cisco Live!

End-to-End QoS Implementation and Operation with Nexus

Nemanja Kamenica Technical Marketing Engineer BRKDCN-3223

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 17, 2022.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKDCN-3223

BRKDCN-3223

Abstract

• This session will provide a deep understanding of the End-to-End Quality of Service (QoS) Implementation and Operation in a Nexus Data Center network. We will cover the basics of QoS and Queuing and then take a look at the related best practices from a Nexus 9000 perspective. A strong focus will be on the platform architectures as they relate to QoS and Queuing. The session will close with a step-by-step case study of QoS deployment in a Nexus 9000 data center environment.

Session Objectives

- Provide a refresh of QoS Basics
- Understand QOS implementation on Nexus Operating System
- Provide a detailed understanding of QoS on Nexus Nexus 9000 platforms
- Learn how to configure QOS on Nexus 9000 devices through real-world configuration examples

Session Non-Objectives

- Data Centre QoS Methodology
- Nexus hardware architecture deep-dive
- Application Centric Infrastructure (ACI) QOS

Agenda

- Introduction
- QoS Basics
- QoS Implementation on Nexus
- Nexus 9000 Cloud Scale QoS
- Real World Configuration Examples
- Conclusion

Congestion Happens Everyday!

Why QoS in the Data Centre?

Maximize Throughput and Manage Congestion!

Can Traffic Control help ...

... or confuse

... or hurt

Agenda

- Introduction
- QoS Basics
- QoS Implementation on Nexus
- Nexus 9000 Cloud Scale QoS
- Real World Configuration Examples
- Conclusion

The QoS Toolset

Identify and Split Traffic into Different Classes Discard
Misbehaving
Traffic to Maintain
Network Integrity

Mark Traffic
According to
Behavior and
Business
Policies

Prioritize,
Protect and
Isolate Traffic
Based on
Markings

Control
Bursts and
Conform
Traffic

Classification and Marking

Two sides of a coin

- Classification Identify and separate traffic in classes
- Identify traffic
 - ACLs
 - · CoS
 - DSCP
 - · IP PRFC
- Marking Mark traffic with QoS priority value
- Marking Traffic
 - With new priority value (i.e. CoS or DSCP)
 - Changing Like to Like (i.e. CoS to CoS)
 - Like to Unlike (i.e. DSCP to CoS)

#CiscoLive

Policing - Limit Misbehaving Traffic

- Policing Protecting other classes by dropping traffic in misbehaving class
- Single rate Two Color Policer
 - Conform Action (permit)
 - Exceed Action (drop)
- Two rate Three Color Policer
 - Conform Action (permit)
 - Exceed Action (markdown)
 - Violate Action (drop)

#CiscoLive

Buffering - Why do we need it?

- Buffering Storing data packets in memory
- Many to One Conversations
 - · Client to Server
 - Server to Storage
 - Aggregation Points
- Speed Mismatch
 - · Client to WAN to Server

FYI

Queueing

- Traffic in buffer is divided logically in the queues
- Queueing provide dedicated buffer for packets of different priority
- Traffic separation allows multiple traffic classes to be mapped to same or different queue
- Traffic in a queue can be treated differently from other queues

FYI

Scheduling

- Scheduling defines order of transmission of traffic out the queues
- Different types of queue are server differently
 - Strict Priority Queue always serviced first
 - Normal Queues served only after priority queue is empty
- Normal queues can have different algorithms

Common Scheduling Algorithms

- Round Robin (RR)
 - Simple and Easy to implement
 - Starvation-free

- Weighted Round Robin (WRR)
 - Serves n packets per non-empty queue
 - Assumes a mean packet size

- Deficit Weighted Round Robin
 - Variable sized packets
 - Uses a deficit counter

- · Shaped Round Robin
 - More even distributed ordering
 - Weighted interleaving of flows

Shaping

- Shaping Smooth out traffic peaks, microburst, with preserving all traffic
- Usually in egress direction to limit traffic toward ISP

- Tail Drop (TD)
 - Drop packets at tail of the queue
 - Single threshold per queue

- Tail Drop (TD)
 - Drop packets at tail of the queue
 - Single threshold per queue

- Tail Drop (TD)
 - Drop packets at tail of the queue
 - Single threshold per queue
- Weighted Random Early Drop (WRED)
 - One or more thresholds per queue
 - Threshold associated with priority
 - Buffer usage below threshold no affect

- Tail Drop (TD)
 - Drop packets at tail of the queue
 - Single threshold per queue
- Weighted Random Early Drop (WRED)
 - One or more thresholds per queue
 - Threshold associated with priority
 - Buffer usage below threshold no affect
 - Buffer usage over min threshold = random drops

- Tail Drop (TD)
 - Drop packets at tail of the queue
 - Single threshold per queue
- Weighted Random Early Drop (WRED)
 - One or more thresholds per queue
 - Threshold associated with priority
 - Buffer usage below threshold no affect
 - Buffer usage over min threshold = random drops
 - Buffer usage over max threshold = all traffic drop

Agenda

- Introduction
- QoS Basics
- QoS Implementation on Nexus
- Nexus 9000 Cloud Scale QoS
- Real World Configuration Examples
- Conclusion

Nexus uses Modular QOS CLI (MQC)

Three Different Types

Class-map

Policy-map

Service-policy

Type QoS
CoS
DSCP
PREC
ACLs

Type
Queuing
qos-group

Type QoS Classification Marking Policing Type
Queuing
Queuing
Scheduling
Shaping

Type QoS
Interface
Port-channel
VLAN

Type
Queuing
Interface
System-gos

Type Network-QoS gos-group

Type Network-QoS MTU Non-drop

Type Network-QoS System-gos

Type Network-QoS Policy

- Define global queuing and scheduling parameters for all interfaces in switch
 - Identify drop/no-drop classes, MTU and WRED/TD, etc.
- One Network-QoS policy per system, applies to all ports
- Assumption is Network-QoS policy defined/applied consistently network-wide

- System based QoS Policy gets globally applied to a system (to all interfaces)
- System based QoS Policy is configured in System QoS
- Type Queueing can be attached to the system level
- Type Network-QoS is mandatory to be attached to the system level


```
Nexus(config)# system qos
Nexus(config-sys-qos)# service-policy type network-qos myPolicy
```


FYI

VLAN Based QoS Policy Attachment

- VLAN based QoS Policy is configured in VLAN Database
- No SVI (aka L3 VLAN Interface) required

Nexus(config) # vlan configuration <vlan-id>
Nexus(config-vlan) # service-policy type gos input myPolicy

#CiscoLive

FYI

Interface based Type QOS Policy attachment

 Interface based type qos Policy takes precedence over VLAN

 Can also be attached to portchannel and applies to all member-ports


```
Nexus(config)# interface ethernet 1/1
Nexus(config-if)# service-policy type qos input myPolicy
```


BRKDCN-3223

Interface based Type Queuing Policy attachment

FYI

- Type Queuing has to be attached to a physical interface or system level
- Queuing Policy can be attached to port-channel and all member ports

Nexus(config) # interface ethernet 1/1
Nexus(config-if) # service-policy type queueing output myPolicy

FYI

Buffer types - Head of Line Blocking

What is the Problem?

FYI

Virtual Output Queuing

Output Queuing

Buffering on Nexus Models

4 Class Queuing Model

- Matches most Service-Provider offerings
- Ready for No-Drop traffic like FCoE
- One Class left to place traffic above or below Best-Effort traffic priority
 - Special Application which is drop sensitive (above Best-Effort -Critical)
 - Non-Critical Bandwidth intensive application (below Best-Effort -Scavenger)

Class	CoS	Queues
Priority	5-7	PQ
No-Drop	3	Q2
Better or Worse than Best-Effort	1,2,4	Q1
Best-Effort	0	Default-Q

- Matches often a Campus QoS concept |
- DSCP to CoS derivation does NOT apply anymore
 - (Topmost 3-Bit mapping from DSCP to CoS)
- No-Drop still with CoS3
- DSCP 24-30 are usable for IP storage traffic (RoCEv2)

Class	DSCP	Queues	
Priority	CS6 (CS7)	PQ	
Platinum	EF	, FQ	
Gold	AF41	Q7	
Silver	CS4	Q6	
No-Drop	CoS3	Q5	
Bronze	AF21	Q4	
Management	CS2	Q3	
Scavenger	AF11	Q2	
Bulk Data	CS1	Q1	
Best-Effort	0	Default-Q	

To Trust or Not To Trust?

- Data Centre architecture provides a new set of trust boundaries
- Virtual Switch extends the trust boundary into the Hypervisor
- Nexus Switches always trust CoS and DSCP

Data Center QoS Capabilities

Data Centre Converged Infrastructure

- Enable, sensitive to drop, storage traffic to use Fthernet
- Simplification of the infrastructure by using Ethernet for data and storage traffic
- Data Center QoS capabilities, enabling new transport:
 - PFC Priority Flow Control
 - ETS Enhanced Transmission Selection
 - DCBX Data Center Bridging Exchange
 - ECN Explicit Congestion Notification

Priority Flow Control

Flow Control Mechanism - 802.1Qbb

- A.k.a "Lossless Ethernet"
- PFC enables Flow Control on a Per-Priority basis
- Therefore, we have the ability to have lossless and lossy priorities at the same time on the same wire
- Allows traffic to operate over a lossless priority independent of other priorities
- Other traffic assigned to other priority will continue to transmit and rely on upper layer protocols for retransmission

Enhanced Transmission Selection

- Prevents a single traffic class of "hogging" all the bandwidth and starving other classes
- When a given load doesn't fully utilize its allocated bandwidth, it is available to other classes
- Helps accommodate for classes of a "bursty" nature

Data Center Bridging Exchange Protocol

DCBX Overview - 802.10az

- Negotiates Ethernet capability's PFC, ETS, CoS values between DCB capable peer devices
- Simplifies Management allows for configuration and distribution of parameters from one node to another
- DCBX is LLDP with new TLV fields.

https://www.cisco.com/en/US/netsol/ns783/index.html

```
dc11-5020-3# sh lldp dcbx interface eth 1/40
Local DCBXP Control information:
Operation version: 00 Max version: 00 Seq no: 7 Ack no: 0
Type/
                      En/Will/Adv Config
Subtype
           Version
006/000
            000
                       Y/N/Y
<snip>
```


Explicit Congestion Notification (ECN)

- IP Explicit Congestion Notification (ECN) is used for congestion notification.
- ECN enables end-to-end congestion notification between two endpoints on a IP network
- In case of congestion, ECN gets transmitting device to reduce transmission rate until congestion clears, without pausing traffic.
- ECN uses 2 LSB of Type of Service field in IP header

Notification

ECN	ECN Behavior	
0x00	Non ECN Capable	
0x10	ECN Capable Transport (0)	
0x01	ECN Capable Transport (1)	
0x11	Congestion Encountered	

IP Storage Transports in Data Center

- Converged storage Protocols:
- Requirement for FCoE and RoCEv1:
 - · PFC
 - ETS
- Requirement for RoCEv2
 - · PFC
 - · ETS
 - · ECN

MPLS network

- Mapping between IP priorities to EXP on PE router
- Classification is done biased on COS, DSCP, IP precedence or ACL
- DiffServ Tunneling mode provides different QOS behavior in provider network
 - Uniform mode delivers overlay priority
 - Pipe mode extends underlay priority

EXP	cos	DSCP	IP pres
0	0	0	0
1	1	8	1
2	2	16	2
3	3	24	3
4	4	32	4
5	5	40	5
6	6	48	6
7	7	56	7

Overlay QOS MPLS - Default Mode

BRKDCN-3223

Overlay QOS MPLS - Uniform Mode

FYI

Overlay QOS MPLS - Pipe Mode

51

VXLAN EVPN - VXLAN Encapsulation

- Ingress L3 packet, original priority is mapped to outer header priority
- Ingress L2 frame, COS value will be mapped to outer priority
- VLAN header is not preserved in VXLAN tunnel

COS	DSCP
0	0
1	8
2	16
3	26
4	32
5	46
6	48
7	56

VXLAN EVPN - VXLAN Decapsulation

- DSCP value is derived based on a priority mode for L3 traffic:
 - Uniform mode: delivers overlay priority copying outer header to decapsulated frame
 - Pipe mode: extends original priority copying inner header to decapsulated frame
- Marking can be configure on the egress VTEP mark decapsulated traffic with priority (COS, DSCP)

#CiscoLive

BRKDCN-3223

VXLAN - Uniform Mode

BRKDCN-3223

VXLAN - Pipe Mode

Agenda

- Introduction
- QoS Basics
- QoS Implementation on Nexus
- Nexus 9000 Cloud Scale QoS
- Real World Configuration Examples
- Conclusion

Nexus 9000 Overview

- Modular and Fixed chassis
- Optimized for high density 10G/25G/40G/50G/100G/ 200G/400G
- Standalone and ACI Mode
- Cisco Silicon Cloud Scale
 - Advanced QoS capabilities

#CiscoLive

Nexus 9000 - Cloud Scale

LS25600GX2A

- · 25.6T chip 8 slices of 8 x 400G each
- 9300-GX2A, 9408 TORs

LS12800GX2B

- 12.8T chip 4 slices of 8 x 400G each
- 9300-GX2B TORs

LS6400GX

- 6.4T chip 4 slices of 4 x 400G each
- 9300-GX TORs

Nexus 9000 - Cloud Scale

LS3600FX2

- 3.6T chip 2 slices of 18 x 100G with MACSEC
- 9300-FX2 TORs

LS1800FX/FX3

- 1.8T chip 1 slice of 18 x 100G with MACSEC
- X9700-FX modular line cards;
 9300-FX/FX3 TORs

What Is a "Slice"?

- Self-contained forwarding complex controlling subset of ports on single ASIC
- Separated into Ingress and Egress functions
- Ingress of each slice connected to egress of all slices
- Slice interconnect provides nonblocking any-to-any interconnection between slices

Cisco Nexus 9000 - Cloud Scale QoS Features

- · Classification based on:
 - · ACL
 - DSCP, CoS, and IP Precedence
- Marking traffic with:
 - DSCP
 - · CoS
 - · IP Precedence
- Policing:
 - 1R2C and 2R3C
 - Ingress and Egress

- Buffering/Queueing:
 - Shared egress buffer; 8
 Egress Queues
- · Scheduling:
 - Strict Priority Queuing and DWRR
- Shaping:
 - Egress per queue shaper
- Congestion Avoidance:
 - Tail Drop
 - · WRED with ECN

Buffering

- Cloud Scale platforms implement shared-memory egress buffered architecture
- Each ASIC slice has dedicated buffer only ports on that slice can use that buffer
- Dynamic Buffer Protection adjusts max thresholds based on class and buffer occupancy
- Intelligent buffer options maximize buffer efficiency

BRKDCN-3223

Queuing and Scheduling

- 8 qos-groups per output port
- Egress queuing policy defines priority and weights
- Dedicated classes for CPU traffic and SPAN traffic

Intelligent Buffering

Innovative Buffer Management for Cloud Scale switches

- Dynamic Buffer Protection (DBP) Controls buffer allocation for congested queues in shared-memory architecture
- Approximate Fair Drop (AFD) Maintains buffer headroom per queue to maximize burst absorption

 Dynamic Packet Prioritization (DPP) – Prioritizes short-lived flows to expedite flow setup and completion

Miercom Report: Speeding Applications in Data Centre Networks http://miercom.com/cisco-systems-speeding-applications-in-data-center-networks/

Dynamic Buffer Protection (DBP)

- Prevents any output gueue from consuming more than its fair share of buffer in shared-memory architecture
- Defines dynamic max threshold for each queue
 - If gueue length exceeds threshold, packet is discarded
 - Otherwise packet is admitted to gueue and scheduled for transmission
- Threshold calculated by multiplying free memory by configurable, perqueue Alpha (a) value (weight)
 - Alpha controls how aggressively DBP maintains free buffer pages during congestion events

Alpha Parameter Examples

Default Alpha on Cloud Scale switches

Buffering - Ideal versus Reality

Ideal buffer state Actual buffer state

Buffer available for burst absorption Buffer consumed by sustainedbandwidth TCP flows

Buffer available for burst absorption

Buffer consumed by sustainedbandwidth TCP flows

Sustained-bandwidth TCP flows back off before all buffer consumed

Sustained-bandwidth TCP flows consume all available buffer before backing off

FYI

Approximate Fair Drop (AFD)

Maintain throughput while minimizing buffer consumption by elephant flows – keep buffer state as close to the ideal as possible

Dynamic Packet Prioritization (DPP)

Prioritize initial packets of new / short-lived flows

Up to first 1023 packets of each flow assigned to higher-priority qos-

group

Configuration - Class-Map Type QoS

- Class-map type qos used to classify traffic based on
 - Access List
 - Priority (CoS, DSCP, IP Precedence)
- Match by singe criteria or match all criteria under class-map:
 - match-all: Traffic need to match all criteria under class map
 - match-any: Traffic needs to match any criteria under class map

```
class-map type qos match-all/match-any class-q1 match access-group HTTP match cos 1 match dscp 8
```


Configuration - Policy-Map Type QoS

- Policy-map type gos used to take action on class-map traffic
 - Set new priorities (COS, DSCP, IP Precedence)
 - Set a policer
- The policy-map sets gos-group

```
policy-map type gos Classification-Marking
  class class-q1
    set cos 1
    police cir 1000 mbps bc 200 ms conform transmit violate drop
    set qos-group 1
```


Qos-Group

- QoS group is used to reference classification for all the types class-maps
 - Class-map type queueing and type network gos have class-maps referencing gos-groups
 - Class-maps are present in system by default, no user interaction required
- Default class-map type queueing for Q1:

```
class-map type queuing match-any c-out-8q-q1
  match gos-group 1
```

Default class-map type network-gos for Q1

```
class-map type network-gos c-8g-ng1
  description Default class on gos-group 1
  match qos-group 1
```


Configuration - Policy-Map Type Queuing

- Policy-map type queueing define queuing and scheduling options
 - Define queue limit change alpha value
 - Define scheduling options, strict priority and weight for DWRR queues
- Default Queueing policy cannot be changed
 - User needs to define custom policy
- Shaping defined per queue in queueing policy

```
policy-map type queuing custom-8q-out-policy
  class type queuing c-out-8q-q7
    priority level 1
  class type queuing c-out-8q-q6
    bandwidth remaining percent 0
  class type queuing c-out-8q-q5
    bandwidth remaining percent 0
  class type queuing c-out-8q-q4
    bandwidth remaining percent 0
  class type queuing c-out-8q-q3
    bandwidth remaining percent 0
  class type queuing c-out-8q-q2
    bandwidth remaining percent 0
  class type queuing c-out-8q-q1
    bandwidth remaining percent 50
  class type queuing c-out-8q-q-default
    bandwidth remaining percent 50
```

Configuration - Policy-Map Type Network-QoS

- Policy-map type network-qos define:
 - · Non-drop queue
 - End to end queueing policy (8 queue or 4 queue)
- Default Network-QoS policy cannot be changed
 - User needs to define custom policy

```
policy-map type network-gos custom-8g-ng-
policy
  class type network-qos c-8q-nq7
    mt.u 1500
  class type network-gos c-8g-ng6
    m \pm 11 1500
  class type network-qos c-8q-nq5
    mt_{11} 1500
  class type network-gos c-8g-ng4
    mt.u 1500
  class type network-qos c-8q-nq3
    mtu 1500
  class type network-gos c-8g-ng2
    mt_{11} 1500
  class type network-gos c-8g-ng1
    mtu 1500
  class type network-qos c-8q-nq-default
    mt.u 1500
```


#CiscoLive

Configuration - Putting it all together


```
policy-map type gos Classification-Marking
 class class-q1
    set cos 1
    set gos-group 1
policy-map type queuing custom-8q-out-policy
<snip>
 class type queuing c-out-8q-q1
    bandwidth remaining percent 50
 class type queuing c-out-8q-q-default
    bandwidth remaining percent 50
policy-map type network-gos custom-8g-ng-policy
<snip>
 class type network-gos c-8g-ng1
   mt.u 1500
 class type network-gos c-8g-ng-default
   mtu 1500
interface Ethernet 1/1
 service-policy type gos input Classification-Marking
system gos
 service-policy type network-qos custom-8q-nq-policy
 service-policy type queuing output custom-8q-out-policy
```

class-map type gos match-any class-g1

match access-group HTTP

Nexus 9000 QoS Golden Rules

- CoS and DSCP are TRUSTED by default
- Use QoS-Groups to tie policies together
- Nexus 9000 Cloud Scale Egress Buffer
 - Queuing/scheduling policy attached in egress direction

Agenda

- Introduction
- QoS Basics
- QoS Implementation on Nexus
- Nexus 9000 Cloud Scale QoS
- Real World Configuration Examples
- Conclusion

What do we want to achieve?

Company XYZ's Business Goals

- Make sure no disruption in network services
 - · Put control traffic in priority queue
- Video/voice hosting also a business objective
 - · Put voice traffic in priority queue
 - Dedicated bandwidth to video traffic
- Flexibility in moving applications across servers
 - Dedicated bandwidth to vmotion/mobility
 - Everything else best-effort

Translating to the language of QoS

Application	CoS	DSCP	Queuing (Scheduling)	Character	
Best Effort	0, 1	0, 8	BW remaining 40%	High Volume / Less Important	
vMotion / Live Migration	2	N/A*	BW remaining 20%	Medium Volume / Important	
Multimedia	3, 4	24, 32	BW remaining 30%	Medium Volume Very Important	
Strict Priority	5	46	BW remaining 10%	Low Volume / Important / Delay Sensitive	
Network Control	6,7	48, 56	Priority Queue Low Volume / Very important		

^{*} Layer 2 traffic without IP header

Topology

Classification, Marking and Trust

Marking Definition

Application	CoS	DSCP	Character	
Best Effort	0, 1	0, 8	High Volume / Less Important	
vMotion / Live Migration	2	N/A*	Medium Volume / Important	
Multimedia	3, 4	24, 32	Medium Volume Very Important	
Strict Priority	5	46	Low Volume / Important / Delay Sensitive	
Network Control	6,7	48, 56	Low Volume / Very important	

Classification and Marking

Nexus 9300 Leaf (Host Interfaces)

```
ip access-list ACL QOS LOWPRIO
  10 permit ...
ip access-list ACL QOS VMOTION
  10 permit ...
ip access-list ACL QOS MULTIMEDIA
 10 permit ...
class-map type gos match-any CM QOS LOWPRIO COS1
 match access-group name ACL QOS LOWPRIO
class-map type qos match-any CM QOS VMOTION COS2
 match access-group name ACL QOS VMOTION
class-map type qos match-any CM QOS MULTIMEDIA COS4
 match access-group name ACL QOS MULTIMEDIA
class-map type qos match-any CM QOS STRICTPRIO COS5
 match cos 5
```

```
policy-map type qos PM QOS MARK COS IN
  class CM QOS STRICTPRIO COS5
    set qos-group 5
    set cos 5
    set dscp 46
  class CM QOS MULTIMEDIA COS4
    set qos-group 4
    set cos 4
    set dscp 32
  class CM QOS VMOTION COS2
    set qos-group 2
    set cos 2
class CM QOS LOWPRIO COS1
    set qos-group 1
    set cos 1
    set dscp 8
interface Ethernet 1/1
  service-policy type qos input PM QOS MARK COS IN
vlan configuration 100
  service-policy input PM QOS MARK COS IN
```


Classification and Marking

Nexus 9300 Leaf (Uplink Interfaces) and Nexus 9500 (Spine Interfaces)

```
class-map type qos match-any CM QOS LOWPRIO COS1
match dscp 8
!
class-map type qos match-any CM QOS VMOTION COS2
match dscp 16
!
class-map type qos match-any CM QOS MULTIMEDIA COS4
match dscp 32
!
class-map type qos match-any CM QOS STRICTPRIO COS5
match dscp 46
```

```
policy-map type qos PM QOS MARK COS IN

class CM QOS STRICTPRIO COS5

set qos-group 5

class CM QOS MULTIMEDIA COS4

set qos-group 4

class CM QOS VMOTION COS2

set qos-group 2

class CM QOS LOWPRIO COS1

set qos-group 1
!

interface Ethernet 1/1

service-policy type qos input PM QOS MARK COS IN
```


Queueing and Scheduling

Nexus 9300, and 9500

Application	CoS	DSCP	Queuing (Scheduling)	Queue limit (Alpha)	Queue	Character
Best Effort	1	8	BW percent 30%	Default (9)	qos-group 1	High Volume / Less Important
vMotion / Live Migration	2,3	16	BW percent 20%	Default (9)	qos-group 2	Medium Volume / Important
Multimedia	4	24, 32	BW percent 30%	Default (9)	qos-group 4	Medium Volume Very Important
Strict Priority	5	46	BW percent 10%	Default (9)	qos-group5	Low Volume / Important / Delay Sensitive
Network Control	6,7	48, 56	Priority Queue	Default (9)	priority	Low Volume / Very important

Queueing and Scheduling

Nexus 9300, and 9500

- Class-maps type queueing are predefined
- Class-maps referring to qos-groups

```
policy-map type queuing <a href="mailto:custom-8q-out-policy">custom-8q-out-policy</a>
  class type queuing c-out-8g-g7
    priority level 1
  class type queuing c-out-8g-g6
    bandwidth remaining percent 0
  class type queuing c-out-8q-q5
    bandwidth remaining percent 10
  class type queuing c-out-8q-q4
    bandwidth remaining percent 30
  class type queuing c-out-8q-q3
    bandwidth remaining percent 0
  class type queuing c-out-8q-q2
    bandwidth remaining percent 20
  class type queuing c-out-8g-g1
    bandwidth remaining percent 30
  class type queuing c-out-8q-q-default
    bandwidth remaining percent 10
```

system qos
service-policy type queuing output custom-8q-out-policy

Network-QoS

- Keep default Network-QoS:
 - · Default 8 Queue model
 - No configuration for non-drop queue

BRKDCN-3223

Agenda

- Introduction
- QoS Basics
- QoS Implementation on Nexus
- Nexus 9000 Cloud Scale QoS
- Real World Configuration Examples
- Conclusion

Why QoS in the Data Centre?

Assign Colour to Traffic

Manage Congestion

Maximise Throughput

With some help of my friends

I would like to thank all the people, who started the QoS journey and contributed to it:

- Lukas Krattiger, Distinguished Technical Marketing Engineer
- Tim Stevenson, Distinguished Technical Marketing Engineer
- Matthias Wessendorf, Principal Technical Marketing Engineer

Technical Session Surveys

- Attendees who fill out a minimum of four session surveys and the overall event survey will get Cisco Live branded socks!
- Attendees will also earn 100 points in the Cisco Live Game for every survey completed.
- These points help you get on the leaderboard and increase your chances of winning daily and grand prizes.

Cisco Learning and Certifications

From technology training and team development to Cisco certifications and learning plans, let us help you empower your business and career. www.cisco.com/go/certs

(CLCs) are prepaid training vouchers redeemed directly with Cisco.

Learn

Train

Certify

Cisco U.

IT learning hub that guides teams and learners toward their goals

Cisco Digital Learning

Subscription-based product, technology, and certification training

Cisco Modeling Labs

Network simulation platform for design, testing, and troubleshooting

Cisco Learning Network

Resource community portal for certifications and learning

Cisco Training Bootcamps

Intensive team & individual automation and technology training programs

Cisco Learning Partner Program

Authorized training partners supporting Cisco technology and career certifications

Cisco Instructor-led and Virtual Instructor-led training

Accelerated curriculum of product, technology, and certification courses

Cisco Certifications and Specialist Certifications

Award-winning certification program empowers students and IT Professionals to advance their technical careers

Cisco Guided Study Groups

180-day certification prep program with learning and support

Cisco Continuing Education Program

Recertification training options for Cisco certified individuals

Here at the event? Visit us at The Learning and Certifications lounge at the World of Solutions

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Thank you

cisco Live!

