Exercice 1.

- (i) Montrer que si $Q \in M_{n \times n}(\mathbb{R})$ est une matrice orthogonale alors il en est de même pour Q^T .
- (ii) Montrer que si $U, V \in M_{n \times n}(\mathbb{R})$ sont des matrices orthogonales alors il en est de même pour UV.
- (iii) Soit u un vecteur unitaire de \mathbb{R}^n (||u|| = 1). Montrer que la matrice $Q = I 2uu^T \in M_{n \times n}(\mathbb{R})$ est orthogonale.
- (iv) Montrer que toute valeur propre réelle λ d'une matrice orthogonale $Q \in M_{n \times n}(\mathbb{R})$ vérifie $\lambda = \pm 1$.
- (v) Soit $Q \in M_{n \times n}(\mathbb{R})$ une matrice orthogonale et soit (u_1, \ldots, u_n) une base orthogonale de \mathbb{R}^n . On doit montrer que (Qu_1, \ldots, Qu_n) est aussi une base orthogonale de \mathbb{R}^n .

Exercice 2. Soit $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & 1 \\ 3 & 1 & 1 \end{pmatrix}$. Trouver une matrice orthogonale $P \in M_{3\times 3}(\mathbb{R})$ telle que P^TAP soit diagonale.

Exercice 3. Soit $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Trouver une matrice orthogonale $P \in M_{3\times 3}(\mathbb{R})$ telle que P^TAP soit diagonale.