一、填空题(共5小题,每小题3分,共15分)

1. 设Σ是上半椭球面
$$\frac{x^2}{2} + y^2 + z^2 = 1$$
 $(z \ge 0)$,已知Σ的面积为 $\frac{A}{2}$,则 $\iint_{\Sigma} (x^2 + 2y^2 + 2z^2 + xyz) dS = ______。$

2. 幂级数
$$\sum_{n=1}^{\infty} \frac{n}{2^n + 3^n} x^n$$
 的收敛半径为 ______。

3. 常微分方程
$$\begin{cases} xy'-y=0 \\ y(1)=1 \end{cases}$$
 的解为 $y=x$ 。

4. 向量场
$$\vec{A}(x, y, z) = \frac{1}{6} \left(x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k} \right)$$
 在点 $M(1,1,1)$ 处的散度 $\operatorname{div} \vec{A}(x, y, z) = \underline{1}$.

5. 设Σ是球面
$$x^2 + y^2 + z^2 = 1$$
 的外侧,则曲面积分 $\iint_{\Sigma} (x^2 + y^2 + z^2) dx dy = _____.$

二、选择题(共5小题,每小题3分,共15分)

1. Σ 的方程为 $y^2+z^2=x^2$ $(0 \le x \le 1)$, Σ_1 为 Σ 在第一卦限内对应的部分,则下列选项正确的是(D)。

$$(A) \iint\limits_{\Sigma} z dS = 4 \iint\limits_{\Sigma_{l}} x dS \; ; \quad (B) \quad \iint\limits_{\Sigma} y dS = 4 \iint\limits_{\Sigma_{l}} x dS \; ; \quad (C) \quad \iint\limits_{\Sigma} x y z dS \neq 4 \iint\limits_{\Sigma_{l}} x y z dS \; ; \quad (D) \quad \iint\limits_{\Sigma} x dS = 4 \iint\limits_{\Sigma_{l}} x dS \; ;$$

2. 平面曲线
$$L: |x| + |y| = 1$$
,则 $\oint_L (|x| + |y|) ds = (A)$ 。 (A) $4\sqrt{2}$; (B) π ; (C) 0; (D) 以上都不对;

3. 设
$$u_n \neq 0$$
 ($n = 1, 2, 3, \cdots$), 且 $\lim_{n \to \infty} \frac{n}{u_n} = 1$, 则级数 $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{u_n} + \frac{1}{u_{n+1}}\right)$ (B)。

(A) 发散; (B) 条件收敛; (C) 绝对收敛; (D) 收敛性根据条件不能确定;

4. 下列微分方程中,以 $y = C_1 e^{2x} + C_2 \cos x + C_3 \sin x + x$ (C_1, C_2, C_3 为任意常数)为通解的是 (C)。

(A)
$$y''' + y'' + 4y' + 4y = x$$
; (B); $y''' + y'' + 4y' + 4y = -x^2 + x$;

(C);
$$y'''-2y''+y'-2y=-2x+1;$$
 (D) $y'''-2y''+y'-2y=-2x^2-x;$

5. 下列选项错误的是(D)。

(A) 方程
$$\left(x^3+1\right)\frac{d^2y}{dx^2}+x^2\frac{dy}{dx}=xe^{3x}$$
为非齐次二阶线性微分方程;

(B) 微分方程
$$x^2y$$
"+4 xy '+2 y =0 的通解为 $Y = C_1 \frac{1}{x} + C_2 \frac{1}{x^2}$;

(C) 微分方程
$$y$$
"+ $y = x + \cos x$ 的特解形式可设为 $y^* = ax^2 + bx + c + Ax \sin x + (Bx + C)\cos x$;

(D) 设
$$y_1, y_2, y_3$$
 是 $y'' + p(x)y' + q(x)y = 0$ 的三个不同的解,则该方程的通解为 $Y = C_1(y_1 - y_2) + C_2(y_2 - y_3)$;

三、计算题(每小题 10 分, 共 40 分)

2. 计算
$$\int_{L} \frac{3}{2} x^2 dx + y dy$$
 , 其中 L 是曲线 $y = x^3$ 上从点 $A(-1,-1)$ 到 $B(1,1)$ 对应的一段曲线。

$$\widehat{AB}: \begin{cases} x = x \\ y = x^3 \end{cases} \quad x: -1 \to -1 \quad \int_L \frac{3}{2} x^2 dx + y dy = \int_{-1}^1 \frac{3}{2} x^2 dx + x^3 dx^3 = \int_{-1}^1 \frac{3}{2} x^2 dx + 3x^5 dx = 1 \quad -10.53$$

3. 求微分方程 $y'-2xy = 2xe^{x^2}$ 的通解。

$$y'-2xy=0$$
, $Y=Ce^{x^2}$ ------6 \Rightarrow $y=C(x)e^{x^2}$ $C(x)=x^2+C$ $y=(x^2+C)e^{x^2}$ -----10 \Rightarrow

4. 将
$$f(x) = \frac{3x}{x^2 - x - 2}$$
 展为 x 的幂级数。或求 $f(x) = \frac{x^n}{n(n+1)(n+2)}$ 的和函数。

$$|x| < 1$$
且 $\left| \frac{-x}{2} \right| < 1$ 而 $x = \pm 1$ 时原式发散,故原式的收敛域为 $|x| < 1$ ……………10 分

四、计算题(每小题 10 分, 共 30 分)

1. 求常微分方程 $y'''-4y''+4y'=xe^x$ 的通解。

解:
$$r^3 - 4r^2 + 4r = r(r-2)^2 = 0$$
, $Y = C_1 + C_2 e^{2x} + C_3 x e^{2x}$ ------6 分

设
$$y^* = (ax+b)e^x$$
 得 $(ax+b-a)e^x = xe^x$, 解得 $a=1, b=1$, 则 $y^* = (x+1)e^x$

$$y = Y + y^* = C_1 + C_2 e^{2x} + C_3 x e^{2x} + (x+1)e^x$$
 -----10 %

3. 求 1)已知
$$\overrightarrow{A} = (P(x, y, z), Q(x, y, z), R(x, y, z))$$
,计算 $div(rot(\overrightarrow{A}))$ 。解: $div(rot(\overrightarrow{A})) = \cdots = 0$ ---4 分

2) 证明空间的格林第二公式
$$\iint_{\Omega} \begin{vmatrix} \Delta u & \Delta v \\ u & v \end{vmatrix} dxdydz = \iint_{D} \begin{vmatrix} \frac{\partial u}{\partial n} & \frac{\partial v}{\partial n} \\ u & v \end{vmatrix} dS$$
, 其中 \vec{n} 为曲面 Σ 的外法线,

u = u(x, y, z), v = v(x, y, z)二阶偏导连续。

$$\text{i.e.} \quad \iint_{D} \left| \frac{\partial u}{\partial n} - \frac{\partial v}{\partial n} \right| dS = \iint_{D} \left(\left| \frac{\partial u}{\partial n} - \frac{\partial v}{\partial n} \right| \cos \alpha + \left| \frac{\partial u}{\partial n} - \frac{\partial v}{\partial n} \right| \cos \alpha + \left| \frac{\partial u}{\partial n} - \frac{\partial v}{\partial n} \right| \cos \alpha \right) dS = \iiint_{\Omega} \left| \frac{\Delta u}{u} - \frac{\Delta v}{v} \right| dx dy dz ---6 \text{ fr}$$