Università di Trieste - Facoltà d'Ingegneria.

Esercizi sulla geometria e la topologia di \mathbb{R}^N e sulle proprietà topologiche delle funzioni $\mathbb{R}^N \to \mathbb{R}^M$ $Dott. \ Franco \ Obersnel$

Esercizio 1 Si provino le seguenti proprietà degli intorni in \mathbb{R}^N . Sia \mathcal{N}_x la famiglia degli intorni di x.

- a) Sia $U \in \mathcal{N}_x$, allora $x \in U$.
- b) Siano $U, V \in \mathcal{N}_x$, allora $U \cap V \in \mathcal{N}_x$.
- c) Siano $U \in \mathcal{N}_x$ e $V \subseteq \mathbb{R}^N$. Se $U \subset V$, allora $V \in \mathcal{N}_x$.
- d) (Proprietà di separazione di Hausdorff) Siano $x \neq y$. Allora esistono $U \in \mathcal{N}_x, \, V \in \mathcal{N}_y$ tali che $U \cap V = \emptyset$.

Esercizio 2 Si provi che un inseme $E \subseteq \mathbb{R}^N$ è chiuso se e solo se l'insieme complementare $\mathbb{R}^N \setminus E$ è aperto in \mathbb{R}^N .

Esercizio 3 Si provi che ogni insieme del tipo $]a,b[\times]c,d[,\ a< b,$ è aperto in \mathbb{R}^2 .

Esercizio 4 (Densità di \mathbb{Q}^2 in \mathbb{R}^2 .) Si provi che ogni insieme aperto di \mathbb{R}^2 contiene un punto $(p,q)^T$ con $p,q\in\mathbb{Q}$.

Esercizio 5 Si provino le seguenti proprietà degli insiemi aperti e degli insiemi chiusi.

- a) Sia A unione arbitraria (anche infinita) di insiemi aperti. Allora A è aperto.
 - b) Sia A intersezione finita di insiemi aperti. Allora A è aperto.
- c) Sia C intersezione arbitraria (anche infinita) di insiemi chiusi. Allora C è chiuso.
 - d) Sia C unione finita di insiemi chiusi. Allora C è chiuso.

Esercizio 6 Si dia un esempio di un intersezione di insiemi aperti di \mathbb{R}^2 che non è un insieme aperto.

Esercizio 7 Si spieghi perché la seguente funzione è continua sul suo dominio:

$$F(x,y,z) = \left(\sin\left(x\sqrt{\frac{|y|}{z}}\right), \frac{\sin z}{|z|}, \operatorname{sgn}(z)\right) \operatorname{dove} \operatorname{sgn}(t) = 1 \operatorname{se} t > 0, \operatorname{sgn}(0) = 0 \operatorname{e} \operatorname{sgn}(t) = -1 \operatorname{se} t < 0.$$

Esercizio 8 Si scriva l'equazione cartesiana della retta passante per i due punti $(\pi, -2)^T$ e $(e, \sqrt{2})^T$.

(Sol.
$$(\sqrt{2}+2)x + (\pi - e)y - (\sqrt{2}\pi + 2e) = 0$$
)

Esercizio 9 Si scriva l'equazione in forma parametrica della retta ortogonale al vettore $(1,2)^T$ e passante per il punto $(0,1)^T$.

(Sol.
$$\varphi : \mathbb{R} \to \mathbb{R}^2$$
; $\varphi(t) = (-2t, t+1)^T$)

Esercizio 10 Sia $f: I \subseteq \mathbb{R} \to \mathbb{R}$ una funzione. Si provi che il grafico di fsi può rappresentare come luogo degli zeri di una funzione $F: A \subseteq \mathbb{R}^2 \to \mathbb{R}$.

(Sol.
$$F: I \times \mathbb{R} \to \mathbb{R}; F(x,y) = y - f(x)$$
)

Esercizio 11 Sia $f: I \subseteq \mathbb{R} \to \mathbb{R}$ una funzione. Si trovi una rappresentazione parametrica $\varphi: I \to \mathbb{R}^2$ del grafico di f.

(Sol.
$$\varphi: I \to \mathbb{R}^2$$
; $\varphi(t) = (t, f(t))^T$)

Esercizio 12 Si scriva l'equazione del piano ortogonale alla direzione della retta di equazione $\varphi(t) = (3t - 1, 2, 2t + 1)^T$ e passante per il punto $(0, 2, 3)^T$.

(Sol. Un vettore parallelo alla retta è $v = (3,0,2)^T$; un'equazione del piano $e^{2} 3x + 2z - 6 = 0$

Esercizio 13 Si trovi il dominio (e lo si disegni o lo si descriva) delle funzioni seguenti:

- a) $f(x, y, z) = \log(xy) z;$ b) $f(x, y, z) = \frac{1}{2x + y + z 1};$ c) $f(x, y, z) = \arccos(x^2 + y^2 + z^2 2x + 4y + 5);$ d) $f(x, y, z) = \sqrt{x^2 + y^2 z};$

e)
$$f(x, y, z) = \left(\frac{x^2}{4} + \frac{y^2}{9} + z^2 - 1\right)^{-\frac{1}{2}}$$
.

(Sol. a) $\{(x,y,z)^T\in\mathbb{R}^3\mid x>0,y>0\}\cup\{(x,y,z)^T\in\mathbb{R}^3\mid x<0,y<0\}.$ b) \mathbb{R}^3 tranne i punti del piano di equazione 2x+y+z-1=0.c) Palla chiusa di centro $(1, -2, 0)^T$ e raggio 1. d) Punti di \mathbb{R}^3 che stanno sotto il paraboloide di equazione $z = x^2 + y^2$, compresi i punti del paraboloide. e) Parte esterna all'ellissoide di centro l'origine e semiassi 2, 3, 1, esclusi i punti dell'ellissoide.)

Esercizio 14 (Teorema di Pitagora.) Si ricorda che due vettori $x \in y$ di \mathbb{R}^n si dicono ortogonali se e solo se $\langle x,y\rangle=0$. Si verifichi che in \mathbb{R}^n , per ogni coppia di vettori x e y mutualmente ortogonali vale la seguente uguaglianza:

$$||x + y||^2 = ||x||^2 + ||y||^2.$$

(Sol.
$$||x+y||^2 = ||x||^2 + 2\langle x, y \rangle + ||y||^2$$
)

Esercizio 15 Si descrivano o si disegnino le superfici di livello delle funzioni

- a) $f(x,y) = \sqrt{9 x^2 y^2}$;
- b) $f(x,y) = xe^{-y}$;
- c) $f(x,y) = x^2 2x y;$ d) $f(x,y) = x^2 2y^2 + xy;$

e)
$$f(x, y, z) = x^2 + y^2 + z$$
;
f) $f(x, y, z) = \frac{2}{\sqrt{x^2 + y^2 + z^2}}$.

e)

Esercizio 16 Si guardi una qualunque carta topografica sulla quale siano riportate le isoipse. Le strade sono più ripide dove le curve sono più ravvicinate: perché?

Esercizio 17 Si ponga in corrispondenza ciascuna delle seguenti equazioni con uno dei grafici riportati di seguito in ordine sparso.

a)
$$x^2 + 4y^2 + 9z^2 = 1$$
;
b) $9x^2 + 4y^2 + z^2 = 1$;
c) $x^2 - y^2 + z^2 = 1$;
d) $-x^2 + y^2 - z^2 = 1$;
e) $y = 2x^2 + z^2$;
f) $y^2 = x^2 + 2z^2$;
g) $x^2 + 2z^2 = 1$;
h) $y = x^2 - z^2$.

b)
$$9x^2 + 4y^2 + z^2 = 1$$

c)
$$x^2 - y^2 + z^2 = 1$$
;

d)
$$-x^2 + y^2 - z^2 = 1$$

e)
$$y = 2x^2 + z^2$$
:

f)
$$y^2 = x^2 + 2z^2$$
:

g)
$$x^2 + 2z^2 = 1$$
:

h)
$$y = x^2 - z^2$$
.

(I grafici corrispondono nell'ordine alle equazioni h,d,c,f,e,g,a,b.)

Esercizio 18 Sia $A \subset \mathbb{R}^N$ un insieme limitato. Detta \overline{A} la chiusura di A, sia $f: \overline{A} \to \mathbb{R}^M$ una funzione continua. Si provi che f(A) è un insieme limitato. Si dia un esempio di un insieme limitato $A \subset \mathbb{R}$ e di una funzione $f: A \to \mathbb{R}$ tale che f(A) è un insieme illimitato.

(Sol. La chiusura di un limitato è ancora limitata, quindi \overline{A} è compatto; per il teorema di compattezza $f(\overline{A})$ è compatto e quindi limitato, ma allora anche f(A) è limitato. Un esempio come quello richiesto è $f(x) = \operatorname{tg} x \operatorname{su} \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.

Esercizio 19 Si verifichi che non esiste il seguente limite:

$$\lim_{\|(x,y)^T\|\to+\infty} e^{-|x-y|}.$$

(Sugg. si guardi cosa succede sulla bisettrice del primo e terzo quadrante).

Esercizio 20 Si verifichi che la seguente funzione non è continua nel punto $(0,0)^T$:

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{2x^2 + y^2} & \text{se } (x,y)^T \neq (0,0)^T \\ 0 & \text{se } (x,y)^T = (0,0)^T \end{cases}.$$

Esercizio 21 Si calcolino i limiti:

a)
$$\lim_{(x,y)^T \to (0,0)^T} xy \operatorname{sen} \frac{1}{x+y} = b) \qquad \lim_{(x,y)^T \to (0,0)^T} \frac{2x^2}{x^2 + 2y^2} = c$$
c)
$$\lim_{(x,y)^T \to (0,0)^T, x > 0, y > 0} x^y = d) \qquad \lim_{(x,y)^T \to (0,0)^T} \frac{x^2y}{x^2 + y^2} = c$$

(c)
$$\lim_{(x,y)^T \to (0,0)^T, x > 0, y > 0} x^y = d \qquad d) \qquad \lim_{(x,y)^T \to (0,0)^T} \frac{x^2 y}{x^2 + y^2} = d$$

(Sol. a) 0, b) non esiste, c) non esiste, d) 0)