

Date: 2014/7/17

CUSTOMER APPROVAL SHEET

MODEL	IEH163QLN01.0
CUSTOMER	Title:
APPROVED	Name :
APPROVAL FOR SPECIFICAT	ΓΙΟΝS ONLY (Spec. Ver)
APPROVAL FOR SPECIFICAT	FIONS AND ES SAMPLE (Spec. Ver)
APPROVAL FOR SPECIFICAT	TIONS AND CS SAMPLE (Spec. Ver)
CUSTOMER REMARK:	

Doc. version: 5.0
Total pages: 25
Date: 2014/7/17

Product Specification 1.63" COLOR AMOLED MODULE

MODEL NAME: H163QLN01

< >Preliminary Specification

< ◆ >Final Specification

Note: The content of this specification is subject to change.

5.0

Page: 2/22

Record of Revision

of Revision		0
Revise Date	Page	Content
Mar. 5, 2014		First Draft
Mar.18,2014	17 21 22 23	Revise H. Specifications_Optical characteristics Add I. Reliability test items_Vibration test Add J.packing Revise K.2D/3D drawing;
Apr.16,2014	7 11 14, 15	Add Idle power consumption & revise panel power Revise TE description Revise Initial Code for display optimization B500=0x05 -> 0x03; B501=0x05 -> 0x03; B502=0x05 -> 0x03 BA00=0x13 -> 0x03; BA01=0x13 -> 0x03; BA02=0x13 -> 0x03 BE00=0x22 -> 0x32 Revise CF description
May 29,2014	13 14 15 16	Revise Initial Code for Power optimization F500=0x10 ED00~ED07 =0x48 00 E0 13 08 00 0C 00 C700~C707 =0x0F 05 00 0F 43 00 88 22 C200~C20B =0x0B 0B 0B 0B 0B 0B 0B 0B 0B 0B 0B C000=0x28
July.3,2014	24	Revise K.2D/3D drawing;
July.17,2014	8 13 14 15 16	Update Idle mode VDD power @ page 8. Revise Initial Code for Power optimization F500=0x10 ED00~ED07 =0x48 00 E0 13 08 00 0C 00 C700~C707 =0x0F 05 00 0F 43 00 88 22 C200~C20B =0x0B 0B C000=0x28
	Mar. 5, 2014 Mar. 18,2014 Apr. 16,2014 May 29,2014 July. 3,2014	Mar.18,2014 17 21 22 23 7 11 14, 15

Version 5.0

Page: 3/22

Page: 4/22

Contents

Α.	Ge	neral Specification	5
	1.	Physical Specifications	5
	2.	Module Block Diagram	5
	3.	Panel Scan direction	5
В.	Ele	ectrical Specifications	6
	1.	Main FPC Pin assignment — AMOLED Panel Input/Output Signal Interface	6
	2.	Absolute maximum ratings	7
C.	Ele	ectrical Characteristics	8
	1.	DC Operating Conditions	8
	2.	Display Current Consumption	8
D.	AC	Characteristics	9
	1.	MIPI Interface Characteristics	9
	2.	Display RESET Timing Characteristics	11
	3.	TE Timing Characteristics	12
E.	Re	commended Operating Sequence	13
	1.	Display Power on / off Sequence	13
	2.	Display Initial code	14
F.	Bri	ightness Control	18
G.	Ap	plication Circuit	19
Н.	Spe	ecifications	20
I.	Rel	liability Test Items	24
J.	Pac	cking	25
K.	Ou	ıtline Demension (Tentative)	26

5.0

Page: 5/22

A. General Specification

1. Physical Specifications

	Item	Description	Remark
1	Screen Size (inch)	1.63"	
2	Display Mode	AMOLED	
3	Display Resolution (dot)	320xRGBx320	
4	Active Area (mm*mm)	29.28 (H)×29.28(V)	
5	Pixel Configuration	Hyper R.G.B	
6	Display Color (M)	16.7	
7	Brightness (nits)	300	
8	Interface	MIPI DSI	
9	Outline Dimension (mm*mm*mm)	32.08 (H) × 36.48(V) × 0.7(T)	cell+foam

2. Module Block Diagram

3. Panel Scan direction

5.0

Page: 6/22

B. Electrical Specifications

1. Main FPC Pin assignment — AMOLED Panel Input/Output Signal Interface Recommended connector: AXE520127 (Panasonic)

FPC	Pin_name	I/O	Description
1	ELVSS	Р	AMOLED power Negative
2	ELVSS	Р	AMOLED power Negative
3	ELVSS	Р	AMOLED power Negative
4	VDD	Р	Power supply for analog
5	IOVDD	Р	Power supply for Interface system excep MIPI interface
6	GND	Р	GND
7	TE	0	Vsync(vertical sync)signal output from panel to avoid tearing effect
8	MTP	I	MTP(need to indicate to connect GND or NC)
9	RESX	I	Device reset signal (0 : Enable ; 1: Disable)
10	SWIRE	0	SWIRE signal for PWR IC control
11	ELVDD	Р	AMOLED power positive
12	ELVDD	Р	AMOLED power positive
13	ELVDD	Р	AMOLED power positive
14	GND	Р	GND
15	DSI_D0N	I/O	MIPI data negative signal
16	DSI_D0P	I/O	MIPI data positive signal
17	GND	Р	GND
18	DSI_CLKN	I	MIPI strobe negative signal
19	DSI_CLKP	I	MIPI strobe postive signal
20	GND	Р	GND

Note: I = input; O = output; P = Power; I/O = input / Output

5.0

Page: 7/22

2. Absolute maximum ratings

Item	Symbol	Min.	Max.	Unit	Remark
Digital Power supply	IOVDD	-0.3	5.5	V	
Analog Power supply	VDD	-0.3	5.5	٧	
ELVDD power supply	ELVDD	-	5.0	٧	
ELVSS power supply	ELVSS	-5.0	-	٧	

Note: If the module exceeds the absolute maximum ratings, it may be damaged permanently. Also, if the module operates with the absolute maximum ratings for a long time, the reliability may drop.

5.0

Page: 8/22

C. Electrical Characteristics

1. DC Operating Conditions

Item		Symbol	Min.	Тур.	Max.	Unit	Remark
Digital Power supply		IOVDD	1.65	1.8	1.95	٧	Note1
Analog Power su	upply	VDD	2.8	3.0	3.1	٧	Note1
ELVDD power supply		ELVDD	4.57	4.60	4.63	٧	Note1,2
ELVSS power supply		ELVSS	-3.35	-3.40	-3.45	٧	Note1
Input Signal	H Level	V _{IH}	0.8*IOVDD	-	IOVDD	٧	Note 1
Voltage	L Level	V _{IL} 0 - 0	.2*IOVDD			٧	Note1
Output Signal	H Level	V _{OH}	0.8*IOVDD	-	IOVDD	٧	Note1
Voltage	L Level	V _{OL}	0	-	0.2*IOVDD	٧	Note1

Note 1: The operation is guaranteed under the recommended operating conditions only. The operation is not guaranteed if a quick voltage change occurs during the operation. To prevent the noise, a bypass capacitor must be inserted into the line closed to the power pin.

Note 2 : TPS65631W Positive output voltage = 4.6V \pm 0.8% at -40 °C \leq Ta \leq +85 °C

2. Display Current Consumption

	Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
		P _{NL}	ELVDD:4.6V			138.4	mW	Note1,2,
Panel Power		I _{NL}	ELVSS:-3.4V			17.3	mA	Note1,2,
		P_{VDD}	VDD : 3.0V		25.2	39.3	mW	Note2,
	Normal	I _{VDD}	VDD : 3.0V		8.4	13.1	mA	Note2,
		P _{IOVDD}	IOVDD :1.8V		18.0	19.8	uW	Note2,
IC		I _{IOVDD}	1.000		10.0	11.0	uA	Note2,
		P_{VDD}	VDD : 3.0V		15.3	17.7	mW	Note3,
	Idle	I_{VDD}	VDD : 0.0V		5.1	5.9	mA	Note3,
	idic	P _{IOVDD}	IOVDD :1.8V		18.0	19.8	uW	Note3,
		I _{IOVDD}	1000 .1.00		10.0	11.0	uA	Note3,

Note 1: Based on L255 (300nits) full white pattern

Note 2: Testing in MIPI-DSI frame rate 60Hz CMD mode.

Note 3: Testing in MIPI-DSI frame rate 30Hz CMD mode(Test Condition is 10% Brightness & 10% Pixel ratio.)

5.0

Page: 9/22

D. AC Characteristics

MIPI Interface Characteristics

HS Data Transmission Burst

HS clock transmission

Turnaround Procedure

5.0

Page: 10/22

Timing Parameters

Symbol	Description	Min	Тур	Max	Unit
T _{CLK-POST}	Time that the transmitter continues to send	60ns + 52*UI			ns
	HS clock after the last associated Data Lane				
	has transitioned to LP Mode. Interval is				
	defined as the period from the end of T_{HS}				
	$_{ m TRAIL}$ to the beginning of ${ m T}_{ m CLK-TRAIL}$.				
T _{CLK-TRAIL}	Time that the transmitter drives the HS-0	60			ns
	state after the last payload clock bit of a HS				
	transmission burst.				
$T_{HS-EXIT}$	Time that the transmitter drives LP-11	300			ns
	following a HS burst.				
T _{CLK-TERM-EN}	Time for the Clock Lane receiver to enable	Time for Dn to		38	ns
	the HS line termination, starting from the	reach V _{TERM-}			
	time point when Dn crosses V _{IL,MAX} .	EN			
T _{CLK-PREPARE}	Time that the transmitter drives the Clock	38		95	ns
	Lane LP-00 Line state immediately before				
	the HS-0 Line state starting the HS				
	transmission.				
T _{CLK-PRE}	Time that the HS clock shall be driven by the	8			UI
	transmitter prior to any associated Data				
	Lane beginning the transition from LP to HS				
	mode.				
$T_{CLK-PREPARE}$	T _{CLK-PREPARE} + time that the transmitter drives	300			ns
+ T _{CLK-ZERO}	the HS-0 state prior to starting the Clock.				
$T_{D\text{-}TERM\text{-}EN}$	Time for the Data Lane receiver to enable	Time for Dn to		35 ns +4*UI	
	the HS line termination, starting from the	Reach V _{TERM-}			
	time point when Dn crosses V _{IL.MAX} .	EN			
T _{HS-PREPARE}	Time that the transmitter drives the Data	40ns + 4*UI		60 ns + 6*UI	ns
	Lane LP-00 Line state immediately before				
	the HS-0 Line state starting the HS				
	transmission				
T _{HS-PREPARE}	T _{HS-PREPARE} + time that the transmitter drives	145ns + 10*UI			ns
+ T _{HS-ZERO}	the HS-0 state prior to transmitting the Sync				
	sequence.				
$T_{HS-TRAIL}$	Time that the transmitter drives the flipped	96*UI			ns
	differential state after last payload data bit of				
	a HS transmission burst				
$T_{LPX(M)}$	Transmitted length of any Low-Power state	100		150	ns

5.0

Page:

11/22

	period of MCU to display module			
$T_{TA-SURE(M)}$	Time that the display module waits after the	T _{LPX(M)}	2*T _{LPX(M)}	ns
	LP-10 state before transmitting the Bridge			
	state (LP-00) during a Link Turnaround.			
$T_{LPX(D)}$	Transmitted length of any Low-Power state	50	150	ns
	period of display module to MCU			
$T_{TA\text{-}GET(D)}$	Time that the display module drives the	5*T _{LPX(D)}		ns
	Bridge state (LP-00) after accepting control			
	during a Link Turnaround.			
$T_{TA\text{-}GO(D)}$	Time that the display module drives the	4*T _{LPX(D)}		ns
	Bridge state (LP-00) before releasing control			
	during a Link Turnaround.			
$T_{TA\text{-SURE}(D)}$	Time that the MPU waits after the LP-10	T _{LPX(D)}	2*T _{LPX(D)}	ns
	state before transmitting the Bridge state			
	(LP-00) during a Link Turnaround.			

Display RESET Timing Characteristics 2.

Reset input timing

IOVDD=1.65 to 1.95V, VDD=2.8 to 3.1V, AGND=DGND=0V, Ta=-40 to 85° C

Timing Parameters

Symbol	Parameter	Related Pins	MIN	TYP	MAX	Note	Unit
t _{RESW}	*1) Reset low pulse width	RESX	15	-	-	-	μs
		-	-	-	5	When reset applied during Sleep in mode	ms
t _{REST}	*2) Reset complete time	-		-	120	When reset applied during Sleep out mode	ms

Note 1. Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below.

RESX Pulse	Action
Shorter than 5µs	Reset Rejected
Longer than 15µs	Reset
Between 5µs and	Reset starts
15µs	(It depends on voltage and temperature condition.)

Note 2. During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out -mode. The display

Page: 12/22

5.0

remains the blank state in Sleep In -mode) and then return to Default condition for H/W reset.

Note 3. During Reset Complete Time, data in OTP will be latched to internal register during this period. This loading is done every time when there is H/W reset complete time (tREST) within 5ms after a rising edge of RESX.

Note 4. Spike Rejection also applies during a valid reset pulse as shown below:

Note 5. It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.

3. TE Timing Characteristics

5.0

Page: 13/22

E. Recommended Operating Sequence

1. Display Power on / off Sequence

Power on sequence

Power off sequence

5.0

Page: 14/22

2. Display Initial code

	. Display iriitial code	Recomme	ended P	ower on	Initial S	Sequence	;	
		Dalas		MIPI	Add	dress	Data	
Step	Instruction/Parameters	Delay time	R/W	Data Type	MIPI	MIPI Others		Description
1	Turn on V _{DD}							VDD=2.8V~3.1V
2	Turn on VIOVDD							IOVDD=1.8V
3	Delay	no limit						
4	REST pin low	20us						
5	REST pin high							
6	Delay	5 ms						
7			W			F000	55	
8			W			F001	AA	
9			W	0x39	F0	F002	52	
10			W			F003	08	
11			W			F004	00	
12			W			BD00	01	
13			W			BD01	90	
14			W	0x39	BD	BD02	14	
15			W			BD03	14	
16			W			BD04	00	
17			W			BE00	01	
18			W			BE01	90	
19			W	0x39	BE	BE02	14	
20			W			BE03	14	
21			W			BE04	01	
22			W			BF00	01	
23			W			BF01	90	
24			W	0x39	BF	BF02	14	
25			W			BF03	14	
26			W			BF04	00	
27			W			BB00	07	
28			W	0x39	ВВ	BB01	07	
29			W			BB02	07	
30			W	0x39	D0	D000	00	
31			W			D100	00	
32			W	0x39	D1	D101	00	
33			W			D102	00	
34			W	0x39	D2	D100	00	

Page: 15/22

	Г		1	ı			
35		W			D101	00	
36		W			D102	00	
37		W			D100	00	
38		W	0x39	D3	D101	00	
39		W			D102	00	
40		W	0x39	C 7	C700	40	
41		W			F000	55	
42		W			F001	AA	
43		W	0x39	F0	F002	52	
44		W			F003	80	
45		W			F004	02	
46		W	0x15	F5	F500	10	
47		W			ED00	48	
48		W			ED01	00	
49		W ED02				E0	
50		W	0.420		ED03	13	
51		W	0x39	ED	ED04	80	
52		W			ED05	00	
53		W			ED06	0C	
54		W			ED07	00	
55		W			C700	0F	
56		W			C701	05	
57		W			C702	00	
58		W	0×20	67	C703	0F	
59		W	0x39	C7	C704	43	
60		W			C705	00	
61		W			C706	88	
62		W			C707	22	
63		W	0×20	FE	FE00	80	
64		W	0x39	FE	FE01	50	
65		W			C300	F2	
66		W	0x39	C3	C301	95	
67		W			C302	04	
68		W	0x15	CA	CA00	04	
69		W			F000	55	
70		W			F001	AA	
71		W	0x39	F0	F002	52	
72		W			F003	80	
73		W			F004	01	

Page: 16/22

A	艾順佳科技 excellence
1	excellence

74		W			B000	03	
75		W	0x39	В0	B001	03	
76		w			B002	03	
77		W			B100	05	
78		W	0x39	B1	B101	05	
79		W			B102	05	
80		W			B200	01	
81		W	0x39	B2	B201	01	
82		W			B202	01	
83		W			B400	07	
84		W	0x39	В4	B401	07	
85		W			B402	07	
86		W			B500	03	
87		W	0x39	B5	B501	03	
88		W			B502	03	
89		W			B600	53	
90		W	0x39	В6	B601	53	
91		W			B602	53	
92		w			B700	33	
93		W	0x39	B7	B701	33	
94		W			B702	33	
95		w			B800	23	
96		W	0x39	B8	B801	23	
97		W			B802	23	
98		w			B900	03	
99		W	0x39	В9	B901	03	
100		W			B902	03	
101		W			BA00	03	
102		W	0x39	ВА	BA01	03	
103		W			BA02	03	
104		W			BE00	32	
105		W	0x39	BE	BE01	30	
106		W			BE02	70	
107		w	0x39	C2	C200	0B	
108		w	7		C201	0B	
109		w	7		C202	0B	
110		w	7		C203	0B	
111		w	1		C204	0B	
112		w	7		C205	0B	
	ı		ı	1	ı 1		'

Version 5.0

Page: 17/22

113			W				C206	6 0B	
114			W				C207	7 0B	
115			W				C208	8 0B	
116			W				C209	9 0B	
117			W				C20/	4 0B	
118			W				C20E	3 0B	
119			W				CF0	0 FF	
120			W				CF0	1 D4	
121			W				CF0	2 95	
122			W	0x3	9 (CF	CF0	3 EF	
123			W				CF0	4 4F	
124			W				CF0	5 00	
125			W				CF0	6 04	
					_				TE (00 : Vsync ;
126			W	0x1	5	35 3500 01		01	01 : Vsync+Hsync)
127			W	0x1	5	36	3600	00	
128			W	0x1	5	C0	C000	0 28	
129	Turn on peripheral packet	:		0x3	2				Video Turn On
130	Sleep out		W	0x0	5	11	1100	00	
131	Delay	300 m	s						
132	Display on		W	0x0	5	29	2900	00	
		Recomi	mended	Power of	off Mo	de S	Seque	nce	
		Dallara		MIPI	A	ddre	ess	D-1-	
Step	Instruction/Parameters	Delay	R/W	Data				Data	Description
		time		Туре	MIP	1 0	thers	hex.	
1	DIPOFF		W	0x05			2800	00	
2	SLPIN		W	0x05	10	1	1000	00	
3	delay	120ms							
4	Power off								
			l						

5.0

Page: 18/22

F. Brightness Control

	Recommended Power on Initial Sequence									
Step	Delay time	R/W	MIPI Data Type	Address MIPI Others		Data hex.	Description			
1		W			F000	55				
2		W			F001	AA				
3		W	0x39	F0	F002	52				
4		W			F003	08				
5		W			F004	01				
6		W			CF00	FF				
7		W			CF01	D 4				
8		W			CF02	95	CF00 control Max			
9		W	0x39	CF	€F03	EF	Brightness			
10		W		/	CF04	4F				
11	·	W		/	CF05	00				
12		W	,	•	CF06	04				

		1					
	Address		Data	Gray Laval			
	MIPI	Others	hex.	Gray Level			
I L	CF	CF00	00	L0			
	:	÷	÷	:			
	CF	CF00	80	L128			
	:	:	:	:			
	CF	CF00	FF	L255			

Page: 19/22

5.0

G. Application Circuit

OLED POWER IC

Input: VBAT (2.9~4.4V)
Output: ELVDD, ELVSS

5.0

Page: 20/22

H. Specifications

Item		Abbr.	Min.	Тур.	Max.	Unit	Remark	
Ontinal C	baraatariatia	Brightness	270	300	330	nits		
•	haracteristic over Lens)	Wx	0.275	0.305	0.335		Note 3	
(W/O CC	over Lens)	Wy	0.290	0.320	0.350			
Contr	rast ratio @25d	eg 10000 Note 4	ļ					
Brightnes	ss Uniformity	300nits	75%				Note 5	
		Тор	80°			deg		
Viewi	ng angle	Bottom	80°			deg	Note 6	
CR	>1600	Left	80°			deg	Note 6	
		Right	80°	-	-	deg	İ	
	Red	CIE1931 x	0.645	0.675	0.705	Red		
	Red	CIE1931 y	0.295	0.325	0.355	Red		
Color	Green	CIE1931 x	0.186	0.236	0.286	Green	Note 7	
Coloi	Green	CIE1931 y	0.661	0.711	0.761	Green	Note /	
	Blue	CIE1931 x	0.090	0.130	0.170	Blue		
	Blue	CIE1931 y	0.025	0.065	0.105	Blue		
N	TSC	CIE x , y	90	100		%		
Life time	T95	25℃	100			hrs	Note 8	
Crosstalk	L128	Vertical			5.0	%	Note 9	
FI	licker				-30	db	Note 10	
Optical Sv	vitching Time	+25°B/W(Tr+Tf)/2			1	ms	Note 11	
Ga	amma	Υ	2.0	2.2	2.4			

Note 1: Ambient temperature =25 °C±2 °C

Note 2: To be measured in the dark room.

Note 3: The brightness measurement shall be done at the center of the display with a full white image. The brightness shall meet the following spec, at 100% check.

Page: 21/22

5.0

Note 4: Definition of contrast ratio:

Contrast ratio is calculated with the following formula:

Contrast ratio (CR)=

Photo detector output when OLED is at "White" state

Photo detector output when OLED is at "Black

Note 5: Uniformity. Refer to figure as below

Note 6: Definition of viewing angle:

The optical performance is specified as the driver IC located at =270°

Note 7: The color chromaticity should be based on sample performance because new OLED material should be verified later.

Page: 22/22

5.0

Note 8: Time to 95% Luminance

To measure the burn-in effect, a test pattern with white background applied to the AMOLED display at 30% loading

Note 9: Cross-talk

$$CrossTalk_White = \begin{cases} 1 - \left(\frac{b2}{a2} \div \frac{b1}{a1}\right) \times 100\%, 1 - \left(\frac{b2}{c2} \div \frac{b1}{c1}\right) \times 100\%, \\ 1 - \left(\frac{d2}{a2} \div \frac{d1}{a1}\right) \times 100\%, 1 - \left(\frac{d2}{f2} \div \frac{d1}{f1}\right) \times 100\%, \\ 1 - \left(\frac{a2}{c2} \div \frac{a1}{c1}\right) \times 100\%, 1 - \left(\frac{a2}{h2} \div \frac{a1}{h1}\right) \times 100\%, \\ 1 - \left(\frac{g2}{f2} + \frac{g1}{f1}\right) \times 100\%, 1 - \left(\frac{g2}{h2} \div \frac{g1}{h1}\right) \times 100\% \end{cases}.$$

$$CrossTalk_Black = \begin{cases} 1 - \left(\frac{b3}{a3} \div \frac{b1}{a1}\right) \times 100\%, 1 - \left(\frac{b3}{c3} \div \frac{b1}{c1}\right) \times 100\%, \\ 1 - \left(\frac{d3}{a3} \div \frac{d1}{a1}\right) \times 100\%, 1 - \left(\frac{d3}{f3} \div \frac{d1}{f1}\right) \times 100\%, \\ 1 - \left(\frac{e3}{c3} \div \frac{e1}{c1}\right) \times 100\%, 1 - \left(\frac{e3}{h3} \div \frac{e1}{k1}\right) \times 100\%, \\ 1 - \left(\frac{g3}{f3} \div \frac{g1}{f1}\right) \times 100\%, 1 - \left(\frac{g3}{h3} \div \frac{g1}{h1}\right) \times 100\% \end{cases}$$

CrossTalk = MAX{CrossTalk _White, CrossTalk _Black}

5.0

Page: 23/22

Note 10: Flicker

The flicker level is defined using Fast Fourier Transformation (FTT) as follows:

Flic ker =
$$20 \log_{10} \left(2 \frac{f_{FFTC}(n)}{f_{FFTC}(0)} \right) + FS(Hz)$$
 (dB)

where fFFTC(n) is the nth FFT coefficient, and fFFTC(0) is the 0th FFT coefficient which is DC component. FS(Hz) is the flicker sensitivity as a function of frequency.

The flicker level shall be measured with the test pattern in below.

The gray leves of test pattern is 128.

Note 11: Optical Switching Time:

The optical switching time measurements should be performed at driven BLACK and driven WHITE at typ. brightness setting by the driving techniques specified. The luminance should be measured with the emitting display and the detector at θ =0°and ψ =90°. The rise time tr is the time between a 10% optically response of the display and a 90% optically response of the display. The fall time tf is the time between a 10% optically response of the display and a 90% optically response to the display. The response time is defined as the average of the rise time and the fall time.

I. Reliability Test Items

Category	ory No. Test items		Conditions	Remark	
	1	High Temp. Operation	Ta= 60°C	240hrs	Ta: Ambient temperature.
	2	High Temp. Storage	Ta= 70 °C	240hrs	Non-operation
Reliability	3	Low Temp. Operation	Ta= -20 °C	240hrs	
(Environment)	4	Low Temp. Storage	Ta= -30 °C	240hrs	Non-operation
	5	High Temp./Humi. Operation	Ta= 40 °C. 95% RH	240hrs	
	6	Thermal Shock	-30 °C ~70 °C, Dwell for 30 min.	Non-operation	
	7	Vibration test	Random 1.5G,10~200Hz,30mi	n/axis	Non-operation

J. Packing

1 tray for 60 pcs Panels 1 set for 25+1 pcs trays =1500 pcs panels

K. Outline Demension (Tentative)

