CLAIMS:

- 1. A neural transplantation device for use in combination with a syringe (3), including a syringe barrel (7) and plunger (12), comprising:
- a microinjector (1) adapted for connection to a proximal end of a syringe barrel (7) and in cooperation with a syringe plunger (12) for effecting incremental depression of the plunger (12); and
- a cannula (2) adapted for connection to a distal end of the syringe barrel (7), said cannula (2) having a single passageway with an open upper end and a lower end defining a blunt closed tip (14) and having a pair of side port holes (15A), (15B) that are diametrically opposed and slightly offset to each other near the vicinity of the cannula tip (14);
- whereby upon placement of the cannula (2) at a predetermined targeted neural site, the microinjector (1) is capable of effecting incremental depression of the plunger (12) to result in a metered delivery of the contents of the syringe barrel (7) through the cannula port holes (15A), (15B) at the targeted site.
- 2. The neural transplantation device according to Claim 1, characterized in that the microinjector (1) comprises:
- a longitudinal hollow cylindrical sleeve (4) extending into a cylindrical barrel (5) of larger diameter at the distal end thereof, said sleeve (4) capable of receiving a syringe plunger (12);
- a guide nut (8) rotatably adjustable within the cylindrical barrel (5) and adapted to cooperate with the proximal end of the syringe barrel (7); and
- a driving means rotatably mounted near the proximal end of the cylindrical sleeve (4) and adapted to cooperate with

the syringe plunger (12);

- whereby operation of the microinjector (1) in combination with the syringe (3) and the cannula (2) allows delivery of an injection such that rotation of the driving means renders a downward axial force to the plunger (12) of the syringe (3) thereby aspirating contents of the syringe barrel (7) through the side port holes (15A), (15B) of the cannula (2); while rotation of the guide nut (8) in the opposite direction moves the syringe (3) in an upward axial direction td reposition the cannula (2); and rotation of the driving means and the guide nut (8) in a repeated manner facilitates sequential delivery of multiple portions of the contents of the syringe barrel (7) along a single trajectory in a three-dimensional spiral array at a predetermined heural injection site.
 - The neural transplantation device according to Claim 2, characterized in that the guide nut (8) is a small hollow cylindrical spool with a collar (9) at its extreme distal end that acts as a lower boundary stop to limit its position inside the cylindrical barrel (5) when fully wound inside.
 - The heural transplantation device according to Claim 2 or 3, characterized in that an exterior wall of the guide nut (8) and an interior wall of the cylindrical barrel (5), which receives the guide nut (8), are threaded such that rotation of the guide nut (8) relative to the cylindrical barrel (5) causes a corresponding linear, axial movement of the guide nut (8) through the cylindrical barrel (5).
 - The neural transplantation device according to any one 5. of Claims 2 to \backslash 4, characterized in that the driving means. comprises a plunger driver (11) and a drive nut (10).

- 6. The neural transplantation device according to Claim 5, characterized in that the plunger driver (11) is adapted to cooperate with the proximal end of the syringe plunger (12) and a distal end of the drive nut (10) is engaged with a proximal end of the plunger driver (11), such that rotation of either the drive nut (10) or plunger driver (11) causes a corresponding linear, axial movement of the drive nut (10), plunger driver (11), and syringe plunger (12).
- 7. The neural transplantation device according to Claim 5 or 6, characterized in that an exterior wall of the longitudinal cylindrical sleeve (4) and an interior wall of the plunger driver (11) and the drive nut (10) are threaded such that rotation of either the plunger driver (11) or drive nut (10) relative to the cylindrical sleeve (4) causes a corresponding linear, axial movement of the plunger driver (11), drive nut (10), and the syringe plunger (12).
- 8. The neural transplantation device according to any one of Claims 1 to 7, characterized in that the cannula (2) has a length sufficient to linearly penetrate and enter a host brain such that the pair of side port holes (15A),(15B) is concurrently positionable at a predetermined targeted site within the host brain.
- 9. The neural transplantation device according to any one of Claims 1 to 8, characterized in that the cannula (2) has an outside diameter of about 0.8 mm.
- 10. The neural transplantation device according to any one of Claims 1 to 9, characterized in that the side port holes (15A), (15B) are positioned such that the distances between a distal edge of a first (15B) and a second side

port hole (15A) to the cannula tip (14) are about 1.0 mm and 3.0 mm, respectively.

- 11. The neural transplantation device according to any one of Claims 1 to 10, characterized in that the diameters of the side port holes are the same.
- 12. The neural transplantation device according to any one of Claims 1 to 11, characterized in that the diameter of each side port hole (15A), (15B) is 0.3 mm.
- 13. The neural transplantation device according to any one of Claims 1 to 12, characterized in that the microinjector (1) is manufactured from acetal nylon and ionized aluminum.
- 14. The neural transplantation device according to any one of Claims 1 to 13, characterized in that the cannula (2) is manufactured from stainless steel.
- 15. A method of using a neural transplantation device defined according to any one of Claims 2 to 14 for administering an imjection, comprising the steps of:
- positioning the syringe plunger (12) in an initial upward position;
- positioning the syringe barrel (7) with attached guide nut (8) in an essentially unwound position inside the cylindrical barrel (5) of the sleeve (4) of the microinjector (1);
- rotating the driving means to advance the syringe plunger (12) in a downward axial direction through the syringe barrel (7) thereby aspirating and depositing a portion of the contents of the syringe barrel (7) through the side port holes (15A), (15B) of the cannula (2);
- rotating the guide nut (8) to effectively withdraw the

syringe (3) and cannula (2) in an upward axial direction at a predetermined distance away from a previous neural target site; and

- repeating steps involving rotating the driving means to deliver a portion of the contents of the syringe barrel (7) and rotating the guide nut (8) to reposition the cannula (2), thereby resulting in sequential delivery of multiple portions of the contents of the syringe barrel (7) in a three-dimensional spiral array per single trajectory at a predetermined neural target site.
- 16. The method according to Claim 15, characterized in that the driving means comprises a plunger driver (11) and a drive nut (10).
- 17. The method according to Claim 16, characterized in that the plunger driver (11) is adapted to cooperate with the proximal end of the syringe plunger (12) and the distal end of the drive nut (10) is engaged with the proximal end of the plunger driver (11), such that rotation of either the drive nut (10) or plunger driver (11) causes a corresponding linear, axial movement of the drive nut (10), plunger driver (11), and syringe plunger (12).
- 18. The method according to Claim 16 or 17, characterized in that an exterior wall of the longitudinal cylindrical sleeve (4) and an interior wall of the plunger driver (11) and the drive nut (10) are threaded such that rotation of either the drive nut (10) or plunger driver (11) relative to the cylindrical sleeve (4) causes a corresponding linear, axial movement of the drive nut (10), plunger driver (11), and the syringe plunger (12).
- 19. A bullet guide (16) for use in combination with a stereotactic frame which functions as a mechanical guiding

system for the neural transplantation cannula according to any one of Claims 1 to 14, comprising:

- a top member (17) comprising a hollow cylindrical element having a closed end with an array of equidistantly spaced holes (19A) sized to accommodate the insertion of the cannula (2); and
- a bottom member (20) comprising a hollow cylindrical element of the same diameter as the top member (17) but having a longer longitudinal axis; said bottom member (20) being closed at both ends and each end having an array of equidistantly spaced holes (21A), (21B) sized to accommodate the insertion of the cannula (2);
- characterized in that the top member (17) and bottom member (20) are mounted in spaced coaxial alignment in the stereotactic frame with the respective arrays of holes (19A),(21A),(21B) in mutual alignment to guide deployment of the cannula (2) through an aligned set of said holes (19A),(21A),(21B) to a predetermined cerebral target.
- 20. The bullet guide (16) according to Claim 16, characterized in that the top member (17) and bottom member (20) are manufactured from acetal nylon.