Data Preprocessing

Nature of Real World Data

Real world data are generally

- Incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
- Noisy: containing errors or outliers
- Inconsistent: containing discrepancies in codes or names

Tasks in data preprocessing

- Data cleaning
- Data integration
- Data transformation
- Data reduction
- Data discretization

Data cleaning

- Fill in missing values (attribute or class value):
 - Ignore the tuple: usually done when class label is missing.
 - Use the attribute mean (or majority nominal value) to fill in the missing value.
 - Use the attribute mean (or majority nominal value) for all samples belonging to the same class.
 - Predict the missing value by using a learning algorithm:
- Identify outliers and smooth out noisy data:
 - Binning
 - Sort the attribute values and partition them into bins
 - Then smooth by bin means, bin median, or bin boundaries.
 - Clustering: group values in clusters and then detect and remove outliers
 - Regression: smooth by fitting the data into regression functions.
 - Correct inconsistent data: use domain knowledge or expert decision.

Data Integration

Integration of data from multiple databases or files. Integration of data from different file formats.

- TEXT
- CSV
- EXCEL
- XML
- Databases
- JSON, etc.

Data transformation

- Normalization:
 - Scaling attribute values to fall within a specified range.
 - Example: to transform V in [min, max] to V' in [0,1], apply V'=(V-Min)/(Max-Min)
 - Scaling by using mean and standard deviation (useful when min and max are unknown or when there are outliers): V'=(V-Mean)/StDev
- Aggregation: moving up in the concept hierarchy on numeric attributes.
- Generalization: moving up in the concept hierarchy on nominal attributes.
- Attribute construction: replacing or adding new attributes inferred by existing attributes.

Data reduction

- Reducing the number of attributes
 - Removing irrelevant attributes: attribute selection
 - Principal component analysis (PCA)
 - Data cube aggregation: applying roll-up, slice or dice operations.
- Reducing the number of attribute values
 - Binning (histograms): reducing the number of attributes by grouping them into intervals (bins).
 - Clustering: grouping values in clusters.
 - Aggregation or generalization
- Reducing the number of tuples
 - Sampling

Concept Heirarchy

Image Courtesy:

https://www.researchgate.net/publication/26161 3130_Star_Schema_Design_for_Concept_Hierarc hy_in_Attribute_Oriented_Induction/figures?lo=1

Discretization and generating concept hierarchies

- Unsupervised discretization class variable is not used.
 - Equal-interval (equiwidth) binning: split the whole range of numbers in intervals with equal size.
 - Equal-frequency (equidepth) binning: use intervals containing equal number of values.
- Supervised discretization uses the values of the class variable.
 - Using class boundaries. Three steps:
 - Sort values.
 - Place breakpoints between values belonging to different classes.
 - If too many intervals, merge intervals with equal or similar class distributions.
- Generating concept hierarchies: recursively applying partitioning or discretization methods.