4. szeminárium: Fogyasztói választás

 a fogyasztói választás közgazdasági modelljében az emberek a számukra megfizethető legjobb kosarat választják

 az optimális fogyasztói kosár a költségvetési egyenes és a közömbösségi görbe érintési pontjában lesz

Algebrai megoldás:

1. költségvetési egyenes egyenlete

2. a költségvetési egyenes meredeksége = a közömbösségi görbe meredeksége

1.
$$p_{x}x + p_{y}y = I$$

$$2. \ \frac{|P_x|}{|P_y|} = |MRS|$$

Grafikus megoldás:

 megrajzoljuk a közömbösségi görbéket és a költségvetési egyenest, → majd megkeressük azt a pontot, ahol a legmagasabb közömbösségi görbe érinti a költségvetési egyenest

Három típusfeladat

1. Cobb-Douglas típusú preferencia

három megoldási lehetőség az optimális fogyasztói kosár meghatározására:

1. megoldás lehetőség

megoldjuk az alábbi egyenletrendszert:

1. költségvetési egyenes egyenlete

2. a költségvetési egyenes meredeksége = a közömbösségi görbe meredeksége

1.
$$p_x x + p_y y = I$$

$$2. \left| \frac{p_x}{p_y} \right| = |MRS|$$

2. megoldás lehetőség

- ha $U(x,y) = A \cdot x^a y^b$, akkor:

$$x^* = \frac{a}{a+b} \cdot \frac{I}{p_x}$$

$$y^* = \frac{b}{a+b} \cdot \frac{I}{p_y}$$

1

3. megoldási lehetőség

- kifejezzük a költségvetési egyenes egyenletéből x-t vagy y-t
- ezt behelyettesítjük a hasznossági függvénybe
- majd maximalizáljuk a hasznosságot → deriváljuk a kifejezést, majd egyenlővé tesszük nullával, és kifejezzük az ismeretlen változót

Varian [2010] 74.o.

2. Tökéletes helyettesítés

Tökéletes helyettesítés (MRS = 1) esetén három lehetséges esetünk van:

- 1. |MRS| = 1 esetén \rightarrow ha $\mathbf{p_x} < \mathbf{p_y}$ (pl. $\frac{p_x}{p_y} = \frac{1}{5}$), $\rightarrow |MRS| > \left| \frac{\mathbf{p_x}}{\mathbf{p_y}} \right|$ akkor a költségvetési egyenes laposabb, meredeksége kisebb, mint a közömbösségi görbék meredeksége \rightarrow ebben az esetben az optimális kosár az lesz, amikor a fogyasztó minden pénzét az \mathbf{x} jószág vásárlására költi $\rightarrow \left(\frac{\mathbf{I}}{\mathbf{p_x}}; \mathbf{0} \right)$
- 2. $|\mathbf{MRS}| = 1$ esetén \Rightarrow ha $\mathbf{p_x} > \mathbf{p_y}$ (pl. $\frac{p_x}{p_y} = \frac{5}{1}$), $\Rightarrow |\mathbf{MRS}| < \left| \frac{\mathbf{p_x}}{\mathbf{p_y}} \right|$ akkor a fogyasztó csak az y jószágot fogja vásárolni $\Rightarrow \left(\mathbf{0}; \frac{\mathbf{I}}{\mathbf{p_y}} \right)$
- 3. |MRS| = 1 esetén \rightarrow ha $p_x = p_y$, $\rightarrow |MRS| = \left| \frac{p_x}{p_y} \right|$ akkor egy egész tartomány optimális választás lehet \rightarrow az x és y jószág bármilyen, a költségvetési korláton szereplő kombinációja optimális lesz

Azaz:

- ha két jószág egymás tökéletes helyettesítője, akkor a fogyasztó azt a terméket veszi meg, amelyért legalább annyit, vagy többet hajlandó fizetni, mint az adott termék relatív ára
- ha mindkét jószágnak ugyanakkora az ára, akkor a fogyasztónak mindegy, hogy melyiket veszi meg

– ha |MRS| = 1, akkor elegendő a két jószág árát vizsgálni, ha nem:

Tökéletes helyettesítés

- tökéletes helyettesítés esetén össze kell hasonlítani a közömbösségi görbe és a költségvetési egyenes meredekségét
- az optimális kosár mindig szélső választás lesz → vagy csak x terméket, vagy csak y terméket fogyaszt a fogyasztó
- mivel két lineáris egyenes meredeksége vagy egyenlő (akkor a teljes költségvetési egyenesen választhat a fogyasztó), vagy nem → NINCS érintési pont
- ha $|MRS| > \left| \frac{p_x}{p_y} \right| \rightarrow \text{akkor} \left(\frac{I}{p_x}; 0 \right)$ ha $|MRS| < \left| \frac{p_x}{p_y} \right| \rightarrow \text{akkor} \left(0; \frac{I}{p_y} \right)$ kosarat választja
- több y-t hajlandó adni egy x-ért, mint amennyi y-t kell adni a piacon egy x-ért → így csak x-et fog fogyasztani
 kevesebb y-t hajlandó adni egy x-ért, mint amennyi y-t kell adni a piacon egy x-ért → így csak y-t fog fogyasztani
 - ha $|\mathbf{MRS}| = \left| \frac{\mathbf{p}_x}{\mathbf{p}_y} \right|$ \rightarrow akkor a költségvetési korlát valamennyi x és y kombinációja

optimális választás lesz

- az |MRS| és a $\left|\frac{p_x}{p_y}\right|$ is az x termék y termékben kifejezett árát reprezentálja
- az $|\mathbf{MRS}|$ az az "ár", \rightarrow amit **hajlandóak** vagyunk fizetni x termékért y termékben kifejezve
- a $\left| \frac{\mathbf{p}_x}{\mathbf{p}_y} \right|$ az az ár, \rightarrow amit **ki kell fizetni a piacon** az x termékért y termékben kifejezve
- ha ezt az árat nem vagyunk hajlandók kifizetni az x termékért \rightarrow azaz, $|MRS| < \left| \frac{p_x}{p_y} \right|$, akkor nem vesszük meg az x terméket \rightarrow megvesszük helyette y-t
- mivel, ha $|MRS| < \left| \frac{p_x}{p_y} \right| \rightarrow \text{akkor } \frac{1}{|MRS|} > \left| \frac{p_y}{p_x} \right| \rightarrow \text{azaz ekkor az } y \text{ termékért hajlandók vagyunk több } x \text{ terméket adni, mint amennyi } x \text{ terméket a piacon kell fizetni egy } y \text{ termékért}$

Varian [2010] 79.o.

3. Tökéletes kiegészítés

- megoldjuk az alábbi egyenletrendszert:
- 1. költségvetési egyenes egyenlete
- 2. a tökéletes kiegészítést reprezentáló közömbösségi görbe töréspontjainak egyenlete

Varian [2010] 80.o.

Berde 29. o. \rightarrow 30. feladat

A Pöttyös család havonta mindig 4800 Ft-ot költ **túrórudira** (x) és **kenyérre** (y). Ha csak **kenyeret** vásárolnának, havi 20 kg-ot tudnának ebből a pénzből megvásárolni, a **túrórudi** ára 100 Ft/db.

- a) Írjuk fel a költségvetési egyenes egyenletét!
- b) Ha a család preferenciáit az U = xy hasznossági függvény fejezi ki, mennyi lesz az optimális kenyér- es túrórudi-fogyasztás?
- c) Mekkora hasznosságú a család számára a 18 kg **kenyeret** és 10 db **túrórudit** tartalmazó kosár? Mekkora a helyettesítési határráta (abszolút értékben) ebben a pontban?

```
jövedelem I = 4800

túrórudi \Rightarrow x

kenyér \Rightarrow y

\frac{I}{p_y} = 20 \Rightarrow ha csak kenyeret vásárolnának, havi 20 kg-ot tudnának venni

p_x = 100 \frac{Ft}{db}
```

a) Írjuk fel a költségvetési egyenes egyenletét!

$$p_x x + p_y y = I$$

szükség van a kenyér (y) árára $\rightarrow p_y$

$$\frac{I}{p_y} = 20$$

$$\frac{4800}{p_y} = 20$$

$$4800 = 20 p_y$$

$$\mathbf{p}_y = 240$$

$$p_x x + p_y y = I$$

100x + 240y = 4800

A költségvetési egyenes egyenlete 100x + 240y = 4800.

b) Ha a család preferenciáit az U = xy hasznossági függvény fejezi ki, mennyi lesz az optimális kenyér- es túrórudi-fogyasztás?

1. megoldási lehetőség

- 1. költségvetési egyenes egyenlete
- 2. a költségvetési egyenes meredeksége = a közömbösségi görbe meredeksége

1.
$$p_x x + p_y y = I$$

$$2. \left| \frac{p_x}{p_y} \right| = |MRS|$$

A költségvetési egyenes meredeksége:

$$\left| \frac{p_x}{p_y} \right| = \frac{100}{240}$$

A közömbösségi görbe meredeksége:

• MRS (Marginal Rate of Substitution), helyettesítési határráta → ez adja meg a közömbösségi görbe meredekségét; megmutatja azt az arányt, amelyben a fogyasztó az egyik jószágot a másikkal hajlandó helyettesíteni → az az arány, amelyben a fogyasztó a 1. jószágot a 2. jószággal hajlandó helyettesíteni

$$MRS = \frac{\frac{\partial U(x, y)}{\partial x}}{\frac{\partial U(x, y)}{\partial y}} \text{ vagy } MRS = \frac{\partial U}{\partial x} / \frac{\partial U}{\partial y}$$

• a fogyasztók hasznossági függvénye $\rightarrow U = x \cdot y$

$$|MRS| = \frac{\frac{\partial U(x,y)}{\partial x}}{\frac{\partial U(x,y)}{\partial y}} = \frac{MU_x}{MU_y}$$

$$MU_x = \frac{\partial U(x, y)}{\partial x} = y$$
 és $MU_y = \frac{\partial U(x, y)}{\partial y} = x$

$$|MRS| = \frac{y}{x}$$

Az optimum feltétel:

$$\frac{100}{240} = \frac{y}{x}$$

Az egyenletrendszer:

1.
$$100x + 240y = 4800$$

$$2. \ \frac{100}{240} = \frac{y}{x}$$

$$2. \frac{100}{240} = \frac{y}{x}$$
$$100x = 240y$$

1.
$$100x + 240y = 4800$$

 $200x = 4800$
 $\mathbf{x}^* = \mathbf{24}$

$$100x = 240y$$

$$100 \cdot 24 = 240y$$

$$\frac{2400}{240} = y$$

$$\mathbf{y}^* = \mathbf{10}$$

$\mathbf{A}(\mathbf{x}^*;\mathbf{y}^*) = \mathbf{A}(24;10)$

y termék mennyisége

x termék mennyisége (túrórudi)

2. megoldási lehetőség

Cobb-Douglas típusú hasznossági függvény esetén:

$$U(x,y) = A \cdot x^a y^b \rightarrow U = 1 \cdot x^1 \cdot y^1$$

$$x^* = \frac{a}{a+b} \cdot \frac{I}{p_x}$$

$$y^* = \frac{b}{a+b} \cdot \frac{I}{p_y}$$

$$x^* = \frac{a}{a+b} \cdot \frac{I}{p_x}$$

$$x^* = \frac{1}{1+1} \cdot \frac{4800}{100}$$

$$x^* = 24$$

$$y^* = \frac{b}{a+b} \cdot \frac{I}{p_y}$$

$$y^* = \frac{1}{1+1} \cdot \frac{4800}{240}$$

$$y^* = 10$$

$$\mathbf{A}(\mathbf{x}^*;\mathbf{y}^*) = \mathbf{A}(24;10)$$

3. megoldási lehetőség

- a költségvetési egyenest x-re rendezzük
- ezt behelyettesítjük a hasznossági függvénybe -> majd maximalizáljuk a hasznosságot

$$100x + 240y = 4800$$
$$100x = 4800 - 240y$$
$$x = 48 - 2.4y$$

$$U = x \cdot y$$

$$U = (48 - 2.4y) \cdot y$$

$$U = 48y - 2.4y^{2}$$

$$U_{\max_{y}} = 48y - 2.4y^2$$

 $48y - 2.4y^2$ / deriváljuk y szerint

 $48-4.8y \rightarrow$ egyenlővé tesszük nullával

$$0 = 48 - 4.8y$$

$$4.8y = 48$$

$$y^* = 10$$

$$x = 48 - 2.4y$$
$$x = 48 - 2.4 \cdot 10$$

$$x^* = 24$$

$$A(x^*;y^*) = A(24;10)$$

A megadott preferenciák mellett a család optimális túrórudi és kenyér fogyasztása 24 db túrórudi (x) és havi 10 kg kenyér (y) \rightarrow A(x*;y*) = A(24;10)

c) Mekkora hasznosságú a család számára a 18 kg kenyeret (y) és 10 db túrórudit (x) tartalmazó kosár? Mekkora a helyettesítési határráta (abszolút értékben) ebben a pontban?

8

A 18 kg kenyér (y) és 10 db túrórudi (x) hasznossága:

- a fogyasztók hasznossági függvénye $\Rightarrow U = x \cdot y$
- a vizsgált fogyasztói kosár $\rightarrow B(x; y) = B(10;18)$

$$U = x \cdot y$$

 $U(B) = 10 \cdot 18 = 180$

az optimális kosár hasznosága:

$$U(B) = 24 \cdot 10 = 240$$

túrórudi
$$\rightarrow x$$
 kenyér $\rightarrow y$

A helyettesítési határráta (abszolút értékben) ebben a pontban:

$$|MRS| = \frac{y}{x}$$
$$|MRS| = \frac{18}{10} = 1.8$$

Ebben a pontban 1.8 kg kenyérről (y) hajlandó lemondani a fogyasztó 1 db túrórudiért (x) cserébe.

A megadott fogyasztói kosár hasznossága U(B) = 180, s ebben a pontban a helyettesítési határarány |MRS| = 1.8.

Berde 31. o. → 35. feladat (helyettesítés)

Gombóc Artúr számára a fagylalt (x) és a jégkrém (y) egymást tökéletesen helyettesítő termékek, preferenciarendszerében minden egyes jégkrém ugyanolyan hasznosságú, mint három gombóc fagylalt.

- a) Ábrázoljuk Gombóc Artúr jégkrémre és fagylaltra vonatkozó preferenciáit közömbösségi görbék segítségével! Határozzuk meg a helyettesítési határrátát!
- b) Egy jégkrém 400 Ft, egy gombóc fagylalt 120 Ft és Gombóc Artúr pénzjövedelme heti 3600 Ft. Írjuk fel Gombóc Artúr költségvetési egyenesének egyenletét!
- c) Feltételezve, hogy Gombóc Artúr racionális fogyasztó, hány jégkrémet és hány gombóc fagylaltot vásárol hetente?
- d) Ha egy gombóc fagyi ára 160 Ft-ra nő, hogyan változik a fogyasztása?

fagylalt $\rightarrow x$ jégkrém $\rightarrow y$

minden egyes jégkrém ugyanolyan hasznosságú, mint három gombóc fagylalt $\rightarrow 1$ y vagy $3x \rightarrow y \sim 3x$

tökéletes helyettesítés

- a) Ábrázoljuk Gombóc Artúr jégkrémre és fagylaltra vonatkozó preferenciáit közömbösségi görbék segítségével! Határozzuk meg a helyettesítési határrátát!
- mindegy, hogy 3 gombóc fagyit, vagy egy jégkrémet fogyaszt → 1y vagy 3x → y ~ 3x
 → azaz a következő két kosár közömbös: (0;1) ~ (3;0)
- a fagyi és a jégkrém együttes mennyisége számít
- ez tökéletes helyettesítés \rightarrow azaz a hasznossági függvény alakja: $U = a \cdot x + b \cdot y$

$$MU_x = \frac{\partial U(x, y)}{\partial x} = a$$
 és $MU_y = \frac{\partial U(x, y)}{\partial y} = b$
$$|MRS| = \frac{MU_x}{MU_y} = \frac{a}{b}$$

- a megadott arányok mellett a hasznossági függvényben szereplő összeg két tagja mikor lesz egyenlő → y ≤x → 3y = x
- ez azt jelenti, hogy az y jószág háromszor olyan értékes a fogyasztó számára, mint az x jószág

$$U = a \cdot x + b \cdot y$$
$$U = 1 \cdot x + 3 \cdot y$$

$$MU_x = \frac{\partial U(x, y)}{\partial x} = 1$$
 és $MU_y = \frac{\partial U(x, y)}{\partial y} = 3$
$$|MRS| = \frac{MU_x}{MU_y} = \frac{a}{b} = \frac{1}{3}$$

- a fogyasztó $\frac{1}{3}y$ jószág (jégkrém) fogyasztását hajlandó feláldozni plusz 1x jószág (fagylalt) fogyasztásáért cserébe \Rightarrow azaz a meredekség $-\frac{1}{3}$
- tekintsük a következő hasznosságokat:

$U_1 = 3$	$U_2 = 6$	$U_3 = 9$
$U = 1 \cdot x + 3 \cdot y$	$U = 1 \cdot x + 3 \cdot y$	$U = 1 \cdot x + 3 \cdot y$
3 = x + 3y	6 = x + 3y	9 = x + 3y
3y = 3 - x	3y = 6 - x	3y = 9 - x
$y = 1 - \frac{1}{3}x$	$y = 2 - \frac{1}{3}x$	$y = 3 - \frac{1}{3}x$

$$U(0;1) = 1x + 3y = 1 \cdot 0 + 3 \cdot 1 = 3$$

$$U(3;0) = 1x + 3y = 1 \cdot 3 + 3 \cdot 0 = 3$$

\boldsymbol{y} termék mennyisége

x termék mennyisége (fagylalt)

Gombóc Artúr helyettesítési határrátája $|MRS| = \frac{1}{3}$.

b) Egy jégkrém 400 Ft, egy gombóc fagylalt 120 Ft és Gombóc Artúr pénzjövedelme heti 3600 Ft. Írjuk fel Gombóc Artúr költségvetési egyenesének egyenletét!

$$p_y = 400$$

 $p_x = 120$
jövedelem $I = 3600 \rightarrow \text{heti } 3600 \text{ Ft}$
fagylalt $\rightarrow x$
jégkrém $\rightarrow y$

$$p_x x + p_y y = I$$

120x + 400y = 3600

Gombóc Artúr költségvetési egyenesének egyenlete 120x + 400y = 3600.

c) Feltételezve, hogy Gombóc Artúr racionális fogyasztó, hány jégkrémet és hány gombóc fagylaltot vásárol hetente?

A költségvetési korlát:

$$p_x x + p_y y = I$$
$$120x + 400y = 3600$$

A költségvetési egyenes meredeksége abszolút értékben:

$$\frac{\frac{I}{p_y}}{\frac{I}{p_x}} = \frac{I}{p_y} \cdot \frac{p_x}{I} = \frac{p_x}{p_y}$$

Tökéletes helyettesítés

- tökéletes helyettesítés esetén össze kell hasonlítani a közömbösségi görbe és a költségvetési egyenes meredekségét
- az optimális kosár mindig szélső választás lesz \rightarrow vagy csak x terméket, vagy csak y terméket fogyaszt a fogyasztó
- mivel két lineáris egyenes meredeksége vagy egyenlő (akkor a teljes költségvetési egyenesen választhat a fogyasztó), vagy nem → NINCS érintési pont

• ha
$$|MRS| > \left| \frac{p_x}{p_y} \right| \rightarrow \text{akkor} \left(\frac{I}{p_x}; 0 \right)$$
 • ha $|MRS| < \left| \frac{p_x}{p_y} \right| \rightarrow \text{akkor} \left(0; \frac{I}{p_y} \right)$ kosarat választja

• több y-t **hajlandó** adni egy x-ért, mint amennyi y-t **kell adni a piacon** egy x-ért → így csak x-et fog fogyasztani
• kevesebb y-t **hajlandó** adni egy x-ért, mint amennyi y-t **kell adni a piacon** egy x-ért → így csak y-t fog fogyasztani

- ha $|\mathbf{MRS}| = \frac{|\mathbf{p}_x|}{|\mathbf{p}_y|}$ \rightarrow akkor a költségvetési korlát valamennyi x és y kombinációja optimális választás lesz
- az |MRS| és a $\left|\frac{p_x}{p_y}\right|$ is az x termék y termékben kifejezett árát reprezentálja
- az |MRS| az az "ár", → amit hajlandóak vagyunk fizetni x termékért y termékben kifejezve
- a $\left| \frac{\mathbf{p}_x}{\mathbf{p}_y} \right|$ az az ár, \rightarrow amit **ki kell fizetni a piacon** az x termékért y termékben kifejezve
- ha ezt az árat nem vagyunk hajlandók kifizetni az x termékért \rightarrow azaz, $|MRS| < \left| \frac{p_x}{p_y} \right|$, akkor nem vesszük meg az x terméket \rightarrow megvesszük helyette y-t
- mivel, ha $|MRS| < \left| \frac{p_x}{p_y} \right| \rightarrow \text{akkor } \frac{1}{|MRS|} > \left| \frac{p_y}{p_x} \right| \rightarrow \text{azaz ekkor az } y \text{ termékért hajlandók vagyunk több } x \text{ terméket adni, mint amennyi } x \text{ terméket a piacon kell fizetni egy } y \text{ termékért}$

A költségvetési egyenes meredeksége abszolút értékben:

$$\left| \frac{p_x}{p_y} \right| = \frac{120}{400} = \frac{3}{10} = 0.3$$

A közömbösségi görbe meredeksége abszolút értékben:

$$|MRS| = \frac{1}{3}$$

Hasonlítsuk össze őket:

$$|MRS|? \frac{p_x}{p_y}|$$

$$\frac{1}{3} > \frac{3}{10}$$

$$\frac{10}{30} > \frac{9}{30}$$

$$0.333 > 0.3$$

$$|MRS| > \frac{p_x}{p_y}$$

A közömbösségi görbe meredeksége	A költségvetési egyenes meredeksége	
MRS = 0.333	$\left \frac{p_x}{p_y}\right = 0.3$	
0.333 jégkrémet (y) hajlandó fizetni a fogyasztó 1 gombóc fagylaltért (x)	0.3 jégkrémet (y) kell fizetni a piacon 1 gombóc fagylaltért (x)	
Így csak fagylaltot (csak x terméket) fog venni.		

A költségvetési egyenes laposabb lesz, mint a közömbösségi görbe \rightarrow így az x terméket (fagylalt) választja $\rightarrow A(x^*;y^*) = (30;0)$.

Grafikus megoldás:

$$\frac{I}{p_x} = \frac{3600}{120} = 30$$

$$\frac{I}{p_{v}} = \frac{3600}{400} = 9$$

y termék mennyisége

x termék mennyisége (fagylalt)

Ellenőrzés:

• nézzük meg a hasznosságát a két lehetséges optimális kosárnak:

 $A(x;y) = (30;0) \rightarrow \text{ekkor csak } x \text{ terméket (fagyit) fogyaszt}$

 $B(x;y) = (0;9) \rightarrow$ ekkor csak y terméket (jégkrémet) fogyaszt

$$U(A) = 1x + 3y = 1 \cdot 30 + 3 \cdot 0 = 30$$

$$U(B) = 1x + 3y = 1 \cdot 0 + 3 \cdot 9 = 27$$

$$U(A) = 30$$
 > $U(B) = 27$

Gombóc Artúr számára az optimális fogyasztói kosár az adott költségvetési egyenes mellett: $A(x^*;y^*)=(30;0)$, azaz 30 gömb fagylalt, és nulla jégkrém.

14

d) Ha egy gombóc fagyi ára 160 Ft-ra nő, hogyan változik a fogyasztása?

A költségvetési korlát:

$$p_x x + p_y y = I$$
$$160x + 400y = 3600$$

A költségvetési egyenes meredeksége abszolút értékben:

$$\left| \frac{p_x}{p_y} \right| = \frac{160}{400} = \frac{4}{10} = 0.4$$

A közömbösségi görbe meredeksége abszolút értékben:

$$|MRS| = \frac{1}{3}$$

Hasonlítsuk össze őket:

$$\frac{|MRS|? \left| \frac{p_x}{p_y} \right|}{|p_y|}$$

$$\frac{1}{3} < \frac{4}{10}$$

$$\frac{10}{30} < \frac{12}{30}$$

$$0.33\dot{3} < 0.4$$

$$|MRS| < \frac{|p_x|}{|p_y|}$$

A közömbösségi görbe meredeksége	A költségvetési egyenes meredeksége	
$ MRS = 0.33\dot{3}$	$\left \frac{p_x}{p_y}\right = 0.4$	
0.333 jégkrémet (y) hajlandó fizetni a fogyasztó 1 gombóc fagylaltért (x)	0.4 jégkrémet (y) kell fizetni a piacon 1 gombóc fagylaltért (x)	
Így nem vesz fagylaltot, helyette csak jégkrémet (csak y terméket) fog venni.		

A költségvetési egyenes meredekebb lesz, mint a közömbösségi görbe \Rightarrow így az y terméket (jégkrém) választja $\Rightarrow \frac{A(x^*;y^*)=(0;9)}{A(x^*;y^*)}$.

15

$$\frac{I}{p_x} = \frac{3600}{160} = 22.5$$

$$\frac{I}{p_{v}} = \frac{3600}{400} = 9$$

y termék mennyisége

x termék mennyisége (fagylalt)

Ellenőrzés:

nézzük meg a hasznosságát a két lehetséges optimális kosárnak:

$$A(x;y) = (22.5;0) \rightarrow$$
 ekkor csak x terméket (fagyit) fogyaszt

 $B(x;y) = (0;9) \rightarrow$ ekkor csak y terméket (jégkrémet) fogyaszt

$$U(A) = 1x + 3y = 1 \cdot 22.5 + 3 \cdot 0 = 22.5$$

$$U(B) = 1x + 3y = 1 \cdot 0 + 3 \cdot 9 = 27$$

$$U(A) = 22.5$$
 < $U(B) = 27$

Gombóc Artúr számára az optimális fogyasztói kosár az adott költségvetési egyenes mellett: $A(x^*;y^*)=(0;9)$, azaz nulla gömb fagylalt, és 9 db jégkrém.

Berde 31. o. → 36. feladat (kiegészítés)

Vili bácsi kedvenc időtöltése, hogy focimeccset néz a TV-ben. Meccsnézés közben sört iszogat és sós mogyorót rágcsál. Számára a sör (x) és a sós mogyoró (y) meccsnézés közben egymást tökéletesen kiegészítő jószágok. Egy üveg sörhöz mindig fél csomag sós mogyorót fogyaszt.

- a) Ábrázoljuk Vili bácsi közömbösségi görbéit a sörre és a mogyoróra vonatkozóan! Hogyan alakul a helyettesítési határráta?
- b) Vili bácsi kedvenc söre 160 Ft-ba kerül (üvegenként), egy csomag mogyoró 125 Ft, és havonta 5340 Ft-ot költ sörre es mogyoróra. Írjuk fel Vili bácsi költségvetési egyenesének egyenletét! Mennyi sört és mogyorót fogyaszt havonta?
- c) A sör ára megváltozott, és ennek következtében Vili bácsi havonta 4 üveg sörrel kevesebbet fogyaszt. Hogyan változott a sör ára, és hogyan változik a mogyoró fogyasztása?

$$s\"{or} \rightarrow x$$

 $s\'{os}$ mogyor $\acute{o} \rightarrow y$
egy üveg s\"{or}h\"{oz} (x) mindig fél csomag s´{os} mogyor \acute{ot} (y) fogyaszt $\rightarrow 1x$
j´oszághoz mindig $\frac{1}{2}y$ j´oszágot fogyaszt

tökéletes kiegészítés

- a) Ábrázoljuk Vili bácsi közömbösségi görbéit a sörre és a mogyoróra vonatkozóan! Hogyan alakul a helyettesítési határráta?
- egy üveg sörhöz (x) mindig fél csomag sós mogyorót (y) fogyaszt $\Rightarrow 1x$ jószághoz mindig $\frac{1}{2}y$ jószágot fogyaszt \Rightarrow VAGY 2x jószághoz mindig 1y jószágot fogyaszt
- ez **tökéletes kiegészítés** \rightarrow azaz a hasznossági függvény alakja: $U(x,y) = \min\{a \cdot x; b \cdot y\}$
- szükség van a töréspontok egyenletére \rightarrow azaz, ahol egyenlő lesz egymással a minimum függvény x és y argumentuma a megadott arányok esetén
- $x \ge y \rightarrow x = 2y \text{ VAGY } \frac{1}{2}x = y$
- így a hasznossági függvény alakja: $U(x,y) = min\{x;2y\}$ vagy $U(x,y) = min\{\frac{1}{2}x;y\}$
- tekintsük a következő hasznosságokat:

$U_1 = 2$	$U_2 = 4$	$U_3 = 6$
$U(x,y) = \min\{x;2y\}$	$U(x,y) = \min\{x;2y\}$	$U(x,y) = \min\{x;2y\}$
$U(2,1) = \min\{2; 2\cdot 1\} = 2$	$U(4,2) = \min\{4; 2 \cdot 2\} = 4$	$U(6,3) = \min\{6; 2\cdot 3\} = 6$

y termék mennyisége

(sós mogyoró)

x termék mennyisége (sör)

$$|MRS| = 0$$
 ha $x > 2y$

$$|MRS| = 0$$
 ha $x > 2y$ P1.: ha $y = 2 \rightarrow x > 2y \rightarrow x > 4$

$$|MRS| = \infty$$
 ha $x < 2y$

$$|MRS| = \infty$$
 ha $x < 2y$ P1.: ha $y = 3 \rightarrow x < 2y \rightarrow x < 6$

$$MRS = -\infty$$

nem értelmezhető, ha $y = \frac{1}{2}x \rightarrow$ a töréspontokban

b) Vili bácsi kedvenc söre (x) 160 Ft-ba kerül (üvegenként), egy csomag mogyoró (y) 125 Ft, és havonta 5340 Ft-ot költ sörre es mogyoróra. Írjuk fel Vili bácsi költségvetési egyenesének egyenletét! Mennyi sört és mogyorót fogyaszt havonta?

$$p_x = 160$$

$$p_y = 125$$

$$I = 5340$$

$$s\ddot{o}r \rightarrow x$$

sós mogyoró
$$\rightarrow v$$

sós mogyoró $\rightarrow y$ költségvetési egyenes? $A(x^*; y^*) = ?$

A költségvetési egyenes:

$$p_x x + p_y y = I$$

$$160x + 125y = 5340$$

Az egyenletrendszer:

- tökéletes kiegészítés esetén az optimális választásnak mindig a töréspontok egyenesén kell lennie, → azokban a pontokban, ahol a fogyasztó mindkét jószágból az adott arányoknak megfelelő mennyiséget vásárol
- 1. költségvetési egyenes egyenlete
- 2. a tökéletes kiegészítést reprezentáló közömbösségi görbe töréspontjainak egyenlete
- 1. 160x + 125y = 5340
- 2. x = 2y

1.
$$160x + 125y = 5340$$

$$160 \cdot 2y + 125y = 5340$$

$$320y + 125y = 5340$$

$$445 y = 5340$$

$$y^* = 12$$

2.
$$x = 2v$$

$$x = 2 \cdot 12$$

$$x^* = 24$$

$$A(x^*;y^*) = A(24;12)$$

Vili bácsi költségvetési egyenesének egyenlete 160x + 125y = 5340, s havonta 24 üveg sört és 12 csomag sós mogyorót fogyaszt.

c) A sör ára (p_x) megváltozott, és ennek következtében Vili bácsi havonta 4 üveg sörrel (x) kevesebbet fogyaszt. Hogyan változott a sör ára, és hogyan változik a mogyoró (y) fogyasztása?

$$x = 24 - 4 = 20$$

$$p_{v} = 125$$

$$I = 5340$$

$$s\ddot{o}r \rightarrow x$$

sós mogyoró $\rightarrow y$

$$p_{x} = ? y^{*} = ?$$

1.
$$p_x \cdot x + 125y = 5340$$

2.
$$x = 2y$$

3.
$$x = 20$$

1.
$$p_x \cdot 20 + 125y = 5340$$

2.
$$20 = 2y$$

Szükségünk van a sör árára (p_x -re)!

- tudjuk, hogy egy üveg sörhöz (x) mindig fél csomag sós mogyorót (y) fogyaszt → 1x
 jószághoz mindig ¹/₂ y jószágot fogyaszt → VAGY 2x jószághoz mindig 1y jószágot
 fogyaszt
- azaz, ha 20 üveg sört iszik \rightarrow ahhoz 10 csomag mogyoró kell $\rightarrow y = 10$

2.
$$x = 2y$$

$$20 = 2y$$

$$10 = y$$

$$p_x \cdot 20 + 125y = 5340$$

$$p_x \cdot 20 + 125 \cdot 10 = 5340$$

$$p_x \cdot 20 + 1250 = 5340$$

$$20p_x = 4090$$

$$p_x = 204.5$$

A változások:

$$\Delta \mathbf{p_x} = p_x^2 - p_x^1 = 204.5 - 160 = 44.5$$

$$\Delta \mathbf{y} = y_2^* - y_1^* = 10 - 12 = -2$$

$$B(x^*;y^*) = A(20;10)$$

A sör ára 44.5 Ft-al nőtt ($\Delta p_x = 44.5$), a mogyoró fogyasztása 2 csomaggal csökkent ($\Delta y = -2$), \rightarrow így a sör ára $p_x = 204.5$ Ft, a mogyoró fogyasztása y = 10 csomag lett.

4. feladat

Egy fogyasztó hasznossági függvénye $U = x^{0.75}y^{0.25}$ alakban írható fel. A fogyasztó 1000 Ft-ot szán a két jószágra. Az x jószág ára 5 Ft, az y jószág ára 10 Ft.

- a) Mi az optimális jószágkombináció a fogyasztó számár?
- b) Mekkora a hasznossága az optimális kosárnak?
- c) Miért nem jó döntés a B(100;50) kosár választása?

a fogyasztó hasznossági függvénye $U = x^{0.75}y^{0.25}$ jövedelem I = 1000 az x jószág ára $\Rightarrow p_x = 5$ az y jószág ára $\Rightarrow p_y = 10$

költségvetési halmaz? költségvetési egyenlet?

a) Mi az optimális jószágkombináció a fogyasztó számár?

1. megoldási lehetőség

Cobb-Douglas típusú hasznossági függvény esetén, ha a kitevők összege 1:

$$U(x,y) = A \cdot x^{\alpha} y^{1-\alpha} \rightarrow U = 1 \cdot x^{0.75} \cdot y^{0.25}$$

$$x^* = \alpha \cdot \frac{I}{p_x}$$

$$y^* = (1 - \alpha) \cdot \frac{I}{p_y}$$

 α → a fogyasztó jövedelmének α részét költi az x jószágra $1-\alpha$ → a fogyasztó jövedelmének $1-\alpha$ részét költi az y jószágra

$$x^* = \alpha \cdot \frac{I}{p_x}$$

$$x^* = 0.75 \cdot \frac{1000}{5}$$

$$y^* = (1 - \alpha) \cdot \frac{I}{p_y}$$

$$y^* = 0.25 \cdot \frac{1000}{10}$$

$$y^* = 25$$

2. megoldási lehetőség

1. költségvetési egyenes egyenlete

2. a költségvetési egyenes meredeksége = a közömbösségi görbe meredeksége

$$1. p_x x + p_y y = I$$

$$2. \left| \frac{p_x}{p_y} \right| = |MRS|$$

A költségvetési egyenes:

$$p_x x + p_y y = I$$

$$5x + 10y = 1000$$

A költségvetési egyenes meredeksége:

$$\left|\frac{p_x}{p_y}\right| = \frac{5}{10} = \frac{1}{2}$$

A közömbösségi görbe meredeksége:

• a fogyasztók hasznossági függvénye $\rightarrow U = x^{0.75}y^{0.25}$

$$|MRS| = \frac{\frac{\partial U(x,y)}{\partial x}}{\frac{\partial U(x,y)}{\partial y}} = \frac{MU_x}{MU_y}$$

$$MU_x = \frac{\partial U(x,y)}{\partial x} = 0.75x^{-0.25} \cdot y^{0.25}$$

$$MU_y = \frac{\partial U(x,y)}{\partial y} = x^{0.75} \cdot 0.25y^{-0.75}$$

$$|MRS| = \frac{0.75x^{-0.25} \cdot y^{0.25}}{x^{0.75} \cdot 0.25y^{-0.75}}$$

$$|MRS| = 0.75x^{-0.25 - 0.75} \frac{1}{0.25} y^{0.25 - (-0.75)} = 0.75x^{-1} \cdot 4y^{1}$$

$$|MRS| = \frac{3y}{x}$$

VAGY

$$|\mathbf{MRS}| = \frac{\mathbf{a}}{\mathbf{b}} \cdot \frac{\mathbf{y}}{\mathbf{x}}$$

$$|MRS| = 1 \cdot \frac{0.75}{0.25} \cdot \frac{\mathbf{y}}{\mathbf{x}} = 3 \cdot \frac{\mathbf{y}}{\mathbf{x}} = \frac{3\mathbf{y}}{\mathbf{x}}$$

Az optimum feltétel:

$$\frac{1}{2} = \frac{3y}{x}$$

Az egyenletrendszer:

1.
$$5x + 10y = 1000$$

$$2. \ \frac{1}{2} = \frac{3y}{x}$$

2.
$$\frac{1}{2} = \frac{3y}{x}$$

$$\frac{1}{2}x = 3y$$

$$x = 6y$$

1.
$$5x + 10y = 1000$$

$$5 \cdot (6y) + 10y = 1000$$

$$30y + 10y = 1000$$

$$40y = 1000$$

$$y^* = 25$$

$$x = 6y$$

$$x = 6 \cdot 25$$

$$x^* = 150$$

$$A(x^*;y^*) = A(150;25)$$

A megadott preferencia mellett a fogyasztó számára az optimális jószágkombináció \rightarrow $A(x^*;y^*) = A(150;25)$

b) Mekkora a hasznossága az optimális kosárnak?

$$U = x^{0.75} y^{0.25}$$

$$A(x^*; y^*) = A(150; 25)$$

$$U(A) = x^{0.75}y^{0.25} = 150^{0.75}25^{0.25}$$

$$U(A) = 42.86 \cdot 2.24 = 95.84$$

c) Miért nem jó döntés a B(100;50) kosár választása?

$$U = x^{0.75} y^{0.25}$$
$$B(x; y) = B(100; 50)$$

$$U(B) = x^{0.75}y^{0.25} = 100^{0.75}50^{0.25}$$

 $U(B) = 31.62 \cdot 2.66 =$ **84.09**

$$U(A) = 95.84$$
 > $U(B) = 84.09$

Mert a B kosár hasznossága kisebb, mint az A kosáré.

5x+10y=1000 nézzük meg, hogy ki tudja-e fizetni a B kosarat:

$$B(x;y) = B(100;50)$$

$$5 \cdot 100 + 10 \cdot 50 = 1000$$

Ki tudja fizetni, de egyrészt kisebb a hasznossága, másrészt:

$$\left| \frac{p_x}{p_y} \right| = |MRS| \rightarrow \text{ennek teljesülnie kellene}$$

$$\left| \frac{p_x}{p_y} \right| = \frac{1}{2} = 0.5$$

$$|MRS(B)| = \frac{3y}{x} = \frac{3.50}{100} = 1.5$$

$$\left| \frac{p_x}{p_y} \right| = \mathbf{0.5} \qquad < \qquad \left| MRS(B) \right| = \mathbf{1.5}$$

- mivel a közömbösségi görbe konvex → ahogy x jószág fogyasztását növeljük, úgy csökken a közömbösségi görbe meredeksége, azaz az MRS
- tehát a **fogyasztót ez a helyzet** x növelésére, és y csökkentésére ösztönzi
- ahogy x nő, úgy csökken az MRS
- ez egészen addig tart, míg a költségvetési egyenes és a közömbösségi görbe meredeksége meg fog egyezni $\rightarrow \left| \frac{p_x}{p_y} \right| = |MRS|$
- ekkor: $|MRS(A)| = \frac{3y}{x} = \frac{3.25}{150} = 0.5 \text{ lesz}$

y termék mennyisége

Berde 30. o. \rightarrow 31. feladat

Egy fogyasztó hetente 3000 Ft-ot költ üdítőre (x) es kávéra (y). Egy kis doboz üdítő ára 100 Ft, egy csésze kávé 150 Ft. A fogyasztó két jószagra vonatkozó preferenciáit az U = xy hasznossági függvény fejezi ki.

- a) Mennyi lesz a racionális fogyasztó heti üdítő- és kávéfogyasztása?
- b) Ha az üdítő ára 25%-kal nő, hogyan változik a heti üdítő- és kávéfogyasztás?
- c) Ha az áremelkedést követően a fogyasztónak a két jószágra fordított jövedelme másfélszeresére nő, hogyan változik a heti üdítő- és kávéfogyasztás?

jövedelem I = 3000

üdítő $\rightarrow x$

kávé $\rightarrow v$

1 kis doboz üdítő ára $\rightarrow p_x = 100 Ft$

1 csésze kávé $\rightarrow p_v = 150 Ft$

a fogyasztó preferenciáit leíró hasznossági függvény $\rightarrow U = xy$

a) Mennyi lesz a racionális fogyasztó heti üdítő- es kávéfogyasztása?

1. megoldási lehetőség

Cobb-Douglas típusú hasznossági függvény esetén

$$U(x,y) = A \cdot x^a y^b \rightarrow U = 1 \cdot x^1 y^1$$

$$x^* = \frac{a}{a+b} \cdot \frac{I}{p_x}$$

$$y^* = \frac{b}{a+b} \cdot \frac{I}{p_y}$$

$$\frac{a}{a+b}$$
 \rightarrow a fogyasztó jövedelmének $\frac{a}{a+b}$ részét költi az x jószágra

 $\frac{b}{a+b}$ → a fogyasztó jövedelmének $\frac{b}{a+b}$ részét költi az y jószágra

$$x^* = \frac{a}{a+b} \cdot \frac{I}{p_x}$$

$$y^* = \frac{b}{a+b} \cdot \frac{I}{p_y}$$

$$x^* = \frac{1}{1+1} \cdot \frac{3000}{100}$$

$$y^* = \frac{1}{1+1} \cdot \frac{3000}{150}$$

$$y^* = 10$$

2. megoldási lehetőség

1. költségvetési egyenes egyenlete

a költségvetési egyenes meredeksége = a közömbösségi görbe meredeksége

1.
$$p_x x + p_y y = I$$

$$2. \left| \frac{p_x}{p_y} \right| = |MRS|$$

A költségvetési egyenes:

$$p_x x + p_y y = I$$

$$100x + 150y = 3000$$

A költségvetési egyenes meredeksége:

$$\left|\frac{p_x}{p_y}\right| = \frac{100}{150} = \frac{2}{3}$$

A közömbösségi görbe meredeksége:

a fogyasztók hasznossági függvénye $\rightarrow U = xy$

$$|MRS| = \frac{\partial U(x,y)}{\partial x} = \frac{MU_x}{MU_y}$$

$$\partial y$$

$$MU_{x} = \frac{\partial U(x, y)}{\partial x} = y$$

$$MU_y = \frac{\partial U(x,y)}{\partial y} = x$$

$$|MRS| = \frac{y}{x}$$

Az optimum feltétel:
$$\frac{\left|\frac{p_x}{p_y}\right| = \left|MRS\right|}{\left|\frac{p_x}{p_y}\right|} = \left|\frac{MRS}{p_x}\right|$$

$$\frac{2}{3} = \frac{y}{x}$$

Az egyenletrendszer:

1.
$$100x + 150y = 3000$$

$$2. \ \frac{2}{3} = \frac{y}{x}$$

$$2. \frac{2}{3} = \frac{y}{x}$$
$$2x = 3y$$
$$y = \frac{2}{3}x$$

1.
$$100x + 150y = 3000$$

$$100x + 150 \cdot \left(\frac{2}{3}x\right) = 3000$$

$$100x + 100x = 3000$$

$$200x = 3000$$

$$x^* = 15$$

$$y = \frac{2}{3}x$$

$$y = \frac{2}{3} \cdot 15$$
$$\mathbf{y}^* = \mathbf{10}$$

$$y^* = 10$$

$$\mathbf{A}(\mathbf{x}^*;\mathbf{y}^*) = \mathbf{A}(15;10)$$

y termék mennyisége (kávé)

A racionális fogyasztó heti üdítő fogyasztása 15 doboz üdítő, heti kávé fogyasztása 10 csésze kávé \rightarrow A(x*;y*) = A(15;10).

b) Ha az üdítő ára 25%-kal nő, hogyan változik a heti üdítő- és kávéfogyasztás?

jövedelem I = 3000

üdítő $\rightarrow x$

kávé $\rightarrow y$

1 kis doboz üdítő ára $\rightarrow p_x^2 = 100 \cdot 1.25 = 125 Ft$

1 csésze kávé $\rightarrow p_v = 150 Ft$

a fogyasztó preferenciáit leíró hasznossági függvény $\rightarrow U = xy$

1. megoldási lehetőség

Cobb-Douglas típusú hasznossági függvény esetén

$$U(x,y) = A \cdot x^a y^b \rightarrow U = 1 \cdot x^1 y^1$$

$$x^* = \frac{a}{a+b} \cdot \frac{I}{p_x}$$

$$y^* = \frac{b}{a+b} \cdot \frac{I}{p_y}$$

$$y^* = \frac{b}{a+b} \cdot \frac{I}{p_y}$$

$$\frac{a}{a+b}$$
 \Rightarrow a fogyasztó jövedelmének $\frac{a}{a+b}$ részét költi az x jószágra

$$\frac{b}{a+b}$$
 \rightarrow a fogyasztó jövedelmének $\frac{b}{a+b}$ részét költi az y jószágra

$$x^* = \frac{a}{a+b} \cdot \frac{I}{p_x}$$

$$x^* = \frac{1}{1+1} \cdot \frac{3000}{125}$$

$$x^* = 12$$

$$y^* = \frac{b}{a+b} \cdot \frac{I}{p_y}$$

$$y^* = \frac{1}{1+1} \cdot \frac{3000}{150}$$

$$y^* = 10$$

$$\mathbf{B}(\mathbf{x}^*;\mathbf{y}^*) = \mathbf{B}(12;10)$$

2. megoldási lehetőség

- 1. költségvetési egyenes egyenlete
- 2. a költségvetési egyenes meredeksége = a közömbösségi görbe meredeksége

$$1. \ p_x x + p_y y = I$$

$$2. \left| \frac{p_x}{p_y} \right| = |MRS|$$

A költségvetési egyenes:

$$p_x x + p_y y = I$$
$$125x + 150y = 3000$$

A költségvetési egyenes meredeksége:

$$\left| \frac{p_x}{p_y} \right| = \frac{125}{150} = \frac{5}{6}$$

A közömbösségi görbe meredeksége:

• a fogyasztók hasznossági függvénye $\rightarrow U = xy$

$$|MRS| = \frac{y}{x}$$

Az optimum feltétel:

$$\frac{\left|\frac{p_x}{p_y}\right| = |MRS|}{\left|\frac{5}{6}\right| = \frac{y}{x}}$$

Az egyenletrendszer:

1.
$$125x + 150y = 3000$$

$$2. \frac{5}{6} = \frac{y}{x}$$

$$2. \frac{5}{6} = \frac{y}{x}$$
$$5x = 6y$$

$$5x = 6$$

$$y = \frac{5}{6}x$$

1.
$$125x + 150y = 3000$$

$$125x + 150 \cdot \left(\frac{5}{6}x\right) = 3000$$

$$125x + 125x = 3000$$

$$250x = 3000$$

$$x^* = 12$$

$$y = \frac{5}{6}x$$

$$y = \frac{5}{6} \cdot 12$$

$$\mathbf{y}^* = \mathbf{10}$$

 $B(x^*;y^*) = B(12;10)$

y termék mennyisége

Az üdítő árának növekedését követően a racionális fogyasztó heti üdítő fogyasztása 12 doboz üdítő, heti kávé fogyasztása 10 csésze kávé \Rightarrow B(x*;y*) = B(12;10).

c) Ha az áremelkedést követően a fogyasztónak a két jószágra fordított jövedelme másfélszeresére nő, hogyan változik a heti üdítő- és kávéfogyasztás?

jövedelem
$$I_2 = 3000 \cdot 1.5 = 4500$$

üdítő $\rightarrow x$

kávé $\rightarrow y$

1 kis doboz üdítő ára $\rightarrow p_x^2 = 100 \cdot 1.25 = 125 Ft$

1 csésze kávé $\rightarrow p_v = 150 Ft$

a fogyasztó preferenciáit leíró hasznossági függvény $\rightarrow U = xy$

1. megoldási lehetőség

Cobb-Douglas típusú hasznossági függvény esetén

$$U(x,y) = A \cdot x^a y^b \rightarrow U = 1 \cdot x^1 y^1$$

$$x^* = \frac{a}{a+b} \cdot \frac{I}{p_x}$$

$$y^* = \frac{b}{a+b} \cdot \frac{I}{p_y}$$

$$\frac{a}{a+b}$$
 → a fogyasztó jövedelmének $\frac{a}{a+b}$ részét költi az x jószágra $\frac{b}{a+b}$ → a fogyasztó jövedelmének $\frac{b}{a+b}$ részét költi az y jószágra

$$x^* = \frac{a}{a+b} \cdot \frac{I}{p_x}$$

$$y^* = \frac{b}{a+b} \cdot \frac{I}{p_y}$$

$$x^* = \frac{1}{1+1} \cdot \frac{4500}{125}$$

$$y^* = \frac{1}{1+1} \cdot \frac{4500}{150}$$

$$y^* = 15$$

$$C(x^*;y^*) = C(18;15)$$

2. megoldási lehetőség

- 1. költségvetési egyenes egyenlete
- 2. a költségvetési egyenes meredeksége = a közömbösségi görbe meredeksége

1.
$$p_x x + p_y y = I$$

$$2. \left| \frac{p_x}{p_y} \right| = |MRS|$$

A költségvetési egyenes:

$$p_x x + p_y y = I$$
$$125x + 150y = 4500$$

A költségvetési egyenes meredeksége:

$$\left| \frac{p_x}{p_y} \right| = \frac{125}{150} = \frac{5}{6}$$

A közömbösségi görbe meredeksége:

• a fogyasztók hasznossági függvénye $\rightarrow U = xy$

$$|MRS| = \frac{y}{x}$$

Az optimum feltétel:

$$\frac{\left|\frac{p_x}{p_y}\right|}{\left|\frac{p_x}{p_y}\right|} = \left|MRS\right|$$

$$\frac{5}{6} = \frac{y}{x}$$

Az egyenletrendszer:

1.
$$125x + 150y = 4500$$

$$2. \ \frac{5}{6} = \frac{y}{x}$$

$$2. \frac{5}{6} = \frac{y}{x}$$
$$5x = 6y$$
$$y = \frac{5}{6}x$$

1.
$$125x + 150y = 4500$$

$$125x + 150 \cdot \left(\frac{5}{6}x\right) = 4500$$

$$125x + 125x = 4500$$

$$250x = 4500$$

$$x^* = 18$$

$$y = \frac{5}{6}x$$

$$y = \frac{5}{6} \cdot 18$$

$$\mathbf{v}^* = 15$$

 $\mathbf{C}(\mathbf{x}^*;\mathbf{y}^*) = \mathbf{C}(18;15)$

y termék mennyisége (kávé)

Az üdítő árának növekedését, és a fogyasztó jövedelmének növekedését követően a racionális fogyasztó heti üdítő fogyasztása 18 doboz üdítő, heti kávé fogyasztása 15 csésze kávé $\rightarrow C(x^*;y^*) = C(18;15)$.

Berde 30. o. \rightarrow 32. a,b feladat

Kis Pista hetente 36 000 Ft-ot költ szórakozásra. A 36 000 Ft-ból színházba megy, és kedvenc bárjában koktélt iszik. Egy koktél (a koktél fogyasztott mennyisége y) ára 600 Ft, egy színházjegy (a színházjegy vásárolt mennyisége x) 2400 Ft-ba kerül. Preferenciáit az $U = x^2y$ hasznossági függvény írja le. (Ez a feladat a "Költségvetési egyenes" szakaszban található, hasonlóan kezdődő feladatunk folytatása.)

- Hányszor megy színházba, és mennyi koktélt iszik?
- b) Hányszor megy színházba, és mennyi koktélt iszik, ha az eddig 0 adókulcsos színházjegyekre 25%-os adót vetnek ki?

jövedelem I = 36000színházjegy $\rightarrow x$ koktél $\rightarrow y$ a színházjegy ára $\rightarrow p_x = 2400$ a koktél ára $\rightarrow p_v = 600$ a fogyasztó preferenciáit leíró hasznossági függvény $\rightarrow U = x^2 y$

a) Hányszor megy színházba, és mennyi koktélt iszik?

1. megoldási lehetőség

Cobb-Douglas típusú hasznossági függvény esetén

$$U(x,y) = A \cdot x^a y^b \rightarrow U = 1 \cdot x^2 y^1$$

$$x^* = \frac{a}{a+b} \cdot \frac{I}{p_x}$$

$$x^* = \frac{a}{a+b} \cdot \frac{I}{p_x}$$

$$y^* = \frac{b}{a+b} \cdot \frac{I}{p_y}$$

$$\frac{a}{a+b}$$
 → a fogyasztó jövedelmének $\frac{a}{a+b}$ részét költi az x jószágra $\frac{b}{a+b}$ → a fogyasztó jövedelmének $\frac{b}{a+b}$ részét költi az y jószágra

$$x^* = \frac{a}{a+b} \cdot \frac{I}{p_x}$$

$$x^* = \frac{2}{2+1} \cdot \frac{36000}{2400}$$

$$y^* = \frac{b}{a+b} \cdot \frac{I}{p_y}$$

$$y^* = \frac{1}{2+1} \cdot \frac{36000}{600}$$

$$y^* = 20$$

$$\mathbf{A}(\mathbf{x}^*;\mathbf{y}^*) = \mathbf{A}(\mathbf{10};\mathbf{20})$$

2. megoldási lehetőség

1. költségvetési egyenes egyenlete

2. a költségvetési egyenes meredeksége = a közömbösségi görbe meredeksége

1.
$$p_x x + p_y y = I$$

$$2. \left| \frac{p_x}{p_y} \right| = |MRS|$$

A költségvetési egyenes:

$$p_x x + p_y y = I$$

$$2400x + 600y = 36000$$

A költségvetési egyenes meredeksége:

$$\left| \frac{p_x}{p_y} \right| = \frac{2400}{600} = 4$$

A közömbösségi görbe meredeksége:

• a fogyasztók hasznossági függvénye $\rightarrow U = x^2y$

$$|MRS| = \frac{\partial U(x,y)}{\partial x} = \frac{MU_x}{MU_y}$$

$$MU_x = \frac{\partial U(x,y)}{\partial x} = 2xy$$

$$MU_{y} = \frac{\partial U(x, y)}{\partial y} = x^{2}$$

$$|MRS| = \frac{2xy}{x^2} = \frac{2y}{x}$$

Az optimum feltétel:

$$\left| \frac{p_x}{p_y} \right| = |MRS|$$

$$4 = \frac{2y}{x}$$

Az egyenletrendszer:

1.
$$2400x + 600y = 36000$$

2.
$$4 = \frac{2y}{x}$$

$$2. \ 4 = \frac{2y}{x}$$
$$4x = 2y$$
$$y = 2x$$

1.
$$2400x + 600y = 36000$$

 $2400x + 600 \cdot (2x) = 36000$
 $2400x + 1200x = 36000$
 $3600x = 36000$
 $\mathbf{x}^* = \mathbf{10}$

$$y = 2x$$
$$y = 2 \cdot 20$$

$$\mathbf{y}^* = \mathbf{20}$$

$$\mathbf{A}(\mathbf{x}^*;\mathbf{y}^*) = \mathbf{A}(\mathbf{10};\mathbf{20})$$

x termék mennyisége

Kis Pista hetente tízszer megy színházba és hetente 20 koktélt iszik \rightarrow $A(x^*;y^*) = A(10;20)$.

b) Hányszor megy színházba, és mennyi koktélt iszik, ha az eddig 0 adókulcsos színházjegyekre 25%-os adót vetnek ki?

jövedelem
$$I=36\,000$$
 színházjegy $\Rightarrow x$ koktél $\Rightarrow y$ a színházjegy ára $\Rightarrow p_x \cdot (1+T) = 2400 \cdot 1.25 = 3000$ a koktél ára $\Rightarrow p_y = 600$ a fogyasztó preferenciáit leíró hasznossági függvény $\Rightarrow U = x^2 y$

A költségvetési egyenes:

$$p_x x + p_y y = I$$
$$3000x + 600y = 36000$$

1. megoldási lehetőség

Cobb-Douglas típusú hasznossági függvény esetén

$$U(x,y) = A \cdot x^a y^b \implies U = 1 \cdot x^2 y^1$$

$$x^* = \frac{a}{a+b} \cdot \frac{I}{p_x}$$

$$x^* = \frac{a}{a+b} \cdot \frac{I}{p_x}$$

$$y^* = \frac{b}{a+b} \cdot \frac{I}{p_y}$$

$$\frac{a}{a+b}$$
 → a fogyasztó jövedelmének $\frac{a}{a+b}$ részét költi az x jószágra $\frac{b}{a+b}$ → a fogyasztó jövedelmének $\frac{b}{a+b}$ részét költi az y jószágra

$$x^* = \frac{a}{a+b} \cdot \frac{I}{p_x}$$

$$x^* = \frac{2}{2+1} \cdot \frac{36000}{3000}$$

$$y^* = \frac{b}{a+b} \cdot \frac{I}{p_y}$$

$$y^* = \frac{1}{2+1} \cdot \frac{36000}{600}$$

$$y^* = 20$$

$$\mathbf{B}(\mathbf{x}^*;\mathbf{y}^*) = \mathbf{B}(\mathbf{8};\mathbf{20})$$

2. megoldási lehetőség

1.
$$p_x x + p_y y = I$$

$$2. \left| \frac{p_x}{p_y} \right| = |MRS|$$

A költségvetési egyenes:

$$p_x x + p_y y = I$$

$$3000x + 600y = 36000$$

A költségvetési egyenes meredeksége:

$$\left|\frac{p_x}{p_y}\right| = \frac{3000}{600} = 5$$

A közömbösségi görbe meredeksége:

• a fogyasztók hasznossági függvénye $\rightarrow U = x^2 y$

$$\left| MRS \right| = \frac{2xy}{x^2} = \frac{2y}{x}$$

Az optimum feltétel:

$$\left| \frac{p_x}{p_y} \right| = |MRS|$$

$$5 = \frac{2y}{x}$$

Az egyenletrendszer:

1.
$$3000x + 600y = 36000$$

$$2. 5 = \frac{2y}{x}$$

2.
$$5 = \frac{2y}{x}$$

$$5x = 2y$$

$$y = 2.5x$$

1.
$$3000x + 600y = 36000$$

$$3000x + 600 \cdot (2.5x) = 36000$$

$$3000x + 1500x = 36000$$

$$4500x = 36000$$

$$x^* = 8$$

$$y = 2.5x$$

$$y = 2.5 \cdot 8$$

$$\mathbf{y}^* = \mathbf{20}$$

$$\mathbf{B}(\mathbf{x}^*;\mathbf{y}^*) = \mathbf{B}(\mathbf{8};\mathbf{20})$$

x termék mennyisége

Kis Pista a színházjegyre bevezetett adót követően hetente nyolcszor megy színházba és hetente 20 koktélt iszik $\rightarrow B(x^*;y^*) = B(8;20)$.

Berde 30. o. \rightarrow 33. feladat

Egy fiatal pár, Romantik Rózsa és Róbert szeretik a gyertyafényes vacsorákat, s havonta 6000 Ft-ot költenek borra (x) és díszgyertyára (y). Ha az összes pénzt borra költenék, akkor 12 üveg bort vehetnének. Egy díszgyertya 250 Ft-ba kerül. Preferenciáik a borra és díszgyertyára vonatkozóan Cobb-Douglas-féle hasznossági függvénnyel írhatok le.

- Rózsának a borra és díszgyertyára vonatkozó preferenciáit az $U = xy^2$, miközben Róbert preferenciáit az $U = x^2y$ hasznossági függvény fejezi ki. Egyik hónapban Rózsa vásárol, a másikban Róbert. Hány üveg bort és mennyi díszgyertyát vesznek abban a hónapban, amikor
 - Rózsa vásárol;
 - Róbert vásárol?
- b) Mennyi lesz Rózsa és Róbert helyettesítési határrátája az optimális választás pontjában? Adjunk magyarázatot a kapott eredményre!

havi jövedelem I = 6000 Ftbor $\rightarrow x$ díszgyertya $\rightarrow v$

 $\frac{I}{I}$ = 12 \Rightarrow ha az összes pénzt borra költenék, akkor 12 üveg bort vehetnének

1 db díszgyertya ára $\rightarrow p_v = 250 Ft$

Rózsa preferenciáit leíró hasznossági függvény $\rightarrow U = xy^2$

Róbert preferenciáit leíró hasznossági függvény $\rightarrow U = x^2y$

a) Hány üveg bort és mennyi díszgyertyát vesznek abban a hónapban, amikor Rózsa vásárol, és amikor Róbert vásárol?

Ha Rózsa vásárol
$$\rightarrow$$
 U = xy^2

$$\frac{I}{p_x} = 12$$

$$\frac{6000}{p_x} = 12$$

$$p_x = 500$$

1. megoldási lehetőség

Cobb-Douglas típusú hasznossági függvény esetén

$$U(x,y) = A \cdot x^a y^b \rightarrow \mathbf{U} = \mathbf{1} \cdot \mathbf{x}^1 \mathbf{y}^2$$

$$x^* = \frac{a}{a+b} \cdot \frac{I}{p_x}$$

$$y^* = \frac{b}{a+b} \cdot \frac{I}{p_y}$$

$$y^* = \frac{b}{a+b} \cdot \frac{I}{p_y}$$

 $\frac{a}{a+b}$ \rightarrow a fogyasztó jövedelmének $\frac{a}{a+b}$ részét költi az x jószágra $\frac{b}{a+b}$ \rightarrow a fogyasztó jövedelmének $\frac{b}{a+b}$ részét költi az y jószágra

$$x^* = \frac{a}{a+b} \cdot \frac{I}{p_x}$$

$$x^* = \frac{1}{1+2} \cdot \frac{6000}{500}$$

$$x^* = \frac{1}{3} \cdot 12$$

$$y^* = \frac{b}{a+b} \cdot \frac{I}{p_y}$$

$$y^* = \frac{2}{1+2} \cdot \frac{6000}{250}$$

$$y^* = \frac{2}{3} \cdot 24$$

$$y^* = 16$$

2. megoldási lehetőség

- 1. költségvetési egyenes egyenlete
- 2. a költségvetési egyenes meredeksége = a közömbösségi görbe meredeksége

1.
$$p_x x + p_y y = I$$

2. $\left| \frac{p_x}{p_y} \right| = |MRS|$

A költségvetési egyenes:

$$p_x x + p_y y = I$$
$$500x + 250y = 6000$$

A költségvetési egyenes meredeksége:

$$\left|\frac{p_x}{p_y}\right| = \frac{500}{250} = 2$$

A közömbösségi görbe meredeksége:

• a fogyasztók hasznossági függvénye $\rightarrow U = xy^2$

$$|MRS| = \frac{\frac{\partial U(x,y)}{\partial x}}{\frac{\partial U(x,y)}{\partial y}} = \frac{MU_x}{MU_y}$$

$$MU_x = \frac{\partial U(x,y)}{\partial x} = y^2$$

$$MU_y = \frac{\partial U(x,y)}{\partial y} = x2y$$

$$|MRS| = \frac{y^2}{2xy} = \frac{y}{2x}$$

VAGY

$$\left| \mathbf{MRS} \right| = \frac{\mathbf{a}}{\mathbf{b}} \cdot \frac{\mathbf{y}}{\mathbf{x}}$$

$$|MRS| = 1 \cdot \frac{1}{2} \cdot \frac{y}{x} = \frac{y}{2x}$$

Az optimum feltétel:

$$\left| \frac{p_x}{p_y} \right| = |MRS|$$

$$2 = \frac{y}{2x}$$

Az egyenletrendszer:

1.
$$500x + 250y = 6000$$

$$2. \ 2 = \frac{y}{2x}$$

2.
$$2 = \frac{y}{2x}$$

$$4x = y$$

1.
$$500x + 250y = 6000$$

$$500x + 250 \cdot (4x) = 6000$$

$$500x + 1000x = 6000$$

$$1500x = 6000$$

$$x^* = 4$$

$$y = 4x$$

$$y = 4 \cdot 4$$

$$y^* = 16$$

$$\mathbf{A}(\mathbf{x}^*;\mathbf{y}^*) = \mathbf{A}(\mathbf{4};\mathbf{16})$$

Ha Rózsa vásárol, akkor 4 üveg bort és 16 db díszgyertyát vesz \rightarrow $A(x^*;y^*) = A(4;16)$.

Ha Róbert vásárol $\rightarrow U = x^2y$

1. megoldási lehetőség

Cobb-Douglas típusú hasznossági függvény esetén

$$U(x,y) = A \cdot x^a y^b \rightarrow \mathbf{U} = \mathbf{1} \cdot \mathbf{x}^2 \mathbf{y}^1$$

$$x^* = \frac{a}{a+b} \cdot \frac{I}{p_x}$$

$$y^* = \frac{b}{a+b} \cdot \frac{I}{p_y}$$

$$\frac{a}{a+b}$$
 \rightarrow a fogyasztó jövedelmének $\frac{a}{a+b}$ részét költi az x jószágra

$$\frac{b}{a+b}$$
 \rightarrow a fogyasztó jövedelmének $\frac{b}{a+b}$ részét költi az y jószágra

$$x^* = \frac{a}{a+b} \cdot \frac{I}{p_x}$$

$$x^* = \frac{2}{2+1} \cdot \frac{6000}{500}$$

$$x^* = \frac{2}{3} \cdot 12$$

$$y^* = \frac{b}{a+b} \cdot \frac{I}{p_y}$$

$$y^* = \frac{1}{2+1} \cdot \frac{6000}{250}$$

$$y^* = \frac{1}{3} \cdot 24$$

$$y^* = 8$$

$$B(x^*;y^*) = B(8;8)$$

2. megoldási lehetőség

- 1. költségvetési egyenes egyenlete
- 2. a költségvetési egyenes meredeksége = a közömbösségi görbe meredeksége

$$1. \ p_x x + p_y y = I$$

$$2. \left| \frac{p_x}{p_y} \right| = |MRS|$$

A költségvetési egyenes:

$$p_x x + p_y y = I$$

$$500x + 250y = 6000$$

A költségvetési egyenes meredeksége:

$$\left|\frac{p_x}{p_y}\right| = \frac{500}{250} = 2$$

A közömbösségi görbe meredeksége:

• a fogyasztók hasznossági függvénye $\rightarrow U = x^2y$

$$|MRS| = \frac{\partial U(x,y)}{\partial x} = \frac{MU_x}{MU_y}$$

$$MU_x = \frac{\partial U(x,y)}{\partial x} = 2xy$$

$$MU_y = \frac{\partial U(x,y)}{\partial y} = x^2$$

$$|MRS| = \frac{2xy}{x^2} = \frac{2y}{x}$$

VAGY

$$|\mathbf{MRS}| = \frac{\mathbf{a}}{\mathbf{b}} \cdot \frac{\mathbf{y}}{\mathbf{x}}$$

$$|MRS| = 1 \cdot \frac{2}{1} \cdot \frac{\mathbf{y}}{\mathbf{x}} = \frac{2\mathbf{y}}{\mathbf{x}}$$

Az optimum feltétel:

$$\left| \frac{p_x}{p_y} \right| = |MRS|$$

$$2 = \frac{2y}{x}$$

Az egyenletrendszer:

1.
$$500x + 250y = 6000$$

$$2. \ 2 = \frac{2y}{x}$$

$$2. \ 2 = \frac{2y}{x}$$
$$2x = 2y$$
$$y = x$$

1.
$$500x + 250y = 6000$$

 $500x + 250x = 6000$
 $750x = 6000$
 $\mathbf{x}^* = \mathbf{8}$

$$y = x$$
$$y^* = 8$$
$$B(x^*; y^*) = B(8; 8)$$

Ha Róbert vásárol, akkor 8 üveg bort és 8 db díszgyertyát vesz $\rightarrow B(x^*;y^*) = B(8;8)$.

b) Mennyi lesz Rózsa és Róbert helyettesítési határrátája az optimális választás pontjában? Adjunk magyarázatot a kapott eredményre!

Rózsa	Róbert	
$U = xy^2$	$U = x^2 y$	
$ MRS = \frac{y^2}{2xy} = \frac{y}{2x}$	$ U = x^{2}y$ $ MRS = \frac{2xy}{x^{2}} = \frac{2y}{x}$	
$A(x^*; y^*) = A(4;16)$	$B(x^*; y^*) = B(8;8)$	
$ MRS(A) = \frac{y}{2x} = \frac{16}{2 \cdot 4} = \frac{16}{8} = 2$	$ MRS(B) = \frac{2y}{x} = \frac{2 \cdot 8}{8} = \frac{16}{8} = 2$	

- 1 üveg borért mindketten 2 db díszgyertyát hajlandók feláldozni \Rightarrow pontosan annyit, mint amennyi a piaci árarány (mint amennyit a piacon kell) $\Rightarrow \left| \frac{p_x}{p_y} \right| = \frac{500}{250} = 2$
- ez nem meglepő, hiszen pontosan ez az optimális kosár egyik feltétele $\Rightarrow \left| \frac{p_x}{p_y} \right| = |MRS|$
- vagyis, a fogyasztó pont annyi y jószágot hajlandó feláldozni 1 x jószágért, amennyit a piacon fel kell áldozni → azaz, ami egyenlő a piaci áraránnyal

y termék mennyisége (díszgyertya)

- mindkét optimális kosár a költségvetési egyenes harmadoló pontjában van:
- Rózsáé $\rightarrow U = xy^2 \rightarrow \text{az } y \text{ tengelymetszethez közelebb}$
- Róberté $\rightarrow U = x^2 y \rightarrow az x$ tengelymetszethez közelebb

Rózsa $\rightarrow U = xy^2$ Róbert $\rightarrow U = x^2y$		$U = x^2 y$	
$x^* = \frac{a}{a+b} \cdot \frac{I}{p_x}$	$y^* = \frac{b}{a+b} \cdot \frac{I}{p_y}$	$x^* = \frac{a}{a+b} \cdot \frac{I}{p_x}$	$y^* = \frac{b}{a+b} \cdot \frac{I}{p_y}$
	$y^* = \frac{2}{3} \cdot 24$	$x^* = \frac{2}{3} \cdot 12$	$y^* = \frac{1}{3} \cdot 24$
$\mathbf{x}^* = 4$	$\mathbf{y}^* = 16$	$\mathbf{x}^* = 8$	$y^* = 8$
Rózsa a jövedelmének $\frac{1}{3}$ -át költi az x		Róbert a jövedelmének $\frac{2}{3}$ -át költi $az x$	
jószágra, és $\frac{2}{3}$ -át az y jószágra		jószágra, és $\frac{1}{3}$ -át az y jószágra	

Rózsa preferenciáit leíró hasznossági függvény $\rightarrow U = xy^2$ Róbert preferenciáit leíró hasznossági függvény $\rightarrow U = x^2y$