

Cambridge International AS & A Level

MATHEMATIC	 	 9709/	_
CENTRE NUMBER	CANDIDATE NUMBER		
CANDIDATE NAME			

Paper 1 Pure Mathematics 1

February/March 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

JC20 03_9709_12/FP © UCLES 2020

[Turn over

Determine	whether f is an	1 increasing f	unction, a	decreasing f	unction or n	either.	
			•••••				•••••
••••••	•••••		•••••	••••••••		••••••••	••••••
			•••••				
			•••••				
••••••	••••••		•••••	•••••••	•••••	•••••••	•••••
•••••			•••••				•••••
	•••••						
			•••••				
			••••				
••••••	••••••	•••••	•••••	•••••	•••••	••••••	•••••
	•••••		•••••		•••••		
							,

	ransformation.				combine	, ,	g. v		1000
••			•••••			• • • • • • • •	· • • • • • • • • • • • • • • • • • • •	•••••	•••••
••		••••••	•••••						•••••
						• • • • • • • • • • • • • • • • • • • •			
••		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
						• • • • • • • • •			
		•••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • •	•••••	•••••	•••••
			• • • • • • • • • • • • • • • • • • • •			• • • • • • • •			•••••
••		••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		·••••••	•••••	•••••
						•••••			
		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • •		•••••	•••••
						• • • • • • • • •			•••••
••		••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	••••••	• • • • • • • •	, 	•••••	•••••
						•••••			
••		••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • •	• • • • • • • • •	•••••	•••••
			•••••			• • • • • • • •			•••••
••		••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••		•••••		•••••
						• • • • • • • • • • • • • • • • • • • •			
••		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	••••••			•••••	•••••

3

The diagram shows part of the curve with equation $y = x^2 + 1$. The shaded region enclosed by the curve, the y-axis and the line y = 5 is rotated through 360° about the y-axis.

Find the volume obtained.	[4]

Find the x -coordinate of P .	

5 Solve	e the ec	uation
---------	----------	--------

1	$\frac{\tan\theta + 3\sin\theta + 2}{\tan\theta - 3\sin\theta + 1} = 2$
for $0^{\circ} \le \theta \le 90^{\circ}$.	[5]

	Find the possible values of the constant a .	[3
)	Hence find the coefficient of $\frac{1}{x^7}$ in the expansion.	[2

7

The diagram shows a sector AOB which is part of a circle with centre O and radius 6 cm and with angle AOB = 0.8 radians. The point C on OB is such that AC is perpendicular to OB. The arc CD is part of a circle with centre O, where O lies on OA.

Find the area of the shaded region.	[6]

8

A woman's basic salary for her first year with a particular company is \$30000 and at the end of the

ear	r she also gets a bonus of \$600.
1)	For her first year, express her bonus as a percentage of her basic salary.
	the end of each complete year, the woman's basic salary will increase by 3% and her bonus wease by \$100.
	Express the bonus she will be paid at the end of her 24th year as a percentage of the basic sal
,	paid during that year.

[2]
[3]

The function g is defined by g(x) = 2x - 3 for $x \le k$.

(c)	For the case where $k = -1$, solve the equation $fg(x) = 193$.	[2]
(d)	State the largest value of k possible for the composition fg to be defined.	[1]

١	The poin	the gradient of a curve at the point (x, y) is given by $\frac{dy}{dx} = 2(x+3)^{\frac{1}{2}} - x$. The curve has a stationary int at $(a, 14)$, where a is a positive constant.		
	(a)	Find the value of a . [3]		
	(b)	Determine the nature of the stationary point. [3]		

(c)	Find the equation of the curve.	[4]
		•••••
		••••
		••••
		••••
		••••
		••••
		•••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		•••••

11	(a)	Solve the equation $3 \tan^2 x - 5 \tan x - 2 = 0$ for $0^\circ \le x \le 180^\circ$. [4]
	(b)	Find the set of values of k for which the equation $3 \tan^2 x - 5 \tan x + k = 0$ has no solutions. [2]

For the equation $3 \tan^2 x - 5 \tan x + k = 0$, state the value of k for which there are three solution the interval $0^{\circ} \le x \le 180^{\circ}$, and find these solutions.

12 A diameter of a circle C_1 has end-points at (-3, -5) and (7, 3).

(a)	Find an equation of the circle C_1 .	[3]
		•••••
		•••••
		•••••
		•••••
		•••••

The circle C_1 is translated by $\begin{pmatrix} 8\\4 \end{pmatrix}$ to give circle C_2 , as shown in the diagram.

(b)	Find an equation of the circle C_2 .	[2]
		•••••

The two circles intersect at points R and S.

(c)	Show that the equation of the line RS is $y = -2x + 13$.	[4]
(d)	Hence show that the x-coordinates of R and S satisfy the equation $5x^2 - 60x + 159 = 0$.	[2]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

老师微信: liuxue119118 (题目有修改过,请加微信确认是否完整,以免影响您的学习!