Logistic Regression The Basics

Andy Grogan-Kaylor 2025-07-07

Table of contents

1	Logistic Regression	1
2	Get The Data	1
3	Describe The Data	2
4	The Equation	2
5	Estimate Logistic Regression (logit y x)	3
6	Odds Ratios (logit y x, or)	3
7	β Coefficients and Odds Ratios	4
8	Coefficients, Standard Errors, p values, and Confidence Intervals	4

1 Logistic Regression

Basic handout on logistic regression for a binary dependent variable.

2 Get The Data

We start by obtaining $simulated\ data$ from StataCorp.

```
clear all
graph close _all
use http://www.stata-press.com/data/r15/margex, clear
```

(Artificial data for margins)

3 Describe The Data

The variables are as follows:

describe

Contains data from http://www.stata-press.com/data/r15/margex.dta

Observations: 3,000 Artificial data for margins

Variables: 11 27 Nov 2016 14:27

Variable name	Storage type	Display format	Value label	Variable label	
у	float	%6.1f			
outcome	byte	%2.0f			
sex	byte	%6.0f	sexlbl		
group	byte	%2.0f			
age	float	%3.0f			
distance	float	%6.2f			
ycn	float	%6.1f			
ус	float	%6.1f			
treatment	byte	%2.0f			
agegroup	byte	%8.0g	agelab		
arm	byte	%8.0g	-		

Sorted by: group

4 The Equation

$$\ln \left(\frac{p(outcome)}{1-p(outcome)}\right) = \beta_0 + \beta_1 x_1$$

Here p(outcome) is the probability of the outcome.

 $\frac{p(outcome)}{1-p(outcome)}$ is the odds of the outcome.

Hence, $\ln \left(\frac{p(outcome)}{1-p(outcome)} \right)$ is the $log\ odds$.

Logistic regression returns a β coefficient for each independent variable x.

These β coefficients can then be exponentiated to obtain odds ratios:

$$OR = e^{\beta}$$

5 Estimate Logistic Regression (logit y x)

We then run a logistic regression model in which outcome is the dependent variable. sex, age and group are the independent variables.

```
logit outcome i.sex c.age i.group
Iteration 0: Log likelihood = -1366.0718
Iteration 1: Log likelihood = -1111.4595
Iteration 2: Log likelihood = -1069.588
Iteration 3: Log likelihood =
Iteration 4: Log likelihood = -1067.9941
Iteration 5: Log likelihood = -1067.9941
                                                 Number of obs = 3,000
Logistic regression
                                                 LR chi2(4) = 596.16
                                                 Prob > chi2 = 0.0000
Log likelihood = -1067.9941
                                                 Pseudo R2 = 0.2182
    outcome | Coefficient Std. err.
                                   z P>|z| [95% conf. interval]
        sex |
    female | .4991622 .1347463 3.70 0.000 .2350643
                                                              .76326
       age | .0902429 .0064801 13.93 0.000 .0775421
                                                             .1029437
      group |
        2 | -.5855242 .1350192 -4.34 0.000
                                                  -.850157 -.3208915
        3 | -1.360208 .2914263 -4.67 0.000 -1.931393 -.7890228
      _cons | -5.553038 .3498204
                                  -15.87 0.000
                                                  -6.238674
                                                             -4.867403
```

6 Odds Ratios (logit y x, or)

We re-run the model with exponentiated coefficients (e^{β} to obtain odds ratios.

```
logit outcome i.sex c.age i.group, or
```

```
Iteration 0: Log likelihood = -1366.0718
Iteration 1: Log likelihood = -1111.4595
Iteration 2: Log likelihood = -1069.588
Iteration 3: Log likelihood = -1068
Iteration 4: Log likelihood = -1067.9941
```

Iteration 5: Log likelihood = -1067.9941

Logistic regression	Number of obs	= 3,000
	LR chi2(4)	= 596.16
	Prob > chi2	= 0.0000
Log likelihood = -1067.9941	Pseudo R2	= 0.2182

outcome	Odds ratio	Std. err.	z	P> z	[95% conf.	interval]
sex						
female	1.64734	.221973	3.70	0.000	1.26499	2.145258
age	1.09444	.0070921	13.93	0.000	1.080628	1.108429
group						
2	.5568139	.0751806	-4.34	0.000	.4273478	.725502
3	.2566074	.0747822	-4.67	0.000	.1449462	.4542885
_cons	.0038757	.0013558	-15.87	0.000	.0019524	.0076933

Note: _cons estimates baseline odds.

7 β Coefficients and Odds Ratios

Substantively	β	OR
x is associated with an increase in y	> 0.0	> 1.0
no association x is associated with a decrease in y	0.0 < 0.0	1.0 < 1.0

8 Coefficients, Standard Errors, p values, and Confidence Intervals

- $\begin{array}{l} \bullet \ \ {\rm z\ statistic:}\ z=\frac{\beta}{se}. \\ \bullet \ \ {\rm p\ value\ if}\ z_{\rm observed}>1.96\ {\rm then}\ p<.05. \end{array}$
- $CI = \beta \pm 1.96 * se$

Hence for the coefficient for sex, the confidence interval is:

$$.4991622 \pm (1.959964 * .1347463) = (.2350643, .7632601)$$

Confidence intervals for odds ratios (e^{β}) are obtained by exponentiating the confidence interval for the β coefficients. As a result of this non-linear transformation, confidence intervals for odds ratios are not symmetric.