tear off

Data Sheet

 $\mathbf{Dag}\ D = (V, E)$

Graph K = (V, E)

CIS 3223 Homework 7

Name:

Dr Anthony Hughes

Temple ID (last 4 digits:

1 (14 pts) (a) Consider the dag D.

Draw the reverse dag.

For each vertex $u \in V$, let dist(v) = shortest path from s to v. Complete the following table.

parent	\mathbf{s}							
dist	0							
vertex	S	b	a	d	С	е	f	\mathbf{Z}

Draw the tree (horizontally) indicating the shortest path from s.

2 (14 pts) Consider the following 0-1 knapsack problem with W=11.

Item	Weight	Value (\$)
1	4	18
2	5	21
3	2	9
4	3	14
5	6	27

Complete the following table and determine the max solution using all 5 items and capacity W=11.

0	1	2	3	4	5	6	7	8	9	10	11
	 	 - -	 - -	 - 	 -	 -	 -		 	l I	
	 	 	 	 	 	 - 	 		 	 	
	! !				' - 	 - 	' - 				
	 	 	 	 - 	 - 	 - 	 		 	 	
	1		i i		 		 			ı	
		 	 	 					i	i	
	T ' ! !	r !	r !	 !	 	 				 	

Max value Items selected (cir	eircle): 1	2	3	4	5
-------------------------------	------------	---	---	---	---

What is the max value if W = 9 and only the first four items can be taken?

$3~(8~{\rm pts})$ Consider the undirected graph K

Running Dijkstra's algorithm we have the following data after $\mathtt{deletemin} \to \mathrm{C}$

parent	Α	Α	Α			
S	-1	0	-1	0	0	0
dist	0	6	2	∞	∞	∞
pos	-1	1	-1	4	3	2
vertex	Α	В	С	D	\mathbf{E}	\mathbf{Z}

neighbors of $C = \{ \mathcal{X}, B, D, E \}.$

Execute the updates of the unvisited neighbors.

Edge CB

parent	A		Α			
S	1	0	1	0	0	0
dist	0		2			
pos	-1		-1			
vertex	Α	В	$^{\mathrm{C}}$	D	E	\mathbf{Z}

H			4

Edge CD

parent	Α		Α			
S	1	0	1	0	0	0
dist	0		2			
pos	-1		-1			
vertex	Α	В	$^{\mathrm{C}}$	D	E	\mathbf{Z}

Edge CE

parent	A		Α			
S	1	0	1	0	0	0
dist	0		2			
pos	-1		-1			
vertex	A	В	$^{\mathrm{C}}$	D	E	\mathbf{Z}

H			4

H					4
---	--	--	--	--	---