Uso da água sanitária nas famílias brasileiras: uma investigação com ênfase

na Alfabetização Científica.

F.F.R. Silva¹; R.O.O. Sardella¹; T. Souza¹

¹Instituto Federal de Educação, Ciência e Tecnologia Fluminense – Campus Cabo Frio prof.quimica.fellipe@gmail.com

Resumo

A água sanitária é um dos produtos domésticos mais populares pelo seu baixo custo e ótimo poder desinfetante. Existem muitos pontos de venda informais da água sanitária, popularmente comercializada pelo nome "cloro", que podem tornar a população vulnerável a riscos para a saúde. Afinal, o "cloro da vendinha" pode não cumprir com as suas finalidades, por ser um produto sem rótulo e de teor de cloro ativo desconhecido. Assim, consideramos relevante investigar e refletir sobre a produção, uso e armazenamento deste produto. A pesquisa iniciou-se a partir de uma aula de Análise Físico-Química, do curso técnico em química do IFF, sobre o teor de cloro ativo em água sanitária comercial. Após a investigação do produto certificado, os alunos adquiriram "cloro" próximos às residências e investigou-se os teores de cada amostra. Os resultados encontrados corroboraram a importância da alfabetização científica para a formação de cidadãos mais autônomos, críticos e reflexivos.

Palavras-chave: Água Sanitária, Sociedade, Alfabetização Científica.

1. Introdução

A leitura e a compreensão de aspectos simples em nosso cotidiano, relativos aos diversos símbolos e códigos linguísticos de todas as Ciências são aspectos muito importantes para a inclusão social. "[...] a ciência seja uma linguagem; assim, ser alfabetizado cientificamente é saber ler a linguagem em que está escrita a natureza. É um analfabeto científico aquele incapaz de uma leitura do universo". [1] Uma reflexão que vem à tona reside na recorrente dicotomia que observamos entre alguns conteúdos escolares e os diversos contextos da "vida real".

Cloro, hipoclorito, água sanitária, água de lavadeira e cândida são alguns nomes, comuns em nossa sociedade, cuja compreensão mais ampla carece de estímulos ancorados na alfabetização científica.

A desinfecção de águas e esgotos surgiu como uma tentativa de controlar a propagação de epidemias e a partir de 1902 foi adotada de maneira contínua na Bélgica. ^[2] Anos depois, tornou-se mais popular. Adotou-se, então, a adição de solução de hipoclorito de sódio (NaClO) como desinfetante. Uma das possíveis rotas para sua obtenção é através da reação do hidróxido de sódio com o gás cloro. ^[3]

O cloro é um elemento químico bastante reativo. Por isso, apresenta-se na natureza combinado na forma de moléculas. O seu estado físico nas condições ambientes é o gasoso, na forma molecular (Cl₂). ^[4] O gás cloro (Cl₂) é uma molécula biatômica, apolar e, por isso, realiza interações intermoleculares fracas (dipolo induzido-dipolo induzido), o que justifica, em parte, o seu baixo ponto de fusão e ebulição. Quando a solução de hipoclorito de sódio é diluída a uma concentração entre 2 e 2,5%, é chamada de água sanitária. Popularmente recebe também outros nomes regionais como: cloro, cândida e água de lavadeira.

Água sanitária, cloro e hipoclorito. Costuma-se tratá-los como sinônimos, porém existem diferenças expressivas. Podemos definir o cloro como um elemento químico, gasoso, tóxico e de difícil manipulação. Já o hipoclorito é um sal inorgânico, um composto derivado do cloro, menos agressivo e de manipulação mais fácil. Na sua reação de decomposição pode ocorrer uma grande liberação de gás cloro (Cl₂), tornando-se novamente tóxico. Uma forma

encontrada para tornar a sua utilização mais segura e viável foi diluir a uma concentração de 2 a 2,5% de cloro ativo. A essa solução aquosa damos o nome de água sanitária.

A agência nacional de vigilância sanitária (ANVISA)^[5] estabelece as características obrigatórias para as suas embalagens: plásticos opacos, difícil ruptura, rótulo. A determinação do teor mínimo e máximo de cloro na água sanitária é fundamental, pois se estiver abaixo do permitido, pode não cumprir a ação desinfetante no qual está sendo utilizado. E se estiver acima do permitido, significa uma maior liberação do cloro no estado gasoso que pode ser absorvido através da respiração. A ausência do rótulo não permite que o consumidor saiba, tampouco exija, o percentual adequado de cloro ativo na solução.

Um dos principais problemas que surgem com a fabricação caseira da água sanitária é a variação dos teores de cloro ativo exigido. Alguns fatores como temperatura, armazenamento, luminosidade e vedação da embalagem podem estar associados à redução do teor de cloro ativo, ocasionando uma solução de concentração desconhecida e abaixo do recomendado. [6]

O armazenamento é um fator de muita relevância, pois apesar da ANVISA determinar que a embalagem para comercialização deve ser opaca para inibir a fotodecomposição, os produtos não regulamentados, geralmente, são vendidos em garrafa do tipo PET e, portanto, translúcidas. Vale destacar ainda que pode ocorrer adição de corante como finalidade de tornar o aspecto do produto mais atrativo, tendo em vista que existe uma associação natural do consumidor entre a concentração e a aparência do produto. [7]

2. Materiais e Métodos

2.1. Materiais e Reagentes

Água Sanitária comercial, cloro popular, iodeto de potássio, tiossulfato de sódio, ácido acético P.A, indicador de amido, pipeta volumétrica de 5 mL, bécher, bureta, erlenmeyer.

2.2. Metodologia

Pesquisou-se, em diferentes comércios, o preço por litro de produtos comercializados como água sanitária, com e sem a presença de rótulos.

A turma do curso técnico em química, formada por 11 alunos, organizou-se em 5 equipes, sendo 4 duplas e um trio, para a investigação dos teores de cloro ativo em duas marcas de água sanitária comercializadas, com rótulos e registro. Realizou-se os experimentos em triplicata e, em todas as equipes, verificou-se que os teores de cloro ativo se encontravam dentro das normas estabelecidas pela ANVISA (2,0-2,5%).

A análise no laboratório consistiu em determinar o teor de cloro ativo das amostras de água sanitária comercializadas sem rótulo nas cidades de: Araruama, Cabo Frio, São Pedro da Aldeia e Búzios, todas localizadas na Região dos Lagos. Cada aluno da turma adquiriu em seu bairro de moradia e todas foram tituladas, em triplicata, através do método iodométrico.

Com pipeta volumétrica, transferiu-se 1ml da amostra para um Erlenmeyer de 250 ml, em seguida adicionou-se 1ml de ácido acético P.A e 1 g de iodeto de potássio P.A /ACS 10% m/v, e a solução adquiriu coloração vermelho ferrugem. Então, titulou-se com tiossulfato de sódio até que a solução adquirisse uma coloração amarelo-clara, neste momento acrescentou-se 5 gotas do indicador amido 0,5% para facilitar a visualização na viragem e a solução adquiriu coloração azul-escura. Prosseguiu-se titulando até o desaparecimento total da coloração azul, anotou-se o volume gasto. Repetiu-se o procedimento em triplicate.

3. Resultados e Discussão

A pesquisa de preços das amostras de água sanitária comercializada com certificação, rótulo, registro no MS, recolhimento de impostos e com a assinatura de um profissional qualificado e registro no conselho foi organizada na tabela 1:

Marca	Valor por litro (R\$)	Marca	Valor por litro (R\$)
Qboa	2,08	Brilux	3,8
Super Cândida	2,05	Larilimp	2,9
DaCasa	1,19	Sanol	2,25
Audax Facilita	2,05	Girando Sol	1,1

Tabela 1: Preços em amostras com rótulos

A pesquisa de preços das amostras de água sanitária comercializada sem certificação, de maneira informal, sem registro no MS, sem recolhimento de impostos e sem a assinatura de um profissional qualificado foi organizada na tabela 2:

3,89

2,39

Cordex

Tabela 2: Relação de preços em amostras sem rótulos

Ramalet

Média

1,5

2,29

Amostra	Valor por litro (R\$)	Amostra	Valor por litro (R\$)	Amostra	Valor por litro (R\$)
A	1,75	Е	2	I	1,25
В	1,5	F	1,25	J	1,85
С	2,5	G	2,5	K	2
D	1,5	Н	2,5	Média	1,875

Calculou-se o preço médio das amostras que possuem rótulos, comercializadas em supermercados, e das sem rótulos, encontradas em bazares e mercadinhos. A partir da média foi possível fazer uma comparação dos preços. Não se constatou uma diferença relevante, o que não justifica a preferência de escolha de produtos sem rotulagem e sem certificação.

As duas marcas de água sanitária comerciais e com rótulos foram analisadas pelas 5 equipes e todas encontraram teores de cloro ativo compatíveis com a recomendação do rótulo. Quanto às amostras adquiridas pelos alunos, "cloro caseiro", sem rótulos, observou-se teores muito distintos, com uma diferença percentual de 1806% entre os valores máximo e mínimo encontrados. Todas fora do padrão estabelecido. 10 (90,9%) se encontram abaixo do valor recomendado (2,0%) e 1 (9,09%), acima do padrão recomendado (2,5%). Já a média dos teores de cloro ativo encontrados (1,24%) foi cerca da metade do teor recomendado pela ANVISA.

Tabela 3: Valores referidos às titulações, valor médio e ao teor.

Amostra	V1 (mL)	V2 (mL)	V3 (mL)	V (médio - mL)	Teor (%)
1	1,48	1,41	1,28	1,39	0,48
2	16,31	16,21	16,58	16,37	5,60
3	2,51	2,62	2,55	2,56	0,88
4	2,61	2,6	2,58	2,59	0,88
5	0,9	1	0,84	0,9	0,31
6	1,65	1,4	1,4	1,48	0,51
7	2,71	2,68	2,7	2,69	0,92
8	1,22	1,2	1,22	1,21	0,41
9	1,4	1,29	1,29	1,33	0,45
10	5,4	5,4	5,4	5,4	1,85
11	3.9	3.8	3.8	3.83	1.31

O letramento informacional associa a capacidade de leitura com a capacidade de aproveitamento da informação e geração de conhecimento. É perceptível a necessidade de ser letrado para poder agir como um cidadão crítico, reflexivo e pesquisador. [8]

Quanto à leitura do rótulo, muitas informações não são do conhecimento da população, apontando para carências relacionadas à alfabetização científica, provocando uma postura potencialmente negligente na manipulação e armazenamento de produtos de limpeza.

Por fim, restou evidente a inexistência de uma vantagem econômica na aquisição dos produtos sem rótulos que justifique tal opção. Afinal, a média dos teores de cloro ativo encontrada equivalem à metade dos teores encontrado nos produtos certificados.

4. Conclusões

Com base nos dados obtidos, verificou-se que o consumo consciente da água sanitária é um tema relevante em nossa sociedade. Constatou-se, a partir da pesquisa realizada, que uma expressiva parcela da população adquire o produto sem a devida certificação e, assim, expõese aos riscos de sua ineficácia. Destacou-se, também, a partir das análises em laboratório e das pesquisas de preços, que, apesar de uma aparente modesta vantagem econômica, que a água sanitária sem rótulo sugere oferecer, as finalidades as quais se propõe podem não serem cumpridas em função de teores inadequados de cloro ativo. Por fim, reconhecemos como urgente e necessário o hábito da leitura, em especial do que diz respeito aos rótulos em nosso trabalho. As práticas de alfabetização científica tanto nas escolas quanto em todos os canais de comunicação podem e devem estimular a sociedade no acesso e na compreensão das informações. Afinal, ler e escrever é compromisso de todas as áreas.

Agradecimentos

Aos estudantes do curso técnico em química do IFF-Cabo Frio que foram determinantes para o sucesso deste projeto.

Referências

- [1] CHASSOT, A. Alfabetização científica: uma possibilidade para a inclusão social. **Revista brasileira de educação**, n. 22, p. 89-100, 2003.
- [2] MEYER, S.T. O Uso de Cloro na Desinfecção de Águas, a Formação de Trihalometanos e os Riscos Potenciais à Saúde Pública. **Caderno de Saúde Pública**. São Paulo, 1994, p.147-149.
- [3] LUCCA, L. Controle de qualidade do Hipoclorito de Sódio no Processo de Produção. **Centro de Ciências Físicas e Matemáticas**, *UFSC*, 2006.
- [4] COSTA, A.M; SILVAS, B.P.C; CASTRO, R.R.O. Análise da concentração de cloro livre, cloro total, PH e temperatura em alguns pontos de consumo abastecidos pela rede pública de distribuição na cidade de Curitiba/PR. Trabalho de Conclusão de Curso. **Universidade Tecnológica Federal do Paraná**, 2015.
- [5] BRASIL. RESOLUÇÃO-RDC °110, DE SETEMBRO DE 2016. **Agência Nacional de Vigilância Sanitária, Ministério da Saúde**, 2016. Disponível em http://portal.anvisa.gov.br/documents/33920/281614/RDC_110_2016/c32ba4f9-d05e-4d35-9c40-0f4fe94e0038, acessado em agosto de 2020.
- [6] BRITTO, M.L.B.; ROMOLU, P.L.; NABESHIMA, C.K. Avaliação de kits comerciais para análise de cloro ativo utilizado em soluções de hipoclorito de sódio. **Revista de Odontologia do Brasil** *Central*, v.19, n.51, p. 319-322, 2010.
- [7] http://www.inmetro.gov.br/consumidor/produtos/agua_sanitaria2.asp#normas, acessada em agosto de 2020.
- [8] GASQUE, K.C.G.D. Arcabouço conceitual do letramento informacional. **Ciência da Informação**, v. 39, n. 3, 2010, p.83-92.