Generated on 2017-06-02 20:30:18 by gEcon version 1.0.2 (2016-12-05) Model name: rbc_cu

1 CONSUMER

1.1 Optimisation problem

$$\max_{C_t, L_t^s} U_t = \beta E_t \left[U_{t+1} \right] + (1 - \eta)^{-1} \left(C_t^{\ \mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta} \tag{1.1}$$

s.t.:

$$C_t = \pi_t + L_t^{\mathrm{s}} W_t \quad (\lambda_t^{\mathrm{c}}) \tag{1.2}$$

1.2 First order conditions

$$\beta - \lambda_t^{\mathcal{U}} = 0 \quad (U_t) \tag{1.3}$$

$$-\lambda_t^c + \mu C_t^{-1+\mu} (1 - L_t^s)^{1-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1-\mu} \right)^{-\eta} = 0 \quad (C_t)$$
 (1.4)

$$\lambda_t^{c} W_t + (-1 + \mu) C_t^{\mu} (1 - L_t^{s})^{-\mu} \left(C_t^{\mu} (1 - L_t^{s})^{1 - \mu} \right)^{-\eta} = 0 \quad (L_t^{s})$$
(1.5)

2 FIRM

2.1 Optimisation problem

$$\max_{K_t, L_t^{\rm d}, Y_t, I_t, \pi_t, CapUt_t} \Pi_t = \pi_t + \lambda_t^{\rm c-1} E_t \left[\lambda_{t+1}^{\rm c} \lambda_{t+1}^{\rm U} \Pi_{t+1} \right]$$
(2.1)

s.t.:

$$Y_t = L_t^{\mathrm{d}^{1-\alpha}} Z_t^{1-\alpha} (K_{t-1} C q U t_t)^{\alpha} \quad \left(\lambda_t^{\mathrm{FIRM}^1}\right)$$

$$(2.2)$$

$$K_{t} = I_{t} + K_{t-1} \left(1 - \delta CqU t_{t}^{\omega} \right) \quad \left(\lambda_{t}^{\text{FIRM}^{2}} \right)$$

$$(2.3)$$

$$\pi_t = -I_t - L_t^{\mathrm{d}} W_t + P_t Y_t \quad \left(\lambda_t^{\mathrm{FIRM}^3}\right) \tag{2.4}$$

2.2 First order conditions

$$-\lambda_t^{\text{FIRM}^{\Pi}} + \lambda_{t-1}^{\text{c}}^{-1} \lambda_t^{\text{c}} \lambda_t^{\text{U}} = 0 \quad (\Pi_t)$$
(2.5)

$$-\lambda_{t}^{\text{FIRM}^{2}} + \text{E}_{t} \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(\lambda_{t+1}^{\text{FIRM}^{2}} \left(1 - \delta C q U t_{t+1}^{\omega} \right) + \alpha \lambda_{t+1}^{\text{FIRM}^{1}} C q U t_{t+1} L_{t+1}^{\text{d}}^{1-\alpha} Z_{t+1}^{1-\alpha} \left(K_{t} C q U t_{t+1} \right)^{-1+\alpha} \right) \right] = 0 \quad (K_{t})$$
(2.6)

$$-\lambda_t^{\text{FIRM}^3} W_t + \lambda_t^{\text{FIRM}^1} (1 - \alpha) L_t^{\text{d}^{-\alpha}} Z_t^{1-\alpha} (K_{t-1} C q U t_t)^{\alpha} = 0 \quad (L_t^{\text{d}})$$

$$(2.7)$$

$$-\lambda_t^{\text{FIRM}^1} + \lambda_t^{\text{FIRM}^3} P_t = 0 \quad (Y_t)$$
 (2.8)

$$\lambda_t^{\text{FIRM}^2} - \lambda_t^{\text{FIRM}^3} = 0 \quad (I_t) \tag{2.9}$$

$$1 - \lambda_t^{\text{FIRM}^3} = 0 \quad (\pi_t) \tag{2.10}$$

$$-\delta\omega K_{t-1}\lambda_t^{\mathrm{FIRM}^2} C_q \mathcal{U} t_t^{-1+\omega} + \alpha K_{t-1}\lambda_t^{\mathrm{FIRM}^1} L_t^{\mathrm{d}^{1-\alpha}} Z_t^{1-\alpha} (K_{t-1} C_q \mathcal{U} t_t)^{-1+\alpha} = 0 \quad (C_q \mathcal{U} t_t)$$

2.3 First order conditions after reduction

$$-\lambda_t^{\text{FIRM}^{\Pi}} + \lambda_{t-1}^{\text{c}}^{-1} \lambda_t^{\text{c}} \lambda_t^{\text{U}} = 0 \quad (\Pi_t)$$

$$(2.12)$$

$$-1 + E_{t} \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(1 - \delta C q U t_{t+1}^{\omega} + \alpha \lambda_{t+1}^{\text{FIRM}^{1}} C q U t_{t+1} L_{t+1}^{d^{-1-\alpha}} Z_{t+1}^{1-\alpha} \left(K_{t} C q U t_{t+1} \right)^{-1+\alpha} \right) \right] = 0 \quad (K_{t})$$

$$(2.13)$$

$$-W_t + \lambda_t^{\text{FIRM}^1} (1 - \alpha) L_t^{\text{d}-\alpha} Z_t^{1-\alpha} (K_{t-1} C q \mathcal{U} t_t)^{\alpha} = 0 \quad (L_t^{\text{d}})$$

$$(2.14)$$

$$-\lambda_t^{\text{FIRM}^1} + P_t = 0 \quad (Y_t) \tag{2.15}$$

$$-\delta\omega K_{t-1}CqUt_t^{-1+\omega} + \alpha K_{t-1}\lambda_t^{\text{FIRM}^1}L_t^{\text{d}^{1-\alpha}}Z_t^{1-\alpha}(K_{t-1}CqUt_t)^{-1+\alpha} = 0 \quad (CqUt_t)$$

$$(2.16)$$

3 EQUILIBRIUM

3.1 Identities

2

$$P_t = 1 (3.1)$$

$$L_t^{\rm d} = L_t^{\rm s} \tag{3.2}$$

4 EXOG

4.1 Identities

$$Z_t = e^{\epsilon_t^Z + \phi \log Z_{t-1}} \tag{4.1}$$

5 Equilibrium relationships (after reduction)

$$-1 + \beta C_t^{1-\mu} (1 - L_t^{\mathrm{s}})^{-1+\mu} \Big(C_t^{\mu} (1 - L_t^{\mathrm{s}})^{1-\mu} \Big)^{\eta} \mathrm{E}_t \left[\Big(1 - \delta C q U t_{t+1}^{\omega} + \alpha C q U t_{t+1} L_{t+1}^{\mathrm{s}}^{1-\alpha} Z_{t+1}^{1-\alpha} \big(K_t C q U t_{t+1} \big)^{-1+\alpha} \Big) C_{t+1}^{-1+\mu} \Big(1 - L_{t+1}^{\mathrm{s}} \big)^{1-\mu} \Big(C_{t+1}^{\mu} \big(1 - L_{t+1}^{\mathrm{s}} \big)^{1-\mu} \Big)^{-\eta} \right] = 0$$

$$(5.1)$$

$$-W_t + (1 - \alpha) L_t^{s - \alpha} Z_t^{1 - \alpha} (K_{t-1} CqU t_t)^{\alpha} = 0$$
(5.2)

$$-Y_t + L_t^{s^{1-\alpha}} Z_t^{1-\alpha} (K_{t-1} C q U t_t)^{\alpha} = 0$$
(5.3)

$$-Z_t + e^{\epsilon_t^{\mathbf{Z}} + \phi \log Z_{t-1}} = 0 \tag{5.4}$$

$$-\delta\omega K_{t-1} Cqt Ut_t^{-1+\omega} + \alpha K_{t-1} L_t^{s1-\alpha} Z_t^{1-\alpha} (K_{t-1} Cqt Ut_t)^{-1+\alpha} = 0$$
(5.5)

$$(-1+\mu)C_t^{\mu}(1-L_t^s)^{-\mu}\left(C_t^{\mu}(1-L_t^s)^{1-\mu}\right)^{-\eta} + \mu W_t C_t^{-1+\mu}(1-L_t^s)^{1-\mu}\left(C_t^{\mu}(1-L_t^s)^{1-\mu}\right)^{-\eta} = 0$$
(5.6)

$$I_t - K_t + K_{t-1} \left(1 - \delta C q U t_t^{\omega} \right) = 0 \tag{5.7}$$

$$U_t - \beta \mathcal{E}_t \left[U_{t+1} \right] - (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^{s})^{1-\mu} \right)^{1-\eta} = 0$$
 (5.8)

$$-C_{t} + \Pi_{t} + L_{t}^{s}W_{t} - \beta \left(C_{t}^{-1+\mu}\right)^{-1} \left(\left(1 - L_{t}^{s}\right)^{1-\mu}\right)^{-1} \left(\left(C_{t}^{\mu}\left(1 - L_{t}^{s}\right)^{1-\mu}\right)^{-\eta}\right)^{-1} E_{t} \left[\Pi_{t+1}C_{t+1}^{-1+\mu}\left(1 - L_{t+1}^{s}\right)^{1-\mu}\left(C_{t+1}^{\mu}\left(1 - L_{t+1}^{s}\right)^{1-\mu}\right)^{-\eta}\right] = 0$$

$$(5.9)$$

$$-I_{t} - \Pi_{t} + Y_{t} - L_{t}^{s}W_{t} + \beta \left(C_{t}^{-1+\mu}\right)^{-1} \left(\left(1 - L_{t}^{s}\right)^{1-\mu}\right)^{-1} \left(\left(C_{t}^{\mu}\left(1 - L_{t}^{s}\right)^{1-\mu}\right)^{-\eta}\right)^{-1} E_{t} \left[\Pi_{t+1}C_{t+1}^{-1+\mu}\left(1 - L_{t+1}^{s}\right)^{1-\mu}\left(C_{t+1}^{\mu}\left(1 - L_{t+1}^{s}\right)^{1-\mu}\right)^{-\eta}\right] = 0$$
 (5.10)

ಲು

6 Steady state relationships (after reduction)

$$-1 + \beta \left(1 - \delta CqU t_{ss}^{\ \ \omega} + \alpha CqU t_{ss}^{\ \ \omega} + \alpha CqU t_{ss}^{\ \ 1-\alpha} Z_{ss}^{\ \ 1-\alpha} (CqU t_{ss}^{\ \ K_{ss}})^{-1+\alpha} \right) C_{ss}^{\ \ -1+\mu} C_{ss}^{\ \ 1-\mu} (1 - L_{ss}^{s})^{-1+\mu} (1 - L_{ss}^{s})^{1-\mu} = 0 \tag{6.1}$$

$$-W_{\rm ss} + (1 - \alpha) L_{\rm ss}^{\rm s - \alpha} Z_{\rm ss}^{1 - \alpha} \left(C q \mathcal{U} t_{\rm ss} K_{\rm ss} \right)^{\alpha} = 0 \tag{6.2}$$

$$-Y_{ss} + L_{ss}^{s}^{1-\alpha} Z_{ss}^{1-\alpha} (CqUt_{ss} K_{ss})^{\alpha} = 0$$
(6.3)

$$-Z_{\rm ss} + e^{\phi \log Z_{\rm ss}} = 0 \tag{6.4}$$

$$-\delta\omega K_{\rm ss} CqU t_{\rm ss}^{-1+\omega} + \alpha K_{\rm ss} L_{\rm ss}^{\rm s}^{1-\alpha} Z_{\rm ss}^{1-\alpha} \left(CqU t_{\rm ss} K_{\rm ss} \right)^{-1+\alpha} = 0 \tag{6.5}$$

$$(-1+\mu)C_{ss}^{\mu}(1-L_{ss}^{s})^{-\mu}\left(C_{ss}^{\mu}(1-L_{ss}^{s})^{1-\mu}\right)^{-\eta} + \mu W_{ss}C_{ss}^{-1+\mu}(1-L_{ss}^{s})^{1-\mu}\left(C_{ss}^{\mu}(1-L_{ss}^{s})^{1-\mu}\right)^{-\eta} = 0$$

$$(6.6)$$

$$I_{\rm ss} - K_{\rm ss} + K_{\rm ss} \left(1 - \delta C q \mathcal{U} t_{\rm ss}^{\ \omega}\right) = 0 \tag{6.7}$$

$$U_{\rm ss} - \beta U_{\rm ss} - (1 - \eta)^{-1} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\ s})^{1 - \mu} \right)^{1 - \eta} = 0 \tag{6.8}$$

$$-C_{\rm ss} + \Pi_{\rm ss} + L_{\rm ss}^{\rm s} W_{\rm ss} - \beta \Pi_{\rm ss} 1 (1 - L_{\rm ss}^{\rm s})^{-1+\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} = 0$$
(6.9)

$$-I_{ss} - \Pi_{ss} + Y_{ss} - L_{ss}^{s} W_{ss} + \beta \Pi_{ss} C_{ss}^{-1+\mu} C_{ss}^{1-\mu} (1 - L_{ss}^{s})^{-1+\mu} (1 - L_{ss}^{s})^{1-\mu} = 0$$

$$(6.10)$$

7 Parameter settings

$$\alpha = 0.36 \tag{7.1}$$

$$\beta = 0.99 \tag{7.2}$$

$$\delta = 0.025 \tag{7.3}$$

$$\eta = 2 \tag{7.4}$$

$$\mu = 0.3 \tag{7.5}$$

 $\omega = 1.45 \tag{7.6}$

 $\phi = 0.95 \tag{7.7}$

8 Steady-state values

	Steady-state value
C	0.7449
CapUt	0.9284
I	0.246
K	10.96
$L^{\mathbf{s}}$	0.2673
Π	11.0707
U	-135.8123
W	2.3722
Y	0.9909
Z	1

9 The solution of the 1st order perturbation

Matrix P

$$\begin{array}{cc} K_{t-1} & Z_{t-1} \\ K_t & 0.9758 & 0.0705 \\ Z_t & 0 & 0.95 \end{array} \right)$$

Matrix Q

$$\begin{array}{c} \epsilon^{\rm Z} \\ K \left(\begin{array}{c} 0.0742 \\ I \end{array} \right) \end{array}$$

Matrix R

$$\begin{array}{c} K_{t-1} & Z_{t-1} \\ C_t & 0.2823 & 0.4185 \\ -0.74 & 1.0041 \\ I_t & -1.1491 & 4.5972 \\ L_t^s & -0.2604 & 0.7601 \\ \Pi_t & 0.9893 & 0.0146 \\ U_t & 0.0446 & 0.0408 \\ W_t & 0.1873 & 0.6958 \\ Y_t & -0.0731 & 1.456 \\ \end{array}$$

Matrix S

$$\begin{array}{c} \epsilon^{\rm Z} \\ C \\ C \\ Q \\ U \\ I \\ L^{\rm s} \\ U \\ U \\ W \\ Y \end{array} \begin{array}{c} 0.4405 \\ 1.057 \\ 4.8392 \\ 0.8001 \\ 0.0153 \\ 0.0429 \\ 0.7325 \\ 1.5326 \\ Y \end{array}$$

10 Model statistics

10.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
\overline{C}	0.7449	0.0408	0.0017	Y
CapUt	0.9284	0.1001	0.01	Y
I	0.246	0.4485	0.2011	Y
K	10.96	0.0245	0.0006	Y
L^{s}	0.2673	0.0744	0.0055	Y
Π	11.0707	0.0242	0.0006	Y
U	-135.8123	0.004	0	Y
W	2.3722	0.0674	0.0045	Y
Y	0.9909	0.1414	0.02	Y
Z	1	0.0922	0.0085	Y

10.2 Correlation matrix

	C	CapUt	I	K	L^{s}	Π	U	W	Y	Z
\overline{C}	1	0.939	0.973	0.387	0.967	0.172	0.995	0.995	0.983	0.986
CapUt		1	0.993	0.045	0.995	-0.178	0.898	0.969	0.986	0.984
I			1	0.164	1	-0.06	0.944	0.991	0.999	0.998
K				1	0.141	0.975	0.479	0.291	0.213	0.225
L^{s}					1	-0.083	0.936	0.988	0.997	0.996
Π						1	0.272	0.071	-0.01	0.003
U							1	0.979	0.96	0.963
W								1	0.997	0.998
Y									1	1
Z										1

10.3 Cross correlations with the reference variable (Y)

10.0	10.5 Closs correlations with the reference variable (1)											
	$\sigma[\cdot]$ rel. to $\sigma[Y]$	Y_{t-5}	Y_{t-4}	Y_{t-3}	Y_{t-2}	Y_{t-1}	Y_t	Y_{t+1}	Y_{t+2}	Y_{t+3}	Y_{t+4}	Y_{t+5}
C_t	0.289	-0.117	0.01	0.178	0.393	0.66	0.983	0.748	0.543	0.366	0.217	0.095
$CapUt_t$	0.708	0.076	0.197	0.347	0.528	0.74	0.986	0.658	0.389	0.174	0.006	-0.12
I_t	3.172	0.01	0.135	0.294	0.489	0.723	0.999	0.699	0.448	0.242	0.079	-0.048
K_t	0.173	-0.54	-0.499	-0.413	-0.273	-0.068	0.213	0.408	0.531	0.595	0.613	0.596
$L_t^{ m s}$	0.526	0.023	0.148	0.305	0.497	0.727	0.997	0.692	0.437	0.229	0.064	-0.062
Π_t	0.171	-0.549	-0.535	-0.484	-0.386	-0.232	-0.01	0.255	0.436	0.548	0.603	0.614
U_t	0.029	-0.171	-0.046	0.124	0.344	0.621	0.96	0.758	0.575	0.414	0.275	0.156
W_t	0.477	-0.061	0.065	0.23	0.438	0.692	0.997	0.732	0.504	0.314	0.157	0.032
Y_t	1	-0.017	0.109	0.27	0.47	0.713	1	0.713	0.47	0.27	0.109	-0.017
Z_t	0.652	-0.024	0.102	0.264	0.465	0.71	1	0.716	0.476	0.277	0.116	-0.009

10.4 Autocorrelations

	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5
\overline{C}	0.728	0.494	0.298	0.137	0.009
CapUt	0.714	0.472	0.272	0.111	-0.016
I	0.712	0.468	0.268	0.107	-0.019
K	0.96	0.864	0.731	0.576	0.414
L^{s}	0.711	0.468	0.268	0.106	-0.02
Π	0.964	0.869	0.737	0.583	0.419
U	0.743	0.518	0.326	0.165	0
W	0.717	0.478	0.279	0.118	-0.009
Y	0.713	0.47	0.27	0.109	-0.017
Z	0.713	0.471	0.271	0.11	-0.016

11 Impulse response functions

Figure 1: Impulse responses (C,K,CapUt,W,I) to $\epsilon^{\mathbf{Z}}$ shock

Figure 2: Impulse response (Y) to $\epsilon^{\mathbf{Z}}$ shock