Tutorial 8

Exercise 1: For each of the following languages, construct a DFA accepting the given language. Represent the constructed automata by graphs and tables.

a) $L_1 = \{ w \in \{a, b\}^* \mid w = a \}$

Solution:

	а	b
$\rightarrow 1$	2	3
$\leftarrow 2$	3	3
3	3	3

 $\mathrm{b})\ L_2=\{b,\alpha b\}$

Solution:

	a	b
$\rightarrow 1$	2	3
2	4	3
$\leftarrow 3$	4	4
4	4	4

c) $L_3 = \{w \in \{a, b\}^* \mid \exists n \in \mathbb{N} : w = a^n\}$

Solution:

	а	b
$\leftrightarrow 1$	1	2
2	2	2

d) $L_4 = \{w \in \{a, b, c\}^* \mid |w|_a \ge 1\}$

Solution:

	а	b	c
$\rightarrow 1$	2	1	1
$\leftarrow 2$	2	2	2

e) $L_5 = \{w \in \{0,1\}^* \mid w \text{ contains subword 011}\}$

Solution:

	O	ı	
$\rightarrow 1$	2	1	
2	2	3	
3	2	4	
$\leftarrow 4$	4	4	

f)
$$L_6 = \{w \in \{a, b, c\}^* \mid |w| > 0 \land |w|_a = 0\}$$

Solution:

	а	b	c
$\rightarrow 1$	3	2	2
$\leftarrow 2$	3	2	2
3	3	3	3

g) $L_7 = \{w \in \{\alpha, b\}^* \mid |w| \geq 2 \text{ and the last two symbols of } w \text{ are not the same} \}$

Solution:

	а	b
$\rightarrow 1$	2	3
2	4	5
3	6	7
4	4	5
$\leftarrow 5$	6	7
$\leftarrow 6$	4	5
7	6	7

Alternative solution:

$$\begin{array}{c|cccc} & a & b \\ \hline \rightarrow 1 & 2 & 3 \\ & 2 & 2 & 4 \\ & 3 & 5 & 3 \\ \leftarrow 4 & 5 & 3 \\ \leftarrow 5 & 2 & 4 \\ \hline \end{array}$$

h)
$$L_8 = \{w \in \{a, b\}^* \mid |w|_a \mod 3 = 1\}$$

Solution:

Exercise 2: Construct DFA accepting words beginning with abaab, ending with abaab, and containing abaab, i.e., construct deterministic finite automata accepting the following three languages:

a) $L_1 = \{abaabw \mid w \in \{a, b\}^*\}$

Solution:

b) $L_2 = \{ wabaab \mid w \in \{a,b\}^* \}$

Solution:

c) $L_3 = \{w_1 abaabw_2 \mid w_1, w_2 \in \{a, b\}^*\}$

Solution:

Exercise 3: Describe how to find out for a given DFA $\mathcal{A}=(Q,\Sigma,\delta,\mathfrak{q}_0,F)$ if:

a)
$$\mathcal{L}(\mathcal{A}) = \emptyset$$

b)
$$\mathcal{L}(\mathcal{A}) = \Sigma^*$$

Solution: It is sufficient to compute the set of states that are reachable from q_0 . We can use for example breadth-first search for this.

It holds that $\mathcal{L}(\mathcal{A}) = \emptyset$ iff none of reachable states is accepting, and $\mathcal{L}(\mathcal{A}) = \Sigma^*$ holds iff every reachable state is accepting.

Exercise 4: Construct DFA A_1, A_2 such that:

$$\begin{split} \mathcal{L}(\mathcal{A}_1) = & \{w \in \{a,b\}^* \mid |w|_a \bmod 2 = 0\} \\ \mathcal{L}(\mathcal{A}_2) = & \{w \in \{a,b\}^* \mid \text{every occurence of symbol b in } w \text{ is followed with symbol a} \} \end{split}$$

Solution: A_1 :

Using automata A_1, A_2 , construct DFA accepting the following languages:

a) $L_1 = \{w \in \{a, b\}^* \mid |w|_a \mod 2 = 0 \text{ and every occurence of symbol } b \text{ in } w \text{ is followed with symbol } a\}$

Solution:

b) $L_2 = \{w \in \{a, b\}^* \mid |w|_a \mod 2 = 0 \text{ or every occurrence of symbol } b \text{ in } w \text{ is followed with symbol } a\}$

Solution: The same automaton as in (a) but with the set of accepting states

$$F = \{(1,1), (1,2), (1,3), (2,1)\}$$

c) $L_3 = \{w \in \{a, b\}^* \mid \text{some occurrence of symbol } b \text{ in } w \text{ is not followed with symbol } a\}$ Solution:

d) $L_4 = \{w \in \{a, b\}^* \mid |w|_a \mod 2 = 0 \text{ and some occurrence of symbol } b \text{ in } w \text{ is not followed with symbol } a\}$

Solution: The same automaton as in (a) but with the set of accepting states

$$F = \{(1,2), (1,3)\}\$$

e) $L_5 = \{w \in \{a, b\}^* \mid \text{if } |w|_a \mod 2 = 0 \text{ then every occurrence of symbol } b \text{ in } w \text{ is followed with symbol } a\}$

Solution: The same automaton as in (a) but with the set of accepting states

$$F = \{(1,1), (2,1), (2,2), (2,3)\}\$$

f) $L_6 = \{w \in \{a,b\}^* \mid |w|_a \mod 2 = 0 \text{ iff every occurrence of symbol } b \text{ in } w \text{ is followed with symbol } a\}$

Solution: The same automaton as in (a) but with the set of accepting states

$$F = \{(1,1), (2,2), (2,3)\}\$$

Exercise 5: Construct NFA accepting the following languages:

a) $L_1 = \{ w \in \{a, b, c\}^* \mid |w|_a = 0 \lor |w|_b \mod 2 = 0 \lor |w|_c \mod 3 = 2 \}$

Solution: The automaton could be easily constructed by combining three separate automata. Alternatively, we could add one new initial state with ε -transitions to the original three initial states (that need not be initial now).

b) $L_2 = \{w \in \{a, b, c\}^* \mid |w| \ge 8 \text{ and the eighth symbol from the end of word } w \text{ is } a\}$ Solution:

c) $L_3 = \{abaabw \mid w \in \{a, b\}^*\}$ Solution:

 $\mathrm{d})\ L_4 = \{ wabaab \mid w \in \{a,b\}^* \}$

Solution:

e) $L_5 = \{w_1 a b a a b w_2 \mid w_1, w_2 \in \{a, b\}^*\}$

Solution:

Exercise 6: Construct a DFA equivalent to the given NFA:

Solution:

Original automaton:

	а	b
$\rightarrow 1$	2	2
2	1,3	_
$\leftrightarrow 3$	1	1

Resulting automaton:

	α	b
\leftrightarrow {1,3}	{1, 2}	{1, 2}
{1, 2}	$\{1, 2, 3\}$	{2}
$\leftarrow \{1,2,3\}$	$\{1, 2, 3\}$	{1, 2}
{2}	{1, 3}	Ø
Ø	Ø	Ø

a a a b b

After renaming states:

	а	b
$\leftrightarrow 1$	2	2
2	3	4
$\leftarrow 3$	3	2
4	1	5
5	5	5

Solution:

Original automaton:

$$\begin{array}{c|cccc} & a & b \\ \hline \to 1 & - & 2 \\ 2 & 1,3 & 2 \\ \leftrightarrow 3 & 1 & - \\ \hline \end{array}$$

Resulting automaton:

	а	b
\rightarrow {1}	Ø	{2}
\emptyset	Ø	Ø
{2}	$\{1, 3\}$	{2}
\leftarrow {1,3}	{1}	{2}

After renaming states:

	a	b
$\rightarrow 1$	2	3
2	2	2
3	4	3
$\leftarrow 4$	1	3