

- 8. y(y(x)) x = 0.
- 1°. Particular solutions:

$$y_1(x) = x$$
, $y_2(x) = C - x$, $y_3(x) = \frac{C}{x}$, $y_4(x) = \frac{C_1 - x}{1 + C_2 x}$,

where C, C_1 , and C_2 are arbitrary constants.

 2° . Particular solutions of this functional equation can be defined in implicit form with the algebraic (or transcendental) equation

$$\Phi(x,y)=0,$$

where $\Phi(x, y) = \Phi(y, x)$ is some symmetric function of two arguments.

3°. General solution in parametric form:

$$x = \Theta_1(t) + \Theta_2(t)\sin(\pi t),$$

$$y = \Theta_1(t) - \Theta_2(t)\sin(\pi t),$$

where $\Theta_1(x)$ and $\Theta_2(x)$ are arbitrary periodic functions with unit period, $\Theta_k(x) = \Theta_k(x+1)$, k=1, 2.

Reference

Polyanin, A. D. and Manzhirov, A. V., Handbook of Integral Equations: Exact Solutions (Supplement. Some Functional Equations) [in Russian], Faktorial, Moscow, 1998.

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/fe/fe1208.pdf