- § 4.1.3 天左递归无回溯的自顶向下分析
- 递归下降分析---高级语言或汇编语言实现
- LL(1)分析法---用一个分析表和分析栈实现
- 1、递归下降分析(递归子程序,推导过程)

实现方式:

对每一个非终结符号U,编写一个子程序F(U)

F(U):boolean

true:分析过程正常(得以匹配)

false:分析过程出错(无法匹配)

秒: G[E]:

$$T \rightarrow F | TMF$$
 $T \rightarrow F \{MF\}$

$$T \rightarrow (E) | i \qquad F \rightarrow (E) | i$$

$$A \rightarrow + | -$$

$$A \rightarrow + | -$$

$$M \rightarrow * /$$
 $M \rightarrow * /$

(1)消除左递归: 有左递归

改写后的文法

G[**E**]:

$$E' \rightarrow ATE' \mid \epsilon$$

$$T' \rightarrow MFT' \mid \epsilon$$

$$F \rightarrow (E) \mid i$$

$$A \rightarrow + |$$

(2) 消除回溯:无回溯

产生式	FIRST(α)	FOLLOW(A)
E→TE′	{ (, i }	{), # }
E ' → A TE '	{+, - }	{),#}
$\mathbf{E}' \rightarrow \mathbf{\epsilon}$	{ e }	
T →FT'	{ (, i }	{+,,) , # }
T '→MFT '	{ *, / }	{+,,) , # }
$T' \rightarrow \epsilon$	{ ε }	
$\mathbf{F} \rightarrow (\mathbf{E})$	{()}	{+, -,*,/,),#}
$\mathbf{F} \rightarrow \mathbf{i}$	{ i }	
$A \rightarrow +$	{+}	{(, i}
$A \rightarrow -$	{-}	
M →*	{* }	{(, i}
$\mathbf{M} \rightarrow /$	{/}	

递归子程序的框图 设: □ current 中放置当前正扫描的输入符号. □ advance 表示输入符号指针后移一位. 假定: □当进入某子程序时,要分析的输入符号已经在 current中. □在从某一子程序退出时,下一个要分析的输入符 号放入current中.

Τ'→**MFT '**| ε

2、LL(1)分析法

1:只向前看一个输入符号便能确定当前应选择的规则

L:产生一个最左推导 (leftmost)

L:自左 (left) 向右扫描源程序

- (1) LL (1) 分析器的描述
- ①逻辑结构:

一张分析表M:包含文法的全部信息

一分析栈:用于存放分析过程中的文法符号

总控程序:控制分析过程 (不同的文法可用一个)

M[A,a]

	a	• • • • •
A	M[A,a]	• • • • •
• • • • •	••••	••••

A:处于分析栈中

a: 处于输入串中

M[A,a]:分析栈中面临输入符号a时应采取的动作

将#号放在输入串的尾部

②LL(1)分析器

分析栈

#	S	• • • • • •	X _{m-1}	$\mathbf{X}_{\mathbf{m}}$	• • • •
---	---	-------------	------------------	---------------------------	---------

输入串 $a_i a_{i+1} \dots a_n \#$

 $X_m \in V_n$ A_i $X_m \to UVW$

则分析栈为

#	S	• • • • • •	X _{m-1}	W	V	U	• • • •
---	---	-------------	------------------	---	---	---	---------

(2)LL(1)分析过程

①初始格局: #, S依次入栈,#置输入串尾

分析栈

输入: $a_1a_2....a_n$ #

S

②反复执行,任何时候按栈顶 X_m 和输入 a_i 依据分析表,执行下述三个动作之一

■若X_m∈V_n

 $m{f H}[{f X}_{
m m}, {f a}_{
m i}]$ 对应一产生式 则 ${f X}_{
m m}$ 退栈, 产生式右部符号按反序进栈 $(相当于进行一步推导)右部为<math>{f \epsilon}$,不进栈

者M[X_m,a_i] 为error:出错处理

• $\bigstar X_m \in V_T$

① $X_m = a_i \neq \#$ 一步匹配,

则Xm出栈,输入符号指针指下一位置。

②X_m≠a_i调error

■若X_m=#

①X_m=a_i=# 分析成功,结束

②X_m≠a_i,调error

分析算法


```
BEGIN
```

把'#', 文法开始符号依次入栈; 把第一个输入符号读进a; FLAG: =TRUE; WHILE FLAG DO

BEGIN

把栈顶符号出栈并放在 X中;

IF X ∈ V_T THEN IF X=a THEN 地下一个輸入符号读进a ELSE ERROR

ELSE IF X='#' THEN

IF X=a THEN FLAG:=FALSE ELSE ERROR

ELSE IF M[X,a]={X -> X_1X_2...X_K}

THEN 把X_K, X_{K-1},...,X₁依次入栈

ELSE ERROR

END OF WHILE;

STOP/*分析成功, 过程完毕*/ END

LL(1)分析 (预测分析) 程序框图

G[**E**]:

$$E' \rightarrow ATE' \mid \epsilon$$

$$T' \rightarrow MFT' \mid \epsilon$$

$$F \rightarrow (E) \mid i$$

$$A \rightarrow + \mid -$$

问题: 试用LL (1) 分析法分析输入串 i+i* i是 否是文法的句子。

LL(1)分析表

	i	+	-	*	1	()	#
E	E→TE'					E→TE'		
E'		E'→ATE'	E' →ATE'				E'→ ε	E'→ε
T	T→FT'					T→FT'		
T'		$T' \rightarrow \epsilon$	Τ' → ε	T' →MFT'	T' → MFT'		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	F→i					$ F \rightarrow (E) $		
A		A →+	A →-					
M				M →*	M →/			

例:输入串 i+i*i 的分析过程 (查LL(1)分析表)

分析栈

余留输入串

分析表中产生式

$$M[E,i] \quad E \rightarrow TE'$$

$$M[T,i]$$
 $T \rightarrow FT'$

$$M[F,i] \quad F \rightarrow i$$

$$M[T',+] \quad T' \rightarrow \varepsilon$$

$$M[E',+]$$
 $E' \rightarrow ATE'$

分析栈

E' T A

E' T +

# E	T '	
-----	------------	--

余留输入串

分析表中产生式

$$A \rightarrow +$$

Pop, Nextsym

$$T \rightarrow FT'$$

$$F \rightarrow i$$

Pop, Nextsym

$$T' \rightarrow MFT'$$

$$M \rightarrow *$$

分析栈

E' T' F *

E' T' F

|# |**E**'|**T**'|**i** |

E' T'

| # | E' |

#

余留输入串

*i #

i#

i#

#

#

#

分析表中产生式

Pop, Nextsym

 $F \rightarrow i$

Pop, Nextsym

 $T' \rightarrow \epsilon$

 $E' \rightarrow \epsilon$

成功

结论: i+i*i是文法的合法句子

(3)LL(1)分析表的构造

```
两个集合
FIRST(\alpha_i) =
      \{\mathbf{a}_{i} \mid \alpha_{i} \stackrel{*}{=} > \mathbf{a}_{i} \delta, \mathbf{A}_{i} \in \mathbf{V}_{t}, \delta \in \mathbf{V}^{*}\}
          *\alpha_i \stackrel{*}{=} > \epsilon,则 \epsilon \in FIRST(\alpha_i)
FOLLOW(A)=
      \{a \mid S^{\underline{*}} > \alpha A a \delta, \mathbb{A} a \in V_t, \alpha, \delta \in V^*\}
          若 S^* > \alpha A,则 # \in FOLLOW(A)
```

■构造FIRST的算法

$$(-)$$
对 $G[S], x \in V_n \cup V_t$, 计算 $FIRST(x)$

- ① 若 $x \in V_t$ 以FIRST(x)={x}
- 2若 $x \in V_n$ 有 $x \to a\alpha \ , \ (a \in V_t)$ 或/和 $x \to \epsilon$ 则 a或/和 $\epsilon \in FIRST(x)$

③对 $x \rightarrow Y_1 Y_2 \dots Y_k (\mathbf{L} Y_1 \in V_n)$,反复使用以下 直到每一个FIRST(x)不再增大为止。 $\mathbf{i} \overset{*}{=} Y_1 \in V_n$

则把FIRST(Y_1)-{ ϵ }元素加入FIRST(x)中 ii 若 Y_1 、 Y_2 、..... $Y_{i-1} \in V_n$ ($2 \le i \le k$) 且对于任何j, $\epsilon \in FIRST(Y_j)$ ($1 \le j \le i-1$) 则把所有FIRST(Y_i)-{ ϵ }元素加入FIRST(x)中

iii 若Y_{1、}Y_{2、}......Y_k ∈ V_n

且对于任何j, ε ∈ FIRST(Y_j) (1≤j ≤k)

则把ε元素加入FIRST(x)中

(二) 构造FIRST(
$$\alpha$$
) $\alpha = X_1 X_2$ 、..... X_n $X_i \in V$, $\alpha \in V^*$ ①置FIRST(α)={
②FIRST(X_1)-{ ϵ }か入FIRST(α)
③若 $\epsilon \in FIRST(X_1)$,

则FIRST(X_2)-{ ϵ }か入FIRST(α)
若 $\epsilon \in FIRST(X_1)$ 具 $\epsilon \in FIRST(X_2)$

则FIRST(X_3)-{ ϵ }か入FIRST(α)
.....以此类推
若 $\epsilon \in FIRST(X_i)$ 1≤ $i \le n$

则 $\epsilon \in FIRST(\alpha)$

■构造FOLLOW(A)的算法 $A,B \in V_n$

- ①令# ∈FOLLOW(S) S为文法开始符号
- ②对 $A \rightarrow \alpha B\beta$,具 $\beta \neq \epsilon$

则将 FIRST(β) -{ε}加入FOLLOW(B)中

③反复, 直至每一个FOLLOW(A)不再增大

则FOLLOW(A)中的全部元素加入FOLLOW(B)

■构造分析表的算法

由每一个产生式
$$A o lpha_1 \mid lpha_2 \mid \mid lpha_n$$
 确定 $M[A,a]$ 矩阵 $a \in V_t$

- ①任何 $\mathbf{a} \in \mathbf{FIRST}(\alpha_i)$,将 $\mathbf{A} \to \alpha_i$ 规则填入 $\mathbf{M}[\mathbf{A}, \mathbf{a}]$
- ② 若 $\epsilon \in FIRST(\alpha_i)$,
 则对于任一个 $b \in FOLLOW(A)$ $b \in V_t$ 或#
 将 $A \to \epsilon$ 规则填入M[A, b]
- 〉此时 b不属于FIRST(A)
- ③其它空白为出错

解: 计算非终结符的First集和Follow集如下:

 $First(S) = \{e, d, b\}$

Follow(S)= $\{\#, d, f, g\}$

 $First(M) = \{e, d, b\}$

 $Follow(M) = \{d, f, g\}$

First(B) = $\{d, \varepsilon\}$

 $Follow(B)=\{f, b\}$

• 对每个非终结符的产生式都有:

针对M: First(BbS) \cap First(e)= $\{d, b\} \cap \{e\} = \Phi$

针对B: First(dMg) \cap Follow(B)={d} \cap {f, b}= Φ

所以文法是LL(1)文法

• 对每个非终结符的产生式有:

S: $First(MBf) = \{e, b, d\}$

M: $First(BbS) = \{d, b\} First(e) = \{e\}$

B: $First(dMg)=\{d\}$ $Follow(B)=\{f,b\}$

	f	e	b	d	g	#
S		\rightarrow MBf	→MBf	→MBf		
M		→e	→BbS	→BbS		
В	3 ←		3 ←	→dMg		

河: G(S): $S \rightarrow Sab \mid Sb \mid Ab$ $A \rightarrow aA \mid a$

将文法G改造成LL(1)G'文法,并说明; 然后构造LL(1)分析表?

解: 消除左递归和提取左公因子

改造后的文法 $G'[S]: S \rightarrow AbS'$

 $S' \rightarrow ab S' | b S' | \epsilon$

 $A \rightarrow aA'$

 $A' \rightarrow A \mid \varepsilon$

对于S': First(abS') \cap First(bS') \cap Follow(S')={#}=ф 对于A': First(A)={a} \cap Follow(A')={b}=ф

所以文法是LL(1)文法

解:消除左递归和提取左公因子

改造后的文法 $G'[S]: S \rightarrow AbS'$

$$S' \rightarrow ab S' | b S' | \epsilon$$

 $A \rightarrow aA'$

$$A' \rightarrow A \mid \epsilon$$

LL(1)分析表:

	a	b	#
S	S→AbS′		
S'	$S' \rightarrow ab S'$	$S' \rightarrow b S'$	$S' \rightarrow \varepsilon$
A	A→aA′		
A'	$A' \rightarrow A$	$A' \rightarrow \epsilon$	

珍: G(S): $S \rightarrow Aa \mid b$ $A \rightarrow SB$ $B \rightarrow ab$

将文法G改成 (消除左递归和提取左公因子) 后是否 是LL (1) 文法?