

Licence 3^e année parcours Mathématiques Département de Mathématiques 2018-2019

M67, GÉOMÉTRIE ÉLÉMENTAIRE

SOLUTIONS DE L'INTERROGATION

1 avril 2019

[durée : 1 heure]

Exercice 1 (Puissance d'un point par rapport à un cercle)

Soit \mathcal{C} un cercle de centre O et de rayon R. Soient M un point quelconque à distance d = OM du centre, et \mathcal{D} une droite passant par M et coupant le cercle en deux points A et B non nécessairement distincts.

- a) Donner le signe du produit $\overline{AM} \cdot \overline{BM}$ des longueurs algébriques \overline{AM} et \overline{BM} en fonction de M.
- b) On suppose M intérieur au cercle \mathcal{C} . Montrer que le produit $\overline{AM} \cdot \overline{BM}$ est indépendant de la droite $\mathcal{D} = (AB)$.
- c) Exprimer ce produit en fonction du rayon R et de la distance d = OM.
- d) Montrer que les résultats des deux questions précédentes sont encore vrais pour tout point M du plan 1 et toute droite \mathcal{D} intersectant le cercle.

On appelle puissance de M par rapport au cercle \mathcal{C} le scalaire ainsi défini, noté $\pi_{\mathcal{C}}(M)$.

Solution:

- a) Si $A \neq B$ alors [AB] est l'intersection du disque fermé de centre O et de rayon R et de la droite \mathcal{D} . Ainsi, si M est à l'extérieur du cercle, il ne peut être entre A et B, par convexité du disque. Les longueurs algébriques \overline{AM} et \overline{BM} sont donc de même signe, et $\overline{AM} \cdot \overline{BM}$ est positif. Si M est à l'intérieur du cercle, M est alors entre A et B, et $\overline{AM} \cdot \overline{BM}$ est négatif. Enfin, si M est sur le cercle, le produit est nul.
- b) Si M est intérieur au cercle, on a $\overline{AM} \cdot \overline{BM} = -AM \cdot BM$. Soient \mathcal{D} et \mathcal{D}' deux droites distinctes passant par M coupant respectivement \mathcal{C} en $A \neq B$, et en $A' \neq B'$ (une droite passant par M intérieur au cercle le coupe en deux points distincts). On a nécessairement $A \neq A'$ et $B \neq B'$ du fait que $\mathcal{D} \neq \mathcal{D}'$.

^{1.} Non nécessairement intérieur au cercle \mathcal{C} .

Les deux angles inscrits $\widehat{ABA'}$ et $\widehat{A'B'A}$ interceptent le même arc $\widehat{AA'}^2$, donc sont égaux. Les deux angles $\widehat{AMB'}$ et $\widehat{A'MB}$ opposés par le sommet sont égaux. Les triangles AMB' et A'MB sont donc semblables, et on a en particulier $\frac{MA}{MA'} = \frac{MB'}{MB}$. D'où $\overline{AM} \cdot \overline{BM} = -AM \cdot BM = -A'M \cdot B'M = \overline{A'M} \cdot \overline{B'M}$.

c) Puisque ce produit est indépendant de la droite \mathcal{D} passant par M considérons la droite (OM) si $M \neq O$ ou n'importe quelle droite si M = O, de sorte que A et B sont antipodaux. Alors, puisque M est entre A et B, on a $\overline{AM} \cdot \overline{BM} = -AM \cdot BM = -(R - OM)(R + OM) = d^2 - R^2$.

d) Si M est sur le cercle, alors pour toute droite \mathcal{D} passant par M et coupant \mathcal{C} en A = M et B on a $\overline{AM} \cdot \overline{BM} = 0 = d^2 - R^2$ puisque dans ce cas d = R.

Si M est à l'extérieur du cercle et si \mathcal{D} passe par M et coupe \mathcal{C} en A et B, pas forcément distincts, tels que $A \in [M,B]$, alors $\overline{AM} \cdot \overline{BM} = AM \cdot BM$. Soit \mathcal{D}' une autre droite passant par M et coupant \mathcal{C} en A' et B' avec $A' \in [M,B']$. Montrons que $AM \cdot BM = A'M \cdot B'M$. Les angles inscrits $\widehat{MBA'}$ et $\widehat{MB'A}$ interceptent le même arc $\widehat{AA'}$, donc sont égaux. Les triangles MA'B et MAB' (qui partagent leur angle en M) sont donc semblables, et $\frac{A'M}{AM} = \frac{BM}{B'M}$.

Pour finir, si $\mathcal{D}=(OM)$, alors M,A,O,B sont alignés dans cet ordre et $AM\cdot BM=(d-R)(d+R)=d^2-R^2$.

^{2.} Pour justifier ce fait, on peut remarquer que B et M (resp. B' et M) sont du même côté de (AA'), de sorte que B et B' sont du même côté de (AA').

Exercice 2 (Kangourou 2016)

Sur la figure ci-contre la droite (XP) est tangente en P au cercle de centre O et de diamètre [MN]. Si les longueurs des arcs \widehat{MP} et \widehat{NP} sont respectivement 20 et 16, combien vaut l'angle \widehat{OXP} ?

Solution:

Comme le demi périmètre du cercle est 36, alors $\widehat{POX} = \frac{16}{36}180^\circ = 80^\circ$. Et comme $OP \perp PX$, car PX tangente, on a $\widehat{OXP} = 90^\circ - \widehat{POX} = 10^\circ$.

Une autre solution possible est de dire que $\widehat{OXP} = \frac{1}{2}(\widehat{MP} - \widehat{PN}) = \frac{1}{2}(\frac{20}{36} - \frac{16}{36})180^{\circ} = 10^{\circ}$.