

Contents

1	Def	Definition of Entailment 5			
	1.1	Partia	l Herbrand Interpretation	5	
		1.1.1	More Literals	5	
		1.1.2	Clauses	6	
		1.1.3	Partial Interpretations	6	
		1.1.4	Subsumptions	27	
		1.1.5	Removing Duplicates	28	
		1.1.6	Set of all Simple Clauses	28	
		1.1.7		32	
		1.1.8	Entailment to be extended	33	
	1.2	Partia	l Annotated Herbrand Interpretation	34	
		1.2.1	Decided Literals	34	
		1.2.2	Backtracking	40	
		1.2.3	Decomposition with respect to the First Decided Literals	40	
		1.2.4	Negation of a Clause	48	
		1.2.5	Other	53	
		1.2.6	Extending Entailments to multisets	55	
		1.2.7	More Lemmas	56	
		1.2.8	Negation of annotated clauses	56	
	1.3	Bridgi		59	
2	Normalisation			63	
	2.1	Logics		63	
		2.1.1	Definition and Abstraction	63	
		2.1.2	Properties of the Abstraction	64	
		2.1.3	•	67	
		2.1.4	•	70	
	2.2	Seman	atics over the Syntax	73	

Chapter 1

Definition of Entailment

This chapter defines various form of entailment.

end

1.1 Partial Herbrand Interpretation

```
theory Partial-Herbrand-Interpretation
imports
Weidenbach-Book-Base.WB-List-More
Ordered-Resolution-Prover.Clausal-Logic
begin
```

1.1.1 More Literals

The following lemma is very useful when in the goal appears an axioms like -L=K: this lemma allows the simplifier to rewrite L.

```
\mathbf{lemma} \ \textit{in-image-uninus-uninus:} \ \langle a \in \textit{uminus} \ `A \longleftrightarrow -a \in A \rangle \ \mathbf{for} \ a :: \langle 'v \ \textit{literal} \rangle
  using uminus-lit-swap by auto
lemma uminus-lit-swap: -a = b \longleftrightarrow (a::'a \ literal) = -b
  by auto
\mathbf{lemma} \ \mathit{atm-of-notin-atms-of-iff:} \ \langle \mathit{atm-of} \ L \not \in \mathit{atms-of} \ C' \longleftrightarrow L \not \in \# \ C' \land -L \not \in \# \ C' \rangle \ \mathbf{for} \ L \ C' \rangle
  by (cases L) (auto simp: atm-iff-pos-or-neg-lit)
lemma atm-of-notin-atms-of-iff-Pos-Neg:
   \langle L \notin atms\text{-}of \ C' \longleftrightarrow Pos \ L \notin \!\!\!\!/ \ C' \land Neg \ L \notin \!\!\!\!/ \ C' \land for \ L \ C'
  by (auto simp: atm-iff-pos-or-neg-lit)
lemma atms-of-uminus[simp]: \langle atms-of\ (uminus '\# C) = atms-of\ C \rangle
  by (auto simp: atms-of-def image-image)
lemma distinct-mset-atm-ofD:
  \langle distinct\text{-}mset \ (atm\text{-}of \ '\# \ mset \ xc) \Longrightarrow distinct \ xc \rangle
  by (induction xc) auto
lemma atms-of-cong-set-mset:
  \langle set\text{-}mset\ D=set\text{-}mset\ D'\Longrightarrow atms\text{-}of\ D=atms\text{-}of\ D' \rangle
  by (auto simp: atms-of-def)
```

```
lemma lit-in-set-iff-atm: (NO\text{-}MATCH \ (Pos\ x)\ l \Longrightarrow NO\text{-}MATCH \ (Neg\ x)\ l \Longrightarrow l \in M \longleftrightarrow (\exists\ l'.\ (l=Pos\ l' \land Pos\ l' \in M) \lor (l=Neg\ l' \land Neg\ l' \in M)) \land by\ (cases\ l)\ auto
```

We define here entailment by a set of literals. This is an Herbrand interpretation, but not the same as used for the resolution prover. Both has different properties. One key difference is that such a set can be inconsistent (i.e. containing both L and -L).

Satisfiability is defined by the existence of a total and consistent model.

```
 \begin{array}{l} \textbf{lemma} \ \ lit\text{-}eq\text{-}Neg\text{-}Pos\text{-}iff\colon \\ (x \neq Neg\ (atm\text{-}of\ x) \longleftrightarrow is\text{-}pos\ x\rangle \\ (x \neq Pos\ (atm\text{-}of\ x) \longleftrightarrow is\text{-}neg\ x\rangle \\ (-x \neq Neg\ (atm\text{-}of\ x) \longleftrightarrow is\text{-}neg\ x\rangle \\ (-x \neq Pos\ (atm\text{-}of\ x) \longleftrightarrow is\text{-}pos\ x\rangle \\ (Neg\ (atm\text{-}of\ x) \neq x \longleftrightarrow is\text{-}pos\ x\rangle \\ (Neg\ (atm\text{-}of\ x) \neq x \longleftrightarrow is\text{-}neg\ x\rangle \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}neg\ x\rangle \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}of\ x) \neq -x \longleftrightarrow is\text{-}pos\ x) \\ (Neg\ (atm\text{-}o
```

1.1.2 Clauses

by (cases x; auto; fail)+

Clauses are set of literals or (finite) multisets of literals.

```
type-synonym 'v clause-set = 'v clause set
type-synonym 'v clauses = 'v clause multiset
```

```
lemma is-neg-not-is-neg: is-neg (-L) \longleftrightarrow \neg is-neg L by (cases\ L) auto
```

1.1.3 Partial Interpretations

```
type-synonym 'a partial-interp = 'a literal set
```

```
definition true-lit :: 'a partial-interp \Rightarrow 'a literal \Rightarrow bool (infix \modelsl 50) where I \modelsl L \longleftrightarrow L \in I
```

declare true-lit-def[simp]

Consistency

```
definition consistent-interp :: 'a literal set \Rightarrow bool where consistent-interp I \longleftrightarrow (\forall L. \neg (L \in I \land -L \in I))
```

```
lemma consistent-interp-empty[simp]:
  consistent-interp {} unfolding consistent-interp-def by auto
```

```
lemma consistent-interp-single[simp]: consistent-interp \{L\} unfolding consistent-interp-def by auto
```

```
lemma Ex\text{-}consistent\text{-}interp: \langle Ex \ consistent\text{-}interp \rangle by (auto \ simp: \ consistent\text{-}interp\text{-}def)
```

 $\mathbf{lemma}\ consistent\text{-}interp\text{-}subset:$

```
assumes A \subseteq B and
```

```
consistent-interp B
  shows consistent-interp A
  using assms unfolding consistent-interp-def by auto
lemma consistent-interp-change-insert:
  a \notin A \Longrightarrow -a \notin A \Longrightarrow consistent\text{-interp (insert } (-a) \ A) \longleftrightarrow consistent\text{-interp (insert } a \ A)
  unfolding consistent-interp-def by fastforce
lemma consistent-interp-insert-pos[simp]:
  a \notin A \Longrightarrow consistent\text{-}interp\ (insert\ a\ A) \longleftrightarrow consistent\text{-}interp\ A \land -a \notin A
  unfolding consistent-interp-def by auto
lemma consistent-interp-insert-not-in:
  consistent-interp A \Longrightarrow a \notin A \Longrightarrow -a \notin A \Longrightarrow consistent-interp (insert a A)
  unfolding consistent-interp-def by auto
lemma consistent-interp-unionD: \langle consistent\text{-interp}\ (I \cup I') \Longrightarrow consistent\text{-interp}\ I' \rangle
  unfolding consistent-interp-def by auto
lemma consistent-interp-insert-iff:
  \langle consistent\text{-}interp\ (insert\ L\ C) \longleftrightarrow consistent\text{-}interp\ C \land -L \notin C \rangle
  by (metis consistent-interp-def consistent-interp-insert-pos insert-absorb)
lemma (in -) distinct-consistent-distinct-atm:
  \langle distinct \ M \Longrightarrow consistent-interp \ (set \ M) \Longrightarrow distinct-mset \ (atm-of `\# \ mset \ M) \rangle
  by (induction M) (auto simp: atm-of-eq-atm-of)
Atoms
We define here various lifting of atm-of (applied to a single literal) to set and multisets of
literals.
definition atms-of-ms :: 'a clause set \Rightarrow 'a set where
atms-of-ms \psi s = \bigcup (atms-of ' \psi s)
lemma atms-of-mmltiset[simp]:
  atms-of (mset \ a) = atm-of 'set a
  by (induct a) auto
lemma atms-of-ms-mset-unfold:
  atms-of-ms (mset 'b) = (\bigcup x \in b. atm-of 'set x)
  unfolding atms-of-ms-def by simp
definition atms-of-s :: 'a literal set \Rightarrow 'a set where
  atms-of-s C = atm-of ' C
lemma atms-of-ms-emtpy-set[simp]:
  atms-of-ms \{\} = \{\}
  unfolding atms-of-ms-def by auto
lemma atms-of-ms-memtpy[simp]:
  atms-of-ms \{\{\#\}\} = \{\}
  unfolding atms-of-ms-def by auto
lemma atms-of-ms-mono:
```

```
A \subseteq B \Longrightarrow atms\text{-}of\text{-}ms \ A \subseteq atms\text{-}of\text{-}ms \ B
 unfolding atms-of-ms-def by auto
lemma atms-of-ms-finite[simp]:
 finite \psi s \Longrightarrow finite (atms-of-ms \ \psi s)
 unfolding atms-of-ms-def by auto
lemma atms-of-ms-union[simp]:
  atms-of-ms (\psi s \cup \chi s) = atms-of-ms \psi s \cup atms-of-ms \chi s
 unfolding atms-of-ms-def by auto
lemma atms-of-ms-insert[simp]:
  atms-of-ms (insert \ \psi s \ \chi s) = atms-of \psi s \cup atms-of-ms \chi s
 unfolding atms-of-ms-def by auto
lemma atms-of-ms-singleton[simp]: atms-of-ms \{L\} = atms-of L
 unfolding atms-of-ms-def by auto
lemma atms-of-atms-of-ms-mono[simp]:
  A \in \psi \implies atms\text{-}of \ A \subseteq atms\text{-}of\text{-}ms \ \psi
 unfolding atms-of-ms-def by fastforce
lemma atms-of-ms-remove-incl:
 shows atms-of-ms (Set.remove a \psi) \subseteq atms-of-ms \psi
 unfolding atms-of-ms-def by auto
lemma atms-of-ms-remove-subset:
  atms-of-ms (\varphi - \psi) \subseteq atms-of-ms \varphi
 unfolding atms-of-ms-def by auto
lemma finite-atms-of-ms-remove-subset[simp]:
 finite (atms-of-ms A) \Longrightarrow finite (atms-of-ms (A - C))
 using atms-of-ms-remove-subset of A C finite-subset by blast
\mathbf{lemma}\ atms\text{-}of\text{-}ms\text{-}empty\text{-}iff\colon
  atms-of-ms A = \{\} \longleftrightarrow A = \{\{\#\}\} \lor A = \{\}\}
 apply (rule iffI)
  apply (metis (no-types, lifting) atms-empty-iff-empty atms-of-atms-of-ms-mono insert-absorb
   singleton-iff singleton-insert-inj-eq' subsetI subset-empty)
 apply (auto; fail)
 done
lemma in-implies-atm-of-on-atms-of-ms:
 assumes L \in \# C and C \in N
 shows atm\text{-}of\ L\in atms\text{-}of\text{-}ms\ N
 using atms-of-atms-of-ms-mono[of C N] assms by (simp add: atm-of-lit-in-atms-of subset-iff)
lemma in-plus-implies-atm-of-on-atms-of-ms:
 assumes C + \{\#L\#\} \in N
 shows atm\text{-}of\ L\in atms\text{-}of\text{-}ms\ N
 using in-implies-atm-of-on-atms-of-ms[of - C +{\#L\#}] assms by auto
lemma in-m-in-literals:
 assumes add-mset\ A\ D\in\psi s
 shows atm-of A \in atms-of-ms \psi s
 using assms by (auto dest: atms-of-atms-of-ms-mono)
```

```
lemma atms-of-s-union[simp]:
  atms-of-s (Ia \cup Ib) = atms-of-s Ia \cup atms-of-s Ib
  unfolding atms-of-s-def by auto
lemma atms-of-s-single[simp]:
  atms-of-s \{L\} = \{atm-of L\}
  unfolding atms-of-s-def by auto
lemma atms-of-s-insert[simp]:
  atms-of-s (insert\ L\ Ib) = \{atm-of\ L\} \cup\ atms-of-s\ Ib
  \mathbf{unfolding}\ \mathit{atms-of-s-def}\ \mathbf{by}\ \mathit{auto}
lemma in-atms-of-s-decomp[iff]:
  P \in atms-of-s I \longleftrightarrow (Pos \ P \in I \lor Neg \ P \in I) (is ?P \longleftrightarrow ?Q)
proof
 assume ?P
  then show ?Q unfolding atms-of-s-def by (metis image-iff literal.exhaust-sel)
next
  assume ?Q
  then show ?P unfolding atms-of-s-def by force
{f lemma}~atm	ext{-}of	ext{-}in	ext{-}atm	ext{-}of	ext{-}set	ext{-}in	ext{-}uminus:
  atm\text{-}of\ L'\in atm\text{-}of\ `B\Longrightarrow L'\in B\lor-L'\in B
  using atms-of-s-def by (cases L') fastforce+
lemma finite-atms-of-s[simp]:
  \langle finite \ M \Longrightarrow finite \ (atms-of-s \ M) \rangle
  by (auto simp: atms-of-s-def)
lemma
  atms-of-s-empty [simp]:
   \langle atms-of-s \{\} = \{\} \rangle and
  atms-of-s-empty-iff[simp]:
   \langle atms-of-s \ x = \{\} \longleftrightarrow x = \{\} \rangle
  by (auto simp: atms-of-s-def)
Totality
definition total-over-set :: 'a partial-interp \Rightarrow 'a set \Rightarrow bool where
total-over-set I S = (\forall l \in S. Pos l \in I \lor Neg l \in I)
definition total-over-m :: 'a literal set \Rightarrow 'a clause set \Rightarrow bool where
total-over-m \ I \ \psi s = total-over-set I \ (atms-of-ms \ \psi s)
lemma total-over-set-empty[simp]:
  total-over-set I \{\}
 unfolding total-over-set-def by auto
lemma total-over-m-empty[simp]:
  total-over-m \ I \ \{\}
  unfolding total-over-m-def by auto
lemma total-over-set-single[iff]:
  total-over-set I \{L\} \longleftrightarrow (Pos \ L \in I \lor Neg \ L \in I)
```

```
unfolding total-over-set-def by auto
lemma total-over-set-insert[iff]:
  total\text{-}over\text{-}set\ I\ (insert\ L\ Ls)\longleftrightarrow ((Pos\ L\in I\ \lor\ Neg\ L\in I)\ \land\ total\text{-}over\text{-}set\ I\ Ls)
  unfolding total-over-set-def by auto
lemma total-over-set-union[iff]:
  total-over-set I (Ls \cup Ls') \longleftrightarrow (total-over-set I Ls \wedge total-over-set I Ls')
  unfolding total-over-set-def by auto
lemma total-over-m-subset:
  A \subseteq B \Longrightarrow total\text{-}over\text{-}m \ I \ B \Longrightarrow total\text{-}over\text{-}m \ I \ A
  using atms-of-ms-mono[of A] unfolding total-over-m-def total-over-set-def by auto
lemma total-over-m-sum[iff]:
  shows total-over-m I \{C + D\} \longleftrightarrow (total\text{-}over\text{-}m \ I \{C\} \land total\text{-}over\text{-}m \ I \{D\})
  unfolding total-over-m-def total-over-set-def by auto
lemma total-over-m-union[iff]:
  total-over-m\ I\ (A\cup B)\longleftrightarrow (total-over-m\ I\ A\wedge total-over-m\ I\ B)
  unfolding total-over-m-def total-over-set-def by auto
lemma total-over-m-insert[iff]:
  total-over-m\ I\ (insert\ a\ A) \longleftrightarrow (total-over-set I\ (atms-of a) \land total-over-m\ I\ A)
  unfolding total-over-m-def total-over-set-def by fastforce
lemma total-over-m-extension:
  fixes I :: 'v \ literal \ set \ and \ A :: 'v \ clause-set
  assumes total: total-over-m I A
  shows \exists I'. total-over-m (I \cup I') (A \cup B)
    \land (\forall x \in I'. \ atm\text{-}of \ x \in atms\text{-}of\text{-}ms \ B \land atm\text{-}of \ x \notin atms\text{-}of\text{-}ms \ A)
proof -
  let ?I' = \{Pos \ v \mid v. \ v \in atms-of-ms \ B \land v \notin atms-of-ms \ A\}
  have \forall x \in ?I'. atm\text{-}of \ x \in atms\text{-}of\text{-}ms \ B \land atm\text{-}of \ x \notin atms\text{-}of\text{-}ms \ A \ by \ auto
  moreover have total-over-m (I \cup ?I') (A \cup B)
    using total unfolding total-over-m-def total-over-set-def by auto
  ultimately show ?thesis by blast
qed
lemma total-over-m-consistent-extension:
  fixes I :: 'v \ literal \ set \ and \ A :: 'v \ clause-set
  assumes
    total: total-over-m I A and
    cons: consistent-interp I
  shows \exists I'. total-over-m (I \cup I') (A \cup B)
    \land (\forall x \in I'. \ atm\text{-}of \ x \in atms\text{-}of\text{-}ms \ B \land atm\text{-}of \ x \notin atms\text{-}of\text{-}ms \ A) \land consistent\text{-}interp \ (I \cup I')
proof -
  \mathbf{let} \ ?I' = \{ \textit{Pos} \ v \ | v. \ v \in \textit{atms-of-ms} \ B \ \land \ v \notin \textit{atms-of-ms} \ A \ \land \ \textit{Pos} \ v \notin I \ \land \ \textit{Neg} \ v \notin I \}
  have \forall x \in ?I'. atm\text{-}of \ x \in atms\text{-}of\text{-}ms \ B \land atm\text{-}of \ x \notin atms\text{-}of\text{-}ms \ A \ by \ auto
  moreover have total-over-m (I \cup ?I') (A \cup B)
    using total unfolding total-over-m-def total-over-set-def by auto
  moreover have consistent-interp (I \cup ?I')
    using cons unfolding consistent-interp-def by (intro allI) (rename-tac L, case-tac L, auto)
  ultimately show ?thesis by blast
qed
```

```
lemma total-over-set-atms-of-m[simp]:
  total-over-set Ia (atms-of-s Ia)
  unfolding total-over-set-def atms-of-s-def by (metis image-iff literal.exhaust-sel)
lemma total-over-set-literal-defined:
  assumes add-mset\ A\ D \in \psi s
 and total-over-set I (atms-of-ms \psi s)
  shows A \in I \vee -A \in I
  using assms unfolding total-over-set-def by (metis (no-types) Neg-atm-of-iff in-m-in-literals
   literal.collapse(1) uminus-Neg uminus-Pos)
lemma tot-over-m-remove:
  assumes total-over-m (I \cup \{L\}) \{\psi\}
 and L: L \notin \# \psi - L \notin \# \psi
 shows total-over-m I \{\psi\}
  {\bf unfolding}\ total\hbox{-} over\hbox{-} m\hbox{-} def\ total\hbox{-} over\hbox{-} set\hbox{-} def
proof
  \mathbf{fix} l
  assume l: l \in atms\text{-}of\text{-}ms \{\psi\}
  then have Pos \ l \in I \lor Neg \ l \in I \lor l = atm\text{-}of \ L
   using assms unfolding total-over-m-def total-over-set-def by auto
  moreover have atm-of L \notin atms-of-ms \{\psi\}
   proof (rule ccontr)
     assume ¬ ?thesis
     then have atm\text{-}of L \in atms\text{-}of \ \psi by auto
     then have Pos (atm\text{-}of\ L) \in \#\ \psi \lor Neg\ (atm\text{-}of\ L) \in \#\ \psi
       using atm-imp-pos-or-neg-lit by metis
     then have L \in \# \psi \lor - L \in \# \psi by (cases L) auto
     then show False using L by auto
   qed
  ultimately show Pos \ l \in I \lor Neg \ l \in I  using l by metis
qed
lemma total-union:
  assumes total-over-m \ I \ \psi
 shows total-over-m (I \cup I') \psi
 using assms unfolding total-over-m-def total-over-set-def by auto
lemma total-union-2:
  assumes total-over-m \ I \ \psi
 and total-over-m I' \psi'
 shows total-over-m (I \cup I') (\psi \cup \psi')
  using assms unfolding total-over-m-def total-over-set-def by auto
lemma total-over-m-alt-def: \langle total-over-m I S \longleftrightarrow atms-of-ms S \subseteq atms-of-s I \rangle
  by (auto simp: total-over-m-def total-over-set-def)
lemma total-over-set-alt-def: \langle total\text{-}over\text{-}set\ M\ A \longleftrightarrow A \subseteq atms\text{-}of\text{-}s\ M \rangle
 by (auto simp: total-over-set-def)
Interpretations
definition true-cls: 'a partial-interp \Rightarrow 'a clause \Rightarrow bool (infix \models 50) where
 I \models C \longleftrightarrow (\exists L \in \# C. I \models l L)
lemma true-cls-empty[iff]: \neg I \models \{\#\}
```

```
unfolding true-cls-def by auto
lemma true-cls-singleton[iff]: I \models \{\#L\#\} \longleftrightarrow I \models l L
  unfolding true-cls-def by (auto split:if-split-asm)
lemma true-cls-add-mset[iff]: I \models add-mset a \ D \longleftrightarrow a \in I \lor I \models D
  unfolding true-cls-def by auto
lemma true-cls-union[iff]: I \models C + D \longleftrightarrow I \models C \lor I \models D
  unfolding true-cls-def by auto
lemma true-cls-mono-set-mset: set-mset C \subseteq set-mset D \Longrightarrow I \models C \Longrightarrow I \models D
  unfolding true-cls-def subset-eq Bex-def by metis
lemma true-cls-mono-leD[dest]: A <math>\subseteq \# B \Longrightarrow I \models A \Longrightarrow I \models B
 unfolding true-cls-def by auto
lemma
 assumes I \models \psi
 shows
    true-cls-union-increase[simp]: I \cup I' \models \psi and
    true-cls-union-increase'[simp]: I' \cup I \models \psi
  using assms unfolding true-cls-def by auto
lemma true-cls-mono-set-mset-l:
 assumes A \models \psi
 and A \subseteq B
 shows B \models \psi
  using assms unfolding true-cls-def by auto
lemma true-cls-replicate-mset [iff]: I \models replicate-mset n \ L \longleftrightarrow n \neq 0 \land I \models l \ L
  by (induct \ n) auto
lemma true-cls-empty-entails[iff]: \neg \{\} \models N
 by (auto simp add: true-cls-def)
lemma true-cls-not-in-remove:
  assumes L \notin \# \chi and I \cup \{L\} \models \chi
  shows I \models \chi
  using assms unfolding true-cls-def by auto
definition true-clss :: 'a partial-interp \Rightarrow 'a clause-set \Rightarrow bool (infix \modelss 50) where
  I \models s \ CC \longleftrightarrow (\forall \ C \in CC. \ I \models C)
lemma true-clss-empty[simp]: I \models s \{ \}
  unfolding true-clss-def by blast
lemma true-clss-singleton[iff]: I \models s \{C\} \longleftrightarrow I \models C
  unfolding true-clss-def by blast
lemma true-clss-empty-entails-empty[iff]: \{\} \models s \ N \longleftrightarrow N = \{\}
  unfolding true-clss-def by (auto simp add: true-cls-def)
lemma true-cls-insert-l [simp]:
  M \models A \Longrightarrow insert \ L \ M \models A
  unfolding true-cls-def by auto
```

```
lemma true-clss-union[iff]: I \models s \ CC \cup DD \longleftrightarrow I \models s \ CC \land I \models s \ DD
  unfolding true-clss-def by blast
lemma true-clss-insert[iff]: I \models s insert C DD \longleftrightarrow I \models C \land I \models s DD
  unfolding true-clss-def by blast
lemma true-clss-mono: DD \subseteq CC \Longrightarrow I \models s \ CC \Longrightarrow I \models s \ DD
  unfolding true-clss-def by blast
lemma true-clss-union-increase[simp]:
assumes I \models s \psi
shows I \cup I' \models s \psi
 using assms unfolding true-clss-def by auto
lemma true-clss-union-increase'[simp]:
assumes I' \models s \psi
 shows I \cup I' \models s \psi
 using assms by (auto simp add: true-clss-def)
lemma true-clss-commute-l:
  (I \cup I' \models s \psi) \longleftrightarrow (I' \cup I \models s \psi)
  by (simp add: Un-commute)
lemma model-remove[simp]: I \models s N \Longrightarrow I \models s Set.remove a N
  by (simp add: true-clss-def)
lemma model-remove-minus[simp]: I \models s N \Longrightarrow I \models s N - A
  by (simp add: true-clss-def)
\mathbf{lemma}\ not in\text{-}vars\text{-}union\text{-}true\text{-}cls\text{-}true\text{-}cls\text{:}
  assumes \forall x \in I'. atm\text{-}of x \notin atms\text{-}of\text{-}ms A
  and atms-of L \subseteq atms-of-ms A
  and I \cup I' \models L
  shows I \models L
  using assms unfolding true-cls-def true-lit-def Bex-def
  by (metis Un-iff atm-of-lit-in-atms-of contra-subsetD)
\mathbf{lemma}\ not in\text{-}vars\text{-}union\text{-}true\text{-}clss\text{-}true\text{-}clss\text{:}
  assumes \forall x \in I'. atm\text{-}of x \notin atms\text{-}of\text{-}ms A
  and atms-of-ms L \subseteq atms-of-ms A
  and I \cup I' \models s L
  shows I \models s L
  using assms unfolding true-clss-def true-lit-def Ball-def
  by (meson atms-of-atms-of-ms-mono notin-vars-union-true-cls-true-cls subset-trans)
lemma true-cls-def-set-mset-eq:
  \langle set\text{-}mset\ A=set\text{-}mset\ B\Longrightarrow I\models A\longleftrightarrow I\models B\rangle
  by (auto simp: true-cls-def)
\mathbf{lemma} \ \mathit{true\text{-}\mathit{cls}\text{-}\mathit{add}\text{-}\mathit{mset\text{-}\mathit{strict}}} : \langle I \models \mathit{add\text{-}\mathit{mset}} \ L \ C \longleftrightarrow L \in I \ \lor \ I \models (\mathit{removeAll\text{-}\mathit{mset}} \ L \ C) \rangle
  using true-cls-mono-set-mset[of \land removeAll-mset[L] C \land C]
  apply (cases \langle L \in \# C \rangle)
  apply (auto dest: multi-member-split simp: removeAll-notin)
 apply (metis (mono-tags, lifting) in-multiset-minus-notin-snd in-replicate-mset true-cls-def true-lit-def)
  done
```

Satisfiability

```
definition satisfiable :: 'a clause set \Rightarrow bool where
  satisfiable CC \longleftrightarrow (\exists I. (I \models s \ CC \land consistent-interp \ I \land total-over-m \ I \ CC))
lemma satisfiable-single[simp]:
  satisfiable \{ \{ \#L\# \} \}
  unfolding satisfiable-def by fastforce
lemma satisfiable-empty[simp]: \langle satisfiable \{ \} \rangle
  by (auto simp: satisfiable-def Ex-consistent-interp)
abbreviation unsatisfiable :: 'a clause set \Rightarrow bool where
  unsatisfiable\ CC \equiv \neg\ satisfiable\ CC
lemma satisfiable-decreasing:
  assumes satisfiable (\psi \cup \psi')
 shows satisfiable \psi
  using assms total-over-m-union unfolding satisfiable-def by blast
lemma satisfiable-def-min:
  satisfiable CC
   \longleftrightarrow (\exists I.\ I \models s\ CC \land consistent-interp\ I \land total-over-m\ I\ CC \land atm-of`I = atms-of-ms\ CC)
   (is ?sat \longleftrightarrow ?B)
proof
 assume ?B then show ?sat by (auto simp add: satisfiable-def)
  assume ?sat
  then obtain I where
   I\text{-}CC: I \models s \ CC \text{ and }
   cons: consistent-interp I and
   tot: total-over-m I CC
   unfolding satisfiable-def by auto
  let ?I = \{P. P \in I \land atm\text{-}of P \in atms\text{-}of\text{-}ms \ CC\}
 have I-CC: ?I \models s CC
   using I-CC in-implies-atm-of-on-atms-of-ms unfolding true-clss-def Ball-def true-cls-def
   Bex-def true-lit-def
   by blast
  moreover have cons: consistent-interp ?I
   using cons unfolding consistent-interp-def by auto
  moreover have total-over-m ?I CC
   using tot unfolding total-over-m-def total-over-set-def by auto
  moreover
   have atms-CC-incl: atms-of-ms CC \subseteq atm-of'I
      using tot unfolding total-over-m-def total-over-set-def atms-of-ms-def
      by (auto simp add: atms-of-def atms-of-s-def[symmetric])
   have atm\text{-}of '?I = atms\text{-}of\text{-}ms CC
      using atms-CC-incl unfolding atms-of-ms-def by force
  ultimately show ?B by auto
qed
{f lemma} satisfiable-carac:
  (\exists \mathit{I. consistent-interp}\ \mathit{I} \,\land\, \mathit{I} \models \!\!\! s \,\varphi) \longleftrightarrow \mathit{satisfiable}\ \varphi\ (\mathbf{is}\ (\exists \mathit{I.}\ ?Q\ \mathit{I}) \longleftrightarrow ?S)
proof
```

```
assume ?S
  then show \exists I. ?Q I unfolding satisfiable-def by auto
  assume \exists I. ?QI
  then obtain I where cons: consistent-interp I and I: I \models s \varphi by metis
 let ?I' = \{Pos \ v \mid v. \ v \notin atms-of-s \ I \land v \in atms-of-ms \ \varphi\}
  have consistent-interp (I \cup ?I')
   using cons unfolding consistent-interp-def by (intro allI) (rename-tac L, case-tac L, auto)
  moreover have total-over-m (I \cup ?I') \varphi
   unfolding total-over-m-def total-over-set-def by auto
 moreover have I \cup ?I' \models s \varphi
   using I unfolding Ball-def true-cls-def by auto
  ultimately show ?S unfolding satisfiable-def by blast
lemma satisfiable-carac'[simp]: consistent-interp I \Longrightarrow I \models s \varphi \Longrightarrow satisfiable \varphi
  using satisfiable-carac by metis
lemma unsatisfiable-mono:
  \langle N \subseteq N' \Longrightarrow unsatisfiable \ N \Longrightarrow unsatisfiable \ N' \rangle
 by (metis (full-types) satisfiable-decreasing subset-Un-eq)
Entailment for Multisets of Clauses
definition true-cls-mset :: 'a partial-interp \Rightarrow 'a clause multiset \Rightarrow bool (infix \models m \ 50) where
  I \models m \ CC \longleftrightarrow (\forall \ C \in \# \ CC. \ I \models C)
lemma true-cls-mset-empty[simp]: I \models m \{\#\}
  unfolding true-cls-mset-def by auto
lemma true-cls-mset-singleton[iff]: I \models m \{\#C\#\} \longleftrightarrow I \models C
  unfolding true-cls-mset-def by (auto split: if-split-asm)
lemma true-cls-mset-union[iff]: I \models m \ CC + DD \longleftrightarrow I \models m \ CC \land I \models m \ DD
  unfolding true-cls-mset-def by fastforce
lemma true-cls-mset-add-mset[iff]: I \models m add-mset C \ CC \longleftrightarrow I \models C \land I \models m \ CC
  unfolding true-cls-mset-def by auto
lemma true-cls-mset-image-mset[iff]: I \models m image-mset f A \longleftrightarrow (\forall x \in \# A. I \models f x)
  unfolding true-cls-mset-def by fastforce
lemma true-cls-mset-mono: set-mset DD \subseteq set-mset CC \Longrightarrow I \models m \ CC \Longrightarrow I \models m \ DD
  unfolding true-cls-mset-def subset-iff by auto
lemma true-clss-set-mset[iff]: I \models s set-mset CC \longleftrightarrow I \models m CC
  unfolding true-clss-def true-cls-mset-def by auto
lemma true-cls-mset-increasing-r[simp]:
  I \models m \ CC \Longrightarrow I \cup J \models m \ CC
  unfolding true-cls-mset-def by auto
theorem true-cls-remove-unused:
 assumes I \models \psi
 shows \{v \in I. \ atm\text{-}of \ v \in atm\text{s-}of \ \psi\} \models \psi
  using assms unfolding true-cls-def atms-of-def by auto
```

```
theorem true-clss-remove-unused:
  assumes I \models s \psi
 shows \{v \in I. atm\text{-}of \ v \in atms\text{-}of\text{-}ms \ \psi\} \models s \ \psi
  unfolding true-clss-def atms-of-def Ball-def
proof (intro allI impI)
  \mathbf{fix} \ x
  assume x \in \psi
  then have I \models x
   using assms unfolding true-clss-def atms-of-def Ball-def by auto
  then have \{v \in I. \ atm\text{-}of \ v \in atms\text{-}of \ x\} \models x
   by (simp only: true-cls-remove-unused[of I])
  moreover have \{v \in I. \ atm\text{-}of \ v \in atms\text{-}of \ x\} \subseteq \{v \in I. \ atm\text{-}of \ v \in atms\text{-}of\text{-}ms \ \psi\}
   using \langle x \in \psi \rangle by (auto simp add: atms-of-ms-def)
  ultimately show \{v \in I. \ atm\text{-}of \ v \in atms\text{-}of\text{-}ms \ \psi\} \models x
   using true-cls-mono-set-mset-l by blast
A simple application of the previous theorem:
\mathbf{lemma}\ true\text{-}clss\text{-}union\text{-}decrease\text{:}
 assumes II': I \cup I' \models \psi
 and H: \forall v \in I'. atm\text{-}of \ v \notin atms\text{-}of \ \psi
 shows I \models \psi
proof -
  let ?I = \{v \in I \cup I'. atm\text{-}of \ v \in atms\text{-}of \ \psi\}
 have ?I \models \psi using true-cls-remove-unused II' by blast
 moreover have ?I \subseteq I using H by auto
 ultimately show ?thesis using true-cls-mono-set-mset-l by blast
qed
lemma multiset-not-empty:
  assumes M \neq \{\#\}
 and x \in \# M
  shows \exists A. \ x = Pos \ A \lor x = Neg \ A
  using assms literal.exhaust-sel by blast
lemma atms-of-ms-empty:
  fixes \psi :: 'v \ clause-set
 assumes atms-of-ms \psi = \{\}
 shows \psi = \{\} \lor \psi = \{\{\#\}\}\
 using assms by (auto simp add: atms-of-ms-def)
lemma consistent-interp-disjoint:
assumes consI: consistent-interp I
and disj: atms-of-s A \cap atms-of-s I = \{\}
and consA: consistent-interp A
 shows consistent-interp (A \cup I)
proof (rule ccontr)
  assume ¬ ?thesis
  moreover have \bigwedge L. \neg (L \in A \land -L \in I)
   using disj unfolding atms-of-s-def by (auto simp add: rev-image-eqI)
  ultimately show False
   using consA consI unfolding consistent-interp-def by (metis (full-types) Un-iff
     literal.exhaust-sel uminus-Neg uminus-Pos)
qed
```

```
lemma total-remove-unused:
  assumes total-over-m \ I \ \psi
 shows total-over-m \{ v \in I. \ atm\text{-}of \ v \in atms\text{-}of\text{-}ms \ \psi \} \ \psi
  using assms unfolding total-over-m-def total-over-set-def
 by (metis (lifting) literal.sel(1,2) mem-Collect-eq)
{f lemma}\ true\mbox{-}cls\mbox{-}remove\mbox{-}hd\mbox{-}if\mbox{-}notin\mbox{-}vars:
  assumes insert a M' \models D
 and atm-of a \notin atms-of D
 shows M' \models D
  using assms by (auto simp add: atm-of-lit-in-atms-of true-cls-def)
lemma total-over-set-atm-of:
  fixes I :: 'v partial-interp and K :: 'v set
 shows total-over-set I K \longleftrightarrow (\forall l \in K. l \in (atm\text{-}of `I))
  unfolding total-over-set-def by (metis atms-of-s-def in-atms-of-s-decomp)
lemma true-cls-mset-true-clss-iff:
  \langle finite \ C \Longrightarrow I \models m \ mset\text{-set} \ C \longleftrightarrow I \models s \ C \rangle
  \langle I \models m \ D \longleftrightarrow I \models s \ set\text{-mset} \ D \rangle
  by (auto simp: true-clss-def true-cls-mset-def Ball-def
   dest: multi-member-split)
Tautologies
We define tautologies as clause entailed by every total model and show later that is equivalent
to containing a literal and its negation.
definition tautology (\psi: 'v \ clause) \equiv \forall I. \ total-over-set \ I \ (atms-of \ \psi) \longrightarrow I \models \psi
lemma tautology-Pos-Neg[intro]:
  assumes Pos \ p \in \# \ A and Neg \ p \in \# \ A
  shows tautology A
  using assms unfolding tautology-def total-over-set-def true-cls-def Bex-def
 by (meson atm-iff-pos-or-neg-lit true-lit-def)
lemma tautology-minus[simp]:
 assumes L \in \# A and -L \in \# A
 shows tautology A
 by (metis assms literal.exhaust tautology-Pos-Neg uminus-Neg uminus-Pos)
lemma tautology-exists-Pos-Neg:
  assumes tautology \psi
  shows \exists p. Pos p \in \# \psi \land Neg p \in \# \psi
proof (rule ccontr)
  assume p: \neg (\exists p. Pos p \in \# \psi \land Neg p \in \# \psi)
 let ?I = \{-L \mid L. \ L \in \# \ \psi\}
  have total-over-set ?I (atms-of \psi)
   unfolding total-over-set-def using atm-imp-pos-or-neg-lit by force
  moreover have \neg ?I \models \psi
   unfolding true-cls-def true-lit-def Bex-def apply clarify
   using p by (rename-tac x L, case-tac L) fastforce+
  ultimately show False using assms unfolding tautology-def by auto
```

qed

```
lemma tautology-decomp:
  tautology \ \psi \longleftrightarrow (\exists p. \ Pos \ p \in \# \ \psi \land Neg \ p \in \# \ \psi)
  using tautology-exists-Pos-Neg by auto
lemma tautology-union-add-iff[simp]:
  \langle tautology \ (A \cup \# B) \longleftrightarrow tautology \ (A + B) \rangle
  by (auto simp: tautology-decomp)
lemma tautology-add-mset-union-add-iff[simp]:
  \langle tautology\ (add\text{-}mset\ L\ (A\cup\#\ B)) \longleftrightarrow tautology\ (add\text{-}mset\ L\ (A+\ B)) \rangle
  by (auto simp: tautology-decomp)
\mathbf{lemma}\ not\text{-}tautology\text{-}minus:
  \langle \neg tautology \ A \Longrightarrow \neg tautology \ (A - B) \rangle
  by (auto simp: tautology-decomp dest: in-diffD)
lemma tautology-false[simp]: \neg tautology {#}
  unfolding tautology-def by auto
\mathbf{lemma}\ tautology	ext{-}add	ext{-}mset:
  tautology \ (add\text{-}mset \ a \ L) \longleftrightarrow tautology \ L \lor -a \in \# \ L
  unfolding tautology-decomp by (cases a) auto
lemma tautology-single[simp]: \langle \neg tautology \{ \#L\# \} \rangle
  by (simp add: tautology-add-mset)
lemma tautology-union:
  \langle tautology\ (A+B) \longleftrightarrow tautology\ A \lor tautology\ B \lor (\exists\ a.\ a \in \#\ A \land -a \in \#\ B) \rangle
  by (metis tautology-decomp tautology-minus uminus-Neg uminus-Pos union-iff)
lemma
  tautology\text{-}poss[simp]: \langle \neg tautology \ (poss \ A) \rangle and
  tautology-negs[simp]: \langle \neg tautology \ (negs \ A) \rangle
  by (auto simp: tautology-decomp)
\mathbf{lemma}\ tautology\text{-}uminus[simp]:
  \langle tautology \ (uminus \ '\# \ w) \longleftrightarrow tautology \ w \rangle
  by (auto 5 5 simp: tautology-decomp add-mset-eq-add-mset eq-commute [of \langle Pos - \rangle \langle -- \rangle]
     eq\text{-}commute[of \langle Neg \rightarrow \langle -- \rangle]
    simp flip: uminus-lit-swap
    dest!: multi-member-split)
lemma minus-interp-tautology:
  assumes \{-L \mid L. L \in \# \chi\} \models \chi
  shows tautology \chi
proof -
  obtain L where L \in \# \chi \land -L \in \# \chi
    using assms unfolding true-cls-def by auto
  then show ?thesis using tautology-decomp literal.exhaust uminus-Neg uminus-Pos by metis
qed
lemma remove-literal-in-model-tautology:
  assumes I \cup \{Pos \ P\} \models \varphi
  and I \cup \{Neg \ P\} \models \varphi
  shows I \models \varphi \lor tautology \varphi
  using assms unfolding true-cls-def by auto
```

```
lemma tautology-imp-tautology:
  fixes \chi \chi' :: 'v \ clause
  assumes \forall I. total\text{-}over\text{-}m \ I \ \{\chi\} \longrightarrow I \models \chi \longrightarrow I \models \chi' \ \text{and} \ tautology \ \chi
  shows tautology \chi' unfolding tautology-def
proof (intro allI HOL.impI)
  \mathbf{fix} \ I ::'v \ literal \ set
  assume totI: total-over-set I (atms-of \chi')
  let ?I' = \{Pos \ v \mid v. \ v \in atms-of \ \chi \land v \notin atms-of-s \ I\}
  have totI': total-over-m (I \cup ?I') \{\chi\} unfolding total-over-m-def total-over-set-def by auto
  then have \chi: I \cup ?I' \models \chi using assms(2) unfolding total-over-m-def tautology-def by simp
  then have I \cup (?I'-I) \models \chi' \text{ using } assms(1) \text{ } totI' \text{ by } auto
  moreover have \bigwedge L. L \in \# \chi' \Longrightarrow L \notin ?I'
    using totI unfolding total-over-set-def by (auto dest: pos-lit-in-atms-of)
  ultimately show I \models \chi' unfolding true-cls-def by auto
qed
lemma not-tautology-mono: \langle D' \subseteq \# D \Longrightarrow \neg tautology D \Longrightarrow \neg tautology D' \rangle
  by (meson tautology-imp-tautology true-cls-add-mset true-cls-mono-leD)
lemma tautology-decomp':
  \langle tautology \ C \longleftrightarrow (\exists L. \ L \in \# \ C \land - L \in \# \ C) \rangle
  unfolding tautology-decomp
  apply auto
  apply (case-tac\ L)
   apply auto
  done
lemma consistent-interp-tautology:
  \langle consistent\text{-}interp\ (set\ M') \longleftrightarrow \neg tautology\ (mset\ M') \rangle
  by (auto simp: consistent-interp-def tautology-decomp lit-in-set-iff-atm)
lemma consistent-interp-tuatology-mset-set:
  \langle finite \ x \Longrightarrow consistent-interp \ x \longleftrightarrow \neg tautology \ (mset-set \ x) \rangle
  using ex-mset[of \langle mset-set x \rangle]
  by (auto simp: consistent-interp-tautology eq-commute of \langle mset - \rangle mset-set-eq-mset-iff
      mset-set-set)
lemma tautology-distinct-atm-iff:
  \langle distinct\text{-}mset \ C \Longrightarrow tautology \ C \longleftrightarrow \neg distinct\text{-}mset \ (atm\text{-}of \ `\# \ C) \rangle
  by (induction C)
    (auto simp: tautology-add-mset atm-of-eq-atm-of
      dest: multi-member-split)
lemma not-tautology-minusD:
  \langle tautology (A - B) \Longrightarrow tautology A \rangle
  by (auto simp: tautology-decomp dest: in-diffD)
Entailment for clauses and propositions
We also need entailment of clauses by other clauses.
definition true-cls-cls :: 'a clause \Rightarrow 'a clause \Rightarrow bool (infix \models f 49) where
\psi \models f \chi \longleftrightarrow (\forall I. \ total \ over \ I \ (\{\psi\} \cup \{\chi\}) \longrightarrow consistent \ interp \ I \longrightarrow I \models \psi \longrightarrow I \models \chi)
definition true-cls-clss :: 'a clause \Rightarrow 'a clause-set \Rightarrow bool (infix \modelsfs 49) where
\psi \models fs \ \chi \longleftrightarrow (\forall I. \ total\text{-}over\text{-}m \ I \ (\{\psi\} \cup \chi) \longrightarrow consistent\text{-}interp \ I \longrightarrow I \models \psi \longrightarrow I \models s \ \chi)
```

```
definition true-clss-cls :: 'a clause-set \Rightarrow 'a clause \Rightarrow bool (infix \models p 49) where
N \models p \chi \longleftrightarrow (\forall I. \ total \ over \ m \ I \ (N \cup \{\chi\}) \longrightarrow consistent \ interp \ I \longrightarrow I \models s \ N \longrightarrow I \models \chi)
definition true-clss-clss :: 'a clause-set \Rightarrow 'a clause-set \Rightarrow bool (infix \models ps 49) where
N \models ps \ N' \longleftrightarrow (\forall I. \ total-over-m \ I \ (N \cup N') \longrightarrow consistent-interp \ I \longrightarrow I \models s \ N \longrightarrow I \models s \ N')
lemma true-cls-refl[simp]:
  A \models f A
  unfolding true-cls-cls-def by auto
lemma true-clss-cls-empty-empty[iff]:
  \langle \{\} \models p \{\#\} \longleftrightarrow \mathit{False} \rangle
  unfolding true-clss-cls-def consistent-interp-def by auto
lemma true-cls-cls-insert-l[simp]:
  a \models f C \implies insert \ a \ A \models p \ C
  unfolding true-cls-def true-clss-def true-clss-def by fastforce
lemma true-cls-empty[iff]:
  N \models fs \{\}
  unfolding true-cls-clss-def by auto
lemma true-prop-true-clause[iff]:
  \{\varphi\} \models p \ \psi \longleftrightarrow \varphi \models f \ \psi
  unfolding true-cls-cls-def true-cls-cls-def by auto
lemma true-clss-clss-true-clss-cls[iff]:
  N \models ps \{\psi\} \longleftrightarrow N \models p \psi
  unfolding true-clss-cls-def true-clss-cls-def by auto
lemma true-clss-clss-true-cls-clss[iff]:
  \{\chi\} \models ps \ \psi \longleftrightarrow \chi \models fs \ \psi
  unfolding true-clss-clss-def true-cls-clss-def by auto
lemma true-clss-clss-empty[simp]:
  N \models ps \{\}
  unfolding true-clss-clss-def by auto
{f lemma} true\text{-}clss\text{-}cls\text{-}subset:
  A \subseteq B \Longrightarrow A \models p \ CC \Longrightarrow B \models p \ CC
  unfolding true-clss-cls-def total-over-m-union by (simp add: total-over-m-subset true-clss-mono)
This version of [A \subseteq B; A \models p ?CC] \implies B \models p ?CC is useful as intro rule.
lemma (in –) true-clss-cls-subset I: \langle I \models p \ A \Longrightarrow I \subseteq I' \Longrightarrow I' \models p \ A \rangle
  by (simp add: true-clss-cls-subset)
lemma true-clss-cs-mono-l[simp]:
  A \models p \ CC \Longrightarrow A \cup B \models p \ CC
  by (auto intro: true-clss-cls-subset)
lemma true-clss-cs-mono-l2[simp]:
  B \models p \ CC \Longrightarrow A \cup B \models p \ CC
  by (auto intro: true-clss-cls-subset)
lemma true-clss-cls-mono-r[simp]:
```

```
A \models p \ CC \Longrightarrow A \models p \ CC + CC'
  unfolding true-clss-cls-def total-over-m-union total-over-m-sum by blast
lemma true-clss-cls-mono-r'[simp]:
  A \models p CC' \Longrightarrow A \models p CC + CC'
  unfolding true-clss-cls-def total-over-m-union total-over-m-sum by blast
lemma true-clss-cls-mono-add-mset[simp]:
  A \models p \ CC \Longrightarrow A \models p \ add\text{-mset} \ L \ CC
  using true-clss-cls-mono-r[of\ A\ CC\ add-mset\ L\ \{\#\}] by simp
lemma true-clss-clss-union-l[simp]:
  A \models ps \ CC \Longrightarrow A \cup B \models ps \ CC
  unfolding true-clss-clss-def total-over-m-union by fastforce
lemma true-clss-clss-union-l-r[simp]:
  B \models ps \ CC \Longrightarrow A \cup B \models ps \ CC
  unfolding true-clss-clss-def total-over-m-union by fastforce
lemma true-clss-cls-in[simp]:
  CC \in A \Longrightarrow A \models p \ CC
  unfolding true-clss-def true-clss-def total-over-m-union by fastforce
lemma true-clss-cls-insert-l[simp]:
  A \models p \ C \Longrightarrow insert \ a \ A \models p \ C
  unfolding true-clss-def true-clss-def using total-over-m-union
  by (metis Un-iff insert-is-Un sup.commute)
lemma true-clss-clss-insert-l[simp]:
  A \models ps \ C \Longrightarrow insert \ a \ A \models ps \ C
  unfolding true-clss-cls-def true-clss-def by blast
lemma true-clss-clss-union-and[iff]:
  A \models ps \ C \cup D \longleftrightarrow (A \models ps \ C \land A \models ps \ D)
proof
  {
   fix A C D :: 'a clause-set
   assume A: A \models ps \ C \cup D
   have A \models ps \ C
       unfolding true-clss-cls-def true-clss-cls-def insert-def total-over-m-insert
     proof (intro allI impI)
       \mathbf{fix}\ I
       assume
         totAC: total-over-m \ I \ (A \cup C) and
         cons: consistent-interp\ I and
         I: I \models s A
       then have tot: total-over-m I A and tot': total-over-m I C by auto
       obtain I' where
         tot': total-over-m (I \cup I') (A \cup C \cup D) and
         cons': consistent-interp (I \cup I') and
         H: \forall x \in I'. \ atm\text{-}of \ x \in atms\text{-}of\text{-}ms \ D \land atm\text{-}of \ x \notin atms\text{-}of\text{-}ms \ (A \cup C)
         using total-over-m-consistent-extension [OF - cons, of A \cup C] tot tot' by blast
       moreover have I \cup I' \models s A using I by simp
       ultimately have I \cup I' \models s \ C \cup D using A unfolding true-clss-clss-def by auto
       then have I \cup I' \models s \ C \cup D by auto
       then show I \models s C using notin-vars-union-true-clss-true-clss[of I'] H by auto
```

```
qed
   } note H = this
  assume A \models ps \ C \cup D
  then show A \models ps \ C \land A \models ps \ D using H[of \ A] Un-commute[of C \ D] by metis
  assume A \models ps C \land A \models ps D
  then show A \models ps \ C \cup D
    unfolding true-clss-clss-def by auto
qed
lemma true-clss-clss-insert[iff]:
  A \models ps \ insert \ L \ Ls \longleftrightarrow (A \models p \ L \land A \models ps \ Ls)
  using true-clss-clss-union-and[of\ A\ \{L\}\ Ls] by auto
\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}subset:
  A \subseteq B \Longrightarrow A \models ps \ CC \Longrightarrow B \models ps \ CC
  by (metis subset-Un-eq true-clss-clss-union-l)
Better suited as intro rule:
\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}subsetI:
  A \models ps \ CC \Longrightarrow A \subseteq B \Longrightarrow B \models ps \ CC
  by (metis subset-Un-eq true-clss-clss-union-l)
lemma union-trus-clss-clss[simp]: A \cup B \models ps B
  unfolding true-clss-clss-def by auto
lemma true-clss-clss-remove[simp]:
  A \models ps B \Longrightarrow A \models ps B - C
  by (metis Un-Diff-Int true-clss-clss-union-and)
lemma true-clss-clss-subsetE:
  N \models ps B \Longrightarrow A \subseteq B \Longrightarrow N \models ps A
  by (metis sup.orderE true-clss-clss-union-and)
\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}in\text{-}imp\text{-}true\text{-}clss\text{-}cls:
  assumes N \models ps \ U
  and A \in U
  shows N \models p A
  using assms mk-disjoint-insert by fastforce
lemma all-in-true-clss-clss: \forall x \in B. \ x \in A \Longrightarrow A \models ps \ B
  unfolding true-clss-def true-clss-def by auto
{f lemma} true-clss-clss-left-right:
  assumes A \models ps B
  and A \cup B \models ps M
  shows A \models ps M \cup B
  using assms unfolding true-clss-clss-def by auto
\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}qeneralise\text{-}true\text{-}clss\text{-}clss:
  A \cup C \models ps D \Longrightarrow B \models ps C \Longrightarrow A \cup B \models ps D
proof -
  assume a1: A \cup C \models ps D
  assume B \models ps \ C
  then have f2: \bigwedge M.\ M \cup B \models ps\ C
    by (meson true-clss-clss-union-l-r)
```

```
have \bigwedge M. C \cup (M \cup A) \models ps D
   using a1 by (simp add: Un-commute sup-left-commute)
  then show ?thesis
   using f2 by (metis (no-types) Un-commute true-clss-clss-left-right true-clss-clss-union-and)
qed
\mathbf{lemma}\ true\text{-}cls\text{-}cls\text{-}or\text{-}true\text{-}cls\text{-}cls\text{-}or\text{-}not\text{-}true\text{-}cls\text{-}cls\text{-}or\text{:}
 assumes D: N \models p \ add\text{-}mset \ (-L) \ D
 and C: N \models p \ add\text{-}mset \ L \ C
 shows N \models p D + C
 unfolding true-clss-cls-def
proof (intro allI impI)
 \mathbf{fix} I
 assume
   tot: total-over-m I(N \cup \{D + C\}) and
   consistent-interp I and
   I \models s N
   assume L: L \in I \vee -L \in I
   then have total-over-m I \{D + \{\#-L\#\}\}
     using tot by (cases L) auto
   unfolding true-clss-cls-def by auto
   moreover
     have total-over-m I \{C + \{\#L\#\}\}
       using L tot by (cases L) auto
     then have I \models C + \{\#L\#\}
       using C \langle I \models s N \rangle tot \langle consistent\text{-}interp \ I \rangle unfolding true-clss-cls-def by auto
   ultimately have I \models D + C using (consistent-interp I) consistent-interp-def by fastforce
  }
 moreover {
   assume L: L \notin I \land -L \notin I
   let ?I' = I \cup \{L\}
   have consistent-interp ?I' using L \land consistent-interp I \land by auto
   moreover have total-over-m ?I' {add-mset (-L) D}
     using tot unfolding total-over-m-def total-over-set-def by (auto simp add: atms-of-def)
   moreover have total-over-m ?I' N using tot using total-union by blast
   moreover have ?I' \models s \ N \text{ using } (I \models s \ N) \text{ using } true-clss-union-increase by blast
   ultimately have ?I' \models add\text{-}mset (-L) D
     using D unfolding true-clss-cls-def by blast
   then have ?I' \models D using L by auto
   moreover
     have total-over-set I (atms-of (D + C)) using tot by auto
     then have L \notin \# D \land -L \notin \# D
       using L unfolding total-over-set-def atms-of-def by (cases L) force+
   ultimately have I \models D + C unfolding true-cls-def by auto
 ultimately show I \models D + C by blast
qed
lemma true-cls-union-mset[iff]: I \models C \cup \# D \longleftrightarrow I \models C \lor I \models D
  unfolding true-cls-def by force
lemma true-clss-cls-sup-iff-add: N \models p C \cup \# D \longleftrightarrow N \models p C + D
 by (auto simp: true-clss-cls-def)
```

```
\mathbf{lemma}\ true\text{-}clss\text{-}cls\text{-}union\text{-}mset\text{-}true\text{-}clss\text{-}cls\text{-}or\text{-}not\text{-}true\text{-}clss\text{-}cls\text{-}or\text{:}
  assumes
    D: N \models p \ add\text{-}mset \ (-L) \ D \ and
    C: N \models p \ add\text{-}mset \ L \ C
  shows N \models_{\mathcal{D}} D \cup \# C
  using true-clss-cls-or-true-clss-cls-or-not-true-clss-cls-or[OF assms]
  by (subst true-clss-cls-sup-iff-add)
lemma true-clss-cls-tautology-iff:
  \langle \{\} \models p \ a \longleftrightarrow tautology \ a \rangle \ (\mathbf{is} \ \langle ?A \longleftrightarrow ?B \rangle)
proof
  assume ?A
  then have H: (total\text{-}over\text{-}set\ I\ (atms\text{-}of\ a) \Longrightarrow consistent\text{-}interp\ I \Longrightarrow I \models a) for I
    by (auto simp: true-clss-cls-def tautology-decomp add-mset-eq-add-mset
      dest!: multi-member-split)
  show ?B
    unfolding tautology-def
  proof (intro allI impI)
    \mathbf{fix}\ I
    assume tot: \langle total\text{-}over\text{-}set\ I\ (atms\text{-}of\ a) \rangle
    let ?Iinter = \langle I \cap uminus 'I \rangle
    let ?I = \langle I - ?Iinter \cup Pos `atm-of `?Iinter \rangle
    have \langle total\text{-}over\text{-}set ?I (atms\text{-}of a) \rangle
      using tot by (force simp: total-over-set-def image-image Clausal-Logic.uminus-lit-swap
        simp: image-iff)
    moreover have (consistent-interp ?I)
      unfolding consistent-interp-def image-iff
      apply clarify
      subgoal for L
        apply (cases L)
        apply (auto simp: consistent-interp-def uminus-lit-swap image-iff)
 apply (case-tac xa; auto; fail)+
 done
      done
    ultimately have \langle ?I \models a \rangle
      using H[of ?I] by fast
    moreover have \langle ?I \subseteq I \rangle
      apply (rule)
      subgoal for x by (cases x; auto; rename-tac xb; case-tac xb; auto)
      done
    ultimately show \langle I \models a \rangle
      by (blast intro: true-cls-mono-set-mset-l)
  qed
next
  assume ?B
  then show \langle ?A \rangle
    by (auto simp: true-clss-cls-def tautology-decomp add-mset-eq-add-mset
      dest!: multi-member-split)
qed
lemma true-cls-mset-empty-iff[simp]: \langle \{ \} \models m \ C \longleftrightarrow C = \{ \# \} \rangle
  by (cases C) auto
lemma true-clss-mono-left:
  \langle I \models s A \Longrightarrow I \subseteq J \Longrightarrow J \models s A \rangle
```

```
by (metis sup.orderE true-clss-union-increase')
lemma true-cls-remove-alien:
  \langle I \models N \longleftrightarrow \{L. \ L \in I \land atm\text{-}of \ L \in atms\text{-}of \ N\} \models N \rangle
  by (auto simp: true-cls-def dest: multi-member-split)
lemma true-clss-remove-alien:
  \langle I \models s \ N \longleftrightarrow \{L. \ L \in I \land atm\text{-}of \ L \in atms\text{-}of\text{-}ms \ N\} \models s \ N \rangle
  by (auto simp: true-clss-def true-cls-def in-implies-atm-of-on-atms-of-ms
     dest: multi-member-split)
lemma true-clss-alt-def:
  \langle N \models p \ \chi \longleftrightarrow
    (\forall I. \ atms-of\text{-}s\ I = atms-of\text{-}ms\ (N \cup \{\chi\}) \longrightarrow consistent\text{-}interp\ I \longrightarrow I \models s\ N \longrightarrow I \models \chi)
  apply (rule iffI)
  subgoal
    unfolding total-over-set-alt-def true-clss-cls-def total-over-m-alt-def
    by auto
  subgoal
    {\bf unfolding}\ total\hbox{-}over-set\hbox{-}alt\hbox{-}def\ true\hbox{-}clss\hbox{-}cls\hbox{-}def\ total\hbox{-}over-m\hbox{-}alt\hbox{-}def
    apply (intro conjI impI allI)
    subgoal for I
       \textbf{using} \ \textit{consistent-interp-subset}[\textit{of} \ (\{L \in \textit{I. atm-of} \ L \in \textit{atms-of-ms} \ (N \cup \{\chi\})\}) \ \textit{I}]
       true\text{-}clss\text{-}mono\text{-}left[of \ (\{L \in I. \ atm\text{-}of \ L \in atms\text{-}of\text{-}ms \ N\}) \ N
          \langle \{L \in I. \ atm\text{-}of \ L \in atm\text{-}of\text{-}ms \ (N \cup \{\chi\})\} \rangle \}
       true-clss-remove-alien[of\ I\ N]
    by (drule-tac \ x = \langle \{L \in I. \ atm-of \ L \in atms-of-ms \ (N \cup \{\chi\})\} \rangle in spec)
       (auto dest: true-cls-mono-set-mset-l)
    done
  done
lemma true-clss-alt-def2:
  assumes \langle \neg tautology \ \chi \rangle
  shows \langle N \models p \ \chi \longleftrightarrow (\forall I. \ atms-of-s \ I = atms-of-ms \ N \longrightarrow consistent-interp \ I \longrightarrow I \models s \ N \longrightarrow I \models
\chi) (is \langle ?A \longleftrightarrow ?B \rangle)
proof (rule iffI)
  assume ?A
  then have H:
       \langle \bigwedge I. \ atms-of-ms \ (N \cup \{\chi\}) \subseteq atms-of-s \ I \longrightarrow
     unfolding total-over-set-alt-def total-over-m-alt-def true-clss-cls-def by blast
  show ?B
    unfolding total-over-set-alt-def total-over-m-alt-def true-clss-cls-def
  proof (intro conjI impI allI)
    \mathbf{fix}\ I :: \langle 'a\ literal\ set \rangle
    assume
       atms: \langle atms-of-s \ I = atms-of-ms \ N \rangle and
       cons: \langle consistent\text{-}interp\ I \rangle and
       \langle I \models s N \rangle
    let ?I1 = \langle I \cup uminus \ (\{L \in set\text{-mset } \chi. \ atm\text{-of } L \notin atms\text{-of-s } I\} \rangle
    \mathbf{have} \,\, \langle \mathit{atms-of-ms} \,\, (N \, \cup \, \{\chi\}) \subseteq \mathit{atms-of-s} \,\, ?I1 \rangle
       by (auto simp add: atms in-image-uminus-uminus atm-iff-pos-or-neg-lit)
    moreover have (consistent-interp ?I1)
       using cons assms by (auto simp: consistent-interp-def)
         (rename-tac x; case-tac x; auto; fail)+
    moreover have \langle ?I1 \models s N \rangle
```

```
using \langle I \models s N \rangle by auto
    ultimately have \langle ?I1 \models \chi \rangle
      using H[of?I1] by auto
    then show \langle I \models \chi \rangle
      using assms by (auto simp: true-cls-def)
  qed
next
  assume ?B
  show ?A
    unfolding total-over-m-alt-def true-clss-alt-def
  proof (intro conjI impI allI)
    \mathbf{fix}\ I :: \langle 'a\ literal\ set \rangle
    assume
      atms: \langle atms-of-s \ I = atms-of-ms \ (N \cup \{\chi\}) \rangle and
      cons: \langle consistent\text{-}interp \ I \rangle and
      \langle I \models s N \rangle
    let ?I1 = \langle \{L \in I. \ atm\text{-}of \ L \in atm\text{-}of\text{-}ms \ N \} \rangle
    have \langle atms-of-s ?I1 = atms-of-ms N \rangle
      using atms by (auto simp add: in-image-uminus-uminus atm-iff-pos-or-neg-lit)
    moreover have (consistent-interp ?I1)
      using cons assms by (auto simp: consistent-interp-def)
    moreover have \langle ?I1 \models s N \rangle
      using \langle I \models s \ N \rangle by (subst\ (asm)true\text{-}clss\text{-}remove\text{-}alien)
    ultimately have \langle ?I1 \models \chi \rangle
      using \langle ?B \rangle by auto
    then show \langle I \models \chi \rangle
      using assms by (auto simp: true-cls-def)
  qed
qed
lemma true-clss-restrict-iff:
  assumes \langle \neg tautology \ \chi \rangle
  shows \langle N \models p \ \chi \longleftrightarrow N \models p \ \{\#L \in \# \ \chi. \ atm\text{-}of \ L \in atms\text{-}of\text{-}ms \ N\#\} \rangle (is \langle ?A \longleftrightarrow ?B \rangle)
  apply (subst true-clss-alt-def2[OF assms])
  apply (subst true-clss-alt-def2)
  subgoal using not-tautology-mono[OF - assms] by (auto dest: not-tautology-minus)
  apply (rule HOL.iff-allI)
  apply (auto 5 5 simp: true-cls-def atms-of-s-def dest!: multi-member-split)
  done
This is a slightly restrictive theorem, that encompasses most useful cases. The assumption ¬
tautology C can be removed if the model I is total over the clause.
{f lemma} true\text{-}cls\text{-}cls\text{-}true\text{-}cls\text{-}true\text{-}cls:
  \mathbf{assumes} \ \langle N \models p \ C \rangle
    \langle I \models s N \rangle and
    cons: \langle consistent\text{-}interp\ I \rangle and
    tauto: \langle \neg tautology \ C \rangle
  \mathbf{shows} \ \langle I \models C \rangle
proof -
  let ?I = \langle I \cup uminus \ `\{L \in set\text{-}mset \ C. \ atm\text{-}of \ L \notin atms\text{-}of\text{-}s \ I\} \rangle
  \textbf{let} \ ?I2 = \langle ?I \cup Pos \ `\{L \in atms\text{-}of\text{-}ms \ N. \ L \notin atms\text{-}of\text{-}s \ ?I\} \rangle
  have \langle total\text{-}over\text{-}m ?I2 (N \cup \{C\}) \rangle
    by (auto simp: total-over-m-alt-def atms-of-def in-image-uminus-uminus
      dest!: multi-member-split)
  moreover have (consistent-interp ?I2)
    using cons tauto unfolding consistent-interp-def
```

```
apply (intro allI)
    apply (case-tac\ L)
    by (auto simp: uminus-lit-swap eq-commute of \langle Pos - \rangle \langle - - \rangle
      eq\text{-}commute[of \langle Neg \rightarrow \langle - \rightarrow \rangle])
  moreover have \langle ?I2 \models s N \rangle
    using \langle I \models s N \rangle by auto
  ultimately have \langle ?I2 \models C \rangle
    using assms(1) unfolding true-clss-cls-def by fast
  then show ?thesis
    using tauto
    by (subst (asm) true-cls-remove-alien)
      (auto simp: true-cls-def in-image-uminus-uminus)
qed
1.1.4
           Subsumptions
{f lemma}\ subsumption\mbox{-}total\mbox{-}over\mbox{-}m:
  assumes A \subseteq \# B
  shows total-over-m I \{B\} \Longrightarrow total-over-m I \{A\}
  using assms unfolding subset-mset-def total-over-m-def total-over-set-def
  by (auto simp add: mset-subset-eq-exists-conv)
lemma atms-of-replicate-mset-replicate-mset-uminus[simp]:
  atms-of (D-replicate-mset\ (count\ D\ L)\ L-replicate-mset\ (count\ D\ (-L))\ (-L))
 = atms\text{-}of \ D \ - \ \{atm\text{-}of \ L\}
 by (auto simp: atm-of-eq-atm-of atms-of-def in-diff-count dest: in-diffD)
lemma subsumption-chained:
 assumes
    \forall I. \ total\text{-}over\text{-}m \ I \ \{D\} \longrightarrow I \models D \longrightarrow I \models \varphi \ \text{and}
    C \subseteq \# D
  shows (\forall I. total\text{-}over\text{-}m \ I \ \{C\} \longrightarrow I \models C \longrightarrow I \models \varphi) \lor tautology \varphi
  using assms
proof (induct card {Pos v \mid v. v \in atms-of D \land v \notin atms-of C}) arbitrary: D
    rule: nat-less-induct-case)
  case \theta note n = this(1) and H = this(2) and incl = this(3)
  then have atms-of D \subseteq atms-of C by auto
  then have \forall I. total\text{-}over\text{-}m \ I \ \{C\} \longrightarrow total\text{-}over\text{-}m \ I \ \{D\}
    unfolding total-over-m-def total-over-set-def by auto
  moreover have \forall I. \ I \models C \longrightarrow I \models D \text{ using } incl \ true\text{-}cls\text{-}mono\text{-}leD \text{ by } blast
  ultimately show ?case using H by auto
  case (Suc n D) note IH = this(1) and card = this(2) and H = this(3) and incl = this(4)
 let ?atms = \{Pos \ v \mid v. \ v \in atms-of \ D \land v \notin atms-of \ C\}
 have finite ?atms by auto
  then obtain L where L: L \in ?atms
    using card by (metis (no-types, lifting) Collect-empty-eq card-0-eq mem-Collect-eq
      nat.simps(3)
  let ?D' = D - replicate - mset (count D L) L - replicate - mset (count D (-L)) (-L)
  have atms-of-D: atms-of-ms \{D\} \subseteq atms-of-ms \{?D'\} \cup \{atm-of\ L\}
    using atms-of-replicate-mset-replicate-mset-uminus by force
  {
    \mathbf{fix} I
    assume total-over-m \ I \ \{?D'\}
    then have tot: total-over-m (I \cup \{L\}) \{D\}
```

```
unfolding total-over-m-def total-over-set-def using atms-of-D by auto
   assume IDL: I \models ?D'
   then have insert L I \models D unfolding true-cls-def by (fastforce dest: in-diffD)
   then have insert L I \models \varphi using H tot by auto
   moreover
     have tot': total-over-m (I \cup \{-L\}) \{D\}
       using tot unfolding total-over-m-def total-over-set-def by auto
     have I \cup \{-L\} \models D using IDL unfolding true-cls-def by (force dest: in-diffD)
     then have I \cup \{-L\} \models \varphi \text{ using } H \text{ tot' by } auto
   ultimately have I \models \varphi \lor tautology \varphi
     using L remove-literal-in-model-tautology by force
  } note H' = this
 have L \notin \# C and -L \notin \# C using L atm-iff-pos-or-neg-lit by force+
 then have C-in-D': C \subseteq \# ?D' using (C \subseteq \# D) by (auto simp: subseteq-mset-def not-in-iff)
 have card \{Pos \ v \mid v.\ v \in atms-of \ ?D' \land v \notin atms-of \ C\} < v \in atms-of \ C\}
   card \{ Pos \ v \mid v. \ v \in atms\text{-}of \ D \land v \notin atms\text{-}of \ C \}
   using L unfolding atms-of-replicate-mset-replicate-mset-uninus[of D L]
   by (auto intro!: psubset-card-mono)
  then show ?case
   using IH C-in-D' H' unfolding card[symmetric] by blast
qed
```

1.1.5 Removing Duplicates

```
lemma tautology-remdups-mset[iff]: tautology (remdups-mset C) \longleftrightarrow tautology C unfolding tautology-decomp by auto
lemma atms-of-remdups-mset[simp]: atms-of (remdups-mset C) = atms-of C unfolding atms-of-def by auto
lemma true-cls-remdups-mset[iff]: I \models remdups-mset C \longleftrightarrow I \models C unfolding true-cls-def by auto
lemma true-clss-cls-remdups-mset[iff]: A \models p remdups-mset C \longleftrightarrow A \models p C unfolding true-clss-cls-def total-over-m-def by auto
```

1.1.6 Set of all Simple Clauses

A simple clause with respect to a set of atoms is such that

- 1. its atoms are included in the considered set of atoms;
- 2. it is not a tautology;
- 3. it does not contains duplicate literals.

It corresponds to the clauses that cannot be simplified away in a calculus without considering the other clauses.

```
definition simple-clss :: 'v set \Rightarrow 'v clause set where simple-clss atms = {C. atms-of C \subseteq atms \land \neg tautology \ C \land distinct-mset \ C}
```

```
lemma simple-clss-empty[simp]:
  simple-clss \{\} = \{\{\#\}\}
  unfolding simple-clss-def by auto
lemma simple-clss-insert:
 assumes l \notin atms
 shows simple-clss (insert\ l\ atms) =
   ((+) \{ \#Pos \ l\# \}) ' (simple-clss \ atms)
   \cup ((+) {\#Neg\ l\#}) ' (simple-clss atms)
   \cup simple-clss \ atms(is \ ?I = ?U)
proof (standard; standard)
 \mathbf{fix} \ C
 assume C \in ?I
 then have
   atms: atms-of C \subseteq insert\ l\ atms and
   taut: \neg tautology \ C \ \mathbf{and}
   dist: distinct-mset C
   unfolding simple-clss-def by auto
  have H: \bigwedge x. \ x \in \# \ C \Longrightarrow atm\text{-}of \ x \in insert \ l \ atms
   using atm-of-lit-in-atms-of atms by blast
  consider
     (Add) L where L \in \# C and L = Neg \ l \lor L = Pos \ l
    | (No) Pos l \notin \# C Neg l \notin \# C
   by auto
  then show C \in ?U
   proof cases
     case Add
     then have LCL: L \notin \# C - \{\#L\#\}
       using dist unfolding distinct-mset-def by (auto simp: not-in-iff)
     have LC: -L \notin \# C
       using taut Add by auto
     obtain aa :: 'a where
      f_4: (aa \in atms\text{-}of\ (remove1\text{-}mset\ L\ C) \longrightarrow aa \in atms) \longrightarrow atms\text{-}of\ (remove1\text{-}mset\ L\ C) \subseteq atms
      by (meson subset-iff)
     obtain ll:: 'a literal where
       aa \notin atm-of 'set-mset (remove1-mset L C) \vee aa = atm-of ll \wedge ll \in \# remove1-mset L C
     then have atms-of (C - \{\#L\#\}) \subseteq atms
       using f4 Add LCL LC H unfolding atms-of-def by (metis H in-diffD insertE
         literal.exhaust-sel uminus-Neg uminus-Pos)
     moreover have \neg tautology (C - \{\#L\#\})
       using taut by (metis Add(1) insert-DiffM tautology-add-mset)
     moreover have distinct-mset (C - \{\#L\#\})
       using dist by auto
     ultimately have (C - \{\#L\#\}) \in simple\text{-}clss\ atms
       using Add unfolding simple-clss-def by auto
     moreover have C = \{\#L\#\} + (C - \{\#L\#\})
       using Add by (auto simp: multiset-eq-iff)
     ultimately show ?thesis using Add by blast
   next
     case No
     then have C \in simple\text{-}clss \ atms
       using taut atms dist unfolding simple-clss-def
       by (auto simp: atm-iff-pos-or-neg-lit split: if-split-asm dest!: H)
     then show ?thesis by blast
   qed
```

```
next
 \mathbf{fix} \ C
 assume C \in ?U
 then consider
     (Add) L C' where C = \{\#L\#\} + C' and C' \in simple\text{-}clss \ atms \ and
      L = Pos \ l \lor L = Neg \ l
   (No) C \in simple\text{-}clss \ atms
   by auto
 then show C \in ?I
   proof cases
     case No
     then show ?thesis unfolding simple-clss-def by auto
     case (Add\ L\ C') note C' = this(1) and C = this(2) and L = this(3)
     then have
      atms: atms-of C' \subseteq atms and
      taut: \neg tautology C' and
      dist: distinct-mset C'
      unfolding simple-clss-def by auto
     have atms-of C \subseteq insert\ l\ atms
      using atms C' L by auto
     moreover have \neg tautology C
      using taut C' L assms atms by (metis union-mset-add-mset-left add.left-neutral
          neg-lit-in-atms-of\ pos-lit-in-atms-of\ subset CE\ tautology-add-mset
          uminus-Neg uminus-Pos)
     moreover have distinct-mset C
      using dist\ C'\ L by (metis\ union-mset-add-mset-left\ add.left-neutral\ assms\ atms
          distinct-mset-add-mset neg-lit-in-atms-of pos-lit-in-atms-of subset CE)
     ultimately show ?thesis unfolding simple-clss-def by blast
   qed
qed
lemma simple-clss-finite:
 fixes atms :: 'v set
 assumes finite atms
 shows finite (simple-clss atms)
 using assms by (induction rule: finite-induct) (auto simp: simple-clss-insert)
lemma simple-clssE:
 assumes
   x \in simple\text{-}clss \ atms
 shows atms-of x \subseteq atms \land \neg tautology x \land distinct-mset x
 using assms unfolding simple-clss-def by auto
{f lemma} {\it cls-in-simple-clss}:
 shows \{\#\} \in simple\text{-}clss\ s
 unfolding simple-clss-def by auto
lemma simple-clss-card:
 fixes atms :: 'v set
 assumes finite atms
 shows card (simple-clss\ atms) \le (3::nat) \cap (card\ atms)
 using assms
proof (induct atms rule: finite-induct)
 case empty
 then show ?case by auto
```

```
next
  case (insert l C) note fin = this(1) and l = this(2) and IH = this(3)
   \bigwedge C'. add-mset (Pos l) C' \notin simple\text{-}clss\ C
   \bigwedge C'. add-mset (Neg l) C' \notin simple\text{-}clss\ C
   using l unfolding simple-clss-def by auto
  have H: \bigwedge C' D. \{\#Pos \ l\#\} + C' = \{\#Neq \ l\#\} + D \Longrightarrow D \in simple-clss \ C \Longrightarrow False
   proof
     fix C'D
     assume C'D: \{\#Pos\ l\#\} + C' = \{\#Neg\ l\#\} + D and D: D \in simple\text{-}clss\ C
     then have Pos \ l \in \# \ D
       by (auto simp: add-mset-eq-add-mset-ne)
     then have l \in atms-of D
       by (simp add: atm-iff-pos-or-neg-lit)
     then show False using D l unfolding simple-clss-def by auto
   qed
 let ?P = ((+) \{ \#Pos \ l\# \}) ' (simple-clss \ C)
 let ?N = ((+) \{ \#Neg \ l\# \}) ' (simple-clss \ C)
 let ?O = simple\text{-}clss C
 have card (?P \cup ?N \cup ?O) = card (?P \cup ?N) + card ?O
   apply (subst card-Un-disjoint)
   using l fin by (auto simp: simple-clss-finite notin)
  moreover have card (?P \cup ?N) = card ?P + card ?N
   apply (subst card-Un-disjoint)
   using l fin H by (auto simp: simple-clss-finite notin)
  moreover
   have card ?P = card ?O
     using inj-on-iff-eq-card [of ?O(+) {\#Pos\ l\#}]
     by (auto simp: fin simple-clss-finite inj-on-def)
 moreover have card ?N = card ?O
     using inj-on-iff-eq-card [of ?O(+) {\#Neg \ l\#}]
     by (auto simp: fin simple-clss-finite inj-on-def)
 moreover have (3::nat) \widehat{} card (insert\ l\ C) = 3 \widehat{} (card\ C) + 3 \widehat{} (card\ C) + 3 \widehat{} (card\ C)
   using l by (simp add: fin mult-2-right numeral-3-eq-3)
 ultimately show ?case using IH l by (auto simp: simple-clss-insert)
qed
lemma simple-clss-mono:
 assumes incl: atms \subseteq atms'
 shows simple-clss atms \subseteq simple-clss atms'
 using assms unfolding simple-clss-def by auto
\mathbf{lemma}\ distinct\text{-}mset\text{-}not\text{-}tautology\text{-}implies\text{-}in\text{-}simple\text{-}clss\text{:}}
  assumes distinct-mset \chi and \neg tautology \chi
 shows \chi \in simple\text{-}clss (atms\text{-}of \chi)
 using assms unfolding simple-clss-def by auto
lemma simplified-in-simple-clss:
 assumes distinct-mset-set \psi and \forall \chi \in \psi. \neg tautology \chi
 shows \psi \subseteq simple\text{-}clss (atms\text{-}of\text{-}ms \ \psi)
 using assms unfolding simple-clss-def
 by (auto simp: distinct-mset-set-def atms-of-ms-def)
{\bf lemma}\ simple-clss-element-mono:
  \langle x \in simple\text{-}clss \ A \Longrightarrow y \subseteq \# \ x \Longrightarrow y \in simple\text{-}clss \ A \rangle
 by (auto simp: simple-clss-def atms-of-def intro: distinct-mset-mono
```

1.1.7 Experiment: Expressing the Entailments as Locales

```
locale entail =
  fixes entail :: 'a set \Rightarrow 'b \Rightarrow bool (infix \models e 50)
  assumes entail-insert[simp]: I \neq \{\} \implies insert\ L\ I \models e\ x \longleftrightarrow \{L\} \models e\ x \lor I \models e\ x
  assumes entail-union[simp]: I \models e A \Longrightarrow I \cup I' \models e A
begin
definition entails :: 'a set \Rightarrow 'b set \Rightarrow bool (infix \models es 50) where
  I \models es A \longleftrightarrow (\forall a \in A. I \models e a)
lemma entails-empty[simp]:
  I \models es \{\}
  unfolding entails-def by auto
lemma entails-single[iff]:
  I \models es \{a\} \longleftrightarrow I \models e a
  unfolding entails-def by auto
lemma entails-insert-l[simp]:
  M \models es A \Longrightarrow insert \ L \ M \models es \ A
  unfolding entails-def by (metis Un-commute entail-union insert-is-Un)
lemma entails-union[iff]: I \models es \ CC \cup DD \longleftrightarrow I \models es \ CC \land I \models es \ DD
  unfolding entails-def by blast
lemma entails-insert[iff]: I \models es insert \ C \ DD \longleftrightarrow I \models e \ C \land I \models es \ DD
  unfolding entails-def by blast
lemma entails-insert-mono: DD \subseteq CC \Longrightarrow I \models es CC \Longrightarrow I \models es DD
  unfolding entails-def by blast
lemma entails-union-increase[simp]:
assumes I \models es \psi
shows I \cup I' \models es \psi
 using assms unfolding entails-def by auto
\mathbf{lemma}\ true\text{-}clss\text{-}commute\text{-}l:
  I \cup I' \models es \ \psi \longleftrightarrow I' \cup I \models es \ \psi
  by (simp add: Un-commute)
lemma entails-remove[simp]: I \models es N \implies I \models es Set.remove \ a \ N
  by (simp add: entails-def)
lemma entails-remove-minus[simp]: I \models es N \implies I \models es N - A
  by (simp add: entails-def)
end
interpretation true-cls: entail true-cls
  by standard (auto simp add: true-cls-def)
```

1.1.8 Entailment to be extended

In some cases we want a more general version of entailment to have for example $\{\} \models \{\#L, -L\#\}$. This is useful when the model we are building might not be total (the literal L might have been definitely removed from the set of clauses), but we still want to have a property of entailment considering that theses removed literals are not important.

We can given a model I consider all the natural extensions: C is entailed by an extended I, if for all total extension of I, this model entails C.

```
definition true-clss-ext :: 'a literal set \Rightarrow 'a clause set \Rightarrow bool (infix \models sext 49)
I \models sext \ N \longleftrightarrow (\forall J. \ I \subseteq J \longrightarrow consistent-interp \ J \longrightarrow total-over-m \ J \ N \longrightarrow J \models s \ N)
lemma true-clss-imp-true-cls-ext:
  I \models s \ N \implies I \models sext \ N
  unfolding true-clss-ext-def by (metis sup.orderE true-clss-union-increase')
lemma true-clss-ext-decrease-right-remove-r:
  assumes I \models sext N
  shows I \models sext N - \{C\}
  unfolding true-clss-ext-def
proof (intro allI impI)
 \mathbf{fix} J
  assume
   I \subseteq J and
   cons: consistent-interp\ J and
   tot: total-over-m J(N - \{C\})
 \mathbf{let} \ ?J = J \ \cup \ \{Pos \ (atm\text{-}of \ P) | P. \ P \in \# \ C \ \wedge \ atm\text{-}of \ P \not \in \ atm\text{-}of \ ``J\}
 have I \subseteq ?J using \langle I \subseteq J \rangle by auto
  moreover have consistent-interp ?J
   using cons unfolding consistent-interp-def apply (intro allI)
   by (rename-tac L, case-tac L) (fastforce simp add: image-iff)+
  moreover have total-over-m ?J N
   using tot unfolding total-over-m-def total-over-set-def atms-of-ms-def
   apply clarify
   apply (rename-tac l a, case-tac a \in N - \{C\})
     apply (auto; fail)
   using atms-of-s-def atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set
   by (fastforce simp: atms-of-def)
  ultimately have ?J \models s N
   using assms unfolding true-clss-ext-def by blast
  then have ?J \models s N - \{C\} by auto
  have \{v \in ?J. \ atm\text{-of} \ v \in atms\text{-of-ms} \ (N - \{C\})\} \subseteq J
   using tot unfolding total-over-m-def total-over-set-def
   by (auto intro!: rev-image-eqI)
  then show J \models s N - \{C\}
   using true-clss-remove-unused [OF \langle ?J \models s N - \{C\} \rangle] unfolding true-clss-def
   by (meson true-cls-mono-set-mset-l)
qed
lemma consistent-true-clss-ext-satisfiable:
  assumes consistent-interp I and I \models sext A
  shows satisfiable A
  by (metis Un-empty-left assms satisfiable-carac subset-Un-eq sup.left-idem
   total-over-m-consistent-extension total-over-m-empty true-clss-ext-def)
```

```
lemma not-consistent-true-clss-ext:
   assumes \neg consistent-interp I
   shows I \models sext \ A
   by (meson \ assms \ consistent-interp-subset true-clss-ext-def)

lemma inj-on-Pos: \langle inj-on Pos A \rangle and
   inj-on-Neg: \langle inj-on Neg A \rangle
   by (auto \ simp: \ inj-on-def)

lemma inj-on-uminus-lit: \langle inj-on uminus A \rangle for A :: \langle 'a \ literal \ set \rangle
   by (auto \ simp: \ inj-on-def)

end
```

1.2 Partial Annotated Herbrand Interpretation

We here define decided literals (that will be used in both DPLL and CDCL) and the entailment corresponding to it.

```
{\bf theory}\ Partial-Annotated-Herbrand-Interpretation \\ {\bf imports} \\ Partial-Herbrand-Interpretation \\ {\bf begin} \\
```

1.2.1 Decided Literals

Definition

```
datatype ('v, 'w, 'mark) annotated-lit =
  is-decided: Decided (lit-dec: 'v) |
  is-proped: Propagated (lit-prop: 'w) (mark-of: 'mark)
type-synonym ('v, 'w, 'mark) annotated-lits = \langle ('v, 'w, 'mark) | annotated-lit | list \rangle
type-synonym ('v, 'mark) ann-lit = \langle ('v \ literal, 'v \ literal, 'mark) \ annotated-lit \rangle
lemma ann-lit-list-induct[case-names Nil Decided Propagated]:
  assumes
    \langle P \mid \rangle and
    \langle \bigwedge L \ xs. \ P \ xs \Longrightarrow P \ (Decided \ L \ \# \ xs) \rangle \ and
    \langle \bigwedge L \ m \ xs. \ P \ xs \Longrightarrow P \ (Propagated \ L \ m \ \# \ xs) \rangle
  shows \langle P | xs \rangle
  using assms apply (induction xs, simp)
  by (rename-tac a xs, case-tac a) auto
lemma is-decided-ex-Decided:
  (is\text{-}decided\ L \Longrightarrow (\bigwedge K.\ L = Decided\ K \Longrightarrow P) \Longrightarrow P)
  by (cases L) auto
\mathbf{lemma} \ \textit{is-propedE} \colon \langle \textit{is-proped} \ L \Longrightarrow (\bigwedge K \ \textit{C}. \ L = \textit{Propagated} \ K \ \textit{C} \Longrightarrow \textit{P}) \Longrightarrow \textit{P} \rangle
  by (cases L) auto
\mathbf{lemma} \ \textit{is-decided-no-proped-iff:} \ \langle \textit{is-decided} \ L \longleftrightarrow \neg \textit{is-proped} \ L \rangle
  by (cases L) auto
```

```
lemma not-is-decidedE:
  \langle \neg is\text{-}decided \ E \Longrightarrow (\bigwedge K \ C. \ E = Propagated \ K \ C \Longrightarrow thesis) \Longrightarrow thesis \rangle
  by (cases\ E) auto
	ext{type-synonym} ('v, 'm) \ ann-lits = \langle ('v, 'm) \ ann-lit \ list \rangle
fun lit-of :: \langle ('a, 'a, 'mark) \ annotated-lit \Rightarrow 'a \rangle where
  \langle lit\text{-}of\ (Decided\ L) = L \rangle
  \langle lit\text{-}of \ (Propagated \ L \ \text{-}) = L \rangle
definition lits-of :: \langle ('a, 'b) | ann-lit set \Rightarrow 'a | literal | set \rangle where
\langle lits\text{-}of \ Ls = lit\text{-}of \ `Ls \rangle
abbreviation lits-of-l :: \langle ('a, 'b) | ann\text{-lits} \Rightarrow 'a | literal | set \rangle where
\langle lits\text{-}of\text{-}l\ Ls \equiv lits\text{-}of\ (set\ Ls) \rangle
lemma lits-of-l-empty[simp]:
  \langle lits\text{-}of \{\} = \{\} \rangle
  unfolding lits-of-def by auto
lemma lits-of-insert[simp]:
  \langle lits-of\ (insert\ L\ Ls) = insert\ (lit-of\ L)\ (lits-of\ Ls) \rangle
  unfolding lits-of-def by auto
lemma lits-of-l-Un[simp]:
  \langle lits-of\ (l\cup l') = lits-of\ l\cup lits-of\ l' \rangle
  unfolding lits-of-def by auto
lemma finite-lits-of-def[simp]:
  \langle finite\ (lits-of-l\ L) \rangle
  unfolding lits-of-def by auto
abbreviation unmark where
  \langle unmark \equiv (\lambda a. \{\#lit\text{-}of a\#\}) \rangle
abbreviation unmark-s where
  \langle unmark-s \ M \equiv unmark \ ' M \rangle
abbreviation unmark-l where
  \langle unmark-l \ M \equiv unmark-s \ (set \ M) \rangle
\mathbf{lemma}\ atms-of\text{-}ms\text{-}lambda\text{-}lit\text{-}of\text{-}is\text{-}atm\text{-}of\text{-}lit\text{-}of[simp]:}
  \langle atms\text{-}of\text{-}ms \ (unmark\text{-}l \ M') = atm\text{-}of \ `its\text{-}of\text{-}l \ M' \rangle
  unfolding atms-of-ms-def lits-of-def by auto
lemma lits-of-l-empty-is-empty[iff]:
  \langle lits\text{-}of\text{-}l \ M = \{\} \longleftrightarrow M = [] \rangle
  by (induct M) (auto simp: lits-of-def)
\mathbf{lemma} \ \textit{in-unmark-l-in-lits-of-l-iff} \colon \langle \{\#L\#\} \in \textit{unmark-l} \ M \longleftrightarrow L \in \textit{lits-of-l} \ M \rangle
  by (induction M) auto
lemma atm-lit-of-set-lits-of-l:
  (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set xs = atm\text{-}of 'lits-of-l xs
  unfolding lits-of-def by auto
```

Entailment

```
definition true-annot :: \langle ('a, 'm) | ann-lits \Rightarrow 'a | clause \Rightarrow bool \rangle (infix \models a | 49 \rangle) where
  \langle I \models a \ C \longleftrightarrow (lits - of - l \ I) \models C \rangle
definition true-annots :: \langle ('a, 'm) \ ann-lits \Rightarrow 'a \ clause-set \Rightarrow bool \rangle (infix \models as \ 49) where
  \langle I \models as \ CC \longleftrightarrow (\forall \ C \in CC. \ I \models a \ C) \rangle
lemma true-annot-empty-model[simp]:
  \langle \neg [] \models a \psi \rangle
  unfolding true-annot-def true-cls-def by simp
lemma true-annot-empty[simp]:
  \langle \neg I \models a \{\#\} \rangle
  unfolding true-annot-def true-cls-def by simp
lemma empty-true-annots-def[iff]:
  \langle [] \models as \ \psi \longleftrightarrow \psi = \{\} \rangle
  unfolding true-annots-def by auto
lemma true-annots-empty[simp]:
  \langle I \models as \{\} \rangle
  unfolding true-annots-def by auto
lemma true-annots-single-true-annot[iff]:
  \langle I \models as \{C\} \longleftrightarrow I \models a C \rangle
  unfolding true-annots-def by auto
lemma true-annot-insert-l[simp]:
  \langle M \models a A \Longrightarrow L \# M \models a A \rangle
  \mathbf{unfolding} \ \mathit{true\text{-}annot\text{-}} \mathit{def} \ \mathbf{by} \ \mathit{auto}
lemma true-annots-insert-l [simp]:
  \langle M \models as A \Longrightarrow L \# M \models as A \rangle
  unfolding true-annots-def by auto
lemma true-annots-union[iff]:
  \langle M \models as \ A \cup B \longleftrightarrow (M \models as \ A \land M \models as \ B) \rangle
  unfolding true-annots-def by auto
lemma true-annots-insert[iff]:
  \langle M \models as \ insert \ a \ A \longleftrightarrow (M \models a \ a \land M \models as \ A) \rangle
  unfolding true-annots-def by auto
\mathbf{lemma}\ true\text{-}annot\text{-}append\text{-}l:
  \langle M \models a A \Longrightarrow M' @ M \models a A \rangle
  unfolding true-annot-def by auto
lemma true-annots-append-l:
  \langle M \models as A \Longrightarrow M' @ M \models as A \rangle
  unfolding true-annots-def by (auto simp: true-annot-append-l)
Link between \models as and \models s:
\mathbf{lemma} \ \mathit{true-annots-true-cls} :
  \langle I \models as \ CC \longleftrightarrow lits \text{-} of \text{-} l \ I \models s \ CC \rangle
  unfolding true-annots-def Ball-def true-annot-def true-clss-def by auto
```

```
{f lemma} in-lit-of-true-annot:
  \langle a \in lits\text{-}of\text{-}l \ M \longleftrightarrow M \models a \{\#a\#\} \rangle
  unfolding true-annot-def lits-of-def by auto
lemma true-annot-lit-of-notin-skip:
  \langle L \# M \models a A \Longrightarrow lit\text{-}of L \notin \# A \Longrightarrow M \models a A \rangle
  unfolding true-annot-def true-cls-def by auto
{f lemma}\ true{-}clss{-}singleton{-}lit{-}of{-}implies{-}incl:
  \langle I \models s \ unmark-l \ MLs \Longrightarrow lits-of-l \ MLs \subseteq I \rangle
  unfolding true-clss-def lits-of-def by auto
{f lemma} true-annot-true-clss-cls:
  \langle MLs \models a \psi \Longrightarrow set (map \ unmark \ MLs) \models p \psi \rangle
  unfolding true-annot-def true-clss-cls-def true-cls-def
  by (auto dest: true-clss-singleton-lit-of-implies-incl)
lemma true-annots-true-clss-cls:
  \langle MLs \models as \ \psi \Longrightarrow set \ (map \ unmark \ MLs) \models ps \ \psi \rangle
  by (auto
    dest: true-clss-singleton-lit-of-implies-incl
    simp add: true-clss-def true-annots-def true-annot-def lits-of-def true-cls-def
    true-clss-clss-def)
lemma true-annots-decided-true-cls[iff]:
  \langle map \ Decided \ M \models as \ N \longleftrightarrow set \ M \models s \ N \rangle
proof -
  have *: (lit\text{-}of \cdot Decided \cdot set M = set M) unfolding lits\text{-}of\text{-}def by force
  show ?thesis by (simp add: true-annots-true-cls * lits-of-def)
qed
lemma true-annot-singleton[iff]: \langle M \models a \{ \#L\# \} \longleftrightarrow L \in lits\text{-}of\text{-}l M \rangle
  unfolding true-annot-def lits-of-def by auto
\mathbf{lemma}\ true\text{-}annots\text{-}true\text{-}clss\text{-}clss:
  \langle A \models as \Psi \Longrightarrow unmark-l A \models ps \Psi \rangle
  unfolding true-clss-clss-def true-annots-def true-clss-def
  \mathbf{by}\ (\mathit{auto}\ \mathit{dest}!:\ \mathit{true\text{-}clss\text{-}singleton\text{-}lit\text{-}of\text{-}implies\text{-}incl}
    simp: lits-of-def true-annot-def true-cls-def)
lemma true-annot-commute:
  \langle M @ M' \models a D \longleftrightarrow M' @ M \models a D \rangle
  unfolding true-annot-def by (simp add: Un-commute)
{f lemma}\ true\mbox{-}annots\mbox{-}commute:
  \langle M @ M' \models as D \longleftrightarrow M' @ M \models as D \rangle
  unfolding true-annots-def by (auto simp: true-annot-commute)
lemma true-annot-mono[dest]:
  \langle set \ I \subseteq set \ I' \Longrightarrow I \models a \ N \Longrightarrow I' \models a \ N \rangle
  using true-cls-mono-set-mset-l unfolding true-annot-def lits-of-def
  by (metis (no-types) Un-commute Un-upper1 image-Un sup.orderE)
\mathbf{lemma}\ true\text{-}annots\text{-}mono:
  \langle set\ I \subseteq set\ I' \Longrightarrow I \models as\ N \Longrightarrow I' \models as\ N \rangle
```

Defined and Undefined Literals

We introduce the functions *defined-lit* and *undefined-lit* to know whether a literal is defined with respect to a list of decided literals (aka a trail in most cases).

Remark that *undefined* already exists and is a completely different Isabelle function.

```
definition defined-lit :: \langle ('a \ literal, 'a \ literal, 'm) \ annotated-lits \Rightarrow 'a \ literal \Rightarrow bool \rangle
    where
(defined-lit\ I\ L \longleftrightarrow (Decided\ L \in set\ I) \lor (\exists\ P.\ Propagated\ L\ P \in set\ I)
     \vee (Decided (-L) \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ Propagated \ (-L) \ P \in set \ I) \vee (\exists \ Propagated \ (-L) \ 
abbreviation undefined-lit: (('a \ literal, 'a \ literal, 'm) \ annotated-lits \Rightarrow 'a \ literal \Rightarrow bool)
where \langle undefined\text{-}lit \ I \ L \equiv \neg defined\text{-}lit \ I \ L \rangle
lemma defined-lit-rev[simp]:
     \langle defined\text{-}lit \ (rev \ M) \ L \longleftrightarrow defined\text{-}lit \ M \ L \rangle
    unfolding defined-lit-def by auto
\mathbf{lemma}\ atm\text{-}imp\text{-}decided\text{-}or\text{-}proped:
    \mathbf{assumes} \ \langle x \in set \ I \rangle
    shows
         (Decided\ (-\ lit\text{-}of\ x)\in set\ I)
         \lor (Decided (lit-of x) \in set I)
         \vee (\exists l. \ Propagated (- \ lit - of \ x) \ l \in set \ I)
         \vee (\exists l. Propagated (lit-of x) l \in set I) \rangle
    using assms by (metis (full-types) lit-of.elims)
lemma literal-is-lit-of-decided:
    assumes \langle L = lit \text{-} of x \rangle
    shows \langle (x = Decided \ L) \ \lor \ (\exists \ l'. \ x = Propagated \ L \ l') \rangle
    using assms by (cases x) auto
\mathbf{lemma}\ true\text{-}annot\text{-}iff\text{-}decided\text{-}or\text{-}true\text{-}lit:
     \langle defined\text{-}lit\ I\ L \longleftrightarrow (lits\text{-}of\text{-}l\ I\ \models l\ L\ \lor\ lits\text{-}of\text{-}l\ I\ \models l\ -L) \rangle
     unfolding defined-lit-def by (auto simp add: lits-of-def rev-image-eqI
         dest!: literal-is-lit-of-decided)
lemma consistent-inter-true-annots-satisfiable:
     \langle consistent\text{-}interp\ (lits\text{-}of\text{-}l\ I) \implies I \models as\ N \implies satisfiable\ N \rangle
    by (simp add: true-annots-true-cls)
lemma defined-lit-map:
     \langle defined\text{-}lit \ Ls \ L \longleftrightarrow atm\text{-}of \ L \in (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) \ \ \ \ set \ Ls \rangle
  unfolding defined-lit-def apply (rule iffI)
      using image-iff apply fastforce
  by (fastforce simp add: atm-of-eq-atm-of dest: atm-imp-decided-or-proped)
lemma defined-lit-uminus[iff]:
     \langle defined\text{-}lit\ I\ (-L) \longleftrightarrow defined\text{-}lit\ I\ L \rangle
    unfolding defined-lit-def by auto
lemma Decided-Propagated-in-iff-in-lits-of-l:
     \langle defined\text{-}lit\ I\ L \longleftrightarrow (L \in lits\text{-}of\text{-}l\ I\ \lor -L \in lits\text{-}of\text{-}l\ I) \rangle
     unfolding lits-of-def by (metis lits-of-def true-annot-iff-decided-or-true-lit true-lit-def)
```

```
lemma consistent-add-undefined-lit-consistent[simp]:
    \langle consistent\text{-}interp\ (lits\text{-}of\text{-}l\ Ls) \rangle and
    \langle undefined\text{-}lit \ Ls \ L \rangle
  shows \langle consistent\text{-}interp \ (insert \ L \ (lits\text{-}of\text{-}l \ Ls)) \rangle
  using assms unfolding consistent-interp-def by (auto simp: Decided-Propagated-in-iff-in-lits-of-l)
lemma decided-empty[simp]:
  \langle \neg defined\text{-}lit \mid L \rangle
  unfolding defined-lit-def by simp
lemma undefined-lit-single[iff]:
  \langle defined\text{-}lit \ [L] \ K \longleftrightarrow atm\text{-}of \ (lit\text{-}of \ L) = atm\text{-}of \ K \rangle
  by (auto simp: defined-lit-map)
lemma undefined-lit-cons[iff]:
  (undefined-lit\ (L\ \#\ M)\ K\longleftrightarrow atm-of\ (lit-of\ L)\neq atm-of\ K\land undefined-lit\ M\ K)
  by (auto simp: defined-lit-map)
lemma undefined-lit-append[iff]:
  \langle undefined\text{-}lit \ (M @ M') \ K \longleftrightarrow undefined\text{-}lit \ M \ K \land undefined\text{-}lit \ M' \ K \rangle
  by (auto simp: defined-lit-map)
lemma defined-lit-cons:
  \langle defined\text{-}lit \ (L \# M) \ K \longleftrightarrow atm\text{-}of \ (lit\text{-}of \ L) = atm\text{-}of \ K \lor defined\text{-}lit \ M \ K \lor defined
  by (auto simp: defined-lit-map)
lemma defined-lit-append:
  \langle defined\text{-}lit \ (M @ M') \ K \longleftrightarrow defined\text{-}lit \ M \ K \lor defined\text{-}lit \ M' \ K \rangle
  by (auto simp: defined-lit-map)
lemma in-lits-of-l-defined-litD: \langle L\text{-}max \in lits\text{-}of\text{-}l \ M \implies defined\text{-}lit \ M \ L\text{-}max \rangle
  by (auto simp: Decided-Propagated-in-iff-in-lits-of-l)
lemma undefined-notin: \langle undefined\text{-}lit\ M\ (lit\text{-}of\ x) \Longrightarrow x \notin set\ M \rangle for x\ M
  by (metis in-lits-of-l-defined-litD insert-iff lits-of-insert mk-disjoint-insert)
lemma uminus-lits-of-l-definedD:
  \langle -x \in lits\text{-}of\text{-}l \ M \Longrightarrow defined\text{-}lit \ M \ x \rangle
  by (simp add: Decided-Propagated-in-iff-in-lits-of-l)
lemma defined-lit-Neg-Pos-iff:
  \langle defined\text{-}lit \ M \ (Neg \ A) \longleftrightarrow defined\text{-}lit \ M \ (Pos \ A) \rangle
  by (simp add: defined-lit-map)
\mathbf{lemma} \ \textit{defined-lit-Pos-atm-iff} [simp] :
  \langle defined\text{-}lit \ M1 \ (Pos \ (atm\text{-}of \ x)) \longleftrightarrow defined\text{-}lit \ M1 \ x \rangle
  by (cases x) (auto simp: defined-lit-Neq-Pos-iff)
lemma defined-lit-mono:
  \langle defined\text{-}lit \ M2 \ L \Longrightarrow set \ M2 \subseteq set \ M3 \Longrightarrow defined\text{-}lit \ M3 \ L \rangle
  by (auto simp: Decided-Propagated-in-iff-in-lits-of-l)
lemma defined-lit-nth:
  \langle n < length \ M2 \implies defined-lit \ M2 \ (lit-of \ (M2! \ n)) \rangle
```

1.2.2 Backtracking

```
fun backtrack-split :: \langle ('a, 'v, 'm) \ annotated-lits
  \Rightarrow ('a, 'v, 'm) annotated-lits \times ('a, 'v, 'm) annotated-lits where
\langle backtrack-split \ [] = ([], \ []) \rangle \ |
\langle backtrack-split \ (Propagated \ L \ P \ \# \ mlits) = apfst \ ((\#) \ (Propagated \ L \ P)) \ (backtrack-split \ mlits) \rangle
\langle backtrack-split \ (Decided \ L \ \# \ mlits) = ([], \ Decided \ L \ \# \ mlits) \rangle
lemma backtrack-split-fst-not-decided: (a \in set (fst (backtrack-split l)) \Longrightarrow \neg is-decided a)
  by (induct l rule: ann-lit-list-induct) auto
\mathbf{lemma}\ backtrack\text{-}split\text{-}snd\text{-}hd\text{-}decided\text{:}
  \langle snd \ (backtrack-split \ l) \neq [] \implies is-decided \ (hd \ (snd \ (backtrack-split \ l))) \rangle
  by (induct l rule: ann-lit-list-induct) auto
lemma backtrack-split-list-eq[simp]:
  \langle fst \ (backtrack-split \ l) \ @ \ (snd \ (backtrack-split \ l)) = l \rangle
  by (induct l rule: ann-lit-list-induct) auto
lemma backtrack-snd-empty-not-decided:
  \langle backtrack-split \ M = (M'', []) \Longrightarrow \forall \ l \in set \ M. \ \neg \ is-decided \ l \rangle
  by (metis append-Nil2 backtrack-split-fst-not-decided backtrack-split-list-eq snd-conv)
\mathbf{lemma}\ backtrack\text{-}split\text{-}some\text{-}is\text{-}decided\text{-}then\text{-}snd\text{-}has\text{-}hd\text{:}
  \langle \exists l \in set \ M. \ is-decided \ l \Longrightarrow \exists M' \ L' \ M''. \ backtrack-split \ M = (M'', \ L' \# M') \rangle
  by (metis backtrack-snd-empty-not-decided list.exhaust prod.collapse)
Another characterisation of the result of backtrack-split. This view allows some simpler proofs,
```

since take While and drop While are highly automated:

```
lemma backtrack-split-takeWhile-dropWhile:
  \langle backtrack-split \ M = (takeWhile \ (Not \ o \ is-decided) \ M, \ dropWhile \ (Not \ o \ is-decided) \ M \rangle
 by (induction M rule: ann-lit-list-induct) auto
```

Decomposition with respect to the First Decided Literals 1.2.3

In this section we define a function that returns a decomposition with the first decided literal. This function is useful to define the backtracking of DPLL.

Definition

The pattern get-all-ann-decomposition [] = [([], [])] is necessary otherwise, we can call the hd function in the other pattern.

```
fun qet-all-ann-decomposition :: (('a, 'b, 'm) annotated-lits
  \Rightarrow (('a, 'b, 'm) annotated-lits \times ('a, 'b, 'm) annotated-lits) list \rangle where
\langle get\text{-}all\text{-}ann\text{-}decomposition (Decided L # Ls) =
  (Decided \ L \ \# \ Ls, \ []) \ \# \ get-all-ann-decomposition \ Ls \ |
\langle get\text{-}all\text{-}ann\text{-}decomposition (Propagated L P \# Ls) =
  (apsnd ((\#) (Propagated L P)) (hd (get-all-ann-decomposition Ls)))
    \# tl (get-all-ann-decomposition Ls)
\langle get\text{-}all\text{-}ann\text{-}decomposition } [] = [([], [])] \rangle
```

value (get-all-ann-decomposition [Propagated A5 B5, Decided C4, Propagated A3 B3,

```
Propagated A2 B2, Decided C1, Propagated A0 B0]
```

```
Now we can prove several simple properties about the function.
```

```
lemma get-all-ann-decomposition-never-empty[iff]:
  \langle get\text{-}all\text{-}ann\text{-}decomposition } M = [] \longleftrightarrow False \rangle
  by (induct M, simp) (rename-tac a xs, case-tac a, auto)
lemma get-all-ann-decomposition-never-empty-sym[iff]:
  \langle [] = get\text{-}all\text{-}ann\text{-}decomposition } M \longleftrightarrow False \rangle
  using get-all-ann-decomposition-never-empty[of M] by presburger
lemma get-all-ann-decomposition-decomp:
  \langle hd \ (get-all-ann-decomposition \ S) = (a, c) \Longrightarrow S = c \ @ \ a \rangle
proof (induct S arbitrary: a c)
  case Nil
  then show ?case by simp
next
  case (Cons \ x \ A)
 then show ?case by (cases x; cases \langle hd (get-all-ann-decomposition A) \rangle) auto
qed
\mathbf{lemma}\ qet-all-ann-decomposition-backtrack-split:
  \langle backtrack\text{-split } S = (M, M') \longleftrightarrow hd \ (get\text{-all-ann-decomposition } S) = (M', M) \rangle
proof (induction S arbitrary: M M')
  case Nil
  then show ?case by auto
next
  case (Cons\ a\ S)
  then show ?case using backtrack-split-takeWhile-dropWhile by (cases a) force+
qed
\mathbf{lemma} \ \ \textit{get-all-ann-decomposition-Nil-backtrack-split-snd-Nil}:
  \langle get\text{-}all\text{-}ann\text{-}decomposition } S = [([], A)] \Longrightarrow snd (backtrack\text{-}split } S) = [] \rangle
 by (simp add: get-all-ann-decomposition-backtrack-split sndI)
This functions says that the first element is either empty or starts with a decided element of
the list.
{\bf lemma}\ \textit{get-all-ann-decomposition-length-1-fst-empty-or-length-1}:
 assumes \langle get\text{-}all\text{-}ann\text{-}decomposition } M = (a, b) \# [] \rangle
 shows \langle a = [] \lor (length \ a = 1 \land is\text{-}decided \ (hd \ a) \land hd \ a \in set \ M) \rangle
 using assms
proof (induct M arbitrary: a b rule: ann-lit-list-induct)
  case Nil then show ?case by simp
next
  case (Decided L mark)
 then show ?case by simp
  case (Propagated\ L\ mark\ M)
  then show ?case by (cases \langle get-all-ann-decomposition M \rangle) force+
qed
\mathbf{lemma} \ \textit{get-all-ann-decomposition-fst-empty-or-hd-in-M}:
```

assumes $\langle get\text{-}all\text{-}ann\text{-}decomposition } M = (a, b) \# b \rangle$ **shows** $\langle a = [] \lor (is\text{-}decided (hd a) \land hd a \in set M) \rangle$

using assms

```
proof (induct M arbitrary: a b rule: ann-lit-list-induct)
  case Nil
  then show ?case by auto
next
  case (Decided\ L\ ann\ xs)
  then show ?case by auto
next
  case (Propagated L m xs) note IH = this(1) and d = this(2)
  then show ?case
    using IH[of \langle fst \ (hd \ (get-all-ann-decomposition \ xs)) \rangle \langle snd \ (hd \ (get-all-ann-decomposition \ xs)) \rangle]
    by (cases \(\sqrt{et-all-ann-decomposition}\) xs\(\cdot\); cases a) auto
qed
\mathbf{lemma} \ \ \textit{get-all-ann-decomposition-snd-not-decided} :
  assumes \langle (a, b) \in set \ (qet\text{-}all\text{-}ann\text{-}decomposition} \ M) \rangle
 and \langle L \in set b \rangle
 shows \langle \neg is\text{-}decided L \rangle
  using assms apply (induct M arbitrary: a b rule: ann-lit-list-induct, simp)
  by (rename-tac L' xs a b, case-tac (get-all-ann-decomposition xs); fastforce)+
\mathbf{lemma}\ tl\text{-}get\text{-}all\text{-}ann\text{-}decomposition\text{-}skip\text{-}some:}
  assumes \langle x \in set \ (tl \ (get-all-ann-decomposition \ M1)) \rangle
  shows \langle x \in set \ (tl \ (get\text{-}all\text{-}ann\text{-}decomposition} \ (M0 \ @ \ M1))) \rangle
  using assms
  by (induct M0 rule: ann-lit-list-induct)
     (auto\ simp\ add:\ list.set-sel(2))
{\bf lemma}\ hd-get-all-ann-decomposition-skip-some:
  assumes \langle (x, y) = hd \ (get-all-ann-decomposition \ M1) \rangle
  shows \langle (x, y) \in set \ (get-all-ann-decomposition \ (M0 @ Decided \ K \# M1)) \rangle
  using assms
proof (induction M0 rule: ann-lit-list-induct)
  case Nil
  then show ?case by auto
next
  case (Decided\ L\ M\theta)
  then show ?case by auto
next
  case (Propagated L C M0) note xy = this(1)[OF\ this(2-)] and hd = this(2)
  then show ?case
    by (cases \langle get\text{-}all\text{-}ann\text{-}decomposition} (M0 @ Decided K \# M1)))
       (auto dest!: get-all-ann-decomposition-decomp
          arg\text{-}cong[of \land get\text{-}all\text{-}ann\text{-}decomposition} \rightarrow -hd])
qed
\mathbf{lemma}\ in\text{-}get\text{-}all\text{-}ann\text{-}decomposition\text{-}in\text{-}get\text{-}all\text{-}ann\text{-}decomposition\text{-}prepend:}
  \langle (a, b) \in set \ (get-all-ann-decomposition \ M') \Longrightarrow
    \exists b'. (a, b' @ b) \in set (get-all-ann-decomposition (M @ M'))
 apply (induction M rule: ann-lit-list-induct)
    apply (metis append-Nil)
  apply auto[]
  by (rename-tac L' m xs, case-tac \langle get-all-ann-decomposition (xs @ M' \rangle \rangle) auto
\mathbf{lemma}\ in-get-all-ann-decomposition-decided-or-empty:
  assumes \langle (a, b) \in set \ (get\text{-}all\text{-}ann\text{-}decomposition} \ M) \rangle
  shows \langle a = [] \lor (is\text{-}decided (hd a)) \rangle
```

```
using assms
proof (induct M arbitrary: a b rule: ann-lit-list-induct)
  case Nil then show ?case by simp
next
  case (Decided\ l\ M)
  then show ?case by auto
next
  case (Propagated l mark M)
  then show ?case by (cases \langle get-all-ann-decomposition M \rangle) force+
\mathbf{lemma}\ \textit{get-all-ann-decomposition-remove-undecided-length}:
  assumes \forall l \in set M'. \neg is\text{-}decided l \rangle
 shows (length (get-all-ann-decomposition (M' @ M'')) = length (get-all-ann-decomposition M'')
  using assms by (induct M' arbitrary: M" rule: ann-lit-list-induct) auto
{\bf lemma}\ get-all-ann-decomposition-not-is-decided-length:
 assumes \forall l \in set M'. \neg is\text{-}decided l
 \mathbf{shows} \ (1 \ + \ length \ (\textit{get-all-ann-decomposition} \ (\textit{Propagated} \ (-L) \ P \ \# \ M))
 = length (get-all-ann-decomposition (M' @ Decided L # M))
 using assms get-all-ann-decomposition-remove-undecided-length by fastforce
{f lemma}\ get-all-ann-decomposition-last-choice:
  assumes \langle tl \ (get\text{-}all\text{-}ann\text{-}decomposition} \ (M' @ Decided \ L \# M)) \neq [] \rangle
 and \forall l \in set M'. \neg is\text{-}decided l
 and \langle hd \ (tl \ (get\text{-}all\text{-}ann\text{-}decomposition } (M' @ Decided L \# M))) = (M0', M0) \rangle
  shows (hd (get-all-ann-decomposition (Propagated (-L) P \# M)) = (M0', Propagated (-L) P \#
M0)
  using assms by (induct M' rule: ann-lit-list-induct) auto
{\bf lemma}~get-all-ann-decomposition-except-last-choice-equal:
 assumes \forall l \in set M'. \neg is\text{-}decided l \rangle
 shows \langle tl \ (get\text{-}all\text{-}ann\text{-}decomposition \ (Propagated \ (-L) \ P \ \# \ M))
 = tl \ (tl \ (get-all-ann-decomposition \ (M' @ Decided \ L \ \# \ M)))
 using assms by (induct M' rule: ann-lit-list-induct) auto
lemma qet-all-ann-decomposition-hd-hd:
  assumes \langle qet\text{-}all\text{-}ann\text{-}decomposition}\ Ls = (M,\ C)\ \#\ (M0,\ M0')\ \#\ l\rangle
  shows \langle tl \ M = M0' @ M0 \land is\text{-}decided (hd \ M) \rangle
  using assms
proof (induct Ls arbitrary: M C M0 M0' l)
  case Nil
  then show ?case by simp
next
  case (Cons a Ls M C M0 M0' l) note IH = this(1) and g = this(2)
  { fix L ann level
   assume a: \langle a = Decided L \rangle
   have \langle Ls = M\theta' @ M\theta \rangle
     using q a by (force intro: qet-all-ann-decomposition-decomp)
   then have \langle tl \ M = M0' \ @ \ M0 \land is\text{-}decided (hd \ M) \rangle using q a by auto
  moreover {}
   \mathbf{fix} \ L \ P
   assume a: \langle a = Propagated L P \rangle
   have \langle tl \ M = M0' @ M0 \land is\text{-}decided (hd \ M) \rangle
     using IH Cons.prems unfolding a by (cases \(\colon get-all-ann-decomposition Ls\)) auto
```

```
}
 ultimately show ?case by (cases a) auto
qed
lemma get-all-ann-decomposition-exists-prepend[dest]:
  assumes \langle (a, b) \in set \ (get\text{-}all\text{-}ann\text{-}decomposition} \ M) \rangle
  shows \langle \exists c. M = c @ b @ a \rangle
  using assms apply (induct M rule: ann-lit-list-induct)
    apply simp
  by (rename-tac L' xs, case-tac (get-all-ann-decomposition xs);
    auto\ dest!:\ arg\text{-}cong[of\ \langle get\text{-}all\text{-}ann\text{-}decomposition} \rightarrow -hd]
      get-all-ann-decomposition-decomp)+
lemma get-all-ann-decomposition-incl:
  assumes \langle (a, b) \in set \ (qet\text{-}all\text{-}ann\text{-}decomposition} \ M) \rangle
  shows \langle set\ b\subseteq set\ M\rangle and \langle set\ a\subseteq set\ M\rangle
  using assms get-all-ann-decomposition-exists-prepend by fastforce+
lemma get-all-ann-decomposition-exists-prepend':
  \mathbf{assumes} \ \langle (a,\ b) \in \mathit{set}\ (\mathit{get-all-ann-decomposition}\ M) \rangle
  obtains c where \langle M = c @ b @ a \rangle
  using assms apply (induct M rule: ann-lit-list-induct)
    apply auto[1]
  by (rename-tac L' xs, case-tac \langle hd (get-all-ann-decomposition xs)\rangle,
    auto dest!: get-all-ann-decomposition-decomp simp add: list.set-sel(2))+
\mathbf{lemma}\ union\text{-}in\text{-}get\text{-}all\text{-}ann\text{-}decomposition\text{-}is\text{-}subset:}
  assumes \langle (a, b) \in set \ (get\text{-}all\text{-}ann\text{-}decomposition} \ M) \rangle
 shows \langle set \ a \cup set \ b \subseteq set \ M \rangle
  using assms by force
\mathbf{lemma}\ \textit{Decided-cons-in-get-all-ann-decomposition-append-Decided-cons}:
  (\exists c''. (Decided K \# c, c'') \in set (get-all-ann-decomposition (c' @ Decided K \# c)))
  apply (induction c' rule: ann-lit-list-induct)
    apply auto[2]
 apply (rename-tac L xs,
      case-tac \land hd (qet-all-ann-decomposition (xs @ Decided K \# c)) \rangle)
 apply (case-tac \langle get\text{-}all\text{-}ann\text{-}decomposition (xs @ Decided K <math>\# c \rangle \rangle)
 by auto
lemma fst-get-all-ann-decomposition-prepend-not-decided:
  assumes \forall m \in set MS. \neg is\text{-}decided m \rangle
  shows \langle set \ (map \ fst \ (get-all-ann-decomposition \ M))
    = set (map fst (get-all-ann-decomposition (MS @ M)))
  using assms apply (induction MS rule: ann-lit-list-induct)
  apply auto[2]
  by (rename-tac L m xs; case-tac \langle get-all-ann-decomposition (xs @ M)\rangle) simp-all
lemma no-decision-qet-all-ann-decomposition:
  \forall l \in set \ M. \ \neg \ is \ decided \ l \Longrightarrow \ get \ -all \ -ann \ -decomposition \ M = [([], M)] \ )
  by (induction M rule: ann-lit-list-induct) auto
Entailment of the Propagated by the Decided Literal
\mathbf{lemma}\ get-all-ann-decomposition-snd-union:
  \langle set\ M = \bigcup (set\ `snd\ `set\ (qet-all-ann-decomposition\ M)) \cup \{L\ | L.\ is-decided\ L \land L \in set\ M\} \rangle
```

```
(\mathbf{is} \ \langle ?M \ M = ?U \ M \cup ?Ls \ M \rangle)
proof (induct M rule: ann-lit-list-induct)
  case Nil
  then show ?case by simp
next
  case (Decided\ L\ M) note IH = this(1)
  then have \langle Decided \ L \in ?Ls \ (Decided \ L \# M) \rangle by auto
  moreover have \langle ?U \ (Decided \ L \ \# \ M) = ?U \ M \rangle by auto
 moreover have \langle ?M M = ?U M \cup ?Ls M \rangle using IH by auto
  ultimately show ?case by auto
next
  case (Propagated\ L\ m\ M)
 then show ?case by (cases \langle (get-all-ann-decomposition M) \rangle) auto
definition all-decomposition-implies :: \langle 'a \ clause \ set \ 
  \Rightarrow (('a, 'm) \ ann\text{-}lits \times ('a, 'm) \ ann\text{-}lits) \ list \Rightarrow bool \ where
 \langle all\text{-}decomposition\text{-}implies\ N\ S\longleftrightarrow (\forall\ (Ls,\ seen)\in set\ S.\ unmark\text{-}l\ Ls\cup\ N\ \models ps\ unmark\text{-}l\ seen)\rangle
lemma all-decomposition-implies-empty[iff]:
  \langle all-decomposition-implies\ N\ | \rangle unfolding all-decomposition-implies-def by auto
lemma all-decomposition-implies-single[iff]:
  \langle all-decomposition-implies\ N\ [(Ls,\ seen)] \longleftrightarrow unmark-l\ Ls \cup\ N \models ps\ unmark-l\ seen \rangle
  unfolding all-decomposition-implies-def by auto
lemma all-decomposition-implies-append[iff]:
  \langle all\text{-}decomposition\text{-}implies\ N\ (S\ @\ S')
    \longleftrightarrow (all-decomposition-implies N S \land all-decomposition-implies N S')
  unfolding all-decomposition-implies-def by auto
lemma all-decomposition-implies-cons-pair[iff]:
  \langle all\text{-}decomposition\text{-}implies\ N\ ((Ls, seen)\ \#\ S')
    \longleftrightarrow (all-decomposition-implies N [(Ls, seen)] \land all-decomposition-implies N S')
  unfolding all-decomposition-implies-def by auto
lemma all-decomposition-implies-cons-single[iff]:
  \langle all\text{-}decomposition\text{-}implies\ N\ (l\ \#\ S') \longleftrightarrow
    (unmark-l (fst l) \cup N \models ps unmark-l (snd l) \land
      all-decomposition-implies NS'
  unfolding all-decomposition-implies-def by auto
\mathbf{lemma}\ \mathit{all-decomposition-implies-trail-is-implied}\colon
  assumes \langle all\text{-}decomposition\text{-}implies\ N\ (get\text{-}all\text{-}ann\text{-}decomposition\ }M)\rangle
 shows \langle N \cup \{unmark\ L\ | L.\ is\text{-}decided\ L \land L \in set\ M\}
    \models ps\ unmark\ `()(set\ `snd\ `set\ (get-all-ann-decomposition\ M))
using assms
proof (induct \langle length (qet-all-ann-decomposition M) \rangle arbitrary: M)
  case \theta
  then show ?case by auto
next
  case (Suc n) note IH = this(1) and length = this(2) and decomp = this(3)
  consider
      (le1) \langle length \ (get-all-ann-decomposition \ M) \leq 1 \rangle
```

```
|(gt1)| \langle length (get-all-ann-decomposition M) > 1 \rangle
 by arith
then show ?case
 proof cases
    case le1
    then obtain a b where g: \langle get\text{-}all\text{-}ann\text{-}decomposition } M = (a, b) \# [] \rangle
      by (cases \langle get\text{-}all\text{-}ann\text{-}decomposition } M \rangle) auto
    moreover {
     assume \langle a = [] \rangle
      then have ?thesis using Suc.prems g by auto
    }
    moreover {
      assume l: \langle length \ a = 1 \rangle and m: \langle is\text{-}decided \ (hd \ a) \rangle and hd: \langle hd \ a \in set \ M \rangle
      then have \langle unmark \ (hd \ a) \in \{unmark \ L \ | L. \ is-decided \ L \land L \in set \ M\} \rangle by auto
      then have H: \langle unmark-l \ a \cup N \subset N \cup \{unmark \ L \ | L. \ is-decided \ L \wedge L \in set \ M \} \rangle
        using l by (cases a) auto
     have f1: \langle unmark-l \ a \cup N \models ps \ unmark-l \ b \rangle
        using decomp unfolding all-decomposition-implies-def q by simp
      have ?thesis
        apply (rule true-clss-clss-subset) using f1 H g by auto
    ultimately show ?thesis
      using get-all-ann-decomposition-length-1-fst-empty-or-length-1 by blast
 next
    case gt1
    then obtain Ls0 seen 0 M' where
      Ls0: \langle qet\text{-}all\text{-}ann\text{-}decomposition } M = (Ls0, seen0) \# qet\text{-}all\text{-}ann\text{-}decomposition } M' \rangle and
      length': \langle length \ (get-all-ann-decomposition \ M') = n \rangle and
      M'-in-M: \langle set \ M' \subseteq set \ M \rangle
      using length by (induct M rule: ann-lit-list-induct) (auto simp: subset-insertI2)
    let ?d = \langle \bigcup (set `snd `set (get-all-ann-decomposition M')) \rangle
    let ?unM = \langle \{unmark\ L\ | L.\ is\text{-}decided\ L \land L \in set\ M\} \rangle
    let ?unM' = \langle \{unmark\ L\ | L.\ is\text{-}decided\ L \land L \in set\ M'\} \rangle
    {
     assume \langle n = \theta \rangle
     then have \langle qet\text{-}all\text{-}ann\text{-}decomposition } M' = [] \rangle using length' by auto
      then have ?thesis using Suc.prems unfolding all-decomposition-implies-def Ls0 by auto
    moreover {
     assume n: \langle n > \theta \rangle
      then obtain Ls1 seen1 l where
        Ls1: \langle get\text{-}all\text{-}ann\text{-}decomposition } M' = (Ls1, seen1) \# l \rangle
        using length' by (induct M' rule: ann-lit-list-induct) auto
      have \langle all\text{-}decomposition\text{-}implies\ N\ (get\text{-}all\text{-}ann\text{-}decomposition\ }M')\rangle
        using decomp unfolding Ls\theta by auto
      then have N: \langle N \cup ?unM' \models ps \ unmark-s ?d \rangle
        using IH length' by auto
      have l: \langle N \cup ?unM' \subseteq N \cup ?unM \rangle
        using M'-in-M by auto
      from true-clss-clss-subset[OF this N]
     have \Psi N: \langle N \cup ?unM \models ps \ unmark-s ?d \rangle by auto
      have \langle is\text{-}decided \ (hd \ Ls0) \rangle and LS: \langle tl \ Ls0 = seen1 \ @ \ Ls1 \rangle
        using get-all-ann-decomposition-hd-hd[of M] unfolding Ls0 Ls1 by auto
```

```
have M': \langle set \ M' = ?d \cup \{L \ | L. \ is\text{-}decided \ L \land L \in set \ M' \} \rangle
           using get-all-ann-decomposition-snd-union by auto
           assume \langle Ls\theta \neq [] \rangle
           then have \langle hd \ Ls\theta \in set \ M \rangle
             using get-all-ann-decomposition-fst-empty-or-hd-in-M Ls0 by blast
           then have \langle N \cup ?unM \models p \ unmark \ (hd \ Ls0) \rangle
             using \langle is\text{-}decided \ (hd \ Ls\theta) \rangle by (metis \ (mono\text{-}tags, \ lifting) \ UnCI \ mem\text{-}Collect\text{-}eq
               true-clss-cls-in)
        } note hd-Ls\theta = this
        have l: \langle unmark ' (?d \cup \{L \mid L. \text{ is-decided } L \wedge L \in \text{set } M'\}) = unmark-s ?d \cup ?unM' \rangle
           by auto
        have \langle N \cup ?unM' \models ps \ unmark \ (?d \cup \{L \mid L. \ is\text{-}decided \ L \land L \in set \ M'\}) \rangle
           unfolding l using N by (auto simp: all-in-true-clss-clss)
        then have t: \langle N \cup ?unM' \models ps \ unmark-l \ (tl \ Ls0) \rangle
           using M' unfolding LS LSM by auto
        then have \langle N \cup ?unM \models ps \ unmark-l \ (tl \ Ls0) \rangle
           using M'-in-M true-clss-clss-subset[OF - t, of \langle N \cup ?unM \rangle] by auto
        then have \langle N \cup ?unM \models ps \ unmark-l \ Ls0 \rangle
           using hd-Ls\theta by (cases Ls\theta) auto
        moreover have \langle unmark-l \ Ls\theta \cup N \models ps \ unmark-l \ seen\theta \rangle
           using decomp unfolding Ls\theta by simp
        moreover have \langle \bigwedge M Ma. (M::'a clause set) \cup Ma \models ps M \rangle
           by (simp add: all-in-true-clss-clss)
        ultimately have \Psi: \langle N \cup ?unM \models ps \ unmark-l \ seen \theta \rangle
           by (meson true-clss-clss-left-right true-clss-clss-union-and true-clss-clss-union-l-r)
        moreover have \langle unmark ' (set seen \theta \cup ?d) = unmark - l seen \theta \cup unmark - s ?d \rangle
           by auto
        ultimately have ?thesis using \Psi N unfolding Ls0 by simp
      ultimately show ?thesis by auto
    qed
qed
\mathbf{lemma}\ all\text{-}decomposition\text{-}implies\text{-}propagated\text{-}lits\text{-}are\text{-}implied:}
  assumes \langle all\text{-}decomposition\text{-}implies\ N\ (get\text{-}all\text{-}ann\text{-}decomposition\ }M) \rangle
  shows \langle N \cup \{unmark\ L\ | L.\ is-decided\ L \land L \in set\ M\} \models ps\ unmark-l\ M \rangle
    (\mathbf{is} \ \langle ?I \models ps \ ?A \rangle)
proof -
  have \langle ?I \models ps \ unmark-s \ \{L \mid L. \ is-decided \ L \land L \in set \ M\} \rangle
    by (auto intro: all-in-true-clss-clss)
  \mathbf{moreover\ have}\ \langle ?I \models ps\ unmark\ `\bigcup (set\ `snd\ `set\ (get-all-ann-decomposition\ M)) \rangle
    using all-decomposition-implies-trail-is-implied assms by blast
  ultimately have \langle N \cup \{unmark \ m \mid m. \ is\text{-}decided \ m \land m \in set \ M\}
    \models ps\ unmark '\ \ \ (set 'snd 'set (qet-all-ann-decomposition M))
      \cup unmark ' \{m \mid m. is-decided m \land m \in set M\} \rangle
      by blast
  then show ?thesis
    by (metis (no-types) get-all-ann-decomposition-snd-union[of M] image-Un)
qed
```

 $\mathbf{lemma}\ all\text{-}decomposition\text{-}implies\text{-}insert\text{-}single\text{:}}$

```
\textit{(all-decomposition-implies N M)} \implies \textit{all-decomposition-implies (insert C N) M} \\
  unfolding all-decomposition-implies-def by auto
{f lemma}\ all\mbox{-}decomposition\mbox{-}implies\mbox{-}union:
  \langle all\text{-}decomposition\text{-}implies\ N\ M \Longrightarrow all\text{-}decomposition\text{-}implies\ (N\ \cup\ N')\ M \rangle
  unfolding all-decomposition-implies-def sup.assoc[symmetric] by (auto intro: true-clss-clss-union-l)
{f lemma}\ all\mbox{-}decomposition\mbox{-}implies\mbox{-}mono:
  \langle N \subseteq N' \Longrightarrow all\text{-}decomposition\text{-}implies \ N \ M \Longrightarrow all\text{-}decomposition\text{-}implies \ N' \ M \rangle
  by (metis all-decomposition-implies-union le-iff-sup)
\mathbf{lemma}\ all\text{-}decomposition\text{-}implies\text{-}mono\text{-}right:}
  (all-decomposition-implies\ I\ (get-all-ann-decomposition\ (M'\ @\ M)) \Longrightarrow
    all-decomposition-implies I (get-all-ann-decomposition M)\lor
  apply (induction M' arbitrary: M rule: ann-lit-list-induct)
  subgoal by auto
  subgoal by auto
  subgoal for L \ C \ M' \ M
    by (cases \langle get\text{-}all\text{-}ann\text{-}decomposition } (M' @ M) \rangle) auto
  done
            Negation of a Clause
```

1.2.4

We define the negation of a 'a clause: it converts a single clause to a set of clauses, where each clause is a single literal (whose negation is in the original clause).

```
definition CNot :: \langle v \ clause \Rightarrow v \ clause\text{-set} \rangle where
\langle CNot \ \psi = \{ \{\#-L\#\} \mid L. \ L \in \# \ \psi \} \rangle
lemma finite-CNot[simp]: \langle finite\ (CNot\ C) \rangle
  by (auto simp: CNot-def)
lemma in-CNot-uminus[iff]:
  shows \langle \{\#L\#\} \in CNot \ \psi \longleftrightarrow -L \in \# \ \psi \rangle
  unfolding CNot-def by force
lemma
  shows
     CNot\text{-}add\text{-}mset[simp]: \langle CNot \ (add\text{-}mset \ L \ \psi) = insert \ \{\#-L\#\} \ (CNot \ \psi) \rangle and
     CNot\text{-}empty[simp]: \langle CNot \{\#\} = \{\} \rangle and
     CNot\text{-}plus[simp]: \langle CNot\ (A+B) = CNot\ A \cup CNot\ B \rangle
  unfolding CNot-def by auto
\mathbf{lemma}\ \mathit{CNot-eq-empty[iff]}:
  \langle CNot \ D = \{\} \longleftrightarrow D = \{\#\} \rangle
  unfolding CNot-def by (auto simp add: multiset-eqI)
lemma in-CNot-implies-uminus:
  \mathbf{assumes} \ \langle L \in \# \ D \rangle \ \mathbf{and} \ \langle M \models as \ \mathit{CNot} \ D \rangle
  shows \langle M \models a \{\#-L\#\} \rangle and \langle -L \in lits\text{-}of\text{-}l M \rangle
  using assms by (auto simp: true-annots-def true-annot-def CNot-def)
lemma CNot\text{-}remdups\text{-}mset[simp]:
  \langle CNot \ (remdups-mset \ A) = CNot \ A \rangle
  unfolding CNot-def by auto
```

```
lemma Ball-CNot-Ball-mset[simp]:
  \langle (\forall x \in CNot \ D. \ P \ x) \longleftrightarrow (\forall L \in \# \ D. \ P \ \{\#-L\#\}) \rangle
 unfolding CNot-def by auto
\mathbf{lemma}\ consistent\text{-}CNot\text{-}not:
  assumes \langle consistent\text{-}interp \ I \rangle
  shows \langle I \models s \ CNot \ \varphi \Longrightarrow \neg I \models \varphi \rangle
  using assms unfolding consistent-interp-def true-clss-def true-cls-def by auto
lemma total-not-true-cls-true-clss-CNot:
  \mathbf{assumes} \ \langle total\text{-}over\text{-}m \ I \ \{\varphi\} \rangle \ \mathbf{and} \ \langle \neg I \models \varphi \rangle
  shows \langle I \models s \ CNot \ \varphi \rangle
  using assms unfolding total-over-m-def total-over-set-def true-clss-def true-cls-def CNot-def
    apply clarify
  by (rename-tac x L, case-tac L) (force intro: pos-lit-in-atms-of neq-lit-in-atms-of)+
lemma total-not-CNot:
  assumes \langle total\text{-}over\text{-}m \ I \ \{\varphi\} \rangle and \langle \neg I \models s \ CNot \ \varphi \rangle
  shows \langle I \models \varphi \rangle
  using assms total-not-true-cls-true-clss-CNot by auto
lemma atms-of-ms-CNot-atms-of[simp]:
  \langle atms-of-ms\ (CNot\ C) = atms-of\ C \rangle
  unfolding atms-of-ms-def atms-of-def CNot-def by fastforce
{f lemma}\ true\text{-}clss\text{-}clss\text{-}contradiction\text{-}true\text{-}clss\text{-}cls\text{-}false:
  \langle C \in D \Longrightarrow D \models ps \ CNot \ C \Longrightarrow D \models p \ \{\#\} \rangle
  unfolding true-clss-clss-def true-clss-cls-def total-over-m-def
  by (metis Un-commute atms-of-empty atms-of-ms-CNot-atms-of atms-of-ms-insert atms-of-ms-union
    consistent-CNot-not insert-absorb sup-bot.left-neutral true-clss-def)
lemma true-annots-CNot-all-atms-defined:
  assumes \langle M \models as \ CNot \ T \rangle and a1: \langle L \in \# \ T \rangle
  shows \langle atm\text{-}of \ L \in atm\text{-}of \ `lits\text{-}of\text{-}l \ M \rangle
  by (metis assms atm-of-uninus image-eqI in-CNot-implies-uninus(1) true-annot-singleton)
lemma true-annots-CNot-all-uminus-atms-defined:
  assumes \langle M \models as \ CNot \ T \rangle and a1: \langle -L \in \# \ T \rangle
  \mathbf{shows} \ \langle \mathit{atm-of} \ L \in \mathit{atm-of} \ `\mathit{lits-of-l} \ \mathit{M} \rangle
  by (metis\ assms\ atm-of-uninus\ image-eqI\ in-CNot-implies-uninus(1)\ true-annot-singleton)
lemma true-clss-clss-false-left-right:
  assumes \langle \{ \{ \#L\# \} \} \cup B \models p \{ \# \} \rangle
  shows \langle B \models ps \ CNot \ \{\#L\#\} \rangle
  unfolding true-clss-cls-def true-clss-cls-def
proof (intro allI impI)
  \mathbf{fix} I
  assume
    tot: \langle total\text{-}over\text{-}m \ I \ (B \cup CNot \ \{\#L\#\}) \rangle and
    cons: \langle consistent\text{-}interp\ I \rangle and
    I: \langle I \models s B \rangle
  have \langle total\text{-}over\text{-}m \ I \ (\{\{\#L\#\}\} \cup B)\rangle using tot by auto
  then have \langle \neg I \models s \ insert \ \{\#L\#\} \ B \rangle
    using assms cons unfolding true-clss-cls-def by simp
  then show \langle I \models s \ CNot \ \{\#L\#\} \rangle
    using tot I by (cases L) auto
```

```
qed
```

```
\mathbf{lemma} \ true\text{-}annots\text{-}true\text{-}cls\text{-}def\text{-}iff\text{-}negation\text{-}in\text{-}model}:
  \langle M \models as \ CNot \ C \longleftrightarrow (\forall \ L \in \# \ C. \ -L \in lits \text{-}of \text{-}l \ M) \rangle
  unfolding CNot-def true-annots-true-cls true-clss-def by auto
\mathbf{lemma}\ true\text{-}clss\text{-}def\text{-}iff\text{-}negation\text{-}in\text{-}model:}
  \langle M \models s \ CNot \ C \longleftrightarrow (\forall \ l \in \# \ C. \ -l \in M) \rangle
  by (auto simp: CNot-def true-clss-def)
lemma true-annots-CNot-definedD:
  \langle M \models as \ CNot \ C \Longrightarrow \forall \ L \in \# \ C. \ defined-lit \ M \ L \rangle
  unfolding true-annots-true-cls-def-iff-negation-in-model
  by (auto simp: Decided-Propagated-in-iff-in-lits-of-l)
lemma true-annot-CNot-diff:
  \langle I \models as \ CNot \ C \Longrightarrow I \models as \ CNot \ (C - C') \rangle
  by (auto simp: true-annots-true-cls-def-iff-negation-in-model dest: in-diffD)
lemma CNot-mset-replicate[simp]:
  \langle CNot \ (mset \ (replicate \ n \ L)) = (if \ n = 0 \ then \ \{\} \ else \ \{\{\#-L\#\}\}\} \rangle
  by (induction \ n) auto
lemma consistent-CNot-not-tautology:
  \langle consistent\text{-}interp\ M \Longrightarrow M \models s\ CNot\ D \Longrightarrow \neg tautology\ D \rangle
  by (metis atms-of-ms-CNot-atms-of consistent-CNot-not satisfiable-carac' satisfiable-def
    tautology-def total-over-m-def)
lemma atms-of-ms-CNot-atms-of-ms: \langle atms-of-ms: (CNot CC) = atms-of-ms \{CC\}\rangle
  by simp
lemma total-over-m-CNot-toal-over-m[simp]:
  \langle total\text{-}over\text{-}m \ I \ (CNot \ C) = total\text{-}over\text{-}set \ I \ (atms\text{-}of \ C) \rangle
  unfolding total-over-m-def total-over-set-def by auto
lemma true-clss-cls-plus-CNot:
  assumes
     CC-L: \langle A \models p \ add\text{-}mset \ L \ CC \rangle and
     CNot\text{-}CC: \langle A \models ps \ CNot \ CC \rangle
  shows \langle A \models p \{\#L\#\} \rangle
  {\bf unfolding} \ true-clss-clss-def \ true-clss-cls-def \ CNot-def \ total-over-m-def
proof (intro allI impI)
  \mathbf{fix}\ I
  assume
    tot: \langle total\text{-}over\text{-}set\ I\ (atms\text{-}of\text{-}ms\ (A\cup \{\{\#L\#\}\}))\rangle and
    cons: \langle consistent\text{-}interp\ I \rangle and
    I: \langle I \models s A \rangle
  \textbf{let} \ ?I = \langle I \cup \{\textit{Pos P} | \textit{P. P} \in \textit{atms-of CC} \land \textit{P} \not\in \textit{atm-of `I} \} \rangle
  have cons': (consistent-interp ?I)
    using cons unfolding consistent-interp-def
    by (auto simp: uminus-lit-swap atms-of-def rev-image-eqI)
  have I': \langle ?I \models s A \rangle
    using I true-clss-union-increase by blast
  have tot-CNot: \langle total-over-m ?I (A \cup CNot CC) \rangle
    using tot atms-of-s-def by (fastforce simp: total-over-m-def total-over-set-def)
```

```
then have tot-I-A-CC-L: \langle total-over-m ?I (A \cup \{add-mset L CC\}) \rangle
    using tot unfolding total-over-m-def total-over-set-atm-of by auto
  then have \langle I \models add\text{-mset } L \ CC \rangle using CC\text{-}L \ cons' \ I' unfolding true-clss-cls-def by blast
  moreover
    have (?I \models s \ CNot \ CC) using CNot \cdot CC \ cons' \ I' \ tot \cdot CNot \ unfolding \ true \cdot clss \cdot clss \cdot def by auto
    then have \langle \neg A \models p \ CC \rangle
       by (metis (no-types, lifting) I' atms-of-ms-CNot-atms-of-ms atms-of-ms-union cons'
         consistent-CNot-not tot-CNot total-over-m-def true-clss-cls-def)
    then have \langle \neg ?I \models CC \rangle using \langle ?I \models s \ CNot \ CC \rangle cons' consistent-CNot-not by blast
  ultimately have \langle ?I \models \{\#L\#\} \rangle by blast
  then show \langle I \models \{\#L\#\}\rangle
    by (metis (no-types, lifting) atms-of-ms-union cons' consistent-CNot-not tot total-not-CNot
       total-over-m-def total-over-set-union true-clss-union-increase)
qed
\mathbf{lemma} \ \mathit{true-annots-CNot-lit-of-notin-skip} :
  assumes LM: \langle L \# M \models as \ CNot \ A \rangle and LA: \langle lit \text{-}of \ L \notin \# A \rangle \langle -lit \text{-}of \ L \notin \# A \rangle
  shows \langle M \models as \ CNot \ A \rangle
  using LM unfolding true-annots-def Ball-def
proof (intro allI impI)
  assume H: \langle \forall x. \ x \in \mathit{CNot} \ A \longrightarrow L \ \# \ M \models a \ x \rangle and l: \langle l \in \mathit{CNot} \ A \rangle
  then have \langle L \# M \models a l \rangle by auto
  then show \langle M \models a l \rangle using LA l by (cases L) (auto simp: CNot-def)
 ged
\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}union\text{-}false\text{-}true\text{-}clss\text{-}clss\text{-}cnot\text{:}
  \langle A \cup \{B\} \models ps \{\{\#\}\} \longleftrightarrow A \models ps \ CNot \ B \rangle
  using total-not-CNot consistent-CNot-not unfolding total-over-m-def true-clss-clss-def
  by fastforce
lemma true-annot-remove-hd-if-notin-vars:
  assumes \langle a \# M' \models a D \rangle and \langle atm\text{-}of (lit\text{-}of a) \notin atms\text{-}of D \rangle
  shows \langle M' \models a D \rangle
  using assms true-cls-remove-hd-if-notin-vars unfolding true-annot-def by auto
lemma true-annot-remove-if-notin-vars:
  assumes \langle M @ M' \models a D \rangle and \langle \forall x \in atms \text{-} of D. x \notin atm \text{-} of \text{`} lits \text{-} of \text{-} l M \rangle
  shows \langle M' \models a D \rangle
  using assms by (induct M) (auto dest: true-annot-remove-hd-if-notin-vars)
\mathbf{lemma}\ true\text{-}annots\text{-}remove\text{-}if\text{-}notin\text{-}vars:
  assumes \langle M @ M' \models as D \rangle and \langle \forall x \in atms\text{-}of\text{-}ms D. x \notin atm\text{-}of \text{'} lits\text{-}of\text{-}l M \rangle
  shows \langle M' \models as D \rangle unfolding true-annots-def
  using assms unfolding true-annots-def atms-of-ms-def
  by (force dest: true-annot-remove-if-notin-vars)
lemma all-variables-defined-not-imply-cnot:
  assumes
    \forall s \in atms\text{-}of\text{-}ms \{B\}. \ s \in atm\text{-}of \ `lits\text{-}of\text{-}l \ A >  and
    \langle \neg A \models a B \rangle
  shows \langle A \models as \ CNot \ B \rangle
  unfolding true-annot-def true-annots-def Ball-def CNot-def true-lit-def
proof (clarify, rule ccontr)
  \mathbf{fix} L
```

```
assume LB: \langle L \in \# B \rangle and L-false: \langle \neg lits \text{-} of \text{-} l A \models \{\#\} \rangle and L-A: \langle -L \notin lits \text{-} of \text{-} l A \rangle
  then have \langle atm\text{-}of \ L \in atm\text{-}of \ `lits\text{-}of\text{-}l \ A \rangle
    using assms(1) by (simp add: atm-of-lit-in-atms-of lits-of-def)
  then have \langle L \in lits\text{-}of\text{-}l \ A \lor -L \in lits\text{-}of\text{-}l \ A \rangle
    using atm-of-in-atm-of-set-iff-in-set-or-uminus-in-set by metis
  then have \langle L \in lits\text{-}of\text{-}l \ A \rangle using L-A by auto
  then show False
    using LB assms(2) unfolding true-annot-def true-lit-def true-cls-def Bex-def
    by blast
qed
lemma CNot\text{-}union\text{-}mset[simp]:
  \langle CNot \ (A \cup \# B) = CNot \ A \cup CNot \ B \rangle
  unfolding CNot-def by auto
lemma true-clss-cls-true-clss-cls-true-clss-cls:
  assumes
    \langle A \models ps \ unmark-l \ M \rangle \ \mathbf{and} \ \langle M \models as \ D \rangle
  shows \langle A \models ps D \rangle
  by (meson assms total-over-m-union true-annots-true-cls true-annots-true-clss-clss
       true\text{-}clss\text{-}clss\text{-}def true\text{-}clss\text{-}clss\text{-}left\text{-}right true\text{-}clss\text{-}clss\text{-}union\text{-}and
       true-clss-union-l-r)
\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}CNot\text{-}true\text{-}clss\text{-}cls\text{-}unsatisfiable}:
  assumes \langle A \models ps \ CNot \ D \rangle and \langle A \models p \ D \rangle
  shows \langle unsatisfiable A \rangle
  using assms(2) unfolding true-clss-cls-def true-clss-cls-def satisfiable-def
  by (metis (full-types) Un-absorb Un-empty-right assms(1) atms-of-empty
       atms-of-ms-emtpy-set total-over-m-def total-over-m-insert total-over-m-union
       true-cls-empty true-cls-cls-def true-cls-cls-qeneralise-true-cls-cls
       true-clss-cls-true-clss-cls true-clss-clss-union-false-true-clss-clss-cnot)
lemma true-clss-cls-neg:
  \langle N \models p \ I \longleftrightarrow N \ \cup \ (\lambda L. \ \{\#-L\#\}) \ \text{`set-mset} \ I \models p \ \{\#\} \rangle
proof -
  have [simp]: \langle (\lambda L, \{\#-L\#\}) | \text{`set-mset } I = CNot \ I \rangle \text{ for } I
    by (auto simp: CNot-def)
  have [iff]: \langle total\text{-}over\text{-}m \ Ia \ ((\lambda L. \{\#-L\#\}) \ `set\text{-}mset \ I) \longleftrightarrow
     total-over-set Ia\ (atms-of I)> for Ia
    by (auto simp: total-over-m-def
        total-over-set-def atms-of-ms-def atms-of-def)
  show ?thesis
    by (auto simp: true-clss-cls-def consistent-CNot-not
        total-not-CNot)
qed
{\bf lemma}\ all\text{-}decomposition\text{-}implies\text{-}conflict\text{-}DECO\text{-}clause:}
  assumes \langle all\text{-}decomposition\text{-}implies\ N\ (get\text{-}all\text{-}ann\text{-}decomposition\ }M)\rangle and
    \langle M \models as \ CNot \ C \rangle and
    \langle C \in N \rangle
  shows \langle N \models p \ (uminus \ o \ lit - of) \ '\# \ (filter-mset \ is-decided \ (mset \ M)) \rangle
    (\mathbf{is} \ \langle ?I \models p \ ?A \rangle)
proof -
  have \langle \{unmark \ m \mid m. \ is\text{-decided} \ m \land m \in set \ M \} =
        unmark-s \{L \in set M. is\text{-}decided L\}
     by auto
```

```
have \langle N \cup unmark\text{-}s \mid L \in set M. is\text{-}decided L \rangle \models p \mid \{\#\} \rangle
    by (metis (mono-tags, lifting) UnCI
       \{unmark \ m \mid m. \ is\text{-decided} \ m \land m \in set \ M\} = unmark\text{-}s \ \{L \in set \ M. \ is\text{-decided} \ L\}
       all\mbox{-}decomposition\mbox{-}implies\mbox{-}propagated\mbox{-}lits\mbox{-}are\mbox{-}implied\ assms
       true-clss-clss-contradiction-true-clss-cls-false true-clss-clss-true-clss-cls-true-clss-clss)
  then show ?thesis
    apply (subst true-clss-cls-neg)
    by (auto simp: image-image)
qed
1.2.5
             Other
definition \langle no\text{-}dup \ L \equiv distinct \ (map \ (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) \ L) \rangle
lemma no-dup-nil[simp]:
  \langle no\text{-}dup \mid \rangle
  by (auto simp: no-dup-def)
lemma no-dup-cons[simp]:
  \langle no\text{-}dup \ (L \# M) \longleftrightarrow undefined\text{-}lit \ M \ (lit\text{-}of \ L) \land no\text{-}dup \ M \rangle
  \mathbf{by}\ (\mathit{auto}\ \mathit{simp}\colon \mathit{no-dup-def}\ \mathit{defined-lit-map})
lemma no-dup-append-cons[iff]:
  (no-dup\ (M\ @\ L\ \#\ M')\longleftrightarrow undefined-lit\ (M\ @\ M')\ (lit-of\ L)\land no-dup\ (M\ @\ M'))
  by (auto simp: no-dup-def defined-lit-map)
lemma no-dup-append-append-cons[iff]:
   (\textit{no-dup} \ (\textit{M0} \ @ \ \textit{M} \ @ \ \textit{L} \ \# \ \textit{M'}) \longleftrightarrow \textit{undefined-lit} \ (\textit{M0} \ @ \ \textit{M} \ @ \ \textit{M'}) \ (\textit{lit-of} \ \textit{L}) \ \land \ \textit{no-dup} \ (\textit{M0} \ @ \ \textit{M} \ @ \ \textit{M}) ) ) ) 
  by (auto simp: no-dup-def defined-lit-map)
lemma no-dup-rev[simp]:
  \langle no\text{-}dup \ (rev \ M) \longleftrightarrow no\text{-}dup \ M \rangle
  by (auto simp: rev-map[symmetric] no-dup-def)
lemma no-dup-appendD:
  \langle no\text{-}dup \ (a @ b) \implies no\text{-}dup \ b \rangle
  by (auto simp: no-dup-def)
lemma no-dup-appendD1:
  (no\text{-}dup\ (a\ @\ b) \Longrightarrow no\text{-}dup\ a)
  by (auto simp: no-dup-def)
\mathbf{lemma}\ no\text{-}dup\text{-}length\text{-}eq\text{-}card\text{-}atm\text{-}of\text{-}lits\text{-}of\text{-}l:
  assumes \langle no\text{-}dup \ M \rangle
  shows \langle length \ M = card \ (atm-of 'lits-of-l \ M) \rangle
  using assms unfolding lits-of-def by (induct M) (auto simp add: image-image no-dup-def)
lemma distinct-consistent-interp:
  \langle no\text{-}dup\ M \implies consistent\text{-}interp\ (lits\text{-}of\text{-}l\ M) \rangle
proof (induct M)
  case Nil
  show ?case by auto
next
  case (Cons\ L\ M)
  then have a1: \langle consistent\text{-}interp\ (lits\text{-}of\text{-}l\ M)\rangle by auto
```

```
\mathbf{have} \ \langle undefined\textit{-lit} \ M \ (\mathit{lit}\textit{-of} \ L) \rangle
       using Cons.prems by auto
  then show ?case
    using a1 by simp
qed
lemma same-mset-no-dup-iff:
  \langle mset \ M = mset \ M' \Longrightarrow no\text{-}dup \ M \longleftrightarrow no\text{-}dup \ M' \rangle
  by (auto simp: no-dup-def same-mset-distinct-iff)
\mathbf{lemma}\ distinct\text{-} get\text{-}all\text{-}ann\text{-}decomposition\text{-}no\text{-}dup:
  assumes \langle (a, b) \in set \ (get\text{-}all\text{-}ann\text{-}decomposition} \ M) \rangle
  and \langle no\text{-}dup \ M \rangle
  shows \langle no\text{-}dup \ (a @ b) \rangle
  using assms by (force simp: no-dup-def)
lemma true-annots-lit-of-notin-skip:
  assumes \langle L \# M \models as \ CNot \ A \rangle
  \mathbf{and} \ \langle -\mathit{lit-of} \ L \not\in \# \ A \rangle
  and \langle no\text{-}dup \ (L \# M) \rangle
  \mathbf{shows} \ \langle M \models \! as \ \mathit{CNot} \ A \rangle
proof -
  have \forall l \in \# A. -l \in lits\text{-}of\text{-}l \ (L \# M)
    using assms(1) in-CNot-implies-uminus(2) by blast
  moreover {
    have \langle undefined\text{-}lit\ M\ (lit\text{-}of\ L) \rangle
       using assms(3) by force
    then have \langle - \text{ lit-of } L \notin \text{ lits-of-l } M \rangle
       by (simp add: Decided-Propagated-in-iff-in-lits-of-l) }
  ultimately have \forall l \in \# A. -l \in lits\text{-}of\text{-}l M \rangle
    using assms(2) by (metis\ insert\ iff\ list\ .simps(15)\ lits\ -of\ -insert\ uminus\ -of\ -uminus\ -id)
  then show ?thesis by (auto simp add: true-annots-def)
\mathbf{lemma} \ \textit{no-dup-imp-distinct:} \ \langle \textit{no-dup} \ M \Longrightarrow \textit{distinct} \ M \rangle
  by (induction M) (auto simp: defined-lit-map)
lemma no\text{-}dup\text{-}tlD: \langle no\text{-}dup \ a \Longrightarrow no\text{-}dup \ (tl \ a) \rangle
  unfolding no-dup-def by (cases a) auto
lemma defined-lit-no-dupD:
  \langle defined\text{-}lit \ M1 \ L \implies no\text{-}dup \ (M2 \ @ \ M1) \implies undefined\text{-}lit \ M2 \ L \rangle
  \langle defined\text{-}lit \ M1 \ L \Longrightarrow no\text{-}dup \ (M2' @ M2 @ M1) \Longrightarrow undefined\text{-}lit \ M2' \ L \rangle
  \langle defined\text{-}lit \ M1 \ L \Longrightarrow no\text{-}dup \ (M2' @ M2 @ M1) \Longrightarrow undefined\text{-}lit \ M2 \ L \rangle
  by (auto simp: defined-lit-map no-dup-def)
lemma no-dup-consistentD:
  \langle no\text{-}dup\ M \Longrightarrow L \in lits\text{-}of\text{-}l\ M \Longrightarrow -L \notin lits\text{-}of\text{-}l\ M \rangle
  using consistent-interp-def distinct-consistent-interp by blast
lemma no-dup-not-tautology: (no-dup\ M \Longrightarrow \neg tautology\ (image-mset\ lit-of\ (mset\ M)))
  by (induction M) (auto simp: tautology-add-mset uminus-lit-swap defined-lit-def
       dest: atm-imp-decided-or-proped)
lemma no-dup-distinct: (no-dup\ M \Longrightarrow distinct-mset\ (image-mset\ lit-of\ (mset\ M)))
  by (induction M) (auto simp: uminus-lit-swap defined-lit-def
```

```
dest: atm-imp-decided-or-proped)
lemma no-dup-not-tautology-uminus: (no-dup\ M \Longrightarrow \neg tautology\ \{\#-lit-of\ L.\ L\in \#\ mset\ M\#\})
  by (induction M) (auto simp: tautology-add-mset uminus-lit-swap defined-lit-def
      dest: atm-imp-decided-or-proped)
lemma no-dup-distinct-uninus: (no-dup M \Longrightarrow distinct-mset \{\#-lit-of L. L \in \# mset M\#\})
  by (induction M) (auto simp: uminus-lit-swap defined-lit-def
      dest: atm-imp-decided-or-proped)
lemma no-dup-map-lit-of: (no-dup\ M \Longrightarrow distinct\ (map\ lit-of\ M))
  apply (induction M)
  apply (auto simp: dest: no-dup-imp-distinct)
  by (meson\ distinct.simps(2)\ no-dup-cons\ no-dup-imp-distinct)
lemma no-dup-alt-def:
  \langle no\text{-}dup\ M \longleftrightarrow distinct\text{-}mset\ \{\#atm\text{-}of\ (lit\text{-}of\ x).\ x\in\#\ mset\ M\#\} \rangle
  by (auto simp: no-dup-def simp flip: distinct-mset-mset-distinct)
lemma no-dup-append-in-atm-notin:
  assumes (no\text{-}dup\ (M\ @\ M')) and (L\in lits\text{-}of\text{-}l\ M')
     shows \langle undefined\text{-}lit \ M \ L \rangle
  using assms by (auto simp add: atm-lit-of-set-lits-of-l no-dup-def
      defined-lit-map)
lemma no-dup-uminus-append-in-atm-notin:
   assumes \langle no\text{-}dup \ (M @ M') \rangle and \langle -L \in lits\text{-}of\text{-}l \ M' \rangle
     shows \langle undefined\text{-}lit \ M \ L \rangle
  using Decided-Propagated-in-iff-in-lits-of-l assms defined-lit-no-dupD(1) by blast
1.2.6
           Extending Entailments to multisets
We have defined previous entailment with respect to sets, but we also need a multiset version
depending on the context. The conversion is simple using the function set-mset (in this direction,
there is no loss of information).
abbreviation true-annots-mset (infix \models asm 50) where
\langle I \models asm \ C \equiv I \models as \ (set\text{-}mset \ C) \rangle
abbreviation true-clss-clss-m :: \langle v \text{ clause multiset} \Rightarrow v \text{ clause multiset} \Rightarrow bool \langle \text{infix} \models psm 50 \rangle
  where
\langle I \models psm \ C \equiv set\text{-}mset \ I \models ps \ (set\text{-}mset \ C) \rangle
Analog of theorem true-clss-clss-subsetE
lemma true\text{-}clss\text{-}clssm\text{-}subsetE: \langle N \models psm \ B \Longrightarrow A \subseteq \# \ B \Longrightarrow N \models psm \ A \rangle
  using set-mset-mono true-clss-clss-subsetE by blast
abbreviation true-clss-cls-m:: \langle a \text{ clause multiset} \Rightarrow a \text{ clause} \Rightarrow bool \rangle (infix \models pm 50) where
\langle I \models pm \ C \equiv set\text{-mset} \ I \models p \ C \rangle
```

abbreviation distinct-mset-mset :: $\langle 'a \text{ multiset multiset} \Rightarrow bool \rangle$ where

 $\langle all\text{-}decomposition\text{-}implies\text{-}m\ A\ B \equiv all\text{-}decomposition\text{-}implies\ (set\text{-}mset\ A)\ B \rangle$

 $\langle distinct\text{-}mset\text{-}mset \ \Sigma \equiv distinct\text{-}mset\text{-}set \ (set\text{-}mset \ \Sigma) \rangle$

abbreviation all-decomposition-implies-m where

```
abbreviation atms-of-mm :: \langle 'a \ clause \ multiset \Rightarrow 'a \ set \rangle where
\langle atms-of-mm \ U \equiv atms-of-ms \ (set-mset \ U) \rangle
Other definition using \bigcup \#
lemma atms-of-mm-alt-def: \langle atms-of-mm\ U = set-mset\ (\bigcup \# (image-mset\ (image-mset\ atm-of)\ U)\rangle
  unfolding atms-of-ms-def by (auto simp: atms-of-def)
abbreviation true-clss-m:: \langle 'a \ partial-interp \Rightarrow 'a \ clause \ multiset \Rightarrow bool \rangle (infix \models sm \ 50) where
\langle I \models sm \ C \equiv I \models s \ set\text{-mset} \ C \rangle
abbreviation true-clss-ext-m (infix \models sextm \ 49) where
\langle I \models sextm \ C \equiv I \models sext \ set\text{-mset} \ C \rangle
lemma true-clss-cls-cong-set-mset:
  \langle N \models pm \ D \Longrightarrow set\text{-mset} \ D = set\text{-mset} \ D' \Longrightarrow N \models pm \ D' \rangle
  by (auto simp add: true-cls-cls-def true-cls-def atms-of-cong-set-mset[of D D'])
1.2.7
             More Lemmas
{f lemma} no-dup-cannot-not-lit-and-uminus:
  \langle no\text{-}dup\ M \Longrightarrow - \ lit\text{-}of\ xa = \ lit\text{-}of\ x \Longrightarrow x \in set\ M \Longrightarrow xa \notin set\ M \rangle
  by (metis atm-of-uminus distinct-map inj-on-eq-iff uminus-not-id' no-dup-def)
\mathbf{lemma}\ atms-of\text{-}ms\text{-}single\text{-}atm\text{-}of[simp]\text{:}
  \langle atms-of-ms \{unmark \ L \ | L. \ P \ L \} = atm-of \ `\{lit-of \ L \ | L. \ P \ L \} \rangle
  unfolding atms-of-ms-def by force
lemma true-cls-mset-restrict:
  \langle \{L \in I. \ atm\text{-}of \ L \in atms\text{-}of\text{-}mm \ N\} \models m \ N \longleftrightarrow I \models m \ N \rangle
  by (auto simp: true-cls-mset-def true-cls-def
    dest!: multi-member-split)
{f lemma} true\text{-}clss\text{-}restrict:
  \langle \{L \in I. \ atm\text{-}of \ L \in atm\text{-}of\text{-}mm \ N\} \models sm \ N \longleftrightarrow I \models sm \ N \rangle
  by (auto simp: true-cls-def true-cls-def
    dest!: multi-member-split)
lemma total-over-m-atms-incl:
  assumes \langle total\text{-}over\text{-}m \ M \ (set\text{-}mset \ N) \rangle
  shows
    \langle x \in atms\text{-}of\text{-}mm \ N \Longrightarrow x \in atms\text{-}of\text{-}s \ M \rangle
  by (meson assms contra-subsetD total-over-m-alt-def)
lemma true-clss-restrict-iff:
  assumes \langle \neg tautology \ \chi \rangle
  shows \langle N \models p \ \chi \longleftrightarrow N \models p \ \{\#L \in \# \ \chi. \ atm\text{-}of \ L \in atms\text{-}of\text{-}ms \ N\#\} \rangle (is \langle ?A \longleftrightarrow ?B \rangle)
  apply (subst true-clss-alt-def2[OF assms])
  apply (subst true-clss-alt-def2)
  subgoal using not-tautology-mono[OF - assms] by (auto dest: not-tautology-minus)
  apply (rule HOL.iff-allI)
  apply (auto 5 5 simp: true-cls-def atms-of-s-def dest!: multi-member-split)
  done
```

1.2.8 Negation of annotated clauses

definition $negate-ann-lits :: \langle ('v\ literal,\ 'v\ literal,\ 'mark)\ annotated-lits <math>\Rightarrow \ 'v\ literal\ multiset \rangle$ where

```
\langle negate\text{-}ann\text{-}lits \ M = (\lambda L. - lit\text{-}of \ L) \ '\# \ mset \ M \rangle
lemma negate-ann-lits-empty[simp]: \langle negate-ann-lits || = {\#} \rangle
  by (auto simp: negate-ann-lits-def)
{f lemma} entails-CNot-negate-ann-lits:
  \langle M \models as \ CNot \ D \longleftrightarrow set\text{-mset} \ D \subseteq set\text{-mset} \ (negate\text{-ann-lits} \ M) \rangle
  by (auto simp: true-annots-true-cls-def-iff-negation-in-model
      negate-ann-lits-def lits-of-def uminus-lit-swap
    dest!: multi-member-split)
Pointwise negation of a clause:
definition pNeg :: \langle v \ clause \Rightarrow v \ clause \rangle where
  \langle pNeg \ C = \{ \#-D. \ D \in \# \ C\# \} \rangle
lemma pNeg-simps:
  \langle pNeg \ (add\text{-}mset \ A \ C) = add\text{-}mset \ (-A) \ (pNeg \ C) \rangle
  \langle pNeg \ (C + D) = pNeg \ C + pNeg \ D \rangle
  by (auto\ simp:\ pNeg-def)
lemma atms-of-pNeg[simp]: \langle atms-of\ (pNeg\ C) = atms-of\ C \rangle
  by (auto simp: pNeg-def atms-of-def image-image)
lemma negate-ann-lits-pNeg-lit-of: (negate-ann-lits = pNeg o image-mset lit-of o mset)
  by (intro ext) (auto simp: negate-ann-lits-def pNeg-def)
\textbf{lemma} \ \textit{negate-ann-lits-empty-iff:} \ \langle \textit{negate-ann-lits} \ \textit{M} \neq \{\#\} \longleftrightarrow \textit{M} \neq [] \rangle
  by (auto simp: negate-ann-lits-def)
lemma atms-of-negate-ann-lits[simp]: \langle atms-of (negate-ann-lits M) = atm-of ' (lits-of-l M) \rangle
  unfolding negate-ann-lits-def lits-of-def atms-of-def by (auto simp: image-image)
lemma tautology-pNeg[simp]:
  \langle tautology \ (pNeg \ C) \longleftrightarrow tautology \ C \rangle
  by (auto 5 5 simp: tautology-decomp pNeg-def
      uminus-lit-swap\ add-mset-eq-add-mset\ eq-commute[of\ \langle Neg\ -\rangle\ \langle -\ -\rangle]\ eq-commute[of\ \langle Pos\ -\rangle\ \langle -\ -\rangle]
    dest!: multi-member-split)
lemma pNeg\text{-}convolution[simp]:
  \langle pNeg \ (pNeg \ C) = C \rangle
  by (auto\ simp:\ pNeg-def)
lemma pNeg\text{-}minus[simp]: \langle pNeg (A - B) = pNeg A - pNeg B \rangle
  unfolding pNeg-def
  by (subst image-mset-minus-inj-on) (auto simp: inj-on-def)
lemma pNeg-empty[simp]: \langle pNeg \{\#\} = \{\#\} \rangle
  unfolding pNeg-def
  by (auto simp: inj-on-def)
lemma pNeg-replicate-mset[simp]: \langle pNeg \ (replicate-mset \ n \ L) = replicate-mset \ n \ (-L) \rangle
  unfolding pNeg-def by auto
\mathbf{lemma} \ \textit{distinct-mset-pNeg-iff}[\textit{iff}] \colon \langle \textit{distinct-mset} \ (\textit{pNeg} \ x) \longleftrightarrow \textit{distinct-mset} \ x \rangle
  unfolding pNeg-def
  by (rule distinct-image-mset-inj) (auto simp: inj-on-def)
```

```
lemma pNeg-simple-clss-iff[simp]:
  \langle pNeg\ M\in simple\text{-}clss\ N\longleftrightarrow M\in simple\text{-}clss\ N\rangle
  by (auto simp: simple-clss-def)
lemma atms-of-ms-pNeg[simp]: \langle atms-of-ms (pNeg 'N) = atms-of-ms N\rangle
  unfolding atms-of-ms-def pNeg-def by (auto simp: image-image atms-of-def)
definition DECO-clause :: \langle ('v, 'a) \ ann-lits \Rightarrow 'v \ clause \rangle where
  \langle DECO\text{-}clause\ M = (uminus\ o\ lit\text{-}of)\ '\#\ (filter\text{-}mset\ is\text{-}decided\ (mset\ M))\rangle
lemma
  DECO-clause-cons-Decide[simp]:
    \langle DECO\text{-}clause \ (Decided \ L \ \# \ M) = add\text{-}mset \ (-L) \ (DECO\text{-}clause \ M) \rangle and
  DECO-clause-cons-Proped[simp]:
    \langle DECO\text{-}clause \ (Propagated \ L \ C \ \# \ M) = DECO\text{-}clause \ M \rangle
  by (auto simp: DECO-clause-def)
lemma no-dup-distinct-mset[intro!]:
  assumes n-d: \langle no-dup M \rangle
  shows \langle distinct\text{-}mset \ (negate\text{-}ann\text{-}lits \ M) \rangle
  unfolding negate-ann-lits-def no-dup-def
proof (subst distinct-image-mset-inj)
  show \langle inj\text{-}on \ (\lambda L. - lit\text{-}of \ L) \ (set\text{-}mset \ (mset \ M)) \rangle
    unfolding inj-on-def Ball-def
  proof (intro allI impI, rule ccontr)
    fix L L'
    assume
      L: \langle L \in \# \ mset \ M \rangle \ \mathbf{and}
      L': \langle L' \in \# \ mset \ M \rangle \ \mathbf{and}
      lit: \langle - lit \text{-} of L = - lit \text{-} of L' \rangle and
      LL': \langle L \neq L' \rangle
    have \langle atm\text{-}of\ (lit\text{-}of\ L) = atm\text{-}of\ (lit\text{-}of\ L') \rangle
      using lit by auto
    moreover have \langle atm\text{-}of\ (lit\text{-}of\ L) \in \#\ (\lambda l.\ atm\text{-}of\ (lit\text{-}of\ l)) '# mset\ M \rangle
      using L by auto
    moreover have \langle atm\text{-}of\ (lit\text{-}of\ L') \in \#\ (\lambda l.\ atm\text{-}of\ (lit\text{-}of\ l)) ' \#\ mset\ M \rangle
      using L' by auto
    ultimately show False
      using assms LL' L L' unfolding distinct-mset-mset-distinct[symmetric] mset-map no-dup-def
      apply - apply (rule \ distinct-image-mset-not-equal[of \ L \ L' ((\lambda l. \ atm-of \ (lit-of \ l)))])
      by auto
  qed
next
  show \langle distinct\text{-}mset \ (mset \ M) \rangle
    using no-dup-imp-distinct[OF n-d] by simp
qed
lemma in-negate-trial-iff: \langle L \in \# \text{ negate-ann-lits } M \longleftrightarrow -L \in \text{lits-of-l } M \rangle
  unfolding negate-ann-lits-def lits-of-def by (auto simp: uminus-lit-swap)
lemma negate-ann-lits-cons[simp]:
  \langle negate-ann-lits\ (L\ \#\ M)=add-mset\ (-\ lit-of\ L)\ (negate-ann-lits\ M) \rangle
  by (auto simp: negate-ann-lits-def)
```

```
lemma uminus-simple-clss-iff[simp]:
  \langle uminus \ '\# \ M \in simple\text{-}clss \ N \longleftrightarrow \ M \in simple\text{-}clss \ N \rangle
 by (metis pNeg-simple-clss-iff pNeg-def)
lemma pNeg-mono: \langle C \subseteq \# C' \Longrightarrow pNeg C \subseteq \# pNeg C' \rangle
 by (auto simp: image-mset-subseteq-mono pNeg-def)
end
theory Partial-And-Total-Herbrand-Interpretation
 imports Partial-Herbrand-Interpretation
    Ordered-Resolution-Prover. Herbrand-Interpretation
begin
```

Bridging of total and partial Herbrand interpretation

This theory has mostly be written as a sanity check between the two entailment notion.

```
1.3
definition partial-model-of :: \langle 'a | interp \Rightarrow 'a | partial-interp \rangle where
\langle partial\text{-}model\text{-}of\ I = Pos\ `I \cup Neg\ `\{x.\ x \notin I\} \rangle
definition total-model-of :: \langle 'a \ partial-interp \Rightarrow 'a \ interp \rangle where
\langle total\text{-}model\text{-}of \ I = \{x. \ Pos \ x \in I\} \rangle
lemma total-over-set-partial-model-of:
  \langle total\text{-}over\text{-}set \ (partial\text{-}model\text{-}of \ I) \ UNIV \rangle
  unfolding total-over-set-def
  by (auto simp: partial-model-of-def)
lemma consistent-interp-partial-model-of:
  \langle consistent\text{-}interp\ (partial\text{-}model\text{-}of\ I) \rangle
  unfolding consistent-interp-def
  by (auto simp: partial-model-of-def)
lemma consistent-interp-alt-def:
  \langle consistent\text{-}interp\ I \longleftrightarrow (\forall\ L.\ \neg(Pos\ L \in I \land\ Neg\ L \in I)) \rangle
  unfolding consistent-interp-def
  by (metis literal.exhaust uminus-Neg uminus-of-uminus-id)
context
  fixes I :: \langle 'a \ partial-interp \rangle
  assumes cons: \langle consistent\text{-}interp \ I \rangle
begin
lemma partial-implies-total-true-cls-total-model-of:
  assumes \langle Partial - Herbrand - Interpretation. true-cls\ I\ C \rangle
  shows \langle Herbrand\text{-}Interpretation.true\text{-}cls (total\text{-}model\text{-}of I) C \rangle
  using assms cons apply -
  unfolding total-model-of-def Partial-Herbrand-Interpretation.true-cls-def
    Herbrand-Interpretation.true-cls-def consistent-interp-alt-def
  by (rule bexE, assumption)
    (case-tac \ x; \ auto)
\mathbf{lemma}\ total\text{-}implies\text{-}partial\text{-}true\text{-}cls\text{-}total\text{-}model\text{-}of\text{:}
```

assumes $\langle Herbrand\text{-}Interpretation.true\text{-}cls \ (total\text{-}model\text{-}of \ I) \ C \rangle$ and

```
\langle total\text{-}over\text{-}set\ I\ (atms\text{-}of\ C) \rangle
   shows \langle Partial\text{-}Herbrand\text{-}Interpretation.true\text{-}cls\ I\ C \rangle
   using assms cons
   unfolding total-model-of-def Partial-Herbrand-Interpretation.true-cls-def
       Herbrand	ext{-}Interpretation.true-cls-def consistent-interp-alt-def}
       total-over-m-def total-over-set-def
   by (auto simp: atms-of-def dest: multi-member-split)
lemma partial-implies-total-true-clss-total-model-of:
   assumes \langle Partial\text{-}Herbrand\text{-}Interpretation.true\text{-}clss\ I\ C \rangle
   \mathbf{shows} \ \langle Herbrand\text{-}Interpretation.true\text{-}clss\ (total\text{-}model\text{-}of\ I)\ C \rangle
   using assms cons
   unfolding Partial-Herbrand-Interpretation.true-clss-def
       Herbrand-Interpretation.true-clss-def
   by (auto simp: partial-implies-total-true-cls-total-model-of)
lemma total-implies-partial-true-clss-total-model-of:
   assumes \forall Herbrand\text{-}Interpretation.true\text{-}clss (total\text{-}model\text{-}of I) C \rangle and
       \langle total\text{-}over\text{-}m \mid I \mid C \rangle
   shows (Partial-Herbrand-Interpretation.true-clss I C)
   using assms cons mk-disjoint-insert
   unfolding Partial-Herbrand-Interpretation.true-clss-def
       Herbrand	ext{-}Interpretation.true-clss-def
       total-over-set-def
   by (fastforce simp: total-implies-partial-true-cls-total-model-of
          dest: multi-member-split)
end
lemma total-implies-partial-true-cls-partial-model-of:
   assumes \langle Herbrand\text{-}Interpretation.true\text{-}cls\ I\ C \rangle
   shows \langle Partial-Herbrand-Interpretation.true-cls (partial-model-of I) C \rangle
   using assms apply -
   {\bf unfolding}\ partial-model-of-def\ Partial-Herbrand-Interpretation.true-cls-def\ Partial-Herbrand-Interpretati
       Herbrand	ext{-}Interpretation.true-cls-def consistent-interp-alt-def
   by (rule bexE, assumption)
       (case-tac \ x; \ auto)
lemma total-implies-partial-true-clss-partial-model-of:
   assumes \langle Herbrand\text{-}Interpretation.true\text{-}clss\ I\ C \rangle
   shows \langle Partial-Herbrand-Interpretation.true-clss (partial-model-of I) C \rangle
   using assms
   unfolding Partial-Herbrand-Interpretation.true-clss-def
       Herbrand-Interpretation.true-clss-def
   by (auto simp: total-implies-partial-true-cls-partial-model-of)
lemma partial-total-satisfiable-iff:
   \langle Partial - Herbrand - Interpretation. satisfiable \ N \longleftrightarrow Herbrand - Interpretation. satisfiable \ N \rangle
   by (meson consistent-interp-partial-model-of partial-implies-total-true-clss-total-model-of
       satisfiable-carac total-implies-partial-true-clss-partial-model-of)
end
theory Prop-Logic
imports Main
```

begin

Chapter 2

Normalisation

We define here the normalisation from formula towards conjunctive and disjunctive normal form, including normalisation towards multiset of multisets to represent CNF.

2.1 Logics

In this section we define the syntax of the formula and an abstraction over it to have simpler proofs. After that we define some properties like subformula and rewriting.

2.1.1 Definition and Abstraction

The propositional logic is defined inductively. The type parameter is the type of the variables.

```
 \begin{array}{l} \textbf{datatype} \ 'v \ propo = \\ FT \mid FF \mid FVar \ 'v \mid FNot \ 'v \ propo \mid FAnd \ 'v \ propo \ 'v \ propo \mid FOr \ 'v \ propo \ 'v \ propo \\ \mid FImp \ 'v \ propo \ 'v \ propo \ | \ FEq \ 'v \ propo \ 'v \ propo \end{array}
```

We do not define any notation for the formula, to distinguish properly between the formulas and Isabelle's logic.

To ease the proofs, we will write the formula on a homogeneous manner, namely a connecting argument and a list of arguments.

```
datatype 'v connective = CT \mid CF \mid CVar \mid v \mid CNot \mid CAnd \mid COr \mid CImp \mid CEq

abbreviation nullary-connective \equiv \{CF\} \cup \{CT\} \cup \{CVar \mid x \mid x. \mid True\}

definition binary-connectives \equiv \{CAnd, COr, CImp, CEq\}
```

We define our own induction principal: instead of distinguishing every constructor, we group them by arity.

```
lemma propo-induct-arity[case-names nullary unary binary]: fixes \varphi \psi :: 'v \ propo assumes nullary: \bigwedge \varphi \ x. \ \varphi = FF \lor \varphi = FT \lor \varphi = FVar \ x \Longrightarrow P \ \varphi and unary: \bigwedge \psi . P \ \psi \Longrightarrow P \ (FNot \ \psi) and binary: \bigwedge \varphi \ \psi 1 \ \psi 2. \ P \ \psi 1 \Longrightarrow P \ \psi 2 \Longrightarrow \varphi = FAnd \ \psi 1 \ \psi 2 \lor \varphi = FOr \ \psi 1 \ \psi 2 \lor \varphi = FImp \ \psi 1 \psi 2 \lor \varphi = FEq \ \psi 1 \ \psi 2 \Longrightarrow P \ \varphi shows P \ \psi apply (induct rule: propo.induct) using assms by metis+
```

The function *conn* is the interpretation of our representation (connective and list of arguments). We define any thing that has no sense to be false

```
fun conn :: 'v \ connective \Rightarrow 'v \ propo \ list \Rightarrow 'v \ propo \ where \ conn \ CT \ [] = FT \ | \ conn \ CF \ [] = FF \ | \ conn \ (CVar \ v) \ [] = FVar \ v \ | \ conn \ CNot \ [\varphi] = FNot \ \varphi \ | \ conn \ CAnd \ (\varphi \ \# \ [\psi]) = FAnd \ \varphi \ \psi \ | \ conn \ COr \ (\varphi \ \# \ [\psi]) = FOr \ \varphi \ \psi \ | \ conn \ CImp \ (\varphi \ \# \ [\psi]) = FImp \ \varphi \ \psi \ | \ conn \ CEq \ (\varphi \ \# \ [\psi]) = FEq \ \varphi \ \psi \ | \ conn \ - - = FF
```

We will often use case distinction, based on the arity of the 'v connective, thus we define our own splitting principle.

```
lemma connective-cases-arity[case-names nullary binary unary]:
assumes nullary: \bigwedge x. c = CT \lor c = CF \lor c = CVar x \Longrightarrow P
and binary: c \in binary-connectives \Longrightarrow P
and unary: c = CNot \Longrightarrow P
shows P
using assms by (cases\ c) (auto\ simp:\ binary-connectives-def)

lemma connective-cases-arity-2[case-names nullary unary binary]:
assumes nullary: c \in nullary-connective \Longrightarrow P
and unary: c \in CNot \Longrightarrow P
and binary: c \in binary-connectives \Longrightarrow P
shows P
using assms by (cases\ c,\ auto\ simp\ add:\ binary-connectives-def)
```

Our previous definition is not necessary correct (connective and list of arguments), so we define an inductive predicate.

```
inductive wf-conn :: 'v connective \Rightarrow 'v propo list \Rightarrow bool for c :: 'v connective where
wf-conn-nullary[simp]: (c = CT \lor c = CF \lor c = CVar \ v) \Longrightarrow wf-conn c \ [] \ []
wf-conn-unary[simp]: c = CNot \Longrightarrow wf-conn c [\psi]
wf-conn-binary[simp]: c \in binary-connectives \implies wf-conn c (\psi \# \psi' \# [])
thm wf-conn.induct
lemma wf-conn-induct[consumes 1, case-names CT CF CVar CNot COr CAnd CImp CEq]:
  assumes wf-conn c x and
    \bigwedge v. \ c = CT \Longrightarrow P [] and
    \bigwedge v. \ c = CF \Longrightarrow P \mid  and
    \bigwedge v. \ c = CVar \ v \Longrightarrow P \ [] and
    \wedge \psi \psi'. c = COr \Longrightarrow P [\psi, \psi'] and
    \wedge \psi \psi'. c = CAnd \Longrightarrow P[\psi, \psi'] and
    \wedge \psi \psi'. c = CImp \Longrightarrow P [\psi, \psi'] and
    \wedge \psi \psi'. c = CEq \Longrightarrow P [\psi, \psi']
  shows P x
 using assms by induction (auto simp: binary-connectives-def)
```

2.1.2 Properties of the Abstraction

First we can define simplification rules.

lemma wf-conn-conn[simp]:

```
wf-conn CT \ l \Longrightarrow conn \ CT \ l = FT
  wf-conn CF \ l \Longrightarrow conn \ CF \ l = FF
  wf-conn (CVar\ x) l \Longrightarrow conn\ (<math>CVar\ x) l = FVar\ x
  apply (simp-all add: wf-conn.simps)
  unfolding binary-connectives-def by simp-all
lemma wf-conn-list-decomp[simp]:
  wf-conn CT \ l \longleftrightarrow l = []
  wf-conn CF l \longleftrightarrow l = []
  wf-conn (CVar x) l \longleftrightarrow l = []
  wf-conn CNot (\xi @ \varphi \# \xi') \longleftrightarrow \xi = [] \land \xi' = []
  apply (simp-all add: wf-conn.simps)
      unfolding binary-connectives-def apply simp-all
  by (metis append-Nil append-is-Nil-conv list.distinct(1) list.sel(3) tl-append2)
lemma wf-conn-list:
  wf-conn c \ l \Longrightarrow conn \ c \ l = FT \longleftrightarrow (c = CT \land l = [])
  wf-conn c \ l \Longrightarrow conn \ c \ l = FF \longleftrightarrow (c = CF \land l = [])
  wf-conn c \ l \Longrightarrow conn \ c \ l = FVar \ x \longleftrightarrow (c = CVar \ x \land l = [])
  wf-conn c \ l \Longrightarrow conn \ c \ l = FAnd \ a \ b \longleftrightarrow (c = CAnd \land l = a \# b \# [])
  wf-conn c \ l \Longrightarrow conn \ c \ l = FOr \ a \ b \longleftrightarrow (c = COr \land l = a \# b \# [])
  wf-conn c \ l \Longrightarrow conn \ c \ l = FEq \ a \ b \longleftrightarrow (c = CEq \land l = a \# b \# [])
  wf-conn c \ l \Longrightarrow conn \ c \ l = FImp \ a \ b \longleftrightarrow (c = CImp \land l = a \# b \# \parallel)
  wf-conn c \ l \Longrightarrow conn \ c \ l = FNot \ a \longleftrightarrow (c = CNot \land l = a \# [])
  apply (induct l rule: wf-conn.induct)
  unfolding binary-connectives-def by auto
In the binary connective cases, we will often decompose the list of arguments (of length 2) into
two elements.
lemma list-length2-decomp: length l = 2 \Longrightarrow (\exists a b. l = a \# b \# \parallel)
 apply (induct l, auto)
  by (rename-tac l, case-tac l, auto)
wf-conn for binary operators means that there are two arguments.
lemma wf-conn-bin-list-length:
  fixes l :: 'v \ propo \ list
  assumes conn: c \in binary-connectives
 shows length l = 2 \longleftrightarrow wf-conn c \ l
  assume length l=2
  then show wf-conn c l using wf-conn-binary list-length2-decomp using conn by metis
next
  assume wf-conn c l
  then show length l = 2 (is ?P l)
   proof (cases rule: wf-conn.induct)
      case wf-conn-nullary
      then show ?P [] using conn binary-connectives-def
       using connective distinct (11) connective distinct (13) connective distinct (9) by blast
   next
      fix \psi :: 'v \ propo
      case wf-conn-unary
      then show P[\psi] using conn binary-connectives-def
       using connective distinct by blast
```

```
next
     fix \psi \ \psi' :: \ 'v \ propo
     show ?P [\psi, \psi'] by auto
   qed
\mathbf{qed}
lemma wf-conn-not-list-length[iff]:
 fixes l :: 'v propo list
 shows wf-conn CNot l \longleftrightarrow length \ l = 1
 apply auto
 apply (metis append-Nil connective.distinct(5,17,27) length-Cons list.size(3) wf-conn.simps
   wf-conn-list-decomp(4))
 by (simp add: length-Suc-conv wf-conn.simps)
Decomposing the Not into an element is moreover very useful.
lemma wf-conn-Not-decomp:
  fixes l :: 'v \ propo \ list \ and \ a :: 'v
 assumes corr: wf-conn CNot l
 shows \exists a. l = [a]
 by (metis (no-types, lifting) One-nat-def Suc-length-conv corr length-0-conv
   wf-conn-not-list-length)
The wf-conn remains correct if the length of list does not change. This lemma is very useful
when we do one rewriting step
lemma wf-conn-no-arity-change:
  length \ l = length \ l' \Longrightarrow wf\text{-}conn \ c \ l \longleftrightarrow wf\text{-}conn \ c \ l'
proof -
 {
   fix l l'
   have length l = length \ l' \Longrightarrow wf\text{-}conn \ c \ l \Longrightarrow wf\text{-}conn \ c \ l'
     apply (cases c l rule: wf-conn.induct, auto)
     by (metis wf-conn-bin-list-length)
 then show length l = length \ l' \Longrightarrow wf\text{-}conn \ c \ l = wf\text{-}conn \ c \ l' by metis
qed
lemma wf-conn-no-arity-change-helper:
  length (\xi @ \varphi \# \xi') = length (\xi @ \varphi' \# \xi')
 by auto
The injectivity of conn is useful to prove equality of the connectives and the lists.
lemma conn-inj-not:
 assumes correct: wf-conn c l
 and conn: conn c l = FNot \psi
 shows c = CNot and l = [\psi]
 apply (cases c l rule: wf-conn.cases)
 using correct conn unfolding binary-connectives-def apply auto
 apply (cases c l rule: wf-conn.cases)
 using correct conn unfolding binary-connectives-def by auto
lemma conn-inj:
 fixes c ca :: 'v connective and l \psi s :: 'v propo list
 assumes corr: wf-conn ca l
 and corr': wf-conn c \psi s
```

```
and eq: conn \ ca \ l = conn \ c \ \psi s
 shows ca = c \wedge \psi s = l
 using corr
proof (cases ca l rule: wf-conn.cases)
 case (wf\text{-}conn\text{-}nullary\ v)
 then show ca = c \wedge \psi s = l using assms
     by (metis\ conn.simps(1)\ conn.simps(2)\ conn.simps(3)\ wf-conn-list(1-3))
next
 case (wf-conn-unary \psi')
 then have *: FNot \psi' = conn \ c \ \psi s \ using \ conn-inj-not \ eq \ assms \ by \ auto
 then have c = ca by (metis\ conn-inj-not(1)\ corr'\ wf-conn-unary(2))
 moreover have \psi s = l using * conn-inj-not(2) corr' wf-conn-unary(1) by force
 ultimately show ca = c \wedge \psi s = l by auto
next
 case (wf-conn-binary \psi' \psi'')
 then show ca = c \wedge \psi s = l
   using eq corr' unfolding binary-connectives-def apply (cases ca, auto simp add: wf-conn-list)
   using wf-conn-list(4-7) corr' by metis+
qed
```

2.1.3 Subformulas and Properties

A characterization using sub-formulas is interesting for rewriting: we will define our relation on the sub-term level, and then lift the rewriting on the term-level. So the rewriting takes place on a subformula.

```
inductive subformula :: 'v propo \Rightarrow 'v propo \Rightarrow bool (infix \leq 45) for \varphi where subformula-refl[simp]: \varphi \leq \varphi | subformula-into-subformula: \psi \in set\ l \Longrightarrow wf-conn c\ l \Longrightarrow \varphi \leq \psi \Longrightarrow \varphi \leq conn\ c\ l
```

On the *subformula-into-subformula*, we can see why we use our *conn* representation: one case is enough to express the subformulas property instead of listing all the cases.

This is an example of a property related to subformulas.

```
\mathbf{lemma}\ subformula-in-subformula-not:
shows b: FNot \varphi \leq \psi \Longrightarrow \varphi \leq \psi
 apply (induct rule: subformula.induct)
 using subformula-into-subformula wf-conn-unary subformula-refl list.set-intros(1) subformula-refl
   by (fastforce intro: subformula-into-subformula)+
lemma subformula-in-binary-conn:
 assumes conn: c \in binary\text{-}connectives
 shows f \leq conn \ c \ [f, \ g]
 and g \leq conn \ c \ [f, \ g]
proof -
 have a: wf-conn c (f\# [g]) using conn wf-conn-binary binary-connectives-def by auto
 moreover have b: f \leq f using subformula-reft by auto
 ultimately show f \leq conn \ c \ [f, \ g]
   by (metis append-Nil in-set-conv-decomp subformula-into-subformula)
  have a: wf-conn c ([f] @ [g]) using conn wf-conn-binary binary-connectives-def by auto
 moreover have b: g \leq g using subformula-refl by auto
 ultimately show g \leq conn \ c \ [f, g] using subformula-into-subformula by force
qed
```

lemma subformula-trans:

```
\psi \preceq \psi' \Longrightarrow \varphi \preceq \psi \Longrightarrow \varphi \preceq \psi'
  apply (induct \psi' rule: subformula.inducts)
  by (auto simp: subformula-into-subformula)
lemma subformula-leaf:
  fixes \varphi \psi :: 'v \ propo
  assumes incl: \varphi \preceq \psi
  and simple: \psi = FT \lor \psi = FF \lor \psi = FVar x
  shows \varphi = \psi
  using incl simple
  by (induct rule: subformula.induct, auto simp: wf-conn-list)
lemma subfurmula-not-incl-eq:
  assumes \varphi \leq conn \ c \ l
  and wf-conn c l
  and \forall \psi. \ \psi \in set \ l \longrightarrow \neg \ \varphi \preceq \psi
  shows \varphi = conn \ c \ l
  using assms apply (induction conn c l rule: subformula.induct, auto)
  using conn-inj by blast
lemma wf-subformula-conn-cases:
  wf-conn c \ l \Longrightarrow \varphi \preceq conn \ c \ l \longleftrightarrow (\varphi = conn \ c \ l \lor (\exists \psi. \ \psi \in set \ l \land \varphi \preceq \psi))
  apply standard
    using subfurmula-not-incl-eq apply metis
  by (auto simp add: subformula-into-subformula)
lemma subformula-decomp-explicit[simp]:
  \varphi \leq FAnd \ \psi \ \psi' \longleftrightarrow (\varphi = FAnd \ \psi \ \psi' \lor \varphi \leq \psi \lor \varphi \leq \psi') \ (is \ ?P \ FAnd)
  \varphi \preceq FOr \ \psi \ \psi' \longleftrightarrow (\varphi = FOr \ \psi \ \psi' \lor \varphi \preceq \psi \lor \varphi \preceq \psi')
  \varphi \preceq FEq \ \psi \ \psi' \longleftrightarrow (\varphi = FEq \ \psi \ \psi' \lor \varphi \preceq \psi \lor \varphi \preceq \psi')
  \varphi \leq FImp \ \psi \ \psi' \longleftrightarrow (\varphi = FImp \ \psi \ \psi' \lor \varphi \leq \psi \lor \varphi \leq \psi')
proof -
  have wf-conn CAnd [\psi, \psi'] by (simp add: binary-connectives-def)
  then have \varphi \leq conn \ CAnd \ [\psi, \psi'] \longleftrightarrow
    (\varphi = conn \ CAnd \ [\psi, \psi'] \lor (\exists \psi''. \psi'' \in set \ [\psi, \psi'] \land \varphi \preceq \psi''))
    using wf-subformula-conn-cases by metis
  then show ?P FAnd by auto
next
  have wf-conn COr [\psi, \psi'] by (simp add: binary-connectives-def)
  then have \varphi \leq conn \ COr \ [\psi, \psi'] \longleftrightarrow
    (\varphi = conn \ COr \ [\psi, \psi'] \lor (\exists \psi''. \psi'' \in set \ [\psi, \psi'] \land \varphi \preceq \psi''))
    using wf-subformula-conn-cases by metis
  then show ?P FOr by auto
next
  have wf-conn CEq [\psi, \psi'] by (simp add: binary-connectives-def)
  then have \varphi \leq conn \ CEq \ [\psi, \psi'] \longleftrightarrow
    (\varphi = conn \ CEq \ [\psi, \psi'] \lor (\exists \psi''. \psi'' \in set \ [\psi, \psi'] \land \varphi \preceq \psi''))
    using wf-subformula-conn-cases by metis
  then show ?P FEq by auto
  have wf-conn CImp [\psi, \psi'] by (simp add: binary-connectives-def)
  then have \varphi \leq conn \ CImp \ [\psi, \psi'] \longleftrightarrow
    (\varphi = conn \ CImp \ [\psi, \psi'] \lor (\exists \psi''. \psi'' \in set \ [\psi, \psi'] \land \varphi \preceq \psi''))
    using wf-subformula-conn-cases by metis
  then show ?P FImp by auto
qed
```

```
lemma wf-conn-helper-facts[iff]:
  wf-conn CNot [\varphi]
  wf-conn CT []
  wf-conn CF []
  wf-conn (CVar x)
  wf-conn CAnd [\varphi, \psi]
  wf-conn COr [\varphi, \psi]
  wf-conn CImp [\varphi, \psi]
  wf-conn CEq [\varphi, \psi]
  using wf-conn.intros unfolding binary-connectives-def by fastforce+
lemma exists-c-conn: \exists c l. \varphi = conn c l \land wf\text{-}conn c l
  by (cases \varphi) force+
lemma subformula-conn-decomp[simp]:
  assumes wf: wf-conn c l
  shows \varphi \leq conn \ c \ l \longleftrightarrow (\varphi = conn \ c \ l \lor (\exists \ \psi \in set \ l. \ \varphi \leq \psi)) (is ?A \longleftrightarrow ?B)
proof (rule iffI)
    fix \xi
    have \varphi \leq \xi \Longrightarrow \xi = conn \ c \ l \Longrightarrow wf\text{-}conn \ c \ l \Longrightarrow \forall x :: 'a \ propo \in set \ l. \ \neg \ \varphi \leq x \Longrightarrow \varphi = conn \ c \ l
      apply (induct rule: subformula.induct)
        apply simp
      using conn-inj by blast
  }
  moreover assume ?A
  ultimately show ?B using wf by metis
next
  assume ?B
  then show \varphi \leq conn \ c \ l \ using \ wf \ wf-subformula-conn-cases by \ blast
qed
lemma subformula-leaf-explicit[simp]:
  \varphi \leq FT \longleftrightarrow \varphi = FT
  \varphi \preceq \mathit{FF} \longleftrightarrow \varphi = \mathit{FF}
  \varphi \prec FVar \ x \longleftrightarrow \varphi = FVar \ x
  apply auto
  using subformula-leaf by metis +
The variables inside the formula gives precisely the variables that are needed for the formula.
primrec vars-of-prop:: v propo \Rightarrow v set where
vars-of-prop\ FT = \{\}\ |
vars-of-prop FF = \{\} \mid
vars-of-prop\ (FVar\ x) = \{x\}\ |
vars-of-prop \ (FNot \ \varphi) = vars-of-prop \ \varphi \ |
vars-of-prop \ (FAnd \ \varphi \ \psi) = vars-of-prop \ \varphi \cup vars-of-prop \ \psi \ |
vars-of-prop \ (FOr \ \varphi \ \psi) = vars-of-prop \ \varphi \cup vars-of-prop \ \psi \ |
vars-of-prop \ (FImp \ \varphi \ \psi) = vars-of-prop \ \varphi \cup vars-of-prop \ \psi
vars-of-prop \ (FEq \ \varphi \ \psi) = vars-of-prop \ \varphi \cup vars-of-prop \ \psi
lemma vars-of-prop-incl-conn:
  fixes \xi \xi' :: 'v \text{ propo list and } \psi :: 'v \text{ propo and } c :: 'v \text{ connective}
  assumes corr: wf-conn c l and incl: \psi \in set l
  shows vars-of-prop \ \psi \subseteq vars-of-prop \ (conn \ c \ l)
proof (cases c rule: connective-cases-arity-2)
```

```
case nullary
  then have False using corr incl by auto
  then show vars-of-prop \psi \subseteq vars-of-prop (conn \ c \ l) by blast
next
  case binary note c = this
  then obtain a b where ab: l = [a, b]
    using wf-conn-bin-list-length list-length2-decomp corr by metis
  then have \psi = a \vee \psi = b using incl by auto
  then show vars-of-prop \psi \subseteq vars-of-prop (conn \ c \ l)
    using ab c unfolding binary-connectives-def by auto
next
  case unary note c = this
 fix \varphi :: 'v \ propo
 have l = [\psi] using corr c incl split-list by force
 then show vars-of-prop \psi \subseteq vars-of-prop (conn c l) using c by auto
The set of variables is compatible with the subformula order.
lemma subformula-vars-of-prop:
  \varphi \preceq \psi \Longrightarrow vars\text{-}of\text{-}prop \ \varphi \subseteq vars\text{-}of\text{-}prop \ \psi
 apply (induct rule: subformula.induct)
 apply simp
 using vars-of-prop-incl-conn by blast
          Positions
2.1.4
Instead of 1 or 2 we use L or R
datatype sign = L \mid R
We use nil instead of \varepsilon.
\mathbf{fun} \ pos :: \ 'v \ propo \Rightarrow sign \ list \ set \ \mathbf{where}
pos FF = \{[]\} \mid
pos \ FT = \{[]\} \mid
pos (FVar x) = \{[]\}
pos (FAnd \varphi \psi) = \{[]\} \cup \{L \# p \mid p. p \in pos \varphi\} \cup \{R \# p \mid p. p \in pos \psi\} \mid
pos(FOr \varphi \psi) = \{[]\} \cup \{L \# p \mid p. p \in pos \varphi\} \cup \{R \# p \mid p. p \in pos \psi\} \}
pos (FEq \varphi \psi) = \{[]\} \cup \{L \# p \mid p. p \in pos \varphi\} \cup \{R \# p \mid p. p \in pos \psi\} \mid
pos (FImp \varphi \psi) = \{[]\} \cup \{L \# p \mid p. p \in pos \varphi\} \cup \{R \# p \mid p. p \in pos \psi\} \mid
pos (FNot \varphi) = \{[]\} \cup \{L \# p \mid p. p \in pos \varphi\}
lemma finite-pos: finite (pos \varphi)
 by (induct \varphi, auto)
lemma finite-inj-comp-set:
 fixes s :: 'v \ set
 assumes finite: finite s
 and inj: inj f
 shows card (\{f \mid p \mid p. \mid p \in s\}) = card \mid s \mid
  using finite
proof (induct s rule: finite-induct)
  show card \{f \mid p \mid p. \mid p \in \{\}\} = card \{\} by auto
next
  fix x :: 'v and s :: 'v set
 assume f: finite s and notin: x \notin s
 and IH: card \{f \mid p \mid p. \mid p \in s\} = card \mid s
```

```
have f': finite \{f \mid p \mid p. p \in insert \ x \ s\} using f by auto
  have notin': f x \notin \{f \mid p \mid p. p \in s\} using notin inj injD by fastforce
  have \{f \mid p \mid p. \ p \in insert \ x \ s\} = insert \ (f \ x) \ \{f \mid p \mid p. \ p \in s\} by auto
  then have card \{f \mid p \mid p. p \in insert \ x \ s\} = 1 + card \ \{f \mid p \mid p. p \in s\}
   using finite card-insert-disjoint f' notin' by auto
  moreover have ... = card (insert x s) using notin f IH by auto
  finally show card \{f \mid p \mid p. \ p \in insert \ x \ s\} = card \ (insert \ x \ s).
qed
lemma cons-inject:
  inj ((\#) s)
  by (meson injI list.inject)
lemma finite-insert-nil-cons:
 finite s \Longrightarrow card\ (insert\ []\ \{L\ \#\ p\ | p.\ p\in s\}) = 1 + card\ \{L\ \#\ p\ | p.\ p\in s\}
 using card-insert-disjoint by auto
lemma cord-not[simp]:
  card (pos (FNot \varphi)) = 1 + card (pos \varphi)
by (simp add: cons-inject finite-inj-comp-set finite-pos)
lemma card-seperate:
  assumes finite s1 and finite s2
 shows card (\{L \# p \mid p. p \in s1\} \cup \{R \# p \mid p. p \in s2\}) = card (\{L \# p \mid p. p \in s1\})
          + card(\lbrace R \# p \mid p. p \in s2 \rbrace)  (is card(?L \cup ?R) = card?L + card?R)
proof -
 have finite ?L using assms by auto
 moreover have finite ?R using assms by auto
 moreover have ?L \cap ?R = \{\} by blast
  ultimately show ?thesis using assms card-Un-disjoint by blast
qed
definition prop-size where prop-size \varphi = card (pos \varphi)
lemma prop-size-vars-of-prop:
 fixes \varphi :: 'v \ propo
  shows card (vars-of-prop \varphi) \leq prop-size \varphi
  unfolding prop-size-def apply (induct \varphi, auto simp add: cons-inject finite-inj-comp-set finite-pos)
proof -
  \mathbf{fix} \ \varphi 1 \ \varphi 2 :: 'v \ propo
  assume IH1: card (vars-of-prop \varphi 1) \leq card (pos \varphi 1)
 and IH2: card (vars-of-prop \varphi 2) \leq card (pos \varphi 2)
 let ?L = \{L \# p \mid p. p \in pos \varphi 1\}
 let ?R = \{R \# p \mid p. p \in pos \varphi 2\}
 have card (?L \cup ?R) = card ?L + card ?R
   using card-seperate finite-pos by blast
  moreover have ... = card (pos \varphi 1) + card (pos \varphi 2)
   by (simp add: cons-inject finite-inj-comp-set finite-pos)
  moreover have ... \geq card (vars-of-prop \varphi 1) + card (vars-of-prop \varphi 2) using IH1 IH2 by arith
  then have ... \geq card (vars-of-prop \varphi 1 \cup vars-of-prop \varphi 2) using card-Un-le le-trans by blast
  ultimately
   show card (vars-of-prop \varphi 1 \cup vars-of-prop \varphi 2) \leq Suc (card (?L \cup ?R))
        card\ (vars-of-prop\ \varphi 1\ \cup\ vars-of-prop\ \varphi 2) \leq Suc\ (card\ (?L\ \cup\ ?R))
        card\ (vars-of-prop\ \varphi 1 \cup vars-of-prop\ \varphi 2) \leq Suc\ (card\ (?L \cup ?R))
```

```
card\ (vars-of-prop\ \varphi 1\ \cup\ vars-of-prop\ \varphi 2) \leq Suc\ (card\ (?L\ \cup\ ?R))
       by auto
qed
value pos (FImp (FAnd (FVar P) (FVar Q)) (FOr (FVar P) (FVar Q)))
inductive path-to :: sign\ list \Rightarrow 'v\ propo \Rightarrow 'v\ propo \Rightarrow bool\ where
path-to-reft[intro]: path-to [] \varphi \varphi |
path-to-l: c \in binary-connectives \lor c = CNot \Longrightarrow wf-conn c (\varphi \# l) \Longrightarrow path-to p \varphi \varphi' \Longrightarrow path-to-like \varphi = vf-connectives \varphi = v
   path-to (L\#p) (conn\ c\ (\varphi\#l))\ \varphi'
path-to-r: c \in binary-connectives \implies wf-conn c (\psi \# \varphi \# []) \implies path-to p \varphi \varphi' \implies
   path-to (R\#p) (conn c (\psi\#\varphi\#[])) \varphi'
There is a deep link between subformulas and pathes: a (correct) path leads to a subformula
and a subformula is associated to a given path.
lemma path-to-subformula:
   path-to p \varphi \varphi' \Longrightarrow \varphi' \preceq \varphi
   \mathbf{apply}\ (\mathit{induct\ rule:\ path-to.induct})
       apply simp
     apply (metis list.set-intros(1) subformula-into-subformula)
   using subformula-trans\ subformula-in-binary-conn(2) by metis
{f lemma}\ subformula-path-exists:
   fixes \varphi \varphi' :: 'v \ propo
   shows \varphi' \preceq \varphi \Longrightarrow \exists p. path-to p \varphi \varphi'
proof (induct rule: subformula.induct)
   case subformula-refl
   have path-to [] \varphi' \varphi' by auto
   then show \exists p. path-to p \varphi' \varphi' by metis
   case (subformula-into-subformula \psi l c)
   note wf = this(2) and IH = this(4) and \psi = this(1)
   then obtain p where p: path-to p \psi \varphi' by metis
    {
       \mathbf{fix} \ x :: 'v
       assume c = CT \lor c = CF \lor c = CVar x
       then have False using subformula-into-subformula by auto
       then have \exists p. path-to p (conn c l) \varphi' by blast
    }
   moreover {
       assume c: c = CNot
       then have l = [\psi] using wf \psi wf-conn-Not-decomp by fastforce
       then have path-to (L \# p) (conn c l) \varphi' by (metis c wf-conn-unary p path-to-l)
     then have \exists p. path-to p (conn c l) \varphi' by blast
    }
   moreover {
       assume c: c \in binary\text{-}connectives
       obtain a b where ab: [a, b] = l using subformula-into-subformula c wf-conn-bin-list-length
           list-length2-decomp by metis
       then have a = \psi \lor b = \psi using \psi by auto
       then have path-to (L \# p) (conn c l) \varphi' \vee path-to (R \# p) (conn c l) \varphi' using c path-to-l
           path-to-r p ab by (metis wf-conn-binary)
       then have \exists p. path-to p (conn c l) \varphi' by blast
   ultimately show \exists p. path-to p (conn c l) \varphi' using connective-cases-arity by metis
qed
```

```
fun replace-at :: sign list \Rightarrow 'v propo \Rightarrow 'v propo \Rightarrow 'v propo where replace-at [] - \psi = \psi | replace-at (L \# l) (FAnd \varphi \varphi') \psi = FAnd (replace-at l \varphi \psi) \varphi' | replace-at (R \# l) (FAnd \varphi \varphi') \psi = FAnd \varphi (replace-at l \varphi' \psi) | replace-at (L \# l) (FOr \varphi \varphi') \psi = FOr (replace-at l \varphi \psi) \varphi' | replace-at (R \# l) (FOr \varphi \varphi') \psi = FOr \varphi (replace-at l \varphi' \psi) | replace-at (L \# l) (FEq \varphi \varphi') \psi = FEq (replace-at l \varphi \psi) \varphi' | replace-at (L \# l) (FImp \varphi \varphi') \psi = FImp (replace-at l \varphi \psi) \varphi' | replace-at (R \# l) (FImp \varphi \varphi') \psi = FImp \varphi (replace-at l \varphi \psi) \varphi' | replace-at (R \# l) (FImp \varphi \varphi') \psi = FImp \varphi (replace-at l \varphi \psi) | replace-at (R \# l) (FImp \varphi \varphi') \psi = FImp \varphi (replace-at l \varphi \psi) | replace-at (R \# l) (FNot \varphi) \psi = FNot (replace-at l \varphi \psi)
```

2.2 Semantics over the Syntax

Given the syntax defined above, we define a semantics, by defining an evaluation function *eval*. This function is the bridge between the logic as we define it here and the built-in logic of Isabelle.

```
fun eval :: ('v \Rightarrow bool) \Rightarrow 'v \ propo \Rightarrow bool \ (infix \models 50) \ where 
\mathcal{A} \models FT = True \mid
\mathcal{A} \models FF = False \mid
\mathcal{A} \models FVar \ v = (\mathcal{A} \ v) \mid
\mathcal{A} \models FNot \ \varphi = (\neg(\mathcal{A} \models \varphi)) \mid
\mathcal{A} \models FAnd \ \varphi_1 \ \varphi_2 = (\mathcal{A} \models \varphi_1 \land \mathcal{A} \models \varphi_2) \mid
\mathcal{A} \models FOr \ \varphi_1 \ \varphi_2 = (\mathcal{A} \models \varphi_1 \lor \mathcal{A} \models \varphi_2) \mid
\mathcal{A} \models FImp \ \varphi_1 \ \varphi_2 = (\mathcal{A} \models \varphi_1 \to \mathcal{A} \models \varphi_2) \mid
\mathcal{A} \models FEq \ \varphi_1 \ \varphi_2 = (\mathcal{A} \models \varphi_1 \longleftrightarrow \mathcal{A} \models \varphi_2)

definition evalf \ (infix \models f \ 50) \ where
evalf \ \varphi \ \psi = (\forall A. \ A \models \varphi \longrightarrow A \models \psi)
```

The deduction rule is in the book. And the proof looks like to the one of the book.

```
theorem deduction-theorem:
```

```
\varphi \models f \psi \longleftrightarrow (\forall A. A \models FImp \varphi \psi)
proof
  assume H: \varphi \models f \psi
  {
    \mathbf{fix} A
    have A \models FImp \varphi \psi
      proof (cases A \models \varphi)
        case True
        then have A \models \psi using H unfolding evalf-def by metis
        then show A \models FImp \varphi \psi by auto
      next
        case False
        then show A \models FImp \varphi \psi by auto
      qed
  then show \forall A. A \models FImp \varphi \psi by blast
  assume A: \forall A. A \models FImp \varphi \psi
  show \varphi \models f \psi
    proof (rule ccontr)
      assume \neg \varphi \models f \psi
      then obtain A where A \models \varphi and \neg A \models \psi using evalf-def by metis
```

```
then have \neg A \models FImp \ \varphi \ \psi by auto then show False using A by blast qed qed

A shorter proof:

\begin{aligned}
&\text{lemma} \ \varphi \models f \ \psi \longleftrightarrow (\forall A. \ A \models FImp \ \varphi \ \psi) \\
&\text{by } (simp \ add: \ evalf-def)
\end{aligned}
definition same\text{-}over\text{-}set:: ('v \Rightarrow bool) \Rightarrow ('v \Rightarrow bool) \Rightarrow 'v \ set \Rightarrow bool \ \text{where} \\
same\text{-}over\text{-}set \ A \ B \ S = (\forall \ c \in S. \ A \ c = B \ c)
\end{aligned}
```

If two mapping A and B have the same value over the variables, then the same formula are satisfiable.

```
lemma same-over-set-eval:

assumes same-over-set\ A\ B\ (vars-of-prop\ \varphi)

shows A \models \varphi \longleftrightarrow B \models \varphi

using assms unfolding same-over-set-def by (induct\ \varphi,\ auto)
```

end