Réglages – settings.ini

Documentation Interface MATLAB HEC-RAS, IMTLD

Dernière M.A.J: 07/09/2020 13:05:00 – version BETA 1_0_1

Ce document détaille le fonctionnement du fichier settings.ini et explique de manière globale le fonctionnement des fonctions MATLAB qui en dépendent.

La modification du fichier settings.ini est une des premières étapes de l'automatisation d'un projet HEC-RAS.

Table des matières

Comment modifier le fichier settings.ini	2
Comment le fichier settings.ini est interprété par le script MATLAB	3
Liste des paramètres	3
Conventions d'écriture	3
Tableau 1 : types de paramètres	4
Tableau 2 : paramètres possibles classés par type	4
Liste des valeurs possibles pour les paramètres de type VariableXX	5

Comment modifier le fichier settings.ini

Ce fichier s'ouvre avec n'importe quel éditeur de texte. Je vous recommande d'utiliser un éditeur de code qui prend en charge la coloration des fichiers .ini, comme Visual Studio Code. Cf. capture d'écran ci-dessous.

```
    ■ launcher.m

    releaser.m

≡ settings.ini ×

    settings.ini

  1
               ## MATLAB PREFERENCES
  4
  6
  7
  8
           # USER INTERFACE
  9
      ; Write 0 for false and 1 for true
 10
 11 debug=0
 12 ; Number of seconds, for calls to pause MATLAB function
     ; avoid going below 0.5
 13
      Wait=2
 15
 16
           # TIME
 17
 18 ; Please write dates like this : 24-Oct-2014 12:45:07
     ; StartTime is date including the init of RAS
 19
      ; i.e. the first step without restart
 21
     ; WARNING : 24:00:00 is not accepted
 22
 23 ; use instead 00:00:00 with the next day date
     StartTime=03-Jan-2014 00:00:00
     EndTime=13-Jan-2014 00:00:00
```

Figure 1 - Capture d'écran - Coloration settings.ini

Il faut éviter d'y écrire des caractères non-ASCII et éviter les accents car HEC-RAS est un logiciel américain, donc ne les prend pas en charge.

Lors de l'écriture, il faut veiller à ce qu'il n'y ait pas d'espace de part et d'autre du signe '=' :

ОК	Variable=3
NOK	Variable= 3
NOK	Variable =3
NOK	Variable = 3

Certains paramètres exigent un format précis, dans ce cas, un commentaire, écrit directement dans le fichier settings.ini au-dessus du paramètre, précise quelles sont les formats acceptés. Cf. Liste des paramètres plus loin dans ce document.

Comment le fichier settings.ini est interprété par le script MATLAB

Toute ligne contenant un '=' sera considérée comme un paramètre. L'interface l'enregistrera dans un tableau de cellules, comme dans l'exemple ci-dessous.

Tout '=' doit avoir quelque chose d'écrit à sa droite et à sa gauche. Si vous voulez laisser un paramètre vide, écrivez empty à la place de la valeur.

Attention: vérifiez que cela ne provoque pas d'erreur lors de l'exécution du script.

Toute ligne ne contenant pas un '=' sera ignorée. Elle sera considérée comme un commentaire et ne sera pas enregistrée.

Fichier settings.ini

Exemple de variable=300400

Autre exemple=Une chaine de caractere

Exemple de commentaire : caractere n'a pas d'accent car cela pourrait engendrer une erreur dans HEC-RAS.

Sera sauvegardé dans MATLAB ainsi :

Objet MATLAB de classe Cell array

{'Exemple de variable'} {'300400'}

{'Autre exemple'} {'Une chaine de caractere'}

Liste des paramètres

Conventions d'écriture

<XX> est un nombre allant de 1 à 99 (il est possible que le script fonctionne avec des valeurs supérieures à 99).

Lors de l'utilisation de ce type de paramètre, il faut remplir les paramètres dans l'ordre, en commençant à 1 et sans interruption. Cf. exemple ci-dessous.

Par exemple pour les XS:

OK	XS1=River,Reach,Station
	XS2=River,Reach,Station
NOK	XS1=River,Reach,Station
	XS3=River,Reach,Station
NOK	XS2=River,Reach,Station
	XS3=River,Reach,Station
NOK	XS2=River,Reach,Station
	XS1=River,Reach,Station

Tableau 1 : types de paramètres

Type de paramètre	Exemple	Format
Date	StartTime=24-Oct-2014 12:45:07	jj-mmm-aaaa HH:MM:SS
		avec mmm les trois premières lettres
		du mois en anglais.
		24:00:00 n'est pas accepté
Durée	TimeStep=01:00:00:00	JJ:HH:MM:SS avec JJ un nombre de
		jours allant de 00 à 99 ¹
Booléen	debug=0	0 = faux ; 1 = vrai
(vrai /		
faux)		
Nombre	Wait=0.5	143456.368 ; pas de virgule ! il faut
		mettre un point
Chaine de	ProjectPath=F:\Bridge Hydraulics Edited 2\	Pas de guillemets nécessaires, ils
caractère		seront ajoutés automatiquement par
		MATLAB

Remarque : en termes de programmation, les booléens sont des nombres et les dates et durées sont des chaines de caractères. Ils ont simplement davantage de contraintes car seront ensuite convertis en des objets MATLAB spécifiques lors de l'exécution du script.

Tableau 2 : paramètres possibles classés par type

type de paramètre	nom du paramètre
date	StartTime
date	EndTime
durée	TimeStep
booléen	debug
booléen	RAShide
nombre	Wait
nombre	RASversion
nombre	Variable <xx></xx>
nombre	HP sauf geo
chaine de caractères	Hp_geo_name
chaine de caractères	XS <xx></xx>
chaine de caractères	ProjectPath
chaine de caractères	ProjectName
chaine de caractères	SourcePath

_

 $^{^{\}rm 1}$ La gestion des mois et années est assurée directement par MATLAB

Liste des valeurs possibles pour les paramètres de type VariableXX

Pour obtenir une liste à jour de ces variables, vous pouvez utiliser le code suivant (ici avec HEC-RAS 5.0.7 et MATLAB 2020) :

```
rp=actxserver('RAS507.HECRASCONTROLLER')
rp.Project_Open("F:\Bridge Hydraulics Edited\beaver.prj")
[a,b]=rp.Output_Variables(0,0,0)
```

Sinon cette liste est disponible dans le tableur Excel (en anglais) <u>List of RAS Output Variables</u>

Reproduit ci-dessous:

Profile	1
W.S. Elev	2
E.G. Elev	3
Max Chl Dpth	4
Min Ch El	5
Q Left	6
Q Channel	7
Q Right	8
Q Total	9
Flow Area	10
Flow Area L	11
Flow Area Ch	12
Flow Area R	13
W.P. Total	14
W.P. Left	15
W.P. Channel	16
W.P. Right	17
Conv. Total	18
Conv. Left	19
Conv. Chnl	20
Conv. Right	21
Vel Head	22
Vel Total	23
Vel Left	24
Vel Chnl	25
Vel Right	26
Alpha	27
Beta	28
Top Wdth Act	29
E.G. Slope	30
Volume	31
Area	32
Area Left	33
Area Channel	34

Area Right	35
Sta W.S. Lft	36
Sta W.S. Rgt	37
Left Sta Eff	38
Rght Sta Eff	39
Length Wtd.	40
Length Left	41
•	42
Length Chnl	
Length Rght	43
Mann Wtd Left	44
Mann Wtd Chnl	45
Mann Wtd Rght	46
Mann Comp	47
Froude # Chl	48
Froude # XS	49
Trvl Tme Avg	50
Trvl Tme Chl	51
Conv. Ratio	52
Specif Force	53
Spc Force PR	54
W.S. Prime	55
Crit W.S.	56
Crit E.G.	57
Crit Depth	58
Frctn Loss	59
C & E Loss	60
Headloss	61
Top Width	62
Top W Left	63
Top W Chnl	64
Top W Right	65
Num Trials	66
Std Stp Case	67
Frctn Slope	68
Frctn Slp Md	69
Min Error	70
Delta WS	71
Delta EG	72
Q Culv Group	73
·	
Q Barrel	74 75
W.S. US.	75 - 2
Clv EG No Wr	76
E.G. US.	77
E.G. IC	78
E.G. OC	79
Culv Nml Depth	80

Culv Vel DS	81
Culv Vel US	82
Culv Frctn Ls	83
Culv Entr Loss	84
Culv Exit Loss	85
Culv Full Len	86
Culv Crt Depth	87
Culv Inv El Up	88
Culv Inv El Dn	89
Culv EG Inlet	90
Culv EG Outlet	91
Culv WS Inlet	92
Culv WS Outlet	93
Q Weir	94
Weir Flow Area	95
Weir Sta Lft	96
Weir Sta Rgt	97
Weir Max Depth	98
Weir Avg Depth	99
Weir Submerg	100
Min El Weir Flow	101
Wr Top Wdth	102
Energy/Wr WS	103
Yarnell WS	104
WSPRO WS	105
Prs/Wr WS	106
Energy WS	107
Momen. WS	108
Prs O WS	109
Energy/Wr EG	110
Yarnell EG	111
WSPRO EG	112
Prs/Wr EG	113
Energy EG	114
Momen. EG	115
Prs O EG	116
BR Sel Method	117
Min El Prs	118
Crit Num	119
Crit W.S. 1	120
Crit W.S. 2	121
Crit W.S. 3	122
Crit Enrgy 1	123
Crit Enrgy 2	124
Crit Enrgy 3	125
Hydr Depth	126
Tiyat Deptil	120

Hydr Depth L	127
Hydr Depth C	128
Hydr Depth R	129
Deck Width	130
# Barrels	131
Q Bridge	132
Vol Left	133
Vol Chan	134
Vol Right	135
Min El	136
Enc Val 1	137
Enc Val 2	138
Enc Sta L	139
Enc Sta R	140
Dist Center L	141
Dist Center R	142
K Perc L	143
K Perc R	144
Q Perc L	145
Q Perc Chan	146
Q Perc R	147
Prof Delta WS	148
Prof Delta EG	149
Shear Total	150
Shear LOB	151
Shear Chan	152
Shear ROB	153
Power Total	154
Power LOB	155
Power Chan	156
Power ROB	157
Ch Sta L	158
Ch Sta R	159
Base WS	160
Center Station	161
XS Delta WS	162
XS Delta EG	163
SA Total	164
SA Left	165
SA Chan	166
SA Right	167
Enc Method	168
Q Gate Group	169
Gate Open Ht	170
Gate #Open	171
Gate Area	172

Gate Submerg	173
Gate Invert	174
Q Gates	175
BR Open Area	176
Coef of Q	177
Cum Ch Len	178
Enc WD	179
Obs WS	180
WS Air Entr.	181
BR Open Vel	182
Ice Thick LOB	183
Ice Thick Chan	184
Ice Thick ROB	185
Ice Vol Total	186
Ice Vol. LOB	187
Ice Vol. Chan	188
Ice Vol. ROB	189
Ice Top LOB	190
Ice Top Chan	191
Ice Top ROB	192
Ice Btm LOB	193
Ice Btm Chan	194
Ice Btm ROB	195
Invert Slope	196
LOB Elev	197
ROB Elev	198
L. Freeboard	199
R. Freeboard	
	200
Levee El Left	201
Levee El Right	202
Ineff El Left	203
Ineff El Right	204
L. Levee Frbrd	205
R. Levee Frbrd	206
Mann Wtd Total	207
Hydr Radius	208
Hydr Radius L	209
Hydr Radius C	210
Hydr Radius R	211
Hydr Rad 2/3	212
W.S. DS	213
E.G. DS	214
Min Weir El	215
Perc Q Leaving	216
Q US	217
Q DS	218

Main Cha LIC	240
Weir Sta US	219
Weir Sta DS	220
Q Leaving Total	221
SA Min El	222
SA Area	223
SA Volume	224
Top W Act Left	225
Top W Act Chan	226
Top W Act Right	227
Culv Depth Blocked	228
Culv Inlet Mann n	229
Culv Outlet Mann n	230
Ice WS Err	231
Ice Err	232
Piping Flow	233
Breach CL	234
Breach WD	235
Breach Bottom El	236
Breach Top El	237
Breach SSL	238
Breach SSR	239
Q Pump Group	240
Q Lat RC	241
Q Culv	242
Culv Length	243
Q Pump Station	244
WS Inlet	245
WS Outlet	246
Pumping Head	247
Inflow	248
Outflow	249
Net Flux	250
Enc Offset L	251
Enc Offset R	252
Min Ch Pilot	253
Diff	254
Min Ch El Sta	255
Culv Area DS	256
Culv Area US	257
Gate Weir Coef	258
Weir Coef	259
Q Breach	260
Breach Avg Velocity	261
Breach Flow Area	262
Left Station	263
Right Station	264

Levee Sta Left	265
Levee Sta Right	266
Q Inline RC	267
Q Outlet TS	268
BR Sluice Coef	269