A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 3EC

Bookmark

Show all steps: (

ON

Problem

Prove the following for all integers a, b, c, d and all positive integers m and n:

If $a \equiv b \pmod{n}$, then $ac \equiv bc \pmod{n}$.

Step-by-step solution

Step 1 of 2

Consider the congruence equation

$$a \equiv b \pmod{n}$$

Object of the problem is to prove that if $a \equiv b \pmod{n}$ then $ac \equiv bc \pmod{n}$.

Use the definition, $a \equiv b \pmod{n}$ iff n divides a - b to prove the result.

By the definition of congruence equation, n divides a-b

There is integer p such that

$$a-b=np$$

Comment

Step 2 of 2

Multiply both sides of the equation with c.

$$c(a-b) = ncp$$

$$ac - (bc) = n(cp)$$

$$ac - (bc) = ns$$
 take $cp = s$

Therefore, if $a \equiv b \pmod{n}$ then $ac \equiv bc \pmod{n}$ Comment	*
Comment	
Comment	
Comment	