Universidad de Antioquia

Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Cursos de Servicios programas virtuales Ingeniería

Cálculo Integral Taller 3

1. Hallar el volumen del sólido generado al girar alrededor del eje x la región acotada por la recta y = 2x + 2 y la parábola $y = x^2 + 2$

- a) Por el método del disco.
- b) Por el método de cascarones cilíndricos.
- a) Halle los puntos de corte de las curvas y determine el área entre las curvas en el intervalo definido por los puntos de corte
- b) Determine las coordenadas $(\overline{x}, \overline{y})$ del centro de masa para la region definida por las curvas f y g.
- c) Utilice el Teorema de Pappus para determinar el volumen del sólido que se genera al girar el área en torno al eje x y en torno al eje y.
- 2. Calcular la longitud de la curva $y^2 = 4(x+4)^3$ en el intervalo [0,2], y $y \ge 0$.
- 3. Calcular el área de superficie obtenida la girar la curva $y = \frac{x^3}{6} + \frac{1}{6x}, \frac{1}{2} \le x \le 1$. respecto al eje x.
- 4. Use el teorema de Pappus para demostrar que el volumen del sólido obtenido mediante la rotación de la región R limitada por y = sen(x), x = 0, y = 0, $x = \pi$ alrededor del eje y es $2\pi^2$.
- 5. Encuentre el volumen del sólido generado al rotar la región comprendida por las parábolas $y = -x^2$, $y = x^2 6x$ alrededor del eje x. Tome elementos de área paralelos al eje de giro.
- 6. Halle el centroide $(\overline{x}, \overline{y})$ de la región limitada por las curvas $y = \frac{1}{2}x^2$, y = 0, x = 4
- 7. Use el teorema de Pappus para demostrar que el volumen del sólido obtenido mediante la rotación de la región R limitada por $y = sen(x), x = 0, y = 0, x = \pi$ alrededor del eje y es $2\pi^2$.
- 8. Hallar el volumen del sólido generado al girar alrededor de la recta x = 2 la región acotada por la recta y = 2x + 4 y la paróbola $y = x^2 + 4$ usando el método del disco.
- 9. Hallar el volumen del sólido generado al girar alrededor del eje x la región acotada por la recta y=2x+4 y la parábola $y=x^2+4$
 - a) Por el método del disco.
 - b) Por el método de cascarones cilíndricos.
- 10. Hallar el volumen del sólido generado al girar alrededor de la recta x = 2 la región acotada por la recta y = 2x + 4 y la parábola $y = x^2 + 4$ usando el método de los cascarones cilíndricos.
- 11. Hallar las coordenadas del centroide de la región acotada por la recta y = 2x + 4 y la parábola $y = x^2 + 4$ Nota: Considere la densidad constante en toda la región.
- 12. Calcule la longitud de curva de la función $y = x^{3/2}$ desde el punto (1,1) hasta (4,8).
- 13. Calcule el área que se encuentra entre las curvas $y = x^2 4x + 3$ y $y = -x^2 + 2x + 3$.
- 14. Calcular el área de la región acotada por $f(x) = |x^2 1|$ y g(x) = x + 1.
- 15. Calcular el volumen del sólido generado al rotar alrededor del eje y el área encerrada por las curvas h(x) = |x 2| y $g(x) = \sqrt{x}$.
- 16. Calcular el área entre las curvas $y = 2x^2$ y $y = x^2 + 1$
- 17. Hallar el volumen del sólido del paraboloide obtenido al rotar alrededor del eje y la región encerrada por la par"abola $y = x^2$ y la recta y = 5
- 18. Encuentre el centroide de la región limitada por las curva $y = 2x^3$ y la recta y = 2x en el primer cuadrante.
- 19. Determine la longitud de curva de $y=\frac{2}{3}(x^2+1)^{\frac{3}{2}}$, de x=0 a x=2
- 20. Considere el arco de la curva limitado por: $y = x^5/10 + 1/(6x^3)$ en [1, 2]

- a) Calcule la longitud del arco de curva correspondiente.
- b) Exprese la integral (NO LA CALCULE) que mide el área superficial cuando el arco de curva plana gira alrededor del eje x (simplifique totalmente).
- 21. Haga un bosquejo y calcule el área de la región acotada por las gráficas de:
 - a) $y = 3 \frac{1}{3}x^2$, y = 0, entre x = 0 y x = 3 Rta:6
 - b) y = (x-3)(x-1), y = x, Rta: $\frac{13\sqrt{13}}{6}$
 - c) $x = -6y^2 + 4y$, x + 3y 2 = 0, Rta: $\frac{1}{256}$
 - d) $x = y^2 2$, $x = e^y$, entre y = -1 y y = 1Rta: $e - \frac{1}{e}$
 - e) $y = \tan x$, $y = 2 \sin x$, $-\frac{\pi}{3} \le x \le \frac{\pi}{3}$ Rta:2 - 2 ln 2
- 22. Use la integral definida para encontrar el área de un triángulo con vértices: (0,0), (2,1), (-1,6) Rta: $\frac{13}{2}$
- 23. Encuentre un número b tal que la recta de ecuación y=b divide la región acotada por las curvas $y=x^2$ y y=4 en dos regiones con igual área. Rta: $4^{2/3}$
- 24. Encuentre los valores de c tal que el área de la región acotada por las paábolas $y=x^2-c^2$ y $y=c^2-x^2$ es 576. Rta: ± 6
- 25. Bosqueje el sólido S, una sección representativa (disco, arandela, etc) y encuentre el volumen de S, que es obtenido al girar la región acotada por las curvas dadas alrededor de la respectiva recta :
 - a) $y = x^3$, y = x, $x \ge 0$; el torno al eje x Rta: $4\pi/21$
 - b) $x = y^2$, x = 1, en torno a x = 1 Rta: $16\pi/15$
 - c) y = x, $y = \sqrt{x}$, en torno a y = 1 Rta: $\pi/6$
 - d) y = 1/x, x = 1, x = 2, y = 0 en torno al eje x Rta: $\pi/2$
 - e) $y = 1 + \sec x$, y = 3; en torno a y = 1Rta: $2\pi(\frac{4}{3}\pi - \sqrt{3})$
- 26. Encuentre el volumen del sólido S que se genera al hacer girar en torno al eje x la región acotada por la mitad de la elipse:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Rta: $\frac{4}{3}ab^2\pi$

- 27. La base de un sólido S es la región interior del círculo $x^2 + y^2 = 4$. Encuentre el volumen del sólido si cada sección perpendicular al eje x es un cuadrado. Rta: 128/3
- 28. La base de un sólido S es una región elíptica acotada por $9x^2 + 4y^2 = 36$. Encuentre el volumen del sólido si cada sección perpendicular al eje x es un triángulo rectángulo isósceles con la hipotenusa en la base. Rta: 24
- 29. La base de un sólido S es la región triangular con vértices (0,0), (1,0), (0,1). Encuentre el volumen del sólido si cada sección perpendicular al eje x es un cuadrado. Rta: 1/3
- 30. La base de un sólido S está acotada por un arco de $y = \sqrt{\cos x} \pi/2 \le x \le \pi/2$ y el eje x. Encuentre el volumen del sólido si cada sección perpendicular al eje x es un cuadrado. Rta: 2
- 31. Use el método de las capas cilíndricas para encontrar el volumen del sólido S generado al girar la región acotada por las curvas dadas en torno a la respectiva recta:
 - a) y = 1/x, y = 0, x = 1, x = 2, en torno al eje y Rta: 2π
 - b) $y = e^{-x^2}$, y = 0, x = 0, x = 1, en torno al eje y Rta: $\pi(1 1/e)$
 - c) $y = x^3$, y = 8, x = 0, en torno al eje x Rta: $768\pi/7$

- d) $x = 1 + (y-2)^2$, x = 2, en torno al eje xRta: $768\pi/7$
- e) $y = x^4$, y = 0, x = 1, en torno a la recta x = 2Rta: $7\pi/15$
- $f) \ \ y=\sqrt{x}, \quad x=5, \quad y=0, \quad \text{en torno a la recta} \ x=5$ Rta: $\frac{40\sqrt{5}}{3}\pi$
- $g) \ x=y^2, \ y=2, \ x=0, \ y=0;$ en torno a la rectay=3 R
ta: $8\pi/3$
- 32. Encuentre el volumen del sólido que se genera al hacer girar la región Q acotada por las curvas $x=\sqrt{y}$ y $x=y^3/32$ alrededor del eje x. Rta: $64\pi/5$
- 33. Se perfora un agujero cilíndrico de radio a, cuyo centro pasa por el centro de una esfera sólida de radio b (con b > a). Encuentre el volumen del sólido S que queda. Rta: $\frac{4\pi}{3}(b^2 a^2)^{3/2}$
- 34. Encuentre el volumen del sólido que se genera al hacer girar la región Q acotada por las curvas $y=\sin x^2, \quad y=\cos x^2, \quad x=\frac{\sqrt{\pi}}{2}, \quad x=\sqrt{\frac{\pi}{2}}, \quad \text{en torno al eje } y \quad \text{Rta: } \pi(\sqrt{2}-1)$
- 35. Sea Q la región acotada por $y=x^2$ y y=x. Encuentre el volumen del sólido que resulta cuando Q se hace girar alrededor de:
 - a) el eje x; Rta: $2\pi/15$
 - b) el eje y; Rta: $\pi/6$
 - c) la recta y = x; Rta: $\pi/60$
- 36. Encuentre la longitud de arco de:
 - a) $y = (4 x^{2/3})^{3/2}$, entre x = 1 y y = -2 Rta: $\frac{595}{144}$
 - b) $x = y^4/16 + 1/2y^2$, entre y = -3 y x = 8 Rta: 9
 - c) $y = \int_{1}^{x} \sqrt{u^3 1} \, du$, $1 \le x \le 2$ Rta: $\frac{2}{5} (4\sqrt{2} 1)$
 - d) $y = 1 + 6x^{3/2}$, $0 \le x \le 1$ Rta: $\frac{2}{243}(82\sqrt{82} 1)$
 - e) $x = \frac{1}{3}\sqrt{y}(y-3)$, $1 \le y \le 9$ Rta: $\frac{32}{3}$
 - f) $y = \ln \sec x$, $0 \le x \le \pi/4$ Rta: $\ln(\sqrt{2} + 1)$

EXITOS