecuadrolII.1.1.2.htm
- Perspectivas de las energías renovables en Bolivia. (s.f.). Obtenido de Energía Bolivia:

 http://www.energiabolivia.com/index.php?option=com_content&view=article &id=3533:perspectivas-de-las-energias-renovables-en-bolivia&catid=68:dossier&Itemid=198
- Poder Calorífico. (s.f.). Obtenido de Red proteger: https://www.redproteger.com.ar/poder_calorifico.htm
- Producción y usos de los biocarburantes. (22 de 07 de 2015). Obtenido de Twenergy: https://twenergy.com/a/produccion-y-usos-de-los-biocarburantes-1785
- Qué son los biocombustibles, ventajas y desventajas. (25 de 09 de 2018). Obtenido de Ecología verde: https://www.ecologiaverde.com/que-son-los-biocombustibles-ventajas-y-desventajas-1364.html
- RAE. (s.f.). *Emisión atmosférica*. Obtenido de Real Academia Española: https://dej.rae.es/lema/emisi%C3%B3n-atmosf%C3%A9rica
- Significado de ignición. (17 de 10 de 2019). Obtenido de Significados: https://www.significados.com/ignicion/
- YPFB. (s.f.). *Carburantes*. Obtenido de YPFB Refinación: http://www.ypfbrefinacion.com.bo/carburantes.php
- YPFB comienza la venta de la Súper Etanol 92 en Tarija. (10 de 11 de 2018).

 Obtenido de Pagina Siete:

 https://www.paginasiete.bo/economia/2018/11/10/ypfb-comienza-la-ventade-la-super-etanol-92-en-tarija-199691.html

ANEXOS

ANEXO 1 MAPA DE BOLIVIA DEL POTENCIAL DE GENERACIÓN DE ENERGIA RENOVABLE DE FUENTES RENOVABLES

Fuente: (Perspectivas de las energías renovables en Bolivia, s.f.)

ANEXO 2 ESTADÍSTICAS SOBRE LA EVOLUCIÓN DE PRODUCCIÓN DE LOS PRINCIPALES CULTIVOS AGRÍCOLAS

Repollo	2,885	2 00 4	2 075	2 026	2 020	2072	2 0/12	2 102	2 202	2 226	2 / 07	2 562	2 66 /	2 0 22	4,018	1 212	1 616	A 700	1 5 17	1 622			
			_	_	_	_	_	_	_	_	_	_		_	_	_	_		_	_	-		
Tomate	30,987	34,211	_		_		-	_	_	_	_		_	_	_	_		_	_	_	-		
Vainitas	2,364		_		_			_	_	_		_		_	3,912	_			_	_	-		
Zanahoria	17,342	17,967	8,518	9,008	0,142	9,494	1,330	1,563	3,475	23,636	6,911	9,684	1,192	3,448	3,881	5,698	1,496	2,863	1,299	7,972			
Zapallo	16,722	16,265	6,781	7,607	8,426	9,350	1,520	1,589	3,768	4,475	6,081	7,199	9,349	0,715	0,565	7,653	5,672	3,934	4,596	4,629			
OLEAGINOSAS E IND	4,512,512	4,790,685	7,528	4,359	3,428	9,849	3,567	1,429	3,315	1,597	9,811	2,406	12,184	35,452	22,371	8,311	2,877	2,970	2,346	9,458			
Achiote (urucú)	53	53	53	54	55	56	57	56	57	1,871	1,326	1,332	1,396	1,431	1,474	1,497	1,534	1,560	1,546	1,542			
Algodón	16,457	2,085	4,879	930	1,570	6,374	3,987	4,049	3,323	2,480	552	419	460	2,240	922	1,150	920	1,724	1,212	1,763			
	3,431,599	3,476,587	0,335	12,205	7,205	0,069	9,228	2,942	4,636		6,184				4,683			4,751	1,676	5,146			
Girasol (1)	95,685	110,000	0,000	3,345	8,000	2,000	6,300	0,300	3,300	8,642	4,056	1,100	2,927	5,469	8,102	8,566	5,540	2,023	8,417	1,177			
Maní	10,682	11,031	2,754	1,866	3,548	3,555	4,604	5,907	5,673	5,917	8,215	8,283	0,320	1,921	3,619	4,989	5,468	5,938	5,353	6,040			
Sésamo	0	0	500	2,000	8,800	2,800	0,000	2,500	4,693	5,590	0,105	0,055	2,057	3,080	6,692	8,024	9,702	1,761	1,960	3,716			
Soya (1)	957,412	1,190,283	8,405	13,269	3,549	4,284	8,569	4,831	10,705	8,509	8,443	4,394	9,524	29,109	15,777	4,321	5,938	3,992	1,046	8,897			
Tabaco	625	647	602	689	702	711	822	845	928	884	930	1,088	1,130	1,097	1,103	1,133	1,263	1,220	1,137	1,178			
TUBÉRCULOS Y RAI	889,598	881,650	0,895	3,522	0,811	1,730	1,872	4,655	13,443	3,698	4,863	9,845	0,122	15,579	8,989	3,079	6,498	7,085	0,473	05,985			
Camote	3,419	3,434	3,284	3,404	3,453	3,672	3,501	3,752	3,650	4,011	3,971	4,556	4,562	4,655	4,689	4,625	4,609	4,517	4,435	4,483			
Hualuza	1,502	1,628	1,638	1,463	1,462	1,643	1,621	1,667	1,757	1,743	1,779	1,716	1,794	2,126	2,173	2,181	2,312	2,376	2,339	2,383			
Oca	19,437	18,992	8,842	9,091	8,748	9,067	8,107	9,232	8,465	8,971	0,864	1,741	3,053	3,416	2,938	4,861	5,397	4,475	2,572	3,506			
Papa	705,150	690,139	3,950	0,895	8,481	9,440	7,999	6,759	0,326	9,268	2,850	8,885	4,391	5,176	08,013	4,384	8,683	3,744	5,291	0,940			
Papaliza	4,954	5,176	5,229	5,577	5,817	6,058	6,392	6,406	6,800	7,049	7,191	7,492	7,615	8,156	8,323	9,238	0,822	0,919	1,047	1,835			
Racacha	534	628	$\overline{}$											$\overline{}$	849		$\overline{}$	_	_	_	•		
Yuca	154,602	161,653	7,307	2,524	2,286	1,297	3,674	6,252	1,824	1,964	7,477	4,728	7,922	1,264	2,005	6,699	3,303	9,965	3,318	1,375			
FORRAJES	223,707	233,746	4,416	7,946	7,417	8,543	6,652	6,102	7,915	5,345	8,155	2,193	6,745	7,024	4,021	1,609	4,011	6,785	6,870	0,851			
Alfalfa	167,582	175,425	_	· ·	_	,	_	_	_	_	_	_	_	_	_	_	,	_	_	_			
Avena berza	4,579		_	_	_		_	_	_	_		_		_	6,810	_	_		_	_	-		
Cebada berza	51,546	53,861	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_		

Fuente: INSTITUTO NACIONAL DE ESTADÍSTICA - MINISTERIO DE DESARROLLO RURAL Y TIERRAS

CENSO NACIONAL AGROPE CUARIA - CA-2013

ENCUESTA AGROPECUARIA - EA 2015

(1) Incluye la campaña de inviemo del año anterior

Nota: La información correspondiente a los años agrícolas anteriores al Censo Aropecuario 2013, fueron ajustados de acuerdo a los resultados del Censo Agropecuario y con resultados de la EA 20 (p) Preliminar.

Fuente: (INE, 1998-2019)