lab07

Laurie Chang, A16891192

Clustering Methods

The broad goal here is to find groupings (clusters) in your input data.

Kmeans

First, let's make up some data to cluster.

```
x <- rnorm(1000)
hist(x)
```

Histogram of x

Make a vector of length 60 with 30 points centered at -3 and 30 points centered at +3.

```
tmp \leftarrow c(rnorm(30, mean = -3), rnorm(30, mean = +3))
```

I will now make a wee x and y dataset with 2 groups of points.

```
x <- cbind(x = tmp, y = rev(tmp))
x</pre>
```

```
Х
 [1,] -3.1719387
                  1.6412503
 [2,] -1.1452827
                  3.7309864
 [3,] -3.3705475
                 4.3339575
 [4,] -3.0279495
                 2.4123429
 [5,] -2.2765821
                  2.4226846
 [6,] -4.1844835
                 2.7671463
 [7,] -3.1472175
                  2.9986493
 [8,] -2.1599941
                  3.8815881
 [9,] -4.7881680
                  3.3177423
[10,] -3.3272624
                 4.8544846
[11,] -2.4275548
                  3.2143964
[12,] -2.8482194
                  4.6514508
[13,] -3.4217925
                 2.3767309
[14,] -2.7037762
                  2.5839407
[15,] -3.5141819
                  4.1168031
[16,] -1.8409373
                  2.6421002
[17,] -3.2930350
                  3.1590583
[18,] -3.3723660
                  3.0847630
[19,] -4.4306331
                  2.5972224
[20,] -3.2078482
                 1.8866419
[21,] -2.5004072
                 4.1683155
[22,] -1.7238755
                  4.2790337
[23,] -1.7013843
                 0.2880522
[24,] -2.5345717
                  2.5201419
[25,] -2.8802792
                  3.4570833
[26,] -2.8060389
                  1.9382663
[27,] -4.0275471
                  3.3918489
[28,] -3.1891791
                 4.4178222
[29,] -3.6092385
                 2.5260364
[30,] -3.9824171
                 3.0359280
[31,] 3.0359280 -3.9824171
[32,] 2.5260364 -3.6092385
```

```
[33,] 4.4178222 -3.1891791
[34,] 3.3918489 -4.0275471
[35,]
      1.9382663 -2.8060389
[36,]
     3.4570833 -2.8802792
[37,] 2.5201419 -2.5345717
[38,] 0.2880522 -1.7013843
      4.2790337 -1.7238755
[39,]
[40,]
     4.1683155 -2.5004072
[41,] 1.8866419 -3.2078482
[42,]
     2.5972224 -4.4306331
[43,]
     3.0847630 -3.3723660
[44,]
     3.1590583 -3.2930350
[45,]
      2.6421002 -1.8409373
[46,]
      4.1168031 -3.5141819
[47,] 2.5839407 -2.7037762
[48,] 2.3767309 -3.4217925
[49,]
     4.6514508 -2.8482194
[50,] 3.2143964 -2.4275548
[51,] 4.8544846 -3.3272624
[52,] 3.3177423 -4.7881680
[53,]
     3.8815881 -2.1599941
[54,] 2.9986493 -3.1472175
[55,] 2.7671463 -4.1844835
[56,] 2.4226846 -2.2765821
[57,] 2.4123429 -3.0279495
[58,] 4.3339575 -3.3705475
[59,] 3.7309864 -1.1452827
[60,]
     1.6412503 -3.1719387
```

plot(x)

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

x y 1 3.089882 -3.020490 2 -3.020490 3.089882

Clustering vector:

Within cluster sum of squares by cluster:

[1] 49.77686 49.77686 (between_SS / total_SS = 91.8 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault"

Q. From your result object k, how many points are in each cluster?

k\$size

[1] 30 30

Q. What "component" of your result object details the cluster membership?

k\$cluster

Q. Cluster centers?

k\$centers

```
x y
1 3.089882 -3.020490
2 -3.020490 3.089882
```

Q. Plot of our clustering results

```
plot(x, col = k$cluster)
points(k$centers, col = "blue", pch = 15, cex = 2)
```



```
# kmeans
m <- kmeans(x, centers = 4)
# plot results
plot(x, col = m$cluster,)
points(m$centers, col = "blue", pch = 15, cex = 2)</pre>
```


A big limitation of kmeans is that it does what you ask even if you ask for silly clusters.

Hierarchial Clustering

The main base R function for Hierarchial Clustering is hclust(). Unlike kmeans(), you cannot just pass it your data as input. You first need to calulate a distance matrix.

```
d <- dist(x)
hc <- hclust(d)
hc</pre>
```

Call:

hclust(d = d)

Cluster method : complete
Distance : euclidean

Number of objects: 60

Use plot() to view results

```
plot(hc)
abline(h=10, col = "red")
```

Cluster Dendrogram

d hclust (*, "complete")

To make the "cut" and get our cluster membership vector, we can use the cutree() function.

```
grps <- cutree(hc, h = 10)
grps</pre>
```

Make a plot of our data colored by hclust results

```
plot(x, col = grps)
```


Principal Component Analysis (PCA)

Here we will do Principal Component Analysis (PCA) on some food data from the UK.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)</pre>
```

Rename it so the first column turns into the row name!

*what not to do:

```
rownames(x)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14" "15" [16] "16" "17"

what you should do:

x <- read.csv(url, row.names = 1)
```

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions?

```
dim(x)
```

[1] 17 4

preview the first 6 columns

head(x)

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

```
x <- read.csv(url, row.names = 1)
head(x)</pre>
```

	England	Wales	${\tt Scotland}$	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Q2. Which approach to solving the 'row-names problem' mentioned above do you prefer and why? Is one approach more robust than another under certain circumstances?

putting the rownames argument into the read.csv() function is a better approach as the other approach, if run many times, can delete data.

```
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))
```


Q3: Changing what optional argument in the above barplot() function results in the following plot?

barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))

Q5: Generating all pairwise plots may help somewhat. Can you make sense of the following code and resulting figure? What does it mean if a given point lies on the diagonal for a given plot?

pairs(x, col=rainbow(10), pch=16)

This is plotting each country against one another. If a given point lies on the diagnal for the given plot if the points are exactly the same for each country.

Q6. What is the main differences between N. Ireland and the other countries of the UK in terms of this data-set?

There is a clear difference between N. Ireland and the other countries as there are many dots that are not on the diagonal line (orange, dark blue, etc. are all pretty obviously not on the line).

PCA to the rescue!

The main "base" R function for PCA is called prcomp().

need to transpose the dataset so the countries are the rows and the food catgeories as the rows

Here we need to take the transpose of our input as we want the countries in the rows and the food in the columns.

t(x)

	Cheese	Carcass_	meat	Other	_meat	Fish	Fats_and	_oils	Sugars
England	105		245		685	147		193	156
Wales	103		227		803	160		235	175
Scotland	103		242		750	122		184	147
N.Ireland	66		267		586	93		209	139
	Fresh_p	potatoes	Fres	h_Veg	Other	_Veg	Processed	d_potat	toes
England		720)	253		488			198
Wales		874	ŀ	265		570			203
Scotland		566	3	171		418			220
N.Ireland		1033	3	143		355			187
	Process	sed_Veg	Fresh	_fruit	Cere	als :	Beverages	Soft_d	drinks
England		360		110	2	1472	57		1374
Wales		365		113	7	1582	73		1256
Scotland		337		95	7	1462	53		1572
N.Ireland		334		67	1 :	1494	47		1506
	Alcohol	lic_drink	s Co	nfecti	onery				
England		3	375		54				
Wales		4	175		64				
Scotland		4	1 58		62				
N.Ireland		1	.35		41				

pca <- prcomp(t(x))
summary(pca)</pre>

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	2.921e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

This tells us that PC1 captures 67.44% of variance of the dataset, and so on. PC2 should capture less, etc. If you made a graph of PC1 and PC2, you would captue 96.5% of the spread. We can plot this data with good confidence that we captured the majority of the data. This is how we know our PCA is doing a good job.

Q. How much variance is captured in 2 PCs?

96.5%

To make our main "PC score plot" (a.k.a. "PC1 vs. PC2 plot", "PC plot", or "ordination plot").

attributes(pca)

```
$names
[1] "sdev" "rotation" "center" "scale" "x"
$class
[1] "prcomp"
```

We are after the pca\$x result component to make our main PCA plot.

pca\$x

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -9.152022e-15
Wales -240.52915 -224.646925 -56.475555 5.560040e-13
Scotland -91.86934 286.081786 -44.415495 -6.638419e-13
N.Ireland 477.39164 -58.901862 -4.877895 1.329771e-13
```

```
mycols <- c("orange", "red", "blue", "darkgreen")
plot(pca$x[,1], pca$x[,2], col = mycols, pch = 16, xlab = "PC1 (67.4%)", ylab = "PC2 (29%)</pre>
```


Another important result is how the original variables (in this case, the foods) contribute to the PCs.

This is contained in the pca\$rotation object - folks often call this the "loadings" or "contributions" to the PCs.

pca\$rotation

	PC1	PC2	PC3	PC4
Cheese	-0.056955380	0.016012850	0.02394295	-0.409382587
Carcass_meat	0.047927628	0.013915823	0.06367111	0.729481922
Other_meat	-0.258916658	-0.015331138	-0.55384854	0.331001134
Fish	-0.084414983	-0.050754947	0.03906481	0.022375878
Fats_and_oils	-0.005193623	-0.095388656	-0.12522257	0.034512161
Sugars	-0.037620983	-0.043021699	-0.03605745	0.024943337
Fresh_potatoes	0.401402060	-0.715017078	-0.20668248	0.021396007
Fresh_Veg	-0.151849942	-0.144900268	0.21382237	0.001606882
Other_Veg	-0.243593729	-0.225450923	-0.05332841	0.031153231
Processed_potatoes	-0.026886233	0.042850761	-0.07364902	-0.017379680
Processed_Veg	-0.036488269	-0.045451802	0.05289191	0.021250980
Fresh_fruit	-0.632640898	-0.177740743	0.40012865	0.227657348
Cereals	-0.047702858	-0.212599678	-0.35884921	0.100043319
Beverages	-0.026187756	-0.030560542	-0.04135860	-0.018382072
Soft_drinks	0.232244140	0.555124311	-0.16942648	0.222319484
Alcoholic_drinks	-0.463968168	0.113536523	-0.49858320	-0.273126013
Confectionery	-0.029650201	0.005949921	-0.05232164	0.001890737

This shows numbers of all original categories of all PC columns. The magnitude of the volumes represent the contribution to the PCA.

We can make a plot along PC1.

```
library(ggplot2)

contrib <- as.data.frame(pca$rotation)

ggplot(contrib) +
   aes(PC1, rownames(contrib)) +
   geom_col()</pre>
```


The more positive the value, the more Ireland consumes, the more negative the value, the more the other countries consumes.