Notice d'utilisation

Ryan PERSÉE

APP4 2021 - 2022

Matériel

Description

Le firmware du microcontrôleur STM32 peut être flashé en utilisant soit une sonde de débogage (JTAG/SWD) soit une interface de bootloader (UART, USB DFU, I²C, SPI ou CAN).

Cet utilitaire est conçu pour fonctionner avec l'interface de bootloader USB DFU.

On considère ici une carte de développement Nucleo-64 STM32 avec le MCU STM32F401RET6 (a.k.a. Nucleo-F401RE).

Ajouter un connecteur USB

Pin name	Function	Description
PH0	OSC_IN	
PH1	OSC_OUT	
PA8	FS_SOF	Start Of Frame
PA9	FS_VBUS	Power
PA10	FS_ID	
PA11	FS_DM	Data+
PA12	FS_DP	Data-

Déclencher le bootloader

Boot0(pin) = 1 et Boot1(pin) = 0.

Références

- [ST] Application Note AN2606: STM32 microcontroller system memory boot mode
- [ST] Datasheet DS9716: STM32F401xB/C
- [ST] Reference Manual RM0368: STM32F401xB/C and STM32F401xD/E
- [ST] Data Brief DB3420: STM32CubeProgrammer all-in-one software tool 4.0
- [ST] Application Note AN4879: USB hardware and PCB guidelines using STM32
 MCUs

Logiciel

Backend Python: DFU API

Avancement: fonctionnel.

Description

Gestion des images et du flashage du microcontrôleur.

```
//events [SSE*] Évènements de dé/connexion USB
//devices [GET] Lister les périphériques connectés

API //serial} [POST] Flasher le firmware sur le MCU depuis une image
//serial} [GET] Enregister le firmware du MCU dans une image
//images [POST] Uploader une image sur le serveur
[GET] Lister les images sur le serveur

*SSE : Server-Sent Events
```

Installation

```
# (ubuntu) installer python 3.9
$ sudo apt install python3.9 python3.9-dev python3.9-venv

# créer un environnement
$ mkdir dfu-api/ && cd dfu-api/
$ python3.9 -m venv --prompt "dfu-api" venv/

# activer l'environnement
$ source ./venv/bin/activate

# installer wheel puis l'API
(dfu-api) $ python3.9 -m pip install wheel
(dfu-api) $ python3.9 -m pip install
git+https://github.com/rpersee/pydfu.git
```

Utilisation

```
# lancer le serveur Web
$ uvicorn pydfu.app:app --reload
```

Frontend Vue.js: DFU Client

Avancement : fonctionnement partiel, les informations récupérées depuis l'API ne sont pas correctement intégrées dans l'interface.

Description

Client Web qui communique avec l'API pour le flashage du microcontrôleur.

Installation

```
# installer Node.js et npm
$ sudo apt install nodejs npm

# cloner le repo
$ git clone https://github.com/rpersee/dfu-client.git

# installer les dépendances
$ cd dfu-client/
$ npm install
```

Utilisation

```
# lancer le serveur Web
$ cd dfu-client/
$ npm run dev
```

Automatisation

```
Avancement : Non-réalisé.
```

Implémentation simple en s'appuyant sur les fonctionnalités offertes par l'API. Écoute des évènements USB via un client SSE sur l'endpoint /events. Flashage via requête POST sur l'endpoint /devices/{serial}.