✓ Q. 6HU219	1/1
Hybrid (i.e. both virtualization and materialization) approach	✓
Straight Through Processing approach	
Data warehousing approach	
Virtualization approach	
× Q. 11987T	0/1
Use string matching techniques to find similarities	
Normalize field names in the source data	×
Create separate fields for each synonym	
Apply manual mappings based on context	
Correct answer	
Use string matching techniques to find similarities	
Apply manual mappings based on context	
✓ Q. 89BH26	1/1
0.996	
0.896	✓
0.921	
0.912	

	0/1
It can lead to an increase in precision.	
It can decrease overall recall of the matching process.	
It can lead to false negatives if matches are missed.	
It has no impact if using deterministic methods.	×
Correct answer	
It can lead to false negatives if matches are missed.	
It can decrease overall recall of the matching process.	
✓ Q. 893B67	1/1
(BranchID, BranchCity)	✓
Branch_Managed_By	
(BranchCity, Branch_Managed_By)	
(BranchCity, Branch_Managed_By)BranchCity	
	0/1
BranchCity	0/1
□ BranchCity× Q. 789B62	0/1
BranchCity X Q. 789B62 By defining transformations to standardize formats	0/1
BranchCity X Q. 789B62 By defining transformations to standardize formats By creating new schema designs	0/1
 ■ BranchCity X Q. 789B62 ■ By defining transformations to standardize formats ■ By creating new schema designs ✓ By performing data normalization 	0/1
 □ BranchCity X Q. 789B62 □ By defining transformations to standardize formats □ By creating new schema designs ☑ By performing data normalization □ By creating materialized views 	0/1
 BranchCity X Q. 789B62 By defining transformations to standardize formats By creating new schema designs ✓ By performing data normalization By creating materialized views Correct answer	0/1

	0/1
Global AS View (GAV)	
Local AS View (LAV)	
All of the above	×
Hybrid View (LAV)	
Correct answer	
Global AS View (GAV)	
✓ Q. TUY342	1/1
Rule-based systems are more accurate when handling large datasets	
Learning-based algorithms can automatically adapt to new data patterns	✓
Learning-based algorithms do not require data pre-processing	
Learning-based algorithms do not require labelled training data	
× Q. 56B78G	0/1
Data normalization across sources	×
Efficiency of materialized view creation	×
Data integrity constraints	✓
Consistency of field names across sources	✓
Correct answer	
Consistency of field names across sources	
✓ Data integrity constraints	

✓ Q. 2BHU81	1/1
Jaccard Similarity	~
Cosine Similarity	~
Levenshtein Distance	~
K-means Clustering	
× Q. 6NH241	0/1
By identifying relevant data sources for integration	
By ensuring data quality across different schemas	
By automating the process of schema integration	×
By providing context for field names and data types	
Correct answer	
By providing context for field names and data types	
✓ Q. U345T2	1/1
All options given in this question	~
Extracting attributes	
Extracting entities	
Extracting relationships (between entities)	

✓ Q. 789T12	1/1
CustomerID as Blocking attribute and (FullName, BranchCity) as matching attributes	
(BranchCity, CustomerID) as Blocking attributes and FullName as matching attribute	
BranchCity as Blocking attribute and FullName as matching attribute	✓
BranchCity as Blocking attribute and (FullName, CustomerID) as matching attributes	
× Q. 89GH27	0/1
Match 'FullName' first token (say FirstName) with the first token of 'Name' attribute and same for other tokens	×
Match 'FullName' value and 'Name' value as one data string	✓
Normalize the 'FullName' and 'Name' attributes into 'First Name' and 'Last Name', and then match correspondingly	×
None of the Above	
Correct answer	
Match 'FullName' value and 'Name' value as one data string	
✓ Q. 189B32	1/1
To provide a unified view of branch information across the CB and MFS	✓
To provide a unified view of branch information across the CB, MFS and ZERO	
To summarize transaction data by branch	
To store customer information from all entities	

×	Q. Q789U1	0/1
	Naive Bayes classifier	
✓	Lookup table based pattern matching that normalizes common synonyms like "Marg" to "Road"	✓
	Token-based similarity matching	X
	Phonetic matching using Soundex	
Corr	ect answer	
~	Lookup table based pattern matching that normalizes common synonyms like "Marg" to "Road"	
×	Q. A78B41	0/1
×	Q. A78B41 Jaro-Winkler Distance	0/1
×		
×	Jaro-Winkler Distance	
×	Jaro-Winkler Distance Cosine Similarity	×
	Jaro-Winkler Distance Cosine Similarity Jaccard Similarity	×

× Q. 31B789	0/1
To create materialized views	
To align fields from different schemas to a common schema	~
To ensure data consistency across multiple sources	~
To optimize database performance	×
Correct answer	
To align fields from different schemas to a common schema	
To ensure data consistency across multiple sources	
× Q. 56BG17	0/1
Real-time updates	×
Faster query performance	~
Improved data consistency	×
Simplified schema design	×
Correct answer	
Faster query performance	
✓ Q. 781C25	1/1
One DT and One FT	
Two DT and One FT	~
Two DT and Two FT	
One DT and Two FT	

X Q. 91245G 0/1 SELECT District, State, SUM(TotalAmount) FROM Branch_Transaction_Summary, Branch_Info WHERE Branch_Transaction_Summary.BranchName=Branch_Info.BranchName GROUP BY CUBE (District, State); SELECT BranchName, District, State, SUM(TotalAmount) FROM Branch_Transaction_Summary, Branch_Info WHERE Branch_Transaction_Summary.BranchName=Branch_Info.BranchName GROUP BY CUBE (BranchName, District); SELECT BranchName, District, State, SUM(TotalAmount) FROM Branch_Transaction_Summary, Branch_Info WHERE Branch_Transaction_Summary.BranchName=Branch_Info.BranchName GROUP BY (BranchName, District, State); SELECT District, State, SUM(TotalAmount) FROM X Branch_Transaction_Summary, Branch_Info WHERE Branch_Transaction_Summary.BranchName=Branch_Info.BranchName GROUP BY (District, State); Correct answer SELECT District, State, SUM(TotalAmount) FROM Branch_Transaction_Summary, Branch_Info WHERE Branch_Transaction_Summary.BranchName=Branch_Info.BranchName GROUP BY CUBE (District, State); X Q. 2347WE 0/1 All of the above ✓ The phonetic similarity of names and addresses X Exact matches on names X ✓ The geographic region of the customer's address Correct answer All of the above

✓ Q. 23489B	1/1
All the options given in this question, but depends on 'data string'	✓
Phonetic based Soundex	
Sequence-based	
Set-based	
✓ Q. 356B81	1/1
Phonetic matching using Soundex	✓
Token-based matching	
Cosine similarity	
Levenshtein Distance	
× Q. 184BN3	0/1
String matching	✓
Structural Similarity	
Data normalization	
Domain-specific knowledge	
Correct answer	
String matching	
Domain-specific knowledge	
Structural Similarity	

	0/1
Different naming conventions for similar fields	✓
Variations in data types for common fields	✓
Redundant data in source systems	×
Inconsistent data formats	✓
Correct answer	
Different naming conventions for similar fields	
Variations in data types for common fields	
Inconsistent data formats	
× Q. 256BN0	0/1
Ontology-based matching	✓
Machine learning models based matching	
Manual alignment	
Data profiling	
Correct answer	
Ontology-based matching	

Machine learning models based matching

Manual alignment

	0/1
Curating the schema of Customer_Accounts table	
Making the entity matching algorithm scalable	✓
Achieving the desired accuracy	
Normalizing the entities of Customer_Accounts table	
Correct answer	
Achieving the desired accuracy	
Making the entity matching algorithm scalable	
✓ Q. 782B79	1/1
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
Branches.BranchID → Unified_Branches.BranchID	✓
Offices.OfficeCode → Unified_Branches.BranchID	✓
× Q. 89G674	0/1
To merge records that refer to the same customer across the CB and MFS	
To standardize the field names in the schemas	
To run the de-duplication algorithm by matching 'FullName' attribute string on Unified_Customers relation	
To run the entity matching algorithm by matching 'FullName' attribute string on Unified_Customers relation	×
Correct answer	
To merge records that refer to the same customer across the CB and MFS	

	0/1
Data augmentation	
Exact string comparison	
Fuzzy matching	
Phonetic algorithms (e.g., Soundex)	
× Q.978V45	0/1
X Q.978V45 Exact matching	0/1
	0/1
Exact matching	0/1
Exact matching Levenshtein distance	0/1

★ Q. 4BA627	0/1
CREATE MATERIALIZED VIEW Unified_Customers AS SELECT * FROM Customers_Accounts JOIN Customers_Profiles ON Customers_Accounts.BranchCity = Customers_Profiles.OfficeCity;	
CREATE TABLE Unified_Customers (CustomerID INT PRIMARY KEY, FullNam VARCHAR(255), AccountNumber VARCHAR(20), BranchCity VARCHAR(50), Balance DECIMAL(15, 2));	e
CREATE TABLE Unified_Customers AS SELECT * FROM Customers_Account UNION SELECT * FROM Customers_Profile;	S
CREATE VIEW Unified_Customers AS SELECT CustomerID, FullName, AccountNumber, BranchCity, Balance FROM Customers_Accounts UNION SELECT ClientNumber AS CustomerID, Name AS FullName, AccountCode AS AccountNumber, OfficeCity AS BranchCity, Invest_Amount AS Balance;	~
Correct answer	
CREATE TABLE Unified_Customers (CustomerID INT PRIMARY KEY, FullNam VARCHAR(255), AccountNumber VARCHAR(20), BranchCity VARCHAR(50), Balance DECIMAL(15, 2));	e
CREATE VIEW Unified_Customers AS SELECT CustomerID, FullName, AccountNumber, BranchCity, Balance FROM Customers_Accounts UNION SE ClientNumber AS CustomerID, Name AS FullName, AccountCode AS AccountNumber, OfficeCity AS BranchCity, Invest_Amount AS Balance;	ELECT
× Q. 613B78	0/1
It is used to identify transactions by their unique identifier	
It maps directly to branch information	
It connects customer accounts with their transaction records	
It links transactions to customers in the unified schema	

✓ Q. 789BU1	1/1
Learning based method	
Given a list of names and generate the variant of these names	✓
Rule-based method	
Defining regular expressions for person-name entities	
× Q. 562UV2	0/1
It cannot handle data inconsistencies	×
It results in high false positives	
It can only handle exact matches and fails to detect variations in the data	✓
It requires significant computation time	
Correct answer	
It can only handle exact matches and fails to detect variations in the data	
× Q. 220112	0/1
Jaccard Similarity Measure	×
Levenshtein Distance Measure	×
Jaro Measure	✓
Soundex Measure	
Correct answer	
Jaro Measure	

✓ Q. WER671	1/1
Handling the Differences in country codes for phone numbers	
Handling the spelling variations due to typographical errors	✓
Handling the presence of numerical digits in the names	
Handling the lack of address data	
× Q. 41G678	0/1
They ensure data consistency across sources	×
They improve query performance by storing precomputed results	✓
They provide real-time data updates	×
They help in optimizing schema mapping	×
Correct answer	
They improve query performance by storing precomputed results	
✓ Q. 6NUTB1	1/1
High precision always indicates high recall.	
Recall measures the ratio of true positives to the total actual positives.	✓
None of the above	
Precision measures the ratio of true positives to the total predicted positives.	✓

This form was created inside of IIIT Delhi. Does this form look suspicious? <u>Report</u>

Google Forms