「逆透視変換」、「ポイントクラウド」、 inverse perspective mapping

[RANSAC] point cloud random sample consensus

これらについて、What? / Why? / How? の あらゆる疑問を解消する文書(実験レポート)を期待しています.

3次元計測

✓ 3次元化する

「視差」を測る

画像とカメラの座標系

2台のカメラを 平行に設置した場合

視差 d と奥行き Z の関係

Z =【視差d, 焦点距離f, 基線長l で表せ】

XとYも計算できる

 $X = [Z, u_L, f$ で表せ], $Y = [Z, v_L, f$ で表せ]

3次元座標の計算手順

手順1 $p_L(u_L, v_L)$ に対応する $p_R(u_R, v_R)$ を見つける。

手順2 視差を測る。 $d = |u_R - u_L|$

$$d = |u_{\rm R} - u_{\rm L}|$$

手順3 深度(奥行き)に換算する。 $Z = \frac{f}{d}l$

$$Z = \frac{f}{d}l$$

$$X = \frac{u_{\rm L}}{f}Z$$
 , $Y = \frac{v_{\rm L}}{f}Z$

手順4 3次元座標を得る。
$$X = \frac{u_L}{f}Z$$
, $Y = \frac{v_L}{f}Z$ $(X,Y,Z) = \left(\frac{u_L}{d}l,\frac{u_R}{d}l,\frac{f}{d}l\right)$

RGB-Dカメラを使ってみよう

深度画像(Depth)

深度から3次元座標を計算する

視差画像

手順1 $p_L(u_L, v_L)$ に対応する $p_R(u_R, v_R)$ を見つける。

手順2 視差を測る。 $d = |u_R - u_L|$

$$d = |u_{\rm R} - u_{\rm L}|$$

手順3 深度(奥行き)に換算する。 $Z = \frac{f}{d}l$

$$Z = \frac{f}{d}l$$

手順4 3次元座標を得る。 $X = \frac{u_L}{f}Z$, $Y = \frac{v_L}{f}Z$

$$X = \frac{u_{\rm L}}{f} Z$$
, $Y = \frac{v_{\rm L}}{f} Z$

手順1~3の処理を経た 深度画像 $Z(u_{\rm L},v_{\rm L})$ を取得する.

点群(point cloud)

3次元座標をたくさん調べたら・・・!

手順1 $p_L(u_L, v_L)$ に対応する $p_R(u_R, v_R)$ を見つける。

手順2 視差を測る。 $d = |u_R - u_L|$

$$d = |u_{\rm R} - u_{\rm L}|$$

手順3 深度(奥行き)に換算する。 $Z = \frac{f}{d}l$

$$Z = \frac{f}{d}l$$

手順4 3次元座標を得る。
$$X = \frac{u_L}{f}Z$$
, $Y = \frac{v_L}{f}Z$

平面の自動検出

点と平面の距離

直線の方程式
$$ax + by + c = 0$$

点P (x_P, y_P) と直線の距離
$$D = \frac{|ax_P + by_P + c|}{\sqrt{a^2 + b^2}}$$

平面の方程式
$$ax + by + cz + d = 0$$

点P (x_P, y_P, z_P) と平面の距離

$$D = \frac{|ax_P + by_P + cz_P + d|}{\sqrt{a^2 + b^2 + c^2}}$$

平面を自動検出する

【平面を検出するRANSAC】

[F. T-Kurdi et al., 2008]

以下の手順1~4を繰り返す。

手順1 点群からランダムに3点を選ぶ。

手順2 3点を通る平面の方程式を作る。

手順3 平面にとても近い点を数える。

手順4点の数が記録更新なら、その平面を覚えておく。

平面を自動検出する

【平面を検出するRANSAC】 [F. T-Kurdi et al., 2008]

以下の手順1~4を繰り返す。

手順1 点群からランダムに3点を選ぶ。

手順2 3点を通る平面の方程式を作る。

手順3 平面にとても近い点を数える。

手順4点の数が記録更新なら、その平面を覚えておく。

補遺:平面と符号付き距離

(後期「パターン認識と機械学習」でも活躍します)

位置ベクトル

- ロ 法線 w, 通る点 c の超平面: $\mathcal{P}(w,c) = \{x \mid w \cdot (x-c) = 0\}$ 超平面(hyperplane): 2次元空間の直線, 3次元空間の平面, ・・・
 - $g(x) = w \cdot (x c) = -w \cdot c + w \cdot x = w_0 + w_1 x_1 + \dots + w_n x_n = 0$

定数なので w₀と置く

例 (n = 3次元): 平面の方程式 ax + by + cz + d = 0

位置ベクトル

ロ 点 x_q と超平面 $\mathcal{P}(w,c)$ の符号付き距離 (signed distance)

$$D(x_q, \mathcal{P}) = \left(\frac{w}{\|w\|}\right) \cdot (x_q - c) = \frac{w \cdot (x_q - c)}{\|w\|}$$

• $D(\mathbf{x}_{q}, \mathcal{P}) > 0 \Leftrightarrow g(\mathbf{x}_{q}) > 0 \Leftrightarrow \mathbf{x}_{q} は \mathbf{w}$ の正の側 $D(\mathbf{x}_{q}, \mathcal{P}) = 0 \Leftrightarrow g(\mathbf{x}_{q}) = 0 \Leftrightarrow \mathbf{x}_{q} \in \mathcal{P} \quad (面上)$ $D(\mathbf{x}_{q}, \mathcal{P}) < 0 \Leftrightarrow g(\mathbf{x}_{q}) < 0 \Leftrightarrow \mathbf{x}_{q} は \mathbf{w}$ の負の側

本線 ベクトル

 $x \in S$

点と平面の距離(高校) $D = \frac{\left|ax_{q} + by_{q} + cz_{q} + d\right|}{\sqrt{a^{2} + b^{2} + c^{2}}}$

高次元データを符号で「識別」できます

最後のメッセージ

情報科学・データ科学

『見る・聞く・考える』を『数学』に翻訳!

コンピュータ

(゚Д゚)ウマー サー今日から本気出す!