Deep learning on the graphs

Лебедев Михаил

Graph autoencoders

• Техника использования представления узлов графа со снижением размерностидля обучения нейросетей.

Основные методы: SAE, SDNE, DNGR, GC-MC, DRNE, Graph2Gauss(G2G), VGAE, DVNE,

ARGA, ARGVA, NetRA

Краткий обзор методов Graph autoencoders

Method	Туре	Objective	Scalability	Node Features	eatures Other Characteristics	
SAE [102]	AE	L2-Reconstruction Yes No		-		
SDNE [103]	AE	L2-Reconstruction + Laplacian Eigenmaps	Yes	No	-	
DNGR [104]	AE	L2-Reconstruction	No	No	-	
GC-MC [105]	AE	L2-Reconstruction	Yes	Yes	GCN Encoder	
DRNE [106]	AE	Recursive Reconstruction	Yes	No	LSTM Encoder	
G2G [107]	AE	KL + Ranking	Yes	Yes	Nodes as distributions	
VGAE [108]	VAE	Pairwise Probability of Reconstruction	No	Yes	GCN Encoder	
DVNE [109]	VAE	Wasserstein + Ranking	Yes	No	Nodes as distributions	
ARGA/ARVGA [110]	AE/VAE	L2-Reconstruction + GAN	Yes	Yes	GCN Encoder	
NetRA [111]	AE	Recursive Reconstruction + Laplacian Eigenmaps + GAN	Yes	No	LSTM Encoder	

Sparse autoencoders (SAE)

- SAE сжимает информацию в вектор низкой размерности и изменяет признаковое описание
- Применяется метод к-средних для разбиения графа на узлы

$$\min_{\mathbf{\Theta}} \mathcal{L}_{2} = \sum_{i=1}^{N} \left\| \mathbf{P}(i,:) - \hat{\mathbf{P}}(i,:) \right\|_{2}$$

$$\hat{\mathbf{P}}(i,:) = \mathcal{G}(\mathbf{h}_{i}), \mathbf{h}_{i} = \mathcal{F}(\mathbf{P}(i,:)),$$

Variational Autoencoders

• Основное отличие от AutoEncoders является комбинацией метода сокращения размерности вектора и генеративной моделью.

Reinforcement Learning

- Обучение с подкреплением
- Модель при обучении взаимодействует со средой.
- Основные методы: GCPN, MolGAN, GTPM, GAN, Deeppath, MINERVA

Краткий обзор методов RL

Method	Task	Actions	Rewards	Scalability
GCPN [121]	Graph generation	Link prediction	GAN + domain knowledge	No
MolGAN [122]	Graph generation	Generate the whole graph	GAN + domain knowledge	No
GTPN [123]	Chemical reaction prediction	Predict node pairs and new bonds	Prediction results	No
GAM [124]	Graph classification	Predict graph labels and select the next node	Classification results	Yes
DeepPath [125]	Knowledge graph reasoning	Predict the next node of the reasoning path	Reasoning results + diversity	Yes
MINERVA [126]	Knowledge graph reasoning	Predict the next node of the reasoning path	Reasoning results	Yes

Graph adversarial methods

- Методы разделяются на два типа
- Методы Adversarial training, пример:
 Regularization (for GAE), Regularization for network embedding
- Методы Adversarial attack, пример:
 Targeted attacks of graph structures and node attributes, Non-targeted attacks of graph structures

Adversarial training

• Основная идея – обучение с построением двух связанных моделей: Дескриминатора и генератора. Генератор подаёт на вход дескриминатору элементы. Задача дескриминатора – отличать реальные данные графа от сгенерированных.

Построение итоговой модели происходит с помощью минимакса.

$$\min_{\mathcal{G}} \max_{\mathcal{D}} \sum_{i=1}^{N} \left(\mathbb{E}_{v \sim p_{graph}(\cdot|v_i)} \left[\log \mathcal{D}(v, v_i) \right] + \mathbb{E}_{v \sim \mathcal{G}(\cdot|v_i)} \left[\log \left(1 - \mathcal{D}(v, v_i) \right) \right] \right)$$

Graph adversarial attacks

Nettack

При работе с моделью модифицируется граф и признаковое описание

$$\underset{(\mathbf{A}', \mathbf{F}^{V'}) \in \mathcal{P}}{\operatorname{argmax}} \max_{c \neq c_{true}} \log \mathbf{Z}_{v_0, c}^* - \log \mathbf{Z}_{v_0, c_{true}}^*$$

$$s.t. \ \mathbf{Z}^* = \mathcal{F}_{\theta^*}(\mathbf{A}', \mathbf{F}^{V'}), \theta^* = \underset{\theta}{\operatorname{argmin}} \mathcal{L}_{\mathcal{F}}(\mathbf{A}', \mathbf{F}^{V'})$$

Источники

https://arxiv.org/pdf/1812.04202.pdf