범주형자료분석팀

2팀 조장희 위재성 김지현 조수미 송지현 김민지

INDEX

1. GLM

2. 유의성 검정

3. 로지스틱 회귀 모형

4. 다범주 로짓 모형

5. 포아송 회귀 모형

GLM(일반화 선형모형, Generalized Linear Model)

연속형 반응변수에 대한 모형과 <mark>범주형 반응변수</mark>에 대한 모형 모두를 포함하는 모형의 집합

* 선형회귀모형: GLM 중 하나

모형을 일반화할 때, 두 가지를 일반화

- 1) 랜덤성분의 분포 일반화
- 2) 랜덤성분의 함수 일반화

"GLM = 기존의 회귀모형을 포함한 더욱 넓은 범위의 모형! "

자세한 설명은 뒤에서 계속 …

GLM 구성 성분

$$g(\boldsymbol{\mu}) = \alpha + \beta_1 x_1 + \cdots + \beta_k x_k$$

랜덤 성분

체계적 성분

연결 함수

 $\mu(=E(Y))$

Y의 확률분포를 정해줌으로써 반응변수 Y 정의 가정한 확률분포의 **기댓값**인 μ 로 랜덤성분을 표기

이진형 자료 | 이항분포의 평균인 $\pi(x)$ 로 랜덤성분 표기

GLM 구성 성분

$$g(\mu) = \alpha + \beta_1 x_1 + \cdots + \beta_k x_k$$

랜덤 성분

체계적 성분

연결 함수

g()

• 연결 함수의 종류

항등 연결함수 g(μ) = μ 반응변수 Y가 <mark>연속형</mark>일 때 사용 ex) 일반선형회귀모형

로그 연결함수 $g(\mu) = \log(\mu)$

반응변수 Y가 도수자료(count data)일 때 사용 ex) 포아송 분포 / 음이항 분포

로짓 연결함수 $g(\mu) = \log[\mu/(1-\mu)]$

반응변수 Y가 이항분포를 따를 때 사용 ex) 로지스틱 회귀

최대가능도 추정법 (Maximum Likelihood Method)

LSE를 사용한 일반선형회귀와는 달리 GLM은 <mark>최대가능도법 (</mark>Maximum Likelihood Method)을 사용해 적합된 모형

정규성 조건을 맞출 필요 없음

: 오차항이 정규분포를 따라야 한다는 가정!

GLM은 보다 더 포괄적인 범위의 반응변수를 다룰 수 있다는 특징

유의성 검정

유의성 검정이란

유의성 검정

- 모형의 모수 추정값이 유의한지 검정
- 축소 모형의 적합도가 좋은지 검정

$$g(\mu) = \alpha + \beta_1 x_1 + \dots + \beta_k x_k$$
일때,

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$

 H_1 : 적어도 하나의 β 는 0이 아니다.

유의성 검정

ML을 이용한 검정

가능도비 검정

검정 통계량 :
$$G^2 = -2\log\left(\frac{l_0}{l_1}\right) = -2(L_0 - L_1) \sim \chi^2_{\mathrm{df}}$$
 기각역 : $G^2 \geq \chi^2_{a,df}$

가능도 함수의 최댓값을 이용해 비교

 l_0 : 귀무가설 하에서의 가능도함수

 l_1 : 전체공간 하에서의 가능도함수

df: 귀무가설과 대립가설 모수 개수의 차이

유의성 검정

이탈도

포화모형 S와 관심모형 M을 비교하기 위한 가능도비 통계량

이탈도 =
$$-2\log\left(\frac{l_M}{l_S}\right) = -2(L_M - L_S)$$

 H_0 : 관심모형 M에 포함되지 않는 모수는 모두 0이다. H_1 : 적어도 하나는 0이 아니다.

가능도 함수의 최댓값의 차이 사용

모형이 내포(nested)될 때만 사용 가능 ($M \subset S$)

로지스틱 회귀 모형

로지스틱 회귀 모형이란?

반응변수 Y가 이항자료일때 사용

$$logit[\pi(x)] = \log\left(\frac{\pi(x)}{1 - \pi(x)}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

반응 변수 Y가 성공 또는 실패의

이항분포를 따르는 변수이기에

일반 선형회귀는 사용할 수 없음 ...why?

로지스틱 회귀 모형

로지스틱 회귀 모형의 해석

확률로 해석

로지스틱 회귀 모형 식을 확률에 대한 식으로 변형

$$\pi(x) = \frac{\exp(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p)}{1 + \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p)}$$

확률 값 $\pi(x)$ 가 cutoff point보다 크면 Y=1, 작으면 Y=0

모수 β 의 해석

 $\beta > 0$: 곡선이 상향, $\beta < 0$: 곡선이 하향 $|\beta|$ 가 증가함에 따라 변화율이 증가

기준범주 로짓모형(Baseline-Category Logit Model)

기준 범주 로짓 모형

범주 j일 때 x_1 의 회귀계수

$$\log\left(\frac{\pi_{j}}{\pi_{I}}\right) = \alpha_{j} + \beta_{j}^{1} x_{1} + \dots + \beta_{j}^{p} x_{p}, j = 1, \dots, (J-1)$$

- 기준 범주: 범주 J
- 나머지 범주: 범주1, 범주2, ···, 범주 J-1

J=2 라면, 로지스틱 회귀모형

다범주 로짓 모형

누적 로짓모형(Cumulative Logit Model)

누적확률

누적확률에 로짓 연결함수를 씌운 모형

$$logit[P(Y \le j)] = log\left(\frac{P(Y \le j)}{1 - P(Y \le j)}\right) = \alpha_j + \beta_1 x_1 + \dots + \beta_p x_p,$$
$$j = 1, \dots, (J - 1)$$

- α_j 가 다른 J-1 개의 로짓 방정식이 생김
- 회귀계수 β 에는 j 첨자X
- J-1개의 로짓 방정식에서의 회귀계수 β의 효과가 동일하기 때문!
 => '비례 오즈 가정 '

누작비례오즈가정(proportional odds)

느저하르 느저화류에 근지 여격하스를 써우 모형

Collapse 과정에서 $cut point를 어디로 지정하는 <math>\log (t|P(Y \le j)) = \log \left(\frac{1-P(Y \le j)}{1-P(Y \le j)}\right) = \alpha_j + \beta_1 x_1 + \cdots + \beta_p x_p$, 회귀계수 β 의 효과는 동일하다.

비례 오즈 가정이 충족되지 않으면, => 일종의 평행 순서형 범주이더라도 <mark>명목형 로짓 모형</mark>을 씀

포아송 회귀 모형

포아송 회귀 모형 (Poisson Regression Model)

음이항 회귀모형

$$\log(\mu) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

- 음이항 랜덤성분, 로그연결함수
- 음이항 분포는 이미 분산이 평균보다 큰 상태
- 분산이 평균과 비선형관계임을 가정, 산포모수 D 사용

$$(Y) = \mu$$
, $Var(Y) = \mu + D\mu^2$

영과잉 포아송 모형(ZIP)으로 해결! 아송 회귀 모형 (Poisson Regression Model) ZIP의 반응 변수 Y는 0의 값이 발생하는 점확률분포와

O보다 큰 정수값을 갖는 <u>포이송 분포</u>의 혼합구조

$$Y = \begin{cases} 0, & \text{에} \end{cases}$$
 with probability $p \in \mathbb{R}$ 포아송 분포(명균 λ), with probability $1 - p = 3$

영과잉 포아송 회귀모형(ZIPR)

$$\log\left(\frac{p}{1-p}\right) = \alpha_0 + \alpha_1 x_1 + \dots + \alpha_p x_p$$
 로짓연결함수
$$\log(\lambda) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$
 로그연결함수

<과대영 문제 발생 그래프> <일반 포아송 분포 그래프>