Dason Kurkiewicz

Iowa State University

June 13, 2013

Joint Distributions and Independence (Ch. 5.4)

Dason Kurkiewicz

Outline

The Discrete Case

Marginal Distributions

Joint Distributions and Independence (Ch. 5.4)

Dason Kurkiewicz

The Discrete Case

- Consider multiple random variables at the same time.
- Suppose you're manufacturing ring bearings (nominal inner diameter 1.00 in) on rods (nominal diameter 0.99 in). Let:
 - \rightarrow X = the inside diameter of the next ring bearing
 - Y = rod diameter where the ring is located
- We might want to know probabilities like

since if X < Y, the assembly cannot be made.

▶ A **joint probability function** for discrete random variables X and Y is a nonnegative function f(x, y) such that:

$$f(x,y) = P(X = x \text{ and } Y = y)$$

as a distribution, $f \ge 0$ and:

$$\sum_{x,y} f(x,y) = 1$$

- ► For the discrete case, it is useful to give f(x, y) in a table.
- Example: suppose:
 - ► *X* = torque required to loosen bolt #3 in the next apparatus.
 - ightharpoonup Y =torque for bolt #4.

where all torques are rounded to the nearest integer.

Joint Distributions and Independence (Ch. 5.4)

Dason Kurkiewicz

The Discrete Case Joint Distributions Marginal Distributions Conditional Distributions

Example: torque (blank entries are 0)

f(x, y) for the Bolt Torque Problem

у \	x	11	12	13	14	15	16	17	18	19	20
20									2/34	2/34	1/34
19								2/34			
18				1/34	1/34			1/34	1/34	1/34	
17						2/34	1/34	1/34	2/34		
16					1/34	2/34	2/34			2/34	
15		1/34	1/34			3/34					
14						1/34			2/34		
13						1/34					

►
$$P(X = 18 \text{ and } Y = 17) = \frac{2}{34}$$

$$P(X = 14 \text{ and } Y = 19) = 0$$

Joint Distributions and Independence (Ch. 5.4)

Dason Kurkiewicz

The Discrete Case Joint Distributions Marginal Distributions Conditional Distributions

у \	x	11	12	13	14	15	16	17	18	19	20
20									2/34	2/34	1/34
19								2/34			
18				1/34	1/34			1/34	1/34	1/34	
17						2/34	1/34	1/34	2/34		
16					1/34	2/34	2/34			2/34	
15		1/34	1/34			3/34					
14						1/34			2/34		
13						1/34					

Calculate:

- 1. $P(X \geq Y)$
- 2. $P(|X Y| \le 1)$

Joint Distributions and Independence (Ch. 5.4)

Dason Kurkiewicz

The Discrete Case
Joint Distributions
Marginal Distributions
Conditional
Distributions

Answers: torque

Combinations of bolt 3 and bolt 4 torques with $x \ge y$

Joint Distributions and Independence (Ch. 5.4)

Dason Kurkiewicz

The Discrete Case Joint Distributions

$$P(X \ge Y) = \sum_{x \ge y} f(x, y)$$

= $f(20, 20) + f(20, 19) + f(20, 18) + \dots + f(13, 13)$

Dropping all the f(x, y) values that equal 0:

$$= f(15,13) + f(15,14) + f(15,15) + f(16,16) + f(17,17) + f(18,14) + f(18,17) + f(18,18) + f(19,16) + f(19,18) + f(20,20) \frac{1}{34} + \frac{1}{34} + \frac{3}{34} + \frac{2}{34} + \dots + \frac{1}{34} = \frac{17}{34}$$

Answers: torque

Combinations of bolt 3 and bolt 4 torques with $|x - y| \le 1$

Joint Distributions and Independence (Ch. 5.4)

Dason Kurkiewicz

The Discrete Case Joint Distributions

$$P(X \ge Y) = \sum_{x \ge y} f(x, y)$$

= $f(13, 13) + f(14, 13) + f(14, 14) + \dots + f(20, 20)$

Dropping all the f(x, y) values that equal 0:

$$= f(15, 14) + f(15, 15) + f(15, 16) + f(16, 16)$$

$$+ f(16, 17) + f(17, 17) + f(17, 18) + f(18, 17)$$

$$+ f(18, 18) + f(19, 18) + f(19, 20) + f(20, 20)$$

$$= \frac{18}{34}$$

▶ The marginal distributions of X and Y, which have joint pmf f(x, y), are:

$$f_X(x) = \sum_y f(x, y)$$
$$f_Y(y) = \sum_y f(x, y)$$

 $ightharpoonup f_X(x)$ is just the ordinary, univariate pmf of X.

Joint Distributions Marginal Distributions Conditional Distributions

The Continuous Case

Calculate the marginal pmfs of X and Y

f(x, y) for the Bolt Torque Problem

у \	x	11	12	13	14	15	16	17	18	19	20
20									2/34	2/34	1/34
20 19								2/34			
18				1/34	1/34			1/34	1/34	1/34	
17						2/34	1/34	1/34	2/34		
16 15					1/34	2/34	2/34			2/34	
15		1/34	1/34			3/34					
14						1/34			2/34		
13						1/34					

June 13, 2013

Answers: torque

- ▶ Take the column sums to calculate f_X at each x.
- ▶ Take the row sums to calculate f_Y at each y.

X	$f_X(x)$	у	$f_Y(y)$
11	1/34	13	5/34
12	1/34	14	2/34
13	1/34	15	5/34
14	2/34	16	6/34
15	9/34	17	7/34
16	3/34	18	7/34
17	4/34	19	3/34
18	7/34	20	1/34
19	5/34		
20	1/34		

Joint Distributions and Independence (Ch. 5.4)

Dason Kurkiewicz

Marginal Distributions

▶ It is customary to write the marginal pmfs in the margins of the table of the joint pmf.

Joint and Marginal Probabilities for X and Y

у \	x	11	12	13	14	15	16	17	18	19	20	$f_Y(y)$
20									2/34	2/34	1/34	5/34
19								2/34				2/34
18				1/34	1/34			1/34	1/34	1/34		5/34
17						2/34	1/34	1/34	2/34			6/34
16					1/34	2/34	2/34			2/34		7/34
15		1/34	1/34			3/34						5/34
14						1/34			2/34			3/34
13						1/34						1/34
$f_X(x)$		1/34	1/34	1/34	2/34	9/34	3/34	4/34	7/34	5/34	1/34	

▶ The **conditional distribution** of Y given X = x is a function, $f_{Y|X=x}$, given by:

$$f_{Y|X=x}(y) = \frac{f(x,y)}{f_X(x)}$$

► To make sense of conditional distributions, return to the torque example...

у \	x	11	12	13	14	15	16	17	18	19	20	$f_Y(y)$
20									2/34	2/34	1/34	5/34
19								2/34	0			2/34
18				1/34	1/34			1/34	1/34	1/34		5/34
17						2/34	1/34	1/34	2/34			6/34
16					1/34	2/34	2/34		0	2/34		7/34
15		1/34	1/34			3/34			0			5/34
14						1/34			2/34			3/34
13						1/34			0			1/34
$f_X(x)$		1/34	1/34	1/34	2/34	9/34	3/34	4/34	7/34	5/34	1/34	
										ı		

- For example, $f_{Y|X=18}(20) = \frac{2/34}{7/34} = 2/7$. That makes sense because:
 - Since $f_X(18) = 7/34$, we expect roughly 7 out of every 34 cases to have X = 18.
 - ► Since $f_{X,Y}(18,20) = 2/34$, we expect roughly 2 of those 7 cases to also have Y = 20.

Dason Kurkiewicz

The Discrete Case
Joint Distributions
Marginal Distributions
Conditional
Distributions

- $\sum_{y=13}^{20} f_{Y|X=18}(y) = 1$
- ▶ The conditional distribution, $f_{Y|X=18}$ is the renormalized column of the joint distribution corresponding to X = 18.

Dason Kurkiewicz

Conditional Distributions

Your turn: torque

Joint and Marginal Probabilities for X and Y

у	\	x	11	12	13	14	15	16	17	18	19	20	$f_Y(y)$
20	П									2/34	2/34	1/34	5/34
19									2/34				2/34
18					1/34	1/34			1/34	1/34	1/34		5/34
17							2/34	1/34	1/34	2/34			6/34
16						1/34	2/34	2/34			2/34		7/34
15			1/34	1/34			3/34						5/34
14							1/34			2/34			3/34
13							1/34						1/34
$f_X(x)$)		1/34	1/34	1/34	2/34	9/34	3/34	4/34	7/34	5/34	1/34	

Calculate:

- 1. $f_{Y|X=15}(y)$ 2. $f_{Y|X=20}(y)$ 3. $f_{X|Y=18}(x)$

Joint Distributions and Independence (Ch. 5.4)

Dason Kurkiewicz

Conditional Distributions

Answers: torque

Joint Distributions and Independence (Ch. 5.4)

Dason Kurkiewicz

Conditional Distributions

1.
$$\frac{y}{f_{Y|X=15}(y)} \frac{13}{1/9} \frac{14}{1/9} \frac{15}{3/9} \frac{16}{2/9} \frac{17}{2/9} \frac{18}{0} \frac{19}{0} \frac{20}{0}$$

2.
$$\frac{y}{f_{Y|X=20}(y)}$$
 13 14 15 16 17 18 19 20 0 0 0 0 0 0 1

3.

X										
$f_{X Y=18}(x)$	0	0	1/5	1/5	0	0	1/5	1/5	1/5	0

Given a set of marginal distributions, there are many possible joint distributions.

What do you notice about each of the following joint distributions?

Distribution 1

y^x	1	2	3	L
3	.4	0	0	.4
2	0	.4	0	.4
1	0	0	.2	.2
	4	4	2	

Distribution 2

y^{x}	1	2	3	L
3	.16	.16	.08	.4
2	.16	.16	.08	.4
1	.08	.08	.04	.2
	4	4	2	

Joint Distributions and Independence (Ch. 5.4)

Dason Kurkiewicz

Independence

What do you notice about each of the following joint distributions?

Distribution 1

y^{x}	1	2	3	
3	.4	0	0	.4
2	0	.4	0	.4
1	0	0	.2	.2
	.4	.4	.2	

Distribution 2

- 1. Given X = x, you know what Y has to be (and vice versa).
- 2. Each P(X = x, Y = y) is just $P(X = x) \cdot P(Y = y)$; i.e., X and Y have no influence on each other.

Joint Distributions and Independence (Ch. 5.4)

Dason Kurkiewicz

Joint Distributions
Marginal Distributions
Conditional
Distributions
Independence

A look at distribution 2

y^{x}	1	2	3	
3	.16	.16	.08	.4
2	.16	.16	.08	.4
1	.08	.08	.04	.2
	4	1	2	

- \blacktriangleright Among just the cases when X=1:
 - Y = 3 every 16 out of (16 + 16 + 8) = 40 times: i.e., with probability $\frac{16}{40} = 0.4$
 - ightharpoonup Same with Y=2
 - Y = 1 every 8 out of (16 + 16 + 8) = 40 times: i.e., with probability 0.2
- ▶ So pmf of Y given X = 1 is the same as the marginal pmf of Y.

Joint Distributions and Independence (Ch. 5.4)

Dason Kurkiewicz

Independence

$$P(Y = y \mid X = x) = P(Y = y)$$

where | means "given".

▶ If $X \perp Y$, then:

$$P(Y = y \text{ and } X = x) = P(X = x) \cdot P(Y = y)$$
$$f(x, y) = f_X(x) \cdot f_Y(y)$$

▶ If X and Y are not only independent but also have the same marginal distribution, then they are **independent** and identically distributed, abbreviated iid.

Joint Distributions and Independence (Ch. 5.4)

Dason Kurkiewicz

The Discrete Case Independence

Outline

Marginal Distributions

The Continuous Case

Joint Distributions and Independence (Ch. 5.4)

Dason Kurkiewicz

The Continuous Case

▶ A joint probability density function (pdf) for two continuous random variables X and Y is a nonnegative function with:

$$\int \int f(x,y)dxdy = 1$$
$$P((X,Y) \in R) = \int \int_{R} f(x,y)dxdy$$

where R is some region of \mathbb{R}^2 .

- ► *S* = true excess time (over a 7.5 s threshold) required to complete the next sale
- ightharpoonup R =excess time measured with a stopwatch

$$f(s,r) = egin{cases} rac{1}{16.5}e^{-s/16.5}rac{1}{\sqrt{2\pi(0.25)}}e^{-(r-s)^2/2(0.25)} & s>0 \ 0 & ext{otherwise} \end{cases}$$

$$\int \int f(s,r)ds \ dr = \int_0^\infty \int_{-\infty}^\infty \frac{1}{16.5\sqrt{2\pi(0.25)}} e^{-(s/16.5) - ((r-s)^2/2(0.25))} dr \ ds$$

$$= \int_0^\infty \frac{1}{1.65} e^{-s/16.5} \left\{ \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi(0.25)}} e^{-(r-s)^2/2(0.25)} dr \right\} ds$$

$$= \int_0^\infty \frac{1}{16.5} e^{-s/16.5} ds$$

Dason Kurkiewicz

The Continuous Case

= 1

A look at f(s, r)

Joint Distributions and Independence (Ch. 5.4)

Dason Kurkiewicz

The Discrete Case
Joint Distributions
Marginal Distributions
Conditional

$$P(R > S) = \int \int_{r > s} f(s, r) ds dr$$

$$= \int_0^\infty \int_s^\infty f(s, r) dr ds$$

$$= \int_0^\infty \frac{1}{16.5} e^{-s/16.5} \left\{ \int_s^\infty \frac{1}{\sqrt{2\pi (0.25)}} e^{-(r-s)^2/2(0.25)} dr \right\} ds$$

$$= \int_0^\infty \frac{1}{16.5} e^{-s/16.5} \left\{ \frac{1}{2} \right\} ds$$

$$= \frac{1}{2}$$

Dason Kurkiewicz

Dason Kurkiewicz

The Continuous Case

June 13, 2013

$$P(S > 20) = \int \int_{s>20} f(s, r) dr ds$$

$$= \int_{20}^{\infty} \int_{-\infty}^{\infty} f(s, r) dr ds$$

$$= \int_{20}^{\infty} \frac{1}{16.5} e^{-s/16.5} \left\{ \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi(0.25)}} e^{-(r-s)^2/s(0.25)} \right\} ds$$

$$= \int_{20}^{\infty} e^{-s/16.5} ds$$

$$= e^{-20/16.5}$$

$$\approx 0.30$$

Dason Kurkiewicz

Dason Kurkiewicz

The Discrete Case Joint Distributions Marginal Distribution Conditional Distributions

The Continuous Case

► For continuous random variables X and Y, the marginal distribution of X is:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

▶ The **conditional distribution** of *Y* given X = x is:

$$f_{Y|X=x}(y) = \frac{f(x,y)}{f_X(x)}$$