第1章 概述

Contents

- C语言程序的基本结构
- 程序设计基本概念
- C语言的发展与特点
- C语言的字符集
- C语言的词法符号
- 运行C程序的步骤和方法

1.1 引例

例1-1 在屏幕上显示一行信息 This is the first C program!

```
#include <stdio.h> /*编译预处理命令*/
void main() /*定义主函数main()*/
{
printf ("This is the first C program!\n");
/*调用printf()函数输出文字*/
}
```

1.1 引例

例1-2 求两数之和

```
#include < stdio.h>
                       /*编译预处理命令*/
void main( )
                       /*定义主函数main()*/
   int a,b,sum;
                       /*定义变量a、b、sum为整型*/
   a=66;
                       /*为变量a赋值*/
   b = 88;
                       /*为变量b赋值*/
   sum=a+b;
                       /*将a与b的和赋值给变量sum*/
   printf ("sum is %d\n",sum);
                       /*调用printf()函数输出sum的值*/
```

1.2 C语言程序的基本结构

- C程序由函数组成,函数是程序的基本单位。 main是一个特殊的函数名,一个程序总是从main()函数 开始执行。
- 函数由<mark>函数首部</mark>(定义函数名称、返回值、参数名 称及数据类型)和函数体两部分组成。
- 函数体一般包括数据定义部分和执行部分,它们都是 C语句。
- 每条语句用分号 ";"作结束符, 分号是C语句必不可 少的组成部分。
- 在C语言中,一行可以写多条语句,一条语句也可写成 几行。
- ■可以对C程序中的任何部分做注释。

1.3 程序设计基本概念

1.3.1 程序

- □ 一系列遵循一定规则和思想并能正确完成指定工作的 代码(也称为指令序列);
- □ 通常,一个计算机程序主要描述两部分的内容,其一是描述问题的每个对象及它们之间的关系【数据结构】, 其二是描述对这些对象进行处理的规则【算法】。

程序=数据结构+算法

□一个设计合理的数据结构往往可以简化算法,而且一个 好的程序有可靠性、易读性、 可维护性等良好特性。

1.3 程序设计基本概念

1.3.2 程序设计

- □所谓程序设计,就是根据计算机要完成的任务,提出相应的需求,在此基础上设计数据结构和算法,然后再编写相应的程序代码并测试该代码运行的正确性,直到能够得到正确的运行结果为止。
- □一个良好的设计思想方法能够大大提高程序的高效性、合理性。通常程序设计有一套完整的算法,也称为程序设计方法学,因此:

程序设计=数据结构+算法+程序设计方法+语言工具和环境

1.3 程序设计基本概念

1.3.3 程序设计语言

□ 为了描述程序所制订的一组规则,即语法规则(主要包括词法规则与句法规则)。

1.4 C语言的发展与特点

1.4.1 C语言的发展

两个骨灰级游戏玩家

美国贝尔实验室 C语言和Unix操作系统的设计者

Ken Thompson 江湖人称 ken

Dennis M. Ritchie 江湖人称 dmr

Dennis M. Ritchie 与Ken Thompson 接受美国国家技术勋章

1983年

集成运行环境 Microsoft Visual C++ 6.0 ANSI C被ISO采纳为国际 标准(ISO C或C90) ANSI开始制 定C语言标准 C语言诞生 ISO发布了C99标准 ANSI完成标准的制定 增加了不少内容 贝尔实验室正 式发布C语言 (ANSI C或C89) PASCAL 1971年

1978年11月

1983年

C

1972年

1972年11月

ALGOL

BCPL

1967年

CPL

1963年

В

1970年

学习C语言可为进一步学习C++及 其他相关语言打下坚实的基础

1989年12月

1990年9月

1999年8月

1.4 C语言的发展与特点

1.4.2 C语言的特点

■ C语言是结构化、模块化的程序设计语言;

9种结构控制语句可描述各种结构的程序、以函数作为程序的基本单位实现模块化的程序设计;

■ C语言有强大的处理能力, 适用面广;

既具有高级语言的功能,又能像低级语言一样对计算机最基本的工作单元(位、字节和地址)进行直接操作。: 它既适宜编写大型系统程序,又适宜编写小型控制程序,也适用于科学计算,并具有强大的图形处理功能。

- C语言语句简洁、紧凑,使用方便、灵活;
- 32个保留字、9种控制语句、程序书写形式自由(压缩了一切不必要的成分);
- 目标代码的效率高;

用C语言程序生成的目标代码的效率可达到汇编语言目标代码效率的80%~90%;

■可移植性强

C语言的输入/输出不依赖于计算机硬件,适应多种操作系统(如DOS、UNIX、 Windows),也适应多种机型。从而便于在各种不同的机器间实现程序的移植。

1.5 C语言的字符集

- 英文字母: 小写字母a~z、大写字母A~Z
- 阿拉伯数字: 0~9
- 空白符: 空格符、制表符、换行符等统称为空白符
- 标点和特殊字符:

```
! # % ^ & * _(下划线)
+ = - ~ < > / \
' ''; , , () [] {}
? :
```

1.6 C语言的词法符号

--词法符号是最小的词法单元

■ 关键字

具有特定意义的字符串,通常也称为保留字。C语言有32个关键字。

auto	break	case	char	const
continue	default	do	double	else
enum	extern	float	for	goto
if	int	long	redister	return
short	signed	sizeof	static	struct
switch	typedef	union	unsigned	void
volatile	while			

■ 标识符

- ✓ 变量名、函数名、标号等统称为标识符;
- ✓ 除库函数的函数名由系统定义外,其余都由用户 自定义;
- ✓ C语言规定,标识符是英文字母或下划线开始的, 英文字母、下划线及阿拉伯数字组成的字符串。

在使用标识符时还必须注意以下几点:

- 1) 用户定义的标识符不允许与关键字相同。
- 2) 标准C不限制标识符的长度,但它受各种版本的C 语言编译系统限制,同时也受到具体机器的限制。例如在Turbo C 2.0中规定标识符前32位有效,当两个标识符前32位相同时,则被认为是同一个标识符。
- 3) 标识符中,大小写是有区别的。例如xyz和XYZ 是两个不同的标识符。
- 4) 标识符虽然可由程序员随意定义,但标识符是用于标识某个量的符号。因此,命名应尽量有相应的意义,做到"见名知义"。

■ 运算符

C语言中含有十分丰富的运算符。运算符与常量、 变量和函数一起组成表达式,表示各种运算功能。运算 符由一个或多个字符组成。

■ 分隔符

在C语言中采用的分隔符有逗号和空格两种。逗号主要用在类型说明和函数参数表中分隔各个变量。空格多用于语句中分隔各单词。

■常量

C语言中使用的常量可分为数值常量、字符常量、字符串常量、符号常量、转义字符等多种。

■ 注释符

- ✓ 程序编译时,不对注释作任何处理;
- ✓ 注释可出现在程序中的任何位置;
- ✓ 注释用来向用户提示或解释程序的意义;
- ✓ 在调试程序中对暂时不使用的语句也可用注释符,使翻译跳过不作处理,待调试结束后再去掉注释符。

1.7 运行C程序的步骤和开发环境

1.7.1 运行C程序的步骤

- 一、编辑(.cpp)
 用程序设计语言写出源代码的过程(常用编辑软件均可)。
- 二、编译 (.obj)

将源程序翻译成机器能够识别的目标程序的过程。必 须借助一些专门的编译程序(编译器)来完成。

三、连接(.exe)

将不同的模块链接成一个完整模块的过程。必须通过连接程序(连接器)来完成,形成一个完整的可执行程序。

四、执行

一个程序经过了编辑、编译、连接过程,就得到了可执行程序,于是可以执行了。

f. exe

不正确

执行

结果

正确?

结束

正确

标程序

程序错误可以分为三类:

- 语法错误(编译阶段, 输入不合法等)
- 运行错误(除数问题、 数组越界、文件打不 开等)
- 逻辑错误(算法问题 等)

1.7 运行C程序的步骤和开发环境 1.7.2 集成开发环境 (IDE)

- ✓ Turbo C 2.0
- ✓ Visual C++ 6.0 (Page8-12)
- ✓ DEV-C++ (开源软件开发网站sourceforge.net)

DEV-C++

● 直接执行一个C程序的可执行文件,结果窗口会一闪 而过,最好出现


```
■ C:\Users\suhj\Desktop\my1.exe

Hello world
请按任意键继续...
■
```

● 则在程序中加一条语句: system("pause"); 并在前面加一条编译预处理命令: #include <stdlib.h>

```
my1.cpp

1 #include <stdio.h>
2 #include <stdlib.h>
3 main()
4  {
5 printf("Hello world\n");
6 system("pause");
7 }
```

先在E盘建立一个自己学号的文件夹用于存储源程序,如E:\2017******

- 二、启动VC++(WindowsXP环境)
 - 开始-所有程序
 - -Microsoft Visual Studio 6.0
 - -Microsoft Visual C++ 6.0

三、新建文件

四、编辑源文件并保存

文件--保存

五、编译,生成目标程序

六、连接

在信息窗口中会重现errors和warnings,如果都为零,则生成可执行文件(Page11)

七、运行

会出现运行结果窗口,查看,之后按 任意键返回VC++编辑窗口

八、关闭程序工作区 文件-关闭工作区,在对话框中单击ok

九、退出VC++6.0 文件-退出

- 源文件*.cpp , 存放于自己建立的文件夹中
- 目标文件*.obj和可执行文件*.exe , 存放于自己建 立文件夹下的\Debug中

- 第八机房
- 尽量用火狐浏览器
- http://10.14.48.107/
- 用户名:学号
- 密码:学号(建议第一次修改)

End of Chapter 1