

Cálculo Numérico II

LISTA 1

Bruno Sant'Anna 15 de fevereiro de 2024

QUESTÕES UTILIZANDO O PYTHON

5.2 Método de Euler

9. Dado o problema de valor incial

$$\begin{cases} y' = \frac{2y}{t} + t^2 e^t & t \in [1, 2] \\ y(1) = 0 \end{cases}$$

com solução exata $y(t) = t^2(e^t - e)$

a. Use o método de euler com h=0.1 para uma aproximação da solução e compare com os valores reais de y

t_i	w_i	$y(t_i)$	$ y(t_i)-w_i $
1.0	0.0000	0.0000	0.0000
1.1	0.2718	0.3459	0.0740
1.2	0.6847	0.8666	0.1818
1.3	1.2769	1.6072	0.3302
1.4	2.0935	2.6203	0.5268
1.5	3.1874	3.9676	0.7802
1.6	4.6208	5.7209	1.1001
1.7	6.4663	7.9638	1.4974
1.8	8.8091	10.7936	1.9845
1.9	11.7479	14.3230	2.5750
2.0	15.3982	18.6830	3.2848

b. Utilize as respostas geradas na parte (a) e a interpolação linear para encontrar a aproximação dos seguintes valores de *y* e compare-os com os valores reais.

i.
$$y(1.04)$$

ii.
$$y(1.55)$$

iii.
$$y(1.97)$$

Utilizando o método de Neville para interpolação linear temos que

t_i	w_i	$y(t_i)$	$ y(t_i)-w_i $
1.04	0.1087	0.1199	0.0112
1.55	3.9041	4.7886	0.8839
1.97	13.8052	17.2792	3.4740

- c. Calcule o valor de h necessário para que $|y(t_i) w_i| \le 0.1$
- 16. Em um circuito com tensão aplicada \mathcal{E} e com resistência R, indutância L e capacitância C, a corrente i satisfaz a equação diferencial

$$\frac{di}{dt} = C\frac{d^2\mathcal{E}}{dt^2} + \frac{1}{R}\frac{d\mathcal{E}}{dt} + \frac{1}{L}\mathcal{E}$$

Suponha que C=0.3F, $R=1.4\Omega$, L=1.7H e que a tensão seja dada por

$$\mathcal{E}(t) = e^{-0.06\pi t} \sin(2t - \pi)$$

se i(0) = 0 encontre a corrente i para os valores 0.1k onde k = 0, 1, ..., 100

$$\frac{\mathrm{d}\mathcal{E}}{\mathrm{d}t} = -e^{-0.06\pi t} (0.06\pi \sin(2t - \pi) + 2\cos(2t - \pi))$$

$$\frac{\mathrm{d}^2 \mathcal{E}}{\mathrm{d}t^2} = -e^{-0.06\pi t} (0.06\pi \sin(2t - \pi) - 4\sin(2t - \pi) + 2\cos(2t - \pi) + 0.12\pi \cos(2t - \pi))$$

5.3 Método de Taylor

9. Dado o problema de valor incial

$$\begin{cases} y' = \frac{2y}{t} + t^2 e^t & t \in [1, 2] \\ y(1) = 0 \end{cases}$$

com solução exata $y(t) = t^2(e^t - e)$

a. Use o método de Taylor de segunda ordem com h=0.1 para encontrar uma aproximação da solução e compare-a com os valores reais de y.

t_i w_i		$y(t_i)$	$ y(t_i)-w_i $
	VVI	<i>y(4)</i>	$ y(t_i) - w_i $
1.0	0.0000	0.0000	0.0000
1.1	0.3397	0.3459	0.0061
1.2	0.8521	0.8666	0.0144
1.3	1.5817	1.6072	0.0254
1.4	2.5809	2.6203	0.0393
1.5	3.9109	3.9676	0.0566
1.6	5.6430	5.7209	0.0778
1.7	7.8603	7.9638	0.1034
1.8	10.6595	10.7936	0.1341
1.9	14.1526	14.3230	0.1703
2.0	18.4699	18.6830	0.2131

b. Use as respostas geradas na parte (a) e a interpolação linear para encontrar aproximações de *y* nos valores a seguir e compare-as com os valores reais de *y*.

i.
$$y(1.04)$$

ii.
$$y(1.55)$$

iii.
$$y(1.97)$$

Utilizando o método de Neville para interpolação linear, temos que

t_i	w_i	$y(t_i)$	$ y(t_i) - w_i $
1.04	0.1359	0.1199	0.016
1.55	4.7770	4.7886	0.011
1.97	17.1748	17.2792	0.104

c. Use o método de Taylor de quarta ordem com h=0.1 para encontrar uma aproximação da solução e compare-a com os valores reais de y.

t_i	w_i	$y(t_i)$	$ y(t_i)-w_i $
1.0	0.0000	0.0000	0.0000
1.1	0.3462	0.3459	0.0003
1.2	0.8672	0.8666	0.0006
1.3	1.6082	1.6072	0.0010
1.4	2.6219	2.6204	0.0015
1.5	3.9697	3.9677	0.0021
1.6	5.7237	5.7210	0.0027
1.7	7.9673	7.9639	0.0034
1.8	10.7979	10.7936	0.0043
1.9	14.3282	14.3231	0.0052
2.0	18.6893	18.6831	0.0062

11. Use o método de Taylor com h=0.1 para encontrar uma aproximação da solução de

$$y' = 1 + t \sin(ty), \quad 0 \le t \le 2, \quad y(0) = 0$$

Para utlizar o método de Taylor de segunda ordem precisamos calcular y'', partindo de $y' = 1 + t \sin(ty)$ temos

$$y'' = \sin(ty) + t\cos(ty)y'$$
$$= \sin(ty) + (1 + t\sin(ty))t\cos(ty)$$

t_i	w_i	t _i	w_i
0.0	0.0000		
0.1	0.1000	1.1	1.4539
0.2	0.2002	1.2	1.6683
0.3	0.3016	1.3	1.8714
0.4	0.4057	1.4	2.0382
0.5	0.5146	1.5	2.1525
0.6	0.6312	1.6	2.2132
0.7	0.7590	1.7	2.2283
0.8	0.9022	1.8	2.2080
0.9	1.0647	1.9	2.1614
1.0	1.2493	2.0	2.0951

12. Um projétil de massa m=0.11kg jogado verticalmente para cima com velocidade inicial v(0)=8m/s tem sua velocidade diminuida pela força da gravidade, $F_g=-mg$, e pela resistência do ar, $F_r=-kv|v|$, em que g=9.8m/s 2 e k=0.002kg/m. A equação diferencial para velocidade v é dada por

$$mv' = -mg - kv|v|. (5.1)$$

a. Encontre a velocidade após 0.1, 0.2,...,1.0 s.

t_i	w_i	t _i	w_i
0.1	6.8876	0.6	1.7154
0.2	5.8080	0.7	0.7270
0.3	4.7557	0.8	-0.2552
0.4	3.7257	0.9	-1.2355
0.5	2.7137	1.0	-2.2149

b. Com precisão de um décimo de segundo determine quando o projétil alcança sua altura máxima e começa a cair

A altura máxima é atingida quando v = 0, pelos pontos calculados com o método de Taylor de segunda ordem, é possível ver que a altura máxima acontece entre 0.7 e 0.8s. Usando a reta de ajuste -10.1160t + 7.8673, temos que a altura máxima é atingida em 0.77s

5.4 Método de Runge-Kutta

3. Use o método de Euler modificado pr encontrar aproximações das soluções de cada um dos seguintes problemas de valor inicial e compare os resultados com os valores reais

a.
$$y' = \frac{y}{t} - \left(\frac{y}{t}\right)^2$$
, $1 \le t \le 2$, $y(1) = 1$ com $h = 0.1$; solução real $y(t) = \frac{t}{1 + \ln t}$

	((() '	, , ,	
t _i	w_i	$y(t_i)$	$ y(t_i)-w_i $
1.0	1.0000	1.0000	0.0000
1.1	1.0041	1.0043	0.0001
1.2	1.0147	1.0150	0.0002
1.3	1.0295	1.0298	0.0003
1.4	1.0472	1.0475	0.0003
1.5	1.0669	1.0673	0.0004
1.6	1.0881	1.0884	0.0004
1.7	1.1103	1.1107	0.0004
1.8	1.1333	1.1337	0.0004
1.9	1.1568	1.1572	0.0004
2.0	1.1808	1.1812	0.0004

b.
$$y' = 1 + \frac{y}{t} + (\frac{y}{t})^2$$
, $1 \le t \le 2$, $y(1) = 0$ com $h = 0.2$; solução real $y(t) = t \tan(\ln t)$

t_i	w_i	$y(t_i)$	$ y(t_i)-w_i $
1.0	0.0000	0.0000	0.0000
1.2	0.2194	0.2212	0.0018
1.4	0.4850	0.4897	0.0046
1.6	0.8040	0.8128	0.0087
1.8	1.1849	1.1994	0.0146
2.0	1.6384	1.6613	0.0229
2.2	2.1789	2.2135	0.0346
2.4	2.8251	2.8766	0.0515
2.6	3.6025	3.6785	0.0760
2.8	4.5466	4.6587	0.1121
3.0	5.7076	5.8741	0.1665

7. Repita o exercício 3 usando o método do ponto médio

a.
$$\underline{y' = \frac{y}{t} - \left(\frac{y}{t}\right)^2}$$
, $1 \le t \le 2$, $y(1) = 1$ com $h = 0.1$; solução real $y(t) = \frac{t}{1 + \ln t}$

ti	w_i	$y(t_i)$	$ y(t_i)-w_i $
1.0	1.0000	1.0000	0.0000
1.1	1.0045	1.0043	0.0003
1.2	1.0153	1.0150	0.0004
1.3	1.0302	1.0298	0.0004
1.4	1.0480	1.0475	0.0005
1.5	1.0677	1.0673	0.0005
1.6	1.0889	1.0884	0.0005
1.7	1.1111	1.1107	0.0005
1.8	1.1341	1.1337	0.0005
1.9	1.1577	1.1572	0.0005
2.0	1.1817	1.1812	0.0005

b.
$$y' = 1 + \frac{y}{t} + \left(\frac{y}{t}\right)^2$$
, $1 \le t \le 2$, $y(1) = 0$ com $h = 0.2$; solução real $y(t) = t \tan(\ln t)$

t _i	w_i	$y(t_i)$	$ y(t_i)-w_i $	
1.0	0.0000	0.0000	0.0000	
1.2	0.2198	0.2212	0.0014	
1.4	0.4862	0.4897	0.0035	
1.6	0.8062	0.8128	0.0066	
1.8	1.1884	1.1994	0.0110	
2.0	1.6439	1.6613	0.0174	
2.2	2.1869	2.2135	0.0266	
2.4	2.8364	2.8766	0.0401	
2.6	3.6185	3.6785	0.0600	
2.8	4.5689	4.6587	0.0898	
3.0	5.7386	5.8741	0.1355	

28. A água escoa de um tanque cônico invertido com orifício circular a uma taxa de

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -0.6\pi r^2 \sqrt{2g} \frac{\sqrt{x}}{A(x)}$$

em que r é o raio do orifício x é altura do nível de líquido a partir do vértice do cone e A(x) é a área da seção transversal do tanque x unidades acima do orifício. Suponha que r=0.1 ft, g=32.1 ft/s 2 e que o tanque tenha um nível inicial de água de 8 ft e volume inicial de $512\frac{\pi}{3}$ ft 3 . Utilize o método de Runge-Kutta de quarta ordem par encontrar o seguinte

a. Cálcule o nível de água após 10 min com h = 20 s.

t_i (s)	w_i	t_i (s)	w_i
0	8.0000		
20	7.8142	320	4.9220
40	7.6277	340	4.7202
60	7.4405	360	4.5170
80	7.2524	380	4.3123
100	7.0636	400	4.1059
120	6.8739	420	3.8978
140	6.6833	440	3.6878
160	6.4918	460	3.4758
180	6.2993	480	3.2616
200	6.1059	500	3.0450
220	5.9114	520	2.8259
240	5.7159	540	2.6038
260	5.5193	560	2.3785
280	5.3214	580	2.1496
300	5.1223	600	1.9166

Após 10 min o nível da água é de 1.9166 ft que equivale a um volume de 128.4479 ft³

b. Determine, com precisão de 1 min quando o tanque ficará vazio. Pela reta de ajuste -0.0101x + 8.0902, o tanque ficará vazio em t = 802 s ou aproximadamente 13 min.

5.9 EDOs de ordem superior e sistemas

1. Use o método de Runge-Kutta para sistemas para encontrar aproximações das soluções dos seguintes sistemas de equações diferenciais de primeira ordem e compare os resultados com as soluções reais

a.
$$\begin{cases} u_1' = 3u_1 + 2u_2 - (2t^2 + 1)e^{2t} & u_1(0) = 1 \\ u_2' = 4u_1 + u_2 + (t^2 + 2t - 4)e^{2t} & u_2(0) = 1 \end{cases} \quad 0 \le t \le 1 \text{ e } h = 0.2$$

t_i	w_i^1	$u_1(t_i)$	$ u_1(t_i) - w_i^1 $		
0.0	1.0000	1.0000	0.0000		
0.2	2.1204	2.1250	0.0046		
0.4	4.4412	4.4651	0.0239		
0.6	9.7391	9.8324	0.0932		
8.0	22.6766	23.0026	0.3261		
1.0	55.6612	56.7375	1.0763		

t _i	w_2^i	$u_2(t_i)$	$ u_2(t_i)-w_2^i $
0.0	1.0000	1.0000	0.0000
0.2	1.5070	1.5116	0.0046
0.4	3.2422	3.2660	0.0237
0.6	8.1634	8.2563	0.0929
0.8	21.3435	21.6689	0.3253
1.0	56.0305	57.1054	1.0749

b.
$$\begin{cases} u_1' = -4u_1 - 2u_2 + \cos t + 4\sin t & u_1(0) = 0 \\ u_2' = 3u_1 + u_2 - 3\sin t & u_2(0) = -1 \end{cases} \quad 0 \le t \le 1 \text{ e } h = 0.1$$

t_i	w_i^1	$u_1(t_i)$	$ u_1(t_i)-w_i^1 $	t_i	w_2^i	$u_2(t_i)$	$ u_2(t_i)-w_2^i $
0.0	0.00000	0.00000	0.00000	0.0	-1.00000	-1.00000	0.00000
0.1	0.27204	0.27205	0.00001	0.1	-1.07705	-1.07705	0.00001
0.2	0.49548	0.49549	0.00001	0.2	-1.11554	-1.11555	0.00001
0.3	0.67952	0.67953	0.00001	0.3	-1.12482	-1.12483	0.00001
0.4	0.83139	0.83140	0.00001	0.4	-1.11229	-1.11230	0.00001
0.5	0.95671	0.95673	0.00001	0.5	-1.08382	-1.08383	0.00001
0.6	1.05986	1.05988	0.00001	0.6	-1.04403	-1.04405	0.00001
0.7	1.14418	1.14419	0.00001	0.7	-0.99655	-0.99656	0.00001
0.8	1.21221	1.21222	0.00002	0.8	-0.94418	-0.94419	0.00001
0.9	1.26585	1.26587	0.00001	0.9	-0.88910	-0.88911	0.00001
1.0	1.30654	1.30656	0.00001	1.0	-0.83295	-0.83297	0.00001
1.1	1.33533	1.33534	0.00001	1.1	-0.77699	-0.77701	0.00001
1.2	1.35298	1.35299	0.00001	1.2	-0.72213	-0.72215	0.00001
1.3	1.36006	1.36007	0.00001	1.3	-0.66903	-0.66905	0.00001
1.4	1.35701	1.35702	0.00001	1.4	-0.61816	-0.61817	0.00001
1.5	1.34417	1.34418	0.00001	1.5	-0.56980	-0.56982	0.00001
1.6	1.32183	1.32184	0.00001	1.6	-0.52415	-0.52417	0.00001
1.7	1.29027	1.29029	0.00001	1.7	-0.48129	-0.48130	0.00001
1.8	1.24978	1.24980	0.00001	1.8	-0.44124	-0.44125	0.00001
1.9	1.20068	1.20070	0.00001	1.9	-0.40395	-0.40396	0.00001
2.0	1.14332	1.14334	0.00001	2.0	-0.36936	-0.36937	0.00001

d.
$$\begin{cases} u_1' = u_2 - u_3 + t & u_1(0) = 1 \\ u_2' = 3t^2 & u_2(0) = 1 & 0 \le t \le 1 \text{ e } h = 0.1 \\ u_3' = u_2 + e^{-t} & u_2(0) = -1 \end{cases}$$

t_i	w_1^i	$u_1(t_i)$	$ u_1(t_i)-w_1^i $	1	t_i	w_2^i	$u_2(t_i)$	$\frac{1}{ u_2(t_i)-w_2^i }$
			<u>+</u>					
0.0	1.00000	1.00000	0.00000		0.0	1.00000	1.00000	0.00000
0.1	1.00100	1.00100	0.00000		0.1	1.19519	1.19519	0.00000
0.2	1.00800	1.00800	0.00000		0.2	1.38165	1.38165	0.00000
0.3	1.02700	1.02700	0.00000		0.3	1.56108	1.56109	0.00000
0.4	1.06400	1.06400	0.00000		0.4	1.73557	1.73557	0.00000
0.5	1.12500	1.12500	0.00000		0.5	1.90753	1.90753	0.00000
0.6	1.21600	1.21600	0.00000		0.6	2.07970	2.07970	0.00000
0.7	1.34300	1.34300	0.00000		0.7	2.25504	2.25504	0.00000
0.8	1.51200	1.51200	0.00000		8.0	2.43669	2.43669	0.00000
0.9	1.72900	1.72900	0.00000		0.9	2.62793	2.62793	0.00000
1.0	2.00000	2.00000	0.00000		1.0	2.83212	2.83212	0.00000

t_i	w_3^i	$u_3(t_i)$	$ u_3(t_i)-w_3^i $
0.0	-1.00000	-1.00000	0.00000
0.1	-0.80481	-0.80481	0.00000
0.2	-0.61833	-0.61833	0.00000
0.3	-0.43879	-0.43879	0.00000
0.4	-0.26392	-0.26392	0.00000
0.5	-0.09091	-0.09091	0.00000
0.6	0.08359	0.08359	0.00000
0.7	0.26344	0.26344	0.00000
0.8	0.45307	0.45307	0.00000
0.9	0.65746	0.65746	0.00000
1.0	0.88212	0.88212	0.00000

- 3. Use o algoritmo de Runge-Kutta para sistemas para encontrar aproximações das seguintes equações diferenciais e compare com os resultados das soluções reais
 - (a) $y'' 2y' + y = te^t t$, $0 \le t \le 1$, y(0) = y'(0) = 0 com h = 0.1 solução exata: $y(t) = \frac{1}{6}t^3e^t te^t + 2e^t 2$.

Transformando em um sistema, temos

$$\begin{cases} x' = 2x - y - te^{t} - t & x(0) = 0 \\ y' = x & y(0) = 0 \end{cases}$$

t_i	w_i	$w_i y(t_i)$	
0.0	0.00000	0.00000	0.00000
0.1	0.00001	0.00001	0.00000
0.2	0.00015	0.00015	0.00000
0.3	0.00083	0.00083	0.00000
0.4	0.00283	0.00283	0.00000
0.5	0.00743	0.00743	0.00000
0.6	0.01656	0.01656	0.00000
0.7	0.03300	0.03300	0.00000
0.8	0.06056	0.06056	0.00000
0.9	0.10440	0.10441	0.00000
1.0	0.17132	0.17133	0.00001

A.1 Algoritmos para EDOs

```
def part(N, tmin, tmax):
    h = (tmax - tmin)/N
    t = np.zeros(N+1)
    for i in range(len(t)):
        t[i] = tmin + i*h
    return t
def metodo_de_euler(g, N, y, tmin, tmax):
    def f(t,x):
        f = eval(gx)
        return f
    h = (tmax - tmin)/N
    t = part(N, tmin, tmax)
    w = np.zeros(N+1)
    w[0] = y
    for i in range(1,len(w)):
        w[i] = w[i-1] + h*f(t[i-1], w[i-1]) # w_i = w_{i-1} + hf(t_{i-1}, w_{i-1})
    return w,t
```

```
def metodo_de_taylor_ordem_2(N,y, tmin, tmax):
    h = (tmax - tmin)/N
    t = part(N, tmin, tmax)
    w = np.zeros(N+1)
    w[0] = y
    for i in range(1,len(w)):
        w[i] = w[i-1] + h*(f(t[i-1], w[i-1])) + 0.5*(h**2)*df(t[i-1], w[i-1])
    return w,t
def metodo_de_runge_kutta(N, y, tmin, tmax):
    h = (tmax - tmin)/N
    t = part(N, tmin, tmax)
    w = np.zeros(N+1)
    w[0] = y
    for i in range(1, len(w)):
        K1 = h*f(t[i-1], w[i-1])
        K2 = h*f(t[i-1] + 0.5*h, w[i-1] + 0.5*K1)
        K3 = h*f(t[i-1] + 0.5*h, w[i-1] + 0.5*K2)
        K4 = h*f(t[i], w[i-1] + K3)
        w[i] = w[i-1] + (K1 + 2*K2 + 2*K3 + K4)*(1/6)
    return w, t
def metodo_de_euler_modificado(N,y, tmin, tmax):
    w[0] = y
    for i in range(1,len(w)):
        w[i] = w[i-1] + 0.5*h*(f(t[i-1],w[i-1]) + f(t[i],w[i-1] + h*f(t[i-1],w[i-1])))
    return w,t
def metodo_do_ponto_medio(N,y, tmin, tmax):
    w[0] = y
    for i in range(1,len(w)):
        w[i] = w[i-1] + h*f(t[i-1] + 0.5*h, w[i-1] + 0.5*h*f(t[i-1],w[i-1]))
    return w,t
def metodo_de_runge_kutta(N, y, tmin, tmax): # para sistemas de duas EDOs
    h = (tmax - tmin)/N
    t = part(N, tmin, tmax)
    w = np.zeros((N+1,2))
    w[0,:] = y
```

```
for i in range(1, len(w)):
    K1 = h*f(t[i-1], w[i-1,0], w[i-1,1])
    K2 = h*f(t[i-1] + 0.5*h, w[i-1,0] + 0.5*K1[0], w[i-1,1] + 0.5*K1[1])
    K3 = h*f(t[i-1] + 0.5*h, w[i-1,0] + 0.5*K2[0], w[i-1,1] + 0.5*K2[1])
    K4 = h*f(t[i], w[i-1,0] + K3[0], w[i-1,1] + K3[1])

w[i] = w[i-1] + (K1 + 2*K2 + 2*K3 + K4)*(1/6)

return w, t
```

A.2 Algoritmos para interpolação