

GIÁO TRÌNH

Hướng dẫn đồ án cung cấp điện

DÙNG TRONG CÁC TRƯỜNG TRUNG HỌC CHUYÊN NGHIỆP

SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI

LÊ ĐÌNH BÌNH NGUYỄN HÔNG VÂN - TRẦN THỊ BÍCH LIÊN

GIÁO TRÌNH HƯỚNG DẪN ĐỒ ÁN CUNG CẤP ĐIỆN

(Dùng trong các trường THCN)

NHÀ XUẤT BẢN HÀ NỘI - 2007

Lời giới thiệu

Nước ta đang bước vào thời kỳ công nghiệp hóa, hiện đại hóa nhằm đưa Việt Nam trở thành nước công nghiệp văn minh, hiện đại.

Trong sự nghiệp cách mạng to lớn đó, công tác đào tạo nhân lực luôn giữ vai trò quan trọng. Báo cáo Chính trị của Ban Chấp hành Trung ương Đảng Cộng sản Việt Nam tại Đại hội Đảng toàn quốc lần thứ IX đã chỉ rõ: "Phát triển giáo dục và đào tạo là một trong những động lực quan trọng thúc đẩy sự nghiệp công nghiệp hóa, hiện đại hóa, là điều kiện để phát triển nguồn lực con người - yếu tố cơ bản để phát triển xã hội, tăng trưởng kình tế nhanh và bền vững".

Quán triệt chủ trương, Nghị quyết của Đảng và Nhà nước và nhận thức đúng đắn về tầm quan trọng của chương trình, giáo trình đối với việc nâng cao chất lượng đào tạo, theo đề nghị của Sở Giáo dục và Đào tạo Hà Nội, ngày 23/9/2003, Ủy ban nhân dân thành phố Hà Nội đã ra Quyết định số 5620/QĐ-UB cho phép Sở Giáo dục và Đào tạo thực hiện đề án biên soạn chương trình, giáo trình trong các trường Trung học chuyên nghiệp (THCN) Hà Nội. Quyết định này thể hiện sự quan tâm sâu sắc của Thành ủy, UBND thành phố trong việc nâng cao chất lượng đào tạo và phát triển nguồn nhân lực Thủ đô.

Trên cơ sở chương trình khung của Bộ Giáo dục và Đào tạo ban hành và những kinh nghiệm rút ra từ thực tế đào tạo, Sở Giáo dục và Đào tạo đã chỉ đạo các trường THCN tổ chức biên soạn chương trình, giáo trình một cách khoa học, hệ

thống và cập nhật những kiến thức thực tiễn phù hợp với đối tượng học sinh THCN Hà Nội.

Bộ giáo trình này là tài liệu giảng dạy và học tập trong các trường THCN ở Hà Nội, đồng thời là tài liệu tham khảo hữu ích cho các trường có đào tạo các ngành kỹ thuật - nghiệp vụ và đông đảo bạn đọc quan tâm đến vấn đề hướng nghiệp, day nghề.

Việc tổ chức biên soạn bộ chương trình, giáo trình này là một trong nhiều hoạt động thiết thực của ngành giáo dục và đào tạo Thủ đô để kỷ niệm "50 năm giải phóng Thủ đô", "50 năm thành lập ngành" và hướng tới kỷ niệm "1000 năm Thăng Long - Hà Nôi".

Sở Giáo dục và Đào tạo Hà Nội chân thành cảm ơn Thành ủy, UBND, các sở, ban, ngành của Thành phố, Vụ Giáo dục chuyên nghiệp Bộ Giáo dục và Đào tạo, các nhà khoa học, các chuyên gia đầu ngành, các giảng viên, các nhà quản lý, các nhà doanh nghiệp đã tạo điều kiện giúp đỡ, đóng góp ý kiến, tham gia Hội đồng phản biện, Hội đồng thẩm định và Hội đồng nghiệm thu các chương trình, giáo trình.

Đây là lần đầu tiên Sở Giáo dục và Đào tạo Hà Nội tổ chức biên soạn chương trình, giáo trình. Dù đã hết sức cố gắng nhưng chắc chắn không tránh khỏi thiếu sót, bất cập. Chúng tôi mong nhận được những ý kiến động góp của bạn đọc để từng bước hoàn thiện bộ giáo trình trong các lần tái bản sau.

GIÁM ĐỐC SỞ GIÁO DỤC VÀ ĐÀO TẠO

Lời nói đầu

Hiện nay nền kinh tế nước ta đang trên đà tăng trưởng mạnh mẽ, theo đường lối công nghiệp hoá và hiện đại hoá đất nước, vì vậy nhu cầu sử dụng điện trong lĩnh vực công nghiệp ngày một tăng cao. Hàng loạt khu chế xuất, khu công nghiệp cũng như các nhà máy, xí nghiệp công nghiệp được hình thành và đi vào hoạt động. Từ thực tế yêu cầu cần phải có một lực lượng đông đảo các kỹ sư, kỹ thuật viên ngành điện tham gia thiết kế và lắp đặt các công trình cấp điên.

Việc thiết kế một hệ thống cung cấp điện là không đơn giản vì nó đòi hỏi người thiết kế phải có kiến thức tổng hợp của nhiều chuyên ngành khác nhau (Cung cấp điện, Trang bị điện, Kỹ thuật cao áp, An toàn điện...) Ngoài ra còn phải có sự hiểu biết nhất định về những lĩnh vực liên quan như xã hội, môi trường, về các đối tượng sử dụng điện và mục đích kinh doanh sản xuất của họ... Một bản thiết kế quá dư thừa sẽ gây lãng phí khó thu hồi vốn dầu tư. Thiết kế không đảm bảo có thể sẽ gây hậu quả lớn.

Xuất phát từ đối tượng đào tạo kỹ thuật viên nghề điện và chương trình đào tạo của nghề, giáo trình "Hướng dẫn đồ án cung cấp điện" được biên soạn nhằm mục đích giúp các kỹ thuật viên ngành điện tập hợp và áp dụng các kiến thức cơ bản đã học để tàm tốt đồ án thiết kế cung cấp điện cũng như làm tài liệu tham khảo để giải quyết nhiệm vụ cơ bản của một kỹ thuật viên ngành điện tại các xí nghiệp, nhà máy công nghiệp.

Nội dung của giáo trình được chia làm 3 phần:

Phần I: Hướng dẫn thiết kế hệ thống cung cấp điện cho xí nghiệp công nghiệp.

Phần II: Hướng dẫn thiết kế các chuyên đề.

Phần III: Các bảng phụ lục tra cứu cần thiết.

CÁC TÁC GIẢ

SỞ LAO ĐỘNG THƯƠNG BINH VÀ XÃ HỘI HÀ NỘI

CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập - Tự do - Hạnh phúc

TRƯỜNG TRUNG HỌC CÔNG NGHIỆP HÀ NỘI

ĐÔ ÁN MÔN HỌC CUNG CẤP ĐIỆN

Họ và tên học sinh:

Lớp:

Ngành học:

Hệ đào tạo: Trung học chuyên nghiệp

- 1. Những số liệu ban đầu
- * Mặt bằng nhà máy cơ khí chế tạo.
- * Mặt bằng phân xưởng cơ khí.
- * Công suất đặt các phân xưởng và các máy trong phân xưởng cơ khí của xí nghiệp được ghi trong phụ lục kèm theo.
- * Nhà máy làm việc hai ca. Thời gian sử dụng công suất lớn nhất Tmax = 4500h.

2. Nội dung thiết kế:

- * Xác định vị trí trạm phân phối trung tâm của nhà máy.
- * Xác định vị trí, số lượng, dung lượng các trạm biến áp phân xưởng.
- * Tính toán, thiết kế mạng điện hạ áp cung cấp cho phân xưởng cơ khí.
- * Tính toán chuyên đề: Nâng cao hệ số công suất cosφ cho phân xưởng cơ khí.

3. Bản vẽ:

- * Sơ đồ nguyên lý hệ thống cung cấp điện toàn nhà máy (khổ A0).
- * Sơ đồ nguyên lý mạng hạ áp (cung cấp điện cho phân xưởng cơ khí) khổ A2.
 - * Sơ đồ đi dây cho các máy sản xuất trong phân xưởng cơ khí (khổ A2).
- * Bản vẽ phục vụ chuyên đề: Nâng cao hệ số công suất cosφ cho phân xưởng cơ khí (khổ A2).

BẢN VỄ MẶT BẰNG NHÀ MÁY CƠ KHÍ CHẾ TẠO

BẢN VĒ MẶT BẰNG PHÂN XƯỞNG CƠ KHÍ

Bảng 1: Công suất đặt các phân xưởng trong nhà máy cơ khí chế tạo

TT	Tên phân xưởng	P (kW)	Q (kVAr)
1	Phòng thường trực	7	3
2	Lắp ráp cơ khí I	150	130
3	Phòng thí nghiệm	50	20
4	Nhà hành chính	30	15
5	Dụng cụ chính xác	75	50
6	Đúc thép	200	150
7	Rèn - Dập - Mộc	135	115
8	Phân xưởng cơ khí		
9	Hàn tán	110	90
10	Gia công nguội	80	75
11	Trạm khí nén	70	60
12	Đúc gang	175	150
13	Gara ôtô	15	12
14	Lắp ráp cơ khí II	140	120
15	Nhà kho	10	7

Bảng 2: Công suất các máy trong phân xưởng cơ khí

Tên máy	Ký hiệu mặt bằng	Số lượng	U (V)	P (kW)	cosφ	η%
Máy tiện	1	6	380	4,5	0,62	75
Máy phay	2	3	380	7,0	0,68	71
Máy bào	3	5	380	7,0	0,52	65
Máy cưa	4	3	380	4,5	0,73	69
Máy mài	5	4	380	2,8	0,83	75
Máy khoan	6	3	380	4,5	0,64	70
Máy búa	7	1	380	14	0,62	65
Máy hàn	8	1	220	20kVA	0,74	ε =25%
Quạt gió	9	4	380	1,7	0,65	82
Máy doa	10	1	380	10	0,61	74

Phần một

HƯỚNG DẪN THIẾT KẾ HỆ THỐNG CUNG CẤP ĐIỆN CHO XÍ NGHIỆP CÔNG NGHIỆP

Muc tiêu

- Giới thiệu nội dung, trình tự, phương pháp tính toán thiết kế hệ thống cung cấp điện cho một xí nghiệp công nghiệp nói chung.
- Trình bày các bước cụ thể và các phương pháp thường dùng nhất để học sinh áp dụng làm tốt đồ án môn học Cung cấp điện.
 - Nắm được các bước và thiết kế được hệ thống cung cấp điện, đặc biệt là mạng hạ áp.

Chương 1

CÁC BƯỚC THIẾT KẾ HỆ THỐNG CUNG CẤP ĐIỆN CHO XÍ NGHIỆP CÔNG NGHIỆP

Mục tiêu

- Nắm được các bước thiết kế hệ thống cung cấp điện cho xí nghiệp công nghiệp.
- Nắm được các phương pháp tính toán phụ tải thường dùng trong các xí nghiệp công nghiệp.
 - Hiểu được sợ đổ cung cấp điện từ mang cao áp đến phụ tải nhà máy.

Trong nền kinh tế thị trường hiện nay các xí nghiệp công nghiệp đều phải hạch toán kinh doanh và cạnh tranh quyết liệt với nhau. Chất lượng và giá thành sản phẩm là yếu tố sống còn đối với một nhà máy, xí nghiệp. Để có được sản phẩm với chất lượng tốt và giá thành hợp lý đòi hỏi mỗi nhà máy, xí nghiệp phải có được một hệ thống cung cấp điện vừa phải đảm bảo độ tin cậy cung cấp điện tốt vừa phải đảm bảo chất lượng điện tốt, ngoài ra vốn đầu tư của nhà máy, xí nghiệp có hiệu quả hay không phụ thuộc rất nhiều vào bản thiết kế hệ thống cung cấp điện. Vì vậy một bản thiết kế hệ thống điện phải đảm bảo các yêu cầu về độ tin cậy cung cấp điện, chất lượng điện, an toàn khi lấp đặt và vận hành, đồng thời phải đảm bảo tính kinh tế. Sau đây là các bước thiết kế hệ thống cung cấp điện cho một nhà máy công nghiệp.

I. XÁC ĐỊNH PHỤ TẢI TÍNH TOÁN CHO CÁC PHÂN XƯỞNG VÀ TOÀN NHÀ MÁY

Khi thiết kế hệ thống cung cấp điện cho một nhà máy công nghiệp thường dùng 2 phương pháp xác định phụ tải tính toán.

1. Xác định phụ tải tính toán theo công suất đặt (P_d)

Phương pháp này được sử dụng khi thông tin thu nhận được từ khách hàng chỉ có thiết kế nhà xưởng (chưa có sơ đồ bố trí máy móc, thiết bị), số liệu cụ thể biết được là công suất đặt và diện tích từng phân xưởng.

Phụ tải tính toán của từng phân xưởng và toàn nhà máy được xác định theo trình tự sau:

Bước 1: Tính công suất tác dụng của phụ tải động lực:

$$P_{dl} = K_{nc} \cdot P_d \tag{1.1}$$

Trong đó:

K_{nc}: Hệ số nhu cầu (tra bảng).

Bước 2: Tính công suất phản kháng của phụ tải động lực:

$$Q_{dl} = P_{dl} \cdot tg\phi \tag{1.2}$$

Trong đó:

tgφ: Được tính theo hệ số công suất cosφ của phân xưởng (tra bảng).

Bước 3: Tính công suất tác dụng của phụ tải chiếu sáng:

$$P_{cs} = P_o \cdot S \tag{1.3}$$

Trong đó:

S: Diện tích phân xưởng $(m^2) \rightarrow Do$ trên thực tế hoặc tính trên bản vẽ.

 P_o : Suất chiếu sáng trên một đơn vị điện tích (W/m²); P_o phụ thuộc vào yêu cầu chiếu sáng cho từng phân xưởng \rightarrow Tra theo tiêu chuẩn (tra bảng PL9).

Bước 4: Tính công suất phản kháng của phụ tải chiếu sáng:

$$Q_{cs} = P_{cs} \cdot tg\phi \tag{1.4}$$

Nên cân nhắc xem sử dụng loại bóng đèn nào là thích hợp. Nếu sử dụng bóng đèn sợi đốt thì $\cos \varphi = 1 \rightarrow Q_{cs} = 0$. Còn nếu dùng đèn huỳnh quang thì $\cos \varphi = 0.6 \div 0.8$.

Bước 5: Tính công suất toàn phần của mỗi phân xưởng:

$$S_{ttPX} = \sqrt{(P_{dl} + P_{cs})^2 + (Q_{dl} + Q_{cs})^2}$$
 (1.5)

Bước 6: Tính công suất toàn xí nghiệp (gồm n phân xưởng):

Công suất toàn xí nghiệp được xác định bằng cách lấy tổng công suất của các phân xưởng có kể đến hệ số đồng thời.

$$P_{ttXN} = K_{dt} \cdot \sum_{1}^{n} P_{ttpxi} = K_{dt} \cdot \sum_{1}^{n} (P_{tti} + P_{sci})$$
 (1.6)

$$Q_{ttXN} = K_{dt} \cdot \sum_{i=1}^{n} Q_{ttpxi} = K_{dt} \cdot \sum_{i=1}^{n} (Q_{tti} + Q_{sci})$$
 (1.7)

$$S_{uXN} = \sqrt{P_{uXN}^2 + Q_{uXN}^2}$$
 (1.8)

$$\cos \varphi_{\rm XN} = \frac{P_{uXN}}{S_{uXN}} \tag{1.9}$$

Trong đó:

 K_{ui} : Hệ số đồng thời xét đến khả năng các phân xưởng không đồng thời sử dụng hết công suất.

 $K_{di} = 1$ khi số phân xưởng $n = 1 \div 2$.

 $K_{di} = 0.85 \div 0.95$ khi số phân xưởng $3 \le n \le 5$.

 $K_{di} = 0.8$ khi số phân xưởng n > 5.

Với ý nghĩa số phân xưởng càng nhiều thì K_{dt} càng nhỏ.

- Phụ tải tính toán theo các công thức trên thường dùng để thiết kế mạng cao áp của xí nghiệp.

2. Xác định phụ tải theo số thiết bị hiệu quả

Phương pháp này được áp dụng khi đã biết được chi tiết về đối tượng sử dụng điện (diện tích phân xưởng, sơ đồ bố trí thiết bị, máy móc, chủng loại và công nghệ của từng thiết bị).

Để xác định phụ tải tính toán của phân xưởng, ta thực hiện các bước sau:

* Bước 1: Chia nhóm phụ tải

Nên bố trí các máy đặt gần nhau, có cùng chủng loại, công suất tương đương nhau vào cùng một nhóm. (Sau đó đưa vào bảng tổng kết).

* Bước 2: Tính công suất tác dụng của từng nhóm máy

Với các nhóm máy có số máy ≤ 3, phụ tải tính toán được xác định:

$$P_{tt} = \sum_{i}^{n} P_{dmi} \tag{1.10}$$

Với các nhóm máy có số máy ≥ 4, phụ tải tính toán được xác định:

$$P_{tt} = K_{\text{max}} \cdot K_{sd} \sum_{i=1}^{n} P_{dmi}$$
 (1.11)

Trong đó:

 K_{st} : Hệ số sử dụng của nhóm máy, tra trong số tay kỹ thuật (tra bằng PL1).

 K_{max} : Hệ số cực đại, tra theo hai đại lượng K_{sd} và n_{hq} (tra bảng PL5).

n_{ba}: Số thiết bị hiệu quả, được xác định theo trình tự sau:

- Xác định số thiết bị có công suất ≥1/2 thiết bị công suất lớn nhất trong nhóm: n₁.
 - Xác định P_{n1} công suất của n₁ thiết bị nói trên.

$$P_{1} = \sum_{i=1}^{n_{1}} P_{dmi}$$
 (1.12)

- Xác định các tỉ số:

$$n^* = \frac{n_1}{n} \tag{1.13}$$

$$P^* = \frac{Pn_1}{P\sum} \tag{1.14}$$

Trong đó: P_{Σ} : Tổng công suất của suất các máy trong nhóm.

Tra bảng tìm được n_{ha}^* (theo n* và q*) (PL4).

Xác định n_{hạ} theo biểu thức:

$$\mathbf{n}_{hq} = \mathbf{n}. \ \mathbf{n}_{hq}^{*} \tag{1.15}$$

Trong đó: n: Tổng số máy trong nhóm.

Lưu ý:

* Nếu trong nhóm máy có thiết bị 1 pha thì phải quy đổi về 3 pha theo các biểu thức sau:

$$P_{qd} = 3. P_{dm} (W) - N\acute{e}u \text{ thiết bị dùng } U_p$$
 (1.16)

$$P_{qd} = \sqrt{3}$$
. $P_{dm}(W)$ - Nếu thiết bị dùng U_d (1.17)

* Nếu trong nhóm máy có thiết bị làm việc ngắn hạn lặp lại như máy nâng hạ cầu trục, máy biến áp hàn...) thì phải quy đổi về chế độ dài hạn:

$$P_{qd} = P_{dm} \cdot \sqrt{\varepsilon^{0}/6} \quad (W) \tag{1.18}$$

Trong đó: ε% là hệ số đóng điện tương đối.

Riêng đối với máy biến áp hàn (biết trước công suất toàn phần) và thường được chế tạo 1 pha đấu vào điện áp dây nên quy đổi theo công thức sau:

$$P_{qd} = S_{dm} \cdot \cos \varphi \cdot \sqrt{3} \cdot \sqrt{\varepsilon\%} (W)$$
 (1.19)

* Bước 3: Tính $\cos \varphi_{TR}$ và $tg \varphi_{TB}$ của nhóm.

* Bước 4: Tính Q_n của nhóm.

$$Q_{tt} = P_{tt} \cdot tg\phi_{TB} (Var)$$
 (1.20)

* Bước 5: Tính công suất toàn phần từng nhóm.

$$S_u = \frac{P_u}{\cos \varphi_{TR}} \quad (VA) \tag{1.21}$$

* Bước 6: Tính dòng điện tính toán của nhóm.

$$I_u = \frac{S_u}{\sqrt{3} \cdot U_d} \quad (A) \tag{1.22}$$

II. THIẾT KẾ MẠNG CAO ÁP CỦA NHÀ MÁY

1. Chọn sơ đồ cấp điện

Tuỳ theo quy mô của nhà máy xí nghiệp công nghiệp có thể vạch ra sơ đồ cấp điện thích hợp.

- Với xí nghiệp nhỏ gồm vài nhà xưởng, công suất khoảng vài trām kW nhất thiết phải xây dựng trạm biến áp riêng.

Hình 1.1. Sơ đồ cấp điện cho xí nghiệp có quy mô nhỏ

- Với xí nghiệp quy mô vừa có từ 2 đến 3 trạm biến áp thì không nên thiết kế trạm biến áp phân phối trung tâm.

Hình 1.2. Sơ đồ cấp điện cho xí nghiệp có quy mô vừa

- Với một xí nghiệp quy mô lớn, bao gồm nhiều phân xưởng, nhiều trạm biến áp riêng cần xây dựng trạm phân phối trung tâm. Trạm phân phối trung tâm có nhiệm vụ tiếp nhận nguồn điện từ lưới về và phân phối cho trạm biến áp phân xưởng, thường có sơ đồ cấp điện như sau:

Hình 1.3. Sơ đồ cấp điện cho xí nghiệp quy mô lớn

2. Xác định vị trí trạm phân phối trung tâm

Trên sơ đồ mặt bằng nhà máy vẽ một hệ trục toạ độ xoy, có vị trí trọng tâm các phân xưởng là (xi, yi) sẽ xác định được toạ độ tối ưu M (x, y) để trạm phân phối trung tâm.

$$x = \frac{\sum xi.Si}{\sum Si} \qquad ; \qquad y = \frac{\sum yi.Si}{\sum Si}$$
 (1.23)

Trong đó: Si, xi, yi là phụ tải tính toán và toạ độ của các phân xưởng.

3. Xác định vị trí số lượng, dung lượng các trạm biến áp phân xưởng

- Số lượng các trạm biến áp phân xưởng tuỳ thuộc vào công suất mỗi phân xưởng và vị trí hình học của chúng. Với phân xưởng lớn có thể dùng trạm biến áp riêng, vài phân xưởng nhỏ gần nhau có thể dùng một tram chung.
- Số lượng máy biến áp trong một trạm căn cứ vào yêu cầu của khách hàng. Nhưng không nên đặt quá 2 máy trong một trạm. (Lưu ý rằng hiện nay với cấp điện áp 10/0,4 kV, người ta chỉ chế tạo máy biến áp có dung lượng ≤ 1000kVA).
- Vị trí trạm biến áp phân xưởng cũng cấp cho nhiều phân xưởng thường được đặt ở trung tâm phụ tải hoặc đặt cạnh phân xưởng có phụ tải lớn nhất.

Dung lượng máy biến áp chọn theo biểu thức sau:

Với trạm 1 máy biến áp:

$$S_{dmMMBA} \ge \frac{S_{tt}}{k_{hc}}$$

Với trạm 2 máy biến áp:

$$S_{dmMMBA} \ge \frac{S_{tt}}{1,4.k_{hc}}$$

Trong đó:

 S_{tt} : Phụ tải tính toán khu vực (một phân xưởng hoặc nhiều phân xưởng).

 K_{hc} : Hệ số hiệu chỉnh theo nhiệt độ nếu dùng máy đo Việt Nam sản xuất thì $K_{hc}=1$, còn máy Liên Xô sản xuất lấy $K_{hc}=0.8$.

1,4 : Hệ số quá tải cho phép.

4. Chọn phương án đi dây mạng cao áp

Tính chọn dây dẫn và vẽ sơ đồ đi dây trên mặt bằng.

- Sau khi xác định được số lượng, vị trí trạm phân phối trung tâm ta tiến hành vạch ra các phương án đi đây mạng cao áp của nhà máy. Sau đây là một số điểm cần lưu ý:

- + Xem xét cân nhắc giữa việc sử dụng đường dây cáp ngầm hay đường dây trên không. (Để đảm bảo an toàn và mỹ quan ngày nay thường dùng phương án đi dây ngầm).
- + Các phương án đi dây phải đảm bảo độ tin cậy cung cấp điện. Đối với các trạm quan trọng nên dùng 2 đường dây cung cấp.
 - + Căn cứ vào trạm biến áp phân xưởng và trạm phân phối trung tâm mà đề ra từ 2 đến 3 phương án đi dây mạng cao áp. (Có thể trực tiếp cấp điện từ trạm phân phối trung tâm tới các trạm biến áp phân xưởng hoặc các trạm biến áp phân xưởng ở xa trạm phân phối trung tâm được lấy điện liên thông qua các trạm gần đó), bạn đọc có thể tham khảo ở sơ đồ sau:

Hình 1.4. Phương án cung cấp điện cho 7 trạm biến áp phân xưởng

Hình 1.5. Phương án cung cấp điện cho 5 trạm biến áp phân xưởng

- Lựa chọn dây dẫn mạng cao áp.

Dựa vào phụ tải tính toán của các phân xưởng và toàn nhà máy để lựa chọn dây dẫn mạng cao áp từ trạm phân phối trung tâm tới các trạm biến áp phân xưởng và từ trạm biến áp trung gian về trạm phân phối trung tâm. Các đường dây này có cùng tiết diện trên toàn bộ chiều dài, vì vậy thường được chọn theo điều kiện mật độ dòng điện kinh tế (J_{KT}) . Nó phụ thuộc vào điều kiện môi trường, điều kiện làm việc.

$$S = \frac{I_{\text{max}}}{J_{kt}} \quad (mm^2) \tag{1.24}$$

Trong đó:

S: Tiết diện dây dẫn (mm²).

 $J_{k\iota}$: Mật độ dòng điện kinh tế của dây (A/mm²) - Tra bảng.

 I_{max} : Dòng điện lớn nhất của phụ tải (A).

 $I_{max} = I_{tt}$ với đường dây lộ đơn.

$$I_{\text{max}} = \frac{I_u}{2}$$
 với đường dây lộ kép.
$$I_u = \frac{S_u}{\sqrt{3}.U_d} \quad (A). \tag{1.25}$$

- Sau khi tính chọn tiết diện dây dẫn cần được kiểm tra theo điều kiện tổn thất điện áp và điều kiện phát nóng.

$$\Delta U = \frac{\sum P.R_d + \sum Q.X_d}{U_{dm}} \le \Delta U_{cp}$$
 (1.26)

Trong đó:

ΔU_{cp}: Tổn thất điện áp cho phép.

 $(\Delta U_{cp} = 5\%~U_{dm})$ đối với phụ tải động lực.

 $(\Delta U_{cp} = 2.5\% \ U_{dm})$ đối với phụ tải chiếu sáng.

P và Q là công suất tính toán của phụ tải.

R_d; X_d là điện trở và điện kháng của dây - Tra bảng.

$$I_{sc} \leq I_{cp}$$

Với đường dây lộ kép khi đứt 1 đây thì dây còn lại phải truyền tải toàn bộ công suất, do đó $I_{sc}=2\ I_{max}$.

 I_{cp} : Dòng điện cho phép của dây dẫn (do nhà sản xuất quy định) - Tra bảng.

- So sánh các chỉ tiêu kinh tế.

Sau khi đã đề ra 2 đến 3 phương án đi dây mạng cao áp và tính chọn tiết diện dây dẫn, ta có thể tiến hành so sánh tính toán kinh tế kỹ thuật giữa các phương án, để chọn phương án tối ưu nhất. Bạn đọc có thể tham khảo phương pháp hàm chi phí sau đây:

+ Tính vốn đầu tư.

$$K = \sum K_{0i} \cdot 1 \tag{1.27}$$

Trong đó:

 K_{0i} : Giá tiền 1m cáp tiết diện i (đ/m).

1: Chiều dài tuyến cáp có tiết diện i (m).

+ Tính tổn thất điện năng trên mạng cao áp xí nghiệp.

$$\Delta A = \Delta P_{\text{max}}.\tau = \sum_{i=1}^{n} \frac{P_i^2 + Q_i^2}{U^2} R_i.\tau$$
 (1.28)

Trong đó:

P_i, Q_i: Công suất tác dụng và công suất phản kháng của phu tải thứ i.

R_i: Điện trở đường dây của tiết diện thứ i.

 τ : Thời gian tổn thất công suất lớn nhất (tra đồ thị theo Tmax và $\cos \varphi$).

+ Tính chi phí mỗi phương án.

$$Z = (a_{vh} + a_{tc}) \cdot K + c \cdot \Delta A(d).$$
 (1.29)

Trong đó:

a_{vh}: Hệ số vận hành.

 $a_{vh} = 0.04$ với đường dây trên không.

 $a_{vh} = 0,1$ với đường dây cáp ngầm.

a_{te}: Hệ số tiêu chuẩn thu hồi vốn đầu tư.

Thường lấy $a_{tc} = 0.1$; 0.125; 0.2.

c: Giá tiền 1kWh điện năng (đ/kWh).

Cuối cùng lập bảng so sánh kinh tế kỹ thuật, phương án nào có chi phí nhỏ nhất là phương án tối ưu (Z). Có thể xảy ra trường hợp các phương án có chi phí (Z) chênh lệch nhau không quá 5% được gọi là những phương án đồng kinh tế. Lúc đó cần xét thêm các đại lượng K, ΔA , ΔU ...

5. Chọn sơ đồ trạm phân phối trung tâm

Với những nhà máy có quy mô lớn mới cần xây dựng trạm phân phối trung tâm. Các nhà máy này có ý nghĩa rất quan trọng trong nền kinh tế quốc dân, không thể để mất điện. Các phụ tải này thường có công suất rất lớn nếu dự phòng bằng máy phát sẽ không có lợi bằng cách cấp điện bằng hai đường trung áp. Vì vậy, ở các trạm phân phối trung tâm thường sử dụng sơ đồ một hệ thống thanh góp có phân đoạn.

Hình 1.6. Trạm PPTT, đầu vào đầu ra đều dùng máy cắt hợp bộ

Hình 1.7. Trạm PPTT, đầu vào dùng máy cắt hợp bộ, đầu ra dùng máy cắt phụ tải

6. Chọn sơ đồ trạm biến áp phân xưởng

Tuỳ mức độ quan trọng của phân xưởng mà quyết định đặt một hoặc hai máy biến áp trong một trạm. Tuỳ theo điều kiện phía cao áp có thể đặt dao cách ly, dao cách ly - cầu chì, máy cắt. Sơ đồ điển hình các trạm biến áp phân xưởng hoặc trạm biến áp xí nghiệp nhỏ.

Hình 1.8. Sơ đồ trạm biến áp 1 máy và 2 máy

- a, b) Trạm biến áp phía cao áp đặt dao cách ly.
- c, d) Trạm biến áp phía cao áp đặt dao cách ly cầu chì.
- e, f) Trạm biến áp phía cao áp đặt máy cắt.
- Phía cao áp của trạm được cấp điện bằng đường dây trên không thì phải đặt chống sét van.
- Phía hạ áp của trạm, nếu phụ tải bằng đường dây trên không thì cũng phải đặt chống sét van hạ áp.

Trong xí nghiệp, các trạm biến áp phân xưởng thường là trạm xây kín nên thích hợp với loại sơ đồ trên, còn nếu là trạm treo hoặc trạm cột thì có thể dùng cầu chì tự rơi thay cho bộ dao cách ly. Còn việc đặt máy cắt phía cao áp thường được dùng cho trạm biến áp công suất lớn ở xa nguồn.

7. Tính toán ngắn mạch trong mạng cao áp xí nghiệp

Để lựa chọn kiểm tra dây dẫn, thanh dẫn hay tính chọn các thiết bị đóng cắt trong mạng cao áp xí nghiệp cần tính toán chính xác dòng điện chạy qua chúng khi xảy ra ngắn mạch. Vì các xí nghiệp ở rất xa nhà máy điện nên trong tính toán mạng điện xí nghiệp được coi là ngắn mạch xa nguồn.

$$I_N = I$$
" = $I \infty$

Để tính toán cho phép coi nguồn công suất cấp cho điểm ngắn mạch là công suất đặt định mức của máy cắt đầu đường dây cấp cho xí nghiệp. Khi đó điện kháng của hệ thống được xác định theo công thức:

$$X_H = \frac{U_{tb}^2}{S_{cdm}} \quad (\Omega) \tag{1.30}$$

Trong đó:

U_{tb}²: Điện áp trung bình của lưới điện (kV).

 $U_{tb} = 1,05U_{dm}$.

S_{edm}: Công suất cắt định mức của máy cắt đầu nguồn.

Có thể tính S_{cdm} theo điện áp định mức và dòng điện cắt định mức của máy cắt theo công thức :

$$S_{idm} = \sqrt{3}.U_{dm}.I_{Cdm}$$

Nếu trên lưới đang dùng máy cắt trung áp của Liên Xô thì có thể lấy:

$$S_{edm} = (250 \div 300) \text{ MVA}$$

Khi đó trị số dòng điện ngắn mạch xoay chiều 3 pha được xác định theo công thức:

$$I_N = \frac{U_{tb}}{\sqrt{3} \cdot Z_N} \tag{1.31}$$

Trong đó:

 Z_N : Tổng trở từ nguồn đến điểm ngắn mạch.

$$Z_N = \sqrt{R_d^2 + (X_H + X_d)^2}$$
 (1.32)

Trong đó:

 R_d , X_d : Điện trở và điện kháng của đường dây.

$$R_d = R_o.1$$
.

$$X_d = X_o.l.$$

1: Chiều dài đường dây từ nguồn đến điểm ngắn mạch.

R_o, X_o: Tra bảng.

Hình1.9. Sơ đồ nguyên lý và sơ đồ thay thế khi tính toán ngắn mạch

Sau khi xác định được I_N ta tính dòng ngắn mạch xung kích:

$$I_{XK} = 1.8 \text{ x } \sqrt{2} \text{ x } i_{N} \tag{1.33}$$

8. Lựa chọn các phần tử của mạng cao áp

* Lựa chọn và kiểm tra máy cắt điện (MC).

Máy cắt điện là thiết bị đóng cắt mạch điện cao áp (trên 1000V). Máy cắt có nhiệm vụ đóng cắt phụ tải phục vụ cho công tác vận hành và cắt dòng điện ngắn mạch để bảo vệ phần tử của hệ thống cung cấp điện.

Điều kiện chọn và kiểm tra máy cắt:

+ Điện áp định mức

$$U_{dmMC} \ge U_{dmLD} \tag{1.34}$$

+ Dòng điện định mức

$$I_{dmMC} \ge I_{ch} \tag{1.35}$$

+ Dòng cắt định mức (kA)

$$I_{Cdm} \ge I_{N} \tag{1.36}$$

+ Công suất cắt định mức (MVA)

$$S_{Cdm} \ge S_N \tag{1.37}$$

+ Dòng điện ổn định động (kA)

$$I_{\text{odd}} \ge i_{xk} \tag{1.38}$$

+ Dòng điện ổn định nhiệt (kA)

$$I_{\text{odnh}} \ge I_{\infty} \sqrt{\frac{t_{\text{qd}}}{t_{\text{nhdm}}}}$$
 (1.39)

Trong đó:

 U_{dmLD} : Điện áp định mức của lưới điện (kV).

 I_{cb} : Dòng điện cưỡng bức (dòng điện lớn nhất đi qua máy cắt, xác định theo sơ đồ cụ thể).

 I_{∞} , $I^{"}\!:$ Dòng ngắn mạch vô cùng và siêu quá độ.

 i_{xk} : Dòng ngắn mạch xung kích là trị số tức thời lớn nhất của dòng ngắn mạch.

$$i_{xk} = 1.8.\sqrt{2}.I_N$$

S": Công suất ngắn mạch

$$S = \sqrt{3} . U_{tb} . I'$$

 t_{nhdm} : Thời gian ổn định nhiệt định mức, do nhà chế tạo cho tương ứng với l_{nhdm} (l_{odnh}).

t_{qd}: Thời gian quy đổi, xác định bằng tính toán và tra đồ thị.

Các thiết bị điện có $I_{dm} > 1000$ (A) không cần kiểm tra ổn định nhiệt.

* Lựa chọn và kiểm tra cáp điện.

Sau khi tính toán ngắn mạch và lựa chọn máy cắt điện, ta kiểm tra lại tiết diện cấp đã chọn ở phần trên theo công thức sau:

$$F \ge \alpha I_N \cdot \sqrt{t_{qd}} \tag{1.40}$$

* Lựa chọn và kiểm tra dao cách ly, cầu chì cao áp đặt tại các trạm biến áp phân xưởng.

Trong lưới điện cao áp, cầu chì thường dùng ở các vị trí sau:

- Bảo vệ máy biến điện áp.
- Kết hợp dao cắt phụ tải thành bộ máy cắt phụ tải trung áp để bảo vệ các đường dây.
- Đặt phía cao áp lưới điện (6, 10, 22, 35 kV) các trạm biến áp phân phối để bảo vệ ngắn mạch cho máy biến áp.

Đối với những lưới điện trên, người ta thường dùng cầu chì tự rơi (CTTR) thay cho cầu dao cầu chì (CD - CC).

Điều kiện chọn và kiểm tra dao cách ly:

+ Điện áp định mức

$$U_{\text{dmDCL}} \ge U_{\text{dmLD}} \tag{1.41}$$

+ Dòng điện định mức

$$I_{dmDCL} \ge I_{cb} \tag{1.42}$$

+ Dòng điện ổn định động (kA)

$$I_{\text{odd}} \ge i_{xk} \tag{1.43}$$

+ Dòng điện ổn định nhiệt (kA)

$$I_{odnk} \ge I_{\infty} \sqrt{\frac{t_{qd}}{t_{nhdm}}} \tag{1.44}$$

Điều kiện chọn và kiểm tra cầu chì:

+ Điện áp định mức

$$U_{dmcc} \ge U_{dmLD} \tag{1.45}$$

+ Dòng điện định mức

$$I_{dmec} \ge I_{cb} \tag{1.46}$$

+ Dòng cắt định mức (kA)

$$I_{dm} \ge I^{"} \tag{1.47}$$

+ Công suất cắt định mức (MVA)

$$S_{Cdm} \ge S" \tag{1.48}$$

9. Thiết kế mạng hạ áp của xí nghiệp

* Tính toán ngắn mạch mạng hạ áp của xí nghiệp.

Ngắn mạch mạng hạ áp được coi là ngắn mạch xa nguồn. Do đó, cho phép coi trạm biến áp phân xưởng là nguồn. Tổng trở của hệ thống chính là tổng trở của trạm biến áp. Điện trở và điện kháng của máy biến áp quy về phía hạ áp có thể tra bảng hoặc tính theo công thức sau:

$$R_0 = \frac{\Delta P_N \cdot U_{dmB^2}}{S_{dmB^2} \cdot n} 10^6 \ (m\Omega) \tag{1.49}$$

$$X_0 = j \frac{U_N \cdot U_{dmB^2}}{S_{dmB}, n} 10^4 (m\Omega)$$
 (1.50)

$$V_{ay} ZB = \sqrt{X_0^2 + R_0^2} (m\Omega)$$
 (1.51)

Trong đó:

 ΔP_N , U_N : Tổn hao ngắn mạch và điện áp ngắn mạch do nhà chế tạo cho. U_{dmB} , S_{dmB} : Điện áp thứ cấp định mức và dung lượng của máy biến áp. n: Số máy biến áp đặt trong trạm.

Hình 1.10. Sơ đồ nguyên lý mạng hạ áp và sơ đồ thay thế khi tính toán ngắn mạch

Nhìn vào sơ đồ trên có thể thấy rằng dòng ngắn mạch N1 tại thanh cái của trạm BAPX là lớn nhất trong mạng điện hạ áp, do đó để đơn giản khi tính toán có thể cho phép lấy trị số dòng ngắn mạch N1 làm số liệu để tính chọn cũng như kiểm tra các phần tử có trong sơ đồ.

So với tổng trở của MBA thì tổng trở của áptômát đặt tại trạm BAPX là rất nhỏ có thể bỏ qua, khi đó N1 được tính theo sơ đồ thay thế sau:

$$I_{n1} = \frac{U_{dm}}{\sqrt{3}Z_{R}} 10^{3} kA \tag{1.52}$$

- * Lựa chọn và kiểm tra thanh cái trong trạm biến áp phân xưởng và các tủ phân phối, tủ động lực theo các điều kiện sau:
 - + Dòng phát nóng lâu dài cho phép

$$k_1 \cdot k_2 \cdot I_{cp} \ge I_{cb}$$
 (1.53)

+ Khả năng ổn định động, kG/cm²

$$\delta_{\rm cp} \ge \delta_{\rm tt}$$
 (1.54)

+ Khả năng ổn định nhiệt, mm²

$$F \ge \alpha I_{\infty} \sqrt{t_{qd}} \tag{1.55}$$

Trong đó:

 $k_1 = 1$ thanh dẫn đặt đứng.

 $k_1 = 0.95$ với thanh dẫn đặt nằm ngang.

 k_2 : Hệ số hiệu chỉnh theo nhiệt độ môi trường.

 $\sigma_{\rm cp}$: Úng suất cho phép của vật liệu làm thanh dẫn.

Với thanh dẫn nhóm AT, có $\delta_{cp} = 700 \text{kG/cm}^2$.

Với thanh dẫn nhóm MT, có $\delta_{cn} = 1400 \text{kG/cm}^2$.

 σ_{u} : Úng suất tính toán.

$$\sigma_u = \frac{M}{W} kG/cm^2 \tag{1.56}$$

M: Mômen uốn tính toán.

$$M = \frac{F_n \cdot l}{10} \, kGm \tag{1.57}$$

F_u: Lực tính toán do tác dụng của dòng điện ngắn mạch.

$$F_{tt} = 1,76.10^{-2} \frac{l}{a} i_{xk} kG \tag{1.58}$$

1: Khoảng cách giữa các sứ của một pha (thường 60, 70, 80cm).

a: Khoảng cách giữa các pha (tuỳ thanh dẫn cao, hạ áp), cm.

W: Mômen chống uốn của các loại thanh dẫn được tính theo bảng sau:

Thanh chi	Thanh chữ nhật tổng	
Đặt đứng	Đặt đứng Đặt ngang	
b	h	h h
6 h ²	$w = \frac{bh^2}{6}$	$w = \frac{h^3 - h^3}{6}$

^{*} Lựa chọn sứ cách điện.

+ Chọn theo điện áp định mức, kV:

$$\dot{U}_{dm.s} \ge U_{dm.m} \tag{1.59}$$

+ Dòng điện định mức, A:

$$I_{dm,s} \ge I_{cb} \tag{1.60}$$

+ Lực cho phép tác động lên đầu sứ, kG:

$$F_{co} \ge k \cdot F_{tt} \tag{1.61}$$

+ Dòng ổn định nhiệt cho phép:

$$I_{dm,nh} \ge I_{\infty} \tag{1.62}$$

 $F_{\rm cp}$: Lực cho phép tác động lên đầu sứ = 0,6 $F_{\rm ph}$ (lực phá hoại)

k: Hệ số hiệu chỉnh

$$k = \frac{H'}{H}$$

H, H': Chiều cao ghi trên bản vẽ.

* Lựa chọn tủ phân phối, tủ động lực.

Tử phân phối (TPP) nhận điện từ trạm biến áp và cấp điện cho các tử động lực (TĐL). Tử động lực cấp điện trực tiếp cho các phụ tải.

- Lựa chọn tủ phân phối

Tủ phân phối có thể được cấp điện từ 1 nguồn, 2 nguồn hoặc 1 nguồn có dự phòng. Trong tủ phân phối thường đặt các thiết bị bảo vệ và đo đếm như áptômát tổng, các áptômát nhánh, các đồng hồ ămpemét, vônkế, công tơ hữu công, công tơ vô công, biến dòng.

Hình 1.11. Sơ đồ tủ phân phối có và không có nguồn dự phòng

Để chọn tủ phân phối, ta phải chọn: loại tủ, sơ đồ tủ, áptômát, thanh cái, thiết bi đo đếm, bảo vê an toàn và chống sét.

Các áptômát được chọn theo dòng làm việc (dòng tính toán).

$$I_{dmA} \ge I_{lv \max} = I_{tt} = \frac{S_{tt}}{\sqrt{3} \cdot U_{dm}}$$
 (1.63)

$$U_{dmA} \ge U_{dm.md} \tag{1.64}$$

Trong đó:

U_{dm,md}: Điện áp định mức của mạng điện.

 $U_{dm.md} = 380V$ với áptômát 3 pha.

 $U_{dm md} = 220V với áptômát 1 pha.$

Sau khi chọn áptômát phải kiểm tra khả năng cắt dòng ngắn mạch.

$$I_{\text{cátdmA}} \ge I_{\text{N}} \tag{1.65}$$

Chọn và kiểm tra thanh cái tủ phân phối theo $(1.53) \div (1.58)$.

- Lựa chọn tủ động lực.

Tủ động lực được lấy nguồn từ tủ phân phối theo hình tia hoặc liên thông, thường có dạng sơ đồ sau:

Hình 1.12. Sơ đồ tử động lực cho phương án cấp điện hình tia và liên thông

Số lượng mạch nhánh nhiều hay ít phụ thuộc vào số động cơ được cấp điện từ tủ động lực. Trong tủ động lực có thể đặt cầu chì hoặc áptômát bảo vệ, tuỳ theo kinh phí và đối tượng cấp điện.

+ Tính chọn cầu chì như sau:

$$U_{dmCC} \ge U_{ng} \tag{1.66}$$

$$I_{dc} \ge I_{tt} \tag{1.67}$$

+ Nếu thiết bị được bảo vệ là động cơ điện thì:

$$I_{u} = \frac{k_{mm} \cdot I_{dmD}}{\alpha} (A) \tag{1.68}$$

+ Nếu cầu chì bảo vệ cho vài động cơ thì:

$$I_{tt} = \frac{I_{mmMax} + \sum_{1}^{n-1} I_{dmDi}}{\alpha} (A)$$
 (1.69)

+ Nếu cầu chì tổng bảo vệ cho cả nhóm máy thì:

$$I_{tt} = \frac{I_{mmMax} + (I_{tt \, nhom} - k_{sd} \cdot I_{dm \, D})}{\alpha} (A)$$
 (1.70)

Lưu ý dòng điện định mức của dây chảy cầu chì tổng phải được chọn lớn hơn ít nhất 2 cấp so với dòng điện định mức của dây chảy cầu chì nhánh lớn nhất.

Với sơ đồ tủ liên thông thì dòng điện định mức của dây chảy cầu chì tổng CCT1 phải được chọn theo dòng tính toán tổng của cả 2 nhóm động cơ và phải có trị số lớn hơn ít nhất 2 cấp so với cầu chì tổng CCT2 của nhóm 2.

Nếu tủ động lực đặt áptômát bảo vệ thì các áptômát được chọn như tủ phân phối.

* Lựa chọn dây dẫn mạng hạ áp.

Dây dẫn và cáp hạ áp thường được chọn theo điều kiện phát nóng.

$$I_{n} \le k1. k2. I_{cn}$$
 (1.71)

Trong đó:

I_{cp}: Dòng điện cho phép do nhà sản xuất quy định.

k1: Hê số xét đến môi trường đặt cáp -> Tra bảng.

k2: Hê số hiệu chỉnh theo số lương cáp đặt trong cùng 1 rãnh -> Tra bảng.

Tiết diện dây dẫn sau khi được chọn phải thử lại mọi điều kiện kỹ thuật. Ngoài ra còn phải kiểm tra kết hợp với các thiết bị bảo vệ.

+ Nếu bảo vệ bằng cầu chì thì:

$$I_u \ge \frac{I_{dc}}{\alpha} \tag{1.72}$$

 $\alpha = 3$ với mạng động lực.

 $\alpha = 0.8$ với mạng sinh hoạt.

+ Nếu bảo vệ bằng áptômát tác động theo nguyên tắc nhiệt thì:

$$I_{tt} \ge \frac{1,25 \cdot I_{dmA}}{1,5} \tag{1.73}$$

+ Nếu bảo vệ bằng áptômát tác động theo nguyên tắc từ trường thì:

$$I_u \ge \frac{I_{kd}}{4.5} \tag{1.74}$$

Trong đó I_{kd} là dòng điện khởi động của động cơ được cấp điện.

Chương 2

HƯỚNG DẪN ĐỔ ÁN MÔN HỌC CUNG CẤP ĐIỆN

Mục tiêu

- Nắm được những kiến thức cần thiết để thiết kế một hệ thống cung cấp điện cho xí nghiệp công nghiệp.
 - Biết cách tính toán và lưa chon các thiết bi ở mạng điện hạ áp.

Nội đung

Đối với các kỹ thuật viên trung cấp điện, một đồ án cung cấp điện yêu cầu phải đảm bảo các nôi dung sau:

- I. Giới thiệu chung về xí nghiệp, nhà máy công nghiệp (mặt bằng, quy mô sản xuất). Xác định đô tin cây cung cấp điện của từng phân xưởng cũng như toàn nhà máy.
 - II. Xác định phu tải tính toán cho từng phân xưởng và toàn nhà máy.
- III. Thiết kế mạng cao áp của nhà máy (chỉ yêu cầu xác định vị trí trạm phân phối trung tâm, vị trí, số lượng, dung lượng các trạm biến áp phân xưởng).
- IV. Thiết kế mạng hạ áp của nhà máy (từ các trạm biến áp phân xưởng đến các máy sản xuất trong phân xưởng cơ khí).
 - V. Hoàn thành một trong các chuyên để sau đây:
 - Nâng cao hệ số công suất cosφ cho phân xưởng cơ khí.
 - Thiết kế hệ thống nối đất bảo vệ cho phân xưởng cơ khí.
 - Tính toán chống sét cho trạm biến áp hoặc một phân xưởng cơ khí.
 - Chiếu sáng chung cho phân xưởng cơ khí.
 - Chiếu sáng đô thị.

Các chuyên để chúng tôi có hướng dẫn cụ thể trong phần II của giáo trình.

Có đầy đủ các bản vẽ chỉ tiết sau:

- Sơ đồ nguyên lý hệ thống cung cấp điện toàn nhà máy (khổ A0).
- Sơ đồ nguyên lý mạng hạ áp (cung cấp điện cho phân xưởng cơ khí) khổ A2.

- Sơ đồ đi dây cho các máy sản xuất trong phân xưởng cơ khí (khổ A2).
- Bản vẽ phục vụ chuyên đề (khổ A1).

Sau đây chúng tôi sẽ trình bày các bước cần thiết và các phương pháp thường dùng nhất, có ví dụ cụ thể để bạn đọc tham khảo vận dụng, hoàn thành tốt đồ án môn học.

Các ký hiệu thường dùng trong bản vẽ kỹ thuật cung cấp điện

тт	Thiết bị điện	Ký hiệu trên bản vẽ
1	Máy phát điện	F
2	Trạm biến áp	
3	Trạm phân phối	
4	MBA 2 cuộn dây, 3 cuộn dây	∳ ∳ -
5	MBA đo lường	8 0
6	Máy biến dòng	₹ € ♦
7	Máy cắt điện	4
8	Cầu dao	

9	Áptômát	
10	Cầu chì	
11	Cẩu chì tự rơi	
12	Chống sét van	→ A □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
13	Chống sét ống	
14	Tụ điện bù	
15	Tủ phân phối	
16	Tủ động lực	,
17	Tử chiếu sáng	
18	Thanh cái, thanh góp	
19	Dây dẫn	
20	Đường dây cáp	\triangleright

21	Động cơ điện	(b)
22	Khởi động từ	
23	Đèn sợi đốt	\otimes
24	Đèn tuýp	
25	ổ cắm, phích cắm	<u> </u>
26	Công tắc đơn, công tắc kép	o o
27	Quạt điện	Δ ∞
28	Bảng điện	
29	Nối đất	
30	Đồng hổ Ampe, Vôn kế	
31	Công tơ hữu công, vô công	kWh

I. GIỚI THIỀU CHUNG VỀ NHÀ MÁY

1. Mặt bằng nhà máy

Cān cứ vào sơ đồ mặt bằng toàn nhà máy, dựa vào tỷ lệ của bản vẽ ta có thể xác định được diện tích của toàn nhà máy cũng như diện tích của từng phân xưởng cụ thể. (Đây là số liệu cần thiết để xác định phụ tải tính toán chiếu sáng của các phân xưởng cũng như xác định chiều dài của các tuyến dây dẫn).

2. Quy mô sản xuất của nhà máy

Căn cứ vào số lượng của các phân xưởng và công suất đặt (P_d) của chúng xác định quy mô sản xuất của nhà máy để xếp loại hệ thống và phương án cung cấp điện.

3. Độ tin cậy cung cấp điện

Theo công suất đặt từng phân xưởng ta xác định tầm quan trọng của chúng trong nhà máy, từ đó xếp loại hộ tiêu thụ điện và phương án cấp điện cho từng phân xưởng.

II. XÁC ĐỊNH PHỤ TẢI TÍNH TOÁN CHO TỪNG PHÂN XƯỞNG VÀ TOÀN NHÀ MÁY

1. Xác định phụ tải tính toán cho phân xưởng cơ khí

Trong đồ án cung cấp điện để đánh giá chính xác kiến thức của học sinh thì với một phân xưởng cụ thể yêu cầu phải tính toán chính xác. Do đó thường cho trước các số liệu cụ thể về mặt bằng phân xưởng, danh sách các thiết bị điện cùng các thông số kỹ thuật của chúng.

Ví dụ: Xác định phụ tải tính toán cho phân xưởng cơ khí theo các số liệu sau:

Bản vẽ mặt bằng phân xưởng cơ khí

Bảng: Phụ tải của các máy trong phân xưởng cơ khí

Tên máy	Ký hiệu mặt bằng	Số lượng	U (V)	P (kW)	cosφ	η%
Máy tiện	• 1	6	380	4,5	0,62	75
Máy phay	2	3	380	7,0	0,68	71
Máy bào	3	5	380	7,0	0,52	65
Máy cưa	4	3	380	4,5	0,73	69
Máy mài	5	4	380	2,8	0,83	75
Máy khoan	6	3	380	4,5	-0,64	70
Máy búa	7	1	380	14	0,62	65
Máy hàn	8	1	220	20kVA	0,74	ε =25%
Quat gió	9	4	380	1,7	0,65	82
Máy doa	10	1	380	10	0,61	74

Giải

Để tính toán chính xác ta dùng phương pháp số thiết bị hiệu quả.

1.1. Chia nhóm phụ tải

Do các máy có cùng chủng loại phân bố ở các vị trí khác nhau trong phân xưởng và dựa vào điều kiện phân nhóm phụ tải.

Các điều kiện để phân nhóm phụ tải:

- Các máy ở gần nhau nên đặt vào 1 nhóm.
- Công suất các máy trong nhóm không lệch nhau quá 10kW.
- Tổng công suất các nhóm không lệch nhau 15kW.
- Các máy có cùng công suất và cùng chủng loại nên cho vào 1 nhóm.

Vì vậy, chúng ta chia các máy thành 4 nhóm, mỗi nhóm được cấp bởi 1 tủ động lực.

Bảng thống kê các nhóm máy

Nhóm	Tên máy	кнмв	Số lượng	U(V)	P(kW)	cosφ	η%
	Máy phay	2	1	380	7,0	0,68	71
1	Máy cưa	4	1	380	4,5	0,73	69
	Máy khoan	6	2	380	4,5	0,64	70
	Máy hàn	8	1	220	22,2	0,74	ε = 25%
	Máy tiện	1	3	380	4,5	0,62	75
2	Máy cưa	4	2	380	4,5	0,73	69
	Máy mài	5	1	380	2,8	0,83	75
	Máy phay	2	2	380	7,0	0,68	71
	Máy tiện	1	2	380	4,5	0,62	75
3	Máy bào	3	2	380	7,0	0,52	65
	Máy mài	5	1	380	2,8	0,83	75
	Quạt gió	9	2	380	1,7	0,65	82
	Máy doa	10	1	380	10	0,61	74

	Máy tiện	1	1	380	4,5	0,62	75
	Máy bào	3	2	380	7,0	0,52	65
4	Máy mài	5 .	· 2	380	2,8	0,83	75
	Máy khoan	6	· 1	380	4,5	0,64	70
	Máy búa	7	1	380	14	0,62	65
	Quạt gió	9	2	380	1,7	0,65	82

1.2. Xác định phụ tải tính toán của các nhóm

Ta có thể xác định phụ tải tính toán của nhóm 1.

- * Tổng số máy của nhóm là n = 5.
- * Vì máy hàn làm việc ở chế độ ngắn hạn lặp lại nên phải quy đổi về chế độ dài hạn.

$$P_b = S_b$$
. $\cos \varphi$. $\sqrt{\varepsilon} \% = 20 \times 0.74 \times \sqrt{25} = 74 \text{ (kW)}$

Tổng công suất của thiết bị ba pha nhóm này là:

$$P_{T3} = 7.0 \times 1 + 1 \times 4.5 + 2 \times 4.5 = 20.5 \text{ (kW)}$$

Máy hàn đang ở chế độ 1 pha nên khi quy đổi về 3 pha ta phải xét xem công suất của máy có lớn hơn 15% tổng công suất của các máy 3 pha trong nhóm hay không.

Ta có
$$15\%P_{T3fa} = \frac{20.5 \times 15}{100} = 3,075 \text{kW} (P_h = 74 \text{kW})$$

So sánh ta thấy lớn hơn nên phải quy đổi về chế độ 3 pha:

$$P_{h3fa} = 3 \times P_h = 3 \times 74 = 222 \text{ (kW)}$$

+ Tổng công suất các máy trong nhóm 1 là:

$$P = P_{T3} + P_{h3f} = 20.5 + 222 = 242.5 \text{ (kW)}$$

* Công suất lớn nhất P_{max} là công suất của máy hàn $P_{\text{max}} = 222 \text{ kW}$

$$\Rightarrow \frac{1}{2} P_{\text{max}} = 111 \text{ (kW)}$$

Vậy số máy có công suất lớn hơn $0.5P_{max}$ là $n_1 = 1$.

Tổng công suất của n₁ máy nhóm 1 là:

$$P_1 = \sum_{i=1}^{1} P_{dm} = 22 (kW)$$

* Tính số thiết bị tương đối.

$$n^* = n_1/n = 1/5 = 0.2$$

 $P^* = P_1/P = 22/42.7 = 0.51$

=> Ta xác định được số thiết bị hiệu quả tương đối bằng cách tra PL4 $n_{ba}^* = 0.61$

* Xác định số thiết bị hiệu quả.

$$n_{hg} = n_{hg}^*$$
. $n = 0.61 \text{ x } 5 = 3.05$

Công suất tác dụng tính toán của nhóm 1 là:

$$P_{TTN1} = k_{max}.k_{sd}.\sum_{i=1}^{n} P_{dm}$$

Theo đầu bài ta có $k_{sd} = 0.6$ và $n_{hq} = 4$

Tra bảng phụ lục, ta có $k_{max} = 1.46$

Vậy ta có
$$P_{TTN1} = k_{max}.k_{sd}.$$
 $\sum_{i=1}^{n} P_{dm} = 1,46 \text{ x } .0,6 \text{ x } 42,7 = 37,4 \text{ (kW)}.$

* Công suất phản kháng tính toán của nhóm là:

$$Q_{TT} = P_{TT}$$
. $tg\phi_{TB}$ mà $tg\phi_{TB}$ lấy từ

$$Cos\phi_{TB} = \frac{\sum_{i=1}^{n} P_{dmi} \cdot cos \varphi_{i}}{\sum_{i=1}^{n} P_{dmi}}$$

$$=\frac{(2 \times 4,5 \times 0,64) + (22,2 \times 1 \times 0,74) + (1 \times 4,5 \times 0,73) + (1 \times 7,0 \times 0,68)}{42,7} = 0,70$$

$$\Rightarrow$$
 Cos $\phi_{TB} = 0.70 \Rightarrow$ tg $\phi_{TB} = 1$. Vậy $Q_{TT} = 37.4.1 = 37.4$ (kVAR).

* Công suất toàn phần tính toán là:

$$S_{TT} = \sqrt{P_{TT}^2 + Q_{TT}^2} = P_{TT} / \cos \varphi_{TB} = 37,4/0,7 = 53,42 \text{ (kVA)}$$

* Dòng tính toán:

$$I_{TT} = \frac{S}{\sqrt{3} \times U_{AT}} = \frac{53,42}{\sqrt{3} \times 380} = 0,081(kA) = 81 \text{ (A)}$$

Tương tự như trên ta xác định được phụ tải của nhóm 2, 3, 4 theo bảng sau:

Bảng các nhóm

-	1		
81,16	70	98	93
53,42	46,11	57,13	61
37,4	33,81	46	48
37,4	31,36	33,54	37,81
٠ -	1,078	1,37	1,268
2'0	89'0	0,58	0,62
9'0	9'0	9,0	9,0
1,46	1,33	1,21	1,37
4	7,2	7,29	5,94
0,61	6'0	0,81	99'0
0,51	0,92	29'0	9'0
0,2	6'0	0,44	0,33
22	36,5	31	28
-	~	4	က
42,7	39,3	46,2	46
5	80	6	6
-	2	က	4
	42,7 1 22 0,2 0,51 0,61 4 1,46 0,6 0,7 1 37,4 53,42	42,7 1 22 0,2 0,51 0,61 4 1,46 0,6 0,7 1 37,4 37,4 53,42 39,3 7 36,5 0,9 0,92 0,9 7,2 1,33 0,6 0,68 1,078 31,36 33,81 46,11	42,7 1 22 0,2 0,51 0,61 4 1,46 0,6 0,7 1 37,4 37,4 53,42 39,3 7 36,5 0,9 0,92 0,9 7,2 1,31 0,6 0,68 1,078 31,36 33,81 46,11 46,2 4 31 0,67 0,81 7,29 1,21 0,6 0,58 1,37 33,54 46 57,13

1.3. Xác định phụ tải tính toán cho toàn phân xưởng

1.3.1. Phụ tải tính toán phần động lực của phân xưởng mở rộng được xác định như sau

- Vì số nhóm của phân xưởng mở rộng là 4 nên ta lấy hệ số đồng thời $k_{\alpha} = 0.85$.

Công suất tác dụng tính toán toàn phân xưởng phần động lực là:

$$P_{TTDL} = k_{dt}$$
. $\sum_{i=1}^{n} P_{dm}$

 $P_{TTDL} = 0.85 \text{ x } (37.4 + 31.36 + 33.54 + 37.81) = 119.09 \text{ (kW)}.$

Công suất phản kháng động lực của phân xưởng là:

$$Q_{TTDL} = 0.85 \text{ x } (37.4 + 33.81 + 46 + 48) = 140.42 \text{ (kVAR)}$$

Công suất toàn phần động lực của phân xưởng là:

$$S_{\text{LTDL}} = 0.85 \text{ x } (53.42 + 46.11 + 57.13 + 61) = 185.01 \text{ (kVA)}$$

Dòng điện tính toán động lực của phân xưởng là:

$$I_{TT} = \frac{S_{TT}}{\sqrt{3}.U_A} = \frac{185,01}{\sqrt{3} \times 380} = 0,281kA = 281(A).$$

1.3.2. Xác định phụ tải chiếu sáng của phân xưởng cơ khí. Phần chiếu sáng chung cho phân xưởng cơ khí

Phần chiếu sáng chung sử dụng các bóng đèn sợi đốt có $\cos \phi = 1$ và tg $\phi = 0 \Rightarrow Q_{TTCS} = 0$.

Các bóng đèn có công suất tiêu thụ như nhau và được phân bố đều trên diện tích toàn phân xưởng nên ta áp dụng phương pháp tính toán đơn giản là xác định phụ tải tính toán theo suất phụ tải chiếu sáng trên 1 đơn vị diện tích.

$$P_{TTCS} = P_0.S$$

Trong đó:

S: Diện tích phân xưởng (m²).

P₀: Suất phụ tải chiếu sáng (W/m²).

Tra bảng phụ lục với phân xưởng cơ khí và hàn thì có $P_1 = 16W/m^2$

Công suất tác dụng là:

$$P_{\text{TTCS}} = 16.20.36.10^{-3} = 11.5 \text{ (kW)}.$$

Công suất phản kháng:

$$Q_{TTCS'} = P_{TTCS'} \cdot tg\phi = 0.$$

Công suất toàn phần tính toán là:

$$S_{TTCS} = P_{TTCS} = 11.5 \text{ (kW)}.$$

1.3.3. Xác định phụ tải tính toán toàn phân xưởng mở rộng

Công suất tác dụng tính toán của phân xưởng là:

$$P_{\text{TTPX}} = P_{\text{TTDL}} + P_{\text{TTCS}} = 119,09 + 11,5 = 130,6 \text{ (kW)}.$$

Công suất phản kháng tính toán của phân xưởng mở rộng là:

$$Q_{TTTPX} = Q_{TTDL} + Q_{TTCS} = 140,42 + 0 = 140,42 \text{ (kVAR)}.$$

Công suất toàn phần tính toán của phân xưởng mở rộng là:

$$S_{TTPX} = \sqrt{P_{TT}^2 + Q_{TT}^2} = \sqrt{130.6^2 + 140.2^2} = 191.76 \text{ (kVA)}.$$

Dòng điện tính toán của phân xưởng mở rộng là:

$$I_{TTPX} = \frac{S_{TTPX}}{\sqrt{3.380}} = \frac{191,76}{\sqrt{3.380}} = 0,291(A).$$

Bảng thống kê về phụ tải tính toán của phân xưởng cơ khí

Tên	P _{TT} (kW)	Q _{TT} (kVAR)	S _{TT} (kVA)	Ĩ _{TT} (kA)
PXMR	130,6	140,42	191,76	0,29

2. Xác định phụ tải tính toán cho nhà máy

Do điều kiện thời gian có hạn nên một đồ án cung cấp điện chỉ yêu cầu học sinh tính toán cụ thể cho một phân xưởng nào đó còn các phân xưởng khác cho trước công suất đặt và diện tích. Sau đó xác định phụ tải tính toán cho toàn nhà máy.

Ví dụ: Xác định phụ tải tính toán cho một nhà máy cơ khí bao gồm các phân xưởng và các khu vực sau:

TT	Tên phân xưởng	P _d (kW)	Diện tích (m²)
1	Cơ khí lắp ráp I	150	600
2	Cơ khí lắp ráp II	90	300
3	Sửa chữa cơ khí	100	800
4	Nhà hành chính		160
5	Kho bãi		300

Giải

Do số liệu cho trước chỉ có công suất đặt, diện tích các phân xưởng và khu vực nên ta dùng phương pháp xác định phụ tải tính toán theo công suất đặt để xác định phụ tải cho toàn nhà máy.

2.1. Xác định phụ tải tính toán khu vực gia công cơ khí I

Công suất tính toán động lực.

$$P_{dl} = K_{nc} \cdot P_{dl}$$

Tra bảng phụ lục 1 có $K_{nc} = 0.4$; $\cos \varphi = 0.6$.

$$P_{dl} = 0.4 \times 150 = 60 \text{ (kW)}$$

Công suất phản kháng động lực.

$$Q_{dl} = P_{dl}$$
, $tg\phi$

Với $\cos \varphi = 0.6 -> tg\varphi = 1.33$

$$Q_{dl} = 60 \times 1,33 = 79,8 \text{ (kVAr)}$$

Công suất tính toán chiếu sáng.

$$P_{CS} = P_o . S$$

Tra bảng phụ lục 9 -> $P_0 = 15 \text{ (W/m}^2\text{)}$

$$P_{CS} = 15 \times 600 = 9000 \text{ (W)} = 9 \text{ (kW)}.$$

Công suất phản kháng chiếu sáng.

Dự định dùng đèn sợi đốt : $\cos \varphi = 1 \rightarrow tg\varphi = 0$.

$$Q_{CS} = P_{CS}$$
. $tg\varphi = 0$.

Công suất toàn phần phân xưởng cơ khí lắp rấp I.

$$S_{TTPX} = \sqrt{(P_{DL} + P_{CS})^2 + (Q_{DL} + Q_{CS})^2} = 105,5 \text{ (kVA)}$$

2.2. Xác định phụ tải cho phân xưởng cơ khí lắp ráp II

Với phân xưởng cơ khí lấp rấp II và sửa chữa cơ khí tính toán tương tự.

Khu vực nhà hành chính:

$$P_{CS} = P_0 \cdot S$$

Tra bảng phụ lục 9 -> $P_0 = 15 \text{ (W/m}^2)$

$$P_{CS} = 15 \times 160 = 2400 \text{ (W)} = 2.4 \text{ (kW)}$$

Dự định dùng đèn ống : $\cos \varphi = 0.8$ -> $tg\varphi = 0.75$.

$$Q_{CS} = P_{CS}$$
. $tg\phi = 2.4 \times 0.75 = 1.8 \text{ (kVAr)}$

Khu vực kho bãi:

$$P_{CS} = P_0 \cdot S$$

Tra bảng phụ lục $9^{\circ} -> P_0 = 10 \text{ (W/m}^2)$

Dự định dùng đèn sợi đốt: $\cos \varphi = 1 -> tg\varphi = 0$.

$$P_{CS} = 10 \times 300 = 3000 \text{ (W)} = 3 \text{ (kW)}.$$

$$Q_{cs} = 0$$
.

Từ các bước tính toán trên ta có bảng phụ tải tính toán các phân xưởng và khu vực.

TT	Tên phân xưởng	P_{DI}	P _{cs}	Q_{DL}	Q_{cs}	S _{tt}
1	Cơ khí lắp ráp I	60	9	79,8	0	105,5
2	Cơ khí lắp ráp II	72	4,5	34,56	0	82
3	Sửa chữa cơ khí	40	12	53,2	0	79,4
4	Nhà hành chính		2,4		1,8	3
5	Kho bãi		3		0	3

2.3. Xác định phụ tải tính toán của nhà máy

Lấy hệ số $K_{dt} = 0.85$.

$$\begin{split} & P_{\text{ttNM}} = K_{\text{dt}} \cdot \sum_{1}^{n} \left(P_{dti} + P_{CSi} \right) = 0.85 \text{ x } 202.9 = 172.47 \text{ (kW)}. \\ & Q_{\text{ttNM}} = K_{\text{dt}} \cdot \sum_{1}^{n} \left(Q_{dti} + Q_{CSi} \right) = 0.85 \text{ x } 169.36 = 143.96 \text{ (kVAr)}. \\ & S_{\text{ttNM}} = \sqrt{172.47^2 + 143.96^2} = 224.6 \text{ (kVA)}. \\ & \cos \varphi = \frac{172.47}{224.6} = 0.77 \,. \end{split}$$

III. THIẾT KẾ MANG CAO ÁP CỦA NHÀ MÁY

(Phần này được biên soạn với mục đích giúp người đọc có cách tổng quát về hệ thống cung cấp điện cho một nhà máy công nghiệp nói chung. Đối với sinh viên ngành điện trong các trường trung học chuyên nghiệp chỉ yêu cầu xác định vị trí đặt trạm phân phối trung tâm, xác định vị trí, số lượng, dung lượng các trạm biến áp phân xưởng).

Sau khi đã xác định được phụ tải tính toán của các phân xưởng và toàn nhà máy ta tiến hành thiết kế mạng cao áp của nhà máy.

Các số liêu cần thiết để thiết kế gồm có:

- Sơ đồ mặt bằng toàn nhà máy.
- Bảng phu tải tính toán của các phân xưởng.

Nội dung và trình tự các bước tính toán thiết kế sẽ được hướng dẫn theo ví dụ sau:

Ví dụ: Cho sơ đồ mặt bằng toàn nhà máy và bảng phụ tải tính toán các phân xưởng.

Bản vẽ mặt bằng nhà máy

Tỉ lệ 1/3000

Bảng phụ tải tính toán các phân xưởng

Ký hiệu MB	Tên phân xưởng	P _d (kW)	K _{nc}	cosφ	P _{tt} (kW)	Q _{tt} (kVAr)	S _{tt} (kVA)
1	Phân xưởng đúc	1050	0,8	0,85	885	548	1042
2	Phân xưởng lắp ráp	1015	0,8	0,85	857	531	1008
3	Phân xưởng nhiệt luyện	1500	0,31	0,6	- 507	674	845
4	Phân xưởng cơ khí I	1500	0,3	0,6	492	654	820
5	Phân xưởng sửa chữa cơ khí	630	0,2	0,71	128	126	180
6	Phân xưởng cơ khí II	1450	0,5	0,85	764	473	898
. 7	Phòng thí nghiệm	112	0,5	0,6	66	85	106
8	Phân xưởng nén khí	685	0,7	0,7	484	494	692
9	Nhà hành chính	139	0,8	0,8	112	84	140

Yêu cầu: Thiết kế mạng cao áp của nhà máy, biết rằng khoảng cách từ nhà máy tới trạm biến áp trung gian gần nhất là 6km, nhà máy làm việc 3 ca với $T_{\rm max} = 4200 h$.

Trình tự thiết kế thực hiện như sau:

1. Chọn sơ đồ cấp điện

Với quy mô nhà máy như số liệu trong bảng phụ tải thì cần đặt một trạm phân phối trung tâm nhận điện từ trạm biến áp trung gian, sau đó phân phối cho các trạm biến áp phân xưởng.

1.1. Xác định vị trí tram phân phối trung tâm

Xác định vị trí trạm phân phối trung tâm là xác định trung tâm phụ tải.

Trên sơ đồ mặt bằng nhà máy, vẽ một hệ toạ độ xoy, xác định trung tâm phân xưởng (giao điểm của 2 đường chéo) có toạ độ (x_i, y_i) , từ đó xác định trung tâm của phụ tải là điểm M có toạ độ M (x,y).

$$x = \frac{\sum xi.Si}{\sum Si} \qquad ; \quad y = \frac{\sum yi.Si}{\sum Si}$$

1.2. Xác định vị trí, số lượng, dung lượng các trạm biến áp phân xưởng

Căn cứ vào vị trí, công suất của các phân xưởng nên ta đặt 7 trạm biến áp phân xưởng.

- Trạm T1 cấp điện cho phân xưởng đúc.
- Trạm T2 cấp điện cho phân xưởng lắp rấp.
- Trạm T3 cấp điện cho phân xưởng nhiệt luyện và hành chính.
- Trạm T4 cấp điện cho phân xưởng cơ khí I.
- Trạm T5 cấp điện cho phân xưởng sửa chữa cơ khí và phòng thí nghiệm.
- Trạm T6 cấp điện cho phân xưởng cơ khí II.
- Trạm T7 cấp điện cho trạm khí nén.

Các trạm T1, T2, T3, T4, T6, T7 cấp điện cho các phân xưởng chính là những phụ tải loại một vì vậy đặt 2 máy biến áp. Còn trạm T5 thuộc phụ tải loại 3 nên chỉ cần đặt 1 máy. Các trạm dùng loại trạm kề, có 1 tường trạm chung với tường phân xưởng. Chọn máy biến áp do ABB chế tạo.

Chọn dung lượng các máy biến áp.

Trạm T1:

$$S_{dmB} \ge \frac{S_{tt1}}{1.4} = \frac{1042}{1.4} = 744kVA$$

Chọn dùng hai máy biến áp 800 - 10/0.4 có $S_{dm} = 800 \text{kVA}$.

Các trạm khác chọn tương tự, kết quả ghi trong bảng sau:

ТТ	Tên phân xưởng	S _{tt} kVA	Số máy	S _{dm} kVA	Tên trạm
1	Phân xưởng đúc	1042	2	800	T1
2	Phân xưởng lắp ráp	1008	2	800	T2
3 9	Phân xưởng nhiệt luyện Nhà hành chính	985	2	800	Т3
4	Phân xưởng cơ khí I	820	2	630	T4
5	Phân xưởng sửa chữa cơ khí Phòng thí nghiệm	286	1	315	Т5
6	Phân xưởng cơ khí II	898	2	630	T6
8	Nhà hành chính	692	2	500	T7

2. Phương án đi dây mạng cao áp

Vì nhà máy thuộc hộ tiêu thụ loại 1 nên dùng đường dây trên không lộ kép dẫn điện từ trạm biến áp trung gian về trạm phân phối trung tâm của nhà máy. Để đảm bảo mỹ quan và an toàn, mạng cao áp trong nhà máy dùng cáp ngầm. Từ trạm phân phối trung tâm đến các trạm biến áp T1, T2, T3, T4, T6, T7 dùng cáp lộ kép, đến trạm T5 dùng cáp lộ đơn.

Căn cứ vào vị trí đặt các trạm biến áp và trạm phân phối trung tâm trên mặt bằng nhà máy ta đề ra 2 phương án đi dây mang cao áp.

- Phương án 1: Các trạm biến áp được cấp điện trực tiếp từ trạm phân phối trung tâm.
- Phương án 2: Các trạm biến áp xa trạm phân phối trung tâm được lấy điện liên thông qua các trạm ở gần trạm phân phối trung tâm.

Phương án I

Phương án 2

Đường dây cung cấp từ trạm biến áp trung gian về trạm phân phối trung tâm của nhà máy dài 6km sử dụng đường dây trên không, dây nhôm lỗi thép, lộ kép.

Nhà máy sử dụng công suất lớn nhất T_{max} = 4200h, dây dẫn AC, tra bảng phụ lục 8 có J_{KT} = 1,1.

$$I_{ttim} = \frac{S_{ttim}}{2\sqrt{3} \times U_{dm}} = \frac{4591}{2\sqrt{3} \times 10} = 130,45 \text{ (A)}$$

$$F_{KT} = \frac{I_{ttmn}}{J_{KT}} = \frac{130,45}{1,1} = 118 \text{mm}^2$$

Chọn dây nhôm lỗi thép tiết diện 120mm^2 , AC - 120 kiểm tra dây đã chọn theo điều kiện dòng sự cố.

Tra bảng dây AC – 120 có I_{CP} = 375A.

Khi đứt một dây, dây còn lại chuyển toàn bộ công suất.

$$I_{SC} = 2 I_{tt} = 2 \times 130 \times 45 = 260.9 \text{ A} \text{ ta thấy}$$
 $I_{SC} < I_{cp}$

Kiểm tra đây dẫn đã chọn theo điều kiện tổn thất điện áp.

Với dây AC – 120 có khoảng cách trung bình hình học D = 1,26m tra bảng chọn $r_o = 0.27\Omega/km$, $x_o = 0.35\Omega/km$.

$$\Delta U = \frac{P.R + Q.X}{U_{dm}} = \frac{4334 \times 0,27 \times 6 + 2937 \times 0,35 \times 6}{2 \times 10} = 659V$$

$$\Delta U > \Delta U_{co} = 5\% U_{dm} = 500V$$

Tiết diện dây phải chọn tăng lên một cấp chọn dây AC - 150.

3. Tính chọn phương án cấp điện

Tính toán kinh tế kỹ thuật cho hai phương án cấp điện, chọn phương án tối ưu. Lưu ý rằng mục đích tính toán của phần này để so sánh tương đối giữa hai phương án cấp điện, vì cả hai phương án đều có các phần tử giống nhau (đường dây cung cấp từ trạm biến áp trung gian về trạm phân phối của nhà máy, 7 trạm biến áp phân xưởng), do đó chỉ cần tính toán so sánh các phần tử khác nhau.

Dự định mạng cao áp dùng cáp XLPE lỗi đồng bọc thép của Nhật, có các thông số kỹ thuật cho trong bảng phụ lục.

* Phương án I.

Chọn cáp từ trạm phân phối trung tâm đến Tl

$$I_{\text{max}} = \frac{1042}{2\sqrt{3} \text{ x}10} = 30 \text{ A}$$

Với cáp đồng và $T_{max} = 4200$ h tra bảng được $J_{KT} = 3.1 \text{A/mm}^2$.

$$F_{ki} = \frac{30}{3.1} = 9.7 mm^2$$

Chọn cáp XLPE có tiết diện tối thiểu 16mm² -> 2 XLPE (3 x 16).

Các đường cáp khác tính toán tương tự, kết quả ghi trong bảng, vì cáp đã chọn vượt cấp nên không cần kiểm tra theo ΔU và i_{CP} .

Bảng: Kết quả chọn cáp cao áp 10kV phương án 1

Đường cáp	F (mm²)	l (m)	Đơn giá (đ/m)	Thành tiền
PPTT - T1	16	215	48.000	10.320.000
PPTT – T2	16	55	48.000	2.640.000
PPTT_T3	16	85	48.000	4.080.000
PPTT – T4	16	20	48.000	960.000
PPTT – T5	16	105	48.000	5.050.000
PPTT - T6	16	85	48.000	4.080.000
<u> PPTT – T7</u>	16	145	48.000	8.880.000

K1 = 36.000.000a

Xác định tổn thất công suất tác dụng ΔP:

$$\Delta P = \frac{S^2}{U^2} R. 10^{-3} \text{ kW}$$

Tổn thất ΔP trên đoạn cáp từ PPTT - T1:

$$\Delta P = \frac{1042^2}{10} \times 0.316 \times 10^{-3} = 34.3 \text{kW}$$

Các thông số đường cáp và kết quả tính toán ΔP ghi trong bảng.

Bảng: Kết quả tính toán AP phương án 1

Đường cáp	F (mm²)	l (m)	r _o (Ω/km)	R (Ω)	S (kVA)	ΔP (kW)
PPTT – T1	16	215	1,47	0,316	1042	3,43
PPTT - T2	16	55	1,47	0,081	1008	0,82
PPTT – T3	16	85	1,47	0,125	985	1,21
PPTT - T4	16	20	1,47	0,029	820	0,23
PPTT – T5	16	105	1,47	0,154	286	0,13
PPTT - T6	16	85	1,47	0,125	898	1,05
PPTT – T7	16	145	1,47	0,213	692	1,02

 $\Delta P1 = 7.89kW$

Từ $T_{max} = 4200h$ và $cos\phi = 0.76$ tra bảng có $\tau = 3000h$.

Lấy
$$a_{vh} = 0.1$$
; $a_{tc} = 0.2$; $c = 750 d/kWh$.

Chi phí tính toán hàng năm của phương án 1 là:

$$Z_1 = (0.1 + 0.2) \times 36.000.000 + 750 \times 7.89 \times 3000 = 28.552.500$$
đ

Chi phí tính toán phương án 2 là:

$$Z_2 = (0.1 + 0.2) \times 28.980.000 + 750 \times 9.47 \times 3000 = 30.001.500$$

Sau đây là bảng so sánh kinh tế hai phương án:

Bảng: So sánh kinh tế hai phương án

Phương án	K, 10 ⁶ đ	Y_{Δ_A} , 10^6 đ	Z, 10 ⁶ đ
Phương án 1	30	17.752	28.552
Phương án 2	28	21.307	30.001

Trong đó: $Y_{\Lambda A}$ là giá tiền tổn thất ΔA hàng năm.

$$Y_{\Delta A} = c. \Delta A = c. \Delta P. \tau d$$

Dựa vào bảng so sánh ta quyết định chọn phương án 1 là phương án tối ưu mạng cáp cao áp. Phương án này có chí phí nhỏ, dễ vận hành sửa chữa.

4. Lựa chọn sơ đồ trạm phân phối trung tâm và các trạm biến áp phân xưởng

4.1. Sơ đồ tram PPTT

Vì nhà máy cơ khí thuộc loại quan trọng nên dùng sơ đồ một hệ thống thanh góp có phân đoạn cho trạm PPTT. Ở mỗi tuyến dây vào và ra khỏi thanh góp và liên lạc giữa 2 phân đoạn thanh góp đều dùng máy cắt hợp bộ. Bảo vệ chống sét truyền từ đường dây vào trạm ta đặt chống sét van trên mỗi phân đoạn thanh góp. Đặt trên mỗi phân đoạn thanh góp một máy biến áp đo lường. Chọn dùng các tủ hợp bộ của hãng SIEMENS, cách điện bằng SF6 không cần bảo trì. Loại 8DC11, hệ thống thanh góp đặt sẵn trong các tủ có các thông số sau: $U_{\rm dm} = 12 {\rm kV}$, $i_{\rm dm} = 1250 {\rm A}$.

 $I_{cátN} = 25kA$, $I_{cát N max} = 63kA$.

Sơ đồ ghép nối trạm PPTT

									*		φ	L+1-0				<u> </u>	_
1	2	3_	4	5_	6	7	8	9	10	11	12	13	14	15	16	17	18

Trong đó:

1 và 18: Tủ máy cắt đầu vào.

Từ 2 ÷ 8: Các tủ máy cắt đầu ra của phân đoạn TG1.

9 và 11: Tủ BU và chống sét vàn.

10: Tủ máy cắt liên lạc.

Từ 12 ÷ 17: Các tủ máy cắt đầu ra của phân đoạn TG2.

4.2. Sơ đồ các trạm biến áp phân xưởng

Vì các trạm biến áp phân xưởng đặt gần trạm PPTT, do đó phía cao áp chỉ cần đặt dao cách ly, phía hạ áp đặt áptômát tổng và các áptômát nhánh. Những trạm hai máy biến áp đặt thêm áptômát liên lạc giữa 2 phân đoạn.

Đặt 1 tủ đầu vào 10kV có dao cách ly 3 vị trí, cách điện bằng SF6, không phải bảo trì, loại 8DH10 có các thông số sau:

$$U_{dm} = 12kV, I_{dm} = 200A.$$

$$U_{chiu\ dumg} = 25kV$$
, $I_N = 25kV$.

Các máy biến áp chọn loại do ABB sản xuất tại Việt Nam.

Phía hạ áp chọn dùng các áptômát do Nhật Bản chế tạo, đặt trong vỏ tủ tự chế tao.

Với trạm 1 máy biến áp đặt 1 tủ áptômát tổng và 1 tủ áptômát nhánh.

Với trạm 2 máy đặt 5 tủ: 2 tủ áptômát tổng, một tủ áptômát phân đoạn và 2 tủ áptômát nhánh.

Dòng điện lớn nhất qua áptômát tổng máy 800kVA:

$$I_{\text{max}} = \frac{800}{\sqrt{3} \times 4} = 1156A$$

Dòng điện lớn nhất qua áptômát máy 630kVA

$$I_{\text{max}} = \frac{630}{\sqrt{3} \times 0.4} = 910A$$

Dòng điện lớn nhất qua áptômát tổng máy 500kVA

$$I_{\text{max}} = \frac{500}{\sqrt{3} \times 0.4} = 722,5A$$

Dòng điện lớn nhất qua áptômát tổng máy 315kVA:

$$I_{\text{max}} = \frac{315}{\sqrt{3} \times 0.4} = 455A$$

Chủng loại và số lượng áptômát được ghi trong bảng:

Bảng: Áptômát đặt trong các trạm BAPX do Nhật Bản chế tạo

Trạm biến áp	Loại	Số lượng	U _{dm} , V	I _{dm} , A	I _{cát N} , kA
T1, T2, T3	C 1251N -	3	500	1250	42
(2 x 800kVA)	C801N	4	500	800	42
T4, T6	C 1001N	3	500	1000	42
(2 x 630kVA)	NS 600E	4	500	600	42
, T5	C801E	1	500	800	42
(1 x 315kVA)	NS 600E	2	500	500	18
Т7	NS 600E	3	500	600	18
(2 x 500kVA)	NS 400E	4	500	400	18

Sơ đồ đấu nối trạm biến áp T5, đặt một MBA

Sơ đồ đấu nối trạm biến áp T1, T2, T3, T4, T6, T7, đặt hai MBA

Sơ đồ nguyên lý mạng cao áp toàn nhà máy

5. Tính toán ngắn mạch - kiểm tra các thiết bị điện đã chọn

5.1. Tính toán ngắn mạch

Tính điểm ngắn mạch N1 tại thanh cái trạm PPTT để kiểm tra máy cắt, thanh góp và tính các điểm ngắn mạch N2 tại phía cao áp trạm BAPX để kiểm tra cáp và tủ cao áp các trạm.

$$X_H = \frac{U_{tb}^2}{S_N} = \frac{10.5^2}{\sqrt{3} \times 10 \times 63} = 0.09\Omega$$

Dòng điện ngắn mạch tại N1:

$$I_{N11} = \frac{U_{tb}}{\sqrt{3}.Z_1} = \frac{10.5}{\sqrt{3} \times \sqrt{1.26^2 + (2.22 + 0.09)^2}} = 2.3 \text{kA}$$

$$i_{xkN1} = \sqrt{2} \times 1.8 \times 2.5 = 7.78 \text{kA}$$

Dòng điện ngắn mạch N2 tại trạm T1:

$$I_{N2} = \frac{U_{ib}}{\sqrt{3} \times Z_1} = \frac{10.5}{\sqrt{3} \times \sqrt{(1.26 + 0.311)^2 + (2.22 + 0.09 + 0.03)^2}} = 2.1 \text{kA}$$

$$i_{xkN1} = \sqrt{2} \times 1.8 \times 2.1 = 6.5 \text{kA}$$

Các điểm N2 khác tính tương tự, kết quả ghi trong bảng:

Bảng: Kết quả tính dòng điện ngắn mạch

Điểm tính N	I _N , kA	i _{xk} , kA
Thanh cái PPTT	2,5	7,78
Thanh cái T1	2,1	6,53
Thanh cái T2	2,3	7,16
Thanh cái T3	2,2	6,85
Thanh cái T4	2,4	7,4
Thanh cái T5	2,2	6,8
Thanh cái T6	2,2	6,8
Thanh cái T7	2,1	6,5

So sánh kết quả tính dòng ngắn mạch với các thông số của tủ máy cắt 8DC11 đặt tại PPTT ta thấy máy cắt và thanh cái có khả năng cắt và ổn định động dòng ngắn mạch lớn hơn rất nhiều.

5.2. Kiểm tra các thiết bị đã chọn

Với cáp chỉ cần kiểm tra tuyến có dòng ngắn mạch lớn nhất.

Tiết diện ổn định nhiệt của cáp:

$$F = 16mm^2 > 6 \times 2.4 \times \sqrt{0.5} = 10.1mm^2$$

Vậy chọn cáp 16mm² cho tuyến cáp là hợp lý.

Khả năng chịu dòng ngắn mạch của dao cách ly tử cao áp đầu vào các trạm BAPX cũng lớn hơn nhiều so với trị số dòng điện ngắn mạch.

IV. THIẾT KẾ MANG HA ÁP CỦA NHÀ MÁY

Mạng hạ áp của nhà máy được tính bắt đầu từ phía thứ cấp của các trạm biến áp phân xưởng tới các máy sản xuất trong từng phân xưởng.

Đối với hệ trung học chuyên nghiệp thì đồ án môn học *Cung cấp điện* chỉ yêu cầu học sinh thiết kế mạng hạ áp cho 1 phân xưởng cơ khí có số liệu cụ thể như: sơ đồ mặt bằng phân xưởng, các thông số của các máy trong phân xưởng.

Việc thiết kế mạng hạ áp được tiến hành sau khi đã xác định phụ tải tính toán của phân xưởng, nguồn cấp cho phân xưởng đó. Các số liệu cần thiết để tính toán thiết kế là:

- Bảng liệt kê phụ tải tính toán của các nhóm phân xưởng.
- Thông số của trạm biến áp cấp nguồn cho phân xưởng.

Nội dung và trình tự tính toán được hướng dẫn cụ thể theo ví dụ sau:

Ví dụ: Thiết kế mạng điện hạ áp phân xưởng cơ khí sau.

8 2 (9) (9) 5 3 3 10 Văn phòng 5 7 5 Nhà kho phân xưởng 6000 6000 6000 6000 6000

36000

Bản vẽ mặt bằng phân xưởng cơ khí

Bảng: Phụ tải của các máy trong phân xưởng cơ khí

Tên máy	Ký hiệu mặt bằng	Số lượng	U (V)	P (kW)	cosφ	η%
Máy tiện	1	6	380	4,5	0,62	75
Máy phay	2	3	380	7,0	0,68	71
Máy bào	3	5	380	7,0	0,52	65
Máy cưa	4	3	380	4,5	0,73	69
Máy mài	5	4	380	2,8	0,83	75
Máy khoan	6	3	380	4,5	0,64	7 0
Máy búa	7	1	380	14	0,62	65
Máy hàn	8	1	220	20kVA	0,74	ε =25%
Quạt giớ	9	4	380	1,7	0,65	82
Máy doa	10	1	380	10	0,61	74

Giải

1. Xác định phụ tải tính toán

Sau khi xác định phụ tải tính toán bằng phương pháp số thiết bị hiệu quả.

Ta có bảng tổng kết sau:

Bảng tổng kết phụ tải tính toán của từng nhóm

Nhóm	n	ΣP _{dmi} (kW)	P _{TT} (kW)	Q _{TT} (kVA R)	S _{TT} (kVA)	I _{TT} (A)
1	5	42,7	37,4	37,4	53,42	81,16
2	8	39,3	31,36	33,81	46,11	70
3	9	46,2	33,54	46	57,13	86
4	9	46	37,81	48	61	93

Tên	P _{TT} (kW)	Q _{TT} (kVAR)	S _{TT} (kVA)	I _{TT} (kA)
PXMR	130,6	140,42	191,76	0,29

2. Phương án cấp điện cho phân xưởng cơ khí

2.1. Chọn nguồn cấp

Người làm đồ án phải căn cứ vào tắm quan trọng của phân xưởng cơ khí (PXCK) trong nhà máy để quyết định chọn nguồn cấp cho phù hợp (dựa vào phần giới thiệu chung về nhà máy).

Theo ví dụ trên ta có thể chọn nguồn cấp cho phân xưởng cơ khí là một trạm biến áp phân xưởng riêng, loại trạm kề có một tường trạm chung với phân xưởng cơ khí, trong trạm đặt một MBA do ABB sản xuất tại Việt Nam có các thông số sau:

 $S_{dm} = 200kVA$ $U_{dm} = 10/0,4kV$ $U_{N} = 4,5\%$ $P_{N} = 3,45kW$

2.2. Chọn phương án cấp điện cho phân xưởng cơ khí

Người thiết kế cần giới thiệu đầy đủ các phương án đi dây, các sơ đồ nối dây cơ bản, phân tích ưu nhược điểm của chúng và các lý do để chọn phương án thích hợp cho PXCK. Người thiết kế cũng cần phải nêu bật được ưu điểm của các phần tử được chọn trong sơ đồ nguyên lý mạng hạ áp so với các phần tử khác có cùng chức năng.

Theo ví dụ trên ta có thể chọn phương án đi dây như sau:

- Trong phân xưởng đặt một tủ phân phối (TPP) làm nhiệm vụ nhận điện từ trạm biến áp phân xưởng (BAPX) về và phân phối cho các tủ động lực (TĐL).
- Đường dây từ trạm BAPX về TPP và các đường dây từ TPP đến các TĐL dùng cáp lõi đồng vỏ bọc cao su hoặc PVC đặt trong ống bảo vệ.
- Đường dây từ TĐL đến các phụ tải dùng cáp cao su lõi đồng vỏ bọc PVC đặt trong hào cáp.

- Sơ đồ nối dây cho PXCK là sơ đồ nối dây hỗn hợp.
- Tất cả các thiết bị đóng cắt bảo vệ dùng áptômát.

Sau khi quyết định chọn phương án cấp điện cho PXCK ta tiến hành vẽ sơ đồ nguyên lý và sơ đồ đi dây của PXCK.

Sơ đồ nguyên lý

3. Lựa chọn các phần tử có trong sơ đồ

3.1. Tính toán ngắn mạch mạng cung cấp điện cho PXCK

Ta có sơ đồ nguyên lý sau:

Nhìn vào sơ đồ trên có thể thấy rằng dòng ngắn mạch I_N tại thanh cái của trạm BAPX là lớn nhất trong mạng điện hạ áp, do đó để đơn giản khi tính toán có thể cho phép lấy trị số dòng ngắn mạch I_N làm số liệu để tính chọn cũng như kiểm tra các phần tử có trong sơ đồ.

So với tổng trở của MBA thì tổng trở của áptômát đặt tại trạm BAPX là rất nhỏ có thể bỏ qua, khi đó I_N được tính theo sơ đồ thay thế sau:

Điện trở và điện kháng của MBA quy về phía hạ áp có thể tra bảng hoặc tính theo công thức sau:

$$R_0 = \frac{\Delta P_N \cdot U_{\text{dmB}^2}}{S_{\text{dmB}^2}} 10^6 = \frac{3,45 \times 0,4^2}{200^2} 10^6 = 13,8 \, (m\Omega)$$

$$X_0 = \frac{U_N \cdot U_{\text{dmB}^2}}{S_{\text{dmB}^2}} 10^4 = j \frac{4,5 \times 0,4^2}{200} 10^4 = j36 \, (m\Omega)$$

$$V_{\text{Ay}} ZB = \sqrt{13,8^2 + 36^2} = 38,55 \, (\Omega)$$

$$I_N = \frac{U_{\text{dm}}}{\sqrt{3} \cdot ZB} = \frac{400}{\sqrt{3} \times 38,55} = 5,9 \, (\text{kA})$$

3.2. Tính chọn các áptômát tổng (đặt trong trạm BAPX, TPP, TĐL và tủ chiếu sáng)

Chọn áptômát theo điều kiện sau:

$$+U_{dmA} \ge U_{ng}$$

+
$$I_{dmA} \ge I_{u}$$

+
$$I_{NA} \ge I_N$$

Chọn áptômát tổng tại trạm BAPX và áptômát tổng tại tủ phân phối

$$U_{dmA} \ge 400 (V)$$

$$I_{dmA} \ge I_{tt} \ge I_{dmBA} \ge 294 (A)$$

Cần lưu ý rằng 2 áptômát trên chọn theo dòng điện định mức của MBA

$$I_{dmMBA} = \frac{S_{dm}}{\sqrt{3} \cdot U_{dm}} = \frac{200}{\sqrt{3} \times 0.4} = 289 \text{ (A)}$$

$$I_{NA} \ge 5.9 \text{ (kA)}$$

Tra bảng chọn áptômát SA403-H do Nhật Bản chế tạo có các thông số sau:

$$Số cực = 3$$

$$I_{dm} = 350A$$

$$I_N = 45kA$$

$$U_{dm} = 500V$$

Tính chọn các áptômát nhánh tại tủ phân phối và các áptômát tổng tại các tủ động lực và tủ chiếu sáng.

Lưu ý: Các áptômát này tính chọn theo dòng điện tính toán của các nhóm máy.

- Tính chọn áptômát đóng cắt bảo vệ cho nhóm máy 1:

$$U_{\rm dmA} \ge U_{ng} \ge 380 \text{ (V)}$$

$$I_{\rm dmA} \ge I_u \ge 81,16 \ (A)$$

$$I_{NA} \ge I_N \ge 5.9 \text{ (kA)}$$

Tra bảng chọn áptômát loại 100AF, kiểu ABH103a (do LG chế tạo) có các thông số sau:

$$U_{dm} = 600V$$

$$I_{dm} = 100A$$

$$I_{N} = 10kA$$
Số cực = 4

Kích thước (rộng x cao x sâu) = (90mm x 155mm x 64mm).

- Các áptômát của các nhóm máy khác chọn tương tự, kết quả tính toán phải được đưa vào bảng tổng hợp. (Lưu ý là nên chọn các áptômát do cùng một hãng chế tạo).

3.3. Tính chọn các áptômát nhánh đặt tại các tủ động lực

Lưu ý rằng các áptômat này làm nhiệm vụ đóng cắt bảo vệ cho các phụ tải, do đó phải được tính chọn theo dòng tính toán của các phụ tải:

- Dòng điện tính toán của phụ tải:

$$I_{TT} = \frac{P_{TT}}{\sqrt{3}.U_{d}.\cos\varphi.\eta}$$

P_{TT}: Công suất tính toán của tải (kW).

cosφ: Hệ số công suất.

η: Hiệu suất của máy.

- Dòng điện tính toán của máy tiện:

$$I_{tt} = \frac{4.5 \times 10^3}{\sqrt{3} \times 380 \times 0.62 \times 0.75} = 14.7 \text{ (A)}^{-1}$$

Tính toán tương tự ta có:

Phụ tải	I _{TT} (A)
Máy phay	22,02
Máy bào	31,5
Máy cua	13,5
Máy mài	6,8
Máy khoan	15,3
Máy búa	52,8
Máy hàn	36,7
Quạt gió	4,8
Máy doa	633,6

- Tính chọn áptômát cho máy tiện:

$$U_{dmA} \ge U_{ng} \ge 380(V)$$

 $I_{dmA} \ge I_{u} \ge 14.7(A)$

Tra bảng chọn áptômát loại 100AF, kiểu ABE-103a (do LG chế tạo) có các thông số sau:

$$U_{dm} = 600 \text{ V}$$

$$I_{dm} = 20 \text{ A}$$

$$I_{N} = 5 \text{ kA}$$
Số cực = 3

Kích thước (rộng x cao x sâu) = (75 mm x 130 mm x 64 mm).

Không cần kiểm tra điều kiện cắt ngắn mạch vì xa nguồn.

- Các áptômát của các máy khác chọn tương tự, kết quả tính toán phải được đưa vào bảng tổng hợp. (Lưu ý là nên chọn các áptômát do cùng một hãng chế tạo).

Đến đây chúng tôi xin nhấn mạnh rằng tất cả các áptômát được chọn ở trên là loại áptômát vừa có thanh nhiệt để bảo vệ quá tải, vừa có cuộn dây để

bảo vệ ngắn mạch, do đó chúng được tính chọn theo các điều kiện ở trên. Trong thực tế còn nhiều loại áptômát tác động theo các nguyên tắc khác và các thiết bị khác có cùng chức năng. Nếu người làm đồ án chọn loại thiết bị nào thì phải tính chọn theo đúng điều kiện của thiết bị đó (tham khảo sách chuyên môn, hoặc theo lý thuyết đã được học).

3.4. Lựa chọn cáp tổng (Từ trạm BAPX về TPP)

Cần lưu ý rằng cáp tổng phải được chọn theo dòng định mức của máy biến áp:

$$I_{dmMBA} = \frac{S_{dm}}{\sqrt{3}.U_{dm}} = \frac{200}{\sqrt{3} \times 0.4} = 289(A)$$

Chọn cáp tổng theo điều kiện phát nóng:

$$I_{ep} \ge \frac{295}{K_1 \cdot K_2} = \frac{295}{0,82 \times 1} = 359,7(A)$$

Tra bảng chọn cáp 4 lõi ruột đồng ký hiệu CVV do CADIVI chế tạo có tiết diện 185mm^2 , $I_{cp} = 367(A)$.

Kiểm tra theo điều kiện kết hợp với áptômát bảo vệ:

$$I_{cp}$$
, K_1 , $K_2 \ge \frac{1,25 \cdot I_{dmA}}{1.5} \ge \frac{1,25 \times 350}{1.5} \ge 291(A)$

Mà Icp. K1.K2 = $367 \times 0.82 \times 1 = 300(A)$ thoả mãn điều kiện trên.

Không cần kiểm tra tổn thất điện áp vì đường dây ngắn.

3.5. Lựa chọn dây dẫn từ tủ phân phối đến các tủ động lực

Các điều kiện chọn và kiểm tra như trên (lưu ý chọn theo đồng điện tính toán của các nhóm máy), các số liệu phải đưa vào bảng tổng kết.

Chọn dây dẫn từ tủ phân phối đến tủ động lực 1:

$$I_{cp} \ge \frac{I_{u \text{ Nhom1}}}{K_1 \cdot K_2}$$

Lấy nhiệt độ môi trường xung quanh là 30°C, đi chung hào với đường dây đến tủ động lực 4, tra bảng lấy $K_1 = 0.95$; $K_2 = 0.9$.

Vây
$$I_{cp} \ge \frac{I_{ttNhom1}}{K_1 \cdot K_2} = \frac{81,6}{0,95 \times 0,9} = 95,4(A)$$

Tra bảng chọn cáp hạ áp 4 lõi đồng cách điện PVC, ký hiệu CVV (do CADIVI chế tạo) có I_{cp} = 102 (A), tiết diện = $22mm^2$.

Kiểm tra theo điều kiện kết hợp với áptômát bảo vệ:

$$I_{cp}$$
. K1. K2 $\geq \frac{1,25.I_{dmA}}{1,5} \geq \frac{1,25 \times 100}{1,5} \geq 83,3(A)$

Mà I_{cp} : K_1 : $K_2 = 102 \times 0.95 \times 0.9 = 87.2(A)$ thoả mãn điều kiện trên.

Không cần kiểm tra tổn thất điện áp vì đường dây ngắn.

Đường dây từ tử phân phối đến các tử động lực khác và tử chiếu sáng chọn tương tự, các số liệu của dây dẫn được chọn phải được đưa vào bảng tổng kết. (Lưu ý là nên chọn đây dẫn do cùng một hãng chế tạo).

3.6. Chọn dây dẫn từ các tủ động lực đến các phụ tải

Các điều kiện chọn và kiểm tra như trên (Lưu ý chọn theo dòng điện tính toán của các máy), các số liệu phải đưa vào bảng tổng kết.

- Tính chọn dây dẫn từ tủ động lực 2 đến máy tiên:

$$I_{ep} \ge \frac{I_{\text{it May tien}}}{K_{\perp} \cdot K_{2}}$$

Lấy nhiệt độ môi trường xung quanh là 30°C, đi chung hào với 7 đường dây đến các máy khác, tra bảng lấy $K_1=0.95;\,K_2=0.7.$

Vậy
$$I_{ep} \ge \frac{I_{\text{tt May tien}}}{K_1 \cdot K_2} = \frac{14.7}{0.95 \times 0.7} = 22.1(A)$$

Tra bảng chọn cáp hạ áp 4 lỗi đồng cách điện PVC, ký hiệu CVV (do CADIVI chế tạo) có I_{cp} = 24 (A), tiết diện = 2mm².

Kiểm tra theo điều kiện kết hợp với áptômát bảo vệ:

$$I_{cp}$$
, K_1 , $K_2 \ge \frac{1,25.I_{dmA}}{1,5} \ge \frac{1,25 \times 20}{1,5} \ge 16,67(A)$

Mà $I_{cp}K_1$, $K_2 = 24 \times 0.95 \times 0.7 = 15.96(A)$ không thoả thoả mãn điều kiện trên. Vậy phải chọn dây tăng lên một cấp: chọn cáp hạ áp 4 lõi đồng cách điện PVC, ký hiệu CVV (do CADIVI chế tạo) có $I_{cp} = 27(A)$, tiết diện = 2.5mm^2 .

Kiểm tra lại $I_{cp}K_1K_2 = 27 \times 0.95 \times 0.7 = 17.96(A)$ thoả mãn điều kiện trên.

Không cần kiểm tra tổn thất điện áp vì đường dây ngắn.

Đường dây từ tủ động lực đến các phụ tải khác chọn tương tự, các số liệu của dây dẫn được chọn phải được đưa vào bảng tổng kết. (Lưu ý là nên chọn dây dẫn do cùng một hãng chế tạo).

3.7. Lựa chọn thanh cái

Trong mạng điện của PXCK thì thanh cái được đặt tại trạm BAPX, tủ phân phối và trong các tủ động lực, trong đó thanh cái đặt tại trạm BAPX và tủ phân phối được tính chọn như nhau.

- Tính chon thanh cái đặt ở trạm BAPX và TPP:
- + Theo điều kiện dòng phát nóng lâu dài cho phép:

$$K_1$$
, K_2 , $I_{cp} \ge I_{cb}$

Dòng điện lớn nhất qua thanh cái là dòng định mức của MBA:

$$I_{dmMBA} = \frac{S_{dm}}{\sqrt{3}.Udm} = \frac{200}{\sqrt{3} \times 0.4} = 289(A)$$

Tra bảng chọn thanh cái bằng đồng có kích thước $25 \times 3 \text{ (mm}^2)$ có dòng điện phụ tải cho phép là 340 (A), dự định đặt 3 thanh góp đứng cách nhau 15cm, mỗi thanh đặt trên 2 sứ cách điện cách nhau 70cm.

Vây tra bảng lấy $K_1 = 0.95$; $K_2 = 0.95$ suy ra K_1 . K_2 . $I_{cp} \ge I_{cb} = 0.95$ x 0.95 x $340 \ge 289 \Leftrightarrow 306 \ge 289$ thoả mãn điều kiện K_1 . K_2 . $I_{cp} \ge I_{cb}$.

+ Khả năng ổn định động, kG/cm²:

$$\delta_{cp} \ge \delta_{tt}$$
Ta có $I_N = 5.9$ (kA), do đó $i_{xk} = 1.8 \times \sqrt{2} \times 5.9 = 15(A)$

Vậy
$$F_{tt} = 1.76.10^{-2} \frac{l}{a} i_{xk} = 1.76 \times 10^{-2} \frac{70}{15} 15 = 1.232(kG)$$

Mômen uốn tính toán:

$$M = \frac{F_u \cdot l}{10} = \frac{1,232 \times 70}{10} = 8,624(kGcm)$$

Mômen chống uốn của thanh đồng $25 \times 3 \text{ (mm}^2)$ là:

$$w = \frac{2.5 \times 0.3^2}{6} = 0.0375 (kG/cm^3)$$

$$v_{\text{ay}} \ \sigma_u = \frac{M}{w} = \frac{8,624}{0.0375} = 229,97 (\text{kG/cm}^2)$$

Mà σ_{cp} của đồng = 1400 (kG/cm²) lớn hơn 229,97 (kG/cm²).

Thoả mãn điều kiện $\delta_{ep} \geq \delta_{ii}$.

+ Khả năng ổn định nhiệt, mm²:

$$F \ge \alpha I_{\infty} \sqrt{t_{qd}}$$

Lấy t_{qd} = thời gian cắt ngắn mạch = 0,5 giây.

Tiết diện thanh cái $F = 25 \times 3 = 75 \text{ (mm}^2)$.

Vậy
$$F \ge \alpha I_{\infty} \sqrt{t_{qd}} = 75 \ge 6 \times 5.9 \times \sqrt{0.5} \Leftrightarrow 75 \ge 25$$
 thoả mãn điều kiện.

Quyết định chọn thanh cái đặt tại trạm BAPX và tủ phân phối là thanh cái bằng đồng có kích thước $25 \times 3 \text{ (mm}^2\text{)}$ đặt 3 thanh nằm ngang cách nhau 15cm, mỗi thanh đặt trên 2 sứ cách điện cách nhau 70cm.

- Tính chọn thanh cái cho các tủ động lực:

Khi thực hiện bước này rất có thể người thiết kế gặp phải một trong hai trường hợp sau:

- + Trường hợp thứ nhất dòng điện tính toán của các nhóm máy tương đối lớn có thể chọn thanh cái theo tiêu chuẩn theo bảng tra.
- + Trường hợp thứ hai dòng điện tính toán của các nhóm máy nhỏ không thể chọn thanh cái theo tiêu chuẩn theo bảng tra.

Khi đó ta xử lý như sau:

- Với trường hợp thứ nhất ta tiến hành tính chọn và kiểm tra thanh cái cho tủ động lực tương tự như cho tủ phân phối ở trên (lưu ý dòng điện lớn nhất chạy qua thanh cái của tủ động lực là dòng điện tính toán của các nhóm máy).
 - . Với trường hợp thứ hai ta tiến hành tính chọn như sau:

Chọn tiết diện thanh cái theo mật độ dòng điện an toàn:

$$S_{te} \ge \frac{I_{tt \, Nhom}}{I} (mm^2)$$

Lấy $J = 2.5(A)/1(mm^2)$.

Lấy chiều dày thanh cái (h) tối thiểu = 2(mm), khi đó bề rộng thanh cái (b) sẽ là: $b = \frac{S}{h}(mm)$.

Sau đó tính chọn tương tự như phần tính chọn ở trên.

Ví dụ: Tính chọn thanh cái cho tủ động lực 1 có dòng điện tính toán là 81,6(A).

Vậy chọn tiết diện thanh cái theo mật độ dòng điện an toàn:

$$S_{1c} \ge \frac{I_{1c}Nhom}{J} = \frac{81.6}{2.5} = 32.64 (mm^2)$$

Lấy chiều dày thanh cái (h) tối thiểu = 2(mm), khi đó bề rộng thanh cái (b) sẽ là: $b = \frac{S}{h} = \frac{32,64}{2} = 16,32(mm)$.

Dự định đặt 3 thanh góp kích thước $b \times h = 20 \times 2$ (mm) đứng cách nhau 15cm, mỗi thanh đặt trên 2 sứ cách điện cách nhau 70cm (chú ý chiều dài thanh cái phải chọn theo số lượng và kích thước các áptômát có trong tủ).

Chỉ cần kiểm tra theo hai điều kiện:

+ Khả năng ổn định động, kG/cm²

$$\delta_{cp} \ge \delta_{tt}$$
Ta có $I_N = 5.9$ (kA), do đó $i_{xk} = 1.8 \times \sqrt{2} \times 5.9 = 15(A)$
Vày
$$F_{tt} = 1.76 \times 10^{-2} \frac{l}{a} i_{xk} = 1.76 \times 10^{-2} \frac{70}{15} 15 = 1.232(kG).$$

Mômen uốn tính toán:

$$M = \frac{F_u \cdot l}{10} = \frac{1,232 \times 70}{10} = 8,624 \text{ (kG/cm}^2)$$

Mômen chống uốn của thanh cái đồng là:

$$w = \frac{2 \times 0.2^2}{6} = 0.014 \text{ (cm}^2)$$

$$V_{\text{ay}} \sigma_{tt} = \frac{M}{w} = \frac{8,624}{0,014} = 616 \text{ (kG/cm}^2\text{)}$$

Mà σ_{ep} của đồng = 1400 (kG/cm²) lớn hơn 616 (kG/cm²) thoả mãn điều kiện $\delta_{ep} \geq \delta_{tt}$.

+ Khả năng ổn định nhiệt, mm²:

$$F \ge \alpha I_{\infty} \sqrt{t_{qd}}$$

Lấy t_{vd} = thời gian cắt ngắn mạch = 0,5 giây.

Tiết diện thanh cái $F = 20 \times 2 = 40 \text{ (mm}^2)$.

Vậy
$$F \ge \alpha I_{\infty} \sqrt{t_{qd}} = 40 \ge 6 \times 5.9 \times \sqrt{0.5} \Leftrightarrow 40 \ge 25$$
 thoả mãn điều kiện.

Vậy quyết định chọn thanh cái cho tủ động lực 1 là thanh cái bằng đồng có kích thước $20 \times 2 \text{ (mm}^2)$ đặt 3 thanh đứng cách nhau 15cm, mỗi thanh đặt trên 2 sứ cách điện cách nhau 70cm.

Thanh cái cho các tủ động lực khác chọn tương tự, kết quả phải được đưa vào bảng tổng kết.

3.8. Lựa chọn tủ phân phối và các tủ động lực

Các yếu tố cần thiết để lựa chọn tủ là số lượng dây vào và ra của tủ, kích thước cụ thể của các thiết bị có trong tủ, khoảng cách bố trí giữa các thiết bị đó. Người thiết kế cần cân nhắc xem nên chọn loại tủ chế tạo sẵn có bán trên thị trường hay đặt hàng để chế tạo.

3.9. Tính chọn ống bảo vệ

- Ông bảo vệ có chức năng bảo vệ dây, cáp về những chấn động về cơ học cũng như những tác đông về hoá học.
- Ống bảo vệ được phân loại theo vật liệu (thép, gang, nhựa, sứ...) hay theo hình dáng (tròn, vuông, hình chữ nhật...)
- * Tính chọn ống bảo vệ phụ thuộc vào số lượng dây cáp đặt trong ống, mức độ phức tạp của tuyến đường ống.
 - + Với đường ống có 1 cáp đặt trong ống:

$$\frac{D}{k} \ge d$$

+ Với đường ống có 2 dây hoặc 2 cáp đặt trong ống:

$$\frac{D}{k} \ge \frac{d_1 + d_2}{2}$$

+ Với ống có từ 3 cáp trở lên:

$$K.D^2 \ge n_1.d_1^2 + n^2.d_2^2 + ... + n_n.d_n^2$$

Trong đó:

D: Đường kính trong của ống.

d₄; d₂: Đường kính ngoài của cáp.

k: Hệ số xét đến độ phức tạp của dây hoặc trên tuyến đường ống.

n₁; n₂: Số dây đặt trong ống.

Chú ý khi thiết kế tuyến đường ống:

- Không được đặt tuyến đường ống nhựa gắn với tuyến ống dẫn hơi nóng, gas.

- Nếu đường ống phải đi qua đường cái nên dùng ống thép.
- Tuyệt đối không dùng ống nhựa đặt dưới nền có hơi nóng hoặc có nguy cơ cháy nổ.
- Việc tính chọn ống bảo vệ phải căn cứ vào phương án đi dây đã được chọn.
 - * Tính chọn ống bảo vệ cho cáp tổng (từ trạm BAPX về tủ phân phối).

Trên sơ đồ đi đây của PXCK ta thấy đường cáp tổng có chiều dài hơn 20 m với nhiều góc gấp khúc 90° , do đó độ phức tạp của tuyến ống là C (tra bảng) lấy hệ số k=1,65.

Vậy đường kính trong của ống bảo vệ cho cáp tổng là:

$$D \ge d.k = 49,88 \times 1,65 = 82,3 \text{ (mm)}.$$

Chú ý: Đường kính tổng thể (d) của dây dẫn tra theo bảng số liệu dây dẫn đã được chọn.

ống bảo vệ của các đường dây khác chọn tương tự, số liệu tính chọn phải đưa vào bảng tổng kết. (Chú ý các đường ống thường được chế tạo theo các kích thước tiêu chuẩn, do đó người thiết kế cần phải căn cứ vào đó để chọn loại ống thích hợp).

Phần hai

HƯỚNG DẪN CÁC CHUYÊN ĐỀ

Mục tiêu

- Giới thiệu các chuyên để chính là một trong những phần thường được sử dụng khi thiết kế hệ thống cung cấp điện cho các xí nghiệp công nghiệp.
 - Hiểu được ý nghĩa tầm quan trọng của các phần thiết kế đó.
 - Biết cách tính toán và áp dụng các phần đó vào từng điều kiện yêu cầu cụ thể.

Chuyên đề 1

BÙ HỆ SỐ CÔNG SUẤT

Mục tiêu

Như chúng ta đã biết các xí nghiệp hiện nay tiêu thụ khoảng 70% tổng số điện năng sản xuất ra. Vì thế, vấn đề sử dụng hợp lý và tiết kiệm điện năng trong các xí nghiệp có ý nghĩa rất lớn. Các mạng điện xí nghiệp thường dùng điện áp tương đối thấp, đường dây phân phối dài, phân tán đến từng phụ tải gây ra tổn thất điện năng lớn. Vì thế việc thực hiện các biện pháp tiết kiệm điện trong xí nghiệp có ý nghĩa rất quan trọng.

- Hiểu được mục đích, ý nghĩa của việc nâng cao hệ số công suất (hay còn gọi bù cosφ).
 - Nắm được các biện pháp nâng cao hệ số cosφ.
 - Biết cách tính toán và phương án lắp đặt thiết bị để nâng cao hệ số công suất.

I. CÁC ĐỊNH NGHĨA VỀ HỆ SỐ COSφ

1. Hệ số công suất tức thời

Là hệ số tại một thời điểm nào đó đo được nhờ dụng cụ đo cosp hoặc nhờ các dụng cụ đo công suất, điện áp và dòng điện.

Do phụ tải luôn luôn biến động nên hệ số cosφ tức thời cũng luôn luôn biến đổi theo thời gian. Vì thế cosφ tức thời không được sử dụng trong các phương pháp tính toán bù hệ số cosφ.

2. Hệ số công suất trung bình

Là cosφ trung bình trong một quãng thời gian nào đó (1 ca, 1 ngày đêm hay 1 tháng).

Hệ số $\cos \phi_{tb}$ được dùng để đánh giá mức độ sử dụng điện tiết kiệm và hợp lý của xí nghiệp hay cơ sở sản xuất.

3. Hệ số công suất tự nhiên

Đây là hệ số quan trọng, là hệ số cosφ tính trung bình cho cả năm khi không có thiết bị bù. Hệ số cosφ tự nhiên được dùng làm căn cứ để tính toán nâng cao hệ số công suất và bù công suất phản kháng.

II. BÙ HỆ SỐ CÔNG SUẤT (HỆ SỐ COSφ)

Như chúng ta đã biết có 2 nhóm chính để nâng cao hệ số cosφ, đó là nhóm các biện pháp nâng cao hệ số cosφ tự nhiên (không dùng các thiết bị bù) và nhóm các biện pháp nâng cao hệ số cosφ bằng cách bù công suất phản kháng (dùng các thiết bị bù).

Trong tính toán bao giờ chúng ta cũng lựa chọn các biện pháp đảm bảo yêu cầu kỹ thuật và có hiệu quả kinh tế cao. Ở đây trước tiên chúng ta xét đến biện pháp nâng cao hệ số công suất cosφ tự nhiên. Nâng cao hệ số công suất cosφ tự nhiên là tìm các biện pháp để các thiết bị điện giảm tiêu thụ đương lượng công suất phản kháng Q như: áp dụng các quá trình công nghệ tiên tiến, sử dụng hợp lý các thiết bị điện v.v.

III. CÁC BIỆN PHÁP THAY ĐỔI HỆ SỐ CÔNG SUẤT

1. Cải tiến quy trình công nghệ

Biện pháp thứ nhất là thay đổi và cải tiến quy trình công nghệ để các thiết bị điện làm việc ở chế độ hợp lý nhất. Căn cứ vào điều kiện cụ thể cần sắp xếp quy trình công nghệ một cách hợp lý, hiệu quả. Việc giảm bốt những động tác, những nguyên công thừa và áp dụng các phương pháp gia công tiên tiến... đều đưa đến hiệu quả tiết kiệm điện, giảm bốt suất điện năng tiêu thụ cho một đơn vị sản phẩm.

Ví dụ: Trong các xưởng cơ khí, máy nén khí thường tiêu thụ 30 - 40% điện năng cung cho toàn nhà máy. Vì vậy, định chế độ vận hành hợp lý cho máy nén khí có ảnh hưởng lớn đến vấn đề tiết kiệm điện; theo kinh nghiệp vận hành khi hệ số phụ tải của máy nén khí gần bằng $k_{pi} = 1$ thì điện năng tiêu hao cho một đơn vị sản phẩm sẽ giảm tới mức tối thiểu. Vì vậy, cần bố trí sao cho máy nén khí luôn luôn làm việc đầy tải.

2. Thay đổi phụ tải (động cơ)

Biện pháp thứ hai thay thế động cơ không đồng bộ làm việc non tải bằng động cơ có công suất nhỏ hơn.

Từ công thức tính:

$$\cos \varphi = \frac{P}{S} = \frac{1}{\sqrt{1 + \frac{Q_0 + (Q_{dm} - Q_0)k_{pt}^2}{P_{dm}.k_{pt}}}}$$

Ta dễ dàng nhận thấy rằng nếu động cơ làm việc non tải $(k_{pl}$ nhỏ) thì cos ϕ thấp, nếu một động cơ có $\cos \phi = 0.8$ thì $k_{pl} = 1$, khi $k_{pl} = 0.5$ thì $\cos \phi = 0.65$. Rõ ràng thay thế động cơ làm việc non tải bằng động cơ có công suất nhỏ hơn sẽ tăng được hệ số k_{pl} , do đó nâng cao được $\cos \phi$ của động cơ.

Điều kiện kinh tế cho phép thay thế động cơ là: Việc thay thế phải giảm được tổn thất công suất tác dụng trong mạng điện và động cơ, chỉ như vậy việc thay thế mới có lợi. Các tính toán cho thấy nếu:

 $+ k_{pl} < 0.45$ thì việc thay thế mới có lợi.

 $+0.45 < k_{pl} < 0.7$ thì phải so sánh kinh tế, kỹ thuật mới xác định được việc thay thế có lợi hay không.

Điều kiện kỹ thuật cho phép thay thế động cơ là: việc thay thế phải đảm bảo nhiệt độ động cơ nhỏ hơn nhiệt độ cho phép, đảm bảo điều kiện mở máy và làm việc ổn định của động cơ.

3. Giảm điện áp của những động cơ làm việc non tải

Biện pháp thứ ba giảm điện áp của những động cơ làm việc non tải. Biện pháp này được dùng khi không có điều kiện thay thế động cơ làm việc non tải bằng động cơ có công suất nhỏ hơn. Trong thực tế người ta thường dùng các biện pháp sau để giảm điện áp đặt lên các động cơ không đồng bộ làm việc non tải:

- Đổi nối dây quấn stato từ nối dây hình tam giác sang nối dây quấn hình sao.
- Thay đổi cách phân nhóm của dây quấn stato.
- Thay đổi đầu phân áp của máy biến áp để hạ điện áp của mạng phân xưởng.
- Dùng động cơ đồng bộ thay thế động cơ không đồng bộ.

Ở những nhà máy, phân xưởng sản xuất có sử dụng nhiều động cơ công suất tương đối lớn và không yêu cầu điều chỉnh tốc độ như máy bơm, máy quạt... ta nên dùng động cơ đồng bộ. Vì động cơ đồng bộ có ưu điểm sau:

- + Hệ số công suất cao, khi cần có thể làm việc ở chế độ quá kích từ để trở thành một máy bù cung cấp bổ sung công suất phản kháng cho lưới điện.
- + Mômen quay tỷ lệ bậc nhất với điện áp mạng, ít phụ thuộc vào dao động của điện áp. Khi tần số của nguồn không đổi, tốc độ quay của động cơ không phụ thuộc vào phụ tải, do đó năng suất làm việc của máy cao nhưng động cơ đồng bộ có cấu tạo phức tạp, giá thành đắt.
- + Ngoài ra, còn các biện pháp khác như: hạn chế động cơ chạy không tải, nâng cao chất lượng sửa chữa động cơ, thay thế những máy biến áp là việc non tải bằng những máy biến áp có dung lượng nhỏ hơn.

Nhìn chung các biện pháp bù tự nhiên đã được các nhà thiết kế tính toán tối ưu để hệ số cosφ là cao nhất có thể. Chính vì vậy mà chúng ta thường phải tính đến biện pháp nâng cao hệ số cosφ bằng cách bù nhân tạo.

IV. MỘT SỐ PHƯƠNG PHÁP TÍNH BÙ NHÂN TẠO

1. Các phương pháp

1.1. Phương pháp 1 (tính toán gần đúng hệ số cosφ)

Nguyên tắc chung:

Thông thường cách tính gần đúng có thể áp dụng cho hầu hết các trường hợp. Trong thực tế có thể chọn lấy giá trị hệ số công suất bằng 0,8 trước khi bù làm chuẩn để nâng cao hệ số công suất đến giá trị mong muốn (giả sử là 0,93), đồng thời giảm bớt tổn hao và độ sụt áp cho mạng điện, các giá trị tính toán cần thiết được cho trong bảng 1.1.

Bảng 1.1. Lượng kV Ar cần đặt cho mỗi kW để cải thiện hệ số công suất lưới

Tri	Trước		Định mức dung lượng bù (kVAr) cho mỗi kW tải để cải thiện cosφ hoặc tgφ												
kh	i b ù	tgφ	0,75	0,59	0,48	0,46	0,43	0,40	0,36	0,33	0,29	0,25	0,20	0,14	0,00
tgφ	cosφ	соѕф	0,80	0,86	0,90	0,91	0,92	0,93	0,94	0,95	0,96	0,97	0,98	0,99	1
2,29	0,40		1,557	0,691	1,805	1,832	1,861	1,859	1,924	1,959	1,998	2,037	2,085	2,146	2,288
2,16	0,42		1,413	1,561	1,681	1,709	1,738	1,771	1,800	1,836	1,874	1,913	1,961	2,022	2,164
2,10	0,43		1,356	1,499	1,624	1,651	1,680	1,713	1,742	1,778	1,816	1,855	1,903	1,964	2,107
2,04	0,44		1,290	1,441	1,558	1,585	1,614	1,647	1,677	1,712	1,751	1,790	1,837	1,899	2,041
1,98	0,45		1,230	1,384	1,501	1,532	1,561	1,592	1,628	1,659	1,695	1,737	1,714	1,846	1,988
1,93	0,46		1,179	1,330	1,466	1,473	1,502	1,533	1,567	1,600	1,636	1,677	1,725	1,786	1,929
1,88	0,47		1,130	1,278	1,397	1,425	1,450	1,485	1,519	1,532	1,588	1,629	1,677	1,758	1,881
1,78	0,49		1,030	1,179	1,297	1,326	1,355	1,386	1,420	1,453	1,489	1,530	1,578	1,639	1,785
1,73	0,50		0,982	1,232	1,248	1,276	1,303	1,337	1,369	1,403	1,441	1,481	1,529	1,590	1,732
1,69	0,51		0,936	1,087	1,202	1,230	1,257	1,291	1,323	1,357	1,395	1,435	1,483	1,544	1,686
1,64	0,52		0,894	1,043	1,160	1,188	1,215	1,249	1,281	1,315	1,353	1,393	1,441	1,502	1,644
1,60	0,53		0,850	1,000	1,116	1,144	1,171	1,205	1,237	1,271	1,309	1,349	1,397	1,458	1,600
1,56	0,54		0,809	0,959	1,075	1,103	1,130	1,164	1,196	1,230	1,268	1,308	1,356	1,417	1,550

										···					
1,52	0,55	0	,769	0,918	1,035	1,063	1,090	1,124	1,156	1,190	1,228	1,268	1,316	1,377	1,519
1,48	0,56	0	,730	0,879	0,996	1,024	1,051	1,085	1,117	1,151	1,189	1,229	1,277	1,338	1,480
1,44	0,57	0	,692	0,841	0,958	0,986	1,013	1,047	1,079	1,113	1,151	1,191	1,239	1,300	1,442
1,40	0,58	0	,665	0,805	0,921	0,949	0,976	1,010	1,042	1,076	1,114	1,154	1,202	1,263	1,40
1,37	0,59	0	,618	0,768	0,881	0,912	0,939	0,973	1,005	1,039	1,077	1,117	1,165	1,226	1,368
1,33	0,60	0	,584	0,733	0,849	0,878	0,905	0,939	0,971	1,00	1,043	0,083	1,131	1,192	1,334
1,30	0,61	0	,549	0,699	0,815	0,843	0,870	0,904	0,936	0,970	1,008	1,048	1,096	1,157	1,299
1,27	0,62	0	,515	0,665	0,781	0,809	0,836	0,870	0,902	0,936	0,974	1,014	1,062	1,123	1,265
1,23	0,63	0	,483	0,633	0,749	0,777	0,804	0,838	0,870	0,904	0,942	0,982	1,030	1,091	1,233
1,20	0,64	0	,450	0,601	0,716	0,744	0,771	0,805	0,837	0,871	0,909	0,949	0,997	1,058	1,200
1,17	0,65	0	,419	0,569	0,685	0,713	0,740	0,774	0,806	0,840	0,878	0,918	0,966	1,007	1,169
1,14	0,66	0	,388	0,538	0,654	0,682	0,709	0,743	0,775	0,809	0,847	0,887	0,935	0,996	1,138
1,11	0,67	0	,358	0,508	0,624	0,652	0,679	0,713	0,745	0,779	0,817	0,857	0,905	0,966	1,108
1,08	0,68	0	,329	0,478	0,595	0,623	0,650	0,684	0,716	0,750	0,788	0,828	0,876	0,937	1,079
1,05	0,69	0	,299	0,449	0,565	0,593	0,620	0,654	0,686	0,720	0,758	0,798	0,840	0,907	1,049
1,02	0,70	0	,270	0,420	0,536	0,564	0,591	0,625	0,657	0,691	0,729	0,769	0,811	0,878	1,020
0,96	0,72	0	,213	0,364	0,479	0,507	0,534	0,568	0,600	0,634	0,672	0,712	0,754	0,821	0,963
0,91	0,74	0	,159	0,309	0,425	0,453	0,480	0,541	0,546	0,580	0,618	0,658	0,70	0,767	0,909
0,88	0,75	0	,132	0,82	0,398	0,426	0,453	0,47	0,519	0,553	0,591	0,631	0,673	0,740	0,882
0,86	0,76	0	,105	0,255	0,371	0,399	0,426	0,460	0,492	0,526	0,564	0,604	0,652	0,713	0,855
0,83	0,77	0	,079	0,229	0,345	0,373	0,400	0,434	0,466	0,50	0,538	0,578	0,620	0,687	0,829
0,80	0,78	0	,053	0,202	0,319	0,347	0,374	0,408	0,440	0,474	0,512	0,552	0,594	0,661	0,803
0,78	0,79	0	,026	0,176	0,292	0,320	0,347	0,381	0,413	0,447	0,485	0,525	0,567	0,634	0,776
0,75	0,80			0,150	0,266	0,294	0,321	0,355	0,387	0,421	0,459	0,499	0,541	0,608	0,750

0,72	0,81	0,124	0,240	0,269	0,295	0,329	0,361	0,395	0,433	0,473	0,515	0,582	0,724
0,70	0,82	0,098	0,214	0,242	0,269	0,303	0,335	0,369	0,407	0,447	0,489	0,556	0,689
0,67	0,83	0,072	0,188	0,216	0,243	0,277	0,309	0,343	0,381	0,421	0,463	0,530	0,672
0,65	0,84	0,046	0,162	0,190	0,217	0,251	0,283	0,317	0,355	0,395	0,437	0,504	0,645
0,62	0,85	0,020	0,136	0,164	0,191	0,225	0,257	0,291	0,329	0,369	0,417	0,478	0,620
0,54	0,88		0,054	0,085	0,112	0,143	0,175	0,209	0,246	0,288	0,335	0,395	0,538
0,51	0,89		0,028	0,059	0,086	0,117	0,149	0,183	0,230	0,262	0,309	0,369	0,512
0,48	0,90			0,031	0,058	0,089	0,121	0,155	0,192	0,234	0,281	0,341	0,484

Từ (bảng 1.1) ta thấy, để nâng hệ số công suất từ 0,8 - 0,93 cần bù công suất 0,355kVAr cho một 1kW công suất tiêu thụ.

Dung lượng tụ bù tại thanh góp của tủ phân phối chính của mạng điện:

$$Q_{(kVAr)} = 0.355 \text{ x P (kW)}.$$

Cách tính đơn giản này cho phép ta xác định nhanh dung lượng tụ bù cho các chế độ bù tập trung, bù nhóm hoặc bù riêng.

Ví dụ: Mạng công suất 666kVA được nâng hệ số công suất từ $\cos \phi = 0.75$ lên $\cos \phi = 0.928$.

Công suất tiêu thụ: $P = 666 \times 0.75 = 500 \text{kW}$.

Tra (bảng 1.1) ứng với hàng $\cos \varphi = 0.75$ (trước khi bù) và cột $\cos \varphi = 0.93$ (sau khi bù), ta thu được công suất tụ là: 0.487 kVAr cho 1kW tiêu thụ của tải. Vì thế đối với tải 500 kW, công suất tu bù sẽ là:

$$Q_c = 500 \times 0.487 = 244 \text{kVAr}.$$

Chú ý: Cách này áp dụng cho tất các mức điện áp (không phụ thuộc vào điện áp).

1.2. Phương pháp 2 (tính toán dung lượng bù)

Phương pháp này được áp dụng phổ biến vì có ưu điểm chính xác, đơn giản, hiệu quả mà không phụ thuộc vào vị trí đặt tụ (ở đầu nguồn hay cuối nguồn).

Áp dụng công thức tính dung lượng cần bù là:

$$Q_{\text{bù}} = P(tg \; \phi_1 \; \text{--} \; tg\phi_2) \; \alpha$$

Trong đó:

P: Phụ tải tính toán (kW).

φ₁: Góc ứng với hệ số cosφ trước khi bù.

φ₂: Góc ứng với hệ số cosφ muốn đạt sau khi bù.

α: Hệ số xét tới khả năng nâng cao hệ số cosφ bằng phương pháp bù.

Sau khi xác định được dung lượng cần bù chúng ta tra (bảng 1.2) để xác định được loại tụ thích hợp.

Bảng 1.2. Thông số kỹ thuật của một số loại tụ bù hệ số công suất

Loại tụ	Công suất danh định (kVAr)	Điện dung danh định (µF)	Kiểu chế tạo	Chiều cao (mm)
KCI-0.22-8-3Y3	8	526		410
KCI-0.66-25-3Y3	25	183	1 pha và 3 pha	418
KCI-0.22-8-3Y1	8	526	J 5 pila	472
KCI-0.38-20-Y1	20	442		472
KCI-6.3-30-2Y1	30	2	1	506
KCI-3.15-30-2Y3	30	10	l pha	466
KC2-0.22-16-3Y1	16	1052		787
KC2-0.22-16-3Y3	16	1052		725
KC2-0.38-60-3Y3	60	1102	3 pha	725
KC2-0.66-60-3Y3	60	366		739

Như chúng ta đã biết sau khi cắt tụ điện ra khỏi lưới điện thường tồn tại một lượng điện áp dư, rất nguy hiểm cho công nhân vận hành. Vì vậy, phải có điện trở phóng điện đấu ngay ở đầu cực của tụ điện. Điện trở phóng điện thường phải có yêu cầu sau:

- Giảm nhanh điện áp dư trên tụ điện, theo quy định sau 30 giây điện áp dư trên tụ điện phải giảm xuống ≤ 65 V.

- Ở trạng thái làm việc bình thường, tổn thất công suất tác dụng trên điện trở phóng điện so với dung lượng tụ $\leq 1W/kVAr$.

Ta xác định điện trở phóng điện theo công thức:

$$R_{fd} = 15 \times \frac{u_p^2}{Q} \times 10^6$$

Trong đó:

Q: Dung lượng của bộ tụ điện cần bù cho cả 3 pha.

U₁: Điện áp pha của mạng.

Thường người ta dùng bóng đèn sợi đốt làm điện trở phóng điện tuỳ theo công suất của bóng đèn mà ta xác định được số lượng bóng đèn cần dùng. Dùng bóng đèn sợi đốt có ưu điểm là rẻ tiền, có thể theo dõi độ sáng của đèn để biết được tụ điện đã phóng điện hay chưa. Các bóng đèn nên đấu tam giác vì khi điện trở phóng điện nếu 1 pha bị đứt thì tụ điện vẫn có thể phóng điện qua 2 pha còn lại.

2. Vị trí lắp đặt tụ bù

2.1. Đặt tụ bù tập trung

Áp dụng khi tải ổn định và liên tục.

- * Nguyên lý: Bộ tụ được đấu vào thanh cái hạ áp của tủ phân phối chính và phải được đóng trong thời gian tải hoạt động.
- * *Uu điểm:* Làm giảm công suất biểu kiến yêu cầu, làm nhẹ tải cho máy biến áp và do đó có khả năng phát triển thêm các phụ tải khi cần thiết.
- * Nhược điểm: Dòng điện phản kháng tiếp tục đi vào tất cả các lộ ra tủ phân phối chính của mạng hạ thế. Vì thế, tiết diện của dây dẫn, công suất tổn hao trong dây không được cải thiện.

Hình 1.1. Bố trí tụ bù tập trung cho từng máy có công suất lớn

2.2. Đặt tụ bù thành nhóm

Nên sử dụng khi mạng điện quá lớn và khi chế độ tải tiêu thụ theo thời gian của các phân đoan thay đổi khác nhau.

- * Nguyên lý: Bộ tụ được đấu vào tủ phân phối khu vực. Hiệu quả do bù từng phân đoạn mang lại cho các dây dẫn xuất phát từ tủ phân phối chính đến các tủ phân phối khu vực có đặt tụ được thể hiện rõ nhất.
- * *Uu điểm*: Làm giảm công suất biểu kiến yêu cầu, kích thước dây cáp đi đến các tủ phân phối khu vực sẽ giảm đi hoặc với cùng tiết diện.dây trên có thể tăng thêm phụ tải cho tủ phân phối khu vực. Như vậy, tổn hao trên đường dây cáp sẽ giảm.
 - * Nhược điểm:
- Dòng điện phản kháng tiếp tục đi vào tất cả dây dẫn xuất phát từ tủ phân phối khu vực. Vì thế kích thước dây dẫn và công suất tổn hao trong dây dẫn của các đoạn dây dẫn ở trên không được cải thiện với chế độ bù từng phân đoạn.
- Khi có sự thay đổi đáng kể của tải, luôn luôn tồn tại nguy cơ bù thừa và kèm theo hiện tượng quá điện áp.

Hình 1.2. Bố trí tụ bù nhánh cho từng phân đoạn

2.3. Đặt tu bù riêng cho từng phụ tải lớn

Nên được xét đến khi công suất động cơ tương đối lớn so với công suất mạng điện.

Cách mắc: Bộ tụ mắc trực tiếp vào đầu dây nối của thiết bị dùng điện có tính cảm (chủ yếu là các động cơ). Bù riêng nên được xét đến khi công suất động cơ là đáng kể so với công suất mạng điện. Bộ tụ định mức (kVAr) trong khoảng 25% giá trị công suất (kW) của động cơ. Bù bổ sung tại đầu nguồn điện cũng có thể mang lại hiệu quả tốt.

Ưu điểm:

- Giảm công suất biểu kiến yêu cầu.
- Giảm kích thước và tổn hao dây dẫn đối với tất cả dây dẫn.

Các dòng điện phản kháng có giá trị lớn sẽ không còn tồn tại trong mạng điện.

Hình 1.3. Bố trí tụ bù riêng cho từng máy có công suất lớn

V. VẬN DỤNG TÍNH TOÁN

 $Vi\ du$. Tính toán dung lượng bù cho một phân xưởng cơ khí, để sau khi bù thì hệ số công suất đạt được 0,95. Phân xưởng cơ khí gồm các thiết bị được ghi trong (bảng 1.3) sau:

Bảng 1.3. Thống ke	thiết bị của phân	xưởng cơ khí tiêu biểu
--------------------	-------------------	------------------------

Tên thiết bị	Số lượng	U (V)	P(kW)	P_{Σ}	Cosq
Máy tiện	4	380	4,5	18	0,62
Máy phay	3	380	7,0	21	0,68
Máy bào	3	380	7,0	21	0,52
Ма́у сиа	5	380	4,5	22,5	0,73
Máy mài	4	380	2,8	11,2	0,83
Máy khoan	4	380	4,5	18	0,64
Máy búa	1	380	14	14	0,62
Máy doa	1	380	10	10	0,65
Quạt giớ	4	380	1,7	6,8	0,61
Máy tiện	1	380	7,4	7,4	0,74

Để xác định dung lượng cần bù ta sử dụng phương pháp 2 để tính toán.

Trước tiên ta xác đinh Pu:

$$P_{tt} = \sum_{i=1}^{n} P_{dmi}$$

Vây: $P_0 = 18+21+21+22,5+11,2+18+14+10+6,8+7,4=149,9kW$.

Ta xác định hệ số cosφ_{th} cho toàn phân xưởng:

$$\cos \varphi_{tb} = \frac{P_1 \cos \varphi_1 + P_2 \cos \varphi_2 + P_3 \cos \varphi_3 + \dots + P_n \cos \varphi_n}{P_1 + P_2 + P_3 + \dots + P_n}$$

$$\cos \varphi_{tb} = \frac{18 \times 0,62 + 21 \times 0,68 + 21 \times 0,52 + 22,5 \times 0,73 + 11,2 \times 0,83 + 18 \times 0,64}{18 + 21 + 21 + 22,5 + 11,2 + 18 + 14 + 7,4 + 10 + 6,8}$$

$$+\frac{14 \times 0,62 + 10 \times 0,65 + 6,8 \times 0,61 + 7,4 \times 0,74}{18 + 21 + 21 + 22,5 + 11,2 + 18 + 14 + 7,4 + 10 + 6,8}$$

$$\cos \varphi_{tb} = 98,405/149,90 = 0,66 \Rightarrow tg\varphi_t = 1,138.$$

$$\cos \varphi_2 = 0.95 \Rightarrow tg\varphi_2 = 0.328$$
.

Vậy lượng công suất cần bù là:

$$Q_{bij} = P x(tg \varphi_1 - tg\varphi_2) x \alpha = 149.9 x (1.138 - 0.328) = 121.42kVAr.$$

Tra bảng 1.2 ta chọn tụ loại: KC2-0.66-60-3Y3 có công suất danh định 60kVAr loại 3 pha. Khi đó ta dùng số tụ là: 121,42:60 = 2,02 (tụ).

Ta chọn 2 bộ tụ 3 pha nối song song, bộ tụ được bảo vệ bằng áptômát, đặt trong tủ và đặt bóng đèn làm điện trở phóng điện.

Xác định điện trở phóng điện:

$$R_{fd} = 15 \frac{u_p^2}{Q} \times 10^6 = 15 \frac{0.22^2}{121,42} \times 10^6 = 5979\Omega.$$

Dùng bóng đèn có công suất 60W làm điện trở phóng điện ta có:

$$R_d = \frac{U^2}{P} = \frac{220^2}{50} = 968(\Omega)$$

Vậy số bóng đèn cần dùng là:

$$n = \frac{R_{pd}}{R_d} = \frac{5979}{968} = 6$$
 (bóng).

Vậy ta dùng 6 bóng đèn có điện áp 220V, có công suất 60W làm điện trở phóng điện và mỗi pha có 2 bóng đèn làm vai trò điện trở phóng điện.

Ta có sơ đồ bố trí tụ như sau:

Hình 1.4. Cách mắc tụ bù

Chuyên đề 2

CHỐNG SÉT

Muc tiêu

Sét là hiện tượng phóng điện trong khí quyển giữa các đám mây và đất mang điện khác dấu.

Năng lượng của sét rất lớn, điện áp 25kV - 30kV, dòng điện 50kA - 100kA, nhiệt độ 10.000°C, thời gian rất ngắn 20 - 30μs nên rất nguy hiểm cho người và thiết bị. Chính vì vậy các công trình xậy dựng, đặc biệt là hệ thống cung cấp điện phải có thiết bị bảo vệ - chống sét.

Ở đây thiết bị chống sét là thiết bị được ghép song song với các thiết bị điện khác để bảo vệ quá điện áp khí quyển. Khi xuất hiện quá điện áp khí quyển (có sét đánh) nó sẽ làm việc trước để giảm điện áp đặt lên thiết bị, tránh nguy hiểm cho thiết bị. Vì vậy cần phải:

- Hiểu được ý nghĩa tầm quan trọng của việc chống sét.
- Nắm được các biên pháp chống sét.
- Biết cách tính toán và áp dụng các biện pháp đó có hiệu quả.

I. CÁC LOAI CHỐNG SÉT

1. Chống sét đánh trực tiếp

- Sử dụng kim thu sét: để thu dòng điện sét, sau đó nhanh chóng dẫn dòng điện sét xuống đất.
- Sử dụng lưới chống sét: thu dòng điện bằng hệ thống nhiều kim thu sét lập thành lưới rồi dẫn dòng điện sét xuống đất.
- Sử dụng đường dây chống sét: đặt song song với đường dây tải điện một đường dây có tác dụng thu sét, sau đó dẫn dòng điện sét xuống đất.

2. Chống sét lan truyền từ đường dây vào trạm biến áp

2.1. Khe hở phóng điện

Khe hở phóng điện là thiết bị chống sét đơn giản nhất gồm có hai điện cực: một điện cực nối với dây dẫn điện, điện cực còn lại nối với hệ thống nối đất chống sét (hình 2.1).

- Ưu điểm: Chi phí cho hệ thống này đơn giản, ít tiền.
- Nhược diểm: Do không có bộ phận dập hồ quang nên khi phóng điện có đòng và áp vô cùng lớn dễ gây nên hiện tượng ngắn mạch tạm thời làm cho các role bảo vệ có thể tác động nhầm.

2.2. Chống sét ống

Gồm hai khe hở phóng điện S_1 và S_2 , khe hở S_1 đặt trong một ống làm bằng vật liệu sinh khí (fbro bakelit). Khi có hiện tượng quá điện áp cả hai khe hở đều phóng điện đưa dòng điện sét xuống đất (hình 2.2).

- Uu điểm: Hiệu quả hơn khe hở phóng điện.
- Nhược điểm: Khả năng dập hồ quang còn hạn chế.

2.3. Chống sét van

Gồm hai phần tử chính là khe hở phóng điện và điện trở làm việc. Khe hở phóng điện là một chuỗi các khe hở. Điện trở phóng điện là điện trở phi tuyến làm bằng chất vilit có tính chất đặc biệt khi điện áp tăng thì điện trở giảm xuống để tăng khả năng dẫn điện, khi điện áp trở lại bình thường thì điện trở tăng để đảm bảo khả năng cách điện.

- *Uu điểm:* Có khả năng dập hồ quang, nâng cao độ tin cậy và an toàn trong quá trình vân hành.
 - Nhược điểm: Giá thành cao.

Hình 2.1

Hình 2.2

Hình 2.3

Hình 2.4. Giới thiệu sơ đồ bảo yệ chống sét cho trạm 35 ÷ 110kV

3. Chỉ tiêu chống sét cho các đối tượng cần bảo vệ

Ngoài ra, để bảo vệ chống quá điện áp cho trạm, ta cần phối hợp cách điện của trạm biến áp. Nối đất chống sét cho trạm cần phải đảm bảo quy định sau:

+ Với TBA có trung tính nối đất trực tiếp, điện áp ≥ 110kV

$$R_{tc} \leq 0.5\Omega$$

+ Với TBA có trung tính nối đất trực tiếp, điện áp ≤ 110kV

$$R_{ic} \leq 0.4\Omega$$

+ Với TBA có công suất nhỏ

$$R_{tc} \leq 10\Omega$$

+ Với các công trình xây dựng công nghiệp và dân dụng

$$R_{tc} \leq 4 - 10\Omega$$

Hệ thống chống sét gồm 3 thành phần chính:

- Kim thu sét.
- Dây dòng sét.
- Cọc tiêu tán năng lượng sét.

Cọc tiêu tán năng lượng sét được dùng là hệ cọc giống như hệ thống cọc nối đất cung cấp điện. Không được dùng hệ cọc nối đất cung cấp điện dùng chung cho tiếp địa chống sét. Giữa hai hệ cọc này nên có thiết bị đẳng thế nối chung để loại trừ mạch vòng trong đất tránh xông điện áp khi xảy ra quá trình quá độ của dòng sét. Khi đặt hai hệ thống này trong cùng một khu vực cần đảm bảo khoảng cách giữa chúng ≥ 5 m.

4. Điện trở chống sét tiêu chuẩn

- Dây dẫn sét: Thường làm bằng kim loại, đường kính 10 12mm, đặt theo đường ngắn nhất nối giữa kim thu sét và bộ phận nối đất. Dây dẫn này có thể liên kết với nhau thành mạng từ các kim thu sét xuống hệ cọc. Mỗi dây không được dài quá 50m. Dây dẫn dòng sét được định vị vào kết cấu khung thiết bị được bảo vệ.
- Bộ phận nối đất: Gồm nhiều cọc nối đất và thanh nối đất ghép lại với nhau đặt cách móng công trình từ 3m ÷ 5m, riêng đối với khu đông dân cư và khu trại chặn nuôi gia súc thì phải đảm bảo khoảng cách ≥ 10m để tránh xảy ra hiện tượng điện áp bước khi có sự cố.

II. PHẠM VI BẢO VỆ CỦA MỘT KIM THU SÉT

1. Tính toán theo lý thuyết

Là khoảng không gian gần kim thu sét mà vật được bảo vệ đặt trong đó, rất ít khả năng bị sét đánh. Thực tế trong các phân xưởng sản xuất người ta thường sử dụng kiểu bố trí hệ thống các kim thu sét theo dãy, theo hàng dùng nhiều kim có chiều cao h thấp (không quá 30m), liên kết với nhau đảm bảo yêu cầu kỹ thuật và kinh tế, hơn nữa phù hợp với không gian cho phép của nhiều cơ sở sản xuất. Trong phạm vi nghiên cứu, ứng dụng bảo vệ sét đánh cho phân xưởng cơ khí chúng ta sử dụng kiểu bố trí này.

Phạm vi của một kim thu sét là hình nón cong xoay tròn có tiết diện ngang là những hình nón, ở độ cao h_x có bán kính R_x (hình 2.1), trị số bán kính R_x được xác định theo công thức:

Nếu $h_x/h \le 2/3$ thì bán kính của đường tròn R_x được tính:

$$R_x = 1.5h \left(1 - \frac{h_x}{0.8h} \right) P$$

Nếu $h_x/h > 2/3$ thì bán kính của đường tròn R_x được tính:

$$R_x = 0.75h \left(1 - \frac{h_x}{h} \right) P$$

Hình 2.5. Phạm vi bảo vệ

Trong đó P là hệ số với $h \le 30m$ thì P = 1.

Ngoài ra, ta có thể xác định bán kính của đường tròn $R_{\rm x}$ theo công thức gần đúng của Liên Xô như sau:

$$R_x = \frac{1.6h_a}{1 + \frac{h_x}{h}}$$

Trong đó:

 h_x : Chiều cao của đối tượng được bảo vệ nằm trong vùng bảo vệ của kim thu sét.

 h_a : Chiều cao hiệu dụng của kim thu sét $h_a = h - h_x$.

h: Chiều cao tương đối của kim thu sét.

Xác định bề ngang hẹp nhất của phạm vi bảo vệ ở cao độ h_x .

$$2b_x = 4 \times R_x \times \frac{7 \times h_a - a}{14 \times h_a - a}$$

2. Tính toán cụ thể bảo vệ chống sét cho phân xưởng cơ khí

Phân xưởng có kích thước là: chiều rộng a = 20m, chiều dài b = 36m, chiều cao của đỉnh mái là 6m, chiều cao tại vị trí đặt kim thu sét $h_x = 5.5m$, ta sử dụng hệ thống 6 kim thu sét bố trí thành vòng kín trên mái phân xưởng như hình vẽ.

Hình 2.6. Mặt đứng bố trí kim thu sét

Hình 2.7. Mặt bằng bố trí kim thu sét

Phân tích ta thấy, cặp hai kim thu sét đặt tại đầu hồi phân xưởng có khoảng cách a = 16m và đỉnh mái nằm vào giữa hai vị trí đặt kim thấp hơn đầu kim là 0,5m. Đây là cặp kim thu sét tiêu biểu, ta tính toán cho cặp kim thu sét này, nếu chúng thực hiện được yêu cầu bảo vệ thì các vị trí kim thu sét khác cũng đáp ứng được yêu cầu bảo vệ.

 $Bu\acute{o}c$ 1: Giả sử chiều cao tương đối của kim thu sét là h = 10m. Do đó, chiều cao hiệu dụng của kim thu sét là:

$$h_a = h - h_x$$

 $h_a = 10 - 5.5 = 4.5 m.$

Vây chiều cao bảo vệ giữa hai kim thu sét là:

$$h_o = h - \frac{a}{7}$$

 $h_o = 10 - \frac{16}{7} = 7.7 (m)$ thoả mãn bảo vệ được đỉnh mái phân xưởng cao 6m.

Bước 2: Tính toán bán kính đường tròn vùng bảo vệ của kim thu sét.

$$R_x = \frac{1.6h_a}{1 + \frac{h_x}{h}}$$

$$R_x = \frac{1.6 \times 4.5}{1 + \frac{5.5}{10}} = 4.65 (m)$$

Khoảng cách xa nhất từ kim thu sét đến vật cần bảo vệ là: $l_x = 2m$, $R_x > l_x$ thoả mãn yêu cầu bảo vệ.

 $Bu\acute{o}c$ 3. Xác định bề ngang hẹp nhất của phạm vi bảo vệ ở cao độ h_x .

$$2b_x = 4 \times 4,65 \times \frac{7 \times 4,5 - 16}{14 \times 4,5 - 16}$$

$$2b_x = 6, l(m)$$

Bước 4: Kiểm tra phạm vi bảo vệ của cả nhóm 6 kim thu sét.

$$D = \sqrt{16^2 + 18^2} = 24(m).$$

Điều kiện là
$$D \le 8 \times h_a$$

$$24 \le 8 \times 4.5 = 36$$

Vậy chiều cao hiệu dụng của kim thu sét đã chọn cao 4,5m là hợp lý.

Hình 2.8. Mặt cắt bố trí kim thu sét và phạm vi bảo vệ của chúng

Hình 2.9. Mặt bằng phạm vi bảo vệ của 6 kim thu sét

Chuyên đề 3

NỐI ĐẤT BẢO VỆ CÁC THIẾT BỊ

Mục tiêu

Hệ thống cung cấp điện làm nhiệm vụ truyền tải và phân phối điện năng. Đặc điểm quan trọng của nó là phân bố trên diện tích rộng và thường xuyên có người làm việc với các thiết bị điện. Cách điện của các thiết bị điện bị chọc thủng, người vận hành không tuân theo quy tắc an toàn... là những nguyên nhân chính dẫn đến tại nạn điện giật, do đó hệ thống điện nhất thiết phải có biện pháp an toàn. Một trong những biện pháp an toàn có hiệu quả và tương đối đơn giản là thực hiện nối đất bảo vệ cho các thiết bị điện.

- Hiểu được ý nghĩa, tầm quan trọng của việc nối đất bảo vệ.
- Nắm được các phương pháp nổi đất, tính toán và vận dụng được.

I. ĐIÊN TRỞ NỐI ĐẤT

1. Điện trở nối đất

- Điện trở bản thân dây nối từ vỏ thiết bị đến hệ thống cọc tiếp địa (cọc nối đất) chôn sâu dưới mặt đất.
 - Điện trở bản thân cọc tiếp địa (cọc nối đất).
- Điện trở của bản thân đất đối với dòng điện đi trong đất (gọi là điện trở phân tán của đất).

Trong ba thành phần của điện trở nối đất thì điện trở phân tán đóng vai trò quan trọng nhất. Mà điện trở phân tán của đất phụ thuộc vào điện trở của (bản thân) chất đất, do đó điện trở nối đất phụ thuộc vào điện trở bản thân đất tức là phụ thuộc vào kết cấu, độ ẩm, độ nén, các muối khoáng trong đất. Nói một cách khác nó phụ thuộc vào điện trở suất của đất.

2. Điện trở suất của đất

Là điện trở của 1cm^3 đất có tiết diện của 1 cm, chiều cao h = 1 cm.

Điện trở đất phụ thuộc vào nhiều yếu tố: độ ẩm, nhiệt độ, lượng axit, kiềm, các muối khoáng trong đất.

3. Các loại nối đất

- Nối đất trung tính nguồn: Nối điểm trung tính của nguồn với đất để tạo ra hệ thống cung cấp điện có trung tính nguồn nối đất. Thường thấy ở nối đất cho máy biến áp.
- Nối đất lặp lại: Để giảm tác hại của sự cố ngắn mạch một pha (một dây pha chạm vào đây trung tính) trong hệ thống ba pha có trung tính nguồn nối đất, người ta thực hiện nối đất lặp lại. Cho dây trung tính (ở cuối đường dây) nếu đường dây cung cấp điện dài > 200m hoặc ở phía đầu đường dây rẽ nhánh.
- Nối đất bảo vệ (nối không): Là việc nối các bộ phận kim loại của thiết bị (bình thường không mang điện) với đất để đề phòng tai nạn điện do xuất hiện điện áp trên các bộ phận kim loại này khi xảy ra ngắn mạch hoặc xông điện áp cảm ứng từ các phần mang điện sang vỏ kim loại của máy.

Trong thực tế người ta thường áp dụng hình thức nối đất bảo vệ (nối không) cho các thiết bị điện trong mạng có trung tính nối đất làm việc, được sử dụng phổ biến trong các phân xưởng, xí nghiệp, nhà máy, công trường.

Để hệ thống nối đất có hiệu quả cao nhất thì phải đảm bảo các yêu cầu kỹ thuật sau:

3.1. Đảm bảo điện trở hệ thống đủ nhỏ

Hệ thống nối đất đảm bảo trị số điện trở nối đất đủ nhỏ theo yêu cầu đối với từng hệ thống của nguồn điện.

- + Điện áp lưới $\leq 1000 \text{V thì } \text{Rd}_{cp} \leq 4\Omega$.
- + Điện áp lưới > 1000V thì Rđ $_{cp} \leq 2 \div 0{,}5\Omega.$

3.2. Đảm bảo cần bằng thế tốt

Chất lượng của hệ thống nối đất phải đảm bảo điện áp chạm và điện áp bước khi xảy ra ngắn mạch là đủ nhỏ, đảm bảo an toàn cung cấp điện. Điều này được thực hiện qua việc bố trí điện cực cân bằng thế hoặc đặt điện cực bổ sung ở lối đi lại và nối liên kết toàn bộ các kết cấu kim loại trong phạm vi đặt thiết bị điện vào hệ thống nối dây.

3.3. Đảm bảo độ bền cơ - lý - hoá

Phải đảm bảo độ bền cơ học và chống ăn mòn hệ thống nối đất tức là việc tính toán chọn kích thước loại điện cực phải tính đến điều kiện thực tế của vị trí nối đất. Các mối nối liên kết trong hệ thống phải đảm bảo chất lượng nếu nối bằng hàn, bắt bulông phải đúng quy cách, các bộ phận phải có sơn chống gỉ.

3.4. Tính ổn định và tin cậy cao

Hệ thống nối đất phải làm việc ổn định, tin cậy và kinh tế.

Việc tính toán hệ thống nối đất phải phù hợp, khi thi công phải theo quy định mà các quy trình, quy phạm đề ra.

3.5. Các hình thức bố trí nối đất

Thông thường hệ thống nối đất được bố trí thành một mạch vòng kín là tốt nhất (hình 3.1).

Hình 3.1. Sơ đồ hệ thống tiếp địa tạo thành mạch kín

Trường hợp không có vị trí thuận lợi để nối đất tập trung thì có thể sử dụng phương án nối đất theo hình tia, quan trọng là đảm bảo được yêu cầu giá trị điện trở nối đất (hình 3.2).

II. PHƯƠNG PHÁP TÍNH TOÁN HỆ THỐNG NỐI ĐẤT

Phương pháp này áp dụng cho việc tính toán hệ thống nối đất trung tính nguồn máy biến áp và tính toán hệ thống nối đất bảo vệ.

Như chúng ta đã biết có hai cách thực hiện nối đất đó là: nối đất tự nhiên và nối đất nhân tạo.

1. Nối đất tự nhiên

Nối đất tự nhiên là sử dụng các ống dẫn nước hay các ống bằng kim loại khác đặt trong đất (trừ các ống dẫn nhiên liệu lỏng và khí dễ cháy), các kết cấu kim loại của công trình nhà cửa có nối đất, các vỏ bọc kim loại của cáp đặt trong đất... làm trang bị nối đất. Ở xưởng cơ khí này không có các điều kiện trên nên không sử dụng được nối đất tự nhiên mà chúng ta phải sử dụng nối đất nhân tạo.

2. Nối đất nhân tạo

Nối đất nhân tạo thường được thực hiện bằng cọc thép, thanh thép, thanh thép dẹt hình chữ nhật hay thép góc dài từ $2m \div 3m$ đóng sâu xuống đất sao cho trên đầu của chúng cách mặt đất khoảng $0.5m \div 0.7m$. Để chống ăn mòn kim loại thì các ống thép, các thanh thép dẹt hay thép góc có chiều dày không nên bé hơn 4mm.

Thực tế nối đất tự nhiên không đảm bảo quy phạm của điện trở nối đất, chính vì vậy ta phải áp dụng nối đất nhân tạo.

3. Trình tự tính toán nối đất

- $\mathit{Bu\acute{o}c}\ 1$: Xác định điện trở nối đất yêu cầu của hệ thống nối đất cần thiết kế nối đất R_{dep} .
- Bước 2: Xác định điện trở của đất có tính đến sự ảnh hưởng của thời tiết tra các (bảng 3.1) và (bảng 3.2).

$$\rho_{du} = \rho_d x \phi$$

Trong đó:

 ρ_d : Điện trở suất của đất (vùng chôn cọc nối đất).

φ: Hệ số thời tiết.

Bảng 3.1. Điện trở suất của một số loại đất phổ biến

Loại đất	Giá trị điện trở suất 10⁴ (Ωcm)
Sỏi đá vụn	20
Cát	7
Cát pha	3
Đất thịt	0,6
Đất đen	1,0 ÷ 1,5
Đất sét thịt	1
Đất mùn	0,4

Bảng 3.2. Bảng hệ số thời tiết tiêu biểu

Kiểu nối đất	Độ chôn sâu của hệ thống nối đất	Hệ số thời tiết	Ghi chú
Thanh nằm ngang	0,8 ÷ 1	1,25 ÷ 1,45	Số nhỏ mùa khô
Cọc thẳng đứng	0,8	1,2 ÷ 1,4	Số lớn mùa mưa

- $Bu\acute{o}c$ 3: Chọn loại cọc nối đất và kiểu liên kết các cọc nối đất để tính điện trở nối đất cần thiết R_d thông qua bảng 3.3.

Bảng 3.3. Tính toán điện trở nối đất

Loại cọc	Cách bố trí	Công thức tính	Ghi chú
Cọc tròn đóng sâu dưới đất	h _{th} h _o	$R = \frac{\rho_{du}}{2\pi l} \left[\ln \frac{2l}{d} + \frac{1}{2} \ln \left(\frac{4h_{ib} + l}{4h_{ib} - l} \right) \right]$ $\rho_{du} : \text{Diện trở suất tính toán}$	$h_{1b} = h_0 + 1/2$ $h_0 \ge 0.5 m$
Thép L đóng sâu trong đất	h _{th} h _o	$R = \frac{\rho_{dil}}{2\pi l} \left[\ln \frac{2l}{b} + \frac{1}{2} \ln \left(\frac{4h_{ib} + l}{4h_{ib} - l} \right) \right]$ $\rho_{dil} : \text{Diện trở suất tính toán}$	$h_0 \ge 0.5 \mathrm{m}$

- Bước 4: Xác định số cọc lý thuyết: N_{tt}.

$$N_{tt} = \frac{R_{\rm d}}{R_{\rm dcp}}$$

Trong đó:

R_d: Điện trở nối đất.

R_{dep}: Điện trở nối đất cho phép.

Tuỳ theo hình thức bố trí cọc mà ta xác định chu vi của khu vực bố trí tiếp địa, tiến hành phân bố tiếp địa và xác định khoảng cách giữa hai tiếp địa.

$$a = L/N_{lt}$$

Trong đó:

L: Tổng chiều dài phân bố tiếp địa.

a: Khoảng cách giữa hai cọc.

Từ đó ta xác định được tỷ số a/l (l là chiều dài cọc tiếp địa). Thông thường người ta chọn tỷ số a/l = 1 hoặc = 2.

- Bước 5: Tìm số cọc thực tế cần dùng: N.

 $\eta_{\mathfrak{u}}$: Hệ số sử dụng ứng với số cọc vừa tính.

$$N = \frac{R_{\rm d}}{R_{\rm dcp} \ \eta_{tt}}$$

Trong đó: η_u : Hệ số sử dụng ứng với với số cọc vừa tính. Để xác định được hệ số sử dụng η_u tra bảng 3.4.

Bảng 3.4. Tìm hệ số η_u

Τỷ	Đặt các cọc t	heo hàng	Đặt các cọc thành r	nạch vòng kín
số	Số cọc lý thuyết	ηιι	Số cọc lý thuyết	ημ
	3	$0,76 \div 0,80$	3	$0,66 \div 0,72$
	5	$0,67 \div 0,72$	5	0,58÷ 0,65
1	10	$0,56 \div 0,62$	10	$0,52 \div 0,57$
	15	$0,51 \div 0,56$	15	0,44 ÷ 0,51
	20	0,47 ÷ 0,5	20	$0,38 \div 0,43$
	3	$0.85 \div 0.88$	3	0,76÷ 0,8
:	5	0,79 ÷0,83	5	$0.71 \div 0.75$
2	10	$0,72 \div 0,77$	10	0,66 ÷ 0,70
	15	$0,66 \div 0,73$	15	0,61 ÷ 0,65
	20	$0,65 \div 0,70$	- 20	0,55 ÷ 0,64

- Bước 6: Tính chiều dài và độ chôn sâu của thanh ngang liên kết các cọc nối đất với nhau thành hệ thống hoàn chỉnh.

Chiều dài của thanh nối là: L = 1.N

Độ chôn sâu của thanh nối là: $h_{tb} = h_o + b/2$.

- Bước 7: Tính điện trở của thanh nối.

Tra bảng 3.3 ta tính được điện trở của thanh nối ngang:

$$R_{ng} = \frac{\rho_u}{2\pi l} \ln \frac{2L^2}{b.h}$$

- Bước 8: Tính điện trở nối đất tổng thể của các cọc và thanh nối là:

$$R_{\Sigma} = \frac{R_{\rm d} . R_{din}}{R_{\rm d} + R_{din}}$$

Trong đó:

R_d: Điện trở nối đất của các cọc.

R_{dng}: Điện trở nối đất của thanh nối ngang.

So sánh điện trở nối đất cho phép nếu: $R_{\Sigma} < R_{cp}$ thì thoả mãn.

Nếu $R_{\Sigma} > R_{cp}$ thì ta phải tính lại.

4. Kiểm tra hệ thống nối đất sau tính toán

Sau khi tính toán hệ thống nối đất ta tiến hành thử nghiệm và kiểm tra điện trở yêu cầu cần thiết của hệ thống.

Trong quá trình làm việc chất lượng của hệ thống nối đất có thể giảm do ảnh hưởng của nhiều yếu tố như độ ẩm, tác động cơ học, ăn mòn hoá chất ... Vì vậy phải tiến hành kiểm tra đo đạc điện trở nối đất, đánh giá chất lượng của toàn bộ hệ thống trong quá trình sử dụng.

Hệ thống nối đất phải được kiểm tra sau khi lắp đặt trước khi đưa vào sử dụng và kiểm tra định kỳ trong quá trình sử dụng, thời hạn kiểm tra như sau:

- 2 năm một lần khi thiết bị được bố trí nơi ít nguy hiểm.
- 1 năm một lần khi thiết bị điện bố trí ở nơi đặc biệt nguy hiểm.

Nội dung kiểm tra:

4.1. Kiểm tra bằng trực quan

Kiểm tra lại các mối nối, các dây nối đất, những chỗ đưa dây vào đất, đỡ vào giá. Với hệ thống mới lắp đặt phải kiểm tra các điện cực trước khi lắp.

4.2. Đo điện trở nối đất

Kiểm tra giá trị điện trở nối đất của hệ thống có thoả mãn điều kiện cho phép không?

- + Xem lại bản vẽ lắp đặt và trị số yêu cầu của hệ thống nối đất.
- + Kiểm tra mạch nối của hệ thống.
- + Đo điện trở nối đất của hệ thống.

Ngoài hệ thống nối đất lặp lại và nối đất trực tiếp thì trong các phân xưởng, xí nghiệp, nhà máy... để tăng thêm hiệu quả an toàn cho người lao động, chúng ta cần phải nối không để bảo vệ các thiết bị.

5. Vận dụng tính toán

Tính toán nối đất trung tính nguồn cho một trạm biến áp:

$$22/0,4kV - \Delta/Y_{0-11} - 250kVA.$$

- Bước I: Theo quy phạm thì đối với phân xưởng thường sử dụng điện áp < 1000V nên điện trở nối đất trung tính nguồn cho trạm biến áp $R_{\rm dep}=4\Omega$.
- Bước 2: Tính toán điện trở suất tính toán của đất có tính đến sự ảnh hưởng của thời tiết.

Giả thiết phân xưởng xây dựng trên nền đất thịt, tra bảng 3.1 ta có ρ_d = 0,6 x 10^4 (Ω cm) và tra bảng 3.2 ta được ϕ = 1,2.

Vậy:
$$ρ_{du} = 0.6 \times 10^4 \times 1.2 = 0.72 \times 10^4 (Ωcm)$$
.

- Bước 3: Chọn loại cọc và kiểu kết nối các cọc để tìm được điện trở nối đất cần thiết R_d . Các cọc nối đất thường dùng là loại sắt góc chữ L: $60 \times 60 \times 6$ hoặc $50 \times 50 \times 5$ hoặc sắt tròn $\phi 20$ hay $\phi 30$. Thường dùng các loại cọc có chiều dài $2m \div 3m$ được đóng ở độ sâu 0.7m - 0.8m đưới mặt đất tự nhiên. Khoảng cách các cọc đóng cách nhau 2.5m; a = 1 nên tỷ số a/l = 1.

Thông thường đối với hệ thống nối đất người ta thường chọn kiểu cọc thép chữ L $60 \times 60 \times 6$ có chiều dài l=250 cm, chôn ở độ sâu $h_0=80 \text{cm}$.

Vậy độ chôn sâu của cọc:

$$h_{tb} = h_0 + 1/2 = 80 + 250/2 = 205$$
cm.

Từ đó ta áp dụng công thức tra ở bảng 3.3:

$$R_{d} = \frac{\rho_{du}}{2\pi l} \left[\ln \frac{2l}{b} + \frac{1}{2} \ln \left(\frac{4h_{ub} + l}{4h_{ub} - l} \right) \right]$$

$$R_{d} = \frac{0.72 \times 10^{4}}{2 \times 250 \times 3.14} \left[\ln \frac{2 \times 250}{6} + \frac{1}{2} \ln \frac{4 \times 205 + 250}{4 \times 205 - 250} \right]$$

$$R_{d} = 4.586 \times \left(4.42 + \frac{1}{2} 0.629 \right) (\Omega)$$

$$R_{d} = 4.586 \times 4.73 = 21.691 (\Omega)$$

- Bước 4: Xác định số cọc lý thuyết: N_{tt}.

$$N_{tt} = \frac{R_d}{R_n} = \frac{21,691}{4} = 5,4$$

- Bước 5: Xác định số cọc cần dùng: N.

Do đặc thù khu trạm biến áp hay phân xưởng thường chỉ bố trí nối đất trong khu đất nhỏ trong hoặc ngoài trạm biến áp hay phân xưởng nên để gọn gàng ta chọn tỷ số a/l = 1 và số cọc lý thuyết N_{lt} = 6 cọc. Từ đó tra bảng 3.4 ta có η_{tt} = 0,575.

Vậy số cọc cần dùng là:

$$N = \frac{R_{\rm d}}{R_{\rm dep} \eta_u} = \frac{21,691}{4 \times 0,575} = 9,4$$

Ta lấy N = 10 cọc.

Tra ngược lại bảng 3.4 ta lấy được hệ số sử dụng η_{tt} chính xác cho 10 cọc là η_{tt} = 0,57.

Vậy điện trở nối đất của số cọc vừa tính được là:

$$R = \frac{R_d}{N.n_u} = \frac{21,691}{10 \times 0.57} = 3,805(\Omega)$$

- Bước 6: Tính điện trở của thanh ngang nối các cọc với nhau.

Chọn thanh ngang nối các cọc tiếp địa là thép dẹt loại 40 x 4 chôn sâu 0,8m so với mặt đất tự nhiên.

Vậy chiều tổng dài thanh ngang là:

Ta chọn tỷ số a/l = 1 nên a = l.

Do đó $L = 1.N = 13 \times 250 = 3250 \text{cm}$.

1: là khoảng cách giữa các cọc, ta có 13 cọc nên l = 12.

Độ chôn sâu của thanh nối là: $h_{1b} = h_0 + b/2 = 0.8 + 0.04/2 = 0.82m = 82cm$.

- Bước 7: Điện trở nối đất của thanh nối là:

Áp dung công thức:

$$R = \frac{\rho_u}{2\pi l} \ln \frac{2L^2}{hh} = \frac{0.72 \times 10^4}{2 \times 3.14 \times 3000} \ln \frac{2 \times 3000^2}{4.28} = 0.382 \times 10.9 = 4.164(\Omega)$$

Hình 3.3. Hệ thống tiếp địa gồm 10 điện cực (cọc đóng thẳng đứng) và các thanh ngang (điện cực ngang) của ví dụ

- Bước 8: Điện trở nối đất tổng thể của cọc và thanh nối là:

$$R_{\Sigma} = \frac{R_{\rm d} R_{\rm din}}{R_{\rm d} + R_{\rm din}} = \frac{3,805 \times 4,164}{3,805 + 4,164} = \frac{15,844}{7,969} = 1,99(\Omega)$$

So sánh điện trở nối đất cho phép ta thấy: $1,99 (\Omega) \le 4 (\Omega)$

Vậy ta đóng 10 cọc mỗi cọc cách nhau 2,5m tạo thành mạch vòng kín xung quanh trạm biến áp, cách móng trạm 2 ÷ 3m - nối đất tập trung (hình 3.3).

6. Tính toán nối không cho hệ thống thiết bị trong phân xưởng và các thiết bị một pha, ba pha khác

Để đảm bảo cho hệ thống thiết bị trong phân xưởng và các thiết bị chiếu sáng, được nối không bảo vệ (nối đất bảo vệ) ta dùng hệ thống dây dẫn nối từ vỏ các máy về hệ thống cọc nối đất trung tính nguồn của trạm biến áp (tính toán phần trên) thông qua điểm nối không tại các tủ điện phân phối hạ thế về tủ máy cắt tổng rồi đến cực trung tính của máy biến áp và về đến hệ thống nối đất của trạm biến áp. Dây dẫn nối đất bảo vệ (dây E màu vàng dưa, xanh lá cây, nâu đất .v.v...) có thể tách riêng với dây pha (cáp 4*X + E) hoặc có thể dùng cáp 5 lõi trong đó có 1 lõi làm dây nối không.

7. Tính toán nối đất lặp lại cho hệ thống thiết bị trong phân xưởng

Yêu cầu tính toán đối với hệ thống tiếp địa lặp lại của lưới trung tính làm việc khá đơn giản nhưng mang lại hiệu quả kinh tế, tin cậy cung cấp điện cao. Điện trở nối đất lặp lại đối với lưới hạ thế < 1000 V luôn luôn không lớn hơn 10Ω ; tại các vị trí tủ điện hoặc tại khu vực tập trung nhiều thiết bị, động cơ công suất cao.

Trình tự tính toán hệ thống nối đất lặp lại hoàn toàn tương tự khi tính cho hệ thống nối đất làm việc máy biến áp.

Chuyên đề 4

CHIẾU SÁNG PHÂN XƯỞNG

Mục tiêu

- Hiểu được các phương pháp tính toán và lựa chọn chiếu sáng cho phân xưởng.
- Tính toán và áp dụng được các phương pháp đó.

Thiết kế chiếu sáng công nghiệp phải đáp ứng yêu cầu về độ rọi, hiệu quả của chiếu sáng đối với thị giác. Ngoài ra, chúng ta còn phải quan tâm đến màu sắc ánh sáng, chao chụp đèn, sự bố trí đèn chiếu sáng sao cho đảm bảo tính kinh tế, kỹ thuật và thẩm mỹ. Thiết kế chiếu sáng phải đảm bảo các yêu cầu sau:

- + Không loá mắt.
- + Không có bóng tối.
- + Độ rọi yêu cầu phải đồng đều.
- + Phải tạo được ánh sáng giống ánh sáng ban ngày.

Muốn thiết kế chiếu sáng chúng ta cần phải có các số liệu sau:

- + Mặt bằng của xí nghiệp hay nhà xưởng (của đối tượng chiếu sáng), vị trí đặt các máy (mặt bằng phân xưởng).
 - + Mặt cắt nhà xưởng để xác định vị trí treo đèn.
- + Những đặc điểm của quá trình công nghệ, tính chất làm việc của đối tượng chiếu sáng (thao tác chính xác, công việc cần phân biệt màu sắc như ở các xưởng vẽ thiết kế v.v...).
 - + Các tiêu chuẩn về độ rọi cửa các khu vực làm việc.
 - + Đặc điểm của nguồn điện, nguồn vật tư.

I. CHON NGUỒN SÁNG VÀ BỐ TRÍ NGUỒN SÁNG

1. Nguồn sáng

- Đèn thuỷ ngân cao áp dùng cho chiếu sáng ngoài nhà và trong các phân xưởng cơ điện có chiều cao lớn.
- Đèn huỳnh quang được dùng phổ biến hơn vì có đặc tính kinh tế kỹ thuật tốt, thường dùng trong các trường hợp:
 - + Chiếu sáng làm việc cần phân biệt rõ màu sắc.
 - + Trong phòng làm việc lâu, ít ánh sáng tự nhiên.
 - + Trong chuồng chăn nuôi.
 - Đèn sợi đốt dùng trong phòng không yêu cầu chất lượng quan sát màu sắc.
 - Đèn natri thường được sử dụng cho chiếu sáng đường giao thông.
- Đèn halogen thường được sử dụng chiếu sáng cho sân thể thao, quảng trường, bãi đỗ xe .v.v...

Để chon được một kiểu nguồn chiếu sáng người ta phải căn cứ vào:

- + Điều kiện môi trường: độ ẩm, nhiệt độ, bụi, tác động vật lý, hoá học của môi trường đặt đèn.
 - + Yêu cầu kỹ thuật đối với đặc tính phân bố nguồn sáng, mỹ thuật.

2. Bố trí nguồn sáng

Việc bố trí nguồn sáng góp phần quan trọng giải quyết phân bố đều cường đô sáng của nguồn sáng.

$$L_0 = L/H$$

L: Khoảng cách giữa các đèn.

La: Tỷ số giữa khoảng cách giữa các đèn và chiều cao treo đèn.

H: Chiều cao treo đèn (đến bề mặt sáng).

Hình 1 Hình 2

Hình 1: Không áp dụng cho phòng có chiều dài quá 1,5 lần chiều rộng.

Hình 2: Khi bề mặt làm việc gần tường thì $L_1 = (0.25 - 0.3)$ L.

Khi bề mặt làm việc không gần tường thì $L_1 = (0.4 - 0.5) L$.

II. TÍNH TOÁN CÔNG SUẤT ĐÈN

* Công thức kiểm tra sự sai lệch quang thông:

$$-10\% \le \frac{F_d - Ftt}{F_u} \le 20\%$$

Trong đó:

F_d: Quang thông của bộ đèn (do nhà sản xuất cung cấp).

F_u: Quang thông tính toán.

Trong thiết kế chiếu sáng nhà xưởng thường sử dụng 3 phương pháp tính toán chính sau đây:

- 1. Phương pháp đơn vị công suất p.
- 2. Phương pháp hệ số sử dụng K_{sd}.
- 3. Phương pháp điểm.

1. Phương pháp đơn vị công suất

Đơn vị công suất (p) là một chỉ tiêu năng lượng điện quan trọng của đèn được sử dụng rộng rãi để xem xét các giải pháp kinh tế đồng thời kiểm chứng lại các bước tính toán kỹ thuật chiếu sáng và dự kiến trước phụ tải chiếu sáng khi bắt đầu thiết kế.

Phương pháp đơn vị công suất chủ yếu dùng bảng tra sẵn về trị số đơn vị công suất mà không cần tiến hành các trình tự tính toán theo kỹ thuật chiếu sáng cũng có thể xác định được tổng công suất của tất cả các đèn cần dùng. Gặp trường hợp phòng chiếu sáng chung đồng đều có kích thước lớn thì kết quả đạt được khá chính xác.

Phương pháp đơn vị công suất không dùng trong các trường hợp trên bề mặt làm việc có bóng tối do vật này hay vật khác đổ xuống, cũng như không dùng được trong tính toán hành lang.

Đơn vị công suất (p) được tính bằng Wat/m² và có mối quan hệ:

$$p = \frac{\sum P_{d}}{S_{p}}$$

Trong đó: S_p: Diện tích của phòng.

ΣP_d: Tổng công suất của các đèn.

Trong phần phụ lục ghi các giá trị đơn vị chiếu sáng tiêu chuẩn p_{tc} trong trường hợp bố trí theo phương án có lợi nhất.

Khi sử dụng phụ lục bảng tra cần phải biết được các thông số như: kiểu đèn, độ rọi yêu cầu E_{min} , chiều cao treo đèn tính toán H_u và diện tích phòng S_p . Ngoài ra, cũng cần biết màu sơn của trần, tường để sử dụng các hệ số phản xạ của trần (ρ_u) , của tường (ρ_1) cho phù hợp.

Sau khi tra được trị số p_{te}, việc tính toán được tiến hành như sau:

Theo (4.2) tính được tổng công suất ΣP_d của tất cả các đèn dự kiến sẽ dùng để chiếu sáng chung đồng đều cho toàn bộ diện tích S_p của đối tượng được chiếu sáng.

$$\Sigma P_d = p_{tc} . S_p$$

Dựa vào công suất tiêu chuẩn của đèn p_{icd} để xác định số lượng đèn n_d ta cần đặt:

$$n_{\rm d} = \frac{\sum P_{\rm d}}{p_{tcd}}$$

Những điểm cần chú ý khi tính toán:

Các bảng tra đơn vị công suất p_{tc} được thiết lập áp dụng cho các phòng có tỷ số kích thước chiều dài so với chiều rộng $D_2/D_1 > 2.5$ trường hợp vượt quá thì chọn p_{tc} tương ứng với diện tích phòng $S_p = 2.5^2 \ D_1$.

Các trị số p_{tc} cho trong các bảng được tính khi dùng với các bóng đèn điện áp 220V, khoảng cách giữa các đèn, trong đó đề cập đến trị số ΔE (bóng nung sáng ΔE phụ thuộc vào cách bố trí đèn, bóng huỳnh quang có $\Delta E \approx 1$) và hệ số dự trữ $K = 1,3 \div 1,5$.

Nếu số lượng đèn cần đặt tính được lớn hơn so với số lượng vị trí đèn đã chọn thì phải tăng công suất của bóng đèn, tính toán lại sao cho đạt yêu cầu.

2. Phương pháp hệ số sử dụng

Phương pháp hệ số sử dụng quang thông K_{sd} sử dụng tính toán đối tượng chiếu sáng chung, đồng đều cho bề mặt nằm ngang có kể đến quang thông phản xạ từ tường và trần. Không dùng tính toán chiếu sáng trong các trường hợp: cục bộ, ngoài trời hay mặt phẳng nghiêng.

Công thức tính toán như sau:

$$K_{sd} = \frac{F_{lv}}{F_{\Sigma}}$$

 K_{sd} : Hệ số sử dụng quang thông.

F_{lv}: Quang thông có ích tới bề mặt.

 F_{Σ} : Quang thông tổng phát ra từ một bộ đèn.

Độ rọi trung bình ở cuối thời gian sử dụng của đèn là:

$$E_{tb} = \frac{F_{tv}}{S} = \frac{n. K_{sd}. F_{tt}}{K_{.tt}. S}$$

n: Số lượng đèn.

K_{d1}: Hệ số dự trữ.

S: Diện tích của đối tượng chiếu sáng (m²).

Độ rọi tối thiểu cần đạt được là E_{min}:

$$E_{\min} = \frac{n.K_{sd}. F_{tt}}{Z.K_{dt}. S}$$

Z: Hệ số không đồng đều được cho trong bảng:

$$Z = \frac{E_{ib}}{E_{min}} \ge 1$$

Quang thông cần thiết của đèn là:

$$F_{ii} = \frac{Z. K_{di}. S. E_{min}}{n. K_{vd}}$$

Độ rọi thực tế đạt được là E:

$$E = \frac{n. K_{sd}.F_d}{Z. K_{dt}.S}$$

Trình tự tính toán:

- 1. Kiểm tra điều kiện áp dụng của phương pháp.
- 2. Xác định E_{min}.
- 3. Xác định K_{sd}.
- 4. Xác định các hệ số Z và K_{dt}.
- 5. Tính F_u.
- 6. Chọn đèn.
- 7. Kiểm tra F và tìm E_{thuc} .

3. Phương pháp điểm

Phương pháp này áp dụng cho các trường hợp: chiếu sáng chung không đồng đều, chiếu sáng cục bộ, chiếu sáng cho mặt phẳng không nằm ngang và chiếu sáng ngoài trời.

Để tính độ rọi tại một điểm ta dùng công thức:

$$E = \frac{I_{\partial} \cos^3 \alpha}{H^2}$$

Trong đó:

E: Độ rọi tại điểm cần xét.

 I_{α} : Cường độ sáng của nguồn qua góc $\alpha.$

H: Độ cao treo đèn.

Xét một điểm A trên mặt phẳng nằm ngang, có nhiều nguồn sáng chiếu tới. Giả sử độ rọi tại A tạo bởi nguồn sáng có quang thông quy ước là 1000lx.

$$e_{A} = \frac{I_{\partial 1} \cos^{3} \alpha_{1} + I_{\partial 2} \cos^{3} \alpha_{2} + \dots I_{\partial n} \cos^{3} \alpha_{n}}{H^{2}}$$

$$e_{A} = \sum_{i=1}^{n} e_{Ai}$$

Để xác định được e_{Ai} ta căn cứ vào đường đẳng lux của nguồn sáng. Việc tính độ rọi tại A tạo bởi tất cả các nguồn sáng sẽ làm tăng khối lượng tính toán trong khi các nguồn sáng ở xa tác động yếu tới e_A . Trên thực tế chỉ tính cho các nguồn sáng liền kề A còn độ rọi tạo bởi các nguồn ở xa được tính bằng cách nhân thêm vào biểu thức e_A một hệ số gọi là hệ số độ rọi bổ sung μ . Hệ số này phụ thuộc phản xạ của tường, trần và đặc tính cường độ sáng.

Quang thông tính toán của đèn là:

$$F_{u} = \frac{1000K_{dt}.E_{\min}}{\mu \sum_{e_{At}}}$$

Tra phụ lục các thông số kỹ thuật của đèn chọn được đèn có quang thông F_d gần với F_n nhất. Sau đó kiểm tra theo điều kiện trên 4.1.

Trình tự các bước tính toán của phương pháp điểm:

- 1. Chọn điểm tính toán.
- 2. Xác định Emin.
- 3. Tính e_{Ai} theo công thức hoặc tra đường đẳng lux.
- 4. Xác định K_d, μ.
- 5. Tính F_{II}.
- 6. Tra bảng chọn đèn: P_d, F_d.
- 7. Kiểm tra sai lệch theo công thức nếu không đạt thì làm lại từ bước 2.

III. PHẦN ỨNG DỤNG TÍNH TOÁN CHO CÁC ĐỐI TƯỢNG CHIẾU SÁNG

1. Dùng phương pháp đơn vị công suất

Ví du: Tính toán chiếu sáng cho một phòng hội thảo có các thông số sau:

Chiều rộng $D_1 = 30m$, chiều dài $D_2 = 46m$. Trần và tường màu sáng, có cửa sổ.

Tra bảng 4.1 ta tìm được $E_{min} = 100lux$.

Bảng 4.1. Độ rọi tối thiểu cho một số đối tượng chiếu sáng

Đối tượng chiếu sáng	Độ rọi (lx)	
Chế tạo những chi tiết nhỏ	250	
Nhà băng	150	
Thư viện, phòng họp	100	
Phòng đọc, phòng làm việc lâu dài	150	
Phòng điều khiển nhà máy điện	150	
Công nghiệp cơ khí	150	
Nông trang	50	
Mạ điện	75	
Đúc kim loại	100	
Kho	75	

2. Dùng phương pháp hệ số sử dụng

Ví dụ: Tính toán chiếu sáng cho một phân xưởng cơ khí, môi trường chiếu sáng chiu tác động của nhiệt độ, bụi. Yêu cầu cường độ sáng đảm bảo điều kiện làm việc toàn phân xưởng. Ngoài ra, tại các vị trí máy gia công cắt gọt phải cần có chiếu sáng cục bộ.

Xưởng có: chiều dài a = 36m và b = 20m. Văn phòng phân xưởng có diện tích $42m^2$ và nhà kho có diện tích $42m^2$. Chiều cao từ mặt đất đến trần nhà là 5m.

2.1. Tính toán chiếu sáng cho phân xưởng sản xuất

Ta sử dụng đèn nung sáng nên có $\cos \varphi = 1$.

- $Bu\acute{o}c$ 1: Độ rọi trung bình tra bảng 4.1 ta có E_{tb} = 1001x.
- Bước 2: Bố trí đèn: Trần nhà cao 5m, độ cao làm việc chủ yếu 1,2m.

Bảng 4.2. Chiều cao treo đèn cho một số bộ nguồn sáng

	Chiều cao nhỏ nhất khi			
Kiểu nguồn sáng	P đến 150W	P đến 200W	P đến 250W	
Y, HY có chụp thuỷ tinh mờ	2,5	3	4	
Đèn cầu, đèn trần		2,5	3	
Đèn hở tráng gương		4	6	
Đèn huỳnh quang có chụp phản xạ	3 ÷ 4,5	3 ÷ 4,5	3 ÷ 4,5	
Đèn huỳnh quang có hệ số thấu xạ của bầu đèn	2,6 ÷ 4	2,6 ÷ 4	2,6 ÷ 4	

Tra bảng 4.2 dùng loại đèn sợi đốt có chụp thuỷ tinh mờ, dự kiến công suất của đèn đến 200W, độ cao treo đèn H = 3m:

Bảng 4.3. Tỷ số khoảng cách các đèn L_o và chiều cao treo đèn H

Đặc tính cường độ sáng	Kiểu nguồn	L _o /H
Chiếu sâu	Nguồn chiếu sâu, đèn huỳnh quang có chụp tán xạ	1,1÷1,8
Chiếu thẳng phân bố trung bình	Kiểu đèn A, Y có chụp phản xạ và các đèn huỳnh quang khác	1,4÷1,8
Chiếu thẳng phân bố đều	$Ø_M/π$ khi không có chụp phản xạ	2,3

Khoảng cách giữa các đèn liền kề là:

$$L = L_o x H$$

$$L = 1.4 \times 3 = 4.2 \text{ (m)}$$

- Bước 3: Khoảng cách các đèn chọn là 4m. Chiều dài phân xưởng là 36m. Vậy ta đặt số đèn cho một dãy là 36: 4 = 9 đèn. Ta đặt 7 đèn, mỗi đèn cách nhau 4m, đèn đầu cuối cách tường 2,8m. Chiều rộng của phân xưởng là 20m ta bố trí 5 dãy đèn, mỗi dãy đặt cách nhau 4m, dãy gần tường cách tường 1,8m.

Vậy tổng số đèn cần dùng là : $7 \times 5 = 35$ đèn.

- $But\acute{o}c$ 4: Tìm hệ số sử dụng K_{sd} ta tra bảng 4.4.

Với đặc điểm tường và trần sáng màu ρ_{tg} = 30%, ρ_{tr} = 50% và hệ số môi trường:

$$i = \frac{S}{H(a+b)} = \frac{720}{3(20+36)} = 4,28$$

Bảng 4.4. Hệ số sử dụng quang thông của một số bộ nguồn

Các	chỉ s	ố	$\mathbf{Y}_{\mathtt{N}}$	1	7	τ
		ρ_{tr}	50	70	50	70
Loại nguồn	i	ρ_{t}	30	50	30	50
I I Guon		$\rho_{\rm s}$	10	10	10	10
	1	,0	32	36	43	46
	1	,5	37	41	49	52
	2	2,0	41	45	52	55
Đèn sợi	2	2,5	43	47	54	57
đốt	2	3,0	45	49	55	58
	3	3,5	46	50	56	59
	4	1,0	47	51	57	60
	-	5,0	49	52	59	62
	(),9	36	43	36	41
	. 1	1,0	38	46	38	44
	1	1,1	41	48	41	46
Đèn	1	,25	44	51	44	48
huỳnh quang]	1,5	48	56	47	52
	1	,75	51	59	50	54
	2	2,0	53	61	52	56
	:	3,0	59	67	58	62

Tra bảng ta tìm được $K_{sd} = 0.63$.

- Bước 5: Xác định hệ số dự trữ.

Bảng 4.5. Hệ số dự trữ cho một số loại nguồn sáng

	Số lần lau ít	Hệ số dự trữ		
Tính chất công trình	nhất trong 1 tháng	Đèn huỳnh quang	Đèn nung sáng	
Phòng có nhiều bụi, khói, tro	4	. 2	1,7	
Phòng có bụi, khói, bồ hóng	3	1,8	1,5	
Phòng ít bụi, khói, bồ hóng	2	1,5	1,3	

Hệ số dự trữ: K_{di} ta tra bảng 4.5 ta được $k_{di} = 1,3$.

- Bước 6: Quang thông cần thiết của đèn là:

$$F_u = \frac{K_{dt} \cdot S.E}{n.K_{sd}} = \frac{1.3 \times 720 \times 100}{35 \times 0.63} = 4244.89 \text{ lm}$$

- Bước 7: Chọn đèn có quang thông gần với giá trị quang thông tính toán.

Bảng 4.6. Thông số của một số loại đèn

Sợi đốt tiêu chuẩn				Đèn huỳ:	nh quang
P (W)	φ (lm)	P(W)	ф (lm)	P(W)	ф (lm)
40	430	200	3000	20	1000
75	970	300	5000	40	2450
100	1390	500	8700	40	2900
150	2200	1000	18700	40	3200

Chọn được đèn sợi đốt có công suất P = 300W, quang thông $\phi = 5000lm$.

- Bước 8: Kiểm tra quang thông theo công thức 4.1.

$$-10\% \le \frac{F_d - Ftt}{F_u} \le 20\%$$
$$-10\% \le \frac{5000 - 4225}{4225} = 17\% \le 20\%$$

Đèn vừa chọn thoả mãn yêu cầu thiết kế, thực tế trong phân xưởng còn có văn phòng $42m^2$, nhà kho $42m^2$. Do đó, số đèn cần dùng là: 35 - 6 = 29 đèn.

Hình 4.3. Mặt bằng bố trí đèn chiếu sáng phân xưởng cơ khí

2.2. Tính toán chiếu sáng cho văn phòng phân xưởng sản xuất

Văn phòng làm việc của phân xưởng phải đảm bảo có ánh sáng giống ban ngày để có thể làm việc lâu dài.

- Bước 1: Văn phòng có chiều dài 8,4m, chiều rộng 5m. Ta tính toán theo phương pháp hệ số sử dụng đối với đèn huỳnh quang, có hệ số công suất 0,98.
 - $Bu\acute{o}c$ 2: Xác định độ rọi cần thiết theo bảng 4.2: E_{tb} = 150lx.
- $Bu\acute{o}c$ 3: Trần văn phòng cao 3m, cao độ làm việc 0,8m. Vậy cao độ treo đèn là: H = 3 0.8 = 2.2m.

Xác định tỷ số L_0 theo bảng 4.3 được L_0 = 2,3. Vậy khoảng cách các đèn là L = 2,3 x 2 = 4,6m. Bố trí 2 hàng đèn cách nhau 3m cách tường 1,4m, mỗi đèn trong hàng cách nhau 4m cách tường 1,4m.

Tổng số cần 04 bộ đèn, mỗi bộ gồm 02 đèn huỳnh quang 1,2m.

- Bước 4: Xác định hệ số sử dụng.

Hệ số môi trường:

$$i = \frac{S}{H(a+b)} = \frac{42}{2,2(7+6)} = 1,47$$

Với hệ số phản xạ của trần và tường màu sáng ta tra bảng 4.4 được hệ số sử dụng: $K_{sd}=0,49$.

- Bước 5: Xác định hệ số dự trữ (theo bảng 4.5).

Đối với đèn huỳnh quang ta chọn hệ số dự trữ ở môi trường ít bụi là:

$$K_{di} = 1.5$$

- Bước 6: Xác định quang thông cần thiết:

$$F_{tt} = \frac{K_{dt}.S.E}{n.K_{vd}} = \frac{1.5 \times 421 \times 50}{8 \times 0.49} = 2410 lm.$$

- Bước 7: Chọn đèn theo bảng 4.6.

Chọn được đèn huỳnh quang có công suất P=40W dài 1,2m, quang thông $\phi=2450 lm$.

- Bước 8: Kiểm tra quang thông của đèn vừa chon.

$$-10\% \le \frac{F_d - F_u}{F_u} \le 20\%$$

$$-10\% \le \frac{2450 - 2410}{2410} = 1,7\% \le 20\%$$

Đèn đã chọn thoả mãn yêu cầu chiếu sáng văn phòng làm việc của phân xưởng mở rộng.

Hình 4.4. Mặt bằng bố trí đèn chiếu sáng văn phòng trong phân xưởng

2.3. Tính toán chiếu sáng cho nhà kho trong phân xưởng

Nhà kho có chiều rộng 6m, chiều dài 7m, chiều cao trần 3m. Ta dùng phương pháp điểm để tính toán nhằm đáp ứng yêu cầu quan sát các chi tiết đặt trên giá cao trung bình 1,0m.

- Bước 1: Chọn điểm A để tính toán nằm ở độ cao tập trung các chi tiết nhỏ đặt trên giá 1,0m (như hình vẽ):

Hình 4.5. Hình vẽ bố trí đèn cho nhà kho

- Bước 2: Xác định độ rọi tối thiểu theo bảng 4.2 được $E_{\min} = 75 lx$.
- $Bu\acute{o}c$ 3: Xác định e_A theo phương pháp đường đẳng lux cho nguồn sáng dài, ta tra được các giá trị của I_α : p'=p/H; L'=L/H=1,2/2=0,6, khi độ cao treo đèn H=2m thì các đèn chiếu tới điểm A theo 4 hướng được tính căn cứ đường đẳng lux của kiểu đèn huỳnh quang dài 1,2m.

Hình 4.6. Biểu đồ đẳng lux của đèn huỳnh quang 1,2m thông dung

khi p1 = 2,5
$$\rightarrow$$
 p' = 2,6/2 = 1,25 \rightarrow e = 35 (lx)
khi p2 = 2,2 \rightarrow p' = 2,2/2 = 1,10 \rightarrow e = 40 (lx)
khi p3 = 2,8 \rightarrow p' = 2,8/2 = 1,40 \rightarrow e = 27 (lx)
khi p4 = 2,6 \rightarrow p' = 2,6/2 = 1,30 \rightarrow e = 30 (lx)
 $E = 35 + 40 + 27 + 30 = 132 (lx)$

Giả sử độ rọi tại A tạo bởi các nguồn có quang thông chuẩn 1000lm. Khi đó độ rọi thực E_A tại điểm A tạo bởi các nguồn sáng thực có quang thông F_u được tính là:

$$F' = \frac{1000 \times H \times K_{dt} \times E_{min}}{\mu \times \sum_{i=1}^{4} e}$$

- Bước 4: Xác định hệ số độ rọi bổ sung μ và hệ số dự trữ K_{di}.

Hệ số p	hản xạ	Hệ	số μ cho các nguồ	n sáng
Tường	Trần	Υ; π	Chiếu sâu	Đồng đều
0,3	0,5	1,08÷1,2	1,05÷1,15	1,6
0,5	0,7	1.12÷1.35	1.1÷1.25	

Bảng 4.7. Hệ số đô roi bổ sung µ

Độ rọi thực tại A tạo bởi nguồn sáng thực có quang thông F và kể đến độ rọi bổ sung $\mu = 1.6$ và hệ số dự trữ K_{dt} tra bảng 4.5 ta được $K_{dt} = 1.5$.

- Bước 5: Xác định quang thông tính toán của đèn:

$$F_{u} = \frac{1000 \times 2 \times 1,5 \times 75}{1,6 \times 132}$$

$$F_a = 1065(lm)$$
.

- Bước 6: Tra bảng 4.6 chọn đèn có quang thông phù hợp với loại đèn huỳnh quang loại 1,2m công suất 20W, quang thông đèn 10001x.
 - Bước 7: Kiểm tra sai lệch quang thông.

$$-10\% \le \frac{1000 - 1065}{1065} = -6.5\% \le +20\%$$
.

Loại đèn đã chọn hoàn toàn thoả mãn yêu cầu chiếu sáng cho kho trong phân xưởng, đảm bảo môi trường làm việc tốt đặc biệt là tại cao độ 1,0m so với mặt sàn.

Hình 4.7. Cách bố trí đèn

Chuyên đề 5

CUNG CẤP ĐIỆN CHO CHIẾU SÁNG ĐÔ THỊ

Muc tiêu

Để đáp ứng được nhu cầu phát triển của tốc độ đô thị hoá ngày càng cao cũng như yêu cầu về thẩm mỹ của công trình xây dựng đường giao thông, giảng đường, vườn hoa, sân chơi... yêu cầu người thiết kế phải:

- Hiểu được ý nghĩa tầm quan trọng của chiếu sáng cho các công trình đô thị
- Biết cách tính toán, lựa chọn đèn và các thiết bị chiếu sáng phù hợp với các công trình đó.

I. CÁC HÌNH THỰC CHIẾU SÁNG ĐÔ THI

1. Chiếu sáng ngoài - chiếu sáng mặt

Mỗi một diện tích mặt ngoài được chiếu sáng của toà nhà hay của một tượng đài cần phải có một độ chói nhất định để tạo nên sự nổi bật phối cảnh. Chiếu sáng với độ rọi đồng đều sẽ huỷ hoại khả năng tạo cho những phần khác nhau của cấu trúc có thể nhìn thấy rõ nét trong phối cảnh. Mức độ rọi của mặt ngoài phụ thuộc vào vật liệu mặt ngoài và độ chói của các diện tích xung quanh.

Để đảm bảo độ rọi đối với mặt ngoài, ta thường dùng đèn nung sáng bình thường và đèn chiếu hắt.

2. Chiếu sáng công viên

Trong trường hợp này người ta cần tạo độ rọi cho những mục tiêu cần chú ý như độ rọi của nước, các công trình nghệ thuật, của các tượng đài kỷ niệm .v.v...

Thông thường người ta bố trí một số đèn có công suất nhỏ và sẽ có điểm có độ chói giảm thay vì chỉ có vài điểm mà độ chói lại nâng cao. Thông thường người ta không quan tâm đến hiệu quả chiếu sáng sự đồng đều mà muốn tạo nên những khoảng tối và sáng thay đổi nhau.

3. Chiếu sáng các công trình thể thao

Chiếu sáng cần đảm bảo sao cho độ chói của đối tượng chơi (như quả bóng, quả banh... và của sân) phải được trông thấy rõ, đặc biệt là tốc độ và hướng chuyển động của đối tượng. Để thực hiện được điều này, chúng ta phải quan tâm đến dạng đối tượng cần được thấy trong suốt quá trình chơi, độ chói của nền và vị trí của người quan sát.

II. CÁC PHƯƠNG PHÁP BỐ TRÍ CỘT ĐÈN

2. Tính chọn công suất đèn

- Bước 1: Xác định hình thức bố trí đèn trên đường, độ chói trung bình tối thiểu của đường cần chiếu sáng chon theo bảng 5.1.

Bảng 5.1. Cấp chiếu sáng

Cấp	Loại đường	Mức	Độ chói TB (L _{tb})	Chỉ số tiện nghi G
Α	Xa lộ cao tốc	Sáng	2	6
В	D. Dyskey Jan. Austra han sie		2	5
ъ	Đường lớn, đường hình tia	Tối	1 ÷ 2	6
С	Đường cái ít người đi bộ	Sáng	2	5
	Duong car it người di bộ		1 .	6
D	Các phố chính	Sáng	2	4
E Đườn	Đường vắng	Sáng	1	4
E.	Duong vang	Tối	0,5	5

Độ chói trung bình của mặt đường do người lái xe quan sát khi ở mặt đường tầm xa 100m lúc thời tiết khô ráo.

- Bước 2: Xác định khoảng cách các đèn qua bảng 5.2.

Bảng 5.2. Khoảng cách các đèn

e/h _{max}	Chup sâu	Chụp vừa
Một bên đường	3	3,5
Hai bên so le	2,7	3,2

- Bước 3: Xác định hệ số già hoá V theo bảng 5.3 và bảng 5.4.

 $V = V1 \times V2$.

V1: Hệ số giảm quang thông.

V2: Hệ số bám bẩn.

Bảng 5.3. Hệ số giảm quang thông V1

Thời gian (h)	Đèn natri cao áp	Đèn ống huỳnh quang	Đèn natri áp suất thấp
3000	0,95	0,9	0,85
6000	0,90	0,85	0,80
9000	0,85	0,80	0,75

Bảng 5.4. Hệ số giảm quang thông V2

Bộ đèn	Không loe	Có loe
Không khí ô nhiễm	0,65	0,70
Không khí không ô nhiễm	0,90	0,95

- Bước 4: Xác định độ rọi trung bình R.

Bảng 5.5. Tỷ số R

D _ F /I	Bê tông		Lớp phủ mặt đường			Hè đường
$\mathbf{R} = \mathbf{E}_{tb}/\mathbf{L}_{tb}$	Sạch	Bẩn	Sáng	TB,	Tối	ne duong
Chụp sâu	11	14	14	19	25	- 18
Chụp vừa	8	10	10	14	18	13

- Bước 5: Xác định hệ số sử dụng của đèn.

$$K_{sd} = k_{sdtr} + k_{sds} khi a > 0$$

$$K_{sd} = k_{sdtr} - k_{sds}$$
 khi $a < 0$

 K_{sdtr} : Hệ số sử dụng trước khi tính toán.

K_{sds}: Hệ số sử dụng sau khi tính toán.

Đối với mỗi loại đèn đều có đường đặc tính, hệ số sử dụng riêng, căn cứ vào đó ta lấy $K_{\rm sd}$. Dưới đây chúng tôi đưa ra đường đặc tính của đèn cao áp có công suất từ $150 \div 250W$.

- Bước 6: Tra bảng 5.6 tính chọn công suất và quang thông của đèn chọn là:

$$F_{tt} = \frac{l \times e \times L_{tb} \times R}{V \times K_{sd}}$$

Bảng 5.6. Công suất và quang thông của một số loại đèn phóng điện 220/240V thông dụng

Natri áp suất	P	35	55	90	135
thấp	Ø	4800	8000	13500	22500
Natri áp suất	P	50	70	150	210
cao	Ø	4000	5800	14000	18000
TT 1	P	70	150	250	400
Halogen	Ø	5000	11200	17000	32500

Chọn đèn có công suất và quang thông phù hợp quang thông tính toán.

- Bước 7: Kiểm tra quang thông của đèn vừa chọn theo công thức:

$$-10\% \le \frac{F_d - F_u}{F_u} \le +20\%$$

- Bước 8: Kiểm tra hệ số tiện nghi của đèn vừa chọn.

Bảng 5.7. Hệ số tiện nghi của một số loại dèn phóng điện thông dụng

Natri áp suất cao	P	70	150	210
	Ø	4,1	3,8	3,2
Natri áp suất thấp	P	55	90	135
	Ø	4,4	4,1	3,5
Halogen	P	150	250	400
	Ø	3,7	3,4	2,8

Chụp đèn hạn chế loá mắt, vì thế nhà sản xuất đưa ra hệ số tiện nghi với mỗi bộ đèn G. Sau khi tính được công suất đèn ta kiểm tra hệ số tiện nghi G theo công thức:

$$G = ISL + 0.97 \log(L_{tb}) + 4.41 \log h' - 1.46 \log P$$

Chỉ số G càng cao càng ít già hoá.

ISL: Do nhà sản xuất đưa ra.

 $h : D_0$ cao từ đèn đến tầm mắt h' = h - 1.5.

P: Số lượng bộ đèn trên 1km đường.

Chất lượng chiếu sáng tốt tạo ra góc nhìn tiện nghi, tri giác nhìn nhanh, chính xác, hạn chế loá mắt, độ chói đồng đều trên bề mặt đường.

III. PHƯƠNG PHÁP TÍNH TOÁN

Ví dụ: Tính toán chiếu sáng đường quanh phân xưởng cơ khí.

- Bước 1: Xác định cấp chiếu sáng đường tra bảng 5.1 được $L_{tb} = 1$ (cd/m²).
- Bước 2: Đặc điểm đường nội bộ hẹp có chỗ uốn cong, đường rộng 5m, ta lựa chọn chiếu sáng 1 bên đường, chọn cột đèn cao 7m.

Khoảng cách các đèn: tra bảng 5.2.

Chọn $e = 3.5 \times 8 = 28m$, ta chọn e = 30m.

Cần đèn vươn xa 1,6m, cột chôn trên via hè a = 1000, 1 - a = 4000.

- Bước 3: Xác định hệ số già hoá; tra bảng 5.3 và 5.4 ta được:

$$V_1 = 0.9$$
; $V_2 = 0.9$, vậy V= 0.9 x 0.9 = 0.81.

- Bước 4: Xác định độ rọi trung bình R theo bảng 5.5.

Dùng loại đèn có chụp vừa, lớp phủ mặt đường màu tối có R = 18.

- Bước 5: Xác định hệ số sử dụng của đèn tra đường cong sử dụng của đèn.

$$\frac{l-a}{h} = \frac{5-1}{7} = \frac{4}{7} = 0,57$$

$$\frac{a}{h} = \frac{1}{7} = 0.14$$

Tra đường cong ta được : $k_{sdt} = 0.24$ và $k_{sdf} = 0.03$.

$$k_{sd} = k_{sdt} + k_{sdf} = 0.24 + 0.03 = 0.27.$$

- Bước 6: Tính chọn công suất và quang thông của đèn qua bảng 5.6.

$$F_{ii} = \frac{5 \times 30 \times 18}{0.81 \times 0.27} = 12345,68lm$$

Chọn đèn natri cao áp 150W, 14500lm.

- Bước 7: Kiểm tra quang thông của đèn vừa chọn.

$$-10\% \le \frac{14500 - 12345,68}{12345,68} = 17\% \le +20\%$$

Đèn vừa chọn thoả mãn yêu cầu tính toán, cung cấp đủ điều kiện chiếu sáng cho đường nội bộ quanh phân xưởng cơ khí.

- Bước 8: Kiểm tra chỉ số tiện nghi G.

$$G = 3.2 + \log 1 + 4.41 \log 6.5 - 1.46 \log 33$$

$$G = 3,2 + 0 + 3,58 - 2,22$$

$$G = 4,56$$

Đối chiếu trở lại điều kiện ở bảng 5.1 ta thấy bộ đền ta chọn thoả mãn yêu cầu về quang thông, về chỉ số tiện nghi.

Phần ba

CÁC BẢNG PHỤ LỤC TRA CỬU CẦN THIẾT

PL1. Trị số trung bình K_{SD} và $\cos \varphi$ của các nhóm thiết bị điện

Nhóm thiết bị	K _{SD}	cosφ
Nhóm máy gia công kim loại (tiện, cưa, bào)		· · · · · · · · · · · · · · · · · · ·
- Phân xưởng cơ khí	0,2 - 0,4	0,6 - 0,7
- Phân xưởng sửa chữa cơ khí	0,14 - 0,2	0,5 - 0,6
- Phân xưởng làm việc theo dây chuyền	0,5 - 0,6	0,7
Nhóm máy phân xưởng rèn	0,25 - 0,35	0,6 - 0,7
Nhóm máy phân xưởng đúc	0,3 - 0,35	0,6 - 0,7
Nhóm động cơ làm việc liên tục (quạt, máy bơm, máy nén khí)	0,6 - 0,7	0,7 - 0,8
Nhóm động cơ làm việc ở chế độ ngắn hạn lặp lại (cầu trục, palăng)	0,05 - 0,1	0,4 - 0,5
Nhóm máy vận chuyển làm việc liên tục (băng tải, băng chuyền)	0,6 - 0,7	0,65 - 0,75
Nhóm lò điện (lò điện trở, lò sấy)		
- Lò điện trở làm việc liên tục	0,7 - 0,8	0,9 - 0,95
- Lò cảm ứng	0,75	0,3 - 0,4
- Lò cao tần	0,5 - 0,6	0,7
Nhóm máy hàn		
- Biến ấp hàn hồ quang	0,3	0,35
- Thiết bị hàn hơi, hàn đường, nung tán đinh	0,35 - 0,4	0,5 - 0,6
Nhóm máy dệt	0,7 - 0,8	0,7 - 0,8

PL2. Trị số K_{NC} và $\cos \varphi$ của các phân xưởng

Tên phân xưởng	K _{NC}	cos φ
Phân xưởng cơ khí lắp ráp	0,3 - 0,4	0,5 - 0,6
Phân xưởng nhiệt luyện	0,6 - 0,7	0,7 - 0,9
Phân xưởng rèn, dập	0,5 - 0,6	0,6 - 0,7
Phân xưởng đúc	0,6 - 0,7	0,7 - 0,8
Phân xưởng sửa chữa cơ khí	0,2 - 0,3	0,5 - 0,6
Phân xưởng nhuộm, hấp, tẩy	0,65 - 0,7	0,8 - 0,9
Phân xưởng nén khí	0,6 - 0,7	0,7 - 0,8
Phân xưởng mộc	0,4 - 0,5	0,6 - 0,7
Phòng thí nghiệm, nghiên cứu khoa học	0,7 - 0,8	0,7 - 0,8
Nhà hành chính, quản lý	0,7 - 0,8	0,8 - 0,9

PL3. Trị số T_{max} và cos φ của xí nghiệp

Tên xí nghiệp	T _{max} (h)	cos φ
Xí nghiệp cơ khí chế tạo máy	4500 - 5000	0,6 - 0,7
Xí nghiệp chế tạo vòng bi	5000 - 5500	0,7 - 0,75
Xí nghiệp chế tạo dụng cụ	3000 - 4000	0,62 - 0,7
Xí nghiệp gia công gỗ	3000 - 4500	0,65 - 0,7
Xí nghiệp hoá chất	5500 - 6000	0,8 - 0,9
Xí nghiệp đường	4800 - 5200	0,7 - 0,8
Xí nghiệp luyện kim	5000 - 5500	0,75 - 0,88
Xí nghiệp bánh kẹo	5000 - 5300	0,7 - 0,75
Xí nghiệp ôtô máy kéo	4000 - 4500	0,72 - 0,8
Xí nghiệp in	3000 - 3500	0,75 - 0,82
Xí nghiệp dệt	4800 - 5500	0,7 - 0,8

PLA. Trị số n_{hạ}* theo n* và p*

	1,0	0,02	0,03	9, 8,	0,05	90'0	90,0	0,09	0,14	0,19	0,24	0.29	0,33	0,38	0,43	0,48	0,52	0,57	0,62	99'0	0,71	92'0	0,80	0,85	000
						-	\rightarrow		\rightarrow			- i		\rightarrow	\rightarrow		-		\rightarrow	-	-		\neg		_
	0,95	0,02	0,03	0,0	0,05	90'0	0,08	0,1	0,16	0,21	0,26	0,32	0,37	0,42	0,47	0,53	0,57	0,63	0,68	0,73	0,78	0,83	0,88	0,92	
	06'0	0,02	0,0	0,05	90'0	0'0	60'0	0,12	0,17	0,23	0,29	0,35	0,41	0,47	0,52	0,58	0,63	69'0	0,71	0,80	0,85	68'0	0,93	0,95	
	0,85	0,03	9,04	0,05	0,07	0,08	0,11	0,13	0,20	0,26	0,32	66,0	0,45	0,52	0,58	0,64	69'0	0,75	0,81	98'0	06'0	0,91	0,95		
	0,80	0,03	0,04	0,06	0,07	60'0	0,12	0,15	0,23	0,29	0,36	0,43	0,50	0,57	0,64	0,70	0,75	0,81	98'0	0,90	0,93	0,95			
	0,75	0,03	0,05	0,07	0,08	0,10	0,13	0,17	0,25	0,33	0,41	0,48	0,56	0,63	0,70	0,76	0,82	0,87	0,91	0,94	0,95		-		
	0,70	0,04	0,06	0,08	0,10	0,12	0,15	0,19	0,28	0,37	0,45	0,53	0,62	69'0	0,76	0,82	0,87	0,91	0,94	0,95					
	9,65	0,01	0,07	60'0	0,11	0,13	0,17	0,22	0,32	0,42	0,51	09,0	99'0	0,75	0,81	0,87	0,91	0,94	96'0						_
_	09'0	0,05	0,08	0,10	0,13 (0,15 (0,20	0,25 (0,37 (0,47 (0,57	<u> </u>	0,74	0,81	0,87	0,91	26,0	0,95	_						_
$\Sigma P_1/\Sigma P$	0,55	0,06	0,09	0,12 (0,15 (0,18 (0,24 (0,29 (0,42 (0,54	0,61		0,81	98'0	0,91	0,94	0,95								l
p* = ∑	0,50	20,0	0,11	0,15 (0,18	0,21 (0,28	0,31	0,48	0,61	0,71	0,80	98,0	0,91	0,93	0,95									ļ.
	0,45 (60'0	0,13 (0,18	0,22 (0,26 (0,33	0,40	0,56	0,69	0,78		0,91	0,93	0,95										
1	0,40 0	0,11	0,16 0	0,22 0	0,26 0		0,40 0	0,47 0	0,67	0,76 0	0,85		0,94	0,95 0	0	_						ĺ			1
	<u> </u>	₩		\vdash	•	3 0,31						} 	├─-	oʻ									<u> </u>		-
	0,35	0,14	0,21	0,27	0,33	0,38	0,48	0,56	0,72	0,83	0,0	0,94	0,95									<u> </u>			
	0,30	0,19	0,27	0,34	0,41	0,47	0,57	99'0	0,80	0,89	0,93	0,95						1							
İ	0,25	0,26	0,36	0,44	0,51	0,58	99'0	0,76	88'0	0,93	0,95					=									1
	0,20	96,0	0,48	0,57	0,61	0,70	62'0	0,85	0,93	0,95											-				
	0,15	0,51	0,64	0,72	0,79	0,83	0,89	0,92	0,95																
	2,	0,71	0,81	\vdash	 	0,92	0.94	26,0														ļ <u>-</u>			
*"_	Ę	0,02	0,03	0,04	0,05	90'0	90'0	0,1	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0.50	0,55	09,0	0,65	0,70	0,75	08'0	0,85	06,0	

PL5. Trị số K_{max} theo K_{SD} và n_{hq}

				G	iá trị K,	_{nax} khi K	·SD			
n _{ttq}	0,1	0,15	0,20	0,30	0,40	0,50	0,60	0,70	0,80	0,90
4	3,43	3,81	2,64	2,14	1,87	1,65	1,46	1,29	1,14	1,05
5	3,23	2,87	2,42	2,00	1,76	1,57	1,41	1,26	1,12	1,04
6	3,04	2,64	2,24	1,88	1,66	1,51	1,37	1,23	1,10	1,04
7	2,88	2,48	2,10	1,80	1,58	1,45	1,33	1,21	1,09	1,04
8	2,72	2,31	1,99	1,72	1,52	1,40	1,30	1,20	1,08	1,04
9	2,56	2,20	1,90	1,65	1,47	1,37	1,28	1,18	1,08	1,03
10	2,42	2,10	1,84	1,60	1,36	1,34	1,26	1,16	1,07	1,03
12	2,24	1,96	1,75	1,52	1,32	1,28	1,23	1,15	1,07	1,03
14	2,10	1,85	1,67	1,45	1,28	1,25	1,20	1,13	1,07	1,03
16	1,99	1,77	1,61	1,41	1,26	1,23	1,18	1,12	1,07	1,03
18	1,91	1,70	1,55	1,37	1,24	1,21	1,16	1,11	1,06	1,03
20	1,84	1,65	1,50	1,34	1,21	1,20	1,15	1,11	1,06	1,03
25	1,71	1,55	1,40	1,28	1,19	1,17	1,14	1,10	1,06	1,03
30	1,62	1,46	1,34	1,24	1,17	1,16	1,13	1,10	1,05	1,03
35	1,56	1,41	1,30	1,21	1,15	1,15	1,12	1,09	1,05	1,02
40	1,50	1,37	1,27	1,19	1,14	1,13	1,12	1,09	1,05	1,02
45	1,45	1,33	1,25	1,17	1,13	1,12	1,11	1,08	1,04	1,02
50	1,40	1,30	1,23	1,16	1,12	1,11	1,10	1,08	1,04	1,02
60	1,32	1,25	1,19	1,14	1,10	1,11	1,09	1,07	1,03	1,02
70	1,37	1,22	1,17	1,12	1,10	1,10	1,09	1,06	1,03	1,02
80	1,25	1,20	1,15	1,11	1,09	1,10	1,08	1,06	1,03	1,02
90	1,23	1,18	1,13	1,10	1,08	1,09	1,08	1,05	1,02	1,02
100	1,21	1,17	1,12	1,10	1,07	1,08	1,07	1,05	1,02	1,02
120	1,19	1,16	1,12	1,09	1,06	1,07	1,07	1,05	1,02	1,02
140	1,17	1,15	1,11	1,08	1,05	1,06	1,06	1,05	1,02	1,02
160	1,16	1,13	1,10	1,08	1,05	1,05	1,05	1,04	1,02	1,02
180	1,16	1,12	1,10	1,08	1,05	1,05	1,05	1,04	1,01	1,01
200	1,15	1,12	1,09	1,07	1,05	1,05	1,05	1,04	1,01	1,01
220	1,14	1,12	1,08	1,07	1,05	1,05	1,05	1,04	1,01	1,01
240	1,14	1,11	1,08	1,07	1,05	1,05	1,05	1,03	1,01	1,01
260	1,13	1,22	1,08	1,06	1,05	1,05	1,05	1,03	1,01	1,01
280	1,13	1,10	1,08	1,06	1,05	1,05	1,05	1,03	1,01	1,01
300	1,12	1,10	1,07	1,06	1,04	1,04	1,03	1,03	1,01	1,01

PL6. Thời gian T_{max} của một số xí nghiệp

Xí nghiệp	Н	ệ số	T _{max} (h)	
——————————————————————————————————————	K _{NC}	cosφ _{TB}		
Xí nghiệp hoá chất	0,35	0,7	6200	
Xí nghiệp lọc dầu	0,35	0,8	7100	
Chế tạo máy cỡ nặng	0,22	0,62	3770	
Chế tạo máy công cụ	0,23	0,65	4345	
Cơ khí sửa chữa	0,22	0,63	4140	
Sửa chữa ôtô	0,20	0,76	4370	
Chế tạo đồ điện	0,31	0,64	4280	

Trong trường hợp không có số liệu chính xác, ta có thể lấy gần đúng như sau:

Làm việc 1 ca: $T_{max} = 2500h \div 3000h$.

Làm việc 2 ca: $T_{max} = 4500h \div 5000h$.

Làm việc 3 ca: $T_{max} = 6500h \div 7000h$.

PL7. Suất phụ tải của một số phân xưởng

Tên phân xưởng	p ₀ (W/m ²)
Phân xưởng nhiệt luyện và hàn điện	300 - 600
Phân xưởng cơ khí và lắp ráp	200 - 300
Phân xưởng tiện, phay, dập, rèn khuôn	150 - 300
Phân xưởng dụng cụ và đồ gá	50 - 100
Phân xưởng dập, ép chất đẻo	100 - 200
Phân xưởng dập, nén, ép kim loại	250 - 300
Phân xưởng mộc, gia công gỗ	48
Phân xưởng đúc	250 - 300
Phân xưởng sửa chữa, tiện	80 - 100

PL8. Trị số J_{KT} theo T_{max} và loại dây

T! Ja.	T _{max} (h)							
Loại dây	< 3000	3000 - 5000	> 5000					
Dây đồng	2,5	2,1	1,8					
Dây A, AC	1,3	1,1	1					
Cáp đồng	3,5	3,1	2,7					
Cáp nhôm	1,6	1,4	1,2					

PL9. Suất phụ tải của một số phân xưởng (dùng đèn sợi đốt)

Tên phân xưởng	p ₀ (W/m ²)
Phân xưởng cơ khí và hàn	13 - 16
Phân xưởng rèn dập và nhiệt luyện	15
Phân xưởng chế biến gỗ	14
Phân xưởng đúc	12 - 15
Phân xưởng nồi hơi	8 - 10
Trạm bơm và trạm khí nén	10 - 15
Trạm axêtylen (nhà máy)	20
Trạm axít (nhà máy)	10
Các trạm biến áp và biến đổi	12 - 15
Gara ôtô	10 - 15
Trạm cứu hoả	10
Cửa hàng và các kho vật liệu	10
Kho vật liệu dễ cháy	16
Các đường hầm cấp nhiệt	16
Phòng thí nghiệm trung tâm nhà máy	20
Phòng làm việc	15
Phòng điều khiển nhà máy	20
Các toà nhà sinh hoạt của phân xưởng	10
Đất đai trống của xí nghiệp, đường đi	0,15 - 0,22
Trung tâm điều khiển nhà máy điện và trạm biến áp	25 - 30

PL10. Thông số kỹ thuật máy biến áp phân phối do ABB chế tạo

Công suất (kVA)	Điện áp (kV)	$\Delta P_0(W)$	$\Delta P_{N}(W)$	u _N %	Kích thước (mm) Đài - Rộng - Cao	Trọng lượng (kG)	
31,5	35 / 0,4	150	700	4,5	860-705-1325	420	
	6,3 / 0,4	200	1250	4	860-705-1325	510	
50	10 / 0,4	200	1250	4,5	860-705-1325	510	
	22 / 0,4	200	1250	4	860-705-1325	510	
	35 / 0,4	240	1250	4,5	920-730-1365	467	
70	35 / 0,4	280	1400	4,5	920-730-1255	525	
	6,3 / 0,4	320	2050	4	900-730-1365	630	
100	10 / 0,4	320	2050	4,5	900-730-1365	630	
	22 / 0,4	320	2050	4	900-730-1365	630	
	35 / 0,4	360	2050	4,5	1010-750-1445	695	
	6,3 / 0,4	500	2950	4	1260-770-1420	820	
160	10 / 0,4	500	2950	4,5	1260-770-1420	820	
	22 / 0,4	500	2950	4	1260-770-1420	820	
	35 / 0,4	530	2950	4,5	1160-765-1495	945	
	6,3 / 0,4	530	3150	4	1260-770-1420	880	
180	10 / 0,4	530	3150	4,5	1260-770-1420	880	
	22 / 0,4	530	3150	4	1260-770-1420	880	
	35 / 0,4	580	3150	4,5	1160-765-1495	968	
	6,3 / 0,4	530	3450	4	1290-780-1450	885	
200	10 / 0,4	530	3450	4,5	1290-780-1450	885	
	22 / 0,4	530	3450	4	1290-780-1450	885	
	35 / 0,4	600	3450	4,5	1350-815-1530	1040	
, ,	6,3 / 0,4	640	4100	4	1370-820-1485	1130	

			-3.16			
250	10 / 0,4	640	4100	4,5	1370-820-1485	1130
	22 / 0,4	640	4100	4	1370-820-1485	1130
	35 / 0,4	680	4100	4,5	1430-860-1550	1166
	6,3 / 0,4	720	4850	4	1380-865-1525	1270
315	10 / 0,4	720	4850	4,5	1380-865-1525	1270
	22 / 0,4	720	4850	4	1380-865-1525	1275
	35 / 0,4	800	4850	4,5	1470-870-1605	1402
	6,3 / 0,4	840	5750	4	1620-1055-1500	1440
400	10 / 0,4	840	5750	4,5	1620-1055-1500	1440
	22 / 0,4	840	5750	4	1620-1055-1500	1440
	35 / 0,4	920	5750	4,5	1640-1040-1630	1650
	6,3 / 0,4	1000	7000	4	1535-930-1625	1695
500	10 / 0,4	1000	7000	4,5	1535-930-1625	1695
	22 / 0,4	1000	7000	4	1535-930-1625	1695
	35 / 0,4	1150	7000	4,5	1585-955-1710	1866
	6,3 / 0,4	1200	8200	4	1570-940-1670	1970
630	10 / 0,4	1200	8200	4,5	1570-940-1670	1970
	22 / 0,4	1200	8200	4	1570-940-1670	1970
	35 / 0,4	1300	8200	4,5	1620-940-1750	2218
	6,3 / 0,4	1400	10500	5	1770-1075-1695	2420
800	10 / 0,4	1400	10500	5,5	1770-1075-1695	2420
	22 / 0,4	1400	10500	5	1770-1075-1695	2420
	35 / 0,4	1520	10500	5,5	1755-1020-1755	2520
	6,3 / 0,4	1750	13000	5	1765-1065-1900	2910
1000	10 / 0,4	1750	13000	5,5	1765-1065-1900	2910
	22 / 0,4	1750	13000	5	1765-1065-1900	2910
	35 / 0,4	1900	13000	5,5	1840-1080-1900	3051
> 1000	<u> </u>	l	Sản xuất tỉ	L	415	L

PLII. Máy biến áp ba pha hai cuộn dây do Việt Nam chế tạo

Loại	Công suất định		n áp mức V)	Tổn thá	ít (kW)	n %	u _N	i 07.
	mức (kVA)	Cao áp	Hạ áp	ΔΡο	ΔP_{N}	η _{dm} %	%	i ₀ %
20-6,6 / 0,4	20	6,6	0,4	180	600	96,25	5,5	9
50-6,6 / 0,4	50	6,6	0,4	350	1325	96,75	5,5	7
50-10 / 0,4	50	10	0,4	440	1325	96,50	5,5	8
50-35 / 0,4	50	35	0,4	520	1325	96,85	6,5	9
100-6,6 / 0,4	100	6,6	0,4	600	2400	97,09	5,5	6,5
100-10 / 0,4	100	10	0,4	730	2400	96,96	5,5	7,5
100-35 / 0,4	100	35	0,4	900	2400	96,81	6,5	8,0
180-6,6 / 0,4	180	6,6	0,4	1000	4000	97,30	5,5	6,0
180-10 / 0,4	180	10	0,4	1200	4100	97,14	5,5	7,0
180-35 / 0,4	180	35	0,4	1500	4100	96,97	6,5	8,0
320-6,6 / 0,4	320	6,6	0,4	1600	6070	97,66	5,5	6,0
320-10 / 0,4	320	10	0,4	1900	6200	97,54	5,5	7,0
320-35 / 0,4	320	35	0,4	2300	6200	97,41	6,5	7,5
320-35 / 6,6	320	35	6,6	2300	6200	97,41	6,5	7,5
320-35 / 10,5	320	35	10,5	2300	6200	97,41	6,5	7,5
560-6,6 / 0,4	560	6,6	0,4	2500	9400	97,87	5,5	6,0
560-10 / 0,4	560	10	0,4	2500	9400	97,77	5,5	6,0
560-35 / 0,4	560	35	0,4	3350	9400	97,77	6,5	6,5
560-35 / 6,6	560	35	6,6	3350	9400	97,77	6,5	6,5
560-35 / 10,5	560	35	10,5	3350	9400	97,77	6,5	6,5
750-6,6 / 0,4	750	6,6	0,4	4100	11900	97,91	5,5	6,0
750-10 / 0,4	750	10	0,4	4100	11900	97,91	5,5	6,0

750-35 / 0,4	750	35	0,4	4100	11900	97,91	6,5	6,5
750-35 / 6,6	750	35	6,6	4100	11900	97,91	6,5	6,5
1000-10 / 0,4	1000	10	0,4	4900	1500	98,05	5,5	5,0
1000-10,5 / 6,3	1000	10,5	6,3	4900	1500	98,05	5,5	5,0
1000-35 / 0,4	1000	35	0,4	5100	15000	98,05	5,5	5,5
1000-35 / 6,6	1000	35	6,6	5100	15000	98,05	5,5	5,5
1000-35 / 10,5	1000	35	10,5	5100	15000	98,03	6,5	5,5
1800-31,5 / 6,3	1800	31,5	6,3	8300	24000	98,3	6,5	5,0
1800-35 / 6,6	1800	35	6,6	8300	24000	98,3	6,5	5,0
1800-38,5 / 6,3	1800	38,5	6,3	8300	24000	98,3	6,5	5,0
3200-35 / 6,6	3200	35	6,6	11500	37000	98,51	7,0	4,5
3200-35 / 10,5	3200	35	10,5	11500	37000	98,51	7,0	4,5
5600-35 / 6,6	5600	35	6,6	18500	57000	98,67	7,5	4,5
5600-35 / 10,5	5600	35	10,5	18500	57000	98,67	7,5	4,5

PL12. Điện áp và dòng điện của dây chảy cầu chì hạ áp (do ABB chế tạo)

Điện áp xoay chiều (V)	230, 400, 500, 690, 750, 1000
Điện áp một chiều (V)	220, 440, 500, 600, 750, 1200, 1500, 2400, 3000
Dòng điện định mức (A)	2, 4, 6, 10, 16, 20, 25, 32, 35, 40, 50, 63, 80, 100, 125, 160, 250, 315, 400, 500, 630, 800, 1000, 1250

PL13. Đường kính dây chảy (khi dây chảy làm bằng dây chì tròn)

Dòng điện định mức (A)	Đường kính dây chì (mm)	Dòng điện định mức (A)	Đường kính dây chì (mm)
0,5	0,2	9	1,2
1	0,3	11	1,4
1,5	0,4	14	1,6
2	0,5	16	1,8
2,5	0,6	19	2,0
3,5	0,7	24	2,2
4	0,8	28	2,4
5	0,9	32	2,6
6	1,0		

PL14. Đường kính dây chảy (khi dây chảy làm bằng lá kẽm)

Dòng định mức (A)	Chiều rộng (mm)	Chiều dày (mm)	Tiết diện (mm²)
100	5	0,5	2,5
125	8	0,5	4,0
160	12	0,5	6,0
200	17	0,5	8,5
225	8	1	8,0
260	10	1	10,0
300	13	1	13,0
350	15	2	30,0

PL15. Thông số kỹ thuật của bộ cầu chì - cầu dao hạ áp OESA (do ABB chế tạo)

I _{dm} (A)	U _{dm} (V)	U _{XK} (kV)	I _N (kA)	I _{N 10s} (kA)	Khối lượng (kG)
20	1000	12	7,5	1	0,7
25	1000	12	7,5	1	0,7
32	1000	12	7,5	1	0,7
32	750	12	10	1,5	1,6
63	750	12	12 .	2	1,6
125	750	12	23	5	1,8
160	750	12	23	5	1,8
200	1000	12	40	8	6,9
250	1000	12	40	8	6,9
315	1000	12	40	10	7,3
400	1000	12	40	10	7,8
630	1000	12	75	16	15,5
800	1000	12	75	16	17

PL16. Thông số kỹ thuật của cầu chì điện áp thấp kiểu ống IIP-2 (do Liên Xô chế tạo)

Dòng điện định mức của cầu chì	Dòng điện định mức của dây chảy (A)	của dò	điện cắt giớ ng điện xoa; 11 điện áp (V	y chiều
(A)		220 (V)	380 (V)	500 (V)
15	6, 10, 15	1200	8000	7000
60	15, 20, 25, 34, 45, 60	5500	4500	3500
100	60, 80, 100	11000	11000	10000
200	100, 125, 160, 200	11000	11000	10000
350	200, 225, 260, 300, 350	1100	13000	11000
600	350, 430, 500, 600	15000	23000	20000
1000	600, 700, 850, 1000	15000	20000	20000

PL17. Thông số kỹ thuật của áptômát G4CB, điện áp 230/400V (do Clipsal chế tạo)

	1 cực		2 сџс		3 cuc	I _{Ndm}
$I_{dm}(A)$	Mã số	$I_{dm}(A)$	Mā số	I _{dm} (A)	Mâ số	(kA)
06	G4CB1006C	10	G4CB2010C	10	G4CB3010C	6
10	G4CB1010C	16	G4CB2016C	16	G4CB3016C	6
16	G4CB1016C	20	G4CB2020C	20	G4CB3020C	6
20	G4CB1020C	25	G4CB2025C	25	G4CB3025C	6
25	G4CB1025C	32	G4CB2032C	32	G4CB3032C	6
32	G4CB1032C	40	G4CB2040C	40	G4CB3040C	6
40	G4CB1040C	50	G4CB2050C	50	G4CB3050C	6
50	G4CB1050C	63	G4CB2063C	63	G4CB3063C	6
63	G4CB1063C	100	G4CB20100C	100	G4CB30100C	6

PL18a. Thông số kỹ thuật của áptômát từ 5A đến 225A (do LG chế tạo)

Loại	50A F		100)AF			225	AF	
Kiểu	AB E 53a	ABE 103a	ABS 103a	ABH 103a	ABL 103a	ABE 203a	ABS 203a	ABH 203a	ABL 203a
$U_{dm}\left(V\right)$	600	600	600	600	600	600	600	600	600
Số cực	2,3	2,3,4	2,3,4	2,3,4	2,3,4	2,3,4	2,3,4	2,3,4	2,3,4
	5	5	, i	15				125	
	10	10		20				150	
	15	15		30				175	
	20	20		40				200	
$I_{dm}(A)$	30	30		40		·		225	
	40	40		50	_				
	50	50		60					
		60		75	·				
		75		100	_				
		100	-						

I _{Cdm}	(kA)	2,5	5	7,5	10	35	7,5	7,5	25	35
Kích	rộng	75	75	90	90	105	105	105	105	105
thước	cao	130	130	155	155	165	165	165	165	165
(mm)	sâu	64	64	64	64	86	64	64	103	103
Khối	2 cực	0,45	0,6	0,7	0,7	1,1	1,1	1,1	2,1	2,1
lượng	3 сис	0,65	0,8	1,1	1,1	1,7	1,3	1,3	2,3	2,3
(kG)	4 cuc			1,5	1,5	2,3		1,5	2,5	2,5

PL18b. Thông số kỹ thuật áptômát kiểu A3100 (do Liên Xô chế tạo)

Kiểu	Ký hiệu theo kết cấu	Dòng điện định mức I _{dm} (A)	Điện định 1 (V	nức	Số cực	Dạng móc bảo vệ dòng điện cực đại	Dòng điện định mức của móc bảo vệ (A)	Dòng điện tác động tức thời (A)
	A3161		110	220	1	Phần	15, 20, 25	
A3160	A3162	60	220	380	2	tử	30, 40, 50	
	A3163		220	380	3	nhiệt	60	
	A3113/1	100	220	500	2		15	150
	A3114/1				3		20	200
		·					25	250
			-			Tổng	30	300
A3110			<u> </u>	†		hợp	40	400
							50	500
				1	<u> </u>	T -	60	600
·· ·					<u> </u>	<u> </u>	80	800
				-			100	1000
	A3113/5	100	220	500	2		15	150
<u></u>	A3114/5				3		20	200

A3110					-	Điện	25	250
						từ	40	300 400
							60	500 600
							100	1000
	A3123	100	200	500	2	Tổng	15, 20, 25, 30	430
	A3124	-			3	hợp	40, 50, 60, 80	600
A3120							100	800
						Điện	30	430
						từ	100	840
								600 800
	A3133	200	220	500	2	Tổng	120	840
	A3134				3	hợp	150	1050
_A3130							200	1400
						Điện	200	840
						từ		1050
								1400
	A3143	600	220	500	2		300	2100
	A3144				3	Tổng	400	2800
						hợp	500	3500
							600	4200
A3140							600	1750
								2100
								2800
								3500
								4200

Chú thích:

- Khi dòng quá tải bằng 1,1 dòng chỉnh định áptômát không tác động.
- Khi dòng quá tải bằng 1,35 dòng chỉnh định áptômát tác động không quá 30 phút.

PL19. Thông số kỹ thuật áptômát từ 10A đến 225A (do Nhật chế tạo)

Loại	EA52-G	EA53-G	EA102-G	EA103-G	EA202-G	EA203-G	EA204-G
Số cực	2	3	2	3	2	3	4
I _{dm} (A)	10, 15, 20,	30, 40, 50	60, 75	60, 75, 100	125,	125, 160, 175, 200, 225	225
U _{dm} (V)	220,	,380	220,	220, 380		220, 380	
I _N (kA)		5	25,	25, 14		25, 18	

PL20. Thông số kỹ thuật áptômát từ 250A đến 1000A (do Nhật chế tạo)

Loại A	Loại A SA402-H	SA403-H	SA403-H SA404-H SA603-G SA604-G SA803-G SA804-G SA1003-G	SA603-G	SA604-G	SA803-G	SA804-G	SA1003-G
Số cực	2	3	4	3	4	9	4	3
I _{dm} (A)	250,	0, 300, 350, 400	00	500,	500, 600	700, 800	800	1000
U _{dm} (V)		220, 380	:	220,	220, 380	220, 380	380	200, 380
I _N (kA)		85, 45		85,	85, 45	85, 50	50	85, 50

PL21. Điện trở và điện kháng của dây đồng trần

Loại dây	9-W	M-10	M-16	M-25	M-35	M-50	M-70	M-95	M-120	M-150	M-185
Điện trở (Ω/kM)	3,06	1,84	1,20	0,74	0,54	66,0	0,28	0,20	0,158	0,123	0,103
Khoảng cách trung bình hình học giữa các dây (mm)					Điện	Điện kháng (Ω/kM)	Ω/kM)				
400	0,371	0,355	0,333	0,319	0,308	0,297	0,283	0,274			
009	0,397	0,381	0,385	0,345	0,336	0,325	0,309	0,300	0,292	0,287	0,280
800	0,415	0,399	0,377	0,363	0,352	0,341	0,327	0,318	0,310	0,305	0,298
1000	0,429	0,418	0,391	0,377	0,356	0,355	0,341	0,332	0,324	0,319	0,313
1250	0,443	0,427	0,405	0,391	0,380	0,369	0,255	0,346	0,338	0,333	0,327
1500		0,438	0,416	0,402	0,391	0,380	0,366	0,357	0,349	0,344	0,338
2000		0,457	0,435	0,421	0,410	0,398	0,385	0,376	0,368	0,363	0,357
2500			0,449	0,435	0,420	0,413	0,399	0,390	0,382	0,377	0,371
3000			0,460	0,446	0,435	0,423	0,410	0,401	0,393	0,388	0,382

PL22. Điện trở và điện kháng của dây nhôm trần

Logi day	9-V	A-10	A-16	A-25	A-35	A-50	A-70	A-95	A-120	A-150	A-185
Điện trở (Ω/kM)	5,26	3,16	1,98	1,28	0,92	0,64	0,46	0,34	0,27	0,21	0,17
Khoảng cách trung bình hình học giữa các dây (mm)					Điện	Ðiện kháng (Ω/kM)	Ω/kM)				
009		,	0,358	0,345	0,336	0,325	0,315	0,303	0,297	0,288	0,297
800	١	,	0,377	0,363	0,352	0,341	0,331	0,319	0,313	0,305	0,298
0001	,	1	0,391	0,377	0,366	0,355	0,345	0,334	0,327	0,319	0,311
1250			0,405	0,391	0,380	698'0	0,359	0,347	0,341	0,333	0,328
1500	'	1		0,405	0,391	0,380	0,370	0,358	0,352	0,344	0,339
2000	1		ı	0,421	0,410	0,398	0,388	0,377	0,371	0,363	0,355

PL23. Điện trở và điện kháng của dây nhôm lỗi thép

Loại dây	AC-10	AC-16	AC-16 AC-25 AC-35 AC-50 AC-70 AC-95 AC-120 AC-150 AC-185	AC-35	AC-50	AC-70	AC-95	AC-120	AC-150	AC-185
Ðiện trở (Ω/kM)	3,12	2,06	1,38	0,85	0,65	0,46	0,33	0,27	0,21	0,17
Khoảng cách trung bình hình học giữa các dây (mm)				_	Điện kháng (Ω/kM)	ıg (Ω/kM			,	
2000	•	,	í	0,403	0,392	0,382	0,371	0,365	0,358	1
2500	1	1	•	0,417	0,406	0,396	0,385	0,379	0,372	
3000	-	r	ı	0,429	0,429 0,418 0,408 0,397 0,391 0,389	0,408	0,397	0,391	0,389	0,377

PL24. Các số liệu tính toán của dây đồng và dây nhôm

Tiết diện định mức (mm²)	Tiết diện tính toán (mm²)	Đường kính tính toán (mm)	Điện trở khi nhiệt độ 20°C (Ω/kM) không lớn hơn	Khối lượng tính toán (kG/kM)
<u></u>		Dây đồng		
4	3,94	2,2	4,65	35
6	5,85	2,7	3,06	52
10	9,79	3,5	7,81	87
16	15,5	5,0	1,20	140
25	24,5	6,3	0,74	221
35	34,1	7,5	0,54	. 323
50	485	8,9	0,39	439
70	68,3	10,7	0,28	618
95	92,5	12,5	0,20	837
120	117	14,0	0,158	1058
150	148	15,8	0,123	1338
185	180	17,4	0,103	1627
240	234	19,9	0,078	2120
300	288	22,1	0,062	2608
400	289	25,6	0,047	3521
	<u> </u>	Dây nhôm		
16	15,9	5,1	1,98	41
25	24,7	6,4	1,28	68
35	34,4	7,5	0,92	95
50	49,5 .	9,0	0,64	136
70	69,3	10,7	0,46	191

95	93,3	12,4	0,34	257
120	117	14,0	0,27	322
150	148	15,8	0,21	407
185	183	17,5	0,17	503
240	239	20,0	0,132	656
300	298	22,4	0,106	817
400	396	25,8	0,080	1087
500	501	29,1	0,063	1376
600	604	32,0	0,052	1658

PL25. Điện trở và điện kháng của dây dẫn và cáp lõi đồng, nhôm điện áp đến 500V

	$r_0(\Omega$	/kM)	X ₀ (Ω/kM)		$r_0(\Omega/$	kM)	x ₀ (9	(2/kM)
Tiết diện (mm²)	Nhôm	Đồng	Dây đặt hở	Dây đặt trong ống hay cáp	Tiết diện (mm²)	Nhôm.	Đồng	Dây đặt hở	Dây đặt trong ống hay cáp
1,5	22,2	13,35	-	0,10	50	0,67	0,40	0,25	0,06
2,5	13,3	8,0	-	0,09	70	0,48	0,29	0,24	0,06
4	8,35	5,0	0,33	0,09	95	0,35	0,21	0,23	0,06
6	5,55	3,33	0,32	0,09	120	0,28	0,17	0,22	0,06
10	3,33	2,0	0,31	0,07	150	0,22	0,13	0,21	0,06
16	2,08	1,25	0,29	0,07	185	0,18	0,11	0,21	0,06
25	1,33	0,80	0,27	0,07	2 40	-	0,08	0,20	-
35	0,95	0,57	0,26	0,06	300	0,12	0,07	0,19	0,06

PL26. Dòng điện phụ tải cho phép của cáp ruột đồng có cách điện bằng giấy tẩm nhựa thông và nhựa không cháy có vỏ chì hay nhôm đặt trong đất (A)

	Cáp b	oa ruột	Cáp bốn ruột
Tiết diện ruột	6 (kV)	10 (kV)	dưới 1 (kV)
(mm²)	Nhiệt độ	cho phép của ruộ	t cáp (°C)
	65	60	80
4	-	-	50
6	-	_	60
10	80	-	85
16	105	95	115
25	135	120	150
35	160	150	175
50	200	180	215
70	245	215	265
95	295	265	310
120	340	310	350
150	390	355	395
185	440	400	450
240	510	460	-

PL27. Dòng điện phụ tải cho phép của cáp ruột nhôm có cách điện bằng giấy tẩm nhựa thông và nhựa không cháy có vỏ chì hay nhôm đặt trong đất (A)

	Cáp b	a ruột	Cắp bốn ruột
Tiết diện ruột	6 (kV)	10 (kV)	dưới 1 (kV)
(mm²)	Nhiệt độ	cho phép của ruộ	t cáp (⁰ C)
	65	60	80
4	-	-	38
6	-	-	46
10	60	-	65
16	80	75	90
25	105	90	115
35	125	115	135
50	155	140	165
70	190	165	200
95	225	205	240
120	260	240	270
150	300	275	305
185	300	310	345
240	390	355	_

PL28. Dòng điện cho phép của cáp có cách điện bằng giấy tẩm nhựa cách điện, vỏ bằng chất policlovinin (mã hiệu BM, ABM) đặt trong đất (A)

		Cáp dướ	ii 1 (kV)	
Tiết diện ruột	Ruộ	t đồng	Ruột	nhôm
(mm²)	Ba ruột	Bốn ruột	Ba ruột	Bốn ruột
	1	Nhiệt độ cho pho	ép của ruột 65º	C
4	50	40	40	30
6	70	60	55	45
10	90	80	70	60
16	125	115	95	90
25	150	135	115	105
35	190	170	145	130
50	230	205	175	160

PL29. Điện trở và điện kháng của thanh cái phẳng

Kích		i 65ºC Ω/m)	X ₀ ((đồng và nh	ıôm) (mΩ/ı	n)
thước	T) Å	».T1-	Khoảng c	ách trung l	oình hình h	oc (mm)
(mm)	Đồng	Nhôm	110	150	200	300
25 x 3	0,268	0,475	0,179	0,200	0,295	0,244
30 x 3	0,223	0,394	0,163	0,189	0,206	0,235
30 x 4	0,167	0,296	0,163	0,189	0,206	0,235
40 x 4	0,125	0,222	0,145	0,170	0,189	0,214
40 x 5	0,100	0,177	0,145	0,170	0,189	0,214
50 x 5	0,080	0,142	0,137	0,156	0,180	0,200
50 x 6	0,067	0,118	0,127	0,156	0,180	0,200
60 x 6	0,056	0,099	0,119	0,145	0,163	0,189
60 x 8	0,042	0,074	0,119	0,145	0,163	0,189
80 x 8	0,031	0,055	0,090	0,126	0,145	0,179
80 x 10	0,025	0,044	0,102	0,126	0,145	0,170
100 x 10	0,020	0,035	0,102	0,113	0,133	0,157

PL30. Dòng điện phụ tải cho phép của thanh cái bằng đồng và nhôm (nhiệt độ tiêu chuẩn của môi trường xung quanh là + 25°C)

 Kích	Tiết diện		lượng S/m)		Dò	ng điện	cho phép	o (A)	
thước (mm²)	của một thanh	Đồng	Nhôm	_	ha một anh	_	ha ghép thanh		ha ghép hanh
	(mm²)			Đồng	Nhôm	Đồng	Nhôm	Đồng	Nhôm
25 x 3	75	0,668	0,203	340	265	-	-	-	-
30 x 3	90	0,800	0,234	405	305	-	-	_	<u>-</u>
30 x 4	120	1,066	0,324	475	365	<u>-</u>	-	-	
30 x 4	160	1,424	0,432	625	480	-	-	-	-
40 x 5	200	1,780	0,540	700	540	-	_	_	<u>-</u>
50 x 5	250	2,225	0,675	860	665	_	-	_	_
50 x 6	300	2,676	0,810	955	740		_	-	_
60 x 5	300	2,670	0,810	1025	705	-	-	-	
60 x 6	360	3,204	0,972	1125	870	1740	1350	2240	1700
60 x 8	480	4,272	1,295	1320	1025	2160	1680	2790	2180
60 x 10	600	5,310	1,620	1175	1155	2560	2010	3300	2650
80 x 6	480	4,272	1,295	1480	1150	2110	1630	2720	2100
80 x 8	640	5,698	1,728	1690	1320	2620	2040	3370	2620
80 x 10	800	7,100	2,160	1900	1180	3100	2410	3990	3100
100 x 6	600	5,340	1,620	1810	1125	2170	1935	3170	2500
100 x 8	800	7,120	2,160	2080	1625	3060	2390	3930	3050
100 x10	1000	8,900	2,700	2310	1820	3610	2860	4650	3640
120 x 8	960	8,460	2,600	2400	1900	3100	2650	4340	3380
120 x10	1200	10,650	3,240	2650	2070	4100	3200	5200	4100

PL31. Cáp đồng hạ áp 3, 4 lõi cách điện PVC (do hãng LENS chế tạo)

F		d (mm)		M	r _o	I _{CP} ((A)
_	Lõi	V	ỏ	(kG/kM)	(Ω/kM	Trong	Ngoài
(mm²)	LOI	min	max		ở 20°C)	nhà	trời
			Cá	p 3 lõi		•	
3G 1,5	1,4	9,2	11,0	148	12,1	31	23
3G 2,5	1,8	10,0	12,5	188	7,41	41	31
3G 4	2,25	11,0	13,5	255	4,61	53	42
3G 6	2,90	12,0	15,0	323	3,08	66	54
3G 10	3,80	13,5	17,0	479	1,83	87	75
3G 16	4,8	15,5	19,5	681	1,15	113	100
3G 25	6,0	19,0	23,5	1095	0,727	144	127
3G 35	7,1	21,0	26,0	1435	0,524	174	158
3G 50	8,4	24,5	29,0	1885	0,387	206	192
3G 70	10,0	28,5	34,0	2645	0,268	254	246
3G 95	12,1	32,5	38,5	3450	0,193	301	298
3G 120	12,6	36,0	42,5	4425	0,153	343	346
3G 150	14,0	40,0	47,5	5440	0,124	387	395
3G 185	16,5	44,5	53,0	6810	0,0991	434	450
3G 240	17,9	50,5	59,5	8815	0,0754	501	538
3G 300	20,1	56,0	66,0	10725	0,0601	565	621
	-		Cá	ip 4 lõi			<u>. </u>
4G 1,5	1,4	9,8	12,0	176	12,1	31	23
4G 2,5	1,8	10,5	13,0	227	7,41	41	31
4G 4	2,25	12,0	14,5	298	4,61	53	42
4G 6	2,90	13,0	16,0	406	3,08	66	54
4G 10	3,80	15,0	18,5	600	1,83	87	75
4G 16	4,8	17,0	21,0	851	1,15	113	100
4G 25	6,0	20,5	25,5	1294	0,727	144	127
4G 35	7,1	23,0	28,5	1730	0,524	174	158

4G 50	8,4	27,0	32,5	2276	0,387	206	192
4G 70	10,0	31,5	37,5	3195	0,268	254	246
4G 95	11,1	36,0	425	4150	0,193	301	298
4G 120	12,6	40,0	47,5	5310	0,153	343	346
4G 150	14,0	44,5	52,5	6805	0,124	387	395
4G 185	15,6	50,0	59,0	8175	1990,0	434	450

PL32. Hệ số điều chỉnh k_2 về số dây cáp cùng đặt trong một hầm cáp hoặc một rãnh dưới đất

Khoảng cách giữa			Số sợi	cáp		
các sợi cáp (mm)	1	2	3	4	5	6
100	1,00	0,90	0,85	0,80	0,78	0,75
200	1,00	0,92	0,87	0,84	0,82	0,81
300	1,00	0,93	0,90	0,87	0,86	0,85

PL33. Hệ số hiệu chỉnh k_1 về nhiệt độ của môi trường xung quanh đối với dòng điện phụ tải của cáp, dây dẫn cách điện và không cách điện

Nhiệt độ			+	Iệ số k	khi n	hiệt độ	Hệ số k, khi nhiệt độ của môi trường xung quanh (°C)	iôi trườ	mg xu	ng qua	nh (°C		
tiêu chuẩn của môi trường xung quanh (⁰ C)	Nhiệt độ lớn nhất cho phép của dây (^O C)	ŵ	0	+ \Q	+10	+15	+20	+25	+30	+35	+40	+45	+20
15	08	1,14	1,11	1,08	1,04	1,00	96'0	0,92	0,88	0,83	0,78	0,73	99'0
25		1,24	1,20	1,17	1,13	1,13 1,09	1,04	1,00	0,95	0,00	0,85	0,80	0,74
25	70	1,29	1,24	1,20	1,15	1,15 1,11 1,05	1,05	1,00	0,94	0,88	0,81	0,74	0,67
15	99	1,18	1,14	1,10	1,05	1,00	0,95	68'0	0,84	0,77	0,71	0,63	0,55
25		1,32	1,27	1,22	1,17	1,12	1,06	1,00	0,94	0,87	0,79	0,71	0,61
15	09	1,20	1,15	1,12	1,06	1,00 0,94	0,94	0,88	0,82	0,75	0,67 0,57	0,57	0,47
25		1,36	1,31	1,31 1,25	1,20	1,13	1,20 1,13 1,07	1,00	0,93	0,85	0,76	0,76 0,66	0,54

PL34. Bảng tính công suất bù Q_{bi}

d soo	08'0	98'0	06'0	0,91	0,92	0,93	0,94	96'0	96'0	0,97	86'0	66'0	1,00
0,50	0,982	1,232	1,248	1,276	1,303	1,337	1,369	1,403	1,441	1,181	1,529	1,590	1,732
0,51	0,936	1,087	1,202	1,230	1,257	1,291	1,323	1,357	1,395	1,435	1,483	1,544	1,686
0,52	0,894	1,043	1,160	1,188	1,215	1,249	1,281	1,315	1,353	1,393	1,441	1,502	1,644
0,53	0,850	1,000	1,116	1,144	1,171	1,205	1,237	1,271	1,309	1,349	1,397	1,458	1,600
0,54	0,809	0,959	1,075	1,103	1,130	1,164	1,196	1,230	1,268	1,308	1,356	1,417	1,559
0,55	0,769	916,0	1,035	1,063	1,090	1,124	1,156	1,190	1,228	1,268	1,316	1,377	1,519
95,0	0,730	6/8'0	966'0	1,024	1,051	1,085	1,117	1,151	1,189	1,229	1,277	1,338	1,480
0,57	0,692	0,841	856,0	986'0	1,013	1,047	1,079	1,113	1,151	1,191	1,239	1,300	1,442
0,58	0,665	0,805	0,921	0,949	9/6,0	1,010	1,042	1,076	1,114	1,154	1,202	1,263	1,405
0,59	0,618	992'0	0,884	0,912	66'0	0,973	1,005	1,039	1,077	1,117	1,165	1,226	1,368
0,60	0,584	0,733	0,849	8/8'0	506'0	0,939	1/6,0	1,005	1,043	1,083	1,131	1,192	1,334
0,61	0,549	669'0	0,815	0,843	0,870	0,904	0,936	0,970	1,008	1,048	1,096	1,157	1,299
0,62	0,515	0,665	0,781	608'0	0,836	0,870	0,902	0,936	0,974	1,014	1,062	1,123	1,265

0,63	0,483	0,633	0,749	0,777	0,804	0,838	0,870	0,904	0,942	0,982	1,030	1,091	1,233
0,64	0,450	0,601	0,716	0,744	0,771	0,805	0,837	0,871	606'0	0,949	766'0	1,058	1,200
0,65	0,419	0,569	0,685	0,713	0,740	0,774	908'0	0,840	0,878	816,0	996'0	1,007	1,169
99,0	0,388	0,538	0,654	0,682	0,709	0,743	0,775	608'0	0,847	0,887	0,935	966'0	1,138
0,67	0,358	0,508	0,624	0,652	0,679	0,713	0,745	0,779	0,817	0,857	506,0	996'0	1,108
99,0	0,329	0,478	0,595	0,623	0,650	0,684	0,716	0,750	0,788	0,828	0,876	0,937	1,079
69,0	0,299	0,449	0,565	0,593	0,620	0,654	0,686	0,720	0,758	862'0	0,840	0,907	1,049
0,70	0,270	0,420	0,536	0,564	0,591	0,625	0,657	0,691	0,729	962'0	0,811	8/8'0	1,020
0,71	0,242	0,392	0,508	0,536	0,563	765,0	0,629	0,663	0,701	0,741	0,783	0,850	0,992
0,72	0,213	0,364	0,479	0,507	0,534	0,568	0,600	0,634	0,672	0,712	0,754	0,821	0,963
0,73	0,186	0,336	0,452	0,480	0,507	0,541	0,573	0,607	0,645	589,0	0,727	0,794	0,936
0,74	0,159	0,309	0,425	0,453	0,480	0,514	0,546	0,580	0,618	0,658	0,700	0,767	0,909
0,75	0,132	0,282	0,398	0,426	0,453	0,487	615,0	0,553	0,591	0,631	0,673	0,740	0,882
92,0	0,105	0,255	0,371	0,399	0,426	0,460	0,492	0,526	0,564	0,604	0,652	0,713	0,855
0,77	0,079	0,229	0,345	0,373	0,400	0,434	0,466	0,500	0,538	0,578	0,620	0,687	0,829
0,78	0,053	0,202	0,319	0,347	0,374	0,408	0,440	0,474	0,512	0,552	0,594	0,661	0,803

0,79	0,026	0,176	0,292	0,320	0,347 0,381	0,381	0,413	0,447	0,413 0,447 0,485	0,525	0,567	0,634	0,776
08'0	ı	0,150	0,266	0,294	0,321	0,355	0,387		0,421 0,459	0,499	0,541	0,608	0,750
0,81	•	0,124	0,240	0,268	0,295	0,329	0,361	0,395	0,433	0,473	0,515	0,582	0,724
0,82	,	860,0	0,214	0,242	0,269	0,303	0,335	698,0	0,407	0,447	0,489	0,556	869'0
0,83	ı	0,072	0,188	0,216	0,243	0,277	0,309	0,343	0,381	0,421	0,463	0,530	0,672
0,84	•	0,046	0,162	0,190	0,217	0,251	0,283	0,317	0,355	0,395	0,437	0,504	0,645
0,85	ı	0,020	0,136	0,164	0,191	0,225	0,257	0,291	0,329	0,369	0,417	0,478	0,620
98'0	ı	ı	0,109	0,140	0,167	0,198	0,230	0,264	0,301	0,343	0,390	0,450	0,593
78,0	ı		0,083	0,114	0,141	0,172	0,204	0,238	0,275	0,317	0,364	0,424	0,567
88,0	r	ı	0,054	0,085	0,112	0,143	0,175	0,209	0,246	0,288	0,335	0,395	0,538
68'0	1	, 	0,028	650'0	980'0	0,117	0,149	0,183	0,230	0,262	0,309	69£'0	0,512
06,0	1	ı	1	0,031	0,058	680'0	0,121	0,155	0,192	0,234	0,281	0,341	0,484

PL35. Hệ số sử dụng của một số loại đèn (k_{SD})

						٦.	- 1						آ کی		\overline{a}	<u> </u>	1	$\overline{\mathbf{x}}$	
ikin	92	द्ध	_	53	\downarrow	35		38		41	4		46		જ	21		53	24
j loa		ၕ		92		32	_	36		39	4	_	45		84	64		51	52
uang	20	20	į	28		33		33		4	42		9		49	20		52	53
րկս	5	8		26		32	٠	36		39	41		44		47	48		50	51
Đèn huỳnh quang loại kín	30	30		25		32		35		38	40		44		46	48		49	20
Đèn	₩.	9		23		30		34		37	39		42		46	47		48	49
50	70	50		37		46		20		54	58		62		67	69		72	74
ับลกรู้	<i>L</i>	30		32		4		46		50	51		59		4	99		69	7
ոհգ	50	20		37		45	\Box	49		53	56		15	_	65	67		70	72
huỳ	4,	30		32		8]	46		50	52		58		63	64		89	69
Đèn huỳnh quang	30	30		31		41		45		48	52		57		62	\$		67	89
		10		28]	37		43		47	50		26		9	62		65	67
òng		70	29	33	38	41	43	4	46	48	51	53	55	57	28	8	63	64	65
or oph	2	50	22	27	30	33	35	37	38	4	44	46	48	50	52	54	57	59	61
dùng cho làm việc	L	5	27	32	35	37	39	41	42	43	46	48	50	52	54	55	57	58	9
t dù Ear	20	20	20	25	29	31	33	34	36	38	41	43	45	47	48	51	52	54	56
Sợi đốt dùng cho phòng làm việc	, v	99	16	21	24	56	29	31	32	34	37	39	41	43	45	47	49	50	52
<u> </u>	۶	20	25	31	34	37	39	8	41	43	46	48	49	51	52	53	54	55	57
Sợi đốt chiếu sâu	50	S.	21	27	31	34	36	38	39	41	43	44	46	48	49	51	52	52	54
ji đố sŝ	<u> </u>	+ -		 			Ι	├	-		 	-			-	├			52
×	8	2	61	24	29	32	34	36	37	39	4	43	4	46	48	49	50	51	 -
lót vạn ang	70	हि	21	26	29	32	34	35	36	37	8	41	43	45	46	47	48	49	51
- TO E	25	8	17	22	26	28	8	31	33	35	36	39	8	42	4	45	4	47	48
Sợi	30	2	14	61	23	56	28	8	31	33	35	37	39	8	42	43	4	45	45
'an	92	50	28	34	38	41	44	45	46	48	51	53	55	\$6	59	9	19	62	63
Sợi đốt vạn năng	50	98	24	30	35	38	8	42	4	46	48	જ	52	54	55	57	58	59	99
Sợi	99	101	21	27	32	35	38	8	42	4	46	48	50	52	54	55	56	.57	58
iğ i	10%	80	5	98	6	88	8	2	=	125	15	175	22	225	25	33	35	40	50
Loai	0	Puems %									Đ								

PL36. Thông số kỹ thuật của tụ điện bù cosφ (do Liên Xô chế tạo)

Loại	Công suất danh định (kVAr)	Điện dung danh định (µF)	Kiểu chế tạo	Chiều cao (mm)
	Lo	oại 1	·	<u></u>
KM-3,15-12-2Y1	12	3,8		466
KM-6,3-12-2Y1	12	1,0		506
KM-10,5-12-2Y1	12	0,35	Một pha	546
KM-3,15-24-2Y1	24	7,7		781
KM-8,3-24-2Y1	24	1,9		821
KM-10,5-24-2Y1	24	0,7		861
	Lo	pại 2	·	
KC1-0,022-3Y1	6	395		472
KC1-0,38-14-3Y1	14	309		472
KC1-0,5-14-3Y1	14	178		472
KC1-0,66-16-3Y1	14	117		472
KC2-0,22-12-3Y3	12	790	Một pha	725
KC2-0,38-36-3Y3	36	794	và ba pha	725
KC2-0,5-36-3Y3	36	458	-	725
KC2-0,66-40-3Y3	40	292		739
KC2-O,22-12-3Y1	12	790		787
KC2-0,38-28-3Y1	28	618		787
KC2-0,5-28-3Y1	28	357		787
KC2-0,66-32-3Y1	32	234		787
	Lo	oại 3	<u> </u>	
KC1-0,22-8-3Y3	8	526		410
KC1-0,38-25-3Y3	25	551	Một pha	410
KC1-0,66-25-3Y3	25	183	và ba pha	418
KC1-0,22-8-3Y1	8	526	•	472

•				
KC1-0,38-20-Y1	20	442		472
KC1-0,66-20-3Y1	20	146] [466
KC1-1,05-37,5-2Y3	37,5	108]	418
KC1-3,15-37,5-2Y3	37,5	12	. [441
KC1-6,3-37,5-2Y3	37,5	3	Một pha	471
KC1-10,5-37,5-2Y3	37,5	1		526
KC1-1,05-30-2Y1	30	867].	466
KC1-3,15-30-2Y1	30	10] [466
KC1-6,3-30-2Y1	30	2] . [506
KC1-10,5-30-2Y1	30	1]	504
KC2-0,22-16-3Y3	16	1052	Một pha	725
KC2-0,38-50-3Y3	50	1102	và ba pha	725
KC2-0,66-50-3Y3	50	366		739
KC2-0,22-16-3Y1	16	1052		787
KC2-0,38-40-3Y1	40	884		787
KC2-0,66-40-3Y1	40	292		787
KC2-1,05-75-2Y3	. 75	217		739
KC2-3,15-75-2Y3	75	24		756
KC2-6,3-75-2Y3	75	- 6	_]	768
KC2-10,5-75-2Y3	75	2		841
KC2-1,05-60-2Y1	60	173		787
KC2-3,15-60-2Y1	60	19	_	781
KC2-6,3-60-2Y1	60	5		821
KC2-10,5-60-2Y1	60	2		861
	L	oại 4	- -	
KC0-0,22-4-3Y3	4	260	Một pha	260
KC0-0,38-12,5-3Y3	12,5	275	và ba pha	260
KC0-0,66-12,5-3Y3	12,5	92		274
KC0-3,15-25-2Y3	26	8		296
KC0-6,3-25-2Y3	25	2		326

KC0-10,5-25-2Y3	25	1		390
KC1-3,15-50-2Y3	50	16		441
KC1-6,3-50-2Y3	50	3	Một pha	471
KC1-10,5-50-2Y3	50-	1,4	-	526
KC1-3,15-37,5-2Y1	37,5	12		466
KC1-6,3-37,5-2Y1	37,5	3] :	506
KC1-10,5-37,5-2Y1	37,5	1,1	7	546
KC1-3,15-100-2Y3	100	32,7		756
KC2-6,3-100-2Y3	100	8		786
KC2-10,5-100-2Y3	100	2,9		841
KC2-3,15-75-2Y1	75	24		. 781
KC2-6,3-75-2Y1	75	6		821
KC2-10,5-75-2Y1	75	2,2		861
KC11-0,66-36-T1	36	263		787
KCTC-0,38-9,4-Y2	9,4	207		305

PL37. Điện trở suất của đất (ρ)

Đất	ρ. 10 ⁴ (Ω/cm)
Cát	7
Cát pha	3
Đất đen	. 2
Đất sét, đất sét pha sỏi	1
Độ dày của lớp đất sét (1 - 3)m	1
Đất vườn, ruộng	0,4
Đất bùn	0,2

PL38. Hệ số hiệu chỉnh điện trở suất của đất k_{max}

Cực nối đất	\mathbf{k}_1	k ₂	k ₃
Thanh det chôn nằm ngang cách mặt đất 0,5m	6,5	5,0	4,5
Thanh det chôn nằm ngang cách mặt đất 0,8m	3,0	2,0	1,6
Cọc thép, ống thép, cọc thép góc đóng chôn sâu cách mặt đất 0,5m - 0,8m	2,0	1,5	1,4

Chú thích: k_1 : đất ẩm ; k_2 : đất ẩm trung bình ; k_3 : đất khô.

PL39. Hệ số sử dụng của cọc (η_c) và thanh ngang (η_r)

	Tỷ số a / l					
Số cọc chôn thẳng đứng	1		2		3	
	$\eta_{\rm C}$	η_{T}	η_{c}	η	$\eta_{ m c}$	η_T
Khi đặt các cọc theo chu vi mạch vòng					<u>.</u>	
4	0,69	0,45	0,78	0,55	0,85	0,70
6	0,62	0,40	0,73	0,48	0,80	0,64
8	0,58	0,36	0,71	0,43	0,78	0,60
10	0,55	0,34	0,69	0,40	0,76	0,56
20	0,47	0,27	0,64	0,32	0,71	0,47
30	0,43	0,24	0,60	0,30	0,68	0,41
50	0,40	0,21	0,56	0,28	0,66	0,37
70	0,38	0,20	0,54	0,26	0,64	0,35
100	0,35	0,19	0,52	0,24	0,62	0,33
Khi đặt các cọc thành dãy						
3	0,78	0,80	0,86	0,92	0,91	0,95
4	0,74	0,77	0,83	0,87	0,88	0,92
5	0,70	0,74	0,81	0,86	0,87	0,90
6	0,63	0,72	0,77	0,83	0,83	0,88
10	0,59	0,62	0,75	0,75	0,81	0,82
15	0,54	0,50	0,70	0,64	0,78	0,74
20	0,49	0,42	0,68	0,56	0,77	0,68
30	0,43	0,31	0,65	0,46	0,75	0,58

Chú ý:

a: Khoảng cách giữa các cọc.

1 : Chiều dài cọc.

PL40. Thời gian chịu tổn thất công suất lớn nhất

T (b)	τ (h) Khi hệ số công suất trung bình (cos φ _{TB})			
T _{max} (h)				
	1	0,8	0,6	
2000	800	2000	27.00	
2500	1000	2000	2700	
3000	1300	2000	2700	
3500	1600	2150	3000	
4000	2000	2750	3400	
4500	2500	3300	3750	
5000	2900	3650	4150	
5500	3500	4150	4600	
6000	4200	4600	5000	
6500	5000	5300	5500	
7000	5700	5900	6100	
7500	6600	6050	6700	
8000	7900	7400	7400	
8760	8760	8760	8760	

PL41. Mật độ phụ tải

Mật độ phụ tải (kW/m²)	Công suất trạm 1 MBA(kVA)	Mật độ phụ tải (kW/m²)	Công suất trạm 2 MBA(kVA)
0004	180	0004	2 x 100
0010	240	0022	2 x 180
0023	320	0052	2 x 240
0061	420	0125	2 x 320
0121	560	0282	2 x 420
0292	780	0670	2 x 560
0695	1000	1610	2 x 750

PL42. Hệ số K

Số cáp đặt trong ống	Độ phức tạp	Hệ số K
	· A	1,25
1	В	1,4
	С	1,65
2	A	2,5
	В	2,7
	С	2,7
3 và nhiều hơn	A	0,45
	В	0,4
	С	0,32

PL43. Độ phức tạp của tuyến đường ống

Đặc điểm của tuyến	Chiều dài	Độ phức tạp
	đến 50m	A
Đường thẳng	51 - 75	В
	76 - 100	C
	đến 30m	A
Một góc 90° hoặc hai góc 120° - 150°	31 - 50	В
	51 - 75	С
	đến 20m	A
Hai gốc 90° hoặc một gốc 90° và hai gốc 120° - 150°	21 - 30	В
	31 - 50	C
	đến 15m	A
Ba gốc 90° hoặc hai gốc 90° và một gốc 120° - 150°	16 - 25	В
	26 - 40	С
Bốn góc 90° hoặc hai góc 90° - và hai góc 120° - 150°	đến 10m	A
	11 - 20	В
	21 - 30	С

TÀI LIỆU THAM KHẢO

- Thiết kế cấp điện Ngô Hồng Quang, Vũ Văn Tẩm Nhà xuất bản Khoa học và Kỹ thuật.
- 2. Giáo trình cung cấp điện Ngô Hồng Quang Vụ Trung học chuyên nghiệp và dạy nghề Nhà xuất bản Giáo dục.
- 3. Cung cấp điện Nguyễn Công Hiền Nhà xuất bản Khoa học và Kỹ thuật.
- 4. Sổ tay thiết kế điện chiếu sáng Nguyễn Văn Xung Nhà xuất bản Thanh niên Hà Nội 1999.
- 5. Hướng dẫn thiết kế lắp điện theo tiêu chuẩn quốc tế IEC Người dịch: Phan Thị Thanh Bình, Quốc Dũng, Phạm Quang Vinh, Phan Kế Phúc, Phan Thị Thu Vân, Nguyễn Văn Nhớ, Dương Lan Hương, Sủi Ngọc Thư, Tô Hữu Phúc, Nguyễn Thị Quang, Ngô Hải Thanh Nhà xuất bản Khoa học và Kỹ thuật Hà Nội 2001.
- 6. Kỹ thuật chiếu sáng Patrick Vandeplanque Dịch từ nguyên bản tiếng Pháp Nhà xuất bản Khoa học và Kỹ thuật Hà Nội 1999.

MỤC LỤC

Lời giới thiệu	3
Lời nói đầu	5
Phần một: HƯỚNG DẪN THIẾT KẾ HỆ THỐNG CUNG CẤP ĐIỆN	
CHO XÍ NGHIỆP CÔNG NGHIỆP	11
Chương 1: CÁC BƯỚC THIẾT KẾ HỆ THỐNG CUNG CẤP ĐIỆN	
CHO XÍ NGHIỆP CÔNG NGHIỆP	11
I. Xác định phụ tải tính toán cho các phân xưởng và toàn nhà máy	
II. Thiết kế mạng cao áp của nhà máy	
Chương 2: HƯỚNG DẪN ĐỒ ÁN MÔN HỌC CUNG CẤP ĐIỆN	39
I. Giới thiệu chung về nhà máy	
II. Xác định phụ tải tính toán cho từng phân xưởng và toàn nhà máy	
III. Thiết kế mạng cao áp của nhà máy	
IV. Thiết kế mạng hạ áp của nhà máy	
Phần hai: HƯỚNG DẪN CÁC CHUYÊN ĐỂ	86
Chuyên đề I: Bù hệ số công suất	86
I. Các định nghĩa về hệ số cosφ	
II. Bù hệ số công suất (hệ số cosφ)	
III. Các biện pháp thay đổi hệ số công suất	88
IV. Một số phương pháp tính bù nhân tạo	90
V. Vận dụng tính toán	97
Chuyên đề 2: Chống sét	100
I. Các loại chống sét	
II. Phạm vi bảo vệ của một kim thu sét	103
Chuyên đề 3: Nối đất bảo vệ các thiết bị	108
I. Điện trở nối đất	
II. Phương pháp tính toán hệ thống nối đất	

Chuyên đề 4: Chiếu sáng phân xưởng	121
I. Chọn nguồn sáng và bố trí nguồn sáng	
II. Tính toán công suất đèn	123
III. Phần ứng dụng tính toán cho các đối tượng chiếu sáng	128
Chuyên đề 5: Cung cấp điện cho chiếu sáng đô thị	138
I. Các hình thức chiếu sáng đô thị	
II. Các phương pháp bố trí cột đèn	139
III. Phương pháp tính toán	143
Phần ba: CÁC BẢNG PHỤ LỤC TRA CỨU CẦN THIẾT	145
Tài liệu tham khảo	183

NHÀ XUẤT BẢN HÀ NỘI

SỐ 4 - TỐNG DUY TÂN, QUẬN HOÀN KIẾM, HÀ NỘI ĐT: (04) 8252916 - FAX: (04) 9289143

GIÁO TRÌNH HƯỚNG DẪN ĐỔ ÁN CUNG CẤP ĐIỆN

NHÀ XUẤT BẢN HÀ NỘI - 2007

Chịu trách nhiệm xuất bản: NGUYỄN KHẮC OÁNH Biên tập: HOÀNG CHÂU MINH

Bìa:

TRẦN QUANG Kỹ thuật vi tính:

NGUYỄN HÀNG

Sửa bản in:

CHÂU MINH - NGUYỄN LAN

BỘ GIÁO TRÌNH XUẤT BẢN NĂM 2007 KHỐI TRƯỜNG TRUNG HỌC CÔNG NGHIỆP

- 1. THỰC TẬP QUA BAN HÀN
- 2. THỰC TẬP QUA BAN NGUỘI
- 3. THỰC TẬP QUA BAN MÁY
- AN TOÀN LAO ĐỘNG CHUYÊN NGÀNH SCKTTB
- AN TOÀN LAO ĐỘNG CHUYÊN NGÀNH ĐIỀN
- 6. VẬT LIỀU ĐIỆN
- 7. ĐO LƯỜNG ĐIỆN
- 8. CƠ SỞ KỸ THUẬT ĐIỆN
- 9. ĐIỆN TỬ CÔNG SUẤT
- 10. MÁY CÔNG CU CẮT GOT
- 11. ĐỔ GÁ
- 12. CÔNG NGHỆ CHẾ TẠO MÁY
- 13. TỔ CHỰC SẢN XUẤT
- 14. MÁY VÀ LẬP TRÌNH CNC
- 15. CẤT GỘT KIM LOẠI
- 16. SỬA CHỮA MÁY CÔNG CỤ
- 17. MÁY ĐIỆN
- 18. TRUYỂN ĐỘNG ĐIỆN
- 19. KHÍ CU ĐIỆN TRANG BỊ ĐIỆN
- 20. CUNG CẤP ĐIỆN
- 21. KÝ THUẬT ĐIỀU KHIỂN LOGÍC VÀ ỨNG DỤNG

- 22. HƯỚNG DẪN ĐỔ ÁN CÔNG NGHỆ CTM
- 23. THỰC HÀNH CẮT GỌT KIM LOẠI
- 24. THỰC HÀNH SỬA CHỮA THIẾT BI
- 25. THÍ NGHIỆM KỸ THUẬT ĐIỆN
- 26. THÍ NGHIỆM MÁY ĐIỆN
- 27. THỰC TẬP ĐIỆN CƠ BẢN
- 28. TIẾNG ANH CHUYÊN NGÀNH SCKTTB
- 29. TIẾNG ANH CHUYÊN NGÀNH ĐIỆN
- 30. QUẨN TRỊ DOANH NGHIỆP
- 31. HƯỚNG DẪN ĐỔ ÁN TRANG BỊ ĐIỆN
- 32. HƯỚNG DẪN ĐỔ ÁN CUNG CẤP ĐIỆN
- 33. CƠ SỞ THIẾT KẾ MÁY
- 34. ĐỔ ÁN CƠ SỞ THIẾT KẾ MÁY (ĐỔ ÁN CHI TIẾT MÁY)
- 35. CẤU TRÚC DỮ LIỀU VÀ GIẢI THUẬT
- 36. LÝ THUYẾT TRUYỀN TIN
- 37. CƠ SỞ KỸ THUẬT TRUYỀN SỐ LIỀU
- 38. ASSEMBLY
- 39. THỰC TẬP CHUYÊN NGÀNH ĐIỆN
- 40. THỰC HÀNH PLC
- 41. FOXPRO

Giá: 25.500d