

# **LProf**

Version 1.0



www.maqao.org

# 1 Introduction

MAQAO Lightweight Profiler (LProf) is the MAQAO module which allows you to easily profile your application to detect hot functions and loops in two steps:

- 1) Data collection in two available modes:
  - Sampling (default)
  - Instrumentation

The sampling mode is based on the hardware counters and allows to profile large-scale parallels applications (2000+ cores) with a very low overhead. you can also drive your own analysis by giving your own hardware counters to sample.

### 2) Data display

You can easily see time-consuming functions and loops, see the time spent of your application between different categories (MPI, OpenMP...), detect load balancing issues.

MAQAO Tutorial series: LProf

# 2 Running MAQAO LProf

# 2.1 Sequential run command

Name of your application (or path if not present in the current directory)

If necessary, arguments of your application application

### 2.2 Parallel run command



## 2.3 Options

To list all options:

maqao lprof --help

| <b>Options</b> |                                                                                           |                                           |  |  |
|----------------|-------------------------------------------------------------------------------------------|-------------------------------------------|--|--|
| name           | comments                                                                                  | values                                    |  |  |
| xp=            | Specify your experiment directory                                                         | string                                    |  |  |
| g=             | Change the number of collected samples                                                    | small   medium (default)   large          |  |  |
| ug=            | Control the measurement via a signal (ctrl+z) or via a countdown                          | on   off (default)<br>time (in sec)       |  |  |
| ldi=           | To scan debug info into all the libraries or into specific library(ies) in giving a list. | on   off (default)<br>list,of,libraries   |  |  |
| bkd=           | To bypass the control kernel detection                                                    | on   off (default)                        |  |  |
| p=             | Choose your maqao profile (only available with sandy bridge).                             | memory   compute   branch   dtlb          |  |  |
| hwc=           | Specify your own hardware counters                                                        | hwc_name@threshold_freq, my_profile.mperf |  |  |

# 3 Display

The two common display modes are the text and the HTML mode.

#### 3.1 Text mode

#### 3.1.1 Functions hotspots



Figure 1 – SFX output

# 3.1.2 Loops hotspots



Figure 2 – SLX output

#### **3.2 HTML**

### 3.2.1 Generation of the HTML directory



Now you can find an index.html file into your <DIRECTORY\_NAME>/html.

## 3.2.1.1 Interpret the results

Open<DIRECTORY\_NAME>/html/index.html with your favorite web browser. You will see the MAQAO LProf home page (Figure 3).

| Hotspots - F                  | unctions          |           |
|-------------------------------|-------------------|-----------|
| Name                          | Median Excl %Time | Deviation |
| natmul_sub 56@solve_subs.f    | 17.16             | 0.26      |
| ompute_rhs 4@rhs.f            | 10                | 0.03      |
| _solve_cell 385@y_solve.f     | 9.32              | 0.54      |
| _solve_cell 385@z_solve.f     | 8.96              | 0.14      |
| _solve_cell 391@x_solve.f     | 8.68              | 0.17      |
| IPIDI_CH3I_Progress           | 5.22              | 3.66      |
| natvec_sub 5@solve_subs.f     | 3.92              | 0.11      |
| _backsubstitute 330@x_solve.f | 3.09              | 0.14      |
| _backsubstitute 329@y_solve.f | 2.05              | 0.03      |
| backsubstitute 329@z_solve.f  | 1.98              | 0.06      |
| py_faces 4@copy_faces.f       | 0.88              | 0.06      |
| PID_nem_dapl_rc_poll_dyn_opt_ | 0.74              | 0.62      |
| IPID_nem_lmt_shm_start_send   | 0.68              | 0.06      |

Figure 3 – MAQAO LProf HTML

| Name               | Format : Function name – source_line@filename                   |
|--------------------|-----------------------------------------------------------------|
| Median Excl % Time | Median exclusive time in percent                                |
| Deviation          | Measure the variability of this function on each thread/process |

If you double click on one function name, the load balancing graph will appear (Figure 4).



Figure 4 - Load balancing graph

The load balancing graph shows to you the time (in percent) spent in a function on each thread. If you want more details you can click on a bar to "zoom" into the desired thread (Figure 5). As you can see on the figure 5, you can expand to get some information such as the time spent in the loops of a function (you can see the loop hierarchy too).

| cirrus5003 - Process #53572 - Thread #1                |                         |  |  |  |
|--------------------------------------------------------|-------------------------|--|--|--|
| Name                                                   | Excl %Time Excl Time (s |  |  |  |
| matmul_sub 56@solve_subs.f                             | 16.92 16.4              |  |  |  |
| compute_rhs 4@rhs.f                                    | 9.92 9.6                |  |  |  |
| y_solve_cell 385@y_solve.f  y_solve_cell 385@y_solve.f | 9.08 8.8                |  |  |  |
| ▼ loops                                                | 9.08                    |  |  |  |
| ▼ Loop 267 - y_solve.f@415                             | 0                       |  |  |  |
| ▼ Loop 268 - y_solve.f@425                             | 0                       |  |  |  |
| <ul> <li>Loop 272 - y_solve.f@426</li> </ul>           | 0.25                    |  |  |  |
| Coop 270 y_solve.f@524                                 | 6.57                    |  |  |  |
| o Loop 271 - y_solve.f@436                             | 2.22                    |  |  |  |
| <ul> <li>Loop 269 - y_solve.f@716</li> </ul>           | 0.04                    |  |  |  |
| ▼ x_solve_cell 391@x_solve.f                           | 9.01 8.7                |  |  |  |
| ▼ loops                                                | 9.01                    |  |  |  |
| ▼ Loop 235 - x_solve.f@420                             | 0                       |  |  |  |
|                                                        | 0                       |  |  |  |
| <ul> <li>Loop 237 - x_solve.f@709</li> </ul>           | 0.06                    |  |  |  |
| o Loop 239 - x_solve.f@431                             | 2.71                    |  |  |  |
| C Loop 238 x_solve.f@519                               | 6.24                    |  |  |  |

Figure 5 – Thread information

| Name          | Format : Function name – source_line@filename    |
|---------------|--------------------------------------------------|
| Excl % Time   | Exclusive time spent in this function in percent |
| Excl Time (s) | Exclusive time spent in this function in seconds |