# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-195849

(43) Date of publication of application: 30.07.1996

(51)Int.CI.

H04N 1/00 G03G 21/00

(21)Application number: 07-006612

(71)Applicant: RICOH CO LTD

(22)Date of filing:

19.01.1995

(72)Inventor: SAWADA MASAICHI

MIYAWAKI SHOZO

# (54) IMAGE FORMING DEVICE SERVICE SYSTEM

# (57)Abstract:

PURPOSE: To automate the gathering of the service information of many image forming devices, fault prediction and serviceman dispatch request and to efficiently take a quick and accurate counter measure before a fatal fault is generated.

CONSTITUTION: Many copying devices (image forming devices) 1, the common management device 4 and plural terminal equipments 6 respectively installed at plural service vases are connected through communication channels 3 and 5, and when an abnormal event or an abnormal prior event is generated during operations in the respective copying devices 1, the generation information is transmitted to the management device 4. The management device 4 successively stores the received information, analyzes the stored information, predicts the generation of a fault and the necessity of the visit of a serviceman from the analyzed result and transmits the predicted result to the terminal equipment 6 installed at the service base for controlling the object copying device 1.



# LEGAL STATUS

[Date of request for examination]

14.12.2000

[Date of sending the examiner's decision of

24.09.2002

rejection

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3442174

[Date of registration]

20.06.2003

[Number of appeal against examiner's decision 2002-20769

of rejection]

[Date of requesting appeal against examiner's

25.10.2002

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

審査中(2002/10/24)

4 1 9 9 6 0 4 2 0 0 9 6 1 9 5 8 4 9

(19)日本国特許庁 (JP)

# (12) 公開特許公報(A)

(11)特許出顧公開番号

特開平8-195849

(43)公開日 平成8年(1996)7月30日

(51) Int.Cl.4

識別記号 庁内整理番号

FΙ

技術表示箇所

H 0 4 N 1/00

106 Z

G 0 3 G 21/00

396

審査請求 未請求 請求項の数3 OL (全 17 頁)

(21)出願番号

特層平7-6612

#1-001Z

(22)出願日

平成7年(1995)1月19日

(71)出願人 000006747

株式会社リコー

東京都大田区中馬込1丁目3番6号

(72)発明者 澤田 雅市

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(72)発明者 宮脇 省三

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(74)代理人 弁理士 大澤 敬

# (54) 【発明の名称】 画像形成装置サービスシステム

# (57)【要約】

【目的】 多数の画像形成装置のサービス情報の収集と 故障予測及びサービスマン派遣要請を自動化し、致命的 な故障が発生する前に迅速・的確な処置を効率よく行な えるようにする。

【構成】 多数の複写装置(画像形成装置)1とその共通の管理装置4と複数のサービス拠点にそれぞれ設置される複数の端末装置6とを通信回線3,5を介して接続し、各複写装置1で動作中に異常事象又は異常事前事象が発生したときに、その発生情報を管理装置4へ送信する。管理装置4はその受信した情報を逐次記憶し、その記憶した情報を分析して、その分析結果から故障の発生及びサービスマンの訪問の要否を予測し、その予測結果をその対象である複写装置1を管轄するサービス拠点に設置された端末装置6へ送信するようにしたサービスシステム。



#### 【特許請求の範囲】

【請求項1】 複数の画像形成装置と、該複数の画像形 成装置を遠隔管理する管理装置とを通信回線で接続する と共に、該管理装置と複数のサービス拠点にそれぞれ設 置される複数の端末装置とを通信回線で接続してなり、 前記各画像形成装置において動作中に異常事象又は異常 事前事象が発生したときに、その発生情報を前記管理装 置へ送信し、該管理装置がその発生情報を受信すると該 情報の内容を分析して、前記複数の端末装置に対して選 択的に画像形成装置の保守又は修理に関する情報を送信 10 する画像形成装置サービスシステムであって、

前記管理装置に、画像形成装置から受信した情報を逐次 記憶する記憶手段と、該手段によって記憶された情報を 分析する分析手段と、該手段による分析結果から故障の 発生及びサービスマンの訪問の要否を予測する予測手段 と、その予測結果をその対象である画像形成装置を管轄 するービス拠点に設置された端末装置へ送信する手段と を設けたことを特徴とする画像形成装置サービスシステ ム

【請求項2】 請求項1記載の画像形成装置サービスシ 20 ステムにおいて、前記管理装置に、前記記憶手段に記憶 された情報を前記分析手段によって分析する範囲を任意 に設定する手段を設けたことを特徴とするを画像形成装 置サービスシステム。

【請求項3】 請求項1記載の画像形成装置サービスシ ステムにおいて、前記管理装置の記憶手段が、前記画像 形成装置から受信した情報による異常事象又は異常事前・ 事象の発生頻度の増減傾向を逐次記憶する手段であるこ とを特徴とする画像形成装置サービスシステム。

#### 【発明の詳細な説明】

# [0001]

【産業上の利用分野】この発明は、各ユーザによって使 用されている多数の複写装置、ファクシミリ装置、プリ ンタ等の画像形成装置に対する遠隔サービスシステムに 関する。

### [0002]

【従来の技術】現在、あらゆる業種のユーザによって多 数の複写装置やファクシミリ装置等の画像形成装置が使 用されている。このような用紙を使用する画像形成装置 では、紙詰まり(ジャム)等のトラブルを皆無にするこ 40 とは困難であるため、それが発生した場合でも極力ユー ザ自身でジャム紙を排除して正常状態に復帰できるよう に工夫されている。しかしながら、専門のサービスマン でなければ回復できないような紙詰まり、その他の故障 が発生することもあるので、一般にユーザとメーカある いは販売会社との間で保守契約を結んで、サービスマン による定期点検及び保守作業と、故障発生時の迅速な修 理体制をとるようにしている。

【0003】さらに、例えば特開平3-293369号

に、異なる場所で使用されている多数の複写機と管理セ ンター等に設置したコンピュータによる管理装置とを電 話回線網等の通信回線によって接続し、各複写機で発生 する紙詰まり等の検知情報を管理装置へ伝達して、一台 の管理装置で多数の複写装置を一括して遠隔管理するよ うなことも提案されている。

【0004】特開平3-293369号公報に記載され ている複写機管理装置は、複写機の用紙ジャムを検出 し、それを個所別に計数してジャム発生頻度を演算し、 その発生頻度が発生個所における許容値を越えたときに ジャムが異常発生する旨の警告データを管理センターの 集中管理装置へ公衆電話回線を介して送信する。それに よって、管理センターでは複写機での異常なジャムの発 生を直ちに知ることができ、サービスマンの派遣等の適 切な処置を採り得る。

【0005】また、特開平5-80609号公報に記載 されている複写装置も、画像形成シーケンス中における 転写紙の給送異常(紙詰まり等)発生を個所別に検知し て記憶し、その記憶した給送異常情報の変化状態(発生 頻度等) からデータ転送タイミングを決定して、記憶し た給送異常情報を公衆回線を介して管理拠点に設置され たホストコンピュータへ送信し、管理拠点のオペレータ がその給送異常情報をディスプレイ等で確認できるよう にする。

#### [0006]

【発明が解決しようとする課題】しかしながら、これら 従来の複写装置及びその管理装置では、複写装置側で紙 詰まり等の異常情報の記憶やそのデータ転送タイミング の決定を行ない、管理装置側では複写機から送信された 30 情報を受信して表示などによってオペレータに知らせる だけであり、オペレータがその情報から故障発生の判断 あるいは予測、サービスマン訪問の要否の判断などを行 なって、必要な場合にはサービス拠点のサービスマンに 電話やFAXで訪問の要請と対象複写機及びその状態等 に関する必要な情報を選択して連絡しなければならなか

【0007】また、複写装置から送られる全ての情報を サービス拠点へ通知した場合には、その情報が故障に至 る致命的なものなのか単なる状態連絡なのかを判別する 必要があり、余分な手間がかかるばかりか無駄な通信コ ストもかかるという問題がある。そこで、複写機側で前 述の例のように送信する情報やタイミングを極端に制限 してしまうと、故障発生の予測やサービスマン訪問要否 の予測(遠隔診断)ができなくなるという問題が生じ る。さらに、一般に複写装置等の画像形成装置のサービ ス拠点は特定の地域毎に設けられており、複写装置の設 置場所に最も近いサービス拠点からサービスマンを派遣 するのが、迅速なサービスを行なうために望ましい。

【0008】この発明はこのような状況に鑑みてなされ 公報や特開平5-80609号公報などに見られるよう 50 たものであり、多数のサービス拠点を含む広範な地域で

30

3

使用される各画像形成装置のサービス情報の収集と故障予測及びサービスマン派選要請を自動化し、致命的な故障が発生する前に迅速・的確な処置を効率よく行なえるようにすることを目的とする。そのため、多数のサービス拠点でそれぞれ管理する各画像形成装置に対する故障予測及びサービスマン訪問要否の予測等の高精度な遠隔診断を共通の管理装置で行なって、サービスマン訪問が必要な場合には、その複写装置を管理するサービス拠点へ必要な情報を自動的に送信することができる画像形成装置サービスシステムを提供しようとするものである。【0009】

【課題を解決するための手段】この発明は上記の目的を達成するため、複数の画像形成装置と、その複数の画像形成装置を遠隔管理する管理装置とを通信回線で接続すると共に、その管理装置と複数のサービス拠点にそれぞれ設置される複数の端末装置とを通信回線で接続してなり、各画像形成装置において動作中に異常事象又は異常事前事象が発生したときに、その発生情報を上記管理装置へ送信し、該管理装置がその発生情報を受信するとその情報の内容を分析して、複数の端末装置に対して選択 20的に画像形成装置の保守又は修理に関する情報を送信する画像形成装置サービスシステムであって、上記管理装置に次の各手段を設けたものである。

【0010】(a) 画像形成装置から受信した情報を逐次記憶する記憶手段、(b) 該手段によって記憶された情報を分析する分析手段、(c) 該手段による分析結果から故障の発生及びサービスマンの訪問の要否を予測する予測手段、(d) その予測結果をその対象である画像形成装置を管轄する一ビス拠点に設置された端末装置へ送信する手段、

【0011】さらに、上記画像形成装置サービスシステムにおける管理装置に、上記記憶手段に記憶された情報を上記分析手段によって分析する範囲を任意に設定する手段を設けるとよい。また、上記管理装置の記憶手段を、画像形成装置から受信した情報による異常事象又は異常事前事象の発生頻度の増減傾向を逐次記憶する手段にしてもよい。

### [0012]

【作用】この発明による画像形成装置サービスシステムは、複数の画像形成装置と、それらを遠隔管理する管理 40 装置と、複数のサービス拠点にそれぞれ設置される複数の端末装置とを通信回線で接続して、オンラインネットワークを構成している。そして、その管理装置が、各画像形成装置から受信した異常事象又は異常事前事象の情報を逐次記憶し、その記憶した情報を分析して、故障の発生及びサービスマンの訪問の要否を予測する。そして、その予測結果をその対象である画像形成装置を管轄するービス拠点に設置された端末装置へ送信することができる。

【0013】したがって、多数のサービス拠点を含む広 50 ャ13,及びクリーニングユニット14が配設されてい

4

範な地域で使用される各画像形成装置のサービス情報の 収集と、その情報による故障予測及びサービスマン訪問 の要否の予測等の高精度な遠隔診断、および必要な端末 装置へのサービスマン訪問要請等の送信を共通の管理装 置で自動的に行ない、致命的な故障が発生する前に迅速 ・的確な処置を効率よく行なうことが可能になる。

【0014】また、管理装置が分析する情報の範囲をユーザ特性等の条件に応じて適切に設定することにより、より短い時間で必要な診断及び予測を行なうことができる。さらに、上記管理装置の記憶手段を、画像形成装置から受信した情報による異常事象又は異常事前事象の発生頻度の増減傾向を逐次記憶する手段にすることにより、管理装置のメモリ容量を大幅に減少することができ、その増減傾向の累積情報から故障予測やサービスマンの訪問要否を予測することが可能である。

#### [0015]

【実施例】以下、この発明の実施例を図面を参照して具体的に説明する。図1は、この発明による画像形成装置サービスシステムの一実施例を示すシステム構成図である。

【0016】1は各ユーザの事務所等に設置された多数の複写装置であり、それぞれデータ通信装置2及び通信回線3を介して管理センターに設置された共通の管理装置(ホストコンピュータ)4に接続される。そして、この管理装置4に通信回線5を介して各サービス拠点に設置された端末装置6が接続される。通信回線3,5としては、電話回線等の公衆回線網を利用することができる。このシステムにおける各複写装置1は、それぞれ紙ジャム等の異常事象または異常事前通知事象の発生を検知する手段と、その検知情報及び必要な付加情報をデータ通信装置2及び通信回線3を通じて管理装置4へ送信する手段を備えている。

【0017】管理装置4はホストコンピュータであり、 各複写装置1から送信される情報を受信して個別に記憶 する手段と、その情報を分析して故障発生の予測及びサ ービスマン訪問の要否を予測する手段と、その予測結果 によりサービスマン訪問が必要な場合には、その複写装 置1を管理するサービス拠点の端末装置6へ必要な情報 を自動的に送信する手段等を備えている。

【0018】端末装置6はミニコンピュータあるいはパーソナルコンピュータであり、管理装置4から受信した情報を記憶する手段と、サービスマンに訪問先を通報したり対象複写装置の状態等を知らせるために表示手段等を備えている。これらの詳細については後述する。

【0019】図2は、図1における複写装置1における 画像形成に係わる各部とその転写紙搬送経路上で転写紙 を検知する多数のセンサの配置を示す模式図である。こ の複写装置1の心臓部をなす感光体ドラム10の周囲に は、帯電チャージャ11、現像装置12、転写チャージ

る。そして、矢示方向に回転する感光体ドラム10の表 面を帯電チャージャ11によって一様に帯電させ、その 帯電面を図示を省略したスキャナ及び露光装置によって 原稿の画像に応じて露光して静電潜像を形成し、それを 現像装置によってトナーを付着させて現像する。

【0020】これに合わせて、給紙トレイ15に収容さ れた転写紙Pを給紙ローラ16によって1枚ずつ給送 し、レジストローラ対17によって所定のタイミングで 感光体ドラム10の転写部位へ送出して、転写チャージ ャ13の作用でその転写紙Pの表面に感光体ドラム10 10 の表面のトナー像を転写させる。その転写紙を搬送ベル ト等による搬送部18によって定着ユニット19へ搬送 し、そこで転写されたトナー像を熱定着して機外へ送出 する。一方、トナー像転写後の感光体ドラム10の表面 は、クリーニングユニット14によってクリーニングさ れて、次の帯電に備える。

【0021】この複写装置1における転写紙Pの搬送経 路の要所毎に転写紙の通過を検知するセンサ(反射型又 は透過型のフォトセンサ等)が配設されている。すなわ ち、給紙ローラ16の転写紙送出側に給紙検知センサ A、レジストローラ対17の転写紙送出側にレジストセ ンサF、搬送部18に搬送センサG、定着ユニット19 の入り口に定着給紙センサH、出口側に排紙センサIが それぞれ配設されている。

【0022】これらの各センサによる転写紙検出信号と 転写紙の搬送時間とを監視することにより、転写紙の搬 送異常すなわちジャム発生の検知及びその発生個所の判・ 別をを行なうことができ、ジャム発生時にはそれを操作 部に表示して動作を停止させることは、従来の複写装置 と同様である。

【0023】次に、図1に示した複写装置1,管理装置 4. 及び端末装置6におけるこの発明に係る機能構成を 図3万至図5に示し、その処理について図6以降のフロ ーチャートによって説明する。図3は複写装置1の機能 構成を示すブロック図である。この図3において、操作 部20は、操作パネルに設けられたスタートキー及び数 値入力用のテンキーを含む各種入力キー(スイッチ)と 各種の表示を行なう表示器からなる。

【0024】コピーシーケンス制御部21は、マイクロ コンピュータによってこの複写装置1におけるコピーシ 40 ーケンスを制御する部分であり、操作部20のスタート キーが押されると、図2に示した各部及び図示を省略し たスキャナと露光装置、モータやクラッチ、高圧電源装 置等を順次制御して、原稿の画像を転写紙にコピーする 動作を制御すると共に、この複写装置1の全体を統括制

【0025】各種センサ22は、図2に示した転写紙検 知用のセンサA及びF~1と、機内温度(及び湿度), 定着温度、感光体ドラム10の表面電位、各種サプライ の有無等を検知するセンサ類である。状態情報記憶部2 50 を検知してから所定時間内に次のセンサが転写紙を検知

3は、コピーシーケンス制御部21及び各種センサ22 からの信号による複写機の状態情報(後述するアラーム 信号と共に送信する付加情報:累積コピー枚数を計数す るトータルカウンタ (TC) 値、給紙コロの搬送時間、 定着温度、画像濃度等)を記憶するメモリである。

【0026】コピー枚数計数部24は、コピーシーケン ス制御部21から1枚のコピー動作完了毎に出力される カウント信号を入力して、コピー枚数の計数を行なう。 アラームレベル記憶部25は、操作部20から入力され るアラームレベル(ジャムアラーム計数値をデクリメン トするのに必要なジャムなしコピー枚数)を記憶する。 この記憶は、電源のOFFによって消去されないように 不揮発性メモリになされる。

【0027】比較部26は、コピー枚数計数部24から コピー枚数計数値を、アラームレベル記憶部25からア ラームレベルをそれぞれ入力して両者を比較し、コピー 枚数計数値がアラームレベルになるとその比較結果をジ ャムアラーム計数部27に出力する。

【0028】ジャムアラーム計数部27は、ジャム発生 検知部28からのジャム発生信号を受けるとジャムアラ 一ム計数値をインクリメントしてジャムアラームを計数 し、比較部26から上記比較結果の出力を受けたときジ ャムアラーム計数値が「〇」でなければそれをデクリメ ントする。そして、そのジャムアラーム計数値が予め設 定した値(例えば「10」)に達すると、ジャムアラー ム情報を送信部29へ出力すると共に、コピー枚数計数 部24にリセツト信号を送って、コピー枚数の計数値を リセットさせる。

【0029】なお、このジャムアラーム計数部27は、 上記のジャムアラーム計数のほかに、発生個所別のジャ ム発生回数の計数も行なえるようにするのが望ましい。 例えば、図2におけるセンサA、F~Iで検知されるジ ャムを、それぞれAジャム、Fジャム、Gジャム、Hジ ャム、「ジャムとしてカウントし、上記ジャムアラーム 計数値が設定値「10」になったときに、その各ジャム のカウント値、例えばAジャム「5」, Fジャム

「O」, Gジャム「2」, Hジャム「1」、 I ジャム 「2」等をジャムアラーム情報として出力するようにす るとよい。

【0030】送信部29は、ジャムアラーム計数部27 からのこのジャムアラーム情報を、状態情報記憶部23 の状態情報(トータルカウンタ値等の付加情報)及び複 写装置の識別用IDと共に、図1に示したデータ通信装 置2及び通信回線3を介して、管理装置4にジャムアラ ーム送信する。

【0031】ジャム発生検知部28は、コピーシーケン ス制御部21によるコピー動作中における転写紙搬送時 間に対応する図2に示したセンサA及びF~Iの転写紙 検知信号を監視し、搬送方向の上流側のセンサが転写紙

しない場合や、同じセンサが所定時間以上転写紙を検知 し続けた場合には、ジャム (紙詰まり) が発生したと判 断して、ジャムアラーム計数部27に対して発生箇所別 のジャム発生信号を出力する。

【0032】また、このジャム発生信号によりコピーシ ーケンス制御部21によるコピー動作を停止させ、操作 部20にジャム発生とその発生個所を表示する。 通常は その表示を見て、オペレータが自分でジャム紙を取り除 いて、正常状態に復帰させることができるようになって いる。

【0033】次に、図6のフローチャートによってこの 複写装置1の上記各機能部によるジャムアラーム処理に ついて説明する。ステップ10でコピー動作中か否かを 判断する。コピー動作中のときにのみこのルーチンが有 効になり、コピー動作中でないときは何もせずにこのル ーチンを抜けて図示しないメインルーチンへ戻る。

【0034】コピー動作中であればステップ11へ進 み、コピー枚数計数タイミングか否かを判断し、計数タ イミングであればステップ12へ進んでコピー枚数を計 数 (加算; +1) し、ステップ13へ進む。計数タイミ 20 ングでなければステップ17へ分岐する。ステップ13 ではコピー枚数計数値とアラームレベルを比較し、アラ -ムレベル(例えば2500枚)よりコピー枚数計数値 の方が大きい場合はステップ14へ進む。そうでない場 合はステップ17へ進む。

【0035】ステップ14及び15では、ジャアラーム 計数値が0か否かを判断し、0であればそのままステッ プ16へ進むが、0でなければジャムアラーム計数値を 減算(-1)してステップ16へ進む。ステツプ16で は、コピー枚数計数値をリセットしてステップ17へ進 30 む。ステツプ17ではジャム発生の有無を判断し、ジャ ムが発生したと判断するとステップ18へ進んでジャム アラームを計数 (+1) し、ステップ19でコピー枚数 計数値をリセットしてステップ20へ進む。ジャムが発 生していないと判断した場合は、そのままステップ20 へ進む。ジャムが発生した場合は、その発生箇所を判別 して対応する発生箇所別ジャムカウンタも+1する。

【0036】ステップ20では、ジャムアラーム計数値 が設定値(この実施例の場合は10)になったか否かを 判断し、設定値になるとステップ21へ進んでジャムア ラーム送信(ジャムアラーム情報と付加情報を複写装置 の識別用 I Dと共に送信) し、ステップ 2 2 でジャムア ラーム計数値をリセットする。ジャムアラーム計数値が 設定値になっていなければ、何もせずにこのルーチンを 抜ける。

【0037】図4は、図1における管理装置4の機能構 成を示すブロック図である。この管理装置4はホストコ ンピュータであり、各複写装置1から送信されるジャー ムアラーム情報及び付加情報を受信する受信部40、そ の受信情報を各複写装置の識別用 I D別に逐次記憶する 50 ば、送信部 4 4 によってその複写装置を管理するサービ

受信情報記憶部41, ジャムアラーム情報分析部42. サービスマン訪問要否予測部43,及び送信部44を備 えている。

【0038】ジャムアラーム情報分析部42は、受信部 40でジャムアラーム情報を受信する毎に、受信情報記 憶部41に記憶されている当該複写機の記憶情報を含め てそのジャムアラーム情報を分析し、故障予測等の遠隔 診断を行なう。サービスマン訪問要否予測部43は、そ の予測あるいは診断結果に基づいてサービスマン訪問の 要否を予測し、サービスマンの訪問が必要であると予測 した場合には、サービスマン訪問要請情報と共に、受信 情報記憶部41に記憶されている情報のうち、サービス に必要な情報を送信部44へ送出させる。送信部44 は、それらの情報を当該複写装置を管理するサービス拠 点の端末装置に対して送信する。

【0039】図5は、図1における端末装置6の機能構 成を示すブロック図である。この端末装置6は、管理装 置4から送信されるサービスマン訪問要請及びサービス に必要な情報を受信する受信部60と、その受信情報を 記憶する受信情報記憶部61と、受信部60で受信した 訪問要請を通報する訪問要請通報部62と、それらの受 信情報(ジャムアラーム情報)を表示する表示部63とを 備えている。

【0040】次に、管理装置(ホストコンピュータ)4 によるジャムアラーム情報の分析及び故障あるいはサー ビスマン訪問要否の予測に関する処理について、図7以 降のフローチャート等によって説明する。図7はそのメ インルーチンのフローチャートであり、受信部40でジ ャムアラーム情報を受信すると、その受信情報をそれに 含まれている複写装置識別用IDを判別して受信情報記 憶部41に累積記憶する。そして、その新たに受信した ジャムアラーム情報及び受信情報記憶部41に記憶して いるその複写装置のジャムアラーム情報から、ジャムア ラーム情報分析部42が変化点履歴データの計算・作成 ・登録の処理を行なう。その詳細は後述する。

【0041】その後、サービスマン訪問要否予測部43 が有効情報評価期間の判断処理を行ない、有効情報評価 期間であれば同一傾向ジャムアラームの判定(サービス マン訪問要否の第1の予測) 処理を行なう。その結果同 一傾向ジャムアラーム(サービスマンの訪問要)であれ ば、送信部44によってその複写装置を管理するサービ ス拠点の端末装置6に対して、アラーム送信 (サービス マンの訪問要請及びそれに必要な情報の送信)処理を行 なう。

【0042】有効情報評価期間でないか、有効情報評価 期間であっても同一傾向ジャムアラームでない場合に は、次にジャム率オーバーアラームの判定(サービスマ・ ン訪問要否の第2の予測) 処理を行なう。その結果ジャ ム率オーバーアラーム(サービスマンの訪問要)であれ

ス拠点の端末装置 6 に対して、アラーム送信処理を行なう。

【0043】ジャム率オーバーアラームでない場合には、次にジャム占有率オーバーアラームの判定(サービスマン訪問要否の第3の予測)処理を行なう。その結果ジャム占有率オーバーアラーム(サービスマンの訪問要)であれば、送信部44によってその複写装置を管理するサービス拠点の端末装置6に対して、アラーム送信処理を行なう。ジャム占有率オーバーアラームでなければ、変化履歴データを受信情報記憶部41へ書き込んで、処理を終了する。これらの各判定処理についても後述する。

【0044】まず、ジャムアラーム情報分析部42による、ジャムアラーム情報からの変化点履歴データの計算・作成・登録の処理について、図8のフローチャートによって説明する。このルーチンがスタートすると、まず初回のジャムアラーム情報か否かを判断し、初回であればそのまま変化点履歴表の作成へ進むが、初回でなければ次のステップで、(今回の発生箇所別ジャム累積数)ー(前回の発生箇所別ジャム累積数)を今回の変化値X 20iとして算出する。すなわち、ジャム発生個所ごとに前回のジャムアラーム情報からの増加値(ジャムアラーム情報の内訳)を計算する。

【0045】これを発生箇所全てについて計算するまで

10

繰り返した後、稼動日数を(今回のジャムアラームの発生日) - (前回のジャムアラームの発生日) によって算出する。次いで、トータルカウンタ (TC) のカウント値を変化点履歴データへ記入する。さらに、期間枚数すなわちコピー枚数を、(今回のジッャムアラームのTC) - (前回のジッャムアラームのTC) によって算出する

【0046】そして、期間枚数を今回の変化値Xiの総和 (≒10)で除してJAMCBF (ジャム率:ジャムからジャムまでのコピー枚数)を算出する。次いで、今回の変化値Xiの総和を稼動日数で除して1日当たりのジャム発生数 (ジャム件/日)を算出した後、変化点履歴表を作成し、その変化点履歴データを登録する。

【0047】例えば、図4に示した管理装置4の受信情報記憶部41に記憶されたジャムアラーム情報が、表1に示すように、自己の持つ時計機能によりジャムアラーム情報受信時の年月日と共に記憶された、トータルカウンタ(TC)値、Aジャム、Fジャム、Gジャム、Hジャム、及び1ジャムの各累積発生回数であると、ジャムアラーム情報分析部42がその各情報から表2に示すような変化点履歴表のデータを作成する。

[0048]

【表1】

| 年月日  | TC  | Aジャム        | Fジャム | Gジャム | Hジャム | Iジャム  |
|------|-----|-------------|------|------|------|-------|
| 年月日1 | TC1 | 1 🗇         | 2回   | 3回   | 1団   | . 3 🗊 |
| 年月日2 | TC2 | 2 🖽         | 4 回  | 6団   | 3回   | 7 🖽   |
| 年月日3 | TC3 | 4 団         | 5 🖪  | 7団   | 3 🗊  | 11回   |
|      |     |             |      |      |      |       |
| l •  | •   | •           | •    | •    |      |       |
|      | •   |             | •    | •    |      | •     |
| 年月日N | TCN | <b>12</b> 0 | 团    | 团    | 团    | ョ     |

[0049]

【表2】

| Į | 黎戴日数 | 煩悶枚数  | AXi | FXi | GXi   | HXi | IXi | ΣXi | JAMCBF | ジャム件/日 |
|---|------|-------|-----|-----|-------|-----|-----|-----|--------|--------|
|   | 16日  | 3800枚 | l   | 2   | 3     | 2   | 4   | 1 1 | 345枚   | 0.69   |
| ١ | 20日  | 4600枚 | 2   | 1   | 1     | 0   | 5   | 10  | 460枚   | 0.5    |
| ١ |      |       |     |     |       |     |     |     |        |        |
| ı | •    | •     |     | •   | ٠.    |     | •   | ٠.  | •      |        |
| ı | •    | •     | •   | •   | •     | •   | •   | •   | •      | •      |
| ı | •    | •     |     | •   | ١ ٠ ١ |     | •   |     | •      |        |
| ı |      |       |     |     |       |     |     |     |        |        |
| Į | 8 🗄  | 2150枚 | 6   | 2   | 1     | 0   | 1   | 10  | 215枚   | 1.25   |

【0050】 表 2 における A X i , F X i , G X i , H 40 X i . I X i は、それぞれ A ジャム , F ジャム , G ジャム . H ジャム . 及び I ジャムの前回に対する変化値、 $\Sigma$  X i はその各 ジャムの変化値の総和であり、設定値(前述の例では「10」)になることが多いが、ジャムアラーム 計数値の減算が行なわれた場合には、その設定値より大きい数値多になる。

【0051】次に、サービスマン訪問要否予測部43に よる図7のフローチャートにおける各種の判定処理について説明する。図9は有効情報評価期間の判定処理ルー チンのフローチャートであり、ジャムアラーム情報分析50

部42から表1に示したような変化点履歴データを読み込み、その最終データが初回のジャムアラーム情報か否かを判断し、そうであれば何もせずに処理を終了する。初回のジャムアラーム情報でなければ、稼動日数が30日以内か否かを判断し、そうでなければ何もせずに処理を終了するが、30日以内であれば有効情報評価期間と判定する。この有効情報評価期間の判定をするための日数は、30日に限らず、ユーザ特性(故障に厳しいユーザや重点管理ユーザ等)に応じて任意に設定可能である。

0 【0052】図10はサービスマン訪問要否の第1の予

測処理である同一傾向ジャムアラームの判定処理ルーチンのフローチャートである。まず、ジャムアラーム情報分析部42から変化点履歴データを読み込み、最終データが初回のジャムアラーム情報か否かを判断し、そうであれば何もせずに処理を終了する。

【0053】初回でなければ、次に前回の発生箇所別のジャム数(表2におけるAXi~IXi)のジャムアラーム占有率(変化値の総和 SXiに占める割合)を確認し、その占有率が6割以上の発生箇所があればその発生箇所情報を記憶する。AジャムからIジャムまで全ての10発生箇所に対してこの処理を行なった後、今回の発生箇所別のジャム数のジャムアラーム占有率を確認し、その占有率が6割以上の発生箇所があればその発生箇所情報を記憶する。

【0054】Aジャムから I ジャムまで全ての発生箇所に対してこの処理を行なった後、前回のジャムアラーム情報の占有率 6 割以上の発生箇所情報と、今回のジャムアラーム情報の占有率 6 割以上の発生箇所情報とを比較し、同一箇所の発生か否かを判断する。その結果、同一箇所の発生でなければそのまま処理を終了するが、同一 20 箇所の発生であれば同一傾向ジャムアラーム情報(サービスマンの訪問が必要)と判定して処理を終了する。

【0055】すなわち、ある特定箇所のジャム数の占有率が6割以上のジャムアラーム情報を、有効情報評価期間(例えば30日)以内で2回続けて受信した時に、その最終データ(変化点履歴データ)の該当箇所にマーキングし、そのデータを送出する。この場合のジャム数の占有率判断基準は6割に限らず、ユーザ特性(重点管理ユーザや前月ジャム多発ユーザ等)に応じて任意に設定可能である。

【0056】図11はサービスマン訪問要否の第2の予測処理であるジャム率オーバーアラームの判定処理ルーチンのフローチャートである。まず、ジャムアラーム情報分析部42から変化点履歴データを読み込み、最終データが初回のジャムアラーム情報か否かを判断し、そうであれば何もせずに処理を終了する。初回でなければ、次に今回の変化点履歴データ中のJAMCBF(ジャム率:期間枚数 $/\Sigma X i$ )を確認し、それが設定値(この例では150枚)以下になると、ジャム率オーバーアラーム情報(サービスマンの訪問が必要)と判定して処理 40を終了する。

【0057】すなわち、表2に示した変化点履歴データ内のジャム率JAMCBFが設定値(150)以内になった時点で、その時の変化点履歴データをジャム率オーバーアラーム情報として送出する。この場合の設定値の「150」に限らず、ユーザ特性(重点管理ユーザや前月ジャム多発ユーザ等)に応じて任意に設定可能である。また、JAMCBFの逆数をとってジャム率としてもよい。

【0058】図12はサービスマン訪問要否の第3の予 50 して所定回以上続いたときに、サービスマンの訪問が必

12

測処理であるジャム占有率オーバーアラームの判定処理ルーチンのフローチャートである。まず、ジャムアラーム情報分析部42から変化点履歴データを読み込み、最終データが初回のジャムアラーム情報か否かを判断し、そうであれば何もせずに処理を終了する。初回でなければ、次に今回の発生箇所別のジャム数のジャムアラーム占有率を確認する。その占有率が8割以上の発生箇所があれば、ジャム占有率オーバーアラーム情報(サービスマンの訪問が必要)と判定して処理を終了する。

【0059】すなわち、上記各判定でサービスマンの訪問が必要と判定されなかった場合でも、ジャムアラーム情報における特定箇所のジャム数の占有率が8割以上になった場合には、サービスマンの訪問が必要と判定して、その時点の変化点履歴データを送出する。この場合の判定基準となる占有率の設定値も8割に限らず、ユーザ特性(重点管理ユーザや前月ジャム多発ユーザ等)に応じて任意に設定可能である。

【0060】図13は各ジャム発生箇所別(Aジャム, Fジャム及びIジャムを例示)のジャムアラーム情報間での累積ジャム発生数の変化値(Xi)を、表2に示した変化点履歴データの登録時点ごとにプロットして各時点間の傾向を示している。この傾向を診断して、上述のような特定のパターンに合致したときに、サービスマンの訪問が必要(故障発生)と予測したり、その故障箇所を予測したりすることができる。

【0061】たとえば、Aジャムの場合は、ジャムの発生回数が多くなる傾向が現在も続いており、同一傾向がある回数以上続いているので、その箇所(給紙部)にジャムを起こす原因があり、サービスマンの訪問が必要だ30 と判断したり、Iジャムの場合は、一時ジャム発生回数が多くなったが、現在は少なくなって落ち着いているので、その箇所(排紙部)にジャムを起こす原因がある可能性は低く、サービスマンの訪問を必要としないという判断をしたりする。

【0062】故障予測及びサービスマンの訪問要否の予測は、上記のパターン以外にも各種の判断基準を設定して行なうことができる。例えば、表2におけるジャム件/日(1日当りのジャム発生頻度)が1.0以上になった時に、サービスマンの訪問が必要と予測するようにしてもよい。

【0063】図14は他の実施例のジャムアラーム情報記憶の説明図であり、図4に示した管理装置における受信情報記憶部41にジャム発生箇所別の累積ジャム数を記憶せずに、単に前回のジャムアラーム情報による発生箇所別ジャム数のみを記憶し、ジャムアラーム情報分析部42は、前回と今回の発生箇所別の各ジャム数を比較して、今回の方が前回より多いか少ないかの傾向値のみを2値データ(多いとき:1,少ないとき:0)で記憶する。そして、例えばこのデータが"1"の状態が連続して販客回以上続いたときに、サービスマンの特別が必

要と判断することができる。このようにすれば、管理装置4の使用するメモリ容量を大幅に節約することができる。

【0064】また、管理装置4のジャムアラーム情報分析部42及びサービスマン訪問要否予測部43で使用する前述した有効情報評価期間の遡及範囲や、各種判定基準の設定値は、ホストコンピュータの数値入力部から任意に入力して設定することができる。その際には、範囲設定画面又は基準値設定画面を選択して操作部の数値キーにより入力して設定することができる。

【0065】さらに、上述の実施例では異常事象又は異常事前事象が用紙のジャム発生の場合について説明したが、それ以外の定着温度や帯電電圧等、故障要因となる各種の検出事象についても、同様にこの発明によるサービスシステムにおいて扱うことができる。また、複写装置以外のファクシミリ装置やプリンタ等の画像形成装置のサービスシステムにもこの発明を適用することができる。

#### [0066]

【発明の効果】以上説明してきたように、この発明によ 20 る画像形成装置サービスシステムは、多数のサービス拠点を含む広範な地域で使用される各画像形成装置のサービス情報の収集と、その情報による故障予測及びサービスマン訪問の要否の予測等の高精度な遠隔診断、および必要な端末装置へのサービスマン訪問要請等の送信を共通の管理装置で自動的に行ない、致命的な故障が発生する前に迅速・的確な処置を効率よく行なうことが可能になる。

【0067】また、管理装置が分析する情報の範囲をユーザ特性等の条件に応じて適切に設定することにより、より短い時間で必要な診断及び予測を行なうことができる。さらに、上記管理装置が画像形成装置から受信した情報による異常事象又は異常事前事象を累積記憶せず、その発生頻度の増減傾向を逐次記憶するようにすれば、管理装置のメモリ容量を大幅に減少することができる。

# 【図面の簡単な説明】

【図1】この発明による画像形成装置サービスシステムの一実施例を示すシステム構成図である。

【図2】図1における複写装置1の画像形成に係わる各部とその転写紙搬送経路上で転写紙を検知する多数のセ 40ンサの配置を示す模式図である。

【図3】図1における複写装置1の機能構成を示すプロック図である。

【図4】図1における管理装置4の機能構成を示すブロック図である。

【図5】図1における端末装置6の機能構成を示すプロック図である。

14

【図6】図3に示した複写装置1によるジャムアラーム 処理に関するルーチンのフローチャートである。

【図7】図4に示した管理装置(ホストコンピュータ) 4によるジャムアラーム情報の分析及びサービスマン訪問要否の予測に関する処理のメインルーチンのフローチャートである。

【図8】図7における変化点履歴データの計算・作成・ 登録処理ルーチンのフローチャートである。

【図9】図7における有効情報評価期間の判断処理ルー 10 チンのフローチャートである。

【図10】図7における同一傾向ジャムアラームの判定 処理ルーチンのフローチャートである。

【図11】図7におけるジャム率オーバーアラームの判定処理ルーチンのフローチャートである。

【図12】図7におけるジャム占有率オーバーアラームの判定処理ルーチンのフローチャートである。

【図13】各ジャム発生箇所別(Aジャム,Fジャム及び I ジャムを例示)のジャムアラーム情報間での累積ジャム発生数の変化値(X i )を変化点履歴データの登録時点ごとにプロットして各時点間の傾向を示す線図である

【図14】図14は他の実施例によるジャムアラーム情報記憶の説明図である。

#### 【符号の説明】

1:複写装置 2:データ通信装置

3,5:通信回線
 4:管理装置(ホストコンピュータ)

6:端末装置 10:感光体ドラム

11:帯電チャージャ 12:現像装置

| 13:転写チャージャ | 14:クリーニングユニット

15: 給紙トレイ 16: 給紙ローラ

17:レジストローラ対 18:搬送部

19:定着ユニット A:給紙検知センサ

F: レジストセンサ G: 搬送センサ

H:定着給紙センサ I:排紙センサ

20:操作部 21:コピーシーケンス制御部

22:各種センサ 23:状態情報記憶部

24:コピー枚数計数部 25:アラームレベル記憶 部

26:比較部 27:ジャムアラーム計数部

28:ジャム発生検知部 29:複写装置の送信部

40:管理装置の受信部 41:受信情報記憶部

42:ジャムアラーム情報分析部

43:サービスマン訪問要否予測部

4 4:管理装置の送信部 60:端末装置の受信部 61:受信情報記憶部 62:訪問要請通報部

63: 表示部

【図1】



【図2】



[図3]



【図5】



【図14】



【図4】



[図9] [図11]



【図6】



【図13】



【図7】



【図8】

くジャムアラーム情報より 変化点履歴データの計算・作成・登録>



【図10】



29

[図12]



【手続補正書】

【提出日】平成7年8月7日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】請求項1

【補正方法】変更

#### 【補正内容】

【請求項1】 複数の画像形成装置と、該複数の画像形成装置を遠隔管理する管理装置とを通信回線で接続すると共に、該管理装置と複数のサービス拠点にそれぞれ設置される複数の端末装置とを通信回線で接続してなり、前記各画像形成装置において動作中に異常事象又は異常事前事象が発生したときに、その発生情報を前記管理装置へ送信し、該管理装置がその発生情報を受信すると該情報の内容を分析して、前記複数の端末装置に対して選択的に画像形成装置の保守又は修理に関する情報を送信 40 する画像形成装置サービスシステムであって、

前記管理装置に、画像形成装置から受信した情報を逐次記憶する記憶手段と、該手段によって記憶された情報を分析する分析手段と、該手段による分析結果から故障の発生及びサービスマンの訪問の要否を予測する予測手段と、その予測結果をその対象である画像形成装置を管轄するサービス拠点に設置された端末装置へ送信する手段とを設けたことを特徴とする画像形成装置サービスシステム。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0008

【補正方法】変更

【補正内容】

0 【0008】この発明はこのような状況に鑑みてなされたものであり、多数のサービス拠点を含む広範な地域で使用される各画像形成装置のサービス情報の収集と故障予測及びサービスマン派遣要請を自動化し、致命的な故障が発生する前に迅速・的確な処置を効率よく行なえるようにすることを目的とする。そのため、多数のサービス拠点でそれぞれ管理する各画像形成装置に対する故障予測及びサービスマン訪問要否の予測等の高精度な遠隔診断を共通の管理装置で行なって、サービスマン訪問が必要な場合には、その<u>画像形成装置</u>を管理するサービス 拠点へ必要な情報を自動的に送信することができる画像形成装置サービスシステムを提供しようとするものである。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】 0010

【補正方法】変更

【補正内容】

【0010】(a) 画像形成装置から受信した情報を逐次 記憶する記憶手段、(b) 該手段によって記憶された情報 50 を分析する分析手段、(c) 該手段による分析結果から故

障の発生及びサービスマンの訪問の要否を予測する予測 手段、(d) その予測結果をその対象である画像形成装置 を管轄する<u>サービス拠点</u>に設置された端末装置へ送信す る手段、

#### 【手続補正4】

【補正対象審類名】明細審

【補正対象項目名】0035

【補正方法】変更

【補正内容】

【0035】ステップ14及び15では、ジャムアラー 10 ム計数値が0か否かを判断し、0であればそのままステップ16へ進むが、0でなければジャムアラーム計数値を減算(-1)してステップ16へ進む。ステツプ16では、コピー枚数計数値をリセットしてステップ17へ進む。ステツプ17ではジャム発生の有無を判断し、ジャムが発生したと判断するとステップ18へ進んでジャムアラームを計数(+1)し、ステップ19でコピー枚数計数値をリセットしてステップ20へ進む。ジャムが発生していないと判断した場合は、その発生箇所を判 20 別して対応する発生箇所別ジャムカウンタも+1する。

#### 【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】 0037

【補正方法】変更

【補正内容】

【0037】図4は、図1における管理装置4の機能構成を示すプロック図である。この管理装置4はホストコンピュータであり、各複写装置1から送信されるジャムアラーム情報及び付加情報を受信する受信部40、その30受信情報を各複写装置の識別用ID別に逐次記憶する受

32

信情報記憶部41,ジャムアラーム情報分析部42,サービスマン訪問要否予測部43,及び送信部44を備えている。

【手続補正6】

【補正対象審類名】明細書

【補正対象項目名】 0045

【補正方法】変更

【補正内容】

【0045】これを発生箇所全てについて計算するまで繰り返した後、稼動日数を(今回のジャムアラームの発生日)によって算出する。次いで、トータルカウンタ(TC)のカウント値を変化点履歴データへ記入する。さらに、期間枚数すなわちコピー枚数を、(今回のジャムアラームのTC)ー(前回のジャムアラームのTC)によって算出する。

【手続補正7】

【補正対象書類名】図面

【補正対象項目名】図2

【補正方法】変更

【補正内容】

【図2】

