数学分析习题课讲义

参考答案

Chapter 2

数列极限

数列极限的基本概念 2.1

2.1.1 思考题

- 1. 数列收敛有很多等价定义. 例如:
 - (1) 数列 $\{a_n\}$ 收敛于 $a \iff \forall \varepsilon > 0, \exists N \in \mathbb{N}_+, \forall n \geqslant N,$ 成立 $|a_n a| < \varepsilon$;
 - (2) 数列 $\{a_n\}$ 收敛于 $a \iff \forall m \in \mathbb{N}_+, \exists N \in \mathbb{N}_+, \forall n > N, 成立 |a_n a| < 1/m;^1$
 - (3) 数列 $\{a_n\}$ 收敛于 $a \iff \forall \varepsilon > 0, \exists N \in \mathbb{N}_+, \forall n > N, 成立 |a_n a| < K\varepsilon$. 其中 K 是一个与 ε 和 n 无关的正常数.

试证明以上定义与数列收敛等价.

证明. (1) \Rightarrow 取 $N = N_0 + 1$. \Leftarrow 显然.

- (2) \Rightarrow 取 $\varepsilon = 1/m, m \in \mathbb{N}_+$. \Leftarrow 由于 $\lim 1/m = 0$, 故存在 $M \in \mathbb{N}_+$, $\exists m > M$ 时, $1/m < \varepsilon$. 选 定 m, 使用定义, 存在 $N_0 \in \mathbb{N}_+$, $\forall n > N$, 有 $|a_n - a| < 1/m < \varepsilon$.
- $(3) \Rightarrow \mathbb{R} K = 1. \Leftarrow \mathbb{R} \varepsilon' = \varepsilon/K, \ \mathbb{M} \ \exists N \in \mathbb{N}_+, \forall n > N, |a_n a| < K\varepsilon' = \varepsilon.$
- 2. 问: 在数列收敛的定义中, N 是否是 ε 的函数?

答. 否. 对于任意的 ε , 存在一个 $N_0 \in \mathbf{N}_+$, 使得当 $n > N_0$ 时都有 $|a_n - a| < \varepsilon$, 而 $\forall N > N_0$ 都可 以是符合定义的 N, 即每一个 ε 都可以对应无穷多个 N, 故不是.

3. 判断: 若 $\{a_n\}$ 收敛, 则有 $\lim_{n\to\infty} (a_{n+1}-a_n)=0$ 和 $\lim_{n\to\infty} a_{n+1}/a_n=1$.

答. $\lim (a_{n+1}-a_n)=0$. 对于任意给定的 $\varepsilon>0$, 存在 N>0, 当 n>N时有 $|a_n-a|<\varepsilon/2$, 从而 $|a_{n+1}-a|<\varepsilon/2$, 于是对于 n>N,

$$|a_{n+1} - a_n| \leqslant |a_{n+1} - a| + |a_n - a| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

П

¹有些像级数的 Weierstrass-M 判别法, 事实上也可以用 Cauchy 收敛准则给出一个和 Weierstrass-M 判别法类似的证明. 本条 是所有二分法/三分法证明的基础.

4. 设收敛数列 $\{a_n\}$ 的每一项都是整数, 问: 该数列有什么特殊性质?

答. 从某一项开始后每一项均相同. 取 $\varepsilon = 1/2$, 则存在 $N \in \mathbb{N}_+$, 使对 n > N 有 $|a_{n+1} - a_n| < 1/2$, 注意到 $a_n \in \mathbf{Z}, n \in \mathbf{N}_+,$ 知 $a_{n+1} = a_n, \forall n > N.$

- 5. 问: 收敛数列是否一定是单调数列? 无穷小量是否一定是单调数列?
 - 答. 均不一定. 如分别取 $\{a + (-1)^n 1/m\}$ (收敛但不单调) 和 $\{(-1)^n 1/n\}$ (无穷小量但不单调).
- 6. 2问: 正无穷大量数列是否一定单调增加? 无界数列是否一定为无穷大量?
 - 答. 均不一定. 如分别取 $\{n+2\sin n\}$ (正无穷大量但不单调) 和 $\{n\cdot\sin n\}$ (无界但非无穷大).
- 7. 问: 如果数列 $\{a_n\}$ 收敛于 a, 那么绝对值 $|a_n-a|$ 是否随着 n 的增加而单调减少趋于 0?
 - 答. 不一定. 如取 $\{a_n\}$ 为形如

$$1, 1/2, 1/3, 1/6, 1/4, 1/8, 1/12, \cdots, 1/n, 1/2n, \cdots, 1/n(n-1), 1/(n+1), \cdots$$

的数列, 由于 1/n 和 1/(n+1) 之间的所有项都严格小于 1/(n+1), 于是 $\{a_n\}$ 的上控数列³ $\{\overline{a_n}\}$ 为 $1, 1/2, 1/3, 1/4, 1/4, \cdots$, 其中 1/n 连续出现了 n-3 次 $(n \ge 3)$, 显然 $\lim_{n \to \infty} \overline{a_n} = 0$. 而全为正项的数 列 $\{a_n\}$ 有一个子列 $\{1/n\}$ 收敛于 0, 故

$$\lim_{n \to \infty} a_n = \overline{\lim}_{n \to \infty} a_n = 0.$$

即 $\lim_{n \to \inf} a_n = 0$,但显然 $\{|a_n|\}$ 并不单调。

8. 判断: 非负数列的极限是非负数, 正数列的极限是整数.

答. 非负数列的极限是非负数. 反证法. 假设非负数列 $\{a_n\}$ 的极限为 A < 0, 则存在 $N \in \mathbb{N}_+$, 当 n > N 时有 $|a_n - A| < -A/2$, 即当 n > N 时有 $3A/2 < a_n < A/2 < 0$, 与 $\{a_n\}$ 非负矛盾.

正数列的极限不一定为正数, 如取 $\{1/n\}$, 其极限为 0.

2.1.2练习题

1. 按极限定义证明:

(1)
$$\lim_{n \to \infty} \frac{3n^2}{n^2 - 4} = 3;$$
 (2) $\lim_{n \to \infty} \frac{\sin n}{n} = 0;$
(3) $\lim_{n \to \infty} (1 + n)^{\frac{1}{n}} = 1;$ (4) $\lim_{n \to \infty} \frac{a^n}{n!} = 0.$

(3)
$$\lim_{n \to \infty} (1+n)^{\frac{1}{n}} = 1;$$
 (4) $\lim_{n \to \infty} \frac{a^n}{n!} = 0.$

证明. 对于任何 $\varepsilon > 0$,

$$(1) \ \ \mathbb{R} \ N = [\sqrt{12/\varepsilon + 4}] + 1, \ \ \, \underline{\exists} \ n > N \ \ \, \mathbb{N}, \ |\frac{3n^2}{n^2 - 4} - 3| = \frac{12}{n^2 - 4} < \varepsilon;$$

(2) 取
$$N = [1/\varepsilon]$$
, 当 $n > N$ 时, $|\frac{\sin n}{n} \leqslant \frac{1}{n} < \varepsilon$;

²原本的6题中,一个很小很小的量显然不是一个无穷小量,注意无穷小量是一个趋于零的极限过程即可.

³请结合数列的上下极限部分.

(3) 由于
$$(1+n)^{\frac{1}{n}} > 1$$
, $\forall n \in \mathbf{N}_+$, 故令 $y_n = (1+n)^{\frac{1}{n}} - 1 > 0$, $\overline{q}n + 1 = (1+y_n)^n \geqslant \frac{n(n-1)}{2}y_n^2$, 即

$$\sqrt[n]{n+1} - 1 = y_n \leqslant \sqrt{\frac{2(n+1)}{n(n-1)}}.$$

又由 $\lim_{n\to\infty} \frac{2(n+1)}{n(n-1)}$, 故存在 $N \in \mathbb{N}_+$, 使当 n > N 时有 $\frac{2(n+1)}{n(n-1)} < \varepsilon < 1$, 故当 n > N 时有

$$\sqrt[n]{n+1} - 1 = y_n \leqslant \sqrt{\frac{2(n+1)}{n(n-1)}} < \sqrt{\varepsilon} < \varepsilon;$$

(4) 若 $0 < a \le 1$, 显然取 $N = [\varepsilon] + 1$, 当 n > N 时

$$\frac{a^n}{n!} \leqslant \frac{1}{n} < \varepsilon$$

$$\begin{split} \frac{a^n}{n!} &\leqslant \frac{1}{n} < \varepsilon. \\ \ddot{z} &\approx 1, \, \text{则存在 } k \in \mathbf{N}_+ \text{ 使得 } k < a < k+1, \, \text{于是} \\ \frac{a^n}{n!} &= \frac{a \cdot a \cdots a \cdot a \cdot a \cdots a \cdot a}{n \cdot (n-1) \cdots (k+1) k (k-1) \cdots 2 \cdot 1} \leqslant \frac{a}{n} \frac{a \cdots a}{a \cdots a} \cdot \frac{a}{k} \frac{a}{k-1} \cdots \frac{a}{2} \frac{a}{1}. \end{split}$$

注意上式中最后一项是一常数, 可记为 K, 取 $N=[aK/\varepsilon]+1$, 当 n>N 时有 $\frac{a^n}{n!}<\varepsilon$.

2. 设 $a_n \geqslant 0, n \in \mathbf{N}_+$, 数列 $\{a_n\}$ 收敛于 a, 则 $\lim_{n \to \infty} \sqrt{a_n} = \sqrt{a}$.

3. 若 $\lim_{n \to \infty} a_n = a$, 则 $\lim_{n \to \infty} |a_n| = |a|$. 反之如何?

证明.
$$\forall \varepsilon > 0$$
,由 $\lim_{n \to \infty} a_n = a$, $\exists N \in \mathbf{N}_+$,当 $n > N$ 时有 $|a_n - a| < \varepsilon$. 故当 $n > N$ 时, $||a_n| - |a|| \leqslant |a_n - a| < \varepsilon$,即 $\lim_{n \to \infty} |a_n| = |a|$.

4. 4 设 a>1, 证明 $\lim_{n\to\infty}\frac{\log_a n}{n}=0$. (可以利用已知的极限 $\lim_{n\to\infty}\sqrt[n]{n}=1$.)

证明.

$$\lim_{n \to \infty} \frac{\log_a n}{n} = \lim_{n \to \infty} \log_a n^{1/n} = \lim_{n \to \infty} \log_a 1 = 0.$$

其中第二个等号用到了 $\log_a x$ 的连续性.

收敛数列的基本性质 2.2

2.2.1思考题

1. 设 $\{a_n\}$ 收敛而 $\{b_n\}$ 发散, 问: $\{a_n+b_n\}$ 和 $\{a_nb_n\}$ 的敛散性如何?

证明. $\{a_n+b_n\}$ 发散. 反证法. 假设 $\lim_{n\to\infty} a_n=a, \lim_{n\to\infty} (a_n+b_n)=A,$ 则对于 $\forall \varepsilon>0, \exists N_1, N_2\in \mathbf{N}_+,$ 当 $n>N_1$ 时, $|(a_n+b_n)-A|<\varepsilon/2;$ 当 $n>N_2$ 时, $|a_n-a|<\varepsilon/2$. 令 $N=\max\{N_1,N_2\},$ 则当

$$|b_n - (A - a)| = |[(a_n + b_n) - A] - (a_n - a)| \le |(a_n + b_n) - A| + |a_n - a| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$
 即 $\lim_{n \to \infty} b_n = A - a$,与 $\{b_n\}$ 发散矛盾.

⁴关于原先的 5 题, 完全可以使用相应函数极限的定义加上 Heine 定理证明, 并且本质没有任何不同.

 $\{a_nb_n\}$ 可能发散也可能收敛. 如取 $a_n = 1/n, b_n = n \sin n, \, \bigcup a_nb_n = \sin n, \, \{a_nb_n\}$ 发散; 取 $a_n = 1/n, b_n = (-1)^n, \, \bigcup a_nb_n = (-1)^n1/n, \, \{a_nb_n\}$ 收敛.

2. 设 $\{a_n\}$ 和 $\{b_n\}$ 都发散, 问: $\{a_n + b_n\}$ 和 $\{a_n b_n\}$ 的敛散性如何?

证明. $\{a_n + b_n\}$ 可能发散也可能收敛. 如取 $a_n = (-1)^n, b_n = (-1)^{n+1}, 则 <math>a_n + b_n = 0, \{a_n + b_n\}$ 收敛; 取 $a_n = b_n = (-1)^n, 则 <math>a_n + b_n = (-1)^n \cdot 2, \{a_n + b_n\}$ 发散.

 $\{a_nb_n\}$ 可能发散也可能收敛. 如取 $a_n = b_n = (-1)^n$, 则 $a_nb_n = 1$, $\{a_nb_n\}$ 收敛; 取 $a_n = (-1)^n$, $b_n = n$, 则 $a_nb_n = (-1)^n \cdot n$, $\{a_nb_n\}$ 发散.

3. 设 $a_n \leq b_n \leq c_n, n \in \mathbb{N}_+$, 已知 $\lim_{n \to \infty} (c_n - a_n) = 0$, 问: 数列 $\{b_n\}$ 是否收敛?

证明. $\{b_n\}$ 不一定收敛. 取一反例, $a_n = n, b_n = n + 1/2n, c_n = n + 1/n, n \in \mathbf{H}_+$, 则 $\lim_{n \to \infty} (c_n - a_n) = \lim_{n \to \infty} 1/n = 0$, 但显然 $\{b_n\}$ 发散.

4. 找出下列运算中的错误:

$$\lim_{n\to\infty} \left(\frac{1}{n+1} + \dots + \frac{1}{2n} \right) = \lim_{n\to\infty} \frac{1}{n+1} + \dots + \lim_{n\to\infty} \frac{1}{2n} = 0.$$

证明. 问题在于第二个等号, 极限的四则运算法则之对于有限次的加减乘除(除法要求分母的数列不为零)成立, 对于可列次的四则运算没有意义. □

5. 设已知 $\{a_n\}$ 收敛于 a, 又对每个 n 有 $b < a_n < c$, 问: 是否成立 b < a < c?

证明. 不一定成立. 如取 $b = 0, c = 1, a_n = 1/n, n \in \mathbf{N}_+$, 则有 $b < a_n < c, \forall n \in \mathbf{H}_+$, 但 $a = \lim_{n \to \infty} a_n = 0$, 故 a = c.

6. 设已知 $\{a_n\}$ 收敛于 a, 又有 $b \le a \le c$, 问: 是否存在 N, 使得当 n > N 时成立 $b \le a \le c$?

证明. 两次应用数列极限的保序性, 所得的正整数分别记为 N_1 和 N_2 , 则取 $N = \max\{N_1, N_2\}$, 当 n > N 时就有 $b_n \leq a_n \leq c_n$.

7. 设已知 $\lim_{n\to\infty} a_n = 0$, 问是否有 $\lim_{n\to\infty} (a_1 a_2 \cdots a_n) = 0$? 又问: 反之如何?

证明. ⁵ 对于 $\varepsilon_0 = 1$,由 $\lim_{n \to \infty} a_n = 0$ 知存在 $N \in \mathbb{N}_+$ 使得当 n > N 时有 $|a_n| < 1$,记 $K = |a_1 a_2 \cdots a_N|$.对于 $\forall 0 < \varepsilon < 1$, $\exists N' \in \mathbb{N}_+$,当 n > N' 时有 $|a_n| < \varepsilon/K$.因此对于 $n > \max\{N, N'\}$, $|a_1 a_2 \cdots a_n| = K|a_{N+1} \cdots a_n| \leqslant K|a_n| < K \cdot \varepsilon/K = \varepsilon$,即 $\lim_{n \to \infty} (a_1 a_2 \cdots a_n) = 0$.

 $^{^5}$ 结合无穷级数的相关知识可以给出另一证明. 记 $u_n=a_1\cdots a_n$,由无穷级数的 d'Alembert 比值判别法, $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\lim_{n\to\infty}a_{n+1}=0$,有无穷级数 $\sum_{n=1}^\infty u_n$ 收敛,故 $\lim_{n\to\infty}u_n=0$.

2.2.2 练习题

1. 证明: $\{a_n\}$ 收敛的充分必要条件是 $\{a_{2k}\}$ 和 $\{a_{2k-1}\}$ 收敛于同一极限.

证明. 必要性. 设 $\lim_{n\to\infty} a_n = a$, 则对于 $\forall \varepsilon > 0$, $\exists N \in \mathbf{N}_+$, $\exists n > N$ 时, $|a_n - a| < \varepsilon$. $\exists k > N$ 时, 2k > 2k - 1 > N, 故当 k > N 时, $|a_{2k} - a| < \varepsilon$, $|a_{2k-1} - a| < \varepsilon$. 即 $\lim_{n\to\infty} a_{2k} = \lim_{n\to\infty} a_{2k-1} = a$. 充分性. 设 $\lim_{n\to\infty} a_{2k} = \lim_{n\to\infty} a_{2k-1} = a$, 则对于 $\forall \varepsilon > 0$, $\exists K_1 \in \mathbf{N}_+$, 当 $k > K_1$ 时, $|a_{2k} - a| < \varepsilon$; $\exists K_2 \in \mathbf{N}_+$, 当 $k > K_2$ 时, $|a_{2k-1} - a| < \varepsilon$. 取 $N = \max\{K_1, K_2\}$, 则当 $N \in \mathbb{N}$ 时, $|a_n - a| < \varepsilon$. □

- 2. 以下是可以应用夹逼定理的几个题.
 - (1) 给定 p 个正数 $a_1, a_2, \dots, a_p, \ \ \ \lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_p^n};$

(2) if
$$x_n = \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{(n+1)^2}}, n \in \mathbf{N}_+, \, \, \, \, \, \, \, \lim_{n \to \infty} x_n;$$

- (4) 设 $\{a_n\}$ 为正数列, 并且已知它收敛于 a>0, 证明 $\lim_{n\to\infty} \sqrt[n]{a_n}=1$.
- 证明. (1) $\max_{1\leqslant k\leqslant p}a_k\leqslant \sqrt[n]{a_1^n+a_2^n+\cdots+a_p^n}\leqslant \sqrt[n]{n\max_{1\leqslant k\leqslant p}a_k^n}=\sqrt[n]{n\max_{1\leqslant k\leqslant p}a_k}\to \max_{1\leqslant k\leqslant p}a_k(n\to\infty),$ 故 $\lim_{n\to\infty}\sqrt[n]{a_1^n+a_2^n+\cdots+a_p^n}=\max_{1\leqslant k\leqslant p}a_k;$

$$(2) \ \frac{2n+1}{\sqrt{(n+1)^2}} \leqslant x_n \leqslant \frac{2n+1}{\sqrt{n^2+1}}, \lim_{n \to \infty} \frac{2n+1}{\sqrt{(n+1)^2}} = \lim_{n \to \infty} \frac{2n+1}{\sqrt{n^2+1}} = 2, \ \ \ \ \lim_{n \to \infty} x_n = 2;$$

(3)
$$\sqrt[n]{n \cdot 1/n} \leqslant a_n \leqslant \frac{1}{n} n \to 1 (n \to \infty), \ \ \ \lim_{n \to \infty} a_n = 1;$$

- (4) 取 $\varepsilon = a/2 > 0$, 由 $\lim_{n \to \infty} a_n = a$, $\exists N \in \mathbf{N}_+$, 当 n > N 时, $|a_n a| < a/2$, 即当 n > N 时 $a/2 < a_n < 3a/2$. 同时开 n 次根号,有 $\sqrt[n]{a/2} < \sqrt[n]{a} < \sqrt[n]{3a/2}$, $\forall n > N$. 由于 $\lim_{n \to \infty} \sqrt[n]{a/2} = \lim_{n \to \infty} \sqrt[n]{3a/2} = 1$, 故 $\lim_{n \to \infty} \sqrt[n]{a_n} = 1$.
- 3. 求以下极限:

(1)
$$\lim_{n\to\infty} (1+x)(1+x^2)\cdots(1+x^{2^n})$$
, $\sharp + |x| < 1$;

(2)
$$\lim_{n \to \infty} \left(1 - \frac{1}{2^2} \right) \left(1 - \frac{1}{3^2} \right) \cdots \left(1 - \frac{1}{n^2} \right);$$

(3)
$$\lim_{n \to \infty} \left(1 - \frac{1}{1+2} \right) \left(1 - \frac{1}{1+2+3} \right) \cdots \left(1 - \frac{1}{1+2+\cdots+n} \right);$$

(4)
$$\lim_{n\to\infty} \left(\frac{1}{1\cdot 2\cdot 3} + \frac{1}{2\cdot 3\cdot 4} + \dots + \frac{1}{n(n+1)(n+2)} \right);$$

(5)
$$\lim_{n \to \infty} \sum_{k=1}^{\infty} \frac{1}{k(k+1)\cdots(k+\nu)}$$
, 其中 $\nu \in \mathbb{N}_+, \nu > 1$. (最后两个题是 $\lim_{n \to \infty} \left(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n(n+1)} \right)$ 的推广.)

证明. (1)
$$(1+x)(1+x^2)\cdots(1+x^{2^n}) = \frac{(1+x)(1-x)(1+x^2)\cdots(1+x^{2^n})}{1-x}$$

$$= \frac{(1-x^2)(1+x^2)\cdots(1+x^{2^n})}{1-x}$$

$$= \cdots = \frac{1-x^{2^{n+1}}}{1-x} \to \frac{1}{1-x}(n\to\infty)$$

$$(2) \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right) = \left(1 - \frac{1}{2}\right) \left(1 + \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 + \frac{1}{3}\right) \cdots \left(1 - \frac{1}{n}\right) \left(1 + \frac{1}{n}\right)$$

$$= \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdots \frac{n-1}{n} \cdot \frac{n+1}{n}$$

$$= \frac{1}{2} \cdot \frac{n+1}{n} \to \frac{1}{2} (n \to \infty)$$

4. 设 $s_n = a + 3a^2 + \cdots + (2n-1)a^n$, |a| < 1, 求 $\{a_m\}$ 的极限. (试计算 $s_n - as_n$.)

5. 设正数列 $\{x_n\}$ 收敛, 极限大于 0, 证明: 这个数列有正下界, 但在数列中不一定有最小数.

6. 证明: 若有 $\lim_{n\to\infty} a_n = +\infty$, 则在数列 $\{a_n\}$ 中一定有最小数.

7. 证明: 无界数列至少有一个子列是确定符号的无穷大量.

8. 证明: 数列 {tan n} 发散.

9. 设数列 $\{S_n\}$ 的定义为

$$S_n = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p}, n \in \mathbf{N}_+.$$

证明: $\{S_n\}$ 在以下两种情况均发散: $(1)p \leq 0$; (2)0 .