

CHEMISTRY Chapter 19

ÁCIDOS Y BASES

Ácidos

- ✓ Neutralizan los efectos de las bases formando sales.
- ✓ Colorean al papel tornasol de rojo.
- ✓ Tienen sabor agrio.
- ✓ Son corrosivos.
- ✓ Conducen la electricidad en solución acuosa (son electrolitos

Bases

- Tienen un sabor amargo.
- En disolución acuosa conducen la electricidad (son electrolitos).
- Colorean de azul el papel de tornasol rojo.
- Neutralizan a los ácidos para formar una sal más agua.
- Son untuosas al tacto (jabonosas).
- Son corrosivas.

INDICADORES COLORÍMETROS:

Los indicadores son colorantes que cambian de color según estén en presencia de un ácido o una base.

PAPEL DE TORNASOL

PAPEL DE TORNASOL

TEORÍAS DE ÁCIDO-BASE

TEORÍA DE SVANTE ARRHENIUS

TEORÍA DE BRONSTED-LOWRY

TEORÍA DE GILBERT N. LEWIS

IOHANNES BRONSTED - THOMAS M. LOWRY

TEORÍA DE ARRHENIUS

 $m \acute{A}CIDO$: sustancia que en solución acuosa , libera iones $H^+_{(ac)}$

$$H_2SO_4$$
 (ac) \longrightarrow $2H^+$ (ac) $+$ (SO_4) -2 (ac) (ac)= disuelto en agua

BASE: sustancia que en solución acuosa, libera iones $OH_{(ac)}^-$

$$Ca(OH)_{2 (ac)} \longrightarrow Ca^{+2} (ac) + 2(OH)^{-1} (ac)$$

(ac)= disuelto en agua

SU FÓRMULA INICIA CON HIDRÓGENO(H):

ÁCIDO: RELACIÓN ESTEQUIOMÉTRICA MOLAR CON LOS iones $H_{(ac)}^+$

Ejemplo:

HCl (ac)
$$\longrightarrow$$
 H + Cl $\stackrel{-}{}$ 0,2 M

$$H_2SO_4(ac) \longrightarrow 2H^+ + (SO_4)^{-2}$$

0,3 M 0,6 M

$$H_3PO_4(ac) \longrightarrow 3H^+ + (PO_4)^{-3}$$

0,1 M 0,3 M

LOS iones H⁺_(ac) PERMITE CALCULAR EL : PH

SU FÓRMULA TERMINA CON OXIDRILO(OH):

BASE: RELACIÓN ESTEQUIOMÉTRICA MOLAR CON LOS iones $0H_{(ac)}^-$

Ejemplo:

KOH (ac)
$$\longrightarrow$$
 OH $^-$ + K $^+$ 0,2 M 0,2 M

$$AI(OH)_3 (ac) \longrightarrow 3OH^- + AI^{+3}$$

0,1 M 0,3 M

LOS iones $OH_{(ac)}^-$ PERMITE CALCULAR EL : POH

TEORÍA DE BRONSTED-LOWRY

Protón = H^+

ÁCIDO: especie química que dona un protón (H^+)

BASE: especie química que acepta un protón (H^+)

Teoría de Lewis

Ácido: Sustancia capaz de aceptar un par de electrones.

Base: Sustancia capaz de donar un par de electrones.

Potencial de hidrógeno(pH) a 25°C

$$PH = -log[H^+]$$

Ejemplo: Concentración de ion H+ es $0,0001M = 1x10^{-4}$

$$pH = -log(1x10^{-4})$$

$$pH = - [log] + (-4)log[0]$$

$$pH = 4$$

Ejemplo: Concentración de ion H+ es 0,0002M =2x10-4.

$$pH = -log(2x10^{-4})$$

$$pH = - [log2+(-4)log10]$$

$$pH = -[0,3-4(1)]$$

$$pH = 3.7$$

$$[H^{+}]=10^{-pH} \frac{mo}{L}$$

Potencial de oxidrilo(pOH) a 25°C | pOH = -log [OH⁻]

Ejemplo: Concentración de ion OH- es 0,001M=1x10⁻³M

Dato:
$$log 1 = 0$$

$$pOH = -log(1x10^{-3})$$

$$pOH = -[log1 + (-3)log10]$$

$$pOH = 3$$

Ejemplo: Concentración de ion OH- es 0,002M =2x10⁻³.

$$pOH = -log(2x10^{-3})$$

$$pOH = -[log2+(-3)log10]$$

$$pOH = -[0,3 - 3(1)]$$

$$pOH = 2.7$$

$$[OH^{-}]=10^{-POH}$$

$$\frac{\text{mol}}{I}$$

Experimentalmente a 25°C:

$$pH + pOH = 14$$

pH=4, Luego: 4 + pOH = 14 pOH = 10

Dadas las proposiciones respecto a los ácidos y bases, indique si son verdaderas (V) o falsas (F) según corresponda.

Los ácidos tienen sabor agrio como el vinagre.

V)

Las bases tiñen de rojo grosella al papel tornasol.

(**F**)

Las bases neutralizan a los ácidos.

Y

Determine si la sustancia es un ácido o base de Arrhenius.

Usando la teoría de Brönsted y Lowry, determine los ácidos y bases para:

 $CH_3COOH + H_2O \leftrightarrows CH_3COO^- + H_3O^+$

El compuesto HNO₃ produce 1×10⁻⁵ mol/L de iones hidrógeno. Calcule el pH de la solución acuosa de dicho compuesto.

SOLUCIÓN:

HNO₃
$$\Rightarrow$$
 H⁺ + NO₃⁻¹

1×10⁻⁵M

pH = $-\log[H^{+}]$

pH = $-\log(1x10^{-5})$

pH = $-[\log 1 + (-5)\log 10]$

El compuesto Ca(OH)₂ produce iones oxidrilo en una concentración de 0,001 mol/L. Calcule el pH de la solución.

SOLUCIÓN:

1Ca(OH)₂
$$\rightarrow$$
 Ca⁺² + 2OH⁻ (0,001 mol/L)
pOH = $-\log[OH^{-}]$ Recordar:
pOH = $-\log(0,001)$ pH + pOH = 14
pOH = $-\log(1x10^{-3})$ pH + 3 = 14
pOH = $-[\log[+(-3)\log[0]]$ pH = 11

El pH de la piel lo produce una capa existente entre la epidermis y dermis que se llama hipodermis. La función de la hipodermis es lubricar la piel y protegerla. Cuando el pH de la hipodermis aumenta, volviéndose más alcalino, es cuando se producen las dermatitis o la inflamaciones de la piel. Si el pH de la piel del rostro de Carlitos es 5. Determine

- a. La concentración de iones hidrógeno.
- b. La concentración de iones oxidrilo.
- c. El pOH de la piel del rostro de Carlitos.

SOLUCIÓN:

a.

$$[H^{+}] = 10^{-pH} M$$

 $[H^{+}] = 10^{-5} M$

b.

$$[H^{+}][OH^{-}] = 10^{-14}$$

 $10^{-5}[OH^{-}] = 10^{-14}$
 $[OH^{-}] = 10^{-9} M$

C.

$$[OH^{-}] = 10^{-9} M$$
 $pOH = -log[OH^{-}]$
 $pOH = -log(1x10^{-9})$
 $pOH = -[log] + (-9)log[O]$
 $pOH = 9$

En la teoría de Brönsted y Lowry de 1920, el danés J. N. J Brönsted y el inglés T. M. Lowry desarrollaron casi simultáneamente una teoría para identificar un ácido, pero considere que el protón al cuál nos referimos será representado por H⁺.

Ácido: Sustancia que dona protones (H⁺)

Base: Sustancia que acepta protones (H⁺)

De la siguiente ecuación indicar los ácidos de Bronsted

Los ácidos de Bronsted y Lowry: HCI y H20