

Análise de Dados em Python para Não Programadores

Estudo de Caso: Valoração de Imóveis

Quanto custa o imóvel dos seus sonhos?

O que vamos ver?

- Acesso a base de dados
- Insights a partir de visualizações
- Desenvolvimento de um modelo preditivo
- Simulação de uso do modelo

Onde vamos realizar as análises?

Linguagem de Programação e Ambiente

https://colab.research.google.com/github/mpatricia/workshop/blob/main/Notebook.
ipynb

https://labblite.bb.com.br/

Metodologia CRISP-DM

CRoss
Industry
Standard
Process for
Data Mining

É um modelo de processo para análise de dados

Entendimento e Preparação dos Dados

Fontes de Origem → Dados Estruturados

Atributos/Características

nas colunas

Observações/Exemplos nas linhas

ID	Tem vista para orla?	Índice de Qualidade	Número de Quartos	Preço
1	S	3	2	500.000,00
2	N	7	1	600.000,00
3	N	3	4	2.000.000,00
4	S	11	6	5.000.000,00
5	N	5	2	700.000,00

Identificador da observação **Inputs**Variáveis Explicativas

Output Variável Resposta/Target

Entendimento e Preparação dos Dados

Qual o tratamento adequado?

Excluir atributos não relevantes Os algoritmos não interpretam **textos (variáveis qualitativas)**, é preciso codificá-los em números.

ID	Tem vista para orla?	Índice de Qualidade	Número de Quartos	Preço
1	S	3	2	500.000,00
2	N	7	1	600.000,00
3	N	3	4	2.000.000,00
4		11	6	5.000.000,00
5	N	5	2	700.000,00

Valores ausentes são informação, se foram observados nos dados treino, é provável observar nos novos dados. Como tratá-los?

Entendimento e Preparação dos Dados

Qual o tipo das variáveis?

Como prever y a partir de x?

Qual reta melhor descreve a relação entre x e y?

$$y = 15 - 1x$$

$$y = 1, 5x$$

Treinamento do Modelo Preditivo

Temos um fenômeno em estudo onde cada valor y pode ser encontrado por uma função desconhecida y = f(x):

O objetivo do treinamento é estimar uma função h (hipótese) que se aproxime da função verdadeira f.

Estimadores para Regressão:

- Regressão Linear
- KNN
- Árvore de Decisão
- Random Forest
- Grandient Boosting

Regressão Linear

Regressor que faz previsões a partir de uma combinação linear dos preditores:

$$y = \alpha + \beta X$$

KNN - K Nearest Neighbors

Regressor que faz previsões baseadas nos K vizinhos mais próximos.

Árvore de Decisão

Regressor que, a cada passo, divide as observações em grupos de acordo com a característica que melhor separa os valores da variável target.

Random Forest

Regressor que consulta vários regressores "fracos" treinados em amostras de variáveis e observações, e faz a previsão com base em uma média das previsões dos regressores "fracos".

Gradient Boosting

Regressor que faz uso de vários regressores "fracos" em sequência, sendo que cada regressor adicionado é treinado para corrigir o erro dos anteriores.

Underfitting / Overfitting

O estimador vai treinar um modelo que minimiza o erro das previsões nos dados de treino, mas será que é capaz de generalizar para novos casos?

Validação Cruzada

Underfitting/Overfitting

Treinar algoritmo de aprendizado em parte dos dados e reservar a outra parte para mensurar a métrica de performance.

Avaliação

*

Métricas de Performance

Erro absoluto mediano:

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i - y_i|$$

 R²: quanto da variância da variável resposta é explicado pelas variáveis explicativas

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (\hat{y}_{i} - y_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y}_{i})^{2}}$$

Aplicação

Uso do modelo para tomada de decisão

Expectativa x Realidade

Indicações de Conteúdo

Comunidade Data Hackers

https://datahackers.com.br/

- Fórum (Slack)
- Podcasts (Google, Spotify)
- Blog (Medium)
- Newsletter semanal

Kaggle

https://www.kaggle.com/

- Bases de dados reais e fictícias
- Competições com premiações
- Compartilhamento de soluções entre usuários
- Cursos online gratuitos

Coursera

 Algoritmos de Machine Learning: <u>https://www.coursera.org/learn/machine-learning</u>

Pra tudo que você imaginar