

Lali Nurtaev und Daniel Heuser

Ablauf des Workshops

- 1. Etappe
 - 1. Einführung Layouts
 - 2. Live Coding Vorführung
 - 3. Ausblick (Layouts)
- 2. Etappe
 - 1. Einführung Geomapping
 - 2. Do it yourself (15 Minuten)
 - 3. Ausblick (Geomapping)
- 3. Etappe
 - 1. Diskurs

Einführung Layouts

Was sind Layouts?

In D3 haben Layouts keine direkte visuelle Ausgabe. D3 Layouts wandeln bereitgestellte Daten auf und wandeln sie auf andere Weise um, wodurch neue Daten erzeugt werden.

Einführung Layouts

Beispiel:

const dataset = [5, 10, 20, 45, 6, 25]; console.log(dataset);

```
▼ Array(6) [ 5, 10, 20, 45, 6, 25 ]
    0: 5
    1: 10
    2: 20
    3: 45
    4: 6
    5: 25
    length: 6
```

Einführung Layouts

Beispiel:

```
const pie = d3.pie();
console.log(pie(dataset));
```

```
▼ Array(6) [ {...}, {...}, {...}, {...}, {...}, {...}]
   ▼ 0: Object { data: 5, index: 5, value: 5, ... }
          data: 5
          endAngle: 6.283185307179586
          index: 5
          padAngle: 0
          startAngle: 6.000158941991317
          value: 5
       ▶   < prototype>: Object { ... }
   ▼ 1: Object { data: 10, index: 3, value: 10, ... }
          data: 10
          endAngle: 5.660527303765393
          index: 3
          padAngle: 0
          startAngle: 5.094474573388854
          value: 10
       ▶                                                                                                                                                                                                                                                                                                                                                    <pre
   ▶ 2: Object { data: 20, index: 2, value: 20, ... }
   ▶ 3: Object { data: 45, index: 0, value: 45, ... }
   ▶ 4: Object { data: 6, index: 4, value: 6, ... }
   ▶ 5: Object { data: 25, index: 1, value: 25, ... }
      length: 6
```

Live Coding Vorführung

Hinweis: Packt das Handout aus

Ausblick (Layouts)

Welche Layouts gibt es noch?

Force

Was sind GeoJSONs?

- Arbeiten mit Geodaten
- Type: Feature oder FeatureCollection
- Features beinhalten: type, geometry, (properties)
- Geometry:
 - Type: Point, LineString, Polygon, MultiPoint, MultiLineString oder MultiPolygon
 - Coordinates: longitdue/latitude-Paar

```
"type": "FeatureCollection",
          "features": [
 3
 4
 5
                   "type": "Feature",
                   "id": "01",
                   "properties": {
 7
                       "name": "Alabama"
 8
 9
                   },
10
                   "geometry": {
                       "type": "Polygon",
11
                       "coordinates": [
12
13
14
15
                                    -87.359296,
16
                                    35.00118
17
18
19
                                    -85.606675,
20
                                    34.984749
21
22
23
                                    -85.431413,
24
                                    34.124869
25
```

Projection

- Abbilden von 3D Räumen auf 2D Flächen
- verschiedene Projektionen
 - translate(): zentrieren
 - scale(): sklaieren (default ist 1000)

```
var projection = d3.geoAlbersUsa()
   .translate([w/2, h/2])
   .scale([500]);
```

Path

- Definieren eines Path Generator
 - Umwandeln von Geokoordinaten in SVG Path Code
- Projektion wird definiert

```
var path = d3.geoPath()
    .projection(projection);
```

GeoJSON laden

- json(): laden der GeoJSON
- path: Erstellen von path-Elementen
 - attr("d", path): für jedes Element
 - modifizieren über stroke und fill

```
d3.json("us-states.json").then(json => {
    svg.selectAll("path")
        .data(json.features)
        .enter()
        .append("path")
        .attr("d", path)
        .attr("stroke", "grey")
        .attr("fill", "white");
});
```


Choropleth

- Karten mit Farbflächen nach Wert
- Farbskala
 - scaleLinear()
 - scaleQuantize()

merge GeoJSON und CSV

• jeder Staatenname in der GeoJSON, der in der csv enthalten ist, wird ein neuer Wert aus der csv zugeschrieben


```
d3.json("us-states.json").then(function (json) {
33
              for (var i = 0; i < data.length; i++) {</pre>
34
                  //Staatenname aus csv
35
                  var dataState = data[i].state;
36
                  //Wert aus csv in float umwandeln
37
                  var dataValue = parseFloat(data[i].value);
                  //für jedes Objekt in json
39
                  for (var j = 0; j < json.features.length; j++) {</pre>
40
                      //Staatennamen aus geojson
41
                      var jsonState = json.features[j].properties.name;
42
                      //wenn Staat aus json in csv vorhanden
43
                      if (dataState == jsonState) {
44
                          //Wert aus csv in json unter properties kopieren
45
                          json.features[j].properties.value = dataValue;
46
                          break;
47
```

Punkte

- Punkte zur Zentroidendarstellung
- lat/lng-Werte benötigt
- für Position mittels projection() in x/y-Werte umgewandelt


```
.attr("cx", function (d) {
    return projection([d.lon, d.lat])[0];
})
.attr("cy", function (d) {
    return projection([d.lon, d.lat])[1];
})
```

Do it yourself (15 Minuten)

Für die Bundesländer liegen Einwohnerzahl, Ranking und Zentroide vor Erstelle eine Karte, die die Bundesländer eines Rankings entsprechend einfärbt - Füge Bubbles hinzu, die die Größe der Einwohnerzahl des jeweiligen Bundeslandes repräsentiert

Ausgangskarte

State of the state

Zielkarte

Ausblick (Geomapping)

Weitere Funktionen

Panning

Zooming (d3.zoom())

Dragging (d3.drag())

Preset

Diskurs

Habt ihr Fragen?