

Design and Analysis of Algorithms I

Graph Algorithms Representing Graphs

Graphs

Two ingredients

- <u>Vertices</u> aka nodes (V)
- Edges (E) = pairs of vertices
 - can be <u>undirected</u> [unordered pair] or <u>directed</u> [ordered pair] (aka <u>arcs</u>)

Examples: road networks, the Web, social networks, precedence constraints, etc.

Consider an undirected graph that has n vertices, no parallel edges, and is connected (i.e., "in one piece"). What is the minimum and maximum number of edges that the graph could have, respectively?

- $\bigcirc n-1$ and n^2
- \bigcirc *n* and 2^n
- \bigcirc *n* and n^n

Te: ve

Sparse vs. Dense Graphs

Let $\underline{\mathbf{n}} = \#$ of vertices, $\underline{\mathbf{m}} = \#$ of edges.

In most (but not all) applications, m is $\Omega(n)$ and $O(n^2)$

- in a "sparse" graph, m is or is close to O(n)
- in a "dense" graph, m is closer to $\theta(n^2)$

The Adjacency Matrix

Represent G by a n x n 0-1 matrix A where $A_{ij} = 1 \Leftrightarrow G$ has an i-j edge \bigcirc

Variants

- $A_{ij} = \#$ of i-j edges (if parallel edges)
- A_{ij} = weight of i-j edge (if any)

•
$$A_{ij} = \begin{bmatrix} +1 & \text{if } \bigcirc \bigcirc \bigcirc \bigcirc \\ -1 & \text{if } \bigcirc \bigcirc \bigcirc \bigcirc \end{bmatrix}$$

How much space does an adjacency matrix require, as a function of the number n of vertices and the number m of edges?

- $\bigcirc \theta(n)$
- $\bigcirc \theta(m)$
- $\bigcirc \theta(m+n)$
- $\bigcirc \theta(n^2)$

Adjacency Lists

Ingredients

- array (or list) of vertices
- array (or list) of edges
- each edge points to its endpoints
- each vertex points to edges incident on it

How much space does an adjacency list representation require, as a function of the number n of vertices and the number m of edges?

- $\bigcirc \theta(n)$
- $\bigcirc \theta(m)$
- $\bigcirc \theta(m+n)$
 - $\bigcirc \theta(n^2)$

Adjacency Lists

Ingredients	<u>Space</u>
 array (or list) of vertices 	$\theta(n)$
• array (or list) of edges one-to-one	heta(m)
• each edge points to its endpoints correspondence!	$\theta(m)$
 each vertex points to edges incident on it 	$\theta(m)$
Question: which is better? Answer: depends on graph density and operations	$\frac{\overline{\theta(m+n)}}{\theta(\max\{m,n\})]}$

needed.

This course: focus on adjacency lists.

Tim Roughgarden

Design and Analysis of Algorithms I

Contraction Algorithm

Overview

Goals for These Lectures

- Further practice with randomized algorithms
 - In a new application domain (graphs)
- Introduction to graphs and graph algorithms

Also: "only" 20 years ago!

Graphs

Two ingredients

- <u>Vertices</u> aka nodes (V)
- Edges (E) = pairs of vertices
 - can be <u>undirected</u> [unordered pair] or <u>directed</u> [ordered pair] (aka <u>arcs</u>)

Examples: road networks, the Web, social networks, precedence constraints, etc.

Cuts of Graphs

<u>Definition:</u> a cut of a graph (V, E) is a partition of V into two non-empty sets A and B.

<u>Definition</u>: the crossing edges of a cut (A, B) are those with:

- the one endpoint in each of (A, B) [undirected]
- tail in A, head in B [directed]

Roughly how many cuts does a graph with n vertices have?

- \bigcirc n
- $\bigcirc n^2$
- $\bigcirc 2^n$
- $\bigcirc n^n$

The Minimum Cut Problem

- <u>INPUT</u>: An undirected graph G = (V, E). [Parallel edges allowed] [See other video for representation of the input]
- <u>GOAL</u>: Compute a cut with fewest number of crossing edges. (a <u>min cut</u>)

What is the number of edges crossing a minimum cut in the graph

shown below?

 \bigcirc 1

 \bigcirc 3

 \bigcirc 4

Design and Analysis of Algorithms I

Contraction Algorithm

The Algorithm

The Minimum Cut Problem

- <u>INPUT</u>: An undirected graph G = (V, E). [Parallel edges allowed] [See other video for representation of the input]
- <u>GOAL</u>: Compute a cut with fewest number of crossing edges. (a <u>min cut</u>)

Random Contraction Algorithm

[due to Karger, early 90s]

While there are more than 2 vertices:

- pick a remaining edge (u,v) uniformly at random
- merge (or "contract") u and v into a single vertex
- remove self-loops return cut represented by final 2 vertices.

Example

Tim Roughgarden

Example (con'd)

KEY QUESTION: What is the probability of success?

> Corresponds to the cut

(not a min cut!)

A Few Applications

- indentify network bottlenecks / weaknesses
- community detection in social networks
- image segmentation
 - input = graph of pixels
 - use edge weights

```
[(u,v) has large weight ⇔ "expect" u,v to come from some object]
```

<u>hope</u>: repeated min cuts identifies the primary objects in picture.

Design and Analysis of Algorithms I

Contraction Algorithm

The Analysis

The Minimum Cut Problem

Input: An undirected graph G = (V, E).

[parallel edges allowed]

[See other video for representation of input]

Goal: Compute a cut with fewest number of crossing edges. (a min cut)

Random Contraction Algorithm

[due to Karger, early 90s]

While there are more than 2 vertices:

- pick a remaining edge (u,v) uniformly at random
- merge (or "contract") u and v into a single vertex
- remove self-loops return cut represented by final 2 vertices.

The Setup

Question: what is the probability of success?

Fix a graph G = (V, E) with n vertices, m edges.

Fix a minimum cut (A, B).

Let k = # of edges crossing (A, B). (Call these edges F)

What Could Go Wrong?

- 1. Suppose an edge of F is contracted at some point \Rightarrow algorithm will not output (A,B).
- 2. Suppose only edges inside A or inside B get contracted \Rightarrow algorithm will output (A, B).

<u>Thus</u>: Pr [output is (A, B)] = Pr [never contracts an edge of F]

Let S_i = event that an edge of F contracted in iteration i.

Goal: Compute
$$\Pr[\neg S_1 \land \neg S_2 \land \neg S_3 \land \dots \land \neg S_{n-2}]$$

Tei ve

What is the probability that an edge crossing the minimum cut (A, B) is chosen in the first iteration (as a function of the number of vertices n, the number of edges m, and the number k of crossing edges)?

The First Iteration

Key Observation: degree of each vertex is at least k

of incident edges

Reason: each vertex v defines a cut $(\{v\}. V-\{v\})$.

Since
$$\sum_{v} degree(v) = 2m$$
, we have $m \ge \frac{kn}{2}$ $\ge kn$

Since
$$\Pr[S_1] = \frac{k}{m}, \Pr[S_1] \le \frac{2}{n}$$

The Second Iteration

Recall:
$$\Pr[\neg S_1 \land \neg S_2] = \Pr[\neg S_2 | \neg S_1]$$
. $\Pr[\neg S_1]$

$$= 1 - \frac{k}{\text{of remaining edge}} \ge (1 - \frac{2}{n})$$
what is this?

Note: all nodes in contracted graph define cuts in G (with at least k crossing edges).

> all degrees in contracted graph are at least k So: # of remaining $ec \ge \frac{1}{2}k(n-1)$

So
$$\Pr[\neg S_2 | \neg S_1] \ge 1 - \frac{2}{(n-1)}$$

All Iterations

In general:

$$\begin{split} & \Pr[\neg S_1 \wedge \neg S_2 \wedge \neg S_3 \wedge \wedge \neg S_{n-2}] \\ &= \underbrace{\Pr[\neg S_1] \Pr[\neg S_2 | \neg S_1]}_{\Pr[\neg S_2 | \neg S_1]} \Pr[\neg S_3 | \neg S_2 \wedge \neg S_1]..... \Pr[\neg S_{n-2} | \neg S_1 \wedge ... \wedge \neg S_{n-3}] \\ &\geq (1 - \frac{2}{n})(1 - \frac{2}{n-1})(1 - \frac{2}{n-2}).....(1 - \frac{2}{n-(n-4)})(1 - \frac{2}{n-(n-3)}) \\ &= \underbrace{\frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2}.....\frac{2}{s} \cdot \frac{1}{s}}_{n-1} = \frac{2}{n(n-1)} \geq \frac{1}{n^2} \end{split}$$

Problem: low success probability! (But: non trivial)

recall $\simeq 2^n$ cuts!

Repeated Trials

Solution: run the basic algorithm a large number N times, remember the smallest cut found.

Question: how many trials needed?

Let T_i = event that the cut (A, B) is found on the ith try.

 \triangleright by definition, different T_i 's are independent

So: Pr[all N trails fail] = Pr[
$$\neg T_1 \land \neg T_2 \land ... \land \neg T_N$$
]

$$\prod_{i=1}^{N} \Pr[\neg T_i] \le (1 - \frac{1}{n^2})^N$$

By independence !

Repeated Trials (con'd)

<u>Calculus fact:</u> \forall real numbers x, $1+x \leq e^x$

 $\Pr[\text{all trials fail}] \le (1 - \frac{1}{n^2})^N$

So: if we take $N = n^2$, $\Pr[\text{all fail}] \le \left(e^{-\frac{1}{n^2}}\right)^{n^2} = \frac{1}{e}$

If we take $N = n^2 \ln n$, $\Pr[\text{all fail}] \le \left(\frac{1}{e}\right)^{\ln n} = \frac{1}{n}$

Running time: polynomial in n and m but slow $(\Omega(n^2m))$

But: can get big speed ups (to roughly $O(n^2)$) with more ideas.

Design and Analysis of Algorithms I

Contraction Algorithm Counting Mininum Cuts

The Number of Minimum Cuts

NOTE: A graph can have multiple min cuts. [e.g., a tree with n vertices has (n-1) minimum cuts]

QUESTION: What's the largest number of min cuts that a graph with n vertices can have?

ANSWER:
$$\binom{n}{2} = \frac{n(n-1)}{2}$$

The Lower Bound

Consider the n-cycle.

NOTE: Each pair of the n edges defines a distinct minimum cut (with two crossing edges).

$$\triangleright$$
 has $\geq \binom{n}{2}$ min cuts

The Upper Bound

Let (A_1, B_1) , (A_2, B_2) , ..., (A_t, B_t) be the min cuts of a graph with n vertices.

By the Contraction Algorithm analysis (without repeated trials):

$$\Pr[output = (A_i, B_i)] \ge \frac{2}{n(n-1)} = \frac{1}{\binom{n}{2}} \quad \forall i = 1, 2, ..., t$$

Note: S_i's are disjoint events (i.e., only one can happen)

> their probabilities sum to at most 1

Thus:
$$\frac{t}{\binom{n}{2}} \le 1 \Rightarrow t \le \binom{n}{2}$$

