Contrôle 3

Durée : trois heures

Documents et calculatrices non autorisés

Exercice 1 (4 points)

Déterminer la nature des intégrales impropres suivantes :

$$1. \int_0^{+\infty} e^{-t} dt$$

2.
$$\int_0^1 \frac{\sin(t)}{t^{\alpha}} dt \text{ avec } \alpha \in \mathbb{R}.$$

3.
$$\int_{-\infty}^{+\infty} \frac{dt}{(1+e^t)(1+e^{-t})}$$

Exercice 2 (4,5 points)

On rappelle la formule $\sin(2x) = 2\sin(x)\cos(x)$.

Considérons $I = \int_0^{\frac{\pi}{2}} \ln(\sin(x)) dx$ et $J = \int_0^{\frac{\pi}{2}} \ln(\cos(x)) dx$.

- 1. Montrer (rigoureusement) que $\ln(\sin(x)) \sim \ln(x)$.
- 2. Montrer que I converge et que I=J en utilisant par exemple le changement de variable $u=\frac{\pi}{2}-x$
- 3. Montrer que $I = \int_0^{\frac{\pi}{2}} \ln(\sin(2x)) dx$.
- 4. En déduire la valeur de I.

Exercice 3 (4 points)

On considère un espace vectoriel E de dimension finie et un produit scalaire sur E noté <...>. Dans la suite, f désigne un endomorphisme de E. On dit que f est une isométrie si $\forall x \in E, ||f(x)|| = ||x||$.

1. Soient x et y deux vecteurs de E. Montrer que

$$< x, y> = \frac{1}{2} \left(||x+y||^2 - ||x||^2 - ||y||^2 \right).$$

- 2. Montrer que si f est une isométrie alors f est bijectif.
- 3. Montrer que

$$f$$
 est une isométrie $\iff \forall (x,y) \in E^2, \langle f(x), f(y) \rangle = \langle x, y \rangle$.

4. Soit f une isométrie telle que $f^2 = -id$. Montrer que pour tout x dans E, f(x) est orthogonal à x.

Contrôle 3 - mars 2009ЕРІТА

Exercice 4 (4 points)

Soit $\alpha \in \mathbb{R}$.

On rappelle le résultat suivant :

$$\int_{1}^{+\infty} \frac{\ln(x)}{x^{\alpha}} dx \quad \text{converge ssi} \quad \alpha > 1$$

- 1. Montrer que $\int_0^1 x \ln(x) dx$ converge.
- 2. Soit

$$I(\alpha) = \int_0^{+\infty} \frac{x \ln(x)}{(1+x^2)^{\alpha}} dx$$

- a. Déterminer la nature de $I(\alpha)$ en fonction de α .
- b. Effectuer le changement de variable $y = \frac{1}{r}$ dans I(2). En déduire la valeur de I(2).

Exercice 5 (4 points)

On définit sur $\mathcal{M}_2(\mathbb{R})$ le produit scalaire <,> défini pour tout $(A,B)\in\mathcal{M}_2(\mathbb{R})\times\mathcal{M}_2(\mathbb{R})$ par

$$\langle A, B \rangle = tr({}^{t}AB)$$

Notons $\mathcal D$ l'ensemble des matrices diagonales d'ordre 2 à coefficients réels et $\mathcal S$ l'ensemble des matrices symétriques à coefficients réels d'ordre 2. Déterminer \mathscr{D}^{\perp} et \mathscr{S}^{\perp} .

N.B. : vous exhiberez une base de \mathscr{D}^{\perp} et \mathscr{S}^{\perp} .