Clustering Categorical Data: The ROCK Algorithm

- ROCK: RObust Clustering using links, ICDE'99
- Major ideas
 - Use the notion of *links* to measure similarity/proximity
 - Not distance-based

Similarity Measure in ROCK

- Traditional measures for categorical data may not work well, e.g., Jaccard coefficient
- Jaccard coefficient-based similarity function:

$$Sim(T_1, T_2) = \frac{\left|T_1 \cap T_2\right|}{\left|T_1 \cup T_2\right|}$$

• Ex. Let $T_1 = \{a, b, c\}, T_2 = \{c, d, e\}$

$$Sim(T_1, T_2) = \frac{|\{c\}|}{|\{a, b, c, d, e\}|} = \frac{1}{5} = 0.2$$

Similarity Measure in ROCK

- Example: Two groups (clusters) of transactions
 - C₁. <a, b, c, d, e>: {a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}
 - C₂. <a, b, f, g>: {a, b, f}, {a, b, g}, {a, f, g}, {b, f, g}
- Jaccard coefficient may lead to a wrong clustering result
 - C₁: 0.2 ({a, b, c}, {b, d, e}) to 0.5 ({a, b, c}, {a, b, d})
 - $C_1 \& C_2$: could be as high as 0.5 ({a, b, c}, {a, b, f})

$$Sim(T_1, T_2) = \frac{|T_1 \cap T_2|}{|T_1 \cup T_2|}$$

Link Measure in ROCK

- Links: # of common neighbors (threshold = 0.5 in jC)
 - C₁ <a, b, c, d, e>: {a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}, {b, c, d}, {b, c, e}, {b, d, e}
 - C₂ <a, b, f, g>: {a, b, f}, {a, b, g}, {a, f, g}, {b, f, g}
- Let $T_1 = \{a, b, c\}, T_2 = \{c, d, e\}, T_3 = \{a, b, f\}$
 - Iink(T_1, T_2) = 4, since they have 4 common neighbors
 - {a, c, d}, {a, c, e}, {b, c, d}, {b, c, e}
 - link(T_{1} , T_{3}) = 3, since they have 3 common neighbors
 - {a, b, d}, {a, b, e}, {a, b, g}
- Thus, link is a better measure than Jaccard coefficient

CHAMELEON: Hierarchical Clustering Using Dynamic Modeling (1999)

- CHAMELEON: by G. Karypis, E.H. Han, and V. Kumar'99
- Measures the similarity based on a dynamic model
 - Two clusters are merged only if the interconnectivity and closeness (proximity) between two clusters are high
 - Relative to the internal interconnectivity of the clusters and internal closeness
 of items within the clusters

CHAMELEON: Hierarchical Clustering Using Dynamic Modeling (1999)

- Draw a k-nearest neighbor graph first
 - Node: object, edge: k-nearest neighbor's link, weight: similarity
- A two-phase algorithm
 - Use a graph partitioning algorithm:
 - Cluster objects into a large number of relatively small sub-clusters
 - Use an agglomerative hierarchical clustering algorithm:
 - Find the genuine clusters by repeatedly combining these sub-clusters

CHAMELEON: Hierarchical Clustering Using Dynamic Modeling (1999)

- Partitioning
 - To minimize the edge cut (METIS)
 - Tries to split a graph into two subgraphs of nearly equal sizes
- Relative interconnectivity

$$RI(C_i, C_j) = \frac{|EC_{\{C_i, C_j\}}|}{\frac{1}{2}(|EC_{C_i}| + |EC_{C_j}|)},$$

Relative closeness

$$RC(C_i, C_j) = \frac{\overline{S}_{EC_{\{C_i, C_j\}}}}{\frac{|C_i|}{|C_i| + |C_j|} \overline{S}_{EC_{C_i}} + \frac{|C_j|}{|C_i| + |C_j|} \overline{S}_{EC_{C_j}}},$$

Overall Framework of CHAMELEON

CHAMELEON (Clustering Complex Objects)

Chapter 7. Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Outlier Analysis
- 8. Summary

Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points, rather than just a distance
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan, thus being efficient
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD'96)
 - OPTICS: Ankerst, et al (SIGMOD'99).
 - CLIQUE: Agrawal, et al. (SIGMOD'98) (more grid-based)

Density-Based Clustering: Basic Concepts

- Two parameters:
 - Eps: Maximum radius of the neighborhood
 - MinPts: Minimum number of points in an Eps-neighborhood of a given point
- $N_{Eps}(p)$: { $q \ belongs \ to \ D \mid dist(p,q) <= Eps$ }
- Directly density-reachable: A point p is directly density-reachable from a point q w.r.t. Eps and MinPts if
 - p belongs to N_{Eps}(q)
 - core point condition:

$$|N_{Eps}(q)| >= MinPts$$

Note: Not

$$MinPts = 5$$

$$Eps = 1 cm$$

Density-Reachable and Density-Connected

Density-reachable:

• A point p is density-reachable from a point q w.r.t. *Eps and MinPts* if there is a chain of points $p_1, ..., p_n,$ $p_1 = q, p_n = p$ such that p_{i+1} is directly density-reachable from p_i

Density-connected

A point p is density-connected to a point q w.r.t. Eps and MinPts if there is a point o such that both, p and q are density-reachable from o w.r.t. Eps and MinPts

DBSCAN: Density Based Spatial Clustering of Applications with Noise

- Relies on a density-based notion of cluster: A cluster is defined as a maximal set of density-connected points
- Discovers clusters of an arbitrary shape in spatial databases with noise

DBSCAN: The Algorithm

- Arbitrary select a point p
- Retrieve all points density-reachable from p w.r.t. Eps and MinPts
- If p is a core point, a cluster is formed
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database
- Continue the process until all of the points have been processed

DBSCAN: Sensitive to Parameters

Figure 8. DBScan results for DS1 with MinPts at 4 and Eps at (a) 0.5 and (b) 0.4.

Figure 9. DBScan results for DS2 with MinPts at 4 and Eps at (a) 5.0, (b) 3.5, and (c) 3.0.

Data Mining: Concepts and Techniques

CHAMELEON (Clustering Complex Objects)

OPTICS: A Cluster-Ordering Method (1999)

- OPTICS: Ordering Points To Identify the Clustering Structure
 - Ankerst, Breunig, Kriegel, and Sander (SIGMOD'99)
 - Produces a special order of objects in the database w.r.t.
 its density-based clustering structure
 - This cluster-ordering contains the information equivalent to different density-based clustering structure corresponding to a broad range of parameter settings (*Eps*)
 - Good for both automatic and interactive cluster analysis, including finding intrinsic clustering structure
 - Can be represented graphically or using visualization techniques

OPTICS: A Cluster-Ordering Method (1999)

Figure 3. Illustration of "nested" density-based clusters

OPTICS: Some Extension from DBSCAN

- Core Distance (of o)
 - Distance to make the object a core
- Reachability Distance (of p from o)
 - r(p, o) = max(core-distance(o), d(o, p))
 - Ex: r(p1, o) = 2.8cm, r(p2,o) = 4cm

MinPts =
$$6$$

 $\varepsilon = 3$ cm

OPTICS: A Cluster-Ordering Method (1999)

Figure 4. Core-distance(o), reachability-distances $r(p_1,o)$, $r(p_2,o)$ for *MinPts*=4

Cluster-order of the objects

Density-Based Clustering: OPTICS & Its Applications

OPTICS: A Cluster-Ordering Method (1999)

- OPTICS: Ordering Points To Identify the Clustering Structure
 - Ankerst, Breunig, Kriegel, and Sander (SIGMOD'99)
 - Produces a special order of objects in the database w.r.t.
 its density-based clustering structure
 - This cluster-ordering contains the information equivalent to different density-based clustering structure corresponding to a broad range of parameter settings (*Eps*)
 - Good for both automatic and interactive cluster analysis, including finding intrinsic clustering structure
 - Can be represented graphically or using visualization techniques

Chapter 7. Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Outlier Analysis
- 8. Summary

What Is Outlier Discovery?

- What are outliers?
 - The set of objects are considerably dissimilar from the remainder of the data
 - Example: Sports: Michael Jordon, Wayne Gretzky, ...
- Problem: Define and find outliers in large data sets
- Applications:
 - Credit card fraud detection
 - Telecom fraud detection
 - Customer segmentation
 - Medical analysis

Outlier Discovery: Statistical Approaches

Data Values

- Assume a model underlying distribution that generates data set (e.g. normal distribution)
- Use discordancy tests depending on
 - data distribution
 - distribution parameter (e.g., mean, variance)
 - number of expected outliers
- Drawbacks
 - most tests are for a single attribute
 - In many cases, data distribution may not be known

Outlier Discovery: Distance-Based Approach

- Introduced to counter the main limitations imposed by statistical methods
 - We need multi-dimensional analysis without knowing data distribution
- Distance-based outlier: A DB(p, D)-outlier is an object O in a dataset T such that at least a fraction p of the objects in T lies at a distance greater than D from O
- Algorithms for mining distance-based outliers
 - Index-based algorithm
 - Nested-loop algorithm
 - Cell-based algorithm

Density-Based Local Outlier Detection

- Distance-based outlier detection is based on global distance distribution
- It encounters difficulties to identify outliers if data is not uniformly distributed
- Ex. C₁ contains 400 loosely distributed points, C₂ has 100 tightly condensed points, 2 outlier points o₁, o₂
- Distance-based method cannot identify o₂ as an outlier
- Need the concept of a local outlier

- Local outlier factor (LOF)
 - Assume outlier is not crisp
 - Each point has a LOF

Chapter 7. Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Clustering High-Dimensional Data
- 8. Summary

Summary

- Cluster analysis groups objects based on their similarity and has wide applications
- Measure of similarity can be computed for various types of data
- Clustering algorithms can be categorized into partitioning methods, hierarchical methods, density-based methods, grid-based methods, and model-based methods
- Outlier detection and analysis are very useful for fraud detection, etc. and can be performed by statistical, distance-based or deviation-based approaches
- There are still lots of research issues on cluster analysis

Problems and Challenges

- Considerable progress has been made in scalable clustering methods
 - Partitioning: k-means, k-medoids, CLARANS
 - Hierarchical: BIRCH, ROCK, CHAMELEON
 - Density-based: DBSCAN, OPTICS, DenClue
 - Constraint-based: COD, constrained-clustering
- Current clustering techniques do not <u>address</u> all the requirements adequately, still an active area of research