Optimal Funding Patterns for Educational Institutions

Nicolas Seay Kaivan Shah Ope Olaoluwa

Problem Statement

Current Scenario:

 Many deserving institutions/states are in requirement of funding to enhance quality education

Goal: Maximize student learning while minimizing money spent.

Why:

- Identify a correlation between funding and academic success
- Gaining insights on the distribution of funds across institutions and various demographics

Prior Work

- Effects of increased school funding:
 - Increased average test scores¹
 - Increased graduation rates²
 - Increased adulthood income^{1,3}
 - Decreased adulthood poverty³
- Benefits from increased textbook spending⁴
- Mixed results from capital & construction spending⁵

What's missing?

Not much research on which *types* of spending are most impactful.

Research Questions

RQ1: What trends can we infer in school funding patterns using visualizations?

RQ2: What factors contribute the most to a students grade?

Dataset

- Using the "U.S. Education Datasets: Unification Project" dataset on Kaggle.
- State-wise data for distribution of funding across different categories.
- NAEP Yearwise Scores by Gender, Race/Ethnicity for Mathematics and Reading
- US Census Finance Data

Methodology Overview

1. Data Preparation:

- a. Trim dataset of invalid/useless data
- b. Adjusting for Time Value of Money
- 2. Perform Exploratory Data Analysis
- 3. Models to predict Grades based on attributes.
- 4. Find per-model feature importance from all 266 attributes

Categorizing the states

<u>TOP 5</u>	Georgia	Kentucky	Utah	New Mexico	Mississippi	
--------------	---------	----------	------	------------	-------------	--

Methodology: Modeling

- Finding Collinearity between attributes.
- Models:
 - Decision Tree
 - Linear Regression
 - Support Vector Regression
- Identifying Feature Importance (SHAP values)

Results: Decision Tree

Top 5

STATE_REVENUE
INSTRUCTION_EXPENDITURE
LOCAL_REVENUE
FEDERAL_REVENUE
OTHER_EXPENDITURE
SUPPORT_SERVICES_EXPENDITURE
CAPITAL_OUTLAY_EXPENDITURE

Bottom 5

STATE_REVENUE
INSTRUCTION_EXPENDITURE
LOCAL_REVENUE
FEDERAL_REVENUE
SUPPORT_SERVICES_EXPENDITURE
OTHER_EXPENDITURE
CAPITAL_OUTLAY_EXPENDITURE

Results: Linear Regression

Facture	Correlation		
Feature	TOP 5	воттом 5	
LOCAL_REVENUE	Positive	Positive	
SUPPORT_SERVICES_EXPENDITURE	Negative	Positive	
INSTRUCTION_EXPENDITURE	Negative	Negative	
STATE_REVENUE	Positive	Positive	
OTHER_EXPENDITURE	Positive	Negative	
FEDERAL_REVENUE	Positive	Positive	
CAPITAL_OUTLAY_EXPENDITURE	Positive	Positive	

Results: Support Vector Regression

Conclusions

- Instruction Expenditure has a high, negative impact on average grades.
 - Potentially because the bottom 5 states have an average of ~\$5,000 higher teacher salary, meaning more has to be spent on this instead of other areas.
- All Revenue streams have a positive impact on a students grade.
- Support Services show higher benefits in low-performing states.

Issues Encountered

- Accounting for inflation in historical data
- Fairly high-level and limited data (only ~1700 rows)
- Vague attributes allow for a lot of unexplainable findings
- Making visuals that can be compared among the models

Future Work/Extensions

- Investigate a common occurrence of having leftover funding (Revenue > Expenditure).
- Leverage the analysis for predicting future revenue costs needed to improve grades.
- Understand why the models were showing such stark differences in SHAP values.

References

- 1. R. Chetty, J. N. Friedman, N. Hilger, E. Saez, D. W. Schanzenbach, and D. Yagan. How Does Your Kindergarten Classroom Affect Your Earnings? Evidence from Project Star *. The Quarterly Journal of Economics, 126(4):1593–1660, 11 2011.
- 2. C. A. Candelaria and K. A. Shores. Court-Ordered Finance Reforms in the Adequacy Era: Heterogeneous Causal Effects and Sensitivity. Education Finance and Policy, 14(1):31–60, 01 2019.
- C. K. Jackson, R. C. Johnson, and C. Persico. The effects of school spending on educational and economic outcomes: Evidence from school finance reforms. Working Paper 20847, National Bureau of Economic Research, January 2015.
- 4. K. L. Holden. Buy the book? evidence on the effect of textbook funding on school-level achievement. American Economic Journal: Applied Economics, 8(4):100–127, October 2016.
- 5. C. K. Jackson. Does school spending matter? the new literature on an old question. American Psychological Association, December 2018.

Questions?