DIGITAL CIRCUITS

Week-14, Lecture-2 Sequential Circuits

Sneh Saurabh 14th November, 2018

Digital Circuits: Announcements/Revision

Sequential Circuits Pipelining

Timing constraints on Flip-flops due to delay

Flip-flop: Constraints

Constraints:

- a) Setup Time (t_{su}) : amount of time that D must be stable before the active edge.
- b) Hold Time (t_h) : amount of time that D must hold the same value after the active edge

Delay:

Clock-to-Q propagation delay (t_p): the amount of time elapsed between the clock changes until the Q output changes.

Flip-flop: Origin of Setup Time

Setup Time (t_{su}) :

- Amount of time required for data at D to propagate through master latch and get sampled by the slave latch
- Setup time decided by the delay of the master latch
- Time interval before the positive edge of clock that the signal on the *D* input must be stable
- If the input is changed during this time, the output of the slave latch becomes unpredictable

Flip-flop: Origin of Hold Time

Hold Time (t_h) :

- When Clock goes from Low to High, then (due to delay of inverter) for a short duration both latches are enabled
- If the input changes during this time, we don't know whether output corresponds to previous input or present input (unpredictable)
- This is called hold time: time after the active clock edge during which the input must be stable

Flip-flop: Origin of Clock-to-Q propagation delay

Clock-to-Q propagation delay (t_p) :

- When active edge of clock appears at the slave latch, it takes time for the data to propagate from D₂ to Q
- This decides the Clock-to-Q propagation delay
- It is also denoted as t_{clk-out}

Constraints on Sequential Circuit: Setup Constraint (1)

Constraints on Sequential Circuit: Setup Constraint (2)

Constraints on Sequential Circuit: Setup Constraint (3)

$$T_{clk} \geq T_{clk-out} + T_{pmax} + T_{setup} + T_{skew}$$

Clock Skew (T_{skew}) :

- Difference in arrival time of the active clock edge at launch flip-flop (t_{c-launch}) and capture flip-flop (t_{c-capture})
- $T_{skew} = t_{c-launch} t_{c-capture}$

- If active edge of clock arrives late at the launch flip-flop then the effect is similar to adding delay on the launching data
- The effect is opposite if clock arrives late at the capture flip-flop (more time is allowed for data to propagate)

Constraints on Sequential Circuit: Setup Constraint (4)

$$T_{clk} \geq T_{clk-out} + T_{pmax} + T_{setup} + T_{skew}$$

How to reduce T_{clk} or increase the frequency of operation?

• Reduce T_{pmax} , $T_{clk-out}$ or T_{setup}

Constraints on Sequential Circuit: Setup Constraint (5)

Problem:

The critical path for a circuit is shown alongside. Find the maximum clock frequency that this circuit can work. For launch flip-flop: $T_{setup} = 10 \ ps$, $T_{clk-q} = 20 \ ps$, For capture flip-flop: $T_{setup} = 30 \ ps$, $T_{clk-q} = 25 \ ps$ $T_{launch} = 140 \ ps$ $T_{capture} = 90 \ ps$ $T_{data} = 400 \ ps$

Answer:

$$T_{period} > T_{clk-q} + T_{data} + T_{setup} + (T_{launch} - T_{capture})$$

$$T_{period} > 20 + 400 + 30 + 140 - 90$$

$$T_{period} > 500 \ ps \Rightarrow f_{clk} < 2 \ GHz$$