2.3 抗磁性和顺磁性的量子理论: Van Vleck 顺磁性

虽说 Langevin 的经典理论也引用了量子力学的结果 (原子磁矩)并取得了相当的成功,但涉及原子内电子的运动是需要用量子力学的方法来处理才更为妥当, 1932年**范弗莱克(Van Vleck)**完成了物质顺磁性和抗磁性的量子理论,他的这一工作发表在一本书中:

《The theory of electric and magnetic susceptibilities》 oxford 1932

这充分说明了这一理论工作的复杂和繁琐,我们只能很扼要地介绍其思路和结论,不做具体的推导。

The Nobel Prize in Physics 1977 Philip W. Anderson, Sir Nevill F. Mott, John H. van Vleck

Philip Warren Anderson

Sir Nevill Francis Mott

John Hasbrouck van Vleck

"for their fundamental theoretical investigations of the electronic structure of magnetic and disordered systems".

一. 抗磁性的量子力学理论

本节参考姜书1.8节(p28-30), CGS单位制下推导

按照量子力学,一个含有z个电子但原子磁矩为零的原子,在磁场作用下其电子的哈密顿量为:

$$\hat{H} = \sum_{i}^{z} \frac{1}{2m} \left(\hat{P}_{i} + \frac{e}{c} \vec{A}_{i} \right)^{2} + V + \sum_{i} \frac{e}{mc} \hat{H} \cdot \hat{\sigma}_{i}$$

只考虑 z 方向存在均匀磁场时,上式可以得到简化,哈密顿量分为两部分:

未受磁场微扰部分: $\hat{H}_0 = \sum_{i} -\frac{\hbar^2}{2m} \Delta_i + V$

磁场作用下的微扰部分:

$$\hat{H}_{1} = \sum_{i} \frac{eH}{2mc} (\hat{J}_{z} + 2\hat{\sigma}_{z_{i}}) + \sum_{i} \frac{e^{2}H^{2}}{8mc^{2}} (x_{i}^{2} + y_{i}^{2})$$

$$\mathfrak{D} + \sum_{i} \frac{e^{2}H^{2}}{8mc^{2}} (x_{i}^{2} + y_{i}^{2})$$

先求解未受磁场作用的薛定格方程,给出本征能量和本征函数: [^]

 $\hat{H}_0 \psi_{n,l,m} = E_0 \psi_{n,l,m}$

再按照微扰方法,以此本征函数为基函数,计算出一级和二级微扰能量,合并为一个原子的总微扰能量 ε

假定**单位体积有N个原子**,则根据热力学关系,系统的磁化强度为:

 $M_z = -\frac{\partial N\varepsilon}{\partial H}$

于是,给出了磁化率的表达式:

$$\chi = \frac{M}{H} = -\frac{Ne^{2}}{4mc^{2}} \sum_{l} \langle nlm | x_{l}^{2} + y_{l}^{2} | nlm \rangle$$

$$+ \frac{2N}{3} \sum_{n \neq n'} \sum_{l} \frac{\left| \langle n'l'm' | \hat{\mu}_{l} | nlm \rangle \right|^{2}}{E_{n'l'm'}^{(0)} - E_{nlm}^{(0)}}$$

量子力学计算抗 磁磁化率公式

右式第一项为抗磁磁化率,如电子在核外分布是球对 称的,可以取:

 $\overline{x_i^2} = \overline{y_i^2} = \frac{1}{3}\overline{r_i^2}$

则有:

$$\chi_d = -\frac{Ne^2}{6mc^2} \sum_{i}^{z} \overline{r_i^2}$$
 与经典理论的结果是一致的。

第二项是激发态引起的顺磁磁化率,当离子电场是球 对称时,该项为零。如果球形对称的条件被破坏了,它虽 不为零但数值一般很小, 只起到减小抗磁磁化率绝对值的 作用。

利用量子力学给出的计算抗磁磁化率的公式,原则上 适用于任何原子或离子,但准确求解并不容易,只有氢原 子才可以给出准确的定量数值,对其它离子求解都很难给 出准确数值,不过数量级是正确的。

经典理论不可能计算抗磁性气体**分子**的磁化率,而量子力学至少原则上可以做到。此时必须考虑到第二项的影响。气体分子的磁性取决于抗磁项和顺磁项的相对大小。

姜书表1-4中有Hartree和Slater 的理论计算值。

小结: 量子力学的结果使我们对经典结论有了更加可靠的认识,更有意义的是它指出了抗磁性和顺磁性之间的联系,而且也为计算抗磁性分子的抗磁磁化率提供了可能。

参考: 冯索夫斯基《现代磁学》p66-69 戴道生等《铁磁学》上册p33-36

二. 顺磁性的量子力学理论

考虑**原子磁矩不为零**的系统,当磁场不十分强时,同样用微扰方法求出体系的能量,(只保留到 *H*² 项)

$$E_{n,l,m} = E_{n,l,m}^{(0)} + H \langle n,l,m | \hat{\mu}_{z} | n,l,m \rangle$$

$$+ \frac{e^{2}H^{2}}{8mc^{2}} \sum_{l} \langle n,l,m | x_{l}^{2} + y_{l}^{2} | n,l,m \rangle$$

$$- H^{2} \sum_{n \neq n'} \frac{\left| \langle n,l,m | \hat{\mu}_{z} | n',l',m' \rangle \right|^{2}}{E_{n',l',m'}^{(0)} - E_{n,l,m}^{(0)}}$$

 $E_{n,l,m}^{(0)}$ 是基态能量,后面三项是微扰能量 ε ,在微扰能量远小于基态能量和平均热动能的情况下,(相当于弱磁场或高温情形,可以不考虑顺磁饱和现象)给出体系的状态和,求出系统的磁化率。

$$Z = \sum_{n,l,m} \exp\left(-\frac{E_{n,l,m}}{k_B T}\right)$$

$$\chi = \frac{M}{H} = \frac{Nk_BT}{H} \frac{\partial}{\partial H} \ln Z \qquad 单位体积 N 个原子$$

$$\chi = \frac{N}{k_B T Z_0} \sum_{n,l,m} \left| \langle n,l,m | \mu_z | n,l,m \rangle \right|^2 \exp \left(-\frac{E_{n,l,m}^{(0)}}{k_B T} \right)$$
 顺磁磁化率 计算公式

$$+\frac{2N}{Z_{0}}\sum_{n,l,m}\sum_{n',l',m'}\frac{\left|\langle n,l,m|\hat{\mu}_{z}|n',l',m'\rangle\right|^{2}}{E_{n,l,m}^{(0)}-E_{n',l',m'}^{(0)}}\exp\left(-\frac{E_{n,l,m}^{(0)}}{k_{B}T}\right)$$

$$-\frac{N}{Z_{0}}\frac{e^{2}}{4mc^{2}}\sum_{n,l,m}\sum_{l}\left|\langle n,l,m|x_{l}^{2}+y_{l}^{2}|n,l,m\rangle\right|\exp\left(-\frac{E_{n,l,m}^{(0)}}{k_{B}T}\right)$$

该式称作朗之万-德拜公式,其中第三项就是前面给出的抗磁磁化率项。头两项是顺磁磁化率,第一项是取向顺磁磁化率,和朗之万经典结论相似,与温度有关。第二项是激发态对顺磁性的贡献,与温度基本无关。一般情况下比第一项小得多,我们称之为:范弗莱克(Van Vleck)顺磁性。

范弗莱克顺磁性量子理论的结果可以简单表示为:

$$\chi = \frac{N\overline{\mu_a^2}}{3k_BT} + N\overline{\alpha}$$

第一项相当于经典结果, $\overline{\mu_a^2}$ 是平均原子磁矩平方平均值 第二项是与温度无关的顺磁磁化率。

对范弗莱克顺磁性的一些理解

在近似计算自由原子(离子)的顺磁性时,我们忽略了磁场对本征波函数的作用,然而事实上, $B\neq 0$ 时的本征波函数不同于B=0 时的本征波函数, $B\neq 0$ 时的本征波函数是B=0 时未受扰的一些本征波函数的组合,结果是非干扰状态的磁矩发生变化,这种作用对磁化率的贡献首先是范弗莱克用微扰理论计算出来的,也称为范弗莱克顺磁性。

Busch 《固体物理学讲义》p455

van Vleck 顺磁性来源于磁场对电子云的形变,即二级 微扰使激发态混入基态,使电子态发生微小的变化所致,它 常是对顺磁性和抗磁性的一个修正,且基本不依赖于温度。

冯端《材料科学导论》p261

范弗莱克量子理论很好的揭示了过渡族元素和稀土族元素间的差异,并指出稀土元素 Sm+3和Eu+3 的特殊性,揭示了它们的原子磁矩偏离洪德法则的原因。

虽说原则上可以利用范弗莱克量子理论计算任何原子的磁化率,但实际上是很困难的,需要繁琐而复杂的量子力学计算。

小结: 范弗莱克量子理论正确处理了顺磁性和抗磁性的问题,揭示了它们之间的内在联系,指出了除去原子磁矩的取向效应外,还存在一个与温度无关的顺磁效应——范弗莱克顺磁性。他既肯定了 Langevin 经典理论正确的一面,又指出了经典理论的不足,成功地解释了复杂多变的实验结果。

参考: 冯索夫斯基《现代磁学》p100-104 戴道生等《铁磁学》上册p60-70

2.4 传导电子的磁效应

Pauli 顺磁性和 Landau抗磁性

前三节讨论的都是离子实的磁性质,或者说是轨道电子的磁性质,很好的解释了绝缘体的抗磁性和顺磁性。但金属由离子实和自由电子组成,它们既有局域电子(轨道电子),也有传导电子。实验结果表明,金属中的传导电子在外磁场中也表现出一定的磁性,而且不能用上述理论来解释。Landau和 Pauli分别研究了传导电子的抗磁和顺磁行为,揭示了非铁磁性金属的弱磁性质。

参考: 姜书 1.11节

黄昆书8.3 节

戴道生书p36-41

一. 实验结果

金属原子丢掉价电子后,离子实的电子都是满壳层, 无原子磁矩,在外磁场中应表现为抗磁性,但**碱金属、碱 土金属和很多金属都表现为顺磁性**,一些表现为抗磁性的 金属,如Cu, Ag, Au等,其金属态的抗磁性数值也比它自身 处于正离子状态时要小,这说明必须考虑传导电子对金属 磁性质的影响。

表 1.5 金属的抗磁磁化率和电子磁化率(单位:emu/mol)

金 属	χ _统 (原子态)	χτ (离子态)	发 ∈(价电子)
銅 Cu 银 Ag	-5.4×10-4 -21.56	-18.0×10^{-6} -31.0	+12.4×10-6 +4~9
tR Ag 金 Au	-29.59	-45.8	+14

金属态

见戴道生书 p37

$$\chi_{\text{mol}} \left(10^{-6}\right)$$
CGS单位

表 10-1 元素原子磁化率实验数据

	ΙA	ΠA	ШВ	IVΒ	Vв	ИВ	WI B	₩ B
1	H ¹ -3.94							
2	Li ³ 25.2	Be ⁴ - 9.02						
3	Na ¹¹ 15.6	Mg ¹² 6						\$ W. 19
4	K ¹⁹ 21.5	Ca ²⁰ 44	Sc ²¹ 315	Ti ²²	V ²³ 230	Cr ²⁴	Mn ²⁵ 527	Fe ²⁶
5	Rb ³⁷ 19.2	Sr ³⁸ 92	Y ³⁹ 191	Zr ⁴⁰ 120	Nb ⁴¹ 120	Mo ⁴² 54	Tc ⁴³ 270	Ru ⁴⁴ 44
6	Cs ⁵⁵ 29.9	Ba ⁵⁶ 20	La 系 ^① (57~71)	Hf ⁷² 70	Ta ⁷³ 145	W ⁷⁴ 40	Re ⁷⁵ 68.7	Os ⁷⁶ 7.6
7	Fr ⁸⁷	Ra ⁸⁸	Ac 系 ^② (89~103)	Ku ¹⁰⁴	Ha ¹⁰⁵			

也许可以简单认为自由电子的顺磁性是由于电子自旋 磁矩在磁场中取向引起,如果按照经典理论,自旋取向对 顺磁的贡献是:

$$\chi_e = \frac{Nz\mu_s^2}{3k_BT} = \frac{Nz\mu_B^2}{k_BT} \approx 10^{-4} \quad (\mu_s = \sqrt{3}\mu_B)$$
 CGS单位制下 室温磁化率

但测量表明金属的顺磁性与温度无关,且数值比上述数值小得多(10-6),显然不能用经典理论来解释金属顺磁性。金属中传导电子的行为必须从量子力学观点来解释。 Landau 和 Pauli 先后解释了传导电子的抗磁性和顺磁性。

$$\left(\chi_{ed} = \frac{10^{23} \left(9.27 \times 10^{-21}\right)^2}{1.38 \times 10^{-16} \times 293} \approx 2z \times 10^{-4}\right)$$

二. Landau抗磁性

$$F = \vec{qv} \times \vec{B}$$

按照经典理论,传导电子是不可能出现抗磁性的。因为外加磁场(由于洛伦兹力垂直于电子的运动方向)不会改变电子系统的自由能及其分布函数,因此磁化率为零。

另一经典的图象:

在外磁场作用下形成的 环形电流在金属的边界上反射,因而使金属体内的 抗磁 性磁矩为表面 "破折轨道" 的反向磁矩抵消,不显示抗 磁性。

图 1.11 导电电子经典抗磁性抵消原因的示意图。

1930 年朗道最早指出,在量子力学理论内,这个结论是不正确的。他首先证明,外磁场作用下的回旋运动使电子的能量量子化,从连续的能带变为不连续的能级,正是这种量子化引起了导体能量随磁场强度的变化,从而表现出抗磁性。这种量子化的能级被后人称为朗道能级,由于存在朗道能级而产生的抗磁性称作朗道抗磁性。

固体物理"在恒定磁场中电子的运动"一节中已经解释了这种能量量子化的起因,并且以此解释了磁化率随磁场倒数呈周期性变化的现象(德·哈斯-范阿尔芬效应)。具体内容这里不再重复,下面两张图生动地反映了朗道能级以及随磁场的变化。

$$E(\mathbf{k}) = \frac{\hbar^2 k_z^2}{2m} + \varepsilon_n = \frac{\hbar^2 k_z^2}{2m} + \left(n + \frac{1}{2}\right)\hbar\omega_c$$

$$\omega_c = \frac{eB}{m^*}$$

能级宽度随磁场变化

定性说明: 黄昆书p266~268

朗道能级电子填充情况随磁场强度的变化

传导电子的抗磁磁化率

如果把电子看成符合经典统计的自由粒子,同样用类似2.2节中的方法,可以得出抗磁磁化率的表达式:

(详见姜书p42-43)

$$\chi_{ed} = -\frac{1}{3} \frac{N \mu_B^2}{k_B T}$$

N为单位体积电子数。

这是高温弱场近似。

上式给出的 χ_{ed} 与 T 有关,这与事实不符,原因是电子气不遵从玻耳兹曼统计,而是服从费密 (Fermi) 统计。不是所有电子都参与了抗磁性作用,只有费密面附近的电子才会对抗磁性有所贡献。

索末菲电子论告诉我们,能参与贡献的电子数为N',

$$N' = \frac{3}{2} \frac{NT}{T_F}$$

$$T_F = \frac{E_F^0}{k_B} = \frac{\hbar^2}{2mk_B} (3\pi^2 N)^{\frac{2}{3}} = \frac{\hbar^2}{2mk_B} (\frac{3N}{8\pi})^{\frac{2}{3}}$$

其中 T_F 为费密面能级 E_F 决定的费密温度。用 N'代替 N 后,得到

$$\chi_{\rm ed} = -\frac{4m\mu_B^2}{h^2} \left(\frac{\pi}{3}\right)^{\frac{2}{3}} N^{\frac{1}{3}}$$

此时的磁化率与温度无关,称为朗道抗磁性。金属中的导电电子除具有抗磁性外,还同时具有不可分开的顺磁性。

三. Pauli 顺磁性

前面分析指出传导电子的自旋磁矩在外磁场中的取向效应会产生一定顺磁性,但不能用经典统计理论解释。泡利等人使用Fermi-Dirac 统计解释了高度简并的传导电子顺磁性,其物理图像可用下图说明:

图 1.20 导电电子状态密度和能量的函数关系.
(a) H = 0, T = 0K 时, $N_+ = N_-$; (b) $H \neq 0$ 后, 能量的 差别 $2\mu_B H$; (c) $H \neq 0$, 平衡后, $N_+ \neq N_-$.

所以只有 $N' = \frac{1}{2} g(E_F^0) \mu_B H$ 的电子可以在磁场中改变取向。 引发的顺磁磁矩为:

$$M = 2\mu_B N' = \mu_B^2 g(E_F^0) H$$

给出的顺磁磁化率为:

$$\chi_{ep} = \frac{M}{H} = \mu_B^2 g \left(E_F^0 \right)$$
$$= \frac{12m\mu_B^2}{h^2} \left(\frac{\pi}{3} \right)^{\frac{2}{3}} N^{\frac{1}{3}}$$

由于传导电子的顺磁性只是来源于费米面附近的电子,所以磁化率与温度无关,其数值远小于非简并电子的情况。

小结: 金属传导电子的磁性

- 1 其抗磁性和顺磁性都来自于费密面附近的少数电子;
- 2. 抗磁性来源于电子能级在磁场作用下的改变;

$$\chi_{ed} = -\frac{4m\mu_B^2}{h^2} \left(\frac{\pi}{3}\right)^{\frac{2}{3}} N^{\frac{1}{3}}$$

3. 顺磁性来源于磁场的作用使自旋向上、向下的态密度发生

变化;
$$\chi_{ep} = \frac{12m\mu_B^2}{h^2} \left(\frac{\pi}{3}\right)^{\frac{2}{3}} N^{\frac{1}{3}}$$

4. 它们都只能用量子力学来解释; 磁化率与温度无关

且有:
$$\chi_{ep} = 3|\chi_{ed}|$$

注意:

对金属传导电子来说,抗磁性和顺磁性总是同时存在的,抗磁磁化率和顺磁磁化率在磁化率的测量中都不可能单独测出,所得到的只是两者之差。

但测量金属元素核磁共振频率的奈特(Knight)移动,有可能确定出 Pauli 顺磁性,从而从电子磁化率中分离出顺磁性。(参考黄昆书 p398)

四. 金属的磁性

以铜为例说明,它由三部分组成:

- 1. 离子抗磁性:铜的 4s 电子成为导电电子,剩下的Cu+1离子,3d壳层是充满的,它有抗磁性;
- 2. 导电电子的抗磁性;
- 3. 导电电子的顺磁性。由于后二项是不可分的,所以传导电子表现为顺磁性。
- 4. 金属的磁性类型取决于三种磁性的相对大小。铜离子态的抗磁性大于导电电子的顺磁性,因而金属铜显现抗磁性。碱金属,碱土金属则相反,传导电子的顺磁性超过了离子的抗磁性,表现为顺磁性。

表中数据为各元素室温下的克原子磁化率

CGS单位

表 10-1 元素原子磁化率实验数据

H ¹ -3.94 Li ³ 25.2 Na ¹¹	Be ⁴ - 9.02						
25.2	-9.02						
				1	1 1		
Na ¹¹	N # 12				THE A V		+4 +2
	Mg^{12}				a - 841 4 8		
15.6	6						
K ¹⁹	Ca ²⁰	Sc ²¹	Ti ²²	V^{23}	Cr ²⁴	Mn ²⁵	Fe ²⁶
21.5	44	315	150	230	160	527	w 4 70 1
Rb ³⁷	Sr ³⁸	Y ³⁹	Zr^{40}	Nb ⁴¹	Mo ⁴²	Tc^{43}	Ru ⁴⁴
19.2	92	191	120	120	54	270	44
Cs ⁵⁵	Ba ⁵⁶	La 系 ^①	Hf ⁷²	Ta ⁷³	W ⁷⁴	Re ⁷⁵	Os ⁷⁶
29.9	20	(57~71)	70	145	40 ,	68.7	7.6
Fr ⁸⁷	Ra ⁸⁸	Ac 系 ^② (89~103)	Ku ¹⁰⁴	Ha ¹⁰⁵			K ¹ +:
	15.6 K ¹⁹ 21.5 Rb ³⁷ 19.2 Cs ⁵⁵ 29.9	15.6 6 K ¹⁹ Ca ²⁰ 21.5 44 Rb ³⁷ Sr ³⁸ 19.2 92 Cs ⁵⁵ Ba ⁵⁶ 29.9 20	15.6 6 K^{19} Ca^{20} Sc^{21} 21.5 44 315 Rb^{37} Sr^{38} Y^{39} 19.2 92 191 Cs^{55} Ba^{56} $La 系^{\oplus}$ 29.9 20 $(57~71)$	K^{19} Ca^{20} Sc^{21} Ti^{22} 21.5 44 315 150 Rb^{37} Sr^{38} Y^{39} Zr^{40} 19.2 92 191 120 Cs^{55} Ba^{56} $La $	K19Ca20Sc21Ti22V2321.544315150230Rb37Sr38Y39Zr40Nb4119.292191120120Cs55Ba56La 系①Hf72Ta7329.920 $(57 \sim 71)$ 70145	K^{19} Ca^{20} Sc^{21} Ti^{22} V^{23} Cr^{24} 21.5 44 315 150 230 160 Rb^{37} Sr^{38} Y^{39} Zr^{40} Nb^{41} Mo^{42} 19.2 92 191 120 120 54 Cs^{55} Ba^{56} $La $	K^{19} Ca^{20} Sc^{21} Ti^{22} V^{23} Cr^{24} Mn^{25} 21.5 44 315 150 230 160 527 Rb^{37} Sr^{38} Y^{39} Zr^{40} Nb^{41} Mo^{42} Tc^{43} 19.2 92 191 120 120 54 270 Cs^{55} Ba^{56} $La \not K^{\oplus}$ Hf^{72} Ta^{73} W^{74} Re^{75} 29.9 20 $(57 \sim 71)$ 70 145 40 68.7

Ca²⁺:0.99

接上表

	W B	₩B	IΒ	IВ	∏ A	IV A	V A	VI A	WA	WA A
1	HIN		i tin						4. 水林	He ²
		and the same	arar Gar			The 14 Heavi				-1.9
2					B ⁵	C ⁶	N ⁷	O_8	F ⁹	Ne ¹⁰
	100				-6.7	- 42	- 12	3450		-10.7
3		gan g \$		1.5	Al ¹³	Si ¹⁴	P ¹⁵	S ¹⁶	Cl ¹⁷	Ar ¹⁸
					16.7	-3.6	-20, -27	-16, -15	- 40	-18
4	Co ²⁷	Ni ²⁸	Cu ²⁹	Zn ³⁰	Ga ³¹	Ge ³²	As ³³	Se ³⁴	Br ³⁵	Kr ³⁶
			-5.4	-10.3	-16.8	-8.9	-5.5	- 26.5	- 56	- 37
5	Rh ⁴⁵	Pd^{46}	Ag^{47}	Cd ⁴⁸	In ⁴⁹	β-Sn ⁵⁰ 3	Sb ⁵¹	Te^{52}	I ⁵³	Xe ⁵⁴
3	113	580	-21.56	-19.6	-12.6	4.4	- 107	-40.8	- 89	∂ – 59
6	Ir ⁷⁷	Pt ⁷⁸	Au ⁷⁹	Hg ⁸⁰	α-Tl ⁸¹	Pb ⁸²	Bi ⁸³	Po ⁸⁴	At ⁸⁵	Rn ⁸⁶
U	25	200	-29.6	-33.8	-44.0	-24.9	- 285		-0.00	5
7					The state of the s					

[Ar] $3d^{10}4s^{1}$, $Cu^{1+:}$ 0.96 [Ne] $3s^{2}3p^{1}$, Al $^{3+:}$ 0.51

接上表

① La 系

La ⁵⁷	Ce ⁵⁸	Pr ⁵⁹	Nd ⁶⁰	Pm ⁶¹	Sm ⁶²	Eu ⁶³	Gd ⁶⁴	Tb^{65}	Dy ⁶⁶	Ho ⁶⁷	Er ⁶⁸	Tm ⁶⁹	Yb ⁷⁰	Lu ⁷¹
130	2100	3530	5180		1320	3340		1720	70700	77100	50100	26700	81	17

② Ac 系

Ac ⁸⁹	Th ⁹⁰	Po ⁹¹	U ⁹²	Np ⁹³	Pu ⁹⁴	Am ⁹⁵	Cm ⁹⁶	Bk ⁹⁷	Cf ⁹⁸	Es ⁹⁹	Fm ¹⁰⁰	Md^{101}	No ¹⁰²	Lr ¹⁰³
	130	601	110		600	_		_				_	_	

③ α-Sn 的 $\chi_a = -31.5 \times 10^{-6}$ °

注:表中为原子磁化率 $\chi_a \times 10^6$ 。

上表摘自《材料科学导论》(2002年) p263

虽然上述理论在解释金属传导电子的磁性上获得了一定的成功,但定量计算上仍有差距,更精确的计算必须**抛**弃传导电子是自由电子的假设,考虑到电子之间的相互作用:磁相互作用、库仑静电相互作用以及更复杂的量子效应,比如 Na,相互作用效应使自旋磁化率增加75%。

周期表中大多数过渡族金属磁化率显著高于碱金属的磁化率,表明过渡金属的态密度特别大,这和电子热容的实验结果是一致的。(Kittel 固体物理导论 8版 p219)

对弱磁性物质的研究要特别注意含有极少量铁磁物质的可能,顺磁物质中的铁磁杂质会完全混乱磁性的真相。

重要说明:材料中的原子磁矩和磁性

通过本章分析,显然材料中原子的电子态和磁性与孤立原 子相比发生了很大变化,首先是由于键合使外层电子发生变化: ① 共价结合常使价电子配对甚至杂化成总磁矩为零的电子结构, 比如氢原子有磁矩但氢分子是抗磁性的,但也有例外,如氧分 子,虽然其总电子数为偶数,但电子组态为L=0,S=1,仍是顺 磁性的。②离子化合物中的价电子在原子间的转移使原子变为 正负离子,有磁矩的原子变为无磁矩的离子。③ 在金属中原子 的价电子成为传导电子、金属的磁性由正离子实和传导电子共 同决定。4在过渡金属中,d 电子能级也变成能带,d 带和 s 带 的重叠使 d 和 s 带中的电子数与孤立原子不同,磁矩也会发生 变化,例如孤立的钯原子外层电子组态是 $3d^{10}4s^{0}$ 没有磁矩,但 金属中钯的电子组态是 $3d^{9.4}4s^{0.6}$ 有磁矩。

其次:晶体电场效应是引起材料中电子态发生变化的另一个原因,局域在离子中的电子运动会受到近邻离子产生的静电场作用使简并的电子轨道发生分裂,以致轨道磁矩对总磁矩的贡献减少甚至消失。即轨道的部分或全部淬灭。例如 孤立的铁离子Fe+2, L=2, 而在化合物或金属中轨道磁矩几乎全部淬灭。而 Fe+3在不同的晶场中自旋态不同,在强晶场中呈低自旋态,在弱晶场中呈高自旋态。

正因为上述复杂的情况,本章涉及的五种磁性会发生在不同材料中,对于具体材料我们要仔细分析才能区别和认识,要避免匆忙和简单的结论。

习题二

2.1 上述文献中,金属Cu的抗磁磁化率有 4 种不同数据:

$$\chi = -1.08 \times 10^{-6} (SI)$$

$$\chi = -5.4 \times 10^{-6} (\text{cm}^3 \cdot \text{mol}^{-1})$$
 这是一个可靠的原始数据

 $\chi = -9.7 \times 10^{-6} (= 4\pi\chi \text{ cgs})$

$$\chi = 1.0 \times 10^{-5}$$

试分析出它们所指磁化率的具体意义及单位。 χ,χ_m,χ_{mol}

2.2 按照电子轨道角动量和自旋角动量在外磁场中的取向应该是量子化的观点,重新处理 Langevin 经典模型,给出顺磁磁化率的正确表达式。

等比级数求和公式:

$$a_n = aq^{n-1}, s_n = \frac{a(1-q^n)}{1-q}$$

习题二

- 2.3 将Van Vleck顺磁性 Pauli顺磁性 Landau抗磁性的 磁化率温度关系同画在1.4题绘出的图中。
- 2.4 针对无磁有序材料可能存在的 5 种弱磁性机理,写一个读书报告,对其进行比较(特点、差异等)和评述,以期加深理解。

范弗莱克

John Hasbrouck van Vleck

(1899年3月13日—October 27, 1980)

美国物理学家。1899年3月13日生于康涅狄格州的米德尔 城; 1980年10月27日卒于马萨诸塞州的坎布里奇。 范弗莱克 1920 年毕业于威斯康辛大学, 1922 年获哈佛大学哲学博士学 位。1927年成为教授,他先后在哈佛、明尼苏达和威斯康星大 学执教,1934年又回到哈佛大学长执教席。 他的**主攻方向是** 在用量子力学方法研究原子内部电子分布的基础上,探察单个 原子的磁学性质。三十年代,他提出了一种考虑电子受其近邻 电子影响的理论,它目前仍是磁学领域内的基础理论。因对磁 性和无序系统的电子结构的基础研究,与安德逊和莫特一起分 享了1977年度的诺贝尔物理学奖。

选自百度网

一些补充:

他是美国科学院院士,担任过美国物理学会主席,有"现代磁学之父"的美誉,1932年他出版了《电极化率和磁化率的理论》一书,提出了这一问题的量子力学表达式。他还处理了铁磁体中的交换作用,计算了分子结构并阐明了化学键的概念。

《简明自然科学辞典》

泡利(Pauli) 1900-1958

奥地利物理学家沃尔夫冈-泡利 (Wolfgang Pauli) 生于1900年, 1958年就去世了。他是本世纪初一 位罕见的天才,对相对论及量子力 学都有杰出贡献,因发现"泡利不 相容原理"(Exclusion Principle) 而获1945年诺贝尔物理学奖。这个 原理是他在1924年发现的,对原子 结构的建立与对微观世界的认识有 革命性的影响。

泡利有成就的研究还涉及以下几个方面:相对论量子电动力学、基本粒子的自族与统计分布律的关系、**气体和金属的顺磁性**(**导致了金属中的电子量子论**)、把单粒子的波动理论推广到多粒子、介子的解释及核力等等。在理论物理学的每个领域里,泡利几乎都做出过重要贡献。

朗道(1908~1968)

Landau, Lev Davidovich

苏联著名的物理学家。最著名的贡献有 "朗道十诫":量子力学中的密度矩阵和 统计物理学 (1927); 自由电子抗磁性的理 论(1930); 二级相变的研究(1936~1937); 铁磁性的磁畴理论和反铁磁性的理论解释 (1935); 超导体的混合态理论(1934); 原 子核的几率理论(1937); 氦 II 超流性的量 子理论(1940~1941); 基本粒子的电荷约 束理论(1954); 费米液体的量子理论 (1956);弱相互作用的CP不变性(1957)。 因凝聚态特别是液氦的先驱性理论,被授 予1962年诺贝尔物理学奖。

朗道, Л.Д.

1958年,为了庆贺朗道 50寿辰,苏联原子能研究所送给他一块大理石平板,平板上刻着朗道一生工作中的10项最重要的科学成果。人们借用宗教上的名次,把这些成果称为"朗道十诫"。这10项成果是:

```
量子力学钟的密度矩阵和统计物理学(1927);
自由电子抗磁性的理论(1930);
二级相变的研究(1936-1937);
铁磁性的磁畴理论和反铁磁性的理论解释(1935);
超导体的混合态理论(1934):
原子核的几率理论(1937);
氦 II 超流性的量子理论(1940-1941);
基本粒子的电荷约束理论(1954);
费米液体的量子理论(1956):
弱相互作用的CP不变性(1957)
```