Vector Geometry for Statistical Models

Statistical Geometry

It is possible to compute all statistical calculations for regression models using only a ruler and protractor.

The point here is not to displace the computer (it can do this faster), but, rather to help you understand some of the concepts at a deeper level.

Variable Space

We typically plot multivariate data in variable space. In variable space, the **variables are represented as axes** and the **subjects are represented as points**, which are plotted based on their values for the variables.

Subject	X	Y
Subject 1	2	- 5
Subject 2	-4	3
Subject 3	1	2

Rather than points, we could also draw vectors. Representing the subjects' values on the variables with a point or vector is just a matter of convenience.

Subject	Х	Y
Subject 1	2	- 5
Subject 2	-4	3
Subject 3	1	2

Subject Space

Variable	Subject 1	Subject 2	Subject 3
X	2	-4	1
Υ	- 5	3	2

In subject space, the **subjects are represented as axes** and the **variables are represented as vectors**.

Subject 2

Statistical Modeling and Projection

Fitting the model Y ~ X is akin to the finding the projection of **Y** onto the subspace of **X**

This is similar to our earlier metaphor. We start at the origin and our goal is to get to Y. The winds blows us in the direction of X along the subspace. The closest we get to Y is the point $Y_{\perp X}$. The remaining part of the journey (the swimming) is the residual part of the journey.

Once the projected point $\mathbf{Y}_{\perp \mathbf{X}}$ has been found, this can be translated to a coefficient (the scalar that extends X to this point).

$$\mathbf{Y}_{\perp \mathbf{X}} = c\mathbf{X}$$

The residual is the vector between the point $\mathbf{Y}_{\perp \mathbf{X}}$ and the goal vector \mathbf{Y} .

Since

$$\mathbf{Y}_{\perp \mathbf{X}} + \mathbf{e} = \mathbf{Y}$$

Computing the residual vector is simply vector subtraction

$$\mathbf{e} = \mathbf{Y} - \mathbf{Y}_{\perp \mathbf{X}}$$

Multiple Predictors

Consider the model $Y \sim X_1 + X_2$. The subspace of two explanatory variables is a **plane** consisting of all linear combinations of X_1 and X_2 .

The coefficients for X_1 and X_2 give the linear combination that scale each explanatory variable to reach the projected point from Y on the (X_1, X_2) -subspace.

Finding the Mean

Finding the mean is equivalent to fitting the intercept only model, Y ~ 1

Let
$$\mathbf{Y} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$
 then, $\bar{y} = 3, \ \hat{\sigma}_y = 2.83$

The intercept vector is a vector of ones.

$$\mathbf{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Find the coefficient, c, such that $\mathbf{Y}_{\perp \mathbf{1}} = c\mathbf{X}$

$$\mathbf{Y}_{\perp \mathbf{1}} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

The mean corresponds to the fitted model vector.

Residuals

$$\mathbf{Y} - \mathbf{Y}_{\perp \mathbf{1}} = \begin{bmatrix} 5 \\ 1 \end{bmatrix} - \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

The **length of this residual vector** is the standard deviation of *Y*.

$$||\mathbf{e}|| = \sqrt{\mathbf{e} \cdot \mathbf{e}}$$

$$= \sqrt{\begin{bmatrix} 2 \\ -2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -2 \end{bmatrix}}$$

$$= \sqrt{8}$$

$$= 2.83$$

No good reason to use geometry to compute mean or standard deviation, but it does emphasize the fact that the mean and standard deviation are two complimentary aspects of a variable.

Model Triangle

These vectors will always form a triangle because of the vector arithmetic that computes the residuals as the difference between the response vector and the fitted model vector.

Furthermore, the residual vector is always **perpendicular** to the fitted model vector.

Response = Fitted values + Residuals

Sum of Squares

Since the model triangle is a right triangle, the Pythagorean Theorem relates the lengths of the three sides as

$$||\mathbf{Y}||^2 = ||\mathbf{Y}_{\perp \mathbf{X}}||^2 + ||\mathbf{e}||^2$$

$$\mathbf{Y} \bullet \mathbf{Y} = \mathbf{Y}_{\perp \mathbf{X}} \bullet \mathbf{Y}_{\perp \mathbf{X}} + \mathbf{e} \bullet \mathbf{e}$$

A vector dotted with itself is just the sum of each element squared (a sum of squares)

$$SS_Y = SS_{Model} + SS_{Residual}$$

Correlation

Since the model triangle is a right triangle, we can use trigonometry to also relate the side lengths

$$\cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}}$$

$$\cos \theta = \frac{||\mathbf{Y}_{\perp \mathbf{X}}||}{||\mathbf{Y}||} = \frac{\sqrt{\mathbf{Y}_{\perp \mathbf{X}} \bullet \mathbf{Y}_{\perp \mathbf{X}}}}{\sqrt{\mathbf{Y} \bullet \mathbf{Y}}}$$

Squaring both sides of the equation...

$$\left[\cos\theta\right]^2 = \frac{\mathbf{Y}_{\perp\mathbf{X}} \bullet \mathbf{Y}_{\perp\mathbf{X}}}{\mathbf{Y} \bullet \mathbf{Y}}$$

The numerator and denominator are both sum of squares!

$$\left[\cos\theta\right]^2 = \frac{\text{SS}_{\text{Model}}}{\text{SS}_{\text{Total}}}$$

$$\left[\cos\theta\right]^2 = R^2$$

$$\cos \theta = r$$

The **cosine of the angle between the fitted model vector and the response vector** is the correlation between the fitted values and the response, which with only one predictor, is the correlation between *X* and *Y*.