RigbySpace Unified Manuscript

D. Veneziano

October 24, 2025

φ RigbySpace

Contents

RigbySpace

RigbySpace Fundamental Equations

TRTS Cycle:
$$[e-m-r-e][m-r-e-m][r-e-m-\Omega]$$

Microtick Count: $\mu \in \{1, 2, \dots, 11\}$

Role Mapping:
$$R(\mu) = \begin{cases} E & \mu \in \{1,2,3,4\} \\ M & \mu \in \{5,6,7,8\} \\ R & \mu \in \{9,10,11\} \end{cases}$$

Fundamental Oscillators:
$$v = \frac{a}{b}, \quad \beta = \frac{c}{d} \in \mathbb{Q}^+$$

$$\Psi$$
-Transformation: $\Psi(\upsilon,\beta) = \left(\frac{a}{d},\frac{c}{b}\right)$

Product Invariant: $v \cdot \beta = \Psi(v) \cdot \Psi(\beta)$

Imbalance Dynamics: $\kappa_{n+1} = f(\kappa_n, \omega_n, \rho_n)$

Emission Condition: ρ_n triggered when $\exists p \in \mathbb{P}$ in num/den of ω_n

Phase Resolution: $\Delta^2 \Phi(n) = W[\Phi(n)] \cdot \tau(n) + F(n)$

Emergent Constants: $\alpha^{-1} \approx \lim_{n \to \infty} \frac{\omega_{n+1}}{\omega_n}$

Rational Convergence: $\forall \epsilon > 0, \exists N: \left| \frac{A_{n+1}}{A_n} - L \right| < \epsilon$

where $L \in \left\{\frac{1}{\sqrt{2}}, \sqrt{2}, 1+\sqrt{2}\right\}$ emerges from \mathbb{Q} -only propagation