Q-Learning

A classical method of Reinforcement Learning

Guillaume.Lozenguez

@imt-nord-europe.fr

École Mines-Télécom IMT-Université de Lille

- 1. A teoritical framework: Markov Decision Process
- 2. On the go, model free learning
 - Compute QValues
 - Choose an Action
- 3. Exercice

Acting over a system evolving under uncertainty

- > States: set of configurations defining the studied system
- > Action: finite set of possible actions to perform
- ▶ **Transitions**: Describe the possible evolution of the system state

Transition function:

The probabilistic evolution depends on the performed action.

 $T(s^t,\ a,\ s^{t+1})$ return the probability to reach s^{t+1} by doing a from s^t :

$$T(s^t,\ a,\ s^{t+1}) = P(s^{t+1}|s^t,a)$$

Transition in 421-game

► For instance, doing *Keep-Kepp-Roll* in *4-2-2* (2):

$$-6-4-2 (1) = 1/6$$

$$-5-4-2 (1) = 1/6$$

$$-4-4-2 (1) = 1/6$$

$$-4-3-2 (1) = 1/6$$

$$-4-2-2 (1) = 1/6$$

$$-4-2-1 (1) = 1/6$$

For instance, doing *Keep-Kepp-Kepp* in 1-1-1 (2): 1-1-1 (0) = 1

Acting to optimize Gain

Require to evaluate the interest of each action on the system evolution:

Reward/Cost function (R):

$$R: S \times A \times S \rightarrow \mathbb{R}$$

 $R(s^t, a, s^{t+1})$ is the reward by reaching s^{t+1} from doing a in s^t

OR, in a simplified version:

$$R: S \times A \rightarrow \mathbb{R}$$

reward in 421-game

Over the final combination when the horizon reaches 0

$$score(4-2-1) = 800$$

 $score(1-1-1) = 700$
 $score(x-1-1) = 400 + x$
 $score(x-x-x) = 300 + x$
 $score((x+2)-(x+1)-x) = 202 + x$
 $score(2-2-1) = 0$
 $score(x-x-y) = 100 + x$
 $score(y-x-x) = 100 + y$

Reward function: r(s, a, s') = score(s') if h = 0; old else

Acting to optimize gain (accumulated rewards)

Our objective: $\frac{\partial}{\partial t} = \frac{\partial t}{\partial t} = \frac{\partial t}{\partial t}$ Our objective: $\frac{\partial t}{\partial t} = \frac{\partial t}{\partial t} = \frac{\partial t}{\partial t}$ Considering the current state of the system:

$$\pi:S o A$$

 $\pi(s)$: the action to perform is s

Bellman Equation :

$$V^{\pi}(s) = R(s^t,a) + \gamma \sum_{s^{t+1} \in S} T(s^t,~a,~s^{t+1}) imes V^{\pi}(s^{t+1})$$

with : $a = \pi(s)$ and $\gamma \in [0, 1[$ the discount factor (typically 0.99)

MDP: $\langle S, A, T, R \rangle$:

5: set of system's states

A: set of possible actions

 $T: S \times A \times S \rightarrow [0, 1]: transitions$

 $R: S \times A \rightarrow R: cost/rewards$

Optimal policy:

The policy π^* maximizing Bellman

Reinforcement Learning:

Learn the optimal policy

- Without knowledge over the transition probabilities and/or the rewards,
- but, by getting feedback from acting randomly.

2 approaches

- \blacktriangleright model-based: Learn the model (T, R), and compute a policy.
- **model-free:** Learn the policy directly.

- 1. A teoritical framework: Markov Decision Process
- 2. On the go, model free learning
 - Compute QValues
 - Choose an Action
- 3. Exercice

Model-Free Approaches

Concept

- Learn without generating **transition** and **reward** models.
- Build the policy directly from the interactions
- ▶ Use only the experience of sequences:

```
state, action, reward, state, action, ...
```

Common approaches:

- Q-learning:continuous computing of an expected gain (require rich feedback)
- ► **Monte-Carlo**: use random explorations until a 'finale' state (slow to converge).

Q-learning

One of the core discoveries in Reinforcement Learning (simple and efficient)

- At each step, **Q-learning** updates the value attached to a couple (state, action)
- Updates are performed integrate expected future gains
- lacksquare The update is performed accordingly to a learning rate $lpha\in]0,1[$
 - ightarrow lpha : ratio between new vs old accumulated information.

Q-learning based on a Q function

Considering it is not possible to evaluate state without a policy yet

$$V^\pi(s) = R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') imes V^\pi(s')$$

the **Q-values** evaluate each action performed from each state:

$$Q:S imes A o \mathbb{R}, \qquad Q(s,\ a) ext{ is the value of doing a from s}$$

and, a **Q-value** is updated iteratively from succession of: $\langle s,\ a,\ s',\ r
angle$

$$Q(s,a) = (1-lpha)Q(s,a) + lpha\left(r + \gamma Q(s',a')
ight)$$

Q-learning: the algorithm

```
Input: state and action spaces: A; a step engine Perform;
exploration ratio: \epsilon; learning rate: \alpha; discount factor \gamma
  1. Read the initial state s
  2. Initialize Q(s,a) to 0 for any action a
  3. Repeat until convergence
       i. Select an action a with random
      ii. Perform a and read the reached state s' and the associated reward r
      iii. If necessary, add s' to Q ( with value 0 for any action a)
      iv. Update Q(s,a) accordingly to \alpha and \gamma
       v. Set s=s'
```

Output: the Q-values.

Q-learning: the main equation

Update Q each time a tuple $\langle s^t, a, s^{t+1}, r angle$ is read

$$newQ(s, a) = (1 - \alpha)Q(s, a) + \alpha \text{ (incomming-feedback)}$$

$$ext{incomming-feedback} = r(s, a, s') + \gamma Q(s', a')$$

- ightharpoonup lpha : the learning rate (= 0.1)
- $ightharpoonup \gamma$: the discount factor (= 0.999)

The known optimal policy:

$$\pi^*(s) = \max_{a \in A} Q(s,a)$$

- 1. A teoritical framework: Markov Decision Process
- 2. On the go, model free learning
 - Compute QValues
 - Choose an Action
- 3. Exercice

Exploration-Exploitation tradeoff dilemma

The agent build an optimal behavior from trials and errors.

- **►** Exploration
 - Try new actions to learn unknown feedback
 - Better understand the dynamics of the system
 - Risky output
- **►** Exploitation
 - Use the best-known action
 - Potentially suboptimal

Exploration-Exploitation Tradeoff Dilemma

Examples:

- **Exploitation**: apply a known game strategy **vs Exploration** investigate new actions.
- **Exploitation**: go to your favorite restaurant **vs Exploration** try a new one.

Classical approach:

- Trigger exploration when the old fashion strategy doesn't work anymore Problems:
 - Determine that "a strategy doesn't work" ?
 - Determine that "a new policy is well defined" (exploration end)?
- ► Continuously Explore and Exploite with a fixed ratio.
 - (take wrong decision periodically)

Continuous Exploration-Exploitation : ϵ -Greedy

A Simple heuristic for the Exploration–Exploitation Tradeoff Dilemma

- Random decision with:
 - \mathbf{a} a probability ϵ to choose a random action (exploration)
 - a probability $1-\epsilon$ to choose the best-known action (exploitation)
- ightharpoonup Classically ϵ is set to 0.1
- ightharpoonup A ϵ -greedy agent behavior punctually takes off-policy action

Then the challenge consists in varying ϵ depending of the knowledge the agent has of the area he is interacting in.

Q-learning: the algorithm

Output: the Q-values.

```
Input: state and action spaces: A; a step engine Perform;
exploration ratio: \epsilon; learning rate: \alpha; discount factor \gamma
  1. Read the initial state s
  2. Initialize Q(s,a) to 0 for any action a
  3. Repeat until convergence
       i. At \epsilon random: get a random a or a maximizing Q(s,a)
      ii. Perform a and read the reached state s' and the associated reward r
      iii. If necessary, add s' to Q ( with value 0 for any action a)
      iv. Update Q(s,a) accordingly to \alpha and \gamma
      v. set s = s'
```

20

Q-learning: In Agent-Based Architecture

- As an initial step (wakeUp):
 - Initialize Q
 - Initialize state and action variables (s, a).
- ► At each itereration (**perceive**):
 - Read the reached state s' and the associated reward r
 - ullet If necessary, add s' to Q (with value 0 for any action a)
 - Update Q(s,a) accordingly to lpha and γ
 - reccord s = s'
- Taking decisions (**decide**):
 - At ϵ random: get a random a or a maximizing Q(s,a)

- 1. A teoritical framework: Markov Decision Process
- 2. On the go, model free learning
 - Compute QValues
 - Choose an Action
- 3. Exercice

Exercice

Applying Q-Learning...

- ▶ **States**: 4 positions s_0 , s_1 , s_2 and s_3
- > Actions: left, right, up, down
- **▶ Transitions**: determinist
- **Rewards**: 10 for reaching s_3 , -1 else

(
$$\epsilon=0.1$$
, $lpha=0.1$ and $\gamma=0.99$)

(
$$lpha=0.1$$
, $\epsilon=0.1$ and $\gamma=0.99$)

- From s_0 get action $\it left$ (explore) reaches s_0 with -1 updates $\it Q(s_0, left) = -0.1$
- $ightharpoonup s_0$ gets $extit{right}$ (best) $ightharpoonup (s_0,-1)$ updates $Q(s_0,right)=-0.1$
- $lacksquare s_0$ gets down (exp.) ightarrow $(s_1,-1)$ updates $Q(s_0,down)=-0.1$...
- $lacksquare s_2$ gets $egin{aligned} oldsymbol{up} & (ext{exp.})
 ightarrow (s_3, 10) \ & ext{updates} & Q(s_2, up) = 1 \ & ext{End Episode} \end{aligned}$

(
$$lpha=0.1$$
, $\epsilon=0.1$ and $\gamma=0.99$)

(
$$lpha=0.1$$
, $\epsilon=0.1$ and $\gamma=0.99$)

Episode 1: (18 action)

S	s_0	s_1	s_2
max Q	-0.39	-0.19	1

Episode 2: (15 action)

S	s_0	s_1	s_2
max Q	-0.43	0.9	1.9

(
$$lpha=0.1$$
, $\epsilon=0.1$ and $\gamma=0.99$)

• • •

Episode N: (3-4 actions)

S	s_0	s_1	s_2
maxQ	7.8	8.9	10
argmaxQ	\	\rightarrow	↑

(
$$lpha=0.1$$
, $\epsilon=0.1$ and $\gamma=0.99$)

Exercice: Apply Q-Learning

Agent Version:

► On 421 game of hackagame

Classical version:

► On Lunar-Lander game of farama::gymnasium