class 8: Breast Cancer Mini Project

Kai Zhao (PID: A17599942)

Outline

Today we will apply the machine learning methods we introduced in the last class on breast. cancer biopsy data from fine needle aspirations (FNA)

##Data input The data is suppled on CSV format:

```
wisc.df <- read.csv("WisconsinCancer.csv", row.names = 1)
head(wisc.df)</pre>
```

	diagnosis radius	s_mean	texture_mean	perimeter_mean	area_mean	ı
842302	M	17.99	10.38	122.80	1001.0)
842517	М	20.57	17.77	132.90	1326.0)
84300903	М	19.69	21.25	130.00	1203.0)
84348301	М	11.42	20.38	77.58	386.1	
84358402	М	20.29	14.34	135.10	1297.0)
843786	М	12.45	15.70	82.57	477.1	-
	${\tt smoothness_mean}$	compa	ctness_mean co	oncavity_mean c	oncave.poi	.nts_mean
842302	0.11840		0.27760	0.3001		0.14710
842517	0.08474		0.07864	0.0869		0.07017
84300903	0.10960		0.15990	0.1974		0.12790
84348301	0.14250		0.28390	0.2414		0.10520
84358402	0.10030		0.13280	0.1980		0.10430
843786	0.12780		0.17000	0.1578		0.08089
	symmetry_mean fr	ractal_	_dimension_mea	an radius_se te	xture_se p	erimeter_se
842302	0.2419		0.0787	71 1.0950	0.9053	8.589
842517	0.1812		0.0566	0.5435	0.7339	3.398
84300903	0.2069		0.0599	99 0.7456	0.7869	4.585
84348301	0.2597		0.0974	14 0.4956	1.1560	3.445
84358402	0.1809		0.0588	33 0.7572	0.7813	5.438
843786	0.2087		0.0763	13 0.3345	0.8902	2.217
	area_se smoothne	ess_se	compactness_s	se concavity_se	concave.p	oints_se

842302	153.40	0.006399		0.04904	0.0)5373		0.01587
842517	74.08	0.005225		0.01308		01860		0.01340
84300903	94.03	0.006150		0.04006		3832		0.02058
84348301	27.23	0.009110		0.07458	0.0	05661		0.01867
84358402	94.44	0.011490		0.02461	0.0)5688		0.01885
843786	27.19	0.007510		0.03345	0.0	3672		0.01137
	symmetry_se	fractal_d:	imensi	ion_se radi	ius_worst	texture	_worst	
842302	0.03003		0.0	006193	25.38	3	17.33	
842517	0.01389		0.0	003532	24.99)	23.41	
84300903	0.02250		0.0	004571	23.57	7	25.53	
84348301	0.05963		0.0	009208	14.91	L	26.50	
84358402	0.01756		0.0	005115	22.54	1	16.67	
843786	0.02165		0.0	005082	15.47	7	23.75	
	perimeter_wo	rst area_	worst	smoothness	s_worst o	compactne	ss_wor	st
842302	184	.60 20	019.0		0.1622		0.66	56
842517	158	.80 19	956.0		0.1238		0.18	66
84300903	152	.50 17	709.0		0.1444		0.42	45
84348301	98	.87	567.7		0.2098		0.86	63
84358402	152	.20 15	575.0		0.1374		0.20	50
843786	103	.40	741.6		0.1791		0.52	49
	concavity_wo	rst conca	ve.poi	ints_worst	symmetry	_worst		
842302	0.7	119		0.2654		0.4601		
842517	0.2	416		0.1860		0.2750		
84300903	0.4			0.2430		0.3613		
84348301	0.6	869		0.2575		0.6638		
84358402	0.4	000		0.1625		0.2364		
843786	0.5	355		0.1741		0.3985		
	fractal_dime	_						
842302		0.1189						
842517		0.0890	02					
84300903		0.087						
84348301		0.1730						
84358402		0.076						
843786		0.124	40					

Now I will store the diagnosis for later and exclude it from the data set I will actually do things with that I will call wisc.data

```
diagnosis <- as.factor(wisc.df$diagnosis)
wisc.data <- wisc.df[,-1]</pre>
```

Q1 How many people are in this data set?

```
nrow(wisc.df)
[1] 569
    Q2. How many of the observations have a malignant diagnosis?
  table(wisc.df$diagnosis)
 В
      Μ
357 212
  sum(wisc.df$diagnosis=="M")
[1] 212
    Q3. How many variables/features in the data are suffixed with _mean?
  x <- colnames(wisc.df)</pre>
  length(grep("_mean",x))
[1] 10
  X
 [1] "diagnosis"
                                 "radius_mean"
                                 "perimeter_mean"
 [3] "texture_mean"
 [5] "area_mean"
                                 "smoothness_mean"
 [7] "compactness_mean"
                                 "concavity_mean"
 [9] "concave.points_mean"
                                 "symmetry mean"
[11] "fractal_dimension_mean"
                                 "radius_se"
[13] "texture se"
                                 "perimeter_se"
[15] "area_se"
                                 "smoothness_se"
                                 "concavity_se"
[17] "compactness_se"
[19] "concave.points_se"
                                 "symmetry_se"
[21] "fractal_dimension_se"
                                 "radius_worst"
[23] "texture_worst"
                                 "perimeter_worst"
                                 "smoothness_worst"
[25] "area_worst"
```

[31] "fractal_dimension_worst"

Check column means and standard deviations
colMeans(wisc.data)

radius_mean	texture_mean	perimeter_mean
1.412729e+01	1.928965e+01	9.196903e+01
area_mean	${\tt smoothness_mean}$	compactness_mean
6.548891e+02	9.636028e-02	1.043410e-01
concavity_mean	concave.points_mean	symmetry_mean
8.879932e-02	4.891915e-02	1.811619e-01
<pre>fractal_dimension_mean</pre>	radius_se	texture_se
6.279761e-02	4.051721e-01	1.216853e+00
perimeter_se	area_se	smoothness_se
2.866059e+00	4.033708e+01	7.040979e-03
compactness_se	concavity_se	concave.points_se
2.547814e-02	3.189372e-02	1.179614e-02
symmetry_se	fractal_dimension_se	radius_worst
2.054230e-02	3.794904e-03	1.626919e+01
texture_worst	perimeter_worst	area_worst
2.567722e+01	1.072612e+02	8.805831e+02
smoothness_worst	compactness_worst	concavity_worst
1.323686e-01	2.542650e-01	2.721885e-01
<pre>concave.points_worst</pre>	symmetry_worst	<pre>fractal_dimension_worst</pre>
1.146062e-01	2.900756e-01	8.394582e-02

apply(wisc.data,2,sd)

radius_mean	texture_mean	perimeter_mean
3.524049e+00	4.301036e+00	2.429898e+01
area_mean	${\tt smoothness_mean}$	compactness_mean
3.519141e+02	1.406413e-02	5.281276e-02
concavity_mean	concave.points_mean	symmetry_mean
7.971981e-02	3.880284e-02	2.741428e-02
fractal_dimension_mean	radius_se	texture_se
7.060363e-03	2.773127e-01	5.516484e-01
perimeter_se	area_se	smoothness_se
2.021855e+00	4.549101e+01	3.002518e-03

```
compactness_se
                                concavity_se
                                                    concave.points_se
        1.790818e-02
                                3.018606e-02
                                                         6.170285e-03
                                                         radius_worst
         symmetry_se
                        fractal_dimension_se
        8.266372e-03
                                2.646071e-03
                                                         4.833242e+00
       texture worst
                             perimeter worst
                                                           area worst
        6.146258e+00
                                3.360254e+01
                                                         5.693570e+02
    smoothness worst
                           compactness worst
                                                      concavity worst
        2.283243e-02
                                1.573365e-01
                                                         2.086243e-01
concave.points worst
                              symmetry_worst fractal_dimension_worst
        6.573234e-02
                                                         1.806127e-02
                                6.186747e-02
```

```
# Perform PCA on wisc.data by completing the following code
wisc.pr <- prcomp(wisc.data, center = TRUE, scale. = TRUE)
# Look at summary of results
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                  PC2
                                          PC3
                                                  PC4
                                                           PC5
                                                                   PC6
                                                                           PC7
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Standard deviation
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                            PC8
                                   PC9
                                          PC10
                                                 PC11
                                                         PC12
                                                                  PC13
                                                                          PC14
Standard deviation
                       0.69037 \ 0.6457 \ 0.59219 \ 0.5421 \ 0.51104 \ 0.49128 \ 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 \ 0.9399 \ 0.95157 \ 0.9614 \ 0.97007 \ 0.97812 \ 0.98335
                           PC15
                                   PC16
                                           PC17
                                                   PC18
                                                           PC19
                                                                    PC20
                                                                           PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                                   PC23
                                          PC24
                                                  PC25
                                                           PC26
                                                                   PC27
                           PC22
                                                                           PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                           PC29
                                   PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

```
pc1_variance <- summary(wisc.pr)$importance[2, 1]</pre>
  pc1_variance
[1] 0.44272
     Q5. How many principal components (PCs) are required to describe at least 70%
     of the original variance in the data?
   cum_var <- cumsum(summary(wisc.pr)$importance[2,])</pre>
  num_pcs_70 \leftarrow which(cum_var >= 0.70)[1]
  num_pcs_70
PC3
  3
     Q6. How many principal components (PCs) are required to describe at least 90%
     of the original variance in the data?
  num_pcs_90 \leftarrow which(cum_var >= 0.90)[1]
  num_pcs_90
PC7
  7
```

Principal Component Analysis

We need to scale our input data before PCA as some of the columns are measured in terms of very different units with different means and different variances. The upshot here is we set scale=TRUE argument to prcomp()

```
wisc.pr <- prcomp( wisc.data, scale= TRUE )
summary (wisc.pr)</pre>
```

Importance of components:

```
PC1 PC2 PC3 PC4 PC5 PC6 PC7 Standard deviation 3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172 Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251 Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
```

```
PC8
                                   PC9
                                          PC10
                                                 PC11
                                                          PC12
                                                                  PC13
                                                                          PC14
Standard deviation
                       0.69037 \ 0.6457 \ 0.59219 \ 0.5421 \ 0.51104 \ 0.49128 \ 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                                   PC16
                                           PC17
                                                   PC18
                                                            PC19
                                                                    PC20
                           PC15
                                                                           PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                           PC22
                                   PC23
                                          PC24
                                                  PC25
                                                           PC26
                                                                   PC27
                                                                           PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion
                       0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                           PC29
                                   PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion
                       1.00000 1.00000
```

Generate one of our main result figures - the PC plot (a.k.a. "source plot", "orientation plot", "PC1 vs PC2 plot", "PC plot", "Projection plot", etc.) It is known by different names in different fields.

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

biplot(wisc.pr)

 $\verb|plot(wisc.pr$x[,1],wisc.pr$x[,2], col = diagnosis|)|$

Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

Add a ggplot version

```
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis

# Load the ggplot2 package
library(ggplot2)

# Make a scatter plot colored by diagnosis
ggplot(df) +
   aes(PC1, PC2, col=diagnosis) +
   geom_point()</pre>
```


Calculate variance of each principal component

```
pr.var <- (wisc.pr$sdev^2)
head(pr.var)

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357</pre>
```

Variance explained by each principal component: pve

```
pve <- pr.var / sum(pr.var)</pre>
```

Plot variance explained for each principal component

```
plot(pve, xlab = "Principal Component",
    ylab = "Proportion of Variance Explained",
    ylim = c(0, 1), type = "o")
```


Alternative scree plot of the same data, note data driven y-axis

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

```
wisc.pr$rotation["concave.points_mean", 1]
```

[1] -0.2608538

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

```
cumulative_pve <- cumsum(pve)
which(cumulative_pve >= 0.8)[1]
```

[1] 5

Hierarchical clustering

Can we just use clustering on the original data and get some insight into M vs B? It is difficult, this "tree" looks like a hot mess... Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
#distance matrix needed for hclust

data.dist <- dist(scale(wisc.data))
wisc.hclust <- hclust(data.dist)
plot(wisc.hclust)
abline(h = wisc.hclust$height[length(wisc.hclust$height) - 4 + 1], col="red", lty=2)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "complete")

```
wisc.hclust.clusters <- cutree(wisc.hclust, k=4)
table(wisc.hclust.clusters, diagnosis)</pre>
```

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

```
comparison_list <- list()</pre>
  for(k in 2:10) {
    clusters <- cutree(wisc.hclust, k)</pre>
    comp_table <- table(clusters, diagnosis)</pre>
    comparison_list[[paste0("k=", k)]] <- comp_table</pre>
  }
  comparison_list
$`k=2`
        diagnosis
          В
clusters
       1 357 210
       2
          0 2
$`k=3`
        diagnosis
clusters
           В
               М
       1 355 205
       2
           2
               5
       3
           0
               2
$`k=4`
        diagnosis
clusters
           В
               Μ
       1 12 165
       2 2
       3 343 40
       4 0
             2
$`k=5`
        diagnosis
clusters
           В
               Μ
       1
         12 165
       2
          0
               5
       3 343 40
               0
       5
           0
               2
```

\$`k=6`

\$`k=7`

\$`k=8`

\$`k=9`

```
7
      8
          0 2
              1
$`k=10`
       diagnosis
clusters
         В
         12
     1
             86
     2
          0
             59
     3
          0
              3
       331
             39
     5
         0
             20
     6
          2
              0
     7
        12
             0
     8
             2
          0
             2
     10
          0
              1
```

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

```
methods <- c("single", "complete", "average", "ward.D2")</pre>
  results = list()
  for(method in methods) {
    hclust_obj = hclust(data.dist, method = method)
    clusters = cutree(hclust_obj, k = 4)
    comp_table = table(clusters, diagnosis)
    results[[method]] = comp_table
  results
$single
```

diagnosis clusters В 1 356 209

```
$complete
```

```
diagnosis
clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
```

\$average

```
diagnosis
clusters B M
1 355 209
2 2 0
3 0 1
4 0 2
```

\$ward.D2

```
diagnosis
clusters B M
1 0 115
2 6 48
3 337 48
4 14 1
```

5. combining methods

This approach will take not orignal data but our PCA results and work with the.

```
d <- dist(wisc.pr$x[,1:3])
wisc.pr.hclust <- hclust(d, method = "ward.D2")
plot(wisc.pr.hclust)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

Generate 2 cluster groups from this helust object.

```
grps <- cutree(wisc.pr.hclust, k= 2)
grps</pre>
```

1 1	4458202 1 4799002 1 851509
1 1 2 1 1 2 1 848406 84862001 849014 8510426 8510653 8510824 8511133 2 1 1 2 2 2 1 852552 852631 852763 852781 852973 853201 853401 1 1 1 1 1 2 1 85382601 854002 854039 854253 854268 854941 855133 1 1 1 1 1 2 2 855167 855563 855625 856106 85638502 857010 85713702 2 1 1 1 2 1 2	1
1 1 2 1 1 2 1 848406 84862001 849014 8510426 8510653 8510824 8511133 2 1 1 2 2 2 1 852552 852631 852763 852781 852973 853201 853401 1 1 1 1 1 2 1 85382601 854002 854039 854253 854268 854941 855133 1 1 1 1 1 2 2 855167 855563 855625 856106 85638502 857010 85713702 2 1 1 1 2 1 2	1
2 1 1 2 2 2 2 1 852552 852631 852763 852781 852973 853201 853401 1 1 1 1 1 2 1 85382601 854002 854039 854253 854268 854941 855133 1 1 1 1 1 2 2 855167 855563 855625 856106 85638502 857010 85713702 2 1 1 1 2 1 2	1 851509
2 1 1 2 2 2 2 1 852552 852631 852763 852781 852973 853201 853401 1 1 1 1 1 2 1 85382601 854002 854039 854253 854268 854941 855133 1 1 1 1 1 2 2 855167 855563 855625 856106 85638502 857010 85713702 2 1 1 1 2 1 2	851509
1 1 1 1 1 2 1 85382601 854002 854039 854253 854268 854941 855133 1 1 1 1 1 2 2 855167 855563 855625 856106 85638502 857010 85713702 2 1 1 1 2 1 2	
1 1 1 1 1 2 1 85382601 854002 854039 854253 854268 854941 855133 1 1 1 1 1 2 2 855167 855563 855625 856106 85638502 857010 85713702 2 1 1 1 2 1 2	1
1 1 1 1 1 1 2 2 855167 855563 855625 856106 85638502 857010 85713702 2 1 1 1 1 2 1 2	853612
1 1 1 1 1 1 2 2 855167 855563 855625 856106 85638502 857010 85713702 2 1 1 1 1 2 1 2	1
2 1 1 1 2 1 2	855138
2 1 1 1 2 1 2	1
	85715
857155 857156 857343 857373 857374 857392 857438 85	1
001100 001100 001040 001010 001014 001092 001400 00	5759902
2 2 2 2 1 2	2
857637 857793 857810 858477 858970 858981 858986	859196
1 1 2 2 2 2 1	2
85922302 859283 859464 859465 859471 859487 859575	859711

1	1	2	2	1	2	1	1
859717	859983				8610637		8610908
1	2	2	2				
861103	8611161	8611555	8611792	8612080	8612399	86135501	86135502
2	1	1	1	2	1	2	1
861597	861598	861648	861799	861853	862009	862028	86208
2	1	2	2	2	2	1	1
86211	862261	862485	862548	862717	862722	862965	862980
2	2	2	1	2	2	2	2
862989	863030	863031	863270	86355	864018	864033	86408
2	1	2	2	1	2	2	2
86409	864292	864496	864685	864726	864729	864877	865128
1	2	2	2	2	1	1	2
865137	86517	865423	865432	865468	86561	866083	866203
2	1	1	2	2	2	2	1
866458	866674	866714	8670	86730502	867387	867739	868202
1	1	2	1	1	2	1	2
868223	868682	868826	868871	868999	869104	869218	869224
2	2	1	2	2	2	2	2
869254	869476	869691	86973701	86973702	869931	871001501	871001502
2	2	1	2	2	2	2	1
8710441	87106	8711002	8711003	8711202	8711216	871122	871149
1	2	2	2	1	2	2	2
8711561	8711803	871201	8712064	8712289	8712291	87127	8712729
2	1	1	2	1	2	2	2
8712766	8712853	87139402	87163	87164	871641	871642	872113
1	2	2	2	1	2	2	2
872608	87281702	873357	873586	873592	873593	873701	873843
1	1	2	2	1	1	1	2
873885	874158	874217	874373	874662	874839	874858	875093
2	2	2	2	2	2	1	2
875099	875263	87556202	875878	875938	877159	877486	877500
2	1	1	2	1	1	1	1
877501	877989	878796	87880	87930	879523	879804	879830
2	1	1	1	2	2	2	2
8810158	8810436	881046502	8810528	8810703	881094802	8810955	8810987
1	2	1	2	1	1	1	1
8811523	8811779	8811842	88119002	8812816	8812818	8812844	8812877
2	2	1	1	2	2	2	1
8813129	88143502	88147101	88147102	88147202	881861	881972	88199202
		2					
88203002	88206102	882488	88249602	88299702	883263	883270	88330202
2	1	2	2	1	1	2	1

884626	884448	884437	884180	88411702	883852	883539	88350402
1	2	2	1	2	1	2	2
886452	886226	8860702	885429	88518501	884948	884689	88466802
1	1	1	1	2	1	2	2
889403	888570	888264	887549	88725602	887181	886776	88649001
2	1	2	1	1	1	1	1
8910748	8910721	8910720	8910506	8910499	8910251	88995002	889719
2	2	2	2	2	2	1	1
8911834	8911800	8911670	8911230	8911164	8911163	8910996	8910988
2	2	2	2	2	2	2	1
8913	8912909	8912521	8912284	8912280	89122	8912055	8912049
2	2	2	2	1	1	2	1
891923	891716	891703	891670	8915	89143602	89143601	8913049
2	2	2	2	2	1	2	1
892657	89263202	892604	892438	892399	892214	892189	891936
2	1	2	1	2	2	2	2
89382601	893783	893548	893526	89346	89344	893061	89296
2	2	2	2	2	2	2	2
894335	894329	894326	894090	894089	894047	893988	89382602
2	1	1	2	2	2	2	2
895299	89524	89511502	89511501	895100	894855	894618	894604
2	2	2	2	1	2	1	2
89742801	897374	897137	897132	896864	896839	895633	8953902
1	2	2	2	2	1	1	1
898431	89827	898143	89813	89812	897880	897630	897604
1	2	2	1	1	2	1	2
899667	899187	899147	898690	89869	898678	898677	89864002
1	2	2	2	2	2	2	2
901034301	9010333	901028	9010259	9010258	901011	9010018	899987
2	2	2	2	2	2	1	1
9011495	9011494	901088	9010877	9010872	9010598	901041	901034302
2	1	1	2	2	2	2	2
901303	9013005	901288	9012795	9012568	9012315	9012000	9011971
2	2	1	1	2	1	1	1
90251	90250	901836	901549	9013838	9013594	9013579	901315
2	2	2	2	1	2	2	1
903483			903011	902976	902975	90291	902727
2	2	1	2	2	2	2	2
904357	904302	90401602	90401601	903811	903554	903516	903507
2	2	2	2	2	2	1	1
905190	905189	904971	904969	9047	904689	904647	90439701
2	2	2	2	2	2	2	1
905686	905680	905557	905539	905520	905502	905501	90524101

1	2	2	2	2	2	2	2
905978	90602302						
2	1	2	2	2	1	2	2
907145	907367	907409				907914	907915
2		2		2			2
908194	908445	908469				909231	909410
1	1	2	1	2	2	2	2
909411	909445	90944601	909777	9110127	9110720	9110732	9110944
					2		
911150	911157302	9111596	9111805	9111843	911201	911202	9112085
2	1	2	1	2	2	2	2
9112366	9112367	9112594	9112712	911296201	911296202	9113156	911320501
2	2	2	2	1	1	2	2
911320502	9113239	9113455	9113514	9113538	911366	9113778	9113816
2	1	2	2	1	2	2	2
911384	9113846	911391	911408	911654	911673	911685	911916
2	2	2	2	2	2	2	1
912193	91227	912519	912558	912600	913063	913102	913505
2	2	2	2	2	1	2	1
913512	913535	91376701	91376702	914062	914101	914102	914333
2	2	2	2	1	2	2	2
914366	914580	914769			91504		
1	2	1	1	2	1	2	1
915186	915276	91544001	91544002	915452	915460	91550	915664
1	1	2	2	2	1	2	2
915691	915940						
1		2					
917092	91762702						91813702
2					2		2
918192	918465						
2		2		2			
	919812						
_	2	_	_	_	_	_	_
922297	922576						
2							
	924342						
	2						
	925311						
2		1	1	1	1	2	1
92751							
2							

plot(wisc.pr\$x[,1:2], col=diagnosis)

Q15. How well does the newly created model with four clusters separate out the two diagnoses?