Forecasting

Regression Methods Linear Regression

Linear regression relates demand (dependent variable) to an independent variable

$$y=a+bx$$

$$a=\overline{y}-b\overline{x}$$

$$b=\frac{\sum xy-n\overline{x}y}{\sum x^2-n\overline{x}^2}$$

where:

$$\overline{x} = \frac{\sum x}{n} = \text{mean of the x data}$$

$$\overline{y} = \frac{\sum y}{n} = \text{mean of the y data}$$

Regression Methods Simple Linear Regression Example

State University Athletic Department can you predict attendance based on the number of wins the team has experienced?

Wins	Attendance
4	36,300
6	40,100
6	41,200
8	53,000
6	44,000
7	45,600
5	39,000
7	47,500

X	у	,	
(wins)	(attendance, 1,000s)	ху	\mathbf{x}^{2}
4	36.3	145.2	16
6	40.1	240.6	36
6	41.2	247.2	36
8	53.0	424.0	64
6	44.0	264.0	36
7	45.6	319.2	49
5	39.0	195.0	25
<u>7</u>	<u>47.5</u>	<u>332.5</u>	<u>49</u>
4 9	346.7	2, 167.7	3 11

Regression Methods Linear Regression Example

$$\overline{x} = \frac{49}{8} = 6.125$$

$$\overline{y} = \frac{346.9}{8} = 43.34$$

$$b = \frac{\sum xy - n\overline{x}y}{\sum x^2 - n\overline{x}^2} = \frac{(2,167.70 - (8)(6.125)(43.34)}{(311) - (8)(6.125)^2} = 4.06$$

$$a = \overline{y} - b\overline{x} = 43.34 - (.406)(6.125) = 18.46$$

Therefore, y = 18.46 + 4.06x

Attendance forecast for x = 7 wins is y=18.46+4.06(7)=46.88 or 46,880

Regression Methods Linear Regression Example

Regression Methods Correlation

 Correlation is a measure of the strength of the relationship between independent and dependent variables

Formula:

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{\left[n\sum x^2 - (\sum x)^2\right]\left[n\sum y^2 - (\sum y)^2\right]}}$$

- Value lies *between +1 and -1*
- Value of zero indicates little or no relationship between variables
- Values near 1.00 and -1.00 indicate strong linear relationship

Regression Methods Correlation

Value for State University example:

$$r = \frac{(8)(2,167.7) - (49)(346.7)}{\sqrt{[(8)(311) - (49^2)][(8)(15,224.7) - (346.7)^2]}} = 0.948$$

Or, you could simply read your regression output from Excel

Regression Methods Coefficient of Determination

■ The coefficient of determination is the percentage of the variation in the dependent variable that results from the independent variable

Computed by squaring the correlation coefficient, r

For State University:

$$r = 0.948 = > r^2 = 0.899$$

■ This value indicates that 89.9% of the amount of variation in attendance can be attributed to the number of wins by the team, with the remaining 10.1% due to other, unexplained, factors

SUMMAR	Y OUTPUT			
Regressi	on Statistics			
Multiple R	0.9478			
R Square	0.898324			
Adjusted				
R Square	0.881378			
Standard				
Error	1.839311			
Observati				
ons	8			
ANIONA				
ANOVA	1.0	0.0	3.50	
	df	SS	MS	F
Regressio n	1	179.3403592	179.3404	53.0112
Residual	6	20.2983908	3.383065	33.0112
Total	7	199.63875	3.303003	
Total	1	177.03073		
	Coefficients	Standard Error	t Stat	P-value
Intercept	18.46437	3.477568937	5.309562	0.001813
Wins	4.06092	0.557751243	7.280879	0.000342

Regression Analysis with QM for Windows

Forecasting Results							
State University Athletic Department Summary							
Measure	Value						
Error Measures							
Bias (Mean Error)	.001						
MAD (Mean Absolute Deviation)	1,412.644						
MSE (Mean Squared Error)	2,537,298.0						
Standard Error (denom=n-2-0=6)	1,839.311						
MAPE (Mean Absolute Percent Error)	.033						
Regression line							
Dpndnt var, Y = 18,464.37							
+ 4,060.919 * X1							
Statistics							
Correlation coefficient	.9478						
Coefficient of determination (r^2)	.8983						

Multiple Regression with Excel

Multiple regression relates demand to two or more independent variables

General form:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$
where: β_0 = the intercept
$$\beta_1 \dots \beta_k$$
 = parameters representing contributions of the independent variables

 $x_1 x_k = independent variables$

Multiple Regression with Excel

State University example:

Given the # of wins and the amount spent on promotion by the football department (which could have gone to purchase lab equipment instead <sigh>), can you predict attendance?

Wins	Promotion (\$)	Attendance		
4	29,500	36,300		
6	55,700	40,100		
6	71,300	41,200		
8	87,000	53,000		
6	75,000	44,000		
7	72,000	45.600		
5	55,300	39,000		
7	81,600	47,500		

Multiple Regression with Excel

SUMMARY OU	TPUT								
Regre	ession Statistics								
Multiple R	0.949183								
R Square	0.900949								
Adjusted R Square	0.861329								
Standard Error	1.988687								
Observations	8								
ANOVA									
	df	SS	MS	F	Significance F				
Regression	2		89.93218	22.73956	0.003088				
Residual Total	5 7		3.954877						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%	
Intercept	19.09442	4.139282	4.61298	0.005772	8.454061	29.73479	8.454061	29.73479	
Promotion (K)	0.03689	0.101346	0.363999	0.730744	-0.22363	0.297409	-0.22363	0.297409	
Wins	3.560996	1.499981	2.374027	0.063634	-0.29483	7.416821	-0.29483	7.416821	

Problem Time! Building Products Store

For the data on the following slide:

- Develop a linear regression model forecast amount of lumber needed, given some knowledge of permits issued
- Determine the strength of the linear relationship using correlation
- Determine a forecast for lumber given 10 building permits in the next quarter

Example Problem Solution Building Products Store

Quarter	Building Permits, x	Lumber Sales (1,000s of bd ft), y
1	8	12.6
2	12	16.3
3	7	9.3
4	9	11.5
5	15	18.1
6	6	7.6
7	5	6.2
8	8	14.2
9	10	15.0
10	12	17.8