

PROGRAMMING ASSIGNMENT - IV

Sri Hari Malla - CS19BTECH11039 April 2, 2022

Base:

The application was designed exactly as described in the programming assignment problem statement and used text book for the reference. I implemented Obstruction free and Wait free registers from the SnapShot interface, StampedSnap and StampedValue using C++.

Graph & Observations:

Graph: Variation in Nw/Ns vs Variation in time(for both registers, both average and worst case)

Sri Hari Malla - CS19BTECH11039

Prof: Dr. Sathya Peri

Parallel and Concurrent Programming Indian Institute of Technology Hyderabad

Every observation is the average of 5 recorded observations to remove any discrepancies in the measuring of time. The Nw/Ns is varied from 0.1 to 10 while keeping repetition count as constant and set to 5 while the uw and us are set to 0.5 respectively.

Observations:

- The graphs were plotted by recording times for average and worst case and for for both the registers.
- One can see in the graph that the obstruction free register is taking lesser time for an average snap operation when compared to wait free register.
- This is the observed anomaly, where the wait free register should be faster than obstruction free register.
- The device I used is included with a lot of uncertainty because of multiple processes running in parallel.
- The complexity is some what higher for one scan operation in wait free than in the obstruction free register and this could possibly the reason for the anomaly detected.

Sri Hari Malla - CS19BTECH11039

Prof: Dr. Sathya Peri

Parallel and Concurrent Programming Indian Institute of Technology Hyderabad

- This is the plot of total time taken for one execution set of Obstruction free register and wait free register.
- It is clear from this graph that wait free register is faster than the obstruction free register.
- Small anomalies are observed at very less Nw/Ns.
- The graph is consistent with the observations reported in problem statement.

Validating the results:

```
Obstruction free snapshot register logs:
Writer log:
Thread t0 write of 183 on location 6 at 17:55:13.492559
Thread t0 write of 183 on location 15 at 17:55:13.492591
Thread t0 write of 193 on location 15 at 17:55:13.493105
Thread t0 write of 186 on location 12 at 17:55:13.493360
Thread t0 write of 249 on location 1 at 17:55:13.493360
Thread t0 write of 362 on location 7 at 17:55:13.493811
Thread t0 write of 290 on location 19 at 17:55:13.494030
Snapper log:
thread Id - 0
L0-0 L1-0 L2-0 L3-0 L4-0 L5-0 L6-183 L7-0 L8-0 L9-0 L10-0 L11-0 L12-0 L13-0 L14-0 L15-0 L16-0 L17-0 L18-0 L19-0 recorded at 17:55:13.492640
thread Id - 0
L0-0 L1-0 L2-0 L3-0 L4-0 L5-0 L6-183 L7-0 L8-0 L9-0 L10-0 L11-0 L12-0 L13-0 L14-0 L15-377 L16-0 L17-0 L18-0 L19-0 recorded at 17:55:13.492912
thread Id - 0
L0-0 L1-0 L2-0 L3-0 L4-0 L5-0 L6-183 L7-0 L8-0 L9-0 L10-0 L11-0 L12-0 L13-0 L14-0 L15-377 L16-0 L17-0 L18-0 L19-0 recorded at 17:55:13.493107
thread Id - 0
L0-0 L1-0 L2-0 L3-0 L4-0 L5-0 L6-183 L7-0 L8-0 L9-0 L10-0 L11-0 L12-186 L13-0 L14-0 L15-193 L16-0 L17-0 L18-0 L19-0 recorded at 17:55:13.493530
thread Id - 0
L0-0 L1-0 L2-0 L3-0 L4-0 L5-0 L6-183 L7-0 L8-0 L9-0 L10-0 L11-0 L12-186 L13-0 L14-0 L15-193 L16-0 L17-0 L18-0 L19-0 recorded at 17:55:13.493530
thread Id - 0
L0-0 L1-249 L2-0 L3-0 L4-0 L5-0 L6-183 L7-0 L8-0 L9-0 L10-0 L11-0 L12-186 L13-0 L14-0 L15-193 L16-0 L17-0 L18-0 L19-0 recorded at 17:55:13.493783
```

- One can see the screenshot of Obstruction free register log attached above.
- It is clear from the graph that the snapper log(log of snap shots) is consistent, i.e linearizable.
- For every time stamp at the snapper log, the value at the previously reflected timestamps at writerlog is observed perfectly.
- The time stamp taken in milliseconds has a lot of uncertainty, so I used microseconds and the results observed are perfect.

Sri Hari Malla - CS19BTECH11039

Prof : Dr. Sathya Peri

Parallel and Concurrent Programming Indian Institute of Technology Hyderabad


```
Wait free snapshot register logs :
Writer log :
Thread t0 write of 163 on location 6 at 17:55:13.517635
Thread t0 write of 140 on location 6 at 17:55:13.518081
Thread t0 write of 372 on location 16 at 17:55:13.518272
Thread t0 write of 11 on location 8 at 17:55:13.518272
Thread t0 write of 167 on location 9 at 17:55:13.518621
Thread t0 write of 182 on location 10 at 17:55:13.519000
Thread t0 write of 182 on location 10 at 17:55:13.519307
Snapper log :
thread Id - 0
L0-0 L1-0 L2-0 L3-0 L4-0 L5-0 L6-163 L7-0 L8-0 L9-0 L10-0 L11-0 L12-0 L13-0 L14-0 L15-0 L16-0 L17-0 L18-0 L19-0 recorded at 17:55:13.517710
thread Id - 0
L0-0 L1-0 L2-0 L3-0 L4-0 L5-0 L6-163 L7-0 L8-0 L9-0 L10-0 L11-0 L12-0 L13-0 L14-0 L15-0 L16-0 L17-0 L18-0 L19-0 recorded at 17:55:13.517982
thread Id - 0
L0-0 L1-0 L2-0 L3-0 L4-0 L5-0 L6-140 L7-0 L8-0 L9-0 L10-0 L11-0 L12-0 L13-0 L14-0 L15-0 L16-372 L17-0 L18-0 L19-0 recorded at 17:55:13.518299
thread Id - 0
L0-0 L1-0 L2-0 L3-0 L4-0 L5-0 L6-140 L7-0 L8-0 L9-0 L10-0 L11-0 L12-0 L13-0 L14-0 L15-0 L16-372 L17-0 L18-0 L19-0 recorded at 17:55:13.518549
thread Id - 0
L0-0 L1-0 L2-0 L3-0 L4-0 L5-0 L6-140 L7-0 L8-11 L9-0 L10-0 L11-0 L12-0 L13-0 L14-0 L15-0 L16-372 L17-0 L18-0 L19-0 recorded at 17:55:13.518549
```

- One can see the screenshot of Wait free register log attached above.
- It is clear from the graph that the snapper log(log of snap shots) is consistent, i.e linearizable.
- For every time stamp at the snapper log, the value at the previously reflected timestamps at writerlog is observed perfectly.
- The time stamp taken in milliseconds has a lot of uncertainty, so I used microseconds and the results observed are perfect.
- This is a sample run observed for only one writer thread and one collector thread(more threads gives very lengthy screenshots).

LATEX generated document

THE END