على اكبر احراري

مستندات يروژه طبقهبندی خبرهای فارسی

در این پروژه به آموزش یک مدل برای طبقهبندی خبرهای فارسی پرداختیم. دیتاست گزینه اول برای انجام این کار انتخاب شد.

دانلود از این لینک :

dataset/data-news-s/parsaabdolmaleki/persionthttps://www.kaggle.com/dataset

روش پیشپردازش

دادهها از فایل CSV بارگذاری و ستونهای غیرضروری حذف شدند. عنوان و توضیحات در ستون ``textترکیب و مقادیر خالی حذف شدند. متنها باhazm نرمالسازی، توکنسازی و لماتایز شدند؛ کلمات توقف حذف و نویزهایی مانند URL و کاراکترهای غیرفارسی با erپاکسازی شدند. متنها با TfidfVectorizerحداکثر 5000ویژگی، تکواژه و دوواژه، min_df=2به بردار تبدیل شدند و عدم تعادل کلاسها با SMOTEرفع شد.

انتخاب مدل و تنظیمات

مدل LinearSVCبه دلیل کارایی در دادههای متنی انتخاب شد. تنظیمات شامل `LinearSVCبود. با GridSearchCVو جستجوی وmax_iter=10000 برای رفع عدم تعادل، وmax_iter=10000 بهترین مقدار C=1.2 بهترین مقدار C=1.2 ادقت اعتبارسنجی 91 به دست آمد. دادهها با نسبت 80-20و stratifyتقسیم شدند.

نتایج عددی و ماتریس سردرگمی

نتایج کلی:

accuracy 0.915817 0.915817 0.915817 0.915817

macro avg 0.916997 0.927648 0.921596 3825.000000

weighted avg 0.915811 0.915817 0.915210 3825.000000

چالشها و پیشنهادات

مشکل لیبلها: اولین چالش به وجود آمده در این کد مربوط به بود. مشاهده شد که تعداد لیبل ها بسیار زیاد بوده و فرمت و نامشان به اشتباهی تعریف شده بود. پس نیاز به یک پاکسازی عمیق و نسبت دادن درست این لیبلها به داده متناظرشان بود. برای این کار، با توجه به لیبل های دیتاست دیگر که شامل کلاس های ثابت و مشخصی بودند، لیبل های این دیتاست را تغییر و به شکل درستی به این مقادیر نسبت دادیم.

نامتوازن بودن دادهها: تفاوت بسیار زیاد در تعداد داده های کلاس، فرایند یادگیری را برای مدل سخت میکرد. با استفاده از smote و مدل linearSVC که یادگیری خوبی در اسنگونه مسائل دارد، توانستیم عملکرد مدل را بهبود ببخشیم.

نیاز به پاکسازی دادهها: دادههای دیتاست حاوی اطلاعات اضافه و بدون نیاز زیادی بوده(مانند تگهای html، علائم نگارشی، لینکهاو ...) که با تعریف تابع clean_text و استفاده از کتابخانه hazm ، این موارد را حذف کردیم.

انتخاب مدل و پارامتر مناسب: مدل LinearSVC به دلیل کارایی در دادههای متنی انتخاب شد. تنظیمات شامل انتخاب مدل و پارامتر مناسب: مدل C=1.0 به دلیل کارایی در دادههای متنی انتخاب شد. تنظیمات شامل GridSearchCV و معدم تعادل، C=1.0 بود. با C=1.2 و حستجوی[0.8, 1, 1.2] بهترین مقدار C=1.2 با دقت اعتبارسنجی91 به دست آمد. دادهها با نسبت 20-80 و stratify تقسیم شدند.

پیشنهادات:

هد، هرچند نیازمند منابع محاسباتی بیشتری است.	ارسی، یا استفاده از نمونهبرداری وزندار در آموزش استفاده کرد تا LinearSVCبا مدلهای مبتنی بر ترنسفورمر مانند ParsBERT می
	6,