Implementation in MATLAB of the Partial Least Squares algorithm for classification

Case study: fault detection and diagnosis on steel plates

Lorenzo Ferrari Lorenzo Leoni

Department of Engineering and Applied Sciences, University of Bergamo

May 3, 2023

Outline

- Introduction
- Description of the PLS algorithm
- Sault detection and isolation on steel plates
- Conclusion

Introduction to the PLS technique

Partial least squares (PLS), as known as projection to latent structures, is a dimensionality reduction technique for maximizing the **covariance** between the predictor (independent) matrix $X \in \mathbb{R}^{n \times m}$ and the predicted (dependent) matrix $Y \in \mathbb{R}^{n \times p}$ for each component of the reduced space \mathbb{R}^{α} with $\alpha \leq m$, where:

- n = number of observations;
- m = number of covariates (input variables);
- p = number of dependent variables (output variables);
- $\alpha =$ dimension of the reduced space in which X is projected.

Popular application of PLS

This technique is often used in **fault detection** and **isolation**. With PLS is possible to treat both regression and classification problems. The matrix X always contains the process variables (e.g. diameter and thickness of a gasket), while the matrix Y only (quantitative) quality variables (e.g. its mechanical seal) in the regression case, whereas in pattern classification the predicted variables are dummy variables (1 or 0) such as:

$$Y = \begin{bmatrix} \mathbf{y}_1 & \mathbf{y}_2 & \mathbf{y}_3 \end{bmatrix} = \begin{bmatrix} 1 & \dots & 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & \dots & 0 & 1 & \dots & 1 & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & \dots & 0 & 1 & \dots & 1 \end{bmatrix}^{\top} p = 3$$

where each column of Y corresponds to a *fault class*. The first n_j elements of column j are filled with a 1, which indicates that the first n_j rows of X are data from fault j. In classification case PLS is named **discriminant**.

NIPALS algorithm

The most popular algorithm used in PLS to compute the model parameters is known as **non-iterative partial least squares** (**NIPALS**). There are two versions of this technique:

- PLS1: each of the p predicted variables in modeled separately, resulting in one model for each class;
- PLS2: all predicted variables are modeled simultaneously.

The first algorithm is more accurate than the other, however it requires more computational time than PLS2 to find the α eigenvectors into which project the m covariates.

MATLAB code

The following MATLAB code implements the PLS2 algorithm:

```
E = X; % residual matrix for X
F = Y; % residual matrix for Y
[^{\sim}, idx] = max(sum(Y.*Y));
% search of the j-th eigenvector
for j = 1:alpha
   u = F(:, idx);
   tOld = 0:
    for i = 1:maxTter
        w = (E'*u)/norm(E'*u); % support vector
        t = E*w; % j-th column of the score matrix for X
        q = (F'*t)/norm(F'*t); \% j-th column of the...
            % loading matrix for Y
        u = F*q; % j-th column of the score matrix for Y
                                        ◆□▶ ◆□▶ ◆■▶ ◆■ ◆○○○
```

```
if abs(t0ld - t) < exitTol</pre>
        break;
    else
        tOld = t:
    end
end
p = (E'*t)/(t'*t); \% j-th column of the...
    % loading matrix of X
% scaling
t = t*norm(p);
w = w*norm(p);
p = p/norm(p);
% calculation of b and the error matrices
b = (u'*t)/(t'*t); \% j-th column of the...
    % coefficient regression matrix
E = E - t*p';
F = F - b*t*q';
```

```
% calculation of W, P, T and B2
W(:, j) = w;
P(:, j) = p;
T(:, j) = t;
B2 = W*(P'*W)^-1*(T'*T)^-1*T'*Y;
end
Y_hat = X*B2; % computation of predictions
```

For each row of Y_{nat} the fault class is chosen by assigning 1 to the column whose value si greater than that of the others, 0 otherwise. Moreover, to increase the performances of PLS it is necessary **normalize** both X and Y before running the algorithm.

TO DO

TO DO

