

Armed Forces College of Medicine AFCM

Viral Lower Respiratory tract infections (Part 1)

Dr.Alaa Ahmed Aly
Professor of Medical Microbiology& Immunology
Dr. Mona Adel Khattab
Assistant Professor of Medical Microbiology&
Immunology

INTENDED LEARNING OBJECTIVES (ILO)

By the end of this lecture the student will be able to:

1.Describe the structure and antigenecity of viruses causing

LRTIs

2.Describe pathogenesis and clinical manifestations of viral

LRTIs

31/Qutline laboratory diagnosis of wiral LRTIs.

Upper respiratory tract Diseases

Respiratory Tract Infections

Upper and Lower respiratory Tract Diseases

Lower Respiratory

Tract Diseases

Common Cold Pharyngitis
Otitis Media
Sinusitis
Laryngitis
Epiglottitis

Croup Influenza

Whooping Cough

Bronchitis Bronchiolitis Pneumonia

Pulmonary TB

Lung Abscess

LARYNGITIS

NORMAL LARYNX

Definition

Inflammation of vocal cords of the larynx

Etiology

1- Parainfluenza virus & Rhinoviruses (commonest causes of la

2-Influenza & corona viruses

Clinical picture

■ Hoarseness of voice

Aphonia (inability to speak)

CROUP

Definition

Inflammation of larynx ,trachea & large bronchi (larngotrach

Etiology

1- Parainfluenza virus (especially type 1): commonest ca

2- Respiratory syncitial virus (RSV)

Clinical manifestations

1-Inspiratory stridor (harsh noise on breathing due to c especially in children

2-Hoarseness of voice

Croup

Derived from the old Anglo-Saxon verb croup meaning "to cry hoarsely".

Laryngotracheobronchitis or simply Croup

The most common form of acute upper respiratory obstruction.

Stridor can occur at the following places:

- 1. Nose & Mouth
- Larynx (Epiglottis, Supraglottis, Glottis, Subglottis)
- Trachea.

- An infant or child's airway lumen is naturally narrower/smaller than adults.
- •Therefore, any minor reductions to this airway diameter (such as inflammation, mucosal edema, foreign object, collapsing epiglottis) can result in further narrowing or obstruction of the airway.
- Due to this narrowing, it causes an exponential increase in airway resistance which makes it significantly difficult for the child to breathe.

9/11/24

infectiouis module

Structure

A - Family : paramyxoviruses

B-Nucleocapsid

■ SS RNA

Helical

C- Enveloped with 2 surface glycoproteins

1-Bifunctional protein: Haemagglutinin-neuraminidase (H.

attaching the virus to host-cell

virions from

releasing new

2-Fusion (F) receptors (early) infected cells (late).

C-Classification

4 serotypes: HPIV 1, 2, 3, 4

9/11/24

' 1, 2, 3, 4 infectiouis module

Myxo = affinity to mucin

Pathogenesis & Clinical manifestations

A-The infection is localized to RT (no viremia).

in both adults & young children

The virus attaches to host cells by **haemagglutinin**

Envelope fuses with the host cell membrane by F pro

B-In adults

• Virus multiplication & Inflammation are limited

to upper RT

Disease: Common cold.

C - In young children < 5 years

• Airways are small & immunity is immature

Bronchi, bronchioles and lungs are involved

Vocal cords of the larynx become swollen

Obstruction to the inflow of air

Inspiratory stridor

■ Diseases

1-Croup (acute laryngotracheobronchitis)

2-Laryngitis, bronchiolitis and pneumonia.

Laboratory diagnosis

Specimen: nasopharyngeal aspirate.

A-Direct demonstration

1-Detection of Ag : by DIF

2-Detection of viral RNA: by PCR

B-Serology:

Detection of IgM OR rising titer of IgG

Parainfluenza Virus Laboratory Diagnosis

- Detection of Antigen a rapid diagnosis can be made by the detection of parainfluenza antigen from nasopharyngeal aspirates and throat washings.
- Virus Isolation virus may be readily isolated from nasopharyngeal aspirates and throat swabs.
- Serology a retrospective diagnosis may be

Lower Respiratory Iract

Infections

Bronchial Tree

Right superior lobe

Right primary bronchus

Secondary bronchus

Tertiary bronchus

Terminal bronchiole-Right inferior lobe-

Right middle lobe

Left inferior lobe

Left superior

Respiratory bronchiole Alveolar duct

Larynx

Γrachea

lobe

Alveolus

Upper respiratory tract Diseases

Respiratory Tract Infections

Upper and Lower respiratory Tract Diseases

Lower Respiratory

Tract Diseases

Common Cold Pharyngitis
Otitis Media
Sinusitis
Laryngitis
Epiglottitis

Croup Influenza

Whooping Cough

Bronchitis Bronchiolitis Pneumonia

Pulmonary TB

Lung Abscess

1-BRONCHITIS

infectiouis module

Definition

Self limited inflammation of bronchi

Etiology of acute bronchitis

Viruses: Most common 1ry pathogens

1-Influenza viruses

2-Parainfluenza viruses,

3-Respiratory syncytial virus

1- BRONCHITIS

Pathogenesis

- **⊗**Viral infection → inflammatory response
 - → ↑ mucus production
- → coughing (to clear mucus).

⊕Clinical Manifestations

1-URTIs symptoms: Nasal congestion, sore th

2-Cough, with or without sputum

The Symptoms of **BRONCHITIS**

- Cough
- Production of mucus (sputum), which can be clear, white, yellowish-gray or green in color
- Fatigue
- Shortness of breath
- Slight fever and chills
- Chest discomfort

9/11/24 infection

2-BRONCHIOLITIS

Definition

Inflammation of the bronchioles;

the small airways less than 2 mm in diameter

Etiology

Viruses are the only pathogens in child

1-Respiratory syncitial virus (main cau

2-Human metapneumovirus (2nd commor

Bronchiolitis is caused by a viral infection and is seasonal ,peaking in the winter months.

3- Parainfluenza virus

The most common cause is respiratory syncytial virus (RSV) which accounts for 80% of cases

2-BRONCHIOLITIS

Pathogenesis

Age affected

Particularly among children under 2 years of age as bronchioles ha

Viruses directly damage the epithelial cells of the terminal bronch

Inflammation and obstruction of the small airways.

Clinical Manifestations

Respiratory distress

- Cough, cyanosis
- Dyspnea

Respiratory syncytial virus (RSV)

Structure

A - Family : paramyxoviruses

B-Nucleocapsid

■ ss RNA

Helical

C- Enveloped ,with 2 surface glycoproteins (No H/N)

1-G protein

Attachment to host cells

2-Fusion (F) protein

Respiratory syncytial virus (RSV)

Pathogenesis

A-Mode of transmission

1-Droplet

2-Direct contact of contaminated hands with nose or n 4. Newly synthesized virus particles released

RSV causes outbreaks of respiratory infections especially

B-Viral replication

A-The infection is localized to RT (no viremia).

B-The virus attaches to host cells by G protein

Envelope fuses with the host cell membrane by fusion (F) p

F protein causes cells to fuse

Formation of multinucleated giant cells (syncytia).

C-Immunity

1-Repeated infections are common, Why?

a-Incomplete (short lived) immunity :

as it is mainly due to IFN α & secretory IgA

b -Antigenic drift: variation in surface proteins

2-Frequency & severity of infection ↓ with aging , W

a-↑ Secretory IgA

b- Larger air passages

Respiratory syncytial virus (RSV)

Clinical manifestations

A- Infants (< 2 yrs)

Bronchiolitis & pneumonia (commonest cause)

B- Adults

Common cold & bronchitis

C - Elderly, adults with heart or lung diseases&

immunocompromised patients

Pneumonia.

Laboratory diagnosis

Specimen: nasopharyngeal aspirate

A-Direct virus demonstration:

a.Rapid Ag test: by **DIF** (commonly used)

b.Detection of viral nucleic acid: by PCR

B-Isolation

CPE : **syncitia** formation

C-Serology:

Detection of rising titer of IgG

Prevention

Monoclonal antibody against the RSV F (fusion) protein:

For premature infants and children with congenital h

NB Can be used also to treat immunocompromized paties
9/11/24 infectiouis module

Palivizumab (Synagis®): Mechanism of Action

- Palivizumab is a monoclonal antibody that binds the F (fusion) protein of RSV
- Palivizumab prevents infection of the host cell
- Palivizumab reduces viral replication and spread of RSV to other susceptible cells
- Protective levels need to be achieved prior to exposure to RSV

Lecture Quiz

Which virus is the leading cause of the croup syndrome in young children?

- a) Influenza virus
- b) Respiratory syncitial virus
- c) Parainfluenza virus
- d) Adenovirus
- e) Rhinovirus

SUGGESTED TEXTBOOKS

 Review of Medical Microbiology and Immunology, Warren Levinson

- from page 683 697
- from page 704 707
- from page 1359 1360
- from page 1363 1373

