# Digital Computer Arithmetic

ECE 666

Part 6a High-Speed Multiplication - I

Israel Koren

Spring 2004

## Speeding Up Multiplication

- Multiplication involves 2 basic operations generation of partial products + their accumulation
- 2 ways to speed up reducing number of partial products and/or accelerating accumulation
- 3 types of high-speed multipliers:
- Sequential multiplier generates partial products sequentially and adds each newly generated product to previously accumulated partial product
- Parallel multiplier generates partial products in parallel, accumulates using a fast multi-operand adder
- Array multiplier array of identical cells generating new partial products; accumulating them simultaneously
  - No separate circuits for generation and accumulation
  - Reduced execution time but increased hardware complexity

### Reducing Number of Partial Products

- Examining 2 or more bits of multiplier at a time
- Requires generating A (multiplicand), 2A, 3A
- Reduces number of partial products to n/2 each step more complex
- Several algorithm which do not increase complexity proposed - one is Booth's algorithm
- Fewer partial products generated for groups of consecutive O's and 1's

### Booth's Algorithm

- Group of consecutive O's in multiplier no new partial product
   only shift partial product right one bit position for every O
- Group of m consecutive 1's in multiplier less than m partial products generated
- ...01...110... = ...10...000... ...00...010...
- Using SD (signed-digit) notation =...100...010...
- Example:
- ...011110... = ...100000... ...000010... = ...100010... (decimal notation: 15=16-1)
- Instead of generating all m partial products only 2 partial products generated
- First partial product added second subtracted number of single-bit shift-right operations still m

### Booth's Algorithm - Rules

| $x_i$ | $x_{i-1}$ | Operation          | Comments                      | $y_i$     |
|-------|-----------|--------------------|-------------------------------|-----------|
| 0     | 0         | shift only         | string of zeros               | 0         |
| 1     | 1         | shift only         | string of ones                | 0         |
| 1     | 0         | subtract and shift | beginning of a string of ones | $\bar{1}$ |
| 0     | 1         | add and shift      | end of a string of ones       | 1         |

- Recoding multiplier x<sub>n-1</sub> x<sub>n-2</sub>...x<sub>1</sub> x<sub>0</sub> in SD code
- Recoded multiplier yn-1 yn-2 ... y1 y0
- x<sub>i</sub>,x<sub>i-1</sub> of multiplier examined to generate yi
- Previous bit xi-1 only reference bit
- i=0 reference bit  $x_{-1}=0$
- Simple recoding yi = xi-1 xi
- No special order bits can be recoded in parallel
- Example: Multiplier 0011110011(0) recoded as 0100010101 4 instead of 6 add/subtracts

## Sign Bit

|     | $x_{n-1}$ | $x_{n-2}$ | $y_{n-1}$      |
|-----|-----------|-----------|----------------|
| (1) | 1         | 0         | $\overline{1}$ |
| (2) | 1         | 1         | 0              |

- Two's complement sign bit x<sub>n-1</sub> must be usea
- Deciding on add or subtract operation no shift required - only prepares for next step
- Verify only for negative values of  $X(x_{n-1}=1)$
- 2 cases

$$A \cdot X = A \cdot \widetilde{X} - A \cdot x_{n-1} \cdot 2^{n-1}$$
 where  $\widetilde{X} = \sum_{j=0}^{n-2} x_j 2^j$ 

- Case 1 A subtracted necessary correction
- Case 2 without sign bit scan over a string of 1's and perform an addition for position n-1
  - When  $x_{n-1}=1$  considered required addition not done
  - Equivalent to subtracting A·2<sup>n-1</sup> correction term

# Example (Case-2)

| A                      |   | 1 | 0         | 1 | 1         |   |   | -5                 |
|------------------------|---|---|-----------|---|-----------|---|---|--------------------|
| X                      | × | 1 | 1         | 0 | 1         |   |   | -3                 |
| Y                      |   | 0 | $\bar{1}$ | 1 | $\bar{1}$ |   |   | recoded multiplier |
| Add - A                |   | 0 | 1         | 0 | 1         |   |   |                    |
| $\operatorname{Shift}$ |   | 0 | 0         | 1 | 0         | 1 |   |                    |
| $\operatorname{Add}A$  | + | 1 | 0         | 1 | 1         |   |   |                    |
|                        |   | 1 | 1         | 0 | 1         | 1 |   |                    |
| $\operatorname{Shift}$ |   | 1 | 1         | 1 | 0         | 1 | 1 |                    |
| Add - A                | + | 0 | 1         | 0 | 1         |   |   |                    |
|                        |   | 0 | 0         | 1 | 1         | 1 | 1 |                    |
| $\operatorname{Shift}$ |   | 0 | 0         | 0 | 1         | 1 | 1 | 1                  |

## Example

| A                                       |   | 1         | 0 | 1 | 1 |    |    |    | 5    |               |
|-----------------------------------------|---|-----------|---|---|---|----|----|----|------|---------------|
| X                                       | X | 1         | 0 | 0 | 1 |    |    |    | 7    |               |
| Y                                       |   | $\bar{1}$ | 0 | 1 | ī |    |    | re | code | ed multiplier |
| Add - A                                 |   | 0         | 1 | 0 | 1 |    |    |    |      |               |
| Shift                                   |   | 0         | 0 | 1 | 0 | 1  |    |    |      |               |
| $\operatorname{Add}A$                   | + | 1         | 0 | 1 | 1 |    |    |    |      |               |
| A 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |   | 1         | 1 | 0 | 1 | 1  |    |    |      |               |
| Shift                                   |   | 1         | 1 | 1 | 0 | 1  | 1  |    |      |               |
|                                         |   | 1         | 1 | 1 | 1 | 0  | 1  | 1  |      |               |
| Add - A                                 | + | 0         | 1 | 0 | 1 | o- | 55 | 23 |      | ,             |
|                                         |   | 0         | 1 | 0 | 0 | 0  | 1  | 1  |      |               |
| Shift                                   |   | 0         | 0 | 1 | 0 | 0  | 0  | 1  | 1    | 35            |

### Booth's Algorithm - Properties

- Multiplication starts from least significant bit
- If started from most significant bit longer adder/subtractor to allow for carry propagation
- No need to generate recoded SD multiplier (requiring 2 bits per digit)
- Booth's algorithm can handle two's complement multipliers
  - If unsigned numbers multiplied 0 added to left of multiplier (xn=0) to ensure correctness

#### Drawbacks to Booth's Algorithm

- Variable number of add/subtract operations and of shift operations between two consecutive add/subtract operations
  - Inconvenient when designing a synchronous multiplier
- Algorithm inefficient with isolated 1's
- Example:
- 001010101(0) recoded as 011111111, requiring 8 instead of 4 operations
- Situation can be improved by examining 3 bits of X at a time rather than 2

### Radix-4 Modified Booth Algorithm

- Bits xi and xi-1 recoded into yi and yi-1 xi-2 serves as reference bit
- Separately xi-2 and xi-3 recoded into yi-2 and yi-3 xi-4 serves as reference bit
- Groups of 3 bits each overlap rightmost being x<sub>1</sub>
   x<sub>0</sub> (x<sub>-1</sub>), next x<sub>3</sub> x<sub>2</sub> (x<sub>1</sub>), and so on



## Radix-4 Algorithm - Rules

- i=1,3,5,...
- Isolated 0/1handled
- efficiently

| $x_i$ | $\overline{x_{i-1}}$ | $x_{i-2}$ | $y_i$          | $y_{i-1}$      | operation | comments                                               |
|-------|----------------------|-----------|----------------|----------------|-----------|--------------------------------------------------------|
| 0     | 0                    | 0         | 0              | 0              | +0        | string of zeros                                        |
| 0     | 1                    | 0         | 0              | 1              | +A        | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |
| 1     | 0                    | 0         | $\overline{1}$ | 0              | -2A       | beginning of 1's                                       |
| 1     | 1                    | 0         | $\mid 0 \mid$  | $\bar{1}$      | -A        | beginning of 1's                                       |
| 0     | 0                    | 1         | 0              | 1              | +A        | end of 1's                                             |
| 0     | 1                    | 1         | 1              | 0              | +2A       | end of 1's                                             |
| 1     | 0                    | 1         | 0              | $\overline{1}$ | -A        | a single 0                                             |
| 1     | 1                    | 1         | 0              | 0              | +0        | string of 1's                                          |

- If  $x_{i-1}$  is an isolated 1,  $y_{i-1}=1$  only a single operation needed
- Similarly x<sub>i-1</sub> an isolated 0 in a string of 1's -...10(1)... recoded as ...11... or ...01... single operation performed
- Exercise: To find required operation calculate x<sub>i-1</sub>+x<sub>i-1</sub>
   2-2x<sub>i</sub> for odd i's and represent result as a 2-bit binary number y<sub>i</sub>y<sub>i-1</sub> in SD

#### Radix-4 vs. Radix-2 Algorithm

- 01|01|01|01|(0) yields 01|01|01|01| number of operations remains 4 the minimum
- 00|10|10|10|(0) yields 01|01|01|10|, requiring 4, instead of 3, operations
- Compared to radix-2 Booth's algorithm less patterns with more partial products; Smaller increase in number of operations
- Can design n-bit synchronous multiplier that generates exactly n/2 partial products
- Even n two's complement multipliers handled correctly; Odd n - extension of sign bit needed
- Adding a 0 to left of multiplier needed if unsigned numbers are multiplied and n odd - 2 0's if n even

### Example

| A                  |   |   | 01              | 00  | 01              |    |    | 17                 |
|--------------------|---|---|-----------------|-----|-----------------|----|----|--------------------|
| X                  | × |   | 11              | 01  | 11              |    |    | <b>-</b> 9         |
| Y                  |   |   | $0\overline{1}$ | 10  | $0\overline{1}$ |    |    | recoded multiplier |
|                    |   |   | -A              | +2A | -A              |    |    | operation          |
| Add -A             | + |   | 10              | 11  | 11              |    |    |                    |
| 2-bit Shift        |   | 1 | 11              | 10  | 11              | 11 |    |                    |
| $\mathrm{Add}\ 2A$ | + | 0 | 10              | 00  | 10              |    |    |                    |
|                    |   |   | 01              | 11  | 01              | 11 |    |                    |
| 2-bit Shift        |   |   | 00              | 01  | 11              | 01 | 11 |                    |
| Add -A             | + |   | 10              | 11  | 11              |    |    |                    |
|                    |   |   | 11              | 01  | 10              | 01 | 11 | -153               |

- n/2=3 steps; 2 multiplier bits in each step
- All shift operations are 2 bit position shifts
- Additional bit for storing correct sign required to properly handle addition of 2A

## Radix-8 Modified Booth's Algorithm

- Recoding extended to 3 bits at a time overlapping groups of 4 bits each
- Only n/3 partial products generated multiple 3A needed - more complex basic step
- Example: recoding 010(1) yields yi yi-1 yi-2=011
- Technique for simplifying generation and accumulation of  $\pm 3A$  exists
- To find minimal number of add/subtract ops required for a given multiplier - find minimal SD representation of multiplier
- Representation with smallest number of nonzero digits  $\min \sum_{i=0}^{n-1} |y_i|$

### Obtaining Minimal Representation of X

```
• yn-1yn-2... y0 is a minimal representation of an SD number if yi-yi-1=0 for 1 \le i \le n-1, given that most significant bits can satisfy yn-1-yn-2 \ne 1
```

### Canonical Recoding

- Multiplier bits examined one at a time
   from right; x<sub>i+1</sub> reference bit
- To correctly handle a single 0/1 in string of 1's/0's need information on string to right
- "Carry" bit 0 for 0's and 1 for 1's
- As before, recoded multiplier can be used without correction if represented in two's complement
- Extend sign bit x<sub>n-1</sub> x<sub>n-1</sub>x<sub>n-1</sub>x<sub>n-2</sub>...x<sub>0</sub>
- Can be expanded to two or more bits at a time
- Multiples needed for 2 bits  $\pm A$  and  $\pm 2A$

| $x_{i+1}$ | $x_i$ | $c_i$ | $y_i$     | $c_{i+1}$ | Comments         |
|-----------|-------|-------|-----------|-----------|------------------|
| 0         | 0     | 0     | 0         | 0         | string of 0's    |
| 0         | 1     | 0     | 1         | 0         | a single 1       |
| 1         | 0     | 0     | 0         | 0         | string of 0's    |
| 1         | 1     | 0     | Ī         | 1         | beginning of 1's |
| 0         | 0     | 1     | 1         | 0         | end of 1's       |
| 0         | 1     | 1     | 0         | 1         | string of 1's    |
| 1         | 0     | 1     | $\bar{1}$ | 1         | a single 0       |
| 1         | 1     | 1     | 0         | 1         | string of 1's    |

## Disadvantages of Canonical Recoding

- Bits of multiplier generated sequentially
- In Booth's algorithm no "carry" propagation partial products generated in parallel and a fast multi-operand adder used
- To take full advantage of minimum number of operations - number of add/subtracts and length of shifts must be variable - difficult to implement
- For uniforms shifts n/2 partial products more than the minimum in canonical recoding

# Alternate 2-bit-at-a-time Algorithm

- Reducing number of partial products
   But still uniform shifts of 2 bits each
- x<sub>i+1</sub> reference bit for x<sub>i</sub> x<sub>i-1</sub> i odd
- $\pm 2A, \pm 4A$  can be generated using shifts
- 4A generated when  $(x_{i+1})x_i(x_{i-1})=(0)11$  group of 1's not for  $(x_{i+3})(x_{i+2})x_{i+1}$  0 in rightmost position
  - Not recoding cannot express 4 in 2 bits
  - Number of partial products always n/2
  - Two's complement multipliers extend sign bit
  - Unsigned numbers 1 or 2 0's added to left of multiplier

| $x_{i+1}$ | $x_i$ | $x_{i-1}$ | Operation | Comments         |
|-----------|-------|-----------|-----------|------------------|
| 0         | 0     | 0         | +0        | string of 0's    |
| 0         | 0     | 1         | +2A       | end of 1's       |
| 0         | 1     | 0         | +2A       | a single 1       |
| 0         | 1     | 1         | +4A       | end of 1's       |
| 1         | 0     | 0         | -4A       | beginning of 1's |
| 1         | 0     | 1         | -2A       | a single 0       |
| 1         | 1     | 0         | -2A       | beginning of 1's |
| 1         | 1     | 1         | +0        | string of 1's    |

## Example

• Multiplier 01101110 - partial products:

- Translates to the SD number 010110010 not minimal includes 2 adjacent nonzero digits
- Canonical recoding yields 010010010 minimal representation

Example (1)-9 $\times$ -2AOperation Initial -AAdd 0 2-bit Shift Add -2A2-bit Shift Add 0 + -153

- Multiplier's sign bit extended in order to decide that no operation needed for first pair of multiplier bits
- As before additional bit for holding correct sign is needed, because of multiples like -2A

## Extending the Alternative Algorithm

- The above method can be extended to three bits or more at each step
- However, here too, multiples of A like 3A or even 6A are needed and
  - Prepare in advance and store
  - Perform two additions in a single step
- For example, for (0)101 we need 8-2=6, and for (1)001, -8+2=-6

# Implementing Large Multipliers Using Smaller Ones

- Implementing n x n bit multiplier as a single integrated circuit several such circuits for implementing larger multipliers can be used
- 2n x 2n bit multiplier can be constructed out of 4 n x n bit multipliers based on:

$$A \cdot X = (A_H \cdot 2^n + A_L) \cdot (X_H \cdot 2^n + X_L)$$
$$= A_H \cdot X_H \cdot 2^{2n} + (A_H \cdot X_L + A_L \cdot X_H) \cdot 2^n + A_L \cdot X_L$$

• AH, AL - most and least significant halves of A; XH, XL - same for X

### Aligning Partial Products

- 4 partial products of 2n bits correctly aligned before adding
- Last arrangement minimum height of matrix 1 level of carry-save addition and a CPA
- n least significant bits already bits of final product no further addition needed
- 2n center bits added by 2n-bit CSA with outputs connected to a CPA
- n most significant bits connected to same CPA, since center bits may generate carry into most significant bits - 3n-bit CPA needed



# Decomposing a Large Multiplier into Smaller Ones - Extension

- Basic multiplier n x m bits n ≠ m
- Multipliers larger than 2n x 2m can be implemented
- Example: 4n x 4n bit multiplier implemented using n x n bit multipliers
  - 4n x 4n bit multiplier requires 4 2n x 2n bit multipliers
  - 2n x 2n bit multiplier requires 4 n x n bit multipliers
  - Total of 16 n x n bit multipliers
  - 16 partial products aligned before being added
- Similarly for any kn x kn bit multiplier
   with integer k

### Adding Partial Products

- After aligning 16 products 7 bits in one column need to be added
- Method 1: (7,3) counters generating 3 operands added by
- (3,2) counters generating 2 operands
- added by a CPA
- Method 2: Combining 2 sets of counters into a set of (7;2) compressors
- Selecting more economical multi-operand adder discussed next





### Accumulating the Partial Products

- After generating partial products either directly or using smaller multipliers
- Accumulate these to obtain final product
  - A fast multi-operand adder
- Should take advantage of particular form of partial products - reduce hardware complexity
- They have fewer bits than final product, and must be aligned before added
- Expect many columns that include fewer bits than total number of partial products - requiring simpler counters

### Example - Six Partial Products

- Generated when multiplying unsigned 6-bit operands using one-bit-at-a-time algorithm
- 6 operands can be added using 3-level carry-save tree

- Number of (3,2) counters can be substantially reduced by taking advantage of the fact that all
- columns but 1 contain fewer than 6 bits
- Deciding how many counters needed redraw matrix of bits to be added:







 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0
 0
 0
 0

## Reduce Complexity - Use (2,2) Counters (HAs)





(a) Level 1 carry-save addition.



(c) Level 2 carry-save addition.



(b) Results of level 1.

- (d) Level 3 carry-save addition.
- Number of levels still 3, but fewer counters

#### Further reduction in number of counters

- Reduce # of bits to closest element of 3,4,6,9,13,19,...
- 15 (3,2) and 5 (2,2) vs. 16 (3,2) and 9 (2,2) counters



(a) Level 1 carry-save addition.

(b) Results of level 1.

(c) Level 2 carry-save addition.



(d) Level 3 carry-save addition.

### Modified Matrix for Negative Numbers

- Sign bits must be properly extended
- In row 1: 11 instead of 6 bits, and so on
- Increases complexity of multi-operand adder
- If two's complement obtained through one's complement matrix increased even further 10 9 8 7 6 5 4 3 2 1 0



### Reduce Complexity Increase

• Two's complement number s s s s s s z<sub>4</sub> z<sub>3</sub> z<sub>2</sub> z<sub>1</sub> z<sub>0</sub> with value

$$-s \cdot 2^{10} + s \cdot 2^9 + s \cdot 2^8 + s \cdot 2^7 + s \cdot 2^6 + s \cdot 2^5 + z_4 \cdot 2^4 + z_3 \cdot 2^3 + z_2 \cdot 2^2 + z_1 \cdot 2^1 + z_0$$

- Replaced by 0 0 0 0 (-s) z<sub>4</sub> z<sub>3</sub> z<sub>2</sub> z<sub>1</sub> z<sub>0</sub>
- since

$$= -s \cdot 2^{10} + s \cdot (2^{10} - 2^5) = -s \cdot 2^5$$
$$-s \cdot 5_{10} + s \cdot (5_8 + 5_8 + 5_4 + 5_9 + 5_2)$$

## Example

• Recoded multiplier using canonical recoding

| A |   |   |   |   | 0 | 1 | 0 | 1         | 1 | 0         | 22                 |
|---|---|---|---|---|---|---|---|-----------|---|-----------|--------------------|
| X |   |   | X |   | 0 | 0 | 1 | 0         | 1 | 1         | 11                 |
| Y |   |   |   |   | 0 | 1 | 0 | $\bar{1}$ | 0 | $\bar{1}$ | Recoded multiplier |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0         | 1 | 0         |                    |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0         | 0 |           |                    |
| 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0         |   |           |                    |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |           |   |           |                    |
| 0 | 0 | 1 | 0 | 1 | 1 | 0 |   |           |   |           |                    |
| 0 | 0 | 0 | 0 | 0 | 0 |   |   |           |   |           |                    |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0         | 1 | 0         |                    |

## Smaller Matrix for the Example

| 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|---|---|---|---|---|---|---|---|---|---|
|    |   |   |   | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
|    |   |   |   | 1 | 0 | 0 | 0 | 0 | 0 |   |
|    |   |   | 0 | 0 | 1 | 0 | 1 | 0 |   |   |
|    |   | 1 | 0 | 0 | 0 | 0 | 0 |   |   |   |
|    | 1 | 1 | 0 | 1 | 1 | 0 |   |   |   |   |
| 1  | 0 | 0 | 0 | 0 | 0 |   |   |   |   |   |
| 0  | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |

# Using One's Complement and Carry

| 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|---|---|---|---|---|---|---|---|---|---|
|    |   |   |   | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
|    |   |   |   | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
|    |   |   | 0 | 0 | 1 | 0 | 0 | 1 | 0 |   |
|    |   | 1 | 0 | 0 | 0 | 0 | 0 | 1 |   |   |
|    | 1 | 1 | 0 | 1 | 1 | 0 | 0 |   |   |   |
| 1  | 0 | 0 | 0 | 0 | 0 | 0 |   |   |   |   |
|    |   |   |   |   | 0 |   |   |   |   |   |
| 0  | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |

### Array Multipliers

- The two basic operations generation and summation of partial products - can be merged, avoiding overhead and speeding up multiplication
- Iterative array multipliers (or array multipliers)
   consist of identical cells, each forming a new partial
   product and adding it to previously accumulated
   partial product
  - Gain in speed obtained at expense of extra hardware
  - Can be implemented so as to support a high rate of pipelining

### Illustration - 5 x 5 Multiplication

|       |                 |                 |                 |                 | $a_4$           | $a_3$           | $a_2$           | $a_1$           | $a_0$           |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|       |                 |                 |                 | ×               | $x_4$           | $x_3$           | $x_2$           | $x_1$           | $x_0$           |
|       |                 |                 |                 |                 | $a_4 \cdot x_0$ | $a_3 \cdot x_0$ | $a_2 \cdot x_0$ | $a_1 \cdot x_0$ | $a_0 \cdot x_0$ |
|       |                 |                 |                 | $a_4 \cdot x_1$ | $a_3 \cdot x_1$ | $a_2 \cdot x_1$ | $a_1 \cdot x_1$ | $a_0 \cdot x_1$ |                 |
|       |                 |                 | $a_4 \cdot x_2$ | $a_3 \cdot x_2$ | $a_2 \cdot x_2$ | $a_1 \cdot x_2$ | $a_0 \cdot x_2$ |                 |                 |
|       |                 | $a_4 \cdot x_3$ | $a_3 \cdot x_3$ | $a_2 \cdot x_3$ | $a_1 \cdot x_3$ | $a_0 \cdot x_3$ |                 |                 |                 |
|       | $a_4 \cdot x_4$ | $a_3 \cdot x_4$ | $a_2 \cdot x_4$ | $a_1 \cdot x_4$ | $a_0 \cdot x_4$ |                 |                 |                 |                 |
| $P_9$ | P8              | P7              | P6              | $P_5$           | P4              | $P_3$           | P2              | $P_1$           | $P_0$           |

- Straightforward implementation -
  - Add first 2 partial products (a4X0, a3X0,...,a0 X0 and a4X1, a3X1,...,a0X1) in row 1 after proper alignment
  - The results of row 1 are then added to in row 2, and so on

5 x 5 Array Multiplier for Unsigned Numbers

 Basic cell - FA accepting one bit of new partial product aixj+ one bit of previously accumulated partial product + carry-in bit



 $a_4x_1$ 

 $a_3x_1$ 

 $a_2x_1$ 

- No horizontal carry propagation in first 4 rows carry-save type addition accumulated partial product consists of intermediate sum and carry bits
- Last row is a ripple-carry adder can be replaced by a fast 2-operand adder (e.g., carry-look-ahead adder)

## 4\*4 bit Array Multiplier



### Array Multiplier for Two's Complement Numbers



### Type I and II Cells

- Type I cells: 3 positive inputs ordinary FAs
- Type II cells: 1 negative and 2 positive inputs
- Sum of 3 inputs of type II cell can vary from -1 to 2
  - c output has weight +2
  - s output has weight -1
- Arithmetic operation of type | cell -

$$x + y - z = 2c - s$$

• s and c outputs given by

$$S= x + y - z \pmod{2}$$
  $c= [(x+y-z) + s] / 2$ 



### Type I' and II' Cells

- Type II' cells: 2 negative inputs and 1 positive
- Sum of inputs varies from -2 to 1
  - c output has weight -2
  - s output has weight +1



- Type I' cell: all negative inputs -has negatively weighted c and s outputs
- Counts number of -1's at its inputs represents this number through c and s outputs
- Same logic operation as type | cell same gate implementation
- Similarly types II and II' have the same gate implementation