# **PRÁCTICA 5.4**

# INSTALACIÓN, CONFIGURACIÓN Y GESTIÓN DE UN SERVIDOR DNS

**FECHA DE INICIO:** 23/01/2025

**FECHA DE FINALIZACIÓN ESPERADA:** 27/01/2025

**RA ASOCIADO:** RA5. Verifica la ejecución de aplicaciones web comprobando los parámetros de configuración de servicios de red.

#### Contenido

| OBJETIVOS                                                                | 1  |
|--------------------------------------------------------------------------|----|
| ENUNCIADO                                                                |    |
| PARTE 1. INSTALACIÓN Y CONFIGURACIÓN DE BIND9                            |    |
| PARTE 2. CONFIGURACIÓN DEL SERVIDOR UBUNTU CON BIND9 COMO SERVIDOR DNS   |    |
| CACHÉ                                                                    |    |
| PARTE 3. CONFIGURACIÓN DE UN SERVIDOR DNS MAESTRO PARA LA ZONA           |    |
| "INFORMATICA.ORG." CREACIÓN DE ZONA MAESTRA DIRECTA                      | 11 |
| PARTE 4. CONFIGURACIÓN DEL SERVIDOR DNS MAESTRO PARA LA ZONA INVERSA     | 15 |
| "168.192.IN-ADDR.ARPA"                                                   | 15 |
| PARTE 5. GESTIÓN DEL SERVIDOR DNS. INSTALACIÓN Y CONFIGURACIÓN DE WEBMIN | 17 |
| Instalación y Configuración de Webmin en el Servidor Ubuntu              | 17 |
| Pruebas de Configuración del Servidor DNS usando Webmin                  | 20 |
| DOCUMENTACIÓN                                                            | 28 |

#### **OBJETIVOS**

- Instalar y configurar BIND9 en un servidor Ubuntu para que funcione como servidor DNS.
- Configurar la red del servidor y del cliente para permitir la comunicación y el uso del servidor DNS.
- Configurar BIND9 para funcionar como servidor DNS caché con reenviadores a servidores DNS públicos.

- Crear una zona DNS directa con registros A, CNAME y MX.
- Configurar una zona inversa y comprobar la resolución de nombres con nslookup.

#### **ENUNCIADO**

# PARTE 1. INSTALACIÓN Y CONFIGURACIÓN DE BIND9

1) Configura una máquina virtual con Ubuntu Server en NAT y configuración de red automática.





```
adrian@servidor–adrian:~$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
      valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
<u>2: enpOs3: <BROADCAST,MUL</u>TICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 100
    link/ether 08:00:27:48:0e:67 brd ff:ff:ff:ff:ff
    inet 10.0.2.15/24 metric 100 brd 10.0.2.255 scope global dynamic enp0s3
       valid_lft 81115sec preferred_lft 81115sec
    inet6 fd00::a00:27ff:fe48:e67/64 scope global dynamic mngtmpaddr noprefixroute
       valid_lft 86183sec preferred_lft 14183sec
    inet6 fe80::a00:27ff:fe48:e67/64 scope link
       valid_lft forever preferred_lft forever
3: enpOs8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 100
    link/ether 08:00:27:54:ac:e1 brd ff:ff:ff:ff:ff
    inet 192.168.222.1/24 scope global enp0s8
       valid_lft forever preferred_lft forever
    inet6 fe80::a00:27ff:fe54:ace1/64 scope link
       valid_lft forever preferred_lft forever
adrian@servidor–adrian:~$ _
```

- 2) Instala la aplicación "bind9" en el servidor para que pueda trabajar como servidor DNS.
- Abre el terminal e introduce el comando de instalación:

sudo apt update sudo apt install bind9 bind9-utils -y

- 3) Comprueba que la aplicación está instalada correctamente verificando su estado.
- Introduce el comando correspondiente para ver el estado del servicio:

sudo service bind9 status ó systemctl status bind9.service

Una vez realizada la instalación esta sería la revisión:

```
adrian@servidor–adrian:~$ <mark>s</mark>y
 named.service - BIND Domain Name Server
     Loaded: loaded (/lib/systemd/system/named.service; enabled; vendor preset: enabled)
     Active: active (running) since Wed 2025-01-29 23:56:51 UTC; 14min ago
       Docs: man:named(8)
  Main PID: 2681 (named)
      Tasks: 8 (limit: 4564)
     Memory: 7.1M
CPU: 690ms
     CGroup: /system.slice/named.service
               2681 /usr/sbin/named –u bind
ene 29 23:57:28 servidor–adrian named[2681]:
                                                  validating QIDPTSN7PHFA4KH4FBHLLONRHAD3F493.webmin.c
ene 29 23:57:40 servidor–adrian named[2681]:
                                                  validating webmin.com/SOA: no valid signature found
                                                 validating I9A32AR57CKC18CAUN99K9K9UNH2RCMR.webmin.ovalidating 56TTAA9J2I9OASKRBSADUHO2DHTHU3V8.webmin.o
ene 29 23:57:40 servidor–adrian named[2681]:
ene 29 23:57:40 servidor–adrian named[2681]:
ene 29 23:57:40 servidor–adrian named[2681]:
                                                  validating 5KJOQO9OB7TCCGOSEC2U76KBJ1F1DUIQ.webmin.
ene 29 23:57:40 servidor–adrian named[2681]: validating download.webmin.com/A: no valid signature
ene 29 23:57:40 servidor–adrian named[2681]: validating download.webmin.com/AAAA: no valid signatu
ene 30 00:02:47 servidor–adrian named[2681]: validating announce.webmin.com/A: no valid signature
ene 30 00:02:47 servidor–adrian named[2681]:
                                                  validating webmin.com/SOA: no valid signature found
ene 30 00:02:47 servidor–adrian named[2681]:
                                                  validating R619E0I7BOS6M6KS6IUO7NAI3B4SDLD2.webmin.c
lines 1-21/21 (END)
```

# PARTE 2. CONFIGURACIÓN DEL SERVIDOR UBUNTU CON BIND9 COMO SERVIDOR DNS CACHÉ

#### 1) Configuración de red del servidor Ubuntu · Agregar una tarjeta de red adicional:

Antes de encender la máquina, añade una tarjeta de red desde la configuración VirtualBox. Configura:

- o **Primera tarjeta de red**: NAT (para acceso a internet).
- Segunda tarjeta de red: Red interna (para comunicación con el cliente).
- Editar la configuración de red: En Ubuntu Server con Netplan (versión reciente), edita el archivo de configuración en /etc/netplan/01-netcfg.yaml:

```
network:
version: 2
ethernets:
enp0s3:
dhcp4: true # Red NAT
enp0s8:
addresses:
- 192.168.222.1/24 # Dirección estática para la red interna
```

Asegúrate de usar los nombres correctos de las interfaces (enp0s3, enp0s8). Puedes verificarlos con ip a.

- Aplica cambios: Ejecuta: sudo netplan apply
- Activar reenvío de paquetes (ip\_forward): Para permitir que el tráfico entre las redes NAT e interna pueda circular, habilita el reenvío de paquetes editando el archivo de configuración del sistema: sudo nano /etc/sysctl.conf o Descomenta o agrega la siguiente línea:

```
net.ipv4.ip_forward = 1 o
   Aplica los cambios con:
sudo sysctl -p
```

#### Habilitar NAT (mascarado) en el servidor Ubuntu:

- 1. Habilitar enmascaramiento de IP:
  - Para permitir que el tráfico de la red interna se enrute a través de la red NAT, ejecuta el siguiente comando:

#### sudo iptables -t nat -A POSTROUTING -o enp0s3 -j MASQUERADE

**Nota**: Asegúrate de que enp0s3 es la interfaz correcta de la red NAT (puedes verificar las interfaces con ip a).

- 2. Hacer que la configuración de iptables persista:
  - Para que la configuración del NAT persista después de un reinicio, guarda las reglas de iptables con el siguiente comando:

sudo sh -c "iptables-save > /etc/iptables/rules.v4"

```
adrian@servidor–adrian:~$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
        valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
  valid_lft forever preferred_lft forever
2: enpOs3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 100
    link/ether 08:00:27:48:0e:67 brd ff:ff:ff:ff:ff
    inet 10.0.2.15/24 metric 100 brd 10.0.2.255 scope global dynamic enp0s3
  valid_lft 81115sec preferred_lft 81115sec
inet6 fd00::a00:27ff:fe48:e67/64 scope global dynamic mngtmpaddr noprefixroute
       valid_lft 86183sec preferred_lft 14183sec
    inet6 fe80::a00:27ff:fe48:e67/64 scope link
        valid_lft forever preferred_lft forever
3: enpOs8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 100
    link/ether 08:00:27:54:ac:e1 brd ff:ff:ff:ff:ff
    inet 192.168.222.1/24 scope global enp0s8
        valid_lft forever preferred_lft forever
    inet6 fe80::a00:27ff:fe54:ace1/64 scope link
valid_lft forever preferred_lft forever
adrian@servidor–adrian:~$ _
```

#### 2) Configuración del cliente Ubuntu para usar el servidor DNS

#### Configura los parámetros de red del cliente:

#### a) Accede a la configuración de red:

- a. Haz clic en el icono de red en la barra superior (generalmente en la esquina derecha).
- b. Selecciona la opción "Configuración de red" o "Configuración de conexiones de red" (dependiendo de la versión de Ubuntu Desktop).

#### b) Selecciona la conexión:

- a. En la ventana de configuración de red, busca la conexión de red activa (por ejemplo, Ethernet).
- b. Haz clic en el icono de engranaje o selecciona "Configuración".

## c) Configura los parámetros de red manualmente:

- a. Ve a la pestaña IPv4.
- b. Cambia el método de "Automático (DHCP)" a "Manual".
- c. Ingresa los siguientes parámetros:
  - i. **Dirección IP**: 192.168.222.2
  - ii. **Máscara de red**: 255.255.255.0 o el prefijo /24. iii. **Puerta de enlace (Gateway)**: Si tienes un servidor que actúa como puerta de enlace, coloca su IP aquí (por ejemplo, 192.168.222.1).
  - iv. **Servidores DNS**: Escribe la dirección del servidor DNS (por ejemplo, 192.168.222.1).

#### d) Guarda los cambios:

- a. Haz clic en "Guardar" o "Aplicar".
- b. Apaga y enciende la interfaz para actualizar



#### Verifica la conectividad:

```
adrian@cliente-ubuntu:~$ ping 192.168.222.1
PING 192.168.222.1 (192.168.222.1) 56(84) bytes of data.
64 bytes from 192.168.222.1: icmp_seq=1 ttl=64 time=1.14 ms
64 bytes from 192.168.222.1: icmp_seq=2 ttl=64 time=0.758 ms
64 bytes from 192.168.222.1: icmp_seq=3 ttl=64 time=0.938 ms
```

```
adrian@cliente-ubuntu:~$ nslookup www.google.com 192.168.222.1
Server: 192.168.222.1
Address: 192.168.222.1#53

Non-authoritative answer:
Name: www.google.com
Address: 142.250.200.132
Name: www.google.com
Address: 2a00:1450:4003:808::2004

adrian@cliente-ubuntu:~$
```

#### 3) Configuración del servidor DNS con reenviadores de Google

• Configura los reenviadores: Edita el archivo /etc/bind/named.conf.options: sudo nano /etc/bind/named.conf.options Asegúrate

de que contiene:

```
options {
    directory "/var/cache/bind";

    recursion yes;  # Habilitar la recursión
    allow-query { any; };  # Permitir consultas desde cualquier cliente

    forwarders {
        8.8.8.8;  # DNS de Google
        8.8.4.4;
    };

    dnssec-validation auto; # Validación DNSSEC automática
};

Reinicia BIND9:
```

Tiene que quedar tal que así:

sudo systemctl restart bind9

```
servidor-ubuntu DNS [Corriendo] - Oracle VirtualBox

Archivo Máquina Ver Entrada Dispositivos Ayuda

GNU nano 6.2 /etc/bind/named.conf.options
ptions {
directory "/var/cache/bind";
recursion yes; # Habilitar la recursión
allow-query { any; }; # Permitir consultas desde cualquier cliente
forwarders {
8.8.8.8; # DNS de Google
8.8.4.4;
};
dnssec-validation auto; # Validación DNSSEC automática
;
```

#### 4) Pruebas con nslookup

<u>Desde el cliente Ubuntu</u>, realiza consultas DNS para comprobar la resolución de nombres:

nslookup www.uned.es www.twitter.com nslookup www.amazon.es nslookup www.ubuntu.com

Verifica que las respuestas provengan del servidor Ubuntu configurado.

```
adrian@cliente-ubuntu:~$ nslookup www.uned.es
nslookup www.twitter.com
nslookup www.amazon.es
nslookup www.ubuntu.com
Server:
           127.0.0.53
Address:
              127.0.0.53#53
Non-authoritative answer:
www.uned.es canonical name = k8swin.uned.es.
Name: k8swin.uned.es
Address: 62.204.213.111
Server:
               127.0.0.53
Address: 127.0.0.53#53
Non-authoritative answer:
www.twitter.com canonical name = twitter.com.
      twitter.com
Address: 104.244.42.129
Server:
             127.0.0.53
Address:
             127.0.0.53#53
Non-authoritative answer:
www.amazon.es canonical name = tp.1fe6d5bb2-frontier.amazon.es.
tp.1fe6d5bb2-frontier.amazon.es canonical name = d12yd29zdqmfwy.cloudfront.net.
       d12yd29zdqmfwy.cloudfront.net
Address: 18.67.249.20
Name: d12yd29zdqmfwy.cloudfront.net
Address: 2600:9000:24de:7200:15:da86:494:7521
```

```
Address: 2600:9000:24de:1800:15:da86:494:7521
Name: d12yd29zdqmfwy.cloudfront.net
Address: 2600:9000:24de:1000:15:da86:494:7521
Name: d12yd29zdqmfwy.cloudfront.net
Address: 2600:9000:24de:9c00:15:da86:494:7521
Name: d12yd29zdqmfwy.cloudfront.net
Address: 2600:9000:24de:9e00:15:da86:494:7521
Name: d12yd29zdqmfwy.cloudfront.net
Address: 2600:9000:24de:cc00:15:da86:494:7521
Name: d12yd29zdqmfwy.cloudfront.net
Address: 2600:9000:24de:b200:15:da86:494:7521
      d12vd29zdamfwv.cloudfront.net
Address: 2600:9000:24de:4a00:15:da86:494:7521
Server:
               127.0.0.53
Address:
               127.0.0.53#53
Non-authoritative answer:
Name: www.ubuntu.com
Address: 185.125.190.29
Name: www.ubuntu.com
Address: 185.125.190.20
Name: www.ubuntu.com
Address: 185.125.190.21
Name: www.ubuntu.com
Address: 2620:2d:4000:1::27
Name: www.ubuntu.com
Address: 2620:2d:4000:1::26
Name: www.ubuntu.com
```

d12yd29zdqmfwy.cloudfront.net

#### 5) Mostrar la caché de consultas

• Generar y visualizar la caché de consultas: En el servidor, ejecuta:

```
sudo rndc dumpdb -cache
sudo nano /var/cache/bind/named dump.db
```

Observa las consultas realizadas desde el cliente en el archivo named\_dump.db.

```
GNU nano 6.2
                                       /var/cache/bind/named_dump.db
Start view _default
Cache dump of view '_default' (cache _default)
using a O second stale ttl
DATE 20250130002216
secure
                        516912
                                IN NS
                                         a.root-servers.net.
                        516912
516912
                                IN NS
                                        b.root-servers.net.
                                IN NS
                                        c.root-servers.net.
                        516912
                                IN NS
                                        d.root-servers.net.
                        516912
                                        e.root-servers.net.
                                IN NS
                        516912
                                IN NS
                                         f.root-servers.net.
                        516912
                                IN NS
                                        g.root-servers.net.
                        516912
                                IN NS
                                        h.root-servers.net.
                        516912
                                IN NS
                                         i.root-servers.net.
                        516912
                                IN NS
                                         j.root-servers.net.
                        516912
                                IN NS
                                        k.root-servers.net.
                        516912
                                IN NS
                                         1.root-servers.net.
                        516912
                                IN NS
                                        m.root-servers.net.
secure
                        516912 RRSIG
                                        NS 8 0 518400 (
                                         20250211230000 20250129220000 26470 .
                                         kS33VHF5bJW1S+434xLQA74SY0je1peVibTm
                                         AKyXxIahgx39jxG71812IOrm46RNmvin/RO+
                                         gUQOVZyFkuOohyDxwxkIsF4r9hCKCmQQSGEu
Mhanh2opu/qOkw5OZ1ZDu2Z3jH2qt7hLTyNk
                                         10CeCmFfF0VEaeYK1xFEGvkXu3sYpNxcHJωZ
                                         uBFZiensevW4WS3wkHrqkOzviKb1l1kE+ZNl
                                         wtd2+BuGF2YGtMIJKDgjUrQ3+Oys8P0ExMZ8
                                         CNRZ+8x/ZCIK6t4W+ix5jfITPzbE5LFmfJvB
                                         [ Read 1196 lines ]
                                                                                       M-U Undo
 Help
                Write Out
                               Where Is
                                              Cut
                                                             Execute
                                                                           Location
                Read File
                                                             Justifu
 Exit
                               Replace
                                              Paste
                                                                           Go To Line
                                                                                           Redo
```

PARTE 3. CONFIGURACIÓN DE UN SERVIDOR DNS MAESTRO PARA LA ZONA "INFORMATICA.ORG." CREACIÓN DE ZONA MAESTRA DIRECTA

#### **Instrucciones:**

#### 1) Crea los archivos de zona para la zona "informatica.org."

- Abre el archivo named.conf.local: sudo nano /etc/bind/named.conf.local
- Introduce al final de este archivo: zone "informatica.org" {

```
type master;
file "/etc/bind/db.informatica.org";
```

copia la plantilla con el nombre db.informatica.org: sudo cp /etc/bind/db.local

#### /etc/bind/db.informatica.org

- Edita el archivo de zona: sudo nano /etc/bind/db.informatica.org
- · Realiza las siguientes modificaciones:
  - o Cambia localhost por informatica.org.
  - Sustituiye la dirección IP por la del servidor.
- Verificar que el archivo no contiene errores antes de reiniciar el servicio:

named-checkzone informatica.org /etc/bind/db.informatica.org

• Reiniciar el servicio Bind9 si no hay errores:

sudo systemctl restart bind9.service

#### 2) Añade registros para resolver las siguientes consultas:

- Registros A:
  - $\circ$  www.informatica.org.  $\rightarrow$  122.122.125.46  $\circ$  penacastillo.informatica.org.  $\rightarrow$  34.1.34.32  $\circ$  alisal.informatica.org.  $\rightarrow$  192.168.52.100  $\circ$  torrelavega.informatica.org.  $\rightarrow$  100.168.168.10  $\circ$  castro.informatica.org.  $\rightarrow$  192.35.35.35
- · Edita el archivo db.informatica.org: sudo nano /etc/bind/db.informatica.org
- Añade los registros A:

```
www.informatica.org. IN A 122.122.125.46

penacastillo.informatica.org. IN A 34.1.34.32 alisal.informatica.org.
IN A 192.168.52.100 torrelavega.informatica.org. IN A 100.168.168.10

castro informatica.org. IN A 192.35.35
```

- Verifica el archivo de zona: named-checkzone informatica.org /etc/bind/db.informatica.org
- Reinicia Bind9 si no hay errores:

sudo systemctl restart bind9.service

#### 3) Añade alias para los registros anteriores:

- Alias (CNAME):
  - web.informatica.org. → www.informatica.org.
  - o ateca.informatica.org. → penacastillo.informatica.org.
  - atenea.informatica.org. → alisal.informatica.org.
  - $\circ$  aula3.informatica.org.  $\rightarrow$  torrelavega.informatica.org.
  - o aula5.informatica.org. → castro.informatica.org.

- Edita el archivo db.informatica.org: sudo nano /etc/bind/db.informatica.org
- Añade los registros CNAME:

web.informatica.org. IN CNAME www.informatica.org. ateca.informatica.org. IN CNAME penacastillo.informatica.org. atenea.informatica.org. IN CNAME alisal.informatica.org. aula3.informatica.org. IN CNAME torrelavega.informatica.org. aula5.informatica.org. IN CNAME castro informatica.org.

- Verifica el archivo de zona: named-checkzone informatica.org /etc/bind/db.informatica.org
- Reinicia Bind9 si no hay errores: sudo systemctl restart bind9.service

#### 4) Añade registros MX para los servidores de correo:

- Servidores de correo:
  - o correo.informatica.org. (prioridad 10) o email35.arlo.es. (prioridad 20)
- Edita el archivo db.informatica.org: sudo nano /etc/bind/db.informatica.org Añade los registros MX:
  - @ IN MX 10 correo.informatica.org.
- @ IN MX 20 email35.arlo.es.
- Verifica el archivo de zona: named-checkzone informatica.org /etc/bind/db.informatica.org
- Reinicia Bind9 si no hay errores: sudo systemctl restart bind9.service

Debería quedar el archivo modificado tal que así:

```
GNU nano 6.2
                                                          /etc/bind/db.informatica.org
   BIND data file for local loopback interface
            604800
            IN
                         SOA
                                     informatica.org. root.informatica.org. (
                                                             ; Serial
                                                              ; Refresh
                                      604800
                                       86400
                                                             ; Retry
                                                             ; Expire
                                     2419200
                                                             ; Negative Cache TTL
                                      604800 )
                         NS
                                     informatica.org.
                                     192.168.222.1
            ΙN
            ΙN
                         AAAA
www.informatica.org. IN A 122.122.125.46
penacastillo.informatica.org. IN A 34.1.34.32
alisal.informatica.org. IN A 192.168.52.100
torrelavega.informatica.org. IN A 100.168.168.10
castro.informatica.org. IN A 192.35.35.35
web.informatica.org. IN CNAME www.informatica.org.
ateca.informatica.org. IN CNAME penacastillo.informatica.org.
atenea.informatica.org. IN CNAME alisal.informatica.org.
aula3.informatica.org. IN CNAME torrelavega.informatica.org.
aula5.informatica.org. IN CNAME castro.informatica.org.
  IN MX 10 correo.informatica.org.
IN MX 20 email35.arlo.es.
                                                               [ Read 29 lines ]
```

#### Comprobación del servidor DNS:

- 1. Configura el cliente Ubuntu para usar el servidor DNS.
- 2. <u>Usa nslookup en el cliente para veri</u>ficar los registros:

nslookup -type=mx informatica.org web.informatica.org nslookup www.informatica.org

```
adrian@cliente-ubuntu:~$ nslookup web.informatica.org 192.168.222.1
Address:
              192.168.222.1
               192.168.222.1#53
web.informatica.org
                       canonical name = www.informatica.org.
Name: www.informatica.org
Address: 122.122.125.46
adrian@cliente-ubuntu:~$ nslookup www.informatica.org 192.168.222.1
Server:
               192.168.222.1
Address:
               192.168.222.1#53
Name: www.informatica.org
Address: 122.122.125.46
adrian@cliente-ubuntu:~$ nslookup -type=mx informatica.org 192.168.222.1
Server:
               192.168.222.1
Address:
              192.168.222.1#53
informatica.org mail exchanger = 20 email35.arlo.es.
informatica.org mail exchanger = 10 correo.informatica.org.
```

# PARTE 4. CONFIGURACIÓN DEL SERVIDOR DNS MAESTRO PARA LA ZONA INVERSA "168.192.IN-ADDR.ARPA"

#### 1) Crea los archivos de zona para la zona inversa:

Abre el archivo named.conf.local: sudo nano /etc/bind/named.conf.local
 Introduce al final de este archivo:

```
tone "168.192.in-addr.arpa" {
   type master;
   file "/etc/bind/db.192";
```

Copia la plantilla con el nombre db.192:

#### sudo cp /etc/bind/db.127 /etc/bind/db.192

• Debes indicar el nombre de la zona: El nombre de la zona es "168.192.in-addr.arpa" como está especificado en el archivo named.conf.local.

## 2) Añadir registros PTR en el archivo de zona inversa:

Editar el archivo db.192:

#### sudo nano /etc/bind/db.192

Añadie los siguientes registros PTR para resolver las consultas especificadas:

```
123.1 IN PTR aula1.agl.org.
215.3 IN PTR aula2.alisal.es.
217.2 IN PTR aula3.decroly.org.
129.23 IN PTR aula4.miguelherrero.edu.
131.13 IN PTR aula5.colegio.edu.
```

#### 3) Verificar que el archivo de zona no contiene errores:

• Utilizar el comando named-checkzone para validar el archivo de zona:

named-checkzone 168.192.in-addr.arpa /etc/bind/db.192 4)

#### Reiniciar el servicio Bind9 si no hay errores:

Reiniciar el servicio:

sudo service bind9 restart

```
GNU nano 6.2
                                            /etc/bind/db.192
 BIND reverse data file for local loopback interface
STTL
       604800
       IN
                SOA
                        localhost. root.localhost. (
                                        ; Serial
                         604800
                                        ; Refresh
                         86400
                                        ; Retry
                                        ; Expire
                        2419200
                         604800 )
                                        ; Negative Cache TTL
               NS
                        localhost.
       ΙN
1.0.0
               PTR
                        localhost.
123.1 IN PTR aula1.agl.org.
215.3 IN PTR aula2.alisal.es.
217.2 IN PTR aula3.decroly.org.
129.23 IN PTR aula4.miguelherrero.edu.
131.13 IN PTR aula5.colegio.edu.
```

#### Comprobación del Servidor DNS Inverso 1)

#### **Configurar el cliente Ubuntu:**

- Asignar una dirección IP estática en el cliente y asegurarse de que esté en la misma red que el servidor.
- Editar el archivo /etc/resolv.conf para añadir la dirección del servidor DNS:

```
sudo nano /etc/resolv.conf
```

Añadir:

nameserver IP\_del\_servidor

```
_ GNU nano 6.2 /etc/resolv.conf
nameserver 192.168.222.1
```

- 2) Conectar el cliente y el servidor en una red interna.
- 3) Verificar la resolución de nombres inversa desde el cliente:
  - <u>Usar la herramienta nslo</u>okup en el cliente para comprobar las consultas PTR:

```
nslookup 192.168.1.123
nslookup 192.168.23.12
```

Si todo está configurado correctamente, el comando devolverá el nombre DNS correspondiente (FQDN).

```
adrian@cliente-ubuntu:~$ nslookup 192.168.1.123
nslookup 192.168.3.215
nslookup 192.168.2.217
nslookup 192.168.23.129
nslookup 192.168.13.131
123.1.168.192.in-addr.arpa
                               name = aula1.agl.org.
Authoritative answers can be found from:
215.3.168.192.in-addr.arpa
                               name = aula2.alisal.es.
Authoritative answers can be found from:
217.2.168.192.in-addr.arpa
                               name = aula3.decroly.org.
Authoritative answers can be found from:
129.23.168.192.in-addr.arpa
                               name = aula4.miguelherrero.edu.
Authoritative answers can be found from:
131.13.168.192.in-addr.arpa
                               name = aula5.colegio.edu.
Authoritative answers can be found from:
adrian@cliente-ubuntu:~$
```

## PARTE 5. GESTIÓN DEL SERVIDOR DNS. INSTALACIÓN Y CONFIGURACIÓN DE WEBMIN

Webmin se puede instalar tanto en el **servidor Ubuntu** como en un equipo dedicado para administrar otros servidores. Sin embargo, lo más común es instalar Webmin directamente en el **servidor Ubuntu** y acceder a él desde el cliente mediante un navegador web.

# Instalación y Configuración de Webmin en el Servidor Ubuntu

#### 1. Actualizar el sistema:

Asegúrate de que el servidor tiene los paquetes actualizados:

sudo apt update && sudo apt upgrade -y

#### 2. Agregar el repositorio de Webmin:

- Editar el archivo de repositorios: sudo nano /etc/apt/sources.list
- Añadir la línea siguiente al final del archivo: deb http://download.webmin.com/download/repository sarge contrib

 Importar la clave GPG para el repositorio: wget -qO http://www.webmin.com/jcameron-key.asc | sudo apt-key add -

#### 3. Instalar Webmin:

Actualizar la lista de paquetes y luego instalar Webmin:

sudo apt update sudo apt install webmin -y

#### 4. Configurar el acceso remoto:

Webmin usa el puerto **10000** por defecto. Asegúrate de que este puerto esté abierto en el firewall: bash

sudo ufw allow 10000/tcp sudo ufw reload

Si has seguido los pasos correctamente tendrías que poder aceptar en la web:



Inicia sesión con un usuario con permisos de root:



### Pruebas de Configuración del Servidor DNS usando Webmin

Una vez que el servidor DNS esté configurado y Webmin instalado en el servidor Ubuntu, puedes realizar pruebas y gestionar el servicio DNS de forma gráfica a través de Webmin. Realizar estas pruebas:

#### 1. Acceso a Webmin desde el Cliente Ubuntu:

 Desde el cliente Ubuntu, abre un navegador web y escribe la dirección IP del servidor seguida del puerto 10000:

https://IP DEL SERVIDOR:10000

• Inicia sesión con las credenciales de un usuario administrador en el servidor (como root o un usuario con privilegios sudo).



#### 2. Localiza el Módulo de DNS:

- En el menú principal de Webmin, ve a: Servers > BIND DNS Server.
- Haz clic en este módulo para gestionar la configuración de DNS.



#### 3. Verifica las Zonas DNS Configuradas:

- En la pantalla principal del módulo de BIND DNS Server:
  - o Localiza la zona directa: informatica.org.



Localiza la zona inversa: 168.192.in-addr.arpa.



Verifica que ambas zonas aparecen correctamente configuradas.

#### 4. Comprueba los Registros de las Zonas:

- Selecciona la zona informatica.org.
  - Revisa que los registros A, CNAME, y MX configurados en el archivo db.informatica.org aparecen listados.



- Selecciona la zona 168.192.in-addr.arpa.
  - o Verifica que los registros PTR configurados en el archivo db.192 están presentes.



#### 5. Valida la Configuración DNS:

- Haz clic en Check BIND Configuration en la parte superior del módulo.
  - Esto realizará un análisis de la configuración DNS para asegurarse de que no hay errores en los archivos de zona ni conflictos.



#### 6. Reinicia el Servicio DNS:

• Desde el módulo **BIND DNS Server**, haz clic en **Apply Configuration** para reiniciar BIND y aplicar los cambios.



#### 7. Pruebas de Resolución de Nombres con Webmin:

- Ve a la sección **DNS Query Tool** dentro del módulo BIND DNS Server.
- Realiza pruebas de resolución de nombres con los siguientes tipos de consultas:
  - 1. Registros A:
    - Consulta www.informatica.org.
  - 2. Registros CNAME:
    - Consulta web.informatica.org.
  - 3. Registros MX:
    - ☐ Consulta informatica.org para validar los servidores de correo.
  - 4. Registros PTR:
    - ☐ Consulta una dirección IP, por ejemplo, 192.168.1.123.



No he encontrado ningún modulo con ese nombre.

#### 8. Pruebas Manuales desde el Cliente Ubuntu:

Además de las pruebas realizadas desde Webmin, puedes hacer consultas manuales para confirmar que el servidor DNS responde correctamente:

- 1. Abre un terminal en el cliente Ubuntu.
- 2. Ejecuta las siguientes consultas usando nslookup:
  - Para un registro A: nslookup www.informatica.org IP\_DEL\_SERVIDOR Para un registro CNAME:

nslookup web.informatica.org IP\_DEL\_SERVIDOR

o Para un registro PTR: nslookup 192.168.1.123
IP DEL SERVIDOR

```
adrian@cliente-ubuntu:~$ nslookup www.informatica.org 192.168.222.1
Server: 192.168.222.1
Address:
             192.168.222.1#53
Name: www.informatica.org
Address: 122.122.125.46
adrian@cliente-ubuntu:~$ nslookup web.informatica.org 192.168.222.1
             192.168.222.1
Server:
Address:
            192.168.222.1#53
web.informatica.org canonical name = www.informatica.org.
Name: www.informatica.org
Address: 122.122.125.46
adrian@cliente-ubuntu:~$ nslookup 192.168.1.123 192.168.222.1
adrian@cliente-ubuntu:~$
```

#### 9. Revisión de Logs DNS desde Webmin:

- Ve a System > System Logs en Webmin.
- Busca los registros relacionados con BIND para analizar solicitudes y respuestas del servidor DNS.



Opcionalmente puedes resolver dudas sobre webmin y hacer otras pruebas para la administración de DNS bind9 con webmin visualizando el siguiente video:

https://www.youtube.com/watch?v=vL9pG8gLI84

#### **DOCUMENTACIÓN**

Deberás documentar los procedimientos indicando:

 los pasos realizados (comandos, modificaciones a ficheros de configuración y rutas de los mismos, etc.).

# DAW2. Despliegue de Aplicaciones

Web • capturas de pantalla que demuestren que se han logrado los objetivos planteados.