

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC148813

Page: 1 of 34

FCC Radio Test Report FCC ID: 2AIRU-40239RX

Report No. : TB-FCC148813

Applicant: Sertus Hongkong

Equipment Under Test (EUT)

EUT Name: TX GAMEPAD CONTROLLER AND RECEIVER

Model No. : 40239

Serial No. : N/A

Brand Name : Tetrix

Receipt Date : 2016-06-26

Test Date : 2016-06-27 to 2016-06-30

Issue Date : 2016-07-01

Standards : FCC Part 15, Subpart C (15.249: 2015)

Test Method : ANSI C63.10: 2013

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer : WAN SU

Approved& Authorized :

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Page: 2 of 34

Contents

COR	NIENIS	2
1.	GENERAL INFORMATION ABOUT EUT	3
	1.1 Client Information	3
	1.2 General Description of EUT (Equipment Under Test)	3
	1.3 Block Diagram Showing the Configuration of System Tested	4
	1.4 Description of Support Units	
	1.5 Description of Test Mode	
	1.6 Description of Test Software Setting	5
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	8
3.	TEST EQUIPMENT	9
4.	CONDUCTED EMISSION TEST	10
	4.1 Test Standard and Limit	10
	4.2 Test Setup	10
	4.3 Test Procedure	
	4.4 EUT Operating Mode	11
	4.5 Test Data	11
5.	RADIATED EMISSION TEST	12
	5.1 Test Standard and Limit	12
	5.2 Test Setup	13
	5.3 Test Procedure	14
	5.4 EUT Operating Condition	15
	5.5 Test Data	15
6.	BANDWIDTH TEST	30
	6.1 Test Setup	30
	6.2 Test Procedure	30
	6.3 EUT Operating Condition	30
	6.4 Test Data	30
7.	ANTENNA REQUIREMENT	34
	7.1 Standard Requirement	34
	7.2 Antenna Connected Construction	
	7.3 Result	3/

3 of 34 Page:

1. General Information about EUT

1.1 Client Information

TOBY

Applicant	:(Sertus Hongkong
Address	ddress : Unit A 10/6F, Wong's Building, 33 Hung To Road, Kwun Tong, Kowl Hongkong, China	
Manufacturer		RC Leading Toys Factory
Address	E	Yuanlin 3 RD., Huainan Industrial Distric, Lianxia Town, Chenghai Dist. Shantou, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	TX GAMEPAD CONTROLLER AND RECEIVER			
Models No.	:	40239			
Model Difference	•	N/A			
THE PROPERTY OF		Operation Frequency:24	16~2475 MHz		
33	V	Number of Channels:	60 Channels		
Product Description		Out Power:	92.67 dBuV/m@3m Peak 90.97 dBuV/m@3m Avg		
	1	Antenna Gain:	0 dBi PCB Antenna		
		Modulation Type:	GFSK		
Power Supply	Power Supply : DC Voltage supplied by AA battery.		AA battery.		
Power Rating		DC 6.0V.			
Connecting I/O Port(S)	•	Please refer to the User's Manual			

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(2) Channel List:

Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
01	2416	21	2436	41	2456	
02	2417	22	2437	42	2457	
03	2418	23	2438	43	2458	
04	2419	24	2439	44	2459	
05	2420	25	2440	45	2460	
06	2421	26	2441	46	2461	

Page: 4 of 34

07	2422	27	2442	47	2462
08	2423	28	2443	48	2463
09	2424	29	2444	49	2464
10	2425	30	2445	50	2465
11	2426	31	2446	51	2466
12	2427	32	2447	52	2467
13	2428	33	2448	53	2468
14	2429	34	2449	54	2469
15	2430	35	2450	55	2470
16	2431	36	2451	56	2471
17	2432	37	2452	57	2472
18	2433	38	2453	58	2473
19	2434	39	2454	59	2474
20	2435	40	2455	60	2475

1.3 Block Diagram Showing the Configuration of System Tested

1.4 Description of Support Units

The EUT has been tested as an independent unit.

Page: 5 of 34

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode	Description			
N/A	N/A			

For Radiated Test				
Final Test Mode	Description			
Mode 1	TX Mode(CH01/CH31/CH60)			

Note:

For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

- (1)According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels.
- (2)During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel & Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF mode.

Product SW/HW Version :	000	N/A	and a
Radio SW/HW Version:	N/A N/A		
Test Software Version			
Frequency	2416 MHz	2446MHz	2475 MHz
GFSK	DEF	DEF	DEF

Page: 6 of 34

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Dadiated Emission	Level Accuracy:	. 4 CO dD
Radiated Emission	9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy:	±4.40 dB
Radiated Effilssion	30MHz to 1000 MHz	±4.40 db
Radiated Emission	Level Accuracy:	±4.20 dB
Naulateu Elilissioii	Above 1000MHz	±4.20 UD

Page: 7 of 34

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 8 of 34

2. Test Summary

FCC Part 15 Subpart C(15.249)					
Standard Section	Test Item	Judgment	Remark		
15.203	Antenna Requirement	PASS	N/A		
15.205	Restricted Bands	PASS	N/A		
15.207	AC Power Conducted Emission	N/A	N/A		
15.249 &15.209	Radiated Spurious Emission	PASS	N/A		
15.215(C)	20dB Bandwidth	PASS	N/A		

Page: 9 of 34

3. Test Equipment

Conducted	d Emission Te	st			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Aug. 07, 2015	Aug. 06, 2016
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Aug. 07, 2015	Aug. 06, 2016
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Aug. 07, 2015	Aug. 06, 2016
LISN	Rohde & Schwarz	ENV216	101131	Aug. 08, 2015	Aug. 07, 2016
Radiation	Emission Tes	t			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Aug. 07, 2015	Aug. 06, 2016
EMI Test Receiver	Rohde & Schwarz	ESCI	100010/007	Aug. 07, 2015	Aug. 06, 2016
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 26, 2016	Mar. 25, 2017
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar. 26, 2016	Mar. 25, 2017
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 26, 2016	Mar. 25, 2017
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar. 26, 2016	Mar. 25, 2017
Pre-amplifier	Sonoma	310N	185903	Mar. 26, 2016	Mar. 25, 2017
Pre-amplifier	HP	8447B	3008A00849	Mar. 26, 2016	Mar. 25, 2017
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 26, 2016	Mar. 25, 2017
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna C	onducted Em	ission			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Aug. 07, 2015	Aug. 06, 2016
EMI Test Receiver	Rohde & Schwarz	ESCI	100010/007	Aug. 07, 2015	Aug. 06, 2016
Power Meter	Anritsu	ML2495A	25406005	Aug.07, 2015	Aug.06, 2016
Power Sensor	Anritsu	ML2411B	25406005	Aug.07, 2015	Aug.06, 2016

Page: 10 of 34

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

-0130	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 11 of 34

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN is at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

The EUT is powered by battery, so no requirement for this test item.

Page: 12 of 34

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limit (9kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Class B (dBuV/m)(at 3 M)			
(MHz)	Peak	Average		
Above 1000	74	54		

Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level(dBuV/m)=20log Emission Level(Uv/m)

Limits of radiated emission measurement (15.249)

FCC Part 15 (15.249), Subpart C					
Limit Frequency Range (MHz)					
Field strength of fundamental 50000 μV/m (94 dBμV/m) @ 3 m	2400~2483.5				
Field strength of fundamental 500 μV/m (94 dBμV/m) @ 3 m	Above 2483.5				

Restricted bands requirement for equipment operating in 2400MHz to 2483.5 MHz (15.249)

13 of 34 Page:

Restricted Frequency Band (MHz)	(dBuV/m)(at 3 M)	
2310~2390	Attenuated by at least 50 dB below the level of the fundamental or to the general radiated	
2483.5~2500	emission limits in 15.209, whichever is the lesser attenuation	

5.2 Test Setup

Bellow 30MHz Test Setup

Bellow 1000MHz Test Setup

Antenna tower

Horn antenna

Spectrum analyzer

Turntable 1.5m A 30cm

Pre-amp

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Page: 15 of 34

5.4 EUT Operating Condition

The EUT was set to Continual Transmitting in maximum power, and new batteries are used during testing.

5.5 Test Data

Please see the next page.

Page: 16 of 34

5.6.1 Field Strength of the Fundamental

EUT:	TX GAMEPAD CONTROLLER AND RECEIVER	Model Name :	40239
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 6V		
Ant. Pol.	Horizontal	THURSDAY.	
Test Mode:	TX 2416MHz		1033
Remark:			

No.	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	41.59	0.77	42.36	74.00	-31.64	peak
2		2390.000	31.04	0.77	31.81	54.00	-22.19	AVG
3	Χ	2416.100	89.79	0.88	90.67	114.00	-23.33	peak
4	*	2416.100	87.77	0.88	88.65	94.00	-5.35	AVG

Page: 17 of 34

EUT:	TX GAMEPAD CONTROLLER AND RECEIVER	Model Name :	40239
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 6V		
Ant. Pol.	Vertical	1133	MILL
Test Mode:	TX 2416MHz		
Remark:	33 - 611123	a W	

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	42.90	0.77	43.67	74.00	-30.33	peak
2		2390.000	31.68	0.77	32.45	54.00	-21.55	AVG
3	*	2416.600	89.53	0.88	90.41	94.00	-3.59	AVG
4	Χ	2416.800	91.79	0.88	92.67	114.00	-21.33	peak

Page: 18 of 34

EUT:	TX GAMEPAD CONTROLLER AND RECEIVER Model Name:		40239
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 6V	1	1300
Ant. Pol.	Horizontal	Miss I	MALL
Test Mode:	TX 2446MHz		
Remark:	33		

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2446.120	88.66	1.01	89.67	94.00	-4.33	AVG
2	X	2446.160	90.63	1.01	91.64	114.00	-22.36	peak

Page: 19 of 34

EUT:	TX GAMEPAD CONTROLLER AND RECEIVER	Model Name :	40239
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 6V		
Ant. Pol.	Vertical		MILL
Test Mode:	TX 2446MHz		
Remark:	33 - 61112		

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2446.120	91.31	1.01	92.32	114.00	-21.68	peak
2	*	2446.120	89.96	1.01	90.97	94.00	-3.03	AVG

Page: 20 of 34

EUT:	TX GAMEPAD CONTROLLER AND RECEIVER	Model Name :	40239
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 6V		
Ant. Pol.	Horizontal		MILL
Test Mode:	TX 2475MHz		
Remark:	33 - 61112	- HILL	

No	. Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2475.300	88.54	1.14	89.68	114.00	-24.32	peak
2	*	2475.300	86.77	1.14	87.91	94.00	-6.09	AVG
3		2483.500	45.22	1.17	46.39	74.00	-27.61	peak
4		2483.500	29.36	1.17	30.53	54.00	-23.47	AVG
5		2499.000	45.07	1.23	46.30	74.00	-27.70	peak
6		2499.200	34.79	1.23	36.02	54.00	-17.98	AVG

Page: 21 of 34

EUT:	TX GAMEPAD CONTROLLER AND RECEIVER	Model Name :	40239
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 6V		A TOTAL
Ant. Pol.	Vertical		MA
Test Mode:	TX 2475MHz		
Remark:	72 - 611155	A WALL	

No.	. Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2475.400	87.48	1.14	88.62	114.00	-25.38	peak
2	*	2475.400	85.43	1.14	86.57	114.00	-7.43	AVG
3		2483.500	45.81	1.17	46.98	74.00	-27.02	peak
4		2483.500	29.69	1.17	30.86	54.00	-23.14	AVG

Page: 22 of 34

5.6.2 Radiated Spurious Emission (Below 1 GHz)

EUT:	TX GAMEPAD AND RECEIVE	CONTROLLER R	Model	Name :	40	239				
Temperature:	25 ℃		Relativ	Relative Humidity:						
Test Voltage:	DC 6V									
Ant. Pol.	Horizontal	W.	William.							
Test Mode:	TX 2416MHz	-1	Millian		6300					
Remark:	Only worse cas	se is reported	- D	Miles		· F				
80.0 dBuV/m										
				(RF)FCC 1	5C 3M Radiation					
					Margin -6	-				
30										
			. 5	- 10/1	6 Kandallahilahirahirahilahiran	way to have				
**************************************	L VIMAN	3	4 WARRENT MARKET	Application of the second						
Market May warman	many and many many and the form	h. Alah Mhareman								
-20										
30.000 40	50 60 70 80	(MHz)	300	400 50	00 600 700	1000.00				
Na Mi	Reading	•	Measure-	Limit	Over					
No. Mk.	Freq. Level	Factor	ment							
	MHz dBu√	dB/m	dBuV/m	dBuV/m	dB	Detecto				
	5.3750 28.80	-17.29	11.51	40.00	-28.49	peal				
2 10	8.2667 33.72	-21.86	11.86	43.50	-31.64	peal				
3 15	7.0072 31.77	-20.71	11.06	43.50	-32.44	peal				
4 23	7.4757 30.34	-18.72	11.62	46.00	-34.38	peal				
5 31	4.3765 31.50	-16.54	14.96	46.00	-31.04	peal				
6 * 53	3.8318 29.55	-10.14	19.41	46.00	-26.59	peal				
						1				
										
:mission Leve	l= Read Level+ Co	orrect Factor								

Page: 23 of 34

U	Γ:						PAD EIVE		NTROLL	ER.	ı	Mod	el Nar	ne :		4	023	9
en	perat	ure:		25	$^{\circ}\!\mathbb{C}$	1	137	M			F	Rela	tive H	umi	dity:	5	5%	
es	t Volta	ge:		DC	6V				UMI				V V	35				
Ant. Pol. Vertica					rtica		10				TITE OF		3			(2)		
es	t Mode	9 :		TX	241	6M	lHz			l.	C.		6	M				
Ren	nark:			On	ly w	ors	e cas	se is	reported	t			163			1		
80.	0 dBuV/	m								_								7
													(BE)E(CC 15C	2M B a	distion		
													(nr jr t	JC 13C		gin -6	dB [d
						_												
20						4				T								
30																		
									2 3 X V	4	5 		6 	والمعمل والماد	W-WANDER	JAMPHAN	TWANT TO	
	William of the state of the sta	NUMMA, I		1 X		No. well	والمستناف والمعارض المعارض الم	med	Whathary Mark	m land	mys "Wall"	CAMP TO	Mar.					-
		- Wil	lander de la companya	W. W.	warm,	ENGLISH THE TO		1"	2 3 MM/M/M/X									
-20																		
31	0.000	40	50	60	70	80			(MHz)			300	400	500	600	700	1000	0.000
						Rea	ading	g	Correct	N	/leasur	e-						
	No. M	lk.	Fre	eq.		Le	evel		Factor		ment		Limi	t	Ov	er		
			MH	łz		d	BuV		dB/m		dBuV/r	n	dBu\	//m	dl	3	Dete	ecto
1		5	9.85	588		33	3.32		-24.53		8.79		40.0	00	-31	.21	ре	eak
2		16	37.8	241	1	35	5.49		-21.04		14.45	5	43.	50	-29	.05	pe	eal
3		18	30.0	165	5	34	1.32		-20.57		13.75	5	43.	50	-29	.75	ре	eal
4		21	16.0	240)	33	3.26		-19.70		13.56	3	46.0	00	-32	.44	pe	eak
5		24	15.9	507	7	32	2.95		-18.31		14.64	1	46.0	00	-31	.36	pe	eak
6	*	41	11.8	240)	29	9.89		-12.86		17.03	3	46.0	00	-28	.97	pe	eak

Page: 24 of 34

5.6.3 Radiated Spurious Emission (Above 1 GHz)

EUT:	TX GAMEPAD CONTROLLER AND RECEIVER	Model Name :	40239
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 6V	CALL STATE	
Ant. Pol.	Horizontal		UPP
Test Mode:	TX 2416MHz		
Remark:	No report for the emission which prescribed limit.	more than 10 dB below	the
100.0 dBuV/m			

N	lo.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1			4832.581	48.73	13.61	62.34	74.00	-11.66	peak
2	7	k	4832.651	36.07	13.61	49.68	54.00	-4.32	AVG

Page: 25 of 34

EUT:	TX GAMEPAD CONTROLLER AND RECEIVER	Model Name :	40239					
Temperature:	25 °C	Relative Humidity:	55%					
Test Voltage:	DC 6V							
Ant. Pol.	Vertical		HILL					
Test Mode:	TX 2416MHz							
Remark:	No report for the emission which represcribed limit.	No report for the emission which more than 10 dB below the						

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4831.624	34.04	13.61	47.65	54.00	-6.35	AVG
2		4832.061	48.04	13.61	61.65	74.00	-12.35	peak

Page: 26 of 34

EUT:	TX GAMEPAD CONTROLLER AND RECEIVER	Model Name :	40239					
Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	DC 6V							
Ant. Pol.	Horizontal		HILL					
Test Mode:	TX 2446MHz		n					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.							

No	. Mk.	Freq.	_		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4893.251	44.72	13.97	58.69	74.00	-15.31	peak
2	*	4893.671	31.15	13.97	45.12	54.00	-8.88	AVG

EUT:

TX GAMEPAD CONTROLLER
AND RECEIVER

Model Name:

40239

Temperature:

25 °C

Relative Humidity:

55%

Test Voltage:

DC 6V

Ant. Pol.

Vertical

Test Mode:

TX 2446MHz

Remark: No report for the emission which more than 10 dB below the prescribed limit.

No	. Mk	Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4890.360	44.66	13.95	58.61	74.00	-15.39	peak
2	*	4891.160	32.40	13.96	46.36	54.00	-7.64	AVG

Page: 28 of 34

EUT:	TX GAMEPAD CONTROLLER AND RECEIVER	40239				
Temperature:	25 ℃	Relative Humidity:				
Test Voltage:	DC 6V					
Ant. Pol.	Horizontal					
Test Mode:	TX 2475MHz					
Remark:	No report for the emission which represcribed limit.	nore than 10 dB below t	he			

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4949.671	47.05	14.30	61.35	74.00	-12.65	peak
2	*	4949.987	33.05	14.30	47.35	54.00	-6.65	AVG

Page: 29 of 34

EUT:	TX GAMEPAD CONTROLLER AND RECEIVER	Model Name :	40239			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 6V					
Ant. Pol.	Vertical					
Test Mode:	TX 2475MHz					
Remark:	No report for the emission which prescribed limit.	more than 10 dB below	the			

1	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1			4950.360	49.60	14.31	63.91	74.00	-10.09	peak
2		*	4950.641	34.44	14.31	48.75	54.00	-5.25	AVG

Page: 30 of 34

6. Bandwidth Test

6.1 Test Setup

6.2 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Bandwidth: RBW=100 kHz, VBW=300kHz.

(3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.

6.3 EUT Operating Condition

The EUT was set to continuously transmitting for the Bandwidth Test.

6.4 Test Data

Page: 31 of 34

Low Channel Frequency (MHz)	20dB Bandwidth (MHz)
2416	1.128

2416 MHz

MID Channel Frequency (MHz)

20dB Bandwidth (MHz)

1.134

2446 MHz

Page: 33 of 34

HIGH Channel Frequency (MHz)	20dB Bandwidth (MHz)		
2475	1.127		

2475 MHz

Page: 34 of 34

7. Antenna Requirement

7.1 Standard Requirement

7.1.1 Standard FCC Part 15.203

7.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

7.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 0 dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

7.3 Result

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

	Antenna Type
	▼ Permanent attached antenna
A VIII	□ Unique connector antenna
COD3	□ Professional installation antenna

----End of Report----