Knowledge Refinement via Rule Selection

Phokion G. Kolaitis^{1,2}, Lucian Popa², Kun Qian²

 1 UC Santa Cruz, 2 IBM Research – Almaden

AAAI-19

Introduction

- Rules are ubiquitous in AI and computer science
- ► Rules as typically specified by Horn formulas
 ∀x, y, z(PARENT(x, z) ∧ PARENT(y, z) → SIBLING(x, y))
- Rules are extensively used in different areas, including:
 - ► Logic Programming

 SIBLING(x, y) : PARENT(x, z), PARENT(y, z)
 - Data Mining (Mining Association Rules)
 - Data Exchange and Data Integration
 - Entity Resolution.
- ► Central Problem: From a large number of possible rules, select a subset that best captures the task at hand.

Concrete Scenario - Refining Entity Resolution Rules

 Discover a rule-based model that identifies the same paper across datasets

```
DBLP: (id, title, authors, venue, year), ACM: (id, title, authors, venue, year)
```

▶ There is a large number of possible entity resolution rules:

- Rules behave differently.
 - r1 has high precision but low coverage.
 - r3 has high coverage but low precision.
- ► Goal: Find an optimal subset of the given rules that achieves high precision and high coverage.

Concrete Scenario - Refining Entity Resolution Rules

Given a set of available rules and ground truth data:

DBLP records	ACM records
(d ₁ , "rule selection", "Jone Doe", AAAI, 2019)	(a, "rule selection", "J. Doe", AAAI, 2019)
(d ₂ , "Invited Talk", "Qiang Yang", AAAI, 2019)	(b, "Invited Talk", "Yu Zheng", AAAI, 2019)
(d ₃ , "Keynote", "Jane Doe", SIGMOD, 2018)	(c, "Keynote", "Jane Doe", SIGMOD, null)

Same	
(d_1,a)	
(d ₃ ,c)	

- Which model minimizes the error over the ground truth?
 - ▶ {r1}: 0 false positives, 1 false negative.
 - ▶ {r2}: 1 false positives, 1 false negative.
 - ▶ {r3}: 2 false positive, 0 false negatives.
 - ▶ Both {r1} and {r1, r2} achieve minimum error.

Basic Concepts: Rules, Data Examples, Rule Evaluation

- ▶ We consider rules of the form $\forall \mathbf{x} (\psi(\mathbf{x}) \to P(\mathbf{x}))$, where
 - the premise $\psi(\mathbf{x})$ is a conjunction of atoms over a schema **S**;
 - the conclusion $P(\mathbf{x})$ is a atom over a schema \mathbf{T} disjoint from \mathbf{S} .
- A data example is a pair (I, J), where I is a premise instance I over S and a J is a conclusion instance over T.
- ▶ If \mathcal{C} is a set of rules, then $\text{Eval}(\mathcal{C}, I) = \bigcup_{\mathbf{r} \in \mathcal{C}} \text{Eval}(\mathbf{r}, I)$ (i.e., evaluate the premise of each rule on I and populate the conclusion).

Premise Instance I

DBLP records	ACM records
(d ₁ ,"rule selection"," Jone Doe",AAAI,2019)	(a,"rule selection"," J. Doe",AAAI,2019)
(d ₂ ,"Invited Talk","Qiang Yang",AAAI,2019)	(b,"Invited Talk","Yu Zheng",AAAI,2019)
(d ₃ ,"Keynote","Jane Doe",SIGMOD,2018)	(c,"Keynote","Jane Doe",SIGMOD,null)

Conclusion Instance J

Same	
(d_1,a)	
(d_3,c)	

$$\mathsf{Eval}(\{\mathbf{r}_1\},I) = \{(\mathsf{d}_3,\mathsf{c})\}, \ \mathsf{Eval}(\{\mathbf{r}_1\ ,\ \mathbf{r}_2\},I) = \{(\mathsf{d}_1,\mathsf{a}), \ (\mathsf{d}_2,\mathsf{b}), \ (\mathsf{d}_3,\mathsf{c})\}$$

False Positive and False Negative Errors

Definition (Errors)

Given a set $\mathcal C$ of rules and a data example (I,J), we consider the following two types of errors of $\mathcal C$ w.r.t. (I,J):

- ▶ False positive errors: Eval(C, I) \ J;
- ▶ False negative errors: $J \setminus \text{Eval}(C, I)$.

The Min Rule-Selection Problem

Definition (MIN RULE-SELECT_{FP+FN})

Input: A set $\mathcal C$ of rules and a data example (I,J).

Goal: Find a subset $\mathcal{C}^*\subseteq\mathcal{C}$ such that the sum of the number of the false positive errors and the number of false negative errors of \mathcal{C}^* with respect to (I,J) is minimized.

Definition (MIN RULE-SELECTFP)

Input: A set $\mathcal C$ of rules and a data example (I,J) with $J\subseteq \operatorname{Eval}(\mathcal C,I)$. Goal: Find a subset $\mathcal C^*\subseteq \mathcal C$ such that the number of false negative errors is zero and the number of false positive errors of $\mathcal C^*$ with respect to (I,J) is minimized.

Note: $MIN RULE-SELECT_{FN}$ has a trivial solution (the entire set of rules).

Complexity of MIN RULE-SELECT Problems

Theorem

Both $\rm Min~Rule\text{-}Select_{FP+FN}$ and $\rm Min~Rule\text{-}Select_{FP}$ are NP-hard optimization problems.

Hint of Proof: Reduction from SET COVER.

Question:

Are there polynomial-time approximation algorithms for MIN Rule-Select_{FP+FN} and MIN Rule-Select_{FP}?

Approximation Properties of MIN RULE-SELECTFP

Theorem

- ▶ MIN RULE-SELECTFP is approximable within a factor of $2\sqrt{|\mathcal{C}|\log |J|}$, where $|\mathcal{C}|$ is the number of input rules and |J| is the size of the conclusion instance J.
- ▶ Unless P=NP, for every $\epsilon > 0$, there is no polynomial time algorithm that approximates MIN Rule-Selectform within a factor of $2^{\log^{1-\epsilon}(|\mathcal{C}|)}$, where $|\mathcal{C}|$ is as above.

Hint of Proof: Give approximation-preserving reductions between Min Rule-Selectfp and the Red-Blue Set Cover problem, which was studied by [Peleg, 2007].

Approximation Properties of MIN RULE-SELECT_{FP+FN}

Theorem

- ▶ MIN RULE-SELECT_{FP+FN} is approximable within a factor of $2\sqrt{(|\mathcal{C}|+|J|)\log|J|}$, where $|\mathcal{C}|$ is the number of input rules and |J| is the size of the conclusion instance J.
- ▶ Unless P=NP, for every $\epsilon > 0$, there is no polynomial time algorithm that approximates MIN Rule-Selectfp+PN within a factor of $2^{\log^{1-\epsilon}(|J|)}$, where |J| is as above.

Hint of Proof: Give approximation-preserving reductions between MIN RULE-SELECT_{FP+FN} and the Positive-Negative Partial Set Cover problem, which was studied by [Miettinen, 2008].

Bi-objective Optimization Problems

Question: What if we want to optimize both the errors and the size of rules simultaneously?

▶ Note that error and size are qualitatively incomparable quantities.

Answer: Consider bi-objective optimization problems.

Definition (Pareto Optimality)

Given a set \mathcal{C} of rules and a data example (I,J), a subset $\mathcal{C}^* \subseteq \mathcal{C}$ is a Pareto optimal solution if there is no $\mathcal{C}' \subseteq \mathcal{C}$ with $\operatorname{size}(\mathcal{C}') < \operatorname{size}(\mathcal{C}^*)$ and $\operatorname{error}(\mathcal{C}') < \operatorname{error}(\mathcal{C}^*)$.

Complexity Results for Bi-objective Optimization

Theorem

- ▶ The following problem is coNP-complete: given an instance $K = \{\mathcal{C}, (I, J)\}$ of MIN RULE-SELECTFP and a subset $\mathcal{C}^* \subseteq \mathcal{C}$, is \mathcal{C}^* a Pareto optimal solution?
- ▶ The following problem is DP-complete: given an instance $K = \{\mathcal{C}, (I, J)\}$ of MIN RULE-SELECTFP and pair (s, e) of integers, is (s, e) on the Pareto front of K?

Similar results hold for MIN RULE-SELECTEP+EN.

Corollary

Unless P = NP, there is no polynomial-time algorithm for constructing the Pareto front.

Concluding Remarks

This work establishes foundations and complexity results for the rule-selection problem, which is fundamental in many areas of AI.

A summary of our results (more details can be found in the paper).

		FP	FP+FN
Rule-Select		NP-complete	NP-complete
Exact Rule-Select		DP-complete	DP-complete
Min Rule-Select	approx. upper	$2\sqrt{ \mathcal{C} \log J }$	$2\sqrt{(\mathcal{C} + J)\log J }$
	approx. lower	$2^{\log^{1-\epsilon}(\mathcal{C})}, \forall \epsilon > 0$	$2^{\log^{1-\epsilon}(J)}, \ \forall \epsilon > 0$
Pareto Optimal Solution		coNP-complete	coNP-complete
Pareto Front Membership		DP-complete	DP-complete
Bi-level Optimal Solution		coNP-complete	coNP-complete
Bi-level Optimal Value		DP-complete	DP-complete

Directions for future work

- ▶ Approximating the Pareto front of the rule selection problem.
- Experimental evaluation.

Thank you

References I

Miettinen, P. (2008).

On the positive-negative partial set cover problem. *Information Processing Letters*, 108(4):219 – 221.

Peleg, D. (2007).

Approximation algorithms for the label-covermax and red-blue set cover problems. Journal of Discrete Algorithms, 5(1):55-64.