ЛАБОРАТОРНАЯ РАБОТА № 4 Моделирование процесса рождения и гибели

Цель: исследование характеристик процесса рождения и гибели.

1. Порядок выполнения

- 1) Разработать программу для моделирования процесса рождения и гибели. На экран выводить диаграмму состояний процесса и графики значений вероятностей попадания в первые одиннадцать состояний из нулевого состояния, математического ожидания и дисперсии процесса.
- 2) Исследовать поведение процесса для заданных последовательностей параметров $\{\lambda_k\}$, $\{\mu_k\}$ при различных начальных условиях.
- 3) Охарактеризовать поведение процесса при заданных последовательностях параметров $\{\lambda_k\}$, $\{\mu_k\}$.

2. Содержание отчета

- 1) Диаграмма состояний процесса и графики значений вероятностей попадания в первые одиннадцать состояний из нулевого состояния, математического ожидания и дисперсии процесса для заданных последовательностей параметров $\{\lambda_k\}$, $\{\mu_k\}$ при различных начальных условиях.
- 2) Выводы по результатам наблюдения поведения процесса для заданных последовательностей параметров $\{\lambda_k\}$, $\{\mu_k\}$ при различных начальных условиях. Значения финальных вероятностей для первых одиннадцати состояний.
- 3) Программа экспериментов.

3. Варианты заданий

Вариант	Последовательности параметров $\{\lambda_k\}$, $\{\mu_k\}$ ($\mu_0=0$)		
1	$\lambda_k = 0.5, \ \mu_k = 1.5$	$\lambda_k = k + 1 \; , \; \mu_k = 2k$	$\lambda_k = 2/(k+1), \ \mu_k = 2/k$
2	$\lambda_k = 1.5, \ \mu_k = 0.5$	$\lambda_k = 2k + 1, \ \mu_k = 4k$	$\lambda_k = 0.2/(k+4), \ \mu_k = 1/(k+1)$
3	$\lambda_k = 0.2, \ \mu_k = 0.1$	$\lambda_k = 0.5k + 1, \ \mu_k = 2k$	$\lambda_k = 1.2/(k+2), \ \mu_k = 2/k$
4	$\lambda_k = 1.2, \ \mu_k = 0.7$	$\lambda_k = 1.5k + 1, \ \mu_k = 2k$	$\lambda_k = 1.1/(k+6), \ \mu_k = 1/(k+1)$
5	$\lambda_k = 2.5, \ \mu_k = 2.7$	$\lambda_k = 0.2k + 1, \ \mu_k = 0.1k$	$\lambda_k = 2.1/(k+9), \ \mu_k = 2/k$
6	$\lambda_k = 1.1, \ \mu_k = 1.0$	$\lambda_k = 0.3k + 5 , \ \mu_k = k$	$\lambda_k = 5.1/(k+5), \ \mu_k = 1/(k+1)$
7	$\lambda_k = 0.9, \ \mu_k = 1.7$	$\lambda_k = 0.1k + 7$, $\mu_k = 0.05k$	$\lambda_k = 6.6/(k+6), \ \mu_k = 2/k$
8	r_k r_k	$\lambda_k = 1.1k + 1 , \ \mu_k = 2k$	$\lambda_k = 1.6/(k+1), \ \mu_k = 1/(k+1)$
9	$\lambda_k = 1.3, \ \mu_k = 1.5$	$\lambda_k = 1.8k + 8, \ \mu_k = 1.2k$	$\lambda_k = 7.6/(k+9), \ \mu_k = 2/k$
10	$\lambda_k = 1.6, \ \mu_k = 1.2$	$\lambda_k = 2.8k + 10, \ \mu_k = 3k$	$\lambda_k = 0.6/(k+4), \ \mu_k = 1/(k+1)$
11	$\lambda_k = 1.7 , \ \mu_k = 1.8$	$\lambda_k = 0.8k + 9, \ \mu_k = 0.5k$	$\lambda_k = 5.6/(k+12), \ \mu_k = 2/k$
12	K	$\lambda_k = 0.05k + 2$, $\mu_k = 0.01k$	$\lambda_k = 0.5/(k+15), \ \mu_k = 0.1/k$
13	$\lambda_k = 0.4, \ \mu_k = 0.3$	$\lambda_k = 1.15k + 7$, $\mu_k = 0.33k$	$\lambda_k = 0.7 / (k+12), \ \mu_k = 0.3 / k$
	$\lambda_k = 0.6, \ \mu_k = 0.9$	$\lambda_k = 0.8k + 5, \ \mu_k = 0.51k$	$\lambda_k = 3.5/(k+7), \ \mu_k = 5/k$
15	$\lambda_k = 5.5, \ \mu_k = 0.8$	$\lambda_k = 5.4k + 6, \ \mu_k = 0.83k$	$\lambda_k = 0.6/(k+1)^2, \ \mu_k = 3.1/k^2$

16	$\lambda_k = 1.2, \ \mu_k = 0.7$	$\lambda_k = 0.05k^2 + 1$, $\mu_k = 0.7k^2$	$\lambda_k = 1.5/(5k+11), \ \mu_k = 2/k$
17	$\lambda_k = 0.5, \ \mu_k = 1.5$	$\lambda_k = (k+1)^2, \ \mu_k = 2k^2$	$\lambda_k = 2/(k+1)^2, \ \mu_k = 2/k^2$
18	$\lambda_k = 1.5, \ \mu_k = 0.5$	$\lambda_k = 4k^2 + 1, \ \mu_k = 4k^2$	$\lambda_k = 2/(k+4)^2$, $\mu_k = 1/(k+1)^2$
19	$\lambda_k = 0.2, \ \mu_k = 0.1$	$\lambda_k = 0.5k^2 + 1$, $\mu_k = 2k^2$	$\lambda_k = 1/(k+2)^2, \ \mu_k = 2/k^2$
	$\lambda_k = 1.2, \ \mu_k = 0.7$	$\lambda_k = 1.5k^2 + 1, \ \mu_k = 2k^2$	$\lambda_k = 3/(k+6)^2$, $\mu_k = 1/(k+1)^2$
	$\lambda_k = 2.5, \ \mu_k = 2.7$	$\lambda_k = 0.2k^2 + 4$, $\mu_k = 0.1k^2$	$\lambda_k = 2.1/(k+9), \ \mu_k = 2/k$
	$\lambda_k = 1.1, \ \mu_k = 1.0$	$\lambda_k = 0.3k^2 + 5, \ \mu_k = k^2$	$\lambda_k = 5/(k+5)^2$, $\mu_k = 1/(k+1)^2$
	$\lambda_k = 0.9, \ \mu_k = 1.7$	$\lambda_k = 0.1k^2 + 7$, $\mu_k = 0.05k^2$	$\lambda_k = 6.6/(k+6)^2$, $\mu_k = 2/k^2$
	$\lambda_k = 0.7, \ \mu_k = 0.3$	$\lambda_k = 1.1k^2 + 1, \ \mu_k = 2k^2$	$\lambda_k = 6/(k+1)^2$, $\mu_k = 1/(k+1)^2$
	$\lambda_k = 1.3, \ \mu_k = 1.5$	$\lambda_k = 0.8k^3 + 8$, $\mu_k = 0.2k^3$	$\lambda_k = 7.6/(k+9)^3, \ \mu_k = 2/k^3$
26	$\lambda_k = 1.6, \ \mu_k = 1.2$	$\lambda_k = 2.8k^2 + 10$, $\mu_k = 3k^2$	$\lambda_k = 8/(k+4)^3$, $\mu_k = 1/(k^3+1)$
27	$\lambda_k = 1.7 , \ \mu_k = 1.8$	$\lambda_k = 0.8k^3 + 9$, $\mu_k = 0.5k^3$	$\lambda_k = 5.6/(k+12)^2, \ \mu_k = 2/k^2$
	$\lambda_k = 0.1, \ \mu_k = 0.5$	$\lambda_k = 0.5k^2 + 2$, $\mu_k = 0.01k^2$	$\lambda_k = 0.5/(k+15)^2, \ \mu_k = 0.1/k^2$
	$\lambda_k = 0.4 , \; \mu_k = 0.3$	$\lambda_k = 1.15k^3 + 1, \ \mu_k = 0.33k^3$	$\lambda_k = 0.7/(k+12)^2$, $\mu_k = 0.3/k^2$
30	$\lambda_k = 0.6, \ \mu_k = 0.9$	$\lambda_k = 0.8k^3 + 5$, $\mu_k = 0.51k^3$	$\lambda_k = 3.5/(k+7)^2, \ \mu_k = 5/k^2$