부산시 공공자전거 제도 제안

<실시간 센싱 데이터를 활용한 유동인구 및 통행량 추정을 바탕으로>

Hackathon in ADW IoT Data Alchemist Hackathon

강원대 1팀 U-Bike 타슈

INDEX

Introduction

01 주제 선정 배경

02 주제 및 분석 목표 설정

주제 선정 배경

전국의 지방자치단체에서 최근 화제가 되고 있는 공유경제와 스마트 모빌리티의 특징을 갖고 있는 공공자전거 제도를 시행을 통해 시민들의 높은 만족도와 교통 기본권을 확대하고 있다.

공공자전거 누구나(사용자), 언제든(24시간), 어디서든(출발지), 어디로든(목적지) 자전거를 이용할 수 있는 시스템

공공자전거의 현황

- A. 현재 전 세계 300개 이상의 도시에서 운영 중
- B. 단거리 자동차 이용 수요를 대체 전망

▶ 2016.4 기준

공공자전거의 효과

- A. 교통 측면
 - a. 접근성 향상
 - b. 교통 기본권 확대
- B. 사회적 측면
 - a. 자전거 보관 시설 비용 절감
 - b. 공간 자원의 효율적 활용
- C. 환경적 측면
 - a. 도시 이미지 및 미관 개선
 - b. 환경 오염 예방

주제 선정 배경

국내의 공공자전거 사례인 서울시의 '따릉이'와 창원시의 '누비자'의 경우, 시민들의 참여도 및 만족도 높은 서비스를 제공하고 있으며 공공자전거를 활용한 새로운 형태의 관광 모델을 창출했다.

공공자전거 '따릉이'

매년 따름이 사용자는 증가하는 추세

공공자전거 '누비자'

누비자 이용자 절대 다수가 공공자전거에 만족

주제 선정 배경

부산시는 2015년 해운대 신도시 일대 지역에 약 300여대 설치하여 공공자전거를 시 운행하였으나, 공공자전거 제도를 폐지하였다. 이에 폐지하게 된 문제점을 알아보며 되살리기 위한 조건을 제시한다.

부산시 공공자전거 'U Bike'에 대하여

▶ 부산 지역 내 공공자전거가 설치된 지역

'U Bike'의 문제점

- ❖ 부산시 면적에서 극히 일부 지역(해운대 신도시)에만 공공자전거가 설치됨
- ❖ 공공자전거 스테이션의 위치가 대부분 해안가에 자리 잡아 시민들의 접근성이 떨어짐

부산시 공공자전거 'U Bike' 되살리기 Project

- ❖ 접근성이 뛰어나고 유동인구가 많은 지역을 입지조건으로 공공자전거 스테이션을 배치
- ❖ 이용률 증가와 공공자전거 제도의 활성화
- ❖ 공공자전거의 정착 시킬 수 있을 것

01 | Introduction

주제 및 분석 목표 설정

기온 및 대기 지표를 관측하는 관측소와 도심과의 환경 차이로 인해 기온 및 대기 지표에서 차이가 발생한다. 이를 도시 열섬 현상이라 부르며 정의와 이로 인해 발생하는 문제는 다음과 같다.

도시 열섬 현상

기상청의 기온과 실제 체감 기온의 차이

❖ '여름철 대표적인 폭염지대'라고 불리던 전주의 기온이 낮아진 것은 새로 이전한 관측소 위치가 산속에 자리했기 때문

> " 관측소 산속으로 옮겨놓고선" 전주 도심기온 발표 못믿어 ➢출처 : 경향신문 2017-08-10

도시 열섬 현상의 정의 및 문제

- ◆ 인구의 증가 및 각종 인공 시설물의 증가, 자동차 통행의 증가로 **인공열의 방출**이 증가
- ❖ 즉, 도시 변방에 위치한 관측소의 기온과 사람이 생활하는 도시 중심부의 기온이 다름
- ❖ 부산, 대구 등 광역시에서는 열섬 현상이 심화되고 있으며, 사회 문제로 대두

주제 및 분석 목표 설정

도시의 지역적 기온 차이에 대한 선행 연구 사례이다. 광주광역시의 용도지역별 하계 기온 측정 및 분석을 통해 실제로 용도 지역별로 기온의 차이가 발생 하는 것을 확인하였다.

도심의 지역적 기온 차이에 대한 선행 연구 사례

출처 : 광주광역시 용도지역별 하계 기온 측정 및 분석

- ❖ 실제 이전에도 용도 지역별로 하계 기온 측정을 통해 그 차이를 분석한 연구 사례가 존재
- ❖ 연구 결과, 용도 지역별 기온의 차이가 있음
- ❖ 상업, 도로 지역에서의 평균 기온이 가장 높았으며, 기상대를 비롯 도심 외부에서의 기온과 대기 지표들의 수치가 낮았음

주제 및 분석 목표 설정

주제와 관련하여 유동인구 및 통행량이 영향을 끼치는 대기 지표를 활용하고자 한다. 이전 연구에 따르면 CO, NO₂, VOCs, PM10, SO₂에 유동인구 및 통행량은 큰 영향을 끼치는 것으로 확인하였다.

유동인구 및 통행량이 영향을 주는 대기 지표

[Ref. 1]

〈표 1〉 자동차로 인한 오염물질별 배출 기여도

구분	∞	NO ₂	VOCs	PM10 ^{a)}	SO ₂
전국 ^{b)}	78.9%	40.9%	16.5%	43.3%	1.3%
경 기 ⁽²⁾	90.3%	68,1%	18.8%	76.4%	10.1%
서울	90.1%	60.6%	31.9%	73.3%	11.0%

주: a) PM10의 경우 도로 이동 차량에 의한 날림먼지 양은 제외

- b) 2003년 기준, 환경부(2006), 환경백서, p. 429-430.
- c) 2003년 기준, 경기도(2006), 2006년도 경기도환경백서, p. 239.

[Ref. 2]

〈표 4〉NO2 측정값과 도시특성요소간의 상관분석

변수	상관계수		
유동인구수	Р	0.482	***
*** 유의수준 1%			

[Ref. 3]

되는 경유는 황 함량이 430ppm이었으며, 2005년 기준으로 전체 자동차 중 경유 차량이 1/3 가량 차지하는 구조가 도시 내 차량통행이 빈번한 도로를 중심으로 이산화황의 농도를 집중시키는 요인으로 작용하였다고 볼 수 있다. 2003년 서울시 자료를 이용한 연구에서는 VKT와 이산화황의 집중이 1%의 유의수준에서 양의 관계를 보이고 있다(Kim and Guldmann, 2011). 2004년 10월부터 황 함량이 30ppm

- ❖ [Ref.1] 연구결과를 활용: CO, NO₂, VOCs, PM10은 자동차 통행량과 상관성이 있음
- ❖ [Ref.2] 연구결과를 활용: NO2와 유동인구가 양의 상관관계를 보임
- ❖ [Ref.3] 연구결과를 활용: 도시 내 차량 통행으로 인해 SO₂의 농도가 집중되며 양의 상관관계를 보임
- ▶ 김영국(2017.6), "GIS 응용 교통 및 토지이용자료를 기반으로 한 도시 대기오염 분석", 교통연구24(2), 67-81

주제 및 분석 목표 설정

그렇다면, 실시간으로 측정한 대기 상태 및 기온 데이터를 이용하면 실시간 유동인구, 통행량과의 상관관계가 있을 것이라 예상할 수 있다.

센싱 테이터의 이용

실시간 대기 지표 등의 **센싱 데이터**를 활용하여 **유동인구**, **통행량**을 추정할 수 있지 않을까?

예시) 시간대 별 대기 지표 및 기온의 Hot Spot 분석

08시 ~ 09시 기온 분포

12시 ~ 13시 기온 분포

20시 ~ 21시 기온 분포