N₂1

Условие

Образ всюду плотного множества при сюръективном непрерывном отображении всюду плотное

Решение

 $f:\ X o Y$ - непрерывно и сюръективно. Из этого следует, что $orall U\in T_Y
eq\emptyset, \implies f^{-1}(U)\in T_X
eq\emptyset$ $f^{-1}(U)=K$ f(A)=B

Рассмотрим два свойства:

1. $K\cap A\neq\emptyset$, так как в противном случае $X\backslash K$ - замкнуто, и $A\in X\backslash K\implies Cl(A)\neq X$

$$\text{2. } \forall x \in K \cap A \implies x \in A, \quad x \in K \implies f(x) \in B, \quad x \in f(K) \subset U \implies f(x) \in B \cap U$$

Из свойств 1,2 получаем, что $B\cap U\neq\emptyset \implies B\not\subset Y\backslash U$ - замкнутое Тогда имеем, что любое замкнутое на T_Y множество, кроме $Y=Y\backslash\emptyset$ не содержит B Следовательно, единственное замкнутое множество, содержащее B есть Y $\implies Cl(B)=Y\implies B=f(A)$ - всюду плотен

Nº2

Условие

Непрерывно ли в топологическом пространстве с индуцированной из канонической топологии на $\mathbb R$ отображение $f\colon \ [0,2] o [0,2] \quad f(x) = egin{cases} x, & x \in [0,1) \\ 3-x, & x \in [1,2] \end{cases}$

Решение

 $f\colon\thinspace X o Y$ - непрерывно \iff прообраз любого открытого в Y множества открыт.

Каноническая топология на $\mathbb R$ это топология, базой которой служат открытые круги, т. е.

$$U \in T \iff egin{cases} U = \emptyset \ orall x \in U & \exists V : V = \{x | (x - x_0) < \epsilon\} : & V \in U \end{cases}$$

Предположим, что $x \in [0,1)$

Пусть $V_{f(x)}$ - окрестность f(x) на Y.

Предположим, что часть окрестности $K\subset V_{f(x)}$ лежит в другой части отрезка $K\subset [1,2].$

Также возьмём $V_{f(x)} \neq Y$.

Тогда, прообраз $f^{-1}\left(V_{f(x)}ackslash K
ight)\subset U_x$, где U_x - окрестность x на X.

Однако $f^{-1}(K) \cup f^{-1}(V_{f(x)} \setminus K) \not\subset T_X$ по построению (между $f^{-1}(K)$ и $f^{-1}(V_{f(x)} \setminus K)$ будет некоторое непустое множество P = [1,a), где a - прообраз правой границы $V_{f(x)}$) (Вдобавок, $f^{-1}(K) \cap U_x \neq f^{-1}(K)$).

Следовательно раз прообраз $V_{f(x)}$ не открыт, то, по определению непрерывности, функция не непрерывна.

- P. S. Можно было доказать с помощью примера, взяв (1.5, 2], но я решил расписать в общем случае
- P. P. S. Ещё можно было пойти через лекционное определение $(f: X \to Y$ непрерывные в точке $x_0 \in X \iff \forall V$ окрестность точки $f(x_0) \;\; \exists U$ окрестность точки $x_0: f(U) \subset V)$

N₂3

Условие

Может ли множество быть всюду плотным и нигде не плотным

Решение

Перефразируем условия:

Существует ли $A \in X: \ Cl(A) = X$ и $Cl\left(Int(X \backslash A)\right) = X$

Рассмотрим условия, которые должны выполняться:

$$A
eq X$$
, так как $Cl(Int(Xackslash A)) = Cl(\emptyset) = \emptyset
eq X$

$$A
eq \emptyset$$
, так как $Cl(A) = \emptyset
eq X$

A - не замкнуто, так как иначе Cl(A)=A
eq X

A - не открыто, так как иначе Cl(Int(Xackslash A)) = Xackslash A

P.~S.~4-е условие было добавлено как теоретическое. Оно не нужно для получения противоречия, но мне было бы интересно узнать, действительно ли $Int(X\backslash A)=X\backslash A$? $X\backslash A\not lpha T$, так как иначе $Cl~(Int(X\backslash A))=Cl(X\backslash A)=X\backslash A$

Пусть
$$\exists A \in X: \ A = X, \ Cl\left(Int(X \backslash A)\right) = X$$
 $A \neq \emptyset \quad A \neq X \quad X \backslash A \not \in T$

Пусть $\exists U \in T \neq \emptyset: \ U \subset X \backslash A$, так как иначе $Int \ (X \backslash A) = \emptyset$ и $Cl(Int(X \backslash A)) = \emptyset \neq X$ $X \backslash A$ - не пустое

Но тогда $A\subset Xackslash U\implies Cl(A)\subset Xackslash U$ (так как Xackslash U - замкнуто) $\implies Cl(A)\neq X$

Получили противоречие.

Значит не существует множества, удовлетворяющего условиям