Class 9: Halloween Candy Mini-Project

Marielle Samonte (A18681951)

Table of contents

1.	Data import	1
2.	What is your favorite candy?	2
	Exploratory Analysis	3
3.	Overall Candy Rankings	6
4.	Taking a look at pricepoint	13
5.	Correlation Structure	15
6.	Principal Component Analysis (PCA)	17

Today we will take a step back to some data we can taste and explore the correlation structure and principal components of some Halloween candy.

1. Data import

```
candy_file <- "candy-data.txt"
candy <- read.csv(candy_file, row.names=1)
head(candy)</pre>
```

	choco	olate	fruity	caramel	neanut	.valmondv	nougat	crispedr	ricewafer
	011000	Jiaoo	rrardy	our unior	podirac	y armonay	nougue	, cribboar	ICOWATOI
100 Grand		1	0	1		0	C)	1
3 Musketeers		1	0	0		0	1	=	0
One dime		0	0	0		0	C)	0
One quarter		0	0	0		0	C)	0
Air Heads		0	1	0		0	C)	0
Almond Joy		1	0	0		1	C)	0
	hard	bar	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	()	0.732	0	.860	66.97173	
3 Musketeers	0	1	()	0.604	0	.511	67.60294	

One dime	0	0	0	0.011	0.116	32.26109
One quarter	0	0	0	0.011	0.511	46.11650
Air Heads	0	0	0	0.906	0.511	52.34146
Almond Joy	0	1	0	0.465	0.767	50.34755

Q1. How many different candy types are in this dataset?

nrow(candy)

[1] 85

Q2. How many fruity candy types are in the dataset?

sum(candy\$fruity)

[1] 38

2. What is your favorite candy?

winpercent is the percentage of people who prefer this candy over another randomly chosen candy from the dataset. The higher the percentage, the more popular the candy is.

Q3. What is your favorite candy in the dataset and what is it's winpercent value?

```
candy["Sour Patch Kids",]$winpercent
```

[1] 59.864

Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat",]$winpercent
```

[1] 76.7686

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candy["Tootsie Roll Snack Bars",]$winpercent
```

[1] 49.6535

Exploratory Analysis

There is a useful skim() function in the skimr package that can help give a quick overview of a given dataset, especially when you encounter a new dataset.

library("skimr")
skim(candy)

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcomp	lete_ra	tmean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

The candy\$winpercent variable in the last column seems to be on a different scale to the majority of the other columns in the dataset.

Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}?

candy\$chocolate

Going down the list of 85 candy, zero represents that the candy does not fit the chocolate category, while 1 means that the candy fits the chocolate category.

Q8. Plot a histogram of winpercent values

```
hist(candy$winpercent)
```

Histogram of candy\$winpercent


```
library(ggplot2)

ggplot(candy) +
  aes(winpercent) +
  geom_histogram(bins = 10, fill = "dark red")
```


Q9. Is the distribution of winpercent values symmetrical?

The distribution of winpercent values is not symmetrical.

Q10. Is the center of the distribution above or below 50%?

summary(candy\$winpercent)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 22.45 39.14 47.83 50.32 59.86 84.18
```

The median is below 50%, 47.83

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

```
choc.inds <- candy$chocolate == 1
choc.candy <- candy[choc.inds, ]
choc.win <- choc.candy$winpercent
mean(choc.win)</pre>
```

[1] 60.92153

```
fruit.inds <- candy$fruity == 1
fruit.candy <- candy[fruit.inds, ]
fruit.win <- fruit.candy$winpercent
mean(fruit.win)</pre>
```

[1] 44.11974

Chocolate candy is ranked higher (60.9) than fruit candy (44.1) on average.

Q12. Is this difference statistically significant?

```
t.test(choc.win, fruit.win)
```

```
Welch Two Sample t-test
```

```
data: choc.win and fruit.win
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    11.44563 22.15795
sample estimates:
mean of x mean of y
    60.92153 44.11974
```

```
ans <- t.test(choc.win, fruit.win)
ans$p.value</pre>
```

[1] 2.871378e-08

The difference is statistically significant, demonstrated by low p-value = 2.871e-08. Yes with a P-value of 2.8713778×10^{-8}

3. Overall Candy Rankings

Q13. What are the five least liked candy types in this set?

There are two related functions that can help here, one is the classic sort() and order()

```
x \leftarrow c(5,10,1,4)
sort(x)
```

[1] 1 4 5 10

```
order(x)
```

[1] 3 4 1 2

```
inds <- order(candy$winpercent)
head(candy[inds,], 5)</pre>
```

			£		7 .				
		chocolate	iruity	cara	neı]	peanutyain	nonay	nougat	
Nik L Nip		0	1		0		0	0	
Boston Baked	Beans	0	0		0		1	0	
Chiclets		0	1		0		0	0	
Super Bubble		0	1		0		0	0	
Jawbusters		0	1		0		0	0	
		crispedrio	ewafer	hard	bar	pluribus	sugar	percent	pricepercent
Nik L Nip			0	0	0	1		0.197	0.976
Boston Baked	Beans		0	0	0	1		0.313	0.511
Chiclets			0	0	0	1		0.046	0.325
Super Bubble			0	0	0	0		0.162	0.116
Jawbusters			0	1	0	1		0.093	0.511
		winpercent	;						
Nik L Nip		22.44534	:						
Boston Baked	Beans	23.41782	?						
Chiclets		24.52499)						
Super Bubble		27.30386	;						
Jawbusters		28.12744							

The five least liked candy are Nik L Nip, Boston Baked Beans, Chiclets, Super Bubble, and Jawbusters.

Q14. What are the top 5 all time favorite candy types out of this set?

```
inds <- order(candy$winpercent, decreasing = T)
head(candy[inds,], 5)</pre>
```

	chocolate	fruity	caran	nel :	peanutyaln	nondy	nougat
Reese's Peanut Butter cup	1	0		0		1	0
Reese's Miniatures	1	0		0		1	0
Twix	1	0		1		0	0
Kit Kat	1	0		0		0	0
Snickers	1	0		1		1	1
	crispedric	ewafer	hard	bar	pluribus	sugar	percent
Reese's Peanut Butter cup)	0	0	0	0		0.720
Reese's Miniatures		0	0	0	0		0.034
Twix		1	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Snickers		0	0	1	0		0.546
	priceperce	nt winp	ercer	ıt			
Reese's Peanut Butter cup	0.6	51 84	1.1802	29			
Reese's Miniatures	0.2	79 81	.8662	26			
Twix	0.9	06 81	.6429	91			
Kit Kat	0.5	11 76	5.7686	50			
Snickers	0.6	51 76	6.6737	78			

The top five favorite candies are Reese's Peanut Butter Cup, Reese's Miniatures, Twix, Kit Kat, and Snickers.

Make a bar plot with ggplot and order it by winpercent values. > Q15. Make a first barplot of candy ranking based on winpercent values.

```
ggplot(candy) +
  aes(winpercent, rownames(candy)) +
  geom_col()
```


Q16. This is quite ugly, use thereorder() function to get the bars sorted by winpercent?

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy),winpercent)) +
  geom_col()
```


Here we want a custom color vector to color each bar the way we want - with chocolate and fruity candy together with whether is it a bar or not.

```
my_cols <- rep("grey", nrow(candy))
my_cols[as.logical(candy$chocolate)] <- "chocolate"
my_cols[as.logical(candy$fruity)] <- "pink"
my_cols[as.logical(candy$bar)] <- "brown"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy),winpercent)) +
   geom_col(fill=my_cols)</pre>
```


ggsave("mybarplot.png", width = 3, height = 6)

Figure 1: My silly barplot image

Now, for the first time, using this plot we can answer questions like: Q17. What is the worst ranked chocolate candy?

Sixlets

Q18. What is the best ranked fruity candy?

Starburst

4. Taking a look at pricepoint

```
# Pink and gray are too light, lets change to red and black
my_cols <- rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] <- "chocolate"
my_cols[as.logical(candy$fruity)] <- "red"
my_cols[as.logical(candy$bar)] <- "brown"

library(ggrepel)

# How about a plot of price vs win
ggplot(candy) +
    aes(winpercent, pricepercent, label=rownames(candy)) +
    geom_point(col=my_cols) +
    geom_text_repel(col=my_cols, size=3.3, max.overlaps = 8)</pre>
```

Warning: ggrepel: 52 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

```
ord <- order(candy$pricepercent, decreasing = TRUE)
tail( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Strawberry bon bons	0.058	34.57899
Dum Dums	0.034	39.46056
Fruit Chews	0.034	43.08892
Pixie Sticks	0.023	37.72234
Tootsie Roll Midgies	0.011	45.73675

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719

```
Ring pop 0.965 35.29076
Hershey's Krackel 0.918 62.28448
Hershey's Milk Chocolate 0.918 56.49050
```

5. Correlation Structure

```
cij <- cor(candy)
cij</pre>
```

```
chocolate
                                fruity
                                           caramel peanutyalmondy
                                                                      nougat
chocolate
                 1.0000000 -0.74172106
                                        0.24987535
                                                       0.37782357 0.25489183
fruity
                -0.7417211 1.00000000 -0.33548538
                                                      -0.39928014 -0.26936712
                 0.2498753 -0.33548538
                                        1.00000000
                                                       0.05935614 0.32849280
caramel
peanutyalmondy
                 0.3778236 -0.39928014
                                        0.05935614
                                                       1.00000000
                                                                  0.21311310
                                                       0.21311310 1.00000000
nougat
                 0.2548918 -0.26936712 0.32849280
crispedricewafer
                 0.3412098 -0.26936712
                                       0.21311310
                                                      -0.01764631 -0.08974359
hard
                -0.3441769 0.39067750 -0.12235513
                                                      -0.20555661 -0.13867505
bar
                 0.5974211 -0.51506558
                                        0.33396002
                                                       0.26041960 0.52297636
pluribus
                -0.3396752 0.29972522 -0.26958501
                                                      -0.20610932 -0.31033884
sugarpercent
                 0.1041691 -0.03439296
                                        0.22193335
                                                       0.08788927
                                                                  0.12308135
                 0.5046754 -0.43096853
                                        0.25432709
                                                       0.30915323
                                                                  0.15319643
pricepercent
                 0.6365167 -0.38093814
                                        0.21341630
                                                       0.40619220 0.19937530
winpercent
                crispedricewafer
                                        hard
                                                           pluribus
                                                     bar
                      0.34120978 -0.34417691
                                              0.59742114 -0.33967519
chocolate
fruity
                     -0.26936712  0.39067750  -0.51506558  0.29972522
                      0.21311310 -0.12235513 0.33396002 -0.26958501
caramel
peanutyalmondy
                     -0.01764631 -0.20555661 0.26041960 -0.20610932
                     -0.08974359 -0.13867505 0.52297636 -0.31033884
nougat
crispedricewafer
                      hard
                     -0.13867505
                                 1.00000000 -0.26516504 0.01453172
bar
                      0.42375093 -0.26516504 1.00000000 -0.59340892
                                  0.01453172 -0.59340892 1.00000000
pluribus
                     -0.22469338
sugarpercent
                      0.06994969
                                 0.09180975
                                              0.09998516 0.04552282
pricepercent
                      0.32826539 -0.24436534
                                              0.51840654 -0.22079363
                      0.32467965 -0.31038158 0.42992933 -0.24744787
winpercent
                sugarpercent pricepercent winpercent
chocolate
                  0.10416906
                                0.5046754 0.6365167
fruity
                 -0.03439296
                               -0.4309685 -0.3809381
                                0.2543271
                                           0.2134163
caramel
                  0.22193335
peanutyalmondy
                  0.08788927
                                0.3091532 0.4061922
```

nougat	0.12308135	0.1531964	0.1993753
crispedricewafer	0.06994969	0.3282654	0.3246797
hard	0.09180975	-0.2443653	-0.3103816
bar	0.09998516	0.5184065	0.4299293
pluribus	0.04552282	-0.2207936	-0.2474479
sugarpercent	1.00000000	0.3297064	0.2291507
pricepercent	0.32970639	1.0000000	0.3453254
winpercent	0.22915066	0.3453254	1.0000000

library(corrplot)

corrplot 0.95 loaded

corrplot(cij)

Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Chocolate and fruity variables are anti-correlated.

```
round( cij["chocolate", "fruity"], 2)
```

[1] -0.74

Q23. Similarly, what two variables are most positively correlated?

Chocolate and bar are most positively correlated.

```
round( cij["chocolate", "bar"], 2)
```

[1] 0.6

6. Principal Component Analysis (PCA)

We need to be sure to scale our input candy data before PCA as we have winpercent column on a different scale to all others in the dataset.

```
pca <- prcomp(candy, scale = T)
summary(pca)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                        PC3
                                                PC4
                                                        PC5
                                                                PC6
                                                                        PC7
Standard deviation
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion 0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
                           PC8
                                   PC9
                                          PC10
                                                  PC11
                                                           PC12
Standard deviation
                       0.74530 0.67824 0.62349 0.43974 0.39760
Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317
Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000
```

First main result figure is my "PCA plot"

```
#pca$x

ggplot(pca$x) +
  aes(PC1, PC2, label = rownames(pca$x)) +
  geom_point(col = my_cols) +
  geom_text_repel(max.overlaps = 6, col = my_cols) +
  theme_bw()
```

Warning: ggrepel: 67 unlabeled data points (too many overlaps). Consider increasing max.overlaps

The second main PCA result is in the pca\$rotation we can plot this to generate a so-called "loadings" plot.

```
#pca$rotation

ggplot(pca$rotation) +
  aes(PC1, rownames(pca$rotation)) +
  geom_col()
```



```
ggplot(pca$rotation) +
  aes(PC1, reorder(rownames(pca$rotation), PC1), fill = PC1) +
  geom_col()
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

Fruity, hard, and pluribus variables are strongly picked up by PC1 in the positive direction. This makes sense because fruity candy are commonly found in a bag of multiple candies, and have a hard texture compared to other candies like chocolate.