Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

Wydział Informatyki, Elektroniki i Telekomunikacji

KATEDRA INFORMATYKI

DOKUMENTACJA TECHNICZNA

TOMASZ KASPRZYK, DANIEL OGIELA, JAKUB STĘPAK

SYSTEM OBLICZAJĄCY WYNIKI WYBORÓW DLA UOGÓLNIENIA SYSTEMU K-BORDA

PROMOTOR:

dr hab. inż. Piotr Faliszewski

Kraków 2016

Spis treści

1.	Dziedzina problemu			3
	1.1.	1.1. Metoda obliczania wyników wyborów		3
		1.1.1.	Metoda Bordy	3
		1.1.2.	Metoda k-Borda	3
		1.1.3.	Uogólnienie - system ℓ_p Borda	3
1.2. Format danych wejściowych		at danych wejściowych	4	
	1.3.	Szybk	tość i dokładność wykonywanych obliczeń	4
2.	Opis modułów		5	

1. Dziedzina problemu

1.1. Metoda obliczania wyników wyborów

1.1.1. Metoda Bordy

Niech v będzie głosem nad zbiorem kandydatów C. Wynik według Bordy kandydata c w v jest równy $\beta(i)=C-i$, gdzie i- pozycja kandydata w ciągu v. Wynik c w wyborach jest sumą wyników c u każdego z wyborców

1.1.2. Metoda k-Borda

Rozszerzenie metody Bordy. Wynik, zamiast dla jednego kandydata, obliczany jest dla ciągu kandydatów. f_{kB} - funkcja zadowolenia z komitetu. Ciąg (i_1,\ldots,i_k) - ciąg pozycji kandydatów

Przyklad $C = c_1, c_2, c_3, c_4$ - zbiór kandydatów, $v = (c_2, c_1, c_4, c_3)$ - głos Niech k = 2 (wybory 2 spośród 4) $w = (c_4, c_3)$ Najpierw określamy pozycje kandydatów z komitetu w w v: $pos_v(w) = (3, 4)$, zatem wynik komitetu w dla głosu v wynosi $f_{kB}(3, 4) = (3) + (4) = ||C|| - 3) + (||C|| - 4) = 1 + 0 = 1$

1.1.3. Uogólnienie - system ℓ_p Borda

Zanim wprowadzone zostanie pojęcie uogólnionego systemu k-Borda warto przypomnieć wzór na normę ℓ_p

Norma ℓ_p

$$\ell_p(x_1, x_2, \dots, x_n) = \sqrt[p]{x_1^p + x_2^p + \dots + x_n^p},$$

Wówczas, w uogólnionej wersji metody k-Borda, funkcja zadowolenia f_{kB} zostaje uzależniona również od parametru p z powyższego wzoru. Norma liczona jest z wyników według Bordy, $\beta(i)$. Wzór uogólniony funkcji zadowolenia przyjmuje zatem postać:

$$f_{\ell_p B}(p, (i_1 1, \dots, i_k)) = p[(i1)]p + [(i2)]p + \dots + [(ik)]p$$

Systemy k-Borda i Cahmberlin'a-Courant'a są szczególnymi przypadkami zdefiniowanego powyżej systemu ℓ_p - Borda:

Dla
$$p = 1, l_1$$

 $f_{\ell} P(1, (i_1, \dots, i_k)) = \beta(i_1) + \beta(i_2) + \beta(i_k)$

$$f_{\ell_p B}(1, (i_1, \dots, i_k)) = \beta(i_1) + \beta(i_2) + \dots + \beta(i_k) = f_{kB}(i_1 1, \dots, i_k)$$

Dla
$$p = \infty$$
, $l_{\infty} = max$

$$f_{\ell_p B}(\infty, (i_1, \dots, i_k)) = \lim_{p \to \infty} \sqrt[p]{\beta [(i_1)]^p + \beta [(i_2)]^p + \dots + [\beta (i_k)]^p} = \max \beta(i_1), \beta(i_2), \dots, \beta(i_k) = \beta(i_1) = f_{CC}$$

- 1.2. Format danych wejściowych
- 1.3. Szybkość i dokładność wykonywanych obliczeń

2. Opis modułów