Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Dynamique	TD2 - Correction

Torseur cinétique - dynamique

Exercice 1: Plaques vibrantes hydrauliques

Question 1: Déterminer l'ordonnée Y du centre géométrique de cette surface

$$Y = \frac{1}{S} \int_{S} y dS = \frac{2}{\pi (R_{e}^{2} - R_{i}^{2})} \int_{r=R_{i}}^{r=R_{e}} \int_{\theta=0}^{\theta=\pi} r \sin \theta \, r dr d\theta = \frac{2}{\pi (R_{e}^{2} - R_{i}^{2})} \int_{r=R_{i}}^{r=R_{e}} \int_{\theta=0}^{\theta=\pi} r^{2} dr \int_{\theta=0}^{\theta=\pi} \sin \theta \, d\theta$$

$$Y = \frac{2}{\pi (R_{e}^{2} - R_{i}^{2})} \frac{R_{e}^{3} - R_{i}^{3}}{3} [-\cos \theta]_{0}^{\pi} = \frac{2}{\pi (R_{e}^{2} - R_{i}^{2})} \frac{R_{e}^{3} - R_{i}^{3}}{3} [-\cos \pi + \cos 0]$$

$$Y = \frac{4}{3\pi} \frac{R_{e}^{3} - R_{i}^{3}}{R_{e}^{2} - R_{i}^{2}}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Dynamique	TD2 - Correction

Question 2: En exploitant le résultat d'un demi-disque plein, retrouvez Y en exploitant 2 demi-disques

$$Y_{G} = \frac{S_{1}Y_{G_{1}} - S_{2}Y_{G_{2}}}{S_{1} - S_{2}} \iff Y = \frac{\pi \frac{R_{e}^{2}}{2} \frac{4R_{e}}{3\pi} - \pi \frac{R_{i}^{2}}{2} \frac{4R_{i}}{3\pi}}{\pi \frac{R_{e}^{2} - R_{i}^{2}}{2}} = \frac{\frac{R_{e}^{3}}{2} \frac{4}{3\pi} - \frac{R_{i}^{3}}{2} \frac{4}{3\pi}}{\frac{R_{e}^{2} - R_{i}^{2}}{2}} = \frac{4 R_{e}^{3} - R_{i}^{3}}{3\pi R_{e}^{2} - R_{i}^{2}}$$

Question 3: En déduire la valeur numérique de la coordonnée Y des centres de gravité des volumes S_2 et S_4

Comme chacun des solides est invariant sur x (géométrie et masse volumique), et comme ce sont les mêmes solides, on a :

$$Y_{G_{24}} = -\frac{4}{3\pi} \frac{R_2^3 - r_2^3}{R_2^2 - r_2^2} = -\frac{4}{3\pi} \frac{60^3 - 20^3}{60^2 - 20^2} = -27.6 \, mm$$

$$Y_{G_{24}} = -\frac{4}{3\pi} \frac{(D_2/2)^3 - (d_2/2)^3}{(D_2/2)^2 - (d_2/2)^2} = -\frac{4}{3\pi} \frac{2^2}{2^3} \frac{(D_2/2)^3 - (d_2/2)^3}{(D_2/2)^2 - (d_2/2)^2} = -\frac{2}{3\pi} \frac{D_2^3 - d_2^3}{D_2^2 - d_2^2}$$

Cela se démontrerait par intégrale invariante sur x en se plaçant sur l'axe dans le plan de symétrie :

$$Y = \frac{1}{m} \int_{V} y dm = \frac{1}{\rho SL} \int_{V} y \rho dV = \frac{1}{SL} \int_{\frac{L}{2}}^{\frac{L}{2}} dx \int_{S} y r dr d\theta = \frac{1}{S} \int_{S} y dS$$

Question 4: Déterminer les masses M_i et ordonnées Y_{G_i} des solides S_i , puis la masse totale M de l'arbre 1

On découpe le volume en 5 :

Volume 1	Volume 2	Volume 3	Volume 4	Volume 5
Cylindre	Demi-cylindre	Cylindre	Demi-cylindre	Cylindre
$D_1 = 30 mm$ $L_1 = 75 mm$	$D_2 = 120 \ mm$ $d_2 = 40 \ mm$ $L_2 = 100 \ mm$	$D_3 = 40 mm$ $L_3 = 250 mm$	$D_4 = 120 \ mm$ $d_4 = 40 \ mm$ $L_4 = 100 \ mm$	$D_5 = 30 mm$ $L_5 = 75 mm$
$Y_{G_1}=0$	$Y_{G_2} = Y_{G_{24}} = -27.6 \ mm$	$Y_{G_3}=0$	$Y_{G_4} = Y_{G_{24}} = -27,6 \ mm$	$Y_{G_5}=0$
$M_1 = \frac{\rho \pi D_1^2 L_1}{4}$	$M_2 = \frac{\rho \pi (D_2^2 - d_2^2) L_2}{2 * 4}$	$M_3 = \frac{\rho \pi D_3^2 L_3}{4}$	_ ~ T	$M_5 = \frac{\rho \pi D_5^2 L_5}{4}$
0,416 <i>kg</i>	3,94 <i>kg</i>	2,47 <i>kg</i>	3,94 <i>kg</i>	0,416 <i>kg</i>
$M = \sum_{i=1}^{5} M_i = \frac{\rho \pi D_1^2 L_1}{4} + \frac{\rho \pi (D_2^2 - d_2^2) L_2}{4} + \frac{\rho \pi (D_3/2)^2 L_3}{4} = 11,19 \text{ kg}$				

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Dynamique	TD2 - Correction

Question 5: En déduire la position G du centre d'inertie de l'arbre 1 dans \mathfrak{B}_1

Plan de symétrie : $(0, \overrightarrow{x_1}, \overrightarrow{y_1})$ et $(0, \overrightarrow{y_1}, \overrightarrow{z_1})$

$$\overrightarrow{OG} = Y_G \overrightarrow{y_1}$$

$$Y_G = \frac{\sum M_i Y_{G_i}}{M}$$

Le centre de gravité des volumes 1, 3 et 5 est sur l'axe.

On a donc:

$$M_{135} = M_1 + M_3 + M_5 = 3.3 \ kg$$

 $Y_{G_{135}} = 0$

$$Y_{G_{24}} = -27,6 \, mm$$

Finalement:

$$Y_G = 2 \frac{M_2 Y_{G_{24}}}{M} = 2 \frac{3,94 * (-27,6)}{11.19}$$

Valeur exacte: (sinon on trouve 19,44)

$$Y_G = -19,46 \, mm$$

Question 6: Proposer la forme de la matrice d'inertie de l'arbre 1 en O dans la base \boldsymbol{B}_1

Du fait des symétries de l'arbre 1, on a :

$$I(O,1) = \begin{bmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{bmatrix}^{B_1}$$

Remarque: L'arbre est la somme de:

- 1,3,et 5 de révolution de 2π
- 2 et 4 de révolution de π

En sommant ces deux matrices dans lesquelles $B=\mathcal{C}$, on sait que dans le résultat de l'arbre complet, $B=\mathcal{C}$

Piège : attention, l'arbre ne présente pas de symétrie de révolution !

Question 7: Rappeler la matrice d'inertie $I(G_i,S_i)$ en son centre G_i d'un cylindre plein S_i de rayon R_i , de longueur L_i et de masse M_i , d'axe (G_i,\vec{x}) dans la base B_i

Matrice d'inertie d'un cylindre d'axe \vec{x} en son centre de gravité :

$$I(G_{i}, S_{i}) = \begin{bmatrix} A_{i} & 0 & 0 \\ 0 & B_{i} & 0 \\ 0 & 0 & B_{i} \end{bmatrix}^{B_{i}} = \begin{bmatrix} M_{i} \frac{R_{i}^{2}}{2} & 0 & 0 \\ 0 & M_{i} \left(\frac{R_{i}^{2}}{4} + \frac{L_{i}^{2}}{12}\right) & 0 \\ 0 & 0 & M_{i} \left(\frac{R_{i}^{2}}{4} + \frac{L_{i}^{2}}{12}\right) \end{bmatrix}^{B_{i}}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Dynamique	TD2 - Correction

Question 8: En déduire la matrice $I(0,S_1+S_3+S_5)$ des parties S_1 , S_3 et S_5 de l'arbre 1 en O dans la base B_1

Cas des cylindres pleins 1, 3 et 5:

$I(G_1,S_1)$	$\begin{bmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{bmatrix}^{B_1}$
$I(G_3,S_3)$	$\begin{bmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{bmatrix}^{B_1}$
$I(G_5,S_5)$	$\begin{bmatrix} A_5 & 0 & 0 \\ 0 & B_5 & 0 \\ 0 & 0 & C_5 \end{bmatrix}^{B_1}$

Rappel du théorème d'Huygens généralisé :

$$\overrightarrow{OG_{i}} = \begin{bmatrix} a_{i} \\ b_{i} \\ c_{i} \end{bmatrix}^{p_{1}}$$

$$I(O,S_{i}) = I(G_{i},S_{i}) + M_{i} \begin{bmatrix} b_{i}^{2} + c_{i}^{2} & -a_{i}b_{i} & -a_{i}c_{i} \\ -a_{i}b_{i} & a_{i}^{2} + c_{i}^{2} & -b_{i}c_{i} \\ -a_{i}c_{i} & -b_{i}c_{i} & a_{i}^{2} + b_{i}^{2} \end{bmatrix}^{B_{1}}$$

$$\overrightarrow{OG_{1}} = \begin{bmatrix} -l_{1} \\ 0 \\ 0 \end{bmatrix}^{B_{1}} \quad I(O,S_{1}) = I(G_{1},S_{1}) + M_{1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & l_{1}^{2} & 0 \\ 0 & 0 & l_{1}^{2} \end{bmatrix}^{B_{1}} \quad \begin{bmatrix} A_{1} & 0 & 0 & 0 \\ 0 & B_{1} + M_{1}l_{1}^{2} & 0 \\ 0 & 0 & C_{1} + M_{1}l_{1}^{2} \end{bmatrix}^{B_{1}}$$

$$\overrightarrow{OG_{3}} = \begin{bmatrix} l_{0} \\ 0 \\ 0 \end{bmatrix}^{B_{1}} \quad I(O,S_{3}) = I(G_{3},S_{3}) \qquad \begin{bmatrix} A_{3} & 0 & 0 \\ 0 & B_{3} & 0 \\ 0 & 0 & C_{3} \end{bmatrix}^{B_{1}}$$

$$\overrightarrow{OG_{3}} = \begin{bmatrix} l_{5} \\ 0 \\ 0 \end{bmatrix}^{B_{1}} \quad I(O,S_{5}) = I(G_{5},S_{5}) + M_{5} \begin{bmatrix} 0 & 0 & 0 \\ 0 & l_{5}^{2} & 0 \\ 0 & 0 & l_{5}^{2} \end{bmatrix}^{B_{1}} \quad \begin{bmatrix} A_{5} & 0 & 0 & 0 \\ 0 & B_{5} + M_{5}l_{5}^{2} & 0 \\ 0 & 0 & C_{5} + M_{5}l_{5}^{2} \end{bmatrix}^{B_{1}}$$

$$I(G_{1},S_{1}) = I(G_{5},S_{5})$$

$$l_{1} = l_{5} = 0.1625 m \quad ; \quad M_{1} = M_{5}$$

$$I(O,S_{1} + S_{3} + S_{5}) = I(G_{1},S_{1}) + M_{1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & l_{1}^{2} & 0 \\ 0 & 0 & l_{1}^{2} \end{bmatrix}^{B_{1}} + I(G_{3},S_{3}) + I(G_{5},S_{5}) + M_{5} \begin{bmatrix} 0 & 0 & 0 \\ 0 & l_{5}^{2} & 0 \\ 0 & 0 & l_{5}^{2} \end{bmatrix}^{B_{1}}$$

$$I(O,S_{1} + S_{3} + S_{5}) = I(G_{1},S_{1}) + M_{1} \begin{bmatrix} 0 & 0 & 0 \\ 0 & l_{1}^{2} & 0 \\ 0 & 0 & l_{1}^{2} \end{bmatrix}^{B_{1}} + I(G_{3},S_{3}) + I(G_{5},S_{5}) + M_{5} \begin{bmatrix} 0 & 0 & 0 \\ 0 & l_{5}^{2} & 0 \\ 0 & 0 & l_{5}^{2} \end{bmatrix}^{B_{1}}$$

$$I(O,S_{1} + S_{3} + S_{5}) = I(G_{1},S_{1}) + I(G_{3},S_{3}) + I(G_{3},S_{3}) + I(G_{5},S_{5}) + M_{5} \begin{bmatrix} 0 & 0 & 0 \\ 0 & l_{5}^{2} & 0 \\ 0 & 0 & l_{5}^{2} \end{bmatrix}^{B_{1}}$$

Question 9: Justifier le fait que nous allons préférer calculer la matrice des deux demicylindres creux en leurs points H_i plutôt qu'en leurs points G_i

Les bornes de l'intégrales sont difficiles à déterminer, le calcul le sera aussi!

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Dynamique	TD2 - Correction

Question 10: Déterminer la matrice d'inertie $I(H_i,S_i)$ en H_i d'un demi-cylindre creux dans le demi plan y>0, de rayon intérieur r_i , de rayon extérieur R_i et de longueur L_i ,

Compte tenu des symétries :

$$I(H_i, S_i) = \begin{bmatrix} A_i & 0 & 0 \\ 0 & B_i & 0 \\ 0 & 0 & C_i \end{bmatrix}^{B_i} ; \quad A_i = \int_V (y^2 + z^2) dm$$

Solide de « demi » révolution (cf démonstration du cours et page suivante – vous n'avez pas à connaître ce résultat) :

$$I(H_i, S_i) = \begin{bmatrix} A_i & 0 & 0 \\ 0 & B_i & 0 \\ 0 & 0 & B_i \end{bmatrix}^{B_i} ; \quad B_i = C_i = \frac{A_i}{2} + \int_V x^2 dm$$

Calcul:

$$M_{i} = \rho L_{i} \pi \frac{\left(R_{i}^{2} - r_{i}^{2}\right)}{2} \iff \rho = \frac{2M_{i}}{L_{i} \pi \left(R_{i}^{2} - r_{i}^{2}\right)}$$

$$A_{i} = \int_{V} (y^{2} + z^{2}) dm = \int_{V} r^{2} dm = \rho \int_{-\frac{L_{i}}{2}}^{\frac{L_{i}}{2}} \int_{R_{i}}^{\pi} r^{2} r dr d\theta dx = \rho \int_{-\frac{L_{i}}{2}}^{\frac{L_{i}}{2}} dx \int_{r_{i}}^{\pi} r^{3} dr \int_{0}^{\pi} d\theta$$

$$A_{i} = \rho L_{i} \frac{\left(R_{i}^{4} - r_{i}^{4}\right)}{4} \pi = \rho L_{i} \pi \frac{\left(R_{i}^{2} - r_{i}^{2}\right)}{2} \frac{\left(R_{i}^{2} + r_{i}^{2}\right)}{2} = M_{i} \frac{\left(R_{i}^{2} + r_{i}^{2}\right)}{2}$$

$$\int_{V} x^{2} dm = \rho \int_{-\frac{L_{i}}{2}}^{R_{i}} x^{2} dx \int_{r_{i}}^{R_{i}} r dr \int_{0}^{\pi} d\theta = \rho \left[\frac{x^{3}}{3}\right]_{-\frac{L_{i}}{2}}^{\frac{L_{i}}{2}} \frac{\left(R_{i}^{2} - r_{i}^{2}\right)}{2} \pi = \rho \frac{2L_{i}^{3}}{8} \frac{\left(R_{i}^{2} - r_{i}^{2}\right)}{6} \pi$$

$$= \rho L_{i} \pi \frac{\left(R_{i}^{2} - r_{i}^{2}\right)}{2} \frac{L_{i}^{2}}{12} = M_{i} \frac{L_{i}^{2}}{12}$$

$$B_{i} = C_{i} = \frac{A_{i}}{2} + \int_{V} x^{2} dm = M_{i} \frac{\left(R_{i}^{2} + r_{i}^{2}\right)}{4} + M_{i} \frac{L_{i}^{2}}{12} = M_{i} \left(\frac{L_{i}^{2}}{12} + \frac{\left(R_{i}^{2} + r_{i}^{2}\right)}{4}\right)$$

$$I(H_{i}, S_{i}) = \begin{bmatrix} A_{i} & 0 & 0 \\ 0 & B_{i} & 0 \\ 0 & 0 & C_{i} \end{bmatrix}^{B_{i}} = \begin{bmatrix} M_{i} \frac{R_{i}^{2} + r_{i}^{2}}{2} & 0 & 0 \\ 0 & M_{i} \left(\frac{L_{i}^{2}}{12} + \frac{R_{i}^{2} + r_{i}^{2}}{4}\right) & 0 \\ 0 & 0 & M_{i} \left(\frac{L_{i}^{2}}{12} + \frac{R_{i}^{2} + r_{i}^{2}}{4}\right) \end{bmatrix}$$

Remarque : On aurait pu s'attendre à voir apparaître $R_i^2 - r_i^2$ pour les termes de la matrice d'un cylindre creux, mais en fait c'est intégré dans la masse !

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Dynamique	TD2 - Correction

Démonstration du résultat (démo dans le cours) sur la révolution d'un demi-tour qui donne le même résultat que la révolution d'un tour :

$$B_{i} = \int_{V} (x^{2} + z^{2}) dm = \int_{V} x^{2} dm + \int_{V} z^{2} dm$$

$$C_{i} = \int_{V} (x^{2} + y^{2}) dm = \int_{V} x^{2} dm + \int_{V} y^{2} dm$$

$$\int_{V} x^{2} dm = \rho \int_{\frac{L_{i}}{2}}^{\frac{L_{i}}{2}} \int_{0}^{K_{i}} x^{2} r dr d\theta dx = \rho \int_{\frac{L_{i}}{2}}^{\frac{L_{i}}{2}} x^{2} dx \int_{r_{i}}^{R_{i}} r dr \int_{0}^{\pi} d\theta = \rho \frac{L_{i}^{3}}{12} \frac{(R_{i}^{2} - r_{i}^{2})}{2} \pi$$

$$\int_{V} x^{2} dm = \rho L_{i} \pi \frac{(R_{i}^{2} - r_{i}^{2})}{2} \frac{L_{i}^{2}}{12} = M_{i} \frac{L_{i}^{2}}{12}$$

$$\int_{V} y^{2} dm = \rho \int_{\frac{L_{i}}{2}}^{\frac{L_{i}}{2}} \int_{r_{i}}^{\pi} r^{2} \cos^{2}\theta r dr d\theta dx = \rho \int_{\frac{L_{i}}{2}}^{\frac{L_{i}}{2}} dx \int_{r_{i}}^{R_{i}} r^{3} dr \int_{0}^{\pi} \cos^{2}\theta d\theta$$

$$\int_{V}^{\pi} z^{2} dm = \rho \int_{\frac{L_{i}}{2}}^{\frac{L_{i}}{2}} \int_{r_{i}}^{\pi} r^{2} \sin^{2}\theta r dr d\theta dx = \rho \int_{-\frac{L_{i}}{2}}^{\frac{L_{i}}{2}} \int_{r_{i}}^{R_{i}} r^{3} dr \int_{0}^{\pi} \sin^{2}\theta d\theta$$

$$\int_{0}^{\pi} \cos^{2}\theta d\theta = \int_{0}^{\pi} (1 - \sin^{2}\theta) d\theta = \pi - \int_{0}^{\pi} \sin^{2}\theta d\theta$$

$$\int_{0}^{\pi} \sin^{2}\theta d\theta = \frac{1}{2} \int_{0}^{\pi} (1 - \cos 2\theta) d\theta = \frac{1}{2} \left[\pi - \left[\frac{\sin 2\theta}{2}\right]_{0}^{\pi}\right] = \frac{\pi}{2}$$

$$\int_{0}^{\pi} \cos^{2}\theta d\theta = \pi - \frac{\pi}{2} = \frac{\pi}{2}$$

$$\int_{V} y^{2} dm = \int_{V} z^{2} dm = \frac{1}{2} \int_{V} (y^{2} + z^{2}) dm = \frac{A_{i}}{2}$$

$$B_{i} = C_{i} = \frac{A_{i}}{2} + \int_{X} x^{2} dm$$

D'où:

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Dynamique	TD2 - Correction

Question 11: En déduire la matrice d'inertie de chaque demi-cylindre creux 2 et 4 aux points H_i dans la base B_1 – Justifier le fait que y<0 ne change pas le résultat précédent

Dans notre cas, le cylindre est suivant y négatif : $A_i = \int_V (y^2 + z^2) dm$ ne change pas de signe - $B_i = C_i = \frac{A_i}{2} + \int_V x^2 dm$ ne change pas non plus de signe. Donc la matrice d'inertie en y négatifs est identique. Attention si on intégrait, ce serait bien de $-\pi$ à 0, ce qui ne change pas le signe.

$$I(H_{i}, S_{i}) = \begin{bmatrix} A_{i} & 0 & 0 \\ 0 & B_{i} & 0 \\ 0 & 0 & C_{i} \end{bmatrix}^{B_{1}} = \begin{bmatrix} M_{i} \frac{\left(R_{i}^{2} + r_{i}^{2}\right)}{2} & 0 & 0 \\ 0 & M_{i} \left(\frac{L_{i}^{2}}{12} + \frac{\left(R_{i}^{2} + r_{i}^{2}\right)}{4}\right) & 0 \\ 0 & 0 & M_{i} \left(\frac{L_{i}^{2}}{12} + \frac{\left(R_{i}^{2} + r_{i}^{2}\right)}{4}\right) \end{bmatrix}^{B_{1}}$$

$$i = 2.4$$

Question 12: En déduire la matrice d'inertie $I({\bf 0},S_2+S_4)$ des demi-cylindres creux 2 et 4 au point ${\bf 0}$ dans la base B_1 – ATTENTION !!!

$I(H_2,S_2)$	$\begin{bmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{bmatrix}^{B_1}$
$I(H_4,S_4)$	$\begin{bmatrix} A_4 & 0 & 0 \\ 0 & B_4 & 0 \\ 0 & 0 & C_4 \end{bmatrix}^{B_1}$

$$\overrightarrow{H_{l}G_{l}} = \begin{bmatrix} \alpha_{i} \\ \beta_{l} \\ \gamma_{i} \end{bmatrix}^{B_{1}} \qquad \overrightarrow{OG_{l}} = \begin{bmatrix} a_{i} \\ b_{l} \\ c_{i} \end{bmatrix}^{B_{1}} \\
I(H_{i}, S_{i}) = I(G_{i}, S_{i}) \qquad I(O, S_{i}) = I(G_{i}, S_{i}) \\
+M_{i} \begin{bmatrix} \beta_{i}^{2} + \gamma_{i}^{2} & -\alpha_{i}\beta_{i} & -\alpha_{i}\gamma_{i} \\ -\alpha_{i}\beta_{i} & \alpha_{i}^{2} + \gamma_{i}^{2} & -\beta_{i}\gamma_{i} \\ -\alpha_{i}\gamma_{i} & -\beta_{i}\gamma_{i} & \alpha_{i}^{2} + \beta_{i}^{2} \end{bmatrix}^{B_{1}} \qquad +M_{i} \begin{bmatrix} b_{i}^{2} + c_{i}^{2} & -a_{i}b_{i} & -a_{i}c_{i} \\ -a_{i}b_{i} & a_{i}^{2} + c_{i}^{2} & -b_{i}c_{i} \\ -a_{i}c_{i} & -b_{i}c_{i} & a_{i}^{2} + b_{i}^{2} \end{bmatrix}^{B_{1}}$$

$$I(H_{i}, S_{i}) - I(O, S_{i})$$

$$= M_{i} \begin{bmatrix} \beta_{i}^{2} + \gamma_{i}^{2} & -\alpha_{i}\beta_{i} & -\alpha_{i}\gamma_{i} \\ -\alpha_{i}\beta_{i} & \alpha_{i}^{2} + \gamma_{i}^{2} & -\beta_{i}\gamma_{i} \\ -\alpha_{i}\gamma_{i} & -\beta_{i}\gamma_{i} & \alpha_{i}^{2} + \beta_{i}^{2} \end{bmatrix}^{B_{1}} - \begin{bmatrix} b_{i}^{2} + c_{i}^{2} & -a_{i}b_{i} & -a_{i}c_{i} \\ -a_{i}b_{i} & a_{i}^{2} + c_{i}^{2} & -b_{i}c_{i} \\ -a_{i}c_{i} & -b_{i}c_{i} & a_{i}^{2} + b_{i}^{2} \end{bmatrix}^{B_{1}}$$

$$I(O, S_{i}) = I(H_{i}, S_{i})$$

$$+ M_{i} \begin{bmatrix} b_{i}^{2} + c_{i}^{2} & -a_{i}b_{i} & -a_{i}c_{i} \\ -a_{i}b_{i} & a_{i}^{2} + c_{i}^{2} & -b_{i}c_{i} \\ -a_{i}c_{i} & -b_{i}c_{i} & a_{i}^{2} + b_{i}^{2} \end{bmatrix}^{B_{1}} - \begin{bmatrix} \beta_{i}^{2} + \gamma_{i}^{2} & -\alpha_{i}\beta_{i} & -\alpha_{i}\gamma_{i} \\ -\alpha_{i}\beta_{i} & \alpha_{i}^{2} + \gamma_{i}^{2} & -\beta_{i}\gamma_{i} \\ -\alpha_{i}\gamma_{i} & -\beta_{i}\gamma_{i} & \alpha_{i}^{2} + \beta_{i}^{2} \end{bmatrix}^{B_{1}}$$

$$I(O, S_{i}) = I(H_{i}, S_{i}) + M_{i}[K_{i}^{0} - K_{i}^{H}]$$

$$I(O, S_{i}) = I(H_{i}, S_{i}) + M_{i}K_{i}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Dynamique	TD2 - Correction

$$I(O,S_{i}) = I(G_{i},S_{i}) + M_{i}K_{i}^{0}$$

$$I(H_{i},S_{i}) = I(G_{i},S_{i}) + M_{i}K_{i}^{1}$$

$$I(O,S_{i}) - I(H_{i},S_{i}) + M_{i}K_{i}^{1}$$

$$I(O,S_{i}) - I(H_{i},S_{i}) + M_{i}[K_{i}^{0} - K_{i}^{H}]$$

$$I(O,S_{i}) = I(H_{i},S_{i}) + M_{i}[K_{i}^{0} - K_{i}^{H}]$$

$$\overline{OG_{2}} = \begin{bmatrix} V_{G_{2}} \\ V_{G_{2}} \\ V_{G_{2}} \end{bmatrix}^{B_{1}}$$

$$\overline{OG_{4}} = \begin{bmatrix} V_{G_{4}} \\ V_{G_{4}} \\ V_{G_{4}} \end{bmatrix}^{B_{1}}$$

$$K_{2}^{0} = \begin{bmatrix} V_{G_{2}}^{2} & l_{2}Y_{G_{2}} & 0 \\ l_{2}Y_{G_{2}} & l_{2}^{2} & 0 \\ 0 & 0 & l_{2}^{2} + Y_{G_{2}}^{2} \end{bmatrix}^{B_{1}}$$

$$K_{4}^{0} = \begin{bmatrix} V_{G_{4}}^{2} & -l_{4}Y_{G_{4}} & 0 \\ -l_{4}Y_{G_{4}} & l_{4}^{2} & 0 \\ 0 & 0 & l_{4}^{2} + Y_{G_{4}}^{2} \end{bmatrix}^{B_{1}}$$

$$\overline{H_{2}G_{2}} = \begin{bmatrix} V_{G_{2}}^{2} & 0 & 0 \\ V_{G_{2}}^{2} & 0 & 0 \\ 0 & 0 & V_{G_{2}}^{2} \end{bmatrix}^{B_{1}}$$

$$K_{2}^{H} = \begin{bmatrix} V_{G_{2}}^{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & V_{G_{4}}^{2} \end{bmatrix}^{B_{1}}$$

$$K_{4}^{H} = \begin{bmatrix} V_{G_{4}}^{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & V_{G_{4}}^{2} \end{bmatrix}^{B_{1}}$$

$$K_{4}^{H} = \begin{bmatrix} V_{G_{4}}^{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & V_{G_{4}}^{2} \end{bmatrix}^{B_{1}}$$

$$K_{4}^{H} = \begin{bmatrix} V_{G_{4}}^{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & V_{G_{4}}^{2} \end{bmatrix}^{B_{1}}$$

$$K_{4}^{H} = \begin{bmatrix} V_{G_{4}}^{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & V_{G_{4}}^{2} \end{bmatrix}^{B_{1}}$$

$$K_{4}^{H} = \begin{bmatrix} V_{G_{4}}^{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & V_{G_{4}}^{2} \end{bmatrix}^{B_{1}}$$

$$V_{5}^{H} = \begin{bmatrix} V_{G_{4}}^{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & V_{G_{4}}^{2} \end{bmatrix}^{B_{1}}$$

$$V_{6}^{H} = \begin{bmatrix} V_{G_{4}}^{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & V_{G_{4}}^{2} \end{bmatrix}^{B_{1}}$$

$$V_{7}^{H} = \begin{bmatrix} V_{G_{4}}^{2} & 0 & 0 \\ 0 & 0 & V_{G_{4}}^{2} \end{bmatrix}^{B_{1}}$$

$$V_{7}^{H} = \begin{bmatrix} V_{G_{4}}^{2} & 0 & 0 \\ 0 & 0 & V_{G_{4}}^{2} \end{bmatrix}^{B_{1}}$$

$$V_{7}^{H} = \begin{bmatrix} V_{G_{4}}^{2} & 0 & 0 \\ 0 & 0 & V_{G_{4}}^{2} \end{bmatrix}^{B_{1}}$$

$$V_{7}^{H} = \begin{bmatrix} V_{7}^{2} & 0 & 0 \\ 0 & 0 & V_{G_{4}}^{2} \end{bmatrix}^{B_{1}}$$

$$V_{8}^{H} = \begin{bmatrix} V_{7}^{2} & 0 & 0 \\ 0 & 0 & V_{G_{4}}^{2} \end{bmatrix}^{B_{1}}$$

$$V_{8}^{H} = \begin{bmatrix} V_{7}^{2} & 0 & 0 \\ 0 & 0 & V_{7}^{2} \end{bmatrix}^{B_{1}}$$

$$V_{8}^{H} = \begin{bmatrix} V_{7}^{2} & 0 & 0 \\ 0 & 0 & V_{7}^{2} \end{bmatrix}^{B_{1}}$$

$$V_{8}^{H} = \begin{bmatrix} V_{7}^{2} & 0 & 0 \\ 0 & 0 & V_{7}^{2} \end{bmatrix}^{B_{1}}$$

$$V_{8}^{H} = \begin{bmatrix} V_{7}^{2} & 0 & 0 \\ 0 & 0 & V_{7}^{2} \end{bmatrix}^{B_{1}}$$

$$V_{8}^{H} = \begin{bmatrix} V$$

$$I(O,S_2) = I(H_2,S_2) + M_2 \begin{bmatrix} 0 & l_2 Y_{G_2} & 0 \\ l_2 Y_{G_2} & l_2^2 & 0 \\ 0 & 0 & l_2^2 \end{bmatrix}^{B_1}$$

$$I(O,S_4) = I(H_4,S_4) + M_4 \begin{bmatrix} 0 & -l_4 Y_{G_4} & 0 \\ -l_4 Y_{G_4} & l_4^2 & 0 \\ 0 & 0 & l_4^2 \end{bmatrix}^{B_1}$$

Or:

$$I(H_2, S_2) = I(H_4, S_4)$$
 ; $M_2 = M_4$; $l_2 = l_4$; $Y_{G_2} = Y_{G_4}$

Donc:

$$I(O, S_2 + S_4) = 2I(H_2, S_2) + 2M_2 \begin{bmatrix} 0 & 0 & 0 \\ 0 & l_2^2 & 0 \\ 0 & 0 & l_2^2 \end{bmatrix}^{B_1}$$

$$l_2 = l_4 = 0.075 m$$

 $Y_{G_2} = Y_{G_4} = -27.6 mm$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Dynamique	TD2 - Correction

Question 13: En déduire la matrice I(0,1) de l'arbre 1 dans la base B_1 .

$$I(0,1) = \sum_{i=1}^{5} I(0,S_i) = I(0,S_1 + S_3 + S_5) + I(0,S_2 + S_4)$$

$$I(0,1) = 2I(G_1,S_1) + I(G_3,S_3) + 2M_1 \begin{bmatrix} 0 & 0 & 0 \\ 0 & l_1^2 & 0 \\ 0 & 0 & l_1^2 \end{bmatrix}^{B_1} + 2I(H_2,S_2) + 2M_2 \begin{bmatrix} 0 & 0 & 0 \\ 0 & l_2^2 & 0 \\ 0 & 0 & l_2^2 \end{bmatrix}^{B_1}$$

$$I(0,1) = 2I(G_1,S_1) + I(G_3,S_3) + 2I(H_2,S_2) + 2M_1 \begin{bmatrix} 0 & 0 & 0 \\ 0 & l_1^2 & 0 \\ 0 & 0 & l_1^2 \end{bmatrix}^{B_1} + 2M_2 \begin{bmatrix} 0 & 0 & 0 \\ 0 & l_2^2 & 0 \\ 0 & 0 & l_2^2 \end{bmatrix}^{B_1}$$

$$I(0,1) = \begin{bmatrix} 1,64*10^{-2} & 0 & 0 \\ 0 & 9,44*10^{-2} & 0 \\ 0 & 0 & 9,44*10^{-2} \end{bmatrix}^{B_1}$$

Question 14: En déduire la matrice I(G,1) de l'arbre 1 dans B_1 .

$$I(G,1) = I(O,1) - M \begin{bmatrix} Y_G^2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & Y_G^2 \end{bmatrix}_{B_1}$$

$$I(G,1) = \begin{bmatrix} 1,21*10^{-2}kg.m^2 & 0 & 0 \\ 0 & 0 & Y_G^2 \end{bmatrix}_{B_1}$$

$$I(G,1) = \begin{bmatrix} 1,21*10^{-2}kg.m^2 & 0 & 0 \\ 0 & 9,44*10^{-2}kg.m^2 & 0 \\ 0 & 0 & 9,01*10^{-2}g.m^2 \end{bmatrix}^{B_1} = \begin{bmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{bmatrix}_{B_1}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Dynamique	TD2 - Correction

Torseur dynamique

Question 15: Déterminer la résultante dynamique $\overrightarrow{R_{d_{10}}}$ dans B_1 .

$$\begin{split} \overrightarrow{R_{d_{10}}} &= M \overrightarrow{\Gamma}(G, 1/0) \\ \overrightarrow{V}(G, 1/0) &= \frac{d \overrightarrow{OG}}{dt} \bigg)_0 = \frac{d Y_G \overrightarrow{y_1}}{dt} \bigg)_0 = Y_G \omega \overrightarrow{z_1} \\ \overrightarrow{\Gamma}(G, 1/0) &= \frac{d \overrightarrow{V}(G, 1/0)}{dt} \bigg)_0 = \frac{d Y_G \omega \overrightarrow{z_1}}{dt} \bigg)_0 = Y_G \dot{\omega} \overrightarrow{z_1} - Y_G \omega^2 \overrightarrow{y_1} \\ \overrightarrow{R_{d_{10}}} &= \begin{bmatrix} 0 \\ -M Y_G \omega^2 \\ M Y_G \dot{\omega} \end{bmatrix}^{B_1} \end{split}$$

Question 16: Déterminer le moment cinétique $\vec{\sigma}(G,1/0)$ dans B_1 .

$$\vec{\sigma}(G, 1/0) = I(G, 1)\vec{\Omega}(1/0) = \begin{bmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{bmatrix}_{B_1} \begin{bmatrix} \omega \\ 0 \\ 0 \end{bmatrix}^{B_1} = \begin{bmatrix} A\omega \\ 0 \\ 0 \end{bmatrix}^{B_1} = A\omega \vec{x_1}$$
$$\vec{\Omega}(1/0) = \begin{bmatrix} \omega \\ 0 \\ 0 \end{bmatrix}^{B_1}$$

Question 17: Déterminer le moment dynamique $\vec{\delta}(G,1/0)$ dans B_1 .

$$\vec{\delta}(G, 1/0) = \frac{d\vec{\sigma}(G, 1/0)}{dt} \Big|_{0} = \frac{dA\omega \overrightarrow{x_{1}}}{dt} \Big|_{0} = A\dot{\omega} \overrightarrow{x_{1}} = \begin{bmatrix} A\dot{\omega} \\ 0 \\ 0 \end{bmatrix}^{B_{1}}$$

Question 18: Déterminer $\{D(1/0)\}\$ en G dans B_1 .

$$\{D(1/0)\} = \begin{cases} 0 & A\dot{\omega} \\ -MY_G\omega^2 & 0 \\ MY_G\dot{\omega} & 0 \end{cases}_G^{B_1}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Dynamique	TD2 - Correction

Question 19: En déduire $\{D(1/0)\}$ en O dans B.

$$\vec{\delta}(0,1/0) = \vec{\delta}(G,1/0) + \overrightarrow{OG} \wedge \overrightarrow{R}_{d_{10}}$$

$$\overrightarrow{OG} = \begin{bmatrix} 0 \\ Y_G \\ 0 \end{bmatrix}^{B_1}$$

$$\begin{bmatrix} 0 \\ Y_G \\ 0 \end{bmatrix}^{B_1} \wedge \begin{bmatrix} 0 \\ -MY_G \omega^2 \end{bmatrix}^{B_1} = \begin{bmatrix} MY_G^2 \dot{\omega} \\ 0 \\ 0 \end{bmatrix}^{B_1}$$

$$\{D(1/0)\} = \begin{cases} 0 & (A + MY_G^2) \dot{\omega} \\ -MY_G \dot{\omega} & 0 \end{cases} \begin{cases} 0 \\ MY_G \dot{\omega} & 0 \end{cases}$$

$$\{D(1/0)\} = \begin{cases} 0 & (A + MY_G^2) \dot{\omega} \\ -MY_G \dot{\omega} & 0 \end{cases} \begin{cases} 0 \\ -MY_G \dot{\omega} & \sin \theta \\ -MY_G \dot{\omega} & \cos \theta \end{cases} \begin{cases} 0 \\ -MY_G \dot{\omega} & \cos \theta \end{cases} \begin{cases} 0 \\ 0 \end{cases} \begin{cases} A + MY_G^2 \dot{\omega} \end{cases} \begin{cases} B \end{cases}$$

$$\{D(1/0)\} = \begin{cases} 0 & (A + MY_G^2) \dot{\omega} \\ -MY_G \dot{\omega}^2 & \cos \theta + \dot{\omega} & \sin \theta \\ -MY_G \dot{\omega}^2 & \cos \theta + \dot{\omega} & \sin \theta \end{cases} \begin{cases} 0 \\ -MY_G (\omega^2 & \cos \theta + \dot{\omega} & \sin \theta \\ -MY_G (\omega^2 & \sin \theta - \dot{\omega} & \cos \theta \end{cases} \end{cases} \begin{cases} 0 \end{cases}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Dynamique	TD2 - Correction

Equations du PFD

Question 20: Enumérer les actions extérieures s'exerçant sur 1 et exprimer leurs torseurs en O dans la base B.

Action de la pesanteur :

$$\{\mathcal{T}_{pesanteur}\} = \begin{cases} 0 & 0 \\ -Mg & 0 \\ 0 & 0 \end{cases}_G^B = \begin{cases} 0 & Y_G Mg \sin \theta \\ -Mg & 0 \\ 0 & 0 \end{cases}_0^B$$

$$\overrightarrow{OG} = \begin{bmatrix} 0 \\ Y_G \end{bmatrix}_G^{B_1} = \begin{bmatrix} 0 \\ Y_G \cos \theta \\ Y_G \sin \theta \end{bmatrix}^{B_1}$$

$$\overrightarrow{M_0}(\vec{P}) = \overrightarrow{M_G}(\vec{P}) + \overrightarrow{OG} \wedge \vec{P} = \vec{0} + \begin{bmatrix} 0 \\ Y_G \cos \theta \\ Y_G \sin \theta \end{bmatrix}^B \wedge \begin{bmatrix} 0 \\ -Mg \\ 0 \end{bmatrix}^B = \begin{bmatrix} Y_G Mg \sin \theta \\ 0 \\ 0 \end{bmatrix}^B$$

Action de la denture :

$$\{T_{1'\to 1}\} = \begin{cases} 0 & 0 \\ Y_P & 0 \\ Z_P & 0 \end{cases}_P^B = \begin{cases} 0 & -RY_P \\ Y_P & 0 \\ Z_P & 0 \end{cases}_O^B$$

$$\overrightarrow{OP} = \begin{bmatrix} 0 \\ 0 \\ R \end{bmatrix}^B$$

$$\overrightarrow{M_0}(\overrightarrow{R_{1'\to 1}}) = \overrightarrow{M_P}(\overrightarrow{R_{1'\to 1}}) + \overrightarrow{OP} \wedge \overrightarrow{R_{1'\to 1}} = \overrightarrow{0} + \begin{bmatrix} 0 \\ 0 \\ R \end{bmatrix}^B \wedge \begin{bmatrix} 0 \\ Y_P \\ Z_P \end{bmatrix}^B = \begin{bmatrix} -RY_P \\ 0 \\ 0 \end{bmatrix}^B$$

Action de la pivot supposée parfaite :

$$\begin{cases} X_{01} & 0 \\ Y_{01} & M_{01} \\ Z_{01} & N_{01} \end{cases}_0^B$$

Action du moteur :

$$\begin{cases}
 0 & C_m \\
 0 & 0 \\
 0 & 0
 \end{cases}_O$$

Question 21: Donner le torseur général des actions de l'extérieur sur l'arbre 1 $\{T_{\overline{1}\to 1}\}$ en O dans la base B.

$$\begin{split} \{\mathcal{T}_{\overline{1} \to 1}\} &= \left\{ \begin{matrix} 0 & Y_G Mg \sin \theta \\ -Mg & 0 \\ 0 & 0 \end{matrix} \right\}_0^B + \left\{ \begin{matrix} 0 & -RY_P \\ Y_P & 0 \\ Z_P & 0 \end{matrix} \right\}_O^B + \left\{ \begin{matrix} X_{01} & 0 \\ Y_{01} & M_{01} \\ Z_{01} & N_{01} \end{matrix} \right\}_O^B + \left\{ \begin{matrix} 0 & C_m \\ 0 & 0 \\ 0 & 0 \end{matrix} \right\}_O^B \\ \{\mathcal{T}_{\overline{1} \to 1}\} &= \left\{ \begin{matrix} X_{01} & Y_G Mg \sin \theta - RY_P + C_m \\ Y_{01} - Mg + Y_P & M_{01} \\ Z_{01} + Z_P & N_{01} \end{matrix} \right\}_O^B \end{split}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Dynamique	TD2 - Correction

Question 22: Déterminer les 6 équations issues du PFD dans la base B.

$$\{\mathcal{D}(1/0)\} = \{T_{ext \to 1}\}$$

$$\left\{ \begin{array}{c} 0 & (A + MY_G^2)\dot{\omega} \\ -MY_G(\omega^2\cos\theta + \dot{\omega}\sin\theta) & 0 \\ -MY_G(\omega^2\sin\theta - \dot{\omega}\cos\theta) & 0 \end{array} \right\}_0^B = \left\{ \begin{array}{c} X_{01} & Y_GMg\sin\theta - RY_P + C_m \\ Y_{01} - Mg + Y_P & M_{01} \\ Z_{01} + Z_P & N_{01} \end{array} \right\}_0^B$$

$$\left\{ \begin{array}{c} 0 = X_{01} \\ -MY_G(\omega^2\cos\theta + \dot{\omega}\sin\theta) = Y_{01} - Mg + Y_P \\ -MY_G(\omega^2\sin\theta - \dot{\omega}\cos\theta) = Z_{01} + Z_P \\ (A + MY_G^2)\dot{\omega} = Y_GMg\sin\theta - RY_P + C_m \\ 0 = M_{01} \\ 0 = N_{01} \end{array} \right.$$

$$\left\{ \begin{array}{c} X_{01} = 0 \\ Y_{01} = -MY_G(\omega^2\cos\theta + \dot{\omega}\sin\theta) + Mg - Y_P \\ Z_{01} = -MY_G(\omega^2\sin\theta - \dot{\omega}\cos\theta) - Z_P \\ C_m = (A + MY_G^2)\dot{\omega} - Y_GMg\sin\theta + RY_P \\ M_{01} = 0 \\ N_{01} = 0 \end{array} \right.$$

Question 23: Par analogie avec l'étude de l'arbre 1, déterminer le système d'équations issu du PFD appliqué à 1' en $\mathbf{0}'$

$$\begin{cases} X_{01'} = 0 \\ -MY_G(\omega^2 \cos \theta + \dot{\omega} \sin \theta) = Y_{01'} - Mg - Y_P \\ MY_G(\omega^2 \sin \theta - \dot{\omega} \cos \theta) = Z_{01'} - Z_P \\ (A + MY_G^2)\dot{\omega} = Y_G Mg \sin \theta + RY_P \\ 0 = M_{01'} \\ 0 = N_{01'} \end{cases}$$

$$\begin{cases} X_{01'} = 0 \\ Y_{01'} = -MY_G(\omega^2 \cos \theta + \dot{\omega} \sin \theta) + Mg + Y_P \\ Z_{01'} = MY_G(\omega^2 \sin \theta - \dot{\omega} \cos \theta) + Z_P \\ 0 = -(A + MY_G^2)\dot{\omega} + Y_G Mg \sin \theta + RY_P \\ M_{01'} = 0 \\ N_{01'} = 0 \end{cases}$$

Question 24: Faire un bilan du nombre d'inconnues et du nombre d'équations de ce système et conclure sur sa solvabilité

On a 11 inconnues (attention Y_P et Z_P sont liés) : $I_S = 11$; $E_S = 12$; m = 1

Les deux équations en moment sur x sont liées, l'une donne Y_P , l'autre a tout qui est connu.

Le mécanisme est isostatique et solvable.

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Dynamique	TD2 - Correction

PFD et actions de liaisons

Question 25: Donner l'expression des torseurs $\{\mathcal{T}_{0\to 1}\}$ et $\{\mathcal{T}_{0\to 1'}\}$ des actions dans les liaisons pivot des pièces 1 et 1' avec le bâti en 0 et 0' en gardant Y_P et Z_P .

$$\{\mathcal{T}_{0\to 1}\} = \begin{cases} 0 & 0 \\ -MY_G(\omega^2\cos\theta + \dot{\omega}\sin\theta) + Mg - Y_P & 0 \\ -MY_G(\omega^2\sin\theta - \dot{\omega}\cos\theta) - Z_P & 0 \end{cases}_0^B$$

$$\{T_{0\to 1'}\} = \begin{cases} 0 & 0 \\ -MY_G(\omega^2 \cos \theta + \dot{\omega} \sin \theta) + Mg + Y_P & 0 \\ MY_G(\omega^2 \sin \theta - \dot{\omega} \cos \theta) + Z_P & 0 \end{cases}_{O'}$$

Question 26: En déduire le torseur $\{T_{1U1'\to 0}\}$ de l'action de l'ensemble des deux arbres 1 et 1' sur le bâti 0 dans la base B au point P

$$\overrightarrow{PO} = \begin{bmatrix} 0 \\ 0 \\ -R \end{bmatrix}^{B}$$

$$\overrightarrow{M_{P}}(\overrightarrow{R_{0 \to 1}}) = \overrightarrow{M_{O}}(\overrightarrow{R_{0 \to 1}}) + \overrightarrow{PO} \wedge \overrightarrow{R_{0 \to 1}}$$

$$\begin{bmatrix} 0 \\ 0 \\ -R \end{bmatrix}^{B} \wedge \begin{bmatrix} 0 \\ -MY_{G}(\omega^{2} \cos \theta + \dot{\omega} \sin \theta) + Mg - Y_{P} \\ -MY_{G}(\omega^{2} \sin \theta - \dot{\omega} \cos \theta) - Z_{P} \end{bmatrix}^{B} = \begin{bmatrix} R(-MY_{G}(\omega^{2} \cos \theta + \dot{\omega} \sin \theta) + Mg - Y_{P}) \\ 0 \\ 0 \\ R \end{bmatrix}^{B}$$

$$\overrightarrow{PO'} = \begin{bmatrix} 0 \\ 0 \\ R \end{bmatrix}^{B}$$

$$\overrightarrow{M_{P}}(\overrightarrow{R_{0 \to 1}}) = \overrightarrow{M_{O'}}(\overrightarrow{R_{0 \to 1}}) + \overrightarrow{PO'} \wedge \overrightarrow{R_{0 \to 1}}$$

$$\begin{bmatrix} 0 \\ 0 \\ R \end{bmatrix}^{B} \wedge \begin{bmatrix} -MY_{G}(\omega^{2} \cos \theta + \dot{\omega} \sin \theta) + Mg + Y_{P} \\ MY_{G}(\omega^{2} \sin \theta - \dot{\omega} \cos \theta) + Z_{P} \end{bmatrix}^{B} = \begin{bmatrix} -R(-MY_{G}(\omega^{2} \cos \theta + \dot{\omega} \sin \theta) + Mg + Y_{P}) \\ 0 \\ 0 \end{bmatrix}^{B}$$

$$\{T_{0 \to 1}\} + \{T_{0 \to 1'}\}$$

$$= \begin{cases} 0 & R(-MY_{G}(\omega^{2} \cos \theta + \dot{\omega} \sin \theta) + Mg - Y_{P}) \\ -MY_{G}(\omega^{2} \cos \theta + \dot{\omega} \sin \theta) + Mg - Y_{P} \\ 0 \\ -MY_{G}(\omega^{2} \cos \theta + \dot{\omega} \sin \theta) + Mg + Y_{P} \\ 0 \\ -MY_{G}(\omega^{2} \cos \theta + \dot{\omega} \sin \theta) + Mg + Y_{P} \\ 0 \\ MY_{G}(\omega^{2} \sin \theta - \dot{\omega} \cos \theta) + Z_{P} \\ 0 \end{cases}$$

$$\{T_{0 \to 1U1'}\} = \{T_{0 \to 1}\} + \{T_{0 \to 1'}\} = \begin{cases} 0 & -2RY_{P} \\ -2MY_{G}(\omega^{2} \cos \theta + \dot{\omega} \sin \theta) + 2Mg & 0 \\ 0 & 0 \end{cases}_{P}$$

$$\{T_{1U1' \to 0}\} = \begin{cases} 0 & 2RY_{P} \\ 2MY_{G}(\omega^{2} \cos \theta + \dot{\omega} \sin \theta) - 2Mg & 0 \\ 0 & 0 \end{cases}_{P}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Dynamique	TD2 - Correction

Question 27: Donner l'expression littérale de la composante verticale R_y des deux arbres sur le bâti lorsque la vitesse de rotation des arbres est constante, et exprimer avec des mots à quoi correspondent ses deux termes

$$\dot{\omega} = 0$$

$$R_y = Y_{01} + Y_{01'} = 2MY_G(\omega^2 \cos \theta + \dot{\omega} \sin \theta) - 2Mg = 2MY_G\omega^2 \cos \theta - 2Mg$$

Question 28: Quel est l'intérêt d'utiliser deux arbres contra rotatifs ?

$$R_z = Z_{01} + Z_{01'} = 0$$

La présence de deux arbres annule l'effet dynamique suivant \vec{z} . On ne récupère donc qu'un effort vertical \odot .

Question 29: Déterminer la vitesse de rotation minimale permettant de décoller la machine comme précisé dans la présentation du sujet

On isole le bâti machine de masse M_t sans les arbres! Leur poids passe par l'action R_v .

Il faut que l'effort vertical maximal généré dépasse le poids :

$$R_v^{max} \ge M_t g$$

On a:

$$R_y(\theta) = 2MY_G\omega^2\cos\theta - 2Mg$$

Compte tenu du paramétrage, si $\theta=0$, les masses sont en position basse, et on a $Y_G<0$ Donc :

$$R_y^{\ max} = -2MY_G\omega^2 - 2Mg \quad pour \ \theta = \pi$$

Il faut donc à la limite :

$$-2MY_G\omega^2 - 2Mg = M_tg$$

Remarque : cela revient à dire que la composante centrifuge doit contrer le poids de la machine avec les arbres :

$$-2MY_G\omega^2 = (M_t + 2M)g$$

Finalement:

$$\omega = \sqrt{\frac{(M_t + 2M)g}{-2MY_G}} = \sqrt{\frac{(100 + 2 * 11,19)9,81}{-2 * 11,19 * -0,019}} = 52,51rd/s = 501,43 \ tr/min$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Dynamique	TD2 - Correction

Question 30: Exprimer la variation de force de compactage du sol ΔR_y en fonction de M et M_t puis calculer sa valeur ?

Attention : M_t sans les deux arbres

$$\begin{split} Y_G < 0 \\ R_y{}^{max} &= -2MY_G\omega^2 - 2Mg \\ R_y{}^{min} &= 2MY_G\omega^2 - 2Mg \\ \Delta R_y &= R_y{}^{max} - R_y{}^{min} = -2MY_G\omega^2 - 2Mg - (2MY_G\omega^2 - 2Mg) = -4MY_G\omega^2 \end{split}$$

Or, d'après la question précédente, à la va vitesse telle que $R_y^{max} = M_t g...$

$$R_y^{max} = M_t g \Leftrightarrow -2MY_G \omega^2 - 2Mg = M_t g \Leftrightarrow 2MY_G \omega^2 = -(2M + M_t)g$$

Donc:

$$\Delta R_v = 2(2M + M_t)g = 2 * Poids total = 2(2 * 11,19 + 100) * 9,81 = 2401 N$$

C'est normal : L'effort doit soulever machine+2 arbres $(2M+M_t)g$ vers le haut, la force vers le bas sera la même, soit multiplication par 2

Au contact avec le sol, l'effort va de 0 à 2 fois le poids complet de la machine.

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Dynamique	TD2 - Correction

PFD et mouvement

Question 31: Donner l'équation différentielle du mouvement de l'arbre 1

$$C_m = (A + MY_G^2)\dot{\omega} - Y_G Mg \sin\theta + RY_P$$

Remarque : c'est le TMD appliqué à 1 en O en projection sur \vec{x}

Question 32: Donner l'équation différentielle du mouvement de l'arbre 1'

$$0 = -(A + MY_G^2)\dot{\omega} + Y_GMg\sin\theta + RY_P$$

Remarque : c'est le TMD appliqué à 1' en O en projection sur \vec{x}

Question 33: Déterminer l'inconnue Y_P à l'aide de l'unique équation du mouvement de l'arbre 1'

On trouve Y_P par l'équation différentielle de l'arbre 1' :

$$Y_P = \frac{\left(A + MY_G^2\right)\dot{\omega} - Y_G Mg\sin\theta}{R}$$

Question 34: En déduire la relation liant \mathcal{C}_m aux données du problème en remplaçant Y_P dans l'équation de l'arbre 1

$$C_m = (A + MY_G^2)\omega - Y_GMg\sin\theta + (A + MY_G^2)\dot{\omega} - Y_GMg\sin\theta$$
$$C_m = 2(A + MY_G^2)\dot{\omega} - 2Y_GMg\sin\theta$$

Question 35: Comment pourrait-on appeler le terme $2(A+M{Y_G}^2)$ qui apparaît dans cette formule

C'est l'inertie équivalente de l'ensemble des pièces en rotation :

$$J_{eq} = 2(A + MY_G^2)$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Dynamique	TD2 - Correction

Question 36: Déterminer l'expression du couple \mathcal{C}_m permettant d'obtenir une vitesse de rotation ω en un temps T.

On néglige l'effet de la gravité :

$$C_{m} = J_{eq}\dot{\omega}$$

$$\dot{\omega} = \frac{C_{m}}{J_{eq}} \quad ; \quad \omega(t=0) = 0 \quad ; \quad \omega(t=T) = \Omega$$

$$\omega(t) = \frac{C_{m}}{J_{eq}}t \quad ; \quad \Omega = \frac{C_{m}}{J_{eq}}T$$

$$C_{m} = \frac{\Omega J_{eq}}{T}$$

Si on ne la néglige pas, il faut résoudre :

$$C_m = J_{eq}\dot{\omega} - 2Y_G Mg \sin \theta$$
$$\ddot{\theta} - \frac{2Y_G Mg}{J_{eq}} \sin \theta = \frac{C_m}{J_{eq}}$$

Question 37: En déduire la valeur numérique de \mathcal{C}_m pour la valeur de T donnée dans le sujet

$$C_m = \frac{\Omega J_{eq}}{T} = \frac{2\Omega (A + MY_G^2)}{T}$$

$$C_m = \frac{2 * 52,51(1,21 * 10^{-2} + 11,19 * 0,019^2)}{1}$$

$$C_m = 1,72 Nm$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Dynamique	TD2 - Correction

Question 38: En sommant les deux équations du mouvement, déterminer le lien entre $2RY_p$ et \mathcal{C}_m

$$C_m = (A + MY_G^2)\dot{\omega} - Y_GMg\sin\theta + RY_P$$

$$0 = -(A + MY_G^2)\dot{\omega} + Y_GMg\sin\theta + RY_P$$

$$2RY_P = C_m$$

Question 39: Donner l'expression de $\{{\cal T}_{1U1' o 0}\}$, en fonction de R_{γ} et ${\cal C}_m$

$$\{T_{1U1'\to 0}\} = \begin{cases} 0 & 2RY_P \\ R_y & 0 \\ 0 & 0 \end{cases}_P = \begin{cases} 0 & C_m \\ R_y & 0 \\ 0 & 0 \end{cases}_P$$

Question 40: Proposer un graphe des liaisons de l'ensemble du système (Sol, Machine,

Question 41: En déduire le torseur de l'action de l'ensemble des arbres 1 et 1' et du moteur $\{\mathcal{T}_{1U1'UM\to 0}\}$ sur le bâti 0 dans la base B au point P

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Dynamique	TD2 - Correction

TEC et mouvement

Question 42: Exprimer I_{10}^{x} , moment d'inertie de l'arbre 1 autour de l'axe $(0,\vec{x})$

$$I(G,1) = \begin{bmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{bmatrix}_{B_1}$$
$$I_{1G}^{x} = A$$

Théorème de Huygens :

$$I_{1_O}^{\ x} = A + MY_G^2$$

Question 43: Exprimer l'énergie cinétique de l'ensemble 1U1'

L'énergie cinétique de chaque arbre est identique :

Solide en rotation autour d'un axe fixe (A, \vec{x}) :

$$T(1,0) = \frac{1}{2} I_{1_O}^x \omega^2 = \frac{1}{2} \left(A + M Y_G^2 \right) \omega^2$$

$$T(1',0) = \frac{1}{2} I_{1_O}^x (-\omega)^2 = \frac{1}{2} I_{1_O}^x \omega^2 = \frac{1}{2} I_{1_O}^x \omega^2$$

$$T(1U1',0) = 2T(1,0) = \frac{1}{2} \left(2 \left(A + M Y_G^2 \right) \right) \omega^2$$

Question 44: En déduire l'inertie équivalente des pièces en rotation

On introduit l'inertie équivalente des deux arbres si on le souhaite :

$$T(1U1',0) = \frac{1}{2} (2(A + MY_G^2)) \omega^2 = \frac{1}{2} J_{eq} \omega^2$$
$$J_{eq} = 2(A + MY_G^2)$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Dynamique	TD2 - Correction

Question 45: Donner l'expression des puissances extérieures aux deux arbres

Rappel: les puissances extérieures sont calculées par rapport au référentiel 0 Galiléen.

$$P_{ext} = P_{g1} + P_{g1'} + P_{mot} + P_{01} + P_{01'}$$

Liaisons pivots 1/0 et 1'/0 supposées parfaites : $P_{01} = P_{01'} = 0$

$$P_{mot} = C_m \omega$$

$$P_g = \{\mathcal{V}_{10}\} \big\{ \mathcal{T}_{g \to 1} \big\}$$

$$P_{g1} = \begin{cases} \omega & 0 \\ 0 & 0 \\ 0 & 0 \end{cases}_{o}^{\mathfrak{B}} \begin{cases} 0 & 0 \\ -Mg & 0 \\ 0 & 0 \end{pmatrix}_{G}^{\mathfrak{B}} = \begin{cases} \begin{pmatrix} \omega & 0 \\ 0 & 0 \\ 0 & Y_{G}\omega \end{pmatrix}_{G}^{\mathfrak{B}_{1}} \begin{cases} 0 & 0 \\ -Mg & 0 \\ 0 & 0 \end{pmatrix}_{G}^{\mathfrak{B}_{2}} = \begin{cases} \omega & 0 \\ 0 & -Y_{G}\omega \sin\theta \\ 0 & Y_{G}\omega \cos\theta \end{cases}_{G}^{\mathfrak{B}_{3}} \begin{cases} 0 & 0 \\ -Mg & 0 \\ 0 & 0 \end{cases}_{G}^{\mathfrak{B}_{4}} = \begin{cases} \omega & 0 \\ 0 & 0 \\ 0 & 0 \end{cases}_{G}^{\mathfrak{B}_{1}} \begin{cases} 0 & MgY_{G}\sin\theta \\ -Mg & 0 \\ 0 & 0 \end{cases}_{G}^{\mathfrak{B}_{2}}$$

$$P_{g1} = MgY_G\omega\sin\theta$$

$$P_{g1'} = \begin{cases} -\omega & 0 \\ 0 & 0 \\ 0 & 0 \end{cases}_{O'}^{\mathcal{B}} \begin{cases} 0 & 0 \\ -Mg & 0 \\ 0 & 0 \\ 0 & 0 \end{cases}_{G'}^{\mathcal{B}_{1'}} \begin{cases} 0 & 0 \\ -Mg & 0 \\ 0 & 0 \\ 0 & Y_{G}\omega \end{cases}_{G'}^{\mathcal{B}_{1'}} \begin{cases} 0 & 0 \\ -Mg & 0 \\ 0 & 0 \\ 0 & 0 \end{cases}_{G'}^{\mathcal{B}} = \begin{cases} -\omega & 0 \\ 0 & -Y_{G}\omega\sin(-\theta) \\ 0 & Y_{G}\omega\cos\theta \end{cases}_{G'}^{\mathcal{B}} \begin{cases} 0 & 0 \\ -Mg & 0 \\ 0 & 0 \\ 0 & 0 \end{cases}_{G'}^{\mathcal{B}} \begin{cases} -\omega & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{cases}_{G'}^{\mathcal{B}_{1'}} \begin{cases} 0 & 0 \\ -Mg & 0 \\ 0 & 0 \end{cases}_{G'}^{\mathcal{B}_{1'}} \begin{cases} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{cases}_{G'}^{\mathcal{B}_{1'}} \begin{cases} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{cases}_{G'}^{\mathcal{B}_{1'}} \end{cases}$$

$$P_{a1'} = MgY_G\omega\sin\theta$$

$$P_{g1} = P_{g1'}$$
 ; $P_{grav} = P_{g1} + P_{g2} = 2MgY_G\omega\sin\theta$

$$P_{ext} = (C_m + 2MgY_G \sin \theta)\omega$$

Attention : quand on fait le produit « à la main » soit de la force de gravité fois la vitesse verticale en G, soit du couple du poids en O avec la vitesse de rotation, on se trompe de signe parce que l'on oublie que $Y_G < 0$...

Dernière mise à jour	MECA 2	Denis DEFAUCHY
04/01/2023	Dynamique	TD2 - Correction

Question 46: Donner l'expression des puissances intérieures à l'union 1U1'

Liaison dans l'engrenage supposée parfaite : $P_{int} = 0$

Si on souhaite passer par un comoment pour calculer cette puissance, il faut exprimer les torseurs de la ponctuelle dans une base contenant la normale au contact (sinon ça sera bien difficile, pour rien)!

$$\begin{cases} P & U \\ Q & V \\ R & 0 \end{cases}_P \begin{cases} 0 & 0 \\ 0 & 0 \\ 0 & Z \end{cases}_P^{\mathfrak{B}_n} = 0$$

Question 47: Retrouver l'équation différentielle du mouvement à l'aide du TEC

Le référentiel est supposé Galiléen. On isole 1 et 1'. Alors :

$$\begin{split} \frac{dT(1U1',0)}{dt} &= P_{int} + P_{ext} \\ \frac{dT(1U1',0)}{dt} &= 2J_{eq}\omega\dot{\omega} \quad ; \quad P_{int} + P_{ext} = C_m\omega + 2MgY_G\omega\sin\theta \end{split}$$

Soit:

$$2J_{eq}\omega\dot{\omega}=C_m\omega+2MgY_G\omega\sin\theta$$

Si $\omega \neq 0$, on peut diviser par ω :

$$2(A + MY_G^2)\dot{\omega} = C_m + 2MgY_G\sin\theta$$

Question 48: Quelles équations permettraient de déterminer l'action des deux arbres sur le bâti R_{ν} ?

On réalise :

- TRD sur 1 sur \vec{y}
- TRD sur 1' en résultante sur \vec{y}

On obtient:

$$R_{\nu} = 2MY_G(\omega^2 \cos \theta + \dot{\omega} \sin \theta) - 2Mg$$

Question 49: Quelle équation permet de mettre en relation le couple moteur avec l'accélération de l'arbre ?

Soit on fait un TEC

Soit on réalise :

- 1 TMD sur 1 en moment sur $(0, \vec{x})$
- 1 TMD sur 1' en moment sur $(0', \vec{x})$