CS3102 Theory of Computation

www.cs.virginia.edu/~njb2b/cstheory/s2020

Warm up:

- There are two "categories" of computing:
- 1) Hardware (e.g. CPU)
- 2) Software (e.g. Java)
- Are they different? How are they the same

Differences

Hardware (CPU)

Software (Java)

Similarities

Logistics

- Exercise 0 was due last week
 - Didn't complete it? No problem (this time)! Just do it soon. Ask for an extension on the assignment page.
- First Quiz was due today
 - Didn't complete it? No problem (this time)! Ask for an extension on the assignment page.
- Exercise 1 is out.

Today

- Finite computation
- A first model of computing!!
 - And a second!!

What do we need for a model?

- Define how to represent a computation
 - Programming languages: Syntax
- Define how to perform an execution
 - Programming languages: compiler

Boolean Logic

Operation	Symbol	Behavior	Gate
AND	∧ "\wedge"	$0 \land 0 = 0$ $0 \land 1 = 0$ $1 \land 0 = 0$ $1 \land 1 = 1$	
OR	v "\vee"	$0 \lor 0 = 0$ $0 \lor 1 = 1$ $1 \lor 0 = 1$ $1 \lor 1 = 1$	
NOT	¬, ¬, \overline{b} "\neg", "-", "\overline{b}"		

Example: Majority

- $MAJ: \{0,1\}^3 \to \{0,1\}$
- English:
 - The output is one if most of the inputs are one, and zero otherwise
- Math:
 - -MAJ(a,b,c) =

Input	Output
000	0
001	0
010	0
011	1
100	0
101	1
110	1
111	1

Majority as a circuit

• Math:

 $-MAJ(a,b,c) = (a \wedge b) \vee (b \wedge c) \vee (a \wedge c)$

Components of a circuit

"Semiformal" Definition of a circuit

- Circuit = (V, O, E)
- $V = \{g_0, g_1, \dots, g_{n+s-1}\}$

- Where each element of V has a "gate type" label
- $label(g_i)$ ∈ {INPUT, AND, OR, NOT, [others?]}
- $O = (y_0, ..., y_{m-1})$ where $y_i \in V$ and $y_i = y_j \Rightarrow i = j$
- $E = \{(g_i, g_j) | g_i, g_j \in V \cup O, g_i \neq g_j\}$

- Circuit = (V, O, E)
- $V = \{g_0, g_1, \dots, g_{n+s-1}\}$
 - Where each element of V has a "gate type" label, $label(g_i) \in \{AND, OR, NOT, INPUT\}$
- $O = (y_0, ..., y_{m-1})$ where $y_i \in V$ and $y_i = y_j \Rightarrow i = j$
- $E = \{(g_i, g_j) | g_i, g_j \in V \cup O, g_i \neq g_j\}$
- 1. All gates have 2 inputs
- 2. All gates have 1 output
- 3. All gates are total functions
- 4. All gates are commutative
- 5. Number of gates is finite

- Circuit = (V, O, E)
- $V = \{g_0, g_1, \dots, g_{n+s-1}\}$
 - Where each element of V has a "gate type" label, $label(g_i) \in \{AND, OR, NOT, INPUT\}$
- $O = (y_0, ..., y_{m-1})$ where $y_i \in V$ and $y_i = y_j \Rightarrow i = j$
- $E = \{(g_i, g_j) | g_i, g_j \in V \cup O, g_i \neq g_j\}$
- 1. All gates have 2 inputs
- 2. All gates have 1 output
- 3. All gates are total functions
- 4. All gates are commutative
- 5. Number of gates is finite

- Circuit = (V, O, E)
- $V = \{g_0, g_1, \dots, g_{n+s-1}\}$
 - Where each element of V has a "gate type" label, $label(g_i) \in \{AND, OR, NOT, INPUT\}$
- $O = (y_0, ..., y_{m-1})$ where $y_i \in V$ and $y_i = y_j \Rightarrow i = j$
- $E = \{(g_i, g_j) | g_i, g_j \in V \cup O, g_i \neq g_j\}$
- 1. All gates have 2 inputs
- 2. All gates have 1 output
- 3. All gates are total functions
- 4. All gates are commutative
- 5. Number of gates is finite

- Circuit = (V, O, E)
- $V = \{g_0, g_1, \dots, g_{n+s-1}\}$
 - Where each element of V has a "gate type" label, $label(g_i) \in \{AND, OR, NOT, INPUT\}$
- $O = (y_0, ..., y_{m-1})$ where $y_i \in V$ and $y_i = y_j \Rightarrow i = j$
- $E = \{(g_i, g_j) | g_i, g_j \in V \cup O, g_i \neq g_j\}$
- 1. All gates have 2 inputs
- 2. All gates have 1 output
- 3. All gates are total functions
- 4. All gates are commutative
- 5. Number of gates is finite

What do we need for a model?

- Define how to represent a computation
 - Circuits: gates, edges, outputs
- Define how to perform an execution

Executing a circuit

- What we eventually want to know:
 - Values of the outputs
- What we start with:
 - Values of the inputs
- What do we do in between:
 - Find values of gates

We need to define "value of"

Value of

- Intuitively:
 - Wires carry a "signal"
 - The signal a wire carries comes from its gate
- $val: V \rightarrow \{0,1,\perp\}$
 - Gives the value of each gate/output
 - ⊥ means "I don't know"
- What should the starting values be?
 - Outputs:
 - Gates:
 - Inputs:

How to execute a Circuit

- As long as there's an output that's ⊥:
 - Pick a gate/output whose value is \bot and whose incoming edges all have a defined "source" (i.e. in $\{0,1\}$)
 - Change the value of that gate by executing the function labelled on its inputs

Example execution

With your neighbor

Build a circuit for NAND

$$-NAND(a,b) = \neg(a \land b)$$

Input	Output
00	1
01	1
10	1
11	0

NAND Circuits

- The set of functions we can compute with *NAND* gates only is the same as the set of functions we can compute with circuits *AND*, *OR*, *NOT* gates.
 - These computing models are "equivalent"
- How do we show this?

Equivalence of Computing Models

- Computing Model A and Computing Model B are "equivalent" if they compute the same set of functions
 - Any function that can be implemented with A can also be implemented with B, and vice-versa
- To show:
 - How to take an implementation of \underline{A} and convert it into an implementation of \underline{B} (which computes the same function)
 - How to take an implementation of B and convert it into an implementation of A (which computes the same function)

AND/OR/NOT using NAND

• *AND*

• *OR*

NOT

NAND = AON

NAND to AON

AON to NAND

Everywhere

you see:

Everywhere

you see:

Instead put:

Instead put:

Majority using NAND \boldsymbol{a} 5 gates b \boldsymbol{a} 24 gates 26

Takeaway

- We now have a hardware-based model of computing to work with
 - Actually two!
- Meant to be similar to how CPUs operate
- We've already made proofs about models of computation!
- While some models are equivalent in what they can compute, they may not be in how efficiently they can do it
- Next time: a software-like model of computing