

Agentic Predictor

Performance Prediction for Agentic Workflows via Multi-View Encoding

Patara Trirat¹ Wonyong Jeong¹ Sung Ju Hwang¹²

¹DeepAuto.ai ²KAIST

Why Predict Agentic Workflow Performance?

Multi-agent systems powered by LLMs show great promise.

DyLAN [COLM'24]

MaAS [ICML'25]

AFlow [ICLR'25]

G-Designer [arXiv'24]

GPTSwarm [ICML'24]

AgentSquare [ICLR'25]

Why Predict Agentic Workflow Performance?

 Current optimization frameworks rely on costly execution-based (runtime or LLM calls) evaluations.

Table 3. Efficiency comparison between MaAS and state-of-the-art baselines on the MATH Benchmark. We shade the values of the lowest token/cost/wall-clock time and the highest performance.

Method		Trainin	ıg			Overall			
	Prompt Completion		Total	Wall-clock	Prompt	Prompt Completion		Total Wall-clock	
	token	token	cost (\$)	time (min)	token	token	cost (\$)	time (min)	(%)
LLM-Debate	-	-	-	=	3,275,764	10,459,097	6.76\$	92	48.54
DyLAN	22, 152, 407	16, 147, 052	13.01\$	508	6,081,483	3,303,522	2.89\$	39	48.63
MacNet	-	-	-	-	7,522,057	2,043,600	2.35\$	47	45.18
GPTSwarm	21,325,266	6,369,884	7.02\$	129	3, 105, 571	788,273	0.93\$	30	47.88
AFlow	33,831,239	29,051,840	22.50\$	184	2,505,944	2, 151, 931	1.66\$	23	51.28
MaAS	3,052,159	2,380,505	3.38\$	53	1, 311, 669	853,116	0.42\$	19	51.82

Table extracted from MaAS [ICML'25]

Why Predict Agentic Workflow Performance?

A predictive model can estimate the quality and viability of agentic workflows.

Challenges in Agentic Workflow Prediction

Heterogeneity

Workflows vary widely in communication, code, and prompts.

Scarcity of Labeled Data

Only few labels available due to expensive evaluations.

Our Solution: Agentic Predictor

- Multi-View Encoding integrates graph, code, and prompt views.
- Cross-Domain Unsupervised Pretraining uses unlabeled data from diverse tasks.

 Lightweight Predictor quickly estimates workflow performance, guiding efficient search.

Architecture Overview

Multi-View Workflow Encoding

- Graph View explicitly captures structural dependencies and direct interactions among agents, emphasizing interagent communication channels.
- **Code View** implicitly encodes complex semantic structures, logical sequences, computational complexities, and patterns of tool usage inherent in workflow implementations.
- **Prompt View** provides semantic embeddings that encapsulate nuanced agent roles, behavioral descriptions, and broader contextual guidance embedded within system and instruction prompts.

Multi-View Workflow Encoding: Encoder Network

aggregates importance scores across different views

captures inter-graph importance

(Multi-)Graph View

$$\mathbf{Z}_{\mathcal{G}} = \operatorname{AttenPool}(\operatorname{CrossGraphAttn}([\operatorname{GNN}(\mathcal{G}_{prompt}), \operatorname{GNN}(\mathcal{G}_{code}), \operatorname{GNN}(\mathcal{G}_{operator})])),$$

Code View

$$\mathbf{Z}_{\mathcal{C}} = \mathrm{MLP}_{\mathcal{C}}(\mathcal{C})$$

Prompt View

$$\mathbf{Z}_{\mathcal{P}} = \mathrm{MLP}_{\mathcal{P}}(\mathcal{P})$$

Aggregation Layer

$$\mathbf{Z} = \mathrm{MLP}([\mathbf{Z}_{\mathcal{G}}, \mathbf{Z}_{\mathcal{C}}, \mathbf{Z}_{\mathcal{P}}])$$

Cross-Domain Unsupervised Pretraining

- In real-world scenarios, the availability of labeled performance data for agentic workflows may be highly limited due to the costly and time-consuming evaluation process.
- To address this challenge and enable data-efficient predictor training, we optionally adopt a two-phase strategy.

Cross-Domain Multi-Task Pretraining

$$\mathcal{L}_{rec} = \frac{1}{M} \sum_{i=1}^{M} \|\mathcal{G}_i - \hat{\mathcal{G}}_i\|^2 + \|\mathcal{C}_i - \hat{\mathcal{C}}_i\|^2 + \|\mathcal{P}_i - \hat{\mathcal{P}}_i\|^2$$

$$\mathcal{L}_{con} = \frac{1}{M} \sum_{i=1}^{M} -\log \frac{\exp(\sin(\mathbf{Z}_i, \mathbf{Z}_j^+)/\tau)}{\sum_{k=1}^{M} \exp(\sin(\mathbf{Z}_i, \mathbf{Z}_k)/\tau)}$$

Positive pairs are drawn from configurations that solve the same task successfully, while negatives include task-mismatched or failed configurations.

This learning objective encourages the encoder to capture meaningful signals related to both structure and performance.

Performance Predictor

Input Features

- The learned workflow embeddings from the previous stage.
- The task-specific semantic embeddings from natural language task descriptions. These embeddings, derived from pretrained language models (e.g., T5 or BERT).
- Loss Function: binary cross-entropy loss for fail vs. pass predictions

$$\mathcal{L}_{ ext{pred}} = -rac{1}{N} \sum_{i=1}^{N} \left[e_i \log \hat{e}_i + (1-e_i) \log (1-\hat{e}_i)
ight]$$

Experiments

- (Q1) How does Agentic Predictor perform as a predictor of agentic workflow performance compared to relevant baselines?
- (Q2) Is the pretraining phase helpful for maintaining prediction quality under varying numbers of labels?
- (Q3) How do different design choices and configurations of Agentic Predictor affect its predictive accuracy?

Experiments: Setup

- Benchmark Dataset: FLORA-Bench (Zhang et al., 2025b), including five representative datasets across three core domains in the agentic workflow literature:
 - code generation (HumanEval, MBPP),
 - mathematics problem solving (GSM8K, MATH), and
 - o reasoning (MMLU).

Table 2. Summary of benchmark statistics.

Domains	Code Generation	Math Problem	Reasoning Task		
# workflows	38	42	30		
Average # nodes	6.11	5.49	6.58		
# tasks	233	782	2400		
# samples	7362	4059	72000		

Experiments: Setup

Evaluation Metrics:

- Accuracy quantifies how well a model predicts agentic workflow performance.
- Utility evaluates the consistency between the workflow rankings predicted by the model and the ground-truth rankings, emphasizing the model's ability to determine the relative order of different workflows.

Experiments: Results (Prediction Accuracy (Q1))

Table 3. Performance comparison between Agentic Predictor and baseline methods. The best and second-best results are highlighted in **bold** and <u>underlined</u>, respectively.

Domain	Code Generation		Math Problem		Reasoni	ing Task	Average		
Model	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility	
MLP	78.02±0.59	73.94±1.35	73.73±0.31	69.64±0.29	78.45±0.08	88.48±0.63	76.73±0.33	77.35±0.76	
GCN	84.35±0.34	72.73±3.18	76.19±0.42	66.52±1.66	87.12±0.14	91.82±0.46	82.55±0.30	77.02±1.77	
GAT	84.49±0.56	76.46±0.91	76.44±0.61	66.51±1.28	87.07±0.08	89.40±0.68	82.67±0.42	77.46±0.96	
GCN-II	83.72±0.40	77.75±1.98	75.04±0.31	64.33±0.47	87.28±0.14	89.92±1.90	82.01±0.28	77.33±1.45	
Graph Transformer	84.71±0.45	74.09±0.35	75.45±0.23	66.48±0.96	86.93±0.27	90.60±1.97	82.36±0.32	77.06±1.09	
One For All	81.05±0.34	73.42±1.39	75.21±0.23	69.08±0.64	82.52±0.13	87.64±1.98	79.59±0.23	76.71±1.34	
Agentic Predictor	85.62±0.47	80.08±0.46	79.56±0.25	74.08±0.47	87.96±0.02	91.47±0.44	84.38±0.25	81.88±0.46	
% Improvement (up to)	9.74%	10.11%	7.91%	15.16%	12.12%	4.37%	9.97%	6.74%	

Experiments: Results (Effects of Pretraining (Q2))

Figure 4. Comparison of accuracy (upper) and utility (lower) between Agentic Predictor and the baselines across varying label ratios.

Experiments: Results (Ablation Study (Q3))

Table 4. Results of ablation study on different input view variations.

View Variations		Code Generation		Math Problem		Reason	ing Task	Average		
Code	Graph	Text	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility
\checkmark		2	82.04±0.51	75.66±0.66	75.70±0.14	68.52±0.91	83.19±0.56	91.51±0.61	80.31±0.40	78.56±0.73
	\checkmark		84.44±0.31	77.22±3.46	79.14±0.28	67.99±3.36	87.00±0.21	91.03±1.23	83.53±0.27	78.75±2.68
		\checkmark	79.87±0.28	70.34±0.43	76.60±0.65	68.45±1.80	68.06±0.00	71.04±0.00	74.84±0.31	69.94±0.74
\checkmark	\checkmark		83.72±0.83	73.97±0.81	75.86±0.85	70.18±1.64	86.88±0.14	86.14±4.62	82.15±0.61	76.76±2.36
\checkmark		\checkmark	82.27±0.63	77.28±1.12	76.03±0.14	66.66±4.18	54.17±0.00	53.21±0.00	70.82±0.26	65.72±1.77
	\checkmark	\checkmark	82.45±1.36	74.64±1.57	75.70±1.26	67.83±3.71	69.47±0.00	70.55±0.00	75.87±0.87	71.01±1.76
\checkmark	\checkmark	\checkmark	85.62±0.47	80.08±0.46	79.56±0.25	74.08±0.47	87.96±0.02	91.47±0.44	84.38±0.25	81.88±0.46

Table 5. Results of ablation study on different input graph variations.

Graph Variations		Code Generation		Math Problem		Reason	ing Task	Average	
Single Graph	Multi Graph	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility
√		82.58±0.54	78.52±2.91	78.57±0.73	67.51±2.11	86.95±0.13	90.14±3.10	82.70±0.47	78.72±2.71
	✓	84.44±0.31	77.22±3.46	79.14±0.28	67.99±3.36	87.00±0.21	91.03±1.23	83.53±0.27	78.75±2.68

Experiments: Downstream Performance

Table 6. Workflow optimization performance based on the selected workflow across different methods.

Methods	Math Problems Code C			Generation Reasoning			ng	Average		
	MATH	GSM8K	MBPP	HumanEval	MMLU	DROP	HotpotQA	Score	Search Cost (\$)	
Ground Truth (AFlow)	87.38	94.53	73.22	97.20	83.10	84.25	69.94	84.23	39.83	
Random	78.40	75.23	67.84	76.34	42.87	80.42	16.86	62.56	0.00	
GCN	79.22	86.16	68.23	97.46	46.43	82.33	19.14	68.42	0.00	
GAT	80.11	86.22	68.62	97.71	57.00	85.83	21.47	71.00	0.00	
Agentic Predictor	81.89	92.65	68.42	98.73	79.70	86.25	13.37	74.43	0.00	

Conclusions

- We propose Agentic Predictor, a lightweight, predictive framework to estimate the success of agentic workflows using multi-view representation learning and unsupervised pretraining.
- We use the multi-view encoding to capture workflow heterogeneity from
 - Graph Structure (agent interaction),
 - Code Semantics (logic & tool use), and
 - o Instruction Prompts (roles & behaviors).
- We introduce cross-domain unsupervised pretraining to lessen the label scarcity problem by training the encoder on unlabeled workflows from various domain.

Thank you!

GitHub: github.com/deepauto-ai/agentic-predictor

Email: patara@deepauto.ai