

Report on Event 4 of Lab Component

CMOS VLSI Circuits (EC630)

Covering the course objective

CO 4: Design, Demonstrate and validate the analog and digital CMOS circuits using Cadence tool / Electric tool, document and give an effective presentation.

Title: Part – B Analog Circuits

Name: Mohamed Farhan Fazal

Roll No: 27

USN: 01JST18EC055

Division: A

Submitted to

Prof. Halesh M. R Assistant Professor, Dept. of ECE

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING 2021

TABLE OF CONTENT

TABLE OF CONTENT	2
COMMON SOURCE AMPLIFIER	4
SCHEMATIC	4
SCHEMATIC RESULT ANALYSIS	4
DC ANALYSIS	4
TRANSIENT ANALYSIS	5
AC ANALYSIS	5
LAYOUT	6
LAYOUT RESULT ANALYSIS	6
DC ANALYSIS	6
TRANSIENT ANALYSIS	7
AC ANALYSIS	7
INFERENCE	7
COMMON DRAIN AMPLIFIER	9
SCHEMATIC	9
SCHEMATIC RESULT ANALYSIS	9
DC ANALYSIS	9
TRANSIENT ANALYSIS	10
AC ANALYSIS	10
LAYOUT	11
LAYOUT RESULT ANALYSIS	11
DC ANALYSIS	11
TRANSIENT ANALYSIS	12
AC ANALYSIS	12
INFERENCE	12
COMMON GATE AMPLIFIER	14
SCHEMATIC	14
SCHEMATIC RESULT ANALYSIS	15
DC ANALYSIS	15
TRANSIENT ANALYSIS	15

AC ANALYSIS	16
LAYOUT	16
LAYOUT RESULT ANALYSIS	17
DC ANALYSIS	17
TRANSIENT ANALYSIS	17
AC ANALYSIS	17
INFERENCE	18
DIFFERENTIAL AMPLIFIER	19
SCHEMATIC	19
SCHEMATIC RESULT ANALYSIS	20
TRANSIENT ANALYSIS	20
AC ANALYSIS	20
INFERENCE	20
TEST QUESTION	21
QUESTION	21
SCHEMATIC	21
SCHEMATIC RESULT ANALYSIS	22
TRANSIENT ANALYSIS	22
AC ANALYSIS	22
INFERENCE	23

^{**}All design calculations at the end

COMMON SOURCE AMPLIFIER

SCHEMATIC

SCHEMATIC RESULT ANALYSIS

DC ANALYSIS

TRANSIENT ANALYSIS

AC ANALYSIS

LAYOUT

LAYOUT RESULT ANALYSIS

DC ANALYSIS

TRANSIENT ANALYSIS

AC ANALYSIS

INFERENCE

Designed Gain	12
Designed Gain in db	21.589
Number of transistors	2
$(W/L)_1$	5/36

$(W/L)_2$	20/2
-----------	------

Parameter	Schematic	Layout
DC Switching Point	0.82V	0.82V
Gain from transient analysis	12	12.2
Gain from AC analysis	25.56db	24.4db
Bandwidth	34MHz	34.5MHz

COMMON DRAIN AMPLIFIER

SCHEMATIC

SCHEMATIC RESULT ANALYSIS

DC ANALYSIS

TRANSIENT ANALYSIS

AC ANALYSIS

LAYOUT

LAYOUT RESULT ANALYSIS

DC ANALYSIS

TRANSIENT ANALYSIS

AC ANALYSIS

INFERENCE

Designed Drain Current	0.35 mA
Obtained Gain	0.84
Number of transistors	2

$(W/L)_1$	6:6
$(W/L)_2$	2/1

Parameter	Schematic	Layout
DC Switching Point	.8v	.8v
Gain from transient analysis	1	0.9
Gain from AC analysis	-1.5db	-1.5db
Bandwidth	4.78Ghz	4.78Ghz

COMMON GATE AMPLIFIER

SCHEMATIC

SCHEMATIC RESULT ANALYSIS

DC ANALYSIS

TRANSIENT ANALYSIS

AC ANALYSIS

LAYOUT

LAYOUT RESULT ANALYSIS

DC ANALYSIS

TRANSIENT ANALYSIS

AC ANALYSIS

INFERENCE

Designed Gain	13
Designed Gain in db	22.27db
Number of transistors	2
$(W/L)_1$	11/1
$(W/L)_2$	5/25

Parameter	Schematic	Layout
DC Switching Point	1.42	1.41
Gain from transient analysis	12.97	11.55
Gain from AC analysis	22.25 db	21.25 db
Bandwidth	160 MHz	16.4 MHz

DIFFERENTIAL AMPLIFIER

SCHEMATIC

SCHEMATIC RESULT ANALYSIS

TRANSIENT ANALYSIS

AC ANALYSIS

INFERENCE

Designed Gain	100
Designed Gain in db	40 db
Number of transistors	6
$\left(W/L\right)_1 = \left(W/L\right)_2$	17/1
$\left(W/L\right)_3 = \left(W/L\right)_4$	6/2
$(W/L)_5 = (W/L)_8$	4/2

TEST QUESTION

QUESTION

Design an Operational Amplifier for a gain of 35db and simulate the same using electric tool.

Given gain: 35db

SCHEMATIC

SCHEMATIC RESULT ANALYSIS

TRANSIENT ANALYSIS

AC ANALYSIS

INFERENCE

Designed Gain	56.23
Designed Gain in db	35 db
Number of transistors	6
$(W/L)_1 = (W/L)_2$	11.1 ~ 12
$(W/L)_3 = (W/L)_4$	1.57 ~ 2
$(W/L)_5 = (W/L)_8$	2.43 ~ 3
Obtained Gain	58.12
Obtained Gain in db	35.28

For a gain
$$B = \frac{1}{2}$$

Taking $(\omega | L)_1 = \frac{1}{2}$
 $(\omega | L)_2 = \frac{1}{2}$

Taking $(\omega | L)_1 = \frac{1}{2}$
 $(\omega | L)_2 = \frac{1}{2}$
 $(\omega | L)_2 = \frac{1}{2}$
 $(\omega | L)_2 = \frac{1}{2}$

Mun width

 $(\omega | L)_1 = \frac{6}{2}$
 $(\omega | L)_2 = \frac{36}{2}$
 $(\omega | L)_2 = \frac{36}{2}$

Common Duair Umplifies:

Just
$$z \rightarrow uuy high.$$

Old $z \rightarrow low$

$$\left(\frac{\omega}{L}\right)_{1} = 1 = \frac{6}{6}$$

$$\cos = \frac{8 \cdot 8 \cdot 8 \cdot 8 \cdot 4 \times 10^{12}}{1.39 \times 10^{8}}$$

$$\cos = \frac{3.9 \times 8 \cdot 8 \cdot 4 \times 10^{12}}{1.39 \times 10^{8}}$$

$$l_{0x} = 2.484 \times 10^{-3}$$
 $l_{n} = 458.43 = 0.045843$ $l_{n} = 458.43 = 0.045843$ $l_{n} = 458.43 = 0.045843$

$$I_{b,i} = \frac{1}{2} \quad \text{Uln (on } \left(\frac{\omega}{L} \right), \quad \left(V_{bb} - V_{but} - V_{fn} \right)^{2}.$$

$$V_{bb} - V_{out} = V_{bb} - V_{fn} - \frac{2}{2} \frac{I_{bi}}{I_{bi}}$$

$$V_{out} = V_{bb} - V_{fn} - \frac{2}{2} \frac{I_{bi}}{I_{bi}}$$

$$V_{but} = \frac{1.3366}{2} V.$$

$$V_{bs_{2}} = V_{b} - V_{fh} = \frac$$

For a deain level of Fos = 0.35m A.

$$V_{th} = 0.3 \text{ V}$$
.

 $V_{th} = 0.3 \text{ V}$.

 $V_{th} = 0.045843 \text{ mm}^2$.

 $V_{th} =$

Common Gale Amplifier.

- · Sow with Imbedance
- · High of p " -

Clo = - gm(Vain).

Rs

Vgs = - Vii

Rs

Cloin = gm Rs. No change in phase.

Vab.

$$AV = GMI$$
 $AV = GMI$
 $AV = GMI$

$$\frac{2^{m_2}}{2^{m_2}} \left(\frac{2(\omega | L)_1}{(\omega | L)_2} \right)$$

$$\begin{pmatrix} \omega \\ L \end{pmatrix}, \quad = 1$$

$$\begin{pmatrix} \omega \\ L \end{pmatrix}_{2}$$

$$\begin{pmatrix} \omega \\ L \end{pmatrix}_{2}$$

Differential Amflifies.

lon = 2.484 × 10 F

GBP= 5 CL=10AF ICMR+=4V. Slew Rate = 5v/uls.

qu=cv dr,c=day

Jo = Cix Solw Rate

= 10×10 × 5×10 = 50×10 A=80WA.

$$= \frac{2 \times 2 \times \times 10}{\text{Ulp lox} (5-3.3-0.9214)^2} = 1.86 = \frac{1.86}{1} =$$

$$6 \times 2 \times 7 \times 10^{6}$$

$$Q_{M1} = \frac{Q_{M1}}{2 \times C_L} = \frac{31 \text{ acd}}{31 \text{ acd}}$$

$$Q_{M1} = \sqrt{2 \times 10^6 \times 2 \times 1 \times 10^{-12}} = \frac{31 \text{ acd}}{17.35^{\circ}}$$

$$Q_{M1} = \sqrt{2 \times 10^6 \times 2 \times 1 \times 10^{-12}} = \frac{31 \text{ acd}}{17.35^{\circ}}$$

$$(\omega)_{1} = \frac{(9m_{1})^{2}}{2 \text{ Tolly for}} = 17.35 : \frac{18}{1}$$

Finding M5& Me.

Vint > Nas, + Mass.

Vuina = ICMR-

& Ngs, Can be oblained from

In= Uln lon (w), (Vgs, - Vdn)

Ngs, = (= Is (w/L), 1/2. Uln lon (w/L), 1/2.

Vog. = [2x25x10] + 0.7 = 0.86x.

Now, 1.5 > Yosi+ Yoss.

Nd85 2 1.5- Vgs. = 1.5-0.85.

Vd85 = 0.64 V.

To = Un lon (w) s (Vas - Va)2.

(W) = 2 To Uln Con (Vdss) = 2.14=3.

Green Dacametes:

Av=35dB. Solicling GBP & 4 MHz.

MP = 0.021201661 mm2 Un= 0.045843mm2.

 $lon = 2.484 \times 10^{-3} f$

Solveling Parametes: Nos=5. C1=10PF ICMP+= aV.

Votn=0.74. Vdp=0.0214 V. Slow Rate = 54/Uls

Funding I

To = CLX Solew Rate

= $10\times10^{-12}\times5\times10^6 = 50\times10^{-6} = 50$

2 Funding Vx at M.

Vds > Vgs - Vt Vd = Vx

ICMR+ = Vg = 4.

Vx > Vg - Vt

Vx > Vg - Vt

Vx = 4 - 0.7 = 3.3V.

Find M3 - M4 - Ratios

Fund M3- M4 Ratios

Vols3 = Vold- Vx = 5 - 3.3 = 1.74.

I3 = Ulabox (W) (Vge - Vola)

(W) = (W) + 2 - 2 - 3 - 2 - Vola)

(W) = (W) + 2 - Vola)

(W) = (W) - 1.57 \ W 2.

 $\left(\frac{\omega}{L}\right)_{1} = \left(\frac{\omega}{L}\right)_{2} = \frac{\left(\alpha_{m1}\right)^{2}}{2! \text{ Folln Con}} = 11.1 \approx \left[12.\right]$

Funding Ms & Me Ralies

Vain + > Vgs, + Vbs6 Vuin + = ICMR
Vgs, can be found form

Ib = Uln lox (W), (Vgs, - Vdn)

Vgs, = (2 It Ulnlon (W)), + Vdn.

= (2 x25 x10), 1/2 + 0.7 = 0.89.

Uln (ox (12)) + 0.7 = 0.89.

Vds5 < 1.5 - 0.89 = 0.61.

Vdes 2 1.5-0.89 = 0.61V.

To = Uln lon (w), (Vgs-Vd).

 $\left(\frac{\omega}{1}\right)_{5} = \frac{2}{\text{clln for (Vdss)}}^{2} = 2.43 \approx 3.$