FO-3 August 2015 QE

FO-3 page 1 of 1

1. (30 points)

Calculate the reflection at the interface between air $(\epsilon_r = 1)$ and silicon $(\epsilon_r = 3.5)$ in the infrared at normal incidence, neglecting absorption.

2. (30 points)

Consider a structure consisting of 3 layers:

- (a) Semi-infinite layer of air $(\epsilon_r = 1, \mu_r = 1)$
- (b) Finite layer of thickness t ($\epsilon_r = \epsilon, \mu_r = 1$)
- (c) Semi-infinite layer of titanium dioxide ($\epsilon_r = 5.0625, \mu_r = 1$)

Find the smallest possible thickness t and dielectric constant ϵ needed to achieve zero reflection at normal incidence when $\lambda = 600$ nm.

3. (20 points)

Using the parameters obtained in the last problem, find the reflection at normal incidence when $\lambda = 400$ nm.

4. (20 points)

Now consider a slightly different structure with 3 layers:

- (a) Semi-infinite layer of air $(\epsilon_r = 1, \mu_r = 1)$
- (b) Finite layer of thickness t' ($\epsilon_r = 4, \mu_r = 1$)
- (c) Semi-infinite layer of air $(\epsilon_r = 1, \mu_r = 1)$

What is the smallest possible thickness t' required to achieve extremely low reflection (< 0.02%) at normal incidence when $\lambda = 600$ nm? Is this value larger or smaller than the thickness t from Problem 2, and why?