Design Theory for Relational Databases

Author: Diane Horton

Originally based on slides by Jeff Ullman

Introduction

- There are always many different schemas for a given set of data.
- E.g., you could combine or divide tables.
- How do you pick a schema?
 Which is better?
 What does "better" mean?
- Fortunately, there are some principles to guide us.

Database Design Theory

- It allows us to improve a schema systematically.
- General idea:
 - Express constraints on the relationships between attributes
 - Use these to decompose the relations
- Ultimately, get a schema that is in a "normal form" that guarantees good properties.
- "Normal" in the sense of conforming to a standard.
- The process of converting a schema to a normal form is called normalization.

Part I: Functional Dependency Theory

A poorly designed table

part	manufacturer	manAddress	seller	sellerAddress	price
1983	Hammers 'R Us	99 Pinecrest	ABC	1229 Bloor W	5.59
8624	Lee Valley	102 Vaughn	ABC	1229 Bloor W	23.99
9141	Hammers 'R Us	99 Pinecrest	ABC	1229 Bloor W	12.50
1983	Hammers 'R Us	99 Pinecrest	Walmart	5289 St Clair W	4.99

Perhaps:

- Every part has 1 manufacturer
- Every manufacturer has 1 address
- Every seller has 1 address

If so, instances will have redundant data.

Principle: Avoid redundancy

Redundant data can lead to anomalies.

part	manufacturer	manAddress	seller	sellerAddress	price
1983	Hammers 'R Us	99 Pinecrest	ABC	1229 Bloor W	5.59
8624	Lee Valley	102 Vaughn	ABC	1229 Bloor W	23.99
9141	Hammers 'R Us	99 Pinecrest	ABC	1229 Bloor W	12.50
1983	Hammers 'R Us	99 Pinecrest	Walmart	5289 St Clair W	4.99

 Update anomaly: if Hammers `R Us moves and we update only one tuple, the data is inconsistent!

part	manufacturer	manAddress	seller	sellerAddress	price
1983	Hammers 'R Us	99 Pinecrest	ABC	1229 Bloor W	5.59
8624	Lee Valley	102 Vaughn	ABC	1229 Bloor W	23.99
9141	Hammers 'R Us	99 Pinecrest	ABC	1229 Bloor W	12.50
1983	Hammers 'R Us	99 Pinecrest	Walmart	5289 St Clair W	4.99

 Deletion anomaly: if ABC stops selling part 8624 and Lee Valley makes only that one part, we lose track of its address!

Definition of FD

- Suppose R is a relation, and X and Y are subsets of the attributes of R.
- $X \rightarrow Y$ asserts that:
 - If two tuples agree on all the attributes in set *X*, they must also agree on all the attributes in set *Y*.
- We say that "X→Y holds in R", or "X functionally determines Y."
- An FD constrains what can go in a relation.

More formally...

```
A \rightarrow B means:

\foralltuples t_1, t_2,

(t_1[A] = t_2[A]) \Rightarrow (t_1[B] = t_2[B])
```

Or equivalently:

```
¬\existstuples t_1, t_2 such that (t_1[A] = t_2[A]) \land (t_1[B] \neq t_2[B])
```

Generalization to multiple attributes

$$A_1A_2 ... A_m \rightarrow B_1B_2 ... B_n \text{ means:}$$

$$\forall \text{tuples } t_1, t_2,$$

$$(t_1[A_1] = t_2[A_1] \land ... \land t_1[A_m] = t_2[A_m]) \Rightarrow$$

$$(t_1[B_1] = t_2[B_1] \land ... \land t_1[B_n] = t_2[B_n])$$

Or equivalently:

¬∃tuples t₁, t₂ such that

$$(t_1[A_1] = t_2[A_1] \land ... \land t_1[A_m] = t_2[A_m]) \land$$

 $\neg (t_1[B_1] = t_2[B_1] \land ... \land t_1[B_n] = t_2[B_n])$

FDs in our parts table

part	manufacturer	manAddress	seller	sellerAddress	price
1983	Hammers 'R Us	99 Pinecrest	ABC	1229 Bloor W	5.59

etc.

We can now express relationships as FDs

- Every part has 1 manufacturer becomes part → manufacturer
- Every manufacture has 1 address becomes manufacturer → manAddress
- Every seller has 1 address becomes seller → sellerAddress

Why "functional dependency"?

- X → Y is a "dependency" because the value of Y depends on the value of X.
- It is "functional" because
 there is a mathematical function that takes a
 value for X and gives a *unique* value for Y.
 (It's not a typical function; just a lookup.)

Equivalent sets of FDs

- When we write a set of FDs, we mean that all of them hold.
- We can very often rewrite sets of FDs in equivalent ways.
- When we say S_1 is equivalent to S_2 we mean that:
 - S_1 holds in a relation iff S_2 does.

Splitting rules for FDs

 Can we split the RHS of an FD and get multiple, equivalent FDs?

 Can we split the LHS of an FD and get multiple, equivalent FDs?

Coincidence or FD?

- An FD is an assertion about every instance of the relation.
- You can't know it holds just by looking at one instance.
- You must use knowledge of the domain to determine whether an FD holds.

FDs are closely related to keys

- Suppose K is a set of attributes for relation R.
- Our old definition of superkey:

 a set of attributes for which no two rows can have the same values.
- A claim about FDs:

K is a superkey for R iff

K functionally determines all of R.

FDs are a generalization of keys

• Superkey: Every attribute

X → R

Functional dependency:

Not necessarily every attribute

An FD can be more subtle.

Inferring FDs

- Given a set of FDs, we can often infer further FDs.
- This will be handy when we apply FDs to the problem of database design.
- Big task: given a set of FDs, infer every other FD that must also hold.
- Simpler task: given a set of FDs, check whether *a given* FD must also hold.

Examples

- If A → B and B → C hold, must A → C hold?
- If A → H, C → F, and FG → AD hold, must FA → D hold? must CG → FH hold?
- If H → GD, HD → CE, and BD → A hold, must EH → C hold?
- Aside: we are not generating new FDs, but testing a specific possible one.

Method 1: Prove an FD follows using first principles

- You can prove it by referring back to
 - The FDs that you know hold, and
 - The definition of functional dependency.

Method 2: Prove an FD follows using the Closure Test

- Assume you know the values of the LHS attributes, and figure out everything else that is determined.
- If it includes the RHS attributes, then you know that LHS → RHS
- This is called the closure test.

Y is a set of attributes, S is a set of FDs. Return the closure of Y under S.

```
Attribute_closure(Y, S):
    Initialize Y+ to Y
    Repeat until no more changes occur:
    If there is an FD LHS → RHS in S such that LHS is in Y+:
        Add RHS to Y+
    Return Y +
```

Visualizing attribute closure

If LHS is in Y⁺ and LHS \rightarrow RHS holds, we can add RHS to Y⁺

S is a set of FDs; LHS \rightarrow RHS is a single FD. Return true iff LHS \rightarrow RHS follows from S.

```
FD_follows(S, LHS \rightarrow RHS):

Y<sup>+</sup> = Attribute_closure(LHS, S)

return (RHS is in Y<sup>+</sup>)
```

Projecting FDs

- Later, we will learn how to normalize a schema by decomposing relations.
 This is the whole point of this theory.
- We will need to know what FDs hold in the new, smaller, relations.

We must project our FDs onto the attributes of our new relations.

S is a set of FDs; L is a set of attributes.

Return the projection of S onto L:

all FDs that follow from S and involve only attributes from L.

```
Project(S, L):
    Initialize T to \{\}.
    For each subset X of L:
        Compute X^+ Close X and see what we get.
        For every attribute A in X^+:
        If A is in L: X \to A is only relevant if A is in L (we know X is).
        add X \to A to T.
        Return T.
```

A few speed-ups

- No need to add $X \rightarrow A$ if A is in X itself. It's a trivial FD.
- These subsets of X won't yield anything, so no need to compute their closures:
 - the empty set
 - the set of all attributes
- Neither are big savings, but ...

A big speed-up

If we find that X+ = all attributes, we can ignore any superset of X.
 It can only give use "weaker" FDs (i.e., FDs with more on the LHS).

This is a big time saver!

Projection is expensive

- Even with these speed-ups, projection is still expensive.
- Suppose R_1 has n attributes. How many subsets of R_1 are there?

Minimal Basis

- We saw earlier that we can very often rewrite sets of FDs in equivalent ways.
- Example: $S_1 = \{A \rightarrow BC\}$ is equivalent to $S_2 = \{A \rightarrow B, A \rightarrow C\}$.
- Given a set of FDs S, we may want to find a minimal basis: A set of FDs that is equivalent, but has
 - no redundant FDs, and
 - no FDs with unnecessary attributes on the LHS.

S is a set of FDs. Return a minimal basis for S.

Minimal_basis(S):

- 1. Split the RHS of each FD
- 2. For each FD X → Y where |X | ≥ 2:
 If you can remove an attribute from X and get an FD that follows from S:
 Do so! (It's a stronger FD.)
- 3. For each FD f:

 If $S \{f\}$ implies f:

 Remove f from S.

Some comments on minimal basis

- Often there are multiple possible results.
 Depends on the order in which you consider the possible simplifications.
- After you identify a redundant FD, you must not use it when computing subsequent closures.

... and perhaps less intuitive

 When you are computing closures to decide whether the LHS of an FD

$$X \rightarrow Y$$

can be simplified, continue to use that FD.

 You must do steps (2) and (3) in that order.

Otherwise, must repeat until no changes occur.