IN THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

1 1. (Currently Amended) A read channel, comprising: 2 an equalizer configured to equalize a digital signal to provide equalized 3 reproduced signals; and 4 a Viterbi detector capable of receiving the equalized reproduced signals and 5 converting the reproduced signals into a digital output signal indicative of data stored on 6 a recording medium; 7 wherein the equalizer is implemented using a coefficient learning circuit that adaptively updates coefficients for the equalizer based upon a cosine function, the 8 9 coefficient learning circuit adjusting coefficients using a tap coefficient update equation 10 having a first parameter, k, for modifying a magnitude response, wherein the first parameter, k, is adjusted according to $k=k-g*(f(a_{k+1})+f(a_{k-1}))*e_k$, where k is the cosine 11 12 equalizer parameter for modifying the magnitude response, g is an update attenuation 13 gain, f() is a predetermined cosine function, a_{k+1} represents a bit to be detected at time 14 k+1, a_{k-1} represents a bit to be detected at time k-1, and e_k is an error signal based on a 15 difference between a noisy equalized signal and a desired noiseless signal. 1 2-3. (Canceled)

2

- 1 4. (Currently Amended) The read channel of claim [[2]] 1, wherein the
- 2 coefficient learning circuit adjusts coefficients using a tap coefficient update equation
- 3 having a second parameter, j, for modifying a phase response.
- 1 5. (Previously Presented) The read channel of claim 4, wherein the
- second parameter, j, is adjusted according to $j=j-g*(f(a_{k+2})+f(a_{k-2}))*e_k$, where j is the
- 3 cosine equalizer parameter for modifying the phase response, g is an update attenuation
- 4 gain, f() is a predetermined cosine function, a_{k+2} represents a bit to be detected at time
- 5 k+2, a_{k-2} represents a bit to be detected at time k-2, and e_k is an error signal based on a
- 6 difference between a noisy equalized signal and a desired noiseless signal.
 - 6. (Canceled)

1

1	7. (Currently Amended) The read channel of claim 1 A read channel,
2	comprising:
3	an equalizer configured to equalize a digital signal to provide equalized
4	reproduced signals; and
5	a Viterbi detector capable of receiving the equalized reproduced signals and
6	converting the reproduced signals into a digital output signal indicative of data stored on
7	a recording medium;
8	wherein the equalizer is implemented using a coefficient learning circuit that
9	adaptively updates coefficients for the equalizer based upon a cosine function, wherein
10	the coefficient learning circuit adjusts coefficients, w_i , according to $w_i=w_i-g*f(a_{k-i})*e_k$,
11	where g is a provided update attenuation gain and [[$f(a_{k-i})$]] $\underline{f()}$ is a predetermined
-12	cosine function and [[a_{k+i}]] \underline{a}_{k-i} represents a bit to be detected at time [[$k+I$]] $\underline{k-i}$.
1	8. (Original) The read channel of claim 7, wherein $f(a_{k-i})$ is chosen to be
2	a_{k-i} - a_{k-i-2} , wherein written bits that are to be detected, a_{k-i} , are convolved with a PR4
3	response based upon the cosine function.
1	9. (Original) The read channel of claim 7, wherein $f(a_{k-i})$ is chosen to be
2	$a_{k-i} + a_{k-i-1} - a_{k-i-2} - a_{k-i-3}$, wherein written bits that are to be detected, a_{k-i} , are convolved
3	with the EPR4 response based upon the cosine function.

- 1 10. (Original) The read channel of claim 7, wherein $f(a_{k-i})$ is chosen to be
- $a_{k-i}t_k$, wherein written bits that are to be detected, a_{k-i} , are convolved with t_k based upon
- 3 the cosine function.
- 1 11. (Original) The read channel of claim 7, wherein $f(a_{k-i})$ is chosen to be
- $a_{k-i}h_k$, wherein written bits that are to be detected, a_{k-i} , are convolved with h_k based upon
- 3 the cosine function.

1

13-14. (Canceled)

1 12. (Currently Amended) A waveform equalizer that equalizes a waveform of 2 a reproduction signal obtained by reproducing marks and non-marks recorded on a 3 recording medium, comprising: 4 a delay element that delays a propagation of the reproduced signal; 5 a plurality of multipliers that multiply predetermined coefficients by the reproduction signal and the delayed signal from the delay element; 6 7 a coefficient learning circuit that adaptively updates the predetermined 8 coefficients for each of the plurality of multipliers; and 9 an adder that adds outputs from the plurality of multipliers: 10 wherein the coefficient learning circuit adaptively updates coefficients for the 11 equalizer based upon a cosine function, the coefficient learning circuit adjusting 12 coefficients using a tap coefficient update equation having a first parameter, k, for 13 modifying a magnitude response, wherein the first parameter, k, is adjusted according to 14 $k=k-g*(f(a_{k+1})+f(a_{k-1}))*e_k$, where k is the cosine equalizer parameter for modifying the 15 magnitude response, g is an update attenuation gain, f() is a predetermined cosine 16 function, a_{k+1} represents a bit to be detected at time k+1, a_{k-1} represents a bit to be 17 detected at time k-1, and ek is an error signal based on a difference between a noisy 18 equalized signal and a desired noiseless signal.

- 1 15. (Currently Amended) The waveform equalizer of claim [[13]] 12,
- 2 wherein the coefficient learning circuit adjusts coefficients using a tap coefficient update
- 3 equation having a second parameter, j, for modifying a phase response.
- 1 16. (Previously Presented) The waveform equalizer of claim 15,
- wherein the second parameter, j, is adjusted according to $j=j-g*(f(a_{k+2})+f(a_{k-2}))*e_k$, where
- 3 j is the cosine equalizer parameter for modifying the phase response, g is an update
- 4 attenuation gain, f() is a predetermined cosine function, a_{k+2} represents a bit to be
- 5 detected at time k+2, a_{k-2} represents a bit to be detected at time k-2, and e_k is an error
- 6 signal based on a difference between a noisy equalized signal and a desired noiseless
- 7 signal.

1

17. (Canceled)

1 18. (Currently Amended) The waveform equalizer of claim 12 A waveform equalizer that equalizes a waveform of a reproduction signal obtained by reproducing 2 3 marks and non-marks recorded on a recording medium, comprising: 4 a delay element that delays a propagation of the reproduced signal; 5 a plurality of multipliers that multiply predetermined coefficients by the 6 reproduction signal and the delayed signal from the delay element; 7 a coefficient learning circuit that adaptively updates the predetermined 8 coefficients for each of the plurality of multipliers; and 9 an adder that adds outputs from the plurality of multipliers: 10 wherein the coefficient learning circuit adaptively updates coefficients for the 11 equalizer based upon a cosine function, wherein the coefficient learning circuit adjusts coefficients, w_i , according to $w_i=w_i-g^*f(a_{k-i})^*e_k$, where g is a provided update attenuation 12 13 gain and and [[$f(a_{k-i})$]] $\underline{f()}$ is a predetermined cosine function and [[a_{k+i}]] $\underline{a_{k-i}}$ represents 14 a bit to be detected at time [[k+I]] k-i. 1 19. (Original) The waveform equalizer of claim 18, wherein $f(a_{k-1})$ is 2 chosen to be a_{k-i} - a_{k-i-2} , wherein written bits that are to be detected, a_{k-i} , are convolved 3 with a PR4 response based upon the cosine function. 1 20. (Original) The waveform equalizer of claim 18, wherein $f(a_{k-i})$ is 2 chosen to be $a_{k-i} + a_{k-i-1} - a_{k-i-2} - a_{k-i-3}$, wherein written bits that are to be detected, a_{k-i} , are 3 convolved with the EPR4 response based upon the cosine function.

21. 1 (Original) The waveform equalizer of claim 18, wherein $f(a_{k-1})$ is 2 chosen to be $a_{k-i}t_k$, wherein written bits that are to be detected, a_{k-i} , are convolved with t_k 3 based upon the cosine function. 22. 1 (Original) The waveform equalizer of claim 18, wherein f(ak.i) is 2 chosen to be $a_{k-i}h_k$, wherein written bits that are to be detected, a_{k-i} , are convolved with h_k 3 based upon the cosine function. 1 23. (Currently Amended) A signal processing system, comprising: 2 memory for storing data therein; and 3 a processor, coupled to the memory, for equalizing a digital signal to provide 4 equalized reproduced signals, the processor adaptively updates coefficients for the 5 equalizer based upon a cosine function, the processor adjusting coefficients using a tap 6 coefficient update equation having a first parameter, k, for modifying a magnitude 7 response, wherein the first parameter, k, is adjusted according to $k=k-g*(f(a_{k+1})+f(a_k-g))$ 1))*ek, where k is the cosine equalizer parameter for modifying the magnitude response, g 8 is an update attenuation gain, f() is a predetermined cosine function, a_{k+1} represents a bit 9 10 to be detected at time k+1, a_{k-1} represents a bit to be detected at time k-1, and e_k is an 11 error signal based on a difference between a noisy equalized signal and a desired 12 noiseless signal. 1 24-25. (Canceled)

1 26. (Currently Amended) The signal processing system of claim [[24]] 23, 2 wherein the processor adjusts coefficients using a tap coefficient update equation having 3 a second parameter, j, for modifying a phase response. 1 27. (Previously Presented) The signal processing system of claim 26. 2 wherein the second parameter, j, is adjusted according to $j=j-g*(f(a_{k+2})+f(a_{k-2}))*e_k$, where 3 j is the cosine equalizer parameter for modifying the phase response, g is an update 4 attenuation gain, f() is a predetermined cosine function, a_{k+2} represents a bit to be detected at time k+2, a_{k-2} represents a bit to be detected at time k-2, and e_k is an error 5 6 signal based on a difference between a noisy equalized signal and a desired noiseless 7 signal. 1 28. (Canceled) 1 29. (Currently Amended) The signal processing system of claim 23 A signal 2 processing system, comprising: 3 memory for storing data therein; and 4 a processor, coupled to the memory, for equalizing a digital signal to provide 5 equalized reproduced signals, the processor adaptively updates coefficients for the 6 equalizer based upon a cosine function, wherein the coefficient learning circuit adjusts 7 coefficients, w_i , according to $w_i=w_i-g*f(a_{k-i})*e_k$, where g is a provided update attenuation 8 gain and and [[$f(a_{k-i})$]] $\underline{f()}$ is a predetermined cosine function and [[a_{k+i}]] \underline{a}_{k-i} represents 9 a bit to be detected at time [[k+I]] k-i.

- 1 30. (Original) The signal processing system of claim 29, wherein $f(a_{k-1})$ is
- 2 chosen to be a_{k-i} - a_{k-i-2} , wherein written bits that are to be detected, a_{k-i} , are convolved
- 3 with a PR4 response based upon the cosine function.
- 1 31. (Original) The signal processing system of claim 29, wherein $f(a_{k-i})$ is
- 2 chosen to be $a_{k-i} + a_{k-i-1} a_{k-i-2} a_{k-i-3}$, wherein written bits that are to be detected, a_{k-i} , are
- 3 convolved with the EPR4 response based upon the cosine function.
- 1 32. (Original) The signal processing system of claim 29, wherein $f(a_{k-i})$ is
- 2 chosen to be $a_{k-i}t_k$, wherein written bits that are to be detected, a_{k-i} , are convolved with t_k
- 3 based upon the cosine function.
- 1 33. (Original) The signal processing system of claim 29, wherein $f(a_{k-i})$ is
- 2 chosen to be $a_{k-i}h_k$, wherein written bits that are to be detected, a_{k-i} , are convolved with h_k
- 3 based upon the cosine function.

1	34. (Currently Amended) A magnetic storage device, comprising:
2	a magnetic storage medium for recording data thereon;
3	a motor for moving the magnetic storage medium;
4	a head for reading and writing data on the magnetic storage medium;
5	an actuator for positioning the head relative to the magnetic storage medium; and
6	a data channel for processing encoded signals on the magnetic storage medium,
7	the data channel comprising an equalizer configured to equalize a digital signal to
8	provide equalized reproduced signals and a Viterbi detector capable of receiving the
9	equalized reproduced signals and converting the reproduced signals into a digital output
10	signal indicative of data stored on a recording medium; wherein the equalizer is
11	implemented using a coefficient learning circuit that adaptively updates coefficients for
12	the equalizer based upon a cosine function, the equalizer adjusting coefficients using a
13	tap coefficient update equation having a first parameter, k, for modifying a magnitude
14	response, wherein the first parameter, k, is adjusted according to $k=k-g*(f(a_{k+1})+f(a_k-a_k-a_{k+1})+f(a_k-a_k-a_{k+1})+f(a_k-a_k-a_k-a_k)+f(a_k-a_k-a_k)+f(a_k-a_k-a_k-a_k)+f(a_k-a_k-a_k)+f(a_k-a_k-a_k-a_k)+f(a_k-a_k-a_k-a_k)+f(a_k-a_k-a_k-a_k)+f(a_k-a_k-a_k-a_k-a_k)+f(a_k-a_k-a_k-a_k-a_k-a_k-a_k-a_k)+f(a_k-a_k-a_k-a_k-a_k-a_k-a_k-a_k-a_k-a_k-$
15	1))*ek, where k is the cosine equalizer parameter for modifying the magnitude response, g
16	is an update attenuation gain, $f()$ is a predetermined cosine function, a_{k+1} represents a bit
17	to be detected at time $k+1$, a_{k-1} represents a bit to be detected at time $k-1$, and e_k is an
18	error signal based on a difference between a noisy equalized signal and a desired
19	noiseless signal.
1	35-36. (Canceled)

- 1 37. (Currently Amended) The magnetic storage device of claim [[35]] 34,
- 2 wherein the equalizer adjusts coefficients using a tap coefficient update equation having a
- 3 second parameter, j, for modifying a phase response.
- 1 38. (Previously Presented) The magnetic storage device of claim 37,
- wherein the second parameter, j, is adjusted according to $j=j-g*(f(a_{k+2})+f(a_{k-2}))*e_k$, where
- 3 j is the cosine equalizer parameter for modifying the phase response, g is an update
- 4 attenuation gain, f() is a predetermined cosine function, a_{k+2} represents a bit to be
- 5 detected at time k+2, a_{k-2} represents a bit to be detected at time k-2, and e_k is an error
- 6 signal based on a difference between a noisy equalized signal and a desired noiseless
- 7 signal.

1

39. (Canceled)

1	40. (Currently Amended) The magnetic storage device of claim 34 A
2	magnetic storage device, comprising:
3	a magnetic storage medium for recording data thereon;
4	a motor for moving the magnetic storage medium;
5	a head for reading and writing data on the magnetic storage medium;
6	an actuator for positioning the head relative to the magnetic storage medium; and
7	a data channel for processing encoded signals on the magnetic storage medium,
8	the data channel comprising an equalizer configured to equalize a digital signal to
9	provide equalized reproduced signals and a Viterbi detector capable of receiving the
10	equalized reproduced signals and converting the reproduced signals into a digital output
11	signal indicative of data stored on a recording medium; wherein the equalizer is
12	implemented using a coefficient learning circuit that adaptively updates coefficients for
13	the equalizer based upon a cosine function, wherein the coefficient learning circuit
14	adjusts coefficients, w_i , according to $w_i=w_i-g*f(a_{k-i})*e_k$, where g is a provided update
15	attenuation gain and and [[$f(a_{k-i})$]] $\underline{f()}$ is a predetermined cosine function and [[a_{k+i}]] $\underline{a_{k-i}}$
16	i represents a bit to be detected at time [[k+I]] k-i.
1	41. (Original) The magnetic storage device of claim 40, wherein $f(a_{k-i})$ is
2	chosen to be a_{k-i} - a_{k-i-2} , wherein written bits that are to be detected, a_{k-i} , are convolved
3	with a PR4 response based upon the cosine function.

- 1 42. (Original) The magnetic storage device of claim 40, wherein $f(a_{k-i})$ is
- 2 chosen to be $a_{k-i} + a_{k-i-1}$. $a_{k-i-2} a_{k-i-3}$, wherein written bits that are to be detected, a_{k-i} , are
- 3 convolved with the EPR4 response based upon the cosine function.
- 1 43. (Original) The magnetic storage device of claim 40, wherein $f(a_{k-i})$ is
- 2 chosen to be $a_{k-i}t_k$, wherein written bits that are to be detected, a_{k-i} , are convolved with t_k
- 3 based upon the cosine function.
- 1 44. (Original) The magnetic storage device of claim 40, wherein $f(a_{k-1})$ is
- 2 chosen to be $a_{k-i}h_k$, wherein written bits that are to be detected, a_{k-i} , are convolved with h_k
- 3 based upon the cosine function.
- 1 45-46. (Canceled)