Числено интегриране. Квадратурни формули на Нютон-Коутс

Постановка на задачата

Нека y = f(x) е функция, дефинирана и интегруема в Риманов смисъл в интервала [a,b]. По зададена таблица от стойностите $y_i = f(x_i)$ на функцията в точките (възлите) $x_0, x_1, x_2, ..., x_n \in [a,b]$, да се намери приближено стойността на интеграла $I = \int_a^b f(x) dx$.

Квадратурни формули на Нютон-Коутс

Ако n е естествено число и $h=\frac{b-a}{n}$ е стъпка, с чиято помощ интервалът на интегриране е разделен на n равни подинтервала, при което $x_0=a$, $x_{i+1}=x_i+h$, i=0,1,...,n-1, то най-често използваните сумарни квадратурни формули на Нютон-Коутс са дадени в следващата таблица. Тук $M_k=\max_{x\in [a,b]} \left|f^{(k)}(x)\right|$, при условие, че съществува непрекъсната k-та производна на y=f(x).

Название	Квадратурна формула за числено интегриране	Оценка на грешката $ R(f,x) $
Формула на левите правоъгълници	$I_1 \approx h \sum_{i=0}^{n-1} f(x_i)$	$\frac{(b-a)^2}{2n}M_1$, r.e. $\frac{(b-a)M_1}{2}h$
Формула на десните правоъгълници	$I_2 \approx h \sum_{i=1}^n f(x_i)$	$\frac{(b-a)^2}{2n}M_1$, r.e. $\frac{(b-a)M_1}{2}h$
Формула на средните правоъгълници	$I_3 \approx h \sum_{i=0}^{n-1} f(x_i + \frac{h}{2})$	$\frac{(b-a)^3}{24n^2}M_2$, T.e. $\frac{(b-a)M_2}{24}h^2$
Формула на трапеците	$I_T \approx \frac{h}{2} \left(f(a) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right)$	$\frac{(b-a)^3}{12n^2}M_2$, T.e. $\frac{(b-a)M_2}{12}h^2$
Формула на Симпсън	$ I_{S} \approx \frac{h}{3} \left(f(a) + 4 \sum_{i=1}^{m} f(x_{2i-1}) + 2 \sum_{i=1}^{m-1} f(x_{2i}) + f(b) \right)$	$\frac{(b-a)^5}{180n^4}M_4$, T.e. $\frac{(b-a)M_4}{180}h^4$

Пример 1. Стойностите на функцията $y = f(x) = \ln(x^2)$ в интервала [2,3] са зададени в първите две колонки на таблица 1. Да се пресметнат приближените стойности на интеграла $I = \int_2^3 f(x) dx$, по всички квадратурни формули от горната таблица.

Решение:

В случая имаме стъпка h = 0,1 и брой на подинтервалите n = 10.

		Таблица 1
i	x_i	y_i
0	2,0	1,38629
1	2,1	1,48387
2	2,2	1,57691
3	2,3	1,66582
4	2,4	1,75094
5	2,5	1,83258
6	2,6	1,91102
7	2,7	1,98650
8	2,8	2,05924
9	2,9	2,12942
10	3,0	2,19722

		Таблица 2
i	$x_i + \frac{h}{2}$	$y_{i+\frac{1}{2}}$
0	2,05	1,43568
1	2,15	1,53094
2	2,25	1,62186
3	2,35	1,70883
4	2,45	1,79218
5	2,55	1,87219
6	2,65	1,94912
7	2,75	2,02320
8	2,85	2,09464
9	2,95	2,16361

а) По формулата за левите правоъгълници трябва да сумираме стойностите от y_0 до y_0 и полученото число да умножим по h. Получаваме

$$I_1 \approx h \sum_{i=0}^{n-1} f(x_i) = h \sum_{i=0}^{9} y_i = 0,1.(17,7826) = 1,77826.$$

б) По формулата за десните правоъгълници намираме сумата от y_1 до y_{10} и полученото число да умножаваме по h. Получаваме

$$I_2 \approx h \sum_{i=1}^n f(x_i) = h \sum_{i=1}^{10} y_i = 0,1.18,5935 = 1,85935.$$

в) В случая на формулата на средните правоъгълници с помощта на таблица 2 изчисляваме:

$$I_3 \approx h \sum_{i=0}^{n-1} f(x_i + \frac{h}{2}) = h \sum_{i=0}^{9} y_{i+\frac{1}{2}} = 0,1 .18,1923 = 1,81923.$$

г) Съответно по трапеците имаме

$$I_T \approx \frac{h}{2} \left(f(a) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right) = \frac{h}{2} \left(y_0 + 2 \sum_{i=1}^{9} y_i + y_{10} \right) = 0.05 (y_0 + 2(y_1 + y_2 + \dots + y_9) + y_{10})$$

$$= 0.05 (1.38629 + 2.(16.39631) + 2.19722) = 0.05.(36.37615) = 1.818807;$$

д) По сумарната формула на Симпсън:

$$\begin{split} I_S &\approx \frac{h}{3} \left(f(a) + 4 \sum_{i=1}^m f(x_{2i-1}) + 2 \sum_{i=1}^m f(x_{2i}) - f(b) \right) \\ &= \frac{0,1}{3} (y_0 + 4(y_1 + y_3 + \dots + y_9) + 2(y_2 + y_4 + \dots + y_8) + y_{10}) \\ &= \frac{0,1}{3} \left(1,38629 + 4.(9,09820) + 2.(7,29812) + 2,19722 \right) = \frac{0,1}{3}.(54,57254) = 1,819085 \; . \end{split}$$

Пример 2. Да се оцени грешката на численото интегриране за I_1 , I_{T_1} I_S от пример 1.

Решение:

Намираме последователно производните на $f(x) = \ln(x^2)$:

$$f'(x) = \frac{2}{x}$$
, $f''(x) = \frac{-2}{x^2}$, $f'''(x) = \frac{4}{x^3}$, $f^{(4)}(x) = \frac{-12}{x^4}$.

Тогава
$$M_1 = \max_{2 \le x \le 3} |f'(x)| = f'(2) = 1$$
, $M_2 = \max_{2 \le x \le 3} |f''(x)| = |f''(2)| = \frac{1}{2}$,

$$M_4 = \max_{2 \le x \le 3} |f^{(4)}(x)| = |f^{(4)}(2)| = \frac{3}{4}.$$

Като заместим във формулата за грешката на метода на левите правоъгълници, получаваме: $|R_1(f,h)| \leq \frac{M_1(b-a)h}{2} = \frac{0,1}{2} = 0,05$, т.е верен е първи-втори знак на резултата. Следователно след закръгляване до втори знак имаме $I_1 \approx 1,78$.

За формулата на трапеците пресмятаме: $|R_T(f,h)| \le \frac{M_2(b-a)h^2}{12} = \frac{0.01}{24} \le 0.005$ или верни са два-три знака след десетичната запетая. Тогава $I_T \approx 1.819$.

За квадратурната формула на Симпсън:

$$|R_S(f,h)| \le \frac{M_4(b-a)h^4}{180}$$
, т.е. всички знаци са верни и $I_S = \int_2^3 \ln(x^2) dx \approx 1,819085$.

Забележка. По принцип не винаги е зададена формула на функцията, или намирането на производните е сложно, или дори може да не съществуват производни от даден ред. Тогава се прилагат по-простите формули, които дават малка степен на грешката. Точността в такива случаи се постига за сметка на намаляването на стъпката h.

Пример 3. Да се определи големината на стъпката на численото интегриране h така, че приближеното пресмятане на интеграла $\int_{-1}^{3} \sqrt{1+x^2} \, dx$ по метода на трапеците да гарантира точност на резултата $\varepsilon = 0,000001$.

Решение:

Тук
$$a = -1$$
, $b = 3$. За производните имаме: $f'(x) = \frac{x}{\sqrt{1+x^2}}$, $f''(x) = \frac{1}{(1+x^2)\sqrt{1+x^2}}$.

Очевидно $0 \le f''(x) \le 1$ за всяко x, откъдето следва, че $M_2 \le 1$. Като заместим във формулата за грешката на метода на трапеците, намираме:

$$|R_T(f,h)| \le \frac{M_2(b-a)h^2}{12} = \frac{(3-(-1))}{12}h^2 = \frac{h^2}{3}.$$

За да се гарантира исканата точност налагаме условието $\frac{h^2}{3} \le \varepsilon$, или $h \le \sqrt{3\varepsilon} = \sqrt{0,000003} \approx 0,00173$. Удобно е да вземем стъпка h = 0,001 и съответно да разделим интервала [-1,3] на n = 4000 равни подинтервала. За провеждане на изчисленията очевидно трябва да се използва компютър и междинна точност 10^{-8} .

Автор: Снежана Гочева-Илиева, snow@pu.acad.bg