AMENDMENTS TO THE CLAIMS

Claims 1-14 (Cancelled).

15. (Previously Presented) A method of manufacturing a semiconductor element, comprising:

forming a gate electrode on a semiconductor substrate, the gate electrode having a metallic silicide layer, a metallic polysilicon layer under the metallic silicide layer, and an SiN layer on the metallic silicide layer;

after said forming of the gate electrode including the SiN layer, decreasing grain boundaries on a surface of the metallic silicide layer, at least a portion of the surface of the metallic silicide layer being exposed, said decreasing of the grain boundaries comprising performing a heat treatment on the metallic silicide layer in an atmosphere consisting of a mixture gas of chief elements of nitrogen and ammonia and an oxidizable gas of less than 100 ppm; and

forming a spacer consisting of an oxide film on a side wall of the metallic polysilicon layer and the metallic silicide layer of the gate electrode;

wherein said decreasing of the grain boundaries is performed after performing a reduced pressure process.

Claim 16-23 (Cancelled).

24. (Previously Presented) A method of manufacturing a semiconductor element, comprising:

forming a gate electrode on a semiconductor substrate, the gate electrode having a metallic silicide layer, a metallic polysilicon layer under the metallic silicide layer, and an SiN layer on the metallic silicide layer;

after said forming of the gate electrode including the SiN layer, decreasing grain boundaries on a surface of the metallic silicide layer, at least a portion of the surface of the metallic silicide layer being exposed, said decreasing of the grain boundaries being performed after performing a reduced pressure process_and comprises performing a heat treatment on the metallic silicide layer in an atmosphere including an oxidizable gas of less than 100 ppm; and

forming a spacer consisting of an oxide film on a side wall of the metallic polysilicon layer and the metallic silicide layer of the gate electrode.

- 25. (Previously Presented) The method of claim 24, wherein said decreasing of the grain boundaries comprises performing a heat treatment on the metallic silicide layer in an atmosphere consisting of a chief element of nitrogen gas.
- 26. (Previously Presented) The method of claim 24, wherein said decreasing of the grain boundaries comprises performing a heat treatment on the metallic silicide layer in an atmosphere consisting of a chief element of argon gas.

Claim 27 (Cancelled).

- 28. (Previously Presented) The method of claim 24, wherein the metallic silicide layer comprises a tungsten silicide layer, and said decreasing of the grain boundaries comprises performing a heat treatment on the metallic silicide layer at temperature in a range of 700°C to 800°C for a time period in a range of 30 seconds to 40 seconds.
- 29. (Previously Presented) The method of claim 24, wherein said decreasing of the grain boundaries comprises performing a heat treatment on the metallic silicide layer in an atmosphere including an oxidizable gas, and said reduced pressure process comprises reducing the oxidizable gas level to less than 100 ppm.
- 30. (Previously Presented) The method of claim 24, wherein the metallic silicide layer comprises a tungsten silicide layer, and said decreasing of the grain boundaries comprises performing a heat treatment on the metallic silicide layer at a temperature in a range of 700°C to 800°C and after said performing of the reduced pressure process at a pressure of 13 Pa to 65 Pa.

Claims 31-35 (Cancelled).

- 36. (Previously Presented) The method of claim 15, wherein said forming of the spacer is performed after said decreasing grain boundaries on the surface of the metallic silicide layer.
- 37. (Previously Presented) The method of claim 24, wherein said forming of the spacer is performed after said decreasing grain boundaries on the surface of the metallic silicide layer.