Cardiovascular Disease Predictor Application

Ethan Nolet, Rumana Tabassum, Mariama Njie 04/22/2025

AIM

We aim to build a web application that uses ML to predict the presence of cardiovascular diseases. Our purpose is to allow clinicians to develop specialized preventative treatment plans for their patients.

Dataset

Resources:

- 1. [Cardiovascular_Disease_Dataset]: Focuses on identifying CAD.
- 2. [CDC Diabetes Health Indicators]: Focuses on the general presence of cardiovascular disease. Contains data on physical activity and several key predictors.
- 3. [Heart Attack Risk & Prediction Dataset In India]: Focuses on identifying HTN and Heart Attack Risk. Contains data on air quality and a rich variety of key predictors.
- 4. [Heart Disease]: Focuses on the general presence of cardiovascular disease. Contains data on physical activity and a rich variety of key predictors.
- 5. [Risk Factors for Cardiovascular Heart Disease]: Focuses on the general presence of cardiovascular disease. Contains data on several key predictors. Tracks 70,000 individuals.
- 6. [Two Year Hospital Admissions and Discharge Data from Hero DMC Heart Institute]: Contains data on the presence of diabetes mellitus, HTN, CAD, cardiomyopathy, and chronic kidney disease in patients. Contains a rich variety of key predictors, including lab parameters (such as hemoglobin, glucose, and creatinine levels). Tracks 12,238 individuals. We selected this dataset since it best suited our requirements.

Demo

Conclusion

We used classical algorithms and deep learning to predict heart diseases

- 1. Predict whether a sample has heart diseases
- 2. Predict the type of heart disease present in the sample. Current diseases that can be predicted are: hypertension, coronary artery disease, cardiomyopathy, heart failure, congenital heart disease

Classical algorithm:

KNN highest accurate 74.02%

Deep learning algorithm:

180 epochs highest accurate 80.09% on model 1 and 9.% on model 2

Future

Road to Minimum Viable Product:

- Continue to improve model
- Have the application report the degree certainty of the predictions.

Additional Improvements:

- Add additional features to the application, including:
 - Loading results from previous samples
 - Creating profiles for patients
 - Updating the user interface to appear more modern (potentially using Bootstrap)

References

Research Publications:

Effati, S., Kamarzardi-Torghabe, A., Azizi-Froutaghe, F. et al. Web application using machine learning to predict cardiovascular disease and hypertension in mine workers. Sci Rep 14, 31662 (2024). https://doi.org/10.1038/s41598-024-80919-9

Verma, L., Srivastava, S. & Negi, P.C. A Hybrid Data Mining Model to Predict Coronary Artery Disease Cases Using Non-Invasive Clinical Data. J Med Syst 40, 178 (2016). https://doi.org/10.1007/s10916-016-0536-z

Gao, W., Sanna, M., Chen, Y. Occupational Sitting Time, Leisure Physical Activity, and All-Cause and Cardiovascular Disease Mortality. JAMA Netw Open (2024). 7(1):e2350680. doi:10.1001/jamanetworkopen.2023.50680

Bollepalli, S.C.; Sahani, A.K.; Aslam, N.; Mohan, B.; Kulkarni, K.; Goyal, A.; Singh, B.; Singh, G.; Mittal, A.; Tandon, R.; Chhabra, S.T.; Wander, G.S.; Armoundas, A.A. An Optimized Machine Learning Model Accurately Predicts In-Hospital Outcomes at Admission to a Cardiac Unit. Diagnostics 2022, 12, 241. https://doi.org/10.3390/diagnostics12020241