Natural Language Models and Interfaces

BSc Artificial Intelligence

Lecturer: Wilker Aziz Institute for Logic, Language, and Computation

2018, week 3b - PGMs

Quick intro to PGMs

Check the lecture notes on PGMs

Suppose A, B, and C are binary rvs

1. How do we represent $P_{A,B,C}$ (without making assumptions)?

Suppose A, B, and C are binary rvs

1. How do we represent $P_{A,B,C}$ (without making assumptions)?

Joi	nt as	signments	Probability values		
A	B	C	$P_{A,B,C}$		
0	0	0	$P_{A,B,C}(0,0,0)$		
0	0	1	$P_{A,B,C}(0,0,1)$		
0	1	0	$P_{A,B,C}(0,1,0)$		
1	0	0	$P_{A,B,C}(1,0,0)$		
0	1	1	$P_{A,B,C}(0,1,1)$		
1	1	0	$P_{A,B,C}(1,1,0)$		
1	0	1	$P_{A,C,C}(1,0,1)$		
1	1	1	$P_{B,B,C}(1,1,1)$		

Table: Tabular joint distribution over 3 binary rvs

Suppose A, B, and C are binary rvs

1. How do we represent $P_{A,B,C}$ (without making assumptions)?

Joint assignments Probability value	
$A B \qquad C \qquad P_{A,B,C}$	
0 0 0 $P_{A,B,C}(0,0,0)$	
0 0 1 $P_{A,B,C}(0,0,1)$	
0 1 0 $P_{A,B,C}(0,1,0)$	
1 0 0 $P_{A,B,C}(1,0,0)$	
0 1 1 $P_{A,B,C}(0,1,1)$	
1 1 0 $P_{A,B,C}(1,1,0)$	
1 0 1 $P_{A,C,C}(1,0,1)$	
1 1 $P_{B,B,C}(1,1,1)$	

Table: Tabular joint distribution over 3 binary rvs

2. How many probability values does it take in general for nvariables with t outcomes each?

Suppose A, B, and C are binary rvs

1. How do we represent $P_{A,B,C}$ (without making assumptions)?

Joi	nt ass	signments	Probability values		
A	B	C	$P_{A,B,C}$		
0	0	0	$P_{A,B,C}(0,0,0)$		
0	0	1	$P_{A,B,C}(0,0,1)$		
0	1	0	$P_{A,B,C}(0,1,0)$		
1	0	0	$P_{A,B,C}(1,0,0)$		
0	1	1	$P_{A,B,C}(0,1,1)$		
1	1	0	$P_{A,B,C}(1,1,0)$		
1	0	1	$P_{A,C,C}(1,0,1)$		
1	1	1	$P_{B,B,C}(1,1,1)$		

Table: Tabular joint distribution over 3 binary rvs

2. How many probability values does it take in general for n variables with t outcomes each? n^t

Directed graphical models or Bayesian networks

A directed acyclic graph (DAG)

- nodes represent rvs
- edges represent direct influence
- ▶ a set of conditional independence statements
 - an rv is conditionally independent of its non-descendants given its parents

Conditional independence in BNs

Consider A, B, and C, due to chain rule we can write

$$P_{A,B,C}(a,b,c) = P_A(a)P_{B|A}(b|a)P_{C|AB}(c|a,b)$$
 (1)

Conditional independence in BNs

Consider A, B, and C, due to chain rule we can write

$$P_{A,B,C}(a,b,c) = P_A(a)P_{B|A}(b|a)P_{C|AB}(c|a,b)$$
 (1)

But if we are given a particular set of assumptions

Figure: Examples of BN

then we can simplify it

$$P_{A,B,C}(a,b,c) = P_A(a)P_{B|A}(b|a)P_{C|AB}(c|a,b)$$
 (2)

$$= P_A(a)P_{B|A}(b|a)P_{C|B}(c|b)$$
 (3)

C is independent of non-descendants $\{A\}$ given its parents $\{B\}$

Chain rule for Bayesian networks

Chain rule (in general)

$$P_{X_1,\dots,X_n}(x_1,\dots,x_n) = \prod_{i=1}^n P_{X|X_{< i}}(x_i|x_{< i})$$
 (4)

Chain rule for Bayesian networks

$$P_{X_1,...,X_n}(x_1,...,x_n) = \prod_{i=1}^n P_{X|Pa_X}(x|pa_x)$$
 (5)

where

- ▶ Pa_X set of rvs parents of X
- ▶ pa_X assignments of parents of X

Representing BNs

Each variable (given its parents) gets a tabular CPD Thus for

Figure: Examples of BN

A	P_A	A	В	$P_{B A}$	В	C	$P_{C B}$
0	$P_A(0)$	0	0	$P_{B A}(0 0)$	0	0	$P_{C B}(0 0)$
1	$P_A(1)$	0	1	$P_{B A}(0 0) = P_{B A}(1 0)$	0	1	$P_{C B}(1 0)$
		1	0	$P_{B A}(0 1)$	1	0	$P_{C B}(0 1)$
		1	1	$P_{B A}(0 1)$	1	1	$P_{C B}(0 1)$

Representation cost

- from $O(\prod_{i=1}^n |\operatorname{supp}(X_i)|)$
- ▶ to $O(\sum_{i=1}^{n} |\operatorname{supp}(X_i)| \times |\operatorname{supp}(\mathsf{Pa}_{X_i})|)$

Exercises

Figure: Write down the factorisation

Inferences

So the BN shows us what are the CPDs in the problem

but what if we want to reason about something that's not a CPD?

Figure: Examples of BN

Here we have CPDs P_A , $P_{B|A}$, and $P_{C|B}$

- ▶ how do we reason about $P_{B|C}$ or $P_{A|B}$?
- ightharpoonup or P_R or P_C ?
- ightharpoonup or $P_{BC|A}$?

Inferences

So the BN shows us what are the CPDs in the problem

but what if we want to reason about something that's not a CPD?

Figure: Examples of BN

Here we have CPDs P_A , $P_{B|A}$, and $P_{C|B}$

- ▶ how do we reason about $P_{B|C}$ or $P_{A|B}$?
- ightharpoonup or P_R or P_C ?
- ightharpoonup or $P_{BC|A}$?

For whatever combination, we have rules of probability!

Conditional probability and marginalisation If we have CPDs P_A , $P_{B|A}$, and $P_{C|B}$, infer $P_{B|C}$

If we have CPDs P_A , $P_{B|A}$, and $P_{C|B}$, infer $P_{B|C}$

start from the definition of conditional probability

$$P_{B|C}(b|c) = \frac{P_{BC}(b,c)}{P_C(c)}$$

If we have CPDs P_A , $P_{B|A}$, and $P_{C|B}$, infer $P_{B|C}$

start from the definition of conditional probability

$$P_{B|C}(b|c) = \frac{P_{BC}(b,c)}{P_{C}(c)}$$

marginalise A in the numerator

$$P_{B|C}(b|c) = \frac{\sum_{a} P_{ABC}(a, b, c)}{P_{C}(c)}$$

If we have CPDs P_A , $P_{B|A}$, and $P_{C|B}$, infer $P_{B|C}$

start from the definition of conditional probability

$$P_{B|C}(b|c) = \frac{P_{BC}(b,c)}{P_{C}(c)}$$

marginalise A in the numerator

$$P_{B|C}(b|c) = \frac{\sum_{a} P_{ABC}(a, b, c)}{P_{C}(c)}$$

factorise the joint distribution to introduce the CPDs

$$P_{B|C}(b|c) = \frac{\sum_a P_A(a) P_{B|A}(b|a) P_{C|B}(c|b)}{P_C(c)} \label{eq:problem}$$

If we have CPDs P_A , $P_{B|A}$, and $P_{C|B}$, infer $P_{B|C}$

start from the definition of conditional probability

$$P_{B|C}(b|c) = \frac{P_{BC}(b,c)}{P_{C}(c)}$$

marginalise A in the numerator

$$P_{B|C}(b|c) = \frac{\sum_{a} P_{ABC}(a, b, c)}{P_{C}(c)}$$

factorise the joint distribution to introduce the CPDs

$$P_{B|C}(b|c) = \frac{\sum_{a} P_{A}(a) P_{B|A}(b|a) P_{C|B}(c|b)}{P_{C}(c)}$$

rearrange the terms for convenience

$$P_{B|C}(b|c) = \frac{P_{C|B}(c|b) \sum_{a} P_{A}(a) P_{B|A}(b|a)}{P_{C}(c)}$$

If we have CPDs P_A , $P_{B|A}$, and $P_{C|B}$, infer $P_{B|C}$

start from the definition of conditional probability

$$P_{B|C}(b|c) = \frac{P_{BC}(b,c)}{P_{C}(c)}$$

ightharpoonup marginalise A in the numerator

$$P_{B|C}(b|c) = \frac{\sum_{a} P_{ABC}(a, b, c)}{P_{C}(c)}$$

factorise the joint distribution to introduce the CPDs

$$P_{B|C}(b|c) = \frac{\sum_{a} P_{A}(a) P_{B|A}(b|a) P_{C|B}(c|b)}{P_{C}(c)}$$

rearrange the terms for convenience

$$P_{B|C}(b|c) = \frac{P_{C|B}(c|b) \sum_{a} P_{A}(a) P_{B|A}(b|a)}{P_{C}(c)}$$

• note that the last sum is the (inferred) marginal $P_B(b)$

Continuation

we are here

$$P_{B|C}(b|c) = \frac{P_{C|B}(c|b) \sum_{a} P_{A}(a) P_{B|A}(b|a)}{P_{C}(c)} \label{eq:problem}$$

Continuation

we are here

$$P_{B|C}(b|c) = \frac{P_{C|B}(c|b) \sum_{a} P_{A}(a) P_{B|A}(b|a)}{P_{C}(c)}$$

now obtain the marginal in the denominator as a function of tabular CPDs

$$\begin{split} P_{C}(c) &= \sum_{a} \sum_{b} P_{ABC}(a,b,c) \\ &= \sum_{a} \sum_{b} P_{A}(a) P_{B|A}(b|a) P_{C|B}(c|b) \\ &= \sum_{a} P_{A}(a) \sum_{b} P_{B|A}(b|a) P_{C|B}(c|b) \end{split}$$

Continuation

we are here

$$P_{B|C}(b|c) = \frac{P_{C|B}(c|b) \sum_{a} P_{A}(a) P_{B|A}(b|a)}{P_{C}(c)}$$

now obtain the marginal in the denominator as a function of tabular CPDs

$$\begin{split} P_{C}(c) &= \sum_{a} \sum_{b} P_{ABC}(a,b,c) \\ &= \sum_{a} \sum_{b} P_{A}(a) P_{B|A}(b|a) P_{C|B}(c|b) \\ &= \sum_{a} P_{A}(a) \sum_{b} P_{B|A}(b|a) P_{C|B}(c|b) \end{split}$$

get back to the conditional

$$P_{B|C}(b|c) = \frac{P_{C|B}(c|b) \sum_{a} P_{A}(a) P_{B|A}(b|a)}{\sum_{a} P_{A}(a) \sum_{b} P_{B|A}(b|a) P_{C|B}(c|b)}$$

References I