

Coloration de graphes

CM nº6 — Mobilité (M2 IMPAIRS)

Matěj Stehlík 16/2/2024

Cliques

- Une *clique* de *G* est un sous graphe induit de *G* qui est complet, c'est-à-dire, il contient toutes les arêtes possibles.
- Le nombre de clique, noté $\omega(G)$, et le nombre de sommets d'une plus grande clique dans G.

Cliques

- Une *clique* de *G* est un sous graphe induit de *G* qui est complet, c'est-à-dire, il contient toutes les arêtes possibles.
- Le nombre de clique, noté $\omega(G)$, et le nombre de sommets d'une plus grande clique dans G.

Cliques

- Une *clique* de *G* est un sous graphe induit de *G* qui est complet, c'est-à-dire, il contient toutes les arêtes possibles.
- Le nombre de clique, noté $\omega(G)$, et le nombre de sommets d'une plus grande clique dans G.

$$\omega(G) = 3$$

Ensembles stables

- Un *stable* de *G* est un sous-ensemble de sommets de *G* deux à deux non adjacents : il induit un sous graphe sans arêtes.
- Autrement dit, $U \subseteq V$ est un stable si et seulement si $uv \notin E$ pour toute paire de sommets $u, v \in U$.
- Le nombre de stabilité, noté $\alpha(G)$, est le nombre de sommets d'un plus grand stable de G.

Ensembles stables

- Un stable de G est un sous-ensemble de sommets de G deux à deux non adjacents : il induit un sous graphe sans arêtes.
- Autrement dit, $U \subseteq V$ est un stable si et seulement si $uv \notin E$ pour toute paire de sommets $u, v \in U$.
- Le nombre de stabilité, noté $\alpha(G)$, est le nombre de sommets d'un plus grand stable de G.

Ensembles stables

- Un stable de G est un sous-ensemble de sommets de G deux à deux non adjacents : il induit un sous graphe sans arêtes.
- Autrement dit, $U \subseteq V$ est un stable si et seulement si $uv \notin E$ pour toute paire de sommets $u, v \in U$.
- Le nombre de stabilité, noté $\alpha(G)$, est le nombre de sommets d'un plus grand stable de G.

$$\alpha(G) = 3$$

Relation entre cliques et stables

Observation

Les sommets d'une clique de G correspondent à un stable du complémentaire \overline{G} , et un stable de G correspond à l'ensemble de sommets d'une clique de \overline{G} . En particulier, $\omega(G)=\alpha(\overline{G})$ et $\alpha(G)=\omega(\overline{G})$.

Relation entre cliques et stables

Observation

Les sommets d'une clique de G correspondent à un stable du complémentaire \overline{G} , et un stable de G correspond à l'ensemble de sommets d'une clique de \overline{G} . En particulier, $\omega(G)=\alpha(\overline{G})$ et $\alpha(G)=\omega(\overline{G})$.

Relation entre cliques et stables

Observation

Les sommets d'une clique de G correspondent à un stable du complémentaire \overline{G} , et un stable de G correspond à l'ensemble de sommets d'une clique de \overline{G} . En particulier, $\omega(G)=\alpha(\overline{G})$ et $\alpha(G)=\omega(\overline{G})$.

Coloration

- Une k-coloration d'un graphe G = (V, E) est une application $c: V \to \{1, \dots, k\}$ telle que $c(u) \neq c(v)$ pour toute arête $uv \in E$.
- *Classe chromatique* : l'ensemble des sommets d'une couleur.
- Les classes chromatiques sont des stables.
- Le plus petit entier k tel qu'il existe un k-coloration de G est le nombre chromatique de G, qu'on note $\chi(G)$.

Application: planning des examens

- Les étudiants ont des examens dans toutes les UE auxquelles ils s'inscrivent.
- Les examens de deux UE différentes ne peuvent avoir lieu en même temps s'il y a des étudiants inscrits à ces deux cours.
- Pour trouver un planning avec le moins de sessions, considérons le graphe G dont l'ensemble de sommets est l'ensemble de toutes les UE, deux UE étant reliés par une arête s'il font l'objet d'un conflit.
- ullet Les stables de G correspondent aux groupes de UE sans conflit.
- Ainsi le nombre minimum de sessions requis est le nombre chromatique de G.

Nombre chromatique de certains graphes

Exemple

- $\chi(K_n) = n$
- $\chi(C_n) = \begin{cases} 2 & \text{si } n \text{ est pair} \\ 3 & \text{si } n \text{ est impair} \end{cases}$

Nombre chromatique et sous-graphes

Observation

Si $H \subseteq G$, alors $\chi(H) \leq \chi(G)$.

- Soit c une coloration de G.
- La restriction de c aux sommets de H définit une coloration de H.
- Donc, $\chi(H) \leq \chi(G)$.

Relation entre χ et ω

Proposition

Soit G un graphe quelconque. Alors, $\chi(G) \ge \omega(G)$.

- Par la définition de ω , G contient un sous-graphe complet H à $\omega(G)$ sommets.
- Par l'observation précédente, $\chi(G) \ge \omega(G)$.
- L'écart entre χ et ω peut être arbitrairement grand.
- Pour tout $k \ge 2$, il existe un graphe G tel que $\chi(G) = k$ et $\omega(G) = 2$.

Relation entre χ et α

Proposition

Soit G un graphe à n sommets. Alors, $\chi(G) \geq \lceil n/\alpha(G) \rceil$.

- Une coloration est une partition des sommets en stables.
- Comme chaque stable est de taille inférieure ou égale à $\alpha(G)$, il faut au moins $n/\alpha(G)$ stables pour recouvrir tous les sommets.
- Donc, $\chi(G) \ge n/\alpha(G)$, et comme $\chi(G)$ est un entier, on a $\chi(G) \ge \lceil n/\alpha(G) \rceil$.
- L'écart entre χ et n/α peut être arbitrairement grand.
- Pour tout $k \ge 2$ et tout $\varepsilon > 0$, il existe un graphe G tel que $\chi(G) = k$ et $\alpha(G) < n/2 + \varepsilon$.

Entrées : Un graphe G=(V,E) avec un ordre total v_1,v_2,\ldots,v_n sur les sommets

Sorties : Une coloration de G

Entrées : Un graphe G=(V,E) avec un ordre total v_1,v_2,\ldots,v_n sur les sommets

Sorties : Une coloration de G

Entrées : Un graphe G=(V,E) avec un ordre total v_1,v_2,\ldots,v_n sur les sommets

Sorties : Une coloration de G

Entrées : Un graphe G=(V,E) avec un ordre total v_1,v_2,\ldots,v_n sur les sommets

Sorties : Une coloration de G

Entrées : Un graphe G=(V,E) avec un ordre total v_1,v_2,\ldots,v_n sur les sommets

Sorties : Une coloration de G

Entrées : Un graphe G=(V,E) avec un ordre total v_1,v_2,\ldots,v_n sur les sommets

Sorties : Une coloration de G

Une conséquence de l'algorithme glouton

Théorème

Soit G un graphe avec degré maximum Δ . Alors, $\chi(G) \leq \Delta + 1$.

- Cette borne est serrée pour deux familles de graphes :
 - les graphes complets : $\Delta(K_n) = n 1$, $\chi(K_n) = n$
 - les cycles impairs : $\Delta(C_{2k+1}) = 2$, $\chi(C_{2k+1}) = 3$
- La borne est stricte pour tout graphe n'appartennant pas à une de ces deux familles.

Théorème de Brooks

Si G est un graphe connexe de degré maximum Δ , qui n'est ni un cycle impair ni un graphe complet, alors $\chi(G) \leq \Delta$.

- Considérons le graphe G_k avec sommets v_1, v_2, \ldots, v_{2k}
- $v_i v_j \in E(G_{2k})$ ssi i est impair, j est pair, et $j i \neq 1$
- L'algorithme glouton utilise k couleurs.
- Pourtant, $\chi(G) = 2$.

- Considérons le graphe G_k avec sommets v_1, v_2, \dots, v_{2k}
- $v_i v_j \in E(G_{2k})$ ssi i est impair, j est pair, et $j i \neq 1$
- L'algorithme glouton utilise k couleurs.
- Pourtant, $\chi(G) = 2$.

- Considérons le graphe G_k avec sommets v_1, v_2, \dots, v_{2k}
- $v_i v_j \in E(G_{2k})$ ssi i est impair, j est pair, et $j i \neq 1$
- L'algorithme glouton utilise k couleurs.
- Pourtant, $\chi(G) = 2$.

- Considérons le graphe G_k avec sommets v_1, v_2, \ldots, v_{2k}
- $v_i v_j \in E(G_{2k})$ ssi i est impair, j est pair, et $j i \neq 1$
- L'algorithme glouton utilise k couleurs.
- Pourtant, $\chi(G) = 2$.

- Considérons le graphe G_k avec sommets v_1, v_2, \dots, v_{2k}
- $v_i v_j \in E(G_{2k})$ ssi i est impair, j est pair, et $j i \neq 1$
- L'algorithme glouton utilise k couleurs.
- Pourtant, $\chi(G) = 2$.

- Considérons le graphe G_k avec sommets v_1, v_2, \dots, v_{2k}
- $v_i v_j \in E(G_{2k})$ ssi i est impair, j est pair, et $j i \neq 1$
- L'algorithme glouton utilise k couleurs.
- Pourtant, $\chi(G) = 2$.

- Considérons le graphe G_k avec sommets v_1, v_2, \dots, v_{2k}
- $v_i v_j \in E(G_{2k})$ ssi i est impair, j est pair, et $j i \neq 1$
- L'algorithme glouton utilise k couleurs.
- Pourtant, $\chi(G) = 2$.

- Considérons le graphe G_k avec sommets v_1, v_2, \dots, v_{2k}
- $v_i v_j \in E(G_{2k})$ ssi i est impair, j est pair, et $j i \neq 1$
- L'algorithme glouton utilise k couleurs.
- Pourtant, $\chi(G) = 2$.

- Considérons le graphe G_k avec sommets v_1, v_2, \dots, v_{2k}
- $v_i v_j \in E(G_{2k})$ ssi i est impair, j est pair, et $j i \neq 1$
- L'algorithme glouton utilise k couleurs.
- Pourtant, $\chi(G) = 2$.

Dégénérescence

Définition

Un graphe est d-dégénéré s'il existe un ordre sur les sommets tel que, pour tout sommet, le nombre d'arêtes vers des sommets plus petits dans l'ordre est au plus d.

- Graphes de degré maximum Δ sont Δ -dégénérés.
- Arbres sont 1-dégénérés.
- Le théorème suivant est une conséquence directe de l'algorithme glouton.

Théorème

Si G est d-dégénéré, alors $\chi(G) \leq d + 1$.

Graphes bipartis

Définition

Un graphe G=(V,E) est *biparti* si $\chi(G)\leq 2$. C'est-à-dire, on peut partitionner l'ensemble de sommets V en deux sous-ensembles stables A,B.

Exemples de graphes bipartis

Caractérisation de graphes bipartis

Théorème

Un graphe est biparti si et seulement s'il ne contient pas de cycles impairs comme sous-graphe.

- Un cycle de longueur impaire n'est pas biparti.
- Donc, si G est biparti, alors G ne contient aucun cycle impair.

Caractérisation de graphes bipartis

Démonstration (suite)

- \leftarrow
 - Soit *G* un graphe connexe ne contenant aucun cycle impair comme sous-graph. (Si le graphe n'est pas connexe, on considère chaque composante connexe séparément).
 - Soit T un arbre couvrant de G, et fixons un sommet r de T.
 - Soit A l'ensemble de sommets de G dont la distance à r est paire, est soit $B = V \setminus A$.
 - Nous montrerons que A et B sont des classes chromatiques d'une 2-coloration de G.

Caractérisation de graphes bipartis

Démonstration (suite)

- Il suffit de montrer que toute arête uv de G a une extrémité dans A et l'autre dans B.
- Si $uv \in E(T)$, c'est évidemment le cas.
- Si $uv \in E(G) \setminus E(T)$, le graphe $T \cup \{e\}$ contient un cycle élémentaire C.
- Comme $T \cup \{uv\} \subseteq G$, le cycle C est de longueur paire.
- La la chaîne élémentaire unique entre u et v dans T doit être de longueur impaire.
- Donc, u et v sont dans des parties différentes de (A, B).

Graphes d'intervalles

- Étant donnés des intervalles $I_1, I_2, \ldots, I_n \subseteq \mathbb{R}$, le graphe d'intervalles correspondant est G = (V, E) où $V = \{I_1, I_2, \ldots, I_n\}$ et $I_i I_j \in E$ ssi $I_i \cap I_j \neq \emptyset$.
- Un graphe G est un graphe d'intervalles s'il existe une famille d'intervalles t.q. G est le graphe d'intervalles correspondant à cette famille.

Une borne optimale pour le nombre chromatique

Théorème

Si G est un graphe d'intervalles, alors $\chi(G) = \omega(G)$.

Lemme

Si G est un graphe d'intervalles, alors G contient un sommet de degré $\omega(G)-1$.

Démonstration du lemme

- Soit $u \in V(G)$ t.q. l'intervalle correspondant I_u maximise min I_u .
- Pour tout voisin v de u, on a $\min I_v \leq \min I_u \leq \max I_v$.
- En particulier, $\min I_u \in I_v$.
- Cela montre que les voisins de u forment une clique de G.
- Donc, $d(u) \leq \omega(G) 1$.

Nombre chromatique des graphes d'intervalles

Théorème

Si G est un graphe d'intervalles, alors $\chi(G) = \omega(G)$.

- Soit $G_0 = G$, et pour $i \ge 1$, soit G_i le graphe obtenu à partir de G_{i-1} en supprimant un sommet v_{i-1} de degré au plus $\omega(G) 1$.
- On obtient ainsi un ordre $v_0, v_1, \ldots, v_{n-1}$ sur les sommets.
- Appliquer l'algorithme glouton de coloration dans l'ordre $v_{n-1}, v_{n-2}, \dots, v_0$.
- À chaque étape, le sommet v_i traité par l'algorithme a au plus $\omega(G)-1$ voisins coloriés, donc l'algorithme va utiliser au plus $\omega(G)$ couleurs.

Application : Allocation de véhicules

- Une entreprise dispose d'une flotte de voitures.
- Chaque employé peut réserver une voiture pour une période donné.
- Quel est le nombre minimum de voitures pour satisfaire la demande?
- Soient $I_1, I_2, \dots, I_n \subseteq \mathbb{R}$ les intervalles réservés.
- Soit G=(V,E) le graphe avec $V=\{I_1,I_2,\ldots,I_n\}$ et $I_iI_j\in E(G)$ ssi $I_i\cap I_j\neq\emptyset$.
- Le nombre minimum de voitures nécessaires pour satisfaire la demande est le nombre chromatique de G.

Conséquence pour l'allocation de véhicules

- Si k est le nombre maximum de voitures réservées simultanément, alors il suffit que l'entreprise dispose de k voitures pour satisfaire la demande.
- Désavantage de ce modèle : il suppose que toutes les réservations soient connues à l'avance.
- Que se passe-t-il si les réservations arrivent au fur et à mesure?
- Il s'agit du problème de la coloration *en ligne* (online) de graphes d'intervalles.
- Quel est le pire cas?

Algorithme « First-Fit »

Algorithme

Pour chaque nouveau sommet, choisir la plus petite couleur non utilisée sur les voisins.

- Facile à trouver des exemples où cet algorithme n'est pas optimal : par exemple, considérez les chaînes v_1, v_2, v_3, v_4 et v_1, v_3, v_4, v_2 .
- On peut prouver que cet algorithme utilise au plus $8\omega(G)$ couleurs, et il y a des exemples où il utilise $5\omega(G)$ couleurs.
- Il y a un algorithme plus sophistiqué qui utilise au plus $3\omega(G)-2$ couleurs.

Et si les intervalles avaient la même longueur...?

Théorème

L'algorithme First-Fit utilise au maximum $2\omega(G)-1$ couleurs pour colorier les graphes d'intervalles unitaires.

- Chaque intervalle intersecte au plus $2\omega(G)-2$ intervalles.
- Sinon, supposons par l'absurde que I=[x,x+1] intersecte au moins $2\omega(G)-1$ intervealles.
- Chaque intervalle J t.q. $I \cap J \neq \emptyset$ contient x ou x+1 (ou les deux).
- Donc, x ou x+1 appartient à plus que $\omega(G)-1$ intervalles différents de I.
- Donc, il existe une clique de taille supérieure à $\omega(G)$ contradiction.

Graphes de disques unitaires

- Soit $\mathcal D$ une famille de disques unitaires (de diamètre 1) dans le plan.
- Soit G le graphe dont les sommets sont les disques de \mathcal{D} , avec arêtes correspondant aux paires de disques qui s'intersectent.
- G est un graphe de disques unitaires (unit disc graph en anglais).
- C'est une extension du concept de graphe d'intervalle à la dimension 2.
- Les graphes de disques unitaires servent comme modèle pour les réseau sans fil.