Mean Value & Max/Min

day, September 30, 2020

Mean Value Theorem

Suppose $f\left(x\right)$ is a function that satisfies both of the folio

- 1. f(x) is continuous on the closed interval [a,b]
- 2. f(x) is differentiable on the open interval (a, b)

hen there is a number c such that a < c < b and

$$f'\left(c\right) = \frac{f\left(b\right) - f\left(a\right)}{b - a}$$

Simple definition: If a and b (variables) exist on a graph with either defined points or undefined points, then c should exist too :)

- Take the derivative of x
- Using equation above, solve for f'(c) by plugging in given (a,b) values
- 3) Set f'(x) and f'(c) equal to each other
- 4) Use the quadratic formula to find c
- 5) From the two c answers you obtain, choose the one within the interval

Determine all the numbers of c that will satisfy the mean value theorem of the following function.

$$f(x) = x^3 + 2x^2 - x$$
 on $[-1, 2]$

1) Find f'(x)

$$f'(x) = 3x^{2} + 4x - 1$$
$$f'(c) = \frac{f(2) - f(-1)}{2 - (-1)}$$

$$= \frac{f(2) - f(-1)}{2 - (-1)} \qquad f'(c) = \frac{f(b) - f(o)}{b - a}$$

4) Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$c=\frac{-4\pm\sqrt{16-4\left(3\right)\left(-5\right)}}{6}=\frac{-4\pm\sqrt{76}}{6}$$

$$c = \frac{-4 + \sqrt{76}}{6} = 0.7863 \qquad c = \frac{-4 - \sqrt{76}}{6} = -2.1196$$

- The two answer choices we are get are 0.7863 and -2.1196

- Since -2.1196 is out of our interval [-1,2], the answer is 0.7863 c = 0.7863

Practice Problem

Determine all the numbers of c that will satisfy the mean value theorem of the

$$g\left(t\right)=2t-t^{2}-t^{3}\text{ on }\left[-2,1\right].$$

$$g'(t) = 2 - 2t - 3t^{2}$$

$$g'(t) = g(b) - g(a) = g(1) - g(-2)$$

$$= 0 + 0 = 0$$

$$g'(t) = g'(c) \Rightarrow 2 - 2t - 3t^{2} = 0$$

$$-b \pm \sqrt{b^{2} - 4ac} = c = 0.54$$

$$[-2, 1]$$

$$c = 6.54$$

Maximum and Minimum Values
The turning points on a graph
Can be classified as local (min or max) or absolute (min or max)
Turns make concave shapes meaning that the graph turns inward

ConcavityCan be either upward (increasing) or downward (decreasing)

Local/ Absolute Min and Max

The x value at which the function has a max or min is called a critical value

Example: Find the absolute maxima and minima for the following function

D6 Steps 8-4 only if (x,y)

are not given

in problem

(1/3, 14)

xample: Find the absolute maxima and minima for
$$y = S \times^{\frac{3}{2}} + 2 \times^{\frac{3}{2}} - 3 \times \frac{3}{2} \times \frac{3}{2$$

X = -3/5

4) Plug in both x values into g" y"=30 (-3/5) +4 = -14

9"= 30 (1/3) + 4 = 14

5) Plug in x values given and found

Since the answer (-14) is 20 > local min Since the answer (14) is >0 -> local max -

Horizontal Asymptote
$$\lim_{x\to\infty} \frac{x^2+2}{x^2-1} = \frac{\pm 4}{\pm 6^b} = 1$$

$$\frac{x^2+2}{x^2+1} = \frac{x^2}{x^2} = \frac{\pm x^2}{\pm x^2} = 1$$

Notes: top deg < bottom deg \rightarrow answer is y = 0top deg = bottom deg \rightarrow $y = \frac{n}{m}$ (n and m are coefficients) Coefficients) topdeg > bottom deg -> No horiz asymp.

Vertical Asymptote
$$f(x) = \frac{x+1}{x^2-1} \qquad b(x)$$

$$f(x) = \frac{x+1}{x^2-1} \sim b(x)$$

$$b(x) = 0$$

$$x^2 - 1 = 0$$

b(x) ≠0 b(x) = 0 & find the zeros

$$\chi^{2}-1=0$$

$$\chi^{2}=1$$

$$\chi^{2}=\sqrt{1}$$

$$\chi^{2}=\sqrt{1}$$

$$\chi=\pm 1$$

Faster

Easier
$$x^{2}-1=0$$

$$(x-1)(x+1)$$

$$x-1=0 \quad x+1=0$$

$$x=1 \quad x=-1$$

x = 1 and -1

Graphing Example

