Intervalles de \mathbb{R} Ensemble de définition

Module n° 2

I. Intervalles de $\mathbb R$

1. Rappel

L'ensemble des réels peut être représenté par la droite numérique.

A tout point de la droite numérique correspond un nombre réel, et à tout segment correspond un *intervalle*.

2. Intervalles de \mathbb{R}

Les différents types d'intervalles sont représentés dans le tableau suivant.

Intervalle noté :	Ensemble des réels x tels que :	Représenté par :
[a;b]	$a \le x \le b$	
] a; b[a < x < b	
[a; b[$a \le x < b$	
[<i>a</i> ;+∞[$a \leq x$	
]-∞; <i>b</i> [<i>x</i> < <i>b</i>	

NOTATIONS

Le symbole « ∞ »désigne l'infini.

L'intervalle [a;b] est un intervalle ferm'e.

L'intervalle] a; b [est un intervalle ouvert.

Exemple

a. Définir l'intervalle ${\rm I}=[\,-0,5\,;3\,[$ puis le représenter.

b. Cet intervalle contient-il les réels -1, $\sqrt{7}$, $-\frac{7}{4}$ et $\frac{1}{0.5^2}$?

3. Intersection d'intervalles

Définition

L'intersection de deux intervalles I et J, notée $I \cap J$, est définie par :

 $x \in I \cap J$ si, et seulement si, $x \in I$ et $x \in J$.

Exemple

- a. Sur un axe gradué, représenter les intervalles I = [-2; 5[et $J = [0; +\infty[$.
- b. Déterminer alors leur intersection $I \cap J$.

Seconde Module

II. Ensemble de définition d'une fonction

1. La définition du cours

Rappeler ce qu'est l'ensemble de définition d'une fonction.

2. Détermination graphique

Sur chacun des exemples suivants, lire l'ensemble de définition \mathcal{D}_f de la fonction f représentée.

f est définie pour ... On note $D_f = ...$ f est définie pour ... On note $D_f = ...$ f est définie pour ... On note $D_f = ...$

f est définie pour ... On note $D_f = ...$

f est définie pour ... On note $D_f = ...$ f est définie pour ... On note $D_f = ...$

3. Exemples algébriques

On considère la fonction définie par $f: x \mapsto \frac{1}{x}$.

On peut calculer l'image d'un réel x, à condition que celui-ci soit non nul.

On note \mathbb{R}^* ou $\mathbb{R}\setminus\{0\}$ l'ensemble de tous les réels non nuls.

D'où ici $D_f = \mathbb{R}^*$.

En procédant de la même manière, déterminer l'ensemble de définition des fonctions suivantes :

$$a. \ f(x) = \frac{1}{x-1}$$

c.
$$f(x) = \sqrt{x+2}$$

b.
$$f(x) = \sqrt{x}$$

d.
$$f(x) = \frac{1}{x^2 + 3}$$