

One-shot Learning Application

黄江雷

Qi Cai [†], Yingwei Pan [†], Ting Yao [‡], Chenggang Yan [§], and Tao Mei [‡]

[†] University of Science and Technology of China, Hefei, China

[‡] Microsoft Research, Beijing, China

[§] Hangzhou Dianzi University, Hangzhou, China

{cqcaiqi, panyw.ustc}@gmail.com, {tiyao, tmei}@microsoft.com, cgyan@hdu.edu.cn

Table 1. Mean accuracy (%) \pm CIs (%) of our MM-Net and other state-of-the-art methods on Omniglot dataset.

Model	5-way Accuracy		20-way Accuracy		
Model	1-shot	5-shot	1-shot	5-shot	
SN 16	97.3	98.4	88.2	97.0	
MN [31]	98.1	98.9	93.8	98.5	
MANN 27	82.8	94.9	_		
SM [14]	98.4	99.6	95.0	98.6	
Meta-N 21	98.95	_	97.00	_	
MAML 9	98.7 ± 0.4	$\textbf{99.9} \pm \textbf{0.1}$	95.8 ± 0.3	$\textbf{98.9} \pm \textbf{0.2}$	
MM-Net	$\textbf{99.28} \pm \textbf{0.08}$	99.77 ± 0.04	$\textbf{97.16} \pm \textbf{0.10}$	$\textbf{98.93} \pm \textbf{0.05}$	

Table 2. Mean accuracy (%) \pm CIs (%) of our MM-Net and other state-of-the-art methods on *mini*ImageNet dataset.

Model	5-way Accuracy			
Model	1-shot	5-shot		
MN [31]	43.40 ± 0.78	51.09 ± 0.71		
MN-FCE 31	43.56 ± 0.84	55.31 ± 0.73		
ML-LSTM 25	43.44 ± 0.77	60.60 ± 0.71		
MAML [9]	48.70 ± 1.84	63.11 ± 0.92		
Meta-N [21]	49.21 ± 0.96	_		
MM-Net	52.74 ± 0.45	65.82 ± 0.37		
MM-Net	$\textbf{53.37} \pm \textbf{0.48}$	66.97 ± 0.35		

Table 3. Mean accuracy (%) of MM-Net by varying training strategies for 5-way k-shot image recognition task ($k \in \{1, 2, 3, 4, 5\}$) on miniImageNet.

Train	Test					
Tram	1-shot	2-shot	3-shot	4-shot	5-shot	
1-shot	52.74	57.53	59.31	60.02	60.33	
2-shot	52.68	59.14	62.11	63.39	63.92	
3-shot	51.67	58.48	62.21	64.03	65.40	
4-shot	51.44	58.56	62.12	64.48	65.77	
5-shot	51.09	58.03	61.80	64.14	65.82	
Mixed k-shot	52.83	59.88	63.31	65.32	66.71	
Mixed C-way k-shot	53.37	59.93	63.35	65.49	66.97	

Figure 3. Image representation embedding visualizations of MN and our MM-Net on *mini*Imagenet using t-SNE [19]. Each image is visualized as one point and colors denote different classes.

Figure 4. Similarity matrix of MN and our MM-Net on *mini*Imagenet (vertical axis: 5 labelled images per class in support set; horizontal axis: 5 unlabelled test images per class). The warmer colors indicate higher similarities.

Luca Bertinetto*

Torr Vision Group University of Oxford luca@robots.ox.ac.uk

João F. Henriques*

Visual Geometry Group University of Oxford joao@robots.ox.ac.uk

Jack Valmadre*

Torr Vision Group University of Oxford jvlmdr@robots.ox.ac.uk

Philip H. S. Torr

Torr Vision Group University of Oxford philip.torr@eng.ox.ac.uk

Andrea Vedaldi

Visual Geometry Group University of Oxford vedaldi@robots.ox.ac.uk

Figure 2: Our proposed architectures predict the parameters of a network from a single example, replacing static convolutions (green) with dynamic convolutions (red). The siamese learnet predicts the parameters of an embedding function that is applied to both inputs, whereas the single-stream learnet predicts the parameters of a function that is applied to the other input. Linear layers are denoted by * and nonlinear layers by σ . Dashed connections represent parameter sharing.

Figure 1: Factorized convolutional layer (eq. (8)). The channels of the input x are projected to the factorized space by M (a 1×1 convolution), the resulting channels are convolved independently with a corresponding filter prediction from w(z), and finally projected back using M'.

$$y = w(z)x + b(z).$$
$$y = M' \operatorname{diag}(w(z)) Mx + b(z).$$

$$y = W * x + b,$$

$$y = M' * w(z) *_d M * x + b(z),$$

Figure 3: The predicted filters and the output of a dynamic convolutional layer in a single-stream learnet trained for the OCR task. Different exemplars z define different filters w(z). Applying the filters of each exemplar to the same input x yields different responses (although in typical operation, the network defined by a single exemplar is applied to many other inputs). Best viewed in colour.

	Inner-product (%)	Euclidean dist. (%)	Weighted ℓ^1 dist. (%)
Siamese (shared)	48.5	37.3	41.8
Siamese (unshared)	47.0	41.0	34.6
Siamese (unshared, factorized)	48.4	_	33.6
Siamese learnet (shared)	51.0	39.8	31.4
Learnet	43.7	36.7	28.6

Table 1: Error rate for character recognition in foreign alphabets (chance is 95%).

Figure 4: The predicted filters and the output of a dynamic convolutional layer in a siamese learnet trained for the object tracking task. Best viewed in colour.

Method	Accuracy	Failures	Method	Accuracy	Failures
Siamese (φ =B)	0.465	105	Siamese (φ =C)	0.466	120
Siamese (φ =B; unshared)	0.447	131	Siamese (φ =C; factorized)	0.435	132
Siamese (φ =B; factorized)	0.444	138	Siamese learnet (φ =C; ω =A)	0.483	105
Siamese learnet (φ =B; ω =A)	<u>0.500</u>	<u>87</u>	Siamese learnet (φ =C; ω =C)	0.491	106
Siamese learnet (φ =B; ω =B)	0.497	93	DSST [2]	0.483	163
DAT [17]	0.442	113	MEEM [22]	0.458	107
SO-DLT [21]	0.540	108	MUSTer [6]	0.471	132

Table 2: Tracking accuracy and number of tracking failures in the VOT 2015 Benchmark, as reported by the toolkit [10]. Architectures are grouped by size of the main network (see text). For each group, the best entry for each column is in bold. We also report the scores of 5 recent trackers.