CSC3001 Discrete Mathematics

Suggested Solution for Homework 1

1. Let A and B be propositions. Use truth tables to prove the De Morgan's rules. (8 marks)

$$(1) \neg (A \land B) \equiv (\neg A \lor \neg B)$$

(2)
$$\neg (A \lor B) \equiv (\neg A \land \neg B)$$

Solution:

A	B	$A \wedge B$	$\neg (A \land B)$	$\mid \neg A \mid$	$\neg B$	$(\neg A \lor \neg B)$
\overline{T}	Т	Т	F	F	F	F
\mathbf{T}	F	F	T	F	T	${ m T}$
\mathbf{F}	Τ	F	${ m T}$	Т	F	${ m T}$
F	F	F	Т	Т	Т	${ m T}$
\overline{A}	B	$A \vee B$	$\neg (A \lor B)$	$\neg A$	$\neg B$	$(\neg A \land \neg B)$
		11 1 1	(21 V D)	'21	"	(21/(2)
\overline{T}	Т	Т	F	F	F	F
Т Т	T F		/	F F		,
_	-	T	F	_	F	F

2. Show that each of these conditional statements is a tautology by using truth tables. (8 marks)

(1)
$$\neg p \rightarrow (p \rightarrow q)$$

$$(2) \neg (p \to q) \to \neg q$$

Solution:

p	q	$p \rightarrow q$	$\neg(p \to q)$	$\neg q$	$\neg (p \to q) \to \neg q$
Т	Τ	T	F	F	T
T	F	F	${ m T}$	${ m T}$	T
\mathbf{F}	T	Τ	F	\mathbf{F}	T
\mathbf{F}	F	Т	\mathbf{F}	Τ	T

3. For each of these compound propositions, use the conditional-disjunction equivalence to find an equivalent compound proposition that does not involve conditionals. (10 marks)

1

(1)
$$p \rightarrow \neg q$$

(2)
$$(p \to q) \to r$$

Solution:

$$p \to \neg q \equiv \neg p \vee \neg q$$

$$(p \to q) \to r \equiv (\neg p \vee q) \to r \equiv \neg (\neg p \vee q) \vee r \equiv p \wedge \neg q \vee r$$

Note: you should use the conditional-disjunction equivalence as requested in the question, instead of relying on truth tables.

- 4. Determine whether each of these statements is true or false. (7 marks)
 - $(1) \ 0 \in \emptyset$
 - $(2) \emptyset \in \{0\}$
 - $(3) \{0\} \subset \emptyset$
 - $(4) \emptyset \subset \{0\}$
 - $(5) \{0\} \in \{0\}$
 - $(6) \{0\} \subset \{0\}$
 - $(7) \ \{\emptyset\} \subseteq \{\emptyset\}$

Solution:

- (1) False. (2) False. It should be $\emptyset \subseteq \{0\}$. (3) False. (4) True. (5) False. (6) False. It should be $\{0\} \subseteq \{0\}$. (7) True.
- 5. Show that $(\exists x(P(x) \to Q(x))) \leftrightarrow (\forall x P(x) \to \exists x Q(x))$ is a tautology. (10 marks) Solution:

LHS =
$$\exists x (P(x) \to Q(x))$$

= $\exists x (\neg P(x) \lor Q(s))$
= $\exists x \neg P(x) \lor \exists x Q(x)$

RHS =
$$\forall x P(x) \rightarrow \exists x Q(x)$$

= $\neg \forall x P(x) \lor \exists x Q(x)$
= $\exists x \neg P(x) \lor \exists x Q(x)$

Q.E.D

6. Let M be a set and let $A, B \subset M$. Prove $M - (A \cup B) = (M - A) \cap (M - B)$. (10 marks) Solution:

$$M - (A \cup B) = M \cap (\overline{A \cup B})$$

$$= M \cap (\overline{A} \cap \overline{B})$$

$$= M \cap \overline{A} \cap \overline{B}$$

$$= M \cap \overline{A} \cap \overline{B} \cap M$$

$$= (M \cap \overline{A}) \cap (\overline{B} \cap M)$$

$$= (M - A) \cap (M - B)$$

Another Proof:

$$\begin{split} M - (A \cup B) &= \{x | x \in M \land x \not\in (A \cup B)\} \\ &= \{x | x \in M \land x \in \overline{A \cup B}\} \\ &= \{x | x \in M \land x \in \overline{A} \cap \overline{B}\} \\ &= \{x | x \in M \land (x \in \overline{A} \land x \in \overline{B})\} \\ &= \{x | x \in M \land x \in \overline{A} \land x \in \overline{B} \land x \in M\} \\ &= \{x | (x \in M \land x \not\in A) \land (x \in M \land x \not\in \overline{B})\} \\ &= \{x | x \in (M - A) \land x \in (M - B)\} \\ &= (M - A) \cap (M - B) \end{split}$$

Note: to prove this using a Venn diagram, it is important to plot all cases and not just the scenario where A and B intersect.

7. Show that

$$\forall x (P(x) \to (Q(x) \land S(x)))$$

$$\forall x ((P(x) \land R(x)))$$

$$\vdots \forall x (R(x) \land S(x))$$
(1)

is a valid argument. (11 marks)

Solution:

- 1. $\forall x (P(x) \to (Q(x) \land S(x)))$ premise
- 2. $P(a) \rightarrow (Q(a) \land S(a))$ UI on (1)
- 3. $\forall x((P(x) \land R(x)))$ premise
- 4. $P(a) \wedge R(a)$ UI on (3)
- 5. P(a) simplification on (4)
- 6. R(a) simplification on (4)
- 7. $(Q(a) \wedge S(a))$ Modus Ponens on (2) and (5)
- 8. S(a) simplification on (7)
- 9. $R(a) \wedge S(a)$ Conjunction on (6) and (8)
- 10. $\forall x (R(x) \land S(x))$ UG on (9)

8. Let $a_n = 2^n + 5 \cdot 3^n$ for $n = 0, 1, 2, \cdots$ (12 marks)

- (1) Find a_0, a_1, a_2, a_3 and a_4 .
- (2) Show that $a_2 = 5a_1 6a_0$, $a_3 = 5a_2 6a_1$, and $a_4 = 5a_3 6a_2$.
- (3) Show that $a_n = 5a_{n-1} 6a_{n-2}$ for all integers n with $n \ge 2$.

Solution:

- (1) 6, 17, 49, 143, 421
- (2) 49 = 5 * 17 6 * 6, 143 = 5 * 49 6 * 17, 421 = 5 * 143 6 * 49
- (3)

$$5a_{n-1} - 6a_{n-2}$$

$$= 5 \cdot (2^{n-1} + 5 \cdot 3^{n-1}) - 6 \cdot (2^{n-2} + 5 \cdot 3^{n-2})$$

$$= 2^{n-2} \cdot (5 \cdot 2 - 6) + 3^{n-2} (5 \cdot 5 \cdot 3 - 6 \cdot 5)$$

$$= 2^{n-2} \cdot 4 + 3^{n-2} \cdot 45$$

$$= 2^{n} + 5 \cdot 3^{n} = a_{n}$$

9. Prove or disprove that: (12 marks)

(1)
$$(A-B) - (C-D) = (A-C) - (B-D)$$
.

(2)
$$\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$$
.

Solution:

(1) Disprove:

Let
$$A = B = \{a, b\}$$
, $C = \emptyset$, $D = \{a\}$, then we can get $(A - B) - (C - D) = \emptyset - \emptyset = \emptyset$, $(A - C) - (B - D) = \{a, b\} - \{b\} = \{a\}$. Therefore, we can disprove $(A - B) - (C - D) = (A - C) - (B - D)$.

(2) Prove:

$$\overline{A \cap B \cap C} = \{x | x \notin A \cap B \cap C\}$$

$$= \{x | \neg x \in A \cap B \cap C\}$$

$$= \{x | \neg (x \in A \land x \in B \land x \in C)\}$$

$$= \{x | x \notin A \lor x \notin B \lor x \notin C\}$$

$$= \{x | x \in \overline{A} \lor x \in \overline{B} \lor x \in \overline{C}\}$$

$$= \overline{A} \cup \overline{B} \cup \overline{C}$$

10. Prove that there is no positive integers n such that $n^2 + n^3 = 100$. (12 marks)

Solution:

 $\therefore n^3 > 100 \text{ for all } n > 4.$

 \therefore we only need to show that $n \in \{1, 2, 3, 4\}$ do not satisfy $n^2 + n^3 = 100$