

EasyPACK[™] module with Trench/Fieldstop IGBT H3 and rapid diode and PressFIT / NTC

Features

- · Electrical features
 - V_{CES} = 650 V
 - $I_{C nom} = 100 A / I_{CRM} = 200 A$
 - Increased blocking voltage capability up to 650 V
 - Low inductive design
 - Low switching losses
 - Low V_{CE,sat}
- Mechanical features
 - Al₂O₃ substrate with low thermal resistance
 - Compact design
 - PressFIT contact technology
 - Rugged mounting due to integrated mounting clamps

Potential applications

- Three-level applications
- Motor drives
- · Solar applications
- UPS systems

Product validation

• Qualified for industrial applications according to the relevant tests of IEC 60747, 60749 and 60068

Description

F3L100R07W2H3_B11 EasyPACK[™] module

Table of contents

	Description
	Features
	Potential applications
	Product validation
	Table of contents
1	Package
2	IGBT, T1 / T4
3	IGBT, T2 / T3 5
4	Diode, D1 / D4
5	Diode, D2 / D3
6	Diode, D5 / D6
7	NTC-Thermistor
8	Characteristics diagrams
9	Circuit diagram
10	Package outlines
11	Module label code
	Revision history
	Disclaimer 22

2

EasyPACK[™] module

1 Package

1 Package

Table 1 Insulation coordination

Parameter	Symbol	Note or test condition	Values	Unit
Isolation test voltage	V _{ISOL}	RMS, f = 50 Hz, t = 1 min	3.0	kV
Internal isolation		basic insulation (class 1, IEC 61140)	Al ₂ O ₃	
Creepage distance	d_{Creep}	terminal to heatsink	11.5	mm
Creepage distance	d_{Creep}	terminal to terminal	6.3	mm
Clearance	d _{Clear}	terminal to heatsink	10.0	mm
Clearance	d_{Clear}	terminal to terminal	5.0	mm
Comparative tracking index	CTI		>200	
Relative thermal index (electrical)	RTI	housing	140	°C

Table 2 Characteristic values

Parameter	Symbol	Symbol Note or test condition		Values		
			Min.	Тур.	Max.	
Stray inductance module	L _{sCE}			14		nH
Module lead resistance, terminals - chip	R _{CC'+EE'}	T _H =25°C, per switch		2.8		mΩ
Storage temperature	$T_{\rm stg}$		-40		125	°C
Mounting force per clamp	F		40		80	N
Weight	G			39		g

Note: The current under continuous operation is limited to 25A rms per connector pin

2 IGBT, T1 / T4

Table 3 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
Collector-emitter voltage	V _{CES}		T _{vj} = 25 °C	650	V
Implemented collector current	I _{CN}			100	А
Continuous DC collector current	I _{CDC}	T _{vj max} = 175 °C	T _H = 65 °C	70	А
Repetitive peak collector current	I _{CRM}	t _P = 1 ms		200	А
Gate-emitter peak voltage	V_{GES}			±20	V

F3L100R07W2H3_B11 EasyPACK[™] module

2 IGBT, T1 / T4

Table 4 **Characteristic values**

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Collector-emitter saturation	V _{CE sat}	$I_{\rm C}$ = 100 A, $V_{\rm GE}$ = 15 V	T _{vj} = 25 °C		1.68	2.00	V
voltage			T _{vj} = 125 °C		1.86		
			T _{vj} = 150 °C		1.89		
Gate threshold voltage	V_{GEth}	$I_{\rm C}$ = 1.6 mA, $V_{\rm CE}$ = $V_{\rm GE}$, $T_{\rm vj}$	= 25 °C	5.05	5.75	6.45	٧
Gate charge	Q _G	$V_{GE} = \pm 15 \text{ V}, V_{CE} = 400 \text{ V}$	$V_{GE} = \pm 15 \text{ V}, V_{CE} = 400 \text{ V}$		1		μC
Internal gate resistor	R_{Gint}	T _{vj} = 25 °C			0		Ω
Input capacitance	C _{ies}	$f = 100 \text{ kHz}, T_{vj} = 25 ^{\circ}\text{C}, V_{c}$	_{CE} = 650 V, V _{GE} = 0 V		5.9		nF
Reverse transfer capacitance	C_{res}	$f = 100 \text{ kHz}, T_{vj} = 25 \text{ °C}, V_{c}$	_{CE} = 650 V, V _{GE} = 0 V		0.192		nF
Collector-emitter cut-off current	I _{CES}	$V_{CE} = 650 \text{ V}, V_{GE} = 0 \text{ V}$	T _{vj} = 25 °C			0.008	mA
Gate-emitter leakage current	I _{GES}	$V_{\text{CE}} = 650 \text{ V}, V_{\text{GE}} = 0 \text{ V}, T_{\text{vj}} =$	= 25 °C			100	nA
Turn-on delay time	t _{don}	$I_{\rm C}$ = 100 A, $V_{\rm CE}$ = 300 V,	T _{vj} = 25 °C		0.026		μs
(inductive load)		$V_{\rm GE} = \pm 15 \text{ V}, R_{\rm Gon} = 5.1 \Omega$	T _{vj} = 125 °C		0.027		
			T _{vj} = 150 °C		0.027		
Rise time (inductive load)	t _r	$I_{\rm C} = 100 \text{A}, V_{\rm CE} = 300 \text{V},$	T _{vj} = 25 °C		0.028		μs
		$V_{\rm GE} = \pm 15 \text{ V}, R_{\rm Gon} = 5.1 \Omega$	T _{vj} = 125 °C		0.038		
			T _{vj} = 150 °C		0.040		
Turn-off delay time	t_{doff}	$I_{\rm C} = 100 \text{A}, V_{\rm CE} = 300 \text{V},$	T _{vj} = 25 °C		0.200		μs
(inductive load)		$V_{\rm GE}$ = ±15 V, $R_{\rm Goff}$ = 5.1 Ω	T _{vj} = 125 °C		0.220		
			T _{vj} = 150 °C		0.230		
Fall time (inductive load)	t _f	$I_{\rm C}$ = 100 A, $V_{\rm CE}$ = 300 V,	T _{vj} = 25 °C		0.044		μs
		$V_{\rm GE} = \pm 15 \text{ V}, R_{\rm Goff} = 5.1 \Omega$	T _{vj} = 125 °C		0.081		
			T _{vj} = 150 °C		0.091		
Turn-on energy loss per	E _{on}	$I_{\rm C}$ = 100 A, $V_{\rm CE}$ = 300 V,	T _{vj} = 25 °C		2.2		mJ
pulse		L_{σ} = 35 nH, V_{GE} = ±15 V, R_{Gon} = 5.1 Ω , di/dt =	T _{vj} = 125 °C		2.71		1
		$3400 \text{ A/µs } (T_{vj} = 150 \text{ °C})$	T _{vj} = 150 °C		2.75		
Turn-off energy loss per	E _{off}	$I_{\rm C}$ = 100 A, $V_{\rm CE}$ = 300 V,	T _{vj} = 25 °C		1.44		mJ
pulse		$L_{\sigma} = 35 \text{ nH}, V_{GE} = \pm 15 \text{ V},$	T _{vj} = 125 °C		2.14		-
		$R_{\text{Goff}} = 5.1 \Omega, \text{dv/dt} = 5200 \text{V/}\mu\text{s} (\text{T}_{\text{vj}} = 150 ^{\circ}\text{C})$	T _{vj} = 150 °C		2.38		
Thermal resistance, junction to heat sink	R _{thJH}	per IGBT	•		0.782		K/W
Temperature under switching conditions	T _{vj op}			-40		150	°C

EasyPACK[™] module

3 IGBT, T2 / T3

3 IGBT, T2 / T3

Table 5 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
Collector-emitter voltage	V _{CES}		T _{vj} = 25 °C	650	V
Implemented collector current	I _{CN}			100	А
Continuous DC collector current	I _{CDC}	T _{vj max} = 175 °C	T _H = 65 °C	70	А
Repetitive peak collector current	I _{CRM}	t _P = 1 ms		200	А
Gate-emitter peak voltage	V_{GES}			±20	V

Table 6 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Collector-emitter saturation	V _{CE sat}	$I_{\rm C}$ = 100 A, $V_{\rm GE}$ = 15 V	T _{vj} = 25 °C		1.45	1.90	٧
voltage			T _{vj} = 125 °C		1.61		
			T _{vj} = 150 °C		1.68		
Gate threshold voltage	V _{GEth}	$I_{\rm C}$ = 1.6 mA, $V_{\rm CE}$ = 20 V, $T_{\rm vj}$	= 25 °C	5.05	5.75	6.45	V
Gate charge	Q _G	$V_{\rm GE}$ = ±15 V, $V_{\rm CE}$ = 400 V			1		μC
Internal gate resistor	R _{Gint}	T _{vj} = 25 °C			0		Ω
Input capacitance	C _{ies}	$f = 100 \text{ kHz}, T_{\text{vj}} = 25 ^{\circ}\text{C}, V_{\text{C}}$	_{EE} = 650 V, V _{GE} = 0 V		6.2		nF
Reverse transfer capacitance	C _{res}	$f = 100 \text{ kHz}, T_{\text{vj}} = 25 ^{\circ}\text{C}, V_{\text{C}}$	_{EE} = 650 V, V _{GE} = 0 V		0.19		nF
Collector-emitter cut-off current	I _{CES}	$V_{CE} = 650 \text{ V}, V_{GE} = 0 \text{ V}$	T _{vj} = 25 °C			0.032	mA
Gate-emitter leakage current	I _{GES}	$V_{\text{CE}} = 650 \text{ V}, V_{\text{GE}} = 0 \text{ V}, T_{\text{vj}} =$	= 25 °C			100	nA
Turn-on delay time		$I_{\rm C} = 100 \text{ A}, V_{\rm CE} = 300 \text{ V},$ $V_{\rm GE} = \pm 15 \text{ V}, R_{\rm Gon} = 1.5 \Omega$	T _{vj} = 25 °C		0.014		μs
(inductive load)			T _{vj} = 125 °C		0.015		
			T _{vj} = 150 °C		0.015		
Rise time (inductive load)	t _r	$I_{\rm C}$ = 100 A, $V_{\rm CE}$ = 300 V,	T _{vj} = 25 °C		0.014		μs
		$V_{\rm GE} = \pm 15 \text{ V}, R_{\rm Gon} = 1.5 \Omega$	T _{vj} = 125 °C		0.021		
			T _{vj} = 150 °C		0.022		1
Turn-off delay time	$t_{ m doff}$	$I_{\rm C}$ = 100 A, $V_{\rm CE}$ = 300 V,	T _{vj} = 25 °C		0.168		μs
(inductive load)		$V_{\rm GE} = \pm 15 \text{ V}, R_{\rm Goff} = 1.5 \Omega$	T _{vj} = 125 °C		0.194		=
			T _{vj} = 150 °C		0.201		
Fall time (inductive load)	t _f	$I_{\rm C}$ = 100 A, $V_{\rm CE}$ = 300 V,	T _{vj} = 25 °C		0.107		μs
		$V_{\rm GE} = \pm 15 \text{ V}, R_{\rm Goff} = 1.5 \Omega$	T _{vj} = 125 °C		0.156		
			T _{vj} = 150 °C		0.172		

heet 5 Revision 1.00 2021-12-09

EasyPACK[™] module

4 Diode, D1 / D4

Table 6 (continued) Characteristic values

Parameter	Symbol	Note or test condition			Values		
				Min.	Тур.	Max.	
Turn-on energy loss per	0	$I_{\rm C}$ = 100 A, $V_{\rm CE}$ = 300 V,	T _{vj} = 25 °C		0.261		mJ
pulse		L_{σ} = 35 nH, V_{GE} = ±15 V, R_{Gon} = 1.5 Ω , di/dt =	<i>T</i> _{vj} = 125 °C		0.469		
		3900 A/μs (T _{vj} = 150 °C)	T _{vj} = 150 °C		0.538		
Turn-off energy loss per	٠	$I_{\rm C}$ = 100 A, $V_{\rm CE}$ = 300 V, L_{σ} = 35 nH, $V_{\rm GE}$ = ±15 V, $R_{\rm Goff}$ = 1.5 Ω , dv/dt = 3600 V/µs ($T_{\rm Vj}$ = 150 °C)	T _{vj} = 25 °C		2.45		mJ
pulse			T _{vj} = 125 °C		3.31		
			<i>T</i> _{vj} = 150 °C		3.53		
Thermal resistance, junction to heat sink	R _{thJH}	per IGBT			0.782		K/W
Temperature under switching conditions	T _{vj op}			-40		150	°C

4 Diode, D1 / D4

Table 7 Maximum rated values

Parameter	Symbol	Note or test condition	Note or test condition		Unit
Repetitive peak reverse voltage	V_{RRM}		T _{vj} = 25 °C	650	V
Continuous DC forward current	I _F			100	А
Repetitive peak forward current	/ _{FRM}	t _P = 1 ms		200	А
I ² t - value	l ² t	$V_{\rm R}$ = 0 V, $t_{\rm P}$ = 10 ms	T _{vj} = 125 °C	1750	A ² s
			T _{vj} = 150 °C	1650	

Table 8 Characteristic values

Parameter	Symbol	Note or test condition		Values			Unit
				Min.	Тур.	Max.	
Forward voltage	V_{F}	$I_{\rm F} = 100 \text{ A}, V_{\rm GE} = 0 \text{ V}$	T _{vj} = 25 °C		1.55	1.95	V
			T _{vj} = 125 °C		1.50		
			T _{vj} = 150 °C		1.45		
Peak reverse recovery	I _{RM}	$I_{\rm F} = 100 \text{ A}, V_{\rm R} = 300 \text{ V},$	T _{vj} = 25 °C		87.9		Α
current		$V_{GE} = -15 \text{ V}, -\text{di}_F/\text{dt} = 3900 \text{ A}/\mu\text{s} (T_{vi} = 150 ^{\circ}\text{C})$	T _{vj} = 125 °C		102		
		3300 γγ μ3 (1 γγ – 130 ° C)	T _{vj} = 150 °C		104		

(table continues...)

EasyPACK[™] module

5 Diode, D2 / D3

Table 8 (continued) Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Мах.	
Recovered charge	Q _r	$I_{\rm F} = 100 \text{A}, V_{\rm R} = 300 \text{V},$	T _{vj} = 25 °C		3.77		μC
	$ 3900 \text{ A/}\mu\text{S} (1_{vi} = 150 \text{ C}) $	T _{vj} = 125 °C		7.07			
		3300 Α/μ3 (1 _{γj} – 130 °C)	T _{vj} = 150 °C		8.26		
Reverse recovery energy		T _{vj} = 25 °C		0.835		mJ	
		$V_{GE} = -15 \text{ V, } -\text{di}_{F}/\text{dt} = 3900 \text{ A/µs } (T_{vi} = 150 ^{\circ}\text{C})$	T _{vj} = 125 °C		1.52		
		3900 A/μs (1 _{vj} – 130 °C)	T _{vj} = 150 °C		1.73		
Thermal resistance, junction to heat sink	R _{thJH}	per diode			0.975		K/W
Temperature under switching conditions	T _{vj op}			-40		150	°C

5 Diode, D2 / D3

Table 9 Maximum rated values

Parameter	Symbol	Note or test condition	on	Values	Unit
Repetitive peak reverse voltage	V_{RRM}		T _{vj} = 25 °C	650	V
Continuous DC forward current	I _F			100	А
Repetitive peak forward current	/ _{FRM}	t _P = 1 ms		200	А
I ² t - value	l ² t	$V_{\rm R}$ = 0 V, $t_{\rm P}$ = 10 ms	T _{vj} = 125 °C	1750	A ² s
			T _{vj} = 150 °C	1650	

Table 10 Characteristic values

Parameter	Symbol	Note or test condition		Values			Unit
					Тур.	Max.	
Forward voltage	V_{F}	$I_{\rm F} = 100 \text{ A}, V_{\rm GE} = 0 \text{ V}$	T _{vj} = 25 °C		1.55	1.95	V
			T _{vj} = 125 °C		1.50		
			T _{vj} = 150 °C		1.45		
Peak reverse recovery	I _{RM}	$I_{\rm F} = 100 \text{ A}, V_{\rm R} = 300 \text{ V},$	T _{vj} = 25 °C		87.9		А
current		$V_{GE} = -15 \text{ V, } -\text{di}_{F}/\text{dt} = 3900 \text{ A/µs } (T_{vi} = 150 ^{\circ}\text{C})$	T _{vj} = 125 °C		102		
		3900 Α/ μ3 (Τν) – 130 °C)	T _{vi} = 150 °C		104		

(table continues...)

EasyPACK[™] module

6 Diode, D5 / D6

Table 10 (continued) Characteristic values

Parameter	Symbol	Note or test condition			Values		
				Min.	Тур.	Max.	
Recovered charge	Qr	$I_F = 100 \text{ A}, V_R = 300 \text{ V},$ $V_{GE} = -15 \text{ V}, -\text{di}_F/\text{dt} =$ $3900 \text{ A}/\mu\text{s} (T_{vj} = 150 \text{ °C})$	<i>T</i> _{vj} = 25 °C		3.77		μC
			<i>T</i> _{vj} = 125 °C		7.07		
			<i>T</i> _{vj} = 150 °C		8.26		
Reverse recovery energy	V _{GE} =	$I_F = 100 \text{ A}, V_R = 300 \text{ V},$ $V_{GE} = -15 \text{ V}, -\text{di}_F/\text{dt} =$ $3900 \text{ A/}\mu\text{s} (T_{vj} = 150 \text{ °C})$	<i>T</i> _{vj} = 25 °C		0.835		mJ
			T _{vj} = 125 °C		1.52		
			T _{vj} = 150 °C		1.73		
Thermal resistance, junction to heat sink	R _{thJH}	per diode			0.975		K/W
Temperature under switching conditions	T _{vj op}			-40		150	°C

6 Diode, D5 / D6

Table 11 Maximum rated values

Parameter	Symbol	Note or test condition	on	Values	Unit
Repetitive peak reverse voltage	V_{RRM}		T _{vj} = 25 °C	650	V
Continuous DC forward current	I _F		·	100	А
Repetitive peak forward current	/ _{FRM}	t _P = 1 ms		200	А
I ² t - value	l ² t	$V_{\rm R}$ = 0 V, $t_{\rm P}$ = 10 ms	T _{vj} = 125 °C	1670	A ² s
			T _{vj} = 150 °C	1540	

Table 12 Characteristic values

Parameter	Symbol	Note or test condition		Values			Unit
				Min.	Тур.	Max.	
Forward voltage	V_{F}	$I_{\rm F} = 100 \text{ A}, V_{\rm GE} = 0 \text{ V}$	T _{vj} = 25 °C		1.65	2.15	V
			T _{vj} = 125 °C		1.55		
			T _{vj} = 150 °C		1.50		
Peak reverse recovery	I _{RM}	$I_{\rm F}$ = 100 A, $V_{\rm R}$ = 300 V,	T _{vj} = 25 °C		63.8		А
current		$V_{GE} = -15 \text{ V, } -\text{di}_{F}/\text{dt} = 3400 \text{ A/} \mu \text{s } (T_{vi} = 150 \text{ °C})$	T _{vj} = 125 °C		81.4		
		3400 A/μ3 (1 _{Vj} – 130 C)	T _{vj} = 150 °C		85.3		1

(table continues...)

EasyPACK[™] module

7 NTC-Thermistor

Table 12 (continued) Characteristic values

Parameter	Symbol	Note or test condition			Values		
				Min.	Тур.	Max.	
Recovered charge	Q _r	$I_F = 100 \text{ A}, V_R = 300 \text{ V},$ $V_{GE} = -15 \text{ V}, -\text{di}_F/\text{dt} =$ $3400 \text{ A}/\mu\text{s} (T_{vj} = 150 \text{ °C})$	T _{vj} = 25 °C		3.68		μC
			T _{vj} = 125 °C		5.42		
			T _{vj} = 150 °C		6.06		
Reverse recovery energy	V _{GE}	$I_F = 100 \text{ A}, V_R = 300 \text{ V},$ $V_{GE} = -15 \text{ V}, -\text{di}_F/\text{dt} =$ $3400 \text{ A/}\mu\text{s} (T_{vj} = 150 \text{ °C})$	T _{vj} = 25 °C		0.512		mJ
			T _{vj} = 125 °C		0.994		
			T _{vj} = 150 °C		1.16		
Thermal resistance, junction to heat sink	R_{thJH}	per diode			1.01		K/W
Temperature under switching conditions	T _{vj op}			-40		150	°C

7 NTC-Thermistor

Table 13 Characteristic values

Parameter	Symbol	mbol Note or test condition		Values		
			Min.	Тур.	Max.	
Rated resistance	R ₂₅	T _{NTC} = 25 °C		5		kΩ
Deviation of R ₁₀₀	∆R/R	$T_{\rm NTC}$ = 100 °C, R_{100} = 493 Ω	-5		5	%
Power dissipation	P ₂₅	T _{NTC} = 25 °C			20	mW
B-value	B _{25/50}	$R_2 = R_{25} \exp[B_{25/50}(1/T_2-1/(298,15 \text{ K}))]$		3375		К
B-value	B _{25/80}	$R_2 = R_{25} \exp[B_{25/80}(1/T_2-1/(298,15 \text{ K}))]$		3411		К
B-value	B _{25/100}	$R_2 = R_{25} \exp[B_{25/100}(1/T_2-1/(298,15 \text{ K}))]$		3433		K

Note: Specification according to the valid application note.

8 Characteristics diagrams

8 Characteristics diagrams

Output characteristic (typical), IGBT, T1 / T4

 $I_C = f(V_{CE})$

 $V_{GE} = 15 V$

Output characteristic field (typical), IGBT, T1 / T4

 $I_C = f(V_{CE})$

T_{vj} = 150 °C

Transfer characteristic (typical), IGBT, T1 / T4

 $I_C = f(V_{GE})$

 $V_{CE} = 20 \text{ V}$

Switching losses (typical), IGBT, T1 / T4

 $E = f(I_C)$

 $R_{Goff} = 5.1 \Omega$, $R_{Gon} = 5.1 \Omega$, $V_{CE} = 300 V$, $V_{GE} = \pm 15 V$

EasyPACK[™] module

8 Characteristics diagrams

Switching losses (typical), IGBT, T1 / T4

 $E = f(R_G)$

 I_C = 100 A, V_{CE} = 300 V, V_{GE} = ± 15 V

Switching times (typical), IGBT, T1 / T4

 $t = f(I_C)$

 R_{Goff} = 5.1 $\Omega,\,R_{Gon}$ = 5.1 $\Omega,\,V_{CE}$ = 300 V, V_{GE} = ± 15 V, T_{vj} = 150 °C

Switching times (typical), IGBT, T1 / T4

 $t = f(R_G)$

 $I_C = 100 \text{ A}, V_{CE} = 300 \text{ V}, V_{GE} = \pm 15 \text{ V}, T_{vi} = 150 \text{ °C}$

Transient thermal impedance , IGBT, T1 / T4 $\,$

 $Z_{th} = f(t)$

11

EasyPACK[™] module

Reverse bias safe operating area (RBSOA), IGBT, T1 / T4

 $I_C = f(V_{CE})$

 $R_{Goff} = 5.1 \Omega$, $V_{GE} = \pm 15 V$, $T_{vi} = 150 °C$

Output characteristic (typical), IGBT, T2 / T3

 $I_C = f(V_{CE})$

V_{GE} = 15 V

Output characteristic field (typical), IGBT, T2 / T3

 $I_C = f(V_{CE})$

T_{vi} = 150 °C

Transfer characteristic (typical), IGBT, T2 / T3

 $I_C = f(V_{GE})$

V_{CE} = 20 V

EasyPACK[™] module

8 Characteristics diagrams

Transient thermal impedance , IGBT, T2 / T3 $\,$

$$Z_{th} = f(t)$$

Switching losses (typical), IGBT, T2 / T3

 $E = f(I_C)$

 R_{Goff} = 1.5 $\Omega,\,R_{Gon}$ = 1.5 $\Omega,\,V_{GE}$ = ±15 V, V_{CE} = 300 V

Switching losses (typical), IGBT, T2 / T3

 $E = f(R_G)$

 $V_{GE} = \pm 15 \text{ V}, I_{C} = 100 \text{ A}, V_{CE} = 300 \text{ V}$

Switching times (typical), IGBT, T2 / T3

 $t = f(I_C)$

 R_{Goff} = 1.5 $\Omega,\,R_{Gon}$ = 1.5 $\Omega,\,V_{GE}$ = ±15 V, V_{CE} = 300 V, T_{vj} = 150 °C

EasyPACK[™] module

Switching times (typical), IGBT, T2 / T3

 $t = f(R_G)$

$$V_{GE} = \pm 15 \text{ V}, I_{C} = 100 \text{ A}, V_{CE} = 300 \text{ V}, T_{vj} = 150 ^{\circ}\text{C}$$

Reverse bias safe operating area (RBSOA), IGBT, T2 /

 $I_C = f(V_{CE})$

$$R_{Goff} = 1.5 \Omega$$
, $V_{GE} = \pm 15 V$, $T_{vj} = 150 °C$

Forward characteristic (typical), Diode, D1 / D4

 $I_F = f(V_F)$

Transient thermal impedance, Diode, D1 / D4

 $Z_{th} = f(t)$

EasyPACK[™] module

8 Characteristics diagrams

Switching losses (typical), Diode, D1 / D4

$$R_{Gon} = 1.5 \Omega, V_R = 300 V$$

Switching losses (typical), Diode, D1 / D4

$$E_{rec} = f(R_G)$$

$$I_F = 100 A, V_R = 300 V$$

Forward characteristic (typical), Diode, D2 / D3 $\,$

$$I_F = f(V_F)$$

Transient thermal impedance, Diode, D2 / D3

$$Z_{th} = f(t)$$

EasyPACK[™] module

8 Characteristics diagrams

Switching losses (typical), Diode, D2 / D3

 $E_{rec} = f(I_F)$

 $R_{Gon} = 1.5 \Omega, V_R = 300 V$

Switching losses (typical), Diode, D2 / D3

 $E_{rec} = f(R_G)$

 $I_F = 100 A, V_R = 300 V$

Forward characteristic (typical), Diode, D5 / D6 $\,$

 $I_F = f(V_F)$

Transient thermal impedance, Diode, D5 / D6

 $Z_{th} = f(t)$

EasyPACK[™] module

Switching losses (typical), Diode, D5 / D6

 $E_{rec} = f(I_F)$

 $R_{Gon} = 5.1 \Omega, V_R = 300 V$

Switching losses (typical), Diode, D5 / D6

 $E_{rec} = f(R_G)$

 $I_F = 100 A, V_R = 300 V$

Temperature characteristic (typical), NTC-Thermistor

 $R = f(T_{NTC})$

9 Circuit diagram

9 Circuit diagram

Figure 1

10 Package outlines

10 Package outlines

Figure 2

11 Module label code

11 Module label code

Code format	Data Matrix		Barcode C	Codo128		
Code format	Data Matrix		Darcoue			
Encoding	ASCII text		Code Set A	A		
Symbol size	16x16		23 digits			
Standard	IEC24720 and IEC16022		IEC8859-1	-		
Code content	Content	Digit		Example		
	Module serial number	1-5		71549		
	Module material number	6 - 11		142846		
	Production order number	12 - 19		55054991		
	Date code (production year)	20 – 21		15		
	Date code (production week)	22 – 23		30		
Example	MANUFACTURE V					
	65-49					
	71549142846550549911530	16550549911530				

Figure 3

F3L100R07W2H3_B11 EasyPACK[™] module

Revision history

Document revision	Date of release	Description of changes
0.10	2021-09-09	Target datasheet
1.00	2021-12-09	Final datasheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-12-09 Published by Infineon Technologies AG 81726 Munich, Germany

© 2021 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-ABA972-002

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.