Modelagem Bayesiana e Aplicações

Márcia D'Elia Branco

Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/mbranco

Modelos Hierárquicos 2

Primeiro nível

$$\bar{y}_j \mid \theta_j \sim N(\theta_j, \sigma_j^2)$$

com
$$\bar{y}_j = \frac{1}{n_j} \sum_{i=1}^{n_j} y_{ij}$$
 e $\sigma_j^2 = \frac{\sigma}{n_j}$.

Segundo nível

$$\theta_j \mid \mu, \tau^2 \sim N(\mu, \tau^2)$$

Obtivemos a seguinte distribuição a posteriori condicional aos hiperparâmetros:

$$h(\theta \mid \mu, \tau, y) = \prod_{j=1}^{J} \phi(\theta_j; A_j, V_j)$$

em que $\phi()$ representa a fdp da normal e

$$V_j = \left[rac{1}{\sigma_j^2} + rac{1}{ au^2}
ight]^{-1} \quad A_j = V_j \left[rac{ar{y}_j}{\sigma_j^2} + rac{\mu}{ au^2}
ight]$$

Note que o valor esperado de θ_j é uma combinação linear entre a média do grupo j e a média global μ .

Reescrevemos

$$V_j=\tau^2\,T_j\quad \text{e}\quad A_j=(1-\,T_j)\bar{y}_j+\,T_j\mu,$$
 com $T_j=rac{\sigma_j^2}{\sigma_i^2+ au^2}.$

Escolha das (hiper)prioris.

1. Não informativas impróprias:

Se $h(\mu) \propto 1$ então a distribuição a posteriori condicional a au é

$$\mu \mid \tau, \mathsf{y} \sim \mathsf{N}(\hat{\mu}, \mathsf{V}_{\mu})$$

com

$$V_{\mu} = \left[\sum_{j=1}^{J} rac{1}{\sigma_{j}^{2} + au^{2}}
ight]^{-1} \quad \hat{\mu} = V_{\mu} \sum_{j=1}^{J} rac{ar{y}_{j}}{\sigma_{j}^{2} + au^{2}}$$

Usualmente considera-se uma uniforme na transformação $log(\tau)$. Mas neste problema não é adequada pois a posteriori resulta imprópria.

Alternativamente, considera-se uma priori uniforme imprópria em τ . (Exercício: mostrar que a posteriori é própria!).

A distribuição a posteriori para τ .

Note que

$$h(\tau \mid y) = \frac{h(\mu, \tau \mid y)}{h(\mu \mid \tau, y)}$$

Lembramos que obtivemos na última aula

$$f(y \mid \mu, \tau) = \prod_{j=1}^{J} \phi(\bar{y}_j; \mu, \sigma_j^2 + \tau^2)$$

Como $h(\mu, \tau) \propto 1$, resulta

$$h(au \mid y) \propto rac{\prod\limits_{j=1}^{J} \phi(ar{y}_{j}; \mu, \sigma_{j}^{2} + au^{2})}{\phi(\mu; \hat{\mu}, V_{\mu})}$$

Como essa distribuição é unidimensional não é difícil simular. Podemos usar o algoritmo dada na função sim.x () no apêndice B do livro Turkman et al..

Esquema de simulação da distribuição a posteriori

- **1** Simular τ^t da marginal $h(\tau \mid y)$.
- $oldsymbol{2}$ Simular μ^t da $N(\hat{\mu}^t, V_{\mu}^t)$
- ullet Simular $heta_j^t$ da $N(A_j^t, V_j^t)$ independente para $j=1,\ldots,J$.
- **1** Fazer t = 1, 2, ..., M

Não há necessidade de controlar a convergência, pois é um esquema de simulação direta que não envolve Cadeias de Markov.

2. Prioris Vagas (pouco informativas e próprias)

$$\mu \sim \textit{N}(0, 10^k) \quad , \quad \gamma = rac{1}{ au^2} \sim \textit{Gama}(\epsilon, \epsilon)$$

Escolhendo k grande e ϵ pequeno.

$$E[\gamma] = 1$$
 $Var[\gamma] = \frac{1}{\epsilon}$

O modelo pode ser escrito no OpenBUGS ou JAGS e a inferência obtida via MCMC.

- 3. Algumas alternativas de prioris para au
- **3.1.** Half-Cauchy : $au = rac{d_1}{\sqrt{d_2}}$ com

$$\label{eq:definition} \textit{d}_1 \sim \textit{N}(0, \textit{D})\textit{I}_{(0, \infty)} \quad \text{e} \quad \textit{d}_2 \sim \textit{X}_1^2.$$

Exercício: Mostrar que τ tem distribuição de Cauchy restrita aos valores positivos.

3.2 . Uniforme nos pesos (shrinkage) .

Considera uma Uniforme no intervalo (0,1) para os pesos $T=rac{\sigma^2}{\sigma^2+ au^2}.$

Vamos obter a distribuição de au^2 .

A transformação inversa é dada por $au^2=rac{\sigma^2}{T}-\sigma^2$. Então

$$P(\tau^{2} \le y) = P(\frac{\sigma^{2}}{T} - \sigma^{2} \le y) = P(T \ge \frac{\sigma^{2}}{\sigma^{2} + y}) = 1 - \frac{\sigma^{2}}{\sigma^{2} + y} = \frac{y}{\sigma^{2} + y}.$$

Derivando obtemos a densidade que resulta em

$$h(\tau^2 \mid \sigma^2) = \frac{\sigma^2}{(\sigma^2 + \tau^2)^2} , \tau^2 > 0.$$

Prioris para au^2

3.3. Proposta de Gustafson et al. (2006).

$$h(\tau \mid \sigma^2) = \frac{a}{\sigma^2 (1 + \tau^2 / \sigma^2)^{a+1}}$$

- Para grandes valores de a evita estimativas muito altas para τ . Priori conservativa.
- Para a = 1 ela é igual a Uniforme nos pesos.

Exemplo: Livro Gelman et al. (2014), pag.119.

Interesse: avaliar o efeito de um programa de treinamento para melhorar a performace em um determinado teste.

Foram analisadas J=8 escolas. Para cada uma delas foi obtida uma medida resumo das diferenças de desempenho dos alunos "treinados" e "não treinados", denotada por y_j , $j=1,\ldots,8$.

Além disso, as variâncias amostrais de cada grupo são consideradas muito próximas das populacionais, devido ao fato dos tamanhos de amostras serem grandes. Os dados são apresentados na tabela a seguir.

Escola	Уј	σ_{j}
Α	28	15
В	8	10
C	-3	16
D	7	11
Ε	-1	9
F	1	11
G	18	10
Н	12	18

- Olhando para as estimativas pontuais pode parecer que algumas escolas tiveram um desempenho destacado em relação às outras.
- No entanto, ao analisarmos os desvio padrões (valores muito altos) notamos que não há diferença significativa entre elas. Os intervalos de credibilidades para cada um dos θ_j se interseccionam.
- Podemos então pensar que todas escolas provêm de uma mesma população e considerar um único θ . Neste caso, a estimativa pontual é 7.7 com um desvio padrão de 4.1.
- As conclusões obtidas com os dois modelos são bastante distintas. Por exemplo, considerando a análise individual temos que $P(\theta_1 > 28 \mid y) = 0.5$. Já na análise conjunta, $P(\theta_1 > 28 \mid y) \approx 0$.

Foi ajustado o modelo com hiperpriori uniforme em (μ, τ) . Na tabela a seguir temos as estimativas dos θ_j para uma amostra simulada de tamanho M=200.

Escola	2.5 %	25 %	mediana	75 %	97.5 %
A	-2	7	10	16	31
В	-5	3	8	12	23
C	- 11	2	7	11	19
D	-7	4	8	11	21
Е	-9	1	5	10	18
F	-7	2	6	10	28
G	-1	7	10	15	26
Н	-6	3	8	13	33

- Os intervalos de credibilidade novamente se interseccionam e a ordem é mantida. A média geral também não difere muito do estudo anterior.
- No entanto, os valores de estimativas pontuais diferem bastante da análise individual anterior. A variabilidade entre as estimativas pontuais é bem menor. A observação da distribuição a posteriori de τ permite inferir sobre essa variabilidade.
- Comparando com a análise conjunta (único θ), notamos que os intervalos individuais para cada θ_j posssuem uma amplitude maior do que o intervalo único na análise global.
- Outra diferença $P(\theta_1>28)\approx 0.10$ o que difere de ambas análises anterioris.
- Para mais detalhes ver Gelman et al. (2014).

Modelos Hierárquicos mais flexíveis

1. Modelo t-Student

Mantemos a suposição de normalidade no nível 1 e flexibilizamos a suposição no nível 2.

$$\theta_j \mid \mu, \tau \sim t_{\nu}(\mu, \tau^2)$$

Considerarando a representação hierárquica da distribuição *t*-Student, como mistura de normais, temos

$$egin{aligned} y_j \mid heta_j &\sim extstyle N(heta_j, \sigma_j^2) \ \ heta_j \mid \mu, au^2, \lambda_j &\sim extstyle N(\mu, au^2/\lambda_j) \ \ \lambda_j \mid
u &\sim extstyle Gama(
u/2,
u/2) \end{aligned}$$

Modelos Hierárquicos mais flexíveis

- O modelo t-Student acomoda melhor observações discrepantes.
- Os novos parâmetros, λ_j , introduzidos no modelo podem ser usados para análise de *outliers*. Valores altos de λ_j estão associados a valores discrepantes.
- ullet O modelo normal resulta quando $u o\infty$.
- ullet Um novo problema surge, escolher a distribuição a priori para os graus de liberdades u .

Modelos Hierárquicos mais flexíveis

2. Modelos assimétricos

O modelo skew-normal também pode ser estabelecido de forma hierárquica a partir da normal.

$$egin{align} y_j \mid heta_j &\sim extstyle N(heta_j, \sigma_j^2) \ \ heta_j \mid \mu, au^2, \lambda, w_j &\sim extstyle N(\mu + \lambda w_j, au^2) \ \ w_j &\sim extstyle N(0, 1) I_{(0, \infty)} \ \ \ \end{array}$$

- ullet O novo parâmetro $\lambda \in R$ é um parâmetro de forma.
- Se $\lambda = 0$ o modelo é simétrico, voltamos ao modelo normal.
- Se $\lambda > 0[\lambda < 0]$ resulta numa distribuição assimétrica positiva [negativa] .

Correção da pag. 62 do livro Congdon (2014) :

Se $\frac{1}{\tau^2}\sim \textit{Gama}(\epsilon,\epsilon)$ então, a distribuição a priori de θ_j condicional a μ tem distribução t-Student com $\nu=2\epsilon$ graus de liberdades.

Exercício !!