TBC-204/TBI-202

B. C. A./B. SC. (IT) (SECOND SEMESTER) END SEMESTER

EXAMINATION, July/August, 2022

DIGITAL ELECTRONICS

Time: Three Hours

Maximum Marks: 100

Note: (i) All questions are compulsory.

- (ii) Answer any two sub-questions among (a), (b) and (c) in each main question.
- (iii) Total marks in each main question are twenty.
- (iv) Each sub-question carries 10 marks.

1. (a) Convert the following: (CO1

(i) $(652)_8 = ()_2$

(ii) $(25.32)_8 = ()_{10}$

(iii) $(6864)_{10} = ()_{16}$

- (iv) $(1011)_2 = ()_8$
- (v) $(5D2)_{16} = ()_8$
- (b) How is the error detection and correction carried out using parity method in digital data transmission? (CO1)
- (c) Explain grey code and excess-3 code. Encode the following into grey code and excess-3 code: (CO1)
 - (i) 45
 - (ii) 26 '
- 2. (a) Simplify the following Boolean function using K map: (CO2)
 - (i) $F(x, y, z) = \Sigma(1, 3, 5, 7)$
 - (ii) $F(A, B, C, D) = \Sigma(0, 1, 5, 8, 9)$
 - (b) Draw the following logic gates with their truth tables: (CO2)
 - (i) AND
 - (ii) XNOR
 - (iii) NAND
 - (iv) X-OR
 - (v) NOR

- (c) Find the standard product of sum (POS) for the logic expression F = (A + B'C) C.

 (CO2)
- 3. (a) Design and explain 8×1 MUX using 2×1 MUX. (CO3)
 - (b) Design 3 × 8 decoder and explain its working. (CO3)
 - (c) Design 4 bit binary adder/subtractor and explain its working. (CO3)
- 4. (a) What is meant by race around condition?
 How can it be avoided? (CO4)
 - (b) Draw the logic diagram of J-K flip flop and explain it. What is the advantage of J-K flip flop over S-R flip flop? (CO4)
 - (c) What are registers and its types? (CO4)
- 5. (a) Explain a 3 bit asynchronous up counter.

 Draw the timing diagram and truth table.

(CO5)

- (b) Explain the PIPO and PISO shift register with relevant logic diagram. (CO5)
- (c) Design and explain ring counter. (CO5)

TBC-204/TBI-202