Exercices Probabilités conditionnelles

1^{ère}spe

Probabilités

Exercice 1 Représenter des événements

Représenter chacun des événements suivants sur le diagramme de Venn :

1. $A \cap B$

3. \overline{A}

5. $\overline{B} \cup \overline{C}$

2. $A \cup C$

4. $\overline{B} \cup C$

6. $\overline{B} \cap \overline{C}$

Exercice 2 Calculer des probabilités

On considère deux événements A et B.

On a: P(A) = 0.75; P(B) = 0.2 et $P(A \cap B) = 0.1$.

- 1. Compléter le diagramme de Venn ci-contre :
- **2.** Calculer $P(\overline{A})$.
- **4.** Calculer $P(A \cup B)$.
- **5.** Calculer $P(\overline{A} \cap B)$.

Exercice 3 Utiliser un arbre de dénombrement

Dans une urne, il y a deux boules rouges R_1 et R_2 et deux boules noires N_1 et N_2 . On tire deux boules successivement avec remise.

- 1. Représenter cette situation par un arbre de dénombrement.
- 2. Combien y-a-t-il d'issues si on ne considère que la couleur des boules tirées?
- 3. Quelle est la probabilité des événements suivants :
 - a. A: « obtenir deux boules noires ».
 - **b.** B : « obtenir deux boules de la même couleur ».
 - c. C: « obtenir une et une seule boule rouge ».

Exercice 4 Utiliser une situation d'équiprobabilité

On lance un dé équilibré à 20 faces. Les faces sont numérotées de 1 à 20.

- 1. Quelle conclusion peut-on tirer du fait que le dé soit équilibré?
- 2. Quelle est la probabilité des événements suivants?
 - **a.** A: « obtenir un résultat supérieur ou égal à 7 ».
 - **b.** *B* : « obtenir un résultat pair ».
 - **c.** *C* : « obtenir un nombre premier ».
 - d. $D = C \cap \overline{B}$.

Exercice 5

On lance un dé truqué à six faces numérotées de 1 à 6 et on observe le résultat obtenu. La loi de probabilité liée à cette expérience aléatoire est donnée ci-dessous avec x et y des réels compris entre 0 et 1.

Face	1	2	3	4	5	6
Probabilité	0,1	0,35	0,05	0,2	x	y

On sait de plus que la probabilité d'obtenir un résultat pair est 0,65.

- 1. Quelle est la probabilité d'obtenir 6?
- 2. En déduire la probabilité d'obtenir 5.
- 3. Jack affirme que, bien que le dé ne soit pas équilibré, la probabilité d'obtenir un nombre supérieur ou égal à 4 est $\frac{1}{2}$. A-t-il raison?
- **4.** Mary affirme de même que la probabilité d'obtenir un nombre premier est aussi $\frac{1}{2}$. A-t-elle raison?

2

Probabilités conditionnelles

Exercice 6 Détermination de probabilités conditionnelles

Un artisan produit du miel et de la confiture, de manière industrielle et aussi biologique. Sa production mensuelle est de 900 pots, comprenant notamment :

- 603 pots de miel, dont 333 sont de fabrication industrielle
- 63 pots de confiture de fabrication biologique.
- 1. Compléter le tableau ci-dessous.

	Pots de miel	Pots de confiture	Total
Prod. industrielle			
Prod. Biologique			
Total			900

2. On choisit au hasard l'un de ces pots.

On considère les évènements suivants :

- · C : « c'est un pot de confiture ».
- B: «c'est un pot de fabrication biologique».
- a. Calculer les probabilités des évènements B et C et les exprimer en pourcentage.
- **b.** Décrire par une phrase les évènements suivants puis calculer leur probabilité : \overline{B} et $B \cap C$. Exprimer en pourcentage.
- **c.** On choisit au hasard un pot parmi les pots de confiture. Quelle est la probabilité qu'il soit de fabrication biologique? Exprimer à l'aide d'une fraction irréductible.
- **d.** On choisit au hasard un pot parmi les pots de fabrication biologique. Quelle est la probabilité qu'il s'agisse d'un pot de confiture? Exprimer à l'aide d'une fraction irréductible.

Exercice 7 Détermination de probabilités conditionnelles

Voici les résultats d'un sondage effectué en 1999 auprès de 2000 personnes, à propos d'Internet :

- 40% des personnes interrogées déclarent être intéressées par Internet,
- 35% des personnes interrogées ont moins de 30 ans et, parmi celles-ci, quatre cinquièmes déclarent être intéressées par Internet,
- 30% des personnes interrogées ont plus de 60 ans et, parmi celles-ci, 85% ne sont pas intéressées par Internet.
- 1. Compléter le tableau suivant :

	intéressées par Internet	non intéressées par internet	total
moins de 30 ans			
de 30 à 60 ans			
plus de 60 ans			
total			2 000

2. On choisit au hasard une personne parmi les 2000 interrogées. On suppose que toutes les personnes ont la même probabilité d'être choisies. On considère les événements :

A : «la personne interrogée a moins de 30 ans »

B : «la personne interrogée est intéressée par Internet »

- **a.** Calculer les probabilités P(A) et P(B).
- **b.** Définir par une phrase l'événement $A \cap B$ puis calculer $P(A \cap B)$.
- **3.** On sait maintenant que la personne interrogée est intéressée par Internet. Quelle est la probabilité qu'elle ait plus de 30 ans? Comment note-t-on cette probabilité?
- 4. Calculer $P_{\overline{A}}(B)$ et interpréter cette probabilité conditionnelle.

Exercice 8 Avec un arbre

On considère deux événements A et B dont les probabilités sont données par l'arbre ci-contre :

- 1. Compléter cet arbre pondéré.
- **2.** Quelle est la probabilité que B se réalise sachant que A n'est pas réalisé?

Exercice 9

On choisit au hasard une figure parmi les suivantes. Chaque figure a la même probabilité d'être choisie.

On considère les événements suivants :

- $\cdot V$: « la figure est verte »;
- R: « la figure est rouge »;
- $\cdot N$: « la figure est noire »;
- B : « la figure est bleue »;
- \cdot C: « la figure est un cercle »;
- K: « la figure est un carré »;
- Z : « la figure fait des vagues ».
- 1. Modéliser cette situation par un tableau.
- **2.** Calculer $P_C(V)$ et $P_B(Z)$.
- **3.** Calculer $P_R(Z)$ et $P_K(B)$.

Exercice 10

Dans une forêt, il y a 30 % d'épicéas et 70 % de sapins. 10 % des arbres ont un parasite. Les épicéas représentent 20 % des arbres touchés.

Quelle est la probabilité qu'un épicéa soit touché par le parasite?

Exercice 11 Utilisation des probabilités conditionnelles

Dans un restaurant d'entreprise, on propose 2 formules : la A et la B. On remarque que chaque client choisit le menu A avec une probabilité de 40%. Sinon, la probabilité que le client ne prenne pas de café est de 55%.

Quelle est la probabilité qu'un client choisisse le menu B et un café?