Package 'wildxing'

August 2, 2017

Title An R package for optimal positioning of widlife crossing structures

Version 0.0.0.9000

Description This package provides a series of functions to characterize the importance of linear features for widlife movement and provide an algorithm to select optimal positioning of potential crossing structures.

Depends R (>= 3.3.2), sp, adehabitatLT

License GPL (>=3)

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1.9000

Imports raster, rgeos, uuid, Rsymphony

R topics documented:

	avg_inds	2
	corriIntersects	2
	corriIntersects_All	3
	hr_split	4
	match_pts	4
	optim_corri	5
	optim_mclp	6
	plotcorri_grp	7
	plotcorri_ind	8
	plot_optim	8
	range01	9
	SegmentSpL	10
Index		11

2 corriIntersects

avg_inds Averaged intersection between multiple trajectories and segmented line	avg_inds	1 3
---	----------	-----

Description

Combined a list list of corriIntersects object to obtain population level averaged statistics regarding crossing count

Usage

```
avg_inds(SpLlst)
```

Arguments

SpLlst

A list of animal trajectory of class ltraj containing multiple individuals

Value

A SpatialLinesDataFrame object

Examples

```
require(adehabitatLT)  x <- c(0,0) \\ y <- c(-6500000,-4500000) \\ t1 <- SpatialLines(list(Lines(Line(cbind(x,y)), ID="a"))) \\ t2 <- SegmentSpL(t1, n.parts=20, merge.last=F) \\ data (albatross) #From package adehabitatLT \\ t3 <- corriIntersects_All(albatross, t2) \\ t4 <- avg_inds(t3)
```

corriIntersects

Intersection between individual trajectory and segmented line

Description

Calculate summary statistics regarding frequency of intersections between an animal trajectory and a segmented SpatialLines object

Usage

```
corriIntersects(traj, corri, per_day = TRUE, plot = F)
```

Arguments

traj	An animal trajectory of class ltraj
corri	A segmented SpatialLines as returned bt function SegmentSpL
per_day	Specify if the number of crossing should be standardized over the time (in days)
	the animal was monitored or over the total number of locations, default=TRUE.
	Long gap in data should be identified as separate burst
plot	Whether a plot should be returned (default=F)

corriIntersects_All 3

Value

A SpatialLinesDataFrame object

Examples

```
\label{eq:continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous
```

corriIntersects_All

Intersection between multiple trajectories and segmented line

Description

Wrapper function that apply corriIntersects to all individual in a trajectory object

Usage

```
corriIntersects_All(trajs, corri)
```

Arguments

corri A segmented SpatialLines as returned bt function SegmentSpL
traj An animal trajectory of class ltraj containing multiple individuals

Value

A list of SpatialLinesDataFrame object

```
require(adehabitatLT)
x <- c(0,0)
y <- c(-6500000,-4500000)
t1<-SpatialLines(list(Lines(Line(cbind(x,y)), ID="a")))
t2<-SegmentSpL(t1, n.parts=20, merge.last=F)
data (albatross) #From package adehabitatLT
t3<-corriIntersects_All(albatross, t2)</pre>
```

4 match_pts

	_	
hr	snl	i+
	-SbT	ıι

Intersection of a home-range (polygon) with linear features

Description

Intersects a SpatialPolygons* object with a SpatialLines* object and return a divided polygon (when overlap) with summary metric regarding

Usage

```
hr_split(pol = hr, line = corri)
```

Arguments

pol A SpatialPolygons* object representing an animal home-range.

line A linear feature of class SpatialLines

Value

A list containing the segmented polygon, the

Examples

```
 \begin{aligned} & \text{pol} < -\text{SpatialPolygons}(\text{list}(\text{Polygons}(\text{list}(\text{Polygon}(\text{cbind}(\text{c}(\emptyset,1,1,\emptyset,\emptyset),\text{c}(\emptyset,\emptyset,1,1,\emptyset)))), ID="polygon")))} \\ & \text{line} < -\text{SpatialLines}(\text{list}(\text{Line}(\text{cbind}(\text{c}(\emptyset,1),\text{c}(\emptyset.4,\emptyset.4)))), ID="line")))} \\ & \text{splt} < -\text{hr\_split}(\text{pol}, \text{line}) \\ & \text{plot}(\text{splt}[[1]]) \\ & \text{splt}[2:4] \end{aligned}
```

match_pts

Associate closest elements between two SpatialPoints features

Description

Evaluate the distance between a SpatialPoints/Lines* object and another SpatialPoints* object and return which features in first object that are the closest to each feature in second object

Usage

```
match_pts(pts1, pts2)
```

Arguments

pts1 A SpatialLines* or SpatialPoints object. If a SpatialLines is provided, the object

is first converted to point using getSpatialLinesMidPoints

pts2 A SpatialPoints* object

optim_corri 5

Examples

```
 \begin{array}{l} x <- c(1,5,4,8) \\ y <- c(1,3,4,7) \\ t1 <- SpatialLines(list(Lines(Line(cbind(x,y)), ID="a"))) \\ t2 <- SegmentSpL(t1, n.parts=10, merge.last=F) \\ Pts <- SpatialPoints(matrix(c(1,3,7,1,2,7), nrow=3, ncol=2)) \\ match_pts(t2, Pts) \\ \end{array}
```

optim_corri

Optimization of wildlife crossing locations over a linear features

Description

The function use linear programming to optimize the location of wildlife crossing over a linear feature. The function maximise the spatial spread of locations, and the importance of specific location for animal crossing. The user can specify the number of crossing location desired, if some segment should be excluded, or if the location of some crossings are already decided. The user also need to specify the weight given to the spatial argument and the importance of crossing (default is equal importance to each).

Usage

```
optim_corri(corri, var = 4, n = 5, pct_keep = 1, nb_ind = 1, ln = F,
  rm = NULL, add = NULL, weight = 0.5, plot = T, time_limit = -1,
  gap_limit = -1, first_feasible = F, ...)
```

Arguments

corri	A segmented SpatialLines object returned by avg_inds
var	Variable used to represent importance of segment for animal. Number refer to columns of dataframe produced by avg_inds (default = 4, average percent crossing)
n	Number of crossing to place (default =5) in addition to fixed points (i.e. if a SpatialPoints* object is provided to the add argument)
pct_keep	Percentage of segment to consider in optimization. Removal is based on percentile of values of importance of segment for animal crossing
ln	Whether the natural logarithm of the variable value should be taken. Default=F
rm	A SpatialPoints object indicating the location that most be excluded from the optimization (defaul is NULL)
add	A SpatialPoints object indicating the location where a crossing is already present, or must be place to this location. Number of points included here will be added to n to give the total number of crossing selected.
weight	Argument setting the weight given to the spatial spread relative to the crossing importance (default = 0.5 meaning equal importance)
plot	Whether a plot showing the crossing location should be returned (default=T)
• • •	additional arguments that can be specify to Rsymphony_solve_lp (time_limit, gap_limit, first_feasible)
cost	A vector of same length that the number of segment in corri giving the cost for each segment

6 optim_mclp

Value

A list containing the segmented polygon, the

Examples

optim_mclp

Optimization of wildlife crossing locations over a linear features using the maximum coverage location problem

Description

The function use linear programming to optimize the location of wildlife crossing over a linear feature. The function maximise the number of individuals the selected features will assist. The user can specify the number of crossing location desired, a coverage distance, if some segment should be excluded, or if the location of some crossings are already decided.

Usage

```
optim_mclp(corri_ls, n = 5, dist = 10 * 1000, rm = NULL, add = NULL,
    plot = T, time_limit = -1, gap_limit = -1, first_feasible = F, ...)
```

Arguments

corri_ls	A segmented SpatialLines list returned by corriIntersects_All
n	Number of crossing to place (default =5) in addition to fixed points (i.e. if a SpatialPoints* object is provided to the add argument)
dist	Distance used to considered a given segment as covered (ie radius)
rm	A SpatialPoints object indicating the location that most be excluded from the optimization (defaul is NULL)
add	A SpatialPoints object indicating the location where a crossing is already present, or must be place to this location. Number of points included here will be added to n to give the total number of crossing selected.
plot	Whether a plot showing the crossing location should be returned (default=T)
•••	additional arguments that can be specify to Rsymphony_solve_lp (time_limit, gap_limit, first_feasible)

Value

A list containing the segmented polygon, the

plotcorri_grp 7

Examples

```
require(adehabitatLT)
x <- c(0,0)
y <- c(-6500000,-4500000)
t1<-SpatialLines(list(Lines(Line(cbind(x,y)), ID="a")))
t2<-SegmentSpL(t1, n.parts=20, merge.last=F)
data (albatross) #From package adehabitatLT
t3<-corriIntersects_All(albatross, t2)
test<-optim_mclp(t3, n=2,dist=10*1000, plot=T)</pre>
```

plotcorri_grp

Plot of density of crossing of multiple individuals with linear features

Description

Produce a color-coded plot of density of crossing of multiple individuals with a segmented linear features. Used to display result of function avg_inds

Usage

```
plotcorri_grp(SpL, nb_breaks = 5, var = 4, main = "Default")
```

Arguments

SpL A SpatialLinesDataFrame object returned by avg_inds

nb_breaks The number of breaks to use in display (default =5), must be <=10

var Variable to display (default =4) 1= Average count, 2=Total count, 3=Average

count standardized by length of tracking, 4=Average count standardized by length

of tracking and spatial sampling bias, 5= Number of different individuals

Value

A plot

```
require(adehabitatLT)
  x <- c(0,0)
y <- c(-6500000,-4500000)
t1<-SpatialLines(list(Lines(Line(cbind(x,y)), ID="a")))
t2<-SegmentSpL(t1, n.parts=20, merge.last=F)
data (albatross) #From package adehabitatLT
t3<-corriIntersects_All(albatross, t2)
t4<-avg_inds(t3)
plotcorri_grp(t4, nb_breaks=5, var=4, main="Albatross")</pre>
```

8 plot_optim

-			
plo	tcor	ri	ind

Plot of density of crossing of an individual with linear features

Description

Produce a color-coded plot of density of crossing of an individual with a segmented linear features. Used to display result of function corriIntersects

Usage

```
plotcorri_ind(SpL, nb_breaks = 5, extent = NULL)
```

Arguments

SpL A SpatialLinesDataFrame object returned by corriIntersects

nb_breaks The number of breaks to use in display (default =5), must be <=10

extent If not NULL, an extent object (from package raster) that specify boundaries of

the display.

Value

A plot

Examples

```
require(adehabitatLT)
x <- c(0,0)
y <- c(-6500000,-4500000)
t1<-SpatialLines(list(Lines(Line(cbind(x,y)), ID="a")))
t2<-SegmentSpL(t1, n.parts=20, merge.last=F)
data (albatross) #From package adehabitatLT
t3<-corriIntersects(albatross[3], t2, plot=F)
plotcorri_ind(t3, nb_breaks=4, extent=raster::extent(ltraj2spdf(albatross)))</pre>
```

plot_optim

Plot of selected crossing structures following optimization using ILP

Description

Produce a color-coded plot of density of crossing of multiple individuals and optimal crossing structure. Used to display result of function optim_corri

Usage

```
plot_optim(corri, var = 4, optim, main = "Default", ...)
```

range01

Arguments

corri A SpatialLinesDataFrame object returned by avg_inds

var Variable to display (default =4) 1= Average count, 2=Total count, 3=Average

count standardized by length of tracking, 4=Average count standardized by length

of tracking and spatial sampling bias, 5= Number of different individuals

optim Output of the optimization function optim_corri

Value

A plot

Examples

```
require(adehabitatLT)
x <- c(0,0)
y <- c(-6500000,-4500000)
t1<-SpatialLines(list(Lines(Line(cbind(x,y)), ID="a")))
t2<-SegmentSpL(t1, n.parts=20, merge.last=F)
data (albatross) #From package adehabitatLT
t3<-corriIntersects_All(albatross, t2)
t4<-avg_inds(t3)
opti1<-optim_corri(t4, var=4, n=3, nb_ind=1, weight=0.5, plot=T) #Equal weight
plot_optim(t4, var=4, opti1, main="Crossings")</pre>
```

range01

Range standardisation (0,1)

Description

This function standardises a vector between 0 and 1

Usage

```
range01(x)
```

Arguments

х

A vector

```
v<-c(1,2,2,3,4,4,5,6) range01(v)
```

10 SegmentSpL

SegmentSpL	Segmentation of SpatialLines object into muliple segments	

Description

Segment a SpatialLines object in segment of equal length (taken from: http://rstudio-pubs-static.s3.amazonaws.com/1068

Usage

```
SegmentSpL(s1, length = 0, n.parts = 0, merge.last = FALSE)
```

Arguments

sl	SpatialLines object
length	Length of individual segment (in units of sl)
n.parts	Alternatively, the number of segments to create
merge.last	Whether the last segment (of a different length) should be merged with the previous segment

Value

A SpatialLines object

```
x \leftarrow c(1,5,4,8)

y \leftarrow c(1,3,4,7)

t1 \leftarrow SpatialLines(list(Lines(Line(cbind(x,y)), ID="a")))

t2 \leftarrow SegmentSpL(t1, n.parts=10, merge.last=F)

plot(t2, col = rep(c(1, 2), length.out = length(t2)), axes = T)
```

Index

*Topic CreateSegments SegmentSpL, 10	*Topic standardisation range01, 9
*Topic CreateSegment	
SegmentSpL, 10	$avg_inds, 2$
*Topic MergeLast	
SegmentSpL, 10	corriIntersects, 2
*Topic SegmentSpL	corriIntersects_All, 3
avg_inds, 2	hr_split,4
corriIntersects, 2	111 _3p11 c, 4
<pre>corriIntersects_All, 3</pre>	match_pts, 4
SegmentSpL, 10	-,
*Topic SpatialLines	optim_corri,5
hr_split,4	optim_mclp, 6
optim_corri,5	
optim_mclp, 6	plot_optim, 8
*Topic SpatialPoints	plotcorri_grp, 7
match_pts, 4	plotcorri_ind,8
*Topic SpatialPolygons	ranga@1 0
hr_split,4	range01,9
optim_corri,5	SegmentSpL, 10
optim_mclp, 6	3.6
*Topic avg_inds	
plot_optim, 8	
plotcorri_grp,7	
*Topic corriIntersects_All	
plot_optim, 8	
plotcorri_grp,7	
*Topic corriIntersects	
plotcorri_ind,8	
*Topic ltraj	
avg_inds, 2	
corriIntersects, 2	
corriIntersects_All,3	
*Topic match	
match_pts, 4	
*Topic optim_corri	
plot_optim, 8	
*Topic plotcorri_ind	
$avg_inds, 2$	
corriIntersects, 2	
<pre>corriIntersects_All, 3</pre>	
*Topic range	
range01,9	