6. Random Variables calculations and wrap up

Transfer exploration seminar: Statistics and Data Science

Dr. Uma Ravat PSTAT 194TR

Summary: Random Variables

- Random Variables: Discrete , Continuous
 - distribution function: pmf P(X = x), pdf f(x)
 - probabilities : sums, series and integrals
 - Expected value: μ , \bar{X} , E(X)
 - Variance: σ^2 , Var(X)

Become familiar with the notation and concepts, the algebra will follow much more easily

Next we will see...

- Random variables
 - Using calculus (integrals and series) in probability calculations
- Wrap up with a look at connection of Intro to R and Intro to Probability.
- Feedback about these modules.
- Discuss anything else you want.

Become familiar with the notation and concepts, the algebra will follow much more easily

Pre-reading: Math Review:

- Sum and series
- Integrals

Comparison of Discrete and Continuous Random Variables

Random Variable	Discrete	Continuous
Takes on	finite or a countable number of distinct values	any value in a given range/interval
Example	# of correct answers on a 100 question test	Time taken to hike around the lagoon
Prob distribution function	probability mass function (PMF) $P(X = x)$	probability density function (PDF) $f(x)$
Properties	$0 \le P(X = x) \le 1$ $\sum_{x} P(X = x) = 1$	$0 \le f(x) \int_x f(x) = 1$ (total area under PDF $= 1$)

Comparison of Discrete and Continuous Random Variables

Random Variable	Discrete	Continuous
Probability Calcula- tion	P(X = x) gives the probability of a specific value	$P(a \le X \le b) = \int_a^b f(x) dx$ gives probability over an interval
Mean (Ex- pected Value)	$E(X) = \sum_{x} x \cdot P(X = x)$	$E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$
Variance	$Var(X) = \sum_{x} (x - E(X))^{2} \cdot P(X = x)$	$Var(X) = \int_{-\infty}^{\infty} (x - E(X))^{2} \cdot f(x) dx$

Revisit: Example of continuous random variable

A statistical quality control example.

$$f(x) = \begin{cases} 12 \ x^2 \ (1-x) & \text{if } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Area under the curve = 1

$$f(x) = 12 (x^2) (1 - x), \ 0 \le x \le 1$$

$$\int_{x \in S} f(x)dx = \int_{0}^{1} 12(x^{2})(1-x)dx$$
$$= 12 \int_{0}^{1} (x^{2}-x^{3})dx = 12 \left[\frac{x^{3}}{3} - \frac{x^{4}}{4}\Big|_{0}^{1}\right] = 1$$

Probability is Area Under the Curve

$$P(0.25 < X < 0.50) = \int_{0.25}^{0.50} 12(x^2)(1-x)dx = 12 \int_{0.25}^{0.50} (x^2 - x^3)dx$$
$$= 12 \left[\frac{x^3}{3} - \frac{x^4}{4} \right]_{0.25}^{0.50} = 0.2617188$$

Expected value

$$f(x) = \begin{cases} 12 \ x^2 \ (1-x) & \text{if } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

$$E(X) = \int_{x \in S} xf(x)dx$$

$$= \int_{0}^{1} x12(x^2)(1-x)dx$$

$$= 12 \int_{0}^{1} (x^3 - x^4)dx$$

$$= 12 \left[\frac{x^4}{4} - \frac{x^5}{5}\right]_{0}^{1}$$

$$= \boxed{0.6}$$

Variance

$$f(x) = 12 x^{2} (1 - x) \text{ if } 0 \le x \le 1$$

$$Var(X) = \int_{0}^{1} (x - E(X))^{2} \cdot f(x) dx$$

$$= \int_{0}^{1} (x - 0.6)^{2} \cdot 12 \cdot x^{2} \cdot (1 - x) dx$$

$$= \dots$$

Variance

$$f(x) = 12 x^2 (1 - x) \text{ if } 0 \le x \le 1$$

$$Var(X) = \int_{0}^{1} (x - E(X))^{2} \cdot f(x) dx$$

$$= \int_{0}^{1} (x - 0.6)^{2} 12 x^{2} (1 - x) dx = \int_{0}^{1} (x^{2} - 1.2x + 0.36) 12x^{2} (1 - x) dx$$

$$= 12 \int_{0}^{1} (x^{4} - 1.2x^{3} + 0.36x^{2}) (1 - x) dx = 12 \int_{0}^{1} (x^{4} - 1.2x^{3} + 0.36x^{2}) - (x^{5} - 1.2x^{4} + 0.36x^{3}) dx$$

$$= 12 \int_{0}^{1} (x^{4} - 1.2x^{3} + 0.36x^{2}) - x^{5} + 1.2x^{4} - 0.36x^{3} dx = 12 \int_{0}^{1} -x^{5} + 2.2x^{4} - 1.56x^{3} + 0.36x^{2} dx$$

$$= 12 \left[\frac{-x^{6}}{6} + \frac{2.2x^{5}}{5} - \frac{1.56x^{4}}{4} + \frac{0.36x^{3}}{3} \right]_{0}^{1}$$

$$= 12 \left[-16 + \frac{2.2}{5} - \frac{1.56}{4} + \frac{0.36}{3} \right]$$

$$= \left[0.04 \right]$$

Variance: Equivalent definitions

$$Var(X) = \int_{X} (x - E(X))^{2} \cdot f(x) dx$$
$$= E[(X - E(X))^{2}]$$
$$= E(X^{2}) - [E(X)]^{2}$$

$$E(X^2) = ?$$

$$E(X^{2}) = \int_{x} x^{2} f(x) dx = \int_{0}^{1} x^{2} 12(x^{2})(1 - x) dx$$

$$= 12 \int_{0}^{1} (x^{4} - x^{5}) dx$$

$$= 12 \left[\frac{x^{5}}{5} - \frac{x^{6}}{6} \right]_{0}^{1}$$

$$= \boxed{0.4}$$

$$Var(X) = 0.4 - 0.6^{2} = \boxed{0.04}$$

Example: Flipping two coins

X= number of heads in two independent coin flips X is a _____ random variable. Sample space is S = { _____}}

Example: Flipping two coins

X = number of heads in two independent coin flips

X is a <u>discrete</u> random variable.

Sample space is $S = \{HH, HT, TH, TT\} = \{0, 1, 2\}$

PMF is

Values: $X = x$	0	1	2
Probability: $P(X = x) = P(x)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Expected value and variance

X = number of heads in two independent coin flips, $S_X = \{0, 1, 2\}$

$$E(X) = \sum_{x} x P(x)$$

X	0	1	2	
P(x)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	
xP(x)	$0=(0)\tfrac{1}{4}$	$\frac{1}{2} = (1)\frac{1}{2}$	$\frac{1}{2} = (2)\frac{1}{4}$	1=E(X)

So,
$$E(X) = \sum_{x} xP(x) = 1$$

On average, you expect to see 1 head if you flip two coins.

Variance

X = number of heads in two independent coin flips, $S_X = \{0, 1, 2\}$

$$VarX = E(X^2) - [E(X)]^2 = \sum_{\text{all } x} x^2 P(x) - [E(X)]^2$$

$$E(X) = 1, E(X^2) = ?$$

X	0	1	2	
P(x)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	
xP(x)	$0=(0)\frac{1}{4}$	$\frac{1}{2} = (1)\frac{1}{2}$	$\frac{1}{2} = (2)\frac{1}{4}$	1 = E(X)
$x^2P(x)$	$0 = (0^2)\frac{1}{4}$	$\frac{1}{2} = (1^2)\frac{1}{2}$	$1=(2^2)\frac{1}{4}$	$1.5 = E(X^2)$

$$Var(X) = E(X^2) - [E(X)]^2 = 1.5 - 1^2 = 0.5$$

Recall: Series and it's sum

If b is any number, the geometric series and it's sum is given by

$$\sum_{k=0}^{\infty} b^k = (1 + b^1 + b^2 + \dots + b^k + \dots) = \frac{1}{1-b} = \frac{\text{first term}}{1-\text{base}}, \text{ if } |b| < 1$$

$$k! = 1 \cdot 2 \cdot 3 \cdots (k-1) \cdot k \text{ eg. } 5! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$$

If a is any number, the exponential series and it's sum is given by

$$\sum_{k=0}^{\infty} \frac{a^k}{k!} = \frac{a^0}{0!} + \frac{a^1}{1!} + \frac{a^2}{2!} + \dots + \frac{a^k}{k!} + \dots$$
$$= 1 + a + \frac{a^2}{2!} + \dots + \frac{a^k}{k!} + \dots$$
$$= e^a$$

See also, series review and math review sheet.

Example: uncountable sample space

Find E(X) of a discrete random variable X that has the following probability distribution:

$$P(X = 0) = P(0) = 2 - \sqrt{e}; P(X = k) = P(k) = \frac{1}{2^k \cdot k!}, \ k = 1, 2, 3, \dots$$

$$E(X) = \sum_{x} x P(x) = 0(2 - \sqrt{e}) + \sum_{k=1}^{\infty} k \cdot \frac{1}{2^k k!}$$

$$= \sum_{k=1}^{\infty} \frac{\left(\frac{1}{2}\right)^k}{(k-1)!}$$

$$= \frac{1}{2} \sum_{k-1=0}^{\infty} \frac{\left(\frac{1}{2}\right)^{(k-1)}}{(k-1)!}$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)^{(n)}}{(n)!} \quad (k-1=n)$$

$$= \frac{1}{2} e^{1/2} = \frac{1}{2} \sqrt{e}$$

Summary:

- Probability, E(X), V(X) calculations using
 - integrals for continuous random variables
 - series for discrete random variables with uncountable sample space.

Overall summary:

- Study skills for success in PSTAT courses
- Introduction to R (in preparation for PSTAT 10)
- Introduction to Probability (in preparation for PSTAT 120a)
 - Also, review Math review slides provided.
 - Review Double Integrals

Overall Connection

Module 1(Intro to R) and Module 2(Introduction to Probability)

Module 1(Intro to R) -> PStat 10

Sample

- 344 observations samples cases subjects (rows)
 - each case represents a penguin
- 8 variables (columns)
 - species, island, bill_length_mm, bill_depth_mm etc
 - each corresponds to some measurement of the penguin

Module 2(Introduction to Probability) -> PStat 120A -> Pstat 120B

Population

Random variables

Population parameters

- Population mean
- Population variance

Sampling distributions Central Limit Theorem

Connection

Statistics (120B) Sample Probability (120A) Population

344 observations/samples/cases/subjects (rows)

- each case represents a penguin
 8 variables (columns)
 - species, island, bill_length_mm, bill_depth_mm etc
 - $\ \ \,$ each corresponds to some measurement of the penguin

Variables

Summary statistics

- sample mean
- sample variance

Visualizations

Random variables

Population parameters

- Population mean
- Population variance

Sampling distributions Central Limit Theorem

Overall summary:

- Study skills for success in PSTAT courses
- Introduction to R (in preparation for PSTAT 10)
- Introduction to Probability (in preparation for PSTAT 120a)
 - Also, review Math review slides provided.
 - Review Double Integrals

Next, Intro to Python