Cardinality

Cardinals

Def.

Two sets A and B have the same cardinality (are equinumerous) if there is a bijection $f:A \rightarrow B$. Notation A ~ B, or |A| = |B|.

Prop.

The relation ~ is an equivalence relation on sets.

Def.

A set A has at most as large cardinality as a set B if there is an injection $f:A \rightarrow B$. Notation $|A| \leq |B|$.

Def.

A set A has at least as large cardinality as a set B if there is a surjection $f:A \rightarrow B$. Notation $|A| \ge |B|$.

Def.

A set A has smaller cardinality than a set B if there is an injection $f:A \rightarrow B$ and there is no surjection $f:A \rightarrow B$. Notation |A| < |B|.

 $|A| = [A]_{\sim}$

cardinal
numbers are
~ equivalence
classes

Theorem (Cantor)

If
$$|A| \le |B|$$

and
 $|B| \le |A|$,
then
 $|A| = |B|$.

Operations on cardinals

Def.

Let A and B be two disjoint sets. Then $|A| + |B| = |A \cup B|$.

Def.

Let A and B be two sets. Then $|A| \cdot |B| = |A \times B|$.

Def.

Let A and B be two sets. Then $|A|^{|B|} = |A^B|$ where A^B is the set of all functions from B to A, i.e. $A^B = \{f \mid f: B \rightarrow A\}$.

Prop.

Let A be a set. Then $|\mathcal{P}(A)| = 2^{|A|}$.

 $|A| = [A]_{\sim}$

cardinal
numbers are
~ equivalence
classes

Note: $2 = |\{0,1\}|$

Finite sets, finite cardinals

We write \mathbb{N}_k for the set $\{0,1,...,k-1\}$. Then $\mathbb{N}_0=\emptyset$.

We will also write k for $|\mathbb{N}_k|$.

Def.

A set A is finite if and only if |A| = k, for some $k \in \mathbb{N}$.

Hence

A set A is finite if and only if there is a natural number $k \in \mathbb{N}$ and a bijection $f: A \to \mathbb{N}_k$.

 $|A| = [A]_{\sim}$

cardinal
numbers are
~ equivalence
classes

if and only if A has k elements, for some $k \in \mathbb{N}$

E.g. If |A| = k and |B| = mfor some k,m $\in \mathbb{N}$ then $|AxB| = k \cdot m$

The operations on cardinals when restricted to finite cardinals coincide with the operations on natural numbers!

This justifies the notation.

Infinite, countable and uncountable sets

Time for a video!

Hilbert's infinite hotel :-)

Infinite, countable and uncountable sets

We write ${}_{0}\aleph$ for the cardinality of natural numbers. Hence ${}_{0}\aleph = |\mathbb{N}|$.

|A| = [A]~

cardinal
numbers are
~ equivalence
classes

Def.

A set A is countable iff $|A| = {}_{0}N$.

Prop.

 \mathbb{N} is countable.

 \mathbb{Z} is countable.

 \mathbb{Q} is countable.

Hence, every countable set is infinite

Def.

A set is infinite iff $|A| \ge 0$.

Def.

A set is uncountable iff |A| > 0.

Prop.

 \mathbb{R} is uncountable.

We write c for $|\mathbb{R}|$

Cardinals are unbounded

Theorem (Cantor)

For every set A we have $|A| < |\mathcal{P}(A)|$.

cardinal
numbers are
~ equivalence
classes

Hence, for every cardinal there is a larger one.

Finite Automata

Alphabets and Languages

Def

 \sum - alphabet (finite set)

 $\Sigma^0 = \{\mathcal{E}\}\$ contains only the empty word

 $\sum^n = \{a_1 a_2 ... a_n \mid a_i \in \sum\}$ is the set of words of length n

 $\sum^* = \{ w \mid \exists n \in \mathbb{N}. \exists a_1, a_2, ..., a_n \in \sum w = a_1 a_2 ... a_n \}$ is the set of all words over \sum

A language L over \sum is a subset L $\subseteq \sum^*$

Deterministic Automata (DFA)

alphabet

Informal example

q₀, q₁ are states

q₁ is final

transitions, labelled by alphabet symbols

Accepts the language $L(M_I) = \{w \in \Sigma^* \mid w \text{ ends with a 0}\} = \Sigma^* 0$

regular language

regular expression

DFA

Definition

A deterministic automaton M is a tuple M = $(Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is a finite alphabet

 $\delta: Q \times \Sigma \longrightarrow Q$ is the transition function

 q_0 is the initial state, $q_0 \in \mathbb{Q}$

F is a set of final states, $F \subseteq Q$

In the example M

$$Q = \{q_0, q_1\} F = \{q_1\}$$

$$\sum = \{0, 1\}$$

$$M_1 = (Q, \sum, \delta, q_0, F)$$
 for

$$\delta(q_0, 0) = q_1, \delta(q_0, 1) = q_0$$

$$\delta(q_1,0) = q_1, \delta(q_1,1) = q_0$$

DFA

The extended transition function

Given $M = (Q, \Sigma, \delta, q_0, F)$ we can extend $\delta: Q \times \Sigma \longrightarrow Q$ to

$$\delta^*: Q \times \Sigma^* \longrightarrow Q$$

inductively, by:

$$\delta^*(q, \epsilon) = q$$
 and $\delta^*(q, wa) = \delta(\delta^*(q, w), a)$

In M_I, $\delta^*(q_0, 110010) = q_1$

Definition

The language recognised / accepted by a deterministic finite automaton $M = (Q, \sum, \delta, q_0, F)$ is

$$L(M) = \{w \in \Sigma^* | \delta^*(q_0, w) \in F\}$$

 $L(M_1) = \{w0|w \in \{0,1\}^*\}$

Regular languages and operations

 $L(M_1) = \{w0|w \in \{0,1\}^*\}$ is regular

Definition

Let Σ be an alphabet. A language L over Σ (L $\subseteq \Sigma^*$) is regular iff it is recognised by a DFA.

Regular operations

Let L, L₁, L₂ be languages over \sum . Then L₁ \cup L₂, L₁ \cdot L₂, and L* are languages, where

$$L_1 \cdot L_2 = \{w_1 \cdot w_2 \mid w_1 \in L_1, w_2 \in L_2\}$$

 $L^* = \{w \mid \exists n \in \mathbb{N}. \exists w_1, w_2, ..., w_n \in L. w = w_1w_2...w_n\}$

 $\mathcal{E} \in L^*$ always

Closure under regular operations

also under intersection

Theorem CI

The class of regular languages is closed under union

We can already prove these!

Theorem C2

The class of regular languages is closed under complement

Theorem C3

The class of regular languages is closed under concatenation

But not yet these two...

Theorem C4

The class of regular languages is closed under Kleene star