Kings in Generalized Tournaments

C. Zhang.

Department of Mathematics Wheaton College Student

Thesis Defense

Background

tournaments

Definition (Maurer 1980)

An **tournament** consists of a set of **vertices** V, and a set of **edges** E which consists of ordered pairs of vertices, such that

- ▶ for all vertex a, $(a, a) \notin E$.
- ▶ for all vertices $a, b, (a, b) \in E$ or $(b, a) \in E$, but not both.

Figure: example of a tournament.

Background

tournaments

If (a, b) in edge set E, we write it as $a \rightarrow b$ or a beats b.

Figure: example of a tournament.

Background kings

Definition (Maurer 1980)

A **king** (or **2-king**) in a oriented graph is a vertex that can beat every vertex by at most 2 steps.

Background kings

The kings in this graph are a, d, e.

Figure: example of a tournament.

Background

kings

The kings in this graph are a, d, e:

(a) a is a king.

(b) d is a king.

(c) e is a king.

Generalization of Tournaments

relation between three generalizations

Figure: the relationship between tournaments, semi-complete digraphs, oriented graphs, and quasi-transitive oriented graphs.

oriented graph

Definition

An **oriented graph** consists of a set of **vertices** V, and a set of **edges** E which consists of ordered pairs of vertices, such that

- ▶ for all vertex a, $(a, a) \notin E$.
- ▶ for all vertices $\{a, b\}$, if a beats b, then b does not beat a.

Figure: example of an oriented graph.

oriented graph

Definition

A vertex a is **adjacent** to vertex b if $a \rightarrow b$ or $b \rightarrow a$.

Definition

There exists a **tie** between a and c, if a is not adjacent to c.

Figure: another example of an oriented graph.

Quasi-transitive Oriented Graph oriented graph

King in this graph is d, e:

Figure: an example of kings.

Definition (Bang-Jensen and Huang 1995)

Quasi-transitive oriented graph is an oriented graph such that if $a \to b$ and $b \to c$ then a and c are adjacent.

Figure: examples of quasi-transitive oriented graphs.

Lemma

In Quasi-transitive oriented graphs, If vertex a ties with vertex b, then for any other vertex v that does not tie with a or b, $v \rightarrow \{a,b\}$ or $\{a,b\} \rightarrow v$

Figure: an example where a ties with b.

tie transmits arrows

Figure: arrow direction transmitted from a to b.

tie transmits arrows

(c) add another vertex c ties b. (d) add another vertex d ties c.

Figure: tie is transmitting the direction of arrow.

Definition

In a digraph, a **tie path** from vertex a_0 to vertex a_n , or a tie path between vertices a_0 and a_n , is a sequence of vertices $[a_0, a_1, a_2, \ldots, a_{n-1}, a_n]$, such that for all $0 \le k < n$, a_k ties a_{k+1} . Note that all the a_i 's do not have to be distinct.

Figure: a tie path from a to b.

Figure: tie path example.

Lemma

In Quasi-transitive oriented graphs, If vertex a ties with vertex b, then for any other vertex v that does not tie with a or b, $v \to \{a,b\}$ or $\{a,b\} \to v$

Lemma

For every tie path in a quasi-transitive oriented graph, if vertex v is adjacent to all the vertices on the tie path, then v beats every vertex on the tie path, or v is beaten by every vertex on the tie path.

Lemma

For every tie path in a quasi-transitive oriented graph, if vertex v is adjacent to all the vertices on the tie path, then v beats every vertex on the tie path, or v is beaten by every vertex on the tie path.

Figure: a tie path from a to d.

tie components

(c) transmitted from a to c to d. (d) transmitted from a to c to e.

Figure: the arrow direction to b was transmitted in tie component C.

tie components

Definition

In a digraph G, a **tie component of vertex** a: C(a), all vertices v such that there exists a tie path between a and v.

Definition

In a digraph G, a tie component C(a) is a **trivial tie component** if C(a) only contains a itself and no other vertex.

Corollary

In a digraph, if vertex v is not in tie component C(a), then v is adjacent to C(a).

tie components

Lemma

In a quasi-transitive oriented graph, for any tie component C(a) and any vertex v such that $v \notin C(a)$, then either $C(a) \to v$ or $v \to C(a)$.

tie components

Consider tie component C(v). Without loss of generosity, assume $v \to C(a)$

(a) direction is $v \to C(a)$.

(c) transmitted from v to q.

(b) transmitted from v to p.

condensation to tournaments

Theorem

For any two distinct tie components C(v) and C(a) in a quasi-transitive oriented graph, $C(v) \to C(a)$ or $C(a) \to C(v)$.

condensation to tournaments

(a) a quasi-transitive oriented graph.

(c) components beat each other.

(b) find its tie components.

(d) components are just like vertices.

condensation to tournaments

Theorem

Tie component condensation of given quasi-transitive oriented graph Q will always result in a unique tournament T, where T is called the **underlying tournament of** Q.

(a) quasi-transitive oriented graph Q.

(b) underlying tournament of Q.

graph condensation

(a) an oriented graph G.

(c) relationship between components.

(b) components of G.

(d) condensed graph H.

graph condensation

Theorem

Given a quasi-transitive graph Q and its tie component condensation f, consider the set of all the condensations $f_k: G_k \to T_k$, where G_k has the same tie structure as Q and T_k is a tournament: $F = \{f_0, f_1, \ldots, f_{n-1}, f_n\}$. f is an efficient condensation in F.

property of kings

Theorem

If vertex k is a king in quasi-transitive oriented graph G, then k is adjacent to every other vertex in G.

Figure: the rich structure of a king in a quasi-transitive oriented graph.

property of kings

Theorem

A vertex k is a king in a quasi-transitive oriented graph if and only if

- k is in a trivial tie component.
- the result of k after tie component condensation is a king in the underlying tournament.

(a) quasi-transitive oriented graph Q.

(b) underlying tournament of Q.

Thank You

References

- Bang-Jensen, Jørgen and Jing Huang (Oct. 1, 1995).
 - "Quasi-transitive digraphs". In: Journal of Graph Theory 20.2, pp. 141-161. ISSN: 1097-0118. DOI: 10.1002/jgt.3190200205. URL: http://onlinelibrary.wiley.com/doi/10.1002/jgt.3190200205/abstract (visited on 02/08/2018).
- Maurer, Stephen B. (Mar. 1, 1980). "The King Chicken Theorems". In: *Mathematics Magazine* 53.2, p. 67. ISSN: 0025570X. DOI: 10.2307/2689952. URL: http://www.jstor.org/stable/10.2307/2689952?origin=crossref (visited on 01/27/2018).