

Algebraic Foundations of Computer Science (AFCS)

Prof.Dr. F.L. Tiplea

Closure

Structure induction

Definitions b

Definitions by recursion

Course readings

Algebraic Foundations of Computer Science. Closures.

Ferucio Laurenţiu Ţiplea

Department of Computer Science "AL.I.Cuza" University of Iaşi Iaşi, Romania E-mail: fttiplea@info.uaic.ro

Spring 2017

Outline

Algebraic Foundations of Computer Scienc (AFCS)

Prof.Dr. F. Tiplea

Closu.

Structur inductio

Definitions induction

Definitions l recursion

Course reading

- Closures
- 2 Structural induction
- Definitions by induction
- Definitions by recursion
- **6** Course readings

Closures – example

Algebraic Foundations of Omputer Science (AFCS)

Prof.Dr. F.i Tiplea

Closui

Structure induction

Definitions induction

Definitions in recursion

Course readin

Example 1

Let A be a set of atomic propositions. The set PF(A) of propositional formulas over A is the least set which fulfills the following properties:

- $a \in PF(A)$, for any $a \in A$ (that is, $A \subseteq PF(A)$);
- ullet if α and β are propositional formulas over A, then

$$\neg \alpha$$
, $(\alpha \lor \beta)$, $(\alpha \land \beta)$, $(\alpha \Rightarrow \beta)$, and $(\alpha \Leftrightarrow \beta)$

are propositional formulas over A.

The three key features of PF(A):

- "includes A"
- "closed under" \neg , \lor , \land , \Rightarrow , \Leftrightarrow
- "least set" with the above properties

Constructors and closures

Algebraic Foundations of omputer Science (AFCS)

Prof.Dr. F.l Tiplea

Closu.

Structure induction

Definitions : induction

Definitions li recursion

Course readin

An *n*-ary constructor over a set V is a relation r from V^n to V. That is, the elements of r are of the form $((a_1, \ldots, a_n), a)$.

Given an n-ary constructor r and a set A, denote by r(A) the set:

$$r(A) = \{a | (\exists a_1, \dots, a_n \in A)(((a_1, \dots, a_n), a) \in r)\}$$

Definition 2

Let A be a set and \mathcal{R} be a set of constructors. The closure of A under \mathcal{R} is the least set $B \subseteq V$ with the properties:

- A ⊆ B;
- B is closed under \mathcal{R} , i.e., $r(B) \subseteq B$, for any $r \in \mathcal{R}$.

Existence of Closures

Algebraic Foundations of omputer Science (AFCS)

Prof.Dr. F.I Tiplea

Closui

Structur

Definitions induction

Definitions l

Course reading

Theorem 3 (Existence of closures)

Given a set A and a set \mathcal{R} of constructors, the closure of A under \mathcal{R} exists and it is unique. Moreover, if $\mathcal{R}[A]$ denotes the closure of A under \mathcal{R} , then

$$\mathcal{R}[A] = \bigcup_{m \geq 0} B_m,$$

where

•
$$B_0 = A$$
;

•
$$B_{m+1} = B_m \cup \bigcup_{r \in \mathcal{R}} r(B_m)$$
, for any $m \ge 0$;

The closure of A under \mathcal{R} is the union of a chain of sets:

$$B_0=A, B_1=B_0\cup \mathcal{R}(B_0), B_2=B_1\cup \mathcal{R}(B_1), \ldots, \bigcup_{m>0}B_m=\mathcal{R}[A],$$

where
$$\mathcal{R}(B_i) = \bigcup_{r \in \mathcal{R}} r(B_i)$$
.

The set of natural numbers as a closure

Algebraic Foundations of omputer Science (AFCS)

Prof.Dr. F. Tiplea

Closui

induction

Definitions induction

Definitions l

Course readin

Definition 4

The successor of a set x, denoted S(x), is the set $S(x) = x \cup \{x\}$.

Recall that natural numbers are defined as follows:

•
$$0 = \emptyset$$
;

•
$$1 = S(0) = \{0\} = \{\emptyset\};$$

•
$$2 = S(1) = \{0, 1\} = \{\emptyset, \{\emptyset\}\}\$$
 etc.

Therefore, \mathbb{N} is the closure of $\{0\}$ under $\mathcal{R} = \{S\}$.

Algebraic Foundations of omputer Science (AFCS)

Prof.Dr. F.. Tiplea

Closui

Structur

Definitions induction

Definitions l recursion

Course readi

Definition 5

The reflexive closure of a binary relation $\rho \subseteq A \times A$ is the least reflexive binary relation $r(\rho)$ which includes ρ .

Fact: $r(\rho)$ can be computed as follows:

$$r(\rho) = \rho \cup \iota_A$$

Definition 6

The symmetric closure of a binary relation $\rho \subseteq A \times A$ is the least symmetric binary relation $s(\rho)$ which includes ρ .

Fact: $s(\rho)$ can be computed as follows:

$$s(\rho) = \rho \cup \rho^{-1}$$

Algebraic Foundations of omputer Science (AFCS)

Prof.Dr. F. Tiplea

Closur

Structure induction

Definitions induction

Definitions be recursion

Course reading

Definition 7

The transitive closure of a binary relation $\rho \subseteq A \times A$ is the least transitive binary relation $t(\rho)$ which includes ρ .

Fact: $t(\rho)$, also denoted by ρ^+ , can be computed as follows:

$$t(\rho) = \rho^+ = \bigcup_{m>1} \rho^m,$$

where

$$ho^1 = \rho$$
 and

•
$$\rho^{m+1} = \rho \circ \rho^m$$
, for all $m \ge 1$.

Definition 8

The reflexive and transitive closure of a binary relation $\rho \subseteq A \times A$ is the least reflexive and transitive binary relation ho^* which includes ρ .

Fact: ρ^* can be computed as follows:

$$\rho^* = t(r(\rho)) = r(t(\rho)) = \bigcup_{m>0} \rho^m,$$

where

- $ho^0 = \iota_A$ and
- $\bullet \ \rho^{m+1} = \rho \circ \rho^m$, for all m > 0.

Algebraic Foundations of omputer Science (AFCS)

Prof.Dr. F.. Tiplea

Closui

Structur inductio

Definitions induction

Definitions is recursion

Course readi

Definition 9

The closure under equivalence of a binary relation $\rho \subseteq A \times A$ is the least equivalence relation equiv (ρ) which includes ρ .

Fact: $equiv(\rho)$ can be computed as follows:

$$equiv(\rho) = t(s(r(\rho))) = t(r(s(\rho))) = r(t(s(\rho))).$$

Remark 1

In general, $s(t(\rho)) \neq t(s(\rho))$.

Structural induction

Algebraic Foundations of omputer Science (AFCS)

Prof.Dr. F. Tiplea

Closur

Structur inductio

Definitions induction

Definitions l recursion

Course reading

Theorem 10 (Structural induction)

Let $B = \mathcal{R}[A]$ be the closure of A under \mathcal{R} and let P be a property such that:

- P(a), for any $a \in A$;
- $(P(a_1) \wedge \cdots \wedge P(a_n) \Rightarrow P(a))$, for any $r \in \mathcal{R}$ and $a_1, \dots, a_n, a \in B$ with $((a_1, \dots, a_n), a) \in r$.

Then, P is satisfied by any $a \in B$.

Remark 2

- Structural induction is equivalent to mathematical induction.
- Structural induction is more appropriate for proving properties of closures than mathematical induction.

Structural induction – example

Algebraic Foundations of omputer Science (AFCS)

Prof.Dr. F.. Tiplea

Closur

Structure induction

Definitions induction

Definitions l

Course readin

Example 11

Let A be a set of atomic propositions. The set PF(A) of propositional formulas as defined in Example 1 is the closure of A under some set of constructors (prove it!).

Let $P(\alpha)$ be the following property:

 $P(\alpha)$: α has as many left brackets as right brackets.

By structural induction we can easily prove that P is satisfied by all propositional formulas over A (prove it!).

Definitions by induction

Algebraic Foundations of omputer Science (AFCS)

Prof.Dr. F. Tiplea

Closur

induction

Definitions induction

Definitions by recursion

Course reading.

Definition 12

A set B is inductively defined by A and \mathcal{R} if $B = \mathcal{R}[A]$.

If $B = \mathcal{R}[A]$, then B is obtained as follows:

- $B_0 = A$;
- $B_{m+1} = B_m \cup \mathcal{R}(B_m)$, for all $m \geq 0$;
- $B = \bigcup_{m \geq 0} B_m$.

If the chain

$$B_0, B_1, B_2, \ldots, B_m, B_{m+1} = B_m, B_{m+2} = B_m, \ldots$$

stabilizes to some set B_m , then its union is B_m and, therefore, $B = B_m$.

Definitions by induction

Algebraic Foundations of omputer Science (AFCS)

Prof.Dr. F.I Tiplea

Closure

Structure induction

Definitions induction

Definitions

recursion

Course reading

A definition by induction corresponds to the following while-loop (that might be non-terminating):

Algorithm 1: Computing closures

input: set A and set \mathcal{R} of constructors; **output**: $B = \mathcal{R}[A]$;

begin

$$B := A;$$

while $\mathcal{R}(B) \not\subseteq B$ do
 $\mid B := B \cup \mathcal{R}(B)$

Algebraic Foundations of Computer Science (AFCS)

Prof.Dr. F. Tiplea

Closur

Structural induction Definitions b induction

Definitions b recursion

Course reading

Assume that B is inductively defined by A and \mathcal{R} . It would be a good idea to define functions f on B in a recursive way as follows:

- define f for any $a \in A$;
- if $((a_1, \ldots, a_n), a) \in r$ and the function has already been defined for a_1, \ldots, a_n , then define the function for a as a combinations of the values $f(a_1), \ldots, f(a_n)$ in the form

$$h(r)(f(a_1),\ldots,f(a_n)),$$

where h associates a (partial) function h(r) to r.

Algebraic Foundations of omputer Science (AFCS)

Prof.Dr. F.1 Tiplea

Closure

induction

Definitions by induction

Definitions by recursion

Course reading

The definition above has a main drawback: it could not work for some sets *B*. Just think that the element *a* above might be defined in at least two different ways,

$$((a_1,\ldots,a_n),a)\in r$$

and

$$((a_1',\ldots,a_m'),a)\in r'.$$

In such a case, you must be assured that

$$h(r)(f(a_1),\ldots,f(a_n))=h(r')(f(a_1'),\ldots,f(a_m')).$$

The easiest way to have this property fulfilled is to ask for each element $a \in B$ to have exactly one inductive construction of it from A and \mathcal{R} . If B has this property then it is called a free inductively defined set.

However, for inductively defined sets we can prove the following result:

Lemma 13

Let $B = \mathcal{R}[A]$, C a set, $g: A \to C$, and h a function which associates a partial function $h(r): \mathbb{C}^n \to \mathbb{C}$ to each $r \in \mathbb{R}$, where n is the arity of r. Then, there exists a unique relation $f \subseteq B \times C$ such that:

- (1) $(a, g(a)) \in f$, for any $a \in A$;
- (2) if $(a_1, b_1), \ldots, (a_n, b_n) \in f$, $((a_1, \ldots, a_n), a) \in r$ and $h(r)(b_1,\ldots,b_n)\downarrow$, then $(a,h(r)(b_1,\ldots,b_n))\in f$;
- (3) f is the least relation from B to C which satisfies (1) and (2).

Algebraic Foundations of omputer Science (AFCS)

Prof.Dr. F. Tiplea

Closur

Structural induction

Definitions induction

Definitions b recursion

Course reading

Definition 14

A set B is called free inductively defined by A and \mathcal{R} if, for any $a \in B$,

- either $a \in A$,
- or there exists a unique $r \in \mathcal{R}$ and a unique n-tuple (a_1, \ldots, a_n) such that $((a_1, \ldots, a_n), a) \in r$, where n is the arity of r (for n = 0 we understand that $a \in r$).

Now, we can obtain the following important result.

Theorem 15 (Recursion theorem)

Let B, C, g, and h as in Lemma 13. If B is free inductively defined by A and \mathcal{R} , then the binary relation f from Lemma 13 is a function.

A slight extension of the recursion theorem is the following:

Theorem 16

Let $B = \mathcal{R}[A]$, C a set, $g: A \to C$, and h a function which associates a partial function $h(r): B^n \times C^n \to C$ to each $r \in \mathcal{R}$, where n is the arity of r. If B is free inductively defined by A and \mathcal{R} , then there exists a unique function $f: B \to C$ such that:

- (1) f(a) = g(a), for any $a \in A$;
- (2) $f(a) = h(r)(a_1, \ldots, a_n, f(a_1), \ldots, f(a_n))$, for any a, a_1, \ldots, a_n with $((a_1,\ldots,a_n),a)\in r$ and $h(r)(a_1,\ldots,a_n,f(a_1),\ldots,f(a_{n_r}))\downarrow$, where n is the arity of r.

Definitions by recursion – example

Example 17

Let PF(A) be the set of propositional formulas over A. It is easy to see that this set is free inductively defined.

Define a function $f: PF(A) \to \mathbb{N}$ in a recursive way as follows:

- f(a) = 1, for any $a \in A$;
- $f(\neg \alpha) = f(\alpha)$, for any $\alpha \in PF(A)$;
- $f((\alpha \vee \beta)) = f(\alpha) + f(\beta)$, for any $\alpha, \beta \in PF(A)$;
- $f((\alpha \wedge \beta)) = f(\alpha) + f(\beta)$, for any $\alpha, \beta \in PF(A)$;
- $f((\alpha \Rightarrow \beta)) = f(\alpha) + f(\beta)$, for any $\alpha, \beta \in PF(A)$;
- $f((\alpha \Leftrightarrow \beta)) = f(\alpha) + f(\beta)$, for any $\alpha, \beta \in PF(A)$.

The function f returns the length of propositional formulas.

Definitions by recursion – more examples

Algebraic Foundations of Computer Science (AFCS)

Prof.Dr. F. Tiplea

Closui

Structur inductio

Definitions induction

Definitions by recursion

Course reading

Pick up your favorite programming language and:

- show that its set of arithmetic and logic expressions is inductively defined;
- define recursively the length of an arithmetic expression;
- define inductively the set of variables of an arithmetic expression;
- define recursively the "height" of an arithmetic expression.

An important particular case of the recursion theorem:

Theorem 18 (Recursion theorem for \mathbb{N})

Let *A* be a set, $a \in A$, and $h : \mathbb{N} \times A \to A$ be a function. Then, there exists a unique function $f: \mathbb{N} \to A$ such that:

- (1) f(0) = a;
- (2) f(n+1) = h(n, f(n)), for any n.

This result can be strengthen to:

Theorem 19 (Parametric recursion theorem for \mathbb{N})

Let A and P be sets, and $g: P \to A$ and $h: P \times \mathbb{N} \times A \to A$ be two functions. Then, there exists a unique function $f: P \times \mathbb{N} \to A$ such that:

- (1) f(p, 0) = g(p), for any $p \in P$;
- (2) f(p, n+1) = h(p, n, f(p, n)), for any $p \in P$ and $n \in \mathbb{N}$.

Addition, multiplication, and exponentiation on natural numbers are defined by recursion:

- Addition:
 - x + 0 = x
 - x + (n+1) = (x+n) + 1;
- Multiplication:
 - $x \cdot 0 = 0$
 - $x \cdot (n+1) = (x \cdot n) + x$;
- Exponentiation:
 - $x^0 = 1$
 - $x^{n+1} = (x^n) \cdot x$.

Algebraic Foundations of omputer Science (AFCS)

Prof.Dr. F.1 Tiplea

Closur

Structural induction

Definitions induction

Definitions by recursion

Course reading

In some cases the value of a function f at a natural number n may depend on the values of f at $0, \ldots, n-1$ (Fibonacci's sequence is such an example).

The recursion in such cases is called hereditary.

Theorem 20 (Hereditary recursion theorem)

Let A be a set, $S = \bigcup_{n \in \mathbb{N}} A^n$, and $h : \mathbb{N} \times S \to A$ be a function. Then, there exists a unique function $f : \mathbb{N} \to A$ such that

$$f(n)=h(n,f|_n),$$

for any $n \in \mathbb{N}$ (recall that $f|_0 = f|_\emptyset = \emptyset \in A^0$).

Exercise: Develop a parametric version of the hereditary recursion theorem.

Course readings

Algebraic Foundations of omputer Science (AFCS)

Prof.Dr. F. Tiplea

Closur

induction

Definitions be induction

Definitions in recursion

Course reading

- F.L. Ţiplea: Fundamentele Algebrice ale Informaticii, Ed. Polirom, Iaşi, 2006, pag. 70–79.
- F.L. Ţiplea: *Introducere în Teoria Mulţimilor*, Ed. Univesităţii "Al.I.Cuza", Iaşi, 1998, pag. 83–90.