Mostre que um grafo conexo não-orientado G contém uma trilha Euleriana $T_{ab} = av_2...v_{n-1}b$, $a \neq b$, se, e somente se, $a \in b$ são os únicos vértices ímpares. Para provar, utilize a observação a seguir:

seja um grafo conexo que contém uma trilha Euleriana $T = v_1 v_2...v_n$. Considere um vértice $v \neq v_1, v_n$, isto é, $v = v_i$, $2 \le i \le n-1$. Se i=2 as arestas $v_1 v$ e $v v_3$ contêm v; se i=n-1, as arestas $v_{n-2} v$ e $v v_n$ contêm v; caso contrário, teremos $v_{i-1} v$ e $v v_{i+1}$ contendo v, isto é, em qualquer situação, T contribui com duas arestas para o vértice v. Logo qualquer vértice $v \neq v_1, v_n$ é par.

Seja $T_{ab} = av_2...v_{n-1}b$, $a \neq b$, uma trilha Euleriana de um grafo G conexo não-orientado.

(Ida) Sabe-se que o vértice a é extremidade de pelo menos uma aresta de T_{ab} , já que esse vértice é vértice-inicial da trilha. Pela observação apresentada no enunciado, para todo caso em que $v_i = a$, $2 \le i \le n-1$, pode-se dizer que há mais duas arestas incidentes em a, ou seja, o grau de a é dado por $d(a) = 1 + n \times 2$, $n \ge 0$, onde n é a quantidade de vezes em que $v_i = a$. Portanto, d(a) sempre será ímpar. Por semelhança, pode-se afirmar o mesmo para o vértice b que é o final da trilha.

(Volta) Suponha que a e b são os únicos vértices de G com grau ímpar. Acrescentando a aresta (a, b) no grafo G, incrementa-se 1 nos graus de a e b. Essa modificação faz com que todos os vértices de G possuam grau par. Como G é conexo e todos os vértices possuem grau par, sabe-se, por teorema, que G é euleriano e, portanto possui um ciclo euleriano que passa por todos os vértices. Definimos um ciclo euleriano $C = av_2...v_{n-1}ba$. Retirando novamente a aresta (a, b) do grafo G, o ciclo C se transforma na trilha $T = av_2...v_{n-1}b$ que é idêntica à trilha T_{ab} .