Tuesday, February 2, 2021 12:17 PM

Naive definition: Vector-valued Fen is a Fen from IR to R3 i.e. f sends teR to FCt) ER3

But must about:

not defined at t=0

so it is a fen from R (0)= set of nonzero real numbers to 123

Better definition: A vector - valued fon 15 0 fon From a subset D of R to R3.

e.g. f(t)= (- + , \(\tau \)

15 defined for tho and tal.

ie- D = [0,1)u (1,00)

= set of real numbers that are neither negative nor equal to 1.

Can + hink of os a porometric eq. in R3 C.9 .

line: f(t) = x3 + t v helix: fct) = (cost, sint, t)

Can write vector-vaid fon as:

() FCE) = F, CE) + F2 CE) + F3 (E) F

(1) F(t) = (F,(t), F2(t), F3(t))

Note: A lot of vector valued cale is just a matter of doing single vor calc in each coord separately Ctrue of limits, continuity, derivative)

-> Becomes something new when we do dot? Cross Products

Limits Definition: IF F is a v-v f on D and QED and EER3, we say: Im fct)= = if one of 2 eq. conditions holds: 0< & E ,0<3 \(\text{A}\) s. +. | F | t - a | < J then distance (FCt), 2) < E 11 = - FCE)11 B for i=1,2,3 we have 1,m f; (t) = c; Why are A ? B equivoien +? · The ith coord of 2-f(t) 15 e; - f; (t) · Def A says that we can make 11et-FCt)11 small when t is close to a. Def @ says that we can make e; -f; (t) small when t is close to a. . They are equivalent be a vector is small in magnitude iff its components are all small in absolute VOLUE. · Qualitatively: For a vector i = (V, V2, V3) each of Iv, I, Iv, I, and Iv, I 15 5 11711 an d $|| \vec{v} || \le |v_1| + |v_2| + |v_3|$

Continuity Suppose fct) is defined as a v-v F For t, a E D Then we say f is continuous if either of the two eq. conds hold: A 1m f(t) = f(a) B cach of f, (t), f, (t), f, (t) is cont at a Derivatives We define (for a ED): f'(c) = 1, m f (a+h) - f(c) $= \lim_{t\to a} \frac{f'(t) - f(a)}{t - a}$ We say f is differentiable at a if this limit CXISTS. equivalently f is differentiable iff fi, fz, and fz are differentiable PIFFQ means if P then Q ? if Q IF F is differentiable at a, then f'(a) = Cf, (a), f2 (ca), F3 (ca)) New idea: Derivative is a vector not a scalar. ie, has magnitude ? direction Physical Interpretation For an obj whose position at time t is given by FCE), its velocity is f'CE), It's speed is II f (t) II, the direction of F'CL) is the direction the obj is moving. acceleration is: F'(ct) = df f'(ct) < Check thus

F'(Ct) = d F FICt) Check thus
A E
In physics
Basic Properties of Deriv's
Same as in single var
1) F(t) = Ø (FF F is a constant fon (on
each interval)
- In general, for any D, IF F is const, then
F 'C+) = 0
- If D is an interval like (a,b) or [a,b] or
half-open, then if Fict) = 0 then Fict) is
Constant
2 Linearity
IF m, n ER and fand gare diff'able
V-VF, then
dt (mfct) + ngct)) derivative of a
$= m f'(t) + ng'(t) \int_{0}^{\infty} \lim_{t \to \infty} combination is$
of the derivatives
Different in MVC
ONEW KINDS OF PRODUCTS:
- multiply vector by scaler
Output: Vector
- dot product of 2 vectors
autput: scalar
- cross product of 2 vectors
OUT DUT! VECT OF
=> 3 product rules For derivatives
Let F, g be v-v F on D C R

	and nct) pe a scalar-valued func
Vector	on D. Then:
scolar	① d Cuct) fct)
	dt
	= u'ct) fct) + uct) F'ct)
	(+c +) · d (+)
	= ディン・ランナ ディン・ランと
	ie we wrote a single-var calc
	deriv in terms of dot prods
	Of vector derivotives
	3 <u>d</u> (fct) × gct))
	dt _
	= f'(t) × g (t) + f (t) × g'(t)
	Aarder of cross product matters
	Let's use dot product For some
	vector calculus geometry
	Consider speed II F'CE) II
	Actually, let's consider speed?
	= 11 F'(E)112 = F'(E) . F'(E)
	Two ways:
	(A) Use (1)
	$\frac{d+}{d} (specd) = \frac{d}{d} (f' \cdot f')$
	- (d ;) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
	= (역 보,) · 보, + 보, 역 (날,)
	= f', · t, + f, · t,
	= 2 f ' • f ''
	B d (Speed2) Single-var

				5	cc	lr	\neg	Б	סכ	K	51	~	110	a r	r	_	ر 5 ز	o r	7 I C	Q	~	1+	n f	-
					1	n	D	a	C	[эF	Ţ	.	S	ho	ws	5	+1	~~	1				
					(<u></u>	11 -	ĒΙ	1 1	S	رص	J.	5+	,	ار	<u>)</u> L	CI	->	ι	2	C	ر د	+0	مدط
							ır	, <	<u>.</u>	C 1	-			∈ f	=	Ę	َ ا	_ ;	È!					
					((2)	d	II F	<u>-</u>	t)	11		a,	0	_	Ŧ.	, 🛱	· ı	•					
							_	,	4 6			_	7	•		II F	ا ب							
																	• 1							