Mathe-Ergänzungskurs

Linus Yury Schneeberg

2025-2027

Inhaltsverzeichnis

Ι	Q1	-	2
1	Reelle Zahlenfolgen		2
	1.1	Definitionen	2
	1.2	Beweis (rekursive Summenfolge = explizite)	2
	1.3	Satz (Jede konvergente Folge ist beschränkt)	3
	1.4	Satz von Bolzano-Weierstraß	3

Teil I

$\mathbf{Q1}$

1 Reelle Zahlenfolgen

1.1 Definitionen

Definition 1.1. $a \colon \mathbb{N} \to \mathbb{R}$ heißt reelle Zahlenfolge. $n \mapsto a(n) = a_n$

Definition 1.2. Als Bildungsvorschrift bezeichnet man

- (a) a(n) = f(n) z.B. $a(n) = n^2$ (explizit)
- (b) $a(n) = f(a_1, \dots, a_{n-1}, n)$ z.B. a(n+1) = a(n) + a(n-1) (rekursiv)

1.2 Beweis (rekursive Summenfolge = explizite)

Satz 1.1. Seien $a_1(n)$ und $a_2(n)$ Folgen mit den Bildungsforschriften

$$a_1(n) = a_1(n) + (n+1)$$
 $a_2(n) = \sum_{k=0}^{n} k$
 $a_1(0) = 0$.

Dann gilt $\forall n : a_1(n) = a_2(n)$.

Beweis. Der Beweis wird durch vollständige Induktion geführt. Induktionsanfang: Für n=0

$$a_1(0) = 0 \tag{1}$$

$$a_2(0) = \sum_{k=0}^{0} k = 0 \tag{2}$$

$$(1) \wedge (2) \implies a_1(0) = a_2(0)$$

Induktionsschritt: Induktionshypothese: $\exists n : a_1(n) = a_2(n)$ Zu zeigen ist, Ind. Hypot. $\implies a_1(n+1) = a_2(n+1)$

$$a_1(n+1) = a_1(n) + (n+1)$$

= $a_2(n) + (n+1)$ Ind. Hypot.
= $\sum_{k=0}^{n} k + (n+1)$
= $\sum_{k=0}^{n+1} k$
= $a_2(n+1)$

QED

1.3 Satz (Jede konvergente Folge ist beschränkt)

Satz 1.2. Sei $(a_n)_{n=1}^{\infty}$ eine konvergente Folge mit dem Grenzwert a. Dann gilt

$$\exists m, M \in \mathbb{R} \colon \forall n \in \mathbb{N} \colon m < a_n < M$$

Beweis. Da a_n gegen a konvergiert gilt

$$\forall \varepsilon > 0 \colon \exists N_{\varepsilon} \in \mathbb{N} \colon \forall n \geq N_{\varepsilon} \colon |a_n - a| < \varepsilon.$$

Da $|a_n - a| < \varepsilon$ in der oberen Aussage äquivalent zu $-x < a_n < x$ ist, gilt auch

$$\forall \varepsilon > 0 \colon \exists N_{\varepsilon} \in \mathbb{N} \colon \forall n \geq N_{\varepsilon} \colon -\varepsilon < a_n - a < \varepsilon.$$

Für ein bestimmtes $\varepsilon > 0$ existiert also ein N_{ε} , so dass für alle $n \geq N_{\varepsilon}$ a_n beschränkt ist. Da es nur endlich viele Folgenglieder für $n < N_{\varepsilon}$ gibt, lässt sich eine obere Grenze als $\max(\{a_n|n < N_{\varepsilon}\} \cup \{\varepsilon + a\})$ und eine untere Grenze als $\min(\{a_n|n < N_{\varepsilon}\} \cup \{-\varepsilon + a\}\})$ berechnen. QED

1.4 Satz von Bolzano-Weierstraß

Satz 1.3 (Satz von Bolzano-Weierstraß I). Jede beschränkte Folge hat eine konvergente Teilfolge.

Beweis. $(a_n)_{n=1}^{\infty}$ sei beschränkt durch $m \leq a_n \leq M$ für alle $n \in \mathbb{N}$. Man teile das intervall [n,M] in zwei Teile bei $\frac{m+M}{2}$.

- 1. Fall: Auf $\frac{m+M}{2}$ liegen unendlich viele Folgeglieder.
- 2. Fall: In $[m, \frac{m+M}{2}[$ liegen unendlich viele Folgeglieder. Dann beginne mit $[m, \frac{m+M}{2}[$ von vorne.
- 3. Fall: In $\left[\frac{m+M}{2}, M\right]$ liegen undenlich viele Folgeglieder. Dann beginne mit $\left[\frac{m+M}{2}, M\right]$ von vorne.

QED