MTAT.07.003 Cryptology II Spring 2012 / Exercise session ?? / Example Solution

Exercise (Neyman-Pearson Theorem). Let \mathcal{A} be a distinguisher, let $\alpha(A)$ be the ratio of false positives and let $\beta(\alpha)$ be the ratio of false negatives. Then we can define a weighted average $\delta(\mathcal{A}) = \lambda \alpha(\mathcal{A}) + (1-\lambda)\beta(\mathcal{A})$ for $\lambda \in [0,1]$. Now consider two near-identical deterministic distinguishers which differ only on the input x_* :

$$\forall x \neq x_* : \mathcal{A}_0(x) = \mathcal{A}_1(x) .$$

For clarity, let us assume $A_0(x_*) = 0$ and $A_1(x_*) = 1$. Establish under which conditions $\delta(A_0) \geq \delta(A_1)$ and conclude that describe the decision rule of a distinguisher that minimises δ . Let δ_{λ}^* be the attainable δ value for each λ . Each of these values δ_{λ}^* places a restriction on attainable $\alpha(A)$ and $\beta(A)$ values on $\alpha\beta$ -plane. Sketch the corresponding border lines and explain why The Neyman-Pearson theorem is a direct consequence.