PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

(51) International Patent Classification 5:		(11) International Dublication Number 1
A61K 37/02, C07K 7/00	A1	(11) International Publication Number: WO 94/05314
A01K 37/02, C07K 7/00		(43) International Publication Date: 17 March 1994 (17.03.94
(21) International Application Number: PCT/US	93/079	
(22) International Filing Date: 24 August 1993 (24.08.9	DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT.
(30) Priority data: 07/941,652 8 September 1992 (08.09.9	92) l	Published S With international search report. With amended claims and statement.
(71) Applicant: CENTOCOR, INC. [US/US]; 200 Gre. Parkway, Malvern, PA 19355-1307 (US).	at Vall	y
(72) Inventors: HEAVNER, George, A.; 6 Oak Gle Malvern, PA 19355 (US). EPPS, Leon, A.; 34 mere Road, Baltimore, MD 21207 (US).	n Driv 79 Hil	e, S-
(74) Agent: ELDERKIN, Dianne, B.; Woodcock W Kurtz Mackiewicz & Norris, One Liberty Plac Floor, Philadelphia, PA 19103-7301 (US).	Vashbu ce - 46	n h
	4	
(54) Title: PEPTIDE INHIBITORS OF LEUKOCYT	E AD	HESION
, , , , , , , , , , , , , , , , , , , ,		
(57) Abstract		
	ns con	rom portions of the sequence of amino acids (42-48) of P-selectin. prising the peptides of the invention, and diagnostic and therapeutitions of the invention.
·		
		·

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
88	Barbados	CB	United Kingdom	NE	Niger
BE	Belgium	CN	Guinea	NL	Netherlands
BF	Burkina Faso	GR	Greece	NO	Norway
BC	Bulgaria	HU	Hungary	NZ	New Zealand
BJ	Benin	IE	freland	PL.	Poland
BR	Brazil	17	luly	PT	Portugal
BY	Belarus	JP	Japan	RO	Romania
CA	Canada	KP	Democratic People's Republic	RU	Russian Federation
CF	Central African Republic		of Korea	SD	Sudan
CC	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	K2	Kazakhstan	SI	Slovenia
Ci	Côte d'Ivoire	ĹI	Licchtenstein	SK	Slovak Republic
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
cs	Czechoslovakia	LV	Latvia	TG	Togo
cz	Czech Republic	MC	Monaco	UA	Ukraine
DE	Germany	MG	Madagascar	US	United States of America
DK	Denmark	ML	Mali	UZ	Uzbekistan
ES	Spain	MN	Mongolia	VN	Viet Nam
FI	Finland		•		

PEPTIDE INHIBITORS OF LEUKOCYTE ADHESION

Background of the Invention

This invention relates to peptides which inhibit binding of selectins such as P-selectin, E-selectin and L-5 selectin.

The adherence of platelets and leukocytes to vascular surfaces is a critical component of the inflammatory response and is part of a complex series of reactions involving the simultaneous and interrelated activation of the complement, coagulation, and immune systems.

The complement proteins collectively play a leading role in the immune system, both in the identification and in the removal of foreign substances and immune complexes, as reviewed by Muller-Eberhard, H.J., Ann. Rev. Biochem. 57:

15 321-347 (1988). Central to the complement system are the C3 and C4 proteins, which when activated covalently attach to nearby targets, marking them for clearance. In order to help control this process, a remarkable family of soluble and membrane-bound regulatory proteins has evolved, each of which interacts with activated C3 and/or C4 derivatives. The coagulation and inflammatory pathways are regulated in a coordinate fashion in response to tissue damage. For

25 surface and decrease their surface expression of thrombomodulin, leading to a net facilitation of coagulation reactions on the cell surface. In some cases, a single receptor can be involved in both inflammatory and coagulation processes.

example, in addition to becoming adhesive for leukocytes, activated endothelial cells express tissue factor on the cell

- 2 -

Leukocyte adherence to vascular endothelium is a key initial step in migration of leukocytes to tissues in response to microbial invasion. Although a class of inducible leukocyte receptors, the CD11-CD18 molecules, are thought to have some role in adherence to endothelium, mechanisms of equal or even greater importance for leukocyte adherence appear to be due to inducible changes in the endothelium itself.

Activated platelets have also been shown to

interact with both neutrophils and monocytes in vitro. The
interaction of platelets with monocytes may be mediated in
part by the binding of thrombospondin to platelets and
monocytes, although other mechanisms have not been excluded.
The mechanisms for the binding of neutrophils to activated

platelets are not well understood, except that it is known
that divalent cations are required. In response to vascular
injury, platelets are known to adhere to subendothelial
surfaces, become activated, and support coagulation.
Platelets and other cells may also play an important role in
the recruitment of leukocytes into the wound in order to
contain microbial invasion.

Endothelium exposed to "rapid" activators such as thrombin and histamine becomes adhesive for neutrophils within two to ten minutes, while endothelium exposed to 25 cytokines such as tumor necrosis factor and interleukin-1 becomes adhesive after one to six hours. The rapid endothelial-dependent leukocyte adhesion has been associated with expression of the lipid mediator platelet activating factor (PAF) on the cell surface, and presumably, the 30 appearance of other endothelial surface receptors. slower cytokine-inducible endothelial adhesion for leukocytes is mediated, at least in part, by E-selectin that is synthesized by endothelial cells after exposure to cytokines and then transported to the cell surface, where it binds 35 neutrophils. The isolation, characterization and cloning of E-selectin or ELAM-1 is reviewed by Bevilacqua, et al., in Science 243, 1160-1165 (1989). L-selectin, a peripheral

- 3 -

lymph node homing receptor, also called "the murine Mel 14 antigen", "Leu 8", the "Leu 8 antigen" and "LAM-1", is another structure on neutrophils, monocytes, and lymphocytes that binds lymphocytes to high endothelial venules in 5 peripheral lymph nodes. The characterization and cloning of the protein is reviewed by Lasky, et al., Cell 56, 1045-1055 (1989) (mouse) and Tedder, et al., J. Exp. Med. 170, 123-133 (1989).

P-selectin, also known as GMP-140 (granule membrane 10 protein 140), or PADGEM, is a cysteine-rich and heavily glycosylated integral membrane glycoprotein with an apparent molecular weight of 140,000 as assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Pselectin was first purified from human platelets by McEver 15 and Martin, <u>J. Biol. Chem.</u> 259: 9799-9804 (1984). protein is present in alpha granules of resting platelets but is rapidly redistributed to the plasma membrane following platelet activation, as reported by Stenberg, et al., (1985). The presence of P-selectin in endothelial cells and its 20 biosynthesis by these cells was reported by McEver, et al., Blood 70(5) Suppl. 1:355a, Abstract No. 1274 (1987). endothelial cells, P-selectin is found in storage granules known as the Weibel-Palade bodies. (McEver, et al. J. Clin. Invest. 84: 92-99 (1989) and Hattori, et al., J. Biol. Chem. 25 264: 7768-7771 (1989)). P-selectin (called GMP-140 or PADGEM) has also been reported to mediate the interaction of activated platelets with neutrophils and monocytes by Larsen, et al., in Cell 59, 305-312 (October 1989) and Hamburger and McEver, <u>Blood</u> 75: 550-554 (1990).

Johnston, et al., in <u>Cell</u> 56, 1033-1044 (March 24 1989), and in U.S. Serial No. 07/320,408 filed March 8, 1989, indicates that it contains a number of modular domains that are likely to fold independently. Beginning at the N-terminus, these include a "lectin" domain, an "EGF" domain, nine tandem consensus repeats similar to those in complement binding proteins, a transmembrane domain (except in a soluble form

- 4 -

that appears to result from differential splicing), and a cytoplasmic tail.

When platelets or endothelial cells are activated by mediators such as thrombin, the membranes of the storage granules fuse with the plasma membrane, the soluble contents of the granules are released to the external environment, and membrane bound P-selectin is presented within seconds on the cell surface. The rapid redistribution of P-selectin to the surface of platelets and endothelial cells as a result of activation suggested that this glycoprotein could play an important role at sites of inflammation or vascular disruption.

This important role has been confirmed by the observation that P-selectin is a receptor for neutrophils

(Geng et al., Nature 343:757-760 (1990); Hamburger and McEver, Blood 75:550-554 (1990)), monocytes (Larsen, et al. Cell 59:305-312 (1989)); Moore, et al., J. Cell Biol.

112:491-499 (1991)), and perhaps a subset of lymphocytes (Moore, et al. J. Cell Biol. 112:491-499 (1991)). Thus, GMP
140 can serve as a receptor for leukocytes following its rapid mobilization to the surfaces of platelets and endothelial cells stimulated with agonists such as thrombin. This role in leukocyte recruitment may be important in hemostatic and inflammatory processes in both physiologic and pathologic states.

Peptides derived from P-selectin are described in U.S. Serial No. 07/554,199 entitled "Functionally Active Selectin-Derived Peptides" filed July 17, 1990 by Rodger P. McEver that are useful in diagnostics and in modulating the hemostatic and inflammatory responses in a patient wherein a therapeutically effective amount of a peptide capable of blocking leukocyte recognition of P-selectin is administered to the patient. U.S. Serial No. 07/554,199 filed July 17, 1990 also discloses that peptide sequences within the lectin domains of other proteins, especially E-selectin and the L-selectin, selectively inhibit neutrophil adhesion to purified P-

- 5 -

selectin, and can therefore be used in diagnostic assays of patients and diseases characterized by altered binding by these molecules, in screening assays for compounds altering this binding, and in clinical applications to inhibit or 5 modulate interactions of leukocytes with platelets or endothelial cells involving coagulation and/or inflammatory processes.

E-selectin, L-selectin, and P-selectin have been termed "selectins", based on their related structure and 10 function. E-selectin is not present in unstimulated endothelium. However, when endothelium is exposed to cytokines such as tumor necrosis factor of interleukin-1, the gene for E-selectin is transcribed, producing RNA which in turn is translated into protein. The result is that E-15 selectin is expressed on the surface of endothelial cells one to four hours after exposure to cytokines, as reported by Bevilacqua et al., Proc.Natl.Acad.Sci.USA 84: 9238-9242 (in contrast to P-selectin, which is stored in granules and presented on the cell surface within seconds 20 after activation). E-selectin has been shown to mediate the adherence of neutrophils to cytokine-treated endothelium and thus appears to be important in allowing leukocytes to migrate across cytokine-stimulated endothelium into tissues. The cDNA-derived primary structure of E-selectin indicates 25 that it contains a "lectin" domain, an EGF domain, and six (instead of the nine in P-selectin) repeats similar to those of complement-regulatory proteins, a transmembrane domain, and a short cytoplasmic tail. There is extensive sequence homology between P-selectin and E-selectin throughout both 30 proteins, but the similarity is particularly striking in the lectin and EGF domains.

Homing receptors are lymphocyte surface structures that allow lymphocytes to bind to specialized endothelial cells in lymphatic tissues, termed high endothelial cells or high endothelial venules (reviewed by Yednock and Rose, Advances in Immunology, vol. 44, F.I. Dixon, ed., 313-378 (Academic Press, New York 1989). This binding allows

- 6 -

lymphocytes to migrate across the endothelium into the lymphatic tissues where they are exposed to processed antigens. The lymphocytes then re-enter the blood through the lymphatic system. L-selectin, a lymphocyte homing 5 receptor, contains a lectin domain, an EGF domain, two complement-binding repeats, a transmembrane domain, and a short cytoplasmic tail. L-selectin also shares extensive sequence homology with P-selectin, particularly in the lectin and EGF domains.

Based on a comparison of the lectin domains between P-selectin, E-selectin, and L-selectin, it may be possible to select those peptides inhibiting binding of neutrophils to Pselectin which will inhibit binding of E-selectin, Lselectin, and other homologous selectins, to components of 15 the inflammatory process, or, conversely, which will inhibit only P-selectin binding.

10

The in vivo significance of platelet-leukocyte interactions has not been studied carefully. However, in response to vascular injury, platelets are known to adhere to 20 subendothelial surfaces, become activated, and support coaqulation. Platelets and other cells may also play an important role in the recruitment of leukocytes into the wound in order to contain microbial invasion. Conversely, leukocytes may recruit platelets into tissues at sites of 25 inflammation, as reported by Issekutz, et al., Lab. Invest. 49:716 (1983).

The coagulation and inflammatory pathways are regulated in a coordinate fashion in response to tissue damage. For example, in addition to becoming adhesive for 30 leukocytes, activated endothelial cells express tissue factor on the cell surface and decrease their surface expression of thrombomodulin, leading to a net facilitation of coagulation reactions on the cell surface. In some cases, a single receptor can be involved in both inflammatory and coagulation 35 processes.

Proteins involved in the hemostatic and inflammatory pathways are of interest for diagnostic purposes

- 7 -

and treatment of human disorders. However, there are many problems using proteins therapeutically. Proteins are usually expensive to produce in quantities sufficient for administration to a patient. Moreover, there can be a reaction against the protein after it has been administered more than once to the patient. It is therefore desirable to develop peptides having the same, or better, activity as the protein, which are inexpensive to synthesize, reproducible and relatively innocuous.

It is preferable to develop peptides which can be prepared synthetically, having activity at least equal to, or greater than, the peptides derived from the protein itself.

It is therefore an object of the present invention to provide peptides interacting with cells recognized by selectins, including P-selectin, E-selectin, and L-selectin.

It is another object of the present invention to provide methods for using these peptides to inhibit leukocyte adhesion to endothelium or to platelets.

It is a further object of the present invention to 20 provide methods for using these peptides to modulate the immune response and the hemostatic pathway.

It is yet another object of the present invention to provide peptides for use in diagnostic assays relating to P-selectin, E-selectin and L-selectin.

25 Summary of the Invention

It has now been found that peptides of the selectin 36-50 sequence are effective in inhibiting the adhesion of leukocytes, especially neutrophils, to selectins.

This invention relates to novel peptides having the 30 Formula:

R1-X-A-B-C-D-E-F-G-Y-R2 wherein:

A is D- or L-leucine, D- or threoine, or D- or L-glutamine;

B is D- or L-proline, D- or L-serine, or D- or L-alanine;

- 8 -

C is D- or L-tyrosine, D- or L-proline, D- or L-arginine, or D- or L-alanine;

D is D- or L-tyrosine, D- or L-phenylalanine, D- or L-serine or glycine;

5 E is D- or L-serine, D- or L-threonine, or D- or L-proline;

F is D- or L-serine, D- or L-tyrosine, D- or L-alanine, or D- or L-threonine;

G is D- or L-tyrosine, or D- or L-alanine;

X is a linear chain of from 0 to 6 amino acids;

10 Y is a linear chain of from 0 to 2 amino acids;

R¹ is H (signifying a free-terminal amino group), formyl, lower alkyl, aryl, lower alkanoyl, aroyl, alkyloxycarbonyl, aryloxycarbonyl or desamino (signifying no alpha amino group on the N-terminal amino acid); and

15 R² is H (signifying descarboxy where the α carboxyl group in the C-terminal amino acid is absent) or OR³, where R³ is H (signifying a free carboxylic acid on a C-terminal carboxyl group) or lower alkyl or aryl, NR⁴ R⁵ where R⁴ and R⁵ are each selected independently from H, lower alkyl, aryl, or taken
20 together are a methylene chain of 4-8 methylene groups (-(CH₂)n- where n = 4 to 8).

Peptides of the Formula have as their core region portions of the 42-48 amino acid sequences of the selectins, with residue 1 defined as the N-terminus of the mature 25 proteins after the cleavage of the signal peptides.

Tests indicate that peptides of the Formula inhibit the binding of neutrophils to P-selectin in concentrations of peptide ranging from about 1 to about 1500 μm . Tests also

- 9 -

indicate that alterations within the core sequence, including the addition or deletion of amino acids, do not result in loss of biological activity.

This invention relates not only to the novel
peptides of the Formula, but also to pharmaceutical
compositions comprising them, to diagnostic and therapeutic
methods utilizing them, and to methods of preparing them.

Brief Description of the Drawings

Figure 1 shows the ability of the peptides of

10 Example 1, Glu-Tyr-Leu-Asn-Ser-Ile-Leu-Ser-Tyr-Ser-Pro-SerTyr-Tyr-Trp-NH₂ (SEQ ID NO:23), and the peptide of Example
II, Asp-Tyr-Leu-Asn-Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-TyrVal-NH₂ (SEQ ID NO:1), to inhibit the binding of human
neutrophils to human P-selectin in a dose-dependent manner.

15 Detailed Description of the Invention

Preferred peptides of this invention are those of the Formula as previously defined, wherein X is selected from a group consisting of:

Glu-Tyr-Leu-Asn-Ser-Ile,

20 Asp-Tyr-Leu-Asn-Lys-Val,

Tyr-Leu-Asn-Lys-Val,

Leu-Asn-Lys-Val,

Asn-Lys-Val,

Asp-Val,

25 Lys-Val,

Asn-Thr,

Val, Lys or null (signifying no amino acid).

Also preferred are peptides having the Formula as previously defined, wherein Y is selected from a group consisting of Tyr, Tyr-Val, Tyr-Trp, or null (signifying no amino acid).

Representative examples of specifically preferred peptides include the following "Preferred Peptides" (SEQ ID NOS:1-23):

	(SEQ	ID	NO:1)	Asp-Tyr-Leu-Asn-Lys-Val-Leu-Pro-Tyr-Tyr-Ser- Ser-Tyr-Tyr-Val-NH ₂ ;
	(SEQ	ID	NO:2)	Tyr-Leu-Asn-Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ser- Tyr-Tyr-Val-NH ₂ ;
5	(SEQ	ID	NO:3)	Leu-Asn-Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr- Tyr-Val-NH ₂ ;
	(SEQ	ID	NO:4)	Asn-Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-Val-NH ₂ ;
10	(SEQ	ID	NO:5)	Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-Val- NH ₂ ;
	(SEQ	ID	NO:6)	Asp-Tyr-Leu-Asn-Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-NH ₂ ;
	(SEQ	ID	NO:7)	Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-NH₂;
	(SEQ	ID	NO:8)	Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-NH ₂ ;
15	(SEQ	ID	NO:9)	Lys-Thr-Leu-Pro-Phe-Ser-Ser-Tyr-Tyr-NH2;
	(SEQ	ID	NO:10)	Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-Val- NH ₂ ;
	(SEQ	ID	NO:11)	Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-NH ₂ ;
20	(SEQ	ID	NO:12)	Lys-Val-Leu-Ala-Tyr-Tyr-Ser-Ser-Tyr-Tyr-NH ₂ ;
	(SEQ	ID	NO:13)	Lys-Val-Leu-Pro-Ala-Tyr-Ser-Ser-Tyr-Tyr-NH ₂ ;
	(SEQ	ID	NO:14)	Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ala-Tyr-Tyr- NH_2 ;
25	(SEQ	ID	NO:15)	Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Ala-Tyr- $\mathrm{NH_2}$;
	(SEQ	ID	NO:16)	Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Thr-Tyr-Tyr
30	(SEQ	ID	NO:17)	Lys-Val-Leu-Pro-Tyr-Tyr-Thr-Ser-Tyr-Tyr-NH ₂ ;
	(SEQ	ID	NO:18)	Asp-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr- NH_2 ;
	(SEQ	ID	NO:19)	Lys-Val-Leu-Pro-Tyr-Gly-Ser-Ser-Tyr-Tyr-NH ₂ ;
35	(SEQ	ID	NO:20)	Lys-Val-Leu-Pro-Arg-Tyr-Ser-Ser-Tyr-Tyr-NH ₂ ;

- 11 -

(SEQ ID NO:21) Asn-Thr-Leu-Pro-Tyr-Ser-Pro-Tyr-Tyr-NH₂;

(SEQ ID NO:22) Lys-Val-Gln-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-NH₂;

5 (SEQ ID NO:23) Glu-Tyr-Leu-Asn-Ser-Ile-Leu-Ser-Tyr-Ser-Pro-Ser-Tyr-Tyr-Trp-NH₂.

Table I shows the ability of the preferred peptides to inhibit binding of human neutrophils to human P-selectin at a peptide concentration of 300 $\mu \rm M$.

10 TABLE I

	STRUCTURE	-			% INHIBITION AT 0.3 μ M PEPTIDE CONCENTRATION
15	DYLNKVLPYYSSYYV-NH2	(SEQ	ID	NO:1)	71
	YLNKVLPYYSSYYV-NH ₂	(SEQ	ID	NO:2)	101
	LNKVLPYYSSYYV-NH2	(SEQ	ID	NO:3)	100
	NKVLPYYSSYYV-NH ₂	(SEQ	ID	NO:4)	80
	KVLPYYSSYYV-NH ₂	(SEQ	ID	NO:5)	102
20	DYLNKVLPYYSSYY-NH2	(SEQ	ID	NO:6)	61
	VLPYYSSYY-NH ₂	(SEQ	ID	NO:7)	11
	LPYYSSYY-NH ₂	(SEQ	ID	NO:8)	15
	KTLPFSSYY-NH ₂	(SEQ	ID	NO:9)	33
	VLPYYSSYYV-NH ₂	(SEQ	ID	NO:10)	66
25	VLPYYSSY-NH ₂	(SEQ	ID	NO:11)	25
	KVLAYYSSYY-NH ₂	(SEQ	ID	NO:12)	68
	KVLPAYSSYY-NH ₂	(SEQ	ID	NO:13)	20
	KVLPYYSAYY-NH ₂	(SEQ	ID	NO:14)	18
	KVLPYYSSAY-NH2	(SEQ	ID	NO:15)	12
30	KVLPYYSTYY-NH ₂	(SEQ	ID	NO:16)	22
	KVLPYYTSYY-NH ₂	(SEQ	ID	NO:17)	32
	DVLPYYSSYY-NH₂	(SEQ	ID	NO:18)	57
	KVLPYGSSYY-NH2	(SEQ	ID	NO:19)	34
	KVLPRYSSYY-NH ₂	(SEQ	ID	NO:20)	19
35	NTLPYSPYYY-NH ₂	(SEQ	ID	NO:21)	39
	KVQPYYSSY Y-NH2	(SEQ	ID	NO:22)	29
	EYLNSILSYSPSYYW-NH ₂	(SEQ	ID	NO:23)	54

- 12 -

As used herein, the term "alkyl" includes branched, straight-chain, and cyclic saturated hydrocarbons. The term "lower alkyl" means an alkyl having from one to six carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, cyclopentylmethyl and hexyl. The term "alkanoyl" means

10 wherein R6 is a alkyl group.

The term "aroyl" means

wherein R⁷ is an aryl group. The term "aryl" means an aromatic or heteroaromatic structure having between one and three rings, which may or may not be ring fused structures, and are optionally substituted with halogens, carbons, or other heteroatoms such as nitrogen (N), sulfur (S), phosphorus (P), and boron (B).

The term alkoxycarbonyl means

25

30

wherein R⁵ is a lower alkyl group.

The term aryloxycarbonyl means

wherein R9 is an aryl and arylmethyl group.

Halogen refers to fluorine, chlorine, bromine or iodine.

The term "terminal α -amino group of X" refers to the α -amino group of the N-terminal amino acid of X.

The peptides of the Formula can be used in the form of
the free peptide or a pharmaceutically acceptable salt.
Amine salts can be prepared by treating the peptide with an
acid according to known methods. Suitable acids include
inorganic acids such as hydrochloric acid, hydrobromic acid,
perchloric acid, nitric acid, thiocyanic acid, sulfuric acid,
and phosphoric acid, and organic acids such as formic acid,
acetic acid, propionic acid, glycolic acid, lactic acid,

pyruvic acid, oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, anthranilic acid, cinnamic acid, naphthalenesulfonic acid, and sulfanilic acid.

Carboxylic acid groups in the peptide can be converted

5 to a salt by treating the peptide with a base according to
known methods. Suitable bases include inorganic bases such
as sodium hydroxide, ammonium hydroxide, and potassium
hydroxide, and organic bases such as mono-, di-, and trialkyl and aryl amines (e.g., triethylamine, diisopropylamine,
10 methylamine, and dimethylamine and optionally substituted
mono-, di, and tri-ethanolamines.

As referred to herein, the amino acid components of the peptides and certain materials used in their preparation are identified by abbreviations for convenience. These

15 abbreviations are as follows:

Amino Acid

	Abbreviations			
	L-alanine	Ala	·A	
	D-alanine	D-Ala	а	
20	L-arginine	Arg	R	
	D-arginine	D-Arg	r	
	D-asparagine	D-Asn	N	
	L-asparagine	Asn	n	
	L-aspartic acid	Asp	D	
25	D-aspartic acid	D-Asp	d	
	L-cysteine	Cys	С	•
	D-cysteine	D-Cys	C	
	L-glutamic acid	Glu	E	
	D-glutamic acid	D-Glu	e	•
30	L-glutamine	Gln	Q	
	D-glutamine	D-Gln	q	
	glycine	Gly	g G	
	L-histidine	His	H	
	D-histidine	D-His	h	
35		Ile	I i	
	D-isolelucine	D-Ile		
	L-leucine	Leu	L l	
	D-leucine	D-Leu		
	L-lysine	Lys	K	
40	D-lysine	D-Lys	k	
	L-phenylalanine	Phe	F £	
	D-phenylalanine	D-Phe	f	
	L-proline	Pro	P	
	D-proline	D-Pro	p	
45	L-pyroglutamic acid	pGlu		
	D-pyroglutamic acid	DpGlu		
	L-serine	Ser	S	•

PCT/US93/07964

D-serine	D-Ser	s
L-threonine	Thr	T
D-threonine	D-Thr	t
L-tyrosine	Tyr	Y
D-tyrosine	D-Tyr	У
L-tryptophan	Trp	W
D-tryptophan	D-Trp	w
L-valine	Val	v
D-valine	D-Val	v
L-alloisolucine	Allo	
D-alloisolucine	D-Allo	
	L-threonine D-threonine L-tyrosine D-tyrosine L-tryptophan D-tryptophan L-valine D-valine L-alloisolucine	L-threonine Thr D-threonine D-Thr L-tyrosine Tyr D-tyrosine D-Tyr L-tryptophan Trp D-tryptophan D-Trp L-valine Val D-valine D-Val L-alloisolucine Allo

Abbreviations Reagents TFA Trifluoroacetic acid Methylene chloride CH,Cl, N, N-Diisopropylethylamine DIEA 15 N-Methylpyrrolidone NMP HOBT 1-Hydroxybenzotriazole Dimethylsulfoxide **DMSO** Acetic anhydride Ac₂O Diisopropylcarbodiimide DIC 20

Amino acids preceded by L- or D- refer, respectively, to the L- or D- enantiomer of the amino acid, whereas amino acids not preceded by L- or D- refer to the L- enantiomer.

Methods of Preparation of Peptides

The peptides can generally be prepared following known techniques, as described, for example, in the cited publications, the teachings of which are specifically incorporated herein. In a preferred method, the peptides are prepared following the solid-phase synthetic technique

initially described by Merrifield in <u>J.Amer.Chem.Soc.</u>, 85, 2149-2154 (1963). Other techniques may be found, for example, in M. Bodanszky, et al, <u>Peptide Synthesis</u>, second edition, (John Wiley & Sons, 1976), as well as in other reference works known to those skilled in the art.

Appropriate protective groups usable in such syntheses and their abbreviations will be found in the above text, as well as in J.F.W. McOmie, <u>Protective Groups in Organic Chemistry</u>, (Plenum Press, New York, 1973). The common protective groups used herein are t-butyloxycarbonyl (Boc), fluorenylmethoxycarboyl (FMOC), benzyl (Bzl), tosyl (Tos), o-

- 15 -

bromo-phenylmethoxycarbonyl (BrCBZ), phenylmethoxycarbonyl (CBZ), 2-chloro-phenylmethoxycarbonyl (2-Cl-CBZ), 4-methoxy-2,3,6-trimethylbenzenesulfonyl (Mtr), trityl (Trt), formyl (CHO), and tertiary butyl (t-Bu).

General synthetic procedures for the synthesis of peptides of the Formula by solid phase methodology are as follows:

A. General Synthetic Procedures For Solid Phase Peptide Synthesis Using N° -Boc Protection

10			REPETITIONS	T	IME
	1.	25% TFA in CH ₂ Cl ₂	1	3	min.
	2.	50% TFA in CH ₂ Cl ₂	1	16	min.
	3.	CH ₂ Cl ₂	5	3	min.
	4.	5% DIEA in NMP	2	4	min.
15	5.	NMP	6	5	min.
	6.	Coupling step	1	57	min.
		.a. Preformed BOC-Amino Acid- HOBT active ester in NMP		37	min.
		b. DMSO		16	min.
20		c. DIEA		5	min.
	7	10% Ac₂O, 5% DIEA in NMP	1	9	min.
	8.	CH ₂ Cl ₂	5	3	min.

B. General Synthetic Procedure For Solid Phase Peptide Synthesis Using $N^{\circ}\text{-FMOC}$ Protection

25		<u>REPETITIONS</u>	TIME
1.	50% piperidine in NMP	ı	1 min.
2.	50% piperidine in NMP	ı	12 min.
3.	NMP wash	7	1 min.
4.	Coupling	2	30 min.

FMOC amino acid dissolved in HOBT/NMP followed by the addition of DIC (di-isopropylcarbodiamide) in NMP.

5. NMP wash. 2 1 min.

N-terminal acetylation on the deprotected N°-amino group of peptides synthesized using either Boc or FMOC strategies is accomplished with 10% Ac₂O and 5% DIEA in NMP, followed by washing of the peptide resin with NMP and/or CH₂Cl₂.

The peptides can also be prepared using standard genetic engineering techniques known to those skilled in the For example, the peptide can be produced enzymatically by inserting nucleic acid encoding the peptide into an 5 expression vector, expressing the DNA, and translating the DNA into the peptide in the presence of the required amino The peptide is then purified using chromatographic or electrophoretic techniques, or by means of a carrier protein which can be fused to, and subsequently cleaved from, the 10 peptide by inserting into the expression vector in phase with the peptide encoding sequence a nucleic acid sequence encoding the carrier protein. The fusion protein-peptide may be isolated using chromatographic, electrophoretic or immunological techniques (such as binding to a resin via an 15 antibody to the carrier protein). The peptide can be cleaved using chemical methodology or enzymatically, as by, for example, hydrolases.

Peptides of the Formula can also be prepared using solution methods, by either stepwise or fragment

20 condensations. An appropriately alpha amino-protected amino acid is coupled to an appropriately alpha carboxyl protected amino acid (such protection may not be required depending on the coupling method chosen) using diimides, symmetrical or unsymmetrical anhydrides, BOP, or other coupling reagents or techniques known to those skilled in the art. These techniques may be either or enzymatic. The alpha amino and/or alpha carboxyl protecting groups are removed and the next suitably protected amino acid or block of amino acids are coupled to extend the growing peptide. Various

30 combinations of protecting groups and of chemical and/or enzymatic techniques and assembly strategies can be used in each synthesis.

Methods of Preparation of Pharmaceutical Compositions

Pharmaceutical compositions of this invention comprise
a pharmaceutically acceptable carrier or diluent and an

effective quantity of one or more of the peptides of the

- 17 -

Formula or an acid or base salt thereof. The carrier or diluent may take a wide variety of forms depending on the form of preparation desired for administration, e.g., sublingual, rectal, nasal, oral, or parenteral.

In preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed, for example, waters, oils, alcohols, flavoring agents, preservatives, and coloring agents, to make an oral liquid preparation (e.g., suspension, elixir, or solution) or with carriers such as starches, sugars, diluents, granulating agents, lubricants, binders, and disintegrating agents, to make an oral solid preparation (e.g., powder, capsule, or tablet).

Controlled release forms or enhancers to increase
15 bioavailability may also be used. Because of their ease in
administration, tablets and capsules represent the most
advantageous oral dosage unit form, in which case solid
pharmaceutical carriers are employed. If desired, tablets
may be sugar coated or enteric coated by standard techniques.

For parenteral products, the carrier will usually be sterile water, although other ingredients to aid solubility or as preservatives may be included. Injectable suspensions may also be prepared, in which case appropriate liquid carriers and suspending agents can be employed.

The peptides can also be administered locally at a wound or inflammatory site by topical application of a solution or cream.

20

Alternatively, the peptide may be administered in liposomes or microspheres (or microparticles). Methods for preparing liposomes and microspheres for administration to a patient are known to those skilled in the art. U.S. Patent No. 4,789,734 describes methods for encapsulating biological materials in liposomes. Essentially, the material is dissolved in an aqueous solution, the appropriate

35 phospholipids and lipids added, along with surfactants if required, and the material dialyzed or sonicated, as necessary. A review of known methods is by G. Gregoriadis,

WO 94/05314

Chapter 14, "Liposomes", <u>Druc Carriers in Biology and Medicine</u>, pp. 287-341 (Academic Press, 1979). Microspheres formed of polymers or proteins are well known to those skilled in the art, and can be tailored for passage through the gastrointestinal tract directly into the bloodstream. Alternatively, the peptide can be incorporated and the microspheres, or composite of microspheres, implanted for slow release over a period of time, ranging from days to months. See, for example, U.S. Patents Nos. 4,906,474,

The peptides are generally active when administered parenterally in amounts above about 1 μ g/kg body weight. peptides are generally active when administered parenterally in amounts above about 1 $\mu g/kg$ body weight. Effective doses 15 by other routes of administration are generally those which result in similar blood level to i.v. doses above about 1 $\mu g/Kg$. For treatment to prevent organ injury in cases involving reperfusion, the peptides may be administered parenterally in amounts from about 0.01 to about 10 mg/kg 20 body weight. Generally, the same range of dosage amounts may be used in treatment of other diseases or of conditions where inflammation is to be reduced. This dosage will be dependent, in part, on whether one or more peptides are administered. A synergistic effect may be seen with 25 combinations of peptides from different, or overlapping, regions of the lectin domain, or in combination with peptides derived from the EGF domain of P-selectin.

Methods for Demonstrating Binding

Peptides that are biologically active are those which inhibit binding of neutrophils, monocytes, subsets of lymphocytes or other cells to P-selectin, or which inhibit leukocyte adhesion to endothelium that is mediated by ELAM-1 and/or the homing receptor.

Peptides can be screened for their ability to inhibit adhesion to cells, for example, neutrophil adhesion to

- 19 -

purified P-selectin immobilized on plastic wells, using the assay described by Geng, et al., Nature 343, 757-760 (1990).

Human neutrophils are isolated from heparinized whole blood by density gradient centrifugation on Mono-Poly

5 resolving media, Flow Laboratories. Neutrophil suspensions are greater than 98% pure and greater than 95% viable by trypan blue exclusion. For adhesion assays, neutrophils are suspended at a concentration of 2 x 106 cells/mL in Hanks' balanced salt solution containing 1.26 mM Ca² and 0.81 mM

10 Mg² (HBSS, Gibco) with g mg/mL human serum albumin (HBSS/HSA). Adhesion assays are conducted in triplicate in 96-well microtiter plates, Corning, incubated at 4°C

overnight with 50 microliters of various protein solutions.

P-selectin is isolated from human platelet lysates by
immunoaffinity chromatography on antibody S12-Sepharose™ and
ion-exchange chromatography on a Mono-Q™ column (FLPC,
Pharmacia Fine Chemicals), as follows.

Outdated human platelet packs (100 units) obtained from a blood bank and stored at 4°C are pooled, adjusted to 5mM EDTA at pH 7.5, centrifuged at 4,000 rpm for 30 minutes in 1 liter bottles, then washed three times with 1 liter of 0.1 M NaCl, 20 mM Tris pH 7.5 (TBS), 5 mM EDTA, 5 mM benzamidine.

of wash buffer and made 1mM in DIFP, then frozen in 50 mL screwtop tubes at -80°C. The frozen platelets are thawed and resuspended in 50 mL TBS, 5 mM benzamidine, 5 mM EDTA pH 7.5, 100 M leupeptin. The suspension is frozen and thawed two times in a dry ice-acetone bath using a 600 mL lyophilizing flask, then homogenized in a glass/teflon mortar and pestle and made 1 mM in DIFP. The NaCl concentration is adjusted to 0.5 M with a stock solution of 4 M NaCl. After stirring the suspension at 4°C, it is centrifuged in polycarbonate tubes at 33,000 rpm for 60 minutes at 4°C. The supernatant (0.5 M NaCl wash) is removed and saved; this supernatant contains the soluble form of P-selectin. Care is taken not to remove the top part of the pellet with the supernatant. The pellets

are then homogenized in extraction buffer (TBS, 5 mM benzamidine, 5 mM EDTA, pH 7.5, 100 µM leupeptin, 2% Triton X-100). After centrifugation at 19,500 rpm for 25 minutes at 4°C, the supernatant is removed. The extraction procedure is repeated with the pellet and the supernatant is combined with the first supernatant. The combined extracts, which contain the membrane form of P-selectin, are adjusted to 0.5 M NaCl.

The soluble fraction (0.5 M NaCl wash) and the membrane extract (also adjusted to 0.5 M NaCl) are absorbed with separate pools of the monoclonal antibody S12 (directed to P-selectin) previously coupled to Affigel (Biorad) at 5 mg/mL for 2 hours at 4°C. After letting the resins settle, the supernatants are removed. The S12 Affigel containing bound GMP-140 is then loaded into a column and washed overnight at 4°C with 400 mL of 0.5 M NaCl, 20 mM Tris pH 7.5, 0.01% Lubrol PX.

Bound P-selectin is eluted from the S12 Affigel with 100 mL of 80% ethylene glycol, 1 mM MES pH 6.0, 0.01% Lubrol pX. Peak fractions with absorbance at 280 nm are pooled.

20 Eluates are dialyzed against TBS with 0.05% Lubrol, then applied to a Mono Q column (FPLC from Pharmacia). The concentrated protein is step eluted with 2 M NaCl, 20 mM Tris pH 7.5 (plus 0.05% Lubrol PX for the membrane fraction).

Peak fractions are dialyzed into TBS pH 7.5 (plus 0.05%...

P-selectin is plated at 5 micrograms/mL and the control proteins: human serum albumin (Alb), platelet glycoprotein IIb/IIIa (IIb), von Willebrand factor (vWF), fibrinogen (FIB), thrombomodulin (TM), gelatin (GEL) or human serum (HS), are added at 50 micrograms/mL. All wells are blocked for 2 hours at 22°C with 300 microliters HBSS containing 10 mg/mL HSA, then washed three times with HBSS containing 0.1% Tween-20 and once with HBSS. Cells (2 x 10⁵ per well) are added to the wells and incubated at 22°C for 20 minutes. The wells are then filled with HBSS/HSA, sealed with acetate tape (Dynatech), and centrifuged inverted at 150 g for 5 minutes. After discarding nonadherent cells and

- 21 -

supernates, the contents of each well are solubilized with 200 microliters 0.5% hexadecyltrimethylammonium bromide, Sigma, in 50 mM potassium phosphate, pH. 6.0, and assayed for myeloperoxidase activity, Ley, et al., Blood 73, 1324-1330 (1989). The number of cells bound is derived from a standard curve of myeloperoxidase activity versus numbers of cells. Under all assay conditions, the cells release less than 5% of total myeloperoxidase and lactate dehydrogenase. Inhibition is read as a lower percent adhesion, so that a value of 5% means that 95% of the specific adhesion was inhibited.

Clinical Applications

Since the selectins have several functions related to leukocyte adherence, inflammation, and coagulation, compounds which interfere with binding of P-selectin, E-selectin or L-selectin can be used to modulate these responses.

For example, the peptides can be used to competitively inhibit leukocyte adherence by competitively binding to P-selectin receptors on the surface of leukocytes. This kind of therapy would be particularly useful in acute situations where effective, but transient, inhibition of leukocytemediated inflammation is desirable. Chronic therapy by infusion of the peptides may also be feasible in some circumstances.

An inflammatory response may cause damage to the host
if unchecked, because leukocytes release many toxic molecules
that can damage normal tissues. These molecules include
proteolytic enzymes and free radicals. Examples of
pathological situations in which leukocytes can cause tissue
damage include injury from ischemia and reperfusion,
bacterial sepsis and disseminated intravascular coagulation,
adult respiratory distress syndrome, tumor metastasis,

Reperfusion injury is a major problem in clinical cardiology. Therapeutic agents that reduce leukocyte

35 adherence in ischemic myocardium can significantly enhance the therapeutic efficacy of thrombolytic agents.

rheumatoid arthritis and atherosclerosis.

- 22 -

Thrombolytic therapy with agents such as tissue plasminogen activator or streptokinase can relieve coronary artery obstruction in many patients with severe myocardial ischemia prior to irreversible myocardial cell death. However, many such patients still suffer myocardial neurosis despite restoration of blood flow. This "reperfusion injury" is known to be associated with adherence of leukocytes to vascular endothelium in the ischemic zone, presumably in part because of activation of platelets and endothelium by thrombin and cytokines that makes them adhesive for leukocytes (Romson et al., Circulation 67: 1016-1023 (1983)). These adherent leukocytes can migrate through the endothelium and destroy ischemic myocardium just as it is being rescued by restoration of blood flow.

15 There are a number of other common clinical disorders in which ischemia and reperfusion results in organ injury mediated by adherence of leukocytes to vascular surfaces, including strokes; mesenteric and peripheral vascular disease; organ transplantation; and circulatory shock (in this case many organs might be damaged following restoration of blood flow).

Bacterial sepsis and disseminated intravascular coagulation often exist concurrently in critically ill patients. They are associated with generation of thrombin, cytokines, and other inflammatory mediators, activation of platelets and endothelium, and adherence of leukocytes and aggregation of platelets throughout the vascular system. Leukocyte-dependent organ damage is an important feature of these conditions.

Adult respiratory distress syndrome is a devastating pulmonary disorder occurring in patients with sepsis or following trauma, which is associated with widespread adherence and aggregation of leukocytes in the pulmonary circulation. This leads to extravasation of large amounts of plasma into the lungs and destruction of lung tissue, both mediated in large part by leukocyte products.

- 23 -

Two related pulmonary disorders that are often fatal are in immunosuppressed patients undergoing allogeneic bone marrow transplantation and in cancer patients suffering from complications that arise from generalized vascular leakage resulting from treatment with interleukin-2 treated LAK cells (lymphokine-activated lymphocytes). LAK cells are known to adhere to vascular walls and release products that are presumably toxic to endothelium. Although the mechanism by which LAK cells adhere to endothelium is now known, such cells could potentially release molecules that activate endothelium and then bind to endothelium by mechanisms similar to those operative in neutrophils.

Tumor cells from many malignancies (including carcinomas, lymphomas, and sarcomas) can metastasize to 15 distant sites through the vasculature. The mechanisms for adhesion of tumor cells to endothelium and their subsequent migration are not well understood, but may be similar to those of leukocytes in at least some cases. The association of platelets with metastasizing tumor cells has been well 20 described, suggesting a role for platelets in the spread of some cancers. Recently, it was reported that P-selectin binds to tumor cells in a variety of human carcinoma tissue sections (colon, lung, and breast), and that P-selectin binds to the cell surface of a number of cell lines derived from 25 various carcinomas, but not from melanomas. Aruggo, A., et al., Proc. Natl. Acad. Sci. USA, 89, 2292-2296 (1992). Aruggo et al. also reference earlier work suggesting that Eselectin might be involved in tumor metastasis by mediating the adhesion of a colon carcinoma cell line (HT-20) to 30 activated endothelial cells in vitro. Platelet-leukocyte interactions are believed to be important in atherosclerosis. Platelets might have a role in recruitment of monocytes into atherosclerotic plaques; the accumulation of monocytes is known to be one of the earliest detectable events during 35 atherogenesis. Rupture of a fully developed plaque may not only lead to platelet deposition and activation and the

promotion of thrombus formation, but also the early recruitment of neutrophils to an area of ischemia.

Another area of potential application is in the treatment of rheumatoid arthritis.

The criteria for assessing response to therapeutic modalities employing these peptides, and, hence, effective dosages of the peptides of this invention for treatment, are dictated by the specific condition and will generally follow standard medical practices. For example, the criteria for 10 the effective dosage to prevent extension of myocardial infarction would be determined by one skilled in the art by looking at marker enzymes of myocardial necrosis in the plasma, by monitoring the electrocardiogram, vital signs, and clinical response. For treatment of acute respiratory 15 distress syndrome, one would examine improvements in arterial oxygen, resolution of pulmonary infiltrates, and clinical improvement as measured by lessened dyspnea and tachypnea. For treatment of patients in shock (low blood pressure), the effective dosage would be based on the clinical response and 20 specific measurements of function of vital organs such as the liver and kidney following restoration of blood pressure. Neurologic function would be monitored in patients with stroke. Specific tests are used to monitor the functioning of transplanted organs; for example, serum creatinine, urine 25 flow, and serum electrolytes in patients undergoing kidney transplantation.

Diagnostic Reagents

The peptides can also be used for the detection of human disorders in which the ligands for the selectins might be defective. Such disorders would most likely be seen in patients with increased susceptibility to infections in which leukocytes might not be able to bind to activated platelets or endothelium. Cells to be tested, usually leukocytes, are collected by standard medically approved techniques and screened. Detection systems include ELISA procedures, binding of radiolabeled antibody to immobilized activated

- 25 -

cells, flow cytometry, or other methods known to those skilled in the art. Inhibition of binding in the presence and absence of the lectin domain peptides can be used to detect defects or alterations in selectin binding. For selectins, such disorders would most likely be seen in patients with increased susceptibility to infections in which leukocytes would have defective binding to platelets and endothelium because of deficient leukocyte ligands for P-selectin.

10 The peptide is labeled radioactively, with a fluorescent tag, enzymatically, or with electron dense material such as gold for electron microscopy. The cells to be examined, usually leukocytes, are incubated with the labeled peptides and binding assessed by methods described above with antibodies to P-selectin, or by other methods known to those skilled in the art. If ligands for P-selectin are also found in the plasma, they can also be measured with standard ELISA or radioimmunoassay procedures, using labeled P-selectin-derived peptide instead of antibody as the detecting reagent.

The peptides can also be useful in *in vivo* imaging of concentrations of cells bearing selectin ligands. Cells expressing selectin ligands whose abnormally high local concentrations or presence within the body such as cancer cells, is indicative of a disorder can be imaged using labeled peptides. These labels may be either intrinsic or extrinsic to the structure of the specific selectin peptide and may include, but not be limited to high energy emitters such as ¹¹¹In or non-radioactive dense atoms to enhance x-ray contrast.

The following examples are presented to illustrate, not limit, the invention. In the examples and throughout the specification, parts are by weight unless otherwise indicated.

PCT/US93/07964

- 26 -

EXAMPLE I: Glutamyl-tyrosyl-leucyl-asparaginyl-serinylisoleucyl-leucyl-serinyl-tyrosyl-serinylprolinyl-serinyl-tyrosyl-tyrosyl-tryptophan-amide (SEQ ID NO:23)

The peptide was prepared on an ABI Model 431A Peptide Synthesizer using Version 1.12 of the standard Boc software. 4-methyl benzhydrylamine resin (625 mg) was used in the synthesis. The final weight of the resin was 2.2 g.

5

25

30

The peptide was cleaved from the resin (2.2 g) using 10 22 mL of HF and 2.2 mL of anisole for 60 min at 0°C. resin was washed with ether and the peptide extracted with 50% TFA/CH₂Cl₂ to give 1.65 g of crude peptide. The peptide was deformylated with 50 mL of 2% aqueous piperidine at 4°C for 2 hours.

The crude peptide (1.60 g) was purified on a Vydac C-15 18 column (15 μ , 5 x 25 cm) eluting with a 20-60% gradient of 80% acetonitrile in 0.1% TFA over 120 min at a flow rate of 15 mL per min. Fractions were collected, analyzed by HPLC and pure fractions pooled and lyophilized to give 49 mg. 20 Amino acid analysis: Asx 1.01 (1), Glx 0.97 (1), Ile 0.98 (1), Leu 2.07 (2), Pro 1.01 (1), Ser 2.69 (4), Tyr 3.30 (4). FAB/MS: MH 1884.9

Aspartyl-tyrosyl-leucyl-asparginyl-lysyl-valyl-EXAMPLE II: leucyl-prolyl-tyrosyl-tyrosyl-serinyl-serinyltyrosyl-tyrosyl-valine-amide (SEQ ID NO:1)

The peptide was prepared on an ABI Model 431A Peptide Synthesizer using Version 1.12 of the standard Boc software. 4-methyl benzhydrylamine resin (0.631 g, 0.5 mmol) was used The final weight of the resin was 2.476 in the synthesis.

The peptide was cleaved from the resin (2.389 g) using 24 mL of HF and 2.4 mL of anisole for 60 min at 0°C. resin was washed with ether and the peptide extracted with a 1:1 solution of TFA/CH, Cl, to give 1.044 g of crude peptide.

The crude peptide (944 mg) was purified on a Vydac C-35 18 column (15 μ , 5.0 x 25 cm) by using four 230 mg injections, eluting with a 15-75% gradient of 80% acetonitrile in 0.1%

- 27 -

TFA over 120 min at a flow rate of 15 per min. Fractions were collected, analyzed by HPLC and pure fractions pooled and lyophilized to give 238 mg. Amino acid analysis: Asx 2.03 (2), Leu 2.04 (2), Lys 0.97 (1), Pro 1.01 (1), Ser 1.46 (2), Tyr 4.64 (5), Val 1.97 (2). FAB/MS: MH* 1886

- 28 -

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: George A. Heavner and Leon A. Epps
- (ii) TITLE OF INVENTION: Peptide Inhibitors of Leukocyte Adhesion
 - (iii) NUMBER OF SEQUENCES: 23
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Woodcock Washburn Kurtz Mackiewicz & Norris
 - (B) STREET: One Liberty Place 46th Floor
 - (C) CITY: Philadelphia
 - (D) STATE: PA
 - (E) COUNTRY: USA
 - (F) ZIP: 19103
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: DISKETTE, 3.5 INCH, 1.44 Mb STORAGE
 - (B) COMPUTER: IBM PS/2
 - (C) OPERATING SYSTEM: PC-DOS
 - (D) SOFTWARE: WORDPERFECT 5.0
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: Not yet assigned
 - (B) FILING DATE: Herewith
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Dianne B. Elderkin
 - (B) REGISTRATION NUMBER: 28,598
 - (C) REFERENCE/DOCKET NUMBER: CCOR-0025
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (215) 568-3100
 - (B) TELEFAX: (215) 568-3439
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEOUENCE CHARACTERISTICS:

- 29 -

- (A) LENGTH: 15 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Asp Tyr Leu Asn Lys Val Leu Pro Tyr Tyr Ser Ser Tyr Tyr Val 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Tyr Leu Asn Lys Val Leu Pro Tyr Tyr Ser Ser Tyr Tyr Val 1 5 10

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Leu Asn Lys Val Leu Pro Tyr Tyr Ser Ser Tyr Tyr Val

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid

- 30 -

- (C) STRANDEDNESS:
- (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
 Asn Lys Val Leu Pro Tyr Tyr Ser Ser Tyr Tyr Val
- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
 Lys Val Leu Pro Tyr Tyr Ser Ser Tyr Tyr Val
 1 5 10
- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
- Asp Tyr Leu Asn Lys Val Leu Pro Tyr Tyr Ser Ser Tyr Tyr 1 5 10 . 14
- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown

- 31 -

- (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Val Leu Pro Tyr Tyr Ser Ser Tyr Tyr

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Leu Pro Tyr Tyr Ser Ser Tyr Tyr 1

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids ·
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Lys Thr Leu Pro Phe Ser Ser Tyr Tyr
1 5

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

 Val Leu Pro Tyr Tyr Ser Ser Tyr Tyr Val

 1 1 1 10
- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11: Val Leu Pro Tyr Tyr Ser Ser Tyr
- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12: Lys Val Leu Ala Tyr Tyr Ser Ser Tyr Tyr
- 1 5
- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
- Lys Val Leu Pro Ala Tyr Ser Ser Tyr Tyr
 1 5 10

- 33 -

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14: Lys Val Leu Pro Tyr Tyr Ser Ala Tyr Tyr

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.
- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
 Lys Val Leu Pro Tyr Tyr Ser Thr Tyr Tyr
 1. 10

- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEOUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.
- $\mbox{(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:} \\ \mbox{Lys Val Leu Pro Tyr Tyr Thr Ser Tyr Tyr} \\$
- (2) INFORMATION FOR SEQ ID NO:18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
- Asp Val Leu Pro Tyr Tyr Ser Ser Tyr Tyr 1 5 10
- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
- Lys Val Leu Pro Tyr Gly Ser Ser Tyr Tyr

- 35 -

- (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Lys Val Leu Pro Arg Tyr Ser Ser Tyr Tyr 1 5 10

- (2) INFORMATION FOR SEQ ID NO:21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Asn Thr Leu Pro Tyr Ser Pro Tyr Tyr Tyr 1 5 10

- (2) INFORMATION FOR SEQ ID NO:22:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Lys Val Gln Pro Tyr Tyr Ser Ser Tyr Tyr

- (2) INFORMATION FOR SEQ ID NO:23:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown

 - (ii) MOLECULE TYPE:
 - (A) Description: Amide terminated.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Glu Tyr Leu Asn Ser Ile Leu Ser Tyr Ser Pro Ser Tyr Tyr Trp

- 37 -

WHAT IS CLAIMED IS:

- 1. A biologically active peptide capable of inhibiting leukocyte adhesion, said peptide including a sequence consisting essentially of the Formula:
- 5 R¹-X-A-B-C-D-E-F-G-Y-R² wherein: A is D- or L-leucine, D- or L-threonine, or D- or L-glutamine;
 - B is D- or L-proline, D- or L-serine, or D- or L-alanine;
- C is D- or L-tyrosine, D- or L-proline, D- or L-arginine, or 10 D- or L-alanine;
 - D is D- or L-tyrosine, D- or L-phenylalanine, D- or L-serine or glycine;
 - E is D- or L-serine, D- or L-threonine, or D- or L-proline;
- F is D- or L-serine, D- or L-tyrosine, D- or L-alanine, or D15 or L-threonine:
 - G is D- or L-tyrosine, or D- or L-alanine;
 - X is a linear chain of from 0 to 6 amino acids;
 - Y is a linear chain of from 0 to 2 amino acids;
- R¹ is H (signifying a free-terminal amino group), formyl,
 20 lower alkyl, aryl, lower alkanoyl, aroyl, alkyloxycarbonyl, aryloxycarbonyl or desamino (signifying no alpha amino group on the N-terminal amino acid); and
- R^2 is H (signifying descarboxy where the α carboxyl group in the C-terminal amino acid is absent) or OR^3 , where R^3 is H 25 (signifying a free carboxylic acid on a C-terminal carboxyl group) or lower alkyl or aryl, NR^4 R^5 where R^4 and R^5 are each

PCT/US93/07964 WO 94/05314

- 38 -

selected independently from H, lower alkyl, aryl, or taken together are a methylene chain of 4-8 methylene groups (- $(CH_2)_n$ - where n = 4 to 8),

or a pharmaceutically acceptable acid- or base-addition salt 5 thereof.

The biologically active peptide of Claim 1 wherein X is selected from the group consisting of:

Glu-Tyr-Leu-Asn-Ser-Ile

Asp-Tyr-Leu-Asn-Lys-Val,

Tyr-Leu-Asn-Lys-Val, 10

Leu-Asn-Lys-Val,

Asn-Lys-Val,

Asn-Thr,

Lys-Val,

15 Asp-Val

Val, Lys or null (signifying no amino acid).

- The biologically active peptide of Claim 1 wherein Y is selected from a group consisting of Tyr, Tyr-Val, Tyr-Trp, or null (signifying no amino acid).
- 20 A biologically active peptide capable of inhibiting leukocyte adhesion wherein said peptide is selected from the group comprising:
 - (SEQ ID NO:1) Asp-Tyr-Leu-Asn-Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-Val-NH2;
- 25 (SEQ ID NO:2) Tyr-Leu-Asn-Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-Val-NH,;
 - (SEQ ID NO:3) Leu-Asn-Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-Val-NH2;
- (SEQ ID NO:4) Asn-Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-30 Val-NH,;
 - (SEQ ID NO:5) Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-Val-
 - (SEQ ID NO:6) Asp-Tyr-Leu-Asn-Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-NH2;

```
(SEQ ID NO:7) Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-NH,;
    (SEQ ID NO:8) Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-NH2;
    (SEQ ID NO:9) Lys-Thr-Leu-Pro-Phe-Ser-Ser-Tyr-Tyr-NH2;
                        Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-Val-
    (SEQ ID NO:10)
 5
                        NH2;
    (SEQ ID NO:11)
                        Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-NH2;
    (SEQ ID NO:12)
                        Lys-Val-Leu-Ala-Tyr-Tyr-Ser-Ser-Tyr-Tyr-
                        NH<sub>2</sub>;
    (SEQ ID NO:13)
                        Lys-Val-Leu-Pro-Ala-Tyr-Ser-Ser-Tyr-Tyr-
10
                        NH<sub>2</sub>;
    (SEQ ID NO:14)
                        Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ala-Tyr-Tyr-
                        NH<sub>2</sub>;
    (SEQ ID NO:15)
                        Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Ala-Tyr-
                        NH2;
15
    (SEQ ID NO:16)
                        Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Thr-Tyr-Tyr-
                        NH_2;
    (SEQ ID NO:17)
                        Lys-Val-Leu-Pro-Tyr-Tyr-Thr-Ser-Tyr-Tyr-
                        NH2;
    (SEQ ID NO:18)
                        Asp-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-
20
                        NH2;
    (SEQ ID NO:19)
                        Lys-Val-Leu-Pro-Tyr-Gly-Ser-Ser-Tyr-Tyr-
                        NH2;
    (SEQ ID NO:20)
                        Lys-Val-Leu-Pro-Arg-Tyr-Ser-Ser-Tyr-Tyr-
                        NH<sub>2</sub>;
25
    (SEQ ID NO:21)
                        Asn-Thr-Leu-Pro-Tyr-Ser-Pro-Tyr-Tyr-
                        NH2;
    (SEQ ID NO:22)
                        Lys-Val-Gln-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-
                        NH<sub>2</sub>.
    (SEQ ID NO:23) Glu-Tyr-Leu-Asn-Ser-Ile-Leu-Ser-Tyr-Ser-Pro-
30 Ser-
                   Tyr-Tyr-Trp-NH,
```

5. A pharmaceutical composition comprising at least one biologically active peptide of claim 1 in an amount effective to inhibit cellular adherence and a pharmaceutically acceptable carrier or diluent.

- 40 -

6. The pharmaceutical composition of claim 5 wherein said pharmaceutically acceptable carrier or diluent is acceptable for parental administration.

- 7. The pharmaceutical composition of claim 5 wherein 5 said pharmaceutically acceptable carrier or diluent is acceptable for oral administration.
- 8. A method of inhibiting leukocyte adherence in a host comprising the step of administering to said host at least one biologically active peptide of claim 1 in an amount 10 effective to inhibit cellular adherence.
 - 9. A method for modifying binding of a selectin in a host comprising administering to said host at least one biologically active peptide of claim 1 in an amount effective to inhibit cellular adherence.
- 15 10. The method of Claim 9 wherein said selectin is chosen from a group consisting of P-selectin, E-selectin and L-selectin.
- 11. A method for decreasing inflammation in a host comprising administering to said host at least one20 biologically active peptide of claim 1 in an amount effective to decrease inflammation.
- 12. A method for decreasing coagulation in a host comprising administering to said host at least one biologically active peptide of claim 1 in an amount effective 25 to decrease coagulation.
- 13. A method for treating a host having a condition selected from the group consisting of ischemia and reperfusion, bacterial sepsis and disseminated intravascular coagulation, adult respiratory distress syndrome, tumor 30 metastasis, rheumatoid arthritis and atherosclerosis,

- 41 -

comprising administering to said host at least one biologically active peptide of claim 1 in an amount effective to treat said condition.

- 14. A method of detecting defective selectin-binding5 ligands in a host comprising the steps of:
 - (a) taking a sample of the cells to be tested from said host;
 - (b) contacting said cells to be tested with a labeled peptide of Claim 1; and
- 10 (c) assessing the binding of said labeled peptide to said cell to be tested.
 - 15. The method of Claim 14 wherein said cells are leukocytes.
- 16. The method of Claim 14 wherein said peptide is
 15 labeled with a moiety selected from the group consisting of
 radioactive tracers, fluorescent tags, enzymes, and electrondense materials.
 - 17. The method of Claim 14 wherein said cells to be tested are tumor cells.

20

- 18. A method of preparing a peptide of Claim 1 comprising adding amino acids either singly or in preformed blocks of amino acids to an appropriately functionalized solid support.
- 25 19. A method of Claim 1 wherein said amino acids are assembled either singly or in preformed blocks in solution or suspension by chemical ligation techniques.
- 20. A method of preparing a peptide of Claim 1
 wherein said amino acids are assembled either singly of in
 30 preformed blocks in solution or suspension by enzymatic
 ligation techniques.

- 42 -

21. A method of preparing a peptide of Claim 1 wherein said peptide is produced enzymatically by inserting nucleic acids, coding the peptide into an expression vector, expressing the DNA, and translating the DNA into the peptide.

AMENDED CLAIMS

[received by the International Bureau on 14 January 1994 (14.01.94); original claims 1-4 and 6 amended; new claims 22 and 23 added; other claims unchanged (7 pages)]

1. A peptide of the Formula:

or a pharmaceutically acceptable acid- or base-addition salt thereof, wherein:

A' is D- or L-leucine, D- or L-threonine, or D- or L-glutamine;

B' is D- or L-proline, D- or L-serine, or D- or L-alanine;

.C' is D- or L-tyrosine, D- or L-proline, D- or L-arginine, D-

10 or L-alanine, or null (signifying no amino acid);

D' is D- or L-tyrosine, D- or L-phenylalanine, D- or L-serine or glycine;

E' is D- or L-serine, D- or L-threonine, or D- or L-proline;

F' is D- or L-serine, D- or L-tyrosine, D- or L-alanine, or

15 D- or L-threonine;

G' is D- or L-tyrosine, or D- or L-alanine;

X' is a linear chain of from 0 to 6 amino acids;

Y' is a linear chain of from 0 to 2 amino acids;

R1 is H (signifying a free-terminal amino group), formyl,

20 lower alkyl, aryl, lower alkanoyl, aroyl, alkyloxycarbonyl,
aryloxycarbonyl or desamino (signifying no alpha amino group
on the N-terminal amino acid); and

 R^2 is H (signifying descarboxy where the α -carboxyl group in the C-terminal amino acid is absent), OR^3 , or NR^4R^5 ;

R³ is H (signifying a free carboxylic acid on a Cterminal carboxyl group), lower alkyl or aryl;

 R^4 and R^5 are each selected independently from H, lower alkyl, and aryl, or taken together are a methylene chain of 4-8 methylene groups (-(CH_2), where n = 4 to 8);

provided that, when X'-A'-B'-C'-D'-E'-F'-G'-Y' is DYLNKVLPYYSSYYW, then R^2 is NH_2 .

2. A peptide of Claim 1 wherein X^{\prime} is selected from the group consisting of:

Glu-Tyr-Leu-Asn-Ser-Ile

Asp-Tyr-Leu-Asn-Lys-Val,

5 Tyr-Leu-Asn-Lys-Val,

Leu-Asn-Lys-Val,

Asn-Lys-Val,

Asn-Thr,

Lys-Val,

10 Asp-Val

Val, Lys or null (signifying no amino acid).

- 3. A peptide of Claim 1 wherein Y' is selected from a group consisting of Tyr, Tyr-Val, Tyr-Trp, or null (signifying no amino acid).
- 4. A peptide of Claim 1 selected from the group consisting of:
 - (SEQ ID NO:1) Asp-Tyr-Leu-Asn-Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-Val-NH₂;
- (SEQ ID NO:2) Tyr-Leu-Asn-Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-20 Tyr-Tyr-Val-NH₂;
 - (SEQ ID NO:3) Leu-Asn-Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-Val-NH₂;
 - (SEQ ID NO:4) Asn-Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-Val-NH,;
- 25. (SEQ ID NO:5) Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-Val-NH₂;
 - (SEQ ID NO:6) Asp-Tyr-Leu-Asn-Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-NH₂;

```
(SEQ ID NO:7) Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-NH,;
     (SEQ ID NO:8) Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-NH,;
     (SEQ ID NO:9) Lys-Thr-Leu-Pro-Phe-Ser-Ser-Tyr-Tyr-NH2;
                         Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-Val-
     (SEQ ID NO:10)
 5
                         NH<sub>2</sub>;
     (SEO ID NO:11)
                         Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-NH;
     (SEQ ID NO:12)
                         Lys-Val-Leu-Ala-Tyr-Tyr-Ser-Ser-Tyr-Tyr-
                         NH2;
     (SEO ID NO:13)
                         Lys-Val-Leu-Pro-Ala-Tyr-Ser-Ser-Tyr-Tyr-
10
                         NH2;
    (SEQ ID NO:14)
                         Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ala-Tyr-Tyr-
                         NH2;
    (SEQ ID NO:15)
                         Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Ala-Tyr-
                         NH<sub>2</sub>;
15
    (SEQ ID NO:16)
                        Lys-Val-Leu-Pro-Tyr-Tyr-Ser-Thr-Tyr-Tyr-
                        NH<sub>2</sub>;
    (SEQ ID NO:17)
                        Lys-Val-Leu-Pro-Tyr-Tyr-Thr-Ser-Tyr-Tyr-
                        NH<sub>2</sub>;
    (SEQ ID NO:18)
                        Asp-Val-Leu-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-
20
                        NH2;
    (SEQ ID NO:19)
                        Lys-Val-Leu-Pro-Tyr-Gly-Ser-Ser-Tyr-Tyr-
                        NH_2;
    (SEQ ID NO:20)
                        Lys-Val-Leu-Pro-Arg-Tyr-Ser-Ser-Tyr-Tyr-
                        NH<sub>2</sub>;
25
    (SEQ ID NO:21)
                        Asn-Thr-Leu-Pro-Tyr-Ser-Pro-Tyr-Tyr-Tyr-
                        NH2;
                        Lys-Val-Gln-Pro-Tyr-Tyr-Ser-Ser-Tyr-Tyr-
    (SEQ ID NO:22)
                        NH<sub>2</sub>.
    (SEQ ID NO:23)
                        Glu-Tyr-Leu-Asn-Ser-Ile-Leu-Ser-Tyr-Ser-
30
                        Pro-Ser-Tyr-Tyr-Trp-NH2
```

5. A pharmaceutical composition comprising at least one biologically active peptide of claim 1 in an amount effective to inhibit cellular adherence and a pharmaceutically acceptable carrier or diluent.

- 6. The pharmaceutical composition of claim 5 wherein said pharmaceutically acceptable carrier or diluent is acceptable for parenteral administration.
- 7. The pharmaceutical composition of claim 5 wherein 5 said pharmaceutically acceptable carrier or diluent is acceptable for oral administration.
- 8. A method of inhibiting leukocyte adherence in a host comprising the step of administering to said host at least one biologically active peptide of claim 1 in an amount 10 effective to inhibit cellular adherence.
 - 9. A method for modifying binding of a selectin in a host comprising administering to said host at least one biologically active peptide of claim 1 in an amount effective to inhibit cellular adherence.
- 15 10. The method of Claim 9 wherein said selectin is chosen from a group consisting of P-selectin, E-selectin and L-selectin.
- A method for decreasing inflammation in a host comprising administering to said host at least one
 biologically active peptide of claim 1 in an amount effective to decrease inflammation.
- 12. A method for decreasing coagulation in a host comprising administering to said host at least one biologically active peptide of claim 1 in an amount effective 25 to decrease coagulation.
- 13. A method for treating a host having a condition selected from the group consisting of ischemia and reperfusion, bacterial sepsis and disseminated intravascular coagulation, adult respiratory distress syndrome, tumor 30 metastasis, rheumatoid arthritis and atherosclerosis,

comprising administering to said host at least one biologically active peptide of claim 1 in an amount effective to treat said condition.

- 14. A method of detecting defective selectin-binding 5 ligands in a host comprising the steps of:
 - (a) taking a sample of the cells to be tested from said host;
 - (b) contacting said cells to be tested with a labeled peptide of Claim 1; and
- (c) assessing the binding of said labeled peptide to said cell to be tested.
 - 15. The method of Claim 14 wherein said cells are leukocytes.
- 16. The method of Claim 14 wherein said peptide is 15 labeled with a moiety selected from the group consisting of radioactive tracers, fluorescent tags, enzymes, and electrondense materials.
 - 17. The method of Claim 14 wherein said cells to be tested are tumor cells.

20

- 18. A method of preparing a peptide of Claim 1 comprising adding amino acids either singly or in preformed blocks of amino acids to an appropriately functionalized solid support.
- 19. A method of Claim 1 wherein said amino acids are assembled either singly or in preformed blocks in solution or suspension by chemical ligation techniques.
- 20. A method of preparing a peptide of Claim 1 wherein said amino acids are assembled either singly of in30 preformed blocks in solution or suspension by enzymatic ligation techniques.

- 21. A method of preparing a peptide of Claim 1 wherein said peptide is produced enzymatically by inserting nucleic acids, coding the peptide into an expression vector, expressing the DNA, and translating the DNA into the peptide.
- 5 . 22. A peptide of the formula:

R1-X'-A'-B'-C'-D'-E'-F'-G'-Y'-R2

or a pharmaceutically acceptable acid- or base-additional salt thereof, wherein

- A' is leucine or glutamine;
- B' is proline or serine;
 - C' is tyrosine, alanine, arginine, or null (signifying no amino acid);
 - D' is tyrosine, phenylalanine, serine or glycine;
 - E' is serine, threonine or proline;
- 15 F' is serine, threonine, alanine or tyrosine;
 - G' is tyrosine or alanine;
 - X' is a linear amino acid chain selected from the group consisting of Glu-Tyr-Leu-Asn-Ser-Ile, Asp-Tyr-Leu-Asn-Lys-Val, Tyr-Leu-Asn-Lys-Val, Leu-Asn-Lys-Val, Asn-Lys-Val,
- 20 Asn-Thr, Lys-Val, Asp-Val, Lys-Thr, Val, and null (signifying no amino acid);
 - Y' is a linear amino acid chain selected from the group consisting of Tyr, Val, Tyr-Val, Tyr-Trp, and null (signifying no amino acid);
- 25 R¹ is H (signifying a free-terminal amino group), formyl, lower alkyl, aryl, lower alkanoyl, aroyl, alkyloxycarbonyl, aryloxycarbonyl or desamino (signifying no alpha amino group on the N-terminal amino acid);

 R^2 is H (signifying descarboxy where the α -carboxyl 30 group in the C-terminal amino acid is absent), OR^3 , or NR^4R^5 ;

R² is H (signifying a free carboxylic acid on a C-terminal carboxyl group), lower alkyl or aryl;

 R^4 and R^5 are each selected independently from H, lower alkyl, and aryl, or taken together are a methylene chain of 4-8 methylene groups $(-(CH_2)_{\Sigma}$ where n = 4 to 8);

provided that, when X'-A'-B'-C'-D'-E'-F'-G'-Y' is DYLNKVLPYYSSYYW, then R^2 is NH_2 .

23. A peptide of Claim 22 where R^1 is H and R^2 is NH_2 .

STATEMENT UNDER ARTICLE 19

Claims 1, 2, 3, 4 and 6 have been amended to comport with currently pending claims in the priority document, U.S.S.N. 07/941,652. Only Claim 1 has been substantively amended. The definition of C' has been amended to include "null (signifying no amino acid)" to correct for an inadvertent omission. Support is found in the disclosure of Peptide SEQUENCE ID NO:7. Claim 1 has also been amended to include a proviso to remove from the scope a peptide (17A) disclosed in Johnston et al, cited in the International Search Report.

New Claims 22 and 23 are directed to the same invention as Claims 1-10. These claims more specifically recite peptides of the invention and find support in the peptides disclosed in the specification, for example, SEQ ID NO:1 - SEQ ID NO:23.

Infernational application No. PCT/US93/07964

A. CLASSIFICATION OF SUBJECT MATTER					
IPC(5) :A61K 37/02; C07K 7/00 US CL :530/326, 327, 328, 329; 514/13, 14, 15, 16					
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED					
Minimum d	documentation searched (classification system followed	d by classification symbols)			
U.S. :	530/326, 327, 328, 329; 514/13, 14, 15, 16	_			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Please See Extra Sheet.					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
X Y	Cell, vol. 56, issued 24 March 1989, GMP-140, A Granule Membrane Endothelium: Sequence Similarity To Adhesion And Inflammation", pag document.	Protein Of Platelets And Proteins Involved In Cell	<u>4-7</u> 1-10		
Y	Nature, vol. 343, issued 22 February 1990, Geng et al., "Rapid Neutrophil Adhesion To Activated Endothelium Mediated By GMP-140", pages 757-760, see entire document.		1-10		
Y	US, A, 5,081,034 (Bevilacqua <u>et al.)</u> document.	14 January 1992, see entire	1-10		
X Further documents are listed in the continuation of Box C. See patent family annex.					
A document defining the general state of the art which is not considered to be part of particular relevance		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention			
E cartier document published on or after the international filing date *L* document which may throw doubte on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)		"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is			
me	document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination being obvious to a person skilled in the art		se art		
the priority date claimed			· · · · · · · · · · · · · · · · · · ·		
Date of the actual completion of the international search 17 September 1993		17 NOV 1993	arch report		
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231		Authorized officer CHRISTOPHER S. F. LOW			
Facsimile No. NOT APPLICABLE		Telephone No. (703) 308-0196	-		

Form PCT/ISA/210 (second sheet)(July 1992)+

International application No. PCT/US93/07964

C (Continue	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevan	Relevant to claim No.	
Y	J. Biol. Chem., vol. 266, no. 33, issued 25 November 1 Geng et al., "Neutrophil Recognition Requires A Ca ²⁺ -Conformational Change In The Lectin Domain Of GMP pages 22313-22318, see entire document.	1-10	
Y	J. Biol. Chem., vol. 265, no. 14, issued 15 May 1990, Ord et al., "Structure Of The Gene Encoding The Human Leukocyte Adhesion Molecule-1 (TQ1, Leu-8) Of Lymphocytes And Neutrophils", pages 7760-7767, see entire document.		1-10
Y	WO, A, 91/07993 (Vadas et al.) 13 June 1991, see entire document.		1-10
Y	J. Biol. Chem., vol 265, no. 34, issued 05 December 19 Johnston et al., "Structure Of The Human Gene Encoding Membrane Protein-140 A Member Of The Selectin Fam Adhesion Receptors For Leukocytes", pages 21381-2138 entire document.	ng Granule	1-10
	·	· .	

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

International application No. PCT/US93/07964

Box I Observations where certain claims were found unsearchable (Continuation of item I of first sheet)				
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:				
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:				
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:				
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).				
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)				
This International Searching Authority found multiple inventions in this international application, as follows: (Telephone Practice) Please See Extra Sheet.				
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.				
2. As all scarchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.				
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:				
4. X No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-10				
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.				

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)*

International application No. PCT/US93/07964

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

Automated Patent System - USPAT and JPOABS

DIALOG - ONESEARCH files

5, 16, 73, 76, 149, 155, 159, 265, 351, 357, 399, 434, 445, 399

Swiss-Prot 24, PIR 35, A-GeneSeq 10

ENTREZ 3.0 CDROM - sequences and references disks

Search terms

leukocyte, adhesion, inhibit?, bind? ELAM, ICM, LCAM

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

- Claims 1-10, drawn to peptides, pharmaceutical compositions containing the peptides and method of treating a host to inhibit leukocyte adherence/selectin binding are, for example, classified in at least Class 514, subclasses 14-16 and Class 530, subclasses 327-329.
- Claims 11-13, drawn to alternative methods of treating a host wherein inflammation (claim-11) is decreased, or where coagulation (claim 12) is decreased, or where the treatment (claim 13) is for ischemia and reperfusion or bacterial sepsis and disseminated intravascular coagulation or adult respiratory distress syndrome or tumor metastasis or rheumatoid arthritis and atherosclerosis, are for example, classified in at least Class 514, subclasses 14-16.
- Ш. Claims 14-17, drawn to a method of detecting defective selectin binding ligands in a host, for example, classified in at least Class 435, subclass 7.1.
- IV. Claims 18-20, drawn to a method of traditional chemical synthesis of peptides that inhibit leukocyte adhesion, for example, classified in at least Class 530, subclass 333 and Class 525 subclass 54.11.
- V. Claim 21, drawn to a recombinant method of producing the peptides that inhibit leukocyte adhesion for example, classified in at least Class 435, subclass 69.1.

Form PCT/ISA/210 (extra sheet)(July 1992)+