Beginning Activities for Section 4.3

Mathematical Reasoning: Writing and Proof, Version 3

Beginning Activity 1 (Recursively Defined Sequences)

Notice that this beginning activity consists mainly of exploration and conjecture.

1. Based on the following, it appears that as n gets larger, b_n gets closer to zero.

$$b_4 = 2$$
 $b_5 = 1$ $b_6 = \frac{1}{2}$ $b_7 = \frac{1}{4}$ $b_8 = \frac{1}{8}$ $b_9 = \frac{1}{16}$ $b_{10} = \frac{1}{32}$

2. Based on the following, it appears that as n gets larger, T_n gets closer to 32.

$$T_3 = 28$$
 $T_4 = 30$ $T_5 = 31$ $T_6 = 31$ $T_7 = 31.75$ $T_8 = 31.875$ $T_9 = 31.9375$ $T_{10} = 31.96875$

3. Based on the following, a conjecture could be: $a_n = r^{n-1} \cdot a$.

$$a_2 = r \cdot a$$
 $a_3 = r^2 \cdot a$ $a_4 = r^3 \cdot a$ $a_5 = r^4 \cdot a$ $a_6 = r^5 \cdot a$

4. Based on the following, a conjecture could be: $S_n = a + ra + r^2 + \cdots + r^{n-1}a$.

$$S_2 = a + ra$$
 $S_3 = a + ra + r^2a$ $S_4 = a + ra + r^2a + r^3a$ $S_5 = a + ra + r^2a + r^3ar^4a$ $S_6 = a + ra + r^2a + r^3ar^4a + r^5a$

5.								
	n	1	2	3	4	5	6	7
	a_n	1	2	6	24	120	720	5040
	n!	1	2	6	24	120	720	5040

- **6.** In order to calculate a_{100} , we first need to calculate $a_0, a_1, a_2, \ldots, a_{99}$.
- 7. For each n, in order to calculate a_n , we first need to calculate $a_0, a_1, a_2, \ldots, a_{n-1}$.
- **8.** It seems that for each nonnegative integer n, $a_n = n!$.

© (1) (S) (S) BY NC SA

Beginning Activities for Section 4.3

Mathematical Reasoning: Writing and Proof, Version 3

Beginning Activity 2 (The Fibonacci Numbers)

We will study the Fibonacci sequence in this section.

$f_5 = 5$	$f_9 = 34$	$f_{13} = 233$	$f_{17} = 1597$
$f_6 = 8$	$f_{10} = 55$	$f_{14} = 377$	$f_{18} = 2584$
$f_7 = 13$	$f_{11} = 89$	$f_{15} = 610$	$f_{19} = 4181$
$f_8 = 21$	$f_{12} = 144$	$f_{16} = 987$	$f_{20} = 6765$

- **2.** The Fibonacci numbers f_3 , f_6 , f_9 , f_{12} , f_{15} , and f_{18} are even. The Fibonacci numbers f_4 , f_8 , f_{12} , f_{16} , and f_{20} are multiples of three.
- **3.** In each case, the sum of the first (n-1) Fibonacci numbers is equal to $f_{n+1}-1$.
- **4.** One other observation is that it appears that for each $n \in \mathbb{N}$, f_{5n} is a multiple of 5.

