Data-driven Approach for Optimizing Foodbank Operation

Lee, Sooin / Yong Woo Kwon / Michael K. Lim

Business Administration
Seoul National University
Lee, Sooin

Nov. 10th 2023

Food Bank Issues

"Increasing demand of Food Banks"

[Decade-long rise food bank use]

[Line up for food assistance]

(CNN, 2020)

(UK-Parliament, 2022)

Food Bank Issues

"Shortfall in Donations"

[Decreasing Number of Donations]

[Food Bank Inventory Shortage]

(SBS news, 2022) (WHAS11, 2022)

Challenges of Food Bank Operations

- 1) Perspectives on Demand and Supply
 - Shortages in Supply Due to Decreased Donations
 - Inconsistencies Among Required and Offered Items

Challenges of Food Bank Operations

- 2) Perspectives on logistics
 - Wide variety of donated item types
 - Unstable supply
 - Limited delivery capacity

- 3) Perspective on Social Values
 - Diversity in Value
 - Past: Minimizing Costs, Maximizing Beneficiary Benefit
 - Present: Equity Among Beneficiaries

Research Objectives

- Formulate a model that effectively solve the food bank's challenges
- Propose a machine learning techniques using big data to implement solutions
- Case Study with Korean food bank to solve problems and derive useful implications

Literature Review

- Incorporate multiple criteria into single objective function
 - Firouz et al. (2022): Equity & Efficiency trade-off
 - Islam and Ivy (2018, 2021): Consider all Equity / Effectiveness / Efficiency
 - ➤ Incorporate Equity, Effectiveness and Efficiency costs into single objective function
- Various solving methods for foodbank logistics
 - Nair et al. (2018): Cutting-plane algorithm (Exact algorithm)
 - Eisenhandler et al. (2018): Large Neighborhood Search algorithm (Heuristic Algorithm)
 - ➤ Novel 2-stage machine learning approach for solving Foodbank Logistics
- Applicability in current foodbanks
 - Rancourt et al. (2015): Case study in Kenya
 - Hasnain et al. (2021): Case study with Feeding America, North Carolina
 - ➤ Case study with Korean Foodbank

Overview: Food Bank Operations

(Sengul Orgut & Lodree, 2023)

Equity: Fair donated food distribution between beneficiaries

Effectiveness: Maximization of food distribution **Efficiency**: Minimization of the distribution costs.

Problem Overview

• Situation

 Foodbanks with different stock and request level of items

• Problems

- Need to reduce the costs and waste associated with excess inventory
- Lower the budgetary spending of the food banks.
- Reallocation of items for foodbanks' beneficiaries

Goal

- Minimize the operational costs of redistribution process
- Consider appropriate level of budget for each foodbank
- Trade-off between transportation cost and effectiveness

Problem Formulation

Sets and indices

- •P : Set of nodes having pickup request (varies by item m), $P = \{1, 2, ..., p\}$
- •D : Set of nodes having delivery request (varies by item m), $D = \{p + 1, p + 2, \dots d\}$
- •N : Set of pickup and delivery node, $N = P \cup D$
- V : Set of vehicles available, $V = \{1, 2, ..., k\}$
- •H : Set of commodities to be transported to customers $H = \{1, 2, ..., m\}$

Parameters

- • c_{ij} : Travel costs from node i directly to node j
- • S_m : Product cost for each item m
- • f_{im} : Arbitrary variable; 1 If foodbank i supplies item m; -1 if foodbank i demands item m; 0 otherwise;
- *Q* : Maximum capacity for vehicle (Homogeneous Truck)

Multi-Objective function

Decision Variables

- x_{ij}^k = equal to 1 if vehicle k travels from node i directly to node j, and 0 otherwise
- $L_{ijm}^k = \text{load quantity of item m on vehicle k when it travels from node i directly to node j}$
- q_{im}^k : pickup/delivery quantity of item m at node i when it is visited by vehicle k

Multi-Objective function

• Minimize

$$\sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{k=0}^{v} c_{ij}^{k} x_{ij}^{k} + \sum_{i=0}^{n} \sum_{k=0}^{v} \sum_{m=0}^{h} S_{m}(D_{im}^{k} - q_{im}^{k}) + \sum_{k=0}^{v} (E_{max}^{k} - E_{min}^{k})$$
Efficiency Cost Effectiveness Cost Equity Cost

Problem Formulation

Constraints

•
$$\sum_{j=0}^{n} x_{0j}^{k} = 1, \sum_{j=0}^{n} x_{j0}^{k} = 1, \forall k \in V$$

•
$$\sum_{i=0}^{n} \sum_{k=0}^{v} x_{ij}^{k} \le 1, \forall j \in N$$

•
$$\sum_{i=1}^{n} x_{ij}^{k} - \sum_{i=1}^{n} x_{ji}^{k}$$
, $\forall j \in N$, $k \in V$

•
$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=0}^{v} x_{ij}^{k} \le |R| - 1, \forall R \in N$$

•
$$\sum_{i=1}^{n} L_{ijm}^{k} + q_{jm}^{k} f_{jm} - \sum_{i=1}^{n} L_{jim}^{k} = 0$$
, $\forall j \in N$, $m \in H$, $k \in V$

•
$$L_{0jm}^{k} = 0$$
, $L_{j0m}^{k} = 0$, $\forall j \in N, m \in H, k \in V$

•
$$q_{ijm}^k \le Q \sum_{j=0}^n x_{ij}^k$$
, $\forall j \in N, m \in H, k \in V$

•
$$\sum_{m=0}^{h} L_{ijm}^{k} \leq Q x_{ij}^{k}, \forall i \in N, j \in N, k \in V$$

•
$$E_{max}^k \ge \sum_{k=0}^v \sum_{m=0}^h S_m(D_{im}^k - q_{im}^k), \forall k \in V$$

•
$$E_{min}^k \le \sum_{k=0}^v \sum_{m=0}^h S_m (D_{im}^k - q_{im}^k)$$
, $\forall k \in V$

Flow constraints for Vehicle routing problems

Capacity constraints for Pickup & Delivery

Equity constraints for Re-allocations

Solution Method: DRL

- Due to complexity of model, hard to solve through MLIP
- Reinforcement Learning Approach
 - State
 - Delivery or pickup request quantities for each item by each food bank
 - Previous Route information
 - Current load of vehicle
 - Action
 - Select foodbank to visit
 - When selected, driver will automatically pickup/deliver the item based on the current load
 - Reward
 - Total sum of effective / equity / efficiency cost

Model Architecture

Phase 1. DRL-Based UPDVRP

Phase 2. GNN based Clustering

20 Foodbank with 10 products

20 Foodbank with 20 products

Gyeonggi Metropolitan Foodbank (경기광역푸드뱅크)

- Data Description
- 84 Foodbanks with 5,165 types of product
- Training date: 2022-01-01~ 2022-12-31 (1 year)
- Assumed 63 reallocation happened (5 days)

사업장 명칭 사업장 소재지		가평군푸드뱅크 가평군 가평읍 달전로 44(달전리)						
모집일자 🔻	종류		품목	4	수량ູ	가액 🔻		
2022-01-01	대용식(빵)	기타빵			24	126,000		
2022-01-02	대용식(빵)	기타빵			92	495, 880		
2022-01-03	대용식(빵)	기타빵			72	417,600		

Map for Foodbank Center

Data Preprocessing

• Text classification model: Bert

- Bert Classification: Multilingual classification + Pretrained model
- Standardize inconsistent item names among food banks
- Convert 5,165 types \rightarrow 20 types

Data Normalization

- For pickup request we assume to be products being positive while demand request as negative
- Applied Hyperbolic Tangent function to normalize data from -1 to 1

사업장 명칭		가평군푸드뱅크						
사업장 소재지		가평군 가평읍 달전로 44(달전리)						
모집일자 🔻	종류		품목	~	수량▼	가액 🐷		
2022-01-01	대용식(빵)	기타빵			24	126,000		
2022-01-02	대용식(빵)	기타빵			92	495, 880		
2022-01-03	대용식(빵)	기타빵		·	72	417,600		

name	1	2	3	4	5
가평군푸드뱅크	0	0	0	0	0
경기도광역푸드뱅크	0	-1	-1	0	0
고양시문촌7푸드뱅크	0	0	0	0	0
고양시문촌9푸드뱅크	0	0	0	-1	0
고양시한아름푸드마켓	1	0	0	0	0
고양시흰돌기초푸드뱅크	-1	0	0	0	0
광명시푸드뱅크마켓센터	-1	-0.69287	0	-1	-1

Conclusion

• Current Status

- Present a mathematical model that considers various evaluation criteria & constraints of food banks
- Utilize state-of-art machine learning techniques and proposed pretrained model
- Case study with domestic food bank and derive effective solution method

• Further plans

- Conduct interviews with related employees to build more practical model for field
- Expand the training data range up to 2016
- Compare with other solution methods such as Gurobi (OR tools) or other heuristic methods

Thank you

