M. Sc (Information Technology)		Semester – III	
Course Name: Natural Language Processing		Course Code: PSIT201	
Periods per week	Lectures	4	
1 Period is 60 minutes			
	Credits	4	
		Hours	Marks
Evaluation System	Theory Examination	21/2	60
	Theory Internal		40

Objectives	 The prime objective of this course is to introduce the students to the field of Language Computing and its applications ranging from classical era to modern context. Course also aims to provide understanding of various NLP tasks and
	 NLP abstractions such as Morphological analysis, POS tagging, concept of syntactic parsing, semantic analysis etc. Course provide knowledge of different approaches/algorithms for carrying out NLP tasks. Course also highlights on the concepts of Language grammar and grammar representation in Computational Linguistics.

Pre requisites	Knowledge of Algorithms and mathematical foundation

Unit	Details	References
I	Introduction to NLP, brief history, NLP applications: Speech to Text(STT), Text to Speech(TTS), Story Understanding, NL Generation, QA system, Machine Translation, Text Summarization, Text classification, Sentiment Analysis, Grammar/Spell Checkers etc., challenges/Open Problems, NLP abstraction levels, Natural Language (NL) Characteristics and NL computing approaches/techniques and steps, NL tasks: Segmentation, Chunking, tagging, NER, Parsing, Word Sense Disambiguation, NL Generation, Web 2.0 Applications: Sentiment Analysis; Text Entailment; Cross Lingual Information Retrieval (CLIR).	https://www.xenonstack.com/blog/evolutio n-of- nlp/#:~:text=well%20as%20sentences ,History%20of%20Natural%20Language %20Processing%20(NLP),initial%20perio d%20of%20the%201960s. Chapter 1: Classical Approaches to Natural Language Processing Chapter 2: Text Processing Chapter 3: Lexical Analysis (Pre-requisite for Unit V) (Reference 1)

		https://www.codecademy.com/learn/na
		tural-language-processing
II	Text Processing Challenges, Overview	Chapter 4: Syntactic Parsing
	of Language Scripts and their	Chapter 5: Semantic Analysis
	representation on Machines using	•
	Character Sets, Language, Corpus and Application Dependence issues,	Chapter 6: Natural Language Generation
	Segmentation: word	(Reference 1)
	level(Tokenization), Sentence level.	, ,
	Regular Expression and Automata	https://www.codecademy.com/learn/na
	Morphology, Types, Survey of English	tural-language-processing
	and Indian Languages Morphology,	
	Morphological parsing FSA and FST, Porter stemmer, Rule based and	
	Porter stemmer, Rule based and Paradigm based Morphology, Human	
	Morphological Processing, Machine	
	Learning approaches.	
III	Word Classes ad Part-of-Speech	Chapter 10: Part-of-Speech Tagging
	tagging(POS), survey of POS tagsets,	Chapter 17: Speech tagging
	Rule based approaches (ENGTOWL),	Chapter 17. Speech tagging
	Stochastic approaches(Probabilistic, N-gram and HMM), TBL morphology,	(Reference 1)
	unknown word handling, evaluation	https://www.aclweb.org/anthology/C96-
	metrics: Precision/Recall/F-measure,	<u>2141.pdf</u>
	error analysis.	
IV	NL parsing basics, approaches:	Chapter 11: Statistical Parsing
	TopDown, BottomUp, Overview of	Chapter 18: Chinese Machine Translation
	Grammar Formalisms: constituency and dependency school, Grammar notations	-
	CFG, LFG, PCFG, LTAG, Feature-	(Reference 1)
	Unification, overview of English CFG,	(Indian Language Parsing in Paninian Karaka
	Indian Language Parsing in Paninian	Theory)
	Karaka Theory, CFG parsing using	https://dl.acm.org/doi/pdf/10.3115/9911
	Earley's and CYK algorithms,	46.991151
	Probabilistic parsing, Dependency	
	Parsing: Covington algorithm, MALT parser, MST parser.	
	parson, mor parson.	(MALT parser)
		https://www.researchgate.net/publicati
		on/200179363 MaltParser A Data-
		Driven Parser-
		Generator for Dependency Parsing/li
		nk/004635141fe81139c7000000/downlo
		<u>ad</u>

\mathbf{V}	Concepts and issues in NL, Theories and	Chapter 12: Multiword Expressions
	approaches for Semantic Analysis, Meaning Representation, word similarity, Lexical Semantics, word	Chapter 13: Normalized Web Distance and Word Similarity
	senses and relationships, WordNet	Chapter 14: Word Sense Disambiguation
	(English and IndoWordnet), Word Sense Disambiguation: Lesk Algorithm	(Reference 1) Also links with chapter 3
	Walker's algorithm, Coreferences Resolution: Anaphora, Cataphora.	

Bool	Books and References: (Please mention the unit-wise chapters)				
Sr. No.	Title	Author/s	Publisher	Edition	Year
01	Handbook of Natural Language Processing	Indurkhya, N., & Damerau, F. J.	CRC Press Taylor and Francis Group	2 nd	2010
02	Speech and Language Processing	Martin, J. H., & Jurafsky, D.	Pearson Education India	2 nd	2013
03	Foundations of Statistical Natural Language Processing	Manning, Christopher and Heinrich, Schutze	MIT Press	1 st	1997
04	Natural Language Processing With Python	Steven Bird, Edward Loper	O'Reilly Media	2 nd	2016
05	Video Links 1. http://www.nptelvideos.in/2012/11/natural-language-processing.html		ı		

Course Outcome

CO1: Students will get idea about know-hows, issues and challenge in Natural Language Processing and NLP applications and their relevance in the classical and modern context.

CO2: Student will get understanding of Computational techniques and approaches for solving NLP problems and develop modules for NLP tasks and tools such as Morph Analyzer, POS tagger, Chunker, Parser, WSD tool etc.

CO3: Students will also be introduced to various grammar formalisms, which they can apply in different fields of study.

CO4: Students can take up project work or work in R&D firms working in NLP and its allied areas.

CO5: Student will be able to understand applications in different sectors

(Practical)

M. Sc (Information Technology)		Semester – III	
Course Name: Natural Language Processing Practical		Course Code: PSIT	
Periods per week (1 Period is 60 minutes)		4	
Credits		2	
		Hours	Marks
Evaluation System	Practical Examination	2	50
	Internal		-

_	List of Practical: (Can be done in Python/ Tensorflow or any imperative language)	
	Two Practical Assignments on each unit of the syllabus.	