CH49019: CAPE Laboratory [AA]

Assignment #2

Date: October 28, 2021

Submission due: October 28, 2021; 09.00 PM (Marks: 100%)

Submission closing (late hand-ins): October 28, 2021; 11.59 PM (Marks: 50%)

Problem statement:

Use Gauss-Seidel method to solve for the temperature distribution of a long, thin rod with a length of 0.50 m at t = 0.1 s, 0.2 s, 0.3 s, 0.4 s and 0.5 s by Crank-Nicholson scheme and use the following values: thermal conductivity (k) = 0.50 cal/(s.cm. $^{\circ}$ C), Δx = 10 cm, and Δt = 0.1 s. At t = 0, the temperature of the rod is zero and the boundary conditions are fixed for all times at T (l = 0 cm) = 500 $^{\circ}$ C and T (l = 50 cm) = 50 $^{\circ}$ C. The rod is made of aluminum having a specific heat capacity (C) = 0.2174 cal/(g. $^{\circ}$ C) and ρ = 2.7 g/cm 3 .

IMPORTANT Instructions

- Before submission, RENAME the file with your Roll No.
- ONLY (MATLAB and C/C++) Codes (*.m, *.c, or *.cpp) to be uploaded/submitted through Teams Assignment portal.
- Do NOT forget to click on Hand-in button in Teams Assignment submission