PS07 – Game Theory

Lecturer: Luis Chávez

Los siguientes ejercicios permiten medir la capacidad analítica y procedimental. Se sugiere resolverlos en forma ascendente.

Problema 1: matching 1:1

Considere un grupo de 19 estudiantes que deben ser emparejados para que puedan desarrollar una actividad del curso Teoría de Juegos. Algunos pueden decidir realizar la actividad solos. Sean los conjuntos $M = \{m_1, m_2, \dots, m_7\}$ y $W = \{w_1, w_2, \dots, w_{12}\}$ con las siguientes preferencias:

P^{m_1}	P^{m_2}	P^{m_3}	P^{m_4}	P^{m_5}	P^{m_6}	P^{m_7}
w_3	w_1	w_2	w_5	w_1	w_6	w_7
w_1	w_4	w_6	w_2	w_3	w_2	w_5
w_5	w_3	w_4	w_1	w_2	w_{12}	m_7
w_7	w_6	w_3	w_8	w_4	w_7	w_4
w_2	w_5	w_{12}	w_6	w_6	w_3	w_2
w_4	m_2	w_1	w_7	w_5	w_4	w_1
w_6	w_2	w_9	w_3	w_8	w_1	w_3
w_8	w_{12}	w_5	w_{11}	w_{12}	w_5	w_9
w_9	w_8	w_7	w_4	w_{10}	w_{11}	w_{10}
m_1	w_7	m_3	w_9	w_7	w_9	w_8
w_{11}	w_{11}	w_8	w_{10}	w_9	w_8	w_{11}
w_{12}	w_{10}	w_{11}	w_{12}	w_{11}	w_{10}	w_{12}
w_{10}	w_9	w_{10}	m_4	m_5	m_6	w_6

P^{m_1}	P^{m_2}	P^{m_3}	P^{m_4}	P^{m_5}	P^{m_6}	P^{m_7}	P^{m_8}	P^{m_9}	$P^{m_{10}}$	$P^{m_{11}}$	$P^{m_{12}}$
w_1	w_2	w_3	w_4	w_5	m_6	w_7	w_1	w_2	w_3	w_4	w_5
w_3	m_2	w_2	w_1	w_2	w_1	w_1	w_3	w_1	w_1	w_2	w_1
w_5	w_3	w_1	w_2	w_3	w_2	w_3	w_5	w_3	w_2	w_1	w_2
w_7	w_4	w_5	w_3	w_4	w_3	w_4	m_8	w_4	w_5	w_3	w_4
w_2	w_5	w_6	w_5	w_6	w_4	w_5	w_2	w_5	w_4	w_6	w_6
w_4	w_6	w_4	w_6	w_1	w_5	w_6	w_6	w_6	w_6	m_{11}	w_3
w_6	w_7	w_7	w_7	w_7	w_7	w_2	w_4	w_7	w_7	w_7	w_7
m_1	w_1	m_3	m_4	m_5	w_6	m_7	w_7	m_9	m_{10}	w_5	m_{12}

- a) Usando AD, hallar los emparejamientos cuando el lado del mercado w_i hacen las propuestas.
- b) Usando AD, hallar los emparejamientos cuando el lado del mercado m_i hacen las propuestas.
- c) ¿El emparejamiento verifica unicidad? ¿está en el núcleo?

Problema 2: matching m:1

Considere un concurso público donde fueron seleccionados 12 economistas cuantitativos $W = \{w_1, w_2, \dots, w_{12}\}$ que serán distribuidos en 4 ministerios $M = \{m_1, m_2, m_3, m_4\}$. Los ministerios tiene un orden de prioridad por los ganadores, mientras que los economistas tienen preferencias estrictas por los ministerios:

P^{m_1}	P^{m_2}	P^{m_3}	P^{m_4}
w_1	w_4	w_8	w_{10}
w_3	w_1	w_2	w_5
w_{12}	w_5	w_{11}	w_{11}
w_4	w_{10}	w_3	w_1
w_5	w_2	w_{12}	w_4
w_6	w_3	w_4	w_2
w_9	w_7	w_7	w_6
w_8	w_8	w_6	w_{12}
w_7	w_9	w_9	w_9
w_{10}	w_6	w_{10}	w_3
w_{11}	w_{11}	w_1	w_7
w_2	w_{12}	w_5	w_8

P^{w_1}	P^{w_2}	P^{w_3}	P^{w_4}	P^{w_5}	P^{w_6}	P^{w_7}	P^{w_8}	P^{w_9}	$P^{w_{10}}$	$P^{w_{11}}$	$P^{w_{12}}$	
m_1	m_2	m_3	m_4	m_1	m_2	m_3	m_4	m_1	m_2	m_3	m_4	
m_2	m_1	m_1	m_3	m_2	m_4	m_1	m_3	m_2	m_3	m_4	m_1	
m_3	m_3	m_2	m_2	m_3	m_1	m_4	m_1	m_3	m_1	m_2	m_3	
m_4	m_4	m_4	m_1	m_4	m_3	m_2	m_2	m_4	m_4	m_1	m_2	

- a) Utilizando MB, hallar el emparejamiento.
- b) Demostrar que el emparejamiento por MB es inestable.
- c) Utilizando GS W-Óptimo, hallar el emparejamiento.
- d) Utilizando TTC, hallar el emparejamiento.
- e) Comparar los resultados de a), c) y d).

Problema 3: matching one-sided

Se asignó aleatoriamente residencia estudiantil universitaria a un grupo de 10 estudiantes. Algunos de ellos, no están conforme con el proceso de asignación por lo que desean someter la adjudicación a matching. Sea el conjunto de estudiantes $E = \{e_1, e_2, ..., e_{10}\}$ y los departamentos posibles $H = \{h_1, h_2, ..., h_{10}\}$. Las preferencias de los estudiantes son:

```
h_3 > h_1 > h_7 > h_5 > h_2 > h_8 > h_{10} > h_4 > h_9 > h_6
e_1
        h_6 \succ h_2 \succ h_1 \succ h_9 \succ h_3 \succ h_4 \succ h_8 \succ h_{10} \succ h_5 \succ h_7
e_2
        h_5 > h_3 > h_8 > h_1 > h_6 > h_7 > h_9 > h_2 > h_{10} > h_4
e_3
        h_1 \succ h_4 \succ h_2 \succ h_6 \succ h_5 \succ h_7 \succ h_3 \succ h_{10} \succ h_8 \succ h_9
e_4
        h_7 \succ h_6 \succ h_2 \succ h_8 \succ h_9 \succ h_5 \succ h_3 \succ h_1 \succ h_4 \succ h_{10}
        h_9 > h_8 > h_6 > h_3 > h_1 > h_7 > h_{10} > h_2 > h_5 > h_4
        h_2 \succ h_5 \succ h_1 \succ h_4 \succ h_9 \succ h_6 \succ h_3 \succ h_8 \succ h_7 \succ h_{10}
e_7
        h_8 \succ h_7 \succ h_5 \succ h_9 \succ h_3 \succ h_1 \succ h_2 \succ h_{10} \succ h_6 \succ h_4
e_8
        h_4 \succ h_{10} \succ h_6 \succ h_8 \succ h_1 \succ h_7 \succ h_2 \succ h_9 \succ h_3 \succ h_5
e_{10} \mid h_{10} \succ h_9 \succ h_3 \succ h_5 \succ h_4 \succ h_6 \succ h_7 \succ h_2 \succ h_8 \succ h_1
```

- a) Utilizando TTC, hallar el emparejamiento.
- b) ¿El emparejamiento por TTC es estable?
- c) Utilizando RSD, hallar el emparejamiento.
- d) Comparar los resultados de a) y c).

Problema 4: no unicidad

Plantear un ejemplo sencillo donde los resultados del emparejamiento por AD depende del lado del mercado que realice las propuestas.

Problema 5: refinamiento

Considere el problema 3, pero ahora asuma que los estudiantes tiene con última opción elegir el departamento asignado inicialmente. ¿Qué ocurre con los resultados al usar TTC y SD?