21-484 Notes JD Nir jnir@andrew.cmu.edu February 1, 2012

 $\underline{\mathrm{Def:}}$ (p. 19): A graph G is complete if every pair of distinct vertices is an edge.

- (p. 20): A graph G is empty if every pair of distinct vertices is a non-edge.
- \rightarrow The complete graph on n vertices is denoted by K_n .
- $\rightarrow \overline{K_n}$ is empty
- (p. 21): A graph G is called <u>bipartite</u> if V(G) can be partitioned into two nonempty sets $U \dot{\cup} W = V(G)$ such that G[U], G[W] are empty. U and W are called partite sets or parts.
- (p. 19): A path on n vertices is denoted by P_n . A cycle on n vertices is denoted by C_n .

Examples:

Proposition (Theorem 1.12): A non-trivial graph G is bipartite iff it contains no odd cycles.

Proof: If G contains an odd cycle, then G is not bipartite:

Assume that $v_1, v_2, \ldots, v_n, v_1$ is an odd cycle in G. Assume for the sake of contradiction that $U \cup W = V(G)$ is a partition of the vertex set such that G[U] and G[W] are empty. Without loss of generality, assume that $v_1 \in W$. Since $v_1v_2 \in E(G)$, we know $v_2 \in U$, then $v_3 \in U$.

Continuing in this way (formally, by induction) we see that $v_i \in W$ iff i is odd. n is odd, so $v_n \in W$, but then $v_n v_1 \in G[W]$. \downarrow

- \rightarrow If G is not bipartite then it contains an odd cycle:
 - Assume that G is connected.
 - Let $u \in V(G)$. Define

$$U = \{v | d(u, v) \text{ is even}\}$$

$$W = \{v | d(u, v) \text{ is odd}\}$$

- Clearly, $U \dot{\cup} W = V(G)$.
- U is not empty, $u \in U$. W is not empty because G is not trivial.
- Since G is not bipartite, one of G[U] or G[W] is not empty.
- assume that $vw \in E(G[W])$. Let d(u,v) = 2s+1 and d(u,w) = 2t+1, also let $p' = v_0, v_1, \ldots, v_{2s+1}$ be a u-v path. Let $p'' = w_0, \ldots, w_{2t+1}$ be a u-w geodesic path.
- $u \in p' \cap p''$. Let x be the last common vertex between p' and p''.
- -i = d(u,x)
- the subpath of p', v_0, v_1, \ldots, x is geodesic, so $x = v_i$.
- the subpath of p'', w_0, w_1, \ldots, x is geodesic, so $w_i = x = v_i$.
- Consider the cycle $w = w_{2t+1}, w_{2t}, \dots, w_i = v_i, v_{i+1}, \dots, v_{2s+1} = v, w$. It is of length 2t+1-i)+(2s+1-i)+1=2(t+1-i+s)+1 which is odd.
- \rightarrow If $vw \in E(G[U])$ then notice that $u \neq v$ and $u \neq w$. Otherwise, the other vertex $\in W$.
- \rightarrow Continue in the same manner.
- \rightarrow G is bipartite iff every connected component of G is bipartite or trivial.

jnir@andrew.cmu.edu

<u>Trees:</u> <u>Defs:</u> (p. 86) - Let G be a connected graph, and let $e \in E(G)$. Then e is a <u>bridge</u> if G - e is disconnected. If G is disconnected, then e is a bridge of G if it is a bridge of G a component of G.

<u>Claim:</u> an edge is a bridge iff it lies on no cycle.

Proof: Assume $e \in G_1$, G_1 a component of G. If e = uw is not a bridge is not a bridge then $G_1 - e$ is connected, so there is a u-w path in $G_1 - e$. Add e to this path to get a cycle in G_1 .

If e is part of a cycle u, w, v_1, \dots, v_n, u , define $p = w, v_1, \dots, v_n, u$.

 $\forall x, y \in V(G_1)$, we know that there is an x-y path in G_1 . If e is not on the path, then x and y are connected in $G_1 - e$.

If e is on the path, replace it by p to get an x-y walk.