交流电桥实验

吴熙楠

2021年5月24日

目录

1	实验目的	2
2	实验器材	2
3	实验过程及数据整理 3.1 电容桥测量电容. 3.1.1 纸质电容的测量. 3.1.2 电解电容的测量. 3.2 麦克斯韦-维恩桥测量电感. 3.3 麦克斯韦桥测量电感. 3.4 麦克斯韦-维恩桥测量磁环.	2 3 4 4
4	思考题	8
5	分析与讨论	8
6	收获与感想	9

1 实验目的 2

摘要

交流电桥是测量各种交流阻抗的基本仪器,如电容的电容量,电感的电感量等。此外还可利用交流电桥平衡条件与频率的相关性来测量与电容、电感有关的其他物理量,如互感、磁性材料的磁导率、电容的介质损耗、介电常数和电源频率等,其测量准确度和灵敏度都很高,在电磁测量中应用极为广泛。我们将在本次实验中学习使用交流电桥。

关键词:交流,频率,电桥

1 实验目的

- (1) 学会使用交流电桥测量电容和电感及其损耗;
- (2) 了解交流桥路的特点和调节平衡的方法。

2 实验器材

函数信号发生器,电阻箱 3 个,十进式电容箱,十进式电感箱,待测电容,待测电感,待测磁环,标准互感器,数字多用电表,开关,导线。

3 实验过程及数据整理

3.1 电容桥测量电容

条件:对于纸质电容而言,其损耗角很小,因此需要测量其本底电压,电容桥一般为了电容测量准确,使 $R_1 = R_2$,此方法适合测量损耗小的电容。

3.1.1 纸质电容的测量

表 1: 纸质电容测量数据表 (本底 $U_0 = 0.21 mV, f = 1 kHz$)

当 $\Delta R_0 = (2.8 - 2.1)\Omega = 0.7\Omega$ 时, $\Delta U = (0.72 - 0.20)mV = 0.52mV$,灵敏度 $S_R = \frac{\Delta U}{\Delta R_0/Z} = 0.52mV$ 501.7mV

当
$$\Delta C_0=(0.2362-0.2359)\mu F=0.0003\mu F$$
 时, $\Delta U=(0.79-0.20)mV=0.59mV$,灵敏度 $S_C=\frac{\omega C_0^2\Delta U}{\Delta C_0/Z}=464.8mV$

可见理论上
$$S_R$$
 与 S_C 是相同的,而实际测量结果也是接近的。
对于不确定度的计算: $\sigma_c = C_x \sqrt{(\frac{\sigma_{c_0}}{C_0})^2 + (\frac{\sigma_{R_1}}{R_1})^2 + (\frac{\sigma_{R_2}}{R_2})^2}, \sigma_R = R_c \sqrt{(\frac{\sigma_{R_0}}{R_0})^2 + (\frac{\sigma_{R_1}}{R_1})^2 + (\frac{\sigma_{R_2}}{R_2})^2}$

因为信号发生器产生频率波动对于不确定度影响很小,所以 $\sigma_{tan\delta} = tan\delta \sqrt{(\frac{\sigma_{c_0}}{C_{\circ}})^2 + (\frac{\sigma_{R_0}}{R_{\circ}})^2} = 0$ 0.014×10^{-3}

$$e_c = (0.2 \times 0.5\% + 0.03 \times 0.65\% + 0.005 \times 2\% + 0.0009 \times 5\%) \mu F = 1.34 \times 10^{-3} \mu F$$

$$e_{R_1} = e_{R_2} = 100 \times 0.1\%\Omega = 0.1\Omega, \quad e_{R_0} = (2 \times 0.5\% + 0.1 \times 2\%)\Omega = 0.012\Omega$$

因此计算可得 $\sigma_c = 0.0008 \mu F$, $\sigma_R = 0.007 \Omega$, $\sigma_{tan\delta} = 0.014 \times 10^{-3}$

因此 $C_x = (0.2359 \pm 0.0008)\mu F$, $R_c = (2.100 \pm 0.007)\Omega$, $\tan \delta = (3.112 \pm 0.014) \times 10^{-3}$ (其 中因为灵敏度经过计算发现很大,因此在不确定度计算中可以忽略不计)

3.1.2 电解电容的测量

表 2: 电解电容测量数据表 (f = 1kHz)

R_1/Ω	R_2/Ω	$C_0/\mu F$	R_0/Ω	U/mV	
100.0	1000.0	0.6628	30.5	0.02	

$$\therefore C_x = \frac{R_2}{R_1} C_0 = 6.628 \mu F, \quad R_c = \frac{R_1}{R_2} R_0 = 3.05 \Omega$$

损耗角 $tan\delta = \omega C_0 R_0 = 0.127$

当 $\Delta R_0 = (30.9 - 30.5)\Omega = 0.4\Omega$ 时, $\Delta U = (0.50 - 0.02)mV = 0.48mV$,灵敏度 $S_R = \frac{\Delta U}{\Delta R_0/Z} = 0.48mV$ 284.7mV

当 $\Delta C_0 = (0.6642 - 0.6628)\mu F = 0.0014\mu F$ 时, $\Delta U = (0.54 - 0.02)mV = 0.52mV$,灵敏度 $S_C = \frac{\omega C_0^2 \Delta U}{\Delta C_0 / Z} = 259.8 mV$

可见理论上
$$S_R$$
 与 S_C 是相同的,而实际测量结果也是接近的。
对于不确定度的计算: $\sigma_c = C_x \sqrt{(\frac{\sigma_{c_0}}{C_0})^2 + (\frac{\sigma_{R_1}}{R_1})^2 + (\frac{\sigma_{R_2}}{R_2})^2}, \sigma_R = R_c \sqrt{(\frac{\sigma_{R_0}}{R_0})^2 + (\frac{\sigma_{R_1}}{R_1})^2 + (\frac{\sigma_{R_2}}{R_2})^2}$

因为信号发生器产生频率波动对于不确定度影响很小,所以 $\sigma_{tan\delta} = tan\delta \sqrt{(\frac{\sigma_{c_0}}{C_0})^2 + (\frac{\sigma_{R_0}}{R_0})^2} = 0$ 0.0004

3 实验过程及数据整理

$$\begin{split} e_c &= (0.6 \times 0.5\% + 0.06 \times 0.65\% + 0.002 \times 2\% + 0.0008 \times 5\%) \mu F = 3.47 \times 10^{-3} \mu F \\ e_{R_1} &= (100 \times 0.1\%) \Omega = 0.1 \Omega, \quad e_{R_2} &= (1000 \times 0.1\%) \Omega = 1 \Omega \\ e_{R_0} &= (30 \times 0.1\% + 0.5 \times 2\%) \Omega = 0.04 \Omega \end{split}$$

因此计算可得 $\sigma_c = 0.021 \mu F$, $\sigma_R = 0.003 \Omega$, $\sigma_{tan\delta} = 0.0004$

因此 $C_x = (6.628 \pm 0.021)\mu F$, $R_c = (3.050 \pm 0.003)\Omega$, $tan\delta = (0.1270 \pm 0.0004)$ (其中因为灵敏度经过计算发现很大,因此在不确定度计算中可以忽略不计)

3.2 麦克斯韦-维恩桥测量电感

条件:测量电感时为了保证电阻的感抗可以忽略,因此 R_1 与 R_2 的设定值不应过高,此方法适合测定低 Q 值得电感。

表 3: 电感测量数据表 (f = 1kHz)

R_1	$_{1}/\Omega$	R_2/Ω	$C_0/\mu F$	R_0/Ω	U/mV	
50	0.0	500.0	0.0388	2335.7	0.02	

$$\therefore L_x = C_0 R_1 R_2 = 9.70 mH, \quad R_L = \frac{R_1 R_2}{R_0} = 107.03 \Omega$$
 品质因素 $Q = \frac{\omega L_x}{R_L} = 0.569$

对于不确定度的计算:
$$\sigma_L = L_x \sqrt{(\frac{\sigma_{c_0}}{C_0})^2 + (\frac{\sigma_{R_1}}{R_1})^2 + (\frac{\sigma_{R_2}}{R_2})^2}, \sigma_{R_L} = R_L \sqrt{(\frac{\sigma_{R_0}}{R_0})^2 + (\frac{\sigma_{R_1}}{R_1})^2 + (\frac{\sigma_{R_2}}{R_2})^2}$$

因为信号发生器产生频率波动对于不确定度影响很小,所以 $\sigma_{\mathcal{Q}} = Q \sqrt{(\frac{\sigma_{c_0}}{C_0})^2 + (\frac{\sigma_{R_0}}{R_0})^2}$

$$e_{R_1} = e_{R_2} = (500 \times 0.1\%)\Omega = 0.5\Omega$$

 $e_{R_0} = (2330 \times 0.1\% + 5 \times 0.5\% + 0.7 \times 2\%)\Omega = 2.369\Omega$

 $e_{c_0} = (0.03 \times 0.65\% + 0.008 \times 2\% + 0.0008 \times 5\%)\mu F = 3.95 \times 10^{-4} \mu F$

因此计算可得: $\sigma_L = 0.06mH$, $\sigma_{R_L} = 0.11\Omega$, $\sigma_O = 0.003$

因此 $L_x = (9.70 \pm 0.06)mH$, $R_L = (107.03 \pm 0.11)\Omega$, $Q = (0.569 \pm 0.003)$ (其中因为灵敏度经过计算发现很大,因此在不确定度计算中可以忽略不计)

通过实验,可以看出麦克斯韦-维恩桥的收敛性较好,能够较快调节到平衡。

3.3 麦克斯韦桥测量电感

条件:测量电感时为了保证电阻的感抗可以忽略,因此 R_1 与 R_2 的设定值不应过高,且由于电感箱不可以连续调节,因此在最初时设定一个好的 R_1 与 R_2 的值较为重要。

3 实验过程及数据整理

表 4: 电感测量数据表 (本底 $U_0 = 0.09mV, f = 1kHz$)

5

R_1/Ω	R_2/Ω	L_0/mH	R_{L0}/Ω	R_0/Ω	U/mV
491.9	499.3	10	6.86	101.8	0.18

$$\therefore L_x = L_0 \frac{R_1}{R_2} = 10.15 mH, \quad R_L = (R_0 + R_{L0}) \frac{R_1}{R_2} = 107.15 \Omega$$

品质因素 $Q = \frac{\omega L_x}{R_L} = 0.595$

对于不确定度的计算:
$$\sigma_L = L_x \sqrt{(\frac{\sigma_{L_0}}{L_0})^2 + (\frac{\sigma_{R_1}}{R_1})^2 + (\frac{\sigma_{R_2}}{R_2})^2}, \sigma_{R_L} = R_L \sqrt{(\frac{\sigma_{R_0}}{R_{L_0} + R_0})^2 + (\frac{\sigma_{R_1}}{R_1})^2 + (\frac{\sigma_{R_2}}{R_2})^2}$$

因为信号发生器产生频率波动对于不确定度影响很小,所以 $\sigma_{\mathcal{Q}} = Q \sqrt{(\frac{\sigma_{L_0}}{L_0})^2 + (\frac{\sigma_{R_0}}{R_0 + R_{L0}})^2}$

$$e_{R_1} = (490 \times 0.1\% + 1 \times 0.5\% + 0.9 \times 2\%)\Omega = 0.513\Omega$$

$$e_{R_2} = (490 \times 0.1\% + 9 \times 0.5\% + 0.3 \times 2\%)\Omega = 0.541\Omega$$

$$e_{R_0} = (100 \times 0.1\% + 1 \times 0.5\% + 0.8 \times 2\%)\Omega = 0.121\Omega$$

$$e_{L_0} = (10 \times 2\%)mH = 0.2mH$$

因此计算可得: $\sigma_L = 0.12mH$, $\sigma_{R_L} = 0.12\Omega$, $\sigma_O = 0.007$

因此 $L_x = (10.15 \pm 0.12)mH$, $R_L = (107.15 \pm 0.12)\Omega$, $Q = (0.595 \pm 0.007)$ (其中因为灵敏度经过计算发现很大,因此在不确定度计算中可以忽略不计)

通过实验,可以看出麦克斯韦桥的收敛性相比于麦克斯韦-维恩桥而言收敛性较差,需要 多次调节才能达到近似平衡。

3.4 麦克斯韦-维恩桥测量磁环

条件:在测量磁环的磁导率时,我们需要保证其工作区域在线性区域,即监测信号不会出现倍频项,同时我们的 R_1 与 R_2 也不应该设定过大以保证电阻箱的感抗可以忽略。

表 5: 磁环测量数据表

f/kHz	f/kHz R_0/Ω		L/mH	R/Ω
0.1	1963.2	0.4436	1.109	1.273
0.4	1243.2	0.2166	0.542	2.011
0.7	1008.0	0.1585	0.396	2.480
1	885.7	0.1294	0.324	2.823
2	677.7	0.0885	0.221	3.689
3	606.2	0.0686	0.172	4.124
5	502.2	0.0536	0.134	4.978
7	412.2	0.0436	0.109	6.065
9	363.2	0.0406	0.102	6.883
10	353.2	0.0386	0.097	7.078

 $D=8.56cm, S=2.00cm^2, N=180$ 匝, $R_c=0.683\Omega, R_1=R_2=50.0\Omega$ 因此我们计算其磁导率的实部 $\mu'=\frac{L_x\pi D}{\mu_0N^2S}$,虚部 $\mu''=\frac{(R_L-R_c)\pi D}{2\pi f\mu_0N^2S}$,品质因素 $Q=\frac{2\pi fL_x}{R_L}$

表 6: 磁环参数数据表

f/kHz	0.1	0.4	0.7	1	2	3	5	7	9	10
μ'	36.62	17.90	13.08	10.70	7.30	5.68	4.43	3.60	3.37	3.20
$\mu^{\prime\prime}$	31.01	17.45	13.49	11.25	7.90	6.02	4.79	4.04	3.62	3.36
Q	0.547	0.677	0.702	0.721	0.753	0.786	0.805	0.830	0.852	0.861

因此我们作图可得:

图 1: 磁环参数随频率变化曲线图

4 思考题 8

4 思考题

画出麦克斯韦-维恩桥测量电感时电桥达到平衡的过程图 令
$$\vec{A}=\frac{R_L}{R_1}+i\frac{\omega L_x}{R_1}, \vec{B}=\frac{R_2}{R_0}+i\omega R_2C_0,$$
 则: $\vec{A}=\vec{B}$ 时电桥平衡

调节 R_0 和 C_0 不改变 \vec{A} , 同时调节 R_0 只是改变 \vec{B} 的实部,调节 C_0 只是改变 \vec{B} 的虚部, 则示意图如下:

图 2: 麦克斯韦-维恩桥平衡过程图

其中 g_1 过程为减小 R_0 , g_2 过程为减小 C_0 。

5 分析与讨论

1. 两种电桥测量电感的收敛性差别是否很大,与什么因素有关?

答: 在以上的实验过程中, 我们发现两种电桥测量电感的收敛性差别很大, 其中麦克斯 韦-维恩桥的收敛性较好,麦克斯韦桥的收敛性较差。这是因为麦克斯韦桥的标准电感箱每格变 化量较大,因此电感箱的变化不是连续变化的,我们只能通过调节 R_0 与 R_2 的值来达到平衡, 但这两个量是相互影响的,因此调节得收敛性较差,需要反复多次调节才行;而麦克斯韦-维 恩桥的调节我们通过改变 R_0 与 C_0 ,可以视为连续变化的,因此调节过程的收敛性较好,能很 快达到平衡。

2. 磁环的损耗电阻和磁导率随频率怎样变化? 为什么?

6 收获与感想 9

答:通过实验我们发现磁环的损耗电阻随频率增大而增大,这是因为加入交流信号频率越高,其趋肤深度越小,等效于导体的截面积变小,因此损耗电阻变大;通过实验我们发现磁环的磁导率的实部与虚部均随频率增大而减小,因为对于交变信号下磁体的畴壁处于运动状态,因此磁畴的运动为受迫振动与阻尼迟豫振动的叠加,又因为我们的交流信号频率最低 100Hz 也大于其本征频率,因此在远离本征频率下驱动频率越大,磁导率越小,因此其复数磁导率的实部与虚部均减小。

6 收获与感想

在本次实验中我们学会了使用交流电桥测量电容和电感及其损耗,了解了交流桥路的特点和调节平衡的方法,交流电桥在电磁学实验中有很大的应用,因此也为我们未来电磁学实验奠定基础。