IMPACT: International Journal of Research in Applied, Natural and Social Sciences (IMPACT: IJRANSS) ISSN (P): 2347–4580; ISSN (E): 2321–8851 Vol. 8, Issue 5, May 2020, 1–16 © Impact Journals

D-CONCURRENT VECTOR FIELDS IN A FINSLER SPACE OF FIVE-DIMENSIONS

S. C. Rastogi

Professor, Seth VIshambhar Nath Institute of Engineering Research and Technology (SVNIERT), Barabanki, Uttar Pradesh, India

Received: 23 Apr 2020 Accepted: 29 Apr 2020 Published: 16 May 2020

ABSTRACT

The purpose of the present paper is to define and study D-concurrent vector fields in a Finsler space of five-dimensions. In this paper, D-concurrent vector fields of first kind based on D-tensors of first kind in a Finsler space of Five-dimensions have been defined and studies. The expressions for h- and v-covariant differentiations of D-tensor of first kind have also been obtained. Besides this, the Q-concurrent vector field in a five-dimensional Finsler space based on ${}^{1}Q$ -tensor is defined in this paper. Furthermore, a curvature tensor ${}^{1}D_{ijkh}$ based on D-tensor is also defined, its expression obtained and some properties studied.

KEYWORDS: D-Concurrence, Curvatures and Five-Dimensional Finsler Space

INTRODUCTION

In (1950), Tachibana [12] was the first author, who defined and studied concurrent vector fields in an n-dimensional Finsler space. This study was further taken up in (1974) by Matsumoto and Eguchi [3]. In (2004) while studying the existence of concurrent vector fields in a Finsler space Rastogi and Dwivedi [5] found that the definition of concurrent vector fields given earlier does not hold good, which led them to modify the definition of concurrent vector fields in Finsler space Fⁿ. Recently, Rastogi [6] has defined and studied three kind of D-tensors, in a Finsler space of five-dimensions. In (2019) and (2020) Rastogi [7, 8; 9, 10], defined several new concurrent vector fields including D-concurrent vector fields in a Finsler space of three and four dimensions.

Let F^5 , be a Finsler space of five-dimensions equipped with a fundamental function L (x, y), orthonormal frame $e_{\alpha ll}$, $(\alpha = 1,2,3,4,5)$, metric tensor g_{ij} and angular metric tensor h_{ij} given by [1], [6]

$$g_{ij} = l_i l_j + m_i m_j + n_{(1)I} n_{(1)j} + n_{(2)I} n_{(2)j} + n_{(3)I} n_{(3)j}$$
(1)

and

$$h_{ij} = m_i m_j + n_{(1)I} n_{(1)j} + n_{(2)I} n_{(2)j} + n_{(3)I} n_{(3)j}$$
(2)

Where, l_i , m_i , $n_{(1)I}$, $n_{(2)I}$ and $n_{(3)I}$ are five orthonormal vectors, alternatively expressed as $e_{1)I}$, $e_{2)I}$, $e_{3)I}$, $e_{4)I}$ and $e_{5)i}$.

The h-covariant derivative $e_{\alpha)/j}^{i}$ of the vector e_{α} is given as [4], [6]

$$e_{\alpha)/i}^{i} = H_{\alpha)\beta\gamma} e_{\beta}^{I} e_{\gamma j}$$
(3)

Where, $H_{\alpha\beta\gamma}$ are the scalar components of the h-covariant derivative given by (1.2) and are called h-connection scalars and satisfy

$$H_{\alpha\beta\gamma} = -H_{\beta\alpha\gamma} = H_{\alpha\alpha\gamma} = 0 \tag{4}$$

Furthermore, using the definition

$$H_{2)3\beta} e_{\beta}{}^{j} = h_{j} = h_{\beta} e_{\beta j}, H_{4)2\beta} e_{\beta}{}^{j} = j_{j} = j_{\beta} e_{\beta j}, H_{3)4\beta} e_{\beta}{}^{j} = k_{j} = k_{\beta} e_{\beta j},$$

$$H_{5)2\beta} e_{\beta}{}^{j} = r_{j} = r_{\beta} e_{\beta j j}, H_{5)3\beta} e_{\beta}{}^{j} = s_{j} = s_{\beta} e_{\beta j j}, H_{5)4\beta} e_{\beta}{}^{j} = t_{j} = t_{\beta} e_{\beta j j}$$

$$(5)$$

We can obtain on simplification $e_{1)/j}^{\ \ i}=l_{/j}^{i}=0$,

$$e_{2)}{}^{i}{}_{/j} = m^{i}{}_{/j} = n_{(1)}{}^{I} \ h_{j} - n_{(2)}{}^{I} \ j_{j} - n_{(3)}{}^{I} \ r_{j}, \ e_{3)}{}^{I}{}_{/j} = n_{(1)}{}^{i}{}_{/j} = n_{(2)}{}^{I} \ k_{j} - m^{i} \ h_{j} - n_{(3)}{}^{I} \ s_{j}$$

$$e_{4)/j}^{i} = n_{(2)/j}^{i} = m^{i} j_{j} - n_{(1)}^{I} k_{j} - n_{(3)}^{I} t_{j}, e_{5)/j}^{i} = n_{(3)/j}^{i} = m^{i} r_{j} + n_{(1)}^{I} s_{j} + n_{(2)}^{I} t_{j}$$

$$(6)$$

The v-covariant derivative of these vectors belonging to Miron frame e_{α} can be given as [7]

$$e_{\alpha)//i} = L^{-1} V_{\alpha)\beta\gamma} e_{\beta i}^{I} e_{\gamma i}$$
 (7)

Let $V_{\alpha)\beta\gamma}$ be scalar components of the v-covariant derivative given by (7) then $V_{\alpha)\beta\gamma}$ are called v-connection scalars. These scalars satisfy

$$V_{\alpha\beta\gamma} = -V_{\beta\alpha\gamma}, V_{1\beta\gamma} = \delta_{\beta\gamma} - \delta_{1\beta} \delta_{1\gamma}$$
(8)

Using equation (1.6), we can write

$$V_{1)1\gamma} = V_{2)2\gamma} = V_{3)3\gamma} = V_{4)4\gamma} = V_{5)5\gamma} = 0, \tag{9}$$

$$V_{1)2\gamma} = \delta_{2\gamma}, V_{1)3\gamma} = \delta_{3\gamma}, V_{1)4\gamma} = \delta_{4\gamma}, V_{1)5\gamma} = \delta_{5\gamma}, \tag{10}$$

$$V_{2)1\gamma} = -\delta_{2\gamma}, V_{2)3\gamma} = Q_{\gamma}, V_{2)4\gamma} = R_{\gamma}, V_{2)5\gamma} = S_{\gamma}, \tag{11}$$

$$V_{3)1y} = -\delta_{3y}, V_{3)2y} = -O_{y}, V_{3)4y} = U_{y}, V_{3)5y} = V_{y},$$
(12)

$$V_{4)|\gamma} = -\delta_{4\gamma}, V_{4)|2\gamma} = -R_{\gamma}, V_{4|3\gamma} = -U_{\gamma}, V_{4|5\gamma} = X_{\gamma},$$
(13)

$$V_{5)1\gamma} = -\delta_{5\gamma}, V_{5)2\gamma} = -S_{\gamma}, V_{5)3\gamma} = -V_{\gamma}, V_{5)4\gamma} = -X_{\gamma},$$
(14)

Where, we have defined and assumed Q_{γ} , R_{γ} , S_{γ} , U_{γ} , V_{γ} , X_{γ} , as the v-connection vectors.

Using equation (7), we can obtain

$$L e_{1)//j}^{i} = L l_{//j}^{i} = m^{i} m_{j} + n_{(1)}^{I} n_{(1)j} + n_{(2)}^{I} n_{(2)j} + n_{(3)}^{I} n_{(3)j} = h_{j}^{i}$$

$$(15)$$

$$L e_{2)//j}^{i} = L m_{//j}^{i} = -l^{i} m_{j} + n_{(1)}^{I} Q_{j} + n_{(2)}^{I} R_{j} + n_{(3)}^{I} S_{j}$$
(16)

$$L e_{3)//j}^{i} = L n_{(1)//j}^{i} = - l^{i} n_{(1)j} - m^{i} Q_{j} + n_{(2)}^{I} U_{j} + n_{(3)}^{I} V_{j}$$

$$(17)$$

$$L e_{4)//j}^{i} = L n_{(2)//j}^{i} = -l^{i} n_{(2)j} - m^{i} R_{i} - n_{(1)}^{I} U_{i} + n_{(3)}^{I} X_{i}$$
(18)

$$L e_{5)//i}^{i} = L n_{(3)//i}^{i} = -l^{i} n_{(3)i} - m^{i} S_{i} - n_{(1)}^{I} V_{i} - n_{(2)}^{I} X_{i}$$

$$(19)$$

The tensor C_{iik} in F^5 , is given by Rastogi [6] as follows:

$$L \; C_{ijk} = C_{(1)} \; m_i \; m_j \; m_k + C_{(2)} \; n_{(1)I} \; n_{(1)j} \; n_{(1)k} + C_{(3)} \; n_{(2)I} \; n_{(2)j} \; n_{(2)k} + C_{(4)} \; n_{(3)I} \; n_{(3)j} \; n_{(3)k} + C_{(4)} \; n_{(3)I} \; n_{(3)J} \; n_{($$

$$+ \textstyle \sum_{(I,j,k)} \big[C_{(5)} \; m_i \; m_j \; n_{(1)k} + C_{(6)} \; m_i \; m_j \; n_{(2)k} + C_{(7)} \; m_i \; m_j \; n_{(3)k} + C_{(8)} \; n_{(1)I} \; n_{(1)j} \; m_k + C_{(8)} \; n_{(1)I} \; n_{(1)j} \; m_k + C_{(8)} \; n_{(1)I} \; n_{(1)j} \; m_k + C_{(8)} \; n_{(1)I} \; n_{(1)J} \; n_{(1)J} \; m_k + C_{(8)} \; n_{(1)J} \; n_{(1)J} \; n_{(1)J} \; m_k + C_{(8)} \; n_{(1)J} \;$$

$$+ \ C_{(9)} \ n_{(1)I} \ n_{(1)j} \ n_{(2)k} + C_{(10)} \ n_{(1)I} \ n_{(1)j} \ n_{(3)k} + C_{(11)} \ n_{(2)I} \ n_{(2)j} \ m_k + C_{(12)} \ n_{(2)I} \ n_{(2)j} \ n_{(1)k} \\$$

$$\begin{split} &+ C_{(13)} \, n_{(2)I} \, n_{(2)j} \, n_{(3)k} + C_{(14)} \, n_{(3)I} \, n_{(3)j} \, m_k + C_{(15)} \, n_{(3)I} \, n_{(3)j} \, n_{(1)k} + C_{(16)} \, n_{(3)I} \, n_{(3)j} \, n_{(2)k} \\ &+ C_{(17)} \, m_i (n_{(1)j} \, n_{(2)k} + n_{(1)k} \, n_{(2)j}) + C_{(18)} \, m_i (n_{(1)j} \, n_{(3)k} + n_{(1)k} \, n_{(3)j}) \\ &+ C_{(19)} \, m_i \, (n_{(2)j} \, n_{(3)k} + n_{(2)k} \, n_{(3)j}) + C_{(20)} \, n_{(1)i} (n_{(2)j} \, n_{(3)k} + n_{(2)k} \, n_{(3)j})] \end{split} \tag{20}$$

D-Concurrent Vector Field of First Kind

In a five-dimensional Finsler space F^5 , there exist D-tensors of three kinds. Let ${}^1D_{ijk}$ be representing the D-tensor of first kind, which is such that [6]

$${}^{1}D_{iik} I^{i} = 0 \text{ and } {}^{1}D_{iik} g^{jk} = {}^{1}D_{i} = {}^{1}D n_{(1)I}$$
 (21)

Then this tensor in F⁵, can be expressed as

$$\begin{split} ^{1}D_{ijk} &= D_{(1)} \ m_{i} \ m_{j} \ m_{k} + D_{(2)} \ n_{(1)I} \ n_{(1)j} \ n_{(1)k} + D_{(3)} \ n_{(2)I} \ n_{(2)j} \ n_{(2)k} + D_{(4)} \ n_{(3)I} \ n_{(3)j} \ n_{(3)k} \\ &+ \sum_{(ijk)} \left[D_{(5)} \left\{ m_{i} \ m_{j} \ n_{(1)k} \right\} + D_{(6)} \left\{ m_{i} \ m_{j} \ n_{(2)k} \right\} + D_{(7)} \left\{ m_{i} \ m_{j} \ n_{(3)k} \right\} \\ &+ D_{(8)} \left\{ n_{(1)I} \ n_{(1)j} \ m_{k} \right\} + D_{(9)} \left\{ n_{(1)I} \ n_{(1)j} \ n_{(2)k} \right\} + D_{(10)} \left\{ n_{(1)I} \ n_{(1)j} \ n_{(3)k} \right\} \\ &+ D_{(11)} \left\{ n_{(2)I} \ n_{(2)j} \ m_{k} \right\} + D_{(12)} \left\{ n_{(2)I} \ n_{(2)j} \ n_{(1)k} \right\} + D_{(13)} \left\{ n_{(2)I} \ n_{(2)j} \ n_{(3)k} \right\} \\ &+ D_{(14)} \left\{ n_{(3)I} \ n_{(3)j} \ m_{k} \right\} + D_{(15)} \left\{ n_{(3)I} \ n_{(3)j} \ n_{(1)k} \right\} + D_{(16)} \left\{ n_{(3)I} \ n_{(3)j} \ n_{(2)k} \right\} \\ &+ D_{(17)} \left\{ m_{i} (n_{(1)j} \ n_{(2)k} + n_{(1)k} \ n_{(2)j}) \right\} + D_{(18)} \left\{ m_{i} (n_{(2)j} \ n_{(3)k} + n_{(2)k} \ n_{(3)j}) \right\} \\ &+ D_{(19)} \left\{ m_{i} \ (n_{(3)j} \ n_{(1)k} + n_{(3)k} \ n_{(1)j}) \right\} + D_{(20)} \left\{ n_{(1)i} (n_{(2)j} \ n_{(3)k} + n_{(2)k} \ n_{(3)j}) \right\} \right] \end{aligned} \tag{22}$$

Multiplying equation (2.2) by g^{jk} , we obtain on simplification

$${}^{1}D_{i} = m_{i}(D_{(1)} + D_{(8)} + D_{(11)} + D_{(14)}) + n_{(1)I}(D_{(2)} + D_{(5)} + D_{(12)} + D_{(15)})$$

$$+ n_{(2)i}(D_{(3)} + D_{(6)} + D_{(9)} + D_{(16)}) + n_{(3)i}(D_{(4)} + D_{(7)} + D_{(10)} + D_{(13)}),$$
(23)

which by virtue of (2.1) leads to

$$D_{(1)} + D_{(8)} + D_{(11)} + D_{(14)} = 0, D_{(2)} + D_{(5)} + D_{(12)} + D_{(15)} = {}^{1}D,$$

$$D_{(3)} + D_{(6)} + D_{(9)} + D_{(16)} = 0, D_{(4)} + D_{(7)} + D_{(10)} + D_{(13)} = 0.$$
(24)

Let Xⁱ(x), be a vector field in F⁵, which is expressible as

$$X^{i}(x) = \alpha I^{i} + \beta m^{i} + \gamma n_{(1)}^{i} + \Theta n_{(2)}^{i} + \phi n_{(3)}^{I},$$
 (25)

where α , β , γ , Θ and φ are scalars.

Assuming $X_{i}^{i} = -\delta_{i}^{i}$, from equation (3.5), by virtue of equations (1.5), we can obtain

$$\alpha_{/j} = -l_{j}, \ \beta_{/j} = \gamma \ h_{j} - \Theta \ j_{j} - \phi \ r_{j} - m_{j}, \ \gamma_{/j} = \Theta \ k_{j} - \phi \ s_{j} - \beta \ h_{j} - n_{(1)j},$$

$$\Theta_{/j} = \beta \ j_{j} - \gamma \ k_{j} - \phi \ t_{j} - n_{(2)j}, \ \phi_{/j} = \beta \ r_{j} + \gamma \ s_{j} + \Theta \ t_{j} - n_{(3)j}$$
(26)

which leads to

$$\alpha_{0} = -1$$
, $\beta_{0} = \gamma h_{0} - \Theta j_{0} - \varphi r_{0}$, $\gamma_{0} = \Theta k_{0} - \varphi r_{0} - \beta h_{0}$,

$$\Theta_{0} = \beta j_{0} - \gamma k_{0} - \varphi t_{0}, \, \varphi_{0} = \beta r_{0} + \gamma s_{0} + \Theta t_{0} \tag{27}$$

Now we shall give

Def. 2.1.: A vector field $X^i(x)$, satisfying $X^i_{/j} = -\delta^i_{/j}$, given by equation (2.5), shall be called a D-concurrent vector field of first kind in a Finsler space of five-dimensions F^5 , if for a scalar λ , it also satisfies

$$X^{i} {}^{1}D_{iik} = \lambda h_{ik}$$
 (28)

Using equations (22), (26) a, b and (27), we get

$$\begin{split} &\lambda \ h_{jk} = m_j \ m_k \ \{\beta \ D_{(1)} + \gamma \ D_{(5)} + \Theta \ D_{(6)} + \phi \ D_{(7)}\} + n_{(1)j} \ n_{(1)k} \ \{\beta \ D_{(8)} + \gamma \ D_{(2)} + \Theta \ D_{(9)} + \phi \ D_{(10)}\} \\ &+ n_{(2)j} \ n_{(2)k} \ \{\beta \ D_{(11)} + \gamma \ D_{(12)} + \Theta \ D_{(3)} + \phi \ D_{(13)}\} + n_{(3)j} \ n_{(3)k} \ \{\beta \ D_{(14)} + \gamma \ D_{(15)} + \Theta \ D_{(16)} + \phi \ D_{(4)}\} \\ &+ (m_j \ n_{(1)k} + m_k \ n_{(1)j}) \{\beta \ D_{(5)} + \gamma \ D_{(8)} + \Theta \ D_{(17)} + \phi \ D_{(19)}\} \\ &+ (m_j \ n_{(2)k} + m_k \ n_{(2)j}) \ \{\beta \ D_{(6)} + \gamma \ D_{(17)} + \Theta \ D_{(11)} + \phi \ D_{(18)}\} \\ &+ (m_j \ n_{(3)k} + m_k \ n_{(3)j}) \ \{\beta \ D_{(7)} + \gamma \ D_{(19)} + \Theta \ D_{(14)} + \phi \ D_{(18)}\} \\ &+ (n_{(1)j} \ n_{(2)k} + n_{(1)k} \ n_{(2)j}) \ \{\beta \ D_{(17)} + \gamma \ D_{(19)} + \Theta \ D_{(12)} + \phi \ D_{(20)}\} \\ &+ (n_{(2)j} \ n_{(3)k} + n_{(2)k} \ n_{(3)j}) \ \{\beta \ D_{(18)} + \gamma \ D_{(20)} + \Theta \ D_{(13)} + \phi \ D_{(15)}\} \end{split}$$

Multiplying equation (29) by g^{jk} and using equation (2.4), we get on simplification

$$\lambda = (1/4) \gamma^{-1} D \tag{30}$$

which by virtue of equations (6) and (29) also leads to

$${}^{1}D(\gamma_{r} - \Theta k_{r} + \beta h_{r} + \varphi S_{r}) + {}^{1}D_{r} = 0$$
(31)

Hence:

Theorem 2.1.: If $X^i(x)$ is a D-concurrent vector field of first kind in a five-dimensional Finsler space F^5 , the scalar λ , is given by equation (30) and vector 1D_t satisfies equation (31)

Multiplying equation (29) by m^j , $n_{(1)}^j$, $n_{(2)}^j$ and $n_{(3)}^j$, respectively, we get

$$\begin{split} \lambda \ m_k &= m_k \left\{ \beta \ D_{(1)} + \gamma \ D_{(5)} + \Theta \ D_{(6)} + \phi \ D_{(7)} \right\} + n_{(1)k} \left\{ \beta \ D_{(5)} + \gamma \ D_{(8)} + \Theta \ D_{(17)} + \phi \ D_{(19)} \right\} \\ &+ n_{(2)k} \left\{ \beta \ D_{(6)} + \gamma \ D_{(17)} + \Theta \ D_{(11)} + \phi \ D_{(18)} \right\} + n_{(3)k} \left\{ \beta \ D_{(7)} + \gamma \ D_{(19)} + \Theta \ D_{(14)} + \phi \ D_{(18)} \right\}, \\ \lambda \ n_{(1)k} &= m_k \left\{ \beta \ D_{(5)} + \gamma \ D_{(8)} + \Theta \ D_{(17)} + \phi \ D_{(19)} \right\} + n_{(1)k} \left\{ \beta \ D_{(8)} + \gamma \ D_{(2)} + \Theta \ D_{(9)} + \phi \ D_{(10)} \right\} \end{split}$$

$$+ \, n_{(2)k} \{ \beta \, D_{(17)} + \gamma \, D_{(19)} + \Theta \, D_{(12)} + \phi \, D_{(20)} \} \\ + \, n_{(3)k} \{ \beta \, D_{(19)} + \gamma \, D_{(10)} + \Theta \, D_{(20)} + \phi \, D_{(15)} \}$$

$$\lambda \, n_{(2)k} = m_k \, \left\{ \beta \, D_{(6)} + \gamma \, D_{(17)} + \Theta \, D_{(11)} + \phi \, D_{(18)} \right\} \\ + n_{(1)k} \left\{ \beta \, D_{(17)} + \gamma \, D_{(19)} + \Theta \, D_{(12)} + \phi \, D_{(20)} \right\} \\ = m_k \, \left\{ \beta \, D_{(6)} + \gamma \, D_{(17)} + \Theta \, D_{(11)} + \phi \, D_{(18)} \right\} \\ + n_{(1)k} \left\{ \beta \, D_{(17)} + \gamma \, D_{(19)} + \Theta \, D_{(12)} + \phi \, D_{(20)} \right\} \\ = m_k \, \left\{ \beta \, D_{(6)} + \gamma \, D_{(17)} + \Theta \, D_{(11)} + \phi \, D_{(18)} \right\} \\ + n_{(1)k} \left\{ \beta \, D_{(17)} + \gamma \, D_{(19)} + \Theta \, D_{(12)} + \phi \, D_{(20)} \right\} \\ = m_k \, \left\{ \beta \, D_{(6)} + \gamma \, D_{(17)} + \Theta \, D_{(11)} + \phi \, D_{(18)} \right\} \\ = m_k \, \left\{ \beta \, D_{(6)} + \gamma \, D_{(17)} + \Theta \, D_{(11)} + \phi \, D_{(11)}$$

$$+ n_{(2)k} \{ \beta D_{(11)} + \gamma D_{(12)} + \Theta D_{(3)} + \phi D_{(13)} \} + n_{(3)k} \{ \beta D_{(18)} + \gamma D_{(20)} + \Theta D_{(13)} + \phi D_{(16)} \},$$
(34)

$$\lambda \, n_{(3)k} = m_k \, \{\beta \, D_{(7)} + \gamma \, D_{(19)} + \Theta \, D_{(14)} + \phi \, D_{(18)} \} \\ + \, n_{(1)k} \{\beta \, D_{(19)} + \gamma \, D_{(10)} + \Theta \, D_{(20)} + \phi \, D_{(15)} \}$$

$$+ n_{(2)k} \{ \beta D_{(18)} + \gamma D_{(20)} + \Theta D_{(13)} + \phi D_{(16)} \} + n_{(3)k} \{ \beta D_{(14)} + \gamma D_{(15)} + \Theta D_{(16)} + \phi D_{(4)} \}$$
 (35)

From these equations we can get

$$\lambda = \beta D_{(1)} + \gamma D_{(5)} + \Theta D_{(6)} + \phi D_{(7)} = \beta D_{(8)} + \gamma D_{(2)} + \Theta D_{(9)} + \phi D_{(10)}$$

$$= \beta D_{(11)} + \gamma D_{(12)} + \Theta D_{(3)} + \phi D_{(13)} = \beta D_{(14)} + \gamma D_{(15)} + \Theta D_{(16)} + \phi D_{(4)}$$
(36)

and

$$\beta D_{(5)} + \gamma D_{(8)} + \Theta D_{(17)} + \phi D_{(19)} = \beta D_{(6)} + \gamma D_{(17)} + \Theta D_{(11)} + \phi D_{(18)} = 0,$$

$$\beta D_{(7)} + \gamma D_{(19)} + \Theta D_{(14)} + \phi D_{(18)} = \beta D_{(17)} + \gamma D_{(19)} + \Theta D_{(12)} + \phi D_{(20)} = 0,$$

$$\beta D_{(19)} + \gamma D_{(10)} + \Theta D_{(20)} + \phi D_{(15)} = \beta D_{(18)} + \gamma D_{(20)} + \Theta D_{(13)} + \phi D_{(16)} = 0$$
(37)

From equations given in (2.11) b, we can obtain after eliminating scalars β , γ , Θ and φ and some tedious calculation

$$E(CF - AG) + H(DE - BF) + I(AB - CD) = 0$$
(38)

where we have substituted

$$\begin{split} A &= D_{(8)} \ D_{(18)} - D^2_{(19)}, \ B = D_{(11)} \ D_{(20)} - D_{(12)} \ D_{(18)}, \ C = D_{(17)} \ D_{(20)} - D_{(18)} \ D_{(19)}, \\ D &= D_{(17)} \ D_{(18)} - D_{(14)} \ D_{(19)}, \ E = D_{(6)} \ D_{(20)} - D_{(17)} \ D_{(18)}, \ F = D_{(5)} \ D_{(18)} - D_{(7)} \ D_{(19)}, \\ G &= D_{(12)} \ D_{(16)} - D_{(13)} \ D_{(20)}, \ H = D_{(16)} \ D_{(19)} - D^2_{(20)}, \ I = D_{(16)} \ D_{(17)} - D_{(18)} \ D_{(20)}. \end{split} \tag{39}$$

Hence:

Theorem 2.2.: If $X^i(x)$ is a D-concurrent vector field of first kind in a Finsler space of five-dimensions F^5 , it satisfies equation (38), where coefficients A, B, C, D, E, F, G, H, I are given in terms of coefficients of ${}^1D_{ijk}$ by equation (39).

Weakly D-Concurrent Vector Fields

Multiplying equation (29) by m^k , $n_{(1)}^k$, $n_{(2)}^k$ and $n_{(3)}^k$, respectively, we get

$$^{1}D_{ijk} m^{k} = D_{(1)} m_{i} m_{j} + D_{(5)}(m_{i} n_{(1)j} + m_{j} n_{(1)i}) + D_{(6)}(m_{i} n_{(2)j} + m_{j} n_{(2)i}) + D_{(7)}(m_{i} n_{(3)j} + m_{j} n_{(3)i})$$

$$+ D_{(8)} n_{(1)I} n_{(1)j} + D_{(11)} n_{(2)I} n_{(2)j} + D_{(14)} n_{(3)I} n_{(3)j} + D_{(17)}(n_{(1)I} n_{(2)j} + n_{(1)j} n_{(2)i})$$

$$+ D_{(18)}(n_{(2)I} n_{(3)j} + n_{(2)j} n_{(3)i}) + D_{(19)}(n_{(1)I} n_{(3)j} + n_{(1)j} n_{(3)i}), \qquad (40)$$

$$^{1}D_{ijk} n_{(1)}^{k} = D_{(2)} n_{(1)I} n_{(1)j} + D_{(5)} m_{i} m_{j} + D_{(8)}(m_{i} n_{(1)j} + m_{j} n_{(1)i}) + D_{(9)}(n_{(1)I} n_{(2)j} + n_{(1)j} n_{(2)i})$$

$$+ D_{(10)}(n_{(1)I} n_{(3)j} + n_{(1)j} n_{(3)i}) + D_{(121)} n_{(2)I} n_{(2)j} + D_{(15)} n_{(3)I} n_{(3)j} + D_{(17)}(m_{i} n_{(2)j} + m_{j} n_{(2)i})$$

$$+ D_{(19)}(m_{i} n_{(3)j} + m_{j} n_{(3)i}) + D_{(20)}(n_{(2)I} n_{(3)j} + n_{(2)j} n_{(3)i}), \qquad (41)$$

$$^{1}D_{ijk} n_{(2)}^{k} = D_{(3)} n_{(2)I} n_{(2)j} + D_{(6)} m_{i} m_{j} + D_{(9)} n_{(1)I} n_{(1)j} + D_{(11)}(m_{i} n_{(2)j} + m_{j} n_{(2)i})$$

$$+ D_{(12)}(n_{(1)I} n_{(2)j} + n_{(1)j} n_{(2)i}) + D_{(13)}(n_{(2)I} n_{(3)j} + n_{(2)j} n_{(3)i}) + D_{(16)} n_{(3)I} n_{(3)j}$$

$$+ D_{(17)}(m_{i} n_{(1)j} + m_{j} n_{(1)i}) + D_{(18)}(m_{i} n_{(3)j} + m_{j} n_{(3)i}) + D_{(20)}(n_{(1)I} n_{(3)j} + n_{(1)j} n_{(3)i}) \qquad (42)$$

and

$$^{1}D_{ijk} \, n_{(3)}{}^{k} = D_{(4)} \, n_{(3)I} \, n_{(3)j} + D_{(7)} \, m_{i} \, m_{j} + D_{(10)} \, n_{(1)I} \, n_{(1)j} + D_{(13)} \, n_{(2)I} \, n_{(2)j} + D_{(14)} (m_{i} \, n_{(3)j} + m_{j} \, n_{(3)i})$$

$$+ \ D_{(15)}(n_{(1)I} \ n_{(3)j} + n_{(1)j} \ n_{(3)i}) + D_{(16)}(n_{(2)I} \ n_{(3)j} + n_{(2)j} \ n_{(3)i}) + D_{(18)}(m_i \ n_{(2)j} + m_i \ n_{(2)j})$$

$$+ D_{(19)}(m_i n_{(1)j} + m_j n_{(1)i}) + D_{(20)}(n_{(1)I} n_{(2)j} + n_{(1)j} n_{(2)i}).$$

$$(43)$$

These equations further give

$${}^{1}D_{iik} m^{j} m^{k} = {}^{11}D_{i} = D_{(1)} m_{i} + D_{(5)} n_{(1)I} + D_{(6)} n_{(2)I} + D_{(7)} n_{(3)I}$$

$$(44)$$

$${}^{1}D_{ijk} n_{(1)}{}^{j} m^{k} = {}^{21}D_{i} = D_{(5)} m_{i} + D_{(8)} n_{(1)I} + D_{(17)} n_{(2)I} + D_{(19)} n_{(3)I} = {}^{12}D_{i},$$

$$(45)$$

$${}^{1}D_{iik} n_{(2)}{}^{j} m^{k} = {}^{31}D_{i} = D_{(6)} m_{i} + D_{(11)} n_{(2)I} + D_{(17)} n_{(1)I} + D_{(18)} n_{(3)I} = {}^{13}D_{i},$$

$$(46)$$

$${}^{1}D_{iik} n_{(3)}{}^{j} m^{k} = {}^{41}D_{i} = D_{(7)} m_{i} + D_{(14)} n_{(3)I} + D_{(18)} n_{(2)I} + D_{(19)} n_{(1)I} = {}^{14}D_{i},$$

$$(47)$$

$${}^{1}D_{iik} n_{(1)}{}^{j} n_{(1)}{}^{k} = {}^{22}D_{i} = D_{(2)} n_{(1)I} + D_{(8)} m_{i} + D_{(9)} n_{(2)I} + D_{(10)} n_{(3)I},$$

$$(48)$$

$${}^{1}D_{ijk} n_{(2)}{}^{j} n_{(1)}{}^{k} = {}^{32}D_{i} = D_{(9)} n_{(1)I} + D_{(12)} n_{(2)I} + D_{(17)} m_{i} + D_{(20)} n_{(3)I} = {}^{23}D_{i},$$

$$(49)$$

$${}^{1}D_{iik} n_{(3)}{}^{j} n_{(1)}{}^{k} = {}^{42}D_{i} = D_{(10)} n_{(1)I} + D_{(15)} n_{(3)I} + D_{(19)} m_{i} + D_{(20)} n_{(2)I} = {}^{24}D_{i},$$

$$(50)$$

$${}^{1}D_{iik} n_{(2)}{}^{j} n_{(2)}{}^{k} = {}^{33}D_{i} = D_{(3)} n_{(2)I} + D_{(11)} m_{i} + D_{(12)} n_{(1)I} + D_{(13)} n_{(3)I},$$

$$(51)$$

$${}^{1}D_{iik} n_{(3)}{}^{j} n_{(2)}{}^{k} = {}^{43}D_{i} = D_{(13)} n_{(2)I} + D_{(16)} n_{(3)I} + D_{(18)} m_{i} + D_{(20)} n_{(1)I} = {}^{34}D_{i},$$
(52)

$${}^{1}D_{iik} n_{(3)}{}^{j} n_{(3)}{}^{k} = {}^{44}D_{i} = D_{(4)} n_{(3)I} + D_{(14)} m_{i} + D_{(15)} n_{(1)I} + D_{(16)} n_{(2)I}$$

$$(53)$$

Hence:

Theorem 3.1.: In a five-dimensional Finsler space F^5 , tensor ${}^1D_{ijk}$ gives ten vectors out of which four vectors are unique and are given by equations (44), (45), (48) and (53)

Now similar to [7], we shall give following definitions:

Weakly D-Concurrent Vector Fields of First Kind: A vector field $X^{i}(x)$, in a five-dimensional Finsler space F^{5} , shall be called weakly D-concurrent vector field of first kind, if for $X^{i}_{/j} = -\delta^{i}_{j}$, and a scalar function $\mu_{(1)}(x, y)$, ¹¹D_i given by equation (44) satisfies

$$X^{i 11}D_i = \mu_{(1)}(x, y)$$
 (54)

Weakly D-Concurrent Vector Fields of Second Kind. A vector field $X^{i}(x)$, in a five-dimensional Finsler space F^{5} , shall be called weakly D-concurrent vector field of second kind, if for $X^{i}_{/j} = -\delta^{i}_{j}$, and a scalar function $\mu_{(2)}(x, y)$, $^{22}D_{i}$ given by equation (48) satisfies

$$X^{i} {}^{22}D_{i} = \mu_{(2)}(x, y)$$
 (55)

Weakly D-Concurrent Vector Fields of Third Kind: A vector field $X^{i}(x)$, in a five-dimensional Finsler space F^{5} , shall be called weakly D-concurrent vector field of third kind, if for $X^{i}_{/j} = -\delta^{i}_{j}$, and a scalar function $\mu_{(3)}(x, y)$, $^{33}D_{i}$ given by equation (51) satisfies

$$X^{i 33}D_i = \mu_{(3)}(x, y)$$
 (56)

Weakly D-Concurrent Vector Fields of Fourth Kind: A vector field $X^{i}(x)$, in a five-dimensional Finsler space F^{5} , shall

(63)

be called weakly D-concurrent vector field of fourth kind, if for $X^{i}_{/j} = -\delta^{i}_{j}$, and a scalar function $\mu_{(4)}(x, y)$, ⁴⁴D_i given by equation (53) satisfies

$$X^{i} = \mu_{(4)}(x, y)$$
 (57)

Equations (54), (55), (56) and (57) with the help of equations (25) can be expressed as

$$\mu_{(1)}(x, y) = \beta D_{(1)} + \gamma D_{(5)} + \Theta D_{(6)} + \varphi D_{(7)}, \quad \mu_{(2)}(x, y) = \beta D_{(8)} + \gamma D_{(2)} + \Theta D_{(9)} + \varphi D_{(10)}, \quad (58)$$

$$\mu_{(3)}(x, y) = \beta D_{(11)} + \gamma D_{(12)} + \Theta D_{(3)} + \varphi D_{(13)}, \quad \mu_{(4)}(x, y) = \beta D_{(14)} + \gamma D_{(15)} + \Theta D_{(16)} + \varphi D_{(4)}. \tag{59}$$

Hence:

Theorem 3.2.: In a five-dimensional Finsler space F^5 , weakly D-concurrent vector fields of first, second, third and fourth kind have scalars $\mu_{(1)}(x, y)$, $\mu_{(2)}(x, y)$, $\mu_{(3)}(x, y)$ and $\mu_{(4)}(x, y)$ satisfying equations (58) and (59).

Taking h-covariant derivatives of equations (58) and (59) with the help of equation (26) a, we get

$$\begin{split} &\mu_{(1)'j} = \beta(D_{(1)'j} - D_{(5)} \, h_j + D_{(6)} \, j_j + D_{(7)} \, r_j) + \gamma(D_{(5)'j} + D_{(1)} \, h_j - D_{(6)} \, k_j + D_{(7)} \, s_j) \\ &+ \Theta(D_{(6)'j} - D_{(1)} \, j_j + D_{(5)} \, k_j + D_{(7)} \, t_j) + \varphi(D_{(7)'j} - D_{(1)} \, r_j - D_{(5)} \, s_j - D_{(6)} \, t_j) - {}^{11}D_j, \end{split}$$
(60)
$$&\mu_{(2)'j} = \beta(D_{(8)'j} - D_{(2)} \, h_j + D_{(9)} \, j_j + D_{(10)} \, r_j) + \gamma \, (D_{(2)'j} + D_{(8)} \, h_j - D_{(9)} \, k_j + D_{(10)} \, s_j) \\ &+ \Theta(D_{(9)'j} - D_{(8)} \, j_j + D_{(2)} \, k_j + D_{(10)} \, t_j) + \varphi(D_{(10)'j} - D_{(8)} \, r_j - D_{(2)} \, s_j - D_{(9)} \, t_j) - {}^{22}D_j, \end{split}$$
(61)
$$&\mu_{(3)'j} = \beta(D_{(11)'j} - D_{(12)} \, h_j + D_{(3)} \, j_j + D_{(13)} \, r_j) + \gamma(D_{(12)'j} + D_{(11)} \, h_j - D_{(3)} \, k_j + D_{(13)} \, s_j) \\ &+ \Theta(D_{(3)'j} - D_{(11)} \, j_j + D_{(12)} \, k_j + D_{(13)} \, t_j) + \varphi(D_{(13)'j} - D_{(11)} \, r_j - D_{(12)} \, s_j - D_{(3)} \, t_j) - {}^{33}D_j, \end{split}$$
(62)
$$&\mu_{(4)'j} = \beta(D_{(14)'j} - D_{(15)} \, h_j + D_{(16)} \, j_i + D_{(4)} \, r_j) + \gamma(D_{(15)'j} + D_{(14)} \, h_i - D_{(16)} \, k_j + D_{(4)} \, s_i)$$

 $+\;\Theta(D_{(16)/j}-D_{(14)}\;j_{j}+D_{(15)}\;k_{j}+D_{(4)}\;t_{j})+\phi(D_{(4)/j}\;-\;D_{(14)}\;r_{j}-D_{(15)}\;s_{j}-D_{(16)}\;t_{j})-{}^{44}D_{\;\;j}$

$$\begin{split} &\mu_{(1)/0} = \beta(D_{(1)/0} - D_{(5)} \, h_0 + D_{(6)} \, j_0 + D_{(7)} \, r_0) + \gamma(D_{(5)/0} + D_{(1)} \, h_0 - D_{(6)} \, k_0 + D_{(7)} \, s_0) \\ &+ \varTheta(D_{(6)/0} - D_{(1)} \, j_0 + D_{(5)} \, k_0 + D_{(7)} \, t_0) + \varphi(D_{(7)/0} - D_{(1)} \, r_0 - D_{(5)} \, s_0 - D_{(6)} \, t_0), \end{split} \tag{64}$$

$$\mu_{(2)/0} = \beta (D_{(8)/0} - D_{(2)} \, h_0 + D_{(9)} \, j_0 + D_{(10)} \, r_0) + \gamma \, (D_{(2)/0} + D_{(8)} \, h_0 - D_{(9)} \, k_0 + D_{(10)} \, s_0)$$

$$+\Theta(D_{(9)/0}-D_{(8)}j_0+D_{(2)}k_0+D_{(10)}t_0)+\phi(D_{(10)/0}-D_{(8)}r_0-D_{(2)}s_0-D_{(9)}t_0), \tag{65}$$

$$\mu_{(3)/0} = \beta(D_{(11)/0} - D_{(12)} h_0 + D_{(3)} j_0 + D_{(13)} r_0) + \gamma(D_{(12)/0} + D_{(11)} h_0 - D_{(3)} k_0 + D_{(13)} s_0)$$

$$+\Theta(D_{(3)/0}-D_{(11)}j_0+D_{(12)}k_0+D_{(13)}t_0)+\varphi(D_{(13)/0}-D_{(11)}r_0-D_{(12)}s_0-D_{(3)}t_0), \tag{66}$$

$$\mu_{(4)/0} = \beta(D_{(14)/0} - D_{(15)} \ h_0 + D_{(16)} \ j_0 + D_{(4)} \ r_0) + \gamma(D_{(15)/0} + D_{(14)} \ h_0 - D_{(16)} \ k_0 + D_{(4)} \ s_0)$$

$$+\Theta(D_{(16)0} - D_{(14)} j_0 + D_{(15)} k_0 + D_{(4)} t_0) + \varphi(D_{(4)0} - D_{(14)} r_0 - D_{(15)} s_0 - D_{(16)} t_0)$$

$$(67)$$

Hence:

Which lead to

Theorem 3.3.: In a five-dimensional Finsler space F⁵, weakly D-concurrent vector fields of first, second, third and fourth kind have scalars whose h-covariant derivatives satisfy equations (60) and (64).

Remarks:

• It can be observed that D-concurrent vector field of first kind in a five-dimensional Finsler space shall give weakly D-concurrent vector fields of first, second, third and fourth kind, but the converse is not true in general.

• Similar to h-covariant derivatives, we can also obtain v-covariant derivatives of scalars defined above.

TENSOR ¹D_{iik/r} IN F⁵

Taking h-covariant derivative of equation (22) and using equation (6), we can obtain [6]

$$^{1}D_{ijk/h} = A_{(1)h} m_{i} m_{j} m_{k} + A_{(2)h} n_{(1)i} n_{(1)j} n_{(1)k} + A_{(3)h} n_{(2)i} n_{(2)j} n_{(2)k} + A_{(4)h} n_{(3)I} n_{(3)j} n_{(3)k}$$

$$+ \sum_{(I,j,k)} \left[A_{(5)h} \left\{ m_{i} m_{j} n_{(1)k} \right\} + A_{(6)h} \left\{ m_{i} m_{j} n_{(2)k} \right\} + A_{(7)h} \left\{ m_{i} m_{j} n_{(3)k} \right\}$$

$$+ A_{(8)h} \left\{ n_{(1)i} n_{(1)jj} m_{k} \right\} + A_{(9)h} \left\{ n_{(1)i} n_{(1)j} n_{(2)k} \right\} + A_{(10)h} \left\{ n_{(1)i} n_{(1)j} n_{(3)k} \right\}$$

$$+ A_{(11)h} \left\{ n_{(2)i} n_{(2)j} m_{k} \right\} + A_{(12)h} \left\{ n_{(2)i} n_{(2)j} n_{(1)k} \right\} + A_{(13)h} \left\{ n_{(2)i} n_{(2)j} n_{(3)k} \right\}$$

$$+ A_{(14)h} \left\{ n_{(3)i} n_{(3)j} m_{k} \right\} + A_{(15)h} \left\{ n_{(3)i} n_{(3)j} n_{(1)k} \right\} + A_{(16)h} \left\{ n_{(3)i} n_{(3)j} n_{(2)k} \right\}$$

$$+ A_{(17)h} \left\{ m_{i}(n_{(1)j} n_{(2)k} + n_{(1)k} n_{(2)j}) \right\} + A_{(18)h} \left\{ m_{i}(n_{(1)j} n_{(3)k} + n_{(1)k} n_{(3)j}) \right\}$$

$$+ A_{(19)h} \left\{ m_{i}(n_{(2)i} n_{(3)k} + n_{(2)k} n_{(3)i}) \right\} + A_{(20)h} \left\{ n_{(1)i}(n_{(2)i} n_{(3)k} + n_{(2)k} n_{(3)i}) \right\}$$

$$(4.1)$$

Where we have used

$$\begin{split} &A_{(1)j} = D_{(1)j} + 3(D_{(6)}\,h_{(3)j} - D_{(5)}\,h_{(1)j} + D_{(7)}\,h_{(4)j}), \, A_{(2)j} = D_{(2)j} + 3(D_{(8)}\,h_{(1)j} - D_{(9)}\,h_{(2)j} + D_{(10)}\,h_{(5)j}) \\ &A_{(3)j} = D_{(3)j} + 3(D_{(12)}h_{(2)j} - D_{(11)}\,h_{(3)j} + D_{(13)}\,h_{(6)j}), \, A_{(4)j} = D_{(4)j} - 3(D_{(14)}\,h_{(4)j} + D_{(15)}\,h_{(5)j} + D_{(16)}\,h_{(6)j}) \\ &A_{(5)j} = D_{(5)j} + (D_{(1)} - 2D_{(8)})h_{(1)j} - D_{(6)}\,h_{(2)j} + D_{(7)}\,h_{(5)j} + 2\,D_{(17)}\,h_{(3)j} + 2D_{(18)}\,h_{(4)j} \\ &A_{(6)j} = D_{(6)j} - (D_{(1)} - 2\,D_{(11)})h_{(3)j} + D_{(5)}\,h_{(2)j} + D_{(7)}\,h_{(6)j} - 2\,D_{(17)}\,h_{(1)j} + 2\,D_{(19)}\,h_{(4)} \\ &A_{(7)j} = D_{(7)j} - (D_{(1)} - 2\,D_{(14)})h_{(4)j} - D_{(5)}\,h_{(5)j} - D_{(6)}\,h_{(6)j} - 2\,D_{(18)}\,h_{(1)j} + 2\,D_{(19)}\,h_{(3)} \\ &A_{(8)j} = D_{(8)j} - (D_{(2)} - 2\,D_{(5)})h_{(1)j} + D_{(9)}\,h_{(3)j} + D_{(10)}\,h_{(4)j} - 2\,D_{(17)}\,h_{(2)j} + 2\,D_{(18)}\,h_{(5)j} \\ &A_{(8)j} = D_{(8)j} - (D_{(2)} - 2\,D_{(5)})h_{(1)j} + D_{(8)}\,h_{(3)j} + D_{(10)}\,h_{(6)j} + 2\,D_{(17)}\,h_{(1)j} + 2\,D_{(18)}\,h_{(5)j} \\ &A_{(10)j} = D_{(10)j} - (D_{(2)} - 2\,D_{(12)})\,h_{(5)j} - D_{(8)}\,h_{(4)j} - D_{(9)}\,h_{(6)j} + 2\,D_{(17)}\,h_{(1)j} + 2\,D_{(20)}\,h_{(2)j} \\ &A_{(11)j} = D_{(10)j} - (D_{(2)} - 2\,D_{(15)})h_{(5)j} - D_{(8)}\,h_{(4)j} - D_{(9)}\,h_{(6)j} + 2\,D_{(17)}\,h_{(2)j} + 2D_{(19)}\,h_{(6)j} \\ &A_{(11)j} = D_{(11)j} + (D_{(3)} - 2\,D_{(6)})h_{(3)j} - D_{(12)}\,h_{(1)j} + D_{(13)}\,h_{(4)j} + 2D_{(17)}\,h_{(2)j} + 2D_{(19)}\,h_{(6)j} \\ &A_{(12)j} = D_{(12)j} + D_{(11)}\,h_{(1)j} - (D_{(3)} - 2\,D_{(9)})h_{(2)j} + D_{(13)}\,h_{(4)j} - D_{(12)}\,h_{(5)j} - 2\,D_{(19)}\,h_{(3)j} + 2\,D_{(20)}\,h_{(6)j} \\ &A_{(13)j} = D_{(13)j} - (D_{(3)} - 2\,D_{(16)})\,h_{(6)j} - D_{(11)}\,h_{(4)j} - D_{(12)}\,h_{(5)j} - 2\,D_{(18)}\,h_{(5)j} - 2\,D_{(18)}\,h_{(6)j} \\ &A_{(15)j} = D_{(14)j} + (D_{(4)} - 2\,D_{(7)})h_{(4)j} - D_{(15)}\,h_{(1)j} + D_{(16)}\,h_{(3)j} - 2\,D_{(18)}\,h_{(4)j} - 2\,D_{(20)}\,h_{(6)j} \\ &A_{(15)j} = D_{(15)j} + (D_{(4)} - 2\,D_{(10)})\,h_{(5)j} + D_{(14)}\,h_{(1)j} - D_{(16)}\,h_{(2)j} - 2\,D_{(18)}\,h_{(4)j} - 2\,D_{(20)}\,h_{(6)j} \\ &A_{(16)j} =$$

$$\begin{split} &+D_{(19)}\ h_{(5)j}+D_{(20)}\ h_{(4)j}\\ &A_{(18)j}=D_{(18)/j}-(D_{(5)}-D_{(15)})h_{(4)j}-(D_{(8)}-D_{(14)})\ h_{(5)j}-D_{(17)}\ h_{(6)j}+(D_{(7)}-D_{(10)})h_{(1)j}\\ &-D_{(19)}\ h_{(2)j}+D_{(20)}\ h_{(3)j}\\ &A_{(19)j}=D_{(19)/j}-D_{(17)}\ h_{(5)j}-(D_{(7)}-D_{(13)})h_{(3)j}-(D_{(6)}-D_{(16)})h_{(4)j}-(D_{(11)}-D_{(14)})h_{(6)j}\\ &+D_{(18)}\ h_{(2)j}-D_{(20)}\ h_{(1)j}\\ &A_{(20)j}=D_{(20)/j}+(D_{(10)}-D_{(13)})\ h_{(2)j}-(D_{(9)}-D_{(16)})h_{(5)j}-D_{(17)}\ h_{(4)j}-(D_{(12)}-D_{(15)})\ h_{(6)j}\\ &-D_{(18)}\ h_{(3)j}+D_{(19)}\ h_{(1)j} \end{split} \label{eq:constraint}$$

From equation (4.1), we can obtain by virtue of ${}^{1}D_{iik/h} l^{h} = {}^{1}D_{iik/0} = {}^{1}Q_{iik}$

$$\begin{split} ^{1}Q_{ijk} &= A_{(1)0} \ m_{i} \ m_{j} \ m_{k} + A_{(2)0} \ n_{(1)i} \ n_{(1)j} \ n_{(1)k} + A_{(3)0} \ n_{(2)i} \ n_{(2)j} \ n_{(2)k} + A_{(4)0} \ n_{(3)I} \ n_{(3)j} \ n_{(3)k} \\ &+ \sum_{(I,j,k)} \left[A_{(5)0} \left\{ \ m_{i} \ m_{j} \ n_{(1)k} \right\} + A_{(6)0} \left\{ \ m_{i} \ m_{j} \ n_{(2)k} \right\} + A_{(7)0} \left\{ \ m_{i} \ m_{j} \ n_{(3)k} \right\} \\ &+ A_{(8)0} \left\{ \ n_{(1)i} \ n_{(1)jj} \ m_{k} \right\} + A_{(9)0} \left\{ \ n_{(1)i} \ n_{(1)j} \ n_{(2)k} \right\} + A_{(10)0} \left\{ n_{(1)i} \ n_{(1)j} \ n_{(3)k} \right\} \\ &+ A_{(11)0} \left\{ n_{(2)i} \ n_{(2)j} \ m_{k} \right\} + A_{(12)0} \left\{ n_{(2)i} \ n_{(2)j} \ n_{(1)k} \right\} + A_{(13)0} \left\{ n_{(2)i} \ n_{(2)j} \ n_{(3)k} \right\} \\ &+ A_{(14)0} \left\{ n_{(3)i} \ n_{(3)j} \ m_{k} \right\} + A_{(15)0} \left\{ n_{(3)i} \ n_{(3)j} \ n_{(1)k} \right\} + A_{(16)0} \left\{ n_{(3)i} \ n_{(3)j} \ n_{(2)k} \right\} \\ &+ A_{(17)0} \left\{ m_{i} (n_{(1)j} \ n_{(2)k} + n_{(1)k} \ n_{(2)j}) \right\} + A_{(18)0} \left\{ m_{i} (n_{(1j} \ n_{(3)k} + n_{(2)k} \ n_{(3)j}) \right\} \right] \\ &+ A_{(19)0} \left\{ m_{i} (n_{(2)j} \ n_{(3)k} + n_{(2)k} \ n_{(3)j}) \right\} + A_{(20)0} \left\{ n_{(1)i} (n_{(2)j} \ n_{(3)k} + n_{(2)k} \ n_{(3)j}) \right\} \right] \end{aligned} \tag{69}$$

Def. 4.1.: If $X^i(x)$ is a vector field satisfying $X^i_{/j} = -\delta^i_j$, it shall be called Q-concurrent vector field of first kind in a five-dimensional Finsler space F^5 , if for a scalar μ , it satisfies

$$X^{i} {}^{1}Q_{ijk} = \mu h_{ik}$$
 (70)

From equation (28), we can easily obtain equation (70), which shows:

Theorem 4.1.: If $X^i(x)$ is a D-concurrent vector field of first kind in a five-dimensional Finsler space F^5 , it is also Q-concurrent vector field of first kind, such that scalar μ satisfies $\mu = \lambda_{00}$, but the converse is not true in general.

Equation (70) can alternatively be expressed as

$$\begin{split} & \mu \, h_{jk} = m_j \, m_k \, \left\{ \beta \, A_{(1)0} + \gamma \, A_{(5)0} + \Theta \, A_{(6)0} + \phi \, A_{(7)0} \right\} + n_{(1)j} \, n_{(1)k} \, \left\{ \beta \, A_{(8)0} + \gamma \, A_{(2)0} + \Theta \, A_{(9)0} + \phi \, A_{(10)0} \right\} \\ & + n_{(2)j} \, n_{(2)k} \, \left\{ \beta \, A_{(11)0} + \gamma \, A_{(12)0} + \Theta \, A_{(3)0} + \phi \, A_{(13)0} \right\} + n_{(3)j} \, n_{(3)k} \left\{ \beta \, A_{(14)0} + \gamma \, A_{(15)0} + \Theta \, A_{(16)0} + \phi \, A_{(4)0} \right\} \\ & + \left(m_j \, n_{(1)k} + m_k \, n_{(1)j} \right) \, \left\{ \beta \, A_{(5)0} + \gamma \, A_{(8)0} + \Theta \, A_{(17)0} + \phi \, A_{(18)0} \right\} \\ & + \left(m_j \, n_{(2)k} + m_k \, n_{(2)j} \right) \, \left\{ \beta \, A_{(6)0} + \gamma \, A_{(17)0} + \Theta \, A_{(11)0} + \phi \, A_{(19)0} \right\} \\ & + \left(m_j \, n_{(3)k} + m_k \, n_{(3)j} \right) \, \left\{ \beta \, A_{(7)0} + \gamma \, A_{(9)0} + \Theta \, A_{(12)0} + \phi \, A_{(14)0} \right\} \\ & + \left(n_{(1)j} \, n_{(2)k} + n_{(1)k} \, n_{(2)j} \right) \, \left\{ \beta \, A_{(17)0} + \gamma \, A_{(9)0} + \Theta \, A_{(12)0} + \phi \, A_{(16)0} \right\} \\ & + \left(n_{(2)j} \, n_{(3)k} + n_{(2)k} \, n_{(3)j} \right) \, \left\{ \beta \, A_{(19)0} + \gamma \, A_{(20)0} + \Theta \, A_{(13)0} + \phi \, A_{(16)0} \right\} \end{split}$$

$$+ (n_{(3)j} n_{(1)k} + n_{(3)k} n_{(1)j}) \{\beta A_{(18)0} + \gamma A_{(10)0} + \Theta A_{(20)0} + \varphi A_{(15)0}\}$$
(71)

Multiplying equation (4.5) by m^j , $n_{(1)}^j$, $n_{(2)}^j$ and $n_{(3)}^j$ respectively, we get

$$\mu \; n_{(1)k} = m_k \; \left\{ \beta \; A_{(5)0} + \gamma \; A_{(8)0} + \Theta \; A_{(17)0} + \phi \; A_{(18)0} \right\} \\ + \; n_{(1)k} \left\{ \beta \; A_{(8)0} + \gamma \; A_{(2)0} + \Theta \; A_{(9)0} + \phi \; A_{(10)0} \right\} \\ + \; n_{(1)k} \left\{ \beta \; A_{(8)0} + \gamma \; A_{(2)0} + \Theta \; A_{(10)0} + \phi \; A_{(10)0} \right\} \\ + \; n_{(1)k} \left\{ \beta \; A_{(8)0} + \gamma \; A_{(2)0} + \Theta \; A_{(10)0} + \phi \; A_{(10)0} \right\} \\ + \; n_{(1)k} \left\{ \beta \; A_{(8)0} + \gamma \; A_{(2)0} + \Theta \; A_{(10)0} + \phi \; A_{(10)0} \right\} \\ + \; n_{(1)k} \left\{ \beta \; A_{(10)0} + \gamma \; A_{(2)0} + \Theta \; A_{(10)0} + \phi \; A_{(10)0} \right\} \\ + \; n_{(1)k} \left\{ \beta \; A_{(10)0} + \gamma \; A_{(2)0} + \Theta \; A_{(10)0} + \phi \; A_{(10)0} \right\} \\ + \; n_{(1)k} \left\{ \beta \; A_{(10)0} + \gamma \; A_{(2)0} + \Theta \; A_{(10)0} + \phi \; A_{(10)0} \right\} \\ + \; n_{(1)k} \left\{ \beta \; A_{(10)0} + \gamma \; A_{(2)0} + \Theta \; A_{(10)0} + \phi \; A_{(10)0} \right\} \\ + \; n_{(1)k} \left\{ \beta \; A_{(10)0} + \gamma \; A_{(10)0} + \phi \; A_{($$

$$+ n_{(2)k} \{ \beta A_{(17)0} + \gamma A_{(9)0} + \Theta A_{(12)0} + \phi A_{(20)0} \} + n_{(3)k} \{ \beta A_{(18)0} + \gamma A_{(10)0} + \Theta A_{(20)0} + \phi A_{(15)0} \}, \tag{73}$$

$$\mu \; n_{(2)k} = m_k \; \{\beta \; A_{(6)0} + \gamma \; A_{(17)0} + \Theta \; A_{(11)0} + \phi \; A_{(19)0}\} \\ + \; n_{(1)k} \{\beta \; A_{(17)0} + \gamma \; A_{(9)0} + \Theta \; A_{(12)0} + \phi \; A_{(20)0}\} \\ + \; n_{(10)k} \{\beta \; A_{(17)0} + \gamma \; A_{(17)0} + \Theta \; A_{(11)0} + \phi \; A_{(11)0}\} \\ + \; n_{(10)k} \{\beta \; A_{(17)0} + \gamma \; A_{(17)0} + \Theta \; A_{(11)0} + \phi \; A_{(11)0}\} \\ + \; n_{(10)k} \{\beta \; A_{(17)0} + \gamma \; A_{(17)0} + \Theta \; A_{(11)0} + \phi \; A_{(11)0}\} \\ + \; n_{(10)k} \{\beta \; A_{(11)0} + \gamma \; A_{(11)0} + \phi \; A_{(11)0} + \phi \; A_{(11)0}\} \\ + \; n_{(10)k} \{\beta \; A_{(11)0} + \gamma \; A_{(11)0} + \phi \; A_{(11)0} + \phi \; A_{(11)0}\} \\ + \; n_{(10)k} \{\beta \; A_{(11)0} + \gamma \; A_{(11)0} + \phi \; A_{(11)0} + \phi \; A_{(11)0}\} \\ + \; n_{(10)k} \{\beta \; A_{(11)0} + \gamma \; A_{(11)0} + \phi \; A_{(11)0} + \phi \; A_{(11)0}\} \\ + \; n_{(10)k} \{\beta \; A_{(11)0} + \phi \; A_{(11)0} + \phi \; A_{(11)0} + \phi \; A_{(11)0}\} \\ + \; n_{(10)k} \{\beta \; A_{(11)0} + \phi \; A_{(11)0} + \phi \; A_{(11)0} + \phi \; A_{(11)0}\} \\ + \; n_{(10)k} \{\beta \; A_{(11)0} + \phi \; A_{(11)0} + \phi \; A_{(11)0} + \phi \; A_{(11)0}\} \\ + \; n_{(10)k} \{\beta \; A_{(11)0} + \phi \; A_{(1$$

$$+ n_{(2)k} \{ \beta A_{(11)0} + \gamma A_{(12)0} + \Theta A_{(3)0} + \phi A_{(13)0} \} + n_{(3)k} \{ \beta A_{(19)0} + \gamma A_{(20)0} + \Theta A_{(13)0} + \phi A_{(16)0} \}, \tag{74}$$

$$\mu \; n_{(3)k} = m_k \; \{\beta \; A_{(7)0} + \gamma \; A_{(18)0} + \Theta \; A_{(19)0} + \phi \; A_{(14)0}\} \\ + \; n_{(1)k} \; \{\beta \; A_{(18)0} + \gamma \; A_{(10)0} + \Theta \; A_{(20)0} + \phi \; A_{(15)0}\} \\ + \; n_{(1)k} \; \{\beta \; A_{(18)0} + \gamma \; A_{(10)0} + \Theta \; A_{(19)0} + \Theta \; A_{(19)0} + \phi \; A_{(14)0}\} \\ + \; n_{(1)k} \; \{\beta \; A_{(18)0} + \gamma \; A_{(10)0} + \Theta \; A_{(19)0} + \Theta \; A_{(19)0} + \phi \; A_{(14)0}\} \\ + \; n_{(1)k} \; \{\beta \; A_{(18)0} + \gamma \; A_{(10)0} + \Theta \; A_{(19)0} + \phi \; A_{(14)0}\} \\ + \; n_{(1)k} \; \{\beta \; A_{(18)0} + \gamma \; A_{(10)0} + \Theta \; A_{(12)0} + \phi \; A_{(14)0}\} \\ + \; n_{(1)k} \; \{\beta \; A_{(18)0} + \gamma \; A_{(10)0} + \Theta \; A_{(12)0} + \phi \; A_{(14)0}\} \\ + \; n_{(1)k} \; \{\beta \; A_{(18)0} + \gamma \; A_{(10)0} + \Theta \; A_{(12)0} + \phi \; A_{(14)0}\} \\ + \; n_{(1)k} \; \{\beta \; A_{(18)0} + \gamma \; A_{(10)0} + \Theta \; A_{(12)0} + \phi \; A_{(14)0}\} \\ + \; n_{(1)k} \; \{\beta \; A_{(18)0} + \gamma \; A_{(10)0} + \Theta \; A_{(12)0} + \phi \; A_{(14)0}\} \\ + \; n_{(1)k} \; \{\beta \; A_{(18)0} + \gamma \; A_{(10)0} + \Theta \; A_{(12)0} + \phi \; A_{(14)0}\} \\ + \; n_{(1)k} \; \{\beta \; A_{(18)0} + \gamma \; A_{(10)0} + \Theta \; A_{(12)0} + \phi \; A_{(12)0}\} \\ + \; n_{(1)k} \; \{\beta \; A_{(12)0} + \gamma \; A_{(12)0} + \phi \; A_{(12)0} + \phi \; A_{(12)0}\} \\ + \; n_{(1)k} \; \{\beta \; A_{(12)0} + \gamma \; A_{(12)0} + \phi \; A_{(12$$

$$+ n_{(2)k} \left\{ \beta A_{(19)0} + \gamma A_{(20)0} + \Theta A_{(13)0} + \varphi A_{(16)0} \right\} + n_{(3)k} \left\{ \beta A_{(14)0} + \gamma A_{(15)0} + \Theta A_{(16)0} + \varphi A_{(4)0} \right\}. \tag{75}$$

Equations (72) (73) (74) (75) lead to

$$\begin{split} \beta \ A_{(5)0} + \gamma \ A_{(8)0} + \Theta \ A_{(17)0} + \varphi \ A_{(18)0} &= \beta \ A_{(6)0} + \gamma \ A_{(17)0} + \Theta \ A_{(11)0} + \varphi \ A_{(19)0} \\ &= \beta \ A_{(7)0} + \gamma \ A_{(18)0} + \Theta \ A_{(19)0} + \varphi \ A_{(14)0} &= \beta \ A_{(17)0} + \gamma \ A_{(9)0} + \Theta \ A_{(12)0} + \varphi \ A_{(20)0} \\ &= \beta \ A_{(18)0} + \gamma \ A_{(10)0} + \Theta \ A_{(20)0} + \varphi \ A_{(15)0} &= \beta \ A_{(19)0} + \gamma \ A_{(20)0} + \Theta \ A_{(13)0} + \varphi \ A_{(16)0} &= 0. \end{split}$$
(76)

Eliminating β , γ , Θ , and φ from equation (76), we can obtain following determinant

$$\begin{vmatrix} A_{(5)0} & A_{(8)0} & A_{(17)0} & A_{(18)0} \\ A_{(6)0} & A_{(17)0} & A_{(11)0} & A_{(19)0} \\ A_{(7)0} & A_{(18)0} & A_{(19)0} & A_{(14)0} \\ A_{(17)0} & A_{(9)0} & A_{(12)0} & A_{(20)0} \end{vmatrix} = 0$$

$$(77)$$

Hence:

Theorem 4.2.: If $X^i(x)$ is a Q-concurrent vector field of first kind in a five-dimensional Finsler space F^5 , its coefficients satisfy determinant (77).

From equations (72) (73) (74) (75), we can also obtain

$$\mu = \beta A_{(1)0} + \gamma A_{(5)0} + \Theta A_{(6)0} + \varphi A_{(7)0} = \beta A_{(8)0} + \gamma A_{(2)0} + \Theta A_{(9)0} + \varphi A_{(10)0}$$

$$= \beta A_{(11)0} + \gamma A_{(12)0} + \Theta A_{(3)0} + \varphi A_{(13)0} = \beta A_{(14)0} + \gamma A_{(15)0} + \Theta A_{(16)0} + \varphi A_{(4)0}$$
(78)

Multiplying equation (69) by g^{jk}, we get

$${}^{1}Q_{i} = m_{i}(A_{(1)0} + A_{(8)/0} + A_{(11)0} + A_{(14)0}) + n_{(1)i}(A_{(2)0} + A_{(5)0} + A_{(12)0} + A_{(15)0})$$

$$+ n_{(2)i}(A_{(3)0} + A_{(6)0} + A_{(9)0} + A_{(16)0}) + n_{(3)i}(A_{(4)0} + A_{(7)0} + A_{(10)0} + A_{(13)0})$$
(79)

It is known that ${}^{1}Q_{i} = {}^{1}D_{i/0} = ({}^{1}D n_{(1)})_{/0}$, which by virtue of equation (6) can be expressed as

$${}^{1}Q_{i} = {}^{1}D_{0} n_{(1)I} + {}^{1}D(-m_{i} h_{0} + n_{(2)I} k_{0} - n_{(3)I} s_{0})$$
(80)

Comparing equations (79) and (80), we can obtain

$$A_{(1)0} + A_{(8)/0} + A_{(11)0} + A_{(14)0} = -{}^{1}D h_{0}, A_{(2)0} + A_{(5)0} + A_{(12)0} + A_{(15)0} = {}^{1}D_{/0},$$

$$A_{(3)0} + A_{(6)0} + A_{(9)0} + A_{(16)0} = {}^{1}D k_{0}, A_{(4)0} + A_{(7)0} + A_{(10)0} + A_{(13)0} = -{}^{1}D s_{0}$$
(81)

Hence:

Theorem 4.3.: If $X^i(x)$ is a Q-concurrent vector field of first kind in a five-dimensional Finsler space F^5 , its coefficients satisfy equation (81).

From equation (4.9), we can also obtain

$$4 \mu = \beta \left(A_{(1)0} + A_{(8)0} + A_{(11)0} + A_{(14)0} \right) + \gamma \left(A_{(2)0} + A_{(5)0} + A_{(12)0} + A_{(15)0} \right)$$

$$+ \Theta \left(A_{(3)0} + A_{(6)0} + A_{(9)0} + A_{(16)0} \right) + \varphi \left(A_{(4)0} + A_{(7)0} + A_{(10)0} + A_{(13)0} \right), \tag{82}$$

This, by virtue of (4.12) can be expressed as

$$4 \mu = \gamma^{1} D_{0} + {}^{1}D (-\beta h_{0} + \Theta k_{0} - \phi s_{0})$$
(83)

Remark: Equation (81) can easily be obtained from equation (83).

TENSOR ¹D_{ijk//r} IN F⁵.

Taking V-covariant derivative of equation (25) and using equations (15) and (20), we can obtain

$$X_{//r}^{i} = l^{i} J_{(1)r} + m^{i} J_{(2)r} + n_{(1)i}^{i} J_{(3)r} + n_{(2)}^{I} J_{(4)r} + n_{(5)}^{I} J_{(5)r}$$
(84)

Where.

$$\begin{split} J_{(1)r} &= \alpha_{//r} - L^{-1}(\beta \ m_r + \gamma \ n_{(1)r} + \Theta \ n_{(2)r} + \phi \ n_{(3)r}), \ J_{(2)r} &= \beta_{//r} - L^{-1}(\gamma \ Q_r + \Theta \ R_r + \phi \ S_r - \alpha \ m_r), \\ J_{(3)r} &= \gamma_{//r} + L^{-1}(\beta \ Q_r - \Theta \ U_r - \phi \ V_r + \alpha \ n_{(1)r}), \ J_{(4)r} &= \Theta_{//r} + L^{-1}(\beta \ R_r + \gamma \ U_r - \phi \ X_r + \alpha \ n_{(2)r}), \\ J_{(5)r} &= \phi_{//r} + L^{-1}(\beta \ S_r + \gamma \ V_r + \Theta \ X_r + \alpha \ n_{(3)r}). \end{split} \tag{85}$$

From these equations we can obtain by virtue of equation (32) following relations:

$$\alpha / / r = L^{-1} \{ m_r (\beta C_{(1)} + \gamma C_{(5)} + \Theta C_{(6)} + \varphi C_{(7)} - \alpha \} r)$$

$$(86)$$

$$\beta / / r = L^{-1} \{ m_r (\beta C_{(1)} + \gamma C_{(5)} + \Theta C_{(6)} + \varphi C_{(7)} - \alpha \} + n_{(1)r} (\beta C_{(5)} + \gamma C_{(8)} + \Theta C_{(17)} + \varphi C_{(18)})$$

$$+ n_{(2)r} (\beta C_{(6)} + \gamma C_{(17)} + \Theta C_{(11)} + \varphi C_{(19)}) + n_{(3)r} (\beta C_{(7)} + \gamma C_{(18)} + \Theta C_{(19)} + \varphi C_{(4)})$$

$$+ \gamma Q_r + \Theta R_r + \varphi S_r \}$$

$$\gamma / / r = L^{-1} \{ m_r (\beta C_{(5)} + \gamma C_{(8)} + \Theta C_{(17)} + \varphi C_{(18)}) + n_{(1)r} (\beta C_{(8)} + \gamma C_{(2)} + \Theta C_{(9)} + \varphi C_{(10)} - \alpha)$$

$$+ n_{(2)r} (\beta C_{(17)} + \gamma C_{(9)} + \Theta C_{(12)} + \varphi C_{(20)}) + n_{(3)r} (\beta C_{(18)} + \gamma C_{(10)} + \Theta C_{(20)} + \varphi C_{(15)})$$

$$+ \varphi V_r - \beta Q_r - \Theta U_r \}$$

$$(88)$$

$$\Theta / / r = L^{-1} \{ m_r (\beta C_{(6)} + \gamma C_{(17)} + \Theta C_{(11)} + \varphi C_{(19)}) + n_{(1)r} (\beta C_{(17)} + \gamma C_{(9)} + \Theta C_{(12)} + \varphi C_{(20)})$$

$$+ n_{(2)r}(\beta C_{(11)} + \gamma C_{(12)} + \Theta C_{(3)} + \varphi C_{(13)} - \alpha) + n_{(3)r}(\beta C_{(19)} + \gamma C_{(20)} + \Theta C_{(13)} + \varphi C_{(16)})$$

$$+ \varphi X_r - \beta R_r - \gamma U_r \}$$

$$\phi_{//r} = L^{-1}\{m_r(\beta C_{(7)} + \gamma C_{(18)} + \Theta C_{(19)} + \varphi C_{(14)}) + n_{(1)r}(\beta C_{(18)} + \gamma C_{(10)} + \Theta C_{(20)} + \varphi C_{(15)})$$

$$+ n_{(2)r}(\beta C_{(19)} + \gamma C_{(20)} + \Theta C_{(13)} + \varphi C_{(16)}) + n_{(3)r}(\beta C_{(14)} + \gamma C_{(15)} + \Theta C_{(16)} + \varphi C_{(4)} - \alpha)$$

$$-\beta S_r - \gamma V_r - \Theta X_r \}$$

$$(90)$$

From equations (86) (87) (88) (89) (90) with the help of equations (8) and (9) (10) (11) (12) (13) (14) we can obtain

$$\begin{split} &\alpha_{//r} \, I' = -L^{-1} \, \alpha, \, \beta_{//r} \, I' = 0, \, \gamma_{/r} \, I' = 0, \, \Theta_{/r} \, I' = 0, \, \varphi_{/r} \, I' = 0, \, Q_{/r} \, I' = 0$$

Hence:

Theorem 5.1.: In a five-dimensional Finsler space F^5 , for a vector field X^i , given by equation (25), its coefficients satisfy equations (5.4) a, b, c, d, e.

Taking V-covariant derivative of equation (22) and using equations (15) (16) (17) (18) (19), we get

$$^{1}D_{ijk/r} = \sum_{(I,j,k)} \left\{ m_{j} \ m_{k} \ ^{1}T_{ir} + n_{(1)j} \ n_{(1)k} \ ^{2}T_{ir} + n_{(2)j} \ n_{(2)k} \ ^{3}T_{ir} + n_{(3)j} \ n_{(3)k} \ ^{4}T_{ir} + (m_{j} \ n_{(1)k} + m_{k} \ n_{(1)j}) \ ^{5}T_{ir} \right. \\ + \left. \left(m_{j} \ n_{(2)k} + m_{k} \ n_{(2)j} \right) \ ^{6}T_{ir} + \left(m_{j} \ n_{(3)k} + m_{k} \ n_{(3)j} \right) \ ^{7}T_{ir} + \left(n_{(1)j} \ n_{(2)k} + n_{(1)k} \ n_{(2)j} \right) \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(1)k} \ n_{(2)j} \right) \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(1)k} \ n_{(2)j} \right) \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(1)k} \ n_{(2)j} \right) \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(1)k} \ n_{(2)j} \right) \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(1)k} \ n_{(2)j} \right) \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(1)k} \ n_{(2)j} \right) \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(1)k} \ n_{(2)j} \right) \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(1)k} \ n_{(2)j} \right) \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(1)k} \ n_{(2)j} \right) \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(1)k} \ n_{(2)j} \right) \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(1)k} \ n_{(2)j} \right) \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(1)k} \ n_{(2)j} \right) \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(1)k} \ n_{(2)j} \right) \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(2)j} \right) \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(2)j} \right) \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(2)j} \right) \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(2)j} \right) \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(2)j} \right) \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(2)j} \right) \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(2)j} \right) \right] \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(2)j} \right) \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(2)j} \right) \right] \ ^{8}T_{ir} + \left. \left(n_{(1)j} \ n_{(2)k} + n_{(2)j} \right) \right] \ ^{8}T_{ir} + \left(n_{(1)j} \ n_{(2)k} + n_{(2)j} \right) \ ^{8}T_{ir} + \left(n_{(1)j} \ n_{(2)k} + n_{(2)j} \right) \ ^{8}T_{ir} + \left(n_{(1)j} \ n_{(2)k} + n_{(2)j} \right) \ ^{8}T_{ir} + \left(n_{(1)j} \ n_{(2)k} + n_{(2)j} \right) \ ^{8}T_{ir} + \left(n_{(2)j} \ n_$$

(105)

$$+ (n_{(1)j} n_{(3)k} + n_{(1)k} n_{(3)j})^{9} T_{ir} + (n_{(2)j} n_{(3)k} + n_{(2)k} n_{(3)j})^{10} T_{ir}$$

$$(96)$$

Where,

$$\begin{split} ^{1}T_{ir} &= \{(I/3) \ D_{(1)97} - L^{-1}(D_{(3)} \ Q_{r} + D_{(6)} \ R_{r} + D_{(7)} \ S_{s})\} \ m_{ir} + L^{-1}\{n_{(6)} (D_{(1)} \ Q_{r} - D_{(6)} \ U_{r} - D_{(7)} \ V_{s})\} \\ &+ n_{(2ii}(D_{(1)} \ R_{r} + D_{(3)} \ U_{r} - D_{(7)} \ X_{s}) + n_{(3i)}(D_{(1)} \ S_{r} + D_{(2)} \ V_{r} + D_{(6)} \ X_{s}) - l_{s}(D_{(1)} \ m_{r} + D_{(5)} \ n_{(1)r} \\ &+ D_{(6)} \ n_{(2ir} + D_{(7)} \ n_{(3i)})\}, \end{split} \tag{97} \\ ^{2}T_{ir} &= \{(I/3) \ D_{(3)97} + L^{-1}(D_{(6)} \ Q_{s} - D_{(9)} \ U_{r} - D_{(10)} \ V_{s})\} \ n_{(3i)} - L^{-1}\{m_{t}(D_{(2)} \ Q_{s} + D_{(9)} \ R_{r} + D_{(10)} \ S_{s}) \\ &+ n_{(2i)}(D_{(2)} \ U_{r} + D_{(8)} \ R_{r} - D_{(10)} \ X_{s}) - n_{(3i)}(D_{(2)} \ V_{r} + D_{(8)} \ S_{r} + D_{(9)} \ X_{s}) + l_{s}(D_{(2)} \ n_{(3ir} + D_{(8)} \ m_{r} \\ &+ D_{(9)} \ n_{(2ir} + D_{(8)} \ R_{r} - D_{(10)} \ X_{s}) - n_{(3i)}(D_{(2)} \ X_{r} + D_{(9)} \ X_{s}) + l_{s}(D_{(2)} \ n_{(3ir} + D_{(3)} \ m_{r} \\ &+ D_{(9)} \ n_{(2ir)} + D_{(10)} \ Q_{r} + D_{(13)} \ S_{s}) \\ &+ n_{(10)}(D_{(3)} \ U_{r} - D_{(11)} \ Q_{r} + D_{(13)} \ V_{r}) - n_{(3i)}(D_{(3)} \ X_{r} + D_{(13)} \ S_{r}) + l_{s}(D_{(11)} \ m_{r} + D_{(12)} \ n_{(10)} \\ &+ D_{(3)} \ n_{(3ir)} + D_{(13)} \ n_{(3ir)}) \}, \end{aligned} \tag{99}$$

$$^{3}T_{ir} = \{(I/3) \ D_{(4)3r} + L^{-1}(D_{(4)} \ S_{r} + D_{(13)} \ V_{r}) + n_{(2i)}(D_{(4)} \ X_{r} - D_{(4)} \ N_{r}) + l_{s}(D_{(4)} \ S_{r} + D_{(13)} \ Q_{r} + D_{(16)} \ R_{r}) \\ &+ n_{(1)i} \ (D_{(4)} \ V_{r} - D_{(4)} \ Q_{r} + D_{(6)} \ U_{r}) + n_{(2i)} \ (D_{(4)} \ X_{r} - D_{(4)} \ R_{r} - D_{(5)} \ U_{r}) + l_{s}(D_{(1)} \ m_{r} + D_{(15)} \ n_{(1)i} \\ &+ D_{(16)} \ n_{(2ir)} + D_{(16)} \ N_{r} + D_{(17)} \ V_{r} + D_{(16)} \ N_{r}) + n_{(2i)} \ (D_{(4)} \ X_{r} - D_{(4)} \ N_{r} + D_{(5)} \ U_{r}) + l_{s}(D_{(1)} \ m_{r} + D_{(15)} \ N_{r}) + D_{(16)} \ R_{r} \\ &+ D_{(16)} \ n_{(2ir)} + D_{(16)} \ N_{r} + D_{(12)} \ N_{r} + D_{(12)} \ N_{r} + D_{(13)} \ D_{(13)ir} + L^{-1}(D_{(1)} \ m_{r} + D_{(15)} \ N_{r}) + D_{(16)} \ N_{r} + D_{(17)} \ N_{r} + D_{(17)} \ N_{r} + D_{(17)} \ N_{r} + D_{(17)} \ N_{r} + D_{$$

 $+ L^{-1}(D_{(10)} V_r + D_{(19)} S_r + D_{(20)} X_r) \} n_{(3)I} - L^{-1}(D_{(10)} n_{(1)r} + D_{(15)} n_{(3)r} + D_{(19)} m_r + D_{(20)} n_{(2)r}) l_i$

$$\begin{split} ^{10}T_{ir} &= \left\{ (1/3) \ D_{(18)//r} - L^{-1}(D_{(13)} \ R_r + D_{(16)} \ S_r + D_{(20)} \ Q_r) \right\} \ m_i + \left\{ (1/3) \ D_{(20)//r} - L^{-1}(D_{(13)} \ U_r + D_{(16)} \ V_r \right. \\ &\left. - D_{(18)} \ Q_r) \right\} n_{(1)I} + \left\{ (1/3) \ D_{(13)//r} - L^{-1}(D_{(16)} \ X_r - D_{(18)} \ R_r - D_{(20)} \ U_r) \right\} n_{(20i} + \left\{ (1/3) \ D_{(16)//r} \right. \\ &\left. + L^{-1}(D_{(13)} \ X_r + D_{(18)} \ S_r + D_{(20)} \ V_r) \right\} n_{(3)I} - L^{-1}(D_{(13)} \ n_{(2)r} + D_{(16)} \ n_{(3)r} + D_{(18)} \ m_r + D_{(20)} \ n_{(1)r}) \ l_i \end{split}$$

Hence:

Theorem 5.2.: In a five-dimensional Finsler space F^5 , v- covariant derivative of the tensor ${}^1D_{ijk}$ given by the equation (22), is expressed as in (96), where tensors ${}^1T_{ir}$, ${}^2T_{ir}$,..., ${}^{10}T_{ir}$ are given by equations (97), (98),..., (106) respectively.

Tensor ¹D_{iikh} IN F⁵

We here define a tensor ¹D_{iikh} as follows:

$${}^{1}D_{ijkh} = C_{(h,k)} \{ {}^{1}D_{ihr} {}^{1}D_{jk}^{r} \}$$
(107)

Substituting the value of ${}^{1}D_{ijk}$ in equation (107), we can obtain on simplification

$$\begin{split} ^{1}D_{ijkh} &= C_{(h,k)} \left[m_{j} \, m_{k} \left\{ D_{(1)}^{1} B_{ih} + D_{(5)}^{2} B_{ih} + D_{(6)}^{3} B_{ih} + D_{(7)}^{4} B_{ih} \right\} \\ &+ n_{(1)j} \, n_{(1)k} \left\{ D_{(2)}^{2} B_{ih} + D_{(8)}^{1} B_{ih} + D_{(9)}^{3} B_{ih} + D_{(10)}^{4} B_{ih} \right\} \\ &+ n_{(2)j} \, n_{(2)k} \left\{ D_{(3)}^{3} B_{ih} + D_{(11)}^{1} B_{ih} + D_{(12)}^{2} B_{ih} + D_{(13)}^{4} B_{ih} \right\} \\ &+ n_{(3)j} \, n_{(3)k} \left\{ D_{(4)}^{4} B_{ih} + D_{(14)}^{1} B_{ih} + D_{(15)}^{2} B_{ih} + D_{(16)}^{3} B_{ih} \right\} \\ &+ (m_{j} \, n_{(1)k} + m_{k} \, n_{(1)j}) \left\{ D_{(5)}^{1} B_{ih} + D_{(8)}^{2} B_{ih} + D_{(17)}^{3} B_{ih} + D_{(19)}^{4} B_{ih} \right\} \\ &+ (m_{j} \, n_{(2)k} + m_{k} \, n_{(2)j}) \left\{ D_{(6)}^{1} B_{ih} + D_{(11)}^{3} B_{ih} + D_{(17)}^{2} B_{ih} + D_{(18)}^{4} B_{ih} \right\} \\ &+ (m_{j} \, n_{(3)k} + m_{k} \, n_{(3)j}) \left\{ D_{(7)}^{1} B_{ih} + D_{(14)}^{4} B_{ih} + D_{(18)}^{3} B_{ih} + D_{(19)}^{2} B_{ih} \right\} \\ &+ (n_{(1)j} \, n_{(2)k} + n_{(1)k} \, n_{(2)j}) \left\{ D_{(9)}^{2} B_{ih} + D_{(12)}^{3} B_{ih} + D_{(17)}^{1} B_{ih} + D_{(20)}^{4} B_{ih} \right\} \\ &+ (n_{(2)j} \, n_{(3)k} + n_{(2)k} \, n_{(3)j}) \left\{ D_{(13)}^{3} B_{ih} + D_{(16)}^{4} B_{ih} + D_{(18)}^{1} B_{ih} + D_{(20)}^{1} B_{ih} \right\} \\ &+ (n_{(3)j} \, n_{(1)k} + n_{(3)k} \, n_{(3)j}) \left\{ D_{(13)}^{3} B_{ih} + D_{(16)}^{4} B_{ih} + D_{(18)}^{1} B_{ih} + D_{(20)}^{2} B_{ih} \right\} \\ &+ (n_{(3)j} \, n_{(1)k} + n_{(3)k} \, n_{(3)j}) \left\{ D_{(13)}^{3} B_{ih} + D_{(16)}^{4} B_{ih} + D_{(18)}^{1} B_{ih} + D_{(20)}^{2} B_{ih} \right\} \\ &+ (n_{(3)j} \, n_{(1)k} + n_{(3)k} \, n_{(3)j}) \left\{ D_{(10)}^{3} B_{ih} + D_{(16)}^{4} B_{ih} + D_{(18)}^{4} B_{ih} + D_{(20)}^{4} B_{ih} \right\} \\ &+ (n_{(3)j} \, n_{(1)k} + n_{(3)k} \, n_{(3)j}) \left\{ D_{(10)}^{3} B_{ih} + D_{(16)}^{4} B_{ih} + D_{(18)}^{4} B_{ih} + D_{(20)}^{4} B_{ih} \right\} \\ &+ (n_{(3)j} \, n_{(1)k} + n_{(3)k} \, n_{(3)j}) \left\{ D_{(10)}^{3} B_{ih} + D_{(16)}^{3} B_{ih} + D_{(18)$$

Where,

$$^{1}B_{ih} = D_{(1)} m_{i} m_{h} + D_{(5)} (m_{i} n_{(1)h} + m_{h} n_{(1)i}) + D_{(6)} (m_{i} n_{(2)h} + m_{h} n_{(2)i}) + D_{(7)} (m_{i} n_{(3)h} + m_{h} n_{(3)i})$$

$$+ D_{(11)} n_{(2)I} n_{(2)h} + D_{(14)} n_{(3)I} n_{(3)h} + D_{(17)} (n_{(1)i} n_{(2)h} + n_{(1)h} n_{(2)i}) + D_{(18)} (n_{(2)I} n_{(3)h} + n_{(2)h} n_{(3)i})$$

$$+ D_{(19)} (n_{(1)I} n_{(3)h} + n_{(1)h} n_{(3)i}),$$

$$^{2}B_{ih} = D_{(2)} n_{(1)I} n_{(1)h} + D_{(5)} m_{i} m_{h} + D_{(8)} (m_{i} n_{(1)h} + m_{h} n_{(1)i}) + D_{(9)} (n_{(1)I} n_{(2)h} + n_{(1)h} n_{(2)i})$$

$$+ D_{(10)} (n_{(1)I} n_{(3)h} + n_{(1)h} n_{(3)i}) + D_{(12)} n_{(2)I} n_{(2)h} + D_{(15)} n_{(3)I} n_{(3)h} + D_{(17)} (m_{i} n_{(2)h} + m_{h} n_{(2)i})$$

$$+ D_{(19)} (m_{i} n_{(3)h} + m_{h} n_{(3)i}) + D_{(20)} (n_{(2)I} n_{(3)h} + n_{(2)h} n_{(3)i}),$$

$$^{3}B_{ih} = D_{(3)} n_{(2)I} n_{(2)h} + D_{(6)} m_{i} m_{h} + D_{(9)} n_{(1)I} n_{(1)h} + D_{(11)} (m_{i} n_{(2)h} + m_{h} n_{(2i)}) + D_{(12)} (n_{(1)I} n_{(2)h} + n_{(1)h} n_{(2)i})$$

$$+ D_{(13)} (n_{(2)I} n_{(3)h} + n_{(2)h} n_{(3)i}) + D_{(16)} n_{(3)I} n_{(3)h} + D_{(17)} (m_{i} n_{(1)h} + m_{h} n_{(1)i})$$

$$+D_{(18)}(m_{i} n_{(3)h} + m_{h} n_{(3)i}) + D_{(20)}(n_{(1)I} n_{(3)h} + n_{(1)h} n_{(3)i}),$$
(111)

 $^{4}B_{ih} = D_{(4)} n_{(3)I} n_{(3)h} + D_{(7)} m_{i} m_{h} + D_{(10)} n_{(1)I} n_{(1)h} + D_{(13)} n_{(2)I} n_{(2)h} + D_{(14)} (m_{i} n_{(3)h} + m_{h} n_{(3)i})$

$$+ \ D_{(15)} \left(n_{(1)I} \ n_{(3)h} + n_{(1)h} \ n_{(3)i} \right) + D_{(16)} \left(n_{(2)I} \ n_{(3)h} + n_{(2)h} \ n_{(3)i} \right) + D_{(18)} \left(m_i \ n_{(2)h} + m_h \ n_{(2)i} \right)$$

$$+ D_{(19)} (m_i n_{(1)h} + m_h n_{(1)i}) + D_{(20)} (n_{(1)I} n_{(2)h} + n_{(1)h} n_{(2)i}),$$
(112)

Are four symmetric tensors in i and h. These tensors with the help of equation (23) give

$${}^{1}B_{ih} m^{h} + {}^{2}B_{ih} n_{(1)}{}^{h} + {}^{3}B_{ih} n_{(2)}{}^{h} + {}^{4}B_{ih} n_{(3)}{}^{h} = {}^{1}D_{i}$$
(113)

If $X^i(x)$ is a D-concurrent vector field of first kind, with the help of equations (28) and (107) we can obtain X^i $^1D_{ijkh} = 0$, which also leads to X^i $^1D_{ijkh/m} = ^1D_{mjkh}$. Hence:

Theorem 6.1.: In a five -dimensional Finsler space F^5 , a D-concurrent vector field of first kind satisfies $X^{i-1}D_{ijkh} = 0$ and $X^{i-1}D_{ijkh/m} = {}^{1}D_{njkh}$.

Remarks:

- Tensors ²D_{ijk} and ³D_{ijk} also satisfy properties similar to ¹D_{ijk}.
- Curvature properties related with these tensors may be studied in the subsequent research work.

REFERENCES

- 1) Dwivedi, P. K., Rastogi, S. C. and Dwivedi, A. K.: The curvature properties in a five-dimensional Finsler space in terms of scalars, IJCMS, 9, 3 (2019), 75–84.
- 2) Matsumoto, M.: C-reducible Finsler spaces, Tensor, N.S., 24 (1972), 29–37.
- 3) Matsumoto, M and Eguchi, H.: Finsler spaces admitting concurrent vector field, Tensor, N.S., 28 (1974), 239–249.
- 4) Matsumoto, M.: Foundations of Finsler Geometry and special Finsler spaces, Kaiseisha Press, Otsu, Japan, 1986.
- 5) Rastogi, S.C. and Dwivedi, A.K.: on the existence of concurrent vector fields in a Finsler space, Tensor, N.S., 65 (2004), 48–54.
- 6) Rastogi, S. C.: On some new tensors and their properties in a five-dimensional Finsler space-III, International Journal of Research in Applied, Natural and Social Sciences, Vol. 7, issue 9, (2019), 1–14.
- 7) Rastogi, S.C.: Weakly and Partially Concurrent vector fields in a Finsler space of three-dimensions, International Journal of Advanced and innovative Research, Vol. 8, issue 6, (2019), 1–9.
- 8) Rastogi, S.C.: D-concurrent vector field in a Finsler space of three-dimensions, IMPACT, International Journal of Research in Applied, Natural and Social sciences, Vol. 7, issue, (2019).
- 9) Rastogi, S.C.: D-concurrent vector field of first kind in a Finsler space of four-dimensions, IJMCAR, Vol. 10, Issue 1, (2020), 29–42.
- 10) Rastogi, S. C.: D-concurrent vector field of second kind in a Finsler space of four-dimensions (Under Publication).
- 11) Rund, H.: the differential geometry of Finslr spaces, Springer-Verlag, 1959.
- 12) Tachibana, S.: on Finsler spaces which admit concurrent vector field, Tensor, N.s., 1 (1950), 1-5.