Bayesian Networks

Probabilistic Graphical Models

Jerónimo Hernández-González

Concepts

- Joint/Marginal/Conditional probability distribution
- Factorization
- Chain rule
- Bayes rule
- (Conditional) independence

Example: conditional independence

Given a set of variables $\pmb{X}=X_1,...,X_5$, and 3 $\perp\!\!\!\perp$ 4 \mid 1,5

$$p(X) = p(X_2|X_{1,3,4,5})p(X_3|X_{1,4,5})p(X_{1,4,5})$$

= $p(X_2|X_{1,3,4,5})p(X_3|X_{1,5})p(X_{1,4,5})$

$Bayesian\ networks$

- ► What is a Bayesian network?
- Chain rule.
- ► What does it mean that a probability distribution factorizes over a graph *G*?

Bayesian network

Components

Directed acyclic graph G = (V, E) + parameters $\Theta = (\Theta_1, ..., \Theta_n)$

▶ Represents a joint probability distribution:

Vertices: related to random variables

Edges: related to the simplification of the chain rule

Parameters: tables of the conditional probability distributions

Directed acyclic graph (DAG)

Formalism

- ightharpoonup A DAG G is a pair (V, E)
- $V = \{1, ..., n\}$ represent the set of vertices
- \triangleright $E = \{(u, v) : u, v \in V, u \neq v\}$ represent the set of arcs
- ► There are no directed cycles in *G*

Definitions

Definitions

Definitions

Definitions

Definitions

Definitions

Definitions

Definitions

Definitions

Definitions

Definitions

Exercise

Let be
$$\boldsymbol{X}=(X_1,X_2,X_3,X_4,X_5,X_6)$$

Let $G_1=(\boldsymbol{X},E_1)$, where $E_1=\{(X_3,X_2),(X_5,X_3),(X_2,X_1),(X_5,X_2),(X_3,X_6),(X_2,X_4),(X_1,X_4)\}$
Let $G_2=(\boldsymbol{X},E_2)$, where $E_2=\{(X_2,X_3),(X_3,X_5),(X_3,X_6),(X_2,X_4),(X_5,X_4),(X_4,X_1),(X_1,X_2)\}$

- 1. Are they DAGs?
- 2. Obtain the parents and children of X_3 and X_5
- 3. Find an ancestral ordering for G_1 and G_2

Exercise

Bayesian networks

Factorization

A Bayesian network $M = (G, \Theta)$ can be expressed as a product of conditional probability distribution:

$$p_{M}(\mathbf{x}) = \prod_{i=1}^{n} p(x_{i}|\mathbf{pa}_{i}; \mathbf{\Theta}_{i})$$

where pa_i relates to the set of variables with an edge towards X_i .

- Qualitative: G describes the skeleton of the factorization
- Quantitative: Θ determines the shape of the conditional distributions

Bayesian networks

Factorization

Bayesian network's factorization:

$$p(\mathbf{X}) = p(X_4|X_1, X_3) \cdot p(X_1|X_2) \cdot p(X_3|X_2) \cdot p(X_2)$$

Chain rule:

$$p(X) = p(X_4|X_1, \frac{X_2}{2}, X_3) \cdot p(X_1|X_2, \frac{X_3}{3}) \cdot p(X_3|X_2) \cdot p(X_2)$$

Bayesian networks

Factorization

Conditional independencies

- \triangleright $X_4 \perp \!\!\! \perp X_2 \mid X_1, X_3$
- $ightharpoonup X_1 \perp \!\!\! \perp X_3 \mid X_2$

Bayesian network's factorization:

$$p(\mathbf{X}) = p(X_4|X_1, X_3) \cdot p(X_1|X_2) \cdot p(X_3|X_2) \cdot p(X_2)$$

Chain rule:

$$p(X) = p(X_4|X_1, \frac{X_2}{X_2}, X_3) \cdot p(X_1|X_2, \frac{X_3}{X_3}) \cdot p(X_3|X_2) \cdot p(X_2)$$

Exercise

Questions:

- 1. Find an ancestral ordering
- 2. Determine the factorized chain rule

Exercise:

A possible answer

- 1. Find an ancestral ordering: 2, 1, 6, 4, 5, 3
- 2. Determine the factorized chain rule

$$p_M(\mathbf{x}) = p(x_1|x_2) \cdot p(x_2) \cdot p(x_3|x_4, x_5) \cdot p(x_4|x_1, x_6) \cdot p(x_5|x_1) \cdot p(x_6|x_2)$$

Exercise:

Factorization

Given the model, which of these is an appropriate decomposition of the joint distribution?

- a) P(A, B, C, D, E) = P(A)P(B)P(A, B|C)P(B|D)P(A, C|E)
- b) P(A, B, C, D, E) = P(A)P(B)P(C|A)P(C|B)P(D|B)P(E|A)P(E|C)
- c) P(A, B, C, D, E) = P(A)P(B)P(C|A, B)P(D|B)P(E|A, C)
- d) P(A, B, C, D, E) = P(A)P(B)P(C)P(D)P(E)

Bayesian Networks

Probabilistic Graphical Models

Jerónimo Hernández-González

Flow of probabilistic influence

In Bayesian networks, influence flow is stopped by observed nodes and non-observed v-structures.

A v-structure is observed if Z or any of its descendants is observed.

Flow of probabilistic influence

The wet grass example

Z indicates whether our garden is wet; Possible explanations are: X, we turned on the sprinklers; Y, rain. If grass is wet (Z =True) and we didn't turn on the sprinklers (X =False), then the probability of rain (X =True) increases!

Exercise

Flow of influence

True or false:

- ► X₅ ⊥⊥ X₃
- ► *X*₆ ⊥⊥ *X*₃
- $ightharpoonup X_1 \perp \!\!\! \perp X_5$
- ► X₃ ⊥⊥ X₇
- $\triangleright X_1 \perp \!\!\! \perp X_5 \mid X_3$
- \triangleright $X_6 \perp \!\!\! \perp X_2 \mid X_3$

Flow of probabilistic influence

Active trail

- \blacktriangleright Let \mathcal{G} be a DAG
- ▶ Let $X_1 \rightleftharpoons \ldots \rightleftharpoons X_m$ be a trail in \mathcal{G}
- A trail is active given a set of observed variables **Z** if:
 - 1. Whenever there is a v-structure $X_{i-1} \to X_i \leftarrow X_{i+1}$, X_i or one of its descendants is in **Z**
 - 2. no other node along the trail is in \boldsymbol{Z}

d-separation

- Let X, Y and Z be three disjoint sets of variables in G.
- **Z** d-separates **X** from **Y** in \mathcal{G} if **X** $\perp \!\!\! \perp$ **Y** \mid **Z** holds in \mathcal{G}
- $X \perp \!\!\!\perp Y \mid Z$ holds in G if there is no active trail between any variable in X and any variable in Y given Z.

Graphical criteria of d-separation

Z d-separates **X** from **Y**?

Three steps:

- 1. Identify the ancestors of **X**, **Y** and **Z**
- 2. Remove the rest of variables and moralize the left subgraph
- 3. Does \boldsymbol{Z} block all the paths from \boldsymbol{X} to \boldsymbol{Y} ?

Z d-separates X from Y?

Three steps:

- 1. Identify the ancestors of X, Y and Z
- 2. Remove the rest of variables and moralize the left subgraph
- 3. Does \boldsymbol{Z} block all the paths from \boldsymbol{X} to \boldsymbol{Y} ?

Z d-separates X from Y?

Three steps:

- 1. Identify the ancestors of X, Y and Z
- 2. Remove the rest of variables and moralize the left subgraph
- 3. Does \boldsymbol{Z} block all the paths from \boldsymbol{X} to \boldsymbol{Y} ?

Z d-separates X from Y?

Three steps:

- 1. Identify the ancestors of **X**, **Y** and **Z**
- 2. Remove the rest of variables and moralize the left subgraph
- 3. Does \boldsymbol{Z} block all the paths from \boldsymbol{X} to \boldsymbol{Y} ?

Z d-separates X from Y?

Three steps:

- 1. Identify the ancestors of X, Y and Z
- 2. Remove the rest of variables and moralize the left subgraph
- 3. Does \boldsymbol{Z} block all the paths from \boldsymbol{X} to \boldsymbol{Y} ?

Z d-separates X from Y?

Three steps:

- 1. Identify the ancestors of \boldsymbol{X} , \boldsymbol{Y} and \boldsymbol{Z}
- 2. Remove the rest of variables and moralize the left subgraph
- 3. Does \boldsymbol{Z} block all the paths from \boldsymbol{X} to \boldsymbol{Y} ?

Z d-separates **X** from **Y**?

Three steps:

- 1. Identify the ancestors of X, Y and Z
- 2. Remove the rest of variables and moralize the left subgraph
- 3. Does \boldsymbol{Z} block all the paths from \boldsymbol{X} to \boldsymbol{Y} ?

Z d-separates **X** from **Y**?

Three steps:

- 1. Identify the ancestors of X, Y and Z
- 2. Remove the rest of variables and moralize the left subgraph
- 3. Does \boldsymbol{Z} block all the paths from \boldsymbol{X} to \boldsymbol{Y} ?

Z d-separates X from Y?

Three steps:

- 1. Identify the ancestors of X, Y and Z
- 2. Remove the rest of variables and moralize the left subgraph
- 3. Does \boldsymbol{Z} block all the paths from \boldsymbol{X} to \boldsymbol{Y} ?

Z d-separates **X** from **Y**?

Three steps:

- 1. Identify the ancestors of X, Y and Z
- 2. Remove the rest of variables and moralize the left subgraph
- 3. Does \boldsymbol{Z} block all the paths from \boldsymbol{X} to \boldsymbol{Y} ?

Z d-separates **X** from **Y**?

Three steps:

- 1. Identify the ancestors of X, Y and Z
- 2. Remove the rest of variables and moralize the left subgraph
- 3. Does \boldsymbol{Z} block all the paths from \boldsymbol{X} to \boldsymbol{Y} ?

Z d-separates X from Y?

Three steps:

- 1. Identify the ancestors of X, Y and Z
- 2. Remove the rest of variables and moralize the left subgraph
- 3. Does \boldsymbol{Z} block all the paths from \boldsymbol{X} to \boldsymbol{Y} ?

$$X_1 \perp \!\!\! \perp X_7 \mid X_3, X_4$$
?

Z d-separates **X** from **Y**?

Three steps:

- 1. Identify the ancestors of X, Y and Z
- 2. Remove the rest of variables and moralize the left subgraph
- 3. Does \boldsymbol{Z} block all the paths from \boldsymbol{X} to \boldsymbol{Y} ?

$$X_1 \perp \!\!\! \perp X_7 \mid X_3, X_4$$
? false

Z d-separates X from Y?

Three steps:

- 1. Identify the ancestors of **X**, **Y** and **Z**
- 2. Remove the rest of variables and moralize the left subgraph
- 3. Does \boldsymbol{Z} block all the paths from \boldsymbol{X} to \boldsymbol{Y} ?

Z d-separates X from Y?

Three steps:

- 1. Identify the ancestors of X, Y and Z
- 2. Remove the rest of variables and moralize the left subgraph
- 3. Does \boldsymbol{Z} block all the paths from \boldsymbol{X} to \boldsymbol{Y} ?

Z d-separates X from Y?

Three steps:

- 1. Identify the ancestors of **X**, **Y** and **Z**
- 2. Remove the rest of variables and moralize the left subgraph
- 3. Does \boldsymbol{Z} block all the paths from \boldsymbol{X} to \boldsymbol{Y} ?

Z d-separates X from Y?

Three steps:

- 1. Identify the ancestors of **X**, **Y** and **Z**
- 2. Remove the rest of variables and moralize the left subgraph
- 3. Does \boldsymbol{Z} block all the paths from \boldsymbol{X} to \boldsymbol{Y} ?

- Check if these terms are verified:
 - \triangleright $X_1 \perp \!\!\! \perp X_4 \mid X_5$
 - \triangleright $X_1 \perp \!\!\! \perp X_5 \mid X_3, X_4$
 - \triangleright $X_6 \perp \!\!\! \perp X_7 \mid X_3$
 - \triangleright $X_1 \perp \!\!\! \perp X_7 \mid X_5$
 - $\triangleright X_1 \perp \!\!\!\perp X_4 \mid X_6$
 - $ightharpoonup X_1 \perp \!\!\! \perp X_4 \mid X_2, X_3$
- ▶ Identify the subsets of variables that verify:
 - $\triangleright X_1 \perp \!\!\! \perp X_7 \mid ?$
 - $\triangleright X_1 \perp \!\!\! \perp X_5 \mid ?$

Independencies in a graph

Which pairs of variables are independent in this BN, given that none of them have been observed?

- a) $C \perp \!\!\!\perp D$
- b) *A* ⊥⊥ *B*
- c) *B* ⊥⊥ *E*
- d) $A \perp \!\!\!\perp C$

Independencies in a graph

Now assume that the value of E is observed. Which pairs of variables are independent given E?

- a) $A \perp \!\!\!\perp D|E$
- b) $A \perp \!\!\!\perp C \mid E$
- c) *A* ⊥⊥ *B*|*E*
- d) *D* ⊥⊥ *C*|*E*
- e) *B* ⊥⊥ *D*|*E*

Markov blanket

Definition

- ▶ Parents, children and parents of the children
- ▶ Given X_j and Mb_j , for any set of variables $X_c \subseteq (V \setminus Mb_j)$:

$$X_c \perp \!\!\! \perp X_j \mid Mb_j$$

** Applications for structural learning, feature subset selection,...

Markov blanket

Definition

- ▶ Parents, children and parents of the children
- ▶ Given X_j and Mb_j , for any set of variables $X_c \subseteq (V \setminus Mb_j)$:

$$X_c \perp \!\!\! \perp X_j \mid Mb_j$$

** Applications for structural learning, feature subset selection,...

Markov blanket

Definition

- ▶ Parents, children and parents of the children
- ▶ Given X_j and Mb_j , for any set of variables $X_c \subseteq (V \setminus Mb_j)$:

$$X_c \perp \!\!\! \perp X_j \mid Mb_j$$

** Applications for structural learning, feature subset selection,...

$Equivalence\ classes$

$Equivalence\ classes$

Redundancy

Two different DAGs can determine the same dependence model

The same undirected edges with the same V-structures

** Applications in structural learning

Independency Maps

I-maps

- I(G) is the set of independence statements that hold on G Any distribution that factorizes over G satisfies the ind. statements in I(G)
- $ightharpoonup I(\mathcal{P})$ is the set of independence statements that hold for P
- ▶ \mathcal{G} is an I-map of P if $I(\mathcal{G}) \subseteq I(\mathcal{P})$ The other way around is not necessarily true (\sim wasted parameters)

D-separation and I-maps

▶ If P factorizes over \mathcal{G} and X and Y are d-separated in \mathcal{G} given Z then P satisfies $X \perp \!\!\! \perp Y|Z$

I-maps

Which of the following statements about I-maps are true? You may select 1 or more options, or none of them.

- a) The graph K that is the same as the graph G, except that all of the edges are oriented in the opposite direction as the corresponding edges in G, is always an I-map for G, regardless of the structure of G.
- b) A graph K is an I-map for a graph G if and only if K encodes all of the independences that G has, and more.
- c) An I-map is a function that maps a graph G to itself, i.e., f(G) = G.
- d) A graph K is an I-map for a graph G if and only if all of the independencies encoded by K are also encoded by G.

Connecting the three views

▶ Given a Bayesian network structure \mathcal{G} , and a probability distribution P that factorizes according to \mathcal{G} , then P satisfies the independencies that hold in \mathcal{G} .

P factorizes $\implies P$ satisfies independencies

▶ Given a Bayesian network structure \mathcal{G} , and a probability distribution P that satisfies the independencies that hold in \mathcal{G} , then P factorizes over \mathcal{G} .

P satisfies independencies $\implies P$ factorizes

Model

Let $X_1, X_2, ..., X_5$ be binary random variables. Given p such that it verifies the set of conditional independences $I = \{X_2 \perp \!\!\! \perp X_1; X_3 \perp \!\!\! \perp X_2 | X_1; X_4 \perp \!\!\! \perp X_1, X_2 | X_3; X_5 \perp \!\!\! \perp X_2, X_3 | X_1, X_4\}$ and the ancestral ordering 1, 2, 3, 4, 5:

- ► Obtain the simplified chain rule
- ► Compute the number of free parameters of the model

Ancestral ordering that minimizes the number of parameters

Given a BN over a set of variables $X_1, ..., X_5$,

- 1. $I = \{X_5 \perp \!\!\! \perp X_1 | X_3; X_2 \perp \!\!\! \perp X_1, X_5 | X_3; X_3 \perp \!\!\! \perp X_1; X_4 \perp \!\!\! \perp X_3, X_5 | X_1, X_2\}$
- 2. $I = \{X_4 \perp \!\!\! \perp X_2, X_1 | X_3; \quad X_2 \perp \!\!\! \perp X_1; \quad X_5 \perp \!\!\! \perp X_1, X_4 | X_2, X_3\}$
- 3. $I = \{X_3 \perp \!\!\! \perp X_1 | X_2; \quad X_4 \perp \!\!\! \perp X_3 | X_2, X_1; \quad X_5 \perp \!\!\! \perp X_1, X_4 | X_2, X_3\}$

1. Let P(X) be a distribution such that

$$P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2)P(X_3|X_4, X_1)P(X_4|X_2)$$

Are these (conditional) independencies true?

- \triangleright $X_1 \perp \!\!\! \perp X_4$
- \triangleright $X_2 \perp \!\!\! \perp X_1$
- \triangleright $X_2 \perp \!\!\! \perp X_1 \mid X_3$
- \triangleright $X_1 \perp \!\!\! \perp X_2 \mid X_3, X_4$
- 2. Given that P satisfies the independencies in

Provide a factorization for P.

Flow of probabilistic influence

Reasoning Patterns

- Causal reasoning
- Evidential reasoning
- ► Intercausal reasoning

Flow of probabilistic influence Reasoning Patterns

Causal reasoning

Flow of probabilistic influence Reasoning Patterns

Evidential reasoning

$Flow\ of\ probabilistic\ influence$ Reasoning Patterns

Inter-causal reasoning

In this model for traffic jams in a small town, which we assume can be caused by a car accident, or by a visit from the president.


```
\begin{split} & \frac{\text{P(PV = True)} = 0.01}{\text{P(CA = True)} = 0.1} \\ & \frac{\text{P(TJ = True)} = \text{PV} = \text{False, CA = False)} = 0.1}{\text{P(TJ = True)}} & \text{PV = False, CA = True)} = 0.5} \\ & \text{P(TJ = True)} & \text{PV = True, CA = False)} = 0.6} \\ & \text{P(TJ = True)} & \text{PV = True, CA = True)} = 0.9 \end{split}
```

- ► Calculate P(CA = True | TJ = True)
- Calculate P(CA = True|TJ = True, PV = True) where TJ, CA and PV stand for Traffic Jam, Car Accident and Presidential Visit respectively.

Bayesian Networks

Probabilistic Graphical Models

Jerónimo Hernández-González

Independent parameters

How many independent parameters are required to uniquely define the CPD of E if A, B, and D are binary, and C and E have three values each?

- 8
- **▶** 11
- **▶** 17
- **>** 3

- ▶ 18
- **▶** 12

Bayesian networks

Number of parameters

X_i	$ \Omega_{X_i} $	PA_i	$ \Omega_{ extbf{ extit{PA}}_i} $
X_1	3	Ø	-
X_2	2	Ø	-
<i>X</i> ₃	2	(X_1,X_2)	6
X_4	2	X_2	2

No. params
$$=\sum_i (|\Omega_{X_i}|-1) imes |\Omega_{\textit{PA}_i}|$$

Storing a Bayesian network

Let P(X) be a Bayesian network over G. How much memory do we need to store it?

Bayesian networks

Number of parameters

X_j	Model parameters
X_1	$\theta_{1\emptyset 1} = p(x_{11}), \theta_{1\emptyset 2} = p(x_{12}), \ \theta_{1\emptyset 3} = p(x_{13})$
X_2	$\theta_{2\emptyset 1} = p(x_{21}), \ \theta_{2\emptyset 2} = p(x_{22})$
X_3	
	$\theta_{341} = p(x_{31} x_{12},x_{22}), \theta_{351} = p(x_{31} x_{13},x_{21}), \theta_{361} = p(x_{31} x_{13},x_{22}),$
	$\theta_{312} = p(x_{32} x_{11},x_{21}), \theta_{322} = p(x_{32} x_{11},x_{22}), \theta_{332} = p(x_{32} x_{12},x_{21}),$
	$\theta_{342} = p(x_{32} x_{12},x_{22}), \theta_{352} = p(x_{32} x_{13},x_{21}), \theta_{362} = p(x_{32} x_{13},x_{22})$
X_4	$\theta_{411} = p(x_{41} x_{21}), \theta_{421} = p(x_{41} x_{22}),$ $\theta_{412} = p(x_{42} x_{21}), \theta_{422} = p(x_{42} x_{22})$
	$\theta_{412} = p(x_{42} x_{21}), \theta_{422} = p(x_{42} x_{22})$

Bayesian networks

Number of parameters

X_j	Model parameters
X_1	$\theta_{1\emptyset 1} = p(x_{11}), \theta_{1\emptyset 2} = p(x_{12}), \ \theta_{1\emptyset 3} = p(x_{13})$
X_2	$\theta_{2\emptyset 1} = p(x_{21}), \ \theta_{2\emptyset 2} = p(x_{22})$
X_3	$\theta_{311} = p(x_{31} x_{11},x_{21}), \theta_{321} = p(x_{31} x_{11},x_{22}), \theta_{331} = p(x_{31} x_{12},x_{21}),$
	$\theta_{341} = p(x_{31} x_{12},x_{22}), \theta_{351} = p(x_{31} x_{13},x_{21}), \theta_{361} = p(x_{31} x_{13},x_{22}),$
	$\theta_{312} = p(x_{32} x_{11}, x_{21}), \theta_{322} = p(x_{32} x_{11}, x_{22}), \theta_{332} = p(x_{32} x_{12}, x_{21}),$
	$\theta_{342} = p(x_{32} x_{12}, x_{22}), \theta_{352} = p(x_{32} x_{13}, x_{21}), \theta_{362} = p(x_{32} x_{13}, x_{22})$
X_4	$\theta_{411} = p(x_{41} x_{21}), \theta_{421} = p(x_{41} x_{22}),$ $\theta_{412} = p(x_{42} x_{21}), \theta_{422} = p(x_{42} x_{22})$
	$\theta_{412} = p(x_{42} x_{21}), \theta_{422} = p(x_{42} x_{22})$

Bayesian networks

Number of parameters

X_{j}	Model parameters
- X ₁	$\theta_{1\emptyset 1} = p(x_{11}), \theta_{1\emptyset 2} = p(x_{12}), \ \theta_{1\emptyset 3} = p(x_{13})$
X_2	$\theta_{2\emptyset 1} = p(x_{21}), \ \theta_{2\emptyset 2} = p(x_{22})$
X_3	$\theta_{311} = p(x_{31} x_{11},x_{21}), \theta_{321} = p(x_{31} x_{11},x_{22}), \theta_{331} = p(x_{31} x_{12},x_{21}),$
	$\theta_{341} = p(x_{31} x_{12},x_{22}), \theta_{351} = p(x_{31} x_{13},x_{21}), \theta_{361} = p(x_{31} x_{13},x_{22}),$
	$\theta_{312} = p(x_{32} x_{11},x_{21}), \theta_{322} = p(x_{32} x_{11},x_{22}), \theta_{332} = p(x_{32} x_{12},x_{21}),$
	$\theta_{342} = p(x_{32} x_{12}, x_{22}), \theta_{352} = p(x_{32} x_{13}, x_{21}), \theta_{362} = p(x_{32} x_{13}, x_{22})$
X_4	$\theta_{411} = p(x_{41} x_{21}), \theta_{421} = p(x_{41} x_{22}),$
	$\theta_{412} = p(x_{42} x_{21}), \theta_{422} = p(x_{42} x_{22})$

X_1	$p(X_1)$
а	0,4
b	0,3
С	0,3

<i>X</i> ₃	X_1	X_2	$p(X_3 X_1,X_2)$	<i>X</i> ₃	<i>X</i> ₁	<i>X</i> ₂	$p(X_3 X_1,X_2)$
а	а	а	0,55	а	b	b	0,30
b	а	а	0,45	b	b	b	0,70
а	а	b	0,40	а	С	а	0,80
b	а	b	0,60	b	С	а	0,20
а	b	а	0,35	а	С	b	0,25
b	b	а	0,65	b	С	b	0,25 0,75

X_4	X_2	$p(X_4 X_2)$
а	а	0,25
b	а	0,75
а	b	0,66
b	b	0,33
		•

Bayesian networks

Number of parameters

X_{j}	Model parameters
X_1	$\theta_{1\emptyset 1} = p(x_{11}), \theta_{1\emptyset 2} = p(x_{12}), \ \theta_{1\emptyset 3} = p(x_{13})$
X_2	
X_3	$\theta_{311} = p(x_{31} x_{11},x_{21}), \theta_{321} = p(x_{31} x_{11},x_{22}), \theta_{331} = p(x_{31} x_{12},x_{21}),$
	$\theta_{341} = p(x_{31} x_{12},x_{22}), \theta_{351} = p(x_{31} x_{13},x_{21}), \theta_{361} = p(x_{31} x_{13},x_{22}),$
	$\theta_{312} = p(x_{32} x_{11},x_{21}), \theta_{322} = p(x_{32} x_{11},x_{22}), \theta_{332} = p(x_{32} x_{12},x_{21}),$
	$\theta_{342} = p(x_{32} x_{12}, x_{22}), \theta_{352} = p(x_{32} x_{13}, x_{21}), \theta_{362} = p(x_{32} x_{13}, x_{22})$
X_4	$\theta_{411} = p(x_{41} x_{21}), \theta_{421} = p(x_{41} x_{22}),$
	$\theta_{411} = p(x_{41} x_{21}), \theta_{421} = p(x_{41} x_{22}),$ $\theta_{412} = p(x_{42} x_{21}), \theta_{422} = p(x_{42} x_{22})$

$p(X_1)$
$0,4=\theta_{1\emptyset 1}$
$0,3=\theta_{1\emptyset 2}$
0,3

<i>X</i> ₃	<i>X</i> ₁	<i>X</i> ₂	$p(X_3 X_1,X_2)$	<i>X</i> ₃	X ₁	<i>X</i> ₂	$p(X_3 X_1,X_2)$
a	а	а	$0,55 = \theta_{311}$	а	b	b	$0,30 = \theta_{341}$
b	а	а	$0,55 = \theta_{311}$ $0,45$	b	b	b	0,70
а	а	b	$0,40 = \theta_{321}$ $0,60$	а	С	а	$0.80 = \theta_{351}$
b	а	b	0,60	Ь	С	а	0,20
а	b	a	$0.35 = \theta_{331}$ 0.65	а	С	b	$0,25 = \theta_{361}$
b	b	a	0,65	b	С	b	0,75

X ₄	X_2	$p(X_4 X_2)$
а	a	$0,25 = \theta_{411}$
b	a	0,75
а	b	$0,66 = \theta_{421}$
b	b	0,33

$$\theta_C = p(C = 1)$$

$$\theta_C = p(C = 1)$$
 $\theta_{X_1|C=0} = p(X_1 = 1|C = 0)$
 $\theta_{X_1|C=1} = p(X_1 = 1|C = 1)$

$$\theta_{C} = p(C = 1)$$

$$\theta_{X_{1}|C=0} = p(X_{1} = 1|C = 0)$$

$$\theta_{X_{1}|C=1} = p(X_{1} = 1|C = 1)$$

$$\theta_{X_{2}|C=0} = p(X_{2} = 1|C = 0)$$

$$\theta_{X_{2}|C=1} = p(X_{2} = 1|C = 1)$$

$$\theta_{C} = p(C = 1)$$

$$\theta_{X_{1}|C=0} = p(X_{1} = 1|C = 0)$$

$$\theta_{X_{1}|C=1} = p(X_{1} = 1|C = 1)$$

$$\theta_{X_{2}|C=0} = p(X_{2} = 1|C = 0)$$

$$\theta_{X_{2}|C=1} = p(X_{2} = 1|C = 1)$$

$$\theta_{X_{3}|C=0} = p(X_{3} = 1|C = 0)$$

$$\theta_{X_{3}|C=1} = p(X_{3} = 1|C = 1)$$

$$\theta_{C} = p(C = 1)$$

$$\theta_{X_{1}|C=0} = p(X_{1} = 1|C = 0)$$

$$\theta_{X_{1}|C=1} = p(X_{1} = 1|C = 1)$$

$$\theta_{X_{2}|C=0} = p(X_{2} = 1|C = 0)$$

$$\theta_{X_{2}|C=1} = p(X_{2} = 1|C = 1)$$

$$\theta_{X_{3}|C=0} = p(X_{3} = 1|C = 0)$$

$$\theta_{X_{3}|C=1} = p(X_{3} = 1|C = 1)$$

$$\theta_{X_{4}|C=0} = p(X_{4} = 1|C = 0)$$

$$\theta_{X_{4}|C=1} = p(X_{4} = 1|C = 1)$$

$$\theta_{C} = p(C = 1)$$

$$\theta_{X_{1}|C=0} = p(X_{1} = 1|C = 0)$$

$$\theta_{X_{1}|C=1} = p(X_{1} = 1|C = 1)$$

$$\theta_{X_{2}|C=0} = p(X_{2} = 1|C = 0)$$

$$\theta_{X_{2}|C=1} = p(X_{2} = 1|C = 1)$$

$$\theta_{X_{3}|C=0} = p(X_{3} = 1|C = 0)$$

$$\theta_{X_{3}|C=1} = p(X_{3} = 1|C = 1)$$

$$\theta_{X_{4}=1|C=0} = p(X_{4} = 1|C = 0)$$

$$\theta_{X_{4}=2|C=0} = p(X_{4} = 1|C = 0)$$

$$\theta_{X_{4}=1|C=1} = p(X_{4} = 1|C = 1)$$

$$\theta_{X_{4}=2|C=1} = p(X_{4} = 1|C = 1)$$

Naive Bayes

Exercise

Naive Bayes model for Flue diagnosis Which of the following statements is/are true in this model? Flu Fever Fatigue Cough Headache Sore Throat Muscle Aches

Exercise

Naive Bayes model for Flue diagnosis

Which of the following statements is/are true in this model?

- a) Say we observe that 1000 people have a headache (and possibly other symptoms), out of which 500 people have the flu (and possibly other symptoms), and 500 people have a fever (and possibly other symptoms). We would expect that approximately 250 people with a headache also have both the flu and a fever.
- b) Say we observe that 500 people have a headache (and possibly other symptoms) and 500 people have a fever (and possibly other symptoms). We would expect that approximately 250 people have both a headache and fever.
- c) Say we observe that 1000 people have the flu, out of which 500 people have a headache (and possibly other symptoms) and 500 have a fever (and possibly other symptoms). We would expect that approximately 250 people with the flu also have both a headache and fever.
- d) Say we observe that 1000 people have the flu, out of which 500 people have a headache (and possibly other symptoms) and 500 have a fever (and possibly other symptoms). We can conclude that exactly 250 people with the flu also have both a headache and fever.

Bayesian networks summary

Model name	Bayesian network
Graph type	Directed Acyclic
Factorization	factor per variable (variable and its parents)
Independence	determined by d-separation in the graph
$F \Longrightarrow I$	Always
$I \Longrightarrow F$	Always
Markov blanket	Parents, children and parents of children

Bayesian Networks

Probabilistic Graphical Models

Jerónimo Hernández-González