1 nalen

לא נכון ד. נכון ג. לא נכון ב. א. נכון

ת. נכון ז. נכון ו. לא נכון ה. לא נכון

2 nalen

, $A-B=\{x\mid x\in A \ \land \ x\not\in B\}$ א. נכון. לפי הגדרת חיסור קבוצות $(A-B)-B=\{x\mid (x\in A \land x\not\in B)\land x\not\in B\}$: ושוב לפי אותה הגדרה , $x \notin B$ של החוזרת של ההופעה אפשר לסלק את אפשר של ייוגםיי אפשר לפי $(A - B) - B = \{x \mid (x \in A \land x \notin B)\} = A - B$ כלומר

הוכחה אחרת: מהגדרת חיסור קבוצות והגדרת חיתוך קבוצות מובן כי:

(*)
$$(A-B) \cap B = \emptyset$$

: ניעזר כעת בטענה שבשורה השנייה בראש עמי 21 בספר

$$A - B = A \Leftrightarrow A \cap B = \emptyset$$

כדי למנוע בלבול נרשום אותה מחדש כך:

(**)
$$X-Y=X$$
 אם ורק אם $X\cap Y=\emptyset$

X = A - B געיב X = A - B

 $X \cap Y = \emptyset$ -ש נקבל (*) למעלה (מנוסחה

(A-B)-B=A-B כלומר , X-Y=X , (**) לכן, לפי טענה

ב. נכון. הוכחה: ניעזר שוב בטענה שבשורה השנייה בעמי 21 בספר:

$$A - B = A \Leftrightarrow A \cap B = \emptyset$$

: B במקום B-A נציב

(*)
$$A - (B - A) = A \Leftrightarrow A \cap (B - A) = \emptyset$$

. $A \cap (B-A) = \emptyset$: מהגדרת חיתוך קבוצות יחד עם הגדרת הפרש קבוצות, מתקיים

. A - (B - A) = A לכן מהשקילות (*) נקבל

אפשר להוכיח טענה זאת גם בדרכים אחרות, למשל בעזרת מושג המשלים, בדומה למה שנראה בפתרון שאלה 3. ג. לא נכון: ראו החוברת "אוסף תרגילים פתורים", קבוצה 1 שאלה 2.

ד. נכון. התנאי $X \in P(A \cap B)$ שקול, לפי הגדרת קבוצת חזקה, לתנאי .

$$X \subseteq A \cap B$$

לפי שאלה 1.10 בי, זה שקול ל-

$$X \subseteq B$$
 וגם $X \subseteq A$

שוב לפי הגדרת קבוצת חזקה, זה שקול ל-

$$X \in P(B)$$
 געם $X \in P(A)$

ומהגדרת חיתוך, זה שקול ל-

$$X \in P(A) \cap P(B)$$

 $X \in P(A) \cap P(B)$ אסס (אס ורק אס $X \in P(A \cap B)$ קיבלנו: $X \in P(A \cap B)$ אסס לפי הגדרת שוויון קבוצות (הגדרה 1.1), שתי הקבוצות שוות.

3 nalen

. $B=B_1\cap B_2$ נסמן, כדי לקצר את הנוסחאות הנוסחאות בתחילת כדי לקצר הציע את הנוסחאות בתחילת הפיתוח,

B ובעזרת ההדרכה לשאלה , תוך הצבת B ובעזרת ההדרכה לשאלה נפתח את אגף שמאל הנתון בשאלה

$$(A_1 \cup A_2) - B = (A_1 \cup A_2) \cap B'$$

ניעזר בפילוג החיתוך מעל האיחוד (סעיף 1.3.4 בספר):

$$= (A_1 \cap B') \cup (A_2 \cap B')$$

: את: נציב את . $B' = B_1' \cup B_2'$: נציב את: מהגדרת B

$$= (A_1 \cap (B_1' \cup B_2')) \cup (A_2 \cap (B_1' \cup B_2'))$$

ניעזר בפילוג האיחוד מעל החיתוך (סעיף 1.3.4 בספר):

$$= ((A_1 \cap B_1') \cup (A_1 \cap B_2')) \cup ((A_2 \cap B_1') \cup (A_2 \cap B_2'))$$

שוב בעזרת ההדרכה לשאלה:

$$= ((A_1 - B_1) \cup (A_1 - B_2)) \cup ((A_2 - B_1) \cup (A_2 - B_2))$$

מהקיבוציות של האיחוד (אסוציאטיביוּת, עמי 10 בספר), ניתן לסלק כאן שני זוגות סוגרים :

$$= (A_1 - B_1) \cup (A_1 - B_2) \cup (A_2 - B_1) \cup (A_2 - B_2)$$

ב.

$$A' \oplus B' = (A' - B') \cup (B' - A') = (A' \cap B) \cup (B' \cap A)$$

: נשנה את סדר האיברים בעזרת חילופיות החיתוך וחילופיות האיחוד

$$= (A \cap B') \cup (B \cap A') = (A - B) \cup (B - A) = A \oplus B$$

ישראל בר-מאיר הציע פתרון אלגנטי יותר לסעיף זה, תוך שימוש בטריק טכני שכדאי להכיר. הפתרון של ישראל יפורסם בפורום.

4 22167

- , $A_0 \ = \ \{x \in {\bf N} \mid \ 0 \le x \le 0\} \ = \ \{0\} \ne \varnothing \ :$ א. א. לא נכון:
 - ב. נכון. הוכחה:

. $x \leq n$, $x \in \mathbf{N}$, A_n מהגדרת . $x \in A_n$ יהי

 $.\,x\in A_{n+1}$, A_n מהגדרת לכן,
. $x\leq n+1\,,\,x\in \mathbf{N}$ גם לכן מתקיים לכן

 $A_n \subseteq A_{n+1}$ משמע , A_{n+1} 'ל שייך A_n שבר שכל הראינו הראינו

- לא נכון: מהגדרת הטבעיים, כל מספר טבעי הוא סופי, אבל קבוצת המספרים הטבעיים ... לא נכון: מהגדרת הטבעיים, כל מספר טבעי A_n וופית. דרך אחרת: מהגדרת הקבוצות A_n בכל אחת מהקבוצות A_n יש מספר גדול ביותר בקבוצה זהו המספר A_n לכן, **אילו** היה קיים A_n כך ש- A_n אותו A_n היה המספר הטבעי הגדול ביותר. אבל כידוע אין מספר טבעי גדול ביותר: לכל מספר טבעי ניתן להוסיף 1 ולקבל מספר גדול יותר (תכונה של מספרים טבעיים שידועה לנו מבית הספר).
 - . נכון, כי $A_{n+1}-A_n=\{n+1\}$, קבוצה בת איבר אחד.
 - השלימו את ההסבר). m=n+k ניקח $n,k\in\mathbb{N}$ השלימו את ההסבר).

איתי הראבן