Given a tree T with n nodes, how many subtrees (T') of T have at most K edges connected to (T - T')?

Input Format

The first line contains two integers n and K followed by n-1 lines each containing two integers a & b denoting that there's an edge between a & b.

Constraints

 $1 \le K \le n \le 50$

Every node is indicated by a distinct number from 1 to n.

Output Format

A single integer which denotes the number of possible subtrees.

Sample Input

3 1

2 1

2 3

Sample Output

6

Explanation

There are 2³ possible sub-trees:

But

the sub-trees $\{2\}$ and $\{1,3\}$ are not valid. $\{2\}$ isn't valid because it has 2 edges connecting to it's complement $\{1,3\}$ whereas K=1 in the sample test-case $\{1,3\}$ isn't valid because, well, it's not a subtree. The nodes aren't connected.