

VIRTUAL INTERNSHIP

CREDIT RISK SCORING

By Hanif M Mufid

Abstract

Penelitian ini merupakan sebuah project dari sebuah lending company. Penelitian bertujuan untuk membangun model yang dapat memprediksi credit risk menggunakan dataset yang disediakan company. Hasil dari penelitian ini dapat digunakan untuk mengukur credit risk seseorang yang mengajukan kredit pada lending company

OUTLINE

- 01 Latar Belakang
- 02 Data Understanding
- 03 Data Preparation
- 04 Model Building

Latar Belakang

Manajemen risiko kredit adalah praktik untuk memitigasi kerugian dengan memahami kecukupan modal bank dan cadangan kerugian pinjaman pada waktu tertentu. Suatu proses yang menjadi tantangan bagi lembaga keuangan.

Salah satu kemajuan teknologi yang saat ini menjadi tren adalah machine learning. Machine learning dianggap menjadi salah satu pendukung kemajuan teknologi untuk segala aspek, khususnya dalam pengolahan data.

Dengan Machine learning ini kita dapat menyediakan solusi teknologi bagi company lending dengan cara membangun model yang dapat memprediksi credit risk.

Dataset

Data berisi tentang application loan

Data diambil dari tahun 2007 sampai 2014

Dataset terdiri dari 466.285 baris dan 75 kolom

Data Understanding

Untuk dapat mengolah data, pemahaman terhadap data sangat diperlukan, agar data dapat diolah dengan tepat. Langkah pertama untuk memahami data adalah dengan melihat data secara keseluruhan, agar mengetahui file yang di-import benar.

```
[1] import pandas as pd
import numpy as np

df = pd.read_csv('/content/drive/MyDrive/Dataset/loan_data_2007_2014.csv')
```


Data Understanding

Tampak data secara keseluruhan

Unname	ed: 0	id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate	installment	grade	 total_bal_il	il_util	open_rv_12m	open_rv_24m	max_bal_bc	all_util	total_rev_hi_lim	inq_fi	total_cu_tl	inq_last_12m
	0	1077501	1296599	5000	5000	4975.0	36 months	10.65	162.87	В	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	1	1077430	1314167	2500	2500	2500.0	60 months	15.27	59.83	С	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	2	1077175	1313524	2400	2400	2400.0	36 months	15.96	84.33	С	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	3	1076863	1277178	10000	10000	10000.0	36 months	13.49	339.31	С	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	4	1075358	1311748	3000	3000	3000.0	60 months	12.69	67.79	В	 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4662	280	8598660	1440975	18400	18400	18400.0	60 months	14.47	432.64	С	 NaN	NaN	NaN	NaN	NaN	NaN	29900.0	NaN	NaN	NaN
4662	281	9684700	11536848	22000	22000	22000.0	60 months	19.97	582.50	D	 NaN	NaN	NaN	NaN	NaN	NaN	39400.0	NaN	NaN	NaN
4662	282	9584776	11436914	20700	20700	20700.0	60 months	16.99	514.34	D	 NaN	NaN	NaN	NaN	NaN	NaN	13100.0	NaN	NaN	NaN
4662	283	9604874	11457002	2000	2000	2000.0	36 months	7.90	62.59	Α	 NaN	NaN	NaN	NaN	NaN	NaN	53100.0	NaN	NaN	NaN
4662	284	9199665	11061576	10000	10000	9975.0	36 months	19.20	367.58	D	 NaN	NaN	NaN	NaN	NaN	NaN	16000.0	NaN	NaN	NaN

Data Understanding

Kita juga dapat melihat info dari data tersebut.

```
[4] df.info()
```

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 466285 entries, 0 to 466284 Data columns (total 75 columns): # Column Non-Null Count Dtype -----Unnamed: 0 466285 non-null int64 1 id 466285 non-null int64 member id 466285 non-null int64 loan amnt 466285 non-null int64 466285 non-null int64 4 funded amnt 466285 non-null float64 funded amnt inv 466285 non-null object term int rate 466285 non-null float64 466285 non-null float64 8 installment 466285 non-null object grade 466285 non-null object 10 sub grade 11 emp_title 438697 non-null object 12 emp_length 445277 non-null object 13 home ownership 466285 non-null object 14 annual inc 466281 non-null float64 15 verification_status 466285 non-null object 16 issue_d 466285 non-null object 17 loan_status 466285 non-null object 18 pymnt_plan 466285 non-null object 19 url 466285 non-null object 20 desc 125983 non-null object 466285 non-null object 21 purpose 22 title 466265 non-null object 23 zip_code 466285 non-null object 466285 non-null object 24 addr_state 25 dti 466285 non-null float64 26 deling 2yrs 466256 non-null float64 27 earliest_cr_line 466256 non-null object

			-
28	inq_last_6mths	466256 non-null	float64
29	mths_since_last_delinq	215934 non-null	float64
30	mths_since_last_record	62638 non-null	float64
31	open_acc	466256 non-null	float64
32	pub_rec	466256 non-null	float64
33	revol_bal	466285 non-null	int64
34	revol_util	465945 non-null	float64
35	total_acc	466256 non-null	float64
36	initial_list_status	466285 non-null	object
37	out_prncp	466285 non-null	float64
38	out_prncp_inv	466285 non-null	float64
39	total_pymnt	466285 non-null	float64
40	total_pymnt_inv	466285 non-null	float64
41	total_rec_prncp	466285 non-null	float64
42	total_rec_int	466285 non-null	float64
43	total_rec_late_fee	466285 non-null	float64
44	recoveries	466285 non-null	float64
45	collection_recovery_fee	466285 non-null	float64
46	last_pymnt_d	465909 non-null	object
47	last_pymnt_amnt	466285 non-null	float64
48	next_pymnt_d	239071 non-null	object
49	last_credit_pull_d	466243 non-null	object
50	collections_12_mths_ex_med	466140 non-null	float64
51	mths_since_last_major_derog	98974 non-null	float64
52	policy_code	466285 non-null	int64
53	application_type	466285 non-null	object
54	annual_inc_joint	0 non-null	float64
55	dti_joint	0 non-null	float64
56	verification_status_joint	0 non-null	float64
57	acc_now_delinq	466256 non-null	float64
58	tot_coll_amt	396009 non-null	float64
59	tot_cur_bal	396009 non-null	float64
60	open_acc_6m	0 non-null	float64

61	open il 6m	0 non-null	float64				
62	open il 12m	0 non-null	float64				
63	open_il_24m	0 non-null	float64				
64	mths_since_rcnt_il	0 non-null	float64				
65	total_bal_il	0 non-null	float64				
66	il_util	0 non-null	float64				
67	open_rv_12m	0 non-null	float64				
68	open_rv_24m	0 non-null	float64				
69	max_bal_bc	0 non-null	float64				
70	all_util	0 non-null	float64				
71	total_rev_hi_lim	396009 non-null	float64				
72	inq_fi	0 non-null	float64				
73	total_cu_tl	0 non-null	float64				
74	inq_last_12m	0 non-null	float64				
dtypes: float64(46), int64(7), object(22)							

memory usage: 266.8+ MB

Data Preparation

Berdasarkan info yang sudah dilihat, terdapat kolom yang tidak mempunyai data sama sekali dan perlu dihapus.

Data Preparation

Cek missing value dan menghapus kolom dengan missing value lebih dari 40%

```
[20] missing_values = pd.DataFrame(df.isnull().sum()/df.shape[0])
     missing_values_filter = missing_values[missing_values[0] > 0.40]
[21] missing_values_filter.sort_values(0, ascending = False)
```

mths_since_last_record	0.866724
mths_since_last_major_derog	0.786480
desc	0.733440
mths_since_last_delinq	0.537503
next_pymnt_d	0.490176

Data Preparation

Membuat target label untuk klasifikasi

```
df['good_bad'] = np.where(df.loc[:, 'loan_status'].isin(['Charged Off', 'Default', 'Late (31-120 days)',
                                                          'In Grace Period', 'Late (16-30 days)']), 1, 0)
df['good_bad']
          0
466280
466281
466282
466283
466284
Name: good_bad, Length: 463536, dtype: int64
```


Model Building

Setelah meng handle missing value dan dilakukan One-Hot encoding pada dataset, bentuk dataset menjadi memiliki 464.536 baris dan 149 kolom. Dataset ini yang akan digunakan untuk membuat model.

```
loan_data_dum = pd.get_dummies(loan_data)
loan_data_dum.shape
```

(463536, 149)

Model Building

Dilakukan splitting data untuk membagi data menjadi train dan test data

```
from sklearn.model_selection import train_test_split

X = loan_data_dum.drop('good_bad', axis = 1)
y = loan_data_dum['good_bad']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42, stratify = y)
```


Model Building

Pada gambar dilihat tingkat akurasi pada prediksi yang dimiliki oleh model ini adalah 96%

```
from sklearn.linear model import LogisticRegression
model_1 = LogisticRegression()
model_1.fit(X_train, y_train)
```


0.9693446088794926

Thank You

