Devoir surveillé n°7 Version 2

Durée : 3 heures, calculatrices et documents interdits

I. Conjugaison de Fenchel de fonctions strictement convexes.

Notations

Dans ce problème, on notera \mathcal{N} l'ensemble des fonctions f de \mathbb{R}_+ dans lui-même telles que f(0) = 0 et qui admettent une dérivée positive, continue et strictement croissante sur \mathbb{R}_+ .

On notera \mathcal{N}_0 le sous-ensemble de \mathcal{N} formé des fonctions f telles que

$$f'(0) = 0$$
 et $f'(x) \xrightarrow[x \to +\infty]{} +\infty$

Partie 1 : conjugaison de Fenchel

Dans toute cette partie f désigne un élément de \mathcal{N} .

- 1) Quels sont les différents comportements possibles de f'(x) lorsque x tend vers $+\infty$?
- 2) On se propose d'établir dans cette question l'équivalence entre les deux propositions :

$$f'(x) \xrightarrow[x \to +\infty]{} +\infty \text{ et } \frac{f(x)}{x} \xrightarrow[x \to +\infty]{} +\infty.$$

a) Montrer que pour tout x, réel positif, on a l'inégalité :

$$f(x) \leqslant x f'(x)$$

et vérifier que cette inégalité est stricte si x > 0.

- b) En déduire que la fonction définie sur \mathbb{R}_+^* par $x \mapsto \frac{f(x)}{x}$ est strictement croissante.
- c) Justifier, pour tout x réel positif l'inégalité :

$$xf'(x) \leqslant f(2x)$$
.

Indication: on pourra évaluer la différence f(2x) - f(x).

- d) Conclure quant à l'équivalence énoncée ci-dessus.
- 3) Un exemple. Soit F l'unique primitive de Arctan sur \mathbb{R}_+ nulle en 0. Prouver que F appartient à \mathcal{N} et expliciter F(x) pour x réel positif.

 Donner une représentation graphique de F en précisant la tangente au point d'abscisse 0.

Dans toute la suite du problème, on supposera que f est un élément de \mathcal{N}_0 .

4) a) Montrer que, pour tout t réel positif, la fonction

$$w_t: \mathbb{R}_+ \to \mathbb{R}$$

 $x \mapsto tx - f(x)$

admet un maximum et qu'elle l'atteint en un unique réel positif x_t .

On notera

$$\varphi: \mathbb{R}_+ \to \mathbb{R}$$

$$t \mapsto x_t$$

et

$$f^*: \mathbb{R}_+ \to \mathbb{R} \\ t \mapsto w_t(x_t)$$

La fonction f^* sera appelée fonction conjuguée de f.

- 4) b) Démontrer que φ est continue et strictement croissante sur \mathbb{R}_+ , que $\varphi(0) = 0$ et que $\varphi(t)$ tend vers $+\infty$ lorsque t tend vers $+\infty$.
- 5) a) Dans cette question, t est un réel strictement positif et h est un réel vérifiant : $|h| \leq t$.

Justifier l'existence d'un réel $\alpha_{t,h}$ compris entre t et t+h tel que :

$$f(\varphi(t+h)) - f(\varphi(t)) = \alpha_{t,h}(\varphi(t+h) - \varphi(t))$$

En déduire que l'on peut écrire :

$$f^*(t+h) - f^*(t) = h\varphi(t) + \beta_{t,h} \left(\varphi(t+h) - \varphi(t) \right)$$

où $\beta_{t,h}$ est un réel vérifiant : $|\beta_{t,h}| \leq |h|$.

- **b)** En déduire que f^* est dérivable en tout point de \mathbb{R}_+^* et que sa dérivée sur \mathbb{R}_+^* est la fonction φ .
- c) Montrer que f^* est dérivable en 0 et donner $(f^*)'(0)$.
- d) Vérifier que les fonctions dérivées f' et $(f^*)'$ sont réciproques l'une de l'autre. En déduire que f^* appartient à \mathcal{N}_0 et que l'on a :

$$f^{**} = f$$

où l'on note f^{**} la fonction conjuguée de f^* .

6) Des exemples:

Dans les trois cas suivants, justifier l'appartenance de f à \mathcal{N}_0 et exprimer $f^*(t)$ en fonction de t pour t réel positif.

a) Premier cas : Soit $K \in \mathbb{R}_+^*$. On pose : $f : \mathbb{R}_+ \to \mathbb{R}$ $x \mapsto Kx^2$

On montrera de plus qu'il existe un unique K tel que $f^* = f$.

b) Deuxième cas : Soit m > 1. On pose : $f : \mathbb{R}_+ \to \mathbb{R}$

On mettra $f^*(t)$ sous la forme $\lambda_m \left(\frac{t}{m}\right)^{\beta}$.

c) Troisième cas : $f: \mathbb{R}_+ \to \mathbb{R}$ $x \mapsto e^x - 1 - x$

Partie 2 : Recherche des fonctions f vérifiant l'égalité $f=f^{\ast}$

7) Vérifier pour tout couple (x,t) de réels positifs, l'inégalité :

$$xt \le f(x) + f^*(t)$$

Montrer que cette inégalité est une égalité si et seulement si $x = \varphi(t)$.

8) Montrer que, si g est un élément de \mathcal{N}_0 , on a :

$$f \leqslant g \Longrightarrow g^* \leqslant f^*$$

où g^* est la fonction conjuguée de g.

9) En déduire que la seule fonction f de \mathcal{N}_0 vérifiant l'égalité $f=f^*$ est la fonction

$$f: \mathbb{R}_+ \to \mathbb{R} .$$

$$x \mapsto \frac{x^2}{2}.$$

II. Une suite de sous-espaces supplémentaires

On note E l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} , muni de sa structure de \mathbb{R} -espace vectoriel usuelle. On identifiera un polynôme à sa fonction polynomiale associée, et l'on considérera donc que $\mathbb{R}[X]$ est un sous-espace vectoriel de E.

Soit $(a_i)_{i\in\mathbb{N}^*}$ une suite de nombres réels distincts deux à deux. Si $i\in\mathbb{N}^*$, on note

$$F_i = \{ f \in E \mid f(a_1) = \dots = f(a_i) = 0 \}$$

et

$$G_i = \mathbb{R}_{i-1}[X].$$

- 1) Montrer que chaque F_i est un sous-espace vectoriel de E.
- 2) Comparer pour chaque $i \ge 1 : F_i$ et F_{i+1} ; G_i et G_{i+1} .
- 3) Montrer que, pour chaque $i \ge 1$, F_i et G_i sont supplémentaires dans E.

On pose maintenant

$$F = \bigcap_{i \geqslant 1} F_i$$

et

$$G = \bigcup_{i \geqslant 1} G_i$$

- 4) Justifier que F et G sont des sous-espaces vectoriels de E.
- 5) Est-ce que F et G sont en somme directe? supplémentaires dans E?

— FIN —