

TECH. CUSTOM EDITION

A project by TOP-IX designed for Intesa Sanpaolo

What makes a good algorithm?

• Correctness - will I get the right result?

• Efficiency - will I get the result by the time I need it?

Elegance - would anyone understand my code?

Computational complexity

Time: How long is it going to take?

Space: How much memory is it going to take?

These are mathematical functions defined over the dimension of the input: if the input is an array, it's the number of elements; if it's a file, it's the size in bytes. etc.

Lil' math: functions!

A computational complexity analysis takes an algorithm and produces a function. So, instead of directly comparing algorithms (infinite), we compare the corresponding functions, and we use them to classify the algorithms.

- Constant
- Logarithmic
- Linear
- Polynomial
- Exponential
- Super-exponential

plus all combinations (e.g. NlogN)

Curve comparison

La méthode

So how to 'extract' a complexity function from an algorithm? There are lots of non-trivial techniques (recurrence relations, telescoping, combinatorics) - but for simple algorithms it's ok to go 'by eye'. For instance, a single operation is a constant offset, a for-loop is a linear factor, etc.

Informal approach: take a few inputs and roughly estimate the number of operations required to compute the algorithm in each case. Interpolate to get a function.

Then ask yourself: can I do better than this?

Bounds

Informal examples | 1

How many ops if the array has 10 elements? 100? 1000? Can I do better?

```
def get_first_element(array):
return array[0]
```

The complexity is CONSTANT. It's the best function, so I can't do better than that.

Informal examples | 2

How many ops if the array has 10 elements? 100? 1000? Can I do better?

```
def find_max_element(array):
temp = array[0]
for element in array:
    if element > temp:
        temp = element
return temp
```

The complexity is LINEAR. In order to find out the best element, I need to check all of them, so I need to be at least linear. Therefore, I cannot do better than this.

Informal examples | 3

How many ops if the array has 10 elements? 100? 1000? Can I do better?

```
def get_last_element(array):
temp = array[0]
for element in array:
    temp = element
return temp
```

The complexity is LINEAR. In order to find the last element, I DON'T need to check all of them: in fact, I only need to check the last one. My lower bound is consequently CONSTANT, so this algorithm can be improved.

From rabbits to golden ratio

Fibonacci(k) = Fibonacci(k-1) + Fibonacci(k-2)

(0), 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584...

Fibonacci: two simple algorithms

Recursive

```
def fib_rec(n):
if n<2:
    return n
else:
    return fib_rec(n-2)+fib_rec(n-1)</pre>
```

Iterative

```
def fib_it(n):
low,high = 0,1
for i in range(n):
    low,high = high, low+high
return low
```

How many recursive calls?

Fibonacci: two simple algorithms

Recursive EXPONENTIAL: 2ⁿ

```
def fib_rec(n):
if n<2:
    return n
else:
    return fib_rec(n-2)+fib_rec(n-1)</pre>
```

Iterative LINEAR: n

```
def fib_it(n):
low,high = 0,1
for i in range(n):
    low,high = high, low+high
return low
```

(there is also an algorithm with log(n) complexity)

Bounds

Curve comparison AGAIN

Value comparison

				n			
Cunation	10	100	1,000	10,000	100 000	1 000 000	
Function	10	100	1,000	10,000	100,000	1,000,000	-
!				12		1	
log ₂ n	3	6	9	13	16	19	
n	10	10 ²	103	104	105	106	П
n ∗ log₂n	30	664	9,965	105	106	10 ⁷	,
n²	10 ²	104	106	108	10 10	10 12	
n³	10 ³	106	10 ⁹	1012	10 15	10 18	
2 ⁿ	103	1030	1030	1 103,0	10 10 30,	103 10 30	1,030

Correctness vs Efficiency

- We had two seemingly very similar algorithms for computing the n-th Fibonacci number.
- In the same amount of time required for fib_it to compute fibonacci(1M), fib_rec can compute fibonacci(38)
- We found out that, if asked to compute the millionth Fibonacci number, $\it fib_it$ would perform $\sim 10^6$ steps (~ 15 seconds on my laptop), while $\it fib_rec$ would need to go through $\sim 10^{301030}$ operations (an unthinkable amount of time! Age of the Universe? $\sim 10^{10}$ years..).

Can I just buy a faster PC?

Let's take our *fib_rec* algorithm. Over 1M data points, the algorithm will perform $10^{301.030}$ ops. Let's assume, for the sake of simplification, that every op requires 1 microsecond, so the running time for our algorithm over 1M data points is $10^{301.024}$ seconds : order of magnitude, $10^{301.016}$ years.

What if I buy a PC which is 1000 times faster? Order of magnitude, 10^{301.013} years. What if I buy 1000 PCs, each being 1000 times faster? Order of magnitude, 10^{301.010} years.

For bad algorithms on big data, the impact of getting more computational power is negligible: IT HAS NO IMPACT ON THE COMPLEXITY.

Furthermore, what if the number of data points doubles? The complexity blows up, from 10^{301.030} to 10^{602.060} ops!

Is this a completely theoretical problem?

NO

When dealing with big data, the scalablity/complexity of algorithms is paramount. E.g.,

- an algorithm seemingly fast on a data sample might be useless for the whole dataset.
- if the loaded data batch almost fits the RAM, algorithms with worse-than-constant space complexity would break / cause huge swapping.

Any funny story before we're done?

- Many cryptosystems are based on RSA.
- The math core of RSA decryption is the integer factorisation of semiprimes.
- (sub)exponential factorisation algorithms exist they are just too slow to be scary!
- At the same time, there is no guarantee that polynomial algorithms do not exist!
- So RSA relies on a so-called cryptographic hardness assumption.

Take-home message

- For big data, efficience is CRUCIAL
- 2 You can't throw RAM at a bad algorithm
- Searn to roughly estimate the complexity functions
- If you get an exponential (or a high-degree polynomial) and you're far from the lower bound, you need to optimise your algorithm