Diamond Prices Prediction with Deep learning

Rangsarid Pringwanid ID 6210422038

Agenda

I. Business Purpose

Business Purpose

II. Data Collections

- Data Collections
- Data Pre-processing

III. Exploratory Analysis

- Pair plot
- Correlation Graph

IV. Price Prediction

- Modeling
- Model Tuning
- Result Performance

Business Purpose

Can analyze diamonds by their cut, color, clarity, price, and other attributes .And prediction the diamond price from there attributed by Deep learning model.

Data Collection

Attributed

#	Attribute						
1.	Price (Predicted)						
2.	Carat weight						
3.	Quality of the cut (Fair, Good, Very Good, Premium, Ideal)						
4.	Color diamond						
5.	Clarity a measurement						
6.	x length in mm (010.74)						
7.	y width in mm (058.9)						
8.	z depth in mm (031.8						
9	depth total depth percentage = z / mean(x , y) = 2 * z / (x + y) (4379)						
10	table width of top of diamond relative to widest point (4395)						

Data PipeLine

Almost 54,000 Diamonds

	carat	cut	color	clarity	depth	table	price	x	У	z
1	0.23	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43
2	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.31
3	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07	2.31
4	0.29	Premium	1	VS2	62.4	58.0	334	4.20	4.23	2.63
5	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
6	0.24	Very Good	J	VVS2	62.8	57.0	336	3.94	3.96	2.48
7	0.24	Very Good	1	VVS1	62.3	57.0	336	3.95	3.98	2.47
8	0.26	Very Good	Н	SI1	61.9	55.0	337	4.07	4.11	2.53
9	0.22	Fair	Е	VS2	65.1	61.0	337	3.87	3.78	2.49
10	0.23	Very Good	Н	VS1	59.4	61.0	338	4.00	4.05	2.39

ANN
Activation = Linear

Price [USD]

Data Pre-Processing

Data Pre-Processing

1. Remove Duplicated

▼ Check Duplicated

[7] 1 ## Check duplicated
 2 df_diamond_price.duplicated().sum()

146

▼ Removed Dupplicated Valued

1 ## Remove duplicated
2 df_diamond_price = df_diamond_price.loc[~df_diamond_price.duplicated()]

1 df_diamond_price.duplicated().sum()

No Duplicated

Data Pre-Processing (2)

2. Remove Dimension X=0 or Y=0 or Z=0

Impossible

▼ Check Zero Dimension

```
[14] 1 ## check x,y,z = 0 (high,wide,lengh) is not possible with actually dimension
2 check_zero = ((df_diamond_price.x == 0)| (df_diamond_price.y == 0)| (df_diamond_price.z == 0))
3 check_zero.sum()
```

▼ Remove Zero Dimension

```
1 ### Remove zero dimension
2 df_diamond_price = df_diamond_price.loc[~check_zero]
3 df_diamond_price.shape

(53775, 10)
```

No Dimension = 0

	carat	cut	color	clarity	depth	table	price	x	у	z
1	0.23	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43
2	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.31
3	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07	2.31
4	0.29	Premium	- 1	VS2	62.4	58.0	334	4.20	4.23	2.63
5	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
6	0.24	Very Good	J	VVS2	62.8	57.0	336	3.94	3.96	2.48
7	0.24	Very Good	- 1	VVS1	62.3	57.0	336	3.95	3.98	2.47
8	0.26	Very Good	Н	SI1	61.9	55.0	337	4.07	4.11	2.53
9	0.22	Fair	Е	VS2	65.1	61.0	337	3.87	3.78	2.49
10	0.23	Very Good	Н	VS1	59.4	61.0	338	4.00	4.05	2.39

Data Pre-Processing (3)

3. Created dummy variable with category feature

Crated dummpy with category variable

```
1 ## crated dummpy with category variable
2 df_diamond_price = pd.get_dummies(data = df_diamond_price,drop_first = True)
3 df_diamond_price.head(10)
4
```


	carat	depth	table	x	у	Z	price	cut_Good	cut_Ideal	cut_Premium	Good	color_E	color_F	color_G	color_H	color_I	color_J	clarity_IF	clarity_SI1	clarity_SI2	clarity_VS1	clarity_VS2	clarity_VVS1	clarity_VVS2
1	0.23	61.5	55.0	3.95	3.98	2.43	326	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0
2	0.21	59.8	61.0	3.89	3.84	2.31	326	0	0	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0
3	0.23	56.9	65.0	4.05	4.07	2.31	327	1	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0
4	0.29	62.4	58.0	4.20	4.23	2.63	334	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0
5	0.31	63.3	58.0	4.34	4.35	2.75	335	1	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0
6	0.24	62.8	57.0	3.94	3.96	2.48	336	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	1
7	0.24	62.3	57.0	3.95	3.98	2.47	336	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0
8	0.26	61.9	55.0	4.07	4.11	2.53	337	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	0	0
9	0.22	65.1	61.0	3.87	3.78	2.49	337	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0
10	0.23	59.4	61.0	4.00	4.05	2.39	338	0	0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0
4								_																—

Data Pre-Processing (4)

4. Data Train Test Split At Test set = 0.2 ▼ Train Test split data

```
1 ## Train test split
2 x= df_diamond_price.drop('price',axis = 1)
3 y = df_diamond_price.loc[:,'price']
4

[17] 1 X_train,X_test, y_train ,y_test = train_test_split(x,y,test_size = 0.2, random_state = 42)
```


Data Pre-Processing (5)

5. Data Standardize

Standardize and normalize

```
1 sc = StandardScaler()
2 #X_train = sc.fit_transform(X_train)
3 X_train_scaled = sc.fit_transform(X_train.loc[:,['carat','depth','table','x','y','z']])
4 X_train_scaled = pd.DataFrame(X_train_scaled,columns=['carat','depth','table','x','y','z'],index=X_train.index)
5
6 X_test_scaled = sc.transform(X_test.loc[:,['carat','depth','table','x','y','z']])
7 X_test_scaled = pd.DataFrame(X_test_scaled,columns=['carat','depth','table','x','y','z'],index=X_test.index)
8
9
10 X_train_scale_final = X_train.copy()
11 X_test_scale_final = X_test.copy()
12
13
14 X_train_scale_final.loc[:,['carat','depth','table','x','y','z']] = X_train_scaled.loc[:,['carat','depth','table','x','y','z']]
15 X_test_scale_final.loc[:,['carat','depth','table','x','y','z']] = X_test_scaled.loc[:,['carat','depth','table','x','y','z']]
16
```


Exploratory Data Analysis (EDA)

Seaborn Plot

ดูการกระจายตัวของความสัมพันธ์ ระหว่าง feature ต่างๆๆ ที่จะใช้ใน model ในการ prediction

Exploratory Data Analysis (EDA)

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

ค่าความสัมพันธ์ของ feature (Correlation plot)

Feature Statistics

	carat	depth	table	price	x	У	Z
count	53794.00000	53794.000000	53794.000000	53794.000000	53794.000000	53794.000000	53794.000000
mean	0.79778	61.748080	57.458109	3933.065082	5.731214	5.734653	3.538714
std	0.47339	1.429909	2.233679	3988.114460	1.120695	1.141209	0.705037
min	0.20000	43.000000	43.000000	326.000000	0.000000	0.000000	0.000000
25%	0.40000	61.000000	56.000000	951.000000	4.710000	4.720000	2.910000
50%	0.70000	61.800000	57.000000	2401.000000	5.700000	5.710000	3.530000
75%	1.04000	62.500000	59.000000	5326.750000	6.540000	6.540000	4.030000
max	5.01000	79.000000	95.000000	18823.000000	10.740000	58.900000	31.800000

Modeling

```
1 ## Model building
2 model = Sequential()
3 model.add(Dense(512,activation='relu',input_dim= X_train_scale_final.shape[1]))
4 model.add(Dense(256,activation='relu'))
5 model.add(Dense(128,activation='relu'))
6 model.add(Dense(64,activation='relu'))
7 #model.add(Dropout(0.2))
8 model.add(Dense(1,activation='linear'))
```

1 model.summary()

Model: "sequential_3"

Layer (type)	Output Shape	Param #
dense_15 (Dense)	(None, 512)	12288
dense_16 (Dense)	(None, 256)	131328
dense_17 (Dense)	(None, 128)	32896
dense_18 (Dense)	(None, 64)	8256
dense_19 (Dense)	(None, 1)	65
Total params: 184,833 Trainable params: 184,833 Non-trainable params: 0		

Parameter set:

Input layer = 23 Nodes
Hidden layer = 4 layers
Output layers = 1 layer by activation = linear

Remark: Prediction with linear Regression

Modeling Parameter Tuning

Define Parameter

Parameter

Epochs: 200

Batch size: 512

Optimizer: Adam

Loss: MSE

Grid_Search Parameter

1 model_fit2 = model.fit(x = X_train_scale_final,y = y_train,validation_data=(X_test_scale_final,y_test),epochs = 50,batch_size=32)
1345/1345 [====================================
1345/1345 [====================================
Epoch 23/50 1345/1345 [==================] - 7s 5ms/step - loss: 293561.8969 - val_loss: 349734.2500
Epoch 24/50 1345/1345 [====================================
Epoch 25/50 1345/1345 [====================================
Epoch 26/50 1345/1345 [====================================
Epoch 27/50 1345/1345 [] - 7s 5ms/step - loss: 293356.9518 - val_loss: 302574.0625
Epoch 28/50 1345/1345 [] - 7s Sms/step - loss: 301724.2036 - val_loss: 278042.7500
Epoch 29/50 1345/1345 [====================================
Epoch 30/50 1345/1345 [====================================
Epoch 31/50 1345/1345 [====================================
Epoch 32/50 1345/1345 [====================================
Epoch 33/50 1345/1345 [====================================
Epoch 34/50 1345/1345 [====================================
Epoch 35/50 1345/1345 [====================================
Epoch 36/50 1345/1345 [====================================
Epoch 37/50 1345/1345 [
Epoch 38/50 1345/1345 [====================================
Epoch 39/50 1345/1345 [====================================
Epoch 40/50 1345/1345 [====================================
Epoch 41/50 1345/1345 [====================================
Epoch 42/50 1245/1245 [

Parameter

Epochs: 50

Batch_size: 32

Optimizer : Adam

Loss: MSE

Model Tuning (Visual model Performance)

Grid Search Parameter

Model Result Cross validation


```
1 from keras.wrappers.scikit_learn import KerasRegressor
2 from sklearn.model_selection import train_test_split,cross_val_score
3 print((X_test_scale_final.shape)[1])
4 def build_linear_cross():
5    clf = Sequential()
6    clf.add(Dense(512,activation='relu',input_dim= list(X_train_scale_final.shape)[1]))
7    clf.add(Dense(256,activation='relu'))
8    clf.add(Dense(128,activation='relu'))
9    clf.add(Dense(64,activation='relu'))
10    clf.add(Dense(1,activation='relu'))
11    clf.compile(optimizer = 'adam', loss='mse', metrics=['mean_squared_error'])
12    return clf
13    clf = KerasRegressor(build_fn=build_linear_cross, batch_size=32, epochs=50)
14    accuracies = cross_val_score(estimator = clf, X = X_train, y = y_train, scoring='r2', cv = 10, n_jobs = 1)
```

```
1 mean = accuracies.mean()
2 std = accuracies.std()
3 print(f'Mean: {mean}')
4 print(f'Variance: {std*std}')

Mean: 0.968542231632286
Variance: 0.00045592895427757236
```

Parameter set

Optimizer: Adam

• Epochs : 50

Batch_size : 32

Loss: MSE

Mean: 0.968

Variance: 0.00045

Model Performance (MSE & R2 Score)

Grid Search Approach

R2 Score :0.9799415665761724

MSE: 545.578 (USD)

R2 Score: 0.981

Define Parameter Approach

MSE: 563.017 (USD)

R2 Score: 0.979

• Linear Regression model Approach

```
9 print('*'*15,'Linear Regression Model','*'*15)
10 print(f"Mean Square Error LinearRegression : {rmse}")
11 print(f'R2 Score : {r2_score(y_test, y_pred_1)}')

*************************

Mean Square Error LinearRegression : 1128.9110798751835
R2 Score : 0.9193557262563594
```

MSE: 1128.911 (USD)

R2 Score: 0.919

Model Result Actual VS Prediction Price

Define Parameter

Grid Search

V

Error Distribution

Result Grid_Seach VS Define Parameter

Define Parameter

Specify parameter base approch

	Actual(USD)	Predict(USD)	Difference(USD)
5	335	-3421.744962	3756.744962
7	336	-343.741918	679.741918
8	337	-1003.403383	1340.403383
32	402	387.078570	14.921430
35	402	635.394403	233.394403
39	403	471.698352	68.698352
41	403	-2017.108534	2420.108534
42	403	-1945.199633	2348.199633
50	404	-1971.912825	2375.912825
53	404	-1076.405874	1480.405874

Grid_Seach

Grid Search approch

	Actual(USD)	Predict(USD)	Difference(USD)
5	335	336.074219	1.074219
7	336	438.114868	102.114868
8	337	393.332733	56.332733
32	402	409.774780	7.774780
35	402	343.094269	58.905731
39	403	400.464264	2.535736
41	403	496.129517	93.129517
42	403	494.555634	91.555634
50	404	373.603577	30.396423
53	404	508.685883	104.685883

Summary

• จากการทำนายราคาของเพรชจากข้อมูล feature ต่างๆ พบว่า Model (DNN) ที่ได้จากการทำ Grid Search Parameter tuning ให้ค่า MSE และ R2_Score ที่ดีที่สุดคือ MSE = 545.578 (USD) และ ค่า R2_Score = 0.981 (98.1 %) โดยได้ Hyper Parameter คือ Optimizer = Adam, Epochs = 50, Batchs Size = 32

