Análisis I - Análisis Matemático I - Matemática 1 - Análisis II (C) Examen Final (15-09-2021)

Nombre y apellido:

Libreta:

Carrera:

1	2	3	4	N

- (1) Halle una ecuación para el plano que pasa por el punto (3,2,2) y es perpendicular al vector (2,3,-1). ¿Contiene este plano al origen?
- (2) Sean S_1 y S_2 las superficies de ecuaciones $x^2 + y^2 + z^2 = 2$ y $z = x^2 + y^2$, respectivamente.
 - a) Halle $S_1 \cap S_2$ y verifique que $(\sqrt{2}/2, \sqrt{2}/2, 1) \in S_1 \cap S_2$.
 - b) Determine los planos tangentes a S_1 y S_2 en $(\sqrt{2}/2, \sqrt{2}/2, 1)$.
 - c) Determine la recta tangente a $S_1 \cap S_2$ en $(\sqrt{2}/2, \sqrt{2}/2, 1) \in S_1 \cap S_2$.
- (3) Demostrar que $f(x,y)=x^2y$ tiene infinitos puntos críticos y que en ninguno de ellos se puede aplicar el criterio de la derivada segunda para determinar si son puntos de silla o puntos donde f alcanza un extremo. Elegir un punto en el que f tenga un mínimo, uno en el que tenga un máximo y un punto de silla.
- (4) Usando un cambio de variables apropiado calcule

$$\iiint_R xyz\,dV,$$

donde R es la región en el primer octante entre las superficies cilíndricas $x^2 + y^2 = 9$ y $x^2 + y^2 = 25$, con altura entre 1 y 4.

Nota. Justifique debidamente todas sus afirmaciones y respuestas.