Fundamentos de Arquitetura de Computadores

Tiago Alves

Faculdade UnB Gama Universidade de Brasília

Sumário

Módulo 04

- Somadores
- Multiplicadores
- ULA

Somadores

A adição é a operação aritmética mais comumente realizada em circuitos.

Um circuito **somador** (*adder*) combina dois operandos aritméticos usando as regras da adição binária. Vimos que o mesmo circuito pode ser usado para somar palavras sem sinal (*unsigned*) e em complemento-de-2.

Somador Parcial

O circuito para somar dois bits (ou somar duas palavras de 1 bit) é chamado de **somador parcial** (half adder). Este circuito soma dois bits, A e B, e gera uma soma de dois bits (de 0 a 2).

${f A}$	\mathbf{B}	\mathbf{C}	\mathbf{S}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

O que gera as equações da soma parcial: ...

Somador Parcial

O circuito para somar dois bits (ou somar duas palavras de 1 bit) é chamado de **somador parcial** (half adder). Este circuito soma dois bits, A e B, e gera uma soma de dois bits (de 0 a 2).

${f A}$	\mathbf{B}	\mathbf{C}	\mathbf{S}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

O que gera as equações da soma parcial:

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B}$$

$$\mathbf{S} = \mathbf{A} \oplus \mathbf{B}$$

Somador Total

O circuito para somar três bits (ou somar duas palavras de 1 bit mais um carry) é chamado de **somador total** (full adder). Este circuito soma três bits, A, B e C_{in} , e gera uma soma de dois bits (de 0 a 3).

$\mathbf{C_{in}}$	${f A}$	\mathbf{B}	$\mathbf{C_{out}}$	\mathbf{S}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

O que gera as equações da soma total ...

Somador Total

O circuito para somar três bits (ou somar duas palavras de 1 bit mais um carry) é chamado de **somador total** (full adder). Este circuito soma três bits, A, B e C_{in} , e gera uma soma de dois bits (de 0 a 3).

$\mathbf{C_{in}}$	${f A}$	\mathbf{B}	$\mathbf{C_{out}}$	\mathbf{S}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

O que gera as equações da soma total:

$$\begin{aligned} \mathbf{C_{out}} &= \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C_{in}} + \mathbf{B} \cdot \mathbf{C_{in}} \\ \mathbf{S} &= \mathbf{A} \oplus \mathbf{B} \oplus \mathbf{C_{in}} \end{aligned}$$

Somador Total

Somadores de n bits

Considere um circuito somador de duas palavras de n bits. Como este é um circuito puramente combinacional, podemos montar sua tabela verdade (com 2^{2n} linhas ou entradas possíveis), e minimizá-lo usando qualquer técnica que desejarmos.

Porém, para somar apenas **palavras de** 4 **bits**, temos 8 variáveis (9, se considerarmos o *carry in* da entrada) e 256 linhas (512 com o *carry*) na tabela verdade.

Uma outra opção é utilizar um circuito **iterativo**! Note que, durante a soma, fazemos a mesma operação em cada bit.

Dividir para conquistar!

Somadores Iterativos

A adição binária pode então ser feita usando o algoritmo:

- **1** Ajuste $C_0 = \mathbf{0}$ e i = 0.
- § Some os bits C_i , A_i e B_i para obter S_i (saída primária) e C_{out} (saída de cascateamento).
- Incremente i.
- Se i < n, volte ao passo 2.

Assim, precisamos de um módulo que realize a soma entre C_i , A_i e B_i para obter S_i e C_{out} . Bom, mas eu já conheço um módulo digital capaz de realizar essa função: o circuito **somador total**.

Ripple Adder

O circuito de somador iterativo (agrupando somadores totais) é chamado de Ripple Adder.

Subtrator

Podemos construir um circuito "subtrator" binário análogo ao somador usando a tabela verdade da subtração com borrow, que realiza a subtração A-B.

$\mathbf{B_{in}}$	${f A}$	\mathbf{B}	$\mathbf{B_{out}}$	\mathbf{D}
0	0	0	0	0
0	0	1	1	1
0	1	0	0	1
0	1	1	0	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	1	1

O que gera as equações da subtração total ...

Subtrator

Podemos construir um circuito "subtrator" binário análogo ao somador usando a tabela verdade da subtração com borrow, que realiza a subtração A-B.

$\mathbf{B_{in}}$	${f A}$	\mathbf{B}	$\mathbf{B_{out}}$	\mathbf{D}
0	0	0	0	0
\mathbf{o}	0	1	1	1
0	1	0	0	1
0	1	1	0	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	1	1

O que gera as equações da subtração total:

$$\begin{split} \mathbf{B_{out}} &= \overline{\mathbf{A}} \cdot \mathbf{B} + \overline{\mathbf{A}} \cdot \mathbf{B_{in}} + \mathbf{B} \cdot \mathbf{B_{in}} \\ \mathbf{D} &= \mathbf{A} \oplus \mathbf{B} \oplus \mathbf{C_{in}} \end{split}$$

Subtração usando o Ripple Adder

Porém, vimos que, para subtrair números em complemento de 2, basta somar o número com o seu complemento (isto é, ao invés de fazer A-B, fazemos A+(-B)). Para obter o inverso de um número em complemento de 2, basta inverter todos os bits e somar 1. Logo, podemos fazer o circuito:

Ripple Adder

O maior problema do *ripple adder* é o **atraso**.

No pior caso, o *carry* tem que ser propagado do bit menos significativo até a saída *carry out* do módulo mais significativo (por exemplo, quando somamos 11...11 com 00...01). O atraso do pior caso é:

$$T_{ADD} = T_{ABCout} + (n-2)T_{CinCout} + T_{TCinS}$$

onde:

- ullet T_{ADD} : tempo total necessário para consolidar a soma das duas palavras;
- T_{XYCout} : atraso na geração de Cout demandado pelo estágio menos significativo;
- $T_{CinCout}$: atraso entre Cin e Cout nos estágios intermediários;
- T_{TCinS} : atraso entre Cin a geração de S no último estágio.

Ripple Adder

Podemos criar uma lógica de soma com apenas 2 níveis de atraso (típico da estrutura AND-OR) se tentarmos minimizar o circuito diretamente da tabela verdade, ou seja, fazendo as equações para cada bit de saída s_i a partir das entradas $(a_i...a_0,b_i...b_0$ e $c_{in})$.

Porém, a partir de s_2 (ou seja, apenas o terceiro bit da soma!), as equações já ficam muito grandes e necessitariam de 14 4-input ANDs, 4 5-input ANDs e uma 18-input OR! E isso apenas para s_2 .

Podemos acelerar este atraso olhando as equações:

$$s_i = a_i \oplus bi \oplus c_i$$

Já vimos que tentar abrir completamente esses termos gera muitas complicações. A ideia do circuito com *carry lookahead* é manter as portas **xor** e gerar apenas o *carry*.

Para isso, ele usa duas definições chave. Para uma combinação a_i,b_i no estágio i, dizemos que:

- um carry é gerado nesse estágio se ele produz um carry out 1 independente das entradas $a_{i-1}...a_0$, $b_{i-1}...b_0$ e c_{in} .
- um carry é **propagado** nesse estágio se ele produz um carry out 1 se e somente se o carry in desse estágio for 1.

Ou seja, temos:

$$g_i = a_i \cdot b_i$$
$$p_i = a_i + b_i$$

Ou seja, um estágio gera um carry out incondicionalmente se ambas as entradas desse estágio são 1 e ele propaga um carry in se pelo menos um de seus adendos for 1. Assim, podemos escrever o carry out como:

$$c_{i+1} = g_i + p_i \cdot c_i$$

Assim:

$$\begin{aligned} c_1 &= g_0 + p_0 \cdot c_0 \\ c_2 &= g_1 + p_1 \cdot c_1 \\ &= g_1 + p_1 \cdot (g_0 + p_0 \cdot c_0) \\ &= g_1 + p_1 \cdot g_0 + p_1 \cdot p_0 \cdot c_0 \\ c_3 &= g_2 + p_2 \cdot c_2 \\ &= g_2 + p_2 \cdot (g_1 + p_1 \cdot g_0 + p_1 \cdot p_0 \cdot c_0) \\ &= g_2 + p_2 \cdot g_1 + p_2 \cdot p_1 \cdot g_0 + p_2 \cdot p_1 \cdot p_0 \cdot c_0 \\ c_4 &= g_3 + p_3 \cdot c_3 \\ &= g_3 + p_3 \cdot (g_2 + p_2 \cdot g_1 + p_2 \cdot p_1 \cdot g_0 + p_2 \cdot p_1 \cdot p_0 \cdot c_0) \\ &= g_3 + p_3 \cdot g_2 + p_3 \cdot p_2 \cdot g_1 + p_3 \cdot p_2 \cdot p_1 \cdot g_0 + p_3 \cdot p_2 \cdot p_1 \cdot p_0 \cdot c_0 \end{aligned}$$

Cada uma dessas equações corresponde a um circuito com 3 níveis de atraso (um para gerar g_i e p_i) e dessas a estrutura AND-OR. (Análise em pior caso!)

Multiplicação em binário

A multiplicação em binário se dá da mesma forma que a multiplicação em decimal: adicionando uma lista de multiplicandos deslocados computados de acordo com os dígitos do multiplicador.

Na multiplicação em binário esse processo é ainda mais fácil, pois ou o bit do multiplicador é 0 (e o multiplicando deslocado é 0) ou é 1 (e o multiplicando deslocado é igual ao multiplicando).

	11
×	13
	33
	11
	143

1011	multiplicando
\times 1101	multiplicador
1011	
0000	multiplicando
1011	deslocados
1011	
10001111	produto

Multiplicadores

Embora possamos projetar circuitos sequenciais para realizar a multiplicação, não há nada inerentemente sequencial ou dependente do tempo na multiplicação binária.

Podemos expressar a multiplicação de dois operandos X e Y de n bits em uma tabela verdade (com 2^{2n} linhas) e elaborar um circuito AND-OR para realizar essa multiplicação.

O problema é que, novamente, essa tabela verdade cresce muito rapidamente.

Considere a multiplicação de dois operandos de 3 bits utilizando o algoritmo de "deslocar e acumular". Para representar o resultado sem que haja *overflow* precisamos de 2n=6 bits (o maior número inteiro se sinal que pode ser representado é $7\times 7=49$).

Note que o produto entre dois bits é super simples: ele só é 1 se ambos os bits forem 1! Logo, o produto de dois bits pode ser feito utilizando uma simples porta AND.

				x_2	x_1	x_0
			×	y_2	y_1	y_0
				y_0x_2	y_0x_1	y_0x_0
+			y_1x_2	y_1x_1	y_1x_0	
+		y_2x_2	$y_2 x_1$	$y_2 x_0$		
	p_5	p_4	p_3	p_2	p_1	p_0

Para calcular o produto, basta somar as colunas:

$$p_0 = y_0x_0$$

$$p_1 = y_0x_1 + y_1x_0$$

$$p_2 = y_0x_2 + y_1x_1 + y_2x_0$$

$$p_3 = y_1x_2 + y_2x_1$$

$$p_4 = y_2x_2$$

$$p_5 = ?$$

O que estamos esquecendo é que, assim como a multiplicação, a adição é binária e pode gerar um carry out!

$$p_0 = y_0 x_0$$

$$p_1 = y_0 x_1 + y_1 x_0$$

$$p_2 = y_0 x_2 + y_1 x_1 + y_2 x_0 + c_1$$

$$p_3 = y_1 x_2 + y_2 x_1 + c_2$$

$$p_4 = y_2 x_2 + c_3$$

$$p_5 = c_4$$

Podemos usar somadores completos para realizar essa soma. Porém, note que o termo p_2 soma quatro bits e, portanto, pode precisar ser propagado até o termo p_4 .


```
\begin{aligned} p_0 &= y_0 x_0 \\ p_1 &= y_0 x_1 + y_1 x_0 \\ p_2 &= y_0 x_2 + y_1 x_1 + y_2 x_0 + c_1 \\ p_3 &= y_1 x_2 + y_2 x_1 + c_2 \\ p_4 &= y_2 x_2 + c_3 \\ p_5 &= c_4 \end{aligned}
```


Obviamente, o maior problema do circuito anterior é o atraso.

O circuito tem apenas **seis** somadores mas, no pior caso, o sinal deve ser propagado por **cinco** deles até que chegue a saída.

Podemos "acelerar" este este circuito utilizando a ideia de *carry save addition*, ligando o *carry out* de um somador no somador *abaixo* dele, não ao lado.


```
\begin{split} p_0 &= y_0x_0\\ p_1 &= y_0x_1 + y_1x_0\\ p_2 &= y_0x_2 + y_1x_1 + y_2x_0 + c_1\\ p_3 &= y_1x_2 + y_2x_1 + c_2\\ p_4 &= y_2x_2 + c_3\\ p_5 &= c_4 \end{split}
```


No multiplicador de apenas 3 bits, o *carry save addition* economiza apenas 1 atraso, pois o pior caso do circuito anterior é que um *carry* se propague por 4 somadores.

Pode não parecer muito, especialmente porque o entendimento do circuito fica um pouco mais complexo, mas em um circuito multiplicador de 8 bits a economia é de 20 somadores para 14 (e ainda menos se utilizarmos um circuito *carry lookahead* na última linha).

Versão rápida: equivalente ao carry-save.

Central Processing Unit - CPU

A CPU é o circuito eletrônico em um computador que executa instruções de um programa.

Essas instruções são compostas de operações classificadas em, basicamente, três categorias:

- entrada/saída;
- o perações de controle e
- e operações básicas aritméticas e lógicas.

Central Processing Unit - CPU

Para executar uma instrução (que poderá pertencere às três categorias anteriores), a CPU faz três passos:

- Fetch (busca) Busca na memória qual instrução deve ser executada.
- Decode (decodifica) Decodifica essa instrução, lendo o que deve ser feito e com quais operandos.
- Execute (executa) Efetivamente executa essa instrução.

Ao fim de uma instrução, a CPU atualiza o *contador de programa* e repete esses passos novamente.

Central Processing Unit - CPU

As instruções que uma CPU pode executar são (em geral) simples e sempre bem definidas.

Ir	nstrução	Descrição	Tipo
ADD	A,#20	Adiciona o valor 20 ao conteúdo posição de memória A	Aritmética
AND	AL,BL	Faz o AND bit a bit dos conteúdos dos registradores AL e BL.	Lógica
		Resultado armazenado em AL.	
MOV	A,R0	Copia o conteúdo da posição R0 para a posição A	Transferência de dados
INC	R2	Incrementa a posição de memória R2	Aritmética
JMP	LB0	Pula para a instrução rotulada como LB0	Controle
JB	F0,LB1	Se a flag F0 for 1, pula para LB1	Controle
CJNE	R1,#32,LB2	Compara o valor da posição R1 com 32 e,	Controle
	.,,	se forem diferentes, pula para LB2	

Central Processing Unit - CPU

Note que muitas dessas instruções envolvem operações aritméticas (ADD, INC), outras são típicas de controle de execução (CJNE, JB) e, por fim, temos o exemplo de uma operação lógica.

Note também que essas operações são simples: já vimos como projetar circuitos combinacionais para fazer esse tipo de operação!

Central Processing Unit - CPU

O modelo de Von Neumann.

Central Processing Unit - CPU

A memória pode guardar tanto o programa a ser executado quanto os dados (resultados).

A **unidade de controle** coordena os operandos e as operações, buscando os dados na memória e disponibilizando para que outros circuitos executem essas operações.

A unidade lógico-aritmética executa propriamente essas operações, retornando um valor.

Uma unidade lógico-aritmética (ULA) (ou ALU - arithmetic logic unit) é um circuito combinacional que pode realizar uma série de operações aritméticas e/ou lógicas em um par de operandos de n-bits. A operação é especificada em suas entradas de seleção.

Considere uma ULA com dois operandos de 4 bits com dois bits de seleção que execute as seguintes operações com seus operandos:

Entr	adas		
$\mathbf{S_1}$	$\mathbf{S_0}$	Função	
0	0	F = A + B	
0	1	F = A - B	
1	0	A and B	
1	1	A or B	

Individualmente sabemos fazer todos estes circuitos. Portanto, uma primeira solução poderia ser:

Já vimos que essa primeira solução não é ideal, pois utiliza mais somadores do que o necessário. Que tal usar a representação de números com sinal em complemento de 2?

UnB **Gama**

Standard MSI ALUs: 74x181

O CI 74x181 é uma ALU de 4 bits. Este CI tem:

- Dois operandos de 4 bits A e B (ativos em nível baixo).
- ullet Um operando de 1 bit ativo em nível alto C_{in} .
- \bullet Um seletor entre operações lógicas e aritméticas M.
- ullet Quatro bits de seleção para a operação a ser realizada S.
- Quatro bits de saída F.
- ullet Um bit de carry out C_{out} e duas saídas de grupo de carry lookahead.
- Um bit de igualdade A = B.

Standard MSI ALUs: 74×181

Entradas					Função		
	S_3	S_2	S_1	S_0	M=0 (arithmetic)	M=1 (logic)	
	0	0	0	0	F = A minus 1 plus CIN	F = A'	
	0	0	0	1	$F = A \cdot B$ minus 1 plus CIN	F = A' + B'	
	0	0	1	0	$F = A \cdot B'$ minus 1 plus CIN	F = A' + B	
	0	0	1	1	$F = 1111 \ plus\ CIN$	F = 1111	
	0	1	0	0	$F = A \ plus\ (A + B') \ plus\ CIN$	$F = A' \cdot B'$	
	0	1	0	1	$F = A \cdot B \; plus \; (A + B') \; plus \; CIN$	F = B'	
	0	1	1	0	F = A minus B minus 1 plus CIN	$F = A \oplus B'$	
	0	1	1	1	F = A + B' plus CIN	F = A + B'	
	1	0	0	0	$F = A \ plus\ (A + B) \ plus\ CIN$	$F = A' \cdot B$	
	1	0	0	1	$F = A \ plus \ B \ plus \ CIN$	$F = A \oplus B$	
	1	0	1	0	$F = A \cdot B'$ plus $(A + B)$ plus CIN	F = B	
	1	0	1	1	$F = A + B \ plus\ CIN$	F = A + B	
	1	1	0	0	$F = A \ plus \ A \ plus \ CIN$	F = 0000	
	1	1	0	1	$F = A \cdot B$ plus A plus CIN	$F = A \cdot B'$	
	1	1	1	0	$F = A \cdot B'$ plus A plus CIN	$F = A \cdot B$	
	1	1	1	1	$F = A \ plus \ CIN$	F = A	

Onde plus é soma aritmética, minus é subtração aritmética, e os símbolos ·, + e ⊕ se referem aos símbolos lógicos operados bit a bit.

Standard MSI ALUs: 74×181

Para somar A e B, usamos M=0 e S=1001 (usando a função A plus B plus CIN).

Para fazer A-B em complemento 2, usamos M=0, S=0110 e CIN=1 (usando a função A minus B minus 1 plus CIN).

Para decrementar A, fazemos M=0, S=0000 e CIN=0 (usando a função A minus 1 plus CIN).

Algumas operações podem não fazer muito sentido, mas "vem de graça", como por exemplo "F = A \cdot B' plus (A+B) plus CIN".

Entradas				Função		
S_3	S_2	s_1	S_0	M=0 (arithmetic)	M=1 (logic)	
О	О	0	0	F = A minus 1 plus CIN	F = A'	
o	o	o	1	$F = A \cdot B \text{ minus 1 plus CIN}$	F = A' + B'	
O	o	1	O	$F = A \cdot B'$ minus 1 plus CIN	F = A' + B	
O	O	1	1	F = 1111 plus CIN	F = 1111	
O	1	O	O	F = A plus (A + B') plus CIN	$F = A' \cdot B'$	
O	1	O	1	$F = A \cdot B \text{ plus } (A+B') \text{ plus CIN}$	F = B'	
O	1	1	O	F = A minus B minus 1 plus CIN	$F = A \oplus B'$	
O	1	1	1	F = A + B' plus CIN	F = A + B'	
1	O	O	O	F = A plus (A + B) plus CIN	$F = A' \cdot B$	
1	O	O	1	F = A plus B plus CIN	$F = A \oplus B$	
1	O	1	O	$F = A \cdot B'$ plus $(A+B)$ plus CIN	F = B	
1	O	1	1	F = A + B plus CIN	F = A + B	
1	1	O	O	F = A plus A plus CIN	F = 0000	
1	1	O	1	$F = A \cdot B$ plus A plus CIN	$F = A \cdot B'$	
1	1	1	O	$F = A \cdot B'$ plus A plus CIN	$F = A \cdot B$	
1	1	1	1	F = A plus CIN	F = A	
				'		

Standard MSI ALUs: 74x381 e 74x382

Outras ALU de 8 bits mais simples são os Cls 74×381 e 74×382 . A única diferença entre esses Cls é que o 74×381 tem saídas para group carry lookahead.

Entradas		as	
S_2	S_1	S_0	Função
0	0	0	F = 0000
0	0	1	$F = B \ minus\ A\ minus\ 1\ plus\ CIN$
0	1	0	$F = A \ minus\ B\ minus\ 1\ plus\ CIN$
0	1	1	$F = A \ plus \ B \ plus \ CIN$
1	0	0	$F = A \oplus B$
1	0	1	F = A + B
1	1	0	$F = A \cdot B$
1	1	1	F = 1111

Onde: **plus** é soma aritmética, **minus** é subtração aritmética, e os símbolos \cdot , + e \oplus se referem aos símbolos lógicos operados bit a bit.

Standard MSI Adders: 74x381 e 74x382

(b)				
(b)	5 6 7 15 3 4 1 2 19 18 17	S0 S1 S2	OVR COUT F0 F1 F2 F3	13 14 8 9 11
		В		

