/Users/bps/PycharmProjects/hypothesis_tesing/venv/bin/python /Users/bps/PycharmProjects/hypothesis_tesing/main.py

Welcome to the Hypothesis Testing calculator made by ALIAS GEORGE

Select the Calculator (type the no corresponding eg 1 for one mean Large sample)

- 1. One Mean Large sample n > 30
- 2. One Mean Small sample (σ unknown)
- 3. Two Mean Large sample n1 , n2 > 30
- 4. Two Mean Small sample with both normal and $\sigma 1 = \sigma 1$
- 5. Matched Pair t-Test
- 6. One Variance Test
- 7. Two Variance Test
- 8. One Proportion Test
- 9. Multi Proportion Test
- 10. Two Proportion Difference Test
- 11. R and C Analysis Test (Dependence Test)
- 12. Goodness Fit Test

12

12. Goodness Fit Test

Select the Calculator

Discrete Distribution

- 1. Goodness Fit for Poisson Test
- 2. Goodness Fit for Binomial Test
- 3. Goodness Fit for Geometric Test
- 4. Goodness Fit for Hyper Geometric Test
- 5. Goodness Fit for Uniform Discrete Test

Continuous Distribution

- 6. Goodness Fit for Normal Test
- 7. Goodness Fit for Log Normal Test

- 8. Goodness Fit for Alpha Test
- 9. Goodness Fit for Beta Test
- 10. Goodness Fit for Gamma Test
- 11. Goodness Fit for Weibull Test
- 12. Goodness Fit for Exponential Test
- 13. Goodness Fit for Uniform Continuous Test

12

12. Goodness Fit for Exponential Test

Level of significance: 0.01 Enter the parameter λ : 0.025 Enter the no of Categories : 5

Does the interval is a continuous one ? eg: <10 , 10 <20 etc

- 1. yes
- 2. no

1

Enter the Enter the Highest of each interval_0: 20 Enter the Observed Frequency for interval_0: 46

Enter the Enter the Highest of each interval_1: 40 Enter the Observed Frequency for interval_1: 19

Enter the Enter the Highest of each interval_2: 60 Enter the Observed Frequency for interval_2: 17

Enter the Enter the Highest of each interval_3: 80 Enter the Observed Frequency for interval_3: 12

Enter the Lowest of Interval of_4: 80 Enter the Observed Frequency for Interval of_4: 6

i x	İ	Observed Frequency	Exponential Probabilities of Interval area	Expected Frequency
< 2		46	0.3935	39.35
20 <	40	19	0.2387	23.87
40 <	60	17	0.1447	14.46999999999999
60 <	80	12	0.0878	8.780000000000001
80	>	6	0.1353	13.5300000000000001

Combined categories (initial, final) []

Observed Frequency	Exponential Probabilities of Interval area	Expected Frequency	Contribution to χ^2
46	0.3935	39.35	1.124
19	0.2387	23.87	0.994
17	0.1447	14.46999999999999	0.442
12	0.0878	8.780000000000001	1.181
6	0.1353	13.5300000000000001	4.191

Null hypothesis: Random variable has a Exponential distribution with λ = 0.025. Alternative hypothesis: Random variable does not have the Exponential distribution with λ = 0.025.

Calculations

Total Chi_square: 7.932

Decision

The null must be rejected if $\chi^2 > 13.2767$

Since $\chi^2 = 7.932$ does not exceed 13.2767, the null hypothesis cannot be rejected; we cannot reject that the Exponential distribution with $\lambda = 0.025$ provides a good fit at level $\alpha = 0.01$.

Process finished with exit code 0