Cardivascular Disease Predication

Exploratory Data Analysis (EDA)

For Exploratory Data Analysis (EDA), we first imported the necessary libraries.

The main library used for handling data is **pandas**, which allows us to create and manipulate dataframes.

For data visualization, we use **matplotlib** and **seaborn** to generate informative plots.

We also use **scipy** and **numpy** for statistical analysis and numerical computations.

Importing Required Libraries

•Initial Data Inspection:

Out[2]:		id	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	ac
	0	0	18393	2	168	62.0	110	80	1	1	0	0	
	1	1	20228	1	156	85.0	140	90	3	1	0	0	
	2	2	18857	1	165	64.0	130	70	3	1	0	0	
	3	3	17623	2	169	82.0	150	100	1	1	0	0	
	4	4	17474	1	156	56.0	100	60	1	1	0	0	
	5	8	21914	1	151	67.0	120	80	2	2	0	0	
	6	9	22113	1	157	93.0	130	80	3	1	0	0	
	7	12	22584	2	178	95.0	130	90	3	3	0	0	
	8	13	17668	1	158	71.0	110	70	1	1	0	0	
	9	14	19834	1	164	68.0	110	60	1	1	0	0	
	4												

Check data types

int64
int64
int64
int64
float64
int64

Null Values

id age 0 gender height 0 weight ap_hi ap_lo cholesterol 0 gluc 0 smoke alco active cardio dtype: int64

Check Duplicates

a

Dimensionality

(70000, 13)

• Descriptive Statistics:

Out[8]:		id	age	gender	height	weight	aj
	count	70000.000000	70000.000000	70000.000000	70000.000000	70000.000000	70000.000
	mean	49972.419900	19468.865814	1.349571	164.359229	74.205690	128.817
	std	28851.302323	2467.251667	0.476838	8.210126	14.395757	154.011
	min	0.000000	10798.000000	1.000000	55.000000	10.000000	-150.000
	25%	25006.750000	17664.000000	1.000000	159.000000	65.000000	120.000
	50%	50001.500000	19703.000000	1.000000	165.000000	72.000000	120.000
	75%	74889.250000	21327.000000	2.000000	170.000000	82.000000	140.000
	max	99999.000000	23713.000000	2.000000	250.000000	200.000000	16020.000

The issues should be addressed to clean the data before proceeding with machine learning models

Age Column: The mean age value is unusually high (19468.87), indicating that the age might be in hundredths of a year. This column needs to be converted to actual years.

Blood Pressure (ap_hi, ap_lo): There are extreme and likely erroneous values, such as -150 for ap_hi and -70 for ap_lo. These need to be corrected or removed.

Binary Variables (smoke, alco, active): Ensure these binary variables only contain values 0 and 1, as there might be incorrect or inconsistent entries

Skewness

Interpretation

Columns with high variance (e.g., id, age, ap_hi, ap_lo) may have a wide spread in values, which could indicate useful features for predictive modeling, but some columns like id should be discarded as they do not hold predictive power.

Columns with low variance (e.g., gender, smoke, alco, cardio) indicate less variability in the data, which might mean they don't contribute much in terms of differentiating between observations, especially if they are binary features.

Outliers Detection:

BoxPlot

IQR Method:

	age	height	weight	ap_hi	ap_lo
0	False	False	False	False	False
1	False	False	False	False	False
2	False	False	False	False	False
3	False	False	False	False	False
4	False	False	False	False	True
69995	False	False	False	False	False
69996	False	False	True	False	False
69997	False	False	False	True	False
69998	False	False	False	False	False
69999	False	False	False	False	False

[70000 rows x 5 columns]

From this correlation matrix, we can understand that all data is unique and not strongly correlated with each other.

It's also worth noting that some attributes are highly correlated with the target

Histograms for numerical features

Histograms of Numerical Features

Scatterplots:

Pairplot

Pairplot of Numerical Features

Countplot

Barcharts

Summary of Visualizations

- **Correlation Heatmap** Examines relationships between numerical variables.
- **Scatterplots** Explores relationships between pairs of numerical features.
- **Pairplot** Provides insights into multiple feature relationships simultaneously.
- Count Plot Displays the frequency distribution of categorical features.
- **Bar Charts** Analyzes relationships between categorical variables and the target variable.
- ho These visualizations help in understanding patterns, correlations, and feature importance for better model performance! ho