

ArcSoft ArcFace SDK

开发说明文档

目录

目录	<u>.</u>			2
1.	简介	۲		4
	1.1	产品村	概述	4
	1.2	环境	要求	4
		1.2.1	运行环境	4
		1.2.2	开发环境	4
		1.2.3	支持的颜色空间格式	4
	1.3	产品。	功能简介	5
		1.3.1	人脸检测	5
		1.3.2	人脸跟踪	5
		1.3.3	人脸属性检测	5
		1.3.4	人脸三维角度检测	5
		1.3.5	人脸比对	5
	1.4	SDK ∄	受权说明	6
2.	接)	【指南		6
	2.1	引擎	获取	6
		2.1.1	注册为开发者	6
		2.1.2	SDK 下载	6
		2.1.3	SDK 包结构	7
		2.1.4	工程配置	8
		2.1.5	调用流程	10
		2.1.6	阈值推荐	11
	2.2	数据组	结构	11
		2.2.1	ASF_VERSION	11
		2.2.2	ASF_SingleFaceInfo	11
		2.2.3	ASF_MultiFaceInfo	
		2.2.4	ASF_FaceFeature	12
		2.2.5	ASF_AgeInfo	12
		2.2.6	ASF_GenderInfo	12
		2.2.7	ASF Face3DAngle	13
	2.3	枚举.		13
		2.3.1	检测方向的优先级	13
		2.3.2	检测到的人脸角度(按逆时针方向)	
3.	接口	1		14
	3.1	接口证	说明	14
		3.1.1	ASFActivation	14
		3.1.2	ASFInitEngine	14
		3.1.3	ASFDetectFaces	
		3.1.4	ASFFaceFeatureExtract	16
		3.1.5	ASFFaceFeatureCompare	16
		3.1.6	ASFProcess	

		3.1.7	ASFGetAge	17
		3.1.8	ASFGetGender	18
		3.1.9	ASFGetFace3DAngle	18
		3.1.10	ASFGetVersion	19
		3.1.11	ASFUninitEngine	19
	3.2	错误码	马概览	19
	3.3	示例代	弋码	22
4.	常见	L问题		26
	4.1	FAQ		26
	4.2	其他精	肾助	28

1.简介

1.1 产品概述

ArcFace 离线 SDK,包含人脸检测、性别检测、年龄检测、人脸识别等能力,初次使用时需联网激活,激活后即可本地无网络环境下工作,可根据业务需求结合人脸识别等 SDK 灵活的进行应用层开发。

1.2 环境要求

1.2.1 运行环境

Linux x64

1.2.2 开发环境

库依赖 GLIBC 2.17 及以上 库依赖 GLIBCXX 3.4.19 及以上 编译器 GCC 4.8.2 及以上

1.2.3 支持的颜色空间格式

支持图像的颜色空间格式: NV21,NV12, BGR24,I420,YUYV

常量名	常量值	常量说明
CP_PAF_NV21	2050	8-bit Y 通道, 8-bit 2x2 采样 V 与 U 分量交织通道
ASVL_PAF_NV12	2049	8-bit Y 通道, 8-bit 2x2 采样 U 与 V 分量交织通道
CP_PAF_BGR24	513	RGB 分量交织,按 B, G, R, B 字节序排布
ASVL_PAF_I420	1537	8-bit Y 通道, 8-bit 2x2 采样 U 通道, 8-bit 2x2 采 样 V 通道
ASVL_PAF_YUYV	1289	YUV 分量交织, V 与 U 分量 2x1 采样,按 Y0, U0, Y1, V0 字节序排布

1.3 产品功能简介

1.3.1 人脸检测

对传入图像数据进行人脸检测,返回人脸位置信息和人脸在图像中的朝向信息,可用于 后续的人脸分析、人脸比对操作,支持图像模式和视频流模式。

支持单人脸、多人脸检测,最多支持检测人脸数为50。

1.3.2 人脸跟踪

捕捉视频流中的人脸信息,并对人脸进行跟踪。

1.3.3 人脸属性检测

对检测到的人脸进行属性分析,支持性别、年龄的属性分析,支持图像模式和视频流模式。

1.3.4 人脸三维角度检测

检测输入图像数据指定区域人脸的三维角度信息,包含人脸三个空间角度:俯仰角(pitch),横滚角(roll),偏航角(yaw),支持图像模式和视频流模式。

1.3.5 人脸比对

将两个人脸进行比对,来判断是否为同一个人,返回比对相似度值。

1.4 SDK 授权说明

SDK 授权按设备进行授权,每台硬件设备需要一个独立的授权,此授权的校验是基于设备的唯一标识,被授权的设备,初次授权时需要联网进行授权,授权成功后在有效期内可以离线运行 SDK。

激活一台设备后,遇以下情况,设备授权不变,但需要重新联网激活:

- 删除基于 SDK 开发的应用或删除应用数据
- 重新安装系统
- 激活一台设备后,硬件设备变更

2.接入指南

2.1 引擎获取

2.1.1 注册为开发者

访问ArcSoft AI开放平台门户:https://ai.arcsoft.com.cn,注册开发者账号并登录。

2.1.2 SDK 下载

创建对应的应用,并选择需要下载的 SDK、对应平台以及版本,确认后即可下载 SDK 和查看激活码。

选择SDK

可在查看激活码链接中获取 APPID 和 SDKKey,点击下载 SDK 下载 SDK 包。

点击【下载 SDK】即可下载 SDK 开发包;

点击【查看激活码】即可查看所需要 APPID、SDKKEY;

2.1.3 SDK 包结构

2.1.4 工程配置

)

```
CMakeLists. txt 的步骤:
cmake_minimum_required(VERSION 2.0)
                                     #指定 cmake 版本
                                     #指定项目的名称
project(项目名称)
set (CMAKE_CXX_STANDARD 11)
                                     #设置 c++标准
#指定头文件目录
include directories(./)
include directories (./inc)
#指定静态和动态文件目录
link_directories(../linux_so)
add\_executable (arcsoft\_face\_engine\_test
    ./inc/amcomdef.h
    ./inc/arcsoft_face_sdk.h
    ./inc/asvloffscreen.h
    ./inc/merror.h
    ./AFCTestDemo.cpp)
#-fPIC 在给定的作用域内设置一个命名的属性
set_property(TARGET
                            arcsoft_face_engine_test
                                                              PROPERTY
POSITION_INDEPENDENT_CODE ON)
#链接库文件
target_link_libraries(arcsoft_face_engine_test
    arcsoft\_face
    arcsoft\_face\_engine
```

相对路径说明:

CMakeLists. txt 通过 cmake 命令编译生成 makefile 文件为起点,去找工程中文件配置目录。上面的 CMakeLists. txt 编写示例是基于如下工程目录:

生成的 makefile 文件在 build 文件夹中:

头文件在 inc 文件夹中;

so 文件在 linux_so 文件中;

2.1.5 调用流程

Step 1: 激活,调用 ASFActivation

接口所需 AppId 和 SDKKey 在申请 SDK 时获取,只需在第一次使用时调用激活成功即可;

Step 2: 初始化,调用 ASFInitEngine 初始化引擎

- VIDEO 模式:处理连续帧的图像数据,并返回检测结果,需要将所有图像帧的数据 都传入接口进行处理;
- IMAGE 模式:处理单帧的图像数据,并返回检测结果;

Step 3: 调用 ASFDetectFaces 进行人脸检测

接口所需的图像信息,format 参数支持 NV21/NV12/YUYV/BGR24/I420 五种颜色空间格

式,图像处理结果可从detectedFaces参数中获取;

Step 4:调用 ASFFaceFeatureExtract 接口进行人脸特征提取

接口只支持单人脸特征提取,处理结果可从 feature 参数中获取;

Step 5: 调用 ASFFaceFeatureCompare 接口进行人脸比对

接口只支持单人脸比对,处理结果可从 confidenceLevel 参数中获取;

Step 6: 调用 ASFProcess 接口进行人脸信息检测

接口中 combinedMask 参数传入只能是初始化中参数 combinedMask 与 ASF_AGE ASF GENDER ASF FACE3DANGLE 的交集的子集;

Step 7: 调用 ASFGetAge、ASFGetGender、ASFGetFace3Dangle 接口,年龄、性别、人脸角度信息;

Step 8:调用 unInitEngine 销毁引擎

2.1.6 阈值推荐

阈值区间为 $[0^{\sim}1]$,建议阈值设置为0.8,可根据实际场景需求进行调整。

2.2 数据结构

2.2.1 ASF_VERSION

功能描述:

版本信息:

定义:

2.2.2 ASF_SingleFaceInfo

类描述:

单人脸信息:

定义:

```
typedef struct {
```

```
MRECT faceRect; // 人脸框
MInt32 faceOrient; //人脸角度
} ASF_SingleFaceInfo, *LPASF_SingleFaceInfo;
```

2.2.3 ASF_MultiFaceInfo

```
类描述:
```

多人脸信息;

定义:

```
typedef struct {
    MRECT* faceRect; // 人脸框数组
    MInt32* faceOrient; // 人脸角度数组
    MInt32 faceNum; // 检测到的人脸个数
} ASF_MultiFaceInfo, *LPASF_MultiFaceInfo;
```

2.2.4 ASF_FaceFeature

功能描述:

人脸特征;

定义:

```
typedef struct {
    MByte* feature; // 人脸特征
    MInt32 featureSize; // 人脸特征长度
}ASF FaceFeature, *LPASF FaceFeature;
```

2.2.5 ASF_AgeInfo

功能描述:

年龄信息;

定义:

```
typedef struct {
    MInt32* ageArray; // 0代表未知,大于0的数值即检测的年龄结果
    MInt32 num; // 检测的人脸个数
}ASF_AgeInfo, *LPASF_AgeInfo;
```

2.2.6 ASF_GenderInfo

功能描述:

性别信息;

定义:

```
typedef struct{
    MInt32* genderArray; // 0表示男性,1表示女性,-1表示未知
```

```
MInt32 num; // 检测的人脸个数 } ASF_GenderInfo, *LPASF_GenderInfo;
```

2.2.7 ASF_Face3DAngle

功能描述:

2.3 枚举

2.3.1 检测方向的优先级

2.3.2 检测到的人脸角度(按逆时针方向)

```
enum ArcSoftFace_OrientCode {
   ASF OC O = Ox1,
                           // 0 degree
   ASF\_0C\_90 = 0x2,
                           // 90 degree
   ASF_{0C_{270}} = 0x3,
                           // 270 degree
   ASF_0C_180 = 0x4,
                           // 180 degree
   ASF_{0C_{30}} = 0x5,
                           // 30 degree
   ASF OC 60 = 0x6,
                           // 60 degree
                           // 120 degree
   ASF OC 120 = 0x7,
   ASF OC 150 = 0x8,
                           // 150 degree
   ASF_0C_210 = 0x9,
                           // 210 degree
                           // 240 degree
   ASF_{0}C_{2}40 = 0xa,
```

3.接口

3.1 接口说明

3.1.1 ASFActivation

原型

功能描述

激活 SDK。

参数

AppId[in]官网获取的 APPIDSDKKey[in]官网获取的 SDKKEY

返回值

成功返回 MOK 或 MERR_ASF_ALREADY_ACTIVATED, 否则返回失败 codes。

3.1.2 ASFInitEngine

原型

```
MRESULT ASFInitEngine(

MLong detectMode,

ASF_OrientPriority detectFaceOrientPriority,

MInt32 detectFaceScaleVal,

MInt32 detectFaceMaxNum,

MInt32 combinedMask,

MHandle* hEngine

);
```

功能描述

初始化引擎。

参数

detectMode [in] VIDEO 模式/IMAGE 模式

VIDEO 模式:处理连续帧的图像数据,并返回检测结果,需要将所有图

像帧的数据都传入接口进行处理;

IMAGE 模式:处理单帧的图像数据,并返回检测结果

detectFaceOrientPriority [in] 检测脸部的角度优先值,推荐仅检测单一角度,效果更优

detectFaceScaleVal [in] 用于数值化表示的最小人脸尺寸,该尺寸代表人脸尺寸相对于图片长

边的占比。

video 模式有效值范围[2,16], Image 模式有效值范围[2,32]

推荐值为 16

detectFaceMaxNum [in] 最大需要检测的人脸个数[1-50]

combinedMask [in] 用户选择需要检测的功能组合,可单个或多个

hEngine [out] 初始化返回的引擎 handle

返回值

成功返回 MOK, 否则返回失败 codes。

3.1.3 ASFDetectFaces

原型

MRESULT ASFDetectFaces (

MHandle hEngine,
MInt32 width,
MInt32 height,
MInt32 format,
MUInt8* imgData,

LPASF MultiFaceInfo detectedFaces

);

功能描述

人脸检测。

参数

hEngine [in] 引擎 handle

width [in] 图片宽度为 4 的倍数且大于 0

height [in] YUYV/I420/NV21/NV12 格式的图片高度为 2 的倍数, BGR24 格式

的图片高度不限制

format [in] 颜色空间格式 imgData [in] 图片数据

detectedFaces [out] 检测到的人脸信息

返回值

成功返回 MOK, 否则返回失败 codes。

3.1.4 ASFFaceFeatureExtract

原型

MRESULT ASFFaceFeatureExtract(

MHandle hEngine,

MInt32 width,

MInt32 height,

MInt32 format,

MUInt8* imgData,

LPASF_SingleFaceInfo faceInfo,
LPASF_FaceFeature feature

);

功能描述

单人脸特征提取。

参数

hEngine [in] 引擎 handle

width [in] 图片宽度为 4 的倍数且大于 0

height [in] YUYV/I420/NV21/NV12格式的图片高度为 2的倍数, BGR24格式

的图片高度不限制

format [in] 颜色空间格式 imgData [in] 图片数据

faceInfo [in] 单张人脸位置和角度信息

feature [out] 人脸特征

返回值

成功返回 MOK, 否则返回失败 codes。

3.1.5 ASFFaceFeatureCompare

原型

 ${\tt MRESULT\ ASFFaceFeatureCompare} \ ($

MHandle hEngine,

LPASF_FaceFeature feature1,

LPASF_FaceFeature feature2,

MFloat* confidenceLevel

);

功能描述

人脸特征比对。

参数

hEngine [in] 引擎 handle

feature1	[in]	待比对的人脸特征
feature2	[in]	待比对的人脸特征
confidenceLevel	[out]	比对结果,置信度数值

返回值

成功返回 MOK, 否则返回失败 codes。

3.1.6 ASFProcess

原型

MRESULT ASFProcess(

MHandle hEngine,
MInt32 width,
MInt32 height,
MInt32 format,
MUInt8* imgData,
LPASF_MultiFaceInfo detectedFaces,

MInt32 combinedMask

);

功能描述

人脸信息检测(年龄/性别/人脸 3D 角度),最多支持4张人脸信息检测,超过部分返回未知。

参数

hEngine [in] 引擎 handle

width [in] 图片宽度为 4 的倍数且大于 0

height [in] YUYV/I420/NV21/NV12 格式的图片高度为 2 的倍数, BGR24 格式

的图片高度不限制

format [in] 颜色空间格式 imgData [in] 图片数据

detectedFaces [in] 检测到的人脸信息

combinedMask [in] 初始化中参数 combinedMask 与 ASF_AGE | ASF_GENDER |

ASF_FACE3DANGLE 的交集的子集

返回值

成功返回 MOK, 否则返回失败 codes。

3.1.7 ASFGetAge

原型

MRESULT ASFGetAge(

MHandle hEngine,
LPASF AgeInfo ageInfo

);

功能描述

获取年龄信息。

参数

hEngine [in] 引擎 handle ageInfo [out] 检测到的年龄信息

返回值

成功返回 MOK, 否则返回失败 codes。

3.1.8 ASFGetGender

原型

MRESULT ASFGetGender(

MHandle hEngine,
LPASF GenderInfo genderInfo

);

功能描述

获取性别信息。

参数

hEngine [in] 引擎 handle genderInfo [out] 检测到的性别信息

返回值

成功返回 MOK, 否则返回失败 codes。

3.1.9 ASFGetFace3DAngle

原型

MRESULT ASFGetFace3DAngle(

MHandle hEngine,
LPASF_Face3DAngle p3DAngleInfo

);

功能描述

获取 3D 角度信息。

参数

hEngine [in] 引擎 handle

p3DAngleInfo [out] 检测到脸部 3D 角度信息

返回值

成功返回 MOK, 否则返回失败 codes。

3.1.10ASFGetVersion

原型

功能描述

获取版本信息。

参数

hEngine [in] 引擎 handle

返回值

成功返回版本信息,否则返回 MNull。

3.1.11 ASFUninitEngine

原型

MRESULT ASFUninitEngine(
MHandle hEngine [in] 引擎 handle
);

功能描述

销毁引擎。

参数

hEngine [in] 引擎 handle

返回值

成功返回 MOK, 否则返回失败 codes。

3.2 错误码概览

错误码名	十六进制	十进制	错误码说明
MOK	0	0	成功
MERR_UNKNOWN	1	1	错误原因不明
MERR_INVALID_PARAM	2	2	无效的参数
MERR_UNSUPPORTED	3	3	引擎不支持
MERR_NO_MEMORY	4	4	内存不足
MERR_BAD_STATE	5	5	状态错误
MERR_USER_CANCEL	6	6	用户取消相关操作

MERR_EXPIRED	7	7	操作时间过期
MERR_USER_PAUSE	8	8	用户暂停操作
MERR_BUFFER_OVERFLOW	9	9	缓冲上溢
MERR_BUFFER_UNDERFLOW	A	10	缓冲下溢
MERR_NO_DISKSPACE	В	11	存贮空间不足
MERR_COMPONENT_NOT_EXIST	С	12	组件不存在
MERR_GLOBAL_DATA_NOT_EXIST	D	13	全局数据不存在
MERR_FSDK_INVALID_APP_ID	7001	28673	无效的 App Id
MERR_FSDK_INVALID_SDK_ID	7002	28674	无效的 SDK key
MERR_FSDK_INVALID_ID_PAIR	7003	28675	AppId和 SDKKey 不匹配
MERR_FSDK_MISMATCH_ID_AND_ SDK	7004	28676	SDKKey 和使用的 SDK 不匹配
MERR_FSDK_SYSTEM_VERSION_U NSUPPORTED	7005	28677	系统版本不被当前 SDK 所支持
MERR_FSDK_LICENCE_EXPIRED	7006	28678	SDK 有效期过期,需要重新下载更新
MERR_FSDK_FR_INVALID_MEMOR Y_INFO	12001	73729	无效的输入内存
MERR_FSDK_FR_INVALID_IMAGE _INFO	12002	73730	无效的输入图像参数
MERR_FSDK_FR_INVALID_FACE_ INFO	12003	73731	无效的脸部信息
MERR_FSDK_FR_NO_GPU_AVAILA BLE	12004	73732	当前设备无 GPU 可用
MERR_FSDK_FR_MISMATCHED_FE ATURE_LEVEL	12005	73733	待比较的两个人脸特征的版本不一致
MERR_FSDK_FACEFEATURE_UNKN OWN	14001	81921	人脸特征检测错误未知
MERR_FSDK_FACEFEATURE_MEMO RY	14002	81922	人脸特征检测内存错误
MERR_FSDK_FACEFEATURE_INVA LID_FORMAT	14003	81923	人脸特征检测格式错误
MERR_FSDK_FACEFEATURE_INVA LID_PARAM	14004	81924	人脸特征检测参数错误
MERR_FSDK_FACEFEATURE_LOW_ CONFIDENCE_LEVEL	14005	81925	人脸特征检测结果置信度低
MERR_ASF_EX_FEATURE_UNSUPP ORTED_ON_INIT	15001	86017	Engine 不支持的检测属性
MERR_ASF_EX_FEATURE_UNINIT ED	15002	86018	需要检测的属性未初始化
MERR_ASF_EX_FEATURE_UNPROC	15003	86019	待获取的属性未在 process 中处理过

ESSED			
MERR_ASF_EX_FEATURE_UNSUPP ORTED_ON_PROCESS	15004	86020	PROCESS 不支持的检测属性,例如 FR, 有自己独立的处理函数
MERR_ASF_EX_INVALID_IMAGE_ INFO	15005	86021	无效的输入图像
MERR_ASF_EX_INVALID_FACE_I NFO	15006	86022	无效的脸部信息
MERR_ASF_ACTIVATION_FAIL	16001	90113	SDK 激活失败,请打开读写权限
MERR_ASF_ALREADY_ACTIVATED	16002	90114	SDK 己激活
MERR_ASF_NOT_ACTIVATED	16003	90115	SDK 未激活
MERR_ASF_SCALE_NOT_SUPPORT	16004	90116	detectFaceScaleVal 不支持
MERR_ASF_VERION_MISMATCH	16005	90117	SDK 版本不匹配
MERR_ASF_DEVICE_MISMATCH	16006	90118	设备不匹配
MERR_ASF_UNIQUE_IDENTIFIER _MISMATCH	16007	90119	唯一标识不匹配
MERR_ASF_PARAM_NULL	16008	90120	参数为空
MERR_ASF_LIVENESS_EXPIRED	16009	90121	活体检测功能已过期
MERR_ASF_VERSION_NOT_SUPPO RT	1600A	90122	版本不支持
MERR_ASF_SIGN_ERROR	1600B	90123	签名错误
MERR_ASF_DATABASE_ERROR	1600C	90124	数据库插入错误
MERR_ASF_UNIQUE_CHECKOUT_F AIL	1600D	90125	唯一标识符校验失败
MERR_ASF_COLOR_SPACE_NOT_S UPPORT	1600E	90126	颜色空间不支持
MERR_ASF_IMAGE_WIDTH_HEIGH T_NOT_SUPPORT	1600F	90127	图片宽度或高度不支持
MERR_ASF_READ_PHONE_STATE_ DENIED	16010	90128	android. permission. READ_PHONE_ST ATE 权限被拒绝
MERR_ASF_ACTIVATION_DATA_D ESTROYED	16011	90129	激活数据被破坏,请删除激活文件,重 新进行激活
MERR_ASF_SERVER_UNKNOWN_ER ROR	16012	90130	服务端未知错误
MERR_ASF_NETWORK_COULDNT_R ESOLVE_HOST	17001	94209	无法解析主机地址
MERR_ASF_NETWORK_COULDNT_C ONNECT_SERVER	17002	94210	无法连接服务器
MERR_ASF_NETWORK_CONNECT_T IMEOUT	17003	94211	网络连接超时
MERR_ASF_NETWORK_UNKNOWN_E	17004	94212	网络未知错误

3.3 示例代码

```
#include "arcsoft face sdk.h"
#include "amcomdef.h"
#include "asvloffscreen.h"
#include "merror.h"
#include <iostream>
#include <string>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
using namespace std;
#define APPID "官网下载的APPID"
#define SDKKey "官网下载的SDKKey"
#define NSCALE "nscale值, IMAGE模式下2-32, video模式下2-16, 推荐值16"
#define FACENUM "检测的人脸数"
#define SafeFree(p) { if ((p)) free(p); (p) = NULL; }
#define SafeArrayDelete(p) { if ((p)) delete [] (p); (p) = NULL; }
#define SafeDelete(p) { if ((p)) delete (p); (p) = NULL; }
int main()
    //激活SDK
    MRESULT res = ASFActivation(APPID, SDKKey);
    if (MOK != res && MERR_ASF_ALREADY_ACTIVATED != res)
        printf("ALActivation fail: %d\n", res);
    else
        printf("ALActivation sucess: %d\n", res);
    //初始化引擎
    MHandle handle = NULL;
    MInt32 mask = ASF_FACE_DETECT | ASF_FACERECOGNITION | ASF_AGE | ASF_GENDER |
ASF_FACE3DANGLE;
    res = ASFInitEngine(ASF_DETECT_MODE_IMAGE, ASF_OP_O_ONLY, NSCALE, FACENUM, mask,
&handle);
    if (res != MOK)
```

```
printf("ALInitEngine fail: %d\n", res);
    else
        printf("ALInitEngine sucess: %d\n", res);
    char* picPath1 = "图片路径, 采用bgr24格式图片";
    int Width1 = 图片宽度;
    int Height1 = 图片高度;
    int Format1 = ASVL_PAF_RGB24_B8G8R8;
    MUInt8* imageData1 = (MUInt8*) malloc (Height1*Width1*3);
    FILE* fp1 = fopen(picPath1, "rb");
    char* picPath2 = "图片路径, 采用bgr24格式图片";
    int Width2 = 图片宽度;
    int Height2 = 图片高度;
    int Format2 = ASVL_PAF_RGB24_B8G8R8;
    MUInt8* imageData2 = (MUInt8*) malloc (Height2*Width2*3);
    FILE* fp2 = fopen(picPath2, "rb");
    if (fp1 && fp2)
        fread(imageData1, 1, Height1*Width1*3, fp1);//读图片数据
        fclose(fp1);
        fread(imageData2, 1, Height2*Width2*3, fp2);//读图片数据
        fclose(fp2);
        // 人脸检测
        ASF MultiFaceInfo detectedFaces1 = { 0 };
        ASF SingleFaceInfo SingleDetectedFaces = { 0 };
        ASF_FaceFeature feature1 = { 0 };
        ASF_FaceFeature copyfeature1 = { 0 };
        res = ASFDetectFaces(handle, Width1, Height1, ASVL_PAF_RGB24_B8G8R8, imageData1,
&detectedFaces1);
        if (res != MOK)
            printf("%s ASFDetectFaces fail: %d\n", picPath1, res);
        else
            printf("%s ASFDetectFaces sucess: %d\n", picPath1, res);
             SingleDetectedFaces.faceRect.left = detectedFaces1.faceRect[0].left;
             SingleDetectedFaces.faceRect.top = detectedFaces1.faceRect[0].top;
             SingleDetectedFaces.faceRect.right = detectedFaces1.faceRect[0].right;
             SingleDetectedFaces. faceRect. bottom = detectedFaces1. faceRect[0]. bottom;
            SingleDetectedFaces.faceOrient = detectedFaces1.faceOrient[0];
```

```
// 单人脸特征提取
        res = ASFFaceFeatureExtract(handle, Width1, Height1, ASVL PAF RGB24 B8G8R8,
imageData1, &SingleDetectedFaces, &feature1);
        if (res != MOK)
             printf("%s ASFFaceFeatureExtract fail: %d\n", picPath1, res);
        else
            printf("%s ASFFaceFeatureExtract 1 sucess: %d\n", picPath1, res);
            //拷贝feature, 否则第二次进行特征提取,会覆盖第一次特征提取的数据,导致比对
的结果为1
             copyfeature1.featureSize = feature1.featureSize;
             copyfeature1.feature = (MByte *) malloc(feature1.featureSize);
            memset(copyfeature1.feature, 0, feature1.featureSize);
            memcpy(copyfeature1.feature, feature1.feature, feature1.featureSize);
        ASF_MultiFaceInfo detectedFaces2 = { 0 };
        ASF_FaceFeature feature2 = { 0 };
        res = ASFDetectFaces(handle, Width2, Height2, ASVL_PAF_RGB24_B8G8R8, imageData2,
&detectedFaces2);
        if (res != MOK)
            printf("%s ASFDetectFaces fail: %d\n", picPath2, res);
        else
             printf("%s ASFDetectFaces sucess: %d\n", picPath2, res);
             SingleDetectedFaces.faceRect.left = detectedFaces2.faceRect[0].left;
             SingleDetectedFaces. faceRect. top = detectedFaces2. faceRect[0]. top;
             SingleDetectedFaces.faceRect.right = detectedFaces2.faceRect[0].right;
             SingleDetectedFaces. faceRect. bottom = detectedFaces2. faceRect[0]. bottom;
             SingleDetectedFaces.faceOrient = detectedFaces2.faceOrient[0];
        res = ASFFaceFeatureExtract(handle, Width2, Height2, ASVL_PAF_RGB24_B8G8R8,
imageData2, &SingleDetectedFaces, &feature2);
        if (res != MOK)
             printf("%s ASFFaceFeatureExtract fail: %d\n", picPath2, res);
        else
             printf("%s ASFFaceFeatureExtract sucess: %d\n", picPath2, res);
        // 单人脸特征比对
        MFloat confidenceLevel;
        res = ASFFaceFeatureCompare(handle, &copyfeature1, &feature2, &confidenceLevel);
        if (res != MOK)
             printf("ASFFaceFeatureCompare fail: %d\n", res);
```

```
else
             printf("ASFFaceFeatureCompare sucess: %lf\n", confidenceLevel);
        // 人脸信息检测
        MInt32 lastMask = ASF_AGE | ASF_GENDER | ASF_FACE3DANGLE;
        res = ASFProcess(handle, Width2, Height2, ASVL_PAF_RGB24_B8G8R8, imageData2,
&detectedFaces2, lastMask);
        if (res != MOK)
             printf("ASFProcess fail: %d\n", res);
        else
             printf("ASFProcess sucess: %d\n", res);
        // 获取年龄
        ASF_AgeInfo ageInfo = { 0 };
        res = ASFGetAge(handle, &ageInfo);
        if (res != MOK)
             printf("%s ASFGetAge fail: %d\n", picPath2, res);
        else
             printf("%s ASFGetAge sucess: %d First face age: %d\n", picPath2, res,
ageInfo.ageArray[0]);
        // 获取性别
        ASF GenderInfo genderInfo = { 0 };
        res = ASFGetGender(handle, &genderInfo);
        if (res != MOK)
             printf("%s ASFGetGender fail: %d\n", picPath2, res);
             printf("%s ASFGetGender sucess: %d First face gender: %d\n", picPath2, res,
genderInfo.genderArray[0]);
        // 获取3D角度
        ASF_Face3DAngle angleInfo = { 0 };
        res = ASFGetFace3DAngle(handle, &angleInfo);
        if (res != MOK)
             printf("%s ASFGetFace3DAngle fail: %d\n", picPath2, res);
        else
             printf("%s ASFGetFace3DAngle sucess: %d First face 3dAngle: roll: %lf yaw: %lf
pitch: %lf\n", picPath2, res, angleInfo.roll[0], angleInfo.yaw[0], angleInfo.pitch[0]);
                                               //释放内存
        SafeFree (copyfeature1. feature);
        SafeArrayDelete(imageData1);
        SafeArrayDelete(imageData2);
        //获取版本信息
```

```
const ASF_VERSION* pVersionInfo = ASFGetVersion(handle);

//销毁引擎
res = ASFUninitEngine(handle);
if (res != MOK)
    printf("ALUninitEngine fail: %d\n", res);
else
    printf("ALUninitEngine success: %d\n", res);
}
else{
    printf("No pictures found. \n");
}
getchar();
return 0;
```

4.常见问题

4.1 FAQ

Q: 调用初始化引擎接口返回设备不匹配(90118)的情况下,应该怎么解决?

A: 工程激活之后拷贝到其他设备上或激活文件被损坏时,在初始化引擎时会返回设备不匹配的错误码提示信息,应该到执行程序同级目录下找到.asf_install.dat(此文件为隐藏文件)文件删除并重新激活 SDK;

Q: 初始化引擎时检测方向(detectFaceOrientPriority)应该怎么选择?

A: SDK 初始化引擎中可选择仅对 0 度、90 度、180 度、270 度单角度进行人脸检测, 也可选择全角度进行检测;根据应用场景,推荐使用单角度进行人脸检测,因为选择全 角度的情况下,算法中会对每个角度检测一遍,导致性能相对于单角度较慢。

Q: 初始化引擎时(detectFaceScaleVal)参数多大比较合适?

A: 用于数值化表示的最小人脸尺寸,该尺寸代表人脸尺寸相对于图片长边的占比。video模式有效值范围[2,16], Image模式有效值范围[2,32],多数情况下推荐值为 16,特殊情

况下可根据具体场景下进行设置。

Q: 初始化引擎之后调用其他接口返回错误码 86018, 该怎么解决?

A: 86018 即需要检测的属性未初始化,需要查看调用接口的宏有没有在初始化引擎时在 combinedMask 参数中加入。

Q: 进行人脸比对时一般会调用 ASFDetectFaces 和 ASFFaceFeatureExtract 两次,可能会导致比对的相似度一直为 1?

A: 初始化引擎之后会提前分配好需要使用的内存,所以第二次调用 ASFDetectFaces 和 ASFFaceFeatureExtract 接口输出的结果会覆盖第一次输出的结果,此时应用层定义的指针指向同一块内存,得到的数据是一样的,所以导致比对结果为 1。

方案一: ASFDetectFaces 和 ASFFaceFeatureExtract 接口可以在第一次调用时进行数据深拷贝。

方案二: ASFDetectFaces 调用之后进行特征提取(ASFFaceFeatureExtract),如果ASFDetectFaces 输出结果没用其他用途,则不需要进行深拷贝,但是ASFFaceFeatureExtract输出结果需要进行深拷贝用于比对。

Q: 调用 ASFDetectFaces、ASFFaceFeatureExtract 和 ASFProcess 接口返回 90127 错误码,该怎么解决?

A: ArcSoft SDK 对图像尺寸做了限制,宽高大于 0,宽度为 4 的倍数,YUYV/I420/NV21/NV12 格式的图片高度为 2 的倍数,BGR24 格式的图片高度不限制;如果遇到 90127 请检查传 入的图片尺寸是否符合要求,若不符合可对图片进行适当的裁剪。

Q: 人脸检测结果的人脸框 Rect 为何有时会溢出传入图像的边界?

A: Rect 溢出边界可能是人脸只有一部分在图像中,算法会对人脸的位置进行估计。

Q: 为何调用引擎有时会出现 crash?

A:若在引擎调用过程中进行销毁引擎则可能会导致 crash。在使用过程中应避免在销毁引擎时还在使用引擎,尤其是做特征提取或活体检测等耗时操作时销毁引擎,如加锁解决。

Q: 如何将人脸识别 1:1 进行开发改为 1:n?

A: 先将人脸特征数据用本地文件、数据库或者其他的方式存储下来,若检测出结果需要显示图像可以保存对应的图像。之后循环对特征值进行对比,相似度最高者若超过您设置的阈值则输出相关信息。

Q: Android 人脸检测结果的人脸框绘制到 View 上为何位置不对?

A: 人脸检测结果的人脸框位置是基于输入图像的,例如在竖屏模式下,假设 View 的宽高是 1080x1920,相机是后置相机,并且预览数据宽高为 1920x1080,有一个被检测到的人脸位置是(left,top,right,bottom),那么需要绘制到 View 上的 Rect 就是(bottom,left,1080-top,right),相当于顺时针旋转 90 度,其他角度可用类似的方法计算。

Q: MERR_FSDK_FACEFEATURE_LOW_CONFIDENCE_LEVEL,人脸检测结果置信度低是什么情况导致的?

A: 图片模糊或者传入的人脸框不正确。

Q:哪些因素会影响人脸检测、人脸跟踪、人脸特征提取等 SDK 调用所用时间?

A: 硬件性能、图片质量等。

4.2 其他帮助

SDK 交流论坛: http://ai.arcsoft.com.cn/bbs/