Why Testing?

Software Testing

Trainer: Aleksandar Karamfilov

Email: alex@pragmatic.bg

Facebook: facebook.com/a.karamfilov

Copyright © Pragmatic LLC

Software Testing

Testing is applied epistemology

Different meanings of testing

```
precna_config['code'],
                                                                                                                            nmage_src' => $image_src
custom.css
ie.css
                                                                                         No difference between testing and
theme.css
theme-animate.css
                                                                                                                                                                                                             debugging.
heme-blog.css
                                                                                                                                 cor_val = hexdec($hex_str);
                                                                                                                                                                                                                                         ; , shex_str); // Gets a proper hex string
neme-elements.css
                                                                                                                       $rgb_array['r'] = 0xFF & ($color_val >> 0x10);
                                                                                                                      $rgb_array['g'] = 0xFF & ($color_val >> 0x8);
eme-shop.css
                                                                                                                     $rgb_array['b'] = 0xFF & $color_val;
                                                                                                                             if(strlen($hex_str) = 3) {
                                                                                                                  self(strlen(snex_str)
srgb_array['r'] = hexdec(str_repeat(substr($hex_str, 0, 1), 2));
hexder(str_repeat(substr($hex_str, 0, 1), 2));
                                                                                                                 $\forall \text{array['g']} = \text{nexdec(str_repeat(substr($\text{nex-str}, v), 1), 2));} \\
\forall \text{sreh_array['g']} = \text{hexdec(str_repeat(substr($\text{hex-str}, v, 1), 2));} \\
\forall \text{hexdec(str_repeat(substr($\text{chex-str}, 1, 1), 2));} \\
\forall \text{nexdec(str_repeat(substr($\text{chex-str}, 1, 1), 2));} \\
\forall \text{nexdec(str_repea
                                                                    101
                                                                                                                                                                       hexdec(str_repeat(substr(snex_str, 2, 1), 2));

hexdec(str_repeat(substr($hex_str, 2, 1), 2));
chimp
                                                                                                 return $return_string ? implode($separator &ret
-php-captcha
kgrounds
                                                                        // Draw the image
                                                                        if( isset($ GFT[] C
x.php
```


Testing principles

7 principles of software testing

Software testing principles

- Exhaustive testing is impossible
- Testing shows the presence of bugs
- Early testing
- Defect clustering (80/20)
- The pesticide paradox
- Testing is context dependent
- Absence of errors fallacy

Software Testing Life Cycle

Phases in testing

Software Testing Life Cycle (STLC)

Test planning and control

Test analysis and design

Test implementation and execution

Evaluating exit criteria and reporting

Test closure activities

Software Testing Life Cycle (STLC)

Planning

- Determine scope
- Determine risks
- Identify objectivies
- Select test approach
- Use test policy/strategy
- Required resources
- Schedule tasks
- Exit criteria

Control

- Measure/analyse results
- Monitor/document progress
- Provide information on testing
- Initiate corrective actions
- Make decisions

Analysis

- Review test basis
- Identify test conditions
- Evaluate testability requirements/system

Design

- Design tests
- Design test environment

Implementation

- Develop/prioritize test cases
- Create test suits
- Implement/verify environment

Execution

- Execute test suits/cases
- Log the outcome
- Compare actual/expected results
- Report discrepancis
- Confirmation/re-testing

Evaluating exit criteria

- Check test logs
 against exit criteria
- Assess if more test are needed

Reporting

Write a test summary report for stakeholders

Test closure activities

- Check which planned deliverables we actually delivered
- Finalize and archive testware
- Hand over testware to the maintenance organization
- Evaluate how the testing went and analyze lessons learned for future releases and projects.

Classic example

Weinberg-Myers triangle problem

Triangle problem

Consider the following software program. It reads three input data values. These values represent the three lengths of the sides of a triangle. The purpose of this program is to display a message which states whether the triangle is scalene (i.e., no two sides are equal), isosceles (two sides equal) or equilateral (all sides equal). As software goes, this is very low in complexity.

How do we test it?

Create 10 tests to test the program

Side 1	Side 2	Side 3	Expected Result

Example

Side 1	Side 2	Side 3	Expected Result
1	1	1	Equilateral
10.5	10.5	10.5	Equilateral
2	3	4	Scalene
4	2	2	Scalene
4	3	2	Scalene
10	10	20	Isosceles
20	10	10	Isosceles
-1	1	1	Error
1		1	Error
Α	В	С	Error

Questions

