تحلیل سرشکنی (Amortized Analysis)

- تحليل بدترين حالت
- تحلیل در حالت متوسط

محیط: یک دادهساختار و دنبالهای از عملیات بر روی آن

هزینهی سرشکن شده هر عمل: متوسط هزینهی آن عمل (در بدترین حالت)

multiPoP مثال ۱: پشته با عمل

علاوه بر PUSH و POP

$\underline{\text{MULTIPOP}}(S, k)$

- 1 while not STACK-EMPTY(S) and $k \neq 0$
- $\mathbf{do} \ \mathbf{do} \ \mathsf{Pop}(S)$
- $k \leftarrow k-1$

هزینه ها در بدترین حالت:

- $\Theta(1)$:Pop \bullet Push \bullet
- $\Theta(\min\{k, \operatorname{Size}(S)\})$: Multipop(S, k) •

پس اگر دنبالهای از n تا از این اعمال داشته باشیم، جمع کل هزینه ها در بدترین حالت: $\Theta(n^{7})$.

نشان می دهیم که هزینه ی سرشکن شده هر عمل O(1) است.

مثال ۲: افزایش شمارندهی دودویی

 $A[\circ..k-1]$ یک شمارنده ی دودویی k بیتی k بیتی (بیت \circ کمارزش ترین بیت k

```
\begin{array}{ccc} \underline{\text{INCREMENT}}(A) \\ 1 & i \leftarrow 0 \\ 2 & \mathbf{while} \ i < length[A] \ \mathbf{and} \ A[i] = 1 \\ 3 & \mathbf{do} \ A[i] \leftarrow 0 \\ 4 & i \leftarrow i+1 \\ 5 & \mathbf{if} \ i < length[A] \\ 6 & \mathbf{then} \ A[i] \leftarrow 1 \end{array}
```

هزینهی شمارنده در بدترین حالت

هر عمل افزایش در بدترین حالت $\mathcal{O}(k)$ هر عمل افزایش $\mathcal{O}(nk)$ عمل افزایش n

نشان می دهیم که هزینه ی هر عمل افزایش به صورت سرشکن شده O(1) است.

روشهای تحلیل سرشکن شده

- روش انبوهه (aggregate): جمع هزینه های اعمال، تقسیم بر تعداد.
- روش حساب داری (accounting): استفاده از یک مخزن پول و پر داخت برای هر عمل
 - روش تابع پتانسیل (potential): حالت کلی تر روش قبل

تحلیل پشته با روش مجموع

تحلیل پشته با روش مجموع

اگر n عمل داشته باشیم:

- حداکثر تعداد عناصر پشته n است.
- هر عنصر داخل پشته دقیقاً یک بار Push و حداکثر یک بار Pop می شود.
 - یک عنصر یا مستقیماً Pop می شود و یا با Multipop
 - هر عمل Push و Push و Push •

جمع هزینه ها حداکثر $\Theta(\Upsilon n)$ است

پس هزینهی سرشکن شدهی هر عمل O(1) است.

تحلیل شمارنده با روش انبوهه

تحلیل شمارنده با روش انبوهه

- هر عمل افزایش حداکثر یک بیت را ۱ می کند و تعدادی را از ۱ به ۰ تغییر می دهد
 - \bullet بیت \circ با هر افزایش flip بیت \circ با هر افزایش
 - بیت ۱ یک در میان flip می شود (7/7) بار)
 - (n/4) بیت ۲ هر ۴ بار یک دفعه تغییر می کند
 - ... ●
 - بیت i پس از 7^i بار افزایش تغییر می کند (در مجموع 1^i بار)

پس در مجموع

$$\sum_{i=\circ}^{k-1} \lfloor \frac{n}{\mathsf{Y}^i} \rfloor \le n \sum_{i=\circ}^{\infty} \frac{1}{\mathsf{Y}^i} \le \mathsf{Y}^n$$

یعنی هزینه ی سرشکن شده ی هر عمل O(1) است.

تحلیل پشته بهروش حسابداری

- برای هر Push ۲ ریال خرج می کنیم.
 - ۱ ریال صرف عمل Push می شود.
- ۱ ریال را بر روی عنصر داخل پشته می گذاریم.
 - Pop ها همه مجانی خواهند بود.

کلًا ۲n ریال هزینه پس هزینهی سرشکن شده (۱) است.

تحلیل شمارنده بهروش حسابداری

تحلیل شمارنده بهروش حسابداری

- هر عمل افزابش ۲ ریال هزینه می کنیم.
- ۱ ریال صرف تبدیل یک بیت از ۰ به ۱ میشود.
 - ۱ ریال برروی بیت ۱ قرار می دهیم.
 - هزینهی ۱ به ۰ مجانی خواهد بود.

روش تابع پتانسیل

- دادهساختار اولیه: D_{\circ}
- ام i ام اختار پس از عمل ا D_i

$$D_{\circ} \stackrel{\text{1}}{\longrightarrow} D_{\mathsf{1}} \stackrel{\text{2}}{\longrightarrow} D_{\mathsf{1}} \dots \stackrel{n}{\longrightarrow} D_n$$

- ام i ام هزينهي واقعى عمل ا c_i
- تعریف می کنیم: $\Phi(D_i)=\Phi(D_i)$ تعریف می کنیم:

ام i ام عمل هزینهی سرشکن شده \hat{c} ام

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

$$\sum\limits_{i=1}^n \hat{c}_i = \sum\limits_{i=1}^n c_i + \Phi(D_n) - \Phi(D_\circ)$$
 پس $ullet$

 $\Phi(D_\circ) = \circ$ اگر \bullet

$$\sum_{i=1}^{n} \hat{c}_i \ge \sum_{i=1}^{n} c_i$$

. يعنى $\sum\limits_{i=1}^n \hat{c}_i$ كران بالايى براى $\sum\limits_{i=1}^n c_i$ است كه مىخواهيم بهدست آوريم

تناظر با روش حساب داری

- i مقدار پول موجود در مخزن پس از عمل $\Phi(D_i)$
 - . مقدار پولی که برای عمل i پرداخت می کنیم: \hat{c}_i
 - i مقدار هزینهی صرف شده برای عمل c_i
- $\Phi(D_i) = \Phi(D_{i-1}) + \hat{c}_i c_i$ اگر $\hat{c}_i < \hat{c}_i$ ، مابهالتفاوت به مخزن اضافه می شود:
- و اگر $c_i > \hat{c}_i$ برای انجام عمل i لازم است از مخزن بهاندازه ی $c_i > \hat{c}_i$ برداریم تا بتوانیم و اگر $\Phi(D_i) = \Phi(D_{i-1}) (c_i \hat{c}_i)$ می شود.

تحلیل پشته با روش پتانسیل

- $\Phi(D_i) = \Phi(D_i)$ تعریف: تعداد عناصر موجود در پشته
 - $\Phi(D_\circ) = \circ$ در ابتدا
 - عمل Push:
- $\Phi(D_i) \Phi(D_{i-1}) = 1$ یک عنصر اضافه می شود: ۱
 - $c_i =$ ۱ هزينهي واقعي--
 - $\hat{c}_i = 1 + 1 = 7$ پس --

دادهساختارها و مبانى الگوريتمها

• عمل POP:

$$\Phi(D_i) - \Phi(D_{i-1}) = -1$$
یک عنصر کم می شود: -1

$$c_i = 1$$
 هزينهي واقعي $--$

$$\hat{c}_i =$$
۱ $-$ ۱ $=$ \circ پس $-$

• عمل Multipop هم تعدادی Pop است. پس هزینهی سرشکنشدهی آن هم صفر است.

$$\sum_{i=1}^{n} c_i \leq \sum_{i=1}^{n} \hat{c}_i = \Upsilon n$$

پس هزینهی سرشکن شدهی هر عمل O(1) است.

تحليل شمارنده بهروش پتانسيل

- $\Phi(D_i) = A$ اعریف تابع پتانسیل: تعداد یک ها
 - $\Phi(D_i) \geq \circ$ و $\Phi(D_\circ) = \circ$ داریم \bullet
 - عمل «افزایش»:
- بیت از ۱ به صفر و حداکثر یک عدد صفر به ۱ تبدیل می شود. t_i
 - -- پس

دادهساختارها و مبانى الگوريتمها

$$\begin{vmatrix}
\hat{c}_i = \Phi(D_i) - \Phi(D_{i-1}) + c_i \\
\Phi(D_i) - \Phi(D_{i-1}) \le -t_i + 1 \\
c_i \le t_i + 1
\end{vmatrix} \rightarrow \hat{c}_i \le 7$$

• پس هزینهی سرشکن شده ی هر عمل افزایش O(1) است.