

### Chapter 10

Other Public-Key Cryptosystems

#### Other PKCS

- In this module we will be looking in detail at other public key cryptosystems other than RSA
- We will look at
  - Diffie-Hellman Key exchange
  - Elliptic Curve Cryptography (ECC)
- For ECC we will look primarily at the basis of the algebraic structure that the algorithm is built on i.e. elliptic curve arithmetic (ECA)
- For ECA we will look at how
  - the operations work
  - we can create groups
  - we can create a one-way trapdoor function

#### Diffie-Hellman Key Exchange

- First published public-key algorithm
- A number of commercial products employ this key exchange technique
- Purpose is to enable two users to securely exchange a key that can then be used for subsequent symmetric encryption of messages
- The algorithm itself is limited to the exchange of secret values
- Its effectiveness depends on the difficulty of computing discrete logarithms



Figure 10.1 Diffie-Hellman Key Exchange



Figure 10.2 Man-in-the-Middle Attack

(XAIYA)

EIGAMAL: Based on DLP

App: Digital significe standard (DSS)

310bol elemats: (9,a)

Alice:

$$\{X, X_0 \le 1\}$$
 $\{Y_0 = a^{X_0}\}$  (mod 9)

 $\{Y_0 = a^{X_0}\}$  (mod 9)

PR = XA Pu = 19,a, Yn |

Bob: uses Alices publickey Yn to encrypt may M.  $\{Y_0 = \{C_1, C_2\}\}$ 

1. Convert M to some blocks of mags:  $o \le M \le 9 - 1$ 

2. Pick a vandom  $(X_0 \le q - 1)$ 

3. Compute a one time key  $(X_0 = 1)^{R_0}$  mod 9.

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

Convertibles:

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 = 1)^{R_0}$  mod 9.)

 $(X_0 = a^{R_0})$  ( $(X_0 =$ 

M = C2 K-1 = MKK = M

$$P = 7$$
  $a = 3$   
 $X_A = 5$   
 $Y_A = (a^{X_A}) \mod 7 = 3 = 5$ 

$$M = 4$$
 $k = (Y_A)^{k} = 5 = 4$ 
 $k = (Y_A)^{k} = 5 = 4$ 

C2=KM=4.4=16=2

$$(C_{1},C_{2})=(2,2)$$
  $m=3$ 

 $K = C_1 \mod 7 = 2^5 \stackrel{?}{=} 4$ 

$$M = c_2 \cdot k^{-1} = 2 \cdot 2 = 4$$

#### Elliptic Curves

- Elliptic curves are not ellipses. They are so named because they are described by cubic equations, similar to those used for calculating the circumference of an ellipse
- They are defined by the equation  $y^2 = x^3 + ax + b$  or  $y = \sqrt{x^3 + ax + b}$

#### Elliptic Curves

- For given values of a and b, the plot consists of positive and negative values of y for each value of x. Thus, each curve is symmetric about y = 0
- Also included in the definition of an elliptic curve is a single element denoted O and called the *point at infinity* or the zero point

#### Elliptic Curves

- The set of points E(a,b) consists of all of the points (x,y) that satisfy the equation of the curve together with the element O.
- The shape of each curve is determined by the pair (a,b).
- So, an elliptic curve can be denoted as E(a,b), where a and b are the values used in the equation that defines the curve

- Most of the products and standards that use publickey cryptography for encryption and digital signatures use RSA
  - The key length for secure RSA use has increased over recent years and this has put a heavier processing load on applications using RSA
- Elliptic curve cryptography (ECC) is showing up in standardization efforts including the IEEE P1363
   Standard for Public-Key Cryptography
- Principal attraction of ECC is that it appears to offer equal security for a far smaller key size

- The fundamental operation in elliptic curve arithmetic is addition (of two points on the curve)
  - This is very different from addition in regular arithmetic
- Multiplication is defined as multiple addition
- Identity element is the point at infinity or the zero point

 If three points on an elliptic curve lie on a straight line their sum is taken as O

• 
$$P + Q + R = 0$$

- P + Q = -R (for two points with different x coordinates)

  P+Q+R-P+Q-(P+Q)=0
- For a point P = (x,y) we have that -P = (x,-y)
- P + (-P) = O (for two points with the same x coordinates)

- To add a point to itself
  - Q + Q = 2Q = -S
  - Where S is the point of intersection of the line tangent to Q and the curve
- You can only multiply a point with an integer value. You cannot multiply two points
  - 3P = P + P + P



#### Addition in ECA



#### Addition in ECA



#### Abelian Group

 A set of elements with a binary operation, denoted by •, that associates to each ordered pair (a, b) of elements in G an element (a • b) in G, such that the following axioms are obeyed:

(A1) Closure: If a and b belong to G, then a • b is also in G

(A2) Associative:  $a \cdot (b \cdot c) = (a \cdot b) \cdot c$  for all a, b, c in G

(A3) Identity element: There is an element e in G such that  $a \cdot e = e \cdot a = a$  for all e in G

(A4) Inverse element: For each a in G there is an element a' in G such that  $a \bullet a' = a' \bullet a = e$ 

(A5) Commutative:  $a \cdot b = b \cdot a$  for all a, b in G

#### Abelian Group

- For an elliptic curve to form an abelian group, its values of a and b must fulfill the inequality
  - $4a^3 + 27b^2 \neq 0 \pmod{p}$

#### Finite Fields

- Creating elliptic curves that are defined over finite fields require additional steps
  - These will not be covered here. You are however encouraged to look this up
- There are two kinds of elliptic curves defined over finite fields
  - Prime Curves with variables and coefficients taking values between (o p-1) and all calculations are done mod p
  - **Binary Curves** with variables and coefficients taking values in GF(2<sup>m</sup>) and calculations performed over GF(2<sup>m</sup>)

# Elliptic Curve Cryptography (ECC)

- Addition operation in ECC is the counterpart of modular multiplication in RSA
- Multiple addition is the counterpart of modular exponentiation

To form a cryptographic system using elliptic curves, we need to find a "hard problem" corresponding to factoring the product of two primes or taking the discrete logarithm

- Q=kP, where Q, P belong to a prime curve
- Is "easy" to compute Q given k and
- But "hard" to find k given Q, and P
- Known as the elliptic curve logarithm problem

## Security of Elliptic Curve Cryptography

- Depends on the difficulty of the elliptic curve logarithm problem
- Fastest known technique is "Pollard rho method"
- Compared to factoring, can use much smaller key sizes than with RSA
- For equivalent key lengths computations are roughly equivalent
- Hence, for similar security ECC offers significant computational advantages

#### **Table 10.3**

### Comparable Key Sizes in Terms of Computational Effort for Cryptanalysis (NIST SP-800-57)

| Symmetric key<br>algorithms | Diffie-Hellman, Digital Signature | RSA (size of <i>n</i> in bits) | ECC<br>(modulus size in |
|-----------------------------|-----------------------------------|--------------------------------|-------------------------|
| 80                          | Algorithm $L = 1024$              | 1024                           | bits) 160–223           |
| 80                          | N = 160                           | 1024                           | 100-223                 |
| 112                         | L = 2048                          | 2048                           | 224–255                 |
|                             | N = 224                           |                                |                         |
| 128                         | L = 3072                          | 3072                           | 256–383                 |
|                             | N = 256                           |                                |                         |
| 192                         | L = 7680                          | 7680                           | 384–511                 |
|                             | N = 384                           |                                |                         |
| 256                         | <i>L</i> = 15,360                 | 15,360                         | 512+                    |
|                             | N = 512                           |                                |                         |

Note: L = size of public key, N = size of private key

#### Summary

- Define Diffie-Hellman Key Exchange
- Understand the Man-in-the-middle attack



- Understand Elliptic curve arithmetic
- Present an overview of elliptic curve cryptography