Revisão P2

A figura mostra o gráfico da energia potencial, U(x), associada à força resultante que atua sobre uma partícula que se move em uma dimensão, onde x_0 corresponde à posição na qual a energia potencial é mínima. De acordo com a figura, afirma-se: (I) Na posição x_A a força é nula. (II) Na posição x_0 tem-se a condição de equilíbrio estável. (III) Para $x > x_0$ a força aponta para a origem. (IV) quando a partícula está na posição x_C , o módulo da força é maior que na posição x_B . Estão corretas:

Um corpo de massa m parte do repouso, a partir de uma altura h, deslizando sobre uma superfície sem atrito, atingindo uma velocidade v na base da superfície. Um outro corpo de massa 5m desce a mesma superfície de uma altura H, também partindo do repouso, atingindo a velocidade de 3v na base. A razão H/h é:

Duas partículas com velocidades iniciais perpendiculares (figura) colidem de forma totalmente inelástica. Seja \vec{p} o momento linear total do sistema composto pelas duas partículas ($|\vec{p}|$, seu módulo) e K a energia cinética total deste sistema. Comparando os valores de \vec{p} e K antes e depois da colisão, pode-se afirmar que

- (a) \$\vec{p}\$ \(\tilde{\text{e}} \) conservado, \$K\$ \(\tilde{\text{e}} \) reduzido, por\(\tilde{\text{m}} \) n\(\tilde{\text{a}} \)
 a zero.
- (b) \$\vec{p}\$ \'\epsi{\text{e}}\$ conservado;
- (c) |p| é reduzido a zero, K é reduzido a zero;
- (d) p é conservado, K é reduzido a zero;
- (e) |p| é reduzido, porém não a zero, K é reduzido, porém não a zero;

4. Qual a posição do centro de massa das partículas de massa m e 2m nos referenciais:

(b) azul

Uma barra cilíndrica homogênea de 3 m de comprimento é dobrada duas vezes em ângulo reto, a intervalos de 1 m de modo a formar três arestas consecutivas de um cubo (Fig.). Ache as coordenadas do centro de massa da barra, no sistema de coordenadas da figura.

Uma pedra é lançada verticalmente, do solo, com velocidade de módulo v_0 . Verifica-se que 6. ao retornar ao solo o módulo de sua velocidade é v_f , onde $v_f < v_0$. Durante o movimento da pedra, considere somente a ação das forças peso \vec{P} , e a força de resistência do ar f_{ar} . Para o trabalho da força de resistência do ar no percurso ida e volta, a resposta correta abaixo é dada por:

(a)
$$W_{far} > 0$$
, pois $v_0 > v_f$.
(b) $W_{far} = 0$ pois a posição inicial coincide

- (b) $W_{f_{ar}} = 0$, pois a posição inicial coincide com a posição final da pedra.
- (c) $W_{f_{ar}} > 0$, pois $v_0 < v_f$.
- (d) $W_{f_{ar}} > 0$, pois $v_0 < v_f$.
- (d) W far < 0, pois c₀ > c_f.
 (e) nenhuma resposta anterior está correta.

	Um bloco de gelo desliza sobre uma mesa ho-			
•	rizontal sem atrito com velocidade ver	ontal sem atrito com velocidade vetorial \vec{v}		
•	constante. Qual resposta é correta?			
	(a) Ele está em equlíbrio instável módulo da sua velocidade é difer	-		
	zero			

- (b) Não existe força alguma atuando sobre ele
- (c) Ele está em equlíbrio estável
- (d) Ele não está em equilíbrio
 (e) Nenhuma das respostas anteriores estão
 - (e) Nenhuma das respostas anteriores estão corretas

	idere o processo de colisão entre duas partículas sência de forças externas. Pode-se afirmar sem- que:
(a)	Na colisão elástica entre partículas de massas diferentes o centro de massa permanece em repouso após a colisão.
(b)	Em uma colisão inelástica o centro de massa

das partículas diminui de velocidade após a colisão.
(c) A velocidade do centro de massa das partículas

permance constante para qualquer tipo de colisão entre elas.

(d) Em uma colisão totalmente inelástica o centro

de massa aumenta de velocidade após a colisão.

(e) Em uma colisão em que as partículas têm massas iguais o centro de massa permanece em repouso após a colisão.

9

Num parque de diversões, um carrinho desce de uma altura *h* para dar a volta no "loop" de raio *R* indicado na figura. (a) Desprezando o atrito do carrinho com o trilho, qual é o menor valor h_1 de h necessário para permitir ao carrinho dar a volta toda? (b) Se $R < h < h_1$, o carrinho cai do trilho num ponto B, quando ainda falta percorrer mais um ângulo θ para chegar até o topo A (Fig). Calcule 0.(c) Que acontece com o carrinho para h < R?

Um bloco de massa M está em equilíbrio preso a uma mola ideal, de constante elástica k, inicialmente em sua posição relaxada, como mostra a figura. Uma bala de massa m com velocidade horizontal de módulo v_0 colide com esse bloco de modo que a bala retorna após a colisão no sentido oposto com velocidade de módulo $v_0/2$. Considere que a colisão seja instantânea. Determine, em função dos dados do problema:

- a) a velocidade V do bloco de massa M imediatamente após a colisão.
- b) a compressão máxima da mola.
- c) a razão m/M para que a colisão seja elástica.

