MECH 6v29 - Model Predictive Control Homework 3

Jonas Wagner jonas.wagner@utdallas.edu

2023, October $20^{\rm th}$

Contents

Pr	Problem 1			
	Nilpotent candidate controller	2		
	Output constraint tightening	2		
\mathbf{A}	de	;		
	Github			
	Matlab results	:		

Problem 1

Problem Data:

1a)

Problem Data:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \mathbf{B} = \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} \quad \mathcal{W} = \{ \mathbf{w} = \mathbf{B}z : |z| \le 0.3 \}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} \mathbf{D} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad \mathcal{Y} = \{ \mathbf{y} \in \mathbb{R}^3 : \|\mathbf{y}\|_{\infty} \le 1 \}$$

$$(1)$$

Prediction Horizon: N = 10Initial Condition: $\mathbf{x}_0 = 0$

1b) Nilpotent candidate controller

 $\Lambda(\mathbf{A} + \mathbf{B}\mathbf{K}) = 0$ Result w/ Acker: $\mathbf{K} = \begin{bmatrix} -1 & -1.5 \end{bmatrix}$ Same as in [?].

1c) Output constraint tightening

From reference (using different notation):

$$\mathcal{Y}_{0} = \mathcal{Y}$$

$$\mathcal{Y}_{j+1} = \mathcal{Y}_{j} \ominus (\mathbf{C} + \mathbf{D}\mathbf{K})\mathbf{L}_{j}\mathcal{W}, \quad \forall_{j \in \{0, \dots, N-1\}}$$
(2)

where $\mathbf{L}_j = (\mathbf{A} + \mathbf{B}\mathbf{K})^j$.¹

Or equivalently, using the time-invarience of K and some version of the Cayley-Hamilton theorem,

$$\mathcal{Y}_j = \mathcal{Y} \ominus \bigoplus_{i=1,\dots,n} (\mathbf{C} + \mathbf{DK})(\mathbf{A} + \mathbf{BK})^{i-1}$$
 (3)

(eliminating if the power is negative...)

TODO: double check this... (pretty sure this falls under some distributed property...)

For this system,
$$(\mathbf{C} + \mathbf{D}\mathbf{K}) = \begin{bmatrix} \mathbf{I}_2 \\ \mathbf{K} \end{bmatrix}$$

$$\mathcal{Y}_0 = \{ \mathbf{y} \in \mathbb{R}^3 : \|\mathbf{y}\|_{\infty} \le 1 \}$$

$$= \{ \mathbf{y} \in \mathbb{R}^3 : \|y_1\| \le 1, |y_2| \le 1, |y_3| \le 1 \}$$

$$\mathcal{Y}_1 = \mathcal{Y}_0 \ominus (\mathbf{C} + \mathbf{D}\mathbf{K})\mathcal{W}$$

$$= \mathcal{Y}_0 \ominus \begin{bmatrix} \mathbf{I}_2 \\ \mathbf{K} \end{bmatrix} \{ \mathbf{B}w \in \mathbb{R} : |w| \le 0.3 \}$$

$$= \{ \mathbf{y} \in \mathbb{R}^3 : |y_1| \le 0.85, |y_2| \le 0.7, |y_3| \le 0.4 \}$$

$$\mathcal{Y}_1 = \mathcal{Y}_1 \ominus (\mathbf{C} + \mathbf{D}\mathbf{K})(\mathbf{A} + \mathbf{B}\mathbf{K})\mathcal{W}$$

$$= \mathcal{Y}_1 \ominus \begin{bmatrix} \mathbf{I}_2 \\ \mathbf{K} \end{bmatrix} \{ \mathbf{B}w \in \mathbb{R} : |w| \le 0.3 \}$$

$$= \{ \mathbf{y} \in \mathbb{R}^3 : |y_1| \le 0.7, |y_2| \le 0.4, |y_3| \le 0.1 \}$$

$$(4)$$

which is the same for the remaining since $(\mathbf{A} + \mathbf{B}\mathbf{K})^2 = \mathbf{0}$.

¹not explicitly, but eliminating time-variance that's what it is...

A Code

1a) Github

See my github repo for all my course related materials: $\verb|https://github.com/jonaswagner2826/MECH6v29_MPC|$

1b) Matlab results

MATLAB code and results are attached.