

Unsupervised Learning

UNSUPERVISED MACHINE LEARNING ALGORITHMS[1]

- Are applied when given data are *neither classified nor* labeled.
- No desired output, rather find difference among data
- Draw inferences to describe hidden structures from unlabeled data.

Goal: model the underlying structure of or distribution in the data, group data according to similarities, represent data in a compressed format

Algorithms are left to their own devising to discover and present the interesting structure in the input data.

UNSUPERVISED MACHINE LEARNING ALGORITHMS_[2]

Clustering: discover the inherent groupings in the data e.g. clustering DNA sequences into functional groups.

Association: discover rules that describe large portions of your data

e.g. association analysis-based techniques for pre-processing protein interaction networks for the task of protein function prediction.

Dimensionality reduction: reduce the variable space of high dimensionality before the subsequent analysis is carried out.

e.g. in a gene-expression analysis, for finding a list of candidate genes with a more operable length ideally including all the relevant genes.

EXAMPLES OF UNSUPERVISED LEARNING ALGORITHMS

PRINCIPAL COMPONENT ANALYSIS (PCA)

PCA can be applied for dimensionality reduction.

□ Data with a wide range of features (e.g. omics), probably highly correlated between each other => overfitting models

Algorithm: find linear combinations of variables having maximum variances

- Standardization
- Covariance matrix computation
- Compute eigenvalues (amounts of variance) and eigenvectors (PCs) of the covariance matrix

Advantage:

- low-dimensional sample representation
- synchronized low-dimensional representation of the variables
- visually find variables that are characteristic of a group of samples.

HIERARCHICAL CLUSTERING

Group similar objects together into *clusters* (unknown number of clusters a priori): Bottom-up (Agglomerative) & Top-down (Divisiva)

Agglomerative

Algorithm:

It starts by treating each observation as a separate cluster.

Then, it repeatedly executes the following two steps:

- 1) identify the two clusters that are closest together, and
- 2) merge the two most similar clusters.

This iterative process continues until all the clusters are merge.

E.g. gene expression data analysis - genes with similar expression patterns are grouped together and are connected by a series of branches.

K-MEANS_[1]

Find homogeneous subgroups in a population

Break observations into a pre-defined number of clusters

K-MEANS_[2]

Algorithm

- 1. Divide the data into K clusters
 Initialize the centroids with the mean of the clusters
- 2. Assign each item to the cluster with closest centroid
- 3. When all objects have been assigned, recalculate the centroids (mean)
- 4. Repeat 2-3 until the centroids no longer move

$K-MEANS_{[3]}$ The Algorithm in action

Observations

$K-MEANS_{[4]}$ The Algorithm in action

Random Cluster Assignment

$K-MEANS_{[5]}$ The Algorithm in action

Cluster Centers Calculated

$K-MEANS_{[6]}$ The Algorithm in action

Iteration 1 - After Reassignment

$\mathsf{K-MEANS}_{[7]}$ The Algorithm in action

K-MEANS_[8]

The Algorithm in action

K-MEANS_[9] The Algorithm in action

Iteration 5

Remember k-means has a random component!

K-MEANS_[10]

Goal: find groups in the data, with a pre-defined number of groups K.

The algorithm works iteratively to assign each data point to one of K groups based on the features that are provided. Data points are clustered based on feature similarity.

Advantage: Easy to implement and fast and efficient in terms of computational cost

Disadvantage include:

- Initial seeds have a strong impact on the final results
- The order of the data has an impact on the final results
- K-Means needs to know in advance how many clusters there will be in your data, so this may require a lot of trials to "guess" the best K number of clusters to define.

E.g. clustering COVID regions, virus sequences, lockdown measures

DETERMINING OPTIMAL CLUSTERS

Elbow method: heuristic where you look at the metric optimised by your model (mean error, explained variance, ...) and pick a point where the curve does an 'elbow' or 'knee': this is the point where complexifiying your model (eg. adding a cluster), has a diminishing return.

DETERMINING OPTIMAL CLUSTERS

- Use a metric, for example the silhouette coefficient
 - -1 (worst) to 1 (best)
 - (b a) / max(a,b)
 - a = average intra-cluster distance
 - b = average distance to closest other cluster
 - · Computed for each point,
 - then average

DETERMINING OPTIMAL CLUSTERS

- Use a metric, for example the silhouette coefficient
 - -1 (worst) to 1 (best)
 - (b a) / max(a,b)
 - a = average intra-cluster distance
 - b = average distance to closest other cluster
 - · Computed for each point,
 - then average

