Computational Bayesian statistics

Computational solutions

Bayes Theorem ⇒ posterior distribution

Computational solutions

Bayes Theorem ⇒ posterior distribution

♠ in pratice:

- analytical form rarely available (very particular cases)
- integral to the denominator often very hard to compute

Computational solutions

Bayes Theorem ⇒ posterior distribution

♠ in pratice:

- analytical form rarely available (very particular cases)
- integral to the denominator often very hard to compute

How can one estimate the *posteriori* distribution ?

- ⇒ sample according to this posterior distribution
 - direct sampling
 - Markov chain Monte Carlo (MCMC)

Monte Carlo method

Monte Carlo: von Neumann & Ulam (Los Alamos Scientific Laboratory - 1955)

⇒ use random numbers to compute quantities whose analytical computation is hard (or impossible)

Monte Carlo method

Monte Carlo : von Neumann & Ulam

(Los Alamos Scientific Laboratory - 1955)

- ⇒ use random numbers to compute quantities whose analytical computation is hard (or impossible)
 - Law of Large Numbers (LLN)
 - so-called "Monte Carlo sample"
- compute various functions from that sample distribution

Example : One wants to compute $\mathbb{E}[f(X)] = \int f(x)p_X(x)dx$

If
$$x_i \stackrel{iid}{\sim} p_X$$
, $\mathbb{E}[f(X)] = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$ (LLN)

 \Rightarrow if one knows how to sample from p_X , one can then estimate $\mathbb{E}[f(X)]$

. . .

Computational Bayesian statistics

Monte Carlo method: illustration

π estimation:

Monte Carlo method: illustration

π estimation:

A casino roulette (in Monte Carlo ?)

A 36×36 grid

- 1 The probability of being inside the disk while in the square: $p_C = \frac{\pi R^2}{(2R)^2} = \frac{\pi}{4}$
- 2 n points $\{(x_{11}, x_{21}), \dots, (x_{1n}, x_{2n})\} = \{P_1, \dots, P_n\}$ on the 36×36 grid (generated with the *roulette*)
- 3 Count the number of points inside the disk
- \Rightarrow Compute the ratio (estimated probability of being inside the disk while in the square): $\hat{p}_C = \frac{\sum P_i \in circle}{\dots}$

Monte Carlo method: illustration

π estimation:

A casino roulette (in Monte Carlo ?)

A 36×36 grid

If n = 1000 and 786 points are inside the disk: $\hat{\pi} = 4 \times \frac{786}{1000} = 3.144$

One can improve the estimate by increasing:

- the grid resolution, and also
- the number of points sampled n: $\lim_{n \to +\infty} \widehat{p}_C = p_C = \pi/4$

Monte Carlo method: illustration

π estimation:

A casino roulette (in Monte Carlo ?)

A 36×36 grid

If n = 1000 and 786 points are inside the disk: $\hat{\pi} = 4 \times \frac{786}{1000} = 3.144$

One can improve the estimate by increasing:

- the grid resolution, and also
- the number of points sampled n: $\lim_{n \to +\infty} \widehat{p}_C = p_C = \pi/4$ (LLN)

Monte Carlo sample ⇒ compute various functions e.g. $\pi = 4 \times$ the probability of being inside the disk

Your turn!

Intro

Practical: exercise 1