

Explotary data analytcise

```
In [137... import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns

In [138... # Upload the data into dataset
   df = pd.read_csv("hr_dashboard_data.csv")

In [139... # Read the dataset
   df.tail()
Out [130... Breisets Breaksticing Foodbacks
```

Out[139...

		Name	Age	Gender	Projects Completed	Productivity (%)	Satisfaction Rate (%)	Feedback Score
	195	Stephanie Fisher	29	Female	9	32	87	3.5
	196	Jeremy Miller	26	Male	7	45	28	2.8
	197	Daniel Pierce	22	Male	3	36	77	1.6
	198	Michael Hernandez	36	Female	23	96	50	3.4
	199	Victor Gutierrez	43	Male	10	86	71	2.0

In [140... # Information on dataset
 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Name	200 non-null	object
1	Age	200 non-null	int64
2	Gender	200 non-null	object
3	Projects Completed	200 non-null	int64
4	Productivity (%)	200 non-null	int64
5	Satisfaction Rate (%)	200 non-null	int64
6	Feedback Score	200 non-null	float64
7	Department	200 non-null	object
8	Position	200 non-null	object
9	Joining Date	200 non-null	object
10	Salary	200 non-null	int64

dtypes: float64(1), int64(5), object(5)

memory usage: 17.3+ KB

```
In [141... # Converting Joining Date into date type
    df['Joining Date']=pd.to_datetime(df['Joining Date'],format="%b-%y")
    df['Experience']=2025-df['Joining Date'].dt.year
    df.head()
```

Out[141...

		Name	Age	Gender	Projects Completed	Productivity (%)	Satisfaction Rate (%)	Feedback Score	De
:	0	Douglas Lindsey	25	Male	11	57	25	4.7	
	1	Anthony Roberson	59	Female	19	55	76	2.8	
3	2	Thomas Miller	30	Male	8	87	10	2.4	
	3	Joshua Lewis	26	Female	1	53	4	1.4	
	4	Stephanie Bailey	43	Male	14	3	9	4.5	

Cleaning is done and managing data types.

Each column datatype is suitable for each columns

```
In [142... df.isnull().sum()
                                    0
Out[142... Name
                                    0
          Age
          Gender
                                    0
          Projects Completed
                                    0
          Productivity (%)
                                    0
          Satisfaction Rate (%)
                                    0
          Feedback Score
          Department
                                    0
          Position
                                    0
          Joining Date
                                    0
          Salary
                                    0
          Experience
          dtype: int64
```

Here we can see that our data is null free

```
In [143... df.describe()
```

	Age	Projects Completed	Productivity (%)	Satisfaction Rate (%)	Feedback Score	Joining Date
count	200.000000	200.000000	200.000000	200.000000	200.000000	200
mean	34.650000	11.455000	46.755000	49.935000	2.883000	2014-01-11 20:45:36
min	22.000000	0.000000	0.000000	0.000000	1.000000	1998-01-01 00:00:00
25%	26.000000	6.000000	23.000000	25.750000	1.900000	2008-01-01 00:00:00
50%	32.000000	11.000000	45.000000	50.500000	2.800000	2017-01-01 00:00:00
75%	41.000000	17.000000	70.000000	75.250000	3.900000	2020-01-01 00:00:00
max	60.000000	25.000000	98.000000	100.000000	4.900000	2022-01-01 00:00:00
std	9.797318	6.408849	28.530068	28.934353	1.123263	NaN

Describe the whole numerical dataset here.

```
In [144...
bins = [20,25,30,35,40,45,50,55,60]
labels = ['20-25','25-30','30-35','35-40','40-45','45-50','50-55','55-60']
df['Age Group'] = pd.cut(df['Age'],bins = bins,labels = labels, right=False)
```

In [145... df.head()

Out[145...

	Name	Age	Gender	Projects Completed	Productivity (%)	Satisfaction Rate (%)	Feedback Score	De
(Douglas Lindsey	25	Male	11	57	25	4.7	
:	Anthony Roberson	59	Female	19	55	76	2.8	
3	Thomas Miller	30	Male	8	87	10	2.4	
	Joshua Lewis	26	Female	1	53	4	1.4	
4	Stephanie Bailey	43	Male	14	3	9	4.5	

```
In [146... # With Age-Group(derived from 'Age' column)
df['Age Group'].value_counts().plot.pie(autopct='%1.1f%%')
```

Out[146... <Axes: ylabel='count'>

Showing heavily concentrated in the 25-30 age group.

```
In [147... # By using 'Projects Completed' column
sns.histplot(df['Projects Completed'],bins=10)
```

Out[147... <Axes: xlabel='Projects Completed', ylabel='Count'>

The distribution of projects completed is spread fairly evenly, with most employees completing between 5-17 projects. No extreme imbalance was found."

```
In [148... # By using 'Productivity' column
sns.histplot(df['Productivity (%)'],bins=10)
```

Out[148... <Axes: xlabel='Productivity (%)', ylabel='Count'>

A large number comes within moderate, which suggest room for improvement.

```
In [149... # By Using Salary column
sns.histplot(df['Salary'],bins=10)
```

Out[149... <Axes: xlabel='Salary', ylabel='Count'>

A significate number falls under lowest salary bracket and a substantinal group in the higher salary bracket.

```
In [150...
         # What is the average salary for each position?
          df.groupby('Position')['Salary'].mean().round(2)
Out[150... Position
          Analyst
                               68195.70
          Intern
                               34811.50
          Junior Developer
                               52104.11
         Manager
                              110091.48
          Senior Developer
                               86481.50
          Team Lead
                              100228.06
          Name: Salary, dtype: float64
In [151...
         # Which department has the most experienced employees?
          df.groupby('Department')['Experience'].mean().round(2)
Out[151... Department
          Finance
                       11.46
          HR
                       10.53
          ΙT
                       12.29
                       10.05
          Marketing
                       10.60
          Sales
          Name: Experience, dtype: float64
          emp_count = df.groupby(['Position', 'Gender']).size().reset_index(name='Name_cc
In [152...
```

emp_count

Out[152...

	Position	Gender	Name_count
0	Analyst	Female	12
1	Analyst	Male	21
2	Intern	Female	15
3	Intern	Male	15
4	Junior Developer	Female	19
5	Junior Developer	Male	16
6	Manager	Female	22
7	Manager	Male	18
8	Senior Developer	Female	14
9	Senior Developer	Male	16
10	Team Lead	Female	18
11	Team Lead	Male	14

```
In [153... # Position + No of employee + gender
plt.figure(figsize=(8,5))
sns.barplot(x='Position',y='Name_count',hue = 'Gender',data=emp_count)
plt.title('Position by no of employees')
plt.xticks(rotation=45)
plt.show()
```


Overall, there appear to be equal no of both gender, with the most significant disparity observed in the 'Analyst' role and 'Manager' role.

```
In [154... emp_count1 = df.groupby(['Department', 'Gender']).size().reset_index(name='Name
emp_count1
```

Out[154		Department	Gender	Name_count
	0	Finance	Female	17
	1	Finance	Male	24
	2	HR	Female	19
	3	HR	Male	13
	4	IT	Female	16
	5	IT	Male	22
	6	Marketing	Female	24
	7	Marketing	Male	18
	8	Sales	Female	24

Sales

Male

```
In [155... # Department + No of employee + gender
plt.figure(figsize=(8,5))
sns.barplot(x='Department',y='Name_count',hue = 'Gender',data=emp_count1)
plt.title('Department by no of employees')
plt.xticks(rotation=45)
plt.show()
```

23

Department by no of employees 25 Gender Female Male 10 5

4

Department

'Finence', 'HR', 'IT' and 'Marketing' depatment has most disparity, other habd 'sales' seems moderate.

K.

```
In [156... emp_count2 = df.groupby(['Joining Date']).size().reset_index(name='Name_count']
In [157... sns.lineplot(x='Joining Date', y='Name_count', data=emp_count2)
Out[157... <Axes: xlabel='Joining Date', ylabel='Name_count'>
```


Number incresed of employees who joined organisation in between 2018 to 2022

```
In [158... sns.boxplot(x='Department',y='Salary',data=df)
```

Out[158... <Axes: xlabel='Department', ylabel='Salary'>

Marketting department geting muvh lesser than others. Most HR getting less salary then average salary.

```
In [159... plt.figure(figsize=(8,5))
    sns.barplot(y='Projects Completed', x='Age Group', hue = 'Gender', data=df)
    plt.title('Age Group by Projects Completed')
    plt.xticks(rotation=45)
    plt.show()
```

Age Group by Projects Completed

No of Project incresed based on age or we can say that age and project are directly propostion to each other.

```
In [160... plt.figure(figsize=(6, 4))
    sns.lineplot(x='Department', y='Experience', data=df)
    plt.title('Experience vs Salary')
    plt.tight_layout()
    plt.show()
```


'IT' and 'Finance' has much experience employees

```
In [161... # Experience
sns.countplot(x='Experience',data=df)
```

Out[161... <Axes: xlabel='Experience', ylabel='count'>

It shows that company is good for short work but for long term, it is not.