Roll No-12

M.sc. 3rd semester

Date of Assignment-02/12/2020

Date of Submission-10/12/2020

Experiment No -09

<u>Topic-</u> Tracing the power curve for Normal distribution with unknown mean and variance

<u>Problem</u> – Consider the following sample from $N(\mu, \sigma^2)$ Where μ and σ^2 both are unknown. The sample values are 5.2,10.8,7.1,16.4,12.5,12,10.3,10.0,12.7,9.7,10.5

Construct the UMP test for testing $h_0:\sigma^2=4$ against

- (i) $h_1:\sigma^2>4$
- (ii) $h_1:\sigma^2<4$
- (iii) $h_1:\sigma^2\neq 4$

Also, draw the power curve for each of the cases considering the level of significance as $\alpha = 0.05$

Theory and Calculation-

(i)From the theory of similar region we know that the CR for testing $h_0:\sigma^2=4$ against $h_1:\sigma^2>4$ is given by

$$W_1 = \left\{ \bar{X} : \sum_{i=1}^n (x_i - \bar{x})^2 > k_1 \right\}$$

where k_1 is a constant to be determined in such a way that α =0.05

$$P[x \in W_1|H_0] = 0.05$$

$$\Rightarrow P\left[\sum_{i=1}^{n} (x_i - \bar{x})^2 > k_1 | H_0\right] = 0.05$$

$$\Rightarrow P\left[\sum_{i=1}^{n} \frac{(x_i - \bar{x})^2}{\sigma_0^2} > \frac{k_1}{\sigma_0^2}\right] = 0.05$$

$$\Rightarrow P[\chi_{11-1}^2 > a_1] = 0.05 \qquad where \ a_1 = \frac{k_1}{\sigma_0^2} = \frac{k_1}{4}$$

$$\Rightarrow P[\chi_{10}^2 \le a_1] = 0.95$$

To, find the value of a₁ we use the following R-command

a1=qchisq(0.95,10,0)

a1

∴a1=18.30704

 $\therefore k_1 = 4 \times a1 = 73.22815$

We have, $\bar{x} = 10.654545$

∴ The S.R. is given by

$$W_1 = \left\{ \underbrace{\mathbf{X}}_{i=1}^n (x_i - 10.654545)^2 > 73.22815 \right\}$$

Power of the test is given by

Power=1- β =P[$x \in W_1/H_1$]

$$= P\left[\sum_{i=1}^{n} (x_i - 10.654545)^2 > 73.22815/H_1\right]$$

$$= P\left[\chi_{10}^2 > \frac{73.22815}{\sigma_1^2}\right]$$

$$= 1 - P\left[\chi_{10}^2 < \frac{73.22815}{\sigma_1^2}\right]$$

Now, to trace the power curve we construct the following table considering different trial values of $\sigma^2>4$

TABLE 1

Sl no	sigma_1	power_1
	<u> </u>	
1	4.1	0.057362
2	4.2	0.06527
3	4.3	0.073707
4	4.4	0.082652
5	4.5	0.092082
6	4.6	0.10197
7	4.7	0.112289
8	4.8	0.123008
9	4.9	0.134098
10	5	0.145526
11	5.1	0.15726
12	5.2	0.169269
13	5.3	0.181521
14	5.4	0.193985
15	5.5	0.206631
16	5.6	0.219428
17	5.7	0.23235
18	5.8	0.245368
19	5.9	0.258456
20	6	0.271591
21	6.1	0.284748
22	6.2	0.297905
23	6.3	0.311043
24	6.4	0.324141

25	6.5	0.337183
26	6.6	0.350151
27	6.7	0.363031
28	6.8	0.375808
29	6.9	0.388471
30	7	0.401007

Programming in R for case 1-

```
library('ggplot2')
k_1 = 73.22815
sigma_1 = seq(from=4.1, by=0.1, length.out=30)
sigma_1
sigma_11 = k_1/sigma_1
sigma_11
power_1 = mat.or.vec(30,1)
for(i in 1:30){
    power_1[i] = 1-pchisq(sigma_11[i],10,0)
        }
power_1
Table = data.frame(sigma_1, power_1)
Table
View(Table)
ggplot(data = Table, mapping = aes(x = sigma_1,y = power_1))+geom_point()+geom_line()
data.frame(sigma_1)
data.frame(power_1)
```

Power curve by using ggplot 2

Power curve generated by using Tableau

Sigma_1 vs. power_1. The marks are labeled by sum of power_1

ii) To test $h_1:\sigma^2=4$ against $h_1:\sigma^2<4$, is given by

$$W_2 = \left\{ \bar{X} : \sum_{i=1}^n (x_i - \bar{x})^2 < k_2 \right\}$$

where k_2 is a constant to be determined in such a way that $\alpha \! = \! 0.05$

 $P[x \in W_2 | H_0] = 0.05$

$$\Rightarrow P\left[\sum_{i=1}^{n} (x_i - \bar{x})^2 < k_2 | H_0\right] = 0.05$$

$$\Rightarrow P\left[\sum_{i=1}^{n} \frac{(x_i - \bar{x})^2}{\sigma_0^2} < \frac{k_2}{\sigma_0^2}\right] = 0.05$$

$$\Rightarrow P[\chi_{11-1}^2 < a_2] = 0.05 \qquad , where \ a_2 = \frac{k_2}{\sigma_0^2} = \frac{k_2}{4}$$

$$\Rightarrow P[\chi_{10}^2 < a_2] = 0.05$$

To, find the value of a₂ we use the following R-command,

a2=qchisq(0.05,10,0)

a2

∴a2=3.940299

So,k2=15.7612

.. The similar region is given by

$$W_2 = \left\{ \underbrace{\mathbf{X}}_{i=1}^{11} (x_i - 10.654545)^2 < 15.7612 \right\}$$

The power of the test is given by

 $1-\beta=P(x\in W_2/H_1)$

=P[Reject H₀/H₁ is true]

$$= P\left[\sum_{i=1}^{n} (x_i - 10.654545)^2 < 15.7612/H_1\right]$$

$$= P\left[\chi_{10}^2 < \frac{15.7612}{\sigma_1^2}\right]$$

$$= 1 - P\left[\chi_{10}^2 > \frac{73.22815}{\sigma_1^2}\right]$$

To draw the power curve we construct the following table considering different trial values of $\sigma < 4\,$

TABLE 2

sl no	sigma_2	power_2
1	1	0.893325
2	1.1	0.841466
3	1.2	0.783742
4	1.3	0.723157
5	1.4	0.662226
6	1.5	0.602846
7	1.6	0.546316
8	1.7	0.493435
9	1.8	0.444615
10	1.9	0.39999
11	2	0.359501
12	2.1	0.322969
13	2.2	0.29014
14	2.3	0.260726
15	2.4	0.234423
16	2.5	0.210934
17	2.6	0.189972
18	2.7	0.171273
19	2.8	0.154589
20	2.9	0.1397
21	3	0.126403
22	3.1	0.114521
23	3.2	0.103893
24	3.3	0.094377
25	3.4	0.085848
26	3.5	0.078194
27	3.6	0.071318
28	3.7	0.065132
29	3.8	0.059561
30	3.9	0.054537

Programming in R for case 2-

```
library('ggplot2')
k_2 = 15.7612
sigma_2 = seq(from=1.0, by=0.1, length.out=30)
sigma_2
sigma_22 = k_2/sigma_2
sigma_22
power_2 = mat.or.vec(30,1)
for(i in 1:30){
   power_2[i] = pchisq(sigma_22[i],10,0)
        }
power_2
Table = data.frame(sigma_2, power_2)
Table
View(Table)
ggplot(data = Table, mapping=aes(x = sigma_2, y = power_2))+geom_point()+geom_line()
data.frame(sigma_2)
data.frame(power_2)
```

Power curve by using ggplot 2

Power curve generated by using Tableau

 $0.9 \quad 1.0 \quad 1.1 \quad 1.2 \quad 1.3 \quad 1.4 \quad 1.5 \quad 1.6 \quad 1.7 \quad 1.8 \quad 1.9 \quad 2.0 \quad 2.1 \quad 2.2 \quad 2.3 \quad 2.4 \quad 2.5 \quad 2.6 \quad 2.7 \quad 2.8 \quad 2.9 \quad 3.0 \quad 3.1 \quad 3.2 \quad 3.3 \quad 3.4 \quad 3.5 \quad 3.6 \quad 3.7 \quad 3.8 \quad 3.9 \quad 4.0 \quad 3.7 \quad 3.8 \quad 3.9 \quad 3.9$ sigma_2

0.0858 0.0782 0.0713 0.0596 0.0545

0.0944

 $Sigma_2 \ vs. \ power_2. \ The \ marks \ are \ labeled \ by \ sum \ of \ power_2.$

0.1

(iii)To test $H_0:\sigma^2=4$ against $H_1:\sigma^2\neq 4$, the best similar region is given by

$$W_3 = \left\{ \bar{\mathbf{X}} : \sum_{i=1}^{11} (x_i - \bar{x})^2 < k_3 \right\} or \left\{ \bar{\mathbf{X}} : \sum_{i=1}^{11} (x_i - \bar{x})^2 > k_4 \right\}$$

Where, k_3 and k_4 are constants to be determined such that α =0.05

$$P[x \in W_3 | H_0] = 0.05$$

$$\Rightarrow P\left[\sum_{i=1}^{11} (x_i - \bar{x})^2 < k_3 | H_0 \text{ or } \sum_{i=1}^{11} (x_i - \bar{x})^2 > k_4 | H_0\right] = 0.05$$

Assuming that the test is equitailed, we have

$$\Rightarrow P\left[\sum_{i=1}^{11} \frac{(x_i - \bar{x})^2}{\sigma_0^2} < \frac{k_3}{\sigma_0^2}\right] = \frac{0.05}{2}$$

$$\&P\left[\sum_{i=1}^{11} \frac{(x_i - \bar{x})^2}{\sigma_0^2} > \frac{k_4}{\sigma_0^2}\right] = \frac{0.05}{2}$$

$$\Rightarrow P[\chi_{10}^2 < a_3] = 0.025$$

&P[
$$\chi_{10}^2 > a_4$$
] = 0.025

Where,
$$a_3 = \frac{k_3}{\sigma_0^2} = \frac{k_3}{4}$$
 and $a_4 = \frac{k_4}{\sigma_0^2} = \frac{k_4}{4}$

$$\Rightarrow P[\chi_{10}^2 < a_3] = 0.025$$

$$&P[\chi_{10}^2 > a_4] = 0.975$$

Now to determine the values of a₃ and a₄ we use the following R-command:

a3

a4

$$a_3=3.246973$$
 and $a_4=20.48318$

 $k_3=12.98789$ and $k_4=81.93271$

Also, $\bar{x} = 10.654545$

∴The similar region is given by

$$W_3 = \left\{ \bar{\mathbf{X}} : \sum_{i=1}^{11} (x_i - \bar{x})^2 < 12.98789 \right\} \text{ or } \left\{ \bar{\mathbf{X}} : \sum_{i=1}^{11} (x_i - \bar{x})^2 > 81.93271 \right\}$$

Now, Power of the test is given by

 $1-\beta=P(x\in W_3/H_1)$

=P[Reject H₀/H₁ is true]

$$= P\left[\frac{\sum_{i=1}^{n} (x_i - 10.654545)^2}{\sigma_1^2} < \frac{12.98789}{\sigma_1^2} or \frac{\sum_{i=1}^{n} (x_i - 10.654545)^2}{\sigma_1^2} > \frac{81.93271}{\sigma_1^2}\right]$$

$$= P\left[\chi_{10}^2 < \frac{12.98789}{\sigma_1^2}\right] + P\left[\chi_{10}^2 > \frac{81.93271}{\sigma_1^2}\right]$$

$$= P\left[\chi_{10}^2 < \frac{12.98789}{\sigma_1^2}\right] + 1 - P\left[\chi_{10}^2 < \frac{81.93271}{\sigma_1^2}\right]$$

To trace the power curve we construct the following table considering different trial values of $\sigma^2 \neq 4$

TABLE 3

sl no	sigma_3	power_3
1	4.1	0.052213
2	4.2	0.055101
3	4.3	0.058642
4	4.4	0.062812
5	4.5	0.06759
6	4.6	0.07295
7	4.7	0.078868
8	4.8	0.085319
9	4.9	0.092276

5	0.099713
5.1	0.107602
5.2	0.115915
5.3	0.124625
5.4	0.133704
5.5	0.143123
5.6	0.152856
5.7	0.162874
5.8	0.173152
5.9	0.183662
6	0.19438
6.1	0.205281
6.2	0.21634
6.3	0.227536
6.4	0.238845
6.5	0.250246
6.6	0.26172
6.7	0.273248
6.8	0.284811
6.9	0.296392
7	0.307975
1	0.77565
1.1	0.701831
1.2	0.628546
1.3	0.558689
1.4	0.493973
1.5	0.435219
1.6	0.382633
1.7	0.33604
1.8	0.295045
1.9	0.259148
2	0.227813
2.1	0.200512
2.2	0.176754
2.3	0.156093
2.4	0.138133
2.5	0.122532
2.6	0.108994
2.7	0.097269
2.8	0.087149
2.9	0.078458
3	0.071053
3.1	0.064816
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

53	3.2	0.059652
54	3.3	0.055481
55	3.4	0.052242
56	3.5	0.049882
57	3.6	0.048359
58	3.7	0.047638
59	3.8	0.047689
60	3.9	0.048484

Programming in R for case 3-

```
library('ggplot2')
k_3 = 12.98789
k_4 = 81.93271
sigma_1 = seq(from=4.1, by=0.1, length.out=30)
sigma_1
sigma_2 = seq(from=1.0, by=0.1, length.out=30)
sigma_2
sigma_3 = c(sigma_1, sigma_2)
sigma_3
sigma_31 = k_3/sigma_3
sigma_31
sigma_32 = k_4/sigma_3
sigma_32
power_3 = mat.or.vec(60,1)
for(i in 1:60){
     power_3[i] = pchisq(sigma_31[i],10,0)+1-pchisq(sigma_32[i],10,0)
        }
power_3
```

```
Table = data.frame(sigma_3, power_3)

Table

View(Table)

ggplot(data = Table, mapping = aes(x = sigma_3, y = power_3))+geom_point()+geom_line()

data.frame(sigma_3)

data.frame(power_3)
```

Power curve by using ggplot 2

Power curve generated by using Tableau

Sigma_3 vs. power_3. The marks are labeled by sum of power_3.