Numerical differentiation is concorned with the method of finding the successive derivatives of a fine at a given asymmet, argument, equally or unquely to a not of a great of

Formulae for definating

Newton's forward difference interpolation formule:

y = yo + p syo + p(pr) syo + p(pr)(p-2) syo +
where x = xo+ph

by chain rule dy do do dh

do = 1 [0 to + (2 to +) 2 to + (3 to -6 to 2) 2 to + --]

not tabulated.

Now for tabulated values; at x=x0, \$00 then

(dy) == = = = [040 - 1 040 + 1 040 - 1 040 + -]

Newton's bockwood difference intopolation formula:

dy = 1 [44+ 1 34 + 1 34 + 1 02 +-]

Can find higher order | Studies - N. formed on the N. beckers order | control order - Control Nethod

(2)

3. Lagrange's method:

 $f(x) = \frac{(x-x_1)(x-x_2)-...(x-x_n)}{(x_0-x_1)(x_0-x_2)-...(x_0-x_n)} f(x_0) + - -$

find general polynomial first, then find derivative at the given point.

4. Newtons divided difference formula:-

 $f(x) = f(x_0) + (x-x_0) \Delta f(x_0) + (x-x_0)(x-x_1) \Delta f(x_0) + --$

then $f'(x) = \Delta f(x_0) + \left(2x - (x_0 + x_0)^2 \Delta^2 f(x_0) + - - - \right)$

Ex1. find dy at 2 = 0.1 from y sy six 0.9975 (-0.0075) (-0.0049) 0.2 0.9776 0.4 0.9604 here h=0.1, %= 0.9975 [dy] x=01 = [[2/2 - 1 2/2 + 1 3/4] $= \bot \left[-0.0075 - \frac{1}{3} \left(-0.0049 \right) + \frac{1}{3} \left(0.0001 \right) \right]$ - -0.050167 Ex2. find its acceleration at t=1.1. De de de de 43.1 [1.1] [47.7], (4.4) Dr. (-0.1) 20, (0.2) 30. 4.6 56.4 60.8

 $\begin{bmatrix} \frac{dv}{dt} \end{bmatrix}_{t=1,1} = \frac{1}{4} \begin{bmatrix} \Delta v_0 - \frac{1}{2} \Delta^2 v_0 + \frac{1}{3} \Delta^3 v_0 \end{bmatrix}$ $= \frac{1}{0.1} \begin{bmatrix} 4.4 - \frac{1}{2} (-0.1) + \frac{1}{3} (0.2) \end{bmatrix}$ $\begin{pmatrix} \frac{dv}{dt} \end{pmatrix}_{t=1,1} = 45.1667.$

find f'(1-1) and f'(2-1) f(x) by by by 0.4260 0.4260 0.7420 0.316 0.078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0079 0-1280 12960 1.8 2.0 4.000 20=1, x=20+ph 1.1=1+p(0.2) > b=0.5 (dy) = - [(2/2+ (2/2+1) 2/3 + (3/2-6/2+2) 03/3 + (2p3-9p2+11p=-3) 04y+ (5p4-40p3+105p-100p+24) xxx $\left(\frac{dy}{dx}\right)_{11} = 0.66724$. $\left(\frac{dy}{dx}\right)_{21} = \frac{1}{h} \left[\nabla_{y_{0}} + \frac{(2b+1)}{2}\nabla_{y_{0}}^{2} + \frac{(3b^{2}+6b+2)}{6}\nabla_{y_{0}}^{3} + \frac{(3b^{2}+6b+$ == but values x=24+6h 2=2+p(0.2) par 02 02 0.1= p(0.2) p=0.1 = 0.5

Exq. (i) Using Newtork divided difference formula, find f'(10) (3)

from

x:3 5 11 27 34

f(x):-13 23 899 17315 35606

(ii) x: 0 2 3 4 7 8

f(x): 4 26 58 112 466 922

Use Lagrange's formula, find f'(6).

The process of evaluating a definite integral from a set of tabulated values of the integrand f(x) is called numerical integration.

Newton-cottes Quadrature formula:-

where f(x) takes the values yo, y, y2, --, yn for x = x0, x1, x2, --, xn.

y=f(x)

Let us divide the interval (a,b) into n sub-intervals of width h so that $x_0=a$, $x_1=x_0+h$, $x_2=x_0+2h$, $-x_0+nh=b$.

Then z_0 th but z = 20 + vh $I = \int_{x_0}^{x_0} f(x) dx$ but dx = h dv

 $I = h \left[- \right]_{0}^{n}$

Newton'- Coté's quadrature formula.

General formula.

we deduce the imp. quadrature orules by taking

n=1,2,3,----

Exi. Evaluate
$$\int_{0}^{6} \frac{dx}{1+x^{2}} dy$$
 using $h = \frac{b^{-4}}{no \text{ potentials}}$

(i) Tradezoidel

(ii) Simpson's 1/3

(iii) Weddles rule

 $f = \frac{1}{12} \int_{0.5}^{6} \frac{dx}{0.2} = \frac{1}{12} \int_{0.5}^{6} \frac{dx}{0.2} = \frac{1}{12} \int_{0.5}^{6} \frac{dx}{0.2} = \frac{h}{2} \left[(y_{0} + y_{6}) + 2 (y_{1} + y_{2} + y_{3} + y_{4} + y_{5}) \right]$

(ii)
$$\int_{0}^{6} \frac{dx}{1+x^{2}} = \frac{h}{3} \left[(y_{0} + y_{0}) + 4(y_{1} + y_{2} + y_{3}) + 2(y_{2} + y_{4}) \right]$$
$$= \frac{1}{3} \left[- - \right] = 1.3662$$

(iii)
$$\int_0^6 \frac{dx}{1+x^2} = \frac{3h}{8} \left[(y_0 + y_1) + 3 (y_1 + y_2 + y_4 + y_5) + 2 y_3 \right]$$

= 1.3571

(iv)
$$\int_{0}^{6} \frac{dx}{1+x^{2}} = \frac{3h}{10} \left[3h + 5y_{1} + 3y_{2} + 6y_{3} + y_{4} + 5y_{5} + y_{6} \right]$$
$$= 1.3735.$$

Also,
$$\int_{0}^{6} \frac{dx}{1+x^{2}} = \left[+an^{1}x \right]_{0}^{6} = 1.4056$$

Ex2. Use Torapezoidel rule to integrate $\int_0^2 e^{x^2} dx + aking$ the no. to intervals. Sol > y=et, h=0.2, n=10 h=2-0=0.2 7 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.6 1 1.0408 1.1735 1.4333 1.8964 2.1782 4.2206 7.0993 12.9358 25.5337 54.598) 为为为为物物 Jex dx = 1 [(yo+yo)+2(y,+y+++++++++++++)] $=\frac{0.2}{3}$ [(1+)+ ---] = 17.0621 Ex3. The velocity w (km/min) of a maked which starts from vest, is given at fixed intervals of time & (min) as follows: t 2 4 6 8 10 12 14 16 18 20 v 10 18 25 29 32 20 11 5 2 0 Sol > If s (Km) be the distance covered in t (min), then $\frac{ds}{dt} = 10$, $h = \frac{20-2}{9} = \frac{18}{9} = 2$ $|S|_{t=0}^{20} = \int_{0}^{20} v dt = \frac{h}{3} [X + 4.0 + 2.E]$

 $= \frac{3}{3} \left[(v_0 + v_{10}) + (v_1 + \cdots + v_q) + (v_2 + v_4 + \cdots + v_8) \right]$ $= \frac{3}{3} \left[(v_0 + v_{10}) + (v_1 + \cdots + v_q) + (v_2 + v_4 + \cdots + v_8) \right]$ $= \frac{3}{3} \left[(v_0 + v_{10}) + (v_1 + \cdots + v_q) + (v_2 + v_4 + \cdots + v_8) \right]$ $= \frac{3}{3} \left[(v_0 + v_{10}) + (v_1 + \cdots + v_q) + (v_2 + v_4 + \cdots + v_8) \right]$ $= \frac{3}{3} \left[(v_0 + v_{10}) + (v_1 + \cdots + v_q) + (v_2 + v_4 + \cdots + v_8) \right]$

Ext. S: 0 2.5 5 7.5 10.0 12.5 15.0 17.5 20.0 v: 16 19 21 22 20 17 13 11 9 Estimate the time taken by the particle to travers the distance of 20 m, using Boole's seile.

 $\frac{\partial R}{\partial t} = 0$

or $\frac{dt}{ds} = \frac{1}{v} = \frac{1}{v}$.

=> |t| == 50 yds

here h=2.5 and n=g.

By Boole's Rules, we have

[t] s=0 = 2h [---]

= = (12.11776) = 1.35

Exs. A solid of revolution is formed by rotating about x-axis, the lines z=0 $\neq z=1$ and a curve the area blue the x-axis, the lines z=0 $\neq z=1$ and a curve through the pts. With the following co-ordinates:

x: 0 0.25 0.50 0.75

g: 1 0.9896 0.9589 0.9089 0.8415

Costimate the volume of the solid formed using Ambron's rule

801 > h=0.25, yo= yo, yr etc

volume = [TTy2 de = Tt \frac{h}{3} [(\frac{h}{5} + \frac{1}{4^2}) + 4 (\frac{1}{3^2} + \frac{1}{3^2}) + 2 \frac{1}{3^2}]

= 0.25 TT [- -]

= 0.2618(10.7687)

= 2.8192.

 $h = \frac{20-0}{8} = 2.5$

97 Solve the integral by dividing the integral en 11 ordinates; 5th 2 sinx dx n= 10 Sol - h = 10 h= TT f(x): X: HT 13TT 13TT 14TT 15TT 16TT 17TT 18 Apply simpson's ind sule. Evolute (Sine-loge & +ex) dx using Weddle's Rule.

97 find 16 et dx by Simpson's 3th orule. 70.1652 Qui Evaluate 1 day ustry Booles sull by taking is h= 0.5. compare the results with the actual value of Indicate the ere in both. yo -> 48 exact = 1-326373 Or it tank is dixhaeging water though an orifice at a depth es 1.257 1.39 1.52 1.65 1.809 1.962 2.123 2.295 n: 1-5 1.65 1.8 1.95 2.1 2.25 24 2.55 A: 2.462 2.650 2.827 7: 2.7 2.85 3 Using the formula (0.018)T = 13 A da, CalculateT, the time in sec. for the level " of the water to drop from 3 m to 1.5 m above the orifice. (T= 110 see) Of A resource discharging water through studies at a depth In below the water surface, has a senfra area A for various values of has given

h(m) lo 11 12 13 14 $A(m^2)$ 950 1070 1200 1350 1530

If it denotes time in min, the reate of fall of the surface is $dh = -\frac{48}{A} Jh$.

Estimate the time taken for the coater level to fall from 14 to 10 m above the Mulces.

891 - 1. $t = -\frac{1}{48} \int_{14}^{10} \frac{d}{dh} dh = \frac{1}{48} \int_{10}^{14} \frac{d}{dh} dh$.

九: 一

4=29.0993