Lake Expedition: Response of Anoxia in Lake Mendota to seasonally and diurnally asymmetric air temperature changes

Craig Snortheim¹, Paul C. Hanson², Trina McMahon¹, Jordan S. Read³, Luke Winslow², Cayelan C. Carey⁴, Renato Figueiredo⁵, Louise C. Bruce⁶

¹ Department of Civil and Environmental Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706

² Center for Limnology, University of Wisconsin- Madison, 680 North Park Street, Madison, WI 53706

³ Center for Integrated Data Analytics, United States Geological Survey, 8505 Research Way, Middleton, WI 53562

⁴ Department of Biological Sciences, Virginia Tech, 1405 Perry Street, Blacksburg, VA 24061

⁵ Department of Electrical and Computer Engineering, University of Florida, 968 Center Drive, Gainesville, FL 32611-6200

⁶ School of Earth & Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

Lake Stratification and Anoxia

GLM-FABM-AED

**Nighttime effects (days/deg C) are about 2x daytime effects when accounting for time of exposure

Versatility of R

Pre-processing:

- changing parameters in configuration files
- changing driver data (scenario)
- creating directories and copying simulation files

Simulation Execution:

- system call to run simulation
- parallel computing interface
- non-linear, multi-dimensional optimization functions

Post-processing:

- reading data from NetCDF file
- statistical comparison to field data
- summarizing results or calculating metrics
- visualization of modeled data

Parameter Optimization Workflow

Climate Change Scenario Workflow

Compute Times

- Serial: 36.1 seconds/run (100.3 hours)
- Parallel (6 cores):
 8.0 seconds/run (22.2 hours)
- Distributed (100 cores): ???
 - Amdahl's Law: B= 0.07 (serial fraction, solved from above values)
 - Speedup for 100 cores: S(n)=1/B+1/n (1-B)=1/0.07+1/100 (1-0.07)=12.6x
 - 2.9 seconds/run → 7.3 hours for simulations in this project

 Even further improvements possible by reducing the serial fraction and overhead (shared config or application files, etc.)

References

- Lake Stratification w/ sun:
 http://pelicanlakemn.org/Education/Lake_Learning/spring_turnover_in_our_lakes.htm
- Louisiana Fishkill (+ NG logo): <u>http://news.nationalgeographic.com/news/2010/09/100916-fish-kill-louisiana-gulf-oil-spill-dead-zone-science-environment/</u>
- Toledo Water: <u>http://www.nytimes.com/2014/08/04/us/toledo-faces-second-day-of-water-ban.html</u>
- Qingdao Algae Bloom (+ NY Times logo):
 http://www.nytimes.com/2008/07/01/world/asia/01algae.html?
 r=0
- GLM Model diagrams (2):
- http://aed.see.uwa.edu.au/research/models/GLM/
- R logo: http://www.r-project.org/
- Amdahl's Law: http://en.wikipedia.org/wiki/Amdahl%27s_law