Automated Summarization System

Haobo Gu, Yuanhe Tian, Weifeng Jin, Haotian Zhu

Overview

- Automated multi-document summarization system
- to shorten the input text without losing too much information in the context and to create an abbreviated, informative and consistent summary

Overview: Baseline System

- Unsupervised, no training required
- Extraction-based approach without modifying sentences
- Four parts:
 - Data Preprocessing
 - Content Selection
 - Information Ordering
 - Content Realization

System Flowchart

Data Preprocessing

<u>Input</u>: one document specification (.xml file) and two corpora (AQUAINT and AQUAINT-2)

Output: corpus object consists of:

- docsetList: list of docSet objects (document set)
- tokenDict: vocabulary dictionary to record word occurrence in the whole dataset.

docSet object consists of:

- idCode: the ID for the document set
- documentCluster: a list of document objects (document)
- hummanSummary: a list of human summaries
- topicID, tokenDict

Data Preprocessing

document object consists of:

- idCode, topicID, tokenDict, time
- sentences: the list of sentence objects (sentences)

sentence object consists of:

- idCode, tokenDict, doctime
- content: the content of the sentence
- index: the position index of the sentence
- score: the score of the sentence
- length: the number of tokens in the sentence

Content Selection

Input: A document set which has *m* sentences and *n* different tokens

Algorithm:

- 1. For each sentence in the docset, generate its feature vector
- 2. Calculate sentence similarity between every two sentences based on their feature vector
- 3. Calculate salient score for each sentence based on LexRank algorithm

Output: A list of selected k sentences with their salient score

Step 1 - Generate Sentence Feature Vector

- We generate feature vector based on the number of token occurrence in this sentence

		t_1	t_2	t ₃	t_4	 tn	
s_1	<	2	0	1	1	0	>
s_2	<	1	1	0	3	1	>
	<					 	>
Sm	<	0	1	2	0	0	>

Step 2 - Calculate Sentence Similarity

- Sentence similarity is represented by the **cosine** distance between two sentences:

$$Sim(s_i, s_j) = \frac{s_i * s_j}{|s_i| * |s_j|}$$

- Then generate an m * m matrix to store similarities and convert this matrix to a transition probability matrix M (the sum of each row equals to 1)

Step 3 - Calculate Salient Score

- Calculate salient score by Power Method
- Output the top k sentences with highest score, where *k* is determined by the compress rate *r*.

Power Method:

Information Ordering

- Current consideration:
 - Chronological order
 - Cohesion

Information Ordering

Input: a list of selected sentences with salient scores.

Do:

- Sort the list by salient scores in a descending order.
- Group sentences by the document to which they belong and sort by **publication dates.**
- Within each document group, sort sentences by indices.

Output: a sorted list of sentences.

Content Realization

We implemented two content realization approaches.

- Naive approach: simply pick sentences according to sorted order. If the length of summary exceeds the word limitation in current sentence, discard and terminate.
- **Integer Linear Programming approach**: maximize a target function consists of scores of the sentences and diversity of the sentences.
 - **Diversity** of the sentences is measured using the number of bigrams in summary.
 - The more bigrams appear in summary, the larger the diversity is.

Results and Analysis

Table 1: ROUGE Results for devtest

ROUGE	Recall	Precision	F-score
ROUGE-1	0.20038	0.25005	0.22145
ROUGE-2	0.04347	0.05310	0.04759
ROUGE-3	0.01218	0.01495	0.01336
ROUGE-4	0.00356	0.00433	0.00389

Table 2: ROUGE Results for training

ROUGE	Recall	Precision	F-score
ROUGE-1	0.20231	0.28003	0.23382
ROUGE-2	0.05260	0.07219	0.06062
ROUGE-3	0.01885	0.02640	0.02191
ROUGE-4	0.00847	0.01224	0.00997

- The baseline system does not deliver a satisfying performance.
- NO risk for overfitting since it is an unsupervised learning approach and there is no training required.
- Highest score in ROUGE-1, lowest score in ROUGE-4, indicating that the level of summarization required for each document should be improved.
- Want to try a supervised learning approach in the next deliverable to improve the performance and fully utilize the dataset provided.

Issues and Successes

Issues:

- Low recall/precision/F-score in all ROUGE standards.
- NOT utilizing the training dataset.
- Several aspects of the approach are too straightforward.
- Alternative approaches to consider for Information Ordering to make more use of salient score.

Successes:

- Connectivity is achieved with easy-to-understand data structure and programming scripts.
- Training NOT required, which resulted in a relatively short running time.

Strategies for Group Work

- Weekly meeting on Sunday night, discuss this week's work and coordinate next week's tasks.
- Every team member works on a single component. Pros: straightforward task allocation and great efficiency, Cons: have to wait for the other team member to finish his part to start.
- Mainly used github for code sharing and coordination.

References

Dimitrios Galanis, Gerasimos Lampouras and Ion Androutsopoulos. 2012. Extractive Multi-Document Summarization with Integer Linear Programming and Support Vector Regression. Proceedings of COLING 2012, 2012: 911-926.

Ryan A. Georgi. 2018. Lecture of Content Selection and Information Ordering in the course LING 573 Spring 2018 in the University of Washington.