

RR051-14-106673-12-A Ed. 0

Radio Collocation test report

According to the standard: CFR47 FCC part 15

Equipment under test:
RFID MODULE HF-ELYCTIS integrated in
Biometric/RFID Handheld Control Terminal
WA4e-ID-WG-OCR310e

Company: COPPERNIC

DISTRIBUTION: Mr Porte (Company: COPPERNIC)

Number of pages: 34 with 3 appendixes

Ed.	Date	Modified		Written by			erification and Approval
		pages	Name	_	Visa	Name	Visa
0	29/01/2015	Creation	S. LOUIS				

Duplication of this test report is only permitted for an integral photographic facsimile. It includes the number of pages referenced here above.

This document is the result of testing a specimen or a sample of the product submitted. It does not imply an assessment of the conformity of the whole manufactured products of the tested sample.

DESIGNATION OF PRODUCT: RFID MODULE HF-ELYCTIS

Installed in HOSTS: Biometric/RFID Handheld Control Terminal WA4e-ID-WG-OCR310e

Serial number (S/N): WPQACE240079C1 (host)

Reference / model (P/N): 1073102

Software version: CpcCertifWAP4 to activate RFID

BTTestWM V2.01 to activate Bluetooth

XM2DMT WM to activate WIFI

MANUFACTURER:

COMPANY SUBMITTING THE PRODUCT:

COPPERNIC Company:

Address: 185, avenue Archimède

> Les fontaines de la Duranne 13857 Aix-en-Provence

Cedex 3 France

Responsible: Mr PORTE

DATES OF TEST: From 15 January 2015 to 30 January 2015

TESTING LOCATION: EMITECH ANGERS laboratory at JUIGNE SUR LOIRE (49) FRANCE

EMITECH ANGERS open area test site in JUIGNE SUR LOIRE (49)

FRANCE

21 rue de la Fuye 49610 Juigne sur Loire

France

FCC 2.948 Listed Site Registration Number: 90469

TESTED BY: S. LOUIS

CONTENTS

TITLE		PAGE
1.	INTRODUCTION	4
2.	PRODUCT DESCRIPTION	4
3.	NORMATIVE REFERENCE	8
4.	TEST METHODOLOGY	8
5.	TEST EQUIPMENT CALIBRATION DATES	9
6.	TESTS RESULTS SUMMARY	10
7.	CONDUCTED LIMITS	12
8.	RADIATED EMISSION LIMITS; general requirements	25

APPENDIX 1: Photos of the equipment under test

APPENDIX 2: Test set up

APPENDIX 3: Test equipment list

1. INTRODUCTION

This report presents the results of radio test carried out on the **RFID Module HF-ELYCTIS installed in WAP4 e-ID-WG-OCR310e**, in accordance with normative reference (refer clause 3).

The device under test integrates a Limited modular approved RFID module (FCC ID: XGKHFELYWAP3). The device under test integrates a modular approved WIFI/BLUETOOTH module (FCC ID: UZ7211486030B). The device under test integrates a modular approved 3G module (FCC ID: UZ77528PA). The host device of certified module(s) shall be properly labeled to identify the modules within.

All radio modules (RFID, WIFI, Bluetooth, 3G,) are activated under different configurations to check there is no disturbance between each radio modules.

2. PRODUCT DESCRIPTION

EUT is portable and handheld authentication terminal, with the following parts:

Version WA4eID-WG-OCR310E with:

- ✓ RFID Elyctis activated
- ✓ WIFI set to 2.4GHz
- ✓ Bluetooth activated
- ✓ 3G set to band II

Version WA4eID-WG-OCR310E with:

- ✓ RFID Elyctis activated
- ✓ WIFI set to 5.8GHz
- ✓ Bluetooth activated
- ✓ 3G set to band II

Version WA4eID-WG-OCR310E with:

- ✓ RFID Elyctis activated
- ✓ WIFI set to 2.4GHz
- ✓ Bluetooth activated
- ✓ 3G set to band V

Version WA4eID-WG-OCR310E with:

- ✓ RFID Elyctis activated
- ✓ WIFI set to 5.8GHz
- ✓ Bluetooth activated
- ✓ 3G set to band V

The power source is an external AC/DC adapter provided by the applicant referenced PSA15R-050P regulated at the voltage of 120VAC / 60Hz.

The EUT can be equally supplied with a 3.7Vdc Lithium –lon battery TEKLOGIX model WA3010.

All tests described here after have been performed with the AC/DC adapter.

Standard position: handheld. Tested in vertical position, according to the applicant request.

RFID Module description:

Antenna type and gain: Integral antenna, gain unknown

Operating frequency range: From 13.110MHz to 14.010MHz

Number of channels: 1

Channel spacing: Not concerned

Frequency generation: Quartz

Power level, frequency range and channels characteristics are not user adjustable. The details pictures of the product are joined with this file.

WIFI 2.4G Module description:

Antenna type and gain: Not communicated

Operating frequency range: From 2412MHz to 2472MHz

Number of channels: 13

Channel spacing: 5MHz

Modulation: D.S.S.S./O.F.D.M.

Power level, frequency range and channels characteristics are not user adjustable. The details pictures of the product are joined with this file.

WIFI 5.8G Module description:

Antenna type and gain: Not communicated

Operating frequency range: From 5180MHz to 5825MHz

Number of channels: 21

Channel spacing: 20MHz

Modulation: D.S.S.S./O.F.D.M.

Power level, frequency range and channels characteristics are not user adjustable. The details pictures of the product are joined with this file.

Bluetooth Module description:

Antenna type and gain: Not communicated

Operating frequency range: From 2402MHz to 2480MHz

Number of channels: 79

Channel spacing: 1MHz

Modulation: F.H.S.S.

Power level, frequency range and channels characteristics are not user adjustable. The details pictures of the product are joined with this file.

3G Module description:

Antenna type and gain: Not communicated

Operating frequency range: From 824.2MHz to 849.2MHz (Band V

From 1850.2MHz to 1909.8MHz (Band II)

Number of channels: 128 to 251 (Band V)

512 to 810 (Band II)

Channel spacing: —

Modulation: GSM-850 / PCS-1900

Power level, frequency range and channels characteristics are not user adjustable.

The details pictures of the product are joined with this file

RR051-14-106673-12-A Ed. 0

3. NORMATIVE REFERENCE

The standards and testing methods related throughout this report are those listed below.

They are applied on the whole test report even though the extensions (version, date and amendment) are not repeated.

CFR 47 FCC Part 15 (2014) Radio Frequency Devices

ANSI C63.4 2014

Methods of measurement of Radio-Noise

Emissions from low-voltage Electrical and Electronic Equipment in the Range

of 9 kHz to 40 GHz.

ANSI C63.10 2013

Testing Unlicensed Wireless Devices.

4. TEST METHODOLOGY

Radio performance tests procedures given in CFR 47 part 15:

Subpart A -General

Paragraph 19: labelling requirements Paragraph 21: information to user

Subpart B –Unintentional Radiators

Paragraph 105: information to the user Paragraph 107: conducted limits

Paragraph 109: radiated emission limits

Paragraph 111: antenna power conduction limits for receivers

Subpart C – Intentional Radiators

Paragraph 203: Antenna requirement Paragraph 207: Conducted limits

Paragraph 209: Radiated emission limits; general requirements

Paragraph 212: Modular transmitter

5. TEST EQUIPMENT CALIBRATION DATES

Equipment	Model	Туре	Last verification	Next verification	Validity
0000	BAT-EMC V3.6.0.32	Software	1	1	1
1406	EMCO 6502	Loop antenna	26/06/2013	26/03/2015	26/05/2015
1922	Microwave DB C020180F-4B1	Low-noise amplifier	20/08/2014	20/08/2015	20/10/2015
1939	IMC WR42	Antenna	20/04/2012	20/04/2016	20/06/2016
1940	IMC WR42	Antenna	20/04/2012	20/04/2016	20/06/2016
3036	ALC Microwave ALN02-0102	Low-noise amplifier	14/05/2014	14/05/2015	14/07/2015
4087	Filtek LP03/1000-7GH	Low Pass Filter	24/02/2014	24/02/2016	24/04/2016
4088	R&S FSP40	Spectrum Analyzer	22/08/2013	22/08/2015	22/10/2015
4353	ATM WR28	Antenna	20/04/2012	20/04/2016	20/06/2016
4354	ALC ALS2640-30-10	Low-noise amplifier	21/07/2014	21/07/2015	21/09/2015
4393	Wainwright WLJS800- C11/60EE	Low Pass Filter	24/02/2014	24/02/2016	24/04/2016
6606	Microtronics LPM 15601	Low Pass Filter	05/04/2013	05/04/2015	05/06/2015
6607	Microtronics HPM 15600	High Pass Filter	05/04/2013	05/04/2015	05/06/2015
6609	Hewlett Packard HPM11630	High Pass Filter	24/02/2014	24/02/2016	24/04/2016
7299	Microtronics BR50702	Reject band filter	25/10/2013	25/10/2015	25/12/2015
8508	California instruments 1251RP	Power source	22/08/2014	22/08/2015	22/10/2015
8511	HP 8447D	Low noise preamplifier	20/08/2014	20/08/2015	20/10/2015
8524	HP 8591EM	Test receiver	30/07/2013	30/07/2015	30/09/2015
8526	Schwarzbeck VHBB 9124	Biconical antenna	12/06/2012	12/06/2016	12/08/2016
8535	EMCO 3115	Antenna	29/10/2012	29/10/2016	29/12/2016
8543	Schwarzbeck UHALP 9108A	Log periodic antenna	12/06/2012	12/06/2016	12/08/2016
8593	SIDT Cage 2	Anechoic chamber	1	1	1
8635	R&S EZ-25	High-pass filter	05/08/2014	05/08/2016	05/10/2016
8671	HUGER	Meteo station	04/09/2014	04/09/2016	04/11/2016
8675	AOIP MN5102B	Multimeter	15/01/2013	15/01/2015	15/03/2015
8719	Thurbly Thandar Instruments 1600	LISN	23/06/2014	23/06/2016	23/08/2016
8750	La Crosse Technology WS- 9232	Meteo station	03/09/2014	03/09/2016	03/11/2016
8893	Emitech	Outside room Hors cage	1	1	1
8896	ACQUISYS GPS8	Satellite synchronized frequency standard	1	1	1
10651	Absorber sheath current	Emitech	17/10/2013	17/10/2015	17/12/2015

6. TESTS RESULTS SUMMARY

6.1 general (subpart A)

Test	Description of test	Respected criteria?				Comment
procedure		Yes	No	NAp	NAs	
FCC Part 15.19	LABELLING REQUIREMENTS				X	See certification documents
FCC Part 15.21	INFORMATION TO USER				X	See certification documents

NAp: Not Applicable NAs: Not Asked

6.2 unintentional radiator (subpart B)

Test	Description of test	Respected criteria?				Comment
procedure		Yes	No	NAp	NAs	
FCC Part 15.105	INFORMATION TO THE USER				X	See certification documents
FCC Part 15.107	CONDUCTED LIMITS				X	Collocation report
FCC Part 15.109	RADIATED EMISSION LIMITS				X	Collocation report
FCC Part 15.111	ANTENNA POWER CONDUCTED LIMITS FOR RECEIVER			X		

NAp: Not Applicable NAs: Not Asked

6.3 intentional radiator (subpart C)

Test	Description of test	Cri	teria re	Comment		
procedure		Yes	No	NAp	NAs	
FCC Part 15.203	ANTENNA REQUIREMENTS	X				Note 1
FCC Part 15.207	CONDUCTED LIMITS	X				Collocation report
FCC Part 15.209	RADIATED EMISSION LIMITS; GENERAL REQUIREMENTS	X				Note 2 Collocation report
FCC Part 15.212	MODULAR TRANSMITTER				Х	See certification documents

NAp: Not Applicable

NAs: Not Asked

Note 1: Integral / dedicated antenna. Professionally installed equipment.

Note 2: Unwanted emissions levels are all below the fundamental emission field strength level.

7. CONDUCTED LIMITS

Standard: FCC Part 15

Test procedure: Paragraph 15.207

Test deviation: Copper tape around RFID reader to reduce the level of the carrier 13.56MHz

Software used: BAT-EMC V3.6.0.32

Test set up:

The EUT is isolated and placed on a wooden table, 0.8 m over a horizontal reference plane and 0.4 m from a vertical reference plane. It is powered by an artificial main network placed on the ground reference plane. The equipment is powered with the AC power operating voltage of 120 V / 60 Hz.

See photos in appendix 2

Frequency range: 150 kHz - 30 MHz

Detection mode: Peak / Average

Bandwidth: 9 KHz / 10 KHz

Equipment under test operating condition:

The equipment under test is blocked in continuous modulated transmission mode, at the highest output power level at which the transmitter is intended to operate.

Results:

Ambient temperature (°C): 21.5 Relative humidity (%): 27

<u>Measurement on the mains power supply – Transmission mode:</u>

Sample 1: Version WA4eID-WG-OCR310E with RFID Elyctis activated, WIFI set to 2.4GHz, Bluetooth activated and 3G set to band II

The measurement is first realized with Peak detector.

Curve N° 1: measurement on the Neutral with peak detector

Curve N° 2: measurement on the Line with peak detector

Page 13 out of 34

The frequencies which are not 6 dB under the Average limit are then analyzed with Average detector.

Curve N° 3: average measurement on the Neutral, for the frequency range: 150KHz -900KHz

FCC part 15 : 10 §107 - Classe:B - Moyenne/
FCC part 15 : 10 §107 - Classe:B - QCrête/
Mes.Peak (Neutre)

Curve N° 4: average measurement on the Line, for the frequency range: 150KHz – 700KHz

Curve N° 5: average measurement on the Neutral, for the frequency range: 13.4MHz –13.7MHz

FCC part 15 : 10 §107 - Classe:B - Moyenne/
FCC part 15 : 10 §107 - Classe:B - QCrête/
Mes.Peak (Neutre)

Curve N° 6: average measurement on the Line, for the frequency range: 13.4MHz –13.7MHz

<u>Sample 1</u>: Version WA4eID-WG-OCR310E with RFID Elyctis activated, WIFI set to 5.8GHz, Bluetooth activated and 3G set to band II

The measurement is first realized with Peak detector.

Curve N° 7: measurement on the Neutral with peak detector

Curve N° 8: measurement on the Line with peak detector

The frequencies which are not 6 dB under the Average limit are then analyzed with Average detector.

Curve N° 9: average measurement on the Neutral, for the frequency range: 150KHz – 1.100MHz

Curve N° 10: average measurement on the Line, for the frequency range: 150KHz – 1.100MHz

Curve N° 11: average measurement on the Neutral, for the frequency range: 13.4MHz –13.7MHz

FCC part 15 : 10 §107 - Classe:B - Moyenne/
FCC part 15 : 10 §107 - Classe:B - QCrête/
Mes.Peak (Neutre)

Curve N° 12: average measurement on the Line, for the frequency range: 13.4MHz –13.7MHz

<u>Sample 1</u>: Version WA4eID-WG-OCR310E with RFID Elyctis activated, WIFI set to 2.4GHz, Bluetooth activated and 3G set to band V

The measurement is first realized with Peak detector.

Curve N° 13: measurement on the Neutral with peak detector

Curve N° 14: measurement on the Line with peak detector

The frequencies which are not 6 dB under the Average limit are then analyzed with Average detector.

Curve N° 15: average measurement on the Neutral, for the frequency range: 150KHz – 1.400MHz

Curve N° 16: average measurement on the Line, for the frequency range: 150KHz –500KHz

13.7MHz Sous-bande 2

13.4MHz

Curve N° 17: average measurement on the Neutral, for the frequency range: 13.4MHz –13.7MHz

FCC part 15: 10 §107 - Classe B - Moyennel FCC part 15: 10 §107 - Classe B - Octive Mes. Peak (Neutre)

Mes. Peak (Neutre)

80

50

40

30

20

Fréquence (MHz)

Curve N° 18: average measurement on the Line, for the frequency range: 13.4MHz –13.7MHz

<u>Sample 1</u>: Version WA4eID-WG-OCR310E with RFID Elyctis activated, WIFI set to 5.8GHz, Bluetooth activated and 3G set to band V

The measurement is first realized with Peak detector.

Curve N° 19: measurement on the Neutral with peak detector

Curve N° 20: measurement on the Line with peak detector

The frequencies which are not 6 dB under the Average limit are then analyzed with Average detector.

Curve N° 21: average measurement on the Neutral, for the frequency range: 150KHz – 3MHz

FCC part 15 : 10 §107 - Classe:B - Moyenne/
FCC part 15 : 10 §107 - Classe:B - QCrête/
Mes.Peak (Neutre)

Curve N° 22: average measurement on the Line, for the frequency range: 150KHz – 3MHz

Curve N° 23: average measurement on the Neutral, for the frequency range: 13.4MHz –13.7MHz

FCC part 15 : 10 §107 - Classe:B - Moyenne/
FCC part 15 : 10 §107 - Classe:B - QCrête/
Mes.Peak (Neutre)

Curve N° 24: average measurement on the Line, for the frequency range: 13.4MHz –13.7MHz

Test conclusion:

RESPECTED STANDARD

8. RADIATED EMISSION LIMITS; general requirements

Standard: FCC Part 15

Test procedure: paragraph 209

Test set up:

The measure is realized on open area test site under 1 GHz and in anechoic chamber above 1 GHz.

When the system is tested in an open area test site (OATS), the EUT is placed on a rotating table, 0.8m from a ground plane.

When the system is tested in anechoic chamber, the EUT is placed on a rotating table, 1.5m from a ground plane.

Zero degree azimuths correspond to the front of the device under test.

See photos in appendix 2.

Frequency range:

From 9 kHz to 25GHz (5th harmonic of the highest fundamental frequency (2.4GHz) Version WA4eID-WG-OCR310E with:

- ✓ RFID Elyctis activated
- ✓ WIFI set to 2.4GHz
- ✓ Bluetooth activated
- ✓ 3G set to band II

From 9 kHz to 40GHz (5th harmonic of the highest fundamental frequency (5.8GHz) Version WA4eID-WG-OCR310E with:

- ✓ RFID Elyctis activated
- ✓ WIFI set to 5.8GHz
- ✓ Bluetooth activated
- ✓ 3G set to band II

From 9 kHz to 25GHz (5th harmonic of the highest fundamental frequency (2.4GHz)

Version WA4eID-WG-OCR310E with:

- ✓ RFID Elyctis activated
- ✓ WIFI set to 2.4GHz
- ✓ Bluetooth activated
- ✓ 3G set to band V

From 9 kHz to 40GHz (5th harmonic of the highest fundamental frequency (5.8GHz) Version WA4eID-WG-OCR310E with:

- ✓ RFID Elyctis activated
- ✓ WIFI set to 5.8GHz
- ✓ Bluetooth activated
- ✓ 3G set to band V

Detection mode: Quasi-peak (F < 1 GHz) Average (F > 1 GHz)

Bandwidth: 120 kHz (F < 1 GHz) 1 MHz (F > 1 GHz)

Distance of antenna: 10 meters (in open area test site) / 3 meters (in anechoic room)

Antenna height: 1 to 4 meters (in open area test site) / 1.5 meter (in anechoic room)

Antenna polarization: vertical and horizontal (only the highest level is recorded)

Equipment under test operating condition:

The equipment under test is blocked in continuous modulated transmission mode, at the highest output power level at which the transmitter is intended to operate.

Results:

Ambient temperature (°C): 20.4 Relative humidity (%): 33

Power source:

We used for power source an external AC/DC adapter provided by the applicant referenced PSA15R-050P regulated at the voltage of 120VAC / 60Hz.

<u>Sample 1</u>: Version WA4eID-WG-OCR310E with RFID Elyctis activated, WIFI set to 2.4GHz, Bluetooth activated and 3G set to band II

No spurious has been detected.

Applicable limits: for 9 kHz \leq F \leq 490 kHz : 2400/F(kHz) at 300 meters

for 490 kHz < F \leq 1.705 MHz : 24000/F(kHz) at 30 meters for 1.705 MHz < F \leq 30 MHz : 29.5 dB μ V/m at 30 meters for 30 MHz < F \leq 88 MHz : 40 dB μ V/m at 3 meters for 88 MHz < F \leq 216 MHz : 43.5 dB μ V/m at 3 meters for 216 MHz < F \leq 960 MHz : 46 dB μ V/m at 3 meters

Above 960 MHz : 54 dBµV/m at 3 meters

<u>Sample 1</u>: Version WA4eID-WG-OCR310E with RFID Elyctis activated, WIFI set to 5.8GHz, Bluetooth activated and 3G set to band II

No spurious has been detected.

Applicable limits: for 9 kHz \leq F \leq 490 kHz : 2400/F(kHz) at 300 meters

for 490 kHz < F \leq 1.705 MHz : 24000/F(kHz) at 30 meters for 1.705 MHz < F \leq 30 MHz : 29.5 dBµV/m at 30 meters for 30 MHz < F \leq 88 MHz : 40 dBµV/m at 3 meters for 88 MHz < F \leq 216 MHz : 43.5 dBµV/m at 3 meters for 216 MHz < F \leq 960 MHz : 46 dBµV/m at 3 meters

Above 960 MHz : 54 dBµV/m at 3 meters

<u>Sample 1</u>: Version WA4eID-WG-OCR310E with RFID Elyctis activated, WIFI set to 2.4GHz, Bluetooth activated and 3G set to band V

No spurious has been detected.

Applicable limits: for 9 kHz \leq F \leq 490 kHz : 2400/F(kHz) at 300 meters

for 490 kHz < F \leq 1.705 MHz : 24000/F(kHz) at 30 meters for 1.705 MHz < F \leq 30 MHz : 29.5 dB μ V/m at 30 meters for 30 MHz < F \leq 88 MHz : 40 dB μ V/m at 3 meters for 88 MHz < F \leq 216 MHz : 43.5 dB μ V/m at 3 meters for 216 MHz < F \leq 960 MHz : 46 dB μ V/m at 3 meters

Above 960 MHz: 54 dBµV/m at 3 meters

<u>Sample 1</u>: Version WA4eID-WG-OCR310E with RFID Elyctis activated, WIFI set to 5.8GHz, Bluetooth activated and 3G set to band V

No spurious has been detected.

Applicable limits: for 9 kHz \leq F \leq 490 kHz : 2400/F(kHz) at 300 meters

for 490 kHz < F \leq 1.705 MHz : 24000/F(kHz) at 30 meters for 1.705 MHz < F \leq 30 MHz : 29.5 dB μ V/m at 30 meters for 30 MHz < F \leq 88 MHz : 40 dB μ V/m at 3 meters for 88 MHz < F \leq 216 MHz : 43.5 dB μ V/m at 3 meters for 216 MHz < F \leq 960 MHz : 46 dB μ V/m at 3 meters

Above 960 MHz: 54 dBµV/m at 3 meters

<u>Note</u>: any spurious which has more than 20 dB of margin compared to the applicable limit is not necessarily reported.

Test conclusion:

RESPECTED STANDARD

 $\square\square\square$ End of report, 3 appendixes to be forwarded $\square\square\square$

APPENDIX 1: Photos of the equipment under test

Page 29 out of 34

APPENDIX 2: Test set up

Page 31 out of 34

Page 32 out of 34

APPENDIX 3: Test equipment list

Conducted limits

TYPE	MANUFACTURER	EMITECH NUMBER
Outside room Hors cage	Emitech	8893
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Test receiver HP 8591EM	Hewlett Packard	8524
LISN 1600	Thurbly Thandar Instruments	8719
High-pass filter EZ-25	Rohde & Schwarz	8635
Absorber sheath current	Emitech	10651
Power source 1251RP	California instruments	8508
Multimeter MN5102B	AOIP	8675
Meteo station	HUGER	8671
Software	BAT-EMC V3.6.0.32	0000

Radiated emission limits; general requirements

TYPE	MANUFACTURER	EMITECH NUMBER
Anechoic Chamber	EMITECH	8593
Satellite synchronized frequency standard	ACQUISYS	8896
GPS8		
Spectrum Analyzer FSP40	Rohde & Schwarz	4088
Loop antenna 6502	EMCO	1406
Biconical antenna VHBB 9124	Schwarzbeck	8526
Log periodic antenna UHALP 9108A	Schwarzbeck	8543
Antenna 3115	EMCO	8535
Antenna WR42	IMC	1939
Antenna WR42	IMC	1940
Antenna WR28	ATM	4353
Low-noise amplifier 8447D	Hewlett Packard	8511
Low-noise amplifier C020180F-4B1	Microwave DB	1922
Low-noise amplifier ALN02-0102	ALC Microwave	3036
Low-noise amplifier ALS2640-30-10	ALC	4354
Low pass filter WLJS800-C11/60EE	Wainwright	4393
Low pass filter LP03/1000-7GH	Filtek	4087
Low Pass Filter LPM15601	Microtronics	6606
High pass filter HPM11630	Hewlett Packard	6609
Reject band filter BRM50702	Microtronics	7299
High pass filter HPM15600	Microtronics	6607
Power source 1251RP	California instruments	8508
Multimeter MN5102B	AOIP	8675
Meteo station WS-9232	La Crosse Technology	8750
Software	BAT-EMC V3.6.0.32	0000