CONFIDENCE BASED ON TREE VARIANCE

It is basically the VARIANCE of the observations calculated across all the trees for each row of the dataset.

Suppose predicted values are -> 6 7 8 9 7 8, so the mean is 45/6= 7.5.

Now variance for the row would be $((6-7.5)^2 + (7-7.5)^2 + ...)/6$).

This would be the variance for predictions of A ROW IN YOUR DATASET.

- Why is it useful?

-If the variance of a particular group in a variable is **HIGH** then we can claim that **WE DIDN'T HAVE ENOUGH OBSERVATIONS OF THAT PARTICULAR GROUP TO TRAIN WITH AND THUS WE HAVE HIGH VARIANCE.**

SEE BELOW IMAGE

[28]:		Enclosure	SalePrice	preds_mean	preds_std
	0	EROPS	9.849178	9.845488	0.271443
	1	EROPS AC	NaN	NaN	NaN
	2	EROPS w AC	10.623971	10.577112	0.265684
	3	NO ROPS	NaN	NaN	NaN
	4	None or Unspecified	NaN	NaN	NaN
	5	OROPS	9.682064	9.688057	0.223017

In the above image the OROPS category of Enclosure has the highest number of observations and thus it is noted that its STANDARD DEVIATION OF PREDICTIONS IS LOWEST.

- For a single row we can look at this example->

>We take a single row and run it through the trees and look at how **CONFIDENT** we are for that particular row in our forest. If the variance is high, then we will assume that that row **DOES NOT HAVE A VERY CONFIDENT PREDICTION** pertaining to our forest.

Another example can be like-> You are predicting the **CREDIT RISK EVALUATION**.

Suppose you model it as a RISK between 0->1.

Now 0 is least and 1 is the highest risk.

So suppose your model gives you an OVERALL low risk for a particular person but the VARIANCE is high.

That means that the person is a LOW RISK BUT YOU ARE NOT SURE AS IT HAS HIGH VARIANCE.

This is where variance of predictions comes into play.