Nonparametric Estimation: A Brief Overview

Alexander Torgovitsky

ECON 31720: Applied Microeconometrics University of Chicago, Fall 2020 Outline (0/24)

- Motivation and Overview
- Saturated Linear Regressions
- 3 Kernel Smoothing, Local Polynomial and Nearest Neighbors
- 4 Sieves
- Selecting Tuning Parameters
- Machine Learning
- Summary

Taxonomy

- Statistical models involve distributions, and thus functions
- A parametric assumption restricts the shape of a function
- For example, $f(x) = \alpha + \beta x$ restricts the shape to be linear
- Most models we use in economics are *semi*parametric $\gamma = \alpha + \beta \times + i \alpha$
- ightarrow e.g. linear regressions do not parameterize distribution of residual

Nonparametric identification

- We will often focus on **nonparametric identification** in this course
- \rightarrow Identification analysis that does not involve parametric assumptions
 - Popular because parametric assumptions can be hard to motivate/defend
 - A bit constraining though how do you extrapolate nonparametrically?
 - Nonparametric identification leads to nonparametric estimation

Outline (2/24)

The problem

- Want to estimate $\mu(x) \equiv \mathbb{E}[Y|X=x]$ with Y and X observed
- ullet Nonparametric: without finitely-parameterizing μ

Different nonparametric estimation techniques

- Linear regression in certain cases (saturated regression)
- Kernel smoothing and nearest neighbors use "nearby" data
- Sieve approaches use increasingly flexible approximations
- "Machine learning" methods that automatically adjust to data (adaptive)

Key concepts

- Curse of dimensionality "hard" to estimate multivariate functions
- Most approaches require one or more tuning parameters
- ightarrow These can sometimes be selected through **plug-in** or **cross-validation**

Outline (2/24)

- Motivation and Overview
- **2** Saturated Linear Regressions
- 3 Kernel Smoothing, Local Polynomial and Nearest Neighbors
- 4 Sieves
- 5 Selecting Tuning Parameters
- Machine Learning
- Summary

Binning estimator

- Suppose $X \in \{x_1, \dots, x_K\}$ is discrete
- This covers cases where X has multiple discrete components
 e.g. X = {(male, HS), (female, HS), (male, college), (female, college)}
- Then a nonparametric **binning estimator** is very natural: e.g.

$$\hat{\mu}(x) = \frac{1}{N_x} \sum_{i:X_i = x}^{N} Y_i \quad \text{where} \quad N_x \equiv \sum_{i=1}^{N} \mathbb{1}[X_i = x]$$

Limitations and workarounds

- Only works if X is completely discrete, otherwise $N_x = 0$ or 1!
- If X is continuous (is anything continuous?), could discretely bin it
- → This can be a bit arbitrary views on this vary
 - \bullet Poor finite sample performance if **small bins** (*K* large relative to *N*)

Regression implementation of a binning estimator

- Construct binary indicators: $W_k \equiv \mathbb{1}[X = x_k]$ for k = 1, ..., K
- Linear regression of Y on W_1, \ldots, W_K (with no constant)
- Coefficient on W_k is numerically identical to $\hat{\mu}(x_k)$

Alternative parameterization

- Can alternatively include a constant, but must drop a W_k (why?)
- Suppose we drop W_1 , then the coefficient on the constant is $\hat{\mu}(x_1)$
- Coefficients on W_k is $\hat{\mu}(x_k) \hat{\mu}(x_1)$ sum with constant to get $\hat{\mu}(x_k)$

Saturation

- Either of these specifications are called **saturated** (regressions)
- ightarrow The specification has one parameter per unknown can't take any more
 - Useful as a conceptual baseline parameterizations complicate things

Outline (4/24)

- Motivation and Overview
- Saturated Linear Regressions
- Sernel Smoothing, Local Polynomial and Nearest Neighbors
- 4 Sieves
- Selecting Tuning Parameters
- Machine Learning
- Summary

Idea

- Suppose we want to estimate $\mu(x)$ at some fixed point $x \in \mathbb{R}$
- But there are few (or no) observations with X = x in our data
- Idea is to instead use $X \approx x$ and **smooth** makes sense if μ is smooth
- Many approaches do this with main difference being what $X \approx x$ means

Uniform kernel smoothing

• Take a sample mean of Y over observations with $x - h \le X \le x + h$

$$\hat{\mu}(x) \equiv \frac{\sum_{i=1}^{n} \mathbb{1}[x - h \le X_i \le x + h] Y_i}{\sum_{i=1}^{n} \mathbb{1}[x - h \le X_i \le x + h]} \approx \mathbb{E}[Y|x - h \le X \le x + h]$$

- h > 0 is a **bandwidth** parameter that needs to be chosen
- Smaller *h* leads to a more local estimator with fewer observations
- \Rightarrow Smaller h reduces bias, increases variance the bias-variance tradeoff
 - As $h \to \infty$, the estimator becomes the usual sample mean

- The data was generated with $\mu(x)$ set to be the grey line
- Estimate $\mu(.25)$ with the simple mean of the shaded points = $\hat{\mu}(.25)$
- Bandwidth is h = .1

0.4

0.6

0.8

0.2

- The left is **oversmoothed** high bias, low variance
- The right is **undersmoothed** low bias, high variance
- (What does "too much/little" mean? Here we use "eyeball optimality")

Definition

• Take weighted sample mean of Y over all X

$$\hat{\mu}(x) \equiv \frac{\sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right) Y_{i}}{\sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right)}$$

- Generalizes uniform case which had $K(u) \equiv \mathbb{1}[|u| \leq 1]$
- Common choice of *K* is a standard normal pdf, but there are many others
- \rightarrow Any continuous density that is symmetric around 0 for example

Choice of K

- Received wisdom is that *K* doesn't matter much (*h* is more important)
- So why generalize? Uniform kernel leads to $\hat{\mu}$ with kinks
- Smooth kernels produce more appealing (smooth) function estimators

- The normal and Epanechnikov are smooth
- ullet The uniform and Epanechnikov have bounded support on [-1,1]

(b) Epanechnikov kernel

- If you look closely at the uniform will see abrupt jumps
- \rightarrow Happens for points x at which $|X_i x| = h$ for some i
 - Usually not a big deal, but why have unnecessary visual distractions?

Definition

- A uniform kernel is a very simple (local) regression: *Y* on a constant
- A **local linear** estimator also adds *X*:

$$\min_{\mu_0} \sum_{i:X_i \approx x} (Y_i - \mu_0)^2 \qquad \text{vs.} \quad \min_{\mu_0, \mu_1} \sum_{i:X_i \approx x} (Y_i - \mu_0 - \mu_1 X_i)^2$$
 uniform kernel (**local constant**)

• If we add X^2 as well then have a **local quadratic** estimator

Benefits of local linear estimators

- Easy to implement regression with an "if" statement
- Can also change kernel weighted regression with an "if" statement
- Same variance and "usually" lower bias than local constant estimators
- Especially at edges local constant estimators have **boundary bias**
- ightarrow We will return to this when discussing regression discontinuity designs

Definition

- Simple idea: Average Y for the k observations with X closest to x
- "Closest" here (as in kernel) is a tricky concept with multiple variables
- Mahalonobis metric inverse-variance weighted Euclidean norm
- → Doesn't help with discrete/categorical variables

k–Nearest neighbors are adaptive kernels

- *k*–NN is a uniform local constant with *x*–varying bandwidth
- \rightarrow Same k, so x in sparser areas use more distant observations
- This is an example of a locally **adaptive** estimator
- \rightarrow It adjusts the bandwidth to the data without our input
 - \bullet Of course, we still need to choose k, so there is still a tuning parameter
 - Unlike kernel, *k*–NN won't let you divide by zero

A fundamental problem

- These approaches (and others) suffer from the curse of dimensionality
- \rightarrow Estimator quality *rapidly* deteriorates with the dimension of X
 - A statistical manifestation of a constant problem across science

Statistical implications

- Formally, the **rate of convergence** of the estimators goes down
- → Adding a dimension requires much more data to maintain precision
 - If *X* is scalar, number of observations around $\pm h$ of *x* is roughly

$$N \times \mathbb{P}[x - h \le X \le x + h] = N \int_{x - h}^{x + h} f(u) du \approx N \times 2h \times f(x)$$

- If $X \in \mathbb{R}^2$, this drops to $4h^2N \times f(x)$ remember $h \to 0$ is "small"!
- \Rightarrow Need much larger N (or h) to maintain the same "effective N"

- ullet Kernel regression with 500 draws from a bivariate uniform [0,1]
- Observations used to estimate $\mathbb{E}[Y|X=x_1]$ with bandwidth h

- Observations used to estimate $\mathbb{E}[Y|X=x_1,X=x_2]$ with bandwidth h
- Effective number of observations drops by an order of magnitude

Outline (14/24)

- Motivation and Overview
- Saturated Linear Regressions
- 3 Kernel Smoothing, Local Polynomial and Nearest Neighbors
- 4 Sieves
- Selecting Tuning Parameters
- Machine Learning
- Summary

Idea behind sieves/series (and basis expansions more generally)

- Suppose $\mu(x) \equiv \mathbb{E}[Y|X=x]$ is continuous with compact support
- \bullet Stone-Weierstrass Theorem: The **polynomial basis** can approximate μ
- \rightarrow That is, arbitrarily well by increasing the order of the polynomial
- Many results like this in approximation theory and computer graphics

Implementation

- Regress Y on $1, X, X^2, \dots, X^K$ for some "large" K
- Bias-variance trade-off: Larger *K* is smaller bias, larger variance
- \rightarrow K serves the same role as the bandwidth h in kernel approaches

Curse of dimensionality

- A Kth order polynomial in one dimension has K + 1 terms
- A Kth order polynomial in J dimensions has $(K+1)^J$ terms
- \Rightarrow Number of terms explodes with the dimension of X

Flexibility

- Same idea can be applied to many estimators besides regression
- → (Generalized) method of moments, maximum likelihood, etc.
 - Extends easily to semiparametric models
- \rightarrow Replace unknown functions with a basis expansion
 - Means sieves typically easier to work with for new/different models

Shape constraints

- Suppose $\mu(x_1, x_2)$ is a third order polynomial (so 16 terms)
- Could assume no interaction effect: $\mu(x_1, x_2) = \mu(x_1) + \mu(x_2)$
- Breaks the curse of dimensionality with an interpretable assumption
- → Can also be done with kernels, but much harder ("backfitting")
 - More general shape constraints: monotonicity, concavity, etc.
- \rightarrow Ease of implementation for certain bases (e.g. B-splines, wavelets)

Basis choice

- With kernel estimation, the folklore is bandwidth matters, kernel doesn't
- Not true for sieves: Both the basis and the number of terms matter
- This gives the researcher more freedom, which might be a negative
- On the other hand, shape constraints often suggest certain bases
- Also much folklore e.g. don't use standard polynomials!

Local vs. global estimation

- Kernels are local because $\hat{\mu}(x)$ only uses data near x
- Some sieves are not, e.g. the standard polynomials
- → Can lead to outliers having large influence and erratic estimates
 - Some merit to this view, as we will see in regression discontinuity design
 - But really an issue of the basis, e.g. **polynomial splines** are local sieves
- → Good in practice for a mix of local performance and ease of sieves

Outline (17/24) =

- Motivation and Overview
- Saturated Linear Regressions
- Kernel Smoothing, Local Polynomial and Nearest Neighbors Spires: / (X) = 00 +0 x + 2 011 [X 2 ran] (x-ran)
- Sieves
- **Selecting Tuning Parameters**
- Machine Learning
- Summary

Idea behind bandwidth (or general tuning parameter) selection

- The bandwidth h controls the bias-variance trade-off
- To determine the "right" h we need to set up a criterion
- \rightarrow Usual choice is mean-squared error (MSE) or integrated (over x) MSE
 - Want to choose h to minimize MSE(h) but we don't know MSE(h)!
- ightarrow It depends on the unknown mean function μ , our object of estimation

Plug-in methods

- Derive an approximation of MSE(h) (via Taylor expansion)
- Minimize the approximation yields a closed-form expression for h^*
- \rightarrow This expression is still going to depend on μ , μ' , μ'' and density of X at x
 - Estimate these objects with a **pilot bandwidth**, then plug-in to get h^*
 - Use the estimate of h^* in actual estimation of μ
 - Circular? Hope is that estimation is "less sensitive" to pilot bandwidth

Cross-validation (19/24)

A more natural alternative

- Partition data into *K* **folds**, and pick a tuning parameter
- Estimate using K-1 folds, evaluate criterion on the Kth fold
- Repeat for all *K* folds, average the resulting *K* criterion values
- Repeat and minimize average criterion with respect to tuning parameter

Common implementations

- K = N (sample size) is **leave-one-out** cross-validation
- K = 10 is common for more computationally intensive estimators

Pros and cons of cross-validation

- Intuitive, easy to explain and motivate, but computationally intensive
- No pilot bandwidth, although there is the choice of folds
- Need to be able to construct a proper criterion not always possible

Outline (19/24)

- Motivation and Overview
- 2 Saturated Linear Regressions
- 3 Kernel Smoothing, Local Polynomial and Nearest Neighbors
- Sieves
- Selecting Tuning Parameters
- **6** Machine Learning
- Summary

Springer Series in Statistics

Trevor Hastie
Robert Tibshirani
Jerome Friedman

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

- Hastie, Tibshirani and Friedman ("the Bible") covers all previous topics
- It also covers fancier topics (neural networks, random forests)
- Focus on richer models and model selection for **prediction**

3	Linea	r Meth	ods for Regression	43
	3.1	Introd	uction	43
	3.2	Linear	Regression Models and Least Squares	44
		3.2.1	Example: Prostate Cancer	49
		3.2.2	The Gauss–Markov Theorem	51
		3.2.3	Multiple Regression	
			from Simple Univariate Regression	52
		3.2.4	Multiple Outputs	56
	3.3	Subset	Selection	57
		3.3.1	Best-Subset Selection	57
		3.3.2	Forward- and Backward-Stepwise Selection	58
		3.3.3	Forward-Stagewise Regression	60
		3.3.4	Prostate Cancer Data Example (Continued)	61
	3.4 Shrinkage Methods		age Methods	61
		3.4.1	Ridge Regression	61
		3.4.2	The Lasso	68
		3.4.3	Discussion: Subset Selection, Ridge Regression	
			and the Lasso	69
		3.4.4	Least Angle Regression	73

- Hastie, Tibshirani and Friedman ("the Bible") covers all previous topics
- It also covers fancier topics (neural networks, random forests)
- Focus on richer models and model selection for **prediction**

,	Basis	Expansi	ions and Regularization	139
	5.1	Introduc	ction	139
	5.2	Piecewis	se Polynomials and Splines	141
		5.2.1	Natural Cubic Splines	144
		5.2.2	Example: South African Heart Disease (Continued	1)146
		5.2.3	Example: Phoneme Recognition	148
	5.3	Filtering	g and Feature Extraction	150
	5.4	Smooth	ing Splines	151
		5.4.1	Degrees of Freedom and Smoother Matrices	153
	5.5	Automa	tic Selection of the Smoothing Parameters	156
		5.5.1	Fixing the Degrees of Freedom	158
		5.5.2	The Bias-Variance Tradeoff	158
	5.6	Nonpara	ametric Logistic Regression	161
	5.7	Multidin	mensional Splines	162
	5.8 Regularization and Reproducing Kernel Hilbert Spaces .		167	
		5.8.1	Spaces of Functions Generated by Kernels	168
		5.8.2	Examples of RKHS	170
	5.9	Wavelet	Smoothing	174
		5.9.1	Wavelet Bases and the Wavelet Transform	176
		5.9.2	Adaptive Wavelet Filtering	179

- Hastie, Tibshirani and Friedman ("the Bible") covers all previous topics
- It also covers fancier topics (neural networks, random forests)
- Focus on richer models and model selection for **prediction**

6

Kernel Smoothing Methods 191				
6.1	One-D	imensional Kernel Smoothers	192	
	6.1.1	Local Linear Regression	194	
	6.1.2	Local Polynomial Regression	197	
6.2	Selection	ng the Width of the Kernel	198	
6.3	Local I	Regression in \mathbb{R}^p	200	
6.4	Structi	ared Local Regression Models in \mathbb{R}^p	201	
	6.4.1	Structured Kernels	203	
	6.4.2	Structured Regression Functions	203	
6.5	Local I	Likelihood and Other Models	205	
6.6	Kernel	Density Estimation and Classification	208	
	6.6.1	Kernel Density Estimation	208	
	6.6.2	Kernel Density Classification	210	
	6.6.3	The Naive Bayes Classifier	210	
6.7	Radial	Basis Functions and Kernels	212	
6.8	Mixtur	e Models for Density Estimation and Classification	214	
6.9	Compu	ntational Considerations	216	
Bibli	ographic	Notes	216	
Exer	cises		216	

- Hastie, Tibshirani and Friedman ("the Bible") covers all previous topics
- It also covers fancier topics (neural networks, random forests)
- Focus on richer models and model selection for **prediction**

15 Random Forests 587				
15.1	Introduction			
15.2	Definition of Random Forests			
15.3	Details of Random Forests			
	15.3.1 Out of Bag Samples			
	15.3.2 Variable Importance			
	15.3.3 Proximity Plots			
	15.3.4 Random Forests and Overfitting 596			
15.4	Analysis of Random Forests			
	15.4.1 Variance and the De-Correlation Effect 597			
	15.4.2 Bias			
	15.4.3 Adaptive Nearest Neighbors 601			
Bibli	ographic Notes			
Exer	cises			

- Hastie, Tibshirani and Friedman ("the Bible") covers all previous topics
- It also covers fancier topics (neural networks, random forests)
- Focus on richer models and model selection for prediction

Machine learning methods are designed for prediction

- "Is this photo of a cat or a dog?"
- → I know, you know it, but can we use a computer to automate it?

Causal inference is about ... inference

• "What is the average treatment effect of *D* on *Y*?"

Good prediction methods can be bad inference methods

$$Y = \beta_1 X_1 + \dots + \beta_K X_K + U$$
 with $\mathbb{E}[U|X] = 0$

- Prediction: Given x_1, \ldots, x_K , what is Y?
- Inference: What is β_1 ?
- Suppose X_2 and X_1 are highly correlated
- Good prediction would omit X_2 it contains similar information
- \Rightarrow Omitted variables bias for estimate of $\beta_1 \Rightarrow$ bad inference

The quality of predictions can be more easily measured

- With prediction problems you know the ground truth
- \rightarrow We know if the photo is actually a cat or dog
 - Common practice of using hold-out samples to evaluate performance
 - Predicting the future is different of course, but we can still use the past

The quality of inference depends on your assumptions

- The data never "speaks for itself"
- \rightarrow Causal inference always requires assumptions
 - No algorithm can tell you which assumptions are "credible"

Careful model selection

- However, given some assumptions, model selection could be useful
- We will see a couple of examples of this later in the course

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 4, JULY 2001

Semiparametric ARX Neural-Network Models with an Application to Forecasting Inflation

Xiaohong Chen, Jeffrey Racine, and Norman R. Swanson

What has been will be again; what has been done will be done again

- Some econometricians are skeptical of machine learning trend
- → Recent usage by empirical economists often smells like a fad
 - Hostility to new ideas? Or "been there, done that"?

Outline (23 / 24)

- Motivation and Overview
- Saturated Linear Regressions
- 3 Kernel Smoothing, Local Polynomial and Nearest Neighbors
- 4 Sieves
- Selecting Tuning Parameters
- Machine Learning
- Summary

Summary (24/24)

The nonparametric ideal

- Nonparametric identification and then estimation
- Useful paradigm for creating *clear* empirical arguments
- \rightarrow Empirical work is an argument, so unclear \Rightarrow unconvincing
- Parameterizations often needed in practice for dimension reduction
- ightarrow But it's useful to separate the conceptual from the practical

Nonparametric regression methods

- Local regression methods and *k*–nearest neighbors
- → Local is transparent, intuitive, not sensitive to outliers (by definition)
 - Function approximation methods broadly called sieve methods
- → Flexible but more opaque, shape constraints, can be global or local
 - ullet Machine learning focused on prediction, and prediction \neq inference