CDD Inteligência Artificial: Classificação

SVM Support Vector Machines

Cassius Figueiredo

Histórico

- 1968: base matemática
 - Teorema de Lagrange (Teoria dos Grupos).
- Proposto em 1992 pelo russo Vladimir Vapnik.
 - 1992, Primeiro artigo
 - 1998, Definição detalhada
- Últimas décadas
 - Série de artigos com aplicações de SVM
 - Série de artigos com otimizações de SVM

Utilização

- Bioinformática;
- Reconhecimento de assinaturas;
- Classificação de texto e imagens;
- Identificação de spams;
- Reconhecimento de padrões diversos.

Definição

- SVM (Support Vector Machines) ou Máquinas de Vetor de Suporte.
- Consiste em um método de aprendizado que tenta encontrar a maior margem para separar diferentes classes de dados.

Pertence à classe de algoritmos de aprendizado supervisionado.

 A essência do SVM é a construção de um hiperplano ótimo, de modo que ele possa separar diferentes classes de dados com a maior margem possível.

Motivação

- Reta / Plano / Hiperplano?
- Qual o hiperplano ótimo (menor erro de classificação)?

- Como separar essas duas classes?
- Qual o hiperplano ótimo?
 - Menor erro de classificação;
 - Maior margem.

 Distância entre vetores de suporte e o hiperplano

Como separar essas duas classes?

• Existem diversas retas que podem ser traçadas para separar os dados.

Qual delas é a melhor opção?

Como separar essas duas classes?

• Existem diversas retas que podem ser traçadas para separar os dados.

Qual delas é a melhor opção?

HIPERPLANO ÓTIMO!

Vetores de suporte

 Servem para definir qual será o hiperplano.

• São encontrados durante a fase de treinamento.

 Os vetores de suporte são os exemplos de treinamento realmente importantes.
Os outros exemplos podem ser ignorados.

- Hiperplano:
 - Espaço 1D = Ponto

– Espaço 3D = Plano

Espaço 2D = Reta

- A aplicação de um método puramente linear para classificar um conjunto de dados pode sofrer com dois problemas bastante comuns:
 - Outliers;
 - Exemplos rotulados erroneamente.

- Mesmo assim o SVM ainda pode ser aplicado através do uso do parâmetro C (soft margin, variáveis de folga).
 - Permite classificação indevida de observações;
 - Quanto menor o parâmetro **C**, mais larga a margem, trazendo maiores chances de violação de margem!

Soft Margin

• Em alguns problemas não é possível separar as classes linearmente mesmo utilizando a margem de folga.

 Na realidade, a grande maioria dos problemas reais não são separáveis linearmente.

• O que fazer?

SVM Não-Linear

O que fazer quando os dados não são linearmente separáveis?

 A abordagem utilizada pelo SVM para resolver esse tipo de problema consistem em mapear os dados para um espaço de dimensão maior:

SVM Não-Linear

- Os dados são mapeados em um espaço dimensional maior ("espaço de características").
- O espaço característico é construído através de uma projeção matemática conhecida como "Kernel Trick" (Função Φ).

SVM Não-Linear

• O espaço de atributos original pode ser mapeado em um espaço de atributos de dimensão maior onde o conjunto de treinamento é linearmente separável:

Kernel Trick

• A função que projeta o espaço de entrada no espaço de características é conhecida com *Kernel*.

- Baseado no teorema de Cover (1965):
 - Dados no espaço de entrada são transformados (transformação não-linear) para o espaço de características, onde são linearmente separáveis.

• O vetor $\phi(x_i)$ representa a "imagem" induzida no espaço de características pelo vetor de entrada.

SVM Não-Linear - Exemplo

 Considerando o seguinte conjunto de exemplos de treinamento que não são linearmente separáveis:

Elevando para uma dimensão linearmente separável (R¹ → R²):

SVM Não-Linear - Exemplo

- A mesma metodologia pode ser aplicada em um espaço 2D de características (R² → R³).
- A única diferença é a necessidade de uma nova função de kernel. Um exemplo de função de kernel aplicável nesse caso seria:

Desafio

• Como escolher a função $\phi(x_i)$ tal que o espaço de características transformado seja eficiente para classificação e não possua custo computacional alto demais?

- Funções de Núcleo (Kernel):
 - Polinomial;
 - Gaussiano;
 - Sigmoide.

 Sempre aumentam o número de dimensões (Algumas vezes aumentam bastante!)

Funções de Núcleo

Kernel	Função $\phi(x_i,x_j)$
Polinomial	$\left(\delta(x_i\cdot x_j)+k\right)^d$
Gaussiano	$\exp(-\sigma \ x_i - x_j\ ^2)$
Sigmoidal	$\tanh(\delta(x_i \cdot x_j) + k)$

Tomada de decisão

• SVMs são classificadores binários, ou seja, separam duas classes.

• Entretanto, a grande maioria dos problemas reais possuem mais que duas classes.

- Como utilizar os SVMs nesses casos? Escolhemos uma abordagem:
 - Pairwise;
 - Um-contra-todos.

Pairwise

• Consiste em treinar classificadores dois a dois e arranjá-los em uma árvore.

A competição se dá nos níveis inferiores, e o ganhador chegará ao nó principal da árvore.

Número de classificadores para q classes = q(q-1)/2.

Um-contra-todos

• Neste método, o número de classificadores é igual a q.

• Treina se um classificador c_i para a primeira classe, usando se como contra exemplos as outras classes, e assim sucessivamente.

 Para se obter a decisão final pode se utilizar uma estratégia de votos (por exemplo, majority voting).

Aplicação

- Antes de aplicar uma SVM para classificar um conjunto de dados é necessário pensar em algumas questões:
 - Quais funções de núcleo utilizar?
 - Qual o valor do parâmetro **C** (*Soft Margin*)?

• Utilização de validação cruzada.

Vantagens e Desvantagens

Vantagens:

- Consegue lidar bem com grandes conjuntos de dados;
- Trata bem dados de alta dimensão;
- O processo de classificação é rápido.

Desvantagens:

- É necessário definir um bom Kernel;
- Alto custo computacional, o tempo de treinamento pode ser bem longo dependendo do número de exemplos e dimensionalidade dos dados.

Aplicações

- Categorização de texto;
- Filtragem de e-mail;
- Web searching;
- Classificação/Indexação de documentos;
- Gestão Eletrônica de Documentos (GED).

Aplicações

- Imagens:
 - Indexação de imagens;
 - Aplicações médicas.
- Reconhecimento da escrita:
 - Geralmente com resultados melhores que outros tipos de classificadores (a menos de redes Deep learning).
- Bio-informática:
 - Categorização automática de genes em DNA;
 - Sequências de aminoácidos;
 - Classificação de proteínas.

Referências

• **SVM Playground**

Machine Learning Playground