STANISLAS Exercices

Espaces vectoriels préhilbertiens

PSI 2021-2022

2

 ${\it Chapitre~XIII}$

I. Produits scalaires, Familles de vecteurs

Exercice 1. (🗷) [CCP] On définit, sur $(\mathbb{R}_n[X])^2$, $\varphi(P,Q) = \sum_{k=1}^{n} P(k)Q(k)$.

 $\overset{\stackrel{\longleftarrow}{\overset{\longleftarrow}{1.0}}}{1.}$ Montrer que arphi est un produit scalaire.

2. Trouver une base orthonormée de $\mathbb{R}_3[X]$ pour ce produit scalaire.

Exercice 2. (🔊) [CCP] Soit (E, \langle, \rangle) un espace euclidien de dimension n et $\mathscr{B} = (e_1, \ldots, e_n)$ une base orthonormée de E. Soit $f \in \mathscr{G}(E)$ un automorphisme tel que pour tout $(x,y) \in E^2$, si $\langle x,y \rangle = 0$, alors $\langle f(x), f(y) \rangle = 0$.

- **1.** Que dire de la famille $\mathscr{B}' = (f(e_1), \dots, f(e_n))$?
- **2.** En calculant $\langle f(e_i) + f(e_j), f(e_i) f(e_j) \rangle$ de deux façons, montrer qu'il existe a > 0 tel que pour tout $i \in [1, n], ||f(e_i)||^2 = a^2$. Que dire de la famille $\frac{1}{a}\mathscr{B}'$?

Exercice 3. [TPE] Soit E un espace euclidien de dimension $n \ge 2$, dont le produit scalaire est noté $\langle \cdot, \cdot \rangle$. Soient $\mathscr{F} = (x_1, \dots, x_p)$ et $\mathscr{G} = (y_1, \dots, y_p)$ deux familles de vecteurs de E telles que pour tout $(i,j) \in [1,p]^2$, $\langle x_i, x_j \rangle = \langle y_i, y_j \rangle$.

- 1. Montrer que \mathscr{F} est libre si et seulement si \mathscr{G} est libre.
- **2.** Montrer que dim $Vect(\mathscr{F}) = \dim Vect(\mathscr{G})$.
- **3.** On note $F = \operatorname{Vect} \mathscr{F}$ et $G = \operatorname{Vect} \mathscr{G}$. En déduire qu'il existe une application linéaire $f \in \mathscr{L}(E)$ telle pour tout $i \in [1, p]$, $f(x_i) = y_i$ et pour tout $x \in E$, ||f(x)|| = ||x||.

Exercice 4. Soient $\mathscr{F} = (u_1, \dots, u_p)$ une famille de E et $x = \sum_{i=1}^p x_i u_i \in E$. Montrer que $||x||^2 \leqslant \left(\sum_{i=1}^p x_i^2\right) \left(\sum_{i=1}^p ||u_i||^2\right)$.

Exercice 5. (Famille obtusangle) [X-ENS] Soit E un espace vectoriel euclidien de dimension $n \ge 2$.

- **1.** Soit $(x_i)_{1 \leq i \leq p}$ une famille de vecteurs de E telle que pour tout $i \neq j$, $\langle x_i, x_j \rangle < 0$. Montrer que $p \leq n + 1$.
- **2.** Montrer que le cas p = n + 1 est possible.
- **3.** Soient $\mathscr{B} = (x_i)_{1 \leqslant i \leqslant n}$ une base de E telle que pour tout $i \neq j$, $\langle x_i, x_j \rangle \leqslant 0$ et $x = \sum_{i=1}^n \lambda_i x_i \in E$ tel que pour tout $i \in [1, n], \langle x, x_i \rangle \geqslant 0$. Montrer que pour tout $i \in [1, n], \lambda_i \geqslant 0$.

Exercice 6. [Centrale] Soit $n \in \mathbb{N}$. Pour tout $(P,Q) \in \mathbb{R}_n[X]^2$, on définit

$$f(P,Q) = \int_{-1}^{1} \frac{P(t)Q(t)}{\sqrt{1-t^2}} dt.$$

- **1.** Montrer que f est un produit scalaire.
- 2. Montrer

$$\exists P_n \in \mathbb{R}_n[X] \; ; \; \forall \; Q \in \mathbb{R}_n[X], \; Q(1) = \int_{-1}^1 \frac{P_n(t)Q(t)}{\sqrt{1-t^2}} \, dt.$$

3. Montrer que P_n possède n racines simples dans [-1,1].

Exercice 7. (🗷) Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$, $||AX|| \leq ||X||$. Montrer que

$$\forall X \in \mathscr{M}_{n,1}(\mathbb{R}), ||^t AX|| \leqslant ||X||.$$

Exercice 8. [Centrale] Soit (E, N) un espace vectoriel normé.

- 1. On suppose que N est euclidienne.
 - a) Montrer que N satisfait l'identité du parallélogramme.
 - **b)** Donner une expression du produit scalaire en fonction de N.
 - **c**) La norme $\|\cdot\|_{\infty}$ sur \mathbb{R}^2 vérifie-t-elle l'identité du parallélogramme ?
- **2.** On suppose que la norme N sur E vérifie l'identité du prallélogramme. On pose $f(x,y) = N(x+y)^2 N(x)^2 N(y)^2$ pour tout $(x,y) \in E^2$.

Exercices XIII PSI

a) Soit $(x, x', y) \in E^3$. Montrer que

$$f(x + x', y) = 2f(x, y/2) + 2f(x', y/2)$$

- **b)** En déduire que f(x + x', y) = f(x, y) + f(x', y).
- c) Montrer que pour tous $(x,y) \in E^2$ et $t \in \mathbb{R}$, f(tx,y) = tf(x,y).
- **d)** Conclure que f est un produit scalaire et que la norme N est euclidienne.

Exercice 9. (Matrice de GRAM, \heartsuit) Soit (x_1, \ldots, x_p) une famille d'éléments de E. On définit

$$G(x_1,\ldots,x_p) = \det[(\langle x_i,x_j\rangle)_{i,j\in[1,p]}].$$

1. Montrer que la famille (x_1, \ldots, x_p) est liée si et seulement si $G(x_1, \ldots, x_p) = 0$.

On pourra montrer que si la famille (x_1, \ldots, x_p) est libre, alors $G(x_1, \ldots, x_p) > 0$.

- **2.** Soit $(\lambda, \lambda_2, \dots, \lambda_p) \in \mathbb{R}^{p+1}$ et $x = x_1 + \sum_{i=2}^p \lambda_i x_i$. Montrer que $G(x, x_2, \dots, x_p) = G(x_1, \dots, x_p)$ et $G(\lambda x_1, \dots, x_p) = \lambda^2 G(x_1, \dots, x_p)$.
- **3.** Soit (x_1, \ldots, x_p) est une famille libre et $F = \text{Vect}\{x_1, \ldots, x_p\}$. Montrer que

$$d(x,F)^2 = \frac{G(x,x_1,...,x_p)}{G(x_1,...,x_p)}.$$

Exercice 10. [X-ESPCI] Soit H un hyperplan de $\mathcal{M}_n(\mathbb{R})$.

1. Montrer qu'il existe une matrice $A \in \mathscr{M}_n(\mathbb{R})$ telle que pour tout $M \in \mathscr{M}_n(\mathbb{R})$,

$$M \in H \Leftrightarrow \operatorname{Tr}(AM) = 0.$$

Soit $(E_{i,j})_{1 \le i,j \le n}$ la base canonique de $\mathcal{M}_n(\mathbb{R})$. Pour tout entier naturel $r \in [1, n]$, on note $B = E_{1,n} + \sum_{i=0}^n E_{i,i-1}$ et $J_r = \sum_{i=1}^r E_{i,i}$.

- **2.** Calculer J_rB .
- **3.** Montrer que B est inversible.
- **4.** En déduire que H contient une matrice inversible.

Exercice 11. [ENS] Soient $n \ge 1$, $m \ge 1$, $A \in \mathcal{M}_n(\mathbb{R})$ et $B \in \mathcal{M}_{n,m}(\mathbb{R})$. On définit, pour tout $X_0 \in \mathcal{M}_{n,1}(\mathbb{R})$, le système (X_k) de la manière suivante :

$$\forall k \in \mathbb{N}^*, X_k = AX_{k-1} + BU_{k-1},$$

où (U_k) est une famille de vecteurs de $\mathcal{M}_{m,1}(\mathbb{R})$.

Le système (A, B) est dit contrôlable si pour tous $N \ge n$, $(\widetilde{X}_0, \widetilde{X}_N) \in \mathcal{M}_{n,1}(\mathbb{R})^2$, il existe $(U_i) \in \mathcal{M}_{m,1}(\mathbb{R})^N$ tel que le système (X_k) définit par $X_0 = \widetilde{X}_0$ et, pour tout $k \in \mathbb{N}^*$, $X_k = AX_{k-1} + BU_{k-1}$ est tel que $X_N = \widetilde{X}_N$.

- **1.** Exprimer X_n en fonction de $A, B, X_0, U_0, \ldots, U_{n-1}$.
- On pose $C = [B, AB, \dots, A^{n-1}B] \in \mathcal{M}_{n,nm}(\mathbb{R})$, matrice définie par blocs.
- **2.** On suppose que Rg(C) < n. Montrer l'existence de $X \neq 0$ tel que pour tout $k \in [0, n]$, ${}^t X A^k B = 0$. En déduire que le système n'est pas contrôlable.

On suppose à présent que le système n'est pas contrôlable et on note N le rang à partir duquel il n'est plus contrôlable.

- **3.** Montrer que $F: (U_0, \ldots, U_{N-1}) \mapsto \sum_{i=0}^{N-1} A^i B U_{N-1-i}$ définie de $\mathcal{M}_{m,1}(\mathbb{R})^N$ dans $\mathcal{M}_{n,1}(\mathbb{R})$ est linéaire et non surjective.
- **4.** Montrer qu'il existe $X \neq 0$ tel que pour tout (U_0, \dots, U_{N-1}) , ${}^t X\left(\sum_{i=0}^{N-1} A^i B U_{N-1-i}\right) = 0.$
- **5.** En déduire que Rg(C) < n.
- 6. Donner une condition nécessaire et suffisante de contrôlabilité.

II. Projections

Exercice 12. (🖎) Soit F le sous-espace de \mathbb{R}^4 défini par les équations $x_1 + x_2 + x_3 + x_4 = 0$ et $x_1 - x_2 + x_3 - x_4 = 0$. Déterminer la projection orthogonale sur F et, pour tout $x \in \mathbb{R}^4$, calculer d(x, F).

Exercice 13. [CCP] Soient $P, Q \in \mathbb{R}_n[X]$ et $\langle P, Q \rangle = \sum_{k=0}^n P^{(k)}(1)Q^{(k)}(1)$. **1.** Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire.

Stanislas 36 A. Camanes

Exercices XIII PSI

- **2.** Soit $E = \{ P \in \mathbb{R}_n[X] ; P(1) = 0 \}.$
- **a)** Montrer que E est un sous-espace vectoriel de $\mathbb{R}_n[X]$ et déterminer la dimension de E.
 - **b)** Calculer la distance d(1, E).

Exercice 14. [CCP] On definit $\langle P, Q \rangle = \int_0^{+\infty} P(t)Q(t) e^{-t} dt$.

- **1.** Montrer que $\langle \cdot, \cdot \rangle$ définit un produit scalaire sur $\mathbb{R}[X]$.
- **2.** Déterminer $d = \min_{(a,b) \in \mathbb{R}^2} \int_0^{+\infty} (t^2 at b)^2 e^{-t} dt$.

Exercice 15. [Mines] L'espace $E = \mathbb{R}_3[X]$ est muni du produit scalaire défini par $\langle P, Q \rangle = \int_{[-1,1]} PQ$. Soit $F = \{P \in E \; ; \; \langle X^2 - 1, P' \rangle = \langle X, P \rangle \}$ et $Q = 1 + X + X^2 + X^3$. Déterminer d(Q, F).

Exercice 16. [Mines] Soient a_0, \ldots, a_n des réels et $\Phi : (P, Q) \in \mathbb{R}_n[X] \times \mathbb{R}_n[X] \mapsto \sum_{k=0}^n P(a_k)Q(a_k)$.

- 1. Donner une condition nécessaire et suffisante sur les a_k pour que Φ soit un produit scalaire.
- **2.** Calculer la distance de X^n à $F = \left\{ P \in \mathbb{R}_n[X] \; ; \; \sum_{k=0}^n P(a_k) = 0 \right\}$.

III. Avec Python

Exercice 17. [Centrale 2] On étudie les matrices échiquier. Par exemple,

la matrice échiquier d'ordre 4 est $\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$.

- 1. a) Écrire une fonction echiquièr(n) qui \acute{a} un entier n renvoie la matrice échiquier de dimension n.
- **b)** Écrire une fonction qui renvoie la liste des matrices échiquier de taille 2p où $p \in [1, 100]$.
- c) Calculer, pour toute matrice M de la liste précédente, $M^3 p^2 M$. Conjecturer un résultat plus général puis le démontrer.

- **2. a)** Justifier, sans utiliser le polynôme caractéristique, que les matrices échiquier sont diagonalisables.
- **b)** Donner une base des sous-espaces propres de M.
- c) Montrer que les sous-espaces propres sont orthogonaux.
- d) Écrire une fonction projection(x) qui calcule le projeté orthogonal du vecteur x sur Ker M, où M est la matrice échiquier de taille n.

Mathématiciens

GRAM Jorgen Pedersen (27 juin 1850-29 avr. 1916 à Copenhague).