EXPÉRIENCE ALÉATOIRE, MODÈLE ASSOCIÉ

I Expérience aléatoire à deux épreuves indépendantes.

Remarque n°1.

Nous ne ferons pas de distinction entre « expérience aléatoire » et « épreuve », les deux étant surtout utilisés comme synonymes afin d'éviter les répétitions...

Les épreuves indépendantes

On considère les deux expériences aléatoires suivantes :

• épreuve n°1 : On lance une pièce de monnaie truquée de façon à obtenir Pile deux fois plus souvent que Face et on note le côté obtenu.

On note:

P: « Obtenir Pile » etF: « Obtenir Face »

Son univers est alors : $\Omega_1 = \{P ; F\}$

Loi de probabilité de l'épreuve n°1						
Issue	P	F				
Probabilité	<u>2</u> 3	$\frac{1}{3}$				

• épreuve n°2 : On tire une boule dans une urne contenant 5 boules Noires, 3 boules Rouges et 2 boules Blanches et on note la couleur obtenue.

On note:

N: « La boule tirée est Noire »; R: « La boule tirée est Rouge » et B: « La boule tirée est Blanche » Son univers est alors : $\Omega_2 = \{N; R; B\}$

Loi de probabilité de l'épreuve n°2						
Issue	N	R	В			
Probabilité	$\frac{5}{10} = \frac{1}{2}$	3 10	$\frac{2}{10} = \frac{1}{5}$			

Total

Total

1

1

Définition n°1. épreuves indépendantes (très intuitive...)

Quand deux (ou plus) épreuves n'ont aucune influence l'une sur l'autre. On dit qu'elles sont **indépendantes**.

Remarque n°2.

Nos deux épreuves sont clairement indépendantes...

L'expérience aléatoire à deux épreuves indépendantes

Nous allons à présent en construire une troisième à partir de ces deux là. On enchaîne l'épreuve n°1 et n°2.

Définition n°2.

On obtient ce qu'on appelle une expérience aléatoire à deux épreuves indépendantes.

Son univers est alors:

$$\Omega = \{ (P, N) ; (P, R) ; (P, B) ; (F, N) ; (F, R) ; (F, B) \}$$

Pour déterminer sa loi de probabilité, on va utiliser un arbre pondéré.

Loi de probabilité de l'expérience aléatoire à deux épreuves indépendantes							
Issue	(P,N)	(P,R)	(P,B)	(F,N)	(F,R)	(F,B)	Total
Probabilité	$\frac{1}{3}$	<u>1</u> 5	<u>2</u> 15	<u>1</u> 6	1/10	1 15	1
	10 30	$\frac{6}{30}$	4 30	<u>5</u> 30	$\frac{3}{30}$	$\frac{2}{30}$	$\frac{30}{30}$

Définition n°3.

Modéliser une **expérience aléatoire**, c'est **associer** à cette **expérience** une loi de probabilité.

II Le cas Bernoulli

Définition n°4. Épreuve de Bernoulli

Une épreuve de Bernoulli de paramètre p est une expérience aléatoire n'ayant que deux issues.

p est la probabilité du succès et par conséquent, la probabilité de l'échec (souvent notée q) vaut 1-p.

Exemple n°1.

Dans notre épreuve n°1, si on décide que le succès est d'obtenir Pile alors on obtient une épreuve de Bernoulli de paramètre $p=\frac{2}{3}$.

Le **modèle associé** à notre épreuve est alors une épreuve de Bernoulli.

Définition n°5. Schéma de Bernoulli

Si on enchaîne plusieurs (n) épreuves de Bernoulli indépendantes de paramètre p alors on obtient un schéma de Bernoulli de paramètre (n, p).

Source: Wikipedia

Exemple n°2.

On peut répéter notre épreuve n°1, en remarquant que le résultat du 1er lancer n'a aucune influence sur le second. On obtient un schéma de Bernoulli de paramètre $\left(2,\frac{2}{3}\right)$

Le modèle associé est alors un schéma de Bernoulli.

Remarque n°3.

On se concentrera sur ce type d'expérience aléatoire aléatoire à deux épreuves indépendantes.

Exemple n°3. Représenter un schéma de Bernoulli

On peut représenter l'expérience aléatoire de l'exemple n°2 avec un arbre pondéré :

