Un REPASO A LAS COMPETICIONES DE ROBOTS SIGUELÍNEAS

Rubén Espino San José

Índice

- Modalidades de competiciones de robots siguelíneas
 - Internacionales
 - Españolas
 - Rastreadores
 - Velocistas
 - Carreras
- La historia de la prueba de velocistas
 - Etapas
 - Robots destacados
 - Cambios en la competición
 - Tecnología empleada en los robots
 - Problemas surgidos
 - Confluencia de los robots
- Líneas futuras

COMPETICIONES INTERNACIONALES

- Robotracer
 - Siguelíneas con marcas de inicio y fin de curvas y de vuelta
- Line follower enhanced (Robot Challenge)
 - Con líneas discontinuas, balancines, etc.
- Competiciones loopings y por el techo

• ...

competiciones españolas

Rastreadores

- Modalidad típica con marcas de giro en bifurcaciones
- Modalidad de "laberinto de líneas"

Velocistas

- Clasificación contrarreloj
- Cruces eliminatorios en modo persecución

Carreras

- Varios robots en pista con adelantamientos
- Carreras a 10 vueltas

VELOCISTOS Y SU HISTORIO

- Es la prueba con más evolución en España, tanto en pistas como en normativas y tecnología aplicada en los robots
 - Etapa 1: los inicios, no hay bases y hay que tirar de ingenio
 - Etapa 2: empieza a haber una convergencia en la forma y la tecnología
 - Etapa 3: primeras memorizaciones de pista
 - Etapa 4: premia la ligereza y la adherencia
 - Etapa 5: nace la competición de carreras
 - Etapa 6: surgen las turbinas y se cambian las líneas por degradados en carreras

- Etapa 1 (2000-2008): "todo" vale
 - No hay base tecnológica previa
 - Robots originales con muchos cables
- Seguir una línea, reto ¿impensable?
- Pistas simples
- Orígenes en Alcabot (año 2000)
- Galería de imágenes proporcionada por José Andrés Vicente Lober

CUANDO SUBES LA VELOCIDAD... PROBLEMAS DERIVADOS DE LA CONDUCCIÓN TEMERARIA

- Etapa 2 (2008-2011): convergencia de los robots
 - Robots bajos con tracción diferencial
- La prueba apenas cambia
- Problemas de adherencia
 - Ya no valen los CD's o cualquier cosa redonda como rueda

 Destaca <u>CRX</u> de Robótica Zamorana y surge DPEbots

La Intelisencia es poder. Toca memorizar el circuito

- Etapa 3 (2011-2013): robots inteligentes que aceleran en rectas
 - Robots muy rápidos
 - Memorizan o programan el circuito en el código
- Circuitos algo más intrincados
- Ruedas de goma y motores DC
- Más potencia de cálculo necesaria
 - Aparece Silvestre, un robot con FPGA
- Silvestre, Veloli, Álvaro y Jools destacan sobre el resto

alicerando, que es cerundo

- Etapa 4 (2013-2014): robots ligeros, rápidos, con tracción diferencial
 - Obsesión por el peso
 - Micromotores DC, ruedas de espuma y adherentes
 - Empieza a aparecer la fibra de carbono
- Se eliminan los bordes rojos exteriores de la pista
- Primeras líneas impresas
 - Sensores analógicos
- Problemas con los baches
- Destacan: Gadgetocóptero, Jools, saga Smith, Pumatrón y Velowii
 - Otros robots de la época: Azotador Lineal, E-nano

+ FOTOS DE LO 4ª ETOPO

accidentes por doguer.

CORREROS O MUERTE

• Etapa 5 (2014-2017): carreras de varios robots

• Literalmente: el caos

• Cambio de carril necesario

• Sensores para detectar a los oponentes

• Se mantienen las pistas de 2 líneas

Problemas por ángulos muertos

• Salidas de pista, choques

• Lastres para minimizar riesgos

• ¿Cuándo puedo adelantar?

• ...

 Destacan: Velowii, Pumatrón, Jools, Smith Black, Sofía

Otros robots destacados: Maxim

RÁPIDO Y FURIOSO 6. La FIEBRE DE LAS TURBINAS Y LOS PROBLEMAS CON EL DEGRADADO

- Etapa 6 (2017-2018): turbinas y degradados
 - Obsesión por la adherencia
 - Nuevo avance evolutivo de la prueba
- Degradado simétrico
 - Necesidad de sensores analógicos de línea
- Problemas en la precisión de la lectura
- Las ondulaciones de la pista crean confusión

• Destacan: Pumatrón, Dr. Gang, Smith Fusión, Dragon, Jools

mención especial al Robot con más desarrollo: Jools

VÍCTINAS DARWINIANAS DE LA SELECCIÓN NATURAL

Víctimas:

- Robots grandes y pesados
- Ruedas grandes
- Tracción ackerman
- Ruedas locas
- Sensores de línea digitales
- Tristemente, casi todo microcontrolador que no sea Arduino

Vencedores:

- PCBs y chasis autosoportados
- Robots alargados
- Ruedas pequeñas de espuma
- Tracción diferencial
- Sensores de línea analógicos
- Baterías lipo
- Arduino

aún por escribir. Ideas Locas Para un futuro incierto

- 7^a etapa (2018-...):
 - Open RoboSports. Competiciones de velocistas y kits abiertos
 - Estandarización de normativas
 - Sistema de cronometraje automático
 - Turbinas: aumentar la adherencia
 - Chasis rígidos de PCB o fibra de carbono
 - Fuerza en motores. Pruebas con brushless y motores slot
 - Sistemas de visión: ver a distancia, acortar el morro
 - Necesidad de potencia de cálculo -> FPGA's
 - Memorizar circuito: reconocimiento automático, reto complicado

RCFCRCAS

- Referencias de GitHub
 - Rubén Espino: Resaj
 - Pumatrón V1
 - Speed Demon
 - Cyclops-Project
 - Basic circuit maker
 - Circuit maker
 - Temporizador
 - Control de tiempos
- Open RoboSports

- Facebook
 - @pumaprideteam
- Twitter
 - Rubén Espino: oRugidoDePuma
 - Javier Baliñas: @supernudo
 - Javier Isabel: <u>@JavierIH</u>
 - Alejandra Guardo: <u>@AlejandraSaku</u>

GRACIAS POR VUESTRA ATENCIÓN ©

