Probabilité et Statistiques

Contents

Introduction
1. Comment définitir une probabilité ?
Définition de Laplace
Définition comme limite de fréquence
Lois de probabilités
Probabilité conditionnelle
5.3 Probabilités des causes (Théorème de Bayes)
5.4 Evénements statistiquement indépendants
Définitions

Introduction

Le cours est en 2 partie, chaque partie doit être réussite à 7/20 pour être valitdée Une interrogation est organisée, elle permets une dispense à 3/4 de l'examen mais elle doit être réussite à 12/20 (une feuille A4 personnelle permise)

1. Comment définitir une probabilité ?

Définition de Laplace

La définition de laplace est une version intuitive de ce que sont les probabilités. à savoir, la probabilité d'une occurence sur le total des occurences.

Définition comme limite de fréquence

On peut aussi définir une probabilité comme la chance qu'un élément à de se voir produire si l'expérience est effectuée une infinité de fois.

Lois de probabilités

$$P(\phi)=0$$

$$B\subseteq A\to P(A/B)=P(A)-P(B)$$

$$P(A\cup B)=P(A)+P(B)-P(A\cap B): \mbox{ Relation de Boole}$$

$$0\leq P(A)\leq 1$$

Probabilité conditionnelle

Probabilité de A sachant que B est réalisé :

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \cap B) = P(A|B).P(B) P(A \cap B) = P(B|A).P(A)$$

5.3 Probabilités des causes (Théorème de Bayes)

 $Une\ partition$: Quand la somme des probabilités vaut 1 et que les probabilités sont mutuelement exclusives.

Le cas d'une partition A,B et C avec une probabilité d'un événement D qui s'effectue dans les univers A,B,C

$$P(D) = P(D \cap A) + P(D \cap B) + P(D \cap C) = P(A).P(D|A) + P(B).P(D|B) + P(C).P(D|C)$$

Nota-bene : pour effectuer un tel calcul il peut parfois être plus simple de résoudre un exercice en réalisant un arbre des probabilités

Nota-bene : Si dans un exercice, on utilise "Au moins un", c'est équivalent à dire que "tout sauf rien" $\to 1$ - Probabilité de ne rien avoir

5.4 Evénements statistiquement indépendants

Deux événements sont statistiquements indépendants ssi : P(A|B) = P(A)

Nota-bene : Une indépendance statistique n'est pas forcément vraie dans le monde réele. car la statistique est calculée sur un échantillon qui peut ne pas être représentatif

Définitions

- Une expérience aléatoire (=épreuve) : expérience ou le hazard intervient, son issue n'est donc pas connue.
- L'espace d'échantillonnage : L'ensemble de tous les issues possibles d'une expérience aléatoire. notée Ω .
- Ω : ensemble des possibilités de résultats.
- événement : sous ensemble de Ω
- ϕ : événement impossible
- Variable aléatoire : quantité qui varie enfonction duè hasard. Une variable aléatoire est en général notée X.