Introduction to Computer Graphics

Computer Graphics

- Generate high quality 2d images efficiently, given the 3d model and camera parameters
- Simulate, animate, model, and light real world

Two Approaches

- Rasterization
 - Faster
 - Pipelined
 - Ex. Real-time applications
- Light Transport/Ray Tracing
 - High quality and More realistic
 - Ex. Animation movies

Rasterization Pipeline

- Modeling Transformation
- View Transformation
- Illumination
- Projection Transformation
- Clipping
- Rasterization or Scan conversion
- Texturing

Modeling Transformation

- Use transformation to position objects
- Reuse objects

View Transformation

- Translate camera to origin
- Set view direction along a principal axis

Illumination

- Light the scene
 according to material
 properties of objects
 and light sources
- Highly important to generate realistic image

Projection and Clipping

- Project the 3d model on a 2d screen
- Clip objects outside viewing frustum

Rasterization

Determine which pixels to light on the screen

Texturing

Paste images on object surfaces

Ray Tracing

 Cast rays from eye to each pixel to determine the color of pixel

Ray Tracing

Produces highly realistic image

