Q1.

- (a) Matlab code to solve the SEIR equation is provided last section of the paper.
- (b) SEIR plot is shown in Left downside, Susceptible decreased after 80th day, on the other hand, removed individuals are increase after 80th day. Exposed and infected individuals are bell curved graphs.
- (c) Graph that describes the number of incident case shown in below and it looks like bell curve which has maximum about 110th day.

(b) SEIR

(c) The number of incident case

So, for the three scenario, 2^{nd} one 3^{rd} one have better situation than 1^{st} one, 2^{nd} one has smallest exposed individual, and 3^{rd} one has the highest the removed(cured) individual. By far, 1^{st} case has largest number of the new cases.


```
%Q1-A,B
t = 180;
R0 = 2.5;
N = 5*10^6;
alpha = 0.2;
gamma = 0.1;
beta = R0 *gamma;
S = zeros(t, 1);
E = zeros(t,1);
I = zeros(t,1);
R = zeros(t, 1);
R(1) = 0;
I(1) = 40;

E(1) = 20*I(1);
S(1) = N-I(1)-E(1)-R(1);
for i = 2:t
    I = 2:t
S(i) = S(i-1) - beta*I(i-1)*S(i-1)/N;
E(i) = E(i-1) + beta*I(i-1)*S(i-1)/N - alpha*E(i-1);
I(i) = I(i-1) + alpha*E(i-1) - gamma*I(i-1);
R(i) = R(i-1) + gamma*I(i-1);
plot(1:t,S,'LineWidth',2)
hold on
plot(1:t,E,'LineWidth',2)
hold on
plot(1:t,I,'LineWidth',2)
hold on
plot(1:t,R,'LineWidth',2)
grid on
title('SEIR')
legend("Susceptible", "Exposed", "Infected", "Removed")
xlabel("Time")
ylabel("Population")
```

```
%Q1-C
t = 180;
R0 = 2.5;
N = 5*10^6;
alpha = 0.2;
gamma = 0.1;
beta = R0 *gamma;
S = zeros(t, 1);
E = zeros(t, 1);
I = zeros(t, 1);
R = zeros(t, 1);
New = zeros(t,1);
R(1) = 0;
I(1) = 40;

E(1) = 20*I(1);
S(1) = N-I(1)-E(1)-R(1);
for i = 2:t
    S(i) = S(i-1) - beta*I(i-1)*S(i-1)/N;
E(i) = E(i-1) + beta*I(i-1)*S(i-1)/N - alpha*E(i-1);
I(i) = I(i-1) + alpha*E(i-1) - gamma*I(i-1);
R(i) = R(i-1) + gamma*I(i-1);
     New(i) = alpha*E(i-1)*(t-1);
% %plot(1:t,S,'LineWidth',2)
% hold on
% %plot(1:t,E,'LineWidth',2)
% hold on
% %plot(1:t,I,'LineWidth',2)
% hold on
% plot(1:t,R,'LineWidth',2)
plot(1:t,New,'LineWidth',2)
grid on
title('The number of incident cases')
% legend("Susceptible", "Exposed", "Infected", "Removed")
xlabel("Time")
ylabel("Population")
```

```
%Q2- 1st case commented part(a) , uncommented plot (b)
t = 180;
N = 5*10^6;
alpha = 0.2;
gamma = 0.1;
S = zeros(t, 1);
E = zeros(t, 1);
I = zeros(t, 1);
R = zeros(t, 1);
New = zeros(t,1);
R(1) = 0;
I(1) = 40;
E(1) = 20*I(1);
S(1) = N-I(1)-E(1)-R(1);
for i = 2:t
   if i >=2 & i <= 20;
       R0 = 3.5;
    end
    if i >= 21 & i <= 70;
       R0 = 2.6;
    if i >= 71 & i <= 84;
       R0 = 1.9;
   end
   if i >= 85 & i <= 90;
       R0 = 1.0;
    if i >= 91 & i <= 110;
        R0 = 0.55;
    if i >= 111 & i <= 180;</pre>
        R0 = 0.55;
    if i >= 181;
       R0 = 0.5;
    beta = R0 *gamma;
    I(i) = I(i-1) + alpha*E(i-1) - gamma*I(i-1);
R(i) = R(i-1) + gamma*I(i-1);
    New(i) = alpha*E(i-1)*(t-1);
%(a)
% plot(1:t,S,'LineWidth',2)
% hold on
% plot(1:t,E,'LineWidth',2)
% hold on
% plot(1:t,I,'LineWidth',2)
% hold on
% plot(1:t,R,'LineWidth',2)
plot(1:t, New, 'LineWidth', 2)
grid on
title('incident cases with scenario one')
%legend("Susceptible", "Exposed", "Infected", "Removed")
xlabel("Time")
ylabel("Population")
```

```
%Q2- 2nd case commented part(a) , uncommented plot (b)
t = 180;
N = 5*10^6;
alpha = 0.2;
gamma = 0.1;
S = zeros(t, 1);
E = zeros(t, 1);
I = zeros(t, 1);
R = zeros(t, 1);
New = zeros(t,1);
R(1) = 0;
I(1) = 40;
E(1) = 20*I(1);
S(1) = N-I(1)-E(1)-R(1);
for i = 2:t
   if i >=2 & i <= 20;
        R0 = 3;
    end
    if i >= 21 & i <= 70;
        R0 = 2.2;
    if i >= 71 & i <= 84;
        R0 = 0.7;
    end
    if i >= 85 & i <= 90;
        R0 = 0.8;
    if i >= 91 & i <= 110;
        R0 = 1.0;
    end
    if i >= 111 & i <= 180;
        R0 = 0.90;
    if i >= 181;
       R0 = 0.5;
    end
    beta = R0 *gamma;
    S(i) = S(i-1) - beta*I(i-1)*S(i-1)/N;
    E(i) = E(i-1) + beta*I(i-1)*S(i-1)/N - alpha*E(i-1);
I(i) = I(i-1) + alpha*E(i-1) - gamma*I(i-1);
    R(i) = R(i-1) + gamma*I(i-1);
    New(i) = alpha*E(i-1)*(t-1);
end
%(a)
% plot(1:t,S,'LineWidth',2)
% hold on
% plot(1:t,E,'LineWidth',2)
% hold on
% plot(1:t,I,'LineWidth',2)
% hold on
% plot(1:t,R,'LineWidth',2)
%hold on
plot(1:t,New,'LineWidth',2)
grid on
title('incident cases with scenario two')
%legend("Susceptible", "Exposed", "Infected", "Removed")
xlabel("Time")
ylabel("Population")
```

```
%Q2- 3rd case commented part(a) , uncommented plot (b)
t = 180;
N = 5*10^6;
alpha = 0.2;
gamma = 0.1;
S = zeros(t, 1);
E = zeros(t, 1);
I = zeros(t, 1);
R = zeros(t, 1);
New = zeros(t,1);
R(1) = 0;
I(1) = 40;
E(1) = 20*I(1);
S(1) = N-I(1)-E(1)-R(1);
for i = 2:t
   if i >=2 & i <= 20;
        R0 = 3;
    end
    if i >= 21 & i <= 70;
        R0 = 2.2;
    if i >= 71 & i <= 84;
        R0 = 0.9;
    end
    if i >= 85 & i <= 90;
        R0 = 2.5;
    if i >= 91 & i <= 110;
        R0 = 3.2;
    end
    if i >= 111 & i <= 180;</pre>
        R0 = 0.85;
    if i >= 181;
       R0 = 0.5;
    end
    beta = R0 *gamma;
    S(i) = S(i-1) - beta*I(i-1)*S(i-1)/N;
    E(i) = E(i-1) + beta*I(i-1)*S(i-1)/N - alpha*E(i-1);
I(i) = I(i-1) + alpha*E(i-1) - gamma*I(i-1);
    R(i) = R(i-1) + gamma*I(i-1);
    New(i) = alpha*E(i-1)*(t-1);
end
%(a)
% plot(1:t,S,'LineWidth',2)
% hold on
% plot(1:t,E,'LineWidth',2)
% hold on
% plot(1:t,I,'LineWidth',2)
% hold on
% plot(1:t,R,'LineWidth',2)
plot(1:t, New, 'LineWidth', 2)
grid on
title('incident cases with scenario three')
%legend("Susceptible", "Exposed", "Infected", "Removed")
xlabel("Time")
ylabel("Population")
```

```
% (a)
T = readtable('BCCDC_COVID19_Dashboard_Case_Details.csv');
time = T(:,1);
date = unique(time);
date = table2array(date);
time = table2array(time);
c = groupsummary(table(time),1);
count = c(:,2);
count = table2array(count);
scatter (date, count)
hold on
t = 500;
N = 200000;
alpha = 0.2;
gamma = 0.02;
S = zeros(t, 1);
E = zeros(t, 1);
I = zeros(t, 1);
R = zeros(t, 1);
New = zeros(t,1);
R(1) = 0;
I(1) = 40;
E(1) = 0*I(1);
S(1) = N-I(1)-E(1)-R(1);
for i = 2:t
   if i >=2 & i <= 12;
       R0 = 0.0;
   if i >= 13 & i <= 22;
       R0 = 0.3;
    end
    if i >= 23 & i <= 109;
       R0 = 0.3;
    if i >= 110 & i <= 156;
       R0 = 0.7;
   if i >= 157 & i <= 212;
       R0 = 1.4;
    if i >= 212 & i <= 271;</pre>
      R0 = 2.6;
    end
    if i >= 272 & i <= 349;
       R0 = 1.1;
    if i >= 350 & i <= 404;
       R0 = 1.72;
    if i >= 405 & i <= 423;
       R0 = 0.7;
    if i >= 423 & i <= 491;
      R0 = 0.2;
    end
    if i >= 493
       R0 = 1.12;
   beta = R0 *gamma;
    S(i) = S(i-1) - beta*I(i-1)*S(i-1)/N;
    E(i) = E(i-1) + beta*I(i-1)*S(i-1)/N - alpha*E(i-1);
    I(i) = I(i-1) + alpha*E(i-1) - gamma*I(i-1);
R(i) = R(i-1) + gamma*I(i-1);
    New(i) = alpha*E(i-1)*(t-1);
```

```
% plot(1:t,S,'LineWidth',2)
% hold on
% plot(1:t,E,'LineWidth',2)
% hold on
% hold on
% plot(1:t,I,'LineWidth',2)
% hold on
% plot(1:t,R,'LineWidth',2)
plot(40:t+39,New,'LineWidth',2)
 %35:t+34
grid on
title('Incident cases and Model')
legend("New cases","Model")
xlabel("Time")
ylabel("Population")
```