4.- Evaluación y Mejora de Modelos Neuronales

1. Introducción: evaluación en aprendizaje profundo

Una vez entrenada una red neuronal, el paso siguiente es evaluar su rendimiento. El objetivo es verificar si el modelo aprende correctamente los patrones, generaliza bien a ejemplos nuevos y cumple los objetivos de precisión o error definidos. Evaluar implica analizar resultados, identificar errores y decidir cómo mejorarlos.

2. Métricas para clasificación y regresión

Las métricas permiten cuantificar el rendimiento de un modelo según el tipo de problema.

Métricas de clasificación:

Métrica	Fórmula o idea	Interpretación
Accuracy	Aciertos / Total	Proporción de predicciones correctas.
Precision	TP / (TP + FP)	Fiabilidad de las predicciones positivas.
Recall	TP / (TP + FN)	Capacidad para detectar todos los positivos reales.
F1-Score	2 × (Precision × Recall) / (Precision + Recall)	Equilibrio entre precisión y recall.
ROC-AUC	Área bajo la curva ROC	Capacidad de distinguir entre clases.

Métricas de regresión:

Métrica	Significado
MSE	Promedio de los errores cuadrados. Penaliza errores grandes.
MAE	Promedio de errores absolutos. Robusto ante valores atípicos.
R ²	Proporción de varianza explicada por el modelo.

1/3

Docente: Mónica Sánchez Carrión

3. Curvas de rendimiento: Precisión-Recobrado, ROC y AUC

Las curvas de rendimiento permiten visualizar la relación entre la sensibilidad y la especificidad del modelo.

La curva Precisión–Recobrado es útil en conjuntos de datos desequilibrados. La curva ROC representa la relación entre tasa de verdaderos positivos y falsos positivos, y el AUC resume su rendimiento global (1 indica modelo perfecto).

4. Matriz de confusión e interpretación de errores

La matriz de confusión muestra los aciertos y errores por clase. Permite detectar qué clases se confunden con mayor frecuencia y ajustar el modelo o los datos en consecuencia.

5. Validación cruzada y división de datos

Para evaluar correctamente un modelo se divide el conjunto de datos en entrenamiento, validación y test. La validación cruzada (K-Fold) permite estimar el rendimiento medio y la estabilidad del modelo.

6. Ajuste de hiperparámetros (Hyperparameter Tuning)

El ajuste de hiperparámetros busca los valores óptimos de configuración del modelo, como la tasa de aprendizaje o el número de capas.

Método	Descripción
Grid Search	Prueba todas las combinaciones posibles dentro de un rango definido.
Random Search	Selecciona combinaciones aleatorias, más eficiente con muchos parámetros.
Bayesian Optimization	Usa modelos probabilísticos para elegir la siguiente mejor combinación.
Keras Tuner / Optuna	Herramientas modernas para optimizar redes en TensorFlow/Keras.

7. Transfer Learning y Fine-Tuning

El aprendizaje por transferencia reutiliza un modelo entrenado en un gran conjunto de datos (como ImageNet) y lo adapta a una nueva tarea. Las primeras capas se congelan y las últimas se reentrenan para la tarea específica. Esto acelera el entrenamiento y mejora los resultados cuando hay pocos datos disponibles.

8. Interpretabilidad de modelos (Explainable AI)

La inteligencia artificial explicable busca entender las decisiones de un modelo complejo. Métodos comunes incluyen Grad-CAM (para visualizar regiones relevantes en imágenes), SHAP (para interpretar la influencia de las variables) y LIME (para aproximar el comportamiento local del modelo).

9. Conclusión

Evaluar redes neuronales implica combinar análisis cuantitativo (métricas) y cualitativo (interpretación de errores). Mejorar un modelo requiere ajustar hiperparámetros, aplicar validación adecuada, usar transferencia de aprendizaje e interpretar correctamente los resultados. El objetivo final es construir modelos precisos, generalizables y comprensibles.

Docente: Mónica Sánchez Carrión 3/3