4. Minimizacija Booleovih izraza

Sadržaj predavanja

- minimum Booleove funkcije
- K tablice
- minimizacija K tablicama
- minimizacija višeizlazne funkcije
- vremenski hazard
- Quine-McCluskeyeva metoda
- Quine-McCluskey za višeizlazne funkcije

- podsjetiti se:
 - Booleova funkcija je opis digitalnog sklopa:
 - operator ⇔ osnovni logički sklop
 - izraz koji utvrđuje Booleovu funkciju ⇔ sklop

Primjer:
$$f = A \cdot (\overline{B} + C) + A \overline{D}$$

- želja:
 - postići minimalno ostvarenje dane Booleove funkcije:
 - najjednostavniji sklopniz pogodnosti
 - "jednostavan" sklop = ?~ kriteriji jednostavnosti
 - mjere složenosti sklopa?
 - pojednostavljivanje izraza
 pojednostavljivanje sklopa:
 - tehnički razlozi
 potrošnja, disipacija, ...
 - ekonomski razlozi
 cijena sklopova, prostor na pločici, ...

- mjere složenosti digitalnog sklopa:
 - brzina rada ~ broj razina "logike"
 - broj utrošenih primitivnih sklopova
 - bez ograničenja
 - izvedba *u dvije razine*
 - broj utrošenih primitivnih sklopova
 + ukupan broj ulaza u logičke sklopove
 - bez ograničenja
 - izvedba *u dvije razine*

- minimizacija (engl. minimization)
 - ~ pronaći izraz koji minimizira odabranu mjeru složenosti:

"za zadanu funkciju od n varijabli iz skupa 2² njih, odrediti onaj izraz, unutar velikog broja ekvivalentnih, koji će zadovoljiti neke od kriterija jednostavnosti"

- kriteriji jednostavnosti kontradiktorni
 ~ uobičajeno u inženjerskoj praksi!
 - najveća brzina rada sklopa
 - ~ funkcija drugog reda: dvije razine logike (ILI-I, NI-NI, ...)
 - najjeftinije ostvarenje
 - ~ min broj standardnih sklopova ili izvoda/kućišta standardnih *modula*
 - eventualni porast broja razina logike
 zapis "funkcija višeg reda"
 - faktorizacija
 - dekompozicija u češće korištene komponentne funkcije
 - vrijeme propagacije signala nije minimalno!

- standardni postupak minimizacije
 rimjena na funkcije drugog reda:
 - "Neki se izraz drugog reda u obliku sume produkata smatra minimalnim *minimiziranim* ako ne postoji:
 - niti jedan drugi ekvivalentni izraz s manje produkata,
 - niti jedan drugi ekvivalentni izraz s istim brojem produkata, ali manjim brojem literala."

literal = {varijabla | komplement}

- neke definicije (1):
 - implikant, i_i:
 - produkt u zapisu funkcije kao sume produkata
 - "implicira" f = 1 $f = B\overline{C}D + BCD + A\overline{C}D$ $i_1 = B\overline{C}D, i_2 = BCD, i_3 = A\overline{C}D$
 - primarni implikant (primarni član), pi_i:
 - ~ implikant koji se *ne može* kombinirati u drugi implikant s manjim brojem literala

$$f = B\overline{C}D + BCD + A\overline{C}D = BD + A\overline{C}D$$

$$pi_1 = BD, pi_2 = A\overline{C}D$$

- neke definicije (2):
 - bitni primarni implikant
 ~ primarni implikant koji jedini prekriva (engl. cover)
 neki m_i
 - potpuna suma (engl. complete sum)
 ~ suma svih primarnih implikanata funkcije, Σpi_i
 - minimalna suma = minimalno prekrivanje
 suma primarnih implikanata koja prekriva (sadrži)
 sve minterme funkcije uz minimalni broj članova

- sintaksne manipulacije Booleovog izraza
 - ~ algebarska minimizacija:
 - transformacija funkcije zamjenom jednog njenog oblika (izraza) drugim, uzastopnom primjenom postulata i teorema Booleove algebre
 - ne postoji sustavan postupak koji vodi do minimuma

Primjer:
$$f(A, B, C) = B\overline{C}(\overline{C} + \overline{C}A) + (\overline{A} + \overline{C})(\overline{A}B + \overline{A}C)$$

 $f(A, B, C) = B\overline{C}(\overline{C} + \overline{C}A) + (\overline{A} + \overline{C})(\overline{A}B + \overline{A}C)$
 $= B\overline{C} \cdot \overline{C} \cdot (1 + A) + \overline{A} \cdot (\overline{A} + \overline{C})(B + C)$
 $= B\overline{C} + \overline{A} \cdot (B + C)$
 $= B\overline{C} + \overline{A}B + \overline{A}C$
 $= B\overline{C} + \overline{A}B \cdot (C + \overline{C}) + \overline{A}C$
 $= (B\overline{C} + \overline{A}B\overline{C}) + (\overline{A}C + \overline{A}BC)$
 $= \overline{A}C(1 + B) + B\overline{C}(1 + \overline{A})$
 $= \overline{A}C \cdot 1 + B\overline{C} \cdot 1$
 $= \overline{A}C + B\overline{C}$

Sadržaj predavanja

- minimum Booleove funkcije
- K tablice
- minimizacija K tablicama
- minimizacija višeizlazne funkcije
- vremenski hazard
- Quine-McCluskeyeva metoda
- Quine-McCluskey za višeizlazne funkcije

- grafički prikaz Booleovih funkcija:
 - tablica u 2-dimenzijskom obliku
 - polja
 ~ standardni članovi (produkti/sume)
 - "razlika" grafički susjednih polja u samo jednoj varijabli!

- *K-tablice* (Karnaughove tablice), M. Karnaugh, 1953:
 - grafičke strukture s 2^n polja za prikaz $f(x_1, x_2, ..., x_n)$
 - označavanje polja
 ~ "pravokutne koordinate", Grayev kod (d_{min} = 1)
 - minimizacija
 "grupiranje" polja:
 temeljeno na ljudskoj sposobnosti raspoznavanja uzoraka (1 i 0)
 - K-tablice za n > 2 varijable
 ~ simetrija oko jedne stranice, superpozicija
 - praktična primjena: n ≤ 6

podsjetnik: Grayev kod

• izgradnja K tablice:

f(A,I	Α	
	0	1
В 0	0	2
1	1	3

f(A,B	AB			
	00	01	11	10
C 0	0	2	6	4
1	1	3	7	5

f(A,B,C,	AB			
	00	01	11	10
CD 00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

f(A,B,C,D,E) ABC									ABC
	_	000	001	011	010	110	111	101	100
DE (00	0	4	12	8	24	28	20	16
(01	1	5	13	9	25	29	21	17
	11	3	7	15	11	27	31	23	19
•	10	2	6	14	10	26	30	22	18

f(A,B,C,D,E)									ABC
		000	010	110	100	001	011	111	101
DE	00	0	8	24	16	4	12	28	20
	01	1	9	25	17	5	13	29	21
	11	3	11	27	19	7	15	31	23
	10	2	10	26	18	6	14	30	22

susjednost polja:

$$12 = 1100 \equiv AB\overline{C}\overline{D} : D \equiv 2^{0}$$

$$13 = 1101 \equiv AB\overline{C}D \rightarrow 15 = 1111 \equiv ABCD : C \equiv 2^{1}$$

$$09 = 1001 \equiv A\overline{B}\overline{C}D : B \equiv 2^{2}$$

$$05 = 0101 \equiv \overline{A}B\overline{C}D : A \equiv 2^{3}$$

- upisivanje funkcija u K-tablice:
 - funkcija u obliku sume minterma, Σm_i:
 1 za svaki m_i
 - funkcija u obliku produkta maksterma, ∏M_i:
 0 za svaki M_i, ostalo su 1 (0 se ne pišu!)
 - nepotpuno specificirane funkcije
 (engl. incompletely specified functions):
 - parcijalne funkcije
 - neke kombinacije argumenata se ne pojavljuju:
 - funkcijska vrijednost nije specificirana, X (engl. don't care)
 - X se interpretiraju onako kako najbolje odgovara pri minimizaciji (joker)!

Primjer:
$$z = f(A, B, C, D)$$

= $\sum m(4,5,13,14,15) + \sum d(1,3,7,8,12)$

f(A,B,C,D) AB							
	00	01	11	10			
CD 00		1	X	X			
01	X	1	1				
11	X	Х	1				
10			1				

- prikaz "složene" Booleove funkcije
 osnovne operacije nad Booleovim funkcijama:
 - jednostavno dobivanje rješenja kombiniranjem pripadnih K tablica
 - kombiniranje K tablica
 kombiniranje pojedinih polja K-tablica funkcija

Primjer: $h = f \oplus g$

11

10

f(A,B,C,D) AB								
·	00	01	11	10				
CD 00		1						
01	1	1	1					
11	1	1	1					
10			1	1				
g(A,B,C		AB						
	00	01	11	10				
CD 00		1	1	1				
01		1	1					

h(A,B,C,D)					
	00	01	11	10	
CD 00)		1	1	
01	1				
11	1	1			
10)	1		1	

Sadržaj predavanja

- minimum Booleove funkcije
- K tablice
- minimizacija K tablicama
- minimizacija višeizlazne funkcije
- vremenski hazard
- Quine-McCluskeyeva metoda
- Quine-McCluskey za višeizlazne funkcije

- postupak minimizacije za funkcije u obliku sume produkata:
 - "zaokruživanje" uzoraka 2ⁱ susjednih polja s 1
 ~ "eliminiranje" *i* varijabli
 - par polja: 1 varijabla (T9: simplifikacija)

$$f(a, b, c,...) = a \cdot \varphi(b, c,...) + \overline{a} \cdot \varphi(b, c,...)$$
$$= (a + \overline{a}) \cdot \varphi$$
$$= \varphi$$

- četvorka polja: 2 varijable
- osmorka polja: 3 varijable
- itd. (ako ide ©)

- postupak minimizacije za funkcije u obliku sume produkata :
 - "zaokruženje"
 ~ produkt, ali više *nije standardni*
 - inkluzivna disjunkcija zaokruženja
 ~ suma produkata (= funkcija drugog reda)
 - težnja:
 - što veći broj 1 u zaokruženju
 ~ I sklop s manjim brojem ulaza
 - što manji broj zaokruženja
 manji broj I sklopova = manji broj ulaza u ILI sklop

Primjer:
$$f(A, B, C, D) = \sum m(5,6,9,10,13,14)$$

$$f(A, B, C, D) = \sum m(5,6,9,10,13,14) \implies f(A, B, C, D) =$$

$$= B\overline{C}D + A\overline{C}D + BC\overline{D} + AC\overline{D}$$

- postupak minimizacije nepotpuno specificirane funkcije u obliku sume produkata:
 - nužno je pokriti sve 1, ali ne i sve X
 - X se interpretira kao 1 (X = 1)
 samo ako se time može proširiti zaokruženje
 - veće zaokruženje
 jednostavniji Booleov izraz = jednostavniji sklop!

Primjer:
$$f = \sum m(2,5,15) + \sum d(0,1,3,4,7,9,13,14)$$

$$f(A, B, C, D) = \overline{A}\overline{B} + BD$$

preljevanje zaokruženja preko rubova:

$$f(A, B, C, D) = \overline{B}\overline{C}D$$

- minimizacija funkcije u obliku produkta maksterma
 - isti postupak, samo se zaokružuju 0
 - rezultat je produkt suma
 - "čitanje" zaokruženja 0 kao sume produkata
 - ~ komplement funkcije

Primjer:
$$f = \prod M(5,7,15)$$

$$f(A,B,C,D) = (A + \overline{B} + \overline{D}) \cdot (\overline{B} + \overline{C} + \overline{D})$$

Sadržaj predavanja

- minimum Booleove funkcije
- K tablice
- minimizacija K tablicama
- minimizacija višeizlazne funkcije
- vremenski hazard
- Quine-McCluskeyeva metoda
- Quine-McCluskey za višeizlazne funkcije

višeizlazna funkcija

~ skup Booleovih funkcija nad istim skupom varijabli:

definira "višeizlazni sklop" (engl. multiple-output circuit)

Primjer: pretvorba 3-bitovnog broja u (3-bitovni) Grayev kod

pretvornik koda
$$g_{2} = \varphi_{2}(b_{2}, b_{1}, b_{0})$$

$$g_{1} = \varphi_{1}(b_{2}, b_{1}, b_{0})$$

$$g_{0} = \varphi_{0}(b_{2}, b_{1}, b_{0})$$

$$g_{0} = \varphi_{0}(b_{2}, b_{1}, b_{0})$$

b2	b1	b0	g2	g1	g0
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	1
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	0	0

- minimizacija višeizlazne funkcije
 ~ mogućnosti:
 - zasebna minimizacija komponentnih funkcija f_i
 - združena minimizacija svih komponentnih funkcija višeizlazne funkcije (f₁, ..., f_n)
 povoljnije rješenje?
- minimizirana višeizlazna funkcija:
 - višestruko korištenje pojedinih produktnih članova
 ušteda sklopovlja višeizlaznog sklopa
 - prilagodba (prethodnih) postupaka minimizacije
 istovremena minimizacija komponentnih funkcija

Primjer:

$$f_0 = AC + AB = pi_1 + pi_2$$
$$= AC + AB\overline{C} = pi_1 + m_6$$

$$f_1 = \overline{AB} + B\overline{C} = pi_3 + pi_4$$
$$= \overline{AB} + AB\overline{C} = pi_3 + m_6$$

 višeizlazna funkcija {f₀, f₁} ima povoljnije rješenje (pi₁, pi₃, m₆) u odnosu na zasebnu minimizaciju f₀ i f₁ što daje (pi₁, pi₂, pi₃, pi₄)

- konceptualizacija postupka višeizlazne minimizacije:
 - višeizlazni primarni implikant pi_i nije nužno primarni implikant pojedinih funkcija:

$$pi_1, pi_2 \Rightarrow f_0$$

 $pi_3, pi_4 \Rightarrow f_1$
 $m_6 = pi_5 \Rightarrow f_0 \cdot f_1$

- združena minimizacija n funkcija f₁÷f_n:
 - odrediti pi_i ∀ f_i
 - odrediti pi_i ∀ kombinaciju f_i: produkti 2 i više f_i

Minimizacija višeizlazne funkcije

Primjer:
$$f(A, B, C, D) = \{f_1, f_2, f_3\}$$

f_3					AB
		00	01	11	10
CD	00	1	<u></u>		
	01			<u> </u>	
	11	1	1	1	
	10				

Minimizacija višeizlazne funkcije

Primjer: $f(A, B, C, D) = \{f_1, f_2, f_3\}$

f_3					AB
		00	01	11	10
CD	00	1	1		
	01			<u></u>	
	11	<u>~</u> /	1	_1	
	10				

čitanje primarnih implikanata

Minimizacija višeizlazne funkcije

Primjer: $\underline{f}(A, B, C, D) = \{f_1, f_2, f_3\}$

00

01

c 111

a

$$f_1 = c + d + f$$

$$f_2 = b + c + e$$

$$f_3 = b/d + e/h + g$$

Minimizacija višeizlazne funkcije

- izbor minimalnog skupa višeizlaznih pi
 koji će prekrivati sve tri funkcije f₁, f₂, f₃:
 - povoljan izbor
 pi_i koji se javljaju u max broju f_i:
 max zajedničko korištenje produkata
 - početi od f₁·f₂·f₃
 - izabrani složeniji pi_i javljaju se u "nižim" K tablicama kao zalihosti X
- komentar rješenja primjera:
 - h (f₃) ne doprinosi prekrivanju
 - f₂ ne daje p_i
 - a je nepotreban, jer ga prekrivaju f, e, h
 - f₃ ima opcije (b ili d, te e ili h)

Sadržaj predavanja

- minimum Booleove funkcije
- K tablice
- minimizacija K tablicama
- minimizacija višeizlazne funkcije
- vremenski hazard
- Quine-McCluskeyeva metoda
- Quine-McCluskey za višeizlazne funkcije

- zapažanje:
 - stvarni (kombinacijski) sklopovi
 svojstveno kašnjenje (t_d)!
 - promatrati ostvarenu logičku funkciju + t_d

 moguće neočekivano ponašanje sklopa u prijelaznoj pojavi

- vremenski hazard
 - ~ neželjeni impulsi kao rezultat:
 - kašnjenja stvarnih sklopova
 - konkretnog dizajna složenijeg sklopa
 - ~ struktura sklopa izražena kombinacijom jednostavnijih sklopova

hazard (rizik):

pojava privremenog krivog impulsa koji u određenim slučajevima *može* prouzrokovati pogrešan rad sklopa:

- statički 0-hazard :
 - ~ izlaz statički u 0, a za prijelazne pojave generira se 1
- statički 1-hazard :
 - ~ izlaz statički u 1, a za prijelazne pojave generira se 0
- dinamički hazard :
 - ~ generiranje ≥ 1 impulsa pri promjeni stanja na izlazu

Primjer: statički 0-hazard

- logički hazard:
 - rezultat logičke implementacije funkcije
 minimizacija Booleovog izraza!
 - statički logički hazard:
 - ~ tipična pojava kad dva logička signala koji imaju suprotne vrijednosti ($A_{1}\overline{A}$) poprimaju *istu* vrijednost *za vrijeme prijelaznog stanja*:
 - razmatrati ih kao različite signale!
 - dodati redundantni član (produkt/sumu)
 - standardno rješenje
 - ~ izbjeći očitanje signala za prijelazne pojave:
 - impulsi sinkronizacije
 - ~ usporavanje rada sustava!

Primjer: $f = A\overline{B} + BC(+AC)$

Sadržaj predavanja

- minimum Booleove funkcije
- K tablice
- minimizacija K tablicama
- minimizacija višeizlazne funkcije
- vremenski hazard
- Quine-McCluskeyeva metoda
- Quine-McCluskey za višeizlazne funkcije

- tablična metoda prikladna za minimizaciju funkcija većeg broja varijabli:
 - može se svesti na manipuliranje indeksima standardnih članova
 - numerički postupak
 pogodan za programsku implementaciju
- W. V. Quine, 1952;
 poboljšanje: E. J. McCluskey, 1956

- potpuno specificirana funkcija u obliku sume standardnih produkata
- postupak u dvije faze:
 - prva faza
 - ~ nalaženje *primarnih implikanata* (→ potpune sume):
 najveća zaokruženja u K-tablicama
 - druga faza
 - ~ određivanje optimalnog (*minimalnog*) skupa primarnih implikanata (→ minimalne sume)

- prva faza:
 - svrstavanje minterma u klase prema broju jedinica
 - uspoređivanje elemenata *susjednih* klasa ~ kombiniranje elemenata koji se mogu simplificirati (T9) $A \cdot \varphi + \overline{A} \cdot \varphi = \varphi$ (*)
 - dobiveni produkti~ klasa u novoj tablici
 - elementi koji nisu kombinirani
 ~ primarni implikanti
 - ponavljanje prethodnog koraka za elemente koji su izgubili istu varijablu
 - postupak se zaustavlja
 nema više kandidata za kombiniranje

- dodaci za numerički postupak:
 - klase su susjedne
 - elementi se razlikuju za 2^k, k = 0, 1, 2, ...
 - element u višoj klasi mora biti veći
 - eliminira se varijabla 2^k

Primjer:
$$z = f(A, B, C, D) = \sum (1,3,5,6,9,11,12,13,14,15)$$

• prva faza

	Α	В	С	D		1	1	✓	1	1,3	(2)	✓	1	1,3,9,11 (2,8)
0	8	4	0	1	-	2	3	✓		1,5	(4)	\checkmark		1,5,9,13 (4,8)
1 2	0	0	0	1			5	✓		1,9	(8)	\checkmark		1,9,3,11 (8,2)
3 4	0	0 1	1	1			6	✓	2	3,11	(8)	✓		1,9,5,13 (8,4)
5 6	0	1 1	0 1	1 0			9	✓		5,13	(8)	✓	2	9,11,13,15 (2,4)
7 8	0 1	1 0	1 0	1 0		 	12	✓		6,14	(8)			12,14,13,15 (2,1)
9 10	1	0	0 1	0		3	11	✓		9,11	(2)	✓		12,13,14,15 (1,2)
11 12	1	0 1	0	0			13	✓		9,13	(4)	✓		9,13,11,15 (4,2)
13 14	1	1	0 1 1	0	_	1	14	✓		12,13	(1)	✓		
15	1	1	1	1		4	15	✓		12,14	(2)	✓		
									3	11,15	(4)	✓		
										13,15	(2)	✓		
					_					14,15	(1)	✓		

• rezultat prve faze: z = f(A, B, C, D)= $\sum (1,3,5,6,9,11,12,13,14,15)$

primarni članovi

```
6,14 (8) \equiv BC\overline{D} = a CD_{00} OD_{01} OD_{02} OD_{03} OD_{04} OD_{04} OD_{05} OD_{05}
```

druga faza:

- formiranje tablice primarnih implikanata i označavanje prekrivanja minterma
- nalaženje bitnih primarnih implikanata, koji jedini prekrivaju pojedini minterm
 označiti minterme koje taj član pokriva
- bitni primarni implikanti ulaze u minimalnu sumu
- preostale minterme prekriti *minimalnim* podskupom preostalih primarnih implikanata
 - prednost:
 primarni implikanti s manjim brojem literala

druga faza:

		1	3	5	6	9	11	12	13	14	15
$BC\overline{D}$	a				Χ					Х	
$\overline{B}D$	b	X	Χ			Χ	Χ				
$\overline{C}D$	C	Χ		Χ		Χ			Χ		
AD	d					Х	X		Х		X
AB	e							X	X	X	X
		√									

$$z = a + b + c + e$$
$$= BC\overline{D} + \overline{B}D + \overline{C}D + AB$$

- druga faza:
 - nakon nalaženja bitnih primarnih članova
 moguća pojava cikličke tablice:
 - Pyne-McCluskeyev pristup:
 preostale primarne implikante tretirati
 kao logičke varijable i izgraditi funkciju F
 - F = (suma pi koji prekrivaju m_{i1}) (suma pi koji prekrivaju m_{i2}) ...
 = ... = suma produkata
 - uzeti produkt s minimalnim brojem primarnih implikanata

- minimizacija *nepotpuno specificiranih funkcija* u obliku sume produkata: $f = \sum_{i=1}^{n} m_i + \sum_{j=1}^{n} d_j$ ~ modifikacija osnovnog postupka uvođenjem "vektora redundancija"
- postupak:
 - početna tablica
 ~ mintermi i nespecificirane kombinacije
 - svaki produktni član dobiva oznaku redundantnosti:
 - d = 0 : produkt *nije* zanemariv ~ simplifikacija je uključila barem jedan m_i
 - d = 1: produkt je zanemariv (\rightarrow redundancija!)
 - ~ nastao kombiniranjem samo d_i

- prva faza:
 - kombiniranje produkata kao u osnovnom postupku, uz evidenciju redundantnosti
 - $d = d_{i1} \cdot d_{i2}$: produkt zanemariv samo ako je nastao simplifikacijom zanemarivih produkata
 - *priprema* druge faze
 - \sim izbor pi_i koji *nisu zanemarivi* (d = 0):
 - tablica za izbor minimalne sume
 upis samo pi, koji nisu zanemarivi
 - stupci tablice
 ~ m_i (X ne treba prekriti)
- druga faza postupka
 identična osnovnom postupku

Primjer: $f(A, B, C, D) = \sum m(5,9,12,15) + \sum d(2,7,8,10,13)$

	ABCD	d			ABCD	d	
2	0010	1	✓	2,10	-010	1	
8	1000	1	✓	8,9	100-	0	✓
5	0101	0	✓	8,10	10-0	1	
9	1001	0	✓	8,12	1-00	0	✓
10	1010	1	✓	5,7	01-1	0	✓
12	1100	0	\checkmark	5,13	-101	0	✓
7	0111	1	✓	9,13	1-01	0	✓
13	1101	1	✓	12,13	110-	0	✓
15	1111	0	✓	7,15	-111	0	✓
· ' '				13,15	11-1	0	✓

	ABCD	d
8,9,12,13	1-0-	0
8,12,9,13	1-0-	0
5,7,13,15	-1-1	0
5,13,7,15	-1-1	0

• druga faza :

		5	9	12	15
$A\overline{C}$	a		Х	Χ	
BD	b	X			X
		√	√	√	√

$$f = A\overline{C} + BD$$

Sadržaj predavanja

- minimum Booleove funkcije
- K tablice
- minimizacija K tablicama
- minimizacija višeizlazne funkcije
- vremenski hazard
- Quine-McCluskeyeva metoda
- Quine-McCluskey za višeizlazne funkcije

- sustavna metoda nalaženja minimalne sume
 npr. modifikacija Quine-McCluskeyeve metode
 - prva faza
 - nalaženje skupa svih višeizlaznih primarnih implikanata (potpune sume)
 - prekrivanje komponentnih funkcija s pi
 ~ vektor prekrivanja
 - druga faza
 - ~ nalaženje *minimalnog* skupa *višeizlaznih* primarnih implikanata (minimalne sume)

- prva faza
 - ~ utvrđivanje potpune sume:
 - raspodjela m_i svih f_i u indeksne grupe
 broj 1
 - paziti na pripadnost m_i pojedinoj f_i
 vektor prekrivanja!
 - označiti produkt (~ nije pi_i!) iz prethodne tablice jedino ako se u narednoj pojavljuje isti uzorak f_i, ∀i
 - $\langle f_1 f_2 \dots f_n \rangle = \langle 00...0 \rangle$ ("sve nule") *nije valjani* implikant

Primjer:
$$f_1 = \sum (0,1,2,4,5,11,15), f_2 = \sum (0,2,4,13,15), f_3 = \sum (0,1,3,4,5,7,13,15)$$

		$f_1f_2f_3$				$f_1f_2f_3$				$f_1f_2f_3$
0	0000	111	✓	0,1	000-	101	\checkmark	0,1,4,5	0-0-	101
1	0001	101	✓	0,2	00-0	110		1,3,5,7	0-1	001
2	0010	110	✓	0,4	0-00	111		5,7,13,15	-1-1	001
4	0100	111	✓	1,3	00-1	001	\checkmark			
3	0011	001	✓	1,5	0-01	101	\checkmark			
5	0101	101	✓	4,5	010-	101	✓			
7	0111	001	✓	3,7	0-11	001	\checkmark			
11	1011	100	✓	5,7	01-1	001	\checkmark			
13	1101	011	✓	5,13	-101	001	✓			
15	1111	111		7,15	-111	001	\checkmark			
				11,15	1-11	100				
				13,15	11-1	011				

druga faza:

		f_1							f_2					f_3						
	0	1	2	4	5	11	15	0	2	4	13	15	0	1	3	4	5	7	13	15
a							X					X								X
b	X			X				X		\mathbf{x}			X			X				
c	X		(\mathbf{X})					X	(\mathbf{X})											
$\left(\mathbf{d}\right)$	X	\mathbf{x}	(X	(\mathbf{x})								X	X		X	X			
e											(\mathbf{x})	X							X	X
f						\mathbf{x}	X)									
\bigcirc	·							·						X	(\mathbf{x})		X	X		
h																	X	X	X	X

- rezultat:
 - bitni primarni implikanti: b, c, d, e, f, g
 - dobiveno je *potpuno prekrivanje*

Literatura

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 4: Minimizacija logičkih funkcija.
- minimum Booleove funkcije: str. 129-133
- K tablice,
 minimizacija K tablicama: str. 133-147
- vremenski hazard: str. 123-125, 159-160
- Quine-McCluskeyeva metoda: str. 147-151
- minimizacija višeizlazne funkcije: str. 151-157
- Quine-McCluskey za višeizlazne funkcije: str. 157-159

Zadaci za vježbu (1)

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 4: Minimizacija logičkih funkcija.
- minimum Booleove funkcije: 4.1-4.2, 4.14,
- K tablice,
 minimizacija K tablicama: 4.3-4.11, 4.16
- vremenski hazard: 4.18-4.21
- Quine-McCluskeyeva metoda: 4.12, 4.13, 4.15, 4.17
- minimizacija višeizlazne funkcije: 4.22-4.24
- Quine-McCluskey za višeizlazne funkcije: ponoviti 4.23, 4.24

Zadaci za vježbu (2)

- M. Čupić: *Digitalna elektronika i digitalna logika. Zbirka riješenih zadataka*, Cjelina 4: Minimizacija logičkih funkcija.
- minimum Booleove funkcije:
 - riješeni zadaci: 4.8a-c, 4.26, 4.27
 - zadaci za vježbu: 1-3, 7 (str.165-166)
- minimizacija K tablicama:
 - riješeni zadaci: 4.1-4.7, 4.8d, 4.13-4.16, 4.20-4.24
 - zadaci za vježbu: 4, 6, 8 (str.165-166)
- vremenski hazard:
 - riješeni zadaci: 4.5, 4.10
- Quine-McCluskeyeva metoda:
 - riješeni zadaci: 4.8e, 4.9-4.12, 4.17-4.19, 4.23
 - zadaci za vježbu: 5, 11, 12 (str.165-166)
- Quine-McCluskey za višeizlazne funkcije:
 - riješeni zadaci: 4.19, 4.23,
 - zadaci za vježbu: 9, 13 (str.165-166)