Data Aggregation

How to Get Data Insights?

SoftUni TeamTechnical Trainers

Software University

https://softuni.bg

Table of Contents

1. Grouping

consolidating data based on criteria

2. Aggregate Functions

COUNT, SUM, MAX, MIN, AVG ...

3. Having

using predicates while grouping

Questions

Grouping

 Grouping allows taking data into separate groups based on a common property

Grouping column

employee	department_name	salary
Adam	Database Support	5,000
John	Database Support	15,000
Jane	Application Support	10,000
George	Application Support	15,000
Lila	Application Support	5,000
Fred	Software Support	15,000

Can be aggregated

GROUP BY

 With GROUP BY you can get each separate group and use an "aggregate" function over it (like Average, Min or Max):

```
SELECT e. job_title, count(employee_id)

FROM employees AS e

GROUP BY e. job_title;

Columns
```

Problem: Departments Total Salaries

- Write a query which prints the total sum of salaries for each department in the soft_uni database
 - Order them by DepartmentID (ascending)

employee	department_name	salary
Adam	Database Support	5,000
John	Database Support	15,000
Jane	Application Support	10,000
George	Application Support	15,000
Lila	Application Support	5,000
Fred	Software Support	15,000

department_id	total_salary
1	20,000
2	30,000
3	15,000

Solution: Departments Total Salaries


```
Grouping
                 Column
                                 New Column Alias
SELECT e. department_id`,
  SUM(e.`salary`) AS 'Total Salary'
FROM `employees` AS e _ Table Alias
GROUP BY e. department_id
                                  Grouping
ORDER BY e. department_id;
                                  Columns
```


Aggregate Functions

COUNT, SUM, MAX, MIN, AVG...

Aggregate Functions

- Used to operate over one or more groups performing data analysis on every one
 - MIN, MAX, AVG, COUNT etc.
- They usually ignore NULL values

```
SELECT e.`department_id`,
MIN(e.`salary`) AS 'MinSalary'
FROM `employees` AS e
GROUP BY e.`department_id`;
```


	department_id	MinSalary
•	1	32700.0000
	2	25000.0000
	3	23100.0000
	4	13500.0000
	5	12800.0000
	6	40900.0000
	7	9500.0000

COUNT

 COUNT - counts the values (not nulls) in one or more columns based on grouping criteria

employee	department_name	salary
Adam	Database Support	5,000
John	Database Support	15,000
Jane	Application Support	10,000
George	Application Support	15,000
Lila	Application Support	5,000
Fred	Software Support	15,000

COUNT Syntax

Note that when we use COUNT we will ignore any employee with

Grouping

Column

NULL salary.

```
SELECT e. department_id,

COUNT(e. salary) AS 'Salary Count'

FROM employees AS e

GROUP BY e. department_id;
```

Grouping Columns

SUM

SUM - sums the values in a column

employee	department_name	salary
Adam	Database Support	5,000
John	Database Support	15,000
Jane	Application Support	10,000
George	Application Support	15,000
Lila	Application Support	5,000
Fred	Software Support	15,000

SUM Syntax

• If any department has no salaries NULL will be displayed.

Grouping Column

```
SELECT e. department_id, New Column Alias

SUM(e. salary) AS 'TotalSalary'

FROM employees AS e Table Alias

GROUP BY e. department_id;
```

Grouping Columns

MAX

MAX - takes the maximum value in a column.

employee	department_name	salary
Adam	Database Support	5,000
John	Database Support	15,000
Jane	Application Support	10,000
George	Application Support	15,000
Lila	Application Support	5,000
Fred	Software Support	15,000

department_name	max_salary
Database Support	15,000
Application Support	15,000
Software Support	15,000

MAX Syntax


```
Grouping Column
```

```
SELECT e. department_id,

MAX(e. salary) AS 'MaxSalary'

FROM employees AS e Table Alias

GROUP BY e. department_id;
```

Grouping Columns

MIN

• MIN takes the minimum value in a column.

employee	department_name	salary
Adam	Database Support	5,000
John	Database Support	15,000
Jane	Application Support	10,000
George	Application Support	15,000
Lila	Application Support	5,000
Fred	Software Support	15,000

MIN Syntax

Grouping Column

```
SELECT e. department id, New Column Alias
MIN(e. salary) AS 'MinSalary'
FROM employees AS e Table Alias
GROUP BY e. department id;
```

Grouping Columns

AVG

AVG calculates the average value in a column.

employee	department_name	salary
Adam	Database Support	5,000
John	Database Support	15,000
Jane	Application Support	10,000
George	Application Support	15,000
Lila	Application Support	5,000
Fred	Software Support	15,000

AVG Syntax


```
Grouping Column
```

```
SELECT e. department_id,

AVG(e. salary) AS 'AvgSalary'

FROM employees AS e Table Alias

GROUP BY e. department_id;
```

Grouping Columns

Having Clause

- The HAVING clause is used to filter data based on aggregate values.
 - We cannot use it without grouping before that
- Any Aggregate functions in the "HAVING" clause and in the "SELECT" statement are executed one time only
- Unlike HAVING, the WHERE clause filters rows before the aggregation

Having Clause: Example

Filter departments which have total salary less than 25,000.

employee	department_name	salary	Total Salary
Adam	Database Support	5,000	20,000
John	Database Support	15,000	20,000
Jane	Application Support	10,000	
George	Application Support	15,000	30,000
Lila	Application Support	5,000	
Fred	Software Support	15,000	15,000

Aggregated value

department_name	total_salary
Database Support	20,000
Software Support	15,000

HAVING Syntax

Aggregate Function

Grouping Column

```
SELECT e. department_id,

SUM(e.salary) AS 'TotalSalary'

FROM `employees` AS e

GROUP BY e. department_id`

HAVING `TotalSalary` < 25000;

Columns
```

Having Predicate

Summary

- Grouping
- Aggregate Functions
- Having

```
SELECT
   SUM(e.`salary) AS 'TotalSalary'
FROM `employees` AS e
GROUP BY e.`department_id`
HAVING SUM(e.`salary`) < 25000;</pre>
```


Questions?

SoftUni Diamond Partners

Coca-Cola HBC **Bulgaria**

SUPER

MOTION SOFTWARE

Educational Partners

VIRTUAL RACING SCHOOL

Trainings @ Software University (SoftUni)

- Software University High-Quality Education,
 Profession and Job for Software Developers
 - softuni.bg, about.softuni.bg
- Software University Foundation
 - softuni.foundation
- Software University @ Facebook
 - facebook.com/SoftwareUniversity
- Software University Forums
 - forum.softuni.bg

License

- This course (slides, examples, demos, exercises, homework, documents, videos and other assets) is copyrighted content
- Unauthorized copy, reproduction or use is illegal
- © SoftUni https://about.softuni.bg/
- © Software University https://softuni.bg

