1. DFT sygnału harmonicznego (1 pkt)

Wyznacz macierz A transformacji DFT:

$$A(k,n)=rac{1}{\sqrt{N}}W_N^{-kn}$$
 , gdzie $W_N=e^{jrac{2\pi}{N}}$, k , $n=0,\ldots$, $N-1$ to wiersze i kolumny macierzy ${\bf A}$

dla N=100 i oblicz DFT ($\mathbf{X}=\mathbf{A}\mathbf{x}$)¹ następującego sygnału \mathbf{x} :

$$x(t) = A_1 \cos(2\pi f_1 t + \phi_1) + A_2 \cos(2\pi f_2 t + \phi_2)$$

spróbkowanego z częstotliwością f_s =1000 Hz, mającego N=100 próbek i będącego sumą dwóch kosinusoid, o częstotliwościach f_l =100 Hz i f_2 =200 Hz, amplitudach A_l =100 i A_2 =200 oraz kątach fazowych φ_l = π /7 i φ_2 = π /11.

Narysuj widmo \mathbf{x} (część rzeczywista, urojona, moduł, faza), wyskaluj oś częstotliwości w hercach. Zauważ, że część rzeczywista współczynnika widmowego mówi ile w sygnale jest kosinusa o danej częstotliwości, a część urojona – ile sinusa (do składowych sygnału zastosuj wzór na kosinusa sumy kątów: cos(a+b)=cos(a)cos(b)-sin(a)sin(b)). Zauważ, że część rzeczywista jest symetryczna (to samo) względem częstotliwości $f_s/2$ (próbka N/2+1), a część urojona – asymetryczna (wartość zanegowana).

Wyznacz macierz rekonstrukcji **B** jako wynik sprzężenia zespolonego i transpozycji macierzy **A** (B=A'). Zrekonstruuj sygnał na podstawie **X** (\mathbf{x}_r =B**X**) i porównaj go z oryginałem \mathbf{x} (\mathbf{x}_r == \mathbf{x} ?). Zastąp operację X=Ax poprzez X=fft(x), zaś xr=BX – przez xr=ifft(X). Czy x i \mathbf{x}_r są takie same jak poprzednio? O ile wartości nowego **X** są różne od poprzednich i czy jest to związane z wartością N? Zmień f_i =100 Hz na f_i =125 Hz, oblicz i wyświetl widmo jak poprzednio.

2. DtFT (1 pkt)

Ustaw f_i =125 Hz i przyjmij \mathbf{X}_i = \mathbf{X} (z poprzedniego ćwiczenia). Następnie zwiększ rozdzielczość częstotliwości poprzez dołączenie M=100 zer na końcu sygnału \mathbf{x} (otrzymujemy sygnał \mathbf{x}_z) oraz wykonaj skalowanie $\frac{\mathsf{X2}=\mathsf{fft}(\mathsf{xz})./(\mathsf{N+M})}{\mathsf{N}}$ (otrzymujemy \mathbf{X}_2), które jest obliczane według wzoru:

$$X_{2}(k) = \frac{1}{N+M} \sum_{n=0}^{N+M-1} x_{z}(n) e^{-j\frac{2\pi}{N}kn}$$

gdzie k=0,1,...,N+M. Zwróć uwagę, że sygnał $\mathbf{x_z}$ ma teraz długość N+M próbek i jest rozszerzony M zerami.

Następnie oblicz X_3 stosując wzór na DtFT(x):

$$X_{3}(f) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j 2\pi \frac{f}{f_{S}} n}$$

stosując wartości f=0:0.25:1000 Hz. Wyznacz trzy widma:

- X_1 czyli DFT o długości N, sygnału próbkowanego częstotliwością f_s gdzie wektor częstotliwości można wyliczyć jako: fx1=fs*(0:N-1)/N
- X₂ (DFT z dodaniem zer), wyznacz odpowiedni wektor fx2
- X₃(DtFT), wyznacz odpowiedni wektor fx3.

Narysuj wartości bezwzględne tych widm na jednym rysunku za pomocą instrukcji: plot(fx1,X1,'o',fx2,X2,'bx',fx3,X3,'k-'). Następnie oblicz X_3 dla f=-2000:0.25:2000 Hz $(-2f_s:df:2f_s)$ i ponownie narysuj trzy widma X_1 , X_2 , X_3 na jednym rysunku. Jak widać obliczone widma X_1 i X_2 są (a)symetryczne, a widmo X_3 jest okresowe. Dlatego wystarczy rysować widma tylko dla $f=0:df:f_s/2$.

¹ Konwencja zapisu transformaty Fouriera jest taka, że jej wynik (wektor \mathbf{X}) jest zapisywany dużą literą, natomiast wektor wejściowy \mathbf{x} jest pisany małą literą. Jest to trochę mylące, poniważ \mathbf{X} sugeruje macierz, a w tym kontekście jest wektorem o rozmarze takim samym jak \mathbf{x} .

3. DtFT, rola funkcji okien i liczby próbek (1 pkt)

Dla sygnału z ćwiczenia 1 ustaw f=0:0.1:500 (dla DtFT), N=100, $f_i=100$ Hz i $f_2=125$ Hz, Al=1 i A2=0.0001. Oblicz DtFT i wyświetl widmo. Czy widzisz obie składowe sygnału? Następnie wymnóż próbki sygnału kolejno z oknem prostokątnym, Hamminga, Blackmana, Czebyszewa (tłumienie 100 dB) i Czebyszewa (tłumienie 120 dB), oblicz DtFT i wyświetl moduły pięciu widm na jednym rysunku. Następnie ustaw w ostatnim zadaniu N=1000 i powtórz go ale tylko dla różnych wartości tłumienia okna Czebyszewa.

4. Analiza częstotliwościowa sygnału ADSL (2 pkt)

Wykonaj analizę częstotliwościową dostarczonego sygnału ADSL. Sygnał zawiera K=8 ramek o długości N=512 próbek z prefiksem M=32 położonych jak na rysunku 4.1.

Rys. 4.1. Ramki sygnału ADSL

Każda ramka N próbek ma zaalokowanych kilkanaście różnych podkanałów częstotliwościowych czyli dane znajdują się na odpowiednich "harmonicznych". Ramki sygnału rozpoczynają się od początku sygnału, tak więc m-ty prefiks rozpoczyna się w próbce m*(N+M)+1.

Zadania:

- wykonać N-punktowe DFT (FFT) każdej ramki (po usunięciu prefiksu)
- wyznaczyć, które harmoniczne były w niej używane.

Sygnał do analizy znajduje się w pliku lab_03.mat. Użyj sygnału ze wektora o nazwie x_?? gdzie ?? jest liczbą otrzymaną jako rezultat wykonania: mod(twoj numer indeksu, 16)+1.

5. Analiza rzeczywistego sygnału DAB (opcjonalnie, +2 pkt)

W rzeczywistym sygnale DAB w przerwie zerowej ($Null\ Symbol$) może być przesyłana dodatkowa informacja. Jest to suma prostych sygnałów sinusoidalnych. W laboratorium 01 napisałeś program do detekcji próbek, należących do sygnału $Null\ Symbol$. Teraz dodaj do niego wywoływanie funkcji fft(...) na próbkach "zerowych", wyskaluj otrzymane widma częstotliwościowe i je wyświetl. Częstotliwość próbkowania $fs=2.048\ \mathrm{MHz}$.

Wykorzystując spostrzeżenia z zadania 5 z Lab02, wyznacz jakie według ciebie sekwencje bitów były przesyłane w sygnałach DAB, analizowanych w zadaniu 4 Lab1. Narysuj na jednym rysunku "konstelację obrotów" wykonywanych na jednej częstotliwości nośnej, czyli wszystkie obroty, które wykonano na wybranej częstotliwości w jednej ramce DAB (rysunek: Imag() w funkcji Real() kolejnych zespolonych liczb obracających, dla 76 bloków danych; bez linii łączących kolejne wartości kątów obrotu "o" oraz z tymi liniami). Narysuj na jednym rysunku zmienność wartości kąta obrotu dla wszystkich częstotliwości (w poziomie – numer obrotu, w pionie – jego wartość w stopniach; zaznacz wartości kąta symbolem "o", nie łącz początkowo tych symboli liniami, potem je połącz – otrzymasz wiele linii na jednym rysunku, każda dla innej częstotliwości - czyli tzw. wykres oczkowy)