SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 5

Mattias Villani

Avdelningen för Statistik och Maskininlärning Institutionen för datavetenskap Linköpings universitet

lı.u

ÖVERSIKT

- ► Stora talen lag
- ► Centrala gränsvärdessatsen
- **▶** Simulering

STORA TALENS LAG

- Medelvärde: $\bar{X}_n = \frac{X_1 + X_2 + ... + X_n}{n}$
- ► Medelvärden av många oberoende slumpvariabler med samma fördelning kommer att ligga allt närmare variablernas väntevärde.
- ► Stora talens lag:

$$\lim_{n\to\infty} P\left(|\bar{X}_n - \mu| > \epsilon\right) = 0$$

► Bevis via Chebyshevs olikhet

$$P\{|X - \mu| > \varepsilon\} \le \frac{\sigma^2}{\varepsilon^2}$$

eftersom σ^2 i detta fall är $Var(\bar{X}_n) = Var(X_i)/n \to 0$ när $n \to \infty$.

CENTRALA GRÄNSVÄRDESSATSEN

- ► Hur är summan $S_n = X_1 + X_2 + ... + X_n$ utav noberoende variabler fördelad?
- Demo av

►
$$S_n$$
 $Var(S_n) = n\sigma^2 \rightarrow \infty$
► S_n/n $Var(S_n/n) = \sigma^2/n \rightarrow 0$
► S_n/\sqrt{n} $Var(S_n/\sqrt{n}) = \sigma^2$.

- ► CLT: Medelvärden av *n* oberoende variabler med godtycklig fördelning blir alltmer normalfördelade när *n* ökar.
- ightharpoonup n > 30 är en vanlig tumregel.

CENTRALA GRÄNSVÄRDESSATSEN

THEOREM

Låt $X_1, X_2, ..., X_n$ vara oberoende variabler med väntevärde $\mu = \mathbb{E} X_i$ och standardavvikelse $\sigma = \operatorname{Std}(X_i)$ och låt

$$S_n = \sum_{i=1}^n X_i = X_1 + X_2 + ... + X_n.$$

När n $ightarrow \infty$ så kommer den standardiserade summan

$$Z_n = \frac{S_n - \mathbb{E}S_n}{\operatorname{Std}(S_n)}$$

att konvergera i fördelning till en N(0,1) variabel, dvs

$$F_{Z_n}(z) = P\left\{\frac{S_n - n\mu}{\sigma\sqrt{n}} \le z\right\} \longrightarrow \Phi(z)$$

SIMULERING

- ▶ Pseudoslumptalsgenerator: Datorer kan generera en lång sekvens tal som ser ut som U(0,1) slumptal. Good enough.
- ▶ R: runif(1). Matlab: rand. Python: numpy.random.uniform().
- Från $U \sim U(0,1)$ kan vi skapa slumptal från andra fördelningar.
- Ex. Bernoulli med sannolikhet p att lyckas:

$$X = \begin{cases} 1 & \text{om } U$$

- ► R kod Bernoulli: U=runif(1); X=(U<p)
- Ex. Binomial. Summan av Bernoullis
 - ► R-kod för Binomial(n,p): U=runif(n); X=sum(U<p

SIMULERING FRÅN DISKRET FÖRDELNING

Simulering från allmän diskret fördelning:

$$p_i = \mathbf{P}\left\{X = x_i\right\}, \quad \sum_{i=1}^{n} p_i = 1$$

- ▶ Dela upp intervallet [0, 1] i delintervall:
 - $A_1 = [0, p_1)$
 - $A_2 = [p_1, p_2)$
 - •
 - $A_n = [p_{n-1}, 1)$
- ▶ Slumpa $U \sim U(0,1)$
- $ightharpoonup Om \ U \in A_i \ \text{låt} \ X = x_i$

INVERSE CDF METHOD, DISCRETE CASE

INVERSA TRANSFORMATIONSMETODEN

► Simulering från allmän kontinuerlig fördelning.

THEOREM

Låt X vara en kontinuerlig variabel med cdf $F_X(x)$ och låt $U = F_X(X)$ vara en ny slumpvariabel. Då gäller att $U \sim U(0,1)$.

- ▶ Inversa transformationsmetoden: Antag att X har cdf F(X). X kan då simuleras med hjälp av en $U \sim U(0,1)$ variabel: $X = F^{-1}(U)$.
- ▶ Dvs lös ut X från ekvationen U = F(X).
- Ex. $X \sim Exp(\lambda)$.

$$U = 1 - e^{\lambda X}$$

vilket har lösningen

$$X = -\frac{1}{\lambda} \ln(1 - U)$$

Inverse CDF method, continuous case

SIMULERING I R

- ▶ *n* slumptal från $N(\mu=2,\sigma^2=3^2)$ simuleras med rnorm(n, mean = 2, sd = 3)
- ▶ *n* slumptal från $Gamma(\alpha = 2, \lambda = 3)$ simuleras med rgamma(n, shape = 2 , rate = 3)
- ▶ Beräkna **pdf:en** i punkten x = 1.5 för $N(\mu = 2, \sigma^2 = 3^2)$: dnorm(x=1.5, mean = 2, sd = 3)
- ▶ Beräkna cdf:en i punkten x=1.5 för $N(\mu=2, \sigma^2=3^2)$: pnorm(x=1.5, mean = 2, sd = 3)

