

Established by the European Commission

Optimizing the diffusion for overdamped Langevin dynamics

Régis SANTET

(CERMICS, École des Ponts & MATHERIALS Team, Inria Paris)

Joint work with: T. Lelièvre, G. Pavliotis, G. Robin, G. Stoltz

S26: Modeling, analysis and simulation of molecular systems

R. Santet (CERMICS) GAMM 2023 May 31 2023 1/17

Molecular dynamics

System: average total energy of the system is fixed (NVT)

Canonical ensemble: system samples the Boltzmann–Gibbs measure μ

$$d\mu = Z_{\mu}^{-1} e^{-\beta H(q,p)} dq dp, \qquad H(q,p) = V(q) + \frac{1}{2} p^{\mathsf{T}} M^{-1} p.$$

Langevin dynamics: configurational space $\mathcal{E} = \mathbb{T}^d imes \mathbb{R}^d$

$$\begin{cases} dq_t = M^{-1}p_t dt, \\ dp_t = -\nabla V(q_t) dt - \gamma M^{-1}p_t dt + \sqrt{2\beta^{-1}\gamma} dW_t, \end{cases}$$

Compute averages of observables $f \in L^1(\mu)$, rely on ergodic averages:

$$\int_{\mathcal{E}} f \, \mathrm{d}\mu = \lim_{t \to +\infty} \frac{1}{t} \int_{0}^{t} f(q_s, p_s) \, \mathrm{d}s$$

Diffusion dependent Overdamped Langevin dynamics - I

Sampling the marginal in position is the problem !

$$d\mu = \underbrace{Z_{\pi}^{-1} e^{-\beta V(q)} dq}_{=:d\pi} Z_{\kappa}^{-1} e^{-\frac{\beta}{2} p^{\mathsf{T}} M^{-1} p} dp$$

Diffusion dependent Overdamped Langevin dynamics - I

Sampling the marginal in position is the problem !

$$\mathrm{d}\mu = \underbrace{Z_{\pi}^{-1} \mathrm{e}^{-\beta V(q)} \mathrm{d}q}_{=:\mathrm{d}\pi} Z_{\kappa}^{-1} \mathrm{e}^{-\frac{\beta}{2} p^{\mathsf{T}} M^{-1} p} \mathrm{d}p$$

Idea: only consider the position variable using the overdamped limit

$$dq_t = -\nabla V(q_t) dt + \sqrt{2\beta^{-1}} dW_t$$

Diffusion dependent Overdamped Langevin dynamics - I

Sampling the marginal in position is the problem !

$$\mathrm{d}\mu = \underbrace{Z_{\pi}^{-1} \mathrm{e}^{-\beta V(q)} \mathrm{d}q}_{=:\mathrm{d}\pi} Z_{\kappa}^{-1} \mathrm{e}^{-\frac{\beta}{2} p^{\mathsf{T}} M^{-1} p} \mathrm{d}p$$

Idea: only consider the position variable using the overdamped limit

$$dq_t = -\nabla V(q_t) dt + \sqrt{2\beta^{-1}} dW_t$$

Generalization: Position dependent pos. def. sym. matrix \mathcal{D}^1

$$dq_t = (-\mathcal{D}(q_t)\nabla V(q_t) + \beta^{-1}\operatorname{div}\mathcal{D}(q_t))\operatorname{d}t + \sqrt{2\beta^{-1}}\mathcal{D}(q_t)^{1/2}\operatorname{d}W_t$$

 $\mathcal{D} \equiv$ inverse of position-dependent mass tensor

R. Santet (CERMICS)

¹ Jardat/Bernard/Turq/Kneller (1999)

Diffusion dependent Overdamped Langevin dynamics - II

From physics to statistics o we can choose $\mathcal D$!

$$ullet$$
 Estimate $\mathbb{E}_{\pi}[f] = \int_{\mathbb{T}^d} f(q) \pi(q) \mathrm{d}q$

with

$$\hat{I}_N := \frac{1}{N} \sum_{i=1}^N f(q^i), \qquad q^i \sim \pi$$

Diffusion dependent Overdamped Langevin dynamics - II

From physics to statistics o we can choose $\mathcal D$!

ullet Estimate $\mathbb{E}_{\pi}[f] = \int_{\mathbb{T}^d} f(q) \pi(q) \mathrm{d}q$ with

$$\hat{I}_N := \frac{1}{N} \sum_{i=1}^N f(q^i), \qquad q^i \sim \pi$$

• Difficulty: explore anisotropic potentials with multiple minima

Diffusion dependent Overdamped Langevin dynamics - II

From physics to statistics o we can choose $\mathcal D$!

ullet Estimate $\mathbb{E}_{\pi}[f] = \int_{\mathbb{T}^d} f(q) \pi(q) \mathrm{d}q$ with

$$\hat{I}_N := \frac{1}{N} \sum_{i=1}^N f(q^i), \qquad q^i \sim \pi$$

• Difficulty: explore anisotropic potentials with multiple minima

ullet Find optimal diffusion coefficient ${\mathcal D}$ to accelerate convergence

• Related to the **spectral gap** of the dynamics' generator $\mathcal{L}_{\mathcal{D}}$:

$$\mathcal{L}_{\mathcal{D}}\varphi = \left(-\mathcal{D}\nabla V + \beta^{-1}\operatorname{div}\mathcal{D}\right) \cdot \nabla\varphi + \beta^{-1}\mathcal{D} : \nabla^{2}\varphi$$

Then the law π_t of the process q_t satisfies²

$$\left[\left\| \frac{\pi_t}{\pi} - 1 \right\|_{L^2(\pi)} \leqslant e^{-\Lambda(\mathcal{D})\beta^{-1}t} \left\| \frac{\pi_0}{\pi} - 1 \right\|_{L^2(\pi)} \right]$$

 $\Lambda(\mathcal{D})$: spectral gap of $-\beta \mathcal{L}_{\mathcal{D}} \geqslant 0$

²Lelièvre/Nier/Pavliotis (2013)

ullet Related to the **spectral gap** of the dynamics' generator $\mathcal{L}_{\mathcal{D}}$:

$$\mathcal{L}_{\mathcal{D}}\varphi = \left(-\mathcal{D}\nabla V + \beta^{-1}\operatorname{div}\mathcal{D}\right) \cdot \nabla\varphi + \beta^{-1}\mathcal{D} : \nabla^{2}\varphi$$

Then the law π_t of the process q_t satisfies²

$$\left[\left\| \frac{\pi_t}{\pi} - 1 \right\|_{L^2(\pi)} \leqslant e^{-\Lambda(\mathcal{D})\beta^{-1}t} \left\| \frac{\pi_0}{\pi} - 1 \right\|_{L^2(\pi)} \right]$$

 $\Lambda(\mathcal{D})$: spectral gap of $-\beta \mathcal{L}_{\mathcal{D}} \geqslant 0$

ullet Goal: Compute, explicitly or numerically, \mathcal{D}^{\star} leading to largest spectral gap

²Lelièvre/Nier/Pavliotis (2013)

• Related to the **spectral gap** of the dynamics' generator $\mathcal{L}_{\mathcal{D}}$:

$$\mathcal{L}_{\mathcal{D}}\varphi = \left(-\mathcal{D}\nabla V + \beta^{-1}\operatorname{div}\mathcal{D}\right) \cdot \nabla\varphi + \beta^{-1}\mathcal{D} : \nabla^{2}\varphi$$

Then the law π_t of the process q_t satisfies²

$$\left[\left\| \frac{\pi_t}{\pi} - 1 \right\|_{L^2(\pi)} \leqslant e^{-\Lambda(\mathcal{D})\beta^{-1}t} \left\| \frac{\pi_0}{\pi} - 1 \right\|_{L^2(\pi)} \right]$$

 $\Lambda(\mathcal{D})$: spectral gap of $-\beta \mathcal{L}_{\mathcal{D}} \geqslant 0$

- ullet Goal: Compute, explicitly or numerically, \mathcal{D}^{\star} leading to largest spectral gap
- Need to set normalizing constraints on \mathcal{D} : $\Lambda(a\mathcal{D}) = a\Lambda(\mathcal{D}) \xrightarrow[a \to +\infty]{} +\infty$

²Lelièvre/Nier/Pavliotis (2013)

• Related to the **spectral gap** of the dynamics' generator $\mathcal{L}_{\mathcal{D}}$:

$$\mathcal{L}_{\mathcal{D}}\varphi = \left(-\mathcal{D}\nabla V + \beta^{-1}\operatorname{div}\mathcal{D}\right) \cdot \nabla\varphi + \beta^{-1}\mathcal{D} : \nabla^{2}\varphi$$

Then the law π_t of the process q_t satisfies²

$$\left[\left\| \frac{\pi_t}{\pi} - 1 \right\|_{L^2(\pi)} \leqslant e^{-\Lambda(\mathcal{D})\beta^{-1}t} \left\| \frac{\pi_0}{\pi} - 1 \right\|_{L^2(\pi)} \right]$$

 $\Lambda(\mathcal{D})$: spectral gap of $-\beta \mathcal{L}_{\mathcal{D}} \geqslant 0$

- **Goal**: Compute, explicitly or numerically, \mathcal{D}^* leading to largest spectral gap
- Need to set normalizing constraints on \mathcal{D} : $\Lambda(a\mathcal{D}) = a\Lambda(\mathcal{D}) \xrightarrow[a \to +\infty]{} +\infty$
- Examples: Approach mainly used in Bayesian Inference³: $\mathcal{D} \equiv (\nabla^2 V)^{-1}$ Other works⁴ suggest $\mathcal{D} \propto \mathrm{e}^{\beta V} \mathrm{I}_d$

R. Santet (CERMICS)

²Lelièvre/Nier/Pavliotis (2013)

³Girolami/Calderhead (2011)

⁴Roberts/Stramer (2002), Lelièvre/Pavliotis/Robin/Santet/Stoltz (In prep.)

Which diffusion coefficient? Metastability case

• Example with $V(q) = \sin(4\pi q)(2 + \sin(2\pi q))$ $\mathcal{D}_{\text{opt}}, \mathcal{D}_{\text{exp}} = \mathrm{e}^{\beta V}, \mathcal{D}_{\text{cst}} = a \in \mathbb{R}$ (all three normalized in $L^2(\pi)$)

Which diffusion coefficient? Metastability case

• Example with $V(q) = \sin(4\pi q)(2 + \sin(2\pi q))$ $\mathcal{D}_{\text{opt}}, \mathcal{D}_{\text{exp}} = \mathrm{e}^{\beta V}, \mathcal{D}_{\text{cst}} = a \in \mathbb{R}$ (all three normalized in $L^2(\pi)$)

Typical trajectory (same noise)

Which diffusion coefficient? Metastability case

• Example with $V(q) = \sin(4\pi q)(2 + \sin(2\pi q))$ $\mathcal{D}_{\text{opt}}, \mathcal{D}_{\text{exp}} = e^{\beta V}, \mathcal{D}_{\text{cst}} = a \in \mathbb{R}$ (all three normalized in $L^2(\pi)$)

Typical trajectory (same noise)

• 'Optimal' ${\mathcal D}$ helps to **cross energy barriers** (if $V\uparrow$, then ${\mathcal D}\uparrow$)

R. Santet (CERMICS)

GAMM 2023

May 31 2023

Formulation of the optimization problem

• Using $\mathcal{L}_{\mathcal{D}} = -\beta^{-1} \nabla^{\star} \mathcal{D} \nabla$ on $L^2(\pi)$, the spectral gap of $-\beta \mathcal{L}_{\mathcal{D}}$ is

$$\boxed{ \mathbf{\Lambda}(\mathcal{D}) = \min_{u \in H^1(\mathbb{T}^d) \setminus \{0\}} \left\{ \frac{\int_{\mathbb{T}^d} \nabla u^\mathsf{T} \mathcal{D} \nabla u \, \mathrm{d}\pi}{\int_{\mathbb{T}^d} u^2 \, \mathrm{d}\pi} \, \middle| \, \int_{\mathbb{T}^d} u \, \mathrm{d}\pi = 0 \right\} }$$

Formulation of the optimization problem

• Using $\mathcal{L}_{\mathcal{D}} = -\beta^{-1} \nabla^{\star} \mathcal{D} \nabla$ on $L^2(\pi)$, the spectral gap of $-\beta \mathcal{L}_{\mathcal{D}}$ is

$$\boxed{ \mathbf{\Lambda}(\mathcal{D}) = \min_{u \in H^1(\mathbb{T}^d) \setminus \{0\}} \left\{ \frac{\int_{\mathbb{T}^d} \nabla u^\mathsf{T} \mathcal{D} \nabla u \, \mathrm{d}\pi}{\int_{\mathbb{T}^d} u^2 \, \mathrm{d}\pi} \, \middle| \, \int_{\mathbb{T}^d} u \, \mathrm{d}\pi = 0 \right\} }$$

• L^p constraints on \mathcal{D} :

$$\left| \mathfrak{D}_p^{a,b} = \left\{ \mathcal{D} \in L_\pi^\infty(\mathbb{T}^d, \mathcal{M}_{a,b}) \, \middle| \, \|\mathcal{D}\|_{L_\pi^p} \leqslant 1 \right\} \right|$$

endowed with the norm

$$\|\mathcal{D}\|_{L^p_{\pi}} = \left(\int_{\mathbb{T}^d} |\mathcal{D}(q)|_{\mathrm{F}}^p e^{-\beta pV(q)} \,\mathrm{d}q\right)^{1/p}$$

$$\begin{split} \mathcal{D} \in L^p_\pi \left(\mathbb{T}^d, \mathcal{M}_{a,b} \right) \text{ for } 1 \leqslant p \leqslant +\infty, \ a,b \geqslant 0 \text{ if } \\ \mathrm{e}^{-\beta V(q)} \mathcal{D}(q) \in \mathcal{M}_{a,b} = \left\{ M \in \mathcal{S}^+_d \ \middle| \ \forall \xi \in \mathbb{R}^d, \ a \left| \xi \right|^2 \leqslant \xi^\mathsf{T} M \xi \leqslant b^{-1} \left| \xi \right|^2 \right\} \text{ a.e.} \end{split}$$

R. Santet (CERMICS)

Theoretical analysis of the optimization problem

- $V \in \mathcal{C}^{\infty}(\mathbb{T}^d)$
- $\mathcal{D}\mapsto \Lambda(\mathcal{D})$ concave
- ullet $\mathfrak{D}^{a,b}_p$ weakly closed for the L^p_π norm

V and π bounded on $\mathbb{T}^d \Rightarrow \pi$ satisfies a Poincaré inequality

Theorem [Existence of a maximizer]

For any $p \in [1, +\infty]$, there exists

$$\mathcal{D}_p^{\star} = \underset{\mathcal{D} \in \mathfrak{D}_p^{a,b}}{\operatorname{arg max}} \Lambda(\mathcal{D})$$

The maximizer is such that

- $\|\mathcal{D}\|_{L^p_{\pi}} = 1$;
- For any open set $\Omega\subset \mathbb{T}^d$, there exists $q\in\Omega$ such that $\mathcal{D}_p^{\star}(q)\neq 0$

Maximizer characterization

Euler-Lagrange equation:

$$\left. \frac{\mathrm{d}}{\mathrm{d}t} \Lambda \left(\mathcal{L}_{\mathcal{D}_p^{\star} + t\delta \mathcal{D}} \right) \right|_{t=0} + \gamma \left. \frac{\mathrm{d}}{\mathrm{d}t} \left\| \mathcal{D}_p^{\star} + t\delta \mathcal{D} \right\|_{L_{\pi}^p}^p \right|_{t=0} = 0$$

leads to $(s_p \geqslant 0)$

$$\boxed{\mathcal{D}_p^{\star}(q) \propto \left(\sum_{i=1}^{N_2} \nabla u_{\mathcal{D}_p^{\star}}^i(q) \otimes \nabla u_{\mathcal{D}_p^{\star}}^i(q)\right)^{s_p}}$$

with $\left(u^i_{\mathcal{D}_p^\star}\right)_{1\leq i\leq N_2}$ eigenvectors associated to $\Lambda(\mathcal{D}_p^\star)$

Numerical approximation of the optimization problem

- ullet Piecewise constant approximation for ${\mathcal D}$ on ${\mathbb T}^d$
- \mathbb{P}_1 Finite Elements approximation to compute $(\Lambda(\mathcal{D}), u_{\mathcal{D}})$:

$$A(\mathcal{D})u_{\mathcal{D}} = \Lambda(\mathcal{D})Bu_{\mathcal{D}}$$

with

$$A_{i,j}(\mathcal{D}) = \int \nabla \varphi_j^\mathsf{T} \mathcal{D} \nabla \varphi_i \, \mathrm{d}\pi, \qquad B_{i,j} = \int \varphi_j \varphi_i \, \mathrm{d}\pi$$

ullet Generalized eigenvalue problem: A sym., B pos. def. sym.

Numerical results - 1

Non-degenerate eigenvalue

Numerical results - 2

Degenerate eigenvalue

Optimal diffusion in the homogenized limit

- Previous procedure only helpful in low dimensions
- Need to solve a high-dimensional generalized eigenvalue problem

Optimal diffusion in the homogenized limit

- Previous procedure only helpful in low dimensions
- Need to solve a high-dimensional generalized eigenvalue problem

Idea: use homogenization theory to obtain a good approximation

Optimization of the homogenized limit

Goal: compute

$$\Lambda_{
m Hom}^{\star} = \Lambda(\mathcal{D}_{
m Hom}^{\star})$$

$$\begin{array}{c|c} \mathcal{D} & \xrightarrow[k \to +\infty]{\text{Hom.}} \mathcal{D}_{\text{Hom}} \\ \downarrow & & \downarrow \text{Opt.} \\ \mathcal{D}^{\star} & \xrightarrow[k \to +\infty]{\text{Hom.}} \mathcal{D}^{\star}_{\text{Hom.}} \end{array}$$

Theorem [Analytic expression]

• Linear constraint: For a fixed $M\in\mathcal{S}_d^{++}$, under the constraint, $\int_{\mathbb{T}^d}\mathcal{D}\,\mathrm{d}\pi=M$,

$$\boxed{\mathcal{D}_{\mathrm{Hom}}^{\star}(q) = M/\pi(q)}$$

is a maximizer.

ullet L^p_π constraint, d=1: Under the constraint $\|\mathcal{D}\|_{L^p_\pi}\leqslant 1$,

$$\mathcal{D}_{\mathrm{Hom}}^{\star}(q) = \mathrm{e}^{\beta V(q)}$$

is a maximizer.

Numerical results - Application to sampling experiments - 1

 $V(q) = \sin(4\pi q)(2 + \sin(2\pi q))$

Mean square distance (averaged)

Typical trajectories

Numerical results - Application to sampling experiments - 2

Diffusion coefficient	Constant	Homogenized	Optimal
Spectral gap	2.16	10.57	11.23

Transition times between the two wells, $N_{\rm transitions}=10^5$

R. Santet (CERMICS)

Conclusion

- Using a position-dependant diffusion coefficient can help sample rare events, cross energy barriers, etc.
- Optimization problem can be solved numerically in low dimensions

Conclusion

- Using a position-dependant diffusion coefficient can help sample rare events, cross energy barriers, etc.
- Optimization problem can be solved numerically in low dimensions
- In high-dimension, use free energy F and coordinate reaction ξ :

$$\mathcal{D}(q) \propto \mathrm{e}^{\beta F(\xi(q))}$$

ullet Good approximation with homogenization procedure: $\mathcal{D}_{ ext{Hom}}^{\star}=\mathrm{e}^{eta V}$

Conclusion

- Using a position-dependant diffusion coefficient can help sample rare events, cross energy barriers, etc.
- Optimization problem can be solved numerically in low dimensions
- In high-dimension, use free energy F and coordinate reaction ξ :

$$\mathcal{D}(q) \propto \mathrm{e}^{\beta F(\xi(q))}$$

ullet Good approximation with homogenization procedure: $\mathcal{D}_{ ext{Hom}}^{\star}=\mathrm{e}^{eta V}$

Thank you!

Which diffusion coefficient? Anisotropic case

- Anisotropic diffusion coefficient $\mathcal{D}_{\mathsf{Tan}}(q) = \varepsilon I_2 + \tilde{q}\tilde{q}^{\mathsf{T}}/\|q\|^2, \ \tilde{q} = (-y\ x)^{\mathsf{T}}$
- Isotropic diffusion coefficient $\mathcal{D}_{\mathsf{One}} \equiv (1+\varepsilon) I_2, \;\; \varepsilon = 0.1$

Which diffusion coefficient? Anisotropic case

- Anisotropic diffusion coefficient $\mathcal{D}_{\mathsf{Tan}}(q) = \varepsilon \mathbf{I}_2 + \tilde{q}\tilde{q}^{\mathsf{T}}/\|q\|^2, \ \tilde{q} = (-y\ x)^{\mathsf{T}}$
- Isotropic diffusion coefficient $\mathcal{D}_{\mathsf{One}} \equiv (1+\varepsilon) I_2, \;\; \varepsilon = 0.1$

Computing: after fixed number of iterations, distance to the invariant measure of the angle distribution (uniform on $[0, 2\pi]$)

Which diffusion coefficient? Anisotropic case

- Anisotropic diffusion coefficient $\mathcal{D}_{\mathsf{Tan}}(q) = \varepsilon \mathbf{I}_2 + \tilde{q}\tilde{q}^{\mathsf{T}}/\|q\|^2, \ \tilde{q} = (-y\ x)^{\mathsf{T}}$
- Isotropic diffusion coefficient $\mathcal{D}_{\mathsf{One}} \equiv (1+\varepsilon)I_2, \;\; \varepsilon = 0.1$

Computing: after fixed number of iterations, distance to the invariant measure of the angle distribution (uniform on $[0, 2\pi]$)

⇒ Compromise: small/large time steps (exploration vs rejection)

R. Santet (CERMICS) GAMM 2023 May 31 2023

Periodic homogenization procedure

- \bullet Decrease the period: $(\mathbb{Z}/k)^d$ -periodic functions $V_{\#,k}(q)=V(kq)$ and $\mathcal{D}_{\#,k}(q)=\mathcal{D}(kq)$
- Write the spectral gap problem:

$$\Lambda_{\#,k}(\mathcal{D}) = \min_{u \in H^1(\mathbb{T}^d) \setminus \{0\}} \left\{ \frac{\int_{\mathbb{T}^d} \nabla u^\mathsf{T} \mathcal{D}_{\#,k} \nabla u \, \mathrm{e}^{-\beta V_{\#,k}}}{\int_{\mathbb{T}^d} u^2 \, \mathrm{e}^{-\beta V_{\#,k}}} \, \middle| \, \int_{\mathbb{T}^d} u \, \mathrm{e}^{-\beta V_{\#,k}} = 0 \right\}$$

R. Santet (CERMICS)

⁵See for instance Allaire, Shape Optimization by the Homogenization Method (2002)

Periodic homogenization procedure

- \bullet Decrease the period: $(\mathbb{Z}/k)^d$ -periodic functions $V_{\#,k}(q)=V(kq)$ and $\mathcal{D}_{\#,k}(q)=\mathcal{D}(kq)$
- Write the spectral gap problem:

$$\Lambda_{\#,k}(\mathcal{D}) = \min_{u \in H^1(\mathbb{T}^d) \setminus \{0\}} \left\{ \frac{\int_{\mathbb{T}^d} \nabla u^{\mathsf{T}} \mathcal{D}_{\#,k} \nabla u \, \mathrm{e}^{-\beta V_{\#,k}}}{\int_{\mathbb{T}^d} u^2 \, \mathrm{e}^{-\beta V_{\#,k}}} \, \middle| \, \int_{\mathbb{T}^d} u \, \mathrm{e}^{-\beta V_{\#,k}} = 0 \right\}$$

• Use H-convergence:⁵ $\exists \overline{\mathcal{D}} \in \mathfrak{D}_p^{a,b}, \ \Lambda_{\#,k}(\mathcal{D}) \xrightarrow[k \to +\infty]{} \Lambda_{\mathrm{Hom}}(\mathcal{D}) \text{ with}$

$$\Lambda_{\mathrm{Hom}}(\mathcal{D}) := \min_{u \in H^1(\mathbb{T}^d) \setminus \{0\}} \left\{ \frac{\int_{\mathbb{T}^d} \nabla u^\mathsf{T} \overline{\mathcal{D}} \nabla u}{\int_{\mathbb{T}^d} u^2} \, \middle| \, \int_{\mathbb{T}^d} u = 0 \right\}$$

 \bullet $\overline{\mathcal{D}}$ can be expressed using \mathcal{D} and corrector functions appearing in the H-convergence procedure

2/7

R. Santet (CERMICS) GAMM 2023 May 31 2023

⁵See for instance Allaire, Shape Optimization by the Homogenization Method (2002)

H-convergence

Definition [H-convergence]

A sequence $(\mathcal{A}^k)_{k\geqslant 1}\subset L^\infty(\mathbb{T}^d,\mathcal{M}_{a,b})$ H-converges to $\overline{\mathcal{A}}\in L^\infty(\mathbb{T}^d,\mathcal{M}_{a,b})$ if, for any $f\in H^{-1}(\mathbb{T}^d)$ such that $\langle f,\mathbf{1}\rangle_{H^{-1},H^1}=0$, the sequence $(u^k)_{k\geqslant 1}\subset H^1(\mathbb{T}^d)$ of solutions to

$$\begin{cases} -\operatorname{div}\left(\mathcal{A}^k\nabla u^k\right) = f & \text{ on } \mathbb{T}^d, \\ \int_{\mathbb{T}^d} u^k(q)\mathrm{d}q = 0 \end{cases}$$

satisfies in the limit $k \to +\infty$,

$$\begin{cases} u^k \rightharpoonup u & \text{weakly in } H^1(\mathbb{T}^d), \\ \mathcal{A}^k \nabla u^k \rightharpoonup \overline{\mathcal{A}} \nabla u & \text{weakly in } L^2(\mathbb{T}^d)^d, \end{cases}$$

where $u \in H^1(\mathbb{T}^d)$ is the solution of the homogenized problem

$$\begin{cases} -\operatorname{div}\left(\overline{\mathcal{A}}\nabla u\right) = f & \text{on } \mathbb{T}^d, \\ \int_{\mathbb{T}^d} u(q)\mathrm{d}q = 0 \end{cases}$$

Periodic homogenization

Definition [Correctors]

If $\mathcal{A} = \mathcal{D}\exp(-\beta V)$, $(w_i)_{1 \leq i \leq d} \subset H^1(\mathbb{T}^d)$ is the family of unique solutions to the problem

$$\begin{cases} -\operatorname{div}(\mathcal{A}(e_i + \nabla w_i)) = 0, \\ \int_{\mathbb{T}^d} w = 0 \end{cases}$$

Then for any $\xi \in \mathbb{R}^d$,

$$\xi^{\mathsf{T}} \overline{D} \xi = \xi^{\mathsf{T}} \left(\int_{\mathbb{T}^d} \mathcal{D}(q) \mathrm{d}\pi \right) \xi - \int_{\mathbb{T}^d} \nabla w_{\xi}^{\mathsf{T}} \mathcal{D} \nabla w_{\xi} \mathrm{d}\pi.$$

Homogenization of the optimal diffusion

Goal: optimize for a given $k \geqslant 1$, then let $k \to +\infty$

- Recall the oscillating potential $V_{\#,k}(q) = V(kq)$. Let $\mathfrak{D}^{a,b}_{\#,k,p} \equiv \mathfrak{D}^{a,b}_p$ but defined with $V_{\#,k}$ instead of V.
- Let

$$\Lambda^{k}(\mathcal{D}) = \min_{u \in H^{1}(\mathbb{T}^{d}) \setminus \{0\}} \left\{ \frac{\int_{\mathbb{T}^{d}} \nabla u^{\mathsf{T}} \mathcal{D} \nabla u \, \mathrm{e}^{-\beta V_{\#,k}}}{\int_{\mathbb{T}^{d}} u^{2} \, \mathrm{e}^{-\beta V_{\#,k}}} \, \middle| \, \int_{\mathbb{T}^{d}} u \, \mathrm{e}^{-\beta V_{\#,k}} = 0 \right\}$$

and

$$\Lambda^{k,\star} = \max_{\mathcal{D} \in \mathfrak{D}^{a,b}_{\#,k,p}} \Lambda^k(\mathcal{D})$$

Homogenization of the optimal diffusion

Goal: optimize for a given $k \ge 1$, then let $k \to +\infty$

- Recall the oscillating potential $V_{\#,k}(q) = V(kq)$. Let $\mathfrak{D}^{a,b}_{\#,k,p} \equiv \mathfrak{D}^{a,b}_p$ but defined with $V_{\#,k}$ instead of V.
- let

$$\Lambda^{k}(\mathcal{D}) = \min_{u \in H^{1}(\mathbb{T}^{d}) \setminus \{0\}} \left\{ \frac{\int_{\mathbb{T}^{d}} \nabla u^{\mathsf{T}} \mathcal{D} \nabla u \, \mathrm{e}^{-\beta V_{\#,k}}}{\int_{\mathbb{T}^{d}} u^{2} \, \mathrm{e}^{-\beta V_{\#,k}}} \, \middle| \, \int_{\mathbb{T}^{d}} u \, \mathrm{e}^{-\beta V_{\#,k}} = 0 \right\}$$

and

$$\Lambda^{k,\star} = \max_{\mathcal{D} \in \mathfrak{D}_{\#,k,p}^{a,b}} \Lambda^k(\mathcal{D})$$

Lemma

There exists a maximizer $\mathcal{D}^{k,\star}\in\mathfrak{D}^{a,b}_p$ such that, denoting by $\mathcal{D}^{k,\star}_{\#,k}(q)=\mathcal{D}^{k,\star}(kq)$.

$$\Lambda^k(\mathcal{D}_{\#,k}^{k,\star}) = \Lambda^{k,\star}$$

Commutation between Homogenization and Optimization

$$\begin{array}{c|c} \Lambda(\mathcal{D}) & \xrightarrow[k \to +\infty]{\operatorname{Hom.}} \Lambda_{\operatorname{Hom}}(\mathcal{D}) \\ \downarrow & \downarrow & \downarrow \circ \\ \Lambda^{k,\star} & \xrightarrow[k \to +\infty]{\operatorname{Hom.}} \Lambda^{\star}_{\operatorname{Hom}} \end{array}$$

Theorem

The sequence $(\Lambda^{k,\star})_{k\geqslant 1}$ converges to $\Lambda^{\star}_{\mathrm{Hom}}:=\Lambda(\mathcal{D}^{\star}_{\mathrm{Hom}}).$

Commutation between Homogenization and Optimization

$$\begin{array}{c|c} \Lambda(\mathcal{D}) & \xrightarrow{\operatorname{Hom.}} & \Lambda_{\operatorname{Hom}}(\mathcal{D}) \\ & \downarrow & & \downarrow \\ \bullet & & \downarrow & \downarrow \\ \Lambda^{k,\star} & \xrightarrow{\operatorname{Hom.}} & \Lambda^{\star}_{\operatorname{Hom}} \end{array}$$

Theorem

The sequence $(\Lambda^{k,\star})_{k\geqslant 1}$ converges to $\Lambda^\star_{\mathrm{Hom}}:=\Lambda(\mathcal{D}^\star_{\mathrm{Hom}}).$

- ullet This implies that a good proxy (d=1) is $\mathcal{D}_{\mathrm{Hom}}^{\star}=\mathrm{e}^{\beta V}$
- In this case, $\overline{\mathcal{D}} = \left(\int_{\mathbb{T}} e^{-\beta V} \right)^{-1} := Z^{-1}$, and

$$\Lambda_{\rm Hom}^{\star} = 4\pi^2 Z^{-1}$$

Numerical results - 3

R. Santet (CERMICS)

GAMM 2023