Exploring the hierarchical structure of human plans via program generation

Carlos G. Correa, Sophia Sanborn, Mark K. Ho, Frederick Callaway, Nathaniel D. Daw, Thomas L. Griffiths

Presenter: Hanqi Zhou, 2024.03.19

• Exploring the hierarchical structure of human plans via program generation.

- Exploring the hierarchical structure of human plans via program generation.
- Task: make tomato sauce for dinner
- Plan:

prepare the tomatoes ----

place the tomatoes into a large oven or saucepan

- Exploring the hierarchical structure of human plans via program generation.
- Task: make tomato sauce for dinner
- Plan:
 prepare one tomato
 prepare one tomato
 prepare one tomato
 prepare one tomato
 prepare one tomato

place the tomatoes into a large oven or saucepan

- Exploring the hierarchical structure of human plans via program generation.
- Task: make tomato sauce for dinner
- Plan:

```
def make_tomato_sauce (N):
    i = 0
    ingredient = None
    while i < N:
        ingredient += rep ( prep_tomato, N )
        i ++
        place_oven (ingredient)</pre>
def prep_tomato ():
        ...
    def place_oven (x):
        ...
    def rep (x, y):
        ...
        ...
```

Background - Bayesian Program Induction

• Infer programs (actions) π consistent with some observed data (task) d

$$p(\pi \mid d) \propto p(d \mid \pi)p(\pi)$$

- Why Bayesian induction and why program?
 - Compositionally, causality and learning to learn (Lake et al., 2015)

Assumptions

- Assumption:
 - Human behavior is inherently **hierarchical**, resulting from the decomposition of a task into subtasks or an abstract action into concrete actions.

- Method
 - Utilized a process-tracing experiment with the **Lightbot** game, applying **Bayesian program induction** to model and analyze hierarchical plan formation.

Problem setting

Lightbot - process tracing

- Goal: activate all blue squares
- Action set
 - Primitives
 - Subroutines/processes
- Execution trace
 - A deterministic sequence of actions

Problem setting

Lightbot - process tracing

- Goal: activate all blue squares
- Action set
 - Primitives
 - Subroutines/processes
- Execution trace
 - A deterministic sequence of actions

Model of the environment - MDP

- An undiscounted, deterministic Markov Decision Process (MDP)
 - State set S: environment state (active or not), agent state (location & orientation)
 - Goal states $\mathcal{G} \subset \mathcal{S}$
 - Action set \mathscr{A} : five primitive actions
 - Transition function $T: \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S}$
 - Reward function $R: \mathcal{S} \times \mathcal{S} \to \mathbb{R}$: R(s,g)=1 only if $g\in \mathcal{G}$

Model of the agent - Program

- Program $\pi = \{ \rho^0, \rho^1, ... \}$
 - Subroutine $\rho^i = \{\rho^i_0, \rho^i_1, \dots\}$
 - Instructions $\rho^i_j \in \mathcal{A} \cup \{\rho^1, \rho^2, \dots\}$

Model - Bayesian Program Inference

$$p(\pi \mid \text{success}) \propto p(\text{success} \mid \pi) p(\pi)$$

- Baseline models
 - Prior:
 - Random $\log p(\pi) = \frac{1}{|\Pi|}$
 - Step count $\log p(\pi) \propto -|\tau(\pi)|$
 - Program/Description length $\log p(\pi) \propto -\mathrm{DL}(\pi)$
 - Reuse-priority
 - Likelihood: binary

Model - Program Prior towards Reuse

- Key idea: past use of subroutines should inform the probability assigned to future use of subroutines.
- Method: Chinese Restaurant Process (CRP)

$$p\left(\rho^{i}\right) = p_{\text{end}} p\left(\rho_{0}^{i} = a\right) \prod_{j=1} \left(1 - p_{\text{end}}\right) p\left(\rho_{j}^{i} = a\right)$$

$$p\left(\rho^{n+1} \mid \rho^{1:n}\right) = \begin{cases} \frac{\alpha}{n+\alpha} & \text{if } \rho^{n+1} = m+1\\ n_{k} & \text{if } 1 < \alpha^{n+1} = k < m \end{cases}$$

Experiments

- Participants
 - have to solve 10 tasks
 - are incentivized to write short programs (to encourage subroutine use)

Figure 3: The tasks participants completed in the experiment.

The step cost model is a better fit to behavior than the MDL

Participant programs are inconsistent with alternative accounts

W W W S L J L W W W S R J R W W W S	L J S R W W W L J S R R J J S
59	1
18	15
13	13
-31.97	-33.17
	59 18 13

Participant programs are inconsistent with alternative accounts

Common programs are easier to write

Findings

- In this work, we find evidence that people favor both shorter programs and those with fewer actions.
- However, we additionally identify examples in which people prefer reusing subroutines above and beyond the predictions of either account.
- We formalize this preference as a prior belief that subroutine use should be biased towards subroutines that were used often in the past.