HW 11 2.4.2. | Xn+1 - Xn | < C | Xn - Xn-1 Since O2C<1, the terms must be strictly decreasing while also getting closer to each other because there is a factor of C everytime. 2.4.5. The elements must be getting cluser to each other. O is the midpoint for Xx20 and Xn>0 so the sequence must converge to 0. 2.4.8. True, because the elements must eventually get arbitrarily closer. 2.5.3. a. $\frac{\infty}{9n+1}$ diverges using p-series b. $\sum_{n=1}^{\infty} \frac{1}{2n-1}$ diverges using p-series

С.	$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$	lim 1/	$\frac{(n+1)^2}{n^2} =$	0
d.	converges n=1 converges n=1 n(n+1) div	reges using	g p-senie.	5
е.	$\sum_{n=1}^{\infty} ne^{-n^2} = \sum_{n=1}^{\infty} \frac{n+1}{e^{(n+1)^2}}$ $n \to \infty = \sum_{n=1}^{\infty} \frac{n}{e^{n}}$	$= \frac{2}{\sum_{n=1}^{N} \frac{n}{e^n}}$ $= \lim_{n \to \infty} \frac{n}{e^n}$	$\frac{(n+1)e^{n^2}}{(n+1)^2}$	= lih en2
20	n→∞ ent lim e-2n-1 n→∞	n→∞ = 0 ;	conveges	n>∞ C'''
2.5.6. a b.	. Upper bound there is no	exists upper bou	~d	
	$\left \begin{array}{c} \infty \\ \sum_{n=1}^{\infty} \chi_n \right \leq 1$			
be	egative numbes ar force summing th	e Tunned In	G positive	Mun bees

