Mesoporous SnO₂ Microspheres: Synthesis, Characterization, and Application in Enhanced Dye-sensitized Solar Cells and Lithium Batteries

XU Hong*, ZHANG Hui, WU Rong

Beijing Jiaotong University

Introduction

This paper reports firstly on synthesis of mesoporous SnO₂ microspheres by a spray reaction process after calcination at 600-800°C.

Using the mesoporous SnO₂ microspheres as anode scattering layer, dye-sensitized solar cells (DSSCs) are assembled with TiO₂ nanoparticles as the bottom layer.

SnO2 microspheres layer significantly enhances light harvesting and energy conversion efficiencies of cells. A maximum conversion efficiency of **6.0%** was obtained for this bilayered DSSCs.

Application in DSSCs

1. Light Scattering

2. Dye Loading

3. I-V Curve Test

Synthesis

Mesoporous SnO₂ spheres were, for the first time, prepared through a **spray reaction** process proposed by our group and the detailed procedure was described elsewhere.

Briefly, a 30wt% aqueous solution of SnCl₄ was first atomized in the aerosol generator. After that the aerosols of tin salt solution reacted with NH₃ gas from ammonia cylinder in the reactor, forming the spherical SnO₂ precursor particles.

The collected SnO₂ precursor spheres were washed several times with distilled water and washed twice with anhydrous ethanol and then dried at low fire for 12 min in a microwave oven.

Finally, the precursor spheres were calcined in air at 500 °C, 600 °C, 700 °C, and 800 °C for 2 h, respectively.

Application in Lithium Batteries

1. Charge-discharge Curve

Characterization

3.TEM, SAED Patterns, Lattice Fringes

Conclusion

Enhanced DSSC based on the photoelectrodes made from bifunctional hierarchical spherical SnO₂, which was synthesized by novel **spray reaction**, achieved a high energy conversion efficiency of **6.0%**.

Literature Cited

- -B. O'Regan, M. Graetzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO₂ films[J].Nature. 1991.(353) 737.
- -Lei Yang et al. Light harvesting enhancement for dye-sensitized solar cells by novel anode containing cauliflower-like TiO₂ spheres [J]. J. Power Sources.2008.370–376.
- -Jing Chen et al. Hollow SnO₂ microspheres for high-efficiency bilayered dye sensitized solar cell [J]. RSC Advances. 2012.2.7384–7387.

Acknowledgement

Thanks for the supporting of Prof. H.ZHANG in BJTU and Prof. J.S. WANG in BJUT.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Photovoltage / V