(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 10 March 2005 (10.03.2005)

PCT

(10) International Publication Number WO 2005/022443 A3

G08B 13/14 (51) International Patent Classification7:

(21) International Application Number:

PCT/US2004/027906

(22) International Filing Date: 30 August 2004 (30.08.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/498,661 60/502,286

29 August 2003 (29.08.2003) US 12 September 2003 (12.09.2003)

(71) Applicant: MIKOH CORPORATION [US/US]; 2010 Corporate Ridge, Suite 700, McLean, VA 22102 (US).

(71) Applicant and

(72) Inventor: ATHERTON, Peter, S. [AU/US]; 43811 Water Bay Terrace, Leesburg, VA 20176 (US).

(74) Agent: KAMINSKI, Jeffri, A.: Venable LLP, P.O. Box 34385, Washington, DC 20043-9998 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

of inventorship (Rule 4.17(iv)) for US only

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 22 September 2005

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: A RADIO FREQUENCY IDENTIFICATION TAG WITH TAMPER DETECTION CAPABILITY

(57) Abstract: An RFID tag (100) is provided. The tag includes a substrate (101) having a top surface and a bottom surface. An RFID integrated circuit (103) is disposed on the top surface of the substrate (101). A first electrically conductive region (104) is associated with the top surface of the substrate (101) and electrically coupled to the RFID integrated circuit (103). A second electrically conductive region (105) is associated with the bottom surface of the substrate (101) and electrically coupled to the first conductive region (104), the first and second conductive regions forming an RFID antenna. The RFID integrated circuit (103), first conductive region (104) and second conductive region (105) together provide an RFID function. An attachment layer (106) is associated with the bottom surface of the substrate (101) for attaching the tag to a surface. An adhesion modifying layer (107) modifies the adhesion of the second conductive region (105) such that the second conductive region (105) is disrupted if the tag is tampered or removed from the surface.