Theorem 0.1 (Galois Solvability Theorem) Let F be a field of char 0. Then an extension is solvable by radicals if and only if L is a subextension of a Galois extension E/F with a solvable Galois group.

Proof: (
$$\Longrightarrow$$
) Given $F = F_0 \subset F_1 \subset F_2 \subset \dots F_m$. s.t. $F_i = F_{i-1}[\alpha_i], \ \alpha \in F_i. \ \alpha_i^{r_i} \in F_{i-1}$. $L \subset F_m$.

Assume L splitting field of a polynomial f.

Let $n = r_1 \dots r_m$, let Ω be a field containing F_m and a primitive n^{th} root of 1.

Let \tilde{E} be the Galois closure of $F_m[\zeta]$ in Ω .