On expansions of the real field by complex subgroups

Erin Caulfield

University of Illinois at Urbana-Champaign

July 21, 2016

Previous work

Introduction

Expansions of the real field $\overline{\mathbb{R}}$ by subgroups of \mathbb{C}^{\times} have been studied previously. Examples include:

- \blacksquare ($\overline{\mathbb{R}}$, Γ), Γ an infinite finite rank subgroup of \mathbb{S}^1 : Belegradek and Zilber. The model theory of the field of reals with a subgroup of the unit circle (2008)
- $(\overline{\mathbb{R}}, 2^{\mathbb{Z}})$: van den Dries, The field of reals with a predicate for the powers of two (1985)
- $(\overline{\mathbb{R}}, 2^{\mathbb{Z}}, 2^{\mathbb{Z}}3^{\mathbb{Z}})$: Günaydın, Model theory of fields with multiplicative groups (2008)

Motivation

Introduction

Theorem (Hieronymi, 2010)

Let S be an infinite cyclic subgroup of $(\mathbb{C}^{\times},\cdot)$. Then exactly one of the following holds:

- 1 \mathbb{Z} is definable in (\mathbb{R}, S)
- (\mathbb{R},S) is d-minimal
- **3** Every open definable set in $(\overline{\mathbb{R}}, S)$ is semialgebraic

If S is a finite rank subgroup of \mathbb{S}^1 , then $(\overline{\mathbb{R}}, S)$ satisfies (3). However, it was not known whether arbitrary finite rank subgroups of \mathbb{C}^{\times} must satisfy one of (1)-(3).

In this talk, Γ will be a finite rank subgroup of \mathbb{S}^1 which is dense in \mathbb{S}^1 and Δ will be a subgroup of \mathbb{R} of the form $\varepsilon^{\mathbb{Z}}$ for some $\varepsilon>1$.

Introduction

Every subset of \mathbb{R}^m definable in $(\overline{\mathbb{R}}, \Gamma \Delta)$ is a Boolean combination of sets of the form

$$\{x \in \mathbb{R}^m : \exists y \in (\Gamma \Delta)^n \text{ s.t. } (x,y) \in W\}$$

for some semialgebraic set $W \subseteq \mathbb{R}^{m+2n}$. Moreover, every open definable set in $(\overline{\mathbb{R}}, \Gamma\Delta)$ is definable in $(\overline{\mathbb{R}}, \Delta)$.

Let $\Gamma = (e^{i\varphi})^{\mathbb{Z}}$ for some $\varphi \in \mathbb{R} \setminus 2\pi\mathbb{Q}$ and let $\Delta = \varepsilon^{\mathbb{Z}}$. From Theorem A, it follows that $(\overline{\mathbb{R}}, \Gamma\Delta)$ does not satisfy any of (1)-(3).

$(\overline{\mathbb{R}}, \Gamma\Delta)$ does not define \mathbb{Z}

Introduction

Let $X \subseteq \mathbb{R}$ be definable in $(\overline{\mathbb{R}}, \Gamma \Delta)$. By Theorem A, X is a Boolean combination of sets X_1, \ldots, X_k , where for $i \in \{1, \ldots, k\}$,

$$X_{i} = \{x \in \mathbb{R} : \exists y \in (\Gamma \Delta)^{n_{i}} \text{ s.t. } (x, y) \in W_{i}\}$$
$$= \bigcup_{y \in (\Gamma \Delta)^{n_{i}}} \{x \in \mathbb{R} : (x, y) \in W_{i}\}$$

for some $n_i > 1$ and semialgebraic set W_i . Each X_i is an F_{σ} set, and so X is Borel. But if $(\overline{\mathbb{R}}, \Gamma\Delta)$ defines \mathbb{Z} , then $(\overline{\mathbb{R}}, \Gamma\Delta)$ defines every projective subset of \mathbb{R} .

$(\overline{\mathbb{R}}, \Gamma\Delta)$ is not d-minimal

Introduction

0000000

Let P be the projection of $\Gamma\Delta$ onto the real line. By density of $(e^{i\varphi})^{\mathbb{Z}}$ in \mathbb{S}^1 , P is dense in \mathbb{R} . Since $\Gamma\Delta$ is countable, P is codense in \mathbb{R} . So $(\overline{\mathbb{R}}, \Gamma\Delta)$ is not d-minimal.

$(\overline{\mathbb{R}},\Gamma\Delta)$ is not d-minimal

Introduction

Let P be the projection of $\Gamma\Delta$ onto the real line. By density of $(e^{i\varphi})^{\mathbb{Z}}$ in \mathbb{S}^1 , P is dense in \mathbb{R} . Since $\Gamma\Delta$ is countable, P is codense in \mathbb{R} . So $(\overline{\mathbb{R}}, \Gamma\Delta)$ is not d-minimal.

Not every open set definable in $(\overline{\mathbb{R}}, \Gamma\Delta)$ is semialgebraic

The complement of Δ in $\mathbb{R}^{>0}$ is open and definable in $(\overline{\mathbb{R}}, \Gamma \Delta)$. Moreover,

$$\mathbb{R}^{>0} \setminus \Delta = \bigcup_{k \in \mathbb{Z}} (\varepsilon^k, \varepsilon^{k+1})$$

so by o-minimality of $\overline{\mathbb{R}}$, $\mathbb{R}^{>0}\setminus \Delta$ cannot be definable in $\overline{\mathbb{R}}$.

Since both Γ and Δ are definable in $(\overline{\mathbb{R}}, \Gamma\Delta)$, we now consider $(\overline{\mathbb{R}}, \Gamma, \Delta)$.

Introduction

The next theorem gives an axiomatization of

$$(\overline{\mathbb{R}}, \Gamma, \Delta, (\delta)_{\delta \in \Delta}, (\gamma)_{\gamma \in \Gamma}).$$

In this theorem, let K be a real closed field. Let G be a dense subgroup of $\mathbb{S}^1(K)$ with $\gamma \mapsto \gamma' : \Gamma \to G$ a group homomorphism. Let A be a subgroup of $K^{>0}$ with a group homomorphism $\delta \mapsto \delta' : \Delta \to A$ such that

- \mathbf{I} ε' is the smallest element of A greater than 1, and
- 2 for every $k \in K^{>0}$, there is $a \in A$ such that $a < k < a\varepsilon'$.

Theorem B

$$(K, G, A, (\delta')_{\delta \in \Delta}, (\gamma')_{\gamma \in \Gamma}) \equiv (\overline{\mathbb{R}}, \Gamma, \Delta, (\delta)_{\delta \in \Delta}, (\gamma)_{\gamma \in \Gamma})$$

if and only if:

- **1** for every $\gamma \in \Gamma$ and $n \in \mathbb{Z}^{>0}$, γ is an nth power in Γ if and only if γ' is an nth power in G:
- 2 for all primes p, $[p]\Gamma = [p]G$;
- **3** $(K, (\gamma'\delta')_{\gamma \in \Gamma, \delta \in \Delta})$ satisfies the orientation axioms for $\Gamma\Delta$;
- **4** $(K, GA, (\gamma'\delta')_{\gamma \in \Gamma, \delta \in \Lambda})$ satisfies the Mann axioms for $\Gamma \Delta$;
- **5** all torsion points of G are in Γ .

Theorem A is proved using Theorem B.

Orientation axioms

Definition

For $n \geq 1$, let $Q(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$ and let $\gamma\delta:=(\gamma_1\delta_1,\ldots,\gamma_n\delta_n)\in(\Gamma\Delta)^n$. The orientation axiom for $\gamma\delta$ and Q is the sentence

Theorem A

$$Q(\operatorname{Re}(\gamma_1\delta_1),\ldots,\operatorname{Re}(\gamma_n\delta_n))>0$$

if this holds in \mathbb{R} , and otherwise it is the sentence

$$Q(\operatorname{Re}(\gamma_1\delta_1),\ldots,\operatorname{Re}(\gamma_n\delta_n))\leq 0.$$

The set of orientation axioms for $\Gamma\Delta$ is the collection of these sentences for each $n \geq 1$, each $Q \in \mathbb{Z}[x_1, \dots, x_n]$, and each tuple $\gamma \delta \in (\Gamma \Delta)^n$.

The Mann property

Definition

Let K be a field of characteristic 0 and G a subgroup of K^{\times} . For $a_1, \ldots, a_n \in \mathbb{Q}$ $(n \geq 1)$, a nondegenerate solution to

$$a_1x_1+\ldots+a_nx_n=1 \qquad (*)$$

is a tuple $(g_1,\ldots,g_n)\in G^n$ such that

$$a_1g_1+\ldots+a_ng_n=1$$

and $\sum_{i \in I} a_i g_i \neq 0$ for each nonempty subset $I \subseteq \{1, \ldots, n\}$. G has the *Mann property* if every equation of the form (*) has only finitely many nondegenerate solutions in G.

Definition

Let $\mathcal{L}:=\mathcal{L}_{or}(P,V,\Gamma,\Delta)$ be the language of ordered rings, together with a binary relation symbol P, a unary relation symbol V, and names for each $\delta\in\Delta$ and $\gamma\in\Gamma$.

Theorem A

Theorem B

To prove Theorem B, we prove the following more general result.

Theorem A

Theorem B

Let

$$\mathcal{M}:=(K,G,A,(\gamma)_{\gamma\in\Gamma},(\delta)_{\delta\in\Delta})$$
 and $\mathcal{N}:=(L,H,B,(\gamma)_{\gamma\in\Gamma},(\delta)_{\delta\in\Delta})$

be two models of the \mathcal{L} -theory T. Then $\mathcal{M} \equiv \mathcal{N}$ if and only if

- lacksquare [p]G = [p]H for all primes p, and
- for all $\gamma \in \Gamma$, and $n \ge 1$, γ is an nth power in G iff γ is an nth power in H.

Definition

Let H, G be arbitrary groups with $H \leq G$. H is said to be pure in G if $H \cap G^{[m]} = H^{[m]}$ for all m > 1.

Definition

Let E, F be field extensions of a field k with E, $F \subseteq K$ for some field K. We say that E and F are free over k if any set $S \subseteq E$ which is algebraically dependent over F is algebraically dependent over k.

Let Sub(K, G, A) be the collection of $\mathcal{L}_{or}(P, V)$ -structures (K', G', A') such that:

- **11** K' is a real closed subfield of K of cardinality less than κ
- \mathbf{Q} is a pure subgroup of G containing Γ
- $oxed{3}$ A' is a pure subgroup of A containing Δ
- **4** K'(i) and $\mathbb{Q}(GA)$ are free over $\mathbb{Q}(G'A')$
- **5** For all $k' \in (K')^{>0}$, there is $a' \in A'$ such that $a' \leq k' < a' \varepsilon$.

Let \mathcal{I} be the collection of isomorphisms between members of Sub(K, G, A) and Sub(L, H, B) that fix Δ and Γ pointwise.

Proof that \mathcal{I} is a back-and-forth system

Let $a \in K \setminus K'$ and let $\iota \in \mathcal{I}$. We want to extend ι to $\iota' \in \mathcal{I}$ such that $a \in dom(\iota')$. We prove this by considering four cases:

- **1** a ∈ A
- $a \in Re(G)$ or $a \in Im(G)$
- $a \in K'(\operatorname{Re}(GA) \cup \operatorname{Im}(GA))$
- $a \in K \setminus K'(Re(GA) \cup Im(GA))$

Theorem A: Part I

Every subset of \mathbb{R}^m definable in $(\overline{\mathbb{R}}, \Gamma \Delta)$ is a Boolean combination of sets of the form

$$\{x \in \mathbb{R}^m : \exists y \in (\Gamma \Delta)^n \text{ s.t. } (x, y) \in W\}$$
 (*)

for some semialgebraic set $W \subseteq \mathbb{R}^{m+2n}$.

Since Γ and Δ are definable in $(\overline{\mathbb{R}}, \Gamma\Delta)$, we prove that every subset of \mathbb{R}^m is definable in $(\overline{\mathbb{R}}, \Gamma, \Delta)$ is a Boolean combination of sets of the form (*).

To prove this, we prove the following stronger theorem.

Theorem

Let $\mathcal{M} := (K, G, A, (\gamma)_{\gamma \in \Gamma}, (\delta)_{\delta \in \Delta})$ be a model of T such that [p]G is finite for each prime p. Every subset of K^m definable in M is a Boolean combination of subsets of K^m defined in M by formulas of the form

$$\exists y \exists z (V(y) \land P(z) \land \phi(x, y, z))$$

where $\phi(x, y, z)$ is a quantifier free $\mathcal{L}_{or}(K)$ -formula.

Since Γ is a finite rank subgroup of \mathbb{C}^{\times} , $\left|\Gamma/\Gamma^{[n]}\right|$ is finite for each $n \geq 1$.

Next we define an orientation \mathcal{O} on $\mathbb{S}^1(K)$. In this picture, $\mathcal{O}(a,b,c)$ holds.

Definition

Let
$$\mathcal{L}_{orm} = \{\mathcal{O}, 1, \cdot\}$$
. Let $\Gamma \subseteq G \subseteq \mathbb{S}^1(K)$. Let $x = (x_1, \dots, x_n)$ and let $z = (z_{11}, z_{12}, \dots, z_{n1}, z_{n2})$. For each $\mathcal{L}_{orm}(\Gamma)$ -formula $\phi(x)$, there is an $\mathcal{L}_{or}(\Gamma)$ -formula $\psi_{\phi}(z)$ such that for all $(a_1, \dots, a_n) \in G^n$ with $a_i = (a_{i1}, a_{i2})$,

Theorem A

$$(G, \mathcal{O}, 1, \cdot) \models \phi(a_1, \dots, a_n)$$
 if and only if

$$(K, <, +, -, 0, 1, \cdot) \models \psi_{\phi}(a_{11}, a_{12}, \dots, a_{n1}, a_{n2}).$$

Let

$$\Sigma_{orm}(\Gamma) = \{\psi_{\phi} : \phi \text{ an } \mathcal{L}_{orm}(\Gamma)\text{-formula}\}.$$

Definition

A special $\mathcal{L}_{or}(P, V)$ -formula in x is a formula $\psi(x)$ of the form

$$\exists y \exists z (V(y) \land P(z) \land \theta_V^1(y) \land \theta_P^2(z) \land \phi(x, y, z)).$$

Theorem A

The following is the main lemma used in proving quantifier reduction.

Main lemma

Every \mathcal{L} -formula $\psi(x)$ is equivalent in T to a Boolean combination of special \mathcal{L} -formulas in x.

Future work

Currently we are studying expansions of \mathbb{R} by groups of the form $S:=(ae^{i\varphi})^{\mathbb{Z}}b^{\mathbb{Z}}$, where $\varphi\notin 2\pi\mathbb{Q}$ and $a^{\mathbb{Z}}b^{\mathbb{Z}}$ is dense in $\mathbb{R}^{>0}$. Let $g: a^{\mathbb{Z}}b^{\mathbb{Z}} \to (e^{i\varphi})^{\mathbb{Z}}$ be defined by $g(a^nb^m) = e^{i\varphi n}$. We consider the structure

$$(\overline{\mathbb{R}}, b^{\mathbb{Z}}, a^{\mathbb{Z}}b^{\mathbb{Z}}, (e^{i\varphi})^{\mathbb{Z}}, g).$$

Question

Can we find a theory T and conditions for two models \mathcal{M}, \mathcal{N} of Tto be elementarily equivalent as in Theorem B?

Question

Let G be a finitely generated subgroup of \mathbb{C}^{\times} and consider $(\overline{\mathbb{R}}, G)$. When can we analyze the definable sets of $(\overline{\mathbb{R}}, G)$ using methods similar to the ones used in Theorem A and Theorem B?