TECHNISCHE UNIVERSITÄT MÜNCHEN

Andreas Wörfel Aufgaben Donnerstag FERIENKURS ANALYSIS 1 FÜR PHYSIKER WS 2013/14

Aufgabe 1 Zum Aufwärmen: Polynomdivision

Berechnen Sie: $(2x^6 + 8x^5 + 3x^4 - 20x^3 - 13x^2 + 28x + 28) : (x^2 + 4x + 4)$

Aufgabe 2 Logarithmus

Zeigen Sie, dass für den Logarithmus gilt: $\ln'(x) = \frac{1}{x}$, indem Sie:

- a) den Grenzwert des Differenzenquotienten unter Zuhilfenahme der Rechenregeln für den Logarithmus bilden.
- b) die Ableitung mit der Umkehrfunktion bilden.

Aufgabe 3 Kettenregel

Beweisen Sie die Kettenregel $(f(g(x)))' = f'(g(x)) \cdot g'(x)$ durch geschicktes Erweitern des Differentialquotienten.

Aufgabe 4 Korollar: Quotientenregel

Zeigen Sie die Quotientenregel. Sie dürfen Summen-, Produkt- und Kettenregel sowie die Ableitungen von Potenzfunktionen als gegeben und bewiesen annehmen.

Aufgabe 5 Spezielle Ableitungen

Leiten Sie $f(x) = x^x$ und $g(x) = \operatorname{arcosh}(x)$ mittels spezieller Ableitungstechniken ab.

Aufgabe 6 Wendetangente und Extrema

Gegeben sei: $f(x) = x^3 - 3x^2 - 6x + 8$

Geben Sie Art und Lage der Extrema und bestimmen Sie Nullstellen sowie die Tangente an den Wendepunkt.

Aufgabe 7 Taylorreihe: Euler- und Polardarstellung

Am Montag in der Vorlesung haben wir behauptet, es gelte $\cos x + i \sin x = e^{ix}$. Dies möchten wir nun beweisen.

- a) Stellen Sie die Taylorreihe für $f = \sin x$ um $x_0 = 0$ auf.
- b) Stellen Sie die Taylorreihe für $g = \cos x$ um $x_0 = 0$ auf.
- c) Stellen Sie die Taylorreihe für $h=e^{ix}$ um $x_0=0$ auf und vergleichen Sie diese mit $f(x)+ig(x)=\cos x+i\sin x$.

Aufgabe 8 Verschiedene Integrale

Bestimmen Sie die folgenden Integrale mit Hilfe der Techniken, die in der Vorlesung behandelt wurden.

a) $\int (2x-5)^5 dx$

b) $\int 2x \cot(x^2) dx$

c) $\int \frac{dx}{\sqrt{1 - x^2 \arcsin x}}$

d) $\int 2x \ln^2 x dx$

e) $\int \frac{1}{x \ln 2x} dx$

 $\int \frac{x}{\cos^2 x} dx$

g) $\int e^x \sin x dx$

 $\int \frac{x - \cos x \sin x}{x^2 + \cos^2 x} dx$

i) **Hinweis:** Fügen Sie eine geschickte multiplikative 1 oder additive 0 (im Zähler) hinzu und teilen Sie dann das Integral:

 $\int \frac{dx}{(x^2+1)^2}$

j) (Rechenintensive Aufgabe, die das ganze Können verlangt) **Hinweis:** Partialbruchzerlegung, jedoch keine Zerlegung mit komplexen Nullstellen ansetzen. Verwenden Sie außerdem arctan und ln zum integrieren:

 $\int \frac{x^6 + 16}{x^4 - 4} dx$

k) $\int_0^2 2x e^{x^2} dx$

 $\int_0^{\pi/2} \frac{\cos^3 x}{1 - \sin x} dx$

m) $\int \cos^2(t)e^t dt$

Aufgabe 9 Gauß-Integral

Das sehr bekannte Gauß-Integral für $\alpha \in \mathbb{R}^+$ lautet:

$$\int_{-\infty}^{\infty} e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}$$

Dieses dürfen Sie als gegeben annehmen. Berechnen Sie nun ohne partielles Integrieren mit Hilfe geschickter Anwendung der Leibniz-Regel für Parameterintegrale das folgende Integral:

$$\int_{-\infty}^{\infty} x^2 e^{-\alpha x^2} dx$$

Aufgabe 10 L'Hospital?

Wenden Sie die verschiedenen gelernten Techniken an, um die folgenden Grenzwerte zu bestimmen.

$$\lim_{x \to 1} \frac{\ln x}{x - 1}$$

$$\lim_{x \to 0} \frac{\tan x}{x}$$

$$\lim_{x \to \infty} \frac{\sinh x}{\cosh x}$$

d)
$$\lim_{x \to \infty} \frac{e^{1/x} - 1}{\frac{\arctan x}{x}}$$

e)
$$\lim_{x \to 0} \frac{\cos x - \sqrt{1 - x^2}}{x^4}$$

Hinweis: $\sqrt{1-x^2} = 1 - \frac{1}{2}x^2 - \frac{1}{8}x^4 - \mathcal{O}(x^6)$

Zusatzaufgabe

Aufgabe 11 Konvergenz von Integralen (alte Klausuraufgaben)

Untersuchen Sie folgende uneigentliche Integral auf Konvergenz.

a) für
$$r \in \mathbb{R}$$
:
$$\int_{-\infty}^{\infty} \frac{dx}{x^r}$$

Hinweis: Betrachten Sie zunächst eine endliche Integrationsgrenze.

b)
$$\int_0^\infty \sin x^2 dx$$

Hinweis: Teilen Sie das Integral, substituieren Sie und schätzen Sie geschickt ab.

3