MATH 340: Real Analysis Study Guide Mid-Term 2

Joseph C. McGuire

November 5, 2018

1 Page 59 #3

Prove Theorem 2.2.3

Theorem 1. Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers. If $\{b_n\}$ is bounded and $\lim_{n\to\infty}(a_n)=0$, then $\lim_{n\to\infty}(a_nb_n)=0$.

Proof. Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be sequences of real numbers, and assume $\lim_{n\to\infty}(a_n)=0$ and $\{b_n\}$ is bounded.

Let $\epsilon>0$ be given. Then, by definition 2.1.9 (Bounded Sequences), there exists M>0 such that $|b_n|\leq M$ for all $n\in\mathbb{N}$. Additionally, for $\frac{\epsilon}{M}$ there exists $n_0\in\mathbb{N}$ such that $|a_n-0|<\frac{\epsilon}{M}$ for all $n\geq n_0$. So for all $n\geq n_0$, we have $|a_n|<\frac{\epsilon}{M}$ and since $|b_n|\leq M$, multiplying those inequalities together we get $|a_n||b_n|<\frac{\epsilon}{M}*M=\epsilon$ for all $n\geq n_0, |a_nb_n-0|<\epsilon$. Thus $\lim_{n\to\infty}a_nb_n=0$.

2 Page 59 #5(a)

If p > 0, prove that $\lim_{n \to \infty} \frac{1}{n^p}$.

Proof. Assume p > 0. Let $\epsilon > 0$ be given. By the Archimedean Property (Remark on page 28), there exists n_0 such that $\frac{1}{n_0} < \epsilon^{\frac{1}{p}}$. Then, whenever $n \ge n_0$, we have $\frac{1}{n} \le \frac{1}{n_0} < \epsilon^{\frac{1}{p}}$. So for all $n \ge n_0$ we have $\frac{1}{n} < \epsilon^{\frac{1}{p}}$, so for all $n \ge n_0$ we have $(\frac{1}{n})^p < \epsilon$. Hence $|\frac{1}{n^p} - 0| < \epsilon$.

$$\therefore \lim_{n\to\infty} \frac{1}{n^p} = 0.$$

3 Page 65 #1

Let $I_n = [a_n, b_n]$, $n \in \mathbb{N}$, be closed and bounded intervals satisfying $I_n \supset I_{n+1}$ for all n. Prove that $\bigcap_{n=1}^{\infty} I_n = [a, b]$. Where $a = \sup\{a_n : n \in \mathbb{N}\}$ and $b = \inf\{b_n : n \in \mathbb{N}\}$. So for all $b \in \mathbb{N}$, so $b \in \mathbb{N}$ and so $b \in \mathbb{N}$ is a lower bound of the set $b \in \mathbb{N}$ and $b \in \mathbb{N}$. So $b \in \mathbb{N}$ and $b \in \mathbb{N}$ is a lower bound for the set $b \in \mathbb{N}$ and $b \in \mathbb{N}$ and b

$$\therefore \bigcap_{n=1}^{\infty} I_n = [a, b].$$

4 Page 66 #13

For each $n \in \mathbb{N}$, let $s_n = 1 + 1/2 + ... + 1/n$. Show that $\{s_n\}$ is monotone increasing but not bounded above.

Proof. We have, for all $n \in \mathbb{N}$, $s_{n+1} - s_n = \frac{1}{n+1} > 0$. So $s_{n+1} > s_n$ for all $n \in \mathbb{N}$. Hence $\{s_n\}$ is monotonic increasing. Next, we will show that $s_{2^n} \ge 1 + \frac{n}{2}$ for all $n \in \mathbb{N}$, which will show $\{s_n\}$ is not bounded above. (Basis) n = 1. Then $s_{2^n} = s_2 = 1 + 1/2 \ge 3$. Thus our conclusion holds when n = 1. (Inductive Hypothesis) Assume $s_{2^k} \ge 1 + \frac{k}{2}$ for some $k \in \mathbb{N}$. Then consider the k + 1 case:

$$s_{2^{k+1}} = \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^k}\right) + \frac{1}{2^k + 1} + \dots + \frac{1}{2^{k+1}}$$
$$\ge \left(1 + \frac{k}{2}\right) + \frac{1}{2^k + 1} + \dots + \frac{1}{2^{k+1}}.$$

This is $1 + \frac{k}{2} + (2^k \text{ terms}, \text{ each bigger than or equal to } \frac{1}{2^{k+11}})$. So $s_{2^{k+1}} \geq 1 + \frac{k}{2} + 2^k (\frac{1}{2^{k+1}}) = 1 + \frac{k}{2} + \frac{1}{2} = 1 + \frac{k+1}{2}$. Thus if our claim holds for the k^{th} case, then it will hold for the k+1 case. Thus by the Principle of Mathematical Induction, our claim holds for all $n \in \mathbb{N}$.

5 Page 66 #16

Let 0 < b < 1. For each $n \in \mathbb{N}$, let $s_n = 1 + b + b^2 + ... + b^n$. Prove that $\{s_n\}$ is monotone increasing and bounded above. Find $\lim_{n\to\infty}(s_n)$.

Proof. By page 64, $s_n = \frac{1-b^{n+1}}{1-b}$, now we show $s_{n+1} \geq s_n$ for all $n \in \mathbb{N}$. Because $1+b+b^2+\ldots+b^n+b^{n+1} \geq 1+b+b^2+\ldots+b^n>0$, since b>0, s_n is monotonic increasing. By Theorem 2.3.4(b), $\lim_{n\to\infty}(s_n)=\lim_{n\to\infty}(\frac{1-b^{n+1}}{1-b})=\frac{1}{1-b}$. Additionally, to show that the sequence is bounded above. Note that $s_n=\frac{1-b^{n+1}}{1-b}=\frac{1}{1-b}-\frac{b^{n+1}}{1-b}<\frac{1}{1-b}$ since b^{n+1} and 1-b are positive (because 0< b<1). Thus all terms in the sequence are less than $\frac{1}{1-b}$, hence the sequence is bounded above.

6 Page 72 #8

Let A be a non-empty subset of \mathbb{R} that is bounded above and let $\alpha = \sup(A)$. If $\alpha \notin A$, prove that α is a limit point of A.

Proof. Let $\alpha \notin A$, A be a non-empty subset of $\mathbb R$ and $\alpha = \sup(A)$. Given $\epsilon > 0$, let $\beta = \alpha - \epsilon$. Then there exists a $x \in A$ such that $\beta < x \le \alpha$ by Theorem 1.4.4. Then $\alpha - \epsilon < x \le \alpha < \alpha + \epsilon$, so $\alpha - \epsilon < x < \alpha + \epsilon$ hence $x \in N_{\epsilon}(\alpha)$ since $\alpha \notin A$ and $x \in A$

7 Page 83 #1

If $\{a_n\}$ and $\{b_n\}$ are Cauchy sequences in \mathbb{R} . Prove that $\{a_n+b_n\}$ and $\{a_nb_n\}$ is Cauchy.

7.1 Prove: $\{a_n + b_n\}$ is Cauchy.

Proof. Suppose a_n and b_n are Cauchy. Then for all $\epsilon > 0$, there exists $n_a, n_b \in \mathbb{N}$ such that $|a_n - a_m| < \frac{\epsilon}{2}$ and $|b_n - b_m| < \frac{\epsilon}{2}$, for all $n > n_a$ and for all $m > n_b$. Let $n_0 = \max\{n_a, n_b\}$. Then $|a_m + b_n - (a_m + b_m)| = |a_n - a_m + b_n - b_m| \le |a_n - a_m| + |b_n - b_m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$

7.2 $\{a_nb_n\}$ is Cauchy

Proof. Let $M_1 > a_n$ for all $n \in \mathbb{N}$ and $M_2 > b_n$ for all $n \in \mathbb{N}$ (Theorem 2.6.2(b))... $|a_n b_n - a_m b_m| = |a_n b_n - a_m b_n + a_m b_n - a_m b_m| = |b_n (a_n - a_m) + a_m (b_n - b_m)| \le |b_n| |a_n - a_m| + |a_m| |b_n - b_m|.$

Since a_n and b_n are Cauchy, we have for all $\epsilon > 0$, there exists $n_1, n_2 \in \mathbb{N}$ such that $|a_n - a_m| < \frac{\epsilon}{2M_2}$ for all n > m and $|b_n - b_m| < \frac{\epsilon}{2M_1}$ for all $n > n_2$. Let $N = \max n_1, n_2$, then

$$|b_n||a_n - a_m| + |a_m||b_n - b_m| < M_2|a_n - a_m| + M_1|b_n - b_m| < M_2 \frac{\epsilon}{2M_2} + M_1 \frac{\epsilon}{2M_1} = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

8 Page 85 #5

Use Mathematical Induction to prove the identity (b)

Proof. We will show that $a_{n+1}-a_n=(\frac{-1}{2})^{n-1}(a_2-a_1)$, where $n\geq 3$. From identity (5) on Page 82: $a_n=\frac{1}{2}(a_{n-1}+a_{n-2})$, similarly $a_{n+1}=\frac{1}{2}(a_n+a_{n-1})$. So $a_{n+1}-a_n=\frac{1}{2}(a_n+a_{n-1})-\frac{1}{2}(a_{n-1}+a_{n-2})=\frac{1}{2}(a_n-a_{n-2})$. Then we proceed by mathematical induction. (Basis) n=3.

(L.H.S) =
$$a_4 - a_3 = \frac{1}{2}(a_3 - a_1) = \frac{1}{2}(\frac{1}{2}(a_2 + a_1) - a_1) = \frac{1}{2}(\frac{1}{2}(a_2 - a_1)) = (\frac{1}{2})^2(a_2 - a_1).$$

(R.H.S) = $(\frac{-1}{2})^{3-1}(a_2 - a_1) = (\frac{-1}{2})^2(a_2 - a_1) = (\frac{1}{2})^2(a_2 - a_1).$

Hence our claim holds for n = 3.

(Inductive Hypothesis)

Assume, for some $k \geq 3$ where $k \in \mathbb{N}$, $a_{k+1} - a_k = (\frac{-1}{2})^{k-1}(a_2 - a_1)$.

(Then we wish to show that $a_{k+2} - a_{k+1} = (\frac{-1}{2})^k (a_2 - a_1)$.)

L.H.S =
$$a_{k+2} - a_{k+1} = \frac{1}{2}(a_{k+1} + a_k) - a_{k+1}$$

= $\frac{1}{2}a_{k+1} + \frac{1}{2}a_k - a_{k+1}$
= $\frac{1}{2}a_k - \frac{1}{2}a_{k+1}$
= $\frac{1}{2}(a_k - a_{k+1})$
= $\frac{-1}{2}(a_{k+1} - a_k)$
= $\frac{-1}{2}((\frac{-1}{2})^{k-1}(a_2 - a_1))$, by our Inductive Hypothesis
= $\frac{-1}{2}(\frac{-1}{2})^{k-1}(a_2 - a_1)$
= $(\frac{-1}{2})^k(a_2 - a_1)$
= R.H.S.

Thus, by the Principle of Mathematical Induction, our claim holds for all $n \in \mathbb{N}$.

9 Page 100 #2

Show that every finite subset of \mathbb{R} is closed.

Proof. Suppose we have some finite subset of \mathbb{R} , call it A. Then A has no limit points (Corollary 2.4.8). Thus, by Theorem 3.19, A is closed in \mathbb{R} since it vacuously contains all of its limit points.

10 Page 100 #6(a.),#6(b.)

10.1 For any collection $\{O_{\alpha}\}_{{\alpha}\in A}$ of open subsets of \mathbb{R} , $\bigcup_{{\alpha}\in A}O_{\alpha}$ is open.

Proof. Assume $\{O_{\alpha}\}_{{\alpha}\in A}$ is a collection of open subsets of \mathbb{R} . [Show that $\bigcup_{{\alpha}\in A}O_{\alpha}$ is open.]

Let $x \in \bigcup_{\alpha \in A} O_{\alpha}$. Then there exists an $\alpha_0 \in A$ such that $x \in O_{\alpha_0}$. Since O_{α_0} is open, there exists $\epsilon > 0$ such that $N_{\epsilon}(x) \subseteq O_{\alpha_0}$. Then $N_{\alpha_0}(x) \subseteq \bigcup_{\alpha \in A} O_{\alpha}$, so x is an interior point of $\bigcup_{\alpha \in A} O_{\alpha}$. Thus every point in $\bigcup_{\alpha \in A} O_{\alpha}$ is an interior point, so $\bigcup_{\alpha \in A} O_{\alpha}$ is open.

10.2 Given an example of a countable collection $\{F_n\}_{n=1}^{\infty}$ of closed subsets of \mathbb{R} such that $\bigcup_{n=1}^{\infty} F_n$ is not closed.

Let $F_n = \{\frac{1}{n} : n \in \mathbb{N}\}$. Then each F_n is closed and $\bigcup_{n=1}^{\infty} F_n = \bigcup_{n=1}^{\infty} \{\frac{1}{n}\} = \{\frac{1}{n} : n \in \mathbb{N}\}$, which has 0 as a limit point but $0 \notin \{\frac{1}{n} : n \in \mathbb{N}\}$, so it isn't closed.

11 Page 107 #1(a)

Show that the set $A = \{\frac{1}{n} : n \in \mathbb{N}\}$ is not compact by constructing an open cover of A that doesn't have a finite subcover.

First, consider the collection of sets $\{(\frac{1}{n}, \frac{n+1}{n}) : n \in \mathbb{N}\}$. Then we will show $a \subseteq \bigcup_{n=1}^{\infty} ((\frac{1}{n}, \frac{n+1}{n}))$.

Proof. Let $x \in A$. Then for some $n_0 \in \mathbb{N}, x = \frac{1}{n_0}$. Then for $n = n_0 + 1$, we have the set $(\frac{1}{n_0 + 1}, 1 + \frac{1}{n_0 + 1})$. Note that $\frac{1}{n_0 + 1} < \frac{1}{n_0}$ and $\frac{1}{n_0} < 1 + \frac{1}{n_0 + 1}$. Hence $x \in (\frac{1}{n_0 + 1}, 1 + \frac{1}{n_0 + 1})$. Since $n_0 + 1 \in \mathbb{N}$ we have $x \in \bigcup_{n=1}^{\infty} ((\frac{1}{n}, 1 + \frac{1}{n}))$. Thus $A \subseteq \bigcup_{n=1}^{\infty} ((\frac{1}{n}, 1 + \frac{1}{n}))$. □

So we have $A \subseteq \bigcup_{n=1}^{\infty}((\frac{1}{n},1+\frac{1}{n}))$, but we will show that no finite subcover covers A. For sake of contradiction suppose we have a finite subcover of A:

 $\bigcup_{k=1}^{n}((\frac{1}{k},\frac{k+1}{k}))\supseteq A$. Then consider the element $\frac{1}{n+1}\in A$, but $\frac{1}{n+1}\notin\bigcup_{k=1}^{n}((\frac{1}{k},\frac{k+1}{k}))$. Hence we have a open cover of A, that doesn't admit a finite subcover. Thus A isn't compact.

12 Page 107 #2

Suppose $\{p_n\}$ is a convergent sequence in \mathbb{R} with $\lim_{n\to\infty} p_n = p$. Prove, using the definition, that the set $A = \{p\} \cup \{p_n : n \in \mathbb{N}\}$ is a compact subset of \mathbb{R} .

Proof. Assume $\{p_n\}$ is a convergent sequence in \mathbb{R} with $\lim_{n\to\infty}p_n=p$. Assume $A=\{p\}\cup\{p_n:n\in\mathbb{N}\}$. Let $\{O_\alpha\}_{\alpha\in A}$ be an open cover of A, since $A\subseteq\bigcup_{\alpha\in A}O_\alpha$ and $p\in A$ we know $p\in\bigcup_{\alpha\in A}O_\alpha$ so $p\in O_{\alpha_0}$ for some $\alpha_0\in A$. So there exists $\epsilon>0$ such that $N_{\epsilon_0}(p)\subseteq O_{\alpha_0}$. Since $p_n\to p$, we know for all $\epsilon>0$, there exists $n_0\in\mathbb{N}$ such that if $n\geq n_0$, then $|p_n-p|<\epsilon$. So for ϵ_0 , there exists $m_0\in\mathbb{N}$ such that $n\geq m_0$ implies $|p_n-p|<\epsilon_0$. Hence when $n\geq m_0$, $p-\epsilon_0< p_n< p+\epsilon_0$. So for all $n\geq m_0$, $p_n\in N_{\epsilon_0}(p)\subseteq O_{\alpha_0}$, so for all $n\geq m_0$, $p_n\in O_\alpha$, so there exists finitely many elements in that are possible not in O_{α_0} . Let $E=\{p_1,p_2,...,p_n\}$ be the finite subset, then $E\subseteq\bigcup_{\alpha\in A}O_\alpha$ and for all $\alpha\in A$, O_α is open. Then for all $p_i\in E$, where $i=\{1,2,...,n\}$, there exists $\alpha_i\in A$ such that $p_i=O_{\alpha_i}$. Now $\{O_{\alpha_i}\}_{i=0}^n$ is a finite open cover of E.

Thus A is compact. \Box

13 Page 107 #3

Show that (0,1] is not compact by constructing an open cover of (0,1] that does not have a finite subcover.

Proof. Let $U_n = (\frac{1}{n+1}, 2)$, for all $n \in \mathbb{N}$. Then $U_1 \subseteq U_2 \subseteq ...$ [Without Loss of Generality U_n is an open cover of (0,1].]

Let $x \in (0,1]$. Then by the Archimedean Property , there exists $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < x$. Then $x \in (\frac{1}{n_0}, 2)$. Since $(\frac{1}{n_0}, 2) = (\frac{1}{(n_0 - 1) + 1}), x \in n_0 + 1$. Also, since U