1: Turing Machines Basics

(8 pts) Give the sequence of configurations that the following machine enters when started on input string

- 1#1
- 1##1

2: Turing Machines Design

(1) (7pts) Give the state diagram for a Turing machine that decides the following language $L_1 = \{w \mid w \text{ contains twice as many 0's than 1's}\}$

(2) (3pts) How would modify your machine from the previous question to decide the following language $L_2 = \overline{L_1} = \{ w \mid w \text{ does not contain twice as many 0's than 1's} \}$

(3)(10pts) Give the state diagram for a Turing machine for a Turing machine that recognizes the following languages:

- $L_3 = \{0^a 1^b | a < b\}$
- $L_4 = \{0^a 1^b | a \le b\}$

(4)(10pts) A nondeterministic Turing machine M with start state q_0 and accepting state q_f has the following transition function:

$\delta(q,a)$	0	1	В
q_0	$\{(q_1, 0, R)\}$	$\{(q_1,0,R)\}$	$\{(q_1, 0, R)\}$
q_1	$\{(q_1,1,R),(q_2,0,L)\}$	$\{(q_1,1,R),(q_2,1,L)\}$	$\{(q_1,1,R),(q_2,B,L)\}$
q_2	$\{(q_f, 0, R)\}$	$\{(q_2,1,L)\}$	{}
q_f	{}	{}	{}

Simulate all sequences of 5 moves, starting from initial configuration q_01010 .

- (5)(6pts) Show that the set of decidable languages is closed under:
 - Complementation (i.e if L is decidable then so is \overline{L})
 - Concatenation (it's easier if you use Nondeterministic Turing machines here)
- (6)(6pts) Show that the set of Turing-recognizable languages is closed under:
 - Intersection
 - Star (it's easier if you use Nondeterministic Turing machines here)