## MLR: Model Selection in R

Math 430, Winter 2017

# Highway accident data

Variable Description

adt average daily traffic count (thousands)

**trks** truck volume as a percent of the total volume

**lane** total number of lanes of traffic

acpt number of access points per mile

sigs number of signalized interchanges per mile

itg number of freeway-type interchanges per mile

slim speed limit

**len** length of the Highway segment (miles)

lwid lane width (feet)

**shld** width in feet of outer shoulder on the roadway

**htype** type of roadway/funding source

rate accident rate per million vehicle miles













```
## 1 ambda RSS
## 1 1.594529 26.41210
## 2 -1.000000 45.59093
## 3 0.000000 33.75636
## 4 1.000000 27.29810
```

```
Highway <- mutate(Highway, sigs1 = (sigs * len + 1)/len)
full_mod_tform <- lm(log(rate) ~ log(adt) + log(trks) + I(1/lane) + log(acpt) +
   itg + slim + log(len) + poly(lwid, 2) + poly(shld, 2) + htype + log(sigs1),
   data = Highway)</pre>
```



#### Added-Variable Plots





## The step command

#### **Backward elimination**

```
belim <- step(full mod tform, scope = list(lower = ~ 1), direction = "backward")
broom::tidy(belim)
##
                     estimate std.error statistic
               term
                                                           p.value
## 1
        (Intercept) 3.24639448 0.75119775 4.3216244 0.0001764473
## 2
           log(adt) -0.14429407 0.07746273 -1.8627547 0.0730195963
## 3
          log(acpt) 0.18987179 0.10707212 1.7733075 0.0870567742
## 4
                slim -0.02011261 0.01007683 -1.9959263 0.0557516497
## 5
           log(len) -0.25644916 0.07871784 -3.2578279 0.0029403083
## 6
     poly(lwid, 2)1 0.13688282 0.25106602 0.5452065 0.5899285279
## 7
     poly(lwid, 2)2 -0.60177023 0.23510121 -2.5596220 0.0161662281
            htypefai 0.33059140 0.33000676 1.0017716 0.3250331856
## 8
## 9
            htypepa -0.21786065 0.21955592 -0.9922786 0.3295598277
## 10
            htypema -0.06105924 0.18951707 -0.3221833 0.7497070874
         log(sigs1) 0.17789568 0.05689946 3.1264916 0.0040983118
## 11
```

#### Forward selection

```
null mod <- lm(log(rate) ~ 1, data = Highway)
fselect <- step(null mod, scope = list(lower = ~ 1,
upper = \sim \log(\text{adt}) + \log(\text{trks}) + I(1/\text{lane}) + \log(\text{acpt}) + \text{itg} + \text{slim} + \log(\text{len}) + \text{poly}(\text{lwid}, 2) + \text{poly}(s)
direction = "forward")
broom::tidy(fselect)
##
                 term
                           estimate std.error statistic
                                                                  p.value
## 1
         (Intercept) 2.122284499 0.95534397 2.22148730 0.034283129
## 2
                 slim -0.001240547 0.01467532 -0.08453287 0.933213647
## 3
             log(len) -0.313267858 0.08812125 -3.55496377 0.001318954
           log(acpt) 0.290282436 0.10291806 2.82051992 0.008560433
## 4
## 5
      poly(lwid, 2)1 -0.340597367 0.27175343 -1.25333238 0.220095829
      poly(lwid, 2)2 -0.778909771 0.25408606 -3.06553523 0.004666478
## 6
      poly(shld, 2)1 -0.917057215 0.42976253 -2.13386963 0.041437529
## 8
      poly(shld, 2)2 -0.013503844 0.30087592 -0.04488177 0.964509178
## 9
            log(trks) -0.342058129 0.20960980 -1.63188044 0.113518148
## 10
                  itq 0.153598077 0.12288303 1.24995348 0.221309869
```

## Stepwise selection

```
step hwy <- step(null mod, scope = list(lower = ~ 1,</pre>
upper = \sim \log(adt) + \log(trks) + I(1/lane) + \log(acpt) + itg + slim + \log(len) + poly(lwid, 2) + poly(lwid, 2) + poly(lwid, 3)
direction = "both")
broom::tidy(step hwy)
##
               term estimate std.error statistic
                                                             p.value
## 1 (Intercept) 2.05731539 0.55797123 3.68713528 0.0008951161
## 2
           log(len) -0.31583627 0.08133725 -3.88304606 0.0005260574
## 3
         log(acpt) 0.29490540 0.08573062 3.43990740 0.0017315283
## 4 poly(lwid, 2)1 -0.34766034 0.25427502 -1.36726107 0.1817012875
## 5 poly(lwid, 2)2 -0.78312449 0.24498872 -3.19657372 0.0032673201
## 6 poly(shld, 2)1 -0.94261102 0.30037603 -3.13810336 0.0037965769
## 7 poly(shld, 2)2 -0.02018253 0.28547297 -0.07069857 0.9441068560
## 8
          log(trks) -0.34589714 0.20121625 -1.71903182 0.0959128224
## 9
                itg 0.15622255 0.11691234 1.33623655 0.1915196786
```

## Using BIC rather than AIC

```
belim bic <- step(full mod tform, scope = list(lower = ~ 1), direction = "backward",
                   k = log(nrow(Highway)))
broom::tidy(belim bic)
##
                term
                     estimate std.error statistic
                                                           p.value
## 1
        (Intercept) 3.24639448 0.75119775 4.3216244 0.0001764473
## 2
            log(adt) -0.14429407 0.07746273 -1.8627547 0.0730195963
          log(acpt) 0.18987179 0.10707212 1.7733075 0.0870567742
## 3
                slim -0.02011261 0.01007683 -1.9959263 0.0557516497
## 4
## 5
            log(len) -0.25644916 0.07871784 -3.2578279 0.0029403083
     poly(lwid, 2)1 0.13688282 0.25106602 0.5452065 0.5899285279
## 6
## 7
      poly(lwid, 2)2 -0.60177023 0.23510121 -2.5596220 0.0161662281
## 8
            htypefai 0.33059140 0.33000676 1.0017716 0.3250331856
## 9
            htypepa -0.21786065 0.21955592 -0.9922786 0.3295598277
## 10
            htypema -0.06105924 0.18951707 -0.3221833 0.7497070874
         log(sigs1) 0.17789568 0.05689946 3.1264916 0.0040983118
## 11
```

## The regsubsets command

#### All subsets in R

```
library(leaps)
regfit_full <- regsubsets(log(rate) ~ log(adt) + log(trks) + I(1/lane) + log(acpt) +
   itg + slim + log(len) + poly(lwid, 2) + poly(shld, 2) + htype + log(sigs1),
   data = Highway, method = "exhaustive", nvmax = 11, nbest = 1)
reg summary <- summary(regfit full)</pre>
```

## Investigating the results

```
plot(regfit_full, scale = "adjr2")
```



## Investigating the results

```
plot(regfit_full, scale = "bic")
```



## Another plot option



# Extracting goodness-of-fit measures

```
broom::glance(step_hwy)  
## r.squared adj.r.squared sigma statistic p.value df logLik ## 1 0.7962987 0.7419783 0.2351582 14.6593 1.865432e-08 9 6.229883 ## AIC BIC deviance df.residual ## 1 7.540235 24.17585 1.658981 30  

Extract R_{adj}^2 broom::glance(step_hwy)$adj.r.squared ## [1] 0.7419783
```

#### Calculate AIC

```
# The first number is equiv. d.f., the second is AIC
extractAIC(step hwy, k = 2)
## [1] 9.000 -105.137
Calculate AICc
n <- nrow(Highway)</pre>
nslope <- length(step hwy$coefficients) - 1</pre>
extractAIC(step hwy, k = 2) + 2 * (nslope + 1) * (nslope + 2) / (n - nslope - 1)
## [1] 15.00000 -99.13697
Calculate BIC
extractAIC(step hwy, k = log(n))
## [1] 9.00000 -90.16492
```

## Training and test data sets

```
# Select rows for a training data set
train_id <- sample(1:nrow(df), size = round((2/3) * nrow(df)))
# Create the training and test data sets
train <- df[train_id,]
test <- df[-train_id,]</pre>
```