ЛЕКЦІЯ 4(А).

Функція розподілу випадкової величини.

1. Визначення функції розподілу. 2. Характеристичні властивості функції розподілу. 3. Необхідність умов. 4. Достатність умов. 5. Роль функції розподілу в математичній статистиці. 6. Функція розподілу в практичних розрахунках.

В попередній лекції було введено абстрактне, тобто формальне, математично-строге визначення випадкової величини. Згідно з ним випадкова величина обов'язково повинна бути безпосередньо пов'язаною з деяким ймовірнісним простором (Ω, \mathcal{F}, P) і визначається, як вимірна відносно σ -алгебри \mathcal{F} функція $\xi = \xi(\omega)$, $\omega \in \Omega$.

В свою чергу, умова вимірності відносно σ -алгебри $\mathcal S$ означає, що для довільного дійсного числа $-\infty < c < +\infty$, множина

$$A_c = \{ \omega : \xi(\omega) < c \} \in \mathfrak{F}$$

буде належати до σ -алгебри \mathfrak{I} , тобто буде випадковою подією.

Отже для довільного дійсного числа $-\infty < c < +\infty$ можна визначити її ймовірність події A_c .

Зауваження. В теорії ймовірностей використовуються спрощені позначення, пов'язані з випадковою величиною. Перш за все, пам'ятаючи, що випадкова величина $\xi = \xi(\omega)$ є функцією $\omega \in \Omega$ елементарного наслідку, для неї, однак, вживається скорочене позначення ξ , в якому аргумент ω опускається. В результаті замість детального позначення випадкової події $A_x = \{\omega: \xi(\omega) < x\}$ використовуються спрощене $A_x = \{\xi < x\}$.

1. Визначення функції розподілу.

Теорія ймовірностей — це один серед великої кількості абстрактних математичних розділів, побудованих на *аксіоматичних засадах*. Але на відміну від багатьох з них теорія ймовірностей має чітку *практичну спрямованість*. Прикладний характер теорії ймовірностей проявляється, перш за все, в тому, що кожне *абстрактне* поняття, яке зустрічається в ній, має два обгрунтування:

• Абстрактне визначення, тобто формальне, строго-математичне обтрунтування.

В стосунку до випадкової величини — це трактування її, як абстрактної, визначеної на вимірному просторі (Ω, \mathcal{F}, P) функції, що є вимірною відносно σ -алгебри \mathcal{F} .

Друге, еквівалентне обгрунтування, безпосередньо пов'язане з практичним (*емпіричним*) використанням цього поняття, а саме:

• З можливістю *спостерігати* та *вимірювати* окремі значення реально існуючих змінних, не вдаючись при цьому в деталі стохастичного експерименту, в якому ці величини з'являються.

Теоретичну можливість однозначно визначити випадкову величину, спираючись на її спостереження, дає поняття функції розподілу.

Іншими словами, фактично маємо два *рівнозначних* визначення математичного поняття «*випадкова величина*». При цьому в якості *емпіричного варіанту* формального визначення може розглядатися її *функція розподілу*.

Визначення. Нехай $\xi = \xi(\omega)$, $\omega \in \Omega$ — випадкова величина визначена на ймовірнісному просторі (Ω, \mathcal{F}, P) . Функцією розподілу випадкової величини ξ називається функція $F_{\xi}(x)$ дійсного аргументу $-\infty < x < +\infty$, що визначається рівністю:

$$F_{\varepsilon}(x) = P\{\omega: \xi(\omega) < x\}, -\infty < x < \infty.$$

Враховуючи зроблене вище зауваження щодо спрощених позначень, які використовуються в теорії ймовірностей, визначення функції розподілу випадкової величини ξ можна записати наступним чином:

$$F_{\xi}(x) = P\{\xi < x\}, -\infty < x < \infty.$$

Згідно з визначенням випадкової величини, для довільного x множина $\{\omega \in \Omega \colon \xi(\omega) < x\}$ є випадковою подією, а значить можна говорити про її ймовірність і, таким чином:

• Функція розподілу визначена на всій числовій прямій $-\infty < x < \infty$.

З іншого боку, оскільки функція розподілу визначає ймовірність випадкової події A_x , то очевидно, що для неї виконується наступна властивість:

$$0 \le F(x) \le 1, -\infty < x < \infty$$
.

Тобто очевидно, що не будь-яка функція може бути функцією розподілу деякої випадкової величини.

Так само очевидно, що це не ϵ дина «специфічна» властивість функції розподілу, обумовлена безпосереднім її зв'язком з випадковою величиною.

2. Характеристичні властивості функції розподілу.

Виділимо найважливіші, або характеристичні властивості функції розподілу, що виділяють її як окреме, самостійне математичне поняття. Говорячи математичною мовою — сформулюємо необхідні і достатні умови, які задовольняє будь-яка функція розподілу.

Теорема. Функція F(x) дійсного аргументу $-\infty < x < \infty$, може бути функцією розподілу деякої випадкової величини ξ тоді і тільки тоді, коли вона має наступні властивості:

Властивість (а).

F(x) — не спадна функція, тобто, якщо для довільних дійсних чисел x_1 та x_2 виконується нерівність $x_1 < x_2$, то

$$F(x_1) \leq F(x_2)$$
.

Властивість (б).

 $F(-\infty) = 0$, тобто:

$$F(-\infty) = \lim_{x \to -\infty} F(x) = \lim_{x \to -\infty} P(\xi < x) = 0;$$

 $F(\infty) = 1$, тобто:

$$F(\infty) = \lim_{x \to \infty} F(x) = \lim_{x \to \infty} P(\xi < x) = 1.$$

Властивість (в).

F(x) є неперервною зліва функцією, тобто: якщо $x_1 < x_2 < x_3 < ... -$ послідовність дійсних чисел, така, що:

$$\lim_{n\to\infty}x_n=x\,,$$

то

$$\lim_{n \to -\infty} F(x_n) = F(x).$$

Доведення. З детальним доведенням цього фундаментального в теорії ймовірностей твердження можна ознайомитьсь в рекомендованих підручниках [1], [4]. Прокоментуємо лише кільках найбільш суттєвих аспектів, пов'язаних з цією теоремою.

По-перше, наведені в теоремі умови є *необхідними* і *достатніми*, щоб функція F(x), $-\infty < x < \infty$, могла бути функцією розподілу деякої випадкової величини.

3. Необхідність умов.

• *Необхідність* умов (а), (б), (в).

Нехай $F(x) = P(\xi < x)$, $-\infty < x < \infty$ — функція розподілу випадкової величини ξ , Треба довести, що для неї виконуються умови (a), (б), (в).

Властивість (a). Якщо $x_1 < x_2$, то має місце наступна імплікація випадкових подій:

$$\{\xi < x_1\} \subseteq \{\xi < x_2\}.$$

А отже на підставі доведених раніше властивостей ймовірностей (див. лекція 3. вл. 4) можемо записати:

$$P\{\xi < x_1\} \le P\{\xi < x_2\},\,$$

тобто:

$$F(x_1) \leq F(x_2)$$
.

Властивість (б). Нехай $x_1 > x_2 > ... > x_n > ... -$ послідовність дійсних чисел, така, що:

$$\lim_{n\to\infty} x_n = -\infty$$

Введемо послідовність випадкових подій:

$$A_n = \{ \xi < x_n \}, n = 1, 2, ..., n, ...$$

Очевидно, що:
$$A_1 \supseteq A_2 \supseteq ... \supseteq A_n \supseteq ...$$
, та $\bigcap_{n=1}^{\infty} A_n = \emptyset$.

Спираючись на властивість неперервності ймовірності (див. лекція 3. вл. 9) отримаємо:

$$0 = P\{\varnothing\} = P\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to -\infty} P(A_n) = \lim_{n \to -\infty} P(\xi < x_n) = \lim_{n \to -\infty} F(x_n) = F(-\infty).$$

Подібним чином можна довести рівність $F(\infty) = 1$.

Припустимо, що послідовність дійсних чисел $x_1 < x_2 < ... < x_n < ...$, така, що $\lim_{n \to \infty} x_n = \infty$. Введемо послідовність випадкових подій:

$$A_n = \{ \xi < x_n \}, n = 1, 2, ..., n, ...$$

Очевилно, що:

$$A_1 \subseteq A_2 \subseteq ... \subseteq A_n \subseteq$$

Оскільки за визначенням випадкової величини для будь-якого $\omega \in \Omega$ значення $\xi(\omega) < \infty$ - скінчене, то існує такий номер n, для якого $\xi(\omega) < x_n$. Отже маємо наступну рівність:

$$\Omega = \bigcup_{n=1}^{\infty} A_n .$$

Посилаючись тепер на властивість неперервності ймовірності (див. лекція 3. вл. 8) отримаємо:

$$1 = P\{\Omega\} = P\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to -\infty} P(A_n) = \lim_{n \to -\infty} P(\xi < x_n) = \lim_{n \to -\infty} F(x_n) = F(\infty),$$

що й треба було довести.

Властивість (в). Припустимо, що послідовність дійсних чисел $x_1 < x_2 < ...$ $< x_n < ...$, така, що $\lim_{n \to \infty} x_n = x$. Введемо послідовність випадкових подій:

$$A_n = \{ \xi < x_n \}, n = 1, 2, ..., n, ...$$

Очевидно, що: $A_1 \subseteq A_2 \subseteq ... \subseteq A_n \subseteq$

Оскільки $\lim_{n \to \infty} x_n = x$, то умова: $\xi(\omega) < x$ означає, що для цього еле-

ментарного наслідоку $\omega \in \Omega$ існує такий номер n, для якого $\xi(\omega) < x_n$.

Тому для підмножин множини Ω (або інакше — *для випадкових по-дій*) можемо записати наступну рівність:

$$\{\omega \in \Omega \colon \xi(\omega) < x\} = \bigcup_{n=1}^{\infty} \{\omega \in \Omega \colon \xi(\omega) < x_n\} = \bigcup_{n=1}^{\infty} A_n.$$

А отже спираючись на властивість неперервності ймовірності (див. лекція 3. вл. 8) отримаємо:

$$F(x) = P\{\omega \in \Omega : \xi(\omega) < x\} = P\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to -\infty} P(A_n) = \lim_{n \to -\infty} P(\xi < x_n) = \lim_{n \to -\infty} F(x_n),$$

що й треба було довести.

4. Достатність умов.

• Достатність умов (а), (б), (в).

Дуже важливим і (в певному розумінні фундаментальним в теорії ймовірностей) ϵ друге, зворотне твердження цієї теореми. З детальним його доведенням можна ознайомитьсь в рекомендованих підручниках.

Це твердження можна переформулювати наступним чином:

 \triangleright Припустимо, що функція F(x) має три перелічені **властивості** (а), (б), (в). Тоді можна побудувати ймовірнісний простір (Ω , \Im , P), визначити на цьому просторі випадкову величину:

$$\xi = \xi(\omega), \ \omega \in \Omega,$$

таким чином, що F(x) буде $\ddot{i}\ddot{i}$ функцією розподілу. Тобто рівність:

$$F(x) = P\{\xi < x\}$$

буде виконуватись для довільного дійсного значення $-\infty < x < \infty$:

Це в свою чергу буде означати, що функція розподілу *цілком* і *однозначно* визначає відповідну випадкову величину. Тому з практичної точки зору випадкову величину ξ можна задати двома *рівнозначними* способами.

- 1) Побудувати ймовірнісний простір $(\Omega, \mathfrak{I}, P)$ та визначити на ньому \mathfrak{I} -вимірну функцію $\xi = \xi(\omega), \ \omega \in \Omega$.
- 2) Визначити функцію розподілу $F_{\xi}(x) = P\{\xi < x\}, -\infty < x < \infty$, випадкової величини ξ .

Доведення. Доведення цього факту спирається на досить складні результати з області функціонального аналізу, тому виходить за рамки програми нашого курсу. Прокоментуємо кільках найбільш суттєвих аспектів, пов'язаних з цією теоремою та коротко опишемо схему доведення, обминаючи формальні абстрактні математичні деталі.

Доведення полягає на тому, що будується конкретний ймовірнісний простір (Ω, \mathcal{F}, P) , на ньому визначається конкретна функція $\xi = \xi(\omega)$, $\omega \in \Omega$, така, що для довільного дійсного числа x:

$$F(x) = P(\xi < x), -\infty < x < \infty.$$

А саме, в якості простору елементарних наслідків вибираємо числову пряму:

$$\Omega = (-\infty, \infty) = R$$
.

Множиною \Im випадкових подій будуть всі *борелівські* множини на прямій, тобто \Im визначається як σ -алгебра $\Im = B(R)$ борелевських множин на числовій прямій $-\infty < x < \infty$.

Нагадаємо, що B(R) це мінімальна σ -алгебра, яка містить всі напів замкнутих інтервали [a,b) числової прямої: $-\infty < a \le x < b < \infty$:

$$[a, b) = \{-\infty < a \le x < b < \infty\}.$$

Залишилось для кожної події $A \in \mathcal{F}$ визначити її ймовірність P(A). Якщо $A = [a, b) \in B(R)$ — замкнутий зліва інтервал $a \le x < b$ числової прямої, то покладемо: $\hat{P}([a,b)) = F(b) - F(a)$. Спираючись на неперервність зліва функції F(x) доводимо, що $\hat{P}([a,b))$ буде σ -адитивною мірою на алгебрі всіх напівзамкнутих інтервалів $a \le x < b$ числової прямої.

Використовуючи теорему *Каратеодорі* про продовження міри з *алгебри* на мінімальну σ -алгебру, яка включає цю алгебру, отримаємо ймовірнісну міру P, на σ -алгебрі борелевських множин B(R).

Таким чином ймовірнісний простір $(\Omega, \Im, P) = ((-\infty, \infty), B(R), P)$ побудовано. Залишилось визначити на ньому випадкову величину ξ , для якої F(x) є функцією розподілу. Покладемо: $\xi(\omega) = \omega, \omega \in (-\infty, \infty)$. Тоді для довільного дійсного числа x:

$$P\{A_x\} = P\{\omega \in \Omega: \xi(\omega) < x\} = P\{\omega \in \Omega: \omega < x\} =$$
$$= P\{[-\infty, x)\} = F(x) - F(-\infty) = F(x).$$

5. Роль функції розподілу в математичній статистиці.

Необхідно спеціально підкреслити ту виняткову роль, яку відіграє функція розподілу випадкової величини в теорії ймовірностей і особливо в математичній статистиці.

• Функція розподілу F(x) є тим інструментом, що поєднує абстрактну математичну теорію, збудовану на аксіоматичних підвалинах, з конкретною практикою конкретних стохастичних експериментів в яких спостерігаємо конкретні реалізації конкретних випадкових величин.

Наведена теорема дозволяє розглядати функцію розподілу, як *рівнозначний* до основного визначення спосіб представлення випадкової величини.

• З точки зору практичних потреб, що виникають при вивченні випадкових величин, всю необхідну інформацію можна отримати, аналізуючи їх функції розподілу, тобто випадкова величина ε цілком визначеною, якщо задана її функція розподілу.

Використовуючи функцію розподілу F(x) можемо визначити всі необхідні з практичної точки зору параметри та інші числові характеристики, що пов'язані з відповідною випадковою величиною. Цей факт і обумовлює велику практичну значимість абстрактної математичної дисципліни якою є теорія ймовірностей.

Досить складний характер базових понять теорії ймовірностей, а також абстрактний спосіб їх формального визначення, суттєво обмежує їх безпосереднє використання до вивчення реальних випадкових явищ. Встановити, як в конкретній ситуації, що досліджується, виглядає Ω , та яким чином визначена на ньому функція $\xi(\omega)$, що спостерігається, практично неможливо.

А от функцію розподілу F(x), її вигляд і властивості, маємо можливість встановити саме на підставі отриманих спостережень. І тим самим використати до вивчення відповідного явища весь створений за допомогою абстрактних, формальних математичних понять і методів потужний арсенал теорії ймовірностей.

6. Функція розподілу в практичних розрахунках.

Використаємо властивості ймовірностей і встановимо кілька корисних з практичної точки зору співвідношень для функції розподілу.

Властивість 4. $P(\xi \ge x) = 1 - F(x)$.

Доведення. Оскільки $\Omega \setminus \{\xi < x\} = \{\xi \ge x\}$, то:

$$P\{\xi \ge x\} = P\{\Omega \setminus \{\xi < x\}\} = 1 - P\{\xi < x\} = 1 - F(x).$$

Властивість 5. Для довільного на пів замкнутого інтервалу $[x_1, x_2] \subset R$:

$$P(x_1 \le \xi < x_2) = F(x_2) - F(x_1).$$

Доведення. Для довільних дійсних чисел x_1 та x_2 , таких, що $x_1 < x_2$, виконується співвідношення:

$${x_1 \le \xi < x_2} = {\xi < x_2} \setminus {\xi < x_1}.$$

Крім того має місце наступна імплікація випадкових подій:

$$\{\xi < x_1\} \subseteq \{\xi < x_2\}.$$

Отже:

$$P\{x_1 \le \xi < x_2\} = P\{\xi < x_2\} - P\{\xi < x_1\} = F(x_2) - F(x_1).$$

Властивість 6. $P(\xi \le x) = F(x_{+0})$.

Доведення. Нехай $x_1 > x_2 > ... > x_n > ... -$ послідовність дійсних чисел, така, що $\lim_{n \to \infty} x_n = x$. Введе послідовність подій $A_n = \{ \xi < x_n \}, \ n = 1, \ 2, \ ...,$. Оче-

видно, що $A_1 \supseteq A_2 \supseteq ... \supseteq A_n \supseteq$. А отже:

$$\{\omega \in \Omega \colon \xi(\omega) \le x\} = \bigcap_{n=1}^{\infty} \{\omega \in \Omega \colon \xi(\omega) < x_n\} = \bigcap_{n=1}^{\infty} A_n.$$

Використовуючи властивість неперервності ймовірності отримаємо:

$$P\{\omega \in \Omega \colon \xi(\omega) \le x\} = P\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to -\infty} P(A_n) = \lim_{n \to -\infty} F(x_n) = F(x_{+0}).$$

Властивість 7. $P(\xi = x) = F(x_{+0}) - F(x)$.

Доведення цієї властивості випливає з очевидної рівності:

$$\{\xi = x\} = \{\xi \le x\} \setminus \{\xi < x\}.$$