Solution Section 1.6 – Exact Differential Equations

Exercise

Solve the differential equation (2x + y)dx + (x - 6y)dy = 0

Solution

$$\frac{\partial \psi}{\partial x} = M = 2x + y \implies M_y = 1$$

$$\frac{\partial \psi}{\partial y} = N = x - 6y \implies N_x = 1$$

$$\Rightarrow M_y = N_x$$

$$\frac{\partial \psi}{\partial x} = 2x + y \implies \psi = \int (2x + y) dx = x^2 + xy + h(y)$$

$$\psi_y = x + h'(y) = x - 6y \implies h'(y) = -6y$$

$$h(y) = \int -6y dy = -3y^2$$

$$\psi(x, y) = x^2 + xy - 3y^2 = C$$

Exercise

Solve the differential equation (2x+3)dx + (2y-2)dy = 0

$$\frac{\partial \psi}{\partial x} = M = 2x + 3 \implies M_y = 2$$

$$\frac{\partial \psi}{\partial y} = N = 2y - 2 \implies N_x = 2$$

$$\Rightarrow M_y = N_x$$

$$\frac{\partial \psi}{\partial x} = 2x + 3 \implies \psi = \int (2x + 3) dx = x^2 + 3x + h(y)$$

$$\psi_y = h'(y) = 2y - 2 \implies h(y) = \int (2y - 2) dy$$

$$= y^2 - 2y + C$$

$$\psi(x, y) = \underline{x^2 + 3x + y^2 - 2y = C}$$

Solve the differential equation (1-

$$(1 - y\sin x) + (\cos x)y' = 0$$

Solution

$$\frac{\partial \psi}{\partial x} = M = 1 - y \sin x \implies M_y = -\sin x$$

$$\frac{\partial \psi}{\partial y} = N = \cos x \implies N_x = -\sin x$$

$$\Rightarrow M_y = N_x$$

$$\frac{\partial \psi}{\partial x} = 1 - y \sin x \implies \psi = \int (1 - y \sin x) dx = x + y \cos x + h(y)$$

$$\psi_y = \cos x + h'(y) = \cos x \implies h'(y) = 0$$

$$h(y) = C$$

$$\psi(x, y) = x + y \cos x = C$$

Exercise

Solve the differential equation

$$\frac{dy}{dx} = -\frac{ax + by}{bx + cy}$$

$$(bx + cy)dy = -(ax + by)dx$$

$$(ax + by)dx + (bx + cy)dy = 0$$

$$\frac{\partial \psi}{\partial x} = M = ax + by \implies M_y = b$$

$$\frac{\partial \psi}{\partial y} = N = bx + cy \implies N_x = b$$

$$\Rightarrow M_y = N_x$$

$$\frac{\partial \psi}{\partial x} = ax + by \implies \psi = \int (ax + by)dx = \frac{1}{2}ax^2 + bxy + h(y)$$

$$\psi_y = bx + h'(y) = bx + cy \implies h'(y) = cy$$

$$h(y) = \int cydy = \frac{1}{2}cy^2$$

$$\psi(x, y) = \frac{1}{2}ax^2 + bxy + \frac{1}{2}cy^2 = D$$

$$ax^2 + 2bxy + cy^2 = E \mid (E=2D)$$

Solve the differential equation
$$\frac{dy}{dx} = \frac{3x^2 + y}{3y^2 - x}$$

Solution

$$(3x^{2} + y)dx - (3y^{2} - x)dy = 0$$

$$\frac{\partial \psi}{\partial x} = M = 3x^{2} + y \implies M_{y} = 1$$

$$\frac{\partial \psi}{\partial y} = N = -3y^{2} + x \implies N_{x} = 1$$

$$\frac{\partial \psi}{\partial x} = 3x^{2} + y \implies \psi = \int (3x^{2} + y)dx = x^{3} + xy + h(y)$$

$$\psi_{y} = x + h'(y) = -3y^{2} + x \implies h'(y) = -3y^{2}$$

$$h(y) = \int -3y^{2}dy = -y^{3}$$

$$\psi(x, y) = \frac{x^{3} + xy - y^{2} = C}{\sqrt{y}}$$

Exercise

Solve the differential equation $2xydx + (x^2 - 1)dy = 0$

Solution

$$M(x, y) = 2xy \quad N(x, y) = x^{2} - 1$$

$$\frac{\partial M}{\partial y} = 2x \quad \frac{\partial N}{\partial x} = 2x \quad \Rightarrow \quad \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\Psi = \int 2xy \, dx = x^{2}y + h(y)$$

$$\Psi_{y} = x^{2} + h'(y) = x^{2} - 1$$

$$h'(y) = -1 \quad \Rightarrow \quad h(y) = -y + C$$

$$\frac{x^{2}y - y = C}{y} = C$$

Exercise

Find the general solution
$$y' = \frac{x^2 + y^2}{2xy}$$

Let
$$y = xv \implies y' = v + xv'$$

$$v + xv' = \frac{x^2 + x^2v^2}{2x^2v}$$

$$xv' = \frac{1+v^2}{2v} - v$$

$$x\frac{dv}{dx} = \frac{1-v^2}{2v}$$

$$\frac{2v}{1-v^2}dv = \frac{dx}{x}$$

$$-\int \frac{1}{1-v^2}d(1-v^2) = \int \frac{dx}{x}$$

$$-\ln|1-v^2| = \ln|x| + \ln C$$

$$\ln \frac{1}{|1-v^2|} = \ln|Cx|$$

$$\frac{1}{1-(\frac{y}{x})^2} = Cx$$

$$\frac{x^2}{x^2-y^2} = Cx$$

$$\frac{x}{C} = x^2 - y^2$$

$$\frac{y^2 = x^2 - C_1x}{x^2}$$

Find the general solution $2xyy' = x^2 + 2y^2$

Let
$$y = xv \implies y' = v + xv'$$

$$2x(xv)(v + xv') = x^2 + 2x^2v^2$$
Divide both side by x^2

$$2v^2 + 2xvv' = 1 + 2v^2$$

$$2xv\frac{dv}{dx} = 1$$

$$\int 2vdv = \int \frac{dx}{x}$$

$$v^2 = \ln x + C \qquad \left(v = \frac{y}{x}\right)$$

$$\frac{y^2}{x^2} = \ln x + C$$
$$y^2 = x^2 \left(\ln x + C\right)$$

Find the general solution $xy' = y + 2\sqrt{xy}$

Solution

Let
$$y = vx \implies y' = v + xv'$$

$$x(v + xv') = vx + 2\sqrt{x^2}v$$

$$x(v + xv') = vx + 2x\sqrt{v}$$

$$v + xv' = v + 2\sqrt{v}$$

$$x\frac{dv}{dx} = 2\sqrt{v}$$

$$\int \frac{dv}{2\sqrt{v}} = \int \frac{dx}{x}$$

$$\sqrt{v} = \ln x + C \qquad \left(v = \frac{y}{x}\right)$$

$$\sqrt{\frac{y}{x}} = \ln x + C$$

$$\frac{y}{x} = (\ln x + C)^2$$

$$y = x(\ln x + C)^2$$

Exercise

Find the general solution $xy^2y' = x^3 + y^3$

Let
$$y = vx \implies y' = v + xv'$$

$$x^{3}v^{2}(v + xv') = x^{3} + x^{3}v^{3}$$

$$v^{2}(v + xv') = 1 + v^{3}$$

$$v^{3} + xv^{2}v' = 1 + v^{3}$$

$$xv^{2}\frac{dv}{dx} = 1$$

$$\int v^{2}dv = \int \frac{dx}{x}$$

$$\frac{1}{3}v^3 = \ln x + C \qquad \left(v = \frac{y}{x}\right)$$

$$\frac{y^3}{x^3} = 3\left(\ln x + C\right)$$

$$\frac{y^3}{x^3} = 3x^3\left(\ln x + C\right)$$

Find the general solution $x^2y' = xy + x^2e^{y/x}$

Solution

Let
$$y = vx \implies y' = v + xv'$$

$$x^{2}(v + xv') = x^{2}v + x^{2}e^{vx/x}$$

$$v + xv' = v + e^{v}$$

$$x\frac{dv}{dx} = e^{v}$$

$$\int e^{-v}dv = \int \frac{dx}{x}$$

$$e^{-v} = \ln x + \ln C \qquad \left(v = \frac{y}{x}\right)$$

$$e^{-\frac{y}{x}} = \ln Cx$$

$$-\frac{y}{x} = \ln \left(\ln Cx\right)$$

$$y = -x\ln\left(\ln Cx\right)$$

Exercise

Find the general solution $x^2y' = xy + y^2$

Let
$$y = vx \implies y' = v + xv'$$

$$x^{2}(v + xv') = x^{2}v + x^{2}v^{2}$$

$$v + xv' = v + v^{2}$$

$$x\frac{dv}{dx} = v^{2}$$

$$\int v^{-2}dv = \int \frac{dx}{x}$$

$$-v^{-1} = \ln x + \ln C \qquad \left(v = \frac{y}{x}\right)$$

$$\frac{x}{y} = -\ln Cx$$

$$\frac{x}{y} = \ln \frac{1}{Cx}$$

$$y(x) = -\frac{x}{\ln Cx}$$

Find the general solution $xyy' = x^2 + 3y^2$

Solution

Let
$$y = vx \implies y' = v + xv'$$

$$vx^{2}(v + xv') = x^{2} + 3x^{2}v^{2}$$

$$v^{2} + xvv' = 1 + 3v^{2}$$

$$xv \frac{dv}{dx} = 1 + 2v^{2}$$

$$\frac{v}{1 + 2v^{2}} dv = \frac{dx}{x}$$

$$\frac{1}{4} \int \frac{1}{1 + 2v^{2}} d\left(1 + 2v^{2}\right) = \int \frac{dx}{x}$$

$$\ln\left(1 + 2v^{2}\right) = \ln x + \ln C$$

$$\ln\left(1 + 2v^{2}\right) = 4\ln C x$$

$$\ln\left(1 + 2\frac{y^{2}}{x^{2}}\right) = \ln C x^{4}$$

$$\frac{x^{2} + 2y^{2}}{x^{2}} = C x^{6}$$

Exercise

Find the general solution $(x^2 - y^2)y' = 2xy$

Let
$$y = vx \implies y' = v + xv'$$

$$\left(x^2 - v^2x^2\right)\left(v + xv'\right) = 2x^2v$$
Divide both side by x^2

$$(1-v^{2})(v+xv') = 2v$$

$$v + xv' = \frac{2v}{1-v^{2}}$$

$$x\frac{dv}{dx} = \frac{2v}{1-v^{2}} - v$$

$$x\frac{dv}{dx} = \frac{v^{3} + v}{1-v^{2}}$$

$$\int \frac{1-v^{2}}{v(v^{2}+1)} dv = \int \frac{dx}{x}$$

$$\frac{1-v^{2}}{v(v^{2}+1)} = \frac{A}{v} + \frac{Bv + C}{v^{2}+1} = \frac{(A+B)v^{2} + Cv + A}{v(v^{2}+1)}$$

$$\begin{cases} A+B = -1 \\ A = 1 \end{cases} \rightarrow B = -2$$

$$\int \left(\frac{1}{v} - \frac{2v}{v^{2}+1}\right) dv = \int \frac{dx}{x}$$

$$\int \frac{1}{v} dv - \int \frac{1}{v^{2}+1} d\left(v^{2}+1\right) = \int \frac{dx}{x}$$

$$\ln|v| - \ln\left(v^{2}+1\right) = \ln|x| + \ln C$$

$$\ln \frac{|v|}{v^{2}+1} = \ln Cx$$

$$\frac{y/x}{x^{2}} = Cx$$

$$\frac{y}{x} \frac{x^{2}}{y^{2}+x^{2}} = Cx$$

$$y(x) = C\left(y^{2}+x^{2}\right)$$

Find the general solution $xyy' = y^2 + x\sqrt{4x^2 + y^2}$

Let
$$y = vx \implies y' = v + xv'$$

$$vx^{2}(v + xv') = x^{2}v^{2} + x\sqrt{4x^{2} + v^{2}x^{2}}$$

$$vx^{2}(v + xv') = x^{2}v^{2} + x^{2}\sqrt{4 + v^{2}}$$
Divide both side by x^{2}

$$v^{2} + xvv' = v^{2} + \sqrt{4 + v^{2}}$$

$$xv \frac{dv}{dx} = \sqrt{4 + v^{2}}$$

$$\int \frac{v}{\sqrt{4 + v^{2}}} dv = \int \frac{dx}{x}$$

$$\frac{1}{2} \int \frac{1}{\sqrt{4 + v^{2}}} d\left(4 + v^{2}\right) = \int \frac{dx}{x}$$

$$\sqrt{4 + v^{2}} = \ln x + C$$

$$\sqrt{4 + \frac{y^{2}}{x^{2}}} = \ln x + C$$

$$\frac{4x^{2} + y^{2}}{x^{2}} = (\ln x + C)^{2}$$

$$\frac{4x^{2} + y^{2}}{x^{2}} = x^{2} (\ln x + C)^{2}$$

Find the general solution xy' =

$$xy' = y + \sqrt{x^2 + y^2}$$

Let
$$y = vx \implies y' = v + xv'$$

$$x(v + xv') = xv + \sqrt{x^2 + v^2 x^2}$$

$$x(v + xv') = xv + x\sqrt{1 + v^2}$$

$$v + xv' = v + \sqrt{1 + v^2}$$

$$x\frac{dv}{dx} = \sqrt{1 + v^2}$$

$$\int \frac{dv}{\sqrt{1 + v^2}} = \int \frac{dx}{x}$$

$$\ln \left| v + \sqrt{1 + v^2} \right| = \ln x + \ln C$$

$$\ln \left| \frac{y}{x} + \sqrt{1 + \frac{y^2}{x^2}} \right| = \ln Cx$$

$$\frac{y}{x} + \frac{1}{x} \sqrt{x^2 + y^2} = Cx$$

$$y + \sqrt{x^2 + y^2} = Cx^2$$

Find the general solution $y^2y' + 2xy^3 = 6x$

Solution

Exercise

Find the general solution $x^2y' + 2xy = 5y^4$

$$y' + 2\frac{1}{x}y = \frac{5}{x^2}y^4 \qquad \text{Divide by } x^2$$
Let $u = y^{1-4} = y^{-3} \implies y = u^{-1/3}$

$$\frac{du}{dx} = -3y^{-4}\frac{dy}{dx} \implies y' = -\frac{1}{3}y^4u' = -\frac{1}{3}u^{-4/3}u'$$

$$-\frac{1}{3}u^{-4/3}u' + \frac{2}{x}u^{-1/3} = \frac{5}{x^2}u^{-4/3} \qquad \text{Multiply both sides by } -3u^{4/3}u = \frac{1}{x^{-6}}\left(\frac{15}{7}x^{-7} + C\right)$$

$$u' - \frac{6}{x}u = -\frac{15}{x^2}$$

$$e^{\int -\frac{6}{x}dx} = e^{-6\ln x}$$

$$= e^{\ln x^{-6}}$$

$$= x^{-6}$$

$$\int x^{-6} \left(-\frac{15}{x^2} \right) dx = -15 \int x^{-8} dx$$
$$= \frac{15}{7} x^{-7}$$

$$y^{-3} = \frac{15 + 7Cx^7}{7x}$$
$$y^3 = \frac{7x}{15 + 7Cx^7}$$

Find the general solution

$$2xy' + y^3e^{-2x} = 2xy$$

Solution

$$2xy' - 2xy = -e^{-2x}y^{3}$$

$$y' - y = -\frac{e^{-2x}}{2x}y^{3}$$
Divide by $2x$

Let $u = y^{1-3} = y^{-2} \implies y = u^{-1/2}$

$$\frac{du}{dx} = -2y^{-3}\frac{dy}{dx} \implies y' = -\frac{1}{2}y^{3}u' = -\frac{1}{2}u^{-3/2}u'$$

$$-\frac{1}{2}u^{-3/2}u' - u^{-1/2} = -\frac{e^{-2x}}{2x}u^{-3/2}$$
Multiply both sides by $-2u^{3/2}$

$$u' + 2u = \frac{e^{-2x}}{x}$$

$$e^{\int 2dx} = e^{2x}$$

$$\int \frac{e^{-2x}}{x}e^{2x}dx = \int \frac{dx}{x}$$

$$= \ln x$$

$$u = \frac{1}{e^{-2x}}(\ln x + C)$$

$$\frac{1}{v^{2}} = \frac{\ln x + C}{e^{2x}}$$

Exercise

Find the general solution

 $y^2 = \frac{e^{2x}}{\ln x + C}$

$$y^{2}(xy'+y)(1+x^{4})^{1/2} = x$$

$$y^{2}xy' + y^{3} = x\left(1 + x^{4}\right)^{-1/2}$$

$$y' + \frac{1}{x}y = \left(1 + x^{4}\right)^{-1/2}y^{-2}$$
Divide both sides by xy^{2}

Let $u = y^{1+2} = y^{3} \Rightarrow y = u^{1/3}$

$$\frac{du}{dx} = 3y^{2}\frac{dy}{dx} \Rightarrow y' = \frac{1}{3}y^{-2}u' = \frac{1}{3}u^{-2/3}u'$$

$$\frac{1}{3}u^{-2/3}u' + \frac{1}{x}u^{1/3} = \left(1 + x^{4}\right)^{-1/2}u^{-2/3}$$
Multiply both sides by $3u^{2/3}$

$$u' + \frac{3}{x}u = 3\left(1 + x^{4}\right)^{-1/2}$$

$$e^{\int \frac{3}{x}dx} = e^{3\ln x}$$

$$= e^{\ln x^{3}}$$

$$= x^{3}$$

$$\int 3\left(1 + x^{4}\right)^{-1/2}x^{3}dx = \frac{3}{4}\int \left(1 + x^{4}\right)^{-1/2}d\left(1 + x^{4}\right)$$

$$= \frac{3}{2}\sqrt{1 + x^{4}}$$

$$u = \frac{1}{x^{3}}\left(\frac{3}{2}\sqrt{1 + x^{4}} + C\right)$$

$$y^{3} = \frac{1}{x^{3}}\left(\frac{3}{2}\sqrt{1 + x^{4}} + C\right)$$

Find the general solution $3y^2y' + y^3 = e^{-x}$

$$3y' + y = e^{-x}y^{-2}$$
Divide both sides by y^2
Let $u = y^{1+2} = y^3 \implies y = u^{1/3}$

$$\frac{du}{dx} = 3y^2 \frac{dy}{dx} \implies y' = \frac{1}{3}y^{-2}u' = \frac{1}{3}u^{-2/3}u'$$

$$u^{-2/3}u' + u^{1/3} = e^{-x}u^{-2/3}$$
Multiply both sides by $u^{2/3}$

$$u' + u = e^{-x}$$

$$e^{\int dx} = e^x$$

$$\int e^{-x} e^{x} dx = \int dx = x$$

$$u = \frac{1}{e^{x}} (x + C)$$

$$\underline{y^{3}} = e^{-x} (x + C)$$

Find the general solution $3xy^2y' = 3x^4 + y^3$

Solution

$$3xy^{2}y' - y^{3} = 3x^{4}$$

$$3y' - \frac{1}{x}y = 3x^{3}y^{-2}$$
Let $u = y^{1+2} = y^{3} \implies y = u^{1/3} \implies y' = \frac{1}{3}u^{-2/3}u'$

$$u^{-2/3}u' - \frac{1}{x}u^{1/3} = 3x^{3}u^{-2/3}$$

$$u' - \frac{1}{x}u = 3x^{3}$$

$$e^{\int \frac{-1}{x}dx} = e^{-\ln x}$$

$$= x^{-1}$$

$$\int 3x^{3}x^{-1}dx = \int 3x^{2}dx$$

$$= x^{3}$$

$$u = x(x^{3} + C)$$

$$y^{3} = x^{4} + Cx$$

$$y = \sqrt[3]{x^{4} + Cx}$$

Exercise

Find the general solution $xe^y y' = 2(e^y + x^3 e^{2x})$

Let
$$u = e^y \implies y = \ln u \implies y' = \frac{u'}{u}$$

 $xu \frac{1}{u}u' = 2u + 2x^3e^{2x}$
 $u' - \frac{2}{x}u = 2x^2e^{2x}$

$$e^{\int \frac{-2}{x} dx} = e^{-2\ln x}$$

$$= x^{-2}$$

$$\int 2x^2 e^{2x} x^{-2} dx = 2 \int e^{2x} dx$$

$$= e^{2x}$$

$$u = x^2 \left(e^{2x} + C \right)$$

$$e^y = x^2 e^{2x} + Cx^2$$

$$y = \ln \left(x^2 e^{2x} + Cx^2 \right)$$

Find the general solution $(2x\sin y\cos y)y' = 4x^2 + \sin^2 y$

Let
$$u = \sin y \implies u' = (\cos y)y'$$

 $2xuu' = 4x^2 + u^2$
 $u' = 2x\frac{1}{u} + \frac{1}{2x}u$
 $u' - \frac{1}{2x}u = 2xu^{-1}$
Let $v = u^{1+1} = u^2 \implies u = v^{1/2}$
 $v' = 2uu' \implies u' = \frac{1}{2}u^{-1}v' = \frac{1}{2}v^{-1/2}v'$
 $\frac{1}{2}v^{-1/2}v' - \frac{1}{2x}v^{1/2} = 2xv^{-1/2}$ Multiply both sides by $2v^{1/2}$
 $v' - \frac{1}{x}v = 4x$
 $e^{\int -\frac{1}{x}dx} = e^{-\ln x}$
 $= e^{\ln x^{-1}}$
 $= x^{-1}$
 $\int x^{-1}(4x)dx = \int 4dx$
 $= 4x$
 $v = x(4x + C)$
 $u^2 = 4x^2 + Cx$
 $\sin^2 y = 4x^2 + Cx$

Find the general solution
$$(x+e^y)y' = xe^{-y} - 1$$

Solution

Let
$$u = e^{y} \implies y = \ln u \implies y' = \frac{u'}{u}$$

$$(x+u)\frac{u'}{u} = xu^{-1} - 1$$

$$(x+u)u' = x - u$$
Let $u = vx \implies u' = v + xv'$

$$(x+vx)(v+xv') = x - vx$$

$$x(1+v)(v+xv') = x(1-v)$$

$$(1+v)(v+xv') = 1-v$$

$$v+v^{2} + x(1+v)v' = 1-v$$

$$x(1+v)\frac{dv}{dx} = 1 - 2v - v^{2}$$

$$\int \frac{1+v}{1-2v-v^{2}} dv = \int \frac{dx}{x}$$

$$-\frac{1}{2}\ln\left|1-2v-v^{2}\right| = \ln x + \ln C$$

$$\ln\left|1-2v-v^{2}\right| = -2\ln Cx$$

$$v = \frac{u}{x} = \frac{e^{y}}{x}$$

$$\ln\left|1-2\frac{e^{y}}{x} - \frac{e^{2y}}{x^{2}}\right| = \ln(Cx)^{-2}$$

$$\frac{x^{2} - 2xe^{y} - e^{2y}}{x^{2}} = \frac{1}{(Cx)^{2}}$$

$$x^{2} - 2xe^{y} - e^{2y} = C_{1}$$

Exercise

Find the general solution
$$(x^2 + y^2)dx + (x^2 - xy)dy = 0$$

$$M(x, y) = x^{2} + y^{2} \quad N(x, y) = x^{2} - xy$$

$$\frac{\partial M}{\partial y} = 2y \quad \frac{\partial N}{\partial x} = 2x - y$$

$$\Rightarrow \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$$

$$\frac{M_y - N_x}{N} = \frac{2y - 2x + y}{x^2 + xy} \times$$

Let $y = ux \implies dy = udx + xdu$

$$-\frac{x^2 + y^2}{x^2 - xy}dx = udx + xdu$$

$$(x^2 + y^2)dx + (x^2 - xy)(udx + xdu) = 0$$

$$(x^2 + y^2)dx + ux(x - y)dx + x^2(x - y)du = 0$$

$$(x^2 + u^2x^2)dx + ux(x - ux)dx + x^2(x - ux)du = 0$$

$$x^{2}(1+u)dx + x^{3}(1-u)du = 0$$

$$(1+u)dx = x(u-1)du$$

$$\frac{dx}{x} = \frac{u-1}{u+1}du$$

$$\int \frac{dx}{x} = \int \left(1 - \frac{2}{u+1}\right) du$$

$$\ln|x| = u - 2\ln|u + 1| + \ln C$$

$$\ln|x| + \ln\left(\frac{y}{x} + 1\right)^2 - \ln C = \frac{y}{x}$$

$$\ln \frac{x}{C} \left(\frac{\left(x + y \right)^2}{x^2} \right) = \frac{y}{x}$$

$$\frac{(x+y)^2}{Cx} = e^{\frac{y}{x}}$$

$$(x+y)^2 = Cxe^{\frac{y}{x}}$$

Exercise

Find the general solution $x \frac{dy}{dx} + y = x^2 y^2$

$$y' + \frac{1}{x}y = xy^{2}$$
Let $u = y^{1-2} = y^{-1} \implies y = \frac{1}{u}$

$$\frac{du}{dx} = -\frac{1}{y^{2}}\frac{dy}{dx} \implies y' = -y^{2}u' = -\frac{1}{u^{2}}u'$$

$$-\frac{1}{u^{2}}u' + \frac{1}{x}\frac{1}{u} = x\frac{1}{u^{2}}$$

$$u' - \frac{1}{x}u = -x \qquad \left(x - u^2\right)$$

$$e^{\int -\frac{1}{x}dx} = e^{-\ln x}$$

$$= e^{\ln x^{-1}}$$

$$= x^{-1}$$

$$\int -xx^{-1}dx = -x$$

$$u = x(-x + C)$$

$$\frac{1}{y} = -x^2 + Cx$$

$$y(x) = \frac{1}{-x^2 + Cx}$$

Solve the differential equation

$$(3x^2 - 2xy + 2) + (6y^2 - x^2 + 3)y' = 0$$

$$\frac{\partial \psi}{\partial x} = M = 3x^2 - 2xy + 2 \implies M_y = -2x$$

$$\frac{\partial \psi}{\partial y} = N = 6y^2 - x^2 + 3 \implies N_x = -2x$$

$$\Rightarrow M_y = N_x$$

$$\frac{\partial \psi}{\partial x} = 3x^2 - 2xy + 2$$

$$\psi = \int (3x^2 - 2xy + 2) dx$$

$$= x^3 - x^2y + 2x + h(y)$$

$$\psi_y = -x^2 + h'(y) = 6y^2 - x^2 + 3 \implies h'(y) = 6y^2 + 3$$

$$h(y) = \int (6y^2 + 3) dy$$

$$= 2y^3 + 3y$$

$$x^3 - x^2y + 2x + 2y^3 + 3y = C$$

Solve the differential equation
$$\left(e^x \sin y - 2y \sin x \right) dx + \left(e^x \cos y + 2\cos x \right) dy = 0$$

Solution

$$\frac{\partial \psi}{\partial x} = M = e^x \sin y - 2y \sin x \implies M_y = e^x \cos y - 2\sin x$$

$$\frac{\partial \psi}{\partial y} = N = e^x \cos y + 2\cos x \implies N_x = e^x \cos y - 2\sin x$$

$$\Rightarrow M_y = N_x$$

$$\frac{\partial \psi}{\partial x} = e^x \sin y - 2y \sin x$$

$$\psi = \int \left(e^x \sin y - 2y \sin x \right) dx$$

$$= e^x \sin y + 2y \cos x + h(y)$$

$$\psi_y = e^x \cos y + 2\cos x + h'(y) = e^x \cos y + 2\cos x \implies h'(y) = 0$$

$$\Rightarrow h(y) = C$$

$$e^x \sin y + 2y \cos x = C$$

Exercise

Solve the differential equation
$$\left(\frac{y}{x} + 6x\right) dx + (\ln x - 2) dy = 0, \quad x > 0$$

$$\frac{\partial \psi}{\partial x} = M = \frac{y}{x} + 6x \implies M_y = \frac{1}{x}$$

$$\frac{\partial \psi}{\partial y} = N = \ln x - 2 \implies N_x = \frac{1}{x} \implies M_y = N_x$$

$$\frac{\partial \psi}{\partial x} = e^x \sin y - 2y \sin x$$

$$\psi = \int \left(\frac{y}{x} + 6x\right) dx$$

$$= y \ln x + 3x^2 + h(y)$$

$$\psi_y = \ln x + h'(y) = \ln x - 2 \implies h'(y) = -2$$

$$h(y) = \int -2dy = -2y$$

$$y \ln x + 3x^2 - 2y = C$$

Solve the differential equation
$$\left(e^{2y} - y\cos xy\right)dx + \left(2xe^{2y} - x\cos xy + 2y\right)dy = 0$$

Solution

$$M(x, y) = e^{2y} - y\cos xy \quad N(x, y) = 2xe^{2y} - x\cos xy + 2y$$

$$\frac{\partial M}{\partial y} = 2e^{2y} - \cos x + xy\sin xy \quad \frac{\partial N}{\partial x} = 2e^{2y} - \cos x + xy\sin xy$$

$$\Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\Psi = \int \left(e^{2y} - y\cos xy\right) dx$$

$$= xe^{2y} - \sin xy + h(y)$$

$$\Psi_y = 2xe^{2y} - x\cos xy + h'(y) = 2xe^{2y} - x\cos xy + 2y$$

$$h'(y) = 2y \quad \Rightarrow \quad h(y) = y^2 + C$$

$$\Psi = xe^{2y} - \sin xy + y^2 = C$$

Exercise

Solve the differential equation
$$\frac{xdx}{\left(x^2 + y^2\right)^{3/2}} + \frac{ydy}{\left(x^2 + y^2\right)^{3/2}} = 0$$

Multiply both side by
$$(x^2 + y^2)^{3/2}$$
 since $x^2 + y^2 \neq 0 \implies xdx + ydy = 0$

$$\frac{\partial \psi}{\partial x} = M = x \implies M_y = 0$$

$$\frac{\partial \psi}{\partial y} = N = y \implies N_x = 0 \implies M_y = N_x$$

$$\frac{\partial \psi}{\partial x} = x$$

$$\psi = \int xdx$$

$$= \frac{1}{2}x^2 + h(y)$$

$$\psi_y = h'(y) = y$$

$$h(y) = \int ydy$$

$$= \frac{1}{2}y^2$$

$$\frac{1}{2}x^2 + \frac{1}{2}y^2 = C_1$$
$$x^2 + y^2 = C$$

Find the general solution (2x-1)dx + (3y+7)dy = 0

Solution

$$M(x, y) = 2x - 1 \quad N(x, y) = 3y + 7$$

$$\frac{\partial M}{\partial y} = 0$$

$$\frac{\partial N}{\partial x} = 0$$

$$\Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\psi = \int (2x - 1) dx$$

$$= x^2 - x + h(y)$$

$$\psi_y = h'(y) = 3y + 7$$

$$h(y) = \int (3y + 7) dy$$

$$= \frac{3}{2}y^2 + 7y$$

$$x^2 - x + \frac{3}{2}y^2 + 7y = C$$

Exercise

Find the general solution $(5x+4y)dx + (4x-8y^3)dy = 0$

$$M(x, y) = 5x + 4y \quad N(x, y) = 4x - 8y^{3}$$

$$\frac{\partial M}{\partial y} = 4$$

$$\frac{\partial N}{\partial x} = 4$$

$$\Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\psi = \int (5x + 4y) dx$$

$$= \frac{5}{2}x^{2} + 4xy + h(y)$$

$$\psi_{y} = 4x + h'(y) = 4x - 8y^{3}$$

$$h'(y) = -8y^{3}$$

$$h(y) = -\int 8y^{3} dy$$

$$= -2y^{4}$$

$$\frac{5}{2}x^{2} + 4xy - 2y^{4} = C$$

Find the general solution $(\sin y - y \sin x) dx + (\cos x + x \cos y - y) dy = 0$

Solution

$$M(x, y) = \sin y - y \sin x \quad N(x, y) = \cos x + x \cos y - y$$

$$\frac{\partial M}{\partial y} = \cos y - \sin x$$

$$\frac{\partial N}{\partial x} = -\sin x + \cos y$$

$$\Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\psi = \int (\sin y - y \sin x) dx$$

$$= x \sin y + y \cos x + h(y)$$

$$\psi_y = x \cos y + \cos x + h'(y) = x \cos y + \cos x - y$$

$$h'(y) = -y$$

$$h(y) = -\int y dy$$

$$= -\frac{1}{2}y^2$$

$$x \sin y + y \cos x - \frac{1}{2}y^2 = C$$

Exercise

Find the general solution $(2xy^2 - 3)dx + (2x^2y + 4)dy = 0$

$$M(x, y) = 2xy^2 - 3$$
 $N(x, y) = 2x^2 + 4$

$$\frac{\partial M}{\partial y} = 4xy$$

$$\frac{\partial N}{\partial x} = 4xy$$

$$\Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\psi = \int (2xy^2 - 3) dx$$

$$= x^2 y^2 - 3x + h(y)$$

$$\psi_y = 2x^2 y + h'(y) = 2x^2 y + 4$$

$$\Rightarrow h'(y) = 4$$

$$h(y) = \int 4 dy$$

$$= 4y$$

$$x^2 y^2 - 3x + 4y = C$$

Find the general solution $\left(1 + \ln x + \frac{y}{x}\right) dx - \left(1 - \ln x\right) dy = 0$

Solution

$$M(x, y) = 1 + \ln x + \frac{y}{x} \quad N(x, y) = -1 + \ln x$$

$$\frac{\partial M}{\partial y} = \frac{1}{x}$$

$$\frac{\partial N}{\partial x} = \frac{1}{x}$$

$$\Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\psi = \int \left(1 + \ln x + \frac{y}{x}\right) dx$$

$$= x + x \ln x - x + y \ln x + h(y)$$

$$= x \ln x + y \ln x + h(y)$$

$$\psi_y = \ln x + h'(y) = -1 + \ln x$$

$$\Rightarrow h'(y) = -1$$

$$h(y) = -\int dy$$

$$= -y$$

 $x \ln x + y \ln x - y = C$

Find the general solution $(x - y^3 + y^2 \sin x) dx - (3xy^2 + 2y \cos x) dy = 0$

Solution

$$M(x, y) = x - y^{3} + y^{2} \sin x \quad N(x, y) = -3xy^{2} - 2y \cos x$$

$$\frac{\partial M}{\partial y} = -3y^{2} + 2y \sin x \qquad \Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\psi = \int (x - y^{3} + y^{2} \sin x) dx = \frac{1}{2}x^{2} - xy^{3} - y^{2} \cos x + h(y)$$

$$\psi_{y} = -3xy^{2} - 2y \cos x + h'(y) = -3xy^{2} - 2y \cos x$$

$$\to h'(y) = 0 \Rightarrow h(y) = C$$

$$\frac{1}{2}x^{2} - xy^{3} - y^{2} \cos x = C$$

Exercise

Find the general solution $(x^3 + y^3)dx + 3xy^2dy = 0$

Solution

$$M(x, y) = x^{3} + y^{3} N(x, y) = 3xy^{2}$$

$$\frac{\partial M}{\partial y} = 3y^{2} \Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\psi = \int (x^{3} + y^{3}) dx = \frac{1}{4}x^{4} + xy^{3} + h(y)$$

$$\psi_{y} = 3xy^{2} + h'(y) = 3xy^{2}$$

$$\Rightarrow h'(y) = 0 \Rightarrow h(y) = C$$

$$\frac{1}{4}x^{4} + xy^{3} = C$$

Exercise

Find the general solution $(3x^2y + e^y)dx + (x^3 + xe^y - 2y)dy = 0$

$$M(x, y) = 3x^{2}y + e^{y}$$
 $N(x, y) = x^{3} + xe^{y} - 2y$

$$\frac{\partial M}{\partial y} = 3x^2 + e^y$$

$$\frac{\partial N}{\partial x} = 3x^2 + e^y \implies \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\Psi = \int (3x^2y + e^y) dx = x^3y + xe^y + h(y)$$

$$\Psi_y = x^3 + xe^y + h'(y) = x^3 + xe^y - 2y$$

$$\Rightarrow h'(y) = -2y \implies h(y) = -y^2$$

$$x^3y + xe^y - y^2 = C$$

Find the general solution $xdy + (y - 2xe^x - 6x^2)dx = 0$

Solution

$$M(x, y) = y - 2xe^{x} - 6x^{2} \quad N(x, y) = x$$

$$\frac{\partial M}{\partial y} = 1$$

$$\frac{\partial N}{\partial x} = 1 \Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\Psi = \int (y - 2xe^{x} - 6x^{2}) dx$$

$$= xy - (2x - 2)e^{x} - 2x^{3} + h(y)$$

$$\Psi_{y} = x + h'(y) = x$$

$$\Rightarrow h'(y) = 0 \Rightarrow h(y) = C$$

$$xy - 2xe^{x} + 2e^{x} - 2x^{3} = C$$

Exercise

Find the general solution $\left(1 - \frac{3}{y} + x\right) dy + \left(y - \frac{3}{x} + 1\right) dx = 0$

$$M(x, y) = y - \frac{3}{x} + 1 \quad N(x, y) = 1 - \frac{3}{y} + x$$

$$\frac{\partial M}{\partial y} = 1$$

$$\frac{\partial N}{\partial x} = 1$$

$$\Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\psi = \int \left(y - \frac{3}{x} + 1 \right) dx = xy - 3\ln|x| + x + h(y)$$

$$\psi_{y} = x + h'(y) = 1 - \frac{3}{y} + x$$

$$\to h'(y) = 1 - \frac{3}{y} \implies h(y) = y - 3\ln|y|$$

$$xy - 3\ln|x| + x + y - 3\ln|y| = C$$

$$xy + x + y - 3\ln|xy| = C$$

Find the general solution $\left(x^2y^3 - \frac{1}{1+9x^2}\right)\frac{dx}{dy} + x^3y^2 = 0$

Solution

$$\left(x^{2}y^{3} - \frac{1}{1+9x^{2}}\right)dx + \left(x^{3}y^{2}\right)dy = 0$$

$$M(x, y) = x^{2}y^{3} - \frac{1}{1+9x^{2}} \quad N(x, y) = x^{3}y^{2}$$

$$\frac{\partial M}{\partial y} = 3x^{2}y^{2} \Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\psi = \int \left(x^{2}y^{3} - \frac{1}{1+9x^{2}}\right)dx$$

$$= \frac{1}{3}x^{3}y^{3} - \frac{1}{3}\arctan(3x) + h(y)$$

$$\psi_{y} = x^{3}y^{2} + h'(y) = x^{3}y^{2}$$

$$\Rightarrow h(y) = C$$

$$\frac{1}{3}x^{3}y^{3} - \frac{1}{3}\arctan(3x) = C$$

$$x^{3}y^{3} - \arctan(3x) = C$$

Exercise

Find the general solution (5y-2x)y'-2y=0

$$M(x, y) = -2y$$
 $N(x, y) = 5y - 2x$

$$\frac{\partial M}{\partial y} = -2$$

$$\frac{\partial N}{\partial x} = -2$$

$$\Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\psi = \int (-2y) \, dx = -2xy + h(y)$$

$$\psi_y = -2x + h'(y) = 5y - 2x$$

$$\Rightarrow h'(y) = 5y \Rightarrow h(y) = \frac{5}{2}y^2$$

$$\frac{-2xy + \frac{5}{2}y^2 = C}{2}$$

Find the general solution (x - y)dx - xdy = 0

Solution

$$M(x, y) = x - y \quad N(x, y) = -x$$

$$\frac{\partial M}{\partial y} = -1$$

$$\frac{\partial N}{\partial x} = -1$$

$$\Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\psi = \int (x - y) \, dx$$

$$= \frac{1}{2}x^2 - xy + h(y)$$

$$\psi_y = -x + h'(y) = -x$$

$$\Rightarrow h'(y) = 0 \Rightarrow h(y) = C$$

$$\frac{1}{2}x^2 - xy = C$$

Exercise

Find the general solution (x + y)dx + xdy = 0

$$M(x, y) = x + y$$
 $N(x, y) = x$
 $\frac{\partial M}{\partial y} = 1$ $\Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

$$\psi = \int (x+y) dx$$

$$= \frac{1}{2}x^2 + xy + h(y)$$

$$\psi_y = x + h'(y) = x$$

$$\rightarrow h'(y) = 0 \implies h(y) = C$$

$$\frac{1}{2}x^2 + xy = C$$

Find the general solution $\frac{dy}{dx} = -\frac{2xy^2 + 1}{2x^2y}$

Solution

$$2x^{2}ydy = -(2xy^{2} + 1)dx$$

$$(2xy^{2} + 1)dx + 2x^{2}ydy = 0$$

$$M(x, y) = 2xy^{2} + 1 \quad N(x, y) = 2x^{2}y$$

$$\frac{\partial M}{\partial y} = 4xy \Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\psi = \int (2xy^{2} + 1) dx$$

$$= x^{2}y^{2} + x + h(y)$$

$$\psi_{y} = 2x^{2}y + h'(y) = 2x^{2}y$$

$$\Rightarrow h'(y) = 0 \Rightarrow h(y) = C$$

$$x^{2}y^{2} + x = C$$

Exercise

Find the general solution $(1 + e^x y + xe^x y) dx + (xe^x + 2) dy = 0$

$$M(x, y) = 1 + e^{x}y + xe^{x}y \quad N(x, y) = xe^{x} + 2$$

$$\frac{\partial M}{\partial y} = e^{x} + xe^{x}$$

$$\frac{\partial N}{\partial x} = e^{x} + xe^{x}$$

$$\Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\Psi = \int \left(1 + e^x y + x e^x y\right) dx$$

$$= x + e^x y + (x - 1)e^x y + h(y)$$

$$= x + x e^x y + h(y)$$

$$\Psi_y = x e^x + h'(y) = x e^x + 2$$

$$\to h'(y) = 2 \implies h(y) = 2y + C$$

$$x + x e^x y + 2y + C = 0$$

Find the general solution $\left(2xy^3 + 1\right)dx + \left(3x^2y^2 - \frac{1}{y}\right)dy = 0$

Solution

$$M_{y} = \frac{\partial}{\partial y} (2xy^{3} + 1) = 6xy^{2}$$

$$N_{x} = \frac{\partial}{\partial x} (3x^{2}y^{2} - \frac{1}{y}) = 6xy^{2}$$

$$\Rightarrow M_{y} = N_{x}$$

$$\Psi = \int (2xy^{3} + 1) dx$$

$$= x^{2}y^{3} + x + h(y)$$

$$\Psi_{y} = 3x^{2}y^{2} + h'(y)$$

$$= 3x^{2}y^{2} - \frac{1}{y}$$

$$\Rightarrow h'(y) = -\frac{1}{y} \Rightarrow h(y) = -\ln|y| + C$$

$$\frac{x^{2}y^{3} + x - \ln|y| = C}{|y|} = C$$

Exercise

Find the general solution (2x + y)dx + (x - 2y)dy = 0

$$M_y = \frac{\partial}{\partial y} (2x + y) = 1$$

 $N_x = \frac{\partial}{\partial x} (x - 2y) = 1$ $\Rightarrow M_y = N_x$

$$\psi = \int (2x + y) dx$$

$$= x^2 + xy + h(y)$$

$$\psi_y = x + h'(y) = x - 2y$$

$$\rightarrow h'(y) = -2y \implies h(y) = -y^2$$

$$x^2 + xy - y^2 = C$$

Find the general solution $e^{x}(y-x)dx + (1+e^{x})dy = 0$

Solution

$$M_{y} = \frac{\partial}{\partial y} \left(e^{x} (y - x) \right) = e^{x}$$

$$N_{x} = \frac{\partial}{\partial x} \left(1 + e^{x} \right) = e^{x}$$

$$\Rightarrow M_{y} = N_{x}$$

$$\psi = \int \left(y e^{x} - x e^{x} \right) dx$$

$$= y e^{x} - (x - 1) e^{x} + h(y)$$

$$\psi_{y} = e^{x} + h'(y) = 1 + e^{x}$$

$$\Rightarrow h'(y) = 1 \Rightarrow h(y) = y$$

$$y e^{x} - (x - 1) e^{x} + y = C$$

$$y(x) = \frac{(x - 1) e^{x} + C}{1 + e^{x}}$$

Exercise

Find the general solution $\left(ye^{xy} - \frac{1}{y}\right)dx + \left(xe^{xy} + \frac{x}{y^2}\right)dy = 0$

$$M_{y} = \frac{\partial}{\partial y} \left(y e^{xy} - \frac{1}{y} \right) = e^{xy} + xy e^{xy} + \frac{1}{y^{2}}$$

$$N_{x} = \frac{\partial}{\partial x} \left(x e^{xy} + \frac{x}{y^{2}} \right) = e^{xy} + xy e^{xy} + \frac{1}{y^{2}}$$

$$\Rightarrow M_{y} = N_{x}$$

$$\psi = \int \left(ye^{xy} - \frac{1}{y} \right) dx$$

$$= e^{xy} - \frac{x}{y} + h(y)$$

$$\psi_{y} = xe^{xy} + \frac{x}{y^{2}} + h'(y) = xe^{xy} + \frac{x}{y^{2}}$$

$$\rightarrow h'(y) = 0 \implies h(y) = C$$

$$e^{xy} - \frac{x}{y} = C$$

Find the general solution $(\tan x - \sin x \sin y) dx + (\cos x \cos y) dy = 0$

Solution

$$M(x, y) = \tan x - \sin x \sin y \quad N(x, y) = \cos x \cos y$$

$$\frac{\partial M}{\partial y} = -\sin x \cos y \Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\psi = \int (\tan x - \sin x \sin y) dx$$

$$= \ln|\sec x| + \cos x \sin y + h(y)$$

$$\psi_y = \cos x \cos y + h'(y) = \cos x \cos y$$

$$\Rightarrow h'(y) = 0 \Rightarrow h(y) = C$$

$$\ln|\sec x| + \cos x \sin y = C$$

Exercise

Find the general solution $(2x^3 - xy^2 - 2y + 3)dx - (x^2y + 2x)dy = 0$

$$M(x, y) = 2x^{3} - xy^{2} - 2y + 3 \quad N(x, y) = -x^{2}y - 2x$$

$$\frac{\partial M}{\partial y} = -2xy - 2$$

$$\frac{\partial N}{\partial x} = -2xy - 2$$

$$\Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\Psi = \int \left(2x^3 - xy^2 - 2y + 3\right) dx$$

$$= \frac{1}{2}x^4 - \frac{1}{2}x^2y^2 - 2xy + 3x + h(y)$$

$$\Psi_y = -x^2y - 2x + h'(y) = -x^2y - 2x$$

$$\to h'(y) = 0 \implies h(y) = C$$

$$\frac{1}{2}x^4 - \frac{1}{2}x^2y^2 - 2xy + 3x = C$$

Find the general solution $(x + \sin y)dx + (x\cos y - 2y)dy = 0$

Solution

$$M(x, y) = x + \sin y \quad N(x, y) = x \cos y - 2y$$

$$\frac{\partial M}{\partial y} = \cos y$$

$$\frac{\partial N}{\partial x} = \cos y$$

$$\Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\psi = \int (x + \sin y) dx$$

$$= \frac{1}{2}x^2 + x \sin y + h(y)$$

$$\psi_y = x \cos y + h'(y) = x \cos y - 2y$$

$$\Rightarrow h'(y) = -2y \quad \Rightarrow \quad h(y) = -y^2$$

$$\frac{1}{2}x^2 + x \sin y - y^2 = C$$

Exercise

Find the general solution
$$\left(x + \frac{1}{\sqrt{y^2 - x^2}} \right) dx + \left(1 - \frac{x}{y\sqrt{y^2 - x^2}} \right) dy = 0$$

$$M(x, y) = x + \frac{1}{\sqrt{y^2 - x^2}}$$
 $N(x, y) = 1 - \frac{x}{y\sqrt{y^2 - x^2}}$

$$\frac{\partial M}{\partial y} = -\frac{1}{2}(2y)\frac{1}{\sqrt{y^2 - x^2}} = -\frac{y}{\sqrt{y^2 - x^2}}$$

$$\frac{\partial N}{\partial x} = -\frac{1}{y}\frac{1}{\sqrt{y^2 - x^2}}\left(y^2 - x^2 + x^2\right) = -\frac{y}{\sqrt{y^2 - x^2}}$$

$$\Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\psi = \int \left(x + \frac{1}{\sqrt{y^2 - x^2}}\right) dx$$

$$= \frac{1}{2}x^2 + \sin^{-1}\frac{x}{y} + h(y)$$

$$\psi_y = -\frac{1}{y^2\sqrt{1 - \left(\frac{x}{y}\right)^2}} + h'(y)$$

$$= -\frac{1}{y\sqrt{y^2 - x^2}} + h'(y) = 1 - \frac{1}{y\sqrt{y^2 - x^2}}$$

$$\Rightarrow h'(y) = 1 \Rightarrow h(y) = y$$

$$\frac{1}{2}x^2 + \sin^{-1}\frac{x}{y} + y = C$$

Find the general solution $\left(2x + y^2 - \cos(x + y)\right) dx + \left(2xy - \cos(x + y) - e^y\right) dy = 0$

$$M_{y} = \frac{\partial}{\partial y} \left(2x + y^{2} - \cos(x + y) \right) = 2y + \sin(x + y)$$

$$N_{x} = \frac{\partial}{\partial x} \left(2xy - \cos(x + y) - e^{y} \right) = 2y + \sin(x + y)$$

$$\Rightarrow M_{y} = N_{x}$$

$$\psi = \int \left(2x + y^{2} - \cos(x + y) \right) dx$$

$$= x^{2} + xy^{2} - \sin(x + y) + h(y)$$

$$\psi_{y} = 2xy - \cos(x + y) + h'(y) = 2xy - \cos(x + y) - e^{y}$$

$$\Rightarrow h'(y) = -e^{y} \Rightarrow h(y) = -e^{y}$$

$$\frac{x^{2} + xy^{2} - \sin(x + y) - e^{y} = C}{2}$$

Find the general solution
$$\left(\frac{2}{\sqrt{1-x^2}} + y\cos(xy) \right) dx + \left(x\cos(xy) - y^{-1/3} \right) dy = 0$$

Solution

$$M_{y} = \frac{\partial}{\partial y} \left(\frac{2}{\sqrt{1 - x^{2}}} + y \cos(xy) \right) = \cos(xy) - xy \sin(xy)$$

$$\Rightarrow M_{y} = N_{x}$$

$$N_{x} = \frac{\partial}{\partial x} \left(x \cos(xy) - y^{-1/3} \right) = \cos(xy) - xy \sin(xy)$$

$$\psi = \int \left(x \cos(xy) - y^{-1/3} \right) dy$$

$$= \sin(xy) - \frac{3}{2} y^{2/3} + h(x)$$

$$\psi_{x} = y \cos(xy) + h'(x) = \frac{2}{\sqrt{1 - x^{2}}} + y \cos(xy)$$

$$\Rightarrow h'(x) = \frac{2}{\sqrt{1 - x^{2}}} \Rightarrow h(x) = 2 \arcsin x$$

$$\sin(xy) - \frac{3}{2} y^{2/3} + 2 \arcsin x = C$$

Exercise

Find the general solution
$$(2x + y\cos(xy))dx + (x\cos(xy) - 2y)dy = 0$$

$$M_{y} = \frac{\partial}{\partial y} (2x + y\cos(xy)) = \cos(xy) - xy\sin(xy)$$

$$N_{x} = \frac{\partial}{\partial x} (x\cos(xy) - 2y) = \cos(xy) - xy\sin(xy)$$

$$\Rightarrow M_{y} = N_{x}$$

$$\Psi = \int (2x + y\cos(xy)) dy$$

$$= x^{2} + \sin(xy) + h(y)$$

$$\Psi_{y} = x\cos(xy) + h'(y) = x\cos(xy) - 2y$$

$$\Rightarrow h'(y) = -2y \Rightarrow h(y) = -y^{2}$$

$$\frac{x^{2} + \sin(xy) - y^{2} = C}{2}$$

Find the general solution
$$\left(e^x \sin y - 3x^2\right) dx + \left(e^x \cos y + \frac{1}{3}y^{-2/3}\right) dy = 0$$

Solution

$$M_{y} = \frac{\partial}{\partial y} \left(e^{x} \sin y - 3x^{2} \right) = e^{x} \cos y$$

$$N_{x} = \frac{\partial}{\partial x} \left(e^{x} \cos y + \frac{1}{3} y^{-2/3} \right) = e^{x} \cos y$$

$$\Rightarrow M_{y} = N_{x}$$

$$\psi = \int \left(e^{x} \sin y - 3x^{2} \right) dy$$

$$= e^{x} \sin y - x^{3} + h(y)$$

$$\psi_{y} = e^{x} \cos y + h'(y) = e^{x} \cos y + \frac{1}{3} y^{-2/3}$$

$$\Rightarrow h'(y) = \frac{1}{3} y^{-2/3} \Rightarrow h(y) = y^{1/3}$$

$$e^{x} \sin y - x^{3} + y^{1/3} = C$$

Exercise

Find the general solution $\left(2y\sin x\cos x - y + 2y^2e^{xy^2} \right) dx = \left(x - \sin^2 x - 4xye^{xy^2} \right) dy$

$$\left(2y\sin x\cos x - y + 2y^{2}e^{xy^{2}} \right) dx - \left(x - \sin^{2} x - 4xye^{xy^{2}} \right) dy = 0$$

$$M\left(x, y\right) = 2y\sin x\cos x - y + 2y^{2}e^{xy^{2}} \qquad N\left(x, y\right) = -x + \sin^{2} x + 4xye^{xy^{2}}$$

$$\frac{\partial M}{\partial y} = 2\sin x\cos x - 1 + 4ye^{xy^{2}} + 4xy^{3}e^{xy^{2}}$$

$$\Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial y} = \frac{\partial N}{\partial x}$$

$$\psi = \int \left(2y\sin x\cos x - y + 2y^{2}e^{xy^{2}} \right) dx$$

$$= \int \left(2y\sin x \right) d\left(\sin x \right) - xy + 2e^{xy^{2}}$$

$$= y\sin^{2} x - xy + 2e^{xy^{2}}$$

$$\psi_{y} = \sin^{2} x - x + 4xye^{xy^{2}} + h'(y) = -x + \sin^{2} x + 4xye^{xy^{2}}$$

$$\Rightarrow h'(y) = 0 \Rightarrow h(y) = C$$

$$y\sin^{2} x - xy + 2e^{xy^{2}} = C$$

The given equation is not exact. However, if you multiply by the given integrating factor, then it becomes exact. Then solve the equation

$$x^{2}y^{3} + x(1+y^{2})y' = 0,$$
 $\mu(x, y) = \frac{1}{xy^{3}}$

Solution

$$M_{y} = \frac{\partial}{\partial y} \left(x^{2} y^{3} \right) = 3x^{2} y^{2}$$

$$N_{x} = \frac{\partial}{\partial x} \left(x + xy^{2} \right) = 1 + y^{2}$$

$$\Rightarrow M_{y} \neq N_{x}$$

$$x^{2} y^{3} \left(\frac{1}{xy^{3}} \right) + x \left(1 + y^{2} \right) \left(\frac{1}{xy^{3}} \right) y' = 0$$

$$x + \left(\frac{1 + y^{2}}{y^{3}} \right) \frac{dy}{dx} = 0 \quad \Rightarrow \quad \left(\frac{1 + y^{2}}{y^{3}} \right) dy = -x dx$$

$$\int \left(y^{-3} + \frac{1}{y} \right) dy = -\int x dx$$

$$-\frac{1}{2} y^{-2} + \ln|y| = -\frac{1}{2} x^{2} + C_{0}$$

$$x^{2} - y^{-2} + \ln|y| = C$$

Exercise

The given equation is not exact. However, if you multiply by the given integrating factor, then it becomes exact. Then solve the equation

$$y^2 - xy + (x^2)y' = 0,$$
 $\mu(x, y) = \frac{1}{xy^2}$

$$M_{y} = \frac{\partial}{\partial y} \left(y^{2} - xy \right) = 2y - x \qquad N_{x} = \frac{\partial}{\partial x} \left(x^{2} \right) = 2x \implies M_{y} \neq N_{x}$$

$$\left(y^{2} - xy \right) \left(\frac{1}{xy^{2}} \right) + \left(x^{2} \right) \left(\frac{1}{xy^{2}} \right) y' = 0$$

$$\left(\frac{1}{x} - \frac{1}{y} \right) + \left(\frac{x}{y^{2}} \right) y' = 0$$

$$M_{y} = \frac{\partial}{\partial y} \left(\frac{1}{x} - \frac{1}{y} \right) = \frac{1}{y^{2}}$$

$$\Rightarrow M_{y} = N_{x}$$

$$N_{x} = \frac{\partial}{\partial x} \left(\frac{x}{y^{2}} \right) = \frac{1}{y^{2}}$$

$$\frac{\partial \Psi}{\partial x} = \frac{1}{x} - \frac{1}{y}$$

$$\Psi = \int \left(\frac{1}{x} - \frac{1}{y}\right) dx$$

$$= \ln|x| - \frac{x}{y} + h(y)$$

$$\Psi_y = \frac{x}{y^2} + h'(y) = \frac{x}{y^2}$$

$$\Rightarrow h'(y) = 0 \rightarrow h(y) = C$$

$$\ln|x| - \frac{x}{y} = C$$

The given equation is not exact. However, if you multiply by the given integrating factor, then it becomes exact. Then solve the equation

$$x^{2}y^{3} - y + x(1 + x^{2}y^{2})y' = 0,$$
 $\mu(x, y) = \frac{1}{xy}$

$$M_{y} = \frac{\partial}{\partial y} \left(x^{2} y^{3} - y \right) = 3y^{2} - 1 \qquad N_{x} = \frac{\partial}{\partial x} \left(x + x^{3} y^{2} \right) = 1 + 3x^{2} y^{2} \implies M_{y} \neq N_{x}$$

$$\left(x^{2} y^{3} - y \right) \left(\frac{1}{xy} \right) + x \left(1 + x^{2} y^{2} \right) \left(\frac{1}{xy} \right) y' = 0$$

$$\left(xy^{2} - \frac{1}{x} \right) + \left(\frac{1}{y} + x^{2} y \right) y' = 0$$

$$M_{y} = \frac{\partial}{\partial y} \left(xy^{2} - \frac{1}{x} \right) = 2xy$$

$$N_{x} = \frac{\partial}{\partial x} \left(\frac{1}{y} + x^{2} y \right) = 2xy$$

$$\Rightarrow M_{y} = N_{x}$$

$$\frac{\partial \psi}{\partial x} = xy^{2} - \frac{1}{x}$$

$$\psi = \int \left(xy^{2} - \frac{1}{x} \right) dx$$

$$= \frac{1}{2} x^{2} y^{2} - \ln|x| + h(y)$$

$$\psi_{y} = x^{2} y + h'(y) = \frac{1}{y} + x^{2} y$$

$$\Rightarrow h'(y) = \frac{1}{y} \rightarrow h(y) = \ln|y|$$

$$\frac{1}{2} x^{2} y^{2} - \ln x + \ln y = C$$

The given equation is not exact. However, if you multiply by the given integrating factor, then it becomes exact. Then solve the equation

$$\left(\frac{\sin y}{y} - 2e^{-x}\sin x\right)dx + \left(\frac{\cos y + 2e^{-x}\cos x}{y}\right)dy = 0, \qquad \mu(x, y) = ye^{x}$$

$$M_{y} = \frac{\partial}{\partial y} \left(\frac{\sin y}{y} - 2e^{-x} \sin x \right) = \frac{y \cos y - \sin y}{y^{2}}$$

$$N_{x} = \frac{\partial}{\partial x} \left(\frac{\cos y + 2e^{-x} \cos x}{y} \right) = \frac{1}{y} \left(-2e^{-x} \cos x - 2e^{-x} \sin x \right)$$

$$\Rightarrow M_{y} \neq N_{x}$$

$$\left(ye^{x} \right) \left(\frac{\sin y}{y} - 2e^{-x} \sin x \right) dx + \left(ye^{x} \right) \left(\frac{\cos y + 2e^{-x} \cos x}{y} \right) dy = 0$$

$$\left(e^{x} \sin y - 2y \sin x \right) dx + \left(e^{x} \cos y + 2 \cos x \right) dy = 0$$

$$M_{y} = \frac{\partial}{\partial y} \left(e^{x} \sin y - 2y \sin x \right) = e^{x} \cos y - 2 \sin x$$

$$\Rightarrow M_{y} = N_{x}$$

$$V_{x} = \frac{\partial}{\partial x} \left(e^{x} \cos y + 2 \cos x \right) = e^{x} \cos y - 2 \sin x$$

$$\psi = \int \left(e^{x} \sin y - 2y \sin x \right) dx$$

$$= e^{x} \sin y - 2y \sin x dx$$

$$= e^{x} \sin y + 2y \cos x + h(y)$$

$$\psi_{y} = e^{x} \cos y + 2 \cos x$$

$$\Rightarrow h'(y) = 0 \Rightarrow h(y) = C$$

$$e^{x} \sin y + 2y \cos x = C$$

The given equation is not exact. However, if you multiply by the given integrating factor, then it becomes exact. Then solve the equation

$$(x+2)\sin y dx + x\cos y dy = 0,$$
 $\mu(x, y) = xe^{x}$

Solution

$$M_{y} = \frac{\partial}{\partial y} ((x+2)\sin y) = (x+2)\cos y$$

$$N_{x} = \frac{\partial}{\partial x} (x\cos y) = -x\sin y$$

$$(xe^{x})(x+2)\sin ydx + (xe^{x})x\cos ydy = 0$$

$$(x^{2}+2x)e^{x}\sin ydx + x^{2}e^{x}\cos ydy = 0$$

$$M_{y} = \frac{\partial}{\partial y} ((x^{2}+2x)e^{x}\sin y) = (x^{2}+2x)e^{x}\cos y$$

$$N_{x} = \frac{\partial}{\partial x} (x^{2}e^{x}\cos y) = (2xe^{x}+x^{2})e^{x}\cos y$$

$$\Rightarrow M_{y} = N_{x}$$

$$\psi = \int (x^{2}e^{x}\cos y)dy = x^{2}e^{x}\sin y + h(x)$$

$$\psi_{x} = (x^{2}+2x)e^{x}\sin y + h'(x) = (x^{2}+2x)e^{x}\sin y$$

$$\Rightarrow h'(x) = 0 \rightarrow h(x) = C$$

Exercise

The given equation is not exact. However, if you multiply by the given integrating factor, then it becomes exact. Then solve the equation

$$(x^2 + y^2 - x)dx - ydy = 0,$$
 $\mu(x, y) = \frac{1}{x^2 + y^2}$

$$M_{y} = \frac{\partial}{\partial y} \left(x^{2} + y^{2} - x \right) = 2y$$

$$N_{x} = \frac{\partial}{\partial x} (-y) = 0$$

$$\Rightarrow M_{y} \neq N_{x}$$

$$\frac{1}{x^{2} + y^{2}} \left(x^{2} + y^{2} - x \right) dx - \frac{y}{x^{2} + y^{2}} dy = 0$$

$$\left(1 - \frac{x}{x^{2} + y^{2}} \right) dx - \frac{y}{x^{2} + y^{2}} dy = 0$$

$$M_{y} = \left(1 - \frac{x}{x^{2} + y^{2}}\right) = \frac{2xy}{\left(x^{2} + y^{2}\right)^{2}}$$

$$N_{x} = \left(\frac{-y}{x^{2} + y^{2}}\right) = \frac{2xy}{\left(x^{2} + y^{2}\right)^{2}}$$

$$\Rightarrow M_{y} = N_{x}$$

$$\frac{d\psi}{dx} = 1 - \frac{x}{x^{2} + y^{2}}$$

$$\psi = \int \left(1 - \frac{x}{x^{2} + y^{2}}\right) dx$$

$$= \int dx - \frac{1}{2} \int \frac{1}{x^{2} + y^{2}} d\left(x^{2} + y^{2}\right)$$

$$= x - \frac{1}{2} \ln\left(x^{2} + y^{2}\right) + h(y)$$

$$\psi_{y} = -\frac{y}{x^{2} + y^{2}} + h'(y)$$

$$= -\frac{y}{x^{2} + y^{2}}$$

$$h'(y) = 0 \rightarrow h(y) = C$$

$$\frac{x - \frac{1}{2} \ln\left(x^{2} + y^{2}\right) = C}{\left(x^{2} + y^{2}\right) = C}$$

The given equation is not exact. However, if you multiply by the given integrating factor, then it becomes exact. Then solve the equation $(2y-6x)dx + (3x-4x^2y^{-1})dy = 0$, $\mu(x, y) = xy^2$

$$M_{y} = \frac{\partial}{\partial y}(2y - 6x) = 2$$

$$N_{x} = \frac{\partial}{\partial x}(3x - 4x^{2}y^{-1}) = 3 - \frac{8x}{y} \Rightarrow M_{y} \neq N_{x}$$

$$xy^{2}(2y - 6x)dx + xy^{2}(3x - 4x^{2}y^{-1})dy = 0$$

$$(2xy^{3} - 6x^{2}y^{2})dx + (3x^{2}y^{2} - 4x^{3}y)dy = 0$$

$$M_{y} = \frac{\partial}{\partial y}(2xy^{3} - 6x^{2}y^{2}) = 6xy^{2} - 12x^{2}y$$

$$N_{x} = \frac{\partial}{\partial x}(3x^{2}y^{2} - 4x^{3}y) = 6xy^{2} - 12x^{2}y \Rightarrow M_{y} = N_{x}$$

$$\psi = \int (2xy^3 - 6x^2y^2) dx$$

$$= x^2y^3 - 2x^3y^2 + h(y)$$

$$\psi_y = 3x^2y^2 - 4x^3y + h'(y)$$

$$= 3x^2y^2 - 4x^3y$$

$$h'(y) = 0 \rightarrow h(y) = C$$

$$x^2y^3 - 2x^3y^2 = C$$

Find the general solution of the homogenous equation $(x^2 + y^2)dx - 2xydy = 0$

$$M_{y} = \frac{\partial}{\partial y} \left(x^{2} + y^{2}\right) = 2y$$

$$N_{x} = \frac{\partial}{\partial x} \left(-2xy\right) = -2y$$

$$\Rightarrow M_{y} \neq N_{x}$$

$$\frac{M_{y} - N_{x}}{N} = \frac{2y + 2y}{-2xy} = -\frac{4y}{2xy} = -\frac{2}{x}$$

$$\frac{d\mu}{dx} = -\mu \frac{2}{x} \Rightarrow \int \frac{d\mu}{\mu} = -2 \int \frac{dx}{x}$$

$$\ln \mu = -2\ln x$$

$$\ln \mu = \ln x^{-2} \Rightarrow \mu = \frac{1}{x^{2}}$$

$$\frac{1}{x^{2}} \left(x^{2} + y^{2}\right) dx - \frac{1}{x^{2}} 2xy dy = 0 \Rightarrow \left(1 + \frac{y^{2}}{x^{2}}\right) dx - \frac{2y}{x} dy = 0$$

$$M_{y} = \frac{\partial}{\partial y} \left(1 + \frac{y^{2}}{x^{2}}\right) = \frac{2y}{x^{2}} \Rightarrow M_{y} = N_{x}$$

$$N_{x} = \frac{\partial}{\partial x} \left(-\frac{2y}{x}\right) = \frac{2y}{x^{2}}$$

$$\psi = \int \left(1 + \frac{y^{2}}{x^{2}}\right) dx$$

$$= x - \frac{y^{2}}{x} + h(y)$$

$$\psi_{y} = -\frac{2y}{x} + h'(y) = -\frac{2y}{x}$$

$$h'(y) = 0 \implies h(y) = C$$

 $x - \frac{y^2}{x} = C$ multiply by x
 $\frac{x^2 - y^2 = Cx}{x}$

Find the general solution of the homogenous equation

$$(x+y)dx + (y-x)dy = 0$$

$$(x+y)dx = -(y-x)dy$$

$$\frac{dy}{dx} = \frac{x+y}{x-y}$$

$$= \frac{\frac{x+y}{x}}{\frac{x-y}{x}}$$

$$= \frac{1+\frac{y}{x}}{1-\frac{y}{x}}$$

$$\frac{dy}{dx} = \frac{1+v}{1-v} = x\frac{dv}{dx} + v$$

$$x\frac{dv}{dx} = \frac{1+v}{1-v} - v = \frac{1+v^2}{1-v}$$

$$\frac{1-v}{1+v^2}dv = \frac{dx}{x}$$

$$\int \frac{dx}{x} = \int \frac{1}{1+v^2}dv - \int \frac{v}{1+v^2}dv$$

$$\ln x = \arctan v - \frac{1}{2} \int \frac{1}{1+v^2}d\left(1+v^2\right)$$

$$\ln x + C = \arctan v - \frac{1}{2}\ln\left(1+v^2\right)$$

$$\ln x + C = \arctan \frac{y}{x} - \frac{1}{2}\ln\left(1+\frac{y^2}{x^2}\right)$$

$$\arctan \frac{y}{x} - \frac{1}{2}\ln\left(1+\frac{y^2}{x^2}\right) - \ln x = C$$

Find the general solution of the homogenous equation

$$\frac{dy}{dx} = \frac{y\left(x^2 + y^2\right)}{xy^2 - 2x^3}$$

Solution

$$\frac{dy}{dx} = \frac{y}{x} \frac{\frac{x^2 + y^2}{x^2}}{\frac{y^2 - 2x^2}{x^2}}$$

$$= \frac{y}{x} \frac{1 + \left(\frac{y}{x}\right)^2}{\left(\frac{y}{x}\right)^2 - 2}$$

$$= v \frac{1 + v^2}{v^2 - 2} = x \frac{dv}{dx} + v$$

$$\frac{v + v^3}{v^2 - 2} - v = x \frac{dv}{dx}$$

$$x \frac{dv}{dx} = \frac{v + v^3 - v^3 + 2v}{v^2 - 2} = \frac{3v}{v^2 - 2}$$

$$\int \frac{dx}{x} = \int \frac{v^2 - 2}{3v} dv = \frac{1}{3} \int \left(v - \frac{2}{v}\right) dv$$

$$3 \ln x + C = \frac{1}{2} \frac{v^2}{x^2} - 2 \ln v$$

$$3 \ln x + C = \frac{1}{2} \frac{y^2}{x^2} - 2 (\ln y - \ln x)$$

$$6 \ln x + C = \frac{y^2}{x^2} - 4 \ln y + 4 \ln x$$

$$\frac{y^2}{x^2} - 4 \ln y - 2 \ln x = C$$

Exercise

Find an integrating factor and solve the given equation

$$(3x^{2}y + 2xy + y^{3})dx + (x^{2} + y^{2})dy = 0$$

$$\begin{split} M_y &= \frac{\partial}{\partial y} \left(3x^2y + 2xy + y^3 \right) = 3x^2 + 2x + 3y^2 \\ N_x &= \frac{\partial}{\partial x} \left(x^2 + y^2 \right) = 2x \end{split} \Rightarrow M_y \neq N_x \end{split}$$

$$\frac{M_{y} - N_{x}}{N} = \frac{3x^{2} + 2x + 3y^{2} - 2x}{x^{2} + y^{2}} = 3$$

$$\frac{d\mu}{dx} = 3\mu \implies \int \frac{d\mu}{\mu} = 3 \int dx$$

$$\ln \mu = 3x \implies \mu = e^{3x}$$

$$e^{3x} \left(3x^{2}y + 2xy + y^{3}\right) dx + e^{3x} \left(x^{2} + y^{2}\right) dy = 0$$

$$M_{y} = \frac{\partial}{\partial y} \left[e^{3x} \left(3x^{2}y + 2xy + y^{3}\right)\right] = e^{3x} \left(3x^{2} + 2x + 3y^{2}\right)$$

$$N_{x} = \frac{\partial}{\partial x} e^{3x} \left(x^{2} + y^{2}\right) = 3e^{3x} \left(x^{2} + y^{2}\right) + 2xe^{3x} = e^{3x} \left(3x^{2} + 3y^{2} + 2x\right)$$

$$\Rightarrow M_{y} = N_{x}$$

$$\Psi = \int \left(e^{3x} \left(3x^{2}y + 2xy + y^{3}\right)\right) dx = +h(y)$$

$$= e^{3x} \left(x^{2}y + \frac{2}{3}xy + \frac{1}{3}y^{3} - \frac{2}{3}xy - \frac{2}{9}y + \frac{2}{9}y\right) + h(y)$$

$$= e^{3x} \left(x^{2}y + \frac{1}{3}y^{3}\right) + h(y)$$

$$\psi_{y} = e^{3x} \left(x^{2} + y^{2}\right) + h'(y) = e^{3x} \left(x^{2} + y^{2}\right)$$

$$h'(y) = 0 \Rightarrow h(y) = C$$

$$e^{3x} \left(x^{2}y + \frac{1}{3}y^{3}\right) = C$$

Find an integrating factor and solve the given equation $dx + \left(\frac{x}{y} - \sin y\right) dy = 0$

Solution

$$ydx + (x - y\sin y)dy = 0 \qquad Multiply by y both sides$$

$$M_{y} = \frac{\partial}{\partial y}(y) = 1; \quad N_{x} = \frac{\partial}{\partial x}(x - y\sin y) = 1; \quad M_{y} = N_{x}$$

$$\frac{\partial \psi}{\partial x} = 2x + y^{2} \implies \psi = \int ydx = xy + h(y)$$

$$\psi_{y} = x + h'(y) = x - y\sin y \implies h'(y) = -y\sin y$$

$$h(y) = -\int y\sin ydy = y\cos y - \sin y$$

$$1$$

$$\sin y$$

 $xy + y\cos y - \sin y = C$

Find an integrating factor and solve the given equation

$$e^{x}dx + \left(e^{x}\cot y + 2y\csc y\right)dy = 0$$

Solution

$$M_{y} = \frac{\partial}{\partial y} \left(e^{x} \right) = 0$$

$$N_{x} = \frac{\partial}{\partial x} \left(e^{x} \cot y + 2y \csc y \right) = e^{x}$$

$$\Rightarrow M_{y} \neq N_{x}$$

$$e^{x} dx + \left(e^{x} \frac{\cos y}{\sin y} + 2y \frac{1}{\sin y} \right) dy = 0 \qquad Multiply by siny both sides$$

$$\left(\sin y \right) e^{x} dx + \left(\sin y \right) \left(e^{x} \frac{\cos y}{\sin y} + 2y \frac{1}{\sin y} \right) dy = 0$$

$$e^{x} \sin y dx + \left(e^{x} \cos y + 2y \right) dy = 0$$

$$M_{y} = \frac{\partial}{\partial y} \left(e^{x} \sin y \right) = e^{x} \cos y$$

$$N_{x} = \frac{\partial}{\partial x} \left(e^{x} \cos y + 2y \right) = e^{x} \cos y$$

$$\Rightarrow M_{y} = N_{x}$$

$$\psi = \int \left(e^{x} \sin y \right) dx = e^{x} \sin y + h(y)$$

$$\psi_{y} = e^{x} \cos y + h'(y) = e^{x} \cos y + 2y \qquad \Rightarrow h'(y) = 2y \implies h(y) = y^{2}$$

$$\psi(x, y) = e^{x} \sin y + y^{2} = C$$

$$e^{x} \sin y + y^{2} = C$$

Exercise

Find an integrating factor and solve the given equation

$$\left(3x + \frac{6}{y}\right)dx + \left(\frac{x^2}{y} + 3\frac{y}{x}\right)dy = 0$$

$$xy\left(3x + \frac{6}{y}\right)dx + xy\left(\frac{x^2}{y} + 3\frac{y}{x}\right)dy = 0$$

$$\left(3x^2y + 6x\right)dx + \left(x^3 + 3y^2\right)dy = 0$$

$$M_y = \frac{\partial}{\partial y}\left(3x^2y + 6x\right) = 3x^2$$

$$N_x = \frac{\partial}{\partial x}\left(x^3 + 3y^2\right) = 3x^2$$

$$\Rightarrow M_y = N_x$$

$$\psi = \int \left(3x^2y + 6x\right)dx = x^3y + 3x^2 + h(y)$$

$$\psi_y = x^3 + h'(y) = x^3 + 3y^2$$
 $h'(y) = 3y^2 \implies h(y) = y^3$
 $x^3y + 3x^2 + y^3 = C$

 $\left(x+3x^3\sin y\right)dx + \left(x^4\cos y\right)dy = 0$ Find an integrating factor and solve the given equation

Solution

ution
$$M_{y} = \frac{\partial}{\partial y} \left(x + 3x^{3} \sin y \right) = 3x^{3} \cos y$$

$$N_{x} = \frac{\partial}{\partial x} \left(x^{4} \cos y \right) = 4x^{3} \cos y$$

$$\frac{M_{y} - N_{x}}{N} = \frac{3x^{3} \cos y - 4x^{3} \cos y}{x^{4} \cos y} = -\frac{1}{x}$$

$$\mu = e^{-\int \frac{1}{x} dx} = e^{-\ln x} = \frac{1}{x}$$

$$\frac{1}{x} \left(x + 3x^{3} \sin y \right) dx + \frac{1}{x} \left(x^{4} \cos y \right) dy = 0$$

$$\left(1 + 3x^{2} \sin y \right) dx + \left(x^{3} \cos y \right) dy = 0$$

$$M_{y} = \frac{\partial}{\partial y} \left(1 + 3x^{2} \sin y \right) = 3x^{2} \cos y$$

$$N_{x} = \frac{\partial}{\partial x} \left(x^{3} \cos y \right) = 3x^{2} \cos y$$

$$\psi = \int \left(1 + 3x^{2} \sin y \right) dx = x + x^{3} \sin y + h(y)$$

$$\psi_{y} = -x^{3} \cos y + h'(y) = -x^{3} \cos y$$

$$h'(y) = 0 \implies h(y) = C$$

$$x + x^{3} \sin y = C$$

Exercise

 $(2x^2 + y)dx + (x^2y - x)dy = 0$ Find an integrating factor and solve the given equation

$$M_{y} = \frac{\partial}{\partial y} \left(2x^{2} + y \right) = 1$$

$$N_{x} = \frac{\partial}{\partial x} \left(x^{2} y - x \right) = 2xy - 1$$

$$\Rightarrow M_{y} \neq N_{x}$$

$$\frac{M_{y} - N_{x}}{N} = \frac{1 - 2xy + 1}{x^{2} y - x} = \frac{2(1 - xy)}{x(xy - 1)} = -\frac{2}{x}$$

$$\mu = e^{-\int \frac{2}{x} dx} = e^{-2\ln x} = \frac{x^{-2}}{x}$$

$$\mu = e^{\int \frac{M_{y} - N_{x}}{x} dx}$$

$$x^{-2} \left(2x^{2} + y \right) dx + x^{-2} \left(x^{2} y - x \right) dy = 0$$

$$\left(2 + \frac{y}{x^{2}} \right) dx + \left(y - \frac{1}{x} \right) dy = 0$$

$$M_{y} = \frac{\partial}{\partial y} \left(2 + \frac{y}{x^{2}} \right) = \frac{1}{x^{2}}$$

$$N_{x} = \frac{\partial}{\partial x} \left(y - \frac{1}{x} \right) = \frac{1}{x^{2}}$$

$$\psi = \int \left(2 + \frac{y}{x^{2}} \right) dx$$

$$= 2x - \frac{y}{x} + h(y)$$

$$\psi_{y} = -\frac{1}{x} + h'(y) = y - \frac{1}{x}$$

$$h'(y) = y \Rightarrow h(y) = \frac{1}{2}y^{2}$$

$$2x - \frac{y}{x} + \frac{1}{2}y^{2} = C$$

Find an integrating factor and solve the given equation

$$\left(3x^2 + y\right)dx + \left(x^2y - x\right)dy = 0$$

$$M_{y} = \frac{\partial}{\partial y} (3x^{2} + y) = 1$$

$$N_{x} = \frac{\partial}{\partial x} (x^{2}y - x) = 2xy - 1$$

$$\Rightarrow M_{y} \neq N_{x}$$

$$\frac{M_{y} - N_{x}}{N} = \frac{1 - 2xy + 1}{x^{2}y - x}$$

$$= \frac{2(1-xy)}{x(xy-1)}$$

$$= -\frac{2}{x}$$

$$e^{-\int \frac{2}{x} dx} = e^{-2\ln x} = \frac{x^{-2}}{x^{-2}}$$

$$x^{-2} \left(3x^2 + y\right) dx + x^{-2} \left(x^2 y - x\right) dy = 0$$

$$\left(3 + \frac{y}{x^2}\right) dx + \left(y - \frac{1}{x}\right) dy = 0$$

$$M_y = \frac{\partial}{\partial y} \left(3 + \frac{y}{x^2}\right) = \frac{1}{x^2}$$

$$N_x = \frac{\partial}{\partial x} \left(y - \frac{1}{x}\right) = \frac{1}{x^2}$$

$$\Rightarrow M_y = N_x$$

$$\psi = \int \left(3 + \frac{y}{x^2}\right) dx$$

$$= 3x - \frac{y}{x} + h(y)$$

$$\psi_y = -\frac{1}{x} + h'(y)$$

$$= y - \frac{1}{x}$$

$$h'(y) = y \Rightarrow h(y) = \frac{1}{2}y^2$$

$$3x - \frac{y}{x} + \frac{1}{2}y^2 = C$$

Find an integrating factor and solve the given equation $(2y^2 + 2y + 4x^2)dx + (2xy + x)dy = 0$

$$M_{y} = \frac{\partial}{\partial y} \left(2y^{2} + 2y + 4x^{2} \right) = 4y + 2$$

$$N_{x} = \frac{\partial}{\partial x} \left(2xy + x \right) = 2y + 1$$

$$\Rightarrow M_{y} \neq N_{x}$$

$$\frac{M_{y} - N_{x}}{N} = \frac{4y + 2 - 2y - 1}{x(2y + 1)} = \frac{2y + 1}{x(2y + 1)} = \frac{1}{x}$$

$$\mu = e^{\int \frac{1}{x} dx} = e^{\ln x} = x$$

$$\mu = e^{\int \frac{M_{y} - N_{x}}{N} dx}$$

$$x(2y^{2} + 2y + 4x^{2})dx + x(2xy + x)dy = 0$$

$$(2xy^{2} + 2xy + 4x^{3})dx + (2x^{2}y + x^{2})dy = 0$$

$$M_{y} = \frac{\partial}{\partial y}(2xy^{2} + 2xy + 4x^{3}) = 4xy + 2x$$

$$N_{x} = \frac{\partial}{\partial x}(2x^{2}y + x^{2}) = 4xy + 2x$$

$$\Rightarrow M_{y} = N_{x}$$

$$\psi = \int (2xy^{2} + 2xy + 4x^{3})dx$$

$$= x^{2}y^{2} + x^{2}y + x^{4} + h(y)$$

$$\psi_{y} = 2x^{2}y + x^{2} + h'(y) = 2x^{2}y + x^{2}$$

$$h'(y) = 0 \Rightarrow h(y) = C$$

$$x^{2}y^{2} + x^{2}y + x^{4} = C$$

Find an integrating factor and solve the given equation $(x^4 - x + y)dx - xdy = 0$

$$M_{y} = \frac{\partial}{\partial y} \left(x^{4} - x + y \right) = 1$$

$$N_{x} = \frac{\partial}{\partial x} (-x) = -1$$

$$\Rightarrow M_{y} \neq N_{x}$$

$$\frac{M_{y} - N_{x}}{N} = -\frac{2}{x}$$

$$\mu = e^{-\int \frac{2}{x} dx} = e^{-2 \ln x} = \frac{x^{-2}}{N}$$

$$\mu = e^{\int \frac{M_{y} - N_{x}}{N} dx}$$

$$\frac{x^{-2} \left(x^{4} - x + y \right) dx - x^{-2} x dy = 0$$

$$\left(x^{2} - x^{-1} + yx^{-2} \right) dx - x^{-1} dy = 0$$

$$M_{y} = \frac{\partial}{\partial y} \left(x^{2} - x^{-1} + yx^{-2} \right) = x^{-2}$$

$$N_{x} = \frac{\partial}{\partial x} \left(-x^{-1} \right) = x^{-2}$$

$$\Rightarrow M_{y} = N_{x}$$

$$\psi = \int \left(x^{2} - x^{-1} + yx^{-2} \right) dx$$

$$= \frac{1}{3}x^3 - \ln|x| - \frac{y}{x} + h(y)$$

$$\psi_y = -\frac{1}{x} + h'(y)$$

$$= -\frac{1}{x}$$

$$h'(y) = 0 \implies h(y) = C$$

$$\frac{1}{3}x^3 - \ln|x| - \frac{y}{x} = C$$

Find an integrating factor and solve the given equation $(2xy)dx + (y^2 - 3x^2)dy = 0$

$$M_{y} = \frac{\partial}{\partial y}(2xy) = 2x$$

$$N_{x} = \frac{\partial}{\partial x}\left(y^{2} - 3x^{2}\right) = -6x$$

$$\Rightarrow M_{y} \neq N_{x}$$

$$\frac{N_{x} - M_{y}}{M} = \frac{-8x}{2xy} = -\frac{4}{y}$$

$$\mu = e^{-\int \frac{4}{y}dy} = e^{-4\ln y} = \frac{y^{-4}}{y}$$

$$\mu = e^{\int \frac{N_{x} - M_{y}}{M}dy}$$

$$\mu = e^{\int \frac{N_{x} -$$

Solve the given initial-value problem

$$\frac{dy}{dx} = \frac{xy^2 - \cos x \sin x}{y(1 - x^2)}, \quad y(0) = 2$$

Solution

$$(xy^{2} - \cos x \sin x) dx - y(1 - x^{2}) dy = 0$$

$$M_{y} = \frac{\partial}{\partial y} (xy^{2} - \cos x \sin x) = 2xy \qquad N_{x} = \frac{\partial}{\partial x} (-y + yx^{2}) = 2xy$$

$$\Rightarrow \underline{M_{y} = N_{x}}$$

$$\psi = \int (xy^{2} - \cos x \sin x) dx$$

$$= \int (xy^{2} - \frac{1}{2} \sin 2x) dx$$

$$= \frac{1}{2} x^{2} y^{2} + \frac{1}{4} \cos 2x + h(y)$$

$$\psi_{y} = x^{2} y + h'(y) = -y + yx^{2}$$

$$h'(y) = -y \Rightarrow h(y) = -\frac{1}{2} y^{2}$$

$$\psi = \frac{1}{2} x^{2} y^{2} + \frac{1}{4} \cos 2x - \frac{1}{2} y^{2} = C$$

$$y(0) = 2 \Rightarrow \frac{1}{4} - \frac{1}{2} (4) = C \Rightarrow C = -\frac{7}{4}$$

$$\frac{1}{2} x^{2} y^{2} + \frac{1}{4} \cos 2x - \frac{1}{2} y^{2} = -\frac{7}{4}$$

$$\frac{1}{2} x^{2} y^{2} + \cos 2x - 2y^{2} = -7$$

$$x^{2} y^{2} + \cos^{2} x - y^{2} = -3$$

$$2x^{2} y^{2} + \cos^{2} x - y^{2} = -3$$

Exercise

Solve the given initial-value problem

$$(x+y)^2 dx + (2xy+x^2-1)dy$$
, $y(1) = 1$

$$M_{y} = \frac{\partial}{\partial y}(x+y)^{2} = 2(x+y)$$

$$N_{x} = \frac{\partial}{\partial x}(2xy+x^{2}-1) = 2y+2x$$

$$\Rightarrow M_{y} = N_{x}$$

$$\psi = \int (x^{2}+2xy+y^{2})dx$$

$$= \frac{1}{3}x^{3} + x^{2}y + xy^{2} + h(y)$$

$$\psi_{y} = x^{2} + 2xy + h'(y)$$

$$= 2xy + x^{2} - 1$$

$$h'(y) = -1 \implies h(y) = -y$$

$$\psi = \frac{1}{3}x^{3} + x^{2}y + xy^{2} - y = C$$

$$y(1) = 1 \implies \frac{1}{3} + 1 + 1 - 1 = C \implies C = \frac{4}{3}$$

$$\frac{1}{3}x^{3} + x^{2}y + xy^{2} - y = \frac{4}{3}$$

Solve the given initial-value problem

$$\left(e^{x}+y\right)dx+\left(2+x+ye^{y}\right)dy, \quad y(0)=1$$

Solution

$$M_{y} = \frac{\partial}{\partial y} (e^{x} + y) = 1$$

$$N_{x} = \frac{\partial}{\partial x} (2 + x + ye^{y}) = 1$$

$$\Rightarrow M_{y} = N_{x}$$

$$\psi = \int (e^{x} + y) dx$$

$$= e^{x} + xy + h(y)$$

$$\psi_{y} = x + h'(y)$$

$$= 2 + x + ye^{y}$$

$$h'(y) = 2 + ye^{y}$$

$$h(y) = 2y + e^{y}(y - 1)$$

$$e^{x} + xy + 2y + e^{y}(y - 1) = C$$

$$y(0) = 1 \Rightarrow 1 + 2 = C \Rightarrow C = 3$$

$$e^{x} + xy + 2y + e^{y}(y - 1) = 3$$

Exercise

Solve the given initial-value problem

$$(2x-y)dx + (2y-x)dy$$
, $y(1) = 3$

$$\begin{cases} M_{y} = \frac{\partial}{\partial y}(2x - y) = -1 \\ N_{x} = \frac{\partial}{\partial x}(2y - x) = -1 \end{cases} \Rightarrow M_{y} = N_{x} \end{cases}$$

$$\psi = \int (2x - y) dx$$

$$= x^{2} - xy + h(y)$$

$$\psi_{y} = -x + h'(y) = 2y - x$$

$$h'(y) = 2y \rightarrow h(y) = y^{2}$$

$$x^{2} - xy + y^{2} = C$$

$$y(1) = 3 \Rightarrow 1 - 3 + 9 = C \rightarrow C = 7$$

$$x^{2} - xy + y^{2} = 7$$

$$y^{2} - xy + x^{2} - 7 = 0 \rightarrow y = \frac{x \pm \sqrt{x^{2} - 4x^{2} + 28}}{2} = \frac{x \pm \sqrt{-3x^{2} + 28}}{2}$$

$$since \ y(1) = 3 \rightarrow y = \frac{1}{2} \left(1 \pm \sqrt{-3(1)^{2} + 28}\right) = \frac{1}{2} (1 \pm 5) \begin{cases} \frac{1 + 5}{2} = 3 \\ \frac{1 + 5}{2} = 3 \end{cases}$$

$$y(x) = \frac{x + \sqrt{-3x^{2} + 28}}{2} \qquad |x| < \sqrt{\frac{28}{3}}$$

Solve the given initial-value problem

$$(9x^2 + y - 1)dx - (4y - x)dy$$
, $y(1) = 0$

$$M_{y} = \frac{\partial}{\partial y} (9x^{2} + y - 1) = 1$$

$$N_{x} = \frac{\partial}{\partial x} (x - 4y) = 1$$

$$\Rightarrow M_{y} = N_{x}$$

$$\psi = \int (9x^{2} + y - 1) dx$$

$$= 3x^{3} + xy - x + h(y)$$

$$\psi_{y} = x + h'(y) = x - 4y$$

$$h'(y) = -4y \quad \Rightarrow h(y) = -2y^{2}$$

$$3x^{3} + xy - x - 2y^{2} = C$$

$$y(1) = 0 \quad \Rightarrow \quad 3 - 1 = C \quad \Rightarrow \quad C = 2$$

$$\frac{-2y^{2} + xy + 3x^{3} - x = 2}{-2y^{2} + xy + 3x^{3} - x - 2 = 0} \rightarrow y = \frac{-x \pm \sqrt{x^{2} + 24x^{3} - 8x - 16}}{-4}$$

$$since \ y(1) = 0 \rightarrow y = -\frac{1}{4} \left(-1 \pm \sqrt{1 + 24 - 8 - 16} \right) = -\frac{1}{4} \left(-1 \pm 1 \right) \begin{cases} -\frac{-1 + 1}{4} = 0 \\ \frac{1}{4} = 0 \end{cases}$$

$$y(x) = \frac{x - \sqrt{x^{2} + 24x^{3} - 8x - 16}}{4}$$

Solve the given initial-value problem $(x + y^3)y' + y + x^3 = 0$, y(0) = -2

Solution

$$M_{y} = \frac{\partial}{\partial y} \left(y + x^{3} \right) = 1$$

$$N_{x} = \frac{\partial}{\partial x} \left(x + y^{3} \right) = 1 \qquad \Rightarrow M_{y} = N_{x}$$

$$\Psi = \int \left(y + x^{3} \right) dx = xy + \frac{1}{4}x^{4} + h(y)$$

$$\Psi_{y} = x + h'(y) = x + y^{3}$$

$$h'(y) = y^{3} \qquad \Rightarrow h(y) = \frac{1}{4}y^{4}$$

$$xy + \frac{1}{4}x^{4} + \frac{1}{4}y^{4} = C$$

$$y(0) = -2 \qquad \Rightarrow \underline{4} = C$$

$$xy + \frac{1}{4}x^{4} + \frac{1}{4}y^{4} = 4$$

Exercise

Solve the given initial-value problem $y' = (3x^2 + 1)(y^2 + 1), y(0) = 1$

$$\frac{1}{y^2 + 1} y' - \left(3x^2 + 1\right) = 0$$

$$M_y = \frac{\partial}{\partial y} \left(-3x^2 - 1\right) = 0$$

$$N_x = \frac{\partial}{\partial x} \left(\frac{1}{y^2 + 1}\right) = 0 \implies M_y = N_x$$

$$\psi = \int (-3x^2 - 1) dx = -x^3 - x + h(y)$$

$$\psi_y = h'(y) = \frac{1}{y^2 + 1} \quad \Rightarrow h(y) = \tan^{-1} y$$

$$-x^3 - x + \tan^{-1} y = C$$

$$y(0) = 1 \quad \Rightarrow \tan^{-1} 1 = C \quad \Rightarrow \quad C = \frac{\pi}{4}$$

$$-x^3 - x + \tan^{-1} y = \frac{\pi}{4}$$

$$\tan^{-1} y = x^3 + x + \frac{\pi}{4}$$

$$y(x) = \tan\left(x^3 + x + \frac{\pi}{4}\right)$$

Solve the given initial-value problem $(y^3 + \cos t)y' = 2 + y\sin t$, y(0) = -1

Solution

$$(y^{3} + \cos t)y' - (2 + y \sin t) = 0$$

$$M_{y} = \frac{\partial}{\partial y}(-2 - y \sin t) = -\sin t$$

$$N_{t} = \frac{\partial}{\partial t}(y^{3} + \cos t) = -\sin t$$

$$\Rightarrow M_{y} = N_{t}$$

$$\Rightarrow$$

Exercise

Solve the given initial-value problem $(y^3 - t^3)y' = 3t^2y + 1$, y(-2) = -1

$$(y^{3} - t^{3})y' - (3t^{2}y + 1) = 0$$

$$M_{y} = \frac{\partial}{\partial y} (-3t^{2}y - 1) = -3t^{2}$$

$$N_{t} = \frac{\partial}{\partial t} (y^{3} - t^{3}) = -3t^{2}$$

$$\Rightarrow M_{y} = N_{t}$$

$$\forall = \int (-3t^{2}y - 1)dt$$

$$= -t^{3}y - t + h(y)$$

$$\forall y = -t^{3} + h'(y)$$

$$= y^{3} - t^{3}$$

$$h'(y) = y^{3} \rightarrow h(y) = \frac{1}{4}y^{4}$$

$$-t^{3}y - t + \frac{1}{4}y^{4} = C$$

$$y(-2) = -1 \quad -8 + 2 + \frac{1}{4} = C \Rightarrow C = -\frac{23}{4}$$

$$-t^{3}y - t + \frac{1}{4}y^{4} = -\frac{23}{4}$$

Solve the given initial-value problem
$$\frac{dy}{dx} = (-2x + y)^2 - 7$$
, $y(0) = 0$

Let
$$u = -2x + y \implies \frac{du}{dx} = -2 + \frac{dy}{dx}$$

$$\frac{du}{dx} + 2 = u^2 - 7$$

$$\frac{du}{dx} = u^2 - 9$$

$$\int \frac{du}{u^2 - 9} = \int dx$$

$$\frac{1}{u^2 - 9} = \frac{A}{u - 3} + \frac{B}{u + 3}$$

$$Au + 3A + Bu - 3B = 0 \quad \begin{cases} A + B = 0 \\ 3A - 3B = 1 \end{cases} \rightarrow A = \frac{1}{6}, \ B = -\frac{1}{6}$$

$$\frac{1}{6} \int \left(\frac{1}{u - 3} - \frac{1}{u + 3} \right) du = \int dx$$

$$\frac{1}{6} \left(\ln|u - 3| - \ln|u + 3| \right) = x + C$$

$$\ln\left|\frac{u - 3}{u + 3}\right| = 6x + C$$

$$\frac{u - 3}{u + 3} = e^{6x + C} = Ae^{6x}$$

$$u - 3 = Aue^{6x} + 3Ae^{6x}$$

$$u = \frac{3 + 3Ae^{6x}}{1 - Ae^{6x}} = -2x + y$$

$$y = 2x + \frac{3 + 3Ae^{6x}}{1 - Ae^{6x}} \qquad y(0) = 0$$

$$0 = \frac{3 + 3A}{1 - A} \rightarrow \underline{A = -1}$$

$$y(x) = 2x + \frac{3(1 - e^{6x})}{1 + e^{6x}}$$

Solve the given initial-value problem (2y-x)y'-y+2x=0, y(1)=0

Solution

$$M_{y} = \frac{\partial}{\partial y}(2y - x) = 2$$

$$N_{x} = \frac{\partial}{\partial x}(-y + 2x) = 2 \Rightarrow M_{y} = N_{x}$$

$$\Psi = \int (-y + 2x)dx = x^{2} - xy + h(y)$$

$$\Psi_{y} = -x + h'(y) = 2y - x \Rightarrow h'(y) = 2y \Rightarrow h(y) = y^{2}$$

$$x^{2} - xy + y^{2} = C$$

$$y(1) = 0 \Rightarrow 1 = C$$

$$x^{2} - xy + y^{2} = 1$$

$$y^{2} - xy + x^{2} - 1 = 0$$

$$y = \frac{x \pm \sqrt{x^{2} - 4x^{2} + 4}}{2} = \frac{x \pm \sqrt{4 - 3x^{2}}}{2}$$
Since $y(1) = 0 \Rightarrow y(x) = \frac{x - \sqrt{4 - 3x^{2}}}{2}$

Exercise

Solve the given initial-value problem $\left(e^{2y} + t^2y\right)y' + ty^2 + \cos t = 0$, $y\left(\frac{\pi}{2}\right) = 0$ *Solution*

$$M_{y} = \frac{\partial}{\partial y} \left(ty^{2} + \cos t \right) = 2yt$$

$$N_{t} = \frac{\partial}{\partial t} \left(e^{2y} + t^{2}y \right) = 2ty$$

$$\Rightarrow M_{y} = N_{t}$$

$$\psi = \int \left(ty^{2} + \cos t \right) dt$$

$$= \frac{1}{2} t^{2} y^{2} + \sin t + h(y)$$

$$\psi_{y} = t^{2} y + h'(y)$$

$$= t^{2} y + e^{2y}$$

$$h'(y) = e^{2y} \rightarrow h(y) = \frac{1}{2} e^{2y}$$

$$\frac{1}{2} t^{2} y^{2} + \sin t + \frac{1}{2} e^{2y} = C$$

$$y\left(\frac{\pi}{2}\right) = 0 \quad 1 + \frac{1}{2} = C \Rightarrow C = \frac{3}{2}$$

$$\frac{1}{2} t^{2} y^{2} + \sin t + \frac{1}{2} e^{2y} = \frac{3}{2}$$

Solve the given initial-value problem $y' = -\frac{y\cos(ty) + 1}{t\cos(ty) + 2ye^{y^2}}, \quad y(\pi) = 0$

$$\left(t\cos(ty) + 2ye^{y^2}\right)y' + \left(y\cos(ty) + 1\right) = 0$$

$$M_y = \frac{\partial}{\partial y}\left(y\cos ty + 1\right) = \cos ty - ty\sin ty$$

$$N_t = \frac{\partial}{\partial t}\left(t\cos ty + 2ye^{y^2}\right) = \cos ty - ty\sin ty$$

$$\psi = \int (y\cos ty + 1)dt$$

$$= \sin ty + t + h(y)$$

$$\psi_y = t\cos ty + h'(y)$$

$$= t\cos ty + 2ye^{y^2}$$

$$h'(y) = 2ye^{y^2} \rightarrow h(y) = e^{y^2}$$

$$\sin ty + t + e^{y^2} = C$$

$$y(\pi) = 0 \implies \underline{C = -\pi - 1}$$

$$\underline{\sin ty + t + e^{y^2}} = \pi + 1$$

Solve the given initial-value problem $\left(2ty + \frac{1}{y}\right)y' + y^2 = 1$, y(1) = 1

Solution

$$\left(2ty + \frac{1}{y}\right)y' + y^2 - 1 = 0$$

$$M_y = \frac{\partial}{\partial y} \left(y^2 - 1\right) = 2y$$

$$N_t = \frac{\partial}{\partial t} \left(2ty + \frac{1}{y}\right) = 2y$$

$$\Rightarrow M_y = N_t$$

$$\psi = \int \left(y^2 - 1\right) dt$$

$$= ty^2 - t + h(y)$$

$$\psi_y = t\cos ty + h'(y)$$

$$= 2ty + h'(y)$$

$$= 2ty + \frac{1}{y}$$

$$h'(y) = \frac{1}{y} \rightarrow h(y) = \ln y$$

$$ty^2 - t + \ln|y| = C$$

$$y(1) = 1 \Rightarrow C = 0$$

$$ty^2 - t + \ln|y| = 0$$

Exercise

Solve the given initial-value problem $(ye^x + 1)dx + (e^x - 1)dy = 0$ y(1) = 1

$$M_{y} = \frac{\partial}{\partial y} (ye^{x} + 1) = e^{x}$$

$$N_{x} = \frac{\partial}{\partial x} (e^{x} - 1) = e^{x}$$

$$\Rightarrow M_{y} = N_{x}$$

$$\psi = \int (ye^{x} + 1) dx$$

$$= ye^{x} + x + h(y)$$

$$\psi_{y} = e^{x} + h'(y) = e^{x} - 1$$

$$\to h'(y) = -1 \Rightarrow h(y) = -y$$

$$\underline{ye^{x} + x - y} = C$$

$$y(1) = 1 \Rightarrow \underline{C} = \underline{e}$$

$$\underline{ye^{x} + x - y} = e$$

Solve the given initial-value problem $2xy^2 + 4 = 2(3 - x^2y)y'$ y(-1) = 8

Solution

$$2xy^{2} + 4 - 2(3 - x^{2}y)y' = 0$$

$$M = 2xy^{2} + 4 \implies M_{y} = 4xy$$

$$N = -6 + 2x^{2}y \implies N_{x} = 4xy$$

$$\Psi = \int (2xy^{2} + 4) dx \qquad \qquad \Psi = \int Mdx$$

$$= x^{2}y^{2} + 4x + h(y)$$

$$\Psi_{y} = 2x^{2}y + h'(y)$$

$$= 2x^{2}y - 6$$

$$h'(y) = -6 \implies h(y) = -6y$$

$$\frac{x^{2}y^{2} + 4x - 6y = C}{y(-1) = 8} \implies 64 - 4 - 48 = C \quad C = 12$$

$$x^{2}y^{2} + 4x - 6y = 12$$

Exercise

Solve the given initial-value problem $y' + \frac{4}{x}y = x^3y^2$ y(2) = -1

Let
$$u = y^{1-2} = y^{-1}$$
 \Rightarrow $y = \frac{1}{u}$

$$\frac{du}{dx} = -\frac{1}{y^2} \frac{dy}{dx} \implies u' = -\frac{1}{y^2} y'$$

$$y' = -y^2 u' = -\frac{1}{u^2} u'$$

$$y' + \frac{4}{x} y = x^3 y^2$$

$$-\frac{1}{u^2} u' + \frac{4}{x} \frac{1}{u} = x^3 \frac{1}{u^2}$$

$$u' - \frac{4}{x} u = -x^3$$

$$e^{\int -\frac{4}{x} dx} = e^{-4 \ln x}$$

$$= x^{-4}$$

$$\int -x^3 x^{-4} dx = -\int \frac{1}{x} dx$$

$$= -\ln x$$

$$u = x^4 \left(-\ln x + C\right)$$

$$y = \frac{1}{x^4 \left(C - \ln x\right)} \qquad y = \frac{1}{u}$$

$$y(2) = -1 \implies -1 = \frac{1}{16(C - \ln 2)}$$

$$\frac{C = \ln 2 - \frac{1}{16}}{x^4 \left(\ln 2 - \frac{1}{16} - \ln x\right)}$$

Solve the given initial-value problem $y' = 5y + e^{-2x}y^{-2}$ y(0) = 2

$$y^{2}y' - 5y^{3} = e^{-2x}$$
Let $u = y^{3} \implies y = u^{1/3}$

$$u' = 3y^{2}y' \implies y' = \frac{1}{3}u^{-2/3}u'$$

$$\frac{1}{3}u' - 5u = e^{-2x}$$

$$u' - 15u = 3e^{-2x}$$

$$e^{\int -15dx} = e^{-15x}$$

$$\int 3e^{-2x}e^{-15x}dx = 3\int e^{-17x}dx$$

$$= -\frac{3}{17}e^{-17x}$$

$$u = e^{15x}\left(-\frac{3}{17}e^{-17x} + C\right) \qquad u = y^3$$

$$y^3 = e^{15x}C - \frac{3}{17}e^{-2x}$$

$$y(0) = 2 \quad \to 8 = C - \frac{3}{17}$$

$$\Rightarrow C = \frac{139}{17}$$

$$y(x) = \left(\frac{139e^{15x} - 3e^{-2x}}{17}\right)^{1/3}$$

Solve the given initial-value problem $6y' - 2y = xy^4$ y(0) = -2

$$6y^{-4}y' - 2y^{-3} = x$$
Let $u = y^{-3} \implies y = u^{-1/3}$

$$y' = -\frac{1}{3}u^{-4/3}u'$$

$$6u^{4/3}\left(-\frac{1}{3}u^{-4/3}\right)u' - 2u = x$$

$$-2u' - 2u = x$$

$$u' + u = -\frac{1}{2}x$$

$$e^{\int dx} = e^{x}$$

$$-\int \frac{1}{2}xe^{x}dx = -\frac{1}{2}(x-1)e^{x}$$

$$u = \frac{1}{e^{x}}\left(-\frac{1}{2}(x-1)e^{x} + C\right) \qquad u = y^{-3}$$

$$y^{-3} = \frac{C}{e^{x}} - \frac{1}{2}(x-1)$$

$$y(0) = -2 \implies -\frac{1}{8} = C + \frac{1}{2}$$

$$\implies C = -\frac{5}{8}$$

$$\frac{1}{y^3} = -\frac{5}{8}e^{-x} - \frac{1}{2}(x-1)$$

$$= -\frac{5e^{-x} - 4x + 4}{8}$$

$$y(x) = -\frac{2}{\left(5e^{-x} - 4x + 4\right)^{1/3}}$$

Solve the given initial-value problem

$$y' + \frac{y}{x} - \sqrt{y} = 0$$
 $y(1) = 0$

$$y' + \frac{1}{x}y = y^{1/2}$$

$$y^{-1/2}y' + \frac{1}{x}y^{1/2} = 1$$
Let $u = y^{1/2} \implies y = u^2$

$$y' = 2u u'$$

$$u^{-1}(2uu') + \frac{1}{x}u = 1$$

$$2u' + \frac{1}{x}u = \frac{1}{2}$$

$$e^{\int \frac{1}{2x}dx} = e^{\frac{1}{2}\ln x}$$

$$= x^{1/2}$$

$$\int \frac{1}{2}x^{1/2}dx = \frac{1}{3}x^{3/2}$$

$$u = \frac{1}{x^{1/2}}(\frac{1}{3}x^{3/2} + C)$$

$$y^{1/2} = \frac{1}{3}x + Cx^{-1/2}$$

$$y(1) = 0 \implies 0 = C + \frac{1}{3}$$

$$\implies C = -\frac{1}{3}$$

$$y(x) = (\frac{1}{3}x + \frac{1}{3}x^{-1/2})^2$$

Solve the given initial-value problem

$$xyy' + 4x^2 + y^2 = 0$$
 $y(2) = -7$

$$xyy' = -4x^{2} - y^{2}$$

$$\frac{y}{x}y' = -4 - \left(\frac{y}{x}\right)^{2}$$
Let $\frac{y}{x} = v \rightarrow y = xv$

$$\frac{dy}{dx} = v + x\frac{dv}{dx}$$

$$v\left(v + x\frac{dv}{dx}\right) = -4 - v^{2}$$

$$vx\frac{dv}{dx} = -4 - 2v^{2}$$

$$-\frac{v}{4 + 2v^{2}}dv = \frac{dx}{x}$$

$$-\frac{1}{4}\int \frac{1}{4 + 2v^{2}}d\left(4 + 2v^{2}\right) = \int \frac{1}{x}dx$$

$$-\frac{1}{4}\ln\left(4 + 2v^{2}\right) = \ln x + \ln C_{1}$$

$$\ln\left(4 + 2v^{2}\right)^{-\frac{1}{4}} = \ln C_{1}x$$

$$\left(4 + 2v^{2}\right)^{-\frac{1}{4}} = C_{1}x$$

$$4 + 2\left(\frac{y}{x}\right)^{2} = Cx^{-4}$$

$$\frac{2y^{2}}{x^{2}} = \frac{C}{x^{4}} - 4$$

$$y^{2} = \frac{1}{2}\frac{C - 4x^{4}}{x^{2}}$$

$$y(2) = -7 \rightarrow 49 = \frac{1}{2}\frac{C - 64}{4}$$

$$\rightarrow C = 456$$

$$y^{2} = \frac{1}{2}\frac{456 - 4x^{4}}{x^{2}}$$

$$y^{2} = \frac{228 - 2x^{4}}{x^{2}}$$

$$y = \pm \frac{\sqrt{228 - 2x^{4}}}{x^{2}}$$

$$y = \pm \frac{\sqrt{228 - 2x^{4}}}{x^{2}}$$

Since the given initial y(2) = -7

$$y = -\frac{\sqrt{228 - 2x^4}}{x}$$

Exercise

Solve the given initial-value problem $xy' = y(\ln x - \ln y)$ y(1) = 4

Solution

$$y' = \frac{y}{x} \ln \frac{x}{y}$$
Let $\frac{y}{x} = v \rightarrow y = xv$

$$\frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$v + xv' = v \ln \frac{1}{v}$$

$$x \frac{dv}{dx} = -v(1 + \ln v)$$

$$\int \frac{dv}{v(1 + \ln v)} = -\int \frac{dx}{x}$$

$$\ln (1 + \ln v) = -\ln x + \ln C$$

$$\ln \left(1 + \ln \frac{y}{x}\right) = \ln \frac{C}{x}$$

$$1 + \ln \frac{y}{x} = \frac{C}{x}$$

$$y(1) = 4 \rightarrow C = 1 + \ln 4$$

$$\ln \frac{y}{x} = \frac{1 + \ln 4}{x} - 1$$

$$y(x) = xe^{-\frac{1 + \ln 4}{x}}$$

Exercise

Solve the given initial-value problem
$$y' - (4x - y + 1)^2 = 0$$
 $y(0) = 2$

Let
$$v = 4x - y \implies v' = 4 - y'$$

 $y' = 4 - v'$

$$4-v'-(v+1)^{2} = 0$$

$$v' = 4-(v+1)^{2}$$

$$=-v^{2}-2v+3$$

$$\int \frac{dv}{v^{2}+2v-3} = -\int dx$$

$$\int \frac{dv}{(v-1)(v+3)} = -\int dx$$

$$\frac{1}{4}\int \left(\frac{1}{v-1} - \frac{1}{v+3}\right) = -\int dx$$

$$\ln \frac{v-1}{v+3} = C - 4x$$

$$\ln \left|\frac{4x-y-1}{4x-y+3}\right| = C - 4x$$

$$y(0) = 2 \rightarrow C = \ln 3$$

$$\frac{4x-y-1}{4x-y+3} = e^{\ln 3 - 4x}$$

$$4x-y-1 = 3(4x-y+3)e^{-4x}$$

$$(4x-y-1)e^{4x} = 12x-3y+9$$

$$3y-ye^{4x} = 12x+9+(1-4x)e^{4x}$$

$$y(x) = \frac{12x+9+(1-4x)e^{4x}}{3-e^{4x}}$$

$$\frac{1}{(v-1)(v+3)} = \frac{A}{v-1} + \frac{B}{v+3}$$

$$Av + 3A + Bv - B = 1$$

$$\begin{cases} A + B = 0\\ 3A - B = 1 \end{cases} \rightarrow A = \frac{1}{4}, B = -\frac{1}{4}$$

Solve the given initial-value problem

$$(e^{t+y} + 2y)y' + (e^{t+y} + 3t^2) = 0, \quad y(0) = 0$$

$$M_{y} = \frac{\partial}{\partial y} \left(e^{t+y} + 3t^{2} \right) = e^{t+y}$$

$$N_{t} = \frac{\partial}{\partial t} \left(e^{t+y} + 2y \right) = e^{t+y} \qquad \Rightarrow M_{y} = N_{t}$$

$$\Psi = \int \left(e^{t+y} + 3t^{2} \right) dt$$

$$= e^{t+y} + t^{3} + h(y)$$

$$\psi_{y} = e^{t+y} + h'(y) = e^{t+y} + 2y$$

$$h'(y) = 2y \rightarrow h(y) = y^{2}$$

$$e^{t+y} + t^{3} + y^{2} = C$$

$$y(0) = 0 \Rightarrow C = 1$$

$$e^{t+y} + t^{3} + y^{2} = 1$$

Solve the given initial-value problem (4y+2x-5)dx+(6y+4x-1)dy, y(-1)=2

Solution

$$M_{y} = \frac{\partial}{\partial y}(4y + 2x - 5) = 4$$

$$N_{x} = \frac{\partial}{\partial x}(6y + 4x - 1) = 4 \Rightarrow M_{y} = N_{x}$$

$$\Psi = \int (4y + 2x - 5)dx$$

$$= 4xy + x^{2} - 5x + h(y)$$

$$\Psi_{y} = 4x + h'(y)$$

$$= 6y + 4x - 1$$

$$\Rightarrow h'(y) = 6y - 1 \Rightarrow h(y) = 3y^{2} - y$$

$$\Psi = 4xy + x^{2} - 5x + 3y^{2} - y = C$$

$$y(-1) = 2 \Rightarrow 4(-1)(2) + 1 + 5 + 12 - 2 = C$$

$$\Rightarrow C = 8$$

$$4xy + x^{2} - 5x + 3y^{2} - y = 8$$

Exercise

Solve the given initial-value problem $\left(ye^{xy} - \frac{1}{y}\right)dx + \left(xe^{xy} + \frac{x}{y^2}\right)dy = 0$ y(1) = 1

$$M_{y} = \frac{\partial}{\partial y} \left(y e^{xy} - \frac{1}{y} \right) = (1 + xy) e^{xy} + \frac{1}{y^{2}}$$

$$N_{x} = \frac{\partial}{\partial x} \left(x e^{xy} + \frac{x}{y^{2}} \right) = (1 + xy) e^{xy} + \frac{1}{y^{2}}$$

$$\Rightarrow M_{y} = N_{x}$$

$$\psi = \int \left(ye^{xy} - \frac{1}{y} \right) dx = e^{xy} - \frac{x}{y} + h(y)$$

$$\psi_{y} = xe^{xy} + \frac{x}{y^{2}} + h'(y) = xe^{xy} + \frac{x}{y^{2}}$$

$$\rightarrow h'(y) = 0 \Rightarrow h(y) = C$$

$$e^{xy} - \frac{x}{y} = C$$

$$y(1) = 1 \rightarrow C = e - 1$$

$$e^{xy} - \frac{x}{y} = e - 1$$

Solve the given initial-value problem $(2y \ln t - t \sin y)y' + \frac{1}{t}y^2 + \cos y = 0$, y(2) = 0

Solution

$$M_{y} = \frac{\partial}{\partial y} \left(\frac{1}{t} y^{2} + \cos y \right) = \frac{2y}{t} - \sin y$$

$$N_{t} = \frac{\partial}{\partial t} (2y \ln t - t \sin y) = \frac{2y}{t} - \sin y$$

$$\Rightarrow M_{y} = N_{t}$$

$$\Psi = \int \left(\frac{1}{t} y^{2} + \cos y \right) dt$$

$$= y^{2} \ln|t| + t \cos y + h(y)$$

$$\Psi_{y} = 2y \ln t - t \sin y + h'(y) = 2y \ln t - t \sin y$$

$$\Rightarrow h'(y) = 0 \quad \Rightarrow h(y) = C$$

$$y^{2} \ln|t| + t \cos y + C = 0$$

$$y(2) = 0 \quad \Rightarrow C = -2$$

$$y^{2} \ln|t| + t \cos y - 2 = 0$$

Exercise

Solve the given initial-value problem $(\tan y - 2)dx + \left(x\sec^2 y + \frac{1}{y}\right)dy = 0$ y(0) = 1

$$M_y = \frac{\partial}{\partial y} (\tan y - 2) = \sec^2 y$$

 $N_x = \frac{\partial}{\partial x} \left(x \sec^2 y + \frac{1}{y} \right) = \sec^2 y$ $\Rightarrow M_y = N_x$

$$\psi = \int (\tan y - 2) dx$$

$$= x \tan y - 2x + h(y)$$

$$\psi_{y} = x \sec^{2} y + h'(y)$$

$$= x \sec^{2} y + \frac{1}{y}$$

$$\rightarrow h'(y) = \frac{1}{y} \Rightarrow h(y) = \ln|y|$$

$$\frac{x \tan y - 2x + \ln|y| = C}{y(0) = 1} \Rightarrow C = 0$$

$$x \tan y - 2x + \ln y = 0$$

Solve the given initial-value problem $2xy - 9x^2 + (2y + x^2 + 1)\frac{dy}{dx} = 0$ y(0) = -3

Solution

$$M = 2xy - 9x^{2} \implies M_{y} = 2x$$

$$N = 2y + x^{2} + 1 \implies N_{x} = 2x$$

$$\Psi = \int (2xy - 9x^{2}) dx \qquad \Psi = \int Mdx$$

$$= x^{2}y - 3x^{3} + h(y)$$

$$\Psi_{y} = x^{2} + h'(y)$$

$$= 2y + x^{2} + 1$$

$$h'(y) = 2y + 1 \implies h(y) = y^{2} + y$$

$$\frac{x^{2}y - 3x^{3} + y^{2} + y = C}{y(0) = -3} \implies 9 - 3 = C \quad C = 6$$

$$x^{2}y - 3x^{3} + y^{2} + y = 6$$

Exercise

Solve the given initial-value problem $\frac{2t}{t^2+1}y - 2t + \left(2 - \ln\left(t^2 + 1\right)\right)\frac{dy}{dt} = 0 \quad y(5) = 0$

$$\begin{split} M &= \frac{2t}{t^2 + 1} y - 2t \implies M_y = \frac{2t}{t^2 + 1} \\ N &= 2 - \ln(t^2 + 1) \implies N_t = \frac{2t}{t^2 + 1} \\ \Psi &= \int \left(\frac{2t}{t^2 + 1} y - 2t\right) dt \qquad \qquad \Psi = \int M dt \\ &= y \int \frac{1}{t^2 + 1} d(t^2 + 1) - t^2 \\ &= \ln(t^2 + 1) y - t^2 + h(y) \\ \Psi_y &= \ln(t^2 + 1) + h'(y) \\ &= 2 - \ln(t^2 + 1) \\ h'(y) &= -2 \implies h(y) = -2y \\ \ln(t^2 + 1) y - t^2 - 2y = C \\ y(5) &= 0 \implies C = -25 \\ \left(\ln(t^2 + 1) - 2\right) y - t^2 = -25 \\ y(t) &= \frac{t^2 - 25}{\ln(t^2 + 1) - 2} \end{split}$$

Solve the given initial-value problem $3y^3e^{3xy} - 1 + (2ye^{3xy} + 3xy^2e^{3xy})y' = 0$ y(0) = 1 **Solution**

$$M = 3y^{3}e^{3xy} - 1 \Rightarrow M_{y} = 9y^{2}e^{3xy} + 9xy^{3}e^{3xy}$$

$$N = 2ye^{3xy} + 3xy^{2}e^{3xy} \Rightarrow N_{x} = 6y^{2}e^{3xy} + 3y^{2}e^{3xy} + 9xy^{3}e^{3xy}$$

$$\to M_{y} = N_{x}$$

$$\Psi = \int (3y^{3}e^{3xy} - 1) dx \qquad \qquad \Psi = \int Mdx$$

$$= y^{2}e^{3xy} - x + h(y)$$

$$\Psi_{y} = 2ye^{3xy} + 3xy^{2}e^{3xy} + h'(y)$$

$$= 2ye^{3xy} + 3xy^{2}e^{3xy}$$

$$\Rightarrow h'(y) = 0 \rightarrow h(y) = C$$

$$y^{2}e^{3xy} - x = C$$

$$y(0) = 1 \rightarrow C = 1$$

$$y^{2}e^{3xy} - x = 1$$

Solve the given initial-value problem $2xydx + (1+x^2)dy = 0$; y(2) = -5

Solution

$$M = 2xy \implies M_y = 2x$$

$$N = 1 + x^2 \implies N_x = 2x$$

$$\Psi = \int (2xy) dx$$

$$= x^2 y + h(y)$$

$$\Psi_y = x^2 + h'(y) = 1 + x^2$$

$$\Rightarrow h'(y) = 1 \implies h(y) = y$$

$$x^2 y + y = C$$

$$y(x^2 + 1) = C$$

$$y(2) = -5 \implies -20 - 5 = C$$

$$\Rightarrow C = -25$$

$$y(x) = -\frac{25}{1 + x^2}$$

Exercise

Solve the given initial-value problem $\frac{dy}{dx} = -\frac{2x\cos y + 3x^2y}{x^3 - x^2\sin y - y}$; y(0) = 2

$$\left(x^3 - x^2 \sin y - y\right) dy = -\left(2x \cos y + 3x^2 y\right) dx$$
$$\left(2x \cos y + 3x^2 y\right) dx + \left(x^3 - x^2 \sin y - y\right) dy = 0$$

$$M = 2x\cos y + 3x^{2}y \implies M_{y} = -2x\sin y + 3x^{2}$$

$$N = x^{3} - x^{2}\sin y - y \implies N_{x} = 3x^{2} - 2x\sin y$$

$$\psi = \int (2x\cos y + 3x^{2}y) dx$$

$$= x^{2}\cos y + x^{3}y + h(y)$$

$$\psi_{y} = -x^{2}\sin y + x^{3} + h'(y) = x^{3} - x^{2}\sin y - y$$

$$\Rightarrow h'(y) = -y \implies h(y) = -\frac{1}{2}y^{2}$$

$$x^{2}\cos y + x^{3}y - \frac{1}{2}y^{2} = C$$

$$y(0) = 2 \implies -2 = C$$

$$x^{2}\cos y + x^{3}y - \frac{1}{2}y^{2} = -2$$

Find an integrating factor of the form $x^n y^m$ and solve the equation

$$(2y^{2} - 6xy)dx + (3xy - 4x^{2})dy = 0$$

Solution

$$x^{n}y^{m}(2y^{2} - 6xy)dx + x^{n}y^{m}(3xy - 4x^{2})dy = 0$$

$$(2x^{n}y^{m+2} - 6x^{n+1}y^{m+1})dx + (3x^{n+1}y^{m+1} - 4x^{n+2}y^{m})dy = 0$$

$$M_{y} = \frac{\partial}{\partial y}(2x^{n}y^{m+2} - 6x^{n+1}y^{m+1}) = 2(m+2)x^{n}y^{m+1} - 6(m+1)x^{n+1}y^{m}$$

$$N_{x} = \frac{\partial}{\partial x}(3x^{n+1}y^{m+1} - 4x^{n+2}y^{m}) = 3(n+1)x^{n}y^{m+1} - 4(n+2)x^{n+1}y^{m}$$

For the equation to be exact, then

$$2(m+2)x^{n}y^{m+1} - 6(m+1)x^{n+1}y^{m} = 3(n+1)x^{n}y^{m+1} - 4(n+2)x^{n+1}y^{m}$$

$$2(m+2)y - 6(m+1)x = 3(n+1)y - 4(n+2)x$$

$$\begin{cases} 2m+4 = 3n+3\\ 3m+3 = 2n+4 \end{cases} \Rightarrow \begin{cases} 2m-3n = -1\\ 3m-2n = 1 \end{cases} \Rightarrow \frac{m=1, \ n=1}{}$$

$$xy(2y^{2} - 6xy)dx + xy(3xy - 4x^{2})dy = 0$$

$$(2xy^{3} - 6x^{2}y^{2})dx + (3x^{2}y^{2} - 4x^{3}y)dy = 0$$

$$M_{y} = \frac{\partial}{\partial y} \left(2xy^{3} - 6x^{2}y^{2} \right) = 6xy^{2} - 12x^{2}y$$

$$N_{x} = \frac{\partial}{\partial x} \left(3x^{2}y^{2} - 4x^{3}y \right) = 6xy^{2} - 12x^{2}y$$

$$\Rightarrow M_{y} = N_{x}$$

$$\Psi = \int \left(2xy^{3} - 6x^{2}y^{2} \right) dx$$

$$= x^{2}y^{3} - 2x^{3}y^{2} + h(y)$$

$$\Psi_{y} = 3x^{2}y^{2} - 4x^{3}y + h'(y)$$

$$= 3x^{2}y^{2} - 4x^{3}y$$

$$h'(y) = 0 \Rightarrow h(y) = C$$

$$\frac{x^{2}y^{3} - 2x^{3}y^{2}}{2} = C$$

Find an integrating factor of the form $x^n y^m$ and solve the equation

$$(12+5xy)dx + (6xy^{-1} + 3x^2)dy = 0$$

Solution

$$x^{n}y^{m}(12+5xy)dx + x^{n}y^{m}(6xy^{-1}+3x^{2})dy = 0$$

$$(12x^{n}y^{m} + 5x^{n+1}y^{m+1})dx + (6x^{n+1}y^{m-1} + 3x^{n+2}y^{m})dy = 0$$

$$M_{y} = \frac{\partial}{\partial y}(12x^{n}y^{m} + 5x^{n+1}y^{m+1}) = 12mx^{n}y^{m-1} + 5(m+1)x^{n+1}y^{m}$$

$$N_{x} = \frac{\partial}{\partial x}(6x^{n+1}y^{m-1} + 3x^{n+2}y^{m}) = 6(n+1)x^{n}y^{m-1} + 3(n+2)x^{n+1}y^{m}$$

For the equation to be exact, then

$$12mx^{n}y^{m-1} + 5(m+1)x^{n+1}y^{m} = 6(n+1)x^{n}y^{m-1} + 3(n+2)x^{n+1}y^{m}$$

$$12m + 5(m+1)xy = 6(n+1) + 3(n+2)xy$$

$$\begin{cases} 12m = 6n + 6 \\ 5m + 5 = 3n + 6 \end{cases} \Rightarrow \begin{cases} 2m - n = 1 \\ 5m - 6n = 1 \end{cases} \Rightarrow \underbrace{n = 3, \ m = 2}$$

$$x^{3}y^{2}(12 + 5xy)dx + x^{3}y^{2}(6xy^{-1} + 3x^{2})dy = 0$$

$$(12x^{3}y^{2} + 5x^{4}y^{3})dx + (6x^{4}y + 3x^{5}y^{2})dy = 0$$

$$M_{y} = \frac{\partial}{\partial y} \left(12x^{3}y^{2} + 5x^{4}y^{3} \right) = 24x^{3}y + 15x^{4}y^{2}$$

$$N_{x} = \frac{\partial}{\partial x} \left(6x^{4}y + 3x^{5}y^{2} \right) = 24x^{3}y + 15x^{4}y^{2}$$

$$\Rightarrow M_{y} = N_{x}$$

$$\Psi = \int \left(12x^{3}y^{2} + 5x^{4}y^{3} \right) dx$$

$$= 3x^{4}y^{2} + x^{5}y^{3} + h(y)$$

$$\Psi_{y} = 6x^{4}y + 3x^{5}y^{2} + h'(y)$$

$$= 6x^{4}y + 3x^{5}y^{2}$$

$$h'(y) = 0 \Rightarrow h(y) = C$$

$$3x^{4}y^{2} + x^{5}y^{3} = C$$

Find an integrating factor of the form $x^n y^m$ and solve the equation

$$\left(3y + 4xy^2\right)dx + \left(2x + 3x^2y\right)dy = 0$$

Solution

$$x^{n}y^{m}(3y+4xy^{2})dx + x^{n}y^{m}(2x+3x^{2}y)dy = 0$$

$$(3x^{n}y^{m+1} + 4x^{n+1}y^{m+2})dx + (2x^{n+1}y^{m} + 3x^{n+2}y^{m+1})dy = 0$$

$$M = 3x^{n}y^{m+1} + 4x^{n+1}y^{m+2}; \quad N = 2x^{n+1}y^{m} + 3x^{n+2}y^{m+1}$$

$$M_{y} = \frac{\partial}{\partial y}(3x^{n}y^{m+1} + 4x^{n+1}y^{m+2}) = 3(m+1)x^{n}y^{m} + 4(m+2)x^{n+1}y^{m+1}$$

$$N_{x} = \frac{\partial}{\partial x}(2x^{n+1}y^{m} + 3x^{n+2}y^{m+1}) = 2(n+1)x^{n}y^{m} + 3(n+2)x^{n+1}y^{m+1}$$

For the equation to be exact, then

$$3(m+1)x^{n}y^{m} + 4(m+2)x^{n+1}y^{m+1} = 2(n+1)x^{n}y^{m} + 3(n+2)x^{n+1}y^{m+1}$$

$$3(m+1) + 4(m+2)xy = 2(n+1) + 3(n+2)xy$$

$$\begin{cases} 3m+3 = 2n+2 \\ 4m+8 = 3n+6 \end{cases} \rightarrow \begin{cases} 3m-2n = -1 \\ 4m-3n = -2 \end{cases}$$

$$|\underline{m} = \begin{vmatrix} -1 & -2 \\ -2 & -3 \\ 3 & -2 \\ 4 & -3 \end{vmatrix} = \frac{-1}{-1} = \underline{1}| \quad |\underline{n} = \begin{vmatrix} 3 & -1 \\ 4 & -2 \\ -1 \end{vmatrix} = \underline{2}|$$

$$x^{2}y(3y+4xy^{2})dx + x^{2}y(2x+3x^{2}y)dy = 0$$

$$(3x^{2}y^{2}+4x^{3}y^{3})dx + (2x^{3}y+3x^{4}y^{2})dy = 0$$

$$M_{y} = \frac{\partial}{\partial y}(3x^{2}y^{2}+4x^{3}y^{3}) = 6x^{2}y+12x^{3}y^{2}$$

$$N_{x} = \frac{\partial}{\partial x}(2x^{3}y+3x^{4}y^{2}) = 6x^{2}y+12x^{3}y^{2}$$

$$\Rightarrow M_{y} = N_{x}$$

$$\Psi = \int (3x^{2}y^{2}+4x^{3}y^{3})dx$$

$$= x^{3}y^{2}+x^{4}y^{3}+h(y)$$

$$\Psi_{y} = 2x^{3}y+3x^{4}y^{2}+h'(y) = 2x^{3}y+3x^{4}y^{2}$$

$$h'(y) = 0 \Rightarrow h(y) = C$$

$$x^{3}y^{2}+x^{4}y^{3} = C$$

Find the general solution by using either Bernoulli $\frac{dy}{dx} - 5y = -\frac{5}{2}xy^3$

$$y^{3} \Rightarrow n = 3$$
Let $u = y^{1-3} = y^{-2} = \frac{1}{y^{2}} \Rightarrow y = \frac{1}{\sqrt{u}}$

$$\frac{du}{dx} = -2y^{-3} \frac{dy}{dx} \Rightarrow -\frac{1}{2}y^{3} \frac{du}{dx} = \frac{dy}{dx}$$

$$\frac{dy}{dx} - 5y = -\frac{5}{2}xy^{3}$$

$$-\frac{1}{2}u^{-3/2} \frac{du}{dx} - 5u^{-1/2} = -\frac{5}{2}xu^{-3/2} \qquad \times -2u^{3/2}$$

$$\frac{du}{dx} + 10u = 5x$$

$$e^{\int 10dx} = e^{10x}$$

$$\int 5xe^{10x} dx = \left(\frac{1}{2}x - \frac{1}{20}\right)e^{10x}$$

$$u = \frac{1}{e^{10x}} \left(\left(\frac{1}{2}x - \frac{1}{20}\right)e^{10x} + C\right)$$

$$\frac{1}{y^{2}} = \frac{1}{2}x - \frac{1}{20} + Ce^{-10x}$$

		$\int e^{10x}$
+	5 <i>x</i>	$\frac{1}{10}e^{10x}$
1	5	$\frac{1}{100}e^{10x}$

Find the general solution by using either Bernoulli $\frac{dy}{dx} + \frac{y}{x} = x^2 y^2$

Solution

Let
$$u = y^{1-2} = \frac{1}{y} \implies y = \frac{1}{u}$$

$$\frac{du}{dx} = -\frac{1}{y^2} \frac{dy}{dx} \implies -\frac{1}{u^2} \frac{du}{dx} = \frac{dy}{dx}$$

$$\frac{dy}{dx} + \frac{y}{x} = x^2 y^2$$

$$-\frac{1}{u^2} \frac{du}{dx} + \frac{1}{xu} = x^2 \frac{1}{u^2} \qquad \times -u^2$$

$$\frac{du}{dx} - \frac{1}{x}u = -x^2$$

$$e^{\int -\frac{1}{x} dx} = e^{-\ln|x|}$$

$$= \frac{1}{x}$$

$$\int x^2 \frac{1}{x} dx = \frac{1}{2} x^2$$

$$u = x \left(\frac{1}{2} x^2 + C_1\right)$$

$$\frac{1}{y} = \frac{1}{2} x^3 + C_1 x$$

$$y(x) = \frac{2}{x^3 + Cx}$$

Exercise

Find the general solution by using either Bernoulli $\frac{dy}{dx} - y = e^{2x}y^3$

$$y^{3} \Rightarrow n = 3$$
Let $u = y^{1-3} = y^{-2} = \frac{1}{y^{2}} \Rightarrow y = \frac{1}{\sqrt{u}} = u^{-1/2}$

$$\frac{du}{dx} = -2y^{-3} \frac{dy}{dx} \Rightarrow -\frac{1}{2}y^{3} \frac{du}{dx} = \frac{dy}{dx}$$

$$\frac{dy}{dx} - y = e^{2x}y^{3}$$

$$-\frac{1}{2}u^{-3/2} \frac{du}{dx} - u^{-1/2} = e^{2x}u^{-3/2} \qquad \times -2u^{3/2}$$

$$\frac{du}{dx} + 2u = -2e^{2x}$$

$$e^{\int 2dx} = e^{2x}$$

$$\int -2e^{2x}e^{2x}dx = -\frac{1}{2}e^{4x}$$

$$u = e^{-2x}\left(-\frac{1}{2}e^{4x} + C\right)$$

$$y^{-2} = -\frac{1}{2}e^{2x} + Ce^{-2x}$$

$$y = \pm \sqrt{\frac{-2}{e^{2x} + Ce^{-2x}}}$$

Find the general solution by using either Bernoulli $\frac{dy}{dx} + \frac{y}{x-2} = 5(x-2)y^{1/2}$

$$y^{1/2} \Rightarrow n = \frac{1}{2}$$
Let $u = y^{1-\frac{1}{2}} = y^{1/2} \Rightarrow y = u^2 \rightarrow \frac{dy}{dx} = 2u\frac{du}{dx}$

$$\frac{dy}{dx} + \frac{1}{x-2}y = 5(x-2)y^{1/2}$$

$$2u\frac{du}{dx} + \frac{1}{x-2}u^2 = 5(x-2)u \qquad \times \frac{1}{2u}$$

$$\frac{du}{dx} + \frac{1}{2}\frac{1}{x-2}u = \frac{5}{2}(x-2)$$

$$e^{\frac{1}{2}\int \frac{1}{x-2}dx} = e^{\frac{1}{2}\ln|x-2|}$$

$$= \sqrt{x-2}$$

$$\int \frac{1}{2}(x-2)\sqrt{x-2} \, dx = \int \frac{1}{2}(x-2)^{3/2} \, dx$$

$$= \frac{1}{5}(x-2)^{5/2}$$

$$u = \frac{1}{\sqrt{x-2}} \left(\frac{1}{5}(x-2)^{5/2} + C\right)$$

$$y^{1/2} = \frac{1}{5}(x-2)^{3/2} + \frac{C}{\sqrt{x-2}}$$

$$y(x) = \left(\frac{1}{5}(x-2)^{3/2} + \frac{C}{\sqrt{x-2}}\right)^2$$

Find the general solution by using either Bernoulli $\frac{dy}{dx} + y = e^x y^{-2}$

Solution

$$y^{-2} \Rightarrow n = -2$$
Let $u = y^{1+2} = y^3 \Rightarrow y = u^{1/3}$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{3}u^{-2/3}\frac{du}{dx}$$

$$\frac{dy}{dx} + y = e^x y^{-2}$$

$$\frac{1}{3}u^{-2/3}\frac{du}{dx} + u^{1/3} = e^x u^{-2/3}$$

$$\Rightarrow \frac{du}{dx} + 3u = 3e^x$$

$$e^{\int 3dx} = e^{3x}$$

$$\int 3e^x e^{3x} dx = \frac{3}{4}e^{4x}$$

$$u = e^{-3x} \left(\frac{3}{4}e^{4x} + C\right)$$

$$y^3 = \frac{3}{4}e^x + Ce^{-3x}$$

Exercise

Find the general solution by using either Bernoulli $\frac{dy}{dx} + y^3x + y = 0$

$$\frac{dy}{dx} + y = -xy^{3}$$

$$y^{3} \Rightarrow n = 3$$
Let $u = y^{1-3} = y^{-2} = \frac{1}{y^{2}} \Rightarrow y = \frac{1}{\sqrt{u}} = u^{-1/2}$

$$\frac{dy}{dx} = -\frac{1}{2}u^{-3/2}\frac{du}{dx}$$

$$-\frac{1}{2}u^{-3/2}\frac{du}{dx} + u^{-1/2} = -xu^{-3/2} \times -2u^{3/2}$$

$$\frac{du}{dx} - 2u = 2x$$

$$e^{\int -2dx} = e^{-2x}$$

$$\int 2xe^{-2x}dx = \left(-x - \frac{1}{2}\right)e^{-2x}$$

		$\int e^{-2x}$
+	2 <i>x</i>	$-\frac{1}{2}e^{-2x}$
_	2	$\frac{1}{4}e^{-2x}$

$$u = e^{2x} \left(\left(-x - \frac{1}{2} \right) e^{-2x} + C \right)$$

$$\frac{1}{y^2} = -x - \frac{1}{2} + C e^{2x}$$

$$y(x) = \pm \frac{1}{\sqrt{Ce^{2x} - x - \frac{1}{2}}}$$

Find the general solution by using homogeneous equations. $(xy + y^2)dx - x^2dy = 0$

Solution

$$\frac{dy}{dx} = \frac{xy + y^2}{x^2} = \frac{y}{x} + \left(\frac{y}{x}\right)^2$$
Let $v = \frac{y}{x} \to y = xv \implies y' = v + xv'$

$$v + xv' = v + v^2$$

$$x\frac{dv}{dx} = v^2$$

$$\int \frac{dv}{v^2} = \int \frac{dx}{x}$$

$$-\frac{1}{v} = \ln|x| + C$$

$$y(x) = -\frac{x}{\ln|x| + C}$$

Exercise

Find the general solution by using homogeneous equations. $\left(x^2 + y^2\right)dx + 2xydy = 0$

$$\frac{dy}{dx} = -\frac{x^2 + y^2}{2xy}$$

$$= -\frac{1}{2} \left(\frac{x}{y} + \frac{y}{x} \right)$$
Let $v = \frac{y}{x} \to y = xv \implies y' = v + xv'$

$$v + xv' = -\frac{1}{2}v - \frac{1}{2v}$$

$$xv' = -\frac{3}{2}v - \frac{1}{2v}$$

$$x\frac{dv}{dx} = -\left(\frac{3v^2 + 1}{2v}\right)$$

$$\int \frac{2v}{3v^2 + 1} dv = -\int \frac{1}{x} dx$$

$$\frac{1}{3}\ln(3v^2 + 1) = -\ln|x| + \ln C_1$$

$$\ln(3v^2 + 1) = -3\ln|C_1x|$$

$$3v^2 + 1 = \frac{C}{|x|^3}$$

$$3\frac{y^2}{x^2} = \frac{C}{|x|^3} - 1$$

$$3xy^2 = C - x^3$$

$$3xy^2 + x^3 = C$$

Find the general solution by using homogeneous equations. $(y^2 - xy)dx + x^2dy = 0$

$$\frac{dy}{dx} = \frac{xy - y^2}{x^2}$$

$$= \frac{y}{x} - \left(\frac{y}{x}\right)^2$$
Let $v = \frac{y}{x} \to y = xv \implies y' = v + xv'$

$$v + xv' = v - v^2$$

$$x\frac{dv}{dx} = -v^2$$

$$-\int \frac{1}{v^2} dv = \int \frac{1}{x} dx$$

$$\frac{1}{v} = \ln|x| + C$$

$$\frac{x}{y} = \ln|x| + C$$

$$y(x) = \frac{x}{\ln|x| + C}$$

Find the general solution by using homogeneous equations.

$$\frac{dy}{d\theta} = \frac{1}{\theta} \left(\theta \sec\left(\frac{y}{\theta}\right) + y \right)$$

Solution

$$\frac{dy}{d\theta} = \sec\left(\frac{y}{\theta}\right) + \frac{y}{\theta}$$
Let $v = \frac{y}{\theta} \to y = \theta v \implies y' = v + \theta v'$

$$v + \theta v' = \sec v + v$$

$$\int \cos v \, dv = \int \frac{d\theta}{\theta}$$

$$\sin v = \ln|\theta| + C$$

$$\frac{y}{\theta} = \arcsin\left(\ln|\theta| + C\right)$$

$$y(\theta) = \theta \arcsin\left(\ln|\theta| + C\right)$$

Exercise

Find the general solution by using homogeneous equations.

$$\frac{dy}{dx} = \frac{y(\ln y - \ln x + 1)}{x}$$

$$\frac{dy}{dx} = \frac{y}{x} \left(\ln \frac{y}{x} + 1 \right)$$
Let $v = \frac{y}{x} \to y = xv \implies y' = v + xv'$

$$v + xv' = v \ln |v| + v$$

$$x \frac{dv}{dx} = v \ln |v|$$

$$\frac{dv}{v \ln |v|} = \frac{dx}{x}$$

$$\int \frac{1}{\ln |v|} d(\ln v) = \int \frac{dx}{x}$$

$$\ln |\ln v| = \ln |x| + \ln C$$

$$\ln |\ln v| = \ln |Cx|$$

$$\ln v = Cx$$

$$v = e^{Cx} = \frac{y}{x}$$

$$y(x) = xe^{Cx}$$

Find the general solution by using Equation with Linear Coefficients

$$(-3x + y - 1)dx + (x + y + 3)dy = 0$$

$$\begin{cases} a_1b_2 = (-3)(1) = -3 \\ a_2b_1 = (1)(1) = 1 \end{cases} \rightarrow a_1b_2 \neq a_2b_1$$

$$x = u + h \quad y = v + k$$

$$\begin{cases} -3h + k - 1 = 0 \\ h + k + 3 = 0 \end{cases} \rightarrow \begin{cases} -3h + k = 1 \\ h + k = -3 \end{cases} \rightarrow \underbrace{h = -1, k = -2} \end{cases}$$

$$\begin{cases} x = u + h = u - 1 \\ y = v + k = v - 2 \end{cases}$$

$$(-3u + v)du + (u + v)dv = 0 \rightarrow \frac{dv}{du} = \frac{3 - \frac{v}{u}}{1 + \frac{v}{u}}$$

$$\text{Let } w = \frac{v}{u} \rightarrow v = uw \rightarrow \frac{dv}{du} = w + u \frac{dw}{du}$$

$$w + u \frac{dw}{du} = \frac{3 - w}{1 + w}$$

$$u \frac{dw}{du} = \frac{3 - w}{1 + w} - w$$

$$u \frac{dw}{du} = \frac{3 - 2w - w^2}{1 + w}$$

$$\frac{w + 1}{w^2 + 2w - 3} dw = -\frac{du}{u}$$

$$\frac{1}{2} \int \frac{1}{w^2 + 2w - 3} dw = -\ln u + \ln C_1$$

$$\ln \sqrt{w^2 + 2w - 3} = \ln C_1 \frac{1}{u}$$

$$\sqrt{w^2 + 2w - 3} = C_1 \frac{1}{u}$$

$$w^2 + 2w - 3 = C \frac{1}{u^2}$$

$$v^2 + 2uv - 3u^2 = C \qquad x = u - 1 \quad y = v - 2$$

$$(y + 2)^2 + 2(x + 1)(y + 2) - 3(x + 1)^2 = C$$

Find the general solution by using Equation with Linear Coefficients

$$(x+y-1)dx + (y-x-5)dy = 0$$

$$\begin{cases} a_1b_2 = (1)(-1) = -1 \\ a_2b_1 = (1)(1) = 1 \end{cases} \rightarrow a_1b_2 \neq a_2b_1$$

$$x = u + h \quad y = v + k$$

$$\begin{cases} h + k - 1 = 0 \\ -h + k - 5 = 0 \end{cases} \rightarrow \begin{cases} h + k = 1 \\ -h + k = 5 \end{cases} \rightarrow h = -2, k = 3 \end{cases}$$

$$\begin{cases} x = u + h = u - 2 \\ y = v + k = v + 3 \end{cases}$$

$$(u - 2 + v + 3 - 1)du + (v + 3 - u + 2 - 5)dv = 0$$

$$(u + v)du + (v - u)dv = 0 \rightarrow \frac{dv}{du} = \frac{u + v}{u - v} = \frac{1 + \frac{v}{u}}{1 - \frac{v}{u}}$$

$$Let \quad w = \frac{v}{u} \rightarrow v = uw \rightarrow \frac{dv}{du} = w + u \frac{dw}{du}$$

$$w + u \frac{dw}{du} = \frac{1 + w}{1 - w}$$

$$u \frac{dw}{du} = \frac{1 + w}{1 - w}$$

$$u \frac{dw}{du} = \frac{1 + w^2}{1 - w}$$

$$u \frac{dw}{du} = \frac{1 + w^2}{1 - w}$$

$$\frac{1 - w}{w^2 + 1} dw = \frac{du}{u}$$

$$\int \frac{1}{w^2 + 1} dw - \int \frac{w}{w^2 + 1} dw = \int \frac{du}{u}$$

$$\arctan \frac{v}{u} - \ln \left(\frac{v^2 + u^2}{u^2} \right) = 2 \ln u + 2C_1$$

$$2 \arctan \frac{v}{u} - \ln \left(\frac{v^2 + u^2}{u^2} \right) - \ln u^2 = C$$

$$2 \arctan \frac{v}{u} - \ln \left(v^2 + u^2 \right) = C$$

$$2 \arctan \frac{v}{u} - \ln \left(v^2 + u^2 \right) = C$$

$$2 \arctan \frac{v}{u} - \ln \left(v^2 + u^2 \right) = C$$

Find the general solution by using Equation with Linear Coefficients

$$(2x + y + 4)dx + (x - 2y - 2)dy = 0$$

$$\begin{cases} a_1b_2 = (2)(-2) = -4 \\ a_2b_1 = (1)(1) = 1 \end{cases} \rightarrow a_1b_2 \neq a_2b_1$$

$$x = u + h \quad y = v + k$$

$$\begin{cases} 2h + k + 4 = 0 \\ h - 2k - 2 = 0 \end{cases} \rightarrow \begin{cases} 2h + k = -4 \\ h - 2k = 2 \end{cases} \rightarrow \frac{h = -\frac{6}{5}, k = -\frac{8}{5}} \end{cases}$$

$$\begin{cases} x = u + h = u - \frac{6}{5} \\ y = v + k = v - \frac{8}{5} \end{cases}$$

$$\begin{cases} (2u - \frac{12}{5} + v - \frac{8}{5} + 4) du + \left(u - \frac{6}{5} - 2v + \frac{16}{5} - 2\right) dv = 0 \end{cases}$$

$$(2u + v) du + (u - 2v) dv = 0 \rightarrow \frac{dv}{du} = \frac{2u + v}{2v - u} = \frac{2 + \frac{v}{u}}{2\frac{v}{u} - 1}$$

$$\text{Let } w = \frac{v}{u} \rightarrow v = uw \rightarrow \frac{dv}{du} = w + u \frac{dw}{du}$$

$$w + u \frac{dw}{du} = \frac{2 + w}{2w - 1} \rightarrow w$$

$$u \frac{dw}{du} = \frac{2 + 2w}{2w - 1} \rightarrow w$$

$$u \frac{dw}{du} = \frac{2 + 2w - 2w^2}{2w - 1}$$

$$\frac{2w - 1}{2 + 2w - 2w^2} dw = \frac{du}{u}$$

$$-\int \frac{1}{w^2 - w - 1} d\left(w^2 - w - 1\right) = 2\int \frac{du}{u}$$

$$-\ln\left|w^2 - w - 1\right| + \ln u^2 = C_1$$

$$\ln\left|u^2\left(\frac{v^2}{u^2} - \frac{v}{u} - 1\right)\right| = \ln C$$

$$v^2 - uv - u^2 = C \qquad u = x + \frac{6}{5}, v = y + \frac{8}{5}$$

$$\left(x + \frac{8}{5}\right)^2 - \left(x + \frac{8}{5}\right)\left(x + \frac{6}{5}\right) - \left(x + \frac{6}{5}\right)^2 = C\right| \qquad (5x + 8)(5x + 6) - (5x + 6)^2 = C_2$$

Find the general solution by using Equation with Linear Coefficients

$$(2x-y)dx + (4x + y - 3)dy = 0$$

$$\begin{cases} a_1b_2 = (2)(1) = 2 \\ a_2b_1 = (-1)(4) = -4 \end{cases} \rightarrow a_1b_2 \neq a_2b_1$$

$$x = u + h \quad y = v + k$$

$$\begin{cases} 2h - k = 0 \\ 4h + k = 3 \end{cases} \rightarrow h = \frac{1}{2}, k = 1$$

$$\begin{cases} x = u + h = u + \frac{1}{2} \\ y = v + k = v + 1 \end{cases}$$

$$(2u + 1 - v - 1)du + (4u + 2 + v + 1 - 3)dv = 0$$

$$(2u - v)du + (4u + v)dv = 0 \rightarrow \frac{dv}{du} = \frac{v - 2u}{4u + v} = \frac{\frac{v}{u} - 2}{4 + \frac{v}{u}}$$
Let $w = \frac{v}{u} \rightarrow v = uw \rightarrow \frac{dv}{du} = w + u \frac{dw}{du}$

$$w + u \frac{dw}{du} = \frac{w - 2}{4 + w}$$

$$u \frac{dw}{du} = \frac{w - 2}{4 + w} - w$$

$$u \frac{dw}{du} = \frac{-w^2 - 3w - 2}{4 + w}$$

$$\frac{w + 4}{w^2 + 3w + 2} dw = -\frac{du}{u}$$

$$\frac{w + 4}{w^2 + 3w + 2} dw = -\frac{du}{u}$$

$$\begin{cases} A + B = 1 \\ 2A + B = 4 \end{cases} \rightarrow A = 3, B = -2$$

$$\int \frac{3}{w + 1} dw - \int \frac{2}{w + 2} dw = -\int \frac{du}{u}$$

$$3\ln|w + 1| - 2\ln|w + 2| = -\ln|u| + \ln C$$

$$\ln|w + 1|^3 - \ln(w + 2)^2 + \ln|u| = \ln C$$

$$\ln\frac{u(w + 1)^3}{(w + 2)^2} = \ln C$$

$$\frac{u(w+1)^3}{(w+2)^2} = C$$

$$u\left(\frac{v}{u}+1\right)^3 = C\left(\frac{v}{u}+2\right)^2 \qquad u = x - \frac{1}{2} \quad v = y - 1$$

$$\frac{1}{u^2}(v+u)^3 = C\frac{1}{u^2}(v+2u)^2$$

$$\left(x - \frac{1}{2} + y - 1\right)^3 = C(y - 1 + 2x - 1)^2$$

$$\left(x - \frac{3}{2} + y\right)^3 = C(y + 2x - 2)^2$$

$$\frac{1}{8}(2x - 3 + 2y)^3 = C(y + 2x - 2)^2$$

$$(2x - 3 + 2y)^3 = C_1(y + 2x - 2)^2$$

Prove that Mdx + Ndy = 0 has an integrating factor that depends only on the sum x + y if and only if the expression

$$\frac{N_x - M_y}{M - N}$$
 depends only on $x + y$

Use the prove to solve the equation (3 + y + xy)dx + (3 + x + xy)dy = 0

Solution

An equation Mdx + Ndy = 0 has an integrating factor $\mu(x + y)$ iff $\mu(x + y)Mdx + \mu(x + y)Ndy = 0$ For the equation to be exact, then

$$\frac{\partial}{\partial y} \left[\mu(x+y)M(x,y) \right] = \frac{\partial}{\partial x} \left[\mu(x+y)N(x,y) \right]$$

$$\mu'(x+y)M + \mu(x+y)M_y = \mu'(x+y)N + \mu(x+y)N_x$$

$$\mu'(x+y)(M-N) = \mu(x+y)\left(N_x - M_y\right)$$

$$\frac{\mu'(x+y)}{\mu(x+y)} = \frac{N_x - M_y}{M-N}$$

$$\int \frac{\mu'(x+y)}{\mu(x+y)} = \int \frac{N_x - M_y}{M-N} d(x+y)$$

$$\ln|\mu(x+y)| = \int \frac{N_x - M_y}{M-N} d(x+y)$$

$$\mu(x+y) = \pm e^{\int \frac{N_x - M_y}{M-N} d(x+y)}$$

$$(3+y+xy)dx + (3+x+xy)dy = 0$$

$$M_{y} = \frac{\partial}{\partial y}(3+y+xy) = 1+x$$

$$N_{x} = \frac{\partial}{\partial x}(3+x+xy) = 1+y$$

$$\frac{N_{x} - M_{y}}{M - N} = \frac{1+y - (1+x)}{3+y+xy - (3+x+xy)}$$

$$= \frac{y - x}{y - x}$$

$$= 1$$

$$= e^{x+y}$$

$$e^{x+y}(3+y+xy)dx + e^{x+y}(3+x+xy)dy = 0$$

$$M_{y} = \frac{\partial}{\partial y}(3+y+xy)e^{x+y} = (1+x)e^{x+y} + (3+y+xy)e^{x+y} = (4+x+y+xy)e^{x+y}$$

$$N_{x} = \frac{\partial}{\partial x}(3+x+xy)e^{x+y} = (1+y)e^{x+y} + (3+x+xy)e^{x+y} = (4+x+y+xy)e^{x+y}$$

$$\Rightarrow M_{y} = N_{x}$$

$$\psi = \int (3+y+xy)e^{x+y}dx$$

$$= (3+y+y(x-1))e^{x+y} + h(y)$$

$$= (3+xy)e^{x+y} + h(y)$$

$$\psi_{y} = (3+xy+x)e^{x+y} + h'(y) = (3+xy+x)e^{x+y}$$

$$h'(y) = 0 \Rightarrow h(y) = C$$

$$(3+xy)e^{x+y} = C$$

A portion of a uniform chain of length 8 *feet* is loosely coiled around a peg at the edge of a high horizontal platform, and the remaining portion of the chain hangs at rest over the edge of the platform.

Suppose the length of the overhanging chain is 3 *feet*, that the chain weighs 2 2 *lb/ft*, and that the positive direction is downward. Starting at t = 0 seconds, the weight of the overhanging portion causes the chain on the table to uncoil smoothly and to fall to the floor. If x(t) denotes the length of the chain overhanging the

table at time t > 0, then $v = \frac{dx}{dt}$ is its velocity. When all resistive forces are ignored, it can be shown that a mathematical model relating v to x is given by

$$xv\frac{dv}{dx} + v^2 = 32x$$

- a) Rewrite this model in differential form and solve the DE for v in terms of x by finding am appropriate integrating factor. Find an explicit solution v(x).
- b) Determine the velocity with which the chain leaves the platform.

a)
$$(v^2 - 32x)dx + xvdv = 0$$

 $M(x, v) = v^2 - 32x$ $N(x, v) = xv$
 $\frac{\partial M}{\partial v} = 2v$ $\frac{\partial N}{\partial x} = v$ $\Rightarrow \frac{\partial M}{\partial v} \neq \frac{\partial N}{\partial x}$
 $\frac{M_v - N_x}{N} = \frac{2v - v}{xv} = \frac{1}{x}$
 $\frac{d\mu}{dx} = \frac{\mu}{x}$
 $\int \frac{d\mu}{\mu} = \int \frac{dx}{x}$
 $\ln \mu = \ln x$
 $\Rightarrow \mu(x) = x$
 $N_x = \frac{\partial}{\partial v} (v^2 x - 32x^2) = 2vx$
 $N_x = \frac{\partial}{\partial x} (vx^2) = 2vx$
 $\psi = \int (v^2 x - 32x^2) dx$
 $= \frac{1}{2}v^2 x^2 - \frac{32}{3}x^3 + h(v)$
 $\psi_v = vx^2 + h'(v) = vx^2 \Rightarrow h'(v) = 0 \Rightarrow h(y) = C$
 $\frac{1}{2}v^2 x^2 - \frac{32}{3}x^3 = C$
Given: $v = 0$ $x = 3$ $\Rightarrow -288 = C$
 $\frac{1}{2}v^2 x^2 - \frac{32}{3}x^3 = -288$
 $3v^2 x^2 - 64x^3 = -1728$
 $3v^2 x^2 = 64(x^3 - 27)$

$$v^2 = 64 \frac{x^3 - 27}{3x^2}$$

$$v(x) = \frac{8}{x} \sqrt{\frac{x^3}{3} - 9}$$

b) The chain leaves the platform when x = 8

$$v(8) = \sqrt{\frac{512}{3} - 9} = \sqrt{\frac{485}{3}} \ \text{ft/s}$$
 $\approx 12.7 \ \text{ft/s}$