Network and Web Security

Web user tracking

Dr Sergio Maffeis

Department of Computing

Course web page: https://331.websec.fun

Imperial College London

Web tracking

- Examples of tracking
 - User-specific website settings maintain a consistent browsing experience across a sequence of related HTTP requests and responses
 - Secure session recognize requests coming from the same user, that has already been authenticated, and provide privileged access
 - Browsing history, personal preferences and demographic data are harvested by marketers to profile users and provide relevant advertising
 - User presence online on different devices is correlated by law enforcement in order to identify individuals
- Tracking is a complex and pervasive issue
 - 1st party trackers
 - iframes and scripts from same origin as website visited by the user
 - 3rd party trackers
 - Cross-domain iframes and their resources, included by visited websites
 - Can happen across devices
 - Social network IDs in network traffic
 - Access to identifying web pages repeated across devices
 - Learn browsing patterns of user on the desktop, identify similar patterns on mobile
 - There are legitimate and illegitimate usages
 - Do not necessarily coincide with desirable and undesirable usages

Browser support for tracking

- Trackers need to store information in the browser about the user
- Cookies: again 1st/3rd party distinction

Example: cross-site tracking

Browser support for tracking

- Trackers need to store information in the browser about the user
- Supercookies
 - HTML5 storage: Local/sessionStorage, Web SQL, IndexedDB ...
 - Plugin storage: Flash Local Shared Objects
- Cached resources
 - Server tells browser to cache a script track.js?v=1.0
 - Response header Cache-Control: private, Max-Age=31536000
 - Script saves state to a variable var store= [interesting information];
 - Other page loads including same script get same value in variable store
 - Change resource name to force cache miss and reset state: track.js?v=1.1
- Cache headers
 - ETag header is intended for cache validation
 - Response header sets ETAG value eтаg: "A23C42BF890DFE"
 - Next request headers reflect the Etag value If-none-match: "A23C42BF890DFE"
 - A 304 response means use cached version, else new resource is sent back
 - Can be used like a simplified cookie
 - Put tracking id in Etag header: it is sent every time to the server
 - Other request/response header pairs similar to ETag
 - If-Modified-Since/Last-Modified

Browser support for tracking

- Trackers need ways to send user information back to the server
- HTTP request and responses
 - Explicit communication
 - User clicks on a link
 - Loading of page resources (iframes, images, etc.)
 - AJAX and JavaScript-triggered page loading or navigation events
 - Implicit communication
 - W3C Beacons
 - "asynchronous and non-blocking delivery of data that minimizes resource contention with other time-critical operations"
 - navigator.sendBeacon('/collector', data);
 - In Chrome, opening a new tab sends a new tab request to Google
 - Search bar may send in the background one request per character you type
 - Pre-rendering
 - Browser loads resources linked on current page in case you later click
- Other Plugin communications
 - Flash, Java, Active X controls can use sockets

Imperial College

Zombie cookies

- Deleted your cookies?
- Tracking data saved in other headers, cache or supercookies can be used to resuscitate them!
 - Cookie respawning, aka Zombie cookies
 - In fact, who needs cookies if you have JavaScript + localStorage?
- Cleared also cache and local/sessionStorage?
 - Respawning via Flash cookies (LSOs)
 - Thanks to Flash, zombie cookies can migrate across browsers!
 - (LSOs can be shared by various Flash plugin instances)
- Key role of fingerprinting in tracking
 - Respawn tracking data associated to a known fingerprint even if browser and Flash data was reset

KISSmetrics and Hulu got sued for that trick in 2011

Imperial College

Tracking countermeasures

- HTTP level defenses
 - Do Not Track header
 - W3C Tracking Protection Working Group's brainchild
 - Request header: DNT: 1
 - Mostly interpreted as do not target the users based on collected data
 - Data is still collected by the tracker
 - Referrer-Policy header
 - Prevent cross-domain Referer leaks
 - See Module 12 HTTP
- Privacy solutions
 - Private browsing/Incognito mode
 - Prevents caching, history, cookies, preferences
 - A bit of a drastic solution
 - A lot can still be achieved using JavaScript, side-channels, etc.
 - "Going incognito doesn't hide your browsing from your employer, your internet service provider, or the websites you visit."
 - Anti-tracking extensions: Ghostery, AdBlock+, Privacy Badger, ShareMeNot...
 - Privacy focussed browsers: TOR, Vivaldi, ...

Browser-based countermeasures

- User settings
 - Block 3rd party cookies
 - 3rd party trackers cannot set cookies
 - In some browsers, 3rd party cookies are still sent if they already exists
 - A 3rd party iframe can open a popup which is now a 1st-party cookie setter
 - Disable plugins
 - Finally Flash is no longer supported by major browsers
 - Disable JavaScript (stop browsing?)
- New trend: built-in tracking defenses
 - Firefox
 - Enhanced Tracking Protection: blocks by default 3rd party cookies
 - Since Jan 2020, stops also 3rd party requests for fingerprinting scripts
 - Based on Disconnect blacklist: https://disconnect.me/trackerprotection
 - Chrome's Privacy Sandbox
 - Use SameSite cookies, kill Flash, work in progress
 - Safari's Intelligent Tracking Prevention
 - Complex solution controlling cookies, local storage lifetime and scope, based on blacklisting and analysis of url parameters (e.g. website.example?clickID=0123456789)

Browser-based countermeasures

- Beware of complex solutions
 - Internet standards and browsers evolved a bit at a time, over the years
 - Security and privacy implications of new technologies take time to assess

Information Leaks via Safari's Intelligent Tracking Prevention ARTUR JANC, KRZYSZTOF KOTOWICZ, LUKAS WEICHSELBAUM, ROBERTO CLAPIS

ABSTRACT

Intelligent Tracking Prevention (ITP) is a privacy mechanism implemented by Apple's Safari browser, released in October 2017[1]. ITP aims to reduce the cross-site tracking of web users by limiting the capabilities of cookies and other website data[2].

As part of a routine security review, the Information Security Engineering team at Google has identified multiple security and privacy issues in Safari's ITP design. These issues have a number of unexpected consequences, including the disclosure of the user's web browsing habits, allowing persistent cross-site tracking, and enabling cross-site information leaks[3] (including cross-site search[4]).

This report is a modestly expanded version of our original vulnerability submission to Apple (WebKit bug #201319[5]), providing additional context and edited for clarity. A number of the issues discussed here have been addressed in Safari 13.0.4 and iOS 13.3, released in December 2019[6].

1 BACKGROUND

1.1 Intelligent Tracking Prevention (ITP) NWS - Web user tracking

The aim of Safari's Intelligent Tracking Prevention mechanism is to protect users from tracking

Research on tracking

- Anti-tracking extensions use blacklists to stop requests to tracking websites
 - How to automatically populate such blacklists?
 - Ongoing research on machine learning techniques to identify trackers
- Trackers leave a trail of information visible from the browser
 - Ongoing research on data analytic techniques to spot tracking patterns
 - Monitorito browser extension (distinguished student project)
 - Monitor and visualise network events in real time
 - Identify trackers using graph analytics

