实验 7.5.2: 无线配置练习

拓扑图

编址表

设备	接口	IP 地址	子网掩码	默认网关
	Fa0/1.10	172.17.10.1	255.255.255.0	不适用
R1	Fa0/1.20	172.17.20.1	255.255.255.0	不适用
	Fa0/1.88	172.17.88.1	255.255.255.0	不适用
	Lo0	10.1.1.1	255.255.255.252	不适用
WRS2	WAN	172.17.88.25	255.255.255.0	172.17.88.1
VVN32	LAN/Wireless	172.17.40.1	255.255.255.0	不适用
WRS3	WAN	172.17.88.35	255.255.255.0	172.17.88.1
WK33	LAN/Wireless	172.17.30.1	255.255.255.0	不适用
PC1	NIC	172.17.10.21	255.255.255.0	172.17.10.1
PC2	NIC	172.17.20.22	255.255.255.0	172.17.20.1

学习目标

完成本实验后,您将能够:

- 配置交换机端口 VLAN 的信息和端口安全
- 硬重置 Linksys WRT300N 路由器
- 连接到无线路由器并检验连通性
- 浏览 Linksys WRT300N 的 Web 实用程序页面
- 配置 Linksys WRT300N 的 IP 设置
- 在 Linksys WRT300N 上配置 DHCP
- 在标准 Cisco 路由器和 WRT300N 上配置静态路由
- 在 WRT300N 上更改网络模式和相应的网络信道
- 了解如何启用 WEP 加密和禁用 SSID 广播
- 启用无线 MAC 过滤器
- 在 WRT300N 上配置访问限制
- 在 WRT300N 上配置路由器管理口令
- 在 WRT300N 上启用日志记录
- 升级 WRT300N 固件
- 了解 WRT300N 的诊断、备份、恢复和确认机制

场景

本实验中,您将配置一台 Linksys WRT300N 无线路由器、Cisco 交换机的端口安全功能和多台设备的静态路由。记录连接到无线网络的步骤,因为某些更改会断开客户端连接,因而在对配置作出更改后必须重新连接。

任务 1: 执行基本路由器配置

按照以下原则配置 R1:

- 路由器主机名
- 禁用 DNS 查找
- 执行模式口令
- Fast Ethernet 0/1 和 Fast Ethernet 0/0 及其子接口
- Loopback0
- 控制台端口上的同步日志记录、执行超时和 cisco 登录

任务 2: 配置交换机接口

```
将交换机设置为透明,清除 VLAN 信息,并且创建 VLAN 10、VLAN 20 和 VLAN 88。
```

```
<适用于全部三台交换机>!
vtp mode transparent
no vlan 2-1001
vlan 10,20,88
!
```

步骤 1: 在 S1、S2 和 S3 上配置交换机端口接口。

使用拓扑图中的连接配置 S1、S2 和 S3 交换机的接口。

在两台交换机之间的连接上配置中继。

将到无线路由器的连接配置为 vlan 88 的访问模式。

将 S2 到 PC1 的连接配置到 vlan 10 中,将到 PC2 的连接配置到 vlan 20 中。

将 S1 到 R1 的连接配置为中继。

允许所有 VLAN 通过中继接口。

```
S1
```

```
!
interface FastEthernet 0/1
 switchport trunk encapsulation dot1q
 switchport mode trunk
no shutdown
interface FastEthernet 0/2
 switchport trunk encapsulation dot1q
 switchport mode trunk
no shutdown
interface FastEthernet 0/3
 switchport trunk encapsulation dot1q
 switchport mode trunk
no shutdown
interface FastEthernet 0/4
 switchport trunk encapsulation dot1q
 switchport mode trunk
no shutdown
interface FastEthernet0/5
 switchport trunk encapsulation dot1q
 switchport mode trunk
no shutdown
!
```

S2

interface FastEthernet 0/1

```
switchport trunk encapsulation dot1q
 switchport mode trunk
no shutdown
interface FastEthernet 0/2
 switchport trunk encapsulation dot1q
 switchport mode trunk
no shutdown
interface FastEthernet 0/3
switchport trunk encapsulation dot1q
switchport mode trunk
no shutdown
interface FastEthernet 0/4
 switchport trunk encapsulation dot1q
switchport mode trunk
no shutdown
!
interface FastEthernet0/7
 switchport mode access
 switchport access vlan 88
no shutdown
S3
interface FastEthernet 0/1
 switchport trunk encapsulation dot1q
 switchport mode trunk
no shutdown
!
interface FastEthernet 0/2
 switchport trunk encapsulation dot1q
switchport mode trunk
no shutdown
interface FastEthernet 0/3
 switchport trunk encapsulation dot1q
 switchport mode trunk
no shutdown
interface FastEthernet 0/4
 switchport trunk encapsulation dot1q
switchport mode trunk
no shutdwn
interface FastEthernet 0/7
 switchport mode access
switchport access vlan 88
no shutdown
!
```

```
interface FastEthernet 0/11
switchport mode access
switchport access vlan 11
no shutdown
!
interface FastEthernet 0/18
switchport mode access
switchport access vlan 20
no shutdown
```

步骤 2: 检验 VLAN 和中继。

用 show ip interface trunk 命令(在 S1 上)和 show vlan 命令(在 S2 上)检验交换机已经正确配置中继,并且有正确的 VLAN。

S1#show interface trunk

Port Fa0/1 Fa0/2 Fa0/3 Fa0/4 Fa0/5	Mode on on on on	Encapsulation 802.1q 802.1q 802.1q 802.1q 802.1q	Status trunking trunking trunking trunking	Native vlan 1 1 1 1
Fa0/1 Fa0/2 Fa0/3	lans allowed of 1-4094 1-4094 1-4094 1-4094 1-4094	on trunk		
Port Fa0/1 Fa0/2 Fa0/3 Fa0/4 Fa0/5	Vlans allowed 1,10,20,88 1,10,20,88 1,10,20,88 1,10,20,88 1,10,20,88	d and active in	management do	nain
Port	Vlans in spar	nning tree forwa	arding state a	nd not pruned
Port Fa0/1 Fa0/2 Fa0/3 Fa0/4 Fa0/5	Vlans in spar 1,10,20,88 none 1,10,20,88 1,10,20,88	nning tree forwa	_	_

S2#show vlan

VLAN	Name	Status	Ports
1	default	active	Fa0/5, Fa0/6, Fa0/8, Fa0/9 Fa0/10, Fa0/12, Fa0/13, Fa0/14 Fa0/15, Fa0/16, Fa0/17, Fa0/19 Fa0/20, Fa0/21, Fa0/22, Fa0/23 Fa0/24, Gi0/1, Gi0/2
1003 1004	VLAN0010 VLAN0020 VLAN0088 fddi-default token-ring-default fddinet-default trnet-default	active active act/unsup act/unsup act/unsup act/unsup	

完成后, 务必将运行配置保存到路由器和交换机的 NVRAM。

步骤 3: 配置 PC1 和 PC2 的以太网接口。

使用实验开头的编址表中的 IP 地址和默认网关配置 PC1 和 PC2 的以太网接口。

步骤 4: 测试 PC 的配置。

从 PC ping 默认网关: 从 PC1 ping 172.17.10.1,从 PC2 则 ping 172.17.20.1。

选择开始->运行->cmd, 然后键入 ping 172.17.x.x

```
C:\Documents and Settings\Administrator>ping 172.17.10.1

Pinging 172.17.10.1 with 32 bytes of data:

Reply from 172.17.10.1: bytes=32 time<1ms TTL=255

Ping statistics for 172.17.10.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

任务 3: 连接到 Linksys WRT300N 路由器

与教师一起检查该无线路由器是否为原厂默认设置。如果不是,则必须硬重置路由器。要硬重置路由器,请找到路由器背面的重置按钮。用钢笔或其它细小工具按住重置按钮 5 秒钟。路由器此时应会恢复为原厂默认设置。

步骤 1: 使用 Windows XP 连接到无线路由器。

找到任务栏中的"无线网络连接"图标,或者依次选择**开始 > 控制面板 > 网络连接**。右键单击该图标并选择"查看可用的无线网络"。

将会显示如下屏幕。请注意,路由器的原厂默认 SSID 就是 "Linksys"。

选择 Linksys 并单击连接。

稍后即会连接。

步骤 2: 检验连接设置。

选择**开始 > 运行**并键入 cmd,以检验连接设置。在命令提示符后,键入命令 ipconfig 以查看网络设备信息。注意哪个 IP 地址是默认网关。这是 Linksys WRT300N 的默认 IP 地址。

任务 4: 使用 Web 实用程序配置 WRT300N

步骤 1: 进入默认的 URL。

在您常用的 Web 浏览器中,浏览 http://192.168.1.1, 这是 WRT300N 的默认 URL。

步骤 2: 输入身份验证信息。

系统会提示您输入用户名和密码。输入 WRT300N 原厂默认密码 admin,将用户名字段留空。

此时应会显示 Linksys WRT300N Web 实用程序的默认页面。

任务 5: 配置 Linksys WRT300N 的 IP 设置

了解以下设置的最佳方法是将 WRT300N 视为类似于带有两个单独接口的 Cisco IOS 路由器。其中一个接口在 Internet Setup(Internet 设置)下配置,用于连接交换机和网络内部。另一个接口在 Network Setup(网络设置)下配置,用作连接无线客户端 PC6 和 PC3 的接口。

步骤 1:将 Internet 连接类型设置为静态 IP。

步骤 2: 设置 Internet Setup (Internet 设置) 中的 IP 地址设置。

- 将 Internet IP 地址设置为 172.17.88.35。
- 将子网掩码设置为 255.255.255.0。
- 将默认网关设置为 R1 的 Fa 0/1 VLAN 88 IP 地址 172.17.88.1。

步骤 3: 将 Network Setup (网络设置) 中的 IP 地址配置为 172.17.30.1。

步骤 4: 保存设置。

单击 Save Settings(保存设置)。将会显示如下窗口。单击 Continue(继续)。如果没有重定向到 Web 实用程序的新 URL (http://172.17.30.1),请如任务 4 的步骤 1 所述用浏览器浏览。

步骤 5: 检验 IP 地址的更改。

返回命令提示符窗口,注意新的 IP 地址。使用命令 ipconfig。

```
IP Address. . . . . . . . . : 172.17.30.100
Subnet Mask . . . . . . . : 255.255.255.0
Default Gateway . . . . . : 172.17.30.1
```

任务 6: 配置 DHCP 设置和路由器时区设置

步骤 1: 为 Pc6 设置静态 DHCP 绑定。

单击 DHCP Reservation (DHCP 预留),在当前 DHCP 客户端的列表中找到 Pc6。单击 Add Clients (添加客户端)。

DHCP Reservation Select Clients from DHCP Tables

Client Name	Interface	IP Address	MAC Address	Select
Pc6	Wireless	172.17.30.100	00:05:4E:49:64:F8	>

Add Clients

这样,不管 Pc6(MAC 地址为 00:05:4E:49:64:F8 的计算机)什么时候通过 DHCP 请求地址,它都将得到相同的 IP 地址 172.17.30.100。这只是一个示例,说明如何快速将客户端永久绑定到其当前 DHCP 分配的 IP 地址。现在您要为 Pc6 分配拓扑图中的 IP 地址,而不是它最初收到的 IP 地址。单击 Remove(删除)以分配新地址。

Clients Already Reserved

Client Name	Assign IP Address	To This MAC Address	MAC Address
Pc6	172.17.30.100	00:05:4E:49:64:F8	Remove

步骤 2: 为 Pc6 分配地址 172.17.30.26。

在 Manually Adding Client (手动添加客户端) 下输入 Pc6 的地址后,只要 Pc6 连接到无线路由器,就会通过 DHCP 接收 IP 地址 172.17.30.26。保存更改。

Manually Adding Client	Enter Client Name	Assign IP Address	To This MAC Address	
	Pc6	172 . 17 . 30. 26	00:05:4E:49:64:F8	Ad

步骤 3: 检验静态 IP 地址的变更。

由于已经从 DHCP 获取了 IP 地址,因此需重新连接之后才能获取新地址 172.17.30.26。我们将等到后面任务 7 的步骤 6 中再检验这一更改。

步骤 4: 配置 DHCP 服务器。

将起始地址设置为 50,最大用户数设置为 25,租用时间设置为 2 小时(即 120 分钟)。

这些设置会为无线连接到此路由器并通过 DHCP 请求 IP 地址的所有 PC 分配介于 172.17.30.50-74 之间的地址。每次只有 25 个客户端能够获取 IP 地址,并且 IP 地址的有效期只有两个小时,过后必须请求新的地址。

注: 单击 Save Settings (保存设置) 后 IP Address Range (IP 地址范围) 才会更新。

步骤 5: 为路由器配置适当的时区。

在 Basic Setup (基本设置)页面的底部,根据您所在的地区更改路由器的时区。

步骤 6: 保存设置!

任务 7: 基本无线设置

步骤 1: 设置网络模式。

Linksys WRT300N 可用于选择网络运行的模式。目前,客户端最常用的网络模式为 Wireless-G,而路由器最常用的网络模式为 BG-Mixed。当路由器以 BG-Mixed 模式运作时,可以同时接受 B 和 G 客户端。但是,如果连接 B 客户端,路由器必须降级以适应 B 的较慢速度。在本实验中,我们假设所有客户端只运行B,因此选择 Wireless-B Only(仅 Wireless-B)。

步骤 2: 配置其它设置。

将 Network Name (SSID) (网络名称 (SSID)) 改为 WRS3, Standard Channel (标准信道) 设置为 6 – 2.437GHZ, 并且禁用 SSID Broadcast (SSID 广播)。

为什么建议将无线信道改为除默认信道以外的值?

为什么建议禁用 SSID 广播?		

Basic Wireless Settings	Network Mode: Network Name (SSID): Radio Band: Wide Channel: Standard Channel: SSID Broadcast:	Wireless-B Only WRS3 Standard - 20MHz Channel 6 - 2.437GHZ Enabled Disabled
		Save Settings Cancel Changes

步骤 3: 单击 Save Settings(保存设置)。

步骤 4: 确认不再广播路由器的 SSID。

查看无线网络,如任务 3 的步骤 1 所述。是否会显示无线路由器的 SSID?

步骤 5: 重新连接到无线网络。

选择开始 > 控制面板 > 网络连接, 右键单击"无线网络连接"图标并选择"属性"。

在"无线网络"选项卡中,选择添加。

在"关联"选项卡中,输入 WR33 作为 SSID, 并且将"数据加密"设置为"禁用"。选择"确定",然 后再选择"确定"。Windows 现在应会尝试重新连接到无线路由器。

步骤 6: 检验设置。

重新连接到网络后,现在的设置应为在任务 6 的步骤 3 中所配置的新的 DHCP 设置。请在命令提示符窗口中用 ipconfig 命令检验这一情况。

```
IP Address. . . . . . . . . . . : 172.17.30.26
Subnet Mask . . . . . . . . . : 255.255.255.0
Default Gateway . . . . . . . : 172.17.30.1
```

任务 8: 启用无线安全

步骤 1: 重新连接到路由器设置页面 (http://172.17.30.1)。

步骤 2: 导航到 Wireless(无线)页面,然后选择 Wireless Security(无线安全)选项卡。

步骤 3: 在 Security Mode (安全模式)下,选择 WEP。

步骤 4: 输入 WEP 密钥。

网络最弱的地方决定了网络的安全性,如果有人想破坏您的网络,无线路由器无疑是一个非常方便下手的位置。如果不广播 SSID,并且要求输入 WEP 密钥后才能连接路由器,将会给网络增加几层安全保护。

但是,即使网络不广播其 SSID,也有工具能够发现它,有些工具甚至能够破解 WEP 密钥加密。WPA 和 WPA-2 是一种更可靠的无线安全形式,但此路由器目前不支持。无线 MAC 过滤器比较安全,但有时用它来保护网络不切实际,这一点将在下一个任务中讨论。

添加 WEP 密钥 1234567890。

步骤 5: 保存设置。

网络连接将断开。

步骤 6: 配置 Windows 以使用 WEP 身份验证。

再次导航到 Network Connections(网络连接)页面,右键单击 Wireless Network Connection(无线网络连接)图标。在 Wireless Networks(无线网络)选项卡中,找到 WRS3 网络并单击 Properties(属性)。

- 将 Data Encryption (数据加密)设置为 WEP。
- 取消选中 This Key Is Provided For Me(为我提供此密钥)。
- 输入之前在路由器上配置的网络密钥 1234567890。
- 单击两次 OK (确定)。

Windows 此时应会重新连接到网络。

任务 9: 配置无线 MAC 过滤器

步骤 1:添加 Mac 过滤器。

- 导航回路由器的 Web 实用程序页面 (http://172.17.30.1)。
- 导航到 Wireless (无线) 区域,然后选择 Wireless MAC Filter (无线 MAC 过滤器) 选项卡。
- 选中 Enabled (启用)。
- 选择 Prevent PCs listed below from accessing the wireless network (禁止下列 PC 访问无线 网络)。
- 输入 MAC 地址 00:05:4E:49:64:87。

这将会禁止 MAC 地址为 00:05:4E:49:64:87 的所有用户端访问无线网络。

步骤 2: 单击 Wireless Client List (无线客户端列表)。

Wireless Client List (无线客户端列表)显示目前以无线方式连接到路由器的所有客户端。另外,还需要注意选项 Save to MAC filter list (保存至 MAC 过滤器列表)。若选中此选项,该客户端的 MAC 地址会自动添加到 MAC 地址列表中,以禁止或允许访问无线网络。

如果只允许所选的客户端连接到无线网络,哪种方式极为可靠?

为什么这种方法在大型网络中不可行?		
如果您允许访问的所有人都已经连接到无线网络	各,添加 MAC 地址有何便利方法?	

任务 10: 设置访问限制

配置访问限制,以禁止用户星期一至星期五通过 Telnet 从预设置的地址池 (172.17.30.50 – 74) 获取 DHCP 地址。

步骤 1: 导航至 Access Restrictions (访问限制) 选项卡。

在 Access Restrictions (访问限制)选项卡中,进行以下设置:

- Policy Name (策略名称) No_Telnet
- Status (状态) Enabled (启用)
- Internet access (Internet 访问) Allow (允许)
- Days(日期)-选择星期一至星期五
- Blocked List (阻止列表) 添加 Telnet

Internet Access Policy	Access Policy:	1 () V Delete This Entry Summary
	Enter Policy Name: Status:	No_Telnet ● Enabled
Applied PCs	Edit List (This Pol	licy applies only to PCs on the List.)
Access Restriction	O Deny Internet Allow	access during selected days and hours.
Schedule	Days: Everyday	Sun Mon Tue Wed Thu Fri Sat 12 AM : 00 v to 12 AM v : 00 v
Website Blocking by URL Address	URL 1:	URL 3:
Website Blocking by Keyword	Keyword 1:	Keyword 3: Keyword 4:
Blocked Applications		ations can be blocked per policy.
	Applications DNS (53 - 53) Ping (0 - 0) HTTP (80 - 80) HTTPS (443 - 443) FTP (21 - 21) POP3 (110 - 110) IMAP (143 - 143)	Blocked List Telnet (23 - 23)
	Application Name	Telnet
	Port Range	23 to 23
	Protocol	TCP V
	Add Mod	dify Delete

步骤 2: 设置 IP 地址范围。

将此配置应用到使用默认 DHCP 地址(范围: 172.17.30.50 - 74)的所有用户。

单击窗口顶部的 Edit List (编辑列表) 按钮, 然后输入 IP 地址范围。保存设置。

IP Address Range	01	172 . 17 . 30. 50	to 74	03	172 . 17 . 30. 0	to 0
	02	172 . 17 . 30. 0	to 0	04	172 . 17 . 30. 0	to 0

保存访问限制设置

任务 11: 管理和保护路由器的 Web 实用程序

步骤 1: 配置 Web 访问。

导航到 Administration (管理) 区域。将路由器密码改为 cisco。

为 **Web Utility Access(Web 实用程序访问)**选择 HTTP 和 HTTPS。选择 HTTPS 访问可让网络管理员利用 SSL(一种更安全的 HTTP 形式)通过 https://172.17.30.1 管理路由器。如果在实验中选择此选项,可能必须接受证书。

400-100-100			
Web Access	Web Utility Access:	✓ HTTP	✓ HTTPS
	Web Utility Access via Wireless:	Enabled	ODisabled

为 Web Utility Access via Wireless (通过无线访问 Web 实用程序)选择 Enabled (启用)。如果禁用了此选项,通过无线连接的客户端将无法使用 Web 实用程序。禁止访问也是一种安全措施,因为它要求用户直接连接到路由器才能更改设置。但在本实验中,您要通过无线访问来配置路由器,因此建议不要禁止访问!

现在单击 Backup Configurations(备份配置)按钮备份您的配置。根据提示将文件保存到桌面。

步骤 2: 恢复配置。

如果意外或有意更改或删除了设置,可以使用 Backup and Restore(备份和恢复)区域的 Restore Configurations(恢复配置)选项从使用的配置中将其恢复。

现在单击 **Restore Configuration(恢复配置)**按钮。在 Restore Configurations(恢复配置)窗口中,找到之前保存的配置文件。单击 **Start to Restore(开始恢复)**按钮。之前的设置应会成功恢复。

步骤 3: 启用日志记录。

导航到 Log(日志)选项卡,并启用日志记录。现在便可查看路由器的日志。

- 步骤 4: 保存设置并终止到路由器的无线连接。
- 步骤 5: 将以太网电缆插入无线路由器的一个 LAN 端口,并连接到该路由器。
- 步骤 6: 导航到路由器的 Web GUI。
- 步骤 7: 导航到 Administration (管理) 区域。
- 步骤 8: 升级固件。

访问

http://www-cn.linksys.com/servlet/Satellite?c=L_Content_C1&childpagename=CN/Layout&cid=1140648553423&pagename=Linksys/Common/VisitorWrapper&lid=5342358416H09

选择您的路由器版本。版本说明可在 Linksys 网站中查看。

首页 » 服务&支持 » 技术支持 » 下载中心

单击 Firmware (固件)或保存图标。根据提示将文件保存到磁盘。

在升级之前,留意右上角的当前固件版本。

Firmware Version: v0.93.3

导航到 Administration(管理)区域。单击 Upgrade Firmware(升级固件)。找到刚才下载的文件。单击 Start to Upgrade(开始升级)。升级不能中断,因此要确保设备电源不会中断。

升级完成后, 检查设备上的新固件版本。

Firmware Version: v1.03.6

任务 12: 创建连接并检验是否完全连通

步骤 1: 过滤匿名的 Internet 请求。

在 Security(安全)区域,取消选中 Filter Anonymous Internet Requests(过滤匿名的 Internet 请求)。若禁用此选项,便可从连接到 WAN 端口的位置 ping WRS3 内部 LAN/无线 IP 地址 172.17.30.1。

步骤 2: 禁用 NAT。

在 Setup(设置)区域,单击 Advanced Routing(高级路由)选项卡。禁用 NAT。

步骤 3: 连接到 WRS2。

设置 Internet Setup (Internet 设置) 中的 IP 地址设置。

- 将 Internet IP 地址设置为 172.17.88.25。
- 将子网掩码设置为 255.255.255.0。

将默认网关设置为 R1 的 Fa 0/1 VLAN 88 IP 地址 172.17.88.1

将 Network Setup (网络设置) 中的 IP 地址配置为 172.17.30.1

以静态方式将 PC3 的 MAC 地址绑定到 DHCP 地址 172.17.40.23 (提示:任务 6 的步骤 2)。

将无线 SSID 改为 WRS2 (提示:任务 7 的步骤 2)。

步骤 4: 为 R1 指定到 172.17.30.0 和 172.17.40.0 网络的静态路由。

R1config)#ip route 172.17.30.0 255.255.255.0 172.17.88.35 R1(config)#ip route 172.17.40.0 255.255.255.0 172.17.88.25

步骤 5: 对 WRS2 重复上述步骤 1 和 2。

步骤 6: 检验连通性。

检验 R1 中是否具有到 PC3 和 PC6 的路由,以及它能否成功地 ping 通这两台 PC。

R1#sh ip route

<output deleted>

Gateway of last resort is not set

R1#ping 172.17.30.26

```
Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 172.17.30.26, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms
```

R1#ping 172.17.40.23

```
Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.17.40.23, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms
```

检验 PC3 和 PC6 能否 ping 通 R1 的环回地址。

检验 PC3 和 PC6 能否互相 ping 通。

检验 PC3 和 PC6 能否 ping 通 PC1 和 PC2。

```
IP Address. . . . . . . Subnet Mask . . . . .
                   IP Address. . . . . . . . . . . . : 172.17.30.26
Subnet Mask . . . . . . . . . : 255.255.255.0
Default Gateway . . . . . . . : 172.17.30.1
C:\Documents and Settings\Administrator>ping 10.1.1.1
Pinging 10.1.1.1 with 32 bytes of data:
Reply from 10.1.1.1: bytes=32 time=1ms TTL=254
Ping statistics for 10.1.1.1:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli—seconds:
Minimum = 1ms, Maximum = 1ms, Average = 1ms
C:\Documents and Settings\Administrator>ping 172.17.40.23
Pinging 172.17.40.23 with 32 bytes of data:
Reply from 172.17.40.23: bytes=32 time=1ms TTL=126
Ping statistics for 172.17.40.23:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli—seconds:
Minimum = 1ms, Maximum = 1ms, Average = 1ms
C:\Documents and Settings\Administrator>ping 172.17.10.21
Pinging 172.17.10.21 with 32 bytes of data:
Reply from 172.17.10.21: bytes=32 time=1ms TTL=126
Reply from 172.17.10.21: bytes=32 time<1ms TTL=126
Reply from 172.17.10.21: bytes=32 time<1ms TTL=126
Reply from 172.17.10.21: bytes=32 time<1ms TTL=126
Ping statistics for 172.17.10.21:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli—seconds:
Minimum = 0ms, Maximum = 1ms, Average = 0ms
```

任务 13: 配置路由效率

步骤 1: 使用 Traceroute 查看网络连接。

因为 R1 是默认网关,所以 Linksys 路由器会先到达 R1,然后才能到达它不知道如何到达的网络(包括其它 Linksys 路由器的客户端)。

从 PC3 发送到 PC6 的数据包先到达其默认网关 172.17.40.1, 然后从 WRS2 的 WAN 接口 172.17.88.25 发送出去,发往 WRS2 的默认网关 (172.17.88.1)。R1 从那里将数据发送到 WRS3 的 WAN 接口 172.17.88.35,供 WRS3 处理。

您可以在 Administration(管理)区域的 **Diagnostics(诊断)**选项卡中检验这一情况。在 Traceroute Test(Traceroute 测试)字段中,输入 PC6 的 IP 地址 172.17.30.26

Traceroute Test	IP or URL Address:	172.17.30.26	
		Start to Traceroute	

现在单击 Start to Traceroute (开始 Traceroute),随即会弹出一个窗口。

如果 WRS2 知道它能够从 172.17.88.35 到达 172.17.30.0 网络,它会直接将数据包发送到该 IP 地址。所以我们要告诉 WRS2 它能够到达!

步骤 2: 配置新路由。

在 **Setup(设置)**区域,单击 **Advanced Routing(高级路由)**选项卡。对于 **Static Routing**(静态路由),输入以下设置:

- 在 Route Name (路由名称) 字段中, 输入 To WRS2 Clients。
- 在 Destination LAN IP (目的 LAN IP) 中, 输入 WRS2 后面的网络: 172.17.40.0
- 输入子网掩码 /24
- 输入网关 172.17.88.35
- 将接口设置为 Internet (WAN)

步骤 3: 检验新路由。

在 Administration (管理) 区域的 **Diagnostics (诊断)** 选项卡中,在 Traceroute Test (Traceroute 测试) 字段中重新输入 PC3 的 IP 地址。单击 **Start to Traceroute (开始 Traceroute)** 以查看路由。

注意 WRS2 会直接到达 WRS3, 而无需经过 R1!

对于 172.17.40.0/24 网络,在 WRS3 上执行相同的操作,指向 WRS2 的 WAN 接口 172.17.88.25。

任务 14: 配置端口安全性

步骤 1: 配置 PC1 的端口安全性。

登录到交换机 S2。配置 PC1 的交换机端口 11, 启用端口安全, 然后启用动态粘滞 MAC 地址。

步骤 2: 配置 PC2 端口安全性。

对交换机端口 18 重复步骤 1。

S2

```
!
interface FastEthernet 0/11
switchport mode access
switchport access vlan 10
switchport port-security
switchport port-security mac-address sticky
no shutdown
!
!
interface FastEthernet 0/18
```

```
switchport mode access
switchport access vlan 20
switchport port-security
switchport port-security mac-address sticky
no shutdown
!
```

步骤 3: 从 PC1 ping PC2, 生成通过端口的流量。

步骤 4: 检验端口安全性。

S1#show port-security address

Secure Mac Address Table

Vlan	Mac Address	Туре	Ports	Remaining Age (mins)
10	0006.5ble.33fa	SecureSticky	Fa0/11	-
20	0001.4ac2.22ca	SecureSticky	Fa0/18	-

Total Addresses in System (excluding one mac per port) : 0
Max Addresses limit in System (excluding one mac per port) : 6272

S1#sh port-security int fa 0/11

Port Security : Enabled
Port Status : Secure-up
Violation Mode : Shutdown
Aging Time : O mins
Aging Type : Absolute
SecureStatic Address Aging : Disabled

Maximum MAC Addresses : 1
Total MAC Addresses : 1
Configured MAC Addresses : 0
Sticky MAC Addresses : 1

Last Source Address:Vlan : 0006.5ble.33fa:10

Security Violation Count : 0

附录

配置

Hostname R1

```
!
enable secret class
!
no ip domain lookup
!
interface Loopback0
  ip address 10.1.1.1 255.255.255.0
!
interface FastEthernet0/1
  no shutdown
!
interface FastEthernet0/1.10
  encapsulation dot1Q 10
```

```
ip address 172.17.10.1 255.255.255.0
interface FastEthernet0/1.20
 encapsulation dot1Q 20
 ip address 172.17.20.1 255.255.255.0
interface FastEthernet0/1.88
 encapsulation dot1Q 88
ip address 172.17.88.1 255.255.255.0
ip route 172.17.30.0 255.255.255.0 172.17.88.35
ip route 172.17.40.0 255.255.255.0 172.17.88.25
!
line con 0
exec-timeout 0 0
logging synchronous
password cisco
line aux 0
line vty 0 4
!
end
```

Hostname S1

```
!
vtp mode transparent
!
!
vlan 10,20,88
1
interface FastEthernet0/1
switchport trunk encapsulation dot1q
switchport mode trunk
!
interface FastEthernet0/2
switchport trunk encapsulation dot1q
switchport mode trunk
interface FastEthernet0/3
switchport trunk encapsulation dot1q
switchport mode trunk
interface FastEthernet0/4
 switchport trunk encapsulation dot1q
 switchport mode trunk
interface FastEthernet0/5
```

```
switchport trunk encapsulation dotlq
switchport mode trunk
!
line con 0
  exec-timeout 0 0
  logging synchronous
!
end
```

Hostname S2

```
!
vtp mode transparent
vlan 10,20,88
interface FastEthernet0/1
switchport trunk encapsulation dot1q
switchport mode trunk
interface FastEthernet0/2
 switchport trunk encapsulation dot1q
switchport mode trunk
interface FastEthernet0/3
 switchport trunk encapsulation dot1q
 switchport mode trunk
interface FastEthernet0/4
switchport trunk encapsulation dot1q
switchport mode trunk
interface FastEthernet0/7
 switchport mode access
switchport access vlan 88
!
!
! PC1 and PC2's MAC address will appear after 'sticky' on ports 11
! and 18 respectively, after traffic traverses them
!
interface FastEthernet0/11
 switchport access vlan 10
 switchport mode access
 switchport port-security
 switchport port-security mac-address sticky
 switchport port-security mac-address sticky ffff.ffff.ffff
interface FastEthernet0/18
 switchport access vlan 20
 switchport mode access
```

```
switchport port-security
switchport port-security mac-address sticky
switchport port-security mac-address sticky ffff.ffff.ffff
!
line con 0
exec-timeout 0 0
logging synchronous
!
end
```

Hostname S3

```
vtp mode transparent
vlan 10,20,88
interface FastEthernet0/1
 switchport trunk encapsulation dot1q
switchport mode trunk
interface FastEthernet0/2
 switchport trunk encapsulation dot1q
 switchport mode trunk
interface FastEthernet0/3
 switchport trunk encapsulation dot1q
 switchport mode trunk
interface FastEthernet0/4
 switchport trunk encapsulation dot1q
 switchport mode trunk
interface FastEthernet0/7
 switchport mode access
 switchport access vlan 88
!
1
line con 0
exec-timeout 0 0
logging synchronous
!
end
```