

Introdução à Engenharia Aeroespacial

Grupo 5

Artur Sousa (108244)

Emanuel Silva (108083)

Magner Gusse (110180)

Nuno Pereira (107382)

26/01/2022

SATÉLITES DE TELECOMUNICAÇÕES

Evolução para o 5G

Tipos de redes de satélites

- GEO (Geostationary Earth Orbit)
- MEO (Medium Earth Orbit)
- LEO (Low Earth Orbit)

Software-Defined Radio

Sistemas de comunicação de rádio implementados em software, através do uso de um computador.

Modulação

Processo pelo qual são modificadas uma ou mais características de uma onda denominada portadora (*carrier*), segundo um sinal modulante.

- Deslocar o espectro do sinal a transmitir;
- Tornar o sistema de transmissão mais robusto

ENGENHARIA AEROESPACIAL

Modulação – Transmissão analógica

AM – Amplitude Modulation

QAM - Quadrature Amplitude Modulation

Modulação – Transmissão digital

ASK – Amplitude Shift Keying

PSK – Phase Shift Keying

QPSK – Quadrature Phase Shift Keying

Sensores e Dispositivos

Trabalho 4- Montagem de um

Objetivos do trabalho

Estudar o fenómeno de convergência e divergência das lentes

Determinar a distância focal das lentes

Estudar o funcionamento de um telescópio;

Estudar a ampliação de um telescópio astronómico.

Montagem da Parte 1

Fotografia e respetivo esquema da montagem experimental.

Resultados

Aumentando a distância do objeto à lente, a distância da imagem à lente aproxima-se da distância focal.

Lentes convergentes produzem imagens reais, invertidas e reduzidas;

Lentes divergentes produzem imagens virtuais;

Montagem da Parte 2

Figura 4.4. Esquema da montagem experimental para o estudo do funcionamento de um telescópio.

Resultados

Fazendo Combinações de lentes pode-se obter imagens com características diferentes para cada combinação;

Três lentes convergentes produzem o mesmo tipo de imagem que uma lente convergente e um divergente.

Configuraçao	H/B	H/B/B	H/E
Distancia entre lentes(m)	0,329 ± 0,0005	0,289 ± 0,0005	0,202 ± 0,0005
Caracteristicas da imagem	Virtual, Invertida e reduzida	Virtual, Direita e ampliada	Virtual, Direita e ampliada

Montagem da Parte 3

Figura 4.5 Esquema da montagem experimental usada para determinar a ampliação de um telescópio astronómico.

Resultados

$$M = \frac{f_{obj}}{f_{oc}}$$

 $M = \frac{f_{obj}}{f_{oc}}$ Onde: f_{obj} - distância focal da lente objetiva; universidade de aveiro focal da lente objetiva; distância focal da lente objetiva; f_{oc} - distância focal da lente ocular.

(H/B)

 $M = \frac{30}{10}$

M = 3

(H/A)

$$M = \frac{30}{5}$$

$$M = 6$$

(B/A)

$$M=2$$

$$M = \frac{10}{5}$$
ENGENHARIA AEROESPACIAL LICENCIATURA

Conclusões

As lentes convergentes originam imagens reais, invertidas e reduzidas e as lentes divergentes, imagens virtuais.

O aumento da distância do objeto à lente aproxima a distância da imagem à lente, à distância focal.

Um telescópio refractor pode ser constituído por 3 lentes convergentes, ou uma convergente e outra divergente.

ENGENHARIA AEROESPACIAL LICENCIATURA

Para maior ampliação, a lente ocular deve ter menor distância focal;

Design e Manufatura

Trabalho- Estrutura de um CubeSat

Objetivos do trabalho

- Desenhar e produzir a Estrutura do CubeSat, de maneira a estar pormenorizada, esteticamente bonita e funcional.

- Através do processo SLS, obter um produto original, devido a liberdade que o processo dá.

Especificações da Estrutura

Há especificações que a estrutura deverá ter:

-Suporte para os subsistemas eletrónicos dentro do CubeSat;

- -Sistema de colocação do Satélite baseado em guias;
- -Massa reduzida;
- -Boa ventilação no interior do Satélite;

Desenvolvimento e Detalhe da Estrutura

Conclusões e Resultados

- -Modelo desenhado em AutoCad vs Real
- -Massa Reduzida
- -Qualidade das faces
- -Resistência da Estrutura

Projeto em Estruturas Aeroespaciais

Introdução a materiais

Aumento de escala

Estrutura:

Arranjo dos componentes internos de um material

Sub-atómica - Arranjo de eletrões nos átomos e interações com o núcleo

Atómica - Organização dos átomos ou moléculas

Microscópica - Observação direta em microscópios (aglomerado de átomos)

Macroscópica - Elementos estruturais vistos a olho nú

Propriedades:

- Mecânicas (densidade, elasticidade,...)
- Elétricas (campo elétrico)
- Térmicas (temperatura)
- Magnética (campo magnético)
- Óticas (Radiação eletromagnética)
- Deteriorativas (reatividade química dos

materiais)

Introdução a materiais

Classificação dos materiais:

Ciassificação dos materia

Metálicos

Compósitos:

Compostos por 2 ou mais materiais das categorias anteriores (ex: CFRP)

Introdução a materiais

Materiais avançados:

usados em aplicações de elevada tecnologia (higth tech)

Semicondutores

Materiais que apresentam propriedades elétricas intermedias entre condutores e não condutores

Biomateriais

Materiais usados em componentes implantados no corpo humano para reconstrução ou substituição de partes danificadas

Materiais Self-healing

Materiais inteligentes com capacidade de responder a mudanças no ambiente circundante de forma prédeterminada

Materiais no espaço

Condições a suportar no espaço:

Temperatura - os materiais no espaço vão estar expostos a temperaturas extremas tendo de manter estabilidade dimensional

Gravidade- o corpo tem de apresentar elevada resistência mecânica, no lançamento pode ser sujeito ate 3 vezes a forca da gravidade e no espaço terá de manter a funcionalidade em microgravidade

Radiação- Os corpos vão estar expostos a radiação cósmica (picos de radiação durante tempestades solares)

Materiais no espaço

Condições a suportar no espaço:

Pressão - aguentar pressão dentro de cabines

Impactos - aguentar impactos de projeteis (ex: lixo espacial, meteoroides,...)

Vibrações - durante o lançamento e imediatamente a seguir

Corrosão

Definição de Corrosão:

Corrosão e um processo espontâneo resultante da interação eletro-química de environmento de la composição de um objeto e do ambiente.

Que resulta na em mudanças nas propriedades do metal, que muitas vezes pode levar ao comprometimento da função do metal ou do ambiente

Medidas a tomar para prevenir e controlar a corrosão:

- Nano e micro-reservatórios de inibidores de corrosão
- Revestimentos
- Alteração do ambiente
- **Tintas**

Corrosão

Razões para estudar a corrosão:

Redução de gastos:

Substituição de matérias e equipamentos Perda de produção ou eficiência Uso desproporcionado de medidas anticorrosivas

Segurança:

Prevenção da perda de vidas humanas ou ferimentos Devido as falhas do material

Poupança de materiais:

Evitar gastos desnecessários em minério, energia e mão de obra

Propriedades mecânicas

Forcas e deformações:

Os materiais estão geralmente sujeitos a forças ou cargas
As propriedades mecânicas dos materiais refletem a relação entre a sua deformação
A uma forca aplicada

Tipos de forças:

Propriedades mecânicas

Tipos de deformação:

Deformação elástica – significa que a deformação do material é reversível

Deformação plástica – significa que a deformação é irreversível

Propriedades do material:

Tenacidade- energia necessária para fraturar uma unidade de volume de um material

Ductilidade - deformação plástica na fratura

Elasticidade - razão entre a tensão e deformação do material

densidade - quociente entre a massa de um objeto e o volume ocupado

