Mathematical Foundations of Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

Group Name: NOIDEA

1 Broken Chessboard and Jumping With Coins

1.1 Tiling a Damaged Checkerboard

Exercise	1.1.	Re-write	the	proof	in	your	own	way,	using	simple	English
sentences.											
Proof. Yo	ur pro	oof									
Exercise	1.2.	Another e	exer	cise							
Proof. Yo	ur pro	oof									

2 Exclusion-Inclusion

2.1 Sets

Exercise 2.1.

1. Proof. As is shown in the Venn diagram below, |A| + |B| add the common part $|A \cap B|$ twice. So it should be subtracted once if we want to count $|A \cup B|$.

Figure 1: Venn Diagram

- 2. Solution. $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$
- 3. Solution. $|A \cup B \cup C \cup D| = |A| + |B| + |C| + |D| |A \cap B| |A \cap C| |A \cap D| |B \cap C| |B \cap D| |C \cap D| + |A \cap B \cap C| + |A \cap B \cap D| + |A \cap C \cap D| + |B \cap C \cap D| |A \cap B \cap C \cap D|$

Exercise 2.2.

Solution.
$$|A_1 \cup \ldots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{i,j:1 \le i < j \le n} |A_i \cap A_j| + \sum_{i,j,k:1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \ldots + (-1)^{n-1} |A_1 \cap \ldots \cap A_n|$$

Exercise 2.3.

1. proof using induction on n

First, let $A_{n,k} = \sum_{1 \leq i_1 < i_2 < ... \leq n} |A_{i_1} \cap A_{i_2} \dots \cap A_{i_k}|$, which denotes the sum of all the possible k-wise intersections in $\{A_1, A_2, ..., A_n\}$.

Then the Inclusion-exclusion principle which we want to prove is as follows:

$$|A_1 \cup \ldots \cup A_n| = \sum_{k=1}^n (-1)^{k+1} A_{n,k}$$

The theorem holds for n = 1, obviously.

The theorem holds for n = 2, as is showed in the 2.1.1

For the induction step, we want to show if it holds for n-1, then it holds for n.

$$|A_{1} \cup \ldots \cup A_{n}| = |A_{1} \cup \ldots \cup A_{n-1}| + |A_{n}| - |(A_{1} \cup \ldots \cup A_{n-1}) \cap A_{n}|$$

$$= \sum_{k=1}^{n-1} (-1)^{k+1} A_{n-1,k} + |A_{n}| - |(A_{1} \cup \ldots \cup A_{n-1}) \cap A_{n}|$$

$$= \sum_{k=1}^{n-1} (-1)^{k+1} A_{n-1,k} + |A_{n}| - |(\bigcup_{i=1}^{i=n-1} (A_{i} \cap A_{n})|$$

$$(1)$$

Let $B_i = (A_i \cap A_n)$.

Similarly, let $B_{n-1,k} = \sum_{1 \leq i_1 < i_2 < \dots \leq n-1} |B_{i_1} \cap B_{i_2} \dots \cap B_{i_k}|$, which denotes the sum of all the possible k-wise intersections in $\{B_1, B_2, \dots, B_n-1\}$.

(1) now becomes

$$\sum_{k=1}^{n-1} (-1)^{k+1} A_{n-1,k} + |A_n| - \left| \left(\bigcup_{i=1}^{i=n-1} B_i \right| \right|$$
 (2)

Similarly, it holds:

$$|B_1 \cup \ldots \cup B_{n-1}| = \sum_{k=1}^{n-1} (-1)^{k+1} B_{n-1,k}$$
 (3)

(2) now becomes

$$\sum_{k=1}^{n-1} (-1)^{k+1} A_{n-1,k} + |A_n| + (-1)^k \sum_{k=1}^{n-1} B_{n-1,k}$$
 (4)

2. proof not using induction on n

3 third part

Exercise 3.1.

Given A_1, A_2, \ldots, A_n and $I \subseteq [n]$, I is not empty. define $B_I = (\bigcap_{i \in I} A_i)$ $(\bigcup_{j \notin I} A_j)$. That is the elements that are in every $A_i, in \in I$ but in no other $A_j, j \in [n]$ I

- 1. Solve 3.3". Given a B-table, how to determine whether it is feasible.
- 2. Given a feasible B-table, how to compute A-table.
- 2. Given an A-table, find a way to compute the B-table. and then apply 1.

4 Feasible Intersection Patterns

4.1

Exercise 4.1. Find sets A1; A2; A3; A4 such that all pairwise intersections have size 3 and all three-wise intersections have size 1. Formally, $1.|A_i \cap A_j| = 3 foralli, j \in {}^4_2, \ 2.|A_i \cap A_j \cap A_k| = 1 for all i, j, k \in {[4] \choose 3}.$

Proof. from $|A_i \cap A_j| = 3$ for all $i, j \in {}^4_2$. We can infer that Domain $\{3, 10, 12, 5\}$, $\{4, 5, 10, 13\}, \{5, 6, 12, 14\}, \{5, 8, 13, 14\}$ has each 3 elements. From $|A_i \cap A_j \cap A_k| = 1$ for all $\{i, j, k\} \in {}^{[4]}_3$) We can infer that Domain $\{5, 10\}, \{5, 12\}, \{5, 13\}, \{5, 14\}$ has each 1 elements. 5, 8, 13, 14 have 3 elements, and $\{5, 13\}, \{5, 14\}$ has each 1 element.

For one thing, Domain $\{8\}\{13\}\{14\}$ is empty and Domain 5 has one element. Then it is obvious that 1 in $\{5\}$, 0 in $\{10\}\{12\}\{13\}\{14\}$, 2 in $\{3\}\{4\}\{6\}\{8\}$. And arbitrary number in $\{1\}\{2\}\{7\}\{8\}$. As it is shown is Figure 3.

Figure 2: picture 1

Figure 3:

For another thing, Domain $\{5\}$ has no element. And then Domain $\{10\}\{12\}\{13\}\{14\}\{3\}\{4\}\{6\}\{8\}$ either 1 element.

We can draw a picture . $\hfill\Box$

Exercise 4.2.

In the spirit of the previous questions, let us call a sequence $(a_1, a_2, ..., a_n) \in \mathbb{N}_0$ feasible if there are sets $A_1, ..., A_n$ such that all k-wise intersections have size a_k . That is, $|Ai| = a_1$ for all i, $|A_i \cap A_j| = a_2$ for all $i \neq j$ and so on. The previous exercise would thus state that (5, 3, 1, 0) is not feasible, but (6, 3, 1, 0) is, as one solution of Exercise 3.1 shows.

Proof. Because $|A_1 \cap A_2 \cap A_3 \cap A_4| = 0$. So it is the same as the second situation. From picture 3 in 3.1 we can know that there are at least 6 elements in A_i . So (5,3,1,0) is not feasible.

Exercise 4.3.

Figure 4:

Suppose I give you a sequence $(a_1, ..., a_n)$. Find a way to determine whether such a sequence is feasible or not.

Proof. Given $A_1,...,A_nI\subseteq 1,...,n$ define $A_i=\bigcap_{i\in I}A_i$. Given $B_1,...,B_nI\subseteq 1,...,n$ define $B_i=\bigcap_{i\in I}A_i\bigcup_{j\notin A_i}$. Use A_1,A_2,A_3 as an example,draw the picture below. Obviously, iff for every $i,B_i\geq 0$,the B-table is feasible. For

Figure 5:

given $(a_1,...,a_n)$, $A1=a_1,Ai,j(i\neq j)a_2,...,Ai,2,...,n=a_n$. Besides, for all $i,i,j(i\neq j),i,j...k$ (i,j,...k are different) Ahas the same value. So we can infer that $A_i=A\sum_{j=1}^{i-1}A_j$. $A_1,...,A_n=a_1,...,a_n$. So iff $A_i=A\sum_{j=1}^{i-1}A_j$, the sequence is feasible.