

SNC7320 Series

32-bit Dual-Core SoC

1 Introduction

1.1 Features

CPU

- Two ARM® Cortex®-M3 Processors (Core 0 and Core 1), each up to 162 MHz
- · One serial wire debug (SWD) port
- Built-in Memory Protect Unit (MPU)
- Built-in Nested Vectored Interrupt Controller (NVIC)
- One interrupt signal for the interaction between the two cores
- System clocks
 - High: 12 MHz XTAL and IHRC at 1.2V
 - Low: 32 kHz XTAL and ILRC at 1.2V
- Supports fast Fourier transform (FFT)/finite impulse response (FIR) accelerator (Core 1)

Memory

- Internal memory
 - ROM size for Core 0: 64 KB
 - PRAM size for Core 0: 64 KB
 - ROM size for Core 1: 128 KB
 - Shared AHB SRAM: 256 KB
 - Shared Mailbox RAM: 4 KB
- · SPI NOR flash controller
 - Clock frequency: Up to 40.5 MHz
 - Size: Up to 256 MB
 - Supports 1/2/4-bit mode
 - Supports execute in place (XIP)
- DRAM controller
 - 4 channels with burst transfer
 - Supports DDR1 DRAM or OPI PSRAM
- · Supports one 16 KB I-cache
- DMA engine with 19 channels
- Storage
 - SD card controller (SD0)
 - NAND flash controller with 8-bit ECC

System Control (Core 0)

- Operation modes
 - Normal/sleep/deep sleep/deep powerdown (DPD)
- Deep power-down with opional wakeup pin
- Low Voltage Detect (LVD)/Low Voltage Reset (LVR)
 - LVR: 0.7V for core; 2.1V for I/O (normal mode); 1.8V for I/O (power on/power off)
 - LVD12: 1.0V for core
 - LVD33: 2.4V/2.6V/2.8V/3.0V for I/O flag detect
- ROM/RAM remap

Peripherals

 Up to 80 general-purpose input/output (GPIO) pins

- Up to three master/slave Inter-Integrated Circuit (I²C) buses
- · Serial Peripheral Interface (SPI) controller
- Up to two Universal Asynchronous Receivers/Transmitters (UART)
- Up to eight 32-bit general-purpose timers providing up to 24 PWM outputs
- Two 8-bit Watchdog timers (WDT)
- 10-bit SAR ADC with up to six input channels
- SD/SDIO controller (SD1)
- · SPI controllers with DMA
 - Supports one-byte FIFO
 - Supports 1/2/4-bit DMA mode
 - With 8-bit Error Correcting Code (ECC)
- USB 2.0 high speed host
 - Supports MSC/HUB/UVC class
 - Supports accelerator for ISO transfer
- · USB 2.0 high speed host/device
 - Supports MSC/HID/UAC/UVC class
 - Host/device option

Multimedia

- Picture Processing Unit (PPU)
- TFT-LCD interface
- 8-bit serial and 18-bit parallel RGB
- UPS051 (serial RGB)/UPS052 (serial dummy RGB)
- RGB565 format only
- 8080 MCU interface
- · CMOS Image Sensor (CIS) interface
 - Supports resolution in VGA/CIF/ QVGA/QCIF/QQVGA
 - Supports scaling and windowing
 - Supports Line to block (L2B) mode
 - Connects to CIS/JPEG/CSC in script mode
- JPEG 422/420 codec
- Color Space Converter (CSC)
- Up to five I2S interfaces
 - Communicates in master or slave mode
 - Connects to audio codecs in slave mode only
- Left/right justified format
- Supports microphone array

Voltage

- Core: 1.2V typicallyI/O: 3.3V typically
- DRAM: 1.8V typically

32-bit Dual-Core SoC

1.2 Application

The SNC7320 Series is suitable for a wide range of applications such as:

- · Game controllers
- Gaming headsets
- Portable cameras
- Touch LCD
- Home automation

1.3 Description

The SNC7320 Series has two 32-bit ARM® Cortex®-M3 processors in symmetric dual-core architecture. Each of the two cores controls respective designated peripherals, cooperates with the other, and can be independently programmed. The two processors of the SNC7320 Series operate at a frequency of up to 162 MHz individually. Supporting RAM array with data bandwidth of up to 5 GB/sec and deep power-down mode consuming less than 1 μ A, the SNC7320 Series is designed for high performance and low power consumption embedded applications.

The SNC7320 Series offers a wide range of peripherals including I²C, SPI, WDT, SAR ADC, SD/SDIO, SPI NOR flash controller, NAND flash controller, USB host and device, and up to five I²S controllers. With the software development kit (SDK) that includes various sample codes complying with the Keil[®] MDK-ARM[®] compiler, development, programming, and debugging can be implemented efficiently for various applications.

1.4 Functional Block Diagram

^{*} For ARM Cortex-M3 Processor 0 only

Figure 1–1 Functional Block Diagram

1.5 Support

Sonix offers an extensive line of tools available for the SNC7320 Series including a software development kit (SDK) and other useful development tools such as:

- RTOS based development environments
- · Mass production test tool
- Firmware download tool

For information on pricing and availability, please contact the nearest Sonix sales office or an authorized distributor.

Revision History

Date	Revision	Description
18-Sep-2019	1.0	Official release
01-Nov-2019	1.1	Updated part numbers in Selection Table, Pin Information Updated Recommended Operating Conditions \ Device supply voltage, VDDC Updated Nomenclature and Marking Added QFN48L (6 x 6 x 0.8 mm/Pitch: 0.4) related information in Package Dimensions and Packing Quantity
21-Nov-2019	1.2	Updated Selection Table Updated Pin Assignment and Pin Description
13-Jan-2020	1.3	Updated Pin Description \ P0.6 Updated Table 2–2 \ Mode 2 of P4.12–P4.15 Updated Absolute Maximum Ratings \ Ambient temperature Updated Recommended Operating Conditions \ Device supply voltage, I/O, VDDIO33, and Ambient temperature Updated Thermal Data
09-Mar-2020	1.4	Updated Pin Description Updated footnotes of Table 2–2 Updated Figure 8–1 and Figure 8–2 in Power Sequence
18-Feb-2021	1.5	Added LQFP80L, LQFP48L and related information in Features, Selection Table, Pin Information, Section 9.2 and 9.3 Updated Functional Block Diagram Updated System Reset \ Low Voltage Reset Updated Electrical Characteristics \ Deep sleep current and Internal pull-up/pull-down resistance Updated Figure 8–1 in Section 8.4
29-Apr-2021	1.6	Updated Selection Table \ Replaced 73230 with 73231
11-Jun-2021	1.7	Updated Selection Table \ Deleted 73289 and all related information; added 73290
08-Feb-2022	2.0	Updated for clarifications
01-Jun-2022	2.1	Removed RTC and all related information Updated Timer with PWM related information in Table 3–2, section 3.3 and 7.5 Updated Figure 5–1 Updated for clarifications Removed register summaries

Convention

① WARNING	Indicates a hazard with a medium or low level of risk that, if not avoided, could result in minor or moderate injury.						
☆ TIP	Indicates a tip that may help you solve a problem or save time.						
□ NOTE	Provides additional information to emphasize or supplement important points of the main text.						

Table of Contents

1	Intro	duction		1
	1.1	Features	S	1
	1.2	Applicat	ion	2
	1.3	Descript	tion	2
	1.4	Function	nal Block Diagram	3
	1.5	Support	-	З
2	Devi	ce Compa	arison	. 10
3	Pin I	nformatio	n	. 11
	3.1		gnment	
		3.1.1	SNC73200MxNLFG-000	
		3.1.2	SNC73231MxNGFG-000	
		3.1.3	SNC73240MxVHJG-000	
		3.1.4	SNC73252MxNEJG-000	
		3.1.5	SNC73282M <i>x</i> UTJG-000	
		3.1.6	SNC73283MxUTJG-000	
		3.1.7	SNC73285MxNTJG-000	
		3.1.8	SNC73290MxNTFG-000	
	3.2		cription	
	3.3		iplexing	
	5.5	3.3.1	Pinmux Table	
4	Cont		ssing Unit (CPU)	
7	4.1		re Architecture	
	4.1	4.1.1	ARM Cortex-M3 Processor	
		4.1.2	Inter-processor Communication (IPC)	
	4.2		Protect Unit (MPU)	
	4.2	•	Vectored Interrupt Controller (NVIC)	
	4.3 4.4		Clock	
	4.4	4.4.1	Phase-Locked Loops (PLL)	
	4 -		re Accelerators	
_	4.5		re Accelerators	
5	5.1	•		
	5.1	•	I Memory Map	
	-		•	
	5.3		R Flash Controller	
	- A	5.3.1	Timing	
	5.4		Controller	
	5.5		Controller	
	- 0	5.5.1	Steps to Enable the I-cache	
	5.6	Storage		. 41
		5.6.1	SD Card Controller (SD0)	
^	. .	5.6.2	NAND Flash Controller	
6	•		DI	
	6.1		Controller (SYS0/SYS1)	
	6.2	-	Operation Mode	
	6.3	•	Reset	
	6.4			
7	-			
	7.1		Purpose Input/Output (GPIO)	
		7.1.1	Timing	
	7.2		egrated Circuit (I ² C)	
		7.2.1	Clock Ratios and Timing	
		7.2.2	Arbitration and Synchronization Logic	
	7.3	Serial P	eripheral Interface (SPI)	. 50

		7.3.1	Clock Ratios and Timing	51
	7.4	Universa	al Asynchronous Receiver Transmitter (UART)	53
		7.4.1	Baud Rate, Timing, and Transfer Format	53
	7.5	Timer wi	th Pulse Width Modulator (PWM)	54
		7.5.1	PWM Timing	56
	7.6	Watchdo	og Timer (WDT)	57
	7.7	Success	ive Approximation Register Analog-to-Digital Converter (SAR ADC)	58
		7.7.1	Timing	58
	7.8	SD/SDIC	O Controller (SD1)	60
		7.8.1	Timing	60
	7.9	SPI Con	troller with DMA	62
		7.9.1	Timing	62
	7.10	Universa	al Serial Bus 2.0 (USB 2.0)	62
		7.10.1	USB 2.0 Host	63
		7.10.2	USB 2.0 Device	65
8	Multin	nedia		66
	8.1	Picture F	Processing Unit (PPU)	66
	8.2	TFT-LC	O Interface	67
		8.2.1	Timing	67
	8.3	8080 MC	CU Interface	68
		8.3.1	Timing	69
	8.4	CMOS I	mage Sensor (CIS) Interface	69
		8.4.1	Timing	70
	8.5		odec	
	8.6	•	pace Converter (CSC)	
	8.7	Audio-I ²	S	
		8.7.1	Timing	
9	Devic	•	ing Conditions	
	9.1		Maximum Ratings	
	9.2		nended Operating Conditions	
	9.3		l Characteristics	
	9.4		equence	
		9.4.1	Power-up Sequence	
		9.4.2	Deep Power-down (DPD) and Wakeup (WKP) Sequence	
10			ıta	
			Data	
	10.2	•	e Information	
			Nomenclature	
		10.2.2	Marking	
		10.2.3	Package Dimensions	
	10.3	•	Appearance and Storage Information	
		10.3.1	Packing Quantity	
		10.3.2	Packing Dimension	
		10.3.3	Temperature and Humidity Environmental Control Requirements in Storage	
		10.3.4	Shelf-life	92

List of Figures

Figure 1–1	Functional Block Diagram	
Figure 3–1	SNC73200MxNLFG-000 Pin Assignment	
Figure 3–2	SNC73231MxNGFG-000 Pin Assignment	12
Figure 3–3	SNC73240MxVHJG-000 Pin Assignment	13
Figure 3–4	SNC73252MxNEJG-000 Pin Assignment	14
Figure 3–5	SNC73282MxUTJG-000 Pin Assignment	15
Figure 3–6	SNC73283MxUTJG-000 Pin Assignment	16
Figure 3–7	SNC73285MxNTJG-000 Pin Assignment	17
Figure 3–8	SNC73290MxNTFG-000 Pin Assignment	18
Figure 4–1	Inter-processor Communication Block Diagram	30
Figure 4–2	System Clock Block Diagram	33
Figure 5-1	Memory Map	36
Figure 5–2	SPI NOR FLASH Controller Block Diagram	38
Figure 5–3	SPI NOR Flash Master Mode Input Timing	39
Figure 5–4	SPI NOR Flash Master Mode Output Timing	
Figure 5–5	DMA Controller Channels	
Figure 5–6	I-cache Block Diagram	
Figure 5–7	NAND Flash Controller Timing	
Figure 7–1	GPIO Port Timing under Firmware Control	
Figure 7–2	GPIO External Interrupt in Rising Edge Trigger Mode	
Figure 7–3	GPIO External Interrupt in Falling Edge Trigger Mode	
Figure 7–4	GPIO External Interrupt in Both Edges Trigger Mode	
Figure 7–5	GPIO External Interrupt in High Level Trigger Mode	
Figure 7–6	GPIO External Interrupt in Low Level Trigger Mode	
Figure 7–7	I ² C Receive Timings	
Figure 7–8	I ² C Transmit Timings	
Figure 7–9	SPI Connection Diagram	
Figure 7–10	SPI Clock Block Diagram	
Figure 7–11	SPI Timings	
Figure 7–12	UART Connection Diagram	
Figure 7–13	UART Clock Block Diagram	
Figure 7–14	UART Transmit/Receive Timing	
Figure 7–15	UART Transfer Format	
Figure 7–16	Timer Reset Timing	
Figure 7–17	Timer Stop Timing	
Figure 7–18	PWM Duty Cycle Timings	
Figure 7–19	WDT Block Diagram	
Figure 7–20	SAR ADC Timing	
Figure 7–21	SAR ADC Single Mode Timing	
Figure 7–22	SAR ADC Normal Mode Timing	
Figure 7–23	SD Host Read and Card CRC Status Timing	
Figure 7–24	SD Card Response Timing	
Figure 7–25	SD Host Command Timing	
Figure 7–26	SD Host Write Timing	
Figure 7–27	USB 2.0 Host Integrated Transceiver Interface Timing	
Figure 7–28	USB 2.0 Device Integrated Transceiver Interface Timing	
Figure 8–1	PPU Data Path	
Figure 8–2	TFT-LCD Horizontal Timing	
Figure 8–3	TFT-LCD Vertical Timing	
Figure 8–4	8080 MCU Interface Timings	
Figure 8–5	CIS Interface Block Diagram	
Figure 8–6	CIS Interface Timing	

Figure 8–7	CIS Data Format	71
Figure 8–8	Encoder Hardware Block Diagram	72
Figure 8–9	Decoder Hardware Block Diagram	
Figure 8–10	Audio Block Diagram	73
Figure 8–11	I ² S Master Mode Block Diagram	74
Figure 8–12	I ² S Slave Mode Block Diagram	75
Figure 8–13	I ² S Timings when Channel Length > Data Length	77
Figure 8–14	I ² S Timings when Channel Length = Data Length	78
Figure 9–1	Power-up Sequence	
Figure 9–2	Deep Power-down and Wakeup Sequence	
Figure 10–1	Example of Device Marking	84

List of Tables

Table 3–1	Pin Description	19
Table 3–2	Pinmux Overview	24
Table 3–3	Function Description of Pinmux	27
Table 4–1	Interrupt and Exception Vectors	31
Table 4–2	Sources of System Clock	33
Table 4–3	PLL Clock Frequency	33
Table 4–4	PLL List	33
Table 5–1	Internal Memory	37
Table 5–2	External Memory	37
Table 5–3	DMA Channels	37
Table 5–4	Switching Characteristics for SPI NOR Flash Controller	38
Table 5–5	Input Timing Requirements of Controller in Master Mode	39
Table 5–6	Throughput of DRAM Controller	41
Table 5–7	Timing Requirements for NAND Flash Controller	42
Table 7–1	Switching Characteristics for GPIO	
Table 7–2	Timing Requirements for I ² C	48
Table 7–3	Switching Characteristics for I ² C	49
Table 7–4	Input Timing Requirements for SPI in Master Mode	51
Table 7–5	Switching Characteristics for SPI in Master Mode	52
Table 7–6	Timing Requirements for UART Receiver	54
Table 7–7	Switching Characteristics for UART Transmitter	54
Table 7–8	Switching Characteristics for PWM	56
Table 7–9	Switching Characteristics for SAR ADC	58
Table 7–10	Timing Requirements for SD Module	60
Table 7–11	Switching Characteristics for SD Module	61
Table 7–12	Switching Characteristics for USB 2.0 Host	64
Table 7–13	Switching Characteristics for USB 2.0 Device	
Table 8–1	Switching Characteristics for TFT-LCD	67
Table 8–2	Switching Characteristics for 8080 MCU Interface	69
Table 8–3	Input Timing Requirements for I ² S Master Receiver	
Table 8–4	Input Timing Requirements for I ² S Slave Receiver	76
Table 8–5	Input Timing Requirements for I ² S Slave Transmitter	
Table 8–6	Switching Characteristics for I ² S Master Receiver	
Table 8–7	Switching Characteristics for I ² S Master Transmitter	
Table 8–8	Switching Characteristics for I ² S Slave Transmitter	76
Table 9–1	Absolute Maximum Ratings	79
Table 9–2	Recommended Operating Conditions	
Table 9–3	Electrical Characteristics over Recommended Ranges	
Table 10–1	Packing Quantity Information	
Table 10–2	Inner Box/Carton Dimension for LQFP128/LQFP80/LQFP48	
Table 10–3	Inner Box/Carton Dimension for QFN88/QFN68/QFN48	
Table 10–4	Store Condition	92

2 Device Comparison

Device No.	Package	SiP Audio Codec	SiP Memory	USB Host	USB Device/ Host	I/O	I ² C	UART (Tx/Rx)	PWM	SAR ADC	SD/ SDIO	SPI DMA	SD Card	NAND	l ² S	CIS	TFT LCD
SNC73200 M0NLFG-000	I OFD4001	_1	-	√	√	00	2	0	0.4	6 611	✓		√2	√	_	✓	8/16-bit
SNC73200 M1NLFG-000	LQFP128L	1	8 MB OPI PSRAM	v	v	80	3	2	24	6-CH	v	2	V 2	v	5	V	8080/RGB
SNC73231 M0NGFG- 000	LQFP80L	_1	-		√	58	2	1	17	4-CH	√	2	√2	_	3	√	8-bit
SNC73231 M1NGFG- 000	LQIFOOL	i	8 MB OPI PSRAM		•	30	2	_	17	4-011	•	2	•	_	3	•	8080/RGB
SNC73240 M1VHJG-000	QFN88L	MIC x1 SPK x1	8 MB OPI PSRAM	ı	~	56	1	1	18	4-CH	✓	2	√2	ı	3	√	8-bit 8080/RGB
SNC73252 M0NEJG-000	QFN68L	_1	-		√	40	2	2	12	2 (1)	√	4	√2		2	√	8-bit
SNC73252 M3NEJG-000	QFINOOL	1	2 MB DDR1 DRAM	_	v	40		2	12	2-CH	•	1	V 2	_	2	v	8080/RGB
SNC73282 M0UTJG-000	QFN48L (7 x 7 mm)	MIC x2 SPK x1	_		√	18	2	1	7	2-CH	-	1	ı	-	1	ı	-
SNC73283 M0UTJG-000	QFN48L (7 x 7 mm)	MIC x2 HP x1	_	_	✓	18	1	1	8	2-CH	_	1	√	_	_	I	_
SNC73285 M4NTJG-000	QFN48L (6 x 6 mm)	_1	512 KB Flash	_	✓	29	2	1	14	2-CH	_	_	_	-	5	ı	_
SNC73290 M0NTFG-000	LQFP48L	_1	-	ı	~	28	2	1	12	4-CH	ı	1	~	-	2	ı	-

Supports external stereo/mono audio codec, SNAUD01 or SNAUD02.
 Shares the same pins with CIS.

10 CDSZ-2221 www.sonix.com.tw

3 Pin Information

- 3.1 Pin Assignment
- 3.2 Pin Description
- 3.3 Pin Multiplexing

3.1 Pin Assignment

Figure 3–1 to Figure 3–8 are pin assignments available for the SNC7320 Series. Mx is a variable representing SiP memory options. For details, refer to the Device Comparison or the Nomenclature.

3.1.1 SNC73200MxNLFG-000

Figure 3-1 SNC73200MxNLFG-000 Pin Assignment

3.1.2 SNC73231MxNGFG-000

Figure 3-2 SNC73231MxNGFG-000 Pin Assignment³

www.sonix.com.tw 12 CDSZ-2221

³ Pin 8 and pin 26 are NC for SNC73231M0NGFG-000.

3.1.3 SNC73240MxVHJG-000

Figure 3-3 SNC73240MxVHJG-000 Pin Assignment

3.1.4 SNC73252MxNEJG-000

Figure 3-4 SNC73252MxNEJG-000 Pin Assignment

3.1.5 SNC73282MxUTJG-000

Figure 3-5 SNC73282MxUTJG-000 Pin Assignment

3.1.6 SNC73283MxUTJG-000

Figure 3-6 SNC73283MxUTJG-000 Pin Assignment

3.1.7 SNC73285MxNTJG-000

Figure 3-7 SNC73285MxNTJG-000 Pin Assignment

3.1.8 SNC73290MxNTFG-000

Figure 3-8 SNC73290MxNTFG-000 Pin Assignment

3.2 Pin Description

Table 3-1 Pin Description

			Pin Nu	ımber						
SNC73200 MxNLFG-000	SNC73231 MxNGFG-000	SNC73240 MxVHJG-000	SNC73252 MxNEJG-000	SNC73282 MxUTJG-000	SNC73283 MxUTJG-000	SNC73285 MxNTJG-000	SNC73290 MxNTFG-000	Name	Type ⁴	Description
1	_	_	_	_	_	_	_	VDDIO33	Р	3.3V I/O power
2	_	_	_	_	_	_	_	P0.14	I/O	GPIO0 pin 14
3	_	_	-	-	_	_	-	P0.15	I/O	GPIO0 pin 15
4	_	_	_	_	_	_	_	P1.0	I/O	GPIO1 pin 0
5	_	_	_	_	_	_	_	P1.1	I/O	GPIO1 pin 1
6	_	-	-	-	-	_	_	VSSIO	GND	I/O ground
7	_	_	_	_	_	_		P3.11	I/O	GPIO3 pin 11
8	_	_	_	-	_	_	_	VSSIO	GND	I/O ground
9	_	_	_	_	_	_	_	VDDIO33	P	3.3V I/O power
10	_	_	_	_	_	_	_	P4.4	I/O	GPIO4 pin 4
11	1	1	-	1	-	-	-	SWO	0	Serial wire output trace port/ GPIO4 pin 5
12	2	2	1	2	1	3	1	SWCLK	0	Serial wire clock/ GPIO4 pin 6
13	3	3	2	3	2	4	2	SWDIO	I/O	Serial wire debug bi- directional data. A pull-up resistor, 100 kΩ recommended by ARM, is required./ GPIO4 pin 7
14	_	_	_	_	_	_	_	VDD12 USB	Р	1.2V USB power
15	4	4	3	4	3	5	3	VDDC	Р	1.2V core power
16	5	5	4	5	4	6	4	USB_D_DP (USB_DP)	A I/O	USB D+ signal; carries USB data to and from the USB 2.0 PHY
17	6	6	5	6	5	7	5	USB_D_DM (USB_DM)	A I/O	USB D- signal; carries USB data to and from the USB 2.0 PHY
18	7	7	6	7	6	8	6	VDDA33_USB	Р	3.3V USB analog power
19	-	-	-	-	-	-	-	USB_H_DM	A I/O	USB D- signal; carries USB data to and from the USB 2.0 PHY
20	ı	-	-	-	-	-	_	USB_H_DP	A I/O	USB D+ signal; carries USB data to and from the USB 2.0 PHY
21	_	-	-	-	-	-	ı	VDD33_LDO	Р	3.3V analog/digital power; powered from low dropout regulator (LDO)
22	8	8	7	-	-	-	_	VDD18_LDO/ NC	P -	1.8V analog/digital power; powered from low dropout regulator (LDO)/ No connection (for SNC73231M0NGFG-000 only)

⁴ Signal Types: I = Input O = Output A = Analog signal P = Power GND = Ground

			Pin Nu	ımber								
SNC73200 MxNLFG-000	SNC73231 MxNGFG-000	SNC73240 MxVHJG-000	SNC73252 MxNEJG-000	SNC73282 MxUTJG-000	SNC73283 MxUTJG-000	SNC73285 MxNTJG-000	SNC73290 MxNTFG-000	Name	Type ⁴	Description		
23	_	-	-	-	-	-	_	VSS_LDO	GND	Ground for power pins powered from low dropout regulator (LDO)		
24	9	9	8	8	7	9	7	VDD12_LDO	Р	1.2V analog/digital power; powered from low dropout regulator (LDO)		
25	_	_	_	_	_	_	_	VDDC	Р	1.2V core power		
26	10	10	9	_	_	_	_	P2.3	I/O	GPIO2 pin 3		
27	11	11	10	_	_	_	_	P2.2	I/O	GPIO2 pin 2		
28	12	12	11	9	8	10	8	XIN_12M	I	External 12 MHz crystal input		
29	13	13	12	10	9	11	9	XOUT_12M	0	External 12 MHz crystal output		
30	14	14	13	_	_	_	_	P2.1	I/O	GPIO2 pin 1		
31	15	15	14	_	_	_	_	P2.0	I/O	GPIO2 pin 0		
32	_	16	_	_	_	_	_	P3.10	I/O	GPIO3 pin 10		
33	_	_	_	_	_	_	_	VDDIO33	Р	3.3V I/O power		
34	_		_	_	_	_	_	VSSIO	GND	I/O ground		
35	16	17	15	_	10	_	10	P1.9	I/O	GPIO1 pin 9		
36	18	19	16	-	11	_	12	P1.8	I/O	GPIO1 pin 8		
37	17	18	17	_	12	_	11	P1.7	I/O	GPIO1 pin 7		
38	20	21	18	_	13	_	14	P1.6	I/O	GPIO1 pin 6		
39	19	20	19	11	14	_	13	P0.11	I/O	GPIO0 pin 11		
40	-	-	20	12	-	_	_	P4.0	I/O	GPIO4 pin 0		
41	21	22	21	13	15	12	15	VDDIO33	Р	3.3V I/O power		
42	22	23	22	14	16	_	16	P0.9	I/O	GPIO0 pin 9		
43	23	24	23	_	_	_	_	P1.15	I/O	GPIO1 pin 15		
44	24	_	24	_	_	_	_	P0.13	I/O	GPIO0 pin 13		
45	25	25	25	-	-	_	_	P1.14	I/O	GPIO1 pin 14		
46	26	26	26	-	-	-	_	VDD18_DRAM/ NC	P -	1.8V DRAM I/O power/ No connection (for SNC73231M0NGFG-000 only)		
47	_	_	27	_	17	_	17	VDDC	Р	1.2V core power		
48	_	_	28	_	_	_	_	VDD18_DRAM	Р	1.8V DRAM I/O power		
49	27	27	29	15	_	13	_	VDDC	Р	1.2V core power		
50	28	28	30	_	18	_	18	P1.5	I/O	GPIO1 pin 5		
51	-	29		_	-	14	_	P3.9	I/O	GPIO3 pin 9		
52	29	30	31	_	19	_	19	P1.4	I/O	GPIO1 pin 4		
53	-	31	_	_	_	15	_	P3.8	I/O	GPIO3 pin 8		
54	30		_		_	_	20	VSSIO	GND	I/O ground		
55	-	_	32	_	20	16	-	VDDIO33	Р	3.3V I/O power		
56	-	32	33	_	-	17	-	P3.7	I/O	GPIO3 pin 7		
57	31	33	_	16	_	18	21	P3.6	I/O	GPIO3 pin 6		
-	-	-	34				-	P3.6/P3.9 ⁵	I/O	GPIO3 pin 6 or GPIO3 pin 9		
58	32	34	_	17	_	19	22	P3.5	I/O	GPIO3 pin 5		
_	_	_	35	-	_	_	-	P3.5/P3.8	I/O	GPIO3 pin 5 or GPIO3 pin 8		
59	33	35	36	18	_	20	23	P3.4	I/O	GPIO3 pin 4		
60	_	_	_	19	_	_	_	P3.3	I/O	GPIO3 pin 3		
61		_		20	-	_	-	P3.2	I/O	GPIO3 pin 2		
62	34	37	_	21	_	_	24	VDDIO33	Р	3.3V I/O power		

 $^{^{5}}$ P3.6 must pair with P3.5 when configured as l^2S1 and P3.9 must pair with P3.8 when configured as l^2S3 .

			Pin Nu	ımber							
SNC73200 MxNLFG-000	SNC73231 MxNGFG-000	SNC73240 MxVHJG-000	SNC73252 MxNEJG-000	SNC73282 MxUTJG-000	SNC73283 MxUTJG-000	SNC73285 MxNTJG-000	SNC73290 MxNTFG-000	Name	Type ⁴	Description	
63	-	36	-	-	-	21	-	I2S_MCLK2 (I2S_MCLK)	0	I ² S master clock output 2 (I ² S master clock output)	
64	35	38	37	_	21	22	25	P0.3	I/O	GPIO0 pin 3	
65	_	_	38	22	_	_	_	P4.1	I/O	GPIO4 pin 1	
66	36	39	39		22	23	26	P0.2	I/O	GPIO0 pin 2	
67	_	_	40	_		_	_	VDDC	Р	1.2V core power	
68	-	-	41	23	23	24	-	VDDIO33	Р	3.3V I/O power For QFN packages, also supplies 3.3V analog power for SAR ADC	
69	_	_	_	_	_	_	_	VSSIO	GND	I/O ground	
70	-	-	-	-	-	-	-	P3.1	I/O	GPIO3 pin 1	
71	_		_	_	_	_	-	P3.0	I/O	GPIO3 pin 0	
72	37	40	_	_	_	_	_	P2.15	I/O	GPIO2 pin 15	
73	40	43	_	_	_	_	_	P2.14	I/O	GPIO2 pin 14	
74	38	41	_	_	_	_	_	P2.13	I/O	GPIO2 pin 13	
75	41	44	_	_	_	_	_	P2.12	I/O	GPIO2 pin 12	
76	39	42	_	_	_	_	_	P2.11	I/O	GPIO2 pin 11	
77	42	45	_	_	_	-	_	P2.10	I/O	GPIO2 pin 10	
78	43	46	-	-	-	_	27	VDDA33_SAR	Р	3.3V SAR ADC analog power	
79	44	47	42	24	24	25	28	P0.4	I/O	GPIO0 pin 4	
80	45	48	43	25	25	26	29	P0.5	I/O	GPIO0 pin 5	
81	46	49	_	_	_	_	30	P0.6	I/O	GPIO0 pin 6; enables SDCARD0 and NAND flash, or SDCARD1	
82	47	50	_	_	_	_	31	P0.7	I/O	GPIO0 pin 7	
83	_	-	_	_	_	_	_	P4.2	I/O	GPIO4 pin 2	
84	_	_	_	_	_	_	_	P4.3	I/O	GPIO4 pin 3	
85	_	51	_	_	_	_	_	NC	-	No connection	
86	_	52	_	_	_	_	_	NC	_	No connection	
87	48	53	44	-	_	27	32	VDDA33	Р	3.3V analog power	
_	-	56	-	26	26	-	-	MIC_BIAS	I/O	Microphone bias circuit power supply	
_	-	-	-	27	27	-	-	MICN_R	I/O	Microphone right channel negative input	
_	-	-	-	28	28	-	-	MICP_R	I/O	Microphone right channel positive input.	
_	-	-	-	29	29	-	-	MICP_L	I/O	Microphone left channel positive input.	
_	-	_	-	30	30	_	-	MICN_L	I/O	Microphone left channel negative input.	
_	-	57	-	-	-	-	-	MIC_P	I	Microphone positive input	
_	-	58	-	-	-	-	-	MIC_N	I	Microphone negative input	
_	-	59	-	31	31	_	-	VMID	I/O	SD-ADC VMID pin	
_	-	_	_	32	32	-	_	VSS_AU	GND	Ground for audio codec	
_	_	60	-	_	-	_	-	VSSA18_ADC	GND	Audio ADC ground	
_	-	-	-	33	33	-	-	VDDA18_AU	Р	1.8V analog power input for audio codec	
-	-	61	-	34	34	-	-	VDD18_AU_LDO	Р	1.8V power for audio codec; powered from low dropout regulator (LDO)	
88	49	54	45	35	35	28	33	RSTN		Reset pin	
89	50	55	46	36	36	29	34	WKPN		Wakeup pin	

			Pin Nu	ımber						
SNC73200 MxNLFG-000	SNC73231 MxNGFG-000	SNC73240 MxVHJG-000	SNC73252 MxNEJG-000	SNC73282 MxUTJG-000	SNC73283 MxUTJG-000	SNC73285 MxNTJG-000	SNC73290 MxNTFG-000	Name	Type ⁴	Description
_	-	-	-	37	37	-	-	VREF_SPK	I/O	Reference voltage for speaker driver
_	-	1	-	-	38	-	1	HP_R	0	Headphone right channel output
_	_	-	_	-	39	_	-	HP_VCOM	0	Headphone VCOM output
_	-	-	-	-	40	-	-	HP_L	0	Headphone left channel output
_	-	-	-	38	-	-	-	VSS_SPK	GND	Ground for speaker driver
_	_	62	_	39	_	_	_	SPK P	0	Speaker positive output
_	_	63	_	40	-	_	_	SPK_N	0	Speaker negative output
_	_	_	_	41	41	_	_	VDD5_SPK	Р	5V speaker power
_	_	64	_	_	_	_	_	VDD5	Р	5V PWM driver power
_	_	65	_	42	42	_	_	LDO33_OUT	Р	3.3V LDO power output
90	_	_	_	_	_	30	_	P4.15	I/O	GPIO4 pin 15
91	_	_	_	_	_	31	_	P4.14	I/O	GPIO4 pin 14
92	_	-	_	_	_	32	-	P4.13	I/O	GPIO4 pin 13
93	51	-	_	_	_	33	35	P4.12	I/O	GPIO4 pin 12
94	52	_	_	_	_	34	36	P4.11	1/0	GPIO4 pin 11
95	_	_	51	_	_	35	_	VDDIO33	Р	3.3V I/O power
96	_	_	_	_	_	_	_	VSSIO	GND	I/O ground
97	53	_	-	_	_	36	37	P4.10	I/O	GPIO4 pin 10
98	54	_	54	_	_	37	38	P4.9	I/O	GPIO4 pin 9
99	56	_	55	-	-	-	40	I2S_MCLK1 (I2S_MCLK)	0	I ² S master clock output 1 (I ² S master clock output)
100	55	_	56	_	_	38	39	P4.8	I/O	GPIO4 pin 8
101	57	67	57	_	_	_	_	VDDC	Р	1.2V core power
102	58	66	58	_	_	39	41	VDDIO33	Р	3.3V I/O power
103	_	_	_	_	_	_	_	VSSIO	GND	I/O ground
104	59	68	-	_	_	-	_	P2.9	I/O	GPIO2 pin 9
105	60	69	_	_	_	40	_	P2.8	I/O	GPIO2 pin 8
106	61	70	_	_	_	41	_	P2.7	I/O	GPIO2 pin 7
107	62	71	_	_	_	42	_	P2.6	I/O	GPIO2 pin 6
108	63	72	_	_	_	43	-	P2.5	1/0	GPIO2 pin 5
109	64	73	-	-	-	44	-	P2.4	1/0	GPIO2 pin 4
110	65	74	59	43	43	45	42	P0.8	1/0	GPIO0 pin 8
111 112	66 67	75 76	53 52	_	_	_	_	P1.3 P1.2	I/O I/O	GPIO1 pin 3
113	-	-	60	- 44	- 44	46	_	VDDC	P	GPIO1 pin 2 1.2V core power
114	68	- 77	50				-	P1.13	I/O	GPIO1 pin 13
115	69	78	49	_	_		_	P1.12	1/0	GPIO1 pin 13
116	70	79	48	_	_		_	P1.11	1/0	GPIO1 pin 11
-	-	-	61	_	_	_	_	VDD18 DRAM	P	1.8V DRAM power
117	71	80	47	_	_	_	_	P1.10	I/O	GPIO1 pin 10
		_	62	_	_	_	_	VDDC	P	1.2V core power
118	_	_	-	_	_	_	43	VDDC	P	1.2V core power
-	_	_	63	_	_	_	-	VDD18 DRAM	P	1.8V DRAM power
119	72	81	64	45	45	_	45	P0.10	I/O	GPIO0 pin 10
120	73	82	65	46	46	48	46	P0.0	I/O	GPIO0 pin 0
121	_	_	66	_	-	47	_	P0.12	I/O	GPIO0 pin 12
122	75	83	67	47	47	1	47	P0.1	I/O	GPIO0 pin 1
123	80	88	68	48	48	2	48	VDDIO33	Р	3.3V I/O power
124	74	-	_	_	-	_	44	VSSIO	GND	I/O ground
125	77	85	_	-	_	_	-	P3.15	I/O	GPIO3 pin 15
126	76	84	_	_	_	_	_	P3.14	I/O	GPIO3 pin 14

	Pin Number									
SNC73200 MxNLFG-000	SNC73231 MxNGFG-000	SNC73240 MxVHJG-000	SNC73252 MxNEJG-000	SNC73282 MxUTJG-000	SNC73283 MxUTJG-000	SNC73285 MxNTJG-000	SNC73290 MxNTFG-000	Name	Type ⁴	Description
127	79	87	_	_	_	_	_	P3.13	I/O	GPIO3 pin 13
128	78	86	-	1	_	-	1	P3.12	I/O	GPIO3 pin 12
_	-	89	69	49	49	49	1	EPAD	GND	The ePad on the bottom of the package must be soldered to the ground plane of the PCB.

□ NOTE

All pins are pull-up (PU). To pull-up a signal to the opposite supply rail, a 1 $k\Omega$ resistor is required.

3.3 Pin Multiplexing

Extensive use of pin multiplexing (pinmux) allows reusing the same pin for different purposes. Pinmux is controlled by a combination of hardware configuration at device reset and software programmable register settings.

Interrupt mode is supported in the pinmux GPIO. When the pinmux GPIO mode is selected, there is an IRQ connected between the IP and INTC. Modes and data must all be programmed and then poll for the status of each upper level pinmux GPIO pin when a pin is set to the GPIO input mode.

3.3.1 Pinmux Table

Pin multiplexing allows I/O pins to be set as a pin of another function. Table 3–2 lists all pins with pinmux options, and Table 3–3 provides descriptions of the pins when being multiplexed.

Table 3-2 Pinmux Overview⁶ ⁷

Default	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Mode 7
P0.0	I2C0_SCL		_	_	_	_	_
P0.1	I2C0_SDA	_	_	_	_	_	_
P0.2	UART0_TXD	_	_	_	_	_	CT32B7_PWM28
P0.3	UART0_RXD	_	_	_	_	_	CT32B7_PWM18
P0.4	AIN0	_	-	-	-	-	CT32B7_PWM08
P0.5	AIN1	-	-	=	-	=	CT32B6_PWM28
P0.6	AIN2	ı	-	ı	-	=	CT32B6_PWM18
P0.7	AIN3	-	_	_	_	-	CT32B6_PWM08
P0.8	SPIFC_CS	ı	SPI0DMA_CS	ı	-	=	-
P0.9	SPIFC_CLK	I	SPI0DMA_SCLK	ı	-	-	-
P0.10	SPIFC_MISO	ı	SPI0DMA_MISO	ı	_	-	_
P0.11	SPIFC_MOSI	I	SPI0DMA_MOSI	ı	-	-	-
P0.12	SPIFC_D2/WP	I	SPI0DMA_MISO2	I	_	-	CT32B0_PWM18
P0.13	SPIFC_D3	ı	SPI0DMA_MISO3	ı	_	-	CT32B0_PWM08
P0.14	_	CLKOUT	_	SPI0_CS	_	_	_
P0.15	_	-	NAND_CS	SPI0_SCLK	_		_
P1.0	_	1	NAND_RB	SPI0_MISO	_	_	_
P1.1	_	ı	NAND_ALE	SPI0_MOSI	_	_	_
P1.2	_	CIS_VSYNC	NAND_WE	LCD_HSYNC/ 8080_RE ⁹	-	-	-
P1.3	-	CIS_HSYNC	NAND_RE	LCD_VSYNC/ 8080_WE ⁹	-	-	-
P1.4	SD0_CLK	CIS_MCLK	NAND_WP	LCD_DE/ 8080_CS ⁹	SPI0DMA_CS ¹⁰	-	CT32B7_PWM2
P1.5	SD0_CMD	CIS_PCLK	NAND_CLE	LCD_DCLK/ 8080_A0 ⁹	SPI0DMA_SCLK ¹⁰	-	CT32B7_PWM1
P1.6	SD0_D0	CIS_D0	NAND_D0	LCD_D0/ 8080_D0 ⁹	SPI0DMA_MISO10	-	CT32B7_PWM0
P1.7	SD0_D1	CIS_D1	NAND_D1	LCD_D1/ 8080_D1 ⁹	SPI0DMA_MOSI ¹⁰	-	CT32B6_PWM2
P1.8	SD0_D2	CIS_D2	NAND_D2	LCD_D2/ 8080_D2 ⁹	SPI0DMA_MISO210	-	CT32B6_PWM1

^{6 &}quot;-" represents reserved pinmux options.

Tepresents reserved primition options.
 If multiple functions of a pin are enabled, the pin will function in the mode of the lowest number.
 To configure the pins for this I/O function, refer to Pin Control Register (SYS0_PINCTRL) in SNC7320_reg_vx.xx for detailed settings.
 Refer to The Control Register (SYS0_PINCTRL[1]) in SNC7320_reg_vx.xx for detailed settings.
 Refer to The Control Register (SYS0_PINCTRL[8]) in SNC7320_reg_vx.xx for detailed settings.

Default	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Mode 7
P1.9	SD0_D3	CIS_D3	NAND_D3	LCD_D3/ 8080_D3 ⁹	SPI0DMA_MISO310	_	CT32B6_PWM0
P1.10	-	CIS_D4	NAND_D4	LCD_D4/ 8080_D49	_	-	-
P1.11	-	CIS_D5	NAND_D5	LCD_D5/ 8080_D5 ⁹	_	-	-
P1.12	_	CIS_D6	NAND_D6	LCD_D6/ 8080_D6 ⁹	_	-	_
P1.13	_	CIS_D7	NAND_D7	LCD_D7/ 8080_D7 ⁹	-	-	-
P1.14	SDIO_CLK	_	-	-	I2S4_MCLK	-	-
P1.15	SDIO_CMD	-		-	I2S4_DI	-	_
P2.0	SDIO_D0	_	-	_	I2S4_DO	-	_
P2.1	SDIO_D1	-	-	-	I2S4_BCLK	=	-
P2.2	SDIO_D2	_	-	_	12S4_WS	-	_
P2.3	SDIO_D3	_	-	-	_	-	-
P2.4	LCD_HSYNC	8080_RD	-	-	I2S4_MCLK8	-	CT32B5_PWM2
P2.5	LCD_VSYNC	8080_WR	-	_	12S4_DI8	-	CT32B5_PWM1
P2.6	LCD_DE	8080_CS	-	-	12S4_DO8	-	CT32B5_PWM0
P2.7	LCD_DCLK	8080_A0	-	-	I2S4_BCLK8	-	CT32B4_PWM2
P2.8	LCD_D0	8080_D0	-	-	12S4_WS8	-	-
P2.9	LCD_D1	8080_D1		-	_	-	-
P2.10	LCD_D2	8080_D2	-	_	_	-	_
P2.11	LCD_D3	8080_D3	-	-	_	-	-
P2.12	LCD_D4	8080_D4	-	_	_	-	_
P2.13	LCD_D5	8080_D5	-	-	-	-	-
P2.14	LCD_D6	8080_D6	-	-	-	=	-
P2.15	LCD_D7	8080_D7		-	-	-	-
P3.0	LCD_D8	8080_D8	NAND_CE ¹¹	-	_	-	-
P3.1	LCD_D9	8080_D9	NAND_RB ¹¹	_	_	-	_
P3.2	LCD_D10	8080_D10	NAND_ALE ¹¹	_	I2S4_MCLK8	I2C2_SCL	-
P3.3	LCD_D11	8080_D11	NAND_WE ¹¹	-	12S4_DI8	I2C2_SDA	-
P3.4	LCD_D12	8080_D12	NAND_RE ¹¹	-	12S4_DO8	I2S1_DI	-
P3.5	LCD_D13	8080_D13	NAND_WP ¹¹	SD0_CLK8	I2S4_BCLK8	I2S1_BCLK	-
P3.6	LCD_D14	8080_D14	NAND_CLE ¹¹	SD0_CMD8	12S4_WS8	12S1_WS	-
P3.7	LCD_D15	8080_D15	NAND_D0 ¹¹	SD0_D08	_	12S3_DO	_
P3.8	LCD_D16	-	NAND_D1 ¹¹	SD0_D18	-	I2S3_BCLK	-
P3.9	LCD_D17	-	NAND_D2 ¹¹	SD0_D28	-	12S3_WS	-

¹¹ Refer to The Control Register (SYS0_PINCTRL[0]) in SNC7320_reg_vx.xx for detailed settings.

www.sonix.com.tw 25 CDSZ-2221

Default	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Mode 7
P3.10	_	_	NAND_D3 ¹¹	SD0_D38	_	_	CT32B4_PWM1
P3.11	-	-	NAND_D4 ¹¹	-	-	-	CT32B4_PWM0
P3.12	SPI1_CS	ı	NAND_D5 ¹¹	SPI1DMA_CS	-	CT32B0_CAP0	CT32B3_PWM2
P3.13	SPI1_CLK	-	NAND_D6 ¹¹	SPI1DMA_SCLK	-	CT32B1_CAP0	CT32B3_PWM1
P3.14	SPI1_MISO	_	NAND_D7 ¹¹	SPI1DMA_MISO	-	CT32B2_CAP0	CT32B3_PWM0
P3.15	SPI1_MOSI	-	_	SPI1DMA_MOSI	-	CT32B3_CAP0	CT32B2_PWM2
P4.0	UART1_TXD	-	_	SPI1DMA_MISO2	-	CT32B4_CAP0	CT32B2_PWM1
P4.1	UART1_RXD	_	_	SPI1DMA_MISO3	_	CT32B5_CAP0	CT32B2_PWM0
P4.2	AIN4	-	_	_	-	CT32B6_CAP0	CT32B1_PWM2
P4.3	AIN5	-	-	-	_	CT32B7_CAP0	CT32B1_PWM1
P4.4	-	-	_	_	-	-	CT32B1_PWM0
SWO	P4.5	-	_	_	-	-	CT32B0_PWM2
SWCLK	P4.6	_	_	_	_	_	CT32B0_PWM1
SWDIO	P4.7	-	_	_	-	-	CT32B0_PWM0
P4.8	I2C1_SCL	-	-	-	_	-	CT32B3_PWM28
P4.9	I2C1_SDA	-	_	_	-	-	CT32B3_PWM18
P4.10	12S0_DI	-	-	-	-	-	CT32B3_PWM08
P4.11	I2S0_BCLK	-	_	_	-	-	CT32B2_PWM28
P4.12	12S0_WS	CIS_D48	-	-	-	-	_
P4.13	12S2_DO	CIS_D58	-	-	_	-	-
P4.14	I2S2_BCLK	CIS_D68		-	-		-
P4.15	I2S2_WS	CIS_D78	_	_	_	_	_

Table 3-3 **Function Description of Pinmux**

Px.x ⁻¹	Function	Name	Type ¹²	Description
PC				
IZCn_SCL	01 10	1 2.2	1/0	
PC	120	I2Cn SCI	0	
		12011_002		
UART UART TXD	I ² C			
UART UART TXD	10	I2Cn SDA	I/O	
UART n_TXD			., 0	
UART n_RXD		UARTn TXD	0	_
SAR ADC	UART			
SAR ADC		UARI <i>n_</i> RXD	l l	
SPIn_CLK	SAR ADC	AIN <i>n</i>	I	
SPIn_CS				
SPIn_CS		SPIn_CLK	I/O ¹⁴	GPIO configuration in slave mode depends on
SPIn_CS				
SPIn_LCS				
SPI		SPIn CS	I/O14	
SPI		01 111_00	1,70	
SPIn_MISO				GPIOx_CFG or GPIO
SPIn_MISO	SPI	SPIn MOSI	I/O ¹⁴	
SPIn_DMA_CS				slave mode depends on GPIOn_CFG or GPIO
SPInDMA CS		SPIn_MISO	I/O ¹⁵	
SPInDMA_SCLK O SPI clock				
SPInDMA MISOx I SPI master in slave out				
SPInDMA MOSI O SPI master out slave in		_		
SD0_CLK				
SD0_CMD				
SD0				
SDO/ SD1/SDIO SD0_WP		_	_	
SD1/SDI0	CD0/		+	
SDIO_CLK			+	
SDIO_CMD	301/3010			
SDIO_Dx				
PS				
PS			1/0	
I2Sx_BCLK			<u> </u>	
PS		1237_00		
I2Sx_MCLK		I2Sx_BCLK	I/O	
I2Sx_MCLK	I ² S			
Internal generated clock. I2Sx_WS		I2Sx MCLK	I/O	
I2Sx_WS		IZOX_MOZIK	., 0	
Timer CT32Bn_CAP0 I 32-bit timer/counter capture channel PWM CT32Bn_PWMx O Pulse width modulation data output LCD_Dx/ 8080_Dx O TFT-LCD data bus/ 8080_CPU data bus or GPIO LCD_HSYNC/ 8080_RD O TFT-LCD horizontal/line synchronization/ 8080_CPU read; active low LCD_VSYNC/ 8080_WR O TFT-LCD vertical/frame synchronization/ 8080_CPU write; active low LCD_DE/ 8080_CS O TFT-LCD data enable/ 8080_CPU chip select; active low LCD_DCLK/ 8080_A0 O TFT-LCD clock/ 8080_CPU address 0		I2Sx WS	I/O	
CD_Dx/	Timer		Ī	
CD_Dx/		- · · · · · · - · · · · ·	0	
Second Color Second Color				
LCD_HSYNC/				
S080 RD			_	
LCD_VSYNC/	TET DOD!			8080 CPU read; active low
8080 MR		LCD_VSYNC/		TFT-LCD vertical/frame synchronization/
LCD_DE/ 8080_CS				8080 CPU write; active low
8080_CS	interiace	LCD_DE/	0	
8080_A0 8080 CPU address 0				
8080_A0 8080 CPU address 0			0	
SPIFC_CS O SPI NOR flash chip select				
		SPIFC_CS	0	SPI NOR flash chip select

¹² The types listed below represent pin type of the primary function. For pins with GPIO as pinmux option, the pin type is I/O when being used as GPIO.

x = a variable number

¹⁴ Output in master mode; input in slave mode
15 Input in master mode; output in slave mode

32-bit Dual-Core SoC

Function	Name	Type ¹²	Description	
	SPIFC_CLK	0	SPI NOR flash clock output	
SPI NOR	SPIFC_MISO		SPI NOR flash master in slave out	
Flash	SPIFC_MOSI	0	SPI NOR flash master out slave in	
Controller	SPIFC_D2/WP	I/O	SPI NOR flash 4 x I/O mode, data pin or write protection	
	SPIFC_D3	I/O	SPI NOR flash 4 x I/O mode, data pin	
	NAND_CS	0	NAND flash	
	NAND_RB	0	NAND flash ready/busy output	
NIANID	NAND_ALE	0	NAND flash address latch enable	
NAND Flash	NAND_WE	0	NAND flash write enable	
Controller	NAND_RE	0	NAND flash read enable	
Controller	NAND_WP	0	NAND flash write protect	
	NAND_CLE	0	NAND flash command latch enable	
	NAND_Dx	I/O	NAND flash data input/output	
CMOC	CIS_VSYNC		CMOS image sensor output vertical sync	
CMOS	CIS_HSYNC	I	CMOS image sensor output horizontal sync	
Image Sensor	CIS_MCLK	0	CMOS image sensor master clock	
Interface	CIS_PCLK		CMOS image sensor pixel clock	
interiace	CIS_Dx		CMOS image sensor output data	

4 Central Processing Unit (CPU)

- 4.1 Dual-core Architecture
- 4.2 Memory Protect Unit (MPU)
- 4.3 Nested Vectored Interrupt Controller (NVIC)
- 4.4 System Clock
- 4.5 Hardware Accelerators

4.1 Dual-core Architecture

The SNC7320 Series integrates two ARM Cortex-M3 processors, Core 0 and Core 1. Both cores can access the 256 KB shared AHB RAM, 4 KB mailbox RAM and all peripherals. The Core 0 takes the role of a master core which controls the operation mode of the system and boots the code of Core 1. The Core 1 acts as a slave core, and is an independent subsystem. Two cores interact by the interprocess communication (IPC) protocol. The most important function of the two cores is to separate two subsystems of the SNC7320 Series, not only to increase the performance of the system, but also to reduce the code complexity of each core.

4.1.1 ARM Cortex-M3 Processor

The ARM Cortex-M3 is a low-power processor that features low gate count, low interrupt latency, and low-cost debugging. It is intended for embedded applications requiring fast interrupt response features. The processor implements the ARM architecture v7-M. The processor incorporates:

- Memory Protect Unit (MPU)
- Nested Vectored Interrupt Controller (NVIC)
- Serial wire debug (SWD) port with Trace Port Interface Unit (TPIU) and Data Watchpoint and Trace (DWT) debug protocol

For complete details on the ARM Cortex-M3, please refer to the technical reference manual available at https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m3.

4.1.2 Inter-processor Communication (IPC)

The communication between the two cores is achieved with IPC which is implemented with a ring buffer of software framework. Messages are passed through queues using a cyclic share buffer as message box RAM (0x2000_0000 to 0x2000_1000). A queue is filled with MsgBoxs from start to end addresses. Two cores use these share RAM to inter-change data and commands.

Figure 4–1 Inter-processor Communication Block Diagram

4.2 Memory Protect Unit (MPU)

The Memory Protect Unit (MPU) is a component for memory protection of the SNC7320 Series. The processors support the standard ARMv7 Protected Memory System Architecture model. Features of the MPU include:

- · Protection regions
- · Overlapping protection regions with ascending region priority
 - 7 = Highest priority
 - 0 = Lowest priority
- · Access permissions
- · Exporting memory attributes to the system

The MPU mismatches and permission violations invoke the programmable-priority MemManage fault handler. For more information, see the ARMv7-M Architecture Reference Manual.

Major functions of the MPU include:

- · Enforce privilege rules
- · Separate processes
- · Enforce access rules

Please refer to the official website of ARM for more details:

 $\frac{https://developer.arm.com/documentation/dui0552/a/cortex-m3-peripherals/optional-memory-protection-unit?lang=en}{protection-unit?lang=en}$

4.3 Nested Vectored Interrupt Controller (NVIC)

The nested vectored interrupt controller (NVIC) provides a software interface to the interrupt system. Based on the ARM subsystem, the SNC7320 Series has one level of interrupts: Interrupt Request (IRQ) for general interrupts.

The sequence of events for the interrupts is:

- 1. INTC collects interrupt signals from various modules
- 2. INTC generates the IRQ interrupt signals to the ARM

The properties of all interrupt signals can be configured by the INTC registers which are mapped to the AHB peripherals. The INTC supports up to 57 interrupt sources listed in Table 4–1. The software initializes edge or level sensitivity and checks the source of the interrupt when it receives IRQ events from the ARM. The registers of INTC are at base address 0xE000_E000.

Features of the NVIC are:

- Up to 64 vectored interrupts
- Programmable priority levels of 0–7 for each interrupt. Higher levels correspond to a lower priority. Thus, level 0 is the highest interrupt priority with low-latency exception for interrupt handling.
- · Level and pulse detection of interrupt signals
- · Dynamic reprioritization of interrupts
- · Grouping of priority values into group priority and sub-priority fields
- Interrupt tail-chaining
- External non-maskable interrupt (NMI)

Table 4–1 is a list of interrupt and exception vectors including the 56 interrupt sources (IRQ) with IRQ numbers.

Table 4–1 Interrupt and Exception Vectors

Execution No.	Priority	Function	Description	Address Offset ¹⁶
0	_	_	Reserved	_
1	-3	Reset	Reset	0x0000 0004
2	-2	NMI handler	Non-maskable interrupt; shared with WDT	0x0000 0008
3	-1	HardFault handler	All class of fault	0x0000 000C
4	Settable	MemManage handler	MPU fault	0x0000 0010
5	Settable	BusFault handler	Bus fault	0x0000 0014
6	Settable	UsageFault handler	Usage fault	0x0000 0018
7–10	_	_	Reserved	_
11	Settable	SVCCall	Supervisor call	0x0000 0018
12	Settable	DebugMon handler	Debug fault	0x0000 0030
13	_	_	Reserved	_
14	Settable	PendSV	Pendable service call	0x0000 0038
15	Settable	SysTick	System tick	0x0000 003C
16	Settable	IRQ0	Dual core interrupt from Core 0	0x0000 0040
17	Settable	IRQ1	Dual core interrupt from Core 1	0x0000 0044
18	-	ı	Reserved	-
19	Settable	IRQ3	Wakeup33	0x0000 004C
20	Settable	IRQ4	PPU vertical blanking	0x0000 0050
21	Settable	IRQ5	PPU horizontal blanking	0x0000 0054
22	Settable	IRQ6	USB device	0x0000 0058
23	Settable	IRQ7	USB host 0	0x0000 005C
24	Settable	IRQ8	USB host 1	0x0000 0060
25	Settable	IRQ9	SAR ADC	0x0000 0064
26	Settable	IRQ10	CIS Vsync	0x0000 0068
27	Settable	IRQ11	CIS DMA	0x0000 006C
28	Settable	IRQ12	JPEG encoder end	0x0000 0070
29	Settable	IRQ13	JPEG decoder DMA in	0x0000 0074
30	Settable	IRQ14	JPEG decoder DMA out	0x0000 0078
31	Settable	IRQ15	SDIO interrupt	0x0000 007C
32	Settable	IRQ16	SDIO DMA	0x0000 0080
33	Settable	IRQ17	SD/NAND ECC	0x0000 0084

¹⁶ "—" = Unknown

www.sonix.com.tw 31 CDSZ-2221

Execution No.	Priority	Function	Description	Address Offset ¹⁶
34	Settable	IRQ18	SD/NAND DMA	0x0000 0088
35	Settable	IRQ19	IDMA0	0x0000 008C
36	Settable	IRQ20	IDMA1	0x0000 0090
37	Settable	IRQ21	I ² S0 DMA	0x0000 0094
38	Settable	IRQ22	I2S1 DMA	0x0000 0098
39	Settable	IRQ23	I ² S2 DMA	0x0000 009C
40	Settable	IRQ24	I2S3 DMA	0x0000 00A0
41	Settable	IRQ25	I ² S4	0x0000 00A4
42	Settable	IRQ26	GPIO0	0x0000 00A8
43	Settable	IRQ27	GPIO1	0x0000 00AC
44	Settable	IRQ28	GPIO2	0x0000 00B0
45	Settable	IRQ29	GPIO3	0x0000 00B4
46	Settable	IRQ30	GPIO4	0x0000 00B8
47	Settable	IRQ31	I ² C0	0x0000 00BC
48	Settable	IRQ32	I ² C1	0x0000 00C0
49	Settable	IRQ33	I2C2	0x0000 00C4
50	Settable	IRQ34	SPI0	0x0000 00C8
51	Settable	IRQ35	SPI1	0x0000 00CC
52	Settable	IRQ36	UART0	0x0000 00D0
53	Settable	IRQ37	UART1	0x0000 00D4
54	Settable	IRQ38	CT32B0 timer	0x0000 00D8
55	Settable	IRQ39	CT32B1 timer	0x0000 00DC
56	Settable	IRQ40	CT32B2 timer	0x0000 00E0
57	Settable	IRQ41	CT32B3 timer	0x0000 00E4
58	Settable	IRQ42	CT32B4 timer	0x0000 00E8
59	Settable	IRQ43	CT32B5 timer	0x0000 00EC
60	Settable	IRQ44	CT32B6 timer	0x0000 00F0
61	Settable	IRQ45	CT32B7 timer	0x0000 00F4
62	Settable	IRQ46	SPI0 DMA	0x0000 00F8
63	Settable	IRQ47	SPI0 ECC	0x0000 00FC
64	Settable	IRQ48	SPI1 DMA	0x0000 0100
65	Settable	IRQ49	SPI1 ECC	0x0000 0104
66	Settable	IRQ50	CSC DMA in	0x0000 0108
67	Settable	IRQ51	CSC DMA out	0x0000 010C
68	Settable	IRQ52	Script interrupt	0x0000 0110
69	Settable	IRQ53	CRC16 interrupt	0x0000 0114
70	Settable	IRQ54	USB device suspend/resume INT	0x0000 0118
71	Settable	IRQ55	JPEG encoder in for DMA	0x0000 011C
72	Settable	IRQ56	JPEG encoder out for DMA	0x0000 0120

Please refer to the official website of ARM for more details:

https://developer.arm.com/documentation/100166/0001/Nested-Vectored-Interrupt-Controller?lang=en

4.4 System Clock

The system clock is the major clock domain except for the USB and the WDT. A divider is used to lower the operating clock for all IPs in the system clock domain. During boot up, the CPU uses the 12 MHz IHRC (Internal High-speed RC) as the default system source clock. It can be switched to other clock sources for better performance or power saving. The system clock block diagram is as shown in Figure 4–2, and Table 4–2 lists the sources of the system clock.

Figure 4–2 System Clock Block Diagram

Table 4–2 Sources of System Clock

Source	Frequency	Interface	Default	Note
IHRC	12 MHz	Internal	On	Power on default (±1.5% tolerance)
HXTAL	12 MHz	External: HXIN/HXOUT	Off	-
SYS_ILRC	32 kHz	_	On	Always on
PLL	276-324 MHz	Internal	Off	System Clock = PLL / 2

4.4.1 Phase-Locked Loops (PLL)

Features of the PLL are:

- Provides primary system clock
- Programmable PLL divider value
- Programmable PLL multiplier value
- Accepts IHRC input or HXTAL input

The PLL module requires one primary reference clock. The reference 12 MHz clock frequency may be generated either by the IHRC or the HXTAL. The SNC7320 Series has two sets of PLL for the system and the USB.

Table 4–3 PLL Clock Frequency

Module	Output Frequency	Description
System PLL	276–324 MHz	For main system clocks (12 MHz HXTAL/IHRC x 23, 24,, 27)
USB_PLL	480 MHz	For USB host and device

Table 4-4 PLL List

	TUDIC T-T I LL LIST						
Name	Used by	Maximum Frequency					
	CPU0/CPU1	162 MHz					
System Clock	AHB	162 MHz for the ROM, the SRAM, and the IP blocks on AHB including the peripherals.					
System Clock / 2	DRAM	81 MHz					

Name	Used by	Maximum Frequency
PLL	USB device	480 MHz
	USB host	480 MHz
ILRC (1.2V)	WDT	32 kHz

4.5 Hardware Accelerators

Comparing to processing with pure software, fast Fourier transform (FFT) and finite impulse response (FIR), the hardware accelerators of Core 1 require less instruction cycles when handling audio and image related algorithms.

Features of the FIR accelerator are:

- 16-bit input and 32-bit output data width
- Data overflow handling
- Programmable FIR tap (max. 2048)
- Suitable for algorithms including but not limited to acoustic echo cancellation, equalizer, 3D audio speech codec, and image enhancement

Features of the FFT accelerator are:

- 16-bit input and 32-bit output data width
- Data overflow handling
- Programmable FFT tap (max. 1024)
- Suitable for algorithms including but not limited to voice recognition, sound effect, and fingerprint identification

5 Memory

- 5.1 Physical Memory Map
- 5.2 DMA Engine
- 5.3 SPI NOR Flash Controller
- 5.4 DRAM Controller
- 5.5 I-cache Controller
- 5.6 Storage

5.1 Physical Memory Map

The SNC7320 Series includes private libraries such as the USB library and FAT system to save memory size. There are 64 KB in the internal ROM, and there is a 64 KB PRAM dedicated for CPU programs for Core 0. Furthermore, a 256 KB internal memory is equipped to be shared by the CPU and peripherals. A ROM is dedicated for digital signal processing programs of Core 1. With its high compression algorithm, the SNC7320 Series is capable of performing audio applications such as MP3.

Figure 5-1 Memory Map

Table 5–1 Internal Memory

	Internal RAM Address Range			Access			
Region		Size	Core 0	Core 1	PPU	Peripheral DMAs	
ROM (Core 0)	0x0800_0000-0x0800_FFFF	64 KB	R	-	_	_	
Program RAM	0x0000_0000-0x0000_FFFF (After remap)	64 KB	R	-	-	-	
ROM (Core 1)	0x0000_0000-0x0001_FFFF	128 KB	_	R	1	-	
I-cache	0x1000_0000-0x100F_FFFF	1 MB	R	R	1	_	
Shared AHB RAM	0x1800_0000-0x1803_FFFF	256 KB	R/W	R/W	R/W	R/W	
Shared Mailbox RAM	0x2000_0000-0x2000_0FFF	4 KB	R/W	R/W	-	_	

Table 5–2 External Memory

	External Memory Address			Access			
Region	Range	Size	Core 0	Core 1	PPU	Peripheral DMAs	
DDR1 DRAM/ OPI PSRAM	0x3000_0000-0x3FFF_FFFF	2/2/2/8 MB	R/W	R/W	R	R/W ¹⁷	
SPI NOR flash	0x6000_0000-0x6FFF_FFFF	256 MB	R	R	-	R/W ¹⁷	

5.2 DMA Engine

The DMA engine controls data transfer between the modules as listed in Table 5–3, along with SRAM access. There are a total of 19 sets of DMA channels where each channel functions independently. 17 sets function for a designated IP, and the last two are for general purpose.

Table 5-3 DMA Channels

Module	Base Address	Access to DRAM Controller (DDR1 DRAM or OPI PSRAM)
DMA0	0x4002_0000	Yes
DMA1	0x4002_0010	Yes
DMA-SPIFC	0x4002_2100	No
DMA-SD0/NF	0x4002_3100	No
DMA-SDIO	0x4002_4100	No
DMA-CIS	0x4002_5100	Yes
DMA-CSC-IN	0x4002_6100	No
DMA-CSC-OUT	0x4002_6110	No
DMA-JPEG_ENC-IN	0x4002_7100	No
DMA-JPEG_ENC-OUT	0x4002_7110	Yes
DMA-JPEG_DEC-IN	0x4002_8100	Yes
DMA-JPEG_DEC-OUT	0x4002_8110	No
DMA-SPI0	0x4002_B100	No
DMA-SPI1	0x4002_C100	No
DMA-I2S0	0x4003_0100	No
DMA-I2S1	0x4003_1100	No
DMA-I2S2	0x4003_2100	No
DMA-I2S3	0x4003_3100	No

www.sonix.com.tw 37 CDSZ-2221

¹⁷ For certain DMAs

5.3 SPI NOR Flash Controller

Features of the SPI NOR flash controller include:

- · Built-in SPI interface
- DMA for large data transfers
- 1/2/4-bit read mode and 1/4 bits write mode
- SPI NOR flash controller stops when LVD is triggered
- · Supports direct addressing for CPU
- Supports MXIC/SST/GD command series serial flash

The SPI NOR flash controller block diagram is as shown in Figure 5-2.

Figure 5–2 SPI NOR FLASH Controller Block Diagram

5.3.1 Timing

Table 5–4 lists the switching characteristics over the condition that SPI NOR flash clock = 162 / n MHz where n = 4.

Table 5-4 Switching Characteristics for SPI NOR Flash Controller

No.		Parameter		Device		Unit
NO.		rarameter	MIN. TYP.		MAX.	Oilit
1	t _{c(CLK)}	Cycle time, SPI NOR flash clock	25	1	200	
2	t _{w(CLKH)}	Pulse width, SPI NOR flash clock high	9	-	0.45P ¹⁸	
3	t _{w(CLKL)}	Pulse width, SPI NOR flash clock low	9	-	0.45P ¹⁸	
4	t _{d(CLK-SDX)}	Delay time, SPI NOR flash clock transmit falling edge to SF_MO data output	3	l	ı	ns
5	t _{oh(CLK-SDX)}	Output hold time, SF_MO data valid after receive rising edge of clock	11	-	-	
6	t _{d(CSN-CLK)}	Delay time, SPI NOR flash chip select asserting to the first SPI NOR flash clock rising edge	10	_	_	

¹⁸ P = SF clock period

No.		Parameter		Device			Unit
				MIN.	TYP.	MAX.	Unit
	7	t _{d(CLK-CSN)}	Delay time, the final SPI NOR flash clock falling edge to SPI NOR flash chip select de- asserting	4	-	ı	

Table 5–5 Input Timing Requirements of Controller in Master Mode

No.		Parameter		Device		Unit
NO.	No. Farameter		MIN.	TYP.	MAX.	Offic
8	t _{su(SDR-CLK)}	Setup time, SF_MI data valid before receive rising edge of SPI NOR Flash clock	4	-	-	20
9	t _{h(CLK-SDR)}	Hold time, SF_MI data valid after receive rising edge of SPI NOR flash clock	11	-	_	ns

Figure 5–3 SPI NOR Flash Master Mode Input Timing

Figure 5–4 SPI NOR Flash Master Mode Output Timing

5.4 DRAM Controller

The DRAM controller has four channels for DMA or CPU access to extend the memory buffer. This controller supports DDR1 and OPI interfaces, and there are 16-bit DDR and 8-bit OPI data widths for different memory sizes.

Features of the DRAM controller are:

- Supports WRAP transfer
- · AHB 32-bit data width
- Three configurable channels (0-2)
- · Group round-robin arbitration scheme
- · Low-power bitrate control (BRC) mode for address mapping
- Sequential DRAM burst type
- · Supports auto refresh and self refresh
- · Supports dynamic frequency change
- · Supports DDR1 and OPI interfacesDDR1 and

The figure below shows DMA controller channels.

- Channel0 to Channel2: PPU, JPEG_E, JPEG_D, IDMA0/IDMA1, CIS, USB Device, USB Host0, USB Host1
- · Channel3: Core 0, Core 1

Figure 5–5 DMA Controller Channels

5.5 I-cache Controller

The SNC7320 Series supports I-cache with 16 KB SRAM to correspond to 1 MB program size running at maximum clock frequency.

Features of the I-cache are:

- 64-way set-associative cache with 16 KB SRAM, 32 bytes per line
- 1 MB address mapping
- · Supports DDR1 DRAM, OPI PSRAM, or SPI flash at one time
- Supports one of the Core 0 and Core 1 at a time
- Read DDR1 DRAM/OPI PSRAM with burst eight transfer (32 bytes)

Figure 5-6 I-cache Block Diagram

5.5.1 Steps to Enable the I-cache

STEP 1: Enable the I-cache clock ROM in the system control register 1 (SYS1_PERICLKEN)

STEP 2: Reset I-cache from the System Control Register 1 (SYS1_CLKRST)

STEP 3: Set the cache offset register

STEP 4: Enable I-cache by writing the Cache_Mode_Selection register

DRAM Type **Access Unit** Read (MB/s) Write (MB/s) Operating in 80 MHz **Burst Type** Byte Per Transfer 16.4 149 Single access Burst4 16 49.5 149 OPI PSRAM Burst8 32 74.9 149 Burst16 100.9 149 64 Single access 149 4 22.7 Burst4 16 76.3 289 DDR1 DRAM Burst8 32 121.2 291 Burst16 64 172.1 289

Table 5–6 Throughput of DRAM Controller

5.6 Storage

5.6.1 SD Card Controller (SD0)

Features of the SD card controller (SD0) include:

- Built-in SD controller in 4-bit mode
- Compliant with SD 2.0 specification
- Programmable clock frequency
- · Auto multiple block read/write command
- CRC-16 for the SD data
- CRC-7 for the SD command

Refer to 7.8.1 Timing of SD/SDIO Controller (SD1).

5.6.2 NAND Flash Controller

Features of the NAND flash controller include:

- · SLC NAND flash
- 1/4/8-bit ECC
- 512 bytes/2 KB/4 KB page size
- DMA access

I. Timing

Table 5–7 Timing Requirements for NAND Flash Controller

No.	Parameter		Dev	Unit	
NO.		Parameter		MAX.	Onit
1	t _{CLS}	CLE set up time	50	-	
2	t _{CLH}	CLE hold time	17	-	
3	t _{CS}	CE set up time	50	-	
4	t _{ALS}	ALE set up time	58	-	ns
5	t _{ALH}	ALE hold time	48	ı	
6	t _{DS}	Data set up time	45	I	
7	t _{DH}	Data hold time	45	_	

Figure 5–7 NAND Flash Controller Timing

6 System Control

- 6.1 System Controller (SYS0/SYS1)
- 6.2 System Operation Mode
- 6.3 System Reset
- 6.4 Boot

6.1 System Controller (SYS0/SYS1)

The system controller enables the device to provide a customized solution by enabling/disabling each IP. It is easy to find a balance between high performance and low power consumption through different settings.

Features of the system controller are:

- Operation modes and wakeup selection
- · Change settings of the PLL and clock rate control for operation in different clock frequencies
- · Disable the peripheral clocks by the clock gating registers
- · Select pinmux functions and setting pull-up/down

6.2 System Operation Mode

The SNC7320 Series operates in four modes for different clock rates and power saving conditions.

- · Normal mode
- Sleep mode
- · Deep sleep mode
- Deep power-down (DPD) mode

These modes control oscillators, the op-code operation, and the operation of analog peripheral devices. All of the GPIOs are switched into input-floating in deep power-down mode.

6.3 System Reset

A system reset is generated when one of the following events occurs.

- Power-on reset
 - 0.7V core power LVR trigger
 - Reset pin trigger
 - Restart program from ROM after the reset signal releases
- LVR/LVD reset
 - 0.7V core power LVR trigger
 - 1.0V core power LVD trigger
 - 2.1V I/O power (normal mode) LVR trigger; 1.8V I/O power (power on/power off) LVR trigger
 - Restart program from ROM after the reset signal releases
- RST pin (external reset)
 - One or two I/O power trigger
 - Restart program from ROM after the reset signal releases
- DPDWAKEUP reset
 - When waking up from DPD mode, the system resets and restarts from ROM
- WDT reset
 - Reset and restart program from ROM
- Software reset
 - Reset and restart from PRAM

32-bit Dual-Core SoC

6.4 Boot

The SNC7320 Series supports several storage devices to boot up from:

- SPI NOR flashSD card 0
- SD card 1
- SLC NAND flash
- SPI NAND flash

After power on, the CPU searches each device for an identifying data mark and enters USB-ISP mode if the identifying data mark is not found.

In normal conditions, the CPU reads data out from the SPI NOR flash (or other storage devices). After parsing a specific data structure called the load table, the CPU places the user code to the internal-memory-address zero, which is also called PRAM, and issues a software system reset to reboot itself to the user code.

7 Peripherals

- 7.1 General Purpose Input/Output (GPIO)
- 7.2 Inter-integrated Circuit (I2C)
- 7.3 Serial Peripheral Interface (SPI)
- 7.4 Universal Asynchronous Receiver Transmitter (UART)
- 7.5 Timer with Pulse Width Modulator (PWM)
- 7.6 Watchdog Timer (WDT)
- 7.7 Successive Approximation Register Analog-to-Digital Converter (SAR ADC)
- 7.8 SD/SDIO Controller (SD1)
- 7.9 SPI Controller with DMA
- 7.10 Universal Serial Bus 2.0 (USB 2.0)

7.1 General Purpose Input/Output (GPIO)

The general-purpose input/output (GPIO) is used to transmit signals between systems and devices. GPIO pins can be configured as input, output, or interrupt input. As an output, the state driven on the output pin is controlled by writing to an internal register. As an input, the state of the input is detected by reading the state of an internal register. The GPIO supports rising edge, falling edge, both-edges, and high level/low level interrupt sense types. The SNC7320 Series provides 80 GPIO pins in a pinmux architecture.

The GPIO mode bits in the GPIO_PnCFG (n = 0, 1, 2, 3, or 4) register configure the on-chip pull-up resistor for each pin or select the repeater mode. The options of the on-chip resistor configuration are pull-up enabled and inactive (no pull-up/pull-down by default). The repeater mode automatically enables the pull-up resistor if the pin is at logic high and enables the pull-down resistor if the pin is at logic low. Such characteristic causes the pin to retain its last known state if it is configured as an input and is not driven externally. State retention is not applicable in the deep power-down mode. The repeater mode is typically used to prevent a pin from floating and potentially using significant power if it floats to an indeterminate state when it is temporarily not driven.

Features of the GPIO include:

- · Each pin triggers the GPIO interrupt independently
- The interrupt generation of each pin is triggered by rising/falling edge, both edges, or high/low level
- Each pin can be inactive, pulled high or pulled down
- A pull-up/pull-down resistor is 38 kΩ
- · Output data bits can be set or cleared independently
- · All pins are set to input mode at hardware reset
- Voltage input high (VIH) is 2.0V, and voltage input low (VIL) is 0.8V for all pins

The GPIOs generate CPU interrupts in different interrupt/event generation modes while providing generic connections to external devices.

7.1.1 Timing

Table 7–1 and Figure 7–1 are the timing and switching characteristics over recommended operating conditions and under firmware control for GPIO.

Table 7-1	Switching	Characteristics for	· GPIO
-----------	-----------	---------------------	--------

No.		Parameter	Dev	ice ¹⁹	Unit
NO.		raiailletei	MIN.	MAX.	Offic
1	t _{w(GPIH)}	Pulse duration, GPOn-15 high	6.1	_	no
2	t _{w(GPIL)}	Pulse duration, GPOn-15 low	6.1	_	ns

□ NOTE

In reality, the speed of the firmware control is not fast enough to toggle GPIO in every PCLK cycle²⁰, and the performance of the GPIO may be affected by the PCB layout and the circuit signal length.

Figure 7–1 GPIO Port Timing under Firmware Control

Figure 7–2 GPIO External Interrupt in Rising Edge Trigger Mode

Figure 7–3 GPIO External Interrupt in Falling Edge Trigger Mode

Figure 7–4 GPIO External Interrupt in Both Edges Trigger Mode

www.sonix.com.tw 46 CDSZ-2221

¹⁹ The parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of the GPIO is dependent upon internal bus activity.

GPIO is dependent upon internal bus activity.

Peripheral clock (PCLK) cycle = AHB peripherals clock period

Figure 7–6 GPIO External Interrupt in Low Level Trigger Mode

7.2 Inter-integrated Circuit (I²C)

EXT_INT0-15

The inter-integrated circuit (I²C) interface implements the standard I²C master/slave functions and complies with the Philips I²C bus protocol. It serves as a standard master I²C device to receive/transmit data from/to a slave device over the I²C bus. On the contrary, it can also serve as a slave to respond to requests. The I²C is a two-wire bi-directional serial bus that provides a simple and efficient method of data exchange while minimizing the interconnection requirements between devices. The I²C interface is mainly used for controlling external I²C devices.

The SNC7320 Series I²C is allowed to communicate with external I²C devices. The interface has two pins, serial clock (SCL) and serial data (SDA). It supports bit rates of up to 400 kbps. The SNC7320 Series I²C has up to three sets of I²C controllers, I²C0, I²C1, and I²C2. Each has two I²C pins and is at base address 0x4001_0000, 0x4001_1000, and 0x4001_2000.

Features of the I2C include:

- I2C master
 - Standard speed up to 100 kHz
 - Fast speed up to 400 kHz
 - Start and stop generation
 - Fast mode plus up to 1 MHz
- I²C slave
 - Transmit and receive
 - Programmable I2C address detection
 - Optional recognition of up to four distinct slave addresses
 - Supports FIFO mode
 - Stop bit detection
- Arbitration handled between simultaneously transmitting masters without corruption of serial data on the bus
- Programmable clock allowing adjustment of I²C transfer rates
- Bidirectional data transfer between masters and slaves
- Serial clock synchronization allowing devices with different bit rates to communicate via one serial bus
- · Serial clock synchronization as a handshake mechanism to suspend and resume serial transfer
- Generation and detection of 7/10-bit addressing and general call

7.2.1 Clock Ratios and Timing

According to the standard I²C protocol, the start signal, Start, is a special signal sent by the master on the bus to wake up all the slaves and indicates the start of a data transfer. The slave address transmit (slave address + W/R) refers to the first data packet sent by the master after a start condition. It has seven slave address bits and one read/write bit. The equation for clock ratios is:

SCL High Period Time = (SCLH+1) * I2C0_PCLK cycle SCL Low Period Time = (SCLL+1) * I2C0_PCLK cycle

Two data packets need to be transmitted only when it is a 10-bit slave address. Otherwise, other bits (except the 10 bits address) are reserved according to the protocol. Each slave is used to transmit or receive data based on the address information. After receiving the slave address successfully, the corresponding slave pulls down the SDA at the ninth SCL cycle and returns an acknowledgement signal (ACK) to the master. Then, a subsequent data transfer can start. The data transfer "DATA" refers to data receive/transmit according to read/write commands after the master receives the slave address ACK signal successfully. During the data transfer, the SDA changes its state only when the SCL is low. The SDA holds when the SCL is high. Each time the receiver gets one byte, it must send an ACK signal to the transmitter. The transmitter stops or restarts the data transfer when it does not receive the ACK signal.

The stop signal, Stop, is a special signal sent by the master to indicate the end of the data transfer according to the I²C protocol. It occurs when the transfer is complete and there are no subsequent transfers required. Once the master sends the stop signal, the slave must release the bus.

Device Standard Mode Fast Mode Unit No. **Parameter** MIN. MAX. MIN. MAX. 1 Cycle time, SCL $t_{c(SCL)}$ 10 2.5 Setup time, SCL high before 2 SDA low (for a repeated 4.7 0.6 t_{su(SCLH-SDAL)} START condition) Hold time, SCL low after SDA low (for a START and a 3 $t_{h(SCLL-SDAL)}$ 4 0.6 repeated START condition) 4 Pulse duration, SCL low 4.7 $t_{w(SCLL)}$ 1.3 μs 5 Pulse duration, SCL high 0.6 4 tw(SCLH) Setup time, SDA valid before 6 250 100 tsu(SDAV-SCLH) SCL high Hold time, SDA valid after 7 $t_{h(SDA-SCLL)}$ 0 3.45 0 0.9 SCL low Pulse duration, SDA high 8 between STOP and START 4.7 1.3 tw(SDAH) conditions 20 + 9 Rise time, SDA 1000 300 t_{r(SDA)} $0.1C_b^{21}$ 20 +10 Rise time, SCL 1000 300 $t_{r(SCL)}$ $0.1C_b$ ns 20 +11 Fall time, SDA 300 300 t_{f(SDA)} $0.1C_b$ 20 + 12 Fall time, SCL 300 300 $t_{f(SCL)}$ 0.1Cb Setup time, SCL high before 13 SDA high (for STOP 4 0.6 t_{su(SCLH-SDAH)} condition) μs Pulse duration, spike (must 14 50 $t_{w(SP)}$ be suppressed) Capacitive load for each bus 15 C_{b} 400 400 рF

Table 7-2 Timing Requirements for I²C

www.sonix.com.tw 48 CDSZ-2221

²¹ Cb = total capacitance of one bus line in pF. Faster fall-times are allowed when mixing with HS-mode devices.

Figure 7–7 I²C Receive Timings

Table 7–3 Switching Characteristics for I²C

			Device				
No.	Parameter		Standa	rd Mode	Fast Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
16	t _{c(SCL)}	Cycle time, SCL	10	ı	2.5	_	
17	t _{d(SCLH-SDAL)}	Delay time, SCL high to SDA low (for a repeated START condition)	4.7	_	0.6	_	
18	t _{d(SDAL-SCLL)}	Delay time, SDA low to SCL low (for a START and a repeated START condition)	4	_	0.6	-	
19	t _{w(SCLL)}	Pulse duration, SCL low	4.7	-	1.3	_	
20	t _{w(SCLH)}	Pulse duration, SCL high	4	-	0.6	_	
21	t _{d(SDAV-SCLH)}	Delay time, SDA valid to SCL high	250	-	100	-	μs
22	t _{v(SCLL-SDAV)}	Valid time, SDA valid after SCL low (For I ² C devices)	0	_	0	0.9	
23	t _{w(SDAH)}	Pulse duration, SDA high between STOP and START conditions	4.7	_	1.3	_	
24	t _{d(SCLH-SDAH)}	Delay time, SCL high to SDA high (for STOP condition)	4	_	0.6	_	
25	Cp	Capacitance for each I2C pin	_	10	_	10	

Figure 7–8 I²C Transmit Timings

7.2.2 Arbitration and Synchronization Logic

In the master transmitter mode, the arbitration logic checks that every transmitted logic 1 actually appears as a logic 1 on the l^2C bus. If another device on the bus overrules a logic 1 and pulls the SDA line low, the arbitration is lost, and the l^2C block immediately changes from master transmitter to slave receiver. The l^2C block will continue to output clock pulses on SCL until transmission of the current serial byte is complete.

Arbitration may also be lost in the master receiver mode. Loss of arbitration in this mode only occurs when the I²C block returns a "not acknowledge" message to the bus. Arbitration is lost when another device on the bus pulls this signal low. Since this occurs only at the end of a serial byte, the I²C block generates no further clock pulses.

7.3 Serial Peripheral Interface (SPI)

The SPI interface is a 4-wire interface where the SSEL signal behaves as a slave select. The main feature of the SPI format is that the inactive state and phase of the SCK signal are programmable through the CPOL and CPHA bits in SPI*n_*CTRL1 register. When the "CPOL" clock polarity control bit is LOW, it produces a steady state low value on the SCK pin.

If the CPOL clock polarity control bit is HIGH, a steady state high value is placed on the CLK pin when data is not being transferred. The CPHA clock phase bit controls the phase of the clock on which data is sampled. When CPHA = 1, the first edge of SCK is for data transition, and receive and transmit data is at the second edge of the SCK. When CPHA = 0, the first bit is fixed already, and the first edge of the SCK is to receive and transmit data. When the SPI is in master mode, it has to connect with one slave device as shown in Figure 7–9.

Figure 7–9 SPI Connection Diagram

The SPI controller interacts with multiple masters and slaves on the bus. Only a single master and a single slave can communicate on the bus during a given data transfer. Data transfers are in principle full duplex, with frames of 4 to 16 bits of data flowing from the master to the slave and from the slave to the master. In practice it is often the case that only one of these data flows carries meaningful data.

Features of the SPI include:

- Compatible with Motorola SPI, and 4-wire TI SSI bus.
- · Synchronous Serial Communication.
- Supports master or slave operation.
- · 8-frame FIFO for both transmitter and receiver.
- 4-bit to 16-bit frame.
- Maximum SPI speed of 40.5 MHz in master mode or 40.5 MHz in slave mode
- · Data transfer format is from MSB or LSB controlled by register
- The start phase of data sampling location selection is first phase or second phase controlled register

www.sonix.com.tw 50 CDSZ-2221

7.3.1 Clock Ratios and Timing

When the SPI controller is in master mode, the frequency of SCLK_OUT is derived from the following equation:

$$F_{SCLK} = F_{SPICLK}^{22} / (2 \times (SCLKDIV + 1))$$

Figure 7–10 SPI Clock Block Diagram

The bit rate of the SPI is the frequency of the SCLK_OUT which is controlled by SPI_SCLKDIV in the clock divide register. When the SPI controller is in slave mode, SCLKDIV is ignored, and the SPI transfer bitrate is decided on the master side. Due to clocks synchronization, the bit clock from the master side has to be slower than SPICLK by at least six times.

SCLK stops toggling when it is idling. The frame/sync is used as the chip-select signal. Through the SPI interface, data is transmitted and received simultaneously to and from an external device. The data lines are synchronized by a serial clock.

In master mode, when the SPI controller is enabled and TX FIFO contains data, the transmit logic reads the data in TX FIFO and shifts it out at every transmit edge (depending on SCLKPO and SCLKPH) from MSB to LSB. Synchronously, the receive logic receives data. After the LSB is transmitted or received, frame/sync holds low for half or one SCLK cycle, depending on SCLKPH, and then pulled high if TX FIFO is empty. Received data is written into RX FIFO. When TX FIFO is not empty, the transmit logic restarts to transmit data.

In slave mode, when frame/sync is activated and SCLK is enabled, the transmit logic tries to shift the data into the TX FIFO even if the TX FIFO is empty. The transmit FIFO under-run interrupt is issued when TX FIFO is enabled. The receive logic receives data at the same time, and the data is written into RX FIFO.

Table 7-4	input Timing Requirements	tor SPI in Master Mode

No	No. Parameter		Dev	Unit	
NO.			MIN.	MAX.	Ullit
1	t _{su(RX-CLK)}	Setup time, SPI_MOSI valid before receive rising or falling edge of SPI_SCLK	10	I	nc
2	t _{h(CLK-RX)}	Hold time, SPI_MOSI valid after receive rising or falling edge of SPI_SCLK	15	_	ns

www.sonix.com.tw 51 CDSZ-2221

²² F_{SPICLK} = F_{PCLK}

8

 $t_{oh(CLK-TX)}$

No.			Daramatar	Parameter Device		
			Parameter	MIN.	MAX.	Unit
	3	t _{c(CLK)}	Cycle time, SPI_SCLK	25	-	
	4	tw(CLKH) Pulse width, SPI_SCLK high		0.45 (t _{c(CLK)})	_	
	5	t _{w(CLKL)} Pulse width, SPI_SCLK low		0.45 (t _{c(CLK)})	-	
	6	t _{osu(TX-CLK)}	Ouput setup time, SPI_MISO valid before initial SPI_SCLK rising or falling edge.	0.5 (t _{c(CLK)}) - 4	-	ne
	7	t _{d(CLK-TX)}	Delay time, SPI_SCLK transmit rising or falling edge to SPI_MISO	4	_	ns

 $0.5 (t_{c(CLK)}) - 4$

Table 7–5 Switching Characteristics for SPI in Master Mode

The SPI data transfer timings are as below:

output

Output hold time, SPI_MISO valid after receive rising or falling edge of SPI_SCLK

Figure 7-11 SPI Timings

7.4 Universal Asynchronous Receiver Transmitter (UART)

The SNC7320 Series UART controller uses serial communication for data transmission. The UART offers a flexible means of full-duplex data exchange with external equipment requiring an industry standard NRZ asynchronous serial data format. The SNC7320 Series provides two sets of UART. Each UART includes a programmable baud rate generator capable of dividing the module's reference clock by divisors to generate the correct UART baud rate.

Features of the UART controller include:

- · Baud rates of up to 921600 bps
- · One start bit, 8-bit data, and one or two stop bit format
- 16 bytes TX and 16 bytes RX FIFO buffer
- · Register locations conform to 16650 industry standard
- Receiver FIFO trigger points at 1, 4, 8, and 14 bytes
- · Built-in baud rate generator
- · Software or hardware flow control

Figure 7–12 is the UART connection diagram with flow control.

Figure 7-12 UART Connection Diagram

7.4.1 Baud Rate, Timing, and Transfer Format

It is required to set the proper baud rate for UART transmission initiation. The minimum and maximum baud rates supported by UART are a function of UART*n_*PCLK as well as the number of data bits, stop bits and parity bits.

 $UART_{baudrate} = PCLK / (Oversampling x (256 x DLM + DLL) x (1 + DIVADDVAL / MULVAL))$

Figure 7-13 UART Clock Block Diagram

Where UART*n_*PCLK is the peripheral clock, UART*n_*DLM and UART*n_*DLL are the standard UART baud rate divider registers, and DIVADDVAL and MULVAL are UART fractional baud rate generator specific parameters in UART*n_*FD register.

Table 1-6 Tilling Requirements for OART Receive	Table 7–6	Timing Requirements for UART Receiver
---	-----------	---------------------------------------

No.		Parameter	Dev	/ice	Unit
NO.	Parameter		MIN.	MAX.	Ollit
1	t _{w(URXDB)} Pulse duration, receive data bit		0.96U ²³	1.05U ²³	no
2	t _{w(URXSB)}	Pulse duration, receive start bit	0.96U ²³	1.05U ²³	ns

The table below lists switching characteristics over recommended operating conditions for the UART transmitter.

Table 7–7 Switching Characteristics for UART Transmitter

No.		Devemeter	Dev	Unit	
NO.	Parameter		MIN.	MAX.	Unit
3	t _{w(URXDB)}	Pulse duration, transmit data bit	U ²³ - 2	U ²³ + 2	no
4	t _{w(URXSB)}	Pulse duration, transmit start bit	U ²³ - 2	U ²³ + 2	ns
5	t	UART1 maximum programmable baud rate1	110	921600	hns
3	I(baud)	UART2 maximum programmable baud rate	110	921600	bps

Figure 7-14 UART Transmit/Receive Timing

The SNC7320 Series UART includes TX and RX pins for transmitting, receiving, and flow control. It has one start bit, 8-bit data, and one/two stop bits for each communication.

Figure 7-15 UART Transfer Format

7.5 Timer with Pulse Width Modulator (PWM)

The SNC7320 Series provides up to eight sets of timers. Each timer is designed to count cycles of the peripheral clock (PCLK) or an external clock and can optionally generate interrupts or perform other actions at specified timer values based on four match registers. Each timer also includes one capture input to trap the timer value during input signal transitions, optionally generating an interrupt. In PWM mode, up to three match registers can be used to provide a single-edge controlled PWM output on match output pins.

www.sonix.com.tw 54 CDSZ-2221

²³ U = UART baud time = 1 / programmed baud rate.

Features of the timers include:

- Up to 24 PWM outputs
- Up to eight 32-bit timers with a programmable 32-bit prescalar
- Timer operation
- Eight 32-bit capture channels that can take a snapshot of the timer value during input signal transitions. Each capture event may also optionally generate an interrupt.
- The timer and prescalar may be configured to be cleared on a designated capture event. This feature permits easy pulse-width measurement by clearing the timer on the leading edge of an input pulse and capturing the timer value on the trailing edge.
- Each set of timers has four 32-bit match registers with the following capabilities:

Set PWM output LOW on match (CT32Bn_MR0-2).

Set PWM output HIGH on match (CT32Bn_MR0-2).

Toggle PWM output on match (CT32Bn_MR0-2).

Reset or stop timer on match (CT32Bn MR0-3).

Generate an interrupt on match (CT32Bn_MR0-3).

Do nothing on match (CT32B*n*_MR0-3).

The following figure shows a timer configured to reset a count and generate an interrupt on match. The CT32Bn_PRE register is set to 2, and the CT32Bn_MRx register is set to 6. At the end of the timer cycle where the match occurs, the timer count resets and gives a full length cycle to the match value. The interrupt indicating a match occurred is generated in the next clock, after the timer has reached the match value.

Figure 7-16 Timer Reset Timing

The following figure shows a timer configured to stop the count and generate an interrupt on match. The CT32B*n_*PRE register is set to 2, and the CT32B*n_*MR*x* register is set to 6. In the next clock after the timer reaches the match value, the CEN bit in CT32B*n_*TMRCTRL register is cleared, and the interrupt is generated indicating a match occurred.

Figure 7–17 Timer Stop Timing

7.5.1 PWM Timing

All single edge controlled PWM outputs go LOW at the beginning of each PWM cycle when the timer is set to zero unless their match value in CT32B*n*_MR0–3 registers is equal to zero. Each PWM output goes HIGH when its match value is reached. If no matching occurs, the PWM output remains continuously LOW. If a match value larger than the PWM cycle length is written to CT32B*n*_MR0–3 registers, and the PWM signal is already HIGH, the PWM signal is cleared on the start of the next PWM cycle. If a match register contains the same value as the timer reset value (the PWM cycle length), the PWM output is reset to LOW on the next clock tick. Therefore, the PWM output always consists of one clock tick wide positive pulse with a period determined by the PWM cycle length. If a match register is set to zero, the PWM output goes HIGH the first time the timer goes back to zero and continues to stay HIGH.

The table below lists switching characteristics over recommended operating conditions for PWM.

Table 7–8 Switching Characteristics for PWM

No.	Parameter t _{all} PWM periodic timing		Dev	vice .
NO.			MIN.	MAX.
1			624.6 ns	26.51 sec
2	t _{w(PWML)}	Pulse duration PWM low	6.246 ns	26.51 sec
3	t _{w(PWMH)}	Pulse duration PWM high	6.246 ns	26.51 sec
4	t _{t(PWM)}	PWM transition time	_	6 ns

Figure 7-18 PWM Duty Cycle Timings

7.6 Watchdog Timer (WDT)

The purpose of the WDT is to reset the MCU within a reasonable amount of time if it enters an erroneous state. When enabled, the WDT generates a system reset or interrupt if the user program fails to "feed" (or reload) the WDT within a predetermined amount of time. The WDT consists of a fixed pre-scalar that is divided by 128 and an 8-bit counter. The clock is fed to the timer via a pre-scalar. The timer decreases when clocked. The minimum value from the counter decrements is 0x01. Hence the minimum WDT interval is (TWDT_PCLK × 128 × 1) and the maximum WDT interval is (TWDT_PCLK × 128 × 256). When the WDT is started by setting the WDTEN in WDT_CFG register, the time constant value is loaded in the watchdog counter and the counter starts counting down. When the WDT is in the reset mode and the counter underflows, the CPU will be reset, loading the stack pointer and program counter from the vector table as in the case of external reset. Whenever the value 0x55AA is written in WDT_FEED register, the WDT_TC value is reloaded in the watchdog counter and the watchdog reset or interrupt is prevented. WDT reset or interrupt will occur any time the watchdog is running and has an operating clock source.

Features of the WDT include:

- 8-bit watchdog counter
- Counter restart
- · Generate reset signals
- Watchdog timer clock from 32.768 kHz ILRC
- Programmable assert duration of WD_RST and WD_INTR
- · Generate interrupts to the system

Figure 7–19 WDT Block Diagram

7.7 Successive Approximation Register Analog-to-Digital Converter (SAR ADC)

The 10-bit SAR ADC converter has six input sources with up to 1024-step resolution to convert analog signals into 10-bits digital data. In the SNC7320 Series provides an interrupt to indicate the ADC result is ready. However, the interrupt event is optional.

Features of the SAR ADC include:

- Input 0V to 3.3V full swing
- · Conversion rate up to 1M SPS
- · Low latency-time
- Supports 10-bit resource
- Supports 128/64/32/16/8/4/2/1 kHz audio conversion rate (system frequency = 162 MHz)
- · Supports single mode and normal mode

7.7.1 **Timing**

Table 7–9 Switching Characteristics for SAR ADC

No.		Parameter	Dev	Device			
NO.		Parameter	MIN.	MAX.	Unit		
Digital Interface							
1	t _p	ADC clock period	61.7	-	ns		
2	t _{HOLD}	ADC data hold time	956.79	_			
3	ts	Sampling period	925.926	-	μs		
_	Fs	Conversion rate	-	1.08	1		
Internal Clock							

No.		Parameter	Dev	rice	Unit
NO.		Parameter	MIN.	MAX.	Onit
4	t ₁ ²⁴	ADC setup time per conversion	246.8		
5	t ₂ 25 ADC sampling time per conversion 185.1		ns		
6	t ₃ ²⁶ ADC OS time per conversion 61.7				

Figure 7–20 SAR ADC Timing

The figures below illustrate SAR ADC timings in single and normal modes respectively. The sample data of both modes can be selected by setting the CHS register as disclosed in the SNC7320 Series Register Table subsection 32.1 [15:13]. In normal mode, the start bit is set through the register before the conversion of the first sample data. When the first sample data conversion is completed, the hardware automatically sets the start bit for conversion of the next sample data to begin.

 $t_1 = 4 \text{ Tp}$

 $t_2 = 3 \text{ Tp}$

 $t_3 = Tp$

Figure 7–21 SAR ADC Single Mode Timing

Figure 7–22 SAR ADC Normal Mode Timing

7.8 SD/SDIO Controller (SD1)

Features of the SD/SDIO controller include:

- Built-in SD/SDIO controller
- · Compliant with SD 2.0 specification
- Compliant with SDIO 2.0 specification
- Programmable clock frequency
- Auto multiple block read/write command
- DMA for large data transfers
- CRC-16 for the SD data
- Write-protect for the SD cards
- · Card-detect for the SD cards

7.8.1 **Timing**

The table below lists timing requirements over the condition of SD clock = 162 / 2 / (n + 2) MHz, n = 0 for SD module.

Table 7–10 Timing Requirements for SD Module

No.		Doromotor	Dev	/ice	Unit
NO.		Parameter	MIN.	MAX.	Unit
1	t _{su(CMDV-CLKH)}	Setup time, SD_CMD valid before SD_CLK high	9	_	20
2	t _{h(CLKH-CMDV)}	Hold time, SD_CMD valid after SD_CLK high	12	-	ns

No.		Parameter	Dev	Unit	
NO.		rarameter	MIN.	MAX.	Ollit
3	Setup time, SD_D[3:0] valid before SD_CLK high		6	-	
4	t _{h(CLKH-DATV)}	Hold time, SD_D[3:0] valid after SD_CLK high	7	-	

The table below lists switching characteristics over recommended operating conditions for SD module.

Switching Characteristics for SD Module²⁷ Table 7-11

No.		Parameter	Dev	rice	Unit
NO.		rarameter	MIN.	MAX.	Onit
5	f _(CLK)	Operating frequency	-	32 ²⁸	MHz
6	t _{W(CLKL)} Pulse width, SD_CLK low		0.5P ²⁹	_	
7	$ \begin{array}{c c} t_{W(\text{CLKH})} & \text{Pulse width, SD_CLK high} \\ \hline t_{r(\text{CLK})} & \text{Rise time, SD_CLK} \\ \end{array} $		0.5P ²⁹	-	
8			-	6	
9	t _{f(CLK)}	Fall time, SD_CLK	-	6	ns
10	t _{d(CLKL-CMD)}	Delay time, SD_CLK low to SD_CMD transition	17	-	115
11	t _{d(CLKL-DAT)}	Delay time, SD_CLK low to SD_D[3:0] transition	17	_	

Figure 7–23 SD Host Read and Card CRC Status Timing

Figure 7–24 SD Card Response Timing

www.sonix.com.tw 61 CDSZ-2221

²⁷ When initializing, the clock of the SD card should be less than 400 kHz.

The SD clock delay is 1 idle clock (1/80 MHz) per byte transmission.

P = SD_CLK period

Figure 7-25 SD Host Command Timing

Figure 7–26 SD Host Write Timing

7.9 SPI Controller with DMA

The SNC7320 Series has two SPI controllers with DMA to connect to a wide variety of SPI devices. The DMA data transmission avoids interruptions and increases CPU computing bandwidth. An ECC is built-in for the SPI NAND for error-bit detection and to correction.

Features of the SPI controller with DMA are:

- · Master mode only
- 4 or 3-wire protocol
- 1-byte FIFO
- 1/2/4-bit TX/RX DMA mode
- 5, 10, 20, and 40 MHz clock frequencies
- Supports 1/4/8-bit ECC
- DMA access

7.9.1 Timing

Refer to 7.3 Serial Peripheral Interface (SPI). The hardware delays one idle clock (110 ns) in every 4 bytes.

7.10 Universal Serial Bus 2.0 (USB 2.0)

The SNC7320 Series has two USB 2.0 controllers. One is a high speed host, and the other with host/device option. The functions of the controllers when being used as a host or a device are elaborated in subsections 7.10.1 and 7.10.2 respectively.

Features of the USB 2.0 host include:

- Two USB 2.0 hosts, each supporting an individual USB system
- USB 2.0 all transfer modes (control, bulk, isochronous, and interrupt)
- One port for root hub function
 - The companion host controller for full-speed (FS) and low-speed (LS) functionalities are fully supported, but it is not implemented based on the OHCI or UHCI standard.
 - Port router is not required-Companion port route description for OHCI/UHCI
 - Bus topology
 - Only high-speed (HS) hub plugged into tier one layer
 - Device with HS control transfer/ HS bulk transfer/ HS isochronous transfer/ HS interrupt

transfer/ FS control transfer/ FS bulk transfer/ FS interrupt transfer plugged into the root hub

The USB 2.0 host does NOT support

- FS ISO
- · Transaction isochronous transfer descriptor (siTD)
- Frame span traversal node (FSTN)
- · USB On-The-Go (OTG) and embedded host supplement

Features of the USB 2.0 device include:

- · Compliant to USB 2.0 specification
- · Compliant to AMBA 2.0 specification
- HS and FS supported
- Control transfer supported by endpoint #0
- · One BULK-IN, one BULK-OUT, and one INT-IN endpoints
- · Scatter-gather DMA
- · 2.5k bytes (KB) FIFO RAM shared by all endpoints
- · USB video class (UVC) bulk mode
- Mass storage class (MSC)
- · Human interface device (HID)

The USB 2.0 device does NOT support isochronous transfer type.

7.10.1 USB 2.0 Host

The USB host function contains a universal serial bus (USB) 2.0 host controller and a built-in USB 2.0 host PHY. Without software intervention, the host controller can deal with a transaction-based data structure to offload the CPU and automatically transmit/receive data on the USB bus. The transceiver interface is UTMI+ level 3, which supports HS transfer with a HS hub. Without supporting siTD, FS with isochronous transfer device cannot be applied to USB 2.0 host via a HS hub or root hub.

I. AHB Interface

The EHCl host controller (HC) is connected to the system by the AHB. The design requires both master and slave bus operations. As a master, the host controller is responsible for running cycles on the AHB to access transfer descriptors as well as transferring data between memory and the local data buffer. As a slave, the host controller monitors the cycles on the AHB and determines when to respond to these cycles. Configuration and non-real-time control access to the host controller operational registers are through the AHB slave interface.

II. EHCI Controller

The EHCl supports two transfer types: asynchronous and periodic. The periodic transfer type includes isochronous and interrupt, and the asynchronous transfer type includes control and bulk.

III. Interrupt Processing

HC-initiated communication with the host controller driver by interrupts. There are several events that may trigger an interrupt from the host controller. Each specific event sets a specific bit in the interrupt status register.

IV. DMA

The DMA is the central block in the data path. The DMA coordinates all access to the AHB master interface. There are two sources of bus mastering within a host controller: the link list processor and the data buffer engine.

V. Data Buffer

The data buffer serves as the data interface between the AHB master and the USB protocol engine. It is a Ping-Pong FIFO RAM with 1024 bytes x 2 size.

VI. USB 1.1 Host Controller Interface

A new structure is created to substitute the OHCI/UHCI USB 1.1 control unit. The port routing logic was disregarded as there is only one port in root hub.

VII. Timing

Table 7-12 Switching Characteristics for USB 2.0 Host

				Dev	/ice			
	Parameter	Low-S	Speed	Full-S	Speed	High-	Speed	Unit
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
t _{r(D)}	Rise time, USB_DP and USB_DM signals ³⁰	75	300	4	20	0.5	20	50
t _{f(D)}	Fall time, USB_DP and USB_DM signals ³⁰	75	300	4	20	0.5	20	ns
t _{frfm}	Rise/fall time, matching ³¹	80	125	90	111.11	ı	_	%
V _{CRS}	Output signal cross-over voltage ³⁰	1.3	2	1.3	2		_	V
t _{jr(source)} NT	Source (host) driver jitter, next transition	-	2	_	2	-	-	
t _{jr(FUNC)NT}	Function driver jitter, next transition	-	25	-	2	-	-	
t _{jr(source)} PT	Source (host) driver jitter, paired transition ³²	-	1	_	1	-	_	
t _{jr(FUNC)} PT	Function driver jitter, paired transition	-	10	-	1	-	-	ns
t _{w(EOPT)}	Pulse duration, EOP transmitter	1250	1500	160	175	-	_	
t _{w(EOPR)}	Pulse duration, EOP receiver	670	-	82	_	_	-	
t _(DRATE)	Data rate	_	1.5	_	12	_	480	Mb/s
Z _{DRV}	Driver output resistance	-	-	28	49.5	40.5	49.5	Ω

Figure 7–27 USB 2.0 Host Integrated Transceiver Interface Timing

www.sonix.com.tw 64 CDSZ-2221

³⁰ Low Speed: CL = 200 pF, Full Speed: CL = 50 pF; High Speed: CL = 50 pF

 $^{^{31}}$ t_{frfm} = (t_r/t_f) x 100; excluding the first transaction from the idle state

³² $t_{jr} = t_{px(1)} - t_{px(0)}$

7.10.2 USB 2.0 Device

Other than a USB host, the SNC7320 Series has a USB 2.0 high speed device interface, forward compatible with full speed mode. That enables the SNC7320 Series to be a USB device supporting bulk, isochronous, interrupt, and control transfers that are compliant to the USB 2.0 specification.

The USB controller transfers data through the AHB and the USB. The AHB includes the AHB master interface and AHB slave interface. The CPU programs the USB controller through the AHB slave interface. For IN or OUT transfer, the USB controller writes data to system memory or reads data from system memory through the AHB master interface. The USB controller also includes a USB transceiver as the interface of the USB.

USB endpoints: includes nine endpoints, designated EP0, EP1, EP3, EP4, EP5, EP7, EP12, EP13, EP14, and EP15. Each is intended for a particular use as below:

- EP0: the default endpoint uses control transfer (in/out) to handle configuration and control functions required by the USB specification.
- EP1: Interrupt in endpoint
- EP3: Isochronous in endpoint
- · EP4: Isochronous out endpoint
- · EP5: Interrupt in endpoint
- · EP7: Isochronous in endpoint
- · EP12: Bulk in endpoint
- EP13: Bulk out endpoint
- EP14: Bulk in endpoint
- EP15: Bulk out endpoint

I. Timing

Table 7–13 Switching Characteristics for USB 2.0 Device

	Parameter	Full S	Speed	High S	Speed	Unit
	Parameter	MIN.	MAX.	MIN.	MAX.	Unit
t _{r(D)}	signais**		20	0.5	20	nc
Fall time, USB_DP and USB_DM signals ³⁰		4	20	0.5	20	ns
t _{frfm}	Rise/fall time, matching ³¹		111.11	_	_	%
V_{CRS}	Output signal cross-over voltage ³⁰	1.3	2	_	_	V
t _{jr(source)NT}	Source (host) driver jitter, next transition	ı	2	_	_	
t _{jr(FUNC)NT}	Function driver jitter, next transition	-	2	_	-	
t _{jr(source)} PT	Source (host) driver jitter, paired transition ³²	_	1	_	_	ns
t _{ir(FUNC)PT}	Function driver jitter, paired transition	_	1	_	_	
t _{w(EOPT)}	Pulse duration, EOP transmitter	160	175	_	_	
t _{w(EOPR)} Pulse duration, EOP receiver		82	_	_	_	
t _(DRATE)	Data rate	_	12	_	480	Mb/s
Z _{DRV}	Driver output resistance	28	49.5	40.5	49.5	Ω

Figure 7–28 USB 2.0 Device Integrated Transceiver Interface Timing

8 Multimedia

- 8.1 Picture Processing Unit (PPU)
- 8.2 TFT-LCD Interface
- 8.3 8080 MCU Interface
- 8.4 CMOS Image Sensor (CIS) Interface
- 8.5 JPEG Codec
- 8.6 Color Space Converter (CSC)
- 8.7 Audio-l²S

8.1 Picture Processing Unit (PPU)

The PPU activates graphic processing and turns on the TFT/8080 controller for display. It supports up to two layers of texts and 256 sprites in one screen. The text and sprites can be configured independently when displaying. The Text 3 of the PPU provides two buffer addresses for setting, and it will be exchanged when it is enabled. To avoid display error, the content must be filled before switching the buffer addresses.

Features of the PPU are:

- Picture resolution: Up to VGA (640 x 480)
- · Sprite RAM: 2 KB
- Palette RAM: 1 KB for Text 1, 1 KB for Text 2, and 8 KB for sprites
- · 2-layer text screen (background) and 256 sprites available
- Text 1 and Text 2
 - 4/16/256 colors
 - 65536 colors (RGB565)
 - Horizontal/vertical scrolling function
 - Vertical compression/extension function
 - 640 x 480 (H x V) pixels for normal display
 - Pixel bitmap
- Text 3
 - Text 3 cannot be used with Text 1 and Text 2
 - 65536 colors (RGB565)
 - 640 x 480 (H x V) pixels for normal display
- Sprite
 - 4/16/256 colors
 - Each sprite consists of one character
 - Locatable anywhere on the screen
 - Up to 63 sprites (8 x 8 pixels) per line
 - Scaling and rotation
 - Size (H&V): 8/16/32/64/128/256 pixels
 - Horizontal/vertical flip function for normal and scaling display
- · Special effect: 16-level brightness adjustment (Text 1 and Text 2 only)

The data path of PPU is shown in the figure below.

Figure 8-1 PPU Data Path

8.2 TFT-LCD Interface

The built-in TFT-LCD interface supports serial and parallel RGB modes (UPS051/UPS052) in RGB565 format only with resolution up to VGA (640 x 480).

8.2.1 Timing

Table 8–1 Switching Characteristics for TFT-LCD

	No.	Parameter		Device		Unit
	NO.			MIN.	MAX.	Offic
I	1	t _H	Horizontal line	0	4 x (2 ¹⁵ - 1)	
ſ	2	t _{hsw}	Horizontal sync pulse width	0	2 ¹⁵ - 1	

No.	Parameter		Device		Unit
NO.			MIN.	MAX.	Offic
3	t _{hblk} Horizontal sync blanking t _{hdisp} Horizontal display area		0	2 x (2 ¹⁵ - 1)	
4			0	2 ¹⁵ - 1	DCLK ³³
5	t _{hfp} Horizontal sync front porch		0	2 ¹⁵ - 1	
6	t _V Vertical sync period time		0	4 x (2 ¹⁵ - 1)	
7	t _{vsw}	t _{vsw} Vertical sync pulse width		2 ¹⁵ - 1	
8	t _{vblk} Vertical sync blanking		0	2 x (2 ¹⁵ - 1)	t _H
9	t _{vdisp} Vertical display area		0	2 ¹⁵ - 1	
10	t _{vfp} Vertical sync front porch		0	2 ¹⁵ - 1	

Figure 8-2 TFT-LCD Horizontal Timing

Figure 8–3 TFT-LCD Vertical Timing

8.3 8080 MCU Interface

The 8080 MCU interface for communication between the MCU controller and a LCD driver chip includes 8 or 16 bi-directional data lines, one chip-select line (CS), one writing-latch line (WE)/one reading-latch line (RE), and one data/command select line (A0).

www.sonix.com.tw 68 CDSZ-2221

 $^{^{33}}$ DCLK = 162 MHz / (CLK_PreScaler + 1); CLK_PreScaler = 0–65535

Features of the 8080 MCU interface are:

- 8/16-bit data space
- Auto access word data for the lower 8-bit data bus (high byte first or low byte first)
- · Adjustable access signal pulse

8.3.1 Timing

The clock delay of 8080 MCU interface is 1 idle clock (1 / 162 MHz) per 16-bit transmission.

Table 8–2 Switching Characteristics for 8080 MCU Interface

No.	Parameter		Device		
NO.			MIN.	MAX.	Unit
1	t _{PWLW}	Write low time	1 / 162 MHz x (0 + 1)	1 / 162 MHz x (255 + 1)	
2	t _{PWHW}	Write high time	1 / 162 MHz x (0 + 1)	1 / 162 MHz x (255 + 1)	20
3	t _F	Fall time	6		ns
4	t _R	Rise time	6		

Figure 8-4 8080 MCU Interface Timings

8.4 CMOS Image Sensor (CIS) Interface

The CIS interface is an advanced 12-pin interface consisting of a CIS clock, VSYNC, HREF, pixel clock and eight data lines. The frequency of the CIS clock which outputs to the CIS module can be configured as MCLK / 2, MCLK / 4 or MCLK / 8. VSYNC, HSYNC and the pixel clock signals from the CIS module can be configured for active timing as rising or falling edge. An interrupt flag will be issued after a line of data is transmitted to RAM, which informs the system to access data that is stored at Window Random Access Memory (WRAM).

Features of the CIS interface are:

- Supports image resolution in VGA (640 x 480), CIF (352 x 288), QVGA (320 x 240), QCIF (176 x 144), and QQVGA (160 x 120)
- · Supports image data formats in YUV422 and 8-bit RGB
- Adjustable VSYNC, HREF and pixel clock edge trigger selection
- · Adjustable clock output, system clock divided by 2, 4, or 8
- · Output image cropping and scaling
- Supports Line to block (L2B) mode for CSC and JPEG encoder

- Supports three line buffers, Line 0, Line 1, and Line 234
- RGB and YUV data mode to DRAM or SRAM by DMA, but L2B mode to DRAM is not available.

(1) WARNING

The system crushes when using cropping and scaling functions at the same time.

Figure 8–5 CIS Interface Block Diagram

8.4.1 Timing

Figure 8-6 CIS Interface Timing

www.sonix.com.tw 70 CDSZ-2221

³⁴ When L2B mode is enabled, set the size of the line buffer = frame width x 8. Refer to The DMA CIS Register (CH_LEN) in SNC7320_reg_vx.xx for detailed settings.

Figure 8-7 CIS Data Format

8.5 JPEG Codec

The JPEG codec of the SNC7320 Series supports JFIF format and functions either in encoder or decoder mode at the same time.

Features of the JPEG codec are:

- Video rate JPEG encode and decode
- Baseline DCT, fixed quantization table (two AC and two DC typical Huffman tables at ISO/IEC10918-1)
- Supports scaling quantization table ranging from 000.00001(B)-111.11111(B)
- JPEG File Interchange Format (JFIF)
- Format: YCbCr422 and 420 (depending on the external block function)
- Sharing DCT, zig-zag, quantizer and FIFO for encoder and decoder
- Encoder format:

Block input: YCbCr422: 16 x 8 pixels; YCbCr420: 16 x 16 pixels, 8-bit data input Output: JPEG bit-stream, 8-bit data output

• Decoder format:

Input: JPEG bit-stream in 8-bit data input

Block output: YCbCr422: 16 x 8 pixels; YCbCr420: 16 x 16 pixels, 8-bit data output

Figure 8–8 Encoder Hardware Block Diagram

Figure 8-9 Decoder Hardware Block Diagram

8.6 Color Space Converter (CSC)

The CSC converts pixel data from YCbCr422 or 420 to RGB565 format.

Features of the CSC are:

- Direct raw data to line buffer movement
- RGB output sequence: R0, G0, B0; R1, G1, B1
- YCbCr422 input sequence:

Y1, Y0; Y3, Y2; Cb23, Cb01; Cr23, Cr01

Y5, Y4; Y7, Y6; Cb67, Cb34; Cr67, Cr34

YCbCr420 input sequence:

Y1, Y0; Y3, Y2; Cb4567, Cb0123; Cb4567, Cr0123

Y5, Y4; Y7, Y6; Cb4567, Cb0123; Cr4567, Cb0123

Dithering and scaling mode
 Supports nine-tap FIR filters to avoid aliasing and false color when scaling down. The value
 should be:

Filter0 + (Filter1 + Filter2 + Filter3 + Filter4) x 2 = 256

8.7 Audio-I2S

The audio system of the SNC7320 Series has five sets of I²S. I²S0 to I²S3 support slave mode with DMA and connect to multiple audio codecs such as SNAUD01. I²S4 supports slave and mater mode and is dedicated to communicate with other master chips. To maximize the utilities, the SNC7320 Series supports eight Microphone arrays or six Microphone arrays and a stereo DAC.

Figure 8-10 Audio Block Diagram

Features of the I2S include:

- Master or slave mode
- 8/16/24/32-bit data length
- · Mono and stereo audio data
- · I2S and MSB justified data format

- Provides 8-word (32-bit) FIFO data buffers
- · Generate interrupt requests when buffer levels cross a programmable boundary
- Independent reset, stop, and mute control options for I2S input and output

Figure 8–11 I²S Master Mode Block Diagram

Slave Mode Rx FIFO MCLKSEL Latch MCLKSEL L2S0-3 iMCLK General Master/Slave Master/Slave MCLK System Clock 162 MHz XTAL/IHRC 12 MHz

Figure 8–12 I²S Slave Mode Block Diagram

8.7.1 **Timing**

Table 8–3 Input Timing Requirements for I²S Master Receiver

	Parameter	De	Unit	
	Parameter	MIN.	MAX.	Unit
t _{su(SDR-BCK)}	Setup time, I2S_DATA_IN valid before I2S_BCLK rising edge	0.2 (t _{c(BCK)})	_	
t _{h(BCK-SDR)}	Output hold time, I2S_DATA_OUT valid after receive rising edge of I2S_BCLK	2	-	ns

Table 8–4 Input Timing Requirements for I²S Slave Receiver

	Parameter	Dev	Unit	
	Parameter	MIN.	MAX.	Unit
t _{c(BCK)}	Cycle time, I2S_BCLK	80	10200	
t _{w(BCKH)}	Pulse width, I2S_BCLK high	0.35 (t _{c(BCK)})	_	
t _{w(BCKL)}	Pulse width, I2S_BCLK low	0.35 (t _{c(BCK)})	_	
t _{su(SDR-BCK)}	Setup time, I2S_DATA_IN valid before receive rising edge of I2S_BCLK	0.2 (t _{c(BCK)})	-	ns
t _{h(BCK-SDR)}	Output hold time, I2S_DATA_OUT valid after receive rising edge of I2S_BCLK	2		

Table 8–5 Input Timing Requirements for I²S Slave Transmitter

	Parameter	Dev	Device		
	Parameter	MIN.	MAX.	Unit	
t _{c(BCK)}	Cycle time, I2S_BCLK	80	10200		
t _{w(BCKH)}	Pulse width, I2S_BCLK high	0.35 (t _{c(BCK)})	_		
t _{w(BCKL)}	Pulse width, I2S_BCLK low	0.35 (t _{c(BCK)})	_	ns	
t _{r(BCK)}	Rise time, I2S_BCLK	_	0.15 (t _{c(BCK)})		

Table 8–6 Switching Characteristics for I²S Master Receiver

	Doromotor	Dev	Unit	
	Parameter	MIN.	MAX.	Unit
t _{c(BCK)}	Cycle time, I2S_BCLK	20035	10200	
t _{w(BCKH)}	Pulse width, I2S_BCLK high	0.4 (t _{c(BCK)})	-	ns
t _{w(BCKL)}	Pulse width, I2S_BCLK low	0.4 (t _{c(BCK)})	-	

Table 8–7 Switching Characteristics for I²S Master Transmitter

	Davamatar	Dev	I Imit	
	Parameter	MIN.	MAX.	Unit
t _{c(BCK)}	Cycle time, I2S_BCLK	20035	10200	
t _{w(BCKH)}	Pulse width, I2S_BCLK high	0.4 (t _{c(BCK)})	-	
t _{w(BCKL)}	Pulse width, I2S_BCLK low	0.4 (t _{c(BCK)})	-	
$t_{d(BCK\text{-}LRCK_SDX)}$	Delay time, I2S_BCLK rising edge to I2S_DATA_OUT output	-	0.5 (t _{c(BCK)}) + 5	ns
t _{h(BCK-LRCK_SDX)}	Output hold time, I2S_DATA_OUT valid after receive rising edge of I2S_BCLK	0.5 (t _{c(BCK)}) - 5	_	
t _{r(BCK)}	Rise time, I2S_BCLK	-	20	

Table 8–8 Switching Characteristics for I²S Slave Transmitter

	Parameter	Dev	Unit	
	Parameter	MIN.	MAX.	Onit
t _{d(BCK-LRCK_SDX)}	Delay time, I2S_BCLK rising edge to I2S_DATA_OUT output	-	0.5 (t _{c(BCK)}) + 15	
t _{h(BCK-LRCK_SDX)}	Output hold time, I2S_DATA_OUT valid after receive rising edge of I2S_BCLK	0.35 (t _{c(BCK)})	-	ns

³⁵ The minimum period of the master clock is 40 ns and the minimum period of BCK is two master clock cycles. But considering the period of BCK is three master clock cycles, the minimum pulse width (high or low) of BCK is 0.33 (t_{c(BCK)}) which violates the I²S input timing requirement. To meet the input timing requirement, the minimum period of BCK is five master clock cycles.

The I²S is a standard interface for general use. Since the audio controller supports mono and stereo, the data is valid in first 8/16/24/32-bit from MSB in left channel of its timing diagram.

Figure 8–13 I²S Timings when Channel Length > Data Length

Figure 8–14 I²S Timings when Channel Length = Data Length

9 Device Operating Conditions

- 9.1 Absolute Maximum Ratings
- 9.2 Recommended Operating Conditions
- 9.3 Electrical Characteristics
- 9.4 Power Sequence

9.1 Absolute Maximum Ratings

Table 9–1 Absolute Maximum Ratings³⁶ ³⁷

	MIN.	MAX.	Unit	
	V_{DDC}/V_{DD12} with respect to V_{ss}	-0.3	1.22	
Supply voltage	V _{DD18} with respect to V _{ss}	-0.3	1.90	
	V _{DDIO33} with respect to V _{ss}	-0.3	3.60	
Analogyaltaga	V _{DDA18}	-0.3	1.90	V
Analog voltage	V _{DDA33}	-0.3	3.60	
lanut valtaga	V _{IN} (1.8V)	-0.3	1.90	
Input voltage	V _{IN} (3.3V)	-0.3	3.60	
Ambient temperature	T _A	0	85	
Junction temperature	on temperature T _J		125	°C
Storage temperature	T _{STG}	-40	125	

9.2 Recommended Operating Conditions

Table 9–2 Recommended Operating Conditions

Parameter	MIN.	TYP.	MAX.	Unit	
Device supply voltage, I/O, V _{DDIO33}	2.93	3.30	3.63		
Device supply voltage, V _{DD18}	1.75	1.82	1.90		
Device supply voltage, V _{DDC} /V _{DD12} (normal mode)	1.19	1.22	1.26		
Device supply voltage, V _{DDC} /V _{DD12} (suspend mode)	0.95	0.99	1.04	V	
Supply ground, V _{SS}		0			
Analog supply voltage, V _{DDA33}	2.70	3.30	3.60		
Analog supply voltage, V _{DDA18}	1.75	1.82	1.90		
Analog supply ground, V _{SSA}	og supply ground, V _{SSA} 0				
Ambient temperature, T _A	0	_	85	°C	
Junction temperature, T _J	-40	_	125		

www.sonix.com.tw 79 CDSZ-2221

³⁶ Long-term exposure to absolute maximum ratings may affect device reliability, and permanent damage may occur if the operation exceeds the maximum ratings.

³⁷ All voltage values are with respect to VSS.

9.3 Electrical Characteristics

Table 9–3 Electrical Characteristics over Recommended Ranges

Parameter		Conditions (T _A = 25 °C)	MIN.	TYP.	MAX.	Unit
Normal current 40.5 MHz	I _{NOR40.5}	Dual core program run; no I/O toggle	_	20	_	
Normal current 81 MHz	I _{NOR81}	Dual core program run; no I/O toggle	_	30	_	mA
Normal current 162 MHz	I _{NOR162}	Dual core program run; no I/O toggle	-	50	-	
Deep power-down current	I _{DPD}	V _{DD} = 3.3V; internal LDO 1.1/1.8V off, all clock off	-	1	5	μΑ
Deep sleep current	I _{DSLP}	All clock off	_	2.3	12	mA
IHRC	F _{IHRC}	Accuracy to ±1.5%	11.82	12	12.18	MHz
ILRC	F _{ILRC}	For WDT frequency	-	32	_	kHz
SAR ADC ENOB	ENOB	_	-	9	_	bit(s)
SAR ADC DNL	DNL	_	-2	_	2	LSB
SAR ADC INL	INL	_	-2	_	2	LOD
Internal pull-up/pull- down resistance	R _{PU} /R _{PD}	-	30k	40k	66k	Ω
Internal pull-down resistance	R _{PD}	_	30k	40k	66k	22
IO driving CFG038	IO _{CFG0}		2	4.2	6	
IO driving CFG1 (default)	IO _{CFG1}		4	8.2	12	
IO driving CFG2	IO _{CFG2}		6	12.2	18	
IO driving CFG3	IO _{CFG3}	All GPIOs except SAR	8	15.7	24	
IO sink CFG0	IO _{CFG0}	I/O	2	3.8	6	
IO sink CFG1 (default)	IO _{CFG1}		4	7.4	12	
IO sink CFG2	IO _{CFG2}		6	11	18	
IO sink CFG3	IO _{CFG3}		8	14.3	24	mA
SAR I/O driving CFG0	AIO _{CFG0}		5	10	17	IIIA
SAR I/O driving CFG1 (default)	AIO _{CFG1}		10	21.8	35	
SAR I/O driving CFG2	AIO _{CFG2}		15	25.2	51	
SAR I/O driving CFG3	AIO _{CFG3}	P0.4–P0.7/P4.2–P4.3	20	27.4	68	
SAR I/O sink CFG0	AIO _{CFG0}	FU.4-FU.1/F4.2-F4.3	5	10	17	
SAR I/O sink CFG1 (default)	AIO _{CFG1}		10	21.0	35	
SAR I/O sink CFG2	AIO _{CFG2}		15	23.9	51	
SAR I/O sink CFG3	AIO _{CFG3}		20	26.5	68	

www.sonix.com.tw 80 CDSZ-2221

³⁸ CFGn represents the configurations of GPIO driving control register (n = 0–3).

9.4 Power Sequence

9.4.1 Power-up Sequence

Figure 9-1 Power-up Sequence

Designs of the SNC7320 Series must comply with the power-up sequence guidelines below to ensure reliable operation of the device.

Requirements:

- 1. VDDC must be over 1.2V before M3 enters T1 state.
- 2. VDDIO33 must be over 1.8V before RSTN reaches 1.8V.

9.4.2 Deep Power-down (DPD) and Wakeup (WKP) Sequence

Figure 9–2 Deep Power-down and Wakeup Sequence

Requirement: The WKPN signal must return to high before VDDC enters T1 state.

10 Mechanical Data

- 10.1 Thermal Data
- 10.2 Package Information
- 10.3 Packing Appearance and Storage Information

10.1 Thermal Data

The permissible operating temperature range for the bearing is 0 °C to 85 °C.

10.2 Package Information

10.2.1 Nomenclature

www.sonix.com.tw 83 CDSZ-2221

³⁹ This code represents different pinout of the same package.

10.2.2 Marking

The product ID and symbols shown in the figure below represents an example and may vary according to different packages.

Figure 10-1 Example of Device Marking

10.2.3 Package Dimensions

LQFP128L (14 x 14 x 1.4 mm/Pitch: 0.4)

SIDE VIEW

Symbolo	Dimension in mm ⁴⁰			Dimension in inch			
Symbols	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	-	_	1.60	-	-	0.063	
A1	0.05	ı	0.15	0.002	-	0.006	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
b ⁴¹	0.13	0.18	0.23	0.005	0.007	0.009	
С	0.09	ı	0.20	0.004	-	0.008	
D		16.00 BSC		0.630 BSC			
D1 ⁴²		14.00 BSC		0.551 BSC			
E		16.00 BSC		0.630 BSC			
E142		14.00 BSC			0.551 BSC		
е		0.40 BSC			0.016 BSC		
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1	1.00 REF				0.039 REF		
θ	0°	3.5°	7°	0°	3.5°	7°	

85 CDSZ-2221 www.sonix.com.tw

⁴⁰ Controlling dimension: millimeter (mm)

Dimension "b" does not include dambar protrusion.
 Dimensions "D1" and "E1" do not include mold protrusion.

II. LQFP80L (10 x 10 x 1.4 mm/Pitch: 0.4)

Symbols	Dimension in mm ⁴⁰			Dimension in inch		
Syllibols	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α	_	-	1.60	_	-	0.063
A1	0.05	_	0.2	0.002	_	0.008
A2	1.35	1.40	1.45	0.053	0.055	0.057
b ⁴¹	0.13	0.18	0.23	0.005	0.007	0.009
c1	0.09		0.18	0.004		0.007
D		12 BSC		0.472 BSC		
D1 ⁴²		10 BSC			0.394 BSC	
е		0.4 BSC			0.016 BSC	
E		12 BSC			0.472 BSC	
E142		10 BSC			0.394 BSC	
L	0.45	0.60	0.75	0.018	0.024	0.030
L1	1.0 REF			0.039 REF		
θ	0°	3.5°	7°	0°	3.5°	7°

III. QFN88L (10 x 10 x 0.8 mm/Pitch: 0.4)

SIDE VIEW

Cumbala	Dimension in mm ⁴⁰			Dimension in inch			
Symbols	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	0.70	0.80	0.90	0.028	0.031	0.035	
A1	0.00	0.035	0.05	0.000	0.001	0.002	
A2	_	0.55	0.57	-	0.022	0.022	
A3	0.203 REF			0.008 REF			
b	0.15	0.20	0.25	0.006	0.008	0.010	
D		10.00 BSC 0.394 BSC					
E		10.00 BSC		0.394 BSC			
е		0.40 BSC			0.016 BSC		
J	6.50	7.50	8.50	0.256	0.295	0.335	
K	6.50	7.50	8.50	0.256	0.295	0.335	
L	0.30	0.40	0.50	0.012	0.016	0.020	

IV. QFN68L (8 x 8 x 0.8 mm/Pitch: 0.4)

TOP VIEW

BOTTOM VIEW
VIEW M-M

SIDE VIEW

Symbolo	Dimension in mm ⁴⁰			Dimension in inch		
Symbols	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α	0.70	0.80	0.90	0.028	0.031	0.035
A1	0.00	0.035	0.05	0.000	0.001	0.002
A3	0.203 REF			0.008 REF		
b	0.15	0.20	0.25	0.006	0.008	0.010
D	8.00 BSC			0.315 BSC		
E	8.00 BSC			0.315 BSC		
е	0.40 BSC				0.016 BSC	
D2	4.20	5.25	6.30	0.165	0.207	0.248
E2	4.20	5.25	6.30	0.165	0.207	0.248
L	0.30	0.40	0.50	0.012	0.016	0.020

V. QFN48L (7 x 7 x 0.8 mm/Pitch: 0.5)

TOP VIEW

BOTTOM VIEW VIEW M-M

SIDE VIEW

Cumbala	Dimension in mm ⁴⁰			Dimension in inch		
Symbols	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α	0.70	0.80	0.90	0.028	0.031	0.035
A1	0.00	0.02	0.05	0.000	0.001	0.002
A3	0.20 REF			0.008 REF		
b	0.20	0.25	0.30	0.008	0.010	0.012
D	7.00 BSC			0.267 BSC		
E	7.00 BSC			0.267 BSC		
е	0.50 BSC				0.020 BSC	
D2	4.40	5.00	5.60	0.173	0.197	0.220
D3	4.40	5.00	5.60	0.173	0.197	0.220
L	0.30	0.40	0.50	0.012	0.016	0.020

VI. QFN48L (6 x 6 x 0.8 mm/Pitch: 0.4)

TOP VIEW

 $\frac{\text{BOTTOM VIEW}}{\text{VIEW M} - \text{M}}$

SIDE VIEW

Symbolo	Dimension in mm ⁴⁰			Dimension in inch		
Symbols	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α	0.70	0.80	0.90	0.028	0.031	0.035
A1	0.00	0.02	0.05	0.000	0.001	0.002
A3	0.203 REF			0.008 REF		
b	0.15	0.20	0.25	0.006	0.008	0.010
D	6.00 BSC			0.236 BSC		
E	6.00 BSC			0.236 BSC		
е	0.4 BSC				0.016 BSC	
D2	3.70	4.20	4.70	0.146	0.165	0.185
E2	3.70	4.20	4.70	0.146	0.165	0.185
L	0.30	0.40	0.50	0.012	0.016	0.020

VII. LQFP48L (7 x 7 x 1.4 mm/Pitch: 0.5)

Cumbala	Dimension in mm ⁴⁰			Di	ch	
Symbols	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α	-	-	1.60	-	-	0.063
A1	0.05	_	0.15	0.002	_	0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
b ⁴¹	0.17	0.22	0.27	0.007	0.009	0.011
С	0.09	-	0.20	0.004	-	0.008
D	9.00 BSC			0.354 BSC		
D1 ⁴²	7.00 BSC			0.276 BSC		
E	9.00 BSC			0.354 BSC		
E142	7.00 BSC				0.276 BSC	
E	0.50 BSC				0.020 BSC	
L	0.40 0.60 0		0.80	0.016	0.024	0.031
L1	1.00 REF				0.039 REF	
θ	0°	3.5°	7°	0°	3.5°	7°

10.3 Packing Appearance and Storage Information

10.3.1 Packing Quantity

Table 10-1 Packing Quantity Information

Туре	Pin Count	Carry Type	Package Size	IC Q'ty per Tube or Tray or Reel	Tube or Tray or Reel Q'ty per Inner Box	Total Q'ty in One Inner Box	Inner Box Q'ty per Carton	IC Q'ty per Carton
LQFP	128	Tray	14 x 14	90	10	900	6	5400
LQFP	80	Tray	10 x 10	160	10	1600	6	9600
LQFP	48	Tray	7 x 7	250	10	2500	6	15000
QFN	88	Tray	10x10	168	10	1680	6	10080
QFN	68	Tray	8 x 8	348	10	3480	6	20880
QFN	48	Tray	7 x 7	260	10	2600	6	15600
QFN	48	Tray	6 x 6	260	10	2600	6	15600

10.3.2 Packing Dimension

Table 10-2 Inner Box/Carton Dimension for LQFP128/LQFP80/LQFP48

Inner Box/Carton	Dimension in mm
Inner box	360 x 152 x 90
Carton	470 x 370 x 210
Carton (optional)	380 x 340 x 300

Table 10-3 Inner Box/Carton Dimension for QFN88/QFN68/QFN48

Inner Box/Carton	Dimension in mm
Inner box	358 x 159 x 88
Carton	555 x 435 x 280

10.3.3 Temperature and Humidity Environmental Control Requirements in Storage

Table 10-4 Store Condition

Control Requirement	Specification
Temperature (°C)	24 ± 6
Humidity (% RH)	60 ± 20

10.3.4 Shelf-life

- 1. The shelf life for unopened vacuum pack products is four years after the date on the label.
- Once the packing is opened the product should be conducted SMT process within 168 hours and environmental control is under ≤ 30°C / 60% RH.
- 3. If the product has been exposed to the room environment for more than 168 hours, it should be baked in an oven at 125°C for 10 hours and vacuum packed.

TERMS AND CONDITIONS⁴³

- 1. <u>Content</u>: Sonix Technology Co. Ltd. ("Sonix") provides this information as a convenient reference solely for its customers. While Sonix takes care to prepare this information, it may contain typographical errors or outdated technical information as Sonix continues to update its products with enhancements and improvements. Customers should inquire of the appropriate Sonix representative to obtain the latest relevant information concerning specific Sonix product(s) before placing orders. All Sonix's products are sold subject to Sonix's terms and conditions of sale that are supplied at the time of acceptance by Sonix.
- 2. No Warranty: The information contained in this document is presented only as a reference for Sonix's customers. Sonix does not warrant or represent that any license, either express or implied, is granted by this document relating to any combination, machine, or process in which Sonix's products are used (or to be used). Information in this document regarding third-party products is not a license for use of such products, or a warranty or endorsement thereof. No license to any intellectual property is granted by this document, whether express or implied, by estoppel or otherwise. Absent a written signed agreement or except as provided in the relevant terms and conditions of sale for a specific product, and to the maximum extent allowable by law, SONIX and its third-party suppliers (1) ALL SONIX PRODUCTS ARE SOLD "ASIS, WHERE-IS," (2) ASSUME NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION, AND LOSS OF DATA, and (3) DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- 3. <u>Customers' Use</u>: While from time to time Sonix may assist customers with its products, Sonix undertakes no responsibility or liability for its customer's own design, application and use of Sonix's products, including but not limited to: (a) determining the appropriateness of the use of Sonix products in the desired design or application; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits or other referenced documents provided by Sonix; and (c) validating all operating parameters for such designs and applications.
- 4. Improper & Unintended Use: SONIX'S PRODUCTS ARE NOT INTENDED NOR WARRANTED FOR USE IN OR FOR (1) EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY OR RELIABILITY, OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE, OR SERIOUS PUBLIC IMPACT or (2) ANY PRODUCTS OR SYSTEMS WHOSE MANUFACTURE, USE OR SALE IS PROHIBITED UNDER ANY APPLICABLE LAW OR REGULATIONS ("Unintended Use"). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the military or aerospace industry, medical equipment, equipment used for automobiles, trains, ships, and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators, and escalators, devices related to electric power, and equipment used in finance-related fields. Users acknowledge and agree that any Unintended Use of Sonix products is solely at the user's own risk and without recourse to Sonix or any of its suppliers, agents or representatives in connection therewith.

www.sonix.com.tw 93 CDSZ-2221

⁴³ The information contained in this document is the property of Sonix, and none of it may be used, reproduced or distributed without the express written permission by Sonix.

SONiX Technology

Headquarter

10F-1, No.36, Taiyuan Street, Zhubei City, Hsinchu, Taiwan Tel: +886-3-5600-888

Fax: +886-3-5600-889

http://www.sonix.com.tw/masterpage-en

Japan Office

Kobayashi bldg. 2F, 4-8-27, Kudanminami, Chiyodaku, Tokyo,

102-0074, Japan Tel: +81-3-6272-6070 Fax: +81-3-6272-6165 ipsales@sonix.com.tw

Shenzhen Office

High Tech Industrial Park, Shenzhen, China Tel: +86-755-2671-9666 Fax: +86-755-2671-9786

mkt@sonix.com.tw | sales@sonix.com.tw

United States Representative

Tim Lightbody
Tel: +1-714-330-9877
usa@sonix.com.tw

Taipei Office

15F-2, No.171, Song Ted Road, Taipei, Taiwan

Tel: +886-2-2759-1980 Fax: +886-2-2759-8180

mkt@sonix.com.tw | sales@sonix.com.tw

Hong Kong Office

Unit 2603, 26/F CCT Telecom Building, No. 11, Wo Shing Street, Fo Tan, New Territories, Hong Kong

Tel: +852-2723-8086 Fax: +852-2723-9179 hk@sonix.com.tw

Chengdu Office

Tian Fu Software Park, Cheng Du City, China Tel: +86-28-8533-1818 Fax: +86-28-8533-1816

mkt@sonix.com.tw | sales@sonix.com.tw