Caleb Logemann MATH 520 Methods of Applied Math II Homework 5

Section 12.4

#6 Let T denote the right shift operator on ℓ^2 .

(a) Show that $\sigma_p(T) = \emptyset$.

Proof. First I will let $S_+ = T$, so as to better represent the right shift operator. In order to show that $\sigma_p(S_+) = \emptyset$, we must show that S_+ has no eigenvalues. First I will show that 0 is not an eigenvalue, if 0 was an eigenvalue then $S_+x = 0x = 0$ would have a nonzero solution $x \in \ell^2$. However the equation $S_+x = 0$ guarantees that

$$(S_+x)_k = x_{k-1} = 0$$

for $k \ge 1$, which implies that x = 0. This shows that the only solution to $S_+x = 0$ is x = 0, so 0 is not an eigenvalue of S_+ , e.g. $0 \notin \sigma_p(S_+)$.

Next I will show that no nonzero value can be an eigenvalue. Assume to the contrary that $\lambda \neq 0 \in \sigma_p(T)$, that is λ is an eigenvalue of T. This implies that $S_+x = \lambda x$ has a nonzero solution $x \in \ell^2$. Both S_+x and λx are sequences and for the sequences to be equal each term in the sequences must be equal. Therefore I will compare the terms of these sequences. Note that by definition $(S_+x)_k = x_{k-1}$ for $k \geq 1$ and $(S_+x)_0 = 0$. Using this definition, in $S_+x = \lambda x$ two conditions arise first for k = 0

$$\lambda x_0 = (\lambda x)_0 = (S_+ x)_0 = 0$$

and for $k \geq 1$

$$\lambda x_k = (\lambda x)_k = (S_+ x)_k = x_{k-1}$$

The first condition shows that $x_0 = 0$, and the second that $x_k = \frac{x_{k-1}}{\lambda}$. However these two statements together inductively show that $x_k = 0$ for $k \ge 0$. Thus x = 0 is the only solution to the equation $S_+x = \lambda x$, and $\lambda \notin \sigma_p(S_+)$. This shows that no complex number can be an eigenvalue of S_+ and so $\sigma_p(S_+) = \emptyset$.

- (b) Show that $\sigma_c(T) = \{\lambda : |\lambda| = 1\}.$
- (c) Show that $\sigma_r(T) = \{\lambda : |\lambda| < 1\}.$

Proof. Again I will let $S_+ = T$ and I will prove (b) and (c) simultaneaously. From part (a) it is clear that for any λ , the operator $\lambda I - S_+$ is one-to-one. If $\lambda I - S_+$ was not one-to-one then $\lambda \in \sigma_p(S_+)$, however we have already shown that $\sigma_p(S_+)$ is empty. Thus for any $\lambda \in \mathbb{C}$, λ must be in the resolvant set, the continuous spectrum, or the residual spectrum. From Example 12.5 it is known that for $|\lambda| > 1$, then $\lambda \in \rho(S_+)$. This is shown by noting that for bounded operators $\lambda \in \sigma(S_+)$ implies that $|\lambda| \leq ||S_+|| = 1$. Let $\lambda \in \sigma(S_+)$, then $|\lambda| \leq 1$. Note that $I, S_+ \in \mathcal{B}(\ell^2)$, so

$$(\lambda I - S_+)^* = \overline{\lambda}I^* - S_+^* = \overline{\lambda}I - S_-.$$

Also since $\lambda I - S_+$ is densely defined linear operator

$$R(\lambda I - S_+)^{\perp} = N((\lambda I - S_+)^*) = N(\overline{\lambda}I - S_-)$$

Since $R(\lambda I - S_+)$ determines whether λ is in the continuous spectrum or the residual spectrum, I will inspect $N(\overline{\lambda}I - S_-)$. Let $x \in N(\overline{\lambda}I - S_-)$, then

$$(\overline{\lambda}I - S_{-})x = 0$$

$$\overline{\lambda}x - S_{-}x = 0$$

$$S_{-}x = \overline{\lambda}x$$

$$(S_{-}x)_{n} = \overline{\lambda}x_{n}$$

$$x_{n+1} = \overline{\lambda}x_{n}$$

Inducting on this formula, we find that a explicit formula for x_n

$$x_n = \overline{\lambda}^n x_0$$

This sequence $x_n = \overline{\lambda}^n x_0$ for an arbitrary x_0 is a potential element in $N(\overline{\lambda}I - S_-)$, yet it remains to be seen if $\{x_n\} \in \ell^2$. In order to see if $\{x_n\}$ is in ℓ^2 consider $\sum_{n=0}^{\infty} (|x_n|^2)$. If this sum is convergent then $x = \{x_n\}$ is in ℓ^2 and if the sum is not convergent then x is not in ℓ^2 .

$$\sum_{n=0}^{\infty} (|x_n|^2) = \sum_{n=0}^{\infty} (|\overline{\lambda}^n x_0|^2)$$
$$= \sum_{n=0}^{\infty} (|\overline{\lambda}|^{2n} |x_0|^2)$$
$$= |x_0|^2 \sum_{n=0}^{\infty} (|\overline{\lambda}|^{2n})$$

Since we already know that $|\lambda| \le 1$, there are two possible cases, either $|\lambda| = 1$ or $|\lambda| < 1$. If $|\lambda| < 1$, then

$$\sum_{n=0}^{\infty} (|x_n|^2) = |x_0|^2 \sum_{n=0}^{\infty} (|\overline{\lambda}|^{2n}) = \frac{|x_0|^2}{1 - |\overline{\lambda}|^2}$$

as this is a geometric series. In this case, the sum converges for any x_0 . Therefore for any x_0 the sequence $x_n = \overline{\lambda}^n x_0$ is in $N(\overline{\lambda}I - S_-)$. This shows that $N(\overline{\lambda}I - S_-) \neq \{0\}$. If we examine the relationship with the range again we see that

$$R(\lambda I - S_{+})^{\perp} = N(\overline{\lambda}I - S_{-})$$

$$\left(R(\lambda I - S_{+})^{\perp}\right)^{\perp} = \left(N(\overline{\lambda}I - S_{-})\right)^{\perp}$$

$$\overline{R(\lambda I - S_{+})} \neq (\{0\})^{\perp}$$

$$\overline{R(\lambda I - S_{+})} \neq \ell^{2}$$

Thus if $|\lambda| < 1$, then $R(\lambda I - S_+)$ is not dense and $\lambda \in \sigma_r(S_+)$. This shows that $\{\lambda \in \mathbb{C} : |\lambda| < 1\} \subset \sigma_r(S_+)$.

If one the other hand $|\lambda|=1$, then

$$\sum_{n=0}^{\infty} (|x_n|^2) = |x_0|^2 \sum_{n=0}^{\infty} (|\overline{\lambda}|^{2n}) = |x_0|^2 \sum_{n=0}^{\infty} (1)$$

which only converges if $x_0 = 0$. Thus if $|\lambda| = 1$, then $N(\overline{\lambda}I - S_-) = \{0\}$. Using the relationship with the range of $\lambda I - S_+$, we see that

$$R(\lambda I - S_{+})^{\perp} = N(\overline{\lambda}I - S_{-})$$
$$\left(R(\lambda I - S_{+})^{\perp}\right)^{\perp} = \left(N(\overline{\lambda}I - S_{-})\right)^{\perp}$$
$$\overline{R(\lambda I - S_{+})} = (\{0\})^{\perp}$$
$$\overline{R(\lambda I - S_{+})} = \ell^{2}$$

This shows that the range of $\lambda I - S_+$ is dense in ℓ^2 when $|\lambda| = 1$.

Note that this shows that if $\lambda \in \sigma_r(S_+)$ then $|\lambda| \not\geq 1$, so $|\lambda| < 1$ and $\sigma_r(S_+) \subset \{\lambda \in \mathbb{C} : |\lambda| < 1\}$. Thus $\sigma_r(S_+) = \{\lambda \in \mathbb{C} : |\lambda| < 1\}$ in fact.

Now if $|\lambda|=1$, then $R(\lambda I-S_+)$ is dense, so either $\lambda\in\sigma_c(S_+)$ or $\lambda\in\rho(S_+)$. Suppose $\lambda\in\rho(S_+)$, then because $\rho(S_+)$ must be an open set λ must be an interior point of $\rho(S_+)$. Let B be a ball of radius ϵ around λ . Since $|\lambda|=1$, there must be some $\mu\in B$ such that $1-\epsilon<|mu|<1$. However we have previously seen that if $|\mu|<1$, then $\mu\in\sigma_r(S_+)$. This contradicts the fact that λ is an interior point of $\rho(S_+)$, because any ball around λ will contain points in the residual spectrum. Therefore $\lambda\notin\rho(S_+)$ and $\lambda\in\sigma_c(S_+)$. Thus $\{\lambda\in\mathbb{C}:|\lambda|=1\}\subset\sigma_c(S_+)$. But since $\sigma_r(S_+)$, $\sigma_c(S_+)$, and $\rho(S_+)$ are disjoint this shows that $\{\lambda\in\mathbb{C}:|\lambda|=1\}=\sigma_c(S_+)$. This is because $|\lambda|<1$ implies $\lambda\in\sigma_r(S_+)$ and $|\lambda|>1$ implies that $\lambda\in\rho(S_+)$.

In conclusion this shows for part (b) that

$$\{\lambda \in \mathbb{C} : |\lambda| = 1\} = \sigma_c(S_+)$$

and for part (c) that

$$\{\lambda \in \mathbb{C} : |\lambda| < 1\} = \sigma_c(S_+).$$

#7 If $\lambda \neq \pm 1, \pm i$ show that λ is in the resolvant set of the Fourier Transform \mathcal{F} . (Suggestion: Assuming that a solution of $\mathcal{F}u - \lambda u = f$ exists, derive an explicit formula for it by justifying and using the identity

$$\mathcal{F}^4 u = \lambda^4 u + \lambda^3 f + \lambda^2 \mathcal{F} f + \mathcal{F}^3 f$$

together with the fact that $\mathcal{F}^4 = I$.)

Proof. Let $\lambda \in \mathbb{C}$ such that $\lambda \neq \pm 1, \pm i$. We have previously shown that this implies that $\lambda \notin \sigma_p(\mathcal{F})$. Therefore $\lambda \in \rho(\mathcal{F}) \cup \sigma_c(\mathcal{F}) \cup \sigma_r(\mathcal{F})$. This implies that for some $f \in L^2 \cap L^1$, there exists a solution $u \in L^2 \cap L^2$ such that $\mathcal{F}u - \lambda u = f$. This is equivalent to $\mathcal{F}u = f + \lambda u$. If we take the Fourier transform of each side several times the equality is perserved.

$$\mathcal{F}u = \lambda u + f$$

$$\mathcal{F}^{2}u = \lambda \mathcal{F}u + \mathcal{F}f$$

$$\mathcal{F}^{2}u = \lambda(\lambda u + f) + \mathcal{F}f$$

$$\mathcal{F}^{2}u = \lambda^{2}u + \lambda f + \mathcal{F}f$$

$$\mathcal{F}^{3}u = \lambda^{2}\mathcal{F}u + \lambda\mathcal{F}f + \mathcal{F}^{2}f$$

$$\mathcal{F}^{3}u = \lambda^{2}(\lambda u + f) + \lambda\mathcal{F}f + \mathcal{F}^{2}f$$

$$\mathcal{F}^{3}u = \lambda^{3}u + \lambda^{2}f + \lambda\mathcal{F}f + \mathcal{F}^{2}f$$

$$\mathcal{F}^{4}u = \lambda^{3}\mathcal{F}u + \lambda^{2}\mathcal{F}f + \lambda\mathcal{F}^{2}f + \mathcal{F}^{3}f$$

$$\mathcal{F}^{4}u = \lambda^{3}(\lambda u + f) + \lambda^{2}\mathcal{F}f + \lambda\mathcal{F}^{2}f + \mathcal{F}^{3}f$$

$$\mathcal{F}^{4}u = \lambda^{4}u + \lambda^{3}f + \lambda^{2}\mathcal{F}f + \lambda\mathcal{F}^{2}f + \mathcal{F}^{3}f$$

Since $\mathcal{F}^4 = I$

$$u = \lambda^4 u + \lambda^3 f + \lambda^2 \mathcal{F} f + \lambda \mathcal{F}^2 f + \mathcal{F}^3 f$$
$$u - \lambda^4 u = \lambda^3 f + \lambda^2 \mathcal{F} f + \lambda \mathcal{F}^2 f + \mathcal{F}^3 f$$
$$u = \frac{1}{1 - \lambda^4} \left(\lambda^3 f + \lambda^2 \mathcal{F} f + \lambda \mathcal{F}^2 f + \mathcal{F}^3 f \right)$$

Since $f \in L^2 \cap L^1$ and $\lambda \neq \pm 1, \pm i$ this formula for u is well-defined. It remains to be seen that $u \in L^2 \cap L^2$. However $\mathcal{F}f \in L^2 \cap L^1$ so u is the sum of functions in $L^2 \cap L^1$ so $u \in L^2 \cap L^1$. Therefore we have an explicit formula for u given any f, this shows that $R(\lambda I - \mathcal{F}) = L^2 \cap L^1$, so $\lambda \in \rho(\mathcal{F})$.

#8 Let $\mathbf{H} = L^2(0,1)$, $T_1 u = T_2 u = T_3 u = u'$ on the domains

$$D(T_1) = H^1(0,1)$$

$$D(T_2) = \left\{ u \in H^1(0,1) : u(0) = 0 \right\}$$

$$D(T_3) = \left\{ u \in H^1(0,1) : u(0) = u(1) = 0 \right\}$$

(i) Show that $\sigma(T_1) = \sigma_p(T_1) = \mathbb{C}$.

Proof. Let $\lambda \in \mathbb{C}$ and consider the equation $T_1 u = \lambda u$. Let $u(x) = e^{\lambda x}$, and note that $u \in H^1(0,1)$, because $u \in L^2(0,1)$ and $u'(x) = \lambda e^{\lambda x} \in L^2(0,1)$. This is true because

$$\int_0^1 \left| e^{\lambda x} \right|^2 \mathrm{d}x < \infty$$

and

$$\int_0^1 \left| \lambda e^{\lambda x} \right|^2 \mathrm{d}x < \infty.$$

Since $u' = \lambda e^{\lambda x}$ it is clear that $u' = \lambda u$. Therefore u is a nonzero solution to $T_1 u = \lambda u$, and therefore $\lambda \in \sigma_p(T_1)$. This shows that $\sigma_p(T_1) = \mathbb{C}$.

(ii) Show that $\sigma(T_2) = \emptyset$.

Proof. Let $\lambda \in \mathbb{C}$, and suppose that $\lambda \in \sigma(T_2)$. As in part (i), if there is a solution to $T_2u = \lambda u$, then $u(x) = Ae^{\lambda x}$ where $A \neq 0$ is some scalar. However any u of this form is not in $D(T_2)$ because even though $u \in H^1(0,1)$, we have $u(0) = A \neq 0$. Therefore $\lambda \notin \sigma_p(T_2)$. This also shows that $\lambda I - T_2$ is a one-to-one function for any λ , because if $\lambda I - T_2$ was not one-to-one then $\lambda \in \sigma_p(T_2)$. Consider the equation $(T_2 - \lambda I)u = f$ for some $f \in L^2(0,1)$. This is a differential equation that can be solved using an integrating factor.

$$(T_2 - \lambda I)u = f$$
$$T_2u - \lambda u = f$$
$$u' - \lambda u = f$$

Let $\mu = e^{-\lambda x}$ and multiply both sides of the equation

$$e^{-\lambda x}u' - \lambda e^{-\lambda x}u = e^{-\lambda x}f$$

$$\frac{d}{dx}(e^{-\lambda x}u) = e^{-\lambda x}f$$

$$e^{-\lambda x}u = \int_0^x e^{-\lambda y}f \,dy$$

$$u = e^{\lambda x} \int_0^x e^{-\lambda y}f \,dy$$

Note that this is one possible solution to this equation. The important quality of this solution is that $u \in D(T_2)$. To see this note that

$$u(0) = e^{\lambda x} \int_0^0 e^{-\lambda y} f \, \mathrm{d}y = 0$$

Also $u \in L^2(0,1)$ as it is the product of functions in $L^2(0,1)$. The derivative of u also exists by the product rule,

$$u'(x) = \lambda e^{\lambda x} \int_0^x e^{-\lambda x} f \, \mathrm{d}x + e^{\lambda x} \Big(e^{-\lambda x} f(x) - f(0) \Big).$$

This derivative is in $L^2(0,1)$ as well. Therefore $u \in H^1(0,1)$ and $u \in D(T_2)$. This shows that for any f there is a solution $u \in D(T_2)$ or in other words $R(\lambda I - T_2) = L^2(0,1)$ for all λ . Thus $\lambda \in \rho(T_2)$, and not in $\sigma_r(T_2)$ or $\sigma_c(T_2)$. This shows that the spectrum is empty, i.e. $\sigma(T_2) = \emptyset$.

(iii) Show that $\sigma(T_3) = \sigma_r(T_3) = \mathbb{C}$.

Proof. Let $\lambda \in \mathbb{C}$, Again as in part (i) if $T_3u = \lambda u$ is going to have a solution, then it must be in the form $u(x) = Ae^{\lambda x}$. However if $u \in D(T_3)$, then u(0) = u(1) = 0 and this implies that A = 0 which makes u(x) = 0. Thus there is no nonzero solution to $T_3u = \lambda u$. Thus for any $\lambda \in \mathbb{C}$, the operator $T_3 - \lambda I$ is one-to-one.

As is part (ii) we can say that the equation $T_3u - \lambda u = f$ has a solution if and only if $\frac{d}{d=}(e^{-\lambda x}u)e^{-\lambda x}f$. Let G(x) be any antiderivative of $e^{-\lambda x}f$, then $u=e^{\lambda x}G(x)$. So in order for u to be in $D(T_3)$ this implies that G(0)=G(1)=0. This can only happen if

$$\int_0^1 f(x)e^{-\lambda x} \, \mathrm{d}x = 0$$

So there is a solution to $(\lambda I - T_3)u = f$ when f has this property. The set of $f \in L^2(0,1)$, which have this property are not a dense subset of $L^2(0,1)$, so this implies that $\lambda \in \sigma_r(T_3)$. Since this was true for any λ , this means that

$$\sigma_r(T_3) = \mathbb{C}$$

#10 Let $Tu(x) = \int_0^x K(x,y)u(y) \,dy$ be a Volterra integral operator on $L^2(0,1)$ with a bounded kernel, $|K(x,y)| \leq M$. Show that $\sigma(T) = \{0\}$. (There are several ways to show that T has no nonzero eigenvalues. Here is one approach: Define the equivalent norm on $L^2(0,1)$

$$||u||_{\theta}^{2} = \int_{0}^{1} |u(x)|^{2} e^{-2\theta x} dx$$

and show that the supremum of $\frac{\|Tu\|_{\theta}}{\|u\|_{\theta}}$ can be made arbitrarily small by choosing θ sufficiently large.

Proof. First I will show that $||u||_{\theta}$ is indeed a norm. Let u=0 then

$$||0||_{\theta}^{2} = \int_{0}^{1} |0|^{2} e^{-2\theta x} dx$$
$$= \int_{0}^{1} 0 dx = 0$$

Now suppose $||u||_{\theta}^2 = 0$,

$$||u||_{\theta}^{2} = \int_{0}^{1} |u|^{2} e^{-2\theta x} dx$$
$$0 = \int_{0}^{1} |u|^{2} e^{-2\theta x} dx.$$

Since this is an integral of a nonnegative function it can only be zero if the integrand is zero, this implies that

$$u=0.$$

This shows that $||u||_{\theta} = 0$ if and only if u = 0.

Now suppose $u \in L^2(0,1)$ and λ is some scalar, then

$$\|\lambda u\|_{\theta} = \sqrt{\int_0^1 |\lambda u|^2 e^{-2\theta x} dx}$$

$$= \sqrt{|\lambda|^2 \int_0^1 |u|^2 e^{-2\theta x} dx}$$

$$= |\lambda| \sqrt{\int_0^1 |u|^2 e^{-2\theta x} dx}$$

$$= |\lambda| \|u\|_{\theta}$$

This shows that $\|\lambda u\|_{\theta} = |\lambda| \|u\|_{\theta}$.

Let $u, v \in L^2(0,1)$, then

$$\begin{aligned} \|u+v\|_{\theta} &= \sqrt{\int_{0}^{1} |u(x)+v(x)|^{2} e^{-2\theta x} \, \mathrm{d}x} \\ &= \sqrt{\int_{0}^{1} |u(x)e^{-\theta x}+v(x)e^{-\theta x}|^{2} \, \mathrm{d}x} \\ &= \left\|u(x)e^{-\theta x}+v(x)e^{-\theta x}\right\|_{L^{2}(0,1)} \\ &\leq \left\|u(x)e^{-\theta x}\right\|_{L^{2}(0,1)} + \left\|v(x)e^{-\theta x}\right\|_{L^{2}} \\ &= \sqrt{\int_{0}^{1} |u(x)e^{-\theta x}|^{2} \, \mathrm{d}x} + \sqrt{\int_{0}^{1} |u(x)e^{-\theta x}|^{2} \, \mathrm{d}x} \\ &= \sqrt{\int_{0}^{1} |u(x)|^{2} e^{-2\theta x} \, \mathrm{d}x} + \sqrt{\int_{0}^{1} |u(x)|^{2} e^{-2\theta x} \, \mathrm{d}x} \\ &= \|u(x)\|_{\theta} + \|u(x)\|_{\theta} \end{aligned}$$

Thus this function also satisfies the triangle inequality and therefore it is a norm.

Now that we have established that $\|\cdot\|_{\theta}$ is a norm, I will show that this norm is equivalent to the L^2 norm. First note that $e^{-2\theta} \le e^{-2\theta x} \le 1$ when $x \in [0,1]$. Using this it is clear that

$$e^{-2\theta} \int_0^1 |u(x)|^2 dx \le \int_0^1 |u(x)|^2 e^{-2\theta x} dx \le \int_0^1 |u(x)|^2 dx$$

or equivalently

$$e^{-2\theta} \|u\|_{L^2} \le \|u\|_{\theta} \le \|u\|_{L^2}.$$

for any $u \in L^2(0,1)$. This shows that the norm $\|\cdot\|_{\theta}$ is equivalent to $\|\cdot\|_{L^2}$.

Next I will show that $\lim_{t \to 0} \left(\frac{||Tu||_{\theta}}{||u||_{\theta}} \right)$ arbitrarily small, by making θ large enough. Let $\epsilon > 0$ be fixed.

$$||Tu||_{\theta}^{2} = \int_{0}^{1} |Tu(x)|^{2} e^{-2\theta x} dx$$
$$= \int_{0}^{1} \left| \int_{0}^{x} K(x, y) u(y) dy \right|^{2} e^{-2\theta x} dx$$

Using Holder's Inequality

$$\leq \int_0^1 e^{-2\theta x} dx \int_0^1 \int_0^x |K(x,y)u(y)|^2 dy dx$$

Using Fubini's Theorem

$$= \int_0^1 e^{-2\theta x} dx \int_0^1 |u(y)|^2 \int_y^1 |K(x,y)|^2 dx dy$$

Since K(x,y) is bounded on $[0,1] \times [0,1]$, there exists M such that

$$\leq \int_0^1 e^{-2\theta x} dx \int_0^1 M|u(y)|^2 dy$$
$$= \frac{M}{-2\theta e^{-2\theta}} ||u||_{\theta}^2$$

This implies that

$$\frac{\|Tu\|_{\theta}}{\|u\|_{\theta}} \le \sqrt{\frac{M}{-2\theta e^{-2\theta}}}$$

Since θ can be any number there exists θ such that

$$\frac{\|Tu\|_{\theta}}{\|u\|_{\theta}} \le \epsilon$$

Now that we have shown that

$$||T||_{\theta} = \lim \left(\frac{||Tu||_{\theta}}{||u||_{\theta}}\right) < \epsilon$$

for any $\epsilon > 0$, we can show that $\sigma(T) = \{0\}$. Theorem 12.1 states that $|\lambda| \leq ||T||$ for any $\lambda \in \sigma(T)$, because $T \in \mathcal{B}(L^2(0,1))$. However since $||T||_{\theta}$ is equivalent to ||T||, this also means that $|\lambda| \leq ||T||_{\theta}$ for any θ . Now since $||T||_{\theta}$ can be arbitrarily small this implies that $\lambda = 0$ is the only possible element of $\sigma(T)$. Also by Theorem 12.3 we know that $\sigma(T)$ is nonempty because $T \in \mathcal{B}(L^2(0,1))$. This shows that $\sigma(T) = \{0\}$.

#11 If T is a symmetric operator, show that

$$\sigma_p(T) \cup \sigma_c(T) \subset \mathbb{R}$$

(It is almost the same as showing that $\sigma(T) \subset \mathbb{R}$ for a self-adjoint operator.)

Proof. Let $\lambda = \xi + i\eta$ with $\eta \neq 0$. Now consider for $u \in D(T)$,

$$\begin{aligned} \|(\lambda I - T)u\|^2 &= \|\lambda u - Tu\|^2 \\ &= \langle \lambda u - Tu, \lambda u - Tu \rangle \\ &= \langle \xi u + i\eta u - Tu, \xi u + i\eta u - Tu \rangle \\ &= \langle \xi u - Tu, \xi u - Tu \rangle + \langle i\eta u, \xi u - Tu \rangle + \langle \xi u - Tu, i\eta u \rangle + \langle i\eta u, i\eta u \rangle \\ &= \|\xi u - Tu\|^2 + \langle i\eta u, \xi u - Tu \rangle + \langle \xi u - Tu, i\eta u \rangle + \|i\eta u\|^2 \\ &= \|\xi u - Tu\|^2 + \langle i\eta u, \xi u - Tu \rangle + \langle \xi u - Tu, i\eta u \rangle + \|\eta\|^2 \|u\|^2 \end{aligned}$$

Now note that

$$\begin{split} \langle i\eta u, \xi u - Tu \rangle + \langle \xi u - Tu, i\eta u \rangle &= i\eta \langle u, \xi u - Tu \rangle - i\eta \langle \xi u - Tu, u \rangle \\ &= i\eta (\langle u, \xi u - Tu \rangle - \langle \xi u - Tu, u \rangle) \\ &= i\eta (\langle u, \xi u - Tu \rangle - (\langle \xi u, u \rangle - \langle Tu, u \rangle)) \\ &= i\eta (\langle u, \xi u - Tu \rangle - (\xi \langle u, u \rangle - \langle Tu, u \rangle)) \end{split}$$

As T is symmetric

$$=i\eta(\langle u,\xi u-Tu\rangle-(\xi\langle u,u\rangle-\langle u,Tu\rangle))$$

As ξ is real

$$= i\eta(\langle u, \xi u - Tu \rangle - (\langle u, \xi u \rangle - \langle u, Tu \rangle))$$

= $i\eta(\langle u, \xi u - Tu \rangle - \langle u, \xi u - Tu \rangle)$
= $i\eta(0) = 0$

Therefore

$$||(\lambda I - T)u||^2 = ||\xi u - Tu||^2 + |\eta|^2 ||u||^2$$

Now as $\|\xi u - Tu\|^2 \ge 0$, this implies that

$$\|(\lambda I - T)u\|^2 \ge |\eta|^2 \|u\|^2$$

or

$$||(\lambda I - T)u|| \ge |\eta| ||u||.$$

Since $|\eta| > 0$ this implies that $\lambda I - T$ is one-to-one because if ||u|| > 0 then $||(\lambda I - T)u|| > 0$ which shows that $N(\lambda I - T) = \{0\}$. Since $\lambda I - T$ is one-to-one for any complex λ this shows that $\lambda \notin \sigma_p(T)$. Therefore $\sigma_p(T) \subset \mathbb{R}$.

Since $\lambda \notin \sigma_p(T)$ this implies that $\lambda \in \sigma_c(T)$. Since $\lambda \in \sigma_c(T)$, then $\overline{R(\lambda I - T)} = H$.

I now claim that $R(\lambda I - T)$ must be closed. To see this note that $(\lambda I - T)^{-1}$ is well-defined because $\lambda I - T$ is one-to-one. Also $(\lambda I - T)^{-1}$ is bounded. If $u \in D(\lambda I - T)$, then there exists

 $v \in R(\lambda I - T) = D((\lambda I - T)^{-1})$ such that $u = (\lambda I - T)^{-1}v$. Now

$$\begin{aligned} \|(\lambda I - T)u\| &\ge |\eta| \|u\| \\ \|(\lambda I - T)(\lambda I - T)^{-1}u\| &\ge |\eta| \|(\lambda I - T)^{-1}u\| \\ \|u\| &\ge |\eta| \|(\lambda I - T)^{-1}u\| \\ \frac{\|(\lambda I - T)^{-1}u\|}{\|u\|} &\le \frac{1}{|\eta|} \\ \|(\lambda I - T)^{-1}\| &\le \frac{1}{|\eta|} \end{aligned}$$

Thus this shows that $(\lambda I - T)^{-1}$ is bounded and continuous. Now to see that $R(\lambda I - T)$ is closed let $v_n \in R(\lambda I - T)$, such that $v_n \to v \in H$. Since $v_n \in R(\lambda I - T)$, there exists $u_n \in D(\lambda I - T)$ such that $(\lambda I - T)u_n = v_n$. It can be shown that $\{u_n\}$ converges. To see this note that $\|v_n - v_m\| \to 0$, this is equivalent to

$$\|(\lambda I - T)u_n - (\lambda I - T)u_m\| = \|(\lambda I - T)(u_n - u_m)\|$$

 $\geq |eta| \|u_n - u_m\|$

Thus $||u_n - u_m|| \to 0$ as well. This shows that $\{u_n\}$ is Cauchy and since this is a Hilbert space the sequence is convergent. Therefore $u_n \to u$. Consider now

$$u = \lim_{n \to \infty} (u_n)$$

=
$$\lim_{n \to \infty} ((\lambda I - T)^{-1} (\lambda I - T) u_n)$$

Since $(\lambda I - T)$ is continuous

$$= (\lambda I - T)^{-1} \lim_{n \to \infty} ((\lambda I - T)u_n)$$
$$= (\lambda I - T)^{-1} \lim_{n \to \infty} (v_n)$$
$$= (\lambda I - T)^{-1} v$$

This shows that $u \in R((\lambda I - T)^{-1}) = D(\lambda I - T)$ and therefore $(\lambda I - T)u = v$. Therefore $v \in R(\lambda I - T)$, so $R(\lambda I - T)$ is closed. In conclusion since $R(\lambda I - T)$ is dense and closed, this implies that $R(\lambda I - T) = H$. This contradicts that $\lambda \in \sigma_c(T)$, so this shows that if $\lambda \in \mathbb{C}$, then $\lambda \notin \sigma_c(T)$. Therefore $\sigma_c(T) \subset \mathbb{R}$.