Lab 3: Second Order Circuit

Name: Wan-Yu Liao

ECEN 325 Section 514

TA: Mandela

Lab Date: September 20, 2019

Report Due Date: September 23, 2019

Calculation

1. Read the data sheet for the UA741 opamp and write down the typical values of the following parameters:

Supply Voltage:	5V to 15V	Power Consumption:	50mW	
Supply Voltage.	-5V to -15V	Tower Consumption.	John	
Input Resistance:	2ΜΩ	Input Offset Voltage:	1mV	
Output Resistance:	75Ω	Input Offset Current:	20nA	
Voltage Gain:	106dB	Bandwidth:	1MHz	
Slew Rate:	0.5V/μs			

2. Derive the voltage gains

Circuit A

$$V_{x} = D \qquad I_{1} = I_{2}$$

$$\frac{V_{0} - V_{x}}{R_{1}} = \frac{V_{x} - V_{0}}{A_{2}}$$

$$\frac{V_{0}}{V_{0}} = -\frac{R_{2}}{R_{1}}$$

Circuit B

$$V_{x} = V_{t}$$

$$\frac{0 - V_{x}}{R_{3}} = \frac{V_{x} - V_{02}}{R_{4}}$$

$$\frac{V_{02}}{V_{t}} = 1 + \frac{R_{4}}{R_{3}}$$

Circuit C

$$V_{03} = V_{\bar{l}}$$

$$\frac{V_{03}}{V_{l}} = [$$

3. If R1 = R3 = $10k\Omega$, find R2 and R4 such that V_{o1}/V_i =-3 and V_{o2}/V_i = 6.

$$\frac{V_{01}}{V_{1}} = -\frac{R_{2}}{R_{1}} \Rightarrow -3 = -\frac{R_{2}}{10k} \Rightarrow R_{2} = 30k\Omega$$

Simulations

Circuit A

(a) Bode Plot

(b) Time-Domain Waveforms

This simulation is different from pre-lab because in the pre-lab, I connected the wrong vcc and vee to the op amp and I didn't get the correct graph.

(c) Parameter Sweep

This graph is also different from the pre-lab. Maximum amplitude is 0.6V.

(d)

Applied $V_i(t) = 0.6 \sin(2\pi 1000t)$.

Circuit B

Simulation pictures for circuit B are all different from pre-lab because I used the wrong resistor value in pre-lab and connected the wrong vcc and vee in the pre-lab.

(a) Bode Plot

(b) Time-Domain Waveforms

(c) Parameter Sweep

The max amplitude is about 1.2V.

(d)

Applied $V_i(t) = 1.2 \sin(2\pi 1000t)$.

Circuit C

(a)

(b)

Time-Domain Waveform

(c)

Max amplitude is about 0.2V.

(d)

Applied $V_i(t) = 0.2 \sin(2\pi 1000t)$.

Measurement

Input Offset Current

Voltage Across Resistor @ Negative Terminal

Voltage Across Resistor @ Positive Terminal

I (negative terminal) = $-31*10^{-3}*10^{-5} = -31*10^{-8}$

I (positive terminal) = $-30*10^{-3}*10^{-5} = -30*10^{-8}$

Input offset = $1*10^{-8} = 100uA$

DC Offset Voltage

Before placing the potentiometer:

Output voltage offset = 2mV

Input voltage offset = 2mv/6 = 0.33mV

After placing the potentiometer:

Output voltage = 1 mV

Circuit A

Bode Plot

Time-Domain Waveform

Clipping Point

Total Harmonic Distortion

Circuit B

Bode Plot

Time-Domain Waveform

Clipping Point

Total Harmonic Distortion

Circuit C

Bode Plot

Time-Domain Waveform

Total Harmonic Distortion

Tables

Data Sheet Value vs. Measured Value

	Data Sheet Value	Measured Value
Input Voltage Offset	1mV	0.33mV
Input Current Offset	TYP: 20nA MAX: 200nA	0.1nA

Calculated vs. Simulated vs. Measured

	V _o /V _i	H	∠H	V _{i, max}	THD%	DC Gain
Circuit A	-3					3
Calculated						
Circuit A	-602.3m/200.0m	$20\log(1.8)$	179.7°	0.6V	8.75*10 ⁻⁶	1.8
Simulated	= -3.01	= 5.1dB				
Circuit A	-0.652/0.174	9.63dB	179.63°	1V	0.0678	$10^{9.6/20} =$
Measured	= -3.76					3.02
Circuit B						(
Calculated	6					6
Circuit B	1200m/199.6m	20log(1.2)	-0.322°	1.2V	27.1	1.2
Simulated	= 6.01	= 1.58dB	-0.322	1.2 V	27.1	
Circuit B	1.194/0.175	15.53dB	-0.534°	0.6V	0.105	$10^{15/20} =$
Measured	= 6.82	15.53ub	-0.334	0.6 V	0.103	5.6
Circuit C	1					1
Calculated	1					1
Circuit C	199.94m/199.92m	20log(1.2)	-0.053°	0.2V	6.59*10 ⁻⁵	1.2
Simulated	= 1.00	= 1.58dB				
Circuit C	0.188/0.181	0.02dB	-0.084°	0.2V	0.00104	$10^{0.0197/20}$
Measured	= 1.04	0.02ub	-0.064	U.2 V	0.00104	= 1.002

Conclusion

The results of simulation are different from the results of calculation and measurement. It might because I used Vee for the negative power supply on simulation circuits or the values, I entered are wrong.

For the DC voltage offset part, after placing the potentiometer, the output voltage should be 0V but not 1mV. It might because I didn't turn the potentiometer to the right place.

For ideal amplifier, the Bode Plot should be a horizontal line. However, in reality, there are CMOS in the amplifier, and it is depended on A/s. Therefore, when the frequency gets very large, there is a pole that make the Bode plot goes down. That's the reason why in the measurement plots, the Bode plot for 3 circuits all decrease at the large frequency value.