Introducción y Motivación

- Métodos computacionales enriquecen la enseñanza de mecánica cuántica.
- ► Python permite implementar algoritmos accesibles para estudiantes.
- Este trabajo presenta dos niveles:
 - 1. Método de Numerov (oscilador armónico y átomo de hidrógeno).
 - 2. Método de Hartree–Fock (moléculas diatómicas).

Metodología

Numerov:

- ► Integración eficiente de la ecuación de Schrödinger 1D.
- ► Aplicación: autofunciones del oscilador armónico, estados radiales de H.

Hartree-Fock:

- Aproximación autoconsistente para moléculas.
- ightharpoonup Aplicación: H_2 , HeH^+ .

Resultados: Numerov

Aplicación Didáctica

Curso	Método
Intro Mecánica Cuántica	Numerov (oscilador, H)
Física Cuántica	Hartree–Fock (H ₂ , HeH ⁺)

Taxonomía de Bloom:

- Comprender: Plantear la ecuación de Schrödinger.
- ► *Aplicar*: Usar Numerov en casos simples.
- ► Analizar: Comparar resultados numéricos con soluciones analíticas.
- ► Evaluar/Crear: Extender Hartree–Fock a nuevos sistemas.

Conclusiones

- > Python facilita experiencias prácticas de alto nivel en licenciatura.
- Numerov y Hartree–Fock conectan teoría y aplicación.
- ► El material apoya al docente en cursos saturados de contenido.

Repositorio

Escanea el código QR para acceder al material completo y al código:

