Homework 3

Shao-Ting Chiu (UIN:433002162) 9/22/22

• Course: STAT638, 2022 Fall

Do the following exercises in Hoff: 3.8, 3.9, 3.14.

In Exercise 3.9, you should be able to avoid "brute-force" integration by exploiting the fact that the Galenshore distribution is a proper distribution, meaning that the density of the Galenshore(a,b) distribution integrates to one for any a, b > 0.

For 3.14(b), note that $p_U(\theta)$ is proportional to the density of a known distribution.

Please note that while there are only 3 problems in this assignment, some of them are fairly challenging. So please don't wait too long to get started on this assignment.

• Deadline: Sept. 27, 12:01pm

Computational Environment Setup

Third-party libraries

```
%matplotlib inline
import sys # system information
import matplotlib # plotting
import scipy # scientific computing
import pandas as pd # data managing
from scipy.special import comb
from scipy import stats as st
from scipy.special import gamma
import numpy as np
import matplotlib.pyplot as plt
```

```
# Matplotlib setting
plt.rcParams['text.usetex'] = True
matplotlib.rcParams['figure.dpi']= 300
```

Version

```
print(sys.version)
print(matplotlib.__version__)
print(scipy.__version__)
print(np.__version__)
print(pd.__version__)

3.8.12 (default, Oct 22 2021, 18:39:35)
[Clang 13.0.0 (clang-1300.0.29.3)]
3.3.1
1.5.2
1.19.1
1.1.1
```

Problem 3.8

Coins: Diaconis and Ylvisaker (1985) suggest that coins spun on a flat surface display long-run frequencies of heads that vary from coin to coin. About 20% of the coins behave symmetrically, whereas the remaining coins tend to give frequencies of $\frac{1}{3}$ or $\frac{2}{3}$.

Let θ be the priobability of tossing head.¹

(a)

Based on the observations of Diaconis and Ylvisaker (1985), use an appropriate mixture of beta distributions as a prior distribution for θ , the long-run frequency of heads for a particular coin. Plot your prior.

 $^{^1{\}rm This}$ solution is referred to the lecutre note about mixture priors. URL: http://www.mas.ncl.ac.uk/~nmf16/teaching/mas3301/week11.pdf

$$p(\theta) = 0.2 \times Beta(3,3) + 0.4 \times Beta(2,4) + 0.4 \times Beta(4,2)$$

The distribution is shown in Figure 1.

Figure 1: Designed mixture prior.

(b)

Choose a single coin and spin it at least 50 times. Record the number of heads obtained. Report the year and denomination of the coin.

Let n > 50 be the number of flips, and x be the number of heads obtained.

- n
- X
- n-x

(c)

Compute your posterior for θ , based on the information obtained in (b)

(d)

Repeat (b) and (c) for a different coin, but possibly using a prior for θ that includes some information from the first coin. Your choice of a new prior may be informal, but needs to be justified. How the results from the first experiment influence your prior for the θ of the second coin may depend on whether or not the two coins have the same denomination, have a similar year, etc. Report the year and denomination of this coin.

Problem 3.9

Galenshore distribution: An unknown quantity Y has a Galenshore (α, θ) distribution if its density is given by

$$p(y)=\frac{2}{\Gamma(a)}\theta^{2a}y^{2a-1}e^{-\theta^2y^2}$$

for y > 0, $\theta > 0$ and a > 0. Assume for now that a is known. For this density,

$$E[Y] = \frac{\Gamma(a + \frac{1}{2})}{\theta \Gamma(a)}, \quad E[Y^2] = \frac{a}{\theta^2}$$

(a)

Identify a class of conjugate prior densities for θ . Plot a few members of this class of densities.

(b)

Let $Y_1, \ldots, Y_n \sim i.i.d$. Galenshore (a, θ) . Find the posterior distribution of θ given Y_1, \ldots, Y_n , using a prior from your conjugate class.

(c)

Write down $\frac{p(\theta_a|Y_1,...,Y_n)}{p(\theta_b|Y_1,...,Y_n)}$ and simplify. Identify a sufficient statistics.

(d)

Determine $E[\theta|y_1,\ldots,y_n]$.

(e)

Determine the form of the posterior predictive density $y(\tilde{y}|y_1,\ldots,y_n)$.

Problem 3.14

Unit information prior: Let $Y_1,\ldots,Y_n\sim i.i.d.p(y|\theta)$. Having observed the values $Y_1=y_1,\ldots,Y_n=y_n$, the log likelihood is given by $l(\theta|y)=\sum\log p(y_i|\theta)$, and the value $\hat{\theta}$ of θ that maximize $l(\theta|y)$ is called the maximum likelihood estimator. The negative of the curvature of the log-likelihood, $J(\theta)=-\frac{\partial^2 l}{\partial \theta^2}$, describes the precision of the MLE $\hat{\theta}$ and is called the observed Fisher information. For situations in which it is difficult to quantify prior information in terms of a probability distribution, some have suggested that the "prior" distribution be based on the likelihood, for example, by centering the prior distribution around the MLE $\hat{\theta}$. To deal with the fact that the MLE is not really prior information, the curvature of the prior is chosen so that it has only "one nth" as much information as the likelihood, so that $-\frac{\partial^2 \log p(\theta)}{\partial \theta^2} = \frac{J(\theta)}{n}$. Such a prior is called a unit information prior (Kass and Wasserman, 1995; Kass and Raftery, 1995), as it has as much information as the average amount of information from a single observation. The unit information prior is not really a prior distribution, as it is computed from the observed data. However, it can be roughly viewed as the prior information of someone with weak but accurate prior information.

(a)

Let $Y_1, \dots, Y_n \sim i.i.d.$ binary (θ) . Obtain the MLE $\hat{\theta}$ and $\frac{J(\hat{\theta})}{n}$.

(b)

Find a probability density $p_U(\theta)$ such that $\log p_U(\theta) = \frac{l(\theta|y)}{n} + c$, where c is a constant that does not depend on θ . Compute the information $-\frac{\partial^2 \log p_U(\theta)}{\partial \theta^2}$ of this density.

(c)

Obtain a probability density for θ that is proportional to $p_U(\theta) \times p(y_1, \dots, y_n | \theta)$. Can this be considered a posterior distribution for θ >

(d)

Repeat (a), (b) and (c) but with $p(y|\theta)$ being the Poisson distribution. Diaconis, Persi, and Donald Ylvisaker. 1985. "Quantifying Prior Opinion, Bayesian Statistics. Vol. 2." North Holland Amsterdam: