

Contract Checker

SMART CONTRACT SECURITY AUDIT OF: SAFE PLUS TOKEN APP

Project Summary

Project Name SAFE PLUS TOKEN APP

APP Link https://safeplustoken.app/

BNB Contract 0xF349dAc9BE6597bE554869899438d15C20C443c3

SAFEMOON Contract 0x0406998f764635FF8E01d3344fDb89bB981ba73A

BUSD Contract 0xd3d052A9c15d2c63Bb5111219053C9dACb932cC2

Audit Result

✓ SAFE PLUS TOKEN APP has successfully PASSED the security audit

(Other unknown security vulnerabilities are not included in the audit responsibility scope)

Audit Result: PASSED

Audit Date: January 14, 2022

Audit Team: CONTRACTCHECKER

Functionality Analysis

Dashboard

Wallet Connect

Wallet Connect function is working properly with fast connection establishment speed

Exchange

Exchange functions are working properly and easy to operate

Staking

Staking function is available and working properly

Settings

Settings menu is functioning properly and easy to use

Table of Contents

Project Summary	2
Audit Result	2
Functionality Analysis	3
Dashboard	3
Wallet Connect	4
Exchange	5
Staking	6
Settings	7
SUMMARY	9
OVERVIEW	9
Auditing Approach an <mark>d App</mark> lied Methodologies	9
Security	10
Sound Architecture	10
Code Correctness an <mark>d Qua</mark> lity	10
Risk Classification	10
High level vulnerabilit <mark>y</mark>	
Medium level vulnerability	
Low level vulnerability	10
Manual Audit:	
SWC Attack Test	
BNB Contract 0xF349dAc9BE6597 <mark>bE554869899438d15C20C443</mark> c3	11
SAFEMOON Contract 0x0406998f764635FF8E01d3344fDb89bB981ba73A	12
BUSD Contract 0xd3d052A9c15d2c63Bb5111219053C9dACb932cC2	
Automated Audit	13
Disclaimer	14

SUMMARY

CONTRACTCHECKER received an application for DAPP security audit of SAFE PLUS TOKEN APP on December 28, 2021, from the project team to discover if any vulnerability in the functionality of the SAFE PLUS TOKEN DAPP project. Standard tests have been performed using Static Analysis and Manual Review techniques.

The auditing process focuses to the following considerations with collaboration of an expert team

- Functionality test to determine if proper logic has been followed throughout the whole process.
- Manually detailed examination of the code line by line by experts.
- Live test by multiple clients using Testnet.
- Analysing failure preparations to check how App performs in case of any bugs and vulnerabilities.
- Checking whether all the libraries used in the code are on the latest version.
- Analysing the security of the on-chain data.

OVERVIEW

This Audit Report mainly focuses on overall security of SAFE PLUS TOKEN APP. Contractchecker team scanned the application and assessed overall system architecture and vulnerabilities, exploits, hacks, and back-doors to ensure its reliability and correctness.

Auditing Approach and Applied Methodologies

Contractchecker team has performed rigorous test procedures of the project

- Code design patterns analysis in which architecture is reviewed to ensure it is structured according to industry standards.
- Line-by-line inspection to find any potential vulnerability
- Unit testing Phase, we coded/conducted custom unit tests written for each function to verify that each function works as expected.
- > Automated Test performed with our in-house developed tools to identify vulnerabilities and security flaws.

The focus of the audit was to verify that the APP System is secure, resilient, and working according to the specifications. The audit activities can be grouped in the following three categories:

Security

Identifying security related issues within functionalities.

Sound Architecture

Evaluation of the architecture of this system through the lens of APP best practices and general software best practices.

Code Correctness and Quality

A full review of the source code. The primary areas of focus include:

- Accuracy
- Readability
- Sections of code with high complexity
- Quantity and quality of test coverage

Risk Classification

Vulnerabilities are classified in 3 main levels as below based on possible effect to the DAPP functionality.

High level vulnerability

Vulnerabilities on this level must be fixed immediately as they might lead to fund and data loss and open to manipulation. Any High-level finding will be highlighted with **RED** text

Medium level vulnerability

Vulnerabilities on this level also important to fix as they have potential risk of future exploit and manipulation. Any Medium-level finding will be highlighted with ORANGE text

Low level vulnerability

Vulnerabilities on this level are minor and may not affect the functions execution. Any Low-level finding will be highlighted with **BLUE** text

Manual Audit:

For this section the code was tested/read line by line by our developers. Additionally, Remix IDE's JavaScript VM and Kovan networks used to test the functionality.

SWC Attack Test

BNB Contract 0xF349dAc9BE6597bE554869899438d15C20C443c3

SWC ID	Description	Test Result
SWC-101	Integer Overflow and Underflow	Passed
SWC-102	Outdated Compiler Version	Passed
SWC-103	Floating Pragma	Passed
SWC-104	Unchecked Call Return Value	Passed
SWC-105	Unprotected Ether Withdrawal	Passed
SWC-106	Unprotected SELFDESTRUCT Instruction	Passed
SWC-107	Re-entrancy Re-entrancy	Passed
SWC-108	State Variable Default Visibility	Passed
SWC-109	Uninitialized Storage Pointer	Passed
SWC-110	Assert Violation	Passed
SWC-111	Use of Deprecated Solidity Functions	Passed
SWC-112	Delegate Call to Untrusted Callee	Passed
SWC-113	DoS with Failed Call	Passed
SWC-114	Transaction Order Dependence	Passed
SWC-115	Autho <mark>rizati</mark> on through tx.origin	Passed
SWC-116	Block values as a proxy for time	Passed
SWC-117	Signature Malleability	Passed
SWC-118	Incorrect Constructor Name	Passed
SWC-119	Shadowing State Variables	Passed
SWC-120	Weak Sources of Randomness from Chain Attributes	Passed
SWC-121	Missing Protection against Signature Replay Attacks	Passed
SWC-122	Lack of Proper Signature Verification	Passed
SWC-123	Requirement Violation	Passed
SWC-124	Write to Arbitrary Storage Location	Passed
SWC-125	Incorrect Inheritance Order	Passed
SWC-126	Insufficient Gas Griefing	Passed
SWC-127	Arbitrary Jump with Function Type Variable	Passed
SWC-128	DoS With Block Gas Limit	Passed
SWC-129	Typographical Error	Passed
SWC-130	Right-To-Left-Override control character (U+202E)	Passed
SWC-131	Presence of unused variables	Passed
SWC-132	Unexpected Ether balance	Passed
SWC-133	Hash Collisions With Multiple Variable Length Arguments	Passed
SWC-134	Message call with hardcoded gas amount	Passed
SWC-135	Code With No Effects (Irrelevant/Dead Code)	Passed
SWC-136	Unencrypted Private Data On-Chain	Passed

SAFEMOON Contract 0x0406998f764635FF8E01d3344fDb89bB981ba73A

SWC ID	Description	Test Result
SWC-101	Integer Overflow and Underflow	Passed
SWC-102	Outdated Compiler Version	Passed
SWC-103	Floating Pragma	Passed
SWC-104	Unchecked Call Return Value	Passed
SWC-105	Unprotected Ether Withdrawal	Passed
SWC-106	Unprotected SELFDESTRUCT Instruction	Passed
SWC-107	Re-entrancy	Passed
SWC-108	State Variable Default Visibility	Passed
SWC-109	Uninitialized Storage Pointer	Passed
SWC-110	Assert Violation	Passed
SWC-111	Use of Deprecated Solidity Functions	Passed
SWC-112	Delegate Call to Untrusted Callee	Passed
SWC-113	DoS wi <mark>th Fa</mark> iled Call	Passed
SWC-114	Transaction Order Dependence	Passed
SWC-115	Authorization through tx.origin	Passed
SWC-116	Block values as a proxy for time	Passed
SWC-117	Signat <mark>ure M</mark> alleability	Passed
SWC-118	Incorrect Constructor Name	Passed
SWC-119	Shadowing State Variables	Passed
SWC-120	Weak Sources of Randomness from Chain Attributes	Passed
SWC-121	Missing Protection against Signature Replay Attacks	Passed
SWC-122	Lack of Proper Signature Verification	Passed
SWC-123	Requirement Violation	Passed
SWC-124	Write to Arbitrary Storage Location	Passed
SWC-125	Incorrect Inheritance Order	Passed
SWC-126	Insufficient Gas Griefing	Passed
SWC-127	Arbitrary Jump with Function Type Variable	Passed
SWC-128	DoS With Block Gas Limit	Passed
SWC-129	Typographical Error	Passed
SWC-130	Right-To-Left-Override control character (U+202E)	Passed
SWC-131	Presence of unused variables	Passed
SWC-132	Unexpected Ether balance	Passed
SWC-133	Hash Collisions With Multiple Variable Length Arguments	Passed
SWC-134	Message call with hardcoded gas amount	Passed
SWC-135	Code With No Effects (Irrelevant/Dead Code)	Passed
SWC-136	Unencrypted Private Data On-Chain	Passed

SWC ID	Description	Test Result
SWC-101	Integer Overflow and Underflow	Passed
SWC-102	Outdated Compiler Version	Passed
SWC-103	Floating Pragma	Passed
SWC-104	Unchecked Call Return Value	Passed
SWC-105	Unprotected Ether Withdrawal	Passed
SWC-106	Unprotected SELFDESTRUCT Instruction	Passed
SWC-107	Re-entrancy	Passed
SWC-108	State Variable Default Visibility	Passed
SWC-109	Uninitialized Storage Pointer	Passed
SWC-110	Assert Violation	Passed
SWC-111	Use of Deprecated Solidity Functions	Passed
SWC-112	Delegate Call to Untrusted Callee	Passed
SWC-113	DoS with Failed Call	Passed
SWC-114	Transaction Order Dependence	Passed
SWC-115	Authorization through tx.origin	Passed
SWC-116	Block values as a proxy for time	Passed
SWC-117	Signature Malleability	Passed
SWC-118	Incorr <mark>ect C</mark> onstructor Name	Passed
SWC-119	Shadowing State Variables	Passed
SWC-120	Weak Sources of Randomness from Chain Attributes	Passed
SWC-121	Missing Protection against Signature Replay Attacks	Passed
SWC-122	Lack of Proper Signature Verification	Passed
SWC-123	Requirement Violation	Passed
SWC-124	Write to Arbitrary Storage Location	Passed
SWC-125	Incorrect Inheritance Order	Passed
SWC-126	Insufficient Gas Griefing	Passed
SWC-127	Arbitrary Jump with Function Type Variable	Passed
SWC-128	DoS With Block Gas Limit	Passed
SWC-129	Typographical Error	Passed
SWC-130	Right-To-Left-Override control character (U+202E)	Passed
SWC-131	Presence of unused variables	Passed
SWC-132	Unexpected Ether balance	Passed
SWC-133	Hash Collisions With Multiple Variable Length Arguments	Passed
SWC-134	Message call with hardcoded gas amount	Passed
SWC-135	Code With No Effects (Irrelevant/Dead Code)	Passed
SWC-136	Unencrypted Private Data On-Chain	Passed

Automated Audit

Automated Audit is not in scope of standard audit process

Disclaimer

This is a limited report on our findings based on our analysis, in accordance with good industry practice as at the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms based on DAPP, the details of which are set out in this report. In order to get a full view of our analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and producing this report, it is important to note that you should not rely on this report and cannot claim against us on the basis of what it says or doesn't say, or how we produced it, and it is important for you to conduct your own independent investigations before making any decisions. We go into more detail on this in the below disclaimer below – please make sure to read it in full.

DISCLAIMER: By reading this report or any part of it, you agree to the terms of this disclaimer. If you do not agree to the terms, then please immediately cease reading this report, and delete and destroy all copies of this report downloaded and/or printed by yo<mark>u. This</mark> report is provided for information purposes only and on a non-reliance basis and does not constitute investment advice. No one shall have any right to rely on the report or its contents, and ContractChecker and its affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers and other representatives) (ContractChecker) owe no duty of care towards you or any other person, nor does ContractChecker make any warranty or representation to any person on the accuracy or completeness of the report. The report is provided "as is", without any conditions, warranties or other terms of any kind except as set out in this disclaimer, and ContractChecker hereby excludes all representations, warranties, conditions and other terms (including, without limitation, the warranties implied by law of satisfactory quality, fitness for purpose and the use of reasonable care and skill) which, but for this clause, might have effect in relation to the report. Except and only to the extent that it is prohibited by law, ContractChecker hereby excludes all liability and responsibility, and neither you nor any other person shall have any claim against ContractChecker, for any amount or kind of loss or damage that may result to you or any other person (including without limitation, any direct, indirect, special, punitive, consequential or pure economic loss or damages, or any loss of income, profits, goodwill, data, contracts, use of money, or business interruption, and whether in delict, tort (including without limitation negligence), contract, breach of statutory duty, misrepresentation (whether innocent or negligent) or otherwise under any claim of any nature whatsoever in any jurisdiction) in any way arising from or connected with this report and the use, inability to use or the results of use of this report, and any reliance on this report.

The analysis of the security is purely based on the DAPP alone. No applications or operations were reviewed for security. No product code has been reviewed.

