

UNIVERSITY OF GHANA (All rights reserved)

B.Sc ENGINEERING FIRST SEMESTER EXAMINATION: 2018/2019

SCHOOL OF ENGINEERING SCIENCES

FAEN 205: THERMODYNAMICS I (3 credits)

INSTRUCTIONS

TIME ALLOWED: 2HRS

Please read the following INSTRUCTIONS carefully

- [1] Answer TWO questions in SECTION A
- [2] Answers to SECTION A must be written in an Answer Booklet
- [3] Answer ALL questions in SECTION B
- [4] Answers to SECTION B must be written on the question paper
- [5] Write your STUDENT ID NUMBER on all the applicable question sheets and tie them inside the Answer Booklet

STUDENT ID:	:
-------------	---

SECTION A

Answer TWO questions in this Section

- 1. Saturated-vapour steam at 125 kPa is compressed adiabatically in a centrifugal compressor to 750 kPa at the rate of 2.5 kg/s. The compressor efficiency is 70%. What is
 - a) the actual power requirement of the compressor.
 - b) the final temperature of the steam?
 - c) the enthalpy of the steam in its final state?

Steam tables have been provided.

- 2. A pump operates adiabatically with liquid water entering at T₁ and P₁ with a mass flowrate m. The discharge pressure is P2, and the pump efficiency is 0.75. For the following set of operating conditions, determine:
 - a) the power requirement of the pump and
 - b) the temperature of the water discharged from the pump:

Data:

 $T_1 = 50^{\circ}C_{\odot}$

 $P_1 = 100 \text{ kPa}$

 $\dot{m} = 20 \text{ kg/s}$

 $P_2 = 2,500 \text{ kPa}$

Properties of saturated liquid water at 50 °C:

 $V = 1,010 \text{ cm}^3/\text{kg}$; $C_P = 4.178 \text{ kJ/kg-K}$; $\beta = 257.2 \text{ x } 10^{-6} \text{ K}^{-1}$

a) Find the work done when 1 mol of gas goes through a reversible, isothermal compression at 425°C and 1 bar in a piston/cylinder assembly, if the molar volume of the gas is given by

$$V = \frac{RT}{P} + b$$

and b and R are given by:

 $b = 0.1 V \text{ cm}^3 \text{ mol}^{-1}$

 $R = 83.14 \text{ cm}^3 \text{ bar/mol K}$

Take the final volume to be half the initial volume.

b) Steam at 200 psia and 600°F (state 1) enters a turbine through a 4-in diameter pipe with a velocity of 9 ft/s. The exhaust from the turbine is carried through a 10-in diameter pipe and is at 5 psia and 250°F (state 2). What is the power output of the turbine Btu/s?

Data: $H_1 = 1,300 \text{ Btu/lbm}$; $H_2 = 1,150 \text{ Btu/lbm}$ $V_1 = 3.06 \text{ ft}^3/\text{lb}_m$; $V_2 = 80.0 \text{ ft}^3/\text{lb}_m$

 $g_c = 32.174 (lb_m)(ft)/(lbf)(s^2); Btu=778.2 (ft)(lbf)$

STUDENT ID:
SECTION B:
Answer ALL questions in this Section
1. Write down an equation for the first law of thermodynamics for a closed system
2. What state function is introduced by the first law of thermodynamics?
3. Write down the defining expression for compressibility factor, Z:
4. Write down the first law for flow systems:
5. Write down the defining equation for enthalpy in terms of internal energy U, pressure P and volume V:
6. If the heat capacity of gas is $20.78 \text{ J mol}^{-1} \text{ K}^{-1}$, what is the enthalpy change if 3 moles go from 70°C to 120°C ?
7. Write down the phase rule. Define the terms.

STUDENT ID:
8. Using the phase rule calculate the degrees of freedom of water as a saturated vapour?
8. If an ideal gas at 1 bar and 50° C is compressed to 4 bar at the same temperature, calculate the change in internal energy U, if the heat capacity at constant volume, C_v is given by 20.8 J/mol-K
9. State the mathematical definition of the Second law of Thermodynamics.
10. Write down the energy balance equation for steady-state flow processes for one entrance and one exit
11. What state function is introduced as a result of the second law of thermodynamics?
12. Write down the first three terms of the virial equation of state in terms of pressure.
13. On a PV diagram, the critical isotherm exhibits a horizontal inflection at the critical point leading to two derivative expressions. Write them down.
14. Write down the celebrated van der Waals equation of state.

· ·	
STUDENT ID:	
SIQUENTIU:	

- 15. The principle that correlates reduced temperature T_r and reduced pressure P_r of gases to their compressibility factor Z, is known as?
- 16. Write down the generalized expression for the compressibility factor in terms of Z^o , Z^I and acentric factor ω :

Z =

- 17. Write down the equation relating the heat capacities, C_{ν} and C_{p} with the universal gas constant R for an ideal gas
- 18. If the hot and cold reservoir temperatures of a Carnot cycle are 500°C and 100°C respectively, what is the efficiency of the cycle?
- 19. If a Carnot cycle taken in 80,000 kW of energy and discards 15,000 kW to a cold reservoir, what is the thermal efficiency?

- 20. Write down the Maxwell relation resulting from the following fundamental property relation: dG = VdP SdT
- 21. Name two intensive variables in thermodynamics?
 - a)
 - b)

STUDENT ID:
22. Write down the defining expression for the residual property of a generic thermodynamic function M. What is the residual enthalpy of an ideal gas, H^R ?
23. State two methods for calculating residual properties of a gas
a)
b)
24. Write down the names of two cubic equations of state:
a)
b)
25. If the enthalpy of the saturated-liquid and saturated-vapour of a system coexisting in equilibrium are 450 kJ/kg and 2,700 kJ/kg what is the enthalpy of vapour-liquid mixture with a quality of 0.4.
26. If a process takes place <u>reversibly and adiabatically</u> in a system of 2kg mass, and the temperature changes from 100°C to 300°C, what is the change in its entropy Δ <i>S</i> ?

27. Write down the defining equation for the efficiency of a turbine, in terms of enthalpies:

STUDENT ID:	

28. Sketch the reversible and irreversible paths for a compressor on a Mollier (H-S) diagram.

29. On a T-S diagram, draw the four steps of a Carnot cycle.

30. On a T-S diagram, draw the stages of a Rankine cycle.

Table F.1: Saturated Steam, SI Units

V= SPECIFIC VOLUME cm³ g⁻¹

U= SPECIFIC INTERNAL ENERGY kJ kg⁻¹

H= SPECIFIC ENTHALPY kJ kg⁻¹

S= SPECIFIC ENTROPY kJ kg⁻¹ K⁻¹

			SPECIFIC VOLUME V			INTER	INTERNAL ENERGY U			ENTHALPY H			ENTROPY S		
ι.	T	P	sat.		sal.	sat.		sat.	sat.		sat.	sat.	•	sat.	
°C	К	kPa	liq.	evap.	vap.	liq.	evap.	vap.	liq.	evap.	vap.	liq.	evap.	vap.	
0	273.15	0.611	1.000	206300.	206300.	-0.04	2375.7	2375.6	-0.04	2501.7	2501.6	0.0000	9.1578	9.1578	
0.01	273.16	0.611	1.000	206200.	206200.	0.00	2375.6	2375.6	0.00	2501.6	2501.6	0.0000	9.1575	9.1575	
1	274.15	0.657	1.000	192600.	192600.	4.17	2372.7	2376.9	4,17	2499.2	2503.4	0.0153	9.1158	9.1311	
2	275.15	0.705	1.000	179900.	179900.	8.39	2369.9	2378.3	8.39	2496.8	2505.2	0.0306	9.0741	9.1047	
3	276.15	0.757	1.000	168200.	168200.	12.60	2367.1	2379.7	12.60	2494.5	2507.1	0.0459	9.0326	9.0785	
4	277.15	0.813	1.000	157300.	157300.	16.80	2364.3	2381.1	16.80	2492.1	2508.9	0.0611	8.9915	9.0526	
5	278.15	0.872	1.000	147200.	147200.	21.01	2361.4	2382.4	21.01	2489.7	2510.7	0.0762	8.9507	9.0269	
6	279.15	0.935	1.000	137800.	137800.	25.21	2358.6	2383.8	25.21	2487.4	2512.6	0.0913	8.9102	9.0014	
7	280.15	1.001	1.000	129100.	129100.	29.41	2355.8	2385.2	29.41	2485.0	2514.4	0.1063	8.8699	8.9762	
8	281.15	1.072	1.000	121000.	121000.	33.60	2353.0	2386.6	33.60	2482.6	2516.2	0.1213	8.8300	8.9513	
9	282.15	1.147	1.000	113400.	113400.	37.80	2350.1	2387.9	37.80	2480.3	2518.1	0.1362	8.7903	8.9265	
10	283,15	1.227	1.000	106400.	106400.	41.99	2347.3	2389.3	41.99	2477.9	2519.9	0.1510	8.7510	8.9020	
11	284,15	1.312	1.000	99910.	99910.	48.18	2344.5	2390.7	46.19	2475.5	2521.7	0.1658	8.7119	8.8776	
12	285,15	1.401	1.000	93830.	93840.	50.38	2341.7	2392.1	50.38	2473.2	2523.6	0.1805	8.6731	8.8536	
13	286,15	1.497	1.001	86180.	88180.	54.56	2338.9	2393.4	54.57	2470.8	-2525.4	0.1952	8.6345	8.8297	
14	287,15	1.597	1.001	82900.	82900.	58.75	2336.1	2394.8	58.75	2468.5	2527.2	0.2098	8.5963	8.8060	
15	288.15	1.704	1.001	77980,	77980.	62.94	2333.2	2396.2	62.94	2466.1	2529,1	0.2243	8.5582	8.7626	
16	289.15	1.817	1.001	73380,	73380.	67.12	2330.4	2397.6	67.13	2463.8	2530.9	0.2388	8.5205	8.7593	
17	290.15	1.936	1.001	69090,	69090.	71.31	2327.6	2398.9	71.31	2461.4	2532.7	0.2533	8.4830	8.7363	
18	291.15	2.062	1.001	65090,	65090.	75.49	2324.8	2400.3	75.50	2459.0	2534:5	0.2677	8.4458	8.7135	
19	292.15	2.196	1.002	61340,	61340.	79.68	2322.0	2401.7	79.68	2456.7	2536.4	0.2820	8.4088	8.6908	
20	293.15	2.337	1.002	57840.	57840.	83.86	2319.2	2403:0	83.86	2454.3	2538.2	0.2963	8.3721	8.6684	
21	294.15	2.485	1.002	54560.	54560.	88.04	2316.4	2404:4	88.04	2452.0	2540.0	0.3105	8.3356	8.6462	
22	295.15	2.642	1.002	51490.	51490.	92.22	2313.6	2405:8	92.23	2449.6	2541.8	0.3247	8.2994	8.6241	
23	296.15	2.808	1.002	48620.	48620.	96.40	2310.7	2407:1	96.41	2447.2	2543.6	0.3389	8.2634	8.6023	
24	297.15	2.982	1.003	45920.	45930.	100.6	2307.9	2408:5	100.6	2444.9	2545.5	0.3530	8.2277	8.5806	
25	298.15	3.166	1.003	43400.	43400.	104.8	2305.1	2409.9	104.8	2442.5	2547.3	0.3670	8,1922	8.5592	
26	299.15	3.360	1.003	41030.	41030.	108.9	2302.3	2411.2	108.9	2440.2	2549.1	0.3810	8,1569	8.5379	
27	300.15	3.564	1.003	38810.	38810.	113.1	2299.5	2412.6	113.1	2437.8	2550.9	0.3949	8,1218	8.5168	
28	301.15	3.778	1.004	36730.	36730.	117.3	2296.7	2414.0	117.3	2435.4	2552.7	0.4088	8,0870	8.4959	
29	302.15	4.004	1.004	34770.	34770.	121.5	2293.8	2415.3	121.5	2433.1	2554.5	0.4227	8,0524	8.4751	

		•	•				•				• • •		•
						· 1	• ,						
	101.325 (100.00)	V U H S	. 1,044 418,959 . 419,064 1,3069	1673.0 2506.5 2676.0 7.3554	2604.2 2810.6 3074.4 8.2105	2833.2 2888.5 3175.6 . 8.3797	3061.9 2968.0 3278.2 8.5381	3290.3 3048.9 3382.3 8.6873	. 3518.7 3131.6 . 3488.1 8.8287	3746.9 3215.9 3595.6 8.9634	3975.0 3302.0 3704.8 9.0922	4203.1 3389.8 3815.7 9.2156	
	125 (105.99)	V U H S	1.049 444.224 444.356 1.3740	1374.6 2513.4 2685.2 7.2847	2109.7 2810.2 3073.9 8.1129	2295.6 2888.2 3175.2 8.2823	2967.7 . 3277.8	2666.5 3048.7 3382.0 8.5901	2851.7 3131.4 3487.9 8.7316	3036.8 3215.8 3595.4 8.8663	3221.8 3301.9 3704.6 8.9951	3406.7 3389.7 3815.5 9.1188	
	150 (111.37)	V U H S	1.053 466.968 467.126 1.4336	1159.0 2519.5 2693.4 7.2234	1757.0 2809.7 3073.3 8.0280	8.2823 1912.2 2887.9 3174.7 8.1976	2066.9 2967.4 3277.5 8.3562	2221.5 3048.5 3381.7 8.5056	2375.9 3131.2 3487.6 8.6472	2530.2 3215.6 3595.1 8.7819	2684.5 3301.7 3704.4 8.9108	2838.6 3389.5 3815.3 9.0343	
•	175 (116.06)	V U H S	1.057 486.815 - 487.000 1.4849	1003.34 2524.7 2700.3 7.1716	1505.1 2809.3 3072.7 7.9561	3174.2	1771.1 2967.1 3277.1 8.2847	1903.7 3048.3 3381.4 8.4341	2036.1 3131.0 3487.3 8.5758	2168.4 3215.4 3594.9 8.7106	2300.7 3301.6 3704,2	2432. ⁹ 3389.4 3815.1 8.9630	
	200 (120.23)	V U H S	1.061 504.489 504.701 1.5301	885.44 2529.2 2706.3 7,1268	1316.2 2808.8 3072.1 7.8937	1432.8 2887.2 3173.8 8.0638	1549.2 2966.9 3276.7 8.2226	1665.3 3048.0 3381.1 8.3722	1781.2 3130.8 3487.0 . 8.5139	1897.1 3215.3 3594.7 8.6487	2012.9 3301.4 3704.0 8.7776	2128.6 3389.2 3815.0	
•	225 (123.99)	V U H S	1.064 520.465 520.705 1.5705	792.97 2533.2 2711.6 7.0873	1169.2 2808.4 3071.5 7.8385	1273.1 2886.9 3173.3 8.0088	1376.6 2966.6 3276.3 8.1679	1479.9 3047.8 3380.8 8.3175	1583.0 3130.6 3486.8 8.4593	1686.0 3215.1 3594.4 8.5942	1789.0 3301,2	1891.9 3389.1 3814.8 8.8467	
	250 (127.43)	V U H S	1.068 535.077 535.343 1.6071	718.44 2536.8 2716.4 7.0520	1051.6 2808.0 3070.9 7.7891	1145.2 2886.5 3172.8 7.9597	1238.5 2966.3 3275.9	1331.5 3047.6 3380.4 8.2686	, 1424.4 3130.4 3486.5 8.4104	1517.2 3214:9 3594.2		1702.5 3389.0 3814.6 8.7980	
	275 (130.60)	V U H S	1.071 548.564 548.858 1.6407	657.04 2540.0 2720.7 7.0201	955.45 2807.5 3070.3 7.7444	1040.7 2886.2 3172.4 7.9151	1125.5 2966.0 3275.5 8.0744	1210.2 3047.3 3380.1 8.2243	1294,7 3130.2	1379.0 3214.7 3594.0 8.5011	1463.3 3300.9 3703.4 8.6301	1547.6 3388.8 3814.4 8.7538	•
	300 (133.54)	V U H S	1.073 561.107 561.429 1.6716	605.58 2543.0 2724.7 6.9909	875.29 2807.1 3069.7 7.7034	953.52 2885.8 3171.9 7.8744	1031.4 2965.8 3275.2 8.0338	1109.0 3047.1 3379.8 8.1838	1186.5 3130.0 3486.0 8.3257		. 1341.2 3300.8 3703.2 8.5898	1418.5 3388.7 3814.2 8.7135	,
										•			
		•							•				725
						÷			•				

Table F.2. Superheated Steam, SI Units (Continued)

			. · .			 		TURE: (°C JRE: T kelvins)	E SER	· <u>· · · · · · · · · · · · · · · · · · </u>
P/kPa		sat.	sat	.175	200	220	240	260	280	300	325
(t sat /°C)		liq.	vap.	(448.15)	(473.15)	(493.15)	(513.15)	(533.15)	(553.15)	(573.15)	(598.15)
750 (167.76)	V U H S	708.467 709.301 2.0195	255,43 2573,3 2764,8 6,6817	260.88 2586.9 2782.5 6.7215	279.05 2632.1 2841.4 6.8494	293.03 2666.8 2886.6 6.9429	305.65 2700.6 2930.6 7.0303	320.01 2733.7 2973.7 7.1128	333.17 2766.4 3016.3 7.1912	346.19 2798.9 3058.5 7.2662	362.32 2839.3 3111.0 7.3558
775 (169.10)	V H S	1.113 714.326 715.189 2.0328	247.61 2574.3 2766.2 6.6705	251.93 2585.4 2780.7 6.7031	269.63 2631.0 2840.0 6.8319	283.22 2665.9 2885.4 6.9259	295.45 2699.8 2929.6 7.0137	309.41 2733.1 2972.9 7,0965	322.19 2765.9 3015.6 7.1751	334.81 2798.4 3057.9 7.2502	350.44 2838.9 3110.5 7.3400
800 (170.41)	V U H S	1.115 720.043 720.935 2.0457	240.26 2575.3 2767.5 6.6596	243.53 2584.0 2778.8 6.6851	260.79 2629.9 2838.6 6.8148	274.02 2665.0 2884.2 6.9094	286.88 2699.1 2928.6 6.9976	299.48 2732.5 2972.1 7.0807	311.89 2765.4 3014.9 7.1595	324.14 2797.9 3057.3 7.2348.	339.31 2838.5 3109.9 7.3247
825 (171.69)	V U H S	1.117 725.625 726.547 2.0583	233.34 2576.2 2768.7 6.6491	235.64 2582.5 2776.9 6.6675	252.48 2628.8 2837.1 6.7982	265.37 2664.1 2883.1 6.6933	277.90 2698.4 2927.6 6.9819	290.15 2731.8 2971.2 7.0653	302.21 2764.8 3014.1 7.1443	314.12 2797.5 3056.6 7.2197	328.85 2838.1 3109.4 7.3098
850 (172.94)	V U H S	1.118 731.080 732.031 2.0705	226.81 2577.1 2769.9 6.6388	228.21 2581.1 2775.1 . 6.6504	244.66 2627.7 2835.7 6.7820	257.24 2663.2 2881.9 6.8777	269.44 2697.6 2926.6 6.9666	281.37 2731.2 2970.4 7.0503	293.10 2764.3 3013.4 7.1295	304.68 2797.0 3056.0 7.2051	319.00 2837.7 3108.8 7.2954
875 (174.16)	V H S	1.120 736.415 737.394 2.0825	220.65 2578.0 2771.0 6.6289	221.20 2579.6 2773.1 6.6336	237.29 2626.6 2834.2 6.7662	249.56 2662.3 2880.7 6.8624	261.46 2696.8 2925.6 6.9518	273.09 2730.6 2969.5 7.0357	284.51 2763.7 3012.7 7.1152	295.79 2796.5 3055.3 7.1909	309.72 2837.3 3108.3 7,2813
900 (175.36)	V U H S	1.121 741.635 742.644 2.0941	. 214.81 2578.8 2772.1 6.6192		230.32 2625.5 2832.7 6.7508	242.31 2661.4 2679.5 6.8475	253.93 2696.1 2924.6 6.9373	265.27 2729.9 2968.7 7.0215	276.40 2763.2 3012.0 7.1012	287.39 2796.1 3054.7 7.1771	300.96 2836.9 3107.7 7.2676
925 (176.53)	V H S	1.123 746.746 747.784 2.1055	209.28 2579.6 2773.2 6.6097		223.73 2624.3 2831.3 6.7357	235.46 2660.5 2878.3 6.8329	246.80 2695.3 2923.6 6.9231	257.87 2729.3 2967.8 7.0076	268.73 2762.6 3011.2 7.0875	279.44 2795.6 3054.1 7.1636	292.66 2836.5 3107.2 7.2543

Table F.2. Superheated Steam, SI Units (Continued)

TEMPERATURE: 1°C
(TEMPERATURE: 1 kelvins)

			٠.				 				
P/kPa		sat.	sat.	350	375	400	450	500	550	600	650
(t ^{Sat} /°C)		. liq.	vap.	(623.15)	. (648.15)	(673,15)	(723.15)	(773.15)	(833.15)	(873.15)	(923.15)
750 (167.76)	V U H S	1.112 708.467 709.301 2.0195	255.43 2573.3 2764.8 6.6817	378.31 2879.6 3163.4 7.4416	394.22 2920.1 3215.7 7.5240	410.05 2960.7 3268.3 7.6035	441,55 3042.9 3374.0 7,7550	472,90 3126,3 3481,0 7,8981	504.15 3211.4 3589.5 8.0340	535.30 3298.0 3699.5 8.1637	566.40 3386.2 3811.0 8.2880
775 (169.10)	V U H S	1,113 714,326 715,189 2,0328	247.61 2574.3 2766.2 6.6705	365.94 2879.3 3162.9 7.4259	381,35 2919.8 3215.3 -7.5084	396.69 2960.4 3267.9 7.5880	427.20 3042.6 3373.7 7.7396	457.56 3126.1 3480.8 7.8827	487.81 3211.2 3589.2 8.0187	517.97 3297.8 3699.3 8.1484	548.07 3386.1 3810.9 8,2727
800 (170,41)	V H • S	1.115 720.043 720.935 2.0457	240.25 2575.3 2767.5 6.6596	354.34 2878.9 3162.4 7.4107	369.29 2919.5 3214.9 7.4932	384.16 2960.2 3267.5 7.5729	413.74 3042.4 3373.4 7.7246	443.17 '3125.9 3480.5 7.8678	472.49 3211.0 3589.0 8.0038	501.72 3297.7 3699.1 8.1336	530,89 3386,0 3810,7 8,2579
825 (171.69)	8 8	1.117 725.625 726.547 2.0583	233.34 2576.2 2768.7 6.6491	343.45 2878.6 3161.9 7.3959	357.96 2919.1 3214.5 7.4786	372,39 2959,9 3267,1 7,5583	401.10 3042.2 3373.1 7.7101	429.65 3125.7 3480.2 7.8533	458.10 3210.3 3588.8 7.9894	466.46 3297.5 3698.8 8.1192	514.76 3385.8 3810.5 8.2436
850 · (172.94)	. U H S	1.118 731.080 732.031 2.0705	226.81 2577.1 2769.9 . 6.6388	333,20 2878,2 3161,4 7,3815	347.29 2918.8 3214.0 7.4643	361,31 2959.6 3266.7 7.5441	389,20 3041,9 3372,7 7,6960	416.93 3125.5 3479.9 7.8393	444.56 3210.7 3588.5 7.9754	472.09 3297.4 3698.6 8.1053	499.57 3385.7 3810.3 8.2298
875 (174.16)	V U H S	1.120 .736.415 737.394 2.0825	220.65 2578.0 2771.0 6.6289	323,53 2877,9 3161,0 7,3676	337,24 2918.5 3213.6 7,4504	350.87 2959.3 3266.3 7.5303	377.98 3041.7 3372.4 7.6823	404.94 3125.3 3479.7 7.8257	431.79 3210.5 3588.3 7.9618	458.55 3297.2 3698.4 8.0917	485,25 3385,6 3810,2 8,2161
900 (175.36)	٧ ٢ ٢ ٤	1,121 741,635 742,644 2,0941	214.81 2578.8 2772.1 6.6192	314,40 2877,5 3160,5 7,3540	327.74 2918.2 3213.2 7.4370	341.01 2959.0 3266.0 7.5169	367.39 3041.4 3372.1 7.6689	393.61 3125.1 3479.4 7.8124	419.73 3210.3 3588.1 7.9486	445.76 3297.1 3698.2 8.0785	471.72 3385.4 3810.0 8,2030
925 (176.53)	V U H S	1.123 746,746 747,784 2.1055	209.28 2579.6 2773.2 6.6097	305.76 2877.2 3160.0 7.3408	318.75 2917.9 3212.7 7.4238	331.68 2958.8 3265.6 7.5038	357.36 3041.2 3371.8 7.6560	382.90 3124.9 3479.1 7.7995	408.32 3210.1 3587.8 7.9357	433.66 3296.9 3698.0 8.0657	458.93 3385.3 3809.8 8.1902