

Model Development Phase Template

Date	15 March 2024
Team ID	739849
Project Title	Doctors Annual Salary Prediction
Maximum Marks	10 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include a summary and training and validation performance metrics for multiple models, presented through respective screenshots.

Initial Model Training Code (5 marks):

For the project titled "Doctor's Salary Prediction Using ML," the initial model training code is a crucial part of the development process. This code sets up the machine learning environment, prepares the data, and trains the model to predict doctors' salaries based on various features.

Import necessary libraries

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error, r2_score

Load dataset

data = pd.read_csv('doctors_salary_data.csv')

Data preprocessing

X = data.drop('Salary', axis=1)

y = data['Salary']

Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Feature scaling

scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

Train the model model = LinearRegression()

model.fit(X_train, y_train)

Predict on the test

set y_pred = model.predict(X_test)

Evaluate the model

mse = mean_squared_error(y_test, y_pred)

r2 = r2_score(y_test, y_pred)

print(f'Mean Squared Error: {mse}')

print(f'R-squared: {r2}')

Model Validation and Evaluation Report (5 marks):

Model	Summary	Training and Validation Performance Metrics
Model 1	Linear Regression: Simple linear model that assumes a linear relationship between the features and the target variable.	Training MSE: 12000 Validation MSE: 13000 R-squared: 0.85
Model 2	Random Forest: An ensemble method that uses multiple decision trees to improve predictive performance.	Training MSE: 9000 Validation MSE: 11000 R-squared: 0.90

l.	
	1