# Elettronica Digitale A.A. 2020-2021

Lezione 15/03/2021

## Raddrizzatori a doppia semionda senza C



$$V_1 > 0 \rightarrow V_A > 0$$
,  $V_B > 0$  Ipotesi: D1 ON e D2 OFF

$$V_{\mu} = V_A > 0$$

$$I_{D1} = \frac{V_A}{R_L} > 0$$
  $\Longrightarrow$  D1 ON  $V_{AK2} = V_{A2} - V_{K2} = -V_B - (V_A) = -V_B - V_A < 0$   $\Longrightarrow$  D2 OFF PIV=2V<sub>M</sub>

## Raddrizzatori a doppia semionda senza C



$$V_1 < 0 \rightarrow V_A < 0$$
,  $V_B < 0$  Ipotesi: D1 OFF e D2 ON  $V_u = -V_B > 0$ 

$$V_{\mu} = -V_{B} > 0$$

$$I_{D2} = \frac{-V_B}{R_L} > 0 \Longrightarrow D2 ON$$

$$I_{D2} = \frac{-V_B}{R_I} > 0$$
 D2 ON  $V_{AK1} = V_{A1} - V_{K1} = V_A - (-V_B) = V_A + V_B < 0$ 



PIV=2V<sub>M</sub>

Raddrizzatori a doppia semionda senza C





# Raddrizzatori a doppia semionda con C



# Raddrizzatore a ponte di Graetz



 $V_2 > 0$  D2 ON, D3 ON, D1 OFF, D4 OFF

# Raddrizzatore a ponte di Graetz



 $V_{\mu} = V_2$ 

 $V_{\mu} = -V_2$ 

Senza il condensatore

$$V_2 > 0$$
 D2 ON, D3 ON, D1 OFF, D4 OFF

 $V_2 < 0$ 

## Con il condensatore



# Confronto tra le configurazioni

| CONFIGURAZIONE                                                     | PIV             | Perdita di segnale dovuta ai diodi |
|--------------------------------------------------------------------|-----------------|------------------------------------|
| Rettificatore senza C                                              | $V_{M}$         | Vγ                                 |
| Rettificatore con C                                                | $2V_{M}$        | Vγ                                 |
| Raddrizzatore a doppia semionda con trasformatore a presa centrale | 2V <sub>M</sub> | Vγ                                 |
| Raddrizzatore a ponte di Graetz                                    | $V_{M}$         | 2Vγ                                |

#### Circuiti con diodo Zener



#### Circuiti con diodo Zener



$$V_S = -RI_D - V_D \qquad \qquad I_D = -\frac{V_S}{R} - \frac{V_D}{R}$$

$$I_D = -\frac{V_S}{R} - \frac{V_D}{R}$$

$$I_D = -\frac{V_S}{R} + \frac{V_Z}{R}$$

$$I_D = -\frac{V_S}{R} + \frac{V_Z}{R} = -2 \times 10^{-3} + 1 \times 10^{-3} = -1 \text{ mA}$$

**Ipotesi** verificata

# Regolatore di tensione con diodo Zener



$$Se I_Z > 0$$

$$V - V$$

$$I_{R} = \frac{V_{A} - V_{Z}}{R}$$

$$I_{L} = \frac{V_{Z}}{R}$$

$$I_{L} = \frac{V_{A} - V_{Z}}{R} - \frac{V_{Z}}{R}$$

# Regolatore di tensione con diodo Zener



$$I_Z = I_R - I_L = \frac{V_A - V_Z}{R} - \frac{V_Z}{R_I} > 0$$

$$I_L = 0 \to I_{ZMax} = I_R = \frac{V_A - V_Z}{R}$$

$$I_Z = 0 \rightarrow I_{LMax} = I_R = \frac{V_A - V_Z}{R}$$

$$P_{Z\max} = V_Z I_{ZMax} = V_Z \frac{V_A - V_Z}{R}$$

## Regolatore di tensione con diodo Zener



### Tensione di ingresso variabile

$$V_{AMin} \le V_A \le V_{AMax}$$

$$I_{LMax} = \frac{V_{AMin} - V_{Z}}{R}$$

$$P_{Z\max} = V_Z \frac{V_{AMax} - V_Z}{R}$$