Data Structure and Algorithm (Graph)

Dr. Sambit Bakshi

Graph

- A graph is a collection of nodes (or vertices) and edges (or arcs)
 - Each node contains an element
 - Each edge connects two nodes together (or possibly the same node to itself) and may contain an edge attribute
- A directed graph is one in which the edges have a direction
- An undirected graph (*graph*) is one in which the edges do not have a direction

What is a Graph?

• A graph G = (V,E) is composed of:

V: set of vertices

E: set of edges connecting the vertices in V

• An edge e = (u,v) is a pair of vertices

• Example:

$$V = \{a,b,c,d,e\}$$

$$E = \{(a,b),(a,c),(a,d), (b,e),(c,d),(c,e),(d,e)\}$$

a digraph (Oriented or Directed graph)

$$V = \{A, B, C, D, E\}$$

 $E = \{\langle A, B \rangle, \langle B, C \rangle, \langle C, B \rangle, \langle A, C \rangle, \langle A, E \rangle, \langle C, D \rangle\}$

Directed vs Undirected graph

- An undirected graph is one in which the pair of vertices in a edge is unordered, (v0, v1) = (v1, v0)
- A directed graph is one in which each edge is a directed pair of vertices, $\langle v0, v1 \rangle != \langle v1, v0 \rangle$

tail head

Graph terminologies

- The size of a graph is the number of nodes in it
- The empty graph has size zero (no nodes)
- If two nodes are connected by an edge, they are neighbors (and the nodes are adjacent to each other)
- The degree of a node is the number of edges it has
- For directed graphs,
 - If a directed edge goes from node S to node D, we call S the source and D the destination of the edge
 - The edge is an out-edge of S and an in-edge of D
 - S is a predecessor of D, and D is a successor of S
 - The in-degree of a node is the number of in-edges it has
 - The out-degree of a node is the number of out-edges it has

Graph terminologies

• path: sequence of vertices $v_1, v_2, v_3, \dots v_k$ such that consecutive vertices v_i and v_{i+1} are adjacent.

More Terminology

• simple path: no repeated vertices

• cycle: simple path, except that the last vertex is the same as the first vertex

Even More Terminology

connected graph: any two vertices are connected by some path

• subgraph: subset of vertices and edges forming a graph

Subgraph Examples

More...

- tree connected digraph without cycles
- forest collection of trees

Connectivity

- Let $\mathbf{n} = \text{#vertices}$, and $\mathbf{m} = \text{#edges}$
- A complete graph: one in which all pairs of vertices are adjacent
- How many total edges in a complete graph?
 - Each of the n vertices is incident to n-1 edges, however, we would have counted each edge twice! Therefore, intuitively, m = n(n 1)/2.
- Therefore, if a graph is not complete, m < n(n-1)/2

$$n = 5$$

 $m = (5 * 4)/2 = 10$

More on Connectivity

 $\mathbf{n} = \text{#vertices}$

$$\mathbf{m} = \# \mathrm{edges}$$

• For a tree $\mathbf{m} = \mathbf{n} - 1$

If m < n - 1, G is not connected, but the reverse is not necessarily true, i.e. m ! < n-1 does not necessary confirm that G is connected.

Graph Terminologies

- An undirected graph is **connected** if there is a path from every node to every other node
- A directed graph is **strongly connected** if there is a path from every node to every other node
- A directed graph is **weakly connected** if it is not strongly connected but the underlying undirected graph is connected
- Node X is **reachable** from node Y if there is a path from Y to X

Graph Terminologies

• Connected component (or Component): of a graph is a subgraph which is connected

Graph with 3 connected components

graph data structures

- storing the vertices
 - each vertex has a unique identifier and, maybe, other information
 - for efficiency, associate each vertex with a number that can be used as an index
- storing the edges
 - adjacency matrix represent all possible edges
 - adjacency lists represent only the existing edges

storing the vertices

- when a vertex is added to the graph, assign it a number
 - vertices are numbered between 0 and n-1
- graph operations start by looking up the number associated with a vertex
- many data structures to use
 - for small graphs a vector can be used
 - search will be O(n)

the vertex vector

0 A 1 B 2 C 3 D 4 E

adjacency matrix

```
A_{n\times n}, where n:# of vertices A[i][j]=1 if (i,j) is an edge =0 otherwise
```


Examples for Adjacency Matrix

 G_1

0 1 1 1 1 0 1 1 1 1 0 1

1 1 1 0

1

1 0 1 0 0 0 0 0

 G_2

symmetric

Asymmetric

Space required

a n² matrix is needed for a graph with n vertices

many graphs are "sparse"

- degree of "sparseness" is key factor in choosing a data structure for edges
 - adjacency matrix requires space for all possible edges
 - adjacency list requires space for existing edges only
- affects amount of memory space needed
- affects efficiency of graph operations

adjacency lists

adjacency lists

Shortest-Path (Least-Cost) Algorithms

Dijkstra's Algorithm

Find shortest paths from a source s to all other nodes.

N: Set of Nodes

s: source node

M: Set of processed nodes

d_{ij}: Link cost from node i to node j;

- $\mathbf{d}_{ii}=0$
- $d_{ij}=\infty$, if edge (i,j) does not exist
- $d_{ij} \ge 0$, if edge (i,j) exists

 D_n : Current least cost from node s to node n that is known to the algorithm

1. [Initialize]

M={s} [set of processed nodes is source node only] $D_n=d_{sn} \text{ for all } n \neq s \text{ [initial path costs to the nodes are simply link costs}$

 $P_k = s \rightarrow k$ for neighbor nodes **k** or **s** [shortest path to neighbor nodes]

- 2. Find node $w \notin M$ such that $D_w = \min\{D_i\}$ for $j \notin M$
- 3. Update D_k for all k adjacent to w

If
$$(D_w + d_{wk} < D_k)$$
 then do
$$D_k = D_w + d_{wk}$$

$$P_k = P_w \rightarrow k$$
end if

Find shortest path from s to all other nodes.

M = { s } NT = { 2, 3, 4, 5, 6, 7, 8 }

Shortest Paths

P2: s-2

P3:

P4:

P5:

P6: s-6

$M = \{ s \}$ $NT = \{2, 3, 4, 5, 6, 7, 8\}$

Shortest Paths

P2: s-2

P3:

P4:

P5:

P6: s-6

$M = \{ s, 2 \}$ NT = { 3, 4, 5, 6, 7, 8 }

Shortest Paths

P2: s-2

P3:

P4:

P5:

P6: s-6

M = { s, 2 } NT = { 3, 4, 5, 6, 7, 8 }

Shortest Paths

P2: s-2

P3: P2-3 ~ s-2-3

P4:

P5:

P6: s-6

M = { s, 2 } NT = { 3, 4, 5, 6, 7, 8 }

Shortest Paths

P2: s-2

P3: P2-3 ~ s-2-3

P4:

P5:

P6: s-6

Shortest Paths

P2: s-2

P3: P6-3 ~ s-6-3

P4:

P5: P6-5 ~ s-6-5

P6: s-6 P7: s-7

Shortest Paths

P2: s-2

P3: P6-3 ~ s-6-3

P4:

P5: P6-5 ~ s-6-5

P6: s-6 P7: s-7

$$M = \{ s, 2, 6, 7 \}$$

 $NT = \{ 3, 4, 5, 8 \}$

Shortest Paths

P2: s-2

P3: P6-3 ~ s-6-3

P4:

P5: P7-5 ~ s-7-5

P6: s-6

P7: s-7

P8: P7-8 ~ s-7-8

 $M = \{s, 2, 6, 7\}$

NT = { 3, 4, 5, 8 }

P3: P6-3 ~ s-6-3

P4:

P5: P7-5 ~ s-7-5

P6: s-6

P7: s-7

P8: P7-8 ~ s-7-8

 $M = \{ s, 2, 3, 6, 7 \}$

NT = { 4, 5, 8 }

P3: P6-3 ~ s-6-3

P4:

P5: P3-5 ~ s-6-3-5

P6: s-6 P7: s-7

P8: P3-8 ~ s-6-3-8

 $M = \{ s, 2, 3, 6, 7 \}$

NT = { 4, 5, 8 }

P3: s-6-3

P4:

P5: P3-5 ~ s-6-3-5

P6: s-6

 $M = \{ s, 2, 3, 5, 6, 7 \}$

 $NT = \{4, 8\}$

P3: s-6-3

P4: P5-4 ~ s-6-3-5-4

P5: s-6-3-5

P6: s-6

 $M = \{ s, 2, 3, 5, 6, 7 \}$

 $NT = \{4, 8\}$

P3: s-6-3

P4: P5-4 ~ s-6-3-5-4

P5: s-6-3-5

P6: s-6

 $M = \{ s, 2, 3, 4, 5, 6, 7 \}$

NT = { 8 }

P3: s-6-3

P4: s-6-3-5-4

P5: s-6-3-5

P6: s-6

 $M = \{ s, 2, 3, 4, 5, 6, 7 \}$

NT = { 8 }

P3: s-6-3

P4: s-6-3-5-4

P5: s-6-3-5

P6: s-6

 $M = \{ s, 2, 3, 4, 5, 6, 7, 8 \}$

NT = { }

P3: s-6-3

P4: s-6-3-5-4

P5: s-6-3-5

P6: s-6

