Size polymorphism

Ensuring correction of array accesses with typing

Jean-Louis Colaço, Baptiste Pauget, Marc Pouzet

Synchron 2021 - La Rochette

November 22, 2021

Requirements and context

Requirements and context

Safety critical embedded systems

- No errors at run-time
- Graphical specification (inference)
- Statically bounded memory

Requirements and context

Safety critical embedded systems

- No errors at run-time
- Graphical specification (inference)
- Statically bounded memory

Targeted array applications

- Signal processing, AI
- Non linear size relations, recursion
- Polymorphism (on size, on shape)

Arrays in programming languages

Arrays in programming languages

Extensional arrays: collections of elements

- Out of bounds accesses
- Incomplete definitions

Arrays in programming languages

Extensional arrays: collections of elements

- Out of bounds accesses
- Incomplete definitions

Intensional arrays: indivisible objects

- Used with iterators (map, fold, ...)
- Correct accesses by construction (but limited expressiveness)
- Size inconsistencies (zip, map2, ...)

Agenda

1. Bringing sizes in types

- 1. Refinements
- 2. Size language
- 3. Polymorphism

2. Size Inference

- 1. Inference steps
- 2. Size constraint resolution

3. The language

- 1. Examples
- 2. Coercions
- 3. Binding time analysis

Agenda

- 1. Bringing sizes in types
 - 1. Refinements
 - 2. Size language
 - 3. Polymorphism
- 2. Size Inference
 - 1. Inference steps
 - 2. Size constraint resolution
- The language
 - 1. Examples
 - 2. Coercions
 - 3. Binding time analysis

Size Polymorphism

$$\texttt{val map}: \forall \iota. \ \forall \alpha, \beta. \ \big(\alpha \to \beta\big) \to \lessdot \iota \gt \to \ [\iota] \ \alpha \to \ [\iota] \ \beta$$

Dependent Types

val map:
$$\forall \alpha, \beta. (\alpha \rightarrow \beta) \rightarrow \Pi n: \texttt{int.} [n] \alpha \rightarrow [n] \beta$$

1. Refinements

*** Refinements**

General form [XP98, Fla06]

- Predicates over base type: $\{x : B \mid P(x)\}$
- Sub-typing: predicate implication

*** Refinements**

General form [XP98, Fla06]

- Predicates over base type: $\{x : B \mid P(x)\}$
- Sub-typing: predicate implication
 - \star Undecidable type checking \star

* Refinements

General form [XP98, Fla06]

- Predicates over base type: $\{x : B \mid P(x)\}$
- Sub-typing: predicate implication
 - * Undecidable type checking *

```
 \begin{array}{c|cccc} \tau & ::= & & \textit{Types} \\ & | & \alpha, \beta, \gamma & & \text{variable} \\ & | & \text{int} & & \text{integer} \\ & | & \text{bool} & & \text{boolean} \\ & | & \tau \rightarrow \tau & & \text{function} \end{array}
```

* Refinements

General form [XP98, Fla06]

- Predicates over base type: $\{x : B \mid P(x)\}$
- Sub-typing: predicate implication
 - * Undecidable type checking *

τ ::=		Types
	$lpha,eta,\gamma$	variable
	<η>	singleton
	$[\eta]$	interval
	int	integer
	bool	boolean
	au ightarrow au	function

Integer refinements

•
$$\langle \eta \rangle$$
: singleton type $\{x: \text{int } | x = \eta\}$ (size η)

•
$$[\eta]$$
: interval type $\{x: \text{int } | \ 0 \le x < \eta\}$ (index η)

* Refinements

General form [XP98, Fla06]

- Predicates over base type: $\{x : B \mid P(x)\}$
- Sub-typing: predicate implication
 - * Undecidable type checking *

τ ::=		Types
	$lpha,eta,\gamma$	variable
	<η>	singleton
	$[\eta]$	interval
	int	integer
	bool	boolean
	au ightarrow au	function

Integer refinements

- $\langle \eta \rangle$: singleton type $\{x: \text{int } | x = \eta\}$ (size η)
- [η]: interval type $\{x: \mathtt{int} \mid 0 \leq x < \eta\}$ (index η)
- Trivial sub-typing only: $\langle \eta \rangle <: int \& [\eta] <: int$

* Refinements

General form [XP98, Fla06]

- Predicates over base type: $\{x : B \mid P(x)\}$
- Sub-typing: predicate implication
 - **★ Undecidable type checking ★**

$\overline{}$			
\int	::=		Types
		$lpha,eta,\gamma$	variable
		<η>	singleton
		$[\eta]$	interval
		int	integer
	į	bool	boolean
	İ	au ightarrow au	function

Integer refinements

- $\langle \eta \rangle$: singleton type $\{x: \text{int} \mid x=\eta\}$ (size η)
- [η]: interval type $\{x: \text{int} \mid 0 \le x < \eta\}$ (index η)
- Trivial sub-typing only: $\langle \eta \rangle <: int \& [\eta] <: int$

Arrays as functions¹ with bounded domain: $[\eta] \tau \equiv [\eta] \to \tau$

Correctness of accesses ensured by typing

¹ for typing purposes only

Dependent Types

1. Refinements

1. Refinements

2. Expressions

*** Size language**

Multivariate polynomials $\eta \in \mathbb{Z}[\mathcal{V}_{\eta}]$

$\left(\begin{array}{c}\eta\end{array}\right)$::=		Sizes
		ι, δ, κ	variable
		n	constant
		$\eta + \eta$	sum
		$\eta * \eta$	product

*** Size language**

Multivariate polynomials $\eta \in \mathbb{Z}[\mathcal{V}_{\eta}]$

• Formal handling: normal form

η	::=		Sizes
		ι, δ, κ	variable
		n	constant
		$\eta + \eta$	sum
		$\eta * \eta$	product

* Size language

Multivariate polynomials $\eta \in \mathbb{Z}[\mathcal{V}_{\eta}]$

- Formal handling: normal form
- Expressiveness: non-linear expressions

$\eta ::=$		Sizes
	ι, δ, κ	variable
	n	constant
	$\eta + \eta$	sum
	$\eta * \eta$	product

* Size language

Multivariate polynomials $\eta \in \mathbb{Z}[\mathcal{V}_{\eta}]$

- Formal handling: normal form
- Expressiveness: non-linear expressions

η	::=		Sizes
		ι, δ, κ	variable
		n	constant
		$\eta + \eta$	sum
		$\eta * \eta$	product

Equivalent types schemes

```
val sample: \forall \iota, \delta. \ \forall \alpha. <\delta > \rightarrow [\iota * \delta - \delta + 1]\alpha \rightarrow [\iota]\alpha val sample: \forall \iota, \delta. \ \forall \alpha. <\delta > \rightarrow [\iota * \delta + 1]\alpha \rightarrow [\iota + 1]\alpha
```

* Size language

Multivariate polynomials $\eta \in \mathbb{Z}[\mathcal{V}_{\eta}]$

- Formal handling: normal form
- Expressiveness: non-linear expressions

η	::=		Sizes
		ι, δ, κ	variable
		n	constant
		$\eta + \eta$	sum
		$\eta * \eta$	product

Equivalent types schemes

val sample:
$$\forall \iota, \delta. \ \forall \alpha. \ <\delta> \rightarrow [\iota * \delta - \delta + 1]\alpha \rightarrow [\iota]\alpha$$
 val sample: $\forall \iota, \delta. \ \forall \alpha. \ <\delta> \rightarrow [\iota * \delta + 1]\alpha \rightarrow [\iota + 1]\alpha$

No most general types schemes

let zero:
$$\langle \iota \rangle \rightarrow \langle 0 \rangle = \lambda n : \langle \iota \rangle$$
. $(n-1) * (n-2)$

* Size language

Multivariate polynomials $\eta \in \mathbb{Z}[\mathcal{V}_{\eta}]$

- Formal handling: normal form
- Expressiveness: non-linear expressions

$\left(\begin{array}{c}\eta\end{array}\right)$::=		Sizes
		ι, δ, κ	variable
		n	constant
		$\eta + \eta$	sum
		$\eta * \eta$	product

Equivalent types schemes

val sample:
$$\forall \iota, \delta. \ \forall \alpha. <\delta > \rightarrow [\iota * \delta - \delta + 1]\alpha \rightarrow [\iota]\alpha$$

val sample: $\forall \iota, \delta. \ \forall \alpha. <\delta > \rightarrow [\iota * \delta + 1]\alpha \rightarrow [\iota + 1]\alpha$

No most general types schemes

let zero :
$$<\iota>\to <0> = \lambda n$$
 : $<\iota>$. $(n-1)*(n-2)$ \Longrightarrow Well-typed if $\iota=1$ or $\iota=2$ Incompatible types
$$\begin{cases} <1>\to <0> \\ <2>\to <0> \end{cases}$$

1. Refinements

2. Expressions

* Polymorphism

Handling sizes as types

- Static sizes only
- Constraint based definitions
- Implicit instantiation and generalization, inference

* Polymorphism

Handling sizes as types

- Static sizes only
- Constraint based definitions
- Implicit instantiation and generalization, inference

```
val fold: \forall \iota. \forall \alpha, \beta. (\alpha \to \beta \to \alpha) \to \langle \iota \rangle \to \alpha \to [\iota] \beta \to \alpha
val map2: \forall \iota. \forall \alpha, \beta, \gamma. (\alpha \to \beta \to \gamma) \to \langle \iota \rangle \to [\iota] \alpha \to [\iota] \beta \to [\iota] \gamma
```


* Polymorphism

Handling sizes as types

- Static sizes only
- Constraint based definitions
- Implicit instantiation and generalization, inference

```
val fold: \forall \iota. \forall \alpha, \beta. (\alpha \to \beta \to \alpha) \to \langle \iota \rangle \to \alpha \to [\iota] \beta \to \alpha
val map2: \forall \iota. \forall \alpha, \beta, \gamma. (\alpha \to \beta \to \gamma) \to \langle \iota \rangle \to [\iota] \alpha \to [\iota] \beta \to [\iota] \gamma
```

```
let dot_product: \underline{\phantom{a}} = \lambda u: \underline{\phantom{a}} . \lambda v: \underline{\phantom{a}} . fold (+) <_> 0 (map2 (*) <_> u v)
```


* Polymorphism

Handling sizes as types

- Static sizes only
- Constraint based definitions
- Implicit instantiation and generalization, inference

val fold:
$$\forall \iota$$
. $\forall \alpha, \beta$. $(\alpha \to \beta \to \alpha) \to \langle \iota \rangle \to \alpha \to [\iota] \beta \to \alpha$
val map2: $\forall \iota$. $\forall \alpha, \beta, \gamma$. $(\alpha \to \beta \to \gamma) \to \langle \iota \rangle \to [\iota] \alpha \to [\iota] \beta \to [\iota] \gamma$

* Polymorphism

Handling sizes as types

- Static sizes only
- Constraint based definitions
- Implicit instantiation and generalization, inference

```
val fold: \forall \iota. \forall \alpha, \beta. (\alpha \to \beta \to \alpha) \to \langle \iota \rangle \to \alpha \to [\iota] \beta \to \alpha
val map2: \forall \iota. \forall \alpha, \beta, \gamma. (\alpha \to \beta \to \gamma) \to \langle \iota \rangle \to [\iota] \alpha \to [\iota] \beta \to [\iota] \gamma
```

```
let dot_product : _ = \lambda u : _ . \lambda v : _ . fold (+) < _ > 0 (map2 (*) < _ > u v) val dot_product : \forall \iota. [\iota] int \rightarrow int
```


Agenda

- 1. Bringing sizes in types
 - 1. Refinements
 - 2. Size language
 - 3. Polymorphism
- 2. Size Inference
 - 1. Inference steps
 - 2. Size constraint resolution
- 3. The language
 - 1. Examples
 - 2. Coercions
 - 3. Binding time analysis

Inference

The pack operator

```
val window: \forall \iota, \kappa. \ \forall \alpha. \ \langle \kappa \rangle \rightarrow [\iota + \kappa - 1] \alpha \rightarrow [\iota] [\kappa] \alpha val sample: \forall \iota, \delta. \ \forall \alpha. \ \langle \delta \rangle \rightarrow [\iota * \delta - \delta + 1] \alpha \rightarrow [\iota] \alpha
```

Inference

The pack operator

```
val window: \forall \iota, \kappa. \ \forall \alpha. \ \langle \kappa \rangle \rightarrow [\iota + \kappa - 1] \alpha \rightarrow [\iota] [\kappa] \alpha val sample: \forall \iota, \delta. \ \forall \alpha. \ \langle \delta \rangle \rightarrow [\iota * \delta - \delta + 1] \alpha \rightarrow [\iota] \alpha
```

let pack:
$$\underline{} = \lambda x$$
: $\underline{}$ sample <_> (window <_> x)

Inference

The pack operator

```
val window: \forall \iota, \kappa. \ \forall \alpha. \ \langle \kappa \rangle \rightarrow [\iota + \kappa - 1] \alpha \rightarrow [\iota] [\kappa] \alpha
val sample: \forall \iota, \delta. \ \forall \alpha. \ \langle \delta \rangle \rightarrow [\iota * \delta - \delta + 1] \alpha \rightarrow [\iota] \alpha
```

let pack:
$$\underline{} = \lambda x : \underline{}$$
.
sample $<\underline{} > (\text{window } <\underline{} > x)$

The pack operator

```
val window: \forall \iota, \kappa. \ \forall \alpha. <\kappa> \rightarrow [\iota + \kappa - 1]\alpha \rightarrow [\iota][\kappa]\alpha
val sample: \forall \iota, \delta. \ \forall \alpha. <\delta> \rightarrow [\iota * \delta - \delta + 1]\alpha \rightarrow [\iota]\alpha
```

let pack:
$$\underline{} = \lambda x : \underline{}$$
.
sample $<\underline{} > (window <\underline{} > x)$

The pack operator

```
val window: \forall \iota, \kappa. \ \forall \alpha. \ \langle \kappa \rangle \rightarrow [\iota + \kappa - 1] \alpha \rightarrow [\iota] [\kappa] \alpha val sample: \forall \iota, \delta. \ \forall \alpha. \ \langle \delta \rangle \rightarrow [\iota * \delta - \delta + 1] \alpha \rightarrow [\iota] \alpha
```

let pack:
$$\underline{\ }=\lambda x$$
: $\underline{\ }$. sample <_> (window <_> x)

Typing pack

```
val window: \forall \iota, \kappa. \ \forall \alpha. \ \langle \kappa \rangle \rightarrow [\iota + \kappa - 1] \alpha \rightarrow [\iota] [\kappa] \alpha val sample: \forall \iota, \delta. \ \forall \alpha. \ \langle \delta \rangle \rightarrow [\iota * \delta - \delta + 1] \alpha \rightarrow [\iota] \alpha
```

$$\delta = \frac{\nu - \kappa}{\iota - 1}$$

```
let pack: \_=
\lambda x: \_.

sample <\_>
(window <\_> x)
```

> Integer refinement

Typing pack

```
val window: \forall \iota, \kappa. \ \forall \alpha. \ \langle \kappa \rangle \rightarrow [\iota + \kappa - 1] \alpha \rightarrow [\iota] [\kappa] \alpha val sample: \forall \iota, \delta. \ \forall \alpha. \ \langle \delta \rangle \rightarrow [\iota * \delta - \delta + 1] \alpha \rightarrow [\iota] \alpha
```

$$\delta = \frac{\nu - \kappa}{\iota - 1}$$

```
let pack: _ = \lambda x: _. sample <_> (\text{window <}_-> x)
```

> Type inference

▷ Integer refinement

Typing pack

```
val window: \forall \iota, \kappa. \ \forall \alpha. \ \langle \kappa \rangle \rightarrow [\iota + \kappa - 1] \alpha \rightarrow [\iota] [\kappa] \alpha val sample: \forall \iota, \delta. \ \forall \alpha. \ \langle \delta \rangle \rightarrow [\iota * \delta - \delta + 1] \alpha \rightarrow [\iota] \alpha
```

$$\delta = \frac{\nu - \kappa}{\iota - 1}$$

```
let pack: \alpha_1 = \lambda x : \alpha_2.

sample \beta_1 < > 

(window \beta_2 < > x)
```

> Type inference

▶ Integer refinement

Explicit instantiation

Typing pack

val window:
$$\forall \iota, \kappa. \ \forall \alpha. \ \langle \kappa \rangle \rightarrow [\iota + \kappa - 1] \alpha \rightarrow [\iota] [\kappa] \alpha$$
 val sample: $\forall \iota, \delta. \ \forall \alpha. \ \langle \delta \rangle \rightarrow [\iota * \delta - \delta + 1] \alpha \rightarrow [\iota] \alpha$

$$\delta = \frac{\nu - \kappa}{\iota - 1}$$

```
let pack: \forall \alpha. (\overline{\operatorname{int}} \to \alpha) \to \overline{\operatorname{int}} \to \overline{\operatorname{int}} \to \alpha = \lambda x : \overline{\operatorname{int}} \to \alpha. sample \overline{\operatorname{int}} \to \alpha < > (window \alpha < > > x)
```

> Type inference

▶ Integer refinement

- Explicit instantiation
- Unrefined type int
- Structural unification, generalization

Typing pack

val window:
$$\forall \iota, \kappa. \ \forall \alpha. \ \langle \kappa \rangle \rightarrow [\iota + \kappa - 1] \alpha \rightarrow [\iota] [\kappa] \alpha$$
 val sample: $\forall \iota, \delta. \ \forall \alpha. \ \langle \delta \rangle \rightarrow [\iota * \delta - \delta + 1] \alpha \rightarrow [\iota] \alpha$

$$\delta = \frac{\nu - \kappa}{\iota - 1}$$

```
\begin{array}{l} \operatorname{let} \ \operatorname{pack} : \forall \alpha. \ (\operatorname{\overline{int}} \to \alpha) \to \operatorname{\overline{int}} \to \operatorname{\overline{int}} \to \alpha = \\ \lambda x \colon \operatorname{\overline{int}} \to \alpha. \\ \operatorname{sample}_{\operatorname{\overline{int}} \to \alpha} <\_> \\ \left( \operatorname{window}_{\alpha} <\_> x \right) \end{array}
```

> Integer refinement

Typing pack

```
val window: \forall \iota, \kappa. \ \forall \alpha. <\kappa> \rightarrow [\iota + \kappa - 1] \alpha \rightarrow [\iota] [\kappa] \alpha val sample: \forall \iota, \delta. \ \forall \alpha. <\delta> \rightarrow [\iota * \delta - \delta + 1] \alpha \rightarrow [\iota] \alpha
```

$$\delta = \frac{\nu - \kappa}{\iota - 1}$$

```
let pack: \forall \alpha. [_]\alpha \rightarrow [_][_]\alpha = \lambda x: [_]\alpha. sample [_]\alpha <_> (window \alpha <>> x)
```

> Integer refinement

- int occurrence refinement
- Local propagation

Typing pack

```
val window: \forall \iota, \kappa. \ \forall \alpha. \ \langle \kappa \rangle \rightarrow [\iota + \kappa - 1] \alpha \rightarrow [\iota] [\kappa] \alpha val sample: \forall \iota, \delta. \ \forall \alpha. \ \langle \delta \rangle \rightarrow [\iota * \delta - \delta + 1] \alpha \rightarrow [\iota] \alpha
```

$$\delta = \frac{\nu - \kappa}{\iota - 1}$$

```
let pack: \forall \alpha. [_]\alpha \rightarrow [_][_]\alpha = \lambda x: [_]\alpha. sample [_]\alpha <_> (window \alpha <_> x)
```

> Integer refinement

Instantiating pack

```
val window: \forall \iota, \kappa. \ \forall \alpha. \ \langle \kappa \rangle \rightarrow [\iota + \kappa - 1] \alpha \rightarrow [\iota] [\kappa] \alpha val sample: \forall \iota, \delta. \ \forall \alpha. \ \langle \delta \rangle \rightarrow [\iota * \delta - \delta + 1] \alpha \rightarrow [\iota] \alpha
```

$$\delta = \frac{\nu - \kappa}{\iota - 1}$$

```
let pack: \forall \alpha. [\nu] \alpha \rightarrow [\iota] [\kappa] \alpha = \lambda x: [\nu_i] \alpha.

sample _{\iota_s \ \delta_s \ [\kappa'_w] \alpha} < \kappa_1 > 

(window _{\iota_w \ \kappa_w \ \alpha} < \kappa_2 > x)
```

▶ Integer refinement

- Explicit instantiation
- Collect constraints of the form $\eta = 0$

Instantiating pack

val window:
$$\forall \iota, \kappa. \ \forall \alpha. <\kappa> \rightarrow [\iota + \kappa - 1]\alpha \rightarrow [\iota] [\kappa]\alpha$$
 val sample: $\forall \iota, \delta. \ \forall \alpha. <\delta> \rightarrow [\iota * \delta - \delta + 1]\alpha \rightarrow [\iota]\alpha$

$$\delta = \frac{\nu - \kappa}{\iota - 1}$$

let pack:
$$\forall \iota, \kappa, \delta. \ \forall \alpha. \ [\iota * \delta - \delta + \kappa] \alpha \rightarrow [\iota] [\kappa] \alpha = \lambda x: [\iota * \delta - \delta + \kappa] \alpha.$$
sample $\iota \delta [\kappa]_{\alpha} < \delta >$
(window $(\iota * \delta - \delta + 1) \kappa \alpha < \kappa > x$)

▷ Integer refinement

- Explicit instantiation
- Collect constraints of the form $\eta = 0$
- Resolve system at generalization points
- Isolated variable elimination: $\iota \eta = 0$, $\iota \notin Vars(\eta)$

Instantiating pack

val window:
$$\forall \iota, \kappa. \ \forall \alpha. <\kappa> \rightarrow [\iota + \kappa - 1]\alpha \rightarrow [\iota] [\kappa]\alpha$$

val sample: $\forall \iota, \delta. \ \forall \alpha. <\delta> \rightarrow [\iota * \delta - \delta + 1]\alpha \rightarrow [\iota]\alpha$

$$\delta = \frac{\nu - \kappa}{\iota - 1}$$

val pack:
$$\forall \iota, \kappa, \delta. \ \forall \alpha. \ [\iota * \delta - \delta + \kappa] \alpha \rightarrow [\iota] [\kappa] \alpha$$

Instantiating pack

```
val window: \forall \iota, \kappa. \ \forall \alpha. <\kappa> \rightarrow [\iota + \kappa - 1]\alpha \rightarrow [\iota] [\kappa]\alpha val sample: \forall \iota, \delta. \ \forall \alpha. <\delta> \rightarrow [\iota * \delta - \delta + 1]\alpha \rightarrow [\iota]\alpha
```

$$\mathtt{val}\ \mathtt{pack}: \forall \iota, \kappa, \delta.\ \forall \alpha.\ [\iota * \delta - \delta + \kappa]\,\alpha \to [\iota]\,[\kappa]\,\alpha$$

let split:
$$[\iota * \kappa] \longrightarrow [\iota] [\kappa] = pack$$

Instantiating pack

```
val window: \forall \iota, \kappa. \ \forall \alpha. <\kappa> \rightarrow [\iota + \kappa - 1]\alpha \rightarrow [\iota] [\kappa]\alpha val sample: \forall \iota, \delta. \ \forall \alpha. <\delta> \rightarrow [\iota * \delta - \delta + 1]\alpha \rightarrow [\iota]\alpha
```

val pack:
$$\forall \iota, \kappa, \delta. \ \forall \alpha. \ [\iota * \delta - \delta + \kappa] \alpha \rightarrow [\iota] [\kappa] \alpha$$

let split:
$$\forall \alpha$$
. $[\iota * \kappa] \alpha \rightarrow [\iota] [\kappa] \alpha = \operatorname{pack}_{\iota' \kappa' \delta \alpha}$

Instantiating pack

val window:
$$\forall \iota, \kappa. \ \forall \alpha. <\kappa> \rightarrow [\iota + \kappa - 1]\alpha \rightarrow [\iota] [\kappa]\alpha$$
 val sample: $\forall \iota, \delta. \ \forall \alpha. <\delta> \rightarrow [\iota * \delta - \delta + 1]\alpha \rightarrow [\iota]\alpha$

val pack:
$$\forall \iota, \kappa, \delta. \ \forall \alpha. \ [\iota * \delta - \delta + \kappa] \alpha \rightarrow [\iota] [\kappa] \alpha$$

let split:
$$\forall \alpha$$
. $[\iota * \kappa] \alpha \rightarrow [\iota] [\kappa] \alpha = \operatorname{pack}_{\iota \kappa \delta \alpha}$

⊳ Size inference

1. Variable elimination (equivalent substitution)

$$\iota * \delta - \delta + \kappa = \iota * \kappa$$

Instantiating pack

val window:
$$\forall \iota, \kappa. \ \forall \alpha. \ \langle \kappa \rangle \rightarrow [\iota + \kappa - 1] \alpha \rightarrow [\iota] [\kappa] \alpha$$
 val sample: $\forall \iota, \delta. \ \forall \alpha. \ \langle \delta \rangle \rightarrow [\iota * \delta - \delta + 1] \alpha \rightarrow [\iota] \alpha$

val pack:
$$\forall \iota, \kappa, \delta. \ \forall \alpha. \ [\iota * \delta - \delta + \kappa] \alpha \rightarrow [\iota] [\kappa] \alpha$$

let split:
$$\forall \alpha$$
. $[\iota * \kappa] \alpha \rightarrow [\iota] [\kappa] \alpha = \operatorname{pack}_{\iota \kappa \delta \alpha}$

⊳ Size inference

1. Variable elimination (equivalent substitution)

$$\iota * \delta - \delta + \kappa = \iota * \kappa$$

2. Structural unification (nonequivalent substitution)

$$(\iota - 1) * (\delta - \kappa) = 0$$

Instantiating pack

val window:
$$\forall \iota, \kappa. \ \forall \alpha. <\kappa> \rightarrow [\iota + \kappa - 1]\alpha \rightarrow [\iota] [\kappa]\alpha$$
 val sample: $\forall \iota, \delta. \ \forall \alpha. <\delta> \rightarrow [\iota * \delta - \delta + 1]\alpha \rightarrow [\iota]\alpha$

val pack:
$$\forall \iota, \kappa, \delta. \ \forall \alpha. \ [\iota * \delta - \delta + \kappa] \alpha \rightarrow [\iota] [\kappa] \alpha$$

let split:
$$\forall \iota, \kappa. \ \forall \alpha. \ [\iota * \kappa] \alpha \rightarrow [\iota] \ [\kappa] \alpha = \operatorname{pack}_{\iota \kappa \kappa \alpha}$$

⊳ Size inference

1. Variable elimination (equivalent substitution)

$$\iota * \delta - \delta + \kappa = \iota * \kappa$$

2. Structural unification (nonequivalent substitution)

$$(\iota - 1) * (\delta - \kappa) = 0$$

Agenda

- 1. Bringing sizes in types
 - 1. Refinements
 - 2. Size language
 - 3. Polymorphism
- 2. Size Inference
 - 1. Inference steps
 - 2. Size constraint resolution
- 3. The language
 - 1. Examples
 - 2. Coercions
 - 3. Binding time analysis

e	::=		Expressions
		X	variable
		e e	application
		$\lambda x: \tau$. e	abstraction
		true false	boolean
		n	integer
		<η>	size
1			

val map:
$$\forall \iota$$
. $\forall \alpha, \beta$. $(\alpha \to \beta) \to \langle \iota \rangle \to [\iota] \alpha \to [\iota] \beta$

e	::=		Expressions
		X	variable
		e e	application
		$\lambda x: \tau$. e	abstraction
		true false	boolean
		n	integer
		<η>>	size

```
val map: \forall \iota. \forall \alpha, \beta. (\alpha \rightarrow \beta) \rightarrow \langle \iota \rangle \rightarrow [\iota] \alpha \rightarrow [\iota] \beta
let map: \underline{\phantom{}} = \lambda f: \underline{\phantom{}} . \lambda n: \langle \iota \rangle. \lambda X: \underline{\phantom{}} . \lambda i: [\iota]. f(Xi)
```

e	::=		Expressions
		X	variable
		e e	application
		λx: τ . e	abstraction
		true false	boolean
		n	integer
		<η>>	size

```
val map: \forall \iota. \forall \alpha, \beta. (\alpha \to \beta) \to \langle \iota \rangle \to [\iota] \alpha \to [\iota] \beta
let map: \underline{\ } = \lambda f: \underline{\ }. \lambda n: \langle \iota \rangle. \lambda X: \underline{\ }. \lambda i: [\iota]. f(Xi)
```

val window:
$$\forall \iota, \kappa. \ \forall \alpha. \ \langle \kappa \rangle \rightarrow [\iota + \kappa - 1] \alpha \rightarrow [\iota] [\kappa] \alpha$$

(e	::=		Expressions
		X	variable
		e e	application
		λx: τ . e	abstraction
		true false	boolean
		n	integer
		<η>>	size

```
val map: \forall \iota. \forall \alpha, \beta. (\alpha \to \beta) \to \langle \iota \rangle \to [\iota] \alpha \to [\iota] \beta
let map: \underline{\ } = \lambda f : \underline{\ }. \lambda n : \langle \iota \rangle . \lambda X : \underline{\ }. \lambda i : [\iota] . f(X i)
```

```
val window: \forall \iota, \kappa. \ \forall \alpha. <\kappa > \rightarrow [\iota + \kappa - 1]\alpha \rightarrow [\iota] [\kappa]\alpha
let window: \underline{\ } = \lambda k : <\kappa > . \ \lambda X : [\iota + \kappa - 1] \underline{\ }. \ \lambda i : [\iota]. \ \lambda j : [\kappa]. \ X \ (i + j \triangleright [\underline{\ }])
```

Extensional array use [SSSV17]

```
val map: \forall \iota. \forall \alpha, \beta. (\alpha \to \beta) \to \langle \iota \rangle \to [\iota] \alpha \to [\iota] \beta
let map: \underline{\phantom{}} = \lambda f: \underline{\phantom{}} . \lambda n: \langle \iota \rangle. \lambda X: \underline{\phantom{}} . \lambda i: [\iota]. f(X i)
```

```
val window: \forall \iota, \kappa. \ \forall \alpha. \ \langle \kappa \rangle \rightarrow [\iota + \kappa - 1] \alpha \rightarrow [\iota] [\kappa] \alpha
let window: \underline{\ } = \lambda k : \langle \kappa \rangle. \ \lambda X : [\iota + \kappa - 1] \underline{\ }. \ \lambda i : [\iota]. \ \lambda j : [\kappa]. \ X (i + j \triangleright [\underline{\ }])
```

Coercions: post-typing checks [Fla06, HE21]

e	::=		Expressions
		X	variable
		e e	application
		$\lambda x: \tau$. e	abstraction
		true false	boolean
		n	integer
		<η>	size
	ĺ	$e \triangleright au$	coercion
	e	e ::=	$\mid x \mid$ $\mid e \mid e \mid$ $\mid \lambda x : \tau \cdot e \mid$ $\mid \text{true} \mid \text{false} \mid$ $\mid n \mid$

Extensional array use [SSSV17]

```
val map: \forall \iota. \forall \alpha, \beta. (\alpha \rightarrow \beta) \rightarrow \langle \iota \rangle \rightarrow [\iota] \alpha \rightarrow [\iota] \beta
let map: \underline{\phantom{}} = \lambda f :\underline{\phantom{}} . \lambda n : \langle \iota \rangle . \lambda X :\underline{\phantom{}} . \lambda i : [\iota] . f(X i)
```

```
val window: \forall \iota, \kappa. \ \forall \alpha. \ \langle \kappa \rangle \rightarrow [\iota + \kappa - 1] \alpha \rightarrow [\iota] [\kappa] \alpha
let window: \underline{\ } = \lambda k : \langle \kappa \rangle. \ \lambda X : [\iota + \kappa - 1] \underline{\ }. \ \lambda i : [\iota]. \ \lambda j : [\kappa]. \ X \ (i + j \triangleright [\underline{\ }])
```

Coercions: post-typing checks [Fla06, HE21]

Integer upcasting

$$(e: int) \triangleright \langle \eta \rangle$$

 $(e: int) \triangleright [\eta]$

	e	::=		Expressions
l			X	variable
l			e e	application
l			$\lambda x: \tau$. e	abstraction
l			true false	boolean
l			n	integer
l			<η>	size
l			$e \triangleright \tau$	coercion

Extensional array use [SSSV17]

val map:
$$\forall \iota$$
. $\forall \alpha, \beta$. $(\alpha \rightarrow \beta) \rightarrow \langle \iota \rangle \rightarrow [\iota] \alpha \rightarrow [\iota] \beta$
let map: $\underline{} = \lambda f: \underline{} . \lambda n: \langle \iota \rangle . \lambda X: \underline{} . \lambda i: [\iota]. f(Xi)$

```
val window: \forall \iota, \kappa. \ \forall \alpha. \ \langle \kappa \rangle \rightarrow [\iota + \kappa - 1] \alpha \rightarrow [\iota] [\kappa] \alpha
let window: \underline{\ } = \lambda k: \langle \kappa \rangle. \ \lambda X: [\iota + \kappa - 1] \underline{\ }. \ \lambda i: [\iota]. \ \lambda j: [\kappa]. \ X (i + j \triangleright [\underline{\ }])
```

Coercions: post-typing checks [Fla06, HE21]

Integer upcasting

$$(e: int) \triangleright \langle \eta \rangle$$

 $(e: int) \triangleright [\eta]$

Size conversion

$$(e:\tau) \triangleright \tau'$$
, if $\tau \approx \tau'$

 \approx : Size ignoring comparison

e	::=		Expressions
		X	variable
		e e	application
		$\lambda x: \tau$. e	abstraction
		true false	boolean
		n	integer
		<η>	size
		$e \triangleright \tau$	coercion

Fast Fourier Transform

e ::=		Expressions
	X	variable
	e e	application
	$\lambda x: \tau$. e	abstraction
	true false	boolean
	n	integer
	<η>>	size
	$e \triangleright \tau$	coercion

Fast Fourier Transform

$$\begin{array}{ll} \text{val gft}: \forall \iota. \ [\iota] \, \text{cpx} \to [\iota] \, \text{cpx} & \mathcal{O}(\iota) = \iota^2 \\ \text{val fft}: \forall \iota. \ ([\iota] \, \text{cpx} \to [\iota] \, \text{cpx}) \to [2\iota] \, \text{cpx} \to [2\iota] \, \text{cpx} & \mathcal{O}(\iota) = 2\mathcal{O}_f + 2\iota \end{array}$$

e	::=		Expressions
		X	variable
		e e	application
		$\lambda x: \tau$. e	abstraction
	ĺ	true false	boolean
	ĺ	n	integer
	ĺ	<η>	size
	ĺ	$e \triangleright \tau$	coercion

Fast Fourier Transform

```
val gft: \forall \iota. [\iota] \operatorname{cpx} \to [\iota] \operatorname{cpx} \mathcal{O}(\iota) = \iota^2 val fft: \forall \iota. ([\iota] \operatorname{cpx} \to [\iota] \operatorname{cpx}) \to [2\iota] \operatorname{cpx} \to [2\iota] \operatorname{cpx} \mathcal{O}(\iota) = 2\mathcal{O}_f + 2\iota
```

let $dft: \underline{\hspace{0.1cm}} = \dots$

e	::=		Expressions
		X	variable
		e e	application
		λx: τ . e	abstraction
		true false	boolean
		n	integer
		<η>	size
		$e \triangleright \tau$	coercion

Fast Fourier Transform

```
val gft: \forall \iota. [\iota] \operatorname{cpx} \to [\iota] \operatorname{cpx} \mathcal{O}(\iota) = \iota^2 val fft: \forall \iota. ([\iota] \operatorname{cpx} \to [\iota] \operatorname{cpx}) \to [2\iota] \operatorname{cpx} \to [2\iota] \operatorname{cpx} \mathcal{O}(\iota) = 2\mathcal{O}_f + 2\iota
```

```
let dft: \underline{\phantom{a}} = \text{fix } f: \forall \iota. \ [\iota] \underline{\phantom{a}} \rightarrow [\iota] \underline{\phantom{a}} = \lambda X: \underline{\phantom{a}}.
...
```

Polymorphic recursion [Mee83, Myc84]

(e	::=		Expressions
		X	variable
		e e	application
		$\lambda x: \tau$. e	abstraction
	ĺ	true false	boolean
		n	integer
		<η>	size
	ĺ	$e \triangleright \tau$	coercion
	ĺ	$\texttt{fix } x : \sigma = e$	fix-point

Fast Fourier Transform

```
val gft: \forall \iota. [\iota] \operatorname{cpx} \to [\iota] \operatorname{cpx} \mathcal{O}(\iota) = \iota^2 val fft: \forall \iota. ([\iota] \operatorname{cpx} \to [\iota] \operatorname{cpx}) \to [2\iota] \operatorname{cpx} \to [2\iota] \operatorname{cpx} \mathcal{O}(\iota) = 2\mathcal{O}_f + 2\iota
```

```
let dft: \underline{\phantom{a}} = \text{fix } f: \forall \iota. \ [\iota] \underline{\phantom{a}} \rightarrow [\iota] \underline{\phantom{a}} = \lambda X: \underline{\phantom{a}}.
...
```

Polymorphic recursion [Mee83, Myc84]

```
Expressions
                                  variable
                              application
\lambda x: \tau. e
                              abstraction
                                  boolean
true | false
                                   integer
n
<η>>
                                      size
                                 coercion
e \triangleright \tau
                                 fix-point
fix x: \sigma = e
                                 local def
let x: \sigma = e in e
```

Fast Fourier Transform

val gft:
$$\forall \iota$$
. $[\iota] \operatorname{cpx} \to [\iota] \operatorname{cpx}$ $\mathcal{O}(\iota) = \iota^2$ val fft: $\forall \iota$. $([\iota] \operatorname{cpx} \to [\iota] \operatorname{cpx}) \to [2\iota] \operatorname{cpx} \to [2\iota] \operatorname{cpx}$ $\mathcal{O}(\iota) = 2\mathcal{O}_f + 2\iota$

```
let dft: _ = fix f: \forall \iota. [\iota] _ \rightarrow [\iota] _ = \lambda X: _. let size \nu = \langle \iota \rangle / 2 in
```

Polymorphic recursion [Mee83, Myc84]

Local size existential quantification

e	::=		Expressions
		X	variable
		e e	application
		$\lambda x: \tau$. e	abstraction
		true false	boolean
		n	integer
		<η>>	size
		$e \triangleright \tau$	coercion
		fix $x: \sigma = e$	fix-point
		let $x: \sigma = e$ in e	local def
		let size $\iota = e$ in e	size def

Fast Fourier Transform

```
val gft: \forall \iota. [\iota] \operatorname{cpx} \to [\iota] \operatorname{cpx} \mathcal{O}(\iota) = \iota^2 val fft: \forall \iota. ([\iota] \operatorname{cpx} \to [\iota] \operatorname{cpx}) \to [2\iota] \operatorname{cpx} \to [2\iota] \operatorname{cpx} \mathcal{O}(\iota) = 2\mathcal{O}_f + 2\iota
```

```
let dft: _ = fix f: \forall \iota. [\iota]_{-} \rightarrow [\iota]_{-} = \lambda X:_{-}.

let size \nu = \langle \iota \rangle / 2 in case \langle \iota \rangle \neq \langle 2\nu \rangle then ...

else ...
```

Polymorphic recursion [Mee83, Myc84]

Local size existential quantification

<i>e</i> ::=		Expressions
	X	variable
	e e	application
	$\lambda x: \tau$. e	abstraction
	true false	boolean
	n	integer
	<η>>	size
	$e \triangleright \tau$	coercion
	fix $x: \sigma = e$	fix-point
	let $x: \sigma = e$ in e	local def
	let size $\iota = e$ in e	size def
	case e then e else	e cases

Fast Fourier Transform

val gft:
$$\forall \iota$$
. $[\iota] \operatorname{cpx} \to [\iota] \operatorname{cpx}$ $\mathcal{O}(\iota) = \iota^2$ val fft: $\forall \iota$. $([\iota] \operatorname{cpx} \to [\iota] \operatorname{cpx}) \to [2\iota] \operatorname{cpx} \to [2\iota] \operatorname{cpx}$ $\mathcal{O}(\iota) = 2\mathcal{O}_f + 2\iota$

let dft: _ = fix
$$f: \forall \iota$$
. $[\iota] \rightarrow [\iota] = \lambda X:$ _.
let size $\nu = \langle \iota \rangle / 2$ in
case $\langle \iota \rangle \neq \langle 2\nu \rangle$
 $e ::=$

then gft X else ...

Polymorphic recursion [Mee83, Myc84]

Local size existential quantification

e ::=		Expressions
	X	variable
	e e	application
	λx: τ . e	abstraction
	true false	boolean
	n	integer
	<η>>	size
	$e \triangleright \tau$	coercion
	$fix x: \sigma = e$	fix-point
	let $x: \sigma = e$ in e	local def
	let size $\iota = e$ in e	size def
	case e then e else	e cases

Fast Fourier Transform

$$\begin{array}{ll} \text{val gft}: \forall \iota. \ [\iota] \text{cpx} \to [\iota] \text{cpx} \\ \text{val fft}: \forall \iota. \ ([\iota] \text{cpx} \to [\iota] \text{cpx}) \to [2\iota] \text{cpx} \to [2\iota] \text{cpx} \\ \end{array} \qquad \begin{array}{ll} \mathcal{O}(\iota) = \iota^2 \\ \mathcal{O}(\iota) = 2\mathcal{O}_f + 2\iota \\ \end{array}$$

let dft:
$$_=$$
 fix $f: \forall \iota$. $[\iota]_ \rightarrow [\iota]_ = \lambda X:_$.

let size $\nu = \langle \iota \rangle/2$ in case $\langle \iota \rangle \neq \langle 2\nu \rangle$ then gft X else fft f

Polymorphic recursion [Mee83, Myc84]

Local size existential quantification

e ::=	=	Expressions
	X	variable
	e e	application
	$\lambda x:\tau. e$	abstraction
	true false	boolean
	n	integer
	<η>	size
	$e \triangleright \tau$	coercion
	fix $x: \sigma = e$	fix-point
	$ \text{let } x : \sigma = e \text{ in } e$	local def
	$ \texttt{let size} \ \iota = e \ \texttt{in} \ e$	size def
	\mid case e then e else	e cases

Fast Fourier Transform

$$\begin{array}{ll} \text{val gft}: \forall \iota. \ [\iota] \text{cpx} \to [\iota] \text{cpx} \\ \text{val fft}: \forall \iota. \ ([\iota] \text{cpx} \to [\iota] \text{cpx}) \to [2\iota] \text{cpx} \to [2\iota] \text{cpx} \\ \end{array} \qquad \begin{array}{ll} \mathcal{O}(\iota) = \iota^2 \\ \mathcal{O}(\iota) = 2\mathcal{O}_f + 2\iota \\ \end{array}$$

let dft: _ = fix
$$f: \forall \iota$$
. $[\iota]$ _ $\rightarrow [\iota]$ _ = $\lambda X:$ _. let size $\nu = \langle \iota \rangle / 2$ in

case $\langle \iota \rangle \neq \langle 2\nu \rangle$ then gft Xelse fft $f(X \triangleright [2\nu]_)$

Polymorphic recursion [Mee83, Myc84]

Local size existential quantification

e ::=		Expressions
	X	variable
	e e	application
	$\lambda x: \tau$. e	abstraction
	true false	boolean
	n	integer
	<η>>	size
	$e \triangleright \tau$	coercion
	fix $x: \sigma = e$	fix-point
	let $x: \sigma = e$ in e	local def
	let size $\iota = e$ in e	size def
	case e then e else	e cases

Expressions (II)

Fast Fourier Transform

$$\begin{array}{ll} \text{val gft}: \forall \iota. \ [\iota] \text{cpx} \to [\iota] \text{cpx} \\ \text{val fft}: \forall \iota. \ ([\iota] \text{cpx} \to [\iota] \text{cpx}) \to [2\iota] \text{cpx} \to [2\iota] \text{cpx} \\ \end{array} \qquad \begin{array}{ll} \mathcal{O}(\iota) = \iota^2 \\ \mathcal{O}(\iota) = 2\mathcal{O}_f + 2\iota \\ \end{array}$$

let dft:
$$\underline{} = \text{fix } f: \forall \iota. \ [\iota] \underline{} \rightarrow [\iota] \underline{} = \lambda X: \underline{}.$$

let size $\nu = \langle \iota \rangle / 2$ in case $\langle \iota \rangle \neq \langle 2\nu \rangle$ then gft X else fft $f(X \triangleright [2\nu]_{-}) \triangleright [\iota]_{-}$

Polymorphic recursion [Mee83, Myc84]

Local size existential quantification

Statically resolved branching

e	::=		Expressions
		X	variable
		e e	application
		$\lambda x:\tau$. e	abstraction
		true false	boolean
		n	integer
		<η>>	size
		<i>e ⊳ ⊤</i>	coercion
		fix $x: \sigma = e$	fix-point
		let $x: \sigma = e$ in e	local def
		let size $\iota = e$ in e	size def
		case e then e else	e cases

Coercions

Purposes

- Separating array accesses from property checking (bounds, ...)
- Bypass size language expressiveness limitations
- Simplify typing (avoid ad-hoc rules)
- While rarely needed (if some primitives are available: window, sample, ...)

Coercions

Purposes

- Separating array accesses from property checking (bounds, ...)
- Bypass size language expressiveness limitations
- Simplify typing (avoid ad-hoc rules)
- While rarely needed (if some primitives are available: window, sample, ...)

Handling coercion errors

- Defensive code generation
- Advanced formal analysis (abstract interpretation, SMT solvers)
- Binding time restriction (static sizes)

Binding-time analysis [NN88]

Conclusion

Polynomial size polymorphism

- Expressiveness / formal handling trade-off
- Decidable type and size checking
- Size reconstruction heuristics

Conclusion

Polynomial size polymorphism

- Expressiveness / formal handling trade-off
- Decidable type and size checking
- Size reconstruction heuristics

Coercions

- Marking of remaining checks
- Multiple analyses / code generation perspectives

Conclusion

Polynomial size polymorphism

- Expressiveness / formal handling trade-off
- Decidable type and size checking
- Size reconstruction heuristics

Coercions

- Marking of remaining checks
- Multiple analyses / code generation perspectives

Thank you!

References I

[Fla06] Cormac Flanagan.

Hybrid type checking.

In Conference record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 245–256, 2006.

[HE21] Troels Henriksen and Martin Elsman.

Towards size-dependent types for array programming.

In Proceedings of the 7th ACM SIGPLAN International Workshop on Libraries, Languages and Compilers for Array Programming, pages 1–14, 2021.

[Mee83] Lambert Meertens.

Incremental polymorphic type checking in B.

In Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages 265–275, 1983.

References II

[Myc84] Alan Mycroft.

Polymorphic type schemes and recursive definitions.

In *International Symposium on Programming*, pages 217–228. Springer, 1984.

[NN88] Hanne R Nielson and Flemming Nielson.

Automatic binding time analysis for a typed λ -calculus.

Science of computer programming, 10(2):139–176, 1988.

[SSSV17] Artjoms Sinkarovs, Sven-Bodo Scholz, Robert Stewart, and Hans-Nikolai Vießmann.

Recursive array comprehensions in a call-by-value language.

In Proceedings of the 29th Symposium on Implementation and Application of Functional Programming Languages, IFL 2017, Bristol, UK, August 30 - September 01, 2017, pages 5:1–5:12, 2017.

References III

[XP98] Hongwei Xi and Frank Pfenning.
 Eliminating array bound checking through dependent types.
 In Proceedings of the ACM SIGPLAN 1998 conference on Programming language design and implementation, pages 249–257, 1998.

Complete syntax

η ::=		Sizes	e :::	=	Expressions
	ι	variable		X	variable
	n	constant		e e	application
	$\eta + \eta$	sum		$\lambda x:\tau$. e	abstraction
	$\eta * \eta$	product		true fals	e boolean
				n	integer
au ::=		Types		0	operateur
	lpha	variable		$ e_{\eta} $	size application
	<η>	singleton		e_{τ}	type application
	$[\eta]$	interval		Λ <i>ι</i> . <i>e</i>	size abstraction
	int	integer		Λ α. <i>e</i>	type abstraction
	bool	boolean		fix $x:\sigma =$	e fix-point
	au ightarrow au	function		$ $ let $x:\sigma=$	e in e local definition
				\mid let size ι	= e in e size definition
σ ::=		Type scheme		<η>>	size
	au	simple type		$e \triangleright \tau$	coercion
	$\forall \iota. \ \sigma$	size quantif.		case e the	n e else e by case def.
	$\forall \alpha. \ \sigma$	type quantif.			dead branch