

Write

Published in Towards Data Science

This is your **last** free member-only story this month. Sign up for Medium and get an extra one

Machine Learning for Beginners: An Introduction to Neural Networks

A simple explanation of how they work and how to implement one from scratch in Python.

Here's something that might surprise you: **neural networks aren't that complicated!** The term "neural network" gets used as a buzzword a lot, but in reality they're often much simpler than people imagine.

This post is intended for complete beginners and assumes ZERO prior knowledge of machine learning. We'll understand how neural networks work while implementing one from scratch in Python.

Let's get started!

Note: I recommend reading this post on <u>victorzhou.com</u> — much of the formatting in this post looks better there.

1. Building Blocks: Neurons

First, we have to talk about neurons, the basic unit of a neural network. A neuron takes inputs, does some math with them, and produces one output. Here's what a 2-input neuron looks like:

Inputs Output

3 things are happening here. First, each input is multiplied by a weight:

 X_2

$$x_1 \rightarrow x_1 * w_1$$

$$x_2
ightarrow x_2 * w_2$$

Next, all the weighted inputs are added together with a bias b:

$$(x_1 * w_1) + (x_2 * w_2) + b$$

Finally, the sum is passed through an activation function:

$$y = f(x_1 * w_1 + x_2 * w_2 + b)$$

The activation function is used to turn an unbounded input into an output that has a nice, predictable form. A commonly used activation function is the <u>sigmoid</u> function:

The sigmoid function only outputs numbers in the range (0,1). You can think of it as compressing $(-\infty,+\infty)$ to (0,1) — big negative numbers become ~ 0 , and big positive numbers become ~ 1 .

A Simple Example

Reminder: much of the formatting in this article looks better in the original post on <u>victorzhou.com</u>.

Assume we have a 2-input neuron that uses the sigmoid activation function and has the following parameters:

$$w = [0, 1]$$
 $b = 4$

w=[0, 1] is just a way of writing w1=0, w2=1 in vector form. Now, let's give the neuron an input of x=[2, 3]. We'll use the <u>dot product</u> to write things more

concisely:

The neuron outputs 0.999 given the inputs x=[2,3]. That's it! This process of passing inputs forward to get an output is known as **feedforward**.

Coding a Neuron

Time to implement a neuron! We'll use <u>NumPy</u>, a popular and powerful computing library for Python, to help us do math:

```
import numpy as np
2
3 def sigmoid(x):
    # Our activation function: f(x) = 1 / (1 + e^{-x})
4
      return 1 / (1 + np.exp(-x))
6
7
   class Neuron:
      def __init__(self, weights, bias):
9
        self.weights = weights
        self.bias = bias
10
11
12
      def feedforward(self, inputs):
        # Weight inputs, add bias, then use the activation function
13
        total = np.dot(self.weights, inputs) + self.bias
14
        return sigmoid(total)
15
16
17
    weights = np.array([0, 1]) # w1 = 0, w2 = 1
18
                               # b = 0
19
    n = Neuron(weights, bias)
20
21
   x = np.array([2, 3]) # x1 = 2, x2 = 3
                               # 0.9990889488055994
    print(n.feedforward(x))
22
neuron.py hosted with ♥ by GitHub
                                                                                           view raw
```

Recognize those numbers? That's the example we just did! We get the same answer of 0.999.

2. Combining Neurons into a Neural Network

A neural network is nothing more than a bunch of neurons connected together. Here's what a simple neural network might look like:

This network has 2 inputs, a hidden layer with 2 neurons (h1 and h2), and an output layer with 1 neuron (o1). Notice that the inputs for o1 are the outputs from h1 and h2 — that's what makes this a network.

A hidden layer is any layer between the input (first) layer and output (last) layer. There can be multiple hidden layers!

An Example: Feedforward

Let's use the network pictured above and assume all neurons have the same weights w=[0,1], the same bias b=0, and the same sigmoid activation function. Let h1, h2, o1 denote the outputs of the neurons they represent.

What happens if we pass in the input x=[2, 3]?

$$h_1 = h_2 = f(w \cdot x + b)$$

 $= f((0 * 2) + (1 * 3) + 0)$
 $= f(3)$
 $= 0.9526$
 $o_1 = f(w \cdot [h_1, h_2] + b)$
 $= f((0 * h_1) + (1 * h_2) + 0)$
 $= f(0.9526)$
 $= \boxed{0.7216}$

The output of the neural network for input x=[2,3] is 0.7216. Pretty simple, right?

A neural network can have any number of layers with any number of neurons in those layers. The basic idea stays the same: feed the input(s) forward through the neurons in the network to get the output(s) at the end. For simplicity, we'll keep using the network pictured above for the rest of this post.

Coding a Neural Network: Feedforward

Let's implement feedforward for our neural network. Here's the image of the network again for reference:


```
1
     import numpy as np
2
3
    # ... code from previous section here
4
    class OurNeuralNetwork:
5
7
      A neural network with:
         - 2 inputs
         - a hidden layer with 2 neurons (h1, h2)
9
         - an output layer with 1 neuron (o1)
10
11
       Each neuron has the same weights and bias:
12
         - w = [0, 1]
13
         - b = 0
       111
14
15
       def __init__(self):
         weights = np.array([0, 1])
16
         bias = 0
17
18
19
         # The Neuron class here is from the previous section
         self.h1 = Neuron(weights, bias)
20
         self.h2 = Neuron(weights, bias)
21
         self.o1 = Neuron(weights, bias)
22
23
24
       def feedforward(self, x):
         out_h1 = self.h1.feedforward(x)
25
         out_h2 = self.h2.feedforward(x)
26
27
         # The inputs for o1 are the outputs from h1 and h2
28
         out_o1 = self.o1.feedforward(np.array([out_h1, out_h2]))
30
31
         return out_o1
32
33
    network = OurNeuralNetwork()
    x = np.array([2, 3])
     print(network.feedforward(x)) # 0.7216325609518421
network.py hosted with \ by GitHub
                                                                                               view raw
```

We got 0.7216 again! Looks like it works.

3. Training a Neural Network, Part 1

Say we have the following measurements:

Name	Weight (lb)	Height (in)	Gender
Alice	133	65	F
Bob	160	72	М
Charlie	152	70	М
Diana	120	60	F

Let's train our network to predict someone's gender given their weight and height:

We'll represent Male with a 0 and Female with a 1, and we'll also shift the data to make it easier to use:

Name	Weight (minus 135)	Height (minus 66)	Gender
Alice	-2	-1	1
Bob	25	6	0
Charlie	17	4	0
Diana	-15	-6	1

Loss

Before we train our network, we first need a way to quantify how "good" it's doing so that it can try to do "better". That's what the **loss** is.

We'll use the mean squared error (MSE) loss:

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (y_{true} - y_{pred})^2$$

Let's break this down:

- *n* is the number of samples, which is 4 (Alice, Bob, Charlie, Diana).
- *y* represents the variable being predicted, which is Gender.
- *y_true* is the *true* value of the variable (the "correct answer"). For example, *y_true* for Alice would be 1 (Female).
- *y_pred* is the *predicted* value of the variable. It's whatever our network outputs.

(*y_true-y_pred*)² is known as the **squared error**. Our loss function is simply taking the average over all squared errors (hence the name *mean* squared error). The better our predictions are, the lower our loss will be!

Better predictions = Lower loss.

Training a network = trying to minimize its loss.

An Example Loss Calculation

Let's say our network always outputs 00 — in other words, it's confident all humans are Male \bigcirc . What would our loss be?

Name	y_{true}	y_{pred}	$(y_{true}-y_{pred})^2$
Alice	1	0	1
Bob	0	0	0
Charlie	0	0	0
Diana	1	0	1

$$ext{MSE} = rac{1}{4}(1+0+0+1) = \boxed{0.5}$$

Code: MSE Loss

Here's some code to calculate loss for us:

```
import numpy as np

def mse_loss(y_true, y_pred):
    # y_true and y_pred are numpy arrays of the same length.
    return ((y_true - y_pred) ** 2).mean()

y_true = np.array([1, 0, 0, 1])

y_pred = np.array([0, 0, 0, 0])

print(mse_loss(y_true, y_pred)) # 0.5

loss.py hosted with \ by GitHub

view raw
```

If you don't understand why this code works, read the NumPy quickstart on array operations.

Nice. Onwards!

Liking this post so far? I write a lot of beginner-friendly ML articles. <u>Subscribe</u> to my newsletter to get them in your inbox!

4. Training a Neural Network, Part 2

We now have a clear goal: **minimize the loss** of the neural network. We know we can change the network's weights and biases to influence its predictions, but how do we do so in a way that decreases loss?

This section uses a bit of multivariable calculus. If you're not comfortable with calculus, feel free to skip over the math parts.

For simplicity, let's pretend we only have Alice in our dataset:

Name	Weight (minus 135)	Height (minus 66)	Gender
Alice	-2	-1	1

Then the mean squared error loss is just Alice's squared error:

$$egin{aligned} ext{MSE} &= rac{1}{1} \sum_{i=1}^{1} (y_{true} - y_{pred})^2 \ &= (y_{true} - y_{pred})^2 \ &= (1 - y_{pred})^2 \end{aligned}$$

Another way to think about loss is as a function of weights and biases. Let's label each weight and bias in our network:

Then, we can write loss as a multivariable function:

$$L(w_1, w_2, w_3, w_4, w_5, w_6, b_1, b_2, b_3)$$

Imagine we wanted to tweak w1. How would loss L change if we changed w1? That's a question the <u>partial derivative</u> can answer. How do we calculate it?

Here's where the math starts to get more complex. **Don't be discouraged!** I recommend getting a pen and paper to follow along — it'll help you understand.

If you have trouble reading this: the formatting for the math below looks better in the original post on <u>victorzhou.com</u>.

To start, let's rewrite the partial derivative in terms of $\partial y_p red/\partial w1$ instead:

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial y_{pred}} * \frac{\partial y_{pred}}{\partial w_1}$$

This works because of the Chain Rule.

We can calculate $\partial L/\partial y_pred$ because we computed L= $(1-y_pred)^2$ above:

$$rac{\partial L}{\partial y_{pred}} = rac{\partial (1-y_{pred})^2}{\partial y_{pred}} = oxed{-2(1-y_{pred})}$$

Now, let's figure out what to do with $\partial y_p red/\partial w1$. Just like before, let h1, h2, o1 be the outputs of the neurons they represent. Then

$$y_{pred} = o_1 = f(w_5h_1 + w_6h_2 + b_3)$$

f is the sigmoid activation function, remember?

Since w1 only affects h1 (not h2), we can write

$$egin{aligned} rac{\partial y_{pred}}{\partial w_1} &= rac{\partial y_{pred}}{\partial h_1} * rac{\partial h_1}{\partial w_1} \ & \ rac{\partial y_{pred}}{\partial h_1} &= \boxed{w_5 * f'(w_5h_1 + w_6h_2 + b_3)} \end{aligned}$$

More Chain Rule.

We do the same thing for $\partial h1/\partial w1$:

$$egin{align} h_1 &= f(w_1x_1 + w_2x_2 + b_1) \ & rac{\partial h_1}{\partial w_1} = oxed{x_1 * f'(w_1x_1 + w_2x_2 + b_1)} \ \end{aligned}$$

You guessed it, Chain Rule.

x1 here is weight, and x2 is height. This is the second time we've seen f(x) (the derivate of the sigmoid function) now! Let's derive it:

$$f(x) = rac{1}{1+e^{-x}}$$
 $f'(x) = rac{e^{-x}}{(1+e^{-x})^2} = f(x)*(1-f(x))$

We'll use this nice form for f(x) later.

We're done! We've managed to break down $\partial L/\partial w1$ into several parts we can calculate:

$$oxed{rac{\partial L}{\partial w_1} = rac{\partial L}{\partial y_{pred}} * rac{\partial y_{pred}}{\partial h_1} * rac{\partial h_1}{\partial w_1}}$$

This system of calculating partial derivatives by working backwards is known as **backpropagation**, or "backprop".

Phew. That was a lot of symbols — it's alright if you're still a bit confused. Let's do an example to see this in action!

Example: Calculating the Partial Derivative

We're going to continue pretending only Alice is in our dataset:

Name	Weight (minus 135)	Height (minus 66)	Gender
Alice	-2	-1	1

Let's initialize all the weights to 1 and all the biases to 0. If we do a feedforward pass through the network, we get:

$$egin{aligned} h_1 &= f(w_1x_1 + w_2x_2 + b_1) \ &= f(-2 + -1 + 0) \ &= 0.0474 \end{aligned} \ h_2 &= f(w_3x_1 + w_4x_2 + b_2) = 0.0474 \ o_1 &= f(w_5h_1 + w_6h_2 + b_3) \ &= f(0.0474 + 0.0474 + 0) \ &= 0.524 \end{aligned}$$

The network outputs $y_pred=0.524$, which doesn't strongly favor Male (0) or Female (1). Let's calculate $\partial L/\partial w1$:

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial y_{pred}} * \frac{\partial y_{pred}}{\partial h_1} * \frac{\partial h_1}{\partial w_1}$$

$$\frac{\partial L}{\partial y_{pred}} = -2(1 - y_{pred})$$

$$= -2(1 - 0.524)$$

$$= -0.952$$

$$\frac{\partial y_{pred}}{\partial h_1} = w_5 * f'(w_5 h_1 + w_6 h_2 + b_3)$$

$$= 1 * f'(0.0474 + 0.0474 + 0)$$

$$= f(0.0948) * (1 - f(0.0948))$$

$$= 0.249$$

$$\frac{\partial h_1}{\partial w_1} = x_1 * f'(w_1 x_1 + w_2 x_2 + b_1)$$

$$= -2 * f'(-2 + -1 + 0)$$

$$= -2 * f(-3) * (1 - f(-3))$$

$$= -0.0904$$

$$\frac{\partial L}{\partial w_1} = -0.952 * 0.249 * -0.0904$$

$$= \boxed{0.0214}$$

Reminder: we derived f'(x)=f(x)*(1-f(x)) for our sigmoid activation function earlier.

We did it! This tells us that if we were to increase *w*1, *L* would increase a *tiiiny* bit as a result.

Training: Stochastic Gradient Descent

We have all the tools we need to train a neural network now! We'll use an optimization algorithm called <u>stochastic gradient descent</u> (SGD) that tells us how to change our weights and biases to minimize loss. It's basically just this update equation:

$$w_1 \leftarrow w_1 - \eta \frac{\partial L}{\partial w_1}$$

 η is a constant called the **learning rate** that controls how fast we train. All we're doing is subtracting $\eta \partial w 1/\partial L$ from w1:

- If $\partial L/\partial w1$ is positive, w1 will decrease, which makes L decrease.
- If $\partial L/\partial w1$ is negative, w1 will increase, which makes L decrease.

If we do this for every weight and bias in the network, the loss will slowly decrease and our network will improve.

Our training process will look like this:

- 1. Choose **one** sample from our dataset. This is what makes it *stochastic* gradient descent we only operate on one sample at a time.
- 2. Calculate all the partial derivatives of loss with respect to weights or biases (e.g. $\partial L/\partial w1$, $\partial L/\partial w2$, etc).
- 3. Use the update equation to update each weight and bias.
- 4. Go back to step 1.

Let's see it in action!

Code: A Complete Neural Network

It's *finally* time to implement a complete neural network:

Name	Weight (minus 135)	Height (minus 66)	Gender
Alice	-2	-1	1
Bob	25	6	0
Charlie	17	4	0
Diana	-15	-6	1


```
1
     import numpy as np
 2
3
    def sigmoid(x):
 4
       # Sigmoid activation function: f(x) = 1 / (1 + e^{-(-x)})
       return 1 / (1 + np.exp(-x))
 5
 6
7
     def deriv_sigmoid(x):
       # Derivative of sigmoid: f'(x) = f(x) * (1 - f(x))
8
       fx = sigmoid(x)
9
       return fx * (1 - fx)
10
11
     def mse_loss(y_true, y_pred):
12
13
       # y_true and y_pred are numpy arrays of the same length.
       return ((y_true - y_pred) ** 2).mean()
14
15
     class OurNeuralNetwork:
16
17
18
       A neural network with:
19
         - 2 inputs
20
         - a hidden layer with 2 neurons (h1, h2)
         - an output layer with 1 neuron (o1)
21
22
       *** DISCLAIMER ***:
23
24
       The code below is intended to be simple and educational, NOT optimal.
       Real neural net code looks nothing like this. DO NOT use this code.
25
       Instead, read/run it to understand how this specific network works.
26
27
28
       def __init__(self):
29
         # Weights
         self.w1 = np.random.normal()
30
31
         self.w2 = np.random.normal()
         self.w3 = np.random.normal()
32
         self.w4 = np.random.normal()
33
34
         self.w5 = np.random.normal()
         self.w6 = np.random.normal()
35
36
         # Biases
37
         self.b1 = np.random.normal()
38
         self.b2 = np.random.normal()
39
40
         self.b3 = np.random.normal()
41
42
       def feedforward(self, x):
43
         # x is a numpy array with 2 elements.
         h1 = sigmoid(self.w1 * x[0] + self.w2 * x[1] + self.b1)
44
         h2 = sigmoid(self.w3 * x[0] + self.w4 * x[1] + self.b2)
45
         o1 = sigmoid(self.w5 * h1 + self.w6 * h2 + self.b3)
46
         return o1
47
48
49
       def train(self, data, all_y_trues):
50
         - data is a (n \times 2) numpy array, n = \# of samples in the dataset.
51
         - all_y_trues is a numpy array with n elements.
52
```

```
53
            Elements in all_y_trues correspond to those in data.
54
          learn rate = 0.1
55
56
          epochs = 1000 # number of times to loop through the entire dataset
57
58
          for epoch in range(epochs):
59
            for x, y_true in zip(data, all_y_trues):
60
              # --- Do a feedforward (we'll need these values later)
              sum_h1 = self.w1 * x[0] + self.w2 * x[1] + self.b1
61
62
              h1 = sigmoid(sum_h1)
63
              sum_h2 = self.w3 * x[0] + self.w4 * x[1] + self.b2
64
              h2 = sigmoid(sum_h2)
65
66
67
              sum_o1 = self.w5 * h1 + self.w6 * h2 + self.b3
              o1 = sigmoid(sum_o1)
68
              y_pred = o1
69
70
71
              # --- Calculate partial derivatives.
              # --- Naming: d_L_d_w1 represents "partial L / partial w1"
72
73
              d_L_d_ypred = -2 * (y_true - y_pred)
74
75
              # Neuron o1
76
              d ypred d w5 = h1 * deriv_sigmoid(sum_o1)
              d_ypred_d_w6 = h2 * deriv_sigmoid(sum_o1)
77
              d_ypred_d_b3 = deriv_sigmoid(sum_o1)
78
79
80
              d_ypred_d_h1 = self.w5 * deriv_sigmoid(sum_o1)
              d_ypred_d_h2 = self.w6 * deriv_sigmoid(sum_o1)
81
82
83
              # Neuron h1
              d_h1_d_w1 = x[0] * deriv_sigmoid(sum_h1)
84
              d h1 d w2 = x[1] * deriv sigmoid(sum h1)
85
              d_h1_d_b1 = deriv_sigmoid(sum_h1)
86
87
88
              # Neuron h2
89
              d_h2_d_w3 = x[0] * deriv_sigmoid(sum_h2)
              d_h2_d_w4 = x[1] * deriv_sigmoid(sum_h2)
90
91
              d_h2_d_b2 = deriv_sigmoid(sum_h2)
92
              # --- Update weights and biases
93
94
              # Neuron h1
95
              self.w1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w1
              self.w2 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w2
96
97
              self.b1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_b1
98
99
              # Neuron h2
              self.w3 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w3
100
101
              self.w4 -= learn_rate * d_L_d_ypred * d_ypred_d h2 * d_h2_d_w4
102
              self.b2 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_b2
103
104
              # Neuron o1
```

```
self.w5 -= learn_rate * d_L_d_ypred * d_ypred_d_w5
105
106
              self.w6 -= learn_rate * d_L_d_ypred * d_ypred_d_w6
              self.b3 -= learn_rate * d_L_d_ypred * d_ypred_d_b3
107
108
            # --- Calculate total loss at the end of each epoch
109
            if epoch % 10 == 0:
110
              y_preds = np.apply_along_axis(self.feedforward, 1, data)
111
112
              loss = mse_loss(all_y_trues, y_preds)
113
              print("Epoch %d loss: %.3f" % (epoch, loss))
114
115
      # Define dataset
      data = np.array([
117
        [-2, -1], # Alice
        [25, 6], # Bob
        [17, 4], # Charlie
119
120
       [-15, -6], # Diana
121
      all_y_trues = np.array([
122
       1, # Alice
123
124
       0, # Bob
        0, # Charlie
        1, # Diana
126
127
      ])
128
129
      # Train our neural network!
130
      network = OurNeuralNetwork()
      network.train(data, all_y_trues)
131
fullnetwork.py hosted with 💙 by GitHub
                                                                                              view raw
```

You can <u>run / play with this code yourself</u>. It's also available on <u>Github</u>.

Our loss steadily decreases as the network learns:

We can now use the network to predict genders:

```
1  # Make some predictions
2  emily = np.array([-7, -3]) # 128 pounds, 63 inches
3  frank = np.array([20, 2]) # 155 pounds, 68 inches
4  print("Emily: %.3f" % network.feedforward(emily)) # 0.951 - F
5  print("Frank: %.3f" % network.feedforward(frank)) # 0.039 - M

predict.py hosted with  by GitHub
```

Now What?

You made it! A quick recap of what we did:

- Introduced neurons, the building blocks of neural networks.
- Used the sigmoid activation function in our neurons.
- Saw that neural networks are just neurons connected together.
- Created a dataset with Weight and Height as inputs (or **features**) and Gender as the output (or **label**).
- Learned about loss functions and the mean squared error (MSE) loss.
- Realized that training a network is just minimizing its loss.
 Machine Learning Python Neural Networks Deep Learning Artificial Intelligence

• Used **packpropagation** to calculate partial derivatives.

There's still much more to do:
2.4K \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
• Experiment with bigger / better neural networks using proper machine learning Signupators Thre Variable low, Keras, and PyTorch. By Towards Data Science Every Build a Your first neural network with Schools ience: from hands-on tutorials and cutting-edge research to original features you don't want to miss. Take a look. • Tinker with a neural network in your browser. By signing up, you will create a Medium account if you don't already have one. Review our Privacy Policy for more information about our privacy practices. besides sigmoid, like Softmax.
• Discover <u>other optimizers</u> besides SGD.
• Read my <u>introduction to Convolutional Neural Networks</u> (CNNs). CNNs revolution the field of <u>Computer Vision</u> and can be extremely powerful.
About Read my introduction to Recurrent Neural Networks (RNNs), which are often us Natural Language Processing (NLP).
I may write about these topics or similar ones in the future, so <u>subscribe</u> if you wan notified about new posts.
Thanks for reading!
Originally posted on <u>victorzhou.com</u> .

• Used **stochastic gradient descent** (SGD) to train our network.