

PROJET DE MODÉLISATION

GROUPE 195

Modélisation de la propagation d'une épidémie (sujet du groupe 197)

Travail à partir de la référence bibliographique **« Modéliser la propagation d'une épidémie »** de Hugo Falconet et Antoine Jego sous la direction d'Amandine Veber et Vincent Calvez

• • •

Modélisation à état continu

Modèle SIS à 2 compartiments

Description du modèle

$$\frac{dI}{dt} = \frac{\beta}{N}SI - \gamma I - \alpha_2 I$$
Infections Guérisons Guérisons

Le modèle présenté dans le document est le **modèle simplifié SIS** : les équation et l'automate ci-dessus décrivent succinctement une version légèrement modifiée que nous avons décidé d'étudier dans un souci de réalisme (choix de α_1 , α_2 et θ de manière indépendante).

Analyse du modèle

Il s'agit d'un système de 2 EDO à 2 inconnues non linéaires : le théorème de

Cauchy-Lipschitz appliqué à
$$\binom{S}{I}$$
 \in $[1,+\infty[^2\mapsto\begin{pmatrix}(\theta+\gamma)I+(\theta-\alpha_1)S-\frac{\beta}{S+I}SI\\\frac{\beta}{S+I}SI-(\gamma+\alpha_2)I\end{pmatrix}$ de classe \mathcal{C}^∞ fournit l'existence d'**une unique solution** sur $\mathbb{R}^*_+^2$ avec (S_0,I_0) fixés.

classe \mathcal{C}^{∞} fournit l'existence d'**une unique solution** sur $\mathbb{R}^*_+^2$ avec (S_0, I_0) fixés. Cette solution n'est cependant **pas exprimable analytiquement** et il faut se référer à des simulations pour des calculs en tout généralité.

Hypothèse simplificatrice

Supposons que l'épidémie n'affecte pas le taux de mortalité, d'où $\alpha_1=\alpha_2$ (maladie bénigne). On a alors $\frac{dN}{dt}=(\theta-\alpha)N$ et $\frac{dI}{dt}=K_1I-K_2e^{K_3t}I^2$, puis, par changement de variable, on obtient $I(t)=\frac{I_0(K_1+K_3)e^{K_1t}}{I_0K_2(e^{(K_1+K_3)t}-1)+K_1+K_3}$:

I(t)	$K_1 + K_3 > 0$ (1) $I(t) \sim \frac{K_1 + K_3}{K_2} e^{-K_3 t}$	$K_1 + K_3 < 0$ (2) $I(t) \sim \frac{I_0(K_1 + K_3)}{K_1 + K_3 - I_0 K_2} e^{K_1 t}$
(2) $K_1 > 0$ (1) $K_3 > 0$	10 30 30 A	10 to
(2) $K_1 = 0$ (1) $K_3 = 0$	39 30 30 30 30 30 30 30 30 30 30 30 30 30	19 th
(2) $K_1 < 0$ (1) $K_3 < 0$	10\$10 10 1450 106.41	39 th o

Notations

• • •

S: individus sains

I: individus infectés

M: individus morts

N: population totale (I + S)

 α : taux de mortalité (α_1 si l'individu est sain, α_2 sinon)

 θ : taux de natalité

 β : taux de contact

 γ : taux de guérison

 $(S_0, I_0) \in [1, +\infty[^2 :$ conditions initiales fixées

R₀: nombre d'infections moyen dues à un individu malade

$$K_1 = \beta - \gamma - \alpha$$

$$K_2 = \frac{\beta}{(S_0 + I_0)}$$

$$K_{\alpha} = \alpha - \theta$$

• • •

Les allures de I(t) sont obtenues à l'aide d'une calculatrice graphique avec des paramètres arbitraires vérifiant les contraintes (les résultats du simulateur, plus généraux, sont présentés dans les prochaines sections)

Modélisation à état continu

Exploitation et complexification du modèle

Une étude de stabilité (hypothèse simplificatrice)

Points d'équilibre : $K_1I - K_2I^2 = 0 \Rightarrow \begin{cases} I = 0 \\ ou \\ I = \frac{K_1}{K_2} \end{cases}$

Système linéarisé autour de $I_{\acute{e}q} \in \left\{0, \frac{K_1}{K_2}\right\} : \frac{d\tilde{I}}{dt} = (K_1 - 2K_2I_{\acute{e}q})\tilde{I}$

Stabilité des points d'équilibre :

- $Sp\left(J_{I\mapsto K_1I-K_2I^2}(0)\right) = \{K_1\} \ et \ Sp\left(J_{I\mapsto K_1I-K_2I^2}\left(\frac{K_1}{K_2}\right)\right) = \{-K_1\}$
- Si $K_1 > 0$, 0 est instable alors que $\frac{K_1}{K_2}$ est exponentiellement stable et les résultats inverses sont vrais si $K_1 < 0$ (l'épidémie disparaît si les décès et les guérisons dépassent la propagation et se stabilise sinon).

Exploitation en fonction de R_0

- Période moyenne d'infection: $\int_0^\infty u(t)dt$ avec u(t) le nombre d'individus infectés à l'origine et l'étant encore à l'instant t. On a alors $\frac{du}{dt} = -(\gamma + \alpha_2)u$ d'après l'automate donc $\int_0^\infty u(t)dt = \frac{1}{\nu + \alpha_2}$.
- Résultats du simulateur

Les résultats obtenus sont en adéquation avec l'**intuition** que l'on a de R_0 et sont cohérents avec le modèle établi. Comment cela se fait-il que la grippe ne se stabilise pas en réalité ? Immunités, tranches d'âge et variations de $\gamma(t)$.

Le modèle SIR

Notons qu'il existe un modèle à 3 compartiments plus élaboré que le modèle SIS précédent (R contenant les individus ayant acquis une immunité, les individus isolés ou décédés). Les équations demeurent les mêmes mais à présent on compte R dans le calcul de la population totale, ce qui complexifie les calculs et les simulations.

Notations

Afin de pouvoir effectuer des calculs à la main, on supposera $\alpha = \theta$, ie $K_3 = 0$ (modèle SIS simple du document) pour l'étude de stabilité, ce qui permet d'obtenir une matrice indépendante du temps d'appliquer théorème de Lyapunov

 $R_0 = \frac{\beta}{\gamma + \alpha_2}$ car un individu en infecte β par unité de temps et que la période d'infection est de $\frac{1}{\nu+\alpha}$

Les valeurs utilisées dans les simulations sont issues des statistiques françaises (Wikipédia en 2017):

 $\alpha_1 = 0.0091$ $\alpha_2 \approx 0.003125$ (grippe) $\theta = 0.0113$ $\gamma \approx 1 - \alpha_2$ $S_0 + I_0 = 66,77 \times 10^6$ $I_0 \approx 4 \times 10^6$

• • •

Modélisation à évènements discrets

Définition formelle et premiers résultats

Le modèle probabiliste

Modéliser la propagation d'une épidémie d'un **point de vue probabiliste** est plus judicieux puisque les transitions ne sont **pas systématiques** et que des **effets de hasard** peuvent apparaître dans les petites populations. On utilise alors des chaînes de Markov et des probabilités discrètes :

$$\mathbb{P}(I_{n+1} = j \mid I_n = i) = \begin{cases} \text{Gu\'erison et mort} & 0, & si \ j \in \mathbb{N} \backslash \{i-1, i, i+1\} \\ (\alpha + \gamma)i\Delta_t, & si \ j = i-1 \end{cases}$$

$$\frac{\beta i(N-i)}{N} \Delta_t, & si \ j = i+1 \\ 1 - \left(\frac{\beta i(N-i)}{N} + (\alpha + \gamma)i\right)\Delta_t, & si \ j = i \end{cases}$$
Système complet

On peut enfin visualiser les différentes transitions sous forme de **l'automate probabiliste** suivant (visualisation classique d'un chaîne de Markov) :

où p_{i,j} est égal à
$$\mathbb{P}(I_{n+1} = j \mid I_n = i)$$

Quelques résultats

L'exploitation du modèle discret n'étant pas exigée, nous indiquons simplement, à titre culturel, des **résultats provenant du document source** permettant de montrer le parallèle entre les cas continus et discrets :

$$R_0 < 1 \Rightarrow \lim_{N o \infty} au = rac{-\ln{(1-R_0)}}{eta \Delta_t}$$
 (l'épidémie se stabilise $p.s.$)
$$R_0 = 1 \Rightarrow au \sim rac{\ln{(N)}}{2eta \Delta_t} ext{ (cas limite)}$$

$$R_0 > 1 \Rightarrow au \sim rac{\sqrt{2\pi} R_0^N e^{-(1-rac{1}{R_0})N}}{\left(1-rac{1}{R_0}\right)\sqrt{N}eta \Delta_t}$$

(l'épidémie n'est jamais éradiquée, croissance exponentielle de τ)

Notations

• • •

On reviendra dans cette section au modèle simplifié proposé dans le document dans un souci de clarté $(\alpha_1 = \alpha_2 = \theta)$

 Δ_t : pas de temps (> 0) $t_n = n\Delta_t$ I_n : nombre d'individus infectés à l'instant t_n $T = inf\{n \ge 0 \mid I_n = 0\}$: instant auquel l'épidémie est éradiquée $\tau = \mathbb{E}(T \mid I_0 = 1)$

• • •

Quitte à diminuer Δ_t , on pourra le choisir assez petit pour qu'au plus un individu change d'état en un intervalle de temps et de sorte à respecter l'appartenance des probabilités à [0,1]