12

We claim:

1	1.	Diagnosing stroke using dynamic coupling of at least one ultrasonic
2		transducer/receiver to a skull.
1	2.	Using non-ultrasonic detection of symptoms of stroke to dynamically couple an
2		ultrasonic transducer/receiver to a skull.
	. 🔪	
1	by p.	The method of claim 2 in which the non-ultrasonic detection comprises at least
2	\ 0	one of the group consisting of computed tomography scanning, magnetic
3	5/	resonance scanning, differential spectrophotometric methods, near-infrared
4		detection of tissue characteristics, detection of a biological material,
5	\	measurement of a biological material, detection of a chemical, measurement of
6	,	a chemical, detection of S100β, measurement of S100β, use of biological assay
7		techniques, detection of change in blood pressure, detection of change in
8		pressure within the eye, detection of change in blood flow in arteries serving
9		organs other than the brain, and detection of change in blood flow in the
10		arteries serving the eye.
1	4.	For a patient having a skull containing brain tissue and blood vessels, a process
2		for diagnosing stroke in the patient, comprising:
3		a) dynamically coupling at least one ultrasonic transmitter/receiver to at
4		least one opening in the skull of the patient;
5		b) imaging a region within the skull of the patient; and
6		c) at least one of: determining presence of hemorrhagic stroke by
7		identifying relatively diffuse blood flow within the skull of the patient;
8		determining presence of ischemic stroke by identifying at least one
9		location of inadequate blood flow within the skull of the patient; and
10		diagnosing between hemorrhagic and ischemic stroke by classifying a
11		region within the skull of the patient in terms of adequacy of blood

flow.

1	5.	The process of claim 4, in which the imaging comprises generating and
2		receiving ultrasonic signals suitable for processing into information about the
3		region within the skull of the patient.
1	6.	The process of claim 4, in which a region is classified in terms of normal blood
2		flow.
1	7.	The process of claim 4, in which a region is classified in terms of inadequate
2		blood flow.
1	8.	The process of claim 4, in which a region is classified in terms of relatively
2		diffuse blood flow.
1	9.	The process of claim 4, in which locations of hemorrhagic stroke are
2		determined by identifying relatively diffuse blood flow outside the blood vessels
3		of the brain.
1	10.	The process of claim 4 in which locations of ischemic stroke are determined by
2		identifying relatively inadequate blood flow within the blood vessels of the
3		brain.
1	11.	The process of claim 4 in which presence of ischemic stroke is determined by
2		identifying at least one location where there is at least partial blockage of blood
3		flow.
1	12.	The process of claim 4, further comprising applying a vacuum to the skull.
1	13.	The process of claim 4, further comprising applying an acoustic coupling
2		material to the skull.
1	14.	The process of claim 4, in which the ultrasonic transducer/receiver is coupled
2		to at least one man-made opening in the skull.

1	15.	The process of claim 4, in which the ultrasonic transducer/receiver is coupled
2		to at least ocular opening in the skull.
1	16.	The process of claim 4, in which the ultrasonic transducer/receiver is coupled
2		to at least one nasal opening in the skull.
1	17.	The process of claim 4, in which the ultrasonic transducer/receiver is coupled
2		to at least one aural opening in the skull.
1	18.	The process of claim 4, in which the ultrasonic transducer/receiver is coupled
2		to at least one acoustic bone window in the skull.