Oracle Architectural Components

Objectives

After completing this appendix, you should be able to do the following:

- Describe the Oracle Server architecture and its main components
- List the structures involved in connecting a user to an Oracle instance
- List the stages in processing:
 - Queries
 - DML statements
 - Commits

Overview

Oracle Database Files

Other Key Physical Structures

Oracle Instance

An Oracle instance:

- Is a means to access an Oracle database
- Always opens one and only one database

Processing a SQL Statement

- Connect to an instance using:
 - The user process
 - The server process
- The Oracle Server components that are used depend on the type of SQL statement:
 - Queries return rows
 - DML statements log changes
 - Commit ensures transaction recovery
- Some Oracle Server components do not participate in SQL statement processing.

Connecting to an Instance

Processing a Query

- Parse:
 - Search for identical statement
 - Check syntax, object names, and privileges
 - Lock objects used during parse
 - Create and store execution plan
- Execute: Identify rows selected
- Fetch: Return rows to user process

The Shared Pool

Shared pool

Library cache

Data dictionary cache

- The library cache contains the SQL statement text, parsed code, and execution plan.
- The data dictionary cache contains table, column, and other object definitions and privileges.
- The shared pool is sized by SHARED POOL SIZE.

Database Buffer Cache

Data buffer cache

- Stores the most recently used blocks
- Size of a buffer based on DB BLOCK SIZE
- Number of buffers defined by DB_BLOCK_BUFFERS

Program Global Area (PGA)

- Not shared
- Writable only by the server process
- Contains:
 - Sort area
 - Session information
 - Cursor state
 - Stack space

Processing a DML Statement

Redo Log Buffer

- Has its size defined by LOG_BUFFER
- Records changes made through the instance
- Is used sequentially
- Is a circular buffer

Rollback Segment

COMMIT Processing

Log Writer (LGWR)

LGWR writes when:

- There is a COMMIT
- The redo buffer log is one-third full
- There is more than1 MB of redo
- Before DBW0 writes

Other Instance Processes

- Other required processes:
 - Database Writer (DBW0)
 - Process Monitor (PMON)
 - System Monitor (SMON)
 - Checkpoint (CKPT)
- The archive process (ARC0) is usually created in a production database

Database Writer (DBW0)

DBWO writes when:

- There are many dirty buffers
- There are few free buffers
- Timeout occurs
- Checkpoint occurs

SMON: System Monitor

- Automatically recovers the instance:
 - Rolls forward changes in the redo logs
 - Opens the database for user access
 - Rolls back uncommitted transactions
- Coalesces free space
- Deallocates temporary segments

PMON: Process Monitor

Cleans up after failed processes by:

- Rolling back the transaction
- Releasing locks
- Releasing other resources

Summary

In this appendix, you should have learned how to:

- Identify database files: data files, control files, online redo logs
- Describe SGA memory structures: DB buffer cache, shared SQL pool, and redo log buffer
- Explain primary background processes:
 DBW0, LGWR, CKPT, PMON, SMON, and ARC0
- List SQL processing steps: parse, execute, fetch

Hidden Slide

