Lec 1 - Introduction

Pratik Mazumder

Timings

Classroom: LHB 105

Lectures:

Tue: 10am-11am Wed: 9am-10am Fri: 9am-10am

Office Timings:

CSE 223, Thursday 11am-12pm

Syllabus

Introduction: Uninformed search strategies, Greedy best-first search, And-Or search, Uniform cost search, A* search, Memory-bounded heuristic search, Local and evolutionary searches (9 Lectures) Constraint Satisfaction Problems: Backtracking search for CSPs, Local search for CSPs (3 Lectures) Adversarial Search: Optimal Decision in Games, The minimax algorithm, Alpha-Beta pruning, Expectimax search (4 Lectures)

Knowledge and Reasoning: Propositional Logic, Reasoning Patterns in propositional logic; First order logic: syntax, semantics, Inference in First order logic, unification and lifting, backward chaining, resolution (9 Lectures)

Planning: Situation Calculus, Deductive planning, STRIPES, sub-goal, Partial order planner (3 Lectures) Bayesian Network, Causality, and Uncertain Reasoning: Probabilistic models, directed and undirected models, inferencing, causality, Introduction to Probabilistic reasoning (6 lectures) Reinforcement Learning: MDP, Policy, Q-value, Passive RL, Active RL, Policy Search (8 Lectures)

Textbook: Russel,S., and Norvig,P., (2015), Artificial Intelligence: A Modern Approach, 3rd Edition, Prentice Hall

Course Logistics

Assignments: 2 [30%]

Quizzes: 2 [10%]

Minor: 20% Major: 40%

Optional: Project on Reinforcement Learning - Certificates for Top 3 Teams

Textbook: Russel,S., and Norvig,P., (2015), Artificial Intelligence: A Modern Approach, 3rd Edition, Prentice

Hall

Google Classroom for Assignment Submission, Announcements: Invite Sent to Registered Students

Lecture Site: https://sites.google.com/iitj.ac.in/ai2024

Doubts?

Intelligence

- It is a complex and multifaceted concept that generally refers to the ability to learn, understand, reason, solve problems, and adapt to new situations.
- Human intelligence is the intellectual capability of humans.
- Howard Gardner's Multiple Intelligences
 - In order to capture the full range of abilities and talents that people possess, Gardner theorizes that people do not have just an intellectual capacity,
 - but have many kinds of intelligence, including musical, interpersonal, spatial-visual, and linguistic intelligences
- In this course, we deal with intelligence required to solve problems

- Human beings have tried to understand how we think, perceive, understand, predict, and manipulate the complicated world around us.
- The field of Artificial Intelligence (AI) deals with **building intelligent entities/agents** which can perceive, understand, predict, and manipulate the world like us and may be even better than us.
- Performing a Task vs Intelligently Performing a Task

×	0
	0

×	0
	*
	0

Goal: To be the First Player to get 3 of his/her marks in marks in a row/column/diagonal

Simply completing a task is not enough.

Intelligently solving a task involves considering the rewards/penalties

Goal: To be the First Player to get 3 of his/her marks in marks in a row/column/diagonal

Simply completing a task is not enough.

Intelligently solving a task involves considering the rewards/penalties

Isn't that how we learn too? – Parents, Teachers

- How do you consider anything intelligent: Turing Test (originally called the imitation game)
 - was designed to provide a satisfactory operational definition of intelligence
 - A computer passes the test if a human interrogator, after posing some written questions, cannot tell whether the written responses come from a person or from a computer.

- In order to pass the Turing Test, the entity should posses the following capabilities:
 - natural language processing to enable it to communicate successfully
 - knowledge representation to store what it knows or hears
 - automated reasoning to use the stored information to answer questions and to draw new conclusion
 - o machine learning to adapt to new circumstances and to detect and extrapolate patterns.
- Not a fool-proof measure

- Turing's test deliberately avoided direct physical interaction between the interrogator and the entity or computer.
- The Total Turing Test includes a video signal so that the interrogator can test the subject's perceptual abilities, as well as the opportunity for the interrogator to pass physical objects "through the hatch".
- To pass the total Turing Test, the computer will need
 - computer vision to perceive objects
 - o **robotics** to manipulate objects and move about.

Artificial Intelligence: Agent

- An agent is an entity that perceives and acts.
- Operate autonomously, perceive their environment, persist over a prolonged time period, adapt to change, and create and pursue goals.
- Building AI for a task = Agent

Designing Rational Agent

- A **rational** agent is one that acts so as to achieve the best outcome or, when there is uncertainty, the best expected outcome against an ideal performance measure
- System is rational if it does the "right thing", given what it knows, e.g., decisions taken by an autonomous car
- A rational agent selects actions that maximize its (expected) utility.
- Characteristics of the percepts, environment, and action **space** dictate techniques for selecting rational actions

Rational Decisions

- Rational: Achieve goals while Maximizing pre-defined rewards/utilities
- Rationality only concerns what decisions are made (not the thought process behind them)
- Being rational means maximizing your expected utility

Reflex Agent

- Choose action based on current percept (and maybe memory)
- May have memory or a model of the world's current state
- Do not consider the future consequences of their actions
- Not planning ahead

Reflex Agent

- Choose action based on current percept (and maybe memory)
- May have memory or a model of the world's current state
- Do not consider the future consequences of their actions
- Not planning ahead

Planning Agent

- Planning agents:
 - Ask "what if"
 - Decisions based on (hypothesized) consequences of actions
 - Must have a model of how the world evolves in response to actions
 - Must formulate a goal (test)
- Optimal vs. complete planning:
 - Optimal: Find best solution
 - Complete: If there is a solution then find it, even if it is not the best

Search Problems

- Framework for solving problems
- A search problem consists of:
 - A state space: List of all possible states, i.e., all possible configurations of elements/conditions in the world or environment, e.g., passing one pen across the class, situations in a pac man game.
 - A successor function (with actions, costs): Action may also change the state.
 - A start state
 - A goal test: There can be multiple goal states
- A solution is a sequence of actions (a plan) which transforms the start state to a goal state

Search Problems

- There are algorithms to solve search problems
- Learn to map real-world problems to search problems
 - Then the above algorithms can give you a way to solve the problem

Search Problems: Example

- State space:
 - Cities
- Successor function:
 - Roads: Go to adjacent city with cost = distance
- Start state:
 - Arad
- Goal test:
 - o Is state == Bucharest?
- Solution?

State Space

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

- Problem: Pathing
 - States: (x,y) location
 - Actions: NSEW
 - Successor: update location only
 - Goal test: is (x,y)=END

- Problem: Eat-All-Dots
 - States: {(x,y), dot booleans}
 - Actions: NSEW
 - Successor: update location and possibly a dot boolean
 - Goal test: dots all false

State Space

- World state:
 - Agent positions: 120
 - o Food count: 30
 - o Ghost positions: 12
 - Agent facing: NSEW
- How many
 - O World states?
 - \circ 120x(2³⁰)x(12²)x4
- States for pathing?
 - o 120
- States for eat-all-dots?
 - \circ 120x(2³⁰)

State Space Graphs

- A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations/states
 - Arcs represent successors (action results)
 - The goal test is a set of goal nodes (maybe only one)
- In a state space graph, each state occurs only once!

Search Trees

- A search tree:
 - A "what if" tree of plans and their outcomes
 - The start state is the root node
 - Children correspond to successors
 - Nodes show states, but correspond to plans that achieve those states

State Space Graphs vs. Search Trees

Each NODE in the search tree is an entire PATH in the state space graph.

We construct both on demand – and we construct as little as possible.

Try: Represent Problems/Tasks as Search Problems

- Cook a Meal with some Ingredients
- Build a Team Project
- Build an agent to play Call of Duty