变电工程设计电气专业主设人工作手册 专题报告

直击雷保护设计

中国电力工程顾问集团 华北电力设计院工程有限公司变电电气室 2011 年 12 月

目 录

1	折线法	3
	滚球法:	
	2.1 EGM 法简介:	4
	2.2 国标中滚球法半径确认:	5
	2.3 IEEE 中滚球法半径确认:	6
	2.4 滚球法的几何模型:	7

1 折线法

DL/T620-1997《交流电气装置的过电压保护和绝缘配合》推荐的方法: 避雷针:

避雷线:

(h \leqslant 30m 时, $\theta = 25^{\circ}$)

两避雷线间的保护方法:

两根平行避雷线的保护范围

两线外侧的保护范围按照单线计算,两线横截面的保护范围可以通过两线1、2点及保护范围上部边缘最低点o的圆弧所确定。

折线法简单计算,国内工程也大多使用该方法,但折线法有其不足的地方:

- 1、 没有考虑绕击雷。
- 2、 不区分设备的耐雷水平,假定所有电压等级设备的耐雷水平都一样。 不同电压等级的耐雷水平是不一样的,相同电压电流幅值的雷电流打到 500kv 设备上不会故障,但打到 10kv 设备上就很可能引起设备故障甚至 爆炸。
- 3、 根据折线法的定义,如果在站内立一根足够高的避雷针或者避雷线, 足以保护整个变电站,这明显是不可能的。

2 滚球法

2.1 EGM 法简介:

国外对直击雷的研究也经过了很多步骤,现在国际通用的方法是电气几何模型---EGM 法:

最初的 EGM 由 GLODE 在 1945 年提出,但不适用于防雷, 1960 年 J.G.ANDERSON 发行了一个计算机程序,用蒙特卡洛法计算传输线路雷击分布,基于此,whitehead 研究了一个基于直击雷理论的模型,即修正版的 EGM。

现在基于 EGM 模型,对直击雷防的计算方法共有两种: 1、滚球法, 2、

MOUSE 和 SRIVASTAVA 法。常用的是滚球法。

滚球法基于雷电吸收理论,就是想象一个半径为 S 的球在变电站的表面滚动。球体沿着避雷针,避雷线,变电站金属围墙以及其他的能起到避雷作用的接地金属上下滚动。只有需要保护的设备在球体滚动的轨迹形成的曲面之下时,它才是被保护的;如果设备触到了曲面,或者穿出了球体滚动形成的曲面,就没有被保护住。(IEEE 998-1996)

- 1 被保护空间
- 2 参考平面
- R 根据 IEC 61024-1 表 1 选定的滚球半径
- OC 保护区域的半径
- A 水平避雷线上的点
- h=h 见 IEC 61024-1 表 1
- h. **接闪器高出参考平面的实际高度**

采用滚球法确定避雷针、避雷杆或避雷线的保护空间

2.2 国标中滚球法半径确认:

国标 GB 50057-94《建筑物防雷设计规范》中对滚球半径选择如下:

建筑物防雷类别	滚球半径m
第一类防雷建筑物	30
第二类防雷建筑物	45
第三类防雷建筑物	60

可以看出,国标中的滚球法半径是一个定值,考虑了部分绕击雷,但也没有区分设备的耐雷水平。 还是将所有设备的雷电耐受水平看作一样的。

2.3 IEEE 中滚球法半径确认:

IEEE998-1996 中对滚球法的半径有详细的公式定义, 具体如下:

通过直击雷形成过程研究,最终雷电的放电距离(striking distance)与雷击电流有关:

$$S=8kI^{0.65}$$
 (5-1A)

S-放电距离, m

I-雷击电流, KA

K-系数,用以区别避雷针,避雷线,或者直接对地。避雷线 k=1,避雷针 k=1.2。

雷击的电流值分布很广,EGM 理论表明,避雷针或者避雷线的保护范围取决于雷击电流的幅值,即对于不同的雷击电流,避雷针或避雷线有不同的保护范围。一条避雷线在雷击电流为 IS 的情况下能保护设备,但它可能在雷击电流小于 IS 时却不能保护该设备,因为 IS 小,避雷线针对电流值为 IS 的雷击的保护范围也小。相反,相同的保护布置可以对电流大于 IS 的雷击提供更好的保护。

因为雷击电流小于 IS 的雷击能刺破保护范围终止于设备上,因此设备需要能耐受这部分雷击而不发生闪络,也可以说,避雷范围应该包含所有大于等于 IS 的雷击,这样设备才是安全的。

设备允许的雷击电流 IS 计算公式如下:

BIL! 1. 1

BIL---设备基本雷电冲击耐压。

ZS-----波阻抗,300~400之间。(《规程 SDJ1-79》)

1.1---落在设备上的雷击电流衰减系数。

上式为典型的雷击情况,即雷击到母线上,向母线两个方向同时泻流,公式假定两个方向的波阻抗是相同的,都是 Z_s 的一半。

如果雷击打到母线终端上,雷电流只朝着一个方向流,此时的波阻抗是全阻抗,此时的雷电流就应该调整为上式的 2 倍,相应的滚球半径也会是 2^{0.65} 倍。

选择最严格的情况,即雷击到母线中间,根据 IEEE 公式计算出的滚球半径如下表所示:

滚球半径选取							
电压等级	对应防雷等级	对应允许雷电流	避雷针滚球半	避雷线滚球半			
kv	kv	Ka	径 m	径 m			
35	185	1.357	11.71	9. 75			
66	325	2. 383	16. 88	14. 07			
110	450	3. 300	20.86	17. 38			
220	850	6. 233	31. 54	26. 28			
330	1050	7. 700	36. 18	30. 15			
500	1425	10. 450	44. 13	36. 77			
1000	2400	17. 600	61. 92	51.60			

2.4 滚球法的几何模型:

2.4.1 单根避雷线:

2.4.2 单根避雷针:

当避雷针的高度高于滚球半径时。

$$R_1 = S$$

$$T = \sqrt{S^2 - (S - A)^2} = \sqrt{S^2 - (H_0 - A)^2}$$

$$X = R_1 - T$$

2.4.3 两根不等高避雷线

$$\begin{cases} Y_1 + Y_2 = Y \\ \sqrt{S^2 - Y_1^2} = S + A \max - H_1 \\ \sqrt{S^2 - Y_2^2} = S + A \max - H_2 \end{cases}$$

2.4.4 两根不等高避雷针:

