MAT 1320, Winter 2014 Midterm Exam 2 $\,$

Wednesday March 19

Instructor: Amin Bahmanian Calculators are NOT allowed!

For rough work, you may use back pages or else, ask me for scrap paper.

Last Name			First	t Name		Student Number	
By signing bel or other source		are that thi	is work was	s your own a	nd that you l	have not copied from any other indivi-	dual
Signature		(shoul	ld match th	ne signature	that you sign	on the attendance sheets.)	
			, -	,	must enter to or other work	the letter corresponding to each corre	ct
Problem	1 (5 pts.)	2(5 pts.)	3(5 pts.)	4(5 pt.)			
Your answer	D	D	A	A			
Your marks							
Using the α Question 2. (a) $\ln(2)$ $y' = 2xe^{1+\alpha}$	chain rule, f'	$f(x) = \frac{1}{\sqrt{1-(x^2)}}$ where $f(x) = \frac{1}{\sqrt{1-(x^2)}}$ where $f(x) = \frac{1}{\sqrt{1-(x^2)}}$ $f(x) = \frac{1}{\sqrt{1-(x^2)}}$ where $f(x) = \frac{1}{\sqrt{1-(x^2)}}$	$\frac{1}{(2x)^2} \times 2.$ agent line to (e)	o the curve p) $e^2 \ln(2)$		with respect to x . (f) $\frac{9}{\sqrt{1-9x^2}}$ $(1+x^2)$ at the point $x=2$.	
its initial displ		(0) = 5 m.	Find its po		π seconds.	s.t. Its initial velocity is $v(0) = 2 m/s$ -1	and
$v(t) = -\cos t$ $2 = v(0) = -\cos t$ $s(t) = -\sin t + \cos t$ $s(t) = -\sin t + \cos t$	$-3\cos t + 3t$ $\sin 0 + 3\cos 0$	+ C, so $C = + D + 3(0) + D$, so $D=2$	$+3\cos\pi+3$	$\pi + 2 = 3\pi -$	1.	
	Evaluate the a) 3/4 (is and $f(x) = $ (e) 4/5		$3 \ from \ x = 1 \ to \ x = 3.$	
$Area = \int_1^3 -$	$-x^2 + 4x - 3$	$dx = -\frac{1}{3}x^3$	$3 + 2x^2 - 3x^2$	x] ₁ ³ = (-9 +	$18 - 9) - (-\frac{1}{5}$	$\frac{1}{3} + 2 - 3 = 0 - \left(-\frac{4}{3}\right) = \frac{4}{3}.$	

Questions 5-12 are long-answer (10 points each). You must clearly show all relevant steps and justify your solution to receive full marks. Clearly indicate the final answer.

Question 5. Find the derivative of the function

$$y = \left(\sin x\right)^{x^2}.$$

 $\ln y = \ln \left((\sin x)^{x^2} \right) = x^2 \ln(\sin x)$

 $\frac{y'}{y} = 2x \ln(\sin x) + x^2 \frac{\cos x}{\sin x}$ $y' = y \left(2x \ln(\sin x) + x^2 \cot x\right)$

 $y' = (\sin x)^{x^2} (2x \ln(\sin x) + x^2 \cot x)$

Question 6. (a) Find the linearization of $f(x) = \sqrt[3]{1+3x}$ at a=0, and state the corresponding linear approximation. $f(x) = (1+3x)^{1/3} \Rightarrow f'(x) = (1+3x)^{-2/3}$, so the linearization of f at a=0 is $L(x) = f(0) + f'(0)(x - 0) = 1^{1/3} + 1^{-2/3}x = 1 + x$. Thus, $\sqrt[3]{1 + 3x} \approx 1 + x$.

(b) Use part (a) to give an approximate value for $\sqrt[3]{1.03}$.

 $\sqrt[3]{1.03} = \sqrt[3]{1 + 3(0.01)} \approx 1 + 0.01 = 1.01.$

Question 7. Evaluate the following limit by first recognizing the sum as a Riemann sum for a function defined on [0,1].

$$\lim_{n \to \infty} \frac{1}{n} \left(\sqrt[3]{\frac{1}{n}} + \sqrt[3]{\frac{2}{n}} + \sqrt[3]{\frac{3}{n}} + \dots + \sqrt[3]{\frac{n-1}{n}} + \sqrt[3]{\frac{n}{n}} \right)$$

$$\lim_{n\to\infty} \frac{1}{n} \left(\sqrt[3]{\frac{1}{n}} + \sqrt[3]{\frac{2}{n}} + \sqrt[3]{\frac{3}{n}} + \dots + \sqrt[3]{\frac{n-1}{n}} + \sqrt[3]{\frac{n}{n}} \right) = \lim_{n\to\infty} \frac{1-0}{n} \sum_{i=1}^{n} \sqrt[3]{\frac{i}{n}} = \int_{0}^{1} \sqrt[3]{x} = \left[\frac{3x^{4/3}}{4} \right]_{0}^{1} = 3/4.$$

Question 8. Compute the derivative of the function given by

$$g(x) = \int_{1}^{x^3} \sin(1 - t^2) dt.$$

By the fundamental theorem of calculus we have

$$g'(x) = (x^3)'\sin(1-(x^3)^2) - (1)'\sin(1-(1)^2) = 3x^2\sin(1-x^6)$$

Question 9. Find the area of the region bounded by the graphs of $f(x) = x^2 + 2$, g(x) = -x, x = 0, and x = 1.

$$\text{Area} = \int_0^1 f(x) - g(x) \, dx = \int_0^1 x^2 + 2 - (-x) \, dx = \frac{1}{3} x^3 + 2x + \frac{1}{2} x^2 \Big]_0^1 = \frac{1}{3} + 2 + \frac{1}{2} = \frac{2 + 12 + 3}{6} = \frac{17}{6}.$$

Question 10. Evaluate

$$\int \frac{-4x}{(1-2x^2)^2} \, dx.$$

Using substitution, $u = 1 - 2x^2$, we have du = -4x and

$$\int \frac{-4x}{(1-2x^2)^2} \, dx = \int \frac{1}{u^2} \, du = \int u^{-2} \, du = \frac{1}{-2+1} u^{-2+1} + C = -\frac{1}{1-2x^2} + C.$$

Question 11. Evaluate

$$\int \frac{1}{x(1+(\ln x)^2)} \, dx$$

We use an integration by substitution. Substitute

$$u = \ln(x) \Rightarrow \frac{du}{dx} = \frac{1}{x} \Rightarrow dx = xdu$$
.

Also, we have

$$\begin{array}{c|cc} x & 1 & 2 \\ \hline u & \ln(1) = 0 & \ln(2) \end{array}.$$

Therefore, we get

$$\int_{1}^{2} \frac{1}{x(1+(\ln x)^{2})} \, dx = \int_{0}^{\ln(2)} \frac{1}{1+u^{2}} \, du \, = \left[\arctan(u)\right]_{0}^{\ln(2)} = \arctan(\ln(2)) \, .$$

Question 12. Evaluate

$$\int_0^{\pi/2} \sin x \, \cos(\cos x) \, dx$$

Let $u = \cos x$, so $du = -\sin x \, dx$. When x = 0, u = 1; when $x = \pi/2$, u = 0. Thus, $\int_0^{\pi/2} \sin x \, \cos(\cos x) \, dx = \int_1^0 (-\cos u) \, du = [-\sin u]_1^0 = -\sin 0 - (-\sin 1) = \sin 1$.

Problem	5(10 pts.)	6(10 pts.)	7(10 pts.)	8(10 pts.)	9(10 pts.)	10(10 pts.)	11(10 pts.)	12(10 pts.)
Your marks								

Student Last,First Name:_____ out of 100