Archiv der Mathematik

On pure subgroups of locally compact abelian groups

Ву

PETER LOTH

Abstract. In this note, we construct an example of a locally compact abelian group $G = C \times D$ (where C is a compact group and D is a discrete group) and a closed pure subgroup of G having nonpure annihilator in the Pontrjagin dual \hat{G} , answering a question raised by Hartman and Hulanicki. A simple proof of the following result is given: Suppose $\mathfrak R$ is a class of locally compact abelian groups such that $G \in \mathfrak R$ implies that $\hat{G} \in \mathfrak R$ and nG is closed in G for each positive integer n. If G is a closed subgroup of a group $G \in \mathfrak R$, then G is topologically pure in G exactly if the annihilator of G is topologically pure in G. This result extends a theorem of Hartman and Hulanicki.

All considered groups are Hausdorff abelian topological groups and will be written additively. For a group G and a positive integer n we shall write $nG = \{ng : g \in G\}$ and $G[n] = \{g \in G : ng = 0\}$. If H is a subgroup of G, the subgroup $\{g \in G : ng \in H\}$ will be written $n^{-1}H$. The Pontrjagin dual of a locally compact abelian (LCA) group G is denoted by \hat{G} , and (\hat{G}, H) denotes the annihilator of H in the dual \hat{G} . By \mathbf{Z} we mean the additive group of integers, $\mathbf{Z}(n)$ is the cyclic group of order n and \mathbf{R} denotes the additive group of real numbers with the usual topology.

A subgroup H of a group G is called *pure* (in G) if for every positive integer n and element $h \in H$, the equation nx = h is solvable in H whenever it is solvable in G. In other words, H is pure in G exactly if $nG \cap H = nH$, or equivalently, if $G[n] + H = n^{-1}H$ for each positive integer n. The literature shows the importance of this concept (see e.g. [2]).

Lemma 1. Consider the following conditions for an LCA group G, a closed subgroup H and a positive integer n:

- (i) $nG \cap H = nH$;
- (ii) $\overline{nG} \cap H = \overline{nH}$;
- (iii) $\hat{G}[n] + (\hat{G}, H) = n^{-1}(\hat{G}, H).$

Then we have: (i) $\not\Rightarrow$ (ii) $\not\Rightarrow$ (i) and (ii) \Leftrightarrow (iii).

Proof. The first assertion follows from [6] Example 2.4. The annihilator of $\overline{nG} \cap H$ is equal to $\widehat{G}[n] + (\widehat{G}, H)$ by [5] Theorems 23.29(b), 24.10 and 24.22. For $\chi \in \widehat{G}$, we have $n\chi \in (\widehat{G}, H)$ if and only if $\chi \in (\widehat{G}, nH) = (\widehat{G}, \overline{nH})$. Therefore, (ii) implies (iii). Since closed subgroups of G are identical if they have the same annihilator (see [5] Theorem 24.10), (iii) implies (ii). \square

If G is discrete or compact and H is a closed subgroup of G, then in the above lemma, (i) and (ii) are equivalent and $\hat{G}[n] + (\hat{G}, H)$ is a closed subgroup of \hat{G} . Therefore, in this case the subgroup H is pure in G if and only if its annihilator (\hat{G}, H) is pure in \hat{G} . Let us say that an LCA group G has correct purity if a closed subgroup of G is pure exactly if its annihilator is pure.

In [4], Hartman and Hulanicki established a characterization of closed subgroups of LCA groups whose annihilator is pure and determined conditions ensuring correct purity. Recall that a topological group is said to have *no small subgroups* if there is a neighborhood of 0 which does not contain any nontrivial subgroups. Moskowitz [7] showed that LCA groups without small subgroups have the form $\mathbf{R}^n \times (\mathbf{R}/\mathbf{Z})^m \times D$ where m and n are nonnegative integers and D is a discrete group, and that their dual groups are the compactly generated LCA groups. The following theorem is the main result of Hartman and Hulanicki's paper [4]. We would like to remark that a short proof of this result can be found in [6].

Theorem 2 [4, Hartman and Hulanicki]. Let $\mathfrak C$ denote the class of LCA groups which are either compactly generated or have no small subgroups. Suppose G is a group in $\mathfrak C$. Then G has correct purity.

In their paper [4], Hartman and Hulanicki asked whether Theorem 2 is still valid if \mathfrak{C} is replaced by the class \mathfrak{C}' of all LCA groups of the form $C \times D$ where $C \in \mathfrak{C}$ and D is a discrete group (see also [1] p. 95). The following example shows that the answer to this question is no.

Example 3. We construct a group $G \in \mathfrak{C}'$ and a closed pure subgroup H of G having nonpure annihilator. Let p be a prime and n a positive integer. Then we set $G = pB \times D$ where B is the topological direct product of \aleph_0 copies of the group $\mathbf{Z}(p^{n+1})$ and D is the subgroup $\bigoplus_{\aleph_0} \mathbf{Z}(p^{n+1})$ of B, taken discrete. Notice that $H = \{(px, px) : x \in \mathbb{R} \mid x \in \mathbb{R} \}$

D} is a discrete, hence closed subgroup of G. It is clear that $p^kG \cap H = p^kH$ for each positive integer k, therefore H is pure in G. Now assume the annihilator $X = (\hat{G}, H)$ is pure in \hat{G} . Then $X + \hat{G}[p^n]$ is closed in \hat{G} and therefore $(X + \hat{G}[p^n])/\hat{G}[p^n]$ is a closed subgroup of the compact group $\hat{G}/\hat{G}[p^n]$. Since $\hat{G}[p^n]$ is σ -compact, $(X + \hat{G}[p^n])/\hat{G}[p^n]$ is topologically isomorphic to $X/X[p^n]$ by [3] Theorem 3.3. We have a topological isomorphism $(X/X[p^n]) \to (\hat{X}, X[p^n]) = (p^n\hat{X})$ (see [5] Theorems 23.25 and 24.22), so the group $p^n\hat{X}$ is discrete by [5] Theorem 23.17. On the other hand, $p^n(G/H)$ is topologically isomorphic to $p^n\hat{X}$ (cf. [5] Theorem 24.3). It follows that $p^nG + H$ is a discrete subgroup of G. But then $p^nG + p^{n-1}H = \bigoplus_{\aleph_0} p^n\mathbf{Z}(p^{n+1}) \times p^nD$ is a discrete subgroup of G, which

is impossible. Therefore the annihilator of H is not pure in \hat{G} .

Notice that if $G \in \mathfrak{C}'$, then $\hat{G} \in \mathfrak{C}'$ and nG is closed in G for each positive integer n because the groups in \mathfrak{C}' have the form $\mathbf{R}^n \times C \times D$ where C is a compact group and D is a discrete group. A subgroup H of a group G is called *topologically pure* (in G) if

$$\overline{nG} \cap H = \overline{nH}$$

for each positive integer n. We say that an LCA group G has correct topological purity if a closed subgroup of G is topologically pure exactly if its annihilator is topologically pure. "Purity" and "topological purity" are equivalent concepts in $\mathfrak C$ because closed subgroups of groups in $\mathfrak C$ are again in $\mathfrak C$ (cf. [7] Theorem 2.6), hence the following result extends Theorem 2:

Theorem 4. Let \Re denote a class of LCA groups having the following property: If $G \in \Re$, then $\hat{G} \in \Re$ and nG is closed in G for each positive integer n. Suppose G is a group in \Re . Then G has correct topological purity.

Proof. Suppose H is a topologically pure subgroup of $G \in \mathfrak{K}$. Let n be a positive integer, $\chi \in \hat{G}$ and assume $n\chi \in (\hat{G}, H)$. By Lemma 1, $\chi \in \overline{\hat{G}[n] + (\hat{G}, H)}$, so there exists a net $\{\chi_i\}_{i \in \Lambda}$ in $\widehat{G}[n] + (\hat{G}, H)$ which converges to χ . But then $\{n\chi_i\}_{i \in \Lambda}$ converges to $n\chi$, hence $n\chi \in n(\hat{G}, H)$. Consequently we have

$$\overline{n\hat{G}} \cap (\hat{G}, H) = n\hat{G} \cap (\hat{G}, H) = \overline{n(\hat{G}, H)},$$

therefore (\hat{G}, H) is topologically pure in \hat{G} . The converse follows from duality. \square

Acknowledgment. The author would like to thank the referee for the helpful comments and suggestions.

References

- [1] D. L. ARMACOST, The Structure of Locally Compact Abelian Groups. New York 1981.
- [2] L. FUCHS, Infinite Abelian Groups, Vols. I and II. New York 1970 and 1973.
- [3] R. O. FULP and P. GRIFFITH, Extensions of locally compact abelian groups I. Trans. Amer. Math. Soc. 154, 341–356 (1971).
- [4] S. HARTMAN et A. HULANICKI, Les sous-groupes purs et leurs duals. Fund. Math. 45, 71–77 (1957).
- [5] E. HEWITT and K. ROSS, Abstract Harmonic Analysis, Vol. I, Second Edition. Berlin 1979.
- [6] P. LOTH, Topologically pure extensions. In: Abelian Groups, Rings and Modules. Proceedings of the AGRAM 2000 Conference in Perth, Western Australia, July 9-15, 2000, Contemp. Math. 273, 191–201 (2001).
- [7] M. MOSKOWITZ, Homological algebra in locally compact abelian groups. Trans. Amer. Math. Soc. 127, 361–404 (1967).

Received: 4 April 2002

Peter Loth
Department of Mathematics
Sacred Heart University
5151 Park Avenue
Fairfield, Connecticut 06825-1000
USA
lothp@sacredheart.edu