

Gráficos de dispersión

Visualización Científica
19 de septiembre de 2018
Eduardo Castro, PhD
Center for Bioinformatics and Integrative Biology
www.cbib.cl
www.castrolab.org

Revisar tarea

- Instalar R y R Studio
- Realizar el tutorial: http://www.datacarpentry.org/R-ecology-lesson/ de la lección 1 a la 6
- Averiguar lo que es un Tufte Handout
- Instalar el paquete de R "ggplot2"

Diseñados para mostrar la relación entre dos variables

- Scatterplot en inglés
- Gráfico XY también
- ¿Cuál es la relación entre X e Y? ¿Cómo X influye en Y?

Variable dependiente e independiente

- V. dependiente = cambia o es controlada por el experimento —> en el eje Y
- V. independiente = no cambia con el experimento
 —> en el eje X. Ejemplos = tiempo, temperatura

Variable dependiente e independiente

Variable dependiente e independiente

Variable de respuesta y explicatoria

 V. de respuesta es equivalente a la dependiente, en tanto la variable explicatoria es equivalente a la independiente

¿Cuándo es apropiado usar un gráfico de dispersión?

- Cuando queremos explorar la potencial relación entre dos variables numéricas continuas
- Cuántas veces sale cara al tirar una moneda?
- La estatura de un grupo de personas?

Los gráficos de dispersión nos ayudan a explorar potenciales asociaciones entre variables

Tipos de asociaciones

Tipos de asociaciones

Pregunta?

- La correlación es fuerte
- La pendiente es negativa
- La pendiente es cero

Ejemplo en R

- Abran R Studio
- attach(mtcars)
- plot(wt, mpg)

Ejemplo en R con ggplot2

- library(ggplot2)
- p <- ggplot(mtcars, aes(wt, mpg))
- p + geom_point()

Ejemplo en R con ggplot2

p + geom_point(aes(colour = factor(cyl)))

- X causa Y, caso ideal
- Y causa X, causalidad reversa. Cuando los molinos de viento rotan más fuerte, hay más viento.
- Países con alta deuda externa, crecen más lento?

- Z causa X e Y
- Consumo de helados y ataques de tiburones
- ¿Qué cosa causa ambos fenómenos?

- Circularidad, X causa Y, Y causa X
- Aumenta la población de linces y baja la población de liebres. Esto causa que baje la población de linces, y aumente la de liebres

- X e Y están correlacionadas por coincidencia
- Cantidad de ganadores de premios Nobel y consumo de chocolate

Detección de valores atípicos

- Outliers en inglés
- Es una observación tan desviada de las otras observaciones que uno sospecha que fueron generadas por otro mecanismo

Detección de valores atípicos

 Valores atípicos o outliers pueden tener significado biológico

Ajustar una recta en R

plot(wt, mpg) abline(lm(mpg~wt), col="red") wt

Ajustar una recta en ggplot2

p +
geom_point(aes(colour
= factor(cyl))) +

geom_smooth(method = "Im", se = FALSE)

Ejemplos en genómica

- MA plot
- Principal components plot
- Representar clusters en microbiomas
- Prevalencia de grupos taxonómicos

Mean Average plot

Componentes principales

Representar clusters en microbiomas

Prevalencia de grupos taxonómicos

