0.1 EXTENDED MODEL DEVELOPMENT

In this section, we present the extended and detailed development of the regional model presented in Section (??).

0.1.1 Household

The household problem is divided into two steps: first, the household must minimize the consumption costs, and then maximize the utility, which is subject to a budget constraint.

Cost Minimization Problem

Considering that the representative household must decide to consume goods from both regions, there must be a consumption bundle index $C_{\eta t}$ and a consumption price index $Q_{\eta t}$ that minimize the total consumption cost $Q_{\eta t}C_{\eta t}$, as demonstrated by Walsh (2017, p.424):

$$\min_{C_{\eta_{1t}}, C_{\eta_{2t}}} : \quad Q_{\eta t} C_{\eta t} = P_{1t} C_{\eta_{1t}} + P_{2t} C_{\eta_{2t}} \tag{0.1}$$

s. t.:
$$C_{\eta t} = C_{\eta 1 t}^{\omega_{\eta 1}} C_{\eta 2 t}^{1 - \omega_{\eta 1}}$$
 (0.2) $C_{\eta t} > 0$

where P_{1t} and P_{2t} are the prices of goods 1 and 2, respectively, $C_{\eta 1t}$ and $C_{\eta 2t}$ are the goods produced in region 1 and 2, respectively, and consumed in region η . In the consumption aggregation, $\omega_{\eta 1}$ and $(1 - \omega_{\eta 1})$ are the weights of goods $C_{\eta 1t}$ and $C_{\eta 2t}$, respectively, in the consumption bundle $C_{\eta t}$.

Lagrangian

The minimization problem with a constraint can be reformulated into one without a constraint by applying the Lagrangian function:

$$\mathcal{L} = P_{1t}C_{\eta 1t} + P_{2t}C_{\eta 2t} - Q_{\eta t}(C_{\eta 1t}^{\omega_{\eta 1}}C_{\eta 2t}^{1-\omega_{\eta 1}} - C_{\eta t})$$

$$\tag{0.3}$$

First Order Conditions

The first order conditions are:

$$C_{\eta 1t}: P_{1t} - Q_{\eta t} \omega_{\eta 1} C_{\eta 1t}^{\omega_{\eta 1} - 1} C_{\eta 2t}^{1 - \omega_{\eta 1}} = 0 \implies C_{\eta 1t} = \frac{\omega_{\eta 1} Q_{\eta t} C_{\eta t}}{P_{1t}}$$

$$(0.4)$$

$$C_{\eta 2t}: P_{2t} - Q_{\eta t} (1 - \omega_{\eta 1}) C_{\eta 1t}^{\omega_{\eta 1}} C_{\eta 2t}^{-\omega_{\eta 1}} = 0 \implies$$

$$C_{\eta 2t} = \frac{(1 - \omega_{\eta 1}) Q_{\eta t} C_{\eta t}}{P_{2t}}$$
(0.5)

$$Q_{\eta t}: \quad C_{\eta t} = C_{\eta 1 t}^{\omega_{\eta 1}} C_{\eta 2 t}^{1 - \omega_{\eta 1}} \tag{0.2}$$

Solutions

Divide 0.5 by 0.4:

$$\frac{C_{\eta^{2t}}}{C_{\eta^{1t}}} = \frac{(1 - \omega_{\eta^{1}})Q_{\eta^{t}}C_{\eta^{t}}/P_{2t}}{\omega_{\eta^{1}}Q_{\eta^{t}}C_{\eta^{t}}/P_{1t}} \Longrightarrow
C_{\eta^{2t}} = C_{\eta^{1t}} \frac{(1 - \omega_{\eta^{1}})P_{1t}}{\omega_{\eta^{1}}P_{2t}} \tag{0.6}$$

Substitute 0.6 in 0.2:

$$C_{\eta t} = C_{\eta 1 t}^{\omega_{\eta 1}} \left[C_{\eta 1 t} \frac{(1 - \omega_{\eta 1}) P_{1 t}}{\omega_{\eta 1} P_{2 t}} \right]^{1 - \omega_{\eta 1}} \Longrightarrow$$

$$C_{\eta 1 t} = C_{\eta t} \left(\frac{P_{2 t} \omega_{\eta 1}}{P_{1 t} (1 - \omega_{\eta 1})} \right)^{1 - \omega_{\eta 1}} \tag{0.7}$$

Substitute 0.4 and 0.5 in 0.2:

$$C_{\eta t} = \left(\frac{\omega_{\eta 1} Q_{\eta t} C_{\eta t}}{P_{1t}}\right)^{\omega_{\eta 1}} \left(\frac{(1 - \omega_{\eta 1}) Q_{\eta t} C_{\eta t}}{P_{2t}}\right)^{1 - \omega_{\eta 1}} \Longrightarrow$$

$$Q_{\eta t} = \left(\frac{P_{1t}}{\omega_{\eta 1}}\right)^{\omega_{\eta 1}} \left(\frac{P_{2t}}{1 - \omega_{\eta 1}}\right)^{1 - \omega_{\eta 1}} \tag{0.8}$$

Therefore, there is a consumption bundle $C_{\eta t}$ and a consumption price index $Q_{\eta t}$ that minimize the total consumption cost $Q_{\eta t}C_{\eta t}$ for the household in region η . Notice

that the cost problems of both regions are (must be) related, as the consumption level in one region influences the demand for goods in both regions. Now, this result will be used in the next problem that the household faces.

Utility Maximization Problem

Following the models presented by Costa Junior (2016) and Solis-Garcia (2022), the representative household next problem is to maximize an intertemporal utility function U_{η} with respect to consumption $C_{\eta t}$ and labor $L_{\eta t}$, subject to a budget constraint, a capital accumulation rule and the non-negativity of real variables:

$$\max_{C_{\eta t}, L_{\eta t}, K_{\eta, t+1}} : U_{\eta}(C_{\eta t}, L_{\eta t}) = \mathbb{E}_{t} \sum_{t=0}^{\infty} \beta^{t} \left(\frac{C_{\eta t}^{1-\sigma}}{1-\sigma} - \phi \frac{L_{\eta t}^{1+\varphi}}{1+\varphi} \right)$$
(0.9)

s.t.:
$$Q_{\eta t}C_{\eta t} + P_{\eta t}I_{\eta t} = W_{\eta t}L_{\eta t} + R_t K_{\eta t} + \Pi_{\eta t}$$
 (0.10)

$$K_{\eta,t+1} = (1 - \delta)K_{\eta t} + I_{\eta t} \tag{0.11}$$

$$C_{\eta t}$$
, $L_{\eta t}$, $K_{\eta t} > 0$

where \mathbb{E}_t is the expectation operator, β is the intertemporal discount factor, σ is the relative risk aversion coefficient, ϕ is the relative labor weight in utility, φ is the marginal disutility of labor supply. In the budget constraint, $I_{\eta t}$ is the investment, $W_{\eta t}$ is the wage level, $K_{\eta t}$ is the capital, R_t is the return on capital, and $\Pi_{\eta t}$ is the firm profit. In the capital accumulation rule, δ is the capital depreciation rate.

Isolate $I_{\eta t}$ in 0.11 and substitute in 0.10:

$$I_{\eta t} = K_{\eta, t+1} - (1 - \delta) K_{\eta t} \tag{0.12}$$

$$Q_{\eta t}C_{\eta t} + P_{\eta t}(K_{\eta,t+1} - (1-\delta)K_{\eta t}) = W_{\eta t}L_{\eta t} + R_t K_{\eta t} + \Pi_{\eta t}$$
(0.13)

Lagrangian

The maximization problem with restrictions can be transformed into one without restriction using the Lagrangian function \mathcal{L} formed by 0.9 and 0.13:

$$\mathcal{L} = \mathbb{E}_{t} \sum_{t=0}^{\infty} \beta^{t} \left\{ \left(\frac{C_{\eta t}^{1-\sigma}}{1-\sigma} - \phi \frac{L_{\eta t}^{1+\varphi}}{1+\varphi} \right) - \mu_{\eta t} \left[Q_{\eta t} C_{\eta t} + P_{\eta t} (K_{\eta,t+1} - (1-\delta)K_{\eta t}) - (W_{\eta t} L_{\eta t} + R_{t} K_{\eta t} + \Pi_{\eta t}) \right] \right\}$$
(0.14)

First Order Conditions

The first order conditions are:

$$C_{\eta t}: \quad \beta^{t} \left\{ \frac{(1-\sigma)C_{\eta t}^{-\sigma}}{1-\sigma} - \mu_{\eta t} \left[Q_{\eta t} \right] \right\} = 0 \implies$$

$$\mu_{\eta t} = \frac{C_{\eta t}^{-\sigma}}{Q_{\eta t}} \qquad (0.15)$$

$$L_{\eta t}: \quad \beta^{t} \left\{ -\phi \frac{(1+\varphi)L_{\eta t}^{1+\varphi}}{1+\varphi} - \mu_{\eta t} \left[-W_{\eta t} \right] \right\} = 0 \implies$$

$$\mu_{\eta t} = \frac{\phi L_{\eta t}^{\varphi}}{W_{\eta t}} \qquad (0.16)$$

$$K_{\eta,t+1}: \quad \beta^{t} \left\{ -\mu_{\eta t} [P_{\eta t}] \right\} + \mathbb{E}_{t} \beta^{t+1} \left\{ -\mu_{\eta,t+1} [-(P_{\eta,t+1}(1-\delta) + R_{t+1})] \right\} = 0 \implies$$

$$\mu_{\eta t} P_{\eta t} = \beta \mathbb{E}_{t} \left\{ \mu_{\eta,t+1} [P_{\eta,t+1}(1-\delta) + R_{t+1}] \right\} \qquad (0.17)$$

$$\mu_{\eta t}: \quad Q_{\eta t} C_{\eta t} + P_{\eta t} (K_{\eta,t+1} - (1-\delta)K_{\eta t}) = W_{\eta t} L_{\eta t} + R_{t} K_{\eta t} + \Pi_{\eta t} \qquad (0.13)$$

Solutions

Match 0.15 and 0.16:

$$\mu_{\eta t} = \frac{C_{\eta t}^{-\sigma}}{Q_{\eta t}} = \frac{\phi L_{\eta t}^{\varphi}}{W_{\eta t}} \Longrightarrow$$

$$\frac{\phi L_{\eta t}^{\varphi}}{C_{\eta t}^{-\sigma}} = \frac{W_{\eta t}}{Q_{\eta t}} \tag{0.18}$$

Equation 0.18 is the Household Labor Supply and shows that the marginal rate of substitution (MRS) of labor for consumption is equal to the real wage, which is the relative price between labor and goods.

Substitute $\mu_{\eta t}$ and $\mu_{\eta,t+1}$ from equation 0.15 in 0.17:

$$\frac{C_{\eta t}^{-\sigma}}{Q_{\eta t}} P_{\eta t} = \beta \mathbb{E}_{t} \left\{ \frac{C_{\eta t}^{-\sigma}}{Q_{\eta t}} [P_{\eta,t+1}(1-\delta) + R_{t+1}] \right\} \Longrightarrow$$

$$\frac{\mathbb{E}_{t} \left\{ Q_{\eta,t+1} C_{\eta,t+1}^{\sigma} \right\}}{Q_{\eta t} C_{\eta t}^{\sigma}} = \beta \frac{\mathbb{E}_{t} \left\{ P_{\eta,t+1}(1-\delta) + R_{t+1} \right\}}{P_{\eta t}} \tag{0.19}$$

Equation 0.19 is the Euler equation for the return on capital.

Firms

Consider two types of firms: (1) a continuum of intermediate-goods firms, which operate in monopolistic competition and each produce one variety with imperfect substitution level between each other and (2) the final-goods firm, which aggregates all these varieties into a final bundle and operates in perfect competition.

0.1.2 Final-Goods Firm

Profit Maximization Problem

The role of the final-goods firm is to aggregate all the varieties $Y_{\eta jt}$ produced by the intermediate-goods firms in each region $\eta \in \{1,2\}$, so that the representative consumer can buy only one good $Y_{\eta t}$, the bundle good, from each region.

The final-goods firm problem is to maximize its profit, considering that its output is the bundle $Y_{\eta t}$ formed by a continuum $j \in [0,1]$ of intermediate-goods $Y_{\eta jt}$, with elasticity of substitution between intermediate-goods ψ :

$$\max_{Y_{\eta j t}}: P_{\eta t} Y_{\eta t} - \int_{0}^{1} P_{\eta j t} Y_{\eta j t} \, \mathrm{d} j$$
 (0.20)

s.t.:
$$Y_{\eta t} = \left(\int_0^1 Y_{\eta j t}^{\frac{\psi - 1}{\psi}} dj \right)^{\frac{\psi}{\psi - 1}}$$
 (0.21)

Substitute 0.21 in 0.20:

$$\max_{Y_{\eta j t}}: \quad \Pi_{\eta t} = P_{\eta t} \left(\int_{0}^{1} Y_{\eta j t}^{\frac{\psi - 1}{\psi}} \, \mathrm{d} \, j \right)^{\frac{\psi}{\psi - 1}} - \int_{0}^{1} P_{\eta j t} Y_{\eta j t} \, \mathrm{d} \, j$$
 (0.22)

First Order Condition and Solutions

The first order condition is:

$$Y_{\eta jt}: P_{\eta t} \left(\frac{\psi}{\psi - 1}\right) \left(\int_{0}^{1} Y_{\eta jt}^{\frac{\psi - 1}{\psi}} dj\right)^{\frac{\psi}{\psi - 1} - 1} \left(\frac{\psi - 1}{\psi}\right) Y_{\eta jt}^{\frac{\psi - 1}{\psi} - 1} - P_{\eta jt} = 0 \implies$$

$$Y_{\eta jt} = Y_{t} \left(\frac{P_{\eta t}}{P_{\eta jt}}\right)^{\psi} \tag{0.23}$$

Equation 0.23 shows that the demand for variety *j* depends on its relative price.

Substitute 0.23 in 0.21:

$$Y_{\eta t} = \left(\int_{0}^{1} Y_{\eta j t}^{\frac{\psi - 1}{\psi}} dj\right)^{\frac{\psi}{\psi - 1}} \Longrightarrow$$

$$Y_{\eta t} = \left(\int_{0}^{1} \left[Y_{\eta t} \left(\frac{P_{\eta t}}{P_{\eta j t}}\right)^{\psi}\right]^{\frac{\psi - 1}{\psi}} dj\right)^{\frac{\psi}{\psi - 1}} \Longrightarrow$$

$$P_{\eta t} = \left[\int_{0}^{1} P_{\eta j t}^{1 - \psi} dj\right]^{\frac{1}{1 - \psi}} \tag{0.24}$$

Equation 0.24 is the final-goods firm's markup.

0.1.3 Intermediate-Goods Firms

Cost Minimization Problem

The intermediate-goods firms, denoted by $j \in [0,1]$, produce varieties of a representative good with a certain level of substitutability. Each of these firms has to choose

labor $L_{\eta jt}$ to minimize production costs, subject to a technology rule.

$$\min_{K_{\eta jt}, L_{\eta jt}} : R_{Kt} K_{\eta jt} + W_t L_{\eta jt} \tag{0.25}$$

$$s.t.: Y_{\eta jt} = Z_{A\eta t} K_{\eta jt}^{\alpha_{\eta}} L_{\eta jt}^{1-\alpha_{\eta}}$$

$$(0.26)$$

where $Y_{\eta jt}$ is the output obtained by the production technology level $Z_{A\eta t}$ that transforms capital $K_{\eta jt}$ and labor $L_{\eta jt}$ in proportions α_{η} and $(1 - \alpha_{\eta})$, respectively, into intermediate goods.¹

Lagrangian

Transform the minimization problem with restriction into one without restriction applying the Lagrangian function \mathcal{L} :

$$\mathcal{L} = (R_{Kt}K_{\eta jt} + W_tL_{\eta jt}) - \Lambda_{\eta jt}(Z_{A\eta t}K_{\eta jt}^{\alpha_{\eta}}L_{\eta jt}^{1-\alpha_{\eta}} - Y_{\eta jt})$$

$$\tag{0.27}$$

where the Lagrangian multiplier $\Lambda_{\eta jt}$ is the marginal cost.²

First Order Condition

The first-order conditions are:

$$K_{\eta jt}: R_{Kt} - \Lambda_{\eta jt} Z_{A\eta t} \alpha_{\eta} K_{\eta jt}^{\alpha_{\eta} - 1} L_{\eta jt}^{1 - \alpha_{\eta}} = 0 \qquad \Longrightarrow$$

$$K_{\eta jt} = \alpha_{\eta} Y_{\eta jt} \frac{\Lambda_{\eta jt}}{R_{Kt}}$$

$$(0.28)$$

$$L_{\eta jt}: W_t - \Lambda_{\eta jt} Z_{A\eta t} K_{\eta jt}^{\alpha_{\eta}} (1 - \alpha_{\eta}) L_{\eta jt}^{-\alpha_{\eta}} = 0 \Longrightarrow$$

$$L_{\eta jt} = (1 - \alpha_{\eta}) Y_{\eta jt} \frac{\Lambda_{\eta jt}}{W_t} \tag{0.29}$$

$$\Lambda_{\eta jt}: \quad Y_{\eta jt} = Z_{A\eta t} K_{\eta jt}^{\alpha_{\eta}} L_{\eta jt}^{1-\alpha_{\eta}} \tag{0.26}$$

the production technology level $Z_{A\eta t}$ will be submitted to a productivity shock, detailed in section 0.1.5.

² see Lemma ??

Solutions

Divide equation 0.28 by 0.29:

$$\frac{K_{\eta jt}}{L_{\eta jt}} = \frac{\alpha_{\eta} Y_{\eta jt} \Lambda_{\eta jt} / R_{Kt}}{(1 - \alpha_{\eta}) Y_{\eta jt} \Lambda_{\eta jt} / W_{\eta t}} \implies \frac{K_{\eta jt}}{L_{\eta jt}} = \left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}}\right) \frac{W_{\eta t}}{R_{Kt}} \tag{0.30}$$

Equation 0.30 demonstrates the relationship between the technical marginal rate of substitution (TMRS) and the economic marginal rate of substitution (EMRS).

Substitute $L_{\eta jt}$ from equation 0.30 in 0.26:

$$Y_{\eta jt} = Z_{A\eta t} K_{\eta jt}^{\alpha_{\eta}} L_{\eta jt}^{1-\alpha_{\eta}} \Longrightarrow$$

$$Y_{\eta jt} = Z_{A\eta t} K_{\eta jt}^{\alpha_{\eta}} \left[\left(\frac{1-\alpha_{\eta}}{\alpha_{\eta}} \right) \frac{R_{Kt} K_{\eta jt}}{W_{\eta t}} \right]^{1-\alpha_{\eta}} \Longrightarrow$$

$$K_{\eta jt} = \frac{Y_{\eta jt}}{Z_{A\eta t}} \left[\left(\frac{\alpha_{\eta}}{1-\alpha_{\eta}} \right) \frac{W_{\eta t}}{R_{Kt}} \right]^{1-\alpha_{\eta}}$$

$$(0.31)$$

Equation 0.31 is the intermediate-goods firm demand for capital.

Substitute 0.31 in 0.30:

$$L_{\eta jt} = \left(\frac{1 - \alpha_{\eta}}{\alpha_{\eta}}\right) \frac{R_{Kt} K_{\eta jt}}{W_{\eta t}} \Longrightarrow$$

$$L_{\eta jt} = \left(\frac{1 - \alpha_{\eta}}{\alpha_{\eta}}\right) \frac{R_{Kt}}{W_{\eta t}} \frac{Y_{\eta jt}}{Z_{A\eta t}} \left[\left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}}\right) \frac{W_{\eta t}}{R_{Kt}}\right]^{1 - \alpha_{\eta}} \Longrightarrow$$

$$L_{\eta jt} = \frac{Y_{\eta jt}}{Z_{A\eta t}} \left[\left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}}\right) \frac{W_{\eta t}}{R_{Kt}}\right]^{-\alpha_{\eta}} \tag{0.32}$$

Equation 0.32 is the intermediate-goods firm demand for labor.

Total and Marginal Costs

Calculate the total cost TC using 0.31 and 0.32:

$$TC_{\eta jt} = W_{\eta t} L_{\eta jt} + R_{Kt} K_{\eta jt} \Longrightarrow TC_{\eta jt} = W_{\eta t} \frac{Y_{\eta jt}}{Z_{A\eta t}} \left[\left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}} \right) \frac{W_{\eta t}}{R_{Kt}} \right]^{-\alpha_{\eta}} + R_{Kt} \frac{Y_{\eta jt}}{Z_{A\eta t}} \left[\left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}} \right) \frac{W_{\eta t}}{R_{Kt}} \right]^{1 - \alpha_{\eta}} \Longrightarrow TC_{\eta jt} = \frac{Y_{\eta jt}}{Z_{A\eta t}} \left(\frac{R_{Kt}}{\alpha_{\eta}} \right)^{\alpha_{\eta}} \left(\frac{W_{\eta t}}{1 - \alpha_{\eta}} \right)^{1 - \alpha_{\eta}} \tag{0.33}$$

Calculate the marginal cost Λ using 0.33:

$$\Lambda_{\eta j t} = \frac{\partial TC_{\eta j t}}{\partial Y_{\eta j t}} \implies \Lambda_{\eta j t} = \frac{1}{Z_{A \eta t}} \left(\frac{R_{K t}}{\alpha_{\eta}}\right)^{\alpha_{\eta}} \left(\frac{W_{\eta t}}{1 - \alpha_{\eta}}\right)^{1 - \alpha_{\eta}} \tag{0.34}$$

The marginal cost depends on the technological level $Z_{A\eta t}$, the nominal interest rate R_{Kt} and the nominal wage level $W_{\eta t}$, which are the same for all intermediate-goods firms, and because of that, the index j may be dropped:

$$\Lambda_{\eta t} = \frac{1}{Z_{A\eta t}} \left(\frac{R_{Kt}}{\alpha_{\eta}}\right)^{\alpha_{\eta}} \left(\frac{W_{\eta t}}{1 - \alpha_{\eta}}\right)^{1 - \alpha_{\eta}} \tag{0.35}$$

notice that:

$$\Lambda_{\eta t} = \frac{TC_{\eta jt}}{Y_{\eta jt}} \implies TC_{\eta jt} = \Lambda_{\eta t} Y_{\eta jt} \tag{0.36}$$

Optimal Price Problem

Consider an economy with price stickiness, following the Calvo Rule (CALVO, 1983): each firm has a probability $(0 < \theta < 1)$ of keeping its price in the next period $(P_{\eta j,t+1} = P_{\eta jt})$, and a probability $(1 - \theta)$ of setting a new optimal price $P_{\eta jt}^*$ that maximizes its profits. Therefore, each firm must take this uncertainty into account when deciding the optimal price: the intertemporal profit flow, given the nominal interest rate R_t of each period, is calculated considering the probability θ of keeping the previ-

ous price:

$$\max_{P_{\eta j t}} : \quad \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} \left[P_{\eta j t} Y_{\eta j, t+s} - T C_{\eta j, t+s} \right]}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\}$$
(0.37)

s.t.:
$$Y_{\eta jt} = Y_{\eta t} \left(\frac{P_{\eta t}}{P_{\eta jt}}\right)^{\psi}$$
 (0.23)

where s is the period in time when the decision must be made; t is the last period in time when the price was updated and k is the period in the future when the interest rate applies.

Substitute 0.36 in 0.37:

$$\max_{P_{\eta j t}} : \quad \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} \left[P_{\eta j t} Y_{\eta j, t+s} - \Lambda_{\eta, t+s} Y_{\eta j, t+s} \right]}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\}$$
(0.38)

Substitute 0.23 in 0.38 and rearrange the variables:

$$\begin{aligned} & \underset{P_{\eta j t}}{\text{max}} : \quad \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} \left[P_{\eta j t} Y_{\eta t+s} \left(\frac{P_{\eta,t+s}}{P_{\eta j t}} \right)^{\psi} - \Lambda_{\eta,t+s} Y_{\eta t+s} \left(\frac{P_{\eta,t+s}}{P_{\eta j t}} \right)^{\psi} \right]}{\prod_{k=0}^{s-1} (1+R_{t+k})} \right\} \implies \\ & \underset{P_{\eta j t}}{\text{max}} : \quad \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} \left[P_{\eta j t}^{1-\psi} P_{\eta,t+s}^{\psi} Y_{\eta t+s} - P_{\eta j t}^{-\psi} P_{\eta,t+s}^{\psi} Y_{\eta t+s} \Lambda_{\eta,t+s} \right]}{\prod_{k=0}^{s-1} (1+R_{t+k})} \right\} \end{aligned}$$

First Order Condition

The first order condition with respect to $P_{\eta jt}$ is:

$$\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} \left[(1-\psi) P_{\eta j t}^{-\psi} P_{\eta, t+s}^{\psi} Y_{\eta t+s} - (-\psi) P_{\eta j t}^{-\psi-1} P_{\eta, t+s}^{\psi} Y_{\eta t+s} \Lambda_{\eta, t+s} \right]}{\prod_{k=0}^{s-1} (1+R_{t+k})} \right\} = 0$$

Separate the summations and rearrange the variables:

$$\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s}(\psi - 1) \left(\frac{P_{\eta,t+s}}{P_{\eta jt}} \right)^{\psi} Y_{\eta t+s}}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\} =$$

$$= \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} \psi P_{\eta j t}^{-1} \left(\frac{P_{\eta,t+s}}{P_{\eta j t}} \right)^{\psi} Y_{\eta t+s} \Lambda_{\eta,t+s}}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\}$$
(0.39)

Substitute 0.23 in 0.39:

$$\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s}(\psi - 1)Y_{\eta j, t+s}}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\} = \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} \psi P_{\eta j t}^{-1} Y_{\eta j, t+s} \Lambda_{\eta, t+s}}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\} \Longrightarrow$$

$$(\psi - 1)\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} Y_{\eta j, t+s}}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\} = \psi P_{\eta j t}^{-1} \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} Y_{\eta j, t+s} \Lambda_{\eta, t+s}}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\} \Longrightarrow$$

$$P_{\eta j t} \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} Y_{\eta j, t+s}}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\} = \frac{\psi}{\psi - 1} \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} Y_{\eta j, t+s} \Lambda_{\eta, t+s}}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\} \Longrightarrow$$

$$P_{\eta j t}^{*} = \frac{\psi}{\psi - 1} \cdot \frac{\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \theta^{s} Y_{\eta j, t+s} \Lambda_{\eta, t+s} / \prod_{k=0}^{s-1} (1 + R_{t+k}) \right\}}{\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \theta^{s} Y_{\eta j, t+s} / \prod_{k=0}^{s-1} (1 + R_{t+k}) \right\}} \tag{0.40}$$

Equation 0.40 represents the optimal price that firm j will choose. Since all firms that are able to choose will opt for the highest possible price, they will all select the same price. As a result, the index j can be omitted:

$$P_{\eta t}^{*} = \frac{\psi}{\psi - 1} \cdot \frac{\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \theta^{s} Y_{\eta j, t+s} \Lambda_{\eta, t+s} / \prod_{k=0}^{s-1} (1 + R_{t+k}) \right\}}{\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \theta^{s} Y_{\eta j, t+s} / \prod_{k=0}^{s-1} (1 + R_{t+k}) \right\}}$$
(0.41)

Final-Goods Firm, part II

The process of fixing prices is random: in each period, θ firms will maintain the price from the previous period, while $(1 - \theta)$ firms will choose a new optimal price. The price level for each period will be a composition of these two prices. Use this

information in 0.24 to determine the aggregate price level:

$$P_{\eta t} = \left[\int_{0}^{\theta} P_{\eta, t-1}^{1-\psi} \, \mathrm{d} \, j + \int_{\theta}^{1} P_{\eta t}^{*1-\psi} \, \mathrm{d} \, j \right]^{\frac{1}{1-\psi}} \implies$$

$$P_{\eta t} = \left[\theta P_{\eta, t-1}^{1-\psi} + (1-\theta) P_{\eta t}^{*1-\psi} \right]^{\frac{1}{1-\psi}} \tag{0.42}$$

Equation 0.42 is the aggregate price level.

Regional Inflation

In each region, the price level $P_{\eta t}$ generates a regional inflation rate:

$$\pi_{\eta t} = \frac{P_{\eta t}}{P_{\eta, t-1}} \tag{0.43}$$

0.1.4 Monetary Authority

The objective of the monetary authority is to conduct the economy to price stability and economic growth, using a Taylor rule (TAYLOR, 1993) to determine the nominal interest rate:

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R}\right)^{\gamma_R} \left[\left(\frac{\pi_t}{\pi}\right)^{\gamma_\pi} \left(\frac{Y_t}{Y}\right)^{\gamma_Y} \right]^{1-\gamma_R} Z_{Mt}$$
 (0.44)

where R, π , Y are the nominal interest rate, gross inflation rate and the production level in steady state, respectively; γ_R is the smoothing parameter for the interest rate R_{Kt} , γ_{π} and γ_{Y} are the interest-rate sensitivities in relation to inflation and product, respectively, Z_{Mt} is the monetary shock and π_t is the gross inflation rate, defined by:³

$$\pi_t = \pi_{1t}^{\theta_{\pi}} \pi_{2t}^{1-\theta_{\pi}} \tag{0.45}$$

where:
$$\theta_{\pi} = \frac{P_{1t}Y_{1t}}{P_{1t}Y_{1t} + P_{2t}Y_{2t}}$$
 (0.46)

 $^{^{3}}$ for the monetary shock definition, see section 0.1.5.

0.1.5 Stochastic Shocks

Productivity Shock

The production technology level $Z_{A\eta t}$ will be submitted to a productivity shock defined by a first-order autoregressive process AR(1):

$$\ln Z_{A\eta t} = (1 - \rho_{A\eta}) \ln Z_{A\eta} + \rho_{A\eta} \ln Z_{A\eta, t-1} + \varepsilon_{A\eta t}$$

$$\tag{0.47}$$

where
$$\rho_{A\eta} \in [0,1]$$
 and $\varepsilon_{A\eta t} \sim \mathcal{N}(0,\sigma_{A\eta})$.

Monetary Shock

The monetary policy will also be submitted to a shock, through the variable Z_{Mt} , defined by a first-order autoregressive process AR(1):

$$\ln Z_{Mt} = (1 - \rho_M) \ln Z_M + \rho_M \ln Z_{M,t-1} + \varepsilon_{Mt}$$
(0.48)

where $\rho_M \in [0,1]$ and $\varepsilon_{Mt} \sim \mathcal{N}(0,\sigma_M)$.

0.1.6 Equilibrium Conditions

A Competitive Equilibrium consists of sequences of prices $\{P_{\eta t}^*, R_t^*, W_{\eta t}^*\}$, allocations for households $\mathcal{A}_H := \{C_{\eta 1t}^*, C_{\eta 2t}^*, L_{\eta t}^*, I_{\eta t}^*, K_{\eta,t+1}^*\}$ and allocations for firms $\mathcal{A}_F := \{K_{\eta jt}^*, L_{\eta jt}^*, Y_{\eta jt}^*, Y_{\eta t}^*\}$. In such an equilibrium, given the set of exogenous variables $\{K_0, Z_{A\eta t}, Z_{Mt}\}$, the elements in \mathcal{A}_H solve the household problem, while the elements in \mathcal{A}_F solve the firms' problems, and the markets for goods and labor clear:

$$Y_t = Y_{1t} + Y_{2t} \tag{0.49}$$

where:
$$Y_{\eta t} = C_{\eta t} + I_{\eta t}$$
 (0.50)

$$L_{\eta t} = \int_0^1 L_{\eta jt} \,\mathrm{d}\,j \tag{0.51}$$

Intermediate-Goods Firm Profit

For the sake of closure, the intermediate-goods firm profit must be defined:

$$\Pi_{\eta t} = \int_0^1 \Pi_{\eta j t} \,\mathrm{d}\,j \tag{0.52}$$

$$\Pi_{\eta jt} = P_{\eta t} Y_{\eta jt} - W_{\eta t} L_{\eta jt} \tag{0.53}$$

Substitute 0.53 and 0.51 in 0.52:

$$\Pi_{\eta t} = P_{\eta t} \int_0^1 Y_{\eta j t} \, \mathrm{d}j - W_{\eta t} L_{\eta t} \tag{0.54}$$

Substitute 0.54 in 0.10:

$$Q_{\eta t}C_{\eta t} + P_{\eta t}I_{\eta t} = W_{\eta t}L_{\eta t} + R_{t}K_{\eta t} + P_{\eta t} \int_{0}^{1} Y_{\eta j t} \, \mathrm{d} \, j - W_{\eta t}L_{\eta t} \implies$$

$$Q_{\eta t}C_{\eta t} + P_{\eta t}I_{\eta t} = R_{t}K_{\eta t} + P_{\eta t} \int_{0}^{1} Y_{\eta j t} \, \mathrm{d} \, j$$
(0.55)

0.1.7 Model Structure

The model is composed of the preview solutions, forming a square system of 38 variables and equations, summarized as follows:

- Variables:
 - from the household problem: $\langle C_{\eta} \ L_{\eta} \ K_{\eta} \ I_{\eta} \ C_{\eta 1} \ C_{\eta 2} \ Q_{\eta} \rangle$;
 - from the final-goods firm problem: $\langle Y_{\eta j} \ Y_{\eta} \ P_{\eta} \rangle$;
 - from the intermediate-goods firm problems: $\langle L_{\eta j} \ K_{\eta j} \ P_{\eta}^* \rangle$;
 - from the monetary policy: $\langle R \mid \pi \mid Y \rangle$;
 - prices: $\langle W_{\eta} \quad \Lambda_{\eta} \quad \pi_{\eta} \rangle$;
 - shocks: $\langle Z_{A\eta} \ Z_M \rangle$.
- Equations:
 - 1. Regional Consumption Weight:

$$C_{\eta 2t} = C_{\eta 1t} \frac{(1 - \omega_{\eta 1}) P_{1t}}{\omega_{\eta 1} P_{2t}} \tag{0.6}$$

2. Regional Consumption of Good 1:

$$C_{\eta 1t} = C_{\eta t} \left(\frac{P_{2t} \omega_{\eta 1}}{P_{1t} (1 - \omega_{\eta 1})} \right)^{1 - \omega_{\eta 1}} \tag{0.7}$$

3. Regional Price Index:

$$Q_{\eta t} = \left(\frac{P_{1t}}{\omega_{\eta 1}}\right)^{\omega_{\eta 1}} \left(\frac{P_{2t}}{1 - \omega_{\eta 1}}\right)^{1 - \omega_{\eta 1}} \tag{0.8}$$

4. Labor Supply:

$$\frac{\phi L_{\eta t}^{\varphi}}{C_{nt}^{-\sigma}} = \frac{W_{\eta t}}{Q_{\eta t}} \tag{0.18}$$

5. Law of motion for capital:

$$K_{n,t+1} = (1 - \delta)K_{nt} + I_{nt} \tag{0.11}$$

6. Euler equation for the return on capital:

$$\frac{\mathbb{E}_{t}\{Q_{\eta,t+1}C_{\eta,t+1}^{\sigma}\}}{Q_{\eta t}C_{\eta t}^{\sigma}} = \beta \frac{\mathbb{E}_{t}\{P_{\eta,t+1}(1-\delta) + R_{t+1}\}}{P_{\eta t}}$$
(0.19)

7. Bundle Technology:

$$Y_{\eta t} = \left(\int_0^1 Y_{\eta jt}^{\frac{\psi-1}{\psi}} \,\mathrm{d}\,j\right)^{\frac{\psi}{\psi-1}} \tag{0.21}$$

8. Production Function:

$$Y_{\eta jt} = Z_{A\eta t} K_{\eta jt}^{\alpha_{\eta}} L_{\eta jt}^{1-\alpha_{\eta}} \tag{0.26}$$

9. Technical and Economic Marginal Rates of Substitution:

$$\frac{K_{\eta jt}}{L_{nit}} = \left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}}\right) \frac{W_{\eta t}}{R_{Kt}} \tag{0.30}$$

10. Marginal Cost:

$$\Lambda_{\eta t} = \frac{1}{Z_{A\eta t}} \left(\frac{R_{Kt}}{\alpha_{\eta}}\right)^{\alpha_{\eta}} \left(\frac{W_{\eta t}}{1 - \alpha_{\eta}}\right)^{1 - \alpha_{\eta}} \tag{0.35}$$

11. Optimal Price:

$$P_{\eta t}^{*} = \frac{\psi}{\psi - 1} \cdot \frac{\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \theta^{s} Y_{\eta j, t+s} \Lambda_{\eta, t+s} / \prod_{k=0}^{s-1} (1 + R_{t+k}) \right\}}{\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \theta^{s} Y_{\eta j, t+s} / \prod_{k=0}^{s-1} (1 + R_{t+k}) \right\}}$$
(0.41)

12. Regional Price Level:

$$P_{\eta t} = \left[\theta P_{\eta, t-1}^{1-\psi} + (1-\theta) P_{\eta t}^{*1-\psi}\right]^{\frac{1}{1-\psi}} \tag{0.42}$$

13. Regional Gross Inflation Rate:

$$\pi_{\eta t} = \frac{P_{\eta t}}{P_{\eta, t-1}} \tag{0.43}$$

14. Monetary Policy:

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R}\right)^{\gamma_R} \left[\left(\frac{\pi_t}{\pi}\right)^{\gamma_\pi} \left(\frac{Y_t}{Y}\right)^{\gamma_Y} \right]^{1-\gamma_R} Z_{Mt} \tag{0.44}$$

15. National Gross Inflation Rate:

$$\pi_t = \pi_{1t}^{\theta_{\pi}} \pi_{2t}^{1-\theta_{\pi}} \tag{0.45}$$

16. Productivity Shock:

$$\ln Z_{A\eta t} = (1 - \rho_{A\eta}) \ln Z_{A\eta} + \rho_{A\eta} \ln Z_{A\eta,t-1} + \varepsilon_{A\eta t}$$
(0.47)

17. Monetary Shock:

$$\ln Z_{Mt} = (1 - \rho_M) \ln Z_M + \rho_M \ln Z_{M,t-1} + \varepsilon_{Mt}$$
 (0.48)

18. Goods-Market Clearing Condition:

$$Y_t = Y_{1t} + Y_{2t} (0.49)$$

19. Regional Goods-Market Clearing Condition:

$$Y_{\eta t} = C_{\eta t} + I_{\eta t} \tag{0.50}$$

20. Regional Labor-Market Clearing Condition:

$$L_{\eta t} = \int_0^1 L_{\eta j t} \,\mathrm{d}\,j \tag{0.51}$$

21. Budget Constraint:

$$Q_{\eta t}C_{\eta t} + P_{\eta t}I_{\eta t} = R_t K_{\eta t} + P_{\eta t} \int_0^1 Y_{\eta j t} \, \mathrm{d}j$$
 (0.55)

0.1.8 Steady State

The steady state of a variable is defined by its constancy through time. For any given variable X_t , it is in steady state if $t \to \infty \implies \mathbb{E}_t X_{t+1} = X_t = X_{t-1} = X_{ss}$ (COSTA JUNIOR, 2016, p.41). For conciseness, the ss index representing the steady state will be omitted, so that $X := X_{ss}$. The model in steady state is:

1. Regional Consumption Weight:

$$C_{\eta 2} = C_{\eta 1} \frac{(1 - \omega_{\eta 1}) P_1}{\omega_{\eta 1} P_2} \tag{0.56}$$

2. Regional Consumption of Good 1:

$$C_{\eta 1} = C_{\eta} \left(\frac{P_2 \omega_{\eta 1}}{P_1 (1 - \omega_{\eta 1})} \right)^{1 - \omega_{\eta 1}} \tag{0.57}$$

3. Regional Price Index:

$$Q_{\eta} = \left(\frac{P_1}{\omega_{\eta 1}}\right)^{\omega_{\eta 1}} \left(\frac{P_2}{1 - \omega_{\eta 1}}\right)^{1 - \omega_{\eta 1}} \tag{0.58}$$

4. Labor Supply:

$$\frac{\phi L_{\eta}^{\varphi}}{C_{\eta}^{-\sigma}} = \frac{W_{\eta}}{Q_{\eta}} \tag{0.59}$$

5. Law of motion for capital:

$$I_{\eta} = \delta K_{\eta} \tag{0.60}$$

6. Euler equation for the return on capital:

$$1 = \beta \left[(1 - \delta) + \frac{R}{P_{\eta}} \right] \tag{0.61}$$

7. Bundle Technology:

$$Y_{\eta} = \left(\int_{0}^{1} Y_{\eta j}^{\frac{\psi - 1}{\psi}} \, \mathrm{d} \, j \right)^{\frac{\psi}{\psi - 1}} \tag{0.62}$$

8. Production Function:

$$Y_{\eta j} = Z_{A\eta} K_{\eta j}^{\alpha_{\eta}} L_{\eta j}^{1 - \alpha_{\eta}} \tag{0.63}$$

9. Technical and Economic Marginal Rates of Substitution:

$$\frac{K_{\eta j}}{L_{\eta j}} = \left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}}\right) \frac{W_{\eta}}{R_K} \tag{0.64}$$

10. Marginal Cost:

$$\Lambda_{\eta} = \frac{1}{Z_{A\eta}} \left(\frac{R_K}{\alpha_{\eta}}\right)^{\alpha_{\eta}} \left(\frac{W_{\eta}}{1 - \alpha_{\eta}}\right)^{1 - \alpha_{\eta}} \tag{0.65}$$

11. Optimal Price:

$$P_{\eta}^{*} = \frac{\psi}{\psi - 1} \cdot \frac{\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \theta^{s} Y_{\eta j} \Lambda_{\eta} / \prod_{k=0}^{s-1} (1+R) \right\}}{\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \theta^{s} Y_{\eta j} / \prod_{k=0}^{s-1} (1+R) \right\}} \Longrightarrow$$

$$P_{\eta}^{*} = \frac{\psi}{\psi - 1} \Lambda_{\eta}$$

$$(0.66)$$

12. Regional Price Level:

$$P_{\eta} = \left[\theta P_{\eta}^{1-\psi} + (1-\theta)P_{\eta}^{*1-\psi}\right]^{\frac{1}{1-\psi}} \Longrightarrow$$

$$P_{\eta} = P_{\eta}^{*} \tag{0.67}$$

13. Regional Gross Inflation Rate:

$$\pi_{\eta} = \frac{P_{\eta}}{P_{\eta}} = 1 \tag{0.68}$$

14. Monetary Policy:

$$\frac{R}{R} = \left(\frac{R}{R}\right)^{\gamma_R} \left[\left(\frac{\pi}{\pi}\right)^{\gamma_\pi} \left(\frac{Y}{Y}\right)^{\gamma_Y}\right]^{1-\gamma_R} Z_M \implies Z_M = 1$$
(0.69)

15. National Gross Inflation Rate:

$$\pi = \pi_1^{\theta_{\pi}} \pi_2^{1 - \theta_{\pi}} = 1 \tag{0.70}$$

16. Productivity Shock:

$$\ln Z_{A\eta} = (1 - \rho_{A\eta}) \ln Z_{A\eta} + \rho_{A\eta} \ln Z_{A\eta} + \varepsilon_{A\eta} \implies$$

$$\varepsilon_{A\eta} = 0 \tag{0.71}$$

17. Monetary Shock:

$$\ln Z_M = (1 - \rho_M) \ln Z_M + \rho_M \ln Z_M + \varepsilon_M \implies$$

$$\varepsilon_M = 0 \tag{0.72}$$

18. Goods-Market Clearing Condition:

$$Y = Y_1 + Y_2 (0.73)$$

19. Regional Goods-Market Clearing Condition:

$$Y_{\eta} = C_{\eta} + I_{\eta} \tag{0.74}$$

20. Regional Labor-Market Clearing Condition:

$$L_{\eta} = \int_{0}^{1} L_{\eta j} \, \mathrm{d} \, j \tag{0.75}$$

21. Budget Constraint:

$$Q_{\eta}C_{\eta} + P_{\eta}I_{\eta} = RK_{\eta} + P_{\eta} \int_{0}^{1} Y_{\eta j} \, \mathrm{d}j$$
 (0.76)

0.1.9 Variables at Steady State

For the steady-state solution, all endogenous variables will be determined with respect to the parameters. It is assumed that the price level and the productivity level of region 1 are equal to one. For region 2, it is assumed that these levels are in proportion to the corresponding values in the first region by factors $\langle \theta_P \mid \theta_Z \rangle$:⁴

$$\langle P_1 \quad Z_{A1} \rangle = \vec{\mathbf{1}} \tag{0.77}$$

$$\langle P_2 \mid Z_{A2} \rangle = \langle \theta_P P_1 \mid \theta_Z Z_{A1} \rangle$$
 (0.78)

From 0.68, 0.69 and 0.70, the monetary shock, the national and regional gross inflation rates are:

$$\langle Z_M \quad \pi \quad \pi_1 \quad \pi_2 \rangle = \vec{\mathbf{1}} \tag{0.79}$$

From 0.71 and 0.72, the productivity and monetary shocks are:

$$\langle \varepsilon_{A1} \quad \varepsilon_{A2} \quad \varepsilon_{M} \rangle = \vec{\mathbf{0}}$$
 (0.80)

From 0.61, the return on capital is:

$$1 = \beta \left[(1 - \delta) + \frac{R}{P} \right] \implies (0.61)$$

$$R = P_{\eta} \left[\frac{1}{\beta} - (1 - \delta) \right] \tag{0.81}$$

Divide 0.81 for one region by the other region:

$$\frac{R}{R} = \frac{P_1 \left[\frac{1}{\beta} - (1 - \delta) \right]}{P_2 \left[\frac{1}{\beta} - (1 - \delta) \right]} \implies P_1 = P_2$$
(0.82)

⁴ where $\vec{1}$ is the unit vector.

Substitute 0.82 in 0.78:

$$\langle P_2 \mid Z_{A2} \rangle = \langle P_1 \mid \theta_Z Z_{A1} \rangle$$
 (0.83)

From 0.67, 0.77 and 0.82, the regional optimal price P_{η}^* is:

$$P_{\eta}^* = P_{\eta} \implies \langle P_1^* \quad P_2^* \rangle = \langle P_1 \quad P_2 \rangle = \langle P_1 \quad P_1 \rangle \tag{0.84}$$

Substitute 0.82 in 0.58 for the price composition of consumption bundle Q_{η} :

$$Q_{\eta} = \left(\frac{P_1}{\omega_{\eta 1}}\right)^{\omega_{\eta 1}} \left(\frac{P_2}{1 - \omega_{\eta 1}}\right)^{1 - \omega_{\eta 1}} \Longrightarrow \tag{0.58}$$

$$Q_{\eta} = \frac{P_1}{\omega_{\eta 1}^{\omega_{\eta 1}} (1 - \omega_{\eta 1})^{1 - \omega_{\eta 1}}} \tag{0.85}$$

Substitute 0.84 in 0.66 for the marginal cost Λ_{η} :

$$P_{\eta}^* = \frac{\psi}{\psi - 1} \Lambda_{\eta} \implies (0.66)$$

$$\Lambda_{\eta} = P_{\eta} \frac{\psi - 1}{\psi} \tag{0.86}$$

From 0.65, the nominal wage W_{η} is:

$$\Lambda_{\eta} = \frac{1}{Z_{A\eta}} \left(\frac{R_K}{\alpha_{\eta}} \right)^{\alpha_{\eta}} \left(\frac{W_{\eta}}{1 - \alpha_{\eta}} \right)^{1 - \alpha_{\eta}} \implies (0.65)$$

$$W_{\eta} = \left(1 - \alpha_{\eta}\right) \left[\Lambda_{\eta} Z_{A\eta} \left(\frac{\alpha_{\eta}}{R}\right)^{\alpha_{\eta}}\right]^{\frac{1}{1 - \alpha_{\eta}}} \tag{0.87}$$

Due to price parity in steady state, where prices are identical $(P_{\eta} = P_{\eta}^*)$ and resulting in a gross inflation level of one $(\pi_{\eta} = 1)$, all firms produce the same output level $(\forall i, j \in [0, 1], Y_{\eta j} = Y_{\eta i}, i \neq j)$ (SOLIS-GARCIA, 2022, Lecture 13, p.12). As a consequence, they uniformly demand the same amount of factors $(\forall j \in [0, 1], L_{\eta j} = 1)$

 $L_{\eta i}$, $j \neq i$), and 0.62, 0.63, 0.64, 0.75, and 0.76 become:

$$Y_{\eta} = Y_{\eta j} \tag{0.88}$$

$$Y_{\eta} = Z_{A\eta} K_{\eta}^{\alpha_{\eta}} L_{\eta}^{1-\alpha_{\eta}} \tag{0.89}$$

$$\frac{K_{\eta}}{L_{\eta}} = \left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}}\right) \frac{W_{\eta}}{R_{K}} \tag{0.90}$$

$$L_{\eta} = L_{\eta j} \tag{0.91}$$

$$Q_{\eta}C_{\eta} + P_{\eta}I_{\eta} = RK_{\eta} + P_{\eta}Y_{\eta} \tag{0.92}$$

Isolate K_{η} in 0.90 and substitute in 0.89:

$$K_{\eta} = L_{\eta} \left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}} \right) \frac{W_{\eta}}{R_{K}}$$

$$Y_{\eta} = Z_{A\eta} \left[L_{\eta} \left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}} \right) \frac{W_{\eta}}{R_{K}} \right]^{\alpha_{\eta}} L_{\eta}^{1 - \alpha_{\eta}} \implies$$

$$L_{\eta} = \frac{Y_{\eta}}{Z_{A\eta}} \left[\left(\frac{1 - \alpha_{\eta}}{\alpha_{\eta}} \right) \frac{R}{W_{\eta}} \right]^{\alpha_{\eta}} \iff \frac{1}{L_{\eta}} = \frac{Z_{A\eta}}{Y_{\eta}} \left[\left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}} \right) \frac{W_{\eta}}{R} \right]^{\alpha_{\eta}}$$
(0.93)

Substitute 0.93 in 0.90:

$$\frac{K_{\eta}}{L_{\eta}} = \left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}}\right) \frac{W_{\eta}}{R_{K}} \Longrightarrow \tag{0.90}$$

$$K_{\eta} \frac{Z_{A\eta}}{Y_{\eta}} \left[\left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}}\right) \frac{W_{\eta}}{R} \right]^{\alpha_{\eta}} = \left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}}\right) \frac{W_{\eta}}{R_{K}} \Longrightarrow$$

$$K_{\eta} = \frac{Y_{\eta}}{Z_{A\eta}} \left[\left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}}\right) \frac{W_{\eta}}{R} \right]^{1 - \alpha_{\eta}}$$

$$(0.94)$$

Substitute 0.94 in 0.60:

$$I_{\eta} = \delta K_{\eta} \Longrightarrow (0.60)$$

$$I_{\eta} = \delta \frac{Y_{\eta}}{Z_{A\eta}} \left[\left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}} \right) \frac{W_{\eta}}{R} \right]^{1 - \alpha_{\eta}} \implies (0.95)$$

$$I_{\eta} = b_{\eta} Y_{\eta} \tag{0.96}$$

where:
$$b_{\eta} = \frac{\delta}{Z_{A\eta}} \left[\left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}} \right) \frac{W_{\eta}}{R} \right]^{1 - \alpha_{\eta}}$$
 (0.97)

Isolate C_{η} in 0.59 and then substitute L_{η} from 0.93:

$$\frac{\phi L_{\eta}^{\varphi}}{C_{\eta}^{-\sigma}} = \frac{W_{\eta}}{Q_{\eta}} \implies C_{\eta}^{\sigma} = \frac{W_{\eta}}{\phi Q_{\eta}} \cdot \frac{1}{L_{\eta}^{\varphi}} \implies C_{\eta} = a_{\eta} Y_{\eta}^{\frac{-\varphi}{\sigma}} \tag{0.98}$$

where:
$$a_{\eta} = \left[\frac{W_{\eta}}{\phi Q_{\eta}} \left[Z_{A\eta} \left(\frac{\alpha_{\eta} W_{\eta}}{(1 - \alpha_{\eta}) R} \right)^{\alpha_{\eta}} \right]^{\varphi} \right]^{\frac{1}{\sigma}}$$
 (0.99)

Substitute 0.98 and 0.96 in 0.74:

$$Y_{\eta} = C_{\eta} + I_{\eta} \qquad \Longrightarrow \qquad (0.74)$$

$$Y_{\eta} = a_{\eta} Y_{\eta}^{\frac{-\varphi}{\sigma}} + b_{\eta} Y_{\eta} \Longrightarrow$$

$$Y_{\eta} = \left(\frac{a_{\eta}}{1 - b_{\eta}}\right)^{\frac{\sigma}{\sigma + \varphi}} \tag{0.100}$$

The result of 0.100 determines Y, C_{η} , I_{η} , K_{η} , L_{η} , $C_{\eta 1}$, $C_{\eta 2}$ in 0.73, 0.98, 0.60, 0.94, 0.57, 0.56, 0.93, respectively.

(0.93)

0.1.10 Steady State Solution

$$\vec{\mathbf{I}} = \langle P_1 \ Z_{A1} \rangle \qquad (0.77) \\
\langle P_2 \ Z_{A2} \rangle = \langle P_1 \ \theta_Z Z_{A1} \rangle \qquad (0.83) \\
\vec{\mathbf{I}} = \langle Z_M \ \pi \ \pi_1 \ \pi_2 \rangle \qquad (0.79) \\
\vec{\mathbf{0}} = \langle \varepsilon_{A1} \ \varepsilon_{A2} \ \varepsilon_M \rangle \qquad (0.80) \\
R = P_{\eta} \left[\frac{1}{\beta} - (1 - \delta) \right] \qquad (0.81) \\
P_{\eta}^* = P_{\eta} \qquad (0.84) \\
Q_{\eta} = \frac{P_1}{\omega_{\eta 1}^{\omega_{\eta 1}} (1 - \omega_{\eta 1})^{1 - \omega_{\eta 1}}} \qquad (0.85) \\
\Lambda_{\eta} = P_{\eta} \frac{\psi - 1}{\psi} \qquad (0.86) \\
W_{\eta} = (1 - \alpha_{\eta}) \left[\Lambda_{\eta} Z_{A\eta} \left(\frac{\alpha_{\eta}}{R} \right)^{\alpha_{\eta}} \right]^{\frac{1}{1 - \alpha_{\eta}}} \qquad (0.87) \\
a_{\eta} = \left[\frac{W_{\eta}}{\phi Q_{\eta}} \left[Z_{A\eta} \left(\frac{\alpha_{\eta} W_{\eta}}{(1 - \alpha_{\eta}) R} \right)^{\alpha_{\eta}} \right]^{\phi} \right]^{\frac{1}{\beta}} \qquad (0.99) \\
b_{\eta} = \frac{\delta}{Z_{A\eta}} \left[\left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}} \right) \frac{W_{\eta}}{R} \right]^{1 - \alpha_{\eta}} \qquad (0.97) \\
Y_{\eta} = \left(\frac{a_{\eta}}{1 - b_{\eta}} \right)^{\frac{\sigma}{\sigma + \phi}} \qquad (0.100) \\
Y = Y_1 + Y_2 \qquad (0.73) \\
C_{\eta} = a_{\eta} Y_{\eta}^{-\frac{\sigma}{\phi}} \qquad (0.98) \\
I_{\eta} = b_{\eta} Y_{\eta} \qquad (0.96) \\
K_{\eta} = \frac{I_{\eta}}{\delta} \qquad (0.60) \\
C_{\eta 1} = C_{\eta} \left(\frac{P_2 \omega_{\eta 1}}{P_1 (1 - \omega_{\eta 1}) P_1} \right) \qquad (0.57) \\
C_{\eta 2} = C_{\eta 1} \frac{(1 - \alpha_{\eta})}{\omega_{\eta 1} P_2} \qquad (0.56) \\
L_{\eta} = \frac{Y_{\eta}}{Z_{1 + \sigma}} \left[\left(\frac{1 - \alpha_{\eta}}{\alpha_{\sigma}} \right) \frac{R}{W_{\sigma}} \right]^{\alpha_{\eta}} \qquad (0.93) \\$$

0.1.11 Log-linearization

Due to the number of variables and equations to be solved, computational brute force will be necessary. Dynare is specialized software for macroeconomic modeling, commonly used for solving DSGE models. Before the model can be processed by the software, it must undergo linearization to eliminate the infinite sum in Equation 0.41. For this purpose, Uhlig's rules of log-linearization (UHLIG, 1999) will be applied to all equations in the model. For any given variable X_t , its deviation will be represented with a hat, \hat{X}_t .

Regional Gross Inflation Rate

Log-linearize 0.43 and define the level deviation of regional inflation rate $\hat{\pi}_{\eta t}$:

$$\pi_{\eta t} = \frac{P_{\eta t}}{P_{\eta, t-1}} \tag{0.43}$$

$$\hat{\pi}_{\eta t} = \hat{P}_{\eta t} - \hat{P}_{\eta, t-1} \tag{0.101}$$

Regional Price Level

Log-linearize equation 0.42:

$$P_{\eta t}^{1-\psi} = \theta P_{\eta,t-1}^{1-\psi} + (1-\theta) P_{\eta t}^{*1-\psi} \implies (0.42)$$

$$P^{1-\psi}(1+(1-\psi)\hat{P}_{\eta t}) = \theta P^{1-\psi}(1+(1-\psi)\hat{P}_{\eta,t-1}) + (1-\theta) P^{1-\psi}(1+(1-\psi)\hat{P}_{\eta t}^{*}) \implies \hat{P}_{\eta t} = \theta \hat{P}_{\eta,t-1} + (1-\theta)\hat{P}_{\eta t}^{*} \qquad (0.102)$$

⁵ see Lemma ?? for details.

New Keynesian Phillips Curve

In order to log-linearize equation 0.41, it is necessary to eliminate both the summation and the product operators. To handle the product operator, apply Lemma ??:

$$\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} P_{\eta t}^{*} Y_{\eta j, t+s}}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\} = \frac{\psi}{\psi - 1} \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} Y_{\eta j, t+s} \Lambda_{\eta, t+s}}{\prod_{k=0}^{s-1} (1 + R_{t+k})} \right\} \Longrightarrow (0.41)$$

$$\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} P_{\eta t}^{*} Y_{\eta j, t+s}}{(1 + R)^{s} \left(1 + \frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k}\right)} \right\} = \frac{\psi}{\psi - 1} \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} Y_{\eta j, t+s} \Lambda_{\eta, t+s}}{(1 + R)^{s} \left(1 + \frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k}\right)} \right\}$$

$$(0.103)$$

First, log-linearize the left hand side of equation 0.103 with respect to $P_{\eta t}^*$, $Y_{\eta j t}$, \widetilde{R}_t :

$$\begin{split} \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \frac{\theta^{s} P_{\eta t}^{*} Y_{\eta j,t+s}}{(1+R)^{s} \left(1+\frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k}\right)} \right\} & \Longrightarrow \\ \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \left(\frac{\theta}{1+R}\right)^{s} \frac{P_{\eta}^{*} Y_{\eta j} \left(1+\hat{P}_{\eta t}^{*}+\hat{Y}_{\eta j,t+s}\right)}{1+\frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k}} \right\} & \Longrightarrow \\ P_{\eta}^{*} Y_{\eta j} \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \left(\frac{\theta}{1+R}\right)^{s} \left(1+\hat{P}_{\eta t}^{*}+\hat{Y}_{\eta j,t+s}-\frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k}\right) \right\} \end{split}$$

Separate the terms not dependent on *s*:

$$\begin{split} P_{\eta}^{*}Y_{\eta j}(1+\hat{P}_{\eta t}^{*})\mathbb{E}_{t} & \sum_{s=0}^{\infty} \left\{ \left(\frac{\theta}{1+R} \right)^{s} \right\} + \\ & + P_{\eta}^{*}Y_{\eta j}\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \left(\frac{\theta}{1+R} \right)^{s} \left(\hat{Y}_{\eta j,t+s} - \frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k} \right) \right\} & \Longrightarrow \end{split}$$

Apply definition ?? on the first term:

$$\frac{P_{\eta}^{*}Y_{\eta j}(1+\hat{P}_{\eta t}^{*})}{1-\theta/(1+R)} + P_{\eta}^{*}Y_{\eta j}\mathbb{E}_{t}\sum_{s=0}^{\infty}\left\{\left(\frac{\theta}{1+R}\right)^{s}\left(\hat{Y}_{\eta j,t+s} - \frac{1}{1+R}\sum_{k=0}^{s-1}\widetilde{R}_{t+k}\right)\right\}$$

Second, log-linearize the left hand side of 0.103 with respect to $\Lambda_{\eta t}^*$, $Y_{\eta j t}$, \widetilde{R}_t :

$$\begin{split} \frac{\psi}{\psi-1} \mathbb{E}_t \sum_{s=0}^{\infty} \left\{ \frac{\theta^s Y_{\eta j,t+s} \Lambda_{\eta,t+s}}{(1+R)^s \left(1+\frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k}\right)} \right\} & \Longrightarrow \\ \frac{\psi}{\psi-1} \mathbb{E}_t \sum_{s=0}^{\infty} \left\{ \left(\frac{\theta}{1+R}\right)^s \frac{Y_{\eta j} \Lambda_{\eta} (1+\hat{Y}_{\eta j,t+s}+\hat{\Lambda}_{\eta,t+s})}{1+\frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k}} \right\} & \Longrightarrow \\ \frac{\psi}{\psi-1} Y_{\eta j} \Lambda_{\eta} \mathbb{E}_t \sum_{s=0}^{\infty} \left\{ \left(\frac{\theta}{1+R}\right)^s \left(1+\hat{Y}_{\eta j,t+s}+\hat{\Lambda}_{\eta,t+s}-\frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k}\right) \right\} \end{split}$$

Separate the terms not dependent on *s*:

$$\begin{split} \frac{\psi}{\psi-1} Y_{\eta j} \Lambda_{\eta} \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \left(\frac{\theta}{1+R} \right)^{s} \right\} + \\ + \frac{\psi}{\psi-1} Y_{\eta j} \Lambda_{\eta} \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \left(\frac{\theta}{1+R} \right)^{s} \left(\hat{Y}_{\eta j,t+s} + \hat{\Lambda}_{\eta,t+s} - \frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k} \right) \right\} \end{split}$$

Apply definition ?? on the first term:

$$\begin{split} \frac{\psi}{\psi-1} \cdot \frac{Y_{\eta j} \Lambda_{\eta}}{1-\theta/(1+R)} + \\ + \frac{\psi}{\psi-1} Y_{\eta j} \Lambda_{\eta} \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \left(\frac{\theta}{1+R} \right)^{s} \left(\hat{Y}_{\eta j,t+s} + \hat{\Lambda}_{\eta,t+s} - \frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k} \right) \right\} \end{split}$$

Join both sides of the equation again:

$$\frac{P_{\eta}^{*}Y_{\eta j}(1+\hat{P}_{\eta t}^{*})}{1-\theta/(1+R)} + P_{\eta}^{*}Y_{\eta j}\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \left(\frac{\theta}{1+R} \right)^{s} \left(\hat{Y}_{\eta j,t+s} - \frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k} \right) \right\} = \\
= \frac{\psi}{\psi-1} \cdot \frac{Y_{\eta j} \Lambda_{\eta}}{1-\theta/(1+R)} + \\
+ \frac{\psi}{\psi-1} Y_{\eta j} \Lambda_{\eta} \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ \left(\frac{\theta}{1+R} \right)^{s} \left(\hat{Y}_{\eta j,t+s} + \hat{\Lambda}_{\eta,t+s} - \frac{1}{1+R} \sum_{k=0}^{s-1} \widetilde{R}_{t+k} \right) \right\} \quad (0.104)$$

Define a discount rate ϱ :

$$\varrho = \frac{1}{(1+R)} \tag{0.105}$$

Substitute 0.105 in 0.104:

$$\frac{P_{\eta}^{*}Y_{\eta j}(1+\hat{P}_{\eta t}^{*})}{1-\theta\varrho} + P_{\eta}^{*}Y_{\eta j}\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ (\theta\varrho)^{s} \left(\hat{Y}_{\eta j,t+s} - \varrho \sum_{k=0}^{s-1} \widetilde{R}_{t+k} \right) \right\} =$$

$$= \frac{\psi}{\psi-1} \cdot \frac{Y_{\eta j}\Lambda_{\eta}}{1-\theta\varrho} +$$

$$+ \frac{\psi}{\psi-1}Y_{\eta j}\Lambda_{\eta}\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ (\theta\varrho)^{s} \left(\hat{Y}_{\eta j,t+s} + \hat{\Lambda}_{\eta,t+s} - \varrho \sum_{k=0}^{s-1} \widetilde{R}_{t+k} \right) \right\}$$

$$(0.106)$$

Substitute 0.86 in 0.106 and simplify all common terms:

$$\frac{P_{\eta}^{*}Y_{\eta j}}{1-\theta \varrho} + \frac{P_{\eta}^{*}Y_{\eta j}\hat{P}_{\eta t}^{*}}{1-\theta \varrho} + P_{\eta}^{*}Y_{\eta j}\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ (\theta \varrho)^{s} \left(\hat{Y}_{\eta j,t+s} - \varrho \sum_{k=0}^{s-1} \tilde{R}_{t+k} \right) \right\} =$$

$$= \frac{P_{\eta}^{*}Y_{\eta j}}{1-\theta \varrho} + P_{\eta}^{*}Y_{\eta j}\mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ (\theta \varrho)^{s} \left(\hat{Y}_{\eta j,t+s} - \varrho \sum_{k=0}^{s-1} \tilde{R}_{t+k} + \hat{\Lambda}_{\eta,t+s} \right) \right\} \Longrightarrow$$

$$\frac{\hat{P}_{\eta t}^{*}}{1-\theta \varrho} = \mathbb{E}_{t} \sum_{s=0}^{\infty} \left\{ (\theta \varrho)^{s} \left(\hat{\Lambda}_{\eta,t+s} \right) \right\} \tag{0.107}$$

Define the real marginal cost $\lambda_{\eta t}$ and log-linearize it:

$$\lambda_{\eta t} = \frac{\Lambda_{\eta t}}{P_{\eta t}} \implies \Lambda_{\eta t} = P_{\eta t} \lambda_{\eta t} \implies (0.108)$$

$$\hat{\Lambda}_{\eta t} = \hat{P}_{\eta t} + \hat{\lambda}_{\eta t} \tag{0.109}$$

Substitute 0.109 in 0.107:

$$\hat{P}_{\eta t}^{*} = (1 - \theta \varrho) \mathbb{E}_{t} \sum_{s=0}^{\infty} (\theta \varrho)^{s} \left(\hat{P}_{\eta, t+s} + \hat{\lambda}_{\eta, t+s} \right)$$
(0.110)

Substitute 0.110 in 0.102:

$$\hat{P}_{\eta t} = \theta \hat{P}_{\eta, t-1} + (1 - \theta) \hat{P}_{\eta t}^* \tag{0.102}$$

$$\hat{P}_{\eta t} = \theta \hat{P}_{\eta, t-1} + (1 - \theta)(1 - \theta \varrho) \mathbb{E}_t \sum_{s=0}^{\infty} (\theta \varrho)^s \left(\hat{P}_{\eta, t+s} + \hat{\lambda}_{\eta, t+s} \right)$$
(0.111)

Finally, to eliminate the summation, apply the lead operator $(1 - \theta \varrho \mathbb{L}^{-1})$ in

 $0.111:^{6}$

$$(1 - \theta \varrho \mathbb{L}^{-1}) \hat{P}_{\eta t} = (1 - \theta \varrho \mathbb{L}^{-1}) \left[\theta \hat{P}_{\eta, t-1} + \right. \\ + (1 - \theta) (1 - \theta \varrho) \mathbb{E}_{t} \sum_{s=0}^{\infty} (\theta \varrho)^{s} \left(\hat{P}_{\eta, t+s} + \hat{\lambda}_{\eta, t+s} \right) \right] \Longrightarrow$$

$$\hat{P}_{\eta t} - \theta \varrho \mathbb{E}_{t} \hat{P}_{t+1} = \theta \hat{P}_{\eta, t-1} - \theta \varrho \theta \hat{P}_{\eta t} + \\ (1 - \theta) (1 - \theta \varrho) \mathbb{E}_{t} \sum_{s=0}^{\infty} (\theta \varrho)^{s} \left(\hat{P}_{\eta, t+s} + \hat{\lambda}_{\eta, t+s} \right) - \\ - \theta \varrho (1 - \theta) (1 - \theta \varrho) \mathbb{E}_{t} \sum_{s=0}^{\infty} (\theta \varrho)^{s} \left(\hat{P}_{t+s+1} + \hat{\lambda}_{\eta, t+s+1} \right)$$

$$(0.112)$$

In the first summation, factor out the first term and in the second summation, include the term $\theta\varrho$ within the operator. Then, cancel the summations and rearrange the terms:

$$\hat{P}_{\eta t} - \theta \varrho \mathbb{E}_{t} \hat{P}_{t+1} = \theta \hat{P}_{\eta,t-1} - \theta \varrho \theta \hat{P}_{\eta t} + (1 - \theta)(1 - \theta \varrho) \mathbb{E}_{t} \sum_{s=0}^{\infty} (\theta \varrho)^{s} (\hat{P}_{\eta,t+s} + \hat{\lambda}_{\eta,t+s}) - \theta \varrho (1 - \theta)(1 - \theta \varrho) \mathbb{E}_{t} \sum_{s=0}^{\infty} (\theta \varrho)^{s} (\hat{P}_{t+s+1} + \hat{\lambda}_{\eta,t+s+1}) \Longrightarrow \hat{P}_{\eta t} - \theta \varrho \mathbb{E}_{t} \hat{P}_{t+1} = \theta \hat{P}_{\eta,t-1} - \theta \varrho \theta \hat{P}_{\eta t} + (1 - \theta)(1 - \theta \varrho)(\hat{P}_{\eta t} + \hat{\lambda}_{\eta t}) + (1 - \theta)(1 - \theta \varrho) \mathbb{E}_{t} \sum_{s=0}^{\infty} (\theta \varrho)^{s+1} (\hat{P}_{t+s+1} + \hat{\lambda}_{\eta,t+s+1}) - (1 - \theta)(1 - \theta \varrho) \mathbb{E}_{t} \sum_{s=0}^{\infty} (\theta \varrho)^{s+1} (\hat{P}_{t+s+1} + \hat{\lambda}_{\eta,t+s+1}) \Longrightarrow \hat{P}_{\eta t} - \theta \varrho \mathbb{E}_{t} \hat{P}_{t+1} = \theta \hat{P}_{\eta,t-1} - \theta^{2} \varrho \hat{P}_{\eta t} + (1 - \theta)(1 - \theta \varrho)\hat{\lambda}_{\eta t} \Longrightarrow (\hat{P}_{\eta t} - \hat{P}_{\eta,t-1}) = \varrho (\mathbb{E}_{t} \hat{P}_{t+1} - \hat{P}_{\eta t}) + \frac{(1 - \theta)(1 - \theta \varrho)}{\theta} \hat{\lambda}_{\eta t} \qquad (0.113)$$

Substitute 0.101 in 0.113:

$$\hat{\pi}_{\eta t} = \varrho \mathbb{E}_t \hat{\pi}_{\eta, t+1} + \frac{(1-\theta)(1-\theta\varrho)}{\theta} \hat{\lambda}_{\eta t}$$
(0.114)

⁶ see Corollary ??.

Equation 0.114 is the New Keynesian Phillips Curve in terms of the real marginal cost. It illustrates that the deviation of inflation depends on both the expectation of future inflation deviation and the present marginal cost deviation.

Regional Consumption Weight

Log-linearize 0.6:

$$C_{\eta 2t} = C_{\eta 1t} \frac{(1 - \omega_{\eta 1}) P_{1t}}{\omega_{\eta 1} P_{2t}} \Longrightarrow$$
 (0.6)

$$\hat{C}_{n2t} - \hat{C}_{n1t} = \hat{P}_{1t} - \hat{P}_{2t} \tag{0.115}$$

Regional Consumption of Good 1

Log-linearize 0.7:

$$C_{\eta 1t} = C_{\eta t} \left(\frac{P_{2t} \omega_{\eta 1}}{P_{1t} (1 - \omega_{\eta 1})} \right)^{1 - \omega_{\eta 1}} \Longrightarrow \tag{0.7}$$

$$\hat{C}_{\eta t} - \hat{C}_{\eta 1t} = (1 - \omega_{\eta 1})(\hat{P}_{1t} - \hat{P}_{2t}) \tag{0.116}$$

Regional Price Index

Log-linearize 0.8:

$$Q_{\eta t} = \left(\frac{P_{1t}}{\omega_{\eta 1}}\right)^{\omega_{\eta 1}} \left(\frac{P_{2t}}{1 - \omega_{\eta 1}}\right)^{1 - \omega_{\eta 1}} \Longrightarrow \tag{0.8}$$

$$\hat{Q}_{\eta t} = \omega_{\eta 1} \hat{P}_{1t} + (1 - \omega_{\eta 1}) \hat{P}_{2t} \tag{0.117}$$

Labor Supply

Log-linearize 0.18:

$$\frac{\phi L_{\eta t}^{\varphi}}{C_{\eta t}^{-\sigma}} = \frac{W_{\eta t}}{Q_{\eta t}} \qquad \Longrightarrow \qquad (0.18)$$

$$\varphi \hat{L}_{\eta t} + \sigma \hat{C}_{\eta t} = \hat{W}_{\eta t} - \hat{Q}_{\eta t} \tag{0.118}$$

Law of Motion for Capital

Log-linearize 0.11:

$$K_{\eta,t+1} = (1-\delta)K_{\eta t} + I_{\eta t} \qquad \Longrightarrow \qquad (0.11)$$

$$K_{\eta}(1 + \hat{K}_{\eta,t+1}) = (1 - \delta)K_{\eta}(1 + \hat{K}_{\eta t}) + I_{\eta}(1 + \hat{I}_{\eta t}) \Longrightarrow \hat{K}_{\eta,t+1} = (1 - \delta)\hat{K}_{\eta t} + \delta\hat{I}_{\eta t}$$
(0.119)

Euler equation for capital return

Log-linearize 0.19:

$$\frac{\mathbb{E}_{t}\{Q_{\eta,t+1}C_{\eta,t+1}^{\sigma}\}}{Q_{\eta t}C_{\eta t}^{\sigma}} = \beta \frac{\mathbb{E}_{t}\{P_{\eta,t+1}(1-\delta) + R_{t+1}\}}{P_{\eta t}} \iff (0.19)$$

$$\mathbb{E}_{t}\left\{\frac{Q_{\eta,t+1}C_{\eta,t+1}^{\sigma}}{P_{\eta,t+1}}\right\} \cdot \frac{P_{\eta t}}{Q_{\eta t}C_{\eta t}^{\sigma}} = \beta \mathbb{E}_{t}\left\{(1-\delta) + \frac{R_{t+1}}{P_{\eta,t+1}}\right\} \implies$$

$$(\hat{Q}_{\eta,t+1} - \hat{Q}_{\eta t}) + \sigma(\hat{C}_{\eta,t+1} - \hat{C}_{\eta t}) - (\hat{P}_{\eta,t+1} - \hat{P}_{\eta,t}) = \beta r(\hat{R}_{\eta,t+1} - \hat{P}_{\eta,t+1})$$
 (0.120)

where:
$$r = \frac{R_K}{P_{\eta}}$$
 (0.121)

Bundle Technology

Apply the natural logarithm to 0.21:

$$Y_{\eta t} = \left(\int_0^1 Y_{\eta j t}^{\frac{\psi - 1}{\psi}} \, \mathrm{d} j\right)^{\frac{\psi}{\psi - 1}} \Longrightarrow$$

$$\ln Y_{\eta t} = \frac{\psi}{\psi - 1} \ln \left(\int_0^1 Y_{\eta j t}^{\frac{\psi - 1}{\psi}} \, \mathrm{d} j\right)$$

$$(0.21)$$

Log-linearize using corollary ??:

$$\ln Y_{\eta} + \hat{Y}_{\eta t} = \frac{\psi}{\psi - 1} \left[\ln \left(\int_{0}^{1} Y_{\eta j}^{\frac{\psi - 1}{\psi}} \, \mathrm{d} j \right) + \frac{\psi - 1}{\psi} \int_{0}^{1} \hat{Y}_{\eta j t} \, \mathrm{d} j \right] \implies \\
\ln Y_{\eta} + \hat{Y}_{\eta t} = \frac{\psi}{\psi - 1} \left[\ln \left(Y_{\eta j}^{\frac{\psi - 1}{\psi}} \int_{0}^{1} \mathrm{d} j \right) + \frac{\psi - 1}{\psi} \int_{0}^{1} \hat{Y}_{\eta j t} \, \mathrm{d} j \right] \implies \\
\ln Y_{\eta} + \hat{Y}_{\eta t} = \frac{\psi}{\psi - 1} \left[\frac{\psi - \mathcal{X}}{\psi} \ln Y_{\eta j} + \ln \mathcal{X} + \frac{\psi - \mathcal{X}}{\psi} \int_{0}^{1} \hat{Y}_{\eta j t} \, \mathrm{d} j \right] \implies \\
\ln Y_{\eta} + \hat{Y}_{\eta t} = \ln Y_{\eta j} + \int_{0}^{1} \hat{Y}_{\eta j t} \, \mathrm{d} j$$

Apply corollary ??:

$$\ln Y_{\eta} + \hat{Y}_{\eta t} = \ln Y_{\eta j} + \int_{0}^{1} \hat{Y}_{\eta j t} \, \mathrm{d} j \implies$$

$$\hat{Y}_{\eta t} = \int_{0}^{1} \hat{Y}_{\eta j t} \, \mathrm{d} j \qquad (0.122)$$

Production Function

Log-linearize 0.26:

$$Y_{\eta j t} = Z_{A \eta t} K_{\eta j t}^{\alpha_{\eta}} L_{\eta j t}^{1 - \alpha_{\eta}} \qquad \Longrightarrow \qquad (0.26)$$

$$Y_{\eta j} (1 + \hat{Y}_{\eta j t}) = Z_{A \eta} K_{\eta j}^{\alpha_{\eta}} L_{\eta j}^{1 - \alpha_{\eta}} (1 + \hat{Z}_{A \eta t} + \alpha_{\eta} \hat{K}_{\eta j t} + (1 - \alpha_{\eta}) \hat{L}_{\eta j t}) \Longrightarrow$$

$$\hat{Y}_{\eta j t} = \hat{Z}_{A \eta t} + \alpha_{\eta} \hat{K}_{\eta j t} + (1 - \alpha_{\eta}) \hat{L}_{\eta j t} \qquad (0.123)$$

Substitute 0.123 in 0.122:

$$\hat{Y}_{\eta t} = \int_{0}^{1} \hat{Y}_{\eta j t} \, \mathrm{d} j \qquad \Longrightarrow \qquad (0.122)$$

$$\hat{Y}_{\eta t} = \int_{0}^{1} \left[\hat{Z}_{A \eta t} + \alpha_{\eta} \hat{K}_{\eta j t} + (1 - \alpha_{\eta}) \hat{L}_{\eta j t} \right] \, \mathrm{d} j \qquad \Longrightarrow$$

$$\hat{Y}_{\eta t} = \hat{Z}_{A \eta t} + \alpha_{\eta} \int_{0}^{1} \hat{K}_{\eta j t} \, \mathrm{d} j + (1 - \alpha_{\eta}) \int_{0}^{1} \hat{L}_{\eta j t} \, \mathrm{d} j \qquad (0.124)$$

Apply the natural logarithm and then log-linearize 0.51:

$$L_{\eta t} = \int_{0}^{1} L_{\eta j t} \, \mathrm{d} \, j \qquad \Longrightarrow \qquad (0.51)$$

$$\ln L_{\eta t} = \ln \left[\int_{0}^{1} L_{\eta j t} \, \mathrm{d} \, j \right] \qquad \Longrightarrow$$

$$\ln L + \hat{L}_{\eta t} = \ln \left[\int_{0}^{1} L_{\eta j} \, \mathrm{d} \, j \right] + \int_{0}^{1} \hat{L}_{\eta j t} \, \mathrm{d} \, j \qquad \Longrightarrow$$

$$\ln L + \hat{L}_{\eta t} = \ln L_{\eta j} + \ln 1 + \int_{0}^{1} \hat{L}_{\eta j t} \, \mathrm{d} \, j$$

Apply corollary ??:

$$\implies \hat{L}_{\eta t} = \int_0^1 \hat{L}_{\eta j t} \, \mathrm{d} j \tag{0.125}$$

By analogy, the total capital deviation is the sum of all firm's deviations:

$$\hat{K}_{\eta t} = \int_0^1 \hat{K}_{\eta j t} \,\mathrm{d}\,j \tag{0.126}$$

Substitute 0.125 and 0.126 in 0.124:

$$\hat{Y}_{nt} = \hat{Z}_{Ant} + \alpha_n \hat{K}_{nt} + (1 - \alpha_n) \hat{L}_{nt}$$
(0.127)

Technical and Economic Marginal Rates of Substitution (TMRS and EMRS)

Log-linearize 0.30 and then apply 0.125 and 0.126:

$$\frac{K_{\eta jt}}{L_{\eta jt}} = \left(\frac{\alpha_{\eta}}{1 - \alpha_{\eta}}\right) \frac{W_{\eta t}}{R_{Kt}} \tag{0.30}$$

$$\hat{K}_{\eta t} - \hat{L}_{\eta t} = \hat{W}_{\eta t} - \hat{R}_{Kt} \tag{0.128}$$

Marginal Cost

Log-linearize 0.35:

$$\Lambda_{\eta t} = \frac{1}{Z_{A\eta t}} \left(\frac{R_{Kt}}{\alpha_{\eta}} \right)^{\alpha_{\eta}} \left(\frac{W_{\eta t}}{1 - \alpha_{\eta}} \right)^{1 - \alpha_{\eta}} \implies (0.35)$$

$$\hat{\Lambda}_{\eta t} = \alpha_{\eta} \hat{R}_{Kt} + (1 - \alpha_{\eta}) \hat{W}_{\eta t} - \hat{Z}_{A\eta t} \tag{0.129}$$

Substitute 0.109 in 0.129:

$$\hat{\Lambda}_{\eta t} = \alpha_{\eta} \hat{R}_{Kt} + (1 - \alpha_{\eta}) \hat{W}_{\eta t} - \hat{Z}_{A\eta t} \Longrightarrow
\hat{P}_{\eta t} + \hat{\lambda}_{\eta t} = \alpha_{\eta} \hat{R}_{Kt} + (1 - \alpha_{\eta}) \hat{W}_{\eta t} - \hat{Z}_{A\eta t} \Longrightarrow
\hat{\lambda}_{\eta t} = \alpha_{\eta} \hat{R}_{Kt} + (1 - \alpha_{\eta}) \hat{W}_{\eta t} - \hat{Z}_{A\eta t} - \hat{P}_{\eta t} \tag{0.130}$$

Monetary Policy

Log-linearize 0.44:

$$\frac{R_t}{R} = \frac{R_{t-1}^{\gamma_R} (\pi_t^{\gamma_R} Y_t^{\gamma_Y})^{(1-\gamma_R)} Z_{Mt}}{R^{\gamma_R} (\pi^{\gamma_R} Y_t^{\gamma_Y})^{(1-\gamma_R)}} \Longrightarrow$$

$$R(1 + \hat{R}_t) \quad R^{\gamma_R} (\pi^{\gamma_R} Y_t^{\gamma_Y})^{(1-\gamma_R)} Z_M$$
(0.44)

$$\frac{R(1+\hat{R}_t)}{R} = \frac{R^{\gamma_R}(\pi^{\gamma_\pi}Y^{\gamma_Y})^{(1-\gamma_R)}Z_M}{R^{\gamma_R}(\pi^{\gamma_\pi}Y^{\gamma_Y})^{(1-\gamma_R)}}$$

$$\cdot \left[1 + \gamma_R \hat{R}_{t-1} + (1 - \gamma_R) (\gamma_\pi \hat{\pi}_t + \gamma_Y \hat{Y}_t) + \hat{Z}_{Mt} \right] \Longrightarrow
\hat{R}_t = \gamma_R \hat{R}_{t-1} + (1 - \gamma_R) (\gamma_\pi \hat{\pi}_t + \gamma_Y \hat{Y}_t) + \hat{Z}_{Mt}$$
(0.131)

National Gross Inflation Rate

Log-linearize 0.45:

$$\pi_t = \pi_{1t}^{\theta_{\pi}} \pi_{2t}^{1-\theta_{\pi}} \implies (0.45)$$

$$\hat{\pi}_t = \theta_\pi \hat{\pi}_{1t} + (1 - \theta_\pi) \hat{\pi}_{2t} \tag{0.132}$$

Productivity Shock

Log-linearize 0.47:

$$\ln Z_{A\eta t} = (1 - \rho_{A\eta}) \ln Z_{A\eta} + \rho_{A\eta} \ln Z_{A\eta,t-1} + \varepsilon_{A\eta t} \qquad \Longrightarrow \qquad (0.47)$$

$$\ln Z_{A\eta} + \hat{Z}_{A\eta t} = (1 - \rho_{A\eta}) \ln Z_{A\eta} + \rho_{A\eta} (\ln Z_{A\eta} + \hat{Z}_{A\eta,t-1}) + \varepsilon_{A\eta} \Longrightarrow$$

$$\hat{Z}_{A\eta t} = \rho_{A\eta} \hat{Z}_{A\eta,t-1} + \varepsilon_{A\eta} \qquad (0.133)$$

Monetary Shock

Log-linearize 0.48:

$$\ln Z_{Mt} = (1 - \rho_M) \ln Z_M + \rho_M \ln Z_{M,t-1} + \varepsilon_{Mt} \qquad \Longrightarrow \qquad (0.48)$$

$$\ln Z_M + \hat{Z}_{Mt} = (1 - \rho_M) \ln Z_M + \rho_M (\ln Z_M + \hat{Z}_{M,t-1}) + \varepsilon_M \qquad \Longrightarrow \qquad (0.134)$$

Goods-Market Clearing Condition

Log-linearize 0.49:

$$Y_{t} = Y_{1t} + Y_{2t}$$

$$Y(1 + \hat{Y}_{t}) = Y_{1}(1 + \hat{Y}_{1t}) + Y_{2}(1 + \hat{Y}_{2t}) \Longrightarrow$$

$$\hat{Y}_{t} = \frac{Y_{1}}{Y}\hat{Y}_{1t} + \frac{Y_{2}}{Y}\hat{Y}_{2t}$$

$$(0.49)$$

Define the regional weights $\langle \theta_Y \ (1 - \theta_Y) \rangle$ in the production total:

$$\left\langle \theta_{Y} \quad (1 - \theta_{Y}) \right\rangle := \left\langle \frac{Y_{1}}{Y} \quad \frac{Y_{2}}{Y} \right\rangle \tag{0.136}$$

Substitute 0.136 in 0.135:

$$\hat{Y}_t = \theta_Y \hat{Y}_{1t} + (1 - \theta_Y) \hat{Y}_{2t} \tag{0.137}$$

Regional Goods-Market Clearing Condition

Log-linearize 0.50:

$$Y_{\eta t} = C_{\eta t} + I_{\eta t} \Longrightarrow \tag{0.50}$$

$$Y_{\eta}(1+\hat{Y}_{\eta t}) = C_{\eta}(1+\hat{C}_{\eta t}) + I_{\eta}(1+\hat{I}_{\eta t}) \implies$$

$$\hat{Y}_{\eta t} = \frac{C_{\eta}}{Y_{\eta}} \hat{C}_{\eta 1 t} + \frac{I_{\eta}}{Y_{\eta}} \hat{I}_{\eta t} \tag{0.138}$$

Define the consumption and investment weights $\left\langle \theta_{C\eta} \right| \left(1 - \theta_{C\eta}\right) \right\rangle$ in the regional production:

$$\left\langle \theta_{C\eta} \quad (1 - \theta_{C\eta}) \right\rangle \coloneqq \left\langle \frac{C_{\eta}}{Y_{\eta}} \quad \frac{I_{\eta}}{Y_{\eta}} \right\rangle \tag{0.139}$$

Substitute 0.139 in 0.138:

$$\hat{Y}_{\eta t} = \theta_{C\eta} \hat{C}_{\eta t} + (1 - \theta_{C\eta}) \hat{I}_{\eta t} \tag{0.140}$$

Budget Constraint

Log-linearize 0.55: and then apply 0.88 and 0.122:

$$Q_{\eta t}C_{\eta t} + P_{\eta t}I_{\eta t} = R_{t}K_{\eta t} + P_{\eta t}\int_{0}^{1}Y_{\eta j t} \,\mathrm{d}\,j \implies$$

$$Q_{\eta}C_{\eta}(1 + \hat{Q}_{\eta t} + \hat{C}_{\eta t}) + P_{\eta}I_{\eta}(1 + \hat{P}_{\eta t} + \hat{I}_{\eta t}) =$$

$$= RK_{\eta}(1 + \hat{R}_{t} + \hat{K}_{\eta t}) + P_{\eta}\int_{0}^{1}Y_{\eta j} \,\mathrm{d}\,j(1 + \hat{P}_{\eta t} + \int_{0}^{1}\hat{Y}_{\eta j t} \,\mathrm{d}\,j) \implies$$
(0.55)

$$Q_{\eta}C_{\eta}(\hat{Q}_{\eta t} + \hat{C}_{\eta t}) + P_{\eta}I_{\eta}(\hat{P}_{\eta t} + \hat{I}_{\eta t}) =$$

$$= RK_{\eta}(\hat{R}_{t} + \hat{K}_{\eta t}) + P_{\eta}Y_{\eta}(\hat{P}_{\eta t} + \hat{Y}_{\eta t})$$
(0.141)

0.1.12 Log-linear Model Structure

The log-linear model is a square system of 30 variables and equations, summarized as follows:

- Variables:
 - Real Variables: $\langle \hat{C}_{\eta} \quad \hat{L}_{\eta} \quad \hat{K}_{\eta} \quad \hat{I}_{\eta} \quad \hat{C}_{\eta 1} \quad \hat{C}_{\eta 2} \quad \hat{Y}_{\eta} \quad \hat{Y} \quad \hat{Z}_{A\eta} \quad \hat{Z}_{M} \rangle$;
 - Nominal Variables: $\langle \hat{Q}_{\eta} \quad \hat{P}_{\eta} \quad \hat{R} \quad \hat{\pi} \quad \hat{W}_{\eta} \quad \hat{\lambda}_{\eta} \quad \hat{\pi}_{\eta} \rangle$.
- Equations:
 - 1. Regional Gross Inflation Rate

$$\hat{\pi}_{\eta t} = \hat{P}_{\eta t} - \hat{P}_{\eta, t-1} \tag{0.101}$$

2. New Keynesian Phillips Curve

$$\hat{\pi}_{\eta t} = \beta \mathbb{E}_t \hat{\pi}_{\eta, t+1} + \frac{(1-\theta)(1-\theta\beta)}{\theta} \hat{\lambda}_{\eta t}$$
(0.114)

3. Regional Consumption Weight

$$\hat{C}_{\eta 2t} - \hat{C}_{\eta 1t} = \hat{P}_{1t} - \hat{P}_{2t} \tag{0.115}$$

4. Regional Consumption of Good 1

$$\hat{C}_{\eta t} - \hat{C}_{\eta 1 t} = (1 - \omega_{\eta 1})(\hat{P}_{1 t} - \hat{P}_{2 t}) \tag{0.116}$$

5. Regional Price Index

$$\hat{Q}_{\eta t} = \omega_{\eta 1} \hat{P}_{1t} + (1 - \omega_{\eta 1}) \hat{P}_{2t} \tag{0.117}$$

6. Labor Supply

$$\varphi \hat{L}_{\eta t} + \sigma \hat{C}_{\eta t} = \hat{W}_{\eta t} - \hat{Q}_{\eta t} \tag{0.118}$$

7. Law of Motion for Capital

$$\hat{K}_{\eta,t+1} = (1-\delta)\hat{K}_{\eta t} + \delta\hat{I}_{\eta t} \tag{0.119}$$

8. Euler equation for capital return

$$(\hat{Q}_{\eta,t+1} - \hat{Q}_{\eta t}) + \sigma(\hat{C}_{\eta,t+1} - \hat{C}_{\eta t}) - (\hat{P}_{\eta,t+1} - \hat{P}_{\eta,t}) = = \beta r(\hat{R}_{\eta,t+1} - \hat{P}_{\eta,t+1})$$

$$(0.120)$$

9. Production Function

$$\hat{Y}_{\eta t} = \hat{Z}_{A \eta t} + \alpha_{\eta} \hat{K}_{\eta t} + (1 - \alpha_{\eta}) \hat{L}_{\eta t}$$
(0.127)

10. Technical and Economic Marginal Rates of Substitution

$$\hat{K}_{\eta t} - \hat{L}_{\eta t} = \hat{W}_{\eta t} - \hat{R}_{Kt} \tag{0.128}$$

11. Marginal Cost

$$\hat{\lambda}_{\eta t} = \alpha_{\eta} \hat{R}_{Kt} + (1 - \alpha_{\eta}) \hat{W}_{\eta t} - \hat{Z}_{A\eta t} - \hat{P}_{\eta t}$$
(0.130)

12. Monetary Policy

$$\hat{R}_{t} = \gamma_{R} \hat{R}_{t-1} + (1 - \gamma_{R})(\gamma_{\pi} \hat{\pi}_{t} + \gamma_{Y} \hat{Y}_{t}) + \hat{Z}_{Mt}$$
(0.131)

13. National Gross Inflation Rate

$$\hat{\pi}_t = \theta_\pi \hat{\pi}_{1t} + (1 - \theta_\pi) \hat{\pi}_{2t} \tag{0.132}$$

14. Productivity Shock

$$\hat{Z}_{A\eta t} = \rho_{A\eta} \hat{Z}_{A\eta, t-1} + \varepsilon_{A\eta} \tag{0.133}$$

15. Monetary Shock

$$\hat{Z}_{Mt} = \rho_M \hat{Z}_{M,t-1} + \varepsilon_M \tag{0.134}$$

16. Goods-Market Clearing Condition

$$\hat{Y}_t = \theta_Y \hat{Y}_{1t} + (1 - \theta_Y) \hat{Y}_{2t} \tag{0.137}$$

17. Regional Goods-Market Clearing Condition

$$\hat{Y}_{\eta t} = \theta_{C\eta} \hat{C}_{\eta t} + (1 - \theta_{C\eta}) \hat{I}_{\eta t} \tag{0.140}$$

0.1.13 Eigenvalues and Forward Looking Variables

As it stands, the model has more forward-looking variables than eigenvalues greater than one, indicating that the model is indeterminate. To transform the model into one with a single solution, the number of eigenvalues and forward-looking variables must be equal. To address this, Farmer et al. (2015) employs a method where excess forward-looking variables are substituted with an expectational variable at time t, along with a expectational shock $sunspot_{\eta}$, representing the deviation between the expected and the realized values. For the present model, the variables created are the expected regional gross inflation rates $\pi_{\eta t}^{X}$ and the expected capital deviation $K_{\eta t}^{X}$:

$$\pi_{nt}^{X} = \mathbb{E}_t \hat{\pi}_{\eta, t+1} \tag{0.142}$$

$$sunspot_{\eta} = \hat{\pi}_{\eta t} - \pi_{\eta, t-1}^{X} \tag{0.143}$$

$$K_{\eta t}^{X} = \hat{K}_{\eta, t+1} \tag{0.144}$$

$$sunspot_{K\eta} = \hat{K}_{\eta t} - K_{\eta, t-1}^{X} \tag{0.145}$$