Creation and Analysis of a Medical Loss Ratio Dataset

Grace Guan

Adviser: Professor Mark Braverman

Background

- **Reinsurance** = payment to plans w/ higher-cost enrollees
- Risk Adjustment = redistribution of money from plans with lower-cost enrollees to plans with higher-cost enrollees through "transfer payments"
- Medical Loss Ratio (MLR) = benchmark for insurers to provide value to enrollees
 - If an insurer uses 80 cents per premium dollar to pay for its customer's medical claims, the MLR will be 80%; Gov't sets MLR minimums

Motivation and Goal

- Original Project: A Big Data Examination of the Accuracy of Risk Adjustment under the Affordable Care Act (ACA)
- Original Goal: Backwards engineer the plan liability risk score, risk adjustment transfer payment formula, and actuarial value calculation
- Motivation: Understand how transfer payment formula works

Motivation and Goal

- No data! --> New Project: Creation and Analysis of a Medical Loss Ratio (MLR) Dataset
- **New Goal:** Create a clean, new dataset from all of the data online and do some preliminary analysis on it
- Motivation: Data has never been cleaned/analyzed before; analyzing this new data may provide insights into how to make risk adjustment more efficient

Significance

- Online "Public Use Files" Excel files are incomplete
- Online "Summary Report" PDF files are hard to parse
- Online "Insurer Report" Excel files are split between >20,000 files, one for each company, and only have the expected (not actual) values of risk adjustment
- There is no easy way to analyze all of this data!

Data ETL

"Insurer Report" Excel Files

Contains insurer-reported estimates of risk adjustment data (10,000+ fields per sheet)

"Summary Report" PDF File

Contains accurate risk adjustment data

"Public Use" PDF File

Supposed to contain all risk adjustment data from "Insurer Report" files

Approach: Data ETL

- Input: >20,000 "Insurer Report" Excel files, scraped from online by Jeremie Lumbroso
- Take 5260 fields of expected values from each Excel file and add as a row into our CSV
- Combine with "Summary Report" PDF file
- Output: 1 CSV file for each year containing risk adjustment data with both expected and actual values for all companies

Data ETL

"Insurer Report" Excel Files

Contains insurer-reported estimates of risk adjustment data (10,000+ fields per sheet)

"Summary Report" PDF File

Contains accurate risk adjustment data

"Public Use" PDF File

Supposed to cortain all risk adjustment data from "Insurer Report" files

Data Analysis

- Year to Year (YTY) per member month analysis for reinsurance, individual risk adjustment, small group risk adjustment
 - Member month = # enrollees * # months covered
- Mean/median/etc. basic statistical analysis
- Correlation between risk adjustment in previous year & change in risk adjustment

YTY analysis: reinsurance PMM

YTY analysis: indiv. RA PMM

YTY analysis: small group RA PMM

Expected Minus Actual, PMM	Mean 2014	Mean 2015	Std Dev 2014	Std Dev 2015
Reinsurance	0.48	-0.17	19.31	3.23
Individual Risk Adjustment	0.03	1.26	9.18	21.14
Small Group Risk Adjustment	-0.42	-0.37	14.72	16.88

Is Total Loss in 2014 Correlated with Change in Risk Adjustment, 2015 - 2014?

Basically no correlation! Not what we expected

	Individual RA	Small Group RA	Individual PMM RA	Small Group PMM RA
Correlation (r) w/ Total Loss	-0.091	-0.013	0.193	0.024

Can you see a correlation?

Conclusion

- Government "Public Use" data is relatively inaccessible
- Risk Adjustment can be made more efficient
- Tangible Result: Dataset CSV files on GitHub!
- And some analysis...

- GitHub: http://tiny.cc/riskadjustment
- Thanks to Prof. Braverman and Jeremie
- Questions?