Problem 2

- 1. The set of all possible ways to arrange n males and m females around a table.
 - There are $\frac{(m+n)!}{m+n}=(m+n-1)!$ elements in the set, each one with probability $\frac{1}{(m+n-1)!}$
- 2. Let x be the expected number of males sitted next to atleast one female.

$$x=n*P($$
"Having at least 1 female next to you"|"Being a mal $x=n*(1-P($ "Having 2 males next to you"|"Being a male") $x=n*(1-\frac{(n-1)nCr\ 2\cdot 2!\cdot (n+m-3)!}{(n+m-1)!})$ $x=\frac{mn(2n+m-3)}{(n+m-1)(n+m-1)}$ <-- This last step was computed with wxmaxima

Note: I'm not sure about the 2nd result, but I made a script (problem2.py) to simulate this problem 10^6 times with 5 males and 5 females and it gives me about the same value (x=4.166254) as substituting m and n by 5 in the formula above (x=4.166(6)).