ゲノムワイド関連解析ソフトウェア PLINK 次期バージョン 1.90 における性能評価

金井仁弘1,山根健治1,2,樋口千洋1,田中敏博1,3,4,岡田随象1,5

1. 東京医科歯科大学 大学院医歯学総合研究科 疾患多様性遺伝学分野 2. ソニー株式会社 メディカル事業ユニット 研究開発部門 LE 開発部 3. 東京医科歯科大学 疾患バイオリソースセンター

4. 理化学研究所 統合生命医科学研究センター 循環器疾患研究グループ 5. 理化学研究所 統合生命医科学研究センター 統計解析研究チーム

米ハーバード大のPurcellらによって開発されたPLINKは、ゲノムワイド関連解析(GWAS)において広く利用されているソフトウェアである。我々は大幅な性能改善が謳われる次期バー ジョン1.90に対し、ベータ版を用いて具体的な処理性能を評価した。まずPLINKのサンプルデータ作成機能を用い、7段階のサンプル数(1,000~100,000)及びSNP数(10,000~ 1,000,000) からなる計 49 通りのジェノタイプデータを作成した。本データセットに対し異なるバージョンの PLINK (1.06, 1.07, 1.90b) を用いて、一般的な GWAS データに適応される QC (quality control) 処理を実施した。その結果、1.90bは 1.06, 1.07 に比べて大幅な性能改善が認められ、大規模ジェノタイプデータに対する適合性が分かった。また、PLINK 1.90 はソースコード共有ウェブサービス GitHub上でオープンソースとして公開されている。我々はこの GitHub を通じて、ベータ版に存在していたバグ除去に貢献したのであわせて報告する。

1. 背景

米ハーバード大の Purcell らによって開発されたゲノム ワイド関連解析ソフトウェアPLINKの次期バージョン 1.90 beta が登場した。

Version	Release Date	Developer
1.06	Apr. 24, 2009	S. Purcell
1.07	Oct. 10, 2010	S. Purcell
1.90b	Jul. 1, 2014	S. Purcell, C. Chang

計算機・次世代シーケンサーの性能が年々向上し、大 規模データセットを扱う機会が増えた昨今、解析ソフト ウェアの処理性能改善は研究時間の短縮に大きく寄与す る。また適切な研究計画を練る上でも、各解析処理にど のくらいの時間を要するのか把握することが重要である。

2. 方法

一般的なGWASデータのQCプロセスで用いられる、以下 6つのコマンドについて各バージョン (1.06, 1.07, 1.90b) で の処理時間を測定した。同一データの下でのバージョン間の

比較に加え、全測定データを用いてバージョン毎に処理時間 とサンプル・SNP数の関係を計算した。またプロファイリング ツールgprofを用いて、Genomeコマンドの処理を計測した。

測定に用いたデータセットは1.90bのサンプルデータ作 成機能を用いて生成されたサンプル数・SNP数、各7種類 の計49通りのジェノタイプデータである。測定に用いたデー タ・計算機の仕様は以下。

サンプル数	1,000 2,000 5,000 10,000 20,000 50,000 100,000	
SNP数	10,000 20,000 50,000 100,000 200,000 500,000 1,000,000	
CPU	Intel Xeon CPU E5-2450 v2 @ 2.50GHz × 16	
Memory	96 GB	

1.90bの処理時間は圧倒的に短縮されていた! 3. 結果

れなかった。

サンプル数 *m*:5,000・SNP数 *n*:100,000のデータセッ トにおける各処理とQCプロセス全体での所要時間をそれぞ れ図1,2に示す。1.90bは1.06,1.07に比べて圧倒的に処 理時間が短いことが分かる。QCプロセス全体(図2左)では、 1.90bは1.07に比べて約2,680倍速かった(1.90b: 15秒、 1.07: 11時間 43分)。

図 1. 各コマンドの処理時間の比較

上:全測定データの基での比較 下:同一データの基での比較

特に時間を要するGenomeとIndepPairwiseを除いた比 較(図2右)でも、1.90bは1.07に比べて約66倍速かった。また、 全測定データを用いて処理時間 [s] とサンプル数 $m \cdot SNP$ 数 nの関係を計算したところ図1上表を得た。この値にmnをかけ ると概ねの処理時間を得ることが出来る(Genomeのみ m²n)。 バージョン間での処理結果に丸め誤差以上の差異は認めら

図 2. QCプロセスの所要時間の比較

左:全コマンド 右:Genome・IndepPairwise以外

gprofを用いて、PLINKのGenomeコマンドの内部処 理の様子を計測したところ図3を得た。PLINK 1.90bと 1.07の間には抜本的な設計変更があるため単純な比較は 出来ないが、やはりIBS/IBDの計算過程に大きな改善があ ることが分かる。また1.07はメモリ・文字列操作に関連す る処理だけで1.90bの処理時間に匹敵する時間を要した。

図 3. Genome コマンドの内部処理

4. ソースコードの解析

ソースコードレベルで確認すると、PLINK 1.90bで飛 躍的に処理速度が向上した主な要因として、以下の3つが 挙げられる。

- bit 演算や効率的なメモリアクセスといった抜本的な設計変更
- アルゴリズムの改善・変更
- 並列計算への対応(マルチスレッド、クラスター演算)

またgprofを用いた解析(図3)でも、これらの寄与が 裏付けられた。

5.結論

PLINKの次期バージョン1.90bの性能評価を行ったと ころ、QCプロセス所要時間の比較において現行バージョ ン(1.06, 1.07)に比べ約2,500~3,000倍速いことが分 かった。また今回測定した処理においては、1.90bと現 行バージョンの出力の間に明らかな差異は認められな かった。

ソースコードの解析や実行時プロファイリングの結果 から、1.90bには抜本的な設計変更やアルゴリズムの改 善が施されており、これらが高速化に大きく寄与してい ることが確認された。

開発版への貢献品バグ修正

開発中のPLINK 1.9のソースコードが、GitHubを通 じて公開されているため、開発者は自由にその設計を確 認したり、機能の追加・修正を行ったりすることが出来る。 我々も開発版の以下の機能のバグについて修正パッチ を作成し、本体に取り込まれた。

- 1 VCFパーサーのhalf-missing callの取り扱い
- 2 PEDパーサーの複数塩基・トリアレルの取り扱い
- **3** フェノタイプを含んだ共変量の出力

https://github.com/chrchang/plink-ng

連絡先:金井 仁弘 mkanai.brc@tmd.ac.jp