Mathematik: Geraden

Lösungsblatt

AUFGABEN_CREATOR v2.0

July 24, 2025

Lösungen

1. Stelle eine Parametergleichung der Geraden g auf, die durch die Punkte A(2|1|3) und B(5|4|1) verläuft.

Lösung:
$$g: \vec{x} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 3 \\ 3 \\ -2 \end{pmatrix}$$

Lösungsweg: Der Richtungsvektor ist $\overrightarrow{AB} = \begin{pmatrix} 5-2\\4-1\\1-3 \end{pmatrix} = \begin{pmatrix} 3\\3\\-2 \end{pmatrix}$. Mit dem Stützvektor A ergibt sich: $g: \vec{x} = \begin{pmatrix} 2\\1\\3 \end{pmatrix} + r \cdot \begin{pmatrix} 3\\3\\-2 \end{pmatrix}$

2. Überprüfe, ob der Punkt P(8|7|-1) auf der Geraden $g: \vec{x} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 3 \\ 3 \\ -2 \end{pmatrix}$ liegt.

Lösung: Ja, für r=2

Lösungsweg: Setze P gleich der Geradengleichung: $\begin{pmatrix} 8 \\ 7 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 3 \\ 3 \\ -2 \end{pmatrix}$. Aus der ersten Koordinate: $8 = 2 + 3r \Rightarrow r = 2$. Überprüfung: $y = 1 + 3 \cdot 2 = 7$ und $z = 3 + (-2) \cdot 2 = -1$

3. Bestimme den Punkt auf der Geraden $h: \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ für den Parameter t = -3.

1

Lösung: (-5|5|-9)

Lösungsweg: Setze t = -3 in die Geradengleichung ein: $\vec{x} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + (-3) \cdot \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 - 6 \\ 2 + 3 \\ 0 - 9 \end{pmatrix} = \begin{pmatrix} -5 \\ 5 \\ -9 \end{pmatrix}$

4. Welcher Parameterwert s führt dazu, dass der Punkt Q(0|4|7) auf der Geraden $g: \vec{x} = \begin{pmatrix} 3\\1\\1 \end{pmatrix} + s \cdot \begin{pmatrix} -1\\1\\2 \end{pmatrix}$ liegt?

Lösung: s = 3

Lösungsweg: Setze Q gleich der Geradengleichung: $\begin{pmatrix} 0 \\ 4 \\ 7 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$. Aus der ersten Koordinate: $0 = 3 - s \Rightarrow s = 3$. Überprüfung: y = 1 + 3 = 4 und z = 1 + 6 = 7

5. Ermittle den Richtungsvektor der Geraden durch die Punkte M(4|0|-2) und N(1|3|4).

Lösung: $\begin{pmatrix} -3\\3\\6 \end{pmatrix}$

Lösungsweg: Der Richtungsvektor ist $\overrightarrow{MN} = \begin{pmatrix} 1-4\\ 3-0\\ 4-(-2) \end{pmatrix} = \begin{pmatrix} -3\\ 3\\ 6 \end{pmatrix}$

6. Welche der folgenden Parametergleichungen beschreibt dieselbe Gerade wie $g: \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 4 \\ -2 \end{pmatrix}$?

Lösung: $h: \vec{x} = \begin{pmatrix} 3 \\ 6 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$

Lösungsweg: Der Punkt (3|6|1) liegt auf g für r = 1: (1+2|2+4|3-2) = (3|6|1). Der Richtungsvektor (1|2|-1) ist ein Vielfaches von (2|4|-2), nämlich die Hälfte. Daher beschreiben beide Gleichungen dieselbe Gerade.

2

7. Finde die fehlende z-Koordinate des Punktes R(6|1|?), damit er auf der Geraden g: $\vec{x} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ liegt.

Lösung:
$$z = 7$$

Lösungsweg: Aus 6 = 2 + 2r folgt r = 2. Aus 1 = 3 - r folgt r = 2 (Bestätigung). Für die z-Koordinate: $z = 1 + 3 \cdot 2 = 7$

8. Bestimme eine Parametergleichung der Geraden durch A(0|5|2) mit dem Richtungsvektor $\vec{u} = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$.

Lösung:
$$g: \vec{x} = \begin{pmatrix} 0 \\ 5 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$$

Lösungsweg: Eine Parametergleichung hat die Form $g: \vec{x} = \vec{p} + r \cdot \vec{u}$, wobei \vec{p} der Stützvektor (hier A) und \vec{u} der Richtungsvektor ist.

9. Welcher Punkt liegt auf der Geraden $g: \vec{x} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ für t = 0?

Lösung: (3|1|-2)

Lösungsweg: Für t = 0 ergibt sich: $\vec{x} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} + 0 \cdot \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$. Dies ist der Stützvektor der Geraden.

10. Ermittle den Parameter r, für den sich der Punkt (7|0|8) auf der Geraden $g: \vec{x} = \begin{pmatrix} 1\\4\\2 \end{pmatrix} + r \cdot \begin{pmatrix} 3\\-2\\3 \end{pmatrix}$ ergibt.

Lösung:
$$r=2$$

Lösungsweg: Aus der ersten Koordinate: $7 = 1 + 3r \Rightarrow r = 2$. Überprüfung: $y = 4 + (-2) \cdot 2 = 0$ und $z = 2 + 3 \cdot 2 = 8$

11. Stelle eine Parametergleichung für die Gerade auf, die durch die Punkte P(2|3|1) und Q(2|3|-5) verläuft.

3

Lösung:
$$g: \vec{x} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 0 \\ -6 \end{pmatrix}$$

Lösungsweg: Der Richtungsvektor ist $\overrightarrow{PQ} = \begin{pmatrix} 2-2\\ 3-3\\ -5-1 \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ -6 \end{pmatrix}$. Die Gerade verläuft parallel zur z-Achse.

12. Überprüfe, ob der Punkt S(4|-1|3) auf der Geraden $h: \vec{x} = \begin{pmatrix} 6 \\ 1 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$ liegt.

Lösung: Ja, für s=2

Lösungsweg: Setze S gleich der Geradengleichung: $\begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ 1 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$. Aus der ersten Koordinate: $4 = 6 - s \Rightarrow s = 2$. Überprüfung: y = 1 - 2 = -1 und z = 1 + 2 = 3

13. Bestimme den Punkt auf der Geraden $g: \vec{x} = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 5 \\ -1 \end{pmatrix}$ für r = -2.

Lösung: (-3|-10|6)

Lösungsweg: Setze
$$r = -2$$
 ein: $\vec{x} = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix} + (-2) \cdot \begin{pmatrix} 2 \\ 5 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 - 4 \\ 0 - 10 \\ 4 + 2 \end{pmatrix} = \begin{pmatrix} -3 \\ -10 \\ 6 \end{pmatrix}$

14. Welche Aussage über Parametergleichungen von Geraden ist korrekt?

Lösung: Eine Gerade kann durch unendlich viele verschiedene Parametergleichungen beschrieben werden

Lösungsweg: Eine Gerade kann durch verschiedene Stützvektoren (beliebige Punkte auf der Geraden) und verschiedene Richtungsvektoren (Vielfache des ursprünglichen Richtungsvektors) dargestellt werden. Daher gibt es unendlich viele Parametergleichungen für dieselbe Gerade.

15. Finde einen zweiten Punkt auf der Geraden $g: \vec{x} = \begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$, wenn ein Punkt (5|2|1) bereits bekannt ist.

Lösung: (6|5|-1)

Lösungsweg: Der bekannte Punkt entspricht t=0. Für t=1 ergibt sich: $\vec{x}=$

$$\begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix} + 1 \cdot \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \\ -1 \end{pmatrix}$$