$$V = \frac{1}{2} \left(x_1^2 + x_2^2 \right)$$

$$\dot{V} = x_1 x_1 + x_2 x_2$$

$$= x_1 \left(x_1 x_2^2 - x_1 \right) + x_2 \left(-x_1^2 x_2 + u \right)$$

$$= x_1^2 x_2^2 - x_1^2 - x_2^2 x_2^2 + u x_2$$

$$\dot{V} = -x_1^2 + u_2$$

 $\dot{V} \le 0$ $\dot{V} = 0 = 7$ $515L$

select U = -kxz

then v = -x,2 - Rx22 < 0 =7 A5

proportional feedbach Regulator, x >0

$$2x^3 \quad x_1 = x_1 x_2^2 + u$$

$$x_2 = -x_1^2 x_2 - x_2$$

$$V = 2(1) + 1/2 \times 2$$

$$= 2(1)(1)(1) + 1/2 (-2)(1)(1) + 1/2 (-2)(1)(1) = 2$$

$$= 2(1)(1)(1)(1)(1)(1) = 2$$

$$\dot{V} = 0$$
 $\dot{J} U = 0$ $\Rightarrow 515L$
 $\dot{J} U = -kx_1$
 $\dot{V} = -kx_1^2 - x_2^2 < 0 \Rightarrow A5$

Feedbach loop

Regulator, 50-30

Regulator 20 70 et 4 et 3-23 5+ Lip-94 $\dot{x} - \dot{x}^3 + \dot{x}^2 = u$, $\ddot{x} = \dot{x}^3 - \dot{x}^2 + u$ (1) $V = \frac{1}{2}(x^2 + x^2)$ V = xx + xx $= xx + x(x^3 - x^2 + u) (fx + b(x) + ((x) = 0)$ $= x \left(x + x^3 - x^2 + u \right)$ set $u = -x + x^2 - 2x = -x + x^2 - x - x^3$ $V = \frac{1}{2}(-\dot{x}^3) = -\dot{x}^4 \leq 0 \quad 515L$ y >0 => 2 →0

Lo Sille ext. $\dot{y} \rightarrow 0 \Rightarrow \dot{x} \rightarrow 0$ put into (i) i) closed-loop = y stem $\dot{z} = \dot{x}^3 - x^2 + u$ $\dot{z} = \dot{x}^3 - x^2 - x + x^2 - 2\dot{x}^3 = -\dot{x}^3 - x$ $\dot{x} + \dot{x}^3 + x = 0, \dot{x} + b(\dot{x}) + ((x) = 0$ 2) La Salle $\dot{y} \rightarrow 0, \dot{x} \rightarrow 0$ Tracker $x \rightarrow xd$ FB lin loop $\dot{x} = -x$ A S

Regulator $\dot{x} = \dot{x} + \dot{x}$

Tracker (VS. Regulator) ex5 ex 3.23.1 5+Lp.94 $\dot{x} - \dot{x}^3 + \dot{x}^2 = u$, $\dot{x} = +\dot{x}^3 - \dot{x}^2 + u$ Desired trajectory × (1+) Tracking error e = xd - x = rror Dynamics $\dot{e} = \dot{x}d - \dot{x}$ $e = id - i = id - (id^3 - id^3 + iu)$ (1) LFC. V= = (e2 + e2) V= ee + ee $= e(e + id - x^3 + x^2 - u)$ $u = \chi d + e + \chi^3 + \chi + ke$ $v = e(-ke) = -ke^2 = 0$

Feed Back Linearization Tracker $\dot{\alpha} = f(x) + g(x)u$ e = xd - x, $\dot{e} = \dot{x}d - \dot{x}$ e= 2d-f(x)-g(x)u select u = \frac{1}{g(x)} (-f(x) + \frac{1}{x}d + \ke)'

c losed-loop system e = sid - f = g (-f + id + ke) e = -ke As · practically $u = \int \frac{1}{g(x)} \left(-f(x) + \dot{x}d + ke\right) \quad ||g(x)|| > \varepsilon$ $= \left(\frac{1}{\varepsilon} \frac{sgn(g)}{g(x)} \left(-f + \dot{x}d + ke\right) \quad ||g(x)|| \le \varepsilon$ => UVB