Wydział Geodezji i Kartografii

Przedmiot: Wybrane zagadnienia geodezji wyższej

Prowadzący: mgr inż. Viktor Szabó

Projekt: Przekształcenia współrzędnych wraz z redukcjami

Kierunek: Geoinformatyka

Semestr 7

Student: Patrycja Tatar Numer indeksu: 291578

1) Cel ćwiczenia

Pierwszym celem ćwiczenia jest przekształcenie współrzędnych punktów z ćwiczenia 3 do następujących układów odniesienia: odwzorowanie Gaussa-Krügera, układ 1992 i układ 2000. Kolejnymi zadaniami będzie obliczenie:

- pól powierzchni czworokąta w danych układach,
- elementarnych skal długości,
- elementarnych skal pól powierzchni oraz zniekształceń.

2) Wstęp

W celu dokładnego wyznaczania współrzędnych na danym obszarze tworzy się układy lokalne. Dzięki nim otrzymujemy niezmienne współrzędne punktów, choć obszar na jakim się znajdują porusza się.

Istnieje wiele różnych układów odniesień:

- **Odwzorowanie Gaussa-Krügera** często stosowane odwzorowanie kartograficzne, które jest równokątnym odwzorowaniem powierzchni elipsoidy obrotowej na płaszczyźnie; stosowane w wąskich pasach południkowych o rozpiętości 3° lub 6°.
- **Układ 1992** walcowe, poprzeczne, równokątne i modyfikowane odwzorowanie Gaussa-Krügera elipsoidy lokalnej GRS80; dla Polski obowiązuje 1 pas o szerokości 10° i południk środkowy równy 19°; jest to układ współrzędnych stosowany dla map w skalach 1:10 000 i mniejszych (są duże zniekształcenia, więc ten układ nie jest polecany dla dużych skal).
- **Układ 2000** układ współrzędnych odwzorowania Gaussa- Krügera; podzielono kraj na 4 pasy o południkach osiowych 15°, 18°, 21° i 24° i szerokości 3°; układ stworzony jest do map zasadniczych.

3) Dane początkowe

Współrzędne punktów, które będą potrzebne w ćwiczeniu są z ostatniego projektu 3. Poniżej jest przedstawiona tabela przedstawiająca te współrzędne.

punkty	fi [rad]	lambda [rad]		
P_A	0,93375114982	0,36215581979		
P_B	0,92938782669	0,36215581979		
P_C	0,93375114982	0,37088246605		
P_D	0,92938782669	0,37088246605		
P_SRED	0,93156948825	0,36651914292		
P_SROD	0,93157407986	0,36650636795		

P_B – punkt B, P_C – punkt C, P_D – punkt D,
P SRED – punkt średniej szerokości, P SROD – punkt środkowy

4) Etapy ćwiczenia

I.<u>Przekształcenie współrzędnych elipsoidalnych na współrzędne odwzorowania Gaussa-Krügera</u>

Oznaczenie symboli:

L – południk środkowy wynoszący w tym odwzorowaniu 19° (południk środkowy dla układu 1992) lub 21° (południk środkowy dla układu 2000) a – dłuższa półoś e^2 (e2) – pierwszy mimośród e'^2 (e22) – drugi mimośród m_l ambda – macierz punktów utworzona ze współrzędnych lambda m_l fi - macierz punktów utworzona ze współrzędnych fi

Etapy obliczeń:

- IGK = m lambda L
- t=tan(m fi)
- ni2 = e22*(cos(m_fi))^2
- A0 = 1-e2/4-3*e2^2/64-5*e2^3/256
- A2 = 3/8*(e2+e2^2/4+15*e2^3/128)
- A4 = 15/256*(e2^2+3*e2^3/4)
- A6 = 35*e2^3/3072
- $sigma = a*(A0*m_fi-A2*sin(2*m_fi)+A4*sin(4*m_fi)-A6*sin(6*m_fi))$
- $N = a/(sqrt(1-e2*sin(m_fi)^2))$
- xGK = sigma+((IGK^2)/2)*N*sin(m_fi)*cos(m_fi)*(1+((IGK^2)/12)*(cos(m_fi)^2)*(5-t^2+9*ni2+4*(ni2^2))+((IGK^4)/360)*(cos(m_fi)^4)*(61-58*(t^2)+(t^4)+270*ni2-330*ni2*(t^2)))
- $yGK = IGK*N*cos(m_fi)*(1+IGK^2/6*(cos(m_fi))^2*(1-t^2+ni2)+IGK^4/120*((cos(m_fi))^4)*(5-18*t^2+t^4+14*ni2-58*ni2*t^2))$

II. <u>Przekształcenie współrzędnych odwzorowania Gaussa-Krügera na współrzędne</u> układu 1992

Etapy obliczeń:

- przemnożenie współrzędnych odwzorowania Gaussa- Krügera przez skalę m092
 m092 = 0,9993
- dodanie współrzędnych płaskich, gdzie współrzędne płaskie to
 x = -5 300 000 m, y = 500 000 m
- południk środkowy w tym układzie wynosi 19°, więc użyto współrzędnych Gaussa-Krügera względem południka 19°

Wzory:

x92 = m092*xGK-5300000 y92 = m092*yGK+500000

III. <u>Przekształcenie współrzędnych odwzorowania Gaussa-Krügera na współrzędne</u> układu 2000

Etapy obliczeń:

- przemnożenie współrzędnych odwzorowania Gaussa- Krügera przez skalę m020
 m020 = 0,999923
- dodanie współrzędnych płaskich, gdzie współrzędne płaskie to
 x = 0 m, y = 500000 m
- zastosowano we wzorze odpowiedni numer pasu równy **7**, ponieważ wszystkie punkty znajdują się w pasie 7
- południk środkowy w tym układzie wynosi 21°, więc użyto współrzędnych Gaussa-Krügera względem południka 21°

Wzory:

x20 = m020*xGK

y20 = m020*yGK+ numer_pasa*1000000+500000

Poniższa tabela prezentuje obliczone współrzędne:

punkty	X_GK_19	Y_GK_19	X_GK_21	Y_GK_21	X_1992	Y_1992	X_2000	Y_2000
P_A	5931691,602	116123,078	5930294,955	-16589,748	627539,417	616041,791	5929838,322	7483411,529
P_B	5903872,005	116805,224	5902471,702	-16687,181	599739,294	616723,460	5902017,212	7483314,104
P_C	5932622,833	149296,674	5930294,955	16589,748	628469,997	649192,167	5929838,322	7516588,471
P_D	5904805,677	150173,821	5902471,702	16687,181	600672,313	650068,699	5902017,212	7516685,896
P_SRED	5918218,748	133100,384	5916354,050	0,000	614075,994	633007,213	5915898,490	7500000,000
P_SROD	5918246,657	133050,858	5916383,329	-48,714	614103,884	632957,722	5915927,768	7499951,290

IV. Pole powierzchni

Pole powierzchni czworokąta dla danych układów odniesienia obliczono za pomocą wbudowanej funkcji w Matlabie *polyarea(x,y)*. Zmiennymi tej funkcji są macierze współrzędnych kolejnych punktów A, B, C, D.

Poniższa tabela prezentuje obliczone pola powierzchni czworokątów:

P_elipsoidalne	P_GK_19	P_GK_21	P_1992	P_2000
925877251,048609	926274885,595354	925872409,187244	924978554,630203	925729830,325714

V. <u>Elementarna skala długości wraz z zniekształceniem 1km</u>

Elementarna skala długości (m) to stosunek odległości w odwzorowaniu do odległości na elipsoidzie.

Oznaczenie symboli:

R – średni promień krzywizny

N – krzywizna minimalna

M – krzywizna maksymalna

m - elementarną skalę długości w układzie Gaussa- Krügera

m_ukł – elementarna skala długości dla układu 1992 lub dla układu 2000

m0 – indywidualna skala dla układu (m020 = 0,999923; m092 = 0,9993)

Etapy obliczeń:

• Dla odwzorowania Gaussa-Krügera

```
N = a/(sqrt(1-e2*sin(m_fi)^2))

M = a*(1-e2)/sqrt((1-e2*sin(m_fi)^2)^3)

R = sqrt(N*M)

m = 1+(yGK^2)/(2*R^2)+(yGK^4)/(24*R^4)
```

Dla układu 1992 i 2000

 $m_ukt = m*m0$

Zniekształcenia długości (K)

K = *m*-1, gdzie m – elementarna skala długości

Poniższa tabela prezentuje elementarne skale długości wraz z zniekształceniami:

punkty	m_GK_19	K_GK_19(cm/km)	m_GK_21	K_GK_21(cm/km)	m_1992	K_1992(cm/km)	m_2000	K_2000(cm/km)
P_A	1,000165	16,541808	1,00000338	0,337609	0,999465	-53,469772	0,99992638	-7,362417
P_B	1,000167	16,737669	1,00000342	0,341605	0,999467	-53,274048	0,99992642	-7,358421
P_C	1,000273	27,343492	1,00000338	0,0000003	0,999573	-42,675648	0,99992638	-7,362417
P_D	1,000277	27,667302	1,00000342	0,0000003	0,999576	-42,352065	0,99992642	-7,358421
P_SRED	1,000217	21,733039	1,00000000	0,0000000	0,999517	-48,282174	0,99992300	-7,700000
P_SROD	1,000217	21,716867	1,00000000	0,0000000	0,999517	-48,298335	0,99992300	-7,699997

VI. <u>Elementarna skala pola powierzchni wraz z zniekształceniem 1 ha</u>

Elementarna skala pól (m²) to stosunek pola powierzchni w odwzorowaniu do pola na elipsoidzie.

Oznaczenie symboli:

R – średni promień krzywizny (obliczony w poprzednim punkcie) m^2 - elementarną skalę pola powierzchni w układzie Gaussa- Krügera $m_ukł$ – elementarna skala długości dla układu 1992 lub dla układu 2000 m^2_ukl - elementarna skala pola powierzchni dla układu 1992 lub dla układu 2000

Etapy obliczeń:

• Dla odwzorowania Gaussa-Krügera

$$m^2 = 1 + (yGK^2)/(R^2) + (yGK^4)/(3*R^4)$$

• Dla układu 1992 i 2000

$$m^2$$
_uk 2 = m _uk 2

Zniekształcenia pól powierzchni (K²)

 $K^2 = m2-1$, gdzie m2 – elementarna skala pól powierzchni

Poniższa tabela prezentuje elementarne skale pól powierzchni wraz z zniekształceniami:

punkty	m ² _GK_19	K ² _GK_19 (m ² /ha)	m ² _GK_21	K ² _GK_21 (m ² /ha)	m²_1992	K ² _1992 (m²/ha)	m ² _2000	K²_2000 (m²/ha)
P_A	1,000331	3,308635	1,000007	0,067522	0,998931	-10,691095	0,999853	-1,472429
P_B	1,000335	3,347814	1,000007	0,068321	0,998935	-10,651971	0,999853	-1,471630
P_C	1,000547	5,469446	1,000007	0,067522	0,999147	-8,533308	0,999853	-1,472429
P_D	1,000553	5,534226	1,000007	0,068321	0,999153	-8,468619	0,999853	-1,471630
P_SRED	1,000435	4,347080	1,000000	0,000000	0,999035	-9,654104	0,999846	-1,539941
P_SROD	1,000434	4,343845	1,000000	0,000001	0,999034	-9,657334	0,999846	-1,539940

5) Wnioski

- Największe zniekształcenia występują w układzie 1992, a najmniejsze dla odwzorowania Gaussa-Krügera dla południka osiowego 21°.
- Polem najbardziej zbliżonym do pola na elipsoidzie jest pole obliczone z odwzorowania Gaussa-Krügera dla południka osiowego 21°.
- Został zaobserwowany całkowity brak zniekształceń dla punktu średniej szerokości w odwzorowaniu Gaussa-Krügera dla południka środkowego 21°. Jego elementarna skala długości wynosiła 1, a zniekształcenie wyniosło 0. Punkt średniej szerokości znajduje się na południku równym 21° lub bardzo blisko niego.
- Odwzorowanie Gaussa-Krügera dla południka osiowego 21° posiada najdokładniejszy wynik dla pola oraz najmniejsze zniekształcenia długości i pola powierzchni. Wynika z tego, że układy o wąski pasach są najlepszymi układami do otrzymania precyzyjnych wyników.