Which of the numbers below is equal to the following summation: \begin \align\\displaystyle\\Sigma_{i=1}^3 i^2\\end \align\?

1 / 1 puntos

- 30
- 14
- O 1
- O 9
 - ✓ Correcto

We compute
$$\Sigma_{i=1}^{3}i^{2}=1^{2}+2^{3}+3^{2}=14$$

^{2.} Suppose that $A = \Sigma_{k=1}^{100} k^4$ and $B = \Sigma_{j=1}^{100} j^4$

1 / 1 puntos

Which of the following statements is true?

- O There is not enough information to do the problem
- \bigcirc A = B
- $\bigcirc A > B$
- $\bigcirc B > A$
 - ✓ Correcto

 ${\rm A}$ = ${\rm B}.$ Both summations evaluate to the same number, since k and j are just dummy indices.

3. Which of the numbers below is equal to the summation $\Sigma_{i=1}^{10}$ 7 ?	1/1 puntos
• 70	
O 7	
O 55	
O 0	
\checkmark correcto $ According to one of our Sigma notation simplification rules, this summation is just equal to 10 copies of the number 7 all added together, and so we get 10\times 7=70.$	
4. Suppose that $X=\Sigma_{i=1}^5 i^3$ and $Y=\Sigma_{i=1}^5 i^4.$	1/1 puntos
Which of the following expressions is equal to the summation $\Sigma_{i=1}^5(2i^3+5i^4)$?	
○ 7	
$\bigcirc X + Y$	
\odot $2X + 5Y$	
○ 3375	
\checkmark Correcto To get here, you apply two of our Sigma notation simplification rules $\Sigma_{i=1}^5 2i^3+5i^4-2$ (Σ^5-i^3) + 5 (Σ^5-i^4) - 9 $V+5V$	
5. Which of the following numbers is the mean μ_Z of the set $Z=\{-2,4,7\}$?	1/1 puntos
O 9	
O 4	
○ \begin {align} \frac{13}{3}\end {align}	
Correcto To get the mean of a set of numbers, you need to perform two steps: first add them all up (in this case getting -2 + 4 + 7 = 9), and then divide by the number of elements in the set (in this case that number is 3). So you should obtain \mu_Z = \begin \{align\} \\frac{9}{3} = 3\end \{align\}, which you did!	
 6. Suppose the set X has five numbers in it: X = {x1, x2, x3, x4, x5}. Which of the following expression represents the mean of the set X? \begin {align}\frac15 [\sum_{{\argenian}} \large i=1}}^5 \(x_i-\mu_X)^2 \]\end {align} 	0 / 1 puntos
\tegin \{\aign\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
\tegin \align\\\frac15 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
$\bigcirc \sum_{i=1}^5 x_i$	