

Chapter 2 Graphs, Charts, and Tables – Describing Your Data

Chapter Goals

After completing this chapter, you should be able to:

- Construct a frequency distribution both manually and with a computer
- Construct and interpret a histogram
- Create and interpret bar charts, pie charts, and stem-and-leaf diagrams
- Present and interpret data in line charts and scatter diagrams

Frequency Distributions

What is a Frequency Distribution?

- A frequency distribution is a list or a table ...
- containing the values of a variable (or a set of ranges within which the data falls) ...
- and the corresponding frequencies with which each value occurs (or frequencies with which data falls within each range)

Why Use Frequency Distributions?

- A frequency distribution is a way to summarize data
- The distribution condenses the raw data into a more useful form...
- and allows for a quick visual interpretation of the data

Frequency Distribution: Discrete Data

Discrete data: possible values are countable

Example: An advertiser asks 200 customers how many days per week they read the daily newspaper.

Number of days read	Frequency
0	44
1	24
2	18
3	16
4	20
5	22
6	26
7	30
Total	200

Relative Frequency

Relative Frequency: What proportion is in each category?

Number of days read	Frequency	Relative Frequency	. 4
0	44	.22	
1	24	.12	2
2	18	.09	229
3	16	.08	peo
4	20	.10	sar tha
5	22	.11	the
6	26	.13	0 d
7	30	.15	-
Total	200	1.00	1

 $\frac{44}{200}$ = .22

22% of the people in the sample report that they read the newspaper 0 days per week

Frequency Distribution: Continuous Data

 Continuous Data: may take on any value in some interval

Example: A manufacturer of insulation randomly selects 20 winter days and records the daily high temperature

(Temperature is a continuous variable because it could be measured to any degree of precision desired)

Grouping Data by Classes

Sort raw data in ascending order:

12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58

- Find range: 58 12 = 46
- Select number of classes: 5 (usually between 5 and 20)
- Compute class width: 10 (46/5 then round off)
- Determine class boundaries:10, 20, 30, 40, 50
- Compute class midpoints: 15, 25, 35, 45, 55
- Count observations & assign to classes

Frequency Distribution Example

Data in ordered array:

12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58

Frequency Distribution				
Class	Frequency	Relative Frequency		
10 but under 20	3	.15		
20 but under 30	6	.30		
30 but under 40	5	.25		
40 but under 50	4	.20		
50 but under 60	2	.10		
Total	20	1.00		

Histograms

- The classes or intervals are shown on the horizontal axis
- frequency is measured on the vertical axis
- Bars of the appropriate heights can be used to represent the number of observations within each class
- Such a graph is called a histogram

Histogram Example

Data in ordered array:

12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58

No gaps between bars, since continuous data

Questions for Grouping Data into Classes

- 1. How wide should each interval be? (How many classes should be used?)
- 2. How should the endpoints of the intervals be determined?
 - Often answered by trial and error, subject to user judgment
 - The goal is to create a distribution that is neither too "jagged" nor too "blocky"
 - Goal is to appropriately show the pattern of variation in the data

How Many Class Intervals?

Many (Narrow class intervals)

- may yield a very jagged distribution with gaps from empty classes
- Can give a poor indication of how frequency varies across classes

Few (Wide class intervals)

- may compress variation too much and yield a blocky distribution
- can obscure important patterns of variation.

(X axis labels are upper class endpoints)

General Guidelines

Number of Data Points	Number of Classes
under 50	5 - 7
50 – 100	6 - 10
100 – 250	7 - 12
over 250	10 - 20

- Class widths can typically be reduced as the number of observations increases
- Distributions with numerous observations are more likely to be smooth and have gaps filled since data are plentiful

Class Width

 The class width is the distance between the lowest possible value and the highest possible value for a frequency class

The minimum class width is

Histograms in Excel

Histograms in Excel

(continued)

Stem and Leaf Diagram

 A simple way to see distribution details in a data set

METHOD: Separate the sorted data series into leading digits (the **stem**) and the trailing digits (the **leaves**)

Example:

Data in ordered array:
13, 17, 21, 24, 24, 26, 27, 27, 30, 32 35, 37, 38, 41, 43, 44, 46, 53, 58

Here, use the 10's digit for the stem unit:

	Stem	Leaf
12 is shown as —	→ 1	2
■ 35 is shown as	→ 3	5

Example:

Data in ordered array:

12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58

Completed Stem-and-leaf diagram:

Stem	Le	ave	es			
1	2	3	7			
2	1	4	4	6	7	8
3	0	2	5	7	8	
4	1	3	4	6		
5	3	8				

Using other stem units

- Using the 100's digit as the stem:
 - Round off the 10's digit to form the leaves

	Stem	Leaf
613 would become	6	1
776 would become ——	7	8
•		
■ 1224 becomes →	12	2

Graphing Categorical Data

Bar and Pie Charts

- Bar charts and Pie charts are often used for qualitative (category) data
- Height of bar or size of pie slice shows the frequency or percentage for each category

Pie Chart Example

Current Investment Portfolio

Investment Type	Amount (in thousands \$)	Percentage
Stocks	46.5	42.27
Bonds	32.0	29.09
CD	15.5	14.09
Savings	16.0	14.55
Total	110	100

(Variables are Qualitative)

Bar Chart Example

Investor's Portfolio

Pareto Diagram Example

Bar Chart Example

Number of days read	Frequency
0	44
1	24
2	18
3	16
4	20
5	22
6	26
7	30
Total	200

Newspaper readership per week

Number of days newspaper is read per week

Tabulating and Graphing Multivariate Categorical Data

Investment in thousands of dollars

Investment Category	Investor A	Investor B	Investor C	Total
Stocks	46.5	55	27.5	129
Bonds	32.0	44	19.0	95
CD	15.5	20	13.5	49
Savings	16.0	28	7.0	51
Total	110.0	147	67.0	324

Tabulating and Graphing Multivariate Categorical Data

(continued)

Side by side charts

Side-by-Side Chart Example

Sales by quarter for three sales territories:

	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr
East	20.4	27.4	59	20.4
West	30.6	38.6	34.6	31.6
North	45.9	46.9	45	43.9

Line Charts and Scatter Diagrams

- Line charts show values of one variable vs. time
 - Time is traditionally shown on the horizontal axis
- Scatter Diagrams show points for bivariate data
 - one variable is measured on the vertical axis and the other variable is measured on the horizontal axis

Line Chart Example

	Inflation
Year	Rate
1985	3.56
1986	1.86
1987	3.65
1988	4.14
1989	4.82
1990	5.40
1991	4.21
1992	3.01
1993	2.99
1994	2.56
1995	2.83
1996	2.95
1997	2.29
1998	1.56
1999	2.21
2000	3.36
2001	2.85
2002	1.58

Scatter Diagram Example

Volume per day	Cost per day
	,
23	125
26	140
29	146
33	160
38	167
42	170
50	188
55	195
60	200

Production Volume vs. Cost per Day

Types of Relationships

Linear Relationships

Types of Relationships

(continued)

Curvilinear Relationships

Types of Relationships

(continued)

No Relationship

Chapter Summary

- Data in raw form are usually not easy to use for decision making -- Some type of organization is needed:
 - Table
- Graph
- Techniques reviewed in this chapter:
 - Frequency Distributions and Histograms
 - Bar Charts and Pie Charts
 - Stem and Leaf Diagrams
 - Line Charts and Scatter Diagrams