Lecture 1: Introduction to Microcomputer & Embedded Systems

Prof. Xiangzhong FANG xzfang@sjtu.edu.cn

What is a computer?

Von Neumann Architecture

1. Five components partitioning

2. Three key concepts:

- Both instructions and data are stored in a single read-write memory
- •The contents of memory are **addressable** by location, without regard to the type of data
- •Execution occurs in a **sequential** fashion

Harvard architecture

Stored Program Concept

Microprocessor

Microprocessors

- the CPU circuitry can been reduced to IC (Integrated Circuit)
 scale, consisting of ALU, CU and registers
- contains no RAM, ROM, or I/O ports on the chip itself
- e.g., Intel's x86 family (8088, 8086, 80386, 80386, 80486,
 Pentium); Motorola's 680x0 family (68000, 68010, 68020, etc)

Change in Microprocessors

Microcomputer

- CPU: processes information stored in the memory
 - Microprocessor
- Memory: stores both instructions and data
 - ROM, RAM
- Input/Output ports: provide a means of communicating with the CPU
 - Connecting I/O devices, e.g., keyboard, monitor, tape, disk, printer and etc.
- BUS: interconnecting all parts together
 - Address bus
 - Data bus
 - Control bus

Microcomputer Structure

Microcomputer System

- Microcomputer
- Peripheral I/O devices
- Software
 - System software
 - e.g., OS, compilers, drivers
 - Application software
 - e.g. Word, QQ, Media player, ...

Microcomputer System Structure

Microcomputer System Structure

Hardware: CPU (1) - ALU

- Arithmetic Logic Unit (ALU)
 - Arithmetic functions: add, subtract, multiply and divide
 - Logic functions: AND, OR, and NOT
- ALU is a multifunctional calculator
 - What specific calculation depends on the particular control signal
- Two inputs
- Calculation result can be temporarily stored in one of the registers

Hardware: CPU (2) - CU

- Control Unit works under instructions
- An instruction is a pre-defined code which defines a specific operation, processing and exchanging information among CPU, memory and I/O devices.
- CU contains an instructor decoder
 - decodes an instruction and generates all control signals, coordinating all activities within the computer
- CU contains a program counter
 - points to the address of the next instruction to be executed

Hardware: CPU (3) – Instruction Set

- The instruction set
 - All recognizable instructions by the instruction decoder
- CISC (Complex Instruction Set Computers)
 - Variable instruction length (1 word- n words)
 - Variable execution time of different format instruction
 - More instruction formats
 - Upwardly compatible (new instruction set contains earlier generation's instructions)
 - e.g., 80x86 family has more than 3000 instructions
- RISC (Reduced Instruction Set Computers)
 - Fixed size of RISC instruction (1 word)
 - Fixed time for all instructions
 - Easy to pipeline the RISC instructions (fast)
 - Fewer formats (simple hardware, shorter design cycle)
 - e.g., PowerPC, MIPS, ARM, PIC's MCU

Hardware: Memory

- Memory hierarchy
 - Cache
 - Primary memory: ROM, RAM
 - Secondary memory: magnetic disk, optical memory, tape, ...

Hardware: Memory

- Bit (b): a binary digit that can have the value 0 or 1
- Byte (B): consists of 8 bits
 - smallest unit that can be addressed in microcomputers

- Nibble: is half a byte (4bits)
- Word: the number of bits that a CPU can process at one time
 - depends on the width of the CPU's registers and that of the data bus
 - e.g., if the width of the data bus is 16 bits, then a word is 16 bits; if the width of the data bus is 32 bits, then a word is 32 bits
- Double word
- Kilo, Mega, Giga, Tera, ...

Memory Module Organization

• 8-bit

- To organize a memory module:
- If the module needs bigger unit of transfer than that of given memory chips, bit extension
- ◆ If the module needs larger number of words than that of given memory chips, word extension

• 16-bit

• 32-bit

Hardware: Bus

- A bus is a communication pathway connecting two or more devices
 - A shared transmission medium: one device at a time
 - System bus: connects major computer components (processor, memory, I/O)
 - Devices connected into a bus:
 - Sending/receiving
 - Master/Slave
 - Master activates a bus
 - Slave passively waits for command

Hardware: Bus

Type

Dedicated (e.g., physical dedication)/Multiplexed (e.g., time multiplexing)

Arbitration

- Centralized: bus controller responsible for allocating time on a bus
- Distributed: each module has access control logic and collaborate

Timing

- Synchronous: events on the bus is determined by a clock, a single 1-0 transmission is referred to as a bus cycle
- Asynchronous: master and slave devices communicates before and after an event, e.g., master/slave sync

Single-bus Structure

A bus connects all modules

- pro: simple
- con: poor performance in terms of throughput

CPU-Central Dual-Bus Structure

- A dedicated bus between CPU and memory, and a dedicated bus between CPU and I/O devices
- pro: efficient in terms of data transfer
- con: information between memory and I/O devices has to go through CPU. Therefore, poor CPU performance

Memory-Central Dual-Bus Structure

Hardware: BUS (1) – Data Bus

- Used to provide a path for moving data between system modules
- Bidirectional
 - CPU read: Memory (I/O device) -> CPU
 - CPU write: CPU -> Memory (I/O device)
- The width of data bus
 - is as wide as the registers of a CPU (i.e. the width of a word)
 - determines how much data the processor can read or write in one memory or I/O cycle

Hardware: BUS (2) - Address Bus

- Used to designate the source or destination of the data on the data bus that the processor intends to communicate with
- Unidirectional
 - CPU -> memory I/O device
- The width of the address bus, n
 - determines the total number of memory locations addressable by a given CPU, which is 2ⁿ
 - e.g., 8086 has a 20-bit address bus which corresponds to 2^20 addresses or 1M (1 Meg) addresses or memory locations;
 - Pentium has 32-bit address bus, what is the size of its addressable memory?

Hardware: BUS (3) - Control Bus

- Used to control the access to and the use of data and address buses
 - Command and timing information between modules
 - e.g., memory read/write, IO read/write, Bus request/grant
- Consists of two sets of unidirectional control signals
 - Command signal: CPU -> Memory (I/O device)
 - State signal: Memory (I/O device) -> CPU
- Input/Output is defined from the processor's point of view
 - e.g., when Memory (I/O device) Read is active, data is input to the processor

Hardware: I/O Modules

Addressing scheme to accessing memory and I/O modules

- Memory-mapped I/O
 - One single address space for both memory and I/O
 - Status and data registers of I/O modules are treated as memory locations
 - Using the same machine instructions to access both

Isolated I/O

- Two separate address spaces for memory and I/O modules
- Using different sets of accessing instructions

Memory-mapped I/O

Isolated I/O

Dedicated address lines

Multiplexing address lines

Microcontrollers (MCS)

A microcontroller has a CPU in addition to a fixed amount of RAM, ROM, I/O ports on one single chip; this makes them ideal for applications in which cost and space are critical

 Example: a TV remote control does not need the computing power of a 486

Microcontroller

CPU	RAM	ROM
I/O	TIMER	Serial Com Port

Embedded Systems

- An embedded system uses a microcontroller or a microprocessor to do one task and one task only
 - Example: toys, TV remote, keyless entry, etc.
- Using microcontrollers is cheap but sometimes inadequate for the task
- Microcontrollers differ in terms of their RAM,ROM, I/O sizes and type.
 - ROM (often used as program memory, like BIOS)
 - OTP (One Time-Programmable)
 - UV-ROM, EEPROM
 - Flash memory
 - RAM (can be used as both program mem and data mem)
 - SRAM(static RAM):cache
 - DRAM(Dynamic RAM): main memory
 - SDRAM (Synchrous DRAM)
 - DDR DRAM (Double Data Rate DRAM)
 - DDRII