

درس سیستمهای کنترل خطی پاسخ تمرین سری پنجم

آنائيس گلبوداغيانس	نام و نام خانوادگی
4.177114	شمارهٔ دانشجویی
دیماه ۱۴۰۳	تاريخ

۴	سوال اول: بهدست آوردن حد بهره و فاز، بحث شرايط پايداري	١
۴	۱.۱ بهدست آوردن حد فاز	
۴	۲.۱ بهدست آوردن حد بهره	
۵	سوال دوم: تنظيم k	۲
۵	سوال سوم: رسم نمودار بودي، بهدست آوردن حاشيهها و بحث پايداري	٣
۵	۱.۳ رسم نمودار بودی	
٧	۲.۳ بهدست آوردن حاشیه فاز	
٨	٣.٣ بهدست آوردن حاشیه بهره	
٨	سوال چهارم: بهدست آوردن حد فاز و بهره با استفاده از تابع تبديل	۴
٨	۱.۴ بهدست آوردن حد فاز	
٨	۲.۴ بهدست آوردن حد بهره	

آنائيس گل بوداغيانس

	,		
ں	تصاو	ست	نے

۶													ول	ء او	رتبه	مر	ين	صم	ت	با	ی	بو د :	נ י	مودا	ے ن	ستح	م د،	•••	رب	١	
٧				 																	ی	و د;	ر ب	مودا	، ن	تلب	ہ ما	•••	ر،	۲	

آنائيس گل بوداغيانس

L	4	ú	

مەھا	نا	د	ست	ة ص
CC-CC	0	~	-	7

9 solution code MATLAB

آنائيس گلبوداغيانس

۱ سوال اول: بهدست آوردن حد بهره و فاز، بحث شرایط پایداری

سیستم حلقهبازی که داریم، یک سیستم تاخیردار است. اگر تابع تبدیل آن را بدون تاخیر بنویسیم به شکل زیر خواهد شد:

$$G(s) = \frac{k}{s}$$

$$G_{delay}(s) = \frac{ke^{-sT}}{s}$$

مىدانيم كه اندازه سيستم تاخيردار با اندازه سيستم بدون تاخير متناظر آن برابر است.

$$|G(j\omega)| = |G_{delay}(j\omega)|$$

اما دربارهی فاز باید گفت:

$$\angle G_{delay}(j\omega) = \angle G(j\omega) - T\omega$$

است. البته باید توجه داشت که رابطه ی بالا برحسب rad/s است.

۱.۱ بهدست آوردن حد فاز

$$|G_{delay}(j\omega_c)| = \frac{k}{|\omega_c|} = 1 \to \omega_c = k$$

$$\angle G_{delay}(j\omega_c) = 0 - \frac{\pi}{2} - T\omega_c = -\frac{\pi}{2} - kT$$

$$PM = \angle G_{delay}(j\omega_c) + \pi = \frac{\pi}{2} - kT$$

شرط پایداری:

$$PM>0\rightarrow\frac{\pi}{2}-kT>0\rightarrow kT<\frac{\pi}{2}\rightarrow k<\frac{\pi}{2T}$$

۲.۱ بهدست آوردن حد بهره

$$\angle G_{delay}(j\omega_p) = -\pi \to -\frac{\pi}{2} - T\omega_p = -\pi$$

$$\omega_p = \frac{\pi}{2T}$$

 $GM = -20log|G_{delay}(j\omega_p)| = -20log(\frac{2kT}{\pi}$

شرط پایداری:

$$GM > 0 \rightarrow -20log(\frac{2kT}{\pi}) > 0$$
$$log((\frac{2kT}{\pi})^{-20}) > 0 \rightarrow 0 < \frac{2kT}{\pi} < 1$$
$$0 < k < \frac{\pi}{2T}$$

اگر از دو شرط پایداری بهدست آمده اشتراک بگیریم، داریم:

$$0 < k < \frac{\pi}{2T}$$

آنائيس گل بوداغيانس

k سوال دوم: تنظیم

$$PM = \frac{\pi}{4} = \angle G(j\omega_c) - \pi$$
$$\angle G(j\omega_c) = \frac{5\pi}{4} = \arctan(\frac{\omega_c}{2})$$

از طرفین تانژانت می گیریم.

$$tan(\frac{5\pi}{4}) = 1 = \frac{\omega_c}{2} \to \omega_c = 2$$

برای اندازه داریم:

$$G(s) = \frac{k(s+2)}{s^2}$$

$$G(j\omega) = \frac{k(j\omega+2)}{-\omega^2}$$

$$|G(j\omega_c)| = \frac{k\sqrt{\omega_c^2 + 4}}{\omega_c^2} = 1$$

$$k^2(\omega_c^2 + 4) = \omega_c^4$$

$$k^2 = \frac{\omega_c^2 + 4}{\omega_c^4}$$

$$k^2 = \frac{2^4}{2^2 + 4} = 2$$

$$k = \sqrt{2}$$

۳ سوال سوم: رسم نمودار بودی، بهدست آوردن حاشیه ها و بحث پایداری

۱.۳ رسم نمودار بودی

برای رسم نمودار بودی، از تخمین مرتبه ۱ استفاده می کنیم.

$$G(s) = \frac{5(s+1)e^{-2s}}{s(5s+1)}$$

$$e^{-2s} = \frac{e^{-s}}{e^s} = \frac{1-s}{1+s}$$

$$G(s) = \frac{5(1-s)}{s(5s+1)}$$

این تابع تبدیل متشکل از سیستم بهره ثابت، انتگرالگیر، مرتبه اول Lag و PD با صفر غیرکمینه فاز است. پس از ترکیب چهار نمودار می توانیم رسمش کنیم.

شکل ۱: رسم دستی نمودار بودی با تخمین مرتبه اول

حال در متلب (با تخمين مرتبه ٣) رسم ميكنيم و حاشيهها را بهدست مي آوريم.

```
clear; clc; close all

s = tf('s');

g = (5*(s+1)*exp(-2*s))/(s*((5*s)+1));

gx = pade(g,3);

bode(gx);

margin(gx);
```

Code 1: MATLAB code solution

شکل ۲: رسم متلب نمودار بودی

۲.۳ بهدست آوردن حاشیه فاز

$$|G(j\omega_c)| = \frac{5\sqrt{\omega^2 + 1}}{\omega\sqrt{1 + 25\omega^2}}$$

$$\angle G(j\omega_c) = \arctan(\omega) - \frac{\pi}{2} - \arctan(5\omega) - 2\omega$$

$$|G(j\omega_c)| = 1 \to 25(\omega_c^2 + 1) = \omega_c^2(1 + 25\omega_c^2)$$

$$25\omega_c^4 - 24\omega_c 2 - 25 = 0$$

$$\omega_c^2 = \frac{24 + 2\sqrt{769}}{50} = 1.5892$$

$$\omega_c = 1.2607$$

$$PM = \angle G(j\omega_c) + \pi = -1.4639rad/s < 0$$

یعنی شرط پایداری را ندارد.

4.177114

٣.٣ بهدست آوردن حاشیه بهره

پس سیستم ناپایدار است.

$$\angle G(j\omega_p)=arctan(\omega)-rac{\pi}{2}-arctan(5\omega)-2\omega=-\pi$$
 با روش نیوتون-رافسون ریشه (فرکانس عبور فاز) را بهدست آوردیم،
$$\omega_p=0.4210$$

$$GM=-20log|G(j\omega_p)|=-14.8536dB<0$$

۴ سوال چهارم: بهدست آوردن حد فاز و بهره با استفاده از تابع تبدیل

$$\begin{split} GH(j\omega) &= \frac{4a^2}{(j\omega + a)^2} \\ |GH(j\omega)| &= \frac{4a^2}{\sqrt{\omega^2 + a^2} \times \sqrt{\omega^2 + a^2}} = \frac{4a^2}{\omega^2 + a^2} \\ \angle GH(j\omega) &= -\arctan(\frac{\omega}{a} - \arctan(\frac{\omega}{a} = -2\arctan(\frac{\omega}{a} + a))) \end{split}$$

۱.۴ بهدست آوردن حد فاز

$$|GH(j\omega_c)|=rac{4a^2}{\omega_c^2+a^2}=1$$

$$\rightarrow \omega_c=\sqrt{3}a$$
 $PM=\angle G(j\omega_c)+\pi=rac{\pi}{3}$.حد فاز بزرگتر از صفر است و شرط یایداری را داراست.

۲.۴ بهدست آوردن حد بهره

4.177114