Lab Report: Length, Velocity and Acceleration

Nicholas Karlsen (Dated: March 4, 2018)

A study on different methods for determining the length, velocity and acceleration of different objects, and the errors involved in these methods.

I. INTRODUCTION

II. THEORY

A. Pendulum

$$T \approx 2\pi \sqrt{\frac{L}{g}} \tag{1}$$

Where T denotes the period of a pendulum, L its length and g the gravitational acceleration. The small angle approximation (Eqn. 1) is valid for angles $\theta \ll 1$ rad with an error $\approx \pm 15$ s per day [1].

B. Errors

$$\sigma \approx \left(\frac{\sum x_i^2 - \frac{1}{n}(\sum x_i)^2}{n - 1}\right)^{\frac{1}{2}} \tag{2}$$

$$\sigma_m \approx \left(\frac{\sum x_i^2 - \frac{1}{n}(\sum x_i)^2}{n(n-1)}\right)^{\frac{1}{2}} \tag{3}$$

Where σ, σ_m denotes the standard deviation, and the standard deviation of the mean respectively of a set of n values x_i . [2].

Any errors stated in a derived number will be calculated using the equations for combinations of errors found on page 29 in Squires [2]. Lastly, when using a linear fit on a set of linearly correlated data i used the expressions found on page 39 in Squires [2] to calculate the regression line, as well as its error.

TABLE I. Lenght of rods

THEE I. Longitt of rough				
Ruler, a [cm]	Ruler, b [cm]	Laser, a [cm]	Laser, b [cm]	
119.50	119.60	120.50	120.60	
119.50	119.70	119.60	119.80	
119.45	119.60	119.50	119.70	
119.40	119.50	119.40	119.60	
119.43	119.55	119.40	119.60	
119.40	119.60	119.68	119.72	
119.40	119.50	119.90	119.70	
119.45	119.65	130.60	130.20	
119.40	119.60	119.40	119.50	
119.43	119.55			

TABLE II. Uncertainty in Length measurement

	x	δx
l_a	119.5cm	
$ l_b $	119.6cm	
dl_s		1.4mm
$\sqrt{n} \cdot dl_i$		$\left 0.5\sqrt{5}mm\right $
dl_m		1.4mm
$\alpha l_a(T-25C)$	-0.156cm	$\sim 10^{-6}$
	\sum	σx_i^2
$\sum l_a 11$	9.48 cm 2.2	7
$\left \sum_{b} l_{b} \right 11$	9.58cm 2.2	7

III. EXPERIMENTAL PROCEDURE

IV. MEASURING THE LENGHT OF A ROD

V. MEASURING THE PERIOD AND HEIGHT OF THE FOUCAULT'S PENDULUM

VI. MEASURING THE VELOCITY OF THE LEGO-CAR

VII. MEASURING THE VELOCITY OF THE RC-CAR

VIII. RESULTS

IX. DISCUSSION

X. CONCLUSION

TABLE III. Period of pendulum

1 0110 01	_
T[s]	
7.30	
7.72	
7.57	
7.43	
7.73	
7.27	
7.68	
7.60	
7.34	
7.75	
7.06	
7.32	
7.55	
7.29	
7.08	
7.82	
7.78	
7.44	
7.68	
7.46	

FIG. 1. Measurements of the Period of the Focault's Pendulum in the entrance hall at the Institute of Physics, UiO.

[1] https://en.wikipedia.org/wiki/Pendulum.
[2] G. L. Squires. Practical Physics 4th Edition. Cambridge

University Press, 2001.