Table 6: Henry's law constants for water as solvent

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	Inc	organic	species		
		Oxygen	(0)		
oxygen	1.2×10^{-5}	1700	Warneck and Williams (2012)	L	
O_2	1.3×10^{-5}	1500	Sander et al. (2011)	L	
7782-44-7]	1.3×10^{-5}	1500	Sander et al. (2006)	L	
	1.3×10^{-5}	1400	Fernández-Prini et al. (2003)	L	1
	1.3×10^{-5}	1500	Battino et al. (1983)	L	
	1.3×10^{-5}	1500	Wilhelm et al. (1977)	L	
	1.3×10^{-5}	1400	Rettich et al. (1981)	M	
	1.3×10^{-5}	1400	Benson et al. (1979)	M	
	1.2×10^{-5}	1800	Carpenter (1966)	M	
	1.3×10^{-5}	1200	Winkler (1891b)	M	2
	1.3×10^{-5}	1500	Battino (1981)	X	3, 4
	1.3×10^{-5}	1500	Battino (1981)	X	5
	1.2×10^{-5}	1700	Dean (1992)	?	6
	1.3×10^{-5}		Seinfeld (1986)	?	7
ozone	1.0×10^{-4}	2800	Sander et al. (2011)	L	
O_3	1.0×10^{-4}	2800	Sander et al. (2006)	L	
10028-15-6]	1.1×10^{-4}	2400	Warneck (2003)	L	
10020 13 0]	1.3×10^{-4}	2000	Wilhelm et al. (1977)	L	
	1.1×10^{-4}	2300	Gershenzon et al. (2001)	M	
	1.2×10^{-4}	1400	Sotelo et al. (1989)	M	
	1.1×10^{-4}	2300	Kosak-Channing and Helz (1983)	M	
	1.1 × 10	2300	Roth and Sullivan (1981)	M	8
	1.3×10^{-4}	2000	Briner and Perrottet (1939)	M	O
	1.1×10^{-4}	2600	Chameides (1984)	T	
	1.0×10^{-6}	2000	Battino (1981)	X	5, 9
	1.2×10^{-4}		Perry and Chilton (1973)	X	10
	9.3×10^{-5}	2500	Seinfeld (1986)	?	7
	9.3×10^{-5}	2500	Hoffmann and Jacob (1984)	?	7
		Hydroge	, ,		
androgen etem	2.6×10^{-6}	11,41050	Sander et al. (2011)	L	
hydrogen atom H	2.6×10^{-6}		Sander et al. (2011) Sander et al. (2006)	L L	
[12385-13-6]	2.0 \ 10		<u> </u>		
hydrogen	7.8×10^{-6}	530	Fernández-Prini et al. (2003)	L	1
H_2	7.7×10^{-6}	490	Wilhelm et al. (1977)	L	
[1333-74-0]	7.9×10^{-6}	500	Winkler (1891a)	M	
	7.7×10^{-6}		Hine and Weimar Jr. (1965)	R	
	7.7×10^{-6}	490	Young (1981a)	X	3
	7.7×10^{-6}	500	Young (1981a)	X	5
	7.7×10^{-6}	640	Dean (1992)	?	6
leuterium D ₂	7.9×10^{-6}	780	Young (1981a)	X	5

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
hydroxyl radical	3.8×10^{-1}		Sander et al. (2011)	L	
ОН	3.8×10^{-1}		Sander et al. (2006)	L	
[3352-57-6]	2.9×10^{-1}	4300	Hanson et al. (1992)	T	
	3.2×10^{-1}		Mozurkewich (1986)	T	
	2.9×10^{-1}	3100	Berdnikov and Bazhin (1970)	T	11
	2.5×10^{-1}		Lelieveld and Crutzen (1991)	C	
	2.0		Lelieveld and Crutzen (1991)	C	
	8.9×10^{1}		Lelieveld and Crutzen (1991)	C	
	2.5×10^{-1}	5300	Jacob (1986)	C	12
nydroperoxy radical	6.8		Sander et al. (2011)	L	
HO_2	6.8		Sander et al. (2006)	L	
[3170-83-0]	5.7×10^{1}		Régimbal and Mozurkewich (1997)	R	
	3.8×10^{1}	5900	Hanson et al. (1992)	T	
	8.9×10^{1}		Weinstein-Lloyd and Schwartz (1991)	T	
	8.9×10^{1}		Chameides (1984)	T	
	1.2×10^{1}		Schwartz (1984)	T	13
	4.6×10^{1}	4800	Berdnikov and Bazhin (1970)	T	11
		6600	Jacob (1986)	E	14
nydrogen peroxide	9.1×10^2	6600	Warneck and Williams (2012)	L	
H_2O_2	8.3×10^{2}	7600	Sander et al. (2011)	L	
7722-84-1]	7.6×10^{2}	7300	Sander et al. (2006)	L	
-	9.8×10^{2}	6100	Fogg and Sangster (2003)	L	15
	1.1×10^{3}	7000	Huang and Chen (2010)	M	
	8.2×10^{2}	7400	O'Sullivan et al. (1996)	M	
	9.9×10^{2}	6300	Lind and Kok (1994)	M	16
			Staffelbach and Kok (1993)	M	17
	8.5×10^{2}	6500	Zhou and Lee (1992)	M	
	6.7×10^2	7900	Hwang and Dasgupta (1985)	M	
	1.4×10^{3}		Yoshizumi et al. (1984)	M	9
	9.6×10^{2}	6600	Chameides (1984)	T	
	7.0×10^2	7000	Martin and Damschen (1981)	T	
	6.4×10^{1}		Hilal et al. (2008)	Q	
	7.0×10^2	7300	Seinfeld (1986)	?	7
	7.0×10^2	7300	Hoffmann and Jacob (1984)	?	7
			Pandis and Seinfeld (1989)	W	18
		Nitrogei	n (N)		
nitrogen	6.4×10^{-6}	1600	Warneck and Williams (2012)	L	
N_2	6.4×10^{-6}	1300	Sander et al. (2011)	L	
[7727-37-9]	6.4×10^{-6}	1300	Sander et al. (2006)	L	
	6.5×10^{-6}	1200	Fernández-Prini et al. (2003)	L	1
	6.5×10^{-6}	1200	Battino et al. (1984)	L	
	6.4×10^{-6}	1300	Wilhelm et al. (1977)	L	
	5.4×10^{-6}		Steward et al. (1973)	L	19
	6.6×10^{-6}	1200	Rettich et al. (1984)	M	
	6.5×10^{-6}	1400	Winkler (1891b)	M	2
			()		
	6.5×10^{-6}	1200	Battino (1982)	X	5

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
ammonia	5.9×10^{-1}	4200	Sander et al. (2011)	L	
NH ₃	5.9×10^{-1}	4200	Sander et al. (2006)	L	
[7664-41-7]	5.8×10^{-1}	4400	Yoo et al. (1986)	L	
	6.0×10^{-1}	4200	Edwards et al. (1978)	L	
	1.0×10^{-1}	1500	Wilhelm et al. (1977)	L	
	2.8×10^{-1}	3200	Shi et al. (1999)	M	
	6.0×10^{-1}	4200	Clegg and Brimblecombe (1989)	M	
	5.5×10^{-1}	4100	Dasgupta and Dong (1986)	M	
	7.7×10^{-1}		Holzwarth et al. (1984)	M	
	7.4×10^{-1}	3700	Hales and Drewes (1979)	M	
	5.6×10^{-1}	4200	Dasgupta and Dong (1986)	T	
	5.7×10^{-1}	4100	Chameides (1984)	T	
	6.1×10^{-1}		Van Krevelen et al. (1949)	X	20
	2.7×10^{-1}	2100	Dean (1992)	?	6
	5.7×10^{-1}		Abraham et al. (1990)	?	
	6.1×10^{-1}	4100	Seinfeld (1986)	?	7
	5.8×10^{-1}	4100	Hoffmann and Jacob (1984)	?	7
	5.2×10^{-1}		Bone et al. (1983)	?	21
nydrazoic acid	1.2×10^{-1}	3800	Sander et al. (2011)	L	22
HN_3	9.8×10^{-2}	3100	Wilhelm et al. (1977)	L	
[7782-79-8]	1.2×10^{-1}	3700	Betterton and Robinson (1997)	M	
	9.9×10^{-2}		Templeton and King (1971)	M	23
hydrazine H ₄ N ₂ [302-01-2]	1.6×10^{1}		HSDB (2015)	V	
dinitrogen monoxide	2.4×10^{-4}	2700	Warneck and Williams (2012)	L	
N_2O	2.4×10^{-4}	2600	Sander et al. (2011)	L	
(nitrous oxide; laughing gas)	2.4×10^{-4}	2600	Sander et al. (2006)	L	
[10024-97-2]	2.4×10^{-4}	2600	Wilhelm et al. (1977)	L	
	1.8×10^{-4}		Steward et al. (1973)	L	19
	2.5×10^{-4}	2700	Weiss and Price (1980)	M	
	2.4×10^{-4}		Joosten and Danckwerts (1972)	M	
	2.4×10^{-4}	2500	Young (1981b)	X	3
	2.4×10^{-4}	2600	Young (1981b)	X	5, 24
		3600	Kühne et al. (2005)	Q	
		2700	Kühne et al. (2005)	?	
	2.4×10^{-4}	2800	Dean (1992)	?	6
	2.5×10^{-4}		Seinfeld (1986)	?	7
	2.5×10^{-4}		Liss and Slater (1974)	?	
nitrogen monoxide	1.9×10^{-5}	1600	Warneck and Williams (2012)	L	
NO	1.9×10^{-5}	1600	Sander et al. (2011)	L	25
nitric oxide)	1.9×10^{-5}	1600	Sander et al. (2006)	L	26
[10102-43-9]	1.9×10^{-5}	1500	Schwartz and White (1981)	L	
	1.3×10^{-5}		Zafiriou and McFarland (1980)	M	27
	2.3×10^{-5}		Komiyama and Inoue (1980)	M	28
	1.9×10^{-5}	1500	Komiyama and Inoue (1978)	M	
	1.9×10^{-5}	1600	Winkler (1901)		

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	$ \begin{array}{c} 1.9 \times 10^{-5} \\ 1.9 \times 10^{-5} \\ 1.9 \times 10^{-5} \end{array} $ $ \begin{array}{c} 1.9 \times 10^{-5} \\ 1.9 \times 10^{-5} \\ 1.9 \times 10^{-5} \end{array} $	1400 1400 1700 1500 1600 1700	Young (1981b) Young (1981b) Loomis (1928) Kühne et al. (2005) Kühne et al. (2005) Dean (1992) Seinfeld (1986) Andrew and Hanson (1961)	X X C Q ? ?	3, 29 5
nitrogen dioxide NO ₂ [10102-44-0]	9.9×10^{-5} 1.2×10^{-4} 1.4×10^{-4} 1.2×10^{-4} 1.4×10^{-5} 2.3×10^{-4} 1.2×10^{-4} 3.4×10^{-4} 9.9×10^{-5} 9.9×10^{-5} 4.0×10^{-4}	2400 2500 1800	Wilhelm et al. (1977) Warneck and Williams (2012) Sander et al. (2011) Sander et al. (2006) Schwartz and White (1981) Cheung et al. (2000) Lee and Schwartz (1981) Komiyama and Inoue (1980) Chameides (1984) Berdnikov and Bazhin (1970) Pandis and Seinfeld (1989) Seinfeld (1986) Andrew and Hanson (1961)	L L L M M M T T T ?	31 28 11 32 7
nitrogen trioxide NO ₃ (nitrate radical) [12033-49-7]	3.8×10^{-4} 3.8×10^{-4} 1.8×10^{-2} 5.9×10^{-3} 1.2×10^{-1} 3.4×10^{-4}	1900 2000	Sander et al. (2011) Sander et al. (2006) Thomas et al. (1998) Rudich et al. (1996) Chameides (1986) Berdnikov and Bazhin (1970) Jacob (1986) Seinfeld and Pandis (1998)	L L M M T T E	33 11 34 35
dinitrogen trioxide N_2O_3 [10544-73-7]	$5.9 \times 10^{-3} \\ 2.5 \times 10^{-1}$		Schwartz and White (1981) Komiyama and Inoue (1978)	L M	
dinitrogen tetroxide N ₂ O ₄ [10544-72-6]	1.4×10^{-2} 2.0×10^{-2} 1.6×10^{-2} 3.1×10^{-2} 1.3×10^{-2}	3500 1100	Schwartz and White (1981) Komiyama and Inoue (1980) Komiyama and Inoue (1978) Andrew and Hanson (1961) Kramers et al. (1961)	L M M M	28
dinitrogen pentoxide N ₂ O ₅ (nitric anhydride) [10102-03-1]	$\begin{array}{c} 2.1 \times 10^{-2} \\ \infty \\ \infty \end{array}$	3400	Fried et al. (1994) Sander and Crutzen (1996) Jacob (1986)	T E E	36 37 37
hydroxylamine H ₃ NO [7803-49-8]	1.4×10^3		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]		1) pe	1,000
nitrous acid	4.8×10^{-1}	4800	Schwartz and White (1981)	L	
HNO ₂	4.7×10^{-1}	4900	Becker et al. (1998)	M	
[7782-77-6]	4.7×10^{-1}	4900	Becker et al. (1996)	M	
	4.8×10^{-1}	4900	Park and Lee (1988)	M	
	3.7×10^{-1}	9000	Komiyama and Inoue (1978)	M	
	4.7×10^{-1}	4700	Martin (1984)	T	
	4.8×10^{-1}	4800	Chameides (1984)	T	
	4.8×10^{-1}		Seinfeld (1986)	?	7
nitric acid	8.8×10^2		Durham et al. (1981)	V	
HNO ₃	2.1×10^3	8700	Lelieveld and Crutzen (1991)	R	39
[7697-37-2]			Clegg and Brimblecombe (1990)	T	40
			Brimblecombe and Clegg (1989)	T	41
	<u>-</u>		Brimblecombe and Clegg (1988)	T	42
	2.6×10^4	8700	Chameides (1984)	T	
	2.1×10^3		Schwartz and White (1981)	T	40
	2.1×10^3		Pandis and Seinfeld (1989)	?	43
	2.1×10^3	0000	Seinfeld (1986)	?	7
	3.4×10^3	8800	Hoffmann and Jacob (1984)	?	7
pernitric acid	3.9×10^{-1}	8400	Leu and Zhang (1999)	L	
HNO ₄	3.9×10^{1}		Amels et al. (1996)	M	
[26404-66-0]	1.2×10^2	6900	Régimbal and Mozurkewich (1997)	T	
	1.4×10^2	_	Warneck (1999)	C	
	2.0×10^2	0	Jacob et al. (1989)	C E	44
			Möller and Mauersberger (1992)		44
		Fluorin	e (F)		
fluorine atom F	2.0×10^{-4}	400	Berdnikov and Bazhin (1970)	T	11
[14762-94-8]					
hydrogen fluoride	1.3×10^2		Fredenhagen and Wellmann (1932a)	M	
HF			Brimblecombe and Clegg (1989)	T	45
[7664-39-3]			Brimblecombe and Clegg (1988)	T	42
difluorine monoxide F ₂ O	2.9×10^{-5}		Kruis and May (1962)	С	
[7783-41-7]					
nitrogen trifluoride	7.9×10^{-6}	1900	Sander et al. (2011)	L	
NF ₃	7.9×10^{-6}	1900	Wilhelm et al. (1977)	L	
[7783-54-2]	8.2×10^{-6}	1900	Ashton et al. (1968)	M	
dinitrogen tetrafluoride	8.4×10^{-6}	2500	Sander et al. (2011)	L	
N_2F_4	8.4×10^{-6}	2500	Wilhelm et al. (1977)	L	
(tetrafluorohydrazine) [10036-47-2]					

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	${\rm d} \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]		Reference	Туре	Note
[CAS registry number]	$\left[\frac{m^3}{m^3}$ Pa $\right]$	[K]			
chlorine (molecular)	9.2×10^{-4}	2000	Sander et al. (2011)	L	
Cl_2	9.2×10^{-4}	2000	Sander et al. (2006)	L	
7782-50-5]	9.0×10^{-4}	2500	Wilhelm et al. (1977)	L	
	3.8×10^{-2}	3100	Martikainen et al. (1987)	M	46
	7.5×10^{-4}		Lin and Pehkonen (1998)	R	
	6.1×10^{-4}	3200	Brian et al. (1962)	R	
	6.1×10^{-4}	2800	Wagman et al. (1982)	T	
	9.3×10^{-4}	2100	Young (1983)	X	5
	9.1×10^{-4}		Bartlett and Margerum (1999)	?	7, 47
	9.2×10^{-4}	2300	Dean (1992)	?	6
			Kruis and May (1962)	?	48
chlorine atom	2.3×10^{-2}		Sander et al. (2011)	L	
Cl	2.3×10^{-2}		Sander et al. (2006)	L	
[22537-15-1]	2.0×10^{-3}		Mozurkewich (1986)	T	49
	1.5×10^{-4}	1500	Berdnikov and Bazhin (1970)	T	11
nydrogen chloride	1		Clegg and Brimblecombe (1986)	L	50
HCl	1.5×10^{1}		Chen et al. (1979)	R	
[7647-01-0]			Carslaw et al. (1995)	T	51
			Brimblecombe and Clegg (1989)	T	52
	2		Brimblecombe and Clegg (1988)	T	42
	1.1×10^{-2}	2300	Marsh and McElroy (1985)	T	
	1		Wagman et al. (1982)	T	53
	2.0×10^{-1}		Graedel and Goldberg (1983)	C	
	1		Seinfeld and Pandis (1998)	?	35
	1.9×10^{-1}	600	Dean (1992)	?	6
	2.5×10^{1}	2000	Seinfeld (1986)	?	7
	7.2	2000	Pandis and Seinfeld (1989)	W	54
nypochlorous acid	6.5	5900	Sander et al. (2011)	L	
HOCI	6.5	5900	Sander et al. (2006)	L	
[7790-92-3]	6.5	5900	Huthwelker et al. (1995)	L	
	9.1	1,000	Blatchley III et al. (1992)	M	9
	4.7	1600	Hanson and Ravishankara (1991)	M	55 56
	6.0	4900	Holzwarth et al. (1984) Wagman et al. (1982)	M T	56
	2.6 5.4	5100	Wagman et al. (1982) Hilal et al. (2008)	Q Q	
perchloric acid	9.9×10^{3}		Jaeglé et al. (1996)	Е	57
HClO ₄ [7601-90-3]					
monochlorine monoxide	7.0×10^{-3}		Sander et al. (2011)	L	
CIO [14989-30-1]	7.0×10^{-3}		Sander et al. (2006)	L	
dichlorine monoxide	1.7×10^{-1}	1800	Sander et al. (2011)	L	
Cl ₂ O	1.7×10^{-1}	1800	Sander et al. (2006)	L	
[7791-21-1]	1.7×10^{-1}	1800	Wilhelm et al. (1977)	L	
—— — <u>—</u>	1.7×10^{-1}	1700	Young (1983)	X	5

Table 6: Henry's law constants for water as solvent $(\dots continued)$

H^{cp}	$d \ln H^{cp}$			
(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
[mol]		Reference	1710	11000
$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
1.0×10^{-2}	3500	Sander et al. (2011)	L	
	3500	Sander et al. (2006)	L	
	3300	Wilhelm et al. (1977)	L	
	3300	Young (1983)	X	3
9.9×10^{-3}	3300	Young (1983)	X	5, 24
$>4.9 \times 10^{-4}$		Scheer et al. (1997)	M	
4.5×10^{-4}		Frenzel et al. (1998)	Е	
		Behnke et al. (1997)	E	58
3.9×10^{-4}		Roberts et al. (2008)	?	
∞		Sander and Crutzen (1996)	Е	37
8.6×10^{-1}	6000	Sander et al. (2011)	L	
	6000	Sander et al. (2006)	L	
9.2×10^{-1}	4800	Holzwarth et al. (1984)	M	
2.9×10^{-1}	4200	Sander et al. (2011)	L	
	4200	Sander et al. (2006)	L	
2.8×10^{-1}	4200	Holzwarth et al. (1984)	M	
9.9×10^{-4}	4100	Sander et al. (2011)	L	
	4100	Sander et al. (2006)	L	
9.9×10^{-4}	4100	Holzwarth et al. (1984)	M	
	Bromine	e (Br)		
7.2×10^{-3}	4400	Sander et al. (2011)	L	
7.2×10^{-3}	4400	Sander et al. (2006)	L	
1.8×10^{-2}	3600	Dubik et al. (1987)	M	59
6.8×10^{-3}		Hill et al. (1968)	M	
9.6×10^{-3}		Jenkins and King (1965)	M	9
7.0×10^{-3}	4100	Kelley and Tartar (1956)	M	
7.8×10^{-3}	3800	Winkler (1906)	M	
	3600	Winkler (1899)	M	
	4100	Fogg and Sangster (2003)	V	
		<u> </u>	R	
	4000			_
	4400			7, 47
7.5×10^{-3}	4100	Dean (1992)	?	6
1.2×10^{-2} 3.4×10^{-4}	1800	Mozurkewich (1986) Berdnikov and Bazhin (1970)	T T	49 11
	$(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^{3} \text{ Pa}}\right]$ 1.0×10^{-2} 9.9×10^{-3} $>4.9 \times 10^{-4}$ 4.5×10^{-4} 2.4×10^{-4} 3.9×10^{-4} 0.9×10^{-1} 2.9×10^{-4} 9.9×10^{-4} 9.9×10^{-4} 9.9×10^{-4} 9.9×10^{-3} 7.2×10^{-3} 7.0×10^{-3} 7.0×10^{-3} 7.9×10^{-3} 7.9×10^{-3} 7.9×10^{-3} 7.2×10^{-3} 7.6×10^{-3} 7.6×10^{-3} 7.6×10^{-3}	$(at T^{\ominus}) \qquad \frac{d \ln T}{d(1/T)}$ $\left[\frac{mol}{m^3 Pa}\right] \qquad [K]$ $1.0 \times 10^{-2} \qquad 3500$ $1.0 \times 10^{-2} \qquad 3500$ $1.0 \times 10^{-2} \qquad 3300$ $1.0 \times 10^{-2} \qquad 3300$ $9.9 \times 10^{-3} \qquad 3300$ $>4.9 \times 10^{-4}$ 4.5×10^{-4} 2.4×10^{-4} 3.9×10^{-4} 3.9×10^{-4} $2.9 \times 10^{-1} \qquad 4200$ $2.9 \times 10^{-4} \qquad 4100$ $9.9 \times 10^{-3} \qquad 4400$ $7.2 \times 10^{-3} \qquad 4400$ $1.8 \times 10^{-3} \qquad 3600$ 6.8×10^{-3} 9.6×10^{-3} $7.0 \times 10^{-3} \qquad 4100$ $7.8 \times 10^{-3} \qquad 3600$ $8.3 \times 10^{-3} \qquad 4100$ $7.9 \times 10^{-3} \qquad 3600$ $8.3 \times 10^{-3} \qquad 4100$ $7.9 \times 10^{-3} \qquad 3900$ $7.2 \times 10^{-3} \qquad 3900$ $7.2 \times 10^{-3} \qquad 4000$ $7.6 \times 10^{-3} \qquad 4000$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
hydrogen bromide HBr [10035-10-6]			Carslaw et al. (1995) Brimblecombe and Clegg (1989) Brimblecombe and Clegg (1988) Wagman et al. (1982) Chameides and Stelson (1992)	T T T T ?	60 61 42 62 63
	2.4×10^{-1}	370	Dean (1992)	?	6
hypobromous acid HOBr [13517-11-8]	>1.3 >1.3 $>1.9 \times 10^{1}$ 1.8×10^{-2} 6.0×10^{1} 9.1×10^{-1}	4000	Sander et al. (2011) Sander et al. (2006) Blatchley III et al. (1992) Mozurkewich (1995) Frenzel et al. (1998) Vogt et al. (1996) Fickert (1998)	L L M T E W	9 64
nitryl bromide BrNO ₂ [13536-70-4]	3.0×10^{-3}		Frenzel et al. (1998)	Е	
bromine nitrate BrNO ₃ [40423-14-1]	∞		Sander and Crutzen (1996)	Е	37
bromine chloride BrCl [13863-41-7]	9.7×10^{-3} 9.7×10^{-3} $< 6.2 \times 10^{-2}$ 1.5×10^{-2} 9.3×10^{-3} 4.2×10^{-2} 1.1×10^{-2} 5.8×10^{-3}	5600 5600 5600 4000	Sander et al. (2011) Sander et al. (2006) Katrib et al. (2001) Disselkamp et al. (1999) Bartlett and Margerum (1999) Dubik et al. (1987) this work Frenzel et al. (1998)	L L M M M T E	66 67 59 68
		Iodine	(I)		
iodine (molecular) I ₂ [7553-56-2]	2.8×10^{-2} 2.8×10^{-2} 3.0×10^{-2} 3.1×10^{-2} 3.2×10^{-2} 1.1×10^{-2}	4300 3900 4400 4600 4800	Eguchi et al. (1973) Fogg and Sangster (2003) Palmer et al. (1985) Berdnikov and Bazhin (1970) Wagman et al. (1982) Thompson and Zafiriou (1983)	M V R R T	69
iodine atom	7.9×10^{-4}		Mozurkewich (1986)	Т	70
I [14362-44-8]	6.2×10^{-5}	2300	Berdnikov and Bazhin (1970)	T	11
hydrogen iodide HI [10034-85-2]			Brimblecombe and Clegg (1989) Brimblecombe and Clegg (1988) Wagman et al. (1982)	T T T	71 42 72
hypoiodous acid HOI [14332-21-9]	>4.1		Palmer et al. (1985) Thompson and Zafiriou (1983)	C E	73

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
iodine chloride ICl [7790-99-0]	1.1		Wagman et al. (1982)	T	
iodine bromide IBr [7789-33-5]	2.4×10 ⁻¹		Wagman et al. (1982)	Т	
		Sulfur	(S)		
hydrogen sulfide	1.0×10^{-3}	2100	Sander et al. (2011)	L	
H ₂ S	1.0×10^{-3}	2100	Sander et al. (2006)	L	
[7783-06-4]	1.0×10^{-3}	2000	Fernández-Prini et al. (2003)	L	1
	1.0×10^{-3}	2200	Carroll and Mather (1989)	L	
	1.0×10^{-3}	2000	Yoo et al. (1986)	L	
	1.0×10^{-3}	2100	Edwards et al. (1978)	L	
	1.0×10^{-3}	2100	Wilhelm et al. (1977)	L	
	9.1×10^{-4}	1700	Rinker and Sandall (2000)	M	
	8.6×10^{-4}	2100	De Bruyn et al. (1995b)	M	
	1.1×10^{-3}	2300	Suleimenov and Krupp (1994)	M	
	9.4×10^{-4}	2300	Barrett et al. (1988)	M	
	1.0×10^{-3}	2100	Winkler (1906)	M	
	9.6×10^{-4}	2000	Iliuta and Larachi (2007)	R	
	1.0×10^{-3}		Hine and Weimar Jr. (1965)	R	
	1.0×10^{-3}	1900	Fogg and Young (1988)	X	5
	1.0×10^{-3}	2300	Dean (1992) Chapoy et al. (2005)	? W	6 74
sulfur dioxide	1.3×10 ⁻²	2900	Sander et al. (2011)	L	
SO_2	1.3×10^{-2}	2900	Sander et al. (2006)	L	
[7446-09-5]	1.2×10^{-2}	3100	Yoo et al. (1986)	L	
	1.2×10^{-2}	3200	Maahs (1982)	L	
	1.2×10^{-2}	3000	Edwards et al. (1978)	L	
	1.4×10^{-2}	2800	Wilhelm et al. (1977)	L	
	4.0×10^{-1}		St-Pierre et al. (2014)	M	75
	1.2×10^{-2}	3100	Johnstone and Leppla (1934)	M	
	1.1×10^{-2}	1400	Terraglio and Manganelli (1967)	V	
	1.2×10^{-2}	3100	Chameides (1984)	T	
	1.3×10^{-2}	2900	Young (1983)	X	5
	1.2×10^{-2}	3100	Pandis and Seinfeld (1989)	C	
	1.5×10^{-2}	2900	Dean (1992)	?	6
	1.2×10^{-2}	3100	Seinfeld (1986)	?	7
	1.2×10^{-2}	3100	Hoffmann and Jacob (1984)	?	7
sulfur trioxide SO ₃ [7446-11-9]	∞		Sander and Crutzen (1996)	Е	37

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]			1,100	1.010
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
sulfuric acid			Marti et al. (1997)	M	76
H_2SO_4			Ayers et al. (1980)	M	77
[7664-93-9]			Gmitro and Vermeulen (1964)	M	78
	12		Clegg et al. (1998)	V	79
	1.3×10^{13}	20000	Hoffmann and Calvert (1985)	T	
	2.9×10^7	10000	Ayers (1983)	T	
sulfur hexafluoride	2.4×10^{-6}	3100	Warneck and Williams (2012)	L	
SF ₆	2.5×10^{-6}	2100	Fernández-Prini et al. (2003)	L	1
[2551-62-4]	2.4×10^{-6}	2400	Wilhelm et al. (1977)	L	
	2.4×10^{-6}	2900	Bullister et al. (2002)	M	
	1.4×10^{-6}		Guitart et al. (1989)	M	19
	2.4×10^{-6}		Park et al. (1982)	M	
	2.6×10^{-6}	2400	Ashton et al. (1968)	M	
	2.2×10^{-6}		Giardino et al. (1988)	V	
		3200	Kühne et al. (2005)	Q	
		2800	Kühne et al. (2005)	?	
sulfuryl fluoride SO ₂ F ₂	8.9×10^{-5}	3100	Cady and Misra (1974)	M	
[2699-79-8]					
	Rare gases	(He, Ne,	Ar, Kr, Xe, Rn)		
helium	3.9×10^{-6}	15	Fernández-Prini et al. (2003)	L	1
He	3.8×10^{-6}	83	Abraham and Matteoli (1988)	L	
7440-59-7]	3.8×10^{-6}	92	Wilhelm et al. (1977)	L	
	3.9×10^{-6}	69	Krause Jr. and Benson (1989)	M	
	3.7×10^{-6}	360	Morrison and Johnstone (1954)	M	
	3.8×10^{-6}	83	Clever (1979a)	X	3, 80
	3.8×10^{-6}	120	Clever (1979a)	X	5, 81
	3.7×10^{-6}	440	Dean (1992)	?	6
	3.8×10^{-6}		Abraham et al. (1990)	?	
neon	4.5×10^{-6}	430	Fernández-Prini et al. (2003)	L	1
Ne	4.4×10^{-6}	470	Abraham and Matteoli (1988)	L	
7440-01-9]	4.4×10^{-6}	450	Wilhelm et al. (1977)	L	
	4.5×10^{-6}	440	Krause Jr. and Benson (1989)	M	
	4.4×10^{-6}	510	Crovetto et al. (1982)	M	
	4.5×10^{-6}	530	Morrison and Johnstone (1954)	M	
	7.5 \ 10				5
	4.5×10^{-6}	470	Clever (1979a)	X	
			Clever (1979a) Dean (1992)	X ?	6
	4.5×10^{-6}	470			
argon	$4.5 \times 10^{-6} $ $4.5 \times 10^{-6} $ $4.4 \times 10^{-6} $	470	Dean (1992)	?	
-	4.5×10^{-6} 4.5×10^{-6} 4.4×10^{-6} 1.4×10^{-5}	470 640 1700	Dean (1992) Abraham et al. (1990) Warneck and Williams (2012)	? ? L	6
Ar	4.5×10^{-6} 4.5×10^{-6} 4.4×10^{-6} 1.4×10^{-5} 1.4×10^{-5}	470 640 1700 1400	Dean (1992) Abraham et al. (1990) Warneck and Williams (2012) Fernández-Prini et al. (2003)	? ? L L	
Ar	4.5×10^{-6} 4.5×10^{-6} 4.4×10^{-6} 1.4×10^{-5} 1.4×10^{-5} 1.4×10^{-5}	470 640 1700 1400 1500	Dean (1992) Abraham et al. (1990) Warneck and Williams (2012) Fernández-Prini et al. (2003) Abraham and Matteoli (1988)	? ? L L L	6
Ar	4.5×10^{-6} 4.5×10^{-6} 4.4×10^{-6} 1.4×10^{-5}	470 640 1700 1400 1500 1500	Dean (1992) Abraham et al. (1990) Warneck and Williams (2012) Fernández-Prini et al. (2003) Abraham and Matteoli (1988) Wilhelm et al. (1977)	? ? L L L	6
Ar	4.5×10^{-6} 4.5×10^{-6} 4.4×10^{-6} 1.4×10^{-5}	470 640 1700 1400 1500 1500 1600	Dean (1992) Abraham et al. (1990) Warneck and Williams (2012) Fernández-Prini et al. (2003) Abraham and Matteoli (1988) Wilhelm et al. (1977) Rettich et al. (1992)	? ? L L L L	6
argon Ar (7440-37-1]	4.5×10^{-6} 4.5×10^{-6} 4.4×10^{-6} 1.4×10^{-5}	470 640 1700 1400 1500 1500	Dean (1992) Abraham et al. (1990) Warneck and Williams (2012) Fernández-Prini et al. (2003) Abraham and Matteoli (1988) Wilhelm et al. (1977)	? ? L L L	6

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{\ominus})	d(1/T)	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{mol}{m^3Pa}\right]$	[K]		71	
	1.4×10^{-5}	1400	Ashton et al. (1968)	M	
	1.4×10^{-5}	1100	Morrison and Johnstone (1954)	M	
	1.5×10^{-5}	1400	Winkler (1906)	M	
	1.4×10^{-5}	1500	Clever (1980)	X	3
	1.4×10^{-5}	1500	Clever (1980)	X	5
	1.4×10^{-5}	1700	Dean (1992)	?	6
	1.4×10^{-5}		Abraham et al. (1990)	?	
krypton	2.5×10^{-5}	1700	Fernández-Prini et al. (2003)	L	1
Kr	2.5×10^{-5}	1900	Abraham and Matteoli (1988)	L	
[7439-90-9]	2.5×10^{-5}	1900	Wilhelm et al. (1977)	L	
	2.0×10^{-5}		Steward et al. (1973)	L	19
	2.5×10^{-5}	1800	Krause Jr. and Benson (1989)	M	
	2.5×10^{-5}	1900	Crovetto et al. (1982)	M	
	2.4×10^{-5}	1500	Morrison and Johnstone (1954)	M	_
	2.5×10^{-5}	1900	Clever (1979b)	X	3
	2.5×10^{-5}	1900	Clever (1979b)	X	5
	2.5×10^{-5}	2100	Dean (1992)	?	6
	2.5×10^{-5}		Abraham et al. (1990)	?	
kenon	4.4×10^{-5}	2200	Fernández-Prini et al. (2003)	L	1
Xe	4.3×10^{-5}	2300	Abraham and Matteoli (1988)	L	
[7440-63-3]	4.2×10^{-5}	2200	Wilhelm et al. (1977)	L	
	3.3×10^{-5}		Steward et al. (1973)	L	19
	4.3×10^{-5}	2300	Krause Jr. and Benson (1989)	M	
	4.2×10^{-5}	2400	Crovetto et al. (1982)	M	
	4.3×10^{-5}	1900	Morrison and Johnstone (1954)	M	
	4.3×10^{-5}	2300	Clever (1979b)	X	5
	4.9×10^{-5}	2500	Dean (1992)	?	6
	4.3×10^{-5}		Abraham et al. (1990)	?	
radon	9.1×10^{-5}	2900	Abraham and Matteoli (1988)	L	
Rn	9.2×10^{-5}	2600	Wilhelm et al. (1977)	L	
[10043-92-2]	9.3×10^{-5}	2600	Clever (1979b)	X	3
	9.2×10^{-5}	2600	Lide and Frederikse (1995)	?	82
	8.3×10^{-5} 9.1×10^{-5}	3200	Dean (1992) Abraham et al. (1990)	?	6
	Other ele	ments (B	, Se, P, As, Hg)		
boric acid H ₃ BO ₃ [10043-35-3]	3.8×10^6		HSDB (2015)	V	
selenium hydride	8.3×10^{-4}	1900	Wilhelm et al. (1977)	L	
H_2Se	8.1×10^{-4}	1700	Fogg and Young (1988)	X	5
[7783-07-5]	-	-			
phosphorus trihydride	8.1×10^{-5}	2000	Wilhelm et al. (1977)	L	
PH ₃	5.9×10^{-5}	3000	Fu et al. (2013)	M	83
(phosphine)	5.57.10	3000	1 a 5 ai. (2015)	171	03
[7803-51-2]					

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Туре	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
rsenic hydride AsH3	8.8×10^{-5}	2100	Wilhelm et al. (1977)	L	
arsine) 7784-42-1]					
mercury	1.1×10^{-3}	4800	Clever et al. (1985)	L	
Hg	1.3×10^{-3}	2700	Andersson et al. (2008)	M	
7439-97-6]	1.3×10^{-3}	2500	Sanemasa (1975)	M	
	8.7×10^{-4}		Mackay and Leinonen (1975)	V	
	1.1×10^{-3}	5700	Glew and Hames (1971)	V	
	1.2×10^{-3}	2300	Clever (1987)	X	84
	1.2×10^{-3}		Shon et al. (2005)	C	
	1.4×10^{-3}		WHO (1990)	C	9
	1.4×10^{-3}		Schroeder and Munthe (1998)	?	9, 7
	1.3×10^{-3}	2700	Schroeder and Munthe (1998)	?	7
	1.3×10^{-3}		Petersen et al. (1998)	?	85
	9.2×10^{-4}		Brimblecombe (1986)	?	28
nercury(II) oxide	3.2×10^4		Shon et al. (2005)	?	86
HgO	2.7×10^{10}		Schroeder and Munthe (1998)	?	7
21908-53-2]	1.4×10^4		Petersen et al. (1998)	?	85
nercury dihydroxide	1.3×10^2	4200	WHO (1990)	C	
Hg(OH) ₂	1.3×10^2	4200	Lindqvist and Rodhe (1985)	С	
nercury dichloride	1.0×10^{3}		Severit (1997)	M	87
HgCl ₂	1.6×10^4		Abraham et al. (2008)	V	
7487-94-7]	4.2×10^4		Abraham et al. (2008)	V	
	1.3×10^4	7400	Kanefke (2008)	R	
	2.4×10^{5}		Shon et al. (2005)	C	
	1.4×10^4	5300	WHO (1990)	C	
	1.4×10^4	5300	Lindqvist and Rodhe (1985)	C	
	4.2×10^4	7400	Abraham et al. (2008)	Q	88
	2.7×10^4		Schroeder and Munthe (1998)	?	9, 7
	1.4×10^4	9500	Braun and Dransfeld (1989)	?	89
	6.3×10^2		Iverfeldt and Persson (1985)	?	90
nercury dibromide	1.2×10^3		Abraham et al. (2008)	V	
HgBr ₂	9.6×10^{2}	7400	Kanefke (2008)	C	
7789-47-1]	4.4×10^{3}	7100	Abraham et al. (2008)	Q	88
	2.7×10^4		Hedgecock et al. (2005)	?	91
	5.2×10 ¹		Iverfeldt and Persson (1985)	?	90
nercury diiodide	5.7×10 ¹		Abraham et al. (2008)	V	
HgI_2	2.0×10^{2}	6700	Abraham et al. (2008)	Q	88
7774-29-0]	1.9		Iverfeldt and Persson (1985)	?	90
	Hydı	rocarbo	ons (C, H)	-	
			<u> </u>		

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(\text{at } T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
methane	1.4×10^{-5}	1900	Warneck and Williams (2012)	L	
CH ₄	1.4×10^{-5}	1600	Sander et al. (2011)	L	
[74-82-8]	1.4×10^{-5}	1600	Sander et al. (2006)	L	
•	1.4×10^{-5}	1500	Fernández-Prini et al. (2003)	L	1
	1.4×10^{-5}	1600	Abraham and Matteoli (1988)	L	
	1.5×10^{-5}		Mackay and Shiu (1981)	L	
	1.4×10^{-5}	1700	Wilhelm et al. (1977)	L	
	1.2×10^{-5}	2400	Lekvam and Bishnoi (1997)	M	
	1.3×10^{-5}	1400	Reichl (1995)	M	
	1.2×10^{-5}		Guitart et al. (1989)	M	19
	1.4×10^{-5}	1600	Crovetto et al. (1982)	M	
	1.4×10^{-5}	1600	Rettich et al. (1981)	M	
	1.3×10^{-5}	1900	Winkler (1901)	M	
	1.5×10^{-5}		HSDB (2015)	V	
	1.5×10^{-5}		Meylan and Howard (1991)	V	
	1.5×10^{-5}		Hine and Mookerjee (1975)	V	
	9.2×10^{-5}		Butler and Ramchandani (1935)	V	
	1.4×10^{-5}		Hine and Weimar Jr. (1965)	R	
	1.4×10^{-5}	1600	Clever and Young (1987)	X	3
	1.4×10^{-5}	1600	Clever and Young (1987)	X	5, 24
	9.6×10^{-6}		Liss and Slater (1974)	C	
	1.3×10^{-5}		Deno and Berkheimer (1960)	C	
	2.5×10^{-5}	2200	Hilal et al. (2008)	Q	
	1.6×10^{-5}	2300	Kühne et al. (2005)	Q	
	1.6×10^{-5} 2.4×10^{-5}		Nirmalakhandan et al. (1997)	Q	
	2.4×10	1700	Meylan and Howard (1991) Kühne et al. (2005)	Q ?	
	1.6×10^{-5}	1700	Yaws (1999)	?	
	1.3×10^{-5}	1900	Dean (1992)	?	6
	1.5×10^{-5}	1700	Yaws and Yang (1992)	?	92
	1.4×10^{-5}		Abraham et al. (1990)	?)2
ethane	1.9×10^{-5}	2400	Sander et al. (2011)	L	
C_2H_6	1.9×10^{-5}	2400	Sander et al. (2006)	L	
74-84-0]	1.9×10^{-5}	2400	Fernández-Prini et al. (2003)	L	1
	1.9×10^{-5}	2300	Abraham and Matteoli (1988)	L	
	2.0×10^{-5}		Mackay and Shiu (1981)	L	
	1.8×10^{-5}	2400	Wilhelm et al. (1977)	L	
	2.0×10^{-5}	2200	Reichl (1995)	M	
	1.3×10^{-5}		Guitart et al. (1989)	M	19
	1.9×10^{-5}	2300	Rettich et al. (1981)	M	
	1.9×10^{-5}	2700	Winkler (1901)	M	
	2.0×10^{-5}		HSDB (2015)	V	
	2.0×10^{-5}		Hine and Mookerjee (1975)	V	
	1.0×10^{-4}		Butler and Ramchandani (1935)	V	
	1.9×10^{-5}	2300	Hayduk (1982)	X	3
	1.9×10^{-5}	2300	Hayduk (1982)	X	5
	$1.8 \times 10^{-5} \\ 2.0 \times 10^{-5}$		Deno and Berkheimer (1960) Hilal et al. (2008)	C	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	D.4	_	
(Other name(s))	[mol]	G (1/1)	Reference	Type	Note
[CAS registry number]	$\left\lfloor \frac{\text{mor}}{\text{m}^3 \text{Pa}} \right\rfloor$ [K]	[K]			
		2600	Kühne et al. (2005)	Q	
	2.2×10^{-5}		Nirmalakhandan and Speece (1988a)	Q	
	1.1×10^{-5}		Irmann (1965)	Q	
	_	2500	Kühne et al. (2005)	?	
	1.8×10^{-5}	2800	Dean (1992)	?	6
	2.0×10^{-5}		Yaws and Yang (1992)	?	92
	1.9×10^{-5}		Abraham et al. (1990)	?	
ropane	1.5×10^{-5}	2700	Sander et al. (2011)	L	
C_3H_8	1.5×10^{-5}	2700	Sander et al. (2006)	L	
74-98-6]	1.5×10^{-5}	2800	Abraham and Matteoli (1988)	L	
	1.4×10^{-5}		Mackay and Shiu (1981)	L	
	1.5×10^{-5}	2700	Wilhelm et al. (1977)	L	
	1.6×10^{-5}	2700	Chapoy et al. (2004)	M	
	1.5×10^{-5}	2700	Reichl (1995)	M	
	9.7×10^{-6}		Guitart et al. (1989)	M	19
	1.4×10^{-5}		HSDB (2015)	V	
	1.4×10^{-5}		Hine and Mookerjee (1975)	V	
	1.3×10^{-5}		Irmann (1965)	V	
	1.5×10^{-5}	2700	Hayduk (1986)	X	3, 93
	1.5×10^{-5}	2700	Hayduk (1986)	X	5
	1.4×10^{-5}		Deno and Berkheimer (1960)	C	
	1.4×10^{-5}		Hilal et al. (2008)	Q	
	£	2900	Kühne et al. (2005)	Q	
	1.6×10^{-5}		Nirmalakhandan and Speece (1988a)	Q	
	1.3×10^{-5}		Irmann (1965)	Q	
	5	2800	Kühne et al. (2005)	?	
	1.4×10^{-5}		Yaws and Yang (1992)	?	92
	1.5×10^{-5}		Abraham et al. (1990)	?	
utane	1.2×10^{-5}	3100	Sander et al. (2011)	L	94
C_4H_{10}	1.2×10^{-5}	3100	Sander et al. (2006)	L	95
106-97-8]	1.3×10^{-5}	3100	Abraham and Matteoli (1988)	L	
	1.0×10^{-5}		Mackay and Shiu (1981)	L	
	1.2×10^{-5}	3100	Wilhelm et al. (1977)	L	
	1.3×10^{-5}	2300	Carroll et al. (1997)	M	
	8.0×10^{-6}		Guitart et al. (1989)	M	19
	1.0×10^{-5}		HSDB (2015)	V	
	1.0×10^{-5}		Mackay et al. (2006a)	V	
	1.0×10^{-5}		Mackay et al. (1993)	V	
	9.6×10^{-6}		Hwang et al. (1992)	V	
	1.1×10^{-5}		Hine and Mookerjee (1975)	V	
	1.2×10^{-5}		Irmann (1965)	V	
	4.8×10^{-5}	2000	Butler and Ramchandani (1935)	V	2
	1.2×10^{-5}	3000	Hayduk (1986)	X	3
	1.2×10^{-5}	3100	Hayduk (1986)	X	5
	1.1×10^{-5}		Deno and Berkheimer (1960)	C	
	1.2×10^{-5}	2200	Hilal et al. (2008)	Q	
	1.2 10=5	3300	Kühne et al. (2005)	Q	
	1.2×10^{-5}		Nirmalakhandan and Speece (1988a)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\lceil \underline{\text{mol}} \rceil$	пи			
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
	1.2×10^{-5}		Irmann (1965)	Q	
		3300	Kühne et al. (2005)	?	
	1.1×10^{-5}		Yaws and Yang (1992)	?	92
	1.2×10^{-5}		Abraham et al. (1990)	?	
2-methylpropane	9.1×10^{-6}	2700	Sander et al. (2011)	L	96
$HC(CH_3)_3$	9.1×10^{-6}	2700	Sander et al. (2006)	L	97
(isobutane)	8.3×10^{-6}		Mackay and Shiu (1981)	L	
[75-28-5]	8.0×10^{-6}	2700	Wilhelm et al. (1977)	L	
	1.1×10^{-4}	5100	Mohebbi et al. (2012)	M	
	8.3×10^{-6}		HSDB (2015)	V	
	8.3×10^{-6}		Mackay et al. (2006a)	V	
	8.3×10^{-6}		Mackay et al. (1993)	V	
	8.4×10^{-6}		Hine and Mookerjee (1975)	V	
	9.7×10^{-6}		Irmann (1965)	V	
	2.7×10^{-5}	2400	Hayduk (1986)	X	3, 98
	9.2×10^{-6}	2700	Hayduk (1986)	X	5
	5.6×10^{-6}		Hilal et al. (2008)	Q	
	F	3300	Kühne et al. (2005)	Q	
	1.0×10^{-5}		Nirmalakhandan and Speece (1988a)	Q	
	1.1×10^{-5}		Irmann (1965)	Q	
		2900	Kühne et al. (2005)	?	
	8.5×10^{-6}		Yaws and Yang (1992)	?	92
	8.0×10^{-6}		Abraham et al. (1990)	?	
	7.9×10^{-6}		Abraham (1979)	?	
pentane	8.0×10^{-6}	3400	Abraham and Matteoli (1988)	L	
C_5H_{12}	8.0×10^{-6}		Mackay and Shiu (1981)	L	
[109-66-0]	1.1×10^{-5}	2300	Jou and Mather (2000)	M	99
	8.2×10^{-6}	3600	Jönsson et al. (1982)	M	
	7.8×10^{-6}		Rytting et al. (1978)	M	
	7.8×10^{-6}		Mackay et al. (2006a)	V	
	7.8×10^{-6}		Mackay et al. (1993)	V	
	8.3×10^{-6}		Eastcott et al. (1988)	V	
	7.8×10^{-6}		Amoore and Buttery (1978)	V	
	7.9×10^{-6}	2000	Hine and Mookerjee (1975)	V	100
	00 10-6	3000	Gill et al. (1976)	T	100
	9.9×10^{-6}	2600	Hilal et al. (2008)	Q	
	9.9×10^{-6}	3600	Kühne et al. (2005)	Q	
	9.9×10 °	4200	Nirmalakhandan and Speece (1988a)	Q ?	
	7.8×10^{-6}	4200	Kühne et al. (2005)	?	92
	8.0×10^{-6}		Yaws and Yang (1992) Abraham et al. (1990)	?	92
2-methylbutane	7.2×10^{-6}		Mackay and Shiu (1981)	L	
C_5H_{12}	7.0×10^{-6}		HSDB (2015)	V	
(isopentane)	7.2×10^{-6}		Mackay et al. (2006a)	V	
[78-78-4]	2.1×10^{-6}		Mackay et al. (1993)	V	
	7.2×10^{-6}		Eastcott et al. (1988)	V	
	7.2×10^{-6}		Cabani et al. (1981)	V	
	6.4×10^{-6}		Hilal et al. (2008)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	$8.4 \times 10^{-6} \\ 7.2 \times 10^{-6}$		Nirmalakhandan et al. (1997) Yaws and Yang (1992)	Q ?	92
dimethylpropane	2.7×10^{-6}		Mackay and Shiu (1981)	L	
$C(CH_3)_4$	5.9×10^{-6}	3300	Wilhelm et al. (1977)	L	
(neopentane)	2.7×10^{-6}		HSDB (2015)	V	
[463-82-1]	4.5×10^{-6}		Mackay et al. (2006a)	V	
	4.5×10^{-6}		Mackay et al. (1993)	V	
	4.5×10^{-6}		Hine and Mookerjee (1975)	V	
	2.5×10^{-6}		Hilal et al. (2008)	Q	
		3600	Kühne et al. (2005)	Q	
	6.2×10^{-6}		Nirmalakhandan and Speece (1988a)	Q	
	6	3100	Kühne et al. (2005)	?	
	4.7×10^{-6}		Yaws and Yang (1992)	?	92
	5.8×10^{-6}		Abraham et al. (1990)	?	
	5.9×10^{-6}		Abraham (1979)	?	
nexane	6.1×10^{-6}	3800	Abraham and Matteoli (1988)	L	
C_6H_{14}	5.9×10^{-6}		Mackay and Shiu (1981)	L	
110-54-3]	6.1×10^{-6}		Ryu and Park (1999)	M	
	7.4×10^{-6}		Park et al. (1997)	M	101
	2.4×10^{-4}	8700	Kolb et al. (1992)	M	102
	6.7×10^{-6}		Guitart et al. (1989)	M	19
	9.9×10^{-6}	7500	Ashworth et al. (1988)	M	103
	6.7×10^{-6}	4200	Tsonopoulos and Wilson (1983)	M	
	5.9×10^{-6}	4000	Jönsson et al. (1982)	M	
	5.4×10^{-6}		Rytting et al. (1978)	M	
	5.5×10^{-6}		HSDB (2015)	V	
	5.5×10^{-6}		Mackay et al. (2006a)	V	
	5.5×10^{-6}		Mackay et al. (1993)	V	
	5.5×10^{-6}		Hwang et al. (1992)	V	
	7.1×10^{-6}		Eastcott et al. (1988)	V	
	6.1×10^{-6}		Cabani et al. (1981)	V	
	5.4×10^{-6}		Hine and Mookerjee (1975)	V	
		3800	Gill et al. (1976)	T	100
	7.7×10^{-6}		Hilal et al. (2008)	Q	
		4000	Kühne et al. (2005)	Q	
	7.9×10^{-6}		Nirmalakhandan and Speece (1988a)	Q	
		4100	Kühne et al. (2005)	?	
	7.6×10^{-6}		Yaws and Yang (1992)	?	92
	6.1×10^{-6}		Abraham et al. (1990)	?	
2-methylpentane	5.9×10^{-6}		Mackay and Shiu (1981)	L	
C_6H_{14}	1.3×10^{-5}	960	Ashworth et al. (1988)	M	103
isohexane)	5.8×10^{-6}		HSDB (2015)	V	
[107-83-5]	5.7×10^{-6}		Mackay et al. (2006a)	V	
	5.7×10^{-6}		Mackay et al. (1993)	V	
	5.7×10^{-6}		Eastcott et al. (1988)	V	
	5.7×10^{-6}		Hine and Mookerjee (1975)	V	
	_		Staudinger and Roberts (1996)	R	104
	6.2×10^{-6}		Hilal et al. (2008)	C	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s))	$\lceil \underline{\text{mol}} \rceil$	[17]		• •	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
	4.8×10^{-6}		Hilal et al. (2008)	Q	
		4000	Kühne et al. (2005)	Q	
	6.7×10^{-6}		Nirmalakhandan and Speece (1988a)	Q	
	_	4000	Kühne et al. (2005)	?	
	5.7×10^{-6}		Yaws and Yang (1992)	?	92
3-methylpentane	5.8×10^{-6}		Mackay and Shiu (1981)	L	
C_6H_{14}	5.8×10^{-6}		HSDB (2015)	V	
[96-14-0]	5.9×10^{-6}		Mackay et al. (2006a)	V	
	5.9×10^{-6}		Mackay et al. (1993)	V	
	5.9×10^{-6}		Eastcott et al. (1988)	V	
	5.8×10^{-6}		Hine and Mookerjee (1975)	V	
	6.2×10^{-6}		Hilal et al. (2008)	Q	
		4000	Kühne et al. (2005)	Q	
	7.0×10^{-6}		Nirmalakhandan and Speece (1988a)	Q	
		4700	Kühne et al. (2005)	?	
	8.8×10^{-6}		Yaws and Yang (1992)	?	92
2,2-dimethylbutane	5.8×10^{-6}		Mackay and Shiu (1981)	L	
C_6H_{14}	5.8×10^{-6}		HSDB (2015)	V	
[75-83-2]	5.0×10^{-6}		Mackay et al. (2006a)	V	
	5.0×10^{-6}		Mackay et al. (1993)	V	
	5.8×10^{-6}		Eastcott et al. (1988)	V	
	5.1×10^{-6}		Hine and Mookerjee (1975)	V	
	3.4×10^{-6}		Hilal et al. (2008)	Q	
	5.3×10^{-6}		Nirmalakhandan and Speece (1988a)	Q	
	6.5×10^{-6}		Yaws and Yang (1992)	?	92
2,3-dimethylbutane	7.7×10^{-6}		Mackay and Shiu (1981)	L	
C_6H_{14}	8.2×10^{-6}		HSDB (2015)	V	
[79-29-8]	6.9×10^{-6}		Mackay et al. (2006a)	V	
	6.9×10^{-6}		Mackay et al. (1993)	V	
	7.1×10^{-6}		Eastcott et al. (1988)	V	
	5.3×10^{-6}		Hilal et al. (2008)	Q	
		4000	Kühne et al. (2005)	Q	
	5.8×10^{-6}		Nirmalakhandan et al. (1997)	Q	
		4200	Kühne et al. (2005)	?	
	7.6×10^{-6}		Yaws and Yang (1992)	?	92
neptane	4.4×10^{-6}	4100	Abraham and Matteoli (1988)	L	
C ₇ H ₁₆	4.3×10^{-6}		Mackay and Shiu (1981)	L	
[142-82-5]	4.5×10^{-6}		Ryu and Park (1999)	M	
	5.5×10^{-6}		Park et al. (1997)	M	101
	1.2×10^{-5}	3700	Hansen et al. (1993)	M	105
	6.0×10^{-6}		Guitart et al. (1989)	M	19
	4.2×10^{-6}	4700	Jönsson et al. (1982)	M	
	4.8×10^{-6}		Rytting et al. (1978)	M	
	5.5×10^{-6}		HSDB (2015)	V	
	4.8×10^{-6}		Mackay et al. (2006a)	V	
	4.8×10^{-6}		Mackay et al. (1993)	V	
	5.0×10^{-6}		Eastcott et al. (1988)	V	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp} (at T^{Θ})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} \ln H^{cp}}$			
Formula (Other name(s))	(at I °)	d(1/T)	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
	4.8×10^{-6}		Hine and Mookerjee (1975)	V	
	5.4×10^{-6}		Hilal et al. (2008)	Q	
	6	4300	Kühne et al. (2005)	Q	
	6.2×10^{-6}	4900	Nirmalakhandan and Speece (1988a) Kühne et al. (2005)	Q ?	
	3.6×10^{-6}	4300	Yaws and Yang (1992)	?	92
	4.4×10^{-6}		Abraham et al. (1990)	?)2
2-methylhexane	2.9×10^{-6}		Mackay and Shiu (1981)	L	
C ₇ H ₁₆	1.9×10^{-5}	-3600	Hansen et al. (1993)	M	105, 106
(isoheptane)	2.9×10^{-6}		Mackay et al. (2006a)	V	,
[591-76-4]	2.9×10^{-6}		Mackay et al. (1993)	V	
-	2.9×10^{-6}		Eastcott et al. (1988)	V	
	3.7×10^{-6}		Hilal et al. (2008)	Q	
	5.2×10^{-6}		Nirmalakhandan et al. (1997)	Q	
	2.9×10^{-6}		Yaws and Yang (1992)	?	92
3-methylhexane	4.2×10^{-6}		Mackay and Shiu (1981)	L	
C ₇ H ₁₆	4.0×10^{-6}		Mackay et al. (2006a)	V	
[589-34-4]	4.0×10^{-6}		Mackay et al. (1993)	V	
	3.2×10^{-6}		Eastcott et al. (1988)	V	
	4.5×10^{-6}		Hilal et al. (2008)	Q	
	5.3×10^{-6}		Nirmalakhandan et al. (1997)	Q	
	3.2×10^{-6}		Yaws and Yang (1992)	?	92
2,2-dimethylpentane	3.1×10^{-6}		Mackay and Shiu (1981)	L	
C_7H_{16}	3.1×10^{-6}		Mackay et al. (2006a)	V	
[590-35-2]	3.1×10^{-6}		Mackay et al. (1993)	V	
	3.1×10^{-6}		Eastcott et al. (1988)	V	
	2.5×10^{-6}		Hilal et al. (2008)	Q	
	4.1×10^{-6}		Nirmalakhandan et al. (1997)	Q	
	3.1×10^{-6}		Yaws and Yang (1992)	?	92
2,3-dimethylpentane	5.7×10^{-6}		Mackay and Shiu (1981)	L	
C ₇ H ₁₆	5.7×10^{-6}		Mackay et al. (1993)	V	
[565-59-3]	5.7×10^{-6}		Eastcott et al. (1988)	V	
	4.8×10^{-6}		Hilal et al. (2008)	Q	
	4.7×10^{-6} 5.7×10^{-6}		Nirmalakhandan et al. (1997) Yaws and Yang (1992)	Q ?	92
2.4.11				-	
2,4-dimethylpentane	3.3×10^{-6}		Mackay and Shiu (1981)	L	
C ₇ H ₁₆	3.1×10^{-6} 3.1×10^{-6}		Mackay et al. (2006a)	V	
[108-08-7]	3.1×10^{-6} 3.4×10^{-6}		Mackay et al. (1993)	V	
	3.4×10^{-6} 3.1×10^{-6}		Eastcott et al. (1988)	V	
	3.1×10^{-6} 2.2×10^{-6}		Hine and Mookerjee (1975)	V	
	4.5×10^{-6}		Hilal et al. (2008) Nirmalakhandan and Speece (1988a)	Q	
	3.3×10^{-6}		Yaws and Yang (1992)	Q ?	92
	3.3 × 10 *		Taws and Tang (1992)		94

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]			-J F -	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
3,3-dimethylpentane	5.4×10^{-6}		Mackay and Shiu (1981)	L	
C ₇ H ₁₆	5.4×10^{-6}		Mackay et al. (2006a)	V	
[562-49-2]	5.4×10^{-6}		Mackay et al. (1993)	V	
	5.4×10^{-6}		Eastcott et al. (1988)	V	
	4.0×10^{-6}		Hilal et al. (2008)	Q	
		4300	Kühne et al. (2005)	Q	
	4.4×10^{-6}		Nirmalakhandan et al. (1997)	Q	
		3000	Kühne et al. (2005)	?	
	5.3×10^{-6}		Yaws and Yang (1992)	?	92
3-ethylpentane	5.3×10^{-6}		Hilal et al. (2008)	Q	
C ₇ H ₁₆	3.9×10^{-6}		Yaws and Yang (1992)	?	92
[617-78-7]					
2,2,3-trimethylbutane	3.2×10^{-6}		Mackay et al. (2006a)	V	
C ₇ H ₁₆	3.2×10^{-6}		Mackay et al. (1993)	V	
[464-06-2]	3.3×10^{-6}		Hilal et al. (2008)	Q	
	4.1×10^{-6}		Yaws and Yang (1992)	?	92
octane	3.1×10^{-6}	4300	Abraham and Matteoli (1988)	L	
C ₈ H ₁₈	3.3×10^{-6}		Mackay and Shiu (1981)	L	
[111-65-9]	3.4×10^{-6}		Ryu and Park (1999)	M	
_	3.3×10^{-6}		Park et al. (1997)	M	101
	3.0×10^{-5}	8000	Hansen et al. (1993)	M	105
	3.1×10^{-6}	4100	Heidman et al. (1985)	M	
	2.9×10^{-6}	5400	Jönsson et al. (1982)	M	
	3.1×10^{-6}		Rytting et al. (1978)	M	
	3.1×10^{-6}		HSDB (2015)	V	
	8.6×10^{-7}		Abraham and Acree Jr. (2007)	V	
	3.2×10^{-6}		Mackay et al. (2006a)	V	
	3.8×10^{-6}	4800	Sarraute et al. (2004)	V	
	3.2×10^{-6}		Mackay et al. (1993)	V	
	3.0×10^{-6}		Hwang et al. (1992)	V	
	3.1×10^{-6}		Meylan and Howard (1991)	V	
	3.2×10^{-6}		Eastcott et al. (1988)	V	
	3.1×10^{-6}		Hine and Mookerjee (1975)	V	
	3.1×10^{-6}		Mackay and Leinonen (1975)	V	
	3.9×10^{-6}		Hilal et al. (2008)	Q	
		4700	Kühne et al. (2005)	Q	
	3.3×10^{-6}		Meylan and Howard (1991)	Q	
	5.0×10^{-6}		Nirmalakhandan and Speece (1988a)	Q	
	-	5400	Kühne et al. (2005)	?	
	2.0×10^{-6}		Yaws and Yang (1992)	?	92
	3.1×10^{-6}		Abraham et al. (1990)	?	
2-methylheptane	2.9×10^{-6}		Mackay et al. (2006a)	V	
C_8H_{18}	2.9×10^{-6}		Mackay et al. (1993)	V	
[592-27-8]	2.7×10^{-6}		Hilal et al. (2008)	Q	
	2.7×10^{-6}		Hoff et al. (1993)	?	7
	2.7×10^{-6}		Yaws and Yang (1992)	?	92

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
3-methylheptane	2.7×10^{-6}		Mackay and Shiu (1981)	L	
C_8H_{18}	2.7×10^{-6}		Eastcott et al. (1988)	V	
[589-81-1]	3.3×10^{-6}		Hilal et al. (2008)	Q	
	4.2×10^{-6}		Nirmalakhandan et al. (1997)	Q	
	2.7×10^{-6}		Yaws and Yang (1992)	?	92
l-methylheptane	3.0×10^{-6}		Hilal et al. (2008)	Q	
C ₈ H ₁₈ 589-53-7]	2.7×10^{-6}		Yaws and Yang (1992)	?	92
2,2-dimethylhexane	2.6×10^{-6}	5100	Dohányosová et al. (2004)	M	
C_8H_{18}	1.9×10^{-6}		Hilal et al. (2008)	Q	
590-73-8]		4700	Kühne et al. (2005)	Q	
		5100	Kühne et al. (2005)	?	
	2.9×10^{-6}		Yaws and Yang (1992)	?	92
2,3-dimethylhexane	3.4×10^{-6}		Hilal et al. (2008)	Q	
C ₈ H ₁₈ [584-94-1]	2.6×10^{-6}		Yaws and Yang (1992)	?	92
2,4-dimethylhexane	1.9×10^{-6}		Hilal et al. (2008)	Q	
C ₈ H ₁₈ [589-43-5]	2.8×10^{-6}		Yaws and Yang (1992)	?	92
2,5-dimethylhexane	2.7×10^{-6}	4700	Dohányosová et al. (2004)	M	
C_8H_{18}	1.7×10^{-6}		Hilal et al. (2008)	Q	
[592-13-2]		4700	Kühne et al. (2005)	Q	
	2.9×10^{-6}	4700	Kühne et al. (2005) Yaws and Yang (1992)	?	92
) <u></u>
3,3-dimethylhexane	2.9×10^{-6}		Hilal et al. (2008)	Q	02
C ₈ H ₁₈ 563-16-6]	2.6×10^{-6}		Yaws and Yang (1992)	?	92
3,4-dimethylhexane	3.8×10^{-6}		Hilal et al. (2008)	Q	
C ₈ H ₁₈ [583-48-2]	2.4×10^{-6}		Yaws and Yang (1992)	?	92
3-ethylhexane	3.7×10^{-6}		Hilal et al. (2008)	Q	
C ₈ H ₁₈ [619-99-8]	2.6×10^{-6}		Yaws and Yang (1992)	?	92
2,2,3-trimethylpentane	2.7×10^{-6}		Hilal et al. (2008)	Q	
C ₈ H ₁₈ [564-02-3]	2.6×10^{-6}		Yaws and Yang (1992)	?	92
2,2,4-trimethylpentane	3.0×10^{-6}		Mackay and Shiu (1981)	L	
C_8H_{18}	4.6×10^{-6}		Guitart et al. (1989)	M	19
isooctane)	3.3×10^{-6}		Mackay et al. (2006a)	V	
540-84-1]	3.3×10^{-6}		Mackay et al. (1993)	V	
	3.1×10^{-6}		Eastcott et al. (1988)	V	
	3.3×10^{-6}		Hine and Mookerjee (1975)	V	
	3.2×10^{-6}		Mackay and Leinonen (1975)	V	
	3.3×10^{-6}		Zhang et al. (2010)	Q	107, 10
	1.7×10^{-6}		Zhang et al. (2010)	Q	107, 10

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]		• •	
	2.2×10^{-5}		Zhang et al. (2010)	Q	107, 110
	1.6×10^{-5}		Zhang et al. (2010)	Q	107, 111
	1.2×10^{-6}		Hilal et al. (2008)	Q	
	6	4700	Kühne et al. (2005)	Q	
	2.9×10^{-6}	4000	Nirmalakhandan and Speece (1988a)	Q	
	2.9×10^{-6}	4000	Kühne et al. (2005) Yaws and Yang (1992)	? ?	92
2,3,3-trimethylpentane	3.6×10^{-6}		Hilal et al. (2008)	Q	
C ₈ H ₁₈	2.4×10^{-6}		Yaws and Yang (1992)	?	92
[560-21-4]					
2,3,4-trimethylpentane	5.3×10^{-6}		Mackay and Shiu (1981)	L	
C_8H_{18}	_		Mackay et al. (2006a)	V	112
[565-75-3]	4.9×10^{-6}		Mackay et al. (1993)	V	
	5.6×10^{-6}		Eastcott et al. (1988)	V	
	3.1×10^{-6}	4=00	Hilal et al. (2008)	Q	
	2.2 10-6	4700	Kühne et al. (2005)	Q	
	3.2×10^{-6}	4000	Nirmalakhandan et al. (1997)	Q	
	5.6×10^{-6}	4900	Kühne et al. (2005) Yaws and Yang (1992)	? ?	92
3-ethyl-2-methylpentane	3.6×10^{-6}		Hilal et al. (2008)	Q	
C ₈ H ₁₈ [609-26-7]	2.6×10^{-6}		Yaws and Yang (1992)	?	92
3-ethyl-3-methylpentane	4.5×10^{-6}		Hilal et al. (2008)	Q	
C ₈ H ₁₈ [1067-08-9]	2.3×10^{-6}		Yaws and Yang (1992)	?	92
2,2,3,3-tetramethylbutane	3.4×10^{-6}		Hilal et al. (2008)	Q	
C ₈ H ₁₈ [594-82-1]	2.6×10^{-6}		Yaws and Yang (1992)	?	92
nonane	2.0×10^{-6}		Mackay and Shiu (1981)	L	
C_9H_{20}	2.2×10^{-6}		Ryu and Park (1999)	M	
[111-84-2]	1.9×10^{-6}		Park et al. (1997)	M	101
	2.3×10^{-5}	200	Ashworth et al. (1988)	M	103
	1.8×10^{-6}	7300	Jönsson et al. (1982)	M	
	2.9×10^{-6}		HSDB (2015)	V	
	3.0×10^{-6}		Mackay et al. (2006a)	V	
	3.0×10^{-6}		Mackay et al. (1993)	V	
	1.7×10^{-6}		Eastcott et al. (1988)	V	
	2.0×10^{-6} 3.0×10^{-6}		Abraham (1984)	V	
	5.0×10 °	5000	Hilal et al. (2008) Kühne et al. (2005)	Q	
	3.8×10^{-6}	5000	Nirmalakhandan et al. (1997)	Q Q	
	J.0 X 10	4100	Kühne et al. (2005)	?	
	1.7×10^{-6}		Yaws and Yang (1992)	?	92
2-methyloctane	1.9×10^{-6}		Hilal et al. (2008)	Q	
C ₉ H ₂₀ [3221-61-2]	2.1×10^{-6}		Yaws and Yang (1992)	?	92

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
3-methyloctane C ₉ H ₂₀ [2216-33-3]	$2.4 \times 10^{-6} \\ 1.9 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
4-methyloctane C ₉ H ₂₀ [2216-34-4]	$ \begin{array}{r} 1.0 \times 10^{-6} \\ 9.9 \times 10^{-7} \\ 2.3 \times 10^{-6} \\ 9.9 \times 10^{-7} \end{array} $		Mackay and Shiu (1981) Eastcott et al. (1988) Hilal et al. (2008) Yaws and Yang (1992)	L V Q ?	92
2,3-dimethylheptane C ₉ H ₂₀ [3074-71-3]	$2.4 \times 10^{-6} \\ 1.9 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
2,2-dimethylheptane C ₉ H ₂₀ [1071-26-7]	$1.4 \times 10^{-6} \\ 2.1 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
2,4-dimethylheptane C ₉ H ₂₀ [2213-23-2]	$1.4 \times 10^{-6} \\ 2.1 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
2,5-dimethylheptane C ₉ H ₂₀ [2216-30-0]	$1.5 \times 10^{-6} \\ 2.0 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
2,6-dimethylheptane C ₉ H ₂₀ [1072-05-5]	$1.2 \times 10^{-6} \\ 2.1 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
3,3-dimethylheptane C ₉ H ₂₀ [4032-86-4]	$2.3 \times 10^{-6} \\ 1.9 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
3,4-dimethylheptane C ₉ H ₂₀ [922-28-1]	2.6×10^{-6} 1.8×10^{-6}		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
3,5-dimethylheptane C ₉ H ₂₀ [926-82-9]	$1.5 \times 10^{-6} \\ 2.0 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
4,4-dimethylheptane C ₉ H ₂₀ [1068-19-5]	$2.1 \times 10^{-6} \\ 1.9 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
3-ethylheptane C ₉ H ₂₀ [15869-80-4]	$2.6 \times 10^{-6} \\ 1.9 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
4-ethylheptane C ₉ H ₂₀ [2216-32-2]	$2.5 \times 10^{-6} \\ 1.9 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$			
(Other name(s))		u(1/1)	Reference	Type	Note
[CAS registry number]	$\left\lfloor \frac{\text{mol}}{\text{m}^3 \text{Pa}} \right\rfloor$	[K]			
2,2,3-trimethylhexane	1.9×10^{-6}		Hilal et al. (2008)	Q	
C ₉ H ₂₀ 16747-25-4]	1.9×10^{-6}		Yaws and Yang (1992)	?	92
2,2,4-trimethylhexane	1.1×10^{-6}		Hilal et al. (2008)	Q	
C ₉ H ₂₀ [16747-26-5]	2.1×10^{-6}		Yaws and Yang (1992)	?	92
2,2,5-trimethylhexane	2.9×10^{-6}		Mackay and Shiu (1981)	L	
C_9H_{20}	4.1×10^{-6}		Mackay et al. (2006a)	V	
[3522-94-9]	4.1×10^{-6}		Mackay et al. (1993)	V	
	4.1×10^{-6}		Cabani et al. (1981)	V	
	9.0×10^{-7}		Hilal et al. (2008)	Q	
	2.2×10^{-6}		Nirmalakhandan et al. (1997)	Q	
	1.9×10^{-6}		Yaws and Yang (1992)	?	92
2,3,3-trimethylhexane	2.4×10^{-6}		Hilal et al. (2008)	Q	
C ₉ H ₂₀ [16747-28-7]	1.7×10^{-6}		Yaws and Yang (1992)	?	92
2,3,4-trimethylhexane	2.6×10^{-6}		Hilal et al. (2008)	Q	
C ₉ H ₂₀ 921-47-1]	1.8×10^{-6}		Yaws and Yang (1992)	?	92
2,3,5-trimethylhexane	1.4×10^{-6}		Hilal et al. (2008)	Q	
C ₉ H ₂₀ 1069-53-0]	2.0×10^{-6}		Yaws and Yang (1992)	?	92
2,4,4-trimethylhexane	1.4×10^{-6}		Hilal et al. (2008)	Q	
C ₉ H ₂₀ [16747-30-1]	1.9×10^{-6}		Yaws and Yang (1992)	?	92
3,3,4-trimethylhexane	2.9×10^{-6}		Hilal et al. (2008)	Q	
C ₉ H ₂₀ [16747-31-2]	1.7×10^{-6}		Yaws and Yang (1992)	?	92
3-ethyl-2-methylhexane	2.3×10^{-6}		Hilal et al. (2008)	Q	
C ₉ H ₂₀ [16789-46-1]	1.9×10^{-6}		Yaws and Yang (1992)	?	92
4-ethyl-2-methylhexane	1.5×10^{-6}	<u> </u>	Hilal et al. (2008)	Q	
C ₉ H ₂₀ 3074-75-7]	2.0×10^{-6}		Yaws and Yang (1992)	?	92
3-ethyl-3-methylhexane	3.2×10^{-6}		Hilal et al. (2008)	Q	
C ₉ H ₂₀ 3074-76-8]	1.7×10^{-6}		Yaws and Yang (1992)	?	92
B-ethyl-4-methylhexane	3.1×10^{-6}		Hilal et al. (2008)	Q	
C ₉ H ₂₀ [3074-77-9]	1.8×10^{-6}		Yaws and Yang (1992)	?	92
2,2,3,3-tetramethylpentane	3.6×10^{-6}		Hilal et al. (2008)	Q	
C ₉ H ₂₀ 7154-79-2]	1.6×10^{-6}		Yaws and Yang (1992)	?	92

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula Other pame(a)	(at T^{Θ})	d(1/T)	Reference	Type	Note
Other name(s)) CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
2,2,3,4-tetramethylpentane	1.9×10^{-6}		Hilal et al. (2008)	Q	
C ₉ H ₂₀ [1186-53-4]	1.7×10^{-6}		Yaws and Yang (1992)	?	92
2,2,4,4-tetramethylpentane	9.0×10^{-7}		Hilal et al. (2008)	Q	
C ₉ H ₂₀ [1070-87-7]	1.9×10^{-6}		Yaws and Yang (1992)	?	92
2,3,3,4-tetramethylpentane	2.7×10^{-6}		Hilal et al. (2008)	Q	
C ₉ H ₂₀ [16747-38-9]	1.6×10^{-6}		Yaws and Yang (1992)	?	92
3-ethyl-2,2-dimethylpentane	1.9×10^{-6}		Hilal et al. (2008)	Q	
C ₉ H ₂₀ [16747-32-3]	1.8×10^{-6}		Yaws and Yang (1992)	?	92
3-ethyl-2,3-dimethylpentane	3.5×10^{-6}		Hilal et al. (2008)	Q	
C ₉ H ₂₀ [16747-33-4]	1.5×10^{-6}		Yaws and Yang (1992)	?	92
3-ethyl-2,4-dimethylpentane	1.9×10^{-6}		Hilal et al. (2008)	Q	
C ₉ H ₂₀ [1068-87-7]	1.8×10^{-6}		Yaws and Yang (1992)	?	92
3,3-diethylpentane		4900	Abraham and Nasehzadeh (1981)	R	
C_9H_{20}	4.1×10^{-6}		Hilal et al. (2008)	Q	
[1067-20-5]	1.5×10^{-6}		Yaws and Yang (1992)	?	92
	9.5×10^{-6} 9.4×10^{-6}		Abraham et al. (1990) Abraham (1979)	? ?	
decane	1.4×10^{-6}		Mackay and Shiu (1981)	L	
$C_{10}H_{22}$	1.9×10^{-6}		HSDB (2015)	V	
[124-18-5]	2.1×10^{-6}		Mackay et al. (2006a)	V	
	2.1×10^{-6}		Mackay et al. (1993)	V	
	2.0×10^{-6}		Hwang et al. (1992)	V	
	2.3×10^{-6}		Eastcott et al. (1988)	V	
	1.9×10^{-6}		Abraham (1984)	V	
	2.2×10^{-6}		Hilal et al. (2008)	Q	
	2.9×10^{-6} 2.1×10^{-6}		Nirmalakhandan et al. (1997) Yaws and Yang (1992)	Q ?	92
2-methylnonane	1.5×10^{-6}		Hilal et al. (2008)	Q	
2-inetrymonane C ₁₀ H ₂₂ [871-83-0]	1.7×10^{-6}		Yaws and Yang (1992)	?	92
3-methylnonane	1.7×10^{-6}		Hilal et al. (2008)	Q	
C ₁₀ H ₂₂ [5911-04-6]	1.7×10^{-6}		Yaws and Yang (1992)	?	92
4-methylnonane	1.6×10^{-6}		Hilal et al. (2008)	Q	
C ₁₀ H ₂₂ [17301-94-9]	1.6×10^{-6}		Yaws and Yang (1992)	?	92

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{\ominus})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]			- J PC	0.0
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
5-methylnonane	1.7×10^{-6}		Hilal et al. (2008)	Q	
$C_{10}H_{22}$	1.6×10^{-6}		Yaws and Yang (1992)	?	92
[15869-85-9]					
2,2-dimethyloctane	1.3×10^{-6}		Hilal et al. (2008)	Q	
C ₁₀ H ₂₂ [15869-87-1]	1.7×10^{-6}		Yaws and Yang (1992)	?	92
2,3-dimethyloctane	1.7×10^{-6}		Hilal et al. (2008)	Q	
C ₁₀ H ₂₂	1.7×10^{-6} 1.5×10^{-6}		Yaws and Yang (1992)	?	92
C ₁₀ n ₂₂ [7146-60-3]	1.5 × 10		Tuwo and Tang (1772)	·	12
2,4-dimethyloctane	1.2×10^{-6}		Hilal et al. (2008)	Q	
C ₁₀ H ₂₂	1.7×10^{-6}		Yaws and Yang (1992)	?	92
[4032-94-4]					
2,5-dimethyloctane	1.3×10^{-6}		Hilal et al. (2008)	Q	
C ₁₀ H ₂₂ [15869-89-3]	1.6×10^{-6}		Yaws and Yang (1992)	?	92
2,6-dimethyloctane	1.2×10^{-6}		Hilal et al. (2008)	Q	
$C_{10}H_{22}$	1.6×10^{-6}		Yaws and Yang (1992)	?	92
[2051-30-1]			<u> </u>		
2,7-dimethyloctane	1.0×10^{-6}		Hilal et al. (2008)	Q	
$C_{10}H_{22}$	1.7×10^{-6}		Yaws and Yang (1992)	?	92
[1072-16-8]					
3,3-dimethyloctane	1.7×10^{-6}		Hilal et al. (2008)	Q	
$C_{10}H_{22}$	1.5×10^{-6}		Yaws and Yang (1992)	?	92
[4110-44-5]					
3,4-dimethyloctane	2.0×10^{-6}		Hilal et al. (2008)	Q	
C ₁₀ H ₂₂	1.5×10^{-6}		Yaws and Yang (1992)	?	92
[15869-92-8]					
3,5-dimethyloctane	1.4×10^{-6}		Hilal et al. (2008)	Q	
C ₁₀ H ₂₂ [15869-93-9]	1.6×10^{-6}		Yaws and Yang (1992)	?	92
			TTILL 1 (2007)		
3,6-dimethyloctane	1.3×10^{-6}		Hilal et al. (2008)	Q	0.2
C ₁₀ H ₂₂ [15869-94-0]	1.6×10^{-6}		Yaws and Yang (1992)	?	92
4,4-dimethyloctane	1.5×10^{-6}		Hilal et al. (2008)	Q	
$C_{10}H_{22}$	1.5×10^{-6}		Yaws and Yang (1992)	?	92
[15869-95-1]					
4,5-dimethyloctane	2.1×10^{-6}		Hilal et al. (2008)	Q	
C ₁₀ H ₂₂ [15869-96-2]	1.5×10^{-6}		Yaws and Yang (1992)	?	92
3-ethyloctane	2.2×10^{-6}		Hilal et al. (2008)	Q	
$C_{10}H_{22}$	1.6×10^{-6}		Yaws and Yang (1992)	?	92
[5881-17-4]	•		·· 6 (· · -/	-	

Table 6: Henry's law constants for water as solvent (...continued)

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Туре	Note
(Other name(s)) [CAS registry number]	$\lceil \underline{\text{mol}} \rceil$	[K]		71	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
4-ethyloctane	2.4×10^{-6}		Hilal et al. (2008)	Q	
$C_{10}H_{22}$	1.6×10^{-6}		Yaws and Yang (1992)	?	92
[15869-86-0]					
2,2,3-trimethylheptane	1.6×10^{-6}		Hilal et al. (2008)	Q	
$C_{10}H_{22}$	1.4×10^{-6}		Yaws and Yang (1992)	?	92
[52896-92-1]					
2,2,4-trimethylheptane	1.6×10^{-6}		Yaws and Yang (1992)	?	92
$C_{10}H_{22}$			• · · · · · · · · · · · · · · · · · · ·		
[14720-74-2]					
2,2,5-trimethylheptane	1.6×10^{-6}		Yaws and Yang (1992)	?	92
$C_{10}H_{22}$					
[20291-95-6]					
2,2,6-trimethylheptane	1.7×10^{-6}		Yaws and Yang (1992)	?	92
$C_{10}H_{22}$					
[1190-83-6]					
2,3,3-trimethylheptane	1.6×10^{-6}		Hilal et al. (2008)	Q	
$C_{10}H_{22}$	1.4×10^{-6}		Yaws and Yang (1992)	?	92
[52896-93-2]					
2,3,4-trimethylheptane	1.6×10^{-6}		Hilal et al. (2008)	Q	
$C_{10}H_{22}$	1.4×10^{-6}		Yaws and Yang (1992)	?	92
[52896-95-4]			-		
2,3,5-trimethylheptane	1.1×10^{-6}		Hilal et al. (2008)	Q	
$C_{10}H_{22}$	1.4×10^{-6}		Yaws and Yang (1992)	?	92
[20278-85-7]					
2,3,6-trimethylheptane	1.1×10^{-6}		Hilal et al. (2008)	Q	
C ₁₀ H ₂₂	1.6×10^{-6}		Yaws and Yang (1992)	?	92
[4032-93-3]					
2,4,4-trimethylheptane	1.1×10^{-6}		Hilal et al. (2008)	Q	
C ₁₀ H ₂₂	1.5×10^{-6}		Yaws and Yang (1992)	?	92
[4032-92-2]				-	
2,4,5-trimethylheptane	1.1×10^{-6}		Hilal et al. (2008)	Q	
C ₁₀ H ₂₂	1.5×10^{-6}		Yaws and Yang (1992)	?	92
[20278-84-6]	1.0 / 10		(1/2)	•	-
2,4,6-trimethylheptane	7.5×10^{-7}		Hilal et al. (2008)	Q	
C ₁₀ H ₂₂	1.8×10^{-6}		Yaws and Yang (1992)	?	92
[2613-61-8]	1.010		(1/2)	•	
2,5,5-trimethylheptane	1.1×10^{-6}		Hilal et al. (2008)	Q	
C ₁₀ H ₂₂	1.1×10^{-6} 1.5×10^{-6}		Yaws and Yang (1992)	?	92
[1189-99-7]	1.5/10		14 0 and 14 (1//2)	•	72
	1.9×10^{-6}		Hilal et al. (2008)		
3,3,4-trimethylheptane C ₁₀ H ₂₂	1.9×10^{-6} 1.3×10^{-6}		Yaws and Yang (1992)	Q ?	92
(20278-87-9]	1.3 × 10		raws and rang (1992)	4	14

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
3,3,5-trimethylheptane C ₁₀ H ₂₂ [7154-80-5]	$1.2 \times 10^{-6} \\ 1.4 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
3,4,4-trimethylheptane C ₁₀ H ₂₂ [20278-88-0]	$1.9 \times 10^{-6} \\ 1.3 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
3,4,5-trimethylheptane C ₁₀ H ₂₂ [20278-89-1]	$2.3 \times 10^{-6} \\ 1.4 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
8-ethyl-2-methylheptane C ₁₀ H ₂₂ [14676-29-0]	$2.0 \times 10^{-6} \\ 1.5 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
4-ethyl-2-methylheptane C ₁₀ H ₂₂ 52896-88-5]	$1.4 \times 10^{-6} \\ 1.6 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
5-ethyl-2-methylheptane $\mathbb{C}_{10}H_{22}$ 13475-78-0]	$1.4 \times 10^{-6} \\ 1.6 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
B-ethyl-3-methylheptane C ₁₀ H ₂₂ [17302-01-1]	$2.2 \times 10^{-6} \\ 1.4 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
-ethyl-3-methylheptane C ₁₀ H ₂₂ 52896-89-6]	$2.2 \times 10^{-6} \\ 1.4 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
-ethyl-5-methylheptane C ₁₀ H ₂₂ 52896-90-9]	$1.3 \times 10^{-6} \\ 1.6 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
-ethyl-4-methylheptane C ₁₀ H ₂₂ 52896-91-0]	$2.2 \times 10^{-6} \\ 1.4 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
-ethyl-4-methylheptane C ₁₀ H ₂₂ 17302-04-4]	$2.4 \times 10^{-6} \\ 1.4 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
-propylheptane C ₁₀ H ₂₂ 3178-29-8]	$1.6 \times 10^{-6} \\ 1.7 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
-(1-methylethyl)-heptane C ₁₀ H ₂₂ 4-isopropylheptane) 52896-87-4]	2.1×10^{-6} 1.5×10^{-6}		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
,2,3,3-tetramethylhexane C ₁₀ H ₂₂ 13475-81-5]	$1.8 \times 10^{-6} \\ 1.2 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
$\overline{ 2,2,3,4\text{-tetramethylhexane} } $ $C_{10}H_{22}$ [52897-08-2]	$1.2 \times 10^{-6} \\ 1.2 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
2,2,3,5-tetramethylhexane C ₁₀ H ₂₂ [52897-09-3]	$8.4 \times 10^{-7} \\ 1.6 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
2,2,4,4-tetramethylhexane C ₁₀ H ₂₂ [51750-65-3]	$8.8 \times 10^{-7} \\ 1.1 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
2,2,4,5-tetramethylhexane C ₁₀ H ₂₂ [16747-42-5]	$8.0 \times 10^{-7} \\ 1.5 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
2,2,5,5-tetramethylhexane C ₁₀ H ₂₂ [1071-81-4]	$4.6 \times 10^{-7} \\ 1.8 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
2,3,3,4-tetramethylhexane C ₁₀ H ₂₂ [52897-10-6]	$1.4 \times 10^{-6} \\ 1.2 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
2,3,3,5-tetramethylhexane C ₁₀ H ₂₂ [52897-11-7]	$9.2 \times 10^{-7} \\ 1.4 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
2,3,4,4-tetramethylhexane C ₁₀ H ₂₂ [52897-12-8]	$1.3 \times 10^{-6} \\ 1.2 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
2,3,4,5-tetramethylhexane C ₁₀ H ₂₂ [52897-15-1]	$1.2 \times 10^{-6} \\ 1.4 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
3,3,4,4-tetramethylhexane C ₁₀ H ₂₂ [5171-84-6]	$2.2 \times 10^{-6} \\ 1.0 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
3-ethyl-2,2-dimethylhexane C ₁₀ H ₂₂ [20291-91-2]	1.8×10^{-6} 1.8×10^{-6} 1.4×10^{-6}		Hilal et al. (2008) Hilal et al. (2008) Yaws and Yang (1992)	Q Q ?	92
4-ethyl-2,2-dimethylhexane C ₁₀ H ₂₂ [52896-99-8]	$1.1 \times 10^{-6} \\ 1.6 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
3-ethyl-2,3-dimethylhexane C ₁₀ H ₂₂ [52897-00-4]	$2.0 \times 10^{-6} \\ 1.3 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
4-ethyl-2,3-dimethylhexane C ₁₀ H ₂₂ [52897-01-5]	$1.6 \times 10^{-6} \\ 1.4 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$d \ln H^{cp}$			
Formula (Other name(s)) [CAS registry number]	$ \left[\frac{\text{mol}}{\text{m}^3 \text{Pa}} \right] $	$ \overline{d(1/T)} $ [K]	Reference	Туре	Note
3-ethyl-2,4-dimethylhexane C ₁₀ H ₂₂ [7220-26-0]	$1.6 \times 10^{-6} \\ 1.4 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
4-ethyl-2,4-dimethylhexane C ₁₀ H ₂₂ 52897-03-7]	$1.3 \times 10^{-6} \\ 1.3 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
B-ethyl-2,5-dimethylhexane $C_{10}H_{22}$ 52897-04-8]	$1.1 \times 10^{-6} \\ 1.5 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
F-ethyl-3,3-dimethylhexane $C_{10}H_{22}$ 52897-05-9]	$1.9 \times 10^{-6} \\ 1.3 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
B-ethyl-3,4-dimethylhexane C ₁₀ H ₂₂ 52897-06-0]	$2.2 \times 10^{-6} \\ 1.3 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
3,3-diethylhexane C ₁₀ H ₂₂ 17302-02-2]	$3.4 \times 10^{-6} \\ 1.3 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
3,4-diethylhexane C ₁₀ H ₂₂ 19398-77-7]	$1.8 \times 10^{-6} \\ 1.4 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
2-methyl-3-(1-methylethyl)-hexane $C_{10}H_{22}$ 3-isopropyl-2-methylhexane) 62016-13-1]	$1.5 \times 10^{-6} \\ 1.1 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
2,2,3,3,4-pentamethylpentane C ₁₀ H ₂₂ 16747-44-7]	$1.3 \times 10^{-6} \\ 1.0 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
2,2,3,4,4-pentamethylpentane C ₁₀ H ₂₂ 16747-45-8]	$8.6 \times 10^{-7} \\ 1.0 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
5-ethyl-2,2,3-trimethylpentane C ₁₀ H ₂₂ 52897-17-3]	$2.1 \times 10^{-6} \\ 1.0 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
-ethyl-2,2,4-trimethylpentane C ₁₀ H ₂₂ 52897-18-4]	$1.2 \times 10^{-6} \\ 1.3 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
-ethyl-2,3,4-trimethylpentane C ₁₀ H ₂₂ 52897-19-5]	$1.5 \times 10^{-6} \\ 1.1 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
3,3-diethyl-2-methylpentane $\mathbb{C}_{10}H_{22}$ 52897-16-2]	$2.3 \times 10^{-6} \\ 1.1 \times 10^{-6}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,4-dimethyl-3-(1-methylethyl)-	1.0×10^{-6}		Hilal et al. (2008)	Q	
pentane $C_{10}H_{22}$ (2,4-dimethyl-3-isopropylpentane) [13475-79-1]	1.3×10^{-6}		Yaws and Yang (1992)	?	92
undecane	5.4×10^{-7}		Mackay and Shiu (1981)	L	
$C_{11}H_{24}$	5.2×10^{-6}		HSDB (2015)	V	
[1120-21-4]	4.9×10^{-7}		Mackay et al. (2006a)	V	
	5.4×10^{-6}		Eastcott et al. (1988)	V	
	4.9×10^{-7}		Abraham (1984)	V	
	1.5×10^{-6}		Hilal et al. (2008)	Q	
	5.4×10^{-6}		Yaws and Yang (1992)	?	92
dodecane	1.3×10^{-6}		Mackay and Shiu (1981)	L	
$C_{12}H_{26}$	1.2×10^{-6}		HSDB (2015)	V	
[112-40-3]	1.2×10^{-6}		Mackay et al. (2006a)	V	
	1.3×10^{-6}		Eastcott et al. (1988)	V	
	1.2×10^{-6}		Abraham (1984)	V	
	1.1×10^{-6}		Hilal et al. (2008)	Q	
	1.4×10^{-6}		Yaws and Yang (1992)	?	92
2,2,4,6,6-pentamethylheptane	1.1×10^{-6}		Zhang et al. (2010)	Q	107, 108
$C_{12}H_{26}$	2.3×10^{-7}		Zhang et al. (2010)	Q	107, 109
[13475-82-6]	2.4×10^{-5}		Zhang et al. (2010)	Q	107, 110
	5.1×10^{-6}		Zhang et al. (2010)	Q	107, 111
tridecane	7.9×10^{-7}		Hilal et al. (2008)	Q	
C ₁₃ H ₂₈ [629-50-5]	4.3×10^{-6}		Yaws and Yang (1992)	?	92
tetradecane	1.1×10^{-6}		HSDB (2015)	V	
$C_{14}H_{30}$	2.6×10^{-6}		Eastcott et al. (1988)	V	
[629-59-4]	7.4×10^{-6}		Abraham (1984)	V	
	5.6×10^{-7}		Hilal et al. (2008)	Q	
	8.7×10^{-6}		Yaws and Yang (1992)	?	92
pentadecane	7.6×10^{-7}		HSDB (2015)	V	
$C_{15}H_{32}$	4.0×10^{-7}		Hilal et al. (2008)	Q	
[629-62-9]	2.1×10^{-5}		Yaws and Yang (1992)	?	92
hexadecane	2.6×10^{-6}		Eastcott et al. (1988)	V	
$C_{16}H_{34}$	2.7×10^{-5}		Abraham (1984)	V	
[544-76-3]	2.9×10^{-7}		Hilal et al. (2008)	Q	
	4.3×10^{-5}		Yaws and Yang (1992)	?	92
heptadecane	2.2×10^{-7}		Hilal et al. (2008)	Q	
C ₁₇ H ₃₆	1.8×10^{-4}		Yaws and Yang (1992)	?	92
[629-78-7]					

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
octadecane C ₁₈ H ₃₈ [593-45-3]	$ \begin{array}{r} 1.6 \times 10^{-6} \\ 7.8 \times 10^{-4} \\ 1.5 \times 10^{-7} \\ 1.1 \times 10^{-3} \end{array} $		Eastcott et al. (1988) Abraham (1984) Hilal et al. (2008) Yaws and Yang (1992)	V V Q ?	92
nonadecane C ₁₉ H ₄₀ [629-92-5]	$1.3 \times 10^{-7} \\ 3.4 \times 10^{-3}$		Hilal et al. (2008) Yaws and Yang (1992)	Q ?	92
eicosane C ₂₀ H ₄₂ [112-95-8]	5.0×10^{-6} 1.4×10^{-2} 9.7×10^{-8} 3.0×10^{-2}		Eastcott et al. (1988) Abraham (1984) Hilal et al. (2008) Yaws and Yang (1992)	V V Q ?	92
heneicosane C ₂₁ H ₄₄ [629-94-7]	7.3×10^{-8}		Hilal et al. (2008)	Q	
docosane C ₂₂ H ₄₆ [629-97-0]	5.4×10^{-8}		Hilal et al. (2008)	Q	
tricosane C ₂₃ H ₄₈ [638-67-5]	4.1×10^{-8}		Hilal et al. (2008)	Q	
tetracosane C ₂₄ H ₅₀ [646-31-1]	3.1×10^{-8}		Hilal et al. (2008)	Q	
pentacosane C ₂₅ H ₅₂ [629-99-2]	1.5×10 ⁻⁸		Hilal et al. (2008)	Q	
hexacosane C ₂₆ H ₅₄ [630-01-3]	5.0×10^{-5} 1.3×10^{2} 1.1×10^{-8}		Eastcott et al. (1988) Abraham (1984) Hilal et al. (2008)	V V Q	
heptacosane C ₂₇ H ₅₆ [593-49-7]	7.7×10^{-9}		Hilal et al. (2008)	Q	
octacosane C ₂₈ H ₅₈ [630-02-4]	5.6×10^{-9}		Hilal et al. (2008)	Q	
nonacosane C ₂₉ H ₆₀ [630-03-5]	4.0×10^{-9}		Hilal et al. (2008)	Q	
triacontane C ₃₀ H ₆₂ [638-68-6]	2.9×10^{-9}		Hilal et al. (2008)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	dln H ^{cp}			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]		Reference	Турс	Note
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
otriacontane	1.5×10^{-9}		Hilal et al. (2008)	Q	
$C_{32}H_{66}$					
544-85-4]					
pentatriacontane	5.8×10^{-10}		Hilal et al. (2008)	Q	
$C_{35}H_{72}$					
630-07-9]					
exatriacontane	8.6×10 ⁸		Abraham (1984)	V	
C ₃₆ H ₇₄					
630-06-8]					
ctatriacontane	2.2×10 ⁻¹⁰		Hilal et al. (2008)	Q	
$C_{38}H_{78}$					
7194-85-6]					
		Cycloall	canes		
cyclopropane	1.1×10^{-4}	1600	Wilhelm et al. (1977)	L	
C ₃ H ₆	8.1×10^{-5}		Steward et al. (1973)	L	19
75-19-4]	7.8×10^{-5}		Guitart et al. (1989)	M	19
	1.2×10^{-5}		HSDB (2015)	V	
	1.3×10^{-4}		Irmann (1965)	V	
	1.4×10^{-4}		Hilal et al. (2008)	Q	
	_	2500	Kühne et al. (2005)	Q	
	9.0×10^{-5}		Nirmalakhandan et al. (1997)	Q	
	4	2200	Kühne et al. (2005)	?	
	1.3×10^{-4}		Yaws and Yang (1992)	?	92, 113
	1.1×10^{-4}		Abraham et al. (1990)	?	
yclobutane	7.0×10^{-5}		HSDB (2015)	Q	38
C_4H_8					
287-23-0]					
yclopentane	5.4×10^{-5}		Mackay and Shiu (1981)	L	
C_5H_{10}	6.5×10^{-5}	3400	Hansen et al. (1993)	M	105
287-92-3]	5.6×10^{-5}		Mackay et al. (2006a)	V	
	5.2×10^{-5}		Mackay et al. (1993)	V	
	5.5×10^{-5}		Hwang et al. (1992)	V	
	5.4×10^{-5}		Eastcott et al. (1988)	V	
	5.3×10^{-5}		Hine and Mookerjee (1975)	V	
	5.2×10^{-5}		HSDB (2015)	Q	38
	1.1×10^{-4}		Hilal et al. (2008)	Q	
	-	3200	Kühne et al. (2005)	Q	
	5.7×10^{-5}		Nirmalakhandan and Speece (1988a)	Q	
		4300	Kühne et al. (2005)	?	
	5.2×10^{-5}		Yaws and Yang (1992)	?	92
	5.3×10^{-5}		Abraham et al. (1990)	?	
	5.3×10^{-5}		Abraham (1979)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Formula (Other name(s)) [CAS registry number] $\begin{bmatrix} mol \\ m^3 Pa \end{bmatrix} & [K] \\ [K] \\ [CAS registry number] & \begin{bmatrix} mol \\ m^3 Pa \end{bmatrix} & [K] \\ [K] \\ [Name of Mackay and Shiu (1981) \\ [As 2,210^{-4}] & 5400 & Hiatt (2013) \\ [As 2,210^{-5}] & 8.0 \times 10^{-5} & Helburn et al. (2008) \\ [As 2,210^{-5}] & 5.2 \times 10^{-5} & 4500 & Helburn et al. (1999) \\ [As 3,2 \times 10^{-5}] & 5.2 \times 10^{-5} & 4500 & Hansen et al. (1993) \\ [As 3,2 \times 10^{-5}] & 3800 & Kolb et al. (1992) \\ [As 3,2 \times 10^{-5}] & 3200 & Ashworth et al. (1988) \\ [As 3,2 \times 10^{-5}] & 3200 & Ashworth et al. (1988) \\ [As 4,210^{-5}] & 3200 & Ashworth et al. (1988) \\ [As 4,210^{-5}] & 3200 & Ashworth et al. (1988) \\ [As 4,210^{-5}] & 3200 & Ashworth et al. (1981) \\ [As 3,2 \times 10^{-5}] & 3800 & Tucker et al. (1981) \\ [As 3,2 \times 10^{-5}] & Mackay et al. (1993) \\ [As 4,10^{-5}] & Mackay et al. (1993) \\ [As 4,10^{-5}] & Hine and Mookerjee (1975) \\ [As 4,10^{-5}] & Hine and Mookerjee (1988) \\ [As 4,10^{-5}] & Hine and Mookerjee (1975) \\ [As 4,10^{-5}] & Hine and Mookerjee (1$		
CAS registry number	Type	Note
26H ₁₂ 3.2×10 ⁻⁴ 5400 Hiatt (2013) [110-82-7] 8.0×10 ⁻⁵ Helburn et al. (2008) 5.2×10 ⁻⁵ 4500 Dewulf et al. (1999) 6.0×10 ⁻⁵ Hansen et al. (1993) 5.4×10 ⁻⁵ 3800 Kolb et al. (1992) 3.4×10 ⁻⁵ 3200 Ashworth et al. (1988) 5.5×10 ⁻⁵ 3400 Tsonopoulos and Wilson (1983) 5.4×10 ⁻⁵ 3800 Tucker et al. (1981) 5.3×10 ⁻⁵ Mackay et al. (2006a) 5.1×10 ⁻⁵ Mackay et al. (1993) 6.0×10 ⁻⁵ Hwang et al. (1993) 6.0×10 ⁻⁵ Hwang et al. (1993) 6.0×10 ⁻⁵ Hilal et al. (2008) 5.1×10 ⁻⁵ Hilal et al. (2008) 6.2×10 ⁻⁵ 710 Goldstein (1982) 9.5×10 ⁻⁵ Hilal et al. (2005) 5.1×10 ⁻⁵ Abraham et al. (1990) 5.1×10 ⁻⁵ Abraham (1979) 6.2×10 ⁻⁵ Abraham (1979) 6.2×10 ⁻⁵ Hilal et al. (2006a) 6.1×10 ⁻⁵ Abraham (1979) 6.2×10 ⁻⁵ Hilal et al. (2008) 6.0×10 ⁻⁵ Abraham (1979) 6.0×10 ⁻⁵ Hilal et al. (2008) 6.0×10 ⁻⁵ Abraham (1979) 6.0×10 ⁻⁵ Handen (1982) 6.0×10 ⁻⁵ Hilal et al. (2008) 6.0×10 ⁻⁵ Hilal et al. (2008) 6.0×10 ⁻⁵ Hilal et al. (2008) 6.0×10 ⁻⁵ Handen (1993) 6.0×10 ⁻⁵ Handen (1993) 6.0×10 ⁻⁵ Hilal et al. (2008) 6.0×10 ⁻⁵ Hilal et al. (1981) 6.0×10 ⁻⁵ Hilal et al. (1981) 6.0×10 ⁻⁵ Hilal et al. (2008) 6.0×10 ⁻⁵ Hilal et al. (2005) 6.0×10		
110-82-7 8.0×10 ⁻⁵ Helburn et al. (2008)	L	
5.2×10 ⁻⁵ 4500 Dewulf et al. (1999)	M	
6.0×10 ⁻⁵ Hansen et al. (1993)	M	
5.4×10 ⁻⁵ 3800 Kolb et al. (1992) 3.4×10 ⁻⁵ 3400 Subworth et al. (1988) 5.5×10 ⁻⁵ 3400 Tsonopoulos and Wilson (1983) 5.4×10 ⁻⁵ 3800 Tucker et al. (1981) 5.3×10 ⁻⁵ Mackay et al. (2006a) 5.1×10 ⁻⁵ Mackay et al. (1992) 5.4×10 ⁻⁵ Hwang et al. (1992) 5.4×10 ⁻⁵ Eastcott et al. (1988) 6.2×10 ⁻⁵ Tio Goldstein (1982) 9.5×10 ⁻⁵ Hila et al. (2008) 4.5×10 ⁻⁵ Si. 10 ⁻⁵ Abraham et al. (1990) 5.1×10 ⁻⁵ Abraham et al. (2005) 5.1×10 ⁻⁵ Abraham (1979) cycloheptane 8.2×10 ⁻⁵ Hila et al. (2006a) 6.7+14 1.0×10 ⁻⁴ Mackay et al. (1993) 6.9+16-5 Tio Goldstein (1982) 7.1×10 ⁻⁵ Abraham et al. (1990) 8.2×10 ⁻⁵ Abraham (1979) 9.5×10 ⁻⁵ Hila et al. (2006a) 1.1×10 ⁻⁴ Cabani et al. (1993) 1.1×10 ⁻⁴ Cabani et al. (1993) 1.1×10 ⁻⁴ Tio Goldstein (1982) 1.1×10 ⁻⁴ Cabani et al. (1993) 1.1×10 ⁻⁴ Cabani et al. (1993) 1.1×10 ⁻⁴ Tio Goldstein (1982) 1.1×10 ⁻⁵ Hila et al. (2006a) 1.1×10 ⁻⁵ Hila et al. (2008) 1.1×10 ⁻⁵ Hila et al. (2008) 1.1×10 ⁻⁵ Mackay et al. (1993) 1.1×10 ⁻⁵ Tio Goldstein (1982) 1.1×10 ⁻⁵	M	114
3.4×10 ⁻⁵ Guitart et al. (1989)	M	115
5.5×10 ⁻⁵ 3200 Ashworth et al. (1988) 5.4×10 ⁻⁵ 3400 Tsonopoulos and Wilson (1983) 5.4×10 ⁻⁵ 3800 Tucker et al. (1981) 5.3×10 ⁻⁵ Mackay et al. (2006a) 5.1×10 ⁻⁵ Mackay et al. (1993) 6.0×10 ⁻⁵ Hwang et al. (1992) 5.4×10 ⁻⁵ Eastcott et al. (1988) 5.1×10 ⁻⁵ Hine and Mookerjee (1975) 6.2×10 ⁻⁵ 710 Goldstein (1982) 9.5×10 ⁻⁵ Hilal et al. (2008) 3600 Kühne et al. (2008) 3700 Kühne et al. (2005) 5.1×10 ⁻⁵ Abraham et al. (1990) 5.1×10 ⁻⁵ Abraham et al. (1990) 5.1×10 ⁻⁵ Abraham et al. (1990) 5.1×10 ⁻⁵ Abraham et al. (1993) 291-64-5] 1.1×10 ⁻⁴ Mackay et al. (1993) 225-64-8] 9.3×10 ⁻⁵ Hilal et al. (2008) 4300 Mackay et al. (2004) 4300 Mackay et al. (2004) 4300 Mackay et al. (2005) 5.1×10 ⁻⁵ Hilal et al. (2008) 6.9×10 ⁻⁵ Hilal et al. (2008) 6.9×10 ⁻⁵ Mackay et al. (2004) 6.9×10 ⁻⁵ Mackay et al. (2006a) 6.9×10 ⁻⁵ Mackay et al. (2008) 6.9×10 ⁻⁵ Mackay et al. (2008) 6.9×10 ⁻⁵ Mackay et al. (2005) 6.9×10 ⁻⁵ Mackay et al. (2005) 7.5×10 ⁻⁵ Hilal et al. (2008) 6.9×10 ⁻⁵ Mackay et al. (2005) 7.5×10 ⁻⁵ Hilal et al. (2008) 6.9×10 ⁻⁵ Mackay et al. (2005) 7.5×10 ⁻⁵ Hilal et al. (2008) 6.9×10 ⁻⁵ Mackay et al. (2005) 7.5×10 ⁻⁵ Hilal et al. (2005) 7.5×10 ⁻⁵ Mackay et al. (2005)	M	102
5.4×10 ⁻⁵ 3400 Tsonopoulos and Wilson (1983)	M	19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M	103
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M V	
6.0×10 ⁻⁵ Hwang et al. (1992)	V	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V	
6.2×10 ⁻⁵ 710 Goldstein (1982) 9.5×10 ⁻⁵ Hilal et al. (2008) 3600 Kühne et al. (2005) 4.5×10 ⁻⁵ Nirmalakhandan and Speece (1988) 3900 Kühne et al. (2005) 5.1×10 ⁻⁵ Yaws and Yang (1992) 5.1×10 ⁻⁵ Abraham et al. (1990) 5.1×10 ⁻⁵ Abraham (1979) Excloheptane 8.2×10 ⁻⁵ Mackay et al. (2006a) 6.7H ₁₄ 1.0×10 ⁻⁴ Mackay et al. (1993) 2.5×10 ⁻⁵ HSDB (2015) 5.1×10 ⁻⁵ HBDB (2015) 5.1×10 ⁻⁵ Hilal et al. (2008) 1.6×10 ⁻³ Hoff et al. (1993) 1.1×10 ⁻⁴ Yaws and Yang (1992) Exclooctane 7.1×10 ⁻⁵ 5000 Dohányosová et al. (2004) 6.9×10 ⁻⁵ Mackay et al. (2006a) 7.5×10 ⁻⁵ Cabani et al. (1993) 9.5×10 ⁻⁵ Cabani et al. (1993) 9.5×10 ⁻⁵ Cabani et al. (2008) Hilal et al. (2006) Mackay et al. (2006a) Mackay et al. (2006b) Hilal et al. (2006b) Kühne et al. (2005) Kühne et al. (2005) Kühne et al. (2005) Hoff et al. (1993) 9.5×10 ⁻⁵ Yaws and Yang (1992)	Ť	100
9.5×10 ⁻⁵ 3600 Kühne et al. (2008) 4.5×10 ⁻⁵ Nirmalakhandan and Speece (1988) Kühne et al. (2005) Nirmalakhandan and Speece (1988) Kühne et al. (2005) 5.1×10 ⁻⁵ Shraham et al. (1990) 5.1×10 ⁻⁵ Abraham (1979) Eycloheptane 8.2×10 ⁻⁵ Mackay et al. (2006a) Mackay et al. (1993) Cabani et al. (1981) 1.1×10 ⁻⁴ Cabani et al. (1981) 1.5×10 ⁻⁵ Hilal et al. (2008) Hoff et al. (1993) 1.1×10 ⁻⁴ Yaws and Yang (1992) Eyclooctane 7.1×10 ⁻⁵ Soun Dohányosová et al. (2004) Mackay et al. (2006a) Mackay et al. (2008) Hoff et al. (1993) 1.1×10 ⁻⁵ Mackay et al. (2006a) Mackay et al. (2006b) Mackay et al. (2008) Mackay et al. (2005) Mackay et al. (2006) Mackay et al. (2006) Mackay et al. (2006) Mackay et al. (2008) Mackay et al. (2006) Mackay et al. (2008) Mackay et al.	X	116
4.5×10 ⁻⁵ Nirmalakhandan and Speece (1988: 3900 Kühne et al. (2005)	Q	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$?	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$?	92
Exploheptane 8.2×10^{-5} Mackay et al. (2006a) C_7H_{14} 1.0×10^{-4} Mackay et al. (1993) $(291\text{-}64\text{-}5]$ 1.1×10^{-4} Cabani et al. (1981) $(291\text{-}64\text{-}5]$ HSDB (2015) Hilal et al. (2008) $(291\text{-}64-$?	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$?	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q	38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$?	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$?	92
[292-64-8] $\begin{array}{cccccccccccccccccccccccccccccccccccc$	M	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q	
9.8×10 ⁻⁵ Hoff et al. (1993) 9.5×10 ⁻⁵ Yaws and Yang (1992) methylcyclopentane 2.7×10^{-5} Mackay and Shiu (1981)	Q	
9.5×10 ⁻⁵ Yaws and Yang (1992) methylcyclopentane 2.7×10^{-5} Mackay and Shiu (1981)	?	7
methylcyclopentane 2.7×10^{-5} Mackay and Shiu (1981)	?	92
	-	
2.7×10^{-3} HSDR (2015)	L	
	V	
[96-37-7] 2.8×10^{-5} Mackay et al. (2006a)	V	
2.7×10^{-5} Mackay et al. (1993)	V	
2.7×10^{-5} Eastcott et al. (1988)	V	
2.7×10^{-5} Hine and Mookerjee (1975)	V	
4.4×10^{-5} Hilal et al. (2008) 3.9×10^{-5} Nirmalakhandan and Speece (1988)	Q a) Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{H^{cp}}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]	FTZ1		J.F.	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
	2.8×10^{-5}		Yaws and Yang (1992)	?	92
methylcyclohexane	2.5×10^{-5}		Mackay and Shiu (1981)	L	
$C_6H_{11}CH_3$	3.2×10^{-4}	5300	Hiatt (2013)	M	
[108-87-2]	1.5×10^{-4}		Ramachandran et al. (1996)	M	
	9.6×10^{-5}	9400	Hansen et al. (1993)	M	105
	5.0×10^{-6}		Abraham and Acree Jr. (2007)	V	
	2.5×10^{-5}		Mackay et al. (2006a)	V	
	2.3×10^{-5}		Mackay et al. (1993)	V	
	2.3×10^{-5}		Meylan and Howard (1991)	V	
	2.6×10^{-5}		Eastcott et al. (1988)	V	
	2.3×10^{-5}		Hine and Mookerjee (1975)	V	
	3.5×10^{-5}		Hilal et al. (2008)	Q	
		3900	Kühne et al. (2005)	Q	
	2.9×10^{-5}		Meylan and Howard (1991)	Q	
	3.1×10^{-5}		Nirmalakhandan and Speece (1988a)	Q	
	_	3100	Kühne et al. (2005)	?	
	2.3×10^{-5}		Yaws and Yang (1992)	?	92
methylcyclohexane-d14 C ₆ D ₁₁ CD ₃	3.1×10^{-4}	5600	Hiatt (2013)	M	
[10120-28-2]					
ethylcyclohexane	2.1×10^{-5}	4700	Dohányosová et al. (2004)	M	
C_8H_{16}	3.1×10^{-5}	4600	Heidman et al. (1985)	M	
[1678-91-7]	7.3×10^{-6}		Abraham and Acree Jr. (2007)	V	
	2.3×10^{-5}		Hilal et al. (2008)	Q	
		4300	Kühne et al. (2005)	Q	
		4700	Kühne et al. (2005)	?	
methylcycloheptane	2.1×10^{-5}		Hilal et al. (2008)	Q	
C_8H_{16}					
[4126-78-7]					
1,2-dimethylcyclohexane	2.1×10^{-5}		Mackay et al. (1993)	V	
$C_6H_{10}(CH_3)_2$	1.4×10^{-5}		Hilal et al. (2008)	Q	
[583-57-3]	2.3×10^{-5}		Nirmalakhandan and Speece (1988a)	Q	
cis-1,2-dimethylcyclohexane	2.8×10^{-5}		Mackay and Shiu (1981)	L	
$C_6H_{10}(CH_3)_2$	2.9×10^{-5}	4900	Dohányosová et al. (2004)	M	
[2207-01-4]	4.6×10^{-6}		Abraham and Acree Jr. (2007)	V	
<u>-</u>	2.8×10^{-5}		Mackay et al. (2006a)	V	
	2.8×10^{-5}		Meylan and Howard (1991)	V	
	2.8×10^{-5}		Eastcott et al. (1988)	v	
	2.8×10^{-5}		Hine and Mookerjee (1975)	v	
	2.07.10	4300	Kühne et al. (2005)	Q	
	4.3×10^{-5}		Nirmalakhandan et al. (1997)	Q	
	2.2×10^{-5}		Meylan and Howard (1991)	Q	
		4900	Kühne et al. (2005)	?	
	2.8×10^{-5}	-	Yaws and Yang (1992)	?	92

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]		31	
trans-1,2-dimethylcyclohexane	1.7×10^{-5}	4600	Dohányosová et al. (2004)	M	
$C_6H_{10}(CH_3)_2$	5.7×10^{-6}		Abraham and Acree Jr. (2007)	V	
[6876-23-9]	1.3×10^{-5}		Mackay et al. (1993)	V	
		4300	Kühne et al. (2005)	Q	
		4600	Kühne et al. (2005)	?	
	2.1×10^{-5}		Yaws and Yang (1992)	?	92
			Haynes (2014)	W	117
1,4-dimethylcyclohexane C ₆ H ₁₀ (CH ₃) ₂ [589-90-2]	1.5×10^{-5}		Hilal et al. (2008)	Q	
trans-1,4-dimethylcyclohexane	1.1×10^{-5}		Mackay and Shiu (1981)	L	
$C_6H_{10}(CH_3)_2$	1.1×10^{-5}		Mackay et al. (2006a)	V	
[2207-04-7]	1.1×10^{-5}		Mackay et al. (1993)	V	
	1.1×10^{-5}		Eastcott et al. (1988)	V	
	2.2×10^{-5}		Nirmalakhandan et al. (1997)	Q	
	1.1×10^{-5}		Yaws and Yang (1992)	?	92
1,1,2-trimethylcyclopentane C ₅ H ₇ (CH ₃) ₃	6.9×10^{-6}		Hilal et al. (2008)	Q	
[4259-00-1]					
1,1,3-trimethylcyclopentane	6.3×10^{-6}		Mackay and Shiu (1981)	L	
$C_5H_7(CH_3)_3$	6.3×10^{-6}		Mackay et al. (2006a)	V	
[4516-69-2]	6.3×10^{-6}		Mackay et al. (1993)	V	
	6.3×10^{-6}		Eastcott et al. (1988)	V	
1,1,3-trimethylcyclohexane	9.5×10^{-6}		Mackay et al. (2006a)	V	
C ₉ H ₁₈ [3073-66-3]	9.5×10^{-6}		Mackay et al. (1993)	V	
propylcyclopentane	1.1×10^{-5}		Mackay and Shiu (1981)	L	
C ₅ H ₉ C ₃ H ₇	1.1×10^{-5}		Mackay et al. (2006a)	V	
[2040-96-2]	1.1×10^{-5}		Mackay et al. (1993)	V	
	1.1×10^{-5}		Eastcott et al. (1988)	V	
	2.0×10^{-5}		Hilal et al. (2008)	Q	
	2.5×10^{-5}		Nirmalakhandan et al. (1997)	Q	
	1.1×10^{-5}		Yaws and Yang (1992)	?	92
pentylcyclopentane	5.4×10^{-6}		Mackay and Shiu (1981)	L	
$C_5H_9C_5H_{11}$	5.4×10^{-6}		Mackay et al. (2006a)	V	
[3741-00-2]	5.4×10^{-6}		Mackay et al. (1993)	V	
	5.4×10^{-6}		Eastcott et al. (1988)	V	
	9.2×10^{-6}		Hilal et al. (2008)	Q	
	1.6×10^{-5}		Nirmalakhandan et al. (1997)	Q	
	5.4×10^{-6}		Yaws and Yang (1992)	?	92
cyclooctene	2.1×10^{-4}	4400	Dohányosová et al. (2004)	M	
C_8H_{14}	2.1×10^{-4}		Mackay et al. (2006a)	V	
[931-88-4]		4400	Kühne et al. (2005)	Q	
		4400	Kühne et al. (2005)	?	

Table 6: Henry's law constants for water as solvent (...continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]			-31-	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
decahydronaphthalene	7.2×10^{-5}	4100	Ashworth et al. (1988)	M	103
$C_{10}H_{18}$	2.1×10^{-5}		HSDB (2015)	V	
(decalin)	6.5×10^{-5}		Hilal et al. (2008)	Q	
[91-17-8]		4500	Kühne et al. (2005)	Q	
		4100	Kühne et al. (2005)	?	
octahydro-1H-indene	8.8×10^{-5}		Hilal et al. (2008)	Q	
C ₉ H ₁₆					
[496-10-6]					
(Z)-bicyclo[4.4.0]decane	4.3×10^{-4}		Mackay et al. (1993)	V	
C ₁₀ H ₁₈					
(cis-decahydronaphthalene; cis-					
decalin) [493-01-6]					
(E)-bicyclo[4.4.0]decane	2.7×10^{-4}		Mackay et al. (1993)	V	
C ₁₀ H ₁₈				•	
(trans-decahydronaphthalene; trans-					
decalin)					
[493-02-7]					
2,6,6-trimethylbicyclo[3.1.1]heptane	2.8×10^{-5}		HSDB (2015)	Q	38
$C_{10}H_{18}$					
(dihydropinene)					
[473-55-2]					
1,1'-bicyclohexyl	3.1×10^{-5}		Hilal et al. (2008)	Q	
$C_{12}H_{22}$					
[92-51-3]					
cyclododecane	6.4×10^{-6}		HSDB (2015)	Q	38
$C_{12}H_{24}$					
[294-62-2]					
octahydro-1,1,2,3,3-pentamethyl-1H-	9.0×10^{-6}		Zhang et al. (2010)	Q	107, 108
indene C ₁₄ H ₂₆	1.1×10^{-6}		Zhang et al. (2010)	Q	107, 109
[33704-60-8]	6.5×10^{-4}		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 109
[22704-00-0]	3.5×10^{-5}		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 110
1,1':3',1"-tercyclohexane	6.7×10^{-6}				
•	6.7×10^{-5} 1.5×10^{-5}		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 108 107, 109
C ₁₈ H ₃₂ [1706-50-9]	1.5×10^{-3} 1.7×10^{-3}		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 109
[1/00-30-7]	9.0×10^{-5}		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 110
				Q	
1,1'-(2-methylpentane-2,4-diyl)dicyclohexane	2.9×10^{-6}		Zhang et al. (2010)	Q	107, 108
C ₁₈ H ₃₄	2.1×10^{-6}		Zhang et al. (2010)	Q	107, 109
[38970-72-8]	1.1×10^{-3}		Zhang et al. (2010)	Q	107, 110
-	1.9×10^{-5}		Zhang et al. (2010)	Q	107, 111
	1.9×10		Zhang et al. (2010)	V	107, 111

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
Other name(s)) CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]		71	
ethene	5.9×10^{-5}	2200	Sander et al. (2011)	L	
C_2H_4	5.9×10^{-5}	2200	Sander et al. (2006)	L	
(ethylene)	4.6×10^{-5}		Mackay and Shiu (1981)	L	
[74-85-1]	4.7×10^{-5}	1800	Wilhelm et al. (1977)	L	
	3.5×10^{-5}		Steward et al. (1973)	L	19
	4.9×10^{-5}	2000	Maaßen (1995)	M	
	4.8×10^{-5}	1900	Reichl (1995)	M	
	4.8×10^{-5}	2300	Winkler (1906)	M	
	4.6×10^{-5}		Hine and Mookerjee (1975)	V	
	4.7×10^{-5}	2000	Hayduk (1994)	X	3
	4.7×10^{-5}		Deno and Berkheimer (1960)	C	
	2.9×10^{-5}		Hilal et al. (2008)	Q	
		2700	Kühne et al. (2005)	Q	
	5.2×10^{-5}	1900	Nirmalakhandan and Speece (1988a) Kühne et al. (2005)	Q ?	
	4.8×10^{-5}	2300	Dean (1992)	?	6
	4.7×10^{-5}		Yaws and Yang (1992)	?	92
	4.6×10^{-5}		Abraham et al. (1990)	?	
	4.8×10^{-5}		Seinfeld (1986)	?	7
propene	4.7×10^{-5}		Mackay and Shiu (1981)	L	
C_3H_6	7.3×10^{-5}	3400	Wilhelm et al. (1977)	L	
propylene)	5.4×10^{-5}	2700	Maaßen (1995)	M	
115-07-1]	5.5×10^{-5}	2800	Reichl (1995)	M	
	4.7×10^{-5}		Hine and Mookerjee (1975)	V	
	4.4×10^{-5}		Irmann (1965)	V	
	9.2×10^{-5}		Deno and Berkheimer (1960)	C	
	3.4×10^{-5}		Hilal et al. (2008)	Q	
	_	3100	Kühne et al. (2005)	Q	
	4.1×10^{-5}		Nirmalakhandan and Speece (1988a)	Q	
	4.6×10^{-5}		Irmann (1965)	Q ?	
	5	3800	Kühne et al. (2005)		
	4.8×10^{-5}		Yaws and Yang (1992)	?	92
	4.3×10^{-5}		Abraham et al. (1990)	?	
-butene	1.3×10^{-4}	6400	Wilhelm et al. (1977)	L	
C_4H_8	3.9×10^{-5}		Mackay et al. (2006a)	V	
106-98-9]	3.9×10^{-5}		Mackay et al. (1993)	V	
	3.9×10^{-5}		Hine and Mookerjee (1975)	V	
	4.1×10^{-5}		Irmann (1965)	V	
	3.4×10^{-5}		Hilal et al. (2008)	Q	
	3.4×10^{-5}		Nirmalakhandan and Speece (1988a)	Q	
	4.1×10^{-5}		Irmann (1965)	Q	
	4.0×10^{-5}		Yaws and Yang (1992)	?	92
	3.9×10^{-5}		Abraham et al. (1990) Mackay and Shiu (1981)	? W	118
2-butene	5.1×10 ⁻⁵		Hilal et al. (2008)	Q	110
2-butene C ₄ H ₈ [107-01-7]	5.1 \ 10		Time et al. (2000)	V	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s))	H^{cp} (at T^{\ominus}) \lceil mol \rceil	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Type	Note
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
cis-2-butene	5.5×10^{-5}		Irmann (1965)	V	
C_4H_8	5.9×10^{-5}		Irmann (1965)	Q	
[590-18-1]					
trans-2-butene	3.9×10^{-5}		Irmann (1965)	V	
C ₄ H ₈ [624-64-6]	5.4×10^{-5}		Irmann (1965)	Q	
2-methylpropene	5.6×10 ⁻⁵	3000	Wilhelm et al. (1977)	L	
C_4H_8	4.6×10^{-5}		Mackay et al. (2006a)	V	
isobutene)	4.6×10^{-5}		Mackay et al. (1993)	V	
[115-11-7]	4.6×10^{-5}		Hine and Mookerjee (1975)	V	
-	8.6×10^{-5}		Hilal et al. (2008)	Q	
		3400	Kühne et al. (2005)	Q	
	2.8×10^{-5}		Nirmalakhandan and Speece (1988a)	Q	
		3000	Kühne et al. (2005)	?	
	4.8×10^{-5}		Yaws and Yang (1992)	?	92
			Mackay and Shiu (1981)	W	118
-pentene	2.5×10^{-5}		Mackay and Shiu (1981)	L	
C_5H_{10}	2.5×10^{-5}		HSDB (2015)	V	
109-67-1]	2.5×10^{-5}		Mackay et al. (2006a)	V	
	2.5×10^{-5}		Mackay et al. (1993)	V	
	2.5×10^{-5}		Eastcott et al. (1988)	V	
	1.8×10^{-5}		Amoore and Buttery (1978)	V	
	2.4×10^{-5}		Hine and Mookerjee (1975)	V	
	2.5×10^{-5}		Hilal et al. (2008)	Q	
	2.7×10^{-5}		Nirmalakhandan and Speece (1988a)	Q	
	2.5×10^{-5}		Yaws and Yang (1992)	?	92
	2.4×10^{-5}		Abraham et al. (1990)	?	
2-pentene	4.4×10^{-5}		Eastcott et al. (1988)	V	
C_5H_{10}	3.6×10^{-5}		Hilal et al. (2008)	Q	
[109-68-2]					
cis-2-pentene	4.4×10^{-5}		Mackay and Shiu (1981)	L	
C_5H_{10}	4.5×10^{-5}		HSDB (2015)	Q	38
[627-20-3]	4.4×10^{-5}		Yaws and Yang (1992)	?	92
rans-2-pentene	4.2×10^{-5}		Hine and Mookerjee (1975)	V	
C_5H_{10}	3.1×10^{-5}		HSDB (2015)	Q	38
[646-04-8]	2.7×10^{-5}		Nirmalakhandan and Speece (1988a)	Q	
. ,	4.3×10^{-5}		Yaws and Yang (1992)	?	92
			HSDB (2015)	V	
C_5H_{10}	2.3×10^{-5}				
C ₅ H ₁₀ [563-46-2]			. , ,	V	
C ₅ H ₁₀ 563-46-2] 2-methyl-2-butene	7.4×10^{-5}		Mackay et al. (2006a)	V	
2-methyl-1-butene C ₅ H ₁₀ 563-46-2] 2-methyl-2-butene C ₅ H ₁₀ [513-35-9]			. , ,	V V Q	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{\ominus})	d(1/T)	Reference	Type	Note
(Other name(s))	[_mol_]	[17]		31	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
3-methyl-1-butene	1.8×10^{-5}		Mackay and Shiu (1981)	L	
C_5H_{10}	1.8×10^{-5}		HSDB (2015)	V	
[563-45-1]	1.8×10^{-5}		Mackay et al. (2006a)	V	
	1.8×10^{-5}		Mackay et al. (1993)	V	
	1.8×10^{-5}		Hine and Mookerjee (1975)	V	
	1.5×10^{-5}		Hilal et al. (2008)	Q	
	2.3×10^{-5}		Nirmalakhandan and Speece (1988a)	Q	
	1.9×10^{-5}		Yaws and Yang (1992)	?	92
l-hexene	2.4×10^{-5}		Mackay and Shiu (1981)	L	
C_6H_{12}	2.4×10^{-5}		HSDB (2015)	V	
[592-41-6]	2.4×10^{-5}		Mackay et al. (2006a)	V	
	2.4×10^{-5}		Mackay et al. (1993)	V	
	2.4×10^{-5}		Hwang et al. (1992)	V	
	2.4×10^{-5}		Eastcott et al. (1988)	V	
	2.4×10^{-5}		Hine and Mookerjee (1975)	V	
	1.8×10^{-5}	4400	Hilal et al. (2008)	Q	
	2.1.10=5	4100	Kühne et al. (2005)	Q	
	2.1×10^{-5}	4000	Nirmalakhandan and Speece (1988a)	Q ?	
	3.3×10^{-5}	4000	Kühne et al. (2005) Yaws and Yang (1992)	?	92
	2.8×10^{-5}		Abraham et al. (1990)	?	92
			<u> </u>		
2-methyl-1-pentene	3.6×10^{-5}		Mackay and Shiu (1981)	L	
C ₆ H ₁₂	3.6×10^{-5}		Mackay et al. (2006a)	V	
[763-29-1]	3.6×10^{-5}		Mackay et al. (1993)	V	
	3.6×10^{-5}		Eastcott et al. (1988)	V	
	3.4×10^{-5} 2.2×10^{-5}		Cabani et al. (1981)	V	
	1.9×10^{-5}		Hilal et al. (2008)	Q	
	3.5×10^{-5}		Nirmalakhandan et al. (1997)	Q ?	92
			Yaws and Yang (1992)		92
4-methyl-1-pentene	1.6×10^{-5}		Mackay and Shiu (1981)	L	
C_6H_{12}	1.6×10^{-5}		Mackay et al. (2006a)	V	
[691-37-2]	1.6×10^{-5}		Mackay et al. (1993)	V	
	1.6×10^{-5}		Eastcott et al. (1988)	V	
	1.6×10^{-5}		Hine and Mookerjee (1975)	V	
	1.2×10^{-5} 1.8×10^{-5}		Hilal et al. (2008)	Q	
	1.8×10^{-5} 1.6×10^{-5}		Nirmalakhandan and Speece (1988a) Yaws and Yang (1992)	Q ?	92
			-		<i>9</i> ∠
2,3-dimethyl-1-butene	1.7×10^{-5}		Hilal et al. (2008)	Q	
C ₆ H ₁₂ [563-78-0]					
1-heptene	2.3×10^{-5}		HSDB (2015)	V	
C_7H_{14}	2.5×10^{-5}		Mackay et al. (2006a)	V	
[592-76-7]	2.5×10^{-5}		Mackay et al. (2006a) Mackay et al. (1993)	v V	
[374-10-1]	1.3×10^{-5}		Hilal et al. (2008)	V Q	
	1.7×10^{-5}		Nirmalakhandan et al. (1997)	Q	
	2.5×10^{-5}		Yaws and Yang (1992)	?	92
	25×10 -				

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2-heptene C ₇ H ₁₄ [592-77-8]	1.7×10^{-5}		Hilal et al. (2008)	Q	
trans-2-heptene	2.4×10^{-5}		Mackay and Shiu (1981)	L	
C_7H_{14}	2.4×10^{-5}		Mackay et al. (1993)	V	
[14686-13-6]	2.4×10^{-5}		Eastcott et al. (1988)	V	
	2.4×10^{-5}		Hine and Mookerjee (1975)	V	
	1.7×10^{-5}		Nirmalakhandan et al. (1997)	Q	
1-octene	1.0×10^{-5}		Mackay and Shiu (1981)	L	
C_8H_{16}	1.6×10^{-5}		HSDB (2015)	V	
[111-66-0]	1.0×10^{-5}		Mackay et al. (2006a)	V	
	1.0×10^{-5}		Mackay et al. (1993)	V	
	1.0×10^{-5}		Hwang et al. (1992)	V	
	1.0×10^{-5}		Meylan and Howard (1991)	V	
	1.0×10^{-5}		Eastcott et al. (1988)	V	
	1.0×10^{-5}		Hine and Mookerjee (1975)	V	
	9.2×10^{-6}		Hilal et al. (2008)	Q	
	1.6×10^{-5}		Meylan and Howard (1991)	Q	
	1.3×10^{-5}		Nirmalakhandan and Speece (1988a)	Q	02
	1.6×10^{-5} 1.6×10^{-5}		Yaws and Yang (1992) Abraham et al. (1990)	?	92
2.4.4.1.1.1	1.3×10 ⁻⁵		· · ·		20
2,4,4-trimethyl-1-pentene C ₈ H ₁₆ [107-39-1]	1.3×10		HSDB (2015)	Q	38
$2,4,4$ -trimethyl-2-pentene $\mathbb{C}_8\mathbf{H}_{16}$ [107-40-4]	1.1×10^{-5}		HSDB (2015)	Q	38
3,4,4-trimethyl-2-pentene	1.1×10^{-5}		HSDB (2015)	Q	38
(5,4,1 a mada), 2 pontone [598-96-9]	1.17/10		1888 (2010)	· ·	30
-nonene	1.2×10^{-5}		Mackay et al. (2006a)	V	
C9H ₁₈	1.2×10^{-5}		Mackay et al. (1993)	V	
124-11-8]	6.5×10^{-6}		Hilal et al. (2008)	Q	
	1.0×10^{-5}		Nirmalakhandan et al. (1997)	Q	
	1.2×10^{-5}		Yaws and Yang (1992)	?	92
	1.2×10^{-5}		Abraham et al. (1990)	?	
-decene	3.7×10^{-6}		HSDB (2015)	V	
$C_{10}H_{20}$	3.3×10^{-6}		Mackay et al. (1993)	V	
[872-05-9]	4.2×10^{-6}		Hilal et al. (2008)	Q	
l-undecene	6.7×10^{-6}		HSDB (2015)	Q	38
$C_{11}H_{22}$	2.2×10^{-6}		Hilal et al. (2008)	Q	
821-95-4]				-	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
Other name(s))	[mol]		Reference	Турс	11010
CAS registry number]	$\lfloor \frac{\overline{m^3 Pa}}{\rfloor$	[K]			
-dodecene	2.3×10^{-6}		HSDB (2015)	Q	38
$C_{12}H_{24}$	1.5×10^{-6}		Hilal et al. (2008)	Q	
112-41-4]					
2,2,4,6,6-pentamethyl-3-heptene	3.6×10^{-6}		Zhang et al. (2010)	Q	107, 108
$C_{12}H_{24}$	5.2×10^{-7}		Zhang et al. (2010)	Q	107, 109
123-48-8]	1.8×10^{-5}		Zhang et al. (2010)	Q	107, 110
	1.5×10^{-5}		Zhang et al. (2010)	Q	107, 11
-tridecene	3.8×10^{-6}		HSDB (2015)	Q	38
C ₁₃ H ₂₆ [2437-56-1]					
-tetradecene	1.2×10 ⁻⁶		HSDB (2015)	Q	38
C ₁₄ H ₂₈	1.2/10		(2010)	~	50
1120-36-1]					
,2-butadiene	1.0×10^{-4}		HSDB (2015)	Q	38
C_4H_6	1.1×10^{-4}		Hilal et al. (2008)	Q	
590-19-2]					
,3-butadiene	1.3×10^{-4}		Mackay and Shiu (1981)	L	
C_4H_6	1.4×10^{-4}	4500	Wilhelm et al. (1977)	L	
106-99-0]	1.4×10^{-4}		Ross and Hudson (1957)	M	
	1.3×10^{-4}		HSDB (2015)	V	
	1.3×10^{-4}		Mackay et al. (2006a)	V	
	3.9×10^{-6}		Lide and Frederikse (1995)	V	
	4.8×10^{-5}		Mackay et al. (1993)	V	
	5.0×10^{-5}		Hwang et al. (1992)	V	
	1.6×10^{-4}		Hine and Mookerjee (1975)	V	
	1.2×10^{-4}		Irmann (1965)	V	
	1.5×10^{-4}		Irmann (1965)	C	
	1.8×10^{-4}		Hilal et al. (2008)	Q	
		3600	Kühne et al. (2005)	Q	
	9.2×10^{-5}		Nirmalakhandan and Speece (1988a)	Q	
	,	4100	Kühne et al. (2005)	?	
	1.4×10^{-4}		Yaws and Yang (1992)	?	92
-methyl-1,3-butadiene	1.3×10^{-4}		Mackay and Shiu (1981)	L	
C ₅ H ₈	3.4×10^{-4}	4400	Leng et al. (2013)	M	
isoprene)	2.9×10^{-4}		Karl et al. (2003)	M	119
78-79-5]	1.3×10^{-4}		HSDB (2015)	V	
	1.3×10^{-4}		Mackay et al. (2006a)	V	
	1.3×10^{-4}		Copolovici and Niinemets (2005)	V	
	1.3×10^{-4}		Mackay et al. (1993)	V	
	1.3×10^{-4}		Hine and Mookerjee (1975)	V	
	2.7×10^{-4}		Hilal et al. (2008)	Q	
	6.7×10^{-5}		Nirmalakhandan and Speece (1988a)	Q	
	1.3×10^{-4}		Yaws and Yang (1992)	?	92

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1,2-pentadiene C ₅ H ₈ [591-95-7]	9.7×10 ⁻⁵		Hilal et al. (2008)	Q	
1,3-pentadiene C ₅ H ₈ [504-60-9]	1.4×10^{-4}		HSDB (2015)	Q	38
(E)-1,3-pentadiene C ₅ H ₈ (2004-70-8]	8.2×10^{-5}		HSDB (2015)	Q	38
1,4-pentadiene	8.3×10^{-5}		Mackay and Shiu (1981)	L	
C_5H_8	8.4×10^{-5}		Mackay et al. (2006a)	V	
[591-93-5]	8.4×10^{-5}		Mackay et al. (1993)	V	
	8.2×10^{-5}		Hine and Mookerjee (1975)	V	
	9.9×10^{-5}		Hilal et al. (2008)	Q	
	7.3×10^{-5}		Nirmalakhandan and Speece (1988a)	Q	
	8.3×10^{-5}		Yaws and Yang (1992)	?	92
2,3-pentadiene C_5H_8 [591-96-8]	1.1×10 ⁻⁴		Hilal et al. (2008)	Q	
1,4-hexadiene C ₆ H ₁₀ [592-45-0]	8.4×10^{-5}		HSDB (2015)	Q	38
1,5-hexadiene	6.9×10^{-5}		Mackay et al. (2006a)	V	
C_6H_{10}	6.7×10^{-5}		Hwang et al. (1992)	V	
[592-42-7]	7.3×10^{-5}		Hine and Mookerjee (1975)	V	
· -	5.8×10^{-5}		Hilal et al. (2008)	Q	
	5.8×10^{-5}		Nirmalakhandan and Speece (1988a)	Q	
2,3-dimethyl-1,3-butadiene	2.0×10^{-4}		Mackay et al. (2006a)	V	
C_6H_{10}	2.0×10^{-4}		Mackay et al. (1993)	V	
[513-81-5]	2.0×10^{-4}		Meylan and Howard (1991)	V	
	2.1×10^{-4}		Hine and Mookerjee (1975)	V	
	1.9×10^{-4}		Hilal et al. (2008)	Q	
	5.2×10^{-5}		Meylan and Howard (1991)	Q	
	4.7×10^{-5}		Nirmalakhandan and Speece (1988a)	Q	
1,6-heptadiene C ₇ H ₁₂ [3070-53-9]	4.6×10^{-5}		Hilal et al. (2008)	Q	
1-methylcyclopropene C ₄ H ₆ [3100-04-7]	2.5×10 ⁻⁴		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	dln H ^{cp}			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]			1) PC	11000
[CAS registry number]	$\left\lfloor \frac{1}{m^3 Pa} \right\rfloor$	[K]			
cyclopentene	2.3×10^{-4}	2200	Bakierowska and Trzeszczyński (2003)	M	
C_5H_8	1.5×10^{-4}		Mackay et al. (2006a)	V	
[142-29-0]	1.5×10^{-4}		Mackay et al. (1993)	V	
	1.6×10^{-4}		Hwang et al. (1992)	V	
	1.6×10^{-4}		Hine and Mookerjee (1975)	V	
	3.1×10^{-4}		Hilal et al. (2008)	Q	
		3400	Kühne et al. (2005)	Q	
	1.6×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	4	2200	Kühne et al. (2005)	?	
	1.5×10^{-4}		Yaws and Yang (1992)	?	92
cyclohexene	3.3×10^{-4}	2000	Bakierowska and Trzeszczyński (2003)	M	
C_6H_{10}	2.5×10^{-4}		Nielsen et al. (1994)	M	
[110-83-8]	2.2×10^{-4}		Mackay et al. (2006a)	V	
	2.2×10^{-4}		Mackay et al. (1993)	V	
	2.2×10^{-4}		Hwang et al. (1992)	V	
	2.2×10^{-4}		Hine and Mookerjee (1975)	V	
	2.5×10^{-4}		Hilal et al. (2008)	Q	
	4	3700	Kühne et al. (2005)	Q	
	1.3×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	22.10-4	3600	Kühne et al. (2005)	?	
	2.2×10^{-4}		Yaws and Yang (1992)	?	92
$\begin{array}{l} \text{1-methylcyclopentene} \\ C_6H_{10} \\ \text{[693-89-0]} \end{array}$	2.4×10^{-4}		Hilal et al. (2008)	Q	
cycloheptene	2.6×10 ⁻⁴		Mackay et al. (2006a)	V	
C ₇ H ₁₂	2.0×10^{-4}		Mackay et al. (1993)	V	
[628-92-2]	1.3×10^{-4}		Hilal et al. (2008)	Q	
1-methylcyclohexene	1.2×10^{-4}		Mackay et al. (2006a)	V	
$C_6H_9CH_3$	1.3×10^{-4}		Hine and Mookerjee (1975)	V	
[591-49-1]	1.9×10^{-4}		Hilal et al. (2008)	Q	
1,1,2,3,3-pentamethyl-2,3,4,5,6,7-hexahydro-1H-indene	2.5×10^{-5}		Zhang et al. (2010)	Q	107, 108
$C_{14}H_{24}$	2.5×10^{-6}		Zhang et al. (2010)	Q	107, 109
[33704-59-5]	1.1×10^{-3}		Zhang et al. (2010)	Q	107, 110
,	7.3×10^{-5}		Zhang et al. (2010)	Q	107, 111
1,3-cyclopentadiene	4.7×10^{-4}		HSDB (2015)	V	
C ₅ H ₆	1.2×10^{-3}		Hilal et al. (2008)	Q	
[542-92-7]			· · · · · · · · · · · · · · · · · · ·	-	
1,3-cyclohexadiene	1.1×10^{-3}		Hilal et al. (2008)	Q	
C ₆ H ₈ [592-57-4]					
[592-57-4]	1.1×10 ⁻³		Mackay et al. (2006a)	V	
[592-57-4] 1,4-cyclohexadiene	1.1×10 ⁻³ 9.7×10 ⁻⁴		Mackay et al. (2006a) Mackay et al. (1993)		
[592-57-4]	$ \begin{array}{c} 1.1 \times 10^{-3} \\ 9.7 \times 10^{-4} \\ 1.0 \times 10^{-3} \end{array} $		Mackay et al. (2006a) Mackay et al. (1993) Hilal et al. (2008)	V V C	

Table 6: Henry's law constants for water as solvent (...continued)

	H^{cp}	xxan			
Substance Formula	(at T^{\ominus})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$			
(Other name(s))		$\mathfrak{u}(1/T)$	Reference	Type	Note
[CAS registry number]	$\left\lfloor \frac{\text{mol}}{\text{m}^3 \text{Pa}} \right\rfloor$	[K]			
1,3-cycloheptadiene	6.2×10^{-4}		Hilal et al. (2008)	Q	
C ₇ H ₁₀ [4054-38-0]					
1,3,5-cycloheptatriene			Mackay et al. (2006a)	V	112
C ₇ H ₈	2.1×10^{-3}		Mackay et al. (1993)	V	
[544-25-2]	2.1×10^{-3}		Cabani et al. (1981)	V	
	3.8×10^{-3}		Hilal et al. (2008)	Q	
	8.4×10^{-4}		Nirmalakhandan et al. (1997)	Q	
	2.1×10^{-3}		Yaws and Yang (1992)	?	92
1,5-cyclooctadiene C ₈ H ₁₂ [111-78-4]	3.8×10^{-4}		Hilal et al. (2008)	Q	
I-ethenylcyclohexene C ₈ H ₁₂	7.7×10^{-4}		Hilal et al. (2008)	Q	
[2622-21-1]	4				
4-ethenylcyclohexene	2.2×10^{-4}		HSDB (2015)	V	
C ₈ H ₁₂ [100-40-3]	1.8×10^{-4}		Hilal et al. (2008)	Q	
1,3,5,7-cyclooctatetraene	3.6×10^{-2}		Hilal et al. (2008)	Q	
C ₈ H ₈ [629-20-9]					
3a,4,7,7a-tetrahydro-4,7-methano-1H-indene	1.6×10^{-4}		HSDB (2015)	Q	38
C ₁₀ H ₁₂ (dicyclopentadiene) [77-73-6]	2.8×10^{-5}		Hilal et al. (2008)	Q	
1,5,9-cyclododecatriene C ₁₂ H ₁₈ [4904-61-4]	3.3×10 ⁻⁴		HSDB (2015)	Q	38
	A	liphatic a	alkynes		
ethyne	4.1×10^{-4}	1700	Sander et al. (2011)	L	
C_2H_2	4.1×10^{-4}	1800	Sander et al. (2006)	L	
(acetylene)	4.1×10^{-4}	1800	Wilhelm et al. (1977)	L	
74-86-2]	4.1×10^{-4}	2000	Winkler (1906)	M	
	4.5×10^{-4}		HSDB (2015)	V	
	3.9×10^{-4}		Hwang et al. (1992)	V	
	4.1×10^{-4}		Hine and Mookerjee (1975)	V	
	4.1×10^{-4}		Deno and Berkheimer (1960)	C	
	1.4×10^{-3}		Hilal et al. (2008)	Q	
	4	1800	Kühne et al. (2005)	Q	
	5.8×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	5.0×10^{-4}	1000	Irmann (1965)	Q	
	44 - 5 1	1800	Kühne et al. (2005)	?	_
	4.1×10^{-4}	2000	Dean (1992)	?	6
	3.9×10^{-4}		Yaws and Yang (1992)	?	92

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	4.1×10^{-4}		Abraham et al. (1990)	?	
propyne	9.0×10^{-4}		Mackay and Shiu (1981)	L	
CH₃CCH	7.7×10^{-4}	2500	Simpson and Lovell (1962)	M	
[74-99-7]	6.7×10^{-4}	2100	Inga and McKetta (1961)	M	
	9.0×10^{-4}		HSDB (2015)	V	
	9.0×10^{-4}		Hine and Mookerjee (1975)	V	
	6.6×10^{-4}		Irmann (1965)	V	
	6.0×10^{-4}		Hilal et al. (2008)	Q	
		2100	Kühne et al. (2005)	Q	
	4.4×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	8.4×10^{-4}	2.400	Irmann (1965)	Q	
	0.2 10-1	2400	Kühne et al. (2005)	?	0.0
	9.2×10^{-4} 9.0×10^{-4}		Yaws and Yang (1992)	?	92
	9.0×10 ⁴		Abraham et al. (1990) Wilhelm et al. (1977)	? W	30
1-butyne	5.2×10^{-4}		Mackay and Shiu (1981)	L	
C ₂ H ₅ CCH	7.5×10^{-4}	1900	Wilhelm et al. (1977)	L	
(ethylacetylene)	7.2×10^{-4}	1900	Simpson and Lovell (1962)	M	
107-00-6]	5.2×10^{-4}	1700	Mackay et al. (2006a)	V	
107 00 0]	2.9×10^{-4}		Hwang et al. (1992)	v	
	5.3×10^{-4}		Hine and Mookerjee (1975)	v	
	3.6×10^{-4}		Hilal et al. (2008)	Q	
	3.07(10	2500	Kühne et al. (2005)	Q	
	3.7×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	6.4×10^{-4}		Irmann (1965)	Q	
		1900	Kühne et al. (2005)	?	
	5.4×10^{-4}		Yaws and Yang (1992)	?	92
	5.3×10^{-4}		Abraham et al. (1990)	?	
2-butyne C ₄ H ₆	1.9×10^{-3}		Hilal et al. (2008)	Q	
[503-17-3]					
1-pentyne	4.0×10^{-4}		Mackay and Shiu (1981)	L	
C ₃ H ₇ CCH	4.0×10^{-4}		Mackay et al. (2006a)	V	
[627-19-0]	4.0×10^{-4}		Mackay et al. (1993)	V	
	2.5×10^{-4}		Amoore and Buttery (1978)	V	
	3.9×10^{-4}		Hine and Mookerjee (1975)	V	
	2.4×10^{-4}		Hilal et al. (2008)	Q	
	2.9×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	2.0×10^{-4}		Yaws and Yang (1992)	?	92
	3.9×10^{-4}		Abraham et al. (1990)	?	
2-pentyne C ₅ H ₈	1.1×10^{-3}		Hilal et al. (2008)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	$(at I^{\circ})$	d(1/T)	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\lceil \underline{\text{mol}} \rceil$	[K]			
[CAS registry number]	Lm³ Pa J	[K]			
1-hexyne	2.4×10^{-4}		Mackay et al. (2006a)	V	
C ₄ H ₉ CCH	2.4×10^{-4}		Mackay et al. (1993)	V	
[693-02-7]	2.5×10^{-4}		Hine and Mookerjee (1975)	V	
	1.7×10^{-4}		Hilal et al. (2008)	Q	
	2.3×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	4.6×10^{-4}		Yaws and Yang (1992)	?	92
	2.5×10^{-4}		Abraham et al. (1990)	?	
2-hexyne	5.8×10^{-4}		Hilal et al. (2008)	Q	
C_6H_{10}					
[764-35-2]					
3-hexyne	6.0×10^{-4}		Hilal et al. (2008)	Q	
C_6H_{10}			•	-	
[928-49-4]					
1-heptyne	1.3×10^{-4}		Mackay et al. (2006a)	V	
C ₅ H ₁₁ CCH	2.2×10^{-4}		Mackay et al. (1993)	V	
[628-71-7]	1.5×10^{-4}		Hine and Mookerjee (1975)	V	
	1.1×10^{-4}		Hilal et al. (2008)	Q	
	1.8×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	1.4×10^{-4}		Yaws and Yang (1992)	?	92
	1.5×10^{-4}		Abraham et al. (1990)	?	
1-octyne	1.3×10^{-4}		Mackay et al. (2006a)	V	
C ₆ H ₁₃ CCH	1.3×10^{-4}		Mackay et al. (1993)	V	
[629-05-0]	1.2×10^{-4}		Hine and Mookerjee (1975)	V	
	6.4×10^{-5}		Hilal et al. (2008)	Q	
	1.5×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	1.2×10^{-4}		Yaws and Yang (1992)	?	92
	1.2×10^{-4}		Abraham et al. (1990)	?	
2-octyne	2.2×10^{-4}		Hilal et al. (2008)	Q	
C_8H_{14}					
[2809-67-8]					
1-nonyne	6.9×10^{-5}		Meylan and Howard (1991)	V	
C ₇ H ₁₅ CCH	6.9×10^{-5}		Hine and Mookerjee (1975)	V	
[3452-09-3]	4.4×10^{-5}		Hilal et al. (2008)	Q	
	1.1×10^{-4}		Meylan and Howard (1991)	Q	
	1.2×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	6.9×10^{-5}		Yaws and Yang (1992)	?	92
	6.9×10^{-5}		Abraham et al. (1990)	?	
3-buten-1-yne	3.7×10^{-4}	1700	Wilhelm et al. (1977)	L	
CH ₂ CHCCH	3.8×10^{-4}	1800	Simpson and Lovell (1962)	M	120
(vinylacetylene)	3.4×10^{-4}		HSDB (2015)	V	
[689-97-4]	1.1×10^{-3}		Hilal et al. (2008)	Q	
		2600	Kühne et al. (2005)	Q	
		2100	Kühne et al. (2005)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$			
(Other name(s))		$\mathfrak{u}(1/T)$	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
outadiyne	2.0×10^{-3}		Irmann (1965)	С	
C_4H_2	8.6×10^{-3}		Hilal et al. (2008)	Q	
(biacetylene) (460-12-8]	1.9×10^{-3}		Yaws and Yang (1992)	?	92
	Mone	onuclear	aromatics		
enzene	1.7×10^{-3}	4200	Staudinger and Roberts (2001)	L	
C_6H_6	1.6×10^{-3}	4100	Staudinger and Roberts (1996)	L	
71-43-2]	1.8×10^{-3}		Mackay and Shiu (1981)	L	
	1.7×10^{-3}		Kim and Kim (2014)	M	
	1.8×10^{-3}	3800	Hiatt (2013)	M	
	3.5×10^{-3}		Zhang et al. (2013)	M	
	1.4×10^{-3}	2400	Lau et al. (2010)	M	89
	1.7×10^{-3}	4200	Sieg et al. (2009)	M	121
	1.8×10^{-3}		Li et al. (2008)	M	
	2.5×10^{-3}		Lodge and Danso (2007)	M	
	1.4×10^{-3}	2200	Lei et al. (2004)	M	122
	10.10-3		Cheng et al. (2003)	M	123
	1.8×10^{-3}	4200	Karl et al. (2003)	M	31
	1.8×10^{-3}	4200	Bakierowska and Trzeszczyński (2003)	M	
	1.8×10^{-3}	3700	Görgényi et al. (2002)	M	
	1.9×10^{-3} 2.1×10^{-3}	3200	Bierwagen and Keller (2001)	M	115 10
	2.1×10^{-3} 1.7×10^{-3}		Kochetkov et al. (2001)	M	115, 12
	1.7×10^{-3} 1.8×10^{-3}		Kochetkov et al. (2001)	M	115, 12
	3.7×10^{-3}		Miller and Stuart (2000)	M	126
	3.7×10^{-3} 1.7×10^{-3}		Altschuh et al. (1999)	M	
	1.7×10^{-3} 1.8×10^{-3}		Ryu and Park (1999)	M	
	1.8×10^{-3}		Dohnal and Hovorka (1999)	M	
	2.2×10^{-3}		Allen et al. (1998) Peng and Wan (1998)	M M	
	1.4×10^{-3}	3300	Peng and Wan (1998)	M	127
	2.2×10^{-3}	3300	de Wolf and Lieder (1998)	M	31
	1.9×10^{-3}	3200	Peng and Wan (1997)	M	31
	1.8×10^{-3}	2700	Kondoh and Nakajima (1997)	M	
	1.4×10^{-3}	3300	Park et al. (1997)	M	
	1.8×10^{-3}	4200	Alaee et al. (1996)	M	
	1.6×10^{-3}	4300	Turner et al. (1996)	M	
	2.1×10^{-3}	3900	Dewulf et al. (1995)	M	
	2.0×10^{-3}	3700	Nielsen et al. (1994)	M	
	1.7×10^{-3}	4000	Khalfaoui and Newsham (1994b)	M	
	1.9×10^{-3}	3800	Robbins et al. (1993)	M	
	1.7×10^{-3}		Hoff et al. (1993)	M	
	1.8×10^{-3}	2300	Ettre et al. (1993)	M	89
	1.5×10^{-3}		Hansen et al. (1993)	M	128
	1.7×10^{-3}	4000	Perlinger et al. (1993)	M	
	1.7×10^{-3}		Li and Carr (1993)	M	
	1.8×10^{-3}		Li et al. (1993)	M	
	1.5×10^{-3}		Zhang and Pawliszyn (1993)	M	
	1.7×10^{-3}	4000	Cooling et al. (1992)	M	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Туре	Note
Other name(s)) CAS registry number]	$\lceil \frac{\text{mol}}{\rceil} \rceil$	[K]	Reference	Туре	Note
erio registry number;	$\lfloor \overline{m^3 Pa} \rfloor$	[11]			
	1.8×10^{-3}		Anderson (1992)	M	126
	1.6×10^{-3}	4300	Bissonette et al. (1990)	M	
	2.0×10^{-3}		Guitart et al. (1989)	M	19
	1.8×10^{-3}	3200	Ashworth et al. (1988)	M	103
	1.7×10^{-3}		Keeley et al. (1988)	M	
	2.0×10^{-3}		Hellmann (1987)	M	31
	1.3×10^{-3}		Yurteri et al. (1987)	M	9
	1.8×10^{-3}	3600	Tsonopoulos and Wilson (1983)	M	
	1.7×10^{-3}	3900	Sanemasa et al. (1982)	M	
	1.8×10^{-3}	4000	Leighton and Calo (1981)	M	
	1.7×10^{-3}	3500	Sanemasa et al. (1981)	M	
	1.2×10^{-3}	5300	Ervin et al. (1980)	M	
	1.8×10^{-3}		Warner et al. (1980)	M	
	1.8×10^{-3}		Mackay et al. (1979)	M	
	1.1×10^{-3}		Sato and Nakajima (1979a)	M	19
	1.6×10^{-3}	3800	Tsibul'skii et al. (1979)	M	
	1.8×10^{-3}	4200	Green and Frank (1979)	M	
	1.8×10^{-3}		Vitenberg et al. (1975)	M	
	1.2×10^{-3}		Vitenberg et al. (1974)	M	9
	1.7×10^{-3}	4400	Brown and Wasik (1974)	M	
	2.1×10^{-3}	4500	Hartkopf and Karger (1973)	M	
	1.6×10^{-3}	4500	Wasik and Tsang (1970)	M	
	1.5×10^{-3}		Saylor et al. (1938)	M	23
	3.5×10^{-4}		Abraham and Acree Jr. (2007)	V	
	1.8×10^{-3}		Mackay et al. (2006a)	V	
	1.8×10^{-3}		Kochetkov et al. (2001)	V	
	1.8×10^{-3}		Shiu and Ma (2000)	V	
	1.8×10^{-3}		Shiu and Mackay (1997)	V	
	1.8×10^{-3}		Park et al. (1997)	V	
	1.8×10^{-3}		Mackay et al. (1992a)	V	
	1.8×10^{-3}		Hwang et al. (1992)	V	
	1.8×10^{-3}		Eastcott et al. (1988)	V	
	1.8×10^{-3}	3800	Abraham (1984)	V	
	1.8×10^{-3}	3600	Ben-Naim and Wilf (1980)	V	
	1.8×10^{-3}		Warner et al. (1980)	V	
	1.8×10^{-3}		Hine and Mookerjee (1975)	V	
	1.8×10^{-3}	4100	Mackay and Leinonen (1975)	V	
	1.8×10^{-3}	3800	Andon et al. (1954)	V	129
	1.8×10^{-3}		Bohon and Claussen (1951)	V	
	1.8×10^{-3}		Mackay et al. (1979)	T	
		3800	Gill et al. (1976)	T	100
	1.8×10^{-3}	2200	Goldstein (1982)	X	116
	1.8×10^{-3}		Sieg et al. (2008)	C	
	1.8×10^{-3}		Schüürmann (2000)	C	7
	1.8×10^{-3}		Smith et al. (1993)	C	9
	1.8×10^{-3}		Ryan et al. (1988)	C	
	1.8×10^{-3}		Shen (1982)	C	
	1.7×10^{-3}		Hilal et al. (2008)	Q	
		4000	Kühne et al. (2005)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

	H^{cp}	dle IICn			
Substance Formula	(at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$			
(Other name(s))		$\mathfrak{a}(1/I)$	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
	2.2×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
	1.8×10^{-3}		Arbuckle (1983)	Q	
		3700	Kühne et al. (2005)	?	
	1.8×10^{-3}		Yaws and Yang (1992)	?	92
	1.8×10^{-3}		Abraham et al. (1990)	?	
	2.2×10^{-3}		Mackay and Yeun (1983)	?	
penzene-d6	1.8×10^{-3}	4000	Hiatt (2013)	M	
C_6D_6	1.6×10^{-3}	4500	Wasik and Tsang (1970)	M	
[1076-43-3]		3800	Gill et al. (1976)	T	100
nethylbenzene	1.5×10^{-3}	4300	Staudinger and Roberts (2001)	L	
C ₆ H ₅ CH ₃	1.5×10^{-3}	4000	Staudinger and Roberts (1996)	L	
toluene)	1.5×10^{-3}		Mackay and Shiu (1981)	L	
108-88-3]	1.5×10^{-3}		Kim and Kim (2014)	M	
	2.1×10^{-3}	4400	Hiatt (2013)	M	
	2.8×10^{-3}		Zhang et al. (2013)	M	
	1.7×10^{-3}	4200	Lee et al. (2013)	M	
	1.5×10^{-3}		Kish et al. (2013)	M	
	1.3×10^{-3}	2700	Lau et al. (2010)	M	89
	1.5×10^{-3}	4300	Sieg et al. (2009)	M	121
	1.4×10^{-3}		Helburn et al. (2008)	M	
	1.5×10^{-3}		Li et al. (2008)	M	
	1.3×10^{-3}	2100	Falabella and Teja (2008)	M	89, 130
	1.4×10^{-3}		Lodge and Danso (2007)	M	
			Cheng et al. (2004)	M	123
	1.4×10^{-3}	2200	Lei et al. (2004)	M	122
			Cheng et al. (2003)	M	123
	1.4×10^{-3}		Karl et al. (2003)	M	31
	2.1×10^{-3}		Bobadilla et al. (2003)	M	
	1.7×10^{-3}	4300	Bakierowska and Trzeszczyński (2003)	M	
	2.0×10^{-3}		Destaillats and Charles (2002)	M	
	1.6×10^{-3}	4100	Görgényi et al. (2002)	M	
	1.7×10^{-3}	3600	Bierwagen and Keller (2001)	M	
	1.0×10^{-3}		Ayuttaya et al. (2001)	M	131
	1.7×10^{-4}		Ayuttaya et al. (2001)	M	132
	7.8×10^{-4}		Ayuttaya et al. (2001)	M	133
	2.3×10^{-3}		Ayuttaya et al. (2001)	M	134
	1.5×10^{-3}		David et al. (2000)	M	126
	1.6×10^{-3}		Miller and Stuart (2000)	M	126
	1.9×10^{-3}	4000	Vane and Giroux (2000)	M	
	1.5×10^{-3}	4700	Dewulf et al. (1999)	M	
	1.7×10^{-3}		Altschuh et al. (1999)	M	
	1.5×10^{-3}		Ryu and Park (1999)	M	
	1.6×10^{-3}		Dohnal and Hovorka (1999)	M	
	1.5×10^{-3}		Allen et al. (1998)	M	
	2.1×10^{-3}		Peng and Wan (1998)	M	
	1.2×10^{-3}	3600	Peng and Wan (1998)	M	127
	2.0×10^{-3}		de Wolf and Lieder (1998)	M	31
	1.7×10^{-3}	3700	Peng and Wan (1997)	M	

Table 6: Henry's law constants for water as solvent (...continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]		J.F	
	1.7×10^{-3}	2800	Kondoh and Nakajima (1997)	M	
	1.3×10^{-3}	3900	Park et al. (1997)	M	
	1.4×10^{-3}	4100	Turner et al. (1996)	M	
	1.5×10^{-3}		Ramachandran et al. (1996)	M	
	1.8×10^{-3}	4400	Dewulf et al. (1995)	M	
	1.6×10^{-3}		Nielsen et al. (1994)	M	
	1.5×10^{-3}	3400	Robbins et al. (1993)	M	
	1.3×10^{-3}		Hoff et al. (1993)	M	
	1.5×10^{-3}	2500	Ettre et al. (1993)	M	89
	1.4×10^{-3}		Hansen et al. (1993)	M	128
	1.5×10^{-3}	4500	Perlinger et al. (1993)	M	
	1.6×10^{-3}		Li and Carr (1993)	M	
	1.6×10^{-3}		Li et al. (1993)	M	
	1.5×10^{-3}		Zhang and Pawliszyn (1993)	M	
	1.6×10^{-3}	2500	Kolb et al. (1992)	M	102
	1.5×10^{-3}		Anderson (1992)	M	126
	1.4×10^{-3}	5000	Bissonette et al. (1990)	M	
	1.5×10^{-3}	6500	Lamarche and Droste (1989)	M	135
	1.5×10^{-3}	3000	Ashworth et al. (1988)	M	103
	1.6×10^{-3}		Keeley et al. (1988)	M	
	1.7×10^{-3}		Yurteri et al. (1987)	M	9
	1.2×10^{-3}	5400	Schoene and Steinhanses (1985)	M	
	1.5×10^{-3}		Garbarini and Lion (1985)	M	
	1.5×10^{-3}	4200	Sanemasa et al. (1982)	M	
	1.5×10^{-3}	3800	Leighton and Calo (1981)	M	
	1.6×10^{-3}	4100	Sanemasa et al. (1981)	M	
	1.5×10^{-3}	4900	Ervin et al. (1980)	M	
	1.7×10^{-3}	1700	Warner et al. (1980)	M	
	1.7×10^{-3} 1.5×10^{-3}		Mackay et al. (1979)	M	
	8.6×10^{-4}		Sato and Nakajima (1979a)	M	19
	1.5×10^{-3}	4700	Tsibul'skii et al. (1979)	M	1)
	1.9×10^{-3}	7700	Vitenberg et al. (1975)	M	
	1.6×10^{-3}	5000	Brown and Wasik (1974)	M	
	2.0×10^{-3}	4900	Hartkopf and Karger (1973)	M	
	1.7×10^{-3}	5900	Wasik and Tsang (1970)	M	
	1.7×10^{-3} 1.5×10^{-3}	5,700	Mackay et al. (2006a)	V	
	1.5×10^{-3}		Shiu and Ma (2000)	V	
	1.5×10^{-3} 1.5×10^{-3}		Park et al. (1997)	V V	
	1.5×10^{-3} 1.5×10^{-3}		Mackay et al. (1992a)	V V	
	1.3×10^{-3} 1.3×10^{-3}		Hwang et al. (1992)	V V	
	1.3×10^{-3} 1.7×10^{-3}		Eastcott et al. (1988)	V V	
	1.7×10^{-3} 1.5×10^{-3}	4400		V V	
	1.9×10^{-3}	4200	Abraham (1984) Ren Naim and Wilf (1980)	V V	
	1.9×10^{-3} 1.5×10^{-3}	4200	Ben-Naim and Wilf (1980)	V V	
	1.5×10^{-3} 1.5×10^{-3}		Warner et al. (1980)	V V	
	1.5×10^{-3} 1.5×10^{-3}		Hine and Mookerjee (1975)		
		4200	Mackay and Leinonen (1975)	V	100
	1.8×10^{-3}	4300	Andon et al. (1954)	V	129
	1.8×10^{-3}		Bohon and Claussen (1951)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	$\frac{\mathrm{dil}T}{\mathrm{d}(1/T)}$		_	
(Other name(s))		u(1/1)	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
		4400	Gill et al. (1976)	T	100
	1.9×10^{-3}	4300	Shaw (1989)	X	3
	1.5×10^{-3}	1900	Goldstein (1982)	X	116
	1.5×10^{-3}		McAuliffe (1971)	X	136
	1.5×10^{-3}		Sieg et al. (2008)	C	
	1.5×10^{-3}		Schüürmann (2000)	C	7
	1.7×10^{-3}		Smith et al. (1993)	C	9
	1.4×10^{-3}		Ryan et al. (1988)	C	
	1.7×10^{-3}		Shen (1982)	C	
	1.5×10^{-3}		Hilal et al. (2008)	Q	
	2	4300	Kühne et al. (2005)	Q	
	1.6×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
	1.2×10^{-3}		Arbuckle (1983)	Q	
	2	4200	Kühne et al. (2005)	?	
	1.5×10^{-3}		Yaws and Yang (1992)	?	92
	1.5×10^{-3}		Abraham et al. (1990)	?	
	1.9×10^{-3}		Mackay and Yeun (1983)	?	
nethylbenzene-d8	2.0×10^{-3}	4300	Hiatt (2013)	M	
C ₆ D ₅ CD ₃ toluene-d8) 2037-26-5]					
1,2-dimethylbenzene	2.4×10^{-3}	4200	Fogg and Sangster (2003)	L	
C ₆ H ₄ (CH ₃) ₂	2.0×10^{-3}	4300	Staudinger and Roberts (2001)	L	
(o-xylene)	1.9×10^{-3}	4000	Staudinger and Roberts (2001) Staudinger and Roberts (1996)	L	
		7000			
95-47-61	2.0×10^{-3}		<u>-</u>		
95-47-6]	2.0×10^{-3}		Mackay and Shiu (1981)	L	
95-47-6]	1.9×10^{-3}	4500	Mackay and Shiu (1981) Kim and Kim (2014)	L M	
95-47-6]	$1.9 \times 10^{-3} \\ 3.2 \times 10^{-3}$	4500	Mackay and Shiu (1981) Kim and Kim (2014) Hiatt (2013)	L M M	
95-47-6]	$ \begin{array}{c} 1.9 \times 10^{-3} \\ 3.2 \times 10^{-3} \\ 2.2 \times 10^{-3} \end{array} $		Mackay and Shiu (1981) Kim and Kim (2014) Hiatt (2013) Zhang et al. (2013)	L M M M	121
95-47-6]	$ \begin{array}{r} 1.9 \times 10^{-3} \\ 3.2 \times 10^{-3} \\ 2.2 \times 10^{-3} \\ 2.0 \times 10^{-3} \end{array} $	4500 4300	Mackay and Shiu (1981) Kim and Kim (2014) Hiatt (2013) Zhang et al. (2013) Sieg et al. (2009)	L M M M	121
95-47-6]	1.9×10^{-3} 3.2×10^{-3} 2.2×10^{-3} 2.0×10^{-3} 2.3×10^{-3}	4300	Mackay and Shiu (1981) Kim and Kim (2014) Hiatt (2013) Zhang et al. (2013) Sieg et al. (2009) Li et al. (2008)	L M M M M	
95-47-6]	1.9×10^{-3} 3.2×10^{-3} 2.2×10^{-3} 2.0×10^{-3} 2.3×10^{-3} 1.7×10^{-3}		Mackay and Shiu (1981) Kim and Kim (2014) Hiatt (2013) Zhang et al. (2013) Sieg et al. (2009) Li et al. (2008) Falabella and Teja (2008)	L M M M M M	
95-47-6]	$ \begin{array}{c} 1.9 \times 10^{-3} \\ 3.2 \times 10^{-3} \\ 2.2 \times 10^{-3} \\ 2.0 \times 10^{-3} \\ 2.3 \times 10^{-3} \\ 1.7 \times 10^{-3} \\ 2.1 \times 10^{-3} \end{array} $	4300 2500	Mackay and Shiu (1981) Kim and Kim (2014) Hiatt (2013) Zhang et al. (2013) Sieg et al. (2009) Li et al. (2008) Falabella and Teja (2008) Dohnal and Hovorka (1999)	L M M M M M M	
95-47-6]	1.9×10^{-3} 3.2×10^{-3} 2.2×10^{-3} 2.0×10^{-3} 2.3×10^{-3} 1.7×10^{-3} 2.1×10^{-3} 1.9×10^{-3}	4300	Mackay and Shiu (1981) Kim and Kim (2014) Hiatt (2013) Zhang et al. (2013) Sieg et al. (2009) Li et al. (2008) Falabella and Teja (2008) Dohnal and Hovorka (1999) Kondoh and Nakajima (1997)	L M M M M M M	
95-47-6]	1.9×10^{-3} 3.2×10^{-3} 2.2×10^{-3} 2.0×10^{-3} 2.3×10^{-3} 1.7×10^{-3} 2.1×10^{-3} 1.9×10^{-3} 1.4×10^{-3}	4300 2500 3400	Mackay and Shiu (1981) Kim and Kim (2014) Hiatt (2013) Zhang et al. (2013) Sieg et al. (2009) Li et al. (2008) Falabella and Teja (2008) Dohnal and Hovorka (1999) Kondoh and Nakajima (1997) Turner et al. (1996)	L M M M M M M M	
95-47-6]	1.9×10^{-3} 3.2×10^{-3} 2.2×10^{-3} 2.0×10^{-3} 2.3×10^{-3} 1.7×10^{-3} 2.1×10^{-3} 1.9×10^{-3} 1.4×10^{-3} 2.4×10^{-3}	4300 2500 3400 4500	Mackay and Shiu (1981) Kim and Kim (2014) Hiatt (2013) Zhang et al. (2013) Sieg et al. (2009) Li et al. (2008) Falabella and Teja (2008) Dohnal and Hovorka (1999) Kondoh and Nakajima (1997) Turner et al. (1996) Dewulf et al. (1995)	L M M M M M M M M	
95-47-6]	1.9×10^{-3} 3.2×10^{-3} 2.2×10^{-3} 2.0×10^{-3} 2.3×10^{-3} 1.7×10^{-3} 2.1×10^{-3} 1.9×10^{-3} 1.4×10^{-3} 2.4×10^{-3} 1.9×10^{-3}	4300 2500 3400	Mackay and Shiu (1981) Kim and Kim (2014) Hiatt (2013) Zhang et al. (2013) Sieg et al. (2009) Li et al. (2008) Falabella and Teja (2008) Dohnal and Hovorka (1999) Kondoh and Nakajima (1997) Turner et al. (1996) Dewulf et al. (1995) Robbins et al. (1993)	L M M M M M M M M M	
95-47-6]	1.9×10^{-3} 3.2×10^{-3} 2.2×10^{-3} 2.0×10^{-3} 2.3×10^{-3} 1.7×10^{-3} 2.1×10^{-3} 1.4×10^{-3} 2.4×10^{-3} 1.9×10^{-3} 1.9×10^{-3}	4300 2500 3400 4500	Mackay and Shiu (1981) Kim and Kim (2014) Hiatt (2013) Zhang et al. (2013) Sieg et al. (2009) Li et al. (2008) Falabella and Teja (2008) Dohnal and Hovorka (1999) Kondoh and Nakajima (1997) Turner et al. (1996) Dewulf et al. (1995) Robbins et al. (1993) Li and Carr (1993)	L M M M M M M M M M M	
95-47-6]	1.9×10^{-3} 3.2×10^{-3} 2.2×10^{-3} 2.0×10^{-3} 2.3×10^{-3} 1.7×10^{-3} 2.1×10^{-3} 1.4×10^{-3} 2.4×10^{-3} 1.9×10^{-3} 1.9×10^{-3} 2.1×10^{-3} 2.1×10^{-3} 2.1×10^{-3}	4300 2500 3400 4500	Mackay and Shiu (1981) Kim and Kim (2014) Hiatt (2013) Zhang et al. (2013) Sieg et al. (2009) Li et al. (2008) Falabella and Teja (2008) Dohnal and Hovorka (1999) Kondoh and Nakajima (1997) Turner et al. (1996) Dewulf et al. (1995) Robbins et al. (1993) Li and Carr (1993) Li et al. (1993)	L M M M M M M M M M M	
95-47-6]	1.9×10^{-3} 3.2×10^{-3} 2.2×10^{-3} 2.0×10^{-3} 2.3×10^{-3} 1.7×10^{-3} 2.1×10^{-3} 1.4×10^{-3} 2.4×10^{-3} 1.9×10^{-3} 1.9×10^{-3} 2.1×10^{-3} 2.1×10^{-3} 2.1×10^{-3} 2.7×10^{-3}	4300 2500 3400 4500 3400	Mackay and Shiu (1981) Kim and Kim (2014) Hiatt (2013) Zhang et al. (2013) Sieg et al. (2009) Li et al. (2008) Falabella and Teja (2008) Dohnal and Hovorka (1999) Kondoh and Nakajima (1997) Turner et al. (1996) Dewulf et al. (1995) Robbins et al. (1993) Li and Carr (1993) Li et al. (1993) Zhang and Pawliszyn (1993)	L M M M M M M M M M M M	89, 130
95-47-6]	1.9×10^{-3} 3.2×10^{-3} 2.2×10^{-3} 2.0×10^{-3} 2.3×10^{-3} 1.7×10^{-3} 2.1×10^{-3} 1.9×10^{-3} 1.9×10^{-3} 1.9×10^{-3} 1.9×10^{-3} 2.1×10^{-3} 2.1×10^{-3} 2.1×10^{-3} 2.1×10^{-3} 1.4×10^{-3} 1.4×10^{-3}	4300 2500 3400 4500	Mackay and Shiu (1981) Kim and Kim (2014) Hiatt (2013) Zhang et al. (2013) Sieg et al. (2009) Li et al. (2008) Falabella and Teja (2008) Dohnal and Hovorka (1999) Kondoh and Nakajima (1997) Turner et al. (1996) Dewulf et al. (1995) Robbins et al. (1993) Li and Carr (1993) Li et al. (1993) Zhang and Pawliszyn (1993) Kolb et al. (1992)	L M M M M M M M M M M M M	89, 130 102
95-47-6]	1.9×10^{-3} 3.2×10^{-3} 2.2×10^{-3} 2.0×10^{-3} 2.3×10^{-3} 1.7×10^{-3} 1.9×10^{-3} 1.4×10^{-3} 1.9×10^{-3} 1.9×10^{-3} 1.9×10^{-3} 2.1×10^{-3} 2.1×10^{-3} 2.7×10^{-3} 1.4×10^{-3} 1.7×10^{-3}	4300 2500 3400 4500 3400	Mackay and Shiu (1981) Kim and Kim (2014) Hiatt (2013) Zhang et al. (2013) Sieg et al. (2009) Li et al. (2008) Falabella and Teja (2008) Dohnal and Hovorka (1999) Kondoh and Nakajima (1997) Turner et al. (1996) Dewulf et al. (1995) Robbins et al. (1993) Li and Carr (1993) Li et al. (1993) Zhang and Pawliszyn (1993) Kolb et al. (1992) Anderson (1992)	L M M M M M M M M M M M M M	89, 130
95-47-6]	1.9×10^{-3} 3.2×10^{-3} 2.2×10^{-3} 2.0×10^{-3} 2.3×10^{-3} 1.7×10^{-3} 1.9×10^{-3} 1.4×10^{-3} 1.9×10^{-3} 1.9×10^{-3} 2.1×10^{-3} 2.1×10^{-3} 2.1×10^{-3} 1.7×10^{-3} 1.7×10^{-3} 2.1×10^{-3} 2.1×10^{-3}	4300 2500 3400 4500 3400 3000 5600	Mackay and Shiu (1981) Kim and Kim (2014) Hiatt (2013) Zhang et al. (2013) Sieg et al. (2009) Li et al. (2008) Falabella and Teja (2008) Dohnal and Hovorka (1999) Kondoh and Nakajima (1997) Turner et al. (1996) Dewulf et al. (1995) Robbins et al. (1993) Li and Carr (1993) Li et al. (1993) Zhang and Pawliszyn (1993) Kolb et al. (1992) Anderson (1992) Bissonette et al. (1990)	L M M M M M M M M M M M M M	89, 130 102 126
95-47-6]	1.9×10^{-3} 3.2×10^{-3} 2.2×10^{-3} 2.0×10^{-3} 2.3×10^{-3} 1.7×10^{-3} 1.9×10^{-3} 1.9×10^{-3} 1.9×10^{-3} 1.9×10^{-3} 2.1×10^{-3} 2.1×10^{-3} 2.1×10^{-3} 1.4×10^{-3} 1.7×10^{-3} 1.1×10^{-3}	4300 2500 3400 4500 3400	Mackay and Shiu (1981) Kim and Kim (2014) Hiatt (2013) Zhang et al. (2013) Sieg et al. (2009) Li et al. (2008) Falabella and Teja (2008) Dohnal and Hovorka (1999) Kondoh and Nakajima (1997) Turner et al. (1996) Dewulf et al. (1995) Robbins et al. (1993) Li and Carr (1993) Li et al. (1993) Zhang and Pawliszyn (1993) Kolb et al. (1992) Anderson (1992) Bissonette et al. (1988)	L M M M M M M M M M M M M M M M M M M M	102 126 103
95-47-6]	1.9×10^{-3} 3.2×10^{-3} 2.2×10^{-3} 2.0×10^{-3} 2.3×10^{-3} 1.7×10^{-3} 1.9×10^{-3} 1.4×10^{-3} 1.9×10^{-3} 2.1×10^{-3} 2.1×10^{-3} 1.7×10^{-3} 2.1×10^{-3} 1.9×10^{-3} 2.3×10^{-3}	4300 2500 3400 4500 3400 3000 5600 3200	Mackay and Shiu (1981) Kim and Kim (2014) Hiatt (2013) Zhang et al. (2013) Sieg et al. (2009) Li et al. (2008) Falabella and Teja (2008) Dohnal and Hovorka (1999) Kondoh and Nakajima (1997) Turner et al. (1996) Dewulf et al. (1995) Robbins et al. (1993) Li and Carr (1993) Li et al. (1993) Zhang and Pawliszyn (1993) Kolb et al. (1992) Anderson (1992) Bissonette et al. (1980) Ashworth et al. (1987)	L M M M M M M M M M M M M M M M M M M M	89, 130 102 126
95-47-6]	1.9×10^{-3} 3.2×10^{-3} 2.2×10^{-3} 2.0×10^{-3} 2.3×10^{-3} 1.7×10^{-3} 1.9×10^{-3} 1.4×10^{-3} 1.9×10^{-3} 1.9×10^{-3} 1.9×10^{-3} 2.1×10^{-3} 2.1×10^{-3} 2.1×10^{-3} 1.4×10^{-3} 1.7×10^{-3} 2.1×10^{-3} 2.1×10^{-3} 2.1×10^{-3} 1.9×10^{-3} 1.9×10^{-3}	4300 2500 3400 4500 3400 3000 5600	Mackay and Shiu (1981) Kim and Kim (2014) Hiatt (2013) Zhang et al. (2009) Li et al. (2008) Falabella and Teja (2008) Dohnal and Hovorka (1999) Kondoh and Nakajima (1997) Turner et al. (1996) Dewulf et al. (1995) Robbins et al. (1993) Li and Carr (1993) Li et al. (1993) Zhang and Pawliszyn (1993) Kolb et al. (1992) Anderson (1992) Bissonette et al. (1988) Yurteri et al. (1987) Sanemasa et al. (1982)	L M M M M M M M M M M M M M M M M M M M	102 126 103 9
95-47-6]	1.9×10^{-3} 3.2×10^{-3} 2.2×10^{-3} 2.0×10^{-3} 2.3×10^{-3} 1.7×10^{-3} 1.9×10^{-3} 1.4×10^{-3} 1.9×10^{-3} 2.1×10^{-3} 2.1×10^{-3} 1.7×10^{-3} 2.1×10^{-3} 1.9×10^{-3} 2.3×10^{-3}	4300 2500 3400 4500 3400 3000 5600 3200	Mackay and Shiu (1981) Kim and Kim (2014) Hiatt (2013) Zhang et al. (2013) Sieg et al. (2009) Li et al. (2008) Falabella and Teja (2008) Dohnal and Hovorka (1999) Kondoh and Nakajima (1997) Turner et al. (1996) Dewulf et al. (1995) Robbins et al. (1993) Li and Carr (1993) Li et al. (1993) Zhang and Pawliszyn (1993) Kolb et al. (1992) Anderson (1992) Bissonette et al. (1980) Ashworth et al. (1987)	L M M M M M M M M M M M M M M M M M M M	102 126 103

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference		Note
	1.8×10^{-3}		Shiu and Ma (2000)	V	
	1.8×10^{-3}		Mackay et al. (1992a)	V	
	2.3×10^{-3}		Eastcott et al. (1988)	V	
	1.8×10^{-3}		Hine and Mookerjee (1975)	V	
	1.9×10^{-3}		Mackay and Leinonen (1975)	V	
	1.9×10^{-3}		Sieg et al. (2008)	C	
	2.0×10^{-3}		Hilal et al. (2008)	Q	
		4100	Kühne et al. (2005)	Q	
	1.1×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
		4100	Kühne et al. (2005)	?	
	2.3×10^{-3}		Yaws and Yang (1992)	?	92
	1.9×10^{-3}		Abraham et al. (1990)	?	
1,2-dimethylbenzene-d10 C ₆ D ₄ (CD ₃) ₂ (<i>o</i> -xylene-d10) [56004-61-6]	3.0×10^{-3}	4700	Hiatt (2013)	M	
1,3-dimethylbenzene	1.4×10^{-3}	4200	Staudinger and Roberts (2001)	L	
$C_6H_4(CH_3)_2$	1.3×10^{-3}	4200	Staudinger and Roberts (1996)	L	
(m-xylene)	1.4×10^{-3}		Mackay and Shiu (1981)	L	
[108-38-3]	1.3×10^{-3}		Kim and Kim (2014)	M	
	1.4×10^{-3}		Li et al. (2008)	M	
	1.3×10^{-3}		Karl et al. (2003)	M	31
	1.5×10^{-3}		Dohnal and Hovorka (1999)	M	
	1.5×10^{-3}	2900	Kondoh and Nakajima (1997)	M	
	1.6×10^{-3}	4300	Dewulf et al. (1995)	M	
	1.3×10^{-3}		Li and Carr (1993)	M	
	1.5×10^{-3}		Li et al. (1993)	M	
	1.4×10^{-3}	6000	Bissonette et al. (1990)	M	
	1.3×10^{-3}	3300	Ashworth et al. (1988)	M	103
	1.4×10^{-3}	4700	Sanemasa et al. (1982)	M	
	6.4×10^{-4}		Sato and Nakajima (1979a)	M	19
	1.8×10^{-3}	4500	Tsibul'skii et al. (1979)	M	
	1.4×10^{-3}		Mackay et al. (2006a)	V	
	1.4×10^{-3}		Shiu and Ma (2000)	V	
	1.4×10^{-3}		Mackay et al. (1992a)	V	
	1.4×10^{-3}		Eastcott et al. (1988)	V	
	1.6×10^{-3}		Hine and Mookerjee (1975)	V	
	1.7×10^{-3}	5000	Andon et al. (1954)	V	129
	1.7×10^{-3}		Bohon and Claussen (1951)	V	
	1.7×10^{-3}	4300	Shaw (1989)	X	3
	1.4×10^{-3}		Sieg et al. (2008)	C	-
	1.5×10^{-3}		Hilal et al. (2008)	Q	
	1.5 / 10	4700	Kühne et al. (2005)	Q	
	1.1×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
		4900	Kühne et al. (2005)	?	
	1.5×10^{-3}		Yaws and Yang (1992)	?	92
	1.3×10^{-3}		Abraham et al. (1990)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\mathrm{d} \ln H^{cp}$			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]	Reference	Туре	Note
1,4-dimethylbenzene	1.9×10^{-3}	4200	Fogg and Sangster (2003)	L	
$C_6H_4(CH_3)_2$	1.3×10^{-3}	4000	Staudinger and Roberts (2001)	L	
(p-xylene)	1.3×10^{-3}	3800	Staudinger and Roberts (1996)	L	
[106-42-3]	1.4×10^{-3}		Mackay and Shiu (1981)	L	
	1.3×10^{-3}		Kim and Kim (2014)	M	
	1.4×10^{-3}		Li et al. (2008)	M	
	2.0×10^{-3}		Bobadilla et al. (2003)	M	
	1.4×10^{-3}		Ryu and Park (1999)	M	
	1.5×10^{-3}		Dohnal and Hovorka (1999)	M	
	1.5×10^{-3}	2900	Kondoh and Nakajima (1997)	M	
	9.8×10^{-4}	3200	Park et al. (1997)	M	
	1.7×10^{-3}	4800	Dewulf et al. (1995)	M	10-
	1.2×10^{-3}	3100	Hansen et al. (1993)	M	105
	1.3×10^{-3}		Li and Carr (1993)	M	
	1.4×10^{-3}		Li et al. (1993)	M	
	1.7×10^{-3} 1.2×10^{-3}	5200	Zhang and Pawliszyn (1993)	M	
	1.2×10^{-3} 1.3×10^{-3}	5300	Bissonette et al. (1990)	M	102
	1.3×10^{-3} 1.3×10^{-3}	3500	Ashworth et al. (1988)	M	103
	6.1×10^{-4}	4800	Sanemasa et al. (1982)	M	10
	2.3×10^{-3}	5400	Sato and Nakajima (1979a)	M	19
	1.8×10^{-4}	3400	Wasik and Tsang (1970) Abraham and Acree Jr. (2007)	M V	
	1.7×10^{-3}		Mackay et al. (2006a)	V	
	1.4×10^{-3}		Shiu and Ma (2000)	V	
	1.5×10^{-3}		Park et al. (1997)	V	
	1.7×10^{-3}		Mackay et al. (1992a)	V	
	1.5×10^{-3}		Hwang et al. (1992)	v	
	1.8×10^{-3}		Eastcott et al. (1988)	v	
	1.6×10^{-3}		Hine and Mookerjee (1975)	v	
	1.6×10^{-3}	4900	Andon et al. (1954)	V	129
	1.6×10^{-3}	., 00	Bohon and Claussen (1951)	V	12)
	1.4×10^{-3}		Foster et al. (1994)	X	137
	1.4×10^{-3}		Sieg et al. (2008)	C	
	1.3×10^{-3}		Schüürmann (2000)	C	7
	1.5×10^{-3}		Hilal et al. (2008)	Q	
		4700	Kühne et al. (2005)	Q	
	1.1×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
		4500	Kühne et al. (2005)	?	
	1.6×10^{-3}		Yaws and Yang (1992)	?	92
	1.4×10^{-3}		Abraham et al. (1990)	?	
1,2,3-trimethylbenzene	2.7×10^{-3}	4800	Fogg and Sangster (2003)	L	
$C_6H_3(CH_3)_3$	3.1×10^{-3}		Mackay and Shiu (1981)	L	
[526-73-8]	2.4×10^{-3}	4500	Sanemasa et al. (1982)	M	
	2.9×10^{-3}		Mackay et al. (2006a)	V	
	2.9×10^{-3}		Shiu and Ma (2000)	V	
	3.1×10^{-3}		Abraham et al. (1994a)	V	
	2.9×10^{-3}		Mackay et al. (1992a)	V	
	2.7×10^{-3}		Eastcott et al. (1988)	V	
	3.1×10^{-3}		Hilal et al. (2008)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\mathrm{d} \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]		Reference	Турс	Note
[CAS registry number]	$\left\lfloor \frac{1}{m^3 Pa} \right\rfloor$	[K]			
		3900	Kühne et al. (2005)	Q	
	8.2×10^{-4}		Nirmalakhandan et al. (1997)	Q	
		4400	Kühne et al. (2005)	?	
	2.7×10^{-3}		Yaws and Yang (1992)	?	92
	2.1×10^{-3}		Abraham et al. (1990)	?	
1,2,4-trimethylbenzene	1.7×10^{-3}	3100	Fogg and Sangster (2003)	L	
$C_6H_3(CH_3)_3$	1.7×10^{-3}		Mackay and Shiu (1981)	L	
[95-63-6]	3.2×10^{-3}	5200	Hiatt (2013)	M	
	1.7×10^{-3}		Li et al. (2008)	M	
	2.3×10^{-3}	3600	Kondoh and Nakajima (1997)	M	
	1.5×10^{-3}	4300	Hansen et al. (1993)	M	105
	2.1×10^{-3}		Yurteri et al. (1987)	M	9
	1.6×10^{-3}	4800	Sanemasa et al. (1982)	M	
	1.8×10^{-3}		Mackay et al. (2006a)	V	
	1.8×10^{-3}		Shiu and Ma (2000)	V	
	1.7×10^{-3}		Abraham et al. (1994a)	V	
	1.8×10^{-3}		Mackay et al. (1992a)	V	
	1.6×10^{-3}		Eastcott et al. (1988)	V	
	1.7×10^{-3}		Hine and Mookerjee (1975)	V	
	2.1×10^{-3}		Hilal et al. (2008)	Q	
		4500	Kühne et al. (2005)	Q	
	8.0×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	8.2×10^{-4}		Arbuckle (1983)	Q	
	2	4700	Kühne et al. (2005)	?	
	1.7×10^{-3}		Yaws and Yang (1992)	?	92
	1.6×10^{-3}		Abraham et al. (1990)	?	
1,3,5-trimethylbenzene	1.7×10^{-3}		Mackay and Shiu (1981)	L	
$C_6H_3(CH_3)_3$	2.3×10^{-3}	5100	Hiatt (2013)	M	
mesitylene)	2.0×10^{-3}		Karl et al. (2003)	M	31
108-67-8]	1.5×10^{-3}	3000	Kondoh and Nakajima (1997)	M	
	1.3×10^{-3}		Li and Carr (1993)	M	
	1.4×10^{-3}		Li et al. (1993)	M	
	1.4×10^{-3}	3600	Ashworth et al. (1988)	M	103
	1.1×10^{-3}	4700	Sanemasa et al. (1982)	M	
	1.1×10^{-3}	4600	Sanemasa et al. (1981)	M	
	1.4×10^{-4}		Abraham and Acree Jr. (2007)	V	
	1.3×10^{-3}		Mackay et al. (2006a)	V	
	1.3×10^{-3}		Shiu and Ma (2000)	V	
	1.8×10^{-3}		Abraham et al. (1994a)	V	
	1.3×10^{-3}		Mackay et al. (1992a)	V	
	1.2×10^{-3}		Eastcott et al. (1988)	V	
	1.4×10^{-3}	5000	Hilal et al. (2008)	Q	
	0.0 10=4	5000	Kühne et al. (2005)	Q	
	8.0×10^{-4}	4400	Nirmalakhandan et al. (1997)	Q	
	1.2×10^{-3}	4400	Kühne et al. (2005)	?	02
			Yaws and Yang (1992)	?	92
	1.3×10^{-3}		Abraham et al. (1990)	?	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Typa	Note
(Other name(s))	「 mol		Reference	Турс	Note
[CAS registry number]	$\left[\frac{m^3}{m^3}$ Pa $\right]$	[K]			
1,2,3,5-tetramethylbenzene	1.2×10^{-3}		Zhang et al. (2010)	Q	107, 108
$C_{10}H_{14}$	2.2×10^{-3}		Zhang et al. (2010)	Q	107, 109
[527-53-7]	2.2×10^{-3}		Zhang et al. (2010)	Q	107, 110
	4.1×10^{-4}		Zhang et al. (2010)	Q	107, 111
1,2,4,5-tetramethylbenzene	3.9×10^{-4}		Mackay and Shiu (1981)	L	
$C_{10}H_{14}$	3.9×10^{-4}		Mackay et al. (2006a)	V	
[95-93-2]	3.9×10^{-4}		Mackay et al. (1992a)	V	
	3.9×10^{-4}		Eastcott et al. (1988)	V	
	1.2×10^{-3}		Zhang et al. (2010)	Q	107, 103
	2.5×10^{-3}		Zhang et al. (2010)	Q	107, 109
	1.9×10^{-3}		Zhang et al. (2010)	Q	107, 110
	4.1×10^{-4}		Zhang et al. (2010)	Q	107, 11
	2.9×10^{-3}		Hilal et al. (2008)	Q	
	3.9×10^{-4}		Yaws and Yang (1992)	?	92
ethylbenzene	1.4×10^{-3}	4800	Fogg and Sangster (2003)	L	
$C_6H_5C_2H_5$	1.3×10^{-3}	5100	Staudinger and Roberts (2001)	L	
[100-41-4]	1.2×10^{-3}	5100	Staudinger and Roberts (1996)	L	
	1.3×10^{-3}		Mackay and Shiu (1981)	L	
	2.0×10^{-3}	4100	Hiatt (2013)	M	
	1.4×10^{-3}		Zhang et al. (2013)	M	
	1.3×10^{-3}	5100	Sieg et al. (2009)	M	121
	1.4×10^{-3}		Li et al. (2008)	M	
	1.2×10^{-3}	2700	Falabella and Teja (2008)	M	89, 130
	1.1×10^{-3}		Lodge and Danso (2007)	M	
	2		Cheng et al. (2003)	M	123
	1.6×10^{-3}		Miller and Stuart (2000)	M	126
	1.1×10^{-3}		Ryu and Park (1999)	M	138
	1.3×10^{-3}		Allen et al. (1998)	M	
	1.4×10^{-3}	2800	Kondoh and Nakajima (1997)	M	
	1.1×10^{-3}		Turner et al. (1996)	M	
	1.5×10^{-3}	4900	Dewulf et al. (1995)	M	
	1.3×10^{-3}	4600	Robbins et al. (1993)	M	
	1.3×10^{-3}	5300	Perlinger et al. (1993)	M	
	1.3×10^{-3}		Li and Carr (1993)	M	
	1.3×10^{-3}		Li et al. (1993)	M	
	2.5×10^{-3}		Zhang and Pawliszyn (1993)	M	
	1.1×10^{-3}	5500	Bissonette et al. (1990)	M	
	1.2×10^{-3}	5000	Ashworth et al. (1988)	M	103
	1.3×10^{-3}	4400	Heidman et al. (1985)	M	
	1.3×10^{-3}	4600	Sanemasa et al. (1982)	M	
	1.4×10^{-3}	4500	Sanemasa et al. (1981)	M	
	1.4×10^{-3}	5500	Ervin et al. (1980)	M	
	1.5×10^{-3}		Warner et al. (1980)	M	
	1.2×10^{-3}		Mackay et al. (1979)	M	
	6.6×10^{-4}		Sato and Nakajima (1979a)	M	19
	1.3×10^{-3}	5600	Brown and Wasik (1974)	M	
	1.6×10^{-3}	6400	Hartkopf and Karger (1973)	M	
	1.6×10^{-4}		Abraham and Acree Jr. (2007)	V	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]	Reference	1) pc	11010
	1.1×10 ⁻³		Madamat al. (2006a)	17	
	1.1×10^{-3} 1.2×10^{-3}		Mackay et al. (2006a)	V V	
	1.2×10^{-3} 1.2×10^{-3}		Shiu and Ma (2000)		
	1.2×10^{-3} 1.1×10^{-3}		Lide and Frederikse (1995)	V	
	1.1×10^{-3} 1.2×10^{-3}		Mackay et al. (1992a)	V	
	1.2×10^{-3} 1.0×10^{-3}		Hwang et al. (1992)	V	
	1.0×10^{-3} 1.2×10^{-3}	4000	Eastcott et al. (1988)	V	
		4800	Abraham (1984)	V	
	1.6×10^{-3}	4900	Ben-Naim and Wilf (1980)	V	
	1.5×10^{-3}		Warner et al. (1980)	V	
	1.1×10^{-3}	400-	Hine and Mookerjee (1975)	V	
	1.5×10^{-3}	4900	Andon et al. (1954)	V	129
	1.5×10^{-3}		Bohon and Claussen (1951)	V	
	1.1×10^{-3}		Mackay et al. (1979)	T	
	2	4800	Gill et al. (1976)	T	100
	1.6×10^{-3}	1700	Goldstein (1982)	X	116
	1.3×10^{-3}		Sieg et al. (2008)	C	
	1.6×10^{-3}		Ryan et al. (1988)	C	
	1.5×10^{-3}		Shen (1982)	C	
	1.4×10^{-3}		Hilal et al. (2008)	Q	
	2	4700	Kühne et al. (2005)	Q	
	1.3×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
	1.3×10^{-3}		Arbuckle (1983)	Q	
	2	5000	Kühne et al. (2005)	?	
	1.1×10^{-3}		Hoff et al. (1993)	?	7
	1.2×10^{-3}		Yaws and Yang (1992)	?	92
	1.2×10^{-3}		Abraham et al. (1990)	?	
ethylbenzene-d10 C ₆ D ₅ C ₂ D ₅	2.0×10^{-3}	4200	Hiatt (2013)	M	
[25837-05-2]	2.0. 10-3		HGDD (2015)	* 7	
,2-diethylbenzene	3.8×10^{-3}		HSDB (2015)	V	
C ₁₀ H ₁₄	1.2×10^{-3}		Hilal et al. (2008)	C	
(o-diethylbenzene)	1.3×10^{-3}	4000	Hilal et al. (2008)	Q	
[135-01-3]		4800 5100	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
1,3-diethylbenzene	1.1×10^{-3}		HSDB (2015)	V	
$C_{10}H_{14}$	3.8×10^{-3}		Hilal et al. (2008)	Č	
∠10 ¹¹ 14 (<i>m</i> -diethylbenzene)	9.7×10^{-4}		Hilal et al. (2008)	Q	
<i>m</i> -dediyloenzene) 141-93-5]	7.7 × 10	5300	Kühne et al. (2005)	Q	
[171 /J"J]		5300	Kühne et al. (2005)	?	
1,4-diethylbenzene	1.4×10^{-3}		HSDB (2015)	V	
$C_{10}H_{14}$	1.1×10^{-3}		Hilal et al. (2008)	Q	
(p-diethylbenzene)		5300	Kühne et al. (2005)	Q	
[105-05-5]	7.9×10^{-4}		Nirmalakhandan et al. (1997)	Q	
		5900	Kühne et al. (2005)	?	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} (1/T)}$			
Formula (Other name(s))		$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
propylbenzene	1.4×10^{-3}		Mackay and Shiu (1981)	L	
$C_6H_5C_3H_7$	1.9×10^{-3}	4500	Hiatt (2013)	M	
[103-65-1]	1.5×10^{-3}		Karl et al. (2003)	M	31
	1.1×10^{-3}	2600	Kondoh and Nakajima (1997)	M	
	8.6×10^{-4}	5400	Perlinger et al. (1993)	M	
	9.3×10^{-4}		Li and Carr (1993)	M	
	9.1×10^{-4} 9.0×10^{-4}	2700	Li et al. (1993)	M	102
	9.0×10^{-4} 9.5×10^{-4}	3700 4700	Ashworth et al. (1988)	M M	103
	5.0×10^{-4}	4700	Sanemasa et al. (1982)	M	19
	9.6×10^{-4}		Sato and Nakajima (1979a) Mackay et al. (2006a)	V	19
	9.6×10^{-4}		Shiu and Ma (2000)	v V	
	9.6×10^{-4}		Mackay et al. (1992a)	V	
	9.7×10^{-4}		Eastcott et al. (1988)	V	
	9.7×10^{-4}	5300	Abraham (1984)	v	
	1.5×10^{-3}	5500	Ben-Naim and Wilf (1980)	v	
	9.9×10^{-4}	2200	Hine and Mookerjee (1975)	V	
		5300	Gill et al. (1976)	T	100
	9.9×10^{-4}		Hilal et al. (2008)	Q	
		5000	Kühne et al. (2005)	Q	
	1.1×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
		4700	Kühne et al. (2005)	?	
	9.6×10^{-4}		Yaws and Yang (1992)	?	92
	9.7×10^{-4}		Abraham et al. (1990)	?	
2-propyl)-benzene	1.2×10^{-3}	3200	Staudinger and Roberts (2001)	L	
$C_6H_5C_3H_7$	7.7×10^{-3}		Mackay and Shiu (1981)	L	
isopropylbenzene; cumene)	1.4×10^{-3}	4900	Hiatt (2013)	M	
98-82-8]	1.0×10^{-3}	2500	Kondoh and Nakajima (1997)	M	
	8.7×10^{-4}	3300	Hansen et al. (1993)	M	105
	9.1×10^{-4}		Li and Carr (1993)	M	
	8.9×10^{-4} 1.6×10^{-3}	2200	Li et al. (1993)	M	102
	8.9×10^{-4}	3200	Ashworth et al. (1988) Sanemasa et al. (1982)	M	103
	5.6×10^{-4}	4700	Sato and Nakajima (1979a)	M M	19
	6.8×10^{-4}		Mackay et al. (2006a)	V	19
	6.8×10^{-4}		Shiu and Ma (2000)	V	
	6.8×10^{-4}		Mackay et al. (1992a)	V	
	6.8×10^{-4}		Hwang et al. (1992)	V	
	6.6×10^{-4}		Eastcott et al. (1988)	V	
	6.7×10^{-4}		Hine and Mookerjee (1975)	v	
	6.8×10^{-4}		Mackay and Leinonen (1975)	v	
	9.4×10^{-4}		Savary et al. (2014)	Q	
	8.6×10^{-4}		Hilal et al. (2008)	Q	
		5000	Kühne et al. (2005)	Q	
	9.2×10^{-4}		Nirmalakhandan et al. (1997)	Q	
	9.2×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
		4400	Kühne et al. (2005)	?	
	6.8×10^{-4}		Hoff et al. (1993)	?	7
	6.8×10^{-4}		Yaws and Yang (1992)	?	

Table 6: Henry's law constants for water as solvent (... continued)

1-ethyl-2-methylbenzene C ₆ H ₄ CH ₃ C ₂ H ₅ (<i>o</i> -ethyltoluene) [611-14-3]	8.8×10^{-4} 2.3×10^{-3} 1.9×10^{-3} 1.9×10^{-3} 1.9×10^{-3} 1.8×10^{-3} 9.5×10^{-4}		Abraham et al. (1990) Fogg and Sangster (2003) Mackay and Shiu (1981) Mackay et al. (2006a) Mackay et al. (1992a)	? W L V	139
C ₆ H ₄ CH ₃ C ₂ H ₅ (<i>o</i> -ethyltoluene)	$ \begin{array}{c} 1.9 \times 10^{-3} \\ 1.9 \times 10^{-3} \\ 1.9 \times 10^{-3} \\ 1.8 \times 10^{-3} \end{array} $		Mackay et al. (2006a)		
).C/(10	4500	Eastcott et al. (1988) Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan et al. (1997)	V V Q Q Q	
	2.3×10^{-3}	3200	Kühne et al. (2005) Yaws and Yang (1992)	?	92
1-ethyl-3-methylbenzene $C_6H_4CH_3C_2H_5$ (m -ethyltoluene) [620-14-4]	1.3×10^{-3}		Hilal et al. (2008)	Q	
1-ethyl-4-methylbenzene C ₆ H ₄ CH ₃ C ₂ H ₅	$2.0 \times 10^{-3} \\ 2.0 \times 10^{-3}$		Mackay and Shiu (1981) Mackay et al. (2006a)	L V	
(p-ethyltoluene)	2.0×10^{-3}		Mackay et al. (2000a) Mackay et al. (1992a)	V	
[622-96-8]	2.0×10^{-3}		Eastcott et al. (1988)	V	
[022-70-6]	1.4×10^{-3}		Hilal et al. (2008)	Q	
	9.5×10^{-4}		Nirmalakhandan et al. (1997)	Q	
	2.0×10^{-3}		Yaws and Yang (1992)	?	92
butylbenzene	7.7×10^{-4}		Mackay and Shiu (1981)	L	
$C_6H_5C_4H_9$	2.0×10^{-3}	4500	Hiatt (2013)	M	
[104-51-8]	7.4×10^{-4}		Ryu and Park (1999)	M	
	9.1×10^{-4}	2700	Kondoh and Nakajima (1997)	M	
	6.2×10^{-4} 7.1×10^{-4}	6000	Perlinger et al. (1993)	M	
	6.7×10^{-4}		Li and Carr (1993) Li et al. (1993)	M M	
	6.7×10^{-4} 6.2×10^{-4}		HSDB (2015)	M V	
	9.9×10^{-5}		Abraham and Acree Jr. (2007)	v V	
	7.5×10^{-4}		Mackay et al. (2006a)	V	
	7.5×10^{-4}		Shiu and Ma (2000)	v	
	7.5×10^{-4}		Mackay et al. (1992a)	v	
	7.6×10^{-4}		Meylan and Howard (1991)	V	
	7.5×10^{-4}		Eastcott et al. (1988)	V	
	7.4×10^{-4}		Abraham (1984)	V	
	1.7×10^{-3}	6500	Ben-Naim and Wilf (1980)	V	
	7.9×10^{-4}		Hine and Mookerjee (1975)	V	
	7.7×10^{-4}		Hilal et al. (2008)	Q	
	i	5300	Kühne et al. (2005)	Q	
	7.1×10^{-4}		Meylan and Howard (1991)	Q	
	8.4×10^{-4}	4000	Nirmalakhandan and Speece (1988a)	Q	
	7.5 10-4	4900	Kühne et al. (2005)	?	02
	7.5×10^{-4} 7.5×10^{-4}		Yaws and Yang (1992) Abraham et al. (1990)	? ?	92

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	dln H^{cp}		
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Type Note
(Other name(s))	[mol]		Reference	Type Note
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]		
1-methylpropyl)-benzene	7.1×10^{-4}	4.500	Mackay and Shiu (1981)	L
$C_6H_5C_4H_9$	1.3×10^{-3}	4600	Hiatt (2013)	M
sec-butylbenzene)	7.5×10^{-4}	2300	Kondoh and Nakajima (1997)	M
135-98-8]	5.5×10^{-4}		HSDB (2015)	V
	5.3×10^{-4}		Mackay et al. (2006a)	V
	5.3×10^{-4}		Mackay et al. (1992a)	V
	5.4×10^{-4}		Eastcott et al. (1988)	V
	8.6×10^{-4}		Hine and Mookerjee (1975)	V
	8.6×10^{-4} 9.9×10^{-5}		Hilal et al. (2008)	Q
			Nirmalakhandan et al. (1997)	Q
	7.2×10^{-4}		Nirmalakhandan and Speece (1988a)	Q
2-methylpropyl)-benzene	3.0×10^{-4}		Mackay and Shiu (1981)	L
C ₆ H ₅ C ₄ H ₉	3.0×10^{-4}		Mackay et al. (2006a)	V
isobutylbenzene)	3.0×10^{-4}		Mackay et al. (1992a)	V
538-93-2]	3.0×10^{-4}		Eastcott et al. (1988)	V
	7.0×10^{-4}		Hilal et al. (2008)	Q
	7.0×10^{-4}		Nirmalakhandan et al. (1997)	Q
1,1-dimethylethyl)-benzene	8.3×10^{-4}		Mackay and Shiu (1981)	L
$C_6H_5C_4H_9$	1.6×10^{-3}	4700	Hiatt (2013)	M
tert-butylbenzene)	9.4×10^{-4}	2400	Kondoh and Nakajima (1997)	M
98-06-6]	7.5×10^{-4}		HSDB (2015)	V
	7.8×10^{-4}		Mackay et al. (2006a)	V
	7.8×10^{-4}		Mackay et al. (1992a)	V
	7.7×10^{-4}		Eastcott et al. (1988)	V
	8.4×10^{-4}		Hine and Mookerjee (1975)	V
	7.7×10^{-4} 6.0×10^{-4}		Hilal et al. (2008) Nirmalakhandan and Speece (1988a)	Q Q
4.12.4 4.14.101	9.0×10^{-4}			
-methyl-2-(1-methylethyl)-benzene	9.0×10^{-3} 1.2×10^{-3}		HSDB (2015)	V
C ₁₀ H ₁₄ o-cymene) 527-84-4]	1.2×10		Hilal et al. (2008)	Q
-methyl-3-(1-methylethyl)-benzene	1.4×10 ⁻³		HSDB (2015)	V
$C_{10}H_{14}$	9.0×10^{-4}		Copolovici and Niinemets (2005)	V
<i>m</i> -cymene) 535-77-3]	8.6×10^{-4}		Hilal et al. (2008)	Q
-methyl-4-(1-methylethyl)-benzene	1.3×10^{-3}		Mackay and Shiu (1981)	L
$C_{10}H_{14}$	1.8×10^{-3}	4900	Hiatt (2013)	M
<i>p</i> -cymene; <i>p</i> -isopropyltoluene)	1.0×10^{-3}	2600	Kondoh and Nakajima (1997)	M
99-87-6]	9.0×10^{-4}		HSDB (2015)	V
	1.2×10^{-3}		Mackay et al. (2006a)	V
	1.1×10^{-3}		Copolovici and Niinemets (2005)	V
	9.1×10^{-4}		Niinemets and Reichstein (2002)	V
	1.3×10^{-3}		Abraham et al. (1994a)	V
	1.2×10^{-3}		Mackay et al. (1992a)	V
	1.2×10^{-3}		Eastcott et al. (1988)	V
	8.8×10^{-4}		Hilal et al. (2008)	Q
		5300	Kühne et al. (2005)	Q

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
	6.5×10^{-4}	4500	Nirmalakhandan et al. (1997) Kühne et al. (2005)	Q ?	
4- <i>tert</i> -butyltoluene	6.4×10^{-4}		HSDB (2015)	Q	38
$C_{11}H_{16}$	6.4×10^{-4}		Zhang et al. (2010)	Q	107, 108
[98-51-1]	5.2×10^{-4}		Zhang et al. (2010)	Q	107, 109
	1.3×10^{-3}		Zhang et al. (2010)	Q	107, 110
	4.7×10^{-4}		Zhang et al. (2010)	Q	107, 111
pentylbenzene	1.7×10^{-3}		Mackay and Shiu (1981)	L	
$C_6H_5C_5H_{11}$	6.1×10^{-4}		Ryu and Park (1999)	M	
[538-68-1]	5.9×10^{-4}		Mackay et al. (2006a)	V	
	5.9×10^{-4}		Mackay et al. (1992a)	V	
	1.6×10^{-3}		Eastcott et al. (1988)	V	
	6.0×10^{-4}		Abraham (1984)	V	
	3.0×10^{-3}	7800	Ben-Naim and Wilf (1980)	V	
	6.1×10^{-4}		Hilal et al. (2008)	Q	
	6.4×10^{-4}		Nirmalakhandan et al. (1997)	Q	
	5.9×10^{-4}		Yaws and Yang (1992)	?	92
	6.0×10^{-4}		Abraham et al. (1990)	?	
pentamethylbenzene C ₁₁ H ₁₆ [700-12-9]	7.7×10^{-3}		Hilal et al. (2008)	Q	
(1,1-dimethylpropyl)-benzene	5.4×10^{-4}		Hine and Mookerjee (1975)	V	
$C_6H_5C_5H_{11}$	9.9×10^{-4}		Hilal et al. (2008)	Q	
(<i>tert</i> -amylbenzene) [2049-95-8]	5.1×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
hexylbenzene	4 4 40-1				
HOA J LOCHIZOHO	4.6×10^{-4}		Mackay et al. (2006a)	V	
-	4.6×10^{-4} 4.6×10^{-4}		Mackay et al. (2006a) Mackay et al. (1992a)	V V	
$C_6H_5C_6H_{13}$	4.6×10^{-4} 4.5×10^{-4}				
$C_6H_5C_6H_{13}$	$4.6 \times 10^{-4} $ $4.5 \times 10^{-4} $ $5.1 \times 10^{-4} $		Mackay et al. (1992a)	V	
$C_6H_5C_6H_{13}$	4.6×10^{-4} 4.5×10^{-4} 5.1×10^{-4} 4.5×10^{-4}		Mackay et al. (1992a) Meylan and Howard (1991) Eastcott et al. (1988) Abraham (1984)	V V	
$C_6H_5C_6H_{13}$	4.6×10^{-4} 4.5×10^{-4} 5.1×10^{-4} 4.5×10^{-4} 7.7×10^{-3}	9000	Mackay et al. (1992a) Meylan and Howard (1991) Eastcott et al. (1988)	V V V	
$C_6H_5C_6H_{13}$	4.6×10^{-4} 4.5×10^{-4} 5.1×10^{-4} 4.5×10^{-4} 7.7×10^{-3} 4.8×10^{-4}	9000	Mackay et al. (1992a) Meylan and Howard (1991) Eastcott et al. (1988) Abraham (1984) Ben-Naim and Wilf (1980) Hilal et al. (2008)	V V V V Q	
$C_6H_5C_6H_{13}$	4.6×10^{-4} 4.5×10^{-4} 5.1×10^{-4} 4.5×10^{-4} 7.7×10^{-3} 4.8×10^{-4} 5.0×10^{-4}	9000	Mackay et al. (1992a) Meylan and Howard (1991) Eastcott et al. (1988) Abraham (1984) Ben-Naim and Wilf (1980) Hilal et al. (2008) Nirmalakhandan et al. (1997)	V V V V Q Q	
$C_6H_5C_6H_{13}$	4.6×10^{-4} 4.5×10^{-4} 5.1×10^{-4} 4.5×10^{-4} 7.7×10^{-3} 4.8×10^{-4} 5.0×10^{-4} 4.0×10^{-4}	9000	Mackay et al. (1992a) Meylan and Howard (1991) Eastcott et al. (1988) Abraham (1984) Ben-Naim and Wilf (1980) Hilal et al. (2008) Nirmalakhandan et al. (1997) Meylan and Howard (1991)	V V V V Q Q	
$C_6H_5C_6H_{13}$	4.6×10^{-4} 4.5×10^{-4} 5.1×10^{-4} 4.5×10^{-4} 4.5×10^{-4} 7.7×10^{-3} 4.8×10^{-4} 5.0×10^{-4} 4.0×10^{-4} 4.6×10^{-4}	9000	Mackay et al. (1992a) Meylan and Howard (1991) Eastcott et al. (1988) Abraham (1984) Ben-Naim and Wilf (1980) Hilal et al. (2008) Nirmalakhandan et al. (1997) Meylan and Howard (1991) Yaws and Yang (1992)	V V V V V Q Q Q	92
$C_6H_5C_6H_{13}$	4.6×10^{-4} 4.5×10^{-4} 5.1×10^{-4} 4.5×10^{-4} 7.7×10^{-3} 4.8×10^{-4} 5.0×10^{-4} 4.0×10^{-4}	9000	Mackay et al. (1992a) Meylan and Howard (1991) Eastcott et al. (1988) Abraham (1984) Ben-Naim and Wilf (1980) Hilal et al. (2008) Nirmalakhandan et al. (1997) Meylan and Howard (1991)	V V V V Q Q	92
$C_6H_5C_6H_{13}$ [1077-16-3] hexamethylbenzene $C_{12}H_{18}$	4.6×10^{-4} 4.5×10^{-4} 5.1×10^{-4} 4.5×10^{-4} 4.5×10^{-4} 7.7×10^{-3} 4.8×10^{-4} 5.0×10^{-4} 4.0×10^{-4} 4.6×10^{-4}	9000	Mackay et al. (1992a) Meylan and Howard (1991) Eastcott et al. (1988) Abraham (1984) Ben-Naim and Wilf (1980) Hilal et al. (2008) Nirmalakhandan et al. (1997) Meylan and Howard (1991) Yaws and Yang (1992)	V V V V V Q Q Q	92
$C_6H_5C_6H_{13}$ $[1077-16-3]$ hexamethylbenzene $C_{12}H_{18}$ $[87-85-4]$	4.6×10^{-4} 4.5×10^{-4} 5.1×10^{-4} 4.5×10^{-4} 7.7×10^{-3} 4.8×10^{-4} 5.0×10^{-4} 4.0×10^{-4} 4.6×10^{-4} 4.3×10^{-4} 8.6×10^{-3}	9000	Mackay et al. (1992a) Meylan and Howard (1991) Eastcott et al. (1988) Abraham (1984) Ben-Naim and Wilf (1980) Hilal et al. (2008) Nirmalakhandan et al. (1997) Meylan and Howard (1991) Yaws and Yang (1992) Abraham et al. (1990) Hilal et al. (2008)	V V V V Q Q Q ??	
$C_6H_5C_6H_{13}$ [1077-16-3] hexamethylbenzene $C_{12}H_{18}$ [87-85-4] 4 -tert-butyl-o-xylene	4.6×10^{-4} 4.5×10^{-4} 5.1×10^{-4} 4.5×10^{-4} 7.7×10^{-3} 4.8×10^{-4} 5.0×10^{-4} 4.0×10^{-4} 4.6×10^{-4} 4.3×10^{-4} 8.6×10^{-3} 5.8×10^{-4}	9000	Mackay et al. (1992a) Meylan and Howard (1991) Eastcott et al. (1988) Abraham (1984) Ben-Naim and Wilf (1980) Hilal et al. (2008) Nirmalakhandan et al. (1997) Meylan and Howard (1991) Yaws and Yang (1992) Abraham et al. (1990) Hilal et al. (2008)	V V V V Q Q Q ??	107, 108
hexamethylbenzene $C_{0}H_{5}C_{6}H_{13}$ [1077-16-3] hexamethylbenzene $C_{12}H_{18}$ [87-85-4] 4 -tert-butyl-o-xylene $C_{12}H_{18}$ [7397-06-0]	4.6×10^{-4} 4.5×10^{-4} 5.1×10^{-4} 4.5×10^{-4} 7.7×10^{-3} 4.8×10^{-4} 5.0×10^{-4} 4.0×10^{-4} 4.6×10^{-4} 4.3×10^{-4} 8.6×10^{-3}	9000	Mackay et al. (1992a) Meylan and Howard (1991) Eastcott et al. (1988) Abraham (1984) Ben-Naim and Wilf (1980) Hilal et al. (2008) Nirmalakhandan et al. (1997) Meylan and Howard (1991) Yaws and Yang (1992) Abraham et al. (1990) Hilal et al. (2008)	V V V V Q Q Q ??	92 107, 108 107, 109 107, 110

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{\ominus})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]		Reference	1,700	11010
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
1-(1,1-dimethylethyl)-3,5-	5.8×10^{-4}		Zhang et al. (2010)	Q	107, 108
dimethylbenzene $C_{12}H_{18}$	4.5×10^{-4}		Zhang et al. (2010)	Q	107, 109
[98-19-1]	7.7×10^{-4}		Zhang et al. (2010)	Q	107, 110
[50 15 1]	2.7×10^{-4}		Zhang et al. (2010)	Q	107, 110
diisopropylbenzene	4.8×10^{-4}		HSDB (2015)	Q	38
C ₁₂ H ₁₈ [25321-09-9]					
heptylbenzene	2.2×10^{-2}	11000	Ben-Naim and Wilf (1980)	V	
$C_6H_5C_7H_{15}$	3.9×10^{-4}		Hilal et al. (2008)	Q	
[1078-71-3]					
5-tert-butyl-1,2,3-trimethylbenzene	5.3×10^{-4}		Zhang et al. (2010)	Q	107, 108
$C_{13}H_{20}$	9.2×10^{-4}		Zhang et al. (2010)	Q	107, 109
[98-23-7]	9.0×10^{-4}		Zhang et al. (2010)	Q	107, 110
	1.5×10^{-4}		Zhang et al. (2010)	Q	107, 111
octylbenzene	5.4×10^{-2}	12000	Ben-Naim and Wilf (1980)	V	
C ₆ H ₅ C ₈ H ₁₇ [2189-60-8]	3.2×10^{-4}		Hilal et al. (2008)	Q	
3,5-di- <i>tert</i> -butyltoluene	3.7×10^{-3}	9100	Hiatt (2013)	M	
C ₁₅ H ₂₄ [15181-11-0]					
1,3,5-tris(1-methylethyl)benzene	2.5×10^{-4}		Zhang et al. (2010)	Q	107, 108
$C_{15}H_{24}$	1.8×10^{-4}		Zhang et al. (2010)	Q	107, 109
[717-74-8]	5.2×10^{-4}		Zhang et al. (2010)	Q	107, 110
	2.6×10^{-4}		Zhang et al. (2010)	Q	107, 111
ethyl(phenylethyl)-benzene	1.1×10^{-2}		Zhang et al. (2010)	Q	107, 108
$C_{16}H_{18}$	1.2×10^{-2}		Zhang et al. (2010)	Q	107, 109
[64800-83-5]	6.4×10^{-2}		Zhang et al. (2010)	Q	107, 110
	1.8×10^{-2}		Zhang et al. (2010)	Q	107, 111
1-phenyldecane	1.3×10^{-4}		HSDB (2015)	V	
$C_{16}H_{26}$	1.3×10^{-4}		Zhang et al. (2010)	Q	107, 108
[104-72-3]	1.4×10^{-4}		Zhang et al. (2010)	Q	107, 109
	3.4×10^{-4}		Zhang et al. (2010)	Q	107, 110
	2.8×10^{-4}		Zhang et al. (2010)	Q	107, 111
4-(1-phenylethyl)- <i>m</i> -xylene	1.3×10^{-2}		Zhang et al. (2010)	Q	107, 108
$C_{16}H_{18}$	1.6×10^{-2}		Zhang et al. (2010)	Q	107, 109
[6165-52-2]	5.2×10^{-2}		Zhang et al. (2010)	Q	107, 110
	1.5×10^{-2}		Zhang et al. (2010)	Q	107, 111
undecylbenzene	9.9×10^{-5}		HSDB (2015)	Q	38
C ₁₇ H ₂₈ [6742-54-7]					

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s))	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Туре	Note
[CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
dodecylbenzene	7.6×10^{-5}		HSDB (2015)	Q	38
C ₁₈ H ₃₀ [123-01-3]					
tridecylbenzene	5.5×10^{-5}		HSDB (2015)	Q	38
C ₁₉ H ₃₂ [123-02-4]					
tetradecylbenzene	4.2×10 ⁻⁵		HSDB (2015)	Q	38
C ₂₀ H ₃₄ [1459-10-5]					
pentadecylbenzene	1.2×10^{-5}		HSDB (2015)	Q	38
C ₂₁ H ₃₆ [2131-18-2]					
ethenylbenzene	2.7×10^{-3}		Kim and Kim (2014)	M	
C_8H_8	4.4×10^{-3}	4600	Hiatt (2013)	M	
(styrene)	3.4×10^{-3}		Dohnal and Hovorka (1999)	M	
[100-42-5]	3.8×10^{-3}	4100	Kondoh and Nakajima (1997)	M	
	2.9×10^{-3}	4800	Bissonette et al. (1990)	M	
	1.8×10^{-3}		Sato and Nakajima (1979a)	M	19
	3.6×10^{-3}		Lide and Frederikse (1995)	V	
	3.3×10^{-3}		Abraham et al. (1994a)	V	
	3.3×10^{-3}		Mackay et al. (1993)	V	
	3.8×10^{-3}	4200	Goldstein (1982)	X	116
	3.8×10^{-3}	3800	Fogg and Sangster (2003)	C	
	3.2×10^{-3}		Hilal et al. (2008)	Q	
		4800	Kühne et al. (2005)	Q	
	3.7×10^{-3}	3700	Nirmalakhandan et al. (1997) Kühne et al. (2005)	Q ?	
	3.7×10^{-3}	2700	Yaws and Yang (1992)	?	92
	3.7 × 10		Shiu and Ma (2000)	W	140
(E)-1-propenylbenzene C_9H_{10} [873-66-5]	2.9×10^{-3}		Hilal et al. (2008)	Q	
1-propenylbenzene	3.7×10^{-3}		HSDB (2015)	Q	38
C ₉ H ₁₀ [637-50-3]					
2-propenylbenzene	1.4×10^{-3}		Sato and Nakajima (1979a)	M	19
C_9H_{10}	2.2×10^{-3}		Hilal et al. (2008)	Q	
(allylbenzene) [300-57-2]	2.9×10^{-3}		Nirmalakhandan et al. (1997)	Q	
1-ethenyl-3-methylbenzene	3.1×10^{-3}		Hilal et al. (2008)	Q	
C ₉ H ₁₀ (<i>m</i> -methylstyrene) [100-80-1]	2.6×10^{-3}		Yaws and Yang (1992)	?	92

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$			
(Other name(s)) [CAS registry number]	$\left[\frac{mol}{m^3 Pa}\right]$	[K]	Reference	Туре	Note
1-ethenyl-4-methylbenzene	3.1×10^{-3}		HSDB (2015)	V	
C_9H_{10}	3.4×10^{-3}		Hilal et al. (2008)	Q	
(<i>p</i> -methylstyrene) [622-97-9]	3.5×10^{-3}		Yaws and Yang (1992)	?	92
(1-methylethenyl)-benzene	3.8×10^{-3}		HSDB (2015)	V	
C_9H_{10}	3.3×10^{-3}		Abraham et al. (1994a)	V	
(α-methyl styrene) [98-83-9]	2.4×10^{-3}		Hilal et al. (2008)	Q	
phenylacetylene C ₈ H ₆ [536-74-3]	3.9×10^{-3}		Hilal et al. (2008)	Q	
α -methylstyrene dimer	1.1×10^{-2}		HSDB (2015)	Q	38
$C_{18}H_{20}$	5.7×10^{-3}		Zhang et al. (2010)	Q	107, 108
[6144-04-3]	7.2×10^{-3}		Zhang et al. (2010)	Q	107, 109
	2.4×10^{-1}		Zhang et al. (2010)	Q	107, 110
	9.0×10^{-2}		Zhang et al. (2010)	Q	107, 111
	Terpe	enes and	terpenoids		
1-methyl-4-(1-methylethyl)- cyclohexane $C_{10}H_{20}$ (p-menthane) [99-82-1]	5.6×10 ⁻⁶		Copolovici and Niinemets (2005)	V	
α -pinene	2.9×10^{-4}	1800	Leng et al. (2013)	M	
$C_{10}H_{16}$	7.4×10^{-5}	4400	Copolovici and Niinemets (2005)	M	
[80-56-8]	5.8×10^{-4}		Karl et al. (2003)	M	31
	7.0×10^{-5}		Fichan et al. (1999)	M	
	4.7×10^{-5}		Falk et al. (1990)	M	19
	3.4×10^{-5}		HSDB (2015)	V	
	7.4×10^{-5}		Copolovici and Niinemets (2005)	V	
	7.4×10^{-5}		Niinemets and Reichstein (2002)	V	
	2.8×10^{-5}	10000	Li et al. (1998)	V	
	3.5×10^{-5}		Hilal et al. (2008)	C	
	3.1×10^{-5}		Hilal et al. (2008)	Q	
β -pinene	1.6×10^{-4}		Helburn et al. (2008)	M	
$C_{10}H_{16}$	1.5×10^{-4}	4500	Copolovici and Niinemets (2005)	M	
[127-91-3]	4.9×10^{-4}		Karl et al. (2003)	M	31
	4.7×10^{-5}		Falk et al. (1990)	M	19
	1.5×10^{-4}		Copolovici and Niinemets (2005)	V	
	1.5×10^{-4}		Niinemets and Reichstein (2002)	V	
	6.2×10^{-5}		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$.	_	
(Other name(s))	[mol]	G(1/1)	Reference	Type	Note
[CAS registry number]	$\left\lfloor \frac{\text{mor}}{\text{m}^3 \text{Pa}} \right\rfloor$	[K]			
l-methyl-4-(1-methylethyl)-1,3- cyclohexadiene	2.9×10^{-4}	4800	Copolovici and Niinemets (2005)	M	
$C_{10}H_{16}$	4.5×10^{-4}		Karl et al. (2003)	M	31
$(\alpha$ -terpinene)	2.8×10^{-4}		Copolovici and Niinemets (2005)	V	
[99-86-5]	5.1×10^{-4}		Niinemets and Reichstein (2002)	V	
1-methyl-4-(1-methylethyl)-1,4- cyclohexadiene	3.8×10^{-4}	4800	Copolovici and Niinemets (2005)	M	
$C_{10}H_{16}$	3.8×10^{-4}		Copolovici and Niinemets (2005)	V	
(γ-terpinene)	2.8×10^{-4}		Niinemets and Reichstein (2002)	V	
[99-85-4]	5.4×10^{-4}	8000	Li et al. (1998)	V	
1-methyl-4-(1-methylethenyl)- cyclohexene	4.8×10^{-4}	4600	Leng et al. (2013)	M	
C ₁₀ H ₁₆	7.0×10^{-4}		Fichan et al. (1999)	M	
(limonene)	7.0×10^{-4}		Falk et al. (1990)	M	19
[138-86-3]	3.1×10^{-4}		HSDB (2015)	V	
	3.5×10^{-4}		Copolovici and Niinemets (2005)	V	
	6.4×10^{-4}	3000	van Roon et al. (2005)	V	
	3.5×10^{-4}		Niinemets and Reichstein (2002)	V	
	1.7×10^{-4}	10000	Li et al. (1998)	V	
	1.1×10^{-4}		Hilal et al. (2008)	Q	
(<i>R</i>)-1-methyl-4-(1-methylethenyl)-cyclohexene	2.6×10^{-4}		Helburn et al. (2008)	M	
$C_{10}H_{16}$	3.5×10^{-4}	4500	Copolovici and Niinemets (2005)	M	
(R-(+)-limonene; D-limonene)	3.9×10^{-4}		HSDB (2015)	V	
[5989-27-5]	3.8×10^{-4}		Mackay et al. (2006a)	V	
(S) -1-methyl-4-(1-methylethenyl)-cyclohexene $C_{10}H_{16}$ $(S$ -(-)-limonene) [5989-54-8]	3.5×10^{-4}	4400	Copolovici and Niinemets (2005)	M	
3,7,7-trimethyl-bicyclo[4.1.0]hept-3-	1.6×10^{-4}		Falk et al. (1990)	M	19
$C_{10}H_{16}$	7.3×10^{-5}		Copolovici and Niinemets (2005)	V	
(3-carene) [13466-78-9]	7.3×10^{-5}		Niinemets and Reichstein (2002)	V	
7-methyl-3-methylene-1,6-octadiene	8.7×10^{-4}		Fichan et al. (1999)	M	
$C_{10}H_{16}$	1.1×10^{-4}		HSDB (2015)	V	
(myrcene)	1.6×10^{-4}		Copolovici and Niinemets (2005)	V	
[123-35-3]	7.2×10^{-4}	2800	van Roon et al. (2005)	V	
	1.6×10^{-4}		Niinemets and Reichstein (2002)	V	
1-methyl-4-(1-methylethylidene)- cyclohexene	3.8×10^{-4}	5300	Copolovici and Niinemets (2005)	M	
$C_{10}H_{16}$	7.0×10^{-4}		HSDB (2015)	V	
(α-terpinolene)	3.7×10^{-4}		Copolovici and Niinemets (2005)	V	
·	,				
(α-terpinolene) [586-62-9]	3.8×10^{-4} 5.7×10^{-4}	12000	Niinemets and Reichstein (2002) Li et al. (1998)	V V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2-methyl-5-(1-methylethyl)-1,3- cyclohexadiene	1.8×10^{-4}	4500	Copolovici and Niinemets (2005)	M	
C ₁₀ H ₁₆ (α -phellandrene) [99-83-2]	$1.8 \times 10^{-4} \\ 1.4 \times 10^{-4}$		Copolovici and Niinemets (2005) Niinemets and Reichstein (2002)	V V	
3-methylene-6-(1-methylethyl)-cyclohexene	1.8×10^{-4}	5100	Copolovici and Niinemets (2005)	M	
$C_{10}H_{16}$ (β -phellandrene) [555-10-2]	$1.8 \times 10^{-4} \\ 1.8 \times 10^{-4}$		Copolovici and Niinemets (2005) Niinemets and Reichstein (2002)	V V	
3,7-dimethyl-1,3,6-octatriene $C_{10}H_{16}$ (β -ocimene) [13877-91-3]	4.0×10^{-4}		Copolovici and Niinemets (2005)	V	
(Z)-3,7-dimethyl-1,3,6-octatriene $C_{10}H_{16}$ (cis - β -ocimene) [3338-55-4]	4.0×10 ⁻⁴		Niinemets and Reichstein (2002)	V	
(E)-3,7-dimethyl-1,3,6-octatriene $C_{10}H_{16}$ (trans- β -ocimene) [3779-61-1]	3.0×10^{-4}		Niinemets and Reichstein (2002)	V	
2,2-dimethyl-3-methylene- bicyclo[2.2.1]heptane	1.0×10^{-4}		HSDB (2015)	V	
C ₁₀ H ₁₆ (camphene)	3.1×10^{-4} 6.3×10^{-4}		Copolovici and Niinemets (2005) Niinemets and Reichstein (2002)	V V	
[79-92-5] 4-methylene-1-(1-methylethyl)-	1.6×10 ⁻⁴		Copolovici and Niinemets (2005)	V	
bicyclo[3.1.0]hexane C ₁₀ H ₁₆ (sabinene) [3387-41-5]	1.6×10^{-4}		Niinemets and Reichstein (2002)	V	
tricyclo[3.3.1.1(3,7)]decane C ₁₀ H ₁₆ (adamantane) [281-23-2]	8.0×10^{-4} 1.1×10^{-4}	3400	van Roon et al. (2005) Hilal et al. (2008)	V Q	
	Poly	nuclear	aromatics		
bis(1-methylethyl)-1,1'-biphenyl C ₁₈ H ₂₂ [36876-13-8]	4.5×10^{-3} 6.4×10^{-3} 5.0×10^{-3} 3.2×10^{-2} 2.0×10^{-2}		HSDB (2015) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q Q	38 107, 108 107, 109 107, 110 107, 111

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]			31	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
1,1-bis(3,4-dimethylphenyl)ethane	1.0×10^{-2}		Zhang et al. (2010)	Q	107, 108
$C_{18}H_{22}$	1.8×10^{-2}		Zhang et al. (2010)	Q	107, 109
[1742-14-9]	6.5×10^{-2}		Zhang et al. (2010)	Q	107, 110
	4.8×10^{-3}		Zhang et al. (2010)	Q	107, 111
1-benzyl-2-(2-methylbenzyl)benzene	2.1×10^{-1}		Zhang et al. (2010)	Q	107, 108
$C_{21}H_{20}$	2.5×10^{-1}		Zhang et al. (2010)	Q	107, 109
[100404-06-6]	1.4		Zhang et al. (2010)	Q	107, 110
	4.1×10^{-1}		Zhang et al. (2010)	Q	107, 111
2,5-dibenzyltoluene	2.1×10^{-1}		Zhang et al. (2010)	Q	107, 108
$C_{21}H_{20}$	2.9×10^{-1}		Zhang et al. (2010)	Q	107, 109
[56310-11-3]	4.5		Zhang et al. (2010)	Q	107, 110
	4.1×10^{-1}		Zhang et al. (2010)	Q	107, 111
biphenyl	3.6×10^{-2}		Mackay and Shiu (1981)	L	
$(C_6H_5)_2$	3.4×10^{-2}		Destaillats and Charles (2002)	M	
[92-52-4]	2		Dewulf et al. (1999)	M	141
	3.2×10^{-2}		Shiu and Mackay (1997)	M	
	5.1×10^{-2}		Fendinger and Glotfelty (1990)	M	
	3.3×10^{-2}		Mackay and Shiu (1981)	M	
	2.4×10^{-2}		Mackay et al. (1979)	M	
	3.5×10^{-2}		Mackay et al. (2006a)	V	
	3.5×10^{-2}		Mackay et al. (2006b)	V	
	3.6×10^{-2}		Shiu and Ma (2000)	V	
	3.5×10^{-2}		Shiu and Mackay (1997)	V	
	3.6×10^{-2}		Abraham et al. (1994a)	V	
	1.9×10^{-2}		Mackay et al. (1992a)	V	
	1.2×10^{-2}		Eastcott et al. (1988)	V	
	1.9×10^{-2}		Shiu and Mackay (1986)	V	
	7.3×10^{-2}		Burkhard et al. (1985)	V	
	3.5×10^{-2}		Cabani et al. (1981)	V	
	6.4×10^{-3}		Mackay and Leinonen (1975)	V	
	1.2×10^{-2}		Bohon and Claussen (1951)	V	
	7.6×10^{-3}	2900	Paasivirta et al. (1999)	T	
	1.3×10^{-2}	7100	Hilal et al. (2008)	Q	
	0.0.10-3	5100	Kühne et al. (2005)	Q	
	8.0×10^{-3} 2.9×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
	2.9×10 -	6000	Arbuckle (1983) Kühne et al. (2005)	Q ?	
	1.2×10^{-2}	0000	Yaws and Yang (1992)	?	92
2-methyl-1,1'-biphenyl	2.2×10^{-2}		HSDB (2015)	0	38
2-methyl-1,1 -olphenyl C ₁₃ H ₁₂ [643-58-3]	1.0×10^{-2}		Hilal et al. (2008)	Q Q	30
3-methyl-1,1'-biphenyl C ₁₃ H ₁₂ [643-93-6]	1.5×10 ⁻²		Hilal et al. (2008)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$			
(Other name(s))		$\mathfrak{a}(1/I)$	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mol}}{2\pi}\right]$	[K]			
	Lm³ Pa J	[]			
4-methyl-1,1'-biphenyl	1.6×10^{-2}		Hilal et al. (2008)	Q	
C ₁₃ H ₁₂ [644-08-6]					
	2				
diphenylmethane	7.6×10^{-2} 1.1		HSDB (2015)	V	
C ₁₃ H ₁₂ (1,1'-methylenebisbenzene)	1.1 1.1		Mackay et al. (2006a) Mackay et al. (1993)	V V	
[101-81-5]	4.5×10^{-2}		Meylan and Howard (1991)	V	
[101-01-3]	4.7×10^{-2}		Cabani et al. (1981)	V	
	1.0		Mackay et al. (1992b)	X	142
	2.2×10^{-2}		Hilal et al. (2008)	Q	
	2.1×10^{-2}		Meylan and Howard (1991)	Q	
1,2-diphenylethane	5.9×10 ⁻²		Mackay et al. (2006a)	V	
$C_{14}H_{14}$	5.9×10^{-2}		Mackay et al. (1993)	V	
(dibenzyl)	5.9×10^{-2}		Mackay et al. (1992b)	X	142
[103-29-7]					
o-terphenyl	1.6×10^{-1}		HSDB (2015)	V	
$C_{18}H_{14}$	3.1×10^{-1}		Zhang et al. (2010)	Q	107, 108
[84-15-1]	8.2×10^{-2}		Zhang et al. (2010)	Q	107, 109
	7.3×10^{-1}		Zhang et al. (2010)	Q	107, 110
	4.0		Zhang et al. (2010)	Q	107, 111
<i>m</i> -terphenyl	2.8		HSDB (2015)	V	
C ₁₈ H ₁₄ [92-06-8]					
<i>p</i> -terphenyl			Mackay et al. (2006a)	V	112
$C_{18}H_{14}$	2.9×10^{-1}		HSDB (2015)	Q	38
[92-94-4]	3.1×10^{-1}		Zhang et al. (2010)	Q	107, 108
	2.4×10^{-1}		Zhang et al. (2010)	Q	107, 109
	1.1 4.0		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 110 107, 111
indene	6.2×10^{-3}		HSDB (2015)	Q	38
C ₉ H ₈ [95-13-6]					
- <u></u>	7.6.10-5		HGDD (2015)		20
5-ethylidene-2-norbornene C ₉ H ₁₂	7.6×10^{-5}		HSDB (2015)	Q	38
[16219-75-3]					
	1.5×10 ⁻¹	7800	Hiatt (2013)	M	
azulene $C_{10}H_8$	1.3×10	7000	111att (2013)	IVI	
[275-51-4]					
naphthalene	2.1×10^{-2}		Ma et al. (2010)	L	143
C ₁₀ H ₈	2.2×10^{-2}		Ma et al. (2010)	L	144
[91-20-3]	2.2×10^{-2}	5300	Fogg and Sangster (2003)	L	
	2.3×10^{-2}		Mackay and Shiu (1981)	L	
	3.3×10^{-2}	6100	Hiatt (2013)	M	
	6.0×10^{-2}		Lee et al. (2012)	M	
	4.0×10^{-2}		Bobadilla et al. (2003)	M	
	2.4×10^{-2}		Destaillats and Charles (2002)	M	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]	FT73		-J F -	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
	1.3×10^{-2}	3600	Dewulf et al. (1999)	M	
	1.8×10^{-2}		Altschuh et al. (1999)	M	
	2.2×10^{-2}		De Maagd et al. (1998)	M	9
	2.2×10^{-2}		Shiu and Mackay (1997)	M	
	1.7×10^{-2}	5100	Kondoh and Nakajima (1997)	M	
	2.3×10^{-2}	5700	Alaee et al. (1996)	M	
	2.1×10^{-2}		Zhang and Pawliszyn (1993)	M	
	1.3×10^{-2}		Fendinger and Glotfelty (1990)	M	
	2.7×10^{-2}		Yurteri et al. (1987)	M	9
	2.6×10^{-2}		Webster et al. (1985)	M	
	2.0×10^{-2}		Mackay et al. (1979)	M	
	1.8×10^{-2}		Southworth (1979)	M	
	2.2×10^{-2}	5400	Schwarz and Wasik (1977)	M	
	2.3×10^{-2}		Mackay et al. (2006a)	V	
	2.3×10^{-2}		Shiu and Ma (2000)	V	
	3.2×10^{-2}		De Maagd et al. (1998)	V	9
	2.3×10^{-2}		Shiu and Mackay (1997)	V	
	2.0×10^{-2}		Lide and Frederikse (1995)	V	
	2.3×10^{-2}		Abraham et al. (1994a)	V	
	9.0×10^{-3}		Hwang et al. (1992)	V	
	7.2×10^{-3}		Eastcott et al. (1988)	V	
	2.3×10^{-2}		Cabani et al. (1981)	V	
	2.4×10^{-2}		Hine and Mookerjee (1975)	V	
	8.4×10^{-3}		Mackay and Leinonen (1975)	V	
	1.9×10^{-2}		Bohon and Claussen (1951)	V	
	1.1×10^{-2}	2100	Paasivirta et al. (1999)	T	
	2.1×10^{-2}		Mackay et al. (1979)	T	
	2.1×10^{-2}	3600	Goldstein (1982)	X	116
	2.7×10^{-2}		McCarty (1980)	X	145
	2.0×10^{-2}		Smith et al. (1993)	C	
	2.0×10^{-2}		Ryan et al. (1988)	C	
	2.1×10^{-2}		Hilal et al. (2008)	Q	
	•	5200	Kühne et al. (2005)	Q	
	3.2×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
	3.4×10^{-2}		Arbuckle (1983)	Q	
	3.6×10^{-2}		MacBean (2012a)	?	
	2	5400	Kühne et al. (2005)	?	
	8.0×10^{-3}		Yaws and Yang (1992)	?	92
	2.3×10^{-2}		Abraham et al. (1990)	?	
naphthalene-d8 $C_{10}D_8$ [1146-65-2]	3.5×10^{-2}	5300	Hiatt (2013)	M	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type	Note
1-methylnaphthalene	2.2×10 ⁻²	6100	Fogg and Sangster (2003)	L	
	2.2×10^{-2} 2.2×10^{-2}	0100	Mackay and Shiu (1981)	L	
C ₁₀ H ₇ CH ₃	4.4×10^{-2}	5000			
[90-12-0]	4.4×10^{-2} 1.9×10^{-2}	5900	Hiatt (2013)	M	
	1.9×10^{-2} 2.1×10^{-2}	C100	Altschuh et al. (1999)	M	
	2.1×10^{-2} 4.1×10^{-2}	6100	Bamford et al. (1999a)	M	
	4.1×10^{-2} 1.6×10^{-2}		Shiu and Mackay (1997)	M	
	3.8×10^{-2}		Fendinger and Glotfelty (1990)	M	
		4000	Mackay and Shiu (1981)	M	
	2.8×10^{-2}	4900	Schwarz and Wasik (1977)	M	
	2.2×10^{-2}		Mackay et al. (2006a)	V	
	2.2×10^{-2}		Shiu and Ma (2000)	V	
	2.2×10^{-2}		Shiu and Mackay (1997)	V	
	2.5×10^{-2}		Abraham et al. (1994a)	V	
	2.5×10^{-2}		Eastcott et al. (1988)	V	
	2.2×10^{-2}		Cabani et al. (1981)	V	
	2.8×10^{-2}		Hilal et al. (2008)	Q	
	2	5500	Kühne et al. (2005)	Q	
	2.3×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
	2	5700	Kühne et al. (2005)	?	
	2.7×10^{-2}		Yaws and Yang (1992)	?	92
1-methylnaphthalene-d10 C ₁₀ D ₇ CD ₃ [38072-94-5]	4.6×10^{-2}	5400	Hiatt (2013)	M	
2-methylnaphthalene	1.8×10^{-2}	5600	Fogg and Sangster (2003)	L	
C ₁₀ H ₇ CH ₃	3.5×10^{-2}	5500	Hiatt (2013)	M	
[91-57-6]	1.6×10^{-2}	3300	Altschuh et al. (1999)	M	
J1 37 0j			Thisenan et al. (1999)	141	
[51 57 6]	1.0×10^{-2}	5400		М	
	1.9×10^{-2}	5400	Bamford et al. (1999a)	M M	0
	2.2×10^{-2}		Bamford et al. (1999a) De Maagd et al. (1998)	M	9
	2.2×10^{-2} 5.0×10^{-5}	5400 1200	Bamford et al. (1999a) De Maagd et al. (1998) Hansen et al. (1993)	M M	9 105
	2.2×10^{-2} 5.0×10^{-5} 3.1×10^{-2}		Bamford et al. (1999a) De Maagd et al. (1998) Hansen et al. (1993) Fendinger and Glotfelty (1990)	M M M	
	2.2×10^{-2} 5.0×10^{-5} 3.1×10^{-2} 2.0×10^{-2}		Bamford et al. (1999a) De Maagd et al. (1998) Hansen et al. (1993) Fendinger and Glotfelty (1990) Mackay et al. (2006a)	M M M V	105
	2.2×10^{-2} 5.0×10^{-5} 3.1×10^{-2} 2.0×10^{-2} 2.6×10^{-2}		Bamford et al. (1999a) De Maagd et al. (1998) Hansen et al. (1993) Fendinger and Glotfelty (1990) Mackay et al. (2006a) De Maagd et al. (1998)	M M M V	
	2.2×10^{-2} 5.0×10^{-5} 3.1×10^{-2} 2.0×10^{-2} 2.6×10^{-2} 2.0×10^{-2}		Bamford et al. (1999a) De Maagd et al. (1998) Hansen et al. (1993) Fendinger and Glotfelty (1990) Mackay et al. (2006a) De Maagd et al. (1998) Shiu and Mackay (1997)	M M M V V	105
	2.2×10^{-2} 5.0×10^{-5} 3.1×10^{-2} 2.0×10^{-2} 2.6×10^{-2} 2.0×10^{-2} 2.4×10^{-2}		Bamford et al. (1999a) De Maagd et al. (1998) Hansen et al. (1993) Fendinger and Glotfelty (1990) Mackay et al. (2006a) De Maagd et al. (1998) Shiu and Mackay (1997) Meylan and Howard (1991)	M M M V V V	105
	2.2×10^{-2} 5.0×10^{-5} 3.1×10^{-2} 2.0×10^{-2} 2.6×10^{-2} 2.0×10^{-2} 2.4×10^{-2} 2.0×10^{-2}		Bamford et al. (1999a) De Maagd et al. (1998) Hansen et al. (1993) Fendinger and Glotfelty (1990) Mackay et al. (2006a) De Maagd et al. (1998) Shiu and Mackay (1997) Meylan and Howard (1991) Eastcott et al. (1988)	M M V V V V	105
	2.2×10^{-2} 5.0×10^{-5} 3.1×10^{-2} 2.0×10^{-2} 2.6×10^{-2} 2.0×10^{-2} 2.4×10^{-2} 2.0×10^{-2} 2.4×10^{-2} 2.4×10^{-2}		Bamford et al. (1999a) De Maagd et al. (1998) Hansen et al. (1993) Fendinger and Glotfelty (1990) Mackay et al. (2006a) De Maagd et al. (1998) Shiu and Mackay (1997) Meylan and Howard (1991) Eastcott et al. (1988) Mackay and Shiu (1981)	M M V V V V	9
	2.2×10^{-2} 5.0×10^{-5} 3.1×10^{-2} 2.0×10^{-2} 2.6×10^{-2} 2.4×10^{-2} 2.0×10^{-2} 2.4×10^{-2} 2.4×10^{-2} 2.0×10^{-2} 2.0×10^{-2}		Bamford et al. (1999a) De Maagd et al. (1998) Hansen et al. (1993) Fendinger and Glotfelty (1990) Mackay et al. (2006a) De Maagd et al. (1998) Shiu and Mackay (1997) Meylan and Howard (1991) Eastcott et al. (1988) Mackay and Shiu (1981) Mackay et al. (1992b)	M M V V V V V V	105
	2.2×10^{-2} 5.0×10^{-5} 3.1×10^{-2} 2.0×10^{-2} 2.6×10^{-2} 2.0×10^{-2} 2.4×10^{-2} 2.0×10^{-2} 2.4×10^{-2} 2.4×10^{-2}	1200	Bamford et al. (1999a) De Maagd et al. (1998) Hansen et al. (1993) Fendinger and Glotfelty (1990) Mackay et al. (2006a) De Maagd et al. (1998) Shiu and Mackay (1997) Meylan and Howard (1991) Eastcott et al. (1988) Mackay and Shiu (1981) Mackay et al. (1992b) Hilal et al. (2008)	M M V V V V V V V	9
	2.2×10^{-2} 5.0×10^{-5} 3.1×10^{-2} 2.0×10^{-2} 2.6×10^{-2} 2.4×10^{-2} 2.4×10^{-2} 2.4×10^{-2} 2.0×10^{-2} 2.4×10^{-2} 2.6×10^{-2}		Bamford et al. (1999a) De Maagd et al. (1998) Hansen et al. (1993) Fendinger and Glotfelty (1990) Mackay et al. (2006a) De Maagd et al. (1998) Shiu and Mackay (1997) Meylan and Howard (1991) Eastcott et al. (1988) Mackay and Shiu (1981) Mackay et al. (1992b) Hilal et al. (2008) Kühne et al. (2005)	M M V V V V V V V Q	9
	2.2×10^{-2} 5.0×10^{-5} 3.1×10^{-2} 2.0×10^{-2} 2.6×10^{-2} 2.4×10^{-2} 2.0×10^{-2} 2.4×10^{-2} 2.4×10^{-2} 2.0×10^{-2} 2.0×10^{-2}	1200 5500	Bamford et al. (1999a) De Maagd et al. (1998) Hansen et al. (1993) Fendinger and Glotfelty (1990) Mackay et al. (2006a) De Maagd et al. (1998) Shiu and Mackay (1997) Meylan and Howard (1991) Eastcott et al. (1988) Mackay and Shiu (1981) Mackay et al. (1992b) Hilal et al. (2008) Kühne et al. (2005) Meylan and Howard (1991)	M M V V V V V V V Q Q	9
	2.2×10^{-2} 5.0×10^{-5} 3.1×10^{-2} 2.0×10^{-2} 2.6×10^{-2} 2.4×10^{-2} 2.4×10^{-2} 2.4×10^{-2} 2.0×10^{-2} 2.4×10^{-2} 2.6×10^{-2}	1200	Bamford et al. (1999a) De Maagd et al. (1998) Hansen et al. (1993) Fendinger and Glotfelty (1990) Mackay et al. (2006a) De Maagd et al. (1998) Shiu and Mackay (1997) Meylan and Howard (1991) Eastcott et al. (1988) Mackay and Shiu (1981) Mackay et al. (1992b) Hilal et al. (2008) Kühne et al. (2005)	M M V V V V V V V Q	9

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1-ethylnaphthalene	2.6×10^{-2}		Mackay and Shiu (1981)	L	
$C_{10}H_7C_2H_5$	1.4×10^{-2}		Altschuh et al. (1999)	M	
[1127-76-0]	2.2×10^{-2}	4800	Schwarz and Wasik (1977)	M	
	2.6×10^{-2}		Mackay et al. (2006a)	V	
	2.7×10^{-2}		Eastcott et al. (1988)	V	
	2.3×10^{-2}		Cabani et al. (1981)	V	
	2.6×10^{-2}		Mackay et al. (1992b)	X	142
	2.8×10^{-2}		Hilal et al. (2008)	Q	
	2.2×10^{-1}		Nirmalakhandan et al. (1997)	Q	
	2.7×10^{-2}		Yaws and Yang (1992)	?	92
2-ethylnaphthalene	1.2×10^{-2}		Mackay and Shiu (1981)	L	
$C_{10}H_7C_2H_5$	1.8×10^{-2}		Altschuh et al. (1999)	M	
[939-27-5]	1.3×10^{-2}		Mackay et al. (2006a)	V	
	1.6×10^{-2}		Eastcott et al. (1988)	V	
	1.3×10^{-2}		Mackay et al. (1992b)	X	142
	1.9×10^{-2}		Hilal et al. (2008)	Q	
	1.6×10^{-2}		Yaws and Yang (1992)	?	92
1,3-dimethylnaphthalene	2.6×10^{-2}		Cabani et al. (1981)	V	
$C_{12}H_{12}$	2.9×10^{-2}		Hilal et al. (2008)	Q	
[575-41-7]	1.9×10^{-1}		Nirmalakhandan et al. (1997)	Q	
	1.4×10^{-2}		Yaws and Yang (1992)	?	92
1,4-dimethylnaphthalene	3.2×10^{-2}		Mackay et al. (2006a)	V	
$C_{12}H_{12}$	4.7×10^{-2}		Cabani et al. (1981)	V	
[571-58-4]	4.4×10^{-2}		Hilal et al. (2008)	Q	
	1.9×10^{-1}		Nirmalakhandan et al. (1997)	Q	
	2.0×10^{-2}		Yaws and Yang (1992)	?	92
1,5-dimethylnaphthalene	2.8×10^{-2}		Shiu and Mackay (1997)	M	
$C_{12}H_{12}$	3.3×10^{-2}		Hilal et al. (2008)	Q	
[571-61-9]	1.1×10^{-1}		Nirmalakhandan and Speece (1988a)	Q	
	1.6×10^{-2}		Yaws and Yang (1992)	?	92
1,6-dimethylnaphthalene C ₁₂ H ₁₂ [575-43-9]	2.3×10^{-2}		HSDB (2015)	Q	38
			N. 1. (2005)	**	
2,3-dimethylnaphthalene	1.6×10^{-2}		Mackay et al. (2006a)	V	
C ₁₂ H ₁₂	6.4×10^{-2}		Eastcott et al. (1988)	V	
[581-40-8]	4.4×10^{-2}		Cabani et al. (1981)	V	
	1.1×10^{-2}		Meylan and Howard (1991)	C	
	3.6×10^{-2}		Hilal et al. (2008)	Q	
	1.3×10^{-1}		Nirmalakhandan et al. (1997)	Q	
	1.5×10^{-2}		Meylan and Howard (1991)	Q	
	1.7×10^{-2}		Yaws and Yang (1992)	?	92

Table 6: Henry's law constants for water as solvent $(\dots continued)$

			. ,		
Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	[K]		-31-	
2,6-dimethylnaphthalene	7.8×10^{-3}		Mackay et al. (2006a)	V	
$C_{12}H_{12}$	6.2×10^{-2}		Eastcott et al. (1988)	V	
[581-42-0]	3.4×10^{-2}		Cabani et al. (1981)	V	
-	3.2×10^{-2}		Hilal et al. (2008)	Q	
	1.9×10^{-1}		Nirmalakhandan et al. (1997)	Q	
	8.2×10^{-3}		Yaws and Yang (1992)	?	92
1,4,5-trimethylnaphthalene	1.8×10^{-2}		Mackay et al. (2006a)	V	
$C_{13}H_{14}$	4.3×10^{-2}		Eastcott et al. (1988)	V	
[2131-41-1]					
2 -(1-methylethyl)naphthalene $\mathrm{C}_{13}\mathrm{H}_{14}$ [2027-17-0]	1.2×10^{-2}		HSDB (2015)	Q	38
1,2-bis(isopropyl)naphthalene C ₁₆ H ₂₀ (diisopropylnaphthalene)	7.8×10^{-3}		HSDB (2015)	V	
[38640-62-9]					
(E)-stilbene	1.4×10^{-2}		HSDB (2015)	V	
$C_{14}H_{12}$	2.5×10^{-2}		Mackay et al. (2006a)	V	
(<i>trans</i> -1,2-diphenylethene) [103-30-0]	2.5×10^{-2}		Mackay et al. (1992b)	X	142
acenaphthene	7.2×10^{-2}		Ma et al. (2010)	L	143
$C_{12}H_{10}$	7.0×10^{-2}		Ma et al. (2010)	L	144
[83-32-9]	5.5×10^{-2}	6500	Fogg and Sangster (2003)	L	
	4.2×10^{-2}		Mackay and Shiu (1981)	L	
	2.6×10^{-1}		Lee et al. (2012)	M	
	5.4×10^{-2}	6600	Bamford et al. (1999a)	M	
	6.2×10^{-2}		Shiu and Mackay (1997)	M	
	1.1×10^{-1}		Zhang and Pawliszyn (1993)	M	
	1.6×10^{-1}		Fendinger and Glotfelty (1990)	M	
	6.4×10^{-3}		Mackay and Shiu (1981)	M	
	4.1×10^{-2}		Warner et al. (1980)	M	
	6.8×10^{-2}		Mackay et al. (1979)	M	
	8.2×10^{-2}		Mackay et al. (2006a)	V	
	8.2×10^{-2}		Shiu and Ma (2000)	V	
	8.2×10^{-2}		Shiu and Mackay (1997)	V	
	1.2×10^{-2}		Hwang et al. (1992)	V	
	9.5×10^{-2}		Eastcott et al. (1988)	V	
	8.2×10^{-2}		Cabani et al. (1981)	V	
	1.2×10^{-1}		Hine and Mookerjee (1975)	V	
	3.4×10^{-2}	2900	Paasivirta et al. (1999)	T	
	4.1×10^{-2}	2800	Goldstein (1982)	X	116
	5 2 10 - 2		McCarty (1980)	X	145
	5.2×10^{-2}			-	
	6.4×10^{-2}		HSDB (2015)	C	
	6.4×10^{-2} 4.1×10^{-2}		Smith et al. (1993)	C	
	$6.4 \times 10^{-2} $ $4.1 \times 10^{-2} $ $4.0 \times 10^{-2} $		Smith et al. (1993) Ryan et al. (1988)	C C	
	6.4×10^{-2} 4.1×10^{-2}		Smith et al. (1993)	C	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{\ominus})	d(1/T)	Reference	Type	Note
(Other name(s))	$\lceil \underline{\text{mol}} \rceil$	[17]		• •	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
		5500	Kühne et al. (2005)	Q	
	1.1×10^{-1}		Nirmalakhandan and Speece (1988a)	Q	
	7.9×10^{-2}		Arbuckle (1983)	Q	
		6600	Kühne et al. (2005)	?	
acenaphthylene	8.2×10^{-2}		Ma et al. (2010)	L	143
C ₁₂ H ₈	1.0×10^{-1}		Ma et al. (2010)	L	144
208-96-8]	9.1×10^{-2}	6700	Fogg and Sangster (2003)	L	
	7.9×10^{-2}	6600	Bamford et al. (1999a)	M	
	8.8×10^{-2}		Fendinger and Glotfelty (1990)	M	
	8.7×10^{-2}		Warner et al. (1980)	M	
	8.7×10^{-1}		HSDB (2015)	V	
	1.2×10^{-1}		Mackay et al. (2006a)	V	
	1.2×10^{-1}		Shiu and Mackay (1997)	V	
	1.2×10^{-1}	5000	Paasivirta et al. (1999)	T	
	8.7×10^{-2}		Smith et al. (1993)	C	
	8.4×10^{-2}		Ryan et al. (1988)	C	
	8.7×10^{-2}		Shen (1982)	C	
	1.1×10^{-1}		Hilal et al. (2008)	Q	
		5600	Kühne et al. (2005)	Q	
		6600	Kühne et al. (2005)	?	
			Shiu and Ma (2000)	W	140
bhenanthrene	2.3×10^{-1}		Ma et al. (2010)	L	143
$C_{14}H_{10}$	2.3×10^{-1}		Ma et al. (2010)	L	144
[85-01-8]	2.3×10^{-1}	4200	Fogg and Sangster (2003)	L	
	2.5×10^{-1}		Mackay and Shiu (1981)	L	
	1.8×10^{-1}		Lee et al. (2012)	M	
	2.7×10^{-1}	7700	Odabasi et al. (2006)	M	
	2.3×10^{-1}	6000	Bamford et al. (1999a)	M	
	1.6×10^{-1}	7600	Bamford et al. (1999b)	M	
	3.4×10^{-1}		De Maagd et al. (1998)	M	9
	2.8×10^{-1}		Shiu and Mackay (1997)	M	
	2.1×10^{-1}	3800	Alaee et al. (1996)	M	
	2.5×10^{-1}		Zhang and Pawliszyn (1993)	M	
	4.2×10^{-1}		Fendinger and Glotfelty (1990)	M	
	2.7×10^{-1}		Mackay and Shiu (1981)	M	
	2.5×10^{-1}		Mackay et al. (1979)	M	
	1.8×10^{-1}		Southworth (1979)	M	
	3.1×10^{-1}		Mackay et al. (2006a)	V	
	3.1×10^{-1}		Shiu and Ma (2000)	V	
	3.8×10^{-1}		De Maagd et al. (1998)	V	9
	3.1×10^{-1}		Shiu and Mackay (1997)	V	
	3.2×10^{-2}		Hwang et al. (1992)	V	
	2.8×10^{-1}		Eastcott et al. (1988)	V	
	3.2×10^{-1}		Cabani et al. (1981)	V	
	2.0×10^{-1}		Southworth (1979)	V	
	3.9×10^{-1}		Hine and Mookerjee (1975)	V	
	9.3×10^{-2}	4900	Paasivirta et al. (1999)	T	
	9.3×10^{-2}	4700	Goldstein (1982)	X	116

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} \ln H^{cp}}$			
Formula (Other name(s))	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
	7.6×10^{-2}		McCarty (1980)	X	145
	2.5×10^{-1}		Smith et al. (1993)	C	113
	2.5×10^{-1}		Ryan et al. (1988)	C	
	2.6×10^{-1}		Hilal et al. (2008)	Q	
	1	4800	Kühne et al. (2005)	Q	
	4.8×10^{-1}		Nirmalakhandan and Speece (1988a)	Q	
	2.6×10^{-1}	5200	Arbuckle (1983)	Q	
	2.7×10^{-1}	5300	Kühne et al. (2005)	? ?	
			Abraham et al. (1990)		
1-methylphenanthrene	2.0×10^{-1}	4600	Bamford et al. (1999a)	M	
C ₁₅ H ₁₂	3.3×10^{-1}	53 00	Hilal et al. (2008)	Q	
[832-69-9]		5200	Kühne et al. (2005)	Q	
		4600	Kühne et al. (2005)	?	
9,10-dihydrophenanthrene	1.2×10^{-1}	7500	Reza and Trejo (2004)	M	
$C_{14}H_{12}$	4.1×10^{-2}		Hilal et al. (2008)	Q	
[776-35-2]		5400	Kühne et al. (2005)	Q	
		7500	Kühne et al. (2005)	?	
2,3-benzindene	1.1×10^{-1}		Ma et al. (2010)	L	143
$C_{13}H_{10}$	1.1×10^{-1}		Ma et al. (2010)	L	144
(fluorene)	1.1×10^{-1}	6000	Fogg and Sangster (2003)	L	
[86-73-7]	1.2×10^{-1}		Mackay and Shiu (1981)	L	
	3.2×10^{-1}		Lee et al. (2012)	M	
	1.0×10^{-1}	6200	Bamford et al. (1999a)	M	
	7.9×10^{-2}	7400	Bamford et al. (1999b)	M	
	1.5×10^{-1}		De Maagd et al. (1998)	M	9
	1.0×10^{-1}		Shiu and Mackay (1997)	M	
	1.6×10^{-1}		Fendinger and Glotfelty (1990)	M	
	9.9×10^{-2}		Mackay and Shiu (1981)	M	
	8.4×10^{-2}		Warner et al. (1980)	M	
	1.3×10^{-1}		Mackay et al. (2006a)	V	
	1.3×10^{-1}		Shiu and Ma (2000)	V	0
	1.7×10^{-1}		De Maagd et al. (1998)	V	9
	1.3×10^{-1} 1.5×10^{-2}		Shiu and Mackay (1997)	V	
	1.5×10^{-2} 1.1×10^{-1}		Hwang et al. (1992)	V	
	1.1×10^{-1} 1.3×10^{-1}		Eastcott et al. (1988)	V	
	1.3×10^{-2} 2.3×10^{-2}	3700	Cabani et al. (1981) Paasivirta et al. (1999)	V T	
	8.4×10^{-2}	3000	Goldstein (1982)	X	116
	4.7×10^{-2}	3000	McCarty (1980)	X	145
	9.9×10^{-2}		HSDB (2015)	C C	143
	8.4×10^{-2}		Smith et al. (1993)	C	
	8.4×10^{-2} 8.4×10^{-2}		Ryan et al. (1988)	C	
	8.4×10^{-2}		Shen (1982)	C	
	9.2×10^{-2}		Hilal et al. (2008)	Q	
	J.2 × 10	5100	Kühne et al. (2005)	Q	
	2.0×10^{-1}	2100	Nirmalakhandan and Speece (1988a)	Q	
	2.0 × 10	5400	Kühne et al. (2005)	?	
	1.2×10^{-1}		Abraham et al. (1990)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
benzo[a]fluorene	3.7×10^{-1}	4400	Bamford et al. (1999a)	M	
$C_{17}H_{12}$		6300	Kühne et al. (2005)	Q	
[238-84-6]		4400	Kühne et al. (2005)	?	
			Shiu and Ma (2000)	W	140
anthracene	2.0×10^{-1}		Ma et al. (2010)	L	143
$C_{14}H_{10}$	2.0×10^{-1}		Ma et al. (2010)	L	144
[120-12-7]	1.7×10^{-1}	5700	Fogg and Sangster (2003)	L	
	1.7×10^{-1}		Mackay and Shiu (1981)	L	
	1.6×10^{-1}		Lee et al. (2012)	M	
	2.3×10^{-1}	5600	Reza and Trejo (2004)	M	
	1.8×10^{-1}	6000	Bamford et al. (1999a)	M	
	1.5×10^{-1}	6500	Bamford et al. (1999b)	M	
	1.3×10^{-1}		Shiu and Mackay (1997)	M	
	2.0×10^{-1}	3500	Alaee et al. (1996)	M	
	1.1×10^{-1}		Zhang and Pawliszyn (1993)	M	
	5.1×10^{-1}		Fendinger and Glotfelty (1990)	M	
	2.7×10^{-1}		Webster et al. (1985)	M	
	1.4×10^{-2}		Mackay and Shiu (1981)	M	
	1.5×10^{-1}		Southworth (1979)	M	
	2.5×10^{-1}		Mackay et al. (2006a)	V	
	2.5×10^{-1}		Shiu and Ma (2000)	V	
	2.5×10^{-1}		Shiu and Mackay (1997)	V	
	3.0×10^{-2}		Hwang et al. (1992)	V	
	6.1×10^{-1}		Eastcott et al. (1988)	V	
	5.1×10^{-1}		Cabani et al. (1981)	V	
	3.4×10^{-2}		Southworth (1979)	V	
	5.6×10^{-1}		Hine and Mookerjee (1975)	V	
	4.6×10^{-3}	3100	Paasivirta et al. (1999)	T	
	3.5×10^{-1}	4000	Goldstein (1982)	X	116
	7.0×10^{-3}		McCarty (1980)	X	145
	1.1×10^{-1}		Smith et al. (1993)	C	
	3.7×10^{-2}		Ryan et al. (1988)	C	
	1.0×10^{-1}		Smith et al. (1981a)	C	
	3.3×10^{-1}		Hilal et al. (2008)	Q	
		6400	Kühne et al. (2005)	Q	
	9.0×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
		5100	Kühne et al. (2005)	?	
9-methylanthracene	6.1×10^{-1}	<u> </u>	Mackay et al. (2006a)	V	
$C_{15}H_{12}$	9.4×10^{-3}		Eastcott et al. (1988)	V	
[779-02-2]	4.2×10^{-1}		Hilal et al. (2008)	Q	
9,10-dimethylanthracene	1.8		Mackay et al. (2006a)	V	
$C_{16}H_{14}$	3.4×10^{-1}		HSDB (2015)	Q	38
[781-43-1]					

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
pyrene	7.5×10 ⁻¹		Ma et al. (2010)	L	143
$C_{16}H_{10}$	7.5×10^{-1}		Ma et al. (2010)	L	144
[129-00-0]	6.6×10^{-1}	4800	Fogg and Sangster (2003)	L	
	8.3×10^{-1}		Mackay and Shiu (1981)	L	
	4.1×10^{-1}		Lee et al. (2012)	M	
	8.5×10^{-1}	6300	Reza and Trejo (2004)	M	
	2.0		Altschuh et al. (1999)	M	
	5.9×10^{-1}	5500	Bamford et al. (1999a)	M	
	5.0×10^{-1}		De Maagd et al. (1998)	M	9
	$1.1 \\ 8.3 \times 10^{-1}$		De Maagd et al. (1998)	M	9
	8.3×10^{-1} 9.1×10^{-1}		Shiu and Mackay (1997)	M	
	5.3×10^{-1}		Mackay and Shiu (1981)	M M	
	5.3×10 1 1.1		Southworth (1979) Mackay et al. (2006a)	M V	
	1.1		Shiu and Ma (2000)	v V	
	1.4		De Maagd et al. (1998)	V	9
	1.1		Shiu and Mackay (1997)	v	
	3.6×10^{-2}		Hwang et al. (1992)	V	
	1.1		Eastcott et al. (1988)	V	
	7.6×10^{-1}		Cabani et al. (1981)	V	
	9.4×10^{-1}		Southworth (1979)	V	
	1.4×10^{-1}	5700	Paasivirta et al. (1999)	T	
	1.9		Smith et al. (1993)	C	146
	1.4×10^{-3}		Ryan et al. (1988)	C	
	7.6		Petrasek et al. (1983)	C	
	2.3×10^{-1}		Hilal et al. (2008)	Q	
	1	5200	Kühne et al. (2005)	Q	
	5.4×10^{-1}	5500	Nirmalakhandan and Speece (1988a)	Q	
	0.0.10-1	5500	Kühne et al. (2005)	?	
	9.0×10^{-1}		Abraham et al. (1990)	?	20
1-methylpyrene C ₁₇ H ₁₂ [2381-21-7]	3.1		HSDB (2015)	Q	38
2-methylpyrene	3.1		HSDB (2015)	Q	38
C ₁₇ H ₁₂ [3442-78-2]					
	2.9		HSDB (2015)	Q	38
2,7-dimethylpyrene	>				
$C_{18}H_{14}$	<u>-1</u> 2				
C ₁₈ H ₁₄ [15679-24-0] chrysene	2.3		Ma et al. (2010)	L	143
C ₁₈ H ₁₄ 15679-24-0] Chrysene C ₁₈ H ₁₂	2.3 2.7		Ma et al. (2010)	L	143 144
C ₁₈ H ₁₄ [15679-24-0] Chrysene C ₁₈ H ₁₂	2.3 2.7 2.1	12000	Ma et al. (2010) Lee et al. (2012)	L M	
C ₁₈ H ₁₄ [15679-24-0] Chrysene C ₁₈ H ₁₂	2.3 2.7 2.1 1.9	13000	Ma et al. (2010) Lee et al. (2012) Bamford et al. (1999a)	L M M	
C ₁₈ H ₁₄ [15679-24-0] Chrysene C ₁₈ H ₁₂	2.3 2.7 2.1 1.9 9.4	13000	Ma et al. (2010) Lee et al. (2012) Bamford et al. (1999a) Zhang and Pawliszyn (1993)	L M M M	
C ₁₈ H ₁₄ [15679-24-0] chrysene C ₁₈ H ₁₂	$\begin{array}{c} 2.3 \\ 2.7 \\ 2.1 \\ 1.9 \\ 9.4 \\ 1.0 \times 10^{1} \end{array}$	13000	Ma et al. (2010) Lee et al. (2012) Bamford et al. (1999a) Zhang and Pawliszyn (1993) HSDB (2015)	L M M M V	
C ₁₈ H ₁₄ [15679-24-0] Chrysene C ₁₈ H ₁₂	2.3 2.7 2.1 1.9 9.4 1.0×10^{1} 1.5×10^{1}	13000	Ma et al. (2010) Lee et al. (2012) Bamford et al. (1999a) Zhang and Pawliszyn (1993) HSDB (2015) Mackay et al. (2006a)	L M M V V	
2,7-dimethylpyrene C ₁₈ H ₁₄ [15679-24-0] chrysene C ₁₈ H ₁₂ [218-01-9]	$\begin{array}{c} 2.3 \\ 2.7 \\ 2.1 \\ 1.9 \\ 9.4 \\ 1.0 \times 10^{1} \end{array}$	13000	Ma et al. (2010) Lee et al. (2012) Bamford et al. (1999a) Zhang and Pawliszyn (1993) HSDB (2015)	L M M M V	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^{3} \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	9.4		Smith et al. (1993)	С	
	4.6×10^{-3}		Ryan et al. (1988)	C	
	6.6		Petrasek et al. (1983)	C	
	3.6		Hilal et al. (2008)	Q	
naphthacene	3.6×10^{2}		Mackay et al. (2006a)	V	
$C_{18}H_{12}$	2.5×10^{2}		Mackay et al. (1992b)	X	142
(2,3-benzanthracene)	4.2		Ferreira (2001)	Q	9
[92-24-0]					
riphenylene			Mackay et al. (2006a)	V	112
$C_{18}H_{12}$	1.0×10^{2}		Mackay et al. (1992b)	X	142
(benzo[l]phenanthrene)	2.9		Hilal et al. (2008)	Q	
217-59-4]	3.1		Ferreira (2001)	Q	9
penzo[jk]fluorene	6.9×10^{-1}		Ma et al. (2010)	L	143
$C_{16}H_{10}$	7.5×10^{-1}		Ma et al. (2010)	L	144
fluoranthene)	5.4×10^{-1}	4800	Fogg and Sangster (2003)	L	
206-44-0]	4.5×10^{-3}		Mackay and Shiu (1981)	L	
	3.4×10^{-1}		Lee et al. (2012)	M	
	5.1×10^{-1}	4900	Bamford et al. (1999a)	M	
	9.1×10^{-1}		De Maagd et al. (1998)	M	9
	1.1	6900	ten Hulscher et al. (1992)	M	
	1.9	8700	Abou-Naccoul et al. (2014)	V	
	1.0		Mackay et al. (2006a)	V	
	1.0		Shiu and Ma (2000)	V	
	1.4		De Maagd et al. (1998)	V	9
	1.0		Shiu and Mackay (1997)	V	1.47
	2.1 1.1		McLachlan et al. (1990)	V V	147
	4.0×10^{-1}	5400	Eastcott et al. (1988) Paasivirta et al. (1999)	v T	
	4.0×10 1.5	3400	Smith et al. (1993)	C	
	1.0		Ryan et al. (1988)	C	
	9.9×10^{-1}		Petrasek et al. (1983)	C	
	4.4×10^{-1}		Hilal et al. (2008)	Q	
	7.7 \ 10	5100	Kühne et al. (2005)	Q	
		5000	Kühne et al. (2005)	?	
enz[a]anthracene	1.4		Ma et al. (2010)	L	143
$C_{18}H_{12}$	1.6		Ma et al. (2010) Ma et al. (2010)	L	144
56-55-3]	9.0×10^{-1}	7900	Fogg and Sangster (2003)	L	•
	1.7		Lee et al. (2012)	M	
	8.2×10^{-1}	8300	Bamford et al. (1999a)	M	
	9.9		Zhang and Pawliszyn (1993)	M	
	1.2		Southworth (1979)	M	
	1.7		Mackay et al. (2006a)	V	
	2.4		Eastcott et al. (1988)	V	
	4.0		Southworth (1979)	V	
	1.5×10^{-1}	6100	Paasivirta et al. (1999)	T	
	8.5		Smith et al. (1993)	C	27
	9.8		Ryan et al. (1988)	C	
	8.2×10^{1}		Petrasek et al. (1983)	C	
	4.4		Hilal et al. (2008)	Q	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	5.6	6100 8300	Kühne et al. (2005) Ferreira (2001) Kühne et al. (2005) Shiu and Ma (2000)	Q Q ? W	9 140
7-methylbenz[a]anthracene $C_{19}H_{14}$ [2541-69-7]	5.2		HSDB (2015)	Q	38
10-methylbenz[a]anthracene C ₁₉ H ₁₄ [2381-15-9]	5.2		HSDB (2015)	Q	38
12-methylbenz[a]anthracene $\mathbb{C}_{19}\mathbf{H}_{14}$ [2422-79-9]	5.2		HSDB (2015)	Q	38
7,12-dimethyl-benz[a]anthracene $\mathbb{C}_{20}\mathbf{H}_{16}$ 57-97-6]	5.1×10 ³ 4.9		Mackay et al. (2006a) HSDB (2015)	V Q	38
$0,10$ -dimethyl-benz[a]anthracene $\mathbb{C}_{20}\mathrm{H}_{16}$ 58429-99-5]			Mackay et al. (2006a)	V	112
20-methylcholanthrene C ₂₁ H ₁₆ [56-49-5]	1.9		HSDB (2015) Mackay et al. (2006a)	V V	112
benzo[<i>b</i>]fluoranthene C ₂₀ H ₁₂ [205-99-2]	$ \begin{array}{c} 1.5 \times 10^{1} \\ 1.5 \times 10^{1} \\ 1.5 \times 10^{1} \\ 1.4 \times 10^{1} \\ 8.3 \times 10^{-1} \\ 5.6 \end{array} $	5400 7500 4700 5400	Ma et al. (2010) Ma et al. (2010) ten Hulscher et al. (1992) Paasivirta et al. (1999) Smith et al. (1993) Hilal et al. (2008) Kühne et al. (2005) Kühne et al. (2005)	L L M T C Q Q	143 144
benzo[k]fluoranthene $C_{20}H_{12}$ [207-08-9]	1.7×10^{1} 1.8×10^{1} 1.0×10^{1} 1.7×10^{1}	5900	Ma et al. (2010) Ma et al. (2010) Lee et al. (2012) ten Hulscher et al. (1992)	L L M M	143 144
	8.3×10^{1} 6.2×10^{1} 1.5 9.6×10^{-3}	6900 1900	Mackay et al. (2006a) De Maagd et al. (1998) Shiu and Mackay (1997) Paasivirta et al. (1999) Goldstein (1982)	V V V T X	112 9
	2.5×10 ⁻¹ 8.0	6300 5800	Smith et al. (1993) Hilal et al. (2008) Kühne et al. (2005) Kühne et al. (2005)	C Q Q ?	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(\text{at } T^{\Theta})$ $\left[\frac{\text{mol}}{3} \right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
benzo[a]pyrene	2.0×10^{1}		Ma et al. (2010)	L	143
$C_{20}H_{12}$	1.3×10^{1}		Ma et al. (2010)	L	144
(benz[a]pyrene)	6.2		Lee et al. (2012)	M	
50-32-8]	1.3×10^{1}		Altschuh et al. (1999)	M	
	2.2×10^{1}	4700	ten Hulscher et al. (1992)	M	
	2.2×10^{1}		Mackay et al. (2006a)	V	
	2.9×10^{1}		De Maagd et al. (1998)	V	9
	2.2×10^{1}		Shiu and Mackay (1997)	V	
	1.3×10^2		McLachlan et al. (1990)	V	147
	1.8×10^{1}		Eastcott et al. (1988)	V	
	1.9×10^{1}		Southworth (1979)	V	
	8.2×10^{-1}	8200	Paasivirta et al. (1999)	T	
	1.6×10^{-3}	110	Goldstein (1982)	X	116
	2.0×10^{1}		Smith et al. (1993)	C	
	8.2×10^{-4}		Ryan et al. (1988)	C	
	2.9	4000	Hilal et al. (2008)	Q	
		4900 4700	Kühne et al. (2005)	Q ?	
		4700	Kühne et al. (2005) Shiu and Ma (2000)		140
	1				140
penzo[e]pyrene	3.3×10^{1}		HSDB (2015)	V	
$C_{20}H_{12}$	2.1×10^{1}		Mackay et al. (2006a)	V	
192-97-2]	2.7	8300	Paasivirta et al. (1999)	T	
	1.5×10^{1}		Ferreira (2001)	Q	9
			Shiu and Ma (2000)	W	140
libenzo[a , e]pyrene $\mathbb{C}_{24}\mathrm{H}_{14}$ 192-65-4]	7.0×10^2		HSDB (2015)	Q	38
dibenzo[a, h]pyrene	7.0×10^2		HSDB (2015)	Q	38
C ₂₄ H ₁₄ [189-64-0]			,		
dibenzo[a, i]pyrene	7.0×10^2		HSDB (2015)	Q	38
C ₂₄ H ₁₄ [189-55-9]				•	
perylene			Mackay et al. (2006a)	V	112
$C_{20}H_{12}$	2.3		Riederer (1990)	V	
dibenz[de, kl]anthracene)	2.5×10^{-1}	6300	Paasivirta et al. (1999)	T	
198-55-0]	3.3×10^{2}		Mackay et al. (1992b)	X	142
	2.3		Hilal et al. (2008)	Q	
	1.1×10^{1}		Ferreira (2001)	Q	9
libenz[a, h]anthracene	1.8×10 ²	12000	Abou-Naccoul et al. (2014)	V	
$C_{22}H_{14}$	5.8×10^3		Mackay et al. (2006a)	V	
53-70-3]	1.3×10^2		Eastcott et al. (1988)	V	
- 1	1.2	7800	Paasivirta et al. (1999)	T	
	1.4×10^2	-	Smith et al. (1993)	C	
	1.4×10^2		HSDB (2015)	Q	38
	1.2×10^{1}		Hilal et al. (2008)	Q	-
	8.3×10^{1}		` /	_	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
indeno[1,2,3-cd]pyrene C ₂₂ H ₁₂ [193-39-5]	2.9×10^{1} 2.0×10^{1} 2.8×10^{1} 2.5 1.4×10^{2} 5.0	3600 7400 5100 3600	Ma et al. (2010) Ma et al. (2010) ten Hulscher et al. (1992) Paasivirta et al. (1999) Smith et al. (1993) Hilal et al. (2008) Kühne et al. (2005) Kühne et al. (2005)	L M T C Q	143 144
benzo[ghi]perylene C ₂₂ H ₁₂ [191-24-2]	3.0×10^{1} 2.4×10^{1} 3.0×10^{1} 1.8×10^{1} 1.3×10^{1} 6.9×10^{1}	3200	Ma et al. (2010) Ma et al. (2010) ten Hulscher et al. (1992) De Maagd et al. (1998) Shiu and Mackay (1997) Eastcott et al. (1988)	L L M V V	143 144 9
	$ 4.0 1.3 \times 10^{1} 1.8 \times 10^{2} 2.6 $	9200 3700 3300	Paasivirta et al. (1999) Mackay et al. (1992b) Smith et al. (1993) Hilal et al. (2008) Kühne et al. (2005) Kühne et al. (2005)	T X C Q Q	142
coronene C ₂₄ H ₁₂ [191-07-1]			Mackay et al. (2006a)	V	112
benzo[b]triphenylene $C_{22}H_{14}$ (dibenz[a, c]anthracene) [215-58-7]	$ \begin{array}{c} 1.9 \times 10^{1} \\ 4.4 \times 10^{3} \\ 1.9 \times 10^{1} \\ 1.4 \times 10^{2} \end{array} $	8600	Abou-Naccoul et al. (2014) Mackay et al. (2006a) Hilal et al. (2008) Ferreira (2001)	V V Q Q	9
dibenz[<i>a</i> , <i>j</i>]anthracene C ₂₂ H ₁₄ [224-41-9]	8.6×10^{1} 8.3×10^{1}		Hilal et al. (2008) Ferreira (2001)	Q Q	9
picene C ₂₂ H ₁₄ [213-46-7]	6.2 7.7×10^{1}		Hilal et al. (2008) Ferreira (2001)	Q Q	9
1,2-benzfluoranthene C ₂₀ H ₁₂ [203-33-8]	6.9		Hilal et al. (2008)	Q	
$1,2,3,4$ -tetrahydronaphthalene $C_{10}H_{12}$ (tetralin) [119-64-2]	5.1×10^{-3} 2.1×10^{-3} 5.8×10^{-3} 1.2×10^{-2}	5400 4900 5300	Ashworth et al. (1988) Mackay et al. (1993) HSDB (2015) Hilal et al. (2008) Kühne et al. (2005) Kühne et al. (2005)	M V Q Q Q	103 38

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	${\rm d} \ln H^{cp}$			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	D-f	T	N-4-
(Other name(s))	[mol]	. , .	Reference	Туре	Note
[CAS registry number]	$\left\lfloor \frac{mor}{m^3 Pa} \right\rfloor$	[K]			
indane	4.3×10^{-3}		Mackay et al. (2006a)	V	
C_9H_{10}	4.7×10^{-3}		Abraham et al. (1994a)	V	
[496-11-7]	1.2×10^{-2}		Hilal et al. (2008)	Q	
	5.8×10^{-3}		Nirmalakhandan et al. (1997)	Q	
2,3-dihydro-1,1,3,3,5-pentamethyl-1H-indene	7.5×10^{-4}		Zhang et al. (2010)	Q	107, 108
$C_{14}H_{20}$	1.9×10^{-3}		Zhang et al. (2010)	Q	107, 109
[81-03-8]	2.1×10^{-3}		Zhang et al. (2010)	Q	107, 110
	3.9×10^{-4}		Zhang et al. (2010)	Q	107, 111
1,2,3,4-tetrahydro-1,1,3,4,4,6-hexamethylnaphthalene	4.2×10^{-4}		Zhang et al. (2010)	Q	107, 108
$C_{16}H_{24}$	1.3×10^{-3}		Zhang et al. (2010)	Q	107, 109
[2084-69-7]	3.2×10^{-3}		Zhang et al. (2010)	Q	107, 110
	2.7×10^{-4}		Zhang et al. (2010)	Q	107, 111
[2.2]paracyclophane	2.9×10^{-2}		Zhang et al. (2010)	Q	107, 108
$C_{16}H_{16}$	8.4×10^{-2}		Zhang et al. (2010)	Q	107, 109
[1633-22-3]	9.5×10^{-1}		Zhang et al. (2010)	Q	107, 110
	4.3×10^{-2}		Zhang et al. (2010)	Q	107, 111
1,2,3,4-tetrahydro-5-(1-phenylethyl)- naphthalene	1.6×10^{-2}		Zhang et al. (2010)	Q	107, 108
$C_{18}H_{20}$	1.0×10^{-1}		Zhang et al. (2010)	Q	107, 109
[60466-61-7]	2.0×10^{-1}		Zhang et al. (2010)	Q	107, 110
	2.9×10^{-2}		Zhang et al. (2010)	Q	107, 111
5-methylchrysene C ₁₉ H ₁₄	5.2		HSDB (2015)	Q	38
[3697-24-3]	1				
benzo[j]fluoranthene $C_{20}H_{12}$ [205-82-3]	4.9×10^{1}		HSDB (2015)	Q	38
benzo[c]chrysene C ₂₂ H ₁₄ [194-69-4]	8.0×10^{1}		HSDB (2015)	Q	38
benzo[g]chrysene $C_{22}H_{14}$ [196-78-1]	8.0×10 ¹		HSDB (2015)	Q	38
dibenz[a, e]aceanthrylene $C_{24}H_{14}$ [5385-75-1]	7.0×10^2		HSDB (2015)	Q	38
dibenzo[b, k]chrysene $C_{26}H_{16}$ [217-54-9]	1.2×10 ³		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]	[77]		31	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
	(Carbon o	oxides		
carbon monoxide	9.7×10^{-6}	1300	Warneck and Williams (2012)	L	
CO	9.7×10^{-6}	1300	Sander et al. (2011)	L	
[630-08-0]	9.7×10^{-6}	1300	Sander et al. (2006)	L	
	9.7×10^{-6}	1300	Fernández-Prini et al. (2003)	L	1
	9.4×10^{-6}	1300	Wilhelm et al. (1977)	L	
	7.9×10^{-5}		Meadows and Spedding (1974)	M	
	7.9×10^{-6}	1400	Douglas (1967)	M	148
	9.7×10^{-6}	1500	Winkler (1901)	M	
	9.7×10^{-6}	1300	Cargill (1990)	X	3, 149
	9.8×10^{-6}	1300	Cargill (1990)	X	5
	8.7×10^{-6}		Yaws (1999)	?	
	9.4×10^{-6}	1600	Dean (1992)	?	6
	8.6×10^{-6}		Yaws and Yang (1992)	?	92
carbon dioxide	3.3×10^{-4}	2400	Sander et al. (2011)	L	
CO_2	3.3×10^{-4}	2400	Sander et al. (2006)	L	
[124-38-9]	3.3×10^{-4}	2300	Fernández-Prini et al. (2003)	L	1
	3.4×10^{-4}	2300	Carroll et al. (1991)	L	
	3.4×10^{-4}	2400	Crovetto (1991)	L	
	3.4×10^{-4}	2300	Yoo et al. (1986)	L	
	3.4×10^{-4}	2400	Edwards et al. (1978)	L	
	3.3×10^{-4}	2400	Wilhelm et al. (1977)	L	
	3.4×10^{-4}	2400	Weiss (1974)	L	
	3.6×10^{-4}	2200	Zheng et al. (1997)	M	
	3.5×10^{-4}	2400	Bohr (1899)	M	
	3.4×10^{-4}	2400	Chen et al. (1979)	R	
	3.1×10^{-4}	2400	Chameides (1984)	T	
	3.5×10^{-4}	2300	Scharlin (1996)	X	3
	3.4×10^{-4}		Perry and Chilton (1973)	X	10
	3.4×10^{-4}	2400	Lelieveld and Crutzen (1991)	C	
	3.4×10^{-4}	2400	Pandis and Seinfeld (1989)	C	
		2900	Kühne et al. (2005)	Q	
		2400	Kühne et al. (2005)	?	
	4.5×10^{-4}		Yaws (1999)	?	
	3.3×10^{-4}	2600	Dean (1992)	?	6
	4.5×10^{-4}		Yaws and Yang (1992)	?	92
	3.4×10^{-4}	2400	Seinfeld (1986)	?	7
	3.3×10^{-4}	2400	Hoffmann and Jacob (1984)	?	7
carbon suboxide	1.3×10^{-2}		Keßel (2011)	M	150
C ₃ O ₂ [504-64-3]					

Alcohols (ROH)

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
methanol	2.0	5600	Sander et al. (2011)	L	151
CH ₃ OH	2.1	5300	Warneck (2006)	L	
57-56-1]	2.2	5200	Sander et al. (2006)	L	
	2.0	5500	Dohnal et al. (2006)	L	
	1.7	4500	Fogg and Sangster (2003)	L	
	3.6×10^{-2}		St-Pierre et al. (2014)	M	75
	2.1		Vitenberg and Dobryakov (2008)	M	
	7.8×10^{-1}		Helburn et al. (2008)	M	
	2.0	5600	Teja et al. (2001)	M	89, 130
	2.6	5900	Zhu et al. (2000)	M	
	2.0	5500	Gupta et al. (2000)	M	
	1.6		Altschuh et al. (1999)	M	
	2.2		Li and Carr (1993)	M	
	2.2	5200	Snider and Dawson (1985)	M	
	2.2		Rytting et al. (1978)	M	
	2.3		Burnett (1963)	M	
	2.2	5700	Glew and Moelwyn-Hughes (1953)	M	
	2.3		Butler et al. (1935)	M	152
	7.6×10^{-2}		Abraham and Acree Jr. (2007)	V	
	1.9		Hwang et al. (1992)	V	
	2.8		Riederer (1990)	V	
		5400	Abraham (1984)	V	
	1.6	5600	Schaffer and Daubert (1969)	X	116
	2.2		Gaffney and Senum (1984)	X	153
	2.1		Timmermans (1960)	X	154
	2.0		Hilal et al. (2008)	Q	
		6200	Kühne et al. (2005)	Q	
	1.5		Yaws et al. (1997)	Q	
	1.8		Nirmalakhandan and Speece (1988a)	Q	
	2.4		Taft et al. (1985)	Q	
		5000	Kühne et al. (2005)	?	
	1.9		Yaws (1999)	?	
	1.4		Yaws and Yang (1992)	?	92
	2.2		Abraham et al. (1990)	?	
ethanol	1.9	6400	Sander et al. (2011)	L	
C ₂ H ₅ OH	1.9	6300	Warneck (2006)	L	
[64-17-5]	2.0	6600	Sander et al. (2006)	L	
	1.8	6300	Dohnal et al. (2006)	L	
	1.7	5700	Fogg and Sangster (2003)	L	
	1.8		Vitenberg and Dobryakov (2008)	M	
	1.9	5800	Falabella et al. (2006)	M	89, 130
	1.9		Straver and de Loos (2005)	M	
			Cheng et al. (2004)	M	123
	1.1		Ueberfeld et al. (2001)	M	
	1.8	5800	Gupta et al. (2000)	M	
	1.3		Altschuh et al. (1999)	M	
	1.9		Li and Carr (1993)	M	
	1.9		Park et al. (1987)	M	
	1.9	6600	Snider and Dawson (1985)	M	
	1.9		Rytting et al. (1978)	M	
	2.3		Rohrschneider (1973)	M	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{H^{cp}}$			
Formula (Other name(s))		$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
	2.1		Burnett (1963)	M	
	1.9		Butler et al. (1935)	M	
	4.7×10^{-2}		Abraham and Acree Jr. (2007)	V	
	1.3		Hwang et al. (1992)	V	
		6300	Abraham (1984)	V	
	1.5	6400	Schaffer and Daubert (1969)	X	116
	2.0		Gaffney and Senum (1984)	X	153
	1.6		Timmermans (1960)	X	154
	1.1	6500	Hilal et al. (2008)	Q	
	1.2	0300	Kühne et al. (2005)	Q	
	1.3 1.6		Yaws et al. (1997) Nirmalakhandan and Speece (1988a)	Q Q	
	1.0	6400	Kühne et al. (2005)	?	
	1.2	0400	Yaws and Yang (1992)	?	92
	1.9		Abraham et al. (1990)	?	, 2
-propanol	1.4	6900	Sander et al. (2011)	L	155
C ₃ H ₇ OH	1.3	7500	Sander et al. (2006)	L	
71-23-8]	1.4	6900	Dohnal et al. (2006)	L	
	1.4	6200	Fogg and Sangster (2003)	L	
	1.5		Vitenberg and Dobryakov (2008)	M	
	1.2	6200	Falabella et al. (2006)	M	89, 130
	1.5		Straver and de Loos (2005)	M	
	1.2	6200	Gupta et al. (2000)	M	
	2.7		Altschuh et al. (1999)	M	
	1.4	5 500	Li and Carr (1993)	M	
	1.3	7500	Snider and Dawson (1985)	M	
	1.5		Rytting et al. (1978)	M	
	1.6 1.4		Burnett (1963)	M	150
	3.1×10^{-2}		Butler et al. (1935)	M	152
	3.1×10 -	6900	Abraham and Acree Jr. (2007) Abraham (1984)	V V	
	7.0×10^{-1}	0900	Hilal et al. (2008)		
	7.0×10	6900	Kühne et al. (2008)	Q Q	
	1.2	0700	Yaws et al. (1997)	Q	
	1.2		Nirmalakhandan and Speece (1988a)	Q	
	1.2	7500	Kühne et al. (2005)	?	
	1.1	7200	Yaws and Yang (1992)	?	92
	1.5		Abraham et al. (1990)	?	
-propanol	1.3	7500	Sander et al. (2011)	L	
C ₃ H ₇ OH	1.3	7500	Sander et al. (2006)	L	
isopropanol)	1.2	6200	Fogg and Sangster (2003)	L	
67-63-0]	1.1	8400	Hiatt (2013)	M	
	6.8×10^{-1}		Helburn et al. (2008)	M	
			Cheng et al. (2004)	M	123
	4		Cheng et al. (2003)	M	123
	1.8×10^{-1}		Ayuttaya et al. (2001)	M	131
	1.0×10^{-3}		Ayuttaya et al. (2001)	M	132
	5.7×10^{-1}		Ayuttaya et al. (2001)	M	133
	1.1		Kim et al. (2000)	M	
	9.2×10^{-1}		Altschuh et al. (1999)	M	
	7.9×10^{-1}	5700	Kolb et al. (1992)	M	102

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	1.2	7400	Snider and Dawson (1985)	M	
	1.2		Rytting et al. (1978)	M	
	1.2		Butler et al. (1935)	M	
	1.7		Hine and Weimar Jr. (1965)	R	
	4.3×10^{-1}		Hilal et al. (2008)	Q	
	1	6900	Kühne et al. (2005)	Q	
	8.9×10^{-1}		Yaws et al. (1997)	Q	
	1.1		Nirmalakhandan and Speece (1988a)	Q	
	1.3		Taft et al. (1985)	Q	
	1	6000	Kühne et al. (2005)	?	
	8.8×10^{-1}		Yaws and Yang (1992)	?	92
	1.2		Abraham et al. (1990)	?	
glycidol C ₃ H ₆ O ₂ [556-52-5]	$1.7{\times}10^3$		HSDB (2015)	Q	38
1-butanol	1.2	7500	Sander et al. (2011)	L	
C ₄ H ₉ OH	1.3	7200	Sander et al. (2011) Sander et al. (2006)	L	
[71-36-3]	1.3	7500	Dohnal et al. (2006)	L	
[/1-30-3]	1.1	6300	Fogg and Sangster (2003)	L	
	1.0	6800	Shunthirasingham et al. (2013)	M	
	1.3	0800	Vitenberg and Dobryakov (2008)	M	
	1.1	6000	Lei et al. (2007)	M	156
	8.2×10^{-1}	6200	Falabella et al. (2006)	M	89, 130
	1.1	0200	Kim et al. (2000)	M	67, 130
	8.2×10^{-1}	6200	Gupta et al. (2000)	M	
	1.2	0200	Altschuh et al. (1999)	M	
	1.4×10^{-1}		Chaintreau et al. (1995)	M	
	1.1		Li and Carr (1993)	M	
	6.1×10^{-1}	5600	Kolb et al. (1992)	M	102
	1.2	7200	Snider and Dawson (1985)	M	102
	5.3×10^{-1}	7200			22
			Friant and Suffet (1979)	M M	23
	1.2 1.1		Rytting et al. (1978) Amoore and Buttery (1978)	M	
	1.1		Buttery et al. (1969)	M	
	1.4		Burnett (1963)	M	
	1.2		Butler et al. (1935)	M	152
	1.1		Mackay et al. (2006c)	V	132
	7.3×10^{-1}		Mackay et al. (2000c) Mackay et al. (1995)	V	
	8.3×10^{-1}		Hwang et al. (1992)	V	
	6.5 × 10	7400	Abraham (1984)	V	
	1.2	7400	Amoore and Buttery (1978)	V	
	1.2		Butler et al. (1935)	V	
	5.6×10^{-1}		Hilal et al. (2008)	Q	
	J.0 × 10	7200	Kühne et al. (2005)	Q	
	1.1	1200	Yaws et al. (1997)	Q	
	9.9×10^{-1}		Nirmalakhandan and Speece (1988a)		
	7.7 X IU	6900	Kühne et al. (2005)	Q ?	
	1.2	0300	Abraham et al. (1990)	?	
	1.4		Autaliaili Ci al. (1770)	4	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2-butanol	1.1	7300	Sander et al. (2011)	L	
$C_4H_{10}O$	1.1	7300	Sander et al. (2006)	L	
(sec-butanol)	1.0	7400	Fogg and Sangster (2003)	L	
[78-92-2]	1.1	7300	Snider and Dawson (1985)	M	
	9.8×10^{-1}		Rytting et al. (1978)	M	
	9.6×10^{-1}		Butler et al. (1935)	M	
	1.1		Mackay et al. (2006c)	V	
	1.1		Mackay et al. (1995)	V	
	9.1×10^{-1}	7500	Cabani et al. (1975b)	T	
	3.9×10^{-1}		Hilal et al. (2008)	Q	
		7200	Kühne et al. (2005)	Q	
	1.2	-	Yaws et al. (1997)	Q	
	9.0×10^{-1}		Nirmalakhandan and Speece (1988a)	Q	
		7100	Kühne et al. (2005)	?	
	9.9×10^{-1}		Abraham et al. (1990)	?	
2-methyl-1-propanol	1.0		Sander et al. (2011)	L	
$C_4H_{10}O$	1.0		Sander et al. (2006)	L	
(isobutanol)	2.2×10^{-1}		Kim and Kim (2014)	M	
78-83-1]			Cheng et al. (2004)	M	123
	1.1		Altschuh et al. (1999)	M	
	3.7×10^{-1}		Shiu and Mackay (1997)	M	
	1.0		Snider and Dawson (1985)	M	
	8.0×10^{-1}		Rytting et al. (1978)	M	
	8.3×10^{-1}		Butler et al. (1935)	M	
	7.3×10^{-1}		Mackay et al. (2006c)	V	
	7.3×10^{-1}		Shiu and Mackay (1997)	v	
	7.3×10^{-1}		Mackay et al. (1995)	V	
	5.1×10^{-1}		Hilal et al. (2008)		
	3.1 × 10	7200	Kühne et al. (2005)	Q	
	8.3×10^{-1}	7200		Q	
	8.4×10^{-1}		Yaws et al. (1997)	Q	
	8.4×10	8100	Nirmalakhandan and Speece (1988a)	Q ?	
	0.0.10-1	8100	Kühne et al. (2005)	?	
	8.0×10^{-1} 9.6×10^{-1}		Abraham et al. (1990)		
			Mackay and Yeun (1983)	?	
2-methyl-2-propanol	6.9×10^{-1}	8300	Sander et al. (2011)	L	
$C_4H_{10}O$	6.9×10^{-1}	8300	Sander et al. (2006)	L	
(tert-butanol)	1.4	7900	Hiatt (2013)	M	
[75-65-0]	1.1		Altschuh et al. (1999)	M	
	1	000-	Koga (1995)	M	157
	6.8×10^{-1}	8300	Snider and Dawson (1985)	M	
	7.6×10^{-1}		Rytting et al. (1978)	M	
	8.3×10^{-1}		Butler et al. (1935)	M	
	8.0×10^{-1}	6500	Pankow et al. (1996)	C	
	2.2×10^{-1}		Hilal et al. (2008)	Q	
		7200	Kühne et al. (2005)	Q	
	7.3×10^{-1}		Nirmalakhandan et al. (1997)	Q	
	3.0×10^{-1}		Yaws et al. (1997)	Q	
	7.0×10^{-1}		Nirmalakhandan and Speece (1988a)	Q	
	7.0 × 10		Tillialakilalidali alid Specce (1700a)	Q	

Table 6: Henry's law constants for water as solvent (...continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
	7.7×10^{-1}		Abraham et al. (1990)	?	
1-pentanol	1.0	7900	Dohnal et al. (2006)	L	
C ₅ H ₁₁ OH	8.1×10^{-1}	7100	Shunthirasingham et al. (2013)	M	
(amyl alcohol)	7.5×10^{-1}	6100	Lei et al. (2007)	M	156
[71-41-0]	9.4×10^{-1}	6800	Falabella et al. (2006)	M	89, 130
	9.5×10^{-1}	6900	Gupta et al. (2000)	M	
	8.4×10^{-1}		Li and Carr (1993)	M	
	9.0×10^{-1}		Rytting et al. (1978)	M	
	7.8×10^{-1}		Butler et al. (1935)	M	
	8.3×10^{-1}		Mackay et al. (2006c)	V	
	8.3×10^{-1}		Mackay et al. (1995)	V	
	1	7800	Abraham (1984)	V	
	7.8×10^{-1}		Amoore and Buttery (1978)	V	
	7.6×10^{-1}		Butler et al. (1935)	V	
	4.5×10^{-1}		Hilal et al. (2008)	Q	
	1	7600	Kühne et al. (2005)	Q	
	7.7×10^{-1}		Yaws et al. (1997)	Q	
	7.9×10^{-1}	7700	Nirmalakhandan and Speece (1988a) Kühne et al. (2005)	Q ?	
	8.1×10^{-1}		Yaws and Yang (1992)	?	92
	9.0×10^{-1}		Abraham et al. (1990)	?	
	9.6×10^{-1}		Mackay and Yeun (1983)	?	
2-pentanol	6.7×10 ⁻¹		Butler et al. (1935)	M	
$C_5H_{12}O$	6.6×10^{-1}		Mackay et al. (2006c)	V	
(sec-pentanol)	6.6×10^{-1}		Mackay et al. (1995)	V	
[6032-29-7]	3.1×10^{-1}		Hilal et al. (2008)	Q	
		7600	Kühne et al. (2005)	Q	
	6.5×10^{-1}		Yaws et al. (1997)	Q	
	7.2×10^{-1}		Nirmalakhandan and Speece (1988a)	Q	
	1	7900	Kühne et al. (2005)	?	
	6.7×10^{-1}		Abraham et al. (1990)	?	
3-pentanol	6.3×10^{-1}	7900	Cabani et al. (1975b)	T	
C ₅ H ₁₂ O	3.2×10^{-1}		Hilal et al. (2008)	Q	
[584-02-1]		7600	Kühne et al. (2005)	Q	
	7.7×10^{-1}		Nirmalakhandan et al. (1997)	Q	
	5.2×10^{-1}		Yaws et al. (1997)	Q	
		7500	Kühne et al. (2005)	?	
	6.2×10^{-1}		Abraham et al. (1990)	?	
2-methyl-1-butanol	7.0×10^{-1}		Butler et al. (1935)	M	
$C_5H_{12}O$	3.9×10^{-1}		Hilal et al. (2008)	Q	
(isopentanol)		7600	Kühne et al. (2005)	Q	
[137-32-6]	8.3×10^{-1}		Yaws et al. (1997)	Q	
	6.9×10^{-1}		Nirmalakhandan and Speece (1988a)	Q	
	4	6800	Kühne et al. (2005)	?	
	7.0×10^{-1}		Abraham et al. (1990)	?	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	D.C.		N T .
(Other name(s))	[mol]	- (-/ -)	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mor}}{\text{m}^3 \text{Pa}}\right]$	[K]			
(S)-2-methyl-1-butanol	3.9×10^{-1}		Hilal et al. (2008)	Q	
C ₅ H ₁₂ O [1565-80-6]					
3-methyl-1-butanol	4.6×10 ⁻¹		Hilal et al. (2008)	Q	
$C_5H_{12}O$	1	7600	Kühne et al. (2005)	Q	
[123-51-3]	6.9×10^{-1}		Nirmalakhandan et al. (1997)	Q	
	7.4×10^{-1}	0200	Yaws et al. (1997)	Q	
	7.0×10^{-1}	8200	Kühne et al. (2005)	? ?	
			Abraham et al. (1990)		
2-methyl-2-butanol	7.1×10^{-1}		Butler et al. (1935)	M	
$C_5H_{12}O$	7.2×10^{-1}		HSDB (2015)	Q	38
(tert-pentanol)	2.7×10^{-1}		Hilal et al. (2008)	Q	
[75-85-4]	1	7600	Kühne et al. (2005)	Q	
	6.1×10^{-1}		Yaws et al. (1997)	Q	
	6.0×10^{-1}	7200	Nirmalakhandan and Speece (1988a)	Q	
	7.2×10^{-1}	7200	Kühne et al. (2005) Abraham et al. (1990)	? ?	
			· · ·		
3-methyl-2-butanol	3.1×10^{-1}	7.000	Hilal et al. (2008)	Q	
C ₅ H ₁₂ O	5.4×10^{-1}	7600	Kühne et al. (2005)	Q	
[598-75-4]	3.4×10	7500	Yaws et al. (1997) Kühne et al. (2005)	Q ?	
2.2 dimethyl 1 mannal	1.9×10^{-1}			V	
2,2-dimethyl-1-propanol C ₅ H ₁₂ O	3.1×10^{-1}		HSDB (2015) Hilal et al. (2008)	Q Q	
[75-84-3]	J.1 × 10	7600	Kühne et al. (2005)	Q	
[/3 04 3]	4.9×10^{-1}	7000	Saxena and Hildemann (1996)	E	158
	,	7900	Kühne et al. (2005)	?	
1-hexanol	5.7×10 ⁻¹	7300	Shunthirasingham et al. (2013)	M	
$C_6H_{14}O$	5.1×10^{-1}	6100	Lei et al. (2007)	M	156
[111-27-3]	3.9×10^{-1}	5800	Falabella et al. (2006)	M	89, 130
	3.9×10^{-1}	5800	Gupta et al. (2000)	M	
	9.8×10^{-1}		Altschuh et al. (1999)	M	
	6.4×10^{-1}		Li and Carr (1993)	M	
	6.9×10^{-1}		Rytting et al. (1978)	M	
	5.8×10^{-1}		Buttery et al. (1969)	M	
	5.3×10^{-1}		Mackay et al. (2006c)	V	
	5.3×10^{-1}		Mackay et al. (1995)	V	
	7.6×10^{-1}		Hwang et al. (1992)	V	
		8200	Abraham (1984)	V	
	6.4×10^{-1}		Hine and Mookerjee (1975)	V	
			Butler et al. (1935)	V	
	6.4×10^{-1}				
	6.4×10^{-1} 3.7×10^{-1}	5 000	Hilal et al. (2008)	Q	
	3.7×10^{-1}	7900	Kühne et al. (2005)	Q	
	3.7×10^{-1} 4.7×10^{-1}	7900	Kühne et al. (2005) Yaws et al. (1997)	Q Q	
	3.7×10^{-1}		Kühne et al. (2005) Yaws et al. (1997) Nirmalakhandan and Speece (1988a)	Q Q Q	
	3.7×10^{-1} 4.7×10^{-1}	7900 8400	Kühne et al. (2005) Yaws et al. (1997)	Q Q	92

Table 6: Henry's law constants for water as solvent (...continued)

Substance	H^{cp} (at T^{Θ})	$\frac{\mathrm{d} \ln H^{cp}}{H^{cp}}$		
Formula Other name(a))		d(1/T)	Reference	Type Note
Other name(s)) [CAS registry number]	[mol]	[K]		
CAS registry number	m ³ Pa	[K]		
2-hexanol	2.5×10 ⁻¹		Hilal et al. (2008)	Q
$C_6H_{14}O$	4.2×10^{-1}		Yaws et al. (1997)	Q
[626-93-7]				
3-hexanol	2.3×10^{-1}		Meylan and Howard (1991)	V
$C_6H_{14}O$	2.0×10^{-1}		Hine and Mookerjee (1975)	V
[623-37-0]	3.9×10^{-1}	8400	Cabani et al. (1975b)	T
	2.8×10^{-1}		Hilal et al. (2008)	Q
	4.1×10^{-1}		Yaws et al. (1997)	Q
	5.6×10^{-1}		Meylan and Howard (1991)	Q
	6.0×10^{-1}		Nirmalakhandan and Speece (1988a)	Q
	3.9×10^{-1}		Abraham et al. (1990)	?
2-methyl-1-pentanol	2.3×10^{-1}		HSDB (2015)	V
$C_6H_{14}O$	4.4×10^{-1}		Hilal et al. (2008)	Q
[105-30-6]	3.1×10^{-1}		Yaws et al. (1997)	Q
3-methyl-1-pentanol	3.8×10^{-1}		Hilal et al. (2008)	Q
C ₆ H ₁₄ O [589-35-5]				
2-methyl-2-pentanol	3.1×10^{-1}		Hine and Mookerjee (1975)	V
C ₆ H ₁₄ O	3.2×10^{-1}		Hilal et al. (2008)	Q
[590-36-3]	5.0×10^{-1}		Yaws et al. (1997)	Q
	4.7×10^{-1}		Nirmalakhandan and Speece (1988a)	Q
	3.1×10^{-1}		Abraham et al. (1990)	?
3-methyl-2-pentanol C ₆ H ₁₄ O [565-60-6]	2.8×10 ⁻¹		Yaws et al. (1997)	Q
4-methyl-2-pentanol	2.1×10^{-1}		Meylan and Howard (1991)	V
metny1-2-pentanoi C ₆ H ₁₄ O	2.1×10^{-1} 2.2×10^{-1}		Hine and Mookerjee (1975)	V V
[108-11-2]	2.6×10^{-1}		Hilal et al. (2008)	
[106-11-2]	2.0 × 10	7900	Kühne et al. (2005)	Q Q
	1.9×10^{-1}	7700	Yaws et al. (1997)	0
	5.6×10^{-1}		Meylan and Howard (1991)	Q
	4.8×10^{-1}		Nirmalakhandan and Speece (1988a)	Q
	4.0 \ 10	8700	Kühne et al. (2005)	?
	2.2×10^{-1}	0,00	Abraham et al. (1990)	?
2-methyl-3-pentanol	2.9×10 ⁻¹		Hine and Mookerjee (1975)	V
C ₆ H ₁₄ O	3.3×10^{-1}		Hilal et al. (2008)	Q
[565-67-3]	3.7×10^{-1}		Yaws et al. (1997)	Q
505 07 5]	5.2×10^{-1}		Nirmalakhandan and Speece (1988a)	Q
	2.9×10^{-1}		Abraham et al. (1990)	?
3-methyl-3-pentanol	2.1×10^{-1}		Hilal et al. (2008)	Q
C ₆ H ₁₄ O	7.0×10^{-1}		Yaws et al. (1997)	Q Q
[77-74-7]	1.0 × 10		1 aws Ct at. (1771)	V

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$			
Other name(s))		u(1/1)	Reference	Type	Note
CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
2-ethyl-1-butanol	4.7×10^{-1}		Hilal et al. (2008)	Q	
$C_6H_{14}O$	4.8×10^{-1}		Yaws et al. (1997)	Q	
[97-95-0]					
2,2-dimethyl-1-butanol	2.8×10^{-1}		Yaws et al. (1997)	Q	
C ₆ H ₁₄ O [1185-33-7]					
2,3-dimethyl-1-butanol	8.2×10 ⁻¹		Yaws et al. (1997)	Q	
$C_6H_{14}O$	4.7×10^{-1}		Nirmalakhandan and Speece (1988a)	Q	
[19550-30-2]					
2,3-dimethyl-2-butanol	3.0×10^{-1}		Hine and Mookerjee (1975)	V	159
$C_6H_{14}O$	2.0×10^{-1}		Hilal et al. (2008)	Q	
[594-60-5]				-	
3,3-dimethyl-2-butanol	5.6×10^{-1}		HSDB (2015)	Q	38
C ₆ H ₁₄ O	4.9×10^{-1}		Yaws et al. (1997)	Q	
[464-07-3]				-	
l-heptanol	3.8×10^{-1}	7200	Shunthirasingham et al. (2013)	M	
C ₇ H ₁₆ O	3.6×10^{-1}	6300	Lei et al. (2007)	M	156
[111-70-6]	8.6×10^{-1}		Altschuh et al. (1999)	M	
	1.8×10^{-1}		Shiu and Mackay (1997)	M	
	6.2×10^{-1}		Mackay et al. (2006c)	V	
	6.2×10^{-1}		Shiu and Mackay (1997)	V	
	6.2×10^{-1}		Mackay et al. (1995)	V	
	4.9×10^{-1}	8700	Abraham (1984)	V	
	5.3×10^{-1}		Hine and Mookerjee (1975)	V	
	5.2×10^{-1}		Butler et al. (1935)	V	
	3.0×10^{-1}		Hilal et al. (2008)	Q	
	1	8300	Kühne et al. (2005)	Q	
	5.2×10^{-1}		Yaws et al. (1997)	Q	
	5.0×10^{-1}	0.463	Nirmalakhandan and Speece (1988a)	Q	
	0.5 10-1	9400	Kühne et al. (2005)	?	02
	8.5×10^{-1} 5.0×10^{-1}		Yaws and Yang (1992)	? ?	92
			Abraham et al. (1990)		
2-heptanol	2.0×10^{-1}		Hilal et al. (2008)	Q	
C ₇ H ₁₆ O [543-49-7]	1.2×10^{-1}		Yaws et al. (1997)	Q	
3-heptanol	2.1×10^{-1}		Yaws et al. (1997)	Q	
C ₇ H ₁₆ O				•	
[589-82-2]					
4-heptanol	3.5×10^{-1}	9100	Cabani et al. (1975b)	T	
C ₇ H ₁₆ O	2.2×10^{-1}		Yaws et al. (1997)	Q	
[589-55-9]				-	
2-methyl-1-hexanol	6.9×10 ⁻¹	11000	Hiatt (2013)	M	
C ₇ H ₁₆ O	1.7×10^{-1}		Yaws et al. (1997)	Q	
[624-22-6]				-	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type Note
3-methyl-1-hexanol C ₇ H ₁₆ O [13231-81-7]	1.3×10 ⁻¹		Yaws et al. (1997)	Q
4-methyl-1-hexanol C ₇ H ₁₆ O [818-49-5]	1.3×10^{-1}		Yaws et al. (1997)	Q
5-methyl-1-hexanol C ₇ H ₁₆ O [627-98-5]	2.8×10 ⁻¹		Yaws et al. (1997)	Q
2-methyl-2-hexanol C ₇ H ₁₆ O [625-23-0]	6.4×10^{-1}		Yaws et al. (1997)	Q
3-methyl-2-hexanol C ₇ H ₁₆ O [2313-65-7]	4.9×10 ⁻¹		Yaws et al. (1997)	Q
4-methyl-2-hexanol C ₇ H ₁₆ O [2313-61-3]	5.0×10 ⁻¹		Yaws et al. (1997)	Q
5-methyl-2-hexanol C ₇ H ₁₆ O [627-59-8]	4.2×10 ⁻¹		Yaws et al. (1997)	Q
2-methyl-3-hexanol C ₇ H ₁₆ O [617-29-8]	5.8×10 ⁻¹		Yaws et al. (1997)	Q
3-methyl-3-hexanol C ₇ H ₁₆ O [597-96-6]	7.7×10 ⁻¹		Yaws et al. (1997)	Q
4-methyl-3-hexanol C ₇ H ₁₆ O [615-29-2]	5.2×10 ⁻¹		Yaws et al. (1997)	Q
5-methyl-3-hexanol C ₇ H ₁₆ O [623-55-2]	5.4×10^{-1}		Yaws et al. (1997)	Q
2-ethyl-1-pentanol C ₇ H ₁₆ O [27522-11-8]	3.4×10^{-1}		Yaws et al. (1997)	Q
3-ethyl-1-pentanol C ₇ H ₁₆ O [66225-51-2]	3.4×10^{-1}		Yaws et al. (1997)	Q
2,2-dimethyl-1-pentanol C ₇ H ₁₆ O [2370-12-9]	3.3×10 ⁻¹		Yaws et al. (1997)	Q

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$		
Formula (Other name(s)) (CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\overline{\mathrm{d}(1/T)}}{\mathrm{[K]}}$	Reference	Type Note
2,3-dimethyl-1-pentanol C ₇ H ₁₆ O 10143-23-4]	3.6×10^{-1}		Yaws et al. (1997)	Q
2,4-dimethyl-1-pentanol C ₇ H ₁₆ O 6305-71-1]	3.3×10^{-1}		Yaws et al. (1997)	Q
3,3-dimethyl-1-pentanol C7H ₁₆ O 19264-94-9]	3.5×10^{-1}		Yaws et al. (1997)	Q
3,4-dimethyl-1-pentanol C ₇ H ₁₆ O 6570-87-2]	3.5×10^{-1}		Yaws et al. (1997)	Q
4,4-dimethyl-1-pentanol C ₇ H ₁₆ O 3121-79-7]	3.8×10^{-1}		Yaws et al. (1997)	Q
3-ethyl-2-pentanol C ₇ H ₁₆ O 609-27-8]	4.9×10^{-1}		Yaws et al. (1997)	Q
2,3-dimethyl-2-pentanol C ₇ H ₁₆ O 4911-70-0]	8.6×10 ⁻¹		Yaws et al. (1997)	Q
2,4-dimethyl-2-pentanol C ₇ H ₁₆ O 625-06-9]	5.7×10 ⁻¹		Yaws et al. (1997)	Q
3,3-dimethyl-2-pentanol C ₇ H ₁₆ O 19781-24-9]	5.5×10 ⁻¹		Yaws et al. (1997)	Q
3,4-dimethyl-2-pentanol $C_7H_{16}O$ 64502-86-9]	4.7×10^{-1}		Yaws et al. (1997)	Q
4,4-dimethyl-2-pentanol $C_7H_{16}O$ 6144-93-0]	6.8×10^{-1}		Yaws et al. (1997)	Q
8-ethyl-3-pentanol C ₇ H ₁₆ O 597-49-9]	1.1		Yaws et al. (1997)	Q
2,2-dimethyl-3-pentanol C ₇ H ₁₆ O 3970-62-5]	4.0×10^{-1}		Yaws et al. (1997)	Q
2,3-dimethyl-3-pentanol $C_7H_{16}O$ 595-41-5]	9.2×10^{-1}		Yaws et al. (1997)	Q

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} (1/T)}$			
Other name(s))		d(1/T)	Reference	Type	Note
CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
2,4-dimethyl-3-pentanol	3.8×10^{-1}		Yaws et al. (1997)	Q	
C ₇ H ₁₆ O					
[600-36-2]					
2-ethyl-2-methyl-1-butanol	4.3×10^{-1}		Yaws et al. (1997)	Q	
C ₇ H ₁₆ O					
[18371-13-6]					
2-ethyl-3-methyl-1-butanol	3.8×10^{-1}		Yaws et al. (1997)	Q	
C ₇ H ₁₆ O	2.3/(10			~	
[32444-34-1]					
2,2,3-trimethyl-1-butanol	4.3×10 ⁻¹		Yaws et al. (1997)	Q	
C ₇ H ₁₆ O	7.5 \ 10		14m3 Ot al. (1771)	Q	
[55505-23-2]					
2,3,3-trimethyl-1-butanol	4.0×10^{-1}		Yaws et al. (1997)	Q	
2,3,3-umethy1-1-outanoi C ₇ H ₁₆ O	7.0 \ 10		14w5 Ct al. (1771)	Ų	
[36794-64-6]					
2,3,3-trimethyl-2-butanol	2.7×10 ⁻¹		Yaws et al. (1997)	0	
2,3,3-trimetnyi-2-butanoi C ₇ H ₁₆ O	2.7 × 10		1 aws Cl dl. (1771)	Q	
[594-83-2]					
	2.1×10^{-1}	6900	Shunthiresingham et al. (2012)	M	
1-octanol C ₈ H ₁₈ O	1.9×10^{-1}	6000	Shunthirasingham et al. (2013) Lei et al. (2007)	M M	156
[111-87-5]	6.5×10^{-1}	0000	Altschuh et al. (1999)	M	130
[111 07-3]	4.0×10^{-1}		Buttery et al. (1969)	M	
	3.8×10^{-1}		Mackay et al. (2006c)	V	
	2.4×10^{-1}		Mackay et al. (2006)	V	
		8900	Abraham (1984)	V	
	4.1×10^{-1}		Hine and Mookerjee (1975)	V	
	4.1×10^{-1}		Butler et al. (1935)	V	
	3.3×10^{-1}		Savary et al. (2014)	Q	
	2.5×10^{-1}		Hilal et al. (2008)	Q	
	•	8600	Kühne et al. (2005)	Q	
	3.9×10^{-1}		Yaws et al. (1997)	Q	
	3.9×10^{-1}	7700	Nirmalakhandan and Speece (1988a)	Q	
	62 10-1	7700	Kühne et al. (2005)	?	02
	6.2×10^{-1} 4.0×10^{-1}		Yaws and Yang (1992) Abraham et al. (1990)	? ?	92
			Autaliani et al. (1990)		
2-octanol	2.7×10^{-1}		HSDB (2015)	V	
$C_8H_{18}O$	2.7×10^{-1}		Meylan and Howard (1991)	V	
[123-96-6]	1.7×10^{-1}		Hilal et al. (2008)	Q	
	3.0×10^{-1}		Yaws et al. (1997)	Q	
	3.2×10^{-1}		Meylan and Howard (1991)	Q	
3-octanol	3.1×10^{-1}		Yaws et al. (1997)	Q	
C ₈ H ₁₈ O					
[589-98-0]					

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3\text{Pa}}\right]$	[K]	Reference	Туре	Note
4-octanol C ₈ H ₁₈ O [589-62-8]	2.9×10^{-1}		Yaws et al. (1997)	Q	
2-methyl-1-heptanol C ₈ H ₁₈ O [60435-70-3]	3.4×10^{-1}		Yaws et al. (1997)	Q	160
8-methyl-1-heptanol C ₈ H ₁₈ O 1070-32-2]	2.1×10^{-1}		Yaws et al. (1997)	Q	
4-methyl-1-heptanol C ₈ H ₁₈ O 817-91-4]	2.3×10 ⁻¹		Yaws et al. (1997)	Q	
5-methyl-1-heptanol C ₈ H ₁₈ O [7212-53-5]	2.1×10 ⁻¹		Yaws et al. (1997)	Q	
6-methyl-1-heptanol C ₈ H ₁₈ O [1653-40-3]	$1.1 \times 10^{-1} \\ 2.0 \times 10^{-1}$		HSDB (2015) Yaws et al. (1997)	V Q	
2-methyl-2-heptanol C ₈ H ₁₈ O [625-25-2]	5.1×10 ⁻¹		Yaws et al. (1997)	Q	
3-methyl-2-heptanol C ₈ H ₁₈ O [31367-46-1]	3.9×10^{-1}		Yaws et al. (1997)	Q	
4-methyl-2-heptanol C ₈ H ₁₈ O [56298-90-9]	3.4×10 ⁻¹		Yaws et al. (1997)	Q	
5-methyl-2-heptanol C ₈ H ₁₈ O [54630-50-1]	3.3×10 ⁻¹		Yaws et al. (1997)	Q	
6-methyl-2-heptanol C ₈ H ₁₈ O [4730-22-7]	3.3×10 ⁻¹		Yaws et al. (1997)	Q	
2-methyl-3-heptanol C ₈ H ₁₈ O [18720-62-2]	3.8×10^{-1}		Yaws et al. (1997)	Q	
3-methyl-3-heptanol C ₈ H ₁₈ O 5582-82-1]	2.9×10^{-1}		Yaws et al. (1997)	Q	
4-methyl-3-heptanol $\mathbb{C}_8\mathrm{H}_{18}\mathrm{O}$ [14979-39-6]	5.3×10 ⁻¹		Yaws et al. (1997)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$d \ln H^{cp}$		
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type Note
(Other name(s)) [CAS registry number]	$\left[\frac{mol}{m^3Pa}\right]$	[K]		
5-methyl-3-heptanol C ₈ H ₁₈ O [18720-65-5]	5.6×10^{-1}		Yaws et al. (1997)	Q
2-methyl-4-heptanol C ₈ H ₁₈ O [21570-35-4]	3.9×10^{-1}		Yaws et al. (1997)	Q
3-methyl-4-heptanol C ₈ H ₁₈ O [1838-73-9]	4.1×10 ⁻¹		Yaws et al. (1997)	Q
4-methyl-4-heptanol C ₈ H ₁₈ O [598-01-6]	4.5×10^{-1}		Yaws et al. (1997)	Q
2-ethyl-1-hexanol	3.8×10^{-1}		HSDB (2015)	V
$C_8H_{18}O$	3.1×10^{-1}		Hilal et al. (2008)	Q
[104-76-7]	4.3×10^{-1}		Yaws et al. (1997)	Q
2,2-dimethyl-1-hexanol C ₈ H ₁₈ O [2370-13-0]	4.9×10 ⁻¹		Yaws et al. (1997)	Q
2,4-dimethyl-1-hexanol C ₈ H ₁₈ O [3965-59-1]	4.6×10^{-1}		Yaws et al. (1997)	Q
2,5-dimethyl-1-hexanol C ₈ H ₁₈ O [6886-16-4]	4.1×10^{-1}		Yaws et al. (1997)	Q
3,5-dimethyl-1-hexanol C ₈ H ₁₈ O [13501-73-0]	3.6×10^{-1}		Yaws et al. (1997)	Q
3-ethyl-2-hexanol C ₈ H ₁₈ O [24448-19-9]	5.6×10^{-1}		Yaws et al. (1997)	Q
2,3-dimethyl-2-hexanol $C_8H_{18}O$ [19550-03-9]	7.0×10^{-1}		Yaws et al. (1997)	Q
2,4-dimethyl-2-hexanol C ₈ H ₁₈ O [42328-76-7]	8.9×10^{-1}		Yaws et al. (1997)	Q
2,5-dimethyl-2-hexanol C ₈ H ₁₈ O [3730-60-7]	8.5×10 ⁻¹		Yaws et al. (1997)	Q
3,4-dimethyl-2-hexanol C ₈ H ₁₈ O [19550-05-1]	5.2×10 ⁻¹		Yaws et al. (1997)	Q

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$d \ln H^{cp}$		
Formula (Other name(s)) [CAS registry number]	$ (at T^{\Theta}) $ $ \left[\frac{\text{mol}}{\text{m}^3 \text{Pa}} \right] $	$\frac{d(1/T)}{d(1/T)}$ [K]	Reference	Type Note
3,5-dimethyl-2-hexanol C ₈ H ₁₈ O [66576-27-0]	7.0×10^{-1}		Yaws et al. (1997)	Q
5,5-dimethyl-2-hexanol C ₈ H ₁₈ O [31841-77-7]	6.0×10 ⁻¹		Yaws et al. (1997)	Q
3-ethyl-3-hexanol C ₈ H ₁₈ O [597-76-2]	7.2×10 ⁻¹		Yaws et al. (1997)	Q
4-ethyl-3-hexanol C ₈ H ₁₈ O [19780-44-0]	6.3×10 ⁻¹		Yaws et al. (1997)	Q
2,2-dimethyl-3-hexanol C ₈ H ₁₈ O [4209-90-9]	7.8×10 ⁻¹		Yaws et al. (1997)	Q
2,3-dimethyl-3-hexanol C ₈ H ₁₈ O [4166-46-5]	7.4×10 ⁻¹		Yaws et al. (1997)	Q
2,4-dimethyl-3-hexanol C ₈ H ₁₈ O [13432-25-2]	7.0×10 ⁻¹		Yaws et al. (1997)	Q
2,5-dimethyl-3-hexanol C ₈ H ₁₈ O [19550-07-3]	7.2×10 ⁻¹		Yaws et al. (1997)	Q
3,4-dimethyl-3-hexanol C ₈ H ₁₈ O [19550-08-4]	8.6×10 ⁻¹		Yaws et al. (1997)	Q
3,5-dimethyl-3-hexanol C ₈ H ₁₈ O [4209-91-0]	8.6×10 ⁻¹		Yaws et al. (1997)	Q
4,4-dimethyl-3-hexanol C ₈ H ₁₈ O [19550-09-5]	7.2×10^{-1}		Yaws et al. (1997)	Q
5,5-dimethyl-3-hexanol C ₈ H ₁₈ O [66576-31-6]	8.4×10^{-1}		Yaws et al. (1997)	Q
2-propyl-1-pentanol $C_8H_{18}O$ [58175-57-8]	4.1×10^{-1}		Yaws et al. (1997)	Q
2-ethyl-2-methyl-1-pentanol C ₈ H ₁₈ O [5970-63-8]	4.3×10^{-1}		Yaws et al. (1997)	Q

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{mol}{m^3 Pa}\right]$	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d}(1/T)}$ Reference [K]	Type Note
2-ethyl-4-methyl-1-pentanol $C_8H_{18}O$ [106-67-2]	4.4×10^{-1}	Yaws et al. (1997)	Q
2,2,3-trimethyl-1-pentanol C ₈ H ₁₈ O [57409-53-7]	4.7×10^{-1}	Yaws et al. (1997)	Q
2,2,4-trimethyl-1-pentanol C ₈ H ₁₈ O [123-44-4]	5.6×10 ⁻¹	Yaws et al. (1997)	Q
2,3,4-trimethyl-1-pentanol C ₈ H ₁₈ O [6570-88-3]	3.6×10 ⁻¹	Yaws et al. (1997)	Q
2,4,4-trimethyl-1-pentanol C ₈ H ₁₈ O [16325-63-6]	5.2×10 ⁻¹	Yaws et al. (1997)	Q
3-ethyl-2-methyl-2-pentanol C ₈ H ₁₈ O [19780-63-3]	7.4×10 ⁻¹	Yaws et al. (1997)	Q
3-ethyl-4-methyl-2-pentanol C ₈ H ₁₈ O [66576-23-6]	6.3×10 ⁻¹	Yaws et al. (1997)	Q
2,3,3-trimethyl-2-pentanol C ₈ H ₁₈ O [23171-85-9]	7.0×10^{-1}	Yaws et al. (1997)	Q
2,3,4-trimethyl-2-pentanol C ₈ H ₁₈ O [66576-26-9]	7.4×10 ⁻¹	Yaws et al. (1997)	Q
2,4,4-trimethyl-2-pentanol C ₈ H ₁₈ O [690-37-9]	9.9×10 ⁻¹	Yaws et al. (1997)	Q
3,3,4-trimethyl-2-pentanol C ₈ H ₁₈ O [19411-41-7]	6.1×10 ⁻¹	Yaws et al. (1997)	Q
3,4,4-trimethyl-2-pentanol C ₈ H ₁₈ O [10575-56-1]	7.4×10^{-1}	Yaws et al. (1997)	Q
3-ethyl-2-methyl-3-pentanol C ₈ H ₁₈ O [597-05-7]	7.0×10^{-1}	Yaws et al. (1997)	Q
2,2,3-trimethyl-3-pentanol C ₈ H ₁₈ O [7294-05-5]	1.1	Yaws et al. (1997)	Q

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,2,4-trimethyl-3-pentanol $C_8H_{18}O$ [5162-48-1]	8.9×10^{-1}		Yaws et al. (1997)	Q	
2,3,4-trimethyl-3-pentanol C ₈ H ₁₈ O [3054-92-0]	7.6×10 ⁻¹		Yaws et al. (1997)	Q	
3-methyl-2-(1-methylethyl)-1-butanol $C_8H_{18}O$ [18593-92-5]	4.9×10^{-1}		Yaws et al. (1997)	Q	
1-nonanol C ₉ H ₂₀ O [143-08-8]	$ \begin{array}{c} 1.1 \times 10^{-1} \\ 1.4 \times 10^{-1} \\ 3.2 \times 10^{-1} \\ 2.8 \times 10^{-1} \\ 2.2 \times 10^{-1} \\ 3.1 \times 10^{-1} \\ 3.2 \times 10^{-1} \\ 5.9 \times 10^{-1} \end{array} $	6300 6200	Shunthirasingham et al. (2013) Lei et al. (2007) HSDB (2015) Abraham (1984) Hilal et al. (2008) Nirmalakhandan et al. (1997) Yaws et al. (1997) Yaws and Yang (1992)	M M V V Q Q Q	156 92
2-nonanol C ₉ H ₂₀ O [628-99-9]	$ \begin{array}{c} 2.9 \times 10^{-1} \\ \hline 5.4 \times 10^{-1} \end{array} $		Abraham et al. (1990) Yaws et al. (1997)	? Q	
3-nonanol C ₉ H ₂₀ O [624-51-1]	3.0×10 ⁻¹		Yaws et al. (1997)	Q	
4-nonanol C ₉ H ₂₀ O [5932-79-6]	3.1×10 ⁻¹		Yaws et al. (1997)	Q	
5-nonanol C ₉ H ₂₀ O [623-93-8]	2.9×10 ⁻¹		Yaws et al. (1997)	Q	
6-methyl-1-octanol C ₉ H ₂₀ O [38514-05-5]	2.1×10 ⁻¹		Yaws et al. (1997)	Q	
7-methyl-1-octanol C ₉ H ₂₀ O [2430-22-0]	2.1×10 ⁻¹		Yaws et al. (1997)	Q	
2-methyl-2-octanol C ₉ H ₂₀ O 628-44-4]	4.8×10 ⁻¹		Yaws et al. (1997)	Q	
2-methyl-3-octanol C ₉ H ₂₀ O [26533-34-6]	4.1×10 ⁻¹		Yaws et al. (1997)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	[K]	erence	Type Note
3-methyl-3-octanol C ₉ H ₂₀ O [5340-36-3]	3.6×10^{-1}	Yaw	vs et al. (1997)	Q
2-methyl-4-octanol C ₉ H ₂₀ O [40575-41-5]	4.1×10^{-1}	Yaw	rs et al. (1997)	Q
3-methyl-4-octanol C ₉ H ₂₀ O [26533-35-7]	4.6×10^{-1}	Yaw	vs et al. (1997)	Q
4-methyl-4-octanol C ₉ H ₂₀ O [23418-37-3]	4.5×10 ⁻¹	Yaw	vs et al. (1997)	Q
3-ethyl-1-heptanol C ₉ H ₂₀ O [3525-25-5]	2.0×10 ⁻¹	Yaw	vs et al. (1997)	Q
2,2-dimethyl-1-heptanol C ₉ H ₂₀ O [14250-79-4]	3.2×10 ⁻¹	Yaw	vs et al. (1997)	Q
2,6-dimethyl-2-heptanol C ₉ H ₂₀ O [13254-34-7]	5.8×10 ⁻¹	Yaw	vs et al. (1997)	Q
4,6-dimethyl-2-heptanol C ₉ H ₂₀ O [51079-52-8]	3.1×10^{-1}	Yaw	vs et al. (1997)	Q
5,6-dimethyl-2-heptanol C ₉ H ₂₀ O [58795-24-7]	3.2×10 ⁻¹	Yaw	vs et al. (1997)	Q
3-ethyl-3-heptanol C ₉ H ₂₀ O [19780-41-7]	4.3×10 ⁻¹	Yaw	vs et al. (1997)	Q
2,3-dimethyl-3-heptanol C ₉ H ₂₀ O [19549-71-4]	5.4×10^{-1}	Yaw	vs et al. (1997)	Q
2,6-dimethyl-3-heptanol C ₉ H ₂₀ O [19549-73-6]	5.2×10 ⁻¹	Yaw	vs et al. (1997)	Q
4-ethyl-4-heptanol C ₉ H ₂₀ O [597-90-0]	4.7×10^{-1}	Yaw	vs et al. (1997)	Q
2,2-dimethyl-4-heptanol C ₉ H ₂₀ O [66793-99-5]	5.4×10 ⁻¹	Yaw	vs et al. (1997)	Q

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s))	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Type Note
[CAS registry number]	$\left\lfloor \frac{\text{mol}}{\text{m}^3 \text{Pa}} \right\rfloor$	[K]		
2,4-dimethyl-4-heptanol $C_9H_{20}O$ [19549-77-0]	5.7×10 ⁻¹		Yaws et al. (1997)	Q
2,5-dimethyl-4-heptanol C ₉ H ₂₀ O	1.6×10 ⁻¹		Yaws et al. (1997)	Q
2,6-dimethyl-4-heptanol C ₉ H ₂₀ O [108-82-7]	$1.7 \times 10^{-1} \\ 1.7 \times 10^{-1}$		Hilal et al. (2008) Yaws et al. (1997)	Q Q
3,3-dimethyl-4-heptanol C ₉ H ₂₀ O [19549-78-1]	2.2×10 ⁻¹		Yaws et al. (1997)	Q
2-ethyl-4-methyl-1-hexanol C ₉ H ₂₀ O [66794-06-7]	1.2×10 ⁻¹		Yaws et al. (1997)	Q
3-ethyl-2-methyl-1-hexanol C ₉ H ₂₀ O [66794-01-2]	1.3×10 ⁻¹		Yaws et al. (1997)	Q
3,4,4-trimethyl-1-hexanol C ₉ H ₂₀ O [66793-73-5]	1.4×10 ⁻¹		Yaws et al. (1997)	Q
3,5,5-trimethyl-1-hexanol C ₉ H ₂₀ O [3452-97-9]	1.3×10 ⁻¹		Yaws et al. (1997)	Q
4,5,5-trimethyl-1-hexanol C ₉ H ₂₀ O [66793-75-7]	9.4×10^{-2}		Yaws et al. (1997)	Q
3-ethyl-2-methyl-2-hexanol $C_9H_{20}O$ [66794-02-3]	2.1×10^{-1}		Yaws et al. (1997)	Q
3-ethyl-2-methyl-3-hexanol C ₉ H ₂₀ O [66794-03-4]	1.7×10 ⁻¹		Yaws et al. (1997)	Q
3-ethyl-5-methyl-3-hexanol C ₉ H ₂₀ O [597-77-3]	2.5×10 ⁻¹		Yaws et al. (1997)	Q
2,2,3-trimethyl-3-hexanol C ₉ H ₂₀ O [5340-41-0]	2.4×10 ⁻¹		Yaws et al. (1997)	Q
2,2,4-trimethyl-3-hexanol C ₉ H ₂₀ O [66793-89-3]	2.7×10 ⁻¹		Yaws et al. (1997)	Q

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,2,5-trimethyl-3-hexanol C ₉ H ₂₀ O [3970-60-3]	3.4×10^{-1}		Yaws et al. (1997)	Q	
2,4,4-trimethyl-3-hexanol C ₉ H ₂₀ O 66793-92-8]	2.5×10 ⁻¹		Yaws et al. (1997)	Q	
3,4,4-trimethyl-3-hexanol C ₉ H ₂₀ O 66793-74-6]	2.9×10 ⁻¹		Yaws et al. (1997)	Q	
4-methyl-2-propyl-1-pentanol C ₉ H ₂₀ O 54004-41-0]	1.3×10 ⁻¹		Yaws et al. (1997)	Q	
4-methyl-2-(1-methylethyl)-1-pentanol C ₉ H ₂₀ O 55505-24-3]	1.6×10 ⁻¹		Yaws et al. (1997)	Q	
2-ethyl-2,4-dimethyl-1-pentanol $C_9H_{20}O$ 66793-98-4]	1.5×10 ⁻¹		Yaws et al. (1997)	Q	
3,3,4,4-tetramethyl-2-pentanol C ₉ H ₂₀ O 66793-88-2]	2.0×10 ⁻¹		Yaws et al. (1997)	Q	
3-ethyl-2,2-dimethyl-3-pentanol $C_9H_{20}O$ 66793-96-2]	2.3×10 ⁻¹		Yaws et al. (1997)	Q	
8-ethyl-2,4-dimethyl-3-pentanol C ₉ H ₂₀ O 3970-59-0]	2.1×10 ⁻¹		Yaws et al. (1997)	Q	
$2,2,3,4$ -tetramethyl-3-pentanol $C_9H_{20}O$ $C_9H_{20}O$	2.3×10 ⁻¹		Yaws et al. (1997)	Q	
$2.2.4.4$ -tetramethylpentan-3-ol $C_9H_{20}O$ $14609-79-1]$	2.8×10 ⁻¹		Yaws et al. (1997)	Q	
1-decanol C ₁₀ H ₂₂ O [112-30-1]	7.6×10^{-2} 6.5×10^{-2} 3.1×10^{-1} 1.9×10^{-1} 2.0×10^{-1} 2.4×10^{-1} 2.1×10^{-1}	6600 5300	Shunthirasingham et al. (2013) Lei et al. (2007) Altschuh et al. (1999) Abraham (1984) Hilal et al. (2008) Nirmalakhandan et al. (1997) Yaws et al. (1997)	M M M V Q Q Q	156
	3.7×10^{-1} 1.9×10^{-1}		Yaws and Yang (1992) Abraham et al. (1990)	? ?	92

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2-decanol C ₁₀ H ₂₂ O [1120-06-5]	5.4×10 ⁻¹		Yaws et al. (1997)	Q	
4-decanol C ₁₀ H ₂₂ O [2051-31-2]	5.3×10 ⁻¹		Yaws et al. (1997)	Q	
5-decanol C ₁₀ H ₂₂ O [5205-34-5]	7.3×10 ⁻¹		Yaws et al. (1997)	Q	
2-methyl-1-nonanol C ₁₀ H ₂₂ O [40589-14-8]	3.4×10^{-1}		Yaws et al. (1997)	Q	
8-methyl-1-nonanol C ₁₀ H ₂₂ O (isodecanol) [25339-17-7]	1.8×10 ⁻¹		HSDB (2015)	Q	38
2-methyl-3-nonanol C ₁₀ H ₂₂ O [26533-33-5]	5.7×10 ⁻¹		Yaws et al. (1997)	Q	
2,2-dimethyl-1-octanol C ₁₀ H ₂₂ O [2370-14-1]	5.7×10 ⁻¹		Yaws et al. (1997)	Q	
3,7-dimethyl-1-octanol C ₁₀ H ₂₂ O [106-21-8]	5.0×10 ⁻¹		Yaws et al. (1997)	Q	
3-ethyl-3-octanol C ₁₀ H ₂₂ O [2051-32-3]	7.7×10 ⁻¹		Yaws et al. (1997)	Q	
2,3-dimethyl-3-octanol C ₁₀ H ₂₂ O [19781-10-3]	1.0		Yaws et al. (1997)	Q	
2,7-dimethyl-3-octanol C ₁₀ H ₂₂ O [66719-55-9]	9.0×10^{-1}		Yaws et al. (1997)	Q	
3,6-dimethyl-3-octanol C ₁₀ H ₂₂ O [151-19-9]	9.6×10 ⁻¹		Yaws et al. (1997)	Q	
3,7-dimethyl-3-octanol C ₁₀ H ₂₂ O [78-69-3]	8.5×10 ⁻¹		Yaws et al. (1997)	Q	
2,2-dimethyl-4-octanol C ₁₀ H ₂₂ O [66719-52-6]	1.0		Yaws et al. (1997)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type Note
4,7-dimethyl-4-octanol C ₁₀ H ₂₂ O [19781-13-6]	9.6×10^{-1}		Yaws et al. (1997)	Q
2-propyl-1-heptanol C ₁₀ H ₂₂ O [10042-59-8]	4.0×10^{-1}		Yaws et al. (1997)	Q
3-(1-methylethyl)-1-heptanol C ₁₀ H ₂₂ O [38514-15-7]	4.4×10^{-1}		Yaws et al. (1997)	Q
2,5,6-trimethyl-2-heptanol C ₁₀ H ₂₂ O [66256-48-2]	9.3×10 ⁻¹		Yaws et al. (1997)	Q
3-ethyl-2-methyl-3-heptanol C ₁₀ H ₂₂ O [66719-37-7]	9.3×10 ⁻¹		Yaws et al. (1997)	Q
2,2,3-trimethyl-3-heptanol C ₁₀ H ₂₂ O [29772-40-5]	1.1		Yaws et al. (1997)	Q
3,5,5-trimethyl-3-heptanol C ₁₀ H ₂₂ O [66256-50-6]	8.6×10 ⁻¹		Yaws et al. (1997)	Q
4-propyl-4-heptanol C ₁₀ H ₂₂ O [2198-72-3]	9.0×10 ⁻¹		Yaws et al. (1997)	Q
4-(1-methylethyl)-4-heptanol C ₁₀ H ₂₂ O [51200-82-9]	1.0		Yaws et al. (1997)	Q
2,2,4-trimethyl-4-heptanol C ₁₀ H ₂₂ O [57233-31-5]	1.3		Yaws et al. (1997)	Q
2,4,6-trimethyl-4-heptanol C ₁₀ H ₂₂ O [60836-07-9]	1.3		Yaws et al. (1997)	Q
2-butyl-1-hexanol C ₁₀ H ₂₂ O [2768-15-2]	4.4×10^{-1}		Yaws et al. (1997)	Q
4-methyl-2-propyl-1-hexanol C ₁₀ H ₂₂ O [66256-62-0]	5.7×10 ⁻¹		Yaws et al. (1997)	Q
4-methyl-2-(1-methylethyl)-1-hexanol C ₁₀ H ₂₂ O [66719-41-3]	7.3×10 ⁻¹		Yaws et al. (1997)	Q

Table 6: Henry's law constants for water as solvent (... continued)

	on.			
Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type Note
$\begin{tabular}{ll} \hline \hline & 5\text{-methyl-2-(1-methylethyl)-1-hexanol} \\ & C_{10}H_{22}O \\ & [2051\text{-}33\text{-}4] \\ \hline \end{tabular}$	4.8×10 ⁻¹		Yaws et al. (1997)	Q
2,3,4,4-tetramethyl-2-hexanol C ₁₀ H ₂₂ O [66256-66-4]	1.0		Yaws et al. (1997)	Q
	9.6×10 ⁻¹		Yaws et al. (1997)	Q
4-ethyl-2,2-dimethyl-3-hexanol C ₁₀ H ₂₂ O [66719-47-9]	1.1		Yaws et al. (1997)	Q
2,2,3,4-tetramethyl-3-hexanol C ₁₀ H ₂₂ O [66256-63-1]	9.6×10 ⁻¹		Yaws et al. (1997)	Q
2,2,4,4-tetramethyl-3-hexanol C ₁₀ H ₂₂ O [66256-65-3]	1.0		Yaws et al. (1997)	Q
2,2,5,5-tetramethyl-3-hexanol C ₁₀ H ₂₂ O [55073-86-4]	1.7		Yaws et al. (1997)	Q
2,3,4,4-tetramethyl-3-hexanol C ₁₀ H ₂₂ O [66256-67-5]	7.3×10 ⁻¹		Yaws et al. (1997)	Q
3,4,4,5-tetramethyl-3-hexanol C ₁₀ H ₂₂ O [66256-39-1]	7.0×10 ⁻¹		Yaws et al. (1997)	Q
3,4,5,5-tetramethyl-3-hexanol C ₁₀ H ₂₂ O [66256-40-4]	8.8×10 ⁻¹		Yaws et al. (1997)	Q
4-methyl-2-(2-methylpropyl)-1-pentanol $C_{10}H_{22}O$ [22417-45-4]	6.6×10 ⁻¹		Yaws et al. (1997)	Q
2,4-dimethyl-3-propyl-3-pentanol C ₁₀ H ₂₂ O [500001-19-4]	1.2		Yaws et al. (1997)	Q
2,4-dimethyl-3-(1-methylethyl)-3-pentanol $C_{10}H_{22}O$ [51200-83-0]	8.9×10 ⁻¹		Yaws et al. (1997)	Q
3-ethyl-2,2,4-trimethyl-3-pentanol C ₁₀ H ₂₂ O [66256-41-5]	9.9×10 ⁻¹		Yaws et al. (1997)	Q

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
$2,2,3,4,4$ -pentamethyl-3-pentanol $C_{10}H_{22}O$ [5857-69-2]	8.9×10 ⁻¹		Yaws et al. (1997)	Q	
1-undecanol C ₁₁ H ₂₄ O	$ \begin{array}{c} 1.4 \times 10^{-1} \\ 1.2 \times 10^{-1} \\ 2.2 \times 10^{-1} \end{array} $		HSDB (2015) Hilal et al. (2008)	Q Q	38
[112-42-5]			Yaws et al. (1997)	Q	
1-dodecanol C ₁₂ H ₂₆ O [112-53-8]	4.4×10^{-1} 1.4×10^{-1} 1.5×10^{-1} 1.9×10^{-1} 1.1×10^{-1}	9800	Altschuh et al. (1999) Abraham (1984) Hilal et al. (2008) Yaws et al. (1997) Yaws and Yang (1992)	M V Q Q	92
2,6,8-trimethyl-4-nonanol C ₁₂ H ₂₆ O [123-17-1]	$ \begin{array}{c} 1.1 \times 10^{-1} \\ 1.0 \times 10^{-1} \\ 1.1 \times 10^{-1} \\ 6.0 \times 10^{-2} \\ 2.6 \times 10^{-2} \end{array} $		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
1-tridecanol C ₁₃ H ₂₈ O [112-70-9]	$7.6 \times 10^{-2} \\ 1.2 \times 10^{-1}$		HSDB (2015) Yaws et al. (1997)	Q Q	38
1-tetradecanol C ₁₄ H ₃₀ O [112-72-1]	6.2×10^{-2} 2.2×10^{-1} 6.2×10^{-2} 9.5×10^{-2} 3.9×10^{3}		HSDB (2015) Abraham (1984) Hilal et al. (2008) Yaws et al. (1997) Yaws and Yang (1992)	V R Q Q ?	92, 161
1-pentadecanol C ₁₅ H ₃₂ O [629-76-5]	$2.2 \times 10^{-1} $ $2.5 \times 10^{-1} $ $3.0 \times 10^{3} $		Abraham (1984) Yaws et al. (1997) Yaws and Yang (1992)	V Q ?	92, 162
1-hexadecanol C ₁₆ H ₃₄ O (cetyl alcohol) [124-29-8]	2.1×10^{-1} 3.5×10^{-1} 3.9×10^{-2} 1.0×10^{-1} 5.9×10^{-1}		HSDB (2015) Abraham (1984) Hilal et al. (2008) Yaws et al. (1997) Yaws and Yang (1992)	V R Q Q ?	92
1-heptadecanol C ₁₇ H ₃₆ O [1454-85-9]	$4.5 \times 10^{-2} \\ 1.2 \times 10^{1}$		Yaws et al. (1997) Yaws and Yang (1992)	Q ?	92
1-octadecanol C ₁₈ H ₃₈ O [112-92-5]	$ \begin{array}{c} 1.2 \times 10^{-2} \\ 3.8 \times 10^{-1} \\ 2.5 \times 10^{-2} \\ 3.1 \times 10^{-3} \\ 9.1 \times 10^{-1} \end{array} $		HSDB (2015) Abraham (1984) Hilal et al. (2008) Yaws et al. (1997) Yaws and Yang (1992)	V R Q Q ?	92, 163
1-nonadecanol C ₁₉ H ₄₀ O [1454-84-8]	9.9×10 ⁻²		Yaws et al. (1997)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]		Reference	турс	11010
[CAS registry number]	$\left\lfloor \frac{1}{m^3 Pa} \right\rfloor$	[K]			
1-eicosanol	4.7×10^{-1}		HSDB (2015)	Q	38
$C_{20}H_{42}O$	1.8×10^{-2}		Yaws et al. (1997)	Q	
[629-96-9]					
1-docosanol	6.2×10^{-3}		HSDB (2015)	Q	38
$C_{22}H_{46}O$					
(behenic alcohol)					
[661-19-8]					
1-tetracosanol	3.4×10^{-3}		HSDB (2015)	Q	38
$C_{24}H_{50}O$					
[506-51-4]					
cyclopentanol	4.3	8000	Cabani et al. (1975b)	T	20
C ₅ H ₉ OH	3.8		HSDB (2015)	Q	38
[96-41-3]	2.0	7200	Hilal et al. (2008)	Q	
	1 1	7200	Kühne et al. (2005)	Q	
	4.4	7300	Nirmalakhandan et al. (1997) Kühne et al. (2005)	Q ?	
	4.3	7300	Abraham et al. (1990)	?	
cyclohexanol	2.2		Altschuh et al. (1999)	M	
C ₆ H ₁₁ OH	4.5		Mackay et al. (2006c)	V	
[108-93-0]	4.5		Mackay et al. (2000c) Mackay et al. (1995)	V	
[100 75 0]	3.5		Meylan and Howard (1991)	v	
	1.7		Hine and Mookerjee (1975)	V	
	4.1	8500	Cabani et al. (1975b)	T	
	3.6		Howard (1993)	X	164
	3.3		Hilal et al. (2008)	Q	
		7500	Kühne et al. (2005)	Q	
	2.7		Nirmalakhandan et al. (1997)	Q	
	2.0		Meylan and Howard (1991)	Q	
	3.4		Nirmalakhandan and Speece (1988a)	Q	
		7500	Kühne et al. (2005)	?	
	4.1		Abraham et al. (1990)	?	
cycloheptanol	4.2	9000	Cabani et al. (1975b)	T	
C ₇ H ₁₃ OH	1.0		Hilal et al. (2008)	Q	
[502-41-0]	4.2		Abraham et al. (1990)	?	
2-methylcyclohexanol	1.3		Altschuh et al. (1999)	M	
C ₇ H ₁₄ O	1.3		Hilal et al. (2008)	Q	
[583-59-5]					
3-methylcyclohexanol	2.7		Altschuh et al. (1999)	M	
C ₇ H ₁₄ O [591-23-1]					
cyclododecanol	3.4		Altschuh et al. (1999)	M	
C ₁₂ H ₂₄ O	3.7×10^{-1}		Zhang et al. (2010)	Q	107, 108
[1724-39-6]	3.4		Zhang et al. (2010)	Q	107, 109
	8.0		Zhang et al. (2010)	Q	107, 110
	5.3×10^{-2}		Zhang et al. (2010)	Q	107, 111
	1.6		Hilal et al. (2008)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
perhydrobisphenol a	9.7		Zhang et al. (2010)	Q	107, 108
$C_{15}H_{28}O_2$	6.1×10^4		Zhang et al. (2010)	Q	107, 109
[80-04-6]	3.4×10^4		Zhang et al. (2010)	Q	107, 110
	1.8×10^2		Zhang et al. (2010)	Q	107, 111
3-(5,5,6-trimethyl-2- norbornyl)cyclohexanol	6.1×10^{-1}		Zhang et al. (2010)	Q	107, 108
$C_{16}H_{28}O$	1.6×10^{1}		Zhang et al. (2010)	Q	107, 109
[3407-42-9]	1.1×10^{1}		Zhang et al. (2010)	Q	107, 110
	2.7×10^{-1}		Zhang et al. (2010)	Q	107, 111
4-(5,5,6-trimethylbicyclo[2.2.1]hept-2-yl)cyclohexan-1-ol	6.1×10^{-1}		Zhang et al. (2010)	Q	107, 108
$C_{16}H_{28}O$	1.8×10^{1}		Zhang et al. (2010)	Q	107, 109
[66068-84-6]	4.4×10^{1}		Zhang et al. (2010)	Q	107, 110
	2.7×10^{-1}		Zhang et al. (2010)	Q	107, 111
4-((1R,2R,4R)-born-2-yl)cyclohexanol	6.1×10^{-1}		Zhang et al. (2010)	Q	107, 108
C ₁₆ H ₂₈ O	9.9		Zhang et al. (2010)	Q	107, 109
[66072-32-0]	4.3×10^{1}		Zhang et al. (2010)	Q	107, 110
	1.6×10^{-1}		Zhang et al. (2010)	Q	107, 111
2-propen-1-ol	2.0		Lide and Frederikse (1995)	V	
C ₃ H ₅ OH	4.3	7200	Goldstein (1982)	X	116
(allyl alcohol)	2.0	7200	Pierotti et al. (1959)	X	165
[107-18-6]	2.8		Hilal et al. (2008)	Q	
	3.5		Nirmalakhandan et al. (1997)	Q	
	3.4		Nirmalakhandan and Speece (1988a)	Q	
	1.8		Yaws and Yang (1992)	?	92
	2.0		Abraham et al. (1990)	?	
2-propyn-1-ol	3.8	7400	Hiatt (2013)	M	
C_3H_4O	9.0		HSDB (2015)	V	
(propargyl alcohol) [107-19-7]	5.4		Hilal et al. (2008)	Q	
2-buten-1-ol	2.7		Hilal et al. (2008)	Q	
CH ₃ CHCHCH ₂ OH [6117-91-5]	3.0		Saxena and Hildemann (1996)	Ē	158
2-methyl-3-buten-2-ol	6.4×10^{-1}		Iraci et al. (1999)	M	23
C ₅ H ₉ O	4.7×10^{-1}		Altschuh et al. (1999)	M	
[115-18-4]	6.0×10^{-1}		Hilal et al. (2008)	Q	
2-methyl-3-butyn-2-ol	2.5		Altschuh et al. (1999)	M	
C ₅ H ₈ O [115-19-5]	1.0		Hilal et al. (2008)	Q	
3-methyl-1-pentyn-3-ol C ₆ H ₁₀ O (meparfynol) [77-75-8]	9.9×10 ⁻¹		Hilal et al. (2008)	Q	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1-octen-3-ol C ₈ H ₁₆ O [3391-86-4]	1.3×10 ⁻¹		Roberts and Pollien (1997)	М	
bicyclo[2.2.1]heptan-2-ol C ₇ H ₁₂ O (norborneol) [1632-68-4]	2.2	5000	van Roon et al. (2005)	V	
3,7-dimethyl-1,6-octadien-3-ol C ₁₀ H ₁₈ O (linalool) [78-70-6]	2.0×10^{-1} 4.6×10^{-1} 4.8×10^{-1} 4.8×10^{-1} 2.1×10^{-1} 2.5×10^{-1} 6.9×10^{-1} 1.5×10^{-2}	4400 14000	Leng et al. (2013) Altschuh et al. (1999) Copolovici and Niinemets (2005) Niinemets and Reichstein (2002) Li et al. (1998) Savary et al. (2014) Hilal et al. (2008) Hertel and Sommer (2006)	M M V V V Q Q	166
(<i>E</i>)-3,7-dimethyl-2,6-octadien-1-ol C ₁₀ H ₁₈ O (geraniol) [106-24-1]	1.7×10 ⁻¹		HSDB (2015)	Q	38
tricyclo[3.3.1.1(3,7)]decan-1-ol C ₁₀ H ₁₆ O (1-adamantanol) [768-95-6]	6.0	5300	van Roon et al. (2005)	V	
plinol C ₁₀ H ₁₈ O [11039-70-6]	1.2		Hilal et al. (2008)	Q	
3,7,11-trimethyl-2,6,10-dodecatrien-1- ol C ₁₅ H ₂₆ O (farnesol) [4602-84-0]	3.9×10 ⁻²		HSDB (2015)	Q	38
(Z)-9-octadecen-1-ol C ₁₈ H ₃₆ O (oleyl alcohol) [143-28-2]	2.1×10 ⁻²		HSDB (2015)	Q	38
dihydroabietyl alcohol C ₂₀ H ₃₄ O [26266-77-3]	$ \begin{array}{c} 1.9 \times 10^{-1} \\ 2.4 \times 10^{1} \\ 2.6 \times 10^{1} \\ 2.0 \times 10^{-1} \end{array} $		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
ethylestrenol C ₂₀ H ₃₂ O [965-90-2]	4.3×10 ⁻¹		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula		d(1/T)	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
hydroxybenzene	2.8×10^{1}	2700	Guo and Brimblecombe (2007)	M	
C ₆ H ₅ OH	6.4	7700	Feigenbrugel et al. (2004b)	M	
(phenol)	3.0×10^{1}	5900	Harrison et al. (2002)	M	
[108-95-2]	1.9×10^{1}		Sheikheldin et al. (2001)	M	9
	>4.2		Altschuh et al. (1999)	M	
	8.1×10^{1}	7400	Tabai et al. (1997)	M	89
	4.2		Heal et al. (1995)	M	147
	1.6×10^{1}	6000	Dohnal and Fenclová (1995)	M	
	1.5×10^{1}		Tremp et al. (1993)	M	9
	1.7×10^{1}	6100	Abd-El-Bary et al. (1986)	M	
	7.6		Warner et al. (1980)	M	
	2.0×10^{1}		Mackay et al. (2006c)	V	
	2.5×10^{1}		Lide and Frederikse (1995)	V	
	1.9×10^{1}		Mackay et al. (1995)	V	
	1.9×10^{1}		Shiu et al. (1994)	V	
	3.4		Hwang et al. (1992)	v	
	1.1×10^{1}		Riederer (1990)	v	
	9.0×10^{1}		Leuenberger et al. (1985)	v	167
	4.8		Hine and Weimar Jr. (1965)	R	107
	2.8×10^{1}	6800	Parsons et al. (1971)	T	168
	1.9	3600	Janini and Quaddora (1986)	X	116
	1.9×10^{1}	7300	Goldstein (1982)	X	116
	2.5×10^{1}	7300	Howard (1989)	X	169
	3.0×10^{1}			X	
	3.0×10^{1} 3.7×10^{1}		Gaffney and Senum (1984)	X	153 145
			McCarty (1980)		
	2.5×10^{1}		Schüürmann (2000)	C	7
	7.6		Shiu et al. (1994)	C	
	7.6		Smith et al. (1993)	C	
	2.1×10^{1}		Ryan et al. (1988)	С	
	7.6		Shen (1982)	C	
	4.4	6200	Hilal et al. (2008)	Q	
	0.0	6200	Kühne et al. (2005)	Q	
	9.9	5400	Nirmalakhandan and Speece (1988a) Kühne et al. (2005)	Q ?	
	1.6×10^{1}	5400	Abraham et al. (1990)	?	
(hydroxymethyl)-benzene	>3.7×10 ¹		Altschuh et al. (1999)	M	
C ₆ H ₅ CH ₂ OH	6.2×10^{-2}		Mackay et al. (2006c)	V	
(benzyl alcohol)	6.2×10^{-2}		Mackay et al. (1995)	V	
[100-51-6]	2.9×10^{1}		Abraham et al. (1994a)	R	
	2.5×10^{1}		Howard (1993)	X	164
	2.2×10^{1}		Hilal et al. (2008)	Q	
	6.9×10^{1}		Nirmalakhandan et al. (1997)	Q	
	8.9×10^{1}		Saxena and Hildemann (1996)	Ē	158
	2.9×10^{1}		HSDB (2015)	?	170
	1.8×10^{1}		Abraham et al. (1990)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} H^{cp}}$			
Formula		$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
1-hydroxy-2-methylbenzene	4.2	8500	Feigenbrugel et al. (2004b)	M	
$HOC_6H_4CH_3$	1.1×10^{1}	6700	Harrison et al. (2002)	M	
(2-cresol; o-cresol)	6.3		Altschuh et al. (1999)	M	
95-48-7]	5.6	5800	Dohnal and Fenclová (1995)	M	
	7.1		Tremp et al. (1993)	M	9
	8.2	7300	Parsons et al. (1972)	M	168
			Mackay et al. (2006c)	V	171
	6.2		Lide and Frederikse (1995)	V	
	6.4		Mackay et al. (1995)	V	
	3.5×10^{1}	4.500	Leuenberger et al. (1985)	V	167
	2.6	4600	Janini and Quaddora (1986)	X	116
	6.2		Howard (1989)	X	169
	8.2 8.3		Gaffney and Senum (1984) Schüürmann (2000)	X C	153 7
	8.3 5.3		Hilal et al. (2008)	Q	1
	5.5	6500	Kühne et al. (2005)	Q	
	7.2	0300	Nirmalakhandan and Speece (1988a)	Q	
	7.2	8100	Kühne et al. (2005)	?	
	1.2×10^{1}	0100	Yaws and Yang (1992)	?	92, 9
	8.0		Abraham et al. (1990)	?	> - , >
l-hydroxy-3-methylbenzene	7.9	9000	Feigenbrugel et al. (2004b)	M	
HOC ₆ H ₄ CH ₃	1.2×10^{1}		Altschuh et al. (1999)	M	
3-cresol; <i>m</i> -cresol)	1.2×10^{1}	6000	Dohnal and Fenclová (1995)	M	
108-39-4]	1.3×10^{1}		Mackay et al. (2006c)	V	
	1.2×10^{1}		Schüürmann (2000)	V	
	1.1×10^{1}		Lide and Frederikse (1995)	V	
	1.1×10^{1}		Mackay et al. (1995)	V	
	1.1×10^{1}		Meylan and Howard (1991)	V	
	4.9×10^{1}		Leuenberger et al. (1985)	V	167
	6.1	7700	Janini and Quaddora (1986)	X	116
	1.1×10^{1}		Howard (1989)	X	169
	3.9		Hilal et al. (2008)	Q	
		6500	Kühne et al. (2005)	Q	
	1.6×10^{1}		Meylan and Howard (1991)	Q	
	ă.	6500	Kühne et al. (2005)	?	
	1.4×10^{1}		Yaws and Yang (1992)	?	92, 9
	4.3		Abraham et al. (1990)	?	
1-hydroxy-4-methylbenzene	1.0×10^{1}	9300	Feigenbrugel et al. (2004b)	M	
HOC ₆ H ₄ CH ₃	>2.9	C100	Altschuh et al. (1999)	M	
(4-cresol; <i>p</i> -cresol)	1.3×10^{1}	6100	Dohnal and Fenclová (1995)	M	0
106-44-5]	1.3×10^{1}	7000	Tremp et al. (1993)	M	9
	1.3×10^{1}	7200	Parsons et al. (1972)	M	168
	1.8×10^{1}		Mackay et al. (2006c)	V	
	1.0×10^{1}		Lide and Frederikse (1995)	V	
	1.5×10^{1}		Mackay et al. (1995)	V	
	4.5×10^{1}		Leuenberger et al. (1985)	V	167
	5.2	4600	Janini and Quaddora (1986)	X	116
	1.0×10^{1}		Howard (1989)	X	169
	9.9		Gaffney and Senum (1984)	X	153
	1.3×10^{1}		Schüürmann (2000)	C	7

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula Other name(s)) CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type	Note
	4.2	6500	Hilal et al. (2008) Kühne et al. (2005)	Q Q	
	7.0 2.5×10^{1}	6000	Nirmalakhandan and Speece (1988a) Kühne et al. (2005)	Q ? ?	92, 9
	1.3×10^{1}		Yaws and Yang (1992) Abraham et al. (1990)	?	92, 9
-hydroxy-2,3-dimethylbenzene	9.3		Sheikheldin et al. (2001)	M	9
C ₈ H ₁₀ O	1.0×10^{1}	6800	Dohnal and Fenclová (1995)	M	
2,3-xylenol; 2,3-dimethylphenol)	3.2		HSDB (2015)	V	
526-75-0]	1.8×10^{1}		Mackay et al. (2006c)	V	
	1.9×10^{1}		Mackay et al. (1995)	V	
	4.9×10^{1}		Leuenberger et al. (1985)	V	167
	1.3×10^{1}		Abraham et al. (1994a)	R	
	5.8		Hilal et al. (2008)	Q	
	4.6×10^{1}		Nirmalakhandan et al. (1997)	Q	
-hydroxy-2,4-dimethylbenzene	6.6		Sheikheldin et al. (2001)	M	9
C ₈ H ₁₀ O	4.9	6100	Dohnal and Fenclová (1995)	M	
2,4-xylenol; 2,4-dimethylphenol)	1.9×10^{-3}	-3300	Ashworth et al. (1988)	M	103
[05-67-9]	5.5		Mackay et al. (2006c)	V	
	1.6×10^{1}		Lide and Frederikse (1995)	V	
	5.5		Mackay et al. (1995)	V	
	5.5×10^{-1}		Hwang et al. (1992)	V	
	4.9		Meylan and Howard (1991)	V	
	1.6×10^{1}		Leuenberger et al. (1985)	V	167
	1.0×10^{1}		Abraham et al. (1994a)	R	
	4.1	6600	Goldstein (1982)	X	116
	1.6×10^{1}		Howard (1989)	X	169
	5.8×10^{-1}		Smith et al. (1993)	C	
	5.4×10^{-1}		Ryan et al. (1988)	C	
	1.7×10^{1}		Petrasek et al. (1983)	C	
	5.1		Hilal et al. (2008)	Q	
	4.6×10^{1}		Nirmalakhandan et al. (1997)	Q	
	1.4×10^{1}		Meylan and Howard (1991)	Q	
-hydroxy-2,5-dimethylbenzene	7.5	6800	Dohnal and Fenclová (1995)	M	
$G_8H_{10}O$	1.4		HSDB (2015)	V	
2,5-xylenol; 2,5-dimethylphenol)	7.5		Mackay et al. (2006c)	V	
95-87-4]	7.4		Mackay et al. (1995)	V	
	3.8×10^{1}		Leuenberger et al. (1985)	V	167
	8.8		Abraham et al. (1994a)	R	
	5.2 4.6×10^{1}		Hilal et al. (2008) Nirmalakhandan et al. (1997)	Q Q	
	2.3	6200	Dohnal and Fenclová (1995)	M	
•	1.3		Hawthorne et al. (1985)	M	
$C_8H_{10}O$			Mackay et al. (2006c)	V	
S ₈ H ₁₀ O 2,6-xylenol; 2,6-dimethylphenol)	2.5				
-hydroxy-2,6-dimethylbenzene S ₈ H ₁₀ O 2,6-xylenol; 2,6-dimethylphenol) 576-26-1]	2.5 2.6		Mackay et al. (1995)	V	
S ₈ H ₁₀ O 2,6-xylenol; 2,6-dimethylphenol)	2.5 2.6 2.6		Mackay et al. (1995) Shiu et al. (1994)	V V	1.67
S ₈ H ₁₀ O 2,6-xylenol; 2,6-dimethylphenol)	2.5 2.6		Mackay et al. (1995)	V	167

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	4.6×10 ¹		Nirmalakhandan et al. (1997)	Q	
1-hydroxy-3,4-dimethylbenzene C ₈ H ₁₀ O (3,4-xylenol; 3,4-dimethylphenol) [95-65-8]	2.4×10^{1} 8.2 4.6×10^{1} 4.7×10^{1} 4.7×10^{1} 1.1×10^{2} 2.4×10^{1} 4.4 4.6×10^{1}	7100	Dohnal and Fenclová (1995) HSDB (2015) Mackay et al. (2006c) Mackay et al. (1995) Shiu et al. (1994) Leuenberger et al. (1985) Abraham et al. (1994a) Hilal et al. (2008) Nirmalakhandan et al. (1997)	M V V V V R Q	167
1-hydroxy-3,5-dimethylbenzene $C_8H_{10}O$ (3,5-xylenol; 3,5-dimethylphenol) [108-68-9]	$ \begin{array}{c} 1.6 \times 10^{1} \\ 7.6 \\ 2.8 \times 10^{1} \\ 3.1 \times 10^{1} \\ 2.5 \times 10^{1} \\ 6.2 \times 10^{1} \\ 1.6 \times 10^{1} \\ 3.2 \\ 4.6 \times 10^{1} \end{array} $	6900	Dohnal and Fenclová (1995) HSDB (2015) Mackay et al. (2006c) Mackay et al. (1995) Shiu et al. (1994) Leuenberger et al. (1985) Abraham et al. (1994a) Hilal et al. (2008) Nirmalakhandan et al. (1997)	M V V V V R Q	167
4-methylbenzenemethanol $C_8H_{10}O$ [589-18-4]	9.0		HSDB (2015)	V	
α-methylbenzyl alcohol C ₈ H ₁₀ O [98-85-1]	3.4×10 ¹		HSDB (2015)	Q	38
2,3,5-trimethylphenol C ₉ H ₁₂ O [697-82-5]	$1.2 \times 10^{1} \\ 1.2 \times 10^{1}$		Mackay et al. (2006c) Mackay et al. (1995)	V V	
2,4,6-trimethylphenol C ₉ H ₁₂ O [527-60-6]	3.2 1.3 1.4 9.2		HSDB (2015) Mackay et al. (2006c) Mackay et al. (1995) Hilal et al. (2008)	V V V Q	
3,4,5-trimethylphenol C ₉ H ₁₂ O [527-54-8]	3.4×10^{1} 3.8×10^{1}		Mackay et al. (2006c) Mackay et al. (1995)	V V	
1-hydroxy-2-ethylbenzene C ₈ H ₁₀ O (2-ethylphenol) [90-00-6]	2.1 5.6		HSDB (2015) Mackay et al. (2006c)	V V	
1-hydroxy-3-ethylbenzene $C_8H_{10}O$ (3-ethylphenol) [620-17-7]	4.9 1.6×10 ¹ 9.0 3.4 5.4×10 ¹		Karl et al. (2003) Abraham et al. (1994a) HSDB (2015) Hilal et al. (2008) Nirmalakhandan et al. (1997)	M R Q Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1 -hydroxy- 4 -ethylbenzene $C_8H_{10}O$ (4 -ethylphenol) [123 - 07 - 9]	$8.2 2.1 \times 10^{1} 1.3 \times 10^{1} 3.8 5.4 \times 10^{1}$		HSDB (2015) Mackay et al. (2006c) Abraham et al. (1994a) Hilal et al. (2008) Nirmalakhandan et al. (1997)	V V R Q Q	
1-hydroxy-4-propylbenzene C ₉ H ₁₂ O (4-propylphenol) [645-56-7]	1.7 8.6 3.1 4.3×10 ¹		Mackay et al. (2006c) Abraham et al. (1994a) Hilal et al. (2008) Nirmalakhandan et al. (1997)	V R Q Q	
2-(1-methylethyl)-phenol C ₉ H ₁₂ O [88-69-7]	2.6 2.8		Mackay et al. (2006c) Hilal et al. (2008)	V Q	
2-phenylisopropanol C ₉ H ₁₂ O [617-94-7]	2.6×10 ¹		HSDB (2015)	Q	38
B-methyl-5-ethylphenol C ₉ H ₁₂ O 698-71-5]	2.9		Hilal et al. (2008)	Q	
2,3,6-trimethylphenol C ₉ H ₁₂ O [2416-94-6]	2.5 1.1×10^{1}		HSDB (2015) Hilal et al. (2008)	V Q	
2-(1,1-dimethylethyl)phenol C ₁₀ H ₁₄ O [88-18-6]	7.0		HSDB (2015)	Q	38
2-(1-methylpropyl)phenol C ₁₀ H ₁₄ O 89-72-5]	4.7		HSDB (2015)	Q	38
4-(1-methylpropyl)-phenol $C_{10}H_{14}O$ (4- sec -butylphenol) [99-71-8]	3.6 4.3		Mackay et al. (2006c) Mackay et al. (1995)	V V	
4- <i>tert</i> -butylphenol C ₁₀ H ₁₄ O [98-54-4]	$8.9 \\ 1.6 \times 10^{1} \\ 2.1 \times 10^{1} \\ 2.1 \\ 2.4 \times 10^{1} \\ 2.7 \\ 1.5 \times 10^{-1} \\ 8.8$	7700	Parsons et al. (1972) Mackay et al. (2006c) Mackay et al. (1995) Hilal et al. (2008) Nirmalakhandan et al. (1997) Nirmalakhandan and Speece (1988a) Betterton (1992) Abraham et al. (1990)	M V V Q Q Q ?	168 172
2-methyl-5-(1-methylethyl)-phenol C ₁₀ H ₁₄ O (carvacrol) [499-75-2]	2.4	9300	van Roon et al. (2005)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
5-methyl-2-(1-methylethyl)-phenol	3.0	9300	van Roon et al. (2005)	V	
C ₁₀ H ₁₄ O (thymol) [89-83-8]	2.8		Hilal et al. (2008)	Q	
2-(1,1-dimethylethyl)-4-methylphenol C ₁₁ H ₁₆ O [2409-55-4]	6.6		HSDB (2015)	Q	38
4-(1,1-dimethylpropyl)phenol C ₁₁ H ₁₆ O [80-46-6]	4.9		HSDB (2015)	V	
1-hydroxy-4-octylbenzene C ₁₄ H ₂₂ O (4-octylphenol) [1806-26-4]	1.3 2.0		Mackay et al. (2006c) Mackay et al. (1995)	V V	
1-hydroxy-4-nonylbenzene	2.9×10^{-1}		HSDB (2015)	V	
$C_{15}H_{24}O$	3.6×10^{-1}		Mackay et al. (2006c)	V	
(4-nonylphenol) [104-40-5]	6.4×10^{-1}		Mackay et al. (1995)	V	
4-(1,1,3,3-tetramethylbutyl)-phenol	2.3	9000	Xie et al. (2004)	M	
$C_{14}H_{22}O$	1.4		HSDB (2015)	Q	38
(p-tert-octylphenol)	2.2		Zhang et al. (2010)	Q	107, 108
[140-66-9]	2.3		Zhang et al. (2010)	Q	107, 109
	1.0×10^{1} 1.8		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 110 107, 11
2,6-bis(1,1-dimethylethyl)-4- methylphenol C ₁₅ H ₂₄ O (butylated hydroxytoluene; BHT)	2.9×10 ⁻³		Yoshida et al. (1983)	V	
[120-37-U]					
4-(3',5'-dimethyl-3'-heptyl)-phenol(+)	2.9	8700	Xie et al. (2004)	М	
4-(3',5'-dimethyl-3'-heptyl)-phenol(+) C ₁₅ H ₂₄ O 4-(3',5'-dimethyl-3'-heptyl)-phenol(-)	2.9	8700 8600	Xie et al. (2004) Xie et al. (2004)	M M	
4-(3',5'-dimethyl-3'-heptyl)-phenol(+) C ₁₅ H ₂₄ O 4-(3',5'-dimethyl-3'-heptyl)-phenol(-) C ₁₅ H ₂₄ O	3.3 >3.7×10 ¹		· · ·		
4-(3',5'-dimethyl-3'-heptyl)-phenol(+) C ₁₅ H ₂₄ O 4-(3',5'-dimethyl-3'-heptyl)-phenol(-) C ₁₅ H ₂₄ O 2-phenylethanol	3.3 $>3.7 \times 10^{1}$ 6.6×10^{1}		Xie et al. (2004)	M	
4-(3',5'-dimethyl-3'-heptyl)-phenol(+) C ₁₅ H ₂₄ O 4-(3',5'-dimethyl-3'-heptyl)-phenol(-) C ₁₅ H ₂₄ O 2-phenylethanol C ₈ H ₁₀ O	3.3 $>3.7 \times 10^{1}$ 6.6×10^{1} 3.9×10^{1}		Xie et al. (2004) Altschuh et al. (1999) HSDB (2015) Abraham et al. (1994a)	M M V R	
4-(3',5'-dimethyl-3'-heptyl)-phenol(+) C ₁₅ H ₂₄ O 4-(3',5'-dimethyl-3'-heptyl)-phenol(-) C ₁₅ H ₂₄ O 2-phenylethanol C ₈ H ₁₀ O	3.3 $>3.7 \times 10^{1}$ 6.6×10^{1} 3.9×10^{1} 1.9×10^{1}		Xie et al. (2004) Altschuh et al. (1999) HSDB (2015) Abraham et al. (1994a) Hilal et al. (2008)	M V R Q	
4-(3',5'-dimethyl-3'-heptyl)-phenol(+) C ₁₅ H ₂₄ O 4-(3',5'-dimethyl-3'-heptyl)-phenol(-) C ₁₅ H ₂₄ O 2-phenylethanol C ₈ H ₁₀ O	3.3 $>3.7 \times 10^{1}$ 6.6×10^{1} 3.9×10^{1} 1.9×10^{1} 2.4×10^{-1}		Xie et al. (2004) Altschuh et al. (1999) HSDB (2015) Abraham et al. (1994a) Hilal et al. (2008) Emel'yanenko et al. (2007)	M V R Q Q	166
4-(3',5'-dimethyl-3'-heptyl)-phenol(+) C ₁₅ H ₂₄ O 4-(3',5'-dimethyl-3'-heptyl)-phenol(-) C ₁₅ H ₂₄ O 2-phenylethanol C ₈ H ₁₀ O	3.3 $>3.7 \times 10^{1}$ 6.6×10^{1} 3.9×10^{1} 1.9×10^{1} 2.4×10^{-1} 2.4×10^{-1}		Xie et al. (2004) Altschuh et al. (1999) HSDB (2015) Abraham et al. (1994a) Hilal et al. (2008) Emel'yanenko et al. (2007) Hertel and Sommer (2005)	M V R Q Q	166 166
4-(3',5'-dimethyl-3'-heptyl)-phenol(+) $C_{15}H_{24}O$ 4-(3',5'-dimethyl-3'-heptyl)-phenol(-) $C_{15}H_{24}O$ 2-phenylethanol $C_{8}H_{10}O$ [60-12-8]	3.3 $>3.7 \times 10^{1}$ 6.6×10^{1} 3.9×10^{1} 1.9×10^{1} 2.4×10^{-1} 2.4×10^{-1} 5.3×10^{1}		Xie et al. (2004) Altschuh et al. (1999) HSDB (2015) Abraham et al. (1994a) Hilal et al. (2008) Emel'yanenko et al. (2007) Hertel and Sommer (2005) Nirmalakhandan et al. (1997)	M V R Q Q Q	
4-(3',5'-dimethyl-3'-heptyl)-phenol(+) C ₁₅ H ₂₄ O 4-(3',5'-dimethyl-3'-heptyl)-phenol(-) C ₁₅ H ₂₄ O 2-phenylethanol C ₈ H ₁₀ O [60-12-8]	3.3 $>3.7 \times 10^{1}$ 6.6×10^{1} 3.9×10^{1} 1.9×10^{1} 2.4×10^{-1} 2.4×10^{-1} 5.3×10^{1} $>1.8 \times 10^{2}$		Xie et al. (2004) Altschuh et al. (1999) HSDB (2015) Abraham et al. (1994a) Hilal et al. (2008) Emel'yanenko et al. (2007) Hertel and Sommer (2005) Nirmalakhandan et al. (1997) Altschuh et al. (1999)	M V R Q Q Q Q M	
[128-37-0] 4-(3',5'-dimethyl-3'-heptyl)-phenol(+) C ₁₅ H ₂₄ O 4-(3',5'-dimethyl-3'-heptyl)-phenol(-) C ₁₅ H ₂₄ O 2-phenylethanol C ₈ H ₁₀ O [60-12-8] 3-phenyl-1-propanol C ₉ H ₁₂ O [122-97-4]	3.3 $>3.7 \times 10^{1}$ 6.6×10^{1} 3.9×10^{1} 1.9×10^{1} 2.4×10^{-1} 2.4×10^{-1} 5.3×10^{1}		Xie et al. (2004) Altschuh et al. (1999) HSDB (2015) Abraham et al. (1994a) Hilal et al. (2008) Emel'yanenko et al. (2007) Hertel and Sommer (2005) Nirmalakhandan et al. (1997)	M V R Q Q Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	${\rm d} \ln H^{cp}$			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]		Reference	Турс	Note
[CAS registry number]	$\left\lfloor \frac{1}{m^3 Pa} \right\rfloor$	[K]			
4-phenyl-1-butanol	>6.7		Altschuh et al. (1999)	M	
$C_{10}H_{14}O$	1.2×10^{1}		Hilal et al. (2008)	Q	
[3360-41-6]					
1-naphthalenol	1.6×10^2		HSDB (2015)	V	
$C_{10}H_8O$	2.9×10^{1}		Mackay et al. (2006c)	V	
(1-naphthol)	1.7×10^2		Abraham et al. (1994a)	R	
[90-15-3]	6.9×10^{1}		Hilal et al. (2008)	Q	
	1.5×10^3		Nirmalakhandan et al. (1997)	Q	
2-naphthalenol	1.1×10^2		Mackay et al. (2006c)	V	
$C_{10}H_8O$	3.6×10^2		Abraham et al. (1994a)	R	
(2-naphthol)	2.1×10^2		HSDB (2015)	Q	38
[135-19-3]	7.0×10^{1}		Hilal et al. (2008)	Q	
	2	7400	Kühne et al. (2005)	Q	
	1.7×10^3		Nirmalakhandan et al. (1997)	Q	
		7200	Kühne et al. (2005)	?	
o-hydroxybiphenyl	9.4		HSDB (2015)	V	
$C_{12}H_{10}O$	2.9×10^{-1}		Mackay et al. (2006c)	V	
[90-43-7]	3.1×10^{1}		Hilal et al. (2008)	Q	
<i>p</i> -hydroxybiphenyl	1.6×10^{-1}		Mackay et al. (2006c)	V	
$C_{12}H_{10}O$	1.9×10^2		HSDB (2015)	Q	38
[92-69-3]					
2,4,6-tris(1,1-dimethylethyl)phenol	1.0		Zhang et al. (2010)	Q	107, 108
$C_{18}H_{30}O$	5.6×10^{-2}		Zhang et al. (2010)	Q	107, 109
[732-26-3]	3.3×10^{-2}		Zhang et al. (2010)	Q	107, 110
	5.3×10^{-2}		Zhang et al. (2010)	Q	107, 111
dehydroabietol	8.4		Zhang et al. (2010)	Q	107, 108
$C_{20}H_{30}O$	1.8×10^2		Zhang et al. (2010)	Q	107, 109
[3772-55-2]	2.4×10^{1}		Zhang et al. (2010)	Q	107, 110
	7.2×10^{-1}		Zhang et al. (2010)	Q	107, 111
2,2'-methylenebis(6-(1,1-	1.2×10 ⁶		HSDB (2015)	Q	38
dimethylethyl)-4-methylphenol)					
$C_{23}H_{32}O_2$					
[119-47-1]					
2,4-dinonylphenol	1.5×10^{-1}		HSDB (2015)	Q	38
$C_{24}H_{42}O$	1.6×10^{-1}		Zhang et al. (2010)	Q	107, 108
[137-99-5]	3.8×10^{-1}		Zhang et al. (2010)	Q	107, 109
	7.0×10^{-1}		Zhang et al. (2010)	Q	107, 110
	2.5×10^{-1}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{mol}{m^3 Pa}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1,2-ethanediol HO(CH ₂) ₂ OH (ethylene glycol) [107-21-1]	4.0×10^{3} 1.6×10^{2} 4.7 6.5×10^{3} 5.0×10^{3} 7.2×10^{2}	8800	Bone et al. (1983) Butler and Ramchandani (1935) HSDB (2015) Compernolle and Müller (2014b) Hwang et al. (1992) Hilal et al. (2008)	M M V V V Q	9 173
1,2-propanediol C ₃ H ₈ O ₂ [57-55-6]	$7.6 \times 10^{2} \\ 2.7 \times 10^{3}$	9500	HSDB (2015) Compernolle and Müller (2014b) Saxena and Hildemann (1996)	V V E	158, 174
1,3-propanediol C ₃ H ₈ O ₂ [504-63-2]	9.1×10^{3} 1.6×10^{4} 4.0×10^{2}	9500	Bone et al. (1983) Compernolle and Müller (2014b) Hilal et al. (2008)	M V Q	9
1,2,3-propanetriol C ₃ H ₈ O ₃ (glycerol) [56-81-5]	5.8×10^{2} 4.7×10^{6} 5.0×10^{6}	11000	Butler and Ramchandani (1935) Compernolle and Müller (2014b) Hwang et al. (1992) Saxena and Hildemann (1996)	M V V E	173 158, 175
1,2-butanediol C ₄ H ₁₀ O ₂ [584-03-2]	$>3.4 \times 10^2$ 2.1×10^3	9900	Altschuh et al. (1999) Compernolle and Müller (2014b)	M V	
1,3-butanediol C ₄ H ₁₀ O ₂ [107-88-0]	7.0×10^3 4.9×10^4	10000	Compernolle and Müller (2014b) Saxena and Hildemann (1996)	V E	158
1,4-butanediol C ₄ H ₁₀ O ₂ [110-63-4]	$>9.0 \times 10^{2}$ 7.6×10^{3} 3.5×10^{4} 8.0×10^{3}	11000	Altschuh et al. (1999) HSDB (2015) Compernolle and Müller (2014b) Hilal et al. (2008) Saxena and Hildemann (1996)	M V V Q E	158, 176
2,3-butanediol C ₄ H ₁₀ O ₂ [513-85-9]	3.4×10^2 1.1×10^3	9900	HSDB (2015) Compernolle and Müller (2014b) Saxena and Hildemann (1996)	V V E	158, 177
2-methylpropane-1,3-diol C ₄ H ₁₀ O ₂ [2163-42-0]	4.3×10 ¹		HSDB (2015)	Q	38
1,2,3-butanetriol C ₄ H ₁₀ O ₃ [4435-50-1]	3.0×10^9		Saxena and Hildemann (1996)	Е	158
1,2,4-butanetriol C ₄ H ₁₀ O ₃ [3068-00-6]	3.0×10 ⁹		Saxena and Hildemann (1996)	Е	158
1,2,3,4-butanetetrol C ₄ H ₁₀ O ₄ (1,2,3,4-tetrahydroxybutane)	2.0×10 ¹⁴		Saxena and Hildemann (1996)	Е	158

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
$2(R),3(S)-1,2,3,4$ -butanetetrol $C_4H_{10}O_4$ (erythritol) [149-32-6]	1.1×10^{10} 3.2×10^4	16000	Compernolle and Müller (2014b) HSDB (2015)	V Q	38
1,2-pentanediol C ₅ H ₁₂ O ₂ [5343-92-0]	1.4×10^3		Compernolle and Müller (2014b)	V	
1,4-pentanediol C ₅ H ₁₂ O ₂ [626-95-9]	2.3×10 ⁴		Compernolle and Müller (2014b)	V	
1,5-pentanediol C ₅ H ₁₂ O ₂ [111-29-5]	7.0×10^4 7.7×10^3 3.9×10^4	12000	Compernolle and Müller (2014b) Hilal et al. (2008) Saxena and Hildemann (1996)	V Q E	158
2,3-pentanediol C ₅ H ₁₂ O ₂ (42027-23-6]	3.0×10^4		Saxena and Hildemann (1996)	Е	158
2,4-pentanediol C ₅ H ₁₂ O ₂ [625-69-4]	3.8×10^3 3.0×10^4		Compernolle and Müller (2014b) Saxena and Hildemann (1996)	V E	158
2-(hydroxymethyl)-2-methyl-1,3- propanediol C ₅ H ₁₂ O ₃ [77-85-0]	9.0×10 ²		HSDB (2015)	Q	38
2,2-bis(hydroxymethyl)1,3- propanediol	7.3×10^{10}	16000	Compernolle and Müller (2014b)	V	
C ₅ H ₁₂ O ₄ (pentaerythritol) [115-77-5]	2.4×10^4		HSDB (2015)	Q	38
$1,2,3,4,5$ -pentanepentol $C_5H_{12}O_5$	8.9×10^{18}		Saxena and Hildemann (1996)	Е	158
(2R,3R,4S)-pentane-1,2,3,4,5-pentol C ₅ H ₁₂ O ₅ (xylitol) [87-99-0]	3.9×10^{11} 6.6×10^{5}	17000	Compernolle and Müller (2014b) HSDB (2015)	V Q	38
(2R,3S,4S)-pentane-1,2,3,4,5-pentol C ₅ H ₁₂ O ₅ (adonitol; ribitol) (488-81-3]	4.6×10 ¹¹	18000	Compernolle and Müller (2014b)	V	
$(2R,4R)$ -pentane-1,2,3,4,5-pentol $C_5H_{12}O_5$ (arabitol; arabinitol) $(2152-56-9]$	6.7×10 ¹¹	18000	Compernolle and Müller (2014b)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula (Other name(s)) [CAS registry number]		$\frac{\overline{\mathrm{d}(1/T)}}{[\mathrm{K}]}$	Reference	Туре	Note
1,2-hexanediol $C_6H_{14}O_2$	1.7×10 ³		Compernolle and Müller (2014b)	V	
[6920-22-5]					
1,6-hexanediol	4.5×10^4		HSDB (2015)	Q	38
C ₆ H ₁₄ O ₂ [629-11-8]	3.0×10^4		Saxena and Hildemann (1996)	Е	158
2,5-hexanediol	1.4×10^4		Compernolle and Müller (2014b)	V	
C ₆ H ₁₄ O ₂ [2935-44-6]	2.0×10^4		Saxena and Hildemann (1996)	Е	158
2-methyl-1,3-pentanediol C ₆ H ₁₄ O ₂ [149-31-5]	3.0×10^4		Saxena and Hildemann (1996)	Е	158
2-methyl-2,4-pentanediol	2.5×10^{1}		HSDB (2015)	Q	38
C ₆ H ₁₄ O ₂ [107-41-5]	2.0×10^4		Saxena and Hildemann (1996)	E	158
1,2,6-hexanetriol C ₆ H ₁₄ O ₃ [106-69-4]	2.0×10 ⁹		Saxena and Hildemann (1996)	Е	158
1,2,3,4,5,6-hexahydroxy hexane C ₆ H ₁₄ O ₆	3.9×10^{23}		Saxena and Hildemann (1996)	Е	158
(2S,3R,4R,5R)-hexane-1,2,3,4,5,6- hexol	6.6×10^{14}	22000	Compernolle and Müller (2014b)	V	
C ₆ H ₁₄ O ₆ (sorbitol) [50-70-4]	1.4×10^7		HSDB (2015)	Q	38
(2R,3R,4R,5R)-hexane-1,2,3,4,5,6- hexol	1.8×10 ¹⁵	22000	Compernolle and Müller (2014b)	V	
C ₆ H ₁₄ O ₆ (mannitol) [69-65-8]	1.4×10^7		HSDB (2015)	Q	38
(2R,3S,4R,5S)-hexane-1,2,3,4,5,6- hexol C ₆ H ₁₄ O ₆ (dulcitol; galactitol) [608-66-2]	9.0×10 ¹⁴	22000	Compernolle and Müller (2014b)	V	
1,2,4,5-cyclohexanetetrol C ₆ H ₁₂ O ₄ (1,2,4,5-tetrahydroxycyclohexane) [35652-37-0]	3.9×10 ¹⁴		Saxena and Hildemann (1996)	Е	158
$1,2,3,4,5,6$ -hexahydroxycyclohexane $C_6H_{12}O_6$ [87-89-8]	9.9×10 ²³		Saxena and Hildemann (1996)	Е	158

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1,7-heptanediol C ₇ H ₁₆ O ₂ [629-30-1]	2.0×10 ⁴		Compernolle and Müller (2014b) Saxena and Hildemann (1996)	V E	178 158
2,4-heptanediol C ₇ H ₁₆ O ₂ [20748-86-1]	2.0×10 ⁴		Saxena and Hildemann (1996)	Е	158
2,2-diethyl-1,3-propanediol C ₇ H ₁₆ O ₂ [115-76-4]	2.0×10 ⁴		Saxena and Hildemann (1996)	Е	158
1,2,3,4,5-pentahydroxyheptane C ₇ H ₁₆ O ₅	4.9×10^{18}		Saxena and Hildemann (1996)	Е	158
1,2,3,4,6-pentahydroxyheptane C ₇ H ₁₆ O ₅	3.9×10^{18}		Saxena and Hildemann (1996)	Е	158
1,2,3,5,7-pentahydroxyheptane C ₇ H ₁₆ O ₅	4.9×10^{18}		Saxena and Hildemann (1996)	Е	158
1,2,3,4,5,6-hexahydroxyheptane C ₇ H ₁₆ O ₆ (1-deoxy-heptitol) [688007-16-1]	3.0×10 ²³		Saxena and Hildemann (1996)	Е	158
4-methylcyclohexanemethanol C ₈ H ₁₆ O [34885-03-5]	1.5		HSDB (2015)	Q	38
$\begin{tabular}{ll} \hline $1,4$-cyclohexane dimethanol \\ $C_8H_{16}O_2$ \\ [105-08-8] \\ \hline \end{tabular}$	1.5×10 ⁵		HSDB (2015)	V	
2-ethyl-1,3-hexanediol C ₈ H ₁₈ O ₂ [94-96-2]	1.1×10^2 2.0×10^4		Hilal et al. (2008) Saxena and Hildemann (1996)	Q E	158
$\overline{2,2,4}$ -trimethyl-1,3-pentanediol $C_8H_{18}O_2$ [144-19-4]	1.4×10 ¹		HSDB (2015)	Q	38
2,5-dimethyl-2,5-hexanediol	1.4×10^{1}		Zhang et al. (2010)	Q	107, 108
$C_8H_{18}O_2$	1.9×10^3		Zhang et al. (2010)	Q	107, 109
[110-03-2]	7.9×10^2		Zhang et al. (2010)	Q	107, 110
	4.7×10^{1}		Zhang et al. (2010)	Q	107, 111
1,9-nonanediol C ₉ H ₂₀ O ₂ [3937-56-2]			Compernolle and Müller (2014b)	V	179
1,10-decanediol C ₁₀ H ₂₂ O ₂ [112-47-0]			Compernolle and Müller (2014b)	V	180

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2-butene-1,4-diol C ₄ H ₈ O ₂ [110-64-5]	>3.4×10 ²		Altschuh et al. (1999)	M	
2-butyne-1,4-diol C ₄ H ₆ O ₂ (1,4-dihydroxy-2-butyne) [110-65-6]	>2.0×10 ³ 5.8×10 ⁵		Altschuh et al. (1999) HSDB (2015)	M V	
1,2-dihydroxybenzene C ₆ H ₄ (OH) ₂ (pyrocatechol) [120-80-9]	8.2×10^{3} 1.8×10^{3} 1.6×10^{2} 4.5×10^{1} 1.2×10^{3}	8300 7400	HSDB (2015) Mackay et al. (2006c) Schüürmann (2000) Mackay et al. (1995) Hilal et al. (2008) Kühne et al. (2005) Kühne et al. (2005)	V V V V Q Q	
1,3-dihydroxybenzene C ₆ H ₄ (OH) ₂ (resorcinol) [108-46-3]	$ \begin{array}{c} 1.0 \times 10^{5} \\ 8.5 \times 10^{4} \\ 5.0 \times 10^{3} \\ 6.4 \times 10^{4} \\ 8.1 \times 10^{4} \\ 5.3 \times 10^{4} \end{array} $	6300	HSDB (2015) Mackay et al. (2006c) Schüürmann (2000) Goldstein (1982) Goldstein (1982) Hilal et al. (2008)	V V V X X Q	181 116
1,4-dihydroxybenzene C ₆ H ₄ (OH) ₂ (hydroquinone) [123-31-9]	2.6×10^{5} 2.5×10^{5} 3.2×10^{4} 2.5×10^{5} 2.6×10^{5} 3.7×10^{4} 1.7×10^{5}	8300 7700	HSDB (2015) Mackay et al. (2006c) Schüürmann (2000) Mackay et al. (1995) Meylan and Howard (1991) Hilal et al. (2008) Kühne et al. (2005) Meylan and Howard (1991) Kühne et al. (2005)	V V V V V Q Q Q	
1,2,3-benzenetriol C ₆ H ₆ O ₃ (pyrogallic acid) [87-66-1]	6.3×10 ⁴		HSDB (2015)	V	
hexylresorcinol C ₁₂ H ₁₈ O ₂ [136-77-6]	3.8×10^4		HSDB (2015)	Q	38
2,6-bis(1,1-dimethylethyl)phenol C ₁₄ H ₂₂ O [128-39-2]	3.1		HSDB (2015)	Q	38
4-(1-methyl-1-phenylethyl)phenol $C_{15}H_{16}O$ [599-64-4]	1.1×10^2		HSDB (2015)	Q	182

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,2',3,3'-tetrahydro-3,3,3',3'- tetramethyl-1,1'-spirobi(1H-indene)- 6,6'-diol	1.5×10 ⁶		Zhang et al. (2010)	Q	107, 108
$C_{21}H_{24}O_2$	1.0×10^{6}		Zhang et al. (2010)	Q	107, 109
[1568-80-5]	2.2×10^{6}		Zhang et al. (2010)	Q	107, 110
	8.2×10^{5}		Zhang et al. (2010)	Q	107, 111
4,4'-(3,3,5-trimethylcyclohexane-1,1-diyl)diphenol	4.4×10^5		Zhang et al. (2010)	Q	107, 108
$C_{21}H_{26}O_2$	3.2×10^5		Zhang et al. (2010)	Q	107, 109
[129188-99-4]	2.7×10^{6}		Zhang et al. (2010)	Q	107, 110
	7.9×10^5		Zhang et al. (2010)	Q	107, 111
3,3,3',3'-tetramethyl-1,1'- spirobi(indan)-5,5',6,6'-tetrol	1.4×10^{14}		Zhang et al. (2010)	Q	107, 108
C ₂₁ H ₂₄ O ₄	1.6×10^{10}		Zhang et al. (2010)	Q	107, 109
[77-08-7]	2.0×10^{11}		Zhang et al. (2010)	Q	107, 110
	2.7×10^{10}		Zhang et al. (2010)	Q	107, 111
9,9-bis(4-hydroxyphenyl)fluorene	8.4×10^{8}		Zhang et al. (2010)	Q	107, 108
$C_{25}H_{18}O_2$	6.2×10^7		Zhang et al. (2010)	Q	107, 109
[3236-71-3]	2.1×10^{8}		Zhang et al. (2010)	Q	107, 110
	3.1×10^9		Zhang et al. (2010)	Q	107, 111
Perox	xides (ROO	H) and p	eroxy radicals (ROO)		
methyl hydroperoxide	2.9	5200	Warneck and Williams (2012)	L	
CH ₃ OOH	3.0	5300	Sander et al. (2011)	L	
(methyl peroxide)	3.0	5300	Sander et al. (2006)	L	
[3031-73-0]	3.1	5300	Staudinger and Roberts (2001)	L	
	2.5	4400	Lia et al. (2004)	M	
	1.2×10^{1}	53 00	Sauer (1997)	M	183
	3.1 3.0	5200	O'Sullivan et al. (1996)	M	1.6
	9.0×10^{-1}	5300	Lind and Kok (1994)	M	16
	9.0×10	6200	Hilal et al. (2008) Kühne et al. (2005)	Q Q	
		5200	Kühne et al. (2005)	?	
ethyl hydroperoxide	3.3	6000	Sander et al. (2011)	L	
C ₂ H ₅ OOH	1.1×10^{1}		Sauer (1997)	M	183
(ethyl peroxide)	3.3	6000	O'Sullivan et al. (1996)	M	
[3031-74-1]	5.8×10^{-1}		Hilal et al. (2008)	Q	
		6600	Kühne et al. (2005)	Q	
		6000	Kühne et al. (2005)	?	
hydroxymethyl hydroperoxide	1.7×10^4	9900	Sander et al. (2011)	L	
HOCH ₂ OOH	1.7×10^4	9900	Sander et al. (2006)	L	
(HMHP; HMP)	1.6×10^4	10000	Staudinger and Roberts (2001)	L	
[15932-89-5]	1.6×10^4	9700	O'Sullivan et al. (1996)	M	
	1.6×10^4	10000	Staffelbach and Kok (1993)	M	
	4.7×10^3	1500	Zhou and Lee (1992)	M	
		8600	Kühne et al. (2005)	Q	
		10000	Kühne et al. (2005)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
bis-(hydroxymethyl)-peroxide HOCH ₂ OOCH ₂ OH (BHMP) [17088-73-2]	$>9.9 \times 10^4$ 4.4×10^3	8400 9400 8500	Staffelbach and Kok (1993) Zhou and Lee (1992) Kühne et al. (2005) Kühne et al. (2005)	M M Q ?	
tert-butyl hydroperoxide C ₄ H ₁₀ O ₂ [75-91-2]	6.2×10 ⁻¹		HSDB (2015)	Q	38
di- <i>tert</i> -butylperoxide C ₈ H ₁₈ O ₂ [110-05-4]	$8.2 \times 10^{-4} \\ 1.2 \times 10^{-4}$		HSDB (2015) Hilal et al. (2008)	Q Q	38
1-methyl-1-phenylethylhydroperoxide $C_9H_{12}O_2$ [80-15-9]	2.1×10 ² 2.3		HSDB (2015) Hilal et al. (2008)	V Q	
dicumyl peroxide C ₁₈ H ₂₂ O ₂ [80-43-3]	2.2×10 ⁻¹		HSDB (2015)	Q	38
methylperoxy radical CH ₃ OO	1.5×10^{-1}	3700	Leriche et al. (2000) Lelieveld and Crutzen (1991)	E E	184 185
[2143-58-0]	5.9×10^{-2}	5600	Jacob (1986)	Е	186
hydroxymethylperoxy radical HOCH ₂ OO [27828-51-9]	7.9×10^2	8200	Leriche et al. (2000)	Е	184
peroxyacetyl radical	$<9.9 \times 10^{-4}$		Sander et al. (2011)	L	
$CH_3C(O)O_2$	$<9.9\times10^{-4}$		Sander et al. (2006)	L	
[36709-10-1]	<9.9×10 ⁻⁴		Villalta et al. (1996)	M	
	Ald	lehydes ((RCHO)		
methanal	3.2×10 ¹	6800	Warneck and Williams (2012)	L	187
НСНО	3.2×10^{1}	7100	Sander et al. (2011)	L	187
formaldehyde)	3.2×10^{1}	7100	Sander et al. (2006)	L	187
50-00-0]	3.2×10^{1}	6800	Staudinger and Roberts (2001)	L	187
	3.2×10^{1}	6800	Staudinger and Roberts (1996)	L	187
	3.5×10^{1}	5700	Liu et al. (2015)	M	
	3.4×10^{1}	6400	Allou et al. (2011)	M	187
	5.3×10^{1}	1600	Seyfioglu and Odabasi (2007)	M	187
	9.9×10^{1} 3.1×10^{1}	6500	Kim et al. (2000) Zhou and Mopper (1990)	M M	31, 187 188, 18
	3.1×10^{1} 3.1×10^{1}	7200	Betterton and Hoffmann (1988)	M M	188, 18
	J.1 × 10	1200	Dong and Dasgupta (1986)	M	189
			Ledbury and Blair (1925)	M	190
			Blair and Ledbury (1925)	M	190
	3.0×10^{1}		Lide and Frederikse (1995)	V	187
	2.3		Hwang et al. (1992)	V	187
	6.9×10^{1}	6400	Chameides (1984)	T	187
	2.9×10^{1}	7200	Bell (1966)	X	191, 18
	5.9×10^{1}		Gaffney and Senum (1984)	X	187, 15

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]	[17]		71	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
	4.5×10 ¹		Lee and Zhou (1993)	С	31, 18
			Hough (1991)	C	190
	1.4×10^2		Warneck (1988)	C	187
	2.8×10^{-2}		Hilal et al. (2008)	Q	
	1.8×10^{-1}		Nirmalakhandan et al. (1997)	Q	
	1.0×10^2		Meylan and Howard (1991)	Q	187
	4.2×10^{-2}		Abraham et al. (1990)	?	
	6.2×10^{1}		Seinfeld (1986)	?	7, 187
			Lelieveld and Crutzen (1991)	W	190
			Pandis and Seinfeld (1989)	W	190
thanal	1.3×10^{-1}	5900	Sander et al. (2011)	L	
CH ₃ CHO	1.3×10^{-1}	5900	Sander et al. (2006)	L	
acetaldehyde)	1.3×10^{-1}	5700	Staudinger and Roberts (2001)	L	
75-07-0]	1.4×10^{-1}	5600	Staudinger and Roberts (1996)	L	
	1.5×10^{-1}	6400	Ji and Evans (2007)	M	
	1.1×10^{-1}		Straver and de Loos (2005)	M	
	1.5×10^{-1}		Marin et al. (1999)	M	
	1.3×10^{-1}	5700	Benkelberg et al. (1995)	M	
	1.7×10^{-1}	5000	Zhou and Mopper (1990)	M	188
	7.1×10^{-2}		Guitart et al. (1989)	M	19
	1.2×10^{-1}	6300	Betterton and Hoffmann (1988)	M	192
	1.2×10^{-1}	5800	Snider and Dawson (1985)	M	
	2.5×10^{-1}		Vitenberg et al. (1974)	M	147
	1.5×10^{-1}		Buttery et al. (1969)	M	
	1.2×10^{-1}		Marin et al. (1999)	V	
	1.2×10^{-1}		Hwang et al. (1992)	V	
	1.7×10^{-2}	4500	Janini and Quaddora (1986)	X	116
	1.7×10^{-1}	4700	Goldstein (1982)	X	116
	1.5×10^{-1}		Gaffney and Senum (1984)	X	153
	1.5×10^{-1}		Pierotti et al. (1959)	X	193
	1.1×10^{-1}		Hilal et al. (2008)	Q	
		5200	Kühne et al. (2005)	Q	
	1.4×10^{-1}		Marin et al. (1999)	Q	
	1.5×10^{-1}		Nirmalakhandan et al. (1997)	Q	
	1.5×10^{-1}		Mackay et al. (2006c)	?	7
	2	5800	Kühne et al. (2005)	?	
	9.8×10^{-2}		Yaws and Yang (1992)	?	92
	1.5×10^{-1}		Abraham et al. (1990)	?	
propanal	9.9×10^{-2}	4300	Sander et al. (2011)	L	
C ₂ H ₅ CHO	9.9×10^{-2}	4300	Sander et al. (2006)	L	
propionaldehyde)	1.3×10^{-1}		Liu et al. (2015)	M	126
123-38-6]	9.1×10^{-2}		Kim and Kim (2014)	M	
	1.3×10^{-1}	5800	Ji and Evans (2007)	M	
	1.3×10^{-1}	5700	Zhou and Mopper (1990)	M	188
	1.3×10^{-1}		Buttery et al. (1969)	M	
	7.5×10^{-2}		Buttery et al. (1965)	M	
	1.3×10^{-1}		Mackay et al. (2006c)	V	
	1.3×10^{-2}		Mackay et al. (1995)	V	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{H^{cp}}$			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
	1.6×10 ⁻¹		Amoore and Buttery (1978)	V	
	5.2×10^{-2}	5600	Schaffer and Daubert (1969)	X	116
	2.7×10^{-2}	2400	Janini and Quaddora (1986)	X	116
	1.2×10^{-1}		Hilal et al. (2008)	Q	
	1	5500	Kühne et al. (2005)	Q	
	1.2×10^{-1}		Nirmalakhandan et al. (1997)	Q	
	1.3×10^{-1}		Mackay et al. (2006c)	?	7
	1	5000	Kühne et al. (2005)	?	
	1.3×10^{-1}		Abraham et al. (1990)	?	
outanal	9.5×10^{-2}	6200	Sander et al. (2011)	L	
C ₃ H ₇ CHO	9.5×10^{-2}	6200	Sander et al. (2006)	L	
butyraldehyde)	6.1×10^{-2}		Kim and Kim (2014)	M	
[123-72-8]	8.9×10^{-2}	6200	Ji and Evans (2007)	M	
	9.5×10^{-2}	6200	Zhou and Mopper (1990)	M	188
	8.6×10^{-2}		Buttery et al. (1969)	M	
	6.4×10^{-2}		Buttery et al. (1965)	M	
	6.5×10^{-2}		Mackay et al. (2006c)	V	
	6.5×10^{-2}		Mackay et al. (1995)	V	
	1.0×10^{-1}		Hwang et al. (1992)	V	
	6.7×10^{-2}		Amoore and Buttery (1978)	V	
	5.4×10^{-2}	4000	Janini and Quaddora (1986)	X	116
	9.0×10^{-2}		Hilal et al. (2008)	Q	
	2	5900	Kühne et al. (2005)	Q	
	9.5×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	8.6×10^{-2}	4400	Mackay et al. (2006c)	?	7
	0 < 10-2	6400	Kühne et al. (2005)	?	
	8.6×10^{-2}		Abraham et al. (1990)	?	
2-methylpropanal	5.9×10^{-3}	4500	Strekowski and George (2005)	M	
C_4H_8O	3.3×10^{-2}		Karl et al. (2003)	M	
isobutyraldehyde)	3.4×10^{-2}		Pollien et al. (2003)	M	
[78-84-2]	5.0×10^{-2}		Amoore and Buttery (1978)	M	
	5.5×10^{-2}		HSDB (2015)	V	
	6.7×10^{-2}		Amoore and Buttery (1978)	V	
	7.0×10^{-2}		Hilal et al. (2008)	Q	
	2	5000	Kühne et al. (2005)	Q	
	8.2×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	5 110=2	5100	Kühne et al. (2005)	?	
	5.1×10 ⁻²		Abraham et al. (1990)	?	
pentanal	6.8×10^{-2}		Liu et al. (2015)	M	126
C ₄ H ₉ CHO	3.9×10^{-2}		Kim and Kim (2014)	M	
valeraldehyde)	7.1×10^{-2}	6100	Ji and Evans (2007)	M	
[110-62-3]	6.3×10^{-2}	6300	Zhou and Mopper (1990)	M	188
	6.7×10^{-2}		Buttery et al. (1969)	M	
	5.8×10^{-2}		Buttery et al. (1965)	M	
	6.4×10^{-2}		Amoore and Buttery (1978)	V	
	7.2×10^{-2}		Hilal et al. (2008)	Q	
	2	6200	Kühne et al. (2005)	Q	
	7.3×10^{-2}		Nirmalakhandan et al. (1997)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	6.2×10^{-2} 6.7×10^{-2} 4.4×10^{-2} 6.7×10^{-2}	5500	Meylan and Howard (1991) Mackay et al. (2006c) Kühne et al. (2005) Yaws and Yang (1992) Abraham et al. (1990)	Q ? ? ? ?	7 92, 23
2-methylbutanal $C_5H_{10}O$ [96-17-3]	2.3×10 ⁻² 9.5×10 ⁻³		Pollien et al. (2003) Hertel et al. (2007)	M Q	194
3-methylbutanal C ₅ H ₁₀ O (isovaleraldehyde) [590-86-3]	2.1×10^{-2} 2.6×10^{-2} 2.0×10^{-2} 2.5×10^{-2} 7.3×10^{-2} 9.8×10^{-3}		Kim and Kim (2014) Pollien et al. (2003) Nelson and Hoff (1968) HSDB (2015) Hilal et al. (2008) Hertel et al. (2007)	M M M V Q	115 194
hexanal C ₅ H ₁₁ CHO [66-25-1]	3.2×10^{-2} 4.9×10^{-2} 4.6×10^{-2} 5.8×10^{-2} 3.5×10^{-2} 4.8×10^{-2} 5.8×10^{-2} 1.1×10^{-2} 5.8×10^{-2} 4.6×10^{-2} 1.9×10^{-2} 4.6×10^{-2}	6500 6600 6900	Karl et al. (2003) Zhou and Mopper (1990) Buttery et al. (1969) Buttery et al. (1965) Amoore and Buttery (1978) Sieg et al. (2008) Hilal et al. (2008) Hertel et al. (2007) Kühne et al. (2005) Nirmalakhandan et al. (1997) Mackay et al. (2006c) Kühne et al. (2005) Yaws and Yang (1992) Abraham et al. (1990)	M M M M V C Q Q Q Q ?	188 194 7 92, 23
2-methylpentanal C ₆ H ₁₂ O (2-methylvaleraldehyde) [123-15-9]	2.7×10 ⁻²	5700 5300	HSDB (2015) Kühne et al. (2005) Kühne et al. (2005)	Q Q ?	38
heptanal C ₆ H ₁₃ CHO [111-71-7]	3.3×10^{-2} 3.7×10^{-2} 6.0×10^{-2} 5.4×10^{-2} 3.7×10^{-2} 3.7×10^{-2} 4.5×10^{-2}	7500 6900 7100	Zhou and Mopper (1990) Buttery et al. (1969) Buttery et al. (1965) Amoore and Buttery (1978) Sieg et al. (2008) Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan et al. (1997) Kühne et al. (2005)	M M V C Q Q Q	188
	$2.3 \times 10^{-2} \\ 3.7 \times 10^{-2}$		Yaws and Yang (1992) Abraham et al. (1990)	? ?	92, 23

Table 6: Henry's law constants for water as solvent (... continued)

	H^{cp}				
Substance Formula	(at T^{\ominus})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$			
Other name(s))		u(1/1)	Reference	Type	Note
CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
ectanal	2.1×10^{-2}		Li and Carr (1993)	M	
C ₇ H ₁₅ CHO	2.1×10^{-2}	7400	Zhou and Mopper (1990)	M	188
124-13-0]	1.9×10^{-2}		Buttery et al. (1969)	M	
	7.5×10^{-2}		Buttery et al. (1965)	M	
	2.9×10^{-2}		Amoore and Buttery (1978)	V	
	1.9×10^{-2}		Sieg et al. (2008)	C	
	3.9×10^{-2}	53 00	Hilal et al. (2008)	Q	
	2 < 10-2	7300	Kühne et al. (2005)	Q	
	3.6×10^{-2}	6200	Nirmalakhandan et al. (1997)	Q ?	
	2.0	6200	Kühne et al. (2005) Yaws and Yang (1992)	?	92, 23
	1.9×10^{-2}		Abraham et al. (1990)	?	92, 23
onanal	1.0×10^{-2}	6700	Zhou and Mopper (1990)	M	188
C ₈ H ₁₇ CHO	1.3×10^{-2}		Buttery et al. (1969)	M	
124-19-6]	7.1×10^{-2}		Buttery et al. (1965)	M	
	1.3×10^{-2}		Amoore and Buttery (1978)	V	
	1.4×10^{-2}		Sieg et al. (2008)	C	
	2.4×10^{-2}		Hilal et al. (2008)	Q	
	2.8×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	2.0×10^{-2}		Meylan and Howard (1991)	Q	
	6.9×10^{-3}		Yaws and Yang (1992)	?	92, 23
	1.3×10^{-2}		Abraham et al. (1990)	?	
2-ethylhexanal	1.2×10^{-2}		HSDB (2015)	V	
C ₈ H ₁₆ O 123-05-7]	2.7×10^{-2}		Hilal et al. (2008)	Q	
3,5,5-trimethylhexanal C ₉ H ₁₈ O 5435-64-3]	2.0×10^{-2}		HSDB (2015)	Q	38
lecanal	4.3×10^{-3}		Helburn et al. (2008)	M	
С9Н19СНО	6.0×10^{-3}	8700	Zhou and Mopper (1990)	M	188
112-31-2]	1.7×10^{-1}		Buttery et al. (1965)	M	
	5.5×10^{-3}		Sieg et al. (2008)	C	
	2.6×10^{-2}		Hilal et al. (2008)	Q	
		7900	Kühne et al. (2005)	Q	
		8500	Kühne et al. (2005)	?	
ındecanal		8300	Kühne et al. (2005)	Q	
C ₁₁ H ₂₂ O 112-44-7]		8300	Kühne et al. (2005)	?	
propenal	7.2×10^{-2}	5100	Snider and Dawson (1985)	M	
CH ₂ CHCHO	1.0×10^{-1}		Mackay et al. (2006c)	V	
(acrolein)	2.3		Lide and Frederikse (1995)	V	
107-02-8]	1.0×10^{-2}		Mackay et al. (1995)	V	
	7.0×10^{-2}		Hwang et al. (1992)	V	_
	1.3×10^{-1}	•065	Suntio et al. (1988)	V	9
	1.0×10^{-1}	3800	Goldstein (1982)	X	116
	2.2		Howard (1989)	X	164
	8.1×10^{-2}		Gaffney and Senum (1984)	X	153

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{mol}{m^{3} Pa}\right]$ 1.8×10^{-1} 1.4×10^{-1} 9.5×10^{-2} 7.5×10^{-2}	$\frac{d \ln H^{cp}}{d(1/T)}$ [K] 4600	Reference Suntio et al. (1988) Ryan et al. (1988) Hilal et al. (2008) Kühne et al. (2005) Mackay et al. (2006c) Kühne et al. (2005)	Type C C Q Q ?	Note 9
2-methylpropenal C ₄ H ₆ O (methacrolein) [78-85-3]	4.8×10^{-2} 6.4×10^{-2} 4.2×10^{-2} 5.2×10^{-2} 9.5×10^{-2}	4300 5300 4000 4800	Ji and Evans (2007) Iraci et al. (1999) Allen et al. (1998) HSDB (2015) Hilal et al. (2008) Kühne et al. (2005) Kühne et al. (2005)	M M M V Q Q	
2-butenal C ₄ H ₆ O [4170-30-3]	$9.7 \times 10^{-2} \\ 2.7 \times 10^{-1}$		Hilal et al. (2008) Nirmalakhandan et al. (1997)	Q Q	
(E)-2-butenal CH ₃ CHCHCHO (crotonaldehyde) [123-73-9]	5.0×10^{-1} 4.4×10^{-2} 4.4×10^{-2} 5.9×10^{-1} 5.0×10^{-1} 5.1×10^{-1}	3600 5000 4300	Buttery et al. (1971) Mackay et al. (2006c) Mackay et al. (1995) Goldstein (1982) Gaffney and Senum (1984) Kühne et al. (2005) Kühne et al. (2005) Abraham et al. (1990)	M V V X X Q ?	116 153
2-hexenal C ₆ H ₁₀ O [505-57-7]	$6.2 \times 10^{-2} \\ 1.7 \times 10^{-1}$		Hilal et al. (2008) Nirmalakhandan et al. (1997)	Q Q	
(E)-2-hexenal C ₃ H ₇ CHCHCHO (trans-2-hexenal) [6728-26-3]	$1.4 \times 10^{-1} \\ 2.0 \times 10^{-1}$		Karl et al. (2003) Buttery et al. (1971)	M M	
(E,E)-2,4-hexadienal CH ₃ CHCHCHCHCO (trans-trans-2,4-hexadienal) [142-83-6]	1.0 3.9×10 ⁻¹		Buttery et al. (1971) Hilal et al. (2008)	M Q	
2-heptenal C ₇ H ₁₂ O [2463-63-0]	5.0×10 ⁻²		Hilal et al. (2008)	Q	
(Z)-4-heptenal C ₇ H ₁₂ O (cis-4-heptenal) [6728-31-0]	8.8×10 ⁻²		Straver and de Loos (2005)	M	
2-octenal C ₈ H ₁₄ O [2363-89-5]	$4.1 \times 10^{-2} \\ 1.0 \times 10^{-1}$		Hilal et al. (2008) Nirmalakhandan et al. (1997)	Q Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{3 \text{ p}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
(E)-2-octenal C ₅ H ₁₁ CHCHCHO (trans-2-octenal) [2548-87-0]	$\begin{bmatrix} m^3 \text{ Pa} \end{bmatrix}$ 1.3×10 ⁻¹		Buttery et al. (1971) Betterton (1992)	M W	195
(E)-2-nonenal C ₉ H ₁₆ O (<i>trans</i> -2-nonenal) [18829-56-6]	5.8×10 ⁻²		Roberts and Pollien (1997)	M	
3,7-dimethyl-6-octenal C ₁₀ H ₁₈ O (citronellal) [106-23-0]	$2.5 \times 10^{-2} \\ 3.8 \times 10^{-2}$	4500	van Roon et al. (2005) HSDB (2015)	V Q	38
3,7-dimethyl-2,6-octadienal C ₁₀ H ₁₆ O (citral) [5392-40-5]	2.3×10 ⁻¹		HSDB (2015)	Q	38
benzaldehyde	3.8×10^{-1}	5500	Staudinger and Roberts (2001)	L	
C ₆ H ₅ CHO	3.9×10^{-1}	4800	Staudinger and Roberts (1996)	L	
[100-52-7]	3.2×10^{-1}	6300	Allou et al. (2011)	M	
	3.5×10^{-1}	7000	Allen et al. (1998)	M	
	4.2×10^{-1}	4600	Zhou and Mopper (1990)	M	188
	3.7×10^{-1}	5100	Betterton and Hoffmann (1988)	M	192
	1.6×10^{-1}		Mackay et al. (2006c)	V	
	1.6×10^{-1}		Mackay et al. (1995)	V	
	3.6×10^{-1}		Hine and Mookerjee (1975)	V	
	3.5×10^{-1}	5400	Bagno et al. (1991)	T	196
	3.6×10^{-1}		Gaffney and Senum (1984)	X	153
	3.7×10^{-1}		Schüürmann (2000)	C	7
	7.7×10^{-1}		Hilal et al. (2008)	Q	
	2.6×10^{-2}		Emel'yanenko et al. (2007)	Q	166
	2.6×10^{-2}	5 060	Hertel and Sommer (2006)	Q	166
	7.2 10-1	5800	Kühne et al. (2005)	Q	
	7.2×10^{-1}		Nirmalakhandan et al. (1997)	Q	7
	4.4×10^{-1}	5400	Mackay et al. (2006c)	? ?	7
	3.6×10^{-1}	5400	Kühne et al. (2005) Abraham et al. (1990)	?	
1 1 4111 1				-	166
phenylacetaldehyde C ₆ H ₅ CH ₂ CHO [122-78-1]	$1.0 \times 10^{-1} \\ 1.0 \times 10^{-1}$		Emel'yanenko et al. (2007) Hertel and Sommer (2005)	Q Q	166 166
2-methylbenzaldehyde C ₈ H ₈ O (<i>o</i> -tolualdehyde) [529-20-4]	3.3×10 ⁻¹		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
3-methylbenzaldehyde C ₈ H ₈ O (<i>m</i> -tolualdehyde) [620-23-5]	3.3×10^{-1}		HSDB (2015)	Q	38
4-methylbenzaldehyde C_8H_8O (p -tolualdehyde) [104-87-0]	5.8×10^{-1} 5.4×10^{-1} 7.9×10^{-1} 5.2×10^{-1}		HSDB (2015) Abraham et al. (1994a) Hilal et al. (2008) Nirmalakhandan et al. (1997)	V R Q Q	
2-hydroxybenzaldehyde C ₆ H ₄ (OH)CHO (2-formylphenol) [90-02-8]	1.6×10 ¹		Hilal et al. (2008)	Q	
3-hydroxybenzaldehyde C ₆ H ₄ (OH)CHO (3-formylphenol) [100-83-4]	3.9×10^{3} 5.3×10^{3} 3.0×10^{4} 3.8×10^{3}		Gaffney and Senum (1984) Hilal et al. (2008) Nirmalakhandan et al. (1997) Abraham et al. (1990)	X Q Q ?	153
4-hydroxybenzaldehyde C ₆ H ₄ (OH)CHO (4-formylphenol) [123-08-0]	$ \begin{array}{c} 1.9 \times 10^4 \\ 8.8 \times 10^2 \\ 3.0 \times 10^4 \\ 1.9 \times 10^4 \end{array} $	8600	Parsons et al. (1971) Hilal et al. (2008) Nirmalakhandan et al. (1997) Abraham et al. (1990)	T Q Q ?	168
3-phenyl-2-propenal C ₉ H ₈ O (cinnamaldehyde) [104-55-2]	2.8 1.4	6300	HSDB (2015) van Roon et al. (2005)	V V	
α -amyl cinnamaldehyde $C_{14}H_{18}O$ [122-40-7]	1.3		HSDB (2015)	Q	182
ethanedial OHCCHO (glyoxal) [107-22-2]	4.1×10^{3} 4.9×10^{5} 4.1×10^{3} 2.6×10^{5} 3.6×10^{3} $>3.0 \times 10^{3}$ 1.4×10^{4}	7500 7500	Sander et al. (2011) Kampf et al. (2013) Ip et al. (2009) Volkamer et al. (2009) Kroll et al. (2005) Zhou and Mopper (1990) Betterton and Hoffmann (1988) Lee and Zhou (1993)	L M M M M M	192 197 192 198 192, 199 192, 127 192 31, 192
pentanedial OHC(CH ₂) ₃ CHO (glutaraldehyde) [111-30-8]	3.0×10^{2} 4.1×10^{2}	9200 8800 9100	Olson (1998) HSDB (2015) Kühne et al. (2005) Kühne et al. (2005)	M Q Q ?	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(\text{at } T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^{3} \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
propanone	2.7×10 ⁻¹	5500	Sander et al. (2011)	L	
CH ₃ COCH ₃	3.3×10^{-1}	5300	Poulain et al. (2010)	L	
(acetone)	2.8×10^{-1}	5100	Sander et al. (2006)	L	
[67-64-1]	2.6×10^{-1}	5700	Fogg and Sangster (2003)	L	
	2.8×10^{-1}	4800	Staudinger and Roberts (2001)	L	
	3.0×10^{-1}	4600	Staudinger and Roberts (1996)	L	
	2.9×10^{-1}	5100	Poulain et al. (2010)	M	
	2.6×10^{-1}	5400	Ji and Evans (2007)	M	
	2.4×10^{-1}	4200	Falabella et al. (2006)	M	89, 130
	2.6×10^{-1}	6400	Strekowski and George (2005)	M	
	2.4×10^{-1}		Straver and de Loos (2005)	M	
	2.4×10^{-1}	4300	Chai et al. (2005)	M	89
	1.0×10^{-1}		Ayuttaya et al. (2001)	M	131
	9.4×10^{-4}		Ayuttaya et al. (2001)	M	132
	5.3×10^{-1}		Ayuttaya et al. (2001)	M	133
	2.7×10^{-1}	5300	Benkelberg et al. (1995)	M	
	2.7×10^{-1}		Hoff et al. (1993)	M	
	3.2×10^{-1}	5800	Betterton (1991)	M	
	3.5×10^{-1}	3800	Zhou and Mopper (1990)	M	188
	1.2×10^{-1}		Guitart et al. (1989)	M	19
	1.4×10^{-1}	4000	Hellmann (1987)	M	31
	2.5×10^{-1}	4800	Snider and Dawson (1985)	M	
	3.2×10^{-1} 1.5×10^{-1}	5400	Schoene and Steinhanses (1985)	M	10
	2.5×10^{-1}		Sato and Nakajima (1979a)	M	19
	2.5×10^{-1}		Vitenberg et al. (1975)	M	
	3.2×10^{-1}		Vitenberg et al. (1974) Vitenberg et al. (1974)	M M	
	2.5×10^{-1}		Buttery et al. (1969)	M	
	3.1×10^{-1}		Nelson and Hoff (1968)	M	115
	2.8×10^{-1}		Burnett (1963)	M	113
	1.8×10^{-2}		Abraham and Acree Jr. (2007)	V	
	2.6×10^{-1}		Hwang et al. (1992)	V	
	2.4×10^{-1}		Rathbun and Tai (1982)	v	
	3.1×10^{-2}		Hine and Weimar Jr. (1965)	R	
	3.0×10^{-1}		Butler and Ramchandani (1935)	R	
	2.5×10^{-1}	4900	Bagno et al. (1991)	T	196
	2.2×10^{-1}	5000	Schaffer and Daubert (1969)	X	116
	3.0×10^{-2}	3300	Janini and Quaddora (1986)	X	116
	3.0×10^{-1}		Gaffney and Senum (1984)	X	153
	2.7×10^{-1}		Cabani et al. (1981)	C	
	1.4×10^{-1}		Hilal et al. (2008)	Q	
		5500	Kühne et al. (2005)	Q	
	2.1×10^{-1}		Nirmalakhandan et al. (1997)	Q	
	2.5×10^{-1}		Taft et al. (1985)	Q	
	2.5×10^{-1}		Mackay et al. (2006c)	?	7
	4	5100	Kühne et al. (2005)	?	
	1.8×10^{-1}		Yaws et al. (1998)	?	
	2.3×10^{-1}		Yaws and Yang (1992)	?	92
	2.5×10^{-1}		Abraham et al. (1990)	?	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
propanone-2-13C CH ₃ COCH ₃ (acetone-2-13C) [3881-06-9]	3.1×10 ⁻¹	5300	Hiatt (2013)	M	
1-hydroxypropanone CH ₃ COCH ₂ OH (hydroxyacetone) [116-09-6]	7.7×10 ¹		Lee and Zhou (1993)	С	31
butanone	1.8×10^{-1}	5700	Sander et al. (2011)	L	
C ₂ H ₅ COCH ₃	1.8×10^{-1}	5700	Sander et al. (2006)	L	
(methyl ethyl ketone; MEK)	1.9×10^{-1}	4600	Fogg and Sangster (2003)	L	
[78-93-3]	1.8×10^{-1}	5400	Staudinger and Roberts (2001)	L	
	2.0×10^{-1}	5000	Staudinger and Roberts (1996)	L	
	1.0×10^{-1}		Kim and Kim (2014)	M	
	9.5×10^{-2}		Helburn et al. (2008)	M	
	2.1×10^{-1}	5200	Ji and Evans (2007)	M	
	1.5×10^{-1}	4400	Falabella et al. (2006)	M	89, 130
	2.7×10^{-2}	12000	Strekowski and George (2005)	M	
	1.7×10^{-1}		Straver and de Loos (2005)	M	
	1.5×10^{-1}	4500	Chai et al. (2005)	M	89
			Cheng et al. (2004)	M	123
			Cheng et al. (2003)	M	123
	1.1×10^{-1}		Karl et al. (2003)	M	
	1.6×10^{-1}		Kim et al. (2000)	M	
	1.9×10^{-1}		Chaintreau et al. (1995)	M	
	1.4×10^{-1}	4700	Ettre et al. (1993)	M	89
	1.9×10^{-1}	5000	Zhou and Mopper (1990)	M	188
	6.8×10^{-2}	-5200	Ashworth et al. (1988)	M	103
	1.3×10^{-1}		Hellmann (1987)	M	31
	1.8×10^{-1}		Park et al. (1987)	M	
	1.7×10^{-1}	5700	Snider and Dawson (1985)	M	
	1.4×10^{-1}		Hawthorne et al. (1985)	M	
	1.0×10^{-1}		Friant and Suffet (1979)	M	23
	9.8×10^{-2}		Sato and Nakajima (1979a)	M	19
	1.8×10^{-1}		Vitenberg et al. (1975)	M	
	1.1×10^{-1}		Vitenberg et al. (1974)	M	
	1.9×10^{-1}		Rohrschneider (1973)	M	
	2.1×10^{-1}		Buttery et al. (1969)	M	
	1.1×10^{-2}		Abraham and Acree Jr. (2007)	V	
	2.8×10^{-1}		Mackay et al. (2006c)	V	
	2.8×10^{-1} 2.6×10^{-1}		Mackay et al. (1995)	V	
	2.6×10^{-1} 1.6×10^{-1}		Hwang et al. (1992)	V	
	7.1×10^{-2}		Rathbun and Tai (1982)	V	
	7.1×10^{-2} 2.1×10^{-1}	5500	Hine and Weimar Jr. (1965)	R	106
	2.1×10 1	5500 5500	Bagno et al. (1991) Della Gatta et al. (1981)	T T	196 100
	7.1×10^{-2}	5800	Janini and Quaddora (1986)	X	116
	2.3×10^{-1}	3000	Mackay et al. (1995)	C	110

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{mol}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	L m ³ Pa L		H (1000)		
	4.1×10^{-1}		Harrison et al. (1993)	C	
	1.9×10^{-1}		Cabani et al. (1981)	C	
	1.3×10^{-1}	7000	Hilal et al. (2008)	Q	
	1.6×10^{-1}	5900	Kühne et al. (2005)	Q	
	1.6×10^{-1} 1.0×10^{-1}		Nirmalakhandan et al. (1997)	Q	7
	1.0×10	5200	Mackay et al. (2006c)	?	7
	1.5×10^{-1}	5300	Kühne et al. (2005)	?	
	3.1×10^{-1}		Yaws et al. (1998)		
	3.1×10^{-1} 2.1×10^{-1}		Betterton (1991)	?	
			Abraham et al. (1990)	?	
butanone-1,1,1,3,3-d5 C ₂ H ₅ COCH ₃ (methyl ethyl ketone-d5; MEK-d5) [24313-50-6]	3.7×10^{-1}	8200	Hiatt (2013)	M	
2-pentanone	1.6×10^{-1}	5700	Ji and Evans (2007)	M	
C ₃ H ₇ COCH ₃	1.0×10^{-1}	4600	Falabella et al. (2006)	M	89, 130
[107-87-9]	8.6×10^{-2}		Straver and de Loos (2005)	M	
	1.0×10^{-1}	4800	Chai et al. (2005)	M	89
	1.1×10^{-1}		Kim et al. (2000)	M	
	1.2×10^{-1}		Shiu and Mackay (1997)	M	
	9.0×10^{-2}		Hawthorne et al. (1985)	M	
	6.4×10^{-2}		Sato and Nakajima (1979a)	M	19
	1.7×10^{-1}		Vitenberg et al. (1974)	M	
	1.1×10^{-1}		Vitenberg et al. (1974)	M	200
	1.6×10^{-1}		Buttery et al. (1969)	M	
	9.2×10^{-2}		Nelson and Hoff (1968)	M	115
	1.5×10^{-1}		Mackay et al. (2006c)	V	
	1.5×10^{-1}		Shiu and Mackay (1997)	V	
	1.5×10^{-1}		Mackay et al. (1995)	V	
	2.6×10^{-1}		Rathbun and Tai (1982)	V	
	3.1×10^{-1}		Amoore and Buttery (1978)	V	
		5900	Della Gatta et al. (1981)	T	100
	9.1×10^{-2}	4600	Janini and Quaddora (1986)	X	116
	1.7×10^{-1}		Mackay et al. (1995)	C	
	1.0×10^{-1}		Hilal et al. (2008)	Q	
		6200	Kühne et al. (2005)	Q	
	1.2×10^{-1}		Nirmalakhandan et al. (1997)	Q	
	1.6×10^{-1}		Mackay et al. (2006c)	?	7
		6500	Kühne et al. (2005)	?	
	1.3×10^{-1}		Yaws et al. (1998)	?	
	1.5×10^{-1}		Abraham et al. (1990)	?	
	3.1×10^{-1}		Mackay and Yeun (1983)	?	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
3-pentanone	1.6×10^{-1}	5600	Ji and Evans (2007)	M	
$C_2H_5COC_2H_5$	7.0×10^{-2}		Sato and Nakajima (1979a)	M	19
96-22-0]	9.7×10^{-5}		Saylor et al. (1938)	M	23
	8.4×10^{-2}		Mackay et al. (2006c)	V	
	1.2×10^{-1}		Mackay et al. (1995)	V	
	8.4×10^{-2}		Mackay et al. (1995)	V	
	2.8×10^{-1}	4000	Rathbun and Tai (1982)	V	
	1.3×10^{-1}	6000	Bagno et al. (1991)	T	196
	2.0 10=1	6000	Della Gatta et al. (1981)	T	100
	2.0×10^{-1}	9200	Janini and Quaddora (1986)	X	116
	1.1×10^{-1} 1.3×10^{-1}		Howard (1993)	X	164
	9.2×10^{-2}		Cabani et al. (1981)	С	
	9.2×10 -	6200	Hilal et al. (2008)	Q	
	1.2×10^{-1}	6200	Kühne et al. (2005) Nirmalakhandan et al. (1997)	Q	
	1.2×10	6800	Kühne et al. (2005)	Q ?	
	1.2×10^{-1}	0000	Yaws et al. (1998)	?	
	1.2×10^{-1} 1.3×10^{-1}		Abraham et al. (1990)	?	
			Abianam et al. (1990)	<u> </u>	
-cyclopropyl-ethanone	9.5×10^{-1}	5900	Bagno et al. (1991)	T	196
C ₅ H ₈ O	1	5900	Della Gatta et al. (1981)	T	100
cyclopropyl methyl ketone)	4.8×10^{-1}		Hilal et al. (2008)	Q	
765-43-5]	6.4×10^{-1}		Nirmalakhandan et al. (1997)	Q	
3-methyl-2-butanone	8.7×10^{-2}		HSDB (2015)	V	
C ₅ H ₁₀ O	9.6×10^{-2}		Cabani et al. (1981)	V	
isopropyl methyl ketone)	9.0×10^{-2}	5700	Bagno et al. (1991)	T	196
563-80-4]		5700	Della Gatta et al. (1981)	T	100
	8.4×10^{-2}		Hilal et al. (2008)	Q	
		5300	Kühne et al. (2005)	Q	
	1.0×10^{-1}		Nirmalakhandan et al. (1997)	Q	
		7200	Kühne et al. (2005)	?	
	1.1×10^{-1}		Yaws et al. (1998)	?	
	9.7×10^{-2}		Abraham et al. (1990)	?	
cyclopentanone	8.2×10^{-1}		Hawthorne et al. (1985)	M	
C ₅ H ₈ O	1.1		Hilal et al. (2008)	Q	
120-92-3]		5800	Kühne et al. (2005)	Q	
	7.2×10^{-1}		Nirmalakhandan et al. (1997)	Q	
		5600	Kühne et al. (2005)	?	
	1.1		Abraham et al. (1990)	?	
-hexanone	1.5×10^{-1}	8600	Hiatt (2013)	M	
$C_6H_{12}O$	7.9×10^{-2}	4800	Falabella et al. (2006)	M	89, 130
591-78-6]	1.1×10^{-1}		Straver and de Loos (2005)	M	•
-	8.6×10^{-2}	5100	Chai et al. (2005)	M	89
	4.3×10^{-2}		Sato and Nakajima (1979a)	M	19
	1.1×10^{-1}		HSDB (2015)	V	
	1.1×10^{-1}		Mackay et al. (2006c)	V	
	1.1×10^{-1}		Mackay et al. (1995)	V	
	1.0×10^{-1}		Meylan and Howard (1991)	V	
	1.0×10^{-1}		Cabani et al. (1981)	V	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]		1,700	11000
		6200	Della Gatta et al. (1981)	T	100
	1.0×10^{-1}		Howard (1993)	X	164
	8.2×10^{-2}		Hilal et al. (2008)	Q	
	_	6600	Kühne et al. (2005)	Q	
	9.2×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	8.5×10^{-2}		Meylan and Howard (1991)	Q	
		6200	Kühne et al. (2005)	?	
	1.2×10^{-1}		Yaws et al. (1998)	?	
	1.0×10^{-1}		Abraham et al. (1990)	?	
2-hexanone-1,1,1,3,3-d5 C ₆ H ₁₂ O [4840-82-8]	1.7×10^{-1}	9000	Hiatt (2013)	M	
3-hexanone			Dewulf et al. (1999)	M	141
$C_6H_{12}O$	6.9×10^{-2}		Hilal et al. (2008)	Q	
[589-38-8]		6600	Kühne et al. (2005)	Q	
		5800	Kühne et al. (2005)	?	
	8.0×10^{-2}		Yaws et al. (1998)	?	
3-methyl-2-pentanone	7.3×10^{-2}		Hilal et al. (2008)	Q	
C ₆ H ₁₂ O [565-61-7]	9.6×10^{-2}		Yaws et al. (1998)	?	
4-methyl-2-pentanone	3.9×10^{-2}		Kim and Kim (2014)	M	
(CH ₃) ₂ CHCH ₂ COCH ₃	1.0×10^{-1}	8700	Hiatt (2013)	M	
(methyl isobutyl ketone; MIBK)	3.9×10^{-2}		Kim et al. (2000)	M	
108-10-1]	4.3×10^{-2}	4600	Kolb et al. (1992)	M	102
	2.2×10^{-2}	160	Ashworth et al. (1988)	M	103
	6.5×10^{-2}		Hellmann (1987)	M	31
	3.1×10^{-2}		Sato and Nakajima (1979a)	M	19
	7.0×10^{-2}		HSDB (2015)	V	
	6.5×10^{-2}		Mackay et al. (2006c)	V	
	6.5×10^{-2}		Mackay et al. (1995)	V	
	7.2×10^{-2}		Hwang et al. (1992)	V	
	1.4×10^{-1}		Rathbun and Tai (1982)	V	
	7.1×10^{-2}		Cabani et al. (1981)	v	
	1.1×10^{-1}		Howard (1990)	X	164
	8.8×10^{-2}		Hilal et al. (2008)	Q	10-
	0.0710	6600	Kühne et al. (2005)	Q	
	7.9×10^{-2}	5500	Nirmalakhandan et al. (1997)	Q	
	,,,,,10	5700	Kühne et al. (2005)	?	
	7.2×10^{-2}	2.00	Yaws et al. (1998)	?	
	3.0×10^{-1}		Betterton (1991)	?	
	7.0×10^{-2}		Abraham et al. (1990)	?	
2-methyl-3-pentanone	6.5×10^{-2}		Hilal et al. (2008)	Q	
C ₆ H ₁₂ O	6.4×10^{-2}		Yaws et al. (1998)	?	
[565-69-5]	J10			•	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]		71	
3,3-dimethyl-2-butanone	4.5×10^{-2}		HSDB (2015)	V	
$C_6H_{12}O$	7.6×10^{-2}	6000	Bagno et al. (1991)	T	196
(tert-butyl methyl ketone)		6000	Della Gatta et al. (1981)	T	100
[75-97-8]	4.7×10^{-2}		Hilal et al. (2008)	Q	
		5700	Kühne et al. (2005)	Q	
	7.9×10^{-2}		Nirmalakhandan et al. (1997)	Q	
		5400	Kühne et al. (2005)	?	
	6.4×10^{-2}		Yaws et al. (1998)	?	
cyclohexanone	8.2×10^{-1}		Hawthorne et al. (1985)	M	
$C_6H_{10}O$	1.1		HSDB (2015)	V	
[108-94-1]	3.8×10^{-1}		Mackay et al. (2006c)	V	
	3.8×10^{-1}		Mackay et al. (1995)	V	
	4.4×10^{-1}		Meylan and Howard (1991)	V	
	1.0		Hilal et al. (2008)	Q	
	1	6200	Kühne et al. (2005)	Q	
	5.6×10^{-1}		Nirmalakhandan et al. (1997)	Q	
	1.9×10^{-1}		Meylan and Howard (1991)	Q	
		6300	Kühne et al. (2005)	?	
	1.6		Abraham et al. (1990)	?	
2-heptanone	5.9×10^{-2}	5300	Falabella et al. (2006)	M	89, 130
$C_7H_{14}O$	6.8×10^{-2}	5700	Chai et al. (2005)	M	89
[110-43-0]	6.2×10^{-2}		Kim et al. (2000)	M	
	5.8×10^{-2}		Shiu and Mackay (1997)	M	
	3.7×10^{-2}		Sato and Nakajima (1979a)	M	19
	6.8×10^{-2}		Buttery et al. (1969)	M	
	7.5×10^{-2}		Mackay et al. (2006c)	V	
	7.5×10^{-2}		Shiu and Mackay (1997)	V	
	7.5×10^{-2}		Mackay et al. (1995)	V	
	1.7×10^{-1}		Rathbun and Tai (1982)	V	
	3.5×10^{-1}	4500	Janini and Quaddora (1986)	X	116
	6.2×10^{-2}		Hilal et al. (2008)	Q	
		6900	Kühne et al. (2005)	Q	
	7.2×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	6.8×10^{-2}		Mackay et al. (2006c)	?	7
	2	6900	Kühne et al. (2005)	?	
	7.5×10^{-2}		Yaws et al. (1998)	?	
	6.9×10^{-2}		Abraham et al. (1990)	?	
	1.1×10^{-1}		Mackay and Yeun (1983)	?	
3-heptanone	1.1×10^{-1}		HSDB (2015)	V	
$C_7H_{14}O$		6900	Kühne et al. (2005)	Q	
[106-35-4]	2	6000	Kühne et al. (2005)	?	
	2.4×10^{-2}		Yaws et al. (1998)	?	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{mol}{m^3Pa}\right]$	[K]		1) pe	11000
4-heptanone	4.1×10^{-2}		HSDB (2015)	V	
C ₇ H ₁₄ O	5.6×10^{-2}		Cabani et al. (1981)	V	
[123-19-3]	4.8×10^{-2}		Hilal et al. (2008)	Q	
	•	6900	Kühne et al. (2005)	Q	
	7.7×10^{-2}		Nirmalakhandan et al. (1997)	Q	
		7800	Kühne et al. (2005)	?	
	2.3×10^{-2}		Yaws et al. (1998)	?	23
	5.6×10^{-2}		Abraham et al. (1990)	?	
3-methyl-2-hexanone C ₇ H ₁₄ O [2550-21-2]	3.2×10^{-2}		Yaws et al. (1998)	?	
4-methyl-2-hexanone	3.3×10^{-2}		Yaws et al. (1998)	?	
C ₇ H ₁₄ O [105-42-0]	3.3 × 10		1aws et al. (1990)	1	
5-methyl-2-hexanone	6.2×10^{-2}		HSDB (2015)	V	
C ₇ H ₁₄ O	7.7×10^{-2}		Hilal et al. (2008)	Q	
[110-12-3]		6900	Kühne et al. (2005)	Q	
		7600	Kühne et al. (2005)	?	
	2.7×10^{-2}		Yaws et al. (1998)	?	
2-methyl-3-hexanone C ₇ H ₁₄ O [7379-12-6]	4.1×10^{-2}		Yaws et al. (1998)	?	
4-methyl-3-hexanone C ₇ H ₁₄ O [17042-16-9]	3.7×10^{-2}		Yaws et al. (1998)	?	
5-methyl-3-hexanone C ₇ H ₁₄ O [623-56-3]	3.7×10^{-2}		Yaws et al. (1998)	?	
3-ethyl-2-pentanone C ₇ H ₁₄ O [6137-03-7]	3.4×10^{-2}		Yaws et al. (1998)	?	
3,3-dimethyl-2-pentanone $C_7H_{14}O$ [20669-04-9]	4.5×10 ⁻²		Yaws et al. (1998)	?	
3,4-dimethyl-2-pentanone C ₇ H ₁₄ O [565-78-6]	4.3×10^{-2}		Yaws et al. (1998)	?	
4,4-dimethyl-2-pentanone C ₇ H ₁₄ O [590-50-1]	5.5×10^{-2}		Yaws et al. (1998)	?	
2,2-dimethyl-3-pentanone C ₇ H ₁₄ O [564-04-5]	5.5×10^{-2}		Yaws et al. (1998)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,4-dimethyl-3-pentanone C ₇ H ₁₄ O (diisopropyl ketone) [565-80-0]	4.1×10^{-2} 9.5×10^{-1} 3.5×10^{-2} 6.0×10^{-2} 2.8×10^{-2}	6400 6400 6000 4900	Cabani et al. (1981) Bagno et al. (1991) Della Gatta et al. (1981) Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan et al. (1997) Kühne et al. (2005) Yaws et al. (1998)	V T T Q Q Q ?	196 100
cycloheptanone C ₇ H ₁₂ O [502-42-1]	7.0×10 ⁻¹		Hilal et al. (2008)	Q	
2-methylcyclohexanone C ₇ H ₁₂ O [583-60-8]		5600 4600	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
4-methylcyclohexanone C ₇ H ₁₂ O [589-92-4]		6500 6100	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
dicyclopropylmethanone C ₇ H ₁₀ O (dicyclopropyl ketone) [1121-37-5]	3.1	7300 7300	Bagno et al. (1991) Della Gatta et al. (1981)	T T	196 100
2-octanone C ₆ H ₁₃ COCH ₃ [111-13-7]	5.2×10^{-2} 4.9×10^{-2} 4.9×10^{-2} 5.5×10^{-2} 5.1×10^{-2} 5.7×10^{-2} 5.2×10^{-2} 1.5×10^{-1} 5.2×10^{-2}	7300 7300	Buttery et al. (1969) Mackay et al. (2006c) Mackay et al. (1995) Rathbun and Tai (1982) Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan et al. (1997) Mackay et al. (2006c) Kühne et al. (2005) Yaws et al. (1998) Abraham et al. (1990)	M V V V Q Q Q ? ?	7
3-octanone C ₈ H ₁₆ O [106-68-3]	7.6×10^{-2}		HSDB (2015)	V	
4-octanone C ₈ H ₁₆ O [589-63-9]	3.6×10^{-2}		Hilal et al. (2008)	Q	
6-methyl-3-heptanone C ₈ H ₁₆ O [624-42-0]	3.7×10^{-2}		HSDB (2015)	Q	38
cyclohexyl methyl ketone C ₆ H ₁₁ COCH ₃ [823-76-7]	2.9×10^{-1} 4.1×10^{-1} 3.1×10^{-1}	7200	Bagno et al. (1991) Hilal et al. (2008) Nirmalakhandan et al. (1997)	T Q Q	196

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]		-71-	
2-nonanone	4.1×10^{-2}		Li and Carr (1993)	M	
C ₇ H ₁₅ COCH ₃	2.7×10^{-2}		Buttery et al. (1969)	M	
[821-55-6]		7600	Abraham (1984)	V	
	4.1×10^{-2}		Hilal et al. (2008)	Q	
		7600	Kühne et al. (2005)	Q	
	4.4×10^{-2}		Nirmalakhandan et al. (1997)	Q	
		8100	Kühne et al. (2005)	?	
	2.9×10^{-2}		Yaws et al. (1998)	?	
	2.7×10^{-2}		Abraham et al. (1990)	?	
5-nonanone	3.5×10^{-2}		HSDB (2015)	V	
C ₉ H ₁₈ O	3.4×10^{-2}		Meylan and Howard (1991)	V	
(dibutyl ketone)	3.7×10^{-2}		Cabani et al. (1981)	V	
[502-56-7]	2.7×10^{-2}		Hilal et al. (2008)	Q	
		7600	Kühne et al. (2005)	Q	
	4.7×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	3.6×10^{-2}		Meylan and Howard (1991)	Q	
	_	7900	Kühne et al. (2005)	?	
	3.4×10^{-2}		Yaws et al. (1998)	?	23
	3.5×10^{-2}		Abraham et al. (1990)	?	
2,6-dimethyl-4-heptanone	8.2×10^{-2}		HSDB (2015)	V	
C ₉ H ₁₈ O	3.1×10^{-2}		Hilal et al. (2008)	Q	
(diisobutyl ketone)		7600	Kühne et al. (2005)	Q	
[108-83-8]	2	5500	Kühne et al. (2005)	?	
	9.2×10^{-2}		Yaws et al. (1998)	?	27
2,2,4,4-tetramethyl-3-pentanone C ₉ H ₁₈ O (di-(<i>tert</i> -butyl) ketone) [815-24-7]	2.3×10^{-2}		Bagno et al. (1991)	T	196
2-decanone	2.1×10^{-2}		Abraham (1984)	V	
C ₈ H ₁₇ COCH ₃	3.4×10^{-2}		Hilal et al. (2008)	Q	
[693-54-9]	1.4×10^{-1}		Nirmalakhandan et al. (1997)	Q	
	1.4×10^{-2}		Yaws et al. (1998)	?	
	2.1×10^{-2}		Abraham et al. (1990)	?	
2-undecanone	1.6×10^{-2}		Buttery et al. (1969)	M	
C ₉ H ₁₉ COCH ₃	2.7×10^{-2}		Hilal et al. (2008)	Q	
[112-12-9]	2.8×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	5.8×10^{-3}		Yaws et al. (1998)	?	
	1.5×10^{-2}		Abraham et al. (1990)	?	
6-undecanone C ₁₁ H ₂₂ O [927-49-1]	1.5×10 ⁻²		Hilal et al. (2008)	Q	
2-dodecanone C ₁₂ H ₂₄ O [6175-49-1]	2.1×10^{-3}		Yaws et al. (1998)	?	

Table 6: Henry's law constants for water as solvent (... continued)

H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^{3} \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
6.7×10 ⁻⁴		Yaws et al. (1998)	?	
2.1×10^{-4}		Yaws et al. (1998)	?	
5.4×10^{-5}		Yaws et al. (1998)	?	
1.7×10^{-5}		Yaws et al. (1998)	?	
3.9×10^{-6}		Yaws et al. (1998)	?	
5.7×10^{-2} 5.0×10^{-2} 6.2×10^{-2} 5.8×10^{-2}		Marin et al. (1999) Marin et al. (1999) HSDB (2015) Marin et al. (1999)	M V Q	38
1.4 7.5×10 ⁻¹	5800	van Roon et al. (2005) Cabani et al. (1981)	V	
2.6×10^{-1} 4.0×10^{-1} 2.1×10^{-1} 1.8×10^{-1} 4.3×10^{-1}	4800 7800 6000 7800	Ji and Evans (2007) Iraci et al. (1999) Allen et al. (1998) Hilal et al. (2008) Kühne et al. (2005) Kühne ot al. (2005) Betterton (1991)	M M M Q Q ?	
$2.7 \times 10^{-1} \\ 1.8 \times 10^{-1}$		HSDB (2015) Hilal et al. (2008)	V Q	
$ \begin{array}{c} 1.1 \\ 9.7 \times 10^{-1} \\ 9.7 \times 10^{-1} \\ 9.3 \times 10^{-1} \\ 1.1 \\ 1.0 \\ 1.0 \\ 1.0 \\ 9.2 \times 10^{-1} \\ 9.5 \times 10^{-1} \\ 9.3 \times 10^{-1} \end{array} $	7700 6800 12000 6000	Staudinger and Roberts (2001) Hiatt (2013) Allen et al. (1998) Shiu and Mackay (1997) Betterton (1991) Mackay et al. (2006c) Shiu and Mackay (1997) Mackay et al. (1995) Hine and Mookerjee (1975) Bagno et al. (1991) Schüürmann (2000)	L M M M V V V V T	196 7
	$ \begin{array}{c} (\operatorname{at} T^{\ominus}) \\ \left[\frac{\operatorname{mol}}{\operatorname{m}^{3} \operatorname{Pa}}\right] \\ 6.7 \times 10^{-4} \\ \\ 2.1 \times 10^{-4} \\ \\ 2.1 \times 10^{-5} \\ \\ 1.7 \times 10^{-5} \\ \\ 3.9 \times 10^{-6} \\ \\ 3.9 \times 10^{-6} \\ \\ 3.9 \times 10^{-2} \\ 6.2 \times 10^{-2} \\ 6.2 \times 10^{-2} \\ 5.8 \times 10^{-2} \\ 1.4 \\ 7.5 \times 10^{-1} \\ 2.1 \times 10^{-1} \\ 1.8 \times 10^{-1} \\ 2.7 \times 10^{-1} \\ 1.8 \times 10^{-1} \\ \\ 1.1 \\ 9.7 \times 10^{-1} \\ 9.7 \times 10^{-1} \\ 9.3 \times 10^{-1} \\ 1.1 \\ 1.0 \\ 1.0 \\ 1.0 \\ 9.2 \times 10^{-1} \\ 9.5 \times 10^{-1} \\ 9.5 \times 10^{-1} \\ 9.5 \times 10^{-1} \\ \end{array} $	$(at T^{\ominus}) \qquad \frac{d \ln T}{d(1/T)}$ $\left[\frac{mol}{m^3 Pa}\right] \qquad [K]$ 6.7×10^{-4} 2.1×10^{-4} 2.1×10^{-5} 1.7×10^{-5} 3.9×10^{-6} 5.7×10^{-2} 5.0×10^{-2} 6.2×10^{-2} 5.8×10^{-2} $1.4 \qquad 5800$ 7.5×10^{-1} 2.1×10^{-1} 2.1×10^{-1} 1.8×10^{-1} 1.8×10^{-1} $1.1 \qquad 7700$ 9.7×10^{-1} 1.8×10^{-1} $1.1 \qquad 6000$ 7800 4.3×10^{-1} $1.1 \qquad 6000$ 9.7×10^{-1} $1.1 \qquad 6000$ 1.0 9.3×10^{-1} $1.1 \qquad 6000$ 1.0 9.3×10^{-1} 9.5×10^{-1} 9.5×10^{-1} 9.5×10^{-1} 9.5×10^{-1} 9.3×10^{-1}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$		_	
(Other name(s)) [CAS registry number]	$\left[\frac{mol}{m^3 Pa}\right]$	[K]	Reference	Type	Note
	5.3×10^{-1} 9.2×10^{-1}	6700	Nirmalakhandan et al. (1997) Kühne et al. (2005) Abraham et al. (1990)	Q ? ?	
1-phenylethanone-d5 C ₆ D ₅ COCH ₃ (acetophenone-d5) [28077-64-7]	2.3	10000	Hiatt (2013)	M	
phenyl ethyl ketone	7.6×10^{-2}		HSDB (2015)	V	
$C_9H_{10}O$	7.5×10^{-1}		Zhang et al. (2010)	Q	107, 108
(propiophenone)	7.2×10^{-1}		Zhang et al. (2010)	Q	107, 109
[93-55-0]	1.6		Zhang et al. (2010)	Q	107, 110
	9.7×10^{-1}		Zhang et al. (2010)	Q	107, 111
	8.6×10^{-1}		Hilal et al. (2008)	Q	
		6400 7700	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
4-methoxy-4-methyl-2-pentanone	5.1	.,,,,,	HSDB (2015)	V	
$C_7H_14O_2$ [107-70-0]	1.8		Hilal et al. (2008)	Q	
(4-methylphenyl)-ethanone	1.1		Abraham et al. (1994a)	R	
$C_9H_{10}O$	1.2		Hilal et al. (2008)	Q	
(4-methylacetophenone) [122-00-9]	3.8×10^{-1}		Nirmalakhandan et al. (1997)	Q	
4-methoxyphenyl methyl ketone	6.8×10^{-1}		Bagno et al. (1991)	T	196
$C_9H_{10}O_2$	6.9		Hilal et al. (2008)	Q	
[100-06-1]	1.3		Nirmalakhandan et al. (1997)	Q	
2-methyl-5-(1-methylethenyl)-2- cyclohexen-1-one	4.9×10^{-1}		Amoore and Buttery (1978)	M	
$C_{10}H_{14}O$	5.5×10^{-1}		Amoore and Buttery (1978)	V	
(carvone) [6485-40-1]	8.0×10^{-1}		Hilal et al. (2008)	Q	
benzophenone	1.7×10 ¹		Mackay et al. (2006c)	V	
$C_{13}H_{10}O$	6.1	9400	Bagno et al. (1991)	T	196
(diphenyl ketone)	5.2		HSDB (2015)	Q	38
[119-61-9]	5.1		Zhang et al. (2010)	Q	107, 108
	2.9		Zhang et al. (2010)	Q	107, 109
	3.6×10^{1} 3.4×10^{1}		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 110 107, 111
3,5,5-trimethyl-2-cyclohexen-1-one	1.5		HSDB (2015)	V	107,111
C ₉ H ₁₄ O	1.7		Mackay et al. (2006d)	V	
(isophorone)	1.7		Hwang et al. (1992)	V	
[78-59-1]	1.7		Suntio et al. (1988)	V	9
	1.7	3900	Goldstein (1982)	X	116
	1.8		Suntio et al. (1988)	C	9
	6.9×10^{-1}	50 00	Hilal et al. (2008)	Q	
		7300	Kühne et al. (2005)	Q	
		7400	Kühne et al. (2005)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
bicyclo[2.2.1]heptan-2-one C ₇ H ₁₀ O (norcamphor; 2-norbornanone) [497-38-1]	4.3×10^{-1}	5100	van Roon et al. (2005)	V	
4-methyl-1-(1-methylethyl)- bicyclo[3.1.0]hexan-3-one $C_{10}H_{16}O$ (thujone) [1125-12-8]	1.0×10 ⁻¹	4700	van Roon et al. (2005)	V	
isopropyl phenyl ketone	5.7×10^{-1}		Zhang et al. (2010)	Q	107, 108
$C_{10}H_{12}O$	3.9×10^{-1}		Zhang et al. (2010)	Q	107, 109
[611-70-1]	1.7		Zhang et al. (2010)	Q	107, 110
	8.2×10^{-1}		Zhang et al. (2010)	Q	107, 111
carvone C ₁₀ H ₁₄ O [99-49-0]	1.3×10^{-1}		HSDB (2015)	Q	38
thujone C ₁₀ H ₁₆ O [76231-76-0]	6.2×10 ⁻¹		HSDB (2015)	Q	38
9H-fluoren-9-one C ₁₃ H ₈ O [486-25-9]	1.5×10 ¹		HSDB (2015)	Q	38
anthrone C ₁₄ H ₁₀ O [90-44-8]	1.2×10 ¹		HSDB (2015)	Q	38
1,2,3,5,6,7-hexahydro-1,1,2,3,3- pentamethyl-4H-inden-4-one	7.0×10^{-2}		Zhang et al. (2010)	Q	107, 108
C ₁₄ H ₂₂ O	6.7×10^{-3}		Zhang et al. (2010)	Q	107, 109
[33704-61-9]	2.0×10^{1}		Zhang et al. (2010)	Q	107, 110
	4.8×10^{-2}		Zhang et al. (2010)	Q	107, 111
2,4,6-trimethylbenzophenone	3.8		Zhang et al. (2010)	Q	107, 108
$C_{16}H_{16}O$	3.8		Zhang et al. (2010)	Q	107, 109
[954-16-5]	1.5×10^{1} 6.0		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 110 107, 111
1-(1,2,3,5,6,7,8,8a-octahydro-2,3,8,8-	2.5×10^{-2}		Zhang et al. (2010)	Q	107, 111
tetramethyl-2-naphthyl)ethan-1-one	3.0×10^{-1}		Thomas at al. (2010)	0	107 100
C ₁₆ H ₂₆ O [68155-66-8]	3.0×10^{-1} 1.1×10^{1}		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 109 107, 110
[00133-00-0]	4.0×10^{-2}		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 110
1-(2,3-dihydro-1,1,2,3,3,6-hexamethyl-1H-inden-5-yl)ethanone	3.1×10^{-1}		Zhang et al. (2010)	Q	107, 108
C ₁₇ H ₂₄ O	2.0		Zhang et al. (2010)	Q	107, 109
[15323-35-0]	5.2		Zhang et al. (2010)	Q	107, 110
	9.9×10^{-2}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]		Reference	Турс	11010
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
celestolide	3.1×10^{-1}		Zhang et al. (2010)	Q	107, 108
$C_{17}H_{24}O$	2.4		Zhang et al. (2010)	Q	107, 109
13171-00-1]	3.1		Zhang et al. (2010)	Q	107, 110
	8.8×10^{-2}		Zhang et al. (2010)	Q	107, 111
7H-benz[de]anthracen-7-one $C_{17}H_{10}O$ (benzanthrone) [82-05-3]	1.5×10^2		HSDB (2015)	Q	38
1-[2,3-dihydro-1,1,2,6-tetramethyl-3-(1-methylethyl)-1H-inden-5-yl]ethanone	2.3×10 ⁻¹		Zhang et al. (2010)	Q	107, 108
C ₁₈ H ₂₆ O	3.2		Zhang et al. (2010)	Q	107, 109
[68140-48-7]	4.4		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 109
	1.3×10^{-1}		Zhang et al. (2010)	Q	107, 111
tonalid	7.0×10^{-2}		HSDB (2015)	V	
C ₁₈ H ₂₆ O	2.3×10^{-1}		Zhang et al. (2010)	Q	107, 108
[21145-77-7]	2.4		Zhang et al. (2010)	Q	107, 109
	7.9		Zhang et al. (2010)	Q	107, 110
	7.9×10^{-2}		Zhang et al. (2010)	Q	107, 111
2,3-butanedione	7.3×10^{-1}	5700	Sander et al. (2011)	L	
CH ₃ COCOCH ₃	5.6×10^{-1}	6700	Strekowski and George (2005)	M	
(biacetyl; dimethylglyoxal)	5.6×10^{-1}		Straver and de Loos (2005)	M	
[431-03-8]	1.0		Marin et al. (1999)	M	
	3.7×10^{-1}		Roberts and Pollien (1997)	M	
	7.3×10^{-1}	5700	Betterton (1991)	M	
	5.7×10^{-1}		Snider and Dawson (1985)	M	
	6.1×10^{-1}		Marin et al. (1999)	V	
	1.9		Gaffney and Senum (1984)	X	181
	1.9		Gaffney and Senum (1984)	X	153
	3.8		Hilal et al. (2008)	Q	
	1	6500	Kühne et al. (2005)	Q	
	7.1×10^{-1}	6000	Marin et al. (1999) Kühne et al. (2005)	Q ?	
2,4-pentanedione	1.7		Hellmann (1987)	M	31
C ₅ H ₈ O ₂	4.3		HSDB (2015)	V	
(acetylacetone)	1.7×10^{1}		Hilal et al. (2008)	Q	
[123-54-6]		7300	Kühne et al. (2005)	Q	
		4400	Kühne et al. (2005)	?	
1,2-naphthalenedione C ₁₀ H ₆ O ₂ [524-42-5]	2.3×10 ³		HSDB (2015)	Q	38
1,4-naphthalenedione $C_{10}H_6O_2$ (1,4-naphthoquinone) [130-15-4]	5.0×10 ³		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (...continued)

Substance	H^{cp} (at T^{Θ})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} H^{cp}}$			
Formula (Other name(s))		d(1/T)	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\lceil \frac{\text{mol}}{\rceil} \rceil$	[K]		. =	
	$\lfloor \overline{m^3 Pa} \rfloor$				
menadione	3.2×10^{3}		HSDB (2015)	Q	38
$C_{11}H_8O_2$					
[58-27-5]					
2,6-di- <i>tert</i> -butyl- <i>p</i> -benzoquinone	6.2×10^2		HSDB (2015)	Q	38
$C_{14}H_{20}O_2$					
[719-22-2]					
9,10-phenanthrenedione	3.7×10^{3}		HSDB (2015)	Q	182
$C_{14}H_8O_2$					
[84-11-7]					
dibenzoylmethane	7.5×10^3		Zhang et al. (2010)	Q	107, 108
$C_{15}H_{12}O_2$	8.0×10^2		Zhang et al. (2010)	Q	107, 109
[120-46-7]	6.9×10^4		Zhang et al. (2010)	Q	107, 110
	1.3×10^4		Zhang et al. (2010)	Q	107, 111
2-ethyl-9,10-anthracenedione	2.1×10^3		Zhang et al. (2010)	Q	107, 108
$C_{16}H_{12}O_2$	4.2×10^2		Zhang et al. (2010)	Q	107, 109
[84-51-5]	1.6×10^2		Zhang et al. (2010)	Q	107, 110
	1.1×10^4		Zhang et al. (2010)	Q	107, 111
9,10-anthracenedione	4.2×10^2		HSDB (2015)	V	
$C_{14}H_8O_2$	3.1×10^{3}		Zhang et al. (2010)	Q	107, 108
[84-65-1]	5.6×10^2		Zhang et al. (2010)	Q	107, 109
	1.7×10^2		Zhang et al. (2010)	Q	107, 110
	2.5×10^4		Zhang et al. (2010)	Q	107, 111
Carboxylic aci	ds (RCOOH) and per	oxy carboxylic acids (RCOC	OH)	
methanoic acid	8.8×10^{1}	6100	Sander et al. (2011)	L	
HCOOH	8.8×10^{1}	6100	Sander et al. (2006)	T	
				L	
(formic acid)	6.7×10^{1}	5900	Staudinger and Roberts (2001)	L L	
	8.8×10^{1}	5900 6100	Johnson et al. (1996)	L M	
(formic acid)	8.8×10^{1} 5.4×10^{1}	6100	Johnson et al. (1996) Khan et al. (1995)	L M M	
(formic acid)	8.8×10^{1} 5.4×10^{1} 5.4×10^{1}		Johnson et al. (1996) Khan et al. (1995) Khan and Brimblecombe (1992)	L M M M	
(formic acid)	8.8×10^{1} 5.4×10^{1} 5.4×10^{1} 1.3×10^{2}	6100	Johnson et al. (1996) Khan et al. (1995) Khan and Brimblecombe (1992) Servant et al. (1991)	L M M M	201
(formic acid)	8.8×10^{1} 5.4×10^{1} 5.4×10^{1}	6100 5600	Johnson et al. (1996) Khan et al. (1995) Khan and Brimblecombe (1992) Servant et al. (1991) Hwang et al. (1992)	L M M M W	201
(formic acid)	8.8×10^{1} 5.4×10^{1} 5.4×10^{1} 1.3×10^{2}	610056005700	Johnson et al. (1996) Khan et al. (1995) Khan and Brimblecombe (1992) Servant et al. (1991) Hwang et al. (1992) Abraham (1984)	L M M M V V	
(formic acid)	8.8×10^{1} 5.4×10^{1} 5.4×10^{1} 1.3×10^{2}	5600 5700 5600	Johnson et al. (1996) Khan et al. (1995) Khan and Brimblecombe (1992) Servant et al. (1991) Hwang et al. (1992) Abraham (1984) Abraham (1984)	L M M M V V V	202
(formic acid)	8.8×10^{1} 5.4×10^{1} 5.4×10^{1} 1.3×10^{2} 1.5×10^{1}	5600 5700 5600 5700	Johnson et al. (1996) Khan et al. (1995) Khan and Brimblecombe (1992) Servant et al. (1991) Hwang et al. (1992) Abraham (1984) Abraham (1984) Winiwarter et al. (1988)	L M M M V V V R T	202 203
(formic acid)	8.8×10^{1} 5.4×10^{1} 5.4×10^{1} 1.3×10^{2} 1.5×10^{1} 3.7×10^{1}	5600 5700 5600	Johnson et al. (1996) Khan et al. (1995) Khan and Brimblecombe (1992) Servant et al. (1991) Hwang et al. (1992) Abraham (1984) Abraham (1984)	L M M M V V V	202
(formic acid)	8.8×10^{1} 5.4×10^{1} 5.4×10^{1} 1.3×10^{2} 1.5×10^{1}	5600 5700 5600 5700	Johnson et al. (1996) Khan et al. (1995) Khan and Brimblecombe (1992) Servant et al. (1991) Hwang et al. (1992) Abraham (1984) Abraham (1984) Winiwarter et al. (1988) Jacob (1986)	L M M M V V R T T	202 203
(formic acid)	8.8×10^{1} 5.4×10^{1} 5.4×10^{1} 1.3×10^{2} 1.5×10^{1} 3.7×10^{1} 5.5×10^{1} 7.5×10^{1} 5.9×10^{1}	5600 5700 5600 5700	Johnson et al. (1996) Khan et al. (1995) Khan and Brimblecombe (1992) Servant et al. (1991) Hwang et al. (1992) Abraham (1984) Abraham (1984) Winiwarter et al. (1988) Jacob (1986) Keene and Galloway (1986)	L M M M V V R T T	202 203 204
(formic acid)	8.8×10^{1} 5.4×10^{1} 5.4×10^{1} 1.3×10^{2} 1.5×10^{1} 3.7×10^{1} 5.5×10^{1} 7.5×10^{1} 5.9×10^{1} 5.1×10^{1}	5600 5700 5600 5700	Johnson et al. (1996) Khan et al. (1995) Khan and Brimblecombe (1992) Servant et al. (1991) Hwang et al. (1992) Abraham (1984) Abraham (1984) Winiwarter et al. (1988) Jacob (1986) Keene and Galloway (1986) Johnson (1990)	L M M M V V R T T T X X	202 203 204
(formic acid)	8.8×10^{1} 5.4×10^{1} 5.4×10^{1} 1.3×10^{2} 1.5×10^{1} 3.7×10^{1} 5.5×10^{1} 7.5×10^{1} 5.9×10^{1} 5.1×10^{1}	5600 5700 5600 5700	Johnson et al. (1996) Khan et al. (1995) Khan and Brimblecombe (1992) Servant et al. (1991) Hwang et al. (1992) Abraham (1984) Abraham (1984) Winiwarter et al. (1988) Jacob (1986) Keene and Galloway (1986) Johnson (1990) Gaffney and Senum (1984) Johnson et al. (1996) Keene et al. (1995)	L M M M V V R T T T X X C	202 203 204
(formic acid)	8.8×10^{1} 5.4×10^{1} 5.4×10^{1} 1.3×10^{2} 1.5×10^{1} 3.7×10^{1} 5.5×10^{1} 7.5×10^{1} 5.9×10^{1} 5.1×10^{1} 5.3×10^{1}	5600 5700 5600 5700 5700	Johnson et al. (1996) Khan et al. (1995) Khan and Brimblecombe (1992) Servant et al. (1991) Hwang et al. (1992) Abraham (1984) Abraham (1984) Winiwarter et al. (1988) Jacob (1986) Keene and Galloway (1986) Johnson (1990) Gaffney and Senum (1984) Johnson et al. (1996) Keene et al. (1995) Keene et al. (1995)	L M M M V V R T T T X X C C	202 203 204
(formic acid)	8.8×10^{1} 5.4×10^{1} 5.4×10^{1} 1.3×10^{2} 1.5×10^{1} 3.7×10^{1} 5.5×10^{1} 5.9×10^{1} 5.1×10^{1} 5.3×10^{1} 3.7×10^{1}	5700 5700 5700 5700 5700	Johnson et al. (1996) Khan et al. (1995) Khan and Brimblecombe (1992) Servant et al. (1991) Hwang et al. (1992) Abraham (1984) Abraham (1984) Winiwarter et al. (1988) Jacob (1986) Keene and Galloway (1986) Johnson (1990) Gaffney and Senum (1984) Johnson et al. (1996) Keene et al. (1995) Keene et al. (1995) Lelieveld and Crutzen (1991)	L M M M V V R T T T X X C C C	202 203 204
(formic acid)	8.8×10^{1} 5.4×10^{1} 5.4×10^{1} 1.3×10^{2} 1.5×10^{1} 3.7×10^{1} 5.5×10^{1} 7.5×10^{1} 5.9×10^{1} 5.1×10^{1} 5.3×10^{1} 3.7×10^{1} 3.5×10^{1}	5600 5700 5600 5700 5700	Johnson et al. (1996) Khan et al. (1995) Khan and Brimblecombe (1992) Servant et al. (1991) Hwang et al. (1992) Abraham (1984) Abraham (1984) Winiwarter et al. (1988) Jacob (1986) Keene and Galloway (1986) Johnson (1990) Gaffney and Senum (1984) Johnson et al. (1996) Keene et al. (1995) Keene et al. (1995) Lelieveld and Crutzen (1991) Pandis and Seinfeld (1989)	L M M M V V R T T T X X C C C	202 203 204
(formic acid)	8.8×10^{1} 5.4×10^{1} 5.4×10^{1} 1.3×10^{2} 1.5×10^{1} 3.7×10^{1} 5.5×10^{1} 5.9×10^{1} 5.1×10^{1} 5.3×10^{1} 3.7×10^{1}	5700 5700 5700 5700 5700	Johnson et al. (1996) Khan et al. (1995) Khan and Brimblecombe (1992) Servant et al. (1991) Hwang et al. (1992) Abraham (1984) Abraham (1984) Winiwarter et al. (1988) Jacob (1986) Keene and Galloway (1986) Johnson (1990) Gaffney and Senum (1984) Johnson et al. (1996) Keene et al. (1995) Keene et al. (1995) Lelieveld and Crutzen (1991)	L M M M V V R T T T X X C C C	202 203 204

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	1.3×10 ¹		Yaws (1999)	?	
	8.9		Yaws and Yang (1992)	?	92
ethanoic acid	4.0×10^{1}	6200	Sander et al. (2011)	L	
CH ₃ COOH	4.0×10^{1}	6200	Sander et al. (2006)	L	
(acetic acid)	4.6×10^{1}	6300	Staudinger and Roberts (2001)	L	
[64-19-7]	1.4×10^{1}		von Hartungen et al. (2004)	M	
	4.0×10^{1}	6300	Johnson et al. (1996)	M	
	5.4×10^{1}		Khan et al. (1995)	M	
	5.4×10^{1}	8300	Khan and Brimblecombe (1992)	M	
	9.2×10^{1}		Servant et al. (1991)	M	201
			Fredenhagen and Liebster (1932)	M	123
	9.1		Hwang et al. (1992)	V	
		6300	Abraham (1984)	V	
	1	6200	Abraham (1984)	R	202
	8.7×10^{1}	6400	Jacob et al. (1989)	T	
	0 = 401	6400	Winiwarter et al. (1988)	T	203
	8.7×10^{1}	4000	Keene and Galloway (1986)	T	116
	9.7	4900	Goldstein (1982)	X	116
	9.9×10^{1}		Gaffney and Senum (1984)	X	153, 205
	5.1×10^{1}		Johnson et al. (1996)	C	
	5.2×10^{1}		Keene et al. (1995)	C	
	8.5×10^{1}		Keene et al. (1995)	C	
	1.3×10^2	C100	Hilal et al. (2008)	Q	
	3.9×10^{1}	6100	Kühne et al. (2005)	Q	
	3.9×10 ⁻¹	6200	Nirmalakhandan and Speece (1988a)	Q ?	
	8.2	6200	Kühne et al. (2005) Yaws and Yang (1992)	?	92
	3.3×10^{1}		Abraham et al. (1990)	?	92
	3.3×10^{1}		Hine and Mookerjee (1975)	?	
propanoic acid	1.5×10^{1} 5.6×10^{1}		von Hartungen et al. (2004)	M	
C ₂ H ₅ COOH	5.6×10^{-1} 5.5×10^{-1}		Khan et al. (1995)	M	
(propionic acid)	6.1×10^{1}		Khan and Brimblecombe (1992)	M	201
[79-09-4]	2.2×10^{1}		Servant et al. (1991) Butler and Ramchandani (1935)	M	201
	2.2 × 10	6800	Abraham (1984)	M V	
		6800	Abraham (1984)	R	202
	7.0×10^{1}	0000	Hilal et al. (2008)	Q	202
	3.4×10^{1}		Nirmalakhandan and Speece (1988a)	Q	
	2.2×10^{1}		Abraham et al. (1990)	?	
	2.2×10^{1}		Hine and Mookerjee (1975)	?	
butanoic acid	9.7		von Hartungen et al. (2004)	M	
C ₃ H ₇ COOH	4.7×10^{1}		Khan et al. (1995)	M	
(butyric acid)	4.7×10^{1} 4.5×10^{1}		Khan and Brimblecombe (1992)	M	
[107-92-6]	1.8×10^{1}		Butler and Ramchandani (1935)	M	
[10/ 22 0]	9.4		Hwang et al. (1992)	V	
	7	7100	Abraham (1984)	V	
		7300	Abraham (1984)	Ř	202
	4.4×10^{1}		Hilal et al. (2008)	Q	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference		Note
	$ 2.7 \times 10^{1} \\ 1.8 \times 10^{1} \\ 1.8 \times 10^{1} $		Nirmalakhandan and Speece (1988a) Abraham et al. (1990) Hine and Mookerjee (1975)	Q ? ?	
2-methylpropanoic acid (CH ₃) ₂ CHCOOH (isobutyric acid) [79-31-2]	9.6 1.1×10^{1} 1.1×10^{1} 5.6×10^{1} 1.4 2.5×10^{1}		von Hartungen et al. (2004) Khan et al. (1995) Khan and Brimblecombe (1992) Servant et al. (1991) Mackay et al. (2006c) Hilal et al. (2008)	M M M V Q	201
pentanoic acid C ₄ H ₉ COOH (valeric acid) [109-52-4]	2.3×10^{1} 1.2×10^{1} 2.3×10^{1} 2.1×10^{1} 1.2×10^{1} 1.2×10^{1} 1.6×10^{1} 1.3×10^{1} 2.2×10^{1} 1.3×10^{1}	6900 6600 6900 7500 7700 7200 6900	Staudinger and Roberts (2001) von Hartungen et al. (2004) Khan et al. (1995) Khan and Brimblecombe (1992) Mackay et al. (2006c) Mackay et al. (1995) Brimblecombe et al. (1992) Abraham (1984) Amoore and Buttery (1978) Abraham (1984) Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan et al. (1997) Kühne et al. (2005) Abraham et al. (1990)	L M M V V V V V R Q Q Q	202
2-methylbutanoic acid $\mathrm{C}_5\mathrm{H}_{10}\mathrm{O}_2$ [116-53-0]	1.6×10 ¹		Hilal et al. (2008)	Q	
3-methylbutanoic acid (CH ₃) ₂ CHCH ₂ COOH (isovaleric acid) [503-74-2]	$ \begin{array}{c} 1.1 \times 10^{1} \\ 1.2 \times 10^{1} \\ 1.2 \times 10^{1} \\ 1.2 \times 10^{1} \\ 1.6 \\ 1.6 \\ 7.3 \\ 2.8 \times 10^{1} \\ 1.2 \times 10^{1} \end{array} $		von Hartungen et al. (2004) Khan et al. (1995) Khan and Brimblecombe (1992) Amoore and Buttery (1978) Mackay et al. (2006c) Mackay et al. (1995) Amoore and Buttery (1978) Hilal et al. (2008) Abraham et al. (1990)	M M M V V V Q	
2,2-dimethylpropanoic acid (CH ₃) ₃ CCOOH (pivalic acid) [75-98-9]	3.5 3.5 1.2×10 ¹		Khan et al. (1995) Khan and Brimblecombe (1992) Hilal et al. (2008)	M M Q	
hexanoic acid C ₅ H ₁₁ COOH (caproic acid) [142-62-1]	$ \begin{array}{c} 1.3 \times 10^{1} \\ 7.5 \\ 1.3 \times 10^{1} \\ 1.3 \times 10^{1} \\ 1.7 \times 10^{1} \\ 1.7 \\ 1.1 \times 10^{1} \end{array} $	6100 6300 5900	Staudinger and Roberts (2001) von Hartungen et al. (2004) Khan et al. (1995) Khan and Brimblecombe (1992) Mackay et al. (2006c) Mackay et al. (1995) Brimblecombe et al. (1992)	L M M V V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\mathrm{d} \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]	F773	Reference	Турс	Note
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
	2.0×10^{1}		Hwang et al. (1992)	V	
		8700	Abraham (1984)	V	
		8100	Abraham (1984)	R	202
	2.4×10^{1}		Hilal et al. (2008)	Q	
	4	7500	Kühne et al. (2005)	Q	
	1.7×10^{1}		Nirmalakhandan et al. (1997)	Q	
	1	7200	Kühne et al. (2005)	?	
	1.5×10 ¹		Abraham et al. (1990)	?	
2-methylpentanoic acid	1.1×10^{1}		Hilal et al. (2008)	Q	
C ₆ H ₁₂ O ₂ [97-61-0]					
2-ethylbutanoic acid	9.0		Hilal et al. (2008)	Q	
$C_6H_{12}O_2$	· · · ·			~	
[88-09-5]					
heptanoic acid	9.6		Brimblecombe et al. (1992)	V	
$C_7H_{14}O_2$		8500	Abraham (1984)	V	
[111-14-8]		8500	Abraham (1984)	R	202
	1.7×10^{1}		Hilal et al. (2008)	Q	
		7800	Kühne et al. (2005)	Q	
	1	7900	Kühne et al. (2005)	?	
	1.3×10^{1}		Abraham et al. (1990)	?	
4,4-dimethylpentanoic acid	4.3		Zhang et al. (2010)	Q	107, 108
$C_7H_{14}O_2$	1.4×10^{1}		Zhang et al. (2010)	Q	107, 109
[95823-36-2]	1.6×10^3		Zhang et al. (2010)	Q	107, 110
	1.6		Zhang et al. (2010)	Q	107, 111
2-ethyl-2-methylbutanoic acid	4.3		Zhang et al. (2010)	Q	107, 108
$C_7H_{14}O_2$	5.4		Zhang et al. (2010)	Q	107, 109
[19889-37-3]	2.3×10^2		Zhang et al. (2010)	Q	107, 110
	1.6		Zhang et al. (2010)	Q	107, 111
octanoic acid	1.5×10^{-1}		Mackay et al. (2006c)	V	
$C_8H_{16}O_2$	1.5×10^{-1}		Mackay et al. (1995)	V	
caprylic acid)	7.6		Brimblecombe et al. (1992)	V	
[124-07-2]		9600	Abraham (1984)	V	202
	1.2.101	8900	Abraham (1984)	R	202
	1.3×10^{1}	8200	Hilal et al. (2008) Kühne et al. (2005)	Q	
		8400	Kühne et al. (2005)	Q ?	
	1.1×10^{1}	5 100	Abraham et al. (1990)	?	
2-ethylhexanoic acid	3.5		HSDB (2015)	V	
$C_8H_{16}O_2$	3.4		Hilal et al. (2008)	Q	
[149-57-5]				-	
nonanoic acid	3.8		Brimblecombe et al. (1992)	V	
$C_9H_{18}O_2$	6.9		Hilal et al. (2008)	C	
(pelargic acid)	9.9		Hilal et al. (2008)	Q	
[112-05-0]					

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference		Note
decanoic acid C ₁₀ H ₂₀ O ₂ [334-48-5]	6.5 7.7		Hilal et al. (2008) Hilal et al. (2008)	C Q	
$3,3,5,5$ -tetramethylhexanoic acid $C_{10}H_{20}O_2$	$ \begin{array}{c} 1.9 \\ 3.5 \\ 1.0 \times 10^3 \\ 6.1 \times 10^{-1} \end{array} $		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q	107, 108 107, 109 107, 110 107, 111
undecanoic acid C ₁₁ H ₂₂ O ₂ [112-37-8]	5.8		Hilal et al. (2008)	Q	
dodecanoic acid C ₁₂ H ₂₄ O ₂ [143-07-7]	4.5		Hilal et al. (2008)	Q	
octadecanoic acid C ₁₈ H ₃₆ O ₂ (stearic acid) [57-11-4]	$2.5 \times 10^{5} \\ 8.4 \times 10^{-1}$		Mackay et al. (1995) Hilal et al. (2008)	V Q	
propenoic acid C ₃ H ₄ O ₂ (acrylic acid) [79-10-7]	3.1×10^{1} 2.2×10^{1} 2.4×10^{1}		Lide and Frederikse (1995) Hilal et al. (2008) Yaws and Yang (1992)	V Q ?	92
(E)-2-butenoic acid C ₄ H ₆ O ₂ (crotonic acid) [3724-65-0]	4.1×10^{1} 2.3×10^{1}		HSDB (2015) Hilal et al. (2008)	V Q	
(Z)-2-butenoic acid C ₄ H ₆ O ₂ (isocrotonic acid) [503-64-0]	2.3×10 ¹		Hilal et al. (2008)	Q	
2-methyl-2-propenoic acid C ₄ H ₆ O ₂ (methacrylic acid) [79-41-4]	$ 2.5 \times 10^{1} \\ 1.0 \\ 1.9 \times 10^{1} $		Khan et al. (1992) Mackay et al. (2006c) Hilal et al. (2008)	M V Q	
benzenecarboxylic acid C ₆ H ₅ COOH (benzoic acid) [65-85-0]	2.9×10^{2} 2.5×10^{2} 1.4×10^{2} 2.1 1.7×10^{2} 1.4×10^{2} 1.4×10^{2} 2.4×10^{2} 9.1×10^{1}	6500 6700 6200	Li et al. (2007) Mackay et al. (2006c) Lide and Frederikse (1995) Mackay et al. (1995) Meylan and Howard (1991) Goldstein (1982) Howard (1989) Hilal et al. (2008) Kühne et al. (2005) Meylan and Howard (1991) Kühne et al. (2005)	M V V V V X X Q Q	116 164
	2.4×10^2	0200	Yaws and Yang (1992)	?	92

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s))	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Туре	Note
[CAS registry number]	$\left\lfloor \frac{\text{mol}}{\text{m}^3 \text{ Pa}} \right\rfloor$	[K]			
	2.0×10^2		HSDB (2015)	Q	38
D(-)-isoascorbic acid C ₆ H ₈ O ₆ (erythorbic acid) [89-65-6]	2.4×10 ²		HSDB (2015)	Q	38
shikimic acid C ₇ H ₁₀ O ₅ [138-59-0]	3.7×10 ⁸		HSDB (2015)	Q	38
4-hydroxybenzoic acid C ₇ H ₆ O ₃ [99-96-7]	1.4×10 ⁶		HSDB (2015)	V	
3,4,5-trihydroxybenzoic acid C ₇ H ₆ O ₅ (gallic acid) [149-91-7]	1.2×10 ¹⁴		HSDB (2015)	Q	38
3-methylbenzoic acid	6.6		Mackay et al. (2006c)	V	
C ₇ H ₇ COOH	1.4×10^{-1}		Mackay et al. (1995)	V	
(m-toluic acid)	8.2×10^{1}		Zhang et al. (2010)	Q	107, 108
[99-04-7]	1.2×10^2		Zhang et al. (2010)	Q	107, 109
	5.1×10^2		Zhang et al. (2010)	Q	107, 110
	1.1×10^2		Zhang et al. (2010)	Q	107, 111
2-methylbenzoic acid	8.2×10^{1}		Zhang et al. (2010)	Q	107, 108
$C_8H_8O_2$	3.2×10^{1}		Zhang et al. (2010)	Q	107, 109
(o-toluic acid)	9.9×10^{1}		Zhang et al. (2010)	Q	107, 110
[118-90-1]	1.1×10^2		Zhang et al. (2010)	Q	107, 111
4-methylbenzoic acid	8.2×10 ¹		Zhang et al. (2010)	Q	107, 108
$C_8H_8O_2$	1.4×10^2		Zhang et al. (2010)	Q	107, 109
(p-toluic acid)	8.8×10^{2}		Zhang et al. (2010)	Q	107, 110
[99-94-5]	1.1×10^2		Zhang et al. (2010)	Q	107, 111
		7000	Kühne et al. (2005)	Q ?	
		7500	Kühne et al. (2005)	-	
2-hydroxy-benzoic acid	8.0×10^2		Mackay et al. (2006c)	V	
$C_7H_6O_3$	6.9×10^2		Mackay et al. (1995)	V	
(salicylic acid) [69-72-7]	1.8		Mackay et al. (1995)	V	
benzeneethanoic acid	1.5×10^2		Mackay et al. (2006c)	V	
C ₈ H ₈ O ₂	1.8×10^2		Mackay et al. (2000c)	V	
(phenylacetic acid)	1.4×10^{1}		Mackay et al. (1995)	V V	
[103-82-2]	9.9×10^2		Hilal et al. (2008)	Q Q	
phthalic anhydride C ₈ H ₄ O ₃ [85-44-9]	1.6×10 ³		Lide and Frederikse (1995)	V	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1,2-benzenedicarboxylic acid $C_8H_6O_4$ (phthalic acid) [88-99-3]	4.9×10^5		HSDB (2015)	V	
terephthalic acid $C_8H_6O_4$ [100-21-0]	2.5×10^7		HSDB (2015)	Q	182
isophthalic acid C ₈ H ₆ O ₄ [121-91-5]	4.5×10 ⁶		HSDB (2015)	Q	38
dehydroacetic acid C ₈ H ₈ O ₄ [520-45-6]	2.9×10 ¹		HSDB (2015)	V	
caffeic acid C ₉ H ₈ O ₄ [331-39-5]	7.0×10 ¹⁰		HSDB (2015)	Q	38
4-methylphthalic anhydride	1.4		Zhang et al. (2010)	Q	107, 108
$C_9H_6O_3$	6.4×10^4		Zhang et al. (2010)	Q	107, 109
[19438-61-0]	3.5×10^{1}		Zhang et al. (2010)	Q	107, 110
	3.6×10^{1}		Zhang et al. (2010)	Q	107, 111
<i>p-tert</i> -butylbenzoic acid	3.5×10^{1}		Zhang et al. (2010)	Q	107, 108
$C_{11}H_{14}O_2$	4.5×10^{1}		Zhang et al. (2010)	Q	107, 109
[98-73-7]	3.6×10^2		Zhang et al. (2010)	Q	107, 110
	4.2×10^{1}		Zhang et al. (2010)	Q	107, 111
benzoic acid, anhydride	7.0		Zhang et al. (2010)	Q	107, 108
$C_{14}H_{10}O_3$	3.7×10^2		Zhang et al. (2010)	Q	107, 109
[93-97-0]	6.5×10^3		Zhang et al. (2010)	Q	107, 110
	6.4×10^2		Zhang et al. (2010)	Q	107, 111
pyromellitic dianhydride	1.3×10^{3}		HSDB (2015)	Q	38
$C_{10}H_2O_6$	1.3×10^3		Zhang et al. (2010)	Q	107, 108
[89-32-7]	1.4×10^{11}		Zhang et al. (2010)	Q	107, 109
	4.8×10^4		Zhang et al. (2010)	Q	107, 110
	9.7×10^5		Zhang et al. (2010)	Q	107, 111
(Z,Z) -9,12-octadecadienoic acid $C_{18}H_{32}O_2$ (linoleic acid) [60-33-3]	4.9×10 ¹		HSDB (2015)	V	
rosmarinic acid C ₁₈ H ₁₆ O ₈ [537-15-5]	3.7×10^{21}		HSDB (2015)	Q	182

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
ethanedioic acid HOOCCOOH	6.1×10^6 7.1×10^6	9800	Compernolle and Müller (2014a) Clegg et al. (1996)	V V	
(oxalic acid) [144-62-7]	3.1×10^{4} 6.9×10^{4} 2.4×10^{3} 4.1×10^{5}	7300	Brimblecombe et al. (1992) Gaffney and Senum (1984) Hilal et al. (2008) Meylan and Howard (1991)	V X Q Q	153, 205
	4.9×10^6		Saxena and Hildemann (1996)	E	158
propanedioic acid HOOCCH ₂ COOH (malonic acid) [141-82-2]	$ 3.8 \times 10^{8} \\ 9.3 \times 10^{7} \\ 3.9 \times 10^{6} $	11000 14000	Compernolle and Müller (2014a) Compernolle and Müller (2014a) Saxena and Hildemann (1996)	V V E	158
butanedioic acid HOOC(CH ₂) ₂ COOH (succinic acid) [110-15-6]	2.7×10^{7} 4.1×10^{7} 2.0×10^{7} 3.0×10^{6}	11000 12000	HSDB (2015) Compernolle and Müller (2014a) Compernolle and Müller (2014a) Saxena and Hildemann (1996)	V V V E	158
pentanedioic acid HOOC(CH ₂) ₃ COOH (glutaric acid) [110-94-1]	$ \begin{array}{r} 1.9 \times 10^{7} \\ 5.1 \times 10^{7} \\ 2.4 \times 10^{7} \\ 2.2 \times 10^{7} \\ 2.0 \times 10^{6} \end{array} $	12000 13000	Mentel et al. (2004) Compernolle and Müller (2014a) Compernolle and Müller (2014a) Hilal et al. (2008) Saxena and Hildemann (1996)	M V V Q E	158
hexanedioic acid HOOC(CH ₂) ₄ COOH (adipic acid) [124-04-9]	2.1×10^{6} 6.6×10^{7} 1.1×10^{1} 1.8×10^{5} 2.5×10^{7}	13000 11000	HSDB (2015) Compernolle and Müller (2014a) Lide and Frederikse (1995) Goldstein (1982) Hilal et al. (2008)	V V V X Q	116
heptanedioic acid C ₇ H ₁₂ O ₄ (pimelic acid) [111-16-0]	$\frac{2.0 \times 10^6}{8.1 \times 10^7}$	15000	Saxena and Hildemann (1996) Compernolle and Müller (2014a)	E V	158
octanedioic acid C ₈ H ₁₄ O ₄ (suberic acid) [505-48-6]	7.7×10 ⁷	14000	Compernolle and Müller (2014a)	V	
nonanedioic acid C ₉ H ₁₆ O ₄ (azelaic acid) [123-99-9]	8.9×10 ⁷	17000	Compernolle and Müller (2014a)	V	
decanedioic acid C ₁₀ H ₁₈ O ₄ (sebacic acid) [111-20-6]	7.6×10 ⁷		Compernolle and Müller (2014a)	V	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp} (at T^{Θ})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} \ln H^{cp}}$			
Formula (Other name(s))		d(1/T)	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
cis-butenedioic acid	1.4×10^{8}		Lide and Frederikse (1995)	V	
HOOC(CH) ₂ COOH	9.9×10^{6}		Saxena and Hildemann (1996)	E	158
(maleic acid)					
[110-16-7]					
methanoic peroxyacid	2.9×10 ¹		Sauer (1997)	M	183
НСОООН	5.2		HSDB (2015)	Q	38
(peroxyformic acid)					
[107-32-4]					
ethanoic peroxyacid	8.3	5300	Sander et al. (2011)	L	
CH₃COOOH	7.3	5600	Staudinger and Roberts (2001)	L	
peroxyacetic acid)	2.4×10^{1}		Sauer (1997)	M	183
[79-21-0]	8.3	5300	O'Sullivan et al. (1996)	M	
	6.5	5900	Lind and Kok (1994)	M	16
	1.8×10^{1}	4400	Hilal et al. (2008)	Q	
		6100	Kühne et al. (2005)	Q	
		5300	Kühne et al. (2005)	?	
	E	sters (R0	COOR)		
1,3-dioxolan-2-one C ₃ H ₄ O ₃	3.6×10^{-2}		HSDB (2015)	Q	38
(ethylene carbonate)					
[96-49-1]					
carbonic acid, dimethyl ester	1.6×10^{-2}		HSDB (2015)	Q	38
$C_3H_6O_3$	1.0×10		11500 (2013)	V	30
[616-38-6]					
dimethyl dicarbonate	2.2×10^{-2}		HSDB (2015)	Q	38
C ₄ H ₆ O ₅	2.2 × 10		113DB (2013)	Q	30
[4525-33-1]					
methyl methanoate	4.1×10^{-2}	4000	Sander et al. (2011)	L	
HCOOCH ₃	4.1×10^{-2}	4000	Kutsuna et al. (2005)	M	
(methyl formate)	4.1×10^{-2}	-	Hoff et al. (1993)	M	
[107-31-3]	3.9×10^{-2}	4100	Hartkopf and Karger (1973)	M	
-	4.9×10^{-2}		Mackay et al. (2006c)	V	
	4.9×10^{-2}		Mackay et al. (1995)	V	
	5.8×10^{-2}		Hilal et al. (2008)	Q	
		4100	Kühne et al. (2005)	Q	
	6.4×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
		4200	Kühne et al. (2005)	?	
	4.4×10^{-2}		Betterton (1992)	?	206
	4.4×10^{-2}		Abraham et al. (1990)	?	
	4.4×10^{-2}		Hine and Mookerjee (1975)	?	206

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
ethyl methanoate	3.4×10^{-2}	4600	Sander et al. (2011)	L	
HCOOC ₂ H ₅	3.4×10^{-2}	4600	Kutsuna et al. (2005)	M	
(ethyl formate)	1.9×10^{-3}	4600	Hartkopf and Karger (1973)	M	
[109-94-4]	4.9×10^{-2}		Mackay et al. (2006c)	V	
	4.9×10^{-2}		Mackay et al. (1995)	V	
	3.1×10^{-2}		Abraham (1984)	V	
	3.5×10^{-2}		Hine and Mookerjee (1975)	V	
	3.1×10^{-2}		Hilal et al. (2008)	Q	
	5.7×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
	1.4×10^{-3}		Hoff et al. (1993)	?	7
	3.1×10^{-2}		Abraham et al. (1990)	?	
propyl methanoate	2.6×10^{-2}	5100	Sander et al. (2011)	L	
HCOOC ₃ H ₇	2.6×10^{-2}	5100	Kutsuna et al. (2005)	M	
propyl formate)	2.1×10^{-2}		Mackay et al. (2006c)	V	
110-74-7]	2.7×10^{-2}		Hine and Mookerjee (1975)	V	
	2.3×10^{-2}		Hilal et al. (2008)	Q	
	4.4×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
	2.7×10^{-2}		Abraham et al. (1990)	?	
sopropyl methanoate	1.2×10 ⁻²		Hine and Mookerjee (1975)	V	
HCOOC ₃ H ₇	2.1×10^{-2}		Hilal et al. (2008)	Q	
isopropyl formate)	3.9×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
[625-55-8]	1.2×10^{-2}		Abraham et al. (1990)	?	
2-methylpropyl)-methanoate	1.8×10 ⁻²		Mackay et al. (2006c)	V	
HCOOC ₄ H ₉	1.8×10^{-2}		Mackay et al. (1995)	V	
isobutyl formate)	1.7×10^{-2}		Hine and Mookerjee (1975)	V	
542-55-2]	2.0×10^{-2}		Hilal et al. (2008)	Q	
-	3.1×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
	1.7×10^{-2}		Abraham et al. (1990)	?	
(1,1-dimethylethyl)-methanoate HCOOC ₄ H ₉ (<i>tert</i> -butyl formate; TBF) [762-75-4]	1.4×10^{-2}	3600	Arp and Schmidt (2004)	M	
methanoic acid, pentyl ester	1.3×10^{-2}		Hilal et al. (2008)	Q	
$C_6H_{12}O_2$	2.8×10^{-2}		Nirmalakhandan et al. (1997)	Q	
[638-49-3]					
sopentyl methanoate	1.5×10^{-2}		Hine and Mookerjee (1975)	V	
HCOOC ₅ H ₁₁	1.7×10^{-2}		Hilal et al. (2008)	Q	
isoamyl formate)	2.4×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
110-45-2]	1.5×10^{-2}		Abraham et al. (1990)	?	
methanoic acid, hexyl ester	1.1×10^{-2}		Hilal et al. (2008)	Q	
$C_7H_{14}O_2$	1.6×10^{-2}		Nirmalakhandan et al. (1997)	Q	
[629-33-4]					

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
methyl ethanoate	8.1×10^{-2}	4900	Fenclová et al. (2014)	M	
CH ₃ COOCH ₃	1.2×10^{-1}	7500	Hiatt (2013)	M	
(methyl acetate)	6.6×10^{-2}	4500	Arp and Schmidt (2004)	M	
[79-20-9]	7.7×10^{-2}	5000	Kieckbusch and King (1979)	M	
	8.6×10^{-2}		Buttery et al. (1969)	M	
	1.1×10^{-1}		Butler and Ramchandani (1935)	M	
	1.1×10^{-1}		Mackay et al. (2006c)	V	
	1.1×10^{-1}		Mackay et al. (1995)	V	
	1.1×10^{-1}	4800	Bagno et al. (1991)	T	196
	6.4×10^{-2}		Hilal et al. (2008)	Q	
		4500	Kühne et al. (2005)	Q	
	3.9×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
		4900	Kühne et al. (2005)	?	
	8.0×10^{-2}		Abraham et al. (1990)	?	
ethyl ethanoate	5.9×10^{-2}	5900	Sander et al. (2011)	L	
CH ₃ COOC ₂ H ₅	6.2×10^{-2}	5500	Fenclová et al. (2014)	M	
(ethyl acetate)	5.1×10^{-2}		Aprea et al. (2007)	M	
[141-78-6]	5.9×10^{-2}	5900	Kutsuna et al. (2005)	M	
			Dewulf et al. (1999)	M	141
	4.4×10^{-2}	3900	Kolb et al. (1992)	M	102
	4.3×10^{-2}		Guitart et al. (1989)	M	19
	5.8×10^{-2}	5300	Kieckbusch and King (1979)	M	
	5.7×10^{-2}		Nelson and Hoff (1968)	M	115
	7.4×10^{-2}		Butler and Ramchandani (1935)	M	
	7.3×10^{-2}		Mackay et al. (2006c)	V	
	7.3×10^{-2}		Mackay et al. (1995)	V	
	3.6×10^{-1}		Hwang et al. (1992)	V	
	4.7×10^{-2}	5700	Janini and Quaddora (1986)	X	116
	3.6×10^{-2}		Hilal et al. (2008)	Q	
		4800	Kühne et al. (2005)	Q	
	4.1×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
		5200	Kühne et al. (2005)	?	
	8.8×10^{-2}		Hoff et al. (1993)	?	7
	5.8×10^{-2}		Abraham et al. (1990)	?	
ethyl ethanoate-1-13C CH ₃ COOC ₂ H ₅ (ethyl acetate-1-13C) [3424-59-7]	7.1×10 ⁻²	6500	Hiatt (2013)	M	
propyl ethanoate	4.5×10^{-2}	5900	Fenclová et al. (2014)	M	
CH ₃ COOC ₃ H ₇	4.5×10^{-2}	5500	Kieckbusch and King (1979)	M	
(propyl acetate)	4.6×10^{-2}		Mackay et al. (2006c)	V	
[109-60-4]	4.6×10^{-2}		Mackay et al. (1995)	V	
	5.0×10^{-2}		Hine and Mookerjee (1975)	V	
	5.0×10^{-2}		Butler and Ramchandani (1935)	V	
	4.4×10^{-2}	6000	Janini and Quaddora (1986)	X	116
	2.9×10^{-2}		Hilal et al. (2008)	Q	
	3.3×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
	4.5×10^{-2}		Abraham et al. (1990)	?	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
ethanoic acid, 2-propenyl ester C ₅ H ₈ O ₂ [591-87-7]	$7.6 \times 10^{-2} \\ 7.0 \times 10^{-2}$		HSDB (2015) Hilal et al. (2008)	V Q	
isopropyl ethanoate CH ₃ COOC ₃ H ₇ (isopropyl acetate) [108-21-4]	3.5×10^{-2} 2.9×10^{-2} 2.5×10^{-2} 2.9×10^{-2} 3.5×10^{-2}	5500	Hine and Mookerjee (1975) Janini and Quaddora (1986) Hilal et al. (2008) Nirmalakhandan and Speece (1988a) Abraham et al. (1990)	V X Q Q ?	116
ethanol, 2-methoxy-, acetate $C_5H_{10}O_3$ (methyl cellosolve acetate) [110-49-6]	9.0		HSDB (2015)	V	
glycerol monoacetate $C_5H_{10}O_4$ (acetin) [26446-35-5]	2.4×10 ⁴		HSDB (2015)	Q	38
1-propen-2-ol, acetate C ₅ H ₈ O ₂ (isopropenyl acetate) [108-22-5]	5.5×10 ⁻³		HSDB (2015)	Q	38
butyl ethanoate CH ₃ COOC ₄ H ₉	$ 2.4 \times 10^{-2} \\ 3.5 \times 10^{-2} \\ 2.1 \times 10^{-2} $	6300	Kim and Kim (2014) Fenclová et al. (2014)	M M	
(butyl acetate) [123-86-4]	2.1×10^{-2} 2.3×10^{-2} 3.5×10^{-2} 3.2×10^{-2} 3.2×10^{-2} 2.7×10^{-2} 3.0×10^{-2}	4300 6000	Helburn et al. (2008) Kolb et al. (1992) Kieckbusch and King (1979) Mackay et al. (2006c) Mackay et al. (1995) Hwang et al. (1992) Hing and Mackarina (1975)	M M V V V	102
	3.5×10^{-2} 2.1×10^{-2} 2.3×10^{-2}	7500 3200 5500	Hine and Mookerjee (1975) Janini and Quaddora (1986) Goldstein (1982) Hilal et al. (2008) Kühne et al. (2005)	V X X Q Q	116 116
	2.6×10^{-2} 3.5×10^{-2}	5300	Nirmalakhandan and Speece (1988a) Kühne et al. (2005) Abraham et al. (1990)	Q ? ?	
sec-butyl acetate C ₆ H ₁₂ O ₂ [105-46-4]	2.3×10 ⁻²		HSDB (2015)	V	
acetic acid, 1,1-dimethylethyl ester $C_6H_{12}O_2$ (tert-butyl acetate) [540-88-5]	2.4×10 ⁻²		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]		100000000	1710	11000
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
(2-methylpropyl)-ethanoate	1.9×10^{-2}		Mackay et al. (2006c)	V	
CH ₃ COOC ₄ H ₉	1.9×10^{-2}		Mackay et al. (1995)	V	
(isobutyl acetate)	2.2×10^{-2}		Hine and Mookerjee (1975)	V	
[110-19-0]	2.7×10^{-2}		Hilal et al. (2008)	Q	
		5500	Kühne et al. (2005)	Q	
	2.2×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
		4600	Kühne et al. (2005)	?	
	2.2×10^{-2}		Abraham et al. (1990)	?	
pentyl ethanoate	3.4×10^{-2}		Hellmann (1987)	M	31
CH ₃ COOC ₅ H ₁₁	2.8×10^{-2}	6500	Kieckbusch and King (1979)	M	
(amyl acetate)	2.4×10^{-2}		Mackay et al. (2006c)	V	
[628-63-7]	2.4×10^{-2}		Mackay et al. (1995)	V	
	2.5×10^{-2}		Hine and Mookerjee (1975)	V	
	2.0×10^{-2}		Hilal et al. (2008)	Q	
	2.1×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	2.1×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
	2.3×10^{-2}		Taft et al. (1985)	Q	
	2.8×10^{-2}		Abraham et al. (1990)	?	
1,2-propanediol, diacetate C ₇ H ₁₂ O ₄ [623-84-7]	7.0×10 ¹		HSDB (2015)	Q	38
2-pentanol, acetate C ₇ H ₁₄ O ₂ [626-38-0]	1.2×10^{-2}		HSDB (2015)	Q	38
sopentyl ethanoate	2.6×10^{-2}		Mackay et al. (2006c)	V	
CH ₃ COOC ₅ H ₁₁	2.6×10^{-2}		Mackay et al. (1995)	V	
(isoamyl acetate)	2.1×10^{-2}		Meylan and Howard (1991)	V	
[123-92-2]	1.7×10^{-2}		Hine and Mookerjee (1975)	V	
	2.4×10^{-2}	5000	Goldstein (1982)	X	116
	2.6×10^{-2}		Hilal et al. (2008)	Q	
	1.8×10^{-2}		Meylan and Howard (1991)	Q	
	1.8×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
	1.7×10^{-2}		Abraham et al. (1990)	?	
nexyl ethanoate	1.5×10^{-2}		Karl et al. (2003)	M	
CH ₃ COOC ₆ H ₁₃	5.2×10^{-3}		Mackay et al. (2006c)	V	
(hexyl acetate)	5.2×10^{-3}		Mackay et al. (1995)	V	
[142-92-7]	1.8×10^{-2}		Hine and Mookerjee (1975)	V	
	1.4×10^{-2}		Hilal et al. (2008)	Q	
	2.2×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
	1.8×10^{-2}		Abraham et al. (1990)	?	
4-methyl-2-pentyl ethanoate	1.7×10^{-2}		HSDB (2015)	V	
C ₈ H ₁₆ O ₂ [108-84-9]	1.1×10^{-2}		Hilal et al. (2008)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type	Note
acetic acid, cyclohexyl ester $C_8H_{14}O_2$ (cyclohexyl acetate) [622-45-7]	8.2×10 ⁻²		HSDB (2015)	Q	38
ethanol, 2-(2-ethoxyethoxy)-, acetate $C_8H_{16}O_4$ (diethylene glycol monoethyl ether acetate) [112-15-2]	4.3×10 ²		HSDB (2015)	V	
acetic acid, phenyl ester C ₈ H ₈ O ₂ [122-79-2]	1.5×10 ⁻¹		HSDB (2015)	Q	38
acetic acid, phenylmethyl ester $C_9H_{10}O_2$ [140-11-4]	9.0×10 ⁻¹		HSDB (2015)	V	
2-ethylhexyl ethanoate	1.1×10^{-2}		Mackay et al. (2006c)	V	
$C_{10}H_{20}O_2$	1.1×10^{-2}		Mackay et al. (1995)	V	
(2-ethylhexyl acetate) [103-09-3]	6.6×10^{-3}		HSDB (2015)	Q	38
ethanol, 2,2'-[1,2-ethanediylbis(oxy)]bis-, diacetate $C_{10}H_{18}O_6$ (triethylene glycol, diacetate) [111-21-7]	3.7×10 ⁷		HSDB (2015)	Q	38
1-methoxy-2-propyl ethanoate C ₆ H ₁₂ O ₃ [108-65-6]	9.9×10 ⁻¹		Hilal et al. (2008)	Q	
2-ethoxyethyl ethanoate	1.5		Johanson and Dynésius (1988)	M	19
C ₆ H ₁₂ O ₃ [111-15-9]	1.9		Hilal et al. (2008)	Q	
2-butoxyethyl ethanoate	1.8	25000	Kim et al. (2000)	M	
C ₈ H ₁₆ O ₃ (butyl cellosolve acetate) [112-07-2]	1.3		Hilal et al. (2008)	Q	
2-(2-butoxyethoxy)-ethanol, ethanoate	2.8×10 ¹		HSDB (2015)	V	
C ₁₀ H ₂₀ O ₄ [124-17-4]	4.1×10^{1}		Hilal et al. (2008)	Q	
1,2-ethanediol, diethanoate	1.2×10^2		HSDB (2015)	V	
C ₆ H ₁₀ O ₄ [111-55-7]	1.3×10^{1}		Hilal et al. (2008)	Q	
geranyl acetate C ₁₂ H ₂₀ O ₂ [105-87-3]	4.1×10^{-3}		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula		H^{cp} (at T^{\ominus})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$			
(Other name(s))		[mol]		Reference	Type	Note
[CAS registry number]		m ³ Pa	[K]			
inalyl acetate C ₁₂ H ₂₀ O ₂ 115-95-7]		5.8×10^{-3}		HSDB (2015)	Q	38
cyclohexanol, methylethyl)-, acetate $C_{12}H_{22}O_2$ menthyl acetate) 16409-45-3]	5-methyl-2-(1-	1.2×10 ⁻²		HSDB (2015)	Q	38
nethyl propanoate		5.7×10^{-2}		Buttery et al. (1969)	M	
C ₂ H ₅ COOCH ₃		6.1×10^{-2}		Mackay et al. (2006c)	V	
methyl propionate)		6.1×10^{-2}		Mackay et al. (1995)	V	
554-12-1]		6.1×10^{-2}		Hine and Mookerjee (1975)	V	
		5.4×10^{-2}	5400	Bagno et al. (1991)	T	196
		3.9×10^{-2}		Hilal et al. (2008)	Q	
		4.0×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
		5.8×10^{-2}	5000	Betterton (1992)	?	207
		5.7×10^{-2}		Abraham et al. (1990)	?	
nethyl 2-hydroxypropai C ₄ H ₈ O ₃ methyl lactate) 547-64-8]	ioate	1.2×10 ³		HSDB (2015)	Q	38
ethyl propanoate		4.1×10^{-2}	5900	Fenclová et al. (2014)	M	
$C_2H_5COOC_2H_5$		3.9×10^{-2}		HSDB (2015)	V	
ethyl propionate)		3.8×10^{-2}		Mackay et al. (2006c)	V	
105-37-3]		3.8×10^{-2}		Mackay et al. (1995)	V	
		3.7×10^{-2}		Abraham (1984)	V	
		4.5×10^{-2}		Hine and Mookerjee (1975)	V	
		2.6×10^{-2}		Hilal et al. (2008)	Q	
		3.5×10^{-2} 3.8×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
				Abraham et al. (1990)	?	
propyl propanoate		2.5×10^{-2}		Abraham (1984)	V	
		2.5×10^{-2}		Hine and Mookerjee (1975)	V	
$C_2H_5COOC_3H_7$		0.0.10-6		Hilal et al. (2008)	Q	
C ₂ H ₅ COOC ₃ H ₇ (propyl propionate)		2.0×10^{-2}			^	
C ₂ H ₅ COOC ₃ H ₇ (propyl propionate)		2.8×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
C ₂ H ₅ COOC ₃ H ₇ (propyl propionate) [106-36-5]		$2.8 \times 10^{-2} \\ 2.5 \times 10^{-2}$		Nirmalakhandan and Speece (1988a) Abraham et al. (1990)	?	
C ₂ H ₅ COOC ₃ H ₇ propyl propionate) 106-36-5] sopropyl propanoate		$ \begin{array}{c} 2.8 \times 10^{-2} \\ 2.5 \times 10^{-2} \\ \hline 1.7 \times 10^{-2} \end{array} $		Nirmalakhandan and Speece (1988a) Abraham et al. (1990) Meylan and Howard (1991)	? V	
C ₂ H ₅ COOC ₃ H ₇ propyl propionate) 106-36-5] sopropyl propanoate C ₂ H ₅ COOC ₃ H ₇		2.8×10^{-2} 2.5×10^{-2} 1.7×10^{-2} 1.7×10^{-2}		Nirmalakhandan and Speece (1988a) Abraham et al. (1990) Meylan and Howard (1991) Hine and Mookerjee (1975)	? V V	
C ₂ H ₅ COOC ₃ H ₇ propyl propionate) 106-36-5] sopropyl propanoate C ₂ H ₅ COOC ₃ H ₇ isopropyl propionate)		2.8×10^{-2} 2.5×10^{-2} 1.7×10^{-2} 1.7×10^{-2} 1.7×10^{-2} 1.7×10^{-2}		Nirmalakhandan and Speece (1988a) Abraham et al. (1990) Meylan and Howard (1991) Hine and Mookerjee (1975) Hilal et al. (2008)	? V V Q	
C ₂ H ₅ COOC ₃ H ₇ propyl propionate) [106-36-5] sopropyl propanoate C ₂ H ₅ COOC ₃ H ₇ isopropyl propionate)		2.8×10^{-2} 2.5×10^{-2} 1.7×10^{-2} 1.7×10^{-2} 1.7×10^{-2} 2.4×10^{-2}		Nirmalakhandan and Speece (1988a) Abraham et al. (1990) Meylan and Howard (1991) Hine and Mookerjee (1975) Hilal et al. (2008) Meylan and Howard (1991)	? V V Q Q	
C ₂ H ₅ COOC ₃ H ₇ (propyl propionate) [106-36-5] sopropyl propanoate C ₂ H ₅ COOC ₃ H ₇ (isopropyl propionate)		2.8×10^{-2} 2.5×10^{-2} 1.7×10^{-2} 1.7×10^{-2} 1.7×10^{-2} 2.4×10^{-2} 2.5×10^{-2}		Nirmalakhandan and Speece (1988a) Abraham et al. (1990) Meylan and Howard (1991) Hine and Mookerjee (1975) Hilal et al. (2008) Meylan and Howard (1991) Nirmalakhandan and Speece (1988a)	? V V Q Q Q	
C ₂ H ₅ COOC ₃ H ₇ (propyl propionate) [106-36-5] (sopropyl propanoate C ₂ H ₅ COOC ₃ H ₇ (isopropyl propionate) [637-78-5]		2.8×10^{-2} 2.5×10^{-2} 1.7×10^{-2} 1.7×10^{-2} 1.7×10^{-2} 2.4×10^{-2} 2.5×10^{-2} 1.7×10^{-2}		Nirmalakhandan and Speece (1988a) Abraham et al. (1990) Meylan and Howard (1991) Hine and Mookerjee (1975) Hilal et al. (2008) Meylan and Howard (1991) Nirmalakhandan and Speece (1988a) Abraham et al. (1990)	? V V Q Q Q	
C ₂ H ₅ COOC ₃ H ₇ (propyl propionate) [106-36-5] (sopropyl propanoate C ₂ H ₅ COOC ₃ H ₇ (isopropyl propionate) [637-78-5]	noate	2.8×10^{-2} 2.5×10^{-2} 1.7×10^{-2} 1.7×10^{-2} 1.7×10^{-2} 2.4×10^{-2} 2.5×10^{-2}	5000	Nirmalakhandan and Speece (1988a) Abraham et al. (1990) Meylan and Howard (1991) Hine and Mookerjee (1975) Hilal et al. (2008) Meylan and Howard (1991) Nirmalakhandan and Speece (1988a) Abraham et al. (1990) Hilal et al. (2008)	? V V Q Q Q ?	
C ₂ H ₅ COOC ₃ H ₇ (propyl propionate) [106-36-5] isopropyl propanoate C ₂ H ₅ COOC ₃ H ₇ (isopropyl propionate) [637-78-5] (2-methylpropyl)-propan C ₇ H ₁₄ O ₂ [540-42-1]	noate	2.8×10^{-2} 2.5×10^{-2} 1.7×10^{-2} 1.7×10^{-2} 1.7×10^{-2} 2.4×10^{-2} 2.5×10^{-2} 1.7×10^{-2}	5900	Nirmalakhandan and Speece (1988a) Abraham et al. (1990) Meylan and Howard (1991) Hine and Mookerjee (1975) Hilal et al. (2008) Meylan and Howard (1991) Nirmalakhandan and Speece (1988a) Abraham et al. (1990)	? V V Q Q Q	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
pentyl propanoate	1.4×10^{-2}		Abraham (1984)	V	
$C_2H_5COOC_5H_{11}$	1.2×10^{-2}		Hine and Mookerjee (1975)	V	
(amyl propionate)	1.2×10^{-2}		Hilal et al. (2008)	Q	
[624-54-4]	2.2×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	1.8×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
	1.4×10^{-2}		Abraham et al. (1990)	?	
propanoic acid, 2-hydroxy-, ethyl ester C ₅ H ₁₀ O ₃ (ethyl lactate) [97-64-3]	1.7×10 ¹		HSDB (2015)	V	
propanoic acid, 2-phenylethyl ester C ₁₁ H ₁₄ O ₂ [122-70-3]	3.9×10^{-1}		HSDB (2015)	Q	38
methyl butanoate	3.7×10^{-2}		Aprea et al. (2007)	M	
C ₃ H ₇ COOCH ₃	4.8×10^{-2}		Buttery et al. (1969)	M	
(methyl butyrate)	3.7×10^{-2}		Amoore and Buttery (1978)	V	
[623-42-7]		5800	Della Gatta et al. (1981)	T	100
	2.8×10^{-2}		Hilal et al. (2008)	Q	
	3.2×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
	4.8×10^{-2}		Abraham et al. (1990)	?	
ethyl butanoate	2.9×10^{-2}	6400	Fenclová et al. (2014)	M	
C ₃ H ₇ COOC ₂ H ₅	2.4×10^{-2}		Aprea et al. (2007)	M	
ethyl butyrate)	2.5×10^{-2}		HSDB (2015)	V	
[105-54-4]	2.4×10^{-2}		Mackay et al. (2006c)	V	
	2.4×10^{-2}		Mackay et al. (1995)	V	
	2.8×10^{-2}		Abraham (1984)	V	
	2.7×10^{-2}		Hine and Mookerjee (1975)	V	
	2.4×10^{-2}		Savary et al. (2014)	Q	
	2.0×10^{-2}		Hilal et al. (2008)	Q	
	2.8×10^{-2} 2.7×10^{-2}		Nirmalakhandan and Speece (1988a) Abraham et al. (1990)	Q ?	
			<u> </u>		
oropyl butanoate	1.6×10^{-2}		Meylan and Howard (1991)	V	
C ₃ H ₇ COOC ₃ H ₇	1.9×10^{-2}		Hine and Mookerjee (1975)	V	
propyl butyrate)	1.4×10^{-2}		Hilal et al. (2008)	Q	
[105-66-8]	1.8×10^{-2} 2.2×10^{-2}		Meylan and Howard (1991)	Q	
	2.2×10^{-2} 1.9×10^{-2}		Nirmalakhandan and Speece (1988a) Abraham et al. (1990)	Q ?	
outanoic acid, 2-methylpropyl ester C ₈ H ₁₆ O ₂ [539-90-2]	1.3×10^{-2}		Hilal et al. (2008)	Q	
2-methylpropyl)-2-methylpropanoate	1.0×10^{-2}		Amoore and Buttery (1978)	M	
$C_8H_{16}O_2$	7.2×10^{-3}		Amoore and Buttery (1978)	V	
isobutyl isobutyrate)	1.2×10^{-2}		Hilal et al. (2008)	Q	
[97-85-8]	1.3×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	7.0×10^{-3}		Abraham et al. (1990)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2-methylpropanoic acid, methyl ester $C_5H_{10}O_2$ (methyl isobutyrate) [547-63-7]	3.3×10^{-2}	5700 5700	Bagno et al. (1991) Della Gatta et al. (1981)	T T	196 100
2-methylpropanoic acid, ethyl ester $C_6H_{12}O_2$ [97-62-1]	2.0×10 ⁻²		Hilal et al. (2008)	Q	
cyclohexyl butanoate C ₁₀ H ₁₈ O ₂ (cyclohexyl butyrate) [1551-44-6]		6500 5600	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
3-oxobutanoic acid, methyl ester C ₅ H ₈ O ₃ [105-45-3]	3.7×10 ¹ 1.7×10 ¹		HSDB (2015) Hilal et al. (2008)	V Q	
3-oxobutanoic acid, ethyl ester C ₆ H ₁₀ O ₃ [141-97-9]	1.1×10 ¹		Hilal et al. (2008)	Q	
methyl pentanoate C ₄ H ₉ COOCH ₃ [624-24-8]	3.1×10^{-2} 2.2×10^{-2} 2.5×10^{-2} 3.1×10^{-2}	6200	Buttery et al. (1969) Della Gatta et al. (1981) Hilal et al. (2008) Nirmalakhandan and Speece (1988a) Abraham et al. (1990)	M T Q Q	100
ethyl pentanoate C ₄ H ₉ COOC ₂ H ₅ [539-82-2]	2.8×10^{-2} 2.8×10^{-2} 2.9×10^{-2} 1.5×10^{-2} 1.8×10^{-2} 2.2×10^{-2} 2.7×10^{-2}		Meylan and Howard (1991) Abraham (1984) Hine and Mookerjee (1975) Hilal et al. (2008) Meylan and Howard (1991) Nirmalakhandan and Speece (1988a) Abraham et al. (1990)	V V V Q Q Q	
2-methylbutanoic acid, ethyl ester $C_7H_{14}O_2$ [7452-79-1]	8.9×10^{-3} 2.7×10^{-2}		Pollien et al. (2003) Roberts and Pollien (1997)	M M	
3-methylbutanoic acid, ethyl ester C ₇ H ₁₄ O ₂ [108-64-5]	1.6×10 ⁻²		Hilal et al. (2008)	Q	
2,2-dimethylpropanoic acid, methyl ester $C_6H_{12}O_2$	2.3×10 ⁻²	6000 6000	Bagno et al. (1991) Della Gatta et al. (1981)	T T	196 100
(methyl pivalate) [598-98-1]	$1.7 \times 10^{-2} \\ 1.8 \times 10^{-2}$		Hilal et al. (2008) Nirmalakhandan et al. (1997)	Q Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\boxed{\text{mol}}$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type	Note
	Lm³ Pa J	[K]			
methyl hexanoate	1.9×10^{-2}		Aprea et al. (2007)	M	
$C_5H_{11}COOCH_3$	2.7×10^{-2}		Buttery et al. (1969)	M	
[106-70-7]	1.8×10^{-2}		Hilal et al. (2008)	Q	
	2.0×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
	2.7×10^{-2}		Abraham et al. (1990)	?	
ethyl hexanoate	1.4×10^{-2}		Aprea et al. (2007)	M	
$C_5H_{11}COOC_2H_5$	1.8×10^{-2}		Abraham (1984)	V	
[123-66-0]	1.4×10^{-2}		Savary et al. (2014)	Q	
	1.1×10^{-2}		Hilal et al. (2008)	Q	
	1.7×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	1.8×10^{-2}		Abraham et al. (1990)	?	
2-ethylbutanoic acid, 1,2-ethanediylbis(oxy-2,1-ethanediyl) ester $\begin{array}{c} C_{18}H_{34}O_6 \\ [95-08-9] \end{array}$	9.9×10 ⁵		HSDB (2015)	Q	38
ethyl heptanoate	2.0×10^{-2}		Meylan and Howard (1991)	V	
C ₆ H ₁₃ COOC ₂ H ₅	2.0×10^{-2}		Abraham (1984)	V	
[106-30-9]	2.0×10^{-2}		Hine and Mookerjee (1975)	V	
	9.2×10^{-3}		Hilal et al. (2008)	Q	
	1.0×10^{-2}		Meylan and Howard (1991)	Q	
	2.1×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
	2.0×10^{-2}		Abraham et al. (1990)	?	
methyl octanoate	9.9×10^{-3}		Aprea et al. (2007)	M	
C ₆ H ₁₃ COOCH ₃	1.3×10^{-2}		Buttery et al. (1969)	M	
[111-11-5]	1.2×10^{-2}		Hilal et al. (2008)	Q	
	4.7×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	1.1×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
ethyl octanoate	1.1×10^{-2}		Aprea et al. (2007)	M	
C ₇ H ₁₅ COOC ₂ H ₅	1.2×10^{-2}		Abraham (1984)	V	
[106-32-1]	7.8×10^{-3}		Savary et al. (2014)	Q	
octadecanoic acid, 2-methylpropyl ester C ₂₂ H ₄₄ O ₂ (isobutyl stearate) [646-13-9]	2.6×10 ⁻⁴		HSDB (2015)	Q	38
octadecanoic acid, butyl ester C ₂₂ H ₄₄ O ₂ [123-95-5]	2.6×10 ⁻⁴		HSDB (2015)	Q	38
methyl nonanoate C ₁₀ H ₂₀ O ₂ [1731-84-6]	7.0×10 ⁻³		Abraham (1984)	V	
ethyl nonanoate C ₈ H ₁₇ COOC ₂ H ₅ [123-29-5]	1.3×10 ⁻²		Abraham (1984)	V	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number] nonanedioic acid, bis(2-ethylhexyl) es-	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$ 8.2×10^{-2}	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference HSDB (2015)	Type	Note
ter C ₂₅ H ₄₈ O ₄ (di-2-ethylhexyl azelate) [103-24-2]					
methyl decanoate C ₁₁ H ₂₂ O ₂	1.1×10^{-2} 1.4×10^{-2}		Aprea et al. (2007) Krop et al. (1997)	M V	
(methyl caprate) [110-42-9]	3.2×10^{-3} 5.8×10^{-3} 7.7×10^{-3}		Abraham (1984) HSDB (2015) Hilal et al. (2008)	V Q Q	38
ethyl decanoate C ₉ H ₁₉ COOC ₂ H ₅ [110-38-3]	$1.4 \times 10^{-2} \\ 1.7 \times 10^{-2}$		Aprea et al. (2007) Abraham (1984)	M V	
methyl dodecanoate C ₁₃ H ₂₆ O ₂ (methyl laurate) [111-82-0]	8.3×10^{-3} 3.3×10^{-3} 4.8×10^{-3}		Krop et al. (1997) HSDB (2015) Hilal et al. (2008)	V Q Q	38
ethyl dodecanoate C ₁₄ H ₂₈ O ₂ (ethyl laurate) [106-33-2]	$7.7 \times 10^{-3} \\ 3.1 \times 10^{-3}$		Krop et al. (1997) Hilal et al. (2008)	V Q	
propyl dodecanoate C ₁₅ H ₃₀ O ₂ (propyl laurate) [3681-78-5]	$7.7 \times 10^{-3} \\ 2.1 \times 10^{-3}$		Krop et al. (1997) Hilal et al. (2008)	V Q	
butyl dodecanoate C ₁₆ H ₃₂ O ₂ (butyl laurate) [106-18-3]	$7.1 \times 10^{-3} \\ 1.5 \times 10^{-3}$		Krop et al. (1997) Hilal et al. (2008)	V Q	
2-ethylhexyl dodecanoate C ₂₀ H ₄₀ O ₂ (2-ethylhexyl laurate) [20292-08-4]	3.0×10^{-3} 8.6×10^{-4}		Krop et al. (1997) Hilal et al. (2008)	V Q	
methyl tetradecanoate C ₁₅ H ₃₀ O ₂ (methyl myristate) [124-10-7]	5.0×10^{-3} 1.9×10^{-3} 3.1×10^{-3}		Krop et al. (1997) HSDB (2015) Hilal et al. (2008)	V Q Q	38
methyl hexadecanoate C ₁₇ H ₃₄ O ₂ (methyl palmitate) [112-39-0]	2.9×10^{-3} 1.1×10^{-3} 1.8×10^{-3}		Krop et al. (1997) HSDB (2015) Hilal et al. (2008)	V Q Q	38
isopropyl palmitate C ₁₉ H ₃₈ O ₂ [142-91-6]	2.1×10 ⁻⁴		HSDB (2015)	Q	182

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s))	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Туре	Note
[CAS registry number]	$\left[\frac{\text{mor}}{\text{m}^3 \text{Pa}}\right]$	[K]			
ascorbic palmitate C ₂₂ H ₃₈ O ₇ [137-66-6]	7.0×10 ¹		HSDB (2015)	Q	38
nethyl octadecanoate	1.7×10^{-3}		Krop et al. (1997)	V	
C ₁₉ H ₃₈ O ₂	6.2×10^{-4}		HSDB (2015)	Q	38
methyl stearate) 112-61-8]	1.1×10^{-3}		Hilal et al. (2008)	Q	
nethyl eicosanoate C ₂₁ H ₄₂ O ₂ methyl arachidate) 1120-28-1]	1.0×10 ⁻³		Krop et al. (1997)	V	
methyl docosanoate C ₂₃ H ₄₆ O ₂ methyl behenate) 929-77-1]	5.9×10 ⁻⁴		Krop et al. (1997)	V	
yclopropanecarboxylic acid, methyl aster	4.1×10^{-1}	6100	Bagno et al. (1991)	T	196
C ₅ H ₈ O ₂ 2868-37-3]	1.1×10^{-1}		Hilal et al. (2008)	Q	
yclohexanecarboxylic acid, methyl eser C ₆ H ₁₁ COOCH ₃ 4630-82-4]	1.1×10 ⁻¹	7200	Bagno et al. (1991)	Т	196
Z,Z,Z)-9,12,15-octadecatrienoic acid, nethyl ester	2.8×10^{-1}		Krop et al. (1997)	V	
C ₁₉ H ₃₂ O ₂ methyl linolenate) 301-00-8]	7.2×10^{-3}		Hilal et al. (2008)	Q	
(Z,Z)-9,12-octadecadienoic acid, nethyl ester	6.2×10^{-2}		Krop et al. (1997)	V	
C ₁₉ H ₃₄ O ₂ methyl linolate) 112-63-0]	4.8×10^{-3}		Hilal et al. (2008)	Q	
Z)-9-octadecenoic acid, methyl ester	1.3×10^{-2}		Krop et al. (1997)	V	
C ₁₉ H ₃₆ O ₂	7.0×10^{-4}		HSDB (2015)	Q	38
methyl oleate) 112-62-9]	2.5×10^{-3}		Hilal et al. (2008)	Q	
Z)-13-docosenoic acid, methyl ester	5.3×10^{-3}		Krop et al. (1997)	V	
C ₂₃ H ₄₄ O ₂ methyl erucate) 1120-34-9]	8.2×10^{-4}		Hilal et al. (2008)	Q	
xacyclohexadecan-2-one $C_{15}H_{28}O_2$ pentadecalactone) 106-02-5]	$4.0 \times 10^{-3} $ 7.6×10^{-2}		Amoore and Buttery (1978) Amoore and Buttery (1978)	M V	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number] 2-tert-butylcyclohexyl acetate C ₁₂ H ₂₂ O ₂ [88-41-5]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^{3} \text{ Pa}}\right]$ 9.9×10^{-3} 3.8×10^{-2} 5.3×10^{-1} 7.0×10^{-3}	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Zhang et al. (2010)	Type Q Q Q Q	Note 107, 108 107, 109 107, 110 107, 111
2-ethyl-3-oxo-butanoic acid, ethyl ester $C_8H_{14}O_3$ [607-97-6]	3.4		Hilal et al. (2008)	Q	
carbonic acid, diethyl ester C ₅ H ₁₀ O ₃ [105-58-8]	$1.1 \times 10^{-1} \\ 6.9 \times 10^{-2}$		HSDB (2015) Hilal et al. (2008)	V Q	
2-hydroxypropanoic acid, butyl ester C ₇ H ₁₄ O ₃ [138-22-7]	4.9 6.4×10 ¹		HSDB (2015) Hilal et al. (2008)	V Q	
methyl propenoate $C_4H_6O_2$ (methyl acrylate) [96-33-3]	4.9×10^{-2} 5.2×10^{-2} 5.2×10^{-2} 5.4×10^{-2}		HSDB (2015) Mackay et al. (2006c) Mackay et al. (1995) Hilal et al. (2008)	V V V Q	
ethyl propenoate $C_5H_8O_2$ (ethyl acrylate) [140-88-5]	2.9×10^{-2} 2.9×10^{-2} 2.9×10^{-2} 2.9×10^{-2} 3.5×10^{-2}		HSDB (2015) Mackay et al. (2006c) Mackay et al. (1995) Hilal et al. (2008)	V V V Q	
2-propenoic acid, butyl ester C ₇ H ₁₂ O ₂ [141-32-2]	$2.1 \times 10^{-2} \\ 2.0 \times 10^{-2}$		HSDB (2015) Hilal et al. (2008)	V Q	
2-propenoic acid, 2-methylpropyl ester C ₇ H ₁₂ O ₂ [106-63-8]	$1.6 \times 10^{-2} \\ 2.4 \times 10^{-2}$		HSDB (2015) Hilal et al. (2008)	V Q	
2-propenoic acid, 2-ethylhexyl ester $C_{11}H_{20}O_2$ [103-11-7]	$2.3 \times 10^{-2} \\ 1.2 \times 10^{-2}$		HSDB (2015) Hilal et al. (2008)	V Q	
2-propenoic acid, 2-hydroxyethyl ester C ₅ H ₈ O ₃ (2-hydroxyethyl acrylate) [818-61-1]	1.2×10 ³		HSDB (2015)	V	
2-methyl-2-propenoic acid, ethyl ester $C_6H_{10}O_2$ [97-63-2]	$ \begin{array}{c} 1.7 \times 10^{-2} \\ 1.6 \times 10^{-2} \\ 2.9 \times 10^{-2} \end{array} $		HSDB (2015) Hilal et al. (2008) Hilal et al. (2008)	V C Q	
2-methyl-2-propenoic acid, 2-propenyl ester C7H ₁₀ O ₂ (allyl methacrylate) [96-05-9]	2.4×10 ⁻²		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2-methyl-2-propenoic acid, oxiranyl- methyl ester C ₇ H ₁₀ O ₃ (glycidyl methacrylate) [106-91-2]	3.2×10 ¹		HSDB (2015)	Q	38
2-methyl-2-propenoic acid, propyl ester C ₇ H ₁₂ O ₂ (propyl methacrylate) (2210-28-8]	1.8×10 ⁻²		HSDB (2015)	Q	38
2-methyl-2-propenoic acid, butyl ester $\mathbb{C}_8H_{14}O_2$ [butyl methacrylate] 97-88-1]	$2.0 \times 10^{-2} \\ 1.8 \times 10^{-2}$		HSDB (2015) Hilal et al. (2008)	V Q	
2-methyl-2-propenoic acid, 2-methylpropyl ester $\mathbb{C}_8H_{14}O_2$ [97-86-9]	1.9×10^{-2} 2.1×10^{-2}		HSDB (2015) Hilal et al. (2008)	V Q	
2-methyl-2-propenoic acid, 1,2-ethanediylbis(oxy-2,1-ethanediyl) ester $C_{14}H_{22}O_6$ [109-16-0]	5.8×10 ⁶		HSDB (2015)	Q	38
methyl methacrylate C ₅ H ₈ O ₂ 80-62-6]	4.3×10^{-2} 3.1×10^{-2} 3.1×10^{-2} 3.0×10^{-2} 3.1×10^{-2} 4.4×10^{-2}	7700	Hiatt (2013) HSDB (2015) Mackay et al. (2006c) Lide and Frederikse (1995) Mackay et al. (1995) Hilal et al. (2008)	M V V V V	
(E)-3-hexenyl ethanoate $C_8H_{14}O_2$ (3681-82-1]	3.3×10 ⁻²		Karl et al. (2003)	M	
Z)-3-hexenyl ethanoate C ₈ H ₁₄ O ₂ 3681-71-8]	3.1×10^{-2}		Karl et al. (2003)	M	
ethenyl ethanoate CH ₃ COOCHCH ₂ (vinyl acetate) [108-05-4]	$ \begin{array}{c} 1.9 \times 10^{-2} \\ 1.6 \times 10^{-2} \\ 2.0 \times 10^{-2} \\ 1.6 \times 10^{-2} \\ 1.7 \times 10^{-2} \\ 1.7 \times 10^{-2} \end{array} $	2600	HSDB (2015) Mackay et al. (2006c) Lide and Frederikse (1995) Mackay et al. (1995) Goldstein (1982) Goldstein (1982)	V V V V X	181 116

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	${\rm d} \ln H^{cp}$			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]		1) po	1,000
3-(4-methoxyphenyl)-2-propenoic acid, 2-ethylhexyl ester C ₁₈ H ₂₆ O ₃ (octinoxate) [5466-77-3]	1.2		HSDB (2015)	Q	182
methyl benzoate	3.0×10^{-1}		HSDB (2015)	V	
C ₆ H ₅ COOCH ₃	3.0×10^{-1}		Mackay et al. (2006c)	V	
[93-58-3]	3.0×10^{-1}		Mackay et al. (1995)	V	
	2.8×10^{-1}		Meylan and Howard (1991)	V	
	5.6×10^{-1}		Hine and Mookerjee (1975)	V	
	3.1×10^{-1}		Abraham et al. (1994a)	R	
	5.8×10^{-1}	6300	Bagno et al. (1991)	T	196
	2.9×10^{-1}		Zhang et al. (2010)	Q	107, 108
	3.6×10^{-1}		Zhang et al. (2010)	Q	107, 109
	9.5×10^{-1}		Zhang et al. (2010)	Q	107, 110
	6.1×10^{-1}		Zhang et al. (2010)	Q	107, 111
	2.9×10^{-1}		Hilal et al. (2008)	Q	
		5100	Kühne et al. (2005)	Q	
	2.8×10^{-1}		Meylan and Howard (1991)	Q	
	2.7×10^{-1}		Nirmalakhandan and Speece (1988a)	Q	
		3500	Kühne et al. (2005)	?	
	5.6×10^{-1}		Abraham et al. (1990)	?	
ethyl benzoate	9.7×10^{-2}		Mackay et al. (2006c)	V	
$C_6H_5COOC_2H_5$	9.7×10^{-2}		Mackay et al. (1995)	V	
[93-89-0]	1.9×10^{-1}		Abraham et al. (1994a)	R	
	2.1×10^{-1}		Zhang et al. (2010)	Q	107, 108
	2.1×10^{-1}		Zhang et al. (2010)	Q	107, 109
	5.1×10^{-1}		Zhang et al. (2010)	Q	107, 110
	4.8×10^{-1}		Zhang et al. (2010)	Q	107, 111
	1.9×10^{-1}		Hilal et al. (2008)	Q	
	2.2×10^{-1}		Nirmalakhandan et al. (1997)	Q	
	1.9×10^{-1}		Abraham et al. (1990)	?	
2-hydroxybenzoic acid methyl ester	1.1×10^{1}		HSDB (2015)	V	
C ₈ H ₈ O ₃ [119-36-8]	1.8×10^{1}		Hilal et al. (2008)	Q	
benzoic acid, 4-methyl-, methyl ester	2.6×10^{-1}		Zhang et al. (2010)	Q	107, 108
$C_9H_{10}O_2$	3.9×10^{-1}		Zhang et al. (2010)	Q	107, 109
[99-75-2]	1.7		Zhang et al. (2010)	Q	107, 110
	3.5×10^{-1}		Zhang et al. (2010)	Q	107, 111
1,4-benzenedicarboxylic acid, dimethyl ester	7.6×10^{-2}		HSDB (2015)	V	
$C_{10}H_{10}O_4$	4.4×10^{1}		Zhang et al. (2010)	Q	107, 108
[120-61-6]	1.3×10^2		Zhang et al. (2010)	Q	107, 109
	5.3×10^{1}		Zhang et al. (2010)	Q	107, 110
	9.2×10^{1}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent (... continued)

	**Cn				
Substance	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} \ln H^{cp}}$			
Formula (Other name(s))		$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
butyl benzoate	1.2×10 ⁻¹		Zhang et al. (2010)	Q	107, 108
$C_{11}H_{14}O_2$	1.0×10^{-1}		Zhang et al. (2010)	Q	107, 109
[136-60-7]	5.2×10^{-1}		Zhang et al. (2010)	Q	107, 110
	3.2×10^{-1}		Zhang et al. (2010)	Q	107, 111
diphenyl carbonate	1.2×10^{-1}		HSDB (2015)	Q	38
$C_{13}H_{10}O_3$	1.2×10^{-1}		Zhang et al. (2010)	Q	107, 108
[102-09-0]	1.6×10^{1}		Zhang et al. (2010)	Q	107, 109
	9.5×10^{-1}		Zhang et al. (2010)	Q	107, 110
	1.2×10^2		Zhang et al. (2010)	Q	107, 111
benzyl benzoate	1.8		Mackay et al. (2006c)	V	
C ₁₄ H ₁₂ O ₂	1.8		Mackay et al. (1995)	V	
[120-51-4]					
dimethyl phthalate	4.9×10^{1}		HSDB (2015)	V	
$C_{10}H_{10}O_4$	9.3×10^{1} 2.0×10^{1}		Mackay et al. (2006c)	V	
[131-11-3]	1.0×10^{2}		Saçan et al. (2005)	V	
	8.1×10^{-1}		Cousins and Mackay (2000)	V V	
	9.1×10^{1}		Staples et al. (1997) Lide and Frederikse (1995)	v V	
	9.1×10^{1} 9.1×10^{1}		Mackay et al. (1995)	V	
	5.0×10^{1}		Hwang et al. (1992)	V	
	9.0		Wolfe et al. (1980)	V	
	2.9×10^{1}		Goldstein (1982)	X	181
	3.0×10^{1}	5700	Goldstein (1982)	X	116
	2.3×10^{1}	2700	McCarty (1980)	X	145
	5.0×10^{1}		Ryan et al. (1988)	C	1.0
	1.7×10^2		Hilal et al. (2008)	Q	
	9.6		Saçan et al. (2005)	Q	
	1.0×10 ²		HSDB (2015)	V	
1,3-benzenedicarboxylic acid, dimethyl ester	1.6×10^2		HSDB (2015)	Q	38
$C_{10}H_{10}O_4$ (dimethyl isophthalate) [1459-93-4]					
diethyl phthalate	1.6×10 ¹		HSDB (2015)	V	
$C_{12}H_{14}O_4$	2.2×10^{1}		Mackay et al. (2006c)	V	
[84-66-2]	4.1×10^{1}		Cousins and Mackay (2000)	V	
	3.7×10^{1}		Staples et al. (1997)	V	
	2.1×10^{1}		Lide and Frederikse (1995)	V	
	1.0×10^2		Mackay et al. (1995)	V	
	4.9×10^{2}		Wolfe et al. (1980)	V	
	1.2×10^{1}		Goldstein (1982)	X	181
	1.2×10^{1}	5600	Goldstein (1982)	X	116
	2.1×10^{-1}		Ryan et al. (1988)	C	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	5.8×10 ⁻¹ 2.5×10 ¹ 1.5×10 ² 2.7×10 ² 5.6×10 ¹ 7.7×10 ¹ 5.8	12000 12000	Petrasek et al. (1983) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Hilal et al. (2008) Kühne et al. (2005) Saçan et al. (2005)	C Q Q Q Q Q Q Q	107, 108 107, 109 107, 110 107, 111
dipropyl phthalate C ₁₄ H ₁₈ O ₄ [131-16-8]	1.8×10^{1} 3.3 3.2×10^{1} 2.4×10^{1}		Cousins and Mackay (2000) Cousins and Mackay (2000) Staples et al. (1997) Saçan et al. (2005)	V V V Q	208 208
diallyl phthalate $C_{14}H_{14}O_4$ [131-17-9]	3.5×10^{1} 2.3×10^{1} 3.5×10^{1} 3.5×10^{1} 2.5×10^{1} 1.7×10^{1}		Saçan et al. (2005) Cousins and Mackay (2000) Staples et al. (1997) HSDB (2015) Saçan et al. (2005)	V V V Q Q	38
bis(2-methoxyethyl) phthalate $C_{14}H_{18}O_5$ [117-82-8]	2.3×10^{1} 3.5×10^{7}		Fishbein and Albro (1972) HSDB (2015)	V Q	9 38
dibutyl phthalate C ₁₆ H ₂₂ O ₄ [84-74-2]	9.3 5.5 2.2×10 ¹ 2.7×10 ¹ 7.5 1.1×10 ¹ 2.2×10 ¹ 2.0×10 ¹ 2.6×10 ² 7.6 1.6×10 ⁻¹ 3.4×10 ¹ 2.9×10 ¹ 3.7×10 ¹	14000 13000	Lee et al. (2012) Atlas et al. (1983) Mackay et al. (2006c) Saçan et al. (2005) Cousins and Mackay (2000) Staples et al. (1997) Lide and Frederikse (1995) Mackay et al. (1995) Hwang et al. (1992) Wolfe et al. (1980) McCarty (1980) Ryan et al. (1988) Hilal et al. (2008) Kühne et al. (2005) Saçan et al. (2005) Kühne et al. (2005)	M M V V V V V V V X C Q Q	126 145
diisobutyl phthalate C ₁₆ H ₂₂ O ₄ [84-69-5]	3.5 7.5 5.4×10^{1} 3.1×10^{1}		HSDB (2015) Cousins and Mackay (2000) Staples et al. (1997) Saçan et al. (2005)	V V V Q	
1,2-benzenedicarboxylic acid, butyl cyclohexyl ester C ₁₈ H ₂₄ O ₄ (butyl cyclohexyl phthalate) [84-64-0]	1.0×10 ¹		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Tyne	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]		1) 0	1,000
butyl glycolyl butyl phthalate $C_{18}H_{24}O_6$ [85-70-1]	4.7×10^2		HSDB (2015)	Q	38
diamyl phthalate C ₁₈ H ₂₆ O ₄ [131-18-0]	$1.1\!\times\!10^1$		HSDB (2015)	Q	38
butyl benzyl phthalate	1.0×10^2		Lee et al. (2012)	M	
$C_{19}H_{20}O_4$	7.6		HSDB (2015)	V	
[85-68-7]	7.5		Mackay et al. (2006c)	V	
	1.9×10 ¹ 4.9		Saçan et al. (2005)	V	
	1.3×10^{1}		Cousins and Mackay (2000) Staples et al. (1997)	V V	
	7.8		Mackay et al. (1995)	V	
	9.6		Ryan et al. (1988)	Ċ	
	3.2×10^{1}		Saçan et al. (2005)	Q	
	>9.9		Petrasek et al. (1983)	E	
dihexyl phthalate	3.8×10^{-1}		HSDB (2015)	V	
$C_{20}H_{30}O_4$	1.4		Cousins and Mackay (2000)	V	
[84-75-3]	2.2×10^{-1}		Staples et al. (1997)	V	
	1.6×10^{1}		Saçan et al. (2005)	Q	
butyl 2-ethylhexyl phthalate	2.1		Cousins and Mackay (2000)	V	
$C_{20}H_{30}O_4$	2.5×10^{1}		Staples et al. (1997)	V	
[85-69-8]	4.7 6.9×10^{1}		HSDB (2015)	Q	38
			Saçan et al. (2005)	Q	
diphenyl terephthalate	3.2×10^2		Zhang et al. (2010)	Q	107, 108
$C_{20}H_{14}O_4$	4.3×10^4 2.7×10^4		Zhang et al. (2010)	Q	107, 109
[1539-04-4]	2.7×10^{4} 7.7×10^{4}		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 110 107, 111
					107, 111
dicyclohexyl phthalate C ₂₀ H ₂₆ O ₄ [84-61-7]	9.9×10^{1}		HSDB (2015)	V	
bis(2-butoxyethyl) phthalate $C_{20}H_{30}O_6$ [117-83-9]	4.9×10 ⁶		HSDB (2015)	Q	38
diheptyl phthalate	5.9×10^{-1}		Cousins and Mackay (2000)	V	
$C_{22}H_{34}O_4$	2.8		HSDB (2015)	Q	38
[3648-21-3]	8.9×10^{-1}		Saçan et al. (2005)	Q	
dioctyl phthalate	3.8		HSDB (2015)	V	
$C_{24}H_{38}O_4$	9.6×10^{-2}		Mackay et al. (2006c)	V	
[117-84-0]	2.5×10^{-1}		Cousins and Mackay (2000)	V	
	9.6×10^{-2}		Staples et al. (1997)	V	
	1.8 1.8		Mackay et al. (1995) Wolfe et al. (1980)	V V	
	3.4×10^{1}		Ryan et al. (1988)	v C	
	6.4		Saçan et al. (2005)	Q	
	>9.9		Petrasek et al. (1983)	Ē	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
diisooctyl phthalate C ₂₄ H ₃₈ O ₄ [27554-26-3]	3.2×10^{-1} 2.5×10^{-1} 1.5×10^{2}		HSDB (2015) Cousins and Mackay (2000) Saçan et al. (2005)	V V Q	
decyl hexyl phthalate C ₂₄ H ₃₈ O ₄ [25724-58-7]	1.6×10 ²		Saçan et al. (2005)	Q	
bis(2-ethylhexyl)-phthalate C ₂₄ H ₃₈ O ₄ (DEHP)	3.7×10^{1} 5.8×10^{-1} 1.4×10^{1}		HSDB (2015) Mackay et al. (2006c) Saçan et al. (2005)	V V V	
[117-81-7]	2.5×10^{-1} 5.8×10^{-1} 3.7×10^{1} 6.7×10^{-1}		Cousins and Mackay (2000) Staples et al. (1997) Mackay et al. (1995) Meylan and Howard (1991)	V V V	
	5.4×10^{-2} 2.2×10^{1} 3.4×10^{1}		Riederer (1990) Wolfe et al. (1980) Ryan et al. (1988)	V V C	
	8.2×10^{1} 2.5×10^{1} 8.4×10^{-1}		Petrasek et al. (1983) Saçan et al. (2005) Meylan and Howard (1991)	C Q Q	
ois(2-ethylhexyl) terephthalate C ₂₄ H ₃₈ O ₄ 6422-86-2]	9.9×10 ⁻¹		HSDB (2015)	Q	38
dinonyl phthalate C ₂₆ H ₄₂ O ₄ [84-76-4]	$ \begin{array}{c} 1.1 \times 10^{-1} \\ 7.0 \times 10^{-1} \\ 3.0 \times 10^{1} \end{array} $		Cousins and Mackay (2000) HSDB (2015) Saçan et al. (2005)	V Q Q	38
liisononyl phthalate C ₂₆ H ₄₂ O ₄ 28553-12-0]	$6.6 \\ 1.1 \times 10^{-1} \\ 3.3 \times 10^{1}$		HSDB (2015) Cousins and Mackay (2000) Saçan et al. (2005)	V V Q	
didecyl phthalate C ₂₈ H ₄₆ O ₄ 84-77-5]	$4.6 \times 10^{-2} \\ 3.5 \times 10^{-1}$		Cousins and Mackay (2000) HSDB (2015)	V Q	38
diisodecyl phthalate C ₂₈ H ₄₆ O ₄ [26761-40-0]	9.0 3.8×10^{1} 4.6×10^{-2} 2.4×10^{1}		HSDB (2015) Saçan et al. (2005) Cousins and Mackay (2000) Saçan et al. (2005)	V V V Q	
liundecyl phthalate C ₃₀ H ₅₀ O ₄ [3648-20-2]	3.3×10^{1} 2.0×10^{-2} 1.8×10^{-1} 1.4×10^{1}		Saçan et al. (2005) Cousins and Mackay (2000) HSDB (2015) Saçan et al. (2005)	V V Q Q	38
ditridecyl phthalate C ₃₄ H ₅₈ O ₄ [119-06-2]	3.6×10^{-3} 4.5×10^{-2} 7.9×10^{1}		Cousins and Mackay (2000) HSDB (2015) Saçan et al. (2005)	V Q Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
ethanedioic acid, dimethyl ester C ₄ H ₆ O ₄ (dimethyl oxalate) [553-90-2]	6.9		Hilal et al. (2008)	Q	
propanedioic acid, dimethyl ester C ₅ H ₈ O ₄ (dimethyl malonate) [108-59-8]	3.8×10 ¹	11000	Katrib et al. (2003)	M	
propanedioic acid, diethyl ester C ₇ H ₁₂ O ₄ (diethyl malonate) [105-53-3]	3.9	5900 6400	Hilal et al. (2008) Kühne et al. (2005) Kühne et al. (2005)	Q Q ?	
butanedioic acid, dimethyl ester C ₆ H ₁₀ O ₄ (dimethyl succinate) [106-65-0]	3.0×10 ¹ 1.5×10 ²	8500 7100 7000	Katrib et al. (2003) HSDB (2015) Kühne et al. (2005) Kühne et al. (2005)	M Q Q ?	38
diethyl succinate C ₈ H ₁₄ O ₄ [123-25-1]	4.0		Hilal et al. (2008)	Q	
(Z) -2-butenedioic acid dimethyl ester $C_6H_8O_4$ [624-48-6]	2.3×10 ¹		Hilal et al. (2008)	Q	
diethyl pimelate C ₁₁ H ₂₀ O ₄ [2050-20-6]	1.5		Hilal et al. (2008)	Q	
1,3-benzenedicarboxylic acid, diethyl ester	2.5×10 ¹		Zhang et al. (2010)	Q	107, 108
$C_{12}H_{14}O_4$	1.9×10^{1}		Zhang et al. (2010)	Q	107, 109
[636-53-3]	2.9×10^{7}		Zhang et al. (2010)	Q	107, 110
	5.6×10^{1}		Zhang et al. (2010)	Q	107, 111
2,6-naphthalenedicarboxylic acid, dimethyl ester	4.5×10^2		Zhang et al. (2010)	Q	107, 108
$C_{14}H_{12}O_4$	2.5×10^{3}		Zhang et al. (2010)	Q	107, 109
[840-65-3]	2.6×10^{7}		Zhang et al. (2010)	Q	107, 110
	1.3×10^3		Zhang et al. (2010)	Q	107, 111
di-(2-ethylhexyl)-adipate	2.3×10 ¹		Felder et al. (1986)	X	137
C ₂₂ H ₄₂ O ₄ [103-23-1]	4.3×10^{-1}		Hilal et al. (2008)	Q	
peroxybenzoic acid, <i>tert</i> -butyl ester	4.7×10^{-2}		HSDB (2015)	Q	38
$C_{11}H_{14}O_3$	4.7×10^{-2}		Zhang et al. (2010)	Q	107, 108
[614-45-9]	1.8×10^{-1}		Zhang et al. (2010)	Q	107, 109
	8.2		Zhang et al. (2010)	Q	107, 110
	5.4		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
neodecaneperoxoic acid, 1,1-dimethylethyl ester	9.9×10^{-4}		Zhang et al. (2010)	Q	107, 108
C ₁₄ H ₂₈ O ₃ [26748-41-4]	4.7×10^{-3} 1.2×10^{-1} 2.3×10^{-2}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q	107, 109 107, 110 107, 111
neoheptaneperoxoic acid, 1-methyl-1- phenylethyl ester	3.8×10^{-2}		Zhang et al. (2010)	Q	107, 108
C ₁₆ H ₂₄ O ₃ [130097-36-8]	9.0×10 ⁻² 2.5 1.3		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q	107, 109 107, 110 107, 111
hydroxypropyl acrylate $C_6H_{10}O_3$ [25584-83-2]	5.8×10^3		HSDB (2015)	Q	38
2-hydroxyethyl methacrylate C ₆ H ₁₀ O ₃ [868-77-9]	2.1×10 ³		HSDB (2015)	Q	38
2-hydroxypropyl acrylate C ₆ H ₁₀ O ₃ [999-61-1]	1.6×10 ³		HSDB (2015)	Q	38
dimethyl fumarate $C_6H_8O_4$ [624-49-7]	1.4×10 ¹		HSDB (2015)	Q	38
hexanedioic acid, dimethyl ester $C_8H_{14}O_4$ (dimethyl adipate) [627-93-0]	1.0×10 ¹		HSDB (2015)	Q	38
methyl 4-hydroxybenzoate $C_8H_8O_3$ (methylparaben) [99-76-3]	4.5×10 ³		HSDB (2015)	Q	38
diethyl fumarate C ₈ H ₁₂ O ₄ [623-91-6]	4.1×10^2		HSDB (2015)	Q	38
diethyl adipate C ₁₀ H ₁₈ O ₄ [141-28-6]	2.7		HSDB (2015)	V	
propyl 4-hydroxybenzoate $C_{10}H_{12}O_3$ (propylparaben) [94-13-3]	1.5×10 ³		HSDB (2015)	Q	38
diethylene glycol diacrylate C ₁₀ H ₁₄ O ₅ [4074-88-8]	1.0×10 ⁴		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$ 2.7×10^1	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	
(2,2-dimethyl-3-prop-2-enoyloxypropyl) prop-2-enoate $C_{11}H_{16}O_4$ (2,2-dimethyltrimethylene acrylate) [2223-82-7]	2.7×10 ⁴		HSDB (2015)	Q	182
methyl jasmonate C ₁₃ H ₂₀ O ₃ [1211-29-6]	7.0×10^2		HSDB (2015)	Q	38
cinoxate C ₁₄ H ₁₈ O ₄ [104-28-9]	1.9×10 ³		HSDB (2015)	Q	182
trimethylolpropane triacrylate C ₁₅ H ₂₀ O ₆ [15625-89-5]	1.6×10 ⁴		HSDB (2015)	Q	182
benzyl cinnamate C ₁₆ H ₁₄ O ₂ [103-41-3]	3.0×10^{1}		HSDB (2015)	Q	38
2,2,4-trimethyl-1,3-pentanediol disobutyrate $C_{16}H_{30}O_4$ [6846-50-0]	9.0×10 ⁻¹		HSDB (2015)	Q	38
nonanedioic acid, dibutyl ester C ₁₇ H ₃₂ O ₄ (dibutyl azelate) [2917-73-9]	8.2×10 ⁻¹		HSDB (2015)	Q	38
sopropyl myristate C ₁₇ H ₃₄ O ₂ 110-27-0]	4.2×10 ⁻⁴		HSDB (2015)	Q	38
decanedioic acid, dibutyl ester C ₁₈ H ₃₄ O ₄ [109-43-3]	2.1×10^2		HSDB (2015)	V	
diethylene glycol dibenzoate C ₁₈ H ₁₈ O ₅ [120-55-8]	3.3×10^6		HSDB (2015)	Q	38
12-hydroxy-9-octadecenoic acid methyl ester C ₁₉ H ₃₆ O ₃ (ricinoleic acid, methyl ester) [141-24-2]	, 6.7×10 ¹		HSDB (2015)	Q	38
chrysanthemumic acid 2,4-dimethylbenzyl ester C ₁₉ H ₂₆ O ₂ (dimethrin) [70-38-2]	1.3×10 ⁻¹		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

	H^{cp}	11 7760			
Substance Formula (Other name(s)) [CAS registry number]	$ (at T^{\ominus}) \\ \left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right] $	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
tributyl acetylcitrate $C_{20}H_{34}O_{8}$ (acetyl tributyl citrate) [77-90-7]	2.6×10 ⁴		HSDB (2015)	Q	38
hexanedioic acid, dioctyl ester C ₂₂ H ₄₂ O ₄ (di-n-octyl adipate) [123-79-5]	2.3×10 ¹		Felder et al. (1986)	X	137
diisooctyl adipate C ₂₂ H ₄₂ O ₄ [1330-86-5]	1.9×10 ⁻¹		HSDB (2015)	Q	38
hexanedioic acid, bis[2-(2-butoxyethoxy)ethyl] ester $C_{22}H_{42}O_8$ (bis(2-(2-butoxyethoxy)ethyl) adipate) [141-17-3]	3.2×10 ⁷		HSDB (2015)	Q	38
	4.7×10 ⁻¹		HSDB (2015)	Q	38
phthalic acid, isodecyl octyl ester C ₂₆ H ₄₂ O ₄ [1330-96-7]	4.7×10^{-1}		HSDB (2015)	Q	38
diisononyl hexahydrophthalate C ₂₆ H ₄₈ O ₄ [166412-78-8]	1.4×10^{-1}		HSDB (2015)	Q	38
decanedioic acid, bis(2-ethylhexyl) ester C ₂₆ H ₅₀ O ₄ (bis(2-ethylhexyl) sebacate) [122-62-3]	1.2×10 ⁻¹		HSDB (2015)	Q	38
glycerol tricaprylate $C_{27}H_{50}O_{6}$ (tricaprylin) [538-23-8]	3.9×10^2		HSDB (2015)	Q	38
tris(2-ethylhexyl) trimellitate $C_{33}H_{54}O_6$ [3319-31-1]	2.2×10 ¹		HSDB (2015)	Q	38
emamectin benzoate C ₉₇ H ₁₄₆ O ₂₆ [119791-41-2]	5.8×10 ³		HSDB (2015)	V	
]	Ethers (1	ROR)		

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]			-71-	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
dimethyl ether	1.7×10^{-3}		HSDB (2015)	V	
CH ₃ OCH ₃	7.6×10^{-2}		Mackay et al. (2006c)	V	
[115-10-6]	1.3×10^{-1}		Mackay et al. (1993)	V	
	9.9×10^{-3}		Hine and Mookerjee (1975)	V	
	9.8×10^{-3}		Hine and Weimar Jr. (1965)	R	
	1.0×10^{-2}	4900	Bagno et al. (1991)	T	196
	1.8×10^{-2}		Hilal et al. (2008)	Q	
	2.2×10^{-3}		Nirmalakhandan et al. (1997)	Q	
	9.9×10^{-3}		Abraham et al. (1990)	?	
ethyl methyl ether	1.4×10^{-2}		Bagno et al. (1991)	T	196
C ₂ H ₅ OCH ₃	1.5×10^{-2}		HSDB (2015)	Q	38
[540-67-0]	1.5×10^{-2}		Hilal et al. (2008)	Q	
	1.9×10^{-3}		Nirmalakhandan et al. (1997)	Q	
	8.9×10^{-3}		Saxena and Hildemann (1996)	E	158
diethyl ether	5.0×10^{-3}		Steward et al. (1973)	L	19
$C_2H_5OC_2H_5$	1.1×10^{-2}	6600	Hiatt (2013)	M	
[60-29-7]	9.5×10^{-2}		Helburn et al. (2008)	M	
	1.1×10^{-2}		Nielsen et al. (1994)	M	
	7.0×10^{-3}	3900	Lamarche and Droste (1989)	M	135
	6.3×10^{-3}		Guitart et al. (1989)	M	19
	7.8×10^{-3}		Signer et al. (1969)	M	
	1.1×10^{-2}		Mackay et al. (2006c)	V	
	1.1×10^{-2}		Mackay et al. (1993)	V	
	8.7×10^{-3}		Hwang et al. (1992)	V	
	1.1×10^{-2}		Hine and Weimar Jr. (1965)	V	
	1.1×10^{-2}		Butler and Ramchandani (1935)	V	
	6.0×10^{-3}	5700	Bagno et al. (1991)	T	196
	7.0×10^{-3}		Hilal et al. (2008)	Q	
		5300	Kühne et al. (2005)	Q	
	1.7×10^{-3}		Nirmalakhandan et al. (1997)	Q ?	
		5700	Kühne et al. (2005)	?	
	7.7×10^{-3}		Hoff et al. (1993)	?	7
	6.0×10^{-3}		Abraham et al. (1990)	?	
diethyl ether-d10 $C_2D_5OC_2D_5$ [2679-89-2]	1.3×10^{-2}	6500	Hiatt (2013)	M	
methyl propyl ether	6.7×10^{-3}		Meylan and Howard (1991)	V	
CH ₃ OC ₃ H ₇	6.7×10^{-3}		Hine and Mookerjee (1975)	V	
[557-17-5]	1.1×10^{-2}		Hilal et al. (2008)	Q	
	1.5×10^{-3}		Nirmalakhandan et al. (1997)	Q	
	6.5×10^{-3}		Meylan and Howard (1991)	Q	
methyl 2-propyl ether	1.2×10^{-2}		Hine and Mookerjee (1975)	V	
CH ₃ OC ₃ H ₇ (methyl isopropyl ether) [598-53-8]	8.2×10^{-3}		Hilal et al. (2008)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	P.4		
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]	Reference	Туре	Note
divinyl ether	5.4×10^{-4}		Steward et al. (1973)	L	19
C_4H_6O	3.8×10^{-4}		Hilal et al. (2008)	Q	
[109-93-3]	2.0×10^{-3}		Nirmalakhandan et al. (1997)	Q	
methyl butyl ether C ₅ H ₁₂ O [628-28-4]	4.4×10^{-3}		Amoore and Buttery (1978)	V	
2-methoxybutane C ₅ H ₁₂ O [6795-87-5]	6.2×10^{-3}		Hilal et al. (2008)	Q	
methyl tert-butyl ether	1.7×10^{-2}	9100	Hiatt (2013)	M	
CH ₃ OC(CH ₃) ₃	3.2×10^{-2}		Zhang et al. (2013)	M	
(MTBE)	1.1×10^{-2}	4800	Sieg et al. (2009)	M	121
[1634-04-4]	1.1×10^{-2}	4400	Falabella and Teja (2008)	M	89, 130
	1.2×10^{-2}	5000	Arp and Schmidt (2004)	M	209
	1.4×10^{-2}	4500	Fischer et al. (2004)	M	
	7.2×10^{-3}	3200	Bierwagen and Keller (2001)	M	
	1.7×10^{-2}		Miller and Stuart (2000)	M	126
	2.3×10^{-2}		Park et al. (1997)	M	
	1.6×10^{-2}	7700	Robbins et al. (1993)	M	
	1.4×10^{-2}		Mackay et al. (2006c)	V	
	1.6×10^{-2}		Park et al. (1997)	V	
	1.4×10^{-2}		Mackay et al. (1993)	V	
	2.0×10^{-2}		Hwang et al. (1992)	V	
	1.7×10^{-2}		Guthrie (1973)	V	
	1.7×10^{-2}		Bagno et al. (1991)	T	196
	3.9×10^{-3}		Hilal et al. (2008)	Q	
	0.1.10-1	6300	Kühne et al. (2005)	Q	
	8.6×10^{-4}	6000	Nirmalakhandan et al. (1997) Kühne et al. (2005)	Q ?	
ethyl propyl ether	8.6×10 ⁻³		Hine and Mookerjee (1975)	V	
C ₂ H ₅ OC ₃ H ₇	8.6×10^{-3}		Butler and Ramchandani (1935)	V	
[628-32-0]	7.7×10^{-3}		Howard and Meylan (1997)	X	181
[028-32-0]	7.9×10^{-3}		Hilal et al. (2008)	Q	101
1-ethoxy-butane	6.4×10^{-3}		Miller and Stuart (2000)	M	126
C ₆ H ₁₄ O	7.8×10^{-3}		Mackay et al. (2006c)	V	
(ethyl butyl ether)	7.8×10^{-3}		Mackay et al. (1993)	V	
[628-81-9]		5900	Kühne et al. (2005)	Q	
-		5000	Kühne et al. (2005)	?	
ethyl <i>tert</i> -butyl ether	6.3×10^{-3}	6600	Sieg et al. (2009)	M	121
$C_2H_5OC(CH_3)_3$	4.4×10^{-3}	4300	Falabella and Teja (2008)	M	89, 130
(ETBE)	6.1×10^{-3}	6500	Arp and Schmidt (2004)	M	
[637-92-3]	4.2×10^{-3}		Miller and Stuart (2000)	M	126
	3.7×10^{-3}	7600	Pankow et al. (1996)	?	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left\lceil \frac{\text{mol}}{\text{m}^3 \text{Pa}} \right\rceil$	[K]		71	
2-methoxy-2-methylbutane	8.6×10^{-3}	6500	Arp and Schmidt (2004)	M	
C ₆ H ₁₄ O	5.2×10^{-3}		Miller and Stuart (2000)	M	126
(tert-amyl methyl ether)	1.0×10^{-2}		Dohnal and Hovorka (1999)	M	
[994-05-8]	7.0×10^{-3}		Park et al. (1997)	M	
[55. 66 6]	8.1×10^{-3}		Park et al. (1997)	V	
		6600	Kühne et al. (2005)	Q	
		6900	Kühne et al. (2005)	?	
	5.0×10^{-3}	7600	Pankow et al. (1996)	?	
dipropyl ether	3.0×10^{-3}		Li and Carr (1993)	M	
C ₃ H ₇ OC ₃ H ₇	2.9×10^{-3}		Li et al. (1993)	M	
[111-43-3]	2.2×10^{-3}	9100	Hartkopf and Karger (1973)	M	
	3.9×10^{-3}		Mackay et al. (2006c)	V	
	3.9×10^{-3}		Mackay et al. (1993)	V	
	5.7×10^{-3}		Hwang et al. (1992)	V	
	2.9×10^{-3}		Hine and Mookerjee (1975)	V	
	2.8×10^{-3}		Butler and Ramchandani (1935)	V	
	6.0×10^{-3}		Hilal et al. (2008)	Q	
		5900	Kühne et al. (2005)	Q	
	1.0×10^{-3}		Nirmalakhandan et al. (1997)	Q	
	_	7300	Kühne et al. (2005)	?	
	1.9×10^{-3}		Hoff et al. (1993)	?	7
	4.5×10^{-3}		Yaws and Yang (1992)	?	92
	2.9×10^{-3}		Abraham et al. (1990)	?	
diisopropyl ether	3.9×10^{-3}	6400	Arp and Schmidt (2004)	M	
$C_3H_7OC_3H_7$	4.3×10^{-3}		Miller and Stuart (2000)	M	126
[108-20-3]	4.7×10^{-3}		Dohnal and Hovorka (1999)	M	
	4.8×10^{-3}		Nielsen et al. (1994)	M	
	4.2×10^{-3}		Li and Carr (1993)	M	
	4.4×10^{-3}		Li et al. (1993)	M	
	2.8×10^{-3}		Guitart et al. (1989)	M	19
	4.3×10^{-3}		HSDB (2015)	V	
	3.9×10^{-3}		Mackay et al. (2006c)	V	
	3.1×10^{-3}	6400	Pankow et al. (1996)	V	
	3.9×10^{-3}		Mackay et al. (1993)	V	
	9.9×10^{-4}		Hine and Mookerjee (1975)	V	
	9.8×10^{-4}		Hine and Weimar Jr. (1965)	V	
	3.7×10^{-3}	4 40 -	Hilal et al. (2008)	Q	
	0.5 .5 4	6600	Kühne et al. (2005)	Q	
	8.0×10^{-4}	=	Nirmalakhandan et al. (1997)	Q	
	5.5 to=2	7200	Kühne et al. (2005)	?	0.5
	5.7×10^{-3}		Yaws and Yang (1992)	?	92
	9.9×10^{-4}		Abraham et al. (1990)	?	
2-ethyl-2-ethoxypropane C ₇ H ₁₆ O [919-94-8]	2.4×10^{-3}		Hilal et al. (2008)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
dibutyl ether C ₄ H ₉ OC ₄ H ₉ [142-96-1]	2.2×10^{-3} 1.3×10^{-3} 2.1×10^{-3} 2.1×10^{-3} 1.6×10^{-3} 3.1×10^{-3} 6.4×10^{-4} 1.6×10^{-3}	6600 7000	Li and Carr (1993) Li et al. (1993) Mackay et al. (2006c) Mackay et al. (1993) Pierotti et al. (1959) Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan et al. (1997) Kühne et al. (2005)	M M V V X Q Q Q	165
diisobutyl ether C ₈ H ₁₈ O [628-55-7]	$\frac{1.6 \times 10^{-3}}{3.7 \times 10^{-3}}$		Abraham et al. (1990) Hilal et al. (2008)	? Q	
1,1'-oxybispentane C ₁₀ H ₂₂ O [693-65-2]	2.7×10^{-3}		Hilal et al. (2008)	Q	
1,1'-oxybis(3-methylbutane) C ₁₀ H ₂₂ O (diisopentyl ether) [544-01-4]	$6.6 \times 10^{-3} \\ 3.3 \times 10^{-3}$		HSDB (2015) Hilal et al. (2008)	V Q	
1,1'-oxybishexane C ₁₂ H ₂₆ O [112-58-3]	1.8×10^{-3}		Hilal et al. (2008)	Q	
1-ethoxy-3,7-dimethyloctane C ₁₂ H ₂₆ O [22810-10-2]	6.7×10^{-4} 5.3×10^{-3} 1.3×10^{-3} 2.5×10^{-4}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
methoxycyclohexane C ₇ H ₁₄ O [931-56-6]	3.1×10^{-2}		Hilal et al. (2008)	Q	
methyl cedryl ether C ₁₆ H ₂₈ O [19870-74-7]	2.5×10^{-3} 2.4×10^{-3} 7.7×10^{-3} 1.2×10^{-3}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
dimethoxymethane CH ₃ OCH ₂ OCH ₃ [109-87-5]	6.1×10^{-2} 5.7×10^{-2} 2.3×10^{-1}		HSDB (2015) Pierotti et al. (1959) Hilal et al. (2008)	V X Q	165
trimethoxymethane $HC(OCH_3)_3$ [149-73-5]	6.9×10^{-1}		Guthrie (1973)	V	
1,1-diethoxyethane (C ₂ H ₅ O) ₂ CHCH ₃ [105-57-7]	1.0×10^{-1} 1.0×10^{-1} 5.7×10^{-2}		HSDB (2015) Hine and Mookerjee (1975) Hilal et al. (2008)	V V Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1,2-diethoxyethane C ₂ H ₅ OC ₂ H ₄ OC ₂ H ₅ [629-14-1]	$ \begin{array}{c} 1.6 \times 10^{-1} \\ 1.6 \times 10^{-1} \\ 1.2 \times 10^{-1} \\ 3.9 \times 10^{-1} \end{array} $		HSDB (2015) Hine and Mookerjee (1975) Howard and Meylan (1997) Hilal et al. (2008)	V V X Q	181
1,1,1-trimethoxyethane CH ₃ C(OCH ₃) ₃ 1445-45-0]	6.4×10 ⁻¹		Guthrie (1973)	V	
1,2-dimethoxyethane $C_4H_{10}O_2$ [110-71-4]	1.4 9.0 5.3×10 ⁻¹	7100	Cabani et al. (1978) HSDB (2015) Hilal et al. (2008)	T Q Q	38
3-oxa-1-hexanol C ₅ H ₁₂ O ₂ (2-propoxyethanol) [2807-30-9]	$ 2.0 \times 10^{1} \\ 6.6 \times 10^{2} \\ 1.0 \times 10^{1} \\ 5.8 $	8400	Cabani et al. (1978) HSDB (2015) Hilal et al. (2008) Nirmalakhandan et al. (1997)	T Q Q Q	38
3-oxa-1-heptanol C ₆ H ₁₄ O ₂ (2-butoxyethanol; butyl cellosolve) [111-76-2]	$ 3.5 1.3 \times 10^{1} 2.7 1.6 \times 10^{1} 7.7 4.5 $	7700 8300 8900	Hiatt (2013) Kim et al. (2000) Johanson and Dynésius (1988) Cabani et al. (1978) Hilal et al. (2008) Nirmalakhandan et al. (1997)	M M M T Q	19
1-methoxy-2-propanol C ₄ H ₁₀ O ₂ [107-98-2]	$4.8 \\ 1.1 \times 10^{1} \\ 1.2 \times 10^{1}$		Johanson and Dynésius (1988) Hilal et al. (2008) Hilal et al. (2008)	M C Q	19
4-methyl-3-oxa-1-pentanol C ₅ H ₁₂ O ₂ 2-isopropoxyethanol) 109-59-1]	4.8 7.9		Johanson and Dynésius (1988) Hilal et al. (2008)	M Q	19
1,2-dibutoxyethane C ₁₀ H ₂₂ O ₂ [112-48-1]	$9.9 \times 10^{-1} \\ 1.4 \times 10^{-1}$		HSDB (2015) Hilal et al. (2008)	V Q	
8,6-dioxa-1-decanol C ₈ H ₁₈ O ₃ butyl carbitol) 112-34-5]	1.4×10 ³		Kim et al. (2000)	M	
1,1'-[oxybis(2,1- ethanediyloxy)]bisbutane C ₁₂ H ₂₆ O ₃ 112-73-2]	3.5		Hilal et al. (2008)	Q	
methoxyethene C ₃ H ₆ O (vinyl methyl ether) [107-25-5]	1.5×10 ⁻³		HSDB (2015)	V	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1-(ethenyloxy)butane C ₆ H ₁₂ O (butyl vinyl ether) [111-34-2]	4.5×10 ⁻³		HSDB (2015)	V	
vinylisobutyl ether C ₆ H ₁₂ O [109-53-5]	1.9×10^{-4}		Hilal et al. (2008)	Q	
methoxybenzene	2.9×10^{-2}	4200	Brockbank et al. (2013)	M	
C ₆ H ₅ OCH ₃	2.6×10^{-2}	4800	Dewulf et al. (1999)	M	
(anisole)	3.2×10^{-2}		Li and Carr (1993)	M	
100-66-3]	3.1×10^{-2}		Mackay et al. (2006c)	V	
	4.0×10^{-2}		Mackay et al. (1993)	V	
	2.3×10^{-3}		Hine and Mookerjee (1975)	V	
	2.3×10^{-3}		Hine and Weimar Jr. (1965)	R	
	6.9×10^{-2}		Schüürmann (2000)	C	7
	2.3×10^{-3}		HSDB (2015)	Q	38
	9.0×10^{-3}		Hilal et al. (2008)	Q	
	_	4500	Kühne et al. (2005)	Q	
	1.2×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	2	4300	Kühne et al. (2005)	?	
	2.5×10^{-2}		Abraham et al. (1990)	?	
ethoxybenzene	1.7×10^{-2}		Li and Carr (1993)	M	
C ₈ H ₁₀ O	2.2×10^{-2}		HSDB (2015)	V	
phenetole)	2.3×10^{-2}		Mackay et al. (2006c)	V	
[103-73-1]	6.5×10^{-3}		Hilal et al. (2008)	Q	
	1.0×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	1.7×10^{-2}		Abraham et al. (1990)	?	
1,2-dimethoxybenzene		5100	Kühne et al. (2005)	Q	
C ₈ H ₁₀ O ₂ [91-16-7]		2400	Kühne et al. (2005)	?	
2-phenoxyethanol	2.0×10^2		HSDB (2015)	V	
C ₈ H ₁₀ O ₂ [122-99-6]	3.4×10^{1}		Hilal et al. (2008)	Q	
2-(phenylmethoxy)-ethanol C ₉ H ₁₂ O ₂ [622-08-2]	1.5×10^2		Hilal et al. (2008)	Q	
1,2,3-trimethoxybenzene C ₉ H ₁₂ O ₃ [634-36-6]	3.6		Schüürmann (2000)	V	
1-methoxy-4-(1-propenyl)-benzene	9.9×10^{-2}	6200	van Roon et al. (2005)	V	
$C_{10}H_{12}O$	1.4×10^{-1}		HSDB (2015)	Q	38
(anethole) [104-46-1]	2.0×10^{-2}		Hilal et al. (2008)	Q	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp} (at T^{Θ})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} \ln H^{cp}}$			
Formula	$(at I^{\circ})$	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]	FT73			
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
2-methoxy-4-(2-propenyl)-phenol	5.1		HSDB (2015)	V	
$C_{10}H_{12}O_2$	7.2	9700	van Roon et al. (2005)	V	
(eugenol)					
[97-53-0]					
1,2-dimethoxy-4-(2-propenyl)-benzene	1.8		HSDB (2015)	V	
$C_{11}H_{14}O_2$	3.6		Hilal et al. (2008)	Q	
[93-15-2]					
diphenyl ether	3.5×10^{-2}		HSDB (2015)	V	
$C_{12}H_{10}O$	3.7×10^{-2}		Mackay et al. (2006c)	V	
[101-84-8]	1.1×10^{-1}		Kurz and Ballschmiter (1999)	V	
	3.7×10^{-2}		Mackay et al. (1993)	V	
	1.7×10^{-2}		Hilal et al. (2008)	Q	
(phenoxymethyl)-oxirane	1.2×10^{1}		HSDB (2015)	V	
$C_9H_{10}O_2$	6.1×10^{-1}		Hilal et al. (2008)	Q	
[122-60-1]					
1-dodecyl-4-phenoxybenzene	3.4×10^{-3}		Zhang et al. (2010)	Q	107, 108
C ₂₄ H ₃₄ O	1.4×10^{-3}		Zhang et al. (2010)	Q	107, 109
[119345-02-7]	1.7×10^{-2}		Zhang et al. (2010)	Q	107, 110
	7.7×10^{-2}		Zhang et al. (2010)	Q	107, 111
2,2,4-trimethyl-4-(4-(4-	1.3×10^{-3}		Zhang et al. (2010)	Q	107, 108
(2,4,4-trimethylpentan-2-					
yl)phenoxy)phenyl)pentane	_				
C ₂₈ H ₄₂ O	1.2×10^{-3}		Zhang et al. (2010)	Q	107, 109
[61702-88-3]	5.4×10^{-2}		Zhang et al. (2010)	Q	107, 110
	6.9×10^{-3}		Zhang et al. (2010)	Q	107, 111
di-tert-butyl sec-butylidene diperoxide	1.2×10^{-2}		Zhang et al. (2010)	Q	107, 108
$C_{12}H_{26}O_4$	6.1×10^{-5}		Zhang et al. (2010)	Q	107, 109
[2167-23-9]	1.6×10^{-2}		Zhang et al. (2010)	Q	107, 110
	1.1		Zhang et al. (2010)	Q	107, 111
peroxide, 1,1-dimethylethyl 1-methyl- 1-phenylethyl	1.4×10^{-2}		Zhang et al. (2010)	Q	107, 108
$C_{13}H_{20}O_2$	4.8×10^{-3}		Zhang et al. (2010)	Q	107, 109
[3457-61-2]	1.6×10^{-2}		Zhang et al. (2010)	Q	107, 110
	1.9×10^{-1}		Zhang et al. (2010)	Q	107, 111
di- <i>tert</i> -butyl 1,1,4,4- tetramethyltetramethylene diperoxide	3.9×10^{-3}		Zhang et al. (2010)	Q	107, 108
$C_{16}H_{34}O_4$	7.9×10^{-4}		Zhang et al. (2010)	Q	107, 109
[78-63-7]	1.3×10^{-1}		Zhang et al. (2010)	Q	107, 110
	3.4×10^{-1}		Zhang et al. (2010)	Q	107, 111
1,4-bis(1- <i>tert</i> -butylperoxy-1-methyl- ethyl)benzene	1.0×10^{-1}		Zhang et al. (2010)	Q	107, 108
C ₂₀ H ₃₄ O ₄	1.8×10^{-2}		Zhang et al. (2010)	Q	107, 109
[2781-00-2]	2.9×10^{-1}		Zhang et al. (2010)	Q	107, 110
	8.6		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$			
Other name(s))		u(1/1)	Reference	Type	Note
CAS registry number]	$\left[\frac{\text{mol}}{3 \text{ p}}\right]$	[K]			
	\[\langle m^3 Pa \]		*41		
2.6 4 1	$\frac{\text{Heter}}{1.2 \times 10^2}$	ocycies v	vith oxygen	***	
2-furanmethanol	1.2×10^{2} 3.4×10^{1}		HSDB (2015)	V	
C ₅ H ₆ O ₂ [98-00-0]	3.4×10 ⁻²		Hilal et al. (2008)	Q	
tetrahydropyran-2-methanol C ₆ H ₁₂ O ₂	9.0×10^{1}		Hilal et al. (2008)	Q	
[100-72-1]					
oxirane	5.8×10^{-2}	3200	Conway et al. (1983)	M	
C_2H_4O	8.3×10^{-2}		Lide and Frederikse (1995)	V	
(ethylene oxide)	8.6×10^{-2}		Mackay et al. (1993)	V	
[75-21-8]	5.0×10^{-2}		Hwang et al. (1992)	V	
	3.9×10^{-2}		Hilal et al. (2008)	Q	
1,2-epoxypropane	1.4×10^{-1}		HSDB (2015)	V	
C ₃ H ₆ O	1.2×10^{-1}		Mackay et al. (2006c)	V	
(propyleneoxide)	1.2×10^{-1}		Lide and Frederikse (1995)	V	
[75-56-9]	1.2×10^{-1}		Mackay et al. (1993)	V	
	5.2×10^{-2}		Goldstein (1982)	X	181
	5.1×10^{-2}	3500	Goldstein (1982)	X	116
	1.7×10^{-2}		Hilal et al. (2008)	Q	
phenyloxirane	6.2×10^{-1}		HSDB (2015)	V	
C_8H_8O	5.8×10^{-1}		Mackay et al. (2006c)	V	
(styrene oxide)	5.8×10^{-1}		Mackay et al. (1993)	V	
[96-09-3]	6.2×10^{-1}		Meylan and Howard (1991)	V	
	2.5×10^{-1}		Hilal et al. (2008)	Q	
	1.0		Meylan and Howard (1991)	Q	
oxacyclopentadiene	1.8×10^{-3}		HSDB (2015)	V	
C ₄ H ₄ O	1.8×10^{-3}		Mackay et al. (2006c)	V	
(furan; furfuran)	1.8×10^{-3}		Mackay et al. (1993)	V	
[110-00-9]	2.3×10^{-3}		Hilal et al. (2008)	Q	
	1.8×10^{-3}		Yaws and Yang (1992)	?	92
libenzofuran	4.7×10^{-2}		HSDB (2015)	V	
$C_{12}H_8O$	7.1×10^{-2}		Mackay et al. (2006b)	V	
(2,2'-biphenylene oxide)	7.2×10^{-2}		Govers and Krop (1998)	V	
[132-64-9]	9.1×10^{-2}		Mackay et al. (1992b)	X	142
	8.2×10^{-2}		Saçan et al. (2005)	Q	
	4.7×10^{-2}		Govers and Krop (1998)	Q	
2-furancarboxaldehyde	2.6		HSDB (2015)	V	
$C_5H_4O_2$	2.7		Mackay et al. (2006c)	V	
(furfural; 2-furanaldehyde)	2.7		Mackay et al. (1995)	V	
[98-01-1]	6.0		Hilal et al. (2008)	Q	
	7.2×10^{-2}		Emel'yanenko et al. (2007)	Q	166
	7.2×10^{-2}	6100	Hertel and Sommer (2006)	Q	166
		6100	Kühne et al. (2005)	Q ?	
		5900	Kühne et al. (2005)	?	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp} (at T^{Θ})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} \ln H^{cp}}$			
Formula (Other name(s))		d(1/T)	Reference	Type	Note
[CAS registry number]	$\begin{bmatrix} \text{mol} \\ \hline \end{bmatrix}$	[K]			
[Cris registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[IX]			
tetrahydrofuran	2.2×10^{-1}		Signer et al. (1969)	M	
C_4H_8O	1.4×10^{-1}	5700	Cabani et al. (1971b)	T	
(THF)	1.1×10^{-1}		Hilal et al. (2008)	Q	
[109-99-9]		4000	Kühne et al. (2005)	Q	
	1	3200	Kühne et al. (2005)	?	
	1.4×10^{-1}		Abraham et al. (1990)	?	
tetrahydrofuran-d8	2.3×10^{-1}	8000	Hiatt (2013)	M	
C_4D_8O					
(THF-d8)					
[1693-74-9]					
2-methyltetrahydrofuran	1.5×10^{-3}		Mackay et al. (1993)	V	
CH ₃ C ₄ H ₇ O	1.1×10^{-1}	6200	Cabani et al. (1971b)	T	
[96-47-9]	6.1×10^{-2}		Hilal et al. (2008)	Q	
		4400	Kühne et al. (2005)	Q	
		5400	Kühne et al. (2005)	?	
2,5-dimethyltetrahydrofuran	5.5×10 ⁻²	6800	Cabani et al. (1971b)	Т	
$(CH_3)_2C_4H_6O$	3.1×10^{-2}		Hilal et al. (2008)	Q	
[1003-38-9]				•	
tetrahydropyran	1.0×10^{-1}		Mackay et al. (2006c)	V	
C ₅ H ₁₀ O	1.0×10^{-1}		Mackay et al. (1993)	V	
(THP)	7.8×10^{-2}	5900	Cabani et al. (1971b)	T	
[142-68-7]	1.1×10^{-1}	-, -,	Hilal et al. (2008)	Q	
	7.9×10^{-2}		Abraham et al. (1990)	?	
3-methyltetrahydropyran		4700	Kühne et al. (2005)	Q	
C ₆ H ₁₂ O		5300	Kühne et al. (2005)	?	
[26093-63-0]					
3,4-dihydro-2H-pyran		3500	Kühne et al. (2005)	Q	
C ₅ H ₈ O		3600	Kühne et al. (2005)	?	
[110-87-2]				•	
1,3-dioxolane	4.0×10^{-1}	4800	Cabani et al. (1971b)	T	
C ₃ H ₆ O ₂	4.0×10 1.5	7000	Hilal et al. (2008)	Q	
[646-06-0]	2.0			~	
1,3-dioxane	2.1		Hilal et al. (2008)	Q	
C ₄ H ₈ O ₂	۵.1		1111at Ct at. (2000)	Q	
[505-22-6]					
1,4-dioxane	2.3	6600	Hiatt (2013)	M	
C ₄ H ₈ O ₂	1.4	5100	Kolb et al. (1992)	M	102
(dioxane)	2.1		Park et al. (1987)	M	
[123-91-1]	1.4		Friant and Suffet (1979)	M	23
	2.2		Rohrschneider (1973)	M	
	1.9		Hwang et al. (1992)	V	
	1.1	£000	Amoore and Buttery (1978)	V	
	2.0	5800	Cabani et al. (1971b)	T	
	3.3	5200	Hilal et al. (2008) Kühne et al. (2005)	Q	
		5200	Equilic Ct al. (2003)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	2.0 2.2 1.4		Betterton (1992) Betterton (1992) Yaws and Yang (1992)	? ? ?	210 211 92
1,4-dioxane-d8 $C_4D_8O_2$ (dioxane-d8) [17647-74-4]	2.8	6800	Hiatt (2013)	M	
4-methyl-1,3-dioxolan-2-one C ₄ H ₆ O ₃ (propylene carbonate) [108-32-7]	2.9×10 ² 1.4×10 ²		HSDB (2015) Abraham et al. (1990)	V ?	
1,3,3-trimethyl-2-oxabicyclo[2.2.2]octane	5.9×10^{-2}		Kish et al. (2013)	M	
C ₁₀ H ₁₈ O (eucalyptol; limonene oxide; 1,8- cineole)	$5.6 \times 10^{-2} \\ 1.2 \times 10^{-1}$		Fichan et al. (1999) Amoore and Buttery (1978)	M M	
[470-82-6]	7.5×10^{-2}		Copolovici and Niinemets (2005)	V	
	2.7×10^{-2}	4600	van Roon et al. (2005)	V	
	7.4×10^{-2}		Niinemets and Reichstein (2002)	V	
	7.8×10^{-2}		Amoore and Buttery (1978)	V	
	2.2×10^{-2}		Hilal et al. (2008)	Q	
dibenzo[b, e][1,4]dioxin	9.0×10^{-2}		HSDB (2015)	V	
$C_{12}H_8O_2$	8.5×10^{-2}		Mackay et al. (2006b)	V	
(dibenzo-p-dioxin)	9.5×10^{-3}		Saçan et al. (2005)	V	
[262-12-4]	8.5×10^{-2}		Govers and Krop (1998)	V	
	8.1×10^{-2}		Shiu et al. (1988)	V	
	2.7×10^{-2}		Saçan et al. (2005)	Q	
	6.3×10^{-2}		Wang and Wong (2002)	Q	212
	9.1×10^{-2}		Govers and Krop (1998)	Q	
piperonal	1.8×10^{1}		HSDB (2015)	V	
C ₈ H ₆ O ₃ [120-57-0]	4.1×10^2		Hilal et al. (2008)	Q	
paraldehyde	2.5×10^{-1}		HSDB (2015)	V	
C ₆ H ₁₂ O ₃ [123-63-7]	3.6×10^{-1}		Hilal et al. (2008)	Q	
benzofuran	1.9×10^{-2}		HSDB (2015)	Q	38
C ₈ H ₆ O [271-89-6]	1.9×10^{-2}		Hilal et al. (2008)	Q	
γ-nonalactone C ₉ H ₁₆ O ₂ [104-61-0]	1.8×10 ⁻¹		Hertel and Sommer (2006)	Q	166

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	dln H ^{cp}			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]		reference	13 pc	11010
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
1,5,5,9-tetramethyl-13-	2.0×10^{-2}		Zhang et al. (2010)	Q	107, 108
oxatricyclo(8.3.0.0(4,9))tridecane	1			_	
C ₁₆ H ₂₈ O	2.9×10^{-1}		Zhang et al. (2010)	Q	107, 109
(ambroxan)	6.5×10^{-2}		Zhang et al. (2010)	Q	107, 110
[3738-00-9]	1.1×10^{-3}		Zhang et al. (2010)	Q	107, 111
1,3,4,6,7,8-hexahydro-4,6,6,7,8,8- hexamethylcyclopenta[<i>g</i>]-2-	7.6×10^{-2}		HSDB (2015)	V	
benzopyran	7.5.10-2		71 (2010)	0	107 106
C ₁₈ H ₂₆ O	7.5×10^{-2} 8.2		Zhang et al. (2010)	Q	107, 108
[1222-05-5]	8.4×10^{-2}		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 109 107, 110
	9.9×10^{-3}		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 110
	9.9 × 10		Zhang et al. (2010)	Ų	107, 111
	Ox	idized te	rpenoids		
(1S-endo)-1,7,7-trimethyl- bicyclo[2.2.1]heptan-2-ol C ₁₀ H ₁₈ O (1S-endo-(-)-borneol) [464-45-9]	4.5×10^{-1}		Fichan et al. (1999)	M	
(1R)-1,3,3- trimethylbicyclo[2.2.1]heptan-2-ol	3.6×10^{-1}		Fichan et al. (1999)	M	
C ₁₀ H ₁₈ O (endo-(+)-fenchyl alcohol) [2217-02-9]					
2-(4-methyl-3-cyclohexen-1-yl)-2- propanol	4.4	2200	Copolovici and Niinemets (2005)	M	
C ₁₀ H ₁₈ O	4.1		Copolovici and Niinemets (2005)	V	
(α-terpineol)	6.0×10^{-1}	4800	van Roon et al. (2005)	V	
[98-55-5]	4.2		Niinemets and Reichstein (2002)	V	
	7.4×10^{-1}	5400	Li et al. (1998)	V	
	3.6		Hilal et al. (2008)	Q	
1,2-dimethyl-3-(1-methylethenyl)- cyclopentanol C ₁₀ H ₁₈ O (plinol) [72402-00-7]	4.0×10^{-1}	17000	Li et al. (1998)	V	
1-methyl-4-(1-methylethyl)-7- oxabicyclo[2.2.1]heptane	3.9×10^{-2}		Helburn et al. (2008)	M	
$C_{10}H_{18}O$	7.4×10^{-2}		Copolovici and Niinemets (2005)	V	
(1,4-cineole) [470-67-7]	1.4×10^{-1}	4000	van Roon et al. (2005)	V	
1,7,7-trimethyl-bicyclo[2.2.1]heptan-2-one	1.2×10^{-1}		HSDB (2015)	V	
$C_{10}H_{16}O$	1.1		Copolovici and Niinemets (2005)	V	
(camphor)	5.4×10^{-1}	4800	van Roon et al. (2005)	V	
[76-22-2]	8.2×10^{-1}		Niinemets and Reichstein (2002)	V	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,7,7-trimethyl-3- oxatricyclo[4.1.1.0(2,4)]octane	2.3×10 ⁻²		Fichan et al. (1999)	M	
$C_{10}H_{16}O$	2.4×10^{-2}		Copolovici and Niinemets (2005)	V	
((-)-α-pinene oxide) [1686-14-2]	5.4×10^{-2}	4400	van Roon et al. (2005)	V	
5-methyl-2-(1-methylethylidene)- cyclohexanone	2.8×10^{-1}	5300	van Roon et al. (2005)	V	
C ₁₀ H ₁₆ O (pulegone) [89-82-7]	1.7×10^{-1}		HSDB (2015)	Q	38
exo-2-[(1,7,7- trimethylbicyclo[2.2.1]hept-2-yl)- oxy]ethanol $C_{12}H_{22}O_2$ (arbanol) [7070-15-7]	1.0	4100	Li et al. (1998)	V	
4-(2,6,6-trimethyl-1-cyclohexenyl)-3- buten-2-one C ₁₃ H ₂₀ O (beta-ionone) [14901-07-6]	1.2		Fichan et al. (1999)	M	
		Miscella	neous		
oxoethanoic acid	$1.1\!\times\!10^2$	4800	Sander et al. (2011)	L	
ОНССООН	1.1×10^2	4800	Ip et al. (2009)	M	
(glyoxylic acid)	3.3×10^3		HSDB (2015)	Q	38
[298-12-4]	8.9×10 ¹		Saxena and Hildemann (1996) Warneck (2005)	E ?	158 213
hydroxyethanoic acid	2.8×10^{2}	4000	Sander et al. (2011)	L	
HOCH ₂ COOH (glycolic acid) [79-14-1]	2.8×10^2	4000	Ip et al. (2009)	M	
2-hydroxyethanal	4.1×10^2	4600	Betterton and Hoffmann (1988)	M	192
HOCH ₂ CHO	9.9×10^{2}		Lee and Zhou (1993)	C	31
(hydroxyacetaldehyde; glycolaldehyde)	6.5×10^2		Hilal et al. (2008)	Q	
[141-46-8]		7600	Kühne et al. (2005)	Q	
		4600	Kühne et al. (2005)	?	
propanonal	3.2×10^2		Zhou and Mopper (1990)	M	127
CH ₃ COCHO	3.4×10^{1}	7500	Betterton and Hoffmann (1988)	M	192
(methylglyoxal; pyruvaldehyde)	3.7×10^{2}		Lee and Zhou (1993)	C	31
[78-98-8]		6200	Kühne et al. (2005)	Q	
		7600	Kühne et al. (2005)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
2-oxopropanoic acid	3.1×10^{3}	5100	Sander et al. (2011)	L	
CH₃COCOOH	3.1×10^{3}	5100	Sander et al. (2006)	L	
(pyruvic acid)	3.0×10^{3}	5300	Staudinger and Roberts (2001)	L	
[127-17-3]	3.1×10^{3}	5100	Khan et al. (1995)	M	
	3.1×10^{3}		Khan et al. (1992)	M	
	3.1×10^{3}	5200	Khan and Brimblecombe (1992)	M	
	2.6×10^{3}		Hilal et al. (2008)	Q	
		5600	Kühne et al. (2005)	Q	
		5300	Kühne et al. (2005)	?	
3-oxopropanoic acid OHCCH ₂ COOH [926-61-4]	6.9×10 ¹		Saxena and Hildemann (1996)	E	158
2-hydroxypropanoic acid	1.2×10^2		HSDB (2015)	V	
CH ₃ CHOHCOOH (lactic acid) [50-21-5]	6.9×10^5		Saxena and Hildemann (1996)	Е	158
glycidaldehyde C ₃ H ₄ O ₂ [765-34-4]	1.9×10 ¹		HSDB (2015)	Q	38
rrimethylene oxide C ₃ H ₆ O (1,3-epoxypropane) [503-30-0]	3.9×10 ⁻¹		HSDB (2015)	V	
2,3-dihydroxypropanal C ₃ H ₆ O ₃ (glyceraldehyde) 367-47-5]	2.0×10 ⁸		Saxena and Hildemann (1996)	Е	158
dihydroxyacetone C ₃ H ₆ O ₃ [96-26-4]	1.8×10 ⁶		HSDB (2015)	V	
2-methoxyethanol	4.4	7500	Hiatt (2013)	M	
$C_3H_8O_2$	2.2×10^{-4}	-870	Ashworth et al. (1988)	M	103
(methyl cellosolve)	1.4×10^{1}		Johanson and Dynésius (1988)	M	19
[109-86-4]	3.7×10^{1}	7300	Cabani et al. (1978)	T	
	2.1×10^{1}		Hilal et al. (2008)	Q	
	1.5×10^{1}		Nirmalakhandan et al. (1997)	Q	
4-oxobutanoic acid OHC(CH ₂) ₂ COOH [692-29-5]	4.9×10 ¹		Saxena and Hildemann (1996)	Е	158
2,3-dihydroxybutanedioic acid			Compernolle and Müller (2014a)	V	214
HOOCCHOHCHOHCOOH (tartaric acid) [87-69-4]	9.9×10^{15}		Saxena and Hildemann (1996)	Е	158

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
3-oxapentane-1,5-diol HO(CH ₂) ₂ O(CH ₂) ₂ OH (diethylene glycol) [111-46-6]	4.9×10^{3} 2.4×10^{4} 2.0×10^{7}		HSDB (2015) Hilal et al. (2008) Saxena and Hildemann (1996)	Q Q E	38 158
hydroxybutanedioic acid HOOCCH ₂ CHOHCOOH (malic acid) [6915-15-7]	$ 2.7 \times 10^{8} \\ 1.2 \times 10^{7} \\ 2.0 \times 10^{11} $		Compernolle and Müller (2014a) HSDB (2015) Saxena and Hildemann (1996)	V Q E	38 158
2 -ethoxyethanol $C_4H_{10}O_2$ [110-80-5]	$8.9 \\ 3.3 \times 10^{1} \\ 2.8 \times 10^{1} \\ 1.6 \times 10^{1} \\ 7.5$	8000	Johanson and Dynésius (1988) Abraham et al. (1994a) Cabani et al. (1978) Hilal et al. (2008) Nirmalakhandan et al. (1997)	M R T Q	19
2-methoxy-1-propanol C ₄ H ₁₀ O ₂ [1589-47-5]	5.5×10^2		HSDB (2015)	Q	38
1,1-dimethoxyethane C ₄ H ₁₀ O ₂ [534-15-6]	1.5×10 ⁻¹		HSDB (2015)	Q	38
4-methylene-2-oxetanone C ₄ H ₄ O ₂ (acetyl ketene) [674-82-8]	1.6×10 ⁻²		HSDB (2015)	Q	38
2(5H)-furanone C ₄ H ₄ O ₂ [497-23-4]	1.0		HSDB (2015)	Q	38
2,2'-bioxirane C ₄ H ₆ O ₂ [1464-53-5]	2.8×10 ²		HSDB (2015)	Q	38
butyrolactone C ₄ H ₆ O ₂ [96-48-0]	1.9×10^2		HSDB (2015)	V	
ethyloxirane C ₄ H ₈ O (1,2-epoxybutane) [106-88-7]	5.5×10 ⁻²		HSDB (2015)	V	
2,3-epoxy-2-methyl-1,4-butanediol $C_5H_{10}O_3$ (IEPOX)			Chan et al. (2010)	Q	215
2,3-epoxy-6-oxo-heptenal C ₇ H ₈ O ₃ (TOL_EPOX)	2.5×10 ³		McNeill et al. (2012)	Q	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

	**Cn				
Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
3-hydroxy-2-butanone C ₄ H ₈ O ₂ (acetoin) [513-86-0]	5.7×10 ⁻¹ 9.9×10 ⁻¹		Straver and de Loos (2005) HSDB (2015)	M Q	38
2-(vinyloxy)ethanol C ₄ H ₈ O ₂ (ethylene glycol monovinyl ether) [764-48-7]	3.9×10 ¹		HSDB (2015)	Q	38
2-methyloxetane C_4H_8O [2167-39-7]	1.2×10 ⁻¹		HSDB (2015)	Q	38
5-oxopentanoic acid OHC(CH ₂) ₃ COOH [5746-02-1]	3.9×10 ¹		Saxena and Hildemann (1996)	Е	158
2-oxopentanedioic acid HOOC(CH ₂) ₂ COCOOH (α -keto glutaric acid) [328-50-7]	9.9×10 ⁶		Saxena and Hildemann (1996)	E	158
tetrahydro-2-furanmethanol C ₅ H ₁₀ O ₂ (tetrahydrofurfuryl alcohol) [97-99-4]	2.4×10 ³		HSDB (2015)	Q	38
xylose C ₅ H ₁₀ O ₅ [58-86-6]	8.2×10^3		HSDB (2015)	Q	38
2-(2-methoxyethoxy)ethanol $C_5H_{12}O_3$ (diethylene glycol monomethyl ether) [111-77-3]	6.2×10 ⁵		HSDB (2015)	Q	38
3,6-dioxaoctane-1,8-diol HO(CH ₂ CH ₂ O) ₃ H (triethylene glycol) [112-27-6]	3.1×10^5 8.9×10^9		HSDB (2015) Saxena and Hildemann (1996)	Q E	38 158
2-oxepanone C ₆ H ₁₀ O ₂ (caprolactone) [502-44-3]	5.5×10 ⁻²		HSDB (2015)	Q	38
glycidyl ether C ₆ H ₁₀ O ₃ (diglycidyl ether) [2238-07-5]	7.6×10 ²		HSDB (2015)	Q	38
4-hydroxy-4-methyl-2-pentanone C ₆ H ₁₂ O ₂ [123-42-2]	2.3×10 ³		HSDB (2015)	Q	216

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number] 1-propoxy-2-propanol C ₆ H ₁₄ O ₂ [1569-01-3]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$ 2.9×10^2	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference HSDB (2015)	Q	Note
2-(2-ethoxyethoxy)ethanol C ₆ H ₁₄ O ₃ (diethylene glycol monoethyl ether) [111-90-0]	4.5×10^2		HSDB (2015)	V	
2,5,8-trioxanonane C ₆ H ₁₄ O ₃ (diglyme) [111-96-6]	1.9×10 ¹		HSDB (2015)	V	
oxydipropanol $C_6H_{14}O_3$ (dipropylene glycol) [25265-71-8]	1.8×10 ³		HSDB (2015)	V	
<i>p</i> -benzoquinone C ₆ H ₄ O ₂ (1,4-benzoquinone) [106-51-4]	2.1×10^{-2}		HSDB (2015)	V	
$\begin{array}{l} 5\text{-hydroxymethylfurfural} \\ C_6H_6O_3 \\ (5\text{-hydroxymethyl-2-furfuraldehyde}) \\ [67\text{-}47\text{-}0] \end{array}$	1.8×10 ⁴		HSDB (2015)	Q	38
5-hydroxy-2-(hydroxymethyl)-4H- pyran-4-one C ₆ H ₆ O ₄ (kojic acid) [501-30-4]	4.1×10 ¹		HSDB (2015)	Q	38
2-hydroxy-1,2,3-propanetricarboxylic			Compernolle and Müller (2014a)	V	217
acid C ₆ H ₈ O ₇ (citric acid) [77-92-9]	3.0×10 ¹⁶		Saxena and Hildemann (1996)	Е	158
(butoxymethyl)oxirane C ₇ H ₁₄ O ₂ (n-butyl glycidyl ether) [2426-08-6]	3.9×10 ⁻¹		HSDB (2015)	V	
1-(1,1-dimethylethoxy)-2-propanol C ₇ H ₁₆ O ₂ (propylene glycol mono-t-butyl ether) [57018-52-7]	2.1		HSDB (2015)	V	
2-[2-(2-methoxyethoxy)ethoxy]ethanol C ₇ H ₁₆ O ₄ (triethylene glycol monomethyl ether) [112-35-6]	2.8×10 ⁸		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2-methylp-benzoquinone $C_7H_6O_2$ [553-97-9]	5.2×10 ³		HSDB (2015)	Q	38
patulin C ₇ H ₆ O ₄ [149-29-1]	9.0×10 ⁴		HSDB (2015)	Q	38
1-hydroxy-3-methoxybenzene C ₇ H ₈ O ₂ (3-methoxyphenol) [150-19-6]	$ \begin{array}{c} 1.7 \times 10^2 \\ 1.3 \times 10^2 \\ 5.0 \times 10^2 \end{array} $		Abraham et al. (1994a) Hilal et al. (2008) Nirmalakhandan et al. (1997)	R Q Q	
mequinol C ₇ H ₈ O ₂ (4-methoxyphenol) [150-76-5]	1.9×10 ¹		HSDB (2015)	Q	38
1-hydroxy-2-methoxybenzene C ₇ H ₈ O ₂ (guaicol; 2-methoxyphenol) [90-05-1]	7.7 9.1 9.6 7.7 4.1×10 ¹ 5.0	7600	Sagebiel et al. (1992) Sagebiel et al. (1992) Mackay et al. (2006c) Sagebiel et al. (1992) Leuenberger et al. (1985) Abraham et al. (1994a)	M M V V V	167
	5.2 5.1×10^2	6700 7800	Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan et al. (1997) Kühne et al. (2005)	Q Q Q ?	
$1,4$ -dimethoxybenzene $C_8H_{10}O_2$ (hydroquinone dimethyl ether) [150-78-7]	2.8×10 ⁻³		HSDB (2015)	Q	38
4 -methyl-2-methoxyphenol $C_8H_{10}O_2$ [93-51-6]	7.7 7.1 1.0×10 ¹ 5.2	7400 7100 7900	Sagebiel et al. (1992) Sagebiel et al. (1992) Sagebiel et al. (1992) Hilal et al. (2008) Kühne et al. (2005) Kühne et al. (2005)	M M V Q Q	
1,3-dimethoxy-2-hydroxybenzene C ₈ H ₁₀ O ₃ (2,6-dimethoxyphenol) [91-10-1]	3.7×10^{1} 5.0×10^{1} 1.2×10^{2} 3.5×10^{2}	6700 7300 7600	Sagebiel et al. (1992) Sagebiel et al. (1992) Sagebiel et al. (1992) Hilal et al. (2008) Kühne et al. (2005) Kühne et al. (2005)	M M V Q Q ?	
hexahydro-1,3-isobenzofurandione C ₈ H ₁₀ O ₃ (hexahydrophthalic anhydride) [85-42-7]	4.7×10 ⁻¹		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1-methoxy-4-methylbenzene $C_8H_{10}O$ [104-93-8]	2.1×10 ⁻³		HSDB (2015)	Q	38
dimethoxane C ₈ H ₁₄ O ₄ [828-00-2]	8.0×10 ¹		HSDB (2015)	Q	38
metaldehyde C ₈ H ₁₆ O ₄ [108-62-3]	1.9×10 ⁻¹		HSDB (2015)	V	
diethyl carbitol $C_8H_{18}O_3$ (diethylene glycol diethyl ether) [112-36-7]	9.0×10 ¹		HSDB (2015)	V	
2-[2-(2-ethoxyethoxy)ethoxy]ethanol C ₈ H ₁₈ O ₄ (triethylene glycol monoethyl ether) [112-50-5]	2.1×10 ⁸		HSDB (2015)	Q	38
tetraethylene glycol C ₈ H ₁₈ O ₅ [112-60-7]	1.8×10 ¹³		HSDB (2015)	Q	38
vanillin C ₈ H ₈ O ₃ [121-33-5]	4.7×10^3		HSDB (2015)	V	
ethylparaben C ₉ H ₁₀ O ₃ [120-47-8]	2.1×10^3		HSDB (2015)	Q	38
ethyl vanillin C ₉ H ₁₀ O ₃ [121-32-4]	1.2×10 ⁴		HSDB (2015)	V	
1-phenoxypropan-2-ol C ₉ H ₁₂ O ₂ (propylene glycol phenyl ether) [770-35-4]	3.4×10 ²		HSDB (2015)	V	
triacetin C ₉ H ₁₄ O ₆ [102-76-1]	8.2×10 ²		HSDB (2015)	V	
tripropylene glycol C ₉ H ₂₀ O ₄ [24800-44-0]	3.0×10 ⁹		HSDB (2015)	Q	38
coumarin C ₉ H ₆ O ₂ [91-64-5]	1.0×10 ²		HSDB (2015)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

	**Cn				
Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
5 -(1-propenyl)-1,3-benzodioxole $C_{10}H_{10}O_2$ (isosafrole) [120-58-1]	2.7×10 ⁻⁴		HSDB (2015)	Q	38
safrole C ₁₀ H ₁₀ O ₂ [94-59-7]	1.1		HSDB (2015)	Q	38
5-propyl-1,3-benzodioxole C ₁₀ H ₁₂ O ₂ (dihydrosafrole) [94-58-6]	8.2×10 ⁻¹		HSDB (2015)	Q	38
2-methoxy-4-(1-propenyl)phenol $C_{10}H_{12}O_2$ (isoeugenol) [97-54-1]	2.7		HSDB (2015)	V	
<i>p</i> -cresyl glycidyl ether C ₁₀ H ₁₂ O ₂ [26447-14-3]	1.3×10 ¹		HSDB (2015)	Q	38
4-(4-hydroxyphenyl)-2-butanone C ₁₀ H ₁₂ O ₂ (raspberry ketone) [5471-51-2]	1.8×10 ⁴		HSDB (2015)	Q	182
guaifenesin C ₁₀ H ₁₄ O ₄ [93-14-1]	2.2×10 ⁵		HSDB (2015)	Q	38
levomenthol C ₁₀ H ₂₀ O (<i>L</i> -menthol) [2216-51-5]	6.6×10 ⁻¹		HSDB (2015)	Q	38
diethylene glycol hexyl ether C ₁₀ H ₂₂ O ₃ [112-59-4]	5.8×10 ²		HSDB (2015)	V	
2-[2-(2-butoxyethoxy)ethoxy]ethanol C ₁₀ H ₂₂ O ₄ (triethylene glycol monobutyl ether) [143-22-6]	1.0×10 ⁸		HSDB (2015)	Q	38
4-methoxy-6-(2-propenyl)-1,3- benzodioxole C ₁₁ H ₁₂ O ₃ (myristicin) [607-91-0]	1.8×10 ¹		HSDB (2015)	Q	38
butylparaben C ₁₁ H ₁₄ O ₃ [94-26-8]	1.2×10 ³		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number] 2-tert-butyl-4-methoxyphenol C ₁₁ H ₁₆ O ₂	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$ 8.4	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference HSDB (2015)	Type Q	Note 38
(butylated hydroxyanisole) [25013-16-5]	2				
3-hydroxy-2-naphthalenecarboxylic acid	7.0×10^3		HSDB (2015)	Q	38
C ₁₁ H ₈ O ₃ [92-70-6]	7.2×10^{3} 1.2×10^{4} 3.8×10^{5} 8.2×10^{3}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
arbutin C ₁₂ H ₁₆ O ₇ [497-76-7]	8.2×10^{13}		HSDB (2015)	Q	38
butopyronoxyl C ₁₂ H ₁₈ O ₄ (indalone) [532-34-3]	2.1×10 ²		HSDB (2015)	Q	38
diethylene glycol bis(methacrylate) C ₁₂ H ₁₈ O ₅ [2358-84-1]	1.2×10 ⁴		HSDB (2015)	Q	38
dikegulac C ₁₂ H ₁₈ O ₇ [18467-77-1]	5.2×10 ¹⁰		HSDB (2015)	Q	38
propofol C ₁₂ H ₁₈ O [2078-54-8]	4.7		HSDB (2015)	Q	38
lactitol C ₁₂ H ₂₄ O ₁₁ [585-86-4]	1.2×10 ¹⁶		HSDB (2015)	Q	38
maltitol C ₁₂ H ₂₄ O ₁₁ [585-88-6]	2.3×10 ¹⁵		HSDB (2015)	Q	38
naphthalic anhydride C ₁₂ H ₆ O ₃ [81-84-5]	1.6×10 ¹		HSDB (2015)	Q	38
methoxsalen $C_{12}H_8O_4$ (8-methoxypsoralen) [298-81-7]	2.5×10 ²		HSDB (2015)	Q	38
bisphenol F C ₁₃ H ₁₂ O ₂ [620-92-8]	1.9×10 ⁶		HSDB (2015)	Q	182

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	D.C.	т.	N.
(Other name(s)) [CAS registry number]	$\left[\frac{mol}{m^3Pa}\right]$	[K]	Reference	Туре	Note
ibuprofen C ₁₃ H ₁₈ O ₂ [15687-27-1]	6.6×10 ¹		HSDB (2015)	V	
benzoyl peroxide	2.8		HSDB (2015)	Q	38
$C_{14}H_{10}O_4$	2.8 1.1×10^2		Zhang et al. (2010)	Q	107, 108
[94-36-0]	1.1×10^2 4.1×10^2		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 109 107, 110
	4.1×10^{3} 4.3×10^{3}		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 110
oxybenzone $C_{14}H_{12}O_3$ (2-hydroxy-4-methoxybenzophenone) [131-57-7]	6.6×10 ²		HSDB (2015)	Q	38
resveratrol C ₁₄ H ₁₂ O ₃ [501-36-0]	7.0×10 ¹⁰		HSDB (2015)	Q	182
pindone C ₁₄ H ₁₄ O ₃ [83-26-1]	1.1×10^6		HSDB (2015)	Q	38
1,1'-[oxybis(methylene)]bisbenzene C ₁₄ H ₁₄ O (dibenzyl ether) [103-50-4]	1.2×10 ²		HSDB (2015)	Q	38
butanoic acid, 3,3-bis((1,1-dimethylethyl)dioxy)-, ethyl ester	5.0		Zhang et al. (2010)	Q	107, 108
$C_{14}H_{28}O_6$	7.0×10^{-3}		Zhang et al. (2010)	Q	107, 109
[55794-20-2]	1.3×10^2		Zhang et al. (2010)	Q	107, 110
	2.4×10^2		Zhang et al. (2010)	Q	107, 111
$\begin{array}{c} \hbox{1-hydroxy-9,10-anthracenedione} \\ \hbox{C}_{14}\hbox{H}_{8}\hbox{O}_{3} \\ \hbox{(1-hydroxyanthraquinone)} \\ \hbox{[129-43-1]} \end{array}$	1.4×10^3		HSDB (2015)	V	
danthron C ₁₄ H ₈ O ₄ (1,8-dihydroxyanthraquinone) [117-10-2]	1.8×10 ⁵		HSDB (2015)	Q	38
bisphenol A C ₁₅ H ₁₆ O ₂ [80-05-7]	2.5×10 ⁵		HSDB (2015)	V	
atractylenolide III C ₁₅ H ₂₀ O ₃ [73030-71-4]	1.0×10^3		HSDB (2015)	Q	38
deoxynivalenol C ₁₅ H ₂₀ O ₆ [51481-10-8]	4.9×10 ⁸		HSDB (2015)	Q	182

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s))	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Туре	Note
[CAS registry number]nivalenol	$\frac{\left[\overline{m^3 Pa}\right]}{1.4 \times 10^{10}}$	[K]	HSDB (2015)	Q	38
C ₁₅ H ₂₀ O ₇ [23282-20-4]	1.4×10		нэрв (2013)	Q	36
tributyrin C ₁₅ H ₂₆ O ₆ [60-01-5]	1.0×10^3		HSDB (2015)	Q	38
diosmetin C ₁₆ H ₁₂ O ₆ [520-34-3]	3.3×10 ¹²		HSDB (2015)	Q	182
shikonin C ₁₆ H ₁₆ O ₅ [517-89-5]	1.2×10 ⁹		HSDB (2015)	Q	182
2,2-bis(4-hydroxyphenyl)butane C ₁₆ H ₁₈ O ₂ (bisphenol B) [77-40-7]	8.2×10 ⁵		HSDB (2015)	Q	182
ethyl 3,3-bis(<i>tert</i> -amylperoxy)butyrate	2.9		Zhang et al. (2010)	Q	107, 108
$C_{16}H_{32}O_6$	3.7×10^{-3}		Zhang et al. (2010)	Q	107, 109
[67567-23-1]	3.0×10^{1}		Zhang et al. (2010)	Q	107, 110
	1.5×10^2		Zhang et al. (2010)	Q	107, 111
aflatoxin B1 C ₁₇ H ₁₂ O ₆ [1162-65-8]	7.0×10^7		HSDB (2015)	Q	38
aflatoxin G1 C ₁₇ H ₁₂ O ₇ [1165-39-5]	2.0×10 ⁷		HSDB (2015)	Q	38
aflatoxin B2 C ₁₇ H ₁₄ O ₆ [7220-81-7]	3.3×10 ⁹		HSDB (2015)	Q	38
aflatoxin G2 C ₁₇ H ₁₄ O ₇ [7241-98-7]	9.0×10 ⁸		HSDB (2015)	Q	38
bisphenol C C ₁₇ H ₂₀ O ₂ [79-97-0]	9.0×10 ⁵		HSDB (2015)	Q	182
PR-toxin C ₁₇ H ₂₀ O ₆ [56299-00-4]	1.6×10 ⁸		HSDB (2015)	Q	38
fusarenon X C ₁₇ H ₂₂ O ₈ [23255-69-8]	2.1×10 ¹¹		HSDB (2015)	Q	38
dihydrotanshinone I C ₁₈ H ₁₄ O ₃ [87205-99-0]	7.6×10 ⁴		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
diethylstilbestrol $C_{18}H_{20}O_2$ [56-53-1]	1.7×10 ²		HSDB (2015)	Q	38
estrone C ₁₈ H ₂₂ O ₂ [53-16-7]	2.6×10 ⁴		HSDB (2015)	Q	38
estradiol C ₁₈ H ₂₄ O ₂ [50-28-2]	2.7×10 ⁵		HSDB (2015)	Q	38
estriol C ₁₈ H ₂₄ O ₃ [50-27-1]	7.6×10 ⁶		HSDB (2015)	Q	38
nandrolone C ₁₈ H ₂₆ O ₂ [434-22-0]	3.7×10^3		HSDB (2015)	Q	38
diofenolan C ₁₈ H ₂₀ O ₄ [63837-33-2]	1.5×10^2		MacBean (2012a)	?	
dicumarol C ₁₉ H ₁₂ O ₆ [66-76-2]	7.0×10 ⁷		HSDB (2015)	Q	38
coumatetralyl C ₁₉ H ₁₆ O ₃ [5836-29-3]	1.7×10 ⁸		HSDB (2015)	V	
warfarin C ₁₉ H ₁₆ O ₄ 81-81-2]	3.7×10^4 3.6×10^2		HSDB (2015) Mackay et al. (2006d)	V V	
tanshinone II C ₁₉ H ₁₈ O ₃ [568-72-9]	2.0×10 ³		HSDB (2015)	Q	38
gibberellic acid C ₁₉ H ₂₂ O ₆ 77-06-5]	6.2×10 ⁹		HSDB (2015)	Q	38
orallethrin C ₁₉ H ₂₄ O ₃ [23031-36-9]	6.2		HSDB (2015)	V	
estolactone C ₁₉ H ₂₄ O ₃ 968-93-4]	1.6×10^2		HSDB (2015)	Q	38
androstenedione C ₁₉ H ₂₆ O ₂ 63-05-8]	$2.7{\times}10^2$		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
diacetoxyscirpenol $C_{19}H_{26}O_7$ [2270-40-8]	1.0×10^{11}		HSDB (2015)	Q	182
C ₁₉ H ₂₈ O ₂ [58-22-0]	2.8×10 ³		HSDB (2015)	Q	38
5α -androst-16-en-4-one $C_{19}H_{28}O$ (androstenone) [18339-16-7]	3.4×10 ⁻²		Amoore and Buttery (1978)	M	
oxandrolone C ₁₉ H ₃₀ O ₃ [53-39-4]	4.3×10 ²		HSDB (2015)	Q	38
piperonyl butoxide C ₁₉ H ₃₀ O ₅ [51-03-6]	1.1×10 ⁵		HSDB (2015)	Q	38
methoprene C ₁₉ H ₃₄ O ₃ [40596-69-8]	1.4		HSDB (2015)	V	
fluorescein C ₂₀ H ₁₂ O ₅ [2321-07-5]	1.1×10 ¹¹		HSDB (2015)	Q	38
phenolphthalein C ₂₀ H ₁₄ O ₄ [77-09-8]	1.1×10 ¹⁰		HSDB (2015)	Q	38
avobenzone C ₂₀ H ₂₂ O ₃ [70356-09-1]	4.9×10^4		HSDB (2015)	Q	182
ethinyl estradiol C ₂₀ H ₂₄ O ₂ [57-63-6]	1.2×10^6		HSDB (2015)	Q	38
norethynodrel C ₂₀ H ₂₆ O ₂ [68-23-5]	7.6×10^3		HSDB (2015)	Q	38
norethindrone C ₂₀ H ₂₆ O [68-22-4]	1.7×10^4		HSDB (2015)	Q	38
methandrostenolone C ₂₀ H ₂₈ O ₂ [72-63-9]	4.5×10^3		HSDB (2015)	Q	38
cinerin I C ₂₀ H ₂₈ O ₃ [25402-06-6]	1.0×10 ¹		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^{3} \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
17-methyltestosterone $C_{20}H_{30}O_2$ [58-18-4]	2.1×10^3		HSDB (2015)	Q	38
drostanolone C ₂₀ H ₃₂ O ₂ (dromostanolone) [58-19-5]	1.2×10 ³		HSDB (2015)	Q	38
curcumin C ₂₁ H ₂₀ O ₆ [458-37-7]	1.4×10 ¹⁶		HSDB (2015)	Q	38
bisphenol A diglycidyl ether C ₂₁ H ₂₄ O ₄ [1675-54-3]	2.2×10 ⁵		HSDB (2015)	Q	38
mestranol C ₂₁ H ₂₆ O ₂ [72-33-3]	2.2×10 ³		HSDB (2015)	Q	38
prednisone C ₂₁ H ₂₆ O ₅ [53-03-2]	3.5×10 ⁴		HSDB (2015)	Q	38
norgestrel C ₂₁ H ₂₈ O ₂ [6533-00-2]	1.3×10 ⁴		HSDB (2015)	Q	38
levonorgestrel C ₂₁ H ₂₈ O ₂ [797-63-7]	1.3×10^4		HSDB (2015)	Q	38
pyrethrin I C ₂₁ H ₂₈ O ₃ [121-21-1]	2.2×10^{-1}		HSDB (2015)	V	
cinerin II C ₂₁ H ₂₈ O ₅ [121-20-0]	1.1×10^4		HSDB (2015)	Q	38
prednisolone C ₂₁ H ₂₈ O ₅ [50-24-8]	3.7×10^2		HSDB (2015)	Q	38
dronabinol C ₂₁ H ₃₀ O ₂ (delta 9-tetrahydrocannabinol) [1972-08-3]	4.1×10 ¹		HSDB (2015)	Q	38
progesterone C ₂₁ H ₃₀ O ₂ [57-83-0]	1.5×10^2		HSDB (2015)	Q	38
hydrocortisone C ₂₁ H ₃₀ O ₅ [50-23-7]	1.7×10 ²		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
calusterone C ₂₁ H ₃₂ O ₂ [17021-26-0]	1.6×10^3		HSDB (2015)	Q	38
oxymetholone C ₂₁ H ₃₂ O ₃ [434-07-1]	6.6×10 ³		HSDB (2015)	Q	38
resmethrin C ₂₂ H ₂₆ O ₃ [10453-86-8]	7.6×10 ¹		HSDB (2015)	V	
pyrethrin II C ₂₂ H ₂₈ O ₅ [121-29-9]	4.5×10^2		HSDB (2015)	V	
methylprednisolone C ₂₂ H ₃₀ O ₅ [83-43-2]	2.7×10 ²		HSDB (2015)	Q	38
medroxyprogesterone C ₂₂ H ₃₂ O ₃ [520-85-4]	7.6×10 ²		HSDB (2015)	Q	38
dimethirimol C ₂₃ H ₂₄ O ₅ [5221-53-4]	>2.3×10 ¹⁰		MacBean (2012a)	?	
rotenone C ₂₃ H ₂₂ O ₆ [83-79-4]	8.8×10 ⁷		HSDB (2015)	Q	38
phenothrin C ₂₃ H ₂₆ O ₃ [26002-80-2]	1.5		MacBean (2012b)	X	137
spiromesifen C ₂₃ H ₃₀ O ₄ [283594-90-1]	1.8×10^{-2}		HSDB (2015)	V	
digoxigenin C ₂₃ H ₃₄ O ₅ [1672-46-4]	4.3×10 ⁵		HSDB (2015)	Q	38
annatto C ₂₄ H ₂₈ O ₄ [1393-63-1]	1.5×10 ¹¹		HSDB (2015)	Q	38
acequinocyl C ₂₄ H ₃₂ O ₄ [57960-19-7]	1.0×10 ¹		HSDB (2015)	V	
T-2 mycotoxin C ₂₄ H ₃₄ O ₉ [21259-20-1]	1.8×10 ¹²		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\boxed{\begin{array}{c} \operatorname{mol} \end{array}}$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
milk thistle extract C ₂₅ H ₂₂ O ₁₀ [84604-20-6]	$ \begin{array}{c c} \hline m^3 Pa \end{array} $ $ 6.2 \times 10^{17} $	[K]	HSDB (2015)	Q	38
simvastatin C ₂₅ H ₃₈ O ₅ [79902-63-9]	3.5×10 ⁴		HSDB (2015)	Q	38
calcitriol C ₂₇ H ₄₄ O ₃ (1,25-dihydroxycholecalciferol) [32222-06-3]	3.2×10 ¹		HSDB (2015)	Q	38
paricalcitol C ₂₇ H ₄₄ O ₃ [131918-61-1]	2.6×10 ¹		HSDB (2015)	Q	38
cholecalciferol C ₂₇ H ₄₄ O [67-97-0]	4.3×10^{-2}		HSDB (2015)	Q	38
cholesterol C ₂₇ H ₄₆ O [57-88-5]	5.8×10^{-2}		HSDB (2015)	Q	38
ergosterol C ₂₈ H ₄₄ O [57-87-4]	6.2×10^{-2}		HSDB (2015)	Q	38
dihydrotachysterol C ₂₈ H ₄₆ O [67-96-9]	2.7×10^{-2}		HSDB (2015)	Q	38
etoposide C ₂₉ H ₃₂ O ₁₃ [33419-42-0]	5.8×10^{24}		HSDB (2015)	Q	38
stigmasterol C ₂₉ H ₄₈ O [83-48-7]	3.8×10^{-2}		HSDB (2015)	Q	38
pseudohypericin C ₃₀ H ₁₆ O ₉ [55954-61-5]	5.5×10^{23}		HSDB (2015)	Q	38
gossypol C ₃₀ H ₃₀ O ₈ [303-45-7]	4.3×10 ²²		HSDB (2015)	Q	38
maslinic acid C ₃₀ H ₄₈ O ₄ [4373-41-5]	2.8×10 ⁵		HSDB (2015)	Q	182
difenacoum C ₃₁ H ₂₄ O ₃ [56073-07-5]	7.0×10^6	_	HSDB (2015)	Q	182

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	D. C	_	.
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	[K]	Reference	Туре	Note
nonoxynol 9 C ₃₃ H ₆₀ O ₁₀ [26571-11-9]	1.8×10 ¹⁶		HSDB (2015)	Q	38
azadirachtin C ₃₅ H ₄₄ O ₁₆ [11141-17-6]	3.5×10^{19}		HSDB (2015)	V	
monensin C ₃₆ H ₆₂ O ₁₁ [17090-79-8]	4.9×10^{18}		HSDB (2015)	Q	38
gossyplure C ₃₆ H ₆₄ O ₄ [50933-33-0]	6.6×10^{-2}		HSDB (2015)	V	
capsanthin C ₄₀ H ₅₆ O ₃ [465-42-9]	3.4×10^2		HSDB (2015)	Q	38
digitoxin C ₄₁ H ₆₄ O ₁₃ [71-63-6]	7.6×10 ¹⁹		HSDB (2015)	Q	38
digoxin C ₄₁ H ₆₄ O ₁₄ [20830-75-5]	2.1×10 ²¹		HSDB (2015)	Q	38
pyrethrum C ₄₃ H ₅₆ O ₈ [8003-34-7]	1.5×10 ¹		HSDB (2015)	Q	38
punicalagin C ₄₈ H ₂₈ O ₃₀ [65995-63-3]	5.5×10 ¹⁰		HSDB (2015)	Q	38
nbamectin C ₄₈ H ₇₂ O ₁₄ 71751-41-2]	7.0×10 ³		HSDB (2015)	V	
notoginsenoside R1 C ₄₈ H ₈₄ O ₁₈ [80418-24-2]	6.6×10 ²⁵		HSDB (2015)	Q	38
riolein C ₅₇ H ₁₀₄ O ₆ 122-32-7]	1.0×10^{-2}		HSDB (2015)	Q	182
ristearin C ₅₇ H ₁₁₀ O ₆ 555-43-1]	7.0×10 ⁻³		HSDB (2015)	Q	38
	Organic sp	ecies w	ith nitrogen (N)		
	A	mines (C	. H. N)		

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number] cyanamide CH ₂ N ₂	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$ 3.7×10^4	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference HSDB (2015)	Type	Note
[420-04-2] methylhydrazine CH ₆ N ₂ [60-34-4]	3.3		HSDB (2015)	V	
methanamine CH ₃ NH ₂ (methylamine) [74-89-5]	3.5×10^{-1} 8.9×10^{-1} 1.2 5.6×10^{-1} 8.9×10^{-1} 8.8×10^{-1} 1.4	2600 5000 3200 5400	Wilhelm et al. (1977) Christie and Crisp (1967) Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan et al. (1997) Mackay et al. (2006d) Kühne et al. (2005) Abraham et al. (1990) Abraham (1984) Bone et al. (1983)	L M Q Q Q ? ? ?	7 21
ethanamine C ₂ H ₅ NH ₂ (ethylamine) [75-04-7]	3.5×10^{-1} 8.0×10^{-1} 9.9×10^{-1} 3.0×10^{-1} 7.9×10^{-1} 4.6×10^{-1} 9.9×10^{-1} 8.0×10^{-1}	3600 6500	Wilhelm et al. (1977) Christie and Crisp (1967) Butler and Ramchandani (1935) Hwang et al. (1992) Hilal et al. (2008) Nirmalakhandan et al. (1997) Mackay et al. (2006d) Abraham et al. (1990) Abraham (1984)	L M M V Q Q ? ?	7
1H-1,2,4-triazole C ₂ H ₃ N ₃ [288-88-0]	6.6		HSDB (2015)	Q	38
dicyandiamide C ₂ H ₄ N ₄ (cyanoguanidine) [461-58-5]	4.3×10 ⁴		HSDB (2015)	Q	38
ethylenimine C ₂ H ₅ N [151-56-4]	8.2×10^{-1}		HSDB (2015)	V	
1,2-dimethylhydrazine $C_2H_8N_2$ [540-73-8]	1.8		HSDB (2015)	V	
$1,1$ -dimethylhydrazine $C_2H_8N_2$ [57-14-7]	7.6×10^{-1}		HSDB (2015)	V	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number] 1-propanamine C ₃ H ₇ NH ₂ (1-propylamine) [107-10-8]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$ 5.0×10 ⁻¹ 6.6×10 ⁻¹ 7.8×10 ⁻¹ 4.8×10 ⁻¹ 3.6×10 ⁻¹ 7.8×10 ⁻¹ 6.7×10 ⁻¹	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference Altschuh et al. (1999) Christie and Crisp (1967) Butler and Ramchandani (1935) Hilal et al. (2008) Nirmalakhandan et al. (1997) Mackay et al. (2006d) Abraham et al. (1990) Abraham (1984)	Type M M Q Q ?	Note 7
2-propanamine C ₃ H ₉ N [75-31-0]	$2.2 \times 10^{-1} \\ 2.1 \times 10^{-1}$		Hilal et al. (2008) Hilal et al. (2008)	C Q	
propanedinitrile C ₃ H ₂ N ₂ (malononitrile) [109-77-3]	7.8×10 ²		HSDB (2015)	Q	38
1-butanamine C ₄ H ₉ NH ₂ (1-butylamine) [109-73-9]	5.6×10^{-1} 5.2×10^{-1} 5.6×10^{-1} 6.5×10^{-1} 2.2×10^{-1} 4.5×10^{-1} 2.9×10^{-1} 2.8×10^{-1} 6.6×10^{-1} 5.2×10^{-1}	7100	Altschuh et al. (1999) Rytting et al. (1978) Christie and Crisp (1967) Butler and Ramchandani (1935) Hwang et al. (1992) Amoore and Buttery (1978) Hilal et al. (2008) Nirmalakhandan et al. (1997) Mackay et al. (2006d) Abraham et al. (1990) Abraham (1984)	M M M V V Q Q ? ?	7
2-butanamine C ₄ H ₁₁ N [13952-84-6]	4.0×10^{-1} 6.5×10^{-2} 1.6×10^{-1}	7700	Kish et al. (2013) Hilal et al. (2008) Hilal et al. (2008)	M C Q	218
2-methyl-1-propanamine C ₄ H ₁₁ N [78-81-9]	$7.2 \times 10^{-1} \\ 2.4 \times 10^{-1}$		Hilal et al. (2008) Hilal et al. (2008)	C Q	
2-methyl-2-propanamine C ₄ H ₁₁ N [75-64-9]	$2.8 \times 10^{-1} \\ 5.0 \times 10^{-2}$		Hilal et al. (2008) Hilal et al. (2008)	C Q	
1,2-diethylhydrazine $C_4H_{12}N_2$ [1615-80-1]	8.2×10 ¹		HSDB (2015)	Q	38
N-(2-aminoethyl)-1,2-ethanediamine $C_4H_{13}N_3$ (diethylenetriamine) [111-40-0]	9.9×10 ⁸		HSDB (2015)	Q	38
butanedinitrile C ₄ H ₄ N ₂ [110-61-2]	1.5×10 ³		HSDB (2015)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
Other name(s))	[mol]	F1Z1		**	
CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
-methyl-1H-imidazole	2.2		HSDB (2015)	Q	38
$C_4H_6N_2$					
693-98-1]					
-methyl-1H-imidazole	2.4		HSDB (2015)	Q	38
$C_4H_6N_2$					
822-36-6]					
-pentanamine	4.0×10^{-1}		Rytting et al. (1978)	M	
C ₅ H ₁₁ NH ₂	3.1×10^{-1}		Amoore and Buttery (1978)	M	
l-pentylamine)	4.0×10^{-1}		Christie and Crisp (1967)	M	
10-58-7]	1.6×10^{-1}		Hilal et al. (2008)	Q	
	2.2×10^{-1}		Nirmalakhandan et al. (1997)	Q	
	4.0×10^{-1}		Abraham et al. (1990)	?	
		7500	Abraham (1984)	?	7
-methyl-1-butanamine	2.2×10 ⁻¹		Hilal et al. (2008)	Q	
C ₅ H ₁₃ N				*	
107-85-7]					
-hexanamine	3.2×10^{-1}		Rytting et al. (1978)	M	
GH ₁₃ NH ₂	3.2×10^{-1} 3.7×10^{-1}		Christie and Crisp (1967)	M	
l-hexylamine)	3.7×10^{-1}		Hilal et al. (2008)	Q	
111-26-2]	1.8×10^{-1}		Nirmalakhandan et al. (1997)	Q	
111 20 2]	3.2×10^{-1}		Abraham et al. (1990)	?	
	3.27.10	7900	Abraham (1984)	?	7
,6-hexanediamine	3.1×10^{3}		HSDB (2015)	Q	38
C ₆ H ₁₆ N ₂					
nexamethylene diamine)					
124-09-4]					
,N'-methanetetraylbis-2-	9.9×10^{-3}		HSDB (2015)	Q	182
ropanamine	2.27.10		11000 (2010)	V	102
² 7H ₁₄ N ₂					
1,3-diisopropylcarbodiimide)					
593-13-0]					
-methyl-2-hexanamine	2.3×10^{-1}		HSDB (2015)	Q	182
² 7H ₁₇ N	~		(/	•	
105-41-9]					
-heptanamine	2.4×10^{-1}		Rytting et al. (1978)	M	
H ₇ H ₁₇ N	4.5×10^{-1}		Hilal et al. (2008)	Q	
1-heptylamine)	1.4×10^{-1}		Nirmalakhandan et al. (1997)	Q	
111-68-2]	2.4×10^{-1}		Abraham et al. (1990)	?	
-octanamine	1.9×10^{-1}		Rytting et al. (1978)	M	
8H19N	4.3×10^{-1}	7400	Hilal et al. (2008)	Q	
l-octylamine)	1.110-1	7400	Kühne et al. (2005)	Q	
11-86-4]	1.1×10^{-1}	6600	Nirmalakhandan et al. (1997)	Q ?	
	1.9×10^{-1}	6600	Kühne et al. (2005) Abraham et al. (1990)	?	
	1.9×10		Autalialii et al. (1990)	:	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2-ethyl-1-hexanamine C ₈ H ₁₉ N (2-ethylhexylamine) [104-75-6]	3.7×10 ⁻¹	7400 7400	Hilal et al. (2008) Kühne et al. (2005) Kühne et al. (2005)	Q Q ?	
1-tridecanamine C ₁₃ H ₂₉ N [2869-34-3]	9.0×10 ⁻²		Altschuh et al. (1999)	M	
dimethylamine (CH ₃) ₂ NH [124-40-3]	3.0×10^{-1} 5.6×10^{-1} 5.8×10^{-1} 6.0×10^{-1} 5.4×10^{-1} 5.6×10^{-1} 5.7×10^{-1}	4000 6400	Wilhelm et al. (1977) Christie and Crisp (1967) Bagno et al. (1991) Hilal et al. (2008) Nirmalakhandan et al. (1997) Mackay et al. (2006d) Abraham et al. (1990)	L M T Q Q ?	196
diethylamine (C ₂ H ₅) ₂ NH [109-89-7]	3.9×10^{-1} 4.1×10^{-1} 1.3 1.8×10^{-1} 3.8×10^{-1} 1.5×10^{-1} 3.9×10^{-1}	7700 10000	Christie and Crisp (1967) Bagno et al. (1991) Goldstein (1982) Hilal et al. (2008) Mackay et al. (2006d) Yaws and Yang (1992) Abraham et al. (1990)	M T X Q ?	196 116
dipropylamine (C ₃ H ₇₎₂ NH [142-84-7]	$ \begin{array}{r} 1.9 \times 10^{-1} \\ 1.1 \times 10^{-1} \\ 2.3 \times 10^{-1} \\ 1.9 \times 10^{-1} \end{array} $	6900 8100	Christie and Crisp (1967) Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan et al. (1997) Kühne et al. (2005) Abraham et al. (1990) Betterton (1992)	M Q Q Q ? ?	219
N-methylpropanamine C ₄ H ₁₁ N [627-35-0]	1.9×10 ⁻¹		Hilal et al. (2008)	Q	
N-methyl-2-propanamine C ₄ H ₁₁ N (4747-21-1)	1.4×10^{-1}		Hilal et al. (2008)	Q	
N-(1-methylethyl)-2-propanamine C ₆ H ₁₅ N (diisopropylamine) [108-18-9]	6.2×10^{-2} 1.8×10^{-1} 9.2×10^{-2}	6900 8600	Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan et al. (1997) Kühne et al. (2005) Abraham et al. (1990)	Q Q Q ? ?	
N,N-dipropyl-1-propanamine C ₉ H ₂₁ N [102-69-2]	$2.6 \times 10^{-2} 2.6 \times 10^{-2} 6.7 \times 10^{-2}$		HSDB (2015) Hilal et al. (2008) Hilal et al. (2008)	V C Q	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
N-methyl-1-butanamine C ₅ H ₁₃ N (N-methylbutylamine) [110-68-9]	1.1×10 ⁻¹	6600 5000	Hilal et al. (2008) Kühne et al. (2005) Kühne et al. (2005)	Q Q ?	
dibutylamine (C ₄ H ₉) ₂ NH [111-92-2]	$ \begin{array}{c} 1.0 \\ 1.1 \times 10^{-1} \\ 1.2 \times 10^{-1} \\ 1.2 \times 10^{-1} \\ 2.4 \times 10^{-1} \\ 1.4 \times 10^{-1} \\ 9.7 \times 10^{-2} \end{array} $	7600 7400	Altschuh et al. (1999) Christie and Crisp (1967) Mackay et al. (2006d) Mackay et al. (1995) Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan et al. (1997) Kühne et al. (2005) Abraham et al. (1990)	M M V V Q Q Q Q ?	
diisobutylamine C ₈ H ₁₉ N [110-96-3]		7600 7300	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
bis-(1-methylpropyl)-amine C ₈ H ₁₉ N (di- <i>sec</i> -butylamine) [626-23-3]		7600 7000	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
tetraethylenepentamine C ₈ H ₂₃ N ₅ [112-57-2]	3.3×10 ¹⁴		HSDB (2015)	Q	38
N,N-di-2-propenyl-2-propen-1-amine C ₉ H ₁₅ N (triallylamine) [102-70-5]	3.8×10 ⁻²		HSDB (2015)	V	
trimethylamine (CH ₃) ₃ N [75-50-3]	7.6×10^{-2} 9.5×10^{-2} 9.8×10^{-2} 3.7×10^{-2} 4.7×10^{-1} 1.5×10^{-1} 9.0×10^{-2}		Amoore and Buttery (1978) Christie and Crisp (1967) Amoore and Buttery (1978) Hilal et al. (2008) Nirmalakhandan et al. (1997) Mackay et al. (2006d) Abraham et al. (1990)	M M V Q Q ?	
triethylamine (C ₂ H ₅) ₃ N [121-44-8]	6.6×10^{-2} 7.1×10^{-2} 7.1×10^{-2} 8.6×10^{-2} 3.3×10^{-1} 9.2×10^{-2}	6700 9000	Christie and Crisp (1967) Mackay et al. (2006d) Mackay et al. (1995) Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan et al. (1997) Kühne et al. (2005) Abraham et al. (1990)	M V V Q Q Q ?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
tributylamine C ₁₂ H ₂₇ N [102-82-9]	4.0×10^{-1} 4.0×10^{-5} 4.0×10^{-5}	8700 7500	Altschuh et al. (1999) Mackay et al. (2006d) Mackay et al. (1995) Kühne et al. (2005) Kühne et al. (2005)	M V V Q ?	
N,N-dimethyl-1-dodecanamine C ₁₄ H ₃₁ N [112-18-5]	>4.0 2.0×10 ⁻³		Altschuh et al. (1999) HSDB (2015)	M Q	38
ethylenediamine H ₂ NCH ₂ CH ₂ NH ₂ [107-15-3]	5.8×10^{3} 1.5×10^{2} 5.6×10^{3}	9200	Westheimer and Ingraham (1956) Cabani et al. (1978) Hilal et al. (2008)	M T Q	
2-propen-1-amine C ₃ H ₇ N [107-11-9]	5.4×10^{-1} 5.4×10^{-1} 2.4		HSDB (2015) Hilal et al. (2008) Hilal et al. (2008)	V C Q	
di-2-propenylamine C ₆ H ₁₁ N (diallylamine) [124-02-7]	3.3×10 ⁻¹	7200 8000	HSDB (2015) Kühne et al. (2005) Kühne et al. (2005)	V Q ?	
hexamethyleneimine (CH ₂) ₆ NH [111-49-9]	1.6 6.4 4.3×10 ⁻¹	8200	Cabani et al. (1971a) Hilal et al. (2008) Meylan and Howard (1991)	T Q Q	
cyclohexanamine C ₆ H ₁₃ N (cyclohexylamine) [108-91-8]	$\begin{array}{c} 2.4 \\ 2.2 \\ 9.4 \times 10^{-1} \\ 6.7 \times 10^{-1} \\ 1.2 \\ 9.5 \times 10^{-1} \end{array}$	7800	Altschuh et al. (1999) Bernauer et al. (2006) Amoore and Buttery (1978) Hilal et al. (2008) Nirmalakhandan et al. (1997) Abraham et al. (1990)	M V V Q Q	
3-methylcyclohexylamine C ₇ H ₁₅ N [6850-35-7]	1.1		Hilal et al. (2008)	Q	
N-ethylcyclohexanamine C ₈ H ₁₇ N (N-ethylcyclohexylamine) [5459-93-8]		7200 6500	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
N,N-dimethylcyclohexylamine C ₈ H ₁₇ N [98-94-2]	4.2×10 ⁻¹ 5.1×10 ⁻¹	7000 8500	Altschuh et al. (1999) Hilal et al. (2008) Kühne et al. (2005) Kühne et al. (2005)	M Q Q ?	
hexamethylenetetramine $C_6H_{12}N_4$ [100-97-0]	6.2×10^{3} 6.1×10^{-5} 5.8×10^{5} 9.2×10^{2} 5.4×10^{7} 1.3×10^{4}		HSDB (2015) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Hilal et al. (2008)	V Q Q Q Q	107, 108 107, 109 107, 110 107, 111

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^{3} \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1-decanamine C ₁₀ H ₂₃ N [2016-57-1]	1.5×10 ⁻¹		Yaws et al. (2001)	X	137
N-cyclohexylcyclohexanamine C ₁₂ H ₂₃ N (dicyclohexylamine) [101-83-7]	1.8×10^{-1}		HSDB (2015)	Q	38
1-dodecanamine C ₁₂ H ₂₇ N [124-22-1]	3.7×10 ⁻²		HSDB (2015)	Q	38
1-octadecanamine C ₁₈ H ₃₉ N [124-30-1]	1.0×10 ⁻²		HSDB (2015)	Q	38
N,N-dioctyl-1-octanamine C ₂₄ H ₅₁ N (tri-N-octylamine) [1116-76-3]	7.0×10 ⁻⁴		HSDB (2015)	Q	38
aminobenzene	5.2		Altschuh et al. (1999)	M	
C ₆ H ₇ N	1.2		Heal et al. (1995)	M	147
(aniline)	5.0		Jayasinghe et al. (1992)	M	
[62-53-3]	1.1		Dallos et al. (1983)	M	220
	4.6	6500	Bernauer et al. (2006)	V	
	6.0		Mackay et al. (2006d)	V	
	6.0 7.1×10^{-5}		Schüürmann (2000)	V V	
	6.0		Lide and Frederikse (1995) Mackay et al. (1995)	V V	
	5.5		Hwang et al. (1992)	V	
	3.4		Yoshida et al. (1983)	V	
	7.1×10^{-5}		Howard (1989)	X	142
	8.2×10^{-2}		Howard (1989)	X	164
	5.1		Hilal et al. (2008)	Q	
		6200	Kühne et al. (2005)	Q	
	8.2×10^{-2}		Mackay et al. (2006d)	?	
	4.3	7100	Kühne et al. (2005) Abraham et al. (1990)	?	
2-methylbenzenamine	5.0		Altschuh et al. (1999)	M	
C ₇ H ₉ N	1.1×10^{1}		Mackay et al. (2006d)	V	
2-methylaniline; <i>o</i> -toluidine)	4.1		Schüürmann (2000)	V	
[95-53-4]	1.1×10^{1}		Mackay et al. (1995)	V	
	1.1×10^{1}		Mackay et al. (1995)	V	
	3.4		Yoshida et al. (1983)	V	
	4.6		Abraham et al. (1994a)	R	
	3.1		Hilal et al. (2008)	Q	
	2.0		Nirmalakhandan et al. (1997)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\mathrm{d} \ln H^{cp}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]		1101010100	1) PC	11000
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
3-methylbenzenamine	5.9		Altschuh et al. (1999)	M	
C ₇ H ₉ N	3.9		Mackay et al. (2006d)	V	
(3-methylaniline; <i>m</i> -toluidine)	3.9		Mackay et al. (1995)	V	
[108-44-1]	4.8		Hilal et al. (2008)	Q	
4-methylbenzenamine	1.3×10^{1}		Altschuh et al. (1999)	M	
C ₇ H ₉ N	4.4		Jayasinghe et al. (1992)	M	
(4-methylaniline; <i>p</i> -toluidine)	1.5		Mackay et al. (2006d)	V	
[106-49-0]	1.5		Mackay et al. (1995)	V	
	1.6		Yoshida et al. (1983)	V	
	5.0		Abraham et al. (1994a)	R	
	5.3		Hilal et al. (2008)	Q	
	2.0		Nirmalakhandan et al. (1997)	Q	
2-ethylaniline	2.7		HSDB (2015)	Q	38
$C_8H_{11}N$		7200	Kühne et al. (2005)	Q	
(o-ethylaniline)		7500	Kühne et al. (2005)	?	
[578-54-1]					
4-ethylaniline	3.1		Mackay et al. (2006d)	V	
$C_8H_{11}N$	3.1		Mackay et al. (1995)	V	
(p-ethylaniline)		6900	Kühne et al. (2005)	Q	
[589-16-2]		8100	Kühne et al. (2005)	?	
2,4-dimethylbenzenamine	2.4		Mackay et al. (2006d)	V	
$C_8H_{11}N$	1.4×10^{-1}		Schüürmann (2000)	V	
(2,4-dimethylaniline; 2,4-xylidine)	2.4		Mackay et al. (1995)	V	
[95-68-1]	3.9		HSDB (2015)	Q	38
		7200	Kühne et al. (2005)	Q	
		7400	Kühne et al. (2005)	?	
3,4-dimethylbenzenamine	5.3		Jayasinghe et al. (1992)	M	
$C_8H_{11}N$	6.7		Hilal et al. (2008)	Q	
(3,4-dimethylaniline; 3,4-xylidine)					
[95-64-7]	2.0		HGDD (2015)		26
2,5-dimethylbenzenamine	3.9	7200	HSDB (2015)	Q	38
C ₈ H ₁₁ N (2,5-dimethylaniline; 2,5-xylidine)		7200 7700	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
[2,3-dimentylamine; 2,3-xyndine) [95-78-3]		7700	Examic of al. (2003)	4	
2,6-dimethylbenzenamine	3.9		HSDB (2015)	V	
C ₈ H ₁₁ N	5.8×10^{-2}		Mackay et al. (2006d)	v	
(2,6-dimethylaniline; 2,6-xylidine)	5.8×10^{-2}		Mackay et al. (1995)	V	
[87-62-7]	2.7		Abraham et al. (1994a)	R	
	3.3		Hilal et al. (2008)	Q	
		7500	Kühne et al. (2005)	Q	
	1.4		Nirmalakhandan et al. (1997)	Q	
		7600	Kühne et al. (2005)	?	
2,4,5-trimethylbenzenamine	3.9		Jayasinghe et al. (1992)	M	
C ₉ H ₁₃ N	6.0		Hilal et al. (2008)	Q	
(2,4,5-trimethylaniline)				•	
[137-17-7]					

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2-(1-methylethyl)-benzenamine C ₉ H ₁₃ N (2-isopropylaniline) [643-28-7]		7500 6400	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
2,6-diethylbenzenamine C ₁₀ H ₁₅ N [579-66-8]	9.0 9.0×10 ⁻¹		HSDB (2015) Hilal et al. (2008)	V Q	
1,2-benzenediamine C ₆ H ₈ N ₂ (<i>o</i> -phenylenediamine) [95-54-5]	$ \begin{array}{c} 1.4 \times 10^3 \\ 7.6 \times 10^1 \\ 1.2 \times 10^3 \end{array} $		HSDB (2015) Schüürmann (2000) Hilal et al. (2008)	V V Q	
1,3-benzenediamine $C_6H_8N_2$ (m -phenylenediamine) [108-45-2]	7.6×10^{3} 1.3×10^{4} 1.1×10^{5}		HSDB (2015) Schüürmann (2000) Hilal et al. (2008)	V V Q	
,4-benzenediamine $C_6H_8N_2$ p -phenylenediamine) 106 - 50 - 3]	1.5×10 ⁴		HSDB (2015)	Q	38
2-methyl-1,3-benzenediamine C ₇ H ₁₀ N ₂ 823-40-5]	1.3×10 ⁴		HSDB (2015)	Q	38
2-methyl-1,4-benzenediamine C ₇ H ₁₀ N ₂ 95-70-5]	1.3×10 ⁴		HSDB (2015)	Q	38
B-methyl-1,2-benzenediamine C ₇ H ₁₀ N ₂ 2,3-diaminotoluene) 2687-25-4]	1.0×10 ⁴		HSDB (2015)	Q	38
4-methyl-1,3-benzenediamine C ₇ H ₁₀ N ₂ (toluene-2,4-diamine) 95-80-7]	1.0×10 ⁴		HSDB (2015)	Q	38
3,5-diaminotoluene C ₇ H ₁₀ N ₂ [108-71-4]	1.3×10 ⁴		HSDB (2015)	Q	216
ohenylhydrazine C ₆ H ₈ N ₂ [100-63-0]	3.4×10^2 6.9×10^2		HSDB (2015) Hilal et al. (2008)	V Q	
(methylamino)-benzene C ₇ H ₉ N N-methylaniline) [100-61-8]	8.7×10 ⁻¹ 8.7×10 ⁻¹ 1.1 1.5 2.7		HSDB (2015) Schüürmann (2000) Abraham et al. (1994a) Hilal et al. (2008) Nirmalakhandan et al. (1997)	V V R Q Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
(ethylamino)-benzene $C_8H_{11}N$ (N-ethylaniline) [103-69-5]	$ \begin{array}{c} 1.0 \\ 6.2 \times 10^{-1} \\ 7.0 \times 10^{-1} \end{array} $	7100 7600	Altschuh et al. (1999) HSDB (2015) Hilal et al. (2008) Kühne et al. (2005) Kühne et al. (2005)	M Q Q Q ?	38
(dimethylamino)-benzene C ₈ H ₁₁ N (N,N-dimethylaniline) [121-69-7]	$ \begin{array}{c} 1.7 \times 10^{-1} \\ 8.5 \times 10^{-2} \\ 8.5 \times 10^{-2} \\ 1.3 \times 10^{-1} \\ 1.6 \times 10^{-1} \\ 9.9 \times 10^{-2} \end{array} $ $ \begin{array}{c} 2.4 \\ 1.1 \\ 1.4 \times 10^{-1} \end{array} $	6900 6300	HSDB (2015) Mackay et al. (2006d) Mackay et al. (1995) Meylan and Howard (1991) Yoshida et al. (1983) Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan et al. (1997) Meylan and Howard (1991) Kühne et al. (2005) Abraham et al. (1990)	V V V V Q Q Q Q ?	
benzeneethanamine C ₈ H ₁₁ N (2-phenylethylamine) [64-04-0]	1.2×10 ¹		HSDB (2015)	Q	38
2,3-dimethylbenzenamine C ₈ H ₁₁ N (2,3-xylidine) [87-59-2]	3.9		HSDB (2015)	Q	38
3,5-dimethylbenzenamine C ₈ H ₁₁ N [108-69-0]	3.9		HSDB (2015)	Q	38
dimethylaniline C ₈ H ₁₁ N (xylidine) [1300-73-8]	3.9		HSDB (2015)	Q	38
phenelzine $C_8H_{12}N_2$ [51-71-8]	2.9×10 ³		HSDB (2015)	Q	38
N,N-dimethyl-1,4-benzenediamine $C_8H_{12}N_2$ [99-98-9]	3.3×10^2		HSDB (2015)	Q	38
2,4,6-trimethylbenzenamine C ₉ H ₁₃ N (2,4,6-trimethylaniline) [88-05-1]	3.7		HSDB (2015)	Q	38
N-ethyl-3-methylbenzenamine C ₉ H ₁₃ N [102-27-2]	1.6		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
N-(1-methylethyl)benzenamine C ₉ H ₁₃ N [768-52-5]	1.3		HSDB (2015)	Q	38
2-ethyl-6-methylbenzenamine C ₉ H ₁₃ N [24549-06-2]	3.2 2.1 1.0 8.4×10 ⁻¹		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
N,N-dimethylbenzylamine C ₉ H ₁₃ N [103-83-3]		7700 7700	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
N,N,4-trimethylbenzenamine C ₉ H ₁₃ N [99-97-8]	1.4×10 ⁻¹		Hilal et al. (2008)	Q	
N,N' -di- <i>tert</i> -butylethylenediamine $C_{10}H_{24}N_2$ [4062-60-6]	3.6×10^{2} 2.3 9.9×10^{-1} 1.2×10^{1}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
(diethylamino)-benzene $C_{10}H_{15}N$ (N,N-diethylaniline) [91-66-7]	5.2×10^{-2} 4.6×10^{-1} 4.6×10^{-1} 9.9×10^{-2}	7600 5800	HSDB (2015) Mackay et al. (2006d) Mackay et al. (1995) Hilal et al. (2008) Kühne et al. (2005) Kühne et al. (2005)	V V V Q Q	
1-naphthylamine C ₁₀ H ₉ N [134-32-7]	$ \begin{array}{c} 1.6 \times 10^{2} \\ 2.1 \times 10^{1} \\ 8.8 \times 10^{1} \\ 3.0 \times 10^{1} \\ 4.6 \times 10^{2} \end{array} $		Altschuh et al. (1999) HSDB (2015) Abraham et al. (1994a) Hilal et al. (2008) Nirmalakhandan et al. (1997)	M V R Q Q	
2-naphthylamine C ₁₀ H ₉ N [91-59-8]	$ \begin{array}{c} 1.2 \times 10^{2} \\ 8.0 \times 10^{1} \\ 4.5 \times 10^{2} \\ 1.2 \times 10^{2} \end{array} $		Abraham et al. (1994a) Hilal et al. (2008) Nirmalakhandan et al. (1997) HSDB (2015)	R Q Q ?	170
1,5-naphthalenediamine $C_{10}H_{10}N_2$ [2243-62-1]	1.5×10 ⁵		HSDB (2015)	Q	38
phentermine C ₁₀ H ₁₅ N [122-09-8]	7.0		HSDB (2015)	Q	38
N,N-diethyl-1,4-benzenediamine $C_{10}H_{16}N_2$ [93-05-0]	1.9×10 ²		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$		_	
(Other name(s))	[mol]	u (1/1)	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mor}}{\text{m}^3 \text{Pa}}\right]$	[K]			
3,5-diethyltoluene-2,6-diamine	6.2×10^3		Zhang et al. (2010)	Q	107, 108
$C_{11}H_{18}N_2$	6.9×10^3		Zhang et al. (2010)	Q	107, 109
[2095-01-4]	6.1×10^{1}		Zhang et al. (2010)	Q	107, 110
	2.1×10^2		Zhang et al. (2010)	Q	107, 111
2,4-diethyl-6-methylbenzene-1,3-diamine	6.2×10^3		Zhang et al. (2010)	Q	107, 108
$C_{11}H_{18}N_2$	7.0×10^{3}		Zhang et al. (2010)	Q	107, 109
[2095-02-5]	6.2×10^{1}		Zhang et al. (2010)	Q	107, 110
	2.1×10^2		Zhang et al. (2010)	Q	107, 111
diphenylamine	3.7		HSDB (2015)	V	
$C_{12}H_{11}N$	2.9×10^{1}		Mackay et al. (2006d)	V	
[122-39-4]	2.9×10^{1}		Mackay et al. (1995)	V	
	3.5		Meylan and Howard (1991)	V	
	3.5		Howard et al. (1991)	X	164
	3.0		Hilal et al. (2008)	Q	
	9.4		Meylan and Howard (1991)	Q	
benzidine	2.2×10^{6}		Mackay et al. (2006d)	V	
$C_{12}H_{12}N_2$	2.6×10^5		Lide and Frederikse (1995)	V	
[92-87-5]	2.2×10^{6}		Mackay et al. (1995)	V	
	2.5×10^{1}		Mackay et al. (1995)	C	
	1.9×10^5		HSDB (2015)	Q	38
1,1-diphenylhydrazine $C_{12}H_{12}N_2$ [530-50-7]	2.4×10^2		HSDB (2015)	Q	38
1,2-diphenylhydrazine	2.1×10^{1}		HSDB (2015)	V	
$C_{12}H_{12}N_2$			Mackay et al. (2006d)	V	221
(N,N'-bianiline)	2.9×10^{3}		Mackay et al. (1995)	V	
[122-66-7]					
4-(phenylazo)-benzenamine	1.1×10^5		HSDB (2015)	Q	38
$C_{12}H_{11}N_3$	1.9×10^{3}		Zhang et al. (2010)	Q	107, 108
[60-09-3]	3.2×10^3		Zhang et al. (2010)	Q	107, 109
	7.3×10^5		Zhang et al. (2010)	Q	107, 110
	3.4×10^2		Zhang et al. (2010)	Q	107, 111
azobenzene $C_{12}H_{10}N_2$ [103-33-3]	7.0×10^{-1}		HSDB (2015)	V	
2-aminobiphenyl C ₁₂ H ₁₁ N [90-41-5]	6.6×10 ¹		HSDB (2015)	Q	38
4-aminobiphenyl C ₁₂ H ₁₁ N [92-67-1]	6.6×10 ¹		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
N-phenyl-1,4-benzenediamine $C_{12}H_{12}N_2$ (p-aminodiphenylamine) [101-54-2]	2.7×10 ⁴		HSDB (2015)	Q	38
2-fluorenamine C ₁₃ H ₁₁ N [153-78-6]	2.7×10 ²		HSDB (2015)	Q	216
$4,4'\text{-methylenebisbenzenamine} \\ C_{13}H_{14}N_2 \\ [101\text{-}77\text{-}9]$	1.9×10 ⁵		HSDB (2015)	V	
2-anthracenamine C ₁₄ H ₁₁ N [613-13-8]	3.3×10 ¹		HSDB (2015)	Q	216
$3,3$ '-dimethylbenzidine $C_{14}H_{16}N_2$ [119-93-7]	1.6×10 ⁵		HSDB (2015)	Q	182
N,N-dimethyl-4-(phenylazo)- benzenamine	1.4×10^3		HSDB (2015)	V	
C ₁₄ H ₁₅ N ₃ [60-11-7]	4.2×10^{1} 4.1×10^{1} 8.2×10^{1} 1.0×10^{1}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
N-ethyl-N-	1.1		Zhang et al. (2010)	Q	107, 111
phenylbenzenemethanamine $C_{15}H_{17}N$ [92-59-1]	1.1 4.6×10 ⁻¹ 6.7		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q	107, 109 107, 110 107, 111
N-(1-methylethyl)-N'-phenyl-1,4- benzenediamine C ₁₅ H ₁₈ N ₂ (4-(iso-propylamino)diphenylamine) [101-72-4]	7.0×10 ³		HSDB (2015)	Q	38
$\begin{tabular}{ll} \hline &4,4'\text{-methylene-bis-(N-methylaniline)} \\ &C_{15}H_{18}N_2 \\ &[1807\text{-}55\text{-}2] \\ \hline \end{tabular}$	3.4×10^4		HSDB (2015)	Q	38
C.I. Food Yellow 10 C ₁₆ H ₁₃ N ₃ [85-84-7]	1.9×10 ⁴		HSDB (2015)	Q	38
3,3',5,5'-tetramethylbenzidine C ₁₆ H ₂₀ N ₂ [54827-17-7]	1.3×10 ⁵		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula (Other parage))	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
N-phenyl-1-naphthalenamine	7.0×10^{1}		HSDB (2015)	V	
$C_{16}H_{13}N$	9.7×10^{1}		Zhang et al. (2010)	Q	107, 108
[90-30-2]	4.6×10^{1}		Zhang et al. (2010)	Q	107, 109
	1.2×10^{1}		Zhang et al. (2010)	Q	107, 110
	2.8×10 ²		Zhang et al. (2010)	Q	107, 111
yellow OB C ₁₇ H ₁₅ N ₃ [131-79-3]	1.8×10^4		HSDB (2015)	Q	38
auramine C ₁₇ H ₂₁ N ₃ [492-80-8]	1.2×10^2		HSDB (2015)	V	
benzphetamine C ₁₇ H ₂₁ N [156-08-1]	2.3×10 ¹		HSDB (2015)	Q	38
4,4'-methylenebis(N,N-dimethylbenzenamine) C ₁₇ H ₂₂ N ₂ (bis(p-dimethylamino)phenylmethane) [101-61-1]	8.2×10 ¹		HSDB (2015)	Q	38
phencyclidine C ₁₇ H ₂₅ N [77-10-1]	1.8		HSDB (2015)	Q	38
N,N'-diphenyl-1,4-benzenediamine $C_{18}H_{16}N_2$ [74-31-7]	4.7×10 ⁴		HSDB (2015)	Q	38
N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine	2.9×10^3		Zhang et al. (2010)	Q	107, 108
$C_{18}H_{24}N_2$	3.9×10^2		Zhang et al. (2010)	Q	107, 109
[793-24-8]	3.9×10^{1}		Zhang et al. (2010)	Q	107, 110
	2.3×10^3		Zhang et al. (2010)	Q	107, 111
amitraz C ₁₉ H ₂₃ N ₃ [33089-61-1]	1.0		MacBean (2012b)	X	137
N,N'-bis(1-ethyl-3-methylpentyl)-1,4-benzenediamine	5.8×10^{1}		Zhang et al. (2010)	Q	107, 108
$C_{22}H_{40}N_2$	5.8		Zhang et al. (2010)	Q	107, 109
[139-60-6]	1.8		Zhang et al. (2010)	Q	107, 110
	1.9×10^{1}		Zhang et al. (2010)	Q	107, 111
p,p'-benzylidenebis(N,N-dimethylaniline) $C_{23}H_{26}N_2$ (leucomalachite green) [129-73-7]	1.0×10^3		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	dln H ^{cp}			
Formula	(at T^{\ominus})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]	F773		31	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
N-phenyl-N-(2,4,4-trimethyl-2- pentanyl)-1-naphthalenamine	6.4×10^{-1}		Zhang et al. (2010)	Q	107, 108
$C_{24}H_{29}N$	9.7×10^{-1}		Zhang et al. (2010)	Q	107, 109
[51772-35-1]	9.0×10^{-1}		Zhang et al. (2010)	Q	107, 110
	1.1×10^{1}		Zhang et al. (2010)	Q	107, 111
tris(2-ethylhexyl)amine	7.0×10^{-4}		Zhang et al. (2010)	Q	107, 108
$C_{24}H_{51}N$	1.2×10^{-2}		Zhang et al. (2010)	Q	107, 109
[1860-26-0]	6.1×10^{-6}		Zhang et al. (2010)	Q	107, 110
	3.7×10^{-4}		Zhang et al. (2010)	Q	107, 111
4,4',4"-methylidyne-tris(N,N-dimethylbenzenamine)	6.4×10^4		Zhang et al. (2010)	Q	107, 108
$C_{25}H_{31}N_3$	3.1×10^4		Zhang et al. (2010)	Q	107, 109
(Leucocrystal violet)	3.5×10^{2}		Zhang et al. (2010)	Q	107, 110
[603-48-5]	1.1×10^6		Zhang et al. (2010)	Q	107, 111
N-phenylbenzenamide	8.2×10^{-2}		Zhang et al. (2010)	Q	107, 108
C ₃₀ H ₄₇ N	4.7×10^{-1}		Zhang et al. (2010)	Q	107, 109
[68608-79-7]	1.5×10^{-1}		Zhang et al. (2010)	Q	107, 110
	2.9×10^{-1}		Zhang et al. (2010)	Q	107, 111
4,4',4"-methanetriyltris(N,N-diethylaniline)	9.0×10^4		Zhang et al. (2010)	Q	107, 108
$C_{31}H_{43}N_3$	7.0×10^5		Zhang et al. (2010)	Q	107, 109
[68814-02-8]	1.7×10^3		Zhang et al. (2010)	Q	107, 110
	1.5×10^6		Zhang et al. (2010)	Q	107, 111
	Heterocycle	es with n	itrogen (C, H, N)		
pyrrolidine	4.2		Amoore and Buttery (1978)	V	
C ₄ H ₈ NH	4.2	7600	Cabani et al. (1971a)	T	
[123-75-1]	6.0		Hilal et al. (2008)	Q	
1-pyrroline C ₄ H ₇ N [5724-81-2]	1.6		Amoore and Buttery (1978)	M	
3-pyrroline C ₄ H ₇ N [109-96-6]	4.9		Amoore and Buttery (1978)	V	
N-methylpyrrolidine	3.3×10^{-1}	7600	Cabani et al. (1971a)	T	
C ₄ H ₈ NCH ₃ [120-94-5]	2.2×10^{-1}		Hilal et al. (2008)	Q	
piperidine	2.8	7900	Bernauer and Dohnal (2009)	M	
C ₅ H ₁₀ NH	2.0		Amoore and Buttery (1978)	V	
[110-89-4]	2.2	7900	Cabani et al. (1971a)	T	
	7.3		Hilal et al. (2008)	Q	

4623

Table 6: Henry's law constants for water as solvent (... continued)

H^{cp} (at T^{\ominus})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Type	Note
$\left[\frac{mol}{m^3Pa}\right]$	[K]	Reference	Турс	11010
2.4×10^{-1} 2.9×10^{-1}	7900	Abraham et al. (1994a) Cabani et al. (1971a)	R T	
4.8×10^{-1} 2.2×10^{-1}	6300	Kühne et al. (2005) Nirmalakhandan et al. (1997)	Q Q	
3.9×10^{-1}	6600	Kühne et al. (2005) Hilal et al. (2008) Kühne et al. (2005)	? Q Q	
	6600	Kühne et al. (2005)	?	
1.0×10 ²	11000	Cabani et al. (1975a)	Т	
2.0×10 ²	11000	Cabani et al. (1975a)	Т	
1.4×10 ²	11000	Cabani et al. (1975a)	Т	
1.7×10 ⁸		HSDB (2015)	V	
3.1×10 ¹		HSDB (2015)	V	
2.7×10 ¹		HSDB (2015)	Q	38
2.7		HSDB (2015)	Q	38
3.1		HSDB (2015)	Q	38
1.7×10^{-2}		Zhang et al. (2010)	Q	107, 108
4.0×10^{5}		Zhang et al. (2010)	Q	107, 109
	$(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^{3} \text{Pa}}\right]$ 2.4×10^{-1} 2.9×10^{-1} 4.8×10^{-1} 2.2×10^{-1} 3.9×10^{-1} 1.0×10^{2} 2.0×10^{2} 1.4×10^{2} 1.7×10^{8} 3.1×10^{1} 2.7×10^{1} 2.7×10^{1}	$ \begin{array}{c c} (at T^{\ominus}) & \overline{d(1/T)} \\ \hline \begin{bmatrix} \frac{mol}{m^3 Pa} \end{bmatrix} & [K] \\ 2.4 \times 10^{-1} & 7900 \\ 4.8 \times 10^{-1} & 6300 \\ 2.2 \times 10^{-1} & 6600 \\ \hline 3.9 \times 10^{-1} & 6600 \\ \hline 1.0 \times 10^2 & 11000 \\ \hline 1.4 \times 10^2 & 11000 \\ \hline 1.7 \times 10^8 & \\ \hline 2.7 \times 10^1 & \\ \hline 2.7 & \\ \hline 3.1 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Table 6: Henry's law constants for water as solvent (... continued)

	an				
Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]	[17]		• •	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
1-piperazineethanamine	1.5×10^{7}		HSDB (2015)	Q	38
$C_6H_{15}N_3$					
(N-(2-aminoethyl)piperazine)					
[140-31-8]					
pyrrole	5.5×10^{-1}		Hawthorne et al. (1985)	M	
C ₄ H ₅ N	6.1×10^{-1}		Mackay et al. (2006d)	V	
(1H-pyrrole)	6.1×10^{-1}		Mackay et al. (1995)	V	
[109-97-7]	7.2×10^{-1}		Hilal et al. (2008)	Q	
1-methyl-1H-pyrrole	9.0×10^{-3}		Hilal et al. (2008)	Q	
C ₅ H ₇ N					
[96-54-8]					
pyridine	1.1	6000	Bernauer and Dohnal (2009)	M	
C ₅ H ₅ N	4.6×10^{-2}	-2300	Dewulf et al. (1999)	M	
[110-86-1]	5.5×10^{-1}		Chaintreau et al. (1995)	M	
	8.2×10^{-1}		Hawthorne et al. (1985)	M	
	1.1		Arnett and Chawla (1979)	M	222
	7.1×10^{-1}		Amoore and Buttery (1978)	M	
	1.1	5900	Andon et al. (1954)	M	129
	7.5×10^{-1}		Hilal et al. (2008)	Q	
		6000	Kühne et al. (2005)	Q	
	1.8		Nirmalakhandan et al. (1997)	Q	
	1.1	E 400	Mackay et al. (2006d)	?	
	0.0 40-1	5400	Kühne et al. (2005)	?	02
	8.9×10^{-1}		Yaws and Yang (1992)	?	92
	1.1		Abraham et al. (1990) Staudinger and Roberts (2001)	? W	223
munidina d5	4.2	10000		M	
pyridine-d5 C ₅ D ₅ N	4.2	10000	Hiatt (2013)	IVI	
[7291-22-7]					
2-methylpyridine	9.9×10^{-1}	6400	Andon et al. (1954)	M	129
C ₅ H ₄ NCH ₃	4.1×10^{-1}	3 100	Hilal et al. (2008)	Q	12)
(2-picoline; α-picoline)	7.1 \ 10	6400	Kühne et al. (2005)	Q	
[109-06-8]	1.3	0.00	Nirmalakhandan et al. (1997)	Q	
	9.9×10^{-1}		Mackay et al. (2006d)	?	
	-	6300	Kühne et al. (2005)	?	
	3.4×10^{-1}		Yaws and Yang (1992)	?	92
	9.9×10^{-1}		Abraham et al. (1990)	?	
			Staudinger and Roberts (2001)	W	223
3-methylpyridine	4.2×10^{-1}		Chaintreau et al. (1995)	M	
C ₅ H ₄ NCH ₃	1.3	6300	Andon et al. (1954)	M	129
(3-picoline; β-picoline) [108-99-6]	8.8×10^{-1}		Hilal et al. (2008)	Q	
		6400	Kühne et al. (2005)	Q	
	1.3		Nirmalakhandan et al. (1997)	Q	
	1.3		Mackay et al. (2006d)	?	
		6300	Kühne et al. (2005)	?	
	5.4×10^{-1}		Yaws and Yang (1992)	?	92
	1.3		Abraham et al. (1990)	?	
			Staudinger and Roberts (2001)	W	223

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
4-methylpyridine C ₅ H ₄ NCH ₃ [108-89-4]	1.7 9.0×10 ⁻¹ 1.3 1.7 1.6 1.4	6500 6400 6500	Andon et al. (1954) Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan et al. (1997) Mackay et al. (2006d) Kühne et al. (2005) Abraham et al. (1990) Arnett and Chawla (1979) Staudinger and Roberts (2001)	M Q Q Q ? ? ?	129 222 223
4-aminopyridine $C_5H_6N_2$ [504-24-5]	4.3×10^4		HSDB (2015)	V	
2-aminopyridine $C_5H_6N_2$ [504-29-0]	3.9×10^3		HSDB (2015)	Q	38
2-ethylpyridine C ₅ H ₄ NC ₂ H ₅ [100-71-0]	6.0×10^{-1} 2.9×10^{-1} 1.1 6.0×10^{-1}	6700 6700 7900	Andon et al. (1954) Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan et al. (1997) Kühne et al. (2005) Abraham et al. (1990) Staudinger and Roberts (2001)	M Q Q Q ? ?	129
3-ethylpyridine C ₅ H ₄ NC ₂ H ₅ [536-78-7]	9.5×10^{-1} 6.7×10^{-1} 1.1 9.5×10^{-1}	6400 6700 6200	Andon et al. (1954) Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan et al. (1997) Kühne et al. (2005) Abraham et al. (1990) Staudinger and Roberts (2001)	M Q Q Q ? ?	129
4-ethylpyridine C ₅ H ₄ NC ₂ H ₅ [536-75-4]	$ \begin{array}{c} 1.2 \\ 7.0 \times 10^{-1} \\ 1.1 \\ 1.2 \end{array} $	6300 6700 6300	Andon et al. (1954) Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan et al. (1997) Kühne et al. (2005) Abraham et al. (1990) Staudinger and Roberts (2001)	M Q Q Q ? ?	129 223
2,3-dimethylpyridine C ₅ H ₃ N(CH ₃) ₂ [583-61-9]	$ \begin{array}{c} 1.4 \\ 6.2 \times 10^{-1} \\ 9.5 \times 10^{-1} \\ 1.4 \\ 1.4 \end{array} $	6900 6200 5800	Andon et al. (1954) Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan et al. (1997) Mackay et al. (2006d) Kühne et al. (2005) Abraham et al. (1990) Staudinger and Roberts (2001)	M Q Q Q ? ?	129

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{H^{cp}}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]	F773		-J F -	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
2,4-dimethylpyridine	9.9×10^{-1}		Hawthorne et al. (1985)	M	
$C_5H_3N(CH_3)_2$	1.5	7100	Andon et al. (1954)	M	129
108-47-4]	5.1×10^{-1}		Hilal et al. (2008)	Q	
		6700	Kühne et al. (2005)	Q	
	9.2×10^{-1}		Nirmalakhandan et al. (1997)	Q	
	1.5		Mackay et al. (2006d)	?	
		6400	Kühne et al. (2005)	?	
	1.5		Abraham et al. (1990)	?	
			Staudinger and Roberts (2001)	W	223
2,5-dimethylpyridine	1.1	7000	Andon et al. (1954)	M	129
$C_5H_3N(CH_3)_2$	5.7×10^{-1}		Hilal et al. (2008)	Q	
[589-93-5]		6700	Kühne et al. (2005)	Q	
	9.2×10^{-1}		Nirmalakhandan et al. (1997)	Q	
	1.2		Meylan and Howard (1991)	Q	
		6900	Kühne et al. (2005)	?	
	1.1		Abraham et al. (1990)	?	
			Staudinger and Roberts (2001)	W	223
2,6-dimethylpyridine	6.6×10^{-1}		Hawthorne et al. (1985)	M	
$C_5H_3N(CH_3)_2$	9.5×10^{-1}	7300	Andon et al. (1954)	M	129
108-48-5]	4.5×10^{-1}		Hilal et al. (2008)	Q	
		6700	Kühne et al. (2005)	Q	
	9.5×10^{-1}		Nirmalakhandan et al. (1997)	Q	
	9.4×10^{-1}		Mackay et al. (2006d)	?	
		6600	Kühne et al. (2005)	?	
	9.5×10^{-1}		Abraham et al. (1990)	?	
			Staudinger and Roberts (2001)	W	223
3,4-dimethylpyridine	2.7	6800	Andon et al. (1954)	M	129
$C_5H_3N(CH_3)_2$	1.3		Hilal et al. (2008)	Q	
583-58-4]		6200	Kühne et al. (2005)	Q	
	9.2×10^{-1}		Nirmalakhandan et al. (1997)	Q	
		6400	Kühne et al. (2005)	?	
	2.7		Abraham et al. (1990)	?	222
			Staudinger and Roberts (2001)	W	223
5,5-dimethylpyridine	1.4	6800	Andon et al. (1954)	M	129
$C_5H_3N(CH_3)_2$	9.7×10^{-1}		Hilal et al. (2008)	Q	
591-22-0]	1	6700	Kühne et al. (2005)	Q	
	9.2×10^{-1}	6 M C C	Nirmalakhandan et al. (1997)	Q	
	1.1	6500	Kühne et al. (2005)	?	
	1.4		Abraham et al. (1990) Staudinger and Roberts (2001)	? W	223
	1		_		443
5-ethyl-2-methylpyridine	5.2×10^{-1} 8.6×10^{-1}		HSDB (2015)	V	107 10
C ₈ H ₁₁ N	8.6×10^{-1} 3.8×10^{-1}		Zhang et al. (2010)	Q	107, 10
104-90-5]			Zhang et al. (2010)	Q	107, 10
	7.0×10^{-1}		Zhang et al. (2010)	Q	107, 11
	6.2×10^{-2}		Zhang et al. (2010)	Q	107, 11
	4.4×10^{-1}		Hilal et al. (2008)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,4,6-trimethylpyridine $C_5H_2N(CH_3)_3$ (collidine) [108-75-8]	$ \begin{array}{c} 1.1 \\ 5.7 \times 10^{-2} \\ 5.7 \times 10^{-2} \\ 1.1 \\ 5.4 \times 10^{-1} \end{array} $	7100 8600	HSDB (2015) Mackay et al. (2006d) Mackay et al. (1995) Hilal et al. (2008) Hilal et al. (2008) Kühne et al. (2005) Kühne et al. (2005)	V V V C Q Q	
4-(1,1-dimethylethyl)-pyridine C ₉ H ₁₃ N (4- <i>tert</i> -butylpyridine) [3978-81-2]	3.9×10^{-1} 7.5×10^{-1} 7.5×10^{-1}	7000	Hilal et al. (2008) Abraham et al. (1990) Arnett and Chawla (1979)	Q ? ?	222
2,6-bis-(1,1-dimethylethyl)-pyridine C ₁₃ H ₂₁ N (2,6-di- <i>tert</i> -butylpyridine) [585-48-8]	8.0×10^{-4} 2.8×10^{-1}	6900	Arnett and Chawla (1979) Arnett and Chawla (1979)	M V	222 224
1-methyl-1H-imidazole $C_4H_6N_2$ [616-47-7]	1.1×10^2		Hilal et al. (2008)	Q	
amitrole C ₂ H ₄ N ₄ [61-82-5]	4.5×10^7 6.1×10^9		HSDB (2015) Mackay et al. (2006d)	V V	
1,3-diazine C ₄ H ₄ N ₂ [289-95-2]	1.0×10 ¹		Hilal et al. (2008)	Q	
1,3,5-triazine-2,4,6-triamine C ₃ H ₆ N ₆ [108-78-1]	5.5×10^{8} 5.2×10^{7} 6.7×10^{8} 5.8×10^{9} 8.4×10^{8}		HSDB (2015) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	V Q Q Q	107, 108 107, 109 107, 110 107, 111
3-cyanopyridine C ₆ H ₄ N ₂ [100-54-9]	3.6×10^{1} 3.6×10^{1} 1.6×10^{1} 1.2×10^{2}		Abraham et al. (1994a) HSDB (2015) Hilal et al. (2008) Nirmalakhandan et al. (1997)	R Q Q Q	38
4-cyanopyridine $C_6H_4N_2$ [100-48-1]	1.1×10^{1} 1.7×10^{1} 1.2×10^{2}		Abraham et al. (1994a) Hilal et al. (2008) Nirmalakhandan et al. (1997)	R Q Q	
indole C ₈ H ₇ N [120-72-9]	$ \begin{array}{c} 1.9 \times 10^{1} \\ 7.1 \\ 7.1 \\ 1.5 \times 10^{1} \\ 9.0 \end{array} $		HSDB (2015) Mackay et al. (2006d) Mackay et al. (1995) Howard and Meylan (1997) Hilal et al. (2008)	V V V X Q	181
2-methylpyrazine $C_4N_2H_3CH_3$ [109-08-0]	4.5 4.8 3.1		Buttery et al. (1971) Hilal et al. (2008) Nirmalakhandan et al. (1997)	M Q Q	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{mol}{m^3 Pa}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2-ethylpyrazine C ₄ N ₂ H ₃ (C ₂ H ₅) [13925-00-3]	4.0 2.7 2.7		Buttery et al. (1971) Hilal et al. (2008) Nirmalakhandan et al. (1997)	M Q Q	
2,5-dimethylpyrazine $C_6H_8N_2$ [123-32-0]	7.1 5.5 6.4		Marin et al. (1999) Marin et al. (1999) Marin et al. (1999)	M V Q	
2,6-dimethylpyrazine C ₆ H ₈ N ₂ (3,5-dimethylpyrazine) [108-50-9]	9.8×10 ⁻¹		Chaintreau et al. (1995)	M	
2-isobutylpyrazine C ₄ N ₂ H ₃ C ₄ H ₉ [29460-92-2]	2.0 1.4		Buttery et al. (1971) Nirmalakhandan et al. (1997)	M Q	
2-(1-methylpropyl)-pyrazine $C_8H_{12}N_2$ [29460-93-3]	1.6		Hilal et al. (2008)	Q	
5-ethenyl-2-methylpyridine C ₈ H ₉ N [140-76-1]	2.2		HSDB (2015)	Q	38
nornicotine C ₉ H ₁₂ N ₂ 494-97-3]	7.2×10 ³		HSDB (2015)	Q	182
2,4-diamino-6-phenyl-1,3,5-triazine C9H9N5 [91-76-9]	2.4×10 ⁵		HSDB (2015)	Q	38
3-methylindole C ₉ H ₉ N [83-34-1]	4.7		HSDB (2015)	V	
2,3-diethyl-5-methylpyrazine $C_9H_{14}N_2$ [18138-04-0]	8.1×10^{-1}		Roberts and Pollien (1997)	M	
benzo[b]pyridine C ₉ H ₇ N (quinoline) [91-22-5]	5.8 3.8×10^{1} 3.8×10^{1} 6.0 6.4 3.7×10^{1} 4.0×10^{1} 6.4 3.4×10^{1}	5400 7300	HSDB (2015) Mackay et al. (2006d) Mackay et al. (1995) Meylan and Howard (1991) Abraham et al. (1994a) Goldstein (1982) Smith and Bomberger (1980) Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan et al. (1997)	V V V V R X X Q Q	116 164
	1.4×10^{1}	7300	Meylan and Howard (1991) Kühne et al. (2005)	Q ?	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
benzo[c]pyridine C ₉ H ₇ N (isoquinoline) [119-65-3]	5.2×10 ⁻² 5.2×10 ⁻² 9.2		Mackay et al. (2006d) Mackay et al. (1995) Hilal et al. (2008)	V V Q	
nicotine C ₁₀ H ₁₄ N ₂ [54-11-5]	3.3×10^3		HSDB (2015)	Q	38
2,2'-bipyridine C ₁₀ H ₈ N ₂ [366-18-7]	1.8×10 ⁴		HSDB (2015)	Q	216
4-methylquinoline C ₁₀ H ₉ N [491-35-0]	1.3×10 ¹		HSDB (2015)	Q	38
MEIQX C ₁₁ H ₁₁ N ₅ (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline) [77500-04-0]	6.2×10 ⁷		HSDB (2015)	Q	38
3-(phenylazo)-2,6-pyridinediamine C ₁₁ H ₁₁ N ₅ (phenazopyridine) [94-78-0]	3.0×10 ⁹		HSDB (2015)	Q	38
2-amino-9H-pyrido[2,3-b]indole C ₁₁ H ₉ N ₃ [26148-68-5]	2.5×10 ⁸		HSDB (2015)	Q	38
benzo[f]quinoline C ₁₃ H ₉ N [85-02-9]	1.0×10^2		Mackay et al. (2006d) Mackay et al. (1995)	V V	221
carbazole C ₁₂ H ₉ N [86-74-8]	9.3×10^{1} 6.6×10^{-2} 6.6×10^{-2} 6.2×10^{-2} 1.1×10^{2}	4300	Odabasi et al. (2006) Mackay et al. (2006d) Mackay et al. (1995) Smith and Bomberger (1980) HSDB (2015)	M V V X Q	164 38
<i>o</i> -phenanthroline C ₁₂ H ₈ N ₂ [66-71-7]	$ 1.1 \times 10^{5} 9.9 \times 10^{3} 1.2 \times 10^{5} 4.4 \times 10^{2} $		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
benzyladenine C ₁₂ H ₁₁ N ₅ [1214-39-7]	1.1×10 ⁸		HSDB (2015)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s))	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Туре	Note
[CAS registry number]	$\left\lfloor \frac{\text{mol}}{\text{m}^3 \text{Pa}} \right\rfloor$	[K]			
MEIQ C ₁₂ H ₁₂ N ₄ (2-amino-3,4-dimethylimidazo[4,5- f]quinoxaline) [77094-11-2]	2.5×10 ⁷		HSDB (2015)	Q	38
pyrimethanil C ₁₂ H ₁₃ N ₃ [53112-28-0]	3.9		HSDB (2015)	Q	38
paraquat C ₁₂ H ₁₄ N ₂ [4685-14-7]	>2.4×10 ⁸		HSDB (2015)	V	
N,N-dimethyltryptamine C ₁₂ H ₁₆ N ₂ [61-50-7]	1.5×10 ⁴		HSDB (2015)	Q	38
PHIP C ₁₃ H ₁₂ N ₄ (2-amino-1-methyl-6- phenylimidazo[4,5-b]pyridine) [105650-23-5]	3.5×10 ⁷		HSDB (2015)	Q	38
N,N'-diphenylguanidine C ₁₃ H ₁₃ N ₃ [102-06-7]	1.4×10^6		HSDB (2015)	Q	38
acridine	3.3×10^{1}		Mackay et al. (2006d)	V	
C ₁₃ H ₉ N	3.3×10^{1}		Mackay et al. (1995)	V	
[260-94-6]	2.5×10^{1}		HSDB (2015)	Q	38
cyprodinil C ₁₄ H ₁₅ N ₃ [121552-61-2]	1.2×10^2		HSDB (2015)	V	
imiquimod C ₁₄ H ₁₆ N ₄ [99011-02-6]	1.2×10 ⁷		HSDB (2015)	Q	38
benz[<i>c</i>]acridine C ₁₇ H ₁₁ N [225-51-4]	3.7×10 ²		HSDB (2015)	Q	182
6-pentyl-1,2,3,4,7,8,9,10- octahydrophenanthridine	4.5×10^{-1}		Zhang et al. (2010)	Q	107, 108
C ₁₈ H ₂₇ N	2.0×10^{1}		Zhang et al. (2010)	Q	107, 109
[10594-03-3]	6.2 2.2×10^{-2}		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 110 107, 111
2-diphenylmethylpiperidine C ₁₈ H ₂₁ N (desoxypipradrol) [519-74-4]	6.6×10 ¹		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type	Note
7H-dibenzo[c , g]carbazole $C_{20}H_{13}N$ [194-59-2]	4.0×10^3		HSDB (2015)	Q	38
dibenz[a , j]acridine $C_{21}H_{13}N$ [224-42-0]	5.2×10^3		HSDB (2015)	Q	38
dibenz[a, h]acridine $C_{21}H_{13}N$ [226-36-8]	5.2×10 ³		HSDB (2015)	Q	38
	N	itriles (C	C, H, N)		
cyano radical CN [2074-87-5]	7.8×10 ⁻⁴	1400	Berdnikov and Bazhin (1970)	Т	11
hydrogen cyanide	1.7×10^{-1}	4400	Yoo et al. (1986)	L	
HCN	1.1×10^{-1}	5000	Edwards et al. (1978)	L	
(hydrocyanic acid)	7.5×10^{-2}		Riveros et al. (1998)	M	9
[74-90-8]	1.2×10^{-1}		Fredenhagen and Wellmann (1932b)	M	
	9.2×10^{-2}		Hine and Weimar Jr. (1965)	R	
	7.4×10^{-2}		Gaffney and Senum (1984)	X	153, 205
	3.9×10^{-2}		Hilal et al. (2008)	Q	
	1.1×10^{-1}		Yaws (1999)	?	
ethane nitrile	5.2×10^{-1}	4000	Sander et al. (2011)	L	
CH ₃ CN	5.2×10^{-1}	4000	Sander et al. (2006)	L	
(acetonitrile)	5.0×10^{-1}	4100	Fogg and Sangster (2003)	L	
[75-05-8]	5.1×10^{-1}	4000	Staudinger and Roberts (2001)	L	
	4.7×10^{-1}	3500	Arijs and Brasseur (1986)	L	
	6.0×10^{-1}	6300	Hiatt (2013)	M	
	5.2×10^{-1}	4000	Ji and Evans (2007)	M	
	4.9×10^{-1}	4100	Bebahani et al. (2002)	M	
	5.3×10^{-1} 4.6×10^{-1}	4100	Benkelberg et al. (1995)	M	
	4.8×10^{-1}	3900	Li and Carr (1993)	M	
	5.3×10^{-1}	4100	Snider and Dawson (1985) Hamm et al. (1984)	M M	
	3.7×10^{-2}	4100	Abraham and Acree Jr. (2007)	V	
	5.0×10^{-1}		Hwang et al. (1992)	V	
	2.9×10^{-1}		Hine and Weimar Jr. (1965)	R	
	2.9×10^{-1}		Gaffney and Senum (1984)	X	153
	7.7×10^{-1}		Hilal et al. (2008)	Q	
		4200	Kühne et al. (2005)	Q	
	2.9×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	3.6×10^{-1}		Mackay et al. (2006d)	?	
		4300	Kühne et al. (2005)	?	
	4.9×10^{-1}		Yaws and Yang (1992)	?	92
	2.9×10^{-1}		Abraham et al. (1990)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]		1101010100	17 PC	1,000
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
propane nitrile	4.3×10^{-1}	6200	Hiatt (2013)	M	
C ₂ H ₅ CN	3.3×10^{-1}	4600	Ji and Evans (2007)	M	
(propionitrile)	2.5×10^{-1}		Li and Carr (1993)	M	
[107-12-0]	1.9×10^{-1}		Hawthorne et al. (1985)	M	
	2.6×10^{-1}		Butler and Ramchandani (1935)	M	
	3.1×10^{-1}		Mackay et al. (2006d)	V	
	3.1×10^{-1}		Mackay et al. (1995)	V	
	1.7×10^{-1}		Howard (1990)	X	164
	5.0×10^{-1}		Hilal et al. (2008)	Q	
	2.6×10^{-1}		Mackay et al. (2006d)	?	
	2.7×10^{-1}		Abraham et al. (1990)	?	
outane nitrile	2.7×10^{-1}	5100	Ji and Evans (2007)	M	
C ₃ H ₇ CN	1.3×10^{-1}		Ramachandran et al. (1996)	M	
(butyronitrile)	1.9×10^{-1}		Li and Carr (1993)	M	
[109-74-0]	1.4×10^{-1}		Hawthorne et al. (1985)	M	
	1.9×10^{-1}		Butler and Ramchandani (1935)	M	
	3.5×10^{-1}		Hilal et al. (2008)	Q	
	2	4900	Kühne et al. (2005)	Q	
	1.9×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	1.9×10^{-1}		Mackay et al. (2006d)	?	
	10 10-1	4700	Kühne et al. (2005)	?	
	1.9×10 ⁻¹		Abraham et al. (1990)	?	
2-methylpropane nitrile	9.4×10^{-2}		Li and Carr (1993)	M	
C_4H_7N	1.8×10^{-1}		HSDB (2015)	Q	38
(isobutyronitrile)	1.9×10^{-1}		Hilal et al. (2008)	Q	
[78-82-0]		4900	Kühne et al. (2005)	Q	
		5100	Kühne et al. (2005)	?	
pentane nitrile	1.4×10^{-1}		Li and Carr (1993)	M	
C ₄ H ₉ CN	1.6×10^{-1}		Amoore and Buttery (1978)	V	
(butyl cyanide; valeronitrile)	2.7×10^{-1}		Hilal et al. (2008)	Q	
[110-59-8]	1.5×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	1.5×10^{-1}		Abraham et al. (1990)	?	
hexanenitrile C ₆ H ₁₁ N [628-73-9]	2.3×10^{-1}		Hilal et al. (2008)	Q	
heptanenitrile	1.6×10 ⁻¹		Hilal et al. (2008)	Q	
C ₇ H ₁₃ N	1.0×10		1111at et al. (2000)	Ų	
[629-08-3]					
octanenitrile	1.3×10^{-1}		Hilal et al. (2008)	Q	
C ₈ H ₁₅ N	1.5 / 10			~	
[124-12-9]					
nonanenitrile	1.0×10^{-1}		Hilal et al. (2008)	Q	
C ₉ H ₁₇ N	1.0 ^ 10		1111ai ot al. (2000)	Ų	
[2243-27-8]					

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
decanenitrile C ₁₀ H ₁₉ N [1975-78-6]	8.0×10^{-2}		Hilal et al. (2008)	Q	
undecanenitrile C ₁₁ H ₂₁ N [2244-07-7]	6.1×10^{-2}		Hilal et al. (2008)	Q	
cyclohexanecarbonitrile C ₇ H ₁₁ N [766-05-2]	7.3×10 ⁻¹		Hilal et al. (2008)	Q	
ethanedinitrile	1.8×10^{-3}		HSDB (2015)	V	
C_2N_2	2.6×10^{-3}		Hilal et al. (2008)	Q	
(cyanogen) [460-19-5]	1.8×10^{-3}		Yaws and Yang (1992)	?	92, 9
hexanedinitrile	8.2×10 ³		HSDB (2015)	V	
$C_6H_8N_2$	2.4×10^{2}		Mackay et al. (2006d)	V	
(adiponitrile)	2.4×10^{2}		Mackay et al. (1995)	V	
111-69-3]	2.2×10^{3}		Hilal et al. (2008)	Q	
2-propenenitrile	1.2×10^{-1}	6800	Hiatt (2013)	M	
C_3H_3N	1.3×10^{-1}		Mackay et al. (2006d)	V	
(acrylonitrile)	8.2×10^{-2}	3400	Fogg and Sangster (2003)	V	
[107-13-1]	9.1×10^{-2}		Lide and Frederikse (1995)	V	
	1.3×10^{-1}		Mackay et al. (1995)	V	
	9.8×10^{-2}		Hwang et al. (1992)	V	
	1.1×10^{-1}	2800	Goldstein (1982)	X	116
	1.1×10^{-1}		Mackay et al. (1995)	C	
	1.1×10^{-1}		Ryan et al. (1988)	C	
	2.2×10^{-2}	3600	Hilal et al. (2008) Kühne et al. (2005)	Q Q	
	9.0×10^{-2}	3000	Mackay et al. (2006d)	?	
	7.0 × 10	3600	Kühne et al. (2005)	?	
2-methyl-2-propene nitrile	5.4×10^{-2}	6700	Hiatt (2013)	M	
C_4H_5N	4.0×10^{-2}		HSDB (2015)	V	
(methacrylonitrile)	1.7×10^{-2}		Hilal et al. (2008)	Q	
[126-98-7]		4000 4600	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
penzenenitrile	2.9×10 ⁻¹	5100	Lee et al. (2013)	M	
C ₆ H ₅ CN	1.9×10^{-1}		HSDB (2015)	V	
(benzonitrile) [100-47-0]	1.9×10^{-1}		Mackay et al. (2006d)	V	
	3.9×10^{-1}		Schüürmann (2000)	V	
	1.9×10^{-1}		Mackay et al. (1995)	V	
	1.9×10^{-1} 5.0×10^{-1}		Mackay et al. (1995)	V	
	3.0×10^{-1} 2.4×10^{-1}		Abraham et al. (1994a) Hilal et al. (2008)	R	
	2.4 X IU	5900	Kühne et al. (2005)	Q Q	
	1.5×10^{-1}	5700	Nirmalakhandan et al. (1997)	Q	
		6400	Kühne et al. (2005)	?	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]		Reference	Турс	11010
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
	1.8×10^{-2}		Yaws and Yang (1992)	?	92, 166
	4.1×10^{-1}		Abraham et al. (1990)	?	
2-pyridinecarbonitrile $C_6H_4N_2$ [100-70-9]	1.4×10^2		HSDB (2015)	Q	38
2-methylpentanedinitrile C ₆ H ₈ N ₂ [4553-62-2]	3.3×10 ²		HSDB (2015)	Q	38
3,3'-iminobispropanenitrile C ₆ H ₉ N ₃ [111-94-4]	2.0×10 ⁶		HSDB (2015)	Q	38
2-methylbenzonitrile C_8H_7N (o -tolunitrile) [529-19-1]	7.6×10 ⁻¹		Schüürmann (2000)	V	
3-methylbenzonitrile	1.7×10^{-1}		Zhang et al. (2010)	Q	107, 108
C ₈ H ₇ N	3.4×10^{-1}		Zhang et al. (2010)	Q	107, 109
(<i>m</i> -tolunitrile)	8.8×10^{-1}		Zhang et al. (2010)	Q	107, 110
[620-22-4]	1.8×10^{-1}		Zhang et al. (2010)	Q	107, 111
benzeneacetonitrile	7.0×10^{-2}		HSDB (2015)	V	
C ₈ H ₇ N	1.0×10^{1}		Hilal et al. (2008)	Q	
(phenylacetonitrile)		6200	Kühne et al. (2005)	Q	
[140-29-4]		5100	Kühne et al. (2005)	?	
tetramethylbutanedinitrile $C_8H_{12}N_2$ [3333-52-6]	1.9×10^2		HSDB (2015)	Q	38
1,2-benzenedicarbonitrile $C_8H_4N_2$ [91-15-6]	2.0×10 ¹		HSDB (2015)	Q	38
3,7-dimethyl-2,6-octadienenitrile C ₁₀ H ₁₅ N (geranyl nitrile) [5146-66-7]	2.9×10 ⁻²		Helburn et al. (2008)	М	
2,2'-azobis(2-methylbutyronitrile)	4.5×10 ⁴		Zhang et al. (2010)	Q	107, 108
$C_{10}H_{16}N_4$	9.2×10^{1}		Zhang et al. (2010)	Q	107, 109
[13472-08-7]	1.5×10^{1}		Zhang et al. (2010)	Q	107, 110
	4.4×10^{-1}		Zhang et al. (2010)	Q	107, 111
\mathbf{A}	mines, amid	es, amin	o acids (C, H, O, N)		
formamide	7.0×10^3		HSDB (2015)	V	
CH ₃ NO					
[75-12-7]					

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp} (at T^{Θ})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} (1/T)}$			
Formula (Other name(s))		d(1/T)	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
methyl nitrite	1.5×10^{-1}		HSDB (2015)	Q	38
CH ₃ NO ₂					
[624-91-9]					
urea	5.7×10^{6}		HSDB (2015)	V	
CH_4N_2O	1.0×10^{7}		Mackay et al. (2006d)	V	
[57-13-6]	1.0×10^7		Mackay et al. (1995)	V	
ethanolamine	6.0×10^4		Bone et al. (1983)	M	9
$HOC_2H_4NH_2$					
[141-43-5]					
1,1'-azodiformamide	1.2×10 ⁷		HSDB (2015)	V	
$C_2H_4N_4O_2$					
[123-77-3]					
ethyl nitrite	1.1×10^{-1}		HSDB (2015)	Q	38
$C_2H_5NO_2$					
[109-95-5]					
carbamic acid, methyl ester	2.5×10^{2}		HSDB (2015)	Q	38
C ₂ H ₅ NO ₂					
[598-55-0]					
acetaldoxime	1.7		HSDB (2015)	Q	182
C ₂ H ₅ NO					
(acetaldehyde oxime)					
[107-29-9]					
ethanamide	5.3×10^3		Wolfenden (1976)	M	
C ₂ H ₅ NO	2.8×10^{3}		Mackay et al. (2006d)	V	
(acetamide)	2.8×10^{3}		Mackay et al. (1995)	V	
[60-35-5]	9.0×10^2		HSDB (2015)	Q	38
	4.2×10^3		Hilal et al. (2008)	Q	
N-methylmethanamide	1.5×10^3	7600	Bernauer and Dohnal (2008)	M	
C ₂ H ₅ NO	4.9×10^{2}		HSDB (2015)	V	
(N-methylformamide) [123-39-7]	5.6×10^2		Hilal et al. (2008)	Q	
	~ 1	6400	IZI : (1000)	3.7	
N-nitrosodimethylamine	6.1 5.2	6400	Klein (1982) Mirvish et al. (1976)	M M	19
C ₂ H ₆ N ₂ O [62-75-9]	3.2 3.0×10^{-1}		Mackay et al. (1976)	M C	17
[02-13-7]	9.5		Hilal et al. (2008)	Q	
	3.0×10^{-1}		Mackay et al. (2006d)	?	
methylnitrosourea	>1.9×10 ²		Mirvish et al. (1976)	M	19
C ₂ H ₅ N ₃ O ₂	>1.9×10		1viii visii et al. (17/0)	1V1	17
[684-93-5]					
nitrosoazetidine	>1.9×10 ²		Mirvish et al. (1976)	M	19
C ₃ H ₆ N ₂ O	Z1.J×10		1711 11511 Ct al. (1770)	171	1)
[15216-10-1]					

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
methylnitrosoacetamide $C_3H_6N_2O_2$ [7417-67-6]	8.6×10^{-2}		Mirvish et al. (1976)	M	19
ethylnitrosocyanamide C ₃ H ₅ N ₃ O [38434-77-4]	2.6×10 ⁻¹		Mirvish et al. (1976)	M	19
2-propenamide	5.5×10^3		HSDB (2015)	V	
C ₃ H ₅ NO	6.9×10^3		Mackay et al. (2006d)	V	
(acrylamide)	3.1×10^4		Lide and Frederikse (1995)	V	
[79-06-1]	6.9×10^3		Mackay et al. (1995)	V	
-	4.1×10^{3}		Hilal et al. (2008)	Q	
		8400	Kühne et al. (2005)	Q	
		7900	Kühne et al. (2005)	?	
methylvinylnitrosamine C ₃ H ₆ N ₂ O (N-nitrosomethylvinylamine) [4549-40-0]	2.7		HSDB (2015)	Q	38
urethane	1.5×10^{2}		HSDB (2015)	V	
$C_3H_7NO_2$	1.1×10^{1}		Hilal et al. (2008)	Q	
[51-79-6]					
N,N-dimethylmethanamide	1.6×10^2	7500	Bernauer and Dohnal (2008)	M	
C ₃ H ₇ NO	2.2×10^2	7000	Abraham et al. (1994a)	R	
(N,N-dimethylformamide)	4.5×10^{1}		Hilal et al. (2008)	Q	
[68-12-2]	2.2×10^{2}		Nirmalakhandan et al. (1997)	Q	
	1.6×10^2		Taft et al. (1985)	Q	
N-methylacetamide	3.2×10^3	8900	Bernauer and Dohnal (2008)	M	
C ₃ H ₇ NO	2.3×10^{2}	0700	HSDB (2015)	V	
[79-16-3]	2.3 × 10		11500 (2013)	•	
N-methyl-N-nitrosoethanamine C ₃ H ₈ N ₂ O (N-nitrosomethylethylamine) [10595-95-6]	6.9		HSDB (2015)	Q	182
2-methoxyethanamine C ₃ H ₉ NO (2-methoxyethylamine) [109-85-3]	2.5×10 ¹	7600	Cabani et al. (1978)	Т	
2-(methylamino)ethanol C ₃ H ₉ NO [109-83-1]	9.0×10 ¹		HSDB (2015)	V	
1-amino-2-propanol C ₃ H ₉ NO [78-96-6]	4.2×10 ⁴		HSDB (2015)	Q	216

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
N-nitroso-N-methylurethane $C_4H_8N_2O_3$ (N-nitroso-N-methylurethane) [615-53-2]	3.9×10 ⁻¹ 1.8		Mirvish et al. (1976) HSDB (2015)	M V	19
dinitrosopiperazine C ₄ H ₈ N ₄ O ₂ [140-79-4]	$>1.9\times10^2$		Mirvish et al. (1976)	M	19
2-amino-3(methylamino)propionic acid $C_4H_{10}N_2O_2$ (3-(methylamino)-(DL)-alanine) [16676-91-8]	2.9×10 ⁷		HSDB (2015)	Q	38
N-nitrosodiethanolamine C ₄ H ₁₀ N ₂ O ₃ [1116-54-7]	2.0×10 ⁶		HSDB (2015)	Q	182
N-nitrosodiethylamine C ₄ H ₁₀ N ₂ O [55-18-5]	5.6 1.4 3.9	6300	Klein (1982) Mirvish et al. (1976) Hilal et al. (2008)	M M Q	19
diethanolamine $C_4H_{11}NO_2$ [111-42-2]	2.5×10 ⁵		HSDB (2015)	V	
3-methoxy-1-propanamine C ₄ H ₁₁ NO (3-methoxypropylamine) [5332-73-0]	4.8×10 ¹	8700	Cabani et al. (1978)	Т	
2-[(2-aminoethyl)amino]ethanol C ₄ H ₁₂ N ₂ O [111-41-1]	9.0×10 ⁷		HSDB (2015)	Q	38
tetramethylammonium hydroxide $C_4H_{13}NO$ [75-59-2]	2.3×10 ¹⁰		HSDB (2015)	Q	38
acetone cyanohydrin C ₄ H ₇ NO [75-86-5]	8.0×10 ¹		HSDB (2015)	V	
carbamic acid, 1-methylethyl ester C ₄ H ₉ NO ₂ [1746-77-6]	1.4×10^2		HSDB (2015)	Q	38
propylcarbamate C ₄ H ₉ NO ₂ [627-12-3]	1.0×10^2		HSDB (2015)	V	
N,N-dimethylacetamide C ₄ H ₉ NO [127-19-5]	4.4×10^{2} 1.7×10^{2} 3.6×10^{2}	8600	Bernauer and Dohnal (2008) Hilal et al. (2008) Taft et al. (1985)	M Q Q	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$d \ln H^{cp}$			
Formula (Other name(s)) (CAS registry number]	$ (at T^{\Theta}) $ $ \left[\frac{\text{mol}}{\text{m}^3 \text{Pa}} \right] $	d(1/T) [K]	Reference	Туре	Note
2-butanone, oxime C ₄ H ₉ NO 96-29-7]	8.1		HSDB (2015)	V	
nitrosoethylurethane C ₅ H ₁₀ N ₂ O ₃ N-ethyl-N-nitrosourethane) 614-95-9]	5.2×10 ²		HSDB (2015)	Q	38
N-nitroso-N-butylurea C ₅ H ₁₁ N ₃ O ₂ 869-01-2]	4.3×10 ⁴		HSDB (2015)	Q	38
nethyldiethanolamine C ₅ H ₁₃ NO ₂ 105-59-9]	3.2×10 ⁵		HSDB (2015)	V	
nethylbutylnitrosamine C ₅ H ₁₂ N ₂ O 7068-83-9]	1.7		Mirvish et al. (1976)	М	19
nethylpentylnitrosamine C ₆ H ₁₄ N ₂ O 13256-07-0]	2.0		Mirvish et al. (1976)	М	19
thylbutylnitrosamine $C_6H_{14}N_2O$ 4549-44-4]	9.9×10 ⁻¹		Mirvish et al. (1976)	М	19
uitrosohexamethyleneimine C ₆ H ₁₂ N ₂ O 932-83-2]	4.3×10 ¹		Mirvish et al. (1976)	M	19
,6-dimethylnitrosomorpholine C ₆ H ₁₂ N ₂ O ₂ 1456-28-6]	3.5×10 ¹		Mirvish et al. (1976)	M	19
,6-dimethyldinitrosopiperazine $C_6H_{12}N_4O_2$ 55380-34-2]	>1.9×10 ²		Mirvish et al. (1976)	M	19
N-(1-methylethyl)-2-propenamide $C_6H_{11}NO$ N-isopropylacrylamide) 2210-25-5]	4.3×10 ²		HSDB (2015)	Q	38
N-butylacetamide C ₆ H ₁₃ NO 1119-49-9]	2.7×10^3 5.2×10^2		Gibbs et al. (1991) Hilal et al. (2008)	M Q	
N-(1-methylethyl)-N-nitroso-2- ropanamine	1.2		Mirvish et al. (1976)	M	19
C ₆ H ₁₄ N ₂ O diisopropylamine) 601-77-4]	3.4×10^{-1}		Hilal et al. (2008)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$			
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	d(1/T) [K]	Reference	Type	Note
N-nitrosodipropylamine C ₆ H ₁₄ N ₂ O (N,N-dipropylnitrosamine) [621-64-7]	1.8 2.8 2.8 1.6 5.8		Mirvish et al. (1976) Mackay et al. (2006d) Mackay et al. (1995) Mackay et al. (1995) Hilal et al. (2008)	M V V C Q	19
ethyldiethanolamine C ₆ H ₁₅ NO ₂ 139-87-7]	9.0×10 ⁴		HSDB (2015)	Q	38
riethanolamine C ₆ H ₁₅ NO ₃ 102-71-6]	1.4×10 ⁷		HSDB (2015)	V	
p-aminophenol C ₆ H ₇ NO 2-aminophenol) 95-55-6]	4.9×10 ⁴		HSDB (2015)	Q	38
4-aminophenol C ₆ H ₇ NO 123-30-8]	2.7×10 ⁴		HSDB (2015)	V	
B-aminophenol C ₆ H ₇ NO 591-27-5]	3.7×10 ⁴		HSDB (2015)	Q	38
p-diaminoanisole C ₇ H ₁₀ N ₂ O 2-methoxy-1,4-benzenediamine) 5307-02-8]	2.5×10 ⁵		HSDB (2015)	Q	38
4-methoxy-1,3-benzenediamine C ₇ H ₁₀ N ₂ O 615-05-4]	1.4×10 ⁴		HSDB (2015)	Q	38
2-cyano-N-[(ethylamino)carbonyl]-2-methoxyimino)acetamide C ₇ H ₁₀ N ₄ O ₃ cymoxanil) 57966-95-7]	3.0×10 ⁴		HSDB (2015)	V	
socyanatocyclohexane C ₇ H ₁₁ NO 3173-53-3]	5.8×10 ⁻³		HSDB (2015)	Q	38
C-theanine C7H ₁₄ N ₂ O ₃ 3081-61-6]	1.1×10 ¹⁰		HSDB (2015)	Q	182
etryl C ₇ H ₅ N ₅ O ₈ (479-45-8]	3.7×10 ³		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s))	H^{cp} (at T^{Θ}) $\lceil \mod \rceil$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Туре	Note
CAS registry number]	$\left[\frac{\text{mor}}{\text{m}^3 \text{Pa}}\right]$	[K]			
nthranilic acid C ₇ H ₇ NO ₂ 118-92-3]	2.6×10 ⁵		HSDB (2015)	Q	38
-aminobenzoic acid C ₇ H ₇ NO ₂ 150-13-0]	6.6×10 ⁴		HSDB (2015)	V	
alicylamide C ₇ H ₇ NO ₂ 65-45-2]	3.4×10 ⁴		HSDB (2015)	Q	38
nesalamine C7H7NO3 89-57-6]	2.0×10 ⁶		HSDB (2015)	Q	38
J-phenylformamide 27H7NO 103-70-8]	1.2×10 ³		HSDB (2015)	Q	38
enzamide			Mackay et al. (2006d)	V	221
C ₇ H ₇ NO	2.2×10^4		Mackay et al. (1995)	V	
55-21-0]	4.7×10^4		Abraham et al. (1994a)	R	
	3.8×10^3 8.2×10^3		Hilal et al. (2008)	Q	
	8.2×10^{3} 4.0×10^{4}		Nirmalakhandan et al. (1997) HSDB (2015)	Q ?	170
unthranilamide C ₇ H ₈ N ₂ O 2-aminobenzamide) 88-68-6]	1.3×10 ⁷		HSDB (2015)	Q	38
N-methyl-N-nitrosobenzenamine C7H ₈ N ₂ O 614-00-6]	2.0		HSDB (2015)	Q	38
-methoxy-benzenamine	1.2×10 ¹		Abraham et al. (1994a)	R	
C ₇ H ₉ NO	1.1×10^{1}		HSDB (2015)	Q	38
2-methoxyaniline)	2.8×10^{1}		Hilal et al. (2008)	Q	
90-04-0]	1.5×10 ¹		Nirmalakhandan et al. (1997)	Q	
-methoxy-benzenamine	9.0×10^{1}		Abraham et al. (1994a)	R	
C ₇ H ₉ NO	9.0×10^{1}		HSDB (2015)	Q	38
3-methoxyaniline)	1.8×10^2 1.5×10^1		Hilal et al. (2008)	Q	
536-90-3]			Nirmalakhandan et al. (1997)	Q	
-methoxy-benzenamine	1.5×10^2		Altschuh et al. (1999)	M	
C ₇ H ₉ NO	1.2×10^2		Abraham et al. (1994a)	R	
4-methoxyaniline) 104-94-9]	1.4×10^2 1.5×10^1		Hilal et al. (2008) Nirmalakhandan et al. (1997)	Q Q	
-(methylamino)phenol	2.2×10^4		HSDB (2015)	Q	38
C ₇ H ₉ NO [N-methyl-4-aminophenol) [150-75-4]				-	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
defenuron $C_8H_{10}N_2O$ [1007-36-9]	8.5×10 ⁵		MacBean (2012a)	?	9
N-methyl-N- nitrosobenzenemethanamine $C_8H_{10}N_2O$ [937-40-6]	7.9×10^{-1} 1.2×10^{2}		Mirvish et al. (1976) Hilal et al. (2008)	M Q	19
norepinephrine C ₈ H ₁₁ NO ₃ [51-41-2]	3.1×10^{13}		HSDB (2015)	Q	38
4-methoxy-2-methylbenzenamine C ₈ H ₁₁ NO (<i>m</i> -cresidine) [102-50-1]	8.2×10 ¹		HSDB (2015)	Q	38
<i>p</i> -cresidine C ₈ H ₁₁ NO [120-71-8]	8.0×10 ¹		HSDB (2015)	Q	38
N-nitrosodi-N-butylamine C ₈ H ₁₈ N ₂ O [924-16-3]	$7.2 \times 10^{-1} $ 7.5×10^{-1}		Mirvish et al. (1976) Hilal et al. (2008)	M Q	19
(diisopropylamino)-ethanol C ₈ H ₁₉ NO [96-80-0]	1.9×10 ²		Hilal et al. (2008)	Q	
phthalamide C ₈ H ₈ N ₂ O ₂ [88-96-0]	7.0×10 ⁶		HSDB (2015)	Q	38
acetaminophen C ₈ H ₉ NO ₂ [103-90-2]	1.5×10 ⁷		HSDB (2015)	Q	38
methyl anthranilate C ₈ H ₉ NO ₂ [134-20-3]	5.2		HSDB (2015)	V	
4'-aminoacetophenone C ₈ H ₉ NO (4-acetylaniline) [99-92-3]	2.2×10 ³		HSDB (2015)	Q	38
N-phenylacetamide C ₈ H ₉ NO (acetanilide) [103-84-4]	1.6×10 ³		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
methylcarbamic acid, 3-methylphenyl ester C ₉ H ₁₁ NO ₂ (metolcarb) [1129-41-5]	1.2×10 ⁴		HSDB (2015)	V	
ohenylcarbamic acid, ethyl ester C ₉ H ₁₁ NO ₂ [101-99-5]	3.4×10^2		HSDB (2015)	Q	38
ethyl anthranilate C ₉ H ₁₁ NO ₂ 87-25-2]	6.2×10 ²		HSDB (2015)	Q	38
penzocaine C ₉ H ₁₁ NO ₂ 94-09-7]	6.2×10 ²		HSDB (2015)	Q	38
1-(4-aminophenyl)-1-propanone C ₉ H ₁₁ NO 4-aminopropiophenone) 70-69-9]	2.1×10 ³		HSDB (2015)	Q	38
4-ethoxyphenyl)urea C ₉ H ₁₂ N ₂ O ₂ dulcin) 150-69-6]	6.2×10 ⁵		HSDB (2015)	Q	182
enuron	8.7×10^2		Mackay et al. (2006d)	V	
C ₉ H ₁₂ N ₂ O	3.7×10^{3}		Suntio et al. (1988)	V	9
101-42-8]	1.0×10^4		HSDB (2015)	Q	38
epinephrine C ₉ H ₁₃ NO ₃ 51-43-4]	1.4×10 ¹³		HSDB (2015)	Q	38
meprobamate C ₉ H ₁₈ N ₂ O ₄ 57-53-4]	5.5×10 ⁴		HSDB (2015)	Q	38
oropamocarb C ₉ H ₂₀ N ₂ O ₂ 24579-73-5]	1.6×10 ³		Hilal et al. (2008)	Q	
oroximpham C ₁₀ H ₁₂ N ₂ O ₂ 2828-42-4]	3.9×10^3		MacBean (2012a)	?	9
dioxacarb C ₁₀ H ₁₃ NO ₄ [6988-21-2]	6.7×10 ⁵		MacBean (2012a)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
phenol, 3,5-dimethyl-, methylcarbamate $C_{10}H_{13}NO_2 \\ (3,5\text{-xylyl methylcarbamate}) \\ [2655\text{-}14\text{-}3]$	2.5×10^2 4.3×10^2		HSDB (2015) MacBean (2012a)	Q ?	38
phenylcarbamic acid, 1-methylethyl ester $C_{10}H_{13}NO_2$ [122-42-9]	5.5×10 ¹		HSDB (2015)	V	
xylylcarb C ₁₀ H ₁₃ NO ₂ [2425-10-7]	9.1×10 ¹		Watanabe (1993)	M	
phenacetin C ₁₀ H ₁₃ NO ₂ [62-44-2]	4.7×10^4		HSDB (2015)	V	
ephedrine C ₁₀ H ₁₅ NO [299-42-3]	1.1×10 ⁵		HSDB (2015)	Q	182
m-cumenyl methylcarbamate C ₁₁ H ₁₅ NO ₂ (3-isopropylphenyl methyl carbamate) [64-00-6]	1.6×10 ²		HSDB (2015)	Q	38
propoxur C ₁₁ H ₁₅ NO ₃ [114-26-1]	$ 2.9 \times 10^{3} 5.1 \times 10^{5} 7.1 \times 10^{3} 7.7 $		HSDB (2015) Mackay et al. (2006d) Siebers et al. (1994) Suntio et al. (1988)	V V V	9
methocarbamol C ₁₁ H ₁₅ NO ₅ [532-03-6]	1.5×10 ¹⁰		HSDB (2015)	Q	38
aminocarb C ₁₁ H ₁₆ N ₂ O ₂ [2032-59-9]	1.9×10 ³ 1.8×10 ⁴		Mackay et al. (2006d) HSDB (2015)	V Q	38
monodesmethylisoproturon C ₁₁ H ₁₆ N ₂ O [34123-57-4]	2.8×10 ⁵		Otto et al. (1997)	V	
cycluron C ₁₁ H ₂₂ N ₂ O [2163-69-1]	8.2×10^2		HSDB (2015)	Q	38
methylneodecanamide C ₁₁ H ₂₃ NO [105726-67-8]	4.1×10 ¹		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} \ln H^{cp}}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
Other name(s))	[mol]	[77]		J1 -	
CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
-(phenylazo)phenol	1.5×10^4		HSDB (2015)	V	
$C_{12}H_{10}N_2O$					
4-hydroxyazobenzene)					
1689-82-3]					
I-nitrosodiphenylamine	8.7×10^{-3}		Mackay et al. (2006d)	V	
$C_{12}H_{10}N_2O$	8.7×10^{-3}		Mackay et al. (1995)	V	
N,N-Diphenylnitrosamine)	1.5×10^{-2}		Mackay et al. (1995)	C	
86-30-6]	8.2		HSDB (2015)	Q	38
arbaryl	>9.9×10 ¹		Mabury and Crosby (1996)	M	
$C_{12}H_{11}NO_2$	3.6×10^{3}		Watanabe (1993)	M	
53-25-2]	2.2×10^4		Mackay et al. (2006d)	V	
	2.3×10^{3}		Meylan and Howard (1991)	V	
	7.7×10^2		Suntio et al. (1988)	V	9
	2.3×10^3		Howard and Meylan (1997)	X	181
	3.5×10^3		Armbrust (2000)	C	
	1.4×10^3		Hilal et al. (2008)	Q	
	3.1×10^3		Meylan and Howard (1991)	Q	
,4'-oxybisbenzenamine	6.6×10^5		HSDB (2015)	Q	38
C ₁₂ H ₁₂ N ₂ O bis(4-aminophenyl) ether) 101-80-4]					
arbofuran	$>9.9\times10^{1}$		Mabury and Crosby (1996)	M	
C ₁₂ H ₁₅ NO ₃	2.2×10^4		HSDB (2015)	V	
1563-66-2]	2.0×10^4 2.0×10^3		Mackay et al. (2006d)	V	0
			Suntio et al. (1988)	V	9
henol, 3-methyl-5-(1-methylethyl)-, nethylcarbamate	1.1×10^2		HSDB (2015)	V	
C ₁₂ H ₁₆ NO ₂	3.1×10^{2}		MacBean (2012a)	?	
promecarb)			. ,		
2631-37-0]					
enobucarb	1.5×10 ²		Watanabe (1993)	M	
C ₁₂ H ₁₇ NO ₂					
3766-81-2]					
liethyltoluamide	4.7×10^2		HSDB (2015)	Q	38
C ₁₂ H ₁₇ NO				-	
DEET)					
134-62-3]					
N,N-dimethyl-N'-[4-(1-	8.1×10^4		Mackay et al. (2006d)	V	
nethylethyl)phenyl]-urea					
$C_{12}H_{18}N_2O$	9.5×10^4		Otto et al. (1997)	V	
isoproturon)	1.1×10^5		Siebers et al. (1994)	V	
34123-59-6]					
arisoprodol	1.4×10^4		HSDB (2015)	Q	38
$C_{12}H_{24}N_2O_4$			•	•	
78-44-4]					

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
diethylpropion C ₁₃ H ₁₉ NO [90-84-6]	4.3×10^{1}		HSDB (2015)	Q	38
salbutamol C ₁₃ H ₂₁ NO ₃ (albuterol) [18559-94-9]	1.5×10 ¹⁰		HSDB (2015)	Q	38
disperse blue 1 C ₁₄ H ₁₂ N ₄ O ₂ [2475-45-8]	4.7×10 ¹		HSDB (2015)	V	
3,3'-dimethoxybenzidine C ₁₄ H ₁₆ N ₂ O ₂ [119-90-4]	2.1×10^5		HSDB (2015)	Q	38
aspartame C ₁₄ H ₁₈ N ₂ O ₅ [22839-47-0]	3.9×10 ¹²		HSDB (2015)	Q	38
dinobuton C ₁₄ H ₁₈ N ₂ O ₇ (dessin) [973-21-7]	6.2×10 ²		HSDB (2015)	Q	38
N-(2-methylcyclohexyl)-N'- phenylurea C ₁₄ H ₂₀ N ₂ O (siduron) [1982-49-6]	1.5×10 ⁵		HSDB (2015)	V	
butralin C ₁₄ H ₂₁ N ₃ O ₄ [33629-47-9]	2.0 2.0		HSDB (2015) Mackay et al. (2006d)	V V	
lauramine oxide C ₁₄ H ₃₁ NO [1643-20-5]	1.5×10 ⁵		HSDB (2015)	Q	38
2-aminoanthraquinone C ₁₄ H ₉ NO ₂ [117-79-3]	1.1×10 ⁵		HSDB (2015)	V	
1-amino-2-methyl-9,10- anthracenedione C ₁₅ H ₁₁ NO ₂ (1-amino-2-methylanthraquinone) [82-28-0]	8.2×10 ⁶		HSDB (2015)	Q	38
N-2-fluorenylacetamide C ₁₅ H ₁₃ NO (2-acetylaminofluorene) [53-96-3]	5.2×10 ⁴		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\mathrm{d} \ln H^{cp}$			
Formula (Other name(s)) CAS registry number]	$ \left[\frac{\text{mol}}{\text{m}^3 \text{Pa}} \right] $	$\frac{\overline{\mathrm{d}(1/T)}}{[K]}$	Reference	Туре	Note
metalaxyl	3.3×10 ³		HSDB (2015)	V	
$C_{15}H_{21}NO_4$	4.0×10^4		Mackay et al. (2006d)	V	
[57837-19-1]	8.5×10^4		Burkhard and Guth (1981)	V	
tebutam C ₁₅ H ₂₃ NO [35256-85-0]	6.7×10 ¹		MacBean (2012a)	?	
isopropalin C ₁₅ H ₂₃ N ₃ O ₄ [33820-53-0]	1.9×10 ⁻¹		Mackay et al. (2006d)	V	
metoprolol C ₁₅ H ₂₅ NO ₃ [37350-58-6]	4.7×10 ⁵		HSDB (2015)	Q	38
(3-methylphenyl)-carbamic acid, 3-[(methoxycarbonyl)amino]phenyl ester C ₁₆ H ₁₆ N ₂ O ₄ (betanal) [13684-63-4]	1.2×10 ⁷		HSDB (2015)	V	
fenam	4.1×10^5		HSDB (2015)	V	
C ₁₆ H ₁₇ NO [957-51-7]	2.7×10^5		Mackay et al. (2006d)	V	
difenoxuron C ₁₆ H ₁₈ N ₂ O ₃ [14214-32-5]	5.6×10 ⁷		MacBean (2012a)	?	
butacarb C ₁₆ H ₂₅ NO ₂ [2655-19-8]	2.2×10 ²		HSDB (2015)	V	
oseltamivir C ₁₆ H ₂₈ N ₂ O ₄ [196618-13-0]	3.4×10 ¹⁰		HSDB (2015)	Q	38
N,N-bis(2-hydroxyethyl)dodecanamide C ₁₆ H ₃₃ NO ₃ [120-40-1]	4.6×10 ⁶		HSDB (2015)	Q	38
1-[(2-methoxyphenyl)azo]-2-naphthol C ₁₇ H ₁₄ N ₂ O ₂ [1229-55-6]	9.0×10 ⁴		HSDB (2015)	Q	38
furalaxyl C ₁₇ H ₁₉ NO ₄ [57646-30-7]	1.1×10 ⁴		MacBean (2012a)	?	
fenoxycarb	2.3×10 ⁷		HSDB (2015)	V	
C ₁₇ H ₁₉ NO ₄ [79127-80-3]	1.2×10^4		Mackay et al. (2006d)	V	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
bifenazate C ₁₇ H ₂₀ N ₂ O ₃ [149877-41-8]	1.0×10^3		MacBean (2012b)	X	137
napropamide C ₁₇ H ₂₁ NO ₂ [15299-99-7]	1.2×10 ⁴		HSDB (2015)	V	
padimate O C ₁₇ H ₂₇ NO ₂ [21245-02-3]	2.5		HSDB (2015)	Q	182
nadolol C ₁₇ H ₂₇ NO ₄ [42200-33-9]	7.0×10 ⁸		HSDB (2015)	Q	38
2,6-di- <i>tert</i> -butyl-4- (dimethylaminomethyl)phenol	4.8×10 ³		Zhang et al. (2010)	Q	107, 108
C ₁₇ H ₂₉ NO [88-27-7]	2.4×10^{2} 1.3 4.8×10^{1}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q	107, 109 107, 110 107, 111
naptalam C ₁₈ H ₁₃ NO ₃ [132-66-1]	>2.3×10 ¹⁰		MacBean (2012a)	?	
citrus red 2 C ₁₈ H ₁₆ N ₂ O ₃ [6358-53-8]	1.9×10 ⁷		HSDB (2015)	Q	38
kresoxim-methyl C ₁₈ H ₁₉ NO ₄ [143390-89-0]	2.7×10 ³		HSDB (2015)	V	
dinocap C ₁₈ H ₂₄ N ₂ O ₆ [39300-45-3]	2.1×10 ³		HSDB (2015)	V	
capsaicin C ₁₈ H ₂₇ NO ₃ [404-86-4]	9.9×10 ⁷		HSDB (2015)	Q	38
(RS) - α -2-naphthoxypropionanilide $C_{19}H_{17}NO_2$ (naproanilide) [52570-16-8]	1.6×10 ⁵		Hilal et al. (2008)	Q	
phenylbutazone C ₁₉ H ₂₀ N ₂ O ₂ [50-33-9]	1.5×10^3		HSDB (2015)	Q	38
phenisopham C ₁₉ H ₂₂ N ₂ O ₄ [57375-63-0]	1.3×10 ⁴		MacBean (2012a)	?	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
formoterol C ₁₉ H ₂₄ N ₂ O ₄ [73573-87-2]	1.1×10 ¹⁷		HSDB (2015)	Q	38
benalaxyl C ₂₀ H ₂₃ NO ₃ [71626-11-4]	8.3×10 ¹		Mackay et al. (2006d)	V	
tralkoxydim C ₂₀ H ₂₇ NO ₃ [87820-88-0]	4.1×10^4		HSDB (2015)	V	
neotame C ₂₀ H ₃₀ N ₂ O ₅ [165450-17-9]	4.3×10 ³		HSDB (2015)	Q	38
colchicine C ₂₂ H ₂₅ NO ₆ [64-86-8]	5.5×10 ¹¹		HSDB (2015)	Q	38
tebufenozide C ₂₂ H ₂₈ N ₂ O ₂ [112410-23-8]	7.6×10^2		HSDB (2015)	V	
methoxyfenozide C ₂₂ H ₂₈ N ₂ O ₃ [161050-58-4]	2.6×10 ⁶		HSDB (2015)	Q	38
propoxyphene C ₂₂ H ₂₉ NO ₂ [469-62-5]	4.3×10^3		HSDB (2015)	Q	38
(Z)-13-docosenamide C ₂₂ H ₄₃ NO (erucamide) [112-84-5]	3.5		HSDB (2015)	Q	216
butroxydim C ₂₄ H ₃₃ NO ₄ [138164-12-2]	1.7×10 ⁴		MacBean (2012a)	?	
2,2-bis[4-(4- aminophenoxy)phenyl]propane	2.0×10^{8}		Zhang et al. (2010)	Q	107, 108
C ₂₇ H ₂₆ N ₂ O ₂ [13080-86-9]	2.8×10^{8} 1.0×10^{8} 3.1×10^{10}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q	107, 109 107, 110 107, 111
1,4-bis[(4-methylphenyl)amino]-9,10- anthracenedione C ₂₈ H ₂₂ N ₂ O ₂ (D&C Green No. 6) [128-80-3]	6.6×10 ¹⁰		HSDB (2015)	Q	38
mifepristone C ₂₉ H ₃₅ NO ₂ [84371-65-3]	2.0×10 ⁻¹		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$			
(Other name(s)) [CAS registry number]	[mol]	(1/1) [K]	Reference	Type	Note
2'-anilino-6'-[ethyl(3-	$\frac{\left[\overline{m^3 Pa}\right]}{8.4 \times 10^7}$	[11]	Zhang et al. (2010)	Q	107, 108
methylbutyl)amino]-3'- methylspiro[isobenzofuran-1(3H),9'- [9H]xanthene]-3-one	0.4×10		Zhang et al. (2010)	Ų.	107, 100
$C_{34}H_{34}N_2O_3$	2.0×10^{8}		Zhang et al. (2010)	Q	107, 109
[70516-41-5]	3.5×10^{8}		Zhang et al. (2010)	Q	107, 110
	8.0×10^{8}		Zhang et al. (2010)	Q	107, 111
glutamic acid C ₅ H ₉ NO ₄ [617-65-2]	9.9×10 ¹⁰		Saxena and Hildemann (1996)	Е	158
asparagine C ₄ H ₈ N ₂ O ₃ [70-47-3]	9.9×10 ¹⁰		Saxena and Hildemann (1996)	Е	158
serine C ₃ H ₇ NO ₃ [302-84-1]	3.9×10 ¹⁰		Saxena and Hildemann (1996)	Е	158
glutamine	3.3×10 ¹⁰		HSDB (2015)	Q	182
C ₅ H ₁₀ N ₂ O ₃ [56-85-9]	9.9×10^{10}		Saxena and Hildemann (1996)	Ē	158
glycine	1.2×10 ¹¹	16000	Brimblecombe et al. (1992)	V	
C ₂ H ₅ NO ₂ [56-40-6]	8.9×10^5		Saxena and Hildemann (1996)	E	158
arginine C ₆ H ₁₄ N ₄ O ₂ [74-79-3]	9.9×10 ¹⁴		Saxena and Hildemann (1996)	Е	158
alanine	3.5×10^{10}	16000	Brimblecombe et al. (1992)	V	
C ₃ H ₇ NO ₂ [302-72-7]	5.9×10^5		Saxena and Hildemann (1996)	E	158
leucine C ₆ H ₁₃ NO ₂ [328-39-2]	2.0×10 ⁵		Saxena and Hildemann (1996)	Е	158
Heteroc	ycles with	oxygen a	nd nitrogen (C, H, O, N)		
cyanuric acid	1.1×10^9		HSDB (2015)	Q	38
C ₃ H ₃ N ₃ O ₃	1.1×10^9		Zhang et al. (2010)	Q	107, 108
[108-80-5]	3.4×10^5		Zhang et al. (2010)	Q	107, 109
	4.2×10^{10}		Zhang et al. (2010)	Q	107, 110
	4.0×10^7		Zhang et al. (2010)	Q	107, 111
isoxazole C ₃ H ₃ NO [288-14-2]	2.4×10^{-1}		Hilal et al. (2008)	Q	
glycidamide C ₃ H ₅ NO ₂ [5694-00-8]	$7.7{\times}10^4$		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
cyclonite C ₃ H ₆ N ₆ O ₆ [121-82-4]	4.9×10 ⁵		HSDB (2015)	V	
5-methyl-3-(2H)-isoxazolone C ₄ H ₅ NO ₂ (hymexazol) [10004-44-1]	5.0×10 ³		Hilal et al. (2008)	Q	
allantoin C ₄ H ₆ N ₄ O ₃ [97-59-6]	2.9×10 ¹²		HSDB (2015)	Q	38
2-pyrrolidinone C ₄ H ₇ NO [616-45-5]	9.3×10 ³		HSDB (2015)	V	
4-nitrosomorpholine C ₄ H ₈ N ₂ O ₂ [59-89-2]	3.9×10^2 9.0×10^2		Mirvish et al. (1976) Hilal et al. (2008)	M Q	19
N-nitrosopyrrolidine C ₄ H ₈ N ₂ O [930-55-2]	$ \begin{array}{c} 1.5 \times 10^2 \\ 1.9 \times 10^2 \\ 3.4 \times 10^1 \end{array} $	8500	Klein (1982) Mirvish et al. (1976) Hilal et al. (2008)	M M Q	19
cyclotetramethylenetetranitramine C ₄ H ₈ N ₈ O ₈ [2691-41-0]	1.1×10^4		HSDB (2015)	Q	38
1-oxa-4-azacyclohexane C ₄ H ₉ NO (morpholine) [110-91-8]	$8.2 \\ 7.3 \times 10^{1} \\ 1.6 \times 10^{2} \\ 1.0 \times 10^{1}$	8400	HSDB (2015) Cabani et al. (1975a) Hilal et al. (2008) Nirmalakhandan et al. (1997)	V T Q Q	
1-aziridineethanol C ₄ H ₉ NO [1072-52-2]	1.3×10 ⁴		HSDB (2015)	Q	38
2-ethyl-3-methoxypyrazine C ₄ N ₂ H ₃ (C ₂ H ₅)OCH ₃ [25680-58-4]	$6.7 \times 10^{-1} \\ 2.5 \times 10^{1}$		Buttery et al. (1971) Hilal et al. (2008)	M Q	
2-isobutyl-3-methoxypyrazine C ₄ N ₂ H ₃ (C ₄ H ₉)OCH ₃ [24683-00-9]	$1.7 \times 10^{-1} \\ 2.0 \times 10^{-1}$		Karl et al. (2003) Buttery et al. (1971)	M M	
1-nitrosopiperidine $C_5H_{10}N_2O$ $100-75-4$]	1.1×10^{1} 2.9×10^{1}		Mirvish et al. (1976) Hilal et al. (2008)	M Q	19
butyl carbamate C ₅ H ₁₁ NO ₂ [592-35-8]	1.1×10^2		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number] 4-methyl-1-oxa-4-azacyclohexane C ₅ H ₁₁ NO (N-methylmorpholine; 4-	H^{cp} $(at T^{\ominus})$ $\begin{bmatrix} \frac{\text{mol}}{\text{m}^3 \text{Pa}} \end{bmatrix}$ 1.8×10^1 5.7 1.7×10^1	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K] 8300	Reference Cabani et al. (1975a) Hilal et al. (2008) Nirmalakhandan et al. (1997)	Type T Q Q	Note
methylmorpholine) $[109-02-4]$ $= 100$ allopurinol $C_5H_4N_4O$	4.9×10 ⁸		HSDB (2015)	Q	38
[315-30-0] 4-methoxypyridine C ₅ H ₄ NOCH ₃ [620-08-6]		7100	Arnett and Chawla (1979)	?	222
N-methyl-2-pyrrolidone C ₅ H ₉ NO [872-50-4]	2.1×10^3 3.1×10^3	9100	Bernauer and Dohnal (2009) Kim et al. (2000)	M M	
5,5-dimethyl-2,4-imidazolidinedione $C_5H_8N_2O_2$ [77-71-4]	3.5×10^{3} 3.6×10^{3} 1.6×10^{5} 5.1×10^{6} 1.6×10^{5}		HSDB (2015) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	38 107, 108 107, 109 107, 110 107, 111
2-azacycloheptanone C ₆ H ₁₁ NO (caprolactam) [105-60-2]	$1.8 \times 10^5 \\ 2.0 \times 10^3$		HSDB (2015) Hwang et al. (1992)	V V	
N-acetylpyrrolidine C ₆ H ₁₁ NO [4030-18-6]	6.2×10 ³		Gibbs et al. (1991)	M	
glucosamine C ₆ H ₁₃ NO ₅ [3416-24-8]	1.3×10 ¹⁰		HSDB (2015)	Q	38
N-ethylmorpholine C ₆ H ₁₃ NO [100-74-3]	4.0×10^2		HSDB (2015)	Q	38
3-formylpyridine C ₆ H ₅ NO [500-22-1]	6.5×10^{1} 1.0×10^{2} 3.8×10^{1}		Abraham et al. (1994a) Hilal et al. (2008) Nirmalakhandan et al. (1997)	R Q Q	
4-formylpyridine C ₆ H ₅ NO [872-85-5]	5.6×10^{1} 1.0×10^{2} 3.8×10^{1}		Abraham et al. (1994a) Hilal et al. (2008) Nirmalakhandan et al. (1997)	R Q Q	
niacinamide $C_6H_6N_2O$ [98-92-0]	3.4×10^6		HSDB (2015)	Q	38
metronidazole C ₆ H ₉ N ₃ O ₃ [443-48-1]	5.8×10 ⁵		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
glydant $C_7H_{12}N_2O_4$ (1,3-dimethylol-5,5-dimethylhydantoin) [6440-58-0]	1.4×10 ⁶		HSDB (2015)	Q	38
3-quinuclidinol C ₇ H ₁₃ NO [1619-34-7]	1.2×10 ⁴		HSDB (2015)	Q	38
dinotefuran C ₇ H ₁₄ N ₄ O ₃ [165252-70-0]	1.5×10 ⁸		HSDB (2015)	V	
1,2,3-benzotriazin-4(1H)-one C ₇ H ₅ N ₃ O [90-16-4]	3.1×10^4		HSDB (2015)	Q	38
4-acetylpyridine	1.6×10^2		Abraham et al. (1994a)	R	
C ₇ H ₇ NO	1.9×10^{2}		Hilal et al. (2008)	Q	
[1122-54-9]	2.7×10^{1}		Nirmalakhandan et al. (1997)	Q	
3-acetylpyridine	4.6×10^2		Abraham et al. (1994a)	R	
C ₇ H ₇ NO	1.9×10^{2}		Hilal et al. (2008)	Q	
[350-03-8]	$2.7{\times}10^1$		Nirmalakhandan et al. (1997)	Q	
theophylline C ₇ H ₈ N ₄ O ₂ [58-55-9]	5.5×10 ⁸		HSDB (2015)	Q	38
theobromine C ₇ H ₈ N ₄ O ₂ [83-67-0]	6.2×10 ⁵		HSDB (2015)	Q	38
2-pyridineethanol C ₇ H ₉ NO [103-74-2]	6.6×10 ⁴		HSDB (2015)	Q	38
caffeine C ₈ H ₁₀ N ₄ O ₂ [58-08-2]	9.0×10 ⁵		HSDB (2015)	V	
acyclovir C ₈ H ₁₁ N ₅ O ₃ [59277-89-3]	3.1×10 ¹⁶		HSDB (2015)	Q	38
2-methoxy-3-(1-methylethyl)-pyrazine $C_8H_{12}N_2O$ [25773-40-4]	1.5×10 ¹		Hilal et al. (2008)	Q	
simeton	1.5×10 ⁴		Hilal et al. (2008)	Q	
C ₈ H ₁₅ N ₅ O [673-04-1]	2.5×10^4		Abraham et al. (2007)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
N-isobutylmorpholine C ₈ H ₁₇ NO [10315-98-7]		8100 6000	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
phthalimide C ₈ H ₅ NO ₂ [85-41-6]	9.9×10 ²		HSDB (2015)	Q	38
furazolidone $C_8H_7N_3O_5$ 67-45-8]	3.0×10 ⁵		HSDB (2015)	Q	38
1,2,3,6-tetrahydrophthalimide C ₈ H ₉ NO ₂ 85-40-5]	3.3×10 ²		HSDB (2015)	Q	38
N-nitrosonornicotine C ₉ H ₁₁ N ₃ O [16543-55-8]	5.8×10 ⁴		HSDB (2015)	Q	182
P-[(1,3-dihydroxy-2- propoxy)methyl]guanine C ₉ H ₁₃ N ₅ O ₄ (ganciclovir) 82410-32-0]	6.6×10 ¹⁷		HSDB (2015)	Q	38
ntraton	6.4×10^3		Hilal et al. (2008)	Q	
C ₉ H ₁₇ N ₅ O	1.1×10^4		Abraham et al. (2007)	Q	
1610-17-9]	2.2×10^3		MacBean (2012a)	?	
4-hydroxy-2,2,6,6-tetramethyl-1- piperidinyloxy C ₉ H ₁₈ NO ₂ 2226-96-2]	3.3×10 ⁹		HSDB (2015)	Q	38
8-hydroxyquinoline C ₉ H ₇ NO [148-24-3]	1.7×10 ¹		HSDB (2015)	V	
carbendazim	4.7×10^5		HSDB (2015)	V	
C ₉ H ₉ N ₃ O ₂ 10605-21-7]	6.5×10^5		Mackay et al. (2006d)	V	
netamitron	2.2×10^{6}		Delgado and Alderete (2003)	C	
$C_{10}H_{10}N_4O$	2.8×10^{7}		Delgado and Alderete (2003)	Q	
41394-05-2]	1.6×10^7		Delgado and Alderete (2003)	Q	
pymetrozin C ₁₀ H ₁₁ N ₅ O [123312-89-0]	3.3×10 ⁵		HSDB (2015)	V	
3-oxo-N-phenylbutanamide C ₁₀ H ₁₁ NO ₂ (acetoacetanilide) [102-01-2]	2.3×10 ⁶		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,3'-didehydro-3'-deoxythymidine (stavudine) $C_{10}H_{12}N_2O_4$ (stavudine) [3056-17-5]	4.3×10 ⁹		HSDB (2015)	Q	38
cotinine C ₁₀ H ₁₂ N ₂ O [486-56-6]	3.0×10 ⁶		HSDB (2015)	Q	38
4-(N-nitroso-N-methylamino)-1-(3- pyridyl)-1-butanone C ₁₀ H ₁₃ N ₃ O ₂ [64091-91-4]	1.2×10 ⁸		HSDB (2015)	Q	38
9-(4-hydroxy-3-hydroxymethylbut-1- yl)guanine C ₁₀ H ₁₅ N ₅ O ₃ (penciclovir) [39809-25-1]	1.0×10 ²⁶		HSDB (2015)	Q	38
anatoxin A C ₁₀ H ₁₅ NO [64285-06-9]	1.5×10 ³		HSDB (2015)	Q	38
dimetilan C ₁₀ H ₁₆ N ₄ O ₃ [644-64-4]	2.4×10 ⁵		HSDB (2015)	Q	38
isolan C ₁₀ H ₁₇ N ₃ O ₂ [119-38-0]	4.9×10^3		HSDB (2015)	Q	38
amicarbazone C ₁₀ H ₁₉ N ₅ O ₂ [129909-90-6]	1.5×10 ⁷		MacBean (2012b)	X	137
prometone C ₁₀ H ₁₉ N ₅ O [1610-18-0]	$ \begin{array}{c} 1.1 \times 10^4 \\ 1.1 \times 10^4 \\ 1.1 \times 10^4 \\ 2.7 \times 10^3 \\ 5.1 \times 10^3 \end{array} $		HSDB (2015) Mackay et al. (2006d) Suntio et al. (1988) Hilal et al. (2008) Abraham et al. (2007)	V V V Q Q	9
secbumeton C ₁₀ H ₁₉ N ₅ O [26259-45-0]	2.8×10^{3} 2.9×10^{3} 5.0×10^{3} 7.2×10^{3} 2.7×10^{3}		Mackay et al. (2006d) Suntio et al. (1988) Hilal et al. (2008) Abraham et al. (2007) MacBean (2012a)	V V Q Q ?	9
terbumeton C ₁₀ H ₁₉ N ₅ O [33693-04-8]	$ 2.1 \times 10^{3} \\ 2.4 \times 10^{3} \\ 1.6 \times 10^{3} $		Mackay et al. (2006d) Hilal et al. (2008) Abraham et al. (2007)	V Q Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]		H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
kinetin C ₁₀ H ₉ N ₅ O [525-79-1]		8.2×10 ⁸		HSDB (2015)	Q	38
carbadox C ₁₁ H ₁₀ N ₄ O ₄ [6804-07-5]		2.2×10 ¹⁷		HSDB (2015)	Q	38
bendiocarb C ₁₁ H ₁₃ NO ₄ [22781-23-3]		$2.5 \times 10^{2} \\ 2.7 \times 10^{2}$		HSDB (2015) Mackay et al. (2006d)	V V	
2,3,5-trimethylphenol, mate $C_{11}H_{15}NO_2$ (2,3,5-trimethacarb) [2655-15-4]	methylcarba-	4.5×10 ¹		HSDB (2015)	V	
butalbital C ₁₁ H ₁₆ N ₂ O ₃ [77-26-9]		1.6×10 ⁷		HSDB (2015)	Q	38
dexrazoxane C ₁₁ H ₁₆ N ₄ O ₄ [24584-09-6]		4.7×10 ¹³		HSDB (2015)	Q	38
pentobarbital C ₁₁ H ₁₈ N ₂ O ₃ [76-74-4]		1.2×10 ⁷		HSDB (2015)	Q	38
pirimor		1.2×10 ⁴		HSDB (2015)	V	
$C_{11}H_{18}N_4O_2$		3.1×10^{3}		Mackay et al. (2006d)	V	
(pirimicarb)		5.0×10^{3}		Siebers and Mattusch (1996)	V	9
[23103-98-2]		5.9×10^{3}		Siebers et al. (1994)	V	
		3.1×10^{3}		Suntio et al. (1988)	V	9
ethirimol C ₁₁ H ₁₉ N ₃ O [23947-60-6]		3.6×10^3		Mackay et al. (2006d)	V	
fenfuram C ₁₂ H ₁₁ NO ₂ [24691-80-3]		2.5×10 ⁴		Mackay et al. (2006d)	V	
phenobarbital C ₁₂ H ₁₂ N ₂ O ₃ [50-06-6]		5.8×10 ⁸		HSDB (2015)	Q	38
triaziquone C ₁₂ H ₁₃ N ₃ O ₂ [68-76-8]		1.1×10^{10}		HSDB (2015)	Q	38
triallyl cyanurate		2.3×10 ¹		Zhang et al. (2010)	Q	107, 108
$C_{12}H_{15}N_3O_3$		1.8×10^{3}		Zhang et al. (2010)	Q	107, 109
[101-37-1]		1.9×10^2		Zhang et al. (2010)	Q	107, 110
-		4.1×10^4		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
entecavir C ₁₂ H ₁₅ N ₅ O ₃ [142217-69-4]	6.2×10 ¹⁵		HSDB (2015)	Q	38
metaxalone C ₁₂ H ₁₅ NO ₃ [1665-48-1]	3.7×10 ⁴		HSDB (2015)	Q	38
phendimetrazine C ₁₂ H ₁₇ NO [634-03-7]	3.7×10^2		HSDB (2015)	Q	38
hexazinone C ₁₂ H ₂₀ N ₄ O ₂ [51235-04-2]	$>9.9 \times 10^{1}$ 4.4×10^{6}		Mabury and Crosby (1996) HSDB (2015)	M V	
picaridin C ₁₂ H ₂₃ NO ₃ [119515-38-7]	3.3×10 ⁵		HSDB (2015)	Q	38
pyrinuron C ₁₃ H ₁₂ N ₄ O ₃ (pyriminil) [53558-25-1]	5.4×10 ¹⁰		HSDB (2015)	Q	38
melatonin C ₁₃ H ₁₆ N ₂ O ₂ [73-31-4]	3.8×10 ⁸		HSDB (2015)	Q	182
dibenz[b, f]][1,4]oxazepine C ₁₃ H ₉ NO [257-07-8]	2.4×10^{-3}		HSDB (2015)	Q	38
benomyl C ₁₄ H ₁₈ N ₄ O ₃ [17804-35-2]	5.2×10 ⁵		Mackay et al. (2006d)	V	
trimethoprim C ₁₄ H ₁₈ N ₄ O ₃ [738-70-5]	4.1×10^8		HSDB (2015)	Q	38
famciclovir C ₁₄ H ₁₉ N ₅ O ₄ [104227-87-4]	1.0×10 ⁸		HSDB (2015)	Q	38
furmecyclox C ₁₄ H ₂₁ NO ₃ [60568-05-0]	1.4×10^2		MacBean (2012a)	?	
oxcarbazepine C ₁₅ H ₁₂ N ₂ O ₂ [28721-07-5]	1.4×10 ⁷		HSDB (2015)	Q	38
phenytoin C ₁₅ H ₁₂ N ₂ O ₂ [57-41-0]	9.7×10 ⁵		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula Other name(s)) CAS registry number]		d(1/T) [K]	Reference	Туре	Note
carbamazepine C ₁₅ H ₁₂ N ₂ O [298-46-4]	9.0×10 ⁴		HSDB (2015)	Q	38
oropylthiouracil C ₁₅ H ₁₂ N ₂ O 51-52-5]	9.0×10 ³		HSDB (2015)	Q	38
nncymidol C ₁₅ H ₁₆ N ₂ O ₂ 12771-68-5]	4.7×10^6		Hilal et al. (2008)	Q	
mazethapyr C ₁₅ H ₁₉ N ₃ O ₃ 81335-77-5]	9.9×10 ¹⁰		HSDB (2015)	Q	38
imazamox C ₁₅ H ₁₉ N ₃ O ₄ [114311-32-9]	1.1×10^{13}		HSDB (2015)	Q	38
cycloheximide C ₁₅ H ₂₃ NO ₄ [66-81-9]	2.8×10 ⁹		HSDB (2015)	Q	38
oxymatrine C ₁₅ H ₂₄ N ₂ O ₂ [16837-52-8]	9.9×10 ¹²		HSDB (2015)	Q	38
mebendazole C ₁₆ H ₁₃ N ₃ O ₃ 31431-39-7]	1.8×10 ¹⁰		HSDB (2015)	Q	38
enpyroximate C ₁₆ H ₂₀ N ₂ O ₃ 134098-61-6]	7.6		MacBean (2012b)	X	137
mazamethabenz-methyl $C_{16}H_{20}N_2O_3$ $81405-85-8$]	2.6×10 ⁶		HSDB (2015)	V	
nifedipine C ₁₇ H ₁₈ N ₂ O ₆ 21829-25-4]	1.4×10 ⁸		HSDB (2015)	Q	38
oxymorphone C ₁₇ H ₁₉ NO ₄ .76-41-5]	2.4×10 ¹³		HSDB (2015)	Q	38
lesomorphine C ₁₇ H ₂₁ NO ₂ 427-00-9]	2.4×10 ⁶		HSDB (2015)	Q	38
cocaine C ₁₇ H ₂₁ NO ₄ 50-36-2]	2.3×10 ⁵		HSDB (2015)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
N-(2-ethylhexyl)-5-norbornene-2,3- dicarboximide C ₁₇ H ₂₅ NO ₂ [113-48-4]	3.5×10 ¹		HSDB (2015)	Q	38
quinophthalone C ₁₈ H ₁₁ NO ₂ [8003-22-3]	1.6×10 ⁸		HSDB (2015)	Q	38
etramethrin C ₁₉ H ₂₅ NO ₄ 7696-12-0]	5.8		HSDB (2015)	V	
soxaben C ₁₉ H ₂₅ NO ₄ 82558-50-7]	7.8×10^3		MacBean (2012b)	X	137
alfuzosin C ₁₉ H ₂₇ N ₅ O ₄ [81403-80-7]	1.0×10 ¹⁴		HSDB (2015)	Q	38
oyriproxyfen C ₂₀ H ₁₉ NO ₃ 95737-68-1]	1.6×10 ⁴		HSDB (2015)	Q	38
papaverine C ₂₀ H ₂₁ NO ₄ 58-74-2]	1.3×10 ⁷		HSDB (2015)	Q	38
fenazaquin C ₂₀ H ₂₂ N ₂ O [120928-09-8]	9.9×10 ¹		HSDB (2015)	V	
oitertanol C ₂₀ H ₂₃ N ₃ O ₂ 55179-31-2]	1.2×10 ⁴		Mackay et al. (2006d)	V	
oitertanol diastereoisomer a C ₂₀ H ₂₃ N ₃ O ₂ (70585-36-3]	3.1×10^6		Mackay et al. (2006d)	V	
oitertanol diastereoisomer b C ₂₀ H ₂₃ N ₃ O ₂ (70585-38-5]	1.5×10 ⁶		Mackay et al. (2006d)	V	
naltrexone C ₂₀ H ₂₃ NO ₄ [16590-41-3]	2.3×10 ¹³		HSDB (2015)	Q	38
D-lysergic acid N,N-diethylamide C ₂₀ H ₂₅ N ₃ O LSD) [50-37-3]	6.6×10 ¹⁰		HSDB (2015)	Q	38
bogaine C ₂₀ H ₂₆ N ₂ O 83-74-9]	8.2×10 ⁵		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number] fenpropimorph C ₂₀ H ₃₃ NO [67564-91-4] strychnine C ₂₁ H ₂₂ N ₂ O ₂ [57-24-9]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$ 6.2 1.6×10^8	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference Mackay et al. (2006d) HSDB (2015)	Type V Q	Note 38
nalmefene C ₂₁ H ₂₅ NO ₃ [55096-26-9]	5.5×10 ¹⁰		HSDB (2015)	Q	38
benztropine C ₂₁ H ₂₅ NO [86-13-5]	4.5×10 ³		HSDB (2015)	Q	38
stanozolol C ₂₁ H ₃₂ N ₂ O [10418-03-8]	9.0×10 ²		HSDB (2015)	Q	38
azoxystrobin C ₂₂ H ₁₇ N ₃ O ₅ [131860-33-8]	1.4×10 ⁸		HSDB (2015)	V	
famoxadone C ₂₂ H ₁₈ N ₂ O ₄ [131807-57-3]	2.1×10^2		HSDB (2015)	V	
tadalafil C ₂₂ H ₁₉ N ₃ O ₄ [171596-29-5]	2.0×10 ¹²		HSDB (2015)	Q	38
bisacodyl C ₂₂ H ₁₉ NO ₄ [603-50-9]	1.4×10^6		HSDB (2015)	Q	38
fentanyl C ₂₂ H ₂₈ N ₂ O [437-38-7]	1.1×10^6		HSDB (2015)	Q	38
4-(triphenylmethyl)morpholine C ₂₃ H ₂₃ NO (trifenmorph) [1420-06-0]	7.6×10 ⁴ 3.2		HSDB (2015) MacBean (2012a)	Q ?	38
brucine C ₂₃ H ₂₆ N ₂ O ₄ [357-57-3]	4.7×10 ¹⁰		HSDB (2015)	Q	38
mycophenolate mofetil C ₂₃ H ₃₁ NO ₇ [128794-94-5]	1.8×10 ⁹		HSDB (2015)	Q	38
pinoxaden C ₂₃ H ₃₂ N ₂ O ₄ [243973-20-8]	1.1×10 ⁶		HSDB (2015)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{H^{cp}}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]			71	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
valsartan	3.2×10 ¹²		HSDB (2015)	Q	38
$C_{24}H_{29}N_5O_3$					
[137862-53-4]					
donepezil	8.2×10^6		HSDB (2015)	Q	38
$C_{24}H_{29}NO_3$					
[120014-06-4]					
2-[4-[4-(2-	7.5×10^{8}		Zhang et al. (2010)	Q	107, 108
benzoxazolyl)styryl]phenyl]-5-					
methylbenzoxazole					
$C_{29}H_{20}N_2O_2$	6.2×10^6		Zhang et al. (2010)	Q	107, 109
[5242-49-9]	1.2×10^{5}		Zhang et al. (2010)	Q	107, 110
	9.5×10^7		Zhang et al. (2010)	Q	107, 111
2-(2H-benzotriazol-2-yl)-4,6-bis(1-	7.2×10^9		Zhang et al. (2010)	Q	107, 108
methyl-1-phenylethyl)phenol	5.8×10^{5}		71	0	107 100
C ₃₀ H ₂₉ N ₃ O [70321-86-7]	1.4×10^{7}		Zhang et al. (2010)	Q	107, 109
[/0321-80-7]	8.8×10^6		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 110
				Q	107, 111
norbormide	3.7×10^{17}		HSDB (2015)	Q	38
C ₃₃ H ₂₅ N ₃ O ₃ [991-42-4]					
reserpine	1.8×10 ¹⁷		HSDB (2015)	Q	38
$C_{33}H_{40}N_2O_9$					
[50-55-5]					
telaprevir	1.3×10^{25}		HSDB (2015)	Q	38
$C_{36}H_{53}N_7O_6$					
[402957-28-2]					
lopinavir	2.3×10 ²²		HSDB (2015)	Q	38
C ₃₇ H ₄₈ N ₄ O ₅	2.57.10		11222 (2010)	· ·	
[192725-17-0]					
atazanavir	2.7×10^{26}		HSDB (2015)	Q	38
C ₃₈ H ₅₂ N ₆ O ₇					
[198904-31-3]					
tylosin	1.7×10 ³²		HSDB (2015)	Q	38
C ₄₆ H ₇₇ NO ₁₇			\ /	•	
[1401-69-0]					
nystatin	4.9×10^4		HSDB (2015)	Q	38
C ₄₇ H ₇₅ NO ₁₇			· · · · · ·	-	
[1400-61-9]					
1,3,5-tris(3,5-di- <i>tert</i> -butyl-4-	6.1×10^{20}		Zhang et al. (2010)	Q	107, 108
hydroxybenzyl)-1,3,5-triazinane-				-	•
2,4,6-trione	1 2 4 - 12		71	_	105
C ₄₈ H ₆₉ N ₃ O ₆	1.3×10^{12}		Zhang et al. (2010)	Q	107, 109
[27676-62-6]	3.4×10^{10}		Zhang et al. (2010)	Q	107, 110
	8.2×10^{14}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type	Note
	Ni	trates (R	ONO ₂)		
urea nitrate CH ₅ N ₃ O ₄ [124-47-0]	5.8×10 ¹¹		HSDB (2015)	Q	38
methyl nitrate	2.0×10^{-2}	4700	Sander et al. (2011)	L	
CH ₃ ONO ₂	2.0×10^{-2}	4700	Sander et al. (2006)	L	
[598-58-3]	2.0×10^{-2}	4700	Kames and Schurath (1992)	M	
	2.6×10^{-2}		Schwartz (1986)	C	31
	6.2×10^{-2}		Hilal et al. (2008)	Q	
		4900	Kühne et al. (2005)	Q	
		4800	Kühne et al. (2005)	?	
ethyl nitrate	1.6×10^{-2}	5400	Sander et al. (2011)	L	
C ₂ H ₅ ONO ₂	1.6×10^{-2}	5400	Sander et al. (2006)	L	
[625-58-1]	1.6×10^{-2}	5400	Kames and Schurath (1992)	M	
	3.3×10^{-2}		HSDB (2015)	Q	38
	3.9×10^{-2}		Hilal et al. (2008)	Q	
l-propyl nitrate	1.1×10^{-2}	5500	Sander et al. (2011)	L	
C ₃ H ₇ ONO ₂	1.1×10^{-2}	5500	Sander et al. (2006)	L	
[627-13-4]	9.0×10^{-3}	5600	Staudinger and Roberts (2001)	L	
,	7.4×10^{-3}	4600	Hauff et al. (1998)	M	
	1.1×10^{-2}	5500	Kames and Schurath (1992)	M	
	1.1×10^{-2}		Hauff et al. (1998)	V	
	2.5×10^{-2}		Hilal et al. (2008)	Q	
		5600	Kühne et al. (2005)	Q	
		4600	Kühne et al. (2005)	?	
2-propyl nitrate	7.8×10^{-3}	5400	Sander et al. (2011)	L	
$C_3H_7ONO_2$	7.8×10^{-3}	5400	Sander et al. (2006)	L	
(isopropyl nitrate)	6.6×10^{-3}	5400	Staudinger and Roberts (2001)	L	
[1712-64-7]	5.5×10^{-3}	4300	Hauff et al. (1998)	M	
	7.8×10^{-3}	5400	Kames and Schurath (1992)	M	
	8.1×10^{-3}		Hauff et al. (1998)	V	
	1.7×10^{-2}		Hilal et al. (2008)	Q	
		4600	Kühne et al. (2005)	Q	
		4300	Kühne et al. (2005)	?	
1-butyl nitrate	1.0×10^{-2}	5800	Sander et al. (2011)	L	
C ₄ H ₉ ONO ₂	1.0×10^{-2}	5800	Sander et al. (2006)	L	
928-45-0]	8.8×10^{-3}	6000	Staudinger and Roberts (2001)	L	
	6.3×10^{-3}	5200	Hauff et al. (1998)	M	
	1.0×10^{-2}	5800	Kames and Schurath (1992)	M	
	1.0×10^{-2}	6000	Luke et al. (1989)	M	
	8.5×10^{-3}		Hauff et al. (1998)	V	
	1.7×10^{-2}		Hilal et al. (2008)	Q	
		5900	Kühne et al. (2005)	Q	
		5800	Kühne et al. (2005)	?	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]		21	
2-butyl nitrate	6.4×10^{-3}	5400	Sander et al. (2011)	L	
$C_4H_9ONO_2$	6.4×10^{-3}	5400	Sander et al. (2006)	L	
[924-52-7]	6.4×10^{-3}	6100	Staudinger and Roberts (2001)	L	
	4.4×10^{-3}		Hauff et al. (1998)	M	
	6.4×10^{-3}	5400	Kames and Schurath (1992)	M	
	6.3×10^{-3}	5600	Luke et al. (1989)	M	
	6.4×10^{-3}	4000	Hauff et al. (1998)	V	
		4900 5400	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
2-methyl-1-nitropropane	7.0×10^{-3}	5200	Kames and Schurath (1992)	M	
$C_4H_9ONO_2$	1.6×10^{-2}		Hilal et al. (2008)	Q	
(isobutyl nitrate) [543-29-3]					
1-pentyl nitrate	6.6×10^{-3}	6300	Hauff et al. (1998)	M	
$C_5H_{11}ONO_2$	1.2×10^{-2}		Kames and Schurath (1992)	M	9
(amyl nitrate)	4.0×10^{-3}		Hauff et al. (1998)	V	
[1002-16-0]	1.3×10^{-2}		Hilal et al. (2008)	Q	
		6300 6300	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
2-pentyl nitrate	3.7×10^{-3}	6400	Staudinger and Roberts (2001)	 L	
C ₅ H ₁₁ ONO ₂	3.7×10^{-3}	5100	Hauff et al. (1998)	M	
[21981-48-6]	3.6×10^{-3}	6300	Kames and Schurath (1992)	M	
[21901 10 0]	4.8×10^{-3}	0000	Hauff et al. (1998)	V	
	9.5×10^{-3}		Hilal et al. (2008)	Q	
		5300	Kühne et al. (2005)	Q	
		5100	Kühne et al. (2005)	?	
3-pentyl nitrate	3.8×10^{-3}	5300	Hauff et al. (1998)	M	
$C_5H_{13}ONO_2$	4.9×10^{-3}		Hauff et al. (1998)	V	
[82944-59-0]	9.2×10^{-3}		Hilal et al. (2008)	Q	
		5300 5300	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
3-methyl-1-butanol nitrate	5.0×10^{-3}	5900	Hauff et al. (1998)	M	
$C_5H_{11}ONO_2$	1.2×10^{-2}		Hilal et al. (2008)	Q	
(isoamyl nitrate) [543-87-3]		6300 5900	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
pentaerythritol tetranitrate	7.6×10^3		HSDB (2015)	V	
$C_5H_8N_4O_{12}$	8.2×10^{5}		Zhang et al. (2010)	Q	107, 108
[78-11-5]	1.1×10^4		Zhang et al. (2010)	Q	107, 109
	7.9×10^4 3.6×10^3		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 110 107, 111
1-hexyl nitrate	7.6×10^{-3}	6700	Hauff et al. (1998)		, 111
C ₆ H ₁₃ ONO ₂	3.6×10^{-3}	3700	Hauff et al. (1998)	V	
[20633-11-8]	9.5×10^{-3}		Hilal et al. (2008)	Q	
J		6600	Kühne et al. (2005)	Q	
		6700	Kühne et al. (2005)	?	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2-nitrooxyethanol HOC ₂ H ₄ ONO ₂ [16051-48-2]	3.9×10^{2} 3.9×10^{2} 3.8×10^{2} 3.9×10^{2} 1.7×10^{2}	8600	Sander et al. (2011) Sander et al. (2006) Shepson et al. (1996) Kames and Schurath (1992) Hilal et al. (2008)	L L M M Q	9
	1.7×10	9200 8700	Kühne et al. (2005) Kühne et al. (2005)	Q Q ?	
1-nitrooxy-2-propanol C ₃ H ₇ O ₄ N [20266-65-3]	6.6×10^{1} 6.6×10^{1} 1.1×10^{2} 6.6×10^{1} 7.2×10^{1} 9.5×10^{1}	10000	Sander et al. (2011) Sander et al. (2006) Shepson et al. (1996) Kames and Schurath (1992) Kames and Schurath (1992) Hilal et al. (2008)	L L M M M	225, 9 225, 9
2-nitrooxy-1-propanol C ₃ H ₇ O ₄ N [20266-74-4]	7.2×10^{1} 7.2×10^{1} 4.4×10^{1} 6.6×10^{1} 7.2×10^{1} 8.6×10^{1}	8800	Sander et al. (2011) Sander et al. (2006) Shepson et al. (1996) Kames and Schurath (1992) Kames and Schurath (1992) Hilal et al. (2008)	L L M M M	225, 9 225, 9
1-nitrooxy-2-butanol C ₄ H ₉ O ₄ N [147794-11-4]	$ 8.9 \times 10^{1} \\ 5.7 \times 10^{1} \\ 6.1 \times 10^{1} $	9200	Treves et al. (2000) Shepson et al. (1996) Hilal et al. (2008)	M M Q	119
2-nitrooxy-1-butanol C ₄ H ₉ O ₄ N [147794-12-5]	8.8×10^{1} 5.9×10^{1} 6.0×10^{1}	9600	Treves et al. (2000) Shepson et al. (1996) Hilal et al. (2008)	M M Q	119
2-nitrooxy-3-butanol C ₄ H ₉ O ₄ N [147794-10-3]	$1.0 \times 10^2 \\ 5.4 \times 10^1$	9500	Shepson et al. (1996) Hilal et al. (2008)	M Q	
3-nitrooxy-1-butanol C ₄ H ₉ O ₄ N	1.4×10^2		Treves et al. (2000)	M	119
4-nitrooxy-1-butanol C ₄ H ₉ O ₄ N	2.9×10^2		Treves et al. (2000)	M	119
4-nitrooxy-2-butanol C ₄ H ₉ O ₄ N	1.3×10^2		Treves et al. (2000)	M	119
4-nitrooxy-1-pentanol C ₅ H ₁₁ O ₄ N	2.0×10^2		Treves et al. (2000)	M	119
5-nitrooxy-2-pentanol C ₅ H ₁₁ O ₄ N	3.6×10^2		Treves et al. (2000)	М	119
1-nitrooxy-2-propanone CH ₃ COCH ₂ ONO ₂ (nitrooxyacetone) [6745-71-7]	$ \begin{array}{c} 1.0 \times 10^{1} \\ 1.0 \times 10^{1} \\ 1.0 \times 10^{1} \\ 1.2 \times 10^{2} \end{array} $		Sander et al. (2011) Sander et al. (2006) Kames and Schurath (1992) Hilal et al. (2008)	L L M Q	9

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1,2-ethanediol dinitrate O ₃ NCH ₂ CH ₂ ONO ₂ (1,2-ethane dinitrate) [628-96-6]	6.3 6.3 7.8×10 ⁻¹ 6.3 8.2		Sander et al. (2011) Sander et al. (2006) Fischer and Ballschmiter (1998b) Kames and Schurath (1992) Hilal et al. (2008)	L L M M Q	226 9
1,2-propanediol dinitrate C ₃ H ₆ (ONO ₂) ₂ (1,2-propane dinitrate) [6423-43-4]	$ \begin{array}{c} 1.7 \\ 1.7 \\ 3.2 \times 10^{-1} \\ 1.7 \\ 1.0 \times 10^{1} \\ 2.7 \end{array} $		Sander et al. (2011) Sander et al. (2006) Fischer and Ballschmiter (1998b) Kames and Schurath (1992) HSDB (2015) Hilal et al. (2008)	L L M M Q Q	226 9 38
1,3-propanediol dinitrate C ₃ H ₆ N ₂ O ₆ [3457-90-7]	1.3 4.4		Fischer and Ballschmiter (1998b) Hilal et al. (2008)	M Q	226
1,2,3-propanetriol trinitrate C ₃ H ₅ N ₃ O ₉ (nitroglycerin) [55-63-0]	2.3×10^2 3.9×10^1		HSDB (2015) Hilal et al. (2008)	V Q	
1,2-butanediol dinitrate C ₄ H ₈ N ₂ O ₆ [20820-41-1]	2.1×10 ⁻¹		Fischer and Ballschmiter (1998b)	М	226
1,3-butanediol dinitrate C ₄ H ₈ N ₂ O ₆ [6423-44-5]	5.7×10 ⁻¹		Fischer and Ballschmiter (1998b)	М	226
1,4-butanediol dinitrate C ₄ H ₈ N ₂ O ₆ [3457-91-8]	1.6 2.7		Fischer and Ballschmiter (1998b) Hilal et al. (2008)	M Q	226
2,3-butanediol dinitrate $C_4H_8N_2O_6$ [6423-45-6]	1.2×10 ⁻¹		Fischer and Ballschmiter (1998b)	M	226
1,2-pentanediol dinitrate $C_5H_{10}N_2O_6$ [89365-05-9]	1.3×10 ⁻¹		Fischer and Ballschmiter (1998b)	M	226
1,4-pentanediol dinitrate C ₅ H ₁₀ N ₂ O ₆ (25385-63-1]	3.9×10 ⁻¹		Fischer and Ballschmiter (1998b)	M	226
1,5-pentanediol dinitrate C ₅ H ₁₀ N ₂ O ₆ 3457-92-9]	1.2		Fischer and Ballschmiter (1998b)	M	226
(2R,4S)-2,4-pentanediol dinitrate C ₅ H ₁₀ N ₂ O ₆ (cis-2,4-pentanediol dinitrate) [208252-05-5]	2.2×10 ⁻¹		Fischer and Ballschmiter (1998b)	M	226

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
(2R,4R)-2,4-pentanediol dinitrate C ₅ H ₁₀ N ₂ O ₆ (trans-2,4-pentanediol dinitrate) [208252-04-4]	1.4×10 ⁻¹		Fischer and Ballschmiter (1998b)	M	226
,2-hexanediol dinitrate C ₆ H ₁₂ N ₂ O ₆ 110539-07-6]	9.6×10 ⁻²		Fischer and Ballschmiter (1998b)	M	226
,5-hexanediol dinitrate C ₆ H ₁₂ N ₂ O ₆ 206443-83-6]	2.7×10 ⁻¹		Fischer and Ballschmiter (1998b)	M	226
,6-hexanediol dinitrate C ₆ H ₁₂ N ₂ O ₆ 3457-93-0]	1.5		Fischer and Ballschmiter (1998b)	M	226
2,5-hexanediol dinitrate C ₆ H ₁₂ N ₂ O ₆ 99115-63-6]	3.1×10^{-1}		Fischer and Ballschmiter (1998b)	M	226
1R,2S)-1,2-cyclohexanediol dinitrate C ₆ H ₁₀ N ₂ O ₆ cis-1,2-cyclohexanediol dinitrate) 32342-28-2]	1.3		Fischer and Ballschmiter (1998b)	M	226
1R,2R)-1,2-cyclohexanediol dinitrate C ₆ H ₁₀ N ₂ O ₆ trans-1,2-cyclohexanediol dinitrate) 32342-29-3]	5.2×10 ⁻¹		Fischer and Ballschmiter (1998b)	M	226
$1R,3S$)-1,3-cyclohexanediol dinitrate $C_6H_{10}N_2O_6$ cis-1,3-cyclohexanediol dinitrate) $170994-36-2$]	3.4		Fischer and Ballschmiter (1998b)	M	226
$1R,3R$)-1,3-cyclohexanediol dinitrate $C_6H_{10}N_2O_6$ trans-1,3-cyclohexanediol dinitrate) $170994-41-9$]	6.8×10 ⁻¹		Fischer and Ballschmiter (1998b)	M	226
,7-heptanediol dinitrate C ₇ H ₁₄ N ₂ O ₆ 3457-94-1]	1.1		Fischer and Ballschmiter (1998b)	М	226
1R,2R)-1,2-cycloheptanediol dinitrate C ₇ H ₁₂ N ₂ O ₆ trans-1,2-cycloheptanediol dinitrate) 208252-06-6]	8.8×10 ⁻¹		Fischer and Ballschmiter (1998b)	M	226
,2-octanediol dinitrate C ₈ H ₁₆ N ₂ O ₆ 121222-48-8]	5.2×10 ⁻²		Fischer and Ballschmiter (1998b)	M	226

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1,8-octanediol dinitrate C ₈ H ₁₆ N ₂ O ₆ [3457-95-2]	7.8×10 ⁻¹		Fischer and Ballschmiter (1998b)	M	226
1,2-decanediol dinitrate C ₁₀ H ₂₀ N ₂ O ₆ (60123-40-2]	2.0×10^{-2}		Fischer and Ballschmiter (1998b)	M	226
1,10-decanediol dinitrate C ₁₀ H ₂₀ N ₂ O ₆ 3457-97-4]	4.3×10^{-1}		Fischer and Ballschmiter (1998b)	M	226
diethylene glycol dinitrate C ₄ H ₈ N ₂ O ₇ [693-21-0]	$2.5 \times 10^{1} \\ 1.1 \times 10^{2}$		HSDB (2015) Hilal et al. (2008)	V Q	
peroxyacetyl nitrate CH ₃ COOONO ₂ (PAN) [2278-22-0] peroxypropionyl nitrate C ₂ H ₅ COOONO ₂ (PPN) [5796-89-4] nitro butaneperoxoate	2.9×10^{-2} 2.8×10^{-2} 2.8×10^{-2} 2.9×10^{-2} 4.0×10^{-2} 2.8×10^{-2} 4.9×10^{-2} 3.6×10^{-2} 2.9×10^{-2} 2.2 2.9×10^{-2} 2.3×10^{-2}	5700 5700 5700 5800 6500 5900 4800 6300	Warneck and Williams (2012) Sander et al. (2011) Sander et al. (2006) Leu and Zhang (1999) Kames and Schurath (1995) Kames et al. (1991) Holdren et al. (1984) Gaffney and Senum (1984) Pandis and Seinfeld (1989) Schwartz (1986) Hilal et al. (2008) Kühne et al. (2005) Kühne et al. (2005) Warneck et al. (1996) Schurath et al. (1996) Schurath et al. (1996) Schurath et al. (1996) Schurath et al. (1996)	L L L M M M X C C Q Q ? ? W	9 147 153 31 227 228 9 227 229
nttro butaneperoxoate C ₃ H ₇ COOONO ₂ (PnBN) [27746-48-1]	2.3×10 -2		Warneck et al. (1996) Schurath et al. (1996)	М ? W	227 230
peroxy-2-propenoyl nitrate CH ₂ C(CH ₃)COOONO ₂ (peroxymethacryloyl nitrate; MPAN) [88181-75-3]	1.7×10 ⁻²		Kames and Schurath (1995) Warneck et al. (1996) Schurath et al. (1996)	M W W	9 227 231
peroxy-isobutyryl nitrate C ₃ H ₇ COOONO ₂ (PiBN)	9.9×10^{-3}		Kames and Schurath (1995) Warneck et al. (1996) Schurath et al. (1996)	M ? W	9 227 232

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
isocyanic acid HNCO [75-13-8]	2.1×10 ⁻¹		Roberts et al. (2011)	M	
nydroxyacetonitrile C ₂ H ₃ NO (glycolonitrile) [107-16-4]	1.3		HSDB (2015)	Q	38
2-hydroxypropanenitrile C ₃ H ₅ NO 78-97-7]	1.0		HSDB (2015)	Q	38
3-hydroxypropanenitrile C ₃ H ₅ NO (ethylene cyanohydrin) [109-78-4]	2.3×10 ⁴		HSDB (2015)	V	
eyanoethanoic acid, ethyl ester C ₅ H ₇ NO ₂ 105-56-6]	3.4×10^{1} 7.7×10^{1}		HSDB (2015) Hilal et al. (2008)	V Q	
2-hydroxybenzoic acid nitrile C ₇ H ₅ NO (2-cyanophenol) [611-20-1]	2.8×10 ¹		Hilal et al. (2008)	Q	
B-hydroxybenzoic acid nitrile	4.0×10^4		Hilal et al. (2008)	Q	
C ₇ H ₅ NO	3.3×10^5		Nirmalakhandan et al. (1997)	Q	
3-cyanophenol) 873-62-1]	3.8×10^3		Abraham et al. (1990)	?	
-hydroxybenzoic acid nitrile	1.4×10 ⁴		Hilal et al. (2008)	Q	
C ₇ H ₅ NO	3.3×10^{5}		Nirmalakhandan et al. (1997)	Q	
4-cyanophenol) 767-00-0]	1.2×10^4		Abraham et al. (1990)	?	
1,1',1"-nitrilotris-2-propanol C ₉ H ₂₁ NO ₃ (triisopropanolamine) [122-20-3]	1.0×10 ⁶		HSDB (2015)	Q	182
cyometrinil C ₁₀ H ₇ N ₃ O 78370-21-5]	1.1×10 ⁴		MacBean (2012a)	?	
enpropathrin	5.5×10^{-2}		HSDB (2015)	V	
C ₂₂ H ₂₃ NO ₃ 39515-41-8]	1.7×10^{1}		Siebers and Mattusch (1996)	V	9
	Nitro	compour	nds (RNO ₂)		

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
nitromethane	3.4×10^{-1}	4000	Sander et al. (2011)	L	
CH_3NO_2	3.4×10^{-1}	4000	Sander et al. (2006)	L	
[75-52-5]	3.5×10^{-1}	4000	Beneš and Dohnal (1999)	M	
	3.6×10^{-1}		Park et al. (1987)	M	
	4.5×10^{-1}		Rohrschneider (1973)	M	
	3.5×10^{-1}		Gaffney and Senum (1984)	X	153
	3.4×10^{-1}		Hilal et al. (2008)	Q	
	2	3700	Kühne et al. (2005)	Q	
	7.3×10^{-2}		Nirmalakhandan et al. (1997)	Q	
		3500	Kühne et al. (2005)	?	
	3.4×10^{-2}		Yaws (1999)	?	
	3.6×10^{-2}		Yaws and Yang (1992)	?	92
	3.6×10^{-1}		Abraham et al. (1990)	?	
nitromethane-13C CH ₃ NO ₂ [32480-00-5]	4.8×10^{-1}	5000	Hiatt (2013)	M	
nitroethane	2.1×10^{-1}	4400	Sander et al. (2011)	L	
$C_2H_5NO_2$	2.1×10^{-1}	4400	Sander et al. (2006)	L	
[79-24-3]	2.2×10^{-1}	4400	Beneš and Dohnal (1999)	M	
	1.4		Friant and Suffet (1979)	M	23
	1.9×10^{-1}		Hwang et al. (1992)	V	
	2.1×10^{-1}		Hine and Mookerjee (1975)	V	
	2.1×10^{-1}		Gaffney and Senum (1984)	X	153
	2.2×10^{-1}		Hilal et al. (2008)	Q	
		4100	Kühne et al. (2005)	Q	
	6.1×10^{-2}		Nirmalakhandan et al. (1997)	Q	
		4200	Kühne et al. (2005)	?	
	2.1×10^{-1}		Abraham et al. (1990)	?	
l-nitropropane	1.3×10^{-1}	4700	Sander et al. (2011)	L	
$C_3H_7NO_2$	1.3×10^{-1}	4700	Sander et al. (2006)	L	
[108-03-2]	1.3×10^{-1}	4700	Beneš and Dohnal (1999)	M	
	1.1×10^{-1}		Hine and Mookerjee (1975)	V	
	1.5×10^{-1}		Hilal et al. (2008)	Q	
	2	4400	Kühne et al. (2005)	Q	
	4.7×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	1	4400	Kühne et al. (2005)	?	0.5
	1.6×10^{-1}		Yaws and Yang (1992)	?	92, 9
	1.1×10^{-1}		Abraham et al. (1990)	?	
2-nitropropane	8.3×10^{-2}	4500	Sander et al. (2011)	L	
$CH_3CH(NO_2)CH_3$	8.3×10^{-2}	4500	Sander et al. (2006)	L	
[79-46-9]	8.4×10^{-2}	4500	Beneš and Dohnal (1999)	M	
	8.3×10^{-2}		HSDB (2015)	V	
	8.0×10^{-2}		Hine and Mookerjee (1975)	V	
	7.2×10^{-2}		Hilal et al. (2008)	Q	
	2	4400	Kühne et al. (2005)	Q	
	4.1×10^{-2}		Nirmalakhandan et al. (1997)	Q	
		4400	Kühne et al. (2005)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference		Note
	$1.1 \times 10^{-1} \\ 8.0 \times 10^{-2}$		Yaws and Yang (1992) Abraham et al. (1990)	?	92, 9
1-nitrobutane C ₄ H ₉ NO ₂ [627-05-4] <i>tert</i> -butylnitrite	9.7×10^{-2} 3.7×10^{-2} 7.5×10^{-2} 7.9×10^{-3}		Hilal et al. (2008) Nirmalakhandan et al. (1997) Abraham et al. (1990) Hilal et al. (2008)	Q Q ?	
C ₄ H ₉ NO ₂ [540-80-7]	7.9×10		Tiliai et al. (2006)	Q	
1-nitropentane C ₅ H ₁₁ NO ₂ [628-05-7]	4.7×10^{-2} 6.0×10^{-2} 2.9×10^{-2} 4.7×10^{-2}		Amoore and Buttery (1978) Hilal et al. (2008) Nirmalakhandan et al. (1997) Abraham et al. (1990)	V Q Q ?	
tris(hydroxymethyl)ethane trinitrate C ₅ H ₉ N ₃ O ₉ [3032-55-1]	2.2×10^{3} 1.4×10^{2} 2.4×10^{3} 3.4×10^{1}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
1-nitrohexane C ₆ H ₁₃ NO ₂ [646-14-0]	4.5×10^{-2}		Hilal et al. (2008)	Q	
nitrocyclohexane C ₆ H ₁₁ NO ₂ [1122-60-7]	2.4×10 ⁻¹		Hilal et al. (2008)	Q	
2-nitroethanol C ₂ H ₅ NO ₃ [625-48-9]	1.6×10 ²		Hilal et al. (2008)	Q	
1-nitro-2-propanol C ₃ H ₇ NO ₃ [3156-73-8]	7.9×10 ¹		Hilal et al. (2008)	Q	
2-nitro-1-propanol C ₃ H ₇ NO ₃ [2902-96-7]	9.9×10 ¹		Hilal et al. (2008)	Q	
1-nitro-2-butanol C ₄ H ₉ NO ₃ [3156-74-9]	7.3×10 ¹		Hilal et al. (2008)	Q	
2-nitro-1-butanol C ₄ H ₉ NO ₃ [609-31-4]	7.5×10 ¹		Hilal et al. (2008)	Q	
3-nitro-2-butanol C ₄ H ₉ NO ₃ [6270-16-2]	5.7×10 ¹		Hilal et al. (2008)	Q	
nitroguanidine CH ₄ N ₄ O ₂ [556-88-7]	2.2×10 ¹⁰		HSDB (2015)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
tetranitromethane CN ₄ O ₈ [509-14-8]	4.1×10^{-3}		HSDB (2015)	V	
N-methyl-N'-nitro-N-nitrosoguanidine $C_2H_5N_5O_3$ [70-25-7]	8.2×10 ⁶		HSDB (2015)	Q	38
2-(hydroxymethyl)-2-nitro-1,3- propanediol C ₄ H ₉ NO ₅ [126-11-4]	2.1×10 ⁶		HSDB (2015)	Q	38
nitrobenzene	6.4×10^{-1}	7500	Hiatt (2013)	M	
$C_6H_5NO_2$	1.4×10^{-1}		Zhang et al. (2013)	M	
98-95-3]	2.3×10^{-2}	11000	Dewulf et al. (1999)	M	233
-	1.2		Altschuh et al. (1999)	M	
	1.4×10^{-1}		Hellmann (1987)	M	31
	4.1×10^{-1}		Warner et al. (1980)	M	
	4.8×10^{-1}	6400	Bernauer et al. (2006)	V	
	7.7×10^{-1}		Mackay et al. (2006d)	V	
	4.2×10^{-1}		Lide and Frederikse (1995)	V	
	7.7×10^{-1}		Mackay et al. (1995)	V	
	4.6×10^{-1}		Hwang et al. (1992)	V	
	7.8×10^{-1}		Yoshida et al. (1983)	V	
	4.3×10^{-1}		Warner et al. (1980)	V	
	4.2×10^{-1}		Hine and Mookerjee (1975)	V	
	4.7×10^{-1}	4500	Goldstein (1982)	X	116
	4.2×10^{-1}		Hilal et al. (2008)	C	
	4.1×10^{-1}		Schüürmann (2000)	C	7
	7.5×10^{-1}		Mackay et al. (1995)	C	
	7.5×10^{-1}		Ryan et al. (1988)	C	
	4.1×10^{-1}		Shen (1982)	C	
	2.2×10^{-1}		Hilal et al. (2008)	Q	
		4600	Kühne et al. (2005)	Q	
	3.3		Nirmalakhandan et al. (1997)	Q	
	1	5600	Kühne et al. (2005)	?	
	4.2×10^{-1}		Abraham et al. (1990)	?	
nitrobenzene-d5 C ₆ D ₅ NO ₂ 4165-60-0]	8.5×10^{-1}	7500	Hiatt (2013)	M	
2-nitrotoluene	7.9×10^{-1}		Altschuh et al. (1999)	M	
C ₆ H ₄ (NO ₂)CH ₃	2.7×10^{-1}		Mackay et al. (2006d)	V	
88-72-2]	1.9×10^{-1}		Schüürmann (2000)	V	
00 ,2 2 _]	1.8×10^{-1}		Lide and Frederikse (1995)	V	
	2.7×10^{-1}		Mackay et al. (1995)	V	
	1.7×10^{-1}		Hine and Mookerjee (1975)	V	
	7.7×10^{-2}	2900	Goldstein (1982)	X	116
	4.2×10^{-1}	_, 50	Zhang et al. (2010)	Q	107, 10
	2.4×10^{-1}		Zhang et al. (2010)	~	107, 10

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	$\frac{2.5 \times 10^{-1}}{}$		Zhang et al. (2010)	Q	107, 110
	1.8×10^{-1}		Zhang et al. (2010)	Q	107, 111
	4.2×10^{-1}		Zhang et al. (2010)	Q	107, 108
	2.4×10^{-1}		Zhang et al. (2010)	Q	107, 109
	2.2×10^{-1}		Zhang et al. (2010)	Q	107, 110
	1.8×10^{-1}		Zhang et al. (2010)	Q	107, 111
	1.4×10^{-1}		Hilal et al. (2008)	Q	
		4900	Kühne et al. (2005)	Q	
	2.3	5900	Nirmalakhandan et al. (1997) Kühne et al. (2005)	Q ?	
	1.7×10^{-1}		Abraham et al. (1990)	?	
3-nitrotoluene	1.1		Altschuh et al. (1999)	M	
$C_6H_4(NO_2)CH_3$	2.8×10^{-1}		Li and Carr (1993)	M	
[99-08-1]	1.3×10^{-1}		Mackay et al. (2006d)	V	
	1.3×10^{-1}		Mackay et al. (1995)	V	
	1.4×10^{-1}		Hine and Mookerjee (1975)	V	
	1.4×10^{-1}	3200	Goldstein (1982)	X	116
	4.2×10^{-1}		Zhang et al. (2010)	Q	107, 108
	2.5×10^{-1}		Zhang et al. (2010)	Q	107, 109
	4.1×10^{-1}		Zhang et al. (2010)	Q	107, 110
	1.8×10^{-1}		Zhang et al. (2010)	Q	107, 111
	1.8×10^{-1}	4000	Hilal et al. (2008)	Q	
	2.3	4900	Kühne et al. (2005) Nirmalakhandan et al. (1997)	Q	
	2.3	4900	Kühne et al. (2005)	Q ?	
	1.4×10^{-1}	4700	Abraham et al. (1990)	?	
4-nitrotoluene	1.8		Altschuh et al. (1999)	M	
$C_6H_4(NO_2)CH_3$	2.8		Mackay et al. (2006d)	V	
[99-99-0]	2.0×10^{-1}		Lide and Frederikse (1995)	V	
	2.8		Mackay et al. (1995)	V	
	1.6×10^{-1}	3100	Goldstein (1982)	X	116
	4.2×10^{-1}		Zhang et al. (2010)	Q	107, 108
	2.8×10^{-1}		Zhang et al. (2010)	Q	107, 109
	9.0×10^{-1}		Zhang et al. (2010)	Q	107, 110
	1.8×10^{-1}		Zhang et al. (2010)	Q	107, 111
	2.0×10^{-1}	4000	Hilal et al. (2008)	Q	
		4900 3800	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
1,2-dinitrobenzene	1.9×10^2		HSDB (2015)	V	
$C_6H_4N_2O_4$	1.2×10^2		Zhang et al. (2010)	Q	107, 108
[528-29-0]	3.2×10^{1}		Zhang et al. (2010)	Q	107, 109
	2.6×10^{1}		Zhang et al. (2010)	Q	107, 110
	2.7×10^{1}		Zhang et al. (2010)	Q	107, 111
1,3-dinitrobenzene	2.0×10^2		Altschuh et al. (1999)	M	
$C_6H_4N_2O_4$	_		Mackay et al. (2006d)	V	221
[99-65-0]	5.0×10^2		Mackay et al. (1995)	V	
	3.9×10^{1}		Smith et al. (1981a)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\mathrm{d} \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Truno	Note
(Other name(s))	[mol]		Reference	Туре	Note
[CAS registry number]	$\left[\frac{m^3 \text{ Pa}}{\text{m}^3 \text{ Pa}}\right]$	[K]			
1,4-dinitrobenzene	2.0×10^{-1}		Mackay et al. (2006d)	V	
$C_6H_4N_2O_4$	2.0×10^{-1}		Mackay et al. (1995)	V	
[100-25-4]	1.2×10^2		HSDB (2015)	Q	38
1,3,5-trinitrobenzene C ₆ H ₃ N ₃ O ₆ [99-35-4]	1.5×10 ³		HSDB (2015)	V	
2-nitrobenzenamine	1.7×10^2		Altschuh et al. (1999)	M	
$C_6H_6N_2O_2$	1.0×10^{2}		Abraham et al. (1994a)	R	
(2-nitroaniline)	3.1×10^{1}		Hilal et al. (2008)	Q	
[88-74-4]	4.5×10^2		Nirmalakhandan et al. (1997)	Q	
3-nitrobenzenamine	6.9×10^2		Meylan and Howard (1991)	V	
$C_6H_6N_2O_2$	1.2×10^3		Abraham et al. (1994a)	R	
(3-nitroaniline)	2.7×10^{3}		Hilal et al. (2008)	Q	
[99-09-2]	4.4×10^{2}		Nirmalakhandan et al. (1997)	Q	
	1.3×10^3		Meylan and Howard (1991)	Q	
	1.2×10^3		HSDB (2015)	?	170
4-nitrobenzenamine	8.6×10^{3}		Altschuh et al. (1999)	M	
$C_6H_6N_2O_2$	1.4×10^4		Abraham et al. (1994a)	R	
(4-nitroaniline)	2.2×10^{3}		Hilal et al. (2008)	Q	
[100-01-6]	4.4×10^2		Nirmalakhandan et al. (1997)	Q	
2,4-dinitrobenzenamine C ₆ H ₅ N ₃ O ₄ [97-02-9]	6.5×10^4		HSDB (2015)	Q	216
1-methyl-2,3-dinitrobenzene	1.1×10^2		HSDB (2015)	Q	182
$C_7H_6N_2O_4$	1.1×10^2		Zhang et al. (2010)	Q	107, 108
(2,3-dinitrotoluene; 2,3-DNT)	2.2×10^{1}		Zhang et al. (2010)	Q	107, 109
[602-01-7]	9.5		Zhang et al. (2010)	Q	107, 110
	1.5×10^{1}		Zhang et al. (2010)	Q	107, 111
	1.1×10^2		Zhang et al. (2010)	Q	107, 108
	2.3×10^{1}		Zhang et al. (2010)	Q	107, 109
	1.1×10^{1}		Zhang et al. (2010)	Q	107, 110
	1.5×10^{1}		Zhang et al. (2010)	Q	107, 111
1-methyl-2,4-dinitrobenzene	1.8×10^{2}		Altschuh et al. (1999)	M	
$C_7H_6N_2O_4$	1.1×10^{1}		Mackay et al. (2006d)	V	
(2,4-dinitrotoluene; 2,4-DNT)	1.0×10^{2}		Schüürmann (2000)	V	
[121-14-2]	1.1×10^{1}		Mackay et al. (1995)	V	
	6.3×10^{1}		Smith et al. (1981a)	V	
	2.1×10^{-1}	2900	Goldstein (1982)	X	116
	2.2		Mackay et al. (1995)	C	
	3.1×10^{-2}		Ryan et al. (1988)	C	
	1.1×10^2		Zhang et al. (2010)	Q	107, 108
	1.6×10^{1}		Zhang et al. (2010)	Q	107, 109
	5.0		Zhang et al. (2010)	Q	107, 110
	1.5×10^{1}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2-methyl-1,4-dinitrobenzene C ₇ H ₆ N ₂ O ₄ (2,5-dinitrotoluene; 2,5-DNT) [619-15-8]	$ \begin{array}{c} 1.8 \times 10^{1} \\ 1.1 \times 10^{2} \\ 1.8 \times 10^{1} \\ 1.4 \\ 1.5 \times 10^{1} \end{array} $		HSDB (2015) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	V Q Q Q Q	107, 108 107, 109 107, 110 107, 111
2-methyl-1,3-dinitrobenzene C ₇ H ₆ N ₂ O ₄ (2,6-dinitrotoluene; 2,6-DNT) [606-20-2]	$\begin{array}{c} 1.5 \times 10^{1} \\ 1.4 \times 10^{1} \\ 1.4 \times 10^{1} \\ 1.2 \\ 3.1 \times 10^{-2} \\ 1.1 \times 10^{2} \\ 2.1 \times 10^{1} \\ 4.3 \\ 1.5 \times 10^{1} \end{array}$		HSDB (2015) Mackay et al. (2006d) Mackay et al. (1995) Mackay et al. (1995) Ryan et al. (1988) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	V V C C Q Q Q	107, 108 107, 109 107, 110 107, 111
4-methyl-1,2-dinitrobenzene C ₇ H ₆ N ₂ O ₄ (3,4-dinitrotoluene; 3,4-DNT) [610-39-9]	1.1×10^{2} 1.1×10^{2} 3.9×10^{1} 3.1×10^{1} 1.5×10^{1}		HSDB (2015) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q Q	182 107, 108 107, 109 107, 110 107, 111
1-methyl-2,4,6-trinitrobenzene C ₇ H ₅ N ₃ O ₆ (2,4,6-trinitrotoluene; TNT) [118-96-7]	4.7×10^{2} 5.4×10^{2}	6200 6400	HSDB (2015) Schüürmann (2000) Kühne et al. (2005) Kühne et al. (2005)	V V Q ?	
2,4,6-trinitro-1,3-dimethyl-5- <i>tert</i> -butylbenzene C ₁₂ H ₁₅ N ₃ O ₆ (musk xylene) [81-15-2]	3.2×10^{-1} 1.7×10^{-2} 1.3×10^{3} 9.5×10^{3} 5.6 4.8×10^{-2} 1.5×10^{2}		Lee et al. (2012) Amoore and Buttery (1978) HSDB (2015) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	M V Q Q Q Q	38 107, 108 107, 109 107, 110 107, 111
2-nitrophenol HOC ₆ H ₄ (NO ₂) [88-75-5]	$ \begin{array}{c} 1.4 \\ 8.3 \times 10^{-1} \\ 8.9 \times 10^{-1} \\ 7.7 \times 10^{-1} \\ 6.1 \times 10^{-1} \\ 2.9 \\ 7.9 \times 10^{-1} \\ 7.3 \times 10^{-1} \\ 2.8 \\ 9.2 \times 10^{-1} \\ 6.9 \times 10^{-1} \\ 1.3 \\ 5.3 \end{array} $	5700 6300 6300 4600	Guo and Brimblecombe (2007) Harrison et al. (2002) Müller and Heal (2001) Tremp et al. (1993) Mackay et al. (2006c) Lide and Frederikse (1995) Riederer (1990) Schwarzenbach et al. (1988) Leuenberger et al. (1985) Abraham et al. (1994a) Goldstein (1982) Ryan et al. (1988) Hilal et al. (2008)	M M M V V V V V R X C	9 9 167 116
	1.5×10^4	4400 6300	Kühne et al. (2005) Nirmalakhandan et al. (1997) Kühne et al. (2005)	Q Q ?	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]	[17]		71	
CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
	7.0×10^{-1}		Abraham et al. (1990)	?	
3-nitrophenol	1.6×10 ²		Guo and Brimblecombe (2007)	M	234
$HOC_6H_4(NO_2)$	1.0		Lide and Frederikse (1995)	V	
[554-84-7]	4.9×10^{3}		Gaffney and Senum (1984)	X	153
	9.5×10^{3}		Hilal et al. (2008)	Q	
	1.5×10^4		Nirmalakhandan et al. (1997)	Q	
	4.6×10^{3}		Abraham et al. (1990)	?	
4-nitrophenol	2.1×10^{2}		Guo and Brimblecombe (2007)	M	234
$HOC_6H_4(NO_2)$	7.7×10^2		Tremp et al. (1993)	M	9
[100-02-7]	3.0×10^{2}		Lide and Frederikse (1995)	V	
-	2.0×10^4		Riederer (1990)	V	
	3.0×10^{2}		Schwarzenbach et al. (1988)	V	9
	9.4×10^4		Yoshida et al. (1983)	V	
	2.6×10^4	9100	Parsons et al. (1971)	T	168
	9.8	6000	Goldstein (1982)	X	116
	1.6		Ryan et al. (1988)	C	
	6.1×10^3		Hilal et al. (2008)	Q	
	1.5×10^4		Nirmalakhandan et al. (1997)	Q	
	2.6×10^4		Abraham et al. (1990)	?	
3-methyl-2-nitrophenol	3.2		Tremp et al. (1993)	M	9
C ₇ H ₇ NO ₃	2.4		Schwarzenbach et al. (1988)	V	9
4920-77-8]		4700	Kühne et al. (2005)	Q	
		4200	Kühne et al. (2005)	?	
4-methyl-2-nitrophenol	6.7×10^{-1}		Tremp et al. (1993)	M	9
C ₇ H ₇ NO ₃	6.1×10^{-1}		Schwarzenbach et al. (1988)	V	9
[119-33-5]		4700	Kühne et al. (2005)	Q	
		6800	Kühne et al. (2005)	?	
5-methyl-2-nitrophenol	7.7×10^{-1}		Tremp et al. (1993)	M	9
C ₇ H ₇ NO ₃	6.7×10^{-1}		Schwarzenbach et al. (1988)	V	9
[700-38-9]		4700	Kühne et al. (2005)	Q	
		5600	Kühne et al. (2005)	?	
5-methyl-2-nitrophenol	2.9×10^{-1}		Tremp et al. (1993)	M	9
C ₇ H ₇ NO ₃		4700	Kühne et al. (2005)	Q	
[13073-29-5]		5200	Kühne et al. (2005)	?	
3-methyl-4-nitrophenol	6.2×10^2		Tremp et al. (1993)	M	9
C ₇ H ₇ NO ₃					
2581-34-2]					
4-methoxy-2-nitrophenol	5.3		Tremp et al. (1993)	M	9
C ₇ H ₇ NO ₄	2.3×10^{-1}		Schwarzenbach et al. (1988)	V	9
[1568-70-3]		4900	Kühne et al. (2005)	Q	
		6600	Kühne et al. (2005)	?	
4-hydroxy-3-nitro-benzaldehyde C ₇ H ₅ NO ₄	9.4		Schwarzenbach et al. (1988)	V	9

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,4-dinitrophenol C ₆ H ₄ N ₂ O ₅ [51-28-5]	$ \begin{array}{c} 1.1 \times 10^{2} \\ 3.5 \times 10^{1} \\ 1.5 \times 10^{4} \\ 3.6 \times 10^{2} \\ 6.2 \times 10^{2} \\ 4.7 \\ 1.3 \times 10^{3} \end{array} $	5000 3300	Tremp et al. (1993) Schwarzenbach et al. (1988) Ryan et al. (1988) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Kühne et al. (2005) Kühne et al. (2005)	M V C Q Q Q Q Q	9 9 107, 108 107, 109 107, 110 107, 111
$2,5$ -dinitrophenol $C_6H_4N_2O_5$ [329-71-5]	1.5×10^{1}		Schwarzenbach et al. (1988)	V	9
picramic acid C ₆ H ₅ N ₃ O ₅ (4,6-dinitro-2-aminophenol) [96-91-3]	1.0×10 ⁶		HSDB (2015)	Q	38
4-amino-2-nitrophenol C ₆ H ₆ N ₂ O ₃ [119-34-6]	4.5×10 ⁶		HSDB (2015)	Q	38
2-amino-5-nitrophenol C ₆ H ₆ N ₂ O ₃ [121-88-0]	1.3×10 ⁷		HSDB (2015)	Q	38
2-amino-4-nitrophenol C ₆ H ₆ N ₂ O ₃ [99-57-0]	4.5×10 ⁶		HSDB (2015)	Q	38
4-nitro- <i>o</i> -phenylenediamine C ₆ H ₇ N ₃ O ₂ (4-nitro-1,2-diaminobenzene) [99-56-9]	1.3×10 ⁶		HSDB (2015)	Q	38
4-nitrobenzene-1,3-diamine C ₆ H ₇ N ₃ O ₂ [5131-58-8]	1.7×10 ⁵		HSDB (2015)	Q	38
2-nitro-1,4-benzenediamine C ₆ H ₇ N ₃ O ₂ [5307-14-2]	1.7×10 ⁵		HSDB (2015)	Q	38
4-methyl-2,6-dinitrophenol C ₇ H ₆ N ₂ O ₅ (2,6-dinitro- <i>p</i> -cresol) [609-93-8]	$ \begin{array}{c} 1.9 \times 10^{2} \\ 3.2 \times 10^{2} \\ 3.4 \times 10^{3} \\ 8.8 \times 10^{1} \\ 8.0 \end{array} $	3000 3400	Tremp et al. (1993) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Kühne et al. (2005) Kühne et al. (2005)	M Q Q Q Q Q Q	9 107, 108 107, 109 107, 110 107, 111

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]		H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2-methyl-4,6-dinitrophenol C ₇ H ₆ N ₂ O ₅ (6-methyl-2,4-dinitrophenol; dinitro- <i>o</i> -cresol; DNOC)	4,6-	4.3×10^{1} 7.0 9.2×10^{1}		Tremp et al. (1993) Warner et al. (1980) Mackay et al. (2006d)	M M V	9
[534-52-1]		2.3×10^{1} 9.1×10^{1} 7.0 3.2×10^{2} 2.3×10^{3}		Schwarzenbach et al. (1988) Suntio et al. (1988) Shen (1982) Zhang et al. (2010) Zhang et al. (2010)	V V C Q	9 9 107, 108 107, 109
		1.9×10^{1} 7.2×10^{2}	5400 4200	Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Kühne et al. (2005) Kühne et al. (2005)	Q Q Q Q ?	107, 109 107, 110 107, 111
2,4,6-trinitrobenzoic acid C ₇ H ₃ N ₃ O ₈ [129-66-8]		3.8×10 ⁸		HSDB (2015)	Q	38
5-nitrobenzimidazole C ₇ H ₅ N ₃ O ₂ [94-52-0]		2.7×10 ¹		HSDB (2015)	Q	38
4-nitrobenzoic acid C ₇ H ₅ NO ₄ [62-23-7]		2.6×10 ⁴		HSDB (2015)	Q	38
dinitrotoluene C ₇ H ₆ N ₂ O ₄ [25321-14-6]		1.1×10^2		HSDB (2015)	Q	182
1-methyl-3,5-dinitrobenzene C ₇ H ₆ N ₂ O ₄ [618-85-9]		1.1×10^2		HSDB (2015)	Q	182
1-methoxy-2-nitrobenzene C ₇ H ₇ NO ₃ [91-23-6]		2.3×10 ¹		HSDB (2015)	V	
2-methyl-5-nitrobenzenamine C ₇ H ₈ N ₂ O ₂ (5-nitro- <i>o</i> -toluidine) [99-55-8]		1.2×10 ³		HSDB (2015)	Q	38
2-methoxy-5-nitrobenzenamine C ₇ H ₈ N ₂ O ₃ (5-nitro- <i>o</i> -anisidine) [99-59-2]		7.6×10 ²		HSDB (2015)	Q	216
(2-nitroethenyl)benzene C ₈ H ₇ NO ₂ [102-96-5]		2.8		HSDB (2015)	Q	182

Table 6: Henry's law constants for water as solvent (... continued)

Formula Other name(s)) CAS registry number]	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$			
		u(1/1)	Reference	Type	Note
CAS registry number]	「 mol		Reference	Турс	11010
•	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
,2-dimethyl-3-nitrobenzene	1.9×10^{-1}		HSDB (2015)	Q	182
$C_8H_9NO_2$	3.9×10^{-1}		Zhang et al. (2010)	Q	107, 108
83-41-0]	2.9×10^{-1}		Zhang et al. (2010)	Q	107, 109
	2.6×10^{-1}		Zhang et al. (2010)	Q	107, 110
	1.0×10^{-1}		Zhang et al. (2010)	Q	107, 111
,2-dimethyl-4-nitrobenzene	3.9×10^{-1}		Zhang et al. (2010)	Q	107, 108
$C_8H_9NO_2$	3.1×10^{-1}		Zhang et al. (2010)	Q	107, 109
99-51-4]	8.0×10^{-1}		Zhang et al. (2010)	Q	107, 110
	1.0×10^{-1}		Zhang et al. (2010)	Q	107, 111
,4-dimethyl-2-nitrobenzene	3.9×10^{-1}		Zhang et al. (2010)	Q	107, 108
$C_8H_9NO_2$	2.5×10^{-1}		Zhang et al. (2010)	Q	107, 109
89-58-7]	2.2×10^{-1}		Zhang et al. (2010)	Q	107, 110
	1.0×10^{-1}		Zhang et al. (2010)	Q	107, 111
,4-dimethyl-1-nitrobenzene	3.9×10^{-1}		Zhang et al. (2010)	Q	107, 108
$C_8H_9NO_2$	3.1×10^{-1}		Zhang et al. (2010)	Q	107, 109
89-87-2]	4.3×10^{-1}		Zhang et al. (2010)	Q	107, 110
	1.0×10^{-1}		Zhang et al. (2010)	Q	107, 111
-methyl-2-nitroanisole	7.2		Zhang et al. (2010)	Q	107, 108
C ₈ H ₉ NO ₃	1.6		Zhang et al. (2010)	Q	107, 109
119-10-8]	6.0×10^{1}		Zhang et al. (2010)	Q	107, 110
	2.7		Zhang et al. (2010)	Q	107, 111
-(1-methylethyl)-4-nitrobenzene	2.4×10^{-1}		Zhang et al. (2010)	Q	107, 108
$C_9H_{11}NO_2$	1.3×10^{-1}		Zhang et al. (2010)	Q	107, 109
1817-47-6]	3.9×10^{-1}		Zhang et al. (2010)	Q	107, 110
	1.4×10^{-1}		Zhang et al. (2010)	Q	107, 111
2-(1-methylpropyl)-4,6-dinitrophenol	2.2		Tremp et al. (1993)	M	9
C ₁₀ H ₁₂ N ₂ O ₅	2.0×10^{-2}		Suntio et al. (1988)	V	9
dinoseb)	1.4×10^2		Zhang et al. (2010)	Q	107, 108
88-85-7]	5.2×10^2		Zhang et al. (2010)	Q	107, 109
	1.3×10^2		Zhang et al. (2010)	Q	107, 110
	4.3×10^2	C400	Zhang et al. (2010)	Q	107, 111
	1.7×10^3	6400	Kühne et al. (2005) MacBean (2012a)	Q ?	9
	1.7×10°	7200	Kühne et al. (2005)	?	9
		7200	Mackay et al. (2006d)	W	235
-nitronaphthalene	5.6		Altschuh et al. (1999)	M	
$C_{10}H_7NO_2$	- · ·		Mackay et al. (2006d)	V	221
86-57-7]	2.9×10^{-1}		Mackay et al. (1995)	V	
-	4.7		Zhang et al. (2010)	Q	107, 108
	4.2		Zhang et al. (2010)	Q	107, 109
	1.6		Zhang et al. (2010)	Q	107, 110
	4.7		Zhang et al. (2010)	Q	107, 111
linoterb C ₁₀ H ₁₂ N ₂ O ₅	9.3×10^{-1}		MacBean (2012a)	?	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
4-(1-methylpropyl)-2-nitrophenol C ₁₀ H ₁₃ NO ₃ (4-sec-butyl-2-nitrophenol) [3555-18-8]	$1.0 \times 10^{-1} \\ 2.4 \times 10^{-1}$	5800 4300	Tremp et al. (1993) Schwarzenbach et al. (1988) Kühne et al. (2005) Kühne et al. (2005)	M V Q ?	9
musk ambrette (artificial) $C_{12}H_{16}N_2O_5$ [83-66-9]	$ \begin{array}{c} 1.4 \times 10^{1} \\ 7.0 \times 10^{2} \\ 2.4 \\ 2.2 \times 10^{-1} \\ 4.6 \times 10^{1} \end{array} $		HSDB (2015) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q Q	38 107, 108 107, 109 107, 110 107, 111
bis(p-nitrophenyl) ether C ₁₂ H ₈ N ₂ O ₅ [101-63-3]	5.4×10^{3} 2.3×10^{2} 3.0×10^{3} 1.1×10^{4}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
4-nitro-N-phenylbenzenamine C ₁₂ H ₁₀ N ₂ O ₂ [836-30-6]	$ 2.4 \times 10^{3} 1.7 \times 10^{2} 2.9 \times 10^{4} 2.5 \times 10^{3} $		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
2-cyclohexyl-4,6-dinitrophenol C ₁₂ H ₁₄ N ₂ O ₅ [131-89-5]	1.8×10 ²		HSDB (2015)	Q	38
dipicrylamine $C_{12}H_5N_7O_{12}$ $(2,2',4,4',6,6'-$ hexanitrodiphenylamine) $[131-73-7]$	4.3×10 ¹¹		HSDB (2015)	Q	38
1,2-dihydro-5-nitroacenaphthylene C ₁₂ H ₉ NO ₂ (5-nitroacenaphthene) [602-87-9]	9.0		HSDB (2015)	Q	38
4-nitro-1,1'-biphenyl C ₁₂ H ₉ NO ₂ [92-93-3]	2.8		HSDB (2015)	Q	216
2-nitro-9H-fluorene C ₁₃ H ₉ NO ₂ [607-57-8]	3.4×10 ¹		HSDB (2015)	Q	216
5- <i>tert</i> -butyl-4,6-dinitro-1,2,3- trimethylbenzene C ₁₃ H ₁₈ N ₂ O ₄ [145-39-1]	3.4×10^{1} 2.1 4.6×10^{-2} 1.1		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
penoxaline $C_{13}H_{19}N_3O_4$ (pendimethalin) [40487-42-1]	1.2×10^{1} 2.7×10^{-1} 4.8		Fendinger and Glotfelty (1990) Glotfelty et al. (1987) Hilal et al. (2008)	M V Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,6-dinitro-4-octylphenol C ₁₄ H ₂₀ N ₂ O ₅ [4097-33-0]	1.6×10 ⁴		HSDB (2015)	Q	38
musk ketone C ₁₄ H ₁₈ N ₂ O ₅ [81-14-1]	3.0 5.2×10^{3} 2.1×10^{4} 2.6×10^{2} 8.4 5.0×10^{2}		Lee et al. (2012) HSDB (2015) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	M Q Q Q Q Q	38 107, 108 107, 109 107, 110 107, 111
moskene C ₁₄ H ₁₈ N ₂ O ₄ [116-66-5]	4.8×10^{1} 1.4×10^{1} 7.5×10^{-1} 2.5		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
9-ethyl-3-nitrocarbazole $C_{14}H_{12}N_2O_2$ [86-20-4]	3.3×10^{2} 6.9×10^{2} 1.1×10^{3} 2.5×10^{2}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
	1.1×10 ⁹		HSDB (2015)	Q	38
3,7-dinitrofluoranthene C ₁₆ H ₈ N ₂ O ₄ [105735-71-5]	4.9×10 ⁴		HSDB (2015)	Q	38
1,6-dinitropyrene C ₁₆ H ₈ N ₂ O ₄ [42397-64-8]	7.6×10 ⁴		HSDB (2015)	Q	38
1,8-dinitropyrene C ₁₆ H ₈ N ₂ O ₄ [42397-65-9]	7.6×10 ⁴		HSDB (2015)	Q	38
1-nitropyrene C ₁₆ H ₉ NO ₂ [5522-43-0]	3.9×10^2		HSDB (2015)	Q	38
4-nitropyrene C ₁₆ H ₉ NO ₂ [57835-92-4]	3.9×10^2		HSDB (2015)	Q	38
1-[(4-methyl-2-nitrophenyl)azo]-2-naphthalenol C ₁₇ H ₁₃ N ₃ O ₃ (C.I. Pigment Red 3) [2425-85-6]	8.2×10 ⁶		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
phenyl 1-hydroxy-4-nitro-2-naphthoate C ₁₇ H ₁₁ NO ₅ [65208-34-6]	$ \begin{array}{c} 1.5 \times 10^4 \\ 6.7 \times 10^5 \\ 1.1 \times 10^2 \\ 2.7 \times 10^5 \end{array} $		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
6-nitrochrysene C ₁₈ H ₁₁ NO ₂ [7496-02-8]	6.6×10 ²		HSDB (2015)	Q	38
1-nitrobenzo[a]pyrene C ₂₀ H ₁₁ NO ₂ [70021-99-7]	3.1×10^3		HSDB (2015)	Q	182
3-nitrobenzo[<i>a</i>]pyrene C ₂₀ H ₁₁ NO ₂ [70021-98-6]	3.1×10^3		HSDB (2015)	Q	182
6-nitrobenzo[<i>a</i>]pyrene C ₂₀ H ₁₁ NO ₂ [63041-90-7]	3.1×10 ³		HSDB (2015)	Q	182

Organic species with fluorine (F)

	Fluorine (F)							
fluoromethane	6.1×10^{-4}	2000	Sander et al. (2011)	L				
CH ₃ F	6.1×10^{-4}	2000	Sander et al. (2006)	L				
[593-53-3]	5.8×10^{-4}	2200	Wilhelm et al. (1977)	L				
	5.8×10^{-4}	2100	Swain and Thornton (1962)	M				
	5.4×10^{-4}	2200	Glew and Moelwyn-Hughes (1953)	M				
	5.1×10^{-4}		Mackay and Shiu (1981)	V				
	5.8×10^{-4}		Hine and Mookerjee (1975)	V				
	9.2×10^{-5}		Hilal et al. (2008)	Q				
		2200	Kühne et al. (2005)	Q				
	1.9×10^{-4}		Nirmalakhandan and Speece (1988a)	Q				
	5.9×10^{-4}		Irmann (1965)	Q				
		2200	Kühne et al. (2005)	?				
	7.1×10^{-4}		Yaws (1999)	?				
	7.0×10^{-4}		Yaws and Yang (1992)	?	92, 28			
difluoromethane	6.9×10^{-4}	2400	Maaßen (1995)	M				
CH_2F_2	6.9×10^{-4}	2300	Reichl (1995)	M				
(R32)	8.4×10^{-4}		Hilal et al. (2008)	Q				
[75-10-5]		2200	Kühne et al. (2005)	Q				
		2400	Kühne et al. (2005)	?				
	8.6×10^{-4}		Yaws (1999)	?				
	8.6×10^{-4}		Yaws and Yang (1992)	?	92			

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(\text{at } T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^{3} \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
trifluoromethane	1.3×10^{-4}	3300	Sander et al. (2011)	L	
CHF ₃	1.3×10^{-4}	3200	Wilhelm et al. (1977)	L	
(R23)	1.4×10^{-4}	2200	Zheng et al. (1997)	M	
[75-46-7]	1.4×10^{-4} 1.2×10^{-4}	2400	Maaßen (1995)	M	
[/3-40-/]	1.0×10^{-4}	2400	Hine and Mookerjee (1975)	V	
	1.0×10^{-4}		Irmann (1965)	Ċ	
	2.0×10^{-4}		Hilal et al. (2008)	Q	
	2.07.10	2200	Kühne et al. (2005)	Q	
	1.2×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	1.1×10^{-4}		Irmann (1965)	Q	
		3000	Kühne et al. (2005)	?	
	1.3×10^{-4}		Yaws (1999)	?	
	1.3×10^{-4}		Yaws and Yang (1992)	?	92
tetrafluoromethane	2.1×10^{-6}	2300	Warneck and Williams (2012)	L	
CF ₄	2.1×10^{-6}	1800	Sander et al. (2011)	L	
(carbontetrafluoride)	2.1×10^{-6}	1800	Wilhelm et al. (1977)	L	
[75-73-0]	2.0×10^{-6}	2000	Reichl (1995)	M	
[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.2×10^{-6}	1400	Scharlin and Battino (1994)	M	
	2.1×10^{-6}		Park et al. (1982)	M	
	2.0×10^{-6}	2300	Wen and Muccitelli (1979)	M	
	2.2×10^{-6}	1900	Ashton et al. (1968)	M	
	2.0×10^{-6}	1500	Morrison and Johnstone (1954)	M	
	1.9×10^{-6}		Hine and Mookerjee (1975)	V	
	1.9×10^{-6}		Irmann (1965)	C	
	9.2×10^{-6}		Hilal et al. (2008)	Q	
		2200	Kühne et al. (2005)	Q	
	1.0×10^{-6}	-840	Bonifácio et al. (2001)	Q	
	5.4×10^{-6}		Nirmalakhandan and Speece (1988a)	Q	
	1.6×10^{-6}		Irmann (1965)	Q	
		1900	Kühne et al. (2005)	?	
	1.9×10^{-6}		Yaws (1999)	?	
	1.8×10^{-6}		Yaws and Yang (1992)	?	92
fluoroethane	4.8×10^{-4}		Hilal et al. (2008)	Q	
C ₂ H ₅ F	4.4×10^{-4}		Yaws and Yang (1992)	?	92
[353-36-6]					
1,1-difluoroethane	5.3×10 ⁻⁴	2600	Zheng et al. (1997)	M	
$C_2H_4F_2$	5.0×10^{-4}	2800	Maaßen (1995)	M	
(R152a)	5.0×10^{-4}	2700	Reichl (1995)	M	
[75-37-6]	4.2×10^{-4}	2300	McLinden (1989)	V	
	4.8×10^{-4}	-	Hine and Mookerjee (1975)	V	
	4.8×10^{-4}		Irmann (1965)	Ċ	113
	2.9×10^{-4}		Hilal et al. (2008)	Q	
		2600	Kühne et al. (2005)	Q	
	1.4×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	4.3×10^{-4}		Irmann (1965)	Q	
		2800	Kühne et al. (2005)	?	
	3.7×10^{-4}		Yaws and Yang (1992)	?	92, 115

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
1,1,1,2-tetrafluoroethane	1.8×10^{-4}	2700	Zheng et al. (1997)	M	
$C_2H_2F_4$	1.6×10^{-4}	3000	Maaßen (1995)	M	
(R134a)	1.6×10^{-4}	2900	Reichl (1995)	M	
[811-97-2]	2.0×10^{-4}	2500	Chang and Criddle (1995)	M	
	1.4×10^{-4}	2600	McLinden (1989)	V	
	6.5×10^{-6}		HSDB (2015)	Q	38
	9.7×10^{-5}		Hilal et al. (2008)	Q	
pentafluoroethane	3.5×10^{-5}	3000	Reichl (1995)	M	
C ₂ HF ₅	8.0×10^{-5}	4800	McLinden (1989)	V	
(R125)	2.0×10^{-4}		HSDB (2015)	Q	38
[354-33-6]	3.2×10^{-6}		Zhang et al. (2010)	Q	107, 108
	2.0×10^{-5}		Zhang et al. (2010)	Q	107, 109
	5.7×10^{-5}		Zhang et al. (2010)	Q	107, 110
	2.1×10^{-5}		Zhang et al. (2010)	Q	107, 111
		2600	Kühne et al. (2005)	Q	
		2900	Kühne et al. (2005)	?	
hexafluoroethane	6.5×10^{-7}	2100	Bonifácio et al. (2001)	M	
C_2F_6	5.3×10^{-7}		Park et al. (1982)	M	
[76-16-4]	5.7×10^{-7}	2900	Wen and Muccitelli (1979)	M	
	4.1×10^{-7}		Zhang et al. (2010)	Q	107, 108
	1.1×10^{-5}		Zhang et al. (2010)	Q	107, 109
	8.4×10^{-7}		Zhang et al. (2010)	Q	107, 110
	1.9×10^{-6}		Zhang et al. (2010)	Q	107, 111
	1.2×10^{-5}		Hilal et al. (2008)	Q	
	_	2600	Kühne et al. (2005)	Q	
	1.2×10^{-6}	1700	Bonifácio et al. (2001)	Q	
	7	2900	Kühne et al. (2005)	?	
	5.8×10^{-7}		Yaws and Yang (1992)	?	92
1-fluoropropane	5.7×10^{-4}		Hilal et al. (2008)	Q	
C ₃ H ₇ F [460-13-9]	6.1×10^{-4}		Yaws and Yang (1992)	?	92, 236
2-fluoropropane	2.5×10^{-4}		Hilal et al. (2008)	Q	
C ₃ H ₇ F [420-26-8]	5.8×10^{-4}		Yaws and Yang (1992)	?	92, 28
1,1,1,2,2-pentafluoropropane $C_3H_3F_5$ [1814-88-6]	3.0×10^{-1}		Nirmalakhandan and Speece (1988a)	Q	
1,1,1,3,3,3-hexafluoropropane	1.2×10 ⁻⁶		Zhang et al. (2010)	Q	107, 108
$C_3H_2F_6$	3.9×10^{-5}		Zhang et al. (2010)	Q	107, 109
[690-39-1]	1.8×10^{-4}		Zhang et al. (2010)	Q	107, 110
	2.7×10^{-6}		Zhang et al. (2010)	Q	107, 111
1,1,1,2,3,3,3-heptafluoropropane	1.4×10^{-5}	3300	Reichl (1995)	M	
C ₃ HF ₇	6.2×10^{-7}		HSDB (2015)	Q	38
(R227)		2900	Kühne et al. (2005)	Q	
[431-89-0]		3300	Kühne et al. (2005)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]			-J F -	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
octafluoropropane	1.2×10 ⁻⁷	6900	Wen and Muccitelli (1979)	M	
C_3F_8	3.0×10^{-7}		HSDB (2015)	V	
(R218)	7.7×10^{-8}		Zhang et al. (2010)	Q	107, 108
[76-19-7]	1.0×10^{-5}		Zhang et al. (2010)	Q	107, 109
	3.8×10^{-7}		Zhang et al. (2010)	Q	107, 110
	4.5×10^{-7}		Zhang et al. (2010)	Q	107, 111
	1.1×10^{-5}		Hilal et al. (2008)	Q	
octafluorocyclobutane	1.3×10^{-6}	3100	Clever et al. (2005)	L	237
C_4F_8	1.3×10^{-6}	2900	Scharlin and Battino (1994)	M	
[115-25-3]	1.2×10^{-6}		Park et al. (1982)	M	
	1.2×10^{-6}	3800	Wen and Muccitelli (1979)	M	
	1.3×10^{-7}		Zhang et al. (2010)	Q	107, 108
	1.6×10^{-6}		Zhang et al. (2010)	Q	107, 109
	2.2×10^{-6}		Zhang et al. (2010)	Q	107, 110
	1.0×10^{-6}		Zhang et al. (2010)	Q	107, 111
	9.2×10^{-6}		Hilal et al. (2008)	Q	
		4500	Kühne et al. (2005)	Q	
		3800	Kühne et al. (2005)	?	
	2.5×10^{-6}		Yaws and Yang (1992)	?	92, 146
dodecafluoropentane C_5F_{12} [678-26-2]	6.1×10^{-6}		Hilal et al. (2008)	Q	
fluorocyclohexane C ₆ H ₁₁ F [372-46-3]	1.3×10 ⁻³		Hilal et al. (2008)	Q	
1-fluoroheptane C ₇ H ₁₅ F [661-11-0]	2.7×10 ⁻⁴		Hilal et al. (2008)	Q	
hexadecafluoroheptane C ₇ F ₁₆ [335-57-9]	1.9×10 ⁻⁷		Hilal et al. (2008)	Q	
1-fluorooctane C ₈ H ₁₇ F [463-11-6]	1.5×10 ⁻⁴		Hilal et al. (2008)	Q	
eicosafluorononane C ₉ F ₂₀ [375-96-2]	4.5×10 ⁻⁹		Hilal et al. (2008)	Q	
perfluoroundecane	1.3×10^{-13}		Zhang et al. (2010)	Q	107, 108
$C_{11}F_{24}$	1.2×10^{-11}		Zhang et al. (2010)	Q	107, 109
[307-49-3]	1.2×10^{-9}		Zhang et al. (2010)	Q	107, 110
	6.0×10^{-12}		Zhang et al. (2010)	Q	107, 111
1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10- henicosafluorododecane C ₁₂ H ₅ F ₂₁ (F10H2)	5.1×10^{-10}		Plassmann et al. (2010)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference		Note
1,1,1,2,2,3,3,4,4,5,5,6,6- tridecafluorotetradecane C ₁₄ H ₁₇ F ₁₃ (F6H8) [133331-77-8]	6.4×10^{-7}		Plassmann et al. (2010)	Q	
1,1,1,2,2,3,3,4,4,5,5,6,6- tridecafluoroicosane C ₂₀ H ₂₉ F ₁₃ (F6H14) [154628-00-9]	2.5×10 ⁻⁷		Plassmann et al. (2010)	Q	
1,1,1,2,2,3,3,4,4,5,5,6,6- tridecafluorodocosane C ₂₂ H ₃₃ F ₁₃ (F6H16) [133310-71-1]	2.0×10^{-7}		Plassmann et al. (2010)	Q	
1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8- heptadecafluorotetracosane C ₂₄ H ₃₃ F ₁₇ (F8H16) [117146-18-6]	4.0×10 ⁻⁹		Plassmann et al. (2010)	Q	
1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10 henicosafluorohexacosane C ₂₆ H ₃₃ F ₂₁ (F10H16))- 3.2×10 ⁻¹¹		Plassmann et al. (2010)	Q	
1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9, 10,10,11,11,12,12- pentacosafluorohexacosane C ₂₆ H ₂₉ F ₂₅ (F12H14) [93454-73-0]	1.6×10 ⁻¹³		Plassmann et al. (2010)	Q	
1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9, 10,10,11,11,12,12- pentacosafluorooctacosane C ₂₈ H ₃₃ F ₂₅ (F12H16)	8.0×10 ⁻¹⁴		Plassmann et al. (2010)	Q	
1,1-difluoroethene	2.5×10^{-5}		HSDB (2015)	V	
C ₂ H ₂ F ₂	5.1×10^{-5}		Hilal et al. (2008)	Q	0.2
[75-38-7]	2.5×10 ⁻⁵		Yaws and Yang (1992)	?	92
tetrafluoroethene	1.6×10^{-5}	2100	Wilhelm et al. (1977)	L	
C ₂ F ₄	1.6×10^{-5} 9.8×10^{-6}		HSDB (2015)	V	22
[116-14-3]	9.8×10^{-5} 1.9×10^{-5}		Irmann (1965) Hilal et al. (2008)	C Q	23
	1.7 × 10	2400	Kühne et al. (2005)	Q Q	
		2100	Kühne et al. (2005)	?	
	1.6×10^{-5}		Yaws and Yang (1992)	?	92

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
hexafluoropropene C ₃ F ₆ [116-15-4]	2.9×10^{-6} 6.8×10^{-6} 1.8×10^{-6} 3.6×10^{-5}	2400 2600 2800 2400	Wilhelm et al. (1977) Maaßen (1995) HSDB (2015) Hilal et al. (2008) Kühne et al. (2005) Kühne et al. (2005)	L M Q Q Q ?	38
(perfluorobutyl)ethene $C_6H_3F_9$ (4:2 FTO) [19430-93-4]	9.0×10^{-8} 8.8×10^{-8} 3.3×10^{-6} 8.6×10^{-6} 3.6×10^{-7} 2.5×10^{-6}	4100	HSDB (2015) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Goss et al. (2006)	Q Q Q Q Q	38 107, 108 107, 109 107, 110 107, 111
(perfluorohexyl)ethene C ₈ H ₃ F ₁₃ (6:2 FTO) [25291-17-2]	5.3×10 ⁻⁷	4900	Goss et al. (2006)	Q	
(perfluorooctyl)ethene C ₁₀ H ₃ F ₁₇ (8:2 FTO) [21652-58-4]	1.4×10 ⁻⁷	5700	Goss et al. (2006)	Q	
(perfluorodecyl)ethene C ₁₂ H ₃ F ₂₁ (10:2 FTO) [30389-25-4]	3.3×10 ⁻⁸	6500	Goss et al. (2006)	Q	
1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9, 10,10,11,11,112,12- pentacosafluorooctacos-13-ene C ₂₈ H ₃₁ F ₂₅	8.0×10 ⁻¹¹		Plassmann et al. (2010)	Q	
fluorobenzene C ₆ H ₅ F [462-06-6]	$ \begin{array}{c} 1.6 \times 10^{-3} \\ 1.6 \times 10^{-3} \\ 1.4 \times 10^{-3} \\ 1.1 \times 10^{-3} \\ 1.5 \times 10^{-3} \\ 1.6 \times 10^{-3} \\ 1.6 \times 10^{-3} \\ 2.0 \times 10^{-3} \\ 5.0 \times 10^{-3} \\ 1.6 \times 10^{-3} \\ 1.5 \times 10^{-3} \\ \end{array} $	3900 4300 4400 3700 3800	Mackay and Shiu (1981) Hiatt (2013) Dewulf et al. (1999) Li and Carr (1993) Hartkopf and Karger (1973) Schüürmann (2000) Mackay et al. (1993) Sieg et al. (2008) Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan et al. (1997) Kühne et al. (2005) Hoff et al. (1993) Yaws and Yang (1992)	L M M M V V C Q Q Q ?	7 92

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\mathrm{d} \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]			1,100	1.000
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
1,2-difluorobenzene	1.2×10^{-3}	3500	Brockbank et al. (2013)	M	
$C_6H_4F_2$	2.2×10^{-3}		Hilal et al. (2008)	Q	
(o-difluorobenzene)	1.4×10^{-3}		Yaws and Yang (1992)	?	92
[367-11-3]					
1,3-difluorobenzene	1.3×10^{-3}		Hilal et al. (2008)	Q	
$C_6H_4F_2$	1.3×10^{-4}		Yaws and Yang (1992)	?	92
(m-difluorobenzene)					
[372-18-9]					
1,4-difluorobenzene	1.6×10^{-3}	3900	Hiatt (2013)	M	
$C_6H_4F_2$	1.8×10^{-3}		Hilal et al. (2008)	Q	
(<i>p</i> -difluorobenzene)	1.3×10^{-3}		Yaws and Yang (1992)	?	92
[540-36-3]					
1,2,3,5-tetrafluorobenzene	5.0×10^{-4}		Hilal et al. (2008)	Q	
$C_6H_2F_4$				-	
[2367-82-0]					
1,2,4,5-tetrafluorobenzene	7.0×10^{-4}		Hilal et al. (2008)	Q	
$C_6H_2F_4$				-	
[327-54-8]					
pentafluorobenzene	7.5×10^{-4}	4800	Hiatt (2013)	M	
C ₆ HF ₅					
[363-72-4]					
nexafluorobenzene	5.5×10 ⁻⁴	5200	Hiatt (2013)	M	
C_6F_6					
[392-56-3]					
trifluoromethyl)-benzene	5.8×10^{-4}		HSDB (2015)	V	
C ₆ H ₅ CF ₃	6.1×10^{-4}		Abraham et al. (1994a)	V	
$(\alpha, \alpha, \alpha$ -trifluorotoluene)	6.2×10^{-4}		Mackay and Shiu (1981)	V	
[98-08-8]	1.3×10^{-3}		Hilal et al. (2008)	Q	
	1.9×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	6.0×10^{-4}	_	Yaws and Yang (1992)	?	92
decafluorobiphenyl	6.7×10^{-3}	3600	Hiatt (2013)	M	
$C_{10}F_{10}$					
[434-90-2]					
carbonyl fluoride	3.5×10^{-1}		Mirabel et al. (1996)	M	
COF ₂	9.9×10^{-3}		De Bruyn et al. (1995a)	M	183
[353-50-4]	2.0×10^{-1}		George et al. (1993)	X	238
formyl fluoride	3.0×10^{-2}		Kanakidou et al. (1995)	Е	
FCHO					
[1493-02-3]					
2-fluoroethanol	1.4		HSDB (2015)	Q	38
C ₂ H ₅ FO	2.5		Hilal et al. (2008)	Q	
[371-62-0]					

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,2,2-trifluoroethanol CF ₃ CH ₂ OH [75-89-8]	4.7×10^{-1} 4.7×10^{-1} 5.8×10^{-1} 3.5×10^{-1}	6200 6200 5900	Sander et al. (2011) Chen et al. (2003) Rochester and Symonds (1973) Zhang et al. (2010)	L M M Q	107, 108
	$ \begin{array}{c} 3.3 \times 10 \\ 2.4 \times 10^{-1} \\ 3.8 \\ 4.7 \times 10^{-2} \\ 6.1 \times 10^{-1} \end{array} $		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Hilal et al. (2008)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
	5.0×10^{-1}	6500 5600	Kühne et al. (2005) Nirmalakhandan and Speece (1988a) Kühne et al. (2005)	Q Q ?	
1,1,1-trifluoro-2-propanol	$\frac{5.7 \times 10^{-1}}{4.5 \times 10^{-1}}$	6300	Abraham et al. (1990) Rochester and Symonds (1973)	? M	
CF ₃ CHOHCH ₃ [374-01-6]	2.2×10^{-1} 5.2×10^{-1}	6900	Hilal et al. (2008) Kühne et al. (2005)	Q Q	
	5.2×10	6300	Nirmalakhandan and Speece (1988a) Kühne et al. (2005)	Q ?	
2,2,3,3-tetrafluoro-1-propanol CHF ₂ CF ₂ CH ₂ OH [76-37-9]	1.4 1.4 1.6	7000 7000 6700	Sander et al. (2011) Chen et al. (2003) Rochester and Symonds (1973)	L M M	
	6.0×10^{-1} 3.7×10^{-1}	6900	Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan and Speece (1988a)	Q Q Q ?	
2,2,3,3,3-pentafluoro-1-propanol CF ₃ CF ₂ CH ₂ OH [422-05-9]	$ \begin{array}{c} 1.4 \times 10^{-1} \\ 1.4 \times 10^{-1} \\ 4.5 \times 10^{-1} \\ 2.3 \times 10^{-1} \end{array} $	4300 4300 6000 6800	Kühne et al. (2005) Sander et al. (2011) Chen et al. (2003) Rochester and Symonds (1973) Hilal et al. (2008) Kühne et al. (2005)	L M M Q Q	
		6000	Kühne et al. (2005)	?	
1,1,1,3,3,3-hexafluoro-2-propanol CF ₃ CHOHCF ₃ [920-66-1]	2.4×10^{-1} 2.5×10^{-2} 2.3×10^{-1}	6700 6800	Rochester and Symonds (1973) Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan and Speece (1988a)	M Q Q Q	
	2.3×10^{-1}	6700	Kühne et al. (2005) Abraham et al. (1990)	? ?	
trifluoroacetylfluoride CF ₃ COF [354-34-7]	3.0×10^{-2} 9.5×10^{-3} 3.0×10^{-2}		Mirabel et al. (1996) De Bruyn et al. (1995a) George et al. (1994b)	M M M	183 239
1,1,1-trifluoro-2-propanone CF ₃ COCH ₃ [421-50-1]	1.4 1.4	8900 8900	Sander et al. (2011) Betterton (1991)	L M	
fluoroethanoic acid CH ₂ FCOOH (fluoroacetic acid) [144-49-0]	8.0×10^{2} 8.0×10^{2} 5.4×10^{2}		Sander et al. (2011) Bowden et al. (1998a) Hilal et al. (2008)	L M Q	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\mathrm{d} \ln H^{cp}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Tyne	Note
(Other name(s))	[mol]		Reference	1) pc	11010
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
difluoroethanoic acid	3.0×10^2	6900	Sander et al. (2011)	L	
CHF ₂ COOH	3.0×10^2	6900	Bowden et al. (1998a)	M	
(difluoroacetic acid)	7.2×10^{1}		Hilal et al. (2008)	Q	
[381-73-7]		7700	Kühne et al. (2005)	Q	
		6900	Kühne et al. (2005)	?	
trifluoroethanoic acid	8.9×10^{1}	9300	Sander et al. (2011)	L	
CF ₃ COOH	5.7×10^{1}	4100	Kutsuna and Horia (2008)	M	
(trifluoroacetic acid)	8.8×10^{1}	9300	Bowden et al. (1996)	M	40= 400
[76-05-1]	2.3		Zhang et al. (2010)	Q	107, 108
	1.6×10^{-1}		Zhang et al. (2010)	Q	107, 109
	8.0		Zhang et al. (2010)	Q	107, 110
	3.9		Zhang et al. (2010)	Q	107, 111
	4.0×10^{-1}	7700	Hilal et al. (2008)	Q	
		7700 9400	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
<u> </u>	4.4.40-1				2.10
perfluorohexanoic acid	4.4×10^{-1}		Arp et al. (2006)	Q	240
C ₆ HF ₁₁ O ₂ [307-24-4]	1.2×10^{-1}		Arp et al. (2006)	Q	241
	5.7.10-4		71 (2010)		107 100
perfluoroheptanoic acid	5.7×10^{-4}		Zhang et al. (2010)	Q	107, 108
C ₇ HF ₁₃ O ₂	5.0×10^{-2}		Zhang et al. (2010)	Q	107, 109
[375-85-9]	2.2×10^{-2}		Zhang et al. (2010)	Q	107, 110
	5.6×10^{-3} 1.8×10^{-1}		Zhang et al. (2010)	Q	107, 111
	1.8×10^{-2} 5.7×10^{-2}		Arp et al. (2006) Arp et al. (2006)	Q Q	240 241
manta da ca fluores estancia esid	4.9×10^{-2}				2.1
pentadecafluorooctanoic acid	4.9×10^{-1} 4.0×10^{-1}		Kutsuna and Hori (2008)	M M	
C ₈ HF ₁₅ O ₂	1.1×10^{-4}		Li et al. (2007)		107 100
(perfluorooctanoic acid; PFOA)	1.0×10^{-2}		Zhang et al. (2010)	Q	107, 108
[335-67-1]	1.0×10^{-2} 1.2×10^{-2}		Zhang et al. (2010)	Q	107, 109
	1.2×10^{-3} 1.1×10^{-3}		Zhang et al. (2010)	Q	107, 110
	1.1×10^{-4} 1.1×10^{-4}		Zhang et al. (2010)	Q	107, 111
	1.1×10 1.0×10^{-2}		Zhang et al. (2010)	Q	107, 108
	2.1×10^{-2}		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 109
	1.1×10^{-3}		-	Q	107, 110
	9.5×10^{-2}		Zhang et al. (2010)	Q	107, 111
	9.3×10^{-2} 2.0×10^{-2}		Arp et al. (2006) Arp et al. (2006)	Q Q	240 241
perfluorononanoic acid	4.3×10^{-2}		Arp et al. (2006)	Q	240
C ₉ HF ₁₇ O ₂	5.3×10^{-3}		Arp et al. (2006) Arp et al. (2006)	Q	240
[375-95-1]	3.3×10		711p et al. (2000)	V	271
perfluorodecanoic acid	2.5×10 ⁻²		Arp et al. (2006)	Q	240
C ₁₀ HF ₁₉ O ₂ [335-76-2]	1.1×10^{-3}		Arp et al. (2006)	Q	241
perfluoroundecanoic acid	1.3×10^{-2}		Arp et al. (2006)	Q	240
C ₁₁ HF ₂₁ O ₂	1.9×10^{-4}		Arp et al. (2006)	Q	241
[2058-94-8]	/ 120		1 ()	~	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} H^{cp}}$			
Formula	(at 1 -)	d(1/T)	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
perfluorododecanoic acid	6.4×10^{-3}		Plassmann et al. (2011)	Е	
$C_{12}HF_{23}O_2$					
[307-55-1]					
perfluorotetradecanoic acid	1.6×10^{-3}		Plassmann et al. (2011)	Е	
$C_{14}HF_{27}O_2$					
[376-06-7]					
ethyl 2,2,2-trifluoroethyl ether	7.2×10^{-4}		Hilal et al. (2008)	Q	
$C_4H_7F_3O$,		
[461-24-5]					
(2,2,2-trifluoroethoxy)-ethene	5.4×10^{-4}	4000	Fogg and Sangster (2003)	L	
CF ₃ CH ₂ OCHCH ₂	3.3×10^{-4}		Steward et al. (1973)	L	19
(fluoroxene)	5.5×10^{-4}	4300	Smith et al. (1981b)	M	
[406-90-6]	3.2×10^{-4}		Stoelting and Longshore (1972)	M	19
	3.3×10^{-4}		Munson et al. (1964)	M	19
	9.5×10^{-5}		Hilal et al. (2008)	Q	
	5.1×10^{-4}		Abraham et al. (1990)	?	
2,2,2-trifluoroethyl methanoate	5.4×10^{-3}	4700	Sander et al. (2011)	L	
$C_3H_3F_3O_2$	5.4×10^{-3}	4700	Kutsuna et al. (2005)	M	
[32042-38-9]					
2,2,2-trifluoroethyl ethanoate	5.5×10^{-3}	5200	Sander et al. (2011)	L	
$C_4H_5F_3O_2$	5.7×10^{-3}	5300	Kutsuna et al. (2004)	M	
[406-95-1]		6400	Kühne et al. (2005)	Q	
		5500	Kühne et al. (2005)	?	
trifluoroethanoic acid, methyl ester	1.1×10^{-3}	5300	Sander et al. (2011)	L	242
CF ₃ COOCH ₃	1.2×10^{-3}	4900	Kutsuna et al. (2004)	M	
(methyl trifluoroacetate)		6100	Kühne et al. (2005)	Q	
[431-47-0]		5800	Kühne et al. (2005)	?	
trifluoroethanoic acid, ethyl ester	8.9×10^{-4}	4900	Sander et al. (2011)	L	
CF ₃ COOC ₂ H ₅	8.9×10^{-4}	4900	Kutsuna et al. (2005)	M	
(ethyl trifluoroacetate)					
[383-63-1]					
trifluoro(trifluoromethyl)-oxirane	8.8×10^{-6}	3000	Clever et al. (2005)	С	243
C_3F_6O					
[428-59-1]					
heptafluorobutanoic acid	8.2×10^{-2}		Zhang et al. (2010)	Q	107, 108
$C_4HF_7O_2$	7.2×10^{-1}		Zhang et al. (2010)	Q	107, 109
[375-22-4]	2.5×10^{-1}		Zhang et al. (2010)	Q	107, 110
	6.4×10^{-1}		Zhang et al. (2010)	Q	107, 111
3,3,4,4,4-pentafluorobutan-1-ol	5.1×10^{-2}		Zhang et al. (2010)	Q	107, 108
$C_4H_5OF_5$	3.7×10^{-1}		Zhang et al. (2010)	Q	107, 109
[54949-74-5]	4.0×10^{-2}		Zhang et al. (2010)	Q	107, 110
	1.5×10^{-3}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent $(\dots continued)$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(at T^{\odot})	d(1/T)	Reference	Type	Note
1,1,1,2,2,3,4,5,5,5-decaffuoropentane 4,4 \(\text{i} \) = \(\text{S} \)		[mol]	FT73		31	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
138495-42-8 1.8 × 10 ⁻⁴	1,1,1,2,2,3,4,5,5,5-decafluoropentane			Zhang et al. (2010)	Q	107, 108
1,1,1,2,2,3,3,4,4-nonafluoro-4	$C_5H_2F_{10}$			Zhang et al. (2010)	Q	107, 109
1,1,1,2,2,3,3,4,4-nonafluoro-4	[138495-42-8]			Zhang et al. (2010)	Q	107, 110
$ \begin{array}{c} \text{methoxybutane} \\ \text{C_5H_3F_0O} \\ \text{C_1163702-07-6} \\ \text{1} \\ \text{3} \\ \text{3} \\ \text{2} \\ \text{10} \\ \text{1} \\ \text$		9.0×10^{-7}		Zhang et al. (2010)	Q	107, 111
$\begin{array}{c} 163702\text{-}07\text{-}6] \\ 3.9 \times 10^{-6} \\ 3.9 \times 10^{-6} \\ \end{array} \begin{array}{c} \text{Zhang et al. (2010)} \\ \text{Zhang et al. (2006)} \\ \text{Zhang et al. (2006)} \\ \text{Zhang et al. (2006)} \\ \text{Zhang et al. (2010)} \\ Zh$		9.9×10^{-6}		Zhang et al. (2010)	Q	107, 108
1-ethoxy-1,1,2,3,3,3-hexafluoro-2-	$C_5H_3F_9O$			Zhang et al. (2010)	Q	107, 109
	[163702-07-6]	8.4×10^{-6}		Zhang et al. (2010)	Q	107, 110
(trifluoromethyl)propane C ₆ H ₅ F ₉ O 4.7×10 ⁻⁵ Zhang et al. (2010) Q 16 1163702-06-5] 8.0×10 ⁻⁶ Zhang et al. (2010) Q 16 11H,1H,2H,2H-perfluorohexan-1-ol 6.6×10 ⁻³ 4500 Wu and Chang (2011) M 86 C ₆ H ₅ F ₉ O 1.3×10 ⁻⁵ 5400 Lei et al. (2006) M 12043-47-2] 5.6×10 ⁻¹ Wu and Chang (2011) V 18.8×10 ⁻³ Zhang et al. (2010) Q 16 13.3×10 ⁻¹ Zhang et al. (2010) Q 16 13.3×10 ⁻⁴ Zhang et al. (2010) Q 16 13.1×10 ⁻⁵ Arp et al. (2006) Q 2 13.1×10 ⁻⁵ Arp et al. (2006) Q 2 14-ethoxy-1,1,2,2,3,3,4,4,4- 7.5×10 ⁻⁶ Zhang et al. (2010) Q 16 163702-05-4] 7.5×10 ⁻⁶ Zhang et al. (2010) Q 16 1647-42-7] 3.0×10 ⁻⁶ Zhang et al. (2010) Q 16 1647-42-7] 3.9×10 ⁻¹ Wu and Chang (2011) M 88 16-2e FTOH) 8.5×10 ⁻⁵ Zhang et al. (2010) Q 16 1647-42-7] 3.9×10 ⁻¹ Wu and Chang (2011) M 88 16-2e FTOH) 8.5×10 ⁻⁵ Zhang et al. (2010) Q 16 1647-42-7] 3.9×10 ⁻¹ Wu and Chang (2011) W 16 1647-42-7] 3.9×10 ⁻¹ Wu and Chang (2011) V 16 1647-42-7] 3.9×10 ⁻¹ Wu and Chang (2011) V 16 1647-42-7] 3.9×10 ⁻¹ Wu and Chang (2011) Q 16 1647-42-7] 3.9×10 ⁻⁵ Zhang et al. (2010) Q 16 1647-42-7] 3.9×10 ⁻⁵ Zhang et al. (2010) Q 16 1848-130 Zhang et al. (2010) Q 16 18510 ⁻⁵ Zhang et al		3.9×10^{-6}		Zhang et al. (2010)	Q	107, 111
163702-06-5 8.0×10^-6 Zhang et al. (2010) Q 16		7.5×10^{-6}		Zhang et al. (2010)	Q	107, 108
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₆ H ₅ F ₉ O			Zhang et al. (2010)	Q	107, 109
IH,	[163702-06-5]			Zhang et al. (2010)	Q	107, 110
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.3×10^{-6}		Zhang et al. (2010)	Q	107, 111
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1H,1H,2H,2H-perfluorohexan-1-ol		4500	Wu and Chang (2011)	M	89
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ H ₅ F ₉ O			Goss et al. (2006)	M	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(4:2 FTOH)		5400	Lei et al. (2004)	M	122
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[2043-47-2]			Wu and Chang (2011)	V	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Zhang et al. (2010)	Q	107, 108
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					Q	107, 109
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					Q	107, 110
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						107, 111
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				-		240
1-ethoxy-1,1,2,2,3,3,4,4,4-				-		241
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.2×10^{-3}	7200	Goss et al. (2006)	Q	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Zhang et al. (2010)	Q	107, 108
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					Q	107, 109
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[163702-05-4]				Q	107, 110
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.0×10^{-6}		Zhang et al. (2010)	Q	107, 111
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	1.7×10^{-4}	2600			89
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			7000			122
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[647-42-7]					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						107, 108
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						107, 109
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						107, 110
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						107, 111
$1.8\times10^{-3} 8000 \text{Goss et al. (2006)} \qquad Q$ methyl perfluoro(8-(fluoroformyl)-5- 5.8×10^{-2}				-		240
methyl perfluoro(8-(fluoroformyl)-5- 5.8×10^{-2} Zhang et al. (2010) Q 10 methyl-4,7-dioxanonanoate)			8000	-		241
						107, 108
\cup_{10} Π_3 Γ_{15} \cup_5 0.1×10 0.1×10 0.1×10 0.1×10		5 110-4		71	0	107 100
10 0 10 0						107, 109
	[07110-73-0]					107, 110 107, 111

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{\ominus})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]	[17]		31	
[CAS registry number]	m ³ Pa	[K]			
3,3,4,4,5,5,6,6,6-nonafluorohexyl	3.4×10^{-5}		Zhang et al. (2010)	Q	107, 108
methacrylate C ₁₀ H ₉ F ₉ O ₂	1.6×10^{-3}		Zhang et al. (2010)	Q	107, 109
[1799-84-4]	6.5×10^{-4}		Zhang et al. (2010)	Q	107, 110
	3.4×10^{-5}		Zhang et al. (2010)	Q	107, 111
1H,1H,2H,2H-perfluorodecan-1-ol	2.0×10^{-4}	3100	Wu and Chang (2011)	M	89
$C_{10}H_5F_{17}O$	1.7×10^{-4}	8800	Lei et al. (2004)	M	122
(8:2 FTOH)	2.4×10^{-1}		Wu and Chang (2011)	V	
[678-39-7]	1.1×10^{-4}		Goss et al. (2006)	V	
	2.4×10^{-6}		Zhang et al. (2010)	Q	107, 108
	2.6×10^{-4}		Zhang et al. (2010)	Q	107, 109
	7.3×10^{-4}		Zhang et al. (2010)	Q	107, 110
	4.3×10^{-7}		Zhang et al. (2010)	Q	107, 111
	5.7×10^{-5}		Arp et al. (2006)	Q	240
	1.6×10^{-5}	0.400	Arp et al. (2006)	Q	241
	3.8×10^{-4}	8600	Goss et al. (2006)	Q	
3,3,4,4,5,5,6,6,7,7,8,8,8- tridecafluorooctyl acrylate	1.9×10^{-6}		Zhang et al. (2010)	Q	107, 108
$C_{11}H_7F_{13}O_2$	1.9×10^{-4}		Zhang et al. (2010)	Q	107, 109
[17527-29-6]	2.9×10^{-4}		Zhang et al. (2010)	Q	107, 110
	2.4×10^{-6}		Zhang et al. (2010)	Q	107, 111
2-(perfluorohexyl)ethyl methacrylate	1.2×10^{-6}		Zhang et al. (2010)	Q	107, 108
$C_{12}H_9F_{13}O_2$	1.8×10^{-4}		Zhang et al. (2010)	Q	107, 109
[2144-53-8]	1.3×10^{-4}		Zhang et al. (2010)	Q	107, 110
	1.5×10^{-6}		Zhang et al. (2010)	Q	107, 111
1,1,2,2-tetrahydroperfluoro dodecanol	1.3×10^{-4}	2700	Wu and Chang (2011)	M	89
$C_{12}H_5F_{21}O$	2.5×10^{-1}		Wu and Chang (2011)	V	
(10:2 FTOH)	8.6×10^{-8}		Zhang et al. (2010)	Q	107, 108
[865-86-1]	2.7×10^{-6}		Zhang et al. (2010)	Q	107, 109
	1.5×10^{-4}		Zhang et al. (2010)	Q	107, 110
	1.6×10^{-8}		Zhang et al. (2010)	Q	107, 111
	4.6×10^{-5} 5.2×10^{-5}		Arp et al. (2006)	Q	240
	5.2×10^{-3} 1.0×10^{-4}	0.00	Arp et al. (2006)	Q	241
	1.0×10^{-5} 1.0×10^{-5}	9600	Goss et al. (2006) Arp et al. (2006)	Q E	244
22.4455555555000000000000000000000000000					
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10- heptadecafluorodecyl acrylate	7.0×10^{-8}		Zhang et al. (2010)	Q	107, 108
C ₁₃ H ₇ F ₁₇ O ₂	1.1×10^{-5}		Zhang et al. (2010)	Q	107, 109
[27905-45-9]	1.1×10^{-4}		Zhang et al. (2010)	Q	107, 110
	9.9×10^{-8}		Zhang et al. (2010)	Q	107, 111
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10- heptadecafluorodecyl methacrylate	4.4×10^{-8}		Zhang et al. (2010)	Q	107, 108
C ₁₄ H ₉ F ₁₇ O ₂	1.0×10^{-5}		Zhang et al. (2010)	Q	107, 109
[1996-88-9]	5.4×10^{-5}		Zhang et al. (2010)	Q	107, 110
	6.4×10^{-8}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]		11010101100	2370	11000
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
3,3,4,4,5,5,6,6,7,7,8,8,9,9,	3.1×10^{-9}		Zhang et al. (2010)	Q	107, 108
10,10,11,11,12,12,13,13,14,14,14-					
pentacosafluorotetradecan-1-ol					
$C_{14}H_5F_{25}O$	1.1×10^{-8}		Zhang et al. (2010)	Q	107, 109
[39239-77-5]	3.1×10^{-5}		Zhang et al. (2010)	Q	107, 110
	6.9×10^{-10}		Zhang et al. (2010)	Q	107, 111
2-(perfluorodecyl)ethyl acrylate	2.5×10^{-9}		Zhang et al. (2010)	Q	107, 108
$C_{15}H_7F_{21}O_2$	3.1×10^{-7}		Zhang et al. (2010)	Q	107, 109
[17741-60-5]	2.4×10^{-5}		Zhang et al. (2010)	Q	107, 110
	3.7×10^{-9}		Zhang et al. (2010)	Q	107, 111
1,1,2,2-tetrahydroperfluoro-1- hexadecanol	1.1×10^{-10}		Zhang et al. (2010)	Q	107, 108
C ₁₆ H ₅ OF ₂₉	1.4×10^{-11}		Zhang et al. (2010)	Q	107, 109
[60699-51-6]	6.1×10^{-6}		Zhang et al. (2010)	Q	107, 110
,	2.9×10^{-11}		Zhang et al. (2010)	Q	107, 111
2-(perfluorodecyl)ethyl methacrylate	1.6×10 ⁻⁹		Zhang et al. (2010)	Q	107, 108
$C_{16}H_9F_{21}O_2$	3.1×10^{-7}		Zhang et al. (2010)	Q	107, 109
[2144-54-9]	1.1×10^{-5}		Zhang et al. (2010)	Q	107, 110
	2.4×10^{-9}		Zhang et al. (2010)	Q	107, 111
3,3,4,4,5,5,6,6,7,7,8,8,9,9, 10,10,11,11,12,12,13,13,14,14,14-	9.0×10^{-11}		Zhang et al. (2010)	Q	107, 108
pentacosafluorotetradecyl prop-2- enoate	0				
$C_{17}H_7F_{25}O_2$	5.0×10^{-9}		Zhang et al. (2010)	Q	107, 109
[34395-24-9]	2.7×10^{-3}		Zhang et al. (2010)	Q	107, 110
	1.6×10^{-10}		Zhang et al. (2010)	Q	107, 111
2-perfluorododecylethyl methacrylate	5.8×10^{-11}		Zhang et al. (2010)	Q	107, 108
$C_{18}H_9F_{25}O_2$	5.0×10^{-9}		Zhang et al. (2010)	Q	107, 109
[6014-75-1]	2.3×10^{-6}		Zhang et al. (2010)	Q	107, 110
	9.9×10^{-11}		Zhang et al. (2010)	Q	107, 111
1,1,2,2-tetrahydroperfluoro-1- octadecanol	4.1×10^{-12}		Zhang et al. (2010)	Q	107, 108
$C_{18}H_5OF_{33}$	6.7×10^{-15}		Zhang et al. (2010)	Q	107, 109
[65104-67-8]	1.2×10^{-6}		Zhang et al. (2010)	Q	107, 110
	1.1×10^{-12}		Zhang et al. (2010)	Q	107, 111
1,1,2,2-tetrahydroperfluorohexadecyl acrylate	3.3×10^{-12}		Zhang et al. (2010)	Q	107, 108
C ₁₉ H ₇ F29O ₂	4.1×10^{-11}		Zhang et al. (2010)	Q	107, 109
[34362-49-7]	6.5×10^{-4}		Zhang et al. (2010)	Q	107, 110
	6.9×10^{-12}		Zhang et al. (2010)	Q	107, 111
1,1,2,2-tetrahydroperfluoroeicosyl alcohol	1.5×10^{-13}		Zhang et al. (2010)	Q	107, 108
C ₂₀ H ₅ OF ₃₇	2.2×10^{-18}		Zhang et al. (2010)	Q	107, 109
[65104-65-6]	2.4×10^{-7}		Zhang et al. (2010)	Q	107, 110
[4.6×10^{-14}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2-hydroxyfluorobenzene C ₆ H ₅ FO (<i>o</i> -fluorophenol) [367-12-4]	3.1 2.3 2.1×10 ²		Abraham et al. (1994a) Hilal et al. (2008) Nirmalakhandan et al. (1997)	R Q Q	
4-hydroxyfluorobenzene C ₆ H ₅ FO (<i>p</i> -fluorophenol) [371-41-5]	$ \begin{array}{c} 1.4 \times 10^1 \\ 7.9 \\ 2.1 \times 10^2 \end{array} $		Abraham et al. (1994a) Hilal et al. (2008) Nirmalakhandan et al. (1997)	R Q Q	
3-fluorophenol C ₆ H ₅ FO [372-20-3]	9.0		Hilal et al. (2008)	Q	
2,6-difluorophenol C ₆ H ₄ F ₂ O [28177-48-2]	7.0×10 ⁻¹		Hilal et al. (2008)	Q	
$4,4'\text{-(hexafluoroisopropylidene)diphenol} \\ C_{15}H_{10}F_6O_2 \\ [1478-61-1]$	$ \begin{array}{c} 1.7 \times 10^4 \\ 1.7 \times 10^4 \\ 1.4 \times 10^6 \\ 2.1 \times 10^5 \\ 5.3 \times 10^3 \end{array} $		HSDB (2015) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	182 107, 108 107, 109 107, 110 107, 111
perfluorotributylamine C ₁₂ F ₂₇ N [311-89-7]	$ \begin{array}{c} 1.8 \times 10^{-10} \\ 1.8 \times 10^{-10} \\ 3.4 \times 10^{-10} \\ 1.8 \times 10^{-9} \\ 2.7 \times 10^{-10} \end{array} $		HSDB (2015) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	38 107, 108 107, 109 107, 110 107, 111
tris(undecafluoropentyl)amine C ₁₅ F ₃₃ N [338-84-1]	1.2×10^{-12} 1.0×10^{-12} 3.4×10^{-10} 2.1×10^{-12}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
2-fluoroacetamide C ₂ H ₄ FNO [640-19-7]	4.4×10 ²		HSDB (2015)	Q	38
5-fluorouracil C ₄ H ₃ FN ₂ O ₂ [51-21-8]	5.8×10 ⁴		HSDB (2015)	Q	38
1-fluoro-2,4-dinitrobenzene C ₆ H ₃ FN ₂ O ₄ [70-34-8]	1.0×10 ²		HSDB (2015)	Q	182
5-fluoro-2-nitrophenol C ₆ H ₄ FNO ₃ [446-36-6]	5.0×10 ⁻¹ 5.8	4100 6200	Tremp et al. (1993) Schwarzenbach et al. (1988) Kühne et al. (2005) Kühne et al. (2005)	M V Q ?	9

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
4-nitro-3-(trifluoromethyl)phenol C ₇ H ₄ F ₃ NO ₃ [88-30-2]	5.2×10^{2} 5.2×10^{2} 6.7×10^{3} 3.9×10^{4} 1.2×10^{3}		HSDB (2015) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q Q	38 107, 108 107, 109 107, 110 107, 111
1-nitro-3-(trifluoromethyl)benzene C ₇ H ₄ F ₃ NO ₂ [98-46-4]	5.3×10^{-2} 2.0×10^{-1} 5.7×10^{-2} 8.2×10^{-3}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
1-isocyanato-3-(trifluoromethyl)- benzene C ₈ H ₄ F ₃ NO [329-01-1]	4.8×10^{-3} 2.5 1.3×10^{-3} 6.4×10^{-2} 2.4×10^{7}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) HSDB (2015)	Q Q Q Q V	107, 108 107, 109 107, 110 107, 111
C ₉ H ₆ F ₃ N ₃ O [158062-67-0] trifluridine C ₁₀ H ₁₁ F ₃ N ₂ O ₅ [70-00-8]	1.0×10 ¹¹		HSDB (2015)	Q	38
N -(4-amino-2-hydroxyphenyl)-2,2,3,3,4,4,4-heptafluorobutanamide $C_{10}H_7F_7N_2O_2$ [847-51-8]	2.0×10^{8} 2.3×10^{7} 1.5×10^{5} 5.7×10^{6}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
fluometuron C ₁₀ H ₁₁ F ₃ N ₂ O [2164-17-2]	5.8×10^3 3.8×10^3		Mackay et al. (2006d) HSDB (2015)	V C	
dinitramine C ₁₁ H ₁₃ F ₃ N ₄ O ₄ [29091-05-2]	7.1 6.5 6.2		HSDB (2015) Mackay et al. (2006d) Suntio et al. (1988)	V V V	9
5-methyl-N-[4- (triffluoromethyl)phenyl]-4- isoxazolecarboxamide C ₁₂ H ₉ F ₃ N ₂ O ₂ (leflunomide) [75706-12-6]	8.0×10 ⁴		HSDB (2015)	Q	38
fluconazole C ₁₃ H ₁₂ F ₂ N ₆ O [86386-73-4]	9.9×10 ⁷		HSDB (2015)	Q	38
ethalfluralin C ₁₃ H ₁₄ F ₃ N ₃ O ₄ [55283-68-6]	7.6×10 ⁻²		HSDB (2015)	V	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number] benfluralin C ₁₃ H ₁₆ F ₃ N ₃ O ₄ (benefin)	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^{3} \text{Pa}}\right]$ 3.4×10^{-2} 7.5×10^{-1}	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference HSDB (2015) Mackay et al. (2006d) Suntio et al. (1988)	Type V V V	Note 221 9
[1861-40-1] trifluralin C ₁₃ H ₁₆ F ₃ N ₃ O ₄ [1582-09-8]	9.5×10^{-2} 9.1×10^{-1} 1.9×10^{-1} 1.7×10^{-1} 2.5×10^{-1} 3.8 9.6×10^{-2} 1.7	5000 2100	Rice et al. (1997b) Watanabe (1993) Fendinger et al. (1989) Fendinger et al. (2006d) Mackay et al. (2006d) Suntio et al. (1988) Sanders and Seiber (1983) HSDB (2015) Hilal et al. (2008) Kühne et al. (2005) Kühne et al. (2005)	M M M V V V C Q Q	9 126 245 221 9 31
fluorodifen C ₁₃ H ₇ F ₃ N ₂ O ₅ [15457-05-3]	6.5×10 ²	2100	Mackay et al. (2006d) MacBean (2012a)	V ?	221
profluralin C ₁₄ H ₁₆ F ₃ N ₃ O ₄ [26399-36-0]	3.4×10^{-2} 3.2×10^{-2} 2.6×10^{-2} 3.4×10^{-2}		HSDB (2015) Mackay et al. (2006d) Suntio et al. (1988) MacBean (2012a)	V V V ?	9
flumequine C ₁₄ H ₁₂ FNO ₃ [42835-25-6]	3.7×10^7		HSDB (2015)	Q	38
flunitrazepam C ₁₆ H ₁₂ FN ₃ O ₃ [1622-62-4]	4.3×10^5		HSDB (2015)	Q	38
fluazifop-butyl C ₁₉ H ₂₀ F ₃ NO ₄ [69806-50-4]	4.7×10 ¹		HSDB (2015)	V	
flumioxazin C ₁₉ H ₁₅ FN ₂ O ₄ [103361-09-7]	1.6×10 ¹		HSDB (2015)	V	
fluridone C ₁₉ H ₁₄ F ₃ NO [59756-60-4]	2.8×10 ³		HSDB (2015) Mackay et al. (2006d)	V V	221
cyhalofop-butyl C ₂₀ H ₂₀ FNO ₄ [122008-85-9]	1.0×10 ³		MacBean (2012b)	X	137
raltegravir C ₂₀ H ₂₁ FN ₆ O ₅ [518048-05-0]	1.1×10 ¹⁷		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s))	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Туре	Note
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
fluacrypyrim C ₂₀ H ₂₁ N ₂ O ₅ F ₃ [229977-93-9]	3.0×10^2		MacBean (2012a)	?	9
rifloxystrobin C ₂₀ H ₁₉ F ₃ N ₂ O ₄ [141517-21-7]	4.3×10^2		MacBean (2012b)	X	137
etoxazole C ₂₁ H ₂₃ F ₂ NO ₂ [153233-91-1]	9.9×10 ¹		HSDB (2015)	V	
droperidol C ₂₂ H ₂₂ FN ₃ O ₂ [548-73-2]	3.7×10 ¹¹		HSDB (2015)	Q	38
paliperidone C ₂₃ H ₂₇ FN ₄ O ₃ [144598-75-4]	1.2×10 ¹⁵		HSDB (2015)	Q	38
risperidone C ₂₃ H ₂₇ FN ₄ O ₂ [106266-06-2]	4.5×10 ¹⁰		HSDB (2015)	Q	38
ezetimibe C ₂₄ H ₂₁ F ₂ NO ₃ [163222-33-1]	2.2×10 ¹²		HSDB (2015)	Q	38
cerivastatin C ₂₆ H ₃₄ FNO ₅ [145599-86-6]	1.7×10 ¹³		HSDB (2015)	Q	38
lucythrinate, isomer 1	1.1×10^2		HSDB (2015)	V	
C ₂₆ H ₂₃ F ₂ NO ₄ [70124-77-5]	9.3×10^2		Mackay et al. (2006d)	V	
PFBHA-methanal H ₂ C=NOCH ₂ C ₆ F ₅	1.6×10^{-2}	7200	Destaillats and Charles (2002)	M	
PFBHA-ethanal CH ₃ CH=NOCH ₂ C ₆ F ₅	1.9×10^{-2}	5400	Destaillats and Charles (2002)	М	
PFBHA-propanone (CH ₃) ₂ C=NOCH ₂ C ₆ F ₅	1.1×10^{-2}	3800	Destaillats and Charles (2002)	М	
PFBHA-butanone (C ₂ H ₅)(CH ₃)C=NOCH ₂ C ₆ F ₅	4.7×10^{-3}	6000	Destaillats and Charles (2002)	M	
PFBHA-2-pentanone (C ₃ H ₇)(CH ₃)C=NOCH ₂ C ₆ F ₅	3.7×10^{-3}	2200	Destaillats and Charles (2002)	M	
PFBHA-hexanal C ₅ H ₁₁ CH=NOCH ₂ C ₆ F ₅	5.8×10^{-3}		Destaillats and Charles (2002)	M	
PFBHA-octanal C ₇ H ₁₅ CH=NOCH ₂ C ₆ F ₅	7.9×10^{-3}		Destaillats and Charles (2002)	M	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type Note
PFBHA-decanal C ₉ H ₁₉ CH=NOCH ₂ C ₆ F ₅	2.4×10^{-2}		Destaillats and Charles (2002)	M
PFBHA-propenal CH ₂ CHCH=NOCH ₂ C ₆ F ₅	9.5×10^{-3}	5400	Destaillats and Charles (2002)	M
PFBHA-crotonaldehyde CH ₃ CHCHCH=NOCH ₂ C ₆ F ₅	6.8×10^{-3}	3400	Destaillats and Charles (2002)	M
PFBHA-benzaldehyde C ₆ H ₅ CH=NOCH ₂ C ₆ F ₅	5.0×10^{-3}	2000	Destaillats and Charles (2002)	M
PFBHA-4-methyl-benzaldehyde C_8H_8 =NOC $H_2C_6F_5$	6.6×10^{-3}		Destaillats and Charles (2002)	M
PFBHA-9-fluorenone C ₁₃ H ₈ =NOCH ₂ C ₆ F ₅	1.1×10^{-2}		Destaillats and Charles (2002)	M
PFBHA-ethanedial (HC=NOCH ₂ C ₆ F ₅) ₂	1.6×10^{-2}		Destaillats and Charles (2002)	M
PFBHA-1-hydroxypropanone (CH ₂ OH)(CH ₃)C=NOCH ₂ C ₆ F ₅	2.7×10^{-2}		Destaillats and Charles (2002)	M
PFBHA-3-hydroxy-3-methyl-2- butanone (HOC ₃ H ₆)(CH ₃)C=NOCH ₂ C ₆ F ₅	1.2×10^{-2}		Destaillats and Charles (2002)	M

Organic species with chlorine (Cl)

	Chlor	ocarbo	ns (C, H, Cl)		
chloromethane	1.3×10^{-3}	3300	Sander et al. (2011)	L	246
CH ₃ Cl	1.1×10^{-3}	3300	Warneck (2007)	L	
(methyl chloride)	1.3×10^{-3}	3300	Sander et al. (2006)	L	247
[74-87-3]	1.1×10^{-3}	3300	Staudinger and Roberts (2001)	L	
	1.1×10^{-3}		Mackay and Shiu (1981)	L	
	1.0×10^{-3}	2800	Wilhelm et al. (1977)	L	
	7.9×10^{-4}	2400	Hiatt (2013)	M	
	9.1×10^{-4}	2000	Chen et al. (2012)	M	
	8.8×10^{-4}	3200	Moore (2000)	M	127
	9.3×10^{-4}	3300	Moore et al. (1995)	M	127
	8.8×10^{-4}	2800	Reichl (1995)	M	
	1.1×10^{-3}	3000	Elliott and Rowland (1993)	M	
	1.2×10^{-3}	4200	Gossett (1987)	M	
	1.4×10^{-3}		Pearson and McConnell (1975)	M	248, 9
	1.1×10^{-3}	2600	Swain and Thornton (1962)	M	
	9.9×10^{-4}	2500	Boggs and Buck (1958)	M	
	1.0×10^{-3}	2900	Glew and Moelwyn-Hughes (1953)	M	
	1.0×10^{-3}		Mackay et al. (2006b)	V	
	4.2×10^{-4}		Lide and Frederikse (1995)	V	
	1.0×10^{-3}		Mackay et al. (1993)	V	
	1.1×10^{-3}		Dilling (1977)	V	249
	1.2×10^{-3}		Dilling (1977)	V	9

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{mol}{m^3Pa}\right]$	[K]		- J PC	1.010
	9.9×10^{-4}		Hine and Mookerjee (1975)	V	
	2.9×10^{-4}	-630	Goldstein (1982)	X	116
	2.5×10^{-5}		Ryan et al. (1988)	C	
	1.0×10^{-3}		Hilal et al. (2008)	Q	
	4	2600	Kühne et al. (2005)	Q	
	3.9×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	8.6×10^{-4}		Irmann (1965)	Q	
	1.1×10^{-3}		Mackay et al. (2006b)	?	
	2	2700	Kühne et al. (2005)	?	
	1.2×10^{-3}		Yaws (1999)	?	
	1.2×10^{-3}		Yaws and Yang (1992)	?	92
	1.0×10^{-3}		Abraham et al. (1990)	?	
dichloromethane	3.6×10^{-3}	4100	Sander et al. (2011)	L	
CH ₂ Cl ₂	3.9×10^{-3}	3700	Warneck (2007)	L	
(methylene chloride)	3.6×10^{-3}	4100	Sander et al. (2006)	L	
[75-09-2]	3.6×10^{-3}	4100	Staudinger and Roberts (2001)	L	
	3.6×10^{-3}	4100	Staudinger and Roberts (1996)	L	
	3.8×10^{-3}		Mackay and Shiu (1981)	L	
	4.0×10^{-3}	3900	Hiatt (2013)	M	
	3.5×10^{-3}	2300	Chen et al. (2012)	M	
	3.2×10^{-3}		Helburn et al. (2008)	M	
	3.3×10^{-3}	4200	Moore (2000)	M	127
	3.9×10^{-3}		David et al. (2000)	M	126
	4.1×10^{-3}		Ryu and Park (1999)	M	
	3.4×10^{-3}		Chiang et al. (1998)	M	250, 9
	5.1×10^{-3}		Hovorka and Dohnal (1997)	M	9
	3.7×10^{-3}	3200	Kondoh and Nakajima (1997)	M	
	4.3×10^{-3}	3500	Park et al. (1997)	M	
	4.1×10^{-3}		Hoff et al. (1993)	M	
	3.8×10^{-3}		Li et al. (1993)	M	
	3.9×10^{-3}	3800	Wright et al. (1992)	M	
	3.9×10^{-3}	3500	Tse et al. (1992)	M	
	3.4×10^{-3}		Guitart et al. (1989)	M	19
	3.4×10^{-3}	4300	Ashworth et al. (1988)	M	103
	4.6×10^{-3}	3800	Gossett (1987)	M	
	5.7×10^{-3}		Hellmann (1987)	M	31
	5.2×10^{-3}		Yurteri et al. (1987)	M	9
	3.8×10^{-3}	4500	Gossett et al. (1985)	M	
	3.4×10^{-3}	4200	Lincoff and Gossett (1984)	M	
	3.0×10^{-3}	3600	Leighton and Calo (1981)	M	
	3.1×10^{-3}		Warner et al. (1980)	M	
	2.8×10^{-3}		Sato and Nakajima (1979b)	M	19
	3.3×10^{-3}		Pearson and McConnell (1975)	M	248,
	4.2×10^{-3}	4400	Hartkopf and Karger (1973)	M	
	4.1×10^{-3}	4000	Rex (1906)	M	
	2.7×10^{-3}		Mackay et al. (2006b)	V	
	3.5×10^{-3}	4100	Fogg and Sangster (2003)	V	
	4.0×10^{-3}		Park et al. (1997)	V	
	5.9×10^{-3}		Mackay et al. (1993)	V	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
	[mol]	FT7.1		31	
chloromethane-d2 O2Cl2 ethylene chloride-d2) chloromethane dCl3 alloroform)	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
	2.9×10^{-3}		Hwang et al. (1992)	V	
	3.2×10^{-3}		Warner et al. (1980)	V	
	4.0×10^{-3}		Dilling (1977)	V	249
	1.2×10^{-2}		Dilling (1977)	V	66
	4.3×10^{-3}		Hine and Mookerjee (1975)	V	
	4.0×10^{-3}		Dilling et al. (1975)	V	
	3.1×10^{-3}	3600	Goldstein (1982)	X	116
	4.2×10^{-3}		Harrison et al. (1993)	C	
	3.4×10^{-3}		Harrison et al. (1993)	C	
	4.7×10^{-3}		Ryan et al. (1988)	C	
	3.1×10^{-3}		Shen (1982)	C	
	3.7×10^{-3}		Dilling (1977)	C	
	3.7×10^{-3}		Dilling et al. (1975)	C	
	9.0×10^{-3}		Hilal et al. (2008)	Q	
		3000	Kühne et al. (2005)	Q	
	2.2×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
	3.3×10^{-3}		Mackay et al. (2006b)	?	
		3900	Kühne et al. (2005)	?	
	4.0×10^{-3}		Yaws (1999)	?	
	3.3×10^{-3}		Mackay et al. (1993)	?	
	4.0×10^{-3}		Yaws and Yang (1992)	?	92
	3.7×10^{-3}		Abraham et al. (1990)	?	
	3.8×10^{-3}	4600	Hiatt (2013)	M	
CD ₂ Cl ₂ methylene chloride-d2)	3.8×10 ⁻³	4600	Hiatt (2013)	М	
CD ₂ Cl ₂ methylene chloride-d2) 1665-00-5]	3.8×10 ⁻³	4500	Sander et al. (2011)	M L	
CD ₂ Cl ₂ methylene chloride-d2) 1665-00-5] richloromethane					
CD ₂ Cl ₂ methylene chloride-d2) 1665-00-5] richloromethane CHCl ₃	2.5×10 ⁻³	4500	Sander et al. (2011)	L	
methylene chloride-d2) 1665-00-5] richloromethane CHCl ₃ chloroform)	$2.5 \times 10^{-3} \\ 2.6 \times 10^{-3}$	4500 4300	Sander et al. (2011) Warneck (2007)	L L	
methylene chloride-d2) 1665-00-5] richloromethane CHCl ₃ chloroform)	2.5×10^{-3} 2.6×10^{-3} 2.5×10^{-3}	4500 4300 4500	Sander et al. (2011) Warneck (2007) Sander et al. (2006)	L L L	
methylene chloride-d2) 1665-00-5] richloromethane CHCl ₃ chloroform)	2.5×10^{-3} 2.6×10^{-3} 2.5×10^{-3} 2.5×10^{-3}	4500 4300 4500 4500	Sander et al. (2011) Warneck (2007) Sander et al. (2006) Staudinger and Roberts (2001)	L L L L	
CD ₂ Cl ₂ methylene chloride-d2) 1665-00-5] richloromethane CHCl ₃ chloroform)	2.5×10^{-3} 2.6×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.6×10^{-3}	4500 4300 4500 4500	Sander et al. (2011) Warneck (2007) Sander et al. (2006) Staudinger and Roberts (2001) Staudinger and Roberts (1996)	L L L L	19
CD ₂ Cl ₂ methylene chloride-d2) 1665-00-5] richloromethane CHCl ₃ chloroform)	2.5×10^{-3} 2.6×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.5×10^{-3}	4500 4300 4500 4500	Sander et al. (2011) Warneck (2007) Sander et al. (2006) Staudinger and Roberts (2001) Staudinger and Roberts (1996) Mackay and Shiu (1981) Steward et al. (1973)	L L L L L	19
CD ₂ Cl ₂ methylene chloride-d2) 1665-00-5] richloromethane CHCl ₃ chloroform)	2.5×10^{-3} 2.6×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.6×10^{-3} 1.6×10^{-3} 2.8×10^{-3}	4500 4300 4500 4500 4500	Sander et al. (2011) Warneck (2007) Sander et al. (2006) Staudinger and Roberts (2001) Staudinger and Roberts (1996) Mackay and Shiu (1981)	L L L L L L	19
methylene chloride-d2) 1665-00-5] richloromethane CHCl ₃ chloroform)	2.5×10^{-3} 2.6×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.6×10^{-3} 1.6×10^{-3} 2.8×10^{-3} 2.5×10^{-3}	4500 4300 4500 4500 4500	Sander et al. (2011) Warneck (2007) Sander et al. (2006) Staudinger and Roberts (2001) Staudinger and Roberts (1996) Mackay and Shiu (1981) Steward et al. (1973) Hiatt (2013) Chen et al. (2012)	L L L L L L M	19
CD ₂ Cl ₂ methylene chloride-d2) 1665-00-5] richloromethane CHCl ₃ chloroform)	2.5×10^{-3} 2.6×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.6×10^{-3} 1.6×10^{-3} 2.8×10^{-3} 2.5×10^{-3} 1.4×10^{-3}	4500 4300 4500 4500 4500	Sander et al. (2011) Warneck (2007) Sander et al. (2006) Staudinger and Roberts (2001) Staudinger and Roberts (1996) Mackay and Shiu (1981) Steward et al. (1973) Hiatt (2013) Chen et al. (2012) Zhang et al. (2002)	L L L L L L M M	
CD ₂ Cl ₂ methylene chloride-d2) 1665-00-5] richloromethane CHCl ₃ chloroform)	2.5×10^{-3} 2.6×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.6×10^{-3} 1.6×10^{-3} 2.8×10^{-3} 2.5×10^{-3} 2.6×10^{-3} 2.6×10^{-3} 2.0×10^{-3}	4500 4300 4500 4500 4500 4500 3900	Sander et al. (2011) Warneck (2007) Sander et al. (2006) Staudinger and Roberts (2001) Staudinger and Roberts (1996) Mackay and Shiu (1981) Steward et al. (1973) Hiatt (2013) Chen et al. (2012)	L L L L L L M M	
CD ₂ Cl ₂ methylene chloride-d2) 1665-00-5] richloromethane CHCl ₃ chloroform)	2.5×10^{-3} 2.6×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.6×10^{-3} 1.6×10^{-3} 2.8×10^{-3} 2.5×10^{-3} 1.4×10^{-3} 2.6×10^{-3}	4500 4300 4500 4500 4500 4500 3900 4100	Sander et al. (2011) Warneck (2007) Sander et al. (2006) Staudinger and Roberts (2001) Staudinger and Roberts (1996) Mackay and Shiu (1981) Steward et al. (1973) Hiatt (2013) Chen et al. (2012) Zhang et al. (2002) Görgényi et al. (2002)	L L L L L L M M M	19
CD ₂ Cl ₂ methylene chloride-d2) 1665-00-5] richloromethane CHCl ₃ chloroform)	2.5×10^{-3} 2.6×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.6×10^{-3} 1.6×10^{-3} 2.8×10^{-3} 2.5×10^{-3} 2.6×10^{-3} 2.6×10^{-3} 2.0×10^{-3}	4500 4300 4500 4500 4500 4500 3900 4100	Sander et al. (2011) Warneck (2007) Sander et al. (2006) Staudinger and Roberts (2001) Staudinger and Roberts (1996) Mackay and Shiu (1981) Steward et al. (1973) Hiatt (2013) Chen et al. (2012) Zhang et al. (2002) Görgényi et al. (2002) Moore (2000)	L L L L L M M M M	19 127
CD ₂ Cl ₂ methylene chloride-d2) 1665-00-5] richloromethane CHCl ₃ chloroform)	2.5×10^{-3} 2.6×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.6×10^{-3} 1.6×10^{-3} 2.8×10^{-3} 2.5×10^{-3} 1.4×10^{-3} 2.6×10^{-3} 2.0×10^{-3} 2.4×10^{-3}	4500 4300 4500 4500 4500 4500 3900 4100	Sander et al. (2011) Warneck (2007) Sander et al. (2006) Staudinger and Roberts (2001) Staudinger and Roberts (1996) Mackay and Shiu (1981) Steward et al. (1973) Hiatt (2013) Chen et al. (2012) Zhang et al. (2002) Görgényi et al. (2002) Moore (2000) David et al. (2000)	L L L L L M M M M M	19 127
methylene chloride-d2) 1665-00-5] richloromethane CHCl ₃ chloroform)	2.5×10^{-3} 2.6×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.6×10^{-3} 1.6×10^{-3} 2.8×10^{-3} 2.5×10^{-3} 1.4×10^{-3} 2.6×10^{-3} 2.0×10^{-3} 2.4×10^{-3} 2.7×10^{-3}	4500 4300 4500 4500 4500 4500 3900 4100	Sander et al. (2011) Warneck (2007) Sander et al. (2006) Staudinger and Roberts (2001) Staudinger and Roberts (1996) Mackay and Shiu (1981) Steward et al. (1973) Hiatt (2013) Chen et al. (2012) Zhang et al. (2002) Görgényi et al. (2002) Moore (2000) David et al. (2000) Ryu and Park (1999) Dohnal and Hovorka (1999)	L L L L L M M M M M M	19 127 126
methylene chloride-d2) 1665-00-5] richloromethane CHCl ₃ chloroform)	2.5×10^{-3} 2.6×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.6×10^{-3} 1.6×10^{-3} 2.8×10^{-3} 2.5×10^{-3} 2.4×10^{-3} 2.4×10^{-3} 2.7×10^{-3} 3.0×10^{-3} 3.0×10^{-3}	4500 4300 4500 4500 4500 4500 3900 4100	Sander et al. (2011) Warneck (2007) Sander et al. (2006) Staudinger and Roberts (2001) Staudinger and Roberts (1996) Mackay and Shiu (1981) Steward et al. (1973) Hiatt (2013) Chen et al. (2012) Zhang et al. (2002) Görgényi et al. (2002) Moore (2000) David et al. (2000) Ryu and Park (1999) Dohnal and Hovorka (1999) Chiang et al. (1998)	L L L L L M M M M M M M	19 127 126 9
methylene chloride-d2) 1665-00-5] richloromethane CHCl ₃ chloroform) 67-66-3]	2.5×10^{-3} 2.6×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.6×10^{-3} 1.6×10^{-3} 2.8×10^{-3} 2.5×10^{-3} 1.4×10^{-3} 2.0×10^{-3} 2.4×10^{-3} 2.7×10^{-3} 3.0×10^{-3} 3.0×10^{-3} 3.2×10^{-3}	4500 4300 4500 4500 4500 4500 3900 4100 4600	Sander et al. (2011) Warneck (2007) Sander et al. (2006) Staudinger and Roberts (2001) Staudinger and Roberts (1996) Mackay and Shiu (1981) Steward et al. (1973) Hiatt (2013) Chen et al. (2012) Zhang et al. (2002) Görgényi et al. (2002) Moore (2000) David et al. (2000) Ryu and Park (1999) Dohnal and Hovorka (1999) Chiang et al. (1998) Hovorka and Dohnal (1997)	L L L L L M M M M M M M M	19 127 126 9
methylene chloride-d2) 1665-00-5] richloromethane CHCl ₃ chloroform)	2.5×10^{-3} 2.6×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.6×10^{-3} 1.6×10^{-3} 2.8×10^{-3} 2.5×10^{-3} 2.4×10^{-3} 2.4×10^{-3} 2.7×10^{-3} 3.0×10^{-3} 3.2×10^{-3} 2.7×10^{-3}	4500 4300 4500 4500 4500 4500 3900 4100 4600	Sander et al. (2011) Warneck (2007) Sander et al. (2006) Staudinger and Roberts (2001) Staudinger and Roberts (1996) Mackay and Shiu (1981) Steward et al. (1973) Hiatt (2013) Chen et al. (2012) Zhang et al. (2002) Görgényi et al. (2002) Moore (2000) David et al. (2000) Ryu and Park (1999) Dohnal and Hovorka (1999) Chiang et al. (1998) Hovorka and Dohnal (1997) Kondoh and Nakajima (1997)	L L L L L M M M M M M M M M	19 127 126 9
CD ₂ Cl ₂ methylene chloride-d2) 1665-00-5] richloromethane CHCl ₃ chloroform)	2.5×10^{-3} 2.6×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.6×10^{-3} 1.6×10^{-3} 2.8×10^{-3} 2.5×10^{-3} 2.4×10^{-3} 2.7×10^{-3} 3.0×10^{-3} 3.0×10^{-3} 3.2×10^{-3} 2.7×10^{-3} 2.6×10^{-3} 2.6×10^{-3} 2.6×10^{-3} 2.6×10^{-3}	4500 4300 4500 4500 4500 4500 3900 4100 4600	Sander et al. (2011) Warneck (2007) Sander et al. (2006) Staudinger and Roberts (2001) Staudinger and Roberts (1996) Mackay and Shiu (1981) Steward et al. (1973) Hiatt (2013) Chen et al. (2012) Zhang et al. (2002) Görgényi et al. (2002) Moore (2000) David et al. (2000) Ryu and Park (1999) Dohnal and Hovorka (1999) Chiang et al. (1998) Hovorka and Dohnal (1997) Kondoh and Nakajima (1997) Park et al. (1997)	L L L L L M M M M M M M M M M	19 127 126 9
methylene chloride-d2) 1665-00-5] richloromethane CHCl ₃ chloroform)	2.5×10^{-3} 2.6×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.5×10^{-3} 2.6×10^{-3} 1.6×10^{-3} 2.8×10^{-3} 2.5×10^{-3} 2.4×10^{-3} 2.4×10^{-3} 2.7×10^{-3} 3.0×10^{-3} 3.2×10^{-3} 2.7×10^{-3}	4500 4300 4500 4500 4500 4500 3900 4100 4600	Sander et al. (2011) Warneck (2007) Sander et al. (2006) Staudinger and Roberts (2001) Staudinger and Roberts (1996) Mackay and Shiu (1981) Steward et al. (1973) Hiatt (2013) Chen et al. (2012) Zhang et al. (2002) Görgényi et al. (2002) Moore (2000) David et al. (2000) Ryu and Park (1999) Dohnal and Hovorka (1999) Chiang et al. (1998) Hovorka and Dohnal (1997) Kondoh and Nakajima (1997)	L L L L L M M M M M M M M M	19 127 126 9 9

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	${\rm d} \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	D. C	T	NT 4
Other name(s))	[mol]	. , ,	Reference	Type	Note
CAS registry number]	$\left[\frac{\text{mor}}{\text{m}^3 \text{Pa}}\right]$	[K]			
	2.5×10^{-3}		Hoff et al. (1993)	M	
	2.4×10^{-3}		Li et al. (1993)	M	
	2.6×10^{-3}	3900	Wright et al. (1992)	M	
	4.8×10^{-3}	7300	Tancrède and Yanagisawa (1990)	M	
	2.4×10^{-3}	2000	Lamarche and Droste (1989)	M	135
	2.1×10^{-3}		Guitart et al. (1989)	M	19
	2.3×10^{-3}	5000	Ashworth et al. (1988)	M	103
	2.7×10^{-3}	4600	Gossett (1987)	M	
	2.6×10^{-3}	4300	Munz and Roberts (1987)	M	
	2.9×10^{-3}		Hellmann (1987)	M	31
	3.3×10^{-3}		Munz and Roberts (1986)	M	01
	2.5×10^{-3}	4300	Gossett et al. (1985)	M	
	2.5×10^{-3}	5200	Nicholson et al. (1984)	M	
	2.3×10^{-3}	4200	Lincoff and Gossett (1984)	M	
	2.0×10^{-3}	3900	Hunter-Smith et al. (1983)	M	127, 25
	2.5×10^{-3}	4000	Leighton and Calo (1981)	M	127, 20
	1.5×10^{-3}	5600	Ervin et al. (1980)	M	
	2.9×10^{-3}	3000	Warner et al. (1980)	M	
	2.4×10^{-3}	7200	Balls (1980)	M	
	1.4×10^{-3}	7200	Sato and Nakajima (1979b)	M	19
	3.5×10^{-3}		Pearson and McConnell (1975)	M	248, 9
	2.8×10^{-3}	5100	Hartkopf and Karger (1973)	M	240, 9
	2.6×10^{-3}	4600		M	
	2.6×10^{-3}	4000	Rex (1906) Markov et al. (2006b)	V	
	2.6×10^{-3}	4400	Mackay et al. (2006b)		
	2.5×10^{-3} 2.5×10^{-3}	4400	Fogg and Sangster (2003)	V	
	2.6×10^{-3}		Park et al. (1997)	V	
			Mackay et al. (1993)	V	
	2.6×10^{-3}		Hwang et al. (1992)	V	1.47
	5.5×10^{-3}		McLachlan et al. (1990)	V	147
	3.1×10^{-3}		Warner et al. (1980)	V	• 40
	2.5×10^{-3}		Dilling (1977)	V	249
	9.0×10^{-3}		Dilling (1977)	V	66
	2.3×10^{-3}		Hine and Mookerjee (1975)	V	
	2.5×10^{-3}		Dilling et al. (1975)	V	
	2.2×10^{-3}	4700	Winkler (1906)	V	
	2.5×10^{-3}	4100	Barr and Newsham (1987)	X	116
	3.0×10^{-3}	4400	Goldstein (1982)	X	116
	2.4×10^{-3}		Harrison et al. (1993)	C	
	3.4×10^{-3}		Harrison et al. (1993)	C	
	3.4×10^{-3}		Ryan et al. (1988)	C	
	2.7×10^{-3}		Nicholson et al. (1984)	C	
	2.1×10^{-3}		Nicholson et al. (1984)	C	9
	2.9×10^{-3}		Shen (1982)	C	
	3.1×10^{-3}		Dilling (1977)	C	
	3.1×10^{-3}		Dilling et al. (1975)	C	
	3.2×10^{-3}		Hilal et al. (2008)	Q	
	_	3300	Kühne et al. (2005)	Q	
	3.9×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
	2.3×10^{-3}		Arbuckle (1983)	Q	

Table 6: Henry's law constants for water as solvent (...continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{\ominus})	d(1/T)	Reference	Type	Note
Other name(s))	[mol]	F773		-7 F	
CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
	2.3×10^{-3}		Mackay et al. (2006b)	?	
		4300	Kühne et al. (2005)	?	
	2.4×10^{-3}		Yaws (1999)	?	
	2.3×10^{-3}		Mackay et al. (1993)	?	
	2.4×10^{-3}		Yaws and Yang (1992)	?	92
	2.5×10^{-3}		Abraham et al. (1990)	?	
etrachloromethane	3.4×10^{-4}	4200	Sander et al. (2011)	L	
CCl ₄	3.6×10^{-4}	4300	Warneck (2007)	L	
carbontetrachloride)	3.4×10^{-4}	4200	Sander et al. (2006)	L	
56-23-5]	3.4×10^{-4}	4200	Staudinger and Roberts (2001)	L	
	3.4×10^{-4}	4200	Staudinger and Roberts (1996)	L	
	5.0×10^{-4}		Mackay and Shiu (1981)	L	
	5.0×10^{-4}	4500	Hiatt (2013)	M	
	3.0×10^{-4}	4400	Chen et al. (2012)	M	
	3.8×10^{-4}		Ryu and Park (1999)	M	
	4.0×10^{-4}		Chiang et al. (1998)	M	9
	4.4×10^{-4}	1900	Kondoh and Nakajima (1997)	M	
	3.9×10^{-4}	2600	Park et al. (1997)	M	
	3.8×10^{-4}	4400	Dewulf et al. (1995)	M	
	3.6×10^{-4}		Hoff et al. (1993)	M	
	3.3×10^{-4}	3600	Hansen et al. (1993)	M	105
	2.3×10^{-4}		Li and Carr (1993)	M	
	2.9×10^{-4}	4200	Wright et al. (1992)	M	
	3.8×10^{-4}	3600	Tse et al. (1992)	M	
	3.4×10^{-4}	4100	Tancrède and Yanagisawa (1990)	M	
	2.8×10^{-4}	5600	Bissonette et al. (1990)	M	
	3.3×10^{-4}	4000	Ashworth et al. (1988)	M	103
	3.3×10^{-4}	4400	Gossett (1987)	M	
	3.3×10^{-4}	4300	Munz and Roberts (1987)	M	
	3.3×10^{-4}		Hellmann (1987)	M	31
	4.3×10^{-4}		Yurteri et al. (1987)	M	9
	4.2×10^{-4}		Munz and Roberts (1986)	M	
	4.1×10^{-4}	3200	Hunter-Smith et al. (1983)	M	251
	3.6×10^{-4}	4400	Leighton and Calo (1981)	M	
	3.3×10^{-4}		Warner et al. (1980)	M	
	3.2×10^{-4}	3300	Balls (1980)	M	
	9.7×10^{-5}		Sato and Nakajima (1979b)	M	19
	4.5×10^{-4}		Pearson and McConnell (1975)	M	248, 9
	3.7×10^{-4}	5200	Hartkopf and Karger (1973)	M	
	3.5×10^{-4}	4400	Rex (1906)	M	
	3.4×10^{-4}	400-	Mackay et al. (2006b)	V	
	3.6×10^{-4}	4200	Fogg and Sangster (2003)	V	
	4.3×10^{-4}		Park et al. (1997)	V	
	3.4×10^{-4}		Mackay et al. (1993)	V	
	3.4×10^{-4}		Hwang et al. (1992)	V	
	6.7×10^{-5}		Ballschmiter and Wittlinger (1991)	V	
	3.5×10^{-4}		Warner et al. (1980)	V	
	3.4×10^{-4}		Dilling (1977)	V	
	3.4×10^{-4}		Hine and Mookerjee (1975)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3\text{Pa}}\right]$	[K]			
	3.3×10^{-4}	1100	Goldstein (1982)	X	116
	3.8×10^{-4}		Harrison et al. (1993)	C	
	2.1×10^{-4}		Harrison et al. (1993)	C	
	4.5×10^{-4}		Ryan et al. (1988)	C	
	3.3×10^{-4}		Shen (1982)	C	
	4.6×10^{-4}		Dilling (1977)	C	
	3.7×10^{-4}		Liss and Slater (1974)	C	
	5.4×10^{-4}		Hilal et al. (2008)	Q	
	4	3700	Kühne et al. (2005)	Q	
	3.5×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	4.1×10^{-4}		Arbuckle (1983)	Q	
	1.2×10^{-4}		MacBean (2012a)	?	
	3.3×10^{-4}	1200	Mackay et al. (2006b)	?	
	2 4 42 4	4300	Kühne et al. (2005)	?	
	3.4×10^{-4}		Yaws (1999)	?	
	3.3×10^{-4}		Mackay et al. (1993)	?	
	3.3×10^{-4}		Yaws and Yang (1992)	?	92
	3.5×10^{-4}		Abraham et al. (1990)	?	
	4.3×10^{-4} 1.1×10^{-3}		Mackay and Yeun (1983) Chiou et al. (1980)	? ?	27
					21
chloroethane	8.3×10^{-4}	2800	Warneck (2007)	L	
C ₂ H ₅ Cl	8.4×10^{-4}	2900	Staudinger and Roberts (2001)	L	
75-00-3]	8.3×10^{-4}	2900	Staudinger and Roberts (1996)	L	
	5.0×10^{-3} 4.7×10^{-4}		Mackay and Shiu (1981)	L	10
	8.5×10^{-4}	2200	Steward et al. (1973)	L	19
	7.6×10^{-4}	3200 3100	Hiatt (2013)	M	
	8.9×10^{-4}		Chen et al. (2012)	M	
	9.4×10^{-4}	3200	Maaßen (1995)	M M	
	7.9×10^{-4}	3300 2600	Reichl (1995)	M	102
	8.8×10^{-4}	3100	Ashworth et al. (1988) Gossett (1987)	M M	103
	5.5×10^{-3}	3100	Mackay et al. (2006b)	V	
	5.5×10^{-3}		Mackay et al. (2000) Mackay et al. (1993)	V	
	5.6×10^{-4}		Hwang et al. (1992)	V	
	8.8×10^{-4}		Dilling (1977)	V	
	1.2×10^{-3}		Hine and Mookerjee (1975)	V	
	6.8×10^{-4}	750	Goldstein (1982)	X	116
	6.6×10^{-4}	150	Ryan et al. (1988)	C	110
	6.3×10^{-4}		Irmann (1965)	C	
	1.2×10^{-3}		Hilal et al. (2008)	Q	
	1.2 \ 10	3000	Kühne et al. (2005)	Q	
	7.9×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	7.6×10^{-4}		Irmann (1965)	Q	
	9.8×10^{-4}		Mackay et al. (2006b)	?	
	2.07.10	2900	Kühne et al. (2005)	?	
	9.8×10^{-4}		Mackay et al. (1993)	?	
	1.4×10^{-3}		Yaws and Yang (1992)	?	92, 9
	1.2×10^{-3}		Abraham et al. (1990)	?	, -

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{mol}{m^3Pa}\right]$	[K]	Reference	Турс	11010
1,1-dichloroethane	1.7×10^{-3}	4100	Warneck (2007)	L	
CHCl ₂ CH ₃	1.8×10^{-3}	4100	Fogg and Sangster (2003)	L	
75-34-3]	1.6×10^{-3}	3700	Staudinger and Roberts (2001)	L	
	1.5×10^{-3}	3600	Staudinger and Roberts (1996)	L	
	1.7×10^{-3}		Mackay and Shiu (1981)	L	
	2.0×10^{-3}	3900	Hiatt (2013)	M	
	1.9×10^{-3}	3300	Chen et al. (2012)	M	
	2.0×10^{-3}	2000	Bobadilla et al. (2003)	M	
	1.8×10^{-3}	3800	Görgényi et al. (2002)	M	0
	2.2×10^{-3}	2.600	Hovorka and Dohnal (1997)	M	9
	1.8×10^{-3}	2600	Kondoh and Nakajima (1997)	M	
	2.0×10^{-3} 1.6×10^{-3}	4300	Dewulf et al. (1995)	M	
	1.6×10^{-3} 1.7×10^{-3}	3600	Wright et al. (1992)	M	
	1.7×10^{-3} 1.7×10^{-3}	3700	Tse et al. (1992)	M	125
	1.7×10^{-3} 1.5×10^{-3}	2100	Lamarche and Droste (1989)	M	135
	1.8×10^{-3}	3100 4100	Ashworth et al. (1988)	M M	103
	1.3×10^{-3}	4900	Gossett (1987)	M	
	1.8×10^{-3}	4900	Ervin et al. (1980) Warner et al. (1980)	M	
	1.0×10^{-3}		Sato and Nakajima (1979b)	M	19
	1.8×10^{-3}	4400	Rex (1906)	M	19
	1.7×10^{-3}	4400	Mackay et al. (2006b)	V	
	1.6×10^{-3}		Mackay et al. (2000b) Mackay et al. (1993)	V	
	1.8×10^{-3}		Warner et al. (1980)	V	
	1.7×10^{-3}		Dilling (1977)	v	
	1.7×10^{-3} 1.7×10^{-3}		Hine and Mookerjee (1975)	V	
	1.7×10^{-3}	3800	Barr and Newsham (1987)	X	116
	1.8×10^{-3}	1700	Goldstein (1982)	X	116
	2.4×10^{-3}	1700	Ryan et al. (1988)	C	110
	1.8×10^{-3}		Shen (1982)	C	
	3.2×10^{-3}		Hilal et al. (2008)	Q	
	3.27.10	3300	Kühne et al. (2005)	Q	
	1.4×10^{-3}		Nirmalakhandan and Speece (1988a)	Ô	
	1.8×10^{-3}		Mackay et al. (2006b)	?	
		3900	Kühne et al. (2005)	?	
	1.6×10^{-3}		Mackay et al. (1993)	?	
	1.7×10^{-3}		Yaws and Yang (1992)	?	92
	1.7×10^{-3}		Abraham et al. (1990)	?	
,2-dichloroethane	8.9×10^{-3}	4300	Warneck (2007)	L	
CH ₂ ClCH ₂ Cl	9.1×10^{-3}	4300	Fogg and Sangster (2003)	L	
107-06-2]	7.8×10^{-3}	4200	Staudinger and Roberts (2001)	L	
•	7.1×10^{-3}	4200	Staudinger and Roberts (1996)	L	
	9.1×10^{-3}		Mackay and Shiu (1981)	L	
	8.2×10^{-3}	4400	Hiatt (2013)	M	
	9.1×10^{-3}	6100	Chen et al. (2012)	M	
	5.4×10^{-3}		Ayuttaya et al. (2001)	M	131
	5.7×10^{-4}		Ayuttaya et al. (2001)	M	132
	4.2×10^{-3}		Ayuttaya et al. (2001)	M	133
	8.1×10^{-3}		Ayuttaya et al. (2001)	M	134

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{\ominus})	d(1/T)	Reference	Type	Note
Other name(s))	[mol]	[17]		31	
CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
	1.1×10^{-2}		Hovorka and Dohnal (1997)	M	9
	6.2×10^{-3}	3700	Kondoh and Nakajima (1997)	M	
	9.3×10^{-3}	4600	Dewulf et al. (1995)	M	
	8.3×10^{-3}		Hoff et al. (1993)	M	
	8.2×10^{-3}		Li et al. (1993)	M	
	8.5×10^{-3}	3900	Wright et al. (1992)	M	
	8.0×10^{-3}	3600	Tse et al. (1992)	M	
	6.4×10^{-3}	4500	Bissonette et al. (1990)	M	
	5.8×10^{-3}	3000	Lamarche and Droste (1989)	M	135
	7.6×10^{-3}		Guitart et al. (1989)	M	19
	6.4×10^{-3}	1500	Ashworth et al. (1988)	M	103
	8.4×10^{-3}	3500	Leighton and Calo (1981)	M	
	9.0×10^{-3}		Warner et al. (1980)	M	
	4.4×10^{-3}		Sato and Nakajima (1979b)	M	19
	1.1×10^{-2}		Pearson and McConnell (1975)	M	248, 9
	7.9×10^{-3}	4400	Hartkopf and Karger (1973)	M	0, >
	7.2×10^{-3}		Saylor et al. (1938)	M	23
	8.6×10^{-3}	4400	Rex (1906)	M	23
	8.2×10^{-3}	1100	Mackay et al. (2006b)	V	
	8.3×10^{-3}		Mackay et al. (2000)	v	
	7.3×10^{-3}		Warner et al. (1980)	V	
	8.1×10^{-3}		Dilling (1977)	V	
	7.5×10^{-3}		Hine and Mookerjee (1975)	V	
	8.5×10^{-3}	3700	Barr and Newsham (1987)	X	116
	9.0×10^{-3}	2400	Goldstein (1982)	X	116
	8.6×10^{-3}	2400	Harrison et al. (1993)	C	110
	9.0×10^{-3}		Harrison et al. (1993)	C	
	1.1×10^{-2}		Ryan et al. (1988)	C	
	9.0×10^{-3}		- · ·	C	
	9.0×10^{-2} 1.0×10^{-2}		Shen (1982) Dilling (1977)	C	
	1.0×10^{-2} 1.0×10^{-2}		Hilal et al. (2008)		
	1.0×10 2	3300	Kühne et al. (2008)	Q Q	
	1.8×10^{-3}	3300	Nirmalakhandan and Speece (1988a)		
	4.2×10^{-3}		MacBean (2012a)	Q ?	
	7.0×10^{-3}		Mackay et al. (2006b)	?	
	7.UX1U	3600	Kühne et al. (2005)	?	
	7.0×10^{-3}	3000	Mackay et al. (1993)	?	
	8.3×10^{-3}		Yaws and Yang (1992)	?	92
	8.3×10^{-3} 8.2×10^{-3}		Abraham et al. (1990)	?	94
	8.2×10^{-2} 1.2×10^{-2}		Chiou et al. (1980)	?	27
1,2-dichloroethane-d4 CD ₂ ClCD ₂ Cl	8.7×10^{-3}	4300	Hiatt (2013)	M	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s))	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
1,1,1-trichloroethane	6.0×10^{-4}	3700	Warneck (2007)	L	
CH ₃ CCl ₃	6.2×10^{-4}	3900	Fogg and Sangster (2003)	L	
methylchloroform; MCF)	5.9×10^{-4}	4000	Staudinger and Roberts (2001)	L	
71-55-6]	5.8×10^{-4}	3900	Staudinger and Roberts (1996)	L	
	3.6×10^{-4}		Mackay and Shiu (1981)	L	
	6.9×10^{-4}	4000	Hiatt (2013)	M	
	5.4×10^{-4}	4100	Chen et al. (2012)	M	
	6.2×10^{-4}	3500	Vane and Giroux (2000)	M	
	7.1×10^{-4}		Chiang et al. (1998)	M	9
	7.9×10^{-4}		Hovorka and Dohnal (1997)	M	9
	6.7×10^{-4}	1900	Kondoh and Nakajima (1997)	M	
	4.8×10^{-4}		Turner et al. (1996)	M	
	6.7×10^{-4}	4100	Dewulf et al. (1995)	M	
	5.6×10^{-4}	3200	Robbins et al. (1993)	M	
	5.3×10^{-4}		Hoff et al. (1993)	M	
	5.9×10^{-4}	3100	Hansen et al. (1993)	M	105
	5.7×10^{-4}		Li et al. (1993)	M	
	6.0×10^{-4}	3500	Wright et al. (1992)	M	
	6.3×10^{-4}	3700	Tse et al. (1992)	M	
	7.9×10^{-4}	1300	Kolb et al. (1992)	M	102
	5.1×10^{-4}	5200	Bissonette et al. (1990)	M	
	3.2×10^{-4}		Guitart et al. (1989)	M	19
	5.7×10^{-4}	3400	Ashworth et al. (1988)	M	103
	5.9×10^{-4}	4100	Gossett (1987)	M	
	5.8×10^{-4}	4100	Munz and Roberts (1987)	M	
	6.3×10^{-4}		Yurteri et al. (1987)	M	9
	5.7×10^{-4}	4200	Gossett et al. (1985)	M	
	5.9×10^{-4}	4300	Lincoff and Gossett (1984)	M	
	7.6×10^{-4}	3200	Hunter-Smith et al. (1983)	M	251
	4.9×10^{-4}	4400	Leighton and Calo (1981)	M	
	2.7×10^{-4}	7000	Ervin et al. (1980)	M	
	2.0×10^{-3}		Warner et al. (1980)	M	
	3.6×10^{-4}		Sato and Nakajima (1979b)	M	19
	2.9×10^{-4}		Pearson and McConnell (1975)	M	248, 9
	5.9×10^{-4}		Mackay et al. (2006b)	V	
	6.8×10^{-4}		Mackay et al. (1993)	V	
	7.0×10^{-4}	4700	McLinden (1989)	V	
	2.4×10^{-3}		Warner et al. (1980)	V	
	3.4×10^{-4}		Dilling (1977)	V	249
	4.0×10^{-4}		Dilling (1977)	V	9
	1.1×10^{-3}		Dilling (1977)	V	66
	6.1×10^{-4}		Hine and Mookerjee (1975)	V	
	5.9×10^{-4}		Dilling et al. (1975)	V	
	5.8×10^{-4}	4000	Barr and Newsham (1987)	X	116
	2.2×10^{-3}	1700	Goldstein (1982)	X	116
	3.1×10^{-4}		Ryan et al. (1988)	C	
	2.0×10^{-3}		Shen (1982)	C	
	9.0×10^{-4}		Hilal et al. (2008)	Q	
		3700	Kühne et al. (2005)	Q	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]	F773		-J F -	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
	2.3×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
	1.6×10^{-3}		Arbuckle (1983)	Q	
	5.7×10^{-4}		Mackay et al. (2006b)	?	
		3700	Kühne et al. (2005)	?	
	5.7×10^{-4}		Mackay et al. (1993)	?	
	5.6×10^{-4}		Abraham et al. (1990)	?	
	1.6×10^{-3}		Chiou et al. (1980)	?	27
1,1,2-trichloroethane	1.1×10^{-2}	4100	Warneck (2007)	L	
CHCl ₂ CH ₂ Cl	1.2×10^{-2}	4200	Fogg and Sangster (2003)	L	
[79-00-5]	1.1×10^{-2}	4900	Staudinger and Roberts (2001)	L	
	1.1×10^{-2}	4900	Staudinger and Roberts (1996)	L	
	8.3×10^{-3}		Mackay and Shiu (1981)	L	
	1.4×10^{-2}	5400	Hiatt (2013)	M	
	1.2×10^{-2}		Bobadilla et al. (2003)	M	
	1.1×10^{-2}	4700	Dewulf et al. (1999)	M	
	1.5×10^{-2}		Dohnal and Hovorka (1999)	M	9
	1.5×10^{-2}		Hovorka and Dohnal (1997)	M	9
	1.1×10^{-2}	5100	Kondoh and Nakajima (1997)	M	
	1.2×10^{-2}	5900	Hansen et al. (1993)	M	105
	1.2×10^{-2}	3900	Wright et al. (1992)	M	
	1.1×10^{-2}	4100	Tse et al. (1992)	M	
	1.0×10^{-2}	4800	Ashworth et al. (1988)	M	103
	1.2×10^{-2}	3700	Leighton and Calo (1981)	M	
	6.6×10^{-3}		Sato and Nakajima (1979b)	M	19
	1.1×10^{-2}		Mackay et al. (2006b)	V	
	1.0×10^{-2}		Mackay et al. (1993)	V	
	1.1×10^{-2}		Dilling (1977)	V	
	1.1×10^{-2}		Hine and Mookerjee (1975)	V	
	1.1×10^{-2}	4300	Barr and Newsham (1987)	X	116
	1.2×10^{-2}	2700	Goldstein (1982)	X	116
	1.3×10^{-3}		Ryan et al. (1988)	C	
	1.5×10^{-2}		Hilal et al. (2008)	Q	
		3700	Kühne et al. (2005)	Q	
	3.3×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
	7.6×10^{-3}		Arbuckle (1983)	Q	
	1.1×10^{-2}		Mackay et al. (2006b)	?	
		4200	Kühne et al. (2005)	?	
	1.1×10^{-2}		Mackay et al. (1993)	?	
	1.0×10^{-2}		Yaws and Yang (1992)	?	92
	1.2×10^{-2}		Abraham et al. (1990)	?	
1,1,2-trichloroethane-d3 CDCl ₂ CD ₂ Cl	1.3×10^{-2}	5100	Hiatt (2013)	M	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
1,1,1,2-tetrachloroethane	4.2×10^{-3}	4600	Warneck (2007)	L	
CCl ₃ CH ₂ Cl	2.4×10^{-2}	3200	Staudinger and Roberts (2001)	L	
[630-20-6]	3.6×10^{-3}		Mackay and Shiu (1981)	L	
	4.8×10^{-3}	4800	Hiatt (2013)	M	
	4.3×10^{-3}	4100	Kondoh and Nakajima (1997)	M	
	3.9×10^{-3}	4800	Wright et al. (1992)	M	
	4.5×10^{-3}	4600	Tse et al. (1992)	M	
	2.1×10^{-3}		Sato and Nakajima (1979b)	M	19
	4.0×10^{-3}		Mackay et al. (2006b)	V	
	4.2×10^{-3}	5000	Fogg and Sangster (2003)	V	
	4.1×10^{-3}		Mackay et al. (1993)	V	
	3.7×10^{-3}		Dilling (1977)	V	
	3.9×10^{-3}		Hilal et al. (2008)	Q	
		4100	Kühne et al. (2005)	Q	
	5.4×10^{-3}		Nirmalakhandan et al. (1997)	Q	
		4600	Kühne et al. (2005)	?	
	3.5×10^{-3}		Abraham et al. (1990)	?	
1,1,2,2-tetrachloroethane	2.4×10^{-2}	4800	Warneck (2007)	L	
CHCl ₂ CHCl ₂	2.4×10^{-2}	3200	Staudinger and Roberts (1996)	L	
[79-34-5]	2.1×10^{-2}		Mackay and Shiu (1981)	L	
	3.3×10^{-2}	7200	Hiatt (2013)	M	
	3.0×10^{-2}		Hovorka and Dohnal (1997)	M	9
	2.3×10^{-2}	6800	Kondoh and Nakajima (1997)	M	252
	2.9×10^{-2}		Li and Carr (1993)	M	
	2.0×10^{-2}	5000	Wright et al. (1992)	M	
	2.6×10^{-2}	4800	Tse et al. (1992)	M	
	2.2×10^{-2}	2800	Ashworth et al. (1988)	M	103
	2.7×10^{-2}	3500	Leighton and Calo (1981)	M	
	1.4×10^{-2}		Sato and Nakajima (1979b)	M	19
	2.1×10^{-2}		Mackay et al. (2006b)	V	
	2.2×10^{-2}		Mackay et al. (1993)	V	
	2.1×10^{-2}		Dilling (1977)	V	
	2.2×10^{-2}		Hine and Mookerjee (1975)	V	
	1.8×10^{-2}	4200	Barr and Newsham (1987)	X	116
	2.3×10^{-2}	3000	Goldstein (1982)	X	116
	2.5×10^{-2}		Ryan et al. (1988)	C	
	1.9×10^{-2}		Hilal et al. (2008)	Q	
		4100	Kühne et al. (2005)	Q	
	6.1×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
	3.9×10^{-2}		Mackay et al. (2006b)	?	
		4500	Kühne et al. (2005)	?	
	3.9×10^{-2}		Mackay et al. (1993)	?	
	3.0×10^{-2}		Yaws and Yang (1992)	?	92
	2.6×10^{-2}		Abraham et al. (1990)	?	
	3.0×10^{-2}		Chiou et al. (1980)	?	27

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp} (at T^{Θ})	$\frac{\mathrm{d} \ln H^{cp}}{H^{cp}}$			
Formula (Other name(s))	(at 1°)	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
[CAS registry number]	[mol]	[17]			
[CAS registry number]	∟m³ Pa 」	[K]			
pentachloroethane	4.5×10^{-3}		Mackay and Shiu (1981)	L	
CHCl ₂ CCl ₃	5.9×10^{-3}	5400	Hiatt (2013)	M	
[76-01-7]	5.2×10^{-3}		HSDB (2015)	V	
	4.1×10^{-3}		Mackay et al. (2006b)	V	
	4.0×10^{-3}		Mackay et al. (1993)	V	
	5.3×10^{-3}		Meylan and Howard (1991)	V	
	4.0×10^{-3}		Dilling (1977)	V	
	4.0×10^{-3}		Hine and Mookerjee (1975)	V	
	6.1×10^{-3}		Hilal et al. (2008)	Q	
	1.9×10^{-2}		Meylan and Howard (1991)	Q	
	1.0×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
	5.4×10^{-3}		Yaws and Yang (1992)	?	92
	4.2×10^{-3}		Abraham et al. (1990)	?	
		5.000			
hexachloroethane	2.5×10^{-3}	5600	Staudinger and Roberts (1996)	L	100
C ₂ Cl ₆	1.2×10^{-3}	2600	Ashworth et al. (1988)	M	103
[67-72-1]	2.5×10^{-3}	5600	Munz and Roberts (1987)	M	
	3.4×10^{-3}		Munz and Roberts (1986)	M	
	1.0×10^{-3}		Warner et al. (1980)	M	
	4.2×10^{-3}		Mackay et al. (2006b)	V	
	3.6×10^{-3}		Lide and Frederikse (1995)	V	
	1.5×10^{-2}		Hwang et al. (1992)	V	
	2.2×10^{-4}		Ballschmiter and Wittlinger (1991)	V	
	7.7×10^{-4}		Mackay and Shiu (1981)	V	
	8.1×10^{-3}		Dilling (1977)	V	
	4.3×10^{-3}		Hine and Mookerjee (1975)	V	
	1.0×10^{-3}	2100	Goldstein (1982)	X	116
	9.8×10^{-4}		Ryan et al. (1988)	C	
	1.0×10^{-3}		Shen (1982)	C	
	2.4×10^{-3}		Zhang et al. (2010)	Q	107, 108
	1.8×10^{-3}		Zhang et al. (2010)	Q	107, 109
	1.9×10^{-3}		Zhang et al. (2010)	Q	107, 110
	3.9×10^{-3}		Zhang et al. (2010)	Q	107, 111
	3.9×10^{-3}		Hilal et al. (2008)	Q	
	1.0×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
	1.2×10^{-3}		Mackay et al. (2006b)	?	
	1.2×10^{-3}		Mackay et al. (1993)	?	
	4.4×10^{-4}		Yaws and Yang (1992)	?	92
1-chloropropane	6.9×10^{-4}		Li et al. (1993)	M	
C ₃ H ₇ Cl	4.3×10^{-4}		Sato and Nakajima (1979b)	M	19
[540-54-5]	7.7×10^{-4}	4400	Rex (1906)	M	
3	7.6×10^{-4}		HSDB (2015)	V	
	6.9×10^{-4}		Mackay et al. (2006b)	v	
	7.1×10^{-4}		Mackay et al. (2000)	v	
	7.1×10^{-4}		Abraham (1984)	V	
	7.1×10^{-4} 7.3×10^{-4}		Hine and Mookerjee (1975)	V	
	1.1×10^{-3}		Hilal et al. (2008)	Q	
	1.1 × 10	3300	Kühne et al. (2008)	Q	
	6.2×10^{-4}	2200	11011110 Ot ul. (2005)	V	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{mol}{m^3 Pa}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	9.1×10^{-4} 7.0×10^{-4}	3500	Kühne et al. (2005) Yaws and Yang (1992) Abraham et al. (1990)	? ? ?	92, 9
2-chloropropane	5.4×10^{-4}		Li et al. (1993)	M	
C ₃ H ₇ Cl	5.6×10^{-4}	4300	Rex (1906)	M	
[75-29-6]	5.5×10^{-4}		HSDB (2015)	V	
	5.6×10^{-4}		Mackay et al. (2006b)	V	
	5.5×10^{-4}		Mackay et al. (1993)	V	
	6.1×10^{-4}		Hine and Mookerjee (1975)	V	
	6.0×10^{-4}		Hilal et al. (2008)	Q	
	5.1×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	6.8×10^{-4}		Yaws and Yang (1992)	?	92, 9
	6.1×10^{-4}		Abraham et al. (1990)	?	,
1,1-dichloropropane C ₃ H ₆ Cl ₂ [78-99-9]	2.6×10^{-3}		HSDB (2015)	V	
1,2-dichloropropane	3.4×10^{-3}	4300	Staudinger and Roberts (2001)	L	
C ₃ H ₆ Cl ₂	3.4×10^{-3}	4300	Staudinger and Roberts (1996)	L	
[78-87-5]	4.3×10^{-3}	4400	Hiatt (2013)	M	
•	4.2×10^{-3}		Bobadilla et al. (2003)	M	
	3.5×10^{-3}	4300	Dewulf et al. (1999)	M	
	4.4×10^{-3}		Dohnal and Hovorka (1999)	M	9
	4.6×10^{-3}		Hovorka and Dohnal (1997)	M	9
	4.3×10^{-3}	3700	Kondoh and Nakajima (1997)	M	
	3.7×10^{-3}	3800	Wright et al. (1992)	M	
	3.8×10^{-3}	3800	Tse et al. (1992)	M	
	3.0×10^{-3}	3800	Bissonette et al. (1990)	M	
	3.8×10^{-3}	4700	Ashworth et al. (1988)	M	103
	3.4×10^{-3}	4300	Leighton and Calo (1981)	M	
	3.5×10^{-3}		Warner et al. (1980)	M	
	2.1×10^{-3}		Sato and Nakajima (1979b)	M	19
	3.7×10^{-3}		Mackay et al. (2006b)	V	
	3.7×10^{-3}		Mackay et al. (1993)	V	
	3.6×10^{-3}		Warner et al. (1980)	V	
	3.4×10^{-3}		Hine and Mookerjee (1975)	V	
	3.4×10^{-3}	2100	Goldstein (1982)	X	116
	3.4×10^{-3}		Ryan et al. (1988)	C	
	3.5×10^{-3}		Shen (1982)	C	
	5.4×10^{-3}		Hilal et al. (2008)	Q	
		3700	Kühne et al. (2005)	Q	
	1.2×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
	8.5×10^{-4}		MacBean (2012a)	?	
	3.5×10^{-3}		Mackay et al. (2006b)	?	
		4000	Kühne et al. (2005)	?	
	3.5×10^{-3}		Mackay et al. (1993)	?	
	3.7×10^{-3}		Yaws and Yang (1992)	?	92
	3.4×10^{-3}		Abraham et al. (1990)	?	
	4.8×10^{-3}		Mackay and Yeun (1983)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} H^{cp}}$			
(Other name(s))		d(1/T)	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
	5.9×10^{-3}		Chiou et al. (1980)	?	27
1,2-dichloropropane-d6 C ₃ D ₆ Cl ₂ [93952-08-0]	3.6×10 ⁻³	4600	Hiatt (2013)	M	
1,3-dichloropropane	1.3×10^{-2}	5300	Hiatt (2013)	M	
$C_3H_6Cl_2$	1.1×10^{-2}	5000	Kondoh and Nakajima (1997)	M	
[142-28-9]	1.0×10^{-2}	3900	Leighton and Calo (1981)	M	
	9.9×10^{-3}		Hine and Mookerjee (1975)	V	
	1.8×10^{-2}		Hilal et al. (2008)	Q	
		3700	Kühne et al. (2005)	Q	
	1.4×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
		3900	Kühne et al. (2005)	?	
	9.9×10^{-3}		Yaws and Yang (1992)	?	92
	9.9×10^{-3}		Abraham et al. (1990)	?	
2,2-dichloropropane	4.4×10^{-4}	7400	Hiatt (2013)	M	
$C_3H_6Cl_2$	8.1×10^{-4}	3900	Bakierowska and Trzeszczyński (2003)	M	
[594-20-7]	7.1×10^{-4}	630	Kondoh and Nakajima (1997)	M	
		3700	Kühne et al. (2005)	Q	
		3900	Kühne et al. (2005)	?	
1,1,1-trichloropropane	3.8×10^{-3}		Yaws et al. (2005)	X	181
C ₃ H ₅ Cl ₃ [7789-89-1]	1.1×10^{-3}		Hilal et al. (2008)	Q	
1,1,2-trichloropropane	1.4×10^{-2}		Yaws et al. (2005)	X	181
C ₃ H ₅ Cl ₃ [598-77-6]	7.9×10^{-3}		Hilal et al. (2008)	Q	
1,2,3-trichloropropane	3.6×10^{-2}	3700	Staudinger and Roberts (2001)	L	
C ₃ H ₅ Cl ₃	3.4×10^{-2}	3700	Staudinger and Roberts (1996)	L	
[96-18-4]	4.2×10^{-2}	7200	Hiatt (2013)	M	
	2.8×10^{-2}	5300	Kondoh and Nakajima (1997)	M	
	4.4×10^{-2}	4000	Tancrède and Yanagisawa (1990)	M	
	2.9×10^{-2}	3500	Leighton and Calo (1981)	M	
	2.6×10^{-2}		Mackay et al. (2006b)	V	
	2.6×10^{-2}		Mackay et al. (1993)	V	
	3.1×10^{-2}		Dilling (1977)	V	101
	2.2×10^{-2}		Yaws et al. (2005)	X	181
	3.9×10^{-2}	4000	Hilal et al. (2008)	Q	
		4000 4100	Kühne et al. (2005)	Q ?	
	2.9×10^{-2}	4100	Kühne et al. (2005) Yaws and Yang (1992)	?	92
1,1,2,2,3-pentachloropropane	1.4×10^{-2}		Zhang et al. (2010)	Q	107, 108
C ₃ H ₃ Cl ₅	7.3×10^{-2}		Zhang et al. (2010)	Q	107, 109
[16714-68-4]	6.2×10^{-1}		Zhang et al. (2010)	Q	107, 110
	8.6×10^{-3}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp} (at T^{Θ})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} \ln H^{cp}}$			
Formula	$(at I^{\circ})$	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
Other name(s))	$\lceil \underline{\text{mol}} \rceil$	[17]			
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
-chloro-2-methylpropane	8.3×10^{-3}		Mackay and Shiu (1981)	L	
C ₄ H ₉ Cl	7.3×10^{-4}		Hilal et al. (2008)	Q	
[513-36-0]	6.3×10^{-4}		Yaws and Yang (1992)	?	92, 9
2-chloro-2-methylpropane	2.2×10^{-4}		Hilal et al. (2008)	Q	
C ₄ H ₉ Cl	3.1×10^{-4}		Nirmalakhandan et al. (1997)	Q	
[507-20-0]	6.4×10^{-5}		Abraham et al. (1990)	?	
-chlorobutane	6.7×10^{-4}		Dohnal and Hovorka (1999)	M	9
C ₄ H ₉ Cl	5.3×10^{-4}		Li et al. (1993)	M	
109-69-3]	5.9×10^{-4}	3500	Leighton and Calo (1981)	M	
-	3.3×10^{-4}		Sato and Nakajima (1979b)	M	19
	4.8×10^{-4}		Mackay et al. (2006b)	V	
	4.8×10^{-4}		Mackay et al. (1993)	V	
	5.3×10^{-4}		Abraham (1984)	V	
	5.1×10^{-4}		Hine and Mookerjee (1975)	V	
	9.0×10^{-4}		Hilal et al. (2008)	Q	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3700	Kühne et al. (2005)	Q	
	5.0×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	6.5×10^{-4}		Mackay et al. (2006b)	?	
		3700	Kühne et al. (2005)	?	
	6.5×10^{-4}		Mackay et al. (1993)	?	
	5.6×10^{-4}		Hoff et al. (1993)	?	7
	5.8×10^{-4}		Yaws and Yang (1992)	?	92
	5.3×10^{-4}		Abraham et al. (1990)	?	
2-chlorobutane	4.1×10^{-4}	4500	Leighton and Calo (1981)	M	
C ₄ H ₉ Cl	5.3×10^{-4}		Mackay et al. (2006b)	V	
78-86-4]	5.3×10^{-4}		Mackay et al. (1993)	V	
-	6.2×10^{-4}		Hilal et al. (2008)	Q	
		3700	Kühne et al. (2005)	Q	
	4.2×10^{-4}		Nirmalakhandan et al. (1997)	Q	
	4.4×10^{-4}		Mackay et al. (2006b)	?	
		4500	Kühne et al. (2005)	?	
	4.4×10^{-4}		Mackay et al. (1993)	?	
	5.3×10^{-4}		Yaws and Yang (1992)	?	92
	4.0×10^{-4}		Abraham et al. (1990)	?	
,1-dichlorobutane	1.3×10^{-3}		Hine and Mookerjee (1975)	V	
$C_4H_8Cl_2$	2.5×10^{-3}		Hilal et al. (2008)	Q	
[541-33-3]	9.2×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
,4-dichlorobutane	2.0×10^{-2}	3100	Leighton and Calo (1981)	M	
$C_4H_8Cl_2$	2.6×10^{-2}		Hilal et al. (2008)	Q	
110-56-5]		4000	Kühne et al. (2005)	Q	
[.10 30 5]	1.1×10^{-3}		Nirmalakhandan et al. (1997)	Q	
		3700	Kühne et al. (2005)	?	
	2.0×10^{-2}		Abraham et al. (1990)	?	
2,3-dichlorobutane	2.5×10^{-3}		Yaws et al. (2005)	X	181
C ₄ H ₈ Cl ₂	2.8×10^{-3}		Hilal et al. (2008)	Q	
7581-97-7]				*	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp} (at T^{Θ})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} \ln H^{cp}}$			
Formula		$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	$\lceil \underline{\text{mol}} \rceil$	[17]			
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
1-chloropentane	4.2×10^{-4}		Li et al. (1993)	M	
C ₅ H ₁₁ Cl	4.1×10^{-4}	4700	Leighton and Calo (1981)	M	
[543-59-9]	2.7×10^{-4}		Sato and Nakajima (1979b)	M	19
	4.5×10^{-4}		Mackay et al. (2006b)	V	
	4.5×10^{-4}		Mackay et al. (1993)	V	
	4.5×10^{-4}		Abraham (1984)	V	
	4.3×10^{-4}		Amoore and Buttery (1978)	V	
	4.5×10^{-4}		Hine and Mookerjee (1975)	V	
	7.3×10^{-4}		Hilal et al. (2008)	Q	
		4000	Kühne et al. (2005)	Q	
	3.9×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	4.2×10^{-4}		Mackay et al. (2006b)	?	
		4400	Kühne et al. (2005)	?	
	4.2×10^{-4}		Mackay et al. (1993)	?	
	2.0×10^{-4}		Yaws and Yang (1992)	?	92
	4.5×10^{-4}		Abraham et al. (1990)	?	
2-chloropentane	3.6×10^{-4}		Hine and Mookerjee (1975)	V	
C ₅ H ₁₁ Cl	4.8×10^{-4}		Hilal et al. (2008)	Q	
[625-29-6]	3.3×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
1	3.6×10^{-4}		Abraham et al. (1990)	?	
3-chloropentane	3.8×10^{-4}		Meylan and Howard (1991)	V	
C ₅ H ₁₁ Cl	3.8×10^{-4}		Hine and Mookerjee (1975)	V	
[616-20-6]	4.7×10^{-4}		Hilal et al. (2008)	Q	
010-20-0]	3.9×10^{-4}		Meylan and Howard (1991)	Q	
	3.4×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	3.8×10^{-4}		Abraham et al. (1990)	?	
1,2-dichloropentane	4.8×10^{-3}		Yaws et al. (2005)	X	181
C ₅ H ₁₀ Cl ₂	3.1×10^{-3}		Hilal et al. (2008)	Q	101
1674-33-5]	5.17(10		1111ai et al. (2000)	V	
,5-dichloropentane	1.8×10^{-2}	1600	Leighton and Calo (1981)	M	
C ₅ H ₁₀ Cl ₂	2.0×10^{-2}	1000	Hilal et al. (2008)	Q	
[628-76-2]	2.0 × 10	4400	Kühne et al. (2005)	Q	
.0-0 / 0 - 1		4100	Kühne et al. (2005)	?	
2,3-dichloropentane	2.9×10^{-3}		Yaws et al. (2005)	X	181
2,5-dictioropentane C ₅ H ₁₀ Cl ₂	2.9×10^{-3}		Hilal et al. (2008)	Q	101
[600-11-3]	2.0 × 10		1111ai Ct al. (2000)	Q	
2-chloro-2-methylbutane	3.0×10^{-3}		Yaws and Yang (1992)	?	92
C ₅ H ₁₁ Cl	3.0 X 10		raws and rang (1992)	1	72
[594-36-5]					
<u>-</u>	21.10=1		1: . 1 (1000)		
l-chlorohexane	3.1×10^{-4}	4.500	Li et al. (1993)	M	
C ₆ H ₁₃ Cl	4.1×10^{-4}	4500	Leighton and Calo (1981)	M	
544-10-5]	6.1×10^{-4}	4000	Hilal et al. (2008)	Q	
	2 1 1 2 1	4300	Kühne et al. (2005)	Q	
	3.1×10^{-4}	4.400	Nirmalakhandan et al. (1997)	Q	
	, a 1	4400	Kühne et al. (2005)	?	
	4.0×10^{-4}		Abraham et al. (1990)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2-chlorohexane C ₆ H ₁₃ Cl [638-28-8]	5.0×10^{-4} 4.2×10^{-4}		Yaws et al. (2005) Hilal et al. (2008)	X Q	181
3-chlorohexane C ₆ H ₁₃ Cl [2346-81-8]	5.0×10^{-4} 5.0×10^{-4}		Yaws et al. (2005) Hilal et al. (2008)	X Q	181
1-chloroheptane C ₇ H ₁₅ Cl [629-06-1]	2.5×10^{-4} 5.1×10^{-4} 2.4×10^{-4} 2.5×10^{-4}		Abraham (1984) Hilal et al. (2008) Nirmalakhandan et al. (1997) Abraham et al. (1990)	V Q Q ?	
2-chloroheptane C ₇ H ₁₅ Cl [1001-89-4]	3.9×10^{-4} 3.4×10^{-4}		Yaws et al. (2005) Hilal et al. (2008)	X Q	181
3-chloroheptane C ₇ H ₁₅ Cl [999-52-0]	$3.6 \times 10^{-4} \\ 3.4 \times 10^{-4}$		Yaws et al. (2005) Hilal et al. (2008)	X Q	181
4-chloroheptane C ₇ H ₁₅ Cl [998-95-8]	$3.6 \times 10^{-4} \\ 3.5 \times 10^{-4}$		Yaws et al. (2005) Hilal et al. (2008)	X Q	181
1-chlorooctane C ₈ H ₁₇ Cl [111-85-3]	1.9×10^{-4} 2.6×10^{-4} 1.6×10^{-4} 4.2×10^{-4}	6100	Sarraute et al. (2004) Yaws et al. (2005) HSDB (2015) Hilal et al. (2008)	V X Q Q	181 38
2-chlorooctane C ₈ H ₁₇ Cl [628-61-5]	$2.7 \times 10^{-4} \\ 3.1 \times 10^{-4}$		Yaws et al. (2005) Hilal et al. (2008)	X Q	181
3-(chloromethyl)-heptane C ₈ H ₁₇ Cl [123-04-6]	4.5×10 ⁻⁴		Hilal et al. (2008)	Q	
1,8-dichlorooctane C ₈ H ₁₆ Cl ₂ [2162-99-4]	7.5×10^{-3}	7500	Sarraute et al. (2006)	M	
1-chlorononane C ₉ H ₁₉ Cl [2473-01-0]	$1.6 \times 10^{-4} \\ 3.5 \times 10^{-4}$		Yaws et al. (2005) Hilal et al. (2008)	X Q	181
2-chlorononane C ₉ H ₁₉ Cl [2216-36-6]	$2.7 \times 10^{-4} \\ 3.0 \times 10^{-4}$		Yaws et al. (2005) Hilal et al. (2008)	X Q	181
5-chlorononane C ₉ H ₁₉ Cl [28123-70-8]	$2.2 \times 10^{-4} \\ 2.6 \times 10^{-4}$		Yaws et al. (2005) Hilal et al. (2008)	X Q	181

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
Other name(s))	[mol]	F773		-7 F	
CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
-chlorodecane	1.6×10^{-4}		Yaws et al. (2005)	X	181
C ₁₀ H ₂₁ Cl	2.5×10^{-4}		Hilal et al. (2008)	Q	
1002-69-3]					
,10-dichlorodecane	2.0×10^{-3}		Drouillard et al. (1998)	V	
$C_{10}H_{20}Cl_2$	5.3×10^{-3}		Hilal et al. (2008)	Q	
2162-98-3]					
,2,9,10-tetrachlorodecane	5.6×10^{-2}		Drouillard et al. (1998)	M	
$C_{10}H_{18}Cl_4$	1.4×10^{-2}		Hilal et al. (2008)	Q	
205646-11-3]					
pentachlorodecane isomers	2.0×10^{-1}		Drouillard et al. (1998)	M	
C ₁₀ H ₁₇ Cl ₅	3.8×10^{-1}		Drouillard et al. (1998)	M	
[175801-37-3]					
-chloroundecane	1.7×10^{-4}		Yaws et al. (2005)	X	181
C ₁₁ H ₂₃ Cl	2.3×10^{-4}		Hilal et al. (2008)	Q	
2473-03-2]					
,2,10,11-tetrachloroundecane	1.6×10^{-1}		Drouillard et al. (1998)	M	
$C_{11}H_{20}Cl_4$	1.1×10^{-2}		Hilal et al. (2008)	Q	
210049-49-3]					
pentachloroundecane isomers	6.8×10^{-1}		Drouillard et al. (1998)	M	
C ₁₁ H ₁₉ Cl ₅	1.5		Drouillard et al. (1998)	M	
[210175-48-7]					
-chlorododecane	2.3×10^{-4}		Yaws et al. (2005)	X	181
C ₁₂ H ₂₅ Cl	1.9×10^{-4}		Hilal et al. (2008)	Q	
112-52-7]					
,12-dichlorododecane	1.5×10^{-3}		Drouillard et al. (1998)	V	
$C_{12}H_{24}Cl_2$	3.1×10^{-3}		Hilal et al. (2008)	Q	
3922-28-9]					
-chlorotridecane	2.9×10^{-4}		Yaws et al. (2005)	X	181
C ₁₃ H ₂₇ Cl	1.4×10^{-4}		Hilal et al. (2008)	Q	
822-13-9]					
-chlorotetradecane	3.9×10^{-4}		Yaws et al. (2005)	X	181
C ₁₄ H ₂₉ Cl	1.2×10^{-4}		Hilal et al. (2008)	Q	
2425-54-9]					
etrachlorocyclopentane	6.4×10 ⁻³		Zhang et al. (2010)	Q	107, 10
C ₅ H ₆ Cl ₄	4.1×10^{-1}		Zhang et al. (2010)	Q	107, 109
59808-78-5]	1.5		Zhang et al. (2010)	Q	107, 110
	2.9×10^{-2}		Zhang et al. (2010)	Q	107, 11
,1,2,3,3,4-hexachlorocyclopentane	5.1×10^{-2}		Zhang et al. (2010)	Q	107, 10
C ₅ H ₄ Cl ₆	1.9×10^{-1}		Zhang et al. (2010)	Q	107, 10
68258-91-3]	1.6		Zhang et al. (2010)	Q	107, 110
	2.2×10^{-2}		Zhang et al. (2010)	Q	107, 11

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]			-J F -	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
1,1,2,3,3,4,5-heptachlorocyclopentane	1.5×10^{-1}		Zhang et al. (2010)	Q	107, 108
C ₅ H ₃ Cl ₇	7.9×10^{-1}		Zhang et al. (2010)	Q	107, 109
[68258-90-2]	1.6		Zhang et al. (2010)	Q	107, 110
	8.6×10^{-2}		Zhang et al. (2010)	Q	107, 111
1,2,3,3,4,5-hexachlorocyclopentene	1.4×10^{-2}		Zhang et al. (2010)	Q	107, 108
$C_5H_2Cl_6$	4.4×10^{-2}		Zhang et al. (2010)	Q	107, 109
	4.4×10^{-1}		Zhang et al. (2010)	Q	107, 110
	6.4×10^{-2}		Zhang et al. (2010)	Q	107, 111
heptachlorocyclopentene	3.9×10^{-2}		Zhang et al. (2010)	Q	107, 108
C ₅ HCl ₇	3.5×10^{-2}		Zhang et al. (2010)	Q	107, 109
[62111-47-1]	8.4×10^{-2}		Zhang et al. (2010)	Q	107, 110
	5.4×10^{-2}		Zhang et al. (2010)	Q	107, 111
chlorocyclohexane	2.8×10^{-3}	3300	Bakierowska and Trzeszczyński (2003)	M	
C ₆ H ₁₁ Cl	3.2×10^{-3}		Hilal et al. (2008)	Q	
[542-18-7]		4200	Kühne et al. (2005)	Q	
		3200	Kühne et al. (2005)	?	
α -1,2,3,4,5,6-hexachlorocyclohexane	1.5		Xiao et al. (2004)	L	143
$C_6H_6Cl_6$	1.4		Xiao et al. (2004)	L	144
$(\alpha$ -lindane; α -HCH)	3.0	5500	Cetin et al. (2006)	M	
[319-84-6]	1.7	7500	Sahsuvar et al. (2003)	M	
	8.1×10^{-1}		Altschuh et al. (1999)	M	
	1.3	6500	Kucklick et al. (1991)	M	
	4.2×10^{-1}		Atlas et al. (1982)	M	253
	1.1		Mackay et al. (2006d)	V	
	9.1×10^{-1}		Ballschmiter and Wittlinger (1991)	V	_
	2.3		Calamari et al. (1991)	V	9
	1.1		Suntio et al. (1988)	V	9
	5.9×10^{-3}	3900	Paasivirta et al. (1999)	T	
	1.8		Suntio et al. (1988)	C	254
	3.9×10^{-2}		Zhang et al. (2010)	Q	107, 108
	7.7		Zhang et al. (2010)	Q	107, 109
	4.0×10^{1}		Zhang et al. (2010)	Q	107, 110
	3.8×10^{-1}	51 00	Zhang et al. (2010)	Q	107, 111
		7100 7100	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
β -1,2,3,4,5,6-hexachlorocyclohexane	2.7×10 ¹		Xiao et al. (2004)	L .	143
· ·	2.7×10^{3} 2.7×10^{1}		Xiao et al. (2004) Xiao et al. (2004)	L L	143
C ₆ H ₆ Cl ₆	2.7×10^{3} 2.8×10^{1}	7800	Sahsuvar et al. (2003)		144
(β-lindane; β-HCH)	2.8×10^{1} 2.2×10^{1}	/ 800	Altschuh et al. (1999)	M M	
[319-85-7]	2.2×10 ² 8.6		Mackay et al. (2006d)	M V	
	1.4×10^{1}		Ballschmiter and Wittlinger (1991)	v V	
	8.3		9	V V	9
	5.6×10 ¹		Suntio et al. (1988) Suntio et al. (1988)	v C	255
	6.7×10^{-1}				233
	0./×10 ·	7100	Ryan et al. (1988)	C	
		7100	Kühne et al. (2005)	Q ?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type	Note
γ -1,2,3,4,5,6-hexachlorocyclohexane	3.7		Xiao et al. (2004)	L	143
$C_6H_6Cl_6$	3.3		Xiao et al. (2004)	L	144
$(\gamma$ -lindane; lindane; γ -HCH)	3.1		Mackay and Shiu (1981)	L	
[58-89-9]	3.9	3300	Cetin et al. (2006)	M	
	6.0	6200	Xie et al. (2004)	M	
	4.3	7500	Sahsuvar et al. (2003)	M	
	1.9		Altschuh et al. (1999)	M	
	2.8	5500	Kucklick et al. (1991)	M	
	4.9		Fendinger et al. (1989)	M	126
	5.0		Fendinger and Glotfelty (1988)	M	126
	6.7		Mackay et al. (2006d)	V	
	3.3		Siebers et al. (1994)	V	
	1.0×10^{1}		Ballschmiter and Wittlinger (1991)	V	
	5.9		Calamari et al. (1991)	V	9
	3.7		McLachlan et al. (1990)	V	147
	7.7		Suntio et al. (1988)	V	9
	6.7×10^{-1}		Caron et al. (1985)	V	
	7.9		Burkhard and Guth (1981)	V	
	3.1		Chiou et al. (1980)	V	
	2.0×10^{1}	71 00	Mackay and Leinonen (1975)	V	
	6.2×10^{-2}	7100	Paasivirta et al. (1999)	T	
	3.1×10^{1}		McCarty (1980)	X	145
	2.0×10^{1}		Suntio et al. (1988)	C	9
	5.0		Suntio et al. (1988)	C	255
	1.4		Suntio et al. (1988)	C	40= 400
	3.9×10^{-2}		Zhang et al. (2010)	Q	107, 108
	7.7		Zhang et al. (2010)	Q	107, 109
	4.7×10^{1}		Zhang et al. (2010)	Q	107, 110
	3.8×10^{-1}		Zhang et al. (2010)	Q	107, 111
	5.3	= 400	Hilal et al. (2008)	Q	
		7100	Kühne et al. (2005)	Q	
	1	6200	Kühne et al. (2005)	?	• 0
	2.2×10^{1}		Brimblecombe (1986)	?	28
δ -1,2,3,4,5,6-hexachlorocyclohexane	2.3×10^{1}		HSDB (2015)	V	
$C_6H_6Cl_6$	1.4×10^{1}		Mackay et al. (2006d)	V	
$(\delta$ -lindane; δ -HCH)	1.4×10^{1}		Suntio et al. (1988)	V	9
[319-86-8]	5.6×10^{1}		Suntio et al. (1988)	C	255
4,5,6,7,8,8-hexachloro-3a,4,7,7a-tetrahydro-4,7-methano-1H-indene	2.0×10^{-2}		HSDB (2015)	Q	38
C ₁₀ H ₆ Cl ₆	2.0×10^{-2}		Zhang et al. (2010)	Q	107, 108
[3734-48-3]	6.2×10^{-3}		Zhang et al. (2010)	Q	107, 109
	2.2		Zhang et al. (2010)	Q	107, 110
	4.2×10^{-1}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent (...continued)

Type	Note
31	
ssett (1986) M	
ıl. (2006d) V	
et al. (1990) V	147
(1988) V	9
(1988) C	9
2008) Q	
(2005) Q	
(2005)	
5) Q	38
(2010) Q	107, 108
(2010) Q	107, 109
(2010) Q	107, 110
(2010) Q	107, 111
007) L	
and Roberts (2001) L	
and Roberts (1996) L	
al. (1977) L	
) M	
(2012) M	
. (1998) M	250
t al. (1988) M	103
87) M	
McConnell (1975) M l. (2006b) V	248, 147 256
ederikse (1995) V	
ıl. (1993) V	
. (1992) V	
77) V	
77) V	
ookerjee (1975) V	
(1988) C	
2008) Q	
ndan and Speece (1988a) Q	
55) Q	
ıl. (2006b)	
d. (1993)	
ang (1992) ?	92
) M	
t	Yang (1992) ? t al. (1990) ?

Table 6: Henry's law constants for water as solvent $(\dots continued)$

			. ,		
Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{mol}{m^3Pa}\right]$	[K]		31	
1,1-dichloroethene	3.7×10^{-4}	3400	Warneck (2007)	L	
CH ₂ CCl ₂	4.0×10^{-4}	3800	Fogg and Sangster (2003)	L	
[75-35-4]	3.4×10^{-4}	4000	Staudinger and Roberts (2001)	L	
	3.4×10^{-4}	3900	Staudinger and Roberts (1996)	L	
	4.1×10^{-4}	4600	Hiatt (2013)	M	
	3.7×10^{-4}	4200	Dewulf et al. (1999)	M	
	4.4×10^{-4}		Chiang et al. (1998)	M	9
	4.6×10^{-4}	1600	Kondoh and Nakajima (1997)	M	
	3.5×10^{-4}	3300	Tse et al. (1992)	M	
	3.4×10^{-4}	4500	Bissonette et al. (1990)	M	
	3.7×10^{-4}	2900	Ashworth et al. (1988)	M	103
	3.8×10^{-4}	3700	Gossett (1987)	M	
	1.3×10^{-4}		Yurteri et al. (1987)	M	9
	2.6×10^{-4}	4600	Leighton and Calo (1981)	M	
	1.4×10^{-4}	6600	Ervin et al. (1980)	M	
	6.6×10^{-4}		Warner et al. (1980)	M	
	6.6×10^{-5}		Pearson and McConnell (1975)	M	248, 9
	4.3×10^{-4}		Mackay et al. (2006b)	V	
	3.3×10^{-4}		Lide and Frederikse (1995)	V	
	4.3×10^{-4}		Mackay et al. (1993)	V	
	7.5×10^{-5}		Mackay and Shiu (1981)	V	
	6.5×10^{-4}		Warner et al. (1980)	V	
	5.2×10^{-5}		Dilling (1977)	V	249
	6.1×10^{-5}		Dilling (1977)	V	9
	6.4×10^{-4}	1200	Goldstein (1982)	X	116
	2.2×10^{-3}		Ryan et al. (1988)	C	
	6.6×10^{-4}		Shen (1982)	C	
	1.3×10^{-4}		Hilal et al. (2008)	Q	
	4	3300	Kühne et al. (2005)	Q	
	3.8×10^{-4}		Mackay et al. (2006b)	?	
	4	3700	Kühne et al. (2005)	?	
	3.8×10^{-4}		Mackay et al. (1993)	?	
	4.3×10^{-4}		Yaws and Yang (1992)	?	92
	2.7×10^{-4}		Abraham et al. (1990)	?	
,2-dichloroethene	3.7×10^{-4}		Hilal et al. (2008)	Q	
$C_2H_2Cl_2$	4.5×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
[540-59-0]					
(Z)-1,2-dichloroethene	2.6×10^{-3}	3700	Warneck (2007)	L	
CHCICHCI	2.5×10^{-3}	4000	Fogg and Sangster (2003)	L	
(cis-1,2-dichloroethene)	2.3×10^{-3}	3900	Staudinger and Roberts (2001)	L	
156-59-2]	2.3×10^{-3}	3900	Staudinger and Roberts (1996)	L	
-	2.7×10^{-3}	3800	Hiatt (2013)	M	
	2.5×10^{-3}	3900	Chen et al. (2012)	M	
	2.2×10^{-3}	3100	Shimotori and Arnold (2003)	M	
	1.5×10^{-3}		Ryu and Park (1999)	M	
	3.2×10^{-3}		Hovorka and Dohnal (1997)	M	9
	2.5×10^{-3}	3000	Kondoh and Nakajima (1997)	M	
	1.3×10^{-3}	3100	Park et al. (1997)	M	
			* /		

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]	[17]		71	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
	2.4×10^{-3}	3800	Wright et al. (1992)	M	
	2.5×10^{-3}	3800	Tse et al. (1992)	M	
	2.5×10^{-3}	4200	Bissonette et al. (1990)	M	
	2.1×10^{-3}	3100	Ashworth et al. (1988)	M	103
	2.6×10^{-3}	4200	Gossett (1987)	M	
	2.2×10^{-3}		Yurteri et al. (1987)	M	9
	2.2×10^{-3}	4100	Ervin et al. (1980)	M	
	1.1×10^{-3}		Sato and Nakajima (1979b)	M	19
	1.3×10^{-3}		Mackay et al. (2006b)	V	
	1.3×10^{-3}		Park et al. (1997)	V	
	1.3×10^{-3}		Mackay et al. (1993)	V	
	1.3×10^{-3}		Mackay and Shiu (1981)	V	
	1.3×10^{-3}		Dilling (1977)	V	
	2.9×10^{-3}		Hine and Mookerjee (1975)	V	
		3300	Kühne et al. (2005)	Q	
	2.2×10^{-3}	1200	Mackay et al. (2006b)	?	
	22 12-3	4200	Kühne et al. (2005)	?	
	2.2×10^{-3}		Mackay et al. (1993)	?	0.2
	1.3×10^{-3}		Yaws and Yang (1992)	?	92
	1.3×10^{-3}		Abraham et al. (1990)	?	
E)-1,2-dichloroethene	1.0×10^{-3}	3500	Warneck (2007)	L	
CHCICHCI	1.1×10^{-3}	4200	Fogg and Sangster (2003)	L	
trans-1,2-dichloroethene)	9.0×10^{-4}	4100	Staudinger and Roberts (2001)	L	
156-60-5]	9.0×10^{-4}	4100	Staudinger and Roberts (1996)	L	
	1.0×10^{-3}	4000	Hiatt (2013)	M	
	1.0×10^{-3}	3500	Shimotori and Arnold (2003)	M	
	1.6×10^{-3}		Ryu and Park (1999)	M	
	1.3×10^{-3}		Hovorka and Dohnal (1997)	M	9
	1.1×10^{-3}	2200	Kondoh and Nakajima (1997)	M	
	1.8×10^{-3}	6200	Park et al. (1997)	M	
	9.5×10^{-4}	4100	Khalfaoui and Newsham (1994b)	M	
	9.8×10^{-4}	3400	Hansen et al. (1993)	M	105
	1.0×10^{-3}	4000	Wright et al. (1992)	M	
	1.0×10^{-3}	3700	Tse et al. (1992)	M	
	9.9×10^{-4}	4300	Cooling et al. (1992)	M	
	8.4×10^{-4}	4800	Bissonette et al. (1990)	M	
	9.9×10^{-4}	3000	Ashworth et al. (1988)	M	103
	1.1×10^{-3}	4200	Gossett (1987)	M	
	1.1×10^{-3}	£400	Yurteri et al. (1987)	M	9
	7.0×10^{-4}	5400	Ervin et al. (1980)	M	
	1.9×10^{-3}		Warner et al. (1980)	M	10
	8.1×10^{-4}		Sato and Nakajima (1979b)	M	19
	1.5×10^{-3}		Mackay et al. (2006b)	V	
	1.5×10^{-3}		Park et al. (1997)	V	
	1.5×10^{-3}		Mackay et al. (1993) Hwang et al. (1992)	V V	
	1 5 10-1		HWang of al. (IUU:))	V/	
	1.5×10^{-3}		- · · · · · · · · · · · · · · · · · · ·		
	$ 1.5 \times 10^{-3} 1.5 \times 10^{-3} 2.4 \times 10^{-3} $		Mackay and Shiu (1981) Warner et al. (1980)	V V	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	dln H ^{cp}			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{mol}{m^3Pa}\right]$	[K]			
	1.5×10^{-3}		Hine and Mookerjee (1975)	V	
	1.9×10^{-3}	1700	Goldstein (1982)	X	116
	1.5×10^{-3}		Ryan et al. (1988)	C	
	1.9×10^{-3}		Shen (1982)	C	
	2	3300	Kühne et al. (2005)	Q	
	1.0×10^{-3}		Mackay et al. (2006b)	?	
	2	4300	Kühne et al. (2005)	?	
	1.0×10^{-3}		Mackay et al. (1993)	?	
	1.5×10^{-3}		Yaws and Yang (1992)	?	92
	1.5×10^{-3}		Abraham et al. (1990)	?	
trichloroethene	1.1×10^{-3}	4300	Warneck (2007)	L	
C ₂ HCl ₃	1.0×10^{-3}	4300	Fogg and Sangster (2003)	L	
(trichloroethylene)	1.0×10^{-3}	4600	Staudinger and Roberts (2001)	L	
[79-01-6]	9.9×10^{-4}	4600	Staudinger and Roberts (1996)	L	
	6.6×10^{-4}		Steward et al. (1973)	L	19
	1.2×10^{-3}	4700	Hiatt (2013)	M	
	1.3×10^{-3}		Zhang et al. (2013)	M	
	1.0×10^{-3}	3900	Chen et al. (2012)	M	
	9.4×10^{-4}		Helburn et al. (2008)	M	
	1.0×10^{-3}	3900	Shimotori and Arnold (2003)	M	
	1.1×10^{-3}	4200	Görgényi et al. (2002)	M	
	1.2×10^{-3}	3600	Bierwagen and Keller (2001)	M	
	7.6×10^{-4}	4900	Moore (2000)	M	127
	1.0×10^{-3}		David et al. (2000)	M	126
	1.1×10^{-3}	3900	Vane and Giroux (2000)	M	
	9.5×10^{-4}	4900	Dewulf et al. (1999)	M	
	9.5×10^{-4}		Ryu and Park (1999)	M	
	9.3×10^{-4}	3700	Heron et al. (1998)	M	
	1.1×10^{-3}		Chiang et al. (1998)	M	9
	1.4×10^{-3}		Peng and Wan (1998)	M	
	8.7×10^{-4}	4000	Peng and Wan (1998)	M	127
	1.1×10^{-3}	3800	Peng and Wan (1997)	M	
	1.3×10^{-3}		Hovorka and Dohnal (1997)	M	9
	1.1×10^{-3}	2200	Kondoh and Nakajima (1997)	M	
	8.8×10^{-4}	3600	Park et al. (1997)	M	
	8.5×10^{-4}		Turner et al. (1996)	M	
	8.3×10^{-4}	26.00	Ramachandran et al. (1996)	M	
	1.2×10^{-3}	3900	Dewulf et al. (1995)	M	
	1.3×10^{-3}	4200	Nielsen et al. (1994)	M	
	9.7×10^{-4}	4300	Khalfaoui and Newsham (1994b)	M	
	9.5×10^{-4}	3500	Robbins et al. (1993)	M	
	1.1×10^{-3}		Hoff et al. (1993)	M	
	1.0×10^{-3}	1266	Li et al. (1993)	M	
	1.1×10^{-3}	4200	Wright et al. (1992)	M	
	1.1×10^{-3}	4200	Tse et al. (1992)	M	
	9.8×10^{-4}	4100	Cooling et al. (1992)	M	
	1.3×10^{-3}	5200	Tancrède and Yanagisawa (1990)	M	
	1.0×10^{-3}	5200	Bissonette et al. (1990)	M	
	9.7×10^{-4}	2000	Lamarche and Droste (1989)	M	135

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Type	Note
Other name(s)) CAS registry number]	$\left[\frac{mol}{m^3Pa}\right]$	[K]	Reference	Турс	11010
	5.5×10^{-4}		Guitart et al. (1989)	M	19
	9.5×10^{-4}	3700	Ashworth et al. (1988)	M	103
	1.0×10^{-3}	4800	Gossett (1987)	M	
	9.6×10^{-4}	4700	Munz and Roberts (1987)	M	
	9.8×10^{-4}		Hellmann (1987)	M	31
	9.4×10^{-4}		Yurteri et al. (1987)	M	9
	9.0×10^{-4}	5400	Schoene and Steinhanses (1985)	M	
	1.1×10^{-3}	4300	Gossett et al. (1985)	M	
	1.0×10^{-3}		Garbarini and Lion (1985)	M	
	9.7×10^{-4}	4900	Lincoff and Gossett (1984)	M	
	1.0×10^{-3}	4600	Leighton and Calo (1981)	M	
	7.4×10^{-4}	4800	Ervin et al. (1980)	M	
	8.4×10^{-4}		Warner et al. (1980)	M	
	5.0×10^{-4}		Sato and Nakajima (1979b)	M	19
	1.1×10^{-3}		Pearson and McConnell (1975)	M	248, 9
	8.5×10^{-4}		Mackay et al. (2006b)	V	
	9.9×10^{-4}		Park et al. (1997)	V	
	8.4×10^{-4}		Mackay et al. (1993)	V	
	1.1×10^{-3}		Hwang et al. (1992)	V	
	8.1×10^{-4}		Mackay and Shiu (1981)	V	
	8.4×10^{-4}		Warner et al. (1980)	V	
	8.2×10^{-4}		Dilling (1977)	V	249
	1.0×10^{-3}		Dilling (1977)	V	9
	2.4×10^{-3}		Dilling (1977)	V	66
	8.4×10^{-4}		Hine and Mookerjee (1975)	V	
	8.4×10^{-4}		Dilling et al. (1975)	V	
	8.8×10^{-4}	1600	Goldstein (1982)	X	116
	1.1×10^{-3}		Ryan et al. (1988)	C	
	8.4×10^{-4}		Shen (1982)	C	
	3.0×10^{-4}		Hilal et al. (2008)	Q	
		3600	Kühne et al. (2005)	Q	
	8.4×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
	9.7×10^{-4}		Mackay et al. (2006b)	?	
	2.,,,,20	4200	Kühne et al. (2005)	?	
	9.7×10^{-4}		Mackay et al. (1993)	?	
	8.4×10^{-4}		Yaws and Yang (1992)	?	92
	8.4×10^{-4}		Abraham et al. (1990)	?	
trachloroethene	6.2×10^{-4}	4500	Warneck (2007)	L	
$^{1}_{2}\text{Cl}_{4}$	6.0×10^{-4}	4200	Fogg and Sangster (2003)	L	
etrachloroethylene)	5.9×10^{-4}	4800	Staudinger and Roberts (2001)	L	
[27-18-4]	5.8×10^{-4}	4800	Staudinger and Roberts (1996)	L	
	4.3×10^{-4}		Mackay and Shiu (1981)	L	
	9.9×10^{-4}	4600	Hiatt (2013)	M	
	6.2×10^{-4}	4200	Chen et al. (2012)	M	
	5.8×10^{-4}	4200	Shimotori and Arnold (2003)	M	
	4.1×10^{-4}	5300	Moore (2000)	M	127
	6.0×10^{-4}	4100	Vane and Giroux (2000)	M	
	5.3×10^{-4}		Ryu and Park (1999)	M	
	8.6×10^{-4}		Dohnal and Hovorka (1999)	M	9

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	${\rm d} \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	D. C	Tr.	NT 4
(Other name(s))	[mol]	. , ,	Reference	Type	Note
CAS registry number]	$\left[\frac{\text{mor}}{\text{m}^3 \text{Pa}}\right]$	[K]			
	6.2×10^{-4}		Chiang et al. (1998)	M	9
	7.8×10^{-4}		Peng and Wan (1998)	M	
	4.7×10^{-4}	4100	Peng and Wan (1998)	M	127
	6.1×10^{-4}	4200	Peng and Wan (1997)	M	
	8.4×10^{-4}		Hovorka and Dohnal (1997)	M	9
	6.9×10^{-4}	2200	Kondoh and Nakajima (1997)	M	
	5.5×10^{-4}	4200	Park et al. (1997)	M	
	6.9×10^{-4}	4800	Dewulf et al. (1995)	M	
	5.6×10^{-4}	3600	Robbins et al. (1993)	M	
	6.3×10^{-4}		Hoff et al. (1993)	M	
	6.3×10^{-4}		Li et al. (1993)	M	
	8.1×10^{-4}	2100	Kolb et al. (1992)	M	102
	5.9×10^{-4}	5500	Tancrède and Yanagisawa (1990)	M	
	6.2×10^{-4}	5300	Bissonette et al. (1990)	M	
	5.4×10^{-4}	4400	Ashworth et al. (1988)	M	103
	5.6×10^{-4}	4900	Gossett (1987)	M	
	5.4×10^{-4}	4400	Munz and Roberts (1987)	M	
	7.7×10^{-4}		Hellmann (1987)	M	31
	7.5×10^{-4}		Yurteri et al. (1987)	M	9
	6.5×10^{-4}	4600	Gossett et al. (1985)	M	
	5.7×10^{-4}	5100	Lincoff and Gossett (1984)	M	
	6.1×10^{-4}	4700	Leighton and Calo (1981)	M	
	5.7×10^{-4}	5200	Ervin et al. (1980)	M	
	3.4×10^{-4}	3200	Warner et al. (1980)	M	
	1.1×10^{-3}	4300	Gossett (1980)	M	
	1.7×10^{-4}	7300	Sato and Nakajima (1979b)	M	19
	5.0×10^{-4}		Pearson and McConnell (1975)	M	248, 9
	3.0×10^{-4}		Mackay et al. (2006b)	V	240,
	3.4×10^{-4}		Park et al. (1997)	V	
	3.7×10^{-4}		Mackay et al. (1993)	V	
	3.6×10^{-4}		Hwang et al. (1992)	V	
	3.5×10^{-4}		_	V	
	3.4×10^{-4}		Warner et al. (1980)	v V	240
	4.0×10^{-4}		Dilling (1977)	V	249 9
	1.2×10^{-3}		Dilling (1977)	V	
	3.7×10^{-4}		Dilling (1977)	V	66
	9.8×10^{-4}		Hine and Mookerjee (1975)	V V	
	3.6×10^{-4}	1500	Dilling et al. (1975)		116
	6.3×10^{-4}	1500	Goldstein (1982)	X	110
			Ryan et al. (1988)	C	
	3.4×10^{-4}		Shen (1982)	C	
	8.1×10^{-4}		Dilling (1977)	C	
	8.1×10^{-4}		Dilling et al. (1975)	C	
	1.7×10^{-4}	2000	Hilal et al. (2008)	Q	
	0.0 10-1	3900	Kühne et al. (2005)	Q	
	8.8×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	5.8×10^{-4}	5100	Mackay et al. (2006b)	?	
	.	5100	Kühne et al. (2005)	?	
	5.8×10^{-4}		Mackay et al. (1993)	?	0.5
	3.7×10^{-4}		Yaws and Yang (1992)	?	92

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(\text{at } T^{\ominus})$ $\left[\begin{array}{c} \text{mol} \\ \end{array} \right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type	Note
	[m ³ Pa]	[K]			
	3.4×10^{-4}		Abraham et al. (1990)	?	
	2.9×10^{-3}		Chiou et al. (1980)	?	27
dichloroethyne C ₂ Cl ₂ [7572-29-4]	4.9×10^{-4}		HSDB (2015)	Q	38
1-chloro-1-propene C ₃ H ₅ Cl [590-21-6]	1.8×10^{-4}		HSDB (2015)	Q	38
2-chloro-1-propene C ₃ H ₅ Cl [557-98-2]	1.4×10^{-4}		HSDB (2015)	Q	38
3-chloro-1-propene	9.1×10^{-4}		Mackay and Shiu (1981)	L	
C ₃ H ₅ Cl	1.3×10^{-3}	4500	Hiatt (2013)	M	
(allyl chloride)	9.0×10^{-4}		HSDB (2015)	V	
[107-05-1]	4.6×10^{-4}		Mackay et al. (1993)	V	
	9.2×10^{-4}		Dilling (1977)	V	
	1.1×10^{-3}		Hine and Mookerjee (1975)	V	
	4.0×10^{-3}		Hilal et al. (2008)	Q	
	1.8×10^{-3}		Nirmalakhandan et al. (1997)	Q	
	1.7×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
	1.1×10^{-3}		Yaws and Yang (1992)	?	92
	1.1×10^{-3}		Abraham et al. (1990)	?	
1,1-dichloropropene	6.1×10^{-4}	4200	Hiatt (2013)	M	
C ₃ H ₄ Cl ₂ [563-58-6]	5.4×10^{-4}	1900	Kondoh and Nakajima (1997)	M	
1,2-dichloropropene	2.0×10^{-3}		HSDB (2015)	V	
C ₃ H ₄ Cl ₂ [563-54-2]	3.1×10^{-4}		Hilal et al. (2008)	Q	
1,3-dichloropropene	6.4×10^{-3}	4200	Wright et al. (1992)	M	
$C_3H_4Cl_2$	2.8×10^{-3}		Warner et al. (1980)	M	
[542-75-6]	7.3×10^{-3}		Warner et al. (1980)	V	
	2.8×10^{-3}	1500	Goldstein (1982)	X	116
	5.8×10^{-3}		Hilal et al. (2008)	C	
	8.1×10^{-3}		Ryan et al. (1988)	C	
	2.8×10^{-3}		Shen (1982)	C	
	5.7×10^{-3}		Hilal et al. (2008)	Q	
cis-1,3-dichloropropene	4.2×10^{-3}		Mackay and Shiu (1981)	L	
C ₃ H ₄ Cl ₂	9.5×10^{-3}	5500	Hiatt (2013)	M	
[10061-01-5]	6.3×10^{-3}	4300	Kondoh and Nakajima (1997)	M	
	5.0×10^{-3}	5800	Leistra (1970)	M	
	4.2×10^{-3}		Dilling (1977)	V	
	5.5×10^{-3}		Yates and Gan (1998)	?	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
trans-1,3-dichloropropene C ₃ H ₄ Cl ₂ [10061-02-6]	5.6×10^{-3} 5.8×10^{-3} 1.0×10^{-2} 8.1×10^{-3} 5.6×10^{-3} 9.4×10^{-3}	4800 5000 5700	Mackay and Shiu (1981) Hiatt (2013) Kondoh and Nakajima (1997) Leistra (1970) Dilling (1977) Yates and Gan (1998)	L M M M V ?	
2,3-dichloropropene C ₃ H ₄ Cl ₂ [78-88-6]	2.8×10^{-3} 2.7×10^{-3} 3.5×10^{-3} 4.8×10^{-3}		Mackay and Shiu (1981) Dilling (1977) Albanese et al. (1987) Hilal et al. (2008)	L V X Q	137
1,2,3-trichloro-1-propene C ₃ H ₃ Cl ₃ [96-19-5]	5.5×10 ⁻⁴		HSDB (2015)	Q	38
1,1,2,3,3,3-hexachloro-1-propene C ₃ Cl ₆ [1888-71-7]	$6.2 \times 10^{-3} \\ 9.9 \times 10^{-4}$		HSDB (2015) Hilal et al. (2008)	Q Q	38
3-chloro-2-methyl-1-propene C ₄ H ₇ Cl 563-47-3]	1.1×10^{-3}		HSDB (2015)	V	
(Z)-1-chloro-2-butene C ₄ H ₇ Cl (cis-1-chloro-2-butene) [4628-21-1]	1.2×10 ⁻³	2800 3800 2800	Bakierowska and Trzeszczyński (2003) Kühne et al. (2005) Kühne et al. (2005)	M Q ?	
(<i>E</i>)-1-chloro-2-butene C ₄ H ₇ Cl (<i>trans</i> -1-chloro-2-butene) (4894-61-5]	3.1×10^{-3}	3000 3800 3000	Bakierowska and Trzeszczyński (2003) Kühne et al. (2005) Kühne et al. (2005)	M Q ?	
1,3-dichloro-2-butene C ₄ H ₆ Cl ₂ 926-57-8]	2.6×10 ⁻⁴		HSDB (2015)	Q	38
1,4-dichloro-2-butene C ₄ H ₆ Cl ₂ 764-41-0]	1.7×10 ⁻²		HSDB (2015)	V	
(<i>Z</i>)-1,4-dichloro-2-butene C ₄ H ₆ Cl ₂ [1476-11-5]	$3.0 \times 10^{-2} \\ 8.2 \times 10^{-3}$	9400	Hiatt (2013) HSDB (2015)	M V	
(E)-1,4-dichloro-2-butene C ₄ H ₆ Cl ₂ [110-57-6]	3.5×10^{-2} 1.5×10^{-2} 7.2×10^{-2}	6600	Hiatt (2013) HSDB (2015) Hilal et al. (2008)	M V Q	
3,4-dichloro-1-butene C ₄ H ₆ Cl ₂ [760-23-6]	1.1×10^{-3}		HSDB (2015)	V	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1-chloro-2-methylpropene C ₄ H ₇ Cl (dimethylvinyl chloride) [513-37-1]	5.2×10 ⁻⁴		HSDB (2015) Haynes (2014)	V W	257
2-chloro-1,3-butadiene C ₄ H ₅ Cl [126-99-8]	$4.7 \times 10^{-2} \\ 1.8 \times 10^{-4}$		Mackay et al. (1993) HSDB (2015)	V Q	38
hexachlorobutadiene CCl ₂ CClCClCl ₂ [87-68-3]	8.3×10^{-4} 2.3×10^{-3} 6.2×10^{-4} 7.0×10^{-4} 2.3×10^{-3} 9.6×10^{-4} 4.0×10^{-4} 6.1×10^{-4} 6.5×10^{-4} 9.1×10^{-4} 9.8×10^{-4} 9.4×10^{-4} 9.6×10^{-4} 9.0×10^{-4} 5.0×10^{-4} 2.3×10^{-3} 1.7×10^{-2} 6.2×10^{-4}	3100 6200 4900 2500 4600	Fogg and Sangster (2003) Hiatt (2013) Dewulf et al. (1999) Kondoh and Nakajima (1997) Oliver (1985) Warner et al. (1980) Pearson and McConnell (1975) Mackay et al. (2006b) Mackay et al. (1993) Ballschmiter and Wittlinger (1991) Warner et al. (1980) Goldstein (1982) Hilal et al. (2008) Ryan et al. (1988) Shen (1982) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Hilal et al. (2008) Kühne et al. (2005)	L M M M M M V V V V X C C C Q Q Q Q	248, 9 116 107, 108 107, 109 107, 110 107, 111
hexachlorocyclopentadiene C ₅ Cl ₆ [77-47-4]	3.7×10^{-4} 6.0×10^{-4} 6.1×10^{-4} 6.0×10^{-4} 6.2×10^{-4} 6.2×10^{-4} 2.7×10^{-4} 6.0×10^{-4} 2.7×10^{-4} 6.0×10^{-4} 4.6×10^{-3} 5.3×10^{-3} 1.4×10^{-2} 1.6×10^{-2} 2.3×10^{-3}	3500 1500	Kühne et al. (2005) Wolfe et al. (1982) Warner et al. (1980) Mackay et al. (2006b) Mackay et al. (1993) Wolfe et al. (1982) Warner et al. (1980) Goldstein (1982) Ryan et al. (1988) Shen (1982) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Hilal et al. (2008)	7 M M V V V V X C C Q Q Q	116 107, 108 107, 109 107, 110 107, 111

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp} (at T^{Θ})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} \ln H^{cp}}$			
Formula	(at I°)	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
chlordane	1.8×10^{-1}		Fendinger et al. (1989)	M	126
$C_{10}H_6Cl_8$	1.2×10^{-1}		Fendinger et al. (1989)	M	245
[57-74-9]	2.1×10^{-1}		Warner et al. (1980)	M	
	1.1×10^{-1}		Suntio et al. (1988)	V	9
	2.0×10^{-1}		Suntio et al. (1988)	C	
	1.1×10^{-1}		Suntio et al. (1988)	C	
	1.0×10^{-1}		Ryan et al. (1988)	C	
	2.1×10^{-1}		Shen (1982)	C	40= 40
	1.4×10^{-1}		Zhang et al. (2010)	Q	107, 10
	4.8×10^{-2}		Zhang et al. (2010)	Q	107, 109
	2.4×10^{1}		Zhang et al. (2010)	Q	107, 110
	1.5		Zhang et al. (2010)	Q	107, 11
	5.3×10 ⁻²		Hilal et al. (2008)	Q	
cis-chlordane	1.7×10^{-1}		Shen and Wania (2005)	L	143
$C_{10}H_6Cl_8$	1.8×10^{-1}	4400	Shen and Wania (2005)	L	144
(α-chlordane)	3.7×10^{-2}	4100	Jantunen and Bidleman (2006)	M	
[5103-71-9]	1.5×10^{-1}	6100	Cetin et al. (2006)	M	2.52
	1.1×10^{-2}		Atlas et al. (1982)	M	253
	4.8×10^{-3}	7300	Mackay et al. (2006d) Paasivirta et al. (1999)	V T	221
		7300			
trans-chlordane	1.7×10^{-1} 1.5×10^{-1}		Shen and Wania (2005)	L	143
C ₁₀ H ₆ Cl ₈	3.4×10^{-2}	2500	Shen and Wania (2005)	L	144
$(\beta$ -chlordane; γ -chlordane)	6.3×10^{-2}	3500 7600	Jantunen and Bidleman (2006)	M M	
[5103-74-2]	7.4×10^{-3}	7000	Cetin et al. (2006) Atlas et al. (1982)	M	253
	7.4×10		Mackay et al. (2006d)	V	221
	3.6×10^{-3}	7100	Paasivirta et al. (1999)	T	221
cis-nonachlor C ₁₀ H ₅ Cl ₉ [5103-73-1]	1.4	5100	Cetin et al. (2006)	M	
trans-nonachlor	3.1×10^{-2}	4800	Jantunen and Bidleman (2006)	M	
C ₁₀ H ₅ Cl ₉	8.8×10^{-2}	8000	Cetin et al. (2006)	M	
[39765-80-5]	7.9×10^{-4}	7600	Paasivirta et al. (1999)	T	
chlorobenzene	2.7×10^{-3}	3800	Staudinger and Roberts (2001)	L	
C ₆ H ₅ Cl	2.7×10^{-3}	3800	Staudinger and Roberts (1996)	L	
[108-90-7]	2.9×10^{-3}		Mackay and Shiu (1981)	L	
	3.7×10^{-3}	4400	Hiatt (2013)	M	
	1.7×10^{-3}	1300	Lau et al. (2010)	M	89
	2.4×10^{-3}		Li et al. (2008)	M	
	1.5×10^{-3}	2300	Lei et al. (2004)	M	122
	2.5×10^{-3}	4300	Dewulf et al. (1999)	M	
	1.9×10^{-3}		Ryu and Park (1999)	M	0
	3.6×10^{-3}		Dohnal and Hovorka (1999)	M	9
	3.4×10^{-3}		de Wolf and Lieder (1998)	M	31
	3.2×10^{-3}		Shiu and Mackay (1997)	M	0
	3.5×10^{-3}	2.666	Hovorka and Dohnal (1997)	M	9
	3.0×10^{-3}	3600	Kondoh and Nakajima (1997)	M	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp} (at T^{Θ})	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula Other pame(a))		$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
Other name(s)) CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
	1.9×10^{-3}	1700	Park et al. (1997)	M	
	2.9×10^{-3}		Ramachandran et al. (1996)	M	
	3.0×10^{-3}	1900	Khalfaoui and Newsham (1994b)	M	
	2.6×10^{-3}		Hoff et al. (1993)	M	
	3.1×10^{-3}	2900	Ettre et al. (1993)	M	89
	2.5×10^{-3}		Li and Carr (1993)	M	
	3.1×10^{-3}	2000	Cooling et al. (1992)	M	
	2.4×10^{-3}	4700	Bissonette et al. (1990)	M	
	2.5×10^{-3}	2700	Ashworth et al. (1988)	M	103
	2.9×10^{-3}		Hellmann (1987)	M	31
	3.1×10^{-3}		Yurteri et al. (1987)	M	9
	3.2×10^{-3}		Mackay and Shiu (1981)	M	
	3.0×10^{-3}	3500	Leighton and Calo (1981)	M	
	2.9×10^{-3}	4200	Ervin et al. (1980)	M	
	2.5×10^{-3}		Warner et al. (1980)	M	
	2.6×10^{-3}		Mackay et al. (1979)	M	
	1.6×10^{-3}		Sato and Nakajima (1979b)	M	19
	2.8×10^{-3}	4900	Hartkopf and Karger (1973)	M	
	2.7×10^{-3}		Mackay et al. (2006b)	V	
	2.9×10^{-3}	2400	Fogg and Sangster (2003)	V	
	2.7×10^{-3}		Shiu and Mackay (1997)	V	
	2.8×10^{-3}		Park et al. (1997)	V	
	2.9×10^{-3}		Lide and Frederikse (1995)	V	
	2.7×10^{-3}		Mackay et al. (1993)	V	
	2.7×10^{-3}		Mackay et al. (1992a)	V	
	2.5×10^{-3}		Hwang et al. (1992)	V	
	2.7×10^{-3}		Bobra et al. (1985)	V	
	2.7×10^{-3}		Yoshida et al. (1983)	V	
	2.7×10^{-3}		Cabani et al. (1981)	V	
	2.7×10^{-3}		Warner et al. (1980)	V	
	2.2×10^{-3}		Hine and Mookerjee (1975)	V	
	2.7×10^{-3}		Mackay et al. (1979)	T	
	2.5×10^{-3}	2100	Goldstein (1982)	X	116
	2.7×10^{-3}		Schüürmann (2000)	C	7
	2.7×10^{-3}		Ryan et al. (1988)	C	
	2.5×10^{-3}		Shen (1982)	C	
	4.0×10^{-3}		Hilal et al. (2008)	Q	
		4000	Kühne et al. (2005)	Q	
	2.8×10^{-3}		Delgado and Alderete (2002)	Q	
	1.5×10^{-3}		Myrdal and Yalkowsky (1994)	Q	
	4.2×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
	1.8×10^{-3}		Arbuckle (1983)	Q	
		4000	Kühne et al. (2005)	?	
	2.6×10^{-3}		Mackay et al. (1993)	?	
	2.2×10^{-3}		Yaws and Yang (1992)	?	92
	2.8×10^{-3}		Abraham et al. (1990)	?	
	3.8×10^{-3}		Mackay and Yeun (1983)	?	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]		• •	
chlorobenzene-d5	3.6×10^{-3}	4500	Hiatt (2013)	M	
C ₆ D ₅ Cl					
[3114-55-4]					
1,2-dichlorobenzene	6.8×10^{-3}	5300	Fogg and Sangster (2003)	L	258
C ₆ H ₄ Cl ₂	5.4×10^{-3}	5900	Staudinger and Roberts (2001)	L	
(o-dichlorobenzene)	5.4×10^{-3}	5900	Staudinger and Roberts (1996)	L	
[95-50-1]	5.3×10^{-3}		Mackay and Shiu (1981)	L	
	8.0×10^{-3}	4200	Hiatt (2013)	M	
	6.3×10^{-3}		Li et al. (2008)	M	
	4.7×10^{-3}		Ryu and Park (1999)	M	
	5.1×10^{-3}		Shiu and Mackay (1997)	M	
	7.2×10^{-3}		Hovorka and Dohnal (1997)	M	9
	6.2×10^{-3}	5000	Kondoh and Nakajima (1997)	M	
	4.9×10^{-3}	4400	Park et al. (1997)	M	
	4.8×10^{-3}		Li and Carr (1993)	M	
	4.9×10^{-3}	5100	Bissonette et al. (1990)	M	
	5.3×10^{-3}	1400	Ashworth et al. (1988)	M	103
	8.2×10^{-3}		Oliver (1985)	M	
	5.9×10^{-3}	6700	Gossett et al. (1985)	M	
	5.2×10^{-3}		Mackay and Shiu (1981)	M	
	5.1×10^{-3}		Warner et al. (1980)	M	
	3.5×10^{-3}		Sato and Nakajima (1979b)	M	19
	5.6×10^{-3}		Mackay et al. (2006b)	V	
	4.1×10^{-3}		Shiu and Mackay (1997)	V	
	8.6×10^{-3}		Park et al. (1997)	V	
	8.3×10^{-3}		Lide and Frederikse (1995)	V	
	4.1×10^{-3}		Mackay et al. (1992a)	V	
	6.0×10^{-3}		Hwang et al. (1992)	V	
	4.1×10^{-3}		Bobra et al. (1985)	V	
	4.9×10^{-3}		Warner et al. (1980)	V	
	4.0×10^{-3}		Hine and Mookerjee (1975)	V	
	5.2×10^{-3}	2800	Goldstein (1982)	X	116
	5.2×10^{-3}		Schüürmann (2000)	C	7
	2.7×10^{-3}		Ryan et al. (1988)	C	
	5.1×10^{-3}		Shen (1982)	C	
	8.2×10^{-3}		Hilal et al. (2008)	Q	
	2	4400	Kühne et al. (2005)	Q	
	7.1×10^{-3}		Delgado and Alderete (2002)	Q	
	2.3×10^{-3}		Myrdal and Yalkowsky (1994)	Q	
	8.4×10^{-3}	1000	Nirmalakhandan and Speece (1988a)	Q	
		4800	Kühne et al. (2005)	?	0.5
	3.3×10^{-3}		Yaws and Yang (1992)	?	92
	5.1×10^{-3} 6.2×10^{-3}		Abraham et al. (1990) Chiou et al. (1980)	?	27
		1200	· · · · · · · · · · · · · · · · · · ·	•	21
1,2-dichlorobenzene-d4 C ₆ D ₄ Cl ₂ (o-dichlorobenzene-d4) [2199-69-1]	8.2×10^{-3}	4200	Hiatt (2013)	M	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$			
(Other name(s))		$\mathbf{u}(1/T)$	Reference	Type	Note
CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
1,3-dichlorobenzene	3.4×10^{-3}	4300	Fogg and Sangster (2003)	L	
$C_6H_4Cl_2$	2.8×10^{-3}		Mackay and Shiu (1981)	L	
(m-dichlorobenzene)	5.2×10^{-3}	4800	Hiatt (2013)	M	
[541-73-1]	2.9×10^{-3}		Li et al. (2008)	M	
	3.7×10^{-3}		de Wolf and Lieder (1998)	M	31
	4.7×10^{-3}		Hovorka and Dohnal (1997)	M	9
	3.8×10^{-3}	4400	Kondoh and Nakajima (1997)	M	
	3.4×10^{-3}		Hoff et al. (1993)	M	
	3.0×10^{-3}	2600	Ashworth et al. (1988)	M	103
	5.5×10^{-3}		Oliver (1985)	M	
	3.8×10^{-3}		Warner et al. (1980)	M	
	2.1×10^{-3}		Sato and Nakajima (1979b)	M	19
	3.1×10^{-3}		Mackay et al. (2006b)	V	
	2.7×10^{-3}		Shiu and Mackay (1997)	V	
	5.6×10^{-3}		Lide and Frederikse (1995)	V	
	2.7×10^{-3}		Mackay et al. (1992a)	V	
	2.7×10^{-3}		Bobra et al. (1985)	V	
	3.3×10^{-3}		Warner et al. (1980)	V	
	2.1×10^{-3} 3.9×10^{-3}	2400	Hine and Mookerjee (1975)	V	116
	3.9×10^{-3} 3.7×10^{-3}	2400	Goldstein (1982)	X	116
	3.8×10^{-3}		Ryan et al. (1988)	C C	
	4.7×10^{-3}		Shen (1982) Hilal et al. (2008)		
	4.7×10	4100	Kühne et al. (2008)	Q Q	
	4.5×10^{-3}	4100	Delgado and Alderete (2002)	Q	
	2.3×10^{-3}		Myrdal and Yalkowsky (1994)	Q	
	8.4×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
	0.4×10	4500	Kühne et al. (2005)	?	
	3.0×10^{-3}	1500	Yaws and Yang (1992)	?	92
	2.7×10^{-3}		Abraham et al. (1990)	?	/-
,4-dichlorobenzene	4.5×10^{-3}	4400	Fogg and Sangster (2003)	L	
C ₆ H ₄ Cl ₂	6.2×10^{-3}		Mackay and Shiu (1981)	L	
<i>p</i> -dichlorobenzene)	5.8×10^{-3}	4600	Hiatt (2013)	M	
	3.3×10^{-3}		Li et al. (2008)	M	
100-40-7]				N/I	9
100-40-7]	2.5×10^{-3}		Chiang et al. (1998)	M	
100-40-7]	4.1×10^{-3}		Shiu and Mackay (1997)	M	
100-40-7]	4.1×10^{-3} 5.4×10^{-3}		Shiu and Mackay (1997) Hovorka and Dohnal (1997)	M M	9
100-40-7]	4.1×10^{-3} 5.4×10^{-3} 4.7×10^{-3}	4800	Shiu and Mackay (1997) Hovorka and Dohnal (1997) Kondoh and Nakajima (1997)	M M M	
100-40-7]	4.1×10^{-3} 5.4×10^{-3} 4.7×10^{-3} 3.1×10^{-3}	4800 2700	Shiu and Mackay (1997) Hovorka and Dohnal (1997) Kondoh and Nakajima (1997) Ashworth et al. (1988)	M M M	103
100-40-7]	4.1×10^{-3} 5.4×10^{-3} 4.7×10^{-3} 3.1×10^{-3} 5.2×10^{-3}		Shiu and Mackay (1997) Hovorka and Dohnal (1997) Kondoh and Nakajima (1997) Ashworth et al. (1988) Yurteri et al. (1987)	M M M M	
100-40-7]	4.1×10^{-3} 5.4×10^{-3} 4.7×10^{-3} 3.1×10^{-3} 5.2×10^{-3} 6.6×10^{-3}		Shiu and Mackay (1997) Hovorka and Dohnal (1997) Kondoh and Nakajima (1997) Ashworth et al. (1988) Yurteri et al. (1987) Oliver (1985)	M M M M M	103
100-40-7]	4.1×10^{-3} 5.4×10^{-3} 4.7×10^{-3} 3.1×10^{-3} 5.2×10^{-3} 6.6×10^{-3} 4.2×10^{-3}		Shiu and Mackay (1997) Hovorka and Dohnal (1997) Kondoh and Nakajima (1997) Ashworth et al. (1988) Yurteri et al. (1987) Oliver (1985) Mackay and Shiu (1981)	M M M M M M	103
100-40-7]	4.1×10^{-3} 5.4×10^{-3} 4.7×10^{-3} 3.1×10^{-3} 5.2×10^{-3} 6.6×10^{-3} 4.2×10^{-3} 3.6×10^{-3}		Shiu and Mackay (1997) Hovorka and Dohnal (1997) Kondoh and Nakajima (1997) Ashworth et al. (1988) Yurteri et al. (1987) Oliver (1985) Mackay and Shiu (1981) Warner et al. (1980)	M M M M M M M	103
100-40-7]	4.1×10^{-3} 5.4×10^{-3} 4.7×10^{-3} 3.1×10^{-3} 5.2×10^{-3} 6.6×10^{-3} 4.2×10^{-3} 3.6×10^{-3} 4.1×10^{-3}		Shiu and Mackay (1997) Hovorka and Dohnal (1997) Kondoh and Nakajima (1997) Ashworth et al. (1988) Yurteri et al. (1987) Oliver (1985) Mackay and Shiu (1981) Warner et al. (1980) Mackay et al. (2006b)	M M M M M M M	103
100-40-7]	4.1×10^{-3} 5.4×10^{-3} 4.7×10^{-3} 3.1×10^{-3} 5.2×10^{-3} 6.6×10^{-3} 4.2×10^{-3} 3.6×10^{-3} 4.1×10^{-3} 6.3×10^{-3}		Shiu and Mackay (1997) Hovorka and Dohnal (1997) Kondoh and Nakajima (1997) Ashworth et al. (1988) Yurteri et al. (1987) Oliver (1985) Mackay and Shiu (1981) Warner et al. (1980) Mackay et al. (2006b) Shiu and Mackay (1997)	M M M M M M W V	103
100-40-7]	4.1×10^{-3} 5.4×10^{-3} 4.7×10^{-3} 3.1×10^{-3} 5.2×10^{-3} 6.6×10^{-3} 4.2×10^{-3} 3.6×10^{-3} 4.1×10^{-3} 6.3×10^{-3} 6.7×10^{-3}		Shiu and Mackay (1997) Hovorka and Dohnal (1997) Kondoh and Nakajima (1997) Ashworth et al. (1988) Yurteri et al. (1987) Oliver (1985) Mackay and Shiu (1981) Warner et al. (1980) Mackay et al. (2006b) Shiu and Mackay (1997) Lide and Frederikse (1995)	M M M M M M M V V	103
106-46-7]	4.1×10^{-3} 5.4×10^{-3} 4.7×10^{-3} 3.1×10^{-3} 5.2×10^{-3} 6.6×10^{-3} 4.2×10^{-3} 3.6×10^{-3} 4.1×10^{-3} 6.3×10^{-3}		Shiu and Mackay (1997) Hovorka and Dohnal (1997) Kondoh and Nakajima (1997) Ashworth et al. (1988) Yurteri et al. (1987) Oliver (1985) Mackay and Shiu (1981) Warner et al. (1980) Mackay et al. (2006b) Shiu and Mackay (1997)	M M M M M M W V	103

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]		31	
	2.2×10^{-3}		Hine and Mookerjee (1975)	V	
	3.7×10^{-3}	2700	Goldstein (1982)	X	116
	4.1×10^{-3}		Schüürmann (2000)	C	7
	4.1×10^{-3}		Ryan et al. (1988)	C	
	3.6×10^{-3}		Shen (1982)	C	
	6.5×10^{-3}		Hilal et al. (2008)	Q	
		4100	Kühne et al. (2005)	Q	
	4.1×10^{-3}		Delgado and Alderete (2002)	Q	
	2.3×10^{-3}		Myrdal and Yalkowsky (1994)	Q	
	8.4×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
	2.1×10^{-3}		Arbuckle (1983)	Q	
		3700	Kühne et al. (2005)	?	
	2.3×10^{-3}		Yaws and Yang (1992)	?	92
	3.8×10^{-3}		Abraham et al. (1990)	?	
1,2,3-trichlorobenzene	1.5×10 ⁻²	4800	Hiatt (2013)	M	
C ₆ H ₃ Cl ₃	6.3×10^{-3}	4600	Brockbank et al. (2013)	M	
[87-61-6]	8.0×10^{-3}		Lee et al. (2012)	M	
	3.6×10^{-3}	4200	Dewulf et al. (1999)	M	
	7.9×10^{-3}		Shiu and Mackay (1997)	M	
	1.5×10^{-2}	7300	Kondoh and Nakajima (1997)	M	
	1.4×10^{-2}		ten Hulscher et al. (1992)	M	9
	1.1×10^{-2}		Oliver (1985)	M	
	7.9×10^{-3}		Mackay and Shiu (1981)	M	
	4.1×10^{-3}		Mackay et al. (2006b)	V	
	5.8×10^{-3}		Fogg and Sangster (2003)	V	
	2.1×10^{-3}		Fogg and Sangster (2003)	V	
	4.1×10^{-3}		Shiu and Mackay (1997)	V	
	3.3×10^{-3}		Abraham et al. (1994a)	V	
	4.1×10^{-3}		Mackay et al. (1992a)	V	
	4.2×10^{-3}		Bobra et al. (1985)	V	
	4.3×10^{-3}		Mackay and Shiu (1981)	V	
	4.5×10^{-3}		Zhang et al. (2010)	Q	107, 108
	6.9×10^{-3}		Zhang et al. (2010)	Q	107, 109
	1.6×10^{-2}		Zhang et al. (2010)	Q	107, 110
	5.2×10^{-3}		Zhang et al. (2010)	Q	107, 111
	8.0×10^{-3}		Hilal et al. (2008)	Q	
	_	4800	Kühne et al. (2005)	Q	
	1.1×10^{-2}		Delgado and Alderete (2002)	Q	
	3.5×10^{-3}		Myrdal and Yalkowsky (1994)	Q	
	1.8×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	
		4200	Kühne et al. (2005)	?	
1,2,3-trichlorobenzene-d3 C ₆ D ₃ Cl ₃ [3907-98-0]	1.5×10^{-2}	4600	Hiatt (2013)	M	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]	[17]		71	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
1,2,4-trichlorobenzene	1.1×10^{-2}	5100	Hiatt (2013)	M	
C ₆ H ₃ Cl ₃	5.8×10^{-3}		Lee et al. (2012)	M	
[120-82-1]	2.4×10^{-3}	3500	Dewulf et al. (1999)	M	259
	2.7×10^{-3}		Ryu and Park (1999)	M	
	6.5×10^{-3}	5500	Kondoh and Nakajima (1997)	M	
	9.9×10^{-3}		ten Hulscher et al. (1992)	M	9
	4.6×10^{-3}	4000	Ashworth et al. (1988)	M	103
	8.2×10^{-3}		Oliver (1985)	M	
	7.0×10^{-3}		Warner et al. (1980)	M	
	2		Mackay et al. (2006b)	V	256
	7.1×10^{-3}		Fogg and Sangster (2003)	V	
	8.6×10^{-3}		Fogg and Sangster (2003)	V	
	3.6×10^{-3}		Shiu and Mackay (1997)	V	
	7.1×10^{-3}		Lide and Frederikse (1995)	V	
	3.6×10^{-3}		Mackay et al. (1992a)	V	
	4.8×10^{-3}		McLachlan et al. (1990)	V	147
	3.6×10^{-3}		Bobra et al. (1985)	V	
	2.5×10^{-3}		Yoshida et al. (1983)	V	
	2.6×10^{-3}		Mackay and Shiu (1981)	V	
	4.3×10^{-3}		Warner et al. (1980)	V	101
	7.0×10^{-3} 7.0×10^{-3}	2500	Goldstein (1982)	X	181
	6.9×10^{-3}	2500	Goldstein (1982)	X C	116
	4.2×10^{-4}		Meylan and Howard (1991)	C	
	7.0×10^{-3}		Ryan et al. (1988) Shen (1982)	C	
	4.5×10^{-3}		Zhang et al. (2010)	Q	107, 108
	7.7×10^{-3}		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 100
	1.5×10^{-2}		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 105
	4.6×10^{-3}		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 110
	9.9×10^{-3}		Hilal et al. (2008)	Q	107, 111
	J.J × 10	4500	Kühne et al. (2005)	Q	
	6.7×10^{-3}	.500	Delgado and Alderete (2002)	Q	
	1.6×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	3.5×10^{-3}		Myrdal and Yalkowsky (1994)	Q	
	4.5×10^{-3}		Meylan and Howard (1991)	Q	
		3200	Kühne et al. (2005)	?	
1,2,4-trichlorobenzene-d3	9.8×10^{-3}	4600	Hiatt (2013)	M	
1,2,4-tricinorosciizene-us C ₆ D ₃ Cl ₃ [2199-72-6]	7.0×10	4000	That (2013)	141	
1,3,5-trichlorobenzene	1.8×10^{-3}	4100	Dewulf et al. (1999)	M	260
C ₆ H ₃ Cl ₃	5.2×10^{-3}		ten Hulscher et al. (1992)	M	9
[108-70-3]	3.5×10^{-2}		Hellmann (1987)	M	31
	5.2×10^{-3}		Oliver (1985)	M	
			Mackay et al. (2006b)	V	256
	1.4×10^{-3}		Fogg and Sangster (2003)	V	
	8.5×10^{-4}		Fogg and Sangster (2003)	V	
	9.1×10^{-4}		Shiu and Mackay (1997)	V	
	1.0×10^{-2}		Lide and Frederikse (1995)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	1.5×10^{-3}		Abraham et al. (1994a)	V	
	9.1×10^{-4}		Mackay et al. (1992a)	V	
	9.1×10^{-4}		Bobra et al. (1985)	V	
	6.2×10^{-3}		Mackay and Shiu (1981)	V	
	4.6×10^{-3}		Hilal et al. (2008)	Q	
		4200	Kühne et al. (2005)	Q	
	4.6×10^{-3}		Delgado and Alderete (2002)	Q	
	1.6×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	3.5×10^{-3}		Myrdal and Yalkowsky (1994)	Q	
	4.5×10^{-3}		Meylan and Howard (1991)	Q	
		4400	Kühne et al. (2005)	?	
1,2,3,4-tetrachlorobenzene	3.5×10^{-3}		Ryu and Park (1999)	M	
$C_6H_2Cl_4$	1.3×10^{-2}	4800	ten Hulscher et al. (1992)	M	
[634-66-2]	5.7×10^{-2}		Hellmann (1987)	M	31
	1.4×10^{-2}		Oliver (1985)	M	
	9.0×10^{-3}		Mackay et al. (2006b)	V	
	6.9×10^{-3}		Shiu and Mackay (1997)	V	
	6.9×10^{-3}		Mackay et al. (1992a)	V	
	5.8×10^{-3}		McLachlan et al. (1990)	V	147
	6.9×10^{-3}		Bobra et al. (1985)	V	
	3.8×10^{-3}		Mackay and Shiu (1981)	V	
	6.1×10^{-3}		Zhang et al. (2010)	Q	107, 108
	7.7×10^{-3}		Zhang et al. (2010)	Q	107, 109
	2.1×10^{-2}		Zhang et al. (2010)	Q	107, 110
	4.6×10^{-3}		Zhang et al. (2010)	Q	107, 111
	8.6×10^{-3}		Hilal et al. (2008)	Q	
	2	5200	Kühne et al. (2005)	Q	
	1.1×10^{-2}		Delgado and Alderete (2002)	Q	
	5.7×10^{-3}		Myrdal and Yalkowsky (1994)	Q	
	6.1×10^{-3}	4.500	Meylan and Howard (1991)	Q	
		4500	Kühne et al. (2005)	?	
1,2,3,5-tetrachlorobenzene	6.3×10^{-3}		Shiu and Mackay (1997)	M	
$C_6H_2Cl_4$	1.0×10^{-2}		ten Hulscher et al. (1992)	M	9
[634-90-2]	6.3×10^{-3}		Mackay and Shiu (1981)	M	
	1.7×10^{-3}		Mackay et al. (2006b)	V	
	2.1×10^{-3}		Fogg and Sangster (2003)	V	
	1.8×10^{-3}		Fogg and Sangster (2003)	V	
	1.7×10^{-3}		Shiu and Mackay (1997)	V	
	1.7×10^{-3}		Mackay et al. (1992a)	V	
	1.7×10^{-3}		Bobra et al. (1985)	V	
	1.7×10^{-3}		Mackay and Shiu (1981)	V	
	6.3×10^{-3}		Meylan and Howard (1991)	C	
	7.7×10^{-3}		Hilal et al. (2008)	Q	
	7.1×10^{-3}		Delgado and Alderete (2002)	Q	
	3.2×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	5.7×10^{-3}		Myrdal and Yalkowsky (1994)	Q	
	6.1×10^{-3}		Meylan and Howard (1991)	Q	
	2.4×10^{-2}		Nirmalakhandan and Speece (1988a)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1,2,4,5-tetrachlorobenzene	1.8×10^{-2}		McPhedran et al. (2013)	M	
$C_6H_2Cl_4$	6.6×10^{-3}		Lee et al. (2012)	M	
[95-94-3]	9.9×10^{-3}		Oliver (1985)	M	
	8.2×10^{-3}		Mackay et al. (2006b)	V	
	2.8×10^{-4}		Fogg and Sangster (2003)	V	
	1.1×10^{-3}		Fogg and Sangster (2003)	V	
	8.2×10^{-3}		Shiu and Mackay (1997)	V	
	8.2×10^{-3}		Mackay et al. (1992a)	V	
	8.2×10^{-3}		Bobra et al. (1985)	V	
	3.8×10^{-3}		Mackay and Shiu (1981)	V	40= 400
	6.1×10^{-3}		Zhang et al. (2010)	Q	107, 108
	8.4×10^{-3}		Zhang et al. (2010)	Q	107, 109
	1.8×10^{-2}		Zhang et al. (2010)	Q	107, 110
	4.8×10^{-3}		Zhang et al. (2010)	Q	107, 111
	9.2×10^{-3}		Hilal et al. (2008)	Q	
	6.8×10^{-3}		Delgado and Alderete (2002)	Q	
	3.2×10^{-2}		Nirmalakhandan et al. (1997)	Q	
	5.7×10^{-3}		Myrdal and Yalkowsky (1994)	Q	
	6.1×10^{-3}		Meylan and Howard (1991)	Q	
pentachlorobenzene	1.4×10^{-2}	5200	Shen and Wania (2005)	L	143
C ₆ HCl ₅	1.4×10^{-2}	5600	Shen and Wania (2005)	L	144
[608-93-5]	3.0×10^{-2}		McPhedran et al. (2013)	M	
	5.6×10^{-3}		Lee et al. (2012)	M	
	1.4×10^{-2}	5200	ten Hulscher et al. (1992)	M	
	2.0×10^{-1}		Hellmann (1987)	M	31
	1.4×10^{-2}		Oliver (1985)	M	
	1.2×10^{-2}		Mackay et al. (2006b)	V	
	3.5×10^{-2}		Fogg and Sangster (2003)	V	
	2.4×10^{-2}		Fogg and Sangster (2003)	V	
	1.2×10^{-2}		Shiu and Mackay (1997)	V	
	1.2×10^{-2}		Mackay et al. (1992a)	V	
	1.2×10^{-2}		Bobra et al. (1985)	V	
	1.0×10^{-3}		Mackay and Shiu (1981)	V	
	8.2×10^{-3}		Zhang et al. (2010)	Q	107, 108
	6.9×10^{-3}		Zhang et al. (2010)	Q	107, 109
	1.8×10^{-2}		Zhang et al. (2010)	Q	107, 110
	7.0×10^{-3}		Zhang et al. (2010)	Q	107, 111
	7.2×10^{-3}	55 00	Hilal et al. (2008)	Q	
	70.10-2	5700	Kühne et al. (2005)	Q	
	7.9×10^{-3}		Delgado and Alderete (2002)	Q	
	9.4×10^{-3}	5100	Myrdal and Yalkowsky (1994)	Q	
		5100	Kühne et al. (2005)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]	10.00.00		11000
hexachlorobenzene	1.9×10^{-2}	6000	Shen and Wania (2005)	L	143
C_6Cl_6	1.5×10^{-2}	6400	Shen and Wania (2005)	L	144
[118-74-1]	3.3×10^{-2}		McPhedran et al. (2013)	M	
	7.6×10^{-3}		Lee et al. (2012)	M	
	3.0×10^{-2}	6900	Jantunen and Bidleman (2006)	M	
	4.2×10^{-2}		Altschuh et al. (1999)	M	40=
	3.8×10^{-5}	570	Hansen et al. (1993)	M	105
	2.0×10^{-2} 2.6	5700	ten Hulscher et al. (1992)	M M	31
	2.0 2.1×10^{-2}		Hellmann (1987)	M M	31
	1.4×10^{-2}		Oliver (1985) Atlas et al. (1983)	M	126
	7.5×10^{-3}		Atlas et al. (1983) Atlas et al. (1982)	M	253
	5.8×10^{-3}		Warner et al. (1980)	M	233
	7.6×10^{-3}		Mackay et al. (2006b)	V	
	7.6×10^{-3}		Shiu and Mackay (1997)	v	
	7.7×10^{-3}		Lide and Frederikse (1995)	V	
	7.6×10^{-3}		Mackay et al. (1992a)	V	
	7.1×10^{-3}		Ballschmiter and Wittlinger (1991)	V	
	1.1×10^{-2}		Calamari et al. (1991)	V	9
	1.4×10^{-1}		Riederer (1990)	V	
	2.5×10^{-2}		McLachlan et al. (1990)	V	147
	1.4×10^{-1}		Suntio et al. (1988)	V	9
	7.2×10^{-3}		Bobra et al. (1985)	V	
	1.6×10^{-2}		Yoshida et al. (1983)	V	
	2.0×10^{-1}		Mackay and Shiu (1981)	V	
	3.0×10^{-3}	3700	Paasivirta et al. (1999)	T	
	5.8×10^{-3}	1600	Goldstein (1982)	X	116
	1.0×10^{-2}		Hilal et al. (2008)	C	
	1.5×10^{-2}		Suntio et al. (1988)	C	9
	5.8×10^{-3}		Ryan et al. (1988)	C	
	5.8×10^{-3}		Shen (1982)	C	40= 400
	1.1×10^{-2}		Zhang et al. (2010)	Q	107, 108
	6.1×10^{-3}		Zhang et al. (2010)	Q	107, 109
	1.6×10^{-2} 1.0×10^{-2}		Zhang et al. (2010)	Q	107, 110
	1.0×10^{-2} 2.0×10^{-2}		Zhang et al. (2010) Hilal et al. (2008)	Q	107, 111
	2.0×10 -	6400	Kühne et al. (2008)	Q Q	
	6.5×10^{-3}	UTUU	Delgado and Alderete (2002)	Q	
	1.6×10^{-2}		Myrdal and Yalkowsky (1994)	Q	
	8.6×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
	0.0.7.10	7200	Kühne et al. (2005)	?	
	2.4×10^{-5}		Yaws and Yang (1992)	?	92
(chloromethyl)-benzene	2.0×10^{-2}	7200	Hiatt (2013)	M	
C ₆ H ₅ CH ₂ Cl	2.8×10^{-2}		Hovorka and Dohnal (1997)	M	9
	1.2×10^{-2}		Li and Carr (1993)	M	
(benzylchloride) [100-44-7]			HSDB (2015)	V	
[100-44-7]	2.4×10^{-2}		NSDB (2013)	v	
· · · · · ·	2.9×10^{-2}		Lide and Frederikse (1995)	V	
· · · · · ·					

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{3R}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	$\frac{\left[\overline{m^3 Pa}\right]}{1.0 \times 10^{-2}}$		Abraham et al. (1990)	?	
1-chloro-2-methylbenzene	3.2×10^{-3}	4100	Hiatt (2013)	M	
C ₇ H ₇ Cl	2.4×10^{-3}	3400	Kondoh and Nakajima (1997)	M	
(o-chlorotoluene)	2.8×10^{-3}	3500	Leighton and Calo (1981)	M	
[95-49-8]	1.9×10^{-2}	3000	Goldstein (1982)	X	116
	2.8×10^{-3}		Schüürmann (2000)	C	7
	4.3×10^{-3}		Hilal et al. (2008)	Q	
		4400	Kühne et al. (2005)	Q	
	3.1×10^{-3}		Nirmalakhandan et al. (1997)	Q	
	•	4900	Kühne et al. (2005)	?	
	2.8×10^{-3}		Abraham et al. (1990)	?	
1-chloro-3-methylbenzene	6.2×10 ⁻⁴		Schüürmann (2000)	V	
C ₇ H ₇ Cl	3.8×10^{-3}		Hilal et al. (2008)	Q	
(<i>m</i> -chlorotoluene)		4400	Kühne et al. (2005)	Q	
[108-41-8]		4800	Kühne et al. (2005)	?	
1-chloro-4-methylbenzene	4.1×10^{-3}	4200	Hiatt (2013)	M	
C ₇ H ₇ Cl	2.9×10^{-3}	3900	Kondoh and Nakajima (1997)	M	
(p-chlorotoluene)	2.2×10^{-3}		HSDB (2015)	V	
[106-43-4]	4.0×10^{-3}		Hilal et al. (2008)	Q	
		4400	Kühne et al. (2005)	Q	
		4300	Kühne et al. (2005)	?	
(dichloromethyl)-benzene	1.3×10^{-2}		Zhang et al. (2010)	Q	107, 108
C ₇ H ₆ Cl ₂	3.4×10^{-2}		Zhang et al. (2010)	Q	107, 109
[98-87-3]	1.1×10^{-1}		Zhang et al. (2010)	Q	107, 110
	1.0×10^{-2}		Zhang et al. (2010)	Q	107, 111
	3.9×10^{-2}		Hilal et al. (2008)	Q	
1,2-dichloro-4-methylbenzene C ₇ H ₆ Cl ₂	7.9×10^{-3}		Hilal et al. (2008)	Q	
[95-75-0]					
1,3-dichloro-2-methylbenzene	2.3×10^{-3}		HSDB (2015)	Q	38
C ₇ H ₆ Cl ₂	3.1×10^{-3}		Zhang et al. (2010)	Q	107, 108
[118-69-4]	8.6×10^{-3}		Zhang et al. (2010)	Q	107, 109
	4.2×10^{-3}		Zhang et al. (2010)	Q	107, 110
	1.8×10^{-3}		Zhang et al. (2010)	Q	107, 111
1-methyl-2,4-dichlorobenzene	2.7×10^{-3}	4900	Brockbank et al. (2013)	M	
C ₇ H ₆ Cl ₂	2.3×10^{-3}		HSDB (2015)	Q	38
(2,4-dichlorotoluene)	3.1×10^{-3}		Zhang et al. (2010)	Q	107, 108
[95-73-8]	5.4×10^{-3}		Zhang et al. (2010)	Q	107, 109
	6.7×10^{-3}		Zhang et al. (2010)	Q	107, 110
	1.8×10^{-3}		Zhang et al. (2010)	Q	107, 111
		4400	Kühne et al. (2005)	Q	
		5500	Kühne et al. (2005)	?	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	d ln H^{cp}			
Formula	(at T^{Θ})	$\frac{1}{d(1/T)}$	5.0	_	
(Other name(s))	「 mol	-(-/-/	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mor}}{\text{m}^3 \text{Pa}}\right]$	[K]			
1-methyl-2,4,5-trichlorobenzene	6.6×10 ⁻³		Oliver (1985)	M	
C ₇ H ₅ Cl ₃	1.2×10^{-2}		Hilal et al. (2008)	Q	
(2,4,5-Trichlorotoluene) [6639-30-1]	4.1×10^{-3}		Meylan and Howard (1991)	Q	
1-methyl-2,3,6-trichlorobenzene	6.6×10^{-3}		Oliver (1985)	M	
C ₇ H ₅ Cl ₃	1.4×10^{-2}		Hilal et al. (2008)	Q	
(2,3,6-Trichlorotoluene) [2077-46-5]	4.1×10^{-3}		Meylan and Howard (1991)	Q	
pentachloromethylbenzene	1.3×10^{-2}		Oliver (1985)	M	
C ₇ H ₃ Cl ₅	1.6×10^{-2}		Hilal et al. (2008)	Q	
(2,3,4,5,6-pentachlorotoluene) [877-11-2]	7.4×10^{-3}		Meylan and Howard (1991)	Q	
1-chloro-2-(chloromethyl)benzene	6.4×10^{-3}		Zhang et al. (2010)	Q	107, 108
C ₇ H ₆ Cl ₂	7.2×10^{-2}		Zhang et al. (2010)	Q	107, 109
[611-19-8]	2.1×10^{-1}		Zhang et al. (2010)	Q	107, 110
	6.1×10^{-3}		Zhang et al. (2010)	Q	107, 111
1-chloro-4-(chloromethyl)benzene	2.9×10^{-2}		HSDB (2015)	Q	38
C ₇ H ₆ Cl ₂	6.4×10^{-3}		Zhang et al. (2010)	Q	107, 108
104-83-6]	7.5×10^{-2} 8.2×10^{-2}		Zhang et al. (2010)	Q	107, 109
	6.1×10^{-3}		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 110 107, 111
chloro(dichloromethyl)benzene	1.8×10^{-2}		Zhang et al. (2010)	Q	107, 111
C ₇ H ₅ Cl ₃	7.3×10^{-2}		Zhang et al. (2010)	Q	107, 108
[88-66-4]	5.4×10^{-2}		Zhang et al. (2010)	Q	107, 109
[66 66 1]	1.3×10^{-2}		Zhang et al. (2010)	Q	107, 111
(trichloromethyl)-benzene	3.8×10^{-2}		HSDB (2015)	Q	38
C ₇ H ₅ Cl ₃	3.8×10^{-2}		Zhang et al. (2010)	Q	107, 108
[98-07-7]	7.2×10^{-3}		Zhang et al. (2010)	Q	107, 109
	2.0×10^{-2}		Zhang et al. (2010)	Q	107, 110
	4.7×10^{-3}		Zhang et al. (2010)	Q	107, 111
1-chloro-4-(trichloromethyl)benzene	5.1×10^{-2}		Zhang et al. (2010)	Q	107, 108
C ₇ H ₄ Cl ₄	1.8×10^{-2}		Zhang et al. (2010)	Q	107, 109
[5216-25-1]	3.4×10^{-2}		Zhang et al. (2010)	Q	107, 110
	6.9×10^{-3}		Zhang et al. (2010)	Q	107, 111
1-chloro-3-ethenylbenzene C ₈ H ₇ Cl [2039-85-2]	4.7×10^{-3}		HSDB (2015)	Q	38
1-chloro-4-ethenylbenzene C ₈ H ₇ Cl [1073-67-2]	4.7×10 ⁻³		HSDB (2015)	Q	38
1,4-dichloro-2,5-dimethylbenzene	2.7×10 ⁻³		Zhang et al. (2010)	Q	107, 108
$C_8H_8Cl_2$	1.2×10^{-2}		Zhang et al. (2010)	Q	107, 109
[1124-05-6]	4.6×10^{-3}		Zhang et al. (2010)	Q	107, 110
	2.3×10^{-3}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{mol}{m^3 Pa}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1,4-bis(trichloromethyl)benzene C ₈ H ₄ Cl ₆ [68-36-0]	7.9×10^{-1} 3.7×10^{-2} 1.1×10^{-1} 5.8×10^{-3}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
α,α -dichloro- o -xylene $C_8H_8Cl_2$ [612-12-4]	1.0×10 ⁻¹	11000	Hiatt (2013)	M	
2-chlorostyrene C ₈ H ₇ Cl [2039-87-4]	4.7×10^{-3} 6.2×10^{-3}		HSDB (2015) Hilal et al. (2008)	Q Q	38
octachlorostyrene C ₈ Cl ₈ [29082-74-4]	7.6×10^{-2} 4.3×10^{-2} 1.6×10^{-2} 4.3×10^{-2}		Oliver (1985) HSDB (2015) Hilal et al. (2008) Meylan and Howard (1991)	M Q Q Q	38
1-chloronaphthalene C ₁₀ H ₇ Cl [90-13-1]	2.8×10^{-2} 2.8×10^{-3} 4.7×10^{-2} 5.7×10^{-2} 6.5×10^{-2}		Shiu and Mackay (1997) Mackay and Shiu (1981) Yaws et al. (2005) Hilal et al. (2008) Nirmalakhandan and Speece (1988a)	M M X Q	181
2-chloronaphthalene C ₁₀ H ₇ Cl [91-58-7]	3.0×10^{-2} 3.1×10^{-2} 1.5×10^{-2} 1.6×10^{-2} 3.1×10^{-2} 6.0×10^{-2} 6.5×10^{-2}	3800	Shiu and Mackay (1997) Mackay and Shiu (1981) Hwang et al. (1992) Goldstein (1982) Ryan et al. (1988) Hilal et al. (2008) Nirmalakhandan and Speece (1988a)	M M V X C Q	116
1,2,3-trichloronaphthalene C ₁₀ H ₅ Cl ₃ [1321-65-9]	3.2×10^{-2}		HSDB (2015)	Q	38
1,2,3,4-tetrachloronaphthalene C ₁₀ H ₄ Cl ₄ [20020-02-4]	4.1×10^{-2}		HSDB (2015)	V	
1,2,3,4,5-pentachloronaphthalene C ₁₀ H ₃ Cl ₅ [1321-64-8]	8.2×10 ⁻²		HSDB (2015)	Q	38
$1,2,3,4,5,6$ -hexachloronaphthalene $C_{10}H_2Cl_6$ [1335-87-1]	1.1×10^{-1}		HSDB (2015)	Q	38
octachloronaphthalene C ₁₀ Cl ₈ [2234-13-1]	1.4×10 ⁻²		HSDB (2015)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]			-J F -	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
neptachlor	3.3×10^{-2}		Shen and Wania (2005)	L	143
$C_{10}H_5Cl_7$	2.6×10^{-2}		Shen and Wania (2005)	L	144
76-44-8]	1.9×10^{-2}	4300	Cetin et al. (2006)	M	
	3.4×10^{-2}		Altschuh et al. (1999)	M	
	6.7×10^{-3}		Warner et al. (1980)	M	
	2.8×10^{-3}		Mackay et al. (2006d)	V	
	8.9×10^{-3}		Suntio et al. (1988)	V	9
	4.3×10^{-3}		McCarty (1980)	X	145
	6.7×10^{-3}		Meylan and Howard (1991)	C	
	6.5×10^{-3}		Ryan et al. (1988)	C	
	6.7×10^{-3}		Shen (1982)	C	
	2.4×10^{-2}		Hilal et al. (2008)	Q	
	5.6×10^{-2}		Meylan and Howard (1991)	Q	
	2.8×10^{-3}		MacBean (2012a)	?	
,3-dichloronaphthalene	3.4×10^{-2}		Zhang et al. (2010)	Q	107, 108
$C_{10}H_6Cl_2$	7.0×10^{-2}		Zhang et al. (2010)	Q	107, 109
2198-75-6]	4.2×10^{-2}		Zhang et al. (2010)	Q	107, 110
	4.7×10^{-2}		Zhang et al. (2010)	Q	107, 111
-chloro-2-methyl-2-phenylpropane	2.0×10^{-3}		Zhang et al. (2010)	Q	107, 108
$C_{10}H_{13}Cl$	9.5×10^{-3}		Zhang et al. (2010)	Q	107, 109
[515-40-2]	1.6×10^{-2}		Zhang et al. (2010)	Q	107, 110
	1.6×10^{-3}		Zhang et al. (2010)	Q	107, 111
1,3-dichloro-5-[(2 <i>S</i>)-2,4,4,4- etrachlorobutan-2-yl]benzene	8.4×10^{-2}		Zhang et al. (2010)	Q	107, 108
$C_{10}H_8Cl_6$	6.1×10^{-2}		Zhang et al. (2010)	Q	107, 109
[73588-42-8]	1.5		Zhang et al. (2010)	Q	107, 110
	2.9×10^{-3}		Zhang et al. (2010)	Q	107, 111
1,2,3,4,5,6,7,8,8-nonachloro- 2,3,3a,4,7,7a-hexahydro-4,7-methano- 1H-indene C ₁₀ H ₅ Cl ₉ (nonachlor) [3734-49-4]	3.9×10 ⁻¹		HSDB (2015)	Q	38
1,1-dichloro-2,2-bis-(4-chlorophenyl)-ethane	1.5		Shen and Wania (2005)	L	143
$C_{14}H_{10}Cl_4$	2.0		Shen and Wania (2005)	L	144
p,p'-DDD)	9.1×10^{-1}	5100	Cetin et al. (2006)	M	
72-54-8]	1.5		Altschuh et al. (1999)	M	221
	1		Mackay et al. (2006d)	V	221
	1.1×10^{-1}		Ballschmiter and Wittlinger (1991)	V	0
	1.6		Suntio et al. (1988)	V	9
	4.6×10^{-1}	50 000	Yoshida et al. (1983)	V	
	2.9×10^{-2}	7300	Paasivirta et al. (1999)	T	
	8.1×10^{-4}		Ryan et al. (1988)	C	
	2.1		Hilal et al. (2008)	Q	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference		Note
mitotane	1.2		HSDB (2015)	V	
$C_{14}H_{10}Cl_4$	1.6		Suntio et al. (1988)	V	9
(o,p'-DDD)	5.6×10^2		Suntio et al. (1988)	C	261
[53-19-0]	2.3×10^{-1}		Zhang et al. (2010)	Q	107, 108
	1.6		Zhang et al. (2010)	Q	107, 109
	1.1×10^{1}		Zhang et al. (2010)	Q	107, 110
	3.9×10^{-1}		Zhang et al. (2010)	Q	107, 111
1,1-dichloro-2,2-bis-(4-chlorophenyl)-ethene	2.4×10^{-1}		Shen and Wania (2005)	L	143
$C_{14}H_8Cl_4$	2.4×10^{-1}		Shen and Wania (2005)	L	144
(p,p'-DDE)	2.9×10^{-2}	4700	Jantunen and Bidleman (2006)	M	
[72-55-9]	1.6×10^{-1}	7700	Cetin et al. (2006)	M	
	2.4×10^{-1}		Altschuh et al. (1999)	M	
	8.1×10^{-3}		Atlas et al. (1982)	M	253
			Mackay et al. (2006d)	V	221
	2.9×10^{-2}		Ballschmiter and Wittlinger (1991)	V	
	1.6×10^{-1}		Calamari et al. (1991)	V	9
	7.6×10^{-1}		McLachlan et al. (1990)	V	147
	1.3×10^{-1}		Suntio et al. (1988)	V	9
	5.1×10^{-2}		Yoshida et al. (1983)	V	
	2.6×10^{-2}	7600	Paasivirta et al. (1999)	T	
	4.5×10^{-1}		Suntio et al. (1988)	C	255
	4.5×10^{-1}		Ryan et al. (1988)	C	
	1.8×10^{-1}		Hilal et al. (2008)	Q	
o,p'-DDE	3.9×10^{-1}		Mackay et al. (2006d)	V	
$C_{14}H_8Cl_4$	3.9×10^{-1}		Suntio et al. (1988)	V	9
[3424-82-6]	1.4×10^{-1}		Suntio et al. (1988)	C	9
1,1,1-trichloro-2-(2-chlorophenyl)-2- (4-chlorophenyl)ethane	2.9		Mackay et al. (2006d)	V	
C ₁₄ H ₉ Cl ₅ (o,p'-DDT) [789-02-6]	1.9×10^{-2}		Calamari et al. (1991)	V	9
1,1,1-trichloro-2,2-bis-(4-chlorophenyl)-ethane	9.1×10^{-1}		Shen and Wania (2005)	L	143
C ₁₄ H ₉ Cl ₅	9.1×10^{-1}		Shen and Wania (2005)	L	144
(DDT; p,p'-DDT)	1.9×10^{-1}		Mackay and Shiu (1981)	L	
[50-29-3]	9.0×10^{-1}	7500	Cetin et al. (2006)	M	
	1.2		Altschuh et al. (1999)	M	
	7.7×10^{-1}		Fendinger et al. (1989)	M	126
	1.2		Fendinger et al. (1989)	M	245
			Mackay et al. (2006d)	V	221
	1.7×10^{-1}		Ballschmiter and Wittlinger (1991)	V	
	3.4×10^{-1}		Calamari et al. (1991)	V	9
	4.2×10^{-1}		Suntio et al. (1988)	V	9
	6.1×10^{-1}		Caron et al. (1985)	V	
	3.7×10^{-1}		Yoshida et al. (1983)	V	
	1.3×10^{-1}		Burkhard and Guth (1981)	V	
	1.3×10^{-1} 2.5×10^{-1}		Durkilaru anu Guur (1961)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^{3} \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference		Note
	1.9×10^{-2} 1.7×10^{-1}	7800	Paasivirta et al. (1999) Suntio et al. (1988)	T C	255
	2.0×10^{-1}		Ryan et al. (1988)	C	105 100
	6.4×10^{-1}		Zhang et al. (2010)	Q	107, 108
	6.2×10^{-1} 1.6×10^{1}		Zhang et al. (2010)	Q	107, 109
	1.6×10^{-1} 2.0×10^{-1}		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 110 107, 111
	6.7×10^{-1}		Hilal et al. (2008)	Q Q	107, 111
	2.8×10^{-1}		Brimblecombe (1986)	?	28
aldrin	6.7×10^{-2}		Shen and Wania (2005)	L	143
C ₁₂ H ₈ Cl ₆	4.3×10^{-2}		Shen and Wania (2005)	L	144
[309-00-2]	3.6×10^{-1} 2.2×10^{-2}	2000	Mackay and Shiu (1981)	L	
	2.2×10^{-2} 2.2×10^{-1}	3900	Cetin et al. (2006)	M	
	2.2×10^{-2} 2.0×10^{-2}		Altschuh et al. (1999)	M M	
	1.1×10^{-2}		Warner et al. (1980)	V	
	1.1×10^{-2} 1.1×10^{-2}		Mackay et al. (2006d) Suntio et al. (1988)	v V	9
	6.9×10^{-1}		Mackay and Leinonen (1975)	v V	9
	2.0×10^{-2}		Hilal et al. (2008)	Č	
	2.0×10^{-2}		Meylan and Howard (1991)	C	
	7.0×10^{-1}		Suntio et al. (1988)	C	9
	6.1×10^{-1}		Suntio et al. (1988)	C	
	2.6×10^{-2}		Suntio et al. (1988)	C	255
	2.0×10^{-2}		Suntio et al. (1988)	C	9
	8.2×10^{-1}		Ryan et al. (1988)	C	
	2.0×10^{-2}		Shen (1982)	C	
	8.6×10^{-3}		Hilal et al. (2008)	Q	
	2.6×10^{-2}		Meylan and Howard (1991)	Q	
	8.4×10^{-1}		Brimblecombe (1986)	?	28
isodrin C ₁₂ H ₈ Cl ₆	2.5×10^{-2}		HSDB (2015)	Q	38
[465-73-6]					
1,1'-(2,2-dichloroethylidene)bis[4-ethylbenzene C ₁₈ H ₂₀ Cl ₂ (perthane) [72-56-0]	5.8×10 ⁻²		HSDB (2015)	Q	38
	Polychlori	nated bi	phenyls (PCBs)		
2-chlorobiphenyl	3.0×10^{-2}		Lau et al. (2006)	M	262
C ₁₂ H ₉ Cl	2.3×10^{-2}		Lau et al. (2006)	M	263
(PCB-1)	3.0×10^{-2}	5300	Charles and Destaillats (2005)	M	-
[2051-60-7]	4.9×10^{-2}	5100	Bamford et al. (2000)	M	
-	1.7×10^{-2}	5300	Paasivirta and Sinkkonen (2009)	V	
	1.4×10^{-2}		Mackay et al. (2006b)	V	
	1.4×10^{-2}		Mackay et al. (1992a)	V	
	2.7×10^{-3}		Hwang et al. (1992)	V	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	$\frac{1.4 \times 10^{-2}}{}$		Shiu and Mackay (1986)	V	
	3.5×10^{-2}		Burkhard et al. (1985)	V	
	2.3×10^{-2}		Hilal et al. (2008)	Q	
	1.7×10^{-2}		Fang Lee (2007)	Q	264
	2.2×10^{-2}		Fang Lee (2007)	Q	265
		4600	Kühne et al. (2005)	Q	
	3.3×10^{-2}	5400	Dunnivant et al. (1992) Kühne et al. (2005)	Q ?	
-chlorobiphenyl	3.2×10^{-2}	5400	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₉ Cl	1.3×10^{-2}		Mackay et al. (2006b)	V	
PCB-2)	1.3×10^{-2}		Mackay et al. (1992a)	V	
2051-61-8]	1.3×10^{-2}		Shiu and Mackay (1986)	V	
	6.9×10^{-2} 3.7×10^{-2}		Burkhard et al. (1985)	V	
	3.7×10^{-2} 3.7×10^{-2}		Hilal et al. (2008)	Q	264
	3.1×10^{-2} 3.1×10^{-2}		Fang Lee (2007)	Q	264
	3.1×10^{-2} 3.5×10^{-2}		Fang Lee (2007) Dunnivant et al. (1992)	Q Q	265
			· · ·		
-chlorobiphenyl	2.8×10^{-2} 4.2×10^{-2}	5700	Li et al. (2003)	L	143
C ₁₂ H ₉ Cl	4.2×10^{-2} 3.6×10^{-2}	6100	Li et al. (2003)	L M	144
PCB-3)	3.6×10^{-2} 2.9×10^{-2}		Lau et al. (2006)	M	262
2051-62-9]	3.5×10^{-2}	6700	Lau et al. (2006) Charles and Destaillats (2005)	M M	263
	5.6×10^{-2}	6700	Bamford et al. (2002)	M M	
	1.4×10^{-2}	5100	Paasivirta and Sinkkonen (2009)	V	
	2.3×10^{-2}	3100	Mackay et al. (2006b)	V	
	2.3×10^{-2}		Mackay et al. (2000) Mackay et al. (1992a)	V	
	2.3×10^{-2}		Shiu and Mackay (1986)	v	
	7.7×10^{-2}		Burkhard et al. (1985)	V	
	3.9×10^{-2}		Hilal et al. (2008)	Q	
	2.1×10^{-2}		Fang Lee (2007)	Q	264
	3.4×10^{-2}		Fang Lee (2007)	Q	265
	3.6×10^{-2}		Dunnivant et al. (1992)	Q	
,2'-dichlorobiphenyl	4.6×10 ⁻²	6000	Bamford et al. (2002)	M	
C ₁₂ H ₈ Cl ₂	4.0×10^{-2}		Fendinger and Glotfelty (1990)	M	
PCB-4)	2.9×10^{-2}		Dunnivant et al. (1988)	M	
13029-08-8]	2.9×10^{-2}		Dunnivant and Elzerman (1988)	M	266
	3.3×10^{-2}		Murphy et al. (1987)	M	9
	7.1×10^{-3}	5500	Paasivirta and Sinkkonen (2009)	V	
	1.7×10^{-2}		Mackay et al. (2006b)	V	
	1.7×10^{-2}		Mackay et al. (1992a)	V	
	1.7×10^{-2}		Shiu and Mackay (1986)	V	
	1.8×10^{-2}		Burkhard et al. (1985)	V	
	2.6×10^{-2}		Chiou et al. (1980)	V	
	4.5×10^{-2}		Murphy et al. (1983)	X	267, 26
	2.5×10^{-2}		Hilal et al. (2008)	Q	
	2.7×10^{-2}		Fang Lee (2007)	Q	264
	2.1×10^{-2}		Fang Lee (2007)	Q	265
	3.0×10^{-2}		Dunnivant et al. (1992)	Q	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,3-dichlorobiphenyl	4.3×10^{-2}	5800	Bamford et al. (2002)	M	
$C_{12}H_8Cl_2$	2.1×10^{-2}	5500	Paasivirta and Sinkkonen (2009)	V	
(PCB-5)	5.1×10^{-2}		Burkhard et al. (1985)	V	
[16605-91-7]	4.7×10^{-2}		Hilal et al. (2008)	Q	
	3.8×10^{-2}		Fang Lee (2007)	Q	264
	4.1×10^{-2}		Fang Lee (2007)	Q	265
		5000	Kühne et al. (2005)	Q	
	4.1×10^{-2}		Dunnivant et al. (1992)	Q	
	3.5×10^{-2}	5 000	Sabljić and Güsten (1989)	Q	
		5800	Kühne et al. (2005)	?	
2,3'-dichlorobiphenyl	4.3×10^{-2}	5700	Bamford et al. (2002)	M	
$C_{12}H_8Cl_2$	3.9×10^{-2}		Brunner et al. (1990)	M	
(PCB-6)	3.2×10^{-2}		Murphy et al. (1987)	M	9
[25569-80-6]	3.9×10^{-2}	5900	Paasivirta and Sinkkonen (2009)	V	
	2.5×10^{-2}		Shiu and Mackay (1986)	V	
	3.6×10^{-2}		Burkhard et al. (1985)	V	
	5.6×10^{-2}		Hilal et al. (2008)	Q	
	3.4×10^{-2}		Fang Lee (2007)	Q	264
	3.3×10^{-2}		Fang Lee (2007)	Q	265
	3.0×10^{-2}		Dunnivant et al. (1992)	Q	
	2.5×10^{-2}		Sabljić and Güsten (1989)	Q	
2,4-dichlorobiphenyl	3.7×10^{-2}	5200	Bamford et al. (2002)	M	
$C_{12}H_8Cl_2$	2.8×10^{-2}		Dunnivant and Elzerman (1988)	M	
PCB-7)	2.7×10^{-2}		Murphy et al. (1987)	M	9
[33284-50-3]	3.0×10^{-2}	5700	Paasivirta and Sinkkonen (2009)	V	
	2.2×10^{-2}		Mackay et al. (2006b)	V	
	2.2×10^{-2}		Mackay et al. (1992a)	V	
	2.2×10^{-2}		Shiu and Mackay (1986)	V	
	3.4×10^{-2}		Burkhard et al. (1985)	V	
	3.9×10^{-2}		Hilal et al. (2008)	Q	
	2.2×10^{-2}		Fang Lee (2007)	Q	264
	3.0×10^{-2}	4700	Fang Lee (2007)	Q	265
	2 5 10-7	4700	Kühne et al. (2005)	Q	
	2.6×10^{-2}	5500	Dunnivant et al. (1992) Kühne et al. (2005)	Q ?	
0.42 diablamatict1	3.8×10^{-2}				1.42
2,4'-dichlorobiphenyl	3.8×10^{-2} 4.4×10^{-2}	6000 6300	Li et al. (2003) Li et al. (2003)	L	143 144
C ₁₂ H ₈ Cl ₂ (PCB-8)	2.6×10^{-2}	0300	Lau et al. (2006)	L M	262
[34883-43-7]	1.9×10^{-2}		Lau et al. (2006)	M	263
J -1 00J-4J-7]	2.3×10^{-2}	5300	Charles and Destaillats (2005)	M	203
	4.0×10^{-2}	5300	Bamford et al. (2000)	M	
	3.5×10^{-2}	2200	Murphy et al. (1987)	M M	9
	1.0×10^{-2}		Atlas et al. (1982)	M	253
	2.2×10^{-2}	5600	Paasivirta and Sinkkonen (2009)	V	233
	4.4 X IU -	2000	i aasiviita allu siiikkulleli (2009)	v	
			Shin and Mackay (1086)	1/	
	1.1×10^{-2} 4.0×10^{-2}		Shiu and Mackay (1986) Burkhard et al. (1985)	V V	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
Other name(s))	[mol]		1.6.1.6.1.6.1	17 PC	11000
CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
	1.7×10^{-2}		Fang Lee (2007)	Q	264
	3.4×10^{-2}		Fang Lee (2007)	Q	265
		4700	Kühne et al. (2005)	Q	
	3.3×10^{-2}		Dunnivant et al. (1992)	Q	
	3.2×10^{-2}		Sabljić and Güsten (1989)	Q	
		5600	Kühne et al. (2005)	?	
2,5-dichlorobiphenyl	2.3×10^{-2}	5700	ten Hulscher et al. (1992)	M	
$C_{12}H_8Cl_2$	2.5×10^{-2}		Dunnivant et al. (1988)	M	
(PCB-9)	2.5×10^{-2}		Dunnivant and Elzerman (1988)	M	266
34883-39-1]	2.0×10^{-2}	5600	Paasivirta and Sinkkonen (2009)	V	
	5.0×10^{-2}		Mackay et al. (2006b)	V	
	5.0×10^{-2}		Mackay et al. (1992a)	V	
	5.0×10^{-2}		Shiu and Mackay (1986)	V	
	3.0×10^{-2}		Burkhard et al. (1985)	V	
	4.1×10^{-2}		Hilal et al. (2008)	Q	
	3.1×10^{-2}		Fang Lee (2007)	Q	264
	2.6×10^{-2}		Fang Lee (2007)	Q	265
		4700	Kühne et al. (2005)	Q	
	3.0×10^{-2}		Dunnivant et al. (1992)	Q	
		5800	Kühne et al. (2005)	?	
2,6-dichlorobiphenyl	1.2×10^{-2}	5700	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_8Cl_2$	2.1×10^{-2}		Burkhard et al. (1985)	V	
PCB-10)	3.0×10^{-2}		Hilal et al. (2008)	Q	
[33146-45-1]	1.9×10^{-2}		Fang Lee (2007)	Q	264
	2.3×10^{-2}		Fang Lee (2007)	Q	265
	2.3×10^{-2}		Dunnivant et al. (1992)	Q	
	2.1×10^{-2}		Sabljić and Güsten (1989)	Q	
3,3'-dichlorobiphenyl	4.2×10^{-2}		Dunnivant et al. (1988)	M	
$C_{12}H_8Cl_2$	4.2×10^{-2}		Dunnivant and Elzerman (1988)	M	266
PCB-11)	3.4×10^{-2}	5700	Paasivirta and Sinkkonen (2009)	V	
[2050-67-1]	5.9×10^{-2}		Mackay et al. (2006b)	V	
	5.8×10^{-2}		Mackay et al. (1992a)	V	
	7.4×10^{-2}		Burkhard et al. (1985)	V	
	9.0×10^{-2}		Hilal et al. (2008)	Q	
	7.4×10^{-2}		Fang Lee (2007)	Q	264
	4.3×10^{-2}		Fang Lee (2007)	Q	265
	3.4×10^{-2}		Dunnivant et al. (1992)	Q	
	4.3×10^{-2}		Meylan and Howard (1991)	Q	_
3,4-dichlorobiphenyl	7.0×10^{-2}		Brunner et al. (1990)	M	
$C_{12}H_8Cl_2$	4.8×10^{-2}		Dunnivant et al. (1988)	M	
(PCB-12)	4.8×10^{-2}		Dunnivant and Elzerman (1988)	M	266
2974-92-7]	2.0×10^{-2}	5300	Paasivirta and Sinkkonen (2009)	V	
	1.0×10^{-1}		Burkhard et al. (1985)	V	
	7.7×10^{-2}		Hilal et al. (2008)	Q	
	4.8×10^{-2}		Fang Lee (2007)	Q	264
	4.3×10^{-2}		Fang Lee (2007)	Q	265
	4.2×10^{-2}		Dunnivant et al. (1992)	Q	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
3,4'-dichlorobiphenyl	4.9×10^{-2}	6100	Bamford et al. (2002)	M	
$C_{12}H_8Cl_2$	8.5×10^{-2}	5900	Paasivirta and Sinkkonen (2009)	V	
(PCB-13)	8.1×10^{-2}		Burkhard et al. (1985)	V	
[2974-90-5]	9.5×10^{-2}		Hilal et al. (2008)	Q	
	3.7×10^{-2}		Fang Lee (2007)	Q	264
	4.4×10^{-2}		Fang Lee (2007)	Q	265
	3.9×10^{-2}		Dunnivant et al. (1992)	Q	
	3.1×10^{-2}		Sabljić and Güsten (1989)	Q	
3,5-dichlorobiphenyl	2.7×10^{-2}	5500	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_8Cl_2$	6.0×10^{-2}		Burkhard et al. (1985)	V	
(PCB-14)	5.0×10^{-2}		Hilal et al. (2008)	Q	
[34883-41-5]	6.7×10^{-2}		Fang Lee (2007)	Q	264
	3.2×10^{-2}		Fang Lee (2007)	Q	265
	2.3×10^{-2}		Dunnivant et al. (1992)	Q	
	2.0×10^{-2}		Sabljić and Güsten (1989)	Q	
4,4'-dichlorobiphenyl	7.0×10^{-2}	6000	Li et al. (2003)	L	143
$C_{12}H_8Cl_2$	7.5×10^{-2}	6700	Li et al. (2003)	L	144
(PCB-15)	5.0×10^{-2}		Lau et al. (2006)	M	262
[2050-68-2]	3.3×10^{-2}		Lau et al. (2006)	M	263
	3.5×10^{-2}	5300	Charles and Destaillats (2005)	M	
	1.0×10^{-1}		Fendinger and Glotfelty (1990)	M	
	5.0×10^{-2}		Dunnivant et al. (1988)	M	
	5.0×10^{-2}		Dunnivant and Elzerman (1988)	M	266
	3.3×10^{-3}	4900	Paasivirta and Sinkkonen (2009)	V	
	5.6×10^{-2}		Mackay et al. (2006b)	V	
	5.9×10^{-2}		Mackay et al. (1992a)	V	
	5.9×10^{-2}		Shiu and Mackay (1986)	V	
	9.1×10^{-2}		Burkhard et al. (1985)	V	
	1.0×10^{-1}		Chiou et al. (1980)	V	
	3.3×10^{-2}		Murphy et al. (1983)	X	267, 268
	6.8×10^{-2}		Dunnivant et al. (1988)	C	
	9.7×10^{-2}		Hilal et al. (2008)	Q	
	2.1×10^{-2}		Fang Lee (2007)	Q	264
	4.8×10^{-2}		Fang Lee (2007)	Q	265
	4.4×10^{-2}		Dunnivant et al. (1992)	Q	
	4.3×10^{-2}		Meylan and Howard (1991)	Q	
2,2',3-trichlorobiphenyl	4.2×10^{-2}	5700	Bamford et al. (2002)	M	
$C_{12}H_7Cl_3$	4.1×10^{-2}		Murphy et al. (1987)	M	9
(PCB-16)	1.2×10^{-2}		Atlas et al. (1982)	M	253
[38444-78-9]	1.5×10^{-2}	5800	Paasivirta and Sinkkonen (2009)	V	
	1.3×10^{-2}		Shiu and Mackay (1986)	V	
	2.8×10^{-2}		Burkhard et al. (1985)	V	
	5.6×10^{-2}		Hilal et al. (2008)	Q	
	6.1×10^{-2}		Fang Lee (2007)	Q	264
	4.4×10^{-2}		Fang Lee (2007)	Q	265
	2	4500	Kühne et al. (2005)	Q	
	3.9×10^{-2}		Dunnivant et al. (1992)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp} (at T^{Θ})	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at <i>I</i> ∘)	d(1/T)	Reference	Type	Note
Other name(s)) CAS registry number]	$\lceil \underline{\text{mol}} \rceil$	[K]			
CAS registry number	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
	3.6×10^{-2}		Sabljić and Güsten (1989)	Q	
		4700	Kühne et al. (2005)	?	
2,2',4-trichlorobiphenyl	3.3×10^{-2}	4700	Bamford et al. (2002)	M	
$C_{12}H_7Cl_3$	3.0×10^{-2}		Murphy et al. (1987)	M	9
(PCB-17)	4.0×10^{-2}	6200	Paasivirta and Sinkkonen (2009)	V	
[37680-66-3]	1.9×10^{-2}		Burkhard et al. (1985)	V	
	3.7×10^{-2}		Hilal et al. (2008)	Q	
	3.5×10^{-2}		Fang Lee (2007)	Q	264
	3.2×10^{-2}		Fang Lee (2007)	Q	265
	2.6×10^{-2}		Dunnivant et al. (1992)	Q	
	2.5×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',5-trichlorobiphenyl	3.9×10^{-2}	4200	Bamford et al. (2000)	M	
$C_{12}H_7Cl_3$	3.9×10^{-2}		Brunner et al. (1990)	M	
PCB-18)	2.6×10^{-2}		Dunnivant and Elzerman (1988)	M	
37680-65-2]	3.3×10^{-2}		Murphy et al. (1987)	M	9
	4.9×10^{-2}		Oliver (1985)	M	
	9.9×10^{-3}		Atlas et al. (1982)	M	253
	9.8×10^{-3}	5800	Paasivirta and Sinkkonen (2009)	V	
	1.1×10^{-2}		Mackay et al. (2006b)	V	
	1.1×10^{-2}		Mackay et al. (1992a)	V	
	1.1×10^{-2}		Shiu and Mackay (1986)	V	
	1.7×10^{-2}		Burkhard et al. (1985)	V	
	4.6×10^{-2}		Hilal et al. (2008)	Q	
	4.9×10^{-2}		Fang Lee (2007)	Q	264
	3.0×10^{-2}		Fang Lee (2007)	Q	265
		4200	Kühne et al. (2005)	Q	
	3.1×10^{-2}	4500	Dunnivant et al. (1992)	Q	
		4500	Kühne et al. (2005)	?	
2,2',6-trichlorobiphenyl	3.3×10^{-2}	4700	Bamford et al. (2002)	M	
$C_{12}H_7Cl_3$	4.3×10^{-2}		Brunner et al. (1990)	M	
DCD 10\	3.3×10^{-2}		Murphy et al. (1987)	M	9
	2				
	2.5×10^{-3}	5400	Paasivirta and Sinkkonen (2009)	V	
	8.0×10^{-3}	5400	Burkhard et al. (1985)	V	
	8.0×10^{-3} 5.4×10^{-2}	5400	Burkhard et al. (1985) Hilal et al. (2008)	V Q	
	8.0×10^{-3} 5.4×10^{-2} 3.0×10^{-2}	5400	Burkhard et al. (1985) Hilal et al. (2008) Fang Lee (2007)	V Q Q	264
	8.0×10^{-3} 5.4×10^{-2}		Burkhard et al. (1985) Hilal et al. (2008) Fang Lee (2007) Fang Lee (2007)	V Q Q Q	264 265
	8.0×10^{-3} 5.4×10^{-2} 3.0×10^{-2} 2.4×10^{-2}	5400 3600	Burkhard et al. (1985) Hilal et al. (2008) Fang Lee (2007) Fang Lee (2007) Kühne et al. (2005)	V Q Q Q Q	
PCB-19) [38444-73-4]	8.0×10^{-3} 5.4×10^{-2} 3.0×10^{-2} 2.4×10^{-2} 2.2×10^{-2}		Burkhard et al. (1985) Hilal et al. (2008) Fang Lee (2007) Fang Lee (2007) Kühne et al. (2005) Dunnivant et al. (1992)	V Q Q Q Q	
	8.0×10^{-3} 5.4×10^{-2} 3.0×10^{-2} 2.4×10^{-2}	3600	Burkhard et al. (1985) Hilal et al. (2008) Fang Lee (2007) Fang Lee (2007) Kühne et al. (2005) Dunnivant et al. (1992) Sabljić and Güsten (1989)	V Q Q Q Q	
38444-73-4]	8.0×10^{-3} 5.4×10^{-2} 3.0×10^{-2} 2.4×10^{-2} 2.2×10^{-2} 2.2×10^{-2}		Burkhard et al. (1985) Hilal et al. (2008) Fang Lee (2007) Fang Lee (2007) Kühne et al. (2005) Dunnivant et al. (1992) Sabljić and Güsten (1989) Kühne et al. (2005)	V Q Q Q Q Q Q	265
2,3,3'-trichlorobiphenyl	8.0×10^{-3} 5.4×10^{-2} 3.0×10^{-2} 2.4×10^{-2} 2.2×10^{-2} 2.2×10^{-2} 1.2×10^{-2}	3600	Burkhard et al. (1985) Hilal et al. (2008) Fang Lee (2007) Fang Lee (2007) Kühne et al. (2005) Dunnivant et al. (1992) Sabljić and Güsten (1989) Kühne et al. (2005) Atlas et al. (1982)	V Q Q Q Q Q Q Q ?	
2,3,3'-trichlorobiphenyl C ₁₂ H ₇ Cl ₃	8.0×10^{-3} 5.4×10^{-2} 3.0×10^{-2} 2.4×10^{-2} 2.2×10^{-2} 2.2×10^{-2} 1.2×10^{-2} 2.0×10^{-2}	3600	Burkhard et al. (1985) Hilal et al. (2008) Fang Lee (2007) Fang Lee (2007) Kühne et al. (2005) Dunnivant et al. (1992) Sabljić and Güsten (1989) Kühne et al. (2005) Atlas et al. (1982) Paasivirta and Sinkkonen (2009)	V Q Q Q Q Q Q Q ?	265
2,3,3'-trichlorobiphenyl C ₁₂ H ₇ Cl ₃ PCB-20)	8.0×10^{-3} 5.4×10^{-2} 3.0×10^{-2} 2.4×10^{-2} 2.2×10^{-2} 2.2×10^{-2} 1.2×10^{-2} 2.0×10^{-2} 1.2×10^{-2}	3600	Burkhard et al. (1985) Hilal et al. (2008) Fang Lee (2007) Fang Lee (2007) Kühne et al. (2005) Dunnivant et al. (1992) Sabljić and Güsten (1989) Kühne et al. (2005) Atlas et al. (1982) Paasivirta and Sinkkonen (2009) Shiu and Mackay (1986)	V Q Q Q Q Q Q ?	265
2,3,3'-trichlorobiphenyl C ₁₂ H ₇ Cl ₃ PCB-20)	8.0×10^{-3} 5.4×10^{-2} 3.0×10^{-2} 2.4×10^{-2} 2.2×10^{-2} 2.2×10^{-2} 1.2×10^{-2} 2.0×10^{-2} 1.2×10^{-2} 5.8×10^{-2}	3600	Burkhard et al. (1985) Hilal et al. (2008) Fang Lee (2007) Fang Lee (2007) Kühne et al. (2005) Dunnivant et al. (1992) Sabljić and Güsten (1989) Kühne et al. (2005) Atlas et al. (1982) Paasivirta and Sinkkonen (2009) Shiu and Mackay (1986) Burkhard et al. (1985)	V Q Q Q Q Q Q Q ?	265
2,3,3'-trichlorobiphenyl C ₁₂ H ₇ Cl ₃	8.0×10^{-3} 5.4×10^{-2} 3.0×10^{-2} 2.4×10^{-2} 2.2×10^{-2} 2.2×10^{-2} 1.2×10^{-2} 2.0×10^{-2} 1.2×10^{-2}	3600	Burkhard et al. (1985) Hilal et al. (2008) Fang Lee (2007) Fang Lee (2007) Kühne et al. (2005) Dunnivant et al. (1992) Sabljić and Güsten (1989) Kühne et al. (2005) Atlas et al. (1982) Paasivirta and Sinkkonen (2009) Shiu and Mackay (1986)	V Q Q Q Q Q Q ?	265

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp} (at T^{Θ})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} \ln H^{cp}}$			
Formula Other name(s))		d(1/T)	Reference	Type	Note
CAS registry number]	[mol]	[K]			
Cris registry number	$\lfloor \overline{m^3 Pa} \rfloor$	[IX]			
	4.5×10^{-2}		Dunnivant et al. (1992)	Q	
	3.3×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,4-trichlorobiphenyl	4.3×10^{-3}	5200	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₇ Cl ₃	6.8×10^{-2}	3200	Burkhard et al. (1985)	v	
(PCB-21)	7.9×10^{-2}		Hilal et al. (2008)	Q	
[55702-46-0]	5.0×10^{-2}		Fang Lee (2007)	Q	264
	5.9×10^{-2}		Fang Lee (2007)	Q	265
	4.3×10^{-2}		Dunnivant et al. (1992)	Q	
	4.7×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,4'-trichlorobiphenyl	3.4×10^{-2}	4800	Bamford et al. (2002)	M	
C ₁₂ H ₇ Cl ₃	5.0×10^{-2}	~ ~ ~	Murphy et al. (1987)	M	9
PCB-22)	1.3×10^{-2}	5600	Paasivirta and Sinkkonen (2009)	V	
[38444-85-8]	6.5×10^{-2}		Burkhard et al. (1985)	V	
-	1.2×10^{-1}		Hilal et al. (2008)	Q	
	3.8×10^{-2}		Fang Lee (2007)	Q	264
	6.4×10^{-2}		Fang Lee (2007)	Q	265
	5.2×10^{-2}		Dunnivant et al. (1992)	Q	
	4.4×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,5-trichlorobiphenyl	1.5×10^{-2}	5700	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_7Cl_3$	3.9×10^{-2}		Burkhard et al. (1985)	V	
(PCB-23)	6.9×10^{-2}		Fang Lee (2007)	Q	264
55720-44-0]	4.7×10^{-2}		Fang Lee (2007)	Q	265
	3.1×10^{-2}		Dunnivant et al. (1992)	Q	
	2.8×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,6-trichlorobiphenyl	3.3×10^{-2}	4700	Bamford et al. (2002)	M	
$C_{12}H_7Cl_3$	4.5×10^{-2}		Brunner et al. (1990)	M	
PCB-24)	3.1×10^{-2}		Murphy et al. (1987)	M	9
[55702-45-9]	7.7×10^{-3}	5600	Paasivirta and Sinkkonen (2009)	V	
	2.3×10^{-2}		Burkhard et al. (1985)	V	
	4.7×10^{-2}		Hilal et al. (2008)	Q	
	4.2×10^{-2}		Fang Lee (2007)	Q	264
	4.4×10^{-2}		Fang Lee (2007)	Q	265
		4500	Kühne et al. (2005)	Q	
	3.2×10^{-2}		Dunnivant et al. (1992)	Q	
	2.9×10^{-2}	2000	Sabljić and Güsten (1989)	Q ?	
		2800	Kühne et al. (2005)		
2,3',4-trichlorobiphenyl	3.3×10^{-2}	4700	Bamford et al. (2002)	M	
$C_{12}H_7Cl_3$	2.4×10^{-2}		Murphy et al. (1987)	M	9
(PCB-25)	2.8×10^{-2}	5900	Paasivirta and Sinkkonen (2009)	V	
[55712-37-3]	3.9×10^{-2}		Burkhard et al. (1985)	V	
	4.4×10^{-2}		Fang Lee (2007)	Q	264
	4.5×10^{-2}	4000	Fang Lee (2007)	Q	265
	2.1.10=2	4800	Kühne et al. (2005)	Q	
	3.1×10^{-2} 2.3×10^{-2}		Dunnivant et al. (1992)	Q	
	2.3×10 2		Sabljić and Güsten (1989)	Q	

Table 6: Henry's law constants for water as solvent (...continued)

Substance	H^{cp} (at T^{Θ})	$\frac{\mathrm{d} \ln H^{cp}}{H^{cp}}$			
Formula		d(1/T)	Reference	Type	Note
Other name(s)) [CAS registry number]	$\lceil \underline{\text{mol}} \rceil$	[K]			
CAM region's number]	$\lfloor \overline{m^3 \text{ Pa}} \rfloor$	[17]			
2,3',5-trichlorobiphenyl	3.5×10^{-2}	4900	Bamford et al. (2002)	M	
$C_{12}H_7Cl_3$	3.0×10^{-2}		Dunnivant et al. (1988)	M	
PCB-26)	3.0×10^{-2}		Dunnivant and Elzerman (1988)	M	266
38444-81-4]	2.9×10^{-2}		Murphy et al. (1987)	M	9
	2.2×10^{-2}	5900	Paasivirta and Sinkkonen (2009)	V	
	3.5×10^{-2}		Burkhard et al. (1985)	V	
	9.9×10^{-2}		Hilal et al. (2008)	Q	
	6.1×10^{-2}		Fang Lee (2007)	Q	264
	4.3×10^{-2}		Fang Lee (2007)	Q	265
	3.3×10^{-2}		Dunnivant et al. (1992)	Q	
	5.9×10^{-2}		Meylan and Howard (1991)	Q	
2,3',6-trichlorobiphenyl	3.5×10^{-2}		Murphy et al. (1987)	M	9
C ₁₂ H ₇ Cl ₃	3.1×10^{-2}	6100	Paasivirta and Sinkkonen (2009)	V	
PCB-27)	2.4×10^{-2}		Burkhard et al. (1985)	V	
38444-76-7]	3.7×10^{-2}		Fang Lee (2007)	Q	264
-	4.2×10^{-2}		Fang Lee (2007)	Q	265
	2.4×10^{-2}		Dunnivant et al. (1992)	Q	
	2.0×10^{-2}		Sabljić and Güsten (1989)	Q	
2,4,4'-trichlorobiphenyl	3.0×10^{-2}	6300	Li et al. (2003)	L	143
C ₁₂ H ₇ Cl ₃	3.3×10^{-2}	6600	Li et al. (2003)	L	144
PCB-28)	2.3×10^{-2}	0000	Lau et al. (2006)	M	262
7012-37-5]	1.4×10^{-2}		Lau et al. (2006)	M	263
,012 3, 3]	1.8×10^{-2}	2300	Charles and Destaillats (2005)	M	203
	2.6×10^{-2}	3900	Bamford et al. (2000)	M	
	3.6×10^{-2}	6100	ten Hulscher et al. (1992)	M	
	4.9×10^{-2}	0100	Brunner et al. (1990)	M	
	3.1×10^{-2}		Dunnivant and Elzerman (1988)	M	
	3.7×10^{-2}		Murphy et al. (1987)	M	9
	2.7×10^{-2}	5900	Paasivirta and Sinkkonen (2009)	V	
	4.4×10^{-2}	2,00	Burkhard et al. (1985)	V	
	2.7×10^{-2}	7100	Paasivirta et al. (1999)	T	
	1.0×10^{-1}	. 100	Hilal et al. (2008)	Q	
	2.2×10^{-2}		Fang Lee (2007)	Q	264
	4.7×10^{-2}		Fang Lee (2007)	Q	265
	, 10	4800	Kühne et al. (2005)	Q	-55
	3.5×10^{-2}		Dunnivant et al. (1992)	Q	
	2.37.20	4800	Kühne et al. (2005)	?	
,4,5-trichlorobiphenyl	3.1×10^{-2}	6300	Li et al. (2003)	L	143
C ₁₂ H ₇ Cl ₃	3.3×10^{-2}	6700	Li et al. (2003)	L	144
PCB-29)	2.6×10^{-2}	4200	Bamford et al. (2000)	M	
15862-07-4]	4.9×10^{-2}	-	Brunner et al. (1990)	M	
· -· •	7.7×10^{-3}	5500	Paasivirta and Sinkkonen (2009)	V	
	4.1×10^{-3}		Mackay et al. (2006b)	V	
	4.1×10^{-2}		Mackay et al. (2000)	V	
	4.2×10^{-2}		Shiu and Mackay (1986)	V	
	3.9×10^{-2}		Burkhard et al. (1985)	V	
			Darminia Ct al. (1703)	*	
	7.9×10^{-2}		Hilal et al. (2008)	Q	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp} (at T^{Θ})	$\frac{\mathrm{d} \ln H^{cp}}{1(1/T)}$			
Formula (Other name(s))		d(1/T)	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
	4.2×10 ⁻²		Fang Lee (2007)	Q	265
	2	5100	Kühne et al. (2005)	Q	
	3.3×10^{-2}		Dunnivant et al. (1992)	Q	
	3.7×10^{-2}	4500	Sabljić and Güsten (1989) Kühne et al. (2005)	Q ?	
2,4,6-trichlorobiphenyl	1.5×10 ⁻²		Dunnivant et al. (1988)	M	
C ₁₂ H ₇ Cl ₃	1.5×10^{-2}		Dunnivant and Elzerman (1988)	M	266
(PCB-30)	8.5×10^{-3}	5600	Paasivirta and Sinkkonen (2009)	V	
[35693-92-6]	2.0×10^{-2}		Mackay et al. (2006b)	V	
	2.0×10^{-2}		Mackay et al. (1992a)	V	
	2.0×10^{-2}		Shiu and Mackay (1986)	V	
	1.6×10^{-2}		Burkhard et al. (1985)	V	
	2.9×10^{-2}		Hilal et al. (2008)	Q	
	2.4×10^{-2}		Fang Lee (2007)	Q	264
	2.5×10^{-2}		Fang Lee (2007)	Q	265
	1.7×10 ⁻²		Dunnivant et al. (1992)	Q	
2,4',5-trichlorobiphenyl	2.7×10^{-2}	6100	Li et al. (2003)	L	143
$C_{12}H_7Cl_3$	2.9×10^{-2}	6600	Li et al. (2003)	L	144
PCB-31)	3.4×10^{-2}	4900	Bamford et al. (2002)	M	
16606-02-3]	5.2×10^{-2}		Brunner et al. (1990)	M	
	3.7×10^{-2}		Murphy et al. (1987)	M	9
	1.1×10^{-2}		Atlas et al. (1982)	M	253
	1.3×10^{-2}	5700	Paasivirta and Sinkkonen (2009)	V	
	1.8×10^{-2} 3.9×10^{-2}		Shiu and Mackay (1986)	V	
	3.9×10^{-2} 1.0×10^{-1}		Burkhard et al. (1985)	V	
	3.0×10^{-2}		Hilal et al. (2008) Fang Lee (2007)	Q	264
	4.1×10^{-2}		Fang Lee (2007)	Q	264 265
	3.6×10^{-2}		Dunnivant et al. (1992)	Q	203
	3.5×10^{-2}		Sabljić and Güsten (1989)	Q Q	
) 42 C tai-blamaki 1	$\frac{3.3 \times 10}{1.2 \times 10^{-2}}$	5700			
2,4',6-trichlorobiphenyl		5700	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₇ Cl ₃	2.7×10^{-2} 7.5×10^{-2}		Burkhard et al. (1985)	V	
PCB-32)	1.8×10^{-2}		Hilal et al. (2008)	Q	264
38444-77-8]	4.1×10^{-2}		Fang Lee (2007) Fang Lee (2007)	Q	264
	2.5×10^{-2}		Dunnivant et al. (1992)	Q Q	203
	2.3×10^{-2} 2.4×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3',4'-trichlorobiphenyl	3.6×10^{-2}	5100	Bamford et al. (2002)	M	
$C_{12}H_7Cl_3$	4.4×10^{-2}		Murphy et al. (1987)	M	9
PCB-33)	2.5×10^{-2}		Westcott et al. (1981)	M	
[38444-86-9]	1.3×10^{-2}	5600	Paasivirta and Sinkkonen (2009)	V	
			Mackay et al. (2006b)	V	256
	2.3×10^{-2}		Mackay et al. (1992a)	V	
	2.3×10^{-2}		Shiu and Mackay (1986)	V	
	5.9×10^{-2}		Burkhard et al. (1985)	V	
	1.1×10^{-1}		Hilal et al. (2008)	Q	251
	7.7×10^{-2}		Fang Lee (2007)	Q	264

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	5.0×10^{-2}		Fang Lee (2007)	Q	265
	4.1×10^{-2}		Dunnivant et al. (1992)	Q	
	4.5×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3',5'-trichlorobiphenyl	1.3×10^{-2}	5800	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₇ Cl ₃	3.4×10^{-2}		Burkhard et al. (1985)	V	
(PCB-34)	7.3×10^{-2}		Hilal et al. (2008)	Q	
[37680-68-5]	1.1×10^{-1}		Fang Lee (2007)	Q	264
	3.9×10^{-2}		Fang Lee (2007)	Q	265
	2.3×10^{-2}		Dunnivant et al. (1992)	Q	
	2.0×10^{-2}		Sabljić and Güsten (1989)	Q	
3,3',4-trichlorobiphenyl	1.8×10^{-2}	5600	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_7Cl_3$	1.2×10^{-1}		Burkhard et al. (1985)	V	
(PCB-35)	9.5×10^{-2}		Fang Lee (2007)	Q	264
[37680-69-6]	5.9×10^{-2}		Fang Lee (2007)	Q	265
	5.5×10^{-2}		Dunnivant et al. (1992)	Q	
	4.4×10^{-2}		Sabljić and Güsten (1989)	Q	
3,3',5-trichlorobiphenyl	5.8×10 ⁻²		Brunner et al. (1990)	M	
$C_{12}H_7Cl_3$	1.3×10^{-2}	5600	Paasivirta and Sinkkonen (2009)	V	
(PCB-36)	7.2×10^{-2}		Burkhard et al. (1985)	V	
[38444-87-0]	1.2×10^{-1}		Hilal et al. (2008)	Q	
	1.3×10^{-1}		Fang Lee (2007)	Q	264
	4.7×10^{-2}		Fang Lee (2007)	Q	265
	2.9×10^{-2}		Dunnivant et al. (1992)	Q	
	1.9×10^{-2}		Sabljić and Güsten (1989)	Q	
3,4,4'-trichlorobiphenyl	9.9×10^{-2}		Brunner et al. (1990)	M	
$C_{12}H_7Cl_3$	6.5×10^{-2}		Murphy et al. (1987)	M	9
(PCB-37)	1.2×10^{-2}		Atlas et al. (1982)	M	253
[38444-90-5]	1.3×10^{-2}	5400	Paasivirta and Sinkkonen (2009)	V	
•	1.2×10^{-2}		Shiu and Mackay (1986)	V	
	1.4×10^{-1}		Burkhard et al. (1985)	V	
	1.8×10^{-1}		Hilal et al. (2008)	Q	
	4.8×10^{-2}		Fang Lee (2007)	Q	264
	6.1×10^{-2}		Fang Lee (2007)	Q	265
	6.5×10^{-2}		Dunnivant et al. (1992)	Q	
	6.9×10^{-2}		Sabljić and Güsten (1989)	Q	
3,4,5-trichlorobiphenyl	1.2×10^{-2}	5400	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₇ Cl ₃	1.3×10^{-1}	-	Burkhard et al. (1985)	V	
(PCB-38)	8.8×10^{-2}		Fang Lee (2007)	Q	264
[53555-66-1]	5.2×10^{-2}		Fang Lee (2007)	Q	265
	4.2×10^{-2}		Dunnivant et al. (1992)	Q	
	4.8×10^{-2}		Sabljić and Güsten (1989)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
Other name(s)) CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
3,4',5-trichlorobiphenyl	1.2×10^{-2}	5600	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₇ Cl ₃	8.0×10^{-2}		Burkhard et al. (1985)	V	
(PCB-39)	6.6×10^{-2}		Fang Lee (2007)	Q	264
[38444-88-1]	4.4×10^{-2}		Fang Lee (2007)	Q	265
	3.3×10^{-2}		Dunnivant et al. (1992)	Q	
	2.3×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',3,3'-tetrachlorobiphenyl	3.6×10^{-2}	3600	Bamford et al. (2002)	M	
$C_{12}H_6Cl_4$	9.9×10^{-2}		Brunner et al. (1990)	M	
PCB-40)	4.9×10^{-2}		Dunnivant et al. (1988)	M	
[38444-93-8]	4.9×10^{-2}		Dunnivant and Elzerman (1988)	M	266
	6.1×10^{-2}		Murphy et al. (1987)	M	9
	8.2×10^{-2}		Oliver (1985)	M	
	1.8×10^{-3}	5300	Paasivirta and Sinkkonen (2009)	V	
	4.6×10^{-2}		Mackay et al. (2006b)	V	
	4.6×10^{-2}		Mackay et al. (1992a)	V	
	4.5×10^{-2}		Shiu and Mackay (1986)	V	
	4.9×10^{-2}		Burkhard et al. (1985)	V	
	1.1×10^{-1}		Hilal et al. (2008)	Q	
	1.2×10^{-1}		Fang Lee (2007)	Q	264
	9.7×10^{-2}		Fang Lee (2007)	Q	265
	5.4×10^{-2}		Dunnivant et al. (1992)	Q	
2,2',3,4-tetrachlorobiphenyl	4.9×10^{-2}		Murphy et al. (1987)	M	9
$C_{12}H_6Cl_4$	1.6×10^{-2}	6200	Paasivirta and Sinkkonen (2009)	V	
PCB-41)	4.2×10^{-2}		Burkhard et al. (1985)	V	
[52663-59-9]	6.9×10^{-2}		Hilal et al. (2008)	Q	
	7.9×10^{-2}		Fang Lee (2007)	Q	264
	7.1×10^{-2}		Fang Lee (2007)	Q	265
	4.0×10^{-2}		Dunnivant et al. (1992)	Q	
	4.8×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',3,4'-tetrachlorobiphenyl	2.8×10^{-2}	3100	Bamford et al. (2002)	M	
$C_{12}H_6Cl_4$	5.0×10^{-2}		Murphy et al. (1987)	M	9
PCB-42)	8.6×10^{-3}	5900	Paasivirta and Sinkkonen (2009)	V	
[36559-22-5]	3.4×10^{-2}		Burkhard et al. (1985)	V	
	7.2×10^{-2}		Hilal et al. (2008)	Q	
	6.0×10^{-2}		Fang Lee (2007)	Q	264
	6.7×10^{-2}		Fang Lee (2007)	Q	265
	3.9×10^{-2}		Dunnivant et al. (1992)	Q	
	3.1×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',3,5-tetrachlorobiphenyl	1.3×10^{-2}	6300	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_6Cl_4$	2.4×10^{-2}		Burkhard et al. (1985)	V	
(PCB-43)	1.1×10^{-1}		Fang Lee (2007)	Q	264
[70362-46-8]	6.1×10^{-2}		Fang Lee (2007)	Q	265
	2.9×10^{-2}		Dunnivant et al. (1992)	Q	
	2.8×10^{-2}		Sabljić and Güsten (1989)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,2',3,5'-tetrachlorobiphenyl	3.6×10^{-2}	3100	Bamford et al. (2000)	M	
$C_{12}H_6Cl_4$	5.2×10^{-2}		Murphy et al. (1987)	M	9
(PCB-44)	1.3×10^{-2}		Atlas et al. (1982)	M	253
[41464-39-5]	1.1×10^{-2}	6000	Paasivirta and Sinkkonen (2009)	V	
	2.0×10^{-2}		Shiu and Mackay (1986)	V	
	3.0×10^{-2}		Burkhard et al. (1985)	V	
	9.7×10^{-2}		Hilal et al. (2008)	Q	
	1.2×10^{-1}		Fang Lee (2007)	Q	264
	6.7×10^{-2}		Fang Lee (2007)	Q	265
		4600	Kühne et al. (2005)	Q	
	4.3×10^{-2}		Dunnivant et al. (1992)	Q	
	3.9×10^{-2}		Sabljić and Güsten (1989)	Q	
		3400	Kühne et al. (2005)	?	
2,2',3,6-tetrachlorobiphenyl	2.5×10^{-2}	2900	Bamford et al. (2002)	M	
$C_{12}H_6Cl_4$	3.8×10^{-3}	6000	Paasivirta and Sinkkonen (2009)	V	
(PCB-45)	9.9×10^{-3}		Burkhard et al. (1985)	V	
[70362-45-7]	6.7×10^{-2}		Fang Lee (2007)	Q	264
	5.1×10^{-2}		Fang Lee (2007)	Q	265
	2.8×10^{-2}		Dunnivant et al. (1992)	Q	
	3.1×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',3,6'-tetrachlorobiphenyl	3.0×10^{-2}	3400	Bamford et al. (2002)	M	
$C_{12}H_6Cl_4$	3.8×10^{-2}		Murphy et al. (1987)	M	9
(PCB-46)	9.1×10^{-4}	5300	Paasivirta and Sinkkonen (2009)	V	
[41464-47-5]	1.4×10^{-2}		Burkhard et al. (1985)	V	
	6.7×10^{-2}		Fang Lee (2007)	Q	264
	5.7×10^{-2}		Fang Lee (2007)	Q	265
	2.9×10^{-2}		Dunnivant et al. (1992)	Q	
	2.7×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',4,4'-tetrachlorobiphenyl	2.1×10^{-1}		Lau et al. (2006)	M	262
$C_{12}H_6Cl_4$	9.1×10^{-3}		Lau et al. (2006)	M	263
(PCB-47)	1.8×10^{-1}	-6000	Charles and Destaillats (2005)	M	
[2437-79-8]	5.2×10^{-2}		Brunner et al. (1990)	M	
	2.0×10^{-2}	6200	Paasivirta and Sinkkonen (2009)	V	
	5.7×10^{-2}		Mackay et al. (2006b)	V	
	5.8×10^{-2}		Mackay et al. (1992a)	V	
	2.0×10^{-3}		Hwang et al. (1992)	V	
	5.9×10^{-2}		Shiu and Mackay (1986)	V	
	2.3×10^{-2}		Burkhard et al. (1985)	V	
	5.0×10^{-2}		Hilal et al. (2008)	Q	
	3.5×10^{-2}		Fang Lee (2007)	Q	264
	4.8×10^{-2}		Fang Lee (2007)	Q	265
	2.7×10^{-2}		Dunnivant et al. (1992)	Q	
	2.2×10^{-2}		Sabljić and Güsten (1989)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

			<u> </u>		
Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
Other name(s))	[mol]	[77]		71	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
2,2',4,5-tetrachlorobiphenyl	2.7×10^{-2}	3000	Bamford et al. (2002)	M	
C ₁₂ H ₆ Cl ₄	3.9×10^{-2}		Murphy et al. (1987)	M	9
PCB-48)	6.1×10^{-3}	6100	Paasivirta and Sinkkonen (2009)	V	
[70362-47-9]	2.5×10^{-2}		Burkhard et al. (1985)	V	
	6.3×10^{-2}		Fang Lee (2007)	Q	264
	5.3×10^{-2}		Fang Lee (2007)	Q	265
	3.3×10^{-2}		Dunnivant et al. (1992)	Q	
	3.8×10^{-2}		Sabljić and Güsten (1989)	Q	
2',4,5'-tetrachlorobiphenyl	2.7×10^{-2}	3000	Bamford et al. (2002)	M	
$_{12}H_6Cl_4$	3.6×10^{-2}		Murphy et al. (1987)	M	9
PCB-49)	8.3×10^{-3}	5900	Paasivirta and Sinkkonen (2009)	V	
11464-40-8]	5.0×10^{-2}		Shiu and Mackay (1986)	V	
	2.1×10^{-2}		Burkhard et al. (1985)	V	
	6.1×10^{-2}		Hilal et al. (2008)	Q	
	7.0×10^{-2}		Fang Lee (2007)	Q	264
	4.5×10^{-2}		Fang Lee (2007)	Q	265
	2.8×10^{-2}		Dunnivant et al. (1992)	Q	
	2.6×10^{-2}		Sabljić and Güsten (1989)	Q	
2',4,6-tetrachlorobiphenyl	1.6×10^{-2}	2900	Bamford et al. (2000)	M	
$_{12}\mathrm{H}_{6}\mathrm{Cl}_{4}$	1.3×10^{-2}		Atlas et al. (1982)	M	253
PCB-50)	9.9×10^{-3}	6300	Paasivirta and Sinkkonen (2009)	V	
52796-65-0]	1.3×10^{-2}		Shiu and Mackay (1986)	V	
	7.3×10^{-3}		Burkhard et al. (1985)	V	
	3.9×10^{-2}		Fang Lee (2007)	Q	264
	2.8×10^{-2}		Fang Lee (2007)	Q	265
	2	3600	Kühne et al. (2005)	Q	
	1.6×10^{-2}		Dunnivant et al. (1992)	Q	
	1.7×10^{-2}		Sabljić and Güsten (1989)	Q	
		3100	Kühne et al. (2005)	?	
2',4,6'-tetrachlorobiphenyl	2.5×10^{-2}	6300	Paasivirta and Sinkkonen (2009)	V	
$_{12}H_6Cl_4$	9.9×10^{-3}		Burkhard et al. (1985)	V	
PCB-51)	7.3×10^{-2}		Hilal et al. (2008)	Q	
[8194-04-7]	3.8×10^{-2}		Fang Lee (2007)	Q	264
	4.0×10^{-2}		Fang Lee (2007)	Q	265
	1.9×10^{-2}		Dunnivant et al. (1992)	Q	
	2.0×10 ⁻²		Sabljić and Güsten (1989)	Q	
2',5,5'-tetrachlorobiphenyl	3.5×10^{-2}	6600	Li et al. (2003)	L	143
12H ₆ Cl ₄	4.0×10^{-2}	6800	Li et al. (2003)	L	144
PCB-52)	3.2×10^{-2}	3700	Bamford et al. (2000)	M	
35693-99-3]	4.2×10^{-2}	6200	ten Hulscher et al. (1992)	M	
	4.9×10^{-2}		Brunner et al. (1990)	M	
	2.9×10^{-2}		Dunnivant et al. (1988)	M	
	2.9×10^{-2}		Dunnivant and Elzerman (1988)	M	266
	4.1×10^{-2}		Murphy et al. (1987)	M	9
	8.2×10^{-2}		Oliver (1985)	M	
	1.1×10^{-2}		Atlas et al. (1982)	M	253
			Westcott et al. (1981)	M	269

Table 6: Henry's law constants for water as solvent (...continued)

	d(1/T)	Reference	Type	Note
$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
3.7×10^{-3}	5700	Paasivirta and Sinkkonen (2009)	V	
		· · · · · · · · · · · · · · · · · · ·		147
		· · ·		
	7700			
				267, 268
				264
4.6×10^{-2}				265
2	4200			
3.1×10^{-2}		· · · · · · · · · · · · · · · · · · ·		
	4900	Kühne et al. (2005)	?	
2.4×10^{-2}		Dunnivant et al. (1988)	M	
		Dunnivant and Elzerman (1988)	M	266
		Murphy et al. (1987)	M	9
	5500	Paasivirta and Sinkkonen (2009)	V	
		Shiu and Mackay (1986)	V	
		Burkhard et al. (1985)	V	
		Hilal et al. (2008)	Q	
		Fang Lee (2007)	Q	264
4.1×10^{-2}		Fang Lee (2007)	Q	265
2.3×10^{-2}		Dunnivant et al. (1992)	Q	
4.9×10^{-2}		Brunner et al. (1990)	M	
1.8×10^{-2}		Dunnivant et al. (1988)	M	
1.8×10^{-2}		Dunnivant and Elzerman (1988)	M	266
1.0×10^{-4}	4800	Paasivirta and Sinkkonen (2009)	V	
5.3×10^{-3}			V	
6.7×10^{-2}		· · · · ·		
				264
			-	265
1.7×10^{-2}		Dunnivant et al. (1992)	Q	
9.6×10^{-3}	5900	Paasivirta and Sinkkonen (2009)	V	
	-200	* * *		
				264
				265
				203
4.3×10^{-2}		Sabljić and Güsten (1989)	Q	
3.8×10^{-2}	3800	Bamford et al. (2002)	M	
	2000			9
	5400			-
	2-100			
				264
				265
				203
	$\begin{array}{c} 2.1 \times 10^{-2} \\ 2.1 \times 10^{-2} \\ 1.2 \times 10^{-1} \\ 2.1 \times 10^{-2} \\ 1.9 \times 10^{-2} \\ 1.2 \times 10^{-2} \\ 1.2 \times 10^{-2} \\ 3.8 \times 10^{-2} \\ 7.9 \times 10^{-2} \\ 9.7 \times 10^{-2} \\ 4.6 \times 10^{-2} \\ 3.1 \times 10^{-2} \\ \hline \\ 2.4 \times 10^{-2} \\ 2.4 \times 10^{-2} \\ 3.5 \times 10^{-2} \\ 1.6 \times 10^{-3} \\ 3.3 \times 10^{-2} \\ 8.9 \times 10^{-3} \\ 8.8 \times 10^{-2} \\ 5.3 \times 10^{-2} \\ 4.1 \times 10^{-2} \\ 2.3 \times 10^{-2} \\ 1.8 \times 10^{-2} \\ 1.8 \times 10^{-2} \\ 1.8 \times 10^{-2} \\ 1.0 \times 10^{-4} \\ 5.3 \times 10^{-3} \\ 6.7 \times 10^{-2} \\ 1.2 \times 10^{-1} \\ 3.3 \times 10^{-2} \\ 2.7 \times 10^{-2} \\ 1.7 \times 10^{-2} \\ 9.9 \times 10^{-2} \\ 9.3 \times 10^{-2} \\ 9.3$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.1×10 ⁻² 2.1×10 ⁻² 1.2×10 ⁻¹ Mackay et al. (1992a) Mackay et al. (1992a) Mackay et al. (1992a) Mackay et al. (1992a) Mackay et al. (1998b) Mackay (1986) Mackay et al. (1985) Mackay et al. (1986) Mackay et al. (1996) Mackay et al. (1996) Mackay et al. (1996) Mackay et al. (1996) Mackay et al. (1986) Mackay et al. (1985) Mackay et al. (1983) Mackay et al. (1988) Dunnivant et al. (1988) Mackay et al. (1988) Mackay et al. (1988) Dunnivant et al. (1986) Mackay et al. (1988) Mackay et al. (1988) Mackay et al. (1988) Mackay et al. (1987) Mackay et al. (1987) Mackay et al. (1988) Murphy et al. (1988) Murphy et al. (1986) Mackay et al. (1988) Murphy et al. (1987) Murphy et al. (1985) Murphy et al. (1985) Murphy et al. (1987) Murphy et al. (1985)	2.1×10 ⁻² Mackay et al. (2006b) V 2.1×10 ⁻² Mackay et al. (1992a) V 1.2×10 ⁻¹ McLachlan et al. (1990) V 2.1×10 ⁻² Shiu and Mackay (1986) V 1.9×10 ⁻² Burkhard et al. (1985) V 1.9×10 ⁻² Murphy et al. (1983) X 7.9×10 ⁻² Hilal et al. (2008) Q 9.7×10 ⁻² Fang Lee (2007) Q 4.6×10 ⁻² Fang Lee (2007) Q 3.1×10 ⁻² Dunnivant et al. (1992) Q 4900 Kühne et al. (2005) ? 2.4×10 ⁻² Dunnivant et al. (1988) M 3.5×10 ⁻² Murphy et al. (1988) M 3.5×10 ⁻² Dunnivant et al. (1988) M 3.5×10 ⁻² Dunnivant and Elzerman (1988) M 1.6×10 ⁻³ S500 Paasivirta and Sinkkonen (2009) V 3.3×10 ⁻² Shiu and Mackay (1986) V 8.9×10 ⁻³ Burkhard et al. (2008) Q 5.3×10 ⁻² Fang Lee (2007) Q 4.1×10 ⁻² Fang Lee (2007) Q 4.1×10 ⁻² Pasivirta and Sinkkonen (2009) S 5.3×10 ⁻² Fang Lee (2007) Q 4.1×10 ⁻² Fang Lee (2007) Q 4.1×10 ⁻² Fang Lee (2007) Q 5.3×10 ⁻² Fang Lee (2007) Q 7.3×10 ⁻² Pasivirta and Sinkkonen (2009) V 7.3×10 ⁻² Fang Lee (2007) Q 7.3×10 ⁻² Fang Lee (2007) Q 7.3×10 ⁻² Pang Lee (2007) Pasivirta and Sinkkonen (2009) P 7.5×10 ⁻²

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type	Note
	7.5×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,3',5-tetrachlorobiphenyl	8.9×10^{-3}	6100	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₆ Cl ₄	5.1×10^{-2}		Burkhard et al. (1985)	V	
(PCB-57)	1.4×10^{-1}		Fang Lee (2007)	Q	264
[70424-67-8]	7.8×10^{-2}		Fang Lee (2007)	Q	265
	3.6×10^{-2}		Dunnivant et al. (1992)	Q	
	2.7×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,3',5'-tetrachlorobiphenyl	2.3×10^{-3}	5400	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_6Cl_4$	6.2×10^{-2}		Burkhard et al. (1985)	V	
(PCB-58)	1.5×10^{-1}		Fang Lee (2007)	Q	264
41464-49-7]	8.1×10^{-2}		Fang Lee (2007)	Q	265
	3.9×10^{-2}		Dunnivant et al. (1992)	Q	
	2.4×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,3',6-tetrachlorobiphenyl	4.4×10^{-2}	6600	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_6Cl_4$	2.9×10^{-2}		Burkhard et al. (1985)	V	
(PCB-59)	8.3×10^{-2}		Fang Lee (2007)	Q	264
[74472-33-6]	8.3×10^{-2}		Fang Lee (2007)	Q	265
	3.2×10^{-2}		Dunnivant et al. (1992)	Q	
	2.7×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,4,4'-tetrachlorobiphenyl	6.1×10^{-2}		Murphy et al. (1987)	M	9
$C_{12}H_6Cl_4$	1.2×10^{-2}		Atlas et al. (1982)	M	253
(PCB-60)	2.9×10^{-3}	5500	Paasivirta and Sinkkonen (2009)	V	
[33025-41-1]	9.7×10^{-2}		Burkhard et al. (1985)	V	
-	4.9×10^{-2}		Fang Lee (2007)	Q	264
	9.2×10^{-2}		Fang Lee (2007)	Q	265
	6.5×10^{-2}		Dunnivant et al. (1992)	Q	
	6.5×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,4,5-tetrachlorobiphenyl	4.9×10^{-2}	6600	Li et al. (2003)	L	143
$C_{12}H_6Cl_4$	5.0×10^{-2}	7200	Li et al. (2003)	L	144
(PCB-61)	4.9×10^{-3}	5600	Paasivirta and Sinkkonen (2009)	V	
[33284-53-6]	8.7×10^{-2}		Burkhard et al. (1985)	V	
- -	9.0×10^{-2}		Fang Lee (2007)	Q	264
	8.4×10^{-2}		Fang Lee (2007)	Q	265
	4.1×10^{-2}		Dunnivant et al. (1992)	Q	
	5.7×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,4,6-tetrachlorobiphenyl	4.7×10^{-2}		Brunner et al. (1990)	M	
$C_{12}H_6Cl_4$	7.1×10^{-3}	6000	Paasivirta and Sinkkonen (2009)	V	
(PCB-62)	3.3×10^{-2}		Burkhard et al. (1985)	V	
[54230-22-7]	4.0×10^{-2}		Hilal et al. (2008)	Q	
	5.5×10^{-2}		Fang Lee (2007)	Q	264
	6.4×10^{-2}		Fang Lee (2007)	Q	265
	2.7×10^{-2}		Dunnivant et al. (1992)	Q	
	2.7×10^{-2}		Sabljić and Güsten (1989)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]	[17]		71	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
2,3,4',5-tetrachlorobiphenyl	2.5×10^{-2}	3000	Bamford et al. (2002)	M	
$C_{12}H_6Cl_4$	3.4×10^{-2}		Murphy et al. (1987)	M	9
(PCB-63)	9.4×10^{-3}	6100	Paasivirta and Sinkkonen (2009)	V	
74472-34-7]	5.6×10^{-2}		Burkhard et al. (1985)	V	
	6.8×10^{-2}		Fang Lee (2007)	Q	264
	7.1×10^{-2}		Fang Lee (2007)	Q	265
	4.1×10^{-2}		Dunnivant et al. (1992)	Q	
	3.4×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,4',6-tetrachlorobiphenyl	2.5×10^{-2}	2900	Bamford et al. (2002)	M	
$C_{12}H_6Cl_4$	5.8×10^{-2}		Murphy et al. (1987)	M	9
(PCB-64)	7.9×10^{-3}	6000	Paasivirta and Sinkkonen (2009)	V	
[52663-58-8]	3.2×10^{-2}		Burkhard et al. (1985)	V	
	1.1×10^{-1}		Hilal et al. (2008)	Q	
	4.2×10^{-2}		Fang Lee (2007)	Q	264
	7.7×10^{-2}		Fang Lee (2007)	Q	265
	3.6×10^{-2}		Dunnivant et al. (1992)	Q	
	3.5×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,5,6-tetrachlorobiphenyl	4.9×10^{-3}	5800	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_6Cl_4$	3.7×10^{-2}		Burkhard et al. (1985)	V	
(PCB-65)	5.3×10^{-2}		Hilal et al. (2008)	Q	
[33284-54-7]	7.6×10^{-2}		Fang Lee (2007)	Q	264
	9.9×10^{-2}		Fang Lee (2007)	Q	265
	2.9×10^{-2}		Dunnivant et al. (1992)	Q	
	3.2×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3',4,4'-tetrachlorobiphenyl	2.7×10^{-2}	3500	Bamford et al. (2000)	M	
$C_{12}H_6Cl_4$	4.9×10^{-2}		Murphy et al. (1987)	M	9
(PCB-66)	3.0×10^{-3}	5300	Paasivirta and Sinkkonen (2009)	V	
[32598-10-0]	1.2×10^{-2}		Shiu and Mackay (1986)	V	
	7.3×10^{-2}		Burkhard et al. (1985)	V	
	2.1×10^{-1}		Hilal et al. (2008)	Q	2.5.
	4.3×10^{-2}		Fang Lee (2007)	Q	264
	6.8×10^{-2}	5200	Fang Lee (2007)	Q	265
	4.9×10^{-2}	5200	Kühne et al. (2005)	Q	
	4.9×10^{-2} 3.9×10^{-2}		Dunnivant et al. (1992) Sabljić and Güsten (1989)	Q	
	3.7 X 10	3800	Kühne et al. (2005)	Q ?	
2,3',4,5-tetrachlorobiphenyl	9.9×10^{-2}			M	
C ₁₂ H ₆ Cl ₄	9.9×10^{-2} 1.6×10^{-2}	6200	Brunner et al. (1990) Paasivirta and Sinkkonen (2009)	M V	
(PCB-67)	5.2×10^{-2}	0200	Burkhard et al. (1985)	V	
[73575-53-8]	1.9×10^{-1}		Hilal et al. (2008)	V Q	
[13313-33-0]	7.9×10^{-2}		Fang Lee (2007)	Q Q	264
	6.8×10^{-2}		Fang Lee (2007)	Q	265
	4.2×10^{-2}		Dunnivant et al. (1992)	Q	200
	3.4×10^{-2}		Sabljić and Güsten (1989)	Q	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\underline{\text{mol}} \right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
2,3',4,5'-tetrachlorobiphenyl	7.2×10^{-3}	5800	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_6Cl_4$	4.3×10^{-2}		Burkhard et al. (1985)	V	
(PCB-68)	8.7×10^{-2}		Fang Lee (2007)	Q	264
73575-52-7]	5.2×10^{-2}		Fang Lee (2007)	Q	265
	2.6×10^{-2}		Dunnivant et al. (1992)	Q	
	1.8×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3',4,6-tetrachlorobiphenyl	1.9×10^{-2}	6500	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₆ Cl ₄	2.1×10^{-2}		Burkhard et al. (1985)	V	
(PCB-69)	7.9×10^{-2}		Hilal et al. (2008)	Q	
[60233-24-1]	4.8×10^{-2}		Fang Lee (2007)	Q	264
[4.5×10^{-2}		Fang Lee (2007)	Q	265
	2.0×10^{-2}		Dunnivant et al. (1992)	Q	
	1.6×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3',4',5-tetrachlorobiphenyl	3.3×10^{-2}	3500	Bamford et al. (2002)	M	
C ₁₂ H ₆ Cl ₄	9.9×10^{-2}		Brunner et al. (1990)	M	
(PCB-70)	5.2×10^{-2}		Murphy et al. (1987)	M	9
32598-11-1]	4.0×10^{-3}	5400	Paasivirta and Sinkkonen (2009)	V	
•	5.0×10^{-2}		Shiu and Mackay (1986)	V	
	6.5×10^{-2}		Burkhard et al. (1985)	V	
	2.0×10^{-1}		Hilal et al. (2008)	Q	
	6.0×10^{-2}		Fang Lee (2007)	Q	264
	6.4×10^{-2}		Fang Lee (2007)	Q	265
	4.9×10^{-2}		Dunnivant et al. (1992)	Q	200
	5.2×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3',4',6-tetrachlorobiphenyl	1.8×10^{-2}	6000	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₆ Cl ₄	4.4×10^{-2}		Burkhard et al. (1985)	V	
(PCB-71)	3.6×10^{-2}		Fang Lee (2007)	Q	264
[41464-46-4]	7.0×10^{-2}		Fang Lee (2007)	Q	265
	3.1×10^{-2}		Dunnivant et al. (1992)	Q	-
	3.1×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3',5,5'-tetrachlorobiphenyl	4.0×10^{-3}	5700	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₆ Cl ₄	3.9×10^{-2}		Burkhard et al. (1985)	V	
(PCB-72)	1.2×10^{-1}		Fang Lee (2007)	Q	264
[41464-42-0]	5.3×10^{-2}		Fang Lee (2007)	Q	265
-	2.7×10^{-2}		Dunnivant et al. (1992)	Q	
	2.1×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3',5',6-tetrachlorobiphenyl	6.4×10^{-3}	5900	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₆ Cl ₄	2.6×10^{-2}		Burkhard et al. (1985)	V	
(PCB-73)	7.4×10^{-2}		Fang Lee (2007)	Q	264
[74338-23-1]	6.0×10^{-2}		Fang Lee (2007)	Q	265
	1.9×10^{-2}		Dunnivant et al. (1992)	Q	
	1.6×10^{-2}		Sabljić and Güsten (1989)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,4,4',5-tetrachlorobiphenyl	2.6×10^{-2}	3000	Bamford et al. (2002)	M	
$C_{12}H_6Cl_4$	9.9×10^{-2}		Brunner et al. (1990)	M	
(PCB-74)	4.7×10^{-2}		Murphy et al. (1987)	M	9
32690-93-0]	4.8×10^{-3}	5800	Paasivirta and Sinkkonen (2009)	V	
	5.8×10^{-2}		Burkhard et al. (1985)	V	
	2.0×10^{-1}		Hilal et al. (2008)	Q	
	3.9×10^{-2}		Fang Lee (2007)	Q	264
	6.5×10^{-2}		Fang Lee (2007)	Q	265
	4.6×10^{-2}		Dunnivant et al. (1992)	Q	
	4.7×10^{-2}		Sabljić and Güsten (1989)	Q	
2,4,4',6-tetrachlorobiphenyl	2.1×10^{-2}	6400	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_6Cl_4$	2.4×10^{-2}		Burkhard et al. (1985)	V	
(PCB-75)	2.4×10^{-2}		Fang Lee (2007)	Q	264
[32598-12-2]	4.4×10^{-2}		Fang Lee (2007)	Q	265
[2.1×10^{-2}		Dunnivant et al. (1992)	Q	
	1.8×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3',4',5'-tetrachlorobiphenyl	7.7×10^{-2}		Murphy et al. (1987)	M	9
$C_{12}H_6Cl_4$	2.3×10^{-3}	5500	Paasivirta and Sinkkonen (2009)	V	
(PCB-76)	8.2×10^{-2}		Burkhard et al. (1985)	V	
[70362-48-0]	1.4×10^{-1}		Fang Lee (2007)	Q	264
	7.0×10^{-2}		Fang Lee (2007)	Q	265
	4.1×10^{-2}		Dunnivant et al. (1992)	Q	
	4.4×10^{-2}		Sabljić and Güsten (1989)	Q	
3,3',4,4'-tetrachlorobiphenyl	3.1×10^{-2}		Lau et al. (2006)	M	262
$C_{12}H_6Cl_4$	1.8×10^{-2}		Lau et al. (2006)	M	263
(PCB-77)	9.1×10^{-2}		Fang et al. (2006)	M	
[32598-13-3]	2.9×10^{-2}	13000	Charles and Destaillats (2005)	M	
	6.2×10^{-2}	4800	Bamford et al. (2000)	M	
	1.0×10^{-1}		Dunnivant et al. (1988)	M	
	1.0×10^{-1}		Dunnivant and Elzerman (1988)	M	266
	6.0×10^{-4}	4600	Paasivirta and Sinkkonen (2009)	V	
	5.8×10^{-2}		Mackay et al. (2006b)	V	
	5.8×10^{-1}		Mackay et al. (1992a)	V	
	5.9×10^{-1}		Shiu and Mackay (1986)	V	
	2.3×10^{-1}		Burkhard et al. (1985)	V	
	8.3×10^{-3}	7400	Paasivirta et al. (1999)	T	
	3.6×10^{-1}		Hilal et al. (2008)	Q	
	9.4×10^{-2}		Fang Lee (2007)	Q	264
	8.0×10^{-2}		Fang Lee (2007)	Q	265
	2	6100	Kühne et al. (2005)	Q	
	9.6×10^{-2}		Dunnivant et al. (1992)	Q	
	7.9×10^{-2}		Meylan and Howard (1991)	Q	
		5600	Kühne et al. (2005)	?	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\begin{bmatrix} mol \end{bmatrix}$	[K]		-71-	
	⌊m³ Pa ⌋	[11]			
3,3',4,5-tetrachlorobiphenyl	5.1×10^{-3}	5600	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_6Cl_4$	1.7×10^{-1}		Burkhard et al. (1985)	V	
(PCB-78)	1.7×10^{-1}		Fang Lee (2007)	Q	264
[70362-49-1]	7.5×10^{-2}		Fang Lee (2007)	Q	265
	6.0×10^{-2} 4.4×10^{-2}		Dunnivant et al. (1992)	Q	
			Sabljić and Güsten (1989)	Q	
3,3',4,5'-tetrachlorobiphenyl	3.8×10^{-3}	5400	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_6Cl_4$	1.4×10^{-1}		Burkhard et al. (1985)	V	
(PCB-79)	2.5×10^{-1}		Hilal et al. (2008)	Q	
[41464-48-6]	1.9×10^{-1}		Fang Lee (2007)	Q	264
	6.3×10^{-2}		Fang Lee (2007)	Q	265
	5.0×10^{-2}		Dunnivant et al. (1992)	Q	
	2.9×10^{-2}		Sabljić and Güsten (1989)	Q	
3,3',5,5'-tetrachlorobiphenyl	9.4×10^{-4}	5100	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₆ Cl ₄	8.0×10^{-2}		Burkhard et al. (1985)	V	
(PCB-80)	2.6×10^{-1}		Fang Lee (2007)	Q	264
[33284-52-5]	5.2×10^{-2}		Fang Lee (2007)	Q	265
	2.6×10^{-2}		Dunnivant et al. (1992)	Q	
	1.6×10^{-2}		Sabljić and Güsten (1989)	Q	
3,4,4',5-tetrachlorobiphenyl	8.8×10^{-2}		Fang et al. (2006)	M	
C ₁₂ H ₆ Cl ₄	4.1×10^{-2}	4000	Bamford et al. (2002)	M	
(PCB-81)	2.0×10^{-3}	5300	Paasivirta and Sinkkonen (2009)	V	
[70362-50-4]	1.9×10^{-1}		Burkhard et al. (1985)	V	
	8.6×10^{-2}		Fang Lee (2007)	Q	264
	7.2×10^{-2}		Fang Lee (2007)	Q	265
	6.9×10^{-2}		Dunnivant et al. (1992)	Q	
	6.7×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',3,3',4-pentachlorobiphenyl	2.7×10^{-2}	5100	Bamford et al. (2002)	M	
$C_{12}H_5Cl_5$	8.4×10^{-2}		Murphy et al. (1987)	M	9
(PCB-82)	3.2×10^{-3}	5800	Paasivirta and Sinkkonen (2009)	V	
[52663-62-4]	5.0×10^{-2}		Shiu and Mackay (1986)	V	
	8.0×10^{-2}		Burkhard et al. (1985)	V	
	1.6×10^{-1}		Fang Lee (2007)	Q	264
	1.5×10^{-1}		Fang Lee (2007)	Q	265
	6.7×10^{-2}		Dunnivant et al. (1992)	Q	
	8.1×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',3,3',5-pentachlorobiphenyl	2.3×10^{-2}	3600	Bamford et al. (2002)	M	
$C_{12}H_5Cl_5$	6.0×10^{-2}		Murphy et al. (1987)	M	9
(PCB-83)	7.7×10^{-3}	6300	Paasivirta and Sinkkonen (2009)	V	
[60145-20-2]	4.7×10^{-2}		Burkhard et al. (1985)	V	
	2.2×10^{-1}		Fang Lee (2007)	Q	264
	1.4×10^{-1}		Fang Lee (2007)	Q	265
	4.7×10^{-2}		Dunnivant et al. (1992)	Q	
	3.8×10^{-2}		Sabljić and Güsten (1989)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
Other name(s))	[mol]	[77]			
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
2,2',3,3',6-pentachlorobiphenyl	5.7×10^{-2}		Murphy et al. (1987)	M	9
C ₁₂ H ₅ Cl ₅	2.3×10^{-3}	6000	Paasivirta and Sinkkonen (2009)	V	
PCB-84)	1.9×10^{-2}		Burkhard et al. (1985)	V	
[52663-60-2]	1.3×10^{-1}		Fang Lee (2007)	Q	264
	1.2×10^{-1}		Fang Lee (2007)	Q	265
	3.9×10^{-2}		Dunnivant et al. (1992)	Q	
	4.3×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',3,4,4'-pentachlorobiphenyl	2.3×10^{-2}	3100	Bamford et al. (2002)	M	
C ₁₂ H ₅ Cl ₅	1.5×10^{-1}		Brunner et al. (1990)	M	
PCB-85)	6.0×10^{-2}		Murphy et al. (1987)	M	9
65510-45-4]	2.8×10^{-2}	6600	Paasivirta and Sinkkonen (2009)	V	
	5.6×10^{-2}		Burkhard et al. (1985)	V	
	9.2×10^{-2}		Hilal et al. (2008)	Q	
	7.8×10^{-2}		Fang Lee (2007)	Q	264
	1.1×10^{-1}		Fang Lee (2007)	Q	265
	5.1×10^{-2}		Dunnivant et al. (1992)	Q	
	4.0×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',3,4,5-pentachlorobiphenyl	8.9×10^{-3}	6500	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_5Cl_5$	6.6×10^{-3}		Mackay et al. (2006b)	V	
PCB-86)	6.6×10^{-3}		Mackay et al. (1992a)	V	
[55312-69-1]	6.6×10^{-3}		Shiu and Mackay (1986)	V	
	1.2×10^{-2}		Burkhard et al. (1985)	V	
	7.5×10^{-2}		Hilal et al. (2008)	Q	
	1.4×10^{-1}		Fang Lee (2007)	Q	264
	1.2×10^{-1}		Fang Lee (2007)	Q	265
	4.1×10^{-2}		Dunnivant et al. (1992)	Q	
	5.8×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',3,4,5'-pentachlorobiphenyl	2.7×10^{-2}	3900	Bamford et al. (2000)	M	
C ₁₂ H ₅ Cl ₅	7.8×10^{-2}		Murphy et al. (1987)	M	9
PCB-87)	4.1×10^{-3}	6000	Paasivirta and Sinkkonen (2009)	V	
[38380-02-8]	4.0×10^{-2}		Mackay et al. (2006b)	V	
	4.0×10^{-2}		Mackay et al. (1992a)	V	
	4.0×10^{-2}		Shiu and Mackay (1986)	V	
	5.0×10^{-2}		Burkhard et al. (1985)	V	
	1.2×10^{-1}		Hilal et al. (2008)	Q	
	1.6×10^{-1}		Fang Lee (2007)	Q	264
	1.0×10^{-1}		Fang Lee (2007)	Q	265
	2	5000	Kühne et al. (2005)	Q	
	5.4×10^{-2}		Dunnivant et al. (1992)	Q	
	5.5×10^{-2}		Sabljić and Güsten (1989)	Q	
		4200	Kühne et al. (2005)	?	
2,2',3,4,6-pentachlorobiphenyl	9.6×10^{-3}	6800	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_5Cl_5$	7.3×10^{-3}		Burkhard et al. (1985)	V	
(PCB-88)	1.2×10^{-1}		Fang Lee (2007)	Q	264
[55215-17-3]	7.8×10^{-2}		Fang Lee (2007)	Q	265
	2.6×10^{-2}		Dunnivant et al. (1992)	Q	
	2.9×10^{-2}		Sabljić and Güsten (1989)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,2',3,4,6'-pentachlorobiphenyl	2.2×10^{-2}	2500	Bamford et al. (2002)	M	
$C_{12}H_5Cl_5$	4.3×10^{-3}	6100	Paasivirta and Sinkkonen (2009)	V	
(PCB-89)	2.4×10^{-2}		Burkhard et al. (1985)	V	
[73575-57-2]	8.7×10^{-2}		Fang Lee (2007)	Q	264
	9.8×10^{-2}		Fang Lee (2007)	Q	265
	3.3×10^{-2}		Dunnivant et al. (1992)	Q	
	3.4×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',3,4',5-pentachlorobiphenyl	2.1×10^{-2}	6600	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₅ Cl ₅	3.3×10^{-2}		Burkhard et al. (1985)	V	
(PCB-90)	1.1×10^{-1}		Fang Lee (2007)	Q	264
[68194-07-0]	8.8×10^{-2}		Fang Lee (2007)	Q	265
[0017 07 0]	3.4×10^{-2}		Dunnivant et al. (1992)	Q	
	2.6×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',3,4',6-pentachlorobiphenyl	1.9×10^{-2}	1200	Bamford et al. (2002)	M	
$C_{12}H_5Cl_5$	3.6×10^{-2}		Murphy et al. (1987)	M	9
(PCB-91)	1.1×10^{-2}	6500	Paasivirta and Sinkkonen (2009)	V	
[68194-05-8]	1.4×10^{-2}		Burkhard et al. (1985)	V	
	6.6×10^{-2}		Fang Lee (2007)	Q	264
	8.3×10^{-2}		Fang Lee (2007)	Q	265
	2.9×10^{-2}		Dunnivant et al. (1992)	Q	
	2.8×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',3,5,5'-pentachlorobiphenyl	2.2×10^{-2}	2900	Bamford et al. (2002)	M	
C ₁₂ H ₅ Cl ₅	1.2×10^{-2}	6500	Paasivirta and Sinkkonen (2009)	V	
(PCB-92)	3.0×10^{-2}		Burkhard et al. (1985)	V	
[52663-61-3]	2.2×10^{-1}		Fang Lee (2007)	Q	264
	9.5×10^{-2}		Fang Lee (2007)	Q	265
	3.8×10^{-2}		Dunnivant et al. (1992)	Q	
	3.1×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',3,5,6-pentachlorobiphenyl	4.1×10^{-3}	6500	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₅ Cl ₅	8.3×10^{-3}		Burkhard et al. (1985)	V	
(PCB-93)	1.2×10^{-1}		Fang Lee (2007)	Q	264
[73575-56-1]	1.3×10^{-1}		Fang Lee (2007)	Q	265
	2.9×10^{-2}		Dunnivant et al. (1992)	Q	
	3.5×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',3,5,6'-pentachlorobiphenyl	4.5×10^{-3}	6300	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₅ Cl ₅	1.4×10^{-2}		Burkhard et al. (1985)	V	
(PCB-94)	1.2×10^{-1}		Fang Lee (2007)	Q	264
[73575-55-0]	9.1×10^{-2}		Fang Lee (2007)	Q	265
-	2.5×10^{-2}		Dunnivant et al. (1992)	Q	
	2.3×10^{-2}		Sabljić and Güsten (1989)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,2',3,5',6-pentachlorobiphenyl	2.1×10 ⁻²	2500	Bamford et al. (2002)	M	
C ₁₂ H ₅ Cl ₅	5.0×10^{-2}	2300	Murphy et al. (1987)	M	9
(PCB-95)	3.3×10^{-3}	6200	Paasivirta and Sinkkonen (2009)	V	,
[38379-99-6]	1.2×10^{-2}	0200	Burkhard et al. (1985)	V	
38379-99-0]	1.2×10^{-1} 1.3×10^{-1}		Fang Lee (2007)	Q Q	264
	9.0×10^{-2}		Fang Lee (2007)	Q	265
	3.3×10^{-2}		Dunnivant et al. (1992)	Q	203
	3.4×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',3,6,6'-pentachlorobiphenyl	8.7×10^{-4}	5800	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₅ Cl ₅	7.2×10^{-3}	3000	Burkhard et al. (1985)	V	
(PCB-96)	7.2×10^{-2} 7.4×10^{-2}		Fang Lee (2007)	Q	264
73575-54-9]	6.5×10^{-2}		Fang Lee (2007)	Q	265
[13313-34-2]	2.4×10^{-2}		Dunnivant et al. (1992)	Q	200
	2.6×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',3,4',5'-pentachlorobiphenyl	2.3×10^{-2}	3600	Bamford et al. (2002)	M	
C ₁₂ H ₅ Cl ₅	1.3×10^{-1}		Brunner et al. (1990)	M	
(PCB-97)	6.6×10^{-2}		Murphy et al. (1987)	M	9
41464-51-1]	8.6×10^{-3}	6300	Paasivirta and Sinkkonen (2009)	V	
	4.8×10^{-2}		Burkhard et al. (1985)	V	
	1.5×10^{-1}		Hilal et al. (2008)	Q	
	1.2×10^{-1}		Fang Lee (2007)	Q	264
	1.1×10^{-1}		Fang Lee (2007)	Q	265
	5.5×10^{-2}		Dunnivant et al. (1992)	Q	
	5.5×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',3,4',6'-pentachlorobiphenyl	5.5×10^{-3}	6300	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₅ Cl ₅	1.5×10^{-2}		Burkhard et al. (1985)	V	
(PCB-98)	7.6×10^{-2}		Fang Lee (2007)	Q	264
[60233-25-2]	6.5×10^{-2}		Fang Lee (2007)	Q	265
	2.5×10^{-2}		Dunnivant et al. (1992)	Q	
	2.0×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',4,4',5-pentachlorobiphenyl	2.2×10^{-2}		Lau et al. (2006)	M	262
$C_{12}H_5Cl_5$	4.2×10^{-3}		Lau et al. (2006)	M	263
(PCB-99)	8.8×10^{-3}	8700	Charles and Destaillats (2005)	M	
[38380-01-7]	2.1×10^{-2}	1900	Bamford et al. (2002)	M	
	1.3×10^{-1}		Brunner et al. (1990)	M	
	4.6×10^{-2}		Murphy et al. (1987)	M	9
	2.1×10^{-2}	6600	Paasivirta and Sinkkonen (2009)	V	
	3.4×10^{-2}		Burkhard et al. (1985)	V	
	6.2×10^{-2}		Fang Lee (2007)	Q	264
	7.9×10^{-2}		Fang Lee (2007)	Q	265
	4.0×10^{-2}		Dunnivant et al. (1992)	Q	
	3.3×10^{-2}		Sabljić and Güsten (1989)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,2',4,4',6-pentachlorobiphenyl	9.7×10^{-3}	6600	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_5Cl_5$	1.0×10^{-2}		Burkhard et al. (1985)	V	
(PCB-100)	3.8×10^{-2}		Fang Lee (2007)	Q	264
39485-83-1]	4.6×10^{-2}		Fang Lee (2007)	Q	265
	1.8×10^{-2}		Dunnivant et al. (1992)	Q	
	1.6×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',4,5,5'-pentachlorobiphenyl	3.2×10^{-2}	6800	Li et al. (2003)	L	143
$C_{12}H_5Cl_5$	4.1×10^{-2}	7500	Li et al. (2003)	L	144
(PCB-101)	2.4×10^{-2}	3600	Bamford et al. (2000)	M	
[37680-73-2]	3.9×10^{-2}		Dunnivant et al. (1988)	M	
-	3.9×10^{-2}		Dunnivant and Elzerman (1988)	M	266
	5.5×10^{-2}		Murphy et al. (1987)	M	9
	1.4×10^{-1}		Oliver (1985)	M	
			Westcott et al. (1981)	M	270
	8.9×10^{-3}	6400	Paasivirta and Sinkkonen (2009)	V	
	2.8×10^{-2}		Mackay et al. (2006b)	V	
	2.8×10^{-2}		Mackay et al. (1992a)	V	
	2.9×10^{-2}		Shiu and Mackay (1986)	V	
	3.1×10^{-2}		Burkhard et al. (1985)	V	
	2.0×10^{-2}	8100	Paasivirta et al. (1999)	T	
	1.2×10^{-1}		Hilal et al. (2008)	Q	
	1.3×10^{-1}		Fang Lee (2007)	Q	264
	7.9×10^{-2}		Fang Lee (2007)	Q	265
		4600	Kühne et al. (2005)	Q	
	4.0×10^{-2}		Dunnivant et al. (1992)	Q	
	1.1×10^{-1}		Meylan and Howard (1991)	Q	
		3900	Kühne et al. (2005)	?	
2,2',4,5,6'-pentachlorobiphenyl	1.1×10^{-1}		Brunner et al. (1990)	M	
$C_{12}H_5Cl_5$	6.3×10^{-3}	6300	Paasivirta and Sinkkonen (2009)	V	
(PCB-102)	1.5×10^{-2}		Burkhard et al. (1985)	V	
[68194-06-9]	8.8×10^{-2}		Hilal et al. (2008)	Q	
	6.9×10^{-2}		Fang Lee (2007)	Q	264
	7.7×10^{-2}		Fang Lee (2007)	Q	265
	2.7×10^{-2}		Dunnivant et al. (1992)	Q	
	2.8×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',4,5',6-pentachlorobiphenyl	8.1×10^{-3}	6600	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₅ Cl ₅	9.1×10^{-3}		Burkhard et al. (1985)	V	
(PCB-103)	7.7×10^{-2}		Fang Lee (2007)	Q	264
[60145-21-3]	4.6×10^{-2}		Fang Lee (2007)	Q	265
	2.0×10^{-2}		Dunnivant et al. (1992)	Q	
	1.8×10^{-2}		Sabljić and Güsten (1989)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

H^{cp} (at T^{\ominus}) $\lceil \mod \rceil$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Type	Note
$\lfloor \frac{1}{m^3 Pa} \rfloor$	[K]			
1.5×10 ⁻²	1700	Bamford et al. (2000)	M	
1.1×10^{-2}				
				266
2.8×10^{-3}	6300	· · · · · · · · · · · · · · · · · · ·	V	
4.3×10^{-2}			V	
7.2×10^{-2}		Mackay et al. (1992a)	V	
5.4×10^{-3}		Burkhard et al. (1985)	V	
4.2×10^{-2}		Fang Lee (2007)	Q	264
3.4×10^{-2}				265
	3100	Kühne et al. (2005)		
1.3×10^{-2}		Dunnivant et al. (1992)		
	2000	Kühne et al. (2005)	?	
3.0×10^{-2}	6800	Li et al. (2003)	L	143
7.2×10^{-2}			L	144
1.8×10^{-1}			M	
	9100		M	
5.0×10^{-3}			V	
1.8×10^{-1}			V	
2.9×10^{-2}	8300		T	
9.7×10^{-2}			Q	264
1.4×10^{-1}		_		265
9.9×10^{-2}		Dunnivant et al. (1992)		
1.6×10^{-1}		Sabljić and Güsten (1989)	Q	
1.3×10^{-2}	6500	Paasivirta and Sinkkonen (2009)	V	
		(- 0 0)		
2.5×10^{-2}		Burkhard et al. (1985)	V	
2.5×10^{-2} 1.8×10^{-1}		Burkhard et al. (1985) Fang Lee (2007)	V O	264
1.8×10^{-1}		Fang Lee (2007)	Q	264 265
$1.8 \times 10^{-1} \\ 1.4 \times 10^{-1}$		Fang Lee (2007) Fang Lee (2007)	Q Q	264 265
1.8×10^{-1}		Fang Lee (2007)	Q	
1.8×10^{-1} 1.4×10^{-1} 6.0×10^{-2} 5.1×10^{-2}	2200	Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989)	Q Q Q Q	
$ \begin{array}{r} 1.8 \times 10^{-1} \\ 1.4 \times 10^{-1} \\ 6.0 \times 10^{-2} \\ 5.1 \times 10^{-2} \end{array} $ $ \begin{array}{r} 4.3 \times 10^{-2} \\ \end{array} $	2200	Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989) Bamford et al. (2002)	Q Q Q Q	265
$ \begin{array}{r} 1.8 \times 10^{-1} \\ 1.4 \times 10^{-1} \\ 6.0 \times 10^{-2} \\ 5.1 \times 10^{-2} \end{array} $ $ \begin{array}{r} 4.3 \times 10^{-2} \\ 1.7 \times 10^{-1} \end{array} $		Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989) Bamford et al. (2002) Murphy et al. (1987)	Q Q Q Q M M	
$ \begin{array}{r} 1.8 \times 10^{-1} \\ 1.4 \times 10^{-1} \\ 6.0 \times 10^{-2} \\ 5.1 \times 10^{-2} \\ \hline 4.3 \times 10^{-2} \\ 1.7 \times 10^{-1} \\ 9.1 \times 10^{-3} \end{array} $	2200 6200	Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989) Bamford et al. (2002) Murphy et al. (1987) Paasivirta and Sinkkonen (2009)	Q Q Q Q M M V	265
1.8×10^{-1} 1.4×10^{-1} 6.0×10^{-2} 5.1×10^{-2} 4.3×10^{-2} 1.7×10^{-1} 9.1×10^{-3} 1.0×10^{-1}		Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989) Bamford et al. (2002) Murphy et al. (1987) Paasivirta and Sinkkonen (2009) Burkhard et al. (1985)	Q Q Q Q M M V V	9
$ \begin{array}{r} 1.8 \times 10^{-1} \\ 1.4 \times 10^{-1} \\ 6.0 \times 10^{-2} \\ 5.1 \times 10^{-2} \\ \hline 4.3 \times 10^{-2} \\ 1.7 \times 10^{-1} \\ 9.1 \times 10^{-3} \\ 1.0 \times 10^{-1} \\ 2.0 \times 10^{-1} \end{array} $		Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989) Bamford et al. (2002) Murphy et al. (1987) Paasivirta and Sinkkonen (2009) Burkhard et al. (1985) Fang Lee (2007)	Q Q Q Q M M V V Q	2659264
$ \begin{array}{r} 1.8 \times 10^{-1} \\ 1.4 \times 10^{-1} \\ 6.0 \times 10^{-2} \\ 5.1 \times 10^{-2} \\ \hline 4.3 \times 10^{-2} \\ 1.7 \times 10^{-1} \\ 9.1 \times 10^{-3} \\ 1.0 \times 10^{-1} \\ 2.0 \times 10^{-1} \\ 1.2 \times 10^{-1} \end{array} $		Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989) Bamford et al. (2002) Murphy et al. (1987) Paasivirta and Sinkkonen (2009) Burkhard et al. (1985) Fang Lee (2007) Fang Lee (2007)	Q Q Q Q M M V V Q Q Q	9
1.8×10^{-1} 1.4×10^{-1} 6.0×10^{-2} 5.1×10^{-2} 4.3×10^{-2} 1.7×10^{-1} 9.1×10^{-3} 1.0×10^{-1} 2.0×10^{-1} 1.2×10^{-1} 6.2×10^{-2}		Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989) Bamford et al. (2002) Murphy et al. (1987) Paasivirta and Sinkkonen (2009) Burkhard et al. (1985) Fang Lee (2007)	Q Q Q Q W M M V V Q Q Q Q	2659264
1.8×10^{-1} 1.4×10^{-1} 6.0×10^{-2} 5.1×10^{-2} 4.3×10^{-2} 1.7×10^{-1} 9.1×10^{-3} 1.0×10^{-1} 2.0×10^{-1} 1.2×10^{-1} 6.2×10^{-2} 4.9×10^{-2}	6200	Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989) Bamford et al. (2002) Murphy et al. (1987) Paasivirta and Sinkkonen (2009) Burkhard et al. (1985) Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989)	Q Q Q Q M M V V Q Q Q	2659264
1.8×10^{-1} 1.4×10^{-1} 6.0×10^{-2} 5.1×10^{-2} 4.3×10^{-2} 1.7×10^{-1} 9.1×10^{-3} 1.0×10^{-1} 2.0×10^{-1} 1.2×10^{-1} 6.2×10^{-2} 4.9×10^{-2} 4.1×10^{-3}		Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989) Bamford et al. (2002) Murphy et al. (1987) Paasivirta and Sinkkonen (2009) Burkhard et al. (1985) Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989) Paasivirta and Sinkkonen (2009)	Q Q Q Q Q Q Q Q V	2659264
1.8×10^{-1} 1.4×10^{-1} 6.0×10^{-2} 5.1×10^{-2} 4.3×10^{-2} 1.7×10^{-1} 9.1×10^{-3} 1.0×10^{-1} 2.0×10^{-1} 1.2×10^{-1} 6.2×10^{-2} 4.9×10^{-2} 4.1×10^{-3} 1.0×10^{-1}	6200	Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989) Bamford et al. (2002) Murphy et al. (1987) Paasivirta and Sinkkonen (2009) Burkhard et al. (1985) Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989) Paasivirta and Sinkkonen (2009) Burkhard et al. (1985)	Q Q Q Q W V V	9 264 265
1.8×10^{-1} 1.4×10^{-1} 6.0×10^{-2} 5.1×10^{-2} 4.3×10^{-2} 1.7×10^{-1} 9.1×10^{-3} 1.0×10^{-1} 2.0×10^{-1} 1.2×10^{-2} 4.9×10^{-2} 4.1×10^{-3} 1.0×10^{-1} 1.1×10^{-1}	6200	Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989) Bamford et al. (2002) Murphy et al. (1987) Paasivirta and Sinkkonen (2009) Burkhard et al. (1985) Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989) Paasivirta and Sinkkonen (2009) Burkhard et al. (1985) Fang Lee (2007)	Q Q Q Q M M V V Q Q Q Q V V Q Q	265 9 264 265
1.8×10^{-1} 1.4×10^{-1} 6.0×10^{-2} 5.1×10^{-2} 4.3×10^{-2} 1.7×10^{-1} 9.1×10^{-3} 1.0×10^{-1} 2.0×10^{-1} 1.2×10^{-1} 6.2×10^{-2} 4.9×10^{-2} 4.1×10^{-3} 1.0×10^{-1}	6200	Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989) Bamford et al. (2002) Murphy et al. (1987) Paasivirta and Sinkkonen (2009) Burkhard et al. (1985) Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989) Paasivirta and Sinkkonen (2009) Burkhard et al. (1985)	Q Q Q Q W V V	9 264 265
		$ \begin{array}{c cccc} (at \ T^{\ominus}) & \overline{d(1/T)} \\ \hline \left[\frac{mol}{m^3 Pa} \right] & [K] \\ \hline \\ 1.5 \times 10^{-2} & 1700 \\ 1.1 \times 10^{-2} \\ 1.1 \times 10^{-2} \\ 2.8 \times 10^{-3} & 6300 \\ 4.3 \times 10^{-2} \\ 7.2 \times 10^{-2} \\ 5.4 \times 10^{-3} \\ 4.2 \times 10^{-2} \\ 3.4 \times 10^{-2} \\ \hline \\ 3.4 \times 10^{-2} \\ \hline \\ 3.0 \times 10^{-2} & 6800 \\ 7.2 \times 10^{-2} & 7500 \\ 1.8 \times 10^{-1} \\ 3.0 \times 10^{-2} & 9100 \\ 5.0 \times 10^{-3} & 5700 \\ 1.8 \times 10^{-1} \\ 2.9 \times 10^{-2} & 8300 \\ 9.7 \times 10^{-2} \\ 1.4 \times 10^{-1} \\ 9.9 \times 10^{-2} \\ 1.6 \times 10^{-1} \\ \hline \end{array} $	$ \begin{array}{c ccccc} \left(\begin{array}{c} mol \\ \hline m^3 Pa \end{array} \right) & \hline a & \hline {\rm [K]} \\ \hline \\ 1.5 \times 10^{-2} & 1700 & {\rm Bamford\ et\ al.\ (2000)} \\ 1.1 \times 10^{-2} & {\rm Dunnivant\ et\ al.\ (1988)} \\ 1.1 \times 10^{-2} & {\rm Dunnivant\ et\ al.\ (1988)} \\ 2.8 \times 10^{-3} & 6300 & {\rm Paasivirta\ and\ Sinkkonen\ (2009)} \\ 4.3 \times 10^{-2} & {\rm Mackay\ et\ al.\ (2006b)} \\ 7.2 \times 10^{-2} & {\rm Mackay\ et\ al.\ (1992a)} \\ 5.4 \times 10^{-3} & {\rm Burkhard\ et\ al.\ (1985)} \\ 4.2 \times 10^{-2} & {\rm Fang\ Lee\ (2007)} \\ 3.4 \times 10^{-2} & {\rm Fang\ Lee\ (2007)} \\ 1.3 \times 10^{-2} & {\rm Dunnivant\ et\ al.\ (2005)} \\ \hline \\ 3.0 \times 10^{-2} & {\rm 6800} & {\rm Li\ et\ al.\ (2003)} \\ 1.8 \times 10^{-1} & {\rm Fang\ et\ al.\ (2006)} \\ 3.0 \times 10^{-2} & 9100 & {\rm Bamford\ et\ al.\ (2000)} \\ 5.0 \times 10^{-3} & 5700 & {\rm Paasivirta\ and\ Sinkkonen\ (2009)} \\ 1.8 \times 10^{-1} & {\rm Burkhard\ et\ al.\ (1985)} \\ 2.9 \times 10^{-2} & 8300 & {\rm Paasivirta\ et\ al.\ (1999)} \\ 9.7 \times 10^{-2} & {\rm Fang\ Lee\ (2007)} \\ 1.4 \times 10^{-1} & {\rm Fang\ Lee\ (2007)} \\ 9.9 \times 10^{-2} & {\rm Dunnivant\ et\ al.\ (1992)} \\ 1.6 \times 10^{-1} & {\rm Sablji\'e\ and\ G\"usten\ (1989)} \\ \hline \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,3,3',4,6-pentachlorobiphenyl	1.5×10^{-2}	6600	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₅ Cl ₅	2.1×10^{-2}	0000	Burkhard et al. (1985)	V	
(PCB-109)	1.4×10^{-1}		Fang Lee (2007)	Q	264
[74472-35-8]	1.2×10^{-1}		Fang Lee (2007)	Q	265
	3.5×10^{-2}		Dunnivant et al. (1992)	Q	
	2.5×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,3',4',6-pentachlorobiphenyl	2.3×10 ⁻²	5200	Bamford et al. (2002)	M	
$C_{12}H_5Cl_5$	9.3×10^{-2}		Murphy et al. (1987)	M	9
(PCB-110)	1.8×10^{-2}	6400	Paasivirta and Sinkkonen (2009)	V	
[38380-03-9]	5.8×10^{-2}		Burkhard et al. (1985)	V	
[36300-03-2]	8.3×10^{-2}		Fang Lee (2007)	Q	264
	1.4×10^{-1}		Fang Lee (2007)	Q	265
		5000	Kühne et al. (2005)	Q	
	5.0×10^{-2}		Dunnivant et al. (1992)	Q	
	5.2×10^{-2}		Sabljić and Güsten (1989)	Q	
		4300	Kühne et al. (2005)	?	
2,3,3',5,5'-pentachlorobiphenyl	6.5×10^{-3}	6200	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₅ Cl ₅	6.2×10^{-2}		Burkhard et al. (1985)	V	
(PCB-111)	2.7×10^{-1}		Fang Lee (2007)	Q	264
[39635-32-0]	7.8×10^{-2}		Fang Lee (2007)	Q	265
	3.7×10^{-2}		Dunnivant et al. (1992)	Q	
	2.0×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,3',5,6-pentachlorobiphenyl	7.8×10^{-3}	6600	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₅ Cl ₅	2.4×10^{-2}		Burkhard et al. (1985)	V	
(PCB-112)	1.5×10^{-1}		Fang Lee (2007)	Q	264
[74472-36-9]	2.0×10^{-1}		Fang Lee (2007)	Q	265
	3.7×10^{-2}		Dunnivant et al. (1992)	Q	
	3.0×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,3',5',6-pentachlorobiphenyl	1.5×10^{-2}	6500	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_5Cl_5$	3.5×10^{-2}		Burkhard et al. (1985)	V	
(PCB-113)	1.7×10^{-1}		Fang Lee (2007)	Q	264
[68194-10-5]	1.2×10^{-1}		Fang Lee (2007)	Q	265
	3.0×10^{-2}		Dunnivant et al. (1992)	Q	
	2.1×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,4,4',5-pentachlorobiphenyl	5.3×10^{-2}		Fang et al. (2006)	M	
C ₁₂ H ₅ Cl ₅	1.4×10^{-1}		Murphy et al. (1987)	M	9
(PCB-114)	1.2×10^{-2}	6400	Paasivirta and Sinkkonen (2009)	V	
[74472-37-0]	2.8×10^{-2}		Burkhard et al. (1985)	V	
	8.9×10^{-2}		Fang Lee (2007)	Q	264
	1.3×10^{-1}		Fang Lee (2007)	Q	265
	6.9×10^{-2}		Dunnivant et al. (1992)	Q	
	8.7×10^{-2}		Sabljić and Güsten (1989)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\boxed{ mol }$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	$\lfloor \overline{m^3 Pa} \rfloor$				
2,3,4,4',6-pentachlorobiphenyl	2.6×10^{-2}	6900	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_5Cl_5$	2.3×10^{-2}		Burkhard et al. (1985)	V	
(PCB-115)	5.4×10^{-2}		Fang Lee (2007)	Q	264
74472-38-1]	1.1×10^{-1}		Fang Lee (2007)	Q	265
	4.0×10^{-2}		Dunnivant et al. (1992)	Q	
	3.2×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,4,5,6-pentachlorobiphenyl	4.3×10^{-3}	6500	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₅ Cl ₅	5.5×10^{-2}		Burkhard et al. (1985)	V	
(PCB-116)	9.9×10^{-2}		Fang Lee (2007)	Q	264
[18259-05-7]	1.8×10^{-1}		Fang Lee (2007)	Q	265
	3.3×10^{-2}		Dunnivant et al. (1992)	Q	
	4.3×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,4',5,6-pentachlorobiphenyl	1.5×10^{-3}	5900	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₅ Cl ₅	2.7×10^{-2}		Burkhard et al. (1985)	V	
(PCB-117)	7.5×10^{-2}		Fang Lee (2007)	Q	264
[68194-11-6]	1.7×10^{-1}		Fang Lee (2007)	Q	265
-	4.1×10^{-2}		Dunnivant et al. (1992)	Q	
	4.0×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3',4,4',5-pentachlorobiphenyl	3.1×10^{-2}	6800	Li et al. (2003)	L	143
C ₁₂ H ₅ Cl ₅	6.9×10^{-2}	7600	Li et al. (2003)	L	144
(PCB-118)	1.1×10^{-2}		Lau et al. (2006)	M	262
[31508-00-6]	5.6×10^{-3}		Lau et al. (2006)	M	263
	5.7×10^{-2}		Fang et al. (2006)	M	
	1.8×10^{-2}	14000	Charles and Destaillats (2005)	M	
	2.8×10^{-2}	6000	Bamford et al. (2000)	M	
	1.2×10^{-1}		Murphy et al. (1987)	M	9
	6.6×10^{-3}	6000	Paasivirta and Sinkkonen (2009)	V	
	1.1×10^{-1}		Burkhard et al. (1985)	V	
	2.6×10^{-2}	8100	Paasivirta et al. (1999)	T	
	7.8×10^{-2}		Fang Lee (2007)	Q	264
	1.0×10^{-1}		Fang Lee (2007)	Q	265
		5600	Kühne et al. (2005)	Q	
	7.9×10^{-2}		Dunnivant et al. (1992)	Q	
	8.5×10^{-2}		Sabljić and Güsten (1989)	Q	
		6300	Kühne et al. (2005)	?	
2,3',4,4',6-pentachlorobiphenyl	1.5×10^{-2}	4600	Bamford et al. (2002)	M	
$C_{12}H_5Cl_5$	1.5×10^{-2}	6500	Paasivirta and Sinkkonen (2009)	V	
(PCB-119)	4.4×10^{-2}		Burkhard et al. (1985)	V	
[56558-17-9]	1.6×10^{-1}		Hilal et al. (2008)	Q	
	4.7×10^{-2}		Fang Lee (2007)	Q	264
	7.4×10^{-2}		Fang Lee (2007)	Q	265
	3.2×10^{-2}		Dunnivant et al. (1992)	Q	
	2.2×10^{-2}		Sabljić and Güsten (1989)	Q	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,3',4,5,5'-pentachlorobiphenyl	1.8×10 ⁻¹		Brunner et al. (1990)	M	
C ₁₂ H ₅ Cl ₅	3.9×10^{-3}	6000	Paasivirta and Sinkkonen (2009)	V	
(PCB-120)	6.4×10^{-2}	0000	Burkhard et al. (1985)	V	
[68194-12-7]	2.5×10^{-1}		Hilal et al. (2008)	Q	
[00171 12 7]	1.6×10^{-1}		Fang Lee (2007)	Q	264
	8.3×10^{-2}		Fang Lee (2007)	Q	265
	4.0×10^{-2}		Dunnivant et al. (1992)	Q	
	2.4×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3',4,5',6-pentachlorobiphenyl	8.5×10^{-3}	6500	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_5Cl_5$	2.6×10^{-2}		Burkhard et al. (1985)	V	
(PCB-121)	9.6×10^{-2}		Fang Lee (2007)	Q	264
[56558-18-0]	6.2×10^{-2}		Fang Lee (2007)	Q	265
-	1.8×10^{-2}		Dunnivant et al. (1992)	Q	
	1.3×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,3',4',5'-pentachlorobiphenyl	1.6×10^{-1}		Murphy et al. (1987)	M	9
C ₁₂ H ₅ Cl ₅	4.3×10^{-3}	5800	Paasivirta and Sinkkonen (2009)	V	
(PCB-122)	1.6×10^{-1}		Burkhard et al. (1985)	V	
[76842-07-4]	2.8×10^{-1}		Fang Lee (2007)	Q	264
	1.4×10^{-1}		Fang Lee (2007)	Q	265
	7.9×10^{-2}		Dunnivant et al. (1992)	Q	
	7.2×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3',4,4',5'-pentachlorobiphenyl	4.6×10^{-2}		Fang et al. (2006)	M	
C ₁₂ H ₅ Cl ₅	3.7×10^{-3}	5800	Paasivirta and Sinkkonen (2009)	V	
(PCB-123)	1.1×10^{-1}		Burkhard et al. (1985)	V	
[65510-44-3]	1.4×10^{-1}		Fang Lee (2007)	Q	264
	9.3×10^{-2}		Fang Lee (2007)	Q	265
	5.7×10^{-2}		Dunnivant et al. (1992)	Q	
	3.8×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3',4',5,5'-pentachlorobiphenyl	1.9×10^{-1}		Murphy et al. (1987)	M	9
$C_{12}H_5Cl_5$	4.5×10^{-3}	5900	Paasivirta and Sinkkonen (2009)	V	
(PCB-124)	1.0×10^{-1}		Burkhard et al. (1985)	V	
[70424-70-3]	2.8×10^{-1}		Fang Lee (2007)	Q	264
	9.4×10^{-2}		Fang Lee (2007)	Q	265
	5.8×10^{-2}		Dunnivant et al. (1992)	Q	
	5.1×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3',4',5',6-pentachlorobiphenyl	2.3×10^{-3}	5800	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_5Cl_5$	6.7×10^{-2}		Burkhard et al. (1985)	V	
(PCB-125)	1.5×10^{-1}		Fang Lee (2007)	Q	264
[74472-39-2]	1.1×10^{-1}		Fang Lee (2007)	Q	265
	3.4×10^{-2}		Dunnivant et al. (1992)	Q	
	3.0×10^{-2}		Sabljić and Güsten (1989)	Q	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Defense	T	NI-4-
(Other name(s))	[mol]		Reference	Type	Note
[CAS registry number]	$\lfloor \frac{\overline{m^3 Pa}}{\rfloor$	[K]			
3,3',4,4',5-pentachlorobiphenyl	1.0×10^{-1}		Fang et al. (2006)	M	
C ₁₂ H ₅ Cl ₅	4.8×10^{-2}	12000	Bamford et al. (2000)	M	
(PCB-126)	1.6×10^{-3}	5400	Paasivirta and Sinkkonen (2009)	V	
57465-28-8]	3.6×10^{-1}		Burkhard et al. (1985)	V	
	6.5×10^{-2}	8800	Paasivirta et al. (1999)	T	
	1.7×10^{-1}		Fang Lee (2007)	Q	264
	1.0×10^{-1}		Fang Lee (2007)	Q	265
	1.2×10^{-1}		Dunnivant et al. (1992)	Q	
	1.8×10^{-1}		Sabljić and Güsten (1989)	Q	
3,3',4,5,5'-pentachlorobiphenyl	2.2×10^{-3}	5600	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_5Cl_5$	2.2×10^{-1}		Burkhard et al. (1985)	V	
(PCB-127)	3.4×10^{-1}		Fang Lee (2007)	Q	264
[39635-33-1]	8.4×10^{-2}		Fang Lee (2007)	Q	265
	6.3×10^{-2}		Dunnivant et al. (1992)	Q	
	2.9×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',3,3',4,4'-hexachlorobiphenyl	2.8×10^{-2}	14000	Bamford et al. (2000)	M	
$C_{12}H_4Cl_6$	7.6×10^{-1}		Brunner et al. (1990)	M	
(PCB-128)	3.3×10^{-1}		Dunnivant et al. (1988)	M	
[38380-07-3]	3.3×10^{-1}		Dunnivant and Elzerman (1988)	M	266
	1.7×10^{-1}		Murphy et al. (1987)	M	9
	6.9×10^{-3}	6100	Paasivirta and Sinkkonen (2009)	V	
	8.4×10^{-2}		Mackay et al. (2006b)	V	
	8.4×10^{-2}		Mackay et al. (1992a)	V	
	8.3×10^{-2}		Shiu and Mackay (1986)	V	
	1.5×10^{-1}		Burkhard et al. (1985)	V	267 260
	2.0×10^{-2} 1.8×10^{-1}		Murphy et al. (1983)	X	267, 268
	1.8×10^{-1} 1.5×10^{-1}		Hilal et al. (2008)	Q	264
	1.5×10^{-1} 2.4×10^{-1}		Fang Lee (2007)	Q	264
	9.5×10^{-2}		Fang Lee (2007)	Q	265
			Dunnivant et al. (1992)	Q	
2,2',3,3',4,5-hexachlorobiphenyl	3.4×10^{-1}	- 100	Brunner et al. (1990)	M	
C ₁₂ H ₄ Cl ₆	6.4×10^{-3}	6400	Paasivirta and Sinkkonen (2009)	V	
(PCB-129)	2.5×10^{-2}		Burkhard et al. (1985)	V	
[55215-18-4]	1.6×10^{-1}		Hilal et al. (2008)	Q	264
	2.9×10^{-1} 2.6×10^{-1}		Fang Lee (2007)	Q	264
	7.1×10^{-2}		Fang Lee (2007)	Q	265
	1.2×10^{-1}		Dunnivant et al. (1992) Sabljić and Güsten (1989)	Q Q	
2 2 2 2 4 5 1 11 1 1 1					
2,2',3,3',4,5'-hexachlorobiphenyl	2.7×10^{-1} 9.2×10^{-2}		Brunner et al. (1990)	M M	0
C ₁₂ H ₄ Cl ₆	9.2×10^{-2} 5.9×10^{-3}	6500	Murphy et al. (1987)	M	9
(PCB-130) [52663-66-8]	5.9×10^{-3} 8.7×10^{-2}	6500	Paasivirta and Sinkkonen (2009)	V V	
[32003-00-8]	8.7×10^{-2} 1.9×10^{-1}		Burkhard et al. (1985) Hilal et al. (2008)		
	3.1×10^{-1}		Fang Lee (2007)	Q Q	264
	3.1×10^{-1} 2.1×10^{-1}		Fang Lee (2007)	Q Q	265
			rang Lee (2007)	Ų	2UJ
	6.5×10^{-2}		Dunnivant et al. (1992)	Q	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,2',3,3',4,6-hexachlorobiphenyl	1.5×10 ⁻¹		Murphy et al. (1987)	M	9
$C_{12}H_4Cl_6$	3.0×10^{-3}	6500	Paasivirta and Sinkkonen (2009)	V	
(PCB-131)	1.6×10^{-2}		Burkhard et al. (1985)	V	
[61798-70-7]	1.6×10^{-1}		Hilal et al. (2008)	Q	
	1.7×10^{-1}		Fang Lee (2007)	Q	264
	1.9×10^{-1}		Fang Lee (2007)	Q	265
	4.1×10^{-2}		Dunnivant et al. (1992)	Q	
	3.8×10^{-2}		Sabljić and Güsten (1989)	Q	
,2',3,3',4,6'-hexachlorobiphenyl	4.0×10^{-2}	2400	Bamford et al. (2002)	M	
$C_{12}H_4Cl_6$	2.2×10^{-1}		Brunner et al. (1990)	M	
PCB-132)	4.1×10^{-3}	6400	Paasivirta and Sinkkonen (2009)	V	
38380-05-1]	3.6×10^{-2}		Burkhard et al. (1985)	V	
	2.2×10^{-1}		Hilal et al. (2008)	Q	
	1.7×10^{-1}		Fang Lee (2007)	Q	264
	2.1×10^{-1}		Fang Lee (2007)	Q	265
	4.9×10^{-2} 6.1×10^{-2}		Dunnivant et al. (1992)	Q	
			Sabljić and Güsten (1989)	Q	
2,2',3,3',5,5'-hexachlorobiphenyl	4.1×10^{-3}	6500	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_4Cl_6$	5.2×10^{-2}		Burkhard et al. (1985)	V	
PCB-133)	1.8×10^{-1}		Hilal et al. (2008)	Q	
35694-04-3]	4.3×10^{-1}		Fang Lee (2007)	Q	264
	2.0×10^{-1}		Fang Lee (2007)	Q	265
	4.8×10^{-2}		Dunnivant et al. (1992)	Q	
	3.0×10^{-2}		Sabljić and Güsten (1989)	Q	
,2',3,3',5,6-hexachlorobiphenyl	1.2×10^{-2}	7300	Bamford et al. (2002)	M	
$C_{12}H_4Cl_6$	2.0×10^{-1}		Brunner et al. (1990)	M	
PCB-134)	1.0×10^{-1}		Murphy et al. (1987)	M	9
52704-70-8]	2.8×10^{-3}	6400	Paasivirta and Sinkkonen (2009)	V	
	1.8×10^{-2}		Burkhard et al. (1985)	V	
	2.0×10^{-1}		Hilal et al. (2008)	Q	
	2.4×10^{-1}		Fang Lee (2007)	Q	264
	3.2×10^{-1}		Fang Lee (2007)	Q	265
	4.3×10^{-2}		Dunnivant et al. (1992)	Q	
	4.9×10^{-2}		Sabljić and Güsten (1989)	Q	
,2',3,3',5,6'-hexachlorobiphenyl	1.5×10^{-2}	5500	Bamford et al. (2002)	M	
$C_{12}H_4Cl_6$	1.8×10^{-1}		Brunner et al. (1990)	M	
(PCB-135)	7.0×10^{-2}		Murphy et al. (1987)	M	9
52744-13-5]	4.8×10^{-3}	6600	Paasivirta and Sinkkonen (2009)	V	
	2.1×10^{-2}		Burkhard et al. (1985)	V	
	2.3×10^{-1}		Hilal et al. (2008)	Q	_
	2.4×10^{-1}		Fang Lee (2007)	Q	264
	2.1×10^{-1}		Fang Lee (2007)	Q	265
	3.7×10^{-2}		Dunnivant et al. (1992)	Q	
	3.2×10^{-2}		Sabljić and Güsten (1989)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]	[17]		71	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
2,2',3,3',6,6'-hexachlorobiphenyl	9.0×10^{-3}	5400	Bamford et al. (2002)	M	
$C_{12}H_4Cl_6$	1.1×10^{-1}		Brunner et al. (1990)	M	
(PCB-136)	4.4×10^{-2}		Murphy et al. (1987)	M	9
[38411-22-2]	1.6×10^{-3}	6300	Paasivirta and Sinkkonen (2009)	V	
	1.1×10^{-2}		Burkhard et al. (1985)	V	
	2.7×10^{-1}		Hilal et al. (2008)	Q	
	1.4×10^{-1}		Fang Lee (2007)	Q	264
	1.6×10^{-1}		Fang Lee (2007)	Q	265
	3.1×10^{-2}		Dunnivant et al. (1992)	Q	
	3.9×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',3,4,4',5-hexachlorobiphenyl	4.5×10^{-2}	3200	Bamford et al. (2002)	M	
$C_{12}H_4Cl_6$	1.5×10^{-1}		Murphy et al. (1987)	M	9
(PCB-137)	1.8×10^{-2}	6800	Paasivirta and Sinkkonen (2009)	V	
35694-06-5]	1.8×10^{-2}		Burkhard et al. (1985)	V	
	1.4×10^{-1}		Fang Lee (2007)	Q	264
	1.7×10^{-1}		Fang Lee (2007)	Q	265
	5.3×10^{-2}		Dunnivant et al. (1992)	Q	
	4.7×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',3,4,4',5'-hexachlorobiphenyl	2.5×10^{-2}	7100	Li et al. (2003)	L	143
$C_{12}H_4Cl_6$	3.3×10^{-2}	7700	Li et al. (2003)	L	144
PCB-138)	2.2×10^{-2}	10000	Bamford et al. (2000)	M	
[35065-28-2]	4.7×10^{-1}		Brunner et al. (1990)	M	
	1.3×10^{-1}		Murphy et al. (1987)	M	9
	1.8×10^{-2}	6800	Paasivirta and Sinkkonen (2009)	V	
	1.2×10^{-2}		Shiu and Mackay (1986)	V	
	9.1×10^{-2}		Burkhard et al. (1985)	V	
	4.7×10^{-2}	8700	Paasivirta et al. (1999)	T	
	1.8×10^{-1}		Hilal et al. (2008)	Q	
	1.6×10^{-1}		Fang Lee (2007)	Q	264
	1.8×10^{-1}		Fang Lee (2007)	Q	265
	7.6×10^{-2}		Dunnivant et al. (1992)	Q	
	9.2×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',3,4,4',6-hexachlorobiphenyl	1.4×10^{-2}	6900	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_4Cl_6$	1.1×10^{-2}		Burkhard et al. (1985)	V	
(PCB-139)	8.6×10^{-2}		Fang Lee (2007)	Q	264
[56030-56-9]	1.3×10^{-1}		Fang Lee (2007)	Q	265
	3.0×10^{-2}		Dunnivant et al. (1992)	Q	
	2.6×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',3,4,4',6'-hexachlorobiphenyl	1.7×10^{-2}	7000	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_4Cl_6$	2.7×10^{-2}		Burkhard et al. (1985)	V	
(PCB-140)	8.5×10^{-2}		Fang Lee (2007)	Q	264
[59291-64-4]	1.1×10^{-1}		Fang Lee (2007)	Q	265
-	3.2×10^{-2}		Dunnivant et al. (1992)	Q	
	2.3×10^{-2}		Sabljić and Güsten (1989)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type	Note
2,2',3,4,5,5'-hexachlorobiphenyl C ₁₂ H ₄ Cl ₆ (PCB-141) [52712-04-6]	2.0×10^{-2} 4.3×10^{-1} 1.0×10^{-1} 1.0×10^{-2} 2.5×10^{-2} 1.6×10^{-2} 1.3×10^{-1} 2.9×10^{-1} 1.8×10^{-1} 5.7×10^{-2} 6.9×10^{-2}	8400 6700	Bamford et al. (2002) Brunner et al. (1990) Murphy et al. (1987) Paasivirta and Sinkkonen (2009) Shiu and Mackay (1986) Burkhard et al. (1985) Hilal et al. (2008) Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989)	M M V V V Q Q Q	9 264 265
2,2',3,4,5,6-hexachlorobiphenyl C ₁₂ H ₄ Cl ₆ (PCB-142) [41411-61-4]	4.0×10^{-3} 1.4×10^{-2} 1.6×10^{-1} 2.4×10^{-1} 3.1×10^{-2} 4.7×10^{-2}	6900	Paasivirta and Sinkkonen (2009) Burkhard et al. (1985) Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989)	V V Q Q Q	264 265
2,2',3,4,5,6'-hexachlorobiphenyl C ₁₂ H ₄ Cl ₆ (PCB-143) [68194-15-0]	6.5×10^{-3} 7.8×10^{-3} 1.6×10^{-1} 1.6×10^{-1} 1.9×10^{-1} 3.4×10^{-2} 3.9×10^{-2}	6600	Paasivirta and Sinkkonen (2009) Burkhard et al. (1985) Hilal et al. (2008) Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989)	V V Q Q Q Q	264 265
2,2',3,4,5',6-hexachlorobiphenyl C ₁₂ H ₄ Cl ₆ (PCB-144) [68194-14-9]	7.0×10^{-2} 1.2×10^{-2} 1.7×10^{-2} 1.0×10^{-2} 1.8×10^{-1} 1.4×10^{-1} 3.3×10^{-2} 3.1×10^{-2}	7000	Murphy et al. (1987) Paasivirta and Sinkkonen (2009) Shiu and Mackay (1986) Burkhard et al. (1985) Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989)	M V V V Q Q Q	9 264 265
2,2',3,4,6,6'-hexachlorobiphenyl C ₁₂ H ₄ Cl ₆ (PCB-145) [74472-40-5]	$ 1.5 \times 10^{-3} 5.9 \times 10^{-3} 9.6 \times 10^{-2} 1.1 \times 10^{-1} 2.1 \times 10^{-2} 2.4 \times 10^{-2} $	6400	Paasivirta and Sinkkonen (2009) Burkhard et al. (1985) Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989)	V V Q Q Q	264 265
2,2',3,4',5,5'-hexachlorobiphenyl C ₁₂ H ₄ Cl ₆ (PCB-146) [51908-16-8]	1.7×10^{-2} 3.9×10^{-1} 1.1×10^{-1} 1.2×10^{-2} 5.4×10^{-2} 2.0×10^{-1} 2.2×10^{-1} 1.6×10^{-1}	7100 6800	Bamford et al. (2002) Brunner et al. (1990) Murphy et al. (1987) Paasivirta and Sinkkonen (2009) Burkhard et al. (1985) Hilal et al. (2008) Fang Lee (2007) Fang Lee (2007)	M M V V Q Q	9 264 265

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	5.3×10^{-2} 4.0×10^{-2}		Dunnivant et al. (1992) Sabljić and Güsten (1989)	Q Q	
2,2',3,4',5,6-hexachlorobiphenyl C ₁₂ H ₄ Cl ₆ (PCB-147) [68194-13-8]	1.9×10^{-1} 3.1×10^{-3} 1.3×10^{-2} 1.8×10^{-1} 1.2×10^{-1} 2.1×10^{-1} 3.1×10^{-2} 3.1×10^{-2}	6500	Brunner et al. (1990) Paasivirta and Sinkkonen (2009) Burkhard et al. (1985) Hilal et al. (2008) Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989)	M V V Q Q Q Q	264 265
2,2',3,4',5,6'-hexachlorobiphenyl C ₁₂ H ₄ Cl ₆ (PCB-148) [74472-41-6]	1.2×10^{-2} 1.6×10^{-2} 1.2×10^{-1} 1.0×10^{-1} 2.3×10^{-2} 1.7×10^{-2}	7000	Paasivirta and Sinkkonen (2009) Burkhard et al. (1985) Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989)	V V Q Q Q	264 265
2,2',3,4',5',6-hexachlorobiphenyl C ₁₂ H ₄ Cl ₆ (PCB-149) [38380-04-0]	1.5×10^{-2} 6.7×10^{-2} 1.0×10^{-2} 3.3×10^{-2} 2.2×10^{-2} 1.3×10^{-1} 1.7×10^{-1} 4.2×10^{-2} 4.5×10^{-2}	5500 6800	Bamford et al. (2002) Murphy et al. (1987) Paasivirta and Sinkkonen (2009) Shiu and Mackay (1986) Burkhard et al. (1985) Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989)	M M V V V Q Q Q	9 264 265
2,2',3,4',6,6'-hexachlorobiphenyl C ₁₂ H ₄ Cl ₆ (PCB-150) [68194-08-1]	6.5×10^{-3} 8.2×10^{-3} 7.2×10^{-2} 8.0×10^{-2} 2.0×10^{-2} 1.9×10^{-2}	6900	Paasivirta and Sinkkonen (2009) Burkhard et al. (1985) Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989)	V V Q Q Q	264 265
2,2',3,5,5',6-hexachlorobiphenyl C ₁₂ H ₄ Cl ₆ (PCB-151) [52663-63-5]	1.4×10^{-2} 1.7×10^{-1} 6.3×10^{-2} 5.2×10^{-3} 3.3×10^{-2} 1.2×10^{-2} 1.6×10^{-1} 2.4×10^{-1} 2.4×10^{-1} 3.5×10^{-2} 3.8×10^{-2}	4500 6700	Bamford et al. (2002) Brunner et al. (1990) Murphy et al. (1987) Paasivirta and Sinkkonen (2009) Shiu and Mackay (1986) Burkhard et al. (1985) Hilal et al. (2008) Fang Lee (2007) Fang Lee (2007) Dunnivant et al. (1992) Sabljić and Güsten (1989)	M M V V V Q Q Q	9 264 265

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]			31	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
2,2',3,5,6,6'-hexachlorobiphenyl	1.3×10^{-3}	6300	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_4Cl_6$	6.8×10^{-3}		Burkhard et al. (1985)	V	
(PCB-152)	1.3×10^{-1}		Fang Lee (2007)	Q	264
[68194-09-2]	1.9×10^{-1}		Fang Lee (2007)	Q	265
	2.3×10^{-2}		Dunnivant et al. (1992)	Q	
	2.8×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',4,4',5,5'-hexachlorobiphenyl	4.0×10^{-2}	7100	Li et al. (2003)	L	143
$C_{12}H_4Cl_6$	5.1×10^{-2}	7900	Li et al. (2003)	L	144
(PCB-153)	1.9×10^{-2}	8000	Bamford et al. (2000)	M	
[35065-27-1]	4.3×10^{-1}		Brunner et al. (1990)	M	
	7.5×10^{-2}		Dunnivant et al. (1988)	M	
	7.5×10^{-2}		Dunnivant and Elzerman (1988)	M	266
	1.0×10^{-1}		Murphy et al. (1987)	M	9
	1.6×10^{-1}		Oliver (1985)	M	
	1.1×10^{-2}	6700	Paasivirta and Sinkkonen (2009)	V	
	2.3×10^{-2}		Mackay et al. (2006b)	V	
	2.3×10^{-2}		Mackay et al. (1992a)	V	
	2.3×10^{-2}		Shiu and Mackay (1986)	V	
	5.6×10^{-2}		Burkhard et al. (1985)	V	
	1.7×10^{-2}	8400	Paasivirta et al. (1999)	T	
	2.8×10^{-2}		Murphy et al. (1983)	X	267, 268
	8.0×10^{-2}		Dunnivant et al. (1988)	C	
	1.8×10^{-1}		Hilal et al. (2008)	Q	
	1.2×10^{-1}		Fang Lee (2007)	Q	264
	1.4×10^{-1}		Fang Lee (2007)	Q	265
	6.0×10^{-2}		Dunnivant et al. (1992)	Q	
2,2',4,4',5,6'-hexachlorobiphenyl	1.3×10^{-2}	5600	Bamford et al. (2000)	M	
$C_{12}H_4Cl_6$	1.7×10^{-2}	7100	Paasivirta and Sinkkonen (2009)	V	
(PCB-154)	1.7×10^{-2}		Burkhard et al. (1985)	V	
[60145-22-4]	6.8×10^{-2}		Fang Lee (2007)	Q	264
	8.7×10^{-2}		Fang Lee (2007)	Q	265
	2.6×10^{-2}		Dunnivant et al. (1992)	Q	
	2.0×10^{-2}		Sabljić and Güsten (1989)	Q	
2,2',4,4',6,6'-hexachlorobiphenyl	1.3×10^{-2}	7100	Li et al. (2003)	L	143
C ₁₂ H ₄ Cl ₆	1.1×10^{-2}	7600	Li et al. (2003)	L	144
(PCB-155)	1.3×10^{-2}		Dunnivant et al. (1988)	M	
[33979-03-2]	1.3×10^{-2}		Dunnivant and Elzerman (1988)	M	266
	4.6×10^{-3}	6900	Paasivirta and Sinkkonen (2009)	V	
	1.2×10^{-2}		Mackay et al. (2006b)	V	
	1.2×10^{-2}		Mackay et al. (1992a)	V	
	1.2×10^{-3}		Shiu and Mackay (1986)	V	
	6.4×10^{-3}		Burkhard et al. (1985)	V	
	8.6×10^{-2}		Dunnivant et al. (1988)	C	
	4.2×10^{-2}		Fang Lee (2007)	Q	264
	4.2×10^{-2}		Fang Lee (2007)	Q	265
	1.2×10^{-2}		Dunnivant et al. (1992)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{\ominus})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]	F773		71	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
2,3,3',4,4',5-hexachlorobiphenyl	6.8×10^{-2}		Fang et al. (2006)	M	
$C_{12}H_4Cl_6$	2.9×10^{-2}	13000	Bamford et al. (2002)	M	
(PCB-156)	5.9×10^{-3}	6200	Paasivirta and Sinkkonen (2009)	V	
[38380-08-4]	1.1×10^{-2}		Shiu and Mackay (1986)	V	
	5.7×10^{-2}		Burkhard et al. (1985)	V	
	1.8×10^{-1}		Fang Lee (2007)	Q	264
	2.0×10^{-1}		Fang Lee (2007)	Q	265
	1.1×10^{-1}		Dunnivant et al. (1992)	Q	
	4.5×10^{-1}		Sabljić and Güsten (1989)	Q	
2,3,3',4,4',5'-hexachlorobiphenyl	6.0×10^{-2}		Fang et al. (2006)	M	
$C_{12}H_4Cl_6$	3.4×10^{-2}	16000	Bamford et al. (2002)	M	
(PCB-157)	2.3×10^{-3}	5900	Paasivirta and Sinkkonen (2009)	V	
[69782-90-7]	1.7×10^{-2}		Shiu and Mackay (1986)	V	
	3.0×10^{-1}		Burkhard et al. (1985)	V	
	1.9×10^{-1}		Fang Lee (2007)	Q	264
	2.0×10^{-1}		Fang Lee (2007)	Q	265
	1	6300	Kühne et al. (2005)	Q	
	1.2×10^{-1}		Dunnivant et al. (1992)	Q	
	1.5×10^{-1}	7100	Sabljić and Güsten (1989)	Q	
		5100	Kühne et al. (2005)	?	
2,3,3',4,4',6-hexachlorobiphenyl	2.1×10^{-2}	9600	Bamford et al. (2002)	M	
C ₁₂ H ₄ Cl ₆	2.3×10^{-1}		Murphy et al. (1987)	M	9
(PCB-158)	9.2×10^{-3}	6600	Paasivirta and Sinkkonen (2009)	V	
[74472-42-7]	1.5×10^{-2}		Shiu and Mackay (1986)	V	
	4.8×10^{-2}		Burkhard et al. (1985)	V	
	1.1×10^{-1}		Fang Lee (2007)	Q	264
	1.9×10^{-1}		Fang Lee (2007)	Q	265
	6.0×10^{-2}		Dunnivant et al. (1992)	Q	
	4.6×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,3',4,5,5'-hexachlorobiphenyl	4.9×10^{-1}		Brunner et al. (1990)	M	
$C_{12}H_4Cl_6$	2.9×10^{-3}	6100	Paasivirta and Sinkkonen (2009)	V	
(PCB-159)	3.4×10^{-2}		Burkhard et al. (1985)	V	
[39635-35-3]	2.6×10^{-1}		Hilal et al. (2008)	Q	_
	3.6×10^{-1}		Fang Lee (2007)	Q	264
	1.8×10^{-1}		Fang Lee (2007)	Q	265
	6.3×10^{-2}		Dunnivant et al. (1992)	Q	
	3.2×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,3',4,5,6-hexachlorobiphenyl	4.9×10^{-1}		Brunner et al. (1990)	M	
C ₁₂ H ₄ Cl ₆	7.9×10^{-3}	7100	Paasivirta and Sinkkonen (2009)	V	
(PCB-160) [41411-62-5]	4.0×10^{-2}		Burkhard et al. (1985)	V	
	1.2×10^{-1}		Hilal et al. (2008)	Q	
	2.0×10^{-1}		Fang Lee (2007)	Q	264
	3.3×10^{-1}		Fang Lee (2007)	Q	265
	4.6×10^{-2}		Dunnivant et al. (1992)	Q	
	3.9×10^{-2}		Sabljić and Güsten (1989)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp} (at T^{Θ})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} \ln H^{cp}}$			
Formula	(at 1°)	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
2,3,3',4,5',6-hexachlorobiphenyl	9.2×10^{-3}	6800	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_4Cl_6$	2.9×10^{-2}		Burkhard et al. (1985)	V	
(PCB-161)	2.2×10^{-1}		Fang Lee (2007)	Q	264
[74472-43-8]	1.7×10^{-1}		Fang Lee (2007)	Q	265
	3.5×10^{-2}		Dunnivant et al. (1992)	Q	
	2.0×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,3',4',5,5'-hexachlorobiphenyl	3.7×10^{-3}	6200	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_4Cl_6$	1.8×10^{-1}		Burkhard et al. (1985)	V	
(PCB-162)	2.7×10^{-1}		Fang Lee (2007)	Q	264
[39635-34-2]	1.8×10^{-1}		Fang Lee (2007)	Q	265
	7.5×10^{-2}		Dunnivant et al. (1992)	Q	
	4.8×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,3',4',5,6-hexachlorobiphenyl	2.1×10^{-2}	9700	Bamford et al. (2002)	M	
$C_{12}H_4Cl_6$	6.6×10^{-1}		Brunner et al. (1990)	M	
(PCB-163)	4.9×10^{-3}	6400	Paasivirta and Sinkkonen (2009)	V	
[74472-44-9]	5.4×10^{-2}		Burkhard et al. (1985)	V	
	2.5×10^{-1}		Hilal et al. (2008)	Q	
	1.5×10^{-1}		Fang Lee (2007)	Q	264
	3.1×10^{-1}		Fang Lee (2007)	Q	265
	6.0×10^{-2}		Dunnivant et al. (1992)	Q	
	6.3×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,3',4',5',6-hexachlorobiphenyl	9.5×10^{-3}	6500	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_4Cl_6$	1.0×10^{-1}		Burkhard et al. (1985)	V	
(PCB-164)	1.6×10^{-1}		Fang Lee (2007)	Q	264
[74472-45-0]	2.3×10^{-1}		Fang Lee (2007)	Q	265
	5.6×10^{-2}		Dunnivant et al. (1992)	Q	
	5.0×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,3',5,5',6-hexachlorobiphenyl	3.4×10^{-1}		Brunner et al. (1990)	M	
$C_{12}H_4Cl_6$	2.5×10^{-3}	6400	Paasivirta and Sinkkonen (2009)	V	
(PCB-165)	3.2×10^{-2}		Burkhard et al. (1985)	V	
[74472-46-1]	1.6×10^{-1}		Hilal et al. (2008)	Q	
	3.0×10^{-1}		Fang Lee (2007)	Q	264
	2.9×10^{-1}		Fang Lee (2007)	Q	265
	3.6×10^{-2}		Dunnivant et al. (1992)	Q	
	2.2×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3,4,4',5,6-hexachlorobiphenyl	3.5×10^{-3}	6500	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_4Cl_6$	4.4×10^{-2}		Burkhard et al. (1985)	V	
(PCB-166)	1.2×10^{-1}		Hilal et al. (2008)	Q	
[41411-63-6]	9.8×10^{-2}		Fang Lee (2007)	Q	264
	2.9×10^{-1}		Fang Lee (2007)	Q	265
	2	4100	Kühne et al. (2005)	Q	
	5.4×10^{-2}		Dunnivant et al. (1992)	Q	
	5.7×10^{-2}	# 060	Sabljić and Güsten (1989)	Q	
		5800	Kühne et al. (2005)	?	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$		_	
(Other name(s))	[mol]	4(1/1)	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mor}}{\text{m}^3 \text{Pa}}\right]$	[K]			
2,3',4,4',5,5'-hexachlorobiphenyl	7.8×10^{-2}		Fang et al. (2006)	M	
$C_{12}H_4Cl_6$	2.7×10^{-2}	13000	Bamford et al. (2002)	M	
(PCB-167)	7.3×10^{-3}	6400	Paasivirta and Sinkkonen (2009)	V	
[52663-72-6]	1.9×10^{-1}		Burkhard et al. (1985)	V	
	1.6×10^{-1}		Fang Lee (2007)	Q	264
	1.4×10^{-1}		Fang Lee (2007)	Q	265
	9.0×10^{-2}		Dunnivant et al. (1992)	Q	
	8.0×10^{-2}		Sabljić and Güsten (1989)	Q	
2,3',4,4',5',6-hexachlorobiphenyl	1.1×10^{-2}	6700	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_4Cl_6$	7.7×10^{-2}		Burkhard et al. (1985)	V	
(PCB-168)	9.4×10^{-2}		Fang Lee (2007)	Q	264
[59291-65-5]	1.2×10^{-1}		Fang Lee (2007)	Q	265
	3.6×10^{-2}		Dunnivant et al. (1992)	Q	
	2.1×10^{-2}		Sabljić and Güsten (1989)	Q	
3,3',4,4',5,5'-hexachlorobiphenyl	8.1×10^{-2}		Fang et al. (2006)	M	
$C_{12}H_4Cl_6$	4.7×10^{-2}	19000	Bamford et al. (2002)	M	
(PCB-169)	4.0×10^{-4}	5100	Paasivirta and Sinkkonen (2009)	V	
[32774-16-6]	6.4×10^{-1}		Burkhard et al. (1985)	V	
	2.3×10^{-2}	9000	Paasivirta et al. (1999)	T	
	3.4×10^{-1}		Fang Lee (2007)	Q	264
	1.3×10^{-1}		Fang Lee (2007)	Q	265
	1.5×10^{-1}		Dunnivant et al. (1992)	Q	
	1.7×10^{-1}		Sabljić and Güsten (1989)	Q	
2,2',3,3',4,4',5-heptachlorobiphenyl	4.8×10^{-2}	20000	Bamford et al. (2000)	M	
$C_{12}H_3Cl_7$	1.1		Brunner et al. (1990)	M	
(PCB-170)	6.6×10^{-1}		Murphy et al. (1987)	M	9
[35065-30-6]	7.8×10^{-3}	6600	Paasivirta and Sinkkonen (2009)	V	
	5.2×10^{-2}		Burkhard et al. (1985)	V	
	2.1×10^{-1}		Hilal et al. (2008)	Q	
	2.8×10^{-1}		Fang Lee (2007)	Q	264
	4.0×10^{-1}		Fang Lee (2007)	Q	265
	1.1×10^{-1}		Dunnivant et al. (1992)	Q	
2,2',3,3',4,4',6-heptachlorobiphenyl	1.3×10^{-2}	7100	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₃ Cl ₇	1.9×10^{-1}		Mackay et al. (2006b)	V	
(PCB-171) [52663-71-5]	1.9×10^{-1}		Mackay et al. (1992a)	V	
	1.9×10^{-1}		Shiu and Mackay (1986)	V	
	3.4×10^{-2}		Burkhard et al. (1985)	V	
	2.1×10^{-1}		Hilal et al. (2008)	Q	
	1.7×10^{-1}		Fang Lee (2007)	Q	264
	3.1×10^{-1}		Fang Lee (2007)	Q	265
	5.7×10^{-2}		Dunnivant et al. (1992)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,2',3,3',4,5,5'-heptachlorobiphenyl C ₁₂ H ₃ Cl ₇	7.6×10^{-1} 8.3×10^{-3}	6800	Brunner et al. (1990) Paasivirta and Sinkkonen (2009)	M V	
(PCB-172)	3.1×10^{-2}		Burkhard et al. (1985)	V	
[52663-74-8]	5.6×10^{-1}		Fang Lee (2007)	Q	264
	3.8×10^{-1} 8.3×10^{-2}		Fang Lee (2007) Dunnivant et al. (1992)	Q Q	265
2,2',3,3',4,5,6-heptachlorobiphenyl	7.0×10^{-1}		Brunner et al. (1990)	M	
C ₁₂ H ₃ Cl ₇	1.3×10^{-3}	6500	Paasivirta and Sinkkonen (2009)	V	
(PCB-173)	3.3×10^{-2}		Burkhard et al. (1985)	V	
[68194-16-1]	1.8×10^{-1}		Hilal et al. (2008)	Q	
	3.1×10^{-1}		Fang Lee (2007)	Q	264
	5.9×10^{-1}		Fang Lee (2007)	Q	265
	5.4×10^{-2}		Dunnivant et al. (1992)	Q	
2,2',3,3',4,5,6'-heptachlorobiphenyl	2.2×10^{-2}	14000	Bamford et al. (2002)	M	
$C_{12}H_3Cl_7$	7.0×10^{-1}		Brunner et al. (1990)	M	
(PCB-174)	2.0×10^{-1}		Murphy et al. (1987)	M	9
[38411-25-5]	5.4×10^{-3}	6700	Paasivirta and Sinkkonen (2009)	V	
	1.3×10^{-2}		Burkhard et al. (1985)	V	
	2.6×10^{-1}		Hilal et al. (2008)	Q	
	3.1×10^{-1}		Fang Lee (2007)	Q	264
	4.3×10^{-1}		Fang Lee (2007)	Q	265
	5.8×10^{-2}		Dunnivant et al. (1992)	Q	
2,2',3,3',4,5',6-heptachlorobiphenyl	1.0×10^{-2}	7200	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₃ Cl ₇	2.0×10^{-2}		Burkhard et al. (1985)	V	264
(PCB-175)	3.4×10^{-1} 3.0×10^{-1}		Fang Lee (2007)	Q	264
[40186-70-7]	3.0×10^{-1} 4.4×10^{-2}		Fang Lee (2007) Dunnivant et al. (1992)	Q Q	265
2,2',3,3',4,6,6'-heptachlorobiphenyl	1.1×10^{-1}		Murphy et al. (1987)	M	9
C ₁₂ H ₃ Cl ₇	8.5×10^{-3}	7200	Paasivirta and Sinkkonen (2009)	V	,
(PCB-176)	1.0×10^{-2}		Burkhard et al. (1985)	v	
[52663-65-7]	1.9×10^{-1}		Fang Lee (2007)	Q	264
r	2.6×10^{-1}		Fang Lee (2007)	Q	265
	3.3×10^{-2}		Dunnivant et al. (1992)	Q	
2,2',3,3',4,5',6'-heptachlorobiphenyl	2.1×10^{-2}	13000	Bamford et al. (2002)	M	
C ₁₂ H ₃ Cl ₇	3.0×10^{-1}		Murphy et al. (1987)	M	9
(PCB-177)	3.4×10^{-3}	6600	Paasivirta and Sinkkonen (2009)	V	
[52663-70-4]	3.8×10^{-2}		Burkhard et al. (1985)	V	
	2.4×10^{-1}		Fang Lee (2007)	Q	264
	5.3×10^{-1}		Fang Lee (2007)	Q	265
	6.0×10^{-2}		Dunnivant et al. (1992)	Q	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,2',3,3',5,5',6-heptachlorobiphenyl	1.5×10^{-2}	11000	Bamford et al. (2002)	M	
C ₁₂ H ₃ Cl ₇	4.3×10^{-1}		Brunner et al. (1990)	M	
(PCB-178)	1.5×10^{-1}		Murphy et al. (1987)	M	9
[52663-67-9]	1.0×10^{-2}	7200	Paasivirta and Sinkkonen (2009)	V	
	2.3×10^{-2}		Burkhard et al. (1985)	V	
	2.7×10^{-1}		Hilal et al. (2008)	Q	
	4.8×10^{-1}		Fang Lee (2007)	Q	264
	5.6×10^{-1}		Fang Lee (2007)	Q	265
	4.6×10^{-2}		Dunnivant et al. (1992)	Q	
2,2',3,3',5,6,6'-heptachlorobiphenyl	4.1×10^{-1}		Brunner et al. (1990)	M	
C ₁₂ H ₃ Cl ₇	4.2×10^{-3}	7000	Paasivirta and Sinkkonen (2009)	V	
(PCB-179)	1.1×10^{-2}		Burkhard et al. (1985)	V	
[52663-64-6]	3.1×10^{-1}		Hilal et al. (2008)	Q	
-	2.6×10^{-1}		Fang Lee (2007)	Q	264
	4.8×10^{-1}		Fang Lee (2007)	Q	265
	3.6×10^{-2}		Dunnivant et al. (1992)	Q	
2,2',3,4,4',5,5'-heptachlorobiphenyl	1.7×10^{-1}	7300	Li et al. (2003)	L	143
$C_{12}H_3Cl_7$	1.2×10^{-1}	7900	Li et al. (2003)	L	144
PCB-180)	2.7×10^{-2}	17000	Bamford et al. (2000)	M	
35065-29-3]	9.9×10^{-1}		Brunner et al. (1990)	M	
	3.1×10^{-1}		Murphy et al. (1987)	M	9
	1.5×10^{-2}	6900	Paasivirta and Sinkkonen (2009)	V	
	3.3×10^{-2}		Burkhard et al. (1985)	V	
	2.5×10^{-2}	9000	Paasivirta et al. (1999)	T	
	2.1×10^{-1}		Hilal et al. (2008)	Q	
	2.8×10^{-1}		Fang Lee (2007)	Q	264
	3.0×10^{-1}		Fang Lee (2007)	Q	265
	9.2×10^{-2}		Dunnivant et al. (1992)	Q	
2,2',3,4,4',5,6-heptachlorobiphenyl	1.2×10^{-2}	7200	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₃ Cl ₇	2.4×10^{-2}		Burkhard et al. (1985)	V	
(PCB-181)	1.6×10^{-1}		Fang Lee (2007)	Q	264
74472-47-2]	3.8×10^{-1}		Fang Lee (2007)	Q	265
	4.3×10^{-2}		Dunnivant et al. (1992)	Q	
2,2',3,4,4',5,6'-heptachlorobiphenyl	1.7×10^{-2}	12000	Bamford et al. (2002)	M	
$C_{12}H_3Cl_7$	1.7×10^{-2}	7200	Paasivirta and Sinkkonen (2009)	V	
(PCB-182)	1.0×10^{-2}		Burkhard et al. (1985)	V	
[60145-23-5]	1.5×10^{-1}		Fang Lee (2007)	Q	264
.	2.1×10^{-1}		Fang Lee (2007)	Q	265
	3.8×10^{-2}		Dunnivant et al. (1992)	Q	-
2,2',3,4,4',5',6-heptachlorobiphenyl	1.7×10^{-2}	12000	Bamford et al. (2002)	M	
$C_{12}H_3Cl_7$	1.5×10^{-1}	12000	Murphy et al. (1987)	M	9
PCB-183)	2.4×10^{-2}	7400	Paasivirta and Sinkkonen (2009)	V	
52663-69-1]	2.1×10^{-2}	, 100	Burkhard et al. (1985)	V	
	1.7×10^{-1}		Fang Lee (2007)	Q	264
	2.5×10^{-1}		Fang Lee (2007)	Q	265
	4.9×10^{-2}		Dunnivant et al. (1992)	Q	200

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,2',3,4,4',6,6'-heptachlorobiphenyl	8.1×10 ⁻³	7200	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₃ Cl ₇	7.9×10^{-3}	7200	Burkhard et al. (1985)	V	
(PCB-184)	9.4×10^{-2}		Fang Lee (2007)		264
[74472-48-3]	1.3×10^{-1}		Fang Lee (2007)	Q Q	265
[/44/2-40-3]	2.2×10^{-2}		Dunnivant et al. (1992)	Q	203
2,2',3,4,5,5',6-heptachlorobiphenyl	6.2×10^{-1}		Brunner et al. (1990)	M	
$C_{12}H_3Cl_7$	4.9×10^{-3}	7000	Paasivirta and Sinkkonen (2009)	V	
(PCB-185)	2.2×10^{-2}		Burkhard et al. (1985)	V	
[52712-05-7]	1.5×10^{-1}		Hilal et al. (2008)	Q	
•	3.1×10^{-1}		Fang Lee (2007)	Q	264
	4.3×10^{-1}		Fang Lee (2007)	Q	265
	4.6×10^{-2}		Dunnivant et al. (1992)	Q	_ 50
2,2',3,4,5,6,6'-heptachlorobiphenyl	9.6×10 ⁻⁴	6500	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ H ₃ Cl ₇	1.3×10^{-2}		Burkhard et al. (1985)	V	
(PCB-186)	1.7×10^{-1}		Fang Lee (2007)	Q	264
74472-49-4]	3.7×10^{-1}		Fang Lee (2007)	Q	265
[////2 1/ 1]	2.7×10^{-2}		Dunnivant et al. (1992)	Q	
2,2',3,4',5,5',6-heptachlorobiphenyl	1.6×10^{-2}	12000	Bamford et al. (2000)	M	
$C_{12}H_3Cl_7$	1.2×10^{-1}		Murphy et al. (1987)	M	9
PCB-187)	1.3×10^{-2}	7200	Paasivirta and Sinkkonen (2009)	V	
[52663-68-0]	2.4×10^{-2}		Burkhard et al. (1985)	V	
	2.4×10^{-1}		Fang Lee (2007)	Q	264
	4.3×10^{-1}		Fang Lee (2007)	Q	265
	4.9×10^{-2}		Dunnivant et al. (1992)	Q	
2,2',3,4',5,6,6'-heptachlorobiphenyl	8.8×10^{-3}	7500	Bamford et al. (2000)	M	
$C_{12}H_3Cl_7$	4.8×10^{-3}	7100	Paasivirta and Sinkkonen (2009)	V	
(PCB-188)	8.8×10^{-3}		Burkhard et al. (1985)	V	
74487-85-7]	1.3×10^{-1}		Fang Lee (2007)	Q	264
	2.3×10^{-1}		Fang Lee (2007)	Q	265
	2.2×10^{-2}		Dunnivant et al. (1992)	Q	
2,3,3',4,4',5,5'-heptachlorobiphenyl	8.4×10^{-2}		Fang et al. (2006)	M	
C ₁₂ H ₃ Cl ₇	4.1×10^{-3}	6300	Paasivirta and Sinkkonen (2009)	V	
(PCB-189)	1.1×10^{-1}		Burkhard et al. (1985)	V	
[39635-31-9]	3.4×10^{-1}		Fang Lee (2007)	Q	264
	3.0×10^{-1}		Fang Lee (2007)	Q	265
	1.5×10^{-1}		Dunnivant et al. (1992)	Q	
2,3,3',4,4',5,6-heptachlorobiphenyl	1.5×10^{-2}	7000	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_3Cl_7$	9.9×10^{-2}		Burkhard et al. (1985)	V	
(PCB-190)	1.9×10^{-1}		Fang Lee (2007)	Q	264
[41411-64-7]	5.3×10^{-1}		Fang Lee (2007)	Q	265
	8.8×10^{-2}		Dunnivant et al. (1992)	Q	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,3,3',4,4',5',6-heptachlorobiphenyl	2.1×10^{-2}	7200	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_3Cl_7$	5.8×10^{-2}		Burkhard et al. (1985)	V	
(PCB-191)	2.1×10^{-1}		Fang Lee (2007)	Q	264
[74472-50-7]	3.2×10^{-1}		Fang Lee (2007)	Q	265
	7.4×10^{-2}		Dunnivant et al. (1992)	Q	
2,3,3',4,5,5',6-heptachlorobiphenyl	4.9×10^{-3}	6900	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_3Cl_7$	6.1×10^{-2}		Burkhard et al. (1985)	V	
(PCB-192)	3.8×10^{-1}		Fang Lee (2007)	Q	264
74472-51-8]	5.0×10^{-1}		Fang Lee (2007)	Q	265
- -	5.2×10^{-2}		Dunnivant et al. (1992)	Q	
2,3,3',4',5,5',6-heptachlorobiphenyl	3.2×10^{-2}	17000	Bamford et al. (2002)	M	
$C_{12}H_3Cl_7$	7.5×10^{-3}	6800	Paasivirta and Sinkkonen (2009)	V	
(PCB-193)	1.0×10^{-1}		Burkhard et al. (1985)	V	
69782-91-8]	2.9×10^{-1}		Fang Lee (2007)	Q	264
	5.6×10^{-1}		Fang Lee (2007)	Q	265
	7.3×10^{-2}		Dunnivant et al. (1992)	Q	
2,2',3,3',4,4',5,5'-octachlorobiphenyl	1.5×10^{-1}	7500	Li et al. (2003)	L	143
$C_{12}H_2Cl_8$	2.3×10^{-1}	8200	Li et al. (2003)	L	144
PCB-194)	1.0×10^{-1}	20000	Bamford et al. (2002)	M	
35694-08-7]	9.9×10^{-1}		Brunner et al. (1990)	M	
- -	8.0×10^{-3}	6900	Paasivirta and Sinkkonen (2009)	V	
	2.1×10^{-2}		Burkhard et al. (1985)	V	
	2.3×10^{-1}		Hilal et al. (2008)	Q	
	5.6×10^{-1}		Fang Lee (2007)	Q	264
	7.1×10^{-1}		Fang Lee (2007)	Q	265
		6500	Kühne et al. (2005)	Q	
	1.5×10^{-1}		Dunnivant et al. (1992)	Q	
		6600	Kühne et al. (2005)	?	
2,2',3,3',4,4',5,6-octachlorobiphenyl	7.1×10^{-2}	20000	Bamford et al. (2000)	M	
$C_{12}H_2Cl_8$	9.0×10^{-1}		Brunner et al. (1990)	M	
PCB-195)	7.1×10^{-3}	7100	Paasivirta and Sinkkonen (2009)	V	
52663-78-2]	7.8×10^{-2}		Burkhard et al. (1985)	V	
	2.4×10^{-1}		Hilal et al. (2008)	Q	
	3.1×10^{-1}		Fang Lee (2007)	Q	264
	1.0		Fang Lee (2007)	Q	265
	8.3×10^{-2}		Dunnivant et al. (1992)	Q	
2,2',3,3',4,4',5,6'-octachlorobiphenyl	9.9×10^{-1}	<u></u>	Brunner et al. (1990)	M	
$C_{12}H_2Cl_8$	1.8×10^{-2}	7400	Paasivirta and Sinkkonen (2009)	V	
PCB-196)	1.4×10^{-2}		Burkhard et al. (1985)	V	
[42740-50-1]	2.2×10^{-1}		Hilal et al. (2008)	Q	
	3.4×10^{-1}		Fang Lee (2007)	Q	264
	6.2×10^{-1}		Fang Lee (2007)	Q	265
	7.6×10^{-2}		Dunnivant et al. (1992)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	[mol]	[17]		-71-	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
2,2',3,3',4,4',6,6'-octachlorobiphenyl	1.3×10^{-2}	7600	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_2Cl_8$	1.1×10^{-2}		Burkhard et al. (1985)	V	
(PCB-197)	1.9×10^{-1}		Fang Lee (2007)	Q	264
[33091-17-7]	4.2×10^{-1}		Fang Lee (2007)	Q	265
	3.9×10^{-2}		Dunnivant et al. (1992)	Q	
2,2',3,3',4,5,5',6-octachlorobiphenyl	7.0×10^{-1}		Brunner et al. (1990)	M	
$C_{12}H_2Cl_8$	3.5×10^{-3}	7000	Paasivirta and Sinkkonen (2009)	V	
(PCB-198)	4.8×10^{-2}		Burkhard et al. (1985)	V	
[68194-17-2]	2.5×10^{-1}		Hilal et al. (2008)	Q	
[0007 1 2]	6.2×10^{-1}		Fang Lee (2007)	Q	264
	1.0		Fang Lee (2007)	Q	265
	6.4×10^{-2}		Dunnivant et al. (1992)	Q	_ 50
2,2',3,3',4,5,5',6'-octachlorobiphenyl	9.9×10^{-1}		Brunner et al. (1990)	M	
C ₁₂ H ₂ Cl ₈	3.4×10^{-3}	7000	Paasivirta and Sinkkonen (2009)	V	
(PCB-199)	2.3×10^{-2}	7000	Burkhard et al. (1985)	V	
[52663-75-9]	2.3×10^{-1} 2.7×10^{-1}		Hilal et al. (2008)		
[32003-73-9]	6.2×10^{-1}		Fang Lee (2007)	Q	264
	9.1×10^{-1}		Fang Lee (2007)	Q	
	9.1×10^{-2} 4.3×10^{-2}		Dunnivant et al. (1992)	Q	265
			Duninvant et al. (1992)	Q	
2,2',3,3',4,5,6,6'-octachlorobiphenyl	7.6×10^{-3}	7200	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_2Cl_8$	1.5×10^{-2}		Burkhard et al. (1985)	V	
(PCB-200)	3.4×10^{-1}		Fang Lee (2007)	Q	264
[52663-73-7]	7.7×10^{-1}		Fang Lee (2007)	Q	265
	4.1×10^{-2}		Dunnivant et al. (1992)	Q	
2,2',3,3',4,5',6,6'-octachlorobiphenyl	1.0×10^{-2}	17000	Bamford et al. (2000)	M	
$C_{12}H_2Cl_8$	5.8×10^{-1}		Brunner et al. (1990)	M	
(PCB-201)	1.2×10^{-2}	7500	Paasivirta and Sinkkonen (2009)	V	
[40186-71-8]	1.5×10^{-2}		Burkhard et al. (1985)	V	
	2.9×10^{-1}		Hilal et al. (2008)	Q	
	3.7×10^{-1}		Fang Lee (2007)	Q	264
	1.1		Fang Lee (2007)	Q	265
	7.6×10^{-2}		Dunnivant et al. (1992)	Q	
2,2',3,3',5,5',6,6'-octachlorobiphenyl	5.5×10^{-1}		Brunner et al. (1990)	M	
$C_{12}H_2Cl_8$	5.0×10^{-3}	7300	Paasivirta and Sinkkonen (2009)	V	
(PCB-202)	2.6×10^{-2}		Mackay et al. (2006b)	V	
[2136-99-4]	2.6×10^{-2}		Mackay et al. (1992a)	V	
	2.7×10^{-2}		Shiu and Mackay (1986)	V	
	1.3×10^{-2}		Burkhard et al. (1985)	v	
	3.7×10^{-1}		Hilal et al. (2008)	Q	
	5.7×10^{-1}		Fang Lee (2007)	Q	264
	1.4		Fang Lee (2007)	Q	265
		4700	Kühne et al. (2005)	Q	200
	4.4×10^{-2}	.,00	Dunnivant et al. (1992)	Q	
		5000	Kühne et al. (2005)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
Other name(s))	[mol]	F773		31	
CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
2,2',3,4,4',5,5',6-octachlorobiphenyl	3.2×10^{-2}	7800	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_2Cl_8$	5.0×10^{-2}		Burkhard et al. (1985)	V	
(PCB-203)	3.1×10^{-1}		Fang Lee (2007)	Q	264
[52663-76-0]	7.7×10^{-1}		Fang Lee (2007)	Q	265
	7.0×10^{-2}		Dunnivant et al. (1992)	Q	
2,2',3,4,4',5,6,6'-octachlorobiphenyl	1.1×10^{-2}	7800	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_2Cl_8$	1.9×10^{-2}		Burkhard et al. (1985)	V	
(PCB-204)	1.7×10^{-1}		Fang Lee (2007)	Q	264
74472-52-9]	4.5×10^{-1}		Fang Lee (2007)	Q	265
	2.9×10^{-2}		Dunnivant et al. (1992)	Q	
2,3,3',4,4',5,5',6-octachlorobiphenyl	4.4×10^{-3}	6800	Paasivirta and Sinkkonen (2009)	V	
$C_{12}H_2Cl_8$	2.1×10^{-1}		Burkhard et al. (1985)	V	
(PCB-205)	3.8×10^{-1}		Fang Lee (2007)	Q	264
74472-53-0]	9.1×10^{-1}		Fang Lee (2007)	Q	265
	1.1×10^{-1}		Dunnivant et al. (1992)	Q	
2,2',3,3',4,4',5,5',6- nonachlorobiphenyl	2.1×10^{-3}	7300	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ HCl ₉	1.2		Mackay et al. (2006b)	V	
(PCB-206)	1.2×10^{-2}		Mackay et al. (1992a)	V	
40186-72-9]	3.6×10^{-2}		Burkhard et al. (1985)	V	
	6.2×10^{-1}		Fang Lee (2007)	Q	264
	2.0		Fang Lee (2007)	Q	265
	1.1×10^{-1}		Dunnivant et al. (1992)	Q	
2,2',3,3',4,4',5,6,6'- nonachlorobiphenyl	1.8×10^{-3}	7500	Paasivirta and Sinkkonen (2009)	V	
C ₁₂ HCl ₉	2.8×10^{-2}		Burkhard et al. (1985)	V	
(PCB-207)	3.3×10^{-1}		Fang Lee (2007)	Q	264
[52663-79-3]	1.4		Fang Lee (2007)	Q	265
.52005 77 51	5.8×10^{-2}		Dunnivant et al. (1992)	Q	203
2,2',3,3',4,5,5',6,6'-	3.0×10^{-3}	7700	Paasivirta and Sinkkonen (2009)	V	
nonachlorobiphenyl C ₁₂ HCl ₉	3.1×10^{-2}		Burkhard et al. (1985)	V	
PCB-208)	6.7×10^{-1}		Fang Lee (2007)	Q	264
[52663-77-1]	2.5		Fang Lee (2007)	Q	265
	5.9×10^{-2}		Dunnivant et al. (1992)	Q	
lecachlorobiphenyl	6.7×10^{-4}	7200	Paasivirta and Sinkkonen (2009)	V	
$C_{12}Cl_{10}$	_		Mackay et al. (2006b)	V	256
PCB-209)	4.8×10^{-2}		Mackay et al. (1992a)	V	
[2051-24-3]	4.8×10^{-2}		Shiu and Mackay (1986)	V	
	8.0×10^{-2}		Burkhard et al. (1985)	V	
	3.1×10^{-1}		Hilal et al. (2008)	Q	
	6.7×10^{-1}		Fang Lee (2007)	Q	264
	5.0		Fang Lee (2007)	Q	265
	_	6100	Kühne et al. (2005)	Q	
	8.8×10^{-2}		Dunnivant et al. (1992)	Q	
		7300	Kühne et al. (2005)	?	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
Ox	ygenated o	chlorocai	cbons (C, H, O, Cl)		
phosgene CCl ₂ O [75-44-5]	5.9×10^{-4} 6.8×10^{-4} 7.1×10^{-4}	3800 4200	De Bruyn et al. (1995a) Manogue and Pigford (1960) Yaws (1999)	M M ?	
dichloroacetaldehyde C ₂ H ₂ Cl ₂ O [79-02-7]	1.2		HSDB (2015)	Q	38
chloroacetyl chloride C ₂ H ₂ Cl ₂ O [79-04-9]	4.3×10 ⁻²		HSDB (2015)	Q	38
chloral hydrate C ₂ H ₃ Cl ₃ O ₂ [302-17-0]	2.4×10 ³		HSDB (2015)	V	
chloroacetaldehyde C ₂ H ₃ ClO [107-20-0]	4.1×10^{-1}		HSDB (2015)	Q	38
2-chloroethanol C ₂ H ₅ ClO [107-07-3]	9.5×10 ¹		HSDB (2015)	Q	38
2-chloroethanol-d4 CIC ₂ D ₄ OH [117067-62-6]	5.0	8700	Hiatt (2013)	M	
1,1,1-trichloro-2-propanone C ₃ H ₃ Cl ₃ O 918-00-3]	4.5		HSDB (2015)	Q	38
1,1-dichloro-2-propanone C ₃ H ₄ Cl ₂ O (1,1-dichloroacetone) [513-88-2]	1.6		HSDB (2015)	Q	38
carbonochloridic acid, 2-chloroethyl ester $C_3H_4Cl_2O_2$ (chloroethyl chloroformate) [627-11-2]	9.0×10 ⁻³		HSDB (2015)	Q	38
carbonochloridic acid, ethyl ester C ₃ H ₅ ClO ₂ (ethyl chloroformate) [541-41-3]	3.2×10 ⁻³		HSDB (2015)	Q	38
2-chloropropanoic acid C ₃ H ₅ ClO ₂ [598-78-7]	3.8×10 ¹		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,3-dichloro-1-propanol C ₃ H ₆ Cl ₂ O [616-23-9]	3.3×10^3		HSDB (2015)	Q	38
1,3-dichloro-2-propanol C ₃ H ₆ Cl ₂ O [96-23-1]	$5.8 \\ 1.6 \times 10^{1} \\ 2.6 \times 10^{1} \\ 1.7 \times 10^{1}$		Meylan and Howard (1991) HSDB (2015) Hilal et al. (2008) Meylan and Howard (1991)	V Q Q Q	38
3-chloro-1,2-propanediol C ₃ H ₇ ClO ₂ [96-24-2]	1.6×10^2		HSDB (2015)	Q	38
1-chloro-2-propanol C ₃ H ₇ ClO [127-00-4]	5.8		HSDB (2015)	Q	38
2-chloro-1-propanol C ₃ H ₇ ClO [78-89-7]	5.8		HSDB (2015)	Q	38
trichloroethanal	3.4×10^{3}	3500	Betterton and Hoffmann (1988)	M	192
CCl ₃ CHO	2	1700	Kühne et al. (2005)	Q	
(trichloroacetaldehyde; chloral) [75-87-6]	1.7×10^3	3500	Meylan and Howard (1991) Kühne et al. (2005)	Q ?	
chloro-2-propanone	5.8×10^{-1}	5400	Sander et al. (2011)	L	
CH ₂ ClCOCH ₃	5.8×10^{-1}	5400	Betterton (1991)	M	
(chloroacetone)	8.8×10^{-1}		Hilal et al. (2008)	Q	
[78-95-5]		4400 5500	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
chloroethanoic acid	1.1×10^3	9700	Sander et al. (2011)	L	
CH ₂ ClCOOH	1.1×10^3	9700	Bowden et al. (1998a)	M	
(chloroacetic acid)	8.8×10^2		Hilal et al. (2008)	Q	
[79-11-8]		8100 9400	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
dichloroethanoic acid	1.2×10 ³	8000	Sander et al. (2011)	L	
CHCl ₂ COOH	1.2×10^3	8000	Bowden et al. (1998a)	M	
(dichloroacetic acid)	3.9×10^2		Hilal et al. (2008)	Q	
[79-43-6]		8400 8000	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
trichloroethanoic acid	7.3×10^2	8700	Sander et al. (2011)	L	
CCl ₃ COOH	7.3×10^2	8700	Bowden et al. (1998b)	M	
(trichloroacetic acid)	4.7	005-	Hilal et al. (2008)	Q	
[76-03-9]		8800 8600	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
2,2-dichloro-propanoic acid C ₃ H ₄ Cl ₂ O ₂ [75-99-0]	3.5×10 ⁸		Mackay et al. (2006d)	V	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
trichloroacetylchloride CCl ₃ COCl [76-02-8]	2.0×10^{-2} 2.0×10^{-2} 2.0×10^{-2} 3.4×10^{-1}		Mirabel et al. (1996) De Bruyn et al. (1995a) George et al. (1994a) HSDB (2015)	M M M Q	183 38
hexachloroacetone C ₃ Cl ₆ O [116-16-5]	$ \begin{array}{c} 1.0 \times 10^{2} \\ 9.0 \times 10^{-4} \\ 6.2 \times 10^{-2} \\ 1.8 \times 10^{-1} \end{array} $		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
(chloromethyl)-oxirane C ₃ H ₅ ClO (epichlorohydrin) [106-89-8]	3.3×10^{-1} 3.0×10^{-1} 3.0×10^{-1} 3.0×10^{-1} 2.8×10^{-1} 2.8×10^{-1} 9.9×10^{-2}	3700	HSDB (2015) Mackay et al. (2006c) Mackay et al. (1993) Goldstein (1982) Goldstein (1982) Hilal et al. (2008)	V V V X X Q	181 116
methyl chloroethanoate C ₃ H ₅ ClO ₂ [96-34-4]	$4.1 \times 10^{-2} \\ 2.3 \times 10^{-1}$		HSDB (2015) Hilal et al. (2008)	V Q	
ethyl chloroethanoate C ₄ H ₇ ClO ₂ [105-39-5]	$1.2 \times 10^{-1} \\ 1.1 \times 10^{-1}$		HSDB (2015) Hilal et al. (2008)	Q Q	38
chloroacetic acid anhydride C ₄ H ₄ Cl ₂ O ₃ [541-88-8]	2.2		HSDB (2015)	Q	38
carbonochloridic acid, 1-methylethyl ester C ₄ H ₇ ClO ₂ [108-23-6]	2.4×10^{-3}		HSDB (2015)	Q	38
chlorobutanol C ₄ H ₉ ClO [1320-66-7]	4.5		HSDB (2015)	Q	38
3-chloro-4-(dichloromethyl)-2-(5H)- furanone C ₅ H ₃ Cl ₃ O ₂ [122551-89-7]	1.5		HSDB (2015)	Q	38
3-chloro-4-(dichloromethyl)-5- hydroxy-2-(5H)-furanone C ₅ H ₃ Cl ₃ O ₃ [77439-76-0]	3.9×10^4		HSDB (2015)	Q	38
1,2,4-trichloro-2-methyl-3-pentanone C ₆ H ₉ Cl ₃ O [145556-04-3]	$ \begin{array}{c} 1.9 \\ 1.9 \\ 1.1 \times 10^2 \\ 4.1 \times 10^{-1} \end{array} $		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111

Table 6: Henry's law constants for water as solvent (...continued)

Substance	H^{cp}	dln H ^{cp}			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$[\underline{mol}]$	[17]		71	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
bis(2-chloroisopropyl) ether	3.0×10^{-2}		Zhang et al. (2010)	Q	107, 108
C ₆ H ₁₂ Cl ₂ O	3.3×10^{-4}		Zhang et al. (2010)	Q	107, 109
[39638-32-9]	9.5×10^{-1}		Zhang et al. (2010)	Q	107, 110
	1.6×10^{-3}		Zhang et al. (2010)	Q	107, 111
butyl 2,2,3,4,4-pentachloro-3- butenoate	3.9×10^{-1}		Zhang et al. (2010)	Q	107, 108
$C_8H_9Cl_5O_2$	3.9×10^{-2}		Zhang et al. (2010)	Q	107, 109
[75147-20-5]	7.9×10^{-2}		Zhang et al. (2010)	Q	107, 110
	1.8×10^{-1}		Zhang et al. (2010)	Q	107, 111
3-(2,2-dichlorovinyl)-2,2- dimethylcyclopropane carbonyl chloride	1.6×10^{-2}		Zhang et al. (2010)	Q	107, 108
C ₈ H ₉ Cl ₃ O	9.7×10^{-3}		Zhang et al. (2010)	Q	107, 109
[52314-67-7]	1.6×10^{-1}		Zhang et al. (2010)	Q	107, 110
-	8.8×10^{-1}		Zhang et al. (2010)	Q	107, 111
3-(2,2-dichlorovinyl)-2,2- dimethylcyclopropane carboxylic acid	1.9×10 ¹		Zhang et al. (2010)	Q	107, 108
C ₈ H ₁₀ Cl ₂ O ₂	9.0×10^{1}		Zhang et al. (2010)	Q	107, 109
[55701-05-8]	6.1×10^4		Zhang et al. (2010)	Q	107, 110
	6.1×10^{1}		Zhang et al. (2010)	Q	107, 111
hexanoic acid, 3,3-dimethyl-4,6,6,6-tetrachloro, methyl ester	6.7×10^{-1}		Zhang et al. (2010)	Q	107, 108
$C_9H_{14}Cl_4O_2$	2.7×10^{-1}		Zhang et al. (2010)	Q	107, 109
[64667-33-0]	6.1×10^2		Zhang et al. (2010)	Q	107, 110
	1.8×10^{-2}		Zhang et al. (2010)	Q	107, 111
methyl 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate	6.1×10^{-2}		Zhang et al. (2010)	Q	107, 108
$C_9H_{12}Cl_2O_2$	5.2×10^{-2}		Zhang et al. (2010)	Q	107, 109
[61898-95-1]	1.3×10^{-1}		Zhang et al. (2010)	Q	107, 110
	1.7×10^{-1}		Zhang et al. (2010)	Q	107, 111
oxychlordane	6.0×10^{-2}	4300	Paasivirta et al. (1999)	T	
C ₁₀ H ₄ Cl ₈ O [27304-13-8]	1.1×10^2		HSDB (2015)	Q	38
kepone	1.8×10^2		HSDB (2015)	V	
C ₁₀ Cl ₁₀ O [143-50-0]	2.0×10^2		Mackay et al. (2006d)	V	
(2-chloroethoxy)-ethene	1.1×10^{-3}		HSDB (2015)	V	
C ₄ H ₇ ClO	3.9×10^{-2}		Mackay et al. (2006c)	V	
(2-chloroethylvinylether)	3.9×10^{-2}		Mackay et al. (1993)	V	
[110-75-8]	1.1×10^{-3}		Goldstein (1982)	X	181
	3.1×10^{-2}	2500	Goldstein (1982)	X	116
	4.0×10^{-2}		Ryan et al. (1988)	C	
	2.3×10^{-3}		Hilal et al. (2008)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

	,		,		
Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
bis-(2-chloroethoxy)-methane	2.5		HSDB (2015)	V	
$C_5H_{10}Cl_2O_2$	2.2×10^{1}		Mackay et al. (2006c)	V	
[111-91-1]	2.2		Mackay et al. (1993)	V	
·	8.8		Goldstein (1982)	X	181
	2.6×10^{1}	5500	Goldstein (1982)	X	116
	3.7×10^{1}		Ryan et al. (1988)	C	
	3.4		Hilal et al. (2008)	Q	
bis-(chloromethyl) ether	4.8×10^{-2}		Mackay et al. (2006c)	V	
$C_2H_4Cl_2O$	4.8×10^{-2}		Mackay et al. (1993)	V	
[542-88-1]	4.7×10^{-3}		Ryan et al. (1988)	C	
1,5-dichloro-3-oxapentane	3.4×10^{-1}		HSDB (2015)	V	
$C_4H_8Cl_2O$	3.5×10^{-1}		Mackay et al. (2006c)	V	
(bis-(2-chloroethyl)-ether)	3.4×10^{-2}		Lide and Frederikse (1995)	V	
[111-44-4]	3.5×10^{-1}		Mackay et al. (1993)	V	
	4.6×10^{-1}		Goldstein (1982)	X	181
	4.7×10^{-1}	4100	Goldstein (1982)	X	116
	3.7×10^{-1}		Harrison et al. (1993)	C	
	8.6		Ryan et al. (1988)	C	
	5.2×10^{-2}		Zhang et al. (2010)	Q	107, 108
	2.8×10^{-1}		Zhang et al. (2010)	Q	107, 109
	4.4×10^{-2}		Zhang et al. (2010)	Q	107, 110
	4.6×10^{-3}		Zhang et al. (2010)	Q	107, 111
	2.9×10^{-1}		Hilal et al. (2008)	Q	
		6000	Kühne et al. (2005)	Q	
		6000	Kühne et al. (2005)	?	
bis-(2-chloroisopropyl) ether	4.2×10^{-1}		Kawamoto and Urano (1989)	M	
$C_6H_{12}Cl_2O$	1.3×10^{-1}		HSDB (2015)	V	
(DCIP)	9.6×10^{-2}		Mackay et al. (2006c)	V	
[108-60-1]	9.6×10^{-2}		Mackay et al. (1993)	V	
	6.5×10^{-2}		Goldstein (1982)	X	181
	6.4×10^{-2}	2800	Goldstein (1982)	X	116
	8.6×10^{-3}		Ryan et al. (1988)	C	
	7.2×10^{-2}		Hilal et al. (2008)	Q	
$1,2$ -bis(2-chloroethoxy)ethane $C_6H_{12}Cl_2O_2$ [112-26-5]	1.3×10^{1}		HSDB (2015)	V	
	1.5		Sheikheldin et al. (2001)	N/I	9
2-hydroxychlorobenzene C ₆ H ₅ ClO	1.5 3.6	5700	Tabai et al. (1997)	M M	9 89
(o-chlorophenol)	1.5	3700	Mackay et al. (2006c)	V	0)
[95-57-8]	1.2		Fogg and Sangster (2003)	V	271
r	1.8×10^{1}		Lide and Frederikse (1995)	V	
	1.5		Mackay et al. (1995)	V	
	1.5		Shiu et al. (1994)	v	
	8.8×10^{-1}		Abraham et al. (1994a)	R	
	1.2		Goldstein (1982)	X	181
	1.2	4600	Goldstein (1982)	X	116
	1.8×10^{1}		Howard (1989)	X	169

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp} (at T^{Θ})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} H^{cp}}$			
Formula	$(at I^{\circ})$	d(1/T)	Reference	Type	Note
Other name(s)) CAS registry number]	$\lceil \underline{\text{mol}} \rceil$	[K]			
CAS registry number	$\lfloor \overline{m^3 Pa} \rfloor$	[17]			
	4.2		Hilal et al. (2008)	Q	
		6200	Kühne et al. (2005)	Q	
	1.8×10^2		Nirmalakhandan et al. (1997)	Q	
	8.8×10^{-1}		HSDB (2015)	?	170
		5600	Kühne et al. (2005)	?	
	1.0		Chiou et al. (1980)	?	27
-hydroxychlorobenzene	3.4×10^{1}	6400	Tabai et al. (1997)	M	89
C ₆ H ₅ ClO	4.9		Mackay et al. (2006c)	V	
<i>m</i> -chlorophenol)	7.3		Fogg and Sangster (2003)	V	
108-43-0]	1.8×10^{1}		Lide and Frederikse (1995)	V	
	4.9		Mackay et al. (1995)	V	
	4.9		Shiu et al. (1994)	V	
	2.9×10^{1}		Abraham et al. (1994a)	R	
	1.8×10^{1}		Howard (1989)	X	169
	1.6×10^{1}		Hilal et al. (2008)	Q	
		6200	Kühne et al. (2005)	Q	
	1.8×10^{2}		Nirmalakhandan et al. (1997)	Q	
	2.9×10^{1}		HSDB (2015)	?	170
		6100	Kühne et al. (2005)	?	
-hydroxychlorobenzene	1.4×10^3	11000	Tabai et al. (1997)	M	89
C ₆ H ₅ ClO	1.6×10^{1}		HSDB (2015)	V	
<i>p</i> -chlorophenol)	1.1×10^{1}		Mackay et al. (2006c)	V	
106-48-9]	1.2×10^{1}		Fogg and Sangster (2003)	V	
•	1.8×10^{1}		Lide and Frederikse (1995)	V	
	1.1×10^{1}		Mackay et al. (1995)	V	
	1.1×10^{1}		Shiu et al. (1994)	V	
	5.8×10^{1}		Abraham et al. (1994a)	R	
	1.8×10^{1}		Howard (1989)	X	169
	1.3×10^{1}		Hilal et al. (2008)	Q	
		6200	Kühne et al. (2005)	Q	
	1.8×10^{2}		Nirmalakhandan et al. (1997)	Q	
		6400	Kühne et al. (2005)	?	
	1.1×10^{1}		Chiou et al. (1980)	?	27
2,3-dichlorophenol C ₆ H ₄ Cl ₂ O 576-24-9]	2.9		HSDB (2015)	V	
2,4-dichlorophenol	3.4		Sheikheldin et al. (2001)	M	9
C ₆ H ₄ Cl ₂ O	6.6	6800	Tabai et al. (1997)	M	89
120-83-2]	2.8		HSDB (2015)	V	
	2.3		Mackay et al. (2006c)	V	
	2.3		Mackay et al. (1995)	V	
	2.3		Shiu et al. (1994)	V	
	9.0		Leuenberger et al. (1985)	V	167
	1.5		Goldstein (1982)	X	181
	1.5	4900	Goldstein (1982)	X	116
	1.5 1.8	4900	Ryan et al. (1988)	C	
	1.5	4900			107, 10 107, 10

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s))	H^{cp} (at T^{\ominus}) $\lceil \mod \rceil$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Туре	Note
[CAS registry number]	$\left[\frac{1}{m^3 Pa} \right]$ 4.6	[K]	Zhang et al. (2010)	Q	107, 111
	8.2	6300 7400	Hilal et al. (2008) Kühne et al. (2005) Kühne et al. (2005)	Q Q ?	
2,5-dichlorophenol C ₆ H ₄ Cl ₂ O [583-78-8]	1.6		HSDB (2015)	V	
2,6-dichlorophenol	3.7		HSDB (2015)	V	
C ₆ H ₄ Cl ₂ O [87-65-0]	1.3 3.3		Mackay et al. (2006c) Mackay et al. (1995)	V V	
3,4-dichlorophenol C ₆ H ₄ Cl ₂ O [95-77-2]	2.1×10 ¹		HSDB (2015)	Q	38
3,5-dichlorophenol	4.1×10 ¹		HSDB (2015)	V	
C ₆ H ₄ Cl ₂ O [591-35-5]	4.6×10^1		Hilal et al. (2008)	Q	
2,3,4-trichlorophenol C ₆ H ₃ Cl ₃ O [15950-66-0]	2.5 2.5		Mackay et al. (2006c) Mackay et al. (1995)	V V	
2,3,5-trichlorophenol	2.5		Mackay et al. (2006c)	V	
C ₆ H ₃ Cl ₃ O [933-78-8]	2.5		Mackay et al. (1995)	V	
2,4,5-trichlorophenol	6.2		HSDB (2015)	V	
C ₆ H ₃ Cl ₃ O	1.9 4.6×10^{-1}		Mackay et al. (2006c)	V	
[95-95-4]	4.6×10 - 1.9		Fogg and Sangster (2003) Mackay et al. (1995)	V V	
	7.6		Leuenberger et al. (1985)	V	167
	2.0×10^{1}		Hilal et al. (2008)	Q	
2,3,6-trichlorophenol C ₆ H ₃ Cl ₃ O [933-75-5]	4.3×10^{1}		HSDB (2015)	Q	38
2,4,6-trichlorophenol	2.0		Yoshida et al. (1987)	M	272, 9
C ₆ H ₃ Cl ₃ O	3.8		HSDB (2015)	V	
[88-06-2]	$1.8 \\ 1.6 \times 10^2$		Mackay et al. (2006c)	V	
	1.8		Lide and Frederikse (1995) Mackay et al. (1995)	V V	
	7.6		Leuenberger et al. (1985)	V	167
	1.4	5000	Goldstein (1982)	X	116
	1.6×10^{1}		Howard (1989)	X	169
	2.4		Ryan et al. (1988)	C	105 155
	4.3×10^{1}		Zhang et al. (2010)	Q	107, 108
	2.8×10^{-2} 8.8×10^{-1}		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 109 107, 110
	9.7×10^{-1}		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 110
	2.2		Hilal et al. (2008)	Q	107, 111
		6400	Kühne et al. (2005)	Q	
		6500	Kühne et al. (2005)	?	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
3,4,5-trichlorophenol C ₆ H ₃ Cl ₃ O [609-19-8]	4.3×10 ¹		HSDB (2015)	Q	38
2,3,4,5-tetrachlorophenol C ₆ H ₂ Cl ₄ O [4901-51-3]	7.2 7.2 2.8×10 ¹		Mackay et al. (2006c) Mackay et al. (1995) HSDB (2015)	V V Q	38
2,3,4,6-tetrachlorophenol C ₆ H ₂ Cl ₄ O [58-90-2]	$7.6 2.8 2.8 5.8 \times 10^{1} 4.1 \times 10^{-2} 3.9 3.1$		HSDB (2015) Mackay et al. (2006c) Mackay et al. (1995) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	V V V Q Q Q Q	107, 108 107, 109 107, 110 107, 111
2,3,5,6-tetrachlorophenol C ₆ H ₂ Cl ₄ O [935-95-5]	4.3 4.3 2.8×10 ¹		Mackay et al. (2006c) Mackay et al. (1995) HSDB (2015)	V V Q	38
hydroxypentachlorobenzene C ₆ HCl ₅ O (pentachlorophenol) [87-86-5] 3,4,5-trichloro-1,2-benzenediol C ₆ H ₃ Cl ₃ O ₂ (3,4,5-trichlorocatechol)	4.1×10^{2} 1.3×10^{1} 1.1×10^{-2} 1.3×10^{1} 2.3×10^{1} 2.3×10^{1} 1.1×10^{-1} 4.7 3.4 7.9×10^{1} 6.0×10^{-2} 6.5 4.0 7.9×10^{1} 1.8 2.4×10^{2}	1300 7800 7400	Hellmann (1987) Mackay et al. (2006c) Mackay et al. (2006d) Fogg and Sangster (2003) Mackay et al. (1995) Riederer (1990) Suntio et al. (1988) Goldstein (1982) McCarty (1980) Ryan et al. (1988) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Kühne et al. (2005) Meylan and Howard (1991) Fogg and Sangster (2003) Kühne et al. (2005) Lei et al. (1999)	M V V V V V V X X C Q Q Q Q Q Q	31 221 9 116 145 107, 108 107, 109 107, 110 107, 111
(5,4,5-themorocatecnor) [56961-20-7] 4,5-dichloro-1,2-benzenediol C ₆ H ₄ Cl ₂ O ₂ (4,5-dichlorocatechol) [3428-24-8]	1.3×10 ³		Lei et al. (1999)	V	
3,4,5,6-tetrachloro-1,2-benzenediol C ₆ H ₂ Cl ₄ O ₂ (tetrachlorocatechol) [1198-55-6]	2.9×10 ¹		Lei et al. (1999)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,3,5,6-tetrachloro- <i>p</i> -benzoquinone C ₆ Cl ₄ O ₂ (chloranil) [118-75-2]	1.5×10 ³		HSDB (2015)	V	
2-chloro-5-methylphenol C ₇ H ₇ ClO [615-74-7]	2.1×10 ¹		HSDB (2015)	Q	38
4-chloro-2-methylphenol C ₇ H ₇ ClO [1570-64-5]	9.0 1.6×10 ¹		Woodrow et al. (1990) Hilal et al. (2008)	V Q	
4-chloro-3-methylphenol C ₇ H ₇ ClO [59-50-7]	4.1 3.9×10^{1} 4.0 2.2×10^{1} 1.3×10^{1} 2.8×10^{1} 9.2×10^{1} 1.2×10^{1} 1.3×10^{2}		HSDB (2015) Abraham et al. (1994a) Ryan et al. (1988) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Hilal et al. (2008) Nirmalakhandan et al. (1997)	V R C Q Q Q Q Q	107, 108 107, 109 107, 110 107, 111
1-chloro-2-methoxybenzene C ₇ H ₇ ClO (2-chloroanisole) [766-51-8]	1.0×10 ⁻¹		Pfeifer et al. (2001)	М	273
1-chloro-3-methoxybenzene C ₇ H ₇ ClO (3-chloroanisole) [2845-89-8]	4.5×10 ⁻²		Pfeifer et al. (2001)	М	273
1-chloro-4-methoxybenzene C ₇ H ₇ ClO (4-chloroanisole) [623-12-1]	5.8×10 ⁻²		Pfeifer et al. (2001)	М	273
1,2-dichloro-3-methoxybenzene C ₇ H ₆ Cl ₂ O (2,3-dichloroanisole) [1984-59-4]	2.2×10 ⁻²		Pfeifer et al. (2001)	М	273
1,5-dichloro-2-methoxybenzene C ₇ H ₆ Cl ₂ O (2,4-dichloroanisole) [553-82-2]	1.2×10 ⁻²		Pfeifer et al. (2001)	М	273
1,4-dichloro-2-methoxybenzene C ₇ H ₆ Cl ₂ O (2,5-dichloroanisole) [1984-58-3]	2.1×10^{-2} 5.7×10^{-2} 1.4×10^{-2} 1.4×10^{-1} 4.8×10^{-2}		Pfeifer et al. (2001) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	M Q Q Q Q	273 107, 108 107, 109 107, 110 107, 111

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number] 1,3-dichloro-2-methoxybenzene C ₇ H ₆ Cl ₂ O (2,6-dichloroanisole) [1984-65-2]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$ 8.8×10^{-3}	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference Pfeifer et al. (2001)	Туре М	Note 273
1,2-dichloro-4-methoxybenzene C ₇ H ₆ Cl ₂ O (3,4-dichloroanisole) [36404-30-5]	9.2×10 ⁻³		Pfeifer et al. (2001)	M	273
1,3-dichloro-5-methoxybenzene C ₇ H ₆ Cl ₂ O (3,5-dichloroanisole) [33719-74-3]	2.3×10 ⁻³		Pfeifer et al. (2001)	M	273
1,2,3-trichloro-4-methoxybenzene C ₇ H ₅ Cl ₃ O (2,3,4-trichloroanisole) [54135-80-7]	1.3×10 ⁻²		Pfeifer et al. (2001)	M	273
1,2,5-trichloro-3-methoxybenzene C ₇ H ₅ Cl ₃ O (2,3,5-trichloroanisole) [54135-81-8]	7.6×10 ⁻³		Pfeifer et al. (2001)	M	273
1,2,4-trichloro-3-methoxybenzene C ₇ H ₅ Cl ₃ O (2,3,6-trichloroanisole) [50375-10-5]	$ \begin{array}{r} 1.1 \times 10^{-2} \\ 9.8 \times 10^{-3} \\ 1.8 \times 10^{-2} \\ 7.6 \times 10^{-2} \end{array} $	4500	Diaz et al. (2005) Pfeifer et al. (2001) Hilal et al. (2008) Meylan and Howard (1991)	M M Q Q	273
1,2,4-trichloro-5-methoxybenzene C ₇ H ₅ Cl ₃ O (2,4,5-trichloroanisole) [6130-75-2]	1.1×10 ⁻²		Pfeifer et al. (2001)	M	273
1,3,5-trichloro-2-methoxybenzene C ₇ H ₅ Cl ₃ O (2,4,6-trichloroanisole) [87-40-1]	$4.4 \times 10^{-3} $ 4.6×10^{-3}	640	Diaz et al. (2005) Pfeifer et al. (2001)	M M	273
1,2,3-trichloro-5-methoxybenzene C ₇ H ₅ Cl ₃ O (3,4,5-trichloroanisole) [54135-82-9]	4.4×10 ⁻³		Pfeifer et al. (2001)	M	273
1,2,3,4-tetrachloro-5-methoxybenzene C ₇ H ₄ Cl ₄ O (2,3,4,5-tetrachloroanisole) [938-86-3]	6.5×10 ⁻³		Pfeifer et al. (2001)	M	273
1,2,3,5-tetrachloro-4-methoxybenzene C ₇ H ₄ Cl ₄ O (2,3,4,6-tetrachloroanisole) [938-22-7]	3.1×10 ⁻³		Pfeifer et al. (2001)	M	273

Table 6: Henry's law constants for water as solvent (... continued)

	xxCn				
Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1,2,4,5-tetrachloro-3-methoxybenzene C ₇ H ₄ Cl ₄ O (2,3,5,6-tetrachloroanisole) [6936-40-9]	3.2×10 ⁻³		Pfeifer et al. (2001)	М	273
pentachloromethoxybenzene C ₇ H ₃ Cl ₅ O (pentachloroanisole) [1825-21-4]	$2.1 \times 10^{-3} \\ 5.1 \times 10^{-3}$		Pfeifer et al. (2001) HSDB (2015)	M Q	273 38
4,5-dichloro-2-methoxyphenol C ₇ H ₆ Cl ₂ O ₂ (4,5-dichloroguaiacol) [2460-49-3]	5.2 2.3		Mackay et al. (2006c) Lei et al. (1999)	V V	
3,4,5-trichloro-2-methoxyphenol C ₇ H ₅ Cl ₃ O ₂ (3,4,5-trichloroguaiacol) [57057-83-7]	8.3		Mackay et al. (2006c) Lei et al. (1999)	V V	171
4,5,6-trichloro-2-methoxyphenol C ₇ H ₅ Cl ₃ O ₂ (4,5,6-trichloroguaiacol) [2668-24-8]	7.4 7.1		Mackay et al. (2006c) Lei et al. (1999)	V V	
2,3,4,5-tetrachloro-6-methoxyphenol C ₇ H ₄ Cl ₄ O ₂ (tetrachloroguaiacol) [2539-17-5]	6.2 6.7		Mackay et al. (2006c) Lei et al. (1999)	V V	
3-chlorobenzoic acid C ₇ H ₅ ClO ₂ [535-80-8]	2.5×10 ²		HSDB (2015)	Q	216
1,2,3-trichloro-4,5-dimethoxybenzene C ₈ H ₇ Cl ₃ O ₂ (3,4,5-trichloroveratrole) [16766-29-3]	2.7×10 ⁻¹		Lei et al. (1999)	V	
1,2,3,4-tetrachloro-5,6-dimethoxybenzene	9.1×10^{-2}		Lei et al. (1999)	V	
C ₈ H ₆ Cl ₄ O ₂ (tetrachloroveratrole) [944-61-6]	$ \begin{array}{c} 1.7 \\ 2.0 \\ 2.6 \\ 7.5 \times 10^{-1} \end{array} $		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
3-chloro-2,6-dimethoxyphenol C ₈ H ₉ ClO ₃ (3-chlorosyringol) [18113-22-9]	4.2×10 ¹		Lei et al. (1999)	V	
3,5-dichloro-2,6-dimethoxyphenol C ₈ H ₈ Cl ₂ O ₃ (3,5-dichlorosyringol) [78782-46-4]	1.4×10 ¹		Lei et al. (1999)	V	

Table 6: Henry's law constants for water as solvent (... continued)

C.ul. atau	H^{cp}	${ m d} \ln H^{cp}$			
Substance Formula	(at T^{Θ})	$\frac{\mathrm{d}\Pi T}{\mathrm{d}(1/T)}$			
(Other name(s))		$\mathfrak{u}(1/T)$	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mol}}{2\pi}\right]$	[K]			
	m ³ Pa	. ,			
3,5-dichloro-2-hydroxybenzoic acid	1.3×10^3		Zhang et al. (2010)	Q	107, 108
$C_7H_4Cl_2O_3$	4.3×10^{2}		Zhang et al. (2010)	Q	107, 109
[320-72-9]	7.5×10^4		Zhang et al. (2010)	Q	107, 110
	2.2×10^2		Zhang et al. (2010)	Q	107, 111
3,6-dichloro-2-hydroxybenzoic acid	1.3×10^{3}		Zhang et al. (2010)	Q	107, 108
$C_7H_4Cl_2O_3$	3.4×10^{3}		Zhang et al. (2010)	Q	107, 109
[3401-80-7]	1.1×10^{1}		Zhang et al. (2010)	Q	107, 110
	2.2×10^2		Zhang et al. (2010)	Q	107, 111
5-chloro-2-methoxybenzoic acid	2.1×10^{3}		Zhang et al. (2010)	Q	107, 108
C ₈ H ₇ ClO ₃	3.8×10^{1}		Zhang et al. (2010)	Q	107, 109
[3438-16-2]	9.5×10^{3}		Zhang et al. (2010)	Q	107, 110
	6.0×10^3		Zhang et al. (2010)	Q	107, 111
2-chloroacetophenone	2.8		HSDB (2015)	Q	38
C ₈ H ₇ ClO	2.0		11000 (2013)	V	30
[532-27-4]					
2,2,2',4',5'-pentachloroacetophenone	2.0×10 ¹		Zhang et al. (2010)	Q	107, 108
C ₈ H ₃ Cl ₅ O	5.7		Zhang et al. (2010)	Q	107, 109
[1203-86-7]	1.0		Zhang et al. (2010)	Q	107, 110
[6.0		Zhang et al. (2010)	Q	107, 111
tetrachloroterephthaloyl chloride	1.0×10 ¹		Zhang et al. (2010)	Q	107, 108
C ₈ Cl ₆ O ₂	1.9×10^{1}		Zhang et al. (2010)	Q	107, 109
[719-32-4]	3.4×10^{-2}		Zhang et al. (2010)	Q	107, 110
	1.3×10^3		Zhang et al. (2010)	Q	107, 111
chloroxylenol	1.9×10 ¹		HSDB (2015)	Q	38
C ₈ H ₉ ClO	1.9×10^{1}		Zhang et al. (2010)	Q	107, 108
[88-04-0]	1.5×10^{1}		Zhang et al. (2010)	Q	107, 109
	2.0×10^{1}		Zhang et al. (2010)	Q	107, 110
	5.1×10^{1}		Zhang et al. (2010)	Q	107, 111
4,5,6,7-tetrachloro-1,3-	5.2		Zhang et al. (2010)	Q	107, 108
isobenzofurandione C ₈ Cl ₄ O ₃	1.8×10^4		Zhang et al. (2010)	Q	107, 109
[117-08-8]	1.8×10^{2} 1.9×10^{2}		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 109
[117-00-0]	4.3×10^{1}		Zhang et al. (2010)	Q	107, 110
3,4,5-trichloro-2,6-dimethoxyphenol	4.5×10 ¹		-	V	<u> </u>
C ₈ H ₇ Cl ₃ O ₃ (trichlorosyringol) [2539-26-6]	4.3×10 ⁻		Lei et al. (1999)	V	
4,5,6,7-tetrachlorophthalide C ₈ H ₂ Cl ₄ O ₂ [27355-22-2]	1.8×10 ¹		Kawamoto and Urano (1989)	M	
dicamba	2.3×10 ⁴		HSDB (2015)	V	
$C_8H_6Cl_2O_3$	4.5×10^{3}		Mackay et al. (2006d)	V	
(banvel)	8.3×10^{3}		Suntio et al. (1988)	V	9
[1918-00-9]	2.2×10^4		Armbrust (2000)	C	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
$(2,4\text{-dichlorophenoxy})\text{-ethanoic acid} \\ C_8H_6Cl_2O_3 \\ ((2,4\text{-dichlorophenoxy})\text{-acetic} \\ \text{acid}; \\ 2,4\text{-D})$	$ \begin{array}{c} 1.4 \times 10^{-1} \\ 1.2 \\ 5.0 \times 10^{4} \end{array} $		Rice et al. (1997b) Rice et al. (1997b) Mackay et al. (2006c)	M M V	274, 9 274, 9
[94-75-7]	2.3×10^{4} 4.0×10^{3} 2.9×10^{2} 1.8 1.8 7.2×10^{4} 9.7×10^{2} 5.5×10^{6}		Mackay et al. (2006d) Mackay et al. (2006d) Mackay et al. (1995) Riederer (1990) Suntio et al. (1988) Howard (1991) Howard (1991) Armbrust (2000)	V V V V X X	9 164 164
2,4,5-trichlorophenoxyethanoic acid C ₈ H ₅ Cl ₃ O ₃ (2,4,5-T) [93-76-5]	$ \begin{array}{c} 1.7 \times 10^{2} \\ 1.7 \times 10^{2} \\ 1.7 \times 10^{2} \\ 8.4 \times 10^{5} \end{array} $		Mackay et al. (2006d) Riederer (1990) Suntio et al. (1988) MacBean (2012a)	V V V ?	9
1,4-dichloro-2,5-dimethoxybenzene C ₈ H ₈ Cl ₂ O ₂ [2675-77-6]	9.9×10 ⁻²		HSDB (2015) Mackay et al. (2006d)	V V	221
2,3,6-trichlorophenylacetic acid C ₈ H ₅ Cl ₃ O ₂ [85-34-7]	8.3×10^{-1} 5.5×10^{2}		Mackay et al. (2006d) HSDB (2015)	V Q	38
4-methoxy-benzoyl chloride C ₈ H ₇ ClO ₂ (<i>p</i> -anisoyl chloride) [100-07-2]	1.3		HSDB (2015)	Q	38
isobenzan C ₉ H ₄ Cl ₈ O [297-78-9]	1.7×10 ²		HSDB (2015)	Q	38
2-chloro-4-hydroxy-3,5-dimethoxybenzaldehyde C ₉ H ₉ ClO ₄ (2-chlorosyringaldehyde) [76341-69-0]	9.1×10 ¹		Lei et al. (1999)	V	
2,6-dichloro-4-hydroxy-3,5-dimethoxybenzaldehyde C ₉ H ₈ Cl ₂ O ₄ (2,6-dichlorosyringaldehyde) [76330-06-8]	2.7×10 ²		Lei et al. (1999)	V	
methyl 2,4-dichlorophenoxyethanoate C ₉ H ₈ Cl ₂ O ₃ [1928-38-7]	1.8		Hilal et al. (2008)	Q	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number] (2-methyl-4-chlorophenoxy)acetic acid C ₉ H ₉ ClO ₃ (MCPA) [94-74-6]	H^{cp} $(at T^{\ominus})$ $\left[\frac{mol}{m^3 Pa}\right]$ $>9.9 \times 10^1$ 4.0×10^4 9.9×10^3	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference Mabury and Crosby (1996) Mackay et al. (2006d) Woodrow et al. (1990)	Type M V V	Note
$\alpha\text{-}(2,4\text{-}dichlorophenoxy) propionic acid $C_9H_8Cl_2O_3$ (dichloroprop) $[120\text{-}36\text{-}5]$$	3.7×10^3		Mackay et al. (2006d)	V	
(<i>R</i>)-2-(2,4-dichlorophenoxy)propanoic acid C ₉ H ₈ Cl ₂ O ₃ (dichlorprop-p) [15165-67-0]	4.0×10 ⁴		Mackay et al. (2006d)	V	
2-(2,4,5-trichlorophenoxy)propanoic acid $C_9H_7Cl_3O_3\\ [93-72-1]$	3.9×10^4		Mackay et al. (2006d)	V	
tridiphane C ₁₀ H ₇ Cl ₅ O [58138-08-2]	1.9×10^{-1}		MacBean (2012a)	?	
plifenat C ₁₀ H ₇ O ₂ Cl ₅ [21757-82-4]	1.1×10 ⁴		MacBean (2012a)	?	
ethyl 2,4-dichlorophenoxyethanoate C ₁₀ H ₁₀ Cl ₂ O ₃ [533-23-3]	1.2		Hilal et al. (2008)	Q	
mecoprop C ₁₀ H ₁₁ ClO ₃ [7085-19-0]	9.0×10 ³		Mackay et al. (2006d) Armbrust (2000)	V C	221
(R)-2-(4-chloro-2- methylphenoxy)propanoic acid C ₁₀ H ₁₁ ClO ₃ (mecoprop-p) [16484-77-8]	1.0×10 ⁴		Mackay et al. (2006d)	V	
dacthal C ₁₀ H ₆ Cl ₄ O ₄ (DCPA) [1861-32-1]	4.4 4.5		Muir et al. (2004) HSDB (2015)	L V	144
$\begin{tabular}{ll} \hline &4\hbox{-}(2,4\hbox{-}dichlorophenoxy)$-butanoic acid $C_{10}H_{10}Cl_2O_3$ & [94-82-6] & \end{tabular}$	4.3×10 ³		HSDB (2015)	Q	38
dichlone C ₁₀ H ₄ Cl ₂ O ₂ [117-80-6]	9.7×10 ³		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
$\begin{array}{cccc} (2,4\text{-dichlorophenoxy})\text{-acetic} & \text{acid} & 1\text{-}\\ \text{methylethyl ester} \\ C_{11}H_{12}Cl_2O_3 \\ [94\text{-}11\text{-}1] & & & \end{array}$	4.5		HSDB (2015)	V	
4-(4-chloro-2-methylphenoxy)butanoic acid C ₁₁ H ₁₃ ClO ₃ (MCPB) [94-81-5]	3.1×10 ³		Mackay et al. (2006d)	V	
triclosan	4.7×10^2		HSDB (2015)	Q	38
$C_{12}H_7Cl_3O_2$	2.0×10^{3}		Zhang et al. (2010)	Q	107, 108
[3380-34-5]	5.7×10^{1}		Zhang et al. (2010)	Q	107, 109
	1.4×10^{3}		Zhang et al. (2010)	Q	107, 110
	8.2×10^2		Zhang et al. (2010)	Q	107, 111
monobutyl tetrachlorophthalate	2.0×10^4		Zhang et al. (2010)	Q	107, 108
C ₁₂ H ₁₀ Cl ₄ O ₄	7.5×10^2		Zhang et al. (2010)	Q	107, 109
[24261-19-6]	5.1×10^4		Zhang et al. (2010)	Q	107, 110
	5.1×10^4		Zhang et al. (2010)	Q	107, 111
(2,4-dichlorophenoxy)-acetic acid butyl ester	2.0×10 ¹		HSDB (2015)	V	
C ₁₂ H ₁₄ Cl ₂ O ₃ [94-80-4]					
sucralose C ₁₂ H ₁₉ Cl ₃ O ₈ [56038-13-2]	2.5×10 ¹³		HSDB (2015)	Q	38
	4.5		HSDB (2015)	V	
endrin aldehyde C ₁₂ H ₈ Cl ₆ O [7421-93-4]	2.3		HSDB (2015)	V	
clorophene C ₁₃ H ₁₁ ClO (4-chloro-2-benzylphenol) [120-32-1]	3.7×10 ³		HSDB (2015)	V	
(4-chlorophenyl)phenylmethanone C ₁₃ H ₉ ClO (4-chlorobenzophenone) [134-85-0]	7.0		HSDB (2015)	Q	38
1-(4-chlorophenyl)-4,4-dimethyl-3- pentanone	1.1		Zhang et al. (2010)	Q	107, 108
C ₁₃ H ₁₇ ClO	7.2×10^{-1}		Zhang et al. (2010)	Q	107, 109
[66346-01-8]	4.2		Zhang et al. (2010)	Q	107, 110
	3.9×10^{-1}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\mathrm{d} \ln H^{cp}$			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]		Reference	Туре	Note
[CAS registry number]	$\left\lfloor \frac{1}{m^3 Pa} \right\rfloor$	[K]			
hexachlorophene	1.8×10 ⁷		HSDB (2015)	Q	38
$C_{13}H_6Cl_6O_2$	1.1×10^{7}		Zhang et al. (2010)	Q	107, 108
[70-30-4]	2.5×10^5		Zhang et al. (2010)	Q	107, 109
	1.2×10^4		Zhang et al. (2010)	Q	107, 110
	6.5×10^5		Zhang et al. (2010)	Q	107, 111
2,4'-dichlorobenzophenone	9.2		Zhang et al. (2010)	Q	107, 108
C ₁₃ H ₈ Cl ₂ O	6.9		Zhang et al. (2010)	Q	107, 109
[85-29-0]	4.3×10^{1}		Zhang et al. (2010)	Q	107, 110
	6.1×10^{1}		Zhang et al. (2010)	Q	107, 111
1-(4-chlorophenyl)-4,4-dimethylpent- 1-en-3-one	4.8		Zhang et al. (2010)	Q	107, 108
C ₁₃ H ₁₅ ClO	2.2		Zhang et al. (2010)	Q	107, 109
[1577-03-3]	8.2		Zhang et al. (2010)	Q	107, 110
	1.5		Zhang et al. (2010)	Q	107, 111
dichlorophen	8.2×10^6		HSDB (2015)	V	
$C_{13}H_{10}Cl_2O_2$	8.5×10^{6}		Mackay et al. (2006d)	V	
[97-23-4]					
2-chloro-9,10-anthracenedione	4.2×10^{3}		Zhang et al. (2010)	Q	107, 108
$C_{14}H_7ClO_2$	6.7×10^2		Zhang et al. (2010)	Q	107, 109
[131-09-9]	1.4×10^2		Zhang et al. (2010)	Q	107, 110
	3.3×10^4		Zhang et al. (2010)	Q	107, 111
dicofol	4.1×10^{1}		HSDB (2015)	V	
C ₁₄ H ₉ Cl ₅ O	1.8×10^4		Zhang et al. (2010)	Q	107, 108
[115-32-2]	3.1×10^2		Zhang et al. (2010)	Q	107, 109
	9.2×10^{1}		Zhang et al. (2010)	Q	107, 110
	3.2×10^3		Zhang et al. (2010)	Q	107, 111
bis(2,4-dichlorobenzoyl)peroxide	9.2		Zhang et al. (2010)	Q	107, 108
$C_{14}H_6Cl_4O_4$	1.4×10^2		Zhang et al. (2010)	Q	107, 109
[133-14-2]	1.6×10^3		Zhang et al. (2010)	Q	107, 110
	3.5×10^3		Zhang et al. (2010)	Q	107, 111
dipropyl tetrachlorophthalate	4.7×10^{1}		Zhang et al. (2010)	Q	107, 108
$C_{14}H_{14}Cl_4O_4$	3.0×10^{1}		Zhang et al. (2010)	Q	107, 109
[6928-67-2]	1.0×10^{1}		Zhang et al. (2010)	Q	107, 110
	2.8×10^{1}		Zhang et al. (2010)	Q	107, 111
2-(4-chlorobenzoyl)benzoic acid	3.4×10^5		Zhang et al. (2010)	Q	107, 108
C ₁₄ H ₉ ClO ₃	3.6×10^4		Zhang et al. (2010)	Q	107, 109
[85-56-3]	7.9×10^{7}		Zhang et al. (2010)	Q	107, 110
	2.1×10^6		Zhang et al. (2010)	Q	107, 111
(2,4,5-trichlorophenoxy)acetic acid butoxyethanol ester C ₁₄ H ₁₇ Cl ₃ O ₄ [2545-59-7]	1.2×10^2		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	d ln H^{cp}			
Formula	(at T^{Θ})	$\frac{1}{d(1/T)}$		_	
(Other name(s))	[mol]	0(1/1)	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	[K]			
(2,4-dichlorophenoxy)-acetic acid, 2-	6.2×10^{1}		HSDB (2015)	V	
butoxyethyl ester					
$C_{14}H_{18}Cl_2O_4$					
[1929-73-3]					
1-chloro-9,10-anthracenedione	4.2×10^3		HSDB (2015)	Q	38
C ₁₄ H ₇ ClO ₂	,,,,		11022 (2010)	· ·	
(1-chloroanthraquinone)					
[82-44-0]					
4,4'-(1-methylethylidene)bis(2,6-	3.5×10^6		HSDB (2015)	Q	182
dichlorophenol)	3.3×10		11822 (2013)	V	102
$C_{15}H_{12}Cl_4O_2$					
(2,2°,6,6°-tetrachlorobisphenol A)					
[79-95-8]					
methoxychlor	4.9×10 ¹		Altschuh et al. (1999)	М	
$C_{16}H_{15}Cl_3O_2$	1.0		Mackay et al. (2006d)	V	
[72-43-5]	2.8		Hilal et al. (2008)	Q	
diclofop-methyl	5.0		Mackay et al. (2006d)	V	
$C_{16}H_{14}Cl_2O_4$	2.6×10^{2}		HSDB (2015)	Q	38
[51338-27-3]					
chlorobenzilate	1.4×10^2		HSDB (2015)	V	
C ₁₆ H ₁₄ Cl ₂ O ₃ [510-15-6]	2.6×10^2		MacBean (2012a)	?	
(2,4-dichlorophenoxy)-acetic acid 2-	5.5×10^{-1}		MacBean (2012b)	X	137
ethylhexyl ester					
C ₁₆ H ₂₂ Cl ₂ O ₃ [1928-43-4]					
(2,4-dichlorophenoxy)-acetic acid,	1.7×10^{-1}		HSDB (2015)	Q	38
isooctyl ester					
C ₁₆ H ₂₂ Cl ₂ O ₃ [25168-26-7]					
	1.2. 103		HGDD (2015)	**	
chloropropylate	1.2×10^3		HSDB (2015)	V	
C ₁₇ H ₁₆ Cl ₂ O ₃ [5836-10-2]	1.0×10^2		MacBean (2012a)	?	
	F 2. 10=1		71		107 100
1-(2-(2-chloroethoxy)ethoxy)-4- (1,1,3,3-tetramethylbutyl)benzene	5.3×10^{-1}		Zhang et al. (2010)	Q	107, 108
$C_{18}H_{29}CIO_2$	1.6		Zhang et al. (2010)	Q	107, 109
[65925-28-2]	3.8×10^{-1}		Zhang et al. (2010)	Q	107, 110
	8.4×10^{-2}		Zhang et al. (2010)	Q	107, 111
fenofibrate	2.2×10^3		HSDB (2015)	Q	38
C ₂₀ H ₂₁ ClO ₄	2.2.7.10		11022 (2010)	Y	50
[49562-28-9]					
spirodiclofen	1.7×10^2		HSDB (2015)	V	
C ₂₁ H ₂₄ Cl ₂ O ₄	1.7 × 10		11000 (2010)	•	
[148477-71-8]					

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
permethrin C ₂₁ H ₂₀ Cl ₂ O ₃ [52645-53-1]	4.1 9.0		HSDB (2015) Mackay et al. (2006d)	V V	
chlormadinone acetate C ₂₃ H ₂₉ ClO ₄ [302-22-7]	1.8×10 ⁴		HSDB (2015)	Q	38
3,4,5,6-tetrachlorophthalic acid bis(2-ethylhexyl) ester	2.8		Zhang et al. (2010)	Q	107, 108
$C_{24}H_{34}Cl_4O_4$	2.3×10^{1}		Zhang et al. (2010)	Q	107, 109
[34832-88-7]	1.0×10^4		Zhang et al. (2010)	Q	107, 110
	3.5		Zhang et al. (2010)	Q	107, 111
endosulfan alcohol	7.7×10^3		Zhang et al. (2010)	Q	107, 108
$C_9H_8Cl_6O_2$	3.0×10^{6}		Zhang et al. (2010)	Q	107, 109
[2157-19-9]	1.3×10^5		Zhang et al. (2010)	Q	107, 110
	1.8×10^{5}		Zhang et al. (2010)	Q	107, 111
chlorendic anhydride	1.1×10^2		Zhang et al. (2010)	Q	107, 108
$C_9H_2Cl_6O_3$	3.1×10^4		Zhang et al. (2010)	Q	107, 109
[115-27-5]	1.5×10^4		Zhang et al. (2010)	Q	107, 110
	3.9×10^{7}		Zhang et al. (2010)	Q	107, 111
1,4,5,6,7,7-hexachloro- bicyclo[2.2.1]hept-5-ene-2,3- dicarboxylic acid	3.3×10 ⁸		HSDB (2015)	Q	38
$C_9H_4Cl_6O_4$	3.3×10^{8}		Zhang et al. (2010)	Q	107, 108
[115-28-6]	3.1×10^9		Zhang et al. (2010)	Q	107, 109
	3.9×10^9		Zhang et al. (2010)	Q	107, 110
	7.3×10^7		Zhang et al. (2010)	Q	107, 111
heptachlorepoxide	4.8×10^{-1}		Shen and Wania (2005)	L	143
$C_{10}H_5Cl_7O$	5.9×10^{-1}		Shen and Wania (2005)	L	144
[1024-57-3]	5.0×10^{-1}	5200	Cetin et al. (2006)	M	
	4.7×10^{-1}		Altschuh et al. (1999)	M	
	3.1×10^{-1}		Warner et al. (1980)	M	
	5.4×10^{-1} 1.3×10^{1}		Hilal et al. (2008)	C	
	3.1×10^{-1}		Ryan et al. (1988)	C C	
	7.3		Shen (1982) Hilal et al. (2008)	Q	
dieldrin	1.0		Shen and Wania (2005)	L	143
C ₁₂ H ₈ OCl ₆	9.1×10^{-1}		Shen and Wania (2005)	L	144
[60-57-1]	9.1×10^{-1}		Mackay and Shiu (1981)	L	
	9.2×10^{-1}	5800	Cetin et al. (2006)	M	
	9.8×10^{-1}		Altschuh et al. (1999)	M	
	3.4×10^{-1}		Slater and Spedding (1981)	M	9
	1.7×10^{-1}		Warner et al. (1980)	M	
	8.9×10^{-1}		Mackay et al. (2006d)	V	
	8.9×10^{-1}		Suntio et al. (1988)	V	9
	4.9×10^{1} 1.7×10^{-1}		Mackay and Leinonen (1975) Hilal et al. (2008)	V C	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\mathrm{d} \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]		Reference	Туре	Note
[CAS registry number]	$\left[\frac{mo}{m^3 Pa}\right]$	[K]			
	5.0×10 ¹		Suntio et al. (1988)	С	9
	2.2×10^{1}		Suntio et al. (1988)	C	255
	9.8×10^{-1}		Suntio et al. (1988)	C	255
	1.7×10^{-1}		Suntio et al. (1988)	C	
	4.7×10^{-2}		Suntio et al. (1988)	C	
	1.3		Ryan et al. (1988)	C	
	1.7×10^{-1}		Shen (1982)	C	
	1.1		Hilal et al. (2008)	Q	
	1.2		MacBean (2012a)	?	
	5.7×10^{1}		Brimblecombe (1986)	?	28
endrin	1.6		Shen and Wania (2005)	L	143
C ₁₂ H ₈ Cl ₆ O	9.1×10^{-1}	4.600	Shen and Wania (2005)	L	144
[72-20-8]	1.8	4600	Cetin et al. (2006)	M	
	1.6		Altschuh et al. (1999)	M	
	3.0×10^{1}		Mackay et al. (2006d)	V	0
	3.0×10^{1}		Suntio et al. (1988)	V	9
	5.6×10^3		Suntio et al. (1988)	С	
	2.4×10^{1} 1.1		Ryan et al. (1988) Hilal et al. (2008)	C Q	
1,4,5,6,7,7-	5.8×10 ²		Zhang et al. (2010)	Q	107, 108
hexachlorobicyclo[2.2.1]hept-5- ene-2,3-dicarboxylic acid, dibu ester	ityl				
$C_{17}H_{20}Cl_6O_4$	1.4×10^2		Zhang et al. (2010)	Q	107, 109
[1770-80-5]	4.6×10^3		Zhang et al. (2010)	Q	107, 110
	8.0×10^2		Zhang et al. (2010)	Q	107, 111
di-2-ethylhexyl chlorendate	6.0×10^{1}		Zhang et al. (2010)	Q	107, 108
$C_{25}H_{36}Cl_6O_4$	2.1×10^{2}		Zhang et al. (2010)	Q	107, 109
[4827-55-8]	5.2×10^3		Zhang et al. (2010)	Q	107, 110
	1.6×10^2		Zhang et al. (2010)	Q	107, 111
]	Polychlorinat	ed diphe	nyl ethers (PCDEs)		
2-chlorodiphenyl ether	3.1×10^{-2}	<u> </u>	Kurz and Ballschmiter (1999)	V	
2 chlorodipheny rether C ₁₂ H ₉ ClO (PCDE-1) [2689-07-8]					
C ₁₂ H ₉ ClO (PCDE-1) [2689-07-8] 3-chlorodiphenyl ether	1.2×10 ⁻¹		Kurz and Ballschmiter (1999)	V	
$C_{12}H_9ClO$ (PCDE-1) [2689-07-8] 3-chlorodiphenyl ether $C_{12}H_9ClO$	1.2×10^{-1} 2.7×10^{-2}		Kurz and Ballschmiter (1999) Hilal et al. (2008)	V Q	
C ₁₂ H ₉ ClO (PCDE-1) [2689-07-8] 3-chlorodiphenyl ether C ₁₂ H ₉ ClO (PCDE-2)					
C ₁₂ H ₉ ClO (PCDE-1) [2689-07-8] 3-chlorodiphenyl ether C ₁₂ H ₉ ClO (PCDE-2) [6452-49-9]	2.7×10^{-2}		Hilal et al. (2008)		
C ₁₂ H ₉ ClO (PCDE-1) [2689-07-8] 3-chlorodiphenyl ether C ₁₂ H ₉ ClO (PCDE-2) [6452-49-9] 4-chlorodiphenyl ether	2.7×10^{-2} 1.1×10^{-1}		Hilal et al. (2008) Kurz and Ballschmiter (1999)	Q	
$C_{12}H_9ClO$ (PCDE-1) [2689-07-8] 3-chlorodiphenyl ether $C_{12}H_9ClO$ (PCDE-2) [6452-49-9] 4-chlorodiphenyl ether $C_{12}H_9ClO$	2.7×10^{-2} 1.1×10^{-1} 4.5×10^{-2}		Hilal et al. (2008) Kurz and Ballschmiter (1999) Mackay et al. (1993)	Q V V	181
C ₁₂ H ₉ ClO (PCDE-1) [2689-07-8]	2.7×10^{-2} 1.1×10^{-1}		Hilal et al. (2008) Kurz and Ballschmiter (1999)	Q	181

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type Note
2,3-dichlorodiphenyl ether C ₁₂ H ₈ Cl ₂ O (PCDE-5)	2.4×10 ⁻¹		Kurz and Ballschmiter (1999)	V
2,4-dichlorodiphenyl ether C ₁₂ H ₈ Cl ₂ O (PCDE-7) [51892-26-3]	1.9×10 ⁻¹		Kurz and Ballschmiter (1999)	V
2,4'-dichlorodiphenyl ether C ₁₂ H ₈ Cl ₂ O (PCDE-8)	3.2×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,5-dichlorodiphenyl ether C ₁₂ H ₈ Cl ₂ O (PCDE-9)	7.9×10^{-2}		Kurz and Ballschmiter (1999)	V
2,6-dichlorodiphenyl ether C ₁₂ H ₈ Cl ₂ O (PCDE-10) [28419-69-4]	5.0×10 ⁻²		Kurz and Ballschmiter (1999)	V
3,4-dichlorodiphenyl ether C ₁₂ H ₈ Cl ₂ O (PCDE-12)	1.1×10 ⁻¹		Kurz and Ballschmiter (1999)	V
3,4'-dichlorodiphenyl ether C ₁₂ H ₈ Cl ₂ O (PCDE-13)	1.3×10 ⁻¹		Kurz and Ballschmiter (1999)	V
3,5-dichlorodiphenyl ether C ₁₂ H ₈ Cl ₂ O (PCDE-14)	6.5×10^{-2}		Kurz and Ballschmiter (1999)	V
4,4'-dichlorodiphenyl ether C ₁₂ H ₈ Cl ₂ O (PCDE-15) [2444-89-5]	2.1×10 ⁻¹		Kurz and Ballschmiter (1999)	V
2,2',4-trichlorodiphenyl ether C ₁₂ H ₇ Cl ₃ O (PCDE-17)	4.5×10 ⁻¹		Kurz and Ballschmiter (1999)	V
2,3,4-trichlorodiphenyl ether C ₁₂ H ₇ Cl ₃ O (PCDE-21)	2.8×10 ⁻¹		Kurz and Ballschmiter (1999)	V
2,3,4'-trichlorodiphenyl ether C ₁₂ H ₇ Cl ₃ O (PCDE-22)	3.2×10 ⁻¹		Kurz and Ballschmiter (1999)	V
2,3,5-trichlorodiphenyl ether C ₁₂ H ₇ Cl ₃ O (PCDE-23)	2.2×10 ⁻¹		Kurz and Ballschmiter (1999)	V

Table 6: Henry's law constants for water as solvent (... continued)

	an			
Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type Note
2,3,6-trichlorodiphenyl ether C ₁₂ H ₇ Cl ₃ O (PCDE-24)	3.0×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,3',4-trichlorodiphenyl ether C ₁₂ H ₇ Cl ₃ O (PCDE-25)	1.5×10 ⁻¹		Kurz and Ballschmiter (1999)	V
2,4,4'-trichlorodiphenyl ether C ₁₂ H ₇ Cl ₃ O (PCDE-28)	3.0×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,4,5-trichlorodiphenyl ether C ₁₂ H ₇ Cl ₃ O (PCDE-29)	8.9×10 ⁻³		Kurz and Ballschmiter (1999)	V
2,4,6-trichlorodiphenyl ether C ₁₂ H ₇ Cl ₃ O (PCDE-30)	1.4×10^{-2}		Kurz and Ballschmiter (1999)	V
2,4',5-trichlorodiphenyl ether C ₁₂ H ₇ Cl ₃ O (PCDE-31) [65075-00-5]	1.6×10 ⁻¹		Kurz and Ballschmiter (1999)	V
2,4',6-trichlorodiphenyl ether C ₁₂ H ₇ Cl ₃ O (PCDE-32)	4.2×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,3',4'-trichlorodiphenyl ether C ₁₂ H ₇ Cl ₃ O (PCDE-33)	3.4×10^{-1}		Kurz and Ballschmiter (1999)	V
3,3',4-trichlorodiphenyl ether C ₁₂ H ₇ Cl ₃ O (PCDE-35)	2.2×10 ⁻¹		Kurz and Ballschmiter (1999)	V
3,4,4'-trichlorodiphenyl ether C ₁₂ H ₇ Cl ₃ O (PCDE-37)	1.6×10 ⁻¹		Kurz and Ballschmiter (1999)	V
3,4,5-trichlorodiphenyl ether C ₁₂ H ₇ Cl ₃ O (PCDE-38)	9.1×10^{-3}		Kurz and Ballschmiter (1999)	V
3,4°,5-trichlorodiphenyl ether C ₁₂ H ₇ Cl ₃ O (PCDE-39)	1.6×10^{-1}		Kurz and Ballschmiter (1999)	V
2,2',3,4-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-41)	5.5×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,2',3,4'-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-42)	5.8×10 ⁻²		Kurz and Ballschmiter (1999)	V

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,2',4,4'-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-47) [28076-73-5]	2.9×10^{-2} 2.8×10^{-1}		Kurz and Ballschmiter (1999) HSDB (2015)	V Q	38
2,2',4,5-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-48)	1.6×10 ⁻²		Kurz and Ballschmiter (1999)	V	
2,2',4,5'-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-49)	2.6×10 ⁻²		Kurz and Ballschmiter (1999)	V	
2,3,3',4-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-55)	2.3×10 ⁻²		Kurz and Ballschmiter (1999)	V	
2,3,3',4'-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-56)	4.4×10^{-2}		Kurz and Ballschmiter (1999)	V	
2,3,4,4'-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-60)	3.6×10 ⁻²		Kurz and Ballschmiter (1999)	V	
2,3,4,5-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-61)	6.6×10^{-3}		Kurz and Ballschmiter (1999)	V	
2,3,4,6-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-62)	9.1×10 ⁻³		Kurz and Ballschmiter (1999)	V	
2,3,4',5-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-63)	1.5×10^{-2}		Kurz and Ballschmiter (1999)	V	
2,3,4',6-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-64)	3.8×10 ⁻²		Kurz and Ballschmiter (1999)	V	
2,3,5,6-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-65)	9.3×10 ⁻³		Kurz and Ballschmiter (1999)	V	
2,3',4,4'-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-66) [61328-46-9]	2.5×10 ⁻²		Kurz and Ballschmiter (1999)	V	
2,3°,4,5-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-67)	8.9×10^{-3}		Kurz and Ballschmiter (1999)	V	
2,3',4,5'-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-68)	1.0×10^{-2}		Kurz and Ballschmiter (1999)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type Note
2,3',4',5-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-70)	1.8×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,3',4',6-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-71)	4.6×10^{-2}		Kurz and Ballschmiter (1999)	V
2,4,4',5-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-74) [61328-45-8]	1.9×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,4,4',6-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-75)	1.7×10 ⁻²		Kurz and Ballschmiter (1999)	V
3,3',4,4'-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-77) [56348-72-2]	4.1×10 ⁻²		Kurz and Ballschmiter (1999)	V
3,3',4,5'-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-79)	1.0×10^{-2}		Kurz and Ballschmiter (1999)	V
3,4,4',5-tetrachlorodiphenyl ether C ₁₂ H ₆ Cl ₄ O (PCDE-81)	1.5×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,2',3,3',4-pentachlorodiphenyl ether C ₁₂ H ₅ Cl ₅ O (PCDE-82)	8.3×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,2',3,4,4'-pentachlorodiphenyl ether C ₁₂ H ₅ Cl ₅ O (PCDE-85) [71585-37-0]	5.2×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,2',3,4,5'-pentachlorodiphenyl ether C ₁₂ H ₅ Cl ₅ O (PCDE-87)	2.2×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,2',3,4,6'-pentachlorodiphenyl ether C ₁₂ H ₅ Cl ₅ O (PCDE-89)	6.5×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,2',3,4',5-pentachlorodiphenyl ether C ₁₂ H ₅ Cl ₅ O (PCDE-90)	1.5×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,2',3,4',6-pentachlorodiphenyl ether C ₁₂ H ₅ Cl ₅ O (PCDE-91)	3.9×10 ⁻²		Kurz and Ballschmiter (1999)	V

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number] 2,2',3,4',5'-pentachlorodiphenyl ether C ₁₂ H ₅ Cl ₅ O	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$ 3.3×10^{-2}	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference Kurz and Ballschmiter (1999)	Type Note
(PCDE-97) 2,2',4,4',5-pentachlorodiphenyl ether C ₁₂ H ₅ Cl ₅ O (PCDE-99) [60123-64-0]	1.8×10^{-2} 3.8×10^{-2}	6100	Kurz and Ballschmiter (1999) Paasivirta et al. (1999)	V T
2,2',4,4',6-pentachlorodiphenyl ether C ₁₂ H ₅ Cl ₅ O (PCDE-100) [104294-16-8]	2.1×10 ⁻² 1.3×10 ⁻²	5800	Kurz and Ballschmiter (1999) Paasivirta et al. (1999)	V T
2,2',4,5,5'-pentachlorodiphenyl ether C ₁₂ H ₅ Cl ₅ O (PCDE-101) [131138-21-1]	1.6×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,2',4,5,6'-pentachlorodiphenyl ether C ₁₂ H ₅ Cl ₅ O (PCDE-102)	3.7×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,3,3',4,4'-pentachlorodiphenyl ether C ₁₂ H ₅ Cl ₅ O (PCDE-105) [85918-31-6]	4.2×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,3,3',4,5'-pentachlorodiphenyl ether C ₁₂ H ₅ Cl ₅ O (PCDE-108)	1.5×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,3,3',4,6-pentachlorodiphenyl ether C ₁₂ H ₅ Cl ₅ O (PCDE-109)	1.4×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,3,3',4',6-pentachlorodiphenyl ether C ₁₂ H ₅ Cl ₅ O (PCDE-110)	3.6×10 ⁻²		Kurz and Ballschmiter (1999)	V
$2,3,4,4$ ',5-pentachlorodiphenyl ether $C_{12}H_5Cl_5O$ (PCDE-114)	1.2×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,3,4,4',6-pentachlorodiphenyl ether $C_{12}H_5Cl_5O$ (PCDE-115)	1.1×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,3,4,5,6-pentachlorodiphenyl ether C ₁₂ H ₅ Cl ₅ O (PCDE-116)	6.6×10 ⁻³		Kurz and Ballschmiter (1999)	V
2,3,4',5,6-pentachlorodiphenyl ether C ₁₂ H ₅ Cl ₅ O (PCDE-117)	1.1×10 ⁻²		Kurz and Ballschmiter (1999)	V

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type Note
2,3',4,4',5-pentachlorodiphenyl ether C ₁₂ H ₅ Cl ₅ O (PCDE-118)	1.5×10^{-2}		Kurz and Ballschmiter (1999)	V
2,3',4,4',6-pentachlorodiphenyl ether C ₁₂ H ₅ Cl ₅ O (PCDE-119)	1.3×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,3',4,5,5'-pentachlorodiphenyl ether C ₁₂ H ₅ Cl ₅ O (PCDE-120)	4.8×10 ⁻³		Kurz and Ballschmiter (1999)	V
2,3',4,4',5'-pentachlorodiphenyl ether C ₁₂ H ₅ Cl ₅ O (PCDE-123)	1.3×10 ⁻²		Kurz and Ballschmiter (1999)	V
3,3',4,4',5-pentachlorodiphenyl ether C ₁₂ H ₅ Cl ₅ O (PCDE-126) [94339-59-0]	1.0×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,2',3,3',4,4'-hexachlorodiphenyl ether C ₁₂ H ₄ Cl ₆ O (PCDE-128) [71585-39-2]	8.3×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,2',3,3',4,5'-hexachlorodiphenyl ether C ₁₂ H ₄ Cl ₆ O (PCDE-130)	1.5×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,2',3,3',4,6'-hexachlorodiphenyl ether C ₁₂ H ₄ Cl ₆ O (PCDE-132)	6.2×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,2',3,4,4',5-hexachlorodiphenyl ether C ₁₂ H ₄ Cl ₆ O (PCDE-137) [71585-36-9]	$1.8 \times 10^{-2} \\ 1.9 \times 10^{-2}$	6400	Kurz and Ballschmiter (1999) Paasivirta et al. (1999)	V T
2,2',3,4,4',5'-hexachlorodiphenyl ether C ₁₂ H ₄ Cl ₆ O (PCDE-138) [71585-38-1]	$2.9 \times 10^{-2} \\ 2.8 \times 10^{-2}$	6500	Kurz and Ballschmiter (1999) Paasivirta et al. (1999)	V T
2,2',3,4,4',6-hexachlorodiphenyl ether C ₁₂ H ₄ Cl ₆ O (PCDE-139)	9.8×10 ⁻³		Kurz and Ballschmiter (1999)	V
2,2',3,4,4',6'-hexachlorodiphenyl ether C ₁₂ H ₄ Cl ₆ O (PCDE-140) [106220-82-0]	3.0×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,2',3,4',5,5'-hexachlorodiphenyl ether C ₁₂ H ₄ Cl ₆ O (PCDE-146)	1.0×10 ⁻²		Kurz and Ballschmiter (1999)	V

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp} (at T^{Θ})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} \ln H^{cp}}$		
Formula Other name(s)) CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	d(1/T) [K]	Reference	Type Note
2,2',3,4',5,6-hexachlorodiphenyl ether C ₁₂ H ₄ Cl ₆ O (PCDE-147)	1.0×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,2',3,4',5',6-hexachlorodiphenyl ether C ₁₂ H ₄ Cl ₆ O (PCDE-149)	3.1×10^{-2}		Kurz and Ballschmiter (1999)	V
2,2',4,4',5,5'-hexachlorodiphenyl ether C ₁₂ H ₄ Cl ₆ O (PCDE-153) [71859-30-8]	$1.3 \times 10^{-2} \\ 1.1 \times 10^{-2}$	6300	Kurz and Ballschmiter (1999) Paasivirta et al. (1999)	V T
2,2',4,4',5,6'-hexachlorodiphenyl ether C ₁₂ H ₄ Cl ₆ O (PCDE-154) [106220-81-9]	$1.4 \times 10^{-2} \\ 4.4 \times 10^{-3}$	5900	Kurz and Ballschmiter (1999) Paasivirta et al. (1999)	V T
2,3,3',4,4',5-hexachlorodiphenyl ether C ₁₂ H ₄ Cl ₆ O (PCDE-156)	1.2×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,3,3',4,4',5'-hexachlorodiphenyl ether C ₁₂ H ₄ Cl ₆ O (PCDE-157)	2.8×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,3,3',4',5,6-hexachlorodiphenyl ether C ₁₂ H ₄ Cl ₆ O (PCDE-163)	1.6×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,3,4,4°,5,6-hexachlorodiphenyl ether C ₁₂ H ₄ Cl ₆ O (PCDE-166)	5.0×10 ⁻³		Kurz and Ballschmiter (1999)	V
2,3',4,4',5,5'-hexachlorodiphenyl ether C ₁₂ H ₄ Cl ₆ O (PCDE-167) [131138-20-0]	8.3×10 ⁻³ 9.0×10 ⁻³	6200	Kurz and Ballschmiter (1999) Paasivirta et al. (1999)	V T
2,2',3,3',4,4',5-heptachlorodiphenyl ether C ₁₂ H ₃ Cl ₇ O (PCDE-170)	2.0×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,2',3,3',4,5,6'-heptachlorodiphenyl ether C ₁₂ H ₃ Cl ₇ O (PCDE-174)	1.8×10 ⁻²		Kurz and Ballschmiter (1999)	V
2,2',3,3',4,5',6'-heptachlorodiphenyl ether C ₁₂ H ₃ Cl ₇ O (PCDE-177)	1.4×10 ⁻²		Kurz and Ballschmiter (1999)	V

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type Note
2,2',3,4,4',5,5'-heptachlorodiphenyl ether C ₁₂ H ₃ Cl ₇ O (PCDE-180) [83992-69-2]	5.0×10^{-3} 1.9×10^{-2}	6800	Kurz and Ballschmiter (1999) Paasivirta et al. (1999)	V T
2,2',3,4,4',5,6-heptachlorodiphenyl ether C ₁₂ H ₃ Cl ₇ O (PCDE-181)	3.4×10 ⁻³		Kurz and Ballschmiter (1999)	V
2,2',3,4,4',5,6'-heptachlorodiphenyl ether C ₁₂ H ₃ Cl ₇ O (PCDE-182) [88467-63-4]	3.3×10 ⁻³	6400	Paasivirta et al. (1999)	Т
2,2',3,4,4',6,6'-heptachlorodiphenyl ether C ₁₂ H ₃ Cl ₇ O PCDE-184) [106220-84-2]	2.0×10 ⁻¹	7800	Paasivirta et al. (1999)	Т
2,2',3,4',5,5',6-heptachlorodiphenyl ether C ₁₂ H ₃ Cl ₇ O (PCDE-187)	7.4×10 ⁻³		Kurz and Ballschmiter (1999)	V
2,3,3',4,4',5,5'-heptachlorodiphenyl ether C ₁₂ H ₃ Cl ₇ O PCDE-189)	6.2×10 ⁻³		Kurz and Ballschmiter (1999)	V
2,3,3',4,4',5,6-heptachlorodiphenyl ether C ₁₂ H ₃ Cl ₇ O PCDE-190)	5.8×10 ⁻³		Kurz and Ballschmiter (1999)	V
2,2',3,3',4,4',5,5'-octachlorodiphenyl ether C ₁₂ H ₂ Cl ₈ O PCDE-194)	4.3×10 ⁻³		Kurz and Ballschmiter (1999)	V
2,2',3,3',4,4',5,6-octachlorodiphenyl ether C ₁₂ H ₂ Cl ₈ O PCDE-195)	1.8×10 ⁻³		Kurz and Ballschmiter (1999)	V
2,2',3,3',4,4',5,6'-octachlorodiphenyl ether C ₁₂ H ₂ Cl ₈ O (PCDE-196) (85918-38-3]	8.7×10 ⁻³	7100	Paasivirta et al. (1999)	Т

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number] 2,2',3,3',4,4',6,6'-octachlorodiphenyl	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$ 7.7×10^{-3}	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference Paasivirta et al. (1999)	Type Note
ether C ₁₂ H ₂ Cl ₈ O (PCDE-197) [117948-62-6]	,,,,,,,	7000		•
2,2',3,3',4,5,5',6'-octachlorodiphenyl ether C ₁₂ H ₂ Cl ₈ O (PCDE-199)	2.6×10 ⁻³		Kurz and Ballschmiter (1999)	V
2,2',3,4,4',5,5',6-octachlorodiphenyl ether C ₁₂ H ₂ Cl ₈ O (PCDE-203)	2.3×10 ⁻³		Kurz and Ballschmiter (1999)	V
2,2',3,3',4,4',5,5',6- nonachlorodiphenyl ether C ₁₂ HCl ₉ O (PCDE-206) [83992-73-8]	5.1×10 ⁻⁴		Kurz and Ballschmiter (1999)	V
decachlorodiphenyl ether C ₁₂ Cl ₁₀ O (PCDE-209) [31710-30-2]	7.1×10 ⁻⁵		Kurz and Ballschmiter (1999)	V
Po	lychlorinate	ed diben	zofuranes (PCDFs)	
1-chlorodibenzofuran C ₁₂ H ₇ ClO (PCDF-1) [84761-86-4]	8.3×10 ⁻²		Govers and Krop (1998)	Q
2-chlorodibenzofuran C ₁₂ H ₇ ClO (PCDF-2) [51230-49-0]	1.1×10 ⁻¹		Govers and Krop (1998)	Q
3-chlorodibenzofuran C ₁₂ H ₇ ClO (PCDF-3) [25074-67-3]	1.3×10 ⁻¹		Govers and Krop (1998)	Q
4-chlorodibenzofuran C ₁₂ H ₇ ClO (PCDF-4) [74992-96-4]	8.9×10 ⁻²		Govers and Krop (1998)	Q
1,2-dichlorodibenzofuran C ₁₂ H ₆ Cl ₂ O (PCDF-12) [64126-85-8]	1.5×10 ⁻¹		Govers and Krop (1998)	Q

Table 6: Henry's law constants for water as solvent $(\dots continued)$

	H^{cp}	dln <i>H^{cp}</i>		
Substance Formula (Other name(s)) [CAS registry number]	$(\text{at } T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\dim H^{*p}}{\operatorname{d}(1/T)}$ [K]	Reference	Type Note
1,3-dichlorodibenzofuran C ₁₂ H ₆ Cl ₂ O (PCDF-13) [94538-00-8]	2.0×10 ⁻¹		Govers and Krop (1998)	Q
,4-dichlorodibenzofuran C ₁₂ H ₆ Cl ₂ O PCDF-14) 94538-01-9]	1.5×10 ⁻¹		Govers and Krop (1998)	Q
l,6-dichlorodibenzofuran C ₁₂ H ₆ Cl ₂ O PCDF-16) 74992-97-5]	1.4×10 ⁻¹		Govers and Krop (1998)	Q
,7-dichlorodibenzofuran C ₁₂ H ₆ Cl ₂ O PCDF-17) 94538-02-0]	1.9×10 ⁻¹		Govers and Krop (1998)	Q
1,8-dichlorodibenzofuran C ₁₂ H ₆ Cl ₂ O PCDF-18) 81638-37-1]	2.5×10 ⁻¹		Govers and Krop (1998)	Q
1,9-dichlorodibenzofuran C ₁₂ H ₆ Cl ₂ O PCDF-19) 70648-14-5]	2.0×10 ⁻¹		Govers and Krop (1998)	Q
2,3-dichlorodibenzofuran C ₁₂ H ₆ Cl ₂ O PCDF-23) 64126-86-9]	2.3×10 ⁻¹		Govers and Krop (1998)	Q
2,4-dichlorodibenzofuran C ₁₂ H ₆ Cl ₂ O PCDF-24) 24478-74-8]	1.9×10 ⁻¹		Govers and Krop (1998)	Q
2,6-dichlorodibenzofuran C ₁₂ H ₆ Cl ₂ O PCDF-26) 60390-27-4]	1.8×10 ⁻¹		Govers and Krop (1998)	Q
2,7-dichlorodibenzofuran C ₁₂ H ₆ Cl ₂ O PCDF-27) [74992-98-6]	2.0×10 ⁻¹		Govers and Krop (1998)	Q
2,8-dichlorodibenzofuran	1.6×10^{-1} 1.6×10^{-1}		Mackay et al. (2006b) Govers and Krop (1998)	V V
C ₁₂ H ₆ Cl ₂ O (PCDF-28)	2.6×10^{-1}		Saçan et al. (2005)	V Q
[5409-83-6]	2.2×10^{-1}		Govers and Krop (1998)	Q

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number] 3,4-dichlorodibenzofuran C ₁₂ H ₆ Cl ₂ O (PCDF-34) [94570-83-9]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$ 1.9×10^{-1}	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference Govers and Krop (1998)	Type Note
3,6-dichlorodibenzofuran C ₁₂ H ₆ Cl ₂ O (PCDF-36) [74918-40-4]	2.2×10 ⁻¹		Govers and Krop (1998)	Q
3,7-dichlorodibenzofuran C ₁₂ H ₆ Cl ₂ O (PCDF-37) [58802-21-4]	3.0×10 ⁻¹		Govers and Krop (1998)	Q
4,6-dichlorodibenzofuran C ₁₂ H ₆ Cl ₂ O (PCDF-46) [64560-13-0]	2.2×10 ⁻¹		Govers and Krop (1998)	Q
1,2,3-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-123) [83636-47-9]	2.9×10 ⁻¹		Govers and Krop (1998)	Q
1,2,4-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-124) [24478-73-7]	2.5×10 ⁻¹		Govers and Krop (1998)	Q
1,2,6-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-126) [64560-15-2]	2.3×10 ⁻¹		Govers and Krop (1998)	Q
1,2,7-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-127) [83704-37-4]	2.3×10 ⁻¹		Govers and Krop (1998)	Q
1,2,8-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-128) [83704-34-1]	3.9×10 ⁻¹		Govers and Krop (1998)	Q
1,2,9-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-129) [83704-38-5]	4.8×10 ⁻¹		Govers and Krop (1998)	Q
1,3,4-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-134) [82911-61-3]	2.8×10 ⁻¹		Govers and Krop (1998)	Q

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$		
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]		-JF0 1.500
1,3,6-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-136) [83704-39-6]	3.3×10 ⁻¹		Govers and Krop (1998)	Q
1,3,7-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-137) [64560-16-3]	4.1×10^{-1}		Govers and Krop (1998)	Q
1,3,8-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-138) [76621-12-0]	4.2×10 ⁻¹		Govers and Krop (1998)	Q
1,3,9-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-139) [83704-40-9]	4.4×10 ⁻¹		Govers and Krop (1998)	Q
1,4,6-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-146) [82911-60-2]	3.5×10 ⁻¹		Govers and Krop (1998)	Q
1,4,7-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-147) [83704-41-0]	3.2×10 ⁻¹		Govers and Krop (1998)	Q
1,4,8-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-148) [64560-14-1]	3.9×10^{-1}		Govers and Krop (1998)	Q
1,4,9-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-149) [70648-13-4]	3.5×10 ⁻¹		Govers and Krop (1998)	Q
2,3,4-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-234) [57117-34-7]	3.1×10 ⁻¹		Govers and Krop (1998)	Q
2,3,6-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-236)	3.4×10^{-1}		Govers and Krop (1998)	Q
2,3,7-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-237) [58802-17-8]	3.5×10^{-1}		Govers and Krop (1998)	Q

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type Note
2,3,8-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-238) [57117-32-5]	3.1×10^{-1}		Govers and Krop (1998)	Q
2,3,9-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-239)	4.6×10 ⁻¹		Govers and Krop (1998)	Q
2,4,6-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-246) [58802-14-5]	4.2×10 ⁻¹		Govers and Krop (1998)	Q
2,4,7-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-247) [83704-42-1]	3.1×10 ⁻¹		Govers and Krop (1998)	Q
2,4,8-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-248) [54589-71-8]	3.2×10 ⁻¹		Govers and Krop (1998)	Q
2,4,9-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-249)	4.1×10^{-1}		Govers and Krop (1998)	Q
3,4,6-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-346)	4.3×10^{-1}		Govers and Krop (1998)	Q
3,4,7-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-347) [83704-44-3]	3.9×10 ⁻¹		Govers and Krop (1998)	Q
3,4,8-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-348)	2.5×10 ⁻¹		Govers and Krop (1998)	Q
3,4,9-trichlorodibenzofuran C ₁₂ H ₅ Cl ₃ O (PCDF-349) [83704-46-5]	2.7×10 ⁻¹		Govers and Krop (1998)	Q
1,2,3,4-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1234) [24478-72-6]	3.6×10 ⁻¹		Govers and Krop (1998)	Q
1,2,3,6-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1236) [83704-21-6]	4.1×10 ⁻¹		Govers and Krop (1998)	Q

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type Note
1,2,3,7-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1237) [83704-22-7]	3.9×10 ⁻¹		Govers and Krop (1998)	Q
1,2,3,8-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1238) [62615-08-1]	5.0×10 ⁻¹		Govers and Krop (1998)	Q
1,2,3,9-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1239) [83704-23-8]	7.9×10 ⁻¹		Govers and Krop (1998)	Q
1,2,4,6-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1246) [71998-73-7]	5.1×10 ⁻¹		Govers and Krop (1998)	Q
1,2,4,7-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1247) [83719-40-8]	3.5×10 ⁻¹		Govers and Krop (1998)	Q
1,2,4,8-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1248) [64126-87-0]	5.5×10 ⁻¹		Govers and Krop (1998)	Q
1,2,4,9-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1249)	7.4×10^{-1}		Govers and Krop (1998)	Q
1,2,6,7-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1267) [83704-25-0]	2.8×10 ⁻¹		Govers and Krop (1998)	Q
1,2,6,8-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1268) [83710-07-0]	5.5×10 ⁻¹		Govers and Krop (1998)	Q
1,2,6,9-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1269)	7.1×10 ⁻¹		Govers and Krop (1998)	Q
1,2,7,8-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1278) [58802-20-3]	1.1 4.8×10 ⁻¹		Saçan et al. (2005) Govers and Krop (1998)	Q Q

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type Note
1,2,7,9-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1279) [83704-26-1]	6.9×10 ⁻¹		Govers and Krop (1998)	Q
1,2,8,9-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1289)	9.5×10 ⁻¹		Govers and Krop (1998)	Q
1,3,4,6-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1346) [83704-27-2]	6.3×10 ⁻¹		Govers and Krop (1998)	Q
1,3,4,7-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1347) [70648-16-7]	5.1×10 ⁻¹		Govers and Krop (1998)	Q
1,3,4,8-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1348) [92341-04-3]	5.0×10 ⁻¹		Govers and Krop (1998)	Q
1,3,4,9-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1349)	5.8×10 ⁻¹		Govers and Krop (1998)	Q
1,3,6,7-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1367) [57117-36-9]	5.1×10 ⁻¹		Govers and Krop (1998)	Q
1,3,6,8-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1368) [71998-72-6]	6.2×10 ⁻¹		Govers and Krop (1998)	Q
1,3,6,9-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1369) [83690-98-6]	6.8×10 ⁻¹		Govers and Krop (1998)	Q
1,3,7,8-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1378) [57117-35-8]	6.5×10 ⁻¹		Govers and Krop (1998)	Q
1,3,7,9-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1379) [64560-17-4]	7.9×10 ⁻¹		Govers and Krop (1998)	Q

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1,4,6,7-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1467) [66794-59-0]	5.9×10 ⁻¹		Govers and Krop (1998)	Q	
1,4,6,8-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O PCDF-1468) 82911-58-8]	8.5×10 ⁻¹		Govers and Krop (1998)	Q	
1,4,6,9-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O PCDF-1469)	7.9×10 ⁻¹		Govers and Krop (1998)	Q	
1,4,7,8-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-1478) [83704-29-4]	6.5×10 ⁻¹		Govers and Krop (1998)	Q	
1,6,7,8-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O PCDF-1678)	5.8×10 ⁻¹		Govers and Krop (1998)	Q	
2,3,4,6-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-2346) [83704-30-7]	6.2×10 ⁻¹		Govers and Krop (1998)	Q	
2,3,4,7-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-2347) 83704-31-8]	4.4×10 ⁻¹		Govers and Krop (1998)	Q	
2,3,4,8-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-2348) 83704-32-9]	3.5×10 ⁻¹		Govers and Krop (1998)	Q	
2,3,6,7-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O PCDF-2367) 57117-39-2]	4.1×10 ⁻¹		Govers and Krop (1998)	Q	
2,3,6,8-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-2368) [57117-37-0]	4.2×10 ⁻¹		Govers and Krop (1998)	Q	
2,3,7,8-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-2378) [51207-31-9]	5.9×10^{-1} 6.8×10^{-1} 8.5×10^{-1} 2.2×10^{-3} 6.4×10^{-1}	3700	Friesen et al. (1993) Mackay et al. (2006b) Govers and Krop (1998) Paasivirta et al. (1999) HSDB (2015)	-	38
	7.2×10^{-1} 3.7×10^{-1}		Saçan et al. (2005) Govers and Krop (1998)	Q Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number] 2,4,6,7-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-2467) [57117-38-1]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$ 5.4×10^{-1}	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference Govers and Krop (1998)	Type Note
2,4,6,8-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-2468) [58802-19-0]	6.6×10 ⁻¹		Govers and Krop (1998)	Q
3,4,6,7-tetrachlorodibenzofuran C ₁₂ H ₄ Cl ₄ O (PCDF-3467) [57117-40-5]	7.1×10 ⁻¹		Govers and Krop (1998)	Q
1,2,3,4,6-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O (PCDF-12346) [83704-47-6]	7.1×10 ⁻¹		Govers and Krop (1998)	Q
1,2,3,4,7-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O (PCDF-12347) [83704-48-7]	4.5×10 ⁻¹		Govers and Krop (1998)	Q
1,2,3,4,8-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O (PCDF-12348) [67517-48-0]	5.5×10 ⁻¹		Govers and Krop (1998)	Q
1,2,3,4,9-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O (PCDF-12349) [83704-49-8]	9.8×10 ⁻¹		Govers and Krop (1998)	Q
1,2,3,6,7-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O (PCDF-12367) [57117-42-7]	4.2×10 ⁻¹		Govers and Krop (1998)	Q
1,2,3,6,8-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O (PCDF-12368) [83704-51-2]	6.5×10 ⁻¹		Govers and Krop (1998)	Q
1,2,3,6,9-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O (PCDF-12369) [83704-52-3]	1.1		Govers and Krop (1998)	Q
1,2,3,7,8-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O (PCDF-12378) [57117-41-6]	8.7×10 ⁻⁴ 5.2×10 ⁻¹	3000	Paasivirta et al. (1999) Govers and Krop (1998)	T Q

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type Note
1,2,3,7,9-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O (PCDF-12379) [83704-53-4]	1.0		Govers and Krop (1998)	Q
1,2,3,8,9-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O (PCDF-12389) 83704-54-5]	2.0 1.1		Saçan et al. (2005) Govers and Krop (1998)	Q Q
1,2,4,6,7-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O PCDF-12467) 83704-50-1]	5.8×10 ⁻¹		Govers and Krop (1998)	Q
1,2,4,6,8-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O PCDF-12468) 69698-57-3]	1.0		Govers and Krop (1998)	Q
1,2,4,6,9-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O PCDF-12469) 70648-24-7]	1.5		Govers and Krop (1998)	Q
1,2,4,7,8-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O PCDF-12478) 58802-15-6]	6.2×10 ⁻¹		Govers and Krop (1998)	Q
1,2,4,7,9-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O PCDF-12479) 71998-74-8]	9.8×10 ⁻¹		Govers and Krop (1998)	Q
,2,4,8,9-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O PCDF-12489) 70648-23-6]	1.3		Govers and Krop (1998)	Q
1,2,6,7,9-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O PCDF-12679) [70872-82-1]	7.9×10 ⁻¹		Govers and Krop (1998)	Q
.,3,4,6,7-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O PCDF-13467) 83704-36-3]	8.9×10 ⁻¹		Govers and Krop (1998)	Q
1,3,4,6,8-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O PCDF-13468) 83704-55-6]	1.0		Govers and Krop (1998)	Q

Table 6: Henry's law constants for water as solvent (... continued)

<u> </u>	H^{cp}	11 IICD		
Substance Formula (Other name(s)) [CAS registry number]	$(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type Note
1,3,4,6,9-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O (PCDF-13469) [70648-15-6]	1.2		Govers and Krop (1998)	Q
1,3,4,7,8-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O (PCDF-13478) [58802-16-7]	7.1×10 ⁻¹		Govers and Krop (1998)	Q
1,3,4,7,9-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O (PCDF-13479) [70648-20-3]	9.5×10 ⁻¹		Govers and Krop (1998)	Q
1,3,6,7,8-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O (PCDF-13678) [70648-21-4]	7.6×10 ⁻¹		Govers and Krop (1998)	Q
1,4,6,7,8-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O (PCDF-14678)	1.1		Govers and Krop (1998)	Q
2,3,4,6,7-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O (PCDF-23467) [57117-43-8]	6.9×10 ⁻¹		Govers and Krop (1998)	Q
2,3,4,6,8-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O (PCDF-23468) [67481-22-5]	6.6×10 ⁻¹		Govers and Krop (1998)	Q
2,3,4,7,8-pentachlorodibenzofuran	2.0		HSDB (2015)	V
C ₁₂ H ₃ Cl ₅ O	2.0		Mackay et al. (2006b)	V
(PCDF-23478)	1.7		Govers and Krop (1998)	V
[57117-31-4]	2.3×10^{-3}	2900	Paasivirta et al. (1999)	T
	1.6 3.9×10^{-1}		Saçan et al. (2005)	Q
			Govers and Krop (1998)	Q
2,3,4,8,9-pentachlorodibenzofuran C ₁₂ H ₃ Cl ₅ O (PCDF-23489)	5.2×10^{-1}		Govers and Krop (1998)	Q
1,2,3,4,6,7-hexachlorodibenzofuran C ₁₂ H ₂ Cl ₆ O (PCDF-123467) [79060-60-9]	6.8×10 ⁻¹		Govers and Krop (1998)	Q
1,2,3,4,6,8-hexachlorodibenzofuran C ₁₂ H ₂ Cl ₆ O (PCDF-123468) [69698-60-8]	2.4×10^{-4} 9.8×10^{-1}	2300	Paasivirta et al. (1999) Govers and Krop (1998)	T Q

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Cl4	H^{cp}	$d \ln H^{cp}$		
Substance Formula (Other name(s))	$(\text{at } T^{\ominus})$ $\lceil \mod \rceil$	$\overline{\mathrm{d}(1/T)}$	Reference	Type Note
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]		
1,2,3,4,6,9-hexachlorodibenzofuran C ₁₂ H ₂ Cl ₆ O (PCDF-123469) [91538-83-9]	1.8		Govers and Krop (1998)	Q
1,2,3,4,7,8-hexachlorodibenzofuran	6.9×10^{-1}		Mackay et al. (2006b)	V
$C_{12}H_2Cl_6O$	3.8×10^{-1}		Govers and Krop (1998)	V
(PCDF-123478)	4.1×10^{-4}	2400	Paasivirta et al. (1999)	T
[70648-26-9]	2.0		Saçan et al. (2005)	Q
	5.2×10^{-1}		Govers and Krop (1998)	Q
1,2,3,4,7,9-hexachlorodibenzofuran C ₁₂ H ₂ Cl ₆ O (PCDF-123479) [91538-84-0]	1.1		Govers and Krop (1998)	Q
1,2,3,4,8,9-hexachlorodibenzofuran	2.7		Saçan et al. (2005)	Q
C ₁₂ H ₂ Cl ₆ O (PCDF-123489) [92341-07-6]	1.1		Govers and Krop (1998)	Q
1,2,3,6,7,8-hexachlorodibenzofuran	9.1×10^{-1}		Govers and Krop (1998)	V
C ₁₂ H ₂ Cl ₆ O	1.1×10^{-3}	3300	Paasivirta et al. (1999)	T
(PCDF-123678)	2.2		Saçan et al. (2005)	Q
[57117-44-9]	5.2×10^{-1}		Govers and Krop (1998)	Q
1,2,3,6,7,9-hexachlorodibenzofuran C ₁₂ H ₂ Cl ₆ O (PCDF-123679) [92341-06-5]	1.0		Govers and Krop (1998)	Q
1,2,3,6,8,9-hexachlorodibenzofuran C ₁₂ H ₂ Cl ₆ O (PCDF-123689) (75198-38-8]	1.3		Govers and Krop (1998)	Q
1,2,3,7,8,9-hexachlorodibenzofuran	6.3×10^{-4}	2600	Paasivirta et al. (1999)	T
C ₁₂ H ₂ Cl ₆ O	2.6		Saçan et al. (2005)	Q
(PCDF-123789) [72918-21-9]	1.0		Govers and Krop (1998)	Q
1,2,4,6,7,8-hexachlorodibenzofuran	3.2×10^{-4}	2300	Paasivirta et al. (1999)	T
C ₁₂ H ₂ Cl ₆ O (PCDF-124678) [67562-40-7]	9.3×10^{-1}		Govers and Krop (1998)	Q
1,2,4,6,7,9-hexachlorodibenzofuran C ₁₂ H ₂ Cl ₆ O (PCDF-124679) [75627-02-0]	1.5		Govers and Krop (1998)	Q
1,2,4,6,8,9-hexachlorodibenzofuran C ₁₂ H ₂ Cl ₆ O (PCDF-124689) [69698-59-5]	2.2×10 ⁻⁴ 2.4	2600	Paasivirta et al. (1999) Govers and Krop (1998)	T Q

Table 6: Henry's law constants for water as solvent (...continued)

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3\text{Pa}}\right]$	[K]			
1,3,4,6,7,8-hexachlorodibenzofuran C ₁₂ H ₂ Cl ₆ O (PCDF-134678) [71998-75-9]	1.1		Govers and Krop (1998)	Q	
1,3,4,6,7,9-hexachlorodibenzofuran C ₁₂ H ₂ Cl ₆ O PCDF-134679) 92341-05-4]	1.6		Govers and Krop (1998)	Q	
2,3,4,6,7,8-hexachlorodibenzofuran	3.6×10^{-4}	2600	Paasivirta et al. (1999)	T	
C ₁₂ H ₂ Cl ₆ O	3.1		Saçan et al. (2005)	Q	
(PCDF-234678) [60851-34-5]	5.6×10^{-1}		Govers and Krop (1998)	Q	
1,2,3,4,6,7,8-heptachlorodibenzofuran	7.0×10^{-1}		Mackay et al. (2006b)	V	
C ₁₂ HCl ₇ O	2.9×10^{-1}		Govers and Krop (1998)	V	
(PCDF-1234678)	5.4×10^{-5}	1600	Paasivirta et al. (1999)	T	
[67562-39-4]	3.9		Saçan et al. (2005)	Q	
	7.1×10^{-1}		Govers and Krop (1998)	Q	
1,2,3,4,6,7,9-heptachlorodibenzofuran C ₁₂ HCl ₇ O (PCDF-1234679) [70648-25-8]	1.5		Govers and Krop (1998)	Q	
1,2,3,4,6,8,9-heptachlorodibenzofuran	3.4×10^{-4}	1800	Paasivirta et al. (1999)	T	
C ₁₂ HCl ₇ O (PCDF-1234689) [69698-58-4]	1.9		Govers and Krop (1998)	Q	
1,2,3,4,7,8,9-heptachlorodibenzofuran	5.5×10^{-4}	2100	Paasivirta et al. (1999)	T	
C ₁₂ HCl ₇ O	3.2		Saçan et al. (2005)	Q	
(PCDF-1234789) [55673-89-7]	1.0		Govers and Krop (1998)	Q	
octachlorodibenzofuran			Mackay et al. (2006b)	V	256
$C_{12}Cl_8O$	7.6×10^{-1}		Govers and Krop (1998)	V	
(PCDF-12346789)	2.3×10^{-4}	2400	Paasivirta et al. (1999)	T	
[39001-02-0]	4.9		Saçan et al. (2005)	Q	
	1.3		Govers and Krop (1998)	Q	
Poly	chlorinate	d dibenzo	o-p-dioxins (PCDDs)		
1-chlorodibenzo $[b,e][1,4]$ dioxin	1.6×10^{-1}		Mackay et al. (2006b)	V	
$C_{12}H_7CIO_2$	2.5×10^{-2}		Saçan et al. (2005)	V	
(PCDD-1)	1.6×10^{-1}		Govers and Krop (1998)	V	
[39227-53-7]	1.2×10^{-1}		Shiu et al. (1988)	V	
		7100	Kühne et al. (2005)	Q	
	6.8×10^{-2}		Saçan et al. (2005)	Q	~
	1.3×10^{-1}		Wang and Wong (2002)	Q	212
	1.7×10^{-1}	<i>(</i> 500)	Govers and Krop (1998)	Q	
		6500	Kühne et al. (2005)	?	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
Other name(s))	[mol]	F#73		31	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
2-chlorodibenzo[b , e][1,4]dioxin	7.9×10^{-2}		Mackay et al. (2006b)	V	
$C_{12}H_7CIO_2$	7.9×10^{-2}		Govers and Krop (1998)	V	
(PCDD-2)	6.7×10^{-2}		Shiu et al. (1988)	V	
[39227-54-8]	9.8×10^{-2}		Saçan et al. (2005)	Q	
	1.3×10^{-1}		Wang and Wong (2002)	Q	212
	2.2×10^{-1}		Govers and Krop (1998)	Q	
1,2-dichlorodibenzo $[b, e][1,4]$ dioxin	2.8×10^{-1}		Wang and Wong (2002)	Q	212
$C_{12}H_6Cl_2O_2$	3.2×10^{-1}		Govers and Krop (1998)	Q	
PCDD-12)					
1,3-dichlorodibenzo $[b,e][1,4]$ dioxin	2.2×10 ⁻¹		Wang and Wong (2002)	Q	212
$C_{12}H_6Cl_2O_2$	3.8×10^{-1}		Govers and Krop (1998)	Q	
PCDD-13)					
[50585-39-2]					
1,4-dichlorodibenzo $[b,e][1,4]$ dioxin	2.4×10^{-1}		Wang and Wong (2002)	Q	212
$C_{12}H_6Cl_2O_2$	3.2×10^{-1}		Govers and Krop (1998)	Q	
(PCDD-14)					
1,6-dichlorodibenzo $[b,e][1,4]$ dioxin	2.5×10^{-1}		Wang and Wong (2002)	Q	212
$C_{12}H_6Cl_2O_2$	3.2×10^{-1}		Govers and Krop (1998)	Q	
(PCDD-16)					
[38178-38-0]					
1,7-dichlorodibenzo $[b,e][1,4]$ dioxin	2.6×10^{-1}		Wang and Wong (2002)	Q	212
$C_{12}H_6Cl_2O_2$	3.6×10^{-1}		Govers and Krop (1998)	Q	
(PCDD-17)					
1,8-dichlorodibenzo $[b,e][1,4]$ dioxin	2.6×10^{-1}		Wang and Wong (2002)	Q	212
$C_{12}H_6Cl_2O_2$	3.8×10^{-1}		Govers and Krop (1998)	Q	
(PCDD-18)					
1,9-dichlorodibenzo $[b,e][1,4]$ dioxin	2.6×10^{-1}		Wang and Wong (2002)	Q	212
$C_{12}H_6Cl_2O_2$	5.4×10^{-1}		Govers and Krop (1998)	Q	
(PCDD-19)					
2,3-dichlorodibenzo $[b,e][1,4]$ dioxin	1.5×10^{-1}		Mackay et al. (2006b)	V	
$C_{12}H_6Cl_2O_2$	1.5×10^{-1}		Saçan et al. (2005)	V	
PCDD-23)	1.5×10^{-1}		Govers and Krop (1998)	V	
29446-15-9]	1.5×10^{-1}		Shiu et al. (1988)	V	
	2.5×10^{-1}		Saçan et al. (2005)	Q	
	2.6×10^{-1}		Wang and Wong (2002)	Q	212
	4.0×10^{-1}		Govers and Krop (1998)	Q	
2,7-dichlorodibenzo[b,e][$1,4$]dioxin	1.7×10^{-1}		Santl et al. (1994)	M	
$C_{12}H_6Cl_2O_2$			Mackay et al. (2006b)	V	256
(PCDD-27)	1.2×10^{-1}		Govers and Krop (1998)	V	
[33857-26-0]	1.2×10^{-1}		Shiu et al. (1988)	V	
	7.3×10^{-1}		Hilal et al. (2008)	Q	
	1.0×10^{-1}		Saçan et al. (2005)	Q	
	2.6×10^{-1}		Wang and Wong (2002)	Q	212
	3.5×10^{-1}		Govers and Krop (1998)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$d \ln H^{cp}$			_
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Tyne	Note
Other name(s))	[mol]		Reference	1960	11010
CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
,8-dichlorodibenzo[b , e][1,4]dioxin	4.7×10^{-1}		Mackay et al. (2006b)	V	
$C_{12}H_6Cl_2O_2$	4.7×10^{-1}		Govers and Krop (1998)	V	
PCDD-28)	4.7×10^{-1}		Shiu et al. (1988)	V	
38964-22-6]	1.7×10^{-1}		Saçan et al. (2005)	Q	
	2.6×10^{-1}		Wang and Wong (2002)	Q	212
	4.4×10^{-1}		Govers and Krop (1998)	Q	
,2,3-trichlorodibenzo $[b,e][1,4]$ dioxin	5.0×10^{-1}		Wang and Wong (2002)	Q	212
C ₁₂ H ₅ Cl ₃ O ₂ PCDD-123)	5.6×10^{-1}		Govers and Krop (1998)	Q	
,2,4-trichlorodibenzo $[b,e][1,4]$ dioxin	2.7×10^{-1}		Santl et al. (1994)	M	
$C_{12}H_5Cl_3O_2$	2.9×10^{-1}		Mackay et al. (2006b)	V	
PCDD-124)	2.6×10^{-1}		Govers and Krop (1998)	V	
39227-58-2]	2.6×10^{-1}		Shiu et al. (1988)	V	
	1.3		Hilal et al. (2008)	Q	
	3.0×10^{-1}		Saçan et al. (2005)	Q	
	4.4×10^{-1}		Wang and Wong (2002)	Q	212
	5.5×10^{-1}		Govers and Krop (1998)	Q	
			Fogg and Sangster (2003)	W	275
,2,6-trichlorodibenzo[b , e][1,4]dioxin	5.0×10^{-1}		Wang and Wong (2002)	Q	212
C ₁₂ H ₅ Cl ₃ O ₂ PCDD-126)	5.1×10^{-1}		Govers and Krop (1998)	Q	
,2,7-trichlorodibenzo $[b, e][1,4]$ dioxin	5.1×10^{-1}		Wang and Wong (2002)	Q	212
C ₁₂ H ₅ Cl ₃ O ₂ PCDD-127)	4.6×10^{-1}		Govers and Krop (1998)	Q	
,2,8-trichlorodibenzo $[b,e][1,4]$ dioxin	5.1×10^{-1}		Wang and Wong (2002)	Q	212
C ₁₂ H ₅ Cl ₃ O ₂ PCDD-128)	6.0×10^{-1}		Govers and Krop (1998)	Q	
,2,9-trichlorodibenzo[b , e][1,4]dioxin	5.2×10^{-1}		Wang and Wong (2002)	Q	212
C ₁₂ H ₅ Cl ₃ O ₂ PCDD-129)	9.1×10^{-1}		Govers and Krop (1998)	Q	
1,3,6-trichlorodibenzo $[b,e][1,4]$ dioxin	4.2×10^{-1}		Wang and Wong (2002)	Q	212
C ₁₂ H ₅ Cl ₃ O ₂ PCDD-136)	6.3×10^{-1}		Govers and Krop (1998)	Q	
,3,7-trichlorodibenzo $[b,e][1,4]$ dioxin	4.3×10^{-1}		Wang and Wong (2002)	Q	212
C ₁₂ H ₅ Cl ₃ O ₂ PCDD-137) 67028-17-5]	6.8×10^{-1}		Govers and Krop (1998)	Q	
,3,8-trichlorodibenzo[b,e][1,4]dioxin	4.3×10^{-1}		Wang and Wong (2002)	Q	212
C ₁₂ H ₅ Cl ₃ O ₂ PCDD-138)	5.6×10^{-1}		Govers and Krop (1998)	Q	
1,3,9-trichlorodibenzo[b, e][1,4]dioxin	4.4×10^{-1}		Wang and Wong (2002)	Q	212
C ₁₂ H ₅ Cl ₃ O ₂ PCDD-139)	1.0		Govers and Krop (1998)	Q	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Tyne	Note
(Other name(s))	[mol]	_		1,100	1.010
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
,4,6-trichlorodibenzo[b , e][1,4]dioxin	4.4×10^{-1}		Wang and Wong (2002)	Q	212
$C_{12}H_5Cl_3O_2$	9.3×10^{-1}		Govers and Krop (1998)	Q	
(PCDD-146)					
1,4,7-trichlorodibenzo $[b,e][1,4]$ dioxin	4.5×10^{-1}		Wang and Wong (2002)	Q	212
$C_{12}H_5Cl_3O_2$	6.0×10^{-1}		Govers and Krop (1998)	Q	
PCDD-147)					
,7,8-trichlorodibenzo $[b,e][1,4]$ dioxin	4.9×10^{-1}		Wang and Wong (2002)	Q	212
$C_{12}H_5Cl_3O_2$	6.2×10^{-1}		Govers and Krop (1998)	Q	
PCDD-178)					
2,3,7-trichlorodibenzo $[b,e][1,4]$ dioxin	4.9×10^{-1}		Wang and Wong (2002)	Q	212
$C_{12}H_5Cl_3O_2$	5.6×10^{-1}		Govers and Krop (1998)	Q	
(PCDD-237)					
[33857-28-2]					
1,2,3,4-	5.0×10^{-1}		Santl et al. (1994)	M	
etrachlorodibenzo[b , e][1,4]dioxin	2.7×10^{-1}		Mookov et al. (2004)	V	
C ₁₂ H ₄ Cl ₄ O ₂ PCDD-1234)	2.7×10 - 1.4		Mackay et al. (2006b) Mackay et al. (2006b)	V V	
30746-58-8]	3.3×10^{-1}		Govers and Krop (1998)	V V	
30/40-38-8]	2.7×10^{-1}		Shiu et al. (1988)	V V	
	1.4		Hilal et al. (2008)	Q Q	
	6.3×10^{-1}		Saçan et al. (2005)	Q	
	8.7×10^{-1}		Wang and Wong (2002)	Q	212
	7.4×10^{-1}		Govers and Krop (1998)	Q	212
1,2,3,6-	8.7×10^{-1}		Wang and Wong (2002)	Q	212
tetrachlorodibenzo $[b, e][1,4]$ dioxin					
$C_{12}H_4Cl_4O_2$	8.1×10^{-1}		Govers and Krop (1998)	Q	
(PCDD-1236)					
1,2,3,7-	1.3		Mackay et al. (2006b)	V	
tetrachlorodibenzo[b, e][1,4]dioxin	1.7		Covers and Vrom (1000)	V	
C ₁₂ H ₄ Cl ₄ O ₂ (PCDD-1237)	1.7 1.3		Govers and Krop (1998) Shiu et al. (1988)		
[PCDD-1237) [67028-18-6]	1.7		Hilal et al. (2008)	V Q	
0.020100]	4.3×10^{-1}		Saçan et al. (2005)	Q	
	8.7×10^{-1}		Wang and Wong (2002)	Q	212
	6.8×10^{-1}		Govers and Krop (1998)	Q	-
1.2.3.8-	8.7×10^{-1}		Wang and Wong (2002)	Q	212
tetrachlorodibenzo[b, e][1,4]dioxin	0., A10			Y	-12
$C_{12}H_4Cl_4O_2$	7.1×10^{-1}		Govers and Krop (1998)	Q	
(PCDD-1238)			1 \ /	•	
53555-02-5]					
1,2,3,9-	9.1×10^{-1}		Wang and Wong (2002)	Q	212
tetrachlorodibenzo $[b, e][1,4]$ dioxin			<i>S S S S S S S S S S</i>	•	
$C_{12}H_4Cl_4O_2$	1.4		Govers and Krop (1998)	Q	
(PCDD-1239)					

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1,2,4,6- tetrachlorodibenzo $[b,e]$ [1,4]dioxin C ₁₂ H ₄ Cl ₄ O ₂ (PCDD-1246)	8.1×10^{-1} 1.4		Wang and Wong (2002) Govers and Krop (1998)	Q Q	212
1,2,4,7- tetrachlorodibenzo[b , e][1,4]dioxin $C_{12}H_4Cl_4O_2$ (PCDD-1247)	7.8×10^{-1} 7.1×10^{-1}		Wang and Wong (2002) Govers and Krop (1998)	Q Q	212
1,2,4,8- tetrachlorodibenzo[b , e][1,4]dioxin C ₁₂ H ₄ Cl ₄ O ₂ (PCDD-1248)	7.8×10^{-1} 8.9×10^{-1}		Wang and Wong (2002) Govers and Krop (1998)	Q Q	212
1,2,4,9- tetrachlorodibenzo[b , e][1,4]dioxin C ₁₂ H ₄ Cl ₄ O ₂ (PCDD-1249)	8.1×10 ⁻¹ 1.5		Wang and Wong (2002) Govers and Krop (1998)	Q Q	212
1,2,6,7- tetrachlorodibenzo[b , e][1,4]dioxin $C_{12}H_4Cl_4O_2$ (PCDD-1267)	9.5×10^{-1} 5.8×10^{-1}		Wang and Wong (2002) Govers and Krop (1998)	Q Q	212
1,2,6,8- tetrachlorodibenzo[b , e][1,4]dioxin C ₁₂ H ₄ Cl ₄ O ₂ (PCDD-1268)	8.1×10^{-1} 8.9×10^{-1}		Wang and Wong (2002) Govers and Krop (1998)	Q Q	212
1,2,6,9- tetrachlorodibenzo[b , e][1,4]dioxin $C_{12}H_4Cl_4O_2$ (PCDD-1269)	8.7×10 ⁻¹ 1.4		Wang and Wong (2002) Govers and Krop (1998)	Q Q	212
1,2,7,8- tetrachlorodibenzo[b , e][1,4]dioxin C ₁₂ H ₄ Cl ₄ O ₂ (PCDD-1278) [34816-53-0]	7.8×10^{-1} 6.8×10^{-1}		Wang and Wong (2002) Govers and Krop (1998)	Q Q	212
1,2,7,9- tetrachlorodibenzo[b , e][1,4]dioxin $C_{12}H_4Cl_4O_2$ (PCDD-1279)	8.3×10 ⁻¹ 1.2		Wang and Wong (2002) Govers and Krop (1998)	Q Q	212
1,2,8,9- tetrachlorodibenzo[b , e][1,4]dioxin C ₁₂ H ₄ Cl ₄ O ₂ (PCDD-1289)	9.8×10 ⁻¹ 1.3		Wang and Wong (2002) Govers and Krop (1998)	Q Q	212

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Tues	Note
Other name(s)) CAS registry number]	$\left[\frac{mol}{m^3Pa}\right]$	[K]	Reference	Туре	Note
1,3,6,8- etrachlorodibenzo[b , e][1,4]dioxin	1.4×10^{-1}		Webster et al. (1985)	M	
$C_{12}H_4Cl_4O_2$	1.4		Govers and Krop (1998)	V	
(PCDD-1368)	1.4		Shiu et al. (1988)	V	
[33423-92-6]	1.2		Hilal et al. (2008)	Q	
	2.9×10^{-1}		Saçan et al. (2005)	Q	
	6.8×10^{-1}		Wang and Wong (2002)	Q	212
	8.7×10^{-1}		Govers and Krop (1998)	Q	
,3,6,9-	7.4×10^{-1}		Wang and Wong (2002)	Q	212
tetrachlorodibenzo[b, e][1,4]dioxin C ₁₂ H ₄ Cl ₄ O ₂ (PCDD-1369)	1.7		Govers and Krop (1998)	Q	
1,3,7,8-	7.8×10^{-1}		Wang and Wong (2002)	Q	212
tetrachlorodibenzo[<i>b</i> , <i>e</i>][1,4]dioxin C ₁₂ H ₄ Cl ₄ O ₂ (PCDD-1378) [50585-46-1]	7.9×10^{-1}		Govers and Krop (1998)	Q	
1,3,7,9-	7.1×10^{-1}		Wang and Wong (2002)	Q	212
tetrachlorodibenzo[<i>b</i> , <i>e</i>][1,4]dioxin C ₁₂ H ₄ Cl ₄ O ₂ (PCDD-1379) [62470-53-5]	1.7		Govers and Krop (1998)	Q	
1,4,6,9-	7.9×10^{-1}		Wang and Wong (2002)	Q	212
tetrachlorodibenzo[<i>b</i> , <i>e</i>][1,4]dioxin C ₁₂ H ₄ Cl ₄ O ₂ (PCDD-1469)	2.6		Govers and Krop (1998)	Q	
1,4,7,8- etrachlorodibenzo[b , e][1,4]dioxin	8.1×10^{-1}		Wang and Wong (2002)	Q	212
C ₁₂ H ₄ Cl ₄ O ₂ (PCDD-1478)	9.1×10^{-1}		Govers and Krop (1998)	Q	
2,3,7,8- tetrachlorodibenzo[b , e][1,4]dioxin	2.0×10^{-1}		HSDB (2015)	V	
C ₁₂ H ₄ Cl ₄ O ₂	3.0×10^{-1}		Mackay et al. (2006b)	V	
PCDD-2378; TCDD)	3.0×10^{-1}		Govers and Krop (1998)	V	
1746-01-6]	5.8×10^{-1}		McLachlan et al. (1990)	V	147
•	6.1×10^{-1}		Shiu et al. (1988)	V	
	3.0×10^{-1}		Shiu et al. (1988)	V	
	9.7×10^{-2}		Shiu et al. (1988)	V	
	6.3×10^{-1}		Podoll et al. (1986)	V	
	4.7		Schroy et al. (1985)	V	
	2.6×10^{-4}	3600	Paasivirta et al. (1999)	T	
	3.3×10^{-1}		Saçan et al. (2005)	Q	
	8.9×10^{-1}		Wang and Wong (2002)	Q	212
	6.2×10^{-1}		Govers and Krop (1998)	Q	-

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	dln H ^{cp}			
Formula	(at T^{Θ})	$\frac{\mathrm{d} \Pi \Pi}{\mathrm{d}(1/T)}$	Reference	Туре	Note
Other name(s)) CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	[K]			
,2,3,4,6- entachlorodibenzo[b , e][1,4]dioxin	1.5		Wang and Wong (2002)	Q	212
C ₁₂ H ₃ Cl ₅ O ₂ PCDD-12346)	1.8		Govers and Krop (1998)	Q	
,2,3,4,7- entachlorodibenzo[b , e][1,4]dioxin	3.8		Mackay et al. (2006b)	V	
$C_{12}H_3Cl_5O_2$	4.5		Govers and Krop (1998)	V	
PCDD-12347)	3.8		Shiu et al. (1988)	V	
39227-61-7]	7.0×10^{-1}		Saçan et al. (2005)	Q	
•	1.4		Wang and Wong (2002)	Q	212
	8.1×10^{-1}		Govers and Krop (1998)	Q	
(2,3,6,7-entachlorodibenzo $[b,e][1,4]$ dioxin	1.5		Wang and Wong (2002)	Q	212
C ₁₂ H ₃ Cl ₅ O ₂ PCDD-12367)	7.8×10^{-1}		Govers and Krop (1998)	Q	
,2,3,6,8- entachlorodibenzo[b , e][1,4]dioxin	1.3		Wang and Wong (2002)	Q	212
C ₁₂ H ₃ Cl ₅ O ₂ PCDD-12368)	9.5×10^{-1}		Govers and Krop (1998)	Q	
,2,3,7,8- pentachlorodibenzo[b,e][1,4]dioxin	5.2×10 ⁻⁵	2500	Paasivirta et al. (1999)	Т	
C ₁₂ H ₃ Cl ₅ O ₂	6.4×10^{-1}		Saçan et al. (2005)	Q	
PCDD-12378)	1.5		Wang and Wong (2002)	Q	212
40321-76-4]	6.8×10^{-1}		Govers and Krop (1998)	Q	
,2,4,6,7- entachlorodibenzo[b , e][1,4]dioxin	1.4		Wang and Wong (2002)	Q	212
C ₁₂ H ₃ Cl ₅ O ₂ PCDD-12467)	1.4		Govers and Krop (1998)	Q	
,2,4,6,8- pentachlorodibenzo[b,e][1,4]dioxin	1.2		Wang and Wong (2002)	Q	212
C ₁₂ H ₃ Cl ₅ O ₂ PCDD-12468)	2.1		Govers and Krop (1998)	Q	
,2,4,6,9- pentachlorodibenzo[b,e][1,4]dioxin	1.3		Wang and Wong (2002)	Q	212
C ₁₂ H ₃ Cl ₅ O ₂ PCDD-12469)	3.6		Govers and Krop (1998)	Q	
,2,4,7,8-	1.3		Wang and Wong (2002)	Q	212
entachlorodibenzo[<i>b</i> , <i>e</i>][1,4]dioxin C ₁₂ H ₃ Cl ₅ O ₂ PCDD-12478) 58802-08-7]	9.1×10^{-1}		Govers and Krop (1998)	Q	
.,3,4,6,7- pentachlorodibenzo[b,e][1,4]dioxin	1.4		Wang and Wong (2002)	Q	212
C ₁₂ H ₃ Cl ₅ O ₂ PCDD-13467)	1.9		Govers and Krop (1998)	Q	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} \ln H^{cp}}$			
Formula (Other name(s)) CAS registry number]	[_mol_]		Reference	Туре	Note
1,3,4,6,8-	1.2	[]	Wang and Wong (2002)	Q	212
pentachlorodibenzo[b, e][1,4]dioxin C ₁₂ H ₃ Cl ₅ O ₂ (PCDD-13468)	1.8		Govers and Krop (1998)	Q	
1,4,6,7,8-	1.4		Wang and Wong (2002)	Q	212
pentachlorodibenzo[b, e][1,4]dioxin C ₁₂ H ₃ Cl ₅ O ₂ PCDD-14678)	1.9		Govers and Krop (1998)	Q	
2,3,4,6,7-	1.5		Wang and Wong (2002)	Q	212
pentachlorodibenzo[b, e][1,4]dioxin C ₁₂ H ₃ Cl ₅ O ₂ (PCDD-23467)	1.4		Govers and Krop (1998)	Q	
2,3,4,6,8-	1.3		Wang and Wong (2002)	Q	212
pentachlorodibenzo[b , e][1,4]dioxin $C_{12}H_3Cl_5O_2$ (PCDD-23468)	1.5		Govers and Krop (1998)	Q	
$1,2,3,4,6,7$ - hexachlorodibenzo[b,e][1,4]dioxin $C_{12}H_2Cl_6O_2$ (PCDD-123467)	2.5		Wang and Wong (2002)	Q	212
	1.5		Govers and Krop (1998)	Q	
1,2,3,4,6,8-	2.2		Wang and Wong (2002)	Q	212
nexachlorodibenzo[b , e][1,4]dioxin $C_{12}H_2Cl_6O_2$ (PCDD-123468)	1.8		Govers and Krop (1998)	Q	
1,2,3,4,6,9-	2.3		Wang and Wong (2002)	Q	212
hexachlorodibenzo[b , e][1,4]dioxin $C_{12}H_2Cl_6O_2$ (PCDD-123469)	4.0		Govers and Krop (1998)	Q	
1,2,3,4,7,8- hexachlorodibenzo[b , e][1,4]dioxin	3.0		Mackay et al. (2006b)	V	
$C_{12}H_2Cl_6O_2$	1.6		Govers and Krop (1998)	V	
(PCDD-123478)	2.2×10^{-1}		Shiu et al. (1988)	V	
[39227-28-6]	1.2×10^{-4}	2900	Paasivirta et al. (1999)	T	
	1	8800	Kühne et al. (2005)	Q	
	7.7×10^{-1}		Saçan et al. (2005)	Q	212
	2.3 6.9×10^{-1}		Wang and Wong (2002)	Q	212
	0.9×10 '	9400	Govers and Krop (1998) Kühne et al. (2005)	Q ?	
1,2,3,6,7,8- hexachlorodibenzo[b , e][1,4]dioxin	6.2×10^{-5}	2800	Paasivirta et al. (1999)	Т	
$C_{12}H_2Cl_6O_2$	5.2		HSDB (2015)	Q	38
(PCDD-123678)	7.4×10^{-1}		Saçan et al. (2005)	Q	
[57653-85-7]	2.4		Wang and Wong (2002)	Q	212
	6.9×10^{-1}		Govers and Krop (1998)	Q	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1,2,3,7,8,9- hexachlorodibenzo[b , e][1,4]dioxin $C_{12}H_2Cl_6O_2$ (PCDD-123789) [19408-74-3]	2.5×10 ⁻⁴ 5.2 1.1	2700	Paasivirta et al. (1999) HSDB (2015) Saçan et al. (2005)	T Q Q	38
$1,2,4,6,7,8$ - hexachlorodibenzo[b,e][1,4]dioxin $C_{12}H_2Cl_6O_2$ (PCDD-124678)	2.2		Wang and Wong (2002) Govers and Krop (1998)	Q Q	212
1,2,4,6,7,9- hexachlorodibenzo[b, e][1,4]dioxin C ₁₂ H ₂ Cl ₆ O ₂ (PCDD-124679) [39227-62-8]	2.1 3.5		Wang and Wong (2002) Govers and Krop (1998)	Q Q	212
$1,3,4,6,7,8$ - hexachlorodibenzo[b,e][1,4]dioxin $C_{12}H_2Cl_6O_2$ (PCDD-134678)	2.2		Wang and Wong (2002) Govers and Krop (1998)	Q Q	212
1,3,4,6,7,9- hexachlorodibenzo[b , e][1,4]dioxin $C_{12}H_2Cl_6O_2$ (PCDD-134679)	2.0		Wang and Wong (2002) Govers and Krop (1998)	Q Q	212
2,3,4,6,7,8- hexachlorodibenzo[b , e][1,4]dioxin $C_{12}H_2Cl_6O_2$ (PCDD-234678)	2.4		Wang and Wong (2002) Govers and Krop (1998)	Q Q	212
1,2,3,4,6,7,8- heptachlorodibenzo[b, e][1,4]dioxin C ₁₂ HCl ₇ O ₂ (PCDD-1234678) [35822-46-9]	7.5 2.3 7.5 7.5×10 ⁻⁵ 4.5×10 ⁻¹ 1.4 3.6 1.2	2400	Mackay et al. (2006b) Govers and Krop (1998) Shiu et al. (1988) Paasivirta et al. (1999) HSDB (2015) Saçan et al. (2005) Wang and Wong (2002) Govers and Krop (1998)	V V V T Q Q Q	216 212
1,2,3,4,6,7,9- heptachlorodibenzo[<i>b</i> , <i>e</i>][1,4]dioxin C ₁₂ HCl ₇ O ₂ (PCDD-1234679) [58200-70-7]	3.4		Wang and Wong (2002) Govers and Krop (1998)	Q Q	212
octachlorodibenzo[<i>b</i> , <i>e</i>][1,4]dioxin C ₁₂ Cl ₈ O ₂ (PCDD-12346789) [3268-87-9]	1.5 1.5 7.6×10^{-1} 1.5 1.1×10^{-5} 1.7 5.2	2300 9600	HSDB (2015) Mackay et al. (2006b) Govers and Krop (1998) Shiu et al. (1988) Paasivirta et al. (1999) Kühne et al. (2005) Saçan et al. (2005) Wang and Wong (2002)	V V V T Q Q	212

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference		Note
	1.9	9500	Govers and Krop (1998) Kühne et al. (2005)	Q ?	
C	hlorocarbons	with nitr	rogen (C, H, O, N, Cl)		
cyanogen chloride NCCl [506-77-4]	$ \begin{array}{c} 1.2 \times 10^{-2} \\ 5.1 \times 10^{-3} \end{array} $		Hilal et al. (2008) Yaws (1999)	Q ?	
N,N-dichloromethylamine CH ₃ NCl ₂ [7651-91-4]	3.3×10 ⁻³	4300	Cimetiere and De Laat (2009)	M	
chloroacetonitrile C ₂ H ₂ ClN [107-14-2]	9.1×10 ⁻¹	4600 5400	HSDB (2015) Kühne et al. (2005) Kühne et al. (2005)	Q Q ?	182
dichloroacetonitrile C ₂ HCl ₂ N [3018-12-0]	2.6		HSDB (2015)	Q	38
trichloroacetonitrile C ₂ Cl ₃ N [545-06-2]	7.6 7.3 1.9×10^{-2} 3.9×10^{-3} 1.0×10^{-2}		HSDB (2015) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	38 107, 108 107, 109 107, 110 107, 111
tetramethylammonium chloride C ₄ H ₁₂ ClN [75-57-0]	2.3×10 ⁶		HSDB (2015)	Q	38
metformin hydrochloride C ₄ H ₁₂ ClN ₅ [1115-70-4]	1.3×10 ¹⁰		HSDB (2015)	Q	38
tris(2-chloroethyl)amine C ₆ H ₁₂ Cl ₃ N [555-77-1]	5.3×10 ⁻¹		HSDB (2015)	V	
bis(2-chloroethyl)ethylamine C ₆ H ₁₃ Cl ₂ N (ethylbis(2-chloroethyl)amine) [538-07-8]	2.9×10 ⁻²		HSDB (2015)	V	
cetrimonium chloride C ₁₉ H ₄₂ ClN (trimethylhexadecylammonium clride) [112-02-7]	3.4×10^4 hlo-		HSDB (2015)	Q	38
dimethyldioctadecylammonium cl ride C ₃₈ H ₈₀ ClN [107-64-2]	hlo- 1.5×10^2		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference		Note
1-amino-2-chlorobenzene C ₆ H ₆ ClN (<i>o</i> -chloroaniline) [95-51-2]	1.8 1.3 1.3 1.3 2.4 1.6 2.3 5.4 7.0		HSDB (2015) Mackay et al. (2006d) Lide and Frederikse (1995) Mackay et al. (1995) Meylan and Howard (1991) Abraham et al. (1994a) Hilal et al. (2008) Nirmalakhandan et al. (1997) Meylan and Howard (1991)	V V V V R Q Q	
1-amino-3-chlorobenzene C ₆ H ₆ ClN (<i>m</i> -chloroaniline) [108-42-9]	9.8 4.5 4.5 7.5 7.7 5.3		Altschuh et al. (1999) Mackay et al. (2006d) Mackay et al. (1995) Abraham et al. (1994a) Hilal et al. (2008) Nirmalakhandan et al. (1997)	M V V R Q Q	
1-amino-4-chlorobenzene C ₆ H ₆ ClN (p-chloroaniline) [106-47-8]	3.2 1.0×10^{1} 9.1×10^{-1} 1.0×10^{1} 2.5×10^{1} 8.6 9.2×10^{-1} 8.6 5.3 7.0		HSDB (2015) Mackay et al. (2006d) Lide and Frederikse (1995) Mackay et al. (1995) Meylan and Howard (1991) Abraham et al. (1994a) Howard (1989) Hilal et al. (2008) Nirmalakhandan et al. (1997) Meylan and Howard (1991)	V V V V R X Q Q	164
2,3-dichlorobenzenamine C ₆ H ₅ Cl ₂ N (2,3-dichloroaniline) [608-27-5]	6.2		HSDB (2015)	Q	38
2,4-dichlorobenzenamine C ₆ H ₅ Cl ₂ N (2,4-dichloroaniline) [554-00-7]	6.2		HSDB (2015)	Q	38
3,4-dichlorobenzenamine C ₆ H ₅ Cl ₂ N (3,4-dichloroaniline) [95-76-1]	$6.8 \times 10^{-1} $ $4.4 \times 10^{-1} $ $4.4 \times 10^{-1} $		HSDB (2015) Mackay et al. (2006d) Mackay et al. (1995)	V V V	
3,5-dichlorobenzenamine C ₆ H ₅ Cl ₂ N (3,5-dichloroaniline) [626-43-7]	6.2		HSDB (2015)	Q	38
2,5-dichlorobenzenamine C ₆ H ₅ Cl ₂ N (2,5-dichloroaniline) [95-82-9]	6.2 9.5 2.6 2.7 1.9×10 ¹		HSDB (2015) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q Q	38 107, 108 107, 109 107, 110 107, 111

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type	Note
2,4,5-trichlorobenzenamine C ₆ H ₄ Cl ₃ N [636-30-6]	$ \begin{array}{c} 1.3 \times 10^{1} \\ 2.4 \\ 9.5 \\ 1.8 \times 10^{1} \end{array} $		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
2,4,6-trichlorobenzenamine C ₆ H ₄ Cl ₃ N [634-93-5]	7.4 1.3×10^{1} 6.2×10^{-1} 4.1×10^{-1} 1.5×10^{1}		HSDB (2015) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	V Q Q Q Q	107, 108 107, 109 107, 110 107, 111
2,3,4,5,6-pentachloroaniline C ₆ H ₂ Cl ₅ N [527-20-8]	2.3×10 ¹		HSDB (2015)	Q	38
2,6-dichlorobenzenenitrile C ₆ H ₃ Cl ₂ CN (dichlobenil) [1194-65-6]	4.8×10^{-1} 9.9×10^{-1} 1.5 1.4 1.5 1.4	5400 6000 5500	Schoene and Steinhanses (1985) HSDB (2015) Mackay et al. (2006d) Schüürmann (2000) Suntio et al. (1988) Burkhard and Guth (1981) Kühne et al. (2005) Kühne et al. (2005)	M V V V V V Q	9
(2,4,6-trichlorophenyl)hydrazine C ₆ H ₅ Cl ₃ N ₂ [5329-12-4]	3.1×10^{3} 3.7×10^{1} 1.1×10^{1} 5.4×10^{3}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
4-chlorobenzonitrile C ₇ H ₄ ClN [623-03-0]	2.5×10^{-1} 3.8×10^{-1} 1.6 4.5×10^{-1}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
3-chloro-2-methylbenzenamine C ₇ H ₈ ClN [87-60-5]	6.3		HSDB (2015)	Q	38
3-chloro-4-methylbenzenamine C ₇ H ₈ ClN [95-74-9]	4.9		HSDB (2015)	Q	38
4-chloro-2-methylbenzenamine C ₇ H ₈ ClN [95-69-2]	4.9		HSDB (2015)	Q	38
5-chloro-2-methylbenzenamine C ₇ H ₈ ClN [95-79-4]	6.3		HSDB (2015)	Q	216

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,4,5,6-tetrachloro-1,3-dicyanobenzene C ₈ Cl ₄ N ₂ (chlorothalonil)	5.0×10^{1} 1.7×10^{-2} 3.9×10^{1}		Kawamoto and Urano (1989) Mackay et al. (2006d) MacBean (2012b)	M V X	137
[1897-45-6]	4.5×10^{1} 6.5×10^{1} 1.5 6.9×10^{1} 2.7×10^{1} 5.8 6.5×10^{1}		Armbrust (2000) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Hilal et al. (2008) Meylan and Howard (1991)	C Q Q Q Q Q	107, 108 107, 109 107, 110 107, 111
2-chlorobenzalmalononitrile $C_{10}H_5ClN_2$ [2698-41-1]	9.9×10^2		HSDB (2015)	Q	38
benzyltrimethylammonium chloride C ₁₀ H ₁₆ ClN [56-93-9]	2.9×10 ⁸		HSDB (2015)	Q	38
chlordimeform C ₁₀ H ₁₃ ClN ₂ [6164-98-3]	2.9×10^{1} 2.6×10^{1}		HSDB (2015) MacBean (2012a)	V ?	9
4,4'-dichloroazobenzene C ₁₂ H ₈ Cl ₂ N ₂ [1602-00-2]	1.2		HSDB (2015)	Q	38
bis(3,4-dichlorophenyl)diazene C ₁₂ H ₆ Cl ₄ N ₂ (3,4,3',4'-tetrachloroazobenzene) [14047-09-7]	2.2		HSDB (2015)	Q	182
2-(<i>p</i> -chlorophenyl)-3- methylbutyronitrile	2.3		Zhang et al. (2010)	Q	107, 108
C ₁₁ H ₁₂ ClN [2012-81-9]	4.4 3.9 2.9×10 ⁻¹		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q	107, 109 107, 110 107, 111
3,3'-dichloro-(1,1'-biphenyl)-4,4'-diamine	2.0×10^2		Mackay et al. (2006d)	V	
$C_{12}H_{10}Cl_2N_2$ (3,3'-dichlorobenzidine) [91-94-1]	2.0×10^{2} 1.2×10^{1} 3.5×10^{5}		Mackay et al. (1995) Mackay et al. (1995) HSDB (2015)	V C Q	38
4,4'-methylenebis(2-chlorobenzenamine)	9.0×10 ⁵		HSDB (2015)	Q	38
C ₁₃ H ₁₂ Cl ₂ N ₂ [101-14-4]	3.0×10^{5} 3.4×10^{4} 2.9×10^{4} 9.7×10^{5}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
aniline, 4,4'-(imidocarbonyl)bis-(N,N-dimethyl)-, hydrochloride C ₁₇ H ₂₂ ClN ₃ (auramine hydrochloride) [2465-27-2]	3.5×10 ¹⁰		HSDB (2015)	Q	38
amitriptyline hydrochloride C ₂₀ H ₂₄ ClN [549-18-8]	1.4×10^2		HSDB (2015)	Q	38
chlorhexidine C ₂₂ H ₃₀ Cl ₂ N ₁₀ [55-56-1]	9.0×10 ²⁴		HSDB (2015)	Q	38
malachite green C ₂₃ H ₂₅ ClN ₂ [569-64-2]	5.2×10 ⁸		HSDB (2015)	Q	38
tetradecylbenzyldimethyl ammonium chloride $C_{23}H_{42}ClN$ [139-08-2]	7.6×10 ⁵		HSDB (2015)	Q	38
stearyldimethylbenzylammonium chloride C ₂₇ H ₅₀ ClN (benzyldimethylstearylammonium chloride) [122-19-0]	2.3×10 ⁵		HSDB (2015)	Q	38
2,4,6-trichloro-1,3,5-triazine	2.0×10^{1}		HSDB (2015)	Q	38
$C_3Cl_3N_3$	2.0×10^{1}		Zhang et al. (2010)	Q	107, 108
[108-77-0]	2.4×10^{1}		Zhang et al. (2010)	Q	107, 109
	3.1×10^{-1} 7.9		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 110 107, 111
2-chloropyridine	7.4×10^{-1}	5900	Arnett and Chawla (1979)	M	222
C ₅ H ₄ ClN	5.8×10^{-1}		Hilal et al. (2008)	Q	
[109-09-1]	_	6100	Kühne et al. (2005)	Q	
	1.5×10^{1}	6600	Nirmalakhandan et al. (1997) Kühne et al. (2005)	Q ?	
3-chloropyridine	3.5×10^{-1}	5600	Arnett and Chawla (1979)	M	222
C ₅ H ₄ CIN	4.1×10^{-1}		Hilal et al. (2008)	Q	
[626-60-8]	1.5×10^{1}		Nirmalakhandan et al. (1997)	Q	
2,3,4,6-tetrachloropyridine	1.2×10^{-3}		Zhang et al. (2010)	Q	107, 108
C ₅ HCl ₄ N	1.1×10^{-1}		Zhang et al. (2010)	Q	107, 109
[14121-36-9]	7.9×10^{-2}		Zhang et al. (2010)	Q	107, 110
	2.9×10^{-1}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\mathrm{d} \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Trung	Note
(Other name(s))	「 mol		Reference	Туре	Note
[CAS registry number]	$\left[\frac{mor}{m^3 Pa}\right]$	[K]			
2,3,5,6-tetrachloropyridine	1.2×10^{-3}		HSDB (2015)	Q	38
C ₅ HCl ₄ N	1.2×10^{-3}		Zhang et al. (2010)	Q	107, 108
[2402-79-1]	3.4×10^{-2}		Zhang et al. (2010)	Q	107, 109
	8.4×10^{-2}		Zhang et al. (2010)	Q	107, 110
	1.9×10^{-1}		Zhang et al. (2010)	Q	107, 111
pentachloropyridine	1.6×10^{-3}		HSDB (2015)	Q	38
C ₅ Cl ₅ N	1.6×10^{-3}		Zhang et al. (2010)	Q	107, 108
[2176-62-7]	1.3×10^{-2}		Zhang et al. (2010)	Q	107, 109
	2.5×10^{-2}		Zhang et al. (2010)	Q	107, 110
	1.8×10 ⁻¹		Zhang et al. (2010)	Q	107, 111
desethylatrazine C ₆ H ₁₀ ClN ₅	6.6×10^3		HSDB (2015)	Q	38
[6190-65-4]					
2-chloro-6-(trichloromethyl)-pyridine	6.2×10^{-1}		Zhang et al. (2010)	Q	107, 108
C ₆ H ₃ Cl ₄ N	1.8		Zhang et al. (2010)	Q	107, 109
[1929-82-4]	2.7		Zhang et al. (2010)	Q	107, 110
	4.2×10^{-1}		Zhang et al. (2010)	Q	107, 111
	1.8		Hilal et al. (2008)	Q	
2,3,4,5-tetrachloro-6-methylpyridine	6.7×10^{-2}		Zhang et al. (2010)	Q	107, 108
C ₆ H ₃ Cl ₄ N	3.6×10^{-2}		Zhang et al. (2010)	Q	107, 109
[10469-02-0]	3.6×10^{-2}		Zhang et al. (2010)	Q	107, 110
	1.1×10^{-1}		Zhang et al. (2010)	Q	107, 111
2-chloro-5-(trichloromethyl)pyridine	6.2×10^{-1}		Zhang et al. (2010)	Q	107, 108
C ₆ H ₃ Cl ₄ N	2.2		Zhang et al. (2010)	Q	107, 109
[69045-78-9]	7.7×10^{-1}		Zhang et al. (2010)	Q	107, 110
	4.2×10^{-1}		Zhang et al. (2010)	Q	107, 111
2,3-dichloro-5- (trichloromethyl)pyridine	8.4×10^{-1}		Zhang et al. (2010)	Q	107, 108
C ₆ H ₂ Cl ₅ N	4.1×10^{-1}		Zhang et al. (2010)	Q	107, 109
[69045-83-6]	1.8×10^{-1}		Zhang et al. (2010)	Q	107, 110
	6.1×10^{-1}		Zhang et al. (2010)	Q	107, 111
2,5-dichloro-6- (trichloromethyl)pyridine	8.4×10^{-1}		Zhang et al. (2010)	Q	107, 108
C ₆ H ₂ Cl ₅ N	1.2		Zhang et al. (2010)	Q	107, 109
[1817-13-6]	9.9×10^{-1}		Zhang et al. (2010)	Q	107, 110
	5.7×10^{-1}		Zhang et al. (2010)	Q	107, 111
3,4,5-trichloro-2-	7.2×10^{1}		Zhang et al. (2010)	Q	107, 108
(trichloromethyl)pyridine C ₆ HCl ₆ N	9.0×10^{-2}		Zhang et al. (2010)	Q	107, 109
	1.0×10^{-1}		Zhang et al. (2010)	Q	107, 109
[1201-30-5]	4.1×10^{-1}		Zhang et al. (2010)	Q	107, 110

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
2,3,4,5-tetrachloro-6- (trichloromethyl)pyridine	1.5		Zhang et al. (2010)	Q	107, 108
C ₆ Cl ₇ N	6.7×10^{-2}		Zhang et al. (2010)	Q	107, 109
[1134-04-9]	7.0×10^{-2}		Zhang et al. (2010)	Q	107, 110
	2.3×10^{-1}		Zhang et al. (2010)	Q	107, 111
3,4,5,6-tetrachloropyridine-2- carbonitrile	7.5		Zhang et al. (2010)	Q	107, 108
C ₆ Cl ₄ N ₂	1.7		Zhang et al. (2010)	Q	107, 109
[17824-83-8]	8.0×10^{-1}		Zhang et al. (2010)	Q	107, 110
	1.5×10^{1}		Zhang et al. (2010)	Q	107, 111
4-amino-3,5,6-trichloropyridine-2- carbonitrile	1.6×10^4		Zhang et al. (2010)	Q	107, 108
C ₆ H ₂ Cl ₃ N ₃	1.1×10^3		Zhang et al. (2010)	Q	107, 109
[14143-60-3]	9.0×10^{3}		Zhang et al. (2010)	Q	107, 110
	1.0×10^5		Zhang et al. (2010)	Q	107, 111
crimidine	2.6×10^{2}		HSDB (2015)	Q	38
C ₇ H ₁₀ ClN ₃ [535-89-7]					
simazine	1.0×10^4		HSDB (2015)	V	
C ₇ H ₁₂ ClN ₅	2.9×10^{3}		Mackay et al. (2006d)	V	
[122-34-9]	2.9×10^{3}		Suntio et al. (1988)	V	9
	1.6×10^4		Glotfelty et al. (1987)	V	
	6.2×10^7		Delgado and Alderete (2003)	C	
	1.1×10^4		Delgado and Alderete (2003)	C	
	1.7×10^3		Hilal et al. (2008)	Q	
	7.2×10^3		Abraham et al. (2007)	Q	
	5.5×10^5		Delgado and Alderete (2003)	Q	
	4.0×10^6		Delgado and Alderete (2003)	Q	
desethylterbuthylazine C ₇ H ₁₂ ClN ₅ [30125-63-4]	2.2×10^3		Otto et al. (1997)	V	
atrazine	1.9×10^3		Muir et al. (2004)	L	144
$C_8H_{14}CIN_5$	3.5×10^{3}		Mackay et al. (2006d)	V	
[1912-24-9]	1.0×10^{3}		Siebers et al. (1994)	V	
	3.3×10^{3}		Riederer (1990)	V	
	3.4×10^{3}		Suntio et al. (1988)	V	9
	2.0×10^{3}		Glotfelty et al. (1987)	V	
	8.3×10^6		Delgado and Alderete (2003)	C	
	4.3×10^3		Delgado and Alderete (2003)	C	
	7.2×10^2		Hilal et al. (2008)	Q	
	5.1×10^3		Abraham et al. (2007)	Q	
	2.8×10^4		Delgado and Alderete (2003)	Q	
	4.0×10^5		Delgado and Alderete (2003)	Q	
clonidine C ₉ H ₉ Cl ₂ N ₃ [4205-90-7]	6.6×10^5		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$			
(Other name(s))		d(1/T)	Reference	Type	Note
[CAS registry number]	$\left[\begin{array}{c} \operatorname{mol} \\ \end{array}\right]$	[K]			
	$\lfloor \overline{m^3 Pa} \rfloor$	[IX]			
cyprazine	3.8×10^{3}		HSDB (2015)	Q	38
$C_9H_{12}CIN_5$					
[22936-86-3]					
propazine	2.1×10^3		HSDB (2015)	V	
C ₉ H ₁₆ ClN ₅			Mackay et al. (2006d)	V	221
[139-40-2]	1.0×10^4		Suntio et al. (1988)	V	9
	3.6×10^2		Hilal et al. (2008)	Q	
	4.0×10^3		Abraham et al. (2007)	Q	
terbuthylazine	4.3×10^2		HSDB (2015)	V	
C ₉ H ₁₆ ClN ₅	2.5×10^{2}		Mackay et al. (2006d)	V	
[5915-41-3]	2.5×10^{2}		Otto et al. (1997)	V	
	2.4×10^{2}		Siebers et al. (1994)	V	
	2.9×10^{2}		Hilal et al. (2008)	Q	
	9.0×10^{2}		Abraham et al. (2007)	Q	
cyanazine	3.3×10^{6}		Mackay et al. (2006d)	V	
C ₉ H ₁₃ ClN ₆	8.3×10^{9}		Delgado and Alderete (2003)	C	
[21725-46-2]	3.9×10^{6}		Delgado and Alderete (2003)	C	
	6.4×10^5		Hilal et al. (2008)	Q	
	2.0×10^{6}		Abraham et al. (2007)	Q	
	4.5×10^{6}		Delgado and Alderete (2003)	Q	
	1.0×10^9		Delgado and Alderete (2003)	Q	
anilazine	3.5×10^4		HSDB (2015)	V	
C ₉ H ₅ Cl ₃ N ₄	3.5×10^4		Mackay et al. (2006d)	V	
[101-05-3]	2.9×10^{1}		Zhang et al. (2010)	Q	107, 108
	1.2×10^{3}		Zhang et al. (2010)	Q	107, 109
	9.5		Zhang et al. (2010)	Q	107, 110
	5.4×10^{3}		Zhang et al. (2010)	Q	107, 111
	3.5×10^4		MacBean (2012a)	?	
4,7-dichloroquinoline	2.6×10^{1}		Zhang et al. (2010)	Q	107, 108
C ₉ H ₅ Cl ₂ N	6.9		Zhang et al. (2010)	Q	107, 109
[86-98-6]	1.5		Zhang et al. (2010)	Q	107, 110
	7.0		Zhang et al. (2010)	Q	107, 111
acetamiprid C ₁₀ H ₁₁ ClN ₄ [135410-20-7]	1.4×10^2		HSDB (2015)	Q	38
pyrimethamine C ₁₂ H ₁₃ ClN ₄ [58-14-0]	9.1×10 ⁴		HSDB (2015)	Q	182
penconazole C ₁₃ H ₁₅ Cl ₂ N ₃ [66246-88-6]	1.2×10 ³		Mackay et al. (2006d)	V	
myclobutanil C ₁₅ H ₁₇ ClN ₄ [88671-89-0]	2.3×10 ³		HSDB (2015)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s))	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Туре	Note
[CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
2-chloro-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine	1.2×10^3		Zhang et al. (2010)	Q	107, 108
$C_{19}H_{18}N_3Cl$	1.3×10^{3}		Zhang et al. (2010)	Q	107, 109
[1237-53-2]	7.0		Zhang et al. (2010)	Q	107, 110
	1.2×10^3		Zhang et al. (2010)	Q	107, 111
trichloronitromethane	4.7×10^{-3}		Sander et al. (2011)	L	
CCl ₃ NO ₂	4.7×10^{-3}		Worthington and Wade (2007)	M	
(chloropicrin)	4.8×10^{-3}		Kawamoto and Urano (1989)	M	
[76-06-2]	3		Mackay et al. (2006d)	V	221
	5.1×10^{-3}		Suntio et al. (1988)	V	9
	2.5×10^{-3}		Hilal et al. (2008)	Q	
phosgene oxime CHCl ₂ NO [1794-86-1]	1.8×10^{1}		HSDB (2015)	Q	38
1,1-dichloro-1-nitroethane	7.7×10^{-3}		HSDB (2015)	Q	38
C ₂ H ₃ Cl ₂ NO ₂	2.0×10^{-2}		Hilal et al. (2008)	Q	36
[594-72-9]	2.0 × 10		Tillar et al. (2000)	V	
2-chloroacetamide C ₂ H ₄ ClNO [79-07-2]	2.5×10 ³		HSDB (2015)	Q	38
symclosene C ₃ Cl ₃ N ₃ O ₃ (trichloroisocyanuric acid) [87-90-1]	1.6×10 ⁵		HSDB (2015)	Q	38
$\overline{1,3\text{-dichloro-5,5-dimethylhydantoin}}$ $C_5H_6Cl_2N_2O_2$ $[118-52-5]$	9.9		HSDB (2015)	Q	38
carmustine C ₅ H ₉ Cl ₂ N ₃ O ₂ [154-93-8]	2.1×10 ⁵		HSDB (2015)	Q	38
2-chloro-N,N-di-2-propenylacetamide	9.2×10 ¹		HSDB (2015)	V	
C ₈ H ₁₂ CINO [93-71-0]	9.7×10^{1}		Hilal et al. (2008)	Q	
2,2-dichloro-N,N-di-2- propenylacetamide C ₈ H ₁₁ Cl ₂ NO (dichlormid) [37764-25-3]	3.1×10 ¹		Hilal et al. (2008)	Q	
lomustine C ₉ H ₁₆ ClN ₃ O ₂ [13010-47-4]	5.5×10 ⁴		HSDB (2015)	Q	38
semustine C ₁₀ H ₁₈ ClN ₃ O ₂ [13909-09-6]	3.9×10 ⁴		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
dimethazone C ₁₂ H ₁₄ ClNO ₂ [81777-89-1]	2.4×10 ²		MacBean (2012b)	X	137
2-chloronitrobenzene C ₆ H ₄ ClNO ₂ (<i>o</i> -chloronitrobenzene) [88-73-3]	$ \begin{array}{c} 1.1 \\ 2.2 \times 10^{-1} \\ 2.8 \times 10^{-1} \\ 6.2 \times 10^{-1} \end{array} $		Altschuh et al. (1999) Hellmann (1987) Lide and Frederikse (1995) Zhang et al. (2010)	M M V Q	31 107, 108
	$ 1.5 \times 10^{-1} 1.2 4.6 \times 10^{-1} 3.1 \times 10^{-1} $	4700	Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Hilal et al. (2008) Kühne et al. (2005)	Q Q Q Q	107, 109 107, 110 107, 111
3-chloronitrobenzene	7.3×10 ⁻¹	6000	Kühne et al. (2005) Altschuh et al. (1999)	? M	
C ₆ H ₄ ClNO ₂ (<i>m</i> -chloronitrobenzene) [121-73-3]	$ \begin{array}{c} 1.1 \times 10^{-1} \\ 6.2 \times 10^{-1} \\ 2.8 \times 10^{-1} \\ 2.8 \times 10^{-1} \\ 4.6 \times 10^{-1} \\ 2.1 \times 10^{-1} \end{array} $		Schüürmann (2000) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Hilal et al. (2008)	V Q Q Q Q Q	107, 108 107, 109 107, 110 107, 111
4-chloronitrobenzene C ₆ H ₄ ClNO ₂ (p-chloronitrobenzene)	$ 2.0 $ $ 1.8 \times 10^{-1} $ $ 2.8 \times 10^{-1} $		Altschuh et al. (1999) Hellmann (1987) Lide and Frederikse (1995)	M M V	31
[100-00-5]	6.2×10^{-1} 3.0×10^{-1} 6.1×10^{-1} 4.6×10^{-1} 2.3×10^{-1}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Hilal et al. (2008)	Q Q Q Q Q	107, 108 107, 109 107, 110 107, 111
	2.3×10 ⁻¹	4700 4000	Hilal et al. (2008) Kühne et al. (2005) Kühne et al. (2005)	Q Q ?	
1,2-dichloro-4-nitrobenzene C ₆ H ₃ Cl ₂ NO ₂ [99-54-7]	$1.2 \\ 8.4 \times 10^{-1} \\ 3.1 \times 10^{-1} \\ 4.6 \times 10^{-1} \\ 6.7 \times 10^{-1} \\ 2.7 \times 10^{-1}$		Altschuh et al. (1999) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Hilal et al. (2008)	M Q Q Q Q Q	107, 108 107, 109 107, 110 107, 111
1,4-dichloro-2-nitrobenzene C ₆ H ₃ Cl ₂ NO ₂ [89-61-2]	8.2×10^{-1} 8.4×10^{-1} 1.5×10^{-1} 7.3×10^{-1} 6.1×10^{-1} 3.1×10^{-1}		Altschuh et al. (1999) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Hilal et al. (2008)	M Q Q Q Q	107, 108 107, 109 107, 110 107, 111

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Tuno	Note
(Other name(s)) [CAS registry number]	$\left[\frac{mol}{m^3 Pa}\right]$	[K]	Reference	Туре	Note
2,3-dichloronitrobenzene	8.2×10^{-1}		HSDB (2015)	Q	38
$C_6H_3Cl_2NO_2$	8.4×10^{-1}		Zhang et al. (2010)	Q	107, 108
[3209-22-1]	1.4×10^{-1}		Zhang et al. (2010)	Q	107, 109
	9.7×10^{-1}		Zhang et al. (2010)	Q	107, 110
	6.7×10^{-1}		Zhang et al. (2010)	Q	107, 111
2,4-dichloronitrobenzene	3.1×10^{-1}		HSDB (2015)	Q	38
$C_6H_3Cl_2NO_2$	8.4×10^{-1}		Zhang et al. (2010)	Q	107, 108
[611-06-3]	1.6×10^{-1}		Zhang et al. (2010)	Q	107, 109
	8.4×10^{-1}		Zhang et al. (2010)	Q	107, 110
	2.9×10^{-1}		Zhang et al. (2010)	Q	107, 111
3,5-dichloronitrobenzene	8.4×10^{-1}		Zhang et al. (2010)	Q	107, 108
$C_6H_3Cl_2NO_2$	2.0×10^{-1}		Zhang et al. (2010)	Q	107, 109
[618-62-2]	1.1×10^{-1}		Zhang et al. (2010)	Q	107, 110
	2.9×10^{-1}		Zhang et al. (2010)	Q	107, 111
pentachloronitrobenzene	2.7		Kawamoto and Urano (1989)	M	
C ₆ Cl ₅ NO ₂	2.2×10^{-1}		HSDB (2015)	V	
(quintozene)	2.3×10^{-1}		Mackay et al. (2006d)	V	
[82-68-8]	2.1×10^{-1}		Howard and Meylan (1997)	X	181
	2.1		Zhang et al. (2010)	Q	107, 108
	2.3×10^{-2}		Zhang et al. (2010)	Q	107, 109
	2.2×10^{-2}		Zhang et al. (2010)	Q	107, 110
	2.2×10^{-1}		Zhang et al. (2010)	Q	107, 111
	6.9×10^{-2}		Hilal et al. (2008)	Q	
	2.1		Meylan and Howard (1991)	Q	
4-chloro-2-nitrophenol C ₆ H ₄ ClNO ₃ [89-64-5]	7.8×10^{-1}		Schwarzenbach et al. (1988)	V	9
2-chloro-4-nitrobenzenamine	1.0×10^{3}		Altschuh et al. (1999)	M	
$C_6H_5CIN_2O_2$	1.8×10^{3}		Zhang et al. (2010)	Q	107, 108
[121-87-9]	1.3×10^{3}		Zhang et al. (2010)	Q	107, 109
	6.7×10^4		Zhang et al. (2010)	Q	107, 110
	2.1×10^{3}		Zhang et al. (2010)	Q	107, 111
	4.6×10^2		Hilal et al. (2008)	Q	
2-chloro-5-nitrobenzenamine C ₆ H ₅ ClN ₂ O ₂ [6283-25-6]	1.8×10 ³		HSDB (2015)	Q	38
4-chloro-2,6-dinitrobenzenamine C ₆ H ₄ ClN ₃ O ₄ [5388-62-5]	7.6×10 ¹		HSDB (2015)	Q	38
1-chloro-2,4-dinitrobenzene	4.0		HSDB (2015)	V	
$C_6H_3CIN_2O_4$	1.6×10^{2}		Zhang et al. (2010)	Q	107, 108
[97-00-7]	6.0		Zhang et al. (2010)	Q	107, 109
	5.3		Zhang et al. (2010)	Q	107, 110
	3.9×10^{1}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1-chloro-2,6-dinitrobenzene C ₆ H ₃ ClN ₂ O ₄ [606-21-3]	$ \begin{array}{c} 1.6 \times 10^{2} \\ 4.3 \\ 7.2 \\ 3.9 \times 10^{1} \end{array} $		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
2-chloro-1,3,5-trinitrobenzene C ₆ H ₂ ClN ₃ O ₆ [88-88-0]	3.9×10 ⁴		HSDB (2015)	Q	38
2,3,4-trichloronitrobenzene C ₆ H ₂ Cl ₃ NO ₂ [17700-09-3] 2,3,4,5-tetrachloronitrobenzene	$ \begin{array}{c} 1.1 \\ 1.3 \times 10^{-1} \\ 2.0 \times 10^{-1} \\ 4.0 \times 10^{-1} \end{array} $ $ 4.3 \times 10^{-1} $		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) HSDB (2015)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111 38
C ₆ HCl ₄ NO ₂ [879-39-0] 1,2,4,5-tetrachloronitrobenzene	4.3×10 ⁻¹		HSDB (2015)	Q	38
C ₆ HCl ₄ NO ₂ (tecnazene) [117-18-0]					
4-chloro-2-nitrobenzenamine	8.2×10^{1}		HSDB (2015)	Q	38
$C_6H_5CIN_2O_2$	8.0×10^{1}		Zhang et al. (2010)	Q	107, 108
[89-63-4]	1.7×10^2		Zhang et al. (2010)	Q	107, 109
	2.2×10^3 2.9×10^2		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 110 107, 111
4-chloro-3-nitrobenzenamine	1.8×10^{3}		HSDB (2015)	Q	38
$C_6H_5CIN_2O_2$	1.8×10^{3}		Zhang et al. (2010)	Q	107, 108
[635-22-3]	1.1×10^{3}		Zhang et al. (2010)	Q	107, 109
	2.4×10^{3}		Zhang et al. (2010)	Q	107, 110
	3.5×10^3		Zhang et al. (2010)	Q	107, 111
botran	1.2×10^2		HSDB (2015)	V	
$C_6H_4Cl_2N_2O_2$	2.4×10^{3}		Zhang et al. (2010)	Q	107, 108
[99-30-9]	6.9×10^{1}		Zhang et al. (2010)	Q	107, 109
	1.7×10^3		Zhang et al. (2010)	Q	107, 110
	1.4×10^3		Zhang et al. (2010)	Q	107, 111
3,5-dichlorophenyl isocyanate	7.7×10^{-2}		Zhang et al. (2010)	Q	107, 108
C ₇ H ₃ Cl ₂ NO	2.8		Zhang et al. (2010)	Q	107, 109
[34893-92-0]	8.2×10^{-3}		Zhang et al. (2010)	Q	107, 110
	7.2×10^{-1}		Zhang et al. (2010)	Q	107, 111
4-chloro-3-nitrobenzoic acid	3.1×10^4		Zhang et al. (2010)	Q	107, 108
C ₇ H ₄ ClNO ₄	2.1×10^{3}		Zhang et al. (2010)	Q	107, 109
[96-99-1]	1.6×10^3		Zhang et al. (2010)	Q	107, 110
	9.2×10^4		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s))	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Туре	Note
[CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	[K]			
1-chloro-4-isocyanatobenzene	5.7×10^{-2}		Zhang et al. (2010)	Q	107, 108
C ₇ H ₄ ClNO	4.1		Zhang et al. (2010)	Q	107, 109
[104-12-1]	9.7×10^{-3}		Zhang et al. (2010)	Q	107, 110
	3.4		Zhang et al. (2010)	Q	107, 111
1,2-dichloro-4-isocyanatobenzene	7.7×10^{-2}		Zhang et al. (2010)	Q	107, 108
C ₇ H ₃ Cl ₂ NO	4.5		Zhang et al. (2010)	Q	107, 109
[102-36-3]	1.6×10^{-2}		Zhang et al. (2010)	Q	107, 110
	2.2		Zhang et al. (2010)	Q	107, 111
2-chloro-1-methyl-4-nitrobenzene	2.4×10^{-1}		HSDB (2015)	Q	216
$C_7H_6CINO_2$	5.7×10^{-1}		Zhang et al. (2010)	Q	107, 108
[121-86-8]	3.4×10^{-1}		Zhang et al. (2010)	Q	107, 109
	3.7×10^{-1}		Zhang et al. (2010)	Q	107, 110
	2.5×10^{-1}		Zhang et al. (2010)	Q	107, 111
2,4-dichloro-3-methyl-6-nitrophenol	2.3		Zhang et al. (2010)	Q	107, 108
C ₇ H ₅ Cl ₂ NO ₃	2.9		Zhang et al. (2010)	Q	107, 109
[39549-27-4]	9.5×10^{1}		Zhang et al. (2010)	Q	107, 110
	3.3×10^{-1}		Zhang et al. (2010)	Q	107, 111
4-chloro-5-methyl-2-nitrophenol C ₇ H ₆ ClNO ₃ (4-chloro-6-nitro- <i>m</i> -cresol) [7147-89-9]	3.6×10^{-1}		Schwarzenbach et al. (1988)	V	9
3-amino-2,5-dichlorobenzoic acid C ₇ H ₅ Cl ₂ NO ₂ [133-90-4]	3.6		Mackay et al. (2006d)	V	
2,3,5,6-tetrachloro-4-nitroanisole C ₇ H ₃ Cl ₄ NO ₃ (TCNA) [2438-88-2]	5.2×10 ⁻¹		HSDB (2015)	Q	38
2,6-dichlorobenzamide C ₇ H ₅ Cl ₂ NO [2008-58-4]	8.2×10 ³		HSDB (2015)	Q	38
swep C ₈ H ₇ Cl ₂ NO [1918-18-9]	8.2×10 ²		HSDB (2015)	Q	38
N-(4-chlorophenyl)acetamide C ₈ H ₈ ClNO (<i>p</i> -chloroacetanilide) [539-03-7]	2.1		HSDB (2015)	Q	38
methyl 5-chloro-2-nitrobenzoate	9.7×10^{1}		Zhang et al. (2010)	Q	107, 108
C ₈ H ₆ ClNO ₄	1.2×10^2		Zhang et al. (2010)	Q	107, 109
[51282-49-6]	3.7×10^{3}		Zhang et al. (2010)	Q	107, 110
	6.7×10^{1}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	dln H ^{cp}			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Tymo	Note
(Other name(s))	[mol]		Reference	Туре	Note
[CAS registry number]	$\left\lfloor \frac{1}{m^3 Pa} \right\rfloor$	[K]			
4-chloro-2,5-dimethoxynitrobenzene	1.8×10 ²		Zhang et al. (2010)	Q	107, 108
C ₈ H ₈ ClNO ₄	1.6×10^{1}		Zhang et al. (2010)	Q	107, 109
[6940-53-0]	2.0×10^{2}		Zhang et al. (2010)	Q	107, 110
	3.9×10^{1}		Zhang et al. (2010)	Q	107, 111
chloraniformethan C ₉ H ₇ Cl ₅ N ₂ O [20856-57-9]	$>2.3\times10^{10}$		MacBean (2012a)	?	
monuron	1.7×10 ⁴		HSDB (2015)	V	
C ₉ H ₁₁ ClN ₂ O	1.5×10^4		Mackay et al. (2006d)	v	
[150-68-5]	3.3×10^2		Suntio et al. (1988)	v	9
[150 00 5]	1.7×10^4		Burkhard and Guth (1981)	v	
	1.7×10^4		MacBean (2012a)	?	
monolinuron	2.1×10 ²		HSDB (2015)	V	
C ₉ H ₁₁ ClN ₂ O ₂ [1746-81-2]	1.7×10^2		Mackay et al. (2006d)	V	
diuron	2.0×10 ⁴		HSDB (2015)	V	
$C_9H_{10}Cl_2N_2O$			Mackay et al. (2006d)	V	221
[330-54-1]	8.3×10^2		Suntio et al. (1988)	V	9
linuron			Mackay et al. (2006d)	V	221
$C_9H_{10}Cl_2N_2O_2$	1.9×10^2		Suntio et al. (1988)	V	9
[330-55-2]	5.0×10^3		MacBean (2012b)	X	137
propanil	5.8×10^3		HSDB (2015)	V	
C ₉ H ₉ Cl ₂ NO	1.8×10^2		Mackay et al. (2006d)	V	
[709-98-8]	2.8×10^{2}		Suntio et al. (1988)	V	9
	2.2×10^{3}		Zhang et al. (2010)	Q	107, 108
	8.0×10^{2}		Zhang et al. (2010)	Q	107, 109
	3.8×10^{3}		Zhang et al. (2010)	Q	107, 110
	8.4×10^3		Zhang et al. (2010)	Q	107, 111
methazole	4.3×10^{1}		HSDB (2015)	V	
$C_9H_6Cl_2N_2O_3$	4.8×10^4		Hilal et al. (2008)	Q	
[20354-26-1]	4.3×10 ¹		MacBean (2012a)	?	
chlortoluron	7.0×10^4		HSDB (2015)	V	
C ₁₀ H ₁₃ ClN ₂ O [15545-48-9]	1.9×10^4		Mackay et al. (2006d)	V	
metoxuron C ₁₀ H ₁₃ ClN ₂ O ₂ [19937-59-8]	6.9×10 ²		Mackay et al. (2006d)	V	
chlorpropham	2.3×10 ¹		Watanabe (1993)	M	
$C_{10}H_{12}CINO_2$	1.7×10^{1}		HSDB (2015)	V	
[101-21-3]			Mackay et al. (2006d)	V	221
	4.8×10^{2}		Suntio et al. (1988)	V	9

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
pyrazon C ₁₀ H ₈ ClN ₃ O [1698-60-8]	3.0×10^{4} 2.3×10^{-1} 2.3×10^{-1}		HSDB (2015) Mackay et al. (2006d) Suntio et al. (1988)	V V V	9
2,4-D dimethylamine C ₁₀ H ₁₃ Cl ₂ NO ₃ ((2,4-dichlorophenoxy)acetic acid dimethylamine) [2008-39-1]	7.0×10 ¹⁰		HSDB (2015)	Q	38
3',4'-dichlorocyclopropanecarboxanilide C ₁₀ H ₉ Cl ₂ NO (cypromid) [2759-71-9]	3.8×10 ³		HSDB (2015)	Q	38
chlorbufam C ₁₁ H ₁₀ ClNO ₂ [1967-16-4]	$1.1 \times 10^3 \\ 1.1 \times 10^3$		HSDB (2015) MacBean (2012a)	V ?	
zarilamid C ₁₁ H ₁₁ N ₂ O ₂ Cl [84527-51-5]	1.5×10 ⁵		MacBean (2012a)	?	
chloramphenicol C ₁₁ H ₁₂ Cl ₂ N ₂ O ₅ [56-75-7]	4.3×10 ¹²		HSDB (2015)	Q	38
cloethocarb C ₁₁ H ₁₄ ClNO ₄ [51487-69-5]	5.0×10 ⁵		MacBean (2012a)	?	
formetanate hydrochloride C ₁₁ H ₁₆ ClN ₃ O ₂ [23422-53-9]	4.3×10 ¹³		HSDB (2015)	Q	38
cyclanilide C ₁₁ H ₉ Cl ₂ NO ₃ [113136-77-9]	1.4×10 ⁴		MacBean (2012b)	X	137
propachlor C ₁₁ H ₁₄ ClNO [1918-16-7]	2.7×10^{1} 9.1×10^{1} 9.1×10^{1}		HSDB (2015) Mackay et al. (2006d) Suntio et al. (1988)	V V V	9
barban C ₁₁ H ₉ Cl ₂ NO ₂ [101-27-9]	8.2×10^{2} 8.5×10^{2} 8.5×10^{2}		HSDB (2015) Mackay et al. (2006d) MacBean (2012a)	V V V ?	<u> </u>
propyzamide C ₁₂ H ₁₁ Cl ₂ NO (pronamide) [23950-58-5]	5.2		HSDB (2015) Mackay et al. (2006d)	V W	276

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
$\begin{array}{lll} 2,4,6\text{-trichlorophenyl} & 4\text{-nitrophenyl} \\ \text{ether} & \\ C_{12}H_6Cl_3NO_3 & \\ \text{(chlornitrofen)} \\ [1836-77-7] & \end{array}$	>8.1		Kawamoto and Urano (1989)	M	
nitrofen	3.3		HSDB (2015)	V	
$C_{12}H_7Cl_2NO_3$	3.9×10^{1}		Zhang et al. (2010)	Q	107, 108
[1836-75-5]	2.8×10^{1}		Zhang et al. (2010)	Q	107, 109
	1.2×10^2		Zhang et al. (2010)	Q	107, 110
	1.1×10^2		Zhang et al. (2010)	Q	107, 111
buturon C ₁₂ H ₁₃ ClN ₂ O [3766-60-7]	1.3×10 ⁴		MacBean (2012a)	?	
triclocarban	2.2×10^{5}		HSDB (2015)	Q	38
C ₁₃ H ₉ Cl ₃ N ₂ O	2.2×10^{5}		Zhang et al. (2010)	Q	107, 108
[101-20-2]	5.0×10^3		Zhang et al. (2010)	Q	107, 109
	7.2×10^{7}		Zhang et al. (2010)	Q	107, 110
	1.8×10^{7}		Zhang et al. (2010)	Q	107, 111
3,5-dichloro-N-(3,4-dichlorophenyl)-2-hydroxybenzamide	2.1×10^5		HSDB (2015)	Q	38
$C_{13}H_7Cl_4NO_2$	2.1×10^{5}		Zhang et al. (2010)	Q	107, 108
[1154-59-2]	2.3×10^{5}		Zhang et al. (2010)	Q	107, 109
	3.9×10^{6}		Zhang et al. (2010)	Q	107, 110
	1.6×10^5		Zhang et al. (2010)	Q	107, 111
procymidone C ₁₃ H ₁₁ Cl ₂ NO ₂ [32809-16-8]	8.5×10 ⁻¹		Mackay et al. (2006d)	V	
melphalan C ₁₃ H ₁₈ Cl ₂ N ₂ O ₂ [148-82-3]	2.3×10 ⁷		HSDB (2015)	Q	38
niclosamide C ₁₃ H ₈ Cl ₂ N ₂ O ₄ [50-65-7]	1.5×10 ⁴		HSDB (2015)	V	
zoxamide C ₁₄ H ₁₆ Cl ₃ NO ₂ [156052-68-5]	4.9×10^3		HSDB (2015)	Q	38
fenhexamid C ₁₄ H ₁₇ Cl ₂ NO ₂ [126833-17-8]	2.0×10 ⁵		MacBean (2012b)	X	137
chlorambucil C ₁₄ H ₁₉ Cl ₂ NO ₂ [305-03-3]	3.7×10 ⁴		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Deference	Tr.	NT- 4
Other name(s)) CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3\text{Pa}}\right]$	[K]	Reference	Туре	Note
2-chloro-N-(ethoxymethyl)-N-(2- ethyl-6-methylphenyl)acetamide C ₁₄ H ₂₀ ClNO ₂ (acetochlor) [34256-82-1]	3.7×10 ⁴		HSDB (2015)	V	
alachlor	6.7×10^2		Muir et al. (2004)	L	144
$C_{14}H_{20}CINO_2$	9.9×10^{2}		Muir et al. (2004)	L	143
[15972-60-8]	1.4×10^2	9200	Gautier et al. (2003)	M	
	9.0×10^{2}		Fendinger et al. (1989)	M	126
	1.2×10^3		Fendinger and Glotfelty (1988)	M	126
	4.5×10^2		Mackay et al. (2006d)	V	
	1.6×10^{2}		Suntio et al. (1988)	V	9
	3.1×10^2		Glotfelty et al. (1987)	V	
	3.1×10^{3}		Hilal et al. (2008)	Q	
		11000	Kühne et al. (2005)	Q	
	8.2×10^4		Meylan and Howard (1991)	Q	
		9300	Kühne et al. (2005)	?	
	3.1×10^2		Chesters et al. (1989)	?	
oifenox	3.7		HSDB (2015)	V	
C ₁₄ H ₉ Cl ₂ NO ₃ [42576-02-3]	3.2		Mackay et al. (2006d)	V	
netolachlor	7.5×10^2		Muir et al. (2004)	L	144
$C_{15}H_{22}CINO_2$	7.2×10^2		Muir et al. (2004)	L	143
[51218-45-2]	6.2×10^2	15000	Fogg and Sangster (2003)	L	
	2.1×10^{2}	10000	Feigenbrugel et al. (2004a)	M	
	1.3×10^2		Rice et al. (1997b)	M	9
	4.3×10^2		Mackay et al. (2006d)	V	
	4.1×10^{2}		Otto et al. (1997)	V	
	1.1×10^3		Glotfelty et al. (1987)	V	
	1.1×10^3		Burkhard and Guth (1981)	V	
	5.7×10^2	15000	Lau et al. (1995)	X	3
	1.2×10^3		Rice et al. (1997b)	C	
	6.2×10^3		Hilal et al. (2008)	Q	
		12000	Kühne et al. (2005)	Q	
		10000	Kühne et al. (2005)	?	
	1.1×10^3		Chesters et al. (1989)	?	9
clonitralid C ₁₅ H ₁₅ Cl ₂ N ₃ O ₅ [1420-04-8]	$>2.6\times10^4$		HSDB (2015)	V	
chloroxuron	2.4×10 ⁴		HSDB (2015)	V	
C ₁₅ H ₁₅ ClN ₂ O ₂ [1982-47-4]	5.3×10^4		MacBean (2012a)	?	
CGA 80000 C ₁₅ H ₁₈ CINO ₄ [67932-85-8]	4.4×10 ⁶		MacBean (2012a)	?	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{mol}{m^3Pa}\right]$	[K]			
pigment red 4 C ₁₆ H ₁₀ ClN ₃ O ₃ [2814-77-9]	1.1×10^7		HSDB (2015)	Q	38
darendoside b	2.7×10^{7}		Zhang et al. (2010)	Q	107, 108
$\mathrm{C}_{17}\mathrm{H}_{15}\mathrm{Cl}_2\mathrm{N}_5\mathrm{O}_2$	5.0×10^{6}		Zhang et al. (2010)	Q	107, 109
[13301-61-6]	2.5×10^{7}		Zhang et al. (2010)	Q	107, 110
	7.3×10^4		Zhang et al. (2010)	Q	107, 111
butenachlor C ₁₇ H ₂₄ NO ₂ Cl [87310-56-3]	1.0×10^2		MacBean (2012a)	?	
butachlor	1.6×10^2		Watanabe (1993)	M	
$C_{17}H_{26}CINO_2$	1.2×10^2		Mackay et al. (2006d)	V	
[23184-66-9]	6.9×10^2		Hilal et al. (2008)	Q	
pretilachlor C ₁₇ H ₂₆ ClNO ₂ [51218-49-6]	4.5×10 ³		Hilal et al. (2008)	Q	
halofenozide C ₁₈ H ₁₉ ClN ₂ O ₂ [112226-61-6]	2.7×10 ⁵		HSDB (2015)	Q	38
α -cypermethrin	1.0		HSDB (2015)	V	
C ₂₂ H ₁₉ Cl ₂ NO ₃ [67375-30-8]	1.0×10^2		Mackay et al. (2006d)	V	
β-cypermethrin C ₂₂ H ₁₉ Cl ₂ NO ₃ [65731-84-2]			Mackay et al. (2006d)	V	221
δ -cypermethrin	4.1×10^{1}		HSDB (2015)	V	
$C_{22}H_{19}Cl_2NO_3$	4.3×10^{2}		Mackay et al. (2006d)	V	
(cypermethrin; alphamethrin) [52315-07-8]	1.2×10^{1}		Siebers and Mattusch (1996)	V	9
ochratoxin C C ₂₂ H ₂₂ ClNO ₆ [4865-85-4]	7.6×10 ⁸		HSDB (2015)	Q	38
mandipropamid C ₂₃ H ₂₂ ClNO ₄ [374726-62-2]	1.1×10^4		HSDB (2015)	V	
fenvalerate	2.9×10^{2}		HSDB (2015)	V	
C ₂₅ H ₂₂ ClNO ₃	4.7×10^{1}		Mackay et al. (2006d)	V	
[51630-58-1]	7.0×10^{1}		Cotham and Bidleman (1989)	V	
esfenvalerate C ₂₅ H ₂₂ ClNO ₃ [66230-04-4]	2.4×10 ¹		HSDB (2015)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp} (at T^{Θ})	$\frac{\mathrm{d} \ln H^{cp}}{H^{cp}}$			
Formula (Other name(s))		d(1/T)	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
picloram	3.0×10^4		Mackay et al. (2006d)	V	
$C_6H_3Cl_3N_2O_2$	2.9×10^4		Suntio et al. (1988)	V	9
[1918-02-1]	7.7×10^6		Zhang et al. (2010)	Q	107, 108
	2.5		Zhang et al. (2010)	Q	107, 109
	9.0×10^4 1.6×10^8		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 110 107, 111
. 1:1	5.8×10^6			Q	
aminopyralid C ₆ H ₄ Cl ₂ N ₂ O ₂ [150114-71-9]	5.8×10°		HSDB (2015)	Q	38
3,4,5,6-tetrachloropyridine-2- carboxylic acid	3.7×10^3		Zhang et al. (2010)	Q	107, 108
C ₆ HCl ₄ NO ₂	2.4		Zhang et al. (2010)	Q	107, 109
[10469-09-7]	1.2×10^2		Zhang et al. (2010)	Q	107, 110
	4.1×10^4		Zhang et al. (2010)	Q	107, 111
[(3,5,6-trichloro-2-pyridinyl)oxy]- acetic acid	1.0×10^4		HSDB (2015)	V	
C ₇ H ₄ Cl ₃ NO ₃ (triclopyr) [55335-06-3]	1.2×10^4		Armbrust (2000)	С	
clopidol C ₇ H ₇ Cl ₂ NO [2971-90-6]	9.9×10 ³		HSDB (2015)	Q	38
[(3,5,6-trichloro-2-pyridinyl)oxy]- acetic acid, methyl ester	6.0		Zhang et al. (2010)	Q	107, 108
C ₈ H ₆ Cl ₃ NO ₃	3.1×10^{1}		Zhang et al. (2010)	Q	107, 109
[60825-26-5]	4.6×10^{3}		Zhang et al. (2010)	Q	107, 110
	3.5×10^2		Zhang et al. (2010)	Q	107, 111
uracil mustard $C_8H_{11}Cl_2N_3O_2$ [66-75-1]	2.5×10 ⁷		HSDB (2015)	Q	38
imidacloprid C ₉ H ₁₀ ClN ₅ O ₂ [138261-41-3]	4.9×10 ⁹		Armbrust (2000)	С	
ethyl [(3,5,6-trichloro-2-pyridinyl)oxy]acetate	4.5		Zhang et al. (2010)	Q	107, 108
C ₉ H ₈ Cl ₃ NO ₃	1.7×10^{1}		Zhang et al. (2010)	Q	107, 109
[60825-27-6]	2.3×10^{1}		Zhang et al. (2010)	Q	107, 110
	3.1×10^2		Zhang et al. (2010)	Q	107, 111
N-methyl-3,4,5,6- tetrachlorophthalimide	1.5×10^3		Zhang et al. (2010)	Q	107, 108
C ₉ H ₃ Cl ₄ NO ₂	1.2×10^{3}		Zhang et al. (2010)	Q	107, 109
[14737-80-5]	4.1×10^{1}		Zhang et al. (2010)	Q	107, 110
	3.1×10^{3}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
terbacil C ₉ H ₁₃ ClN ₂ O ₂ [5902-51-2]	5.2×10^4 6.5×10^4 7.9×10^4 5.6×10^4		HSDB (2015) Mackay et al. (2006d) Mackay et al. (2006d) Suntio et al. (1988)	V V V	9
riforine C ₁₀ H ₁₄ Cl ₆ N ₄ O ₂ [26644-46-2]	2.6×10^3 2.6×10^3		HSDB (2015) Mackay et al. (2006d)	V V	
nagrelide C ₁₀ H ₇ Cl ₂ N ₃ O 68475-42-3]	3.7×10 ⁷		HSDB (2015)	Q	38
enpiclonil C ₁₁ H ₆ Cl ₂ N ₂ 74738-17-3]	1.9×10 ³		MacBean (2012a)	?	
Cenchlorazole-ethyl C ₁₂ H ₈ N ₃ O ₂ Cl ₅ 103112-35-2]	2.7×10 ³		MacBean (2012a)	?	9
vinclozoline	5.8×10^2		HSDB (2015)	V	
C ₁₂ H ₉ Cl ₂ NO ₃	2.6×10^{5}		Mackay et al. (2006d)	V	
50471-44-8]	9.1×10^{1}		Siebers et al. (1994)	V	
Forchlorfenuron C ₁₂ H ₁₀ ClN ₃ O 68157-60-8]	3.5×10 ⁶		MacBean (2012b)	X	137
myclozolin C ₁₂ H ₁₁ NO ₄ Cl ₂ [54864-61-8]	3.7×10^2		MacBean (2012a)	?	
clofencet C ₁₃ H ₁₁ ClN ₂ O ₃ [129025-54-3]	$>1.9\times10^8$ $>2.3\times10^{10}$		HSDB (2015) MacBean (2012a)	V ?	
chlozolinate C ₁₃ H ₁₁ NO ₅ Cl ₂ [84332-86-5]	4.4×10^2		MacBean (2012a)	?	
monalide C ₁₃ H ₁₈ CINO [7287-36-7]	4.0×10^2		MacBean (2012a)	?	
etaconazole C ₁₄ H ₁₅ Cl ₂ N ₃ O ₂ [60207-93-4]	7.9×10 ³		MacBean (2012a)	?	
triadimenol	7.6×10^6		HSDB (2015)	V	
C ₁₄ H ₁₈ ClN ₃ O ₂ [55219-65-3]	3.8×10^6		Mackay et al. (2006d)	V	
triadimefon	1.2×10 ⁵		HSDB (2015)	V	
C ₁₄ H ₁₆ ClN ₃ O ₂ [43121-43-3]	1.2×10^5		Mackay et al. (2006d)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\mathrm{d} \ln H^{cp}$			
Formula Other name(s))	(at T^{Θ}) $\lceil \mod \rceil$	d(1/T)	Reference	Type	Note
CAS registry number]	$\left\lfloor \overline{m^3 Pa} \right\rfloor$	[K]			
mazalil	3.8×10^3		HSDB (2015)	V	
C ₁₄ H ₁₄ Cl ₂ N ₂ O 35554-44-0]	5.1×10^5		Mackay et al. (2006d)	V	
ropiconazole	1.1×10 ⁴		HSDB (2015)	V	
C ₁₅ H ₁₇ Cl ₂ N ₃ O ₂	5.7×10^3		Mackay et al. (2006d)	V	
60207-90-1]	2.5×10^3		Siebers et al. (1994)	V	
lonazepam C ₁₅ H ₁₀ ClN ₃ O ₃ 1622-61-3]	1.4×10^7		HSDB (2015)	Q	38
xazepam C ₁₅ H ₁₂ ClN ₂ O ₂ 604-75-1]	1.8×10 ⁴		HSDB (2015)	Q	38
oxadiazon	1.4×10^2		HSDB (2015)	V	
C ₁₅ H ₁₈ Cl ₂ N ₂ O ₃ 19666-30-9]	1.4×10^2		Armbrust (2000)	С	
yproconazole C ₁₅ H ₁₈ ClN ₃ O 94361-06-5]	1.4×10^4		HSDB (2015)	V	
liclobutrazol C ₁₅ H ₁₉ Cl ₂ N ₃ O 75736-33-3]	8.0×10 ³		MacBean (2012a)	?	
liazepam C ₁₆ H ₁₃ ClN ₂ O 439-14-5]	2.7×10 ³		HSDB (2015)	Q	38
oendamustine C ₁₆ H ₂₁ Cl ₂ N ₃ O ₂ 16506-27-7]	2.5×10 ⁷		HSDB (2015)	Q	38
oiperalin C ₁₆ H ₂₁ Cl ₂ NO ₂ 3478-94-2]	4.3×10^2		HSDB (2015)	Q	38
ebuconazole C ₁₆ H ₂₂ ClN ₃ O 107534-96-3]	7.0×10^4		HSDB (2015)	V	
enarimol C ₁₇ H ₁₂ Cl ₂ N ₂ O 60168-88-9]	1.4×10^3		Mackay et al. (2006d)	V	
riticonazole C ₁₇ H ₂₀ N ₃ OCl 131983-72-7]	6.6×10 ⁴		HSDB (2015)	Q	38
ooscalid C ₁₈ H ₁₂ Cl ₂ N ₂ O 188425-85-6]	1.9×10^4		MacBean (2012b)	X	137

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
tebufenpyrad	$> 8.2 \times 10^2$		HSDB (2015)	V	
C ₁₈ H ₂₄ ClN ₃ O [119168-77-3]					
8,9,10,11-tetrachloro-12- phthaloperinone	4.8×10^5		Zhang et al. (2010)	Q	107, 108
$C_{18}H_6Cl_4N_2O$	7.5×10^9		Zhang et al. (2010)	Q	107, 109
[20749-68-2]	5.7×10^3		Zhang et al. (2010)	Q	107, 110
	1.9×10^5		Zhang et al. (2010)	Q	107, 111
pigment red 254	3.4×10^9		Zhang et al. (2010)	Q	107, 108
$C_{18}H_{10}Cl_2N_2O_2$	3.9×10^6		Zhang et al. (2010)	Q	107, 109
[84632-65-5]	1.9×10^{13}		Zhang et al. (2010)	Q	107, 110
	2.2×10^{12}		Zhang et al. (2010)	Q	107, 111
quizalofop ethyl $C_{19}H_{17}ClN_2O_4$ [76578-14-8]	9.0×10^2		HSDB (2015)	V	
pyraclostrobine C ₁₉ H ₁₈ ClN ₃ O ₄ [175013-18-0]	1.9×10 ⁵		MacBean (2012b)	X	137
ponsol red violet 2rnx	2.4×10^{10}		Zhang et al. (2010)	Q	107, 108
C ₂₁ H ₈ Cl ₃ NO ₃	4.1×10^{7}		Zhang et al. (2010)	Q	107, 109
[6373-31-5]	9.9×10^{8}		Zhang et al. (2010)	Q	107, 110
	4.6×10^9		Zhang et al. (2010)	Q	107, 111
dimethomorph $C_{21}H_{22}NO_4Cl$ [110488-70-5]	9.9×10^9		HSDB (2015)	Q	38
aripiprazole C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂ [129722-12-9]	9.9×10 ¹¹		HSDB (2015)	Q	38
ag-g-86814	1.8×10 ¹⁴		Zhang et al. (2010)	Q	107, 108
$C_{26}H_6Cl_8N_2O_4$	9.7×10^{12}		Zhang et al. (2010)	Q	107, 109
[30125-47-4]	1.1×10^{11}		Zhang et al. (2010)	Q	107, 110
	4.1×10^{14}		Zhang et al. (2010)	Q	107, 111
8,18-dichloro-5,15-diethyl-5,15-dihydrodiindolo(3,2-b:3',2'-m)triphenodioxazine	8.0×10^6		Zhang et al. (2010)	Q	107, 108
C ₃₄ H ₂₂ Cl ₂ N ₄ O ₂	1.8×10^{12}		Zhang et al. (2010)	Q	107, 109
[6358-30-1]	6.2×10^6		Zhang et al. (2010)	Q	107, 110
	1.0×10^{10}		Zhang et al. (2010)	Q	107, 111
	Chlorofluoro	carbons	(C, H, O, N, F, Cl)		
fluoroethene C ₂ H ₃ F (vinyl fluoride)	8.2×10 ⁻⁵		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s))	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Туре	Note
[CAS registry number]	$\left\lfloor \frac{\text{mol}}{\text{m}^3 \text{Pa}} \right\rfloor$	[K]			
$1,2$ -difluoroethane $C_2H_4F_2$ [624-72-6]	2.5×10 ⁻⁵		HSDB (2015)	Q	38
trifluoroethene C ₂ HF ₃ [359-11-5]	2.3×10 ⁻⁵		HSDB (2015)	Q	38
3,3,3-trifluoropropene C ₃ H ₃ F ₃ 677-21-4]	1.3×10 ⁻⁵		HSDB (2015)	Q	38
1,1,3,3,3-pentafluoro-2- (trifluoromethyl)-1-propene C ₄ F ₈ (perfluoroisobutylene) [382-21-8]	2.9×10 ⁻⁷		HSDB (2015)	Q	38
decafluorobutane \mathbb{C}_4F_{10} 355-25-9]	1.5×10 ⁻⁸		HSDB (2015)	Q	38
tetradecafluorohexane C ₆ F ₁₄ (perflexane) [355-42-0]	5.4×10 ⁻¹⁰		HSDB (2015)	Q	38
1,1,1,3,3,3-hexafluoro-2-propanone C ₃ F ₆ O [684-16-2]	3.2×10 ⁻³		HSDB (2015)	Q	38
desflurane C ₃ H ₂ F ₆ O [57041-67-5]	1.4×10^{-4}		HSDB (2015)	Q	38
sevoflurane C ₄ H ₃ F ₇ O [28523-86-6]	5.2×10 ⁻⁵		HSDB (2015)	Q	38
metofluthrin C ₁₈ H ₂₀ F ₄ O ₃ [240494-70-6]	1.0		HSDB (2015)	V	
fluoxymesterone C ₂₀ H ₂₉ FO ₃ [76-43-7]	1.6×10 ⁴		HSDB (2015)	Q	38
dexamethasone C ₂₂ H ₂₉ FO ₅ [50-02-2]	1.4×10^2		HSDB (2015)	Q	38
flocoumafen C ₃₃ H ₂₅ F ₃ O ₄ [90035-08-8]	1.4×10 ⁷		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
Other name(s))	[mol]			31	
CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
nlorofluoromethane	1.5×10^{-3}	2600	Wilhelm et al. (1977)	L	
H ₂ FCl	1.5×10^{-3}	2300	Boggs and Buck (1958)	M	
R31)	1.5×10^{-3}		Hine and Mookerjee (1975)	V	
593-70-4]	3.4×10^{-3}		Hilal et al. (2008)	Q	
	,	2600	Kühne et al. (2005)	Q	
	6.1×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	1.8×10^{-3}		Irmann (1965)	Q ?	
	2	2500	Kühne et al. (2005)		
	1.6×10^{-3}		Yaws (1999)	?	
	1.5×10^{-3}		Yaws and Yang (1992)	?	92
lorodifluoromethane	3.4×10^{-4}	3400	Sander et al. (2011)	L	
HF ₂ Cl	3.4×10^{-4}	3400	Wilhelm et al. (1977)	L	
(22)	3.6×10^{-4}	2700	Zheng et al. (1997)	M	
[5-45-6]	3.5×10^{-4}	3100	Maaßen (1995)	M	
	3.5×10^{-4}	3000	Reichl (1995)	M	
	2.1×10^{-4}	4400	Chang and Criddle (1995)	M	
	3.5×10^{-4}	2600	Boggs and Buck (1958)	M	
	3.3×10^{-4}		Mackay et al. (2006b)	V	
	3.3×10^{-4}		Mackay et al. (1993)	V	
	3.4×10^{-4}	2800	McLinden (1989)	V	277
	3.4×10^{-4}		Hine and Mookerjee (1975)	V	
	3.2×10^{-4}		Irmann (1965)	V	
			Kanakidou et al. (1995)	C	278
	6.0×10^{-4}		Hilal et al. (2008)	Q	
		2600	Kühne et al. (2005)	Q	
	4.0×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	3.5×10^{-4}		Irmann (1965)	Q	
		3000	Kühne et al. (2005)	?	
	3.3×10^{-4}		Yaws (1999)	?	
	3.3×10^{-4}		Yaws and Yang (1992)	?	92
chlorofluoromethane	9.1×10^{-4}		HSDB (2015)	V	
HFCl ₂	1.8×10^{-3}		Mackay et al. (1993)	V	
221)	1.6×10^{-3}		Hilal et al. (2008)	Q	
5-43-4]	1.9×10^{-3}		Yaws (1999)	?	
	3.8×10^{-5}		Mackay et al. (1993)	?	
	1.9×10^{-3}		Yaws and Yang (1992)	?	92
lorotrifluoromethane	9.9×10^{-6}	1700	Sander et al. (2011)	L	279
F ₃ Cl	9.3×10^{-6}	1600	Wilhelm et al. (1977)	L	
213)	8.6×10^{-6}	2200	Reichl (1995)	M	
5-72-9]	9.2×10^{-6}	1900	Scharlin and Battino (1994)	M	
	7.8×10^{-6}		Park et al. (1982)	M	
	1.5×10^{-4}		Mackay et al. (1993)	V	
	5.7×10^{-6}		Hine and Mookerjee (1975)	V	
	7.2×10^{-6}		Hilal et al. (2008)	C	
	5.7×10^{-6}		Irmann (1965)	C	
	2.6×10^{-5}		Hilal et al. (2008)	Q	
		2600	Kühne et al. (2005)	Q	
		2000	Kuine et al. (2003)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

	H^{cp}	41 IICD			
Substance Formula	(at T^{\ominus})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} (1/T)}$			
(Other name(s))		$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	[K]			
	5.1×10^{-6}		Irmann (1965)	Q	
		2000	Kühne et al. (2005)	?	
	8.8×10^{-6}		Yaws (1999)	?	
	8.7×10^{-6}		Yaws and Yang (1992)	?	92
lichlorodifluoromethane	3.0×10^{-5}	3400	Warneck and Williams (2012)	L	
CF ₂ Cl ₂	3.0×10^{-5}	3500	Sander et al. (2011)	L	
R12)	3.0×10^{-5}	3500	Sander et al. (2006)	L	
75-71-8]	3.1×10^{-5}	3500	Staudinger and Roberts (2001)	L	
	2.1×10^{-5}	1800	Wilhelm et al. (1977)	L	
	1.3×10^{-4}	5500	Hiatt (2013)	M	
	3.0×10^{-5}	3000	Reichl (1995)	M	
	2.9×10^{-5}	2700	Scharlin and Battino (1994)	M	
	3.1×10^{-5}	3500	Munz and Roberts (1987)	M	
	2.9×10^{-5}	3200	Warner and Weiss (1985)	M	
	2.3×10^{-5}	3400	Wisegarver and Cline (1985)	M	127
	2.9×10^{-5}		Park et al. (1982)	M	
	2.5×10^{-5}		Pearson and McConnell (1975)	M	248, 9
	2.4×10^{-5}		Mackay et al. (2006b)	V	-,-
	2.4×10^{-5}		Mackay et al. (1993)	V	
	2.3×10^{-5}		Mackay and Shiu (1981)	V	
	2.3×10^{-5}		Hine and Mookerjee (1975)	V	
	3.5×10^{-6}	-210	Goldstein (1982)	X	116
	3.6×10^{-5}	210	Hilal et al. (2008)	C	110
	6.4×10^{-6}		Ryan et al. (1988)	C	
	2.3×10^{-5}		Irmann (1965)	C	
	5.4×10^{-5}		Hilal et al. (2008)	Q	
	5.4×10	3000	Kühne et al. (2005)	Q	
	4.7×10^{-5}	3000	Nirmalakhandan and Speece (1988a)	Q	
	2.0×10^{-5}		Irmann (1965)	Q	
	2.0 × 10	3400	Kühne et al. (2005)	?	
	2.5×10^{-5}	3400	Yaws (1999)	?	
	2.5×10^{-5}		Yaws and Yang (1992)	?	92
richlorofluoromethane	1.1×10^{-4}	3400	Warneck and Williams (2012)	L	
CFCl ₃	1.1×10^{-4}	3300	Sander et al. (2011)	L	
R11)	1.1×10^{-4} 1.1×10^{-4}	3300	Sander et al. (2006)	L	
75-69-4]	1.1×10^{-4} 1.1×10^{-4}	3300	Staudinger and Roberts (2001)	L	
75 07-4]	1.0×10^{-4}	3100	Staudinger and Roberts (2001) Staudinger and Roberts (1996)	L	
	2.8×10^{-4}	5100	Hiatt (2013)	M	
	1.0×10^{-4}	3700	Maaßen (1995)	M	
	1.4×10^{-4}	3800	Reichl (1995)	M	
	9.9×10^{-5}	3500	Ashworth et al. (1988)	M	103
	1.0×10^{-4}		` ,		103
	7.8×10^{-5}	3600	Warner and Weiss (1985)	M	127
		3900	Wisegarver and Cline (1985)	M	127
	1.1×10^{-4}	2700	Hunter-Smith et al. (1983)	M	251
	1.1×10^{-4}		Park et al. (1982)	M	
	1.7×10^{-4}	2100	Warner et al. (1980)	M	
	1.1×10^{-4}	2100	Balls (1980)	M	240 -
	1.2×10^{-5}		Pearson and McConnell (1975)	M	248, 9

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	7.8×10^{-5} 9.9×10^{-5} 7.8×10^{-5} 9.0×10^{-5}	6100	Mackay et al. (2006b) Fogg and Sangster (2003) Mackay et al. (1993) Yoshida et al. (1983)	V V V	
	9.0×10^{-5} 9.5×10^{-5} 9.8×10^{-5} 1.7×10^{-4}	730	Mackay and Shiu (1981) Warner et al. (1980) Irmann (1965) Goldstein (1982)	V V V X	116
	$ 1.0 \times 10^{-4} 1.7 \times 10^{-4} 1.7 \times 10^{-4} 8.1 \times 10^{-5} 1.7 \times 10^{-4} $		Hilal et al. (2008) Ryan et al. (1988) Shen (1982) Liss and Slater (1974)	C C C	
	8.6×10^{-5} 9.8×10^{-5}	3300 3800	Hilal et al. (2008) Kühne et al. (2005) Irmann (1965) Mackay et al. (2006b) Kühne et al. (2005)	Q Q Q ?	
	$8.1 \times 10^{-5} \\ 9.8 \times 10^{-5} \\ 8.1 \times 10^{-5}$		Yaws (1999) Mackay et al. (1993) Yaws and Yang (1992)	? ? ?	92
1,1,1,2-tetrachlorodifluoroethane C ₂ Cl ₄ F ₂ [76-11-9]	$6.2 \times 10^{-5} \\ 5.1 \times 10^{-4}$		HSDB (2015) Hilal et al. (2008)	V Q	
$1,1,2,2$ -tetrachlorodifluoroethane $C_2F_2Cl_4$ (R112) [76-12-0]	9.0×10^{-5} 1.0×10^{-4} 5.1×10^{-4}		HSDB (2015) Hine and Mookerjee (1975) Hilal et al. (2008)	V V Q	
1,1,1-trichloro-2,2,2-trifluoroethane C ₂ F ₃ Cl ₃ (R113a) [354-58-5]	3.7×10^{-5} 3.7×10^{-5} 2.1×10^{-4} 5.8×10^{-5} 3.0×10^{-5}		HSDB (2015) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	38 107, 108 107, 109 107, 110 107, 111
1,1,2-trichloro-1,2,2-trifluoroethane C ₂ F ₃ Cl ₃ (R113) [76-13-1]	2.0×10^{-4} 2.9×10^{-5} 3.1×10^{-5} 2.8×10^{-5} 3.4×10^{-5}	5700 4300 4300 6500 3200	Hiatt (2013) Dewulf et al. (1999) Bu and Warner (1995) Reichl (1995) Ashworth et al. (1988)	M M M M	103
	1.9×10^{-5} 8.8×10^{-6} 2.0×10^{-5} 1.8×10^{-4}	3700	HSDB (2015) Mackay et al. (2006b) Mackay et al. (1993) Hine and Mookerjee (1975) Hilal et al. (2008) Kühne et al. (2005)	V V V V Q Q	256
	3.1×10^{-5} 3.1×10^{-5} 2.0×10^{-5}	3800	Mackay et al. (2006b) Kühne et al. (2005) Mackay et al. (1993) Yaws and Yang (1992)	? ? ? ?	92

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	2.0×10^{-5}		Abraham et al. (1990)	?	
1,1-dichlorotetrafluoroethane	8.2×10^{-6}		HSDB (2015)	V	
C ₂ F ₄ Cl ₂	5.8×10^{-6}		Hine and Mookerjee (1975)	V	
(R114a)	7.5×10^{-6}		Hilal et al. (2008)	C	
[374-07-2]	5.8×10^{-6}		Irmann (1965)	C	113
	8.8×10^{-5}		Hilal et al. (2008)	Q	
	6.6×10^{-6}		Irmann (1965)	Q	
1,2-dichlorotetrafluoroethane	9.0×10^{-6}	2800	Reichl (1995)	M	
$C_2F_4Cl_2$	7.9×10^{-6}		Mackay et al. (1993)	V	
R114)	8.0×10^{-6}		Hine and Mookerjee (1975)	V	
76-14-2]	8.1×10^{-6}		Irmann (1965)	C	9
	8.4×10^{-5}		Hilal et al. (2008)	Q	
		3300	Kühne et al. (2005)	Q	
	6.6×10^{-6}		Irmann (1965)	Q	
		2700	Kühne et al. (2005)	?	
	8.1×10^{-6}		Yaws and Yang (1992)	?	92
chloropentafluoroethane	3.4×10^{-6}	2800	Wilhelm et al. (1977)	L	
C ₂ F ₅ Cl	3.1×10^{-6}	2100	Reichl (1995)	M	
R115)	1.8×10^{-6}	2100	HSDB (2015)	V	
76-15-3]	3.8×10^{-6}		Mackay et al. (1993)	V	
	3.7×10^{-6}		Meylan and Howard (1991)	V	
	3.2×10^{-6}		Hine and Mookerjee (1975)	V	
	3.2×10^{-6}		Irmann (1965)	C	
	3.4×10^{-5}		Hilal et al. (2008)	Q	
		2900	Kühne et al. (2005)	Q	
	1.2×10^{-6}		Meylan and Howard (1991)	Q	
	2.1×10^{-6}		Irmann (1965)	Q	
		2000	Kühne et al. (2005)	?	
	3.8×10^{-6}		Yaws and Yang (1992)	?	92
1,1,2,2-tetrachloro-1-fluoroethane C ₂ HCl ₄ F 354-14-3]	3.3×10 ⁻³		HSDB (2015)	Q	38
1,1-dichloro-1,2,2-trifluoroethane C ₂ HCl ₂ F ₃ [812-04-4]	1.0×10 ⁻⁴		HSDB (2015)	Q	38
1,2-dichloro-1,1,2-trifluoroethane C ₂ HCl ₂ F ₃ [354-23-4]	1.0×10 ⁻⁴		HSDB (2015)	Q	38
2,2-dichloro-1,1,1-trifluoroethane	2.3×10^{-4}	2400	Kutsuna (2013)	M	
C ₂ HF ₃ Cl ₂	3.3×10^{-4}	3400	Chang and Criddle (1995)	M	
R123)	2.8×10^{-4}	2600	McLinden (1989)	V	
306-83-2]	5.0×10^{-4}		Hilal et al. (2008)	Q	
1-chloro-1,1,2,2-tetrafluoroethane C ₂ HClF ₄ (354-25-6]	1.8×10 ⁻⁵		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1-chloro-1,2,2,2-tetrafluoroethane C ₂ HF ₄ Cl (R124)	1.1×10^{-4} 1.0×10^{-4} 1.1×10^{-4}	2800 3500 3400	Kutsuna (2013) Maaßen (1995) Reichl (1995)	M M M	
[2837-89-0]	1.0×10^{-4}	3200 2900 3400	McLinden (1989) Kühne et al. (2005) Kühne et al. (2005)	V Q ?	
1,2-dichloro-1,1-difluoroethane C ₂ H ₂ Cl ₂ F ₂ [1649-08-7]	1.4×10^{-4}		HSDB (2015)	V	
2-chloro-1,1,1-trifluoroethane	3.7×10^{-4}	3600	Maaßen (1995)	M	
$C_2H_2F_3Cl$	4.1×10^{-4}	3500	Reichl (1995)	M	
(R133a)	3.7×10^{-4}		Hine and Mookerjee (1975)	V	
[75-88-7]	3.7×10^{-4}		Irmann (1965)	C	
	3.7×10^{-5}		HSDB (2015)	Q	38
	3.0×10^{-4}		Hilal et al. (2008)	Q	
	3.9×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	2.9×10^{-4}		Irmann (1965)	Q	
1,1-dichloro-1-fluoroethane	2.9×10^{-4}	2800	Kutsuna (2013)	M	
CH ₃ CFCl ₂	2.9×10^{-4}	3700	Maaßen (1995)	M	
(R141b)	4.5×10^{-4}		HSDB (2015)	V	
[1717-00-6]	7.7×10^{-5}	5200	McLinden (1989)	V	
		3300	Kühne et al. (2005)	Q	
		3700	Kühne et al. (2005)	?	
1-chloro-1,1-difluoroethane	1.5×10^{-4}	2600	Kutsuna (2013)	M	
CH ₃ CF ₂ Cl	1.4×10^{-4}	3200	Maaßen (1995)	M	
(R142b)	1.4×10^{-4}	3200	Reichl (1995)	M	
[75-68-3]	1.5×10^{-4}	3000	Chang and Criddle (1995)	M	
	1.4×10^{-4}	2500	McLinden (1989)	V	
	1.9×10^{-4}		Irmann (1965)	C	113
	1.5×10^{-4}		Irmann (1965)	Q	
1-chloro-1,2-difluoroethane C ₂ H ₃ ClF ₂ [338-64-7]		2900 3200	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
1-chloro-1,1,2-trifluoroethane C ₂ H ₂ F ₃ Cl (R133b) [421-04-5]		2900 3500	Kühne et al. (2005) Kühne et al. (2005)	Q ?	
2-chloro-1,1-difluoroethene	1.7×10^{-4}	3300	Maaßen (1995)	M	
C ₂ HClF ₂	1.7×10^{-4}	3300	Reichl (1995)	M	
(R1122)		2800	Kühne et al. (2005)	Q	
[359-10-4]		3300	Kühne et al. (2005)	?	
chlorotrifluoroethene C ₂ ClF ₃ [79-38-9]	3.2×10 ⁻⁵		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		H^{cp}				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Substance		$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} (1/T)}$			
CAS registry number			$\mathfrak{u}(1/T)$	Reference	Type	Note
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			[K]			
$ \begin{array}{c} \text{CF}_3\text{CPC} \text{CHCl}_2 \\ \text{(R225ca)} \\ \text{(R225ca)} \\ \text{(R225ca)} \\ \text{(2.0 \times 10^{-5})} \\ \text{(2.0 \times 10^{-5})$		9.8×10^{-5}	3500	Kutsuna (2013)	М	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		9.0×10^{-5}		HSDB (2015)	0	38
	·					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.1×10^{-4}	3100	Kutsuna (2013)	M	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CCIF ₂ CF ₂ CHCIF	3.6×10^{-6}		HSDB (2015)	Q	38
$\begin{array}{c} C_7H_4\mathrm{CIF}_3 & 2.8 \times 10^{-3} & Zhang \ et \ al. \ (2010) & Q \ 107, \ 109 \\ [98-15-7] & 1.4 \times 10^{-3} & Zhang \ et \ al. \ (2010) & Q \ 107, \ 110 \\ \hline & 1.4 \times 10^{-4} & Zhang \ et \ al. \ (2010) & Q \ 107, \ 110 \\ \hline & 1.4 \times 10^{-4} & Zhang \ et \ al. \ (2010) & Q \ 107, \ 111 \\ \hline & 1.\mathrm{chloro-4-(trifluoromethyl)benzene} & 2.8 \times 10^{-4} & HSDB \ (2015) & Q \ 38 \\ \hline & C_7H_4\mathrm{CIF}_3 & 2.9 \times 10^{-4} & Zhang \ et \ al. \ (2010) & Q \ 107, \ 108 \\ \hline & 1.5 \times 10^{-3} & Zhang \ et \ al. \ (2010) & Q \ 107, \ 108 \\ \hline & 1.5 \times 10^{-3} & Zhang \ et \ al. \ (2010) & Q \ 107, \ 110 \\ \hline & 1.4 \times 10^{-4} & Zhang \ et \ al. \ (2010) & Q \ 107, \ 110 \\ \hline & 3.1 \times 10^{-4} & Zhang \ et \ al. \ (2010) & Q \ 107, \ 108 \\ \hline & C_7H_3\mathrm{CIF}_4 & 2.5 \times 10^{-3} & Zhang \ et \ al. \ (2010) & Q \ 107, \ 108 \\ \hline & (7H_3\mathrm{CIF}_4) & 2.5 \times 10^{-3} & Zhang \ et \ al. \ (2010) & Q \ 107, \ 108 \\ \hline & (7H_3\mathrm{CIF}_4) & 2.5 \times 10^{-3} & Zhang \ et \ al. \ (2010) & Q \ 107, \ 108 \\ \hline & (7H_3\mathrm{CIF}_4) & 2.5 \times 10^{-3} & Zhang \ et \ al. \ (2010) & Q \ 107, \ 110 \\ \hline & (7H_3\mathrm{CI}_2\mathrm{F}_3) & 3.9 \times 10^{-4} & Zhang \ et \ al. \ (2010) & Q \ 107, \ 108 \\ \hline & (7H_3\mathrm{CI}_2\mathrm{F}_3) & 3.9 \times 10^{-4} & Zhang \ et \ al. \ (2010) & Q \ 107, \ 108 \\ \hline & (238-84-7] & 5.3 \times 10^{-3} & Zhang \ et \ al. \ (2010) & Q \ 107, \ 108 \\ \hline & (238-84-7] & 5.3 \times 10^{-3} & Zhang \ et \ al. \ (2010) & Q \ 107, \ 108 \\ \hline & (238-84-7) & Zhang \ et \ al. \ (2010) & Q \ 107, \ 108 \\ \hline & (238-84-7) & Zhang \ et \ al. \ (2010) & Q \ 107, \ 108 \\ \hline & (258-84-7) & Zhang \ et \ al. \ (2010) & Q \ 107, \ 108 \\ \hline & (258-84-7) & Zhang \ et \ al. \ (2010) & Q \ 107, \ 108 \\ \hline & (258-84-7) & Zhang \ et \ al. \ (2010) & Q \ 107, \ 108 \\ \hline & (258-84-7) & Zhang \ et \ al. \ (2010) & Q \ 107, \ 108 \\ \hline & (258-84-7) & Zhang \ et \ al. \ (2010) & Q \ 107, \ 108 \\ \hline & (258-84-7) & Zhang \ et \ al. \ (2010) & Q \ 107, \ 108 \\ \hline & (258-84-7) & Zhang \ et \ al. \ (2010) & Q \ 107, \ 109 \\ \hline & (258-84-7) & Zhang \ et \ al. \ (2010) & Q \ 107, \ 109 \\ \hline & (258-84-7) & Zhang \ et \ al. \ (2010) & Q \ 107$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-chloro-3-(trifluoromethyl)benzene			Zhang et al. (2010)	Q	107, 108
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₇ H ₄ ClF ₃			Zhang et al. (2010)	Q	107, 109
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[98-15-7]			Zhang et al. (2010)	Q	107, 110
$\begin{array}{c} \text{C7H}_4\text{CIF}_3 & 2.9 \times 10^{-4} & \text{Zhang et al. (2010)} & Q & 107, 108 \\ [98-56-6] & 3.1 \times 10^{-3} & \text{Zhang et al. (2010)} & Q & 107, 109 \\ 1.5 \times 10^{-3} & \text{Zhang et al. (2010)} & Q & 107, 110 \\ 1.4 \times 10^{-4} & \text{Zhang et al. (2010)} & Q & 107, 111 \\ \hline \\ 3\text{-chloro-4-fluorobenzotrifluoride} & 2.4 \times 10^{-4} & \text{Zhang et al. (2010)} & Q & 107, 108 \\ \hline \\ C_7 \text{H}_3 \text{CIF}_4 & 2.5 \times 10^{-3} & \text{Zhang et al. (2010)} & Q & 107, 109 \\ \hline \\ [78068-85-6] & 8.6 \times 10^{-4} & \text{Zhang et al. (2010)} & Q & 107, 109 \\ \hline \\ [78068-85-6] & 8.6 \times 10^{-4} & \text{Zhang et al. (2010)} & Q & 107, 110 \\ \hline \\ 3.4\text{-dichlorobenzotrifluoride} & 3.8 \times 10^{-4} & \text{Zhang et al. (2010)} & Q & 107, 110 \\ \hline \\ 3.4\text{-dichlorobenzotrifluoride} & 3.8 \times 10^{-4} & \text{Zhang et al. (2010)} & Q & 107, 108 \\ \hline \\ [328-84-7] & 5.3 \times 10^{-3} & \text{Zhang et al. (2010)} & Q & 107, 108 \\ \hline \\ [328-84-7] & 5.3 \times 10^{-3} & \text{Zhang et al. (2010)} & Q & 107, 109 \\ \hline \\ 2.0 \times 10^{-3} & \text{Zhang et al. (2010)} & Q & 107, 110 \\ \hline \\ 2.3 \times 10^{-4} & \text{Zhang et al. (2010)} & Q & 107, 110 \\ \hline \\ \text{Chlorodifluoroethanoic acid} & 2.5 \times 10^2 & 10000 & \text{Sander et al. (2011)} & L \\ \hline \\ \text{CF}_2\text{CICOOH} & 2.4 \times 10^2 & 10000 & \text{Bowden et al. (1998a)} & M \\ \hline \\ \text{Chlorodifluoroacetic acid)} \\ \hline \\ [76-04-0] & \text{Carbonic chloride fluoride} & 9.9 \times 10^{-2} & \text{George et al. (1993)} & X & 238 \\ \hline \\ \text{COFCI} \\ \hline \\ [353-49-1] & \text{trifluoroacetylchloride} & 2.0 \times 10^{-2} & \text{Mirabel et al. (1996)} & M \\ \hline \\ \text{CF}_3\text{COCI} & 2.7 \times 10^{-3} & \text{De Bruyn et al. (1995a)} & M & 183 \\ \hline \end{array}$		1.4×10^{-4}		Zhang et al. (2010)	Q	107, 111
$ \begin{bmatrix} 88\text{-}56\text{-}6 \end{bmatrix} & 3.1 \times 10^{-3} & \text{Zhang et al. (2010)} & Q & 107, 109 \\ 1.5 \times 10^{-3} & \text{Zhang et al. (2010)} & Q & 107, 110 \\ 1.4 \times 10^{-4} & \text{Zhang et al. (2010)} & Q & 107, 111 \\ \end{bmatrix} \\ 3\text{-chloro-4-fluorobenzotrifluoride} & 2.4 \times 10^{-4} & \text{Zhang et al. (2010)} & Q & 107, 108 \\ C_7 H_3 \text{CIF}_4 & 2.5 \times 10^{-3} & \text{Zhang et al. (2010)} & Q & 107, 109 \\ [78068-85\text{-}6] & 8.6 \times 10^{-4} & \text{Zhang et al. (2010)} & Q & 107, 109 \\ 1.1 \times 10^{-4} & \text{Zhang et al. (2010)} & Q & 107, 110 \\ 2.4 \times 10^{-4} & \text{Zhang et al. (2010)} & Q & 107, 111 \\ 3.4\text{-dichlorobenzotrifluoride} & 3.8 \times 10^{-4} & \text{Zhang et al. (2010)} & Q & 107, 111 \\ 3.4\text{-dichlorobenzotrifluoride} & 3.8 \times 10^{-4} & \text{HSDB (2015)} & Q & 38 \\ C_7 H_3 \text{Cl}_2 F_3 & 3.9 \times 10^{-4} & \text{Zhang et al. (2010)} & Q & 107, 108 \\ [328-84-7] & 5.3 \times 10^{-3} & \text{Zhang et al. (2010)} & Q & 107, 109 \\ 2.0 \times 10^{-3} & \text{Zhang et al. (2010)} & Q & 107, 110 \\ 2.3 \times 10^{-4} & \text{Zhang et al. (2010)} & Q & 107, 111 \\ \text{chlorodifluoroethanoic acid} & 2.5 \times 10^2 & 10000 & \text{Sander et al. (2011)} & L \\ CF_2 \text{CICOOH} & 2.4 \times 10^2 & 10000 & \text{Sander et al. (2011)} & L \\ CF_2 \text{CICOOH} & 2.4 \times 10^2 & 10000 & \text{Bowden et al. (1998a)} & M \\ \text{(chlorodifluoroacetic acid)} & [76-04-0] & & & & & & & & & & & & & & & & & & &$	1-chloro-4-(trifluoromethyl)benzene			HSDB (2015)	Q	38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₇ H ₄ ClF ₃			Zhang et al. (2010)	Q	107, 108
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[98-56-6]					107, 109
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.4×10^{-4}		Zhang et al. (2010)	Q	107, 111
$ \begin{bmatrix} 78068-85-6 \end{bmatrix} & 8.6\times 10^{-4} & Zhang et al. (2010) & Q & 107, 110 \\ 1.1\times 10^{-4} & Zhang et al. (2010) & Q & 107, 111 \\ 3,4-dichlorobenzotrifluoride & 3.8\times 10^{-4} & HSDB (2015) & Q & 38 \\ C_7H_3Cl_2F_3 & 3.9\times 10^{-4} & Zhang et al. (2010) & Q & 107, 108 \\ [328-84-7] & 5.3\times 10^{-3} & Zhang et al. (2010) & Q & 107, 109 \\ 2.0\times 10^{-3} & Zhang et al. (2010) & Q & 107, 110 \\ 2.3\times 10^{-4} & Zhang et al. (2010) & Q & 107, 110 \\ 2.3\times 10^{-4} & Zhang et al. (2010) & Q & 107, 111 \\ \end{bmatrix} $ chlorodifluoroethanoic acid $ \begin{bmatrix} 2.5\times 10^2 & 10000 & Sander et al. (2011) & L \\ CF_2CICOOH & 2.4\times 10^2 & 10000 & Bowden et al. (1998a) & M \\ (chlorodifluoroacetic acid) \\ [76-04-0] & \\ \hline carbonic chloride fluoride & 9.9\times 10^{-2} & George et al. (1993) & X & 238 \\ \hline COFCI & [353-49-1] & \\ \hline trifluoroacetylchloride & 2.0\times 10^{-2} & Mirabel et al. (1996) & M \\ \hline CF_3COCI & 2.7\times 10^{-3} & De Bruyn et al. (1995a) & M & 183 \\ \hline \end{tabular} $						107, 108
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[78068-85-6]					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Zhang et al. (2010)	Q	107, 111
$ \begin{bmatrix} 328-84-7] & 5.3\times10^{-3} & Zhang et al. (2010) & Q & 107, 109 \\ 2.0\times10^{-3} & Zhang et al. (2010) & Q & 107, 110 \\ 2.3\times10^{-4} & Zhang et al. (2010) & Q & 107, 111 \\ \hline \text{chlorodifluoroethanoic acid} & 2.5\times10^2 & 10000 & Sander et al. (2011) & L \\ \hline \text{CF}_2\text{CICOOH} & 2.4\times10^2 & 10000 & Bowden et al. (1998a) & M \\ \hline \text{(chlorodifluoroacetic acid)} \\ \hline \text{[76-04-0]} & & & & & & & & & \\ \hline \text{CoFCI} & & & & & & & & \\ \hline \text{[353-49-1]} & & & & & & & & \\ \hline \text{trifluoroacetylchloride} & 2.0\times10^{-2} & & & & & & & \\ \hline \text{CoF}_3\text{COCI} & & & & & & & & & \\ \hline \text{Mirabel et al. (1995a)} & & & & & & \\ \hline \text{Mirabel et al. (1995a)} & & & & & & \\ \hline \text{Mirabel et al. (1995a)} & & & & & & \\ \hline \text{Mirabel et al. (1995a)} & & & & & \\ \hline \text{Mirabel et al. (1995a)} & & & & & \\ \hline \text{Mirabel et al. (1995a)} & & & & & \\ \hline \text{Mirabel et al. (1995a)} & & & & & \\ \hline \text{Mirabel et al. (1995a)} & & & & & \\ \hline \text{Mirabel et al. (1995a)} & & & & & \\ \hline \text{Mirabel et al. (1995a)} & & & & \\ \hline \text{Mirabel et al. (1995a)} & & & & \\ \hline \text{Mirabel et al. (1995a)} & & & & \\ \hline \text{Mirabel et al. (1995a)} & & & & \\ \hline \text{Mirabel et al. (1995a)} & & & & \\ \hline \text{Mirabel et al. (1995a)} & & \\ \hline \text{Mirabel et al. (1995a)} & & & \\ \hline \text{Mirabel et al. (1995a)} & & \\ \hline Mirabel et $	•					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[328-84-7]					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c} \text{CF}_2\text{CICOOH} & 2.4 \times 10^2 & 10000 & \text{Bowden et al. (1998a)} & \text{M} \\ \text{(chlorodifluoroacetic acid)} \\ [76-04-0] & & & & & \\ \text{carbonic chloride fluoride} & 9.9 \times 10^{-2} & \text{George et al. (1993)} & \text{X} & 238 \\ \text{COFCI} \\ [353-49-1] & & & & \\ \text{trifluoroacetylchloride} & 2.0 \times 10^{-2} & \text{Mirabel et al. (1996)} & \text{M} \\ \text{CF}_3\text{COCl} & 2.7 \times 10^{-3} & \text{De Bruyn et al. (1995a)} & \text{M} & 183 \\ \end{array} $				Zhang et al. (2010)	Q	107, 111
$[76\text{-}04\text{-}0] \\ \text{carbonic chloride fluoride} \\ \text{COFCl} \\ [353\text{-}49\text{-}1] \\ \text{trifluoroacetylchloride} \\ \text{CP}_3\text{COCl} \\ \text{COF}_3\text{COCl} \\ \text{De Bruyn et al. (1995a)} \\ \text{M} \\ \text{183} \\ \text{M} \\ \text{183} \\ \text{COFO}_{200\text{-}100\text{-}2} \\ \text{Mirabel et al. (1996)} \\ \text{M} \\ \text{De Bruyn et al. (1995a)} \\ \text{M} \\ \text{183} \\ \text{COFO}_{200\text{-}2$						
		2.4×10^{2}	10000	Bowden et al. (1998a)	M	
COFC1 [353-49-1] trifluoroacetylchloride 2.0×10^{-2} Mirabel et al. (1996) M CF ₃ COCl 2.7×10^{-3} De Bruyn et al. (1995a) M 183						
		9.9×10^{-2}		George et al. (1993)	X	238
CF ₃ COCl 2.7×10^{-3} De Bruyn et al. (1995a) M 183						
	trifluoroacetylchloride			Mirabel et al. (1996)	M	
[354-32-5] 2.0×10^{-2} George et al. (1994b) M 239	-				M	
	[354-32-5]	2.0×10^{-2}		George et al. (1994b)	M	239

Table 6: Henry's law constants for water as solvent (... continued)

Substance		H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula		(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s))		[mol]	[77]		71	
[CAS registry number]		$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
2,2-dichloro-1,1-difluoro-1-		2.9×10^{-3}	4100	Fogg and Sangster (2003)	L	
methoxyethane						
$C_3H_4Cl_2F_2O$		1.7×10^{-3}		Steward et al. (1973)	L	19
(methoxyflurane)		1.7×10^{-3}		Lerman et al. (1983)	M	19
[76-38-0]		2.8×10^{-3}	3300	Smith et al. (1981b)	M	
		1.8×10^{-3}		Stoelting and Longshore (1972)	M	19
		4.1×10^{-3}		Hilal et al. (2008)	Q	
			4800	Kühne et al. (2005)	Q	
		2.7×10^{-3}		HSDB (2015)	?	170
			4000	Kühne et al. (2005)	?	
		2.7×10^{-3}		Abraham et al. (1990)	?	
1-chloro-2,2,2-trifluoroethyl romethyl ether	difluo-	2.4×10^{-4}		Fogg and Sangster (2003)	L	
C ₃ H ₂ ClF ₅ O		2.4×10^{-4}		Steward et al. (1973)	L	19
(forane; isoflurane)		2.4×10^{-4}		Lerman et al. (1983)	M	19
[26675-46-7]		4.8×10^{-4}	5300	Smith et al. (1981b)	M	
[=====		4.2×10^{-4}		Hilal et al. (2008)	Q	
		,,,,	4400	Kühne et al. (2005)	Q	
		3.4×10^{-4}		HSDB (2015)	?	170
			4500	Kühne et al. (2005)	?	
		3.4×10^{-4}		Abraham et al. (1990)	?	
2-chloro-1,1,2-trifluoroethyl romethyl ether	difluo-	3.0×10^{-4}		Fogg and Sangster (2003)	L	
C ₃ H ₂ ClF ₅ O		2.7×10^{-4}		Guitart et al. (1989)	M	19
(enflurane)		2.9×10^{-4}		Lerman et al. (1983)	M	19
[13838-16-9]		1.3×10^{-3}		HSDB (2015)	V	
[15050 10 7]		3.0×10^{-4}		Steward et al. (1973)	Ċ	19
		6.9×10^{-4}		Hilal et al. (2008)	Q	
3-[2-chloro-4-		6.4×10^2		Zhang et al. (2010)	Q	107, 108
(trifluoromethyl)phenoxy]benzo	oic			-		
acid C ₁₄ H ₈ ClF ₃ O ₃		3.3×10^{2}		Zhang et al. (2010)	0	107, 109
[63734-62-3]		2.1×10^5		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 109
[03/34-02-3]		2.1×10^{3} 2.9×10^{3}		Zhang et al. (2010)	Q	107, 110
3-(2-chloro-4-		1.1		Zhang et al. (2010)	Q	107, 108
(trifluoromethyl)phenoxy)pheny acetate	yl			23.11.1g	*	107, 100
$C_{15}H_{10}ClF_3O_3$		2.4×10^{1}		Zhang et al. (2010)	Q	107, 109
[50594-77-9]		2.9×10^{1}		Zhang et al. (2010)	Q	107, 110
		3.6		Zhang et al. (2010)	Q	107, 111
tefluthrin C ₁₇ H ₁₄ O ₂ ClF ₇ [79538-32-2]		6.2×10 ⁻³		HSDB (2015)	V	
clobetasol C ₂₂ H ₂₈ CIFO ₄ [25122-41-2]		6.2×10 ⁴		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s))	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Туре	Note
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
EINECS 273-236-7	1.5×10 ¹⁴		Zhang et al. (2010)	Q	107, 108
$C_{28}H_{33}Cl_3F_6O_{11}$	6.9×10^{18}		Zhang et al. (2010)	Q	107, 109
[68954-01-8]	2.3×10^{12}		Zhang et al. (2010)	Q	107, 110
	1.6×10^{15}		Zhang et al. (2010)	Q	107, 111
4-fluoroaniline C ₆ H ₆ FN [371-40-4]	1.6		HSDB (2015)	Q	182
N-ethyl-1-[3-(trifluoromethyl)phenyl]-2-propanamine $C_{12}H_{16}F_3N$ (fenfluramine) [458-24-2]	3.7×10 ⁻¹		HSDB (2015)	Q	38
cinacalcet C ₂₂ H ₂₂ F ₃ N [226256-56-0]	4.5×10 ¹		HSDB (2015)	Q	38
hydramethylnon C ₂₅ H ₂₄ F ₆ N ₄ [67485-29-4]	4.5		HSDB (2015)	V	
3,5-dichloro-2,4,6-trifluoropyridine	1.6		Zhang et al. (2010)	Q	107, 108
$C_5Cl_2F_3N$	7.7×10^{-4}		Zhang et al. (2010)	Q	107, 109
[1737-93-5]	1.6×10^{-3}		Zhang et al. (2010)	Q	107, 110
	2.7×10^{-2}		Zhang et al. (2010)	Q	107, 111
chlorodifluoronitrooxymethane CCIF ₂ OONO ₂ [70490-95-8]	2.9×10^{-2}	5900	Kanakidou et al. (1995)	E	280
1-chloro-2-nitro-4-(trifluoromethyl)- benzene	7.2×10^{-2}		Zhang et al. (2010)	Q	107, 108
C ₇ H ₃ ClF ₃ NO ₂	1.2×10^{-1}		Zhang et al. (2010)	Q	107, 109
[121-17-5]	1.1×10^{-1}		Zhang et al. (2010)	Q	107, 110
	1.0×10^{-2}		Zhang et al. (2010)	Q	107, 111
2-chloro-1,3-dinitro-5- (trifluoromethyl)-benzene	1.8×10 ¹		Zhang et al. (2010)	Q	107, 108
C ₇ H ₂ ClF ₃ N ₂ O ₄	2.8		Zhang et al. (2010)	Q	107, 109
[393-75-9]	1.7×10^{-1}		Zhang et al. (2010)	Q	107, 110
	9.0×10^{-1}		Zhang et al. (2010)	Q	107, 111
fluroxypyr C ₇ H ₅ Cl ₂ FN ₂ O ₃ [69377-81-7]	5.7×10 ⁵		HSDB (2015)	V	
norflurazon C ₁₂ H ₉ ClF ₃ N ₃ O [27314-13-2]	2.9×10 ⁴		HSDB (2015)	V	
fluchloralin	6.6×10^{-1}		HSDB (2015)	V	
C ₁₂ H ₁₃ ClF ₃ N ₃ O ₄ [33245-39-5]	7.4×10^{-1}		Mackay et al. (2006d)	V	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]			-71	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
fluazinam	3.9×10^{-2}		HSDB (2015)	V	
C ₁₃ H ₄ Cl ₂ F ₆ N ₄ O ₄ [79622-59-6]					
5-(2-chloro-4- (trifluoromethyl)phenoxy)-2- nitrophenol	9.9		Zhang et al. (2010)	Q	107, 108
C ₁₃ H ₇ ClF ₃ NO ₄	1.1×10^{3}		Zhang et al. (2010)	Q	107, 109
[42874-63-5]	2.3×10^{6}		Zhang et al. (2010)	Q	107, 110
	2.3×10^{1}		Zhang et al. (2010)	Q	107, 111
tetraconazole C ₁₃ H ₁₁ Cl ₂ F ₄ N ₃ O [112281-77-3]	2.3×10 ³		HSDB (2015)	V	
fluopicolide C ₁₄ H ₈ Cl ₃ F ₃ N ₂ O [239110-15-7]	9.0×10 ³		HSDB (2015)	V	
difluron	2.1×10^3		HSDB (2015)	V	
C ₁₄ H ₉ ClF ₂ N ₂ O ₂ [35367-38-5]	2.1×10^3		Mackay et al. (2006d)	V	
efavirenz C ₁₄ H ₉ ClF ₃ NO ₂ [154598-52-4]	1.4×10^3		HSDB (2015)	Q	38
quinoxyfen C ₁₅ H ₈ Cl ₂ FNO [124495-18-7]	1.0×10^3		HSDB (2015)	Q	38
5-(2-chloro-4- (trifluoromethyl)phenoxy)-2- nitrophenyl acetate	2.7×10^2		Zhang et al. (2010)	Q	107, 108
C ₁₅ H ₉ ClF ₃ NO ₅	1.5×10^{3}		Zhang et al. (2010)	Q	107, 109
[50594-44-0]	3.7×10^4		Zhang et al. (2010)	Q	107, 110
	3.1×10^2		Zhang et al. (2010)	Q	107, 111
oxyfluorfen C ₁₅ H ₁₁ ClF ₃ NO ₄ [42874-03-3]	1.2×10 ¹		HSDB (2015)	V	
pyraflufen-ethyl C ₁₅ H ₁₃ Cl ₂ F ₃ N ₂ O ₄ [129630-19-9]	1.2×10 ⁴		MacBean (2012b)	X	137
carfentrazone ethyl C ₁₅ H ₁₄ Cl ₂ F ₃ N ₃ O ₃ [128639-02-1]	3.3×10^3		HSDB (2015)	V	
triflumizole C ₁₅ H ₁₅ ClF ₃ N ₃ O [99387-89-0]	2.5×10 ⁷		Mackay et al. (2006d)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
3-(2,4-dichlorophenyl)-6-fluoro-2-(1H-1,2,4-triazol-1-yl)-quinazolin-4(3H)-one C ₁₆ H ₈ Cl ₂ FN ₅ O (fluquinconazole) [136426-54-5]	5.6×10 ⁸		Hilal et al. (2008)	Q	
hexaflumuron C ₁₆ H ₈ Cl ₂ F ₆ N ₂ O ₃ [86479-06-3]	9.9×10 ⁻¹		HSDB (2015)	V	
nuarimol C ₁₇ H ₁₂ CIFN ₂ O [63284-71-9]	1.5×10 ⁷		MacBean (2012a)	?	
clodinafop-propargyl C ₁₇ H ₁₃ ClFNO ₄ [105512-06-9]	3.5×10^3		HSDB (2015)	V	
flamprop-methyl C ₁₇ H ₁₅ ClFNO ₃ [52756-25-9]	2.2×10 ³		MacBean (2012a)	?	
pyridalyl C ₁₈ H ₁₄ Cl ₄ F ₃ NO ₃ [179101-81-6]	4.9×10 ⁶		HSDB (2015)	V	
lactofen C ₁₉ H ₁₅ ClF ₃ NO ₇ [77501-63-4]	2.3×10 ¹		HSDB (2015)	V	
chlorfluazuron C ₂₀ H ₉ Cl ₃ F ₅ N ₃ O ₃ [71422-67-8]	3.9×10 ⁸		Hilal et al. (2008)	Q	
fluazuron C ₂₀ H ₁₀ N ₃ O ₃ Cl ₂ F ₅ [86811-58-7]	>2.3×10 ¹⁰		MacBean (2012a)	?	
flufenoxuron C ₂₁ H ₁₁ CIF ₆ N ₂ O ₃ [101463-69-8]	3.8×10 ⁶		HSDB (2015)	Q	38
fluoxastrobin C ₂₁ H ₁₆ N ₄ O ₅ ClF [361377-29-9]	9.0×10^6		HSDB (2015)	V	
naloperidol C ₂₁ H ₂₃ CIFNO ₂ [52-86-8]	4.3×10 ⁸		HSDB (2015)	Q	38
indoxacarb C ₂₂ H ₁₇ ClF ₃ N ₃ O ₇ [173584-44-6]	1.5×10 ⁴		HSDB (2015)	V	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
cyfluthrin C ₂₂ H ₁₈ Cl ₂ FNO ₃ [68359-37-5]	3.4×10^2		HSDB (2015)	V	
metamifop C ₂₃ H ₁₈ N ₂ O ₄ CIF [256412-89-2]	1.6×10 ¹		MacBean (2012a)	?	9
cyhalothrin C ₂₃ H ₁₉ NO ₃ ClF ₃ [68085-85-8]	7.0×10 ⁻¹		HSDB (2015)	Q	38
bifenthrin C ₂₃ H ₂₂ ClF ₃ O ₂ [82657-04-3]	9.9 9.9 4.7		HSDB (2015) Hilal et al. (2008) Hilal et al. (2008)	V C Q	
flucycloxuron C ₂₅ H ₂₀ ClF ₂ N ₃ O ₃ [94050-52-9]	3.8×10 ¹		MacBean (2012a)	?	
fluvalinate C ₂₆ H ₂₂ ClF ₃ N ₂ O ₃ [69409-94-5]	6.6×10 ²		HSDB (2015)	Q	38

Organic species with bromine (Br)

	Bromoca	Bromocarbons (C, H, O, N, Br)							
bromomethane	1.7×10^{-3}	3100	Sander et al. (2011)	L					
CH ₃ Br	1.7×10^{-3}	3100	Sander et al. (2006)	L					
(methyl bromide)	1.7×10^{-3}	3100	Staudinger and Roberts (2001)	L					
74-83-9]	1.6×10^{-3}	3100	Wilhelm et al. (1977)	L					
	1.3×10^{-3}	2800	Hiatt (2013)	M					
	1.4×10^{-3}		Gan and Yates (1996)	M	113				
	1.7×10^{-3}	3400	Elliott and Rowland (1993)	M					
	1.5×10^{-3}	2600	Swain and Thornton (1962)	M					
	1.6×10^{-3}	3200	Glew and Moelwyn-Hughes (1953)	M					
	1.6×10^{-3}		Mackay et al. (2006b)	V					
	1.6×10^{-3}		Lide and Frederikse (1995)	V					
	1.6×10^{-3}		Mackay et al. (1993)	V					
	1.9×10^{-3}		Mackay and Shiu (1981)	V	9				
	1.5×10^{-3}		Hine and Mookerjee (1975)	V					
	4.4×10^{-5}	350	Goldstein (1982)	X	116				
		3400	Kühne et al. (2005)	Q					
	3.1×10^{-3}		Nirmalakhandan and Speece (1988a)	Q					
	7.9×10^{-4}		Irmann (1965)	Q					
		3200	Kühne et al. (2005)	?					
	1.5×10^{-3}		Yaws (1999)	?					
	1.7×10^{-3}		Yates and Gan (1998)	?					
	1.4×10^{-3}		Yaws and Yang (1992)	?	92				
	1.6×10^{-3}		Abraham et al. (1990)	?					

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]		-742	
dibromomethane	3.1×10^{-2}		Mackay and Shiu (1981)	L	
CH_2Br_2	1.2×10^{-2}	5000	Hiatt (2013)	M	
[74-95-3]	1.4×10^{-2}		Dohnal and Hovorka (1999)	M	9
	1.5×10^{-2}		Hovorka and Dohnal (1997)	M	9
	1.2×10^{-2}	4900	Kondoh and Nakajima (1997)	M	
	9.2×10^{-3}	4700	Moore et al. (1995)	M	127
	1.1×10^{-2}	3900	Wright et al. (1992)	M	
	1.1×10^{-2}	4100	Tse et al. (1992)	M	
	1.1×10^{-2}	4400	Rex (1906)	M	
	1.1×10^{-2}		Mackay et al. (2006b)	V	
	1.3×10^{-2}	4200	Fogg and Sangster (2003)	V	
	7.1×10^{-3}		Mackay et al. (1993)	V	
	1.1×10^{-2}		Hine and Mookerjee (1975)	V	
	3.8×10^{-2}	4500	Hilal et al. (2008)	Q	
	0.5.10-3	4500	Kühne et al. (2005)	Q	
	9.5×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
	1.2×10^{-2}	1200	Mackay et al. (2006b)	?	
	1.1×10^{-2}	4300	Kühne et al. (2005)	?	
	1.1×10^{-2} 1.2×10^{-2}		Yaws (1999)	? ?	
	1.2×10^{-2} 1.1×10^{-2}		Mackay et al. (1993) Abraham et al. (1990)	?	
ribromomethane	1.7×10^{-2}	5200	Sander et al. (2011)	L	
CHBr ₃	1.7×10^{-2}	5200	Sander et al. (2006)	L	
bromoform)	1.7×10^{-2}	5200	Staudinger and Roberts (2001)	L	
75-25-2]	1.7×10^{-2}	5200	Staudinger and Roberts (1996)	L	
	1.6×10^{-2}	6200	Mackay and Shiu (1981)	L	
	2.2×10^{-2} 9.6×10^{-3}	6300	Hiatt (2013)	M	10
	9.6×10^{-3} 2.3×10^{-2}		Zhang et al. (2002)	M	19
	2.3×10^{-2} 1.4×10^{-2}	4500	Hovorka and Dohnal (1997)	M	9
	1.4×10^{-2} 1.4×10^{-2}	4500	Kondoh and Nakajima (1997)	M	107
	8.5×10^{-3}	5200	Moore et al. (1995)	M	127
	8.3×10^{-2} 2.3×10^{-2}	1500	Khalfaoui and Newsham (1994a)	M	
	2.3×10^{-2} 1.9×10^{-2}	5700 5000	Wright et al. (1992) Tse et al. (1992)	M M	
	1.9×10^{-2} 1.8×10^{-2}	5000 4700	Munz and Roberts (1987)	M M	
	1.8×10^{-2} 1.6×10^{-2}	5700	Nicholson et al. (1984)	M	
	1.6×10^{-2} 1.9×10^{-2}	3700	Warner et al. (1984)	M	
	1.9×10^{-2} 1.7×10^{-2}		Mackay et al. (2006b)	V	
		5300	Fogg and Sangster (2003)	V V	
	1.8×10^{-2}				
	1.8×10^{-2} 1.7×10^{-2}	3300	Mackay et al. (1993)	V	
	1.7×10^{-2}	3300	Mackay et al. (1993) Warner et al. (1980)	V	
	$1.7 \times 10^{-2} \\ 1.7 \times 10^{-2}$	3300	Warner et al. (1980)	V	
	1.7×10^{-2} 1.7×10^{-2} 1.5×10^{-2}		Warner et al. (1980) Hine and Mookerjee (1975)	V V	116
	1.7×10^{-2} 1.7×10^{-2} 1.5×10^{-2} 1.8×10^{-2}	2700	Warner et al. (1980) Hine and Mookerjee (1975) Goldstein (1982)	V V X	116
	$ \begin{array}{r} 1.7 \times 10^{-2} \\ 1.7 \times 10^{-2} \\ 1.5 \times 10^{-2} \\ 1.8 \times 10^{-2} \\ 1.7 \times 10^{-2} \end{array} $		Warner et al. (1980) Hine and Mookerjee (1975) Goldstein (1982) Ryan et al. (1988)	V V X C	116
	$ 1.7 \times 10^{-2} 1.7 \times 10^{-2} 1.5 \times 10^{-2} 1.8 \times 10^{-2} 1.7 \times 10^{-2} 1.7 \times 10^{-2} $		Warner et al. (1980) Hine and Mookerjee (1975) Goldstein (1982) Ryan et al. (1988) Nicholson et al. (1984)	V V X C	116
	1.7×10^{-2} 1.7×10^{-2} 1.5×10^{-2} 1.8×10^{-2} 1.7×10^{-2} 1.7×10^{-2} 1.9×10^{-2}		Warner et al. (1980) Hine and Mookerjee (1975) Goldstein (1982) Ryan et al. (1988) Nicholson et al. (1984) Shen (1982)	V V X C C	116
	$ 1.7 \times 10^{-2} 1.7 \times 10^{-2} 1.5 \times 10^{-2} 1.8 \times 10^{-2} 1.7 \times 10^{-2} 1.7 \times 10^{-2} $		Warner et al. (1980) Hine and Mookerjee (1975) Goldstein (1982) Ryan et al. (1988) Nicholson et al. (1984)	V V X C	116

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s))	H^{cp} (at T^{\ominus}) \lceil mol \rceil	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mor}}{\text{m}^3 \text{Pa}}\right]$	[K]			
	2.1×10^{-2}		Mackay et al. (2006b)	?	
	2.17(10	5000	Kühne et al. (2005)	?	
	1.7×10^{-2}		Yaws (1999)	?	
	2.1×10^{-2}		Mackay et al. (1993)	?	
	1.5×10^{-2}		Abraham et al. (1990)	?	
tetrabromomethane	2.0×10^{-2}		HSDB (2015)	V	
CBr ₄	1.2×10^{-2}		Fogg and Sangster (2003)	V	281, 23
[558-13-4]	2.0×10^{-2}		Hilal et al. (2008)	C	
	2.1×10^{-3}		Hilal et al. (2008)	Q	
bromoethane	1.3×10^{-3}		Li et al. (1993)	M	
C_2H_5Br	1.3×10^{-3}	3900	Rex (1906)	M	
[74-96-4]			Mackay et al. (2006b)	V	256
	8.1×10^{-4}		Mackay et al. (1993)		
	1.4×10^{-3}		Abraham (1984)		
	1.3×10^{-3}		Hine and Mookerjee (1975)		
	9.2×10^{-5}		Ryan et al. (1988)		
	3.4×10^{-3}	2700	Hilal et al. (2008)		
	1 6 10-3	3700	Kühne et al. (2005)		
	1.6×10^{-3}	2000	Nirmalakhandan and Speece (1988a)		
	1.3×10^{-3}	3800	Kühne et al. (2005) Yaws and Yang (1992)		92
	1.4×10^{-3}		Abraham et al. (1990)	? ? ?	92
1,1-dibromoethane C ₂ H ₄ Br ₂	7.6×10^{-3}		HSDB (2015)	Q	38
[557-91-5]					
1,2-dibromoethane	1.7×10^{-2}	5500	Hiatt (2013)	M	
$C_2H_4Br_2$	1.9×10^{-2}		Dohnal and Hovorka (1999)	M	9
(ethylene dibromide)	1.9×10^{-2}		Hovorka and Dohnal (1997)	M	9
[106-93-4]	1.8×10^{-2}	5500	Kondoh and Nakajima (1997)	M	
	1.1×10^{-2}	3000	Khalfaoui and Newsham (1994a)	M	
	1.5×10^{-2}	3900	Ashworth et al. (1988)	M	103
	1.5×10^{-2}		Mackay et al. (2006b)	? ? ? ? Q M M M M M M M M M	
	2.1×10^{-3}		Mackay et al. (1993)	V	
	1.4×10^{-2}		Hine and Mookerjee (1975)	V	
	1.1×10^{-2}	1900	Goldstein (1982)	X	116
	1.5×10^{-2}		HSDB (2015)	C	
	3.9×10^{-2}	4600	Hilal et al. (2008)	Q	
	7.5.10-3	4800	Kühne et al. (2005)	Q	
	7.5×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
	1.5×10^{-2}	4200	Mackay et al. (2006b)	? ?	
	1.5×10^{-2}	4200	Kühne et al. (2005) Mackay et al. (1993)	?	
	1.3×10^{-2} 1.4×10^{-2}		Yaws and Yang (1992)	?	92
	2.1×10^{-2}		Abraham et al. (1990)	?	12
	1.6×10^{-2}		Mackay and Yeun (1983)	?	
	6×10 ~		Wackay and Tenn (1985)		

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1,2-dibromoethane-d4 C ₂ D ₄ Br ₂ (ethylene dibromide-d4) [22581-63-1]	1.6×10 ⁻²	4800	Hiatt (2013)	M	
1,1,2,2-tetrabromoethane C ₂ H ₂ Br ₄ [79-27-6]	1.0×10^{-2} 7.6×10^{-1} 5.7×10^{-1} 2.9×10^{-1} 4.3×10^{-1} 1.5×10^{-1} 2.4×10^{-1}	840	Khalfaoui and Newsham (1994a) HSDB (2015) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Hilal et al. (2008)	M V Q Q Q Q	107, 108 107, 109 107, 110 107, 111
1-bromopropane C ₃ H ₇ Br [106-94-5]	1.1×10^{-3} 1.1×10^{-3} 1.4×10^{-3} 2.6×10^{-4} 2.6×10^{-4} 1.0×10^{-3} 1.0×10^{-3} 1.3×10^{-3} 1.4×10^{-3} 1.0×10^{-3}	4500	Li et al. (1993) Rex (1906) HSDB (2015) Mackay et al. (2006b) Mackay et al. (1993) Abraham (1984) Hine and Mookerjee (1975) Hilal et al. (2008) Nirmalakhandan and Speece (1988a) Yaws and Yang (1992) Abraham et al. (1990)	M M V V V V Q Q ?	92, 9
2-bromopropane C ₃ H ₇ Br [75-26-3]	8.4×10^{-4} 9.0×10^{-4} 9.0×10^{-4} 7.9×10^{-4} 7.9×10^{-4} 9.0×10^{-4} 1.5×10^{-3} 9.2×10^{-4} 1.0×10^{-3} 9.0×10^{-4}	4500	Li et al. (1993) Rex (1906) HSDB (2015) Mackay et al. (2006b) Mackay et al. (1993) Hine and Mookerjee (1975) Hilal et al. (2008) Nirmalakhandan and Speece (1988a) Yaws and Yang (1992) Abraham et al. (1990)	M M V V V V Q Q	92, 9
1,2-dibromopropane C ₃ H ₆ Br ₂ [78-75-1]	6.8×10^{-3} 6.8×10^{-3} 1.1×10^{-2} 1.9×10^{-2} 4.4×10^{-3} 6.6×10^{-3}		HSDB (2015) Mackay et al. (2006b) Hine and Mookerjee (1975) Hilal et al. (2008) Nirmalakhandan and Speece (1988a) Yaws and Yang (1992)	V V V Q Q	92
1,3-dibromopropane C ₃ H ₆ Br ₂ [109-64-8]	$ \begin{array}{c} 1.1 \times 10^{-3} \\ 1.1 \times 10^{-2} \\ 7.2 \times 10^{-2} \\ 6.0 \times 10^{-3} \end{array} $		Mackay et al. (1993) Hine and Mookerjee (1975) Hilal et al. (2008) Nirmalakhandan and Speece (1988a)	V V Q Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	${\rm d} \ln H^{cp}$			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Tuna	Note
(Other name(s))	「 mol		Reference	Type	Note
[CAS registry number]	$\left\lfloor \frac{m^3}{m^3} Pa \right\rfloor$	[K]			
1-bromobutane	4.6×10^{-4}		Hoff et al. (1993)	M	
C ₄ H ₉ Br	8.2×10^{-4}		Li et al. (1993)	M	
[109-65-9]	1.1×10^{-3}		HSDB (2015)	V	
	8.0×10^{-4}		Abraham (1984)	V	
	8.0×10^{-4}		Hine and Mookerjee (1975)	V	
	2.2×10^{-3}		Hilal et al. (2008)	Q	
	1.0×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
	8.3×10^{-4}		Haynes (2014)	?	282
	8.1×10^{-4}		Yaws and Yang (1992)	?	92
	7.9×10^{-4}		Abraham et al. (1990)	?	
2-bromobutane	7.7×10^{-4}		Li et al. (1993)	M	
C ₄ H ₉ Br	6.2×10^{-4}		HSDB (2015)	Q	38
[78-76-2]	1.4×10^{-3}		Hilal et al. (2008)	Q	
1-bromo-2-methylpropane	4.2×10^{-4}		Hine and Mookerjee (1975)	V	
C ₄ H ₉ Br	2.0×10^{-3}		Hilal et al. (2008)	Q	
[78-77-3]	8.6×10^{-4}		Nirmalakhandan et al. (1997)	Q	
	4.2×10^{-4}		Abraham et al. (1990)	?	
2-bromo-2-methylpropane	2.4×10^{-4}		HSDB (2015)	V	
C ₄ H ₉ Br	5.2×10^{-4}		Hilal et al. (2008)	Q	
[507-19-7]	5.2×10^{-4}		Nirmalakhandan et al. (1997)	Q	
	3.1×10^{-4}		Yaws and Yang (1992)	?	92, 119
	9.7×10^{-5}		Abraham et al. (1990)	?	
1-bromo-3-methylbutane	4.9×10^{-4}		Mackay et al. (1993)	V	
$C_5H_{11}Br$	2.9×10^{-4}		Hine and Mookerjee (1975)	V	
[107-82-4]	1.8×10^{-3}		Hilal et al. (2008)	Q	
	7.0×10^{-4}		Nirmalakhandan et al. (1997)	Q	
1,4-dibromobutane $\mathbb{C}_4\mathbb{H}_8\mathbb{B}\mathbf{r}_2$ [110-52-1]	7.3×10^{-2}		Hilal et al. (2008)	Q	
1-bromopentane	4.7×10^{-4}		Abraham (1984)	V	
$C_5H_{11}Br$	1.8×10^{-3}		Hilal et al. (2008)	Q	
[110-53-2]	8.0×10^{-4}		Nirmalakhandan et al. (1997)	Q	
-	5.0×10^{-4}		Yaws and Yang (1992)	?	92
	4.7×10^{-4}		Abraham et al. (1990)	?	
l-bromo-2-methylbutane C ₅ H ₁₁ Br 10422-35-2]	8.8×10 ⁻⁴		Nirmalakhandan and Speece (1988a)	Q	
1-bromohexane	3.0×10^{-4}		Abraham (1984)	V	
$C_6H_{13}Br$	1.5×10^{-3}		Hilal et al. (2008)	Q	
[111-25-1]	6.2×10^{-4}		Nirmalakhandan et al. (1997)	Q	
	3.0×10^{-4}		Abraham et al. (1990)	?	
1-bromo-3-methylpentane $C_6H_{13}Br$ [51116-73-5]	5.8×10 ⁻⁴		Nirmalakhandan and Speece (1988a)	Q	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	[K]		1) PC	1,000
bromocyclohexane	7.0×10^{-3}		Hilal et al. (2008)	Q	
C ₆ H ₁₁ Br [108-85-0]					
1-bromoheptane	2.3×10^{-4}		Abraham (1984)	V	
$C_7H_{15}Br$	1.2×10^{-3}		Hilal et al. (2008)	Q	
[629-04-9]	5.0×10^{-4}		Nirmalakhandan et al. (1997)	Q	
	2.3×10^{-4}		Abraham et al. (1990)	?	
1-bromooctane	2.4×10^{-4}	4600	Sarraute et al. (2004)	V	
$C_8H_{17}Br$	1.7×10^{-4}		Abraham (1984)	V	
[111-83-1]	9.7×10^{-4}		Hilal et al. (2008)	Q	
	3.9×10^{-4}		Nirmalakhandan et al. (1997)	Q	
	1.7×10^{-4}		Abraham et al. (1990)	?	
1,8-dibromooctane C ₈ H ₁₆ Br ₂ [4549-32-0]	1.4×10^{-2}	7300	Sarraute et al. (2006)	M	
1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane	1.7×10^2		HSDB (2015)	Q	38
$C_8H_{12}Br_4$	2.4×10^{-1}		Zhang et al. (2010)	Q	107, 108
[3322-93-8]	2.9		Zhang et al. (2010)	Q	107, 109
	1.0×10^{1}		Zhang et al. (2010)	Q	107, 110
	2.5×10^{-1}		Zhang et al. (2010)	Q	107, 111
1-bromononane C ₉ H ₁₉ Br [693-58-3]	7.9×10^{-4}		Hilal et al. (2008)	Q	
hexabromocyclododecane	2.1×10 ⁻¹		HSDB (2015)	V	
$C_{12}H_{18}Br_6$	1.6×10^{-2}		HSDB (2015)	V	
[3194-55-6]	5.7		Zhang et al. (2010)	Q	107, 108
	1.7×10^2		Zhang et al. (2010)	Q	107, 109
	5.7×10^3		Zhang et al. (2010)	Q	107, 110
	6.5		Zhang et al. (2010)	Q	107, 111
vinyl bromide	7.0×10^{-4}		HSDB (2015)	Q	38
C_2H_3Br	8.0×10^{-4}		Zhang et al. (2010)	Q	107, 108
[593-60-2]	7.7×10^{-4}		Zhang et al. (2010)	Q	107, 109
	4.8×10^{-4}		Zhang et al. (2010)	Q	107, 110
	8.2×10^{-4}		Zhang et al. (2010)	Q	107, 111
1,2-dibromoethene C ₂ H ₂ Br ₂ [540-49-8]	1.2×10^{-2}		HSDB (2015)	V	
3-bromo-1-propene	9.0×10^{-4}		HSDB (2015)	Q	38
C ₃ H ₅ Br	8.6×10^{-3}		Hilal et al. (2008)	Q	
(allyl bromide)	1.7×10^{-3}		Yaws and Yang (1992)	?	92
[106-95-6]	1.7×10^{-3}		Abraham et al. (1990)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
3-bromo-1-propyne C ₃ H ₃ Br (propargyl bromide) [106-96-7]	8.8×10 ⁻³	4000 3200 4200	Yates and Gan (1998) Kühne et al. (2005) Kühne et al. (2005) Fogg and Sangster (2003)	M Q ? W	283
1-bromocyclohexene C ₆ H ₉ Br [2044-08-8]	2.0×10^{-3}		Hilal et al. (2008)	Q	
1-bromo-4-methylcyclohexene $C_7H_{11}Br$ [31053-84-6]	1.4×10^{-3}		Hilal et al. (2008)	Q	
bromobenzene	5.0×10^{-3}	4200	Fogg and Sangster (2003)	L	
C ₆ H ₅ Br	4.8×10^{-3}		Mackay and Shiu (1981)	L	
[108-86-1]	6.0×10^{-3}	4300	Hiatt (2013)	M	
	3.9×10^{-3}	2900	Lau et al. (2010)	M	89
	5.0×10^{-3}		de Wolf and Lieder (1998)	M	31
	4.0×10^{-3}		Shiu and Mackay (1997)	M	
	6.1×10^{-3}		Hovorka and Dohnal (1997)	M	9
	4.9×10^{-3}	4200	Kondoh and Nakajima (1997)	M	
	5.3×10^{-3}	5300	Hansen et al. (1993)	M	105
	4.4×10^{-3}		Li and Carr (1993)	M	
	4.0×10^{-3}		Mackay and Shiu (1981)	M	
	4.7×10^{-3}		Shiu and Mackay (1997)	V	
	4.7×10^{-3}		Mackay et al. (1993)	V	
	5.0×10^{-3}		Hwang et al. (1992)	V	
	4.7×10^{-3}		Hine and Mookerjee (1975)	V	
	4.7×10^{-3}		HSDB (2015)	C	
	4.0×10^{-3}		Schüürmann (2000)	C	7
	5.2×10^{-3}		Hilal et al. (2008)	Q	
		4800	Kühne et al. (2005)	Q	
	7.3×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
		4300	Kühne et al. (2005)	?	
	4.7×10^{-3}		Yaws and Yang (1992)	?	92
	4.7×10^{-3}		Abraham et al. (1990)	?	
bromobenzene-d5 C_6D_5Br [4165-57-5]	6.5×10^{-3}	4200	Hiatt (2013)	M	
1,2-dibromobenzene C ₆ H ₄ Br ₂ [583-53-9]	9.5×10^{-3}		Schüürmann (2000)	V	
1,3-dibromobenzene	5.0×10 ⁻³		Mackay and Shiu (1981)	V	234
1,3-dioroniocenzene C ₆ H ₄ Br ₂ [108-36-1]	9.0×10^{-3}		Hilal et al. (2008)	Q	237

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1,4-dibromobenzene C ₆ H ₄ Br ₂ [106-37-6]	9.4×10^{-3} 1.1×10^{-2} 4.3×10^{-3} 4.8×10^{-3}		Kuramochi et al. (2004) HSDB (2015) Schüürmann (2000) Mackay and Shiu (1981)	M V V	234
	2.0×10^{-2} 1.1×10^{-2} 1.2×10^{-2} 2.4×10^{-2}	5600 6900	Hine and Mookerjee (1975) Kuramochi et al. (2004) Hilal et al. (2008) Kühne et al. (2005) Nirmalakhandan and Speece (1988a) Kühne et al. (2005)	V C Q Q Q	
1,2,4-tribromobenzene C ₆ H ₃ Br ₃ [615-54-3]	$3.1 \times 10^{-2} \\ 2.9 \times 10^{-2} \\ 1.8 \times 10^{-2}$		Kuramochi et al. (2004) Kuramochi et al. (2004) Hilal et al. (2008)	M C Q	
1,3,5-tribromobenzene C ₆ H ₃ Br ₃ [626-39-1]	2.9×10^{-2} 4.0×10^{-2} 2.5×10^{-2} 2.6×10^{-2}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
$1,2,4,5$ -tetrabromobenzene $C_6H_2Br_4$ [636-28-2]	$2.7 \times 10^{-3} \\ 2.0 \times 10^{-2}$		Kuramochi et al. (2004) Hilal et al. (2008)	M Q	
hexabromobenzene C ₆ Br ₆ [87-82-1]	9.3×10^{-2} 4.1×10^{-1} 7.1 3.5×10^{-1} 4.0×10^{-1} 4.6×10^{-1} 4.6×10^{-2} 6.7×10^{-1} 1.2×10^{-2}		Kuramochi et al. (2004) Kuramochi et al. (2014) Tittlemier et al. (2002) HSDB (2015) Xiao et al. (2012) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Hilal et al. (2010)	M V V Q Q Q Q Q	38 107, 108 107, 109 107, 110 107, 111
(bromomethyl)-benzene C ₇ H ₇ Br (benzyl bromide) [100-39-0]	$ \begin{array}{r} 1.4 \times 10^{-3} \\ 5.4 \times 10^{-2} \\ 2.2 \times 10^{-2} \end{array} $		HSDB (2015) Hilal et al. (2008) Abraham et al. (1990)	Q Q ?	38
<i>p</i> -bromobenzyl bromide C ₇ H ₆ Br ₂ [589-15-1]	3.6×10^{-2} 2.7×10^{-1} 2.0×10^{-1} 2.4×10^{-2}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
1-bromo-2-methylbenzene BrC ₆ H ₄ CH ₃ (<i>o</i> -bromotoluene) [95-46-5]	$4.1 \times 10^{-3} \\ 5.3 \times 10^{-3}$		HSDB (2015) Hilal et al. (2008)	Q Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1-bromo-3-methylbenzene BrC ₆ H ₄ CH ₃ (<i>m</i> -bromotoluene) [591-17-3]	$ \begin{array}{c} 1.5 \times 10^{-3} \\ 5.2 \times 10^{-3} \end{array} $		HSDB (2015) Hilal et al. (2008)	V Q	
1-bromo-4-methylbenzene BrC ₆ H ₄ CH ₃ (<i>p</i> -bromotoluene) [106-38-7]	3.4×10^{-3} 4.2×10^{-3} 5.6×10^{-3} 5.2×10^{-3} 5.2×10^{-3} 4.2×10^{-3}	4600	Brockbank et al. (2013) Hine and Mookerjee (1975) Hilal et al. (2008) Nirmalakhandan et al. (1997) Nirmalakhandan and Speece (1988a) Abraham et al. (1990)	M V Q Q Q	
$3,5$ -dibromotoluene $C_7H_6Br_2$ [1611-92-3]	1.7×10^{-2}	4800	Hiatt (2013)	M	
pentabromotoluene C ₇ H ₃ Br ₅ [87-83-2]	4.0×10^{-1}		Xiao et al. (2012)	Q	
1-bromo-2-ethylbenzene C ₈ H ₉ Br [1973-22-4]	3.0×10^{-3} 4.3×10^{-3} 4.5×10^{-3}		Hine and Mookerjee (1975) Hilal et al. (2008) Nirmalakhandan and Speece (1988a)	V Q Q	
1-bromo-4-ethylbenzene C ₈ H ₉ Br [1585-07-5]	3.1×10^{-3} 6.1×10^{-3} 4.2×10^{-3} 5.2×10^{-3}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
1-(bromomethyl)-2-methylbenzene C ₈ H ₉ Br (<i>o</i> -xylyl bromide) [89-92-9]	1.3×10 ⁻²		HSDB (2015)	Q	38
1-(bromomethyl)-3-methylbenzene C ₈ H ₉ Br (<i>m</i> -xylyl bromide) [620-13-3]	1.3×10 ⁻²		HSDB (2015)	Q	38
1-(bromomethyl)-4-methylbenzene C ₈ H ₉ Br (<i>p</i> -xylyl bromide) [104-81-4]	1.3×10 ⁻²		HSDB (2015)	Q	38
(2-bromoethyl)-benzene C ₈ H ₉ Br [103-63-9]	6.5×10^{-3}		HSDB (2015)	V	
2-bromostyrene C ₈ H ₇ Br [125904-11-2]	9.0×10^{-3} 9.5×10^{-3} 7.3×10^{-3} 1.5×10^{-2}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} \ln H^{cp}}$			
Formula (Other name(s))	(at 1°)	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
(2-bromoethenyl)benzene	1.8×10^{-2}		HSDB (2015)	Q	38
C ₈ H ₇ Br [103-64-0]					
2,3,4,5,6-pentabromoethylbenzene	1.2×10^{-1}		Zhang et al. (2010)	Q	107, 108
$C_8H_5Br_5$	3.6×10^{-1}		Zhang et al. (2010)	Q	107, 109
[85-22-3]	3.3×10^{-2}		Zhang et al. (2010)	Q	107, 110
	9.7×10^{-2}		Zhang et al. (2010)	Q	107, 111
1-bromo-2-(2-propyl)-benzene	1.7×10^{-3}		Hine and Mookerjee (1975)	V	
$BrC_6H_4C_3H_7$	2.5×10^{-3}		Hilal et al. (2008)	Q	
(<i>o</i> -bromocumene) [7073-94-1]	3.1×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
1-bromonaphthalene C ₁₀ H ₇ Br [90-11-9]	8.2×10 ⁻²		Hilal et al. (2008)	Q	
decabromobiphenyl	2.3×10^{2}		HSDB (2015)	Q	38
$C_{12}Br_{10}$	2.4×10^{2}		Zhang et al. (2010)	Q	107, 108
[13654-09-6]	3.0×10^{2}		Zhang et al. (2010)	Q	107, 109
	2.3×10^{2}		Zhang et al. (2010)	Q	107, 110
	5.0×10^2		Zhang et al. (2010)	Q	107, 111
4-bromo-1,1'-biphenyl	6.0×10^{-2}		Zhang et al. (2010)	Q	107, 108
C ₁₂ H ₉ Br	6.9×10^{-2}		Zhang et al. (2010)	Q	107, 109
[92-66-0]	1.7×10^{-1}		Zhang et al. (2010)	Q	107, 110
	3.5×10^{-1}		Zhang et al. (2010)	Q	107, 111
octabromobiphenyl C ₁₂ H ₂ Br ₈ [27858-07-7]	4.1×10^3		HSDB (2015)	V	
hexabromobiphenyl C ₁₂ H ₄ Br ₆ [36355-01-8]	2.3		HSDB (2015)	V	
2,2',4,4',5,5'-hexabromo-1,1'-biphenyl C ₁₂ H ₄ Br ₆ [59080-40-9]	2.3		HSDB (2015)	V	
1,2-bis(pentabromophenyl) ethane	1.5×10^2		Zhang et al. (2010)	Q	107, 108
$C_{14}H_4Br_{10}$	8.8×10^2		Zhang et al. (2010)	Q	107, 109
[84852-53-9]	8.6×10^{1}		Zhang et al. (2010)	Q	107, 110
	1.7×10^2		Zhang et al. (2010)	Q	107, 111
1,3,6,8-tetrabromopyrene	4.7×10^{1}		Zhang et al. (2010)	Q	107, 108
$C_{16}H_6Br_4$	4.4×10^{1}		Zhang et al. (2010)	Q	107, 109
[128-63-2]	6.2×10^{-1}		Zhang et al. (2010)	Q	107, 110
	6.5×10^{1}		Zhang et al. (2010)	Q	107, 111
6-bromobenzo[a]pyrene $C_{20}H_{11}Br$ [21248-00-0]	1.2×10^2		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number] bromomethanol	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$ 2.0×10^1	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference Krysztofiak et al. (2012)	Type	Note
CH ₂ BrOH dibromomethanol CHBr ₂ OH	1.7×10 ²		Krysztofiak et al. (2012)	Q	
tribromomethanol CBr ₃ OH [5405-30-1]	1.5×10 ³		Krysztofiak et al. (2012)	Q	
formyl bromide CHBrO [7726-11-6]	7.3×10 ⁻¹		Krysztofiak et al. (2012)	Q	
carbonyl bromide CBr ₂ O [593-95-3]	2.1×10^{-1}		Krysztofiak et al. (2012)	Q	
bromomethyl peroxide CH ₂ BrO ₂ H	2.5×10^{1}		Krysztofiak et al. (2012)	Q	
dibromomethyl peroxide CHBr ₂ O ₂ H	2.2×10^2		Krysztofiak et al. (2012)	Q	
tribromomethyl peroxide CBr ₃ O ₂ H	1.9×10^3		Krysztofiak et al. (2012)	Q	
bromoethanoic acid CH ₂ BrCOOH (bromoacetic acid) [79-08-3]	$1.5 \times 10^3 \\ 1.5 \times 10^3$	9300 9300 8800 9300	Sander et al. (2011) Bowden et al. (1998a) Kühne et al. (2005) Kühne et al. (2005)	L M Q ?	
dibromoethanoic acid CHBr ₂ COOH (dibromoacetic acid) [631-64-1]	$2.3 \times 10^{3} \\ 2.2 \times 10^{3}$	8900 8900 9900 9000	Sander et al. (2011) Bowden et al. (1998a) Kühne et al. (2005) Kühne et al. (2005)	L M Q ?	
tribromoethanoic acid CBr ₃ COOH (tribromoacetic acid) [75-96-7]	3.0×10^3 2.9×10^3	9000 9000	Sander et al. (2011) Bowden et al. (1998a)	L M	
2,3-dibromopropyl alcohol C ₃ H ₆ Br ₂ O [96-13-9]	$ \begin{array}{c} 1.6 \times 10^{2} \\ 1.6 \times 10^{2} \\ 1.1 \times 10^{2} \\ 1.2 \times 10^{1} \\ 1.4 \times 10^{1} \end{array} $		HSDB (2015) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	38 107, 108 107, 109 107, 110 107, 111
bromoacetone C ₃ H ₅ BrO [598-31-2]	1.7		HSDB (2015)	Q	38
(bromomethyl)oxirane C ₃ H ₅ BrO (epibromohydrin) [3132-64-7]	4.1		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} \ln H^{cp}}$			
Formula (Other parage))	(at 1°)	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
2,3-dibromobutane-1,4-diol	3.2×10^{3}		Zhang et al. (2010)	Q	107, 108
$C_4H_8Br_2O_2$	1.0×10^5		Zhang et al. (2010)	Q	107, 109
[90801-18-6]	1.5×10^6		Zhang et al. (2010)	Q	107, 110
	4.7×10^4		Zhang et al. (2010)	Q	107, 111
bromoacetic acid, ethyl ester $C_4H_7BrO_2$ [105-36-2]	3.7×10^{-1}		HSDB (2015)	Q	38
brometone C ₄ H ₇ Br ₃ O (1,1,1-tribromo-2-methyl-2-propanol) [76-08-4]	1.0×10 ³		HSDB (2015)	Q	38
$\overline{2,2\text{-bis(bromomethyl)-1,3-propanediol}} \\ C_5H_{10}Br_2O_2 \\ [3296-90-0]$	2.4×10 ³		HSDB (2015)	Q	38
trisbromoneopentyl alcohol	7.7×10^2		Zhang et al. (2010)	Q	107, 108
C ₅ H ₉ Br ₃ O	7.5		Zhang et al. (2010)	Q	107, 109
[36483-57-5]	1.1×10^{1}		Zhang et al. (2010)	Q	107, 110
	1.0		Zhang et al. (2010)	Q	107, 111
2-bromophenol	4.5×10^{1}		HSDB (2015)	Q	38
HOC ₆ H ₄ Br [95-56-7]	4.2		Hilal et al. (2008)	Q	
3-bromophenol	4.5×10^{1}		HSDB (2015)	Q	38
HOC ₆ H ₄ Br [591-20-8]	2.3×10^{1}		Hilal et al. (2008)	Q	
4-bromophenol	6.7×10 ¹		Abraham et al. (1994a)	R	
HOC ₆ H ₄ Br	6.8×10^{1}	8200	Parsons et al. (1971)	T	168
[106-41-2]	1.6×10^{1}		Hilal et al. (2008)	Q	
	3.0×10^2		Nirmalakhandan et al. (1997)	Q	
	3.3×10^{1} 6.9×10^{1}		Nirmalakhandan and Speece (1988a) Abraham et al. (1990)	Q ?	
2,4-dibromophenol C ₆ H ₄ Br ₂ O [615-58-7]	1.1×10^2		HSDB (2015)	Q	38
2,6-dibromophenol C ₆ H ₄ Br ₂ O [608-33-3]	1.1×10^2		HSDB (2015)	Q	38
2,4,6-tribromophenol	2.1×10^2		HSDB (2015)	Q	38
$C_6H_3Br_3O$	2.8×10^{2}		Zhang et al. (2010)	Q	107, 108
[118-79-6]	1.5×10^{-1}		Zhang et al. (2010)	Q	107, 109
	6.2 7.7		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 110 107, 111
22461					
$2,3,4,6$ -tetrabromophenol $C_6H_2Br_4O$ [14400-94-3]	7.0×10^2		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\mathrm{d} \ln H^{cp}$			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{mol}{m^3Pa}\right]$	[K]	Reserve	1,700	11010
pentabromophenol	1.8×10 ³		HSDB (2015)	Q	38
C ₆ HBr ₅ O	1.8×10^{3}		Zhang et al. (2010)	Q	107, 108
[608-71-9]	1.2		Zhang et al. (2010)	Q	107, 109
	2.2×10^{1}		Zhang et al. (2010)	Q	107, 110
	1.3×10^2		Zhang et al. (2010)	Q	107, 111
1-bromo-2-methoxybenzene C ₇ H ₇ BrO (2-bromoanisole) [578-57-4]	2.9×10^{-2}		Pfeifer et al. (2001)	M	273
1-bromo-3-methoxybenzene C ₇ H ₇ BrO (3-bromoanisole) [2398-37-0]	7.2×10 ⁻³		Pfeifer et al. (2001)	M	273
1-bromo-4-methoxybenzene C ₇ H ₇ BrO (4-bromoanisole) [104-92-7]	1.1×10 ⁻²		Pfeifer et al. (2001)	M	273
$1,5$ -dibromo- 2 -methoxybenzene $C_7H_6Br_2O$ (2,4-dibromoanisole) [21702-84-1]	8.1×10 ⁻²		Pfeifer et al. (2001)	M	273
1,3-dibromo-2-methoxybenzene C ₇ H ₆ Br ₂ O (2,6-dibromoanisole) [38603-09-7]	3.7×10 ⁻²		Pfeifer et al. (2001)	M	273
1,3,4-tribromo-2-methoxybenzene C ₇ H ₅ Br ₃ O (2,3,6-tribromoanisole) [95970-19-7]	5.2×10 ⁻³	2800	Diaz et al. (2005)	M	284
1,3,5-tribromo-2-methoxybenzene	1.9×10^{-2}	6400	Diaz et al. (2005)	M	
C ₇ H ₅ Br ₃ O	1.3×10^{-2}		Pfeifer et al. (2001)	M	273
(2,4,6-tribromoanisole) [607-99-8]	3.1×10^{-2}		HSDB (2015)	Q	38
pentabromomethoxybenzene C ₇ H ₃ Br ₅ O (pentabromoanisole) [1825-26-9]	1.0		Pfeifer et al. (2001)	M	273
1,3,5-tribromo-2-methoxy-4- methylbenzene	4.4×10^{-1}		Zhang et al. (2010)	Q	107, 108
C ₈ H ₇ Br ₃ O	2.0×10^{-1}		Zhang et al. (2010)	Q	107, 109
[41424-36-6]	3.2×10^{-1}		Zhang et al. (2010)	Q	107, 110
	1.9×10^{-1}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]	[17]		71	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
4,5,6,7-tetrabromo-1,3-	6.1×10^{1}		Zhang et al. (2010)	Q	107, 108
isobenzofurandione	5			_	
C ₈ Br ₄ O ₃	4.4×10^5		Zhang et al. (2010)	Q	107, 109
[632-79-1]	2.4×10^2 8.0×10^2		Zhang et al. (2010)	Q	107, 110
			Zhang et al. (2010)	Q	107, 111
allyl 2,4,6-tribromophenyl ether	3.8×10^{-1}		Zhang et al. (2010)	Q	107, 108
$C_9H_7Br_3O$	1.3×10^{-1}		Zhang et al. (2010)	Q	107, 109
[3278-89-5]	2.0×10^{-1}		Zhang et al. (2010)	Q	107, 110
	6.2×10^{-1}		Zhang et al. (2010)	Q	107, 111
2,4-dibromo-6-methylphenyl glycidyl ether	8.2×10^{1}		Zhang et al. (2010)	Q	107, 108
$C_{10}H_{10}Br_2O_2$	7.0		Zhang et al. (2010)	Q	107, 109
[75150-13-9]	5.2×10^{1}		Zhang et al. (2010)	Q	107, 110
	5.4		Zhang et al. (2010)	Q	107, 111
2-(2,4,6-tribromophenoxy)ethyl acrylate	2.9×10^2		Zhang et al. (2010)	Q	107, 108
$C_{11}H_9Br_3O_3$	1.6×10^{1}		Zhang et al. (2010)	Q	107, 109
[7347-19-5]	4.3×10^{3}		Zhang et al. (2010)	Q	107, 110
	1.3×10^2		Zhang et al. (2010)	Q	107, 111
1,2,3',4,4',5'-hexabromodiphenyl ether	2.1×10 ¹		HSDB (2015)	Q	38
$C_{12}H_4Br_6O$	2.1×10^{1}		Zhang et al. (2010)	Q	107, 108
[36483-60-0]	7.3×10^{1}		Zhang et al. (2010)	Q	107, 109
	2.7×10^{2}		Zhang et al. (2010)	Q	107, 110
	2.5×10^{1}		Zhang et al. (2010)	Q	107, 111
heptabromodiphenyl oxide	5.2×10 ¹		HSDB (2015)	Q	38
$C_{12}H_3Br_7O$	5.2×10^{1}		Zhang et al. (2010)	Q	107, 108
[68928-80-3]	2.6×10^{1}		Zhang et al. (2010)	Q	107, 109
	5.6×10^2		Zhang et al. (2010)	Q	107, 110
	4.8×10^{1}		Zhang et al. (2010)	Q	107, 111
2,2',3,4,4',5,5',6-octabromodiphenyl ether	3.7×10^{1}		HSDB (2015)	V	
C ₁₂ H ₂ Br ₈ O	1.3×10^{2}		Zhang et al. (2010)	Q	107, 108
[32536-52-0]	7.3×10^{1}		Zhang et al. (2010)	Q	107, 109
	6.5×10^2		Zhang et al. (2010)	Q	107, 110
	8.0×10^{1}		Zhang et al. (2010)	Q	107, 111
nonabromodiphenyl ether	3.3×10^2		Zhang et al. (2010)	Q	107, 108
C ₁₂ HBr ₉ O	1.5×10^2		Zhang et al. (2010)	Q	107, 109
[63936-56-1]	1.1×10^{3}		Zhang et al. (2010)	Q	107, 110
	2.1×10^{2}		Zhang et al. (2010)	Q	107, 111
1,2,3-tribromo-4-(3- bromophenoxy)benzene	1.2		HSDB (2015)	Q	38
C ₁₂ H ₆ Br ₄ O	3.4		Zhang et al. (2010)	Q	107, 108
[40088-47-9]	1.0		Zhang et al. (2010)	Q	107, 109
	1.6×10^{1}		Zhang et al. (2010)	Q	107, 110
	1.1×10^{1}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$\mathrm{d} \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]		Reference	Туре	Note
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
4,4'-methylenebis(2,6-dibromophenol)	7.5×10 ⁷		Zhang et al. (2010)	Q	107, 108
$C_{13}H_8Br_4O_2$	9.0×10^{1}		Zhang et al. (2010)	Q	107, 109
21825-03-6]	1.3×10^4		Zhang et al. (2010)	Q	107, 110
	3.4×10^3		Zhang et al. (2010)	Q	107, 111
1,1'-[1,2-ethanediylbis(oxy)]bis pentabromobenzene	5.3×10^4		Zhang et al. (2010)	Q	107, 108
$C_{14}H_4Br_{10}O_2$	8.6×10^2		Zhang et al. (2010)	Q	107, 109
[61262-53-1]	2.2×10^2		Zhang et al. (2010)	Q	107, 110
	1.1×10^3		Zhang et al. (2010)	Q	107, 111
4,4'-dibromobenzil	8.0×10^3		Zhang et al. (2010)	Q	107, 108
$C_{14}H_8Br_2O_2$	2.6×10^3		Zhang et al. (2010)	Q	107, 109
[35578-47-3]	1.9×10^2		Zhang et al. (2010)	Q	107, 110
	1.3×10^5		Zhang et al. (2010)	Q	107, 111
1,2-bis(2,4,6-tribromophenoxy)ethane	1.8×10^{1}		Kuramochi et al. (2014)	V	
$C_{14}H_8Br_6O_2$	2.3×10^{1}		HSDB (2015)	Q	38
(BTBPE)	6.4×10^{1}		Xiao et al. (2012)	Q	
[37853-59-1]	1.3×10^{3}		Zhang et al. (2010)	Q	107, 108
	7.3×10^{1}		Zhang et al. (2010)	Q	107, 109
	1.1×10^3		Zhang et al. (2010)	Q	107, 110
	1.0×10^3		Zhang et al. (2010)	Q	107, 111
2-ethylhexyl-2,3,4,5- tetrabromobenzoate $C_{15}H_{18}Br_4O_2$ (EHTeBB) [183658-27-7]	1.6		Xiao et al. (2012)	Q	
tribromobisphenol A C ₁₅ H ₁₃ Br ₃ O ₂ [6386-73-8]	1.1×10 ²		HSDB (2015)	Q	182
4,4'-(1-methylethylidene)bis(2,6-dibromophenol)	2.4×10^2		HSDB (2015)	V	
$C_{15}H_{12}Br_4O_2$	4.2×10^{7}		Zhang et al. (2010)	Q	107, 108
[79-94-7]	3.9×10^{1}		Zhang et al. (2010)	Q	107, 109
	8.0×10^{4}		Zhang et al. (2010)	Q	107, 110
	1.6×10^3		Zhang et al. (2010)	Q	107, 111
4-[2-[2,6-bis(bromanyl)-4-oxidanyl-phenyl]propan-2-yl]-3,5-bis(bromanyl)phenol	4.2×10^7		Zhang et al. (2010)	Q	107, 108
$C_{15}H_{12}Br_4O_2$	2.0×10^{7}		Zhang et al. (2010)	Q	107, 109
[94334-64-2]	2.2×10^{7}		Zhang et al. (2010)	Q	107, 110
[74334-04-2]	1.7×10^{8}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]		1101010100	17170	11000
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
2-(2-hydroxyethoxy)ethyl	3.6×10^{10}		Zhang et al. (2010)	Q	107, 108
2-hydroxypropyl 3,4,5,6-					
tetrabromophthalate	1.1				
$C_{15}H_{16}Br_4O_7$	1.5×10^{11}		Zhang et al. (2010)	Q	107, 109
[20566-35-2]	3.1×10^{13}		Zhang et al. (2010)	Q	107, 110
	5.7×10^{10}		Zhang et al. (2010)	Q	107, 111
bromopropylate	2.1×10^{1}		HSDB (2015)	V	
C ₁₇ H ₁₆ Br ₂ O ₃ [18181-80-1]					
	1.5×10 ⁶		71		107 100
1,2,4,5-tetrabromo-3,6-bis(pentabromophenoxy)benzene	1.5×10°		Zhang et al. (2010)	Q	107, 108
$C_{18}O_2Br_{14}$	4.1×10^{5}		Zhang et al. (2010)	Q	107, 109
[58965-66-5]	2.1×10^{6}		Zhang et al. (2010)	Q	107, 110
	6.7×10^5		Zhang et al. (2010)	Q	107, 111
2,2-bis(3,5-dibromo-4-(2- hydroxyethoxy)phenyl)propane	5.6×10 ⁷		Zhang et al. (2010)	Q	107, 108
$C_{19}H_{20}Br_4O_4$	1.5×10^{8}		Zhang et al. (2010)	Q	107, 109
[4162-45-2]	6.1×10^9		Zhang et al. (2010)	Q	107, 110
-	2.5×10^{8}		Zhang et al. (2010)	Q	107, 111
solvent red 43	4.4×10^{12}		Zhang et al. (2010)	Q	107, 108
$C_{20}H_8Br_4O_5$	1.5×10^{8}		Zhang et al. (2010)	Q	107, 109
[15086-94-9]	2.7×10^{10}		Zhang et al. (2010)	Q	107, 110
	2.9×10^{8}		Zhang et al. (2010)	Q	107, 111
2,2-bis[4-(2,3-dibromopropoxy)-3,5-dibromophenyl]-propane	2.4×10^5		Zhang et al. (2010)	Q	107, 108
$C_{21}H_{20}Br_8O_2$	4.0×10^4		Zhang et al. (2010)	Q	107, 109
[21850-44-2]	1.7×10^5		Zhang et al. (2010)	Q	107, 110
	8.6×10^4		Zhang et al. (2010)	Q	107, 111
2,2-bis(4-allyloxy-3,5- dibromophenyl)propane	7.7×10^{1}		Zhang et al. (2010)	Q	107, 108
$C_{21}H_{20}Br_4O_2$	1.3×10^{1}		Zhang et al. (2010)	Q	107, 109
[25327-89-3]	1.7×10^2		Zhang et al. (2010)	Q	107, 110
	1.9×10^2		Zhang et al. (2010)	Q	107, 111
AC1MJ2TG	1.3×10 ⁸		Zhang et al. (2010)	Q	107, 108
$C_{21}H_{24}Br_4O_4$	4.7×10^{6}		Zhang et al. (2010)	Q	107, 109
[33294-14-3]	9.2×10^6		Zhang et al. (2010)	Q	107, 110
	1.2×10^6		Zhang et al. (2010)	Q	107, 111
tetrabromophenolphthalein, ethyl ester	1.0×10^{11}		Zhang et al. (2010)	Q	107, 108
$C_{22}H_{14}Br_4O_4$	1.2×10^{7}		Zhang et al. (2010)	Q	107, 109
[1176-74-5]	3.1×10^{10}		Zhang et al. (2010)	Q	107, 110
	3.5×10^{8}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
4,10-dibromodibenzo[def, mno] chrysene-6,12-dione	5.8×10^6		Zhang et al. (2010)	Q	107, 108
$C_{22}H_8Br_2O_2$	2.7×10^{5}		Zhang et al. (2010)	Q	107, 109
[4378-61-4]	4.1×10^{6}		Zhang et al. (2010)	Q	107, 110
	1.1×10^{8}		Zhang et al. (2010)	Q	107, 111
bis(2-ethylhexyl)-3,4,5,6- tetrabromophthalate C ₂₄ H ₃₄ Br ₄ O ₄ (TBPH) [26040-51-7]	4.0×10 ²		Xiao et al. (2012)	Q	
bromadiolone C ₃₀ H ₂₃ BrO ₄ [28772-56-7]	1.1×10 ⁶		HSDB (2015)	V	
brodifacoum C ₃₁ H ₂₃ BrO ₃ [56073-10-0]	4.6×10 ²		Rubbiani (2013)	?	
Po	olybrominat	ed diphe	nyl ethers (PBDEs)		
4-bromodiphenyl ether	5.0×10^{-2}		Lau et al. (2006)	M	262
C ₁₂ H ₉ BrO	4.3×10^{-2}		Lau et al. (2006)	M	263
(PBDE-3)	5.8×10^{-2}	5500	Charles and Destaillats (2005)	M	
[101-55-3]	9.6×10^{-2}		Mackay et al. (1993)	V	
	8.2×10^{-2}		HSDB (2015)	Q	38
4,4'-dibromodiphenyl ether	8.3×10^{-2}		Lau et al. (2006)	M	262
$C_{12}H_8Br_2O$	7.1×10^{-2}		Lau et al. (2006)	M	263
(PBDE-15)	7.3×10^{-2}	4500	Charles and Destaillats (2005)	M	
[2050-47-7]	4.8×10^{-2}		Tittlemier et al. (2002)	V	
	2.4×10^{-1}		Wania and Dugani (2003)	R	
	9.0×10^{-2}		Hilal et al. (2008)	Q	
2,4,4'-tribromodiphenyl ether	1.1×10^{-1}		Lau et al. (2006)	M	262
$C_{12}H_7Br_3O$	7.7×10^{-2}		Lau et al. (2006)	M	263
(PBDE-28)	1.8×10^{-1}	7400	Cetin and Odabasi (2005)	M	
[41318-75-6]	1.2×10^{-1}	12000	Charles and Destaillats (2005)	M	
	2.0×10^{-1}		Tittlemier et al. (2002)	V	
	5.2×10^{-1}		Wania and Dugani (2003)	R	
	1.4×10^{-1}		Hilal et al. (2008)	Q	
2,2',4,4'-tetrabromodiphenyl ether	1.6×10^{-1}		Lau et al. (2006)	M	262
$C_{12}H_6Br_4O$	1.7×10^{-1}		Lau et al. (2006)	M	263
(PBDE-47)	8.7×10^{-1}	7300	Cetin and Odabasi (2005)	M	
[5436-43-1]	1.7×10^{-1}	620	Charles and Destaillats (2005)	M	
	9.3×10^{-1}		Kuramochi et al. (2014)	V	
	6.7×10^{-1}		Tittlemier et al. (2002)	V	
	9.0×10^{-1}		Wania and Dugani (2003)	R	
	2.2×10^{-1}		Hilal et al. (2008)	Q	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2,3',4,4'-tetrabromodiphenyl ether C ₁₂ H ₆ Br ₄ O (PBDE-66) [189084-61-5]	2.0		Tittlemier et al. (2002)	V	
3,3',4,4'-tetrabromodiphenyl ether C ₁₂ H ₆ Br ₄ O (PBDE-77) [93703-48-1]	8.3×10 ⁻¹		Tittlemier et al. (2002)	V	
2,2',3,4,4'-pentabromodiphenyl ether C ₁₂ H ₅ Br ₅ O (PBDE-85) [182346-21-0]	9.1		Tittlemier et al. (2002)	V	
2,2',4,4',5-pentabromodiphenyl ether	6.2×10^{-1}		Lau et al. (2006)	M	262
$C_{12}H_5Br_5O$	3.3×10^{-1}		Lau et al. (2006)	M	263
(PBDE-99)	1.5	8800	Cetin and Odabasi (2005)	M	
[60348-60-9]	2.7×10^{-1}	-6700	Charles and Destaillats (2005)	M	
	2.1		Kuramochi et al. (2014)	V	
	4.3		Tittlemier et al. (2002)	V	
	1.9		Wania and Dugani (2003)	R	
	8.4		Zhang et al. (2010)	Q	107, 108
	3.7		Zhang et al. (2010)	Q	107, 109
	1.2×10^2		Zhang et al. (2010)	Q	107, 110
	2.4×10^{1}		Zhang et al. (2010)	Q	107, 111
	4.3×10^{-1}		Hilal et al. (2008)	Q	
2,2',4,4',6-pentabromodiphenyl ether	3.3×10^{-1}		Lau et al. (2006)	M	262
$C_{12}H_5Br_5O$	3.2×10^{-1}		Lau et al. (2006)	M	263
(PBDE-100)	3.8	6800	Cetin and Odabasi (2005)	M	
[189084-64-8]	1.9×10^{-1}	12	Charles and Destaillats (2005)	M	
	1.4×10^{1}		Tittlemier et al. (2002)	V	
	2.6		Wania and Dugani (2003)	R	
	3.7×10^{-1}		Hilal et al. (2008)	Q	
2,3',4,4',5-pentabromodiphenyl ether	6.2×10^{-1}		Lau et al. (2006)	M	262
$C_{12}H_5Br_5O$	7.7×10^{-1}		Lau et al. (2006)	M	263
(PBDE-118) [446254-77-9]	8.8×10^{-1}	4000	Charles and Destaillats (2005)	M	
2,2',4,4',5,5'-hexabromodiphenyl ether	3.5	7800	Cetin and Odabasi (2005)	M	
$C_{12}H_4Br_6O$	6.1		Kuramochi et al. (2014)	V	
(PBDE-153)	1.5×10^{1}		Tittlemier et al. (2002)	V	
[68631-49-2]	2.9		Wania and Dugani (2003)	R	
	8.4×10^{-1}		Hilal et al. (2008)	Q	
2,2',4,4',5,6'-hexabromodiphenyl ether	7.3	6800	Cetin and Odabasi (2005)	M	
$C_{12}H_4Br_6O$	4.2		Tittlemier et al. (2002)	V	
(PBDE-154) [207122-15-4]	7.2×10^{-1}		Hilal et al. (2008)	Q	

Table 6: Henry's law constants for water as solvent (...continued)

G.1.	H^{cp}	dle 110n			
Substance Formula	(at T^{\ominus})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$			
(Other name(s))		$\mathfrak{u}(1/I)$	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mol}}{2}\right]$	[K]			
	[m ³ Pa]	[IX]			
2,2',3,4,4',5',6-heptabromodiphenyl	1.4×10^2		Tittlemier et al. (2002)	V	
ether					
C ₁₂ H ₃ Br ₇ O					
(PBDE-183)					
[207122-16-5]					
2,2',3,3',4,4',5,5',6,6'-	1.8×10^{1}	7900	Cetin and Odabasi (2005)	M	
decabromodiphenyl ether	2				
C ₁₂ Br10O	8.2×10^2		HSDB (2015)	Q	38
(PBDE-209)	8.2×10^2		Zhang et al. (2010)	Q	107, 108
[1163-19-5]	4.1×10^2		Zhang et al. (2010)	Q	107, 109
	1.3×10^3		Zhang et al. (2010)	Q	107, 110
	6.7×10^2		Zhang et al. (2010)	Q	107, 111
dibromoacetonitrile	2.4×10^{1}		HSDB (2015)	Q	38
C ₂ HBr ₂ N					
[3252-43-5]					
bromoacetonitrile	2.8		HSDB (2015)	Q	182
C_2H_2BrN					
[590-17-0]					
1,2-dibromo-2,4-dicyanobutane	1.2×10^3		HSDB (2015)	V	
$C_6H_6Br_2N_2$,		
[35691-65-7]					
4-bromobenzenamine	1.1×10 ¹		HSDB (2015)	Q	182
C ₆ H ₆ BrN					
[106-40-1]					
2,4,6-tribromobenzenamine	8.2×10 ¹		Zhang et al. (2010)	Q	107, 108
C ₆ H ₄ Br ₃ N	2.6		Zhang et al. (2010)	Q	107, 109
[147-82-0]	6.0×10^{-1}		Zhang et al. (2010)	Q	107, 110
	1.2×10^{2}		Zhang et al. (2010)	Q	107, 111
N,N'-dimethyl-3,3',4,4',5,5'-	5.0×10 ²		Tittlemier et al. (2004)	V	
hexabromo-2,2'-bipyrrole	5.0×10		11ttlefiller et al. (2004)	•	
$C_{10}H_6Br_6N_2$	5.1×10^{1}		Hilal et al. (2008)	Q	
(DBP-Br6)			,		
[253798-63-9]					
1,1'-ethylene 2,2'-dipyridylium dibro-	7.0×10^{7}		HSDB (2015)	Q	38
mide			, ,	•	
$C_{12}H_{12}N_2Br$					
(diquat dibromide)					
[85-00-7]					
tralomethrin	2.5×10^4		HSDB (2015)	V	
C ₂₂ H ₁₉ NO ₃ Br ₄			•		
[66841-25-6]					
bromomethyl peroxynitrate	3.5×10^{-1}		Krysztofiak et al. (2012)	Q	
CH ₂ BrO ₂ NO ₂	5.5 / 10		12. j 52.011an ot al. (2012)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]		31	
dibromomethyl peroxynitrate CHBr ₂ O ₂ NO ₂	3.0		Krysztofiak et al. (2012)	Q	
tribromomethyl peroxynitrate CBr ₃ O ₂ NO ₂	4.0		Krysztofiak et al. (2012)	Q	
2,2-dibromo-2-cyanoacetamide C ₃ H ₂ Br ₂ N ₂ O (2,2-dibromo-3-nitrilopropionamide) [10222-01-2]	5.2×10 ²		HSDB (2015)	V	
Dronopol C ₃ H ₆ BrNO ₄ [52-51-7]	7.6×10 ⁵		HSDB (2015)	V	
2,6-dibromo-4-nitroaniline	8.2×10^3		Zhang et al. (2010)	Q	107, 108
$C_6H_4Br_2N_2O_2$	1.7×10^{2}		Zhang et al. (2010)	Q	107, 109
[827-94-1]	1.9×10^{3}		Zhang et al. (2010)	Q	107, 110
	5.7×10^3		Zhang et al. (2010)	Q	107, 111
2-bromo-4,6-dinitroaniline	3.9×10^4		Zhang et al. (2010)	Q	107, 108
$C_6H_4BrN_3O_4$	2.7×10^{2}		Zhang et al. (2010)	Q	107, 109
[1817-73-8]	1.8×10^{3}		Zhang et al. (2010)	Q	107, 110
	5.7×10^4		Zhang et al. (2010)	Q	107, 111
3-bromonitrobenzene C ₆ H ₄ BrNO ₂ (<i>m</i> -bromonitrobenzene) [585-79-5]	5.4		Schüürmann (2000)	V	
3,5-dibromo-4-hydroxy-benzonitrile C ₇ H ₃ Br ₂ NO [1689-84-5]	7.4×10^2		Mackay et al. (2006d)	V	
2,6-dibromo-3-methyl-4-nitroanisole	4.5×10^{1}		Zhang et al. (2010)	Q	107, 108
C ₈ H ₇ Br ₂ NO ₃	3.5×10^{1}		Zhang et al. (2010)	Q	107, 109
[62265-99-0]	4.7		Zhang et al. (2010)	Q	107, 110
	9.7		Zhang et al. (2010)	Q	107, 111
bromacil	7.6×10^4		HSDB (2015)	V	
$C_9H_{13}BrN_2O_2$	7.8×10^4		Mackay et al. (2006d)	V	
[314-40-9]	5.3×10^2		Suntio et al. (1988)	V	9
N'-(4-bromophenyl)-N-methoxy-N-methylurea	3.2×10^3		HSDB (2015)	V	
C ₉ H ₁₁ BrN ₂ O (metobromuron) [3060-89-7]	3.2×10^3		Mackay et al. (2006d)	V	
bromuron C ₉ H ₁₁ BrN ₂ O [3408-97-7]	2.0×10 ⁴		MacBean (2012a)	?	

Table 6: Henry's law constants for water as solvent (...continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]		1101010100	1) PC	11000
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
tris(2,3-dibromopropyl)isocyanurate	8.2×10 ¹²		Zhang et al. (2010)	Q	107, 108
$C_{12}H_{15}Br_6N_3O_3$	6.5×10^{7}		Zhang et al. (2010)	Q	107, 109
[52434-90-9]	2.7×10^{8}		Zhang et al. (2010)	Q	107, 110
	1.2×10^{10}		Zhang et al. (2010)	Q	107, 111
bromofenoxim	1.3×10^5		MacBean (2012a)	?	9
C ₁₃ H ₇ Br ₂ N ₃ O ₆ [13181-17-4]					
tribromsalan	9.7×10^{5}		Zhang et al. (2010)	Q	107, 108
$C_{13}H_8Br_3NO_2$	1.2×10^6		Zhang et al. (2010)	Q	107, 109
[87-10-5]	1.6×10^6		Zhang et al. (2010)	Q	107, 110
	1.2×10^6		Zhang et al. (2010)	Q	107, 111
1-amino-2,4-dibromo-9,10-	5.5×10^7		HSDB (2015)	Q	38
anthracenedione					
C ₁₄ H ₇ Br ₂ NO ₂ (1-amino-2,4-dibromoanthraquinone)					
[81-49-2]					
2,6-dibromo-4-cyanophenyl octanoate	3.1×10^{-1}		HSDB (2015)	V	
C ₁₅ H ₁₇ BrNO ₂					
[1689-99-2]					
(2E)-N,N'-bis(2,4,6-tribromophenyl)-	9.0×10 ⁹		Zhang et al. (2010)	Q	107, 108
2-butenediamide	0				
$C_{16}H_8Br_6N_2O_2$	5.1×10^{8}		Zhang et al. (2010)	Q	107, 109
[92484-07-6]	6.2×10^9		Zhang et al. (2010)	Q	107, 110
	7.2×10^{13}		Zhang et al. (2010)	Q	107, 111
SAYTEX BT 93	2.7×10^{15}		HSDB (2015)	Q	38
$C_{18}H_4Br_8N_2O_4$	2.7×10^{15}		Zhang et al. (2010)	Q	107, 108
[32588-76-4]	2.3×10^{11}		Zhang et al. (2010)	Q	107, 109
	3.5×10^9		Zhang et al. (2010)	Q	107, 110
	2.3×10 ¹³		Zhang et al. (2010)	Q	107, 111
SAYTEX BN 451	2.5×10^{15}		Zhang et al. (2010)	Q	107, 108
$C_{20}H_{20}Br_4N_2O_4$	1.4×10^{11}		Zhang et al. (2010)	Q	107, 109
[52907-07-0]	5.7×10^{11}		Zhang et al. (2010)	Q	107, 110
	1.6×10 ¹⁵		Zhang et al. (2010)	Q	107, 111
deltamethrin	2.0		HSDB (2015)	V	
C ₂₂ H ₁₉ Br ₂ NO ₃	4.0×10^{-1}		Mackay et al. (2006d)	V	0
[52918-63-5]	2.0		Siebers and Mattusch (1996)	V	9
2,2'-(methylenedi-4,1- phenylene)bis(4,5,6,7-tetrabromo- 1H-isoindole-1,3(2H)-dione	5.3×10^{14}		Zhang et al. (2010)	Q	107, 108
C ₂₉ H ₁₀ N ₂ O ₄ Br ₈	1.7×10^{14}		Zhang et al. (2010)	Q	107, 109
[32588-74-2]	9.5×10^{9}		Zhang et al. (2010)	Q	107, 110
	4.7×10^{15}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} \ln H^{cp}}$			
Formula (Other name(s))	(at <i>I</i> ∨)	d(1/T)	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\lceil \underline{\text{mol}} \rceil$	[17]			
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
bromotrifluoromethane	2.0×10^{-5}		Hine and Mookerjee (1975)	V	
CF ₃ Br	2.0×10^{-5}		Irmann (1965)	C	
[75-63-8]	3.2×10^{-5}		Hilal et al. (2008)	Q	
	2.7×10^{-5}		Nirmalakhandan and Speece (1988a)	Q	
	5.6×10^{-6}		Irmann (1965)	Q	
	2.1×10^{-5}		Yaws (1999)	?	
dibromodifluoromethane	3.3×10^{-4}		HSDB (2015)	Q	38
CBr ₂ F ₂ [75-61-6]					
1-bromo-1,2,2,2-tetrafluoroethane	1.2×10^{-4}		Edelist et al. (1964)	M	19
C ₂ HBrF ₄	2.1×10^{-4}		Hilal et al. (2008)	Q	
(teflurane) [124-72-1]	1.7×10^{-4}		Abraham et al. (1990)	?	
1,2-dibromotetrafluoroethane	2.7×10^{-7}		HSDB (2015)	V	
C ₂ Br ₂ F ₄ [124-73-2]					
4-bromofluorobenzene	5.3×10 ⁻³	4400	Hiatt (2013)	M	
C ₆ H ₄ BrF					
[460-00-4]					
bromopentafluorobenzene	2.1×10^{-3}		Zhang et al. (2010)	Q	107, 108
C ₆ BrF ₅	1.6×10^{-4}		Zhang et al. (2010)	Q	107, 109
[344-04-7]	1.4×10^{-4}		Zhang et al. (2010)	Q	107, 110
	6.7×10^{-4}		Zhang et al. (2010)	Q	107, 111
bromethalin	2.5×10^3		HSDB (2015)	Q	38
C ₁₄ H ₇ Br ₃ F ₃ N ₃ O ₄ [63333-35-7]					
	66.10-3	4700	H: (2012)		
bromochloromethane	6.6×10^{-3} 7.8×10^{-3}	4700	Hiatt (2013)	M	
CH ₂ BrCl	6.8×10^{-3}	4600	Kondoh and Nakajima (1997)	M	
[74-97-5]	_		HSDB (2015)	V	
	5.8×10^{-3} 5.8×10^{-3}		Mackay et al. (2006b)	V	
	6.2×10^{-3}		Mackay et al. (1993) Yaws (1999)	V ?	
	0.2×10		Fogg and Sangster (2003)	W	285
bromodichloromethane	4.0×10^{-3}	5200	Sander et al. (2011)	L	
CHCl ₂ Br	4.0×10^{-3}	5200	Sander et al. (2006)	L	
[75-27-4]	4.8×10^{-3}	3700	Fogg and Sangster (2003)	L	
-	4.0×10^{-3}	5200	Staudinger and Roberts (2001)	L	
	4.0×10^{-3}	5200	Staudinger and Roberts (1996)	L	
	5.2×10^{-3}	4700	Hiatt (2013)	M	
	2.9×10^{-3}		Zhang et al. (2002)	M	19
	5.4×10^{-3}	4400	Kondoh and Nakajima (1997)	M	
	3.9×10^{-3}	4900	Moore et al. (1995)	M	127
	4.8×10^{-3}	4200	Tse et al. (1992)	M	
	4.7×10^{-3}	5200	Nicholson et al. (1984)	M	
	3.5×10^{-3}	5200	Ervin et al. (1980)	M	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]		Reference	Турс	11010
[CAS registry number]	$\left\lfloor \frac{\overline{m^3 Pa}}{\right\rfloor$	[K]			
	4.7×10^{-3}		Warner et al. (1980)	M	
	4.1×10^{-3}		Mackay et al. (2006b)	V	
	4.1×10^{-3}		Mackay et al. (1993)	V	
	4.6×10^{-3}	1200	Goldstein (1982)	X	116
	7.7×10^{-3}		Hilal et al. (2008)	C	
	4.3×10^{-3}		Nicholson et al. (1984)	C	
	4.7×10^{-3}		Nicholson et al. (1984)	C	9
	4.7×10^{-3}		Shen (1982)	C	
	3.9×10^{-3}		Hilal et al. (2008)	Q	
		4100	Kühne et al. (2005)	Q	
	6.2×10^{-3}		Mackay et al. (2006b)	?	
		3800	Kühne et al. (2005)	?	
	6.2×10^{-3}		Mackay et al. (1993)	?	
promotrichloromethane	2.7×10^{-2}		HSDB (2015)	Q	38
CBrCl ₃				`	
[75-62-7]					
libromochloromethane	8.6×10^{-3}	5500	Sander et al. (2011)	L	
CHClBr ₂	8.6×10^{-3}	5500	Sander et al. (2006)	L	
[124-48-1]	8.7×10^{-3}	4400	Fogg and Sangster (2003)	L	
	8.6×10^{-3}	5500	Staudinger and Roberts (2001)	L	
	8.5×10^{-3}	5500	Staudinger and Roberts (1996)	L	
	1.1×10^{-2}	5300	Hiatt (2013)	M	
	4.6×10^{-3}		Zhang et al. (2002)	M	19
	9.8×10^{-3}	5100	Kondoh and Nakajima (1997)	M	
	7.2×10^{-3}	5200	Moore et al. (1995)	M	127
	9.3×10^{-3}	4600	Tse et al. (1992)	M	
	8.5×10^{-3}	6400	Ashworth et al. (1988)	M	103
	8.6×10^{-3}	5200	Nicholson et al. (1984)	M	
	8.5×10^{-3}	5000	Ervin et al. (1980)	M	
	1.3×10^{-2}		Warner et al. (1980)	M	
	1.2×10^{-2}		Mackay et al. (2006b)	V	
	1.2×10^{-2}		Goldstein (1982)	X	181
	1.2×10^{-2}	2500	Goldstein (1982)	X	116
	1.2×10^{-2}		Nicholson et al. (1984)	C	
	1.1×10^{-2}		Nicholson et al. (1984)	C	9
	1.3×10^{-2}		Shen (1982)	C	
	5.4×10^{-3}		Hilal et al. (2008)	Q	
		4800	Kühne et al. (2005)	Q	
		4600	Kühne et al. (2005)	?	
	1.2×10^{-2}		Mackay et al. (1993)	?	
-chloro-2-bromoethane	1.1×10^{-2}		Hine and Mookerjee (1975)	V	
C ₂ H ₄ BrCl	1.1×10^{-2}		Sieg et al. (2008)	C	
[107-04-0]	1.8×10^{-2}		Hilal et al. (2008)	Q	
	3.7×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
1,2-dibromo-1,1-dichloroethane C ₂ H ₂ Br ₂ Cl ₂ [75-81-0]	6.2×10^{-2}		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1-bromo-3-chloropropane C ₃ H ₆ BrCl [109-70-6]	3.9×10 ⁻²		HSDB (2015)	Q	38
1,2-dibromo-3-chloropropane C ₃ H ₅ Br ₂ Cl [96-12-8]	9.7×10^{-2} 5.0×10^{-1} 6.6×10^{-2} 6.7×10^{-2} 9.0×10^{-2} 1.6×10^{-2} 4.0×10^{-2}	7100 10000	Hiatt (2013) Kondoh and Nakajima (1997) HSDB (2015) Meylan and Howard (1991) Hilal et al. (2008) Meylan and Howard (1991) MacBean (2012a)	M M V V Q Q	
1,2,3,4,5-pentabromo-6- chlorocyclohexane C ₆ H ₆ Br ₅ Cl [87-84-3]	1.0×10^{1} 1.1×10^{2} 1.8×10^{3} 1.2×10^{1}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
1,2,3,4-tetrabromo-5,6-dichlorocyclohexane C ₆ H ₆ Br ₄ Cl ₂	3.4 6.2×10^{1} 9.9×10^{2} 6.2		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
1,2,3-tribromo-4,5,6- trichlorocyclohexane C ₆ H ₆ Br ₃ Cl ₃	$ \begin{array}{c} 1.1 \\ 3.6 \times 10^{1} \\ 4.1 \times 10^{2} \\ 3.0 \end{array} $		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
1-bromo-4-chlorobenzene C ₆ H ₄ BrCl [106-39-8]	$6.8 \times 10^{-3} \\ 9.0 \times 10^{-3}$		Mackay and Shiu (1981) Hilal et al. (2008)	V Q	
1,2,4-tribromo-3,5,6-trichlorobenzene C ₆ Br ₃ Cl ₃ [13075-01-9]	4.1×10 ⁻²		HSDB (2015)	Q	38
1-(bromomethyl)-2-chlorobenzene C ₇ H ₆ BrCl [611-17-6]	1.9×10 ⁻²		HSDB (2015)	Q	182
2-bromo-4-chloro-1-methoxybenzene C ₇ H ₆ BrClO (2-bromo-4-chloroanisole) [60633-25-2]	1.8×10 ⁻²		Pfeifer et al. (2001)	M	273
2-bromo-6-chloro-1-methoxybenzene C ₇ H ₆ BrClO (2-bromo-6-chloroanisole) [174913-10-1]	1.4×10 ⁻²		Pfeifer et al. (2001)	M	273

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference		Note
4-bromo-2-chloro-1-methoxybenzene C ₇ H ₆ BrClO (4-bromo-2-chloroanisole) [50638-47-6]	1.3×10^{-2}		Pfeifer et al. (2001)	M	273
2-bromo-3,5-dichloro-1- methoxybenzene C ₇ H ₅ BrCl ₂ O (2-bromo-3,5-dichloroanisole)	1.1×10 ⁻²		Pfeifer et al. (2001)	M	273
2-bromo-4,6-dichloro-1- methoxybenzene C ₇ H ₅ BrCl ₂ O (2-bromo-4,6-dichloroanisole) [60633-26-3]	8.2×10^{-3} 1.2×10^{-2}	3100	Diaz et al. (2005) Pfeifer et al. (2001)	M M	273
4-bromo-2,3-dichloro-1- methoxybenzene C ₇ H ₅ BrCl ₂ O (4-bromo-2,3-dichloroanisole) [109803-52-3]	1.1×10 ⁻²		Pfeifer et al. (2001)	M	273
4-bromo-2,6-dichloro-1- methoxybenzene C ₇ H ₅ BrCl ₂ O (4-bromo-2,6-dichloroanisole) [19240-91-6]	1.2×10^{-2} 1.2×10^{-2}	4900	Diaz et al. (2005) Pfeifer et al. (2001)	M M	273
4-bromo-3,5-dichloro-1- methoxybenzene C ₇ H ₅ BrCl ₂ O (4-bromo-3,5-dichloroanisole)	1.1×10 ⁻²		Pfeifer et al. (2001)	M	273
3-bromo-2,6-dichloro-1- methoxybenzene C ₇ H ₅ BrCl ₂ O (3-bromo-2,6-dichloroanisole)	1.1×10 ⁻²	2700	Diaz et al. (2005)	M	284
5-bromo-2,4-dichloro-1- methoxybenzene C ₇ H ₅ BrCl ₂ O (5-bromo-2,4-dichloroanisole)	1.1×10 ⁻²		Pfeifer et al. (2001)	М	273
6-bromo-2,3-dichloro-1- methoxybenzene C ₇ H ₅ BrCl ₂ O (6-bromo-2,3-dichloroanisole)	1.1×10 ⁻²		Pfeifer et al. (2001)	M	273
6-bromo-2,5-dichloro-1- methoxybenzene C ₇ H ₅ BrCl ₂ O (6-bromo-2,5-dichloroanisole) [174913-14-5]	7.7×10 ⁻³	3000	Diaz et al. (2005)	M	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
2-bromo-3,4,5-trichloro-1- methoxybenzene C ₇ H ₄ BrCl ₃ O (2-bromo-3,4,5-trichloroanisole)	9.8×10^{-3}		Pfeifer et al. (2001)	M	273
3-bromo-2,4,6-trichloro-1- methoxybenzene C ₇ H ₄ BrCl ₃ O (3-bromo-2,4,6-trichloroanisole) [174913-28-1]	1.0×10 ⁻²		Pfeifer et al. (2001)	M	273
3-bromo-2,5,6-trichloro-1- methoxybenzene C ₇ H ₄ BrCl ₃ O (3-bromo-2,5,6-trichloroanisole) [78647-93-5]	1.0×10 ⁻²		Pfeifer et al. (2001)	M	273
4-bromo-2,3,6-trichloro-1- methoxybenzene C ₇ H ₄ BrCl ₃ O 4-bromo-2,3,6-trichloroanisole) 78647-87-7]	1.0×10 ⁻²		Pfeifer et al. (2001)	M	273
6-bromo-2,3,4-trichloro-1- methoxybenzene C ₇ H ₄ BrCl ₃ O (6-bromo-2,3,4-trichloroanisole)	1.1×10 ⁻²		Pfeifer et al. (2001)	M	273
4-bromo-2,3,5,6-tetrachloro-1- methoxybenzene C ₇ H ₃ BrCl ₄ O (4-bromo-2,3,5,6-tetrachloroanisole) [174913-33-8]	9.2×10 ⁻³		Pfeifer et al. (2001)	M	273
2,6-dibromo-3-chloro-1- nethoxybenzene C ₇ H ₅ Br ₂ ClO (2,6-dibromo-3-chloroanisole)	7.4×10 ⁻³	770	Diaz et al. (2005)	М	284
2,6-dibromo-4-chloro-1- methoxybenzene C ₇ H ₅ Br ₂ ClO (2,6-dibromo-4-chloroanisole)	2.0×10^{-2} 1.1×10^{-2}	6700	Diaz et al. (2005) Pfeifer et al. (2001)	M M	273
[174913-44-1] 2,4-dibromo-3,5-dichloro-1- methoxybenzene C ₇ H ₄ Br ₂ Cl ₂ O [2,4-dibromo-3,5-dichloroanisole) [174913-52-1]	9.1×10 ⁻³		Pfeifer et al. (2001)	M	273
2,4-dibromo-5,6-dichloro-1- methoxybenzene C ₇ H ₄ Br ₂ Cl ₂ O (2,4-dibromo-5,6-dichloroanisole)	9.8×10 ⁻³		Pfeifer et al. (2001)	M	273

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number] 2,3-dibromo-5,6-dichloro-1- methoxybenzene C ₇ H ₄ Br ₂ Cl ₂ O (2,3-dibromo-5,6-dichloroanisole)	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$ 9.1×10^{-3}	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference Pfeifer et al. (2001)	Туре	Note 273
2,6-dibromo-3,4,5-trichloro-1- methoxybenzene C ₇ H ₃ Br ₂ Cl ₃ O (2,6-dibromo-3,4,5-trichloroanisole)	8.6×10 ⁻³		Pfeifer et al. (2001)	М	273
2,4,6-tribromo-3-chloro-1- methoxybenzene C ₇ H ₄ Br ₃ ClO (2,4,6-tribromo-3-chloroanisole) [174913-78-1]	9.1×10 ⁻³		Pfeifer et al. (2001)	M	273
2',4',5',7'-tetrabromo-3,4,5,6-tetrachlorofluorescein	1.5×10^{13}		Zhang et al. (2010)	Q	107, 108
C ₂₀ H ₄ Br ₄ Cl ₄ O ₅	1.9×10^{8}		Zhang et al. (2010)	Q	107, 109
[13473-26-2]	8.0×10^{10}		Zhang et al. (2010)	Q	107, 110
	2.2×10^{8}		Zhang et al. (2010)	Q	107, 111
bromochloroacetonitrile C ₂ HBrClN [83463-62-1]	8.2		HSDB (2015)	Q	38
N,N'-dimethyl-3,3',4-tribromo-4,5,5'-trichloro-2,2'-bipyrrole	7.1		Tittlemier et al. (2004)	V	
C ₁₀ H ₆ Br ₃ Cl ₃ N ₂ (DBP-Br ₃ Cl ₃ a) [400766-93-0]	9.5		Hilal et al. (2008)	Q	
N,N'-dimethyl- 3,4,4'-tribromo-3',5,5'-trichloro-2,2'-bipyrrole	3.3×10^{1}		Tittlemier et al. (2004)	V	
C ₁₀ H ₆ Br ₃ Cl ₃ N ₂ (DBP-Br ₃ Cl ₃ b) [666856-68-4]	9.5		Hilal et al. (2008)	Q	
N,N'-dimethyl-3,3',4,4'-tetrabromo-5,5'-dichloro-2,2'-bipyrrole	2.8×10^{1}		Tittlemier et al. (2004)	V	
C ₁₀ H ₆ Br ₄ Cl ₂ N ₂ (DBP-Br4Cl ₂) [253798-64-0]	1.8×10 ¹		Hilal et al. (2008)	Q	
N,N'-dimethyl-3,3',4,4',5- pentabromo-5'-chloro-2,2'-bipyrrole	1.5×10^2		Tittlemier et al. (2004)	V	
C ₁₀ H ₆ Br ₅ ClN ₂ (DBP-Br5Cl) [400767-00-2]	3.0×10 ¹		Hilal et al. (2008)	Q	
1-bromo-3-chloro-5,5- dimethylhydantoin C ₅ H ₆ BrClN ₂ O ₂ [16079-88-2]	1.2×10 ¹		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]	F773		71	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
3-(4-bromo-3-chlorophenyl)-1-	2.2×10^{3}		HSDB (2015)	V	
methoxy-1-methylurea	3.2×10^{3}		Marker et al. (2006 l)	N/	
C ₉ H ₁₀ BrClN ₂ O ₂ (chlorbromuron)	3.2×10^{3} 2.5×10^{3}		Mackay et al. (2006d)	V ?	
[13360-45-7]	2.3 × 10°		MacBean (2012a)	!	
N-(4-bromo-2,6-dichloro-3-	6.7×10^3		Zhang et al. (2010)	Q	107, 108
methylphenyl)acetamide	62 102		71 (2010)	0	107 100
C ₉ H ₈ BrCl ₂ NO	6.2×10^2		Zhang et al. (2010)	Q	107, 109
[68399-95-1]	2.1×10^4 6.5×10^3		Zhang et al. (2010)	Q	107, 110
			Zhang et al. (2010)	Q	107, 111
halacrinate	2.4×10^2		MacBean (2012a)	?	
C ₁₂ H ₇ NO ₂ BrCl [34462-96-9]					
bromuconazole	1.2×10 ⁵		HSDB (2015)	V	
C ₁₃ H ₁₂ BrCl ₂ N ₃ O				•	
[116255-48-2]					
5,7-dibromo-2-(5-bromo-7-chloro-1,3-	4.2×10 ⁹		Zhang et al. (2010)	Q	107, 108
dihydro-3-oxo-2H-indol-2-ylidene)-					
1,2-dihydro-3H-indol-3-one					
$C_{16}H_6Br_3ClN_2O_2$	3.3×10^{15}		Zhang et al. (2010)	Q	107, 109
[85702-64-3]	2.4×10^{5}		Zhang et al. (2010)	Q	107, 110
	8.8×10^9		Zhang et al. (2010)	Q	107, 111
chlorantraniliprole	7.0×10^{15}		HSDB (2015)	Q	38
C ₁₈ H ₁₄ BrCl ₂ N ₅ O ₂					
[500008-45-7]	2				
tribromofluoromethane	1.5×10^{-3}		Fogg and Sangster (2003)	V	
CBr ₃ F [353-54-8]					
-					
oromochlorodifluoromethane	1.0×10^{-4}		HSDB (2015)	Q	38
CBrClF ₂	8.6×10^{-5}		Hilal et al. (2008)	Q	
[353-59-3]	6.0×10^{-5}		Yaws (1999)	?	
1-bromo-1-chloro-2,2,2-trifluoroethane	5.6×10^{-4}	4700	Fogg and Sangster (2003)	L	
C ₂ HBrClF ₃	3.1×10^{-4}		Steward et al. (1973)	L	19
(halothane)	2.8×10^{-4}		Guitart et al. (1989)	M	19
[151-67-7]	3.3×10^{-4}		Lerman et al. (1983)	M	19
	5.3×10^{-4}	5000	Smith et al. (1981b)	M	
	3.2×10^{-4}		Stoelting and Longshore (1972)	M	19
	8.8×10^{-4}		Hilal et al. (2008)	Q	
		4100	Kühne et al. (2005)	Q	4=6
	4.9×10^{-4}	5 000	HSDB (2015)	?	170
	4.0 10-4	5000	Kühne et al. (2005)	?	
	4.8×10^{-4}		Abraham et al. (1990)	?	
chlorfenapyr C ₁₅ H ₁₁ BrClF ₃ N ₂ O [122453-73-0]	1.7×10^3		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type Note
fluazolate C ₁₅ H ₁₂ N ₂ O ₂ BrClF ₄ [174514-07-9]	1.3×10 ¹		MacBean (2012a)	?

Organic species with iodine (I)

	Iodoca	rbons (C	C, H, O, Cl, I)		
iodomethane	2.0×10^{-3}	3600	Sander et al. (2011)	L	
CH ₃ I	2.0×10^{-3}	3600	Sander et al. (2006)	L	
(methyl iodide)	2.0×10^{-3}	3600	Staudinger and Roberts (2001)	L	
[74-88-4]	1.8×10^{-3}	3200	Hiatt (2013)	M	
	1.9×10^{-3}		Gan and Yates (1996)	M	113
	1.4×10^{-3}	4600	Moore et al. (1995)	M	127
	2.0×10^{-3}	3700	Elliott and Rowland (1993)	M	
	1.9×10^{-3}	3800	Hunter-Smith et al. (1983)	M	251
	2.0×10^{-3}	3100	Balls (1980)	M	
	1.8×10^{-3}	3000	Swain and Thornton (1962)	M	
	1.9×10^{-3}	3200	Glew and Moelwyn-Hughes (1953)	M	
	1.9×10^{-3}	3700	Rex (1906)	M	
	1.8×10^{-3}		Mackay et al. (2006b)	V	
	1.9×10^{-3}	3600	Fogg and Sangster (2003)	V	
	1.8×10^{-3}		Mackay et al. (1993)	V	
	1.8×10^{-3}		Abraham (1984)	V	
	1.8×10^{-3}		Hine and Mookerjee (1975)	V	
	1.7×10^{-3}		Liss and Slater (1974)	C	
	2.1×10^{-3}		Hilal et al. (2008)	Q	
		3800	Kühne et al. (2005)	Q	
	3.6×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
	1.8×10^{-3}		Mackay et al. (2006b)	?	
		3700	Kühne et al. (2005)	?	
	3.5×10^{-3}		Yaws (1999)	?	
	1.8×10^{-3}		Mackay et al. (1993)	?	
	3.5×10^{-3}		Yaws and Yang (1992)	?	92
diiodomethane	2.3×10^{-2}	5300	Moore et al. (1995)	M	127
CH_2I_2	3.2×10^{-2}		Mackay et al. (1993)	V	
[75-11-6]	7.3×10^{-2}		Hilal et al. (2008)	Q	
	2.9×10^{-2}		Yaws (1999)	?	
	2.8×10^{-2}		Yaws and Yang (1992)	?	92
	2.8×10^{-2}		Abraham et al. (1990)	?	
triiodomethane	6.2×10^{-3}		Fogg and Sangster (2003)	V	
CHI ₃	3.2×10^{-6}		HSDB (2015)	Q	38
(iodoform)	1.3×10^{-3}		Hilal et al. (2008)	Q	
[75-47-8]	3.4×10^{-3}		Yaws and Yang (1992)	?	92

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]		11020201100	-JPC	11000
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
odoethane	1.5×10^{-3}	4200	Fogg and Sangster (2003)	L	286
C_2H_5I	1.4×10^{-3}		Li et al. (1993)	M	
75-03-6]	1.5×10^{-3}	4000	Rex (1906)	M	
<u>-</u>	1.4×10^{-3}		Mackay et al. (2006b)	V	
	1.9×10^{-3}		Mackay et al. (1993)	V	
	1.4×10^{-3}		Abraham (1984)	V	
	1.4×10^{-3}		Hine and Mookerjee (1975)	V	
	1.9×10^{-3}		Hilal et al. (2008)	Q	
		4200	Kühne et al. (2005)	Q	
	1.2×10^{-3}		Nirmalakhandan and Speece (1988a)	Q	
	1.27(10	4100	Kühne et al. (2005)	?	
	1.8×10^{-3}		Yaws and Yang (1992)	?	92, 9
	1.4×10^{-3}		Abraham et al. (1990)	?	, /
	1.1×10^{-3}				
-iodopropane		4.600	Li et al. (1993)	M	
C ₃ H ₇ I	1.0×10^{-3}	4600	Rex (1906)	M	
107-08-4]	1.1×10^{-3}		Mackay et al. (2006b)	V	
	1.1×10^{-3}		Mackay et al. (1993)	V	
	9.9×10^{-4}		Abraham (1984)	V	
	1.1×10^{-3}		Hine and Mookerjee (1975)	V	
	1.6×10^{-3}		Hilal et al. (2008)	Q	
	4	4500	Kühne et al. (2005)	Q	
	9.5×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	2	4500	Kühne et al. (2005)	?	
	1.2×10^{-3}		Yaws and Yang (1992)	?	92, 27
	9.9×10^{-4}		Abraham et al. (1990)	?	
2-iodopropane	8.5×10^{-4}	4500	Rex (1906)	M	
C ₃ H ₇ I	8.8×10^{-4}		Hine and Mookerjee (1975)	V	
75-30-9]	7.9×10^{-4}		Hilal et al. (2008)	Q	
		4500	Kühne et al. (2005)	Q	
	5.4×10^{-4}		Nirmalakhandan and Speece (1988a)	Q ?	
		4700	Kühne et al. (2005)		
	1.1×10^{-3}		Yaws and Yang (1992)	?	92, 9
-iodobutane	5.4×10^{-4}		Mackay et al. (2006b)	V	
C ₄ H ₉ I	5.4×10^{-4}		Mackay et al. (1993)	V	
542-69-8]	6.1×10^{-4}		Abraham (1984)	V	
	6.2×10^{-4}		Hine and Mookerjee (1975)	V	
	1.2×10^{-3}		Hilal et al. (2008)	Q	
	7.5×10^{-4}		Nirmalakhandan and Speece (1988a)	Q	
	6.1×10^{-4}		Abraham et al. (1990)	?	
2-iodobutane C ₄ H ₉ I 513-48-4]	7.0×10^{-4}		Hilal et al. (2008)	Q	
-	9.9×10^{-4}		Hilal et al. (2008)	0	
l-iodopentane	5.7×10^{-4}			Q	
C ₅ H ₁₁ I			Nirmalakhandan et al. (1997)	Q	
[628-17-1]	5.1×10^{-4}		Abraham et al. (1990)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	dln H ^{cp}			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	D C	Tr.	NI 4
(Other name(s))	[mol]	` , ,	Reference	Type	Note
[CAS registry number]	$\left[\frac{mor}{m^3 Pa}\right]$	[K]			
1-iodohexane	8.2×10^{-4}		Hilal et al. (2008)	Q	
$C_6H_{13}I$	4.5×10^{-4}		Nirmalakhandan et al. (1997)	Q	
[638-45-9]	3.5×10^{-4}		Abraham et al. (1990)	?	
1-iodoheptane	2.6×10^{-4}		Abraham (1984)	V	
C ₇ H ₁₅ I	6.7×10^{-4}		Hilal et al. (2008)	Q	
[4282-40-0]	3.5×10^{-4}		Nirmalakhandan et al. (1997)	Q	
	2.5×10^{-4}		Abraham et al. (1990)	?	
iodocyclohexane	3.9×10^{-3}		Hilal et al. (2008)	Q	
C ₆ H ₁₁ I [626-62-0]					
3-iodo-1-propene	3.8×10^{-3}		Hilal et al. (2008)	Q	
C ₃ H ₅ I [556-56-9]					
1-iodocyclohexene	4.1×10^{-3}		Hilal et al. (2008)	Q	
C ₆ H ₉ I [17497-53-9]					
iodobenzene	7.7×10^{-3}		Mackay and Shiu (1981)	L	
C ₆ H ₅ I	7.6×10^{-3}		Li and Carr (1993)	M	
[591-50-4]	1.2×10^{-2}		HSDB (2015)	V	
	7.9×10^{-3}		Schüürmann (2000)	V	
	1.3×10^{-2}		Mackay et al. (1993)	V	
	1.4×10^{-2}		Hilal et al. (2008)	Q	
	3.8×10^{-3}		Nirmalakhandan et al. (1997)	Q	
	7.4×10^{-3}		Yaws and Yang (1992)	?	92
	7.7×10^{-3}		Abraham et al. (1990)	?	
iodoacetic acid C ₂ H ₃ IO ₂ [64-69-7]	2.4×10^2		HSDB (2015)	Q	38
2-iodophenol	1.4×10^{1}		Abraham et al. (1994a)	R	
C ₆ H ₅ IO	6.9		Hilal et al. (2008)	Q	
[533-58-4]	1.6×10^2		Nirmalakhandan et al. (1997)	Q	
3-iodophenol C ₆ H ₅ IO [626-02-8]	7.0×10^{1}		Hilal et al. (2008)	Q	
4-iodophenol	4.6×10 ¹		Hilal et al. (2008)	Q	
C ₆ H ₅ IO [540-38-5]			(2000)	×	
erythrosine	3.9×10^{13}		Zhang et al. (2010)	Q	107, 108
$C_{20}H_8I_4O_5$	2.3×10^{8}		Zhang et al. (2010)	Q	107, 109
[16423-68-0]	8.6×10^{10}		Zhang et al. (2010)	Q	107, 110
	5.1×10^9		Zhang et al. (2010)	Q	107, 111
4-hydroxy-3,5-diiodo-benzonitrile	1.3×10 ²		Mackay et al. (2006d)	V	
$C_7H_3I_2NO$	1.8×10^4		HSDB (2015)	Q	38
[1689-83-4]					

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\mathrm{d} \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]		Reference	Туре	Note
[CAS registry number]	$\left\lfloor \frac{1}{m^3 Pa} \right\rfloor$	[K]			
3-iodo-2-propynyl butylcarbamate	8.2×10 ¹		HSDB (2015)	V	
$C_8H_{12}INO_2$					
[55406-53-6]					
diatrizoic acid	3.5×10^{12}		Zhang et al. (2010)	Q	107, 108
$C_{11}H_9I_3N_2O_4$	5.4×10^8		Zhang et al. (2010)	Q	107, 109
[117-96-4]	1.2×10^{17}		Zhang et al. (2010)	Q	107, 110
	3.3×10^{16}		Zhang et al. (2010)	Q	107, 111
iothalamic acid	4.4×10^{12}		Zhang et al. (2010)	Q	107, 108
$C_{11}H_9I_3N_2O_4$	4.8×10^9		Zhang et al. (2010)	Q	107, 109
[2276-90-6]	4.2×10^{16}		Zhang et al. (2010)	Q	107, 110
	1.9×10^{16}		Zhang et al. (2010)	Q	107, 111
benodanil	6.2×10^5		Mackay et al. (2006d)	V	
C ₁₃ H ₁₀ INO	$>2.3\times10^{10}$		MacBean (2012a)	?	
[15310-01-7]	10				
iopamidol	9.0×10^{19}		HSDB (2015)	Q	38
C ₁₇ H ₂₂ I ₃ N ₃ O ₈ [60166-93-0]					
ioxaglic acid	2.7×10^{35}		Zhang et al. (2010)	Q	107, 108
$C_{24}H_{21}I_6N_5O_8$	1.4×10^{27}		Zhang et al. (2010)	Q	107, 109
[59017-64-0]	2.0×10^{29}		Zhang et al. (2010)	Q	107, 110
	7.2×10^{38}		Zhang et al. (2010)	Q	107, 111
1,1,1,2,2,3,3-heptafluoro-5-iodopentane	4.6×10^{-6}		Zhang et al. (2010)	Q	107, 108
$C_5H_4F_7I$	1.2×10^{-4}		Zhang et al. (2010)	Q	107, 109
[68188-12-5]	3.8×10^{-4}		Zhang et al. (2010)	Q	107, 110
	5.0×10^{-6}		Zhang et al. (2010)	Q	107, 111
5-diethylamiloride	8.8×10^{-7}		Zhang et al. (2010)	Q	107, 108
$C_6H_4F_9I$	5.6×10^{-5}		Zhang et al. (2010)	Q	107, 109
[2043-55-2]	1.9×10^{-4}		Zhang et al. (2010)	Q	107, 110
	1.0×10^{-6}		Zhang et al. (2010)	Q	107, 111
1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluoro-	3.2×10^{-8}		Zhang et al. (2010)	Q	107, 108
8-iodooctane	3.4×10^{-6}		Thang at al. (2010)	0	107 100
C ₈ H ₄ F ₁₃ I [2043-57-4]	5.4×10^{-5}		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 109 107, 110
[2043-37-4]	4.3×10^{-8}		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 110
1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8- heptadecafluoro-10-iododecane	1.2×10 ⁻⁹		Zhang et al. (2010)	Q	107, 108
C ₁₀ H ₄ F ₁₇ I	7.7×10^{-8}		Zhang et al. (2010)	Q	107, 109
[2043-53-0]	2.0×10^{-5}		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 109
[2073 33 ⁻ 0]	2.3×10^{-9}		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 110
chloroiodomethane	8.8×10^{-3}	4600	Moore et al. (1995)	M	127
CH ₂ CII	2.0×10^{-2}		Hilal et al. (2008)	Q	
[593-71-5]			(=000)	~	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	Organic s	pecies v	with sulfur (S)		
		r (C, H, C	O, N, Cl, S)		
methanethiol	3.8×10^{-3}	3400	Sander et al. (2011)	L	
CH ₃ SH	3.8×10^{-3}	3400	Sander et al. (2006)	L	
(methyl mercaptan)	2.8×10^{-3}	3100	Staudinger and Roberts (2001)	L	
[74-93-1]	2.0×10^{-3}	2800	De Bruyn et al. (1995b)	M	
	3.9×10^{-3}	3400	Przyjazny et al. (1983)	M	
	3.3×10^{-3}		Hine and Weimar Jr. (1965)	M	
	3.2×10^{-3}		HSDB (2015)	V	
	3.3×10^{-3}		Hine and Mookerjee (1975)	V	
	2.6×10^{-3}	1600	Goldstein (1982)	X	116
	3.5×10^{-3}		Hilal et al. (2008)	Q	
		3300	Kühne et al. (2005)	Q	
	2.9×10^{-3}		Nirmalakhandan et al. (1997)	Q	
		3400	Kühne et al. (2005)	?	
	5.1×10^{-3}		Yaws (1999)	?	
	4.0×10^{-3}		Abraham et al. (1990)	?	
ethanethiol	2.8×10^{-3}	3700	Sander et al. (2011)	L	
C ₂ H ₅ SH	2.8×10^{-3}	3700	Sander et al. (2006)	L	
(ethyl mercaptan)	2.8×10^{-3}	3700	Przyjazny et al. (1983)	M	
[75-08-1]	2.2×10^{-3}		Vitenberg et al. (1975)	M	
	3.4×10^{-3}		Mackay et al. (2006d)	V	
	3.4×10^{-3}		Mackay et al. (1995)	V	
	3.4×10^{-3}		Hwang et al. (1992)	V	
	3.6×10^{-3}		Hine and Mookerjee (1975)	V	
	3.9×10^{-3}		Hilal et al. (2008)	Q	
		3600	Kühne et al. (2005)	Q	
	1.9×10^{-3}		Nirmalakhandan et al. (1997)	Q	
		3700	Kühne et al. (2005)	?	
	3.4×10^{-3}		Yaws and Yang (1992)	?	92
	2.8×10^{-3}		Abraham et al. (1990)	?	
1,2-ethanedithiol C ₂ H ₆ S ₂	8.2×10^{-2}		HSDB (2015)	Q	38
[540-63-6]					
thiirane C_2H_4S	2.8×10^{-2}		HSDB (2015)	Q	38
C ₂ H ₄ S (ethylene sulfide) [420-12-2]					
1-propanethiol	1.7×10^{-3}	3100	Coquelet and Richon (2005)	M	
C ₃ H ₇ SH	2.4×10^{-3}	3900	Przyjazny et al. (1983)	M	
(propyl mercaptan)	3.4×10^{-3}		Hilal et al. (2008)	Q	
[107-03-9]		4000	Kühne et al. (2005)	Q	
	1.5×10^{-3}		Nirmalakhandan et al. (1997)	Q	
		3800	Kühne et al. (2005)	?	
	2.4×10^{-3}		Abraham et al. (1990)	?	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]	[17]		71	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
2-propanethiol	2.1×10^{-3}		HSDB (2015)	Q	38
C_3H_8S	2.1×10^{-3}		Hilal et al. (2008)	Q	
[75-33-2]					
1-butanethiol	1.5×10^{-3}	3600	Coquelet and Richon (2005)	M	
C ₄ H ₉ SH	2.2×10^{-3}	4100	Przyjazny et al. (1983)	M	
(butyl mercaptan)	1.1×10^{-3}		Mackay et al. (2006d)	V	
[109-79-5]	1.1×10^{-3}		Mackay et al. (1995)	V	
	1.4×10^{-3}		Hwang et al. (1992)	V	
	2.7×10^{-3}		Hilal et al. (2008)	Q	
	2	4300	Kühne et al. (2005)	Q	
	1.2×10^{-3}	400-	Nirmalakhandan et al. (1997)	Q	
		4200	Kühne et al. (2005)	?	0.5
	1.1×10^{-3}		Yaws and Yang (1992)	?	92
	2.2×10^{-3}		Abraham et al. (1990)	?	
2-butanethiol	1.4×10^{-3}		HSDB (2015)	V	
C ₄ H ₁₀ S					
[513-53-1]					
2-methyl-1-propanethiol	2.4×10^{-3}		Hilal et al. (2008)	Q	
$C_4H_{10}S$					
[513-44-0]					
2-methyl-2-propanethiol	1.6×10^{-3}		HSDB (2015)	Q	38
$C_4H_{10}S$	6.1×10^{-4}		Hilal et al. (2008)	Q	
[75-66-1]					
1,4-dithiane	2.3×10 ⁻¹	<u> </u>	HSDB (2015)	V	
$C_4H_8S_2$					
[505-29-3]					
1-pentanethiol	8.2×10^{-4}		HSDB (2015)	V	
C ₅ H ₁₁ SH	7.3×10^{-4}		Amoore and Buttery (1978)	V	
(pentyl mercaptan)	2.3×10^{-3}		Hilal et al. (2008)	Q	
[110-66-7]					
1-hexanethiol	1.9×10^{-3}		Hilal et al. (2008)	Q	
C ₆ H ₁₄ S			` ,		
[111-31-9]					
1-heptanethiol	2.7×10^{-3}		Hilal et al. (2008)	Q	
C ₇ H ₁₆ S			. ,	`	
[1639-09-4]					
1-octanethiol	4.3×10^{-4}		HSDB (2015)	Q	38
C ₈ H ₁₈ S	1.3×10^{-3}		Hilal et al. (2008)	Q	
[111-88-6]			, ,		
tert-octanethiol	5.2×10 ⁻⁴		HSDB (2015)	Q	38
C ₈ H ₁₈ S	5.2710		(2010)	V	20
[141-59-3]					

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^{3} \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
1-nonanethiol C ₉ H ₂₀ S [1455-21-6]	1.2×10^{-3}		Hilal et al. (2008)	Q	
1-decanethiol C ₁₀ H ₂₂ S [143-10-2]	9.9×10^{-4}		Hilal et al. (2008)	Q	
1-dodecanethiol C ₁₂ H ₂₆ S [112-55-0]	1.7×10 ⁻⁴		HSDB (2015)	Q	38
dicyclohexyldisulfide C ₁₂ H ₂₂ S ₂ [2550-40-5]	2.5×10 ⁻³		HSDB (2015)	Q	38
dimethyl sulfide	5.6×10^{-3}	3500	Warneck and Williams (2012)	L	
CH ₃ SCH ₃	5.3×10^{-3}	3500	Sander et al. (2011)	L	
(DMS)	5.3×10^{-3}	3500	Sander et al. (2006)	L	
75-18-3]	5.2×10^{-3}	3600	Fogg and Sangster (2003)	L	
	5.3×10^{-3}	3500	Staudinger and Roberts (2001)	L	
	4.6×10^{-3}		Schuhfried et al. (2011)	M	
	4.8×10^{-3}	2800	Falabella (2007)	M	89, 130
	5.2×10^{-3}	3600	Coquelet and Richon (2005)	M	
	5.5×10^{-3}	3800	Iliuta and Larachi (2005)	M	
	4.9×10^{-3} 6.4×10^{-3}	4100	Straver and de Loos (2005)	M	
	6.4×10^{-3} 4.9×10^{-3}	4100	Barcellos da Rosa et al. (2003)	M	
	4.9×10^{-3} 4.7×10^{-3}	2700	Pollien et al. (2003)	M M	
	1.6×10^{-2}	3700	Gershenzon et al. (2001) Marin et al. (1999)	M	
	4.2×10^{-3}	4300	Wong and Wang (1997)	M	
	4.7×10^{-3}	3100	De Bruyn et al. (1995b)	M	
	5.5×10^{-3}	3500	Dacey et al. (1984)	M	
	5.6×10^{-3}	4000	Przyjazny et al. (1983)	M	
	6.1×10^{-3}		Vitenberg et al. (1975)	M	9
	1.6×10^{-3}		Lovelock et al. (1972)	M	
			Mackay et al. (2006d)	V	221
	4.2×10^{-3}		Marin et al. (1999)	V	
	1.3×10^{-1}		Mackay et al. (1995)	V	
	5.4×10^{-3}		Hine and Mookerjee (1975)	V	
	5.5×10^{-3}		Hine and Weimar Jr. (1965)	V	
	7.0×10^{-3}		Vitenberg et al. (1975)	R	9
	6.0×10^{-3}	3700	Bagno et al. (1991)	T	196
	6.1×10^{-3}		Gaffney and Senum (1984)	X	153
	4.4×10^{-3}		Cline and Bates (1983)	C	127
	$1.2 \times 10^{-2} \\ 7.2 \times 10^{-3}$		Hilal et al. (2008)	Q	104
	7.2×10 3	3100	Hertel et al. (2007)	Q	194
	5.0×10^{-3}	3100	Kühne et al. (2005) Marin et al. (1999)	Q	
	6.5×10^{-3}		Nirmalakhandan et al. (1997)	Q Q	
	0.5 × 10	3500	Kühne et al. (2005)	?	
	1.7×10^{-3}	2230	Abraham et al. (1990)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
ethyl methyl sulfide	4.2×10^{-3}		Schuhfried et al. (2011)	M	
C ₃ H ₈ S	5.1×10^{-3}		Bagno et al. (1991)	T	196
[624-89-5]	8.6×10^{-3}		Hilal et al. (2008)	Q	
	4.4×10^{-3}		Nirmalakhandan et al. (1997)	Q	
diethyl sulfide	3.5×10^{-3}		Schuhfried et al. (2011)	M	
$C_2H_5SC_2H_5$	5.4×10^{-3}	4900	Przyjazny et al. (1983)	M	
[352-93-2]	5.1×10^{-1}		Mackay et al. (2006d)	V	
	4.5×10^{-3}		Hine and Mookerjee (1975)	V	
	6.0×10^{-3}		Hilal et al. (2008)	Q	
	2.9×10^{-3}		Nirmalakhandan et al. (1997)	Q	
	5.7×10^{-3}		Yaws and Yang (1992)	?	92, 9
	4.7×10^{-3}		Abraham et al. (1990)	?	
dipropyl sulfide	3.3×10^{-3}	4500	Przyjazny et al. (1983)	M	
$C_3H_7SC_3H_7$	3.4×10^{-3}		Hilal et al. (2008)	Q	
[111-47-7]		4500	Kühne et al. (2005)	Q	
	1.8×10^{-3}		Nirmalakhandan et al. (1997)	Q	
	2	4500	Kühne et al. (2005)	?	
	3.5×10^{-3}		Abraham et al. (1990)	?	
di-(2-propyl)-sulfide	3.0×10^{-3}	5000	Przyjazny et al. (1983)	M	
$(C_3H_7)_2S$	1.6×10^{-3}		Hilal et al. (2008)	Q	
(diisopropyl sulfide)		4500	Kühne et al. (2005)	Q	
[625-80-9]	1.2×10^{-3}		Nirmalakhandan et al. (1997)	Q	
		4200	Kühne et al. (2005)	?	
	3.1×10^{-3}		Abraham et al. (1990)	?	
allyl methyl sulfide C ₄ H ₈ S	4.2×10^{-3}		Schuhfried et al. (2011)	M	
[10152-76-8]					
dimethyl disulfide	5.8×10^{-3}		Schuhfried et al. (2011)	M	
CH ₃ SSCH ₃	6.5×10^{-3}	3200	Falabella (2007)	M	89, 130
[624-92-0]	5.9×10^{-3}		Pollien et al. (2003)	M	
	9.4×10^{-3}	4300	Przyjazny et al. (1983)	M	
	8.3×10^{-3}		Vitenberg et al. (1975)	M	9
	1.7×10^{-2}		Mackay et al. (2006d)	V	
	1.7×10^{-2}		Mackay et al. (1995)	V	
	9.0×10^{-3}		Vitenberg et al. (1975)	R	9
	3.0×10^{-2}		Hilal et al. (2008)	Q	
		1700	Kühne et al. (2005)	Q	
	4.6×10^{-3}		Nirmalakhandan et al. (1997)	Q	
	2	1600	Kühne et al. (2005)	?	
	9.0×10^{-3}		Abraham et al. (1990)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
diethyl disulfide $C_2H_5SSC_2H_5$ [110-81-6]	3.7×10^{-3} 6.3×10^{-3} 4.7×10^{-3} 1.2×10^{-2} 2.3×10^{-3} 6.4×10^{-3}	4300	Schuhfried et al. (2011) Przyjazny et al. (1983) Vitenberg et al. (1975) Hilal et al. (2008) Nirmalakhandan et al. (1997) Abraham et al. (1990)	M M M Q Q ?	9
dipropyl disulfide C ₃ H ₇ SSC ₃ H ₇ [629-19-6]	2.4×10 ⁻³		Schuhfried et al. (2011)	M	
carbon disulfide CS ₂ [75-15-0]	6.1×10^{-4} 6.1×10^{-4} 6.1×10^{-4} 6.1×10^{-4} 5.7×10^{-4} 5.4×10^{-4} 6.2×10^{-4} 5.4×10^{-4} 5.7×10^{-4} 5.7×10^{-4} 4.5×10^{-4} 7.5×10^{-4} 9.4×10^{-5} 5.1×10^{-4}	3900 4300 4300 3800 2800 3800 4300	Warneck and Williams (2012) Sander et al. (2011) Sander et al. (2006) Hiatt (2013) De Bruyn et al. (1995b) Elliott (1989) Rex (1906) Mackay et al. (2006d) Mackay et al. (1995) Hwang et al. (1992) Winkler (1906) Goldstein (1982) Yaws (1999) Yaws and Yang (1992) Kruis and May (1962) Booth and Jolley (1943) Booth and Jolley (1943)	L L M M M M V V V V V S ?	116 92 287 288 289
2,3,4-trithiapentane C ₂ H ₆ S ₃ (dimethyltrisulfide) [3658-80-8]	2.1×10 ⁻²		Roberts and Pollien (1997)	M	
5-propyl-5-nonanethiol C ₁₂ H ₂₆ S	$ \begin{array}{r} 1.7 \times 10^{-4} \\ 5.8 \times 10^{-4} \\ 2.4 \times 10^{-3} \\ 9.7 \times 10^{-5} \end{array} $		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
allyl mercaptan C ₃ H ₆ S [870-23-5]	1.2×10^{-2}		Hilal et al. (2008)	Q	
3,3'-thiobis-1-propene (C ₃ H ₅) ₂ S (diallyl sulfide) [592-88-1]	4.1×10^{-3} 7.6×10^{-3} 9.9×10^{-3}		Lindinger et al. (1998) HSDB (2015) Hilal et al. (2008)	M Q Q	290 38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(\text{at } T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
thiophene C ₄ H ₄ S [110-02-1]	4.4×10^{-3} 3.4×10^{-3} 4.5×10^{-3} 1.4×10^{-3} 4.5×10^{-3} 3.4×10^{-3} 4.4×10^{-3}	4000 2800 1900	Przyjazny et al. (1983) HSDB (2015) Mackay et al. (2006d) Mackay et al. (1995) Hilal et al. (2008) Kühne et al. (2005) Mackay et al. (2006d) Kühne et al. (2005) Yaws and Yang (1992) Abraham et al. (1990)	M V V V Q Q ? ?	221
2-methylthiophene CH ₃ C ₄ H ₃ S [554-14-3]	4.1×10^{-3} 1.4×10^{-3} 4.1×10^{-3}	4300	Przyjazny et al. (1983) Hilal et al. (2008) Abraham et al. (1990)	M Q ?	
3-methylthiophene CH ₃ C ₄ H ₃ S [616-44-4]	1.7×10^{-3}		Hilal et al. (2008)	Q	
oropyl allyl disulfide C ₆ H ₁₂ S ₂ [2179-59-1]	3.5×10^{-3}		HSDB (2015)	Q	38
benzenethiol C ₆ H ₅ SH (thiophenol) [108-98-5]	2.9×10^{-2} 3.0×10^{-2} 3.0×10^{-2} 3.0×10^{-2} 4.1×10^{-2} 1.0×10^{-2} 3.0×10^{-2}		HSDB (2015) Hine and Mookerjee (1975) Hine and Weimar Jr. (1965) Schüürmann (2000) Hilal et al. (2008) Nirmalakhandan et al. (1997) Abraham et al. (1990)	V V V C Q Q	7
methyl phenyl sulfide C ₆ H ₅ SCH ₃ (thioanisole) [100-68-5] 2-methylbenzenethiol C ₇ H ₈ S (2-thiocresol) [137-06-4]	4.0×10^{-2} 4.1×10^{-2} 5.8×10^{-2} 2.3×10^{-2} 2.7×10^{-2}		Hine and Mookerjee (1975) Hine and Weimar Jr. (1965) Hilal et al. (2008) Nirmalakhandan et al. (1997) HSDB (2015)	V V Q Q Q	38
3-methylbenzenethiol C ₇ H ₈ S (3-thiocresol) [108-40-7]	2.7×10 ⁻²		HSDB (2015)	Q	38
4-methylbenzenethiol C ₇ H ₈ S (4-thiocresol) [106-45-6]	2.7×10 ⁻²		HSDB (2015)	Q	38
penzenemethanethiol C ₇ H ₈ S [100-53-8]	4.7×10 ⁻²		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
benzo[<i>b</i>]thiophene C ₈ H ₆ S [95-15-8]	4.1×10^{-2} 3.6×10^{-2}		Mackay et al. (2006d) Mackay et al. (1995) Smith and Bomberger (1980)	V V X	221164
	2.9×10^{-1}				104
dibenzothiophene C ₁₂ H ₈ S	2.9×10^{-2} 2.3×10^{-2}		HSDB (2015) Mackay et al. (2006d)	V V	
[132-65-0]	2.3×10^{-2} 2.3×10^{-2}		Mackay et al. (2000d) Mackay et al. (1995)	V	
benzyl sulfide C ₁₄ H ₁₄ S [538-74-9]	1.9		HSDB (2015)	Q	38
carbon oxide sulfide	2.1×10 ⁻⁴	3300	Warneck and Williams (2012)	L	
OCS	2.0×10^{-4}	3500	Sander et al. (2011)	L	
carbonyl sulfide)	2.0×10^{-4}	3500	Sander et al. (2006)	L	
463-58-1]	2.1×10^{-4}	3000	Wilhelm et al. (1977)	L	
	2.2×10^{-4}	2100	De Bruyn et al. (1995b)	M	
	1.5×10^{-4}	3800	Johnson and Harrison (1986)	M	127
	1.5×10^{-4}	3500	Hoyt (1982)	M	127
	2.4×10^{-4}		Stock and Kuß (1917)	M	
	2.1×10^{-4}	3300	Winkler (1906)	M	
	3.4×10^{-4}		Hempel (1901)	M	236
	1.6×10^{-5}		HSDB (2015)	V	
	2.0×10^{-4}	3500	Winkler (1907)	X	291
	2.1×10^{-4}	3300	Winkler (1907)	X	292
		2900	Kühne et al. (2005)	Q	
		3300	Kühne et al. (2005)	?	
	2.0×10^{-4} 1.9×10^{-4}		Yaws (1999)	? ?	02
	1.9×10		Yaws and Yang (1992)		92
nethanesulfonic acid CH ₃ SO ₃ H [MSA) [75-75-2]			Brimblecombe and Clegg (1988)	T	293
sulfuric acid, dimethyl ester C ₂ H ₆ O ₄ S [77-78-1]	6.9		Hilal et al. (2008)	Q	
limethylsulfoxide	9.8×10^{2}		Sander et al. (2011)	L	
CH ₃ SOCH ₃	9.8×10^{2}		Sander et al. (2006)	L	
DMSO)	$>9.9\times10^{3}$		Lee and Zhou (1994)	M	
67-68-5]	9.4×10^2	1300	Watts and Brimblecombe (1987)	M	
	4.4		Mackay et al. (2006d)	V	
	4.4	0700	Mackay et al. (1995)	V	10.5
	1.0×10^4	8700	Bagno et al. (1991)	T	196
	1.4×10^{1}		Betterton (1992)	С	
	4.3×10^3	2100	Hilal et al. (2008)	Q	
	6.7×10^3	3100	Kühne et al. (2005)	Q	
	0.7×10°	4100	Taft et al. (1985) Kühne et al. (2005)	Q ?	
		7100	11411110 of al. (2003)		

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
dimethylsulfone CH ₃ SO ₂ CH ₃ (DMSO ₂) [67-71-0]	5.0×10^{-3} 5.0×10^{-3} 5.0×10^{-3} $> 4.9 \times 10^{2}$		Mackay et al. (2006d) Mackay et al. (1995) De Bruyn et al. (1994)	V V E	
mercaptoacetic acid C ₂ H ₄ O ₂ S [68-11-1]	5.2×10 ²		HSDB (2015)	Q	38
2-mercaptoethanol C ₂ H ₆ OS [60-24-2]	5.5×10 ¹		HSDB (2015)	V	
methanesulfonic acid, methyl ester C ₂ H ₆ O ₃ S [66-27-3]	2.5		HSDB (2015)	Q	38
mercaptoacetic acid, methyl ester C ₃ H ₆ O ₂ S (methyl thioglycolate) [2365-48-2]	1.6		HSDB (2015)	Q	38
methanesulfonic acid, ethyl ester C ₃ H ₈ O ₃ S [62-50-0]	1.8		HSDB (2015)	Q	38
divinyl sulfoxide C ₄ H ₆ OS (vinyl sulfoxide) [1115-15-7]	2.5×10 ¹		HSDB (2015)	Q	38
divinyl sulfone C ₄ H ₆ O ₂ S [77-77-0]	2.0×10^{-1}		HSDB (2015)	Q	38
2,5-dihydrothiophene sulfone C ₄ H ₆ O ₂ S (2,5-dihydrothiophene 1,1-dioxide) [77-79-2]	2.3		HSDB (2015)	Q	38
thiodiacetic acid C ₄ H ₆ O ₄ S [123-93-3]	2.2×10 ⁸		HSDB (2015)	Q	38
thiophene, tetrahydro-, 1,1-dioxide C ₄ H ₈ O ₂ S (sulfolane) [126-33-0]	2.1		HSDB (2015)	Q	38
2-(ethylthio)ethanol C ₄ H ₁₀ OS [110-77-0]	1.9×10^2		HSDB (2015)	Q	38
chiodiglycol $C_4H_{10}O_2S$ [111-48-8]	5.2×10 ³		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	1.4		HSDB (2015)	Q	38
4-hydroxybenzenesulfonic acid C ₆ H ₆ O ₄ S [98-67-9]	3.8×10 ⁷		HSDB (2015)	Q	38
benzenesulfonic acid C ₆ H ₆ O ₃ S [98-11-3]	3.9×10 ³		HSDB (2015)	Q	38
dimethipin C ₆ H ₁₀ O ₄ S ₂ [55290-64-7]	4.3×10 ⁵		MacBean (2012a)	?	
4-methylbenzenesulfonic acid C ₇ H ₈ O ₃ S [104-15-4]	3.6×10 ³		HSDB (2015)	Q	38
phenylmethanesulfonic acid C ₇ H ₈ O ₃ S (benzylsulfonic acid) [100-87-8]	9.9×10 ³		HSDB (2015)	Q	38
4,4'-sulfonyldiphenol C ₁₂ H ₁₀ O ₄ S (bisphenol S) [80-09-1]	3.7×10 ⁹		HSDB (2015)	Q	182
lauryl sulfate C ₁₂ H ₂₆ O ₄ S (dodecyl sulfate) [151-41-7]	5.5×10 ¹		HSDB (2015)	Q	38
ethofumesate C ₁₃ H ₁₈ O ₅ S [26225-79-6]	2.7×10 ²		HSDB (2015)	V	
1,1'-sulfonylbis(4-(1-methylethyl)-benzene	1.0×10^{1}		Zhang et al. (2010)	Q	107, 108
C ₁₈ H ₂₂ O ₂ S	2.9×10^{3}		Zhang et al. (2010)	Q	107, 109
[57913-35-6]	6.7×10^4		Zhang et al. (2010)	Q	107, 110
	$3.1{\times}10^2$		Zhang et al. (2010)	Q	107, 111
propargite C ₁₉ H ₂₆ O ₄ S [2312-35-8]	1.5×10 ¹		HSDB (2015)	V	
kadethrin C ₂₃ H ₂₄ O ₄ S [58769-20-3]	1.2×10 ⁴		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	dln <i>H^{cp}</i>			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	D. C		NT 4
(Other name(s))	[mol]		Reference	Туре	Note
[CAS registry number]	$\left[\frac{\text{mor}}{\text{m}^3 \text{Pa}}\right]$	[K]			
spironolactone	9.0×10^4		HSDB (2015)	Q	38
$C_{24}H_{32}O_4S$					
[52-01-7]					
2,2'-thiobis(4-(1,1,3,3-	4.5×10^5		Zhang et al. (2010)	Q	107, 108
tetramethylbutyl)phenol)					
$C_{28}H_{42}O_2S$	1.2×10^4		Zhang et al. (2010)	Q	107, 109
[3294-03-9]	2.2×10^{7}		Zhang et al. (2010)	Q	107, 110
	1.8×10^5		Zhang et al. (2010)	Q	107, 111
propanoic acid, 3,3'-thiobis-, didodecyl	2.5		HSDB (2015)	Q	182
ester					
C ₃₀ H ₅₈ O ₄ S					
(dilauryl thiodipropionate) [123-28-4]					
dioctadecyl 3,3'-thiodipropionate	8.2×10^{-2}		HSDB (2015)	Q	182
C ₄₂ H ₈₂ O ₄ S	6.2 X 10		HSDB (2013)	Q	102
[693-36-7]					
methyl isothiocyanate	1.7×10^{-1}		Sander et al. (2011)	L	
CH ₃ NCS	1.6×10^{-1}		Worthington and Wade (2007)	M	
[556-61-6]	2.2×10^{-1}		HSDB (2015)	V	
thiourea	4.9×10^{3}		HSDB (2015)	V	
CH ₄ N ₂ S			11022 (2010)	•	
[62-56-6]					
hydrazinecarbothioamide	1.5×10 ⁴		HSDB (2015)	Q	38
CH ₅ N ₃ S			, ,		
(1-amino-2-thiourea)					
[79-19-6]					
thiocyanic acid, methyl ester	2.2×10^{-1}		HSDB (2015)	Q	38
C_2H_3NS					
[556-64-9]					
ethanethioamide	1.5		HSDB (2015)	Q	38
C_2H_5NS					
(thioacetamide)					
[62-55-5]					
mercaptamine	2.7×10^{1}		HSDB (2015)	Q	38
C ₂ H ₇ NS					
(cysteamine)					
[60-23-1]					
thiocyanic acid, ethyl ester	1.7×10^{-1}		HSDB (2015)	Q	38
C ₃ H ₅ NS					
[542-90-5]					
2-imidazolidinethione	2.9×10^{1}		HSDB (2015)	Q	38
$C_3H_6N_2S$					
(ethylene thiourea)					
[96-45-7]					

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} H^{cp}}$			
Formula (Other name(s))		d(1/T)	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	[K]			
ethylthiourea C ₃ H ₈ N ₂ S [625-53-6]	4.2×10^2		HSDB (2015)	Q	38
allyl isothiocyanate C ₄ H ₅ NS [57-06-7]	4.1×10 ⁻²		HSDB (2015)	V	
dazomet	4.6×10 ⁴		Mackay et al. (2006d)	V	
C ₅ H ₁₀ N ₂ S ₂ [533-74-4]	3.7×10^4		MacBean (2012b)	X	137
N,N'-diethylthiourea $C_5H_{12}N_2S$ [105-55-5]	1.4×10 ²		HSDB (2015)	Q	38
tetramethylthiourea C ₅ H ₁₂ N ₂ S [2782-91-4]	8.5×10 ²		HSDB (2015)	Q	38
thiram	9.3×10 ¹		Mackay et al. (2006d)	V	
C ₆ H ₁₂ N ₂ S ₄ [137-26-8]	3.0×10^{1}		MacBean (2012b)	X	137
bis(dimethylthiocarbamyl) sulfide $C_6H_{12}N_2S_3$ (bis(dimethylthiocarbamoyl) sulfide) [97-74-5]	5.8×10 ⁻¹		HSDB (2015)	Q	38
benzothiazole	2.7×10^{1}		HSDB (2015)	Q	38
C ₇ H ₅ NS	2.7×10^{1}		Zhang et al. (2010)	Q	107, 108
[95-16-9]	2.8		Zhang et al. (2010)	Q	107, 109
	1.1×10^{1}		Zhang et al. (2010)	Q	107, 110
	2.0		Zhang et al. (2010)	Q	107, 111
2-mercaptobenzothiazole	2.7×10^{2}		HSDB (2015)	Q	38
$C_7H_5NS_2$	2.7×10^2		Zhang et al. (2010)	Q	107, 108
[149-30-4]	2.8×10^{3}		Zhang et al. (2010)	Q	107, 109
	2.2×10^2		Zhang et al. (2010)	Q	107, 110
	2.1×10^{1}		Zhang et al. (2010)	Q	107, 111
2-benzothiazolamine C ₇ H ₆ N ₂ S [136-95-8]	7.6×10 ⁴		HSDB (2015)	Q	38
phenylthiourea C ₇ H ₈ N ₂ S [103-85-5]	9.9×10 ⁴		HSDB (2015)	Q	38
aziprotryn	4.0×10^{2}		Abraham et al. (2007)	Q	
C ₇ H ₁₁ N ₇ S [4658-28-0]	9.2×10^2		MacBean (2012a)	?	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]			·7 r ·	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
simetryn	2.2×10^4		Mackay et al. (2006d)	V	
$C_8H_{15}N_5S$	2.9×10^4		Hilal et al. (2008)	Q	
[1014-70-6]	1.0×10^4		Abraham et al. (2007)	Q	
desmetryn	2.1×10^4		HSDB (2015)	V	
$C_8H_{15}N_5S$	5.0×10^7		Delgado and Alderete (2003)	C	
[1014-69-3]	2.2×10^4		Hilal et al. (2008)	Q	
	2.0×10^4		Abraham et al. (2007)	Q	
	1.4×10^{9}		Delgado and Alderete (2003)	Q	
	3.9×10^{7}		Delgado and Alderete (2003)	Q	
	2.1×10^4		MacBean (2012a)	?	
chioquinox	1.3×10^{2}		HSDB (2015)	Q	38
C ₉ H ₄ N ₂ S ₃ [93-75-4]					
	1.5×10 ⁶		HCDD (2015)		38
chiocyanic acid, (2- benzothiazolylthio)methyl ester	1.3 × 10°		HSDB (2015)	Q	38
C ₉ H ₆ N ₂ S ₃					
[21564-17-0]					
ametryn	4.1×10^{3}		HSDB (2015)	V	
C ₉ H ₁₇ N ₅ S	8.1×10^{3}		Mackay et al. (2006d)	V	
[834-12-8]	8.3×10^{3}		Suntio et al. (1988)	V	9
	4.1×10^{3}		Delgado and Alderete (2003)	C	
	1.2×10^4		Hilal et al. (2008)	Q	
	5.1×10^3		Abraham et al. (2007)	Q	
	8.9×10^{7}		Delgado and Alderete (2003)	Q	
	1.1×10^{7}		Delgado and Alderete (2003)	Q	
cimetidine	1.0×10^{10}		HSDB (2015)	Q	38
C ₁₀ H ₁₆ N ₆ S [51481-61-9]					
<u>-</u>	2				
prometryn	8.2×10^2		HSDB (2015)	V	
$C_{10}H_{19}N_5S$	2.0×10^3		Mackay et al. (2006d)	V	0
[7287-19-6]	2.0×10^3		Suntio et al. (1988)	V	9
	2.9×10^6		Delgado and Alderete (2003)	C	
	7.6×10^2		Delgado and Alderete (2003)	C	
	7.5×10^2 2.5×10^3		Hilal et al. (2008)	Q	
			Abraham et al. (2007)	Q	
	5.1×10^6		Delgado and Alderete (2003)	Q	
	1.4×10^6		Delgado and Alderete (2003)	Q	
erbutryn	4.7×10^2		HSDB (2015)	V	
$C_{10}H_{19}N_5S$	7.0×10^2		Mackay et al. (2006d)	V	
[886-50-0]	7.7×10^2		Suntio et al. (1988)	V	9
	1.2×10^6		Delgado and Alderete (2003)	C	
	8.7×10^2		Delgado and Alderete (2003)	C	
	4.5×10^3		Hilal et al. (2008)	Q	
	1.6×10^3		Abraham et al. (2007)	Q	
	5.1×10^6 1.4×10^6		Delgado and Alderete (2003)	Q	
			Delgado and Alderete (2003)	Q	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
disulfiram C ₁₀ H ₂₀ N ₂ S ₄ [97-77-8]	1.2×10 ⁻¹		HSDB (2015)	Q	38
1-naphthalenylthiourea C ₁₁ H ₁₀ N ₂ S [86-88-4]	1.2×10 ³		HSDB (2015)	Q	38
4,4'-thiobisbenzenamine C ₁₂ H ₁₂ N ₂ S (bis(4-aminophenyl) sulfide) [139-65-1]	2.5×10 ⁶		HSDB (2015)	Q	38
dipropetryn	6.0×10^2		Hilal et al. (2008)	Q	
C ₁₁ H ₁₉ N ₅ S	1.6×10^{3}		Abraham et al. (2007)	Q	
[4147-51-7]	6.5×10^2		MacBean (2012a)	?	
dimethametryn	8.2×10 ³		Hilal et al. (2008)	Q	
C ₁₁ H ₂₁ N ₅ S	1.0×10^3		Abraham et al. (2007)	Q	
[22936-75-0]					
phenothiazine	3.5×10^2		HSDB (2015)	Q	38
C ₁₂ H ₉ NS	3.5×10^{2}		Zhang et al. (2010)	Q	107, 108
[92-84-2]	6.9×10^2		Zhang et al. (2010)	Q	107, 109
	9.7×10^{1}		Zhang et al. (2010)	Q	107, 110
	4.3×10^2		Zhang et al. (2010)	Q	107, 111
$2,2$ '-dithiobisbenzothiazole $C_{14}H_8N_2S_4$ (2,2'-dibenzothiazyl disulfide) [120-78-5]	4.2×10 ⁷		HSDB (2015)	Q	38
methapyrilene $C_{14}H_{19}N_3S$ [91-80-5]	3.6×10^{1}		HSDB (2015)	V	
olanzapine C ₁₇ H ₂₀ N ₄ S [132539-06-1]	1.3×10 ⁹		HSDB (2015)	Q	38
N-(1,1-dimethylethyl)bis(2-benzothiazolesulfen)amide	2.4×10 ⁸		Zhang et al. (2010)	Q	107, 108
$C_{18}H_{17}N_3S_4$	1.7×10^{3}		Zhang et al. (2010)	Q	107, 109
[3741-80-8]	2.3×10^{3}		Zhang et al. (2010)	Q	107, 110
	3.9×10^{8}		Zhang et al. (2010)	Q	107, 111
taurine C ₂ H ₇ NO ₃ S [107-35-7]	5.8×10 ⁶		HSDB (2015)	Q	182
2-amino-5-nitrothiazole C ₃ H ₃ N ₃ O ₂ S [121-66-4]	1.9×10 ⁶		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} \ln H^{cp}}$			
Formula (Other name(s))		d(1/T)	Reference	Type	Note
CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	[K]			
N-(aminothioxomethyl)acetamide C ₃ H ₆ N ₂ OS 1-acetyl-2-thiourea) 591-08-2]	3.8×10 ⁵		HSDB (2015)	Q	38
cesulfame C ₄ H ₅ NO ₄ S 33665-90-6]	1.0×10^3		HSDB (2015)	Q	38
nethomyl	5.2×10 ⁵		HSDB (2015)	V	
$C_5H_{10}N_2O_2S$	5.3×10^4		Mackay et al. (2006d)	V	
16752-77-5]	1.5×10^4		Suntio et al. (1988)	V	9
4-aminobenzenesulfonic acid C ₆ H ₇ NO ₃ S (sulfanilic acid) [121-57-3]	1.1×10 ⁷		HSDB (2015)	Q	182
sulfanilamide C ₆ H ₈ N ₂ O ₂ S 63-74-1]	6.6×10 ⁴		HSDB (2015)	Q	38
nithiazide C ₆ H ₈ N ₄ O ₃ S [139-94-6]	6.2×10 ⁹		HSDB (2015)	Q	38
2-methylbenzenesulfonamide C ₇ H ₉ NO ₂ S (<i>o</i> -toluenesulfonamide) [88-19-7]	2.1×10 ¹		HSDB (2015)	Q	38
4-methylbenzenesulfonamide C ₇ H ₉ NO ₂ S (<i>p</i> -toluenesulfonamide) 70-55-3]	2.1×10 ¹		HSDB (2015)	Q	38
ethidimuron C ₇ H ₁₂ N ₄ O ₃ S ₂ [30043-49-3]	1.4×10 ⁸		MacBean (2012a)	?	
oxamyl	4.2×10 ⁴		HSDB (2015)	V	
C ₇ H ₁₃ N ₃ O ₃ S	4.2×10^4		Mackay et al. (2006d)	V	
23135-22-0]	3.8×10^{3}		Suntio et al. (1988)	V	9
ldicarb	6.6×10 ³		HSDB (2015)	V	
$C_7H_{14}N_2O_2S$	7.9×10^{3}		Mackay et al. (2006d)	V	
116-06-3]	3.1×10^{3}		Suntio et al. (1988)	V	9
-	1.9		Suntio et al. (1988)	C	9
ldicarb sulfone C ₇ H ₁₄ N ₂ O ₄ S 1646-88-4]	3.7×10^3		MacBean (2012a)	?	
butocarboxim	1.7×10 ⁴		HSDB (2015)	V	
34681-10-2]	1.7×10^4		MacBean (2012a)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
butoxycarboxim C ₇ H ₁₄ N ₂ O ₄ S [34681-23-7]	3.5×10^6		HSDB (2015)	V	
saccharin C ₇ H ₅ NO ₃ S [81-07-2]	8.2×10 ³		HSDB (2015)	Q	38
acibenzolar-S-methyl $C_8H_6N_2OS_2$ [135158-54-2]	8.2×10 ¹		HSDB (2015)	V	
quinomethionate C ₈ H ₆ N ₂ OS ₂ [2439-01-2]	$1.6 \times 10^2 \\ 1.6 \times 10^2$		HSDB (2015) MacBean (2012a)	V ?	
nifurthiazole C ₈ H ₆ N ₄ O ₄ S [3570-75-0]	1.3×10 ¹²		HSDB (2015)	Q	38
4-methylbenzenesulfonyl isocyanate C ₈ H ₇ NO ₃ S [4083-64-1]	$ \begin{array}{c} 1.7 \times 10^{-1} \\ 3.2 \times 10^{1} \\ 6.7 \\ 4.0 \times 10^{4} \end{array} $		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
tinidazole C ₈ H ₁₃ N ₃ O ₄ S [19387-91-8]	1.9×10 ⁵		HSDB (2015)	Q	38
metribuzin C ₈ H ₁₄ N ₄ OS [21087-64-9]	8.2×10 ⁴		HSDB (2015)	V	
tricyclazole C ₉ H ₇ N ₃ S [41814-78-2]	3.2×10^5		Mackay et al. (2006d)	V	
thidiazuron C ₉ H ₈ N ₄ OS [51707-55-2]	3.0×10^7		HSDB (2015)	V	
sulfathiazole C ₉ H ₉ N ₃ O ₂ S ₂ [72-14-0]	1.7×10^8		HSDB (2015)	Q	38
sulfamethizole $C_9H_{10}N_4O_2S_2$ [144-82-1]	3.8×10 ⁸		HSDB (2015)	Q	38
ethiozin C ₉ H ₁₆ N ₄ OS [64529-56-2]	2.0×10 ²		MacBean (2012a)	?	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
molinate C ₉ H ₁₇ NOS [2212-67-1]	7.7 2.2 1.7 6.9	7300	Watanabe (1993) Sagebiel et al. (1992) Sagebiel et al. (1992) Mackay et al. (2006d)	M M M V	9
	1.1×10 ¹ 1.0×10 ¹ 7.6 7.3		Sagebiel et al. (1992) Woodrow et al. (1990) Armbrust (2000) Hilal et al. (2008)	V V C Q	9
S-ethyl dipropylthiocarbamate C ₉ H ₁₉ NOS (eptam; EPTC) [759-94-4]	5.6×10^{-1} 3.8×10^{-2} 6.2×10^{-1} 9.8×10^{-1} 4.2×10^{-1} 9.8×10^{-1} 7.4×10^{-1} 8.2×10^{-1}	9100 4800 4800 4800 4800	Reyes-Pérez et al. (2008) Breiter et al. (1998) HSDB (2015) Mackay et al. (2006d) Breiter et al. (1998) Suntio et al. (1988) Burkhard and Guth (1981) Hilal et al. (2008) Kühne et al. (2005) Kühne et al. (2005)	M M V V V V V Q Q	9
hiabendazole C ₁₀ H ₇ N ₃ S 148-79-8]	$4.7 \times 10^5 \\ 4.7 \times 10^5$		HSDB (2015) Mackay et al. (2006d)	V V	
nenzo[b]thiophene-4-ol, methylcarba- nate C ₁₀ H ₉ NO ₂ S mobam) 1079-33-0]	5.8×10 ³		HSDB (2015)	Q	38
sulfamethoxazole C ₁₀ H ₁₁ N ₃ O ₃ S 723-46-6]	1.5×10 ⁷		HSDB (2015)	Q	38
centazone C ₁₀ H ₁₂ N ₂ O ₃ S (25057-89-0]	4.5×10^3		HSDB (2015)	V	
outhidazole C ₁₀ H ₁₆ N ₄ O ₂ S [55511-98-3]	4.8×10 ⁶		MacBean (2012a)	?	
chiodicarb C ₁₀ H ₁₈ N ₄ O ₄ S ₃ [59669-26-0]	1.1×10 ¹ 2.3×10 ¹		HSDB (2015) Mackay et al. (2006d)	V V	
pebulate C ₁₀ H ₂₁ NOS [1114-71-2]	4.1×10^{-2} 3.8×10^{-1} 8.6×10^{-2} 6.4×10^{-1} $>2.3 \times 10^{10}$		HSDB (2015) Mackay et al. (2006d) Suntio et al. (1988) Hilal et al. (2008) MacBean (2012a)	V V V Q ?	9

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number] vernolate C ₁₀ H ₂₁ NOS [1929-77-7]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$ 3.2×10 ⁻¹ 4.9×10 ⁻¹ 4.9×10 ⁻¹ 6.5×10 ⁻¹	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference HSDB (2015) Mackay et al. (2006d) Suntio et al. (1988) Hilal et al. (2008)	Type V V V Q	Note 9
sulfisoxazole C ₁₁ H ₁₃ N ₃ O ₃ S [127-69-5]	6.2×10 ⁶		HSDB (2015)	Q	38
ethiofencarb C ₁₁ H ₁₅ NO ₂ S [29973-13-5]	8.2×10 ³		HSDB (2015)	V	
methiocarb C ₁₁ H ₁₅ NO ₂ S [2032-65-7]	8.3 8.4×10 ³		Mackay et al. (2006d) MacBean (2012b)	V X	137
cycloate C ₁₁ H ₂₁ NOS [1134-23-2]	1.9 3.7		HSDB (2015) Hilal et al. (2008)	V Q	
methoprotryn C ₁₁ H ₂₁ N ₅ OS [841-06-5]	3.1×10^4 1.5×10^5 2.0×10^5 3.1×10^4		HSDB (2015) Hilal et al. (2008) Abraham et al. (2007) MacBean (2012a)	V Q Q ?	
butylate C ₁₁ H ₂₃ NOS [2008-41-5]	$ \begin{array}{c} 1.2 \times 10^{-1} \\ 1.8 \\ 5.8 \times 10^{-1} \end{array} $		HSDB (2015) Mackay et al. (2006d) Suntio et al. (1988) Hilal et al. (2008)	V V V Q	221 9
carboxin C ₁₂ H ₁₃ NO ₂ S [5234-68-4]	3.1×10^4 6.4×10^4		HSDB (2015) Mackay et al. (2006d)	V V	
oxycarboxin C ₁₂ H ₁₃ NO ₄ S [5259-88-1]	9.0×10^5 2.8×10^3		HSDB (2015) Mackay et al. (2006d)	V V	
thifensulfuron-methyl $C_{12}H_{13}N_5O_6S_2$ [79277-27-3]	3.4×10 ⁸		HSDB (2015)	V	
sulfamethazine $C_{12}H_{14}N_4O_2S$ [57-68-1]	3.2×10 ⁷		HSDB (2015)	Q	38
thiophanate-methyl C ₁₂ H ₁₄ N ₄ O ₄ S ₂ [23564-05-8]	8.2×10^3 7.9×10^2		HSDB (2015) Mackay et al. (2006d)	V V	
$4,4'\text{-oxydi(benzenesulfonohydrazide)} \\ C_{12}H_{14}N_4O_5S_2 \\ [80-51-3]$	7.8×10 ¹¹		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp} (at T^{Θ})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} \ln H^{cp}}$			
Formula (Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	d(1/T) [K]	Reference	Туре	Note
albendazole C ₁₂ H ₁₅ N ₃ O ₂ S 54965-21-8]	1.3×10 ⁸		HSDB (2015)	Q	38
oryzalin C ₁₂ H ₁₈ N ₄ O ₆ S [19044-88-3]	5.2×10^3 5.3×10^3		HSDB (2015) Mackay et al. (2006d)	V V	
STK366145 C ₁₂ H ₁₉ N ₃ O ₃ S N-(2-ethyl(3-methyl-4- nitrosophenyl)amino)ethyl)- nethanesulfonamide) 56046-62-9]	9.9×10 ⁴		HSDB (2015)	V	
somethiozin C ₁₂ H ₂₀ N ₄ OS 57052-04-7]	7.9×10 ²		MacBean (2012a)	?	
sobornyl thiocyanoacetate C ₁₃ H ₁₉ NO ₂ S 115-31-1]	3.8×10 ¹		HSDB (2015)	Q	38
nitralin	1.4×10^3		HSDB (2015)	V	
$C_{13}H_{19}N_3O_6S$	7.2×10^{-3}		Mackay et al. (2006d)	V	
[4726-14-1]	7.2×10^{-3}		Suntio et al. (1988)	V	9
oupirimate C ₁₃ H ₂₄ N ₄ O ₃ S 41483-43-6]	1.0×10^2		Mackay et al. (2006d)	V	
imolol C ₁₃ H ₂₄ N ₄ O ₃ S 26839-75-8]	2.3×10 ¹¹		HSDB (2015)	Q	38
lithianone C ₁₄ H ₄ N ₂ O ₂ S ₂ 3347-22-6]	1.7×10 ⁵		HSDB (2015) Mackay et al. (2006d)	V V	221
N-(cyclohexylthio)phthalimide C ₁₄ H ₁₅ NO ₂ S 17796-82-6]	1.5×10 ²		HSDB (2015)	Q	38
metsulfuron-methyl C ₁₄ H ₁₅ N ₅ O ₆ S 74223-64-6]	7.5×10 ¹⁰		HSDB (2015)	V	
imsulfuron C ₁₄ H ₁₇ N ₅ O ₇ S ₂ 122931-48-0]	1.5×10 ⁴		HSDB (2015)	V	
hiophanate C ₁₄ H ₁₈ N ₄ O ₄ S ₂ 23564-06-9]	1.9×10 ⁷		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
sumatriptan C ₁₄ H ₂₁ N ₃ O ₂ S [103628-46-2]	2.2×10 ⁸		HSDB (2015)	Q	38
sulfometuron methyl C ₁₅ H ₁₆ N ₄ O ₅ S [74222-97-2]	$8.2 \times 10^{12} \\ 1.9 \times 10^{8}$		Armbrust (2000) HSDB (2015)	C Q	38
tribenuron-methyl C ₁₅ H ₁₇ N ₅ O ₆ S [101200-48-0]	9.7×10 ⁷		MacBean (2012b)	X	137
propoxycarbazone C ₁₅ H ₁₈ N ₄ O ₇ S [145026-81-9]	7.0×10 ¹¹		HSDB (2015)	Q	38
valdecoxib C ₁₆ H ₁₄ N ₂ O ₃ S [181695-72-7]	4.5×10^5		HSDB (2015)	Q	38
topramezone C ₁₆ H ₁₇ N ₃ O ₅ S [210631-68-8]	1.0×10^{12}		HSDB (2015)	Q	38
sulfosulfuron C ₁₆ H ₁₈ N ₆ O ₇ S ₂ [141776-32-1]	4.3×10 ⁵		HSDB (2015)	V	
orthosulfamuron C ₁₆ H ₂₀ N ₆ O ₆ S [213464-77-8]	1.3×10 ⁴		HSDB (2015)	V	
buprofezin C ₁₆ H ₂₃ N ₃ OS [69327-76-0]	2.3		HSDB (2015)	V	
bensulfuron methyl C ₁₆ H ₁₈ N ₄ O ₇ S [83055-99-6]	7.0×10^{10}		Armbrust (2000)	С	
esomeprazole C ₁₇ H ₁₉ N ₃ O ₃ S [119141-88-7]	3.3×10 ¹³		HSDB (2015)	Q	38
foramsulfuron C ₁₇ H ₂₀ N ₆ O ₇ S [173159-57-4]	1.7×10 ¹¹		HSDB (2015)	V	
sethoxydim C ₁₇ H ₂₉ NO ₃ S [74051-80-2]	4.5×10^5		HSDB (2015)	Q	38
mesosulfuron-methyl C ₁₇ H ₂₁ N ₅ O ₉ S ₂ [208465-21-8]	9.0×10 ¹⁰		HSDB (2015)	V	

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$		_	
(Other name(s)) [CAS registry number]	$\left[\frac{mol}{m^3 Pa}\right]$	[K]	Reference	Туре	Note
rosiglitazone C ₁₈ H ₁₉ N ₃ O ₃ S [122320-73-4]	5.8×10 ⁸		HSDB (2015)	Q	38
rabeprazole $C_{18}H_{21}N_3O_3S$ [117976-89-3]	8.2×10 ¹¹		HSDB (2015)	Q	38
furathiocarb C ₁₈ H ₂₆ N ₂ O ₅ S [65907-30-4]	7.6×10 ³		HSDB (2015)	V	
lincomycin C ₁₈ H ₃₄ N ₂ O ₆ S [154-21-2]	3.3×10 ¹⁷		HSDB (2015)	Q	38
pioglitazone C ₁₉ H ₂₀ N ₂ O ₃ S [111025-46-8]	5.8×10 ⁶		HSDB (2015)	Q	38
tamsulosin C ₂₀ H ₂₈ N ₂ O ₅ S [106133-20-4]	2.0×10 ⁹		HSDB (2015)	Q	38
sufentanil C ₂₂ H ₃₀ N ₂ O ₂ S [56030-54-7]	2.4×10 ⁹		HSDB (2015)	Q	38
sildenafil C ₂₂ H ₃₀ N ₆ O ₄ S [139755-83-2]	1.4×10 ¹⁵		HSDB (2015)	Q	38
tirofiban C ₂₂ H ₃₆ N ₂ O ₅ S [144494-65-5]	1.3×10 ⁹		HSDB (2015)	Q	38
vardenafil C ₂₃ H ₃₂ N ₆ O ₄ S [224785-90-4]	5.2×10 ¹⁵		HSDB (2015)	Q	38
taurocholic acid C ₂₆ H ₄₅ NO ₇ S [81-24-3]	1.9×10 ¹⁵		HSDB (2015)	Q	182
dalfopristin C ₃₄ H ₅₀ N ₄ O ₉ S [112362-50-2]	2.2×10 ²⁴		HSDB (2015)	Q	38
C.I. acid green 3 C ₃₇ H ₃₇ N ₂ O ₆ S ₂ [4680-78-8]	2.0×10^{23}		HSDB (2015)	Q	182
tinopal C ₄₀ H ₄₀ N ₁₂ O ₈ S ₂ [24231-46-7]	1.2×10^{38} 1.4×10^{40} 4.2×10^{26} 2.2×10^{37}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q	107, 108 107, 109 107, 110 107, 111

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d} \ln H^{cp}}{H^{cp}}$			
Formula	$(at I^{\circ})$	d(1/T)	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\lceil \underline{\text{mol}} \rceil$	[12]			
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
quinupristin	4.9×10^{22}		HSDB (2015)	Q	38
$C_{53}H_{67}N_9O_{10}S$					
[120138-50-3]					
3,3,4,4,4-pentafluorobutane-1-thiol	5.2×10^{-5}		Zhang et al. (2010)	Q	107, 10
$C_4H_5F_5S$	1.4×10^{-3}		Zhang et al. (2010)	Q	107, 10
[68140-18-1]	1.5×10^{-3}		Zhang et al. (2010)	Q	107, 11
	1.2×10^{-5}		Zhang et al. (2010)	Q	107, 11
3,3,4,4,5,5,6,6,6-nonafluoro-1- nexanethiol	1.9×10^{-6}		Zhang et al. (2010)	Q	107, 108
$C_6H_5F_9S$	4.7×10^{-4}		Zhang et al. (2010)	Q	107, 109
[68140-20-5]	3.1×10^{-4}		Zhang et al. (2010)	Q	107, 110
	1.9×10^{-6}		Zhang et al. (2010)	Q	107, 11
3,3,4,4,5,5,7,7,8,8,9,9,10,10,10- pentadecafluoro-1-decanethiol	9.7×10^{-9}		Zhang et al. (2010)	Q	107, 108
$C_{10}H_7F_{15}S$	6.5×10^{-6}		Zhang et al. (2010)	Q	107, 109
[68140-21-6]	8.6×10^{-4}		Zhang et al. (2010)	Q	107, 11
	1.3×10^{-8}		Zhang et al. (2010)	Q	107, 11
3,3,4,4,5,5-hexafluoro-1-(3,3,4,4,5,5-nexafluorohexyldisulfanyl)hexane	1.2×10^{-7}		Zhang et al. (2010)	Q	107, 10
$C_{12}H_{14}F_{12}S_2$	9.0×10^{-6}		Zhang et al. (2010)	Q	107, 10
[118400-71-8]	1.9×10^{-2}		Zhang et al. (2010)	Q	107, 11
	3.5×10^{-7}		Zhang et al. (2010)	Q	107, 11
perfluorobutane sulfonic acid C ₄ HF ₉ O ₃ S (PFBS) [375-73-5]	2.0		Plassmann et al. (2011)	E	
perfluorohexane sulfonic acid C ₆ HF ₁₃ O ₃ S	5.1×10 ⁻¹		Plassmann et al. (2011)	Е	
C ₆ Hr ₁₃ O ₃ S (PFHxS) [355-46-4]					
perfluorooctane sulfonic acid	9.0×10^{-4}		Zhang et al. (2010)	Q	107, 10
$C_8HF_{17}O_3S$	8.6×10^{-3}		Zhang et al. (2010)	Q	107, 10
(PFOS)	1.6×10^{-1}		Zhang et al. (2010)	Q	107, 11
[1763-23-1]	9.9×10^{-3}		Zhang et al. (2010)	Q	107, 11
	1.0×10^{-1}		Arp et al. (2006)	Q	240
	4.6×10^{-3}		Arp et al. (2006)	Q	241
neptadecafluorooctanesulfonyl fluoride $C_8F_{18}O_2S$ [perfluorooctylsulfonyl fluoride] 307-35-7]	1.5×10 ⁻⁷		HSDB (2015)	Q	38
fluticasone C ₂₂ H ₂₇ F ₃ O ₄ S [90566-53-3]	4.3×10 ³		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\mathrm{d} \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]		Reference	Турс	Note
[CAS registry number]	$\left[\frac{m^3 \text{ Pa}}{\text{m}^3 \text{ Pa}}\right]$	[K]			
flubenzimine	>2.3×10 ¹⁰		MacBean (2012a)	?	
$C_{17}H_{10}F_6N_4S$					
[37893-02-0]					
thiazafluron	3.2×10^4		MacBean (2012a)	?	
C ₆ H ₇ F ₃ N ₄ OS					
[25366-23-8]					
undecafluoro-N-methyl-1-	3.5×10^{-4}		Zhang et al. (2010)	Q	107, 108
pentanesulfonamide					·
$C_6H_4F_{11}NO_2S$	4.4×10^{-2}		Zhang et al. (2010)	Q	107, 109
[68298-13-5]	5.6×10^{-4}		Zhang et al. (2010)	Q	107, 110
	6.2×10^{-1}		Zhang et al. (2010)	Q	107, 111
1,1,2,2,3,3,4,4,4-nonafluoro-N-(2-	1.8×10 ¹		Zhang et al. (2010)	Q	107, 108
hydroxyethyl)-N-methylbutane-1-				•	,
sulfonamide					
C ₇ H ₈ F ₉ NO ₃ S	1.1×10^{1}		Zhang et al. (2010)	Q	107, 109
[34454-97-2]	4.6×10^{-1}		Zhang et al. (2010)	Q	107, 110
	2.7×10^2		Zhang et al. (2010)	Q	107, 111
tridecafluoro-N-methyl-1-	6.7×10^{-5}		Zhang et al. (2010)	Q	107, 108
hexanesulfonamide					,
$C_7H_4F_{13}NO_2S$	9.2×10^{-3}		Zhang et al. (2010)	Q	107, 109
[68259-15-4]	2.5×10^{-4}		Zhang et al. (2010)	Q	107, 110
	1.2×10^{-1}		Zhang et al. (2010)	Q	107, 111
perfluorooctane sulfonamide	5.5×10^{-6}		HSDB (2015)	Q	38
$C_8H_2F_{17}NO_2S$	3.4		Arp et al. (2006)	Q	240
(PFOSA)	7.9×10^{-6}		Arp et al. (2006)	Q	241
[754-91-6]					
emtricitabine	9.0×10^{11}		HSDB (2015)	Q	38
$C_8H_{10}FN_3O_3S$,		
[143491-57-0]					
N-ethyl-1,1,2,2,3,3,4,4,4-nonafluoro-	1.3×10 ¹		Zhang et al. (2010)	Q	107, 108
N-(2-hydroxyethyl)butane-1-					,
sulfonamide					
$C_8H_{10}F_9NO_3S$	8.8		Zhang et al. (2010)	Q	107, 109
[34449-89-3]	1.4×10^{-1}		Zhang et al. (2010)	Q	107, 110
	2.1×10^2		Zhang et al. (2010)	Q	107, 111
1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-	1.3×10 ⁻⁵		Zhang et al. (2010)	Q	107, 108
pentadecafluoro-N-methylheptane-			(=010)	*	, 100
1-sulfonamide					
$C_8H_4NO_2F_{15}S$	1.6×10^{-3}		Zhang et al. (2010)	Q	107, 109
[68259-14-3]	1.2×10^{-4}		Zhang et al. (2010)	Q	107, 110
	2.4×10^{-2}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent (...continued)

Substance	H^{cp}	$\mathrm{d} \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]		Reference	1,700	11010
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
1,1,2,2,3,3,4,4,5,5,5-undecafluoro-N-	3.4		Zhang et al. (2010)	Q	107, 108
(2-hydroxyethyl)-N-methylpentane-1-					
sulfonamide				_	
C ₈ H ₈ NO ₃ F ₁₁ S	2.9		Zhang et al. (2010)	Q	107, 109
[68555-74-8]	2.1×10^{-1}		Zhang et al. (2010)	Q	107, 110
	5.6×10^{1}		Zhang et al. (2010)	Q	107, 111
N-(3-(dimethylamino)propyl)- nonafluoro-1-butanesulfonamide	2.1		Zhang et al. (2010)	Q	107, 108
$C_9H_{13}F_9N_2O_2S$	3.1×10^{1}		Zhang et al. (2010)	Q	107, 109
[68555-77-1]	1.1		Zhang et al. (2010)	Q	107, 110
	6.0×10^2		Zhang et al. (2010)	Q	107, 111
heptadecafluoro-N- methyloctanesulfonamide	2.4×10^{-6}		Zhang et al. (2010)	Q	107, 108
$C_9H_4F_{17}NO_2S$	2.1×10^{-4}		Zhang et al. (2010)	Q	107, 109
[31506-32-8]	5.2×10^{-5}		Zhang et al. (2010)	Q	107, 110
	5.0×10^{-3}		Zhang et al. (2010)	Q	107, 111
N-ethyl-1,1,2,2,3,3,4,4,5,5,5- undecafluoro-N-(2-hydroxyethyl)-	2.5		Zhang et al. (2010)	Q	107, 108
1-pentanesulfonamide					
C ₉ H ₁₀ NO ₃ F ₁₁ S	2.3		Zhang et al. (2010)	Q	107, 109
[68555-72-6]	6.0×10^{-2}		Zhang et al. (2010)	Q	107, 110
[00000 /2 0]	4.1×10^{1}		Zhang et al. (2010)	Q	107, 111
1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro- N-(2-hydroxyethyl)-N-methyl-1- hexanesulfonamide	6.4×10^{-1}		Zhang et al. (2010)	Q	107, 108
C ₉ H ₈ NO ₃ F ₁₃ S	6.0×10^{-1}		Zhang et al. (2010)	Q	107, 109
[68555-75-9]	9.2×10^{-2}		Zhang et al. (2010)	Q	107, 110
[00335 75 7]	9.9		Zhang et al. (2010)	Q	107, 110
N-ethyl-1,1,2,2,3,3,4,4,5,5,6,6,6-	4.7×10^{-1}		Zhang et al. (2010)	Q	107, 108
tridecafluoro-N-(2- hydroxyethyl)hexane-1-sulfonamide					
$C_{10}H_{10}F_{13}NO_3S$	4.6×10^{-1}		Zhang et al. (2010)	Q	107, 109
[34455-03-3]	3.1×10^{-2}		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 109
[34433-03-3]	8.8		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 110
2-methyl[(nonafluorobutyl)sulfonyl] aminoethyl acrylate	5.1×10 ⁻¹		Zhang et al. (2010)	Q	107, 108
C ₁₀ H ₁₀ F ₉ NO ₄ S	5.3×10^{-1}		Zhang et al. (2010)	Q	107, 109
[67584-55-8]	8.2×10^{1}		Zhang et al. (2010)	Q	107, 110
	4.8×10^{1}		Zhang et al. (2010)	Q	107, 111
N-ethyl perfluorooctane sulfonamide	1.8×10 ⁻⁶		HSDB (2015)	Q	38
C ₁₀ H ₆ F ₁₇ NO ₂ S	1.8×10^{-6}		Zhang et al. (2010)	Q	107, 108
(EtFOSA)	1.4×10^{-4}		Zhang et al. (2010)	Q	107, 100
[4151-50-2]	9.5×10^{-6}		Zhang et al. (2010)	Q	107, 109
[1101 00 2]	3.8×10^{-3}		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 110
	6.4×10^{-3}		Arp et al. (2006)	Q	240
	7.5×10^{-3}		Arp et al. (2006)	Q Q	240

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]		Reference	13100	11010
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-	1.2×10^{-1}		Zhang et al. (2010)	Q	107, 108
pentadecafluoro-N-(2-hydroxyethyl)-					
N-methylheptane-1-sulfonamide	2				
$C_{10}H_8NO_3F_{15}S$	9.5×10^{-2}		Zhang et al. (2010)	Q	107, 109
[68555-76-0]	4.5×10^{-2}		Zhang et al. (2010)	Q	107, 110
	2.1		Zhang et al. (2010)	Q	107, 111
N-methyl perfluorooctane sulfonami-	2.3×10^{-2}		Zhang et al. (2010)	Q	107, 108
doethanol					
$C_{11}H_8F_{17}NO_3S$	1.2×10^{-2}		Zhang et al. (2010)	Q	107, 109
(MeFOSE)	1.9×10^{-2}		Zhang et al. (2010)	Q	107, 110
[24448-09-7]	4.3×10^{-1}		Zhang et al. (2010)	Q	107, 111
	4.8×10^{-1}		Arp et al. (2006)	Q	240
	2.1×10^{-3}		Arp et al. (2006)	Q	241
N-ethyl-1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-pentadecafluoro-N-(2-hydroxyethyl)-1-	9.0×10^{-2}		Zhang et al. (2010)	Q	107, 108
heptanesulfonamide	2				
$C_{11}H_{10}NO_3F_{15}S$	7.2×10^{-2}		Zhang et al. (2010)	Q	107, 109
[68555-73-7]	1.5×10^{-2}		Zhang et al. (2010)	Q	107, 110
	1.8		Zhang et al. (2010)	Q	107, 111
mefluidide $C_{11}H_{13}F_3N_2O_3S$	7.6×10^5		HSDB (2015)	Q	38
[53780-34-0]					
N-(3-(dimethylamino)propyl)-	7.7×10^{-2}		Zhang et al. (2010)	Q	107, 108
1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-					
1-hexanesulfonamide					
$C_{11}H_{13}N_2O_2F_{13}S$	1.5		Zhang et al. (2010)	Q	107, 109
[50598-28-2]	2.2×10^{-1}		Zhang et al. (2010)	Q	107, 110
	2.5×10^{1}		Zhang et al. (2010)	Q	107, 111
2-(methyl-(1,1,2,2,3,3,4,4,5,5,5-	9.7×10^{-2}		Zhang et al. (2010)	Q	107, 108
undecafluoropentylsulfonyl)amino)ethyl			8 (,		,
prop-2-enoate					
$C_{11}H_{10}F_{11}NO_4S$	2.0×10^{-1}		Zhang et al. (2010)	Q	107, 109
[67584-56-9]	7.5×10^{1}		Zhang et al. (2010)	Q	107, 110
	9.7		Zhang et al. (2010)	Q	107, 111
2-(methyl((nonafluorobutyl)sulfonyl) amino)ethyl methacrylate	3.3×10^{-1}		Zhang et al. (2010)	Q	107, 108
$C_{11}H_{12}F_9NO_4S$	5.0×10^{-1}		Zhang et al. (2010)	Q	107, 109
[67584-59-2]	1.9×10^{-1}		Zhang et al. (2010)	Q	107, 110
-	2.9×10^{1}		Zhang et al. (2010)	Q	107, 111
N-(3-(dimethylamino)propyl)	1.5×10^{-2}		Zhang et al. (2010)	Q	107, 108
pentadecafluoro-1-heptanesulfonamide	2 210-1		71	0	107 100
C ₁₂ H ₁₃ F ₁₅ N ₂ O ₂ S	2.3×10^{-1}		Zhang et al. (2010)	Q	107, 109
[67584-54-7]	1.8×10^{-2}		Zhang et al. (2010)	Q	107, 110
	5.2		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{\ominus})	d(1/T)	Reference	Туре	Note
(Other name(s)) [CAS registry number]	$\lceil \underline{\text{mol}} \rceil$	[12]			
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
acrylic acid 2-	1.8×10^{-2}		Zhang et al. (2010)	Q	107, 108
[methyl[(tridecafluorohexyl)sulfonyl]					
amino]ethyl ester	6.0×10^{-2}		Thomas et al. (2010)	0	107, 109
C ₁₂ H ₁₀ F ₁₃ NO ₄ S [67584-57-0]	3.4×10^{-1}		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 109
[0/384-37-0]	2.0		Zhang et al. (2010) Zhang et al. (2010)	Q Q	107, 110
N 4 1 0 16					
N-ethyl perfluorooctane sulfonami- doethanol	1.7×10^{-2}		Zhang et al. (2010)	Q	107, 108
C ₁₂ H ₁₀ F ₁₇ NO ₃ S	8.6×10^{-3}		Zhang et al. (2010)	Q	107, 109
(EtFOSE)	6.2×10^{-3}		Zhang et al. (2010)	Q	107, 110
[1691-99-2]	3.3×10^{-1}		Zhang et al. (2010)	Q	107, 111
[]	5.7×10^{-2}		Arp et al. (2006)	Q	240
	1.2×10^{-3}		Arp et al. (2006)	Q	241
florasulam	1.7×10 ⁶		HSDB (2015)	V	
C ₁₂ H ₈ F ₃ N ₅ O ₃ S	1.7 × 10		11500 (2013)	·	
[145701-23-1]					
2-(methyl((pentadecafluoroheptyl)	3.5×10^{-3}		Zhang et al. (2010)	Q	107, 108
sulfonyl)amino)ethyl acrylate	3.5 × 10		Zhang et al. (2010)	Q	107, 100
C ₁₃ H ₁₀ F ₁₅ NO ₄ S	1.5×10^{-2}		Zhang et al. (2010)	Q	107, 109
[68084-62-8]	9.9		Zhang et al. (2010)	Q	107, 110
	4.2×10^{-1}		Zhang et al. (2010)	Q	107, 111
flazasulfuron	1.6×10 ⁶		HSDB (2015)	Q	38
$C_{13}H_{12}F_3N_5O_5S$. ,		
[104040-78-0]					
N-methyl perfluorooctane sulfonami-	4.4×10^{-2}		Arp et al. (2006)	Q	240
doethylacrylate			•		
$C_{14}H_{10}F_{17}NO_4S$	2.2×10^{-3}		Arp et al. (2006)	Q	241
(MeFOSEA)					
[25268-77-3]					
pyrasulfotole	7.0×10^{8}		HSDB (2015)	V	
$C_{14}H_{13}F_3N_2O_4S$					
[365400-11-9]					
flufenacet	1.7×10^3		HSDB (2015)	V	
$C_{14}H_{13}F_4N_3O_2S$					
[142459-58-3]					
N-butyl-	9.7×10^{-3}		Zhang et al. (2010)	Q	107, 108
1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-			. ,	-	
heptadecafluoro-N-(2-hydroxyethyl)-1-					
octanesulfonamide	_				
$C_{14}H_{14}F_{17}NO_3S$	4.1×10^{-3}		Zhang et al. (2010)	Q	107, 109
[2263-09-4]	3.8×10^{-2}		Zhang et al. (2010)	Q	107, 110
	2.2×10^{-1}		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{mol}{m^3Pa}\right]$	[K]	100000	1,140	1,000
ethyl N-ethyl-N- [(heptadecafluorooctyl) sulfonyl]glycinate	1.3×10 ⁻⁵		Zhang et al. (2010)	Q	107, 108
C ₁₄ H ₁₂ NO ₄ F ₁₇ S	1.8×10^{-3}		Zhang et al. (2010)	Q	107, 109
[1869-77-8]	4.3		Zhang et al. (2010)	Q	107, 110
	3.0×10^{-2}		Zhang et al. (2010)	Q	107, 111
2-(((heptadecafluorooctyl)sulfonyl) methylamino)ethyl methacrylate	4.2×10^{-4}		Zhang et al. (2010)	Q	107, 108
C ₁₅ H ₁₂ F ₁₇ NO ₄ S	3.3×10^{-3}		Zhang et al. (2010)	Q	107, 109
[14650-24-9]	2.5		Zhang et al. (2010)	Q	107, 110
	5.4×10^{-2}		Zhang et al. (2010)	Q	107, 111
isoxaflutole C ₁₅ H ₁₂ F ₃ NO ₄ S [141112-29-0]	5.3×10 ⁴		MacBean (2012b)	X	137
primisulfuron-methyl C ₁₅ H ₁₂ F4N4O ₇ S [86209-51-0]	7.0×10^6		HSDB (2015)	Q	38
penoxsulam C ₁₆ H ₁₄ F ₅ N ₅ O ₅ S [219714-96-2]	9.0×10 ¹²		HSDB (2015)	V	
pantoprazole C ₁₆ H ₁₅ F ₂ N ₃ O ₄ S [102625-70-7]	1.7×10 ¹⁴		HSDB (2015)	Q	38
2-(N-ethylperfluorooctanesulfamido)ethyl methacrylate	3.2×10^{-4}		Zhang et al. (2010)	Q	107, 108
C ₁₆ H ₁₄ F ₁₇ NO ₄ S	3.9×10^{-3}		Zhang et al. (2010)	Q	107, 109
[376-14-7]	1.5		Zhang et al. (2010)	Q	107, 110
	4.1×10^{-2}		Zhang et al. (2010)	Q	107, 111
thiazopyr C ₁₆ H ₁₇ F ₅ N ₂ O ₂ S [117718-60-2]	2.1×10 ¹		HSDB (2015)	V	
celecoxib C ₁₇ H ₁₄ F ₃ N ₃ O ₂ S [169590-42-5]	1.3×10 ⁷		HSDB (2015)	Q	38
2-butyl[(heptadecafluorooctyl)sulfonyl] aminoethyl acrylate	2.9×10^{-4}		Zhang et al. (2010)	Q	107, 108
C ₁₇ H ₁₆ F ₁₇ NO ₄ S	4.1×10^{-3}		Zhang et al. (2010)	Q	107, 109
[383-07-3]	1.8		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 109
	4.3×10^{-2}		Zhang et al. (2010)	Q	107, 111
thidiazimin C ₁₈ H ₁₇ N ₄ O ₂ FS [123249-43-4]	3.5×10 ⁸		MacBean (2012a)	?	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$			
(Other name(s))		$\mathfrak{u}(1/T)$	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	[K]			
benthiavalicarb isopropyl C ₁₈ H ₂₄ FN ₃ O ₃ S [177406-68-7]	1.1×10^2		MacBean (2012b)	X	137
rosuvastatin C ₂₂ H ₂₈ N ₃ O ₆ FS [287714-41-4]	2.9×10 ¹⁴		HSDB (2015)	Q	38
trichloromethanesulfenyl chloride	4.1×10^{-2}		Zhang et al. (2010)	Q	107, 108
CCl ₄ S	6.9×10^{-4}		Zhang et al. (2010)	Q	107, 109
[594-42-3]	9.5×10^{-4}		Zhang et al. (2010)	Q	107, 110
	5.3×10^{-3}		Zhang et al. (2010)	Q	107, 111
1,1,2,2-tetrachloroethanesulfenyl chloride	8.8×10^{-2}		Zhang et al. (2010)	Q	107, 108
C ₂ HCl ₅ S	3.7×10^{-3}		Zhang et al. (2010)	Q	107, 109
[1185-09-7]	1.9×10^{-2}		Zhang et al. (2010)	Q	107, 110
-	6.7×10^{-2}		Zhang et al. (2010)	Q	107, 111
2-chloroethyl ethyl sulfide C ₄ H ₉ ClS [693-07-2]	2.0×10^{-2}		HSDB (2015)	Q	38
2,2'-dichlorodiethylsulfide	3.0×10^{-1}		Hine and Mookerjee (1975)	V	
(CICH ₂ CH ₂) ₂ S (mustard gas) [69020-37-7]	4.1×10^{-1}		Opresko et al. (1998)	?	
pentachlorobenzenethiol	6.6×10 ⁻²		HSDB (2015)	Q	38
C ₆ HCl ₅ S	8.4×10^{-2}		Zhang et al. (2010)	Q	107, 108
[133-49-3]	2.7×10^{-2}		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 108
[133-49-3]	1.3		Zhang et al. (2010) Zhang et al. (2010)	Q	107, 109
	2.2×10^{-2}		Zhang et al. (2010)	Q	107, 111
tetrasul C ₁₂ H ₆ Cl ₄ S [2227-13-6]	9.3×10 ⁻¹		MacBean (2012a)	?	
methanesulfonyl chloride CH ₃ ClO ₂ S [124-63-0]	2.2×10 ⁻¹		HSDB (2015)	Q	38
bis(trichloromethyl)sulfone	8.2×10 ²		HSDB (2015)	Q	38
$C_2Cl_6O_2S$	8.2×10^2		Zhang et al. (2010)	Q	107, 108
[3064-70-8]	1.2×10^{-2}		Zhang et al. (2010)	Q	107, 109
	3.1×10^3		Zhang et al. (2010)	Q	107, 110
	1.0×10^{1}		Zhang et al. (2010)	Q	107, 111
benzenesulfonyl chloride	1.1		Zhang et al. (2010)	Q	107, 108
C ₆ H ₅ ClO ₂ S	1.7×10^{1}		Zhang et al. (2010)	Q	107, 109
[98-09-9]	6.7		Zhang et al. (2010)	Q	107, 110
	1.6×10^2		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
4-methylbenzenesulfonyl chloride	1.0		Zhang et al. (2010)	Q	107, 108
$C_7H_7CIO_2S$	1.8×10^{1}		Zhang et al. (2010)	Q	107, 109
[98-59-9]	1.2×10^{1}		Zhang et al. (2010)	Q	107, 110
[2007]	9.2×10^{1}		Zhang et al. (2010)	Q	107, 111
endosulfan	9.4×10^{-1}		Mackay et al. (2006d)	V	
C ₉ H ₆ Cl ₆ O ₃ S	1.1×10^2		Zhang et al. (2010)	Q	107, 108
[115-29-7]	2.4×10^{1}		Zhang et al. (2010)	Q	107, 109
[]	1.1×10^2		Zhang et al. (2010)	Q	107, 110
	2.3×10^{8}		Zhang et al. (2010)	Q	107, 111
	3.1×10^{1}		Hilal et al. (2008)	Q	107, 111
α -endosulfan	1.4		Shen and Wania (2005)	L	143
C ₉ H ₆ Cl ₆ O ₃ S	1.4		Shen and Wania (2005)	L	144
(endosulfan I)	1.4		Muir et al. (2004)	L	144
[959-98-8]	1.4		Muir et al. (2004)	L	143
	1.3	4200	Cetin et al. (2006)	M	
	1.4		Altschuh et al. (1999)	M	
	1.5×10^{-1}		Rice et al. (1997b)	M	9
	1.5		Cotham and Bidleman (1989)	V	
	3.4×10^{-1}		Suntio et al. (1988)	V	9
	1.3×10^{-1}	2300	Rice et al. (1997a)	X	295
	9.2×10^{-1}		Suntio et al. (1988)	C	
		3200	Kühne et al. (2005)	Q	
		2300	Kühne et al. (2005)	?	
β -endosulfan	2.5×10^{1}		Shen and Wania (2005)	L	143
C ₉ H ₆ Cl ₆ O ₃ S	2.2×10^{1}		Shen and Wania (2005)	L	144
(endosulfan II)	1.9×10^{1}	3700	Cetin et al. (2006)	M	
[33213-65-9]	2.5		Altschuh et al. (1999)	M	
	1.1		Rice et al. (1997b)	M	9
	1.6×10^{1}		Cotham and Bidleman (1989)	V	
	3.1×10^{1}		Hilal et al. (2008)	Q	
endosulfan sulfate C ₉ H ₆ Cl ₆ O ₄ S [1031-07-8]	8.2×10 ⁵		HSDB (2015)	V	
mcpa-thioethyl C ₁₁ H ₁₃ ClO ₂ S [25319-90-8]	4.5×10 ⁻¹		Mackay et al. (2006d)	V	
1,1'-sulfonylbis(4-chlorobenzene)	7.0×10 ¹		HSDB (2015)	Q	38
$C_{12}H_8Cl_2O_2S$	7.2×10^{1}		Zhang et al. (2010)	Q	107, 108
[80-07-9]	6.5×10^3		Zhang et al. (2010)	Q	107, 109
	5.0×10^4		Zhang et al. (2010)	Q	107, 110
	3.1×10^3		Zhang et al. (2010)	Q	107, 111
1,2,4-trichloro-5-[(4-chlorophenyl)sulfonyl]benzene C ₁₂ H ₆ Cl ₄ O ₂ S (tetradifon) [116-29-0]	6.9×10 ³		HSDB (2015)	V	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
ovex C ₁₂ H ₈ Cl ₂ O ₃ S (chlorfenson) [80-33-1]	6.2×10 ¹		HSDB (2015)	Q	38
sulfenone C ₁₂ H ₉ ClO ₂ S [80-00-2]	5.2×10 ¹		HSDB (2015)	Q	38
aramite C ₁₅ H ₂₃ ClO ₄ S [140-57-8]	5.2×10 ¹		HSDB (2015)	Q	38
6-chloro-2-(6-chloro-4-methyl-3-oxobenzo[b]thien-2(3H)-ylidene)-4-methylbenzo[b]thiophene-3(2H)-one	3.2×10 ⁷		Zhang et al. (2010)	Q	107, 108
$C_{18}H_{10}Cl_2O_2S_2$	1.2×10^{7}		Zhang et al. (2010)	Q	107, 109
[2379-74-0]	5.4×10^4		Zhang et al. (2010)	Q	107, 110
	2.4×10^{6}		Zhang et al. (2010)	Q	107, 111
5-chloro-3-(trichloromethyl)-1,2,4-thiadiazole	1.6×10 ¹		Zhang et al. (2010)	Q	107, 108
C ₃ Cl ₄ N ₂ S	1.9×10^{1}		Zhang et al. (2010)	Q	107, 109
[5848-93-1]	7.3×10^{-1}		Zhang et al. (2010)	Q	107, 110
	4.2×10^{-1}		Zhang et al. (2010)	Q	107, 111
2,4-dichloro-6-(methylthio)-1,3,5-triazine	1.3×10 ¹		Zhang et al. (2010)	Q	107, 108
$C_4H_3Cl_2N_3S$	1.3×10^{1}		Zhang et al. (2010)	Q	107, 109
[13705-05-0]	9.7×10^{-1}		Zhang et al. (2010)	Q	107, 110
	1.7×10^{1}		Zhang et al. (2010)	Q	107, 111
chlorthiamid C ₇ H ₅ Cl ₂ NS [1918-13-4]	3.5×10 ⁴		MacBean (2012a)	?	
(2-chlorophenyl)thiourea C ₇ H ₇ ClN ₂ S [5344-82-1]	>9.9×10 ¹		HSDB (2015)	Q	216
2-chloroallyl-N,N-diethyldithiocarbamate	1.5		HSDB (2015)	V	
C ₈ H ₁₄ ClNS ₂ [95-06-7]	$2.1{\times}10^1$		Hilal et al. (2008)	Q	
thiacloprid C ₁₀ H ₉ ClN ₄ S [111988-49-9]	9.0×10 ⁸		HSDB (2015)	V	
chloromethiuron $C_{10}H_{13}N_2ClS$ [28217-97-2]	2.0×10 ⁵		MacBean (2012a)	?	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
etridiazole	3.3×10^{-1}		HSDB (2015)	V	
C ₅ H ₅ Cl ₃ N ₂ OS [2593-15-9]	1.6×10^{1}		Mackay et al. (2006d)	V	
4-chloro-3-nitrobenzenesulfonamide ${ m C_6H_5ClN_2O_4S}$ [97-09-6]	8.2×10^3		HSDB (2015)	Q	38
clothianidin C ₆ H ₈ ClN ₅ O ₂ S [210880-92-5]	3.4×10 ¹⁰		MacBean (2012b)	X	137
chlobenthiazone C ₈ H ₆ NOClS [63755-05-5]	1.3		MacBean (2012a)	?	
prothiocarb hydrochloride C ₈ H ₁₉ ClN ₂ OS [19622-19-6]	2.5×10 ⁹		MacBean (2012a)	?	
thicyofen C ₈ H ₅ N ₂ OClS ₂ [116170-30-0]	>2.3×10 ¹⁰		MacBean (2012a)	?	
thiamethoxam C ₈ H ₁₀ ClN ₅ O ₃ S [153719-23-4]	2.1×10 ⁹		HSDB (2015)	V	
4-amino-3,5-dichloro-N-ethyl-2- methylbenzenesulfonamide	3.8×10^4		Zhang et al. (2010)	Q	107, 108
$C_9H_{12}Cl_2N_2O_2S$	1.1×10^4		Zhang et al. (2010)	Q	107, 109
[151574-12-8]	1.2×10^6 1.5×10^7		Zhang et al. (2010)	Q	107, 110
			Zhang et al. (2010)	Q	107, 111
dichlofluanid	1.9×10^2 2.5×10^4		Mackay et al. (2006d)	V V	9
C ₉ H ₁₁ Cl ₂ FN ₂ O ₂ S ₂ [1085-98-9]	1.5×10^{1}		Siebers and Mattusch (1996) HSDB (2015)	V Q	38
captan	1.4×10 ³		HSDB (2015)	V	
C ₉ H ₈ Cl ₃ NO ₂ S	1.5×10^3		Mackay et al. (2006d)	V	
[133-06-2]	1.7		Suntio et al. (1988)	V	9
folpet C ₉ H ₄ Cl ₃ NO ₂ S [133-07-3]	1.3×10^2 2.6		HSDB (2015) Mackay et al. (2006d)	V V	
captafol C ₁₀ H ₉ Cl ₄ NO ₂ S (difolatan) [2425-06-1]	3.7×10 ³		HSDB (2015)	V	
diallate	2.6		HSDB (2015)	V	
$C_{10}H_{17}Cl_2NOS$	9.3		Mackay et al. (2006d) Suntio et al. (1988)	V V	9
(avadex)	4.0				

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number] triallate C ₁₀ H ₁₆ Cl ₃ NOS [2303-17-5] tolylfluanid	$H^{cp} \text{ (at } T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$ 8.2×10^{-1} 8.8×10^{-1} 9.8×10^{-1} 1.3×10^1	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference HSDB (2015) Mackay et al. (2006d) Suntio et al. (1988) HSDB (2015)	Type V V V	Note
C ₁₀ H ₁₃ Cl ₂ FN ₂ O ₂ S ₂ [731-27-1]	1.6×10^2		Mackay et al. (2006d)	V	
S-(4-chlorobenzyl) diethylthiocarbamate C ₁₂ H ₁₆ ClNOS (thiobencarb) [28249-77-6]	1.9×10^{1} 4.9 3.7×10^{1} 5.8×10^{1} 3.7×10^{1}		Watanabe (1993) Kawamoto and Urano (1989) HSDB (2015) Woodrow et al. (1990) Armbrust (2000) Mackay et al. (2006d)	M W V V C	9 296
furosemide C ₁₂ H ₁₁ ClN ₂ O ₅ S [54-31-9]	2.5×10 ¹⁰		HSDB (2015)	Q	38
chlorsulfuron C ₁₂ H ₁₂ ClN ₅ O ₄ S [64902-72-3]	3.2×10^4 1.5×10^5		Mackay et al. (2006d) Armbrust (2000)	V C	
phosalone C ₁₂ H ₁₅ ClNO ₄ S ₂ [2310-17-0]	2.5×10 ¹		HSDB (2015)	Q	38
dimethenamid C ₁₂ H ₁₈ ClNO ₂ S [87674-68-8]	4.5×10^2		Hilal et al. (2008)	Q	
dimethenamid-p C ₁₂ H ₁₈ ClNO ₂ S [163515-14-8]	2.1×10^3		MacBean (2012b)	X	137
cyazofamid C ₁₃ H ₁₃ ClN ₄ O ₂ S [120116-88-3]	2.5×10 ¹		HSDB (2015)	V	
prothioconazole C ₁₄ H ₁₅ Cl ₂ N ₃ OS [178928-70-6]	2.2×10 ⁴		HSDB (2015)	V	
chlorimuron-ethyl C ₁₅ H ₁₅ ClN ₄ O ₆ S [90982-32-4]	5.5×10 ⁹		HSDB (2015)	V	
clopidogrel C ₁₆ H ₁₆ ClNO ₂ S [113665-84-2]	4.5×10 ³		HSDB (2015)	Q	38
hexythiazox C ₁₇ H ₂₁ N ₂ O ₂ ClS [78587-05-0]	4.2×10^2		HSDB (2015)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula	H^{cp} (at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$	Reference	Туре	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
clethodim C ₁₇ H ₂₆ ClNO ₃ S [99129-21-2]	8.2×10 ⁵		HSDB (2015)	Q	38
clindamycin C ₁₈ H ₃₃ N ₂ O ₅ ClS [18323-44-9]	3.4×10^{16}		HSDB (2015)	Q	38
vismodegib C ₁₉ H ₁₄ Cl ₂ N ₂ O ₃ S [879085-55-9]	6.2×10 ¹¹		HSDB (2015)	Q	38
pyridaben C ₁₉ H ₂₅ ClN ₂ OS [96489-71-3]	2.1×10 ⁻¹		HSDB (2015)	V	
tembotrione C ₁₇ H ₁₆ ClF ₃ O ₆ S [335104-84-2]	5.8×10 ⁹		HSDB (2015)	V	
fluothiuron C ₁₀ H ₁₀ Cl ₂ F ₂ N ₂ OS [33439-45-1]	>2.3×10 ¹⁰		MacBean (2012a)	?	
sulfentrazone C ₁₁ H ₁₀ Cl ₂ F ₂ N ₄ O ₃ S [122836-35-5]	1.5×10 ⁷		HSDB (2015)	V	
flurazole C ₁₂ H ₇ NO ₂ ClF ₃ S [72850-64-7]	4.0×10 ¹		MacBean (2012a)	?	
fipronil C ₁₂ H ₄ Cl ₂ F ₆ N ₄ OS [120068-37-3]	1.2×10 ⁴		HSDB (2015)	V	
fluthiacet-methyl C ₁₅ H ₁₅ ClFN ₃ O ₃ S ₂ [117337-19-6]	4.7×10^3		HSDB (2015)	V	
vemurafenib C ₂₃ H ₁₈ ClF ₂ N ₃ O ₃ S [918504-65-1]	8.2×10 ¹¹		HSDB (2015)	Q	38
tetrabromobisphenol S	1.5×10 ¹¹		Zhang et al. (2010)	Q	107, 108
$C_{12}H_6Br_4O_4S$	9.7×10^5		Zhang et al. (2010)	Q	107, 109
[39635-79-5]	5.8×10^6 1.2×10^7		Zhang et al. (2010)	Q	107, 110
			Zhang et al. (2010)	Q	107, 111
1,3-dibromo-5-[3,5-dibromo-4-(2,3-dibromopropoxy)benzenesulfonyl]-2-(2,3-dibromopropoxy)benzene	8.2×10^{8}		Zhang et al. (2010)	Q	107, 108
C ₁₈ H ₁₄ Br ₈ O ₄ S	5.2×10^{8}		Zhang et al. (2010)	Q	107, 109
[42757-55-1]	1.8×10^{11}		Zhang et al. (2010)	Q	107, 110
	6.4×10^8		Zhang et al. (2010)	Q	107, 111

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	dln H^{cp}			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]	Reference	Туре	Note
bromphenol blue	1.9×10^{13}		Zhang et al. (2010)	Q	107, 108
$C_{19}H_{10}Br_4O_5S$	5.1×10^5		Zhang et al. (2010)	Q	107, 109
[115-39-9]	9.2×10^9		Zhang et al. (2010)	Q	107, 110
	5.3×10^{10}		Zhang et al. (2010)	Q	107, 111
bromcresol green	1.5×10^{13}		Zhang et al. (2010)	Q	107, 108
$C_{21}H_{14}Br_4O_5S$	1.0×10^{6}		Zhang et al. (2010)	Q	107, 109
[76-60-8]	1.8×10^9		Zhang et al. (2010)	Q	107, 110
	1.6×10^{10}		Zhang et al. (2010)	Q	107, 111
bromocresol purple C ₂₁ H ₁₆ Br ₂ O ₅ S [115-40-2]	9.9×10 ¹²		HSDB (2015)	Q	38
difethialone C ₃₁ H ₂₃ BrO ₂ S [104653-34-1]	9.9		HSDB (2015)	V	
amisulbrom C ₁₃ H ₁₃ BrFN ₅ O ₄ S ₂ [348635-87-0]	4.7×10 ¹		MacBean (2012b)	X	137
amical 48 $C_8H_8I_2O_2S$ (diiodomethyl p -tolyl sulfone) [20018-09-1]	1.3×10 ³		HSDB (2015)	Q	38
flubendiamide C ₂₃ H ₂₂ F ₇ IN ₂ O ₄ S [272451-65-7]	4.5×10^{-2}		HSDB (2015)	V	
0	rganic spec	cies witl	h phosphorus (P)		
	Phosphorus	(C, H, C	O, N, Cl, Br, S, P)		

	Phosphorus (C, H, O, N, Cl, Br, S, P)								
9-icosyl-9- phosphabicyclo[4.2.1]nonane	3.1×10^{-5}	Zhang et al. (2010)	Q	107, 108					
$C_{28}H_{55}P$	3.1×10^{-3}	Zhang et al. (2010)	Q	107, 109					
[13886-99-2]	2.2×10^{-2}	Zhang et al. (2010)	Q	107, 110					
	8.0×10^{-6}	Zhang et al. (2010)	Q	107, 111					
triphenylphosphine	4.3×10^2	Zhang et al. (2010)	Q	107, 108					
$C_{18}H_{15}P$	9.5×10^{-3}	Zhang et al. (2010)	Q	107, 109					
[603-35-0]	1.3×10^{1}	Zhang et al. (2010)	Q	107, 110					
	4.8	Zhang et al. (2010)	Q	107, 111					
phosphoric acid, trimethyl ester C ₃ H ₉ O ₄ P (trimethyl phosphate) [512-56-1]	1.4×10 ³	Wolfenden and Williams (1983)	M	9					
trimethyl phosphite C ₃ H ₉ O ₃ P [121-45-9]	9.0×10 ⁻¹	HSDB (2015)	Q	38					

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type	Note
dimethyl methylphosphonate C ₃ H ₉ O ₃ P [756-79-6]	7.6		HSDB (2015)	Q	38
diethyl hydrogen phosphite C ₄ H ₁₁ O ₃ P [762-04-9]	1.7		HSDB (2015)	Q	38
triethylphosphate C ₆ H ₁₅ O ₄ P [78-40-0]	2.7×10^2 1.4×10^2		Wolfenden and Williams (1983) Abraham et al. (1994a)	M R	9
mevinphos C ₇ H ₁₃ O ₆ P [7786-34-7]	2.4×10^5 2.5×10^3		Mackay et al. (2006d) Sanders and Seiber (1983) HSDB (2015)	V V Q	221 31 38
diisopropyl methanephosphonate C ₇ H ₁₇ O ₃ P [1445-75-6]	2.2×10 ⁻¹		HSDB (2015)	V	
dibutyl hydrogen phosphite $C_8H_{19}O_3P$ [1809-19-4]	5.5×10 ⁻¹		HSDB (2015)	Q	38
dibutyl phosphate C ₈ H ₁₉ O ₄ P [107-66-4]	2.3×10 ³		HSDB (2015)	Q	38
tetraethyl pyrophosphate C ₈ H ₂₀ O ₇ P ₂ [107-49-3]	4.5×10 ⁴		HSDB (2015)	V	
rripropyl phosphate C ₉ H ₂₁ O ₄ P [513-08-6]	1.5×10 ¹		Wolfenden and Williams (1983)	M	9
triallyl phosphate C ₉ H ₁₅ O ₄ P [1623-19-4]	1.8×10 ¹		HSDB (2015)	Q	38
tributylphosphate C ₁₂ H ₂₇ O ₄ P [126-73-8]	7.0 1.6×10^{1} 4.8		HSDB (2015) Glotfelty et al. (1987) Yoshida et al. (1983)	V V V	
hexaethyl tetraphosphate C ₁₂ H ₃₀ O ₁₃ P ₄ [757-58-4]	3.0×10 ¹¹		HSDB (2015)	Q	38
crotoxyphos C ₁₄ H ₁₉ O ₆ P [7700-17-6]	$ \begin{array}{c} 1.7 \times 10^3 \\ 1.7 \times 10^3 \\ 1.7 \times 10^3 \end{array} $		HSDB (2015) Mackay et al. (2006d) MacBean (2012a)	V V ?	
phosphoric acid, dibutyl phenyl ester C ₁₄ H ₂₃ O ₄ P [2528-36-1]	2.0×10 ¹		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number] bis(2-ethylhexyl) hydrogen phosphite C ₁₆ H ₃₅ O ₃ P	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$ 5.8×10^{-2}	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference HSDB (2015)	Type	Note 38
[3658-48-8]					
bis(2-ethylhexyl)hydrogen phosphate C ₁₆ H ₃₅ O ₄ P (bis(2-ethylhexyl) phosphate) [298-07-7]	2.4×10^2		HSDB (2015)	Q	38
triphenyl phosphate C ₁₈ H ₁₅ O ₄ P [115-86-6]	3.0		HSDB (2015)	V	
tris(2-butoxyethyl) phosphate C ₁₈ H ₃₉ O ₇ P [78-51-3]	8.2×10 ⁵		HSDB (2015)	Q	38
<i>p</i> -cresyl diphenyl phosphate C ₁₉ H ₁₇ O ₄ P [78-31-9]	9.9×10 ¹		HSDB (2015)	Q	182
triphenylphosphine oxide	1.9×10 ⁴		Zhang et al. (2010)	Q	107, 108
$C_{18}H_{15}OP$	4.6×10^4		Zhang et al. (2010)	Q	107, 109
[791-28-6]	1.1×10^{7}		Zhang et al. (2010)	Q	107, 110
	2.5×10^{-1}		Zhang et al. (2010)	Q	107, 111
phosphorous acid, triphenyl ester	1.8×10 ¹		Zhang et al. (2010)	Q	107, 108
$C_{18}H_{15}O_3P$	4.4×10^{-2}		Zhang et al. (2010)	Q	107, 109
[101-02-0]	1.5×10^{2}		Zhang et al. (2010)	Q	107, 110
-	7.0×10^4		Zhang et al. (2010)	Q	107, 111
trihexylphosphine oxide	4.5×10^{-3}		Zhang et al. (2010)	Q	107, 108
C ₁₈ H ₃₉ OP	2.9×10^{-3}		Zhang et al. (2010)	Q	107, 109
[3084-48-8]	5.8×10^4		Zhang et al. (2010)	Q	107, 110
	3.5×10^{-7}		Zhang et al. (2010)	Q	107, 111
phosphoric acid, octyl diphenyl ester C ₂₀ H ₂₇ O ₄ P [115-88-8]	3.9×10 ¹		HSDB (2015)	Q	38
octyldihexylphosphine oxide	2.5×10^{-3}		Zhang et al. (2010)	Q	107, 108
$C_{20}H_{43}OP$	3.1×10^{-3}		Zhang et al. (2010)	Q	107, 109
[31160-64-2]	5.3×10^4		Zhang et al. (2010)	Q	107, 110
	2.3×10^{-7}		Zhang et al. (2010)	Q	107, 111
tris(methylphenyl) phosphate C ₂₁ H ₂₁ O ₄ P (tricresyl phosphate) [1330-78-5]	1.2×10 ¹		HSDB (2015)	V	
phosphoric acid, (1-methylethyl)phenyl diphenyl ester C ₂₁ H ₂₁ O ₄ P [28108-99-8]	1.3×10 ²		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp} (at T^{\ominus})	$\frac{\mathrm{d} \ln H^{cp}}{\mathrm{d} H^{cp}}$			
Formula	$(at I^{\circ})$	d(1/T)	Reference	Type	Note
(Other name(s)) [CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
phosphoric acid, tris(2-methylphenyl) ester $C_{21}H_{21}O_4P$	5.2		HSDB (2015)	Q	182
(tri- <i>o</i> -cresyl phosphate) [78-30-8]					
phosphoric acid, tris(3-methylphenyl) ester $C_{21}H_{21}O_4P$ (tri-m-cresyl phosphate) [563-04-2]	9.9		HSDB (2015)	Q	182
phosphoric acid, tris(4-methylphenyl) ester $C_{21}H_{21}O_4P$ (tri- p -cresyl phosphate) [78-32-0]	1.8×10 ²		HSDB (2015)	Q	182
$(4-tert$ -butylphenyl) diphenyl phosphate $C_{22}H_{23}O_4P$ [56803-37-3]	4.5×10 ¹		HSDB (2015)	V	
isodecyl diphenyl phosphate C ₂₂ H ₃₁ O ₄ P [29761-21-5]	2.3×10 ¹		HSDB (2015)	Q	38
dioctylhexylphosphine oxide	1.4×10^{-3}		Zhang et al. (2010)	Q	107, 108
C ₂₂ H ₄₇ OP	3.4×10^{-3}		Zhang et al. (2010)	Q	107, 109
[31160-66-4]	4.0×10^4		Zhang et al. (2010)	Q	107, 110
	1.4×10^{-7}		Zhang et al. (2010)	Q	107, 111
tris(2,4-dimethylphenyl)phosphate C ₂₄ H ₂₇ O ₄ P [3862-12-2]	1.4×10 ²		HSDB (2015)	Q	38
tris(2,5-dimethylphenyl)phosphate C ₂₄ H ₂₇ O ₄ P [19074-59-0]	1.4×10^2		HSDB (2015)	Q	38
tris(2,6-dimethylphenyl)phosphate C ₂₄ H ₂₇ O ₄ P [121-06-2]	1.4×10 ²		HSDB (2015)	Q	38
tris(3,4-dimethylphenyl)phosphate C ₂₄ H ₂₇ O ₄ P [3862-11-1]	1.4×10 ²		HSDB (2015)	Q	38
tris(3,5-dimethylphenyl)phosphate C ₂₄ H ₂₇ O ₄ P [25653-16-1]	1.4×10 ²		HSDB (2015)	Q	38
tris(4-isopropylphenyl) phosphate C ₂₇ H ₃₃ O ₄ P [26967-76-0]	3.4×10^{1}		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance	H^{cp}	$d \ln H^{cp}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]		Reference	1,700	11010
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
trioctylphosphine oxide	8.2×10^{-4}		Zhang et al. (2010)	Q	107, 108
C ₂₄ H ₅₁ OP	3.7×10^{-3}		Zhang et al. (2010)	Q	107, 109
[78-50-2]	3.4×10^4		Zhang et al. (2010)	Q	107, 110
	9.2×10^{-8}		Zhang et al. (2010)	Q	107, 111
bis(2-ethylhexyl)-2-ethylhexyl phos- phonate	2.1×10^{-2}		Zhang et al. (2010)	Q	107, 108
$C_{24}H_{51}O_3P$	6.2×10^{-6}		Zhang et al. (2010)	Q	107, 109
[126-63-6]	5.4×10^4		Zhang et al. (2010)	Q	107, 110
	7.7×10^{-5}		Zhang et al. (2010)	Q	107, 111
didodecyl hydrogen phosphate $C_{24}H_{51}O_4P$ [7057-92-3]	2.5×10 ¹		HSDB (2015)	Q	38
phosphoric acid, tris(2-ethylhexyl) ester $C_{24}H_{51}O_4P$ (trioctyl phosphate) [78-42-2]	1.2×10 ²		HSDB (2015)	V	
diisodecylphenyl phosphite	1.9		Zhang et al. (2010)	Q	107, 108
$C_{26}H_{47}O_3P$	2.5		Zhang et al. (2010)	Q	107, 109
[25550-98-5]	1.6×10^3		Zhang et al. (2010)	Q	107, 110
	3.9×10^{-3}		Zhang et al. (2010)	Q	107, 111
fyrolflex RDP	3.4×10^{7}		Zhang et al. (2010)	Q	107, 108
$C_{30}H_{24}O_8P_2$	1.4×10^{-2}		Zhang et al. (2010)	Q	107, 109
[57583-54-7]	2.6×10^{8}		Zhang et al. (2010)	Q	107, 110
	3.9×10^{16}		Zhang et al. (2010)	Q	107, 111
tris(4-tert-butylphenyl) phosphate	1.4×10^{1}		Zhang et al. (2010)	Q	107, 108
$C_{30}H_{39}O_4P$	8.4×10^{-4}		Zhang et al. (2010)	Q	107, 109
[78-33-1]	1.6×10^{3}		Zhang et al. (2010)	Q	107, 110
	3.5×10^{1}		Zhang et al. (2010)	Q	107, 111
tris-(2,4-di- <i>tert</i> -butylphenyl) phosphite	6.1×10^{-2}		Zhang et al. (2010)	Q	107, 108
$C_{42}H_{63}O_3P$	6.5×10^{-5}		Zhang et al. (2010)	Q	107, 109
[31570-04-4]	1.5×10^2		Zhang et al. (2010)	Q	107, 110
	5.8		Zhang et al. (2010)	Q	107, 111
glyphosate C ₃ H ₈ NO ₅ P [1071-83-6]	1.8×10^{6}		Mackay et al. (2006d)	V	
krenite $C_3H_{11}N_2O_4P$ (fosamine-ammonium) [25954-13-6]	2.0×10 ⁷		HSDB (2015)	V	
tabun	6.6×10 ¹		HSDB (2015)	V	
C ₅ H ₁₁ N ₂ O ₂ P [77-81-6]	6.5×10^{1}		Opresko et al. (1998)	?	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
glufosinate-ammonium C ₅ H ₁₅ N ₂ O ₄ P [77182-82-2]	2.2×10 ⁸		MacBean (2012b)	X	137
monocrotophos C ₇ H ₁₄ NO ₅ P [6923-22-4]	1.5×10 ⁷		HSDB (2015) Mackay et al. (2006d)	V V	221
licrotophos C ₈ H ₁₆ NO ₅ P [141-66-2]	2.0×10 ⁵		Mackay et al. (2006d)	V	
octamethyldiphosphoramide C ₈ H ₂₄ N ₄ O ₃ P ₂ (schradan) [152-16-9]	1.6×10 ¹¹		HSDB (2015)	Q	38
fyrol 6 C ₉ H ₂₂ NO ₅ P (diethyl ((diethanolamino)methyl) phosphonate) [2781-11-5]	6.2×10 ¹		HSDB (2015)	V	
liethyl 4-nitrophenyl phosphate C ₁₀ H ₁₄ NO ₆ P (paraoxon) [311-45-5]	$1.6 \times 10^3 \\ 1.5 \times 10^4$		Glotfelty et al. (1987) HSDB (2015)	V Q	38
dimethyl 4-nitrophenyl phosphate C ₈ H ₁₀ NO ₆ P (methyl paraoxon) [950-35-6]	>1.1×10 ⁴		Woodrow et al. (1990)	V	
buminafos C ₁₈ H ₃₈ NO ₃ P [51249-05-9]	5.0		MacBean (2012a)	?	9
methylphosphonyldifluoride CH ₃ F ₂ OP [676-99-3]	4.5×10 ⁻¹		HSDB (2015)	Q	38
sarin C ₄ H ₁₀ FO ₂ P [107-44-8]	1.7×10 ¹ 1.8×10 ¹		HSDB (2015) Opresko et al. (1998)	V ?	
dimefox C ₄ H ₁₂ FN ₂ OP [115-26-4]	4.5×10 ²		HSDB (2015)	V	
isoflurophate C ₆ H ₁₄ FO ₃ P (diisopropyl fluorophosphate) [55-91-4]	3.1		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
cyclohexyl methylphosphonofluoridate C ₇ H ₁₄ FO ₂ P (cyclosarin) [329-99-7]	3.5		HSDB (2015)	V	
soman C ₇ H ₁₆ FO ₂ P [96-64-0]	2.1 2.2		HSDB (2015) Opresko et al. (1998)	V ?	
mipafox C ₆ H ₁₆ FN ₂ OP [371-86-8]	3.3×10^3		HSDB (2015)	V	
phenylphosphonous dichloride C ₆ H ₅ Cl ₂ P [644-97-3]	6.5×10^{-1} 2.5×10^{-3} 6.2×10^{-2} 3.3×10^{-2}		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q	107, 108 107, 109 107, 110 107, 111
chlorphonium chloride $C_{19}H_{32}Cl_3P$ [115-78-6]	2.8×10^{7}		MacBean (2012a)	?	9
triclofos C ₂ H ₄ Cl ₃ O ₄ P [306-52-5]	7.0×10 ⁷		HSDB (2015)	Q	38
(2-chloroethyl)-phosphonic acid C ₂ H ₆ ClO ₃ P (ethephon) [16672-87-0]	6.9×10 ⁷		HSDB (2015)	V	
1-hydroxy-2,2,2- trichloroethylphosphonic acid, dimethyl ester	$> 8.1 \times 10^2$		Kawamoto and Urano (1989)	M	
C ₄ H ₈ Cl ₃ O ₄ P (trichlorfon) [52-68-6]	5.8×10^5 6.0×10^5 5.9×10^5		HSDB (2015) Mackay et al. (2006d) Suntio et al. (1988)	V V V	9
dimethyl-2,2-dichlorovinyl phosphate C ₄ H ₇ Cl ₂ O ₄ P (dichlorvos) [62-73-7]	3.9×10^{1} 8.1×10^{-2} 1.7×10^{1} 5.2 5.3	11000	Gautier et al. (2003) Kawamoto and Urano (1989) HSDB (2015) Mackay et al. (2006d) Suntio et al. (1988)	M M V V	9
tris(2-chloroethyl) phosphate C ₆ H ₁₂ Cl ₃ O ₄ P [115-96-8]	3.0		HSDB (2015)	V	
cyclophosphamide C ₇ H ₁₅ Cl ₂ N ₂ O ₂ P [50-18-0]	7.0×10 ⁵		HSDB (2015)	Q	38
ifosfamide C ₇ H ₁₅ Cl ₂ N ₂ O ₂ P [3778-73-2]	7.0×10 ⁵		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
butonate C ₈ H ₁₄ Cl ₃ O ₅ P [126-22-7]	3.3×10 ⁴		HSDB (2015)	Q	38
phosphoric acid, 7-chlorobicyclo[3.2.0]hepta-2,6-dien-6-yl dimethyl ester	5.8×10^{1} 4.3×10^{3}		HSDB (2015)	V	
C ₉ H ₁₂ ClO ₄ P (heptenophos) [23560-59-0]	4.3×10°		MacBean (2012a)	?	
tris(2,3-dichloropropyl) phosphate C ₉ H ₁₅ Cl ₆ O ₄ P [78-43-3]	3.8×10 ³		HSDB (2015)	Q	38
tris(1,3-dichloroisopropyl)phosphate	3.8×10^3		HSDB (2015)	Q	38
$C_9H_{15}Cl_6O_4P$	3.8×10^3		Zhang et al. (2010)	Q	107, 108
[13674-87-8]	4.1×10^{-2}		Zhang et al. (2010)	Q	107, 109
	1.3×10^7		Zhang et al. (2010)	Q	107, 110
	3.0		Zhang et al. (2010)	Q	107, 111
tris(2-chloropropyl) phosphate	1.6×10^2		Zhang et al. (2010)	Q	107, 108
$C_9H_{18}Cl_3O_4P$	1.4×10^{-3}		Zhang et al. (2010)	Q	107, 109
[6145-73-9]	6.7×10^2		Zhang et al. (2010)	Q	107, 110
	3.8×10^{-1}		Zhang et al. (2010)	Q	107, 111
tri-(2-chloroisopropyl)phosphate	1.6×10^2		HSDB (2015)	Q	38
$C_9H_{18}Cl_3O_4P$	1.6×10^{2}		Zhang et al. (2010)	Q	107, 108
[13674-84-5]	1.9×10^{-4}		Zhang et al. (2010)	Q	107, 109
	3.6×10^4		Zhang et al. (2010)	Q	107, 110
	3.8×10^{-1}		Zhang et al. (2010)	Q	107, 111
bis(2-chloropropyl) 2-chloro-1- methylethyl phosphate	1.6×10^2		Zhang et al. (2010)	Q	107, 108
C ₉ H ₁₈ Cl ₃ O ₄ P	7.2×10^{-4}		Zhang et al. (2010)	Q	107, 109
[76649-15-5]	5.6×10^3		Zhang et al. (2010)	Q	107, 110
	3.8×10^{-1}		Zhang et al. (2010)	Q	107, 111
tetrachlorvinphos	5.5×10^3		HSDB (2015)	V	
C ₁₀ H ₉ Cl ₄ O ₄ P	5.4×10^3		MacBean (2012a)	?	
[22248-79-9]			(,		
chlorfenvinphos	3.4×10^2		HSDB (2015)	V	
C ₁₂ H ₁₄ Cl ₃ O ₄ P	3.4×10^3		Mackay et al. (2006d)	V	
(clofenvinfos)	3.6×10^3		Suntio et al. (1988)	V	9
[470-90-6]	-		·/	•	
crufomate $C_{12}H_{19}ClNO_{3}P$ (ruelene) [299-86-5]	3.9×10^3		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (... continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
phosdiphen C ₁₄ H ₁₁ O ₄ Cl ₄ P [36519-00-3]	2.6×10 ⁻²		MacBean (2012a)	?	
phosphamidon C ₁₀ H ₁₉ ClNO ₅ P [13171-21-6]	2.8 2.8 6.6×10 ⁶		Mackay et al. (2006d) Suntio et al. (1988) HSDB (2015)	V V Q	9 38
tris(2,3-dibromo-1-propyl) phosphate $C_9H_{15}Br_6O_4P$ [126-72-7]	3.8×10^{-1}		HSDB (2015)	V	
naled C ₄ H ₇ Br ₂ Cl ₂ O ₄ P [300-76-5]	1.5×10 ⁻¹		HSDB (2015)	V	
2-bromo-1,1-dimethylethyl 2-bromoethyl 2-chloroethyl phosphate	1.5×10^3		Zhang et al. (2010)	Q	107, 108
C ₉ H ₁₈ Br ₂ ClO ₄ P [125997-20-8]	$ 1.3 \times 10^{-2} \\ 4.4 \times 10^{3} \\ 8.2 \times 10^{-1} $		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q	107, 109 107, 110 107, 111
leptophos C ₁₃ H ₁₀ O ₃ BrCl ₂ P [21609-90-5]	3.7 3.7 4.0 4.0 2.6×10 ¹		Mackay and Shiu (1981) HSDB (2015) Mackay et al. (2006d) Suntio et al. (1988) Hilal et al. (2008)	L V V V	9
tributyl phosphorotrithioite C ₁₂ H ₂₇ PS ₃ [150-50-5]	4.3×10^{-1} 4.3×10^{-1} 6.0×10^{-4} 1.5×10^{-1} 5.1×10^{-2}		HSDB (2015) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q Q Q	38 107, 108 107, 109 107, 110 107, 111
bis(2,6,6-trimethylbicyclo[3.1.1]hept-2-enyl) bis(2,6,6-trimethylbicyclo[3.1.1]hept-2-enyl)thiodiphosphonate	8.2×10 ⁻⁵		Zhang et al. (2010)	Q	107, 108
C ₄₀ H ₆₀ P ₂ S ₅ [68400-79-3]	5.8×10^4 1.9×10^5 1.6×10^2		Zhang et al. (2010) Zhang et al. (2010) Zhang et al. (2010)	Q Q Q	107, 109 107, 110 107, 111
thiometon C ₆ H ₁₅ O ₂ PS ₃ [640-15-3]	3.5×10 ⁻¹		HSDB (2015)	V	
demeton-S-methyl sulfone $C_6H_{15}O_5PS_2$ [17040-19-6]	<2.3×10 ¹⁰		MacBean (2012a)	?	
oxydemeton-methyl $C_6H_{15}O_4PS_2$ [301-12-2]	6.2×10 ⁷		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\mathrm{d} \ln H^{cp}$			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]			Турс	11010
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
demeton-S-methyl	3.7×10^2		HSDB (2015)	V	
$C_6H_{15}O_3PS_2$	3.6×10^2		Mackay et al. (2006d)	V	
[919-86-8]					
methacrifos	1.0×10^{1}		MacBean (2012a)	?	
$C_7H_{13}O_5PS$					
[62610-77-9]					
phorate	2.1		HSDB (2015)	V	
$C_7H_{17}O_2PS_3$	9.9×10^{-1}		Mackay et al. (2006d)	V	
[298-02-2]	1.5		Suntio et al. (1988)	V	9
salithion	4.7×10^{-1}		MacBean (2012a)	?	
C ₈ H ₉ O ₃ PS					
[3811-49-2]					
acetoxon	1.3×10^4		HSDB (2015)	Q	38
$C_8H_{17}O_5PS$					
[2425-25-4]					
demeton-O	6.1		MacBean (2012a)	?	9
$C_8H_{19}O_3PS_2$					
[298-03-3]					
demeton-S	2.0×10^{2}		HSDB (2015)	V	
$C_8H_{19}O_3PS_2$					
(isosystox)					
[126-75-0]					
sulfotep	2.2		HSDB (2015)	V	
$C_8H_{20}O_5P_2S_2$	3.4		Mackay et al. (2006d)	V	
[3689-24-5]					
tetrakis(hydroxymethyl) phosphonium	5.8×10^{17}		HSDB (2015)	Q	38
sulfate					
C ₈ H ₂₄ O ₁₂ P ₂ S [55566-30-8]					
	6.1×10 ¹		HSDB (2015)	1 7	
ethoprophos	6.1×10^{1}		Mackay et al. (2006d)	V V	
C ₈ H ₁₉ O ₂ PS ₂ [13194-48-4]	0.1 × 10		wackay et al. (2000d)	V	
disulfoton	1.1×10 ¹		Muir et al. (2004)	L	144
C ₈ H ₁₉ O ₂ PS ₃	4.5		HSDB (2015)	V	1-1-1
[298-04-4]	4.5		Mackay et al. (2006d)	V	
	4.5		Suntio et al. (1988)	V	9
endothion	1.5×10 ⁶		HSDB (2015)	Q	38
C ₉ H ₁₃ O ₆ PS	2.5 / 10		11022 (2010)	×	20
[2778-04-3]					
erbufos	4.1×10^{-1}		HSDB (2015)	V	
C ₉ H ₂₁ O ₂ PS ₃	4.1×10^{-1}		Mackay et al. (2006d)	V	
[13071-79-9]			1.120nuj et al. (2000u)	•	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference		Note
ethion C ₉ H ₂₂ O ₄ P ₂ S ₄ [563-12-2]	$ 2.6 \times 10^{1} \\ 3.1 \times 10^{1} \\ 3.1 \times 10^{1} $		HSDB (2015) Mackay et al. (2006d) Suntio et al. (1988)	V V V	9
fonofos C ₁₀ H ₁₅ OPS ₂ [944-22-9]	1.4 1.4		HSDB (2015) Mackay et al. (2006d)	V V	
fenthion C ₁₀ H ₁₅ O ₃ PS ₂ [55-38-9]	$6.8 \\ 4.5 \times 10^{1} \\ 4.5 \times 10^{1}$		HSDB (2015) Mackay et al. (2006d) Suntio et al. (1988)	V V V	9
malathion C ₁₀ H ₁₉ O ₆ PS ₂ [121-75-5]	6.7×10^{2} 2.0×10^{3} 4.4×10^{2} 2.5×10^{2} 4.3×10^{2} 1.7×10^{2}		Watanabe (1993) Fendinger and Glotfelty (1990) Mackay et al. (2006d) Cotham and Bidleman (1989) Suntio et al. (1988) Glotfelty et al. (1987)	M M V V V	9
	7.3×10^{3} 2.6×10^{1} 1.5×10^{2}		Sanders and Seiber (1983) Mackay and Shiu (1981) Hilal et al. (2008)	V V V Q	31
malaoxon C ₁₀ H ₁₉ O ₇ PS [1634-78-2]	5.5×10^6		HSDB (2015)	Q	38
cadusafos C ₁₀ H ₂₃ O ₂ PS ₂ [95465-99-9]	7.6		HSDB (2015)	V	
fensulfothion C ₁₁ H ₁₇ O ₄ PS ₂ [115-90-2]	7.0×10^4		HSDB (2015)	Q	38
phenthoate C ₁₂ H ₁₇ O ₄ PS ₂ [2597-03-7]	1.8×10^3 9.8×10^1		HSDB (2015) Mackay et al. (2006d)	V V	
sulprofos C ₁₂ H ₁₉ O ₂ PS ₃ [35400-43-2]	1.1×10^{1} 1.1×10^{1}		HSDB (2015) MacBean (2012a)	V ?	9
S,S,S-tributyl phosphorotrithioate C ₁₂ H ₂₇ OPS ₃ (DEF) [78-48-8]	3.4×10 ¹ 1.3		Fendinger and Glotfelty (1990) Glotfelty et al. (1987)	M V	
iprobenphos C ₁₃ H ₂₁ O ₃ PS [26087-47-8]	2.6×10 ²		Watanabe (1993)	M	
propaphos C ₁₃ H ₂₁ O ₄ PS [7292-16-2]	3.4×10^3 3.4×10^3		HSDB (2015) MacBean (2012a)	V ?	

Table 6: Henry's law constants for water as solvent (... continued)

	H^{cp}	dln <i>HCD</i>			
Substance Formula	(at T^{Θ})	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$			
Other name(s))		$\mathfrak{u}(1/T)$	Reference	Type	Note
[CAS registry number]	$\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	[K]			
edifenphos	5.0×10^3		Watanabe (1993)	M	
$C_{14}H_{15}O_2PS_2$	1.3×10^4		HSDB (2015)	V	
[17109-49-8]	1.4×10^{1}		Mackay et al. (2006d)	V	
systox C ₁₆ H ₃₈ O ₆ P ₂ S ₄ [8065-48-3]	5.5×10 ¹		HSDB (2015)	V	
temefos	4.9×10^{3}		HSDB (2015)	Q	38
C ₁₆ H ₂₀ O ₆ P ₂ S ₃ [3383-96-8]					
methamidophos	1.1×10^4		HSDB (2015)	Q	38
C ₂ H ₈ NOPS ₂ [10265-92-6]				-	
acephate	2.0×10^{7}		HSDB (2015)	V	
$C_4H_{10}NO_3PS$	2.0×10^{7}		Mackay et al. (2006d)	V	
[30560-19-1]			• , , ,		
dimethoate	4.1×10^4		HSDB (2015)	V	
$C_5H_{12}NO_3PS_2$	8.7×10^{3}		Mackay et al. (2006d)	V	
[60-51-5]	9.1×10^{3}		Suntio et al. (1988)	V	9
omethoate	2.1×10 ⁸		HSDB (2015)	Q	38
C ₅ H ₁₂ NO ₄ PS [1113-02-6]					
methidathion	1.4×10^3		HSDB (2015)	V	
$C_6H_{11}N_2O_4PS_3$	5.8×10^{3}		Glotfelty et al. (1987)	V	
[950-37-8]	5.8×10^{3}		Burkhard and Guth (1981)	V	
fosthietan	2.4×10^{5}		HSDB (2015)	V	
C ₆ H ₁₂ NO ₃ PS ₂ [21548-32-3]	2.4×10^5		MacBean (2012a)	?	
formothion	9.0×10 ⁴		HSDB (2015)	V	
C ₆ H ₁₂ NO ₄ PS ₂ [2540-82-1]					
menazon C ₆ H ₁₂ N ₅ O ₂ PS ₂ [78-57-9]	6.6×10 ³		HSDB (2015)	V	
ethoate-methyl C ₆ H ₁₄ NO ₃ PS ₂ [116-01-8]	3.5×10 ⁵		HSDB (2015)	Q	38
glyphosate-trimesium $C_6H_{16}NO_5PS$ [81591-81-3]	>2.3×10 ¹⁰		MacBean (2012a)	?	

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{\ominus}) $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
methylparathion C ₈ H ₁₀ NO ₅ PS [298-00-0]	5.0×10^{1} 2.6×10^{2} 1.6×10^{2} 9.9×10^{1} 4.7×10^{1} 9.9×10^{1} 4.7×10^{1} 9.2×10^{1} 2.1×10^{3} 1.6×10^{2} 1.5×10^{1}		Mackay and Shiu (1981) Rice et al. (1997b) Fendinger and Glotfelty (1990) Metcalfe et al. (1980) Mackay et al. (2006d) Woodrow et al. (1990) Suntio et al. (1988) Glotfelty et al. (1987) Sanders and Seiber (1983) Metcalfe et al. (1980) Hilal et al. (2008)	L M M V V V V V	9 9 31
zinophos C ₈ H ₁₃ N ₂ O ₃ PS (thionazin) [297-97-2] vamidothion	$ \begin{array}{c} 1.0 \times 10^{1} \\ 1.2 \times 10^{1} \\ 1.1 \times 10^{1} \end{array} $ $ 1.1 \times 10^{10} $		Mackay et al. (2006d) Suntio et al. (1988) MacBean (2012a) HSDB (2015)	V V ?	9
C ₈ H ₁₈ NO ₄ PS ₂ [2275-23-2] cyanophos C ₉ H ₁₀ NO ₃ PS [2636-26-2]	1.8		HSDB (2015)	V	
fenitrothion C ₉ H ₁₂ NO ₅ PS [122-14-5]	8.3×10^{1} 1.1×10^{1} 8.3×10^{2} 2.8×10^{2} 2.7×10^{1} 1.5×10^{1} 5.3		Watanabe (1993) Metcalfe et al. (1980) Mackay et al. (2006d) Suntio et al. (1988) Mackay and Shiu (1981) Metcalfe et al. (1980) Hilal et al. (2008)	M M V V V V	9
fosthiazate-1 C ₉ H ₁₈ NO ₃ PS ₂ [98886-44-3]	7.5×10 ¹		MacBean (2012b)	X	137
prothoate C ₉ H ₂₀ NO ₃ PS ₂ (trimethoate) [2275-18-5]	1.5×10 ⁵		HSDB (2015)	Q	38
azinphos-methyl C ₁₀ H ₁₂ N ₃ O ₃ PS ₂ [86-50-0]	3.4×10^{3} 3.2×10^{3} 3.1×10^{2}		HSDB (2015) Mackay et al. (2006d) Suntio et al. (1988)	V V V	9
parathion C ₁₀ H ₁₄ NO ₅ PS (E 605) [56-38-2]	$ \begin{array}{c} 1.2 \times 10^{2} \\ 7.1 \times 10^{1} \\ 5.0 \times 10^{1} \\ 5.0 \times 10^{1} \\ 8.3 \times 10^{1} \\ 4.3 \times 10^{1} \end{array} $		Fendinger and Glotfelty (1990) Mackay et al. (2006d) Siebers and Mattusch (1996) Siebers et al. (1994) Suntio et al. (1988)	M V V V	9
	4.2×10^{1} 1.6×10^{3} 8.1		Glotfelty et al. (1987) Sanders and Seiber (1983) Mackay and Shiu (1981)	V V V	31

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance	H^{cp}	$\mathrm{d} \ln H^{cp}$			
Formula	(at T^{\ominus})	$\overline{\mathrm{d}(1/T)}$	Reference	Time	No.4-
Other name(s))	[mol]		Reference	Type	note
CAS registry number]	$\left[\frac{\text{mor}}{\text{m}^3 \text{Pa}}\right]$	[K]			
	1.3×10^{1}		Burkhard and Guth (1981)	V	
	1.0×10^{1}		Chiou et al. (1980)	V	
	3.3×10^{1}		MacBean (2012b)	X	137
	6.5		Hilal et al. (2008)	Q	
etrimfos	1.6×10^{1}		HSDB (2015)	V	
C ₁₀ H ₁₇ N ₂ O ₄ PS 38260-54-7]					
propetamphos	2.1×10^{2}		HSDB (2015)	V	
$C_{10}H_{20}NO_4PS$. ,		
[31218-83-4]					
necarbam	1.1×10 ⁴		HSDB (2015)	Q	38
$C_{10}H_{20}NO_5PS_2$				`	
[2595-54-2]					
phosmet	1.2×10^3		HSDB (2015)	V	
$C_{11}H_{12}NO_4PS_2$	1.3×10^{3}		Mackay et al. (2006d)	V	
[732-11-6]	1.1×10^3		Suntio et al. (1988)	V	9
pirimiphos methyl	1.6×10 ¹		HSDB (2015)	V	
$C_{11}H_{20}N_3O_3PS$			\ /		
[29232-93-7]					
Agent VX	9.1×10^{2}		HSDB (2015)	V	
$C_{11}H_{26}NO_2PS$	1.2×10^{3}		Opresko et al. (1998)	?	
[50782-69-9]			•		
riazophos	3.2×10^2		HSDB (2015)	V	
$C_{12}H_{16}N_3O_3PS$					
[24017-47-8]					
azinphos-ethyl	1.0×10^{2}		HSDB (2015)	V	
$C_{12}H_{16}N_3O_3PS_2$			•		
[2642-71-9]					
liazinon	4.6×10^{1}		Muir et al. (2004)	L	144
$C_{12}H_{21}N_2O_3PS$	9.2×10^{1}		Muir et al. (2004)	L	143
(dimpylate)	1.5×10^{1}	12000	Feigenbrugel et al. (2004a)	M	
[333-41-5]	1.1×10^{1}		Watanabe (1993)	M	
	8.4×10^{1}		Fendinger et al. (1989)	M	126
	8.8×10^{1}		Fendinger and Glotfelty (1988)	M	126
	2.5×10^{1}		Mackay et al. (2006d)	V	
	1.5×10^{1}		Suntio et al. (1988)	V	9
	6.7		Glotfelty et al. (1987)	V	
	1.0×10^2		Sanders and Seiber (1983)	V	31
	1.3×10^{1}		Burkhard and Guth (1981)	V	
	1.4×10^2		Meylan and Howard (1991)	Q	
soxathion	1.6×10^2		HSDB (2015)	Q	38
$C_{13}H_{16}NO_4PS$					

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
fenamiphos C ₁₃ H ₂₂ NO ₃ PS [22224-92-6]	1.1×10^3		HSDB (2015)	V	
tebupirimfos C ₁₃ H ₂₃ N ₂ O ₃ PS [96182-53-5]	3.5		HSDB (2015)	V	
pirimiphos ethyl C ₁₃ H ₂₄ N ₃ O ₃ PS [23505-41-1]	1.8×10 ⁻¹		HSDB (2015)	V	
bensulide C ₁₄ H ₂₄ NO ₄ PS ₃ [741-58-2]	1.1×10^3		HSDB (2015)	V	
ethyl <i>p</i> -nitrophenyl benzenethiophos- phonate C ₁₄ H ₁₄ NO ₄ PS [2104-64-5]	2.2×10 ¹		HSDB (2015)	V	
isofenphos	1.2×10^2		Mackay et al. (2006d)	V	
C ₁₅ H ₂₄ NO ₄ PS	2.4×10^2		MacBean (2012b)	X	137
[25311-71-1]	2.4×10^2		MacBean (2012a)	?	9
chlormephos C ₅ H ₁₂ ClO ₂ PS ₂ [24934-91-6]	3.4×10^{-2}		HSDB (2015)	V	
chlorethoxyfos C ₆ H ₁₁ Cl ₄ O ₃ PS [54593-83-8]	2.3		HSDB (2015)	Q	38
ronnel	4.8×10^{-1}		Mackay and Shiu (1981)	L	
C ₈ H ₈ O ₃ Cl ₃ PS	1.7×10^{-2}		Mackay et al. (2006d)	V	
[299-84-3]	3.1×10^{-1}		Suntio et al. (1988)	V	9
	5.7×10^{-2}		Hilal et al. (2008)	Q	
tolclofos-methyl C ₉ H ₁₁ Cl ₂ O ₃ PS [57018-04-9]	1.7×10^{-2}		Mackay et al. (2006d)	V	
methyl trithion C ₉ H ₁₂ ClO ₂ PS ₃ [953-17-3]	9.9×10 ¹		HSDB (2015)	Q	38
trichloronate	9.0×10^{-1}		HSDB (2015)	V	
C ₁₀ H ₁₂ Cl ₃ O ₂ PS [327-98-0]	7.5×10^{1}		MacBean (2012a)	?	
dichlofenthion	1.0×10^{-2}		HSDB (2015)	V	
$C_{10}H_{13}Cl_2O_3PS$	3.2×10^{-5}		Mackay et al. (2006d)	V	
[97-17-6]	3.2×10^{-5}		Suntio et al. (1988)	V	9

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\Theta})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Type	Note
chlorthiophos C ₁₁ H ₁₅ Cl ₂ O ₃ PS ₂ [21923-23-9]	8.2		HSDB (2015)	Q	38
carbophenothion C ₁₁ H ₁₆ ClO ₂ PS ₃ [786-19-6]	$4.9 \times 10^{1} \\ 2.2 \times 10^{1}$		HSDB (2015) Suntio et al. (1988)	V V	9
coumaphos C ₁₄ H ₁₆ ClO ₅ PS [56-72-4]	9.0×10 ¹		HSDB (2015)	V	
methylchlorpyrifos	4.1		HSDB (2015)	V	
C ₇ H ₇ NO ₃ Cl ₃ PS	2.5		Mackay et al. (2006d)	V	
[5598-13-0]	2.9		Suntio et al. (1988)	V	9
	3.3		Mackay and Shiu (1981)	V	
	6.5×10^{-1}		Hilal et al. (2008)	Q	
dicapthon	1.0×10^2		HSDB (2015)	V	
C ₈ H ₉ NO ₅ CIPS	4.2×10^{1}		Mackay et al. (2006d)	V	
[2463-84-5]	4.2×10^{1}		Suntio et al. (1988)	V	9
	4.4×10^{1}		Mackay and Shiu (1981)	V	
	6.5		Hilal et al. (2008)	Q	
chlorthion	2.5×10^2		HSDB (2015)	V	
C ₈ H ₉ ClNO ₅ PS [500-28-7]	2.4×10^2		MacBean (2012a)	?	
isazophos	1.9×10 ¹		HSDB (2015)	V	
C ₉ H ₁₇ ClN ₃ O ₃ PS	1.1×10^2		Burkhard and Guth (1981)	V	
[42509-80-8]	7.2×10^{1}		MacBean (2012a)	?	
chlorpyrifos	1.8		Muir et al. (2004)	L	144
C ₉ H ₁₁ Cl ₃ NO ₃ PS	2.1		Muir et al. (2004)	L	143
[2921-88-2]	2.2×10^{-1}	7800	Cetin et al. (2006)	M	
	3.1		Rice et al. (1997b)	M	9
	2.4		Fendinger and Glotfelty (1990)	M	
	9.2×10^{-1}		Mackay et al. (2006d)	V	
	1.7		Siebers et al. (1994)	V	0
	5.7×10^{-1}		Suntio et al. (1988)	V	9
	8.1×10^{-1} 3.4		Glotfelty et al. (1987)	V	
	3.4 1.4		HSDB (2015) Armbrust (2000)	C C	
	2.2×10^{-1}		Hilal et al. (2008)	Q	
	2.5×10^2		Meylan and Howard (1991)	Q	
chlorphoxim C ₁₂ H ₁₄ ClN ₂ O ₃ PS [14816-20-7]	>2.3×10 ¹⁰		MacBean (2012a)	?	
phosazetim C ₁₄ H ₁₁ Cl ₂ N ₂ O ₄ PS [4104-14-7]	2.1×10 ³		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
dialifor C ₁₄ H ₁₇ ClNO ₄ PS ₂ [10311-84-9]	5.5×10 ¹ 7.1 7.1		HSDB (2015) Mackay et al. (2006d) Suntio et al. (1988)	V V V	9
bromophos C ₈ H ₈ BrCl ₂ O ₃ PS [2104-96-3]	$1.0 \times 10^{-1} \\ 1.1 \times 10^{-1}$		HSDB (2015) MacBean (2012a)	V ?	9
bromophos-ethyl C ₁₀ H ₁₂ BrCl ₂ O ₃ PS [4824-78-6]	6.2×10 ⁻¹		HSDB (2015)	Q	38
profenofos C ₁₁ H ₁₅ BrClO ₃ PS [41198-08-7]	4.5×10^{2} 6.2×10^{2}		HSDB (2015) Mackay et al. (2006d)	V V	
iodofenphos C ₈ H ₈ Cl ₂ IO ₃ PS [18181-70-9]	2.2 > 2.3×10^{10}		HSDB (2015) MacBean (2012a)	V ?	

Organic species with other elements

Sodium (Na)							
csesone C ₈ H ₇ Cl ₂ NaO ₅ S (2,4-dichlorophenoxyethyl sulfate) [136-78-7]	3.8×10 ⁵	HSDB (2015)	Q	38			
D&C black 1 C ₂₂ H ₁₄ N ₆ Na ₂ O ₉ S ₂ (amido black 10B) [1064-48-8]	8.2×10 ²⁵	HSDB (2015)	Q	38			
D&C green 5 C ₂₈ H ₂₀ N ₂ Na ₂ O ₈ S ₂ [4403-90-1]	3.1×10^{23}	HSDB (2015)	Q	182			
FD&C green 2 C ₃₇ H ₃₄ N ₂ Na ₂ O ₉ S3 [5141-20-8]	7.0×10^{30}	HSDB (2015)	Q	182			
dioctyl sulfosuccinatesodium salt $C_{20}H_{37}NaO_7S$ (bis(2-ethylhexyl) sodium sulfosuccinate) [577-11-7]	2.0×10 ⁶	HSDB (2015)	Q	38			
D&C yellow 10 C ₂₀ H ₁₇ NO ₈ Na ₂ S ₂ [8004-92-0]	3.4×10 ¹⁴	HSDB (2015)	Q	38			

Table 6: Henry's law constants for water as solvent (... continued)

	H^{cp}				
Substance Formula (Other name(s)) [CAS registry number]	$ (at T^{\Theta}) \left[\frac{\text{mol}}{\text{m}^3 \text{Pa}}\right] $	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
D&C yellow 8 C ₂₀ H ₁₀ Na ₂ O ₅ (fluorescein sodium) [518-47-8]	3.5×10 ¹⁰		HSDB (2015)	Q	182
dodecylbenzenesulfonic acid sodium salt C ₁₈ H ₂₉ NaO ₃ S (sodium dodecylbenzenesulfonate) (25155-30-0]	1.6×10 ²		HSDB (2015)	Q	38
	A	Aluminu	m (Al)		
fosetyl-aluminum C ₆ H ₁₈ AlO ₉ P ₃ [39148-24-8]	3.1×10 ⁹		HSDB (2015)	V	
		Silicon	(Si)		
tetramethylsilane C ₄ H ₁₂ Si [75-76-3]	$2.3 \times 10^{-6} \\ 2.4 \times 10^{-6}$		HSDB (2015) Abraham et al. (1990)	V ?	
etraethylsilane C ₈ H ₂₀ Si 631-36-7]	3.8×10^{-6}		Abraham et al. (1990)	?	
rrimethylsilanol (CH ₃) ₃ SiOH (TMS) [1066-40-6]	$7.0 \times 10^{-2} \\ 2.2 \times 10^{-1}$		Xu and Kropscott (2014) Mazzoni et al. (1997)	M V	
silicic acid Si(OH) ₄ [10193-36-9]	2.3×10 ¹⁰	14000	Plyasunov (2012)	M	297
dimethylsilanediol C ₂ H ₈ O ₂ Si [1066-42-8]	$2.8 \times 10^{3} \\ 2.9 \times 10^{-1}$		Xu and Kropscott (2012) Mazzoni et al. (1997)	M V	9
etramethyl silicate C ₄ H ₁₂ O ₄ Si 681-84-5]	1.5		HSDB (2015)	Q	38
pentamethyldisiloxanol C ₅ H ₁₆ O ₂ Si ₂ 56428-93-4]	7.3×10^{-4}		Mazzoni et al. (1997)	V	
etraethyl silicate C ₈ H ₂₀ O ₄ Si 78-10-4]	4.9×10 ⁻¹		HSDB (2015)	Q	38
rimethoxysilylpropyl methacrylate C ₁₀ H ₂₀ O ₅ Si 2530-85-0]	3.3×10 ¹		HSDB (2015)	Q	38

Table 6: Henry's law constants for water as solvent (...continued)

Substance	H^{cp}	$\frac{\mathrm{d} \ln H^{cp}}{}$			
Formula	(at T^{Θ})	d(1/T)	Reference	Type	Note
(Other name(s))	[mol]			71	
[CAS registry number]	$\lfloor \overline{m^3 Pa} \rfloor$	[K]			
nexamethyldisiloxane	1.3×10 ⁻⁶		Xu and Kropscott (2014)	M	
$C_6H_{18}OSi_2$	1.7×10^{-4}		Kochetkov et al. (2001)	M	298, 124
(L2)	3.1×10^{-4}		Kochetkov et al. (2001)	M	298, 125
[107-46-0]	7.7×10^{-7}		David et al. (2000)	M	126
	1.0×10^{-6}		Xu and Kropscott (2014)	V	
	1.0×10^{-6}		Kochetkov et al. (2001)	V	
	4.2×10^{-6}		Mazzoni et al. (1997)	V	
octamethyltrisiloxane	3.4×10^{-7}		Xu and Kropscott (2014)	M	
$C_8H_{24}O_2Si_3$	3.3×10^{-6}		Kochetkov et al. (2001)	M	298, 124
(L3)	2.7×10^{-6}		Kochetkov et al. (2001)	M	298, 125
[107-51-7]	2.8×10^{-7}		Xu and Kropscott (2014)	V	
	2.8×10^{-7}		Kochetkov et al. (2001)	V	
	1.2×10^{-6}		Mazzoni et al. (1997)	V	
decamethyltetrasiloxane	1.4×10^{-7}		Xu and Kropscott (2014)	M	
$C_{10}H_{30}O_3Si_4$	5.8×10^{-7}		Kochetkov et al. (2001)	M	298, 124
(L4)	3.7×10^{-7}		Xu and Kropscott (2014)	V	
[141-62-8]	4.3×10^{-7}		Kochetkov et al. (2001)	V	
	3.1×10^{-7}		Mazzoni et al. (1997)	V	
lodecamethylpentasiloxane C ₁₂ H ₃₆ O ₄ Si ₅ (L5) [141-63-9]	8.7×10^{-8}		Mazzoni et al. (1997)	V	
etradecamethylhexasiloxane C ₁₄ H ₄₂ O ₅ Si ₆ L6) 107-52-8]	2.7×10 ⁻⁸		Mazzoni et al. (1997)	V	
nexadecamethylheptasiloxane C ₁₆ H ₄₈ O ₆ Si ₇ [L7) [541-01-5]	7.6×10 ⁻⁹		Mazzoni et al. (1997)	V	
octadecamethyloctasiloxane C ₁₈ H ₅₄ O ₇ Si ₈ (L8) [556-69-4]	3.3×10 ⁻⁹		Mazzoni et al. (1997)	V	
nexamethylcyclotrisiloxane C ₆ H ₁₈ O ₃ Si ₃ (D3) [541-05-9]	5.6×10 ⁻⁶		Mazzoni et al. (1997)	V	
octamethylcyclotetrasiloxane	7.3×10^{-7}		Xu and Kropscott (2014)	M	
$C_8H_{24}O_4Si_4$	8.3×10^{-7}		Xu and Kropscott (2012)	M	31
(D4)	1.7×10^{-5}		Kochetkov et al. (2001)	M	115, 124
[556-67-2]	1.7×10^{-5}		Kochetkov et al. (2001)	M	115, 125
	1.2×10^{-4}		Hamelink et al. (1996)	M	9
	1.5×10^{-6}		Xu and Kropscott (2014)	V	
	1.6×10^{-6}		Kochetkov et al. (2001)	V	
	8.3×10^{-7}		Mazzoni et al. (1997)	V	

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
	2.7×10^{-6}		Hamelink et al. (1996)	V	9
decamethylcyclopentasiloxane C ₁₀ H ₃₀ O ₅ Si ₅ (D5) [541-02-6]	2.8×10^{-7} 3.0×10^{-7} 3.4×10^{-5} 3.1×10^{-5} 7.4×10^{-5} 2.3×10^{-6} 2.2×10^{-6} 1.5×10^{-6}		Xu and Kropscott (2014) Xu and Kropscott (2012) Kochetkov et al. (2001) Kochetkov et al. (2001) David et al. (2000) Xu and Kropscott (2014) Kochetkov et al. (2001) Mazzoni et al. (1997)	M M M M V V	146, 124 146, 125 126
dodecamethylcyclohexasiloxane C ₁₂ H ₃₆ O ₆ Si ₆ (D6) [540-97-6] tetramethyldisiloxane-1,3-diol C ₄ H ₁₄ O ₃ Si ₂ [1118-15-6]	4.0×10^{-7} 6.8×10^{-5} 1.5×10^{-4} 3.9×10^{-6} 1.8×10^{-1}		Xu and Kropscott (2012) Kochetkov et al. (2001) Kochetkov et al. (2001) Kochetkov et al. (2001) Mazzoni et al. (1997)	M M M V	27 146, 124 146, 125
hexamethyltrisiloxane-1,5-diol $C_6H_{20}O_4Si_3$ [3663-50-1]	3.4×10^{-3}		Mazzoni et al. (1997)	V	
octamethyltetrasiloxane-1,7-diol C ₈ H ₂₆ O ₅ Si ₄ [3081-07-0]	2.7×10^{-3}		Mazzoni et al. (1997)	V	
pentamethylcyclotrisiloxanol C ₅ H ₁₆ O ₄ Si ₃ [106916-50-1]	1.1×10 ⁻³		Mazzoni et al. (1997)	V	
heptamethylcyclotetrasiloxanol C ₇ H ₂₂ O ₅ Si ₄ [5290-02-8]	2.3×10 ⁻⁴		Mazzoni et al. (1997)	V	
nonamethylcyclopentasiloxanol C ₉ H ₂₈ O ₆ Si ₅ [5290-04-0]	7.0×10^{-5}		Mazzoni et al. (1997)	V	
hexamethyldisilazane C ₆ H ₁₉ NSi ₂ [999-97-3]	1.1×10^{-1}		HSDB (2015)	Q	38
dichloromethylsilane CH ₄ Cl ₂ Si (methyldichlorosilane) [75-54-7]	7.6×10 ⁻⁴		HSDB (2015)	Q	38
etacelasil C ₁₁ H ₂₅ O ₆ ClSi [37894-46-5]	2.9×10 ³		MacBean (2012a)	?	
		Zinc (Z	Zn)		

Table 6: Henry's law constants for water as solvent (...continued)

	H^{cp}	dln H ^{cp}			
Substance Formula	(at T^{\ominus})	$\frac{\mathrm{dil}H^{T}}{\mathrm{d}(1/T)}$			
(Other name(s))		$\mathfrak{u}(1/T)$	Reference	Type	Note
[CAS registry number]	mol	[K]			
	m ³ Pa	[]			
zineb	2.7×10^3		Mackay et al. (2006d)	V	
$C_4H_6N_2S_4Zn$	$> 3.7 \times 10^3$		MacBean (2012b)	X	137
[12122-67-7]					
ziram	1.6×10^4		HSDB (2015)	V	
C ₆ H ₁₂ N ₂ S ₄ Zn [137-30-4]	2.1×10^5		Mackay et al. (2006d)	V	
[137 30 4]					
		Arsenic	(Sn)		
diethyl arsine	2.2×10^{-5}		HSDB (2015)	Q	38
$C_4H_{11}As$					
[692-42-2]					
lewisite	3.1×10^{-2}		HSDB (2015)	V	
C ₂ H ₂ AsCl ₃					
[541-25-3]					
phenyldichloroarsine	3.3×10^{-1}		HSDB (2015)	Q	38
C ₆ H ₅ AsCl ₂				`	
[696-28-6]					
adamsite	3.0×10^2		HSDB (2015)	Q	38
C ₁₂ H ₉ AsClN					
[578-94-9]					
		Seleniun	ı (Se)		
2-amino-4-(methylselenyl)butyric acid	2.9×10^{5}		HSDB (2015)	Q	38
C ₅ H ₁₁ NO ₂ Se			,		
(selenium methionine)					
[1464-42-2]					
		Tin (S	Sn)		
tetramethylstannane	9.4×10^{-6}	3800	Abraham and Nasehzadeh (1981)	M	
C ₄ H ₁₂ Sn	9.7×10^{-6}		Abraham et al. (1990)	?	
(tetramethyltin)	1.2×10^{-5}		Abraham (1979)	?	
[594-27-4]					
tetraethylstannane	1.6×10^{-5}	<u></u>	HSDB (2015)	Q	38
$C_8H_{20}Sn$	6.1×10^{-6}		Abraham et al. (1990)	?	
(tetraethyltin)	5.7×10^{-6}	6100	Abraham and Nasehzadeh (1981)	?	299
[597-64-8]	1.1×10^{-5}		Abraham (1979)	?	
tetrabutylstannane	1.6×10^{-6}		HSDB (2015)	Q	38
C ₁₆ H ₃₆ Sn				-	
(tetra-butyl tin)					
[1461-25-2]					
nexabutyldistannoxane	7.6×10^{1}		HSDB (2015)	V	
$C_{24}H_{54}OSn_2$					
(bis(tributyltin)oxide)					
[56-35-9]					

Table 6: Henry's law constants for water as solvent (...continued)

Substance	H^{cp}	${\rm d} \ln H^{cp}$			
Formula	(at T^{Θ})	$\overline{\mathrm{d}(1/T)}$	Reference	Type	Note
(Other name(s))	[mol]		Reference	Турс	Note
[CAS registry number]	$\left[\frac{m^3 \text{ Pa}}{\text{m}^3 \text{ Pa}}\right]$	[K]			
nexakis(2-methyl-2-	4.9×10^{3}		HSDB (2015)	V	
phenylpropyl)distannoxane					
$C_{60}H_{78}OSn_2$					
(fenbutatin oxide)					
[13356-08-6]					
l-(tricyclohexylstannyl)1H-1,2,4-	4.6×10^{6}		HSDB (2015)	V	
riazole					
$C_{20}H_{35}N_3Sn$					
(azocyclotin) [41083-11-8]					
41065-11-6]					
	· -	Mercury	(Hg)		
dimethylmercury	1.3×10^{-3}	2700	Talmi and Mesmer (1975)	M	
C_2H_6Hg	2.1×10^{-3}		Abraham et al. (2008)	C	
[593-74-8]	1.3×10^{-3}	2700	WHO (1990)	C	
	1.0×10^{-3}	3000	Abraham et al. (2008)	Q	88
	1.5×10^{-3}		Schroeder and Munthe (1998)	?	7
	1.3×10^{-3}	2700	Schroeder and Munthe (1998)	?	7
	3.1×10^{-3}		Iverfeldt and Persson (1985)	?	90
liethylmercury	1.0×10^{-3}	3800	Abraham et al. (2008)	Q	88
$C_4H_{10}Hg$					
[627-44-1]					
lipropylmercury	5.6×10^{-4}	4600	Abraham et al. (2008)	Q	88
C ₆ H ₁₄ Hg					
[628-85-3]					
diisopropylmercury	3.9×10^{-4}	4600	Abraham et al. (2008)	Q	88
C ₆ H ₁₄ Hg					
[1071-39-2]					
dibutylmercury	2.9×10^{-4}	5400	Abraham et al. (2008)	Q	88
C ₈ H ₁₈ Hg					
[629-35-6]					
diphenylmercury	2.8×10^{2}	8800	Abraham et al. (2008)	Q	88
$C_{12}H_{10}Hg$					
[587-85-9]					
nydroxymethylmercury	9.8×10^2	7700	Iverfeldt and Persson (1985)	M	
CH ₃ HgOH	1.5×10^3		Shon et al. (2005)	?	300
[1184-57-2]					
phenyl mercuric ethanoate	1.5×10^4		Suntio et al. (1988)	V	9
$C_8H_8H_9O_2$					
[62-38-4]					
3-cyanoguanidino)methylmercury	7.0×10^4		HSDB (2015)	Q	38
$C_3H_6N_4Hg$					
(methylmercuric dicyanamide)					
[502-39-6]					

Table 6: Henry's law constants for water as solvent (...continued)

Substance Formula (Other name(s)) [CAS registry number]	H^{cp} (at T^{Θ}) $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$	$\frac{\mathrm{d}\ln H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference	Туре	Note
chloromethylmercury CH ₃ HgCl [115-09-3]	$ 2.2 \times 10^{1} \\ 1.5 \times 10^{1} \\ 2.0 \times 10^{1} $ $ 2.6 \times 10^{1} \\ 1.5 \times 10^{1} \\ 1$	1800 4100 5300	Iverfeldt and Lindqvist (1982) Talmi and Mesmer (1975) WHO (1990) Abraham et al. (2008) Schroeder and Munthe (1998)	M M C Q	301 31 302 28, 7
chloroethylmercury C_2H_5HgCl [107-27-7]	1.5×10 ¹ 1.5×10 ¹	5600	Iverfeldt and Persson (1985) Abraham et al. (2008)	? Q	90 88
chloropropylmercury C ₃ H ₇ HgCl [2440-40-6]	1.2×10 ¹	5900	Abraham et al. (2008)	Q	88
chloroisopropylmercury C ₃ H ₇ HgCl [30615-19-1]	9.9	6000	Abraham et al. (2008)	Q	88
chlorobutylmercury C ₄ H ₉ HgCl [543-63-5]	8.8	6300	Abraham et al. (2008)	Q	88
chloropentylmercury C ₅ H ₁₁ HgCl [544-15-0]	7.0	6700	Abraham et al. (2008)	Q	88
chlorophenylmercury C ₆ H ₅ HgCl [100-56-1]	3.8×10^2 9.2×10^2	7400	Abraham et al. (2008) Abraham et al. (2008)	V Q	88
2-methoxyethylmercury chloride CH ₃ OC ₂ H ₄ HgCl (aretan) [123-88-6]	3.9×10^3	8600	Abraham et al. (2008)	Q	88
bromomethylmercury CH ₃ HgBr [506-83-2]	3.7	4800	Abraham et al. (2008) Iverfeldt and Persson (1985)	Q ?	302 90
bromoethylmercury C ₂ H ₅ HgBr [107-26-6]	3.0	5200	Abraham et al. (2008)	Q	88
bromophenylmercury C ₆ H ₅ HgBr [1192-89-8]	1.8×10^2	6900	Abraham et al. (2008)	Q	88
iodomethylmercury CH ₃ HgI [143-36-2]	2.0 5.8×10 ⁻¹	4800	Abraham et al. (2008) Iverfeldt and Persson (1985)	Q ?	88 90
iodoethylmercury C ₂ H ₅ HgI [2440-42-8]	2.5	5200	Abraham et al. (2008)	Q	88

Table 6: Henry's law constants for water as solvent $(\dots continued)$

Substance Formula (Other name(s)) [CAS registry number] iodophenylmercury C ₆ H ₅ HgI [823-04-1]	H^{cp} $(at T^{\ominus})$ $\left[\frac{\text{mol}}{\text{m}^3 \text{ Pa}}\right]$ 9.0×10^1	$\frac{\mathrm{dln}H^{cp}}{\mathrm{d}(1/T)}$ [K]	Reference Abraham et al. (2008)	Type Q	Note
		Lead (Pb)		
tetramethyl lead $C_4H_{12}Pb$ [75-74-1]	1.6×10^{-5}		HSDB (2015)	V	
ethyltrimethylplumbane C ₅ H ₁₄ Pb [1762-26-1]	2.8×10 ⁻⁵		HSDB (2015)	Q	38
diethyldimethylplumbane C ₆ H ₁₆ Pb (diethyldimethyl lead) [1762-27-2]	2.1×10 ⁻⁵		HSDB (2015)	Q	38
triethylmethylplumbane C ₇ H ₁₈ Pb (methyltriethyl lead) [1762-28-3]	1.6×10 ⁻⁵		HSDB (2015)	Q	38
tetraethyllead C ₈ H ₂₀ Pb [78-00-2]	$1.3 \times 10^{-5} \\ 1.3 \times 10^{-5}$	6400	Feldhake and Stevens (1963) Abraham (1979)	M ?	

Notes

- 1) Vapor pressure data for water from Wagner and Pruss (1993) were needed to calculate H.
- 2) Winkler (1891b) also contains high-temperature data. However, only data up to 330 K were used here to calculate the temperature dependence.
- 3) Value given here as quoted by Fogg and Sangster (2003).
- 4) Erratum for page 270 of Fogg and Sangster (2003): the CAS registry number and the corresponding equation are incorrect. The first term should be -178.763753281, not -187.07794.
- 5) Value given here as quoted by Lide and Frederikse (1995).
- **6)** Only the tabulated data between T = 273 K and T = 303 K from Dean (1992) were used to derive H and its temperature dependence. Above T = 303 K, the tabulated data could not be parameterized by Eq. (19) very well. The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by Sander et al. (1995). The quantities A and α from Dean (1992) were assumed to be identical.
- 7) Several references are given in the list of Henry's law constants but not assigned to specific species.
- 8) Roth and Sullivan (1981) found that H depends on the concentration of OH^- .
- **9**) Value at T = 293 K.
- 10) Value given here as quoted by Durham et al. (1981).
- 11) Calculated from correlation between the polarizabilities and solubilities of stable gases. The temperature dependence is an estimate of the upper limit.
- 12) Jacob (1986) assumed the temperature dependence to be the same as for water.
- 13) In the abstract, Schwartz (1984) gives a range of $9.9 \text{ mol m}^{-3} \text{ Pa}^{-1} < H^{cp} < 3.0 \times 10^1 \text{ mol m}^{-3} \text{ Pa}^{-1}$. The mean value of this range ($2.0 \times 10^1 \text{ mol m}^{-3} \text{ Pa}^{-1}$) has been used by Lelieveld and Crutzen (1991), Pandis and Seinfeld (1989), and Jacob (1986).
- **14)** The value of H^{\ominus} was taken from Schwartz (1984).
- **15**) Erratum for page 264 of Fogg and Sangster (2003): the second value from their Ref. [10] refers to 291.15 K, not 281.15 K.
- **16**) This value is a correction of the solubility published by Lind and Kok (1986).
- **17**) This value was measured at low pH. It is superseded by a later publication of the same group (Lind and Kok, 1994).
- **18**) Pandis and Seinfeld (1989) cite an incorrect value from Lind and Kok (1986), see erratum by Lind and Kok (1994).
- **19**) Value at T = 310 K.
- **20**) Value given here as quoted by Betterton (1992).
- 21) Bone et al. (1983) gives Carter et al. (1968) as the

- source. However, no data were found in that reference.
- 22) There is a typo in Sander et al. (2011): the value for A should be -10.19, not 10.19.
- **23**) Value at T = 303 K.
- **24**) The parametrization given by Lide and Frederikse (1995) with parameters *A*, *B*, and *C* does not fit the data in the same paper for this substance. Therefore, the parametrization of the solubility data was recalculated.
- **25**) The H298 and A, B, C data listed in Table 5.4 of Sander et al. (2011) are inconsistent, with a 94 % difference.
- **26**) The H298 and A, B, C data listed in Table 5.4 of Sander et al. (2006) are inconsistent, with a 94 % difference.
- **27**) Value at T = 297 K.
- **28**) Value at $T = 288 \, \text{K}$.
- **29**) Erratum for page 269 of Fogg and Sangster (2003): the equation is incorrect and not consistent with the corresponding equation for ln(x): the temperature in the last term must be divided by 100 (i.e., ln(T/100) not ln(T)), and an additional term of ln(100) must be added.
- **30**) The fitting parameters A, B, C, and D in Table I of Wilhelm et al. (1977) do not reproduce the data in their Table III.
- **31**) Value at T = 295 K.
- **32**) Pandis and Seinfeld (1989) refer to Schwartz (1984) as the source but the quoted value cannot be found there.
- **33**) Value obtained by estimating the diffusion coefficient for NO₃ to be $D = 1.0 \times 10^{-5}$ cm² s⁻¹.
- **34**) Jacob (1986) assume that NO_3 has the same Henry's law constant as HNO_3 .
- **35**) Seinfeld and Pandis (1998) probably refer to the incorrect value given by Pandis and Seinfeld (1989).
- **36**) This value was extrapolated from data at $T = 230 \,\mathrm{K}$ and $T = 273 \,\mathrm{K}$.
- **37**) Fast, irreversible hydrolysis is assumed, which is equivalent to an infinite effective Henry's law constant.
- **38**) Calculated based on the method by Meylan and Howard (1991).
- **39**) Lelieveld and Crutzen (1991) assume the temperature dependence to be the same as for $a(\mathrm{H^+})a(\mathrm{NO_3^-})/p(\mathrm{HNO_3})$ in Schwartz and White (1981).
- **40**) $H' = 2.6 \times 10^4 \times \exp\left(8700 \,\mathrm{K}\left(\frac{1}{T} \frac{1}{T^{\ominus}}\right)\right) \,\frac{\mathrm{mol}^2}{\mathrm{m}^6 \,\mathrm{Pa}}$
- **41**) $H' = 2.4 \times 10^4 \times \exp\left(8700 \,\mathrm{K}\left(\frac{1}{T} \frac{1}{T^{\ominus}}\right)\right) \,\frac{\mathrm{mol}^2}{\mathrm{m}^6 \,\mathrm{Pa}}$
- **42**) The value is incorrect. See erratum (Brimblecombe and Clegg, 1989).
- **43**) Pandis and Seinfeld (1989) refer to Schwartz (1984) as the source but it is probably from Schwartz and White (1981).

44) Möller and Mauersberger (1992) assumed the solubility to be comparable to that of HNO₃.

45)
$$H' = 9.4 \times 10^{-2} \times \exp\left(7400 \,\mathrm{K}\left(\frac{1}{T} - \frac{1}{T^{\ominus}}\right)\right) \frac{\mathrm{mol}^2}{\mathrm{m}^6 \,\mathrm{Pa}}$$

- **46**) Extrapolated from data measured between $70\,^{\circ}\text{C}$ and $110\,^{\circ}\text{C}$.
- **47**) The value of ΔH° listed in Table 2 of Bartlett and Margerum (1999) is incorrect.
- **48**) Kruis and May (1962) claim that Cl_2 does not obey Henry's law. Looking at their interpolation formula, however, it seems that this is only because they did not consider the equilibrium $Cl_2 + H_2O \rightleftharpoons HOCl + HCl$.
- **49**) Calculated from the free energy of solution by Schwarz and Dodson (1984).

50)
$$H' = 2.0 \times 10^4 \frac{\text{mol}^2}{\text{m}^6 \text{ Pa}}$$

51)
$$H' = 2.0 \times 10^4 \times \exp\left(9000 \,\mathrm{K}\left(\frac{1}{T} - \frac{1}{T^{\ominus}}\right)\right) \frac{\mathrm{mol}^2}{\mathrm{m}^6 \,\mathrm{Pa}}$$

52)
$$H' = 2.0 \times 10^4 \times \exp\left(9000 \,\mathrm{K}\left(\frac{1}{T} - \frac{1}{T^{\ominus}}\right)\right) \,\frac{\mathrm{mol}^2}{\mathrm{m}^6 \,\mathrm{Pa}}$$

53)
$$H' = 2.0 \times 10^4 \times \exp\left(9000 \,\mathrm{K}\left(\frac{1}{T} - \frac{1}{T^{\ominus}}\right)\right) \,\frac{\mathrm{mol}^2}{\mathrm{m}^6 \,\mathrm{Pa}}$$

- **54**) Pandis and Seinfeld (1989) refer to Marsh and McElroy (1985) as the source but the quoted value cannot be found there.
- **55**) This value was extrapolated from data at T = 215 K and T = 263 K.
- **56**) Value at pH = 6.5.
- **57**) Value at T = 200 K.
- **58**) Derived as a fitting parameter used in numerical modeling.
- **59**) Dubik et al. (1987) measured the solubility in concentrated salt solutions (natural brines).

60)
$$H' = 8.2 \times 10^6 \times \exp\left(10000 \,\mathrm{K}\left(\frac{1}{T} - \frac{1}{T^{\ominus}}\right)\right) \frac{\mathrm{mol}^2}{\mathrm{m}^6 \,\mathrm{Pa}}$$

61)
$$H' = 1.3 \times 10^7 \times \exp\left(10000 \,\mathrm{K}\left(\frac{1}{T} - \frac{1}{T^{\ominus}}\right)\right) \,\frac{\mathrm{mol}^2}{\mathrm{m}^6 \,\mathrm{Pa}}$$

62)
$$H' = 7.0 \times 10^6 \times \exp\left(10000 \,\mathrm{K}\left(\frac{1}{T} - \frac{1}{T^{\ominus}}\right)\right) \,\frac{\mathrm{mol}^2}{\mathrm{m}^6 \,\mathrm{Pa}}$$

- **63**) Chameides and Stelson (1992) give a value of $H' = 7.1 \times 10^6 \times \exp\left(6100 \,\mathrm{K}\left(\frac{1}{T} \frac{1}{T^{\ominus}}\right)\right) \frac{\mathrm{mol}^2}{\mathrm{m}^6 \,\mathrm{Pa}}$. They refer to Jacob (1986) and Chameides (1984) as the source but this value cannot be found there.
- **64**) The value is from Table 1 of the paper. However, J. Geophys. Res. forgot to print the tables and I received them directly from the author.
- **65**) Fickert (1998) extracted a value from wetted-wall flow tube experiments. However, it was later discovered that

under the experimental conditions no evaluation of H is possible (J. Crowley, personal communication, 1999).

- **66)** Value at T = 275 K.
- **67**) Value at $T = 290 \,\mathrm{K}$.
- **68**) Calculated using data from Wagman et al. (1982) and the aqueous-phase equilibrium $Cl_2 + Br_2 \rightleftharpoons 2$ BrCl from Wang et al. (1994).
- **69**) Thompson and Zafiriou (1983) quote a paper as the source that gives only the solubility but not the Henry's law constant.
- **70**) Calculated from the free energy of solution by Schwarz and Bielski (1986).

71)
$$H' = 2.5 \times 10^7 \times \exp\left(9800 \,\mathrm{K}\left(\frac{1}{T} - \frac{1}{T^{\ominus}}\right)\right) \frac{\mathrm{mol}^2}{\mathrm{m}^6 \,\mathrm{Pa}}$$

72)
$$H' = 2.1 \times 10^7 \times \exp\left(9800 \,\mathrm{K}\left(\frac{1}{T} - \frac{1}{T^{\ominus}}\right)\right) \,\frac{\mathrm{mol}^2}{\mathrm{m}^6 \,\mathrm{Pa}}$$

- **73)** Thompson and Zafiriou (1983) assume that $H^{cp}(HOI)$ is between $4.4 \times 10^{-1} \text{ mol m}^{-3} \text{ Pa}^{-1}$ and $4.4 \times 10^2 \text{ mol m}^{-3} \text{ Pa}^{-1}$.
- **74)** The parameter fit for the temperature dependence is incorrect. A corrected version was later presented by Iliuta and Larachi (2007).
- **75**) Value at T = 353 K.
- **76**) Marti et al. (1997) give partial pressures of H_2SO_4 over a concentrated solution (e.g., 2.6×10^{-9} Pa for 54.1 weight percent at 298 K). Extrapolating this to dilute solutions can only be considered an order-of-magnitude approximation for H.
- 77) Ayers et al. (1980) give partial pressures of H_2SO_4 over concentrated solutions at high temperatures. Extrapolating this to dilute solutions can only be considered an order-of-magnitude approximation for H.
- **78**) Gmitro and Vermeulen (1964) give partial pressures of H_2SO_4 over a concentrated solution (e.g., 10^{-7} mmHg for 70 weight percent at 298 K). Extrapolating this to dilute solutions can only be considered an order-of-magnitude approximation for H.
- **79**) Clegg et al. (1998) estimate a Henry's law constant of 5×10^{11} atm⁻¹ at 303.15 K for the reaction $H_2SO_4(g) \rightleftharpoons 2$ $H^+(aq) + SO_4^{2-}(aq)$ but do not give a definition for it. It is probably defined as $x^2(H^+) \times x(SO_4^{2-})/p(H_2SO_4)$, where x is the aqueous-phase mixing ratio.
- **80**) Erratum for page 265 of Fogg and Sangster (2003): the corresponding equation is incorrect. The second term should not be divided by 100 K.
- **81**) The value at T = 308.15 K does not fit and is not used for the linear regression.
- **82**) Though no reference was given, the value is probably from Clever (1979b).
- 83) Solubility in natural seawater. Measurements at different

salinities were also performed, but only at a fixed temperature of 296.15 K.

- **84)** Value given here as quoted by Abraham et al. (2008).
- **85**) Petersen et al. (1998) give the invalid unit "mol L^{-1} ppm $^{-1}$ ". Here, it is assumed that "ppm" is used as a synonym for " 10^{-6} atm".
- **86**) Shon et al. (2005) refer to Petersen et al. (1998) as the source but a different value is listed there.
- **87**) Value at T = 333 K.
- **88**) Calculated using linear free energy relationships (LFERs).
- **89**) Measured at high temperature and extrapolated to $T^{\ominus} = 298.15 \text{ K}$.
- **90**) More than one reference is given as the source of this value.
- **91**) Hedgecock et al. (2005) refer to Hedgecock and Pirrone (2004) as the source but this value cannot be found there.
- **92**) Yaws and Yang (1992) give several references for the Henry's law constants but do not assign them to specific species.
- **93**) Erratum for page 325 of Fogg and Sangster (2003): the second term in the equation describing the recommended data should be a division by T, not a multiplication, i.e., 1.44345E4/T.
- **94**) The H298 and A, B, C data listed in Table 5.4 of Sander et al. (2011) are inconsistent, with a 14 % difference.
- **95**) The H298 and A, B, C data listed in Table 5.4 of Sander et al. (2006) are inconsistent, with a 14 % difference.
- **96**) The H298 and A, B, C data listed in Table 5.4 of Sander et al. (2011) are inconsistent, with a 6 % difference.
- **97**) The H298 and A, B, C data listed in Table 5.4 of Sander et al. (2006) are inconsistent, with a 6% difference.
- **98**) It is unclear why the value given by Fogg and Sangster (2003) is about 3 times higher than that given by Lide and Frederikse (1995) (and others), even though both refer to Hayduk (1986).
- **99**) Jou and Mather (2000) also contains high-temperature data. However, only data up to 373.2 K were used here to calculate the temperature dependence.
- **100**) Calculated from the solvation enthalpy, using Eq. (17).
- **101**) Apparently, the values in Table 2 of Park et al. (1997) show $\log_{10}(K_{\rm aw})$ and not $K_{\rm aw}$ as their figure caption states.
- **102**) Extrapolated from data measured between $40\,^{\circ}\text{C}$ and $80\,^{\circ}\text{C}$.
- **103**) The value is most probably taken from the report by Howe et al. (1987).
- **104**) In their Table 8, Staudinger and Roberts (1996) incorrectly cite a value given by Ashworth et al. (1988).
- 105) The same data were also published in Hansen et al.

(1995).

- **106**) Hansen et al. (1993) found that the solubility of 2-methylhexane increases with temperature.
- 107) Data taken from the supplement.
- **108**) Calculated using the EPI Suite (v4.0) method.
- 109) Calculated using the SPARC (v4.2) method.
- **110**) Calculated using the COSMOtherm (v2.1) method.
- **111**) Calculated using the ABSOLV (ADMEBoxes v4.1) method.
- 112) Mackay et al. (2006a) list a vapor pressure p, a solubility c, and a Henry's law constant calculated as p/c. However, the data are internally inconsistent and deviate by more than 10%.
- **113**) Value at T = 294 K.
- **114**) The data listed in Tables 2 and 3 of Dewulf et al. (1999) are inconsistent, with a 5 % difference.
- **115**) Value at T = 301 K.
- **116**) Value given here as quoted by Staudinger and Roberts (1996).
- **117**) Haynes (2014) refer to Mackay and Shiu (1981) but that article lists this value for 1,4-dimethylcyclohexane, not for 1,2-dimethylcyclohexane.
- 118) According to Donahue and Prinn (1993), the value is incorrect.
- **119**) Value at T = 291 K.
- **120**) Regression and individual data points of Simpson and Lovell (1962) are inconsistent, with a 5 % difference.
- 121) Sieg et al. (2009) also provide data for supercooled water. Here, only data above $0\,^{\circ}\text{C}$ were used to calculate the temperature dependence.
- 122) Extrapolated from data above 298 K.
- **123**) It was found that H changes with the concentration of the solution.
- **124**) Value obtained by applying a modified batch airstripping method, otherwise called the vapor entry loop (VEL) method, see Kochetkov et al. (2001) for details.
- **125**) Value obtained by applying the static head space (HS) method, see Kochetkov et al. (2001) for details.
- **126**) Value at T = 296 K.
- **127**) Solubility in seawater.
- **128**) Value at T = 302 K.
- **129**) Calculated using G_h and H_h from Table 2 in Andon et al. (1954). Note that the thermodynamic functions in that table are not based on their α in Table 1. Instead, the expression $\exp(-G_h/(RT))$ yields the Henry's law constant H^{xp} in the unit 1/atm.
- **130**) Values for salt solutions are also available from this reference.

- **131**) Value obtained by applying the EPICS method, see Ayuttaya et al. (2001) for details.
- **132**) Value obtained by applying the static cell (linear form) method, see Ayuttaya et al. (2001) for details.
- **133**) Value obtained by applying the direct phase concentration ratio method, see Ayuttaya et al. (2001) for details.
- **134**) Value obtained by applying the static cell (non-linear form) method, see Ayuttaya et al. (2001) for details.
- **135**) The temperature dependence is recalculated using the data in Table 4 of Lamarche and Droste (1989) and not taken from their Table 5.
- 136) Value given here as quoted by Dewulf et al. (1995).
- 137) Value given here as quoted by HSDB (2015).
- **138**) Different types of Henry's law constants of Ryu and Park (1999) are inconsistent, with a 14 % difference.
- **139**) Erratum for page 365 of Fogg and Sangster (2003): data from Kondoh and Nakajima (1997) are cited incorrectly, giving the same values at 308.2 and 318.2 K.
- **140**) Because of discrepancies between the values shown in Tables 4 and 5 of Shiu and Ma (2000), the data are not used here.
- **141**) The values of Dewulf et al. (1999) are not used here because, according to them, the calculated regression does not match the theoretical expectation for this species.
- **142**) Value given here as quoted by Haynes (2014).
- **143**) Literature-derived value.
- 144) Final adjusted value.
- **145**) Value given here as quoted by Petrasek et al. (1983).
- **146**) Value at $T = 299 \,\mathrm{K}$.
- **147**) Value at T = 283 K.
- 148) Solubility in seawater at 20.99 % chlorinity.
- **149**) Erratum for page 260 of Fogg and Sangster (2003): the corresponding equation in preferred units is incorrect. The last term must be divided by 10000 (i.e., 0.0704, not 704.)
- 150) Average of four pH-dependent values.
- **151**) The H298 and A, B, C data listed in Table 5.4 of Sander et al. (2011) are inconsistent, with a 92 % difference.
- **152)** This paper supersedes earlier work with more concentrated solutions (Butler et al., 1933).
- 153) Value given here as quoted by Gaffney et al. (1987).
- **154)** Value given here as quoted by Hine and Weimar Jr. (1965).
- **155**) The H298 and A, B, C data listed in Table 5.4 of Sander et al. (2011) are inconsistent, with a 10 % difference.
- 156) Extrapolated from data above 298 K.
- **157**) Koga (1995) found that *tert*-butanol does not obey Henry's law at c > 3.8 mM.
- 158) Value obtained by Saxena and Hildemann (1996) using

- the group contribution method.
- **159**) The species is probably 2,3-dimethyl-2-butanol and not 2,3-dimethylbutanol as listed in Hine and Mookerjee (1975).
- **160**) It is assumed here that entry number 72 in Table 1 of Yaws et al. (1997) refers to 2-methyl-1-heptanol, not 2-methyl-2-heptanol.
- **161**) Different types of Henry's law constants of Yaws and Yang (1992) are inconsistent, with a 16 % difference.
- **162**) Different types of Henry's law constants of Yaws and Yang (1992) are inconsistent, with a 10 % difference.
- **163**) Value at T = 307 K.
- **164)** Value given here as quoted by Mackay et al. (1995).
- **165**) Value given here as quoted by Hine and Mookerjee (1975).
- **166**) Value at T = 373 K.
- **167**) Value at T = 281 K.
- **168**) It is assumed here that the thermodynamic data refer to the units mol dm⁻³ and atm as standard states.
- **169**) Value given here as quoted by Shiu et al. (1994).
- **170**) HSDB (2015) refer to Abraham et al. (1994b) as the source but this value cannot be found there. Maybe the value is taken from Abraham et al. (1990).
- **171)** Mackay et al. (2006c) list a vapor pressure p, a solubility c, and a Henry's law constant calculated as p/c. However, the data are internally inconsistent and deviate by more than 10%.
- **172**) Betterton (1992) gives Buttery et al. (1969) as the source. However, no data were found in that reference.
- 173) Saxena and Hildemann (1996) say that this value is unreliable.
- **174)** Saxena and Hildemann (1996) give a range of $9.9 \times 10^2 \text{ mol m}^{-3} \text{ Pa}^{-1} < H^{cp} < 5.9 \times 10^4 \text{ mol m}^{-3} \text{ Pa}^{-1}$.
- **175**) Saxena and Hildemann (1996) give a range of $5.9 \times 10^6 \text{ mol m}^{-3} \text{ Pa}^{-1} < H^{cp} < 3.9 \times 10^9 \text{ mol m}^{-3} \text{ Pa}^{-1}$.
- **176)** Saxena and Hildemann (1996) give a range of $9.9 \times 10^2 \text{ mol m}^{-3} \text{ Pa}^{-1} < H^{cp} < 4.9 \times 10^4 \text{ mol m}^{-3} \text{ Pa}^{-1}$.
- 177) Saxena and Hildemann (1996) give a range of $3.9 \times 10^2 \text{ mol m}^{-3} \text{ Pa}^{-1} < H^{cp} < 3.9 \times 10^4 \text{ mol m}^{-3} \text{ Pa}^{-1}$.
- **178**) Compernolle and Müller (2014b) recommend H^{cp} for 1,7-heptanediol in the range of 4.5×10^4 mol m⁻³ Pa⁻¹ $< H^{cp} < 8.3\times10^4$ mol m⁻³ Pa⁻¹.
- **179**) Compernolle and Müller (2014b) recommend H^{cp} for 1,9-nonanediol in the range of 2.4×10^4 mol m⁻³ Pa⁻¹ $< H^{cp} < 3.9 \times 10^4$ mol m⁻³ Pa⁻¹.
- **180**) Compernolle and Müller (2014b) recommend H^{cp} for 1,10-decanediol in the range of 2.5×10^4 mol m⁻³ Pa⁻¹ $< H^{cp} < 3.0 \times 10^4$ mol m⁻³ Pa⁻¹.
- **181**) Value given here as quoted by Hilal et al. (2008).
- 182) Calculated using the EPI Suite method

(http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm).

- **183**) Value at $T = 278 \,\mathrm{K}$.
- **184**) Leriche et al. (2000) assume $H(ROO) = H(ROOH) \times H(HO_2)/H(H_2O_2)$.
- **185**) Lelieveld and Crutzen (1991) assume $H(CH_3OO) = H(HO_2)$.
- **186**) Jacob (1986) assumes $H(CH_3OO) = H(CH_3OOH) \times H(HO_2)/H(H_2O_2)$.
- **187**) Effective value that takes into account the hydration of HCHO: $H = ([HCHO] + [CH_2(OH)_2])/p(HCHO)$
- **188**) Data from Table 1 by Zhou and Mopper (1990) were used to redo the regression analysis. The data for acetone in their Table 2 are incorrect.
- **189**) Dong and Dasgupta (1986) found that the Henry's law constant for HCHO is not a true constant but increases with increasing concentration. They recommend the expression [HCHO] = $10^{(4538/T-11.34)} \times p(\text{HCHO})^{(252.2/T+0.2088)}$
- with [HCHO] = aqueous-phase concentration in M, p(HCHO) = partial pressure in atm, and T = temperature in K. Note that this expression does not converge asymptotically to a constant value at infinite dilution.
- **190)** Ledbury and Blair (1925) (and also Blair and Ledbury (1925)) measured the solubility of HCHO at very high concentrations around 5 to 15 M. Their value of *H* increases with HCHO concentration. Lelieveld and Crutzen (1991), Hough (1991), and Pandis and Seinfeld (1989) all use these solubility data but do not specify how they extrapolated to lower concentrations. Since the concentration range is far from typical values in atmospheric chemistry, the value is not reproduced here.
- **191)** Value given here as quoted by Möller and Mauersberger (1992).
- **192**) Effective value that takes into account the hydration of the aldehyde: $H = ([RCHO] + [RCH(OH)_2])/p(RCHO)$
- 193) Value given here as quoted by Bone et al. (1983).
- **194**) Value at T = 372 K.
- **195**) The data from Buttery et al. (1971) for trans-2-octenal are incorrectly cited by Betterton (1992).
- **196)** Calculated under the assumption that ΔG and ΔH are based on mol L⁻¹ and atm as the standard states.
- **197**) Effective value suitable for the conditions of a case study in Mexico City.
- **198**) Volkamer et al. (2009) found average effective Henry's law constants for CHOCHO in the range $1.6\times10^6 \,\mathrm{mol}\,\mathrm{m}^{-3}\,\mathrm{Pa}^{-1} < H^{cp} < 5.9\times10^6 \,\mathrm{mol}\,\mathrm{m}^{-3}\,\mathrm{Pa}^{-1}$ for solutions containing ammonium sulfate and/or fulvic acid. A salting-in effect of fulvic acid was observed even in the absence of sulfate.
- 199) Solubility in sulfate aerosol.
- **200**) Value at T = 313 K.

- **201**) The value given here was measured at a liquid-phase mixing ratio of 1 μ mol mol⁻¹. Servant et al. (1991) found that the Henry's law constant changes at higher concentrations
- **202**) Abraham (1984) smoothed the values from a plot of enthalpy against carbon number.
- **203**) The value of H^{\ominus} was taken from Keene and Galloway (1986).
- **204**) Calculated using thermodynamic data from Latimer (1952).
- **205**) Value at pH = 4.
- **206**) Pecsar and Martin (1966) is quoted as the source. However, only activity coefficients and no vapor pressures are listed there.
- **207**) Betterton (1992) gives Kieckbusch and King (1979) as the source. However, no data were found in that reference.
- **208**) Dipropyl phthalate is listed twice with different values.
- **209**) Different types of Henry's law constants of Arp and Schmidt (2004) are inconsistent, with a 5 % difference.
- **210**) Betterton (1992) gives Hine and Weimar Jr. (1965) as the source. However, no data were found in that reference.
- **211**) Betterton (1992) gives Vitenberg et al. (1975) as the source. However, no data were found in that reference.
- **212**) Based on gas chromatograph retention indices (GC-RIs).
- **213**) Warneck (2005) refers to Saxena and Hildemann (1996) as the source but the quoted value cannot be found there.
- **214**) Compernolle and Müller (2014a) recommend H^{cp} for tartaric acid in the range of 6.9×10^{14} mol m⁻³ Pa⁻¹ $< H^{cp} < 9.2 \times 10^{15}$ mol m⁻³ Pa⁻¹.
- **215**) Chan et al. (2010) give a range of $1.9 \times 10^5 \text{ mol m}^{-3} \text{ Pa}^{-1} < H^{cp} < 9.5 \times 10^6 \text{ mol m}^{-3} \text{ Pa}^{-1}$.
- **216**) Calculated based on the method by Hine and Mookerjee (1975).
- **217**) Compernolle and Müller (2014a) recommend H^{cp} for citric acid in the range of 2.0×10^{14} mol m⁻³ Pa⁻¹ $< H^{cp} < 5.9 \times 10^{15}$ mol m⁻³ Pa⁻¹.
- **218**) In their Fig. 5b, Kish et al. (2013) apply an unspecified factor to the Henry's law constant, and it is not clear if the temperature dependence shown there is correct (Y. Liu, personal communication, 2014).
- **219**) The data from Christie and Crisp (1967) for dipropylamine are incorrectly cited by Betterton (1992).
- **220**) Value at T = 323 K.
- **221)** Mackay et al. (2006d) list a vapor pressure p, a solubility c, and a Henry's law constant calculated as p/c. However, the data are internally inconsistent and deviate by more than 10%.
- 222) Calculated using $\Delta G_s^{g \to H_2O}$ and $\Delta H_s^{g \to H_2O}$ from

- Table IV of Arnett and Chawla (1979). Since some of the values in this table are taken directly from Andon et al. (1954), it is assumed that the thermodynamic properties are defined in the same way. Since $\Delta H_s^{g \to H_2O}$ is defined relative to pyridine, a value of -11.93 kcal mol⁻¹ from Arnett et al. (1977) was added.
- **223**) Due to an apparently incorrect definition of the Henry's law constant by Andon et al. (1954), Staudinger and Roberts (2001) quote incorrect values from that paper.
- **224)** This value is calculated from the solubility of $9.4 \times 10^{-3} \, \text{mol L}^{-1}$ and the vapor pressure of 0.255 mmHg, as shown on pages 7142–7143 of Arnett and Chawla (1979). It is inconsistent with the entry in Table IV of that paper.
- **225**) Kames and Schurath (1992) were unable to assign the values to the isomers.
- **226**) The same data were also published in Fischer and Ballschmiter (1998a).
- 227) Comparing the value with that from the cited publication (Kames and Schurath, 1995), it can be seen that the unit and the temperature listed in Table 3 of Warneck et al. (1996) are incorrect.
- **228**) The data from Kames and Schurath (1995) for peroxyacetyl nitrate are incorrectly cited by Schurath et al. (1996).
- **229**) The data from Kames and Schurath (1995) for peroxypropionyl nitrate are incorrectly cited by Schurath et al. (1996).
- **230**) The data from Kames and Schurath (1995) for peroxy-*n*-butyl nitrate are incorrectly cited by Schurath et al. (1996).
- **231**) The data from Kames and Schurath (1995) for peroxymethacryloyl nitrate are incorrectly cited by Schurath et al. (1996).
- **232)** The data from Kames and Schurath (1995) for peroxy*i*-butyl nitrate are incorrectly cited by Schurath et al. (1996).
- **233**) The data listed in Tables 2 and 3 of Dewulf et al. (1999) are inconsistent, with a 27 % difference.
- **234**) Value at T = 308 K.
- 235) Mackay et al. (2006d) list two values for dinoseb which differ by a factor of 1000. It is unclear which number is correct (if either) and the data are not shown here.
- **236**) Value at T = 287 K.
- **237**) In their Table 13, Clever et al. (2005) list Ostwald coefficients that are probably incorrect by a factor of 100. Therefore, these values are not used. Instead, H is calculated using the mol fraction x_1 from the same table.
- 238) Value given here as quoted by Kanakidou et al. (1995).
- **239**) Value at T = 284 K.
- **240**) Calculated using the new SPARC method, see Arp et al. (2006) for details.
- **241**) Calculated using the COSMOtherm method, see Arp et al. (2006) for details.

- **242)** The H298 and A, B data listed in Table 5.4 of Sander et al. (2011) are inconsistent, with a 29 % difference.
- **243**) The Ostwald coefficient given by Clever et al. (2005) at 313.2 K is probably incorrect. Therefore, the Ostwald coefficients are not used. Instead, H is calculated using the mol fraction x_1 from the same table.
- 244) Extrapolated based on number of carbons.
- **245**) Measured with the wetted-wall column at room temperature.
- **246**) The H298 and A, B data listed in Table 5.4 of Sander et al. (2011) are inconsistent, with a 9 % difference.
- **247**) The H298 and A, B data listed in Table 5.4 of Sander et al. (2006) are inconsistent, with a 9 % difference.
- **248**) The same data were also published in McConnell et al. (1975).
- **249**) Values at different temperatures are from different sources. Thus, a temperature dependence was not calculated.
- **250**) Chiang et al. (1998) show vinyl chloride in their Table 2 but most probably they meant to write dichloromethane instead.
- **251**) Probably an interpolation of the data from Balls (1980).
- **252**) The value for A in the table of Kondoh and Nakajima (1997) is incorrect. Recalculating the regression, it can be seen that it should be 13.95 and not 1.395.
- **253**) As explained by Miller and Stuart (2003), the measurements were performed at 296 K.
- **254**) Value for T = 295...298 K.
- **255**) Value for T = 293...298 K.
- **256**) Mackay et al. (2006b) list a vapor pressure p, a solubility c, and a Henry's law constant calculated as p/c. However, the data are internally inconsistent and deviate by more than 10%.
- **257**) Haynes (2014) refer to Mackay and Shiu (1981) but that article lists this value for 1-chloro-2-methylpropane (the saturated compound), not for 1-chloro-2-methylpropene.
- **258**) Erratum for page 344 of Fogg and Sangster (2003): the reference [89] seems to be incorrect as it does not contain 1,2-dichlorobenzene.
- **259)** The data listed in Tables 2 and 3 of Dewulf et al. (1999) are inconsistent, with a 7 % difference.
- **260**) The data listed in Tables 2 and 3 of Dewulf et al. (1999) are inconsistent, with a 7 % difference.
- **261**) Value for T = 298...303 K.
- **262**) Modified gas-stripping method (MGSM), see Lau et al. (2006) for details.
- **263**) Integrated gas-stripping method (IGSM), see Lau et al. (2006) for details.
- **264**) Calculated with the principal component regression (PCR) method, see Fang Lee (2007) for details.

- **265**) Calculated with the partial least-square regression (PLSR) method, see Fang Lee (2007) for details.
- **266)** The same data were also published in Dunnivant et al. (1988).
- **267**) Value given here as quoted by Dunnivant et al. (1988).
- 268) Value at "room temperature".
- **269**) Westcott et al. (1981) give a range of $1.9 \times 10^{-2} \text{ mol m}^{-3} \text{ Pa}^{-1} < H^{cp} < 3.2 \times 10^{-2} \text{ mol m}^{-3} \text{ Pa}^{-1}$.
- **270**) Westcott et al. (1981) give range of $2.8 \times 10^{-2} \text{ mol m}^{-3} \text{ Pa}^{-1}$ < $H^{cp} < 9.0 \times 10^{-2} \text{ mol m}^{-3} \text{ Pa}^{-1}$.
- **271**) Erratum for page 350 of Fogg and Sangster (2003): the equation describing the recommended temperature-dependent data appears to be incorrect and is not used here.
- **272**) Value at pH = 4.
- **273**) When comparing H in Table 4 with $K_{\rm gw}$ in Table 5 of Pfeifer et al. (2001), it can be seen that the values refer to $K_{\rm gw} \times 100$ and not $K_{\rm gw}/100$.
- 274) Measured at pH 1.
- **275**) Erratum for page 376 of Fogg and Sangster (2003): data from Santl et al. (1994) are cited incorrectly, it should be 3.64, not 3.84.
- **276**) Although pronamide and propyzamide are the same species, Mackay et al. (2006d) list two different values for them. It is unclear which number is correct (if either) and the data are not shown here.
- **277**) The temperature dependence was recalculated from the data on p. 20 of McLinden (1989).
- **278**) The data from McLinden (1989) for HCFC-22 are incorrectly cited by Kanakidou et al. (1995).
- **279**) The H298 and A, B data listed in Table 5.4 of Sander et al. (2011) are inconsistent, with a 5 % difference.
- **280**) Kanakidou et al. (1995) assume $H(CClF_2OONO_2) = H(PAN)$.
- **281**) Erratum for page 274 of Fogg and Sangster (2003): the value in the table is for k_H , not $\ln k_H$.
- **282**) Haynes (2014) refer to Mackay et al. (1993) as the source but this value cannot be found there.
- **283**) Erratum for page 321 of Fogg and Sangster (2003): data from Yates and Gan (1998) are cited with a typo. The value at 313.2 K should probably be 4.78×10^{-6} , not 4.78×10^{-2} .
- **284)** Diaz et al. (2005) also cite a Henry's law constant from Pfeifer et al. (2001) even though this species is not mentioned there. There might be a mix up of the different haloanisoles.
- **285**) Erratum for page 285 of Fogg and Sangster (2003): the data in their table look strange (9.70R) and are not used here.
- **286)** The regression given by Fogg and Sangster (2003) does not produce the data in their table. Thus, the regression was

recalculated.

- **287**) Kruis and May (1962) present data based on Booth and Jolley (1943). However, these data appear to be incorrect.
- **288**) Booth and Jolley (1943) converted data from Rex (1906) to another unit. However, this was apparently not done correctly.
- **289**) Booth and Jolley (1943) present data from Chancel and Parmentier (1885). However, in that paper only the solubility at an unknown partial pressure of CS_2 was measured.
- 290) Value extracted from their Fig. 46.
- 291) Value given here as quoted by Booth and Jolley (1943).
- **292)** Value given here as quoted by Loomis (1928).

293)
$$H' = 6.4 \times 10^{11} \frac{\text{mol}^2}{\text{m}^6 \text{ Pa}}$$

- **294**) It is unclear how Fogg and Sangster (2003) obtained the data. Apparently, limiting activity coefficients γ^{∞} were taken from Trampe and Eckert (1993) but a source for vapor pressure data is not mentioned. Also, the γ^{∞} values listed in the table are different from those found in the original paper.
- **295**) Value given here as quoted by Staudinger and Roberts (2001).
- **296**) Mackay et al. (2006d) list two values for thiobencarb which differ by a large factor. It is unclear which number is correct (if either) and the data are not shown here.
- **297**) Extrapolated from data at elevated temperatures.
- **298**) Value at T = 300 K.
- **299**) Wilhelm et al. (1977) and Abraham (1979) are quoted as the source. However, the data cannot be found there.
- **300**) Shon et al. (2005) refer to Petersen et al. (1998) as the source but this value cannot be found there.
- **301)** The value from their experiment 7 at 10 °C is not used in the determination of the temperature dependence because of very different ionic strengths and concentrations used in that experiment.
- **302)** Temperature dependence calculated using linear free energy relationships (LFERs).

The Supplement related to this article is available online at doi:10.5194/acp-15-4399-2015-supplement.

Acknowledgements. Compiling this data set would not have been possible without the help I received. I am especially grateful to Gary Mallard, Stephen R. Heller, and Peter J. Linstrom for looking up many of the CAS registry numbers. The NIST Chemistry WebBook (http://webbook.nist.gov) was also a very useful tool for this task. For valuable discussions, bug reports, and also for pointing out and sending copies of additional references, I would

like to thank C. Allen, W. Asman, G. Ayers, S. Balaz, M. Barth, J. Beauchamp, E. Betterton, S. Clegg, N. Couffin, P. J. Crutzen, F. Dentener, A. De Visscher, G. Hart, M. Hiatt, S. H. Hilal, R. Ingham, H. S. S. Ip, D. J. Jacob, H.-W. Jacobi, W. C. Keene, S. Lee, N. Lim, J. Matthijsen, J. Montgomery, R. M. Moore, M. Mozurkewich, F. Müller, E. O'Hare, O. Pahl, S. Pandis, J. Perlinger, J.-M. Régimbal, P. Riveros, E. Saltzman, S. E. Schwartz, W. Y. Shiu, T. A. Staffelbach, J. Staudinger, J. St-Pierre, G. Tyndall, J. Überfeld, C. Verlinde, R. Vogt, P. Warneck, and J. C. Wheeler. The CAS registry number is a registered trademark of the American Chemical Society.

The article processing charges for this open-access publication were covered by the Max Planck Society.

Edited by: R. Volkamer

References

- Abd-El-Bary, M. F., Hamoda, M. F., Tanisho, S., and Wakao, N.: Henry's constants for phenol over its diluted aqueous solution, J. Chem. Eng. Data, 31, 229–230, 1986.
- Abou-Naccoul, R., Mokbel, I., Bassil, G., Saab, J., Stephan, K., and Jose, J.: Aqueous solubility (in the range between 298.15 and 338.15 K), vapor pressures (in the range between 10⁻⁵ and 80 Pa) and Henry's law constant of 1,2,3,4-dibenzanthracene and 1,2,5,6-dibenzanthracene, Chemosphere, 95, 41–49, 2014.
- Abraham, M. A., Enomoto, K., Clarke, E. D., Rosés, M., Ràfols, C., and Fuguet, E.: Henry's law constants or air to water partition coefficients for 1,3,5-triazines by an LFER method, J. Environ. Monit., 9, 234–239, 2007.
- Abraham, M. H.: Free energies of solution of rare gases and alkanes in water and nonaqueous solvents. A quantitative assessment of the hydrophobic effect, J. Am. Chem. Soc., 101, 5477–5484, 1979.
- Abraham, M. H.: Thermodynamics of solution of homologous series of solutes in water, J. Chem. Soc. Faraday Trans. 1, 80, 153–181, 1984.
- Abraham, M. H. and Acree Jr., W. E.: Prediction of gas to water partition coefficients from 273 to 373 K using predicted enthalpies and heat capacities of hydration, Fluid Phase Equilib., 262, 97–110, 2007.
- Abraham, M. H. and Matteoli, E.: The temperature variation of the hydrophobic effect, J. Chem. Soc. Faraday Trans. 1, 84, 1985–2000, 1988.
- Abraham, M. H. and Nasehzadeh, A.: Thermodynamics of solution of gaseous tetramethyltin in 36 solvents. Comparison of experimental results with cavity-theory calculations, J. Chem. Soc. Faraday Trans. 1, 77, 321–339, 1981.
- Abraham, M. H., Whiting, G. S., Fuchs, R., and Chambers, E. J.: Thermodynamics of solute transfer from water to hexadecane, J. Chem. Soc. Perkin Trans. 2, 291–300, 1990.
- Abraham, M. H., Andonian-Haftvan, J., Whiting, G. S., Leo, A., and Taft, R. S.: Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapours in water at 298 K, and a new method for its determination, J. Chem. Soc. Perkin Trans., 2, 1777–1791, 1994a.

- Abraham, M. H., Chadha, H. S., Whiting, G. S., and Mitchell, R.: Hydrogen bonding. 32. An analysis of water-octanol and water-alkane partitioning and the $\Delta \log P$ parameter of Seiler, J. Pharm. Sci., 83, 1085–1100, 1994b.
- Abraham, M. H., Gil-Lostes, J., Acree Jr., W. E., Cometto-Muñiz, J. E., and Cain, W. S.: Solvation parameters for mercury and mercury(II) compounds: calculation of properties of environmental interest, J. Environ. Monit., 10, 435–442, 2008.
- Alaee, M., Whittal, R. M., and Strachan, W. M. J.: The effect of water temperature and composition on Henry's law constant for various PAH's, Chemosphere, 32, 1153–1164, 1996.
- Albanese, V., Milano, J. C., and Vernet, J. L.: Etude de l'evaporation de quelques hydrocarbures halogenenes de faible masse moleculaire dissous a l'etat de traces dans l'eau, Environ. Technol. Lett., 8, 657–668, 1987.
- Allen, J. M., Balcavage, W. X., Ramachandran, B. R., and Shrout, A. L.: Determination of Henry's Law constants by equilibrium partitioning in a closed system using a new in situ optical absorbance method, Environ. Toxicol. Chem., 17, 1216–1221, 1998.
- Allou, L., El Maimouni, L., and Le Calvé, S.: Henry's law constant measurements for formaldehyde and benzaldehyde as a function of temperature and water composition, Atmos. Environ., 45, 2991–2998, 2011.
- Almeida, M. B., Alvarez, A. M., de Miguel, E. M., and del Hoyo, E. S.: Setchenow coefficients for naphthols by distribution method, Can. J. Chem., 61, 244–248, 1983.
- Altschuh, J., Brüggemann, R., Santl, H., Eichinger, G., and Piringer, O. G.: Henry's law constants for a diverse set of organic chemicals: Experimental determination and comparison of estimation methods, Chemosphere, 39, 1871–1887, 1999.
- Amels, P., Elias, H., Götz, U., Steingens, U., and Wannowius, K. J.: Chapter 3.1: Kinetic investigation of the stability of peroxonitric acid and of its reaction with sulfur(IV) in aqueous solution, in: Heterogeneous and Liquid-Phase Processes, edited by: Warneck, P., 77–88, Springer Verlag, Berlin, 1996.
- Amoore, J. E. and Buttery, R. G.: Partition coefficient and comparative olfactometry, Chem. Senses Flavour, 3, 57–71, 1978.
- Anderson, M. A.: Influence of surfactants on vapor-liquid partitioning, Environ. Sci. Technol., 26, 2186–2191, 1992.
- Andersson, M. E., Gårdfeldt, K., Wängberg, I., and Strömberg, D.: Determination of Henry's law constant for elemental mercury, Chemosphere, 73, 587–592, 2008.
- Andon, R. J. L., Cox, J. D., and Herington, E. F. G.: Phase relationships in the pyridine series. Part V. The thermodynamic properties of dilute solutions of pyridine bases in water at 25 $^{\circ}$ and 40 $^{\circ}$, J. Chem. Soc., 3188–3196, 1954.
- Andrew, S. P. S. and Hanson, D.: The dynamics of nitrous gas absorption, Chem. Eng. Sci., 14, 105–113, 1961.
- Aprea, E., Biasioli, F., Märk, T. D., and Gasperi, F.: PTR-MS study of esters in water and water/ethanol solutions: Fragmentation patterns and partition coefficients, Int. J. Mass Spectrom., 262, 114–121, 2007.
- Arbuckle, W. B.: Estimating activity coefficients for use in calculating environmental parameters, Environ. Sci. Technol., 17, 537–542, 1983.
- Arijs, E. and Brasseur, G.: Acetonitrile in the stratosphere and implications for positive ion composition, J. Geophys. Res., 91D, 4003–4016, 1986.

- Armbrust, K. L.: Pesticide hydroxyl radical rate constants: Measurements and estimates of their importance in aquatic environments, Environ. Toxicol. Chem., 19, 2175–2180, 2000.
- Arnett, E. M. and Chawla, B.: Complete thermodynamic analysis of the hydration of thirteen pyridines and pyridinium ions. The special case of 2,6-di-tert-butylpyridine, J. Am. Chem. Soc., 101, 7141–7146, 1979.
- Arnett, E. M., Chawla, B., Bell, L., Taagepera, M., Hehre, W. J., and Taft, R. W.: Solvation and hydrogen bonding of pyridinium ions, J. Am. Chem. Soc., 99, 5729–5738, 1977.
- Arp, H. P. H. and Schmidt, T. C.: Air-water transfer of MTBE, its degradation products, and alternative fuel oxygenates: the role of temperature, Environ. Sci. Technol., 38, 5405–5412, 2004.
- Arp, H. P. H., Niederer, C., and Goss, K. U.: Predicting the partitioning behavior of various highly fluorinated compounds, Environ. Sci. Technol., 40, 7298–7304, 2006.
- Ashton, J. T., Dawe, R. A., Miller, K. W., Smith, E. B., and Stickings, B. J.: The solubility of certain gaseous fluorine compounds in water, J. Chem. Soc. A, 1793–1796, 1968.
- Ashworth, R. A., Howe, G. B., Mullins, M. E., and Rogers, T. N.: Air-water partitioning coefficients of organics in dilute aqueous solutions, J. Hazard. Mater., 18, 25–36, 1988.
- Atkins, P. W.: Physical Chemistry, Oxford University Press, 1986.
- Atlas, E., Foster, R., and Giam, C. S.: Air-sea exchange of high-molecular weight organic pollutants: laboratory studies, Environ. Sci. Technol., 16, 283–286, 1982.
- Atlas, E., Velasco, A., Sullivan, K., and Giam, C. S.: A radiotracer study of air-water exchange of synthetic organic compounds, Chemosphere, 12, 1251–1258, 1983.
- Ayers, G. P.: Equilibrium partial pressures over (NH₄)₂SO₄/H₂SO₄ mixtures, Aust. J. Chem., 36, 179–182, 1983.
- Ayers, G. P., Gillett, R. W., and Gras, J. L.: On the vapor pressure of sulfuric acid, Geophys. Res. Lett., 7, 433–436, 1980.
- Ayuttaya, P. C. N., Rogers, T. N., Mullins, M. E., and Kline, A. A.: Henry's law constants derived from equilibrium static cell measurements for dilute organic-water mixtures, Fluid Phase Equilib., 185, 359–377, 2001.
- Bagno, A., Lucchini, V., and Scorrano, G.: Thermodynamics of protonation of ketones and esters and energies of hydration of their conjugate acids, J. Phys. Chem., 95, 345–352, 1991.
- Bakierowska, A.-M. and Trzeszczyński, J.: Graphical method for the determination of water/gas partition coefficients of volatile organic compounds by a headspace gas chromatography technique, Fluid Phase Equilib., 213, 139–146, 2003.
- Balls, P. W.: Gas transfer across air-water interfaces, PhD thesis, University of East Anglia, Great Britain, 1980.
- Ballschmiter, K. and Wittlinger, R.: Interhemisphere exchange of hexachlorocyclohexanes, hexachlorobenzene, polychlorobiphenyls, and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane in the lower troposphere, Environ. Sci. Technol., 25, 1103–1111, 1991.
- Bamford, H. A., Poster, D. L., and Baker, J. E.: Temperature dependence of Henry's law constants of thirteen polycyclic aromatic hydrocarbons between 4 °C and 31 °C, Environ. Toxicol. Chem., 18, 1905–1912, 1999a.
- Bamford, H. A., Poster, D. L., and Baker, J. E.: Method for measuring the temperature dependence of the Henry's law constant of selected polycyclic aromatic hydrocarbons, Polycyclic Aromat. Compd., 14, 11–22, 1999b.

- Bamford, H. A., Poster, D. L., and Baker, J. E.: Henry's law constants of polychlorinated biphenyl congeners and their variation with temperature, J. Chem. Eng. Data, 45, 1069–1074, 2000.
- Bamford, H. A., Poster, D. L., Huie, R. E., and Baker, J. E.: Using extrathermodynamic relationships to model the temperature dependence of Henry's law constants of 209 PCB congeners, Environ. Sci. Technol., 36, 4395–4402, 2002.
- Barcellos da Rosa, M., Behnke, W., and Zetzsch, C.: Study of the heterogeneous reaction of O₃ with CH₃SCH₃ using the wetted-wall flowtube technique, Atmos. Chem. Phys., 3, 1665–1673, doi:10.5194/acp-3-1665-2003, 2003.
- Barr, R. S. and Newsham, D. M. T.: Phase equilibria in very dilute mixtures of water and chlorinated hydrocarbons. Part I. Experimental results, Fluid Phase Equilib., 35, 189–205, 1987.
- Barrett, T. J., Anderson, G. M., and Lugowski, J.: The solubility of hydrogen sulphide in 0–5 m NaCl solutions at 25 °-95 °C and one atmosphere, Geochim. Cosmochim. Acta, 52, 807–811, 1988.
- Bartlett, W. P. and Margerum, D. W.: Temperature dependencies of the Henry's law constant and the aqueous phase dissociation constant of bromine chloride, Environ. Sci. Technol., 33, 3410– 3414, 1999.
- Battino, R. (Ed.): IUPAC Solubility Data Series, vol. 7 of Oxygen and Ozone, Pergamon Press, Oxford, England, 1981.
- Battino, R. (Ed.): IUPAC Solubility Data Series, vol. 10 of Nitrogen and Air, Pergamon Press, Oxford, England, 1982.
- Battino, R.: The Ostwald coefficient of gas solubility, Fluid Phase Equilib., 15, 231–240, 1984.
- Battino, R. and Clever, H. L.: The solubility of gases in liquids, Chem. Rev., 66, 395–463, 1966.
- Battino, R., Rettich, T. R., and Tominaga, T.: The solubility of oxygen and ozone in liquids, J. Phys. Chem. Ref. Data, 12, 163–178, 1983.
- Battino, R., Rettich, T. R., and Tominaga, T.: The solubility of nitrogen and air in liquids, J. Phys. Chem. Ref. Data, 13, 563–600, 1984.
- Bebahani, G. R. R., Hogan, P., and Waghorne, W. E.: Ostwald concentration coefficients of acetonitrile in aqueous mixed solvents: a new, rapid method for measuring the solubilities of volatile solutes, J. Chem. Eng. Data, 47, 1290–1292, 2002.
- Becker, K. H., Kleffmann, J., Kurtenbach, R., and Wiesen, P.: Solubility of nitrous acid (HONO) in sulfuric acid solutions, J. Phys. Chem., 100, 14984–14990, 1996.
- Becker, K. H., Kleffmann, J., Negri, R. M., and Wiesen, P.: Solubility of nitrous acid (HONO) in ammonium sulfate solutions, J. Chem. Soc. Faraday Trans., 94, 1583–1586, 1998.
- Behnke, W., George, C., Scheer, V., and Zetzsch, C.: Production and decay of ClNO₂ from the reaction of gaseous N₂O₅ with NaCl solution: Bulk and aerosol experiments, J. Geophys. Res., 102D, 3795–3804, 1997.
- Bell, R. P.: The reversible hydration of carbonyl compounds, Adv. Phys. Org. Chem., 4, 1–29, 1966.
- Beneš, M. and Dohnal, V.: Limiting activity coefficients of some aromatic and aliphatic nitro compounds in water, J. Chem. Eng. Data, 44, 1097–1102, 1999.
- Benkelberg, H.-J., Hamm, S., and Warneck, P.: Henry's law coefficients for aqueous solutions of acetone, acetaldehyde and acetonitrile, and equilibrium constants for the addition compounds

- of acetone and acetaldehyde with bisulfite, J. Atmos. Chem., 20, 17–34, 1995.
- Ben-Naim, A. and Wilf, J.: Solubilities and hydrophobic interactions in aqueous solutions of monoalkylbenzene molecules, J. Phys. Chem., 84, 583–586, 1980.
- Benson, B. B., Krause Jr., D., and Peterson, M. A.: The solubility and isotopic fractionation of gases in dilute aqueous solution. I. oxygen, J. Solution Chem., 8, 655–690, 1979.
- Berdnikov, V. M. and Bazhin, N. M.: Oxidation-reduction potentials of certain inorganic radicals in aqueous solutions, Russ. J. Phys. Chem., Engl. Transl., 44, 395–398, 1970.
- Bernauer, M. and Dohnal, V.: Temperature dependence of air-water partitioning of N-methylated (C1 and C2) fatty acid amides, J. Chem. Eng. Data, 53, 2622–2631, 2008.
- Bernauer, M. and Dohnal, V.: Temperature dependences of limiting activity coefficients and Henry's law constants for N-methylpyrrolidone, pyridine, and piperidine in water, Fluid Phase Equilib., 282, 100–107, 2009.
- Bernauer, M., Dohnal, V., Roux, A. H., Roux-Desgranges, G., and Majer, V.: Temperature dependences of limiting activity coefficients and Henry's law constants for nitrobenzene, aniline, and cyclohexylamine in water, J. Chem. Eng. Data, 51, 1678–1685, 2006.
- Betterton, E. A.: The partitioning of ketones between the gas and aqueous phases, Atmos. Environ., 25A, 1473–1477, 1991.
- Betterton, E. A.: Henry's law constants of soluble and moderately soluble organic gases: Effects on aqueous phase chemistry, Adv. Environ. Sci. Technol., 24, 1–50, 1992.
- Betterton, E. A. and Hoffmann, M. R.: Henry's law constants of some environmentally important aldehydes, Environ. Sci. Technol., 22, 1415–1418, 1988.
- Betterton, E. A. and Robinson, J. L.: Henry's law coefficient of hydrazoic acid, J. Air Waste Manage. Assoc., 47, 1216–1219, 1997.
- Bierwagen, B. G. and Keller, A. A.: Measurement of Henry's law constant for methyl tert-butyl ether using solid-phase microextraction, Environ. Toxicol. Chem., 20, 1625–1629, 2001.
- Bissonette, E. M., Westrick, J. J., and Morand, J. M.: Determination of Henry's coefficient for volatile organic compounds in dilute aqueous systems, in: Proceedings of the Annual Conference of the American Water Works Association, Cincinnati, OH, 17–21 June, 1913–1922, 1990.
- Blair, E. W. and Ledbury, W.: The partial formaldehyde vapour pressures of aqueous solutions of formaldehyde. Part I, J. Chem. Soc., 127, 26–40, 1925.
- Blatchley III, E. R., Johnson, R. W., Alleman, J. E., and McCoy, W. F.: Effective Henry's law constants for free chlorine and free bromine, Wat. Res., 26, 99–106, 1992.
- Bobadilla, R., Huybrechts, T., Dewulf, J., and van Langenhove, H.: Determination of the Henry's constant of volatile and semi-volatile organic componuds of environmental concern by the bas (batch air stripping) technique: a new mathematical approach, J. Chilean Chem. Soc., 48, doi:10.4067/S0717-97072003000300001, 2003.
- Bobra, A., Shiu, W. Y., and Mackay, D.: Quantitative structure-activity relationships for the acute toxicity of chlorobenzenes to daphnia magna, Environ. Toxicol. Chem., 4, 297–305, 1985.
- Boggs, J. E. and Buck Jr., A. E.: The solubility of some chloromethanes in water, J. Phys. Chem., 62, 1459–1461, 1958.

- Bohon, R. J. and Claussen, W. F.: The solubility of aromatic hydrocarbons in water, J. Am. Chem. Soc., 73, 1571–1578, 1951.
- Bohr, C.: Definition und Methode zur Bestimmung der Invasionsund Evasionscoefficienten bei der Auflösung von Gasen in Flüssigkeiten. Werthe der genannten Constanten sowie der Absorptionscoefficienten der Kohlensäure bei Auflösung in Wasser und in Chlornatriumlösungen, Wied. Ann., 68, 500–525, 1899.
- Bone, R., Cullis, P., and Wolfenden, R.: Solvent effects on equilibria of addition of nucleophiles to acetaldehyde and the hydrophilic character of diols, J. Am. Chem. Soc., 105, 1339–1343, 1983.
- Bonifácio, R. P., Pádua, A. A. H., and Costa Gomes, M. F.: Perfluoroalkanes in water: experimental Henry's law coefficients for hexafluoroethane and computer simulations for tetrafluoromethane and hexafluoroethane, J. Phys. Chem. B, 105, 8403– 8409, 2001.
- Booth, N. and Jolley, L. J.: The removal of organic sulphur compounds from gases, J. Soc. Chem. Ind., 62, 87–88, 1943.
- Bowden, D. J., Clegg, S. L., and Brimblecombe, P.: The Henry's law constant of trifluoroacetic acid and its partitioning into liquid water in the atmosphere, Chemosphere, 32, 405–420, 1996.
- Bowden, D. J., Clegg, S. L., and Brimblecombe, P.: The Henry's law constants of the haloacetic acids, J. Atmos. Chem., 29, 85–107, 1998a.
- Bowden, D. J., Clegg, S. L., and Brimblecombe, P.: The Henry's law constant of trichloroacetic acid, Water Air Soil Pollut., 101, 197–215, 1998b.
- Braun, H. and Dransfeld, P.: Abscheidung von Quecksilber, gVC/VDI-Tagung "Entsorgung von Sonderabfällen durch Verbrennung", Baden-Baden, 4–6 December 1989.
- Breiter, W. A., Baker, J. M., and Koskinen, W. C.: Direct measurement of Henry's constant for S-ethyl N,N-di-n-propylthiocarbamate, J. Agric. Food Chem., 46, 1624–1629, 1998.
- Brennan, R. A., Nirmalakhandan, N., and Speece, R. E.: Comparison of predictive methods for Henrys law coefficients of organic chemicals, Wat. Res., 32, 1901–1911, 1998.
- Brian, P. L. T., Vivian, J. E., and Habib, A. G.: The effect of the hydrolysis reaction upon the rate of absorption of chlorine into water, AIChE J., 8, 205–209, 1962.
- Brimblecombe, P.: Air Composition & Chemistry, Cambridge University Press, Cambridge, 1986.
- Brimblecombe, P. and Clegg, S. L.: The solubility and behaviour of acid gases in the marine aerosol, J. Atmos. Chem., 7, 1–18, 1988.
- Brimblecombe, P. and Clegg, S. L.: Erratum, J. Atmos. Chem., 8, 95, 1989.
- Brimblecombe, P., Clegg, S. L., and Khan, I.: Thermodynamic properties of carboxylic acids relevant to their solubility in aqueous solutions, J. Aerosol Sci., 23, S901–S904, 1992.
- Briner, E. and Perrottet, E.: Détermination des solubilités de l'ozone dans l'eau et dans une solution aqueuse de chlorure de sodium; calcul des solubilités de l'ozone atmosphérique dans les eaux, Helv. Chim. Acta, 22, 397–404, 1939.
- Brockbank, S. A., Russon, J. L., Giles, N. F., Rowley, R. L., and Wilding, W. V.: Infinite dilution activity coefficients and Henry's law constants of compounds in water using the inert gas stripping method, Fluid Phase Equilib., 348, 45–51, 2013.
- Brown, R. L. and Wasik, S. P.: A method of measuring the solubilities of hydrocarbons in aqueous solutions, J. Res. Natl. Bureau Standards A: Phys. Chem., 78A, 453–460, 1974.

- Brunner, S., Hornung, E., Santl, H., Wolff, E., Piringer, O. G., Altschuh, J., and Brüggemann, R.: Henry's law constants for polychlorinated biphenyls: Experimental determination and structure-property relationships, Environ. Sci. Technol., 24, 1751–1754, 1990.
- Bu, X. and Warner, M. J.: Solubility of chlorofluorocarbon 113 in water and seawater, Deep-Sea Res. I, 42, 1151–1161, 1995.
- Bullister, J. L., Wisegarvera, D. P., and Menziab, F. A.: The solubility of sulfur hexafluoride in water and seawater, Deep-Sea Res. I, 49, 175–187, 2002.
- Bullock, K. R. and Teja, A. S.: Henry's constants of volatile organic compounds in aqueous salt solutions, Ind. Eng. Chem. Res., 42, 6494–6498, 2003.
- Burkhard, L. P., Armstrong, D. E., and Andren, A. W.: Henry's law constants for the polychlorinated biphenyls, Environ. Sci. Technol., 19, 590–596, 1985.
- Burkhard, N. and Guth, J. A.: Rate of volatilisation of pesticides from soil surfaces; comparison of calculated results with those determined in a laboratory model system, Pestic. Sci., 12, 37–44, 1981.
- Burnett, M. G.: Determination of partition coefficients at infinite dilution by the gas chromatographic analysis of the vapor above dilute solutions, Anal. Chem., 35, 1567–1570, 1963.
- Butler, J. A. V. and Ramchandani, C. N.: The solubility of nonelectrolytes. Part II. The influence of the polar group on the free energy of hydration of aliphatic compounds, J. Chem. Soc., 952– 955, 1935.
- Butler, J. A. V., Thomson, D. W., and Maclennan, W. H.: The free energy of the normal aliphatic alcohols in aqueous solution. Part I. The partial vapour pressures of aqueous solutions of methyl, *n*-propyl, and *n*-butyl alcohols. Part II. The solubilities of some normal aliphatic alcohols in water. Part III. The theory of binary solutions, and its application to aqueous-alcoholic solutions, J. Chem. Soc., 674–686, 1933.
- Butler, J. A. V., Ramchandani, C. N., and Thomson, D. W.: The solubility of non-electrolytes. Part I. The free energy of hydration of some aliphatic alcohols, J. Chem. Soc., 280–285, 1935.
- Buttery, R. G., Guadagni, D. G., and Okano, S.: Air–water partition coefficients of some aldehydes, J. Sci. Food Agri., 16, 691–692, 1965
- Buttery, R. G., Ling, L. C., and Guadagni, D. G.: Volatilities of aldehydes, ketones, and esters in dilute water solutions, J. Agric. Food Chem., 17, 385–389, 1969.
- Buttery, R. G., Bomben, J. L., Guadagni, D. G., and Ling, L. C.: Some considerations of volatilities of organic flavor compounds in foods, J. Agric. Food Chem., 19, 1045–1048, 1971.
- Cabani, S., Conti, G., and Lepori, L.: Thermodynamic study on aqueous dilute solutions of organic compounds. Part 1. Cyclic amines, Trans. Faraday Soc., 67, 1933–1942, 1971a.
- Cabani, S., Conti, G., and Lepori, L.: Thermodynamic study on aqueous dilute solutions of organic compounds. Part 2. Cyclic ethers, Trans. Faraday Soc., 67, 1943–1950, 1971b.
- Cabani, S., Conti, G., Giannessi, D., and Lepori, L.: Thermodynamic study of aqueous dilute solutions of organic compounds. Part 3. – Morpholines and piperazines, J. Chem. Soc. Faraday Trans. 1, 71, 1154–1160, 1975a.
- Cabani, S., Conti, G., Mollica, V., and Lepori, L.: Thermodynamic study of dilute aqueous solutions of organic compounds. Part 4.

- Cyclic and straight chain secondary alcohols, J. Chem. Soc. Faraday Trans. 1, 71, 1943–1952, 1975b.
- Cabani, S., Mollica, V., and Lepori, L.: Thermodynamic study of dilute aqueous solutions of organic compounds. Part 5. – Openchain saturated bifunctional compounds, J. Chem. Soc. Faraday Trans. 1, 74, 2667–2671, 1978.
- Cabani, S., Gianni, P., Mollica, V., and Lepori, L.: Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution, J. Solution Chem., 10, 563–595, 1981.
- Cady, G. H. and Misra, S.: Hydrolysis of sulfuryl fluoride, Inorg. Chem., 13, 837–841, 1974.
- Calamari, D., Bacci, E., Focardi, S., Gaggi, C., Morosini, M., and Vighi, M.: Role of plant biomass in the global environmental partitioning of chlorinated hydrocarbons, Environ. Sci. Technol., 25, 1489–1495, 1991.
- Calvert, J. G.: Glossary of atmospheric chemistry terms, doi:10.1351/pac199062112167, 1990.
- Cargill, R. W. (Ed.): IUPAC Solubility Data Series, vol. 43 of Carbon Monoxide, Pergamon Press, Oxford, England, 1990.
- Caron, G., Suffet, I. H., and Belton, T.: Effect of dissolved organic carbon on the environmental distribution of nonpolar organic compounds, Chemosphere, 14, 993–1000, 1985.
- Carpenter, J. H.: New measurements of oxygen solubility in pure and natural water, Limnol. Oceanogr., 11, 264–277, 1966.
- Carroll, J. J. and Mather, A. E.: The solubility of hydrogen sulphide in water from 0 to 90 °C and pressures to 1 MPa, Geochim. Cosmochim. Acta, 53, 1163–1170, 1989.
- Carroll, J. J., Slupsky, J. D., and Mather, A. E.: The solubility of carbon dioxide in water at low pressure, J. Phys. Chem. Ref. Data, 20, 1201–1209, 1991.
- Carroll, J. J., Jou, F.-Y., and Mather, A. E.: Fluid phase equilibria in the system *n*-butane + water, Fluid Phase Equilib., 140, 157–169, 1997.
- Carslaw, K. S., Clegg, S. L., and Brimblecombe, P.: A thermodynamic model of the system HCl-HNO₃-H₂SO₄-H₂O, including solubilities of HBr, from <200 to 328 K, J. Phys. Chem., 99, 11557–11574, 1995.
- Carter, G. B., McIver, M. C., and Miller, G. J.: Evidence for the formation of a hexahydrotriazine in the condensation of acetaldehyde with methylamine, J. Chem. Soc. C, 2591–2592, 1968.
- Cetin, B. and Odabasi, M.: Measurement of Henry's law constants of seven polybrominated diphenyl ether (PBDE) congeners as a function of temperature, Atmos. Environ., 39, 5273–5280, 2005.
- Cetin, B., Ozer, S., Sofuoglu, A., and Odabasi, M.: Determination of Henry's law constants of organochlorine pesticides in deionized and saline water as a function of temperature, Atmos. Environ., 40, 4538–4546, 2006.
- Chai, X.-S., Falabella, J. B., and Teja, A. S.: A relative headspace method for Henry's constants of volatile organic compounds, Fluid Phase Equilib., 231, 239–245, 2005.
- Chaintreau, A., Grade, A., and Muñoz-Box, R.: Determination of partition coefficients and quantitation of headspace volatile compounds, Anal. Chem., 67, 3300–3304, 1995.
- Chameides, W. L.: The photochemistry of a remote marine stratiform cloud, J. Geophys. Res., 89D, 4739–4755, 1984.
- Chameides, W. L.: Reply, J. Geophys. Res., 91D, 14571–14572, 1986.

- Chameides, W. L. and Stelson, A. W.: Aqueous phase chemical processes in deliquescent sea-salt aerosols: A mechanism that couples the atmospheric cycles of S and sea salt, J. Geophys. Res., 97D, 20565–20580, 1992.
- Chan, M. N., Surratt, J. D., Claeys, M., Edgerton, E. S., Tanner, R. L., Shaw, S. L., Zheng, M., Knipping, E. M., Eddingsaas, N. C., Wennberg, P. O., and Seinfeld, J. H.: Characterization and quantification of isoprene-derived epoxydiols in ambient aerosol in the southeastern United States, Environ. Sci. Technol., 44, 4590–4596, 2010.
- Chancel, G. and Parmentier, F.: Sur la solubilité du sulfure de carbone et sur celle du chloroforme, C. R. Hebd. Séances Acad. Sci., 100, 773–776, 1885.
- Chang, W.-K. and Criddle, C. S.: Biotransformation of HCFC-22, HCFC-142b, HCFC-123, and HFC-134a by methanotrophic mixed culture MM1, Biodegrad., 6, 1–9, 1995.
- Chapoy, A., Mokraoui, S., Valtz, A., Richon, D., Mohammadi, A. H., and Tohidi, B.: Solubility measurement and modeling for the system propane-water from 277.62 to 368.16 K, Fluid Phase Equilib., 226, 213–220, 2004.
- Chapoy, A., Mohammadi, A. H., Tohidi, B., Valtz, A., and Richon, D.: Experimental measurement and phase behavior modeling of hydrogen sulfide-water binary system, Ind. Eng. Chem. Res., 44, 7567–7574, 2005.
- Charles, M. J. and Destaillats, H.: Experimental determinations of Henry's law constants of polybrominated diphenyl ethers (PB-DEs) to evaluate exposure to aquatic biota, technical Completion Report, University of California Water Resources Center, UC Berkeley, available at: http://escholarship.org/uc/item/9zv0s4np (last access: 10 April 2015), 2005.
- Chen, C.-C., Britt, H. I., Boston, J. F., and Evans, L. B.: Extension and application of the Pitzer equation for vapor-liquid equilibrium of aqueous electrolyte systems with molecular solutes, AIChE J., 25, 820–831, 1979.
- Chen, F., Freedman, D. L., Falta, R. W., and Murdoch, L. C.: Henry's law constants of chlorinated solvents at elevated temperatures, Chemosphere, 86, 156–165, 2012.
- Chen, L., Takenaka, N., Bandow, H., and Maeda, Y.: Henry's law constants for C₂-C₃ fluorinated alcohols and their wet deposition in the atmosphere, Atmos. Environ., 37, 4817–4822, 2003.
- Cheng, W.-H., Chu, F.-S., and Liou, J.-J.: Air-water interface equilibrium partitioning coefficients of aromatic hydrocarbons, Atmos. Environ., 37, 4807–4815, 2003.
- Cheng, W.-H., Chou, M.-S., Perng, C.-H., and Chu, F.-S.: Determining the equilibrium partitioning coefficients of volatile organic compounds at an air-water interface, Chemosphere, 54, 935–942, 2004.
- Chesters, G., Simsiman, G. V., Levy, J., Alhajjar, B. J., Fathulla, R. N., and Harkin, J. M.: Environmental fate of alachlor and metolachlor, Rev. Environ. Contam. Toxicol., 110, 1–74, 1989.
- Cheung, J. L., Li, Y. Q., Boniface, J., Shi, Q., Davidovits, P., Worsnop, D. R., Jayne, J. T., and Kolb, C. E.: Heterogeneous interactions of NO₂ with aqueous surfaces, J. Phys. Chem. A, 104, 2655–2662, 2000.
- Chiang, P.-C., Hung, C.-H., Mar, J. C., and Chang, E. E.: Henry's constants and mass transfer coefficients of halogenated organic pollutants in an air stripping packed column, Water Sci. Tech., 38, 287–294, 1998.

- Chiou, C. T., Freed, V. H., Peters, L. J., and Kohnert, R. L.: Evaporation of solutes from water, Environ. Int., 3, 231–236, 1980.
- Christie, A. O. and Crisp, D. J.: Activity coefficients on the *n*-primary, secondary and tertiary aliphatic amines in aqueous solution, J. Appl. Chem., 17, 11–14, 1967.
- Cimetiere, N. and De Laat, J.: Henry's law constant of N,N-dichloromethylamine: Application to the contamination of the atmosphere of indoor swimming pools, Chemosphere, 77, 465–470, 2009.
- Clegg, S. L. and Brimblecombe, P.: The dissociation constant and Henry's law constant of HCl in aqueous solution, Atmos. Environ., 20, 2483–2485, 1986.
- Clegg, S. L. and Brimblecombe, P.: Solubility of ammonia in pure aqueous and multicomponent solutions, J. Phys. Chem., 93, 7237–7248, 1989.
- Clegg, S. L. and Brimblecombe, P.: Equilibrium partial pressures and mean activity and osmotic coefficients of 0–100% nitric acid as a function of temperature, J. Phys. Chem., 94, 5369–5380, 1990
- Clegg, S. L., Brimblecombe, P., and Khan, I.: The Henry's law constant oxalic acid and its partitioning into in the atmospheric aerosol, Idöjárás, 100, 51–68, 1996.
- Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic model of the system H⁺-NH₄⁺-SO₄²-NO₃⁻-H₂O at tropospheric temperatures, J. Phys. Chem. A, 102, 2137–2154, 1998.
- Clever, H. L. (Ed.): IUPAC Solubility Data Series, vol. 1 of Helium and Neon, Pergamon Press, Oxford, England, 1979a.
- Clever, H. L. (Ed.): IUPAC Solubility Data Series, vol. 2 of Krypton, Xenon and Radon, Pergamon Press, Oxford, England, 1979b.
- Clever, H. L. (Ed.): IUPAC Solubility Data Series, vol. 4 of Argon, Pergamon Press, Oxford, England, 1980.
- Clever, H. L. (Ed.): IUPAC Solubility Data Series, vol. 29 of Mercury in liquids, compressed gases, molten salts and other elements, Pergamon Press, Oxford, England, 1987.
- Clever, H. L. and Young, C. L. (Eds.): IUPAC Solubility Data Series, vol. 27/28 of Methane, Pergamon Press, Oxford, England, 1987
- Clever, H. L., Johnson, S. A., and Derrick, M. E.: The solubility of mercury and some sparingly soluble mercury salts in water and aqueous-electrolyte solutions, J. Phys. Chem. Ref. Data, 14, 631–681, 1985.
- Clever, H. L., Battino, R., Jaselskis, B., Yampol'skii, Y. P., Jaselskis, B., Scharlin, P., and Young, C. L.: IUPAC-NIST solubility data series. 80. gaseous fluorides of boron, nitrogen, sulfur, carbon, and silicon and solid xenon fluorides in all solvents, J. Phys. Chem. Ref. Data, 34, 201–438, 2005.
- Cline, J. D. and Bates, T. S.: Dimethyl sulfide in the equatorial Pacific Ocean: A natural source of sulfur to the atmosphere, Geophys. Res. Lett., 10, 949–952, 1983.
- Compernolle, S. and Müller, J.-F.: Henry's law constants of diacids and hydroxy polyacids: recommended values, Atmos. Chem. Phys., 14, 2699–2712, doi:10.5194/acp-14-2699-2014, 2014a.
- Compernolle, S. and Müller, J.-F.: Henry's law constants of polyols, Atmos. Chem. Phys., 14, 12815–12837, doi:10.5194/acp-14-12815-2014, 2014b.
- Conway, R. A., Waggy, G. T., Spiegel, M. H., and Berglund, R. L.: Environmental fate and effects of ethylene oxide, Environ. Sci. Technol., 17, 107–112, 1983.

- Cooling, M. R., Khalfaoui, B., and Newsham, D. M. T.: Phase equilibria in very dilute mixtures of water and unsaturated chlorinated hydrocarbons and of water and benzene, Fluid Phase Equilib., 81, 217–229, 1992.
- Copolovici, L. O. and Niinemets, U.: Temperature dependencies of Henry's law constants and octanol/water partition coefficients for key plant volatile monoterpenoids, Chemosphere, 61, 1390– 1400, 2005.
- Coquelet, C. and Richon, D.: Measurement of Henry's law constants and infinite dilution activity coefficients of propyl mercaptan, butyl mercaptan, and dimethyl sulfide in methyldiethanolamine (1) + water (2) with $w_1 = 0.50$ using a gas stripping technique, J. Chem. Eng. Data, 50, 2053–2057, 2005.
- Cotham, W. E. and Bidleman, T. F.: Degradation of malathion, endosulfan, and fenvalerate in seawater and seawater/sediment microcosms, J. Agric. Food Chem., 37, 824–828, 1989.
- Cousins, I. and Mackay, D.: Correlating the physical-chemical properties of phthalate esters using the 'three solubility' approach, Chemosphere, 41, 1389–1399, 2000.
- Crovetto, R.: Evaluation of solubility data for the system CO₂-H₂O from 273 K to the critical point of water, J. Phys. Chem. Ref. Data, 20, 575–589, 1991.
- Crovetto, R., Fernández-Prini, R., and Japas, M. L.: Solubilities of inert gases and methane in H₂O and in D₂O in the temperature range of 300 to 600 K, J. Chem. Phys., 76, 1077–1086, 1982.
- Dacey, J. W. H., Wakeham, S. G., and Howes, B. L.: Henry's law constants for dimethylsulfide in freshwater and seawater, Geophys. Res. Lett., 11, 991–994, 1984.
- Dallos, A., Ország, I., and Ratkovics, F.: Liquid–liquid and vapour–liquid equilibrium data and calculations for the system aniline + water in the presence of NaCl, NaI, NH₄Cl and NH₄I, Fluid Phase Equilib., 11, 91–102, 1983.
- Dasgupta, P. G. and Dong, S.: Solubility of ammonia in liquid water and generation of trace levels of standard gaseous ammonia, Atmos. Environ., 20, 565–570, 1986.
- David, M. D., Fendinger, N. J., and Hand, V. C.: Determination of Henry's law constants for organosilicones in actual and simulated wastewater, Environ. Sci. Technol., 34, 4554–4559, 2000.
- De Bruyn, W. J., Shorter, J. A., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Uptake of gas-phase sulfur species methanesulfonic acid, dimethylsulfoxide, and dimethyl sulfone by aqueous surfaces, J. Geophys. Res., 99D, 16927–16932, 1994.
- De Bruyn, W. J., Shorter, J. A., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Uptake of haloacetyl and carbonyl halides by water surfaces, Environ. Sci. Technol., 29, 1179–1185, 1995a.
- De Bruyn, W. J., Swartz, E., Hu, J. H., Shorter, J. A., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Henry's law solubilities and Setchenow coefficients for biogenic reduced sulfur species obtained from gas-liquid uptake measurements, J. Geophys. Res., 100D, 7245–7251, 1995b.
- De Maagd, P. G.-J., Ten Hulscher, D. T. E. M., van den Heuvel, H., Opperhuizen, A., and Sijm, D. T. H. M.: Physicochemical properties of polycyclic aromatic hydrocarbons: Aqueous solubilities, *n*-octanol/water partition coefficients, and Henry's law constants, Environ. Toxicol. Chem., 17, 251–257, 1998.
- de Wolf, W. and Lieder, P. H.: A novel method to determine uptake and elimination kinetics of volatile chemicals in fish, Chemosphere, 36, 1713–1724, 1998.

- Dean, J. A.: Lange's Handbook of Chemistry, McGraw-Hill, Inc., 1992.
- Dearden, J. C. and Schüürmann, G.: Quantitative structure-property relationships for predicting Henry's law constant from molecular structure, Environ. Toxicol. Chem., 22, 1755–1770, 2003.
- Delgado, E. J. and Alderete, J.: On the calculation of Henry's law constants of chlorinated benzenes in water from semiempirical quantum chemical methods, J. Chem. Inf. Comput. Sci., 42, 559– 563, 2002.
- Delgado, E. J. and Alderete, J. B.: Prediction of Henry's law constants of triazine derived herbicides from quantum chemical continuum solvation models, J. Chem. Inf. Comput. Sci., 43, 1226–1230, 2003.
- Della Gatta, G., Stradella, L., and Venturello, P.: Enthalpies of solvation in cyclohexane and in water for homologous aliphatic ketones and esters, J. Solution Chem., 10, 209–220, 1981.
- Deno, N. C. and Berkheimer, H. E.: Activity coefficients as a function of structure and media, J. Chem. Eng. Data, 5, 1–5, 1960.
- Destaillats, H. and Charles, M. J.: Henry's law constants of carbonyl-pentafluorobenzyl hydroxylamine (PFBHA) derivatives in aqueous solution, J. Chem. Eng. Data, 47, 1481–1487, 2002.
- Dewulf, J., Drijvers, D., and van Langenhove, H.: Measurement of Henry's law constant as function of temperature and salinity for the low temperature range, Atmos. Environ., 29, 323–331, 1995.
- Dewulf, J., van Langenhove, H., and Everaert, P.: Determination of Henry's law coefficients by combination of the equilibrium partitioning in closed systems and solid-phase microextraction techniques, J. Chromatogr. A, 830, 353–363, 1999.
- Diaz, A., Ventura, F., and Galceran, M. T.: Determination of odorous mixed chloro-bromoanisoles in water by solid-phase microextraction and gas chromatography-mass detection, J. Chromatogr. A, 1064, 97–106, 2005.
- Dilling, W. L.: Interphase transfer processes. II. Evaporation rates of chloro methanes, ethanes, ethylenes, propanes, and propylenes from dilute aqueous solutions. Comparisons with theoretical predictions, Environ. Sci. Technol., 11, 405–409, 1977.
- Dilling, W. L., Tefertiller, N. B., and Kallos, G. J.: Evaporation rates and reactivities of methylene chloride, chloroform, 1,1,1trichloroethane, trichloroethylene, tetrachloroethylene, and other chlorinated compounds in dilute aqueous solutions, Environ. Sci. Technol., 9, 833–838, 1975.
- Disselkamp, R. S., Chapman, E. G., Barchet, W. R., Colson, S. D., and Howd, C. D.: BrCl production in NaBr/NaCl/HNO₃/O₃ solutions representative of sea-salt aerosols in the marine boundary layer, Geophys. Res. Lett., 26, 2183–2186, 1999.
- Dohányosová, P., Sarraute, S., Dohnal, V., Majer, V., and Costa Gomes, M.: Aqueous solubility and related thermodynamic functions of nonaromatic hydrocarbons as a function of molecular structure, Ind. Eng. Chem. Res., 43, 2805–2815, 2004.
- Dohnal, V. and Fenclová, D.: Air-water partitioning and aqueous solubility of phenols, J. Chem. Eng. Data, 40, 478–483, 1995.
- Dohnal, V. and Hovorka, Š.: Exponential saturator: a novel gasliquid partitioning technique for measurement of large limiting activity coefficients, Ind. Eng. Chem. Res., 38, 2036–2043, 1999.
- Dohnal, V., Fenclová, D., and Vrbka, P.: Temperature dependences of limiting activity coefficients, Henry's law constants, and derivative infinite dilution properties of lower (C₁-C₅) 1-

- alkanols in water. critical compilation, correlation, and recommended data, J. Phys. Chem. Ref. Data, 35, 1621–1651, 2006.
- Donahue, N. M. and Prinn, R. G.: In situ nonmethane hydrocarbon measurements on SAGA 3, J. Geophys. Res., 98, 16915–16932, 1993.
- Dong, S. and Dasgupta, P. G.: Solubility of gaseous formaldehyde in liquid water and generation of trace standard gaseous formaldehyde, Environ. Sci. Technol., 20, 637–640, 1986.
- Douglas, E.: Carbon monoxide solubilities in sea water, J. Phys. Chem., 71, 1931–1933, 1967.
- Drouillard, K. G., Tomy, G. T., Muir, D. C. G., and Friesen, K. J.: Volatility of chlorinated *n*-alkanes (C₁₀-C₁₂): Vapor pressures and Henry's law constants, Environ. Toxicol. Chem., 17, 1252– 1260, 1998.
- Dubik, N. A., Titova, G. M., and Loshakova, E. I.: Partition coefficients of bromine and bromine chloride between air and natural brines, Issled. v Obl. Poluch. Magniya, Ioda, Broma i ikh Soed., M., 53–57, 1987 (in Russian, see also Chem. Abstr., 109, 213154j).
- Dunnivant, F. M. and Elzerman, A. W.: Aqueous solubility and Henry's law constant data for PCB congeners for evaluation of quantitative structure-property relationships (QSPRs), Chemosphere, 17, 525–541, 1988.
- Dunnivant, F. M., Coates, J. T., and Elzerman, A. W.: Experimentally determined Henry's law constants for 17 polychlorobiphenyl congeners, Environ. Sci. Technol., 22, 448–453, 1988.
- Dunnivant, F. M., Elzerman, A. W., Jurs, P. C., and Hasan, M. N.: Quantitative structure-property relationships for aqueous solubilities and Henry's law constants of polychlorinated biphenyls, Environ. Sci. Technol., 26, 1567–1573, 1992.
- Durham, J. L., Overton Jr., J. H., and Aneja, V. P.: Influence of gaseous nitric acid on sulfate production and acidity in rain, Atmos. Environ., 15, 1059–1068, 1981.
- Eastcott, L., Shiu, W. Y., and Mackay, D.: Environmentally relevant physical-chemical properties of hydrocarbons: A review of data and development of simple correlations, Oil Chem. Pollut., 4, 191–216, 1988.
- Edelist, G., Singer, M. M., and Eger, E. I., I.: Solubility coefficients of teflurane in various biological media, Anesthesiology, 25, 223–225, 1964.
- Edwards, T. J., Maurer, G., Newman, J., and Prausnitz, J. M.: Vaporliquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes, AIChE J., 24, 966–976, 1978.
- Eguchi, W., Adachi, M., and Yoneda, M.: Dependency of partition equilibrium of iodine between air and aqueous solution containing sodium hydroxide upon temperature and concentration, J. Chem. Eng. Jpn., 6, 389–396, 1973.
- Elliott, S.: The solubility of carbon disulfide vapor in natural aqueous systems, Atmos. Environ., 23, 1977–1980, 1989.
- Elliott, S. and Rowland, F. S.: Nucleophilic substitution rates and solubilities for methyl halides in seawater, Geophys. Res. Lett., 20, 1043–1046, 1993.
- Emel'yanenko, V. N., Dabrowska, A., Verevkin, S. P., Hertel, M. O., Scheuren, H., and Sommer, K.: Vapor Pressures, Enthalpies of Vaporization, and Limiting Activity Coefficients in Water at 100 °C of 2-Furanaldehyde, Benzaldehyde, Phenylethanal, and 2-Phenylethanol, J. Chem. Eng. Data, 52, 468–471, 2007.

- Endo, S., Pfennigsdorff, A., and Goss, K.-U.: Salting-out effect in aqueous NaCl solutions: Trends with size and polarity of solute molecules, Environ. Sci. Technol., 46, 1496–1503, 2012.
- English, N. J. and Carroll, D. G.: Prediction of Henry's law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci., 41, 1150–1161, 2001.
- Ervin, A. L., Mangone, M. A., and Singley, J. E.: Trace organics removal by air stripping, in: Proceedings of the Annual Conference of the American Water Works Association, 507–530, 1980.
- Ettre, L. S., Welter, C., and Kolb, B.: Determination of gas-liquid partition coefficients by automatic equilibrium headspace gas chromatography utilizing the phase ratio variation method, Chromatographia, 35, 73–84, 1993.
- Falabella, J. B.: Air-water partitioning of volatile organic compounds and greenhouse gases in the presence of salts, PhD thesis, Georgia Institute of Technology, available at: https://smartech.gatech.edu/handle/1853/16221 (last access: 10 April 2015), 2007.
- Falabella, J. B. and Teja, A. S.: Air-water partitioning of gasoline components in the presence of sodium chloride, Energy Fuels, 22, 398–401, 2008.
- Falabella, J. B., Nair, A., and Teja, A. S.: Henry's constants of 1alkanols and 2-ketones in salt solutions, J. Chem. Eng. Data, 51, 1940–1945, 2006.
- Falk, A., Gullstrand, E., Löf, A., and Wigaeus-Hjelm, E.: Liquid/air partition coefficients of four terpenes, Br. J. Ind. Med., 47, 62–64, 1990.
- Fang, F., Chu, S., and Hong, C.-S.: Air-water Henry's law constants for PCB congeners: experimental determination and modeling of structure-property relationship, Anal. Chem., 78, 5412–5418, 2006
- Fang Lee, F.: Comprehensive analysis, Henry's law constant determination, and photocatalytic degradation of polychlorinated biphenyls (PCBs) and/or other persistent organic pollutants (POPs), PhD thesis, University at Albany, State University of New York, USA, 2007.
- Feigenbrugel, V., Le Calvé, S., and Mirabel, P.: Temperature dependence of Henry's law constants of metolachlor and diazinon, Chemosphere, 57, 319–327, 2004a.
- Feigenbrugel, V., Le Calvé, S., Mirabel, P., and Louis, F.: Henry's law constant measurements for phenol, *o-*, *m-*, and *p-*cresol as a function of temperature, Atmos. Environ., 38, 5577–5588, 2004b.
- Felder, J. D., Adams, W. J., and Saeger, V. W.: Assessment of the safety of dioctyl adipate in freshwater environments, Environ. Toxicol. Chem., 5, 777–784, 1986.
- Feldhake, C. J. and Stevens, C. D.: The solubility of tetraethyllead in water, J. Chem. Eng. Data, 8, 196–197, 1963.
- Fenclová, D., Blahut, A., Vrbka, P., Dohnal, V., and Böhme, A.: Temperature dependence of limiting activity coefficients, Henry's law constants, and related infinite dilution properties of C4-C6 isomeric n-alkyl ethanoates/ethyl n-alkanoates in water. Measurement, critical compilation, correlation, and recommended data, Fluid Phase Equilib., 375, 347–359, 2014.
- Fendinger, N. J. and Glotfelty, D. E.: A laboratory method for the experimental determination of air-water Henry's law constants for several pesticides, Environ. Sci. Technol., 22, 1289–1293, 1988.

- Fendinger, N. J. and Glotfelty, D. E.: Henry's law constants for selected pesticides, PAHs and PCBs, Environ. Toxicol. Chem., 9, 731–735, 1990.
- Fendinger, N. J., Glotfelty, D. E., and Freeman, H. P.: Comparison of two experimental techniques for determining air/water Henry's law constants, Environ. Sci. Technol., 23, 1528–1531, 1989.
- Fernández-Prini, R., Alvarez, J. L., and Harvey, A. H.: Henry's constants and vapor-liquid distribution constants for gaseous solutes in H₂O and D₂O at high temperatures, J. Phys. Chem. Ref. Data, 32, 903–916, 2003.
- Ferreira, M. M. C.: Polycyclic aromatic hydrocarbons: a QSPR study, Chemosphere, 44, 125–146, 2001.
- Fichan, I., Larroche, C., and Gros, J. B.: Water solubility, vapor pressure, and activity coefficients of terpenes and terpenoids, J. Chem. Eng. Data, 44, 56–62, 1999.
- Fickert, S.: Laboruntersuchungen zur Freisetzung photoreaktiver Halogenverbindungen aus Seesalzaerosol, PhD thesis, Johannes Gutenberg-Universität, Mainz, Germany, 1998.
- Fischer, A., Müller, M., and Klasmeier, J.: Determination of Henry's law constant for methyl tert-butyl ether (MTBE) at groundwater temperatures, Chemosphere, 54, 689–694, 2004.
- Fischer, R. G. and Ballschmiter, K.: Determination of vapor pressure, water solubility, gas-water partition coefficient $P_{\rm GW}$, Henry's law constant, and octanol-water partition coefficient $P_{\rm OW}$ of 26 alkyl dinitrates, Chemosphere, 36, 2891–2901, 1998a.
- Fischer, R. G. and Ballschmiter, K.: Prediction of the environmental distribution of alkyl dinitrates – Chromatographic determination of vapor pressure p⁰, water solubility S_{H2O}, gas-water partition coefficient K_{GW} (Henry's law constant) and octanol-water partition coefficient K_{OW}, Fresenius J. Anal. Chem., 360, 769–776, 1998b.
- Fishbein, L. and Albro, P. W.: Chromatographic and biological aspects of the phthalate esters, J. Chromatogr. A, 70, 365–412, 1972.
- Fogg, P. and Sangster, J.: Chemicals in the Atmosphere: Solubility, Sources and Reactivity, John Wiley & Sons, Inc., 2003.
- Fogg, P. G. T. and Young, C. L. (Eds.): IUPAC Solubility Data Series, vol. 32 of Hydrogen Sulfide, Deuterium Sulfide, and Hydrogen Selenide, Pergamon Press, Oxford, England, 1988.
- Foster, P., Ferronato, C., and Jacob, V.: Organic-compound transfer between gas-phase and raindrops 1st experiments in a simulation chamber, Fresenius Environ. Bull., 3, 318–323, 1994.
- Fredenhagen, K. and Liebster, H.: Die Teildrucke und Verteilungszahlen der Essigsäure über ihren wässerigen Lösungen bei 25 °C, Z. Phys. Chem., 162A, 449–453, 1932.
- Fredenhagen, K. and Wellmann, M.: Verteilungszahlen des Fluorwasserstoffs über dem Zweistoffsystem [H₂O-HF] bei 25 °C und die Siedepunktskurve dieses Systems bei Atmosphärendruck, Z. Phys. Chem., 162A, 454–466, 1932a.
- Fredenhagen, K. and Wellmann, M.: Verteilungszahlen des Cyanwasserstoffs und des Wassers über dem Zweistoffsystem [H₂O-HCN] bei 18 °C, Z. Phys. Chem., 162A, 467–470, 1932b.
- Frenzel, A., Scheer, V., Sikorski, R., George, C., Behnke, W., and Zetzsch, C.: Heterogeneous interconversion reactions of BrNO₂, ClNO₂, Br₂, and Cl₂, J. Phys. Chem. A, 102, 1329–1337, 1998.
- Friant, S. L. and Suffet, I. H.: Interactive effects of temperature, salt concentration, and pH on head space analysis for isolating

- volatile trace organics in aqueous environmental samples, Anal. Chem., 51, 2167–2172, 1979.
- Fried, A., Henry, B. E., Calvert, J. G., and Mozurkewich, M.: The reaction probability of N₂O₅ with sulfuric acid aerosols at stratospheric temperatures and compositions, J. Geophys. Res., 99D, 3517–3532, 1994.
- Friesen, K. J., Loewen, M. D., Fairchild, W. L., Lawrence, S. G., Holoka, M. H., and Muir, D. C. G.: Evidence for particlemediated transport of 2,3,7,8-tetrachlorodibenzofuran during gas sparging of natural water, Environ. Toxicol. Chem., 12, 2037– 2044, 1993.
- Fu, M., Yu, Z., Lu, G., and Song, X.: Henry's law constant for phosphine in seawater: determination and assessment of influencing factors, Chin. J. Oceanol. Limnol., 31, 860–866, doi:10.1007/s00343-013-2212-1, 2013.
- Gaffney, J. S. and Senum, G. I.: Peroxides, peracids, aldehydes, and PANs and their links to natural and anthropogenic organic sources, in: Gas-Liquid Chemistry of Natural Waters, edited by: Newman, L., NTIS TIC-4500, UC-11, BNL 51757 Brookhaven National Laboratory, 5–1–5–7, 1984.
- Gaffney, J. S., Streit, G. E., Spall, W. D., and Hall, J. H.: Beyond acid rain, Environ. Sci. Technol., 21, 519–524, 1987.
- Gamsjäger, H., Lorimer, J. W., Scharlin, P., and Shaw, D. G.: Glossary of terms related to solubility (IUPAC Recommendations 2008), Pure Appl. Chem., 80, 233–276, 2008.
- Gamsjäger, H., Lorimer, J. W., Salomon, M., Shaw, D. G., and Tomkins, R. P. T.: The IUPAC-NIST Solubility Data Series: A guide to preparation and use of compilations and evaluations (IUPAC Technical Report), Pure Appl. Chem., 82, 1137–1159, 2010.
- Gan, J. and Yates, S. R.: Degradation and phase partition of methyl iodide in soil, J. Agric. Food Chem., 44, 4001–4008, 1996.
- Garbarini, D. R. and Lion, L. W.: Evaluation of sorptive partitioning of nonionic pollutants in closed systems by headspace analysis, Environ. Sci. Technol., 19, 1122–1128, 1985.
- Gautier, C., Le Calvé, S., and Mirabel, P.: Henry's law constants measurements of alachlor and dichlorvos between 283 and 298 K, Atmos. Environ., 37, 2347–2353, 2003.
- George, C., Ponche, J. L., and Mirabel, P.: Experimental determination of uptake coefficients for acid halides, in: Proceedings of Workshop on STEP-HALOCSIDE, AFEAS, Dublin, 23–25 March, 1993.
- George, C., Lagrange, J., Lagrange, P., Mirabel, P., Pallares, C., and Ponche, J. L.: Heterogeneous chemistry of trichloroacetyl chloride in the atmosphere, J. Geophys. Res., 99D, 1255–1262, 1994a.
- George, C., Saison, J. Y., Ponche, J. L., and Mirabel, P.: Kinetics of mass transfer of carbonyl fluoride, trifluoroacetyl fluoride, and trifluoroacetyl chloride at the air/water interface, J. Phys. Chem., 98, 10857–10862, 1994b.
- Gershenzon, M., Davidovits, P., Jayne, J. T., Kolb, C. E., and Worsnop, D. R.: Simultaneous uptake of DMS and ozone on water, J. Phys. Chem. A, 105, 7031–7036, 2001.
- Giardino, N. J., Andelman, J. B., Borrazzo, J. E., and Davidson, C. I.: Sulfur hexafluoride as a surrogate for volatilization of organics from indoor water uses, J. Air Pollut. Control Assoc., 38, 278–279, 1988.

- Gibbs, P., Radzicka, A., and Wolfenden, R.: The anomalous hydrophilic character of proline, J. Am. Chem. Soc., 113, 4714– 4715, 1991.
- Gill, S. J., Nichols, N. F., and Wadsö, I.: Calorimetric determination of enthalpies of solution of slightly soluble liquids II. Enthalpy of solution of some hydrocarbons in water and their use in establishing the temperature dependence of their solubilities, J. Chem. Thermodyn., 8, 445–452, 1976.
- Glew, D. N. and Hames, D. A.: Aqueous nonelectrolyte solutions. Part X. Mercury solubility in water, Can. J. Chem., 49, 3114–3118, 1971.
- Glew, D. N. and Moelwyn-Hughes, E. A.: Chemical statics of the methyl halides in water, Discuss. Faraday Soc., 15, 150–161, 1953.
- Glotfelty, D. E., Seiber, J. N., and Liljedahl, A.: Pesticides in fog, Nature, 325, 602–605, 1987.
- Gmitro, J. I. and Vermeulen, T.: Vapor-liquid equilibria for aqueous sulfuric acid, AIChE J., 10, 740–746, 1964.
- Goldstein, D. J.: Air and steam stripping of toxic pollutants, Appendix 3: Henry's law constants, Tech. Rep. EPA-68-03-002, Industrial Environmental Research Laboratory, Cincinnati, OH, USA, 1982.
- Gordon, J. E. and Thorne, R. L.: Salt effects on the activity coefficient of naphthalene in mixed aqueous electrolyte solutions. I. Mixtures of two salts, J. Phys. Chem., 71, 4390–4399, 1967a.
- Gordon, J. E. and Thorne, R. L.: Salt effects on non-electrolyte activity coefficients in mixed aqueous electrolyte solutions II. Artificial and natural sea waters, Geochim. Cosmochim. Acta, 31, 2433–2443, 1967b.
- Görgényi, M., Dewulf, J., and Van Langenhove, H.: Temperature dependence of Henry's law constant in an extended temperature range, Chemosphere, 48, 757–762, 2002.
- Goss, K. U., Bronner, G., Harner, T., Hertel, M., and Schmidt, T.: The partition behavior of fluorotelomer alcohols and olefins, Environ. Sci. Technol., 40, 3572–3577, 2006.
- Gossett, J. M.: Packed tower air stripping of trichloroethylene from dilute aqueous solution, Final Report ESL-TR-81-38, Engineering and Services Laboratory, Tyndall Air Force Base, FL, 1980.
- Gossett, J. M.: Measurement of Henry's law constants for C₁ and C₂ chlorinated hydrocarbons, Environ. Sci. Technol., 21, 202– 208, 1987.
- Gossett, J. M., Cameron, C. E., Eckstrom, B. P., Goodman, C., and Lincoff, A. H.: Mass transfer coefficients and Henry's constants for packed-tower air stripping of volatile organics: Measurements and Correlations, Final Report ESL-TR-85-18, Engineering and Services Laboratory, Tyndall Air Force Base, FL, 1985.
- Govers, H. A. J. and Krop, H. B.: Partition constants of chlorinated dibenzofurans and dibenzo-p-dioxins, Chemosphere, 37, 2139– 2152, 1998.
- Graedel, T. E. and Goldberg, K. I.: Kinetic studies of raindrop chemistry 1. Inorganic and organic processes, J. Geophys. Res., 88C, 10865–10882, 1983.
- Green, W. J. and Frank, H. S.: The state of dissolved benzene in aqueous solution, J. Solution Chem., 8, 187–196, 1979.
- Guitart, R., Puigdemont, F., and Arboix, M.: Rapid headspace gas chromatographic method for the determination of liquid/gas partition coefficients, J. Chromatogr., 491, 271–280, 1989.

- Guo, X. X. and Brimblecombe, P.: Henry's law constants of phenol and mononitrophenols in water and aqueous sulfuric acid, Chemosphere, 68, 436–444, 2007.
- Gupta, A. K., Teja, A. S., Chai, X. S., and Zhu, J. Y.: Henry's constants of n-alkanols (methanol through n-hexanol) in water at temperatures between 40 °C and 90 °C, Fluid Phase Equilib., 170, 183–192, 2000.
- Guthrie, J. P.: Hydration of carboxylic acids and esters. Evaluation of the free energy change for addition of water to acetic and formic acids and their methyl esters, J. Am. Chem. Soc., 95, 6999–7003, 1973.
- Hales, J. M. and Drewes, D. R.: Solubility of ammonia in water at low concentrations, Atmos. Environ., 13, 1133–1147, 1979.
- Hamelink, J. L., Simon, P. B., and Silberhorn, E. M.: Henry's law constant, volatilization rate, and aquatic half-life of octamethylcyclotetrasiloxane, Environ. Sci. Technol., 30, 1946–1952, 1996.
- Hamm, S., Hahn, J., Helas, G., and Warneck, P.: Acetonitrile in the troposphere: residence time due to rainout and uptake by the ocean, Geophys. Res. Lett., 11, 1207–1210, 1984.
- Hansen, K. C., Zhou, Z., Yaws, C. L., and Aminabhavi, T. M.: Determination of Henry's law constants of organics in dilute aqueous solutions, J. Chem. Eng. Data, 38, 546–550, 1993.
- Hansen, K. C., Zhou, Z., Yaws, C. L., and Aminabhavi, T. M.: A laboratory method for the determination of Henry's law constants of volatile organic chemicals, J. Chem. Educ., 72, 93–96, 1995.
- Hanson, D. R. and Ravishankara, A. R.: The reaction probabilities of ClONO₂ and N₂O₅ on 40 to 75% sulfuric acid solutions, J. Geophys. Res., 96D, 17307–17314, 1991.
- Hanson, D. R., Burkholder, J. B., Howard, C. J., and Ravishankara, A. R.: Measurement of OH and HO₂ radical uptake coefficients on water and sulfuric acid surfaces, J. Phys. Chem., 96, 4979– 4985, 1992.
- Harrison, D. P., Valsaraj, K. T., and Wetzel, D. M.: Air stripping of organics from ground water, Waste Manage., 13, 417–429, 1993.
- Harrison, M. A. J., Cape, J. N., and Heal, M. R.: Experimentally determined Henry's Law coefficients of phenol, 2-methylphenol and 2-nitrophenol in the temperature range 281-302 K, Atmos. Environ., 36, 1843–1851, 2002.
- Hartkopf, A. and Karger, B. L.: Study of the interfacial properties of water by gas chromatography, Acc. Chem. Res., 6, 209–216, 1973.
- Hauff, K., Fischer, R. G., and Ballschmiter, K.: Determination of C₁-C₅ alkyl nitrates in rain, snow, white frost, and tap water by a combined codistillation head-space gas chromatography technique. Determination of Henry's law constants by head-space GC, Chemosphere, 37, 2599–2615, 1998.
- Hawthorne, S. B., Sievers, R. E., and Barkley, R. M.: Organic emissions from shale oil wastewaters and their implications for air quality, Environ. Sci. Technol., 19, 992–997, 1985.
- Hayduk, W. (Ed.): IUPAC Solubility Data Series, vol. 9 of Ethane, Pergamon Press, Oxford, England, 1982.
- Hayduk, W. (Ed.): IUPAC Solubility Data Series, vol. 24 of Propane, Butane and 2-Methylpropane, Pergamon Press, Oxford, England, 1986.
- Hayduk, W. (Ed.): IUPAC Solubility Data Series, vol. 57 of Ethene, Oxford University Press, 1994.
- Haynes, W. M. (Ed.): CRC Handbook of Chemistry and Physics, 95th Edn. (Internet Version 2015), Taylor and Francis Group, 2014.

- Heal, M. R., Pilling, M. J., Titcombe, P. E., and Whitaker, B. J.: Mass accommodation of aniline, phenol and toluene on aqueous droplets, Geophys. Res. Lett., 22, 3043–3046, 1995.
- Hedgecock, I. M. and Pirrone, N.: Chasing quicksilver: Modeling the atmospheric lifetime of $Hg_{(g)}^0$ in the marine boundary layer at various latitudes, Environ. Sci. Technol., 38, 69–76, 2004.
- Hedgecock, I. M., Trunfio, G. A., Pirrone, N., and Sprovieri, F.: Mercury chemistry in the MBL: Mediterranean case and sensitivity studies using the AMCOTS (Atmospheric Mercury Chemistry over the Sea) model, Atmos. Environ., 39, 7217–7230, 2005.
- Heidman, J. L., Tsonopoulos, C., Brady, C. J., and Wilson, G. M.: High-temperature mutual solubilities of hydrocarbons and water. Part II: Ethylbenzene, ethylcyclohexane, and n-octane, AIChE J., 31, 376–384, 1985.
- Helburn, R., Albritton, J., Howe, G., Michael, L., and Franke, D.: Henry's law constants for fragrance and organic solvent compounds in aqueous industrial surfactants, J. Chem. Eng. Data, 53, 1071–1079, 2008.
- Hellmann, H.: Model tests on volatilization of organic trace substances in surfaces waters, Fresenius J. Anal. Chem., 328, 475– 479, 1987.
- Hempel, W.: Ueber Kohlenoxysulfid, Z. Angew. Chem., 14, 865–868, 1901.
- Henry, W.: Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures, Phil. Trans. R. Soc. Lond., 93, 29–274, 1803.
- Heron, G., Christensen, T. H., and Enfield, C. G.: Henry's law constant for trichloroethylene between 10 and 95 °C, Environ. Sci. Technol., 32, 1433–1437, 1998.
- Hertel, M. O. and Sommer, K.: Limiting separation factors and limiting activity coefficients for 2-phenylethanol and 2-phenylethanal in water at 100 °C, J. Chem. Eng. Data, 50, 1905–1906, 2005.
- Hertel, M. O. and Sommer, K.: Limiting separation factors and limiting activity coefficients for 2-furfural, γ-nonalactone, benzaldehyde, and linalool in water at 100 °C, J. Chem. Eng. Data, 51, 1283–1285, 2006.
- Hertel, M. O., Scheuren, H., Sommer, K., and Glas, K.: Limiting separation factors and limiting activity coefficients for hexanal, 2-methylbutanal, 3-methylbutanal, and dimethylsulfide in water at (98.1 to 99.0) °C, J. Chem. Eng. Data, 52, 148–150, 2007.
- Hiatt, M. H.: Determination of Henry's law constants using internal standards with benchmark values, J. Chem. Eng. Data, 58, 902– 908, 2013.
- Hilal, S. H., Ayyampalayam, S. N., and Carreira, L. A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry's law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231–9236, 2008.
- Hill, J. O., Worsley, I. G., and Hepler, L. G.: Calorimetric determination of the distribution coefficient and thermodynamic properties of bromine in water and carbon tetrachloride, J. Phys. Chem., 72, 3695–3697, 1968.
- Hine, J. and Mookerjee, P. K.: The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions, J. Org. Chem., 40, 292–298, 1975.
- Hine, J. and Weimar Jr., R. D.: Carbon basicity, J. Am. Chem. Soc., 87, 3387–3396, 1965.

- Hodzic, A., Aumont, B., Knote, C., Lee-Taylor, J., Madronich, S., and Tyndall, G.: Volatility dependence of Henry's law constants of condensable organics: Application to estimate depositional loss of secondary organic aerosols, Geophys. Res. Lett., 41, 4795–4804, doi:10.1002/2014GL060649, 2014.
- Hoff, J. T., Mackay, D., Gillham, R., and Shiu, W. Y.: Partitioning of organic chemicals at the air-water interface in environmental systems, Environ. Sci. Technol., 27, 2174–2180, 1993.
- Hoffmann, M. R. and Calvert, J. G.: Chemical transformation modules for Eulerian acid deposition models. Volume II. The aqueous-phase chemistry, Tech. rep., NCAR, Box 3000, Boulder, CO 80307, 1985.
- Hoffmann, M. R. and Jacob, D. J.: Kinetics and mechanisms of the catalytic oxidation of dissolved sulfur dioxide in aqueous solution: An application to nighttime fog water chemistry, in: SO₂, NO and NO₂ Oxidation Mechanisms: Atmospheric Considerations, edited by: Calvert, J. G., Butterworth Publishers, Boston, MA, 101–172, 1984.
- Holdren, M. W., Spicer, C. W., and Hales, J. M.: Peroxyacetyl nitrate solubility and decomposition rate in acidic water, Atmos. Environ., 18, 1171–1173, 1984.
- Holzwarth, G., Balmer, R. G., and Soni, L.: The fate of chlorine and chloramines in cooling towers, Wat. Res., 18, 1421–1427, 1984.
- Hough, A. M.: Development of a two-dimensional global tropospheric model: Model chemistry, J. Geophys. Res., 96D, 7325–7362, 1991.
- Hovorka, Š. and Dohnal, V.: Determination of air-water partitioning of volatile halogenated hydrocarbons by the inert gas stripping method, J. Chem. Eng. Data, 42, 924–933, 1997.
- Howard, P. H.: Handbook of Environmental fate and exposure data for organic chemicals. Vol. I: Large production and priority pollutants, Lewis Publishers Inc. Chelsea, Michigan, 1989.
- Howard, P. H.: Handbook of Environmental fate and exposure data for organic chemicals. Vol. II: Solvents, Lewis Publishers Inc. Chelsea, Michigan, 1990.
- Howard, P. H.: Handbook of Environmental fate and exposure data for organic chemicals. Vol. III: Pesticides, Lewis Publishers Inc. Chelsea, Michigan, 1991.
- Howard, P. H.: Handbook of Environmental fate and exposure data for organic chemicals. Vol. IV: Solvents 2, Lewis Publishers Inc. Chelsea, Michigan, 1993.
- Howard, P. H. and Meylan, W. M.: Handbook of physical properties of organic chemicals, CRC Press, Lewis Publisher, Boca Raton, FL, 1997.
- Howard, P. H., Boethling, R. S., Jarvis, W. F., Meylan, W. M., and Michalenko, E. M.: Handbook of Environmental Degradation Rates, Lewis Publishers Inc. Chelsea, Michigan, 1991.
- Howe, G. B., Mullins, M. E., and Rogers, T. N.: Evaluation and prediction of Henry's law constants and aqueous solubilities for solvents and hydrocarbon fuel components. Vol II: Experimental Henry's law data, Tech. Rep. NTIS AD-A202 262, Research Triangle Institute, Research Triangle Park, NC, 27709, USA, 1987.
- Hoyt, S. D.: The ocean-air exchange of carbonyl sulfide (OCS) and halocarbons, PhD thesis, Oregon Graduate Center, available at: http://digitalcommons.ohsu.edu/etd/67/ (last access: 10 April 2015), 1982.
- HSDB: Hazardous Substances Data Bank, TOXicology data NETwork (TOXNET), National Library of Medicine (US), available

- at: http://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm (last access: 10 April 2015), 2015.
- Huang, D. and Chen, Z.: Reinvestigation of the Henry's law constant for hydrogen peroxide with temperature and acidity variation, J. Environ. Sci., 22, 570–574, 2010.
- Hunter-Smith, R. J., Balls, P. W., and Liss, P. S.: Henry's law constants and the air-sea exchange of various low molecular weight halocarbon gases, Tellus, 35B, 170–176, 1983.
- Huthwelker, T., Clegg, S. L., Peter, T., Carslaw, K., Luo, B. P., and Brimblecombe, P.: Solubility of HOCl in water and aqueous H₂SO₄ to stratospheric temperatures, J. Atmos. Chem., 21, 81–95, 1995.
- Hwang, H. and Dasgupta, P. G.: Thermodynamics of the hydrogen peroxide-water system, Environ. Sci. Technol., 19, 255–258, 1985.
- Hwang, Y.-L., Olson, J. D., and Keller, II, G. E.: Steam stripping for removal of organic pollutants from water. 2. Vapor-liquid equilibrium data, Ind. Eng. Chem. Res., 31, 1759–1768, 1992.
- Iliuta, M. C. and Larachi, F.: Gas-liquid partition coefficients and Henry's law constants of DMS in aqueous solutions of Fe(II) chelate complexes using the static headspace method, J. Chem. Eng. Data, 50, 1700–1705, 2005.
- Iliuta, M. C. and Larachi, F.: Solubility of total reduced sulfurs (hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide) in liquids, J. Chem. Eng. Data, 52, 2–19, 2007.
- Inga, R. F. and McKetta, J. J.: Solubility of propyne in water, J. Chem. Eng. Data, 6, 337–338, 1961.
- Ip, H. S. S., Huang, X. H. H., and Yu, J. Z.: Effective Henry's law constants of glyoxal, glyoxylic acid, and glycolic acid, Geophys. Res. Lett., 36, L01802, doi:10.1029/2008GL036212, 2009.
- Iraci, L. T., Baker, B. M., Tyndall, G. S., and Orlando, J. J.: Measurements of the Henry's law coefficients of 2-methyl-3-buten-2-ol, methacrolein, and methylvinyl ketone, J. Atmos. Chem., 33, 321–330, 1999.
- Irmann, F.: Eine einfache Korrelation zwischen Wasserlöslichkeit und Struktur von Kohlenwasserstoffen und Halogenkohlenwasserstoffen, Chem.-Ing.-Tech., 37, 789–798, 1965.
- Iverfeldt, Å. and Lindqvist, O.: Distribution equilibrium of methyl mercury chloride between water and air, Atmos. Environ., 16, 2917–2925, 1982.
- Iverfeldt, Å. and Persson, I.: The solvation thermodynamics of methylmercury(II) species derived from measurements of the heat of solution and the Henry's law constant, Inorg. Chim. Acta, 103, 113–119, 1985.
- Jacob, D. J.: Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate, J. Geophys. Res., 91D, 9807–9826, 1986.
- Jacob, D. J., Gottlieb, E. W., and Prather, M. J.: Chemistry of a polluted cloudy boundary layer, J. Geophys. Res., 94D, 12975– 13002, 1989.
- Jaeglé, L., Yung, Y. L., Toon, G. C., Sen, B., and Blavier, J.-F.: Balloon observations or organic and inorganic chlorine in the stratosphere: The role of HClO₄ production on sulfate aerosols, Geophys. Res. Lett., 23, 1749–1752, 1996.
- Janini, G. M. and Quaddora, L. A.: Determination of activity coefficients of oxygenated hydrocarbons by liquid-liquid chromatography, J. Liq. Chromatogr., 9, 39–53, 1986.
- Jantunen, L. M. and Bidleman, T. F.: Henry's law constants for hexachlorobenzene, p,p'-DDE and components of technical chlor-

- dane and estimates of gas exchange for Lake Ontario, Chemosphere, 62, 1689–1696, 2006.
- Jayasinghe, D. S., Brownawell, B. J., Chen, H., and Westall, J. C.: Determination of Henry's constants of organic compounds of low volatility: methylanilines in methanol-water, Environ. Sci. Technol., 26, 2275–2281, 1992.
- Jenkins, J. and King, M. B.: Vapor-liquid equilibria for the system bromine/water at low bromine concentrations, Chem. Eng. Sci., 20, 921–922, 1965.
- Ji, C. and Evans, E. M.: Using an internal standard method to determine Henry's law constants, Environ. Toxicol. Chem., 26, 231–236, 2007.
- Johanson, G. and Dynésius, B.: Liquid/air partition coefficients of six commonly used glycol ethers, Br. J. Ind. Med., 45, 561–564, 1988.
- Johnson, B. J.: The carbon isotope content and concentration of ambient formic acid and acetic acid, PhD thesis, University of Arizona, Tucson, AZ, USA, 1990.
- Johnson, B. J., Betterton, E. A., and Craig, D.: Henry's law coefficients of formic and acetic acids, J. Atmos. Chem., 24, 113–119, 1996.
- Johnson, J. E. and Harrison, H.: Carbonyl sulfide concentrations in the surface waters and above the Pacific Ocean, J. Geophys. Res., 91D, 7883–7888, 1986.
- Johnstone, H. F. and Leppla, P. W.: The solubility of sulfur-dioxide at low partial pressures, J. Am. Chem. Soc., 56, 2233–2238, 1934.
- Jönsson, J. Å., Vejrosta, J., and Novák, J.: Air/water partition coefficients for normal alkanes (*n*-pentane to *n*-nonane), Fluid Phase Equilib., 9, 279–286, 1982.
- Joosten, G. E. H. and Danckwerts, P. V.: Solubility and diffusivity of nitrous oxide in equimolar potassium carbonate-potassium bicarbonate solutions at 25 °C and 1 atm, J. Chem. Eng. Data, 17, 452–454, 1972.
- Jou, F.-Y. and Mather, A. E.: Vapor-liquid-liquid locus of the system pentane + water, J. Chem. Eng. Data, 45, 728–729, 2000.
- Kames, J. and Schurath, U.: Alkyl nitrates and bifunctional nitrates of atmospheric interest: Henry's law constants and their temperature dependencies, J. Atmos. Chem., 15, 79–95, 1992.
- Kames, J. and Schurath, U.: Henry's law and hydrolysis-rate constants for peroxyacyl nitrates (PANs) using a homogeneous gasphase source, J. Atmos. Chem., 21, 151–164, 1995.
- Kames, J., Schweighoefer, S., and Schurath, U.: Henry's law constant and hydrolysis of peroxyacetyl nitrate (PAN), J. Atmos. Chem., 12, 169–180, 1991.
- Kampf, C. J., Waxman, E. M., Slowik, J. G., Dommen, J., Pfaffenberger, L., Praplan, A. P., Prévôt, A. S. H., Baltensperger, U., Hoffmann, T., and Volkamer, R.: Effective Henry's law partitioning and the salting constant of glyoxal in aerosols containing sulfate, Environ. Sci. Technol., 47, 4236–4244, 2013.
- Kanakidou, M., Dentener, F. J., and Crutzen, P. J.: A global three-dimensional study of the fate of HCFCs and HFC-134a in the troposphere, J. Geophys. Res., 100D, 18781–18801, 1995.
- Kanefke, R.: Durch Quecksilberbromierung verbesserte Quecksilberabscheidung aus den Abgasen von Kohlekraftwerken und Abfallverbrennungsanlagen, PhD thesis, Martin-Luther-Universität Halle-Wittenberg, Germany, 2008.
- Karl, T., Yeretzian, C., Jordan, A., and Lindinger, W.: Dynamic measurements of partition coefficients using proton-transfer-

- reaction mass spectrometry (PTR-MS), Int. J. Mass Spectrom., 223-224, 383-395, 2003.
- Katrib, Y., Deiber, G., Schweitzer, F., Mirabel, P., and George, C.: Chemical transformation of bromine chloride at the air/water interface, J. Aerosol Sci., 32, 893–911, 2001.
- Katrib, Y., Calve, S. L., and Mirabel, P.: Uptake measurements of dibasic esters by water droplets and determination of their Henry's law constants, J. Phys. Chem. A, 107, 11433–11439, 2003.
- Kawamoto, K. and Urano, K.: Parameters for predicting fate of organochlorine pesticides in the environment (I) Octanol-water and air-water partition coefficients, Chemosphere, 18, 1987– 1996, 1989.
- Keeley, D. F., Hoffpauir, M. A., and Meriwether, J. R.: Solubility of aromatic hydrocarbons in water and sodium chloride solutions of different ionic strengths: benzene and toluene, Environ. Sci. Technol., 33, 87–89, 1988.
- Keene, W. C. and Galloway, J. N.: Considerations regarding sources for formic and acetic acids in the troposphere, J. Geophys. Res., 91D, 14466–14474, 1986.
- Keene, W. C., Mosher, B. W., Jacob, D. J., Munger, J. W., Talbot, R. W., Artz, R. S., Maben, J. R., Daube, B. C., and Galloway, J. N.: Carboxylic acids in a high-elevation forested site in central Virginia, J. Geophys. Res., 100D, 9345–9357, 1995.
- Kelley, C. M. and Tartar, H. V.: On the system: bromine-water, J. Am. Chem. Soc., 78, 5752–5756, 1956.
- Keßel, S.: Quellen und Senken von Kohlensuboxid in der Atmosphäre, diplomarbeit, Johannes Gutenberg-Universität, Mainz, Germany, 2011.
- Khalfaoui, B. and Newsham, D. M. T.: Phase equilibria in very dilute mixtures of water and brominated hydrocarbons, Fluid Phase Equilib., 98, 213–223, 1994a.
- Khalfaoui, B. and Newsham, D. M. T.: Determination of infinite dilution activity coefficients and second virial coefficients using gas-liquid chromatography I. The dilute mixtures of water and unsaturated chlorinated hydrocarbons and of water and benzene, J. Chromatogr. A, 673, 85–92, 1994b.
- Khan, I. and Brimblecombe, P.: Henry's law constants of low molecular weight (<130) organic acids, J. Aerosol Sci., 23, S897–S900, 1992.
- Khan, I., Brimblecombe, P., and Clegg, S. L.: The Henry's law constants of pyruvic and methacrylic acids, Environ. Technol., 13, 587–593, 1992.
- Khan, I., Brimblecombe, P., and Clegg, S. L.: Solubilities of pyruvic acid and the lower (C₁-C₆) carboxylic acids. Experimental determination of equilibrium vapour pressures above pure aqueous and salt solutions, J. Atmos. Chem., 22, 285–302, 1995.
- Kieckbusch, T. G. and King, C. J.: An improved method of determining vapor liquid equilibria for dilute organics in aqueous solution, J. Chromatogr. Sci., 17, 273–276, 1979.
- Kim, B. R., Kalis, E. M., DeWulf, T., and Andrews, K. M.: Henry's Law constants for paint solvents and their implications on volatile organic compound emissions from automotive painting, Water Environ. Res., 72, 65–74, 2000.
- Kim, Y.-H. and Kim, K.-H.: Recent advances in thermal desorptiongas chromatography-mass spectrometery method to eliminate the matrix effect between air and water samples: Application to the accurate determination of Henry's law constant, J. Chromatogr. A, 1342, 78–85, 2014.

- Kish, J. D., Leng, C. B., Kelley, J., Hiltner, J., Zhang, Y. H., and Liu, Y.: An improved approach for measuring Henry's law coefficients of atmospheric organics, Atmos. Environ., 79, 561–565, 2013
- Klein, R. G.: Calculations and measurements on the volatility of Nnitrosamines and their aqueous solutions, Toxicology, 23, 135– 147, 1982.
- Kochetkov, A., Smith, J. S., Ravikrishna, R., Valsaraj, K. T., and Thibodeaux, L. J.: Air-water partition constants for volatile methyl siloxanes, Environ. Toxicol. Chem., 20, 2184–2188, 2001.
- Koga, Y.: Vapor pressures of dilute aqueous t-butyl alcohol: How dilute is the Henry's law region?, J. Phys. Chem., 99, 6231–6233, 1995.
- Kolb, B., Welter, C., and Bichler, C.: Determination of partition coefficients by automatic equilibrium headspace gas chromatography by vapor phase calibration, Chromatographia, 34, 235–240, 1992.
- Komiyama, H. and Inoue, H.: Reaction and transport of nitrogen oxides in nitrous acid solutions, J. Chem. Eng. Jpn., 11, 25–32, 1978.
- Komiyama, H. and Inoue, H.: Absorption of nitrogen oxides into water, Chem. Eng. Sci., 35, 154–161, 1980.
- Kondoh, H. and Nakajima, T.: Optimization of headspace cryofocus gas chromatography/mass spectrometry for the analysis of 54 volatile organic compounds, and the measurement of their Henry's constants, J. Environ. Chem., 7, 81–89, 1997.
- Kosak-Channing, L. F. and Helz, G. R.: Solubility of ozone in aqueous solutions of 0–0.6 M ionic strength at 5–30 °C, Environ. Sci. Technol., 17, 145–149, 1983.
- Kramers, H., Blind, M. P. P., and Snoeck, E.: Absorption of nitrogen tetroxide by water jets, Chem. Eng. Sci., 14, 115–123, 1961.
- Krause Jr., D. and Benson, B. B.: The solubility and isotopic fractionation of gases in dilute aqueous solution. IIa. solubilities of the noble gases, J. Solution Chem., 18, 823–873, 1989.
- Kroll, J. H., Ng, N. L., Murphy, S. M., Varutbangkul, V., Flagan, R. C., and Seinfeld, J. H.: Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds, J. Geophys. Res., 110D, D23207, doi:10.1029/2005JD006004, 2005.
- Krop, H. B., van Velzen, M. J. M., Parsons, J. R., and Govers, H. A. J.: n-Octanol-water partition coefficients, aqueous solubilities and Henry's law constants of fatty acid esters, Chemosphere, 34, 107–119, 1997.
- Kruis, A. and May, A.: Lösungsgleichgewichte von Gasen mit Flüssigkeiten, in: Landolt-Börnstein II/2b, edited by: Schäfer, K. and Lax, E., Springer Verlag, Berlin, (1–1)–(1–210), 1962.
- Krysztofiak, G., Catoire, V., Poulet, G., Marécal, V., Pirre, M., Louis, F., Canneaux, S., and Josse, B.: Detailed modeling of the atmospheric degradation mechanism of very-short lived brominated species, Atmos. Environ., 59, 514–532, 2012.
- Kucklick, J. R., Hinckley, D. A., and Bidleman, T. F.: Determination of Henry's law constants for hexachlorocyclohexanes in distilled water and artificial seawater as a function of temperature, Mar. Chem., 34, 197–209, 1991.
- Kühne, R., Ebert, R.-U., and Schüürmann, G.: Prediction of the temperature dependency of Henry's law constant from chemical structure, Environ. Sci. Technol., 39, 6705–6711, 2005.

- Kuramochi, H., Maeda, K., and Kawamoto, K.: Measurements of water solubilities and 1-octanol/water partition coefficients and estimations of Henry's law constants for brominated benzenes, J. Chem. Eng. Data, 49, 720–724, 2004.
- Kuramochi, H., Takigami, H., Scheringer, M., and Sakai, S.: Measurement of vapor pressures of selected PBDEs, hexabromobenzene, and 1,2-bis(2,4,6-tribromophenoxy)ethane at elevated temperatures, J. Chem. Eng. Data, 59, 8–15, 2014.
- Kurtén, T., Elm, J., Prisle, N. L., Mikkelsen, K. V., Kampf, C. J., Waxman, E. M., and Volkamer, R.: Computational study of the effect of glyoxal-sulfate clustering on the Henry's law coefficient of glyoxal, J. Phys. Chem. A, doi:10.1021/jp510304c, 2014.
- Kurz, J. and Ballschmiter, K.: Vapour pressures, aqueous solubilities, Henry's law constants, partition coefficients between gas/water ($K_{\rm gw}$), n-octanol/water ($K_{\rm ow}$) and gas/n-octanol ($K_{\rm go}$) of 106 polychlorinated diphenyl ethers (PCDE), Chemosphere, 38, 573–586, 1999.
- Kutsuna, S.: Determination of rate constants for aqueous reactions of HCFC-123 and HCFC-225ca with OH⁻ along with Henry's law constants of several HCFCs, Int. J. Chem. Kinetics, 45, 440–451, 2013.
- Kutsuna, S. and Hori, H.: Experimental determination of Henry's law constant of perfluorooctanoic acid (PFOA) at 298 K by means of an inert-gas stripping method with a helical plate, Atmos. Environ., 42, 8883–8892, 2008.
- Kutsuna, S. and Horia, H.: Experimental determination of Henry's law constants of trifluoroacetic acid at 278-298 K, Atmos. Environ., 42, 1399–1412, 2008.
- Kutsuna, S., Chen, L., Ohno, K., Tokuhashi, K., and Sekiya, A.: Henry's law constants and hydrolysis rate constants of 2,2,2-trifluoroethyl acetate and methyl trifluoroacetate, Atmos. Environ., 38, 725–732, 2004.
- Kutsuna, S., Chen, L., Abe, T., Mizukado, J., Uchimaru, T., Tokuhashi, K., and Sekiya, A.: Henry's law constants of 2,2,2trifluoroethyl formate, ethyl trifluoroacetate, and non-fluorinated analogous esters, Atmos. Environ., 39, 5884–5892, 2005.
- Lamarche, P. and Droste, R. L.: Air stripping mass transfer correlations for volatile organics, J. Am. Water Works Assoc., 81, 78–89, 1989.
- Latimer, W. M.: The Oxidation States of the Elements and their Potentials in Aqueous Solutions, Prentice-Hall, Englewood Cliffs, NJ, 1952.
- Lau, F. K., Charles, M. J., and Cahill, T. M.: Evaluation of gasstripping methods for the determination of Henry's law constants for polybrominated diphenyl ethers and polychlorinated biphenyls, J. Chem. Eng. Data, 51, 871–878, 2006.
- Lau, K., Rogers, T. N., and Chesney, D. J.: Measuring the aqueous Henry's law constant at elevated temperatures using an extended EPICS technique, J. Chem. Eng. Data, 55, 5144–5148, 2010.
- Lau, Y. L., Liu, D. L. S., Pacepavicius, G. J., and Maguire, R. J.: Volatilization of metolachlor from water, J. Environ. Sci. Health B, 30, 605–620, 1995.
- Ledbury, W. and Blair, E. W.: The partial formaldehyde vapour pressures of aqueous solutions of formaldehyde. Part II, J. Chem. Soc., 127, 2832–2839, 1925.
- Lee, H., Kim, H.-J., and Kwon, J.-H.: Determination of Henry's law constant using diffusion in air and water boundary layers, J. Chem. Eng. Data, 57, 3296–3302, 2012.

- Lee, S.-H., Mukherjee, S., Brewer, B., Ryan, R., Yu, H., and Gangoda, M.: A laboratory experiment to measure Henry's law constants of volatile organic compounds with a bubble column and a gas chromatography flame ionization detector (GC-FID), J. Chem. Educ., 90, 495–499, 2013.
- Lee, Y.-N. and Schwartz, S. E.: Reaction kinetics of nitrogen dioxide with liquid water at low partial pressure, J. Phys. Chem., 85, 840–848, 1981.
- Lee, Y.-N. and Zhou, X.: Method for the determination of some soluble atmospheric carbonyl compounds, Environ. Sci. Technol., 27, 749–756, 1993.
- Lee, Y.-N. and Zhou, X.: Aqueous reaction kinetics of ozone and dimethylsulfide and its atmospheric implications, J. Geophys. Res., 99D, 3597–3605, 1994.
- Lei, Y. D., Wania, F., Shiu, W. Y., and Boocock, D. G. B.: Temperature dependent vapor pressures of chlorinated catechols, syringols, and syringaldehydes, J. Chem. Eng. Data, 44, 200–202, 1999.
- Lei, Y. D., Wania, F., Mathers, D., and Mabury, S. A.: Determination of vapor pressures, octanol-air, and water-air partition coefficients for polyfluorinated sulfonamide, sulfonamidoethanols, and telomer alcohols, J. Chem. Eng. Data, 49, 1013–1022, 2004.
- Lei, Y. D., Shunthirasingham, C., and Wania, F.: Comparison of headspace and gas-stripping techniques for measuring the airwater partititioning of normal alkanols (C4 to C10) – effect of temperature, chain length and adsorption to the water surface, J. Chem. Eng. Data, 52, 168–179, 2007.
- Leighton, D. T. and Calo, J. M.: Distribution coefficients of chlorinated hydrocarbons in dilute air-water systems for groundwater contamination applications, J. Chem. Eng. Data, 26, 382–385, 1981
- Leistra, M.: Distribution of 1,3-dichloropropene over the phases in soil, J. Agric. Food Chem., 18, 1124–1126, 1970.
- Lekvam, K. and Bishnoi, P. R.: Dissolution of methane in water at low temperatures and intermediate pressures, Fluid Phase Equilib., 131, 297–309, 1997.
- Lelieveld, J. and Crutzen, P. J.: The role of clouds in tropospheric photochemistry, J. Atmos. Chem., 12, 229–267, 1991.
- Leng, C., Kish, J. D., Kelley, J., Mach, M., Hiltner, J., Zhang, Y., and Liu, Y.: Temperature-dependent Henry's law constants of atmospheric organics of biogenic origin, J. Phys. Chem. A, 117, 10359–10367, 2013.
- Leriche, M., Voisin, D., Chaumerliac, N., Monod, A., and Aumont, B.: A model for tropospheric multiphase chemistry: application to one cloudy event during the CIME experiment, Atmos. Environ., 34, 5015–5036, 2000.
- Lerman, J., Willis, M. M., Gregory, G. A., and Eger, E. I.: Osmolarity determines the solubility of anesthetics in aqueous solutions at 37 °C, Anesthesiology, 59, 554–558, 1983.
- Leu, M.-T. and Zhang, R.: Solubilities of CH₃C(O)O₂NO₂ and HO₂NO₂ in water and liquid H₂SO₄, Geophys. Res. Lett., 26, 1129–1132, 1999.
- Leuenberger, C., Ligocki, M. P., and Pankow, J. F.: Trace organic compounds in rain: 4. Identities, concentrations, and scavenging mechanisms for phenols in urban air and rain, Environ. Sci. Technol., 19, 1053–1058, 1985.
- Li, H., Ellis, D., and Mackay, D.: Measurement of low air-water partition coefficients of organic acids by evaporation from a water surface, J. Chem. Eng. Data, 52, 1580–1584, 2007.

- Li, J. and Carr, P. W.: Measurement of water-hexadecane partition coefficients by headspace gas chromatography and calculation of limiting activity coefficients in water, Anal. Chem., 65, 1443– 1450, 1993.
- Li, J., Dallas, A. J., Eikens, D. I., Carr, P. W., Bergmann, D. L., Hait, M. J., and Eckert, C. A.: Measurement of large infinite dilution activity coefficients of nonelectrolytes in water by inert gas stripping and gas chromatography, Anal. Chem., 65, 3212–3218, 1993
- Li, J., Perdue, E. M., Pavlostathis, S. G., and Araujo, R.: Physicochemical properties of selected monoterpenes, Environ. Int., 24, 353–358, 1998.
- Li, J.-Q., Shen, C.-Y., Xu, G.-H., Wang, H.-M., Jiang, H.-H., Han, H.-Y., Chu, Y.-N., and Zheng, P.-C.: Dynamic measurements of Henry's law constant of aromatic compounds using proton transfer reaction mass spectrometry, Acta Phys. Chim. Sin., 24, 705– 708, 2008.
- Li, N., Wania, F., Lei, Y. D., and Daly, G. L.: A comprehensive and critical compilation, evaluation, and selection of physicalchemical property data for selected polychlorinated biphenyls, J. Phys. Chem. Ref. Data, 32, 1545–1590, 2003.
- Lia, S., Chen, Z., and Shia, F.: Determination of Henry's Law constant for methyl hydroperoxide by long path FTIR, Prog. Nat. Sci., 14, 765–769, 2004.
- Lide, D. R. and Frederikse, H. P. R. (Eds.): CRC Handbook of Chemistry and Physics, 76th Edn., CRC Press, Inc., Boca Raton, FL, 1995.
- Lin, C.-J. and Pehkonen, S. O.: Oxidation of elemental mercury by aqueous chlorine (HOCl/OCl⁻): Implications for tropospheric mercury chemistry, J. Geophys. Res., 103D, 28093–28102, 1998.
- Lincoff, A. H. and Gossett, J. M.: The determination of Henry's law constant for volatile organics by equilibrium partitioning in closed systems, in: Gas transfer at water surfaces, edited by: Brutsaert, W. and Jirka, G. H., D. Reidel Publishing Company, Dordrecht-Holland, 17–25, 1984.
- Lind, J. A. and Kok, G. L.: Henry's law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid, J. Geophys. Res., 91D, 7889–7895, 1986.
- Lind, J. A. and Kok, G. L.: Correction to "Henry's law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid" by John A. Lind and Gregory L. Kok, J. Geophys. Res., 99D, 21119, 1994.
- Lindinger, W., Hansel, A., and Jordan, A.: On-line monitoring of volatile organic compounds at pptv levels by means of protontransfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research, Int. J. Mass Spectrom. Ion Proc., 173, 191–241, 1998.
- Lindqvist, O. and Rodhe, H.: Atmospheric mercury a review, Tellus, 37B, 136–159, 1985.
- Liss, P. S. and Slater, P. G.: Flux of gases across the air-sea interface, Nature, 247, 181–184, 1974.
- Liu, X., Guo, Z., Roache, N. F., Mocka, C. A., Allen, M. R., and Mason, M. A.: Henry's law constant and overall mass transfer coefficient for formaldehyde emission from small water pools under simulated indoor environmental conditions, Environ. Sci. Technol., 49, 1603–1610, 2015.
- Lodge, K. B. and Danso, D.: The measurement of fugacity and the Henry's law constant for volatile organic compounds containing chromophores, Fluid Phase Equilib., 253, 74–79, 2007.

- Loomis, A. G.: Solubilities of gases in water, in: International Critical Tables of Numerical Data, Physics, Chemistry and Technology, Vol. III, edited by: Washburn, E. W., West, C. J., Dorsey, N. E., Bichowsky, F. R., and Klemenc, A., McGraw-Hill, Inc., 255–261, 1928.
- Lovelock, J. E., Maggs, R. J., and Rasmussen, R. A.: Atmospheric dimethyl sulphide and the natural sulphur cycle, Nature, 237, 452–453, 1972.
- Luke, W. T., Dickerson, R. R., and Nunnermacker, L. J.: Direct measurements of the photolysis rate coefficients and Henry's law constants of several alkyl nitrates, J. Geophys. Res., 94D, 14905– 14921, 1989.
- Ma, Y.-G., Lei, Y. D., Xiao, H., Wania, F., and Wang, W.-H.: Critical review and recommended values for the physical-chemical property data of 15 polycyclic aromatic hydrocarbons at 25 °C, J. Chem. Eng. Data, 55, 819–825, 2010.
- Maahs, H. G.: Sulfur-dioxide/water equilibria between 0 ° and 50 °C. An examination of data at low concentrations, in: Heterogeneous Atmospheric Chemistry, Geophysical Monograph 26, edited by: Schryer, D. R., pp. 187–195, Am. Geophys. Union, Washington, D.C., 1982.
- Maaßen, S.: Experimentelle Bestimmung und Korrelierung von Verteilungskoeffizienten in verdünnten Lösungen, PhD thesis, Technische Universität Berlin, Germany, 1995.
- Mabury, S. A. and Crosby, D. G.: Pesticide reactivity toward hydroxyl and its relationship to field persistence, J. Agric. Food Chem., 44, 1920–1924, 1996.
- MacBean, C.: The Pesticide Manual, 16th Edition, Supplementary Entries Extended, Tech. rep., British Crop Production Council, available at: http://www.bcpcdata.com/_assets/files/PM16-supplementary-BCPC.pdf (last access: 10 April 2015), 2012a.
- MacBean, C.: The Pesticide Manual, British Crop Production Council, 2012b.
- Mackay, D. and Leinonen, P. J.: Rate of evaporation of low-solubility contaminants from water bodies to atmosphere, Environ. Sci. Technol., 9, 1178–1180, 1975.
- Mackay, D. and Shiu, W. Y.: A critical review of Henry's law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data, 10, 1175–1199, 1981.
- Mackay, D. and Yeun, A. T. K.: Mass transfer coefficient correlations for volatilization of organic solutes from water, Environ. Sci. Technol., 17, 211–217, 1983.
- Mackay, D., Shiu, W. Y., and Sutherland, R. P.: Determination of air-water Henry's law constants for hydrophobic pollutants, Environ. Sci. Technol., 13, 333–337, 1979.
- Mackay, D., Shiu, W. Y., and Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. I of Monoaromatic Hydrocarbons, Chlorobenzenes, and PCBs, Lewis Publishers, Boca Raton, 1992a.
- Mackay, D., Shiu, W. Y., and Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. II of Polynuclear Aromatic Hydrocarbons, Polychlorinated Dioxins, and Dibenzofurans, Lewis Publishers, Boca Raton, 1992b.
- Mackay, D., Shiu, W. Y., and Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Or-

- ganic Chemicals, vol. III of Volatile Organic Chemicals, Lewis Publishers, Boca Raton, 1993.
- Mackay, D., Shiu, W. Y., and Ma, K. C.: Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. IV of Oxygen, Nitrogen, and Sulfur Containing Compounds, Lewis Publishers, Boca Raton, 1995.
- Mackay, D., Shiu, W. Y., Ma, K. C., and Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. I of Introduction and Hydrocarbons, CRC/Taylor & Francis Group, 2006a.
- Mackay, D., Shiu, W. Y., Ma, K. C., and Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. II of Halogenated Hydrocarbons, CRC/Taylor & Francis Group, 2006b.
- Mackay, D., Shiu, W. Y., Ma, K. C., and Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. III of Oxygen Containing Compounds, CRC/Taylor & Francis Group, 2006c.
- Mackay, D., Shiu, W. Y., Ma, K. C., and Lee, S. C.: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. IV of Nitrogen and Sulfur Containing Compounds and Pesticides, CRC/Taylor & Francis Group, 2006d
- Manogue, W. H. and Pigford, R. L.: The kinetics of the absorption of phosgene into water and aqueous solutions, AIChE J., 6, 494– 500, 1960.
- Marin, M., Baek, I., and Taylor, A. J.: Volatile release from aqueous solutions under dynamic headspace dilution conditions, J. Agric. Food Chem., 47, 4750–4755, 1999.
- Markham, A. E. and Kobe, K. A.: The solubility of gases in liquids, Chem. Rev., 28, 519–588, 1941.
- Marsh, A. R. W. and McElroy, W. J.: The dissociation constant and Henry's law constant of HCl in aqueous solution, Atmos. Environ., 19, 1075–1080, 1985.
- Marti, J. J., Jefferson, A., Cai, X. P., Richert, C., McMurry, P. H., and Eisele, F.: H₂SO₄ vapor pressure of sulfuric acid and ammonium sulfate solutions, J. Geophys. Res., 102D, 3725–3735, 1997.
- Martikainen, P., Salmi, T., Paatero, E., Hummelstedt, L., Klein, P., Damén, H., and Lindroos, T.: Kinetics of homogeneous catalytic chlorination of acetic acid, J. Chem. Tech. Biotechnol., 40, 259– 274, 1987.
- Martin, L. R.: Kinetic studies of sulfite oxidation in aqueous solution, in: SO₂, NO and NO₂ Oxidation Mechanisms: Atmospheric Considerations, edited by: Calvert, J. G., Butterworth Publishers, Boston, MA, 63–100, 1984.
- Martin, L. R. and Damschen, D. E.: Aqueous oxidation of sulfur dioxide by hydrogen peroxide at low pH, Atmos. Environ., 15, 1615–1621, 1981.
- Mazzoni, S. M., Roy, S., and Grigoras, S.: Eco-relevant properties of selected organosilicon materials, in: The Handbook of Environmental Chemistry, Vol 3. Part H. Organosilicon Materials, edited by: Chandra, G., Springer Verlag, Berlin, 53–81, 1997.
- McAuliffe, C.: GC determination of solutes by multiple phase equilibrium, Chem. Technol., 1, 46–51, 1971.
- McCarty, P. L.: Organics in water an engineering challenge, J. Environ. Eng. Div., 106, 1–17, 1980.
- McConnell, G., Ferguson, D. M., and Pearson, C. R.: Chlorinated hydrocarbons and the environment, Endeavour, 34, 13–18, 1975.

- McDevit, W. F. and Long, F. A.: The activity coefficient of benzene in aqueous salt solutions, J. Am. Chem. Soc., 74, 1773–1777, 1952.
- McLachlan, M., Mackay, D., and Jones, P. H.: A conceptual model of organic chemical volatilization at waterfalls, Environ. Sci. Technol., 24, 252–257, 1990.
- McLinden, M. O.: Physical properties of alternatives to the fully halogenated chlorofluorocarbons, in: WMO Report 20, Scientific Assessment of Stratospheric Ozone: 1989, Volume II, World Meteorol. Organ., Geneva, 11–38, 1989.
- McNeill, V. F., Woo, J. L., Kim, D. D., Schwier, A. N., Wannell, N. J., Sumner, A. J., and Barakat, J. M.: Aqueous-phase secondary organic aerosol and organosulfate formation in atmospheric aerosols: a modeling study, Environ. Sci. Technol., 46, 8075–8081, 2012.
- McPhedran, K. N., Seth, R., and Drouillard, K. G.: Evaluation of the gas stripping technique for calculation of Henry's law constants using the initial slope method for 1,2,4,5-tetrachlorobenzene, pentachlorobenzene, and hexachlorobenzene, Chemosphere, 91, 1648–1652, 2013.
- Meadows, R. W. and Spedding, D. J.: The solubility of very low concentrations of carbon monoxide in aqueous solution, Tellus, 26, 143–149, 1974.
- Mentel, T. F., Folkers, M., Tillmann, R., Henk, H., Wahner, A., Otjes, R., Blom, M., and ten Brink, H. M.: Determination of the Henry coefficients for organic aerosol components, Geophys. Res. Abstr., 6, 1525, 2004.
- Metcalfe, C. D., McLeese, D. W., and Zitko, V.: Rate of volatilization of fenitrothion from fresh water, Chemosphere, 9, 151–155, 1980.
- Meylan, W. M. and Howard, P. H.: Bond contribution method for estimating Henry's law constants, Environ. Toxicol. Chem., 10, 1283–1293, 1991.
- Miller, M. E. and Stuart, J. D.: Measurement of aqueous Henry's law constants for oxygenates and aromatics found in gasolines by the static headspace method, Anal. Chem., 72, 622–625, 2000.
- Miller, M. E. and Stuart, J. D.: Correction: Measurement of aqueous Henry's law constants for oxygenates and aromatics found in gasolines by the static headspace method, Anal. Chem., 75, 1037, 2003.
- Mills, I., Cvitaš, T., Homann, K., Kallay, N., and Kuchitsu, K.: International Union of Pure and Applied Chemistry: Quantities, Units and Symbols in Physical Chemistry, Blackwell Science, Boca Raton, available at: http://old.iupac.org/publications/books/gbook/green_book_2ed.pdf (last access: 10 April 2015), 1993
- Mirabel, P., George, C., Magi, L., and Ponche, J. L.: Chapter 6.3: Gas-liquid interactions, in: Heterogeneous and Liquid-Phase Processes, edited by: Warneck, P., Springer Verlag, Berlin, 175–181, 1996.
- Mirvish, S. S., Issenberg, P., and Sornson, H. C.: Air–water and ether–water distribution of N–nitroso compounds: implications for laboratory safety, analytic methodology, and carcinogenicity for the rat esophagus, nose, and liver, J. Natl. Cancer Inst., 56, 1125–1129, 1976.
- Modarresi, H., Modarress, H., and Dearden, J. C.: QSPR model of Henry's law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach, Chemosphere, 66, 2067–2076, 2007.

- Mohebbi, V., Naderifar, A., Behbahani, R. M., and Moshfeghian, M.: Determination of Henry's law constant of light hydrocarbon gases at low temperatures, J. Chem. Thermodyn., 51, 8–11, 2012.
- Möller, D. and Mauersberger, G.: Aqueous phase chemical reaction system used in cloud chemistry modelling, in: EUROTRAC Special Publication: Clouds: Models and Mechanisms, edited by: Flossmann, A., Cvitaš, T., Möller, D., and Mauersberger, G., 77–93, 1992.
- Moore, R. M.: The solubility of a suite of low molecular weight organochlorine compounds in seawater and implications for estimating the marine source of methyl chloride to the atmosphere, Chemosphere; Global Change Sci., 2, 95–99, 2000.
- Moore, R. M., Geen, C. E., and Tait, V. K.: Determination of Henry's law constants for a suite of naturally occurring halogenated methanes in seawater, Chemosphere, 30, 1183–1191, 1995.
- Morrison, T. J. and Johnstone, N. B.: Solubilities of the inert gases in water, J. Chem. Soc., 3441–3446, 1954.
- Mozurkewich, M.: Comment on "Possible role of NO₃ in the nighttime chemistry of a cloud" by William L. Chameides, J. Geophys. Res., 91D, 14569–14570, 1986.
- Mozurkewich, M.: Mechanisms for the release of halogens from sea-salt particles by free radical reactions, J. Geophys. Res., 100D, 14199–14207, 1995.
- Muir, D. C. G., Teixeira, C., and Wania, F.: Empirical and modeling evidence of regional atmospheric transport of current-use pesticides, Environ. Toxicol. Chem., 23, 2421–2432, 2004.
- Müller, B. and Heal, M. R.: The Henry's law coefficient of 2-nitrophenol over the temperature range 278–303 K, Chemosphere, 45, 309–314, 2001.
- Munson, E. S., Saidman, L. J., and Eger, E. I.: Solubility of fluroxene in blood and tissue homogenates, Anesthesiology, 25, 638– 640, 1964.
- Munz, C. and Roberts, P. V.: Effects of solute concentration and cosolvents on the aqueous activity coefficient of halogenated hydrocarbons, Environ. Sci. Technol., 20, 830–836, 1986.
- Munz, C. and Roberts, P. V.: Air-water phase equilibria of volatile organic solutes, J. Am. Water Works Assoc., 79, 62–69, 1987.
- Murphy, T. J., Pokojowczyk, J. C., and Mullin, M. D.: Vapor exchange of PCBs with Lake Michigan: The atmosphere as a sink for PCBs, in: Physical Behavior of PCBs in the Great Lakes, edited by: Mackay, D., Patterson, S., Eisenreich, S. J., and Simmons, M. S., Ann Arbor Science, Ann Arbor, Mich., 49–58, 1983.
- Murphy, T. J., Mullin, M. D., and Meyer, J. A.: Equilibration of polychlorinated biphenyls and toxaphene with air and water, Environ. Sci. Technol., 21, 155–162, 1987.
- Myrdal, P. and Yalkowsky, S. H.: A simple scheme for calculating aqueous solubility, vapor pressure and Henry's law constant: application to the chlorobenzenes, SAR QSAR Environ. Res., 2, 17–28, 1994.
- Nelson, P. E. and Hoff, J. E.: Food volatiles: Gas chromatographic determination of partition coefficients in water-lipid systems, Int. J. Mass Spectrom., 228, 479–482, 1968.
- Ni, N., El-Sayed, M. M., Sanghvi, T., and Yalkowsky, S. H.: Estimation of the effect of NaCl on the solubility of organic compounds in aqueous solution, J. Pharm. Sci., 89, 1620–1625, 2000.

- Nicholson, B. C., Maguire, B. P., and Bursill, D. B.: Henry's law constants for the trihalomethanes: Effects of water composition and temperature, Environ. Sci. Technol., 18, 518–521, 1984.
- Nielsen, F., Olsen, E., and Fredenslund, A.: Henry's law constants and infinite dilution activity coefficients for volatile organic compounds in water by a validated batch air stripping method, Environ. Sci. Technol., 28, 2133–2138, 1994.
- Niinemets, U. and Reichstein, M.: A model analysis of the effects of nonspecific monoterpenoid storage in leaf tissues on emission kinetics and composition in Mediterranean sclerophyllous Quercus species, Global Biogeochem. Cy., 16, 1110, doi:10.1029/2002GB001927, 2002.
- Nirmalakhandan, N., Brennan, R. A., and Speece, R. E.: Predicting Henry's law constant and the effect of temperature on Henry's law constant, Wat. Res., 31, 1471–1481, 1997.
- Nirmalakhandan, N. N. and Speece, R. E.: QSAR model for predicting Henry's constant, Environ. Sci. Technol., 22, 1349–1357, 1988a.
- Nirmalakhandan, N. N. and Speece, R. E.: Prediction of aqueous solubility of organic chemicals based on molecular structure, Environ. Sci. Technol., 22, 328–338, 1988b.
- Odabasi, M., Cetin, B., and Sofuoglu, A.: Henry's law constant, octanol-air partition coefficient and supercooled liquid vapor pressure of carbazole as a function of temperature: Application to gas/particle partitioning in the atmosphere, Chemosphere, 62, 1087–1096, 2006.
- Oliver, B. G.: Desorption of chlorinated hydrocarbons from spiked and anthropogenically contaminated sediments, Chemosphere, 14, 1087–1106, 1985.
- Olson, J. D.: The vapor pressure of pure and aqueous glutaraldehyde, Fluid Phase Equilib., 150–151, 713–720, 1998.
- Opresko, D. M., Young, R. A., Faust, R. A., Talmage, S. S., Watson, A. P., Ross, R. H., Davidson, K. A., and King, J.: Chemical warfare agents: estimating oral reference doses, Rev. Environ. Contam. Toxicol., 156, 1–183, 1998.
- O'Sullivan, D. W., Lee, M., Noone, B. C., and Heikes, B. G.: Henry's law constant determinations for hydrogen peroxide, methyl hydroperoxide, hydroxymethyl hydroperoxide, ethyl hydroperoxide, and peroxyacetic acid, J. Phys. Chem., 100, 3241–3247, 1996.
- Otto, S., Riello, L., Düring, R.-A., Hummel, H. E., and Zanin, G.: Herbicide dissipation and dynamics modelling in three different tillage systems, Chemosphere, 34, 163–178, 1997.
- Paasivirta, J. and Sinkkonen, S. I.: Environmentally relevant properties of all 209 polychlorinated biphenyl congeners for modeling their fate in different natural and climatic conditions, J. Chem. Eng. Data, 54, 1189–1213, 2009.
- Paasivirta, J., Sinkkonen, S., Mikkelson, P., Rantio, T., and Wania, F.: Estimation of vapor pressures, solubilities and Henry's law constants of selected persistent organic pollutants as functions of temperature, Chemosphere, 39, 811–832, 1999.
- Palmer, D. A., Ramette, R. W., and Mesmer, R. E.: The hydrolysis of iodine: Equilibria at high temperatures, J. Nucl. Mater., 130, 280–286, 1985.
- Pandis, S. N. and Seinfeld, J. H.: Sensitivity analysis of a chemical mechanism for aqueous-phase atmospheric chemistry, J. Geophys. Res., 94D, 1105–1126, 1989.
- Pankow, J. F., Rathbun, R. E., and Zogorski, J. S.: Calculated volatilization rates of fuel oxygenate compounds and other

- gasoline-related compounds from rivers and streams, Chemosphere, 33, 921–937, 1996.
- Park, J. H., Hussam, A., Couasnon, P., Fritz, D., and Carr, P. W.: Experimental reexamination of selected partition coefficients from Rohrschneider's data set, Anal. Chem., 59, 1970–1976, 1987.
- Park, J.-Y. and Lee, Y.-N.: Solubility and decomposition kinetics of nitrous acid in aqueous solution, J. Phys. Chem., 92, 6294–6302, 1988.
- Park, S.-J., Han, S.-D., and Ryu, S.-A.: Measurement of air/water partition coefficient (Henry's law constant) by using EPICS method and their relationship with vapor pressure and water solubility, J. Korean Inst. Chem. Eng., 35, 915–920, 1997.
- Park, T., Rettich, T. R., Battino, R., Peterson, D., and Wilhelm, E.: Solubility of gases in liquids. 14. Bunsen coefficients for several fluorine-containing gases (Freons) dissolved in water at 298.15 K, J. Chem. Eng. Data, 27, 324–326, 1982.
- Parsons, G. H., Rochester, C. H., and Wood, C. E. C.: Effect of 4substitution on the thermodynamics of hydration of phenol and the phenoxide anion, J. Chem. Soc. B, 533–536, 1971.
- Parsons, G. H., Rochester, C. H., Rostron, A., and Sykes, P. C.: The thermodynamics of hydration of phenols, J. Chem. Soc. Perkin Trans. 2, 136–138, 1972.
- Pearson, C. R. and McConnell, G.: Chlorinated C₁ and C₂ hydrocarbons in the marine environment, Proc. R. Soc. Lond. B, 189, 305–332, 1975.
- Pecsar, R. E. and Martin, J. J.: Solution thermodynamics from gasliquid chromatography, Anal. Chem., 38, 1661–1669, 1966.
- Peng, J. and Wan, A.: Measurement of Henry's constants of high-volatility organic compounds using a headspace autosampler, Environ. Sci. Technol., 31, 2998–3003, 1997.
- Peng, J. and Wan, A.: Effect of ionic strength on Henry's constants of volatile organic compounds, Chemosphere, 36, 2731–2740, 1998.
- Perlinger, J. A., Eisenreich, S. J., and Capel, P. D.: Application of headspace analysis to the study of sorption of hydrophobic organic chemicals to α-Al₂O₃, Environ. Sci. Technol., 27, 928– 937, 1993.
- Perry, R. H. and Chilton, C. H.: Chemical Engineers' Handbook, 5th edition, McGraw-Hill, Inc., 1973.
- Petersen, G., Pleijel, J. M. K., Bloxam, R., and Vinod Kumar, A.: A comprehensive Eulerian modeling framework for airborne mercury species: Development and testing of the tropospheric chemistry module (TCM), Atmos. Environ., 32, 829–843, 1998.
- Petrasek, A. C., Kugelman, I. J., Austern, B. M., Pressley, T. A., Winslow, L. A., and Wise, R. H.: Fate of toxic organic compounds in wastewater treatment plants, J. Water Pollut. Control Fed., 55, 1286–1296, 1983.
- Pfeifer, O., Lohmann, U., and Ballschmiter, K.: Halogenated methyl-phenyl ethers (anisoles) in the environment: Determination of vapor pressures, aqueous solubilities, Henry's law constants, and gas/water- ($K_{\rm gw}$), n-octanol/water- ($K_{\rm ow}$) and gas/noctanol ($K_{\rm go}$) partition coefficients, Fresenius J. Anal. Chem., 371, 598–606, 2001.
- Pierotti, G. J., Deal, C. H., and Derr, E. L.: Activity coefficients and molecular structure, Ind. Eng. Chem., 51, 95–102, (data in supplement, document no. 5782, American Documentation Institute, Library of Congress, Washington, D.C.), 1959.
- Plassmann, M. M., Meyer, T., Lei, Y. D., Wania, F., McLachlan, M. S., and Berger, U.: Theoretical and experimental simulation

- of the fate of semifluorinated n-alkanes during snowmelt, Environ. Sci. Technol., 44, 6692–6697, 2010.
- Plassmann, M. M., Meyer, T., Lei, Y. D., Wania, F., McLachlan, M. S., and Berger, U.: Laboratory studies on the fate of perfluoroalkyl carboxylates and sulfonates during snowmelt, Environ. Sci. Technol., 45, 6872–6878, 2011.
- Plyasunov, A. V.: Thermodynamics of Si(OH)₄ in the vapor phase of water: Henry's and vapor-liquid distribution constants, fugacity and cross virial coefficients, Geochim. Cosmochim. Acta, 77, 215–231, 2012.
- Podoll, R. T., Jaber, H. M., and Mill, T.: Tetrachlorodibenzodioxin: rates of volatilization and photolysis in the environment, Environ. Sci. Technol., 20, 490–492, 1986.
- Pollien, P., Jordan, A., Lindinger, W., and Yeretzian, C.: Liquid-air partitioning of volatile compounds in coffee: dynamic measurements using proton-transfer-reaction mass spectrometry, Int. J. Mass Spectrom., 228, 69–80, 2003.
- Poulain, L., Katrib, Y., Isikli, E., Liu, Y., Wortham, H., Mirabel, P., Le Calvé, S., and Monod, A.: In-cloud multiphase behaviour of acetone in the troposphere: Gas uptake, Henry's law equilibrium and aqueous phase photooxidation, Chemosphere, 81, 312–320, 2010.
- Przyjazny, A., Janicki, W., Chrzanowski, W., and Staszewski, R.: Headspace gas chromatographic determination of distribution coefficients of selected organosulphur compounds and their dependence on some parameters, J. Chromatogr., 280, 249–260, 1983.
- Ramachandran, B. R., Allen, J. M., and Halpern, A. M.: Air-water partitioning of environmentally important organic compounds, J. Chem. Educ., 73, 1058–1061, 1996.
- Rathbun, R. E. and Tai, D. Y.: Volatilization of ketones from water, Water Air Soil Pollut., 17, 281–293, 1982.
- Raventos-Duran, T., Camredon, M., Valorso, R., Mouchel-Vallon, C., and Aumont, B.: Structure-activity relationships to estimate the effective Henry's law constants of organics of atmospheric interest, Atmos. Chem. Phys., 10, 7643–7654, doi:10.5194/acp-10-7643-2010, 2010.
- Régimbal, J.-M. and Mozurkewich, M.: Peroxynitric acid decay mechanisms and kinetics at low pH, J. Phys. Chem. A, 101, 8822–8829, 1997.
- Reichl, A.: Messung und Korrelierung von Gaslöslichkeiten halogenierter Kohlenwasserstoffe, PhD thesis, Technische Universität Berlin, Germany, 1995.
- Rettich, T. R., Handa, Y. P., Battino, R., and Wilhelm, E.: Solubility of gases in liquids. 13. High-precision determination of Henry's constants for methane and ethane in liquid water at 275 to 328 K, J. Phys. Chem., 85, 3230–3237, 1981.
- Rettich, T. R., Battino, R., and Wilhelm, E.: Solubility of gases in liquids. XVI. Henry's law coefficients for nitrogen in water at 5 to 50 °C, J. Solution Chem., 13, 335–348, 1984.
- Rettich, T. R., Battino, R., and Wilhelm, E.: Solubility of gases in liquids. 18. High-precision determination of Henry fugacities for argon in liquid water at 2 to 40 °C, J. Solution Chem., 21, 987–1004, 1992.
- Rex, A.: Über die Löslichkeit der Halogenderivate der Kohlenwasserstoffe in Wasser, Z. Phys. Chem., 55, 355–370, 1906.
- Reyes-Pérez, E., Le Calvé, S., and Mirabel, P.: UV absorption spectrum and Henry's law constant of EPTC, Atmos. Environ., 42, 7940–7946, 2008.

- Reza, J. and Trejo, A.: Temperature dependence of the infinite dilution activity coefficient and Henry's law constant of polycyclic aromatic hydrocarbons in water, Chemosphere, 56, 537–547, 2004.
- Rice, C. P., Chernyak, S. M., Hapeman, C. J., and Biboulian, S.: Airwater distribution of the endosulfan isomers, J. Environ. Qual., 26, 1101–1106, 1997a.
- Rice, C. P., Chernyak, S. M., and McConnell, L. L.: Henry's law constants for pesticides measured as a function of temperature and salinity, J. Agric. Food Chem., 45, 2291–2298, 1997b.
- Riederer, M.: Estimating partitioning and transport of organic chemicals in the foliage/atmosphere system: discussion of a fugacity-based model, Environ. Sci. Technol., 24, 829–837, 1990
- Rinker, E. B. and Sandall, O. C.: Physical solubility of hydrogen sulfide in several aqueous solvents, Can. J. Chem. Eng., 78, 232– 236, 2000.
- Riveros, P. A., Koren, D., McNamara, V. M., and Binvignat, J.: Cyanide recovery from a gold mill barren solution containing high levels of copper, CIM Bull., 91, 73–81, 1998.
- Robbins, G. A., Wang, S., and Stuart, J. D.: Using the headspace method to determine Henry's law constants, Anal. Chem., 65, 3113–3118, 1993.
- Roberts, D. D. and Pollien, P.: Analysis of aroma release during microwave heating, J. Agric. Food Chem., 45, 4388–4392, 1997.
- Roberts, J. M., Osthoff, H. D., Brown, S. S., and Ravishankara, A. R.: N₂O₅ oxidizes chloride to Cl₂ in acidic atmospheric aerosol, Science, 321, 1059, doi:10.1126/science.1158777, 2008.
- Roberts, J. M., Veres, P. R., Cochran, A. K., Warneke, C., Burling, I. R., Yokelson, R. J., Lerner, B., Gilman, J. B., Kuster, W. C., Fall, R., and de Gouw, J.: Isocyanic acid in the atmosphere and its possible link to smoke-related health effects, Proc. Natl. Acad. Sci. USA, 108, 8966–8971, 2011.
- Rochester, H. and Symonds, J. R.: Thermodynamic studies of fluoroalcohols. Part 3. The thermodynamics of transfer of five fluoroalcohols from the gas-phase to aqueous solution, J. Chem. Soc. Faraday Trans. 1, 69, 1577–1585, 1973.
- Rohrschneider, L.: Solvent characterization by gas-liquid partition coefficients of selected solutes, Anal. Chem., 45, 1241–1247, 1973
- Ross, S. and Hudson, J. B.: Henry's law constants of butadiene in aqueous solutions of a cationic surfactant, J. Colloid Sci., 12, 523–525, doi:10.1016/0095-8522(57)90054-5, 1957.
- Roth, J. A. and Sullivan, D. E.: Solubility of ozone in water, Ind. Eng. Chem. Fund., 20, 137–140, 1981.
- Rubbiani, M.: CLH Report for Brodifacoum, Tech. rep., European Chemicals Agency (ECHA), available at: http://echa.europa.eu/documents/10162/13626/clh_proposal_brodifacoum_dd006368-57_en.pdf (last access: 10 April 2015), 2013.
- Rudich, Y., Talukdar, R. K., Ravishankara, A. R., and Fox, R. W.: Reactive uptake of NO₃ on pure water and ionic solutions, J. Geophys. Res., 101D, 21023–21031, 1996.
- Russell, C. J., Dixon, S. L., and Jurs, P. C.: Computer-assisted study of the relationship between molecular structure and Henry's law constant, Anal. Chem., 64, 1350–1355, 1992.
- Ryan, J. A., Bell, R. M., Davidson, J. M., and O'Connor, G. A.: Plant uptake of non-ionic organic chemicals from soils, Chemosphere, 17, 2299–2323, 1988.

- Rytting, J. H., Huston, L. P., and Higuchi, T.: Thermodynamic group contributions for hydroxyl, amino, and methylene groups, J. Pharm. Sci., 69, 615–618, 1978.
- Ryu, S.-A. and Park, S.-J.: A rapid determination method of the air/water partition coefficient and its application, Fluid Phase Equilib., 161, 295–304, 1999.
- Sabljić, A. and Güsten, H.: Predicting Henry's law constants for polychlorinated biphenyls, Chemosphere, 19, 1503–1511, 1989.
- Saçan, M. T., Özkul, M., and Erdem, S. S.: Physico-chemical properties of PCDD/PCDFs and phthalate esters, SAR QSAR Environ. Res., 16, 443–459, 2005.
- Sagebiel, J. C., Seiber, J. N., and Woodrow, J. E.: Comparison of headspace and gas-stripping methods for determining the Henry's law constant (*H*) for organic compounds of low to intermediate *H*, Chemosphere, 25, 1763–1768, 1992.
- Sahsuvar, L., Helm, P. A., Jantunen, L. M., and Bidleman, T. F.: Henry's law constants for α -, β -, and γ -hexachlorocyclohexanes (HCHs) as a function of temperature and revised estimates of gas exchange in Arctic regions, Atmos. Environ., 37, 983–992, 2003.
- Sander, R.: Modeling atmospheric chemistry: Interactions between gas-phase species and liquid cloud/aerosol particles, Surv. Geophys., 20, 1–31, 1999.
- Sander, R. and Crutzen, P. J.: Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea, J. Geophys. Res., 101D, 9121–9138, doi:10.1029/95JD03793, 1996.
- Sander, R., Lelieveld, J., and Crutzen, P. J.: Modelling of the nighttime nitrogen and sulfur chemistry in size resolved droplets of an orographic cloud, J. Atmos. Chem., 20, 89–116, 1995.
- Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., and Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, available at: http://jpldataeval.jpl.nasa.gov (last access: 10 April 2015), 2006.
- Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, available at: http://jpldataeval.jpl.nasa.gov (last access: 10 April 2015), 2011.
- Sanders, P. F. and Seiber, J. N.: A chamber for measuring volatilization of pesticides from model soil and water disposal systems, Chemosphere, 12, 999–1012, 1983.
- Sanemasa, I.: The solubility of elemental mercury vapor in water, Bull. Chem. Soc. Jpn., 48, 1795–1798, 1975.
- Sanemasa, I., Akari, M., Deguchi, T., and Nagai, H.: Solubilities of benzene and the alkylbenzenes in water method for obtaining aqueous solutions saturated with vapours in equilibrium with organic liquids, Chem. Lett., 10, 225–228, 1981.
- Sanemasa, I., Araki, M., Deguchi, T., and Nagai, H.: Solubility measurements of benzene and the alkylbenzenes in water by making use of solute vapor, Bull. Chem. Soc. Jpn., 55, 1054–1062, 1982.
- Sanemasa, I., Arakawa, S., Araki, M., and Deguchi, T.: The effects of salts on the solubilities of benzene, toluene, ethylbenzene, and propylbenzene in water, Bull. Chem. Soc. Jpn., 57, 1539–1544, 1984.

- Santl, H., Brandsch, R., and Gruber, L.: Experimental determination of Henry's law constant (HLC) for some lower chlorinated dibenzodioxins, Chemosphere, 29, 2209–2214, 1994.
- Sarraute, S., Delepine, H., Costa Gomes, M. F., and Majer, V.: Aqueous solubility, Henry's law constants and air/water partition coefficients of n-octane and two halogenated octanes, Chemosphere, 57, 1543–1551, 2004.
- Sarraute, S., Mokbel, I., Costa Gomes, M. F., Majer, V., Delepine, H., and Jose, J.: Vapour pressures, aqueous solubility, Henry's law constants and air/water partition coefficients of 1,8dichlorooctane and 1,8-dibromooctane, Chemosphere, 64, 1829– 1836, 2006.
- Sato, A. and Nakajima, T.: Partition coefficients of some aromatic hydrocarbons and ketones in water, blood and oil, Br. J. Ind. Med., 36, 231–234, 1979a.
- Sato, A. and Nakajima, T.: A structure-activity relationship of some chlorinated hydrocarbons, Arch. Environ. Health, 34, 69–75, 1979b.
- Sauer, F.: Bestimmung von H₂O₂ und organischen Peroxiden in Labor- und Feldmessungen mittels Umkehrphasen-Hochdruck-Flüssigkeitschromatographie und enzymatischer Nachsäulenderivatisierung, PhD thesis, Johannes Gutenberg-Universität, Mainz, Germany, 1997.
- Savary, G., Hucher, N., Petibon, O., and Grisel, M.: Study of interactions between aroma compounds and acacia gum using headspace measurements, Food Hydrocolloids, 37, 1–6, 2014.
- Saxena, P. and Hildemann, L. M.: Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem., 24, 57–109, 1996.
- Saylor, J. H., Stuckey, J. M., and Gross, P. M.: Solubility studies. V. the validity of Henry's law for the calculation of vapor solubilities, J. Am. Chem. Soc., 60, 373–376, 1938.
- Sazonov, V. P. and Shaw, D. G.: Introduction to the solubility data series, available at: http://srdata.nist.gov/solubility/intro.aspx (last access: 10 April 2015), 2006.
- Schaffer, D. L. and Daubert, T. E.: Gas-liquid chromatographic determination of solution properties of oxygenated compounds in water, Anal. Chem., 41, 1585–1589, 1969.
- Scharlin, P. (Ed.): IUPAC Solubility Data Series, vol. 62 of Carbon Dioxide in Water and Aqueous Solutions, Oxford University Press, 1996.
- Scharlin, P. and Battino, R.: Solubility of CCl₂F₂, CClF₃, CF₄ and c-C₄F₈ in H₂O and D₂O at 288 to 318 K and 101.325 kPa. Thermodynamics of transfer of gases from H₂O to D₂O, Fluid Phase Equilib., 95, 137–147, 1994.
- Scheer, V., Frenzel, A., Behnke, W., Zetzsch, C., Magi, L., George, C., and Mirabel, P.: Uptake of nitrosyl chloride (NOCl) by aqueous solutions, J. Phys. Chem. A, 101, 9359–9366, 1997.
- Schoene, K. and Steinhanses, J.: Determination of Henry's law constant by automated head space-gas chromatography, Fresenius J. Anal. Chem., 321, 538–543, 1985.
- Schroeder, W. H. and Munthe, J.: Atmospheric mercury An overview, Atmos. Environ., 32, 809–822, 1998.
- Schroy, J. M., Hileman, F. D., and Cheng, S. C.: Physical/chemical properties of 2,3,7,8-TCDD, Chemosphere, 14, 877–880, 1985.
- Schuhfried, E., Biasioli, F., Aprea, E., Cappellin, L., Soukoulis, C., Ferrigno, A., Märk, T. D., and Gasperi, F.: PTR-MS measurements and analysis of models for the calculation of Henry's law

- constants of monosulfides and disulfides, Chemosphere, 83, 311–317, 2011.
- Schurath, U., Bongartz, A., Kames, J., Wunderlich, C., and Carstens, T.: Chapter 6.4: Laboratory determination of physicochemical rate parameters pertinent to mass transfer into cloud and fog droplets, in: Heterogeneous and Liquid-Phase Processes, edited by: Warneck, P., Springer Verlag, Berlin, 182–189, 1996.
- Schüürmann, G.: Prediction of Henry's law constant of benzene derivatives using quantum chemical continuum-solvation models, J. Comput. Chem., 21, 17–34, 2000.
- Schwartz, S. E.: Gas- and aqueous-phase chemistry of HO₂ in liquid water clouds, J. Geophys. Res., 89D, 11589–11598, 1984.
- Schwartz, S. E.: Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid-water clouds, in: Chemistry of Multiphase Atmospheric Systems, NATO ASI Series, Vol. G6, edited by: Jaeschke, W., Springer Verlag, Berlin, 415–471, 1986.
- Schwartz, S. E. and White, W. H.: Solubility equilibria of the nitrogen oxides and oxyacids in dilute aqueous solution, in: Advances in Environmental Science and Engineering, edited by: Pfafflin, J. R. and Ziegler, E. N., Gordon and Breach Science Publishers, NY, vol. 4, 1–45, 1981.
- Schwarz, F. P. and Wasik, S. P.: A fluorescence method for the measurement of the partition coefficients of naphthalene, 1methylnaphthalene, and 1-ethylnaphthalene in water, J. Chem. Eng. Data, 22, 270–273, 1977.
- Schwarz, H. A. and Bielski, B. H. J.: Reactions of HO_2 and O_2^- with iodine and bromine and the I_2^- and I atom reduction potentials, J. Phys. Chem., 90, 1445–1448, 1986.
- Schwarz, H. A. and Dodson, R. W.: Equilibrium between hydroxyl radicals and thallium(II) and the oxidation potential of OH(aq), J. Phys. Chem., 88, 3643–3647, 1984.
- Schwarzenbach, R. P., Stierli, R., Folsom, B. R., and Zeyer, J.: Compound properties relevant for assessing the environmental partitioning of nitrophenols, Environ. Sci. Technol., 22, 83–92, 1988.
- Seinfeld, J. H.: Atmospheric Chemistry and Physics of Air Pollution, Wiley-Interscience Publication, NY, 1986.
- Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, John Wiley & Sons, Inc., 1998.
- Servant, J., Kouadio, G., Cros, B., and Delmas, R.: Carboxylic monoacids in the air of Mayombe forest (Congo): Role of the forest as a source or sink, J. Atmos. Chem., 12, 367–380, 1991.
- Setschenow, J.: Über die Konstitution der Salzlösungen auf Grund ihres Verhaltens zu Kohlensäure, Z. Phys. Chem., 4, 117–125, 1889.
- Severit, P.: Experimentelle Untersuchung der Desorption von Quecksilber und Quecksilberverbindungen aus wässrigen Lösungen, diplomarbeit, Universität Köln, Germany, 1997.
- Seyfioglu, R. and Odabasi, M.: Determination of Henry's law constant of formaldehyde as a function of temperature: Application to air-water exchange in Tahtali lake in Izmir, Turkey, Environ. Monit. Assess., 128, 343–349, 2007.
- Shaw, D. G. (Ed.): IUPAC Solubility Data Series, vol. 37/38 of Hydrocarbons with Water and Seawater, Pergamon Press, Oxford, England, 1989.
- Sheikheldin, S. Y., Cardwell, T. J., Cattrall, R. W., Luque de Castro, M. D., and Kolev, S. D.: Determination of Henry's law constants of phenols by pervaporation-flow injection analysis, Environ. Sci. Technol., 35, 178–181, 2001.

- Shen, L. and Wania, F.: Compilation, evaluation, and selection of physical-chemical property data for organochlorine pesticides, J. Chem. Eng. Data, 50, 742–768, 2005.
- Shen, T. T.: Estimation of organic compound emissions from waste lagoons, J. Air Pollut. Control Assoc., 32, 79–82, 1982.
- Shepson, P. B., Mackay, E., and Muthuramu, K.: Henry's law constants and removal processes for several atmospheric β -hydroxy alkyl nitrates, Environ. Sci. Technol., 30, 3618–3623, 1996.
- Shi, Q., Davidovits, P., Jayne, J. T., Worsnop, D. R., and Kolb, C. E.: Uptake of gas-phase ammonia. 1. Uptake by aqueous surfaces as a function of pH, J. Phys. Chem. A, 103, 8812–8823, 1999.
- Shimotori, T. and Arnold, W. A.: Measurement and estimation of Henry's law constants of chlorinated ethylenes in aqueous surfactant solutions, J. Chem. Eng. Data, 48, 253–261, 2003.
- Shiu, W. Y. and Ma, K.-C.: Temperature dependence of physicalchemical properties of selected chemicals of environmental interest. I. mononuclear and polynuclear aromatic hydrocarbons, J. Phys. Chem. Ref. Data, 29, 41–130, 2000.
- Shiu, W. Y. and Mackay, D.: A critical review of aqueous solubilities, vapor pressures, Henry's law constants, and octanol-water partition coefficients of the polychlorinated biphenyls, J. Phys. Chem. Ref. Data, 15, 911–929, 1986.
- Shiu, W.-Y. and Mackay, D.: Henry's law constants of selected aromatic hydrocarbons, alcohols, and ketones, J. Chem. Eng. Data, 42, 27–30, 1997.
- Shiu, W. Y., Doucette, W., Gobas, F. A. P. C., Andren, A., and Mackay, D.: Physical-chemical properties of chlorinated dibenzo-p-dioxins, Environ. Sci. Technol., 22, 651–658, 1988.
- Shiu, W.-Y., Ma, K.-C., Varhaníčková, D., and Mackay, D.: Chlorophenols and alkylphenols: A review and correlation of environmentally relevant properties and fate in an evaluative environment, Chemosphere, 29, 1155–1224, 1994.
- Shon, Z.-H., Kim, K.-H., Kim, M.-Y., and Lee, M.: Modeling study of reactive gaseous mercury in the urban air, Atmos. Environ., 39, 749–761, 2005.
- Shunthirasingham, C., Cao, X., Lei, Y. D., and Wania, F.: Larger bubbles reduce the surface sorption artifact during inert gas stripping, J. Chem. Eng. Data, 58, 792–797, 2013.
- Siebers, J. and Mattusch, P.: Determination of airborne residues in greenhouses after application of pesticides, Chemosphere, 33, 1597–1607, 1996.
- Siebers, J., Gottschild, D., and Nolting, H.-G.: Pesticides in precipitation in northern Germany, Chemosphere, 28, 1559–1570, 1994.
- Sieg, K., Fries, E., and Püttmann, W.: Analysis of benzene, toluene, ethylbenzene, xylenes and n-aldehydes in melted snow water via solid-phase dynamic extraction combined with gas chromatography/mass spectrometry, J. Chromatogr. A, 1178, 178–186, 2008.
- Sieg, K., Starokozheva, E., Schmidt, M. U., and Püttmann, W.: Inverse temperature dependence of Henry's law coefficients for volatile organic compounds in supercooled water, Chemosphere, 77, 8–14, 2009.
- Signer, R., Arm, H., and Daenicker, H.: Dampfdrücke, Dichten, thermodynamische Mischfunktionen und Brechungsindices der binären Systeme Wasser-Tetrahydrofuran und Wasser-Diäthyläther bei 25°, Helv. Chim. Acta, 52, 2347–2351, 1969.
- Simpson, L. B. and Lovell, F. P.: Solubility of methyl, ethyl, and vinyl acetylene in several solvents, J. Chem. Eng. Data, 7, 498–552, 1962.

- Slater, R. M. and Spedding, D. J.: Transport of dieldrin between air and water, Arch. Environ. Contam. Toxicol., 10, 25–33, 1981.
- Smith, F. L. and Harvey, A. H.: Avoid common pitfalls when using Henry's law, Chem. Eng. Prog., 33–39, 2007.
- Smith, J. H. and Bomberger, D. C.: Prediction of volatilization rate of chemicals in water, in: Hydrocarbons and Halogenated Hydrocarbons in the Environment, edited by: Afghan, B. K. and Mackay, D., Plenum Press New York, 445–451, 1980.
- Smith, J. H., Bomberger, D. C., and Haynes, D. L.: Volatilization rates of intermediate and low volatility chemicals from water, Chemosphere, 10, 281–289, 1981a.
- Smith, J. R., Neuhauser, E. F., Middleton, A. C., Cunningham, J. J., Weightman, R. L., and Linz, D. G.: Treatment of organically contaminated groundwaters in municipal activated sludge systems, Water Environ. Res., 65, 804–818, 1993.
- Smith, R. A., Porter, E. G., and Miller, K. W.: The solubility of anesthetic gases in lipid bilayers, Biochim. Biophys. Acta Biomembranes, 645, 327–338, 1981b.
- Snider, J. R. and Dawson, G. A.: Tropospheric light alcohols, carbonyls, and acetonitrile: Concentrations in the southwestern United States and Henry's law data, J. Geophys. Res., 90D, 3797–3805, 1985.
- Sotelo, J. L., Beltrán, F. J., Benitez, F. J., and Beltrán-Heredia, J.: Henry's law constant for the ozone-water system, Wat. Res., 23, 1239–1246, 1989.
- Southworth, G. R.: The role of volatilization in removing polycyclic aromatic hydrocarbons from aquatic environments, Bull. Environ. Contam. Toxicol., 21, 507–514, 1979.
- St-Pierre, J., Wetton, B., Zhai, Y., and Gea, J.: Liquid water scavenging of PEMFC contaminants, J. Electrochem. Soc., 161, E3357–E3364, 2014.
- Staffelbach, T. A. and Kok, G. L.: Henry's law constants for aqueous solutions of hydrogen peroxide and hydroxymethyl hydroperoxide, J. Geophys. Res., 98D, 12713–12717, 1993.
- Staples, C. A., Peterson, D. R., Parkerton, T. F., and Adams, W. J.: The environmental fate of phthalate esters: A literature review, Chemosphere, 35, 667–749, 1997.
- Staudinger, J. and Roberts, P. V.: A critical review of Henry's law constants for environmental applications, Crit. Rev. Environ. Sci. Technol., 26, 205–297, 1996.
- Staudinger, J. and Roberts, P. V.: A critical compilation of Henry's law constant temperature dependence relations for organic compounds in dilute aqueous solutions, Chemosphere, 44, 561–576, 2001.
- Steward, A., Allott, P. R., Cowles, A. L., and Mapleson, W. W.: Solubility coefficients for inhaled anaesthetics for water, oil and biological media, Br. J. Anaesth., 45, 282–293, 1973.
- Stock, A. and Kuß, E.: Zur Kenntnis des Kohlenoxysulfides COS, Ber. Dtsch. Chem. Ges., 50, 159–164, 1917.
- Stoelting, R. K. and Longshore, R. E.: The effects of temperature on fluroxene, halothane, and methoxyflurane blood-gas and cerebrospinal fluid-gas partition coefficients, Anesthesiology, 36, 503–505, 1972.
- Straver, E. J. M. and de Loos, T. W.: Determination of Henry's law constants and activity coefficients at infinite dilution of flavor compounds in water at 298 K with a gas-chromatographic method, J. Chem. Eng. Data, 50, 1171–1176, 2005.
- Strekowski, R. S. and George, C.: Measurement of Henry's law constants for acetone, 2-butanone, 2,3-butanedione and isobu-

- tyraldehyde using a horizontal flow reactor, J. Chem. Eng. Data, 50, 804–810, 2005.
- Sukuzi, T., Ohtaguchi, K., and Koide, K.: Application of principal components analysis to calculate Henry's constant from molecular structure, Comput. Chem., 16, 41–52, 1992.
- Suleimenov, O. M. and Krupp, R. E.: Solubility of hydrogen sulfide in pure water and in NaCl solutions, from 20 to 320 °C and at saturation pressures, Geochim. Cosmochim. Acta, 58, 2433–2444, 1994.
- Suntio, L. R., Shiu, W. Y., Mackay, D., Seiber, J. N., and Glotfelty, D.: Critical review of Henry's law constants for pesticides, Rev. Environ. Contam. Toxicol., 103, 1–59, 1988.
- Swain, C. G. and Thornton, E. R.: Initial-state and transition-state isotope effects of methyl halides in light and heavy water, J. Am. Chem. Soc., 84, 822–826, 1962.
- Tabai, S., Rogalski, M., Solimando, R., and Malanowski, S. K.: Activity coefficients of chlorophenols in water at infinite dilution, J. Chem. Eng. Data, 42, 1147–1150, 1997.
- Taft, R. W., Abraham, M. H., Doherty, R. M., and Kamlet, M. J.: The molecular properties governing solubilities of organic non-electrolytes in water, Nature, 313, 384–386, 1985.
- Talmi, Y. and Mesmer, R. E.: Studies on vaporization and halogen decomposition of methyl mercury compounds using gc with a microwave detector, Wat. Res., 9, 547–552, 1975.
- Tancrède, M. V. and Yanagisawa, Y.: An analytical method to determine Henry's law constant for selected volatile organic compounds at concentrations and temperatures corresponding to tap water use, J. Air Waste Manage. Assoc., 40, 1658–1663, 1990.
- Teja, A. S., Gupta, A. K., Bullock, K., Chai, X.-S., and Zhu, J.: Henry's constants of methanol in aqueous systems containing salts, Fluid Phase Equilib., 185, 265–274, 2001.
- Templeton, J. C. and King, E. L.: Kinetic and equilibrium studies on azidochromium(III) ion in concentrated perchloric acid, J. Am. Chem. Soc., 93, 7160–7166, 1971.
- ten Hulscher, T. E. M., van der Velde, L. E., and Bruggeman, W. A.: Temperature dependence of Henry's law constants for selected chlorobenzenes, polychlorinated biphenyls and polycyclic aromatic hydrocarbons, Environ. Toxicol. Chem., 11, 1595–1603, 1992.
- Terraglio, F. P. and Manganelli, R. M.: The absorption of atmospheric sulfur dioxide by water solutions, J. Air Pollut. Control Assoc., 17, 403–406, 1967.
- Thomas, K., Volz-Thomas, A., Mihelcic, D., Smit, H. G. J., and Kley, D.: On the exchange of NO₃ radicals with aqueous solutions: Solubility and sticking coefficient, J. Atmos. Chem., 29, 17–43, 1998.
- Thompson, A. M. and Zafiriou, O. C.: Air-sea fluxes of transient atmospheric species, J. Geophys. Res., 88C, 6696–6708, 1983.
- Timmermans, J.: The Physico-Chemical Constants of Binary Systems in Concentrated Solutions, Vol. 4, Interscience Publisher, Inc., New York, NY, 1960.
- Tittlemier, S. A., Halldorson, T., Stern, G. A., and Tomy, G. T.: Vapor pressures, aqueous solubilities, and Henry's law constants of some brominated flame retardants, Environ. Toxicol. Chem., 21, 1804–1810, 2002.
- Tittlemier, S. A., Braekevelt, E., Halldorson, T., Reddy, C. M., and Norstrom, R. J.: Vapour pressures, aqueous solubilities, Henry's Law constants, and octanol/water partition coefficients of a se-

- ries of mixed halogenated dimethyl bipyrroles, Chemosphere, 57, 1373–1381, 2004.
- Trampe, D. B. and Eckert, C. A.: A dew point technique for limiting activity coefficients in nonionic solutions, AIChE J., 39, 1045–1050, 1993.
- Tremp, J., Mattrel, P., Fingler, S., and Giger, W.: Phenols and nitrophenols as tropospheric pollutants: Emissions from automobile exhausts and phase transfer in the atmosphere, Water Air Soil Pollut., 68, 113–123, 1993.
- Treves, K., Shragina, L., and Rudich, Y.: Henry's law constants of some β -, γ -, and δ -hydroxy nitrates of atmospheric interest, Environ. Sci. Technol., 34, 1197–1203, 2000.
- Tse, G., Orbey, H., and Sandler, S. I.: Infinite dilution activity coefficients and Henry's law coefficients of some priority water pollutants determined by a relative gas chromatographic method, Environ. Sci. Technol., 26, 2017–2022, 1992.
- Tsibul'skii, V. V., Tsibul'skaya, I. A., and Yaglitskaya, N. N.: Sampling and storage of samples for the gas-chromatographic Determination of aromatic-hydrocarbons as microimpurities in gases, J. Anal. Chem. USSR, 34, 1052–1055, 1979.
- Tsonopoulos, C. and Wilson, G. M.: High-temperature mutual solubilities of hydrocarbons and water. Part I: Benzene, cyclohexane and n-hexane, AIChE J., 29, 990–999, 1983.
- Tucker, E. E., Lane, E. H., and Christian, S. D.: Vapor pressure studies of hydrophobic interactions. formation of benzene-benzene and cyclohexane-cyclohexanol dimers in dilute aqueous solution, J. Solution Chem., 10, 1–20, 1981.
- Turner, L. H., Chiew, Y. C., Ahlert, R. C., and Kosson, D. S.: Measuring vapor-liquid equilibrium for aqueous-organic systems: Review and a new technique, AIChE J., 42, 1772–1788, 1996.
- Ueberfeld, J., Zbinden, H., Gisin, N., and Pellaux, J. P.: Determination of Henry's constant using a photoacoustic sensor, J. Chem. Thermodyn., 33, 755–764, 2001.
- Van Krevelen, D. W., Hoftijzer, P. J., and Huntjens, F. J.: Composition and vapor pressures of aqueous solutions of ammonia, carbon dioxide and hydrogen sulfide, Recl. Trav. Chim. Pays-Bas, 68, 191–216, 1949.
- van Roon, A., Parsons, J. R., Kloeze, A. M. T., and Govers, H. A. J.: Fate and transport of monoterpenes through soils. Part I. Prediction of temperature dependent soil fate model input-parameters, Chemosphere, 61, 599–609, 2005.
- Vane, L. M. and Giroux, E. L.: Henry's law constants and micellar partitioning of volatile organic compounds in surfactant solutions, J. Chem. Eng. Data, 45, 38–47, 2000.
- Villalta, P. W., Lovejoy, E. R., and Hanson, D. R.: Reaction probability of peroxyacetyl radical on aqueous surfaces, Geophys. Res. Lett., 23, 1765–1768, 1996.
- Vitenberg, A. G. and Dobryakov, Y. G.: Gas-chromatographic determination of the distribution ratios of volatile substances in gasliquid systems, Russ. J. Appl. Chem., 81, 339–359, 2008.
- Vitenberg, A. G., Ioffe, B. V., and Borisov, V. N.: Application of phase equilibria to gas chromatographic trace analysis, Chromatographia, 7, 610–619, 1974.
- Vitenberg, A. G., Ioffe, B. V., Dimitrova, Z. S., and Butaeva, I. L.: Determination of gas-liquid partition coefficients by means of gas chromatographic analysis, J. Chromatogr., 112, 319–327, 1975.

- Vogt, R., Crutzen, P. J., and Sander, R.: A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer, Nature, 383, 327–330, doi:10.1038/383327A0, 1996.
- Volkamer, R., Ziemann, P. J., and Molina, M. J.: Secondary Organic Aerosol Formation from Acetylene (C₂H₂): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase, Atmos. Chem. Phys., 9, 1907–1928, doi:10.5194/acp-9-1907-2009, 2009.
- von Hartungen, E., Wisthaler, A., Mikoviny, T., Jaksch, D., Boscaini, E., Dunphy, P. J., and Märk, T. D.: Proton-transferreaction mass spectrometry (PTR-MS) of carboxylic acids. Determination of Henry's law constants and axillary odour investigations, Int. J. Mass Spectrom., 239, 243–248, 2004.
- Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L., and Nuttall, R. L.: The NBS tables of chemical thermodynamic properties; Selected values for inorganic and C₁ and C₂ organic substances in SI units, J. Phys. Chem. Ref. Data, 11, suppl. 2, 1982.
- Wagner, W. and Pruss, A.: International equations for the saturation properties of ordinary water substance. Revised according to the international temperature scale of 1990. Addendum to J. Phys. Chem. Ref. Data 16, 893 (1987), J. Phys. Chem. Ref. Data, 22, 783–787, 1993.
- Wang, C., Lei, Y. D., Endo, S., and Wania, F.: Measuring and modeling the salting-out effect in ammonium sulfate solutions, Environ. Sci. Technol., 48, 13238–13245, 2014.
- Wang, T. X., Kelley, M. D., Cooper, J. N., Beckwith, R. C., and Margerum, D. W.: Equilibrium, kinetic, and UV-spectral characteristics of aqueous bromine chloride, bromine, and chlorine species, Inorg. Chem., 33, 5872–5878, 1994.
- Wang, Y. H. and Wong, P. K.: Mathematical relationships between vapor pressure, water solubility, Henry's law constant, noctanol/water partition coefficent and gas chromatographic retention index of polychlorinated-dibenzo-dioxins, Wat. Res., 36, 350–355, 2002.
- Wania, F. and Dugani, C. B.: Assessing the long-range transport potential of polybrominated diphenyl ethers: A comparison of four multimedia models, Environ. Toxicol. Chem., 22, 1252–1261, 2003.
- Warneck, P.: Chemistry of the Natural Atmosphere, Acad., San Diego, CA, 1988.
- Warneck, P.: The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds, Phys. Chem. Chem. Phys., 1, 5471–5483, 1999.
- Warneck, P.: The solubility of ozone in water, in: Chemicals in the Atmosphere: Solubility, Sources and Reactivity, edited by: Fogg, P. and Sangster, J., John Wiley & Sons, Inc., 225–228, 2003.
- Warneck, P.: Multi-phase chemistry of C₂ and C₃ organic compounds in the marine atmosphere, J. Atmos. Chem., 51, 119–159, 2005.
- Warneck, P.: A note on the temperature dependence of Henry's Law coefficients for methanol and ethanol, Atmos. Environ., 40, 7146–7151, 2006.
- Warneck, P.: A review of Henry's law coefficients for chlorinecontaining C₁ and C₂ hydrocarbons, Chemosphere, 69, 347–361, 2007.

- Warneck, P. and Williams, J.: The Atmospheric Chemist's Companion: Numerical Data for Use in the Atmospheric Sciences, Springer Verlag, 2012.
- Warneck, P., Mirabel, P., Salmon, G. A., van Eldik, R., Vinckier, C., Wannowius, K. J., and Zetzsch, C.: Chapter 2: Review of the activities and achievements of the EUROTRAC subproject HALIPP, in: Heterogeneous and Liquid-Phase Processes, edited by: Warneck, P., Springer Verlag, Berlin, 7–74, 1996.
- Warner, H. P., Cohen, J. M., and Ireland, J. C.: Determination of Henry's law constants of selected priority pollutants, Tech. rep., U.S. EPA, Municipal Environmental Research Laboratory, Wastewater Research Division, Cincinnati, Ohio, 45268, USA, 1980
- Warner, M. J. and Weiss, R. F.: Solubilities of chlorofluorocarbons 11 and 12 in water and seawater, Deep-Sea Res. A, 32, 1485–1497, 1985.
- Wasik, S. P. and Tsang, W.: Gas chromatographic determination of partition coefficients of some unsaturated hydrocarbons and their deuterated isomers in aqueous silver nitrate solutions, J. Phys. Chem., 74, 2970–2976, 1970.
- Watanabe, T.: Relationship between volatilization rates and physicochemical properties of some pesticides, J. Pestic. Sci., 18, 201– 209, 1993.
- Watts, S. F. and Brimblecombe, P.: The Henry's law constant of dimethyl sulphoxide, Environ. Technol. Lett., 8, 483–486, 1987.
- Webster, G. R. B., Friesen, K. J., Sarna, L. P., and Muir, D. C. G.: Environmental fate modelling of chlorodioxins: Determination of physical constants, Chemosphere, 14, 609–622, 1985.
- Weinstein-Lloyd, J. and Schwartz, S. E.: Low-intensity radiolysis study of free-radical reactions in cloudwater: H₂O₂ production and destruction, Environ. Sci. Technol., 25, 791–800, 1991.
- Weiss, R. F.: Carbon dioxide in water and seawater: The solubility of a non-ideal gas, Mar. Chem., 2, 203–215, 1974.
- Weiss, R. F. and Price, B. A.: Nitrous oxide solubility in water and seawater, Mar. Chem., 8, 347–359, 1980.
- Wen, W.-Y. and Muccitelli, J. A.: Thermodynamics of some perfluorocarbon gases in water, J. Solution Chem., 8, 225–246, 1979.
- Westcott, J. W., Simon, C. G., and Bidleman, T. F.: Determination of polychlorinated biphenyl vapor pressures by a semimicro gas saturation method, Environ. Sci. Technol., 15, 1375–1378, 1981.
- Westheimer, F. H. and Ingraham, L. L.: The entropy of chelation, J. Phys. Chem., 60, 1668–1670, 1956.
- WHO: Environmental Health Criteria 101 methylmercury, Tech. rep., World Health Organization, available at: http://www.inchem.org/documents/ehc/ehc/ehc101.htm (last access: 10 April 2015), 1990.
- Wilhelm, E., Battino, R., and Wilcock, R. J.: Low-pressure solubility of gases in liquid water, Chem. Rev., 77, 219–262, 1977.
- Winiwarter, W., Puxbaum, H., Fuzzi, S., Facchini, M. C., Orsi, G., Beltz, N., Enderle, K.-H., and Jaeschke, W.: Organic acid gas and liquid-phase measurements in Po valley fall-winter conditions in the presence of fog, Tellus, 40B, 348–357, 1988.
- Winkler, L. W.: Die Löslichkeit der Gase in Wasser (erste Abhandlung), Ber. Dtsch. Chem. Ges., 24, 89–101, 1891a.
- Winkler, L. W.: Die Löslichkeit der Gase in Wasser (zweite Abhandlung), Ber. Dtsch. Chem. Ges., 24, 3602–3610, 1891b.
- Winkler, L. W.: Löslichkeit des Broms in Wasser, Chem. Ztg., 23, 687–689, 1899.

- Winkler, L. W.: Die Löslichkeit der Gase in Wasser (dritte Abhandlung), Ber. Dtsch. Chem. Ges., 34, 1408–1422, 1901.
- Winkler, L. W.: Gesetzmässigkeit bei der Absorption der Gase in Flüssigkeiten, Z. Phys. Chem., 55, 344–354, 1906.
- Winkler, L. W.: Math. Termesz. Ertesitö, 25, 86, 1907.
- Wisegarver, D. P. and Cline, J. D.: Solubility of trichlorofluoromethane (F-11) and dichlorodifluoromethane (F-12) in seawater and its relationship to surface concentrations in the North Pacific, Deep-Sea Res. A, 32, 97–106, 1985.
- Wolfe, N. L., Burns, L. A., and Steen, W. C.: Use of linear free energy relationships and an evaluative model to assess the fate and transport of phthalate esters in the aquatic environment, Chemosphere, 9, 393–402, 1980.
- Wolfe, N. L., Zepp, R. G., Schlotzhauer, P., and Sink, M.: Transformation pathways of hexachlorocyclopentadiene in the aquatic environment, Chemosphere, 11, 91–101, 1982.
- Wolfenden, R.: Free energies of hydration and hydrolysis of gaseous acetamide, J. Am. Chem. Soc., 98, 1987–1988, 1976.
- Wolfenden, R. and Williams, R.: Affinities of phosphoric acids, esters, and amides for solvent water, J. Am. Chem. Soc., 105, 1028–1031, 1983.
- Wong, P. K. and Wang, Y. H.: Determination of the Henry's law constant for dimethyl sulfide in seawater, Chemosphere, 35, 535– 544, 1997.
- Woodrow, J. E., McChesney, M. M., and Seiber, J. N.: Modeling the volatilization of pesticides and their distribution in the atmosphere, in: Long Range Transport of Pesticides, edited by: Kurtz, D. A., CRC Press, 61–81, 1990.
- Worthington, E. K. and Wade, E. A.: Henry's Law coefficients of chloropicrin and methyl isothiocyanate, Atmos. Environ., 41, 5510–5515, 2007.
- Wright, D. A., Sandler, S. I., and DeVoll, D.: Infinite dilution activity coefficients and solubilities of halogenated hydrocarbons in water at ambient temperatures, Environ. Sci. Technol., 26, 1828–1831, 1992.
- Wu, Y. and Chang, V. W.-C.: The effect of surface adsorption and molecular geometry on the determination of Henry's law constants for fluorotelomer alcohols, J. Chem. Eng. Data, 56, 3442– 3448, 2011.
- Xiao, H., Li, N., and Wania, F.: Compilation, evaluation, and selection of physical-chemical property data for α -, β -, and γ -hexachlorocyclohexane, J. Chem. Eng. Data, 49, 173–185, 2004.
- Xiao, H., Shen, L., Su, Y., Barresi, E., DeJong, M., Hung, H., Lei, Y.-D., Wania, F., Reiner, E. J., Sverko, E., and Kang, S.-C.: Atmospheric concentrations of halogenated flame retardants at two remote locations: The Canadian High Arctic and the Tibetan Plateau, Environ. Pollut., 161, 154–161, 2012.
- Xie, W.-H., Shiu, W.-Y., and Mackay, D.: A review of the effect of salt on the solubility of organic compounds in seawater, Mar. Environ. Res., 44, 429–444, 1997.
- Xie, Z., Le Calvé, S., Feigenbrugel, V., Preuß, T. G., Vinken, R., Ebinghaus, R., and Ruck, W.: Henry's law constants measurements of the nonylphenol isomer 4(3',5'-dimethyl-3'-heptyl)phenol, tertiary octylphenol and γ-hexachlorocyclohexane between 278 and 298 K, Atmos. Environ., 38, 4859–4868, 2004.
- Xu, S. and Kropscott, B.: A method for simultaneous determination of partition coefficients for cyclic volatile methylsiloxanes and dimethylsilanediol, Anal. Chem., 84, 1948–1955, 2012.

- Xu, S. and Kropscott, B.: Evaluation of the three-phase equilibrium method for measuring temperature dependence of internally consistent partition coefficients (K_{OW} , K_{OA} , and K_{AW}) for volatile methylsiloxanes and trimethylsilanol, Environ. Toxicol. Chem., 33, 2702–2710, 2014.
- Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., and Giralt, F.: A fuzzy ARTMAP-based quantitative structure-property relationship (QSPR) for the Henry's law constant of organic compounds, J. Chem. Inf. Comput. Sci., 43, 85–112, 2003.
- Yates, S. R. and Gan, J. Y.: Volatility, adsorption, and degradation of propargyl bromide as a soil fumigant, J. Agric. Food Chem., 46, 755–761, 1998.
- Yaws, C. L. (Ed.): Chemical Properties Handbook, McGraw-Hill, Inc., 1999.
- Yaws, C. L. and Yang, H.-C.: Henry's law constant for compound in water, in: Thermodynamic and Physical Property Data, edited by: Yaws, C. L., Gulf Publishing Company, Houston, TX, 181– 206, 1992.
- Yaws, C. L., Hopper, J. R., Sheth, S. D., Han, M., and Pike, R. W.: Solubility and Henry's law constant for alcohols in water, Waste Manage., 17, 541–547, 1997.
- Yaws, C. L., Sheth, S. D., and Han, M.: Using solubility and Henry's law constant data for ketones in water, Pollut. Eng., 30, 44–46, 1998
- Yaws, C. L., Hopper, J. R., Mishra, S. R., and Pike, R. W.: Solubility and Henry's law constants for amines in water, Chem. Eng., 108, 84–88, 2001.
- Yaws, C. L., Narasimhan, P. K., Lou, H. H., and Pike, R. W.: Solubility & Henry's law constants for chlorinated compounds in water, Chem. Eng., 112, 50–56, 2005.
- Yin, C. and Hassett, J. P.: Gas-partitioning approach for laboratory and fiels studies of mirex fugacity in water, Environ. Sci. Technol., 20, 1213–1217, 1986.
- Yoo, K.-P., Lee, S. Y., and Lee, W. H.: Ionization and Henry's law constants for volatile, weak electrolyte water pollutants, Korean J. Chem. Eng., 3, 67–72, 1986.
- Yoshida, K., Shigeoka, T., and Yamauchi, F.: Non-steady state equilibrium model for the preliminary prediction of the fate of chemicals in the environment, Ecotoxicol. Environ. Saf., 7, 179–190, 1983
- Yoshida, K., Shigeoka, T., and Yamauchi, F.: Evaluation of aquatic environmental fate of 2,4,6-trichlorophenol with a mathematical model, Chemosphere, 16, 2531–2544, 1987.
- Yoshizumi, K., Aoki, K., Nouchi, I., Okita, T., Kobayashi, T., Kamakura, S., and Tajima, M.: Measurements of the concentration in rainwater and of the Henry's law constant of hydrogen peroxide, Atmos. Environ., 18, 395–401, 1984.
- Young, C. L. (Ed.): IUPAC Solubility Data Series, vol. 5/6 of Hydrogen and Deuterium, Pergamon Press, Oxford, England, 1981a.
- Young, C. L. (Ed.): IUPAC Solubility Data Series, vol. 8 of Oxides of Nitrogen, Pergamon Press, Oxford, England, 1981b.
- Young, C. L. (Ed.): IUPAC Solubility Data Series, vol. 12 of Sulfur Dioxide, Chlorine, Fluorine and Chlorine Oxides, Pergamon Press, Oxford, England, 1983.
- Yu, X. and Yu, R.: Setschenow constant prediction based on the IEF-PCM calculations, Ind. Eng. Chem. Res., 52, 11182–11188, 2013.

- Yurteri, C., Ryan, D. F., Callow, J. J., and Gurol, M. D.: The effect of chemical composition of water on Henry's law constant, J. Water Pollut. Control Fed., 59, 950–956, 1987.
- Zafiriou, O. C. and McFarland, M.: Determination of trace levels of nitric oxide in aqueous solution, Anal. Chem., 52, 1662–1667, 1980.
- Zhang, S. B. L., Wang, S., and Franzblau, A.: Partition coefficients for the trihalomethanes among blood, urine, water, milk and air, Sci. Total Environ., 284, 237–247, 2002.
- Zhang, W., Huang, L., Yang, C., and Ying, W.: Experimental method for estimating Henry's law constant of volatile organic compound, Asian J. Chem., 25, 2647–2650, 2013.
- Zhang, X., Brown, T. N., Wania, F., Heimstad, E. S., and Goss, K.-U.: Assessment of chemical screening outcomes based on different partitioning property estimation methods, Environ. Int., 36, 514–520, 2010.
- Zhang, Z. and Pawliszyn, J.: Headspace solid-phase microextraction, Anal. Chem., 65, 1843–1852, 1993.

- Zheng, D.-Q., Guo, T.-M., and Knapp, H.: Experimental and modeling studies on the solubility of CO₂, CHClF₂, CHF₃, C₂H₂F₄ and C₂H₄F₂ in water and aqueous NaCl solutions under low pressures, Fluid Phase Equilib., 129, 197–209, 1997.
- Zhou, X. and Lee, Y.-N.: Aqueous solubility and reaction kinetics of hydroxymethyl hydroperoxide, J. Phys. Chem., 96, 265–272, 1992.
- Zhou, X. and Mopper, K.: Apparent partition coefficients of 15 carbonyl compounds between air and seawater and between air and freshwater; Implications for air-sea exchange, Environ. Sci. Technol., 24, 1864–1869, 1990.
- Zhu, J. Y., Liu, P. H., Chai, X. S., Bullock, K. R., and Teja, A. S.: Henry's law constant of methanol in pulping spent liquors, Environ. Sci. Technol., 34, 1742–1746, 2000.