CS 225 Switching Theory

Dr. Somanath Tripathy
Indian Institute of Technology Patna

Previous Class

Combinational Circuit logic design

This Class

Combinational Circuit logic design

circuit

n inputs

Combinational Circuit

m-outputs

		——————————————————————————————————————		
S	tep	Description		
Step 1: Capture behavior	Capture the function	Create a truth table or equations, whichever is most natural for the given problem, to describe the desired behavior of each output of the combinational logic.		
Step 2: Convert to circuit	2A: Create equations 2B:	This substep is only necessary if you captured the function using a truth table instead of equations. Create an equation for each output by ORing all the minterms for that output. Simplify the equations if desired.		
	Implement as a gate-based	For each output, create a circuit corresponding to the output's equation. (Sharing gates among multiple		

outputs is OK optionally.)

Warmup (NAND/NOR) Circuits

Switching algebra: not directly applicable to NAND/NOR logic

NAND and NOR gate symbols

Warm-up (Decoders)

Decoders with n inputs and 2^n outputs: for any input combination, only one output is 1

Useful for:

- Routing input data to a specified output line, e.g., in addressing memory
- Basic building blocks for implementing arbitrary switching functions
- Code conversion
- Data distribution

Example: 2-to-4- decoder

Warm-up (Decoders)

3-8 linde Decoder Truth table

Inputs	Outputs						
$x_2 \ x_1 \ x_0$	z ₀ z ₁ z ₂ z ₃ z ₄ z ₅ z ₆ z ₇						
0 0 0	0 1 1 1 1 1 1 1						
0 0 1	10111111						
0 1 0	11011111						
0 1 1	11101111						
1 0 0	11110111						
1 0 1	11111011						
1 1 0	11111101						
1 1 1	1						

3-8 linde Bubbled output Decoder Symbol

3-8 linde Decoder using NanD gates Logic Diagram

Generates a single output (desired) low

Warmup (Implementing Boolean expression)

Using Decoder Ex.: Realize using 3x8 decoder $f1 = \sum m(1,2,4,5)$ and $f2 = \sum m(1,5,7)$

Realize the above function with given bubbled output decoder (Nand gate decoder)

Warmup (Multiplexer)

Multiplexer: electronic switch that connects one of n inputs to the output

Data selector: application of multiplexer

- n data input lines, D_0 , D_1 , ..., D_{n-1}
- m select digit inputs S_0 , S_1 , ..., S_{m-1}
- 1 output

(b) Logic diagram.

Implementing Boolean expression using

Using Multiplexer Ex.: Realize F $(x,y,z) = \sum m(1,2,6,7)$ using 4x1 Mux

Design of High-speed Adders

Full adder: performs binary addition of three binary digits

- Inputs: arguments A and B and carry-in C
- Outputs: sum S and carry-out C_0

Example:

$$0 \ 1 \ 1 = carry-in \\ 1 \ 0 \ 0 \ 1 = augend \\ \hline 0 \ 0 \ 1 \ 1 = addend \\ \hline 1 \ 1 \ 1 \ 0 = sum$$

Truth table, block diagram and expressions:

Α	В	С	S	C0
0	0	0	0	0
0		1	1	0
0	1	1	0	1
0	1	0		0
1	1	0	0	1
1	1	1	1	1
1	1	1	0	1
1	0	0	1	0

$$S = A'B'C + A'BC' + AB'C' + ABC$$

$$= A \oplus B \oplus C$$

$$C_0 = A'BC + ABC' + AB'C + ABC$$

$$= AB + AC + BC$$

(b) Block diagram.

Ripple-carry Adder

Ripple-carry adder: Stages of full adders

- C_f : forced carry
- $C_0(n-1)$: overflow carry

$$S_i = A_i \oplus B_i \oplus C_i$$

$$C_{0i} = A_i B_i + A_i C_i + B_i C_i$$

Time required:

- Time per full adder: 2 units
- Time for ripple-carry adder: 2n units

Carry Propagation & Delay

- One problem with the addition of binary numbers is the length of time to propagate the ripple carry from the least significant bit to the most significant bit.
- The gate-level propagation path for a 4-bit ripple carry adder of the last example:

• Note: The "long path" is from A_0 or B_0 though the circuit to S_3 .

Carry Lookahead

- Given Stage i from a Full Adder, we know that there will be a <u>carry generated</u> when $A_i = B_i = "1"$, whether or not there is a carry-in.
- Alternately, there will be a <u>carry propagated</u> if the "half-sum" is "1" and a carry-in, C_i occurs.
- These two signal conditions are called generate, denoted as G_i , and propagate, denoted as P_i respectively and are identified in the circuit:

Carry Lookahead (continued)

- In the ripple carry adder:
 - o Gi, Pi, and Si are <u>local</u> to each cell of the adder
 - Ci is also local each cell
- In the carry lookahead adder, in order to reduce the length of the carry chain, C_i is changed to a more global function spanning multiple cells
- Defining the equations for the Full Adder in term of the P_i and G_i :

$$S_i = P_i \oplus C_i \qquad C_{i+1} = G_i + P_i C_i$$

$$P_i = A_i \oplus B_i \qquad G_i = A_i B_i$$

Example - 4-bit Adder

```
c_1 = G_0 + c_0 P_0,
c_2 = G_1 + G_0 P_1 + c_0 P_0 P_1,
c_3 = G_2 + G_1 P_2 + G_0 P_1 P_2 + c_0 P_0 P_1 P_2,
c_4 = G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3 + c_0 P_0 P_1 P_2 P_3
```

A carry lookahead generator.

A carry lookahead Adder

Wish you all have a Good Exam

Thanks