Incomplete and uncertain data handling in context-aware rule-based systems with modified certainty factors algebra

Szymon Bobek, Grzegorz J. Nalepa

AGH University of Science and Technology

RuleML 2014
20 August 2014, Prague http://geist.agh.edu.pl

Outline I

- Introduction
- 2 Motivation
- 3 Proposed solution
- Dynamics of uncertainty
- 5 Simple use case scenario
- **6** Summary and future work

Outline

- Introduction
- 2 Motivation
- 3 Proposed solution
- Dynamics of uncertainty
- 5 Simple use case scenario
- 6 Summary and future work

Mobile context-aware systems (mCAS)

Context

- Where you are, who you are with, what resources are nearby (Schillit)
- Any informaiton that can be used to characterize the situation of an entity (Dey)
- Individuality, activity, location, time, relations (Zimmerman)
 Cab of variables that you have findened for an appearance of the case of the c
- Set of variables that may be of interest for an agent and that influence its actions (Bolchini)

Aware

· Artificial intelligence methods

Systems

- Intelligent homes, intelligent cars, robotics
- Ambient intelligence, pervasive environments, ubiquitous computing
- Mobile computing (location aware mobile applications)
- Intelligent software (contextual advertising, etc.)

Mobile environment and uncertainty

Different types of uncertainty

High-level classification

- Uncertainty due to lack of knowledge that comes from incomplete information both at the model level or if the information is not provided by the sensors,
- Uncertainty due to lack of semantic precision that may appear due to semantic mismatch in the notion of the information,
- Uncertainty due to lack of machine precision which covers machine sensors imprecision and ambiguity.

Different types of uncertainty

High-level classification

- Uncertainty due to lack of knowledge that comes from incomplete information both at the model level or if the information is not provided by the sensors,
- Uncertainty due to lack of semantic precision that may appear due to semantic mismatch in the notion of the information,
- Uncertainty due to lack of machine precision which covers machine sensors imprecision and ambiguity.

Different types of uncertainty

High-level classification

- Uncertainty due to lack of knowledge that comes from incomplete information both at the model level or if the information is not provided by the sensors,
- Uncertainty due to lack of semantic precision that may appear due to semantic mismatch in the notion of the information,
- Uncertainty due to lack of machine precision which covers machine sensors imprecision and ambiguity.

Different uncertainty modelling and handling mechanisms

	Uncertainty source			
	Lack of	Semantic	Machine	Implementation
	knowledge	imprecision	imprecision	effort
Probabilistic	D	0	•	High
Fuzzy Logic	0)	•	Medium
Certainty Factors	•	0	•	Low
Machine learning	•	О	•	High

Table: Comparison of uncertainty handling mechanisms. Full circles represent full support, whereas empty circles represent low or no support.

Outline

- Introduction
- 2 Motivation
- Proposed solution
- 4 Dynamics of uncertainty
- 5 Simple use case scenario
- 6 Summary and future work

Mobile environment and uncertainty

Nature of mCAS

- mCAS are build usually as a user centric systems
- Intelligibility is very important as it may improve users trust to the system
- Mediation may help resolve ambiguity
- The uncertainty is dynamic and such a dynamic should be modelled

Outline

- Introduction
- 2 Motivation
- 3 Proposed solution
- Dynamics of uncertainty
- 5 Simple use case scenario
- 6 Summary and future work

ALSV(FD) logic

XTT2 rule in ALSV(FD) logic

$$(A_i \propto d_i) \wedge (A_j \propto d_j) \wedge \dots (A_m \propto V_m) \wedge (A_n \propto V_n) \longrightarrow RHS$$

Syntax	Interpretation	Relation
$A_i = d_i$	value of A_i is precisely defined as d_i	eq
$A_i \in V_i$	value of A_i is in V_i	in
$A_i \neq d_i$	$\begin{array}{c} shorthand \; for \; A_i \in \\ \left(\mathbb{D}_i \setminus \{d_i\}\right) \end{array}$	neq
$A_i \not\in V_i$	shorthand for $A_i \in (\mathbb{D}_i \setminus V_i)$	notin

Table : Formulaes for simple attributes

Syntax	Interpretation	Relation
$A_i = V_i$	A_i equal V_i	eq
$A_i \neq V_i$	A_i does not equal V_i	neq
$A_i \subseteq V_i$	A_i is a subset V_i	subset
$A_i \supseteq V_i$	A_i is a superset V_i	supset
$A_i \sim V_i$	A_i has non-empty intersection with V_i	sim
$A_i \not\sim V_i$	A_i has empty intersection with V_i	notsim

Table : Formulaes for generalized attributes

ALSV(FD) logic

XTT2 rule in ALSV(FD) logic

$$(A_i \propto d_i) \wedge (A_j \propto d_j) \wedge \dots (A_m \propto V_m) \wedge (A_n \propto V_n) \longrightarrow RHS$$

Syntax	Interpretation	Relation
$A_i = d_i$	value of A_i is precisely defined as d_i	eq
$A_i \in V_i$	value of A_i is in V_i	in
$A_i \neq d_i$	$\begin{array}{c} shorthand \; for \; A_i \in \\ \left(\mathbb{D}_i \setminus \{d_i\}\right) \end{array}$	neq
$A_i \not\in V_i$	$\begin{array}{c} shorthand \; for \; A_i \in \\ (\mathbb{D}_i \setminus V_i) \end{array}$	notin

Table : Formulae for simple attributes

Example for simple attribute

$$if(activity = driving) \rightarrow bluetoothHandset = on$$

Uncertainty in such data

$$activity = walking(30\%)$$

$$activity = cycling(50\%)$$

$$activity = driving(20\%)$$

ALSV(FD) logic

XTT2 rule in ALSV(FD) logic

$$(A_i \propto d_i) \wedge (A_j \propto d_j) \wedge \dots (A_m \propto V_m) \wedge (A_n \propto V_n) \longrightarrow RHS$$

Example for generalised attribute

$$if(language \sim \{en, cz\}) \rightarrow \\ recommendConference = RuleML$$

Uncertainty in such data

language =
$$\{pl(100\%), en(80\%), cz(2\%)\}$$

Syntax	Interpretation	Relation
Sylitax	Interpretation	Relation
$A_i = V_i$	A_i equal V_i	eq
$A_i \neq V_i$	A_i does not equal V_i	neq
$A_i \subseteq V_i$	A_i is a subset V_i	subset
$A_i \supseteq V_i$	A_i is a superset V_i	supset
$A_i \sim V_i$	A_i has non-empty intersection with V_i	sim
$A_i \not\sim V_i$	A_i has empty intersection with V_i	notsim

Table: Formulae for generalized attributes

Certainty Factors algebra

Basic notation

• Rule in CF algebra is represented according to formulae:

$$condition_1 \wedge condition_2 \wedge \ldots \wedge condition_k \rightarrow conclusion$$
 (1)

- Each of the elements of the formulae from equation 1 above can have assigned a certainty factor $cf(element) \in [-1;1]$
- CF of a conditional part of a rule is determined by the formulae:

$$cf(condition_1 \land ... \land condition_k) = \min_{i \in 1...k} cf(condition_i)$$

 Certainty factor of conclusion C of a single i-th rule is calculated according to a formulae:

$$cf_i(C) = cf(condition_1 \wedge ... \wedge condition_k) * cf(rule)$$
 (2)

SBK+GJN (AGH-UST) Indect 20 August 2014 1

Cumulative and disjunctive rules

Disjunctive rules

Disjunctive rules have the same conclusions but are conditionally dependent (i.e. value of any of the conditions determine values of other rules conditions).

$$cf(C) = \max_{i \in 1...k} \{cf_i(C)\}\tag{3}$$

16 / 30

Cumulative rules

Cumulative rules have the same conclusions and have independent conditions (i.e. value of any of the conditions does not determine values of other rules conditions).

$$cf(C) = \begin{cases} cf_{i}(C) + cf_{j}(C) - cf_{i}(C) * cf_{j}(C) & \text{if } cf_{i}(C) \geq 0, cf_{j}(C) \geq 0 \\ cf_{i}(C) + cf_{j}(C) + cf_{i}(C) * cf_{j}(C) & \text{if } cf_{i}(C) \leq 0, cf_{j}(C) \leq 0 \\ \frac{cf_{i}(C) + cf_{j}(C)}{1 - \min\{|cf_{i}(C)|, |cf_{j}(C)|\}} & \text{if } cf_{i}(C)cf_{j}(C) \notin \{-1, 0\} \end{cases}$$

CF in ALSV(FD)

Disjunctive rules

In particular the formula $A_i \in V_i$ can be translated into a form:

$$(A_i = V_i^0) \vee (A_i = V_i^1) \vee \ldots \vee (A_i = V_i^k)$$

where the V_i^k is a k-th element from a subset V_i of domain D_i , and A_i is a simple attribute.

Cumulative rules

For the general attribute A_i , the formulae of a form $A_i \sim V_i$ can be translated into:

$$(A_i^0 \in V_i) \vee (A_i^1 \in V_i) \vee \ldots \vee (A_i^k \in V_i)$$

where A_i^k is a k-th element of a set representing by the general attribute A_i .

SBK+GJN (AGH-UST) Indect 20 August 2014

Outline

- Introduction
- 2 Motivation
- 3 Proposed solution
- Dynamics of uncertainty
- 5 Simple use case scenario
- Summary and future work

How certainty may change

Expiration time functions

$$cf(V, \Delta t) = egin{cases} cf(V) * rac{expiration(A) - \Delta t}{expiration(A)} & ext{if } \Delta t \leq expiration(A) \\ 0 & ext{otherwise} \end{cases}$$

SBK+GJN (AGH-UST) Indect 20 August 2014

Dynamic expiration times

Dynamics of uncertainty

$$expiration(A, t) = expiration(A) * (1 - dynamic(A, t))$$

SBK+GJN (AGH-UST) Indect 20 August 2014

Entropy-based expiration times

Entropy-based dynamics

expiration(A, n) = expiration(A) *
$$(-log_2 \frac{1}{n} - entropy(A, n))$$

 $entropy(A, n) = -\sum_{x \in X} \frac{x}{n} log_2 \frac{x}{n}$

Entropy-based expiration times

entropy(A,n) = 1

Entropy-based dynamics

expiration(A, n) = expiration(A) *
$$(-log_2 \frac{1}{n} - entropy(A, n))$$

 $entropy(A, n) = -\sum_{x \in X} \frac{x}{n} log_2 \frac{x}{n}$

Equal number of different sensor readings

Equal number of different sensor readings

Many different readings

Outline

- Introduction
- 2 Motivation
- Proposed solution
- 4 Dynamics of uncertainty
- 5 Simple use case scenario
- Summary and future work

POI recommender

\blacktriangleright	(?) weather	(?) {user_profile}	(?) activity	♦ (->) poi
▶	\in {sunny,cloudy}	~ {eating}	= any	:= outdor-eating
•	∈ {rainy}	~ {eating}	€ {walking,running}	:= indoor-eating
\blacktriangleright	€ {rainy}	~ {eating}	∈ {driving}	:= drivethrough-eating
▶	\in {rainy,cloudy}	~ {culture,entertainment}	€ {walking,driving}	:= theatre-cinema
▶	∈ {rainy,cloudy} = {culture,sighseeing}		€ {walking,driving}	:= museum
\blacktriangleright	∈ {sunny}	= {sighseeing,culture}	∈ {any}	:= monuments

Table id: tab_2 - Recommendations

Assumed system state

- Weather forecast: *sunny weather* with certainty 0.3, *cloudy* with 0.1, and *rainy* with 0.6.
- How much user is interested inn particular POIs: places for eating 60%, culture 20%, entertainment 80%, sightseeing 20%.
- the user have been recently walking with certainty 0.8, running with 0.1 certainty and driving with certainty 0.1.

(?) weather	(?) user_profile	(?) activity	cf(conditions)	cf(rule)	cf(conclusion)
0.3	0.6	0.8	0.3	1	0.3
0.6	0.6	0.8	0.6	1	0.6
0.6	0.6	0.1	0.1	1	0.1
0.6	0.84	0.8	0.6	1	0.6
0.6	0.36	0.8	0.36	1	0.36
0.3	0.36	0.8	0.3	1	0.3

Assumed system state

- Weather forecast: *sunny weather* with certainty 0.3, *cloudy* with 0.1, and *rainy* with 0.6.
- How much user is interested inn particular POIs: places for eating 60%, culture 20%, entertainment 80%, sightseeing 20%.
- the user have been recently walking with certainty 0.8, running with 0.1 certainty and driving with certainty 0.1.

Outline

- **Motivation**

- 6 Summary and future work

Summary

- Proposal of uncertainty handling mechanism for mCAS
- Rule-based mechanism ready to easily provide intelligibility and mediation
- Modelling approach for representing dynamic CF

Future work

- Implementation and evaluation on e real-life example
- User feedback for CF updates
- Handling uncertainty on the level of XTT2 model, by translating XTT2 graph into BN
- Gather more data for testing and evaluation: http://glados.kis.agh.edu.pl

Summary

- Proposal of uncertainty handling mechanism for mCAS
- Rule-based mechanism ready to easily provide intelligibility and mediation
- Modelling approach for representing dynamic CF

Future work

- Implementation and evaluation on e real-life example
- User feedback for CF updates
- Handling uncertainty on the level of XTT2 model, by translating XTT2 graph into BN
- Gather more data for testing and evaluation: http://glados.kis.agh.edu.pl

Thank you for your attention!

Do you have any questions?

RuleML 2014

http://geist.agh.edu.pl