

Vellore Institute of Technology

(Deemed to be University under section 3 of UGC Act, 1956)

ABHINAV VIJAYAKUMAR 19BCE1311

CSE3506 – ESSENTIALS OF DATA ANALYTICS LAB-8

DR. LAKSHMI PATHI JAKKAMPUTI (L21 + L22)

Tasks for Week-8: Hierarchical Clustering

Aim: To understand the following operations/functions on 'USArrests' data and perform similar operations on 'iris' dataset based on given instructions.

Algorithm:

- 1. Removing all the values from the global environment
- 2. Set the working directory to the dataset where we store by using setwd().
- **3.** To see the dataset use view() function.
- **4.** By using scale function, we scale the data and store it in another variable.
- **5.** Using dist function we find the Euclidean distances for the scaled data.
- **6.** By using the Euclidean distances and helust function we can create and then plot the hierarchical clustering dendogram.
- **7.** By using cutree we divide the elements of the dendogram into k number of clusters (k=4 in our case).
- **8.** Then, by using rect.hclust function we can divide the dendogram into k clusters (k=4 in our case), i.e. create k rectangular divisions/borders in the dendogram

Result:

For iris.csv

Cluster:

Cluster Dendogram: Cluster Dendrogram Height ed hclust (*, "complete")

For USArrests.csv

Cluster:

> cluster Alabama	Alaska	Arizona	Arkansas	California	Colorado	Connecticut	Delaware
ATabalia	Alaska	Al IZOIIA	AI KAIISAS	Carriornia	COTOLAGO	Connecticut	Delawale
	. 1		3		2	3	3
Florida	Georgia	Hawaii	Idaho	Illinois	Indiana	Iowa	Kansas
2	1	3	4	2	3	4	3
Kentucky	Louisiana	Maine	Maryland	Massachusetts	Michigan	Minnesota	Mississippi
3	1	4	2	3	2	3	1
Missouri	Montana	Nebraska	Nevada	New Hampshire	New Jersey	New Mexico	New York
3	4	4	2	4	3	2	2
North Carolina	North Dakota	Ohio	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina
1	4	3	3	3	3	3	1
South Dakota	Tennessee	Texas	Utah	Vermont	Virginia	Washington	West Virginia
4	1	2	3	4	3	3	4
Wisconsin	Wyoming						
3	3						

Program:

For iris.csv

```
rm(list=ls())
setwd("C:/Users/Abhinav Vijayakumar/Desktop/VIT Academics/Sem 6/EDA/LAB/LAB 8")

data <- read.csv("iris.csv",row.names=1)
View(data)

df <- scale(data)
View(df)

ed <- dist(df, method = 'euclidean')</pre>
```

```
hierClust <- hclust(ed, method = 'complete')
plot(hierClust)

cluster <- cutree(hierClust, k = 4)
cluster

rect.hclust(hierClust, k = 4, border = 2:4)</pre>
```

For USArrests.csv

```
rm(list=ls())
setwd("C:/Users/Abhinav Vijayakumar/Desktop/VIT Academics/Sem 6/EDA/LAB/LAB 8")

data <- read.csv("USArrests.csv",row.names=1)

View(data)

df <- scale(data)

View(df)

ed <- dist(df, method = 'euclidean')
hierClust <- hclust(ed, method = 'complete')
plot(hierClust)

cluster <- cutree(hierClust, k = 4)
cluster

rect.hclust(hierClust, k = 4, border = 2:4)</pre>
```