

TREE DENSITY APPROXIMATORS

Why

We can approximate a density with a tree density similar to how we can approximate a distribution with a tree distribution.

Definition

We use the differential relative entropy as a criterion of approximation. An *optimal tree approximator* of density for a tree is a density which factors according to a tree and minimizes its differential relative entropy with the given density.

Notation

Let $g: \mathbb{R}^n \to \mathbb{R}$ be a density and T be a tree on $\{1, \ldots, n\}$. An optimal tree approximator of g for T is a density f that factors according to T and minimizes d(g, f). In other words, given g and T we want to find f to

> minimize d(g, f)subject to f factors according to T.

Result

Proposition 1. Let $g: \mathbb{R}^n \to \mathbb{R}$ be a density and T be a tree on $\{1, \ldots, n\}$. The density $f_T^*: \mathbb{R}^d \to \mathbb{R}$ defined by

$$f_T^* = g_1 \prod_{i
eq 1} g_{i|\mathbf{pa}_i|}$$

minimizes the differential relative entropy with g among all densities on \mathbb{R}^n which factor according to T (\mathbf{pa}_i is the parent of i in T rooted at vertex 1, i = 2, ..., n).

Proof. Let $f: \mathbb{R}^d \to \mathbb{R}$ be a density factoring according to T. First, express

$$f = f_1 \prod_{i=1} f_{i|\mathbf{pa}_i}.$$

Second, recall that d(g, f) = h(g, f) - h(g). Since h(g) does not depend on f, f is a minimizer of d(g, f) if and only if f is a minimizer of h(g, f).

Third, express

$$h(g, f) = -\int_{\mathbf{R}^d} g \log f$$

$$= -\int_{\mathbf{R}^d} g(x) \left(\log f_i(x_i) + \sum_{i \neq 1} \log f_{i|\mathbf{pa}_i}(x_i, x_{\mathbf{pa}_i}) \right) dx$$

$$= h(g_1, f_1) + \sum_{i \neq 1} \left(\int_{\mathbf{R}} g_{\mathbf{pa}_i}(\xi) h(g_{i|\mathbf{pa}_i}(\cdot, \xi), f_{i|\mathbf{pa}_i}(\cdot, \xi)) d\xi \right)$$

which separates across f_1 and $f_{i|\mathbf{pa}_i}(\cdot,\xi)$ for $i=1,\ldots,n$ and $\xi \in \mathbf{R}$. In particular, since $g_{pai} \geq 0$, we can minimize the integrand pointwise.

Fourth, recall $h(\phi, \psi) \geq 0$ for densities ϕ, ψ of any dimension, and zero if $\phi = \psi$. So $f_1 = g_1$ and $f_{i|\mathbf{pa}_i} = g_{i|\mathbf{pa}_i}$ are solutions.

