四川大学期末考试试题(闭卷)

(2014~2015 学年第2学期)

课程	号: <u>31</u>	103804	<u>o</u> 课程名	5称: 数据	库系统 (A	\卷) 任i	果教师: <u>张</u>	天庆、龚勋	」、李川、)	屈立笳	
适用	专业年	级: <u> </u>	次件工程	2013 级		学号:		姓名:			
	理办法 条例》 [] 规则》	法》和《 进行处 引川大学	《四川大· 注理。 全各级各 [川大学]	学考场规则 类考试的监	】》。有考试 3考人员,	违纪作弊? 必须严格护	6级各类考 行为的,一 11行《四川	律按照《四 大学考试工]川大学学生 作管理办法	生考试违法	考试工作管 纪作弊处罚 川大学考场 认定及处理
-	题	号	1	2	3	4					巻面 成绩
-	得	分									
	阅卷	时间						, X/5			
······	3	&&&& 	36666	\$&&&&&&	3555555	00000000000000000000000000000000000000	3 &&&&&&	<u> </u>	\$\$\$\$\$\$\$	3&&&&&	\$ \$ \$
1.	评阅 Mult	教师 tiple (Choice	本题得分 s. (Tot	al mark	s: 10)					
ć	a tabí	e? _	_a							umn defi	nitions from
	·表: / 例:	ALTER	TABLE		DLE (C) (PEDATE I	ndre (d)	MODIFY	IADLE		
		ALTER	r tabli	= 表名							

注: 试题字迹务必清晰,书写工整。

本题共 10 页,本页为第 1 页 教务处试题编号:

学号:

姓名:

ADD 新增列名 数据类型 (NOT NULL)

删除列:

ALTER TABLE 表名 DROP COLUMN 列名

- 2. If functional dependences A \rightarrow C, AB \rightarrow D and A \rightarrow B hold, __d_ does not hold.
- (a) $AB \rightarrow C$
- (b) $AB \rightarrow CD$
- (c) $A \rightarrow D$
- $(d) B \rightarrow D$

(a) AB → C 的推导:

∵ A→C (题目给的条件)

又: B→B (自确定性)

- ∴ AB → BC (增加性)
- ∴ AB \rightarrow B 并且 AB \rightarrow C (可分解性)

(b) **AB** → **CD** 的推导:

- $: A \to C, AB \to D$ (题目给的条件)
- ∴ AB→CD (增加性)

(c) A → D 的推导:

- ∵ AB \to D and A \to B (题目给的条件
- ∴ AA → D (伪传递性性)
- ∴ A→D(合并决定方的两个

- 3. In a two-phase locking protocol, what happens when a transaction requests a conflicting lock? c
 - a) The transaction immediately acquires the lock from the current lock-holder.
 - b) The transaction proceeds without acquiring the lock.
 - c) The transaction is blocked to acquire the lock.
 - d) The transaction is aborted immediately.

- 4. What attributes does a subclass have?_b_
 - a) Just the attributes from the superclass
 - b) All the attributes of its superclass, and possibly more
 - c) A subset of the attributes of its superclass
 - d) None of the attributes of its superclass

- 5. An insertion operation will _b_ if the inserted primary key has a NULL value.
- (a) succeed with warning (b) fail (c) crash the system (d) succeed without warning

评阅教师	本题得分

2. Relational Algebra. (Total marks: 10)

Consider the following relations, and write the results of relational algebra expressions.

Relation r:

A	В	С
A	2	A
A	3	В
В	2	С

Relation s:

В	D
2	100
3	200

注: 试题字迹务必清晰,书写工整。

1)		\ /	
1)	r	X	•

1	Marks		3)
۱	iviai KS	ì.	J)

	1			, ,
A	R.B	C	S.B	D
A	2	A	2	100
A	2	A	3	200
A	3	В	2	100
A	3	В	3	200
В	2	С	2	100
В	2	C	3	200

(行列顺序均可换)

WHI. REPORT OF THE PARTY OF THE

2)	7*	~ 1	C

(Ma	ar	ks	•	3
•	IVIC	7 1	NJ		

, -				<u>(</u>
A	В	C	D	
A	2	A	100	
A	3	В	200	
В	2	C	100	
A	I _{AB} (r) ÷I			(Marks: 4)
Γ	$I_{A,B}(r) \div I$	$T_B(s) =$	State	
A	В	K	×N'	
	1 1	- X	•	

3)	$\Pi_{AB}(r)$	$\div\Pi_{R}(s)$

	ПА	$_{,B}$ (r) \div	$-\Pi_{B}(s)$	= <
	A	В	13	
	A	2	-X	55X
	A	3	W.	
	В	2		
,	<u>, .)</u>		•	

评阅教师	本题得分	

Queries. (Total marks: 30)

Consider the following relational schemas describing an atlas(地图集):

```
continent (name, area)
country (name, continent, population)
city (name, country, province)
```

Write **SQL** statements in to perform the following instructions.

(1) List the name of the countries of the continent whose name begins these letters: 'as' in alphabetical order.

```
select name
  from country
  where continent like 'as%'
  order by name;
```



```
from country c1, city c2
where c1.name = c2.country and continent = 'asia'
group by c2.country
order by count(*);
```

(3) List the name of all countries with more than ten cities.

```
select country
from city
group by country
having count(*) > 10;
```

(4) Give the name of the country that has the most cities.

```
select country
  from city
  group by country
  having count(*) >= all
  ( select count(*)
    from city
    group by country);
```

(5) Give the name of the largest population continent.

```
select continent
from country
group by continent
having sum(population) >
(select continent
from country
group by continent);
```

(6) List the countries name in the continent 'asia' that have a larger population than any of the countries of 'europe'.

```
from country
where continent = 'asia' and population > any
(select population
from country
where continent = 'europe');
```

类的

评阅教师	本题得分		

4. Normalization.

(Total marks: 20)

1. The following table stores information about students and projects they participate in a university.

student project

	s_id	name	proj_id	proj_name	proj_budget
	98988	Tanaka	4	SCC	8,000
	98988	Tanaka	5	YK	5,000
	76653	Aoi	5	YK	5,000

Identify functional dependencies of the table EMP_DEPT according to your reasonable assumptions.
 (Marks: 6)

s_id ->name, proj_id ->proj_name, proj_budget

2) Identify the **candidate key(s)** of the table **EMP_DEPT**. (s_id, proj_id)

(Marks: 6)

3) IS the relation schema **student_project** in **BCNF**? Why? Is it in **3NF**? Why? If it is not in 3NF, bring it to a set of relations at least in 3NF; specify primary keys and referential integrity constraints for each relation.

(Marks:8)

Not BCNF. For s_id->name, it is not trivial, and s_id is not a superkey.

Not 3NF. For s_id->name, it is not trivial, s_id is not a superkey, and name is not in any candidate key.

i, student (s_id, name), PK: s_id

ii. project (proj_id, proj_name, budget), PK: proj_id

iii. student_project (s_id, proj_id) PK: (s_id, proj_id), FK1:s_id -> student, FK2: proj_id -> project

5. Database Design

(Total marks: 30)

课程名称: 任课教师: 姓名: 学号: 姓名:

1. Consider above figure, which models an online bookstore. Convert the E-R diagram to 3NF relations. Specify keys and referential integrity constraints. (Marks:15)

Shopping_basket 应该是一个弱实体,它必须依赖强实体 customer 的存在才会存在。因此,在对 ER 图的弱实体转化成关系模式的时候,需要加上外键,构成新的主键。在第六版书上(P159)有大学 ER 图转化为关系模式的实例,可以参考

Author(aname, address, URL)

Book(ISBN, title, year, price)

Publisher(pname, address, phone, URL)

Shopping_basket(basket_id, email)

Warehouse(code, address, phone)

Customer(email, name, address, phone)

Written_by(aname, ISBN)

Published_by(pname, ISBN)

Contains(ISBN, email,basket_id, number)

Stocks(ISBN, code, number)

Basket_of(email, basket_id)

- 2. Consider the following information about a university database:
 - Professors have an id, a name, a date of birth, a rank, and a research specialty.
 - Projects have a project number, a sponsor name (e.g. NSF), a starting date, an ending date, and a budget.
 - Graduate students have an id, a name, a date of birth, and a degree program (e.g. M.S or Ph.D).
 - Each project is managed by one professor (known as the project's principal investigator).
 - Each project is worked on by one or more professors (known as the project's co-investigators).

课程名称: 任课教师: 学号: 姓名:

- Professors can manage and/or work on multiple projects.
- Each project is worked on by one or more graduate students (known as the project's research assistant).
- When graduate students works on a project, a professor must supervise their work on the project. Graduate students can work on multiple projects, in which case they will have a (potentially different) supervisor for each one.

Design an E-R diagram that captures the information above. (Mark: 15)

• Professors have an id, a name, a date of birth, a rank, and a research specialty.

实体:professor 属性: id, name, birth_date, rank, specialty

Projects have a project number, a sponsor name (e.g. NSF), a starting date, an ending date, and a budget.

实体:project 属性: pro_no, sponsor, start_date, end_date, budget

Graduate students have an id, a name, a date of birth, and a degree program (e.g. M.S or Ph.D).

实体:graduate 属性: id, name, birth_date, deg_pro

Each project is managed by one professor (known as the project's principal investigator).

二元联系: manages

Each project is worked on by one or more professors (known as the project's co-investigators).

二元联系: works on1

Professors can manage and/or work on multiple projects.

结合上两个条件,知道:

联系 manages 在 professor 和 project 间是一对多

联系 works_on1 在 professor 和 project 间是多对多

• Each project is worked on by one or more graduate students (known as the project's research assistant).

二元联系:works_on2

• When graduate students works on a project, a professor must supervise their work on the project. Graduate students can work on multiple projects, in which case they will have a (potentially different) supervisor for each one.

结合上一个条件,知道联系 works_on2 在 project 和 student 间是多对多

三元联系: supervises

一个教授可以监管多个学生,多个项目

Design an E-R diagram that captures the information above. (Mark: 15)

注:试题字迹务必清晰,书写工整。

THE THE REPORT OF THE PARTY OF

注: 试题字迹务必清晰,书写工整。