MUTUAL EXCLUSION WITHIN RING TOPOLOGY

(1)

Simple method:

token passing

Failure model:

transient link failures

Possible defects:

• token loss

MUTUAL EXCLUSION WITHIN RING TOPOLOGY

(2)

Ping-Pong algorithm (Misra 1983)

System model:

- $P_0 \dots P_{N-1} \to N$ unknown
- knowledge of P_i's neighbor identities not required
- uniform algorithm (no distinguished process)
- unreliable FIFO channels

Two tokens:

- o ping circulating **privilege**, granting entry to the critical section
- pong circulating after ping
- o aim of each is to detect a loss of the other

Assumption:

only one token gets lost in one round

Initialization:

- #ping := +1
- #pong := -1
- \circ $\mathsf{m}_i := 0$

 m_i is used by P_i to remember the last token passed trough

Invariant:

 \bigcirc #ping + #pong = 0

 P_i :

```
when received PING(#ping)
                          do
    if m; == #ping then // pong is lost, regenerate it
        regenerate()
when received PONG(#pong)
              // similar to above
when meeting PING and PONG do // new incarnation of tokens
    incarnate()
when sending PING(#ping) forward do
    m_i := \#ping
when sending PONG(#pong) do
              // similar to above
```


 P_i :

```
when received PING(#ping) do
    if m_i == \#ping then // pong is lost, regenerate it
        regenerate(#ping)
when received PONG(#pong) do
          // similar to above
when meeting PING and PONG do // new incarnation of tokens
    incarnate(#ping)
when sending PING(#ping) forward do
    m_i := \#ping
when sending PONG(#pong) do
          // similar to above
```


 \boldsymbol{P}_i :

```
regenerate(x) // restore lost PING or (and) PONG
        #ping := |x|
        #pong := -#ping
incarnate(x) // increment absolute value of PING and PONG
        \#ping := |x| + 1
        #pong := -#ping
```

MUTUAL EXCLUSION WITHIN RING TOPOLOGY

(7)

Values of #ping, #pong

- values can be bounded (e.g. for comparisons)
- O their absolute values may increase at each P_i
- it is sufficient to increment them modulo N+1

Channel requirements:

- we need FIFO channels
- what would happen if tokens could overpass each other in channel ...?
- ... it will be considered as a loss of the other token regeneration
- effect : 2 PINGs (or PONGs)
- can we detect such inappropriate regeneration and delete unnecessary token?
- which one?

Old token deletion:

(be aware that it can happen that somewhere in the ring the old ping comes before the new ping)

Problems:

- What about the mutual exclusion in this case?
- What about bounding modulo N+1?
- How can we protect the system from loosing 2 tokens?

BIBLIOGRAPHY

- [1] Jayadev Misra, "Detecting Termination of Distributed Computations Using Markers"

 Proceedings of the 2nd annual ACM symposium on Principles of Distributed Computing (PODC),

 Montreal, Canada, August 17-19, 1983.
- [2] Michel Raynal, "Distributed Algorithms and Protocols", John Wiley & Sons, 1988.