

Quantum science with trapped ions

Philipp Schindler

Outline

P. Schindler et al., New. J. Phys. 15, 123012 (2013)

Ion trap QC around the globe

The ideal world

Harmonic oscillator

Quantum bit

$$|D_{5/2}\rangle \equiv |\uparrow\rangle$$
$$\equiv |\mathbf{0}\rangle$$

$$|S_{1/2}\rangle \equiv |\downarrow\rangle$$
$$\equiv |\mathbf{1}\rangle$$

motional states

$$|0\rangle, |1\rangle, |2\rangle, |3\rangle, \dots$$

internal states

$$|\uparrow\rangle, |\downarrow\rangle$$

Ion traps – How do they work

Blackboard: How to trap a charged particle.

"Quantum dynamics of single trapped ions"

D. Leibfried, R. Blatt, C. Monroe, D. Wineland

Rev. Mod. Phys. **75**, 281-324 (2003)

"Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions"

- D. Wineland et al.
- J. Res. Natl. Inst. Stand. Technol. 103, 259-328 (1998)

Micromotion

2D linear Paul trap

Exact: Mathieu equation

$$\frac{d^2x}{d\tau^2} + (a - 2q\cos(2\tau))x = 0$$
$$\frac{d^2y}{d\tau^2} - (a - 2q\cos(2\tau))y = 0$$

$$\frac{d^2x}{d\tau^2} + (a - 2q\cos(2\tau))x = 0$$

$$q = \frac{2eU_{rf}}{mr_0^2\Omega^2} \qquad a = \frac{4eU}{mr_0^2\Omega^2}$$

$$\frac{d^2y}{d\tau^2} - (a - 2q\cos(2\tau))y = 0$$

$$\tau = \frac{\Omega t}{2} \qquad \text{q - and a - parameter}$$

Stable trajectories for certain parameters:

$$x(\tau) = Ae^{i\beta_x \tau} \sum_{n=-\infty}^{\infty} C_{2n}e^{i2n\tau}$$
$$+Be^{-i\beta_x \tau} \sum_{n=-\infty}^{\infty} C_{2n}e^{-i2n\tau}$$

$$\beta = \beta(a, q)$$

$$C_{2n} = C_{2n}(a, q)$$

first stability region

Stability diagram

Stability region

If $q_x^2, |a_x| \ll 1$: Pseudopotential approximation:

Time-averaged electrical forces create a harmonic potential.

How does it look like?

Different linear ion traps

Trap designs differ almost solely in effective distance

Microtraps

What equipment do I need?

Summary

- Charge particles cannot be trapped in 3D by static fields
- Radio-frequency Paul traps are 3D harmonic oscillators
- Motion of particle: Mathieu equation have stability region

Laser ion interaction

 Blackboard: How can we manipulate a single trapped ion with laser light?

PhD thesis, Christian Roos www.quantumoptics.at

The trapped ion toolbox, Roee Ozeri Contemporary Physics, 52:6, 531-550 (2011)

Qubit manipulation

Beyond the Lamb Dicke regime

