Za 选数数 (A)

有一部分题目存在比正解更简单的非常规解法。

所以建议大家预习/思考时善用程序解决一些问题()

Problem A

有n中颜色的球,第i种颜色有 f_i 个。

现要选出恰好s个球,求颜色的可重集有多少种,对 10^9+7 取模。

 $1 \le n \le 20$, $0 \le s \le 10^{14}$, $0 \le f_i \le 10^{12}$.

Problem B

求在 $\{1...n\}$ 的非空子集中选择 m 个不同子集的方案数,使得每个元素都被选择了偶数次,答案对 10^8+7 取模。

Problem C

有一张 $\sum C_{i,j}$ 个点的无向图。 $\forall 1 \leq i \leq j \leq n$,有 $C_{i,j}$ 个点的标签为区间 [i,j]。两点间有边当且仅当两点的标签有交。求该图的生成树数目,模 998244353。

 $2 \le N \le 400$, $1 \le C_{i,j} \le 10^4$.

Problem D

给定长度为 3n、值域为 [0,3] 的整数序列 $S=s_1s_2\cdots s_{3n}$ 。你需要首先将 S 中的每个 0 替换为 [1,3] 中的任意一个整数,得到序列 $T=t_1t_2\cdots t_{3n}$,然后给出 n 个长度为 3 的整数序列 $\{a_{i,1},a_{i,2},a_{i,3}\}_{1\leq i\leq n}$,使得

- $\forall 1 \leq i \leq n$, $1 \leq a_{i,1} < a_{i,2} < a_{i,3} \leq 3n$;
- $ullet \ orall (i_1,j_1)
 eq (i_2,j_2), \ a_{i_1,j_1}
 eq a_{i_2,j_2};$
- $\forall 1 \leq i \leq n$, $\{t_{a_{i1}}, t_{a_{i2}}, t_{a_{i3}}\}$ 是 $\{1, 2, 3\}$ 的一个排列且逆序对数为奇数。

Problem E

求括号序列数,对 10^9+7 取模,满足:

- 左右括号数分别为n, m;
- 最长合法子序列长度为 2k。

多测, $t \leq 3 imes 10^3$, $n, m, k \leq 2 imes 10^3$ 。

Problem F

求有多少排列 $p_{1...n}$,满足 $(p_1,p_n)=(s,t)$, $\forall 1 < i < n, (p_i-p_{i-1})(p_i-p_{i+1})>0$,对 10^9+7 取模。

 $2 \leq n \leq 2 imes 10^3$, $1 \leq s,t \leq n$.

Problem G

给定整数 N, r,求有多少六元有序数组 (a, b, c, a', b', c') 满足同余方程 $ab + a'b' \equiv bc + b'c' \equiv ca + c'a' \equiv r \pmod{N}$,对 998244353 取模。其中 $a, b, c, a', b', c' \in \{0, 1, \dots, N-1\}$ 。

 $0 \leq r < N \leq 10^{18}$, $N \geq 2$, $\mu\left(N
ight)
eq 0$ \circ

Problem H

给定 P,q。q 次给定 n,m,求满足 $a_i \in [0,m]$ 且 $\exists 1 \leq i < j < k \leq n$, $a_k < a_i < a_j$ 的序列 $a_{1...n}$ 的数目。答案对 P 取模。 $n \leq 100$, $m \leq 8 \times 10^4$ 。