## PHY-820 - CLASSICAL MECHANICS

## Final Exam

## Problem 2 - 10 Points

Consider a roller coaster in which a car of mass m is attached to a frictionless three-dimensional track. The track has a circular footprint with radius R, i.e. the x and y coordinates defining the horizontal plane satisfy  $x^2 + y^2 = R^2$ . The vertical z coordinate of the track is made to depend on the azimuthal angle  $\theta$ , measured in radians, as  $z = h \cdot (1 + \sin \theta)$ .

- a) [2pts] Determine the Lagrangian L in terms of  $\theta$  and  $\dot{\theta}$ .
- b) [2pts] Derive the equations of motion.
- c) [2pts] Determine the generalized momentum  $p_{\theta}$ , and express  $\dot{\theta}$  by  $p_{\theta}$ .
- d) [2pts] Determine the Hamiltonian  ${\cal H}$  of the system.
- e) [2pts] Are  $p_{\theta}$  and/or the Hamiltonian H conserved, why or why not?

Solution -

- a)  $L = \frac{1}{2} mR\dot{\theta} + \frac{1}{2} m\dot{z} mgz$ ,  $\dot{z} = h \ln\theta \dot{\theta}$  $= \frac{1}{2} mR^2 \dot{\theta}^2 + \frac{1}{2} m h^2 \cos\theta \dot{\theta}^2 - mgh(1 + \sin\theta)$
- p) \frac{9}{4} \frac{9}{30} \frac{9}{30} = 0
- $\rightarrow \frac{d}{dt} \left[ m \left( R^2 + h^2 \cos^2 \theta \right) \dot{\theta} \right] + \sin \theta \cos \theta m h \dot{\theta}^2$   $+ mgh \cos \theta = \delta$
- C)  $P_{\theta} = \frac{\partial L}{\partial g} = mR^2 \dot{\theta} + mh^2 \cos^2 \theta \dot{\theta} = m(R + h\cos^2 \theta) \dot{\theta}$   $\rightarrow \dot{\theta} = \frac{P_{\theta}}{m(R^2 + h^2 \cos^2 \theta)}$
- d) using hamilton's equations, one can show that the equation of motion is consistent with the one in part b.
- e) H is conserved because hamiltonian is not explicitly time dependant, but Pa is not conserved due to the explicit dependence of H on A.

- Problem:

$$H = \frac{(P_X + a+)^2}{zm} + \nabla(x)$$

find the equation of motion

Solution -

$$\dot{X} = \frac{\partial H}{\partial P_X} = \frac{P_X + at}{m} \rightarrow P_X = m\dot{x} - at_{(I)}$$

$$\dot{P}_{X} = -\frac{2H}{2x} = -\frac{2V}{2x} \quad (II)$$

$$(I)_{I}(II) \Rightarrow m\ddot{x} - \alpha = -\frac{\partial V}{\partial x}$$
  
 $\rightarrow m\ddot{x} = -\frac{\partial V}{\partial x} - \alpha$ 

Therefore the linear term added to momentum in H acts as a constant force.

## - Problem:

Consider two rods joined at the right angle. Two beads are free to move on the rods & are connected to each other via a spring with force constant & & unstretched length &. Find the normal modes.



Solution-

The Lagrangian of the system is

$$J = \frac{1}{2} m(\dot{x} + \dot{y}^2) - \frac{\chi}{2} (\sqrt{\chi^2 + y^2} - l)^2$$

We make a change of coordinates:

$$X = r \cos \theta$$

the Lagrangian in the new coordinates takes the form.

$$\int_{-\frac{\pi}{2}}^{2} = \frac{1}{2} m r^{2} + \frac{1}{2} m r^{2} + \frac{\pi}{2} (r - 2)^{2}$$

The system has two normal modes:

1) 
$$r = 2$$
 &  $\ddot{\partial} = 0$  which is a Zero mode of the system.

Z) 
$$\theta = constant & r + \frac{\kappa}{m} (r-l) = 0$$
 which gives rise to an eigen-frequency  $\omega = \sqrt{\frac{\kappa}{m}}$ .