

Classe: 4^{ème} Math & 4^{ème} Sc-Exp

Série Chimie:

'avancement d'une Réaction **Chimique**

Prof: Fradí Amín

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1:

On considère la réaction d'oxydation des ions iodure par les ions peroxodisulfate Pour cela on mélange 100 mL d'une solution de KI 0,5 M avec 100 mL d'une solution de K $_2$ S $_2$ O $_8$ 0,05 M. L'équation de la réaction est : $2I^- + S_2O_8^{2-} \rightarrow I_2 + 2SO_4^{2-}$ L'évolution de l'avancement X de la réaction au cours du temps est donnée par le graphe suivant :

- **1-** Dresser le tableau descriptif d'évolution du système.
- **2-** Déterminer dans les conditions de l'expérience:
- a) la valeur de l'avancement final x_f de la réaction.
- **b**) la valeur de l'avancement maximal \mathbf{x}_{max} de la réaction.
- **3-** La réaction étudiée est-elle totale ou limitée ?.

Exercice 2:

On considère un mélange initial renfermant 13,8g d'éthanol de formule CH₃-CH₂-OH et 18g d'acide éthanoïque de formule CH₃-COOH. Au bout de quelques jours, le nombre de moles d'acide ne diminue plus et se fixe à 0,1 moles.

- 1- Ecrire l'équation chimique de la réaction d'estérification.
- 2- Déterminer les quantités initiales des deux réactifs et montrer qu'elles sont égales.
- 3- Dresser le tableau descriptif d'évolution du système chimique étudié.
- 4- Déterminer la valeur de l'avancement final de la réaction.
- 5- Calculer la valeur de l'avancement maximal de la réaction.
- 6- Calculer le taux d'avancement final.
- 7- Dégager deux caractères de la réaction étudiée.

On donne $M_C = 12g.mol^{-1} M_H = 1g.mol^{-1} M_O = 16g.mol^{-1}$.

Exercice 3:

À la date t = 0, on réalise un mélange formé d'un volume $V_1 = 50mL$ d'une solution (S_1) de peroxodisulfate de potassium $(K_2S_2O_8)$ de concentration molaire C_1 et d'un volume $V_2 = 50mL$ d'une solution (S_2) d'iodure de potassium (KI) de concentration molaire C_2 . Une réaction totale se produit suivant l'équation:

$$2I^- + S_2O_8^{2-} \rightarrow I_2 + 2SO_4^{2-}$$
.

La courbe traduisant $[S_2O_8^{2-}] = f(t)$ est donnée par la **figure 1**.

- 1) Déterminer C₁.
- 2) Dresser le tableau d'avancement de la réaction étudiée.
- 3) Montrer que les ions $S_2O_8^{2-}$ sont en excès.
- **4)** Déterminer l'avancement final X_f de la réaction.
- 5) Calculer l'avancement maximal X_{max} de la réaction.
- 6) Déterminer C₂.
- Déterminer la composition finale du mélange.

- **b-** Trouver C_3 pour que les réactifs soient aux proportions stœchiométriques.
- **c-** Représenter dans ce cas l'allure de la courbe $[S_2O_8^{2-}] = f(t)$

