LHAPTER 1 HRRAYS

One dimensional array

A: array[lb Ub] of elements

16: lower boundary

Ub: Upper boundary Lo: Starting location

C: element Size

A(i): 1th element Size,

Count Loc. of A(i) = Lo + (i-1b) "C

two dimensional

A: array [b, ... U, bz... Uz] oz eliments rows colums

 $(v_1 - b_1 + 1)$ $(v_2 - b_2 + 1)$

RMO (Rowmayor

Lo + (i-1) 2 To simple notation

In su entific notation:

LocA[i,j]= Lo+[(i · b1)(U2 - b2+1) + (j-b2)] *C

CMO: (Colum major

Lo + (j-1) 21 m simple Notation

In scientific notation

LOCA $[i,j] = L_0 + (j-b_2)$ $(v_1-b_1+i) + (i-b_1)] * C$

Chapter 2 Stock and Queue Combination ((n, 4): I (=0 11 n=4): return 1 Eucld Algoritm G(D(X,Y): 13 n7470 17 (472) Jehm ((n-1, w)+((n-1, 4-1) G (9/2) Ackerman tunction: (not all computable B (4==0) selvon X function is rewrive) Otherwise: $A(x,y) = \begin{cases} 4+1 & 3 & x=0 \\ A(x-1,1) & 3 & y=0 \end{cases}$ A(x-1,A(x,y-1)) A(x-1,A(x,y-1)) A(x-1,A(x,y-1))Otherise GCD(4, x mody) GID: Createst Common division. * Combination gan objects tormulae: taken k at a time (Algorithm) A(0, Y) = Y+1A(1,4) = y+2A(219) = 29+3 A(319) = 24+3-1Frankly roght

The town of Harris Rough A 1gonhams 2(s) + 3 =Own hypothesis) 10213-13 Recogive Solution 1 Move n-1 disk from Soose to Helper 2 reove one dish from Source to pesting 3. Move n-1 dist from Helpus to destination. (2+3) +4 +5 + (6+7) +8 +9 ++234 x+56789 ++++234 **5+6789 Profin Progeroed Esseps to According to Dryocation Auxilay to distination

TowerOfHanoi(n-1, aux_rod, to_rod, from_rod)

Driver code
n = 4
TowerOfHanoi(n, 'A', 'C', 'B')
A, C, B are the name of rods


```
Pre-order:
(ROOT - Left - Right) - For viven Sultree
Void preorder (struct node * root) {
      2 (mot | = NOTT) {
        printf (root -) dato),
priorder (root -> left);
priorder (root -> right);
Post-order without Stack (Left-Right - Root)

: Using Stack
 1. I) T= NULL then write ('Empty tree')
      else PET
         70p ← 0
 2. [Troverse in Post order]
     Repeat Step 5 While true
 3. [ Desernd Left]
      Repeat while P + NOLL
       call PUSH (S, tor, P)
```

P - LPTK(P)
4. [Process a node whose left and right sub-
tree have been traversed
Repeat while S[TOP] < 0
P CP (S, TOP)
write (DATA(P))
Write (DATA(P)) If TOP = 0 (Have all nodesbeen processer) then Return
5. [Branch right and then mark node from which we branched]
P - RPTR (S[TOP])
S[TOP] - S[TOP]
Youtube Cary Algorithm
1. Push rout to 1's STASK 2. Loup while SJ is not empty
2 Loup while SJ is not empty
1.) Por top node 9 S1 & push to s
11) Push (nude -) lebt) to si
1) Pop top node q S1 & push to S2 ii) Push (node -> 186t) to S1 ib (node -> 186t! = NULL)
6 (10000)

3. Print content of S2 (post-voda). In-Order (Left- rout - right) Bosic Algorithm 1. Create an empty stacks 2. Mitalize current node as not 3. Push the Current nucle to S and sed untill current its NULL. 4. I wormt is NULL and stack is not empty a. Pot tre top item from Stack

b. Print tre popeed item

set current = current - night C. Co to Step 3 5. If current is NULL and stack is empty then lu are done. Converse Sub tree 1. RST root 2. Root LSI K RST 3. LST

Threaded Storage Representation for Biron tree
4 Iz tre is given a. take morder q tree
4. tale morder of the
b. Connect Null pointer of Nodes to it left in inorder
For Prample Heady
·
[[D]] ; [D]]
ICI TEIN G
(FT)
In order
HCBAFF boy
() - This lines on thereal

Binony Search Isles

Also known as Ordered Binary free cuts to the season from this to Ease made or not node of another hunary Search free. With keys less than the parent wed. * The right sub-tree contains only nodes with key greater than the parent mode. AVL +822 ho.d.h. Binay tree conhe = (2nch) halance factor = height g legt Sultrer - height g right sultre. bf = hl-hr = 2-1,0,13 (6F) = | hl - hr/ \le 1 1-0=0

1-0=0

This is balanced

tree because

au nudes are in

LL-Rotation

#2 Initially

LR Rotation

RL Jotalian

How to Create AVL tree?

penjorming LL Kototion

A smooth on a (Let assume it is smbal.)

L-R Rotation

We con show Single Rotate also

For Biggertree

AVL tree Cuation

MAR, MAY, NOV, AOG, APK, JAN, DEC, JOLY, FEB, JUNE, OCT, SEP.

CHAPTER 5 Graphs

* Graph is a collection of nodes called as Vertices

* Lines connecting two Vertices are called as edges

* Crouphs

nivelled undireled

* Directed Craphs are the graph which each line as a direction direction.

* Undirected Creyphicare the Craphs in which four lines donot have direction

* Two Vertices are Said to be adjacent if an edge directly connects them. connects them.

A Patris one Seguence à Verrices

* A cycle is 9 poing allest 3 Vertices. Eour odi to next

A A cycle is a path of a loost three Vertices that Starts ends with the Same Verteu.

* Loop

The degree of vertices is the number of are or edges boing the nodes.

The indegree of vertices is the number of Orcondedges

entiring the hodes-

A Six operations and done in Graphs

i) Add a vertex 2> belete vertex 3> add on edge

i) relute an edge 5> Find a hode 6> traverse the

graph

There are two Standart Graph traversal: Depth First

* In depth first traversal, all a hoder descendents one processed begon moving to an adjacent hode.

* In breath first traversal all adjacent node one

traversal before processing towards descendents of verten

Storing q Graphs

A Adjancency matrix method.

Fldj-Matrix Memod

* In the adjancincy method, we use a vector to store me Vertices and matrix to store by edges.

It In the adjacency list myswed me use linked a linked list to store the edges.

· A Spanning tree is a tree that Contains all of the

· A minimum Spanning toee is a spanning toee in which the total weight of the odges is the minimum.

Graph Representation Sets Representation
Adjacency Sets
Ventin Sets
0 \{\frac{1}{2}\}
1 \{\frac{2}{3}\}
2 2

3/ Contiguous list Count = 4

Valance	Verten	Adjacencylist
2	0	2121-1-1-1
2	1	23
0	2	
3	3	0 1 2
	4	11112
	5	
	C	

Limbed list (Is lengthy) only For 2

05) Mixed Representation (Hybrid) (ount = 4 Finstedge Traph traversal Adgorithm DFS Algorithm Civen an undi rected graphs G = (V, E) with n Vertices and an array visited [] initially set to zono, this algorithm Visits all Vertice reachable from V. Gand Visited [] on global { Visited [v] = 1; For Each Verrex Wadjacent from V do if (visited(w) =0) then PFS (W);

BFS algorithm Label Yestex Vas Jeached; Intialize of to be a queue with only Vinit; While (of is not empty) &

believe a Vellex W from the queue; Let U be a Verlex (If any) adjacent fm W; While (4) {

If (U has not been (abeled) 5 Add v to queu; Label vas reachel; 3 U=next Vertex that is adjacent fm W;

Level-Order traversal: Visit lvery mode on a dend begore going to a lower (true is also (alled Bream-First traversal)

· In a hashing Search the key, through an algorithm transformation, determines the location of the data. It is a key-to-address transformation.

Hashing Functions

* There are Several hashing Functions:

Direct, Substraction, Modulo division, digit l'etroction mid Square, Folding, Votation and Dsedarandom Cumeration.

1) Direct Hashing:

address are direct keys with out agairthm.

2) Subtraction hashing: The key is transformed to an

address by Sulutraction a fixed number from it.

3> modulo-division hashing

the key is decided by bu list Size, recommended to be prime number and be remainder plus 1 is used as the address.

- 4) Digit-Extraction hashing: Secreted digits are extracted from key and Used as an address.
- 5) Mid Square hashing: The key is Squared and the address is believed from on middle of the result
- 67 Fold shift hashing. The key is divided into parts whose size mater the size of the required address. Then the parts are added to obtain the address.
- 7) Fold boundary hashing: The key is divided into parts
- Whose Size matches bu Size of the Veguired address. Then the left and night parts are Veversed and added to be middle part to altain by address.
- Retation Hashing: The Right most digit of the key is votated to the left to determine an address However, this method is emally used in Combination with Ohn method.
- is used as the seed to generate a pseudorandon number. The result is then scaled to Olitain the address:

Collision Resolution Techniques

- · Collision Occurs when a new keys is hashed to on address broat its already occupied.
- · Two general methods one used to solve Collision.
 Open addressing and linkedlists (maining).
- pen addressing method Can be Suldivioled into linear probe, quedoatic probe, pseudvandom ond Tehashing.
- · In the linear probe method when the Collision Occurs, the new data will be stoned in the next available address.

Sperate chaining method: A Separate linked list is maintained for taun Set q Colliding Records:

<u>e</u> xamples

=>224562 total size=19

(1) Module Minsion

224562 % 19 =

93 10