Data Integration Using MOFA

EBI Course Systems Biology 10.07.2025

Omics Data is High-Dimensional

Modality Number of features / dimensions

Proteome e.g. 10 000 proteins

Transcriptome e.g. 20 000 genes

Genome e.g. 5 million SNPs

Epigenome e.g. 20 million CpG sites

... often in just 100s to 1000s of cells / samples \rightarrow

 $n_{\text{dimensions}} \gg n_{\text{observations}}$

Curse of Dimensionality with Unit Spheres

"Put a unit sphere (radius = 1) in a box and compute the ratio of the volumes"

$$D = 1$$

$$D = 2$$

$$D = 3$$

$$D = ...$$

$$\frac{1}{1} = 1$$

$$\frac{\pi \cdot 0.5^2}{1} \cong 0.78$$

$$\frac{\frac{4}{3}\pi \cdot 0.5^3}{1} \cong 0.52$$

$$\cong 0$$

In very high dimensions...

- spheres around data points fill vanishingly small volumes
- it becomes difficult to establish relations between data points
- → High dimensions are typically not suitable for direct analysis

Dimensionality Reduction Methods

	Gene 1	Gene 2	Gene 3	•••	Gene D
Cell 1	2	5	2		0
•••					
Cell N	2	1	0		0

	Dim 1	Dim 2
Cell 1	0.4	-6.2
•••	•••	•••
Cell N	0.0	9.1

Linear Methods

Principal Component Analysis (PCA)
Independent Component Analysis (ICA)
Latent Dirichlet Allocation (LDA)

Factor Analysis (FA)

Non-Negative Matrix Factorization (NMF)

• •

Non-Linear Methods

(Variational) Autoencoder (VAE)
Deep Matrix Factorization
t-SNE
UMAP
Spectral Embedding
scDoRI ©

. . .

What is a Factor Model Intuitively?

- Factors can be seen as meta-features that summarise the behaviour of groups of features
- The reduced data is represented as factor scores (a matrix of dimensions $n_{samples} imes n_{factors}$
- Factors are linked to all the original features via factor loadings (a matrix of dimensions $n_{factors} \times n_{features}$)

An Example: Movie Recommendations

- A streaming service has access to the **star ratings** its users have given for different **movies**.
- The service wants to know **how much a user would like another movie** to provide better recommendations
- What could the factors represent in this situation? Do they always represent something "real"?

X

- What about positive and negative factor scores and loadings?
- How could movie ratings be predicted?

Samples = Observations Features = Variables

Scores = Factors

Loadings = Weights

User Movie Ratings

Factors

What is a Factor Model Mathematically?

- Factor scores and loadings are called latent variables
- Given the **observed data**, the goal is to **infer** the latent variables

Matrix Factorisation

$$y_{nd} \cong \sum_{k=1}^{K} z_{nk} w_{kd}$$

 $Y \in \mathbb{R}^{N \times D}$ Observed data $Z \in \mathbb{R}^{N \times K}$ Factor scores $W \in \mathbb{R}^{K \times D}$ Factor loadings

Probabilistic Formulation

$$y_{nd} \sim \mathcal{N}(\mu_{nd}, \sigma_d^2)$$

$$\mu_{nd} = \sum_{k=1}^K z_{nk} w_{kd}$$

$$z_{nk} \sim p(z_{nk})$$

$$w_{kd} \sim p(w_{kd})$$

Multi-Omics Factor Analysis (MOFA)

MOFA Downstream Analysis

Variance decomposition by factor

Imputation of missing values

Inspection of factors

Annotation of factors

Inspection of loadings Feature set enrichment analysis

Gene Set Enrichment Analysis (GSEA)

Loadings

Gene 1	0.2
Gene 2	-5.1
Gene 3	1.1
	•••
Gene D	4.0

Bayesian Latent Variable Models

Generative Model

("Telling a story of the data")

Data
$$\longrightarrow y_{nd} \sim \mathcal{N}(\mu_{nd}, \sigma_d^2)$$
 Data Likelihood
$$\mu_{nd} = \sum_{k=1}^K z_{nk} w_{dk}$$

$$\boxed{w_{dk} \sim p(w_{dk})}_{z_{nk}} \sim p(z_{nk})$$

$$\boxed{\sigma_d \sim p(\sigma_d)}$$
 Prior distributions

Latent variables

Graphical Model

Bayes' Theorem

Thomas Bayes 1701 – 1761 Statistician and Presbyterian minister

Posterior

Likelihood

Prior

$$p(A \mid B) = \frac{p(B \mid A)p(A)}{p(B)}$$

Marginal likelihood

The Power of Prior Distributions

$$p(w_{dk}) = ?$$

$$p(z_{nk}) = ?$$

$$p(\sigma_d) = ?$$

Prior distributions encode **a-priori assumptions about the variables** before seeing any data

"Values could also be quite large"

"Values should (for whatever reason) be close to 2"

The Posterior Distribution — A Tradeoff Between Data Fit and Prior Distribution

Bayesian Inference

Given the prior distribution and data likelihood, the posterior should be easy to compute...

$$p(A \mid B) = \frac{p(B \mid A)p(A)}{p(B)}$$

Computationally not tractable 😭

Solution: Approximate inference

$$q(A) \approx p(A \mid B)$$

$$ELBO = \ln(p(B)) - D_{KL}(q(A) \mid\mid p(A \mid B))$$

Prior Distributions in MOFA

$$p(w_{dk}) = ?$$

$$p(z_{nk}) = ?$$

Matrix factorization is unidentifiable (= many solutions), but it gets better with **sparse loadings** (= many zeros).

Sparsity on the level of:

- individual features
- whole factors in views
- → ARD prior, Horseshoe prior

MEFISTO

- Observations in temporal / spatial data are not statistically independent
- MEFISTO is an extension of MOFA that includes temporal / spatial covariates and infers smooth factor score

MOFA-FLEX

https://mofaflex.readthedocs.io/

Practical: Application to a chronic lymphocytic leukemia (CLL) data set

Somatic mutations

200 patients 69 mutation loci

Transcriptome

136 patients 5000 transcripts

DNA methylation

200 patients 200 methylation sites

Ex vivo drug response

200 patients 62 drugs (5 concentrations)

Patient metadata:

- Gender
- Age
- IC50 before treatment
- Treated after data collection
- Survival

git clone https://github.com/florinwalter/ebi_course_sysbio_25.git/