Alternative and Quantitative Investment Strategies

Mnacho Echenim, Sonia Jimenez, Anne-Claire Maurice

Grenoble INP-Ensimag

2023-2024

Echenim, Jimenez, Maurice (Ensimag)

Alternative and Quantitative Investment Strategies

2023-2024 < 1 / 16 >

Notes

Quick recap on the Momentum strategy

- Strategy designed to exploit market inefficiency
 - ▶ Exploit the fact that not all financial actors have the same information at the same time, and that there is a time lapse before investors' private information is incorporated into prices
 - Principle: invest in underlying assets with the highest returns, in order to gain from continuing elevated returns
- Related questions
 - Over what period should the returns be computed?
 - ▶ After what period of time should the assets be reallocated?

Notes

Echenim, Jimenez, Maurice (Ensimag) Alternative and Quantitative Investment Strategies

< 3 / 16 >

Goal of the project

- About cryptocurrencies
 - From an abstract point of view, recent market with a high volatility
 - ► Trading principles can differ largely from traditional finance
 - ▶ It seems plausible that the market is not efficient
 - ▶ But very few academic results on this topic
- Goal of the project
 - ▶ Investigate the efficiency of the cryptocurrency market
 - By applying the Momentum strategy on a set of cryptocurrency data from centralized and decentralized exchanges
- Outcome to produce
 - A Jupyter notebook containing the tests and analyses that were carried out
 - ▶ **Nb**: The produced notebook should be considered a report and must be constructed accordingly

Echenim, Jimenez, Maurice (Ensimag)

Alternative and Quantitative Investment Strategie

Constructing the Momentum portfolios

Warning

- The algorithms presented below are meant to make sure there is no misunderstanding, they are not necessarily the versions that should actually be implemented
- For the sake of clarity we assume that there are 50 cryptocurrencies under consideration

```
Input: Value i for portfolio P_{i+1} (i = 0, ..., 4)
  Input: Market data for 50 cryptocurrencies
  Input: List of rebalancing dates (t_1, \ldots, t_n), returns horizon h
1 foreach rebalancing date t do
        R_t := (r_t^1, \dots, r_t^{50}); //  compute returns \frac{S_t - S_{t-h}}{S_{t-h}}
        C_t := (c_t^1, \dots, c_t^{50}); // order cryptocurrencies, decreasing order of returns
        \kappa_t := (c_t^{10i+1}, \dots c_t^{10(i+1)}); // extract cryptocurrencies for portfolio i+1
5 end
6 return (\kappa_{t_1},\ldots,\kappa_{t_n});
```

Algorithm 1: GetPortfolioCompo

Notes				
Notes				

Constructing the Momentum portfolios (2)

Computation of the values of P_i (i = 1, ..., 5)

```
Input: Initial value V of portfolio, sequence of compositions
  Input: Market data for 50 cryptocurrencies, list of rebalancing dates
1 foreach date t do
       V_t := UpdateValue(t);
       if t is a rebalancing date then
            //nb: condition above should be true for first date of backtest
           UpdateCompo(\kappa_t, V_t); self-financing, equally weighted portfolios
       end
7 end
8 return (V_{t_1}, \ldots, V_{t_N});
                                 Algorithm 2: BacktestPortfolio
```

Echenim, Jimenez, Maurice (Ensimag)

Alternative and Quantitative Investment Strategies

Outcome of the project

- Goal: produce a financial document analyzing the characteristics and performance of the Momentum strategy on cryptocurrencies
- Milestone 1: core characteristics
 - ▶ All cryptocurrencies are taken into account
 - ▶ Portfolios are rebalanced at the start of each months, returns are computed over a
 - ▶ The analyses rely on the statistical indicators described in the upcoming slides
- Milestone 2: centralized vs decentralized exchanges
 - ▶ Separate the cryptocurrency instruments depending on whether they are traded on centralized or decentralized exchanges
 - ▶ Run the momentum strategy on both categories of instruments and check whether the results are different
- Milestone 3: CRIX
 - ▶ Carry out same analyses using the CRIX index instead of the standard market index
- If there is still time
 - Analyze the effect of changing the rebalancing period and over what horizon returns are computed

Votes			
Votes			
Votes			
Notes			

Strategy data generation

Portfolio values: generate the following portfolio values (assumption: 50 cryptocurrencies)

- Portfolios P_1, \ldots, P_5
- Portfolio P_{1-5} : strategy that consists in buying P_1 and selling P_5

Strategy returns: compute the following daily returns

- Daily return series R_i for portfolio P_i (i = 1, ..., 5)
- Daily return series R_{1-5} for portfolio P_{1-5}
- Daily return difference $R_1 R_5$
 - ▶ Nb: this difference is the one analyzed in the foundational article on the Momentum strategy: Jedadeesh, N., and Titman, S. (1993) Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency

Get rid of extreme values for each of these series (winsorization)

Echenim, Jimenez, Maurice (Ensimag)

Alternative and Quantitative Investment Strategies

2023-2024 < 9 / 16 >

Statistical descriptions

Compute the following indicators for each returns series:

- Mean
- Stddev
- Median
- Min and max return
- Skewness
- Kurtosis

n, Jimenez, Maurice (Ensimag) Alternative and Quantitative Investment Strategies 2023-2024 < 10 / 16 >
--

Sharpe, Treynor, Jensen

Given the series R_f of risk-free rates and the series R_M of market returns, compute the following indicators for each returns series R with stddev σ :

- Sharpe ratio: $\frac{R-R_f}{\sigma}$
- Treynor ratio and Jensen's alpha: perform the regression

$$(R - R_f) = \alpha_J + \beta_M (R_M - R_f) + \varepsilon_P$$

- $ightharpoonup rac{R-R_f}{\beta_M}$ is the Treynor ratio for the series
- $ightharpoonup lpha_J$ is Jensen's alpha for the series

Echenim, Jimenez, Maurice (Ensimag)

Alternative and Quantitative Investment Strategies

2023-2024 < 11 / 16 >

Fama & French and Carhart alphas

Given the following series:

- SMB: "Small minus Big"
- HML: "High minus Low"
- UMD: "Up minus Down"

Perform the following regressions

$$R - R_f = \alpha_F + \beta_M (R_M - R_f) + \beta_S SMB + \beta_H HML + \varepsilon_F$$

 $R - R_f = \alpha_C + \beta_M (R_M - R_f) + \beta_S SMB + \beta_H HML + \beta_U UMD + \varepsilon_F$

- ullet $\alpha_{\it F}$ is the Fama & French alpha
- $\bullet \ \alpha_{\it C}$ is the Carhart alpha

Nb

The P-Value and R-squared indicators must be computed to evaluate the statistical significance level of all the results

Nata.				
Notes				

Data and code for the project

- What is available
 - ► Daily cryptocurrency data for 100 instruments over 2 years (*crypto_prices.csv*, *exchange_info.csv*, clean data)
 - Series for alpha computations (data_factors.csv and momentum_daily.csv, data requires some cleaning)
 - ► CRIX data (crix.csv, clean data)
- What to produce
 - ► A Jupyter notebook with analysis and code

Echenim, Jimenez, Maurice (Ensimag)

Alternative and Quantitative Investment Strategies

2023-2024 < 14 / 16 >

Details on the available series

data_factors.csv

Date Date for the data (ex: $19260701 \rightarrow 01/07/1926$)

Mkt-RF Market return minus risk-free rate (percent: $0.10 \rightarrow 0.1\%$)

SMB Small Minus Big (percent)

HML High Minus Low (percent)

RF Risk-free rate (percent)

$momentum_daily.csv$

Date Date for the data

Mom Momentum factor (percent)

Warning

There will be some data missing, in particular on week-ends. The fillna method on dataframes can be used to fill in missing data

2023-2024

Notes			
Notes			

Timetable

- Data analysis and handling with Pandas: presentation and hands-on
- Advanced data analysis and handling with Pandas: hands-on
- Setting up the Momentum strategy; testing and refactoring
- Analysis of the results, final notebook version

Echenim, Jimenez, Maurice (Ensimag) Alternative and Quantitative Investment Strategies 2023-2024 < 16 / 16 >

Notes		