Quantum applications of ion trapping

Hartmut Häffner, UC Berkeley

- 1. Introduction to ion trapping
- 2. Quantum computing
- 3. Sources of decoherence
- 4. Scaling and quantum simulations
- 5. Quantum many-body physics and precision measurements

Plan

- Lecture #1: Introduction
- Paul traps
- Laser ion-interaction
- Lecture #2: Quantum computing
- Quantum gates
- Quantum state tomography
- Lecture #3: Decoherence
- Qubit decoherence
- Scaling
- Lecture #4: Scaling and quantum simulation
- Scaling and anomalous heating
- Quantum simulation
- Lecture #5: Applications
- Quantum many-body physics
- Precision measurements

Many-body physics

Oscillator chain of ions

$$H = \hbar \sum \Delta_{\mathsf{ion}} \sigma_i^z + \hbar \sum \omega_{\mathsf{r},i} a_i^{\dagger} a_i + \sum t_{ij} \left(a_i^{\dagger} a_j + a_i a_j^{\dagger} \right)$$
$$+ \sum \lambda_i (\sigma_i^- a_i^{\dagger} + \sigma_i^+ a_i) + \sum \mu_i (\sigma_i^- + \sigma_i^+).$$

Many-body physics

Oscillator chain of ions

$$H = \hbar \sum \Delta_{\mathsf{ion}} \sigma_i^z + \hbar \sum \omega_{\mathsf{r},i} a_i^{\dagger} a_i + \sum \underbrace{t_{ij} \left(a_i^{\dagger} a_j + a_i a_j^{\dagger} \right)}_{\mathsf{c}}$$

Coulomb interaction

Energy Transport in Ion Chains

- Excite locally
- Let the system evolve
- Read out locally

$$T_{
m excite} \ll T_{
m coupling}$$
 $T_{
m measure} \ll T_{
m coupling}$

Theory vs Experiment for 5 ions

Ion number dependency

• Transport speed through the chain increases with the ion number

Normal Mode Decomposition

Key feature: all ions are in the same harmonic well

Energy Transport in Ion Chains

How closed is this (quantum) many-body system?

- Dynamics go on for very long time
- System well-isolated from the environment
- Add non-linearities in a controlled manner

Extension to non-linear systems?

$$H = \hbar \sum \Delta_{\text{ion}} \sigma_i^z + \hbar \sum \omega_{\text{r},i} a_i^{\dagger} a_i + \sum t_{ij} \left(a_i^{\dagger} a_j + a_i a_j^{\dagger} \right)$$

$$+ \lambda_i (\sigma_i^{-} a_i + \sigma_i^{+} a_i^{\dagger})$$
Blue sideband

- How do quantum correlations propagate ?
- Study dynamics and equilibration in a closed system
- Spin-impurities in crystals, dissipation and decoherence, quantum phase transitions

Generating and detecting quantum correlations

Generating and detecting quantum correlations

Generating and detecting quantum correlations

Phase contrast proves quantum correlations between the electronic state and the (local) motion of the ion.

Local detection of quantum correlations:

M. Gessner *et al.*, Nature Phys. **10**, 105 (2014).

Dynamics of quantum correlations

Revivals of quantum correlations in a 35-ion chain

Plan

- Lecture #1: Introduction
- Paul traps
- Laser ion-interaction
- Lecture #2: Quantum computing
- Quantum gates
- Quantum state tomography
- Lecture #3: Decoherence
- Qubit decoherence
- Scaling
- Lecture #4: Scaling and quantum simulation
- Scaling and anomalous heating
- Quantum simulation
- Lecture #5: Applications
- Quantum many-body physics
- Precision measurements

High resolution spectroscopy

Optical frequency standards

Clock ions: Sr⁺, Yb⁺, Hg⁺, Al⁺,...

$$\frac{\delta\omega_0}{\omega_0}\approx 10^{-16}$$

Quantum information processing

- perfect quantum control
- entanglement
- fundamental gates

- Improved S/N ratio
 J. J. Bollinger et al, Phys. Rev. A 54, 4649 (1996)
- Read out with quantum logic
 P.O.Schmidt et al., Science 309, 749 (2005)
- Spectroscopy with decoherence free subspaces
 C. F. Roos et al., Nature 443, 316 (2006)

Taking advantage of correlated noise

Decoherence-free subspaces

Physical Qubit Ramsey Experiment

au= 16 ms

Logical QubitParity Oscillations

$$au$$
= 1050 ms

H. Häffner et al., App. Phys. B **81** 151 (2005).

Quantum logic spectroscopy

P. O. Schmidt *et al.*,, Science **309**, 749-752 (2005).

Testing general relativity

A most famous null experiment

Test for "aether".

expected fringe shift due to aether

Michelson-Morley experiment confirms Lorentz symmetry to 10⁻⁹

Michelson & Morley, Am. J. Science **34**, 427 (1887).

Modern tests of Lorentz symmetry

Accelerator

Spectroscopy

Hughes-Drever (1960/1961) Hohensee (2013)

Optical cavities

Herrmann (2009)

Astrophysics

HESS telescope, Altschul (2006)

A most famous null experiment

Lorentz-violating effects?

Modern Michelson-Morley experiments

Electrons

- maximum attainable speed is (not) "c"
- dependence of energy on direction of velocity

Others

- neutron, proton,
 - Hughes-Drever experiments

same energy?

Interferometer with electrons?

Standing waves for electrons:

Michelson interferometer

http://www.photonicquantum.info/Research/Hydrogen_Density_Plots.png

Interferometer with electrons?

Use the $D_{5/2}$ -manifold of 40Ca+

Measurement scheme

Preferred direction due to Lorentz violation?

State preparation

State preparation

State preparation

Decoherence-free subspace

$$|\Psi\rangle = |$$
 $\rangle + e^{i\omega t} |$

Problem: Zeeman effect swamps phase evolution

Use two ions:

$$|\Psi\rangle = |-1/2, 1/2\rangle + |-5/2, 5/2\rangle$$

$$= |\Theta\rangle + |\Theta\rangle + |\Theta\rangle = |\Theta\rangle + |\Theta\rangle$$

Quadrupole shift: Spectroscopy with entangled states

Prepare the two-ion Bell state $\Psi = |-5/2\rangle|5/2\rangle + |-1/2\rangle|1/2\rangle$

sensitive to quantities ~ m²

insensitive to linear Zeeman shift

Decoherence-free subspace!

$$\Psi(t=0) \xrightarrow{\tau} \Psi(\tau) = |-5/2\rangle |5/2\rangle + e^{i\Delta\tau} |-1/2\rangle |1/2\rangle$$

Correlation measurements with two unentangled ions

Prepare the product state

$$\Psi_{prod} = \frac{1}{2}(|S\rangle + |D\rangle) \otimes (|S\rangle + |D\rangle)$$

$$= \frac{1}{2}(|SS\rangle + |SD\rangle + |DS\rangle + |DD\rangle)$$

$$= \frac{1}{\sqrt{2}}\Psi_{+} + \frac{1}{2}|S\rangle|S\rangle + \frac{1}{2}|D\rangle|D\rangle$$

... and let it decohere:
$$\Psi_{prod} \xrightarrow{\text{time}} \rho = \underbrace{\frac{1}{2}\rho_{\Psi+}} + \underbrace{\frac{1}{4}\rho_{SS} + \frac{1}{4}\rho_{DD}}$$

contributes to the signal

no contribution

- Parity signal contrast only 50%
- Additional quantum projection noise from ρ_{SS} and $\;\rho_{\text{DD}}$,

... but much easier to produce!

Decoherence-free subspace

Coherence time improved by 10⁴ decoherence-free subspace

Measurement scheme

Measurement scheme

Magnetic field and wavefunction change direction.

Lorentz-violation will modulate the energy shift correlated with the Earth's motion.

Data

Energy variations of a pair of ⁴⁰Ca⁺ ions on April 19th 2014

Results

Energy variations of a pair of ⁴⁰Ca⁺ ions on April 19th 2014

12h-modulation bounded to 11 mHz

$$\frac{\Delta E}{\langle E_{\mathsf{kin}} \rangle} pprox \frac{5 \times 10^{-17} \, \mathrm{eV}}{50 \, \mathrm{eV}} = 10^{-18}.$$

Bound as a function of averaging time

Still averaging down with $\sqrt{\tau}$, no signs of systematic drifts.

Expected quantum projection noise.

Lorentz tests for the electron

Interpretation

To analyze the experiment, we need to pick a reference.

Assumption: Coulomb force is symmetric.

any LV-signal is attributed to the electron

or: electron obeys Lorentz symmetry photon violates Lorentz symmetry

We probe the difference between the electron and photon dispersion!

Interpretation of the Michelson Morley experiment

To analyze the experiment, we need to pick a reference.

Arm length determined by the Coulomb force and electron dispersion

Lorentz invariance tests for light

Both experiments compare the photon and the electron dispersion relation.

