Badania operacyjne i komputerowe wspomaganie decyzji - laboratorium 9 zadanie 1

Paweł Gałka

9 grudnia 2019

c_b	c_{j}	32	24	48	0	0	0	Rozw.
	x_b	x_1	x_2	x_3	x_4	x_5	x_6	102w.
48	x_3	0	0	1	0.4	-0.2	-0.2	4
24	x_2	0	1	0	-0.15	0.45	-0.05	6
32	x_1	1	0	0	-0.35	0.05	0.55	4
	z_{j}	32	24	48	4.4	2.8	6.8	464
	$c_j - z_j$	0	0	0	-4.4	-2.8	-6.8	

ad. 1

$$c_1' = c_1 + \delta_1$$

Wtedy tabela przyjmuje postać:

c_b	c_j	$32 + \delta_1$	24	48	0	0	0	Rozw.	
C ₀	x_b	x_1	x_2	x_3	x_4	x_5	x_6	102w.	
48	x_3	0	0	1	0.4	-0.2	-0.2	4	
24	x_2	0	1	0	-0.15	0.45	-0.05	6	
32	x_1	1	0	0	-0.35	0.05	0.55	4	
	z_j	$32 + \delta_1$	24	48	$4.4 - 0.35\delta_1$	$2.8+0.05\delta_1$	$6.8+0.55\delta_1$	464	
	$c_j - z_j$	0	0	0	$-4.4 + 0.35\delta_1$	$-2.8 - 0.05\delta_1$	$-6.8 - 0.55\delta_1$		

Zależności c_j-z_j dla $x_4,\,x_5,\,x_6$ spełniają warunek:

$$\begin{cases}
-4.4 + 0.35\delta_1 & \leq 0 \\
-2.8 - 0.05\delta_1 & \leq 0 \\
-6.8 - 0.55\delta_1 & \leq 0
\end{cases} \Rightarrow \begin{cases}
\delta_1 & \leq 12.571 \\
\delta_1 & \geq -56 \\
\delta_1 & \geq -12.363
\end{cases}$$

$$\delta_1 \in \langle -12.363; 12.571 \rangle$$

$$c_1 \in \langle 19.637; 44.571 \rangle$$

$$c_2' = c_2 + \delta_2$$

c_b	c_j	32	$24 + \delta_2$	48	0	0	0	Rozw.
C6	x_b	x_1	x_2	x_3	x_4	x_5	x_6	TOZW.
48	x_3	0	0	1	0.4	-0.2	-0.2	4
24	x_2	0	1	0	-0.15	0.45	-0.05	6
32	x_1	1	0	0	-0.35	0.05	0.55	4
	z_j	32	$24 + \delta_2$	48	$4.4 - 0.15\delta_2$	$2.8+0.45\delta_2$	6.8 - $0.05\delta_2$	464
	$c_j - z_j$	0	0	0	$-4.4 + 0.15\delta_2$	$-2.8 - 0.45\delta_2$	$-6.8+0.05\delta_2$	

Wtedy tabela przyjmuje postać:

Zależności $c_j - z_j$ dla x_4, x_5, x_6 spełniają warunek:

$$\left\{ \begin{array}{ll} -4.4 + 0.15\delta_2 & \leq 0 \\ -2.8 - 0.45\delta_2 & \leq 0 \\ -6.8 + 0.05\delta_2 & \leq 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{ll} \delta_2 & \leq 29.333 \\ \delta_2 & \geq -6.222 \\ \delta_2 & \leq 136 \end{array} \right.$$

$$\delta_2 \in \langle -6.222; 29.333 \rangle$$

$$c_2 \in \langle 17.778; 53.333 \rangle$$

$$c_3' = c_3 + \delta_3$$

Wtedy tabela przyjmuje postać:

c_b	c_j	32	24	$48 + \delta_3$	0	0	0	Rozw.
Cb	x_b	x_1	x_2	x_3	x_4	x_5	x_6	TOZW.
48	x_3	0	0	1	0.4	-0.2	-0.2	4
24	x_2	0	1	0	-0.15	0.45	-0.05	6
32	x_1	1	0	0	-0.35	0.05	0.55	4
	z_j	32	$24 + \delta_3$	48	$4.4 + 0.4\delta_3$	$2.8 - 0.2\delta_2$	$6.8 - 0.2\delta_3$	464
	$c_j - z_j$	0	0	0	$-4.4 - 0.4\delta_3$	$-2.8 + 0.2\delta_3$	$-6.8 + 0.2\delta_3$	

Zależności c_j-z_j dla $x_4,\,x_5,\,x_6$ spełniają warunek:

$$\left\{ \begin{array}{ll} -4.4 - 0.4\delta_3 & \leq 0 \\ -2.8 + 0.2\delta_3 & \leq 0 \\ -6.8 + 0.2\delta_3 & \leq 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{ll} \delta_3 & \geq -11 \\ \delta_3 & \leq 14 \\ \delta_3 & \leq 34 \end{array} \right.$$

$$\delta_3 \in \langle -11; 14 \rangle$$

$$c_3 \in \langle 37; 62 \rangle$$

Odpowiedź : $c_1 \in \langle 19.637; 44.571 \rangle$, $c_2 \in \langle 17.778; 53.333 \rangle$, $c_3 \in \langle 37; 62 \rangle$

ad. 2

$$F(x_1, x_2, x_3) = 32x_1 + 24x_2 + 48x_3 \rightarrow max$$

$$\begin{array}{ll}
2x_1 + 2x_2 + 5x_3 & \le 40 \\
1x_1 + 3x_2 + 2x_3 & \le 30 \\
3x_1 + 1x_2 + 3x_3 & \le 30
\end{array}$$

$$\begin{array}{lll} \text{Macierz } B^{-1}: & \begin{bmatrix} 0.4 & -0.2 & -0.2 \\ -0.15 & 0.45 & -0.05 \\ -0.35 & 0.05 & 0.55 \end{bmatrix} \\ \text{Macierze } b_i': \ b = \begin{bmatrix} 40 \\ 30 \\ 30 \end{bmatrix} \quad b_1' = \begin{bmatrix} 40 + \epsilon_1 \\ 30 \\ 30 \end{bmatrix} \quad b_2' = \begin{bmatrix} 40 \\ 30 + \epsilon_2 \\ 30 \end{bmatrix} \end{array}$$

Dla b_1' :

$$B^{-1} \cdot b_1' = \begin{bmatrix} 0.4 & -0.2 & -0.2 \\ -0.15 & 0.45 & -0.05 \\ -0.35 & 0.05 & 0.55 \end{bmatrix} \cdot \begin{bmatrix} 40 + \epsilon_1 \\ 30 \\ 30 \end{bmatrix} = \begin{bmatrix} 4 + 0.4\epsilon_1 \\ 6 - 0.15\epsilon_1 \\ 4 - 0.35\epsilon_1 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{cases} 4 + 0.4\epsilon_1 & \ge 0 \\ 6 - 0.15\epsilon_1 & \ge 0 \\ 4 - 0.35\epsilon_1 & \ge 0 \end{cases} \Rightarrow \begin{cases} \epsilon_1 & \ge -10 \\ \epsilon_1 & \le 40 \\ \epsilon_1 & \le 11.43 \end{cases}$$

$$\epsilon_1 \in \langle -10; 11.43 \rangle$$

$$b_1 \in \langle 30; 51.43 \rangle$$

Dla b_2'

$$B^{-1} \cdot b_2' = \begin{bmatrix} 0.4 & -0.2 & -0.2 \\ -0.15 & 0.45 & -0.05 \\ -0.35 & 0.05 & 0.55 \end{bmatrix} \cdot \begin{bmatrix} 40 \\ 30 + \epsilon_2 \\ 30 \end{bmatrix} = \begin{bmatrix} 4 - 0.2\epsilon_2 \\ 6 + 0.45\epsilon_2 \\ 4 + 0.05\epsilon_2 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{cases} 4 - 0.2\epsilon_2 & \ge 0 \\ 6 + 0.45\epsilon_2 & \ge 0 \\ 4 + 0.05\epsilon_2 & \ge 0 \end{cases} \Rightarrow \begin{cases} \epsilon_2 & \le 20 \\ \epsilon_2 & \ge -13.33 \\ \epsilon_2 & \ge -80 \end{cases}$$

$$\epsilon_2 \in \langle -13.33; 20 \rangle$$

$$b_2 \in \langle 16.67; 50 \rangle$$

Odpowiedź : $b_1 \in \langle 30; 51.43 \rangle$, $b_2 \in \langle 16.67; 50 \rangle$, Nowe wartości $b_1 = 30$, $b_2 = 20$ mieszczą się w granicach wrażliwości więc nie zmienią bazy optymalnej.

ad. 3

$$x^* = \begin{bmatrix} x_3^* \\ x_2^* \\ x_1^* \end{bmatrix} = B^{-1} \cdot b' = \begin{bmatrix} 0.4 & -0.2 & -0.2 \\ -0.15 & 0.45 & -0.05 \\ -0.35 & 0.05 & 0.55 \end{bmatrix} \cdot \begin{bmatrix} 30 \\ 20 \\ 30 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 7 \end{bmatrix}$$

$$F(x_1^*, x_2^*, x_3^*) = 32 \cdot 7 + 24 \cdot 3 + 48 \cdot 2 = 392$$

Odpowiedź :
$$x^* = \begin{bmatrix} x_3^* \\ x_2^* \\ x_1^* \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 7 \end{bmatrix}$$
, nowy zysk - 392zł.