

1. Os dados da Tabela 1 referem-se ao diâmetro de árvores em uma floresta.

Tabela 1: Diâmetro de árvores em uma floresta.									
25,60	27,75	29,95	32,20	33,90	34,75	35,20	36,00	37,10	
39,20	41,75	44,05	25,90	28,30	31,25	32,20	33,95	34,80	
35,55	36,70	38,90	39,55	42,80	45,20	25,90	29,05	31,70	
33,75	34,75	35,10	35,65	37,05	39,10	40,45	43,95	46,74	

- a) Construa a tabela de distribuição de frequências com seis classes para os dados.
- b) Construa o histograma.
- c) Indique um valor representativo para os dados; comente sobre a assimetria. **R: média = 35,437, desvio padrão = 5,5389.**
- d) Classifique a variável que compõe este banco de dados. R: variável quantitativa contínua.
- **2.** Um talhão de 3 ha de cana-de-açúcar foi subdividido em parcelas de $1000m^2$ cada uma. As produções referentes a essas parcelas, em toneladas, são:

9,8	9,3	10,1	9,5	10,8	9,0
8,6	8,8	9,2	10,1	8,7	7,8
8,3	9,5	9,9	9,2	8,7	9,0
9,6	9,8	10,2	9,7	11,4	9,4
8,7	9,4	9,1	8,9	9,3	12,5

- a) Construa um diagrama de ramos e folhas para a apresentação desses dados.
- b) Calcule os quartis. Faça um esboço do box-plot. Interprete os resultados com relação à tendência central, dispersão e assimetria. R: $1^{\circ}Q = 8,9$; mediana = 9,35; $3^{\circ}Q = 9,8$.
- 3. Considere a produção de madeira (m³/ha) de diferentes talhões de *Eucalyptus camaldulensis* aos 7 anos.

220	223	218	216	228	246	250	261	276	239
174	232	171	225	208	245	248	214	204	270
201	271	238	132	270	256	189	199	143	218
221	271	183	148	221	275	186	208	198	237
223	201	245	198	245	166	228	204	224	166

Obtenha as estatísticas (a) média; (b) mediana; (c) primeiro e o terceiro quartis; (d) percentil 90%; (e) variância; (f) desvio padrão; e coeficiente de variação (CV). R: média = 218,66; mediana = 221; 1°Q = 199; 3°Q=245; percentil 90% = 270; variância = 1234,188; desvio padrão = 35,13101; CV = 16,06%.

4. A distribuição dos diâmetros das árvores de uma floresta nativa está representada na tabela de frequências abaixo:

Classes de	Frequência
Diâmetro (cm)	
10 ⊢20	351
20 ⊢30	160
30 ⊢40	86
40 ⊢50	40
50 ⊢60	20
60 ⊢70	4
70 ⊢80	4
80 ⊢90	3
90 ⊢100	1
Total	669

- a) Qual o diâmetro médio e o diâmetro mediano das árvores dessa floresta? Qual dos dois é maior?**R**: média=24,043; mediana=19,529.
- b) Qual é a classe modal dos diâmetros das árvores desta floresta? Calcule a moda. R: moda=16,476.
- c) Qual o desvio padrão dos diâmetros das árvores desta floresta? R: desvio padrão=12,487.
- d) Um Engenheiro Florestal deseja fazer um corte seletivo retirando 20% das maiores árvores. Qual o diâmetro mínimo das árvores a serem removidas?**R: 33,08cm.**
- e) Uma Engenheira Florestal deseja fazer um corte seletivo retirando 40% das menores árvores. Qual o diâmetro mínimo das árvores remanescentes?**R: 17,692cm.**
- **5.** Para os dados do exercício 2, construa uma tabela de classes de frequências e represente os dados graficamente, por meio do histograma e do polígono de frequências.
- **6.** Dispõe-se de uma relação de 36 produções em kg/ha de milho do município de Chapecó e uma relação de 36 produções, também em kg/ha, do município de Campos Novos. A distribuição de frequências é dada na Tabela 2.

Tabela 2: Distribuição de frequências do rendimento de milho para Chapecó e Campos Novos

		<u> </u>	
Rendimento Chapecó	Frequência	Rendimento Campos Novos	Frequência
4200 ⊢ 4552	1	6613 ⊢ 7095	1
$4552 \vdash 4904$	3	7095 ⊢ 7577	2
4904 ⊢ 5256	5	7577 ⊢ 8059	4
5256 ⊢ 5608	8	8059 ⊢ 8541	13
5608 - 5960	8	8541 ⊢ 9023	7
5960 ⊢ 6312	6	9023 ⊢ 9505	7
$6312 \vdash 6664$	5	9505 ⊢ 9987	2

- a) Construa um histograma para cada localidade. As distribuições apresentam uma forma simétrica? Justifique.
- b) Localize nos histogramas a classe que contém o percentil de ordem 90 (P_{90}) e calcule seu valor.**R**: **P**₉₀ = 6412,57 kg/ha (Chapecó) **P**₉₀ = 9403,53 kg/ha (Campos novos).
- c) Acima de que valor encontram-se 85% das produções de milho para cada localidade?**R**: **P**₁₅ = **4960,32 kg/ha** (Chapecó) **P**₉₀ = **7881,82 kg/ha** (Campos novos).

7. Construa uma tabela e faça um gráfico para resumir a informação contida no seguinte conjunto de dados:

R	A	R	В	В	A	R
A	A	R	В	R	В	R
A	В	В	R	A	R	В
В	R	R	A	В	A	В

em que A - amarelo, B - branco e R - rosa representam as cores de uma espécie de ipê. Que tipo de variável é essa? Qual é a moda desse conjunto de dados?**R: Qualitativa nominal, Mo= B e R (bimodal).**

8. Os dados a seguir referem-se à contagem do número de bifurcações presentes em uma amostra de árvores

0	2	3	0	4	2	3
2	0	3	2	0	2	3
2	2	2	3	2	0	2
0	1	1	3	2	1	4
1	3	2	0	2	2	2
0	4	1	1	2	0	

- a) Construa uma tabela de frequências.
- b) Para os dados organizados na tabela do item a, calcule a média, a mediana, a moda, o primeiro e o terceiro quartis e o percentil 20. R: média=1,732; mediana=2; moda=2; 1°Q=1; 3°Q=1; P₂₀=0.
- c) Para os dados organizados na tabela do item a, calcule a variância, o desvio padrão e o coeficiente de variação. **R: variância=1,451; desvio padrão=1,205; CV=69,56%.**
- d) Que tipo de variável compõe este banco de dados? R: quantitativa discreta.