

PHYSICS

Chapter 11

CAMBIO DE FASE

LOS CAMBIOS DE FASE DE LA MATERIA

Observemos con atención el siguiente video:

Diga usted: ¿Cómo se da los diferentes cambios de fase en la materia?

CAMBIO DE FASE

¿Qué es el cambio de fase?

Es el fenómeno que consiste en el reordenamiento molecular que experimenta una sustancia debido a la variación de su energía interna, manteniéndose constante la presión y temperatura.

Para que se produzca este reordenamiento molecular es necesario que la sustancia absorba o ceda energía en forma de calor (calor de transformación).

Por ejemplo, para el agua, tenemos:

CAMBIOS DE FASE EN EL AGUA

Para la sustancia agua y a la presión de 1 atm, se tiene los cambios de fase:

 $0^{\circ}C$

Fusión

(absorbe calor)

Solidificación

Importante:

Durante el cambio de fase, la temperatura de la sustancia permanece Condensación constante.

(absorbe calor)

(cede calor)

CALOR DE TRANSFORMACIÓN

¿Qué es el calor de transformación?

Es la cantidad de calor que debe de absorber o ceder toda sustancia, para que experimente un cambio de fase a la condición de saturación.

Sea la experiencia:

El calor de transformación se calcula como:

$$Q_t = L_t m$$
 Unidad: caloria(cal)

Siendo:

L_t: calor latente (cal/g)

m: masa de la sustancia que se transforma (g)

Observación:

El cambio de fase de una sustancia se da a una determinada presión y temperatura.

CALOR LATENTE DEL AGUA (Lt)

¿Qué es el calor latente?

El calor latente nos indica: "La cantidad de calor necesaria que requiere 1g de una sustancia para cambiar de fase, a una determinada presión y temperatura".

¿Cuánto es el calor latente del agua?

Para el agua:

Fusión

Vaporización

Solido

Solido

Líquido

Vaporización

Condensación

Gaseoso

$$T_{sat} = 0$$
°C
 $L_{fusi\acute{o}n} = 80$ cal/g
 $L_{solidificaci\acute{o}n} = 80$ cal/g

$$T_{sat} = 100$$
°C
 $L_{vaporización} = 540$ cal/g
 $L_{condensación} = 540$ cal/g

1. ¿Cuánto calor debe recibir 100g de H_2O sólido que se encuentra a $0^{\circ}C$, para que se fusione totalmente? ($L_F = 80 \text{cal/g}$).

RESOLUCIÓN

La sustancia está en la condición de saturación ($T_{sat} = 0$ °C).

El calor de transformación 0°C es:

$$Q_{fusi\acute{o}n(hielo)} = L_{fusi\acute{o}n(hielo)}m$$

$$Q_{fusión(hielo)} = 80 \frac{cal}{g} \times 100g$$

- $\therefore Q_{fusi\acute{o}n(hielo)} = 8000cal$
- $\therefore \mathbf{Q}_{\text{fusion(hielo)}} = \mathbf{8kcal}$

2. Si se desea convertir en hielo 40g de agua líquida que está a 0° C, ¿se le debe suministrar o sustraer energía calorífica y en qué cantidad? ($L_F = 80 \text{cal/g}$).

La sustancia está en la condición de saturación ($T_{sat} = 0$ °C).

El calor de transformación 0°C es:

$$Q_{sol(agua)} = L_{sol(agua)}m$$

$$Q_{\text{sol(agua)}} = 80 \frac{\text{cal}}{\text{g}} \times 40 \text{g}$$

$$\therefore Q_{sol(agua)} = 3200cal$$

$$\therefore Q_{sol(agua)} = 3,2kcal$$

Se le debe sustraer 3,2 kcal

3. ¿Qué cantidad de calor se le debe suministrar a 30g de hielo a $-20^{\circ}C$ hasta fusionarlo completamente? $(C_{e(Hielo)} = 0.5cal/g^{\circ}C)$.

$$m = 30g$$

$$Q_s$$

$$Q_t$$

El calor sensible de -20° C a 0° C es:

$$Q_{s(hielo)} = c_{e(hielo)} m \Delta T^*$$

$$Q_{s(hielo)} = 0.5 \frac{cal}{g^{\circ}C} \times 30g \times 20^{\circ}C = 300cal$$

El calor de transformación a $0^{\circ}C$ es:

$$Q_{fusi\acute{o}n(hielo)} = L_{fusi\acute{o}n(hielo)}m$$

$$Q_{fusión(hielo)} = 80 \frac{cal}{g} \times 30g = 2400cal$$

La cantidad de calor que se debe suministrar es:

$$Q^{total} = 300cal + 2400cal$$

 $\therefore Q^{total} = 2700cal = 2,7 kcal$

4. ¿Qué cantidad de calor debe ganar 40g de hielo a $-10^{\circ}C$ hasta obtener agua a $50^{\circ}C$? ($C_{e(agua)} = 1cal/g^{\circ}C$).

RESOLUCIÓN

$$m = 40g$$

$$Q_{s(1)}$$

$$Q_{t}$$

$$Q_{s(2)}$$

El calor sensible de -10° C a 0° C es:

$$Q_{s(hielo)} = 0.5 \frac{cal}{g^{\circ}C} \times 40g \times 10^{\circ}C = 200cal$$

El calor de transformación a 0°C es:

$$Q_{fusi\acute{o}n(hielo)} = 80 \frac{cal}{g} \times 40g = 3200cal$$

El calor sensible de 0°C a 50°C es:

$$Q_{s(agua)} = 1 \frac{cal}{g^{\circ}C} \times 40g \times 50^{\circ}C = 2000cal$$

El calor neto que se debe suministrar es:

$$\therefore Q^{Neto} = 5400cal$$

= 5,4 kcal

HELICO | PRACTICE

5. Se tiene 10g de vapor de agua a 100°C en un recipiente el cual se desea transformar a fase líquida a una temperatura de 40°C, ¿ cuál debe ser la cantidad de calor que se debe sustraer?

RESOLUCIÓN

El calor de transformación a 100°C es:

$$Q_{cond(vapor)} = L_{cond(vapor)}m$$

$$Q_{cond(vapor)} = 540 \frac{cal}{g} \times 10g = 5400 cal$$

El calor sensible de 100°C a 40°C es:

$$Q_{s(agua)} = c_{e(agua)} m \Delta T^*$$

$$Q_{s(agua)} = 1 \frac{cal}{g^{\circ}C} \times 10g \times 60^{\circ}C = 600cal$$

La cantidad de calor que se debe sustraer es:

$$\therefore Q^{total} = 6000 cal$$

$$\therefore \mathbf{Q}^{total} = \mathbf{6kcal}$$

6. Se tiene 20g de hielo a 0°C en un recipiente de capacidad calorífica despreciable se suministra 1,2kcal en forma de calor, determine la composición final en el recipiente (agua e hielo), respectivamente.

La sustancia está en la condición de saturación ($T_{sat} = 0$ °C).

El calor de transformación es:

$$Q_{\text{fusi\'on(hielo)}} = L_{\text{fusi\'on(hielo)}} m$$

$$1200 \text{cal} = 80 \frac{\text{cal}}{\text{g}} \times \text{m}$$

m = 15g (cantidad de hielo fundido)

∴ Composición final:

$$m_{(agua)} = 15g$$

$$m_{(hielo)} = 5g$$

7. Cuando un reactor nuclear se apaga el núcleo de uranio continua produciendo energía a una tasa de $12 \times 10^7 \text{J}$ por segundo al fundirse, esto debido a la desintegración radiactiva. ¿Cuánto tiempo transcurre para que $2.5 \times 10^5 \text{kg}$ de uranio se funda totalmente al alcanzar la temperatura de fusión de 1133°C ? ($L_{\text{fusión del uranio}} = 82.8 \text{kJ/kg}$).

HELICO | PRACTICE

RESOLUCIÓN

$$T = 1133^{\circ}C$$

Por condición del problema:

$$12 \times 10^7 \text{ J}$$
 ____ 1s $207 \times 10^8 \text{ J}$ ____ t

$$t = \frac{207 \times 10^8 \, \text{J x 1s}}{12 \times 10^7 \, \text{J}}$$

$$t = 172, 5s$$

La sustancia está en la condición de saturación ($T_{sat} = 1133$ °C).

El calor de transformación a 1133°C es:

$$Q_{fusi\acute{o}n(uranio)} = L_{fusi\acute{o}n(uranio)}m$$

$$Q_{\text{fusi\'on(uranio)}} = 82.8 \frac{\text{kJ}}{\text{kg}} \times (2.5 \times 10^5 \text{kg})$$

$$Q_{\text{fusion(uranio)}} = 207 \times 10^8 \text{J}$$

GRACIAS POR SU ATENCIÓN