Logica per l'Informatica

Cenni di algebra particolare: teoria dei gruppi

Claudio Sacerdoti Coen

<sacerdot@cs.unibo.it>

Universitá di Bologna

09/12/2020

Algebra particolare

L'algebra particolare studia un particolare tipo di struttura algebrica (es. i monoidi, i gruppi, gli anelli, ...).

Vediamo in questi lucidi i primissimi risultati di teoria dei gruppi

Gruppi

Gruppo

Un gruppo $(\mathbb{A}, \circ, e, \cdot^{-1})$ è un monoide con un'operazione aggiuntiva \cdot^{-1} t.c. $\forall x \in \mathbb{A}.x \circ x^{-1} = e = x^{-1} \circ x$

 a^{-1} si chiama elemento opposto di a (rispetto a \circ).

Teorema: l'elemento opposto di *a* è unico

Dimostrazione: siano $a,b\in\mathbb{A}$ t.c. $\forall x.a\circ b=e=b\circ a$. Si ha

$$b = b \circ e = b \circ (a \circ a^{-1}) = (b \circ a) \circ a^{-1} = e \circ a^{-1} = a^{-1}$$

Il gruppo delle permutazioni

Permutazioni

Sia \mathbb{A} un insieme. Una permutazione di \mathbb{A} è semplicemente una funzione biettiva $\pi \in \mathbb{A}^{\mathbb{A}}$.

Teorema: la funzione identità $id \in \mathbb{A}^{\mathbb{A}}$ è una permutazione. **Teorema:** siano π_1, π_2 permutazioni di \mathbb{A} . Anche $\pi_2 \circ \pi_1$ lo è. **Teorema:** siano π una permutazione di \mathbb{A} . Anche π^{-1} (la

funzione inversa di π) lo è.

Gruppo delle permutazioni

Sia $Perm(\mathbb{A})$ l'insieme di tutte le permutazioni di un insieme \mathbb{A} . Allora $(Perm(A), \circ, id, \cdot^{-1})$ è un gruppo, chiamato gruppo delle permutazioni di \mathbb{A}).

Da ora in poi sia $(\mathbb{A}, \circ, e, \cdot^{-1})$ un gruppo.

Definizione: $\pi. \in Perm(\mathbb{A})^{\mathbb{A}}$, la funzione che associa a ogni elemento di \mathbb{A} una permutazione di \mathbb{A} , è definita come segue: $\pi_a(b) = a \circ b$. Dimostriamo che per ogni $a \in \mathbb{A}$ la funzione π_a è una permutazione:

- π_a è iniettiva: siano $b, c \in \mathbb{A}$ t.c. $\pi_a(b) = \pi_a(c)$ (H). Dimostriamo che b = c. Da H si ha $b = a^{-1} \circ a \circ b = a^{-1} \circ \pi_a(b) = a^{-1} \circ \pi_a(c) = a^{-1} \circ a \circ c = c$.
- π_a è suriettiva: sia $y \in \mathbb{A}$. Dimostriamo che $\exists x.\pi_a(x) = y$. Scelgo $a^{-1} \circ y$ per x e dimostro $\pi_a(a^{-1} \circ v) = a \circ a^{-1} \circ v = v$.

Esempio: considerando il gruppo $(\mathbb{N},+,0,-)$, π_3 è la permutazione che somma 3 a tutti i numeri.

Teorema: π . è un omomorfismo di gruppi.

Dimostrazione: Considero i gruppi $(\mathbb{A}, \bullet, e, \cdot^*)$ e $(Perm(\mathbb{A}), \circ, id, \cdot^{-1})$

- $\pi_e(x) = e \cdot x = x$. Quindi, per l'assioma di estensionalità, $\pi_e = id$
- $\pi_{a \bullet b}(x) = (a \bullet b) \bullet x = a \bullet (b \bullet x) = \pi_a(\pi_b(x))$. Quindi, per l'assioma di estensionalità, $\pi_{a \bullet b} = \pi_a \circ \pi_b$
- $(\pi_a \circ \pi_{a^*})(x) = a \bullet a^* \bullet x = x = id(x)$. Quindi, per l'assioma di estensionalità, $\pi_a \circ pi_{a^*} = id$. Analogamente si dimostra $\pi_{a^*} \circ \pi_a = id$. Peranto π_{a^*} è un elemento opposto di π_a e, per l'unicità dell'elemento opposto, $\pi_{a^*} = \pi_a^{-1}$.

Teorema di Cayley: ogni gruppo $(\mathbb{A}, \bullet, e, \cdot^*)$ è isomorfo a un sottogruppo di $(Perm(\mathbb{A}), \circ, id, \cdot^{-1})$

Dimostrazione: Abbiamo già dimostrato che π . è un omomorfismo di gruppi. Sappiamo dalla precedente lezione che π . è un omomorfismo suriettivo su $Imm(\pi)$, che è un sottogruppo di $(Perm(\mathbb{A}), \circ, id, \cdot^{-1})$. Non ci resta che dimostrare che π . è anche iniettivo: siano a, b t.c. $\pi_a = \pi_b$. Quindi si ha $a = a \bullet e = \pi_a(e) = \pi_b(e) = b \bullet e = b$.

Esempio: consideriamo il gruppo $\mathcal{B} := (\{0,1\}, min, 0, \overline{\cdot})$ dove $\bar{b} := 1 - b$. Si ha che \mathcal{B} è isomorfo al gruppo di permutazioni su $\{0,1\}$ $(\{\bot, id\}, \circ, \bot, \cdot^{-}1)$ dove $\bot(x) = 0$ e id(x) = x.

Quindi la teoria dei gruppi coincide con lo studio delle permutazioni e quello delle simmetrie.

- notevoli applicazioni in aritmetica, geometria, cristallografia, chimica-fisca (es. simmetrie molecolari, strutture delle proteine), fisica (tutte le leggi fisiche ubbidiscono a simmetrie), risoluzione di cubi di Rubrik, ...
- prima dell'algebra astratta: i gruppi erano esattamente le permutazioni
- primo esempio importante di un paio di leitmotiv in matematica:
 - si stabiliscono equivalenze fra teorie perchè certi risultati sono più facili in una teoria che nell'altra
 - invece di studiare come certi oggetti sono fatti, conviene spesso studiare come questi oggetti possano essere manipolati

Manipolazione algebrica nei gruppi

Teorema: in un gruppo $(\mathbb{A}, \circ, e, \cdot^{-1})$

- $\forall x, x^{-1^{-1}} = x$

Dimostrazione:

- $(x \circ y) \circ (y^{-1} \circ x^{-1}) = x \circ (y \circ y^{-1}) \circ x^{-1}) = x \circ x^{-1} = e e$ $(y^{-1} \circ x^{-1}) \circ (x \circ y) = y^{-1} \circ (x^{-1} \circ x) \circ y = y^{-1} \circ y = e$
- \circ si ha x^{-1} \circ x^{-1} = e e x^{-1} \circ x^{-1} = e. Dal teorema di unicità dell'opposto si ha x^{-1} = x
- **3** se x = y allora $x \circ y^{-1} = y \circ y^{-1} = e$ e $x^{-1} \circ y = y^{-1} \circ y = e$; se $x \circ y^{-1} = e$ allora $y = e \circ y = x \circ y^{-1} \circ y = x$; se $x^{-1} \circ y = e$ allora $x = x \circ e = x \circ x^{-1} \circ y = y$.

Classi laterali

Definizione: Sia (\mathbb{A}, \circ) un semigruppo e siano $a \in \mathbb{A}$ e $\mathbb{B} \subseteq \mathbb{A}$. L'insieme $a\mathbb{B} = \{z \in \mathbb{A} \mid \exists b \in \mathbb{B}. z = a \circ b\}$ si chiama classe laterale sinistra di \mathbb{B} di rappresentante a. L'insieme $\mathbb{B}a = \{z \in \mathbb{A} \mid \exists b \in \mathbb{B}. z = b \circ a\}$ si chiama classe laterale destra di \mathbb{B} di rappresentante a.

Classi laterali di sottogruppi

Teorema: Sia $(\mathbb{A}, \circ, e, \cdot^{-1})$ un gruppo e \mathbb{B} un suo sottogruppo. L'insieme delle classi laterali di \mathbb{B} destre/sinistre forma una partizione di \mathbb{A} .

Dimostrazione:

- ogni classe $a\mathbb{B}$ è non vuota in quanto $a=a\circ e\in a\mathbb{B}$ in quanto $e\in \mathbb{B}$
- ② $\bigcup_{a \in \mathbb{A}} a\mathbb{B} = \mathbb{A}$ in quanto, per il punto precedente, ogni $a \in \mathbb{A}$ è contenuta in $a\mathbb{B}$
- ③ $a\mathbb{B} = a'\mathbb{B}$ oppure $a\mathbb{B} \cap a'\mathbb{B} = \emptyset$. Infatti, o l'intersezione è vuota, oppure supponiamo che ci sia $x \in a\mathbb{B} \cap a'\mathbb{B}$ e dimostriamo che i due insiemi sono uguali. Per l'assioma di separazione, ci sono $b, b' \in \mathbb{B}$ t.c. $x = a \circ b = a' \circ b'$ da cui $a = a' \circ b' \circ b^{-1}$. Dimostriamo che per ogni $x' \in a\mathbb{B}$, $x' \in a'\mathbb{B}$. Dall'assioma di separazione si ha che esiste $b'' \in \mathbb{B}$ t.c. $x' = a \circ b'' = a' \circ b' \circ b^{-1} \circ b''$. Poichè \mathbb{B} è un sottogruppo di \mathbb{A} , si ha $b' \circ b^{-1} \circ b'' \in \mathbb{B}$ e quindi $x' \in a'\mathbb{B}$.

Controimmagini di funzioni

Definizione: sia $f \in \mathbb{B}^{\mathbb{A}}$. Per ogni $y \in \mathbb{B}$ si definisce $f^{-1}(y) := \{x \in \mathbb{A} \mid f(x) = y\}$ e la si chiama controimmagine di y (rispetto a f)

Esempio: sia f(x) = |x|. Si ha $f^{-1}(3) = \{-3, 3\}$.

Morfismi di gruppi

Teorema: sia f un morfismo dal gruppo $\mathcal{A}:=(\mathbb{A},\circ_{\mathbb{A}},e_{\mathbb{A}},\cdot^{-1})$ al gruppo $(\mathbb{B},\circ_{\mathbb{B}},e_{\mathbb{B}},\cdot^{-1})$. Si ha $Ker(f):=f^{-1}(e_{\mathbb{B}})$ è un sottogruppo di \mathcal{A} chiamato il nucleo (kernel) di f.

Dimostrazione:

- $e_{\mathbb{A}} \in f^{-1}(e_{\mathbb{B}})$ per l'assioma di separazione in quanto $f(e_{\mathbb{A}}) = e_{\mathbb{B}}$
- siano $x, y \in f^{-1}(e_{\mathbb{B}})$. Quindi per l'assioma di separazione, $f(x) = f(y) = e_{\mathbb{B}}$. Si ha $f(x \circ_{\mathbb{A}} y) = f(x) \circ_{\mathbb{B}} f(y) = e_{\mathbb{B}} \circ_{\mathbb{B}} e_{\mathbb{B}} = e_{\mathbb{B}}$. Quindi, per l'assioma di separazione, $x \circ_{\mathbb{A}} y \in f^{-1}(e_{\mathbb{B}})$
- sia $x \in f^{-1}(e_{\mathbb{B}})$. Quindi, per l'assioma di separazione, $f(x) = e_{\mathbb{B}}$. Si ha $e_{\mathbb{B}} = f(e_{\mathbb{A}}) = f(x \circ_{\mathbb{A}} x^{-1}) = f(x) \circ_{\mathbb{B}} f(x^{-1}) = e_{\mathbb{B}} \circ_{\mathbb{B}} f(x^{-1}) = f(x^{-1})$. Quindi, per l'assioma di separazione, $x^{-1} \in f^{-1}(e_{\mathbb{B}})$.

Morfismi di gruppi

Sia f un morfismo dal gruppo $(\mathbb{A}, \circ_{\mathbb{A}}, e_{\mathbb{A}}, \cdot^{-1})$ al gruppo $(\mathbb{B}, \circ_{\mathbb{B}}, e_{\mathbb{B}}, \cdot^{-1})$. Si ha $x \sim_f y$ sse f(x) = f(y) sse $e_{\mathbb{B}} = f(x) \circ_{\mathbb{B}} f(y)^{-1} = f(x \circ_{\mathbb{A}} y^{-1})$ sse $x \circ_{\mathbb{A}} y^{-1} \in Ker(f)$.

Quindi la relazione $x \sim_{Ker(f)} y := x \circ_{\mathbb{A}} y^{-1} \in Ker(f)$ coincide con $x \sim_f y$ ed è una relazione di equivalenza su \mathbb{A} .

Relazione di equivalenza indotta da un sottogruppo

Generalizziamo: per ogni sottogruppo $\mathbb B$ di un gruppo $(\mathbb A,\circ,e,\cdot^{-1})$ si definisce $x\sim_{\mathbb B} y:=x\circ_{\mathbb A} y^{-1}\in\mathbb B$. La relazione $\circ_{\mathbb B}$ su $\mathbb A$ si chiama relazione di equivalenza destra indotta da $\mathbb B$ in quanto è una relazione di equivalenza:

- Riflessività: per ogni x, $x \sim_{\mathbb{B}} x \iff x \circ_{\mathbb{A}} x^{-1} = e \in \mathbb{B}$ in quanto \mathbb{B} è un sottogruppo.
- Simmetria: per ogni x, y t.c. $x \sim_{\mathbb{B}} y$, ovvero $x \circ_{\mathbb{A}} y^{-1} \in \mathbb{B}$ (H), dobbiamo dimostrare che $y \sim_{\mathbb{B}} x$, ovvero $y \circ_{\mathbb{A}} x^{-1} \in \mathbb{B}$. Da H, poichè \mathbb{B} è un sottogruppo, si ha $(x \circ_{\mathbb{A}} y^{-1})^{-1} = y^{-1} \circ x^{-1} = y \circ x^{-1} \in \mathbb{B}$.
- Transitività: per ogni x, y, z t.c. $x \sim_{\mathbb{B}} y$, ovvero $x \circ y^{-1} \in \mathbb{B}$, e $y \sim_{\mathbb{B}} z$, ovvero $y \circ z^{-1} \in \mathbb{B}$. Quindi, poichè \mathbb{B} è un sottogruppo, si ha $x \circ_{\mathbb{B}} y^{-1} \circ_{\mathbb{B}} y \circ_{\mathbb{B}} z^{-1} = x \circ_{\mathbb{B}} z^{-1} \in \mathbb{B}$. Quindi $x \sim_{\mathbb{B}} z$.

Relazione di equivalenza indotta da un sottogruppo

Esempio: $3\mathbb{Z}$ è il sottogruppo di $(\mathbb{Z},+,0,-)$ formato dai multipli (positivi e negativi) di 3. Si ha $x \sim_{3\mathbb{Z}} y$ sse $x+-y \in 3\mathbb{Z}$, ovvero sse esiste un $k \in \mathbb{Z}$ t.c. x+-y=3k, ovvero sse esiste un k t.c. x=3k+y. Esempio: $5 \sim_{3\mathbb{Z}} 14$ in quanto 5=3(-3)+14.

Indichiamo con x/y il quoziente e con x%y (pronunciato "x modulo y)" il resto della divisione intera fra x e y, che è sempre un numero non negativo più piccolo di y. Esempi: 5/3 = 1, 5%3 = 2, 14/3 = 4 e 14%3 = 2.

Per ogni
$$n$$
 e x si ha $x = n*(x/n) + x\%n$. Esempi: $14 = 3*(14/3) + 14\%3 = 3*4 + 2$ e $-14 = 3*(-14/3) + (-14\%3) = 3*(-5) + 1$.

Si ha
$$x = 3k + y$$
 sse $3 * (x/3) + x\%3 = 3k + 3 * (y/3) + y\%3$ sse $3 * (x/3 - y/3 + k) + x\%3 = y\%3$ sse $x/3 - y/3 + k = 0$ e $x\%3 = y\%3$. Quindi $x \sim_{3\mathbb{Z}} y$ sse $x\%3 = y\%3$!

Relazioni di equivalenza indotte e classi laterali

Teorema: Sia $(\mathbb{A}, \circ, e, \cdot^{-1})$ un gruppo \mathbb{B} un suo sottogruppo. Si ha $x \sim_{\mathbb{B}} y$ sse $x \in \mathbb{B}y$, da cui $[y]_{\sim_{\mathbb{B}}} = \mathbb{B}y$ **Dimostrazione:** sappiamo che $x \sim_{\mathbb{B}} y$ sse $x \circ y^{-1} \in \mathbb{B}$ sse $x \circ y^{-1} \circ y \in \mathbb{B}y$ sse $x \in \mathbb{B}y$. Pertanto $[y]_{\sim_{\mathbb{B}}} = \mathbb{B}y$ per l'assioma di estensionalità: per ogni $x, x \in [y]_{\sim_{\mathbb{B}}}$ sse $x \sim_{\mathbb{B}} y$ sse $x \in \mathbb{B}y$.

Esempio: $x \sim_{3\mathbb{Z}} y$ sse x%3 = y%3 sse $x \in 3\mathbb{Z} + y$ dove abbiamo indicato $3\mathbb{Z} + y$ la classe laterale destra di rappresentante y (al posto della notazione usata fino ad ora $3\mathbb{Z}y$).

Si ha $3\mathbb{Z}$ è l'insieme dei multipli di 3, ovvero $\{\dots, -6, -3, 0, 3, 6, \dots\}$, $3\mathbb{Z} + 1 = 3\mathbb{Z} + 4 = 3\mathbb{Z} + 7 = \dots$ è l'insieme $\{\dots, -5, -2, 1, 4, 7, \dots\}$ e $3\mathbb{Z} + 2 = 3\mathbb{Z} + 5 = \dots$ è l'insieme $\{\dots, -4, -1, 2, 5, 8, \dots\}$. Pertanto $\mathbb{Z}_{/3\mathbb{Z}} = \{3\mathbb{Z}, 3\mathbb{Z} + 1, 3\mathbb{Z} + 2\} = \{[0]_{3\mathbb{Z}}, [1]_{3\mathbb{Z}}, [2]_{3\mathbb{Z}}\}$

Relazioni di equivalenza indotte e classi laterali

Abbiamo capito che da un morfismo f si ottiene il Ker(f) t.c. $\sim_{Ker(f)} = \sim_f$. Ci chiediamo ora se a partire da un sottogruppo generico $\mathbb B$ si trovi sempre un morfismo g t.c. $\sim_{\mathbb B} = \sim_g$.

Definizione: Sia $(\mathbb{A}, \circ, e, \cdot^{-1})$ un gruppo e \mathbb{B} un suo sottogruppo. Definiamo $f_{\mathbb{B}}(x) := \mathbb{B}y$ dove $\mathbb{B}y$ è l'unica classe laterale destra t.c. $x \in \mathbb{B}y$.

Teorema: Sia $(\mathbb{A}, \circ, e, \cdot^{-1})$ un gruppo \mathbb{B} . Si ha $\sim_{f_{\mathbb{B}}} = \sim_{\mathbb{B}} e$ $\mathbb{B} = f_{\mathbb{B}}^{-1}(e)$.

Dimostrazione: Procediamo ricorrendo all'assioma di estensionalità. Si ha $x \sim_{f_{\mathbb{B}}} y$ sse $f_{\mathbb{B}}(x) = f_{\mathbb{B}}(y)$ sse ci sono z, z' t.c. $x \in \mathbb{B}z$ (Hx) e $y \in \mathbb{B}z'$ (Hy) e $[z]_{\sim_{\mathbb{B}}} = \mathbb{B}z = \mathbb{B}z' = [z']_{\sim_{\mathbb{B}}}$. Quindi $z \sim_{\mathbb{B}} z'$ per il teorema visto nella prima parte del corso e da (Hx) si ha $x \sim_{\mathbb{B}} z$ e da (Hy) si ha $y \sim_{\mathbb{B}} z'$. Quindi $x \sim_{\mathbb{B}} z \sim_{\mathbb{B}} z' \sim_{\mathbb{B}} y$ e perciò $\sim_{f_{\mathbb{B}}} = \sim_{\mathbb{B}}$.

Relazioni di equivalenza indotte e classi laterali

Fino a qui tutto bene: abbiamo appena dimostrato che dato un sottogruppo generico $\mathbb B$ si trova sempre una funzione g t.c. $\sim_{\mathbb B}=\sim_g$.

Ci chiediamo ora se g sia un morfismo, che avrebbe come conseguenza del primo teorema di omomorfismo fra gruppi che $[\cdot]$ sarebbe anch'esso un morfismo e che l'insieme delle classi laterali destre indotte da g avesse una struttura di gruppo $(\mathbb{A}_{/\sim_{\mathbb{B}}},\oplus,\mathbb{B},\cdot^{-1})$.

La risposta è NEGATIVA nel caso generale. Infatti non è possibile definire \oplus che dovrebbe mappare due classi laterali destre $\mathbb{B}x$ e $\mathbb{B}y$ nella classe laterale destra $\mathbb{B}(x \circ y)$. Vediamo infatti un controesempio nella prossima slide.

L'insieme delle classi laterali destre non forma un gruppo

Consideriamo l'insieme $\mathbf{X} = \{a, b, c\}$, il gruppo non abeliano delle permutazioni ($Perm(\mathbf{X}), \circ, 1, \cdot^{-1}$) e un suo sottogruppo $\mathbb{B} := \{id, f\}$ dove f(a) = a, f(b) = c, f(c) = b. \mathbb{B} è effettivamente un sottogruppo in quanto $f \circ f = id$ e quindi \circ e \cdot^{-1} sono entrambe chiuse rispetto a \mathbb{B} osservando che $f^{-1} = f$.

Siano
$$g(a) = b, g(b) = c, g(c) = a$$
 e $h(a) = c, h(b) = b, h(c) = a$ e $k(a) = b, k(b) = c, k(c) = a$, $l(a) = b, l(b) = a, l(c) = c$ permutazioni di \mathbb{A} . Si ha $\mathbb{B}g = \{g, h\}$ (in quanto $h = f \circ g$), $\mathbb{B}h = \{h, k\}$ (in quanto $k = f \circ h$) e $g \circ h = f$ e dunque $\mathbb{B}f = \mathbb{B}$. Quindi $h \in \mathbb{B}g$ e $k \in \mathbb{B}h$, ma $h \circ k = l \notin \mathbb{B}(g \circ h) = \mathbb{B}$.

Pertanto non posso definire l'operazione $\mathbb{B}a \oplus \mathbb{B}b := \mathbb{B}(a \circ b)$.

Sottogruppi normali

Nota: quanto visto fino ad ora usando classi laterali destre si può riproporre usando le classi laterali sinistre, partendo dalla definizione di $\sim_{\mathbb{B}}$ non più come $x \sim_{\mathbb{B}} y := x \circ y^{-1} \in \mathbb{B}$, bensì come $x \sim_{\mathbb{B}} y := x^{-1} \circ y \in \mathbb{B}$.

Definizione: $\mathbb{B}x$ è una classe laterale di \mathbb{B} di rappresentante x sse $\mathbb{B}x = x\mathbb{B}$, ovvero se le classi laterali destre e sinistre di rappresentante x coincidono.

Definizione: \mathbb{B} è un sottogruppo normale di un gruppo \mathcal{A} sse tutte le sue classi laterali destre sono classi laterali.

Sottogruppi di gruppi abeliani

Teorema: tutti i sottogruppi di un gruppo abeliano sono normali.

Dimostrazione: dobbiamo dimostrare che per ogni x si ha $\mathbb{B}x = x\mathbb{B}$. Il che è ovvio poichè se il gruppo è abeliano si ha $\mathbb{B}x = \{a \circ x \mid a \in \mathbb{B}\} = \{x \circ a \mid a \in \mathbb{B}\} = x\mathbb{B}$

Kernel e normalità

Teorema: per ogni morfismo f da $\mathcal{A} := (\mathbb{A}, \circ_{\mathbb{A}}, e_{\mathbb{A}}, \cdot^{-}1)$ a $(\mathbb{B}, \circ_{\mathbb{R}}, e_{\mathbb{R}}, -1)$, *Ker*(f) è un sottogruppo normale. **Dimostrazione:** sappiamo già che Ker(f) è un sottogruppo di A. Dimostriamo che è normale, ovvero che per ogni x si ha Ker(f)x = xKer(f) o, equivalentemente, che $Ker(f)x \subseteq xKer(f)$ e $Ker(f)x \supset xKer(f)$. Dimostriamo la seconda parte; la prima si ottiene procedendo in maniera analoga. Applichiamo la permutazione $\cdot \circ x^{-1}$ ad ambo gli insiemi, riducendoci a dimostrare $Ker(f) \supseteq xKer(f)x^{-1}$. Sia $y \in xKer(f)x^{-1}$. Quindi, per separazione, c'è uno $z \in Ker(f)$ t.c. $y = x \circ_A z \circ_A x^{-1}$. Ma questo implica $y \in Ker(f)$ in quanto $f(y) = f(x \circ_{\mathbb{A}} z \circ_{\mathbb{A}} x^{-1}) =$ $f(x) \circ_{\mathbb{R}} f(z) \circ_{\mathbb{R}} f(x)^{-1} = f(x) \circ_{\mathbb{R}} e_{\mathbb{R}} \circ_{\mathbb{R}} f(x)^{-1} = e_{\mathbb{R}}.$

Normalità e quozientamento

Se \mathbb{B} è un sottogruppo normale di un gruppo, allora la definizione $\mathbb{B}a \oplus \mathbb{B}b := \mathbb{B}(a \circ b)$ funziona, in quanto $\mathbb{B}a \oplus \mathbb{B}b = a\mathbb{B} \oplus \mathbb{B}b = \{a \circ z_1 \circ z_2 \circ b \mid z_1, z_2 \in \mathbb{B}\} = \{a \circ z_3 \circ b \mid z_3 \in \mathbb{B}\} = \{z_4 \circ a \circ b \mid z_4 \in \mathbb{B}\} = \mathbb{B}(a \circ b).$

Possiamo concludere quindi con il seguente teorema:

Teorema: i sottogruppi normali di un gruppo dato sono tutti e soli i nuclei di morfismi dal gruppo verso altri gruppi.

Dimostrazione (cenni): se \mathbb{B} è sottogruppo normale allora $f_{\mathbb{B}}$ è un morfismo. Il teorema segue come corollario dai precedenti.

Cardinalità delle classi laterali

Teorema: sia $\mathbb B$ un sottogruppo di un gruppo $(\mathbb A,\circ,e,\cdot^{-1})$. Tutte le classi laterali sinistre/destre di $\mathbb B$ hanno la stessa cardinalità.

Dimostrazione: Siano $x, y \in \mathbb{A}$. Dimostriamo che la permutazione $\pi_{y \circ x^{-1}}$ è una biezione fra $x \mathbb{B}$ e $y \mathbb{B}$. Infatti per ogni $b \in \mathbb{B}$ la permutazione mappa $z := x \circ b$ in

$$y \circ x^{-1} \circ z = y \circ x^{-1} \circ x \circ b = y \circ b.$$

Corollario: se \mathbb{B} è sottogruppo normale del gruppo $(\mathbb{A}, \circ, e, \cdot^{-1})$ il cui sostegno è un insieme finito di cardinalità $|\mathbb{A}| = m$, allora $|\mathbb{A}| = |\mathbb{B}| * |\mathbb{A}_{/\mathbb{B}}|$.

Dimostrazione: l'insieme \mathbb{A} viene partizionato in $|\mathbb{A}_{/\mathbb{B}}|$ classi di equivalenza, ognuna delle quali è una classe laterale di \mathbb{B} e pertanto ha la stessa cardinalità di $\mathbb{B} = \mathbb{B}e$.

Cardinalità delle classi laterali

Esempio: consideriamo il gruppo $(\mathbb{Z}_{/6\mathbb{Z}}, \oplus, [0]_{6\mathbb{Z}}, \cdot^{-1})$ espresso equivalentemente come $(\{0,1,\ldots,5\},+_6,0,-_6)$ dove la somma e il cambio di segno si ottengono prendendo il resto dell'operazione algebrica diviso 6. Esempio: $3+_67=4$ in quanto (3+7)%6=10%6=4 e $-_62=-2\%6=4$ in quanto -2/6=-1 e -1*6+4=-2.

Poichè $|\{0,\ldots,5\}|=6$, il gruppo può avere come sottogruppi normali solamente gruppi di cardinalità 1,2,3 e 6 aventi rispettivamente 6,3,2 e 1 classi laterali.

Esempio: $\{0,2,4\}$ (i numeri pari) formano un sottogruppo normale ($+_6$ è commutativa!) di cardinalità 3. Le due classi laterali (2*3=6) sono $\mathbb{B}0=\{0,2,4\}$ e $\mathbb{B}1=\{1,3,5\}$. Il loro insieme forma il gruppo abeliano ($\{\mathbb{B}0,\mathbb{B}1\},\oplus,\mathbb{B}0,\cdot^{-1}$) dove $\mathbb{B}0\oplus X=X$ e $\mathbb{B}1\oplus\mathbb{B}1=\mathbb{B}0$. Tale gruppo è isomorfo a $\mathbb{Z}_{/2\mathbb{Z}}$.

Conclusioni

- L'algebra particolare studia le proprietà caratteristiche di un singolo tipo di struttura algebrica (es. monoidi, gruppi, anelli, ...)
- Nonostante una struttura algebrica possa avere pochissime operazioni e assiomi su di essa (3 operazioni e 3 assiomi per i gruppi), la teoria generata può essere ricchissima
- Una parte rilevante della teoria studia
 - gli isomorfismi fra strutture algebriche, ovvero il cambio di rappresentazione
 - come ottenere nuove strutture algebriche a partire da quelle date
 - come decomporre strutture algebriche (p.e. quozientando un gruppo rispetto a un sottogruppo normale) per studiare le proprietà delle componenti e ricavare da queste le proprietà della struttura composta

