Linear Algebra

주재걸 고려대학교 컴퓨터학과

Lecture Overview

- Elements in linear algebra
- Linear system
- Linear combination, vector equation, Four views of matrix multiplication
- Linear independence, span, and subspace
- Linear transformation
- Least squares
- Eigendecomposition
- Singular value decomposition

Over-determined Linear Systems (#equations >> #variables)

Recall a linear system:

Person ID	Weight	Height	ls_smoking	Life-span
1	60kg	5.5ft	Yes (=1)	66
2	65kg	5.0ft	No (=0)	74
3	55kg	6.0ft	Yes (=1)	78

Over-determined Linear Systems (#equations >> #variables)

からうでの アルトネッカリ タタ

미지도의 두:3개

मुक्रसंगर्भः ∞

- Recall a linear system:
- What if we have much more data examples?

Person ID	Weight	Height	ls_smoking	Life-span
1	60kg	5.5ft	Yes (=1)	66
2	65kg	5.0ft	No (=0)	74
3	55kg	6.0ft	Yes (=1)	78
:	:	:	:	•

 $60x_1 + 5.5x_2 + 1 \cdot x_3 = 66$ $65x_1 + 5.0x_2 + 0 \cdot x_3 = 74$ $55x_1 + 6.0x_2 + 1 \cdot x_3 = 78$

• Matrix equation:
$$\begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 66 \\ 74 \\ 78 \\ \vdots \end{bmatrix}$$

 $m \gg n$: more equations than variables

Vector Equation Perspective

• Vector equation form:
$$\begin{bmatrix} 60 \\ 65 \\ 55 \end{bmatrix} x_1 + \begin{bmatrix} 5.5 \\ 5.0 \\ 6.0 \\ \vdots \end{bmatrix} x_2 + \begin{bmatrix} 1 \\ 0 \\ 1 \\ \vdots \end{bmatrix} x_3 = \begin{bmatrix} 66 \\ 74 \\ 78 \\ \vdots \end{bmatrix}$$
$$\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \mathbf{a}_3 x_3 = \mathbf{b}$$

- Compared to the original space \mathbb{R}^n , where $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{b} \in \mathbb{R}^n$, Span $\{a_1, a_2, a_3\}$ will be a thin hyperplane, so it is likely that $\mathbf{b} \notin \text{Span} \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$
 - No solution exists.

Motivation for Least Squares

 Even if no solution exists, we want to approximately obtain the solution for an over-determined system.

 Then, how can we define the best approximate solution for our purpose?

Inner Product (473)

- Given $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, we can consider \mathbf{u} and \mathbf{v} as $n \times 1$ matrices.
- The transpose \mathbf{u}^T is a $1 \times n$ matrix, and the matrix product $\mathbf{u}^T \mathbf{v}$ is a 1×1 matrix, which we write as a scalar without brackets.
- The number $\mathbf{u}^T \mathbf{v}$ is called the **inner product** or **dot product** of \mathbf{u} and \mathbf{v} , and it is written as $\mathbf{u} \cdot \mathbf{v}$.

• For
$$\mathbf{u} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$, $\mathbf{u} \circ \mathbf{v} = \mathbf{u}^T \mathbf{v} = \begin{bmatrix} 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 14 \end{bmatrix}$

$$(1 \times 3)(3 \times 1) = 1 \times 1$$

Properties of Inner Product

- Theorem: Let \mathbf{u}, \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n , and let c be a scalar. Then
 - a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u} \longrightarrow \mathbf{r} \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
 - b) $(u + v) \cdot w = u \cdot w + v \cdot w \longrightarrow$ দুভদদ্যুখ্
 - c) $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v})$
 - d) $\mathbf{u} \cdot \mathbf{u} \ge \mathbf{0}$, and $\mathbf{u} \cdot \mathbf{u} = \mathbf{0}$ if and only if $\mathbf{u} = \mathbf{0}$
- Properties (b) and (c) can be combined to produce the following useful rule:

$$(c_1\mathbf{u}_1 + \dots + c_p\mathbf{u}_p) \cdot \mathbf{w} = c_1(\mathbf{u}_1 \cdot \mathbf{w}) + \dots + c_p(\mathbf{u}_p \cdot \mathbf{w})$$

েই পুনা ই মান্য ই মান্য ই মান্য ই মান্য

- For $\mathbf{v} \in \mathbb{R}^n$, with entries v_1, \dots, v_n , the square root of $\mathbf{v} \cdot \mathbf{v}$ is defined because $\mathbf{v} \cdot \mathbf{v}$ is nonnegative.
- Definition: The length (or norm) of v is the non-negative scalar $\|\mathbf{v}\|$ defined as the square root of $\mathbf{v} \cdot \mathbf{v}$:

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$
 and $\|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v}$

一) पाटा २०१६ या यह प्रकार सक्ति क

Geometric Meaning of Vector Norm

$$\text{if} \left| \begin{bmatrix} a \\ b \end{bmatrix} \right| = C , \left| \begin{bmatrix} 2a \\ 2b \end{bmatrix} \right| = 2C$$

- Suppose $\mathbf{v} \in \mathbb{R}^2$, say, $\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$.
- $\|\mathbf{v}\|$ is the length of the line segment from the origin to \mathbf{v} .
- This follows from Pythagorean Theorem applied to a triangle such as the one shown in the following figure:

• For any scalar c, the length $c\mathbf{v}$ is |c| times the length of \mathbf{v} That is, $||c\mathbf{v}|| = |c| ||\mathbf{v}||$

Unit Vector

→ माहना मिस्ट मिस्टा खेट डिमार 10 म्यह-

- A vector whose length is 1 is called a unit vector.
- Normalizing a vector: Given a nonzero vector \mathbf{v} , if we divide it by its length, we obtain a unit vector $\mathbf{u} = \frac{1}{\|\mathbf{v}\|} \mathbf{v}$. $\rightarrow \text{but } \mathbf{v}$ we divide it by its length, we obtain a unit vector $\mathbf{u} = \frac{1}{\|\mathbf{v}\|} \mathbf{v}$.
- u is in the same direction as v, but its length is 1.

Distance between Vectors in \mathbb{R}^n

- **Definition:** For \mathbf{u} and \mathbf{v} in \mathbb{R}^n , the **distance between \mathbf{u}** and \mathbf{v} , written as dist (\mathbf{u}, \mathbf{v}) , is the length of the vector $\mathbf{u} \mathbf{v}$. That is, $\operatorname{dist}(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} \mathbf{v}||$
- Example: Compute the distance between the vector $\mathbf{u} = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$.
- Solution: Calculate $\mathbf{u} \mathbf{v} = \begin{bmatrix} 6 \\ 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ $\|\mathbf{u} \mathbf{v}\| = \sqrt{3^2 + (-1)^2} = \sqrt{10}$

Distance between Vectors in \mathbb{R}^n

• The distance from \mathbf{u} to \mathbf{v} is the same as the distance from $\mathbf{u} - \mathbf{v}$ to 0.

Inner Product and Angle Between Vectors

 Inner product between u and v can be rewritten using their norms and angle:

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$$

Example:

$$\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = 5$$

$$||\mathbf{u}|| = \sqrt{2^2 + 1^2} = \sqrt{5}$$
 $||\mathbf{v}|| = \sqrt{1^2 + 3^2} = \sqrt{10}$

$$\mathbf{u} \cdot \mathbf{v} = 5 = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta = \sqrt{5} \cdot \sqrt{10} \cos \theta$$

$$\Rightarrow \cos \theta = \frac{5}{\sqrt{50}} = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \theta = 45^{\circ}$$

Orthogonal Vectors

(124)

• **Definition**: $\mathbf{u} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^n$ are **orthogonal** (to each other) if $\mathbf{u} \cdot \mathbf{v} = 0$

That is,

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta = 0.$$

 $\cos \theta = 0$ for nonzero vectors **u** and **v**

$$\theta = 90^{\circ} (\mathbf{u} \perp \mathbf{v}).$$

u and **v** are perpendicular each other.

ex)
$$\begin{bmatrix} 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ \frac{5}{3} \end{bmatrix} = 0$$
 or $0 = 90^{\circ}$

- Linear transformation
 - Properties of linear transformation
 - Standard matrix
 - One-to-one
 - Onto

- Vector norm, distance, and inner product
- Intro to least squares

Person ID Weight Height Is_smoking Life-span				
1	60kg	5.5ft	Yes (=1)	66
2	65kg	5.0ft	No (=0)	74
3	55kg	6.0ft	Yes (=1)	78

• Using the inverse matrix, the solution is
$$\mathbf{x} = \begin{bmatrix} -0.4 \\ 20 \\ -20 \end{bmatrix}$$

Back to Over-Determined System

Let's add one more example:

Person ID Weight Height Is_smoking Life-span				
1	60kg	5.5ft	Yes (=1)	66
2	65kg	5.0ft	No (=0)	74
3	55kg	6.0ft	Yes (=1)	78
4	50kg	5.0ft	Yes (=1)	72

• Now, let's use the previous solution $\mathbf{x} = \begin{bmatrix} \mathbf{x} \\ \mathbf{x} \end{bmatrix}$

$$\begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \\ 50 & 5.0 & 1 \end{bmatrix} \begin{bmatrix} -0.4 \\ 20 \\ -20 \end{bmatrix} = \begin{bmatrix} 66 \\ 74 \\ 78 \\ 60 \end{bmatrix} \neq \begin{bmatrix} 66 \\ 74 \\ 78 \\ 72 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 12 \end{bmatrix} \xrightarrow{+12}$$

Back to Over-Determined System

• How about using slightly different solution $\mathbf{x} = \begin{bmatrix} 0.12 \\ 16 \\ -9.5 \end{bmatrix}$?

Which One is Better Solution?

Errors

$$\begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \\ 50 & 5.0 & 1 \end{bmatrix} \begin{bmatrix} -0.12 \\ 16 \\ -9.5 \end{bmatrix} = \begin{bmatrix} 71.3 \\ 72.2 \\ 79.9 \\ 64.5 \end{bmatrix} \neq \begin{bmatrix} 66 \\ 74 \\ 78 \\ 72 \end{bmatrix} \begin{bmatrix} -5.3 \\ 1.8 \\ -1.9 \\ 7.5 \end{bmatrix}$$

$$\begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \\ 50 & 5.0 & 1 \end{bmatrix} \begin{bmatrix} -0.4 \\ 20 \\ -20 \end{bmatrix} = \begin{bmatrix} 66 \\ 74 \\ 78 \\ 60 \end{bmatrix} \neq \begin{bmatrix} 66 \\ 74 \\ 78 \\ 72 \end{bmatrix} = 0$$

Least Squares: Best Approximation Criterion

• Let's use the squared sum of errors:

Errors Sum of squared errors

$$\begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \\ 50 & 5.0 & 1 \end{bmatrix} \begin{bmatrix} -0.12 \\ 16 \\ -9.5 \end{bmatrix} = \begin{bmatrix} 71.3 \\ 69 \\ 79.9 \\ 64.5 \end{bmatrix} \neq \begin{bmatrix} 66 \\ 74 \\ 78 \\ 72 \end{bmatrix} \begin{bmatrix} (\mathbf{b} - A\mathbf{x}) \\ -5.3 \\ 1.8 \\ -1.9 \\ 7.5 \end{bmatrix} \begin{bmatrix} (\mathbf{b} - A\mathbf{x}) \\ ((-5.3)^2 + 1.8^2 + (-1.9)^2 + 7.5^2)^{0.5} \\ = 9.55 \end{bmatrix}$$
Better solution

$$\begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \\ 50 & 5.0 & 1 \end{bmatrix} \begin{bmatrix} -0.4 \\ 20 \\ -20 \end{bmatrix} = \begin{bmatrix} 66 \\ 74 \\ 78 \\ 60 \end{bmatrix} \neq \begin{bmatrix} 66 \\ 74 \\ 78 \\ 72 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ +12 \end{bmatrix} = (0^2 + 0^2 + 0^2 + (-12)^2)^{0.5}$$

Least Squares Problem

- Now, the sum of squared errors can be represented as $\|\mathbf{b} A\mathbf{x}\|$.
- **Definition**: Given an overdetermined system $A\mathbf{x} \simeq \mathbf{b}$ where $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^n$, and $m \gg n$, a least squares solution $\hat{\mathbf{x}}$ is defined as

$$\hat{\mathbf{x}} = \underset{\mathbf{x} \in \mathbb{R}}{\operatorname{arg min}} \|\mathbf{b} - A\mathbf{x}\|$$

- The most important aspect of the least-squares problem is that no matter what **x** we select, the vector A**x** will necessarily be in the column space Col A.
- Thus, we seek for **x** that makes A**x** as the closest point in Col A to **b**.