APRENDIZADO DE MÁQUINA

Prof. Dr. Anderson Ara

ara@ufpr.br

http://leg.ufpr.br/~ara/

Departamento de Estatística - UFPR

DSBD - UFPR

Redes Bayesianas

Redes Bayesianas

Redes bayesianas (redes causais, redes probabilísticas, redes de crenças, gráficos de dependência probabilística) emergiram na década de 1980.

Fornecer uma abordagem ao raciocínio probabilístico que engloba a Teoria dos Grafos, para o estabelecimento de relações entre variáveis e, também, a teoria da probabilidade para o tratamento da incerteza.

Ponto de partida:

"An Essay Towards Solving a Problem in Doctrine of Chance". Philosophical Transactions of the Royal Society of London, 1763"

Artigo submetido por Richard Price e não apresenta a definição do clássico teorema de Bayes:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Definição dada por Laplace (1774)

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- O trabalho original de Bayes é mais focado em definições conceituais.
- Laplace foi quem formulou o teorema, tanto em sua forma discreta quanto em sua forma contínua.

Uma Rede Bayesiana é um Grafo Acíclico Direcionado (Directed Acyclic Graph - DAG), sendo uma representação gráfica da distribuição de probabilidade conjunta das variáveis de um problema.

Em geral, uma rede Bayesiana (discreta) consiste em uma arquitetura de rede e um conjunto de probabilidades condicionais.

Exemplo

Timo Koski and John Noble (2009). Bayesian Networks: An Introduction. page 98.

Redes Bayesianas

Exemplo

https://symptomate.com/

Symptomate é o verificador de sintomas mais avançado que usa inteligência artificial com redes Bayesianas para avaliar seus sintomas.

Infermedica, uma empresa polonesa com sede nos Estados Unidos. http://www.infermedica.com

- Ferramenta Gráfica
- Integre as teorias de probabilidade e gráficos;
- Exploração de relacionamentos de (in)dependência
- Interpretação Causal
- Interpretação Visual
- Explicação e Previsão

Seja $\mathbb{G}=(V,E)$ seja um DAG e seja $X=(X_{v}), v\in V$ seja um conjunto de variáveis aleatórias indexadas por V. Assim, uma rede Bayesiana satisfaz a condição de Markov:

$$P(X) = \prod_{i=1}^{p} P(X_i | \mathbf{pa}(X_i))$$

$$P\left(X_{i}|X_{j},pa\left(X_{i}
ight)
ight)=P\left(X_{i}|pa\left(X_{i}
ight)
ight)$$

$$P(X_3|X_1, X_2, X_4, X_5, X_6) = P(X_3|X_1, X_2)$$

$$P(X_1, X_2, ..., X_p) = \prod_{i=1}^p P(X_i | \mathbf{pa}(X_i))$$

- A parte qualitativa, codifica as variáveis de domínio (nós) e as influências probabilísticas (geralmente causais) entre elas (arcos)
- A parte quantitativa, codifica a distribuição de probabilidade conjunta sobre essas variáveis

A fatoração da distribuição de probabilidade conjunta fundamenta a ideia de redes bayesianas

P(A,B,C,D) = P(A | B,C,D)P(B | C,D)P(C | D)P(D)

P(A,B,C,D) = P(A|B,C,D)P(B|C,D)P(D|C)P(C)

A fatoração da distribuição de probabilidade conjunta fundamenta a ideia de redes bayesianas

Com B \perp D|C, D \perp A|CeA \perp C, temos que P(A,B,C,D) = P(B|A,C)P(D|C)P(A)P(C)

Fundamentos: Cadeia Causal

Fundamentos: Cadeia Causal

$$P(C|A,B) = \frac{P(A,B,C)}{P(A,B)}$$
$$= \frac{P(A)P(B|A)P(C|B)}{P(A)P(B|A)}$$

$$= P(C|B)$$

Redes Bayesianas

Fundamentos: Causa Comum

Fundamentos: Causa Comum

Fundamentos: Causa Comum

A e C são independentes dado B:

$$P(C|A,B) = \frac{P(A,B,C)}{P(A,B)}$$
$$= \frac{P(A|B)P(C|B)P(B)}{P(A|B)P(B)}$$

= P(C|B)

Fundamentos: Efeito Comum

A e B são independentes:

$$P(A, B, C) \underset{MC}{=} P(C|A, B)P(B|A)P(A).$$

$$P(A, B, C) \stackrel{=}{=} P(C|A, B)P(B)P(A)$$

 $\rightarrow P(B|A) = P(B)$
 $\rightarrow A \perp B$.

Independencia Condicional: Cada nó é condicionalmente independente de seus não descendentes, dado seus pais imediatos.

Redes Bayesianas

Fundamentos

As regras anteriores fornecem toda a independência condicional relações implicadas pela rede Bayesiana?

- Não!
- Por exemplo, X1 e X4 são condicionalmente indep. dado X2, X3
- Mas X1 e X4 não condicionalmente indep. dado X3
- Para isso, precisamos entender a D-separação

Fundamentos: Cobertura de Markov

Conjunto formado pelos pais, filhos e esposos de X_i .

Alguns conceitos importantes:

- d separação
- Cobertura de Markov
- Markov Equivalência

Dois problemas para resolver em redes bayesianas:

- Estimação de Estrutura
- Estimação dos Parâmetros

Existem vários estudos em Redes Bayesianas Discretas, porém o caso contínuo ainda é muito incipiente e focado no pressuposto da normalidade.

Método geral de construção (Pearl, 1988):

- Escolha um conjunto de variáveis X_i que, em hipótese, descreve o problema;
- Escolha uma ordem para as variáveis;
- Para todas as variáveis em ordem, faça:
 - Escolha a variável X e adicione-a à rede;
 - Determina os pais da variável X com nós que já estão na rede.
 - Construa a tabela de probabilidade condicional para X.

- Redes Bayesianas

Estimação de Estrutura

Estruturas de Estimação

Existem duas estratégias gerais de aprendizado de estruturas:

- score based: busca no espaço do modelo para uma pontuação ser otimizada (Métodos Hill climbing e K2);
- constraint-based technique: testando a independência condicional (Método PC);

Estimação de Parâmetros

EMV (Estimador de Máxima Verossimilhança):
 Escolha de θ que maximiza a função de ligação dos dados observados no espaço paramétrico.

$$\hat{\theta} = \arg\max_{\theta} P(X|\theta)$$

MAP (Máximo a Posteriori)
 Escolha de theta que é mais provável para os dados

observados poderados pela informação a priori.

$$\hat{\theta} = \arg\max_{\theta} P(\theta|X) = \arg\max_{\theta} \frac{P(X|\theta)P(\theta)}{P(X)}$$

Um dado de dois lados (moeda) é lançado n vezes, com a probabilidade de sucesso ser *theta*, sendo observados x sucessos. $X \sim Bin(n, p)$.

$$P(X|\theta) = \binom{n}{x} \theta^{x} (1-\theta)^{n-x}$$

via EMV

$$\hat{\theta} = \arg\max_{\theta} P(X|\theta) = \frac{X}{n}$$

Priori (Distribuição Beta):

$$P(\theta|\alpha,\beta) = \frac{1}{B(\alpha,\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

com média $E(\theta) = \frac{\alpha}{\alpha + \beta}$ e moda $\frac{\alpha - 1}{\alpha + \beta - 2}$.

Posteriori (Distribuição Beta):

$$P(\theta|x) = \frac{1}{B(\alpha + x, \beta + n - x)} \theta^{\alpha + x - 1} (1 - \theta)^{\beta + n - x - 1}$$

com média $E(\theta) = \frac{\alpha + x}{\alpha + \beta + n}$ e moda $\frac{\alpha + x - 1}{\alpha + \beta + n - 2}$.

Classificadores Bayesianos

Para tarefa de classificação, as redes Bayesianas possuem estruturas específicas e também são conhecidas como classificadores Bayesianos.

Os classificadores Bayesianos ganharam ampla aplicação devido à sua simplicidade, eficiência computacional, base teórica direta e performance de classificação competitiva.

Alguns exemplos de estruturas são:

- Naïve Bayes (NB)
- Tree Augmented Network (TAN)
- k-dependence Bayesian Network (KDB)
- Averaged one dependence estimator (AODE)

O nome naïve (ingênuo, simples) deriva da premissa grosseira de que todas as variáveis explicativas são independentes, dado o *Y* (condicionalmente a *Y*).

Para o classificador Naïve Bayes em situações discretas, calculamos a probabilidade a posteriori que é dada por,

$$P(Y = y_c | x_1, x_2, ..., x_p) = \frac{P(Y = y_c) \prod_{i=1}^{p} p(x_i | y_c)}{\sum_{j} P(Y = y_j) \prod_{i=1}^{p} p(x_i | y_j)}$$

se X_i contínuo,

$$p(x_i|y_j) \sim N(\mu_{i|y_j}, \sigma_{i|y_j}^2),$$

com média $\mu_{i|y_j}$ e variância $\sigma^2_{i|y_j}$ de X_i condicional a categoria yc. O caso contínuo é conhecido como Gaussian Naïve Bayes.

- Para o classificador naïve Bayes as probabilidades são calculadas com base na frequência das observações do conjunto de treinamento.
- Utilização do m-estimador (conjugada Dirichlet-multinomial via média a posteriori de uma priori uniforme)

$$\frac{n_c + mp}{n + m}$$

- Quando a suposição de independência condicional de todos os atributos dada a classe é satisfeita, o classificador naïve Bayes é um classificador Bayesiano ótimo.
- Apresenta bons resultados mesmo que a suposição de independência condicional não seja satisfeita

Para redes Bayesianas de k dependência (KDB), calculamos as probabilidades a posteriori dada por,

$$P(Y = y_c | x_1, x_2, ..., x_p) = \frac{P(Y = y_c) \prod_{i=1}^{p} f(x_i | pais(X_i), y_c)}{\sum_{j} P(Y = y_j) \prod_{i=1}^{p} f(x_i | pais(X_i), y_j)}$$

onde, se X_i contínuo,

$$p(x_i|\textit{pais}_i, y_j) \sim N(\mu_{i|\textit{pais}_i, y_j}, \sigma^2_{i|\textit{pais}_i, y_i}),$$

sendo $\mu_{i|pais_i y_j}$ e $\sigma^2_{i|pais_i y_j}$ a média e a variância da variável x_i condicionada aos pais de X_i e a categoria y_i .

A rede com 1-dependência (KDB1) possui a mesma estrutura que uma rede probabilística para classificação e bastante difundida na literatura, conhecida como Tree Augmented Network (TAN).

A rede com 1-dependência (KDB1) possui a mesma estrutura que uma rede probabilística para classificação e bastante difundida na literatura, conhecida como Tree Augmented Network (TAN).

A rede com 1-dependência (KDB1) possui a mesma estrutura que uma rede probabilística para classificação e bastante difundida na literatura, conhecida como Tree Augmented Network (TAN).

Algoritmo KDB (Sahami, 1996)

- Para cada variável X_i , calcule a medida de informação mútua, denotada por $\hat{I}(X_i, Y)$;
- Para cada par de variáveis explicativas, calcule a medida de informação mútua condicional, denotada por $l(x_i, x_i | Y)$;
- 3 Defina S como a lista de variáveis explicativas utilizadas, inicialmente considere S como vazio;
- 4 Inicie a rede com a variável de classificação Y;
- 5 Repita até a lista S conter todas as variáveis explicativas:
 - Selecione a variável explicativa X_{max} que ainda não está contida em S e que possua a maior medida 1(X_{max}, Y);
 - 2 Adicione à rede a variável X_{max};
 - 3 Adicione um arco de Y para X_{max} ;
 - 4 Adicione m = min(|S|, K) arcos partindo das m variáveis explicativas X_j com o maior valor $\mathcal{I}(X_{max}, X_i | Y)$;
 - 5 Adicione X_{max} à lista S.

Informação Mútua: Desenvolvida em um ramo da teoria da probabilidade e da matemática estatística que lida com problemas relacionados a comunicação denominada Teoria da Informação e introduzida por Shannon (1948):

$$I(X_i, X_j) = \sum_{x} \sum_{y} p(x_i, x_j) \log \frac{p(x_i, x_j)}{p(x_i), p(x_j)} = H(X_i, X_j) - H(X_i | X_j) - H(X_j | X_i)$$

$$H(X_i|X_j) = -\sum_{x} p(x_i|x_j) \log p(x_i|x_j)$$

$$H(X_i, X_j) = -\sum_{x} p(x_i, x_j) \log p(x_i, x_j)$$

Informação Mútua:

 $I(X_i,X_j)$ expressa a quantidade de informação que X_i compartilhada com X_j , $H(X_i|X_j)$ a entropia condicional de X_i dado X_j , valor médio do conteúdo da informação em X_i condicional a X_j .

Informação Mútua Condicional: Expressa a informação mútua de duas variáveis aleatórias condicionadas a um terceiro vetor aleatório.

$$I(X_i, X_j | Z) = E_Z \left(I(X_i, X_j | Z) \right)$$

$$= \sum_{z} \sum_{x} \sum_{y} \rho(z) \rho(x_i, x_j | z) \log \frac{\rho\left(x_i, x_j | z\right)}{\rho\left(x_i | z\right), \rho\left(x_j | z\right)}$$

Comentários

- Redes Bayesianas são uma abordagem gráfica e probabilística baseada em grafos acíclicos dirigidos utilizados para modelagem de dados;
- Elas consideram propriedades de (in)dependência condicional;
- Elas são flexíveis e podem suportar desde modelos simples até modelos mais complexos para objetivos diferentes;
- Há também a abordagem de redes Bayesianas dinâmicas e outras generalizações.

Comentários

- Classificadores bayesianos são um caso particular de redes bayesianas;
- Classificadores bayesianos tem principal foco em predição (machine learning);
- Geralmente os classificadores bayesianos possuem baixa complexidade computacional.
- Existem diversos métodos para a construção de classificadores bayesianos, sendo o mais popular o método de naïve Bayes.