Homework 5

Lance Remigio

March 25, 2025

Problem 1. Let $(V, \|\cdot\|)$ be a normed space and Y be a vector subspace of V. Last time, we saw that $V/Y = \{v + Y : v \in V\}$ is also a vector space. Now, assume that Y is closed in $(V, \|\cdot\|)$.

(i) Let v and v' such that $v - v' \in Y$. Show that $\inf_{y \in Y} \|v + Y\| = \inf_{y \in Y} \|v' + y\|$.

Proof. From problem 2(i) of Homework 4, $v - v' \in Y$ implies that v + Y = v' + Y. Hence, we have

$$\begin{aligned} v + Y &= v' + Y \Longrightarrow \|v + y\| = \|v' + y\| \ \forall y \in Y \\ &\Longrightarrow \inf_{y \in Y} \|v + y\| = \inf_{y \in Y} \|v' + y\|. \end{aligned}$$

(ii) For $[v] = v + Y \in V/Y$, define

$$||[v]||_0 = \inf_{y \in Y} ||v + y||.$$

Show that $\|\cdot\|_0$ defines a norm on V/W.

Proof. Clearly, we have $||[v]||_0 \ge 0$ since $||\cdot||$ satisfies property (I).

(I) Suppose $v+Y=0_{V/W}$ where $[0]=0_{V/W}=0_V+Y$. Then by definition of $\|\cdot\|_0$, we have $\|[0]\|_0=0$. From part (a), we have

$$||[v]||_0 = ||[0]||_0 \iff \inf_{y \in Y} ||v + y|| = 0$$

 $\iff ||[v]||_0 = 0.$

Hence, the property (I) is satisfied.

(II) Let $\alpha \in F$ where F is a field. Then we have

$$\begin{split} \|[\alpha v]\|_0 &= \|\alpha v + Y\|_0 \\ &= \inf_{y \in Y} \|\alpha v + Y\| \\ &= \inf_{y \in Y} \|\alpha (v + Y)\| \\ &= \inf_{y \in Y} |\alpha| \|v + Y\| \\ &= |\alpha| \inf_{y \in Y} \|v + Y\| \\ &= |\alpha| \|[v]\|_0. \end{split}$$
 (|| · || is a norm)

1

(III) Let $v_1, v_2 \in V/W$. Then since $\|\cdot\|$ is a norm, we have that

$$||[v_1 + v_2]||_0 = ||(v_1 + v_2) + Y||_0$$

$$= ||(v_1 + Y) + (v_2 + Y)||_0$$

$$= \inf_{y \in Y} ||(v_1 + y_1) + (v_2 + y_2)||$$

$$\leq \inf_{y \in Y} [||v_1 + y_1|| + ||v_2 + y_2||]$$

$$= \inf_{y \in Y} ||v_1 + y_1|| + \inf_{y \in Y} ||v_2 + y_2||$$

$$= ||[v_1]||_0 + ||[v_2]||_0.$$

(iii) For any $v \in V$, show that $||[v]||_0 \le ||u||$.

Proof. By the triangle inequality, we have

$$||v|| = ||v|| + ||0_Y|| \ge ||v + 0_Y|| \ge \inf_{y \in Y} ||v + Y|| = ||[v]||_0.$$

(iv) We have a Canonical map $\pi: V \to V \setminus Y$, $\pi(u) = [u]$. Show that π is linear and continuous. Here continuity means that if $||v_n - v|| \to 0$ in V, then $||[v_n] - [v]||_0 \to 0$ in V/W.

Proof. First, we show that π is linear. For any $u_1, u_2 \in V$, we have

$$\pi(u_1 + u_1) = [u_1 + u_2]$$

$$= (u_1 + u_2) + Y$$

$$= (u_1 + Y) + (u_2 + Y)$$

$$= [u_1] + [u_2]$$

$$= \pi(u_1) + \pi(u_2).$$

Let $\alpha \in F$ where F is a field and let $u \in V$. Then we have

$$\pi(\alpha u) = [\alpha u] = (\alpha u) + Y = \alpha(u + Y) = \alpha[u] = \alpha \pi(u).$$

Hence, we conclude that π is a linear map from $V \to V/Y$. Now, we want to show that π is, indeed, continuous for any $v \in V$. Let v_n be a sequence in V such that $v_n \to v$; that is, $||v_n - v|| \to 0$. Our goal is to show that $||[v_n] - [v]|| \to 0$. By part (b), we can see that

$$0 \le ||[v_n] - [v]||_0 \le ||v_n - v|| \to 0.$$

Hence, we have $||[v_n] \to [v]||_0 \to 0$ by Squeeze Theorem and so we conclude that $\pi: V \to V/Y$ is a continuous function on V.

Problem 2. Consider the normed space $(\ell^{\infty}, \|\cdot\|_{\infty})$. Define a sequence $e^{(n)}$ in ℓ^{∞} by

$$x^{(n)} = (\delta_j^{(n)}), \quad \delta_j^{(n)} = \begin{cases} 1 & \text{if } j = n \\ 0 & \text{otherwise.} \end{cases}$$

(i) Compute $||x^{(n)} - x^{(n')}||_{\infty}$ for $n \neq n'$.

Solution. Let n > m. Then we see that

$$\delta_j^{(m)} = (0,0,\ldots,\underbrace{1}_{j=m},0,\ldots)$$

and

$$\delta_j^{(n)} = (0, 0, \dots, \underbrace{1}_{j=n}, 0, \dots)$$

Then we have

$$\delta_j^{(n)} - \delta_j^{(m)} = \begin{cases} 1 & \text{if } j = n \\ -1 & \text{if } j = m \\ 0 & \text{if } j \neq n, m \end{cases}$$

Clearly, we can see that $||x^{(n)} - x^{(m)}||_{\infty} = 1$.

(ii) Does $(x^{(n)})$ have a convergent subsequence?

Proof. We claim that $x^{(n)}$ does not have a convergent subsequence. Indeed, from part (i), we can see that

$$||x^{(n)} - x^{(m)}||_{\infty} \ge \frac{1}{2} \ \forall n \ne m$$

and

$$||x^{(n)}||_{\infty} = 1$$

for all $n \in \mathbb{N}$. By a theorem proven in class, we can see that $x^{(n)}$ does not have a convergent subsequence.

(iii) Prove that $S(\ell^{\infty}) = \{x = (x_i) \in \ell^{\infty} : ||x||_{\infty} = 1\}$ is closed and bounded but not compact.

Proof. It follows immediately that $S(\ell^{\infty})$ is bounded by construction. We will show that $S(\ell^{\infty})$ is closed. Let $x \in \overline{S(\ell^{\infty})}$. Then there exists a sequence $x^{(n)}$ in $S(\ell^{\infty})$ such that $x^{(n)} \to x$ for some x. This implies that $x^{(n)}$ is a Cauchy sequence in ℓ^{∞} . Since ℓ^{∞} is a Banach space, it follows that $x^{(n)} \to y$ for some $y \in \ell^{\infty}$. Our goal is to show that $y \in S(\ell^{\infty})$; that is, we want to show that $\|y\|_{\infty} = 1$. Using the triangle inequality, we can see that

$$||y||_{\infty} \le ||y - x^{(n)}||_{\infty} + ||x^{(n)}||_{\infty}$$

= $||y - x^{(n)}||_{\infty} + 1$.

Hence, we have

$$||y||_{\infty} - 1 \le ||y - x^{(n)}||_{\infty}. \tag{1}$$

Similarly, we have

$$||x^{(n)}||_{\infty} \le ||x^{(n)} - y||_{\infty} + ||y||_{\infty}$$

and so,

$$1 - \|y\|_{\infty} \le \|x^{(n)} - y\|_{\infty}. \tag{2}$$

Now, (1) and (2) imply that

$$0 < ||y||_{\infty} - 1| < ||x^{(n)} - y||_{\infty} \to 0.$$

Since $|\cdot|$ and $|\cdot|_{\infty}$ are continuous functions, we have

$$\lim_{n \to \infty} |\|y\|_{\infty} - 1| = \left| \lim_{n \to \infty} (\|y\|_{\infty} - 1) \right| = 0$$

and so we conclude that $||y||_{\infty} = 1$ which proves that $S(\ell^{\infty})$ closed. But note that by part (ii), $x^{(n)}$ does not have convergent subsequence. By Sequential Compactness, it follows that $S(\ell^{\infty})$ is not a compact set.

Problem 3. Let $(V, \|\cdot\|)$ be a normed space and Y be a subspace of V such that $Y \neq V$. Let $v \in V \setminus Y$. Define $d(v, Y) = \inf_{y \in Y} \|v - y\|$.

(i) Show that if d(v, Y) = 0, then $v \in \overline{Y}$.

Proof. Suppose that d(v,Y) = 0. Our goal is to show that $v \in \overline{Y}$; that is, we want to show that for any $\varepsilon > 0$, $B(y,\varepsilon) \cap Y \neq \emptyset$. Let $\varepsilon > 0$ be given. By a characterization of the infimum, we know there exists $\hat{y} \in Y$ such that

$$||v - \hat{y}|| < \inf_{y \in Y} ||v - y|| + \varepsilon.$$

By assumption, $d(v,Y) = \inf_{u \in Y} ||v - Y|| = 0$ and so we have, from the above inequality that

$$||v - \hat{y}|| < \varepsilon.$$

Hence, $\hat{y} \in B(v, \varepsilon)$. Since $\hat{y} \in Y$, we can conclude that

$$B(v,\varepsilon)\cap Y\neq\emptyset$$

and so $\hat{y} \in \overline{Y}$.

(ii) Assume that Y is closed. Prove that d > 0.

Proof. Suppose that Y is closed. Our goal is to show that d(v,Y) > 0 for all $v \in V \setminus Y$. To this end, let $v \in V \setminus Y$. Suppose for sake of contradiction that $d(v,Y) \leq 0$. If d(v,Y) < 0, then we have ||v-y|| < 0 which is absurd. If f(v,Y) = 0, then from part (a) we have that $v \in \overline{Y}$. But Y is closed and so $Y = \overline{Y}$. This tell us that $v \in Y$ which contradicts our assumption that $v \in V \setminus Y$.

Problem 4. Read section 2.6 of Kryszig and write down statements of key theorems, lemmas, and propositions.

Theorem (Range and Null Space). Let T be a linear operator. Then:

- (a) The range R(T) is a vector space.
- (b) If $\dim(T) = n < \infty$, then $\dim(R(T)) \le n$.
- (c) The null space N(T) is a vector space.

Theorem (Inverse Operator). Let X, Y be vector spaces, both real or both complex. Let $T: D(T) \to Y$ be a linear operator with domain $D(T) \subseteq X$ and range $R(T) \subseteq Y$. Then:

(a) The inverse $T^{-1}: R(T) \to D(T)$ exists if and only if

$$T(x) = 0 \Longrightarrow x = 0.$$

- (b) If T^{-1} exists, it is a linear operator.
- (c) If $\dim(D(T)) = n < \infty$ and T^{-1} exists, then $R(T) = \dim(D(T))$.

Lemma (Inverse of Product). Let $T: X \to Y$ and $S: Y \to Z$ be bijective linear operators, where X, Y, Z are vector spaces. Then the inverse $(ST)^{-1}: Z \to X$ of the product (the comoposite) ST exists, and

$$(ST)^{-1} = T^{-1}S^{-1}$$
.

Problem 5 (i). Let $T:D(T)\to W$ be a linear operator. Assume that $T^{-1}:R(T)\to D(T)$ exists. Show that if $\{v_1,\ldots,v_n\}$ is linearly dependent on D(T), then $\{T(v_1),\ldots,T(v_n)\}$ is linearly dependent on W.

Proof. We will show the claim through contrapositive. Suppose $\{T(v_1), T(v_2), \dots, T(v_n)\}$ is linearly

independent; that is, the equation

$$\sum_{i=1}^{n} c_i T(v_i) = 0 \tag{*}$$

has the trivial solution $c_i = 0$ for all $1 \le i \le n$. Since T is linear, (*) implies that

$$T\left(\sum_{i=1}^{n} c_i v_i\right) = 0.$$

Note that T^{-1} exists and so T must be injective (and surjective). Hence, we have $N(T) = \{0\}$. Thus, we have

$$\sum_{i=1}^{n} c_i v_i \in N(T) \Longrightarrow \sum_{i=1}^{n} c_i v_i = 0.$$

But then $c_i = 0$ for all $1 \le i \le n$. Hence, we see that $\{v_1, \ldots, v_n\}$ is a linearly independent set on V.

Problem 6 (ii). Let V and W be two vector spaces and $T: V \to W$ be a linear operator. Assume that $T: V \to W$ be a linear operator. Assume that V and W are finite dimensional and $\dim(V) = \dim(W)$. Prove that R(T) = W if and only if T^{-1} exists.

Proof. Assume that V and W are finite dimensional and $\dim(V)$ and $\dim(W)$.

(\Longrightarrow) Suppose R(T)=W. Let $\dim(V)=\dim(W)=n$. Our goal is to show that T^{-1} exists. It suffices to show that T is both surjective and injective. Note that, by assumption, T is immediately surjective. So, it suffices to show that T is injective. Let $\beta=\{v_1,v_2,\ldots,v_n\}$ and $\omega=\{w_1,w_2,\ldots,w_n\}$. Since T is surjective, we get $T(v_i)=w_i$ for $1\leq i\leq n$. Let $x,y\in V$. Then since β is a basis, we have

$$x = \sum_{i=1}^{n} c_i v_i,$$
$$y = \sum_{i=1}^{n} b_i v_i$$

Suppose T(x) = T(y). Then by the linearity and surjective of T, we see that

$$T(x) = T(y) \Longrightarrow T\left(\sum_{i=1}^{n} c_i v_i\right) = T\left(\sum_{i=1}^{n} b_i v_i\right)$$

$$\Longrightarrow \sum_{i=1}^{n} c_i T(v_i) = \sum_{i=1}^{n} b_i T(v_i)$$

$$\Longrightarrow \sum_{i=1}^{n} (c_i - b_i) T(v_i) = 0$$

$$\Longrightarrow \sum_{i=1}^{n} (c_i - b_i) w_i = 0.$$

Since ω is basis for W, w_i for all $1 \le i \le n$ are linearly independent. Hence, $c_i - b_i = 0$ for all $1 \le i \le n$. Hence, $c_i = b_i$ for all $1 \le i \le n$. This tells us that x = y. Thus, T must be injective. Thus, T^{-1} must exists.

 (\Leftarrow) If T^{-1} exists, then T must be a bijective map between V and W. Hence, we immediately have that R(T) = W.