15

resin-bound adduct B34. Resin B33 also sequesters the HQ byproduct from the reaction mixture by proton transfer from solution-phase Base-HQ. Incubation at room temperature, filtration, rinsing of the resin cake, and concentration of the filtrates affords purified products B-i filtered away from resin-bound adducts B32, B33, B34, B35, and B36.

Scheme B-5 specifically illustrates the derivatization of the primary amine-containing scaffold C1 to afford the desired products B-i in a parallel array synthesis format. In a parallel array synthesis reaction block, individual reaction products are prepared in each of multiple reaction block vessels in a spatially

30

addressed format. A solution of the desired primary amine-containing scaffold C1 (limiting amount,) dimethylformamide (DMF) is added to the reaction vessels followed by a 4.0 fold stoichiometric excess solution of N-methylmorpholine in DMF. To each reaction vessel is then added the electrophiles: either 2.0 stoichiometric excess when $R^{J}-Q$ is an acid chloride or alkyl chloroformate, or a 1.5 fold stoichiometric excess when R^J-O a sulfonyl chloride, is or a 1.25 stoichiometric excess when R^{J} -Q is an isocyanate. electrophiles and N-methylmorpholine were used to effect more rapid and/or more complete conversion of scaffold C1 to products B-0001-B-0048 compared to reactions that do not utilize stoichiometric excesses of electrophiles and N-methylmorpholine. The reaction mixtures are incubated at ambient temperature for 2-3 h. Each reaction vessel then charged with a large excess (15-20 stoichiometric excess) of the amine-functionalized resin B33 and the aldehyde-functionalized resin B32. resin-charged reaction block is shaken vertically for 14-20 h on an orbital shaker at ambient temperature to allow optimum agitation of the resin-containing vessel mixtures. The excess electrophiles $R^{J}-Q$ and unreacted scaffold amine C1 are removed from the reaction medium as insoluble adducts B34 and B37 respectively. addition the N-methylmorpholine hydrochloride salt formed during the course of the reaction is also neutralized its free base form by proton transfer reaction to the amine-functionalized resin B33. Simple filtration of the insoluble resin- adducts B32, B33, B34, B36, and B37, rinsing of the resin cake with dichloroethane, evaporation of the filtrates affords the desired products B-i in purified form.

Scheme В-б illustrates a general synthetic involving the parallel array reaction of a scaffold C-ii containing a secondary amine functionality within the definition of the R4 substituent. Each reaction vessel is charged with the secondary amine-containing scaffold Cii, followed by the introduction of a stoichiometric excess of an optionally unique electrophile R^L -Q into each 10 vessel, wherein Q is chloro, bromo, or an acid activating group including but not limited to N-hydroxysuccinimide. R^L-Q includes acid chlorides, alkyl chloroformates,

sulfonyl chlorides, activated esters of carboxylic acids, activated carbamates, and isocyanates. Reaction of scaffold **C-ii** with R^L-Q is effected in the presence of tertiary amine base at room temperature or elevated temperature in a mixture of a polar aprotics solvent and/or a halogenated solvent. After solution-phase reactions have progressed to afford crude product mixtures in each vessel, the products

B-ii are isolated in purified form by the addition of the isocyanate-functionalized resin B38 which covalently sequesters remaining secondary amine scaffold C-ii as resin-bound adduct B39, and also by the addition of the primary amine-functionalized resin B33 which covalently sequesters remaining electrophile R^L-Q from each reaction vessel as resin-bound adducts B40. Resin B33 also sequesters the HQ byproduct in each vessel as B36, formed by proton transfer from solution-phase Base-HQ. Incubation with these resins, either simultaneously or sequentially, followed by filtration, rinsing, and concentration of the filtrates affords purified products B-ii filtered away from resin-adducts B33, B36, B38, B39, and B40.

20

10

15

Scheme B-7 illustrates the conversion of the secondaryamine containing scaffold C-2 to the desired products Bii. parallel array synthesis reaction block, individual reaction products are prepared in each of 48 multiple reaction block vessels. A solution of the scaffold C-2 (limiting amount) in dimethylformamide (DMF) is added to the reaction vessels followed by a 4.0fold stoichiometric excess solution of N-methylmorpholine in DMF. To each reaction vessel is then added an electrophile R^L-Q as a dichloroethane (DCE) solution: either a 2.0 fold stoichiometric excess is used when R^L-Q is an acid chloride or alkyl chloroformate, or a 1.5 fold stoichiometric excess when R^L-Q is a sulfonyl chloride, or 1.25 fold stoichiometric excess when R^L-Q isocyanate. The reaction mixtures are incubated at

ambient temperature for 2-6 h. Each reaction vessel is then charged with a large excess (15-20)fold stoichiometric excess) of the amine-functionalized resin B33 and the isocyanate-functionalized resin B32. resin-charged reaction block is shaken vertically for 14-20 h on an orbital shaker at ambient temperature to allow optimum agitation of the resin-containing vessel The excess electrophiles R^L-Q and unreacted mixtures. scaffold amine C-2 are removed from the reaction medium as insoluble adducts B40 and B39, respectively. Resin B33 also sequesters the HQ byproduct in each vessel as B36, formed by proton transfer from solution-phase Base-Incubation with these resins, followed by filtration and rinsing with solvent mixtures of DMF and/or DCE, affords purified product solutions in collection vials filtered away from resin-adducts B33, B36, B38, B39, and Concentration of filtrates affords purified products B-ii.

Scheme B-8 illustrates another general synthetic method involving the parallel array reaction of a scaffold C-ii containing a secondary amine functionality within the definition of the R⁴ substituent. Each reaction vessel is charged with the secondary amine-containing scaffold C-ii, followed by the introduction of a stoichiometric excess of an optionally unique electrophile R^L-Q into each vessel. Reaction of scaffold C-ii with R^L-Q is effected in the presence of tertiary amine base at room temperature or elevated temperature in a mixture of a polar aprotic solvent and/or a halogenated solvent.

Excess electrophiles and N-methylmorpholine are used to effect more rapid and/or more complete conversion of scaffold C-ii to products B-ii compared to reactions that do not utilize stoichiometric excesses of electrophiles N-methylmorpholine. The reaction mixtures incubated at ambient temperature for 2-8 h. reaction vessel is then charged with the sequestrationenabling reagent phenylsulfonylisocyanate B41. B41 reacts with remaining secondary scaffold C-ii, converting C-ii to the in situ-derivatized compound B42. Subsequent incubation of these vessel mixtures with a large excess (15-20 fold stoichiometric excess) of the amine-functionalized resin B33 sequesters the solution-phase species R^L-Q , HQ, B41, and B42 as the resin-bound adducts B40, B36, B44, and B43, respectively. The resin-charged reaction block is shaken vertically for 14-20 h on an orbital shaker at ambient temperature to allow optimum agitation of the resin-containing vessel mixtures. Filtration of the insoluble resin- adducts B33, B36, B40, B43 and B44 and subsequent rinsing of the vessel resin-bed with DMF and/or DCE affords filtrates containing the purified products B-ii. Concentration of the filtrates affords the purified products B-ii.

Scheme B-9 illustrates the method of Scheme B-8 using scaffold C-2. A solution of the scaffold C-2 (limiting

15

20

25

30

amount) in dimethylformamide (DMF) is added to reaction vessels followed by a 4.0-fold stoichiometric excess solution of N-methylmorpholine in DMF. reaction vessel is then added an electrophile R^L-Q as a solution: either a dichloroethane (DCE) 2.0 fold stoichiometric excess is used when RL-Q is an acid chloride or alkyl chloroformate, or a 1.5 stoichiometric excess when R^L-Q is a sulfonyl chloride, or 1.25 fold stoichiometric excess when R^L-O isocyanate. The reaction mixtures are incubated at ambient temperature for 2-6 h. After solution-phase reactions have progressed to afford crude product mixtures, each reaction vessel is then charged with a dichloroethane solution of the sequestration-enabling reagent phenylsulfonylisocyanate B41. This reagent B41 reacts with remaining secondary amine scaffold C-2, converting C-2 to the in situ-derivatized compound B45. Subsequent incubation of these vessel mixtures with a large excess (15-20 fold stoichiometric excess) of the amine-functionalized resin B33 sequesters the solutionphase species R^L-Q, HQ, **B41**, and **B45** as the resin-bound adducts B40, B36, B44, and B46, respectively. The resincharged reaction block is shaken vertically for 20 h on an orbital shaker at ambient temperature to allow optimum agitation of the resin-containing vessel mixtures. Filtration of the insoluble resin- adducts B33, B36, B40, B44, and B46 and subsequent rinsing of the vessel resinbed with DCE affords filtrates containing the purified products B-ii. Concentration of the filtrates affords the purified products B-ii.

Another general method for the parallel array reaction block synthesis is illustrated in Scheme B-10 for the derivatization of the carboxylic acid-containing scaffold

Scaffold C-iii with a free carboxylic acid functionality is reacted in spatially addressed, parallel array reaction block vessels with excesses of optionally different primary or secondary amines **B47** in the presence of the polymer-bound carbodiimide reagent B48 and a tertiary amine base in a mixture of a polar aprotic solvent and/or a halogenated solvent. After filtration of each crude vessel product misture away from resins B48 and B49, each reaction mixture is purified by treatment with the sequestration-enabling-reagent B50 fluorophthalic anhydride). The reagent B50 reacts with remaining excess amine B47 to afford the in situderivatized intermediates B51 which contain carboxylic acid molecular recognition functionality. Subsequent incubation of each reaction mixture with a 15-20-fold stoichiometric excess of the primay amine-functionalized resin B33 sequesters B51, B50, and any remaining acid scaffold C-iii as resin-bound adducts B52, B53, and B54, respectively. Filtration of soluton-phase products B-iii away from these resin-bound adducts and rinsing of the aprotic solvent beds with a polar halogenated solvent affords filtrates containing purified products B-iii. Concentration of the filtrates affords purified B-iii.

5

10

15

20

20

25

Scheme 'B-11 illustrates the conversion of the acid containing scaffold C-49 to the desired amide products Bin a parallel synthesis format. A limiting amount of added the scaffold **C-49** is as a solution dimethylformamide to each reaction vessel containing the polymer bound carbodiimide reagent B48 (5 fold stoichiometric excess). A solution of pyridine (4 fold stoichiometric excess) in dichloromethane is added to this slurry, followed by addition of an excess amount of a dimethylformamide solution of a unique amine B47 (1.5 fold stoichiometric excess) to each vessel. The parallel reaction block is then agitated vertically on an orbital shaker for 16-18 h at ambient temperature and filtered to separate the solution phase product mixture away from resin-bound reagent B48 and resin-bound reagent byproduct The resulting solutions (filtrates) containing a mixture of the desired amide products B-iii, excess amines B47 and any unreacted acid containing scaffold C-49, are treated with tetrafluorophthalic anhydride B50. B50 converts the excess amines B47 in each filtrate vessel to its respective sequestrable half acid form B51. After two h incubation time, an excess of the aminefunctionalized resin B33 and dichloromethane solvent are added to each reaction vessel. The amine-containing resin B33 converts B51, any remaining B50, and any remaining C-49 to their resin-bound adducts B52, B53, and B55, respectively. The resin-charged reaction block is shaken vertically for 16 h on an orbital shaker at ambient temperature to allow optimum agitation of the resin-containing vessel mixtures. Filtration of insoluble resin- adducts B33, B52, B53, and B55 and subsequent rinsing of the vessel resin-bed with dimethylformamide affords filtrates containing the purified products **B-iii**. Concentration of the filtrates affords the purified products **B-iii**.

25

30

Although Schemes B-1 through B-11 describe the use of parallel array chemical library technology to prepare compounds of general formulae B-i, B-ii, and B-iii, it is noted that one with ordinary skill in the art of classical synthetic organic chemistry would be able to prepare B-i, B-ii, and B-iii by conventional means (one compound prepared at a time in conventional glassware and purified by conventional means such as chromatography and/or crystallization).

A general synthesis of pyridylpyrazole scaffolds C-i, Cii, and C-iii is depicted in Scheme C-1. Step A: Picoline is treated with a base chosen from but not limited to n-butyllithium (n-BuLi), lithium di-isopropylamide (LDA), lithium hexamethyldisilazide (LiHMDS), potassium t-butoxide (tBuOK), or sodium hydride (NaH) in an organic solvent such as tetrahydrofuran (THF), diethyl ether, t-butyl methyl ether, t-BuOH or dioxane from -78 °C to 50 $^{\circ}\text{C}$ for a period of time from 10 minutes to 3 hours. The metallated picoline solution is then added to a solution of ester B56. The reaction is allowed to stir from 30 minutes to 48 hours during which time the temperature may range from -20 °C to 120 °C. The mixture is then poured into water and extracted with an organic solvent. After drying and removal of solvent the pyridyl monoketone B57 is isolated as a crude solid which can be purified by crystallization and/or chromatography.

Step B: A solution of the pyridyl monoketone B57 in ether, THF, tBuOH, or dioxane is added to a base chosen from but not limited to n-BuLi, LDA, LiHMDS, tBuOK, or NaH contained in hexane, THF, diethyl ether, t-butyl methyl ether, or t-BuOH from -78 °C to 50 °C for a period of time from ranging from 10 minutes to 3 hours. An appropriately substituted activated ester or acid halide derived from R⁴-CO₂H is then added as a solution in THF, ether, or dioxane to the monoketone anion of B57 while the temperature is maintained between -50 °C and 50 °C. The resulting mixture is allowed to stir at the specified temperature for a period of time from 5 minutes to three hours. The resulting pyridyl diketone intermediate B58 is utilized without purification in Step C.

15

20

25

30

10

Step C: The solution containing the pyridyl diketone B58 is quenched with water and the pH is adjusted to between 4 and 8 utilizing an inorganic or organic acid chosen from HOAc, H₂SO₄, HCl, or HNO₃. The temperature during this step is maintained between °C -20 and room temperature. Hydrazine or hydrazine hydrate was then added to the mixture while maintaining the temperature between -20 °C and 40 °C for a period of 30 minutes to three hours. The mixture is then poured into water and extracted with an organic solvent. The pyridyl pyrazole C-i or C-ii is obtained as a crude solid which is purified by chromatography or crystallization.

Step: D In some cases the pyridyl pyrazole \mathbf{C} - \mathbf{i} or \mathbf{C} - \mathbf{i} is alkylated with $Q-C(R^A)-(CH2)_nCO_2$ alkyl wherein Q is halogen. \mathbf{C} - \mathbf{i} or \mathbf{C} - \mathbf{i} is treated with a base chosen from NaH, NaOEt, KOtBu, or NEt₃ in an organic solvent such as THF, methylene chloride, dioxane, or DMF at temperatures

between -20 °C and 150 °C and reaction times between 30 minutes and 12 hours. The resulting alkylated pyridyl pyrazole ester is then hydrolyzed to the acid by treament with NaOH or LiOH in aqueous/alcohol solvent mixtures or in THF/water solvent mixtures. Alternatively, the ester function is removed by treatment with an organic or inorganic acid if the alkyl residue is t-butyl. Acidification, followed by extraction with an organic affords solvent C-iii which may purified be chromatography or crystallography. In some cases, regioisomeric alkylated products C-iv are also formed. The desired C-iii can be separated away from C-iv by chromatographic purification or by fractional crystallization.

15

- 10

Scheme C-1 Step A 1) Base 2) B57 B56 1) Base Step B 2) XCOR4 Step C NH₂NH₂ B58 Ci or Cii 1) QCH(R^A)-(CH2)_nCO₂alkyl (B59) 2) saponification or acid hydrolysis Step D 3) neutralization C-iii C-iv

A synthesis of pyridylpyrazole scaffold **C-1** is depicted in Scheme C-2.

Step A:

Picoline is added to a solution of LiHMDS in THF at room temperature over a time period ranging from 30 minutes to The resulting solution is stirred for additional 30 minutes to 1 hour at room temperature. then added ethyl solution is to neat p-This fluorobenzoate **B60** at room temperature over 1-2 h. mixture is then allowed to stir at room temperature for Equal portions of water and ethyl acetate are then added to the reaction and the mixture is partitioned The organic layer is dried, in an extraction funnel. filtered, and evaporated to give an oily solid. Hexanes are then added and the solid is filtered and washed with

15 Step B:

in Step B.

10

20

The pyridyl monoketone B61 is added as a solution in THF to a flask maintained at room temperature which contains t-BuOK in a THF/ t-BuOH cosolvent. A yellow precipitate forms and stirring at room temperature is continued for 1-3 h. After this time, N-Cbz-protected glycine N-hydroxysuccinimide B62 is added dropwise at room temperature as a solution in THF over 1-3 h. This solution, containing crude diketone B63, is used directly in Step C.

cold hexanes leaving the pyridyl monoketone B61 for use

25 Step C:. The solution from step C is treated with water and the pH is adjusted to between 6 and 7 with acetic acid. Hydrazine hydrate is then added dropwise to the mixture as a solution in water over 30 minutes to 1h at room temperature. Water and ethyl acetate are then added to the flask and the mixture is then partitioned in a separatory funnel. The organic layer is dried, filtered, and evaported to give a crude oil which is purified by

silica gel chromatography, giving rise to purified **C-1Cbz**.

Step: D

The Cbz protecting group contained in compound C-1Cbz is cleaved using hydrogen gas under pressure and Pd-C in methanol solvent. The resulting amine C-1 is obtained by filtration and concentration.

A number of pyridyl pyrazole scaffolds of type $\mathbf{C-v}$ are prepared as shown in Scheme $\mathbf{C-3}$.

Step A: Picoline is treated with a base chosen from but not limited to $n ext{-BuLi}$, LDA, LiHMDS, $t ext{BuOK}$, or NaH in an organic solvent such as THF, ether, t-BuOH or dioxane from -78 °C to 50 °C for a period of time from 10 minutes to 3 hours. The metallated picoline solution is then added to a solution of an appropriately activated ester analog of a carboxylic acid $CbzNR^H-(CH_2)$ ${}_nCR^F(R^G)-CO_2H$ or $BocNR^{H}-(CH_{2})$ ${}_{n}CR^{F}(R^{G})-CO_{2}H$, preferably but not limited to the N-hydroxysuccinimide B64. The reaction is allowed to stir from 30 minutes to 48 hours during which time the temperature may range from -20 °C to 120 °C. The mixture is then poured into water and extracted with an organic solvent. After drying and removal of solvent the pyridyl monoketone B65 is isolated as a crude solid which can be purified by crystallization and/or chromatography.

Step B: A solution of the pyridyl monoketone **B65** ether, THF, tBuOH, or dioxane is added to a base chosen 20 from but not limited to $n ext{-BuLi}$, LDA, LiHMDS, $t ext{BuOK}$, or NaH contained in hexane, THF, ether, dioxane, or tBuOH from -78 $^{\circ}\text{C}$ to 50 $^{\circ}\text{C}$ for a period of time from 10 minutes to 3 hours. The anion sometimes precipitates as a yellow solid. An appropriately substituted activated ester such 25 as the N-hydroxysuccinimide B66 is then added as a solution in THF, ether, or dioxane to the monoketone anion while the temperature is maintained between $-50~{}^{\circ}\mathrm{C}$ and 50 °C. The resulting mixture is allowed to stir at the specified temperature for a period of time from 30 ranging from 5 minutes to 3 hours. The resulting pyridyl diketone intermediate B67 is utilized without further purification in Step C.

25

Step C: The solution containing the pyridyl diketone B67 is quenched with water and the pH is adjusted to between 4 and 8 utilizing an inorganic or organic acid chosen from HOAc, H_2SO_4 , HCl, or HNO_3 . The temperature during this step is maintained between -20 °C and room temperature. Hydrazine or hydrazine hydrate is then added to the mixture while maintaining the temperature between -20 °C and 40 °C for a period of 30 minutes to three hours. The mixture is then poured into water and 10 extracted with an organic solvent. The pyridyl pyrazole C-vBoc or C-vCbz is obtained as a crude solid which is purified by chromatography or crystallization.

15 Step: D

The carbamate protecting groups from C-vBoc or C-vCbz are removed to afford the scaffolds C-v containing either a free primary amine (RH is hydrogen) or a free secondary amine (RH not equal to hydrogen). The Boc protecting carbamate groups are cleaved utilizing trifluoroacetic acid (TFA)/methylene chloride at room temperature for several hours. The CBZ carbamate protecting groups are cleaved using hydrogen gas under pressure and Pd-C in an alcoholic solvent. The resulting amines C-v are then optionally crystallized or purified by chromatography.

Scheme C-3 Boc or Cbz Step A 1) Base B65 2) Boc or Cbz 1) Base Step B B64 B66 Boc or Cbz NH₂NH₂ Boc or Cbz. Step C Cv-Boc or Cv-Cbz N B67 H₂, Pd-C, MeOH or TFA, CH₂Cl₂ Step D

The synthesis of scaffolds **C-vi** is accomplished as shown in Scheme C-4.

Step A:

5

A Boc protected pyridylpyrazole **B68** is treated with benzaldehyde in methylene chloride at room temperature in the presence of a drying agent for a period of time ranging from 1-24 h. Solvent is then evaporated and the resulting imine **B69** is used in step B without further purification.

Step B:

The pyridylpyrazole imine B69 is dissolved in THF and stirred under nitrogen at temperatures ranging from -78 to -20 °C. A base such as LDA, n-BuLi, or LiHMDS is added dropwise to the mixture which is then stirred for an additional 10 minutes to 3 h. Two-five equivalents of an alklyating agent R^F -Q are then added to the mixture and stirring is continued for several hours. The mixture is then quenched with acid and allowed to warm to room temperature and stirred several hours until cleavage of the Boc and the imine functions is complete. The pH is adjusted to 12 and then the mixture is extracted with an 25 organic solvent, which is dried and evaporated. The pyridylpyrazole is then crystallized chromatographed to give C-vi.

The synthesis of maleimide-containing scaffolds **C-vii** is accomplished as shown in Scheme C-5.

The maleimide pyrazole scaffolds **C-vii** are synthesized as depicted in scheme C-5. Condensation reaction of a primary amine H₂N-R with a maleic anhydride **B70** that is substituted at position 3 with either a bromo, chloro, or triflate group generates compound **B71**. The formed maleimide derivative **B71** then reacts with an acetophenone derivative **B72** in the presence of a Pd(0)

catalyst and base to afford compound B73. The methylene position of B73 is then acylated with an acid anhydride B74 or an activated acid ester B75, forming the di-ketone derivative B76. The di-ketone B76 condenses with hydrazine to afford the desired maleimide pyrazole scaffold C-vii.

10

15

Scheme C-6 illustrates the synthesis of the maleimide pyrazole scaffold C-63 wherein R⁴ is hydrogen. The synthesis starts with the condensation reaction of bromomaleic anhydride B77 with 2, 4-dimethoxybenzylamine in acetic acid and acetic anhydride, giving rise to intermediate B78. The maleimide B78 is then treated with 4'-fluoroacetophenone in the presence of catalytic amount

15

 $P\dot{d}_2(dba)_3$ and sodium t-butoxide to form the fluoroacetophenone substituted maleimide B79. The B79 is treated tert-butoxybis(dimethylamino)methane with yield the a-ketoenamine B80. The a-ketoenamine B80 condensed with hydrazine to form the maleimide pyrazole skeleton **B81**. The 2, 4-dimethoxybenzyl group protecting group is optionally removed with ceric ammonium nitrate (CAN) to give compound C-63.

Scheme C-7 illustrates the synthesis of maleimidecontaining scaffolds C-64 and C-65. These scaffolds C-49 and C-50 are synthesized according to the general methods

illustrated in Scheme C-5 and exemplified utilization N-hydroxysuccinimides B82 and of to afford the maleimide-containing pyrazoles B86 and **B87**, respectively. Optional removal of the 2,4dimethoxylbenzyl groups with CAN and subsequent removal of the Boc-protecting groups with trifluoroacetic acid (TFA) affords the scaffolds C-64 and C-65.

The various functionalized resins and sequestrationenabling-reagents utilized to prepare and purify parallel reaction mixtures are more fully described below, including their commercial source or literature reference to their preparation.

В32 СНО

4-benzyloxybenzaldehyde functionalized polystyrene. Novabiochem cat. #01-64-0182

B33 NH₂

Prepared as reported in D. L. Flynn et al, J. American Chemical Society (1997) 119, 4874-4881.

B38 **O**______

Methylisocyanate functionalized polystyrene. Novabiochem cat. # 01-64-0169

B48 CI ©
N N TO N TO N N TO N TO

Polymer bound EDC, prepared as reported by M. C. Desai *et al*, *Tetrahedron Letters* (1993) <u>34</u>, 7685.

B41

Benzenesulfonylisocyanate, purchased from Aldrich Chemical Company. Cat# 23,229-7

B50 F

Tetra-fluorophthalic anhydride, purchased from Aldrich Chemical Company. Cat # 33,901-6

15

30

5

Experimental procedure for the parallel synthesis of a series of amides, carbamates, ureas and sulfonamides B-0001 through B-0048 from scaffold C-1.

Examples B-0001 through B-0048

To each reaction vessel (polypropylene syringe tubes fitted with a porous frit, closed at the bottom) of a parallel reaction apparatus was added 200 uLdimethylformamide. A stock solution of the scaffold amine C-1 in dimethylformamide (0.1 M, 500 uL) was added to each reaction vessel followed by the addition of a stock solution of N-methylmorpholine in dimethylformamide 200 uL). A stock solution of each of the electrophiles was then added to the appropriate reaction vessels: a) 500 uL of a 0.2 M solution of the acid chlorides in dichloroethane or b) 500 uL of a 0.2 M solution of the chloroformates in dichloroethane or c) 313 uL of a 0.2 M solution of the isocyanates dichloroethane or d) 375 uL of a 0.2 M solution of the sulfonyl chlorides in dichloroethane. The parallel reaction apparatus was then orbitally shaken (Labline Benchtop orbital shaker) 200 at RPM at ambient

temperature (23-30 °C) for a period of 2-3 h, under a gentle flow of nitrogen. At this time each reaction vessel was treated with approximately 250 mg of polyamine resin B33 (4.0 meq N/g resin) and approximately 100 mg of polyaldehyde resin B32 (2.9 mmol/g resin). Each reaction vessel was diluted with 1 mL dimethylformamide and 1 mL dichloroethane and the orbital shaking was continued at 200 RPM for a period of 14-20 h at ambient temperature. Each reaction vessel was then opened and the desired solution phase products separated from the insoluble quenched byproducts by filtration and collected individual conical vials. Each vessel was rinsed twice with dichloroethane (1 mL) and the rinsings were also collected. The solutions obtained were then evaporated to dryness in a Savant apparatus (an ultracentrifuge equipped with high vacuum, scalable temperature settings and a solvent trap to condense the volatile solvent vapors). The resulting amide, carbamate, urea sulfonamide products were then weighed and characterized. The yields and analytical data for the products obtained using this method are shown below.

25

10

15

20

Example#	R ²	Кì	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0001	F—		85	397	398
B-0002	F—		94	412	413
B-0003	F—		91	340	341
B-0004	F—		79	368	369
B-0005	F—		92	498	499
B-000 6	F—		92	416	417
B-0007	F—	Bri	86	450	451

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0008	F—	100	86	448	449
B-0009	F—		83	368	369
B-0010	F——		86	338	339
B-0011	F—		92	402	403
B-0012	F—		74	442	443
B-0013	F—		91	446	447
B-0014			84	352	353
B-0015	F—		94	380	381
B-0016	F—	CF3	89	440	441
B-0017	F—___________		83	498	499

Example#	R²	₽ ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0018	F—	O SH	24	439	440
B-0019	F———	5 0	89	474	475
B-0020	F-	o o	90	440	441
B-0021	F—		85	386	387
B-0022	F—	NO ₂	35	417	418
B-0023	F—\		94	397	398
B-0024	F—_________________\	NO 2	87	417	418
B-0025	F—		5	354	-
B-0026	F—	F	87	426	427
B-0027	F-		89	350	351

				Mass Spec	Mass Spec (M+H)
B-0028	F-		92	456	457
B-0029	F—		89	428	429
B-0030	F—		37	498	499
B-0031	F—	NO ₂	18	407	408
B-0032	F—		86	462	463
B-0033	F—		3	352	-
B-0034	F—___\\\		92	446	447
B-0035	F—	0====	28	569	570
B-0036	F—\$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	93	416	417
B-0037	F—		91	422	423

583

Example#	Ħ²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0038	F—		84	390	393
B-0039	F—		87	402	403
, B-0040	F—		92	416	417.
B-0041	F—	-00V	75	444	445
B-0042	F—		54	390	391
B-0043	F—		80	396	397
B-0044	F—	7	81	310	311
B-0045	F—		91	408	409
B-0046	F—	F,C CF,	25	464	465
B-0047	F—	3	88	430	431
		•			

By analogy to the procedure identified above for the

preparation of Examples B0001-B0048, the following

examples B-0049 through B-1573 were prepared.

	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0049	F—		85	414	415
B-0050	F—		9	458	459
B-0051	F—	F F	91	426	427
B-0052	F—	3 PT 0	79	407	408
B-0053	F—	S CI N	92	407	408
B-0054	F—{		92	363	364
B-0055	F—	F 200	86	505	506

	R ²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0056	F—		86	487	488
B-0057	F-{}		83	394	395
B-0058	F-	S CI	86	462	463 ⁻
B-0059	F—	3.	92	466	467
B-0060	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CF ₃	74	456	457
B-0061	F—	CF ₃	35	458	459
B-0062	F—	CF ₃	94	458	459
B-0063	F—		87	372	373
B-0064	F-	m	5	394	395
B-0065	F—{}		87	420	395

	R²	R ^d	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0066	F—		89	350	351
B-0067	F—		92	386	387
B-0068	F—		89	432	433
B-0069	F-_____\		37	390	391
B-0070	F—		18	432	433
B-0071	F—		86	440	441
B-0072	F—		3	432	433
B-0073	F—	Br	92	450	451
B-0074	F—		28	390	391
B-0075	F—{}		93	402	403

Example#	R²	В	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0076	F—		91	400	401
B-0077	F—		84	382	383
B-0078	F—		87	396	397
B-0079	F—		92	364	365
B-0080	F—	NO ₂	75	447	448
B-0081	F—{}		54	370	371
B-0082	F—	1000	80	430	431
B-0083	F—		81	382	383
B-0084	F—{}		91	464	465
B-0085	F-{		25	462	463

	R²	К ₁	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0086	F-_________	ي م	88	432	433
B-0087	F—_________________\		95	416	417
B-0088	F—__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			43 8	439
B-0089	F—			336	337
B-0090	F—		i	444	445
B-0091	F—			368	369
B-0092	F—			506	507
B-0093	F—	Ci		436	437
B-0094	F—	CF ₃		461	462
B-0095	F—\$	- F		408	409

Example# Observed Calcd. R^2 Mass Spec RJ %Yield (M+H) B-0097 14 486 487 B-0098 8 465 B-0099 75 464 465 B-0100 72 388 389 B-0101 23 408 409 B-0102 37 487 488 B-0103 11 492 493

	R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0104	F—{	9990	59	426	427
B-0105	F—		79	360	361
B-0106	F—		56	374	3 75
B-0107	F—	» "s" "o"	33	346	347
B-0108	F—		12	466	467
B-0109	F—		65	450	451
B-0110	F—		55	458	459
B-0111	F—		41	458	459
B-0112	F-		19	467	468
B-0113	F-		78	453	454

	R²	₽,	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0114	F—	NO ₂	14	453	454
B-0115	F-	O NO.	33	453	
B-0116	F—		11	459	487
B-0117	F—		77	438	439
B-0118	F—		52	422	423
B-0119	F	-	82	434	435
B-0120	F—		49	422	423
B-0121	F—	0==0	64	414	415
B-0122	F		87	501	502
B-0123	F—		100	450	451

•	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0124	F—		87	456	457
B-0125	F—		45	472	473
B-0126	F—		100	476	477
B-0127	F—	2 / Z	100	433	434
B-0128	F—	a contraction of the contraction	100	482	-
B-0129	F—		96	480	481
B-0130	F-\\\\		93	468	469
B-0131	F—		90	468	469
B-0132	F—	9	78	436	437
B-0133	F—		76	426	427

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0134	F—		87	444	445
B-0135	F—	0	67	476	477
B-0136	F—	8 Br	100	570	• .
B-0137	F—		35	480	481
B-0138	F—		60	500	•
B-0139	F—	,	73	585	586
B-0140	F—		62	434	459
B-0141	F—	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100	483	484
B-0142	F—		90	444	445
B-0143	F—	0 CF	61	492	493

B-0145 F 48 433 434 B-0146 F 32 415 416 B-0147 F 67 471 472 B-0148 F 65 353 354 B-0150 F 53 465 466 B-0151 F 68 401 402	Example#	R²	КĄ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0147 F 67 471 472 B-0148 F 65 353 354 B-0150 F 53 465 466	B-0145	F-		48	433	434
B-0148 F	B-0146	F-	2	32	415	416
B-0149 F 65 353 354 B-0150 F 53 465 466	B-0147	F—		67	471	472
B-0150 F 53 465 466	B-0148	F—	13 1	79	465	-
B-0150 F 53 465 466	B-0149	F—		65	353	354
Double E	B-0150			53	465	466
	B-0151	F-\		68	401	402

Example#	R²	R³	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0152	F-		39	383	•
B-0153	F—		96	427	428
B-0154	F—		44	45 9	460
B-0155	F—		74	479	480
B-0156	F—		44	459	460
B-0157	F—		72	415	416
B-0158	F—		96	445	446
B-0159	F—		97	411	412
B-0160	F—————————————————————————————————————		49	417	418
B-0161	F—		93	459	460

Example#	R ²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0162	F—	i e	91	405	406
B-0163	F—		94	455	456
B-0164	F—		84	45 5	456
B-0165	F—	i i	52	411	412
B-0166	F—		72	417	418
B-0167	F—		6 6	447	448
B-0168	F—		27	415	416
B-0169	F—Ş		91	415	426
B-0170	F-________________\		8	351	352
B-0171	F-{		10	437	438

ļ.	-
P.	
-	
÷ 1112	
į,	
£	
i-i	_
Ĩ.	
÷ 224	
In the sum of the sum	;

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0172	F-\		62	471	472
B-0173	F—\\\\\\\\\		40	455	456
B-0174	F—__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		92	405	406
B-0175	F-(·	96	387	388
B-0176	F-		25	415	416
B-0177	F—		100	397	398
B-0178	F-\\\\\	j.	34	429	430
B-0179	F—		72	429	430
B-0180	F—		91	463	464
B-0181	F—		100	463	464

_- - - - - <u>- -</u>------

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0182	F—		50	447	448
B-0183	F—		22	455	456
B-0184	F—		63	465	466
B-0185	F—		65	471	472
B-0186	F—		42	429	430
B-0187	F—		62	481	482
B-0188	F—		98	439	440
B-0189	F—Ş		21	453	454
B-0190	F		57	417	418
B-0191	F—		24	477	478

i-à
T
į
12,
\square
£ i
įl
Ţ
1
122
i=i

Example#	R²	₽	%Yield	Calcd. Mass Spec	Mass Spec (M+H)
B-0192	F—	i c	35	455	456

Example#	R²	R J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0193	F—		42	378	379
B0194	F—	o F	65	365	366
B-0195	F—		93	587	588
B-0196	F—	Z Jim.	82	365	366
B-0197	F—		100	587	588
B-0198	F—		86	373	374
B-0199	F-{		81	373	374

Example#	R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0200	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		78	373	374
B-0201	F-{}		95	352	353
B-0202	F—		100	416	417
B-0203	F—		69	354	355
B-0204	F—		93	340	341
B-0205	F—		94	354	355
B-0206	F—		79	424	425
B-0207	F		82	326	327
B-0208	F-_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	S S	88	378	379
B-0209	F—{		83	362	363

Example	₽# R²	R ^J	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-0210	F-\	ÇF 3	100	364	365
B-0211	F-{}	NH	60	325	326
B-0212	F—	NH NH	79	339	340
B-0213	F-{}	NH~	71	353	354
B-0214	F—	NH 2	77	311	312
B-0215	F—		24	353	354
B-0216	F—			339	340
B-0217	F——}			381	382
B-0218	F—			365	366
B-0219	F—	NH NH		401	402
					

Example#	R ²	Н	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0220	F—	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		415	416
B-0221	F—	O		367	368

Example#	R²	н,	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0222	F-___________________	0=0=0	96	486	487
B-0223	F—		100	465	466
B-0224	F—	2, s, o	75 '	486	509a
B-0225		77. S. O. C.	100	442	·443
B-0226	F—	0=0=0	88	482	483
B-0227	F-	0===0	73	482	483
B-0228	F—	0 ОН	37	452	

Example	# R²	R³	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-0229	F—{		100	476	477
B-0230	F—{}	S = C C C	94	476	
B-0231	F-	0=	100	·	477
B-0232	F—	0 = s = 0	90	460	461
B-0233	F—	O = CI	99	476	477
B-0234	F-	S Br	100	486	487,489
B-0235	F-	S Br.	89	486	487,489
B-0236	F—	0	100	476	477
B-0237	F-	0 -5 -0 -0 -0	100	476	477
B-0238	F—		92	438	-

Example	# R ²	₽,	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-0239	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		100	442	443
B-0240	F-	0=s=0	100	442	443
B-0241	F—{	0=0=0	100	476	477
B-0242	F—	0 F	100	460	461
B-0243	F—{}	O E S O O O O O O O O O O O O O O O O O	. 87	456	457
B-0244	F-	S=0 S=0 S=0	100	436	437
B-0245			100	422	423
B-0246	F—		100	452	453
B-0247	F—	S CF3	100	476	477
B-0248	F—	0=0=0	73	468	-

B-0259 F	Example#	R ²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0250 B-0251 B-0252 B-0252 B-0253 B-0254 B-0255 B-0255 B-0256 B-0257 B-0258 B-0258	B-0249	F—		100	E4.0	F47 F40
B-0251 F	B-0250	F—{}		·		
B-0252 F- 100 450 451 B-0253 F- 100 472 473 B-0254 F- 100 433 434 B-0255 F- 100 433 434 B-0256 F- 100 484 507a B-0257 F- 100 484 507a	B-0251	F—{}	0=0=0		•	
B-0253 B-0254 B-0255 B-0256 B-0257 B-0258	B-0252	F—				
B-0254 F 100 433 434 B-0255 F 84 547 548 B-0256 F 100 484 507a B-0257 F 85 534 535	B-0253	F—	___\\	100	472	
B-0256 F- 3 100 484 507a B-0257 F- 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	B-0254	F—		100	433	434
B-0256 F- 100 484 507a B-0257 F- 85 534 535	B-0255	F—	<u> </u>	84	547	548
B-0257 F- 85 534 535	B-0256	F-______\		100		
B-0258	B-0257	F—				
100 491 492	B-0258	F—		100	491	

Example#	R²	R,	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0259	F—	0===0	100	554	555
B-0260	F—		91	500	501
B-0261	F—{}		100	486	487
B-0262	F-	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	100	481	482
B-0263	F—		100	554	555
B-0264	F—	0==-x	75	375	376
B-0265	F-\{\}	0=%=0	71	459	460
B-0266	F—		100	412	413

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0267	F-	, , , , , , , , , , , , , , , , , , ,	100	386	387
B-0268	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	89	406	407
B-0269			84	386	387
B-0270	F—	CF ₃	92	440	441
B-0271	F-		98	428	429
B-0272	F—		57	498	499
B-0273	F—	ā o	100	440	441

Example#	R²	КĄ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0274	F—{}	2, Cx	94	397	398
B-0275	F—		90	422	423
B-0276	F—	-F	100	408	409
B-0277	F—		88	408	409
B-0278	F—		100	426	427
B-0279	F—	ī Š	54	440	441
B-0280	F—		79	414	415
B-0281	F—	ÇF,	82	458	459
B-0282	F—	F 0	89	426	427
B-0283	F—	CF ₃	90	458	459

Example	f R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0284	F—	CF 3	100	458	459
B-0285	F—{}	CF ₃	94	458	459
B-0286	F—	cf ,	100	458	459
B-0287	F-	CF,	96	458	459
B-0288	F—	CF 3	100	458	459
B-0289	F—	o c	96	406	407
B-0290	F—		96	386	387
B-0291	F——}	CO	95	440	441
B-0292	F——Ş		94	390	391
B-0293	F-___		100	408	409

	-
£:==	
il.	
į	-
*	
ũ	
£	
ļ.	Ŀ
n.	
f:==	
٠,	
The same state	
1	

Example	# R²	H,	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-0294	F—	CI CI	100	440	441
B-0295	F—	F	91	408	409
B-0296	F—	F	96	426	427
B-0297	F—		88	390	391
B-0298	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		95	408	409
B-0299	F—	F	90	408	409
B-0300 ·	F—	To the second se	95	406	407
B-0301	F—	Br O	99	450	451,453
B-0302	F-_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CF ₃	94	440	441
B-0303	F—	S	100	378	379

Example#	R²	R³	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0305			70	326	327
B-0306			59	340	341
B-0307			59	354	355
B-0308			60	368	369
B-0309			61	352	353
B-0310			61	366	367
B-0311			65	356	357

-	===
-	-
	Ļ
	. <u>.</u> .
÷	
.mm	
-1000	
	1
1	
111111	7
100	==
+	-
	ağ

Example#	R²	R ^J .	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0312			75	342	343
B-0313			68	356	357
B-0314			31	370	371
B-0315			61	384	385
B-0316			75	368	369
B-0317		*	62	366	367
B-0318			52	388	389
B-0319			53	424	425
B-0320			50	424	425
B-0321			54	442	443

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0322		F.3C	64	474	475
B-0323			58	474	475
B-0324			60	422	423
B-0325			64	422	423
B-0326			58	422	423
B-0327			63	378	379
B-0328			68	389	390
B-0329		\$s	63	362	363
B-0330			48	376	377
B-0331			66	424	425

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0332			61	442	443
B-0333			60	458	45 9
B-0334		o Br	55	502	503
B-0335			60	454	455
B-0336			100	500	501
B-0337			65	458	-
B-0338		Br	69	502	503
B-0339			69	454	-
B-0340		F ₃ C	77	492	493
B-0341			64	458	459

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0342			41	438	•
B-0343			63	430	431
B-0344			96	464	465
B-0345			62	507	508
B-0346			56	497	498
B-0347		EZ O	61	341	342
B-0348			3	367	-
B-0349			57	403	404
B-0350			57	481	482
B-0351			31	355	356

N	
1	
٠	
Ü	
31	
-	
я.	
1	

Example#	R²	R³	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0352			51	397	398

Example#	R²	Fi ^{-J}	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0353	F		71	382	383
B-0354	F—		35	512	513
B-0355	F—		37	352	353
B-0356	F—		57	404	405
B-0357	F—		88	366	367
B-0358	F-		8 8	410	411
B-0359	F—		100	324	325

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0360	F-\		56	364	365
B-0361	F—	2222	70	350	351
B-0362	F—	Br	100	464	465
B-0363	F—		73	512	513
B-0364	F—		88	377	378
B-0365	F—		70	396	397
B-0366	F—{}		100	354	355
B-0367	F—		71	416	417
B-0368	F—	F,5	86	454	455
B-0369	F-{		40	440	441

Example#	R² .	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0370	F—	***	94	364	365
B-0371	F—_\		88	460	461
B-0372	F—		69	430	431
B-0373	F-___________________		100	430	431
B-0374	F—{}		75	400	401
B-0375	F—		74	386	387
B-0376	F-________\		53	378	379
B-0377	F—		71	387	388
B-0378	F—		69	387	388
B-0379	F—		66	387	388

Example#	R²	В ₁	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0380	F—		85	416	417
B-0381	F—		93	430	431
B-0382	F—		84	382	383
B-0383	F—		74	583	584
B-0384	F—		63	438	439

Example#	R²	R³	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0385	F—		83	440	441
B-0386	F-		99	422	423
B-0387	F—	°≡ « = °	47	388	389
B-0388	F—		100	448	449
B-0389	F—		71	436	437
B-0390	F—		100	458	459
B-0391	F—{	\$	45	414	415

Example#	H²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0392	F—		100	440	441
B-0393	F—	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	75	388	389
B-0394	F-		92	402	403
B-0395	F—		87	374	375
B-0396	F—	\$	86	360	361
B-0397	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	81	452	453
B-0398	F—___________________		88	428	429
B-0399	F—		99	436	437
B-0400	F—		82	482	483
B-0401	F-{}		94	367	368

Example#	R²	R ¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0402	F-	NH 2	73	325	326
B-0403	F-		91	415	416
B-0404	F—		41	379	380
B-0405	F-		88	395	396
B-0406	F-		100	419	420
B-0407	F-		52	353	354
B-0408	F-__\	N N	83	339	340
B-0409	F—{}		74	415	416
B-0410	F-_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		100	419	420
B-0411	F-{}		94	429	430

Example#	R²	В	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0412	F—		91	365	366
B-0413	F—		79	367	368
B-0414	F—		85	42 9	430
B-0415	F—		82	401	402
B-0416	F—		93	429	430
B-0417	F—		97	429	430
B-0418	F—		100	419	420
B-0419	F-\{\}		100	431	432
B-0420	F—		36	381	382
B-0421	F—{}		96	353	354

Example#	R²	₽ì	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0422	F-		100	461	462
B-0423	F—		100	406	407
B-0424	F—		76	366	367
B-0425	F—\$	***	21	368	369
B-0426	F—	**	100	354	355
B-0427	F—{}		100	379	380
B-0428	F—{}		100	379	380
B-0429	F—{}	***************************************	- 86	368	369

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0430	F—	0=0=0	51	500	501
B-0431	F—	000	76	479	480
B-0432	F—	Br.	90	500	501
B-0433	F—	2/5 0 CI	96	456	457
B-0434	F—	0=0=0	75	496	497
B-0435	F—	0=%=0	52	496	497
B-0436	F-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	73	506	

Example#	H²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0437	F—		19	466	
B-0438	F—		100	490	491
B-0439	F—		67	464	465
B-0440	F—		96	472	473
B-0441	F—		87	472	473
B-0442	F—	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	72	481	482
B-0443	F—		66	473	474
B-0444	F-		80	515	516
B-0445	F—		94	490	491
B-0446	F-________\		84	464	465

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0447	F-\(\)		89	470	471
B-0448	F—		100	490	491
B-0449	F—		100	474	475
B-0450	F—		100	447	448
B-0451	F—————————————————————————————————————		100	454	455
B-0452	F—		95	496	497
B-0453	F———§		100	490	491
B-0454	F—		100	500	501
B-0455	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	}	96	500	501
B-0456	F-{}		89	494	495

Example#	R²	H,	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0457	F-_\{\}		93	482	483
B-0458	F-{}		100	490	491
B-0459	F——}	Cts	100	490	491

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0460	F—		93	450	451
B-0461	F—		84	452	453
B-0462	F—		96	456	457
B-0463	F—		66	456	457
B-0464	F—		69	490	491
B-0465	F—	0	86	490	491
B-0466	F—	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	78	474	475

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0467	F—		78	470	471
B-0468	F—		91	450	451
B-0469	F—		85	436	437
B-0470	F—		99	466	467
B-0471	F—	S CF3	100	490	491
B-0472	F—		37	482	483
B-0473	F—		92	462	463
B-0474	F—		99	530	532
B-0475	F—		55	472	473
B-0476	F-		89	441	442

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0477	F—		79	4 64	465
B-0478	F—		92	486	487
B-0479	F—		97	447	448
B-0480	F—		75	561	562
B-0481	F—		74	498	499
B-0482	F—		57	548	549
B-0483	F—		83	505	506
B-0484	F-\\}		100	568	569
B-0485	F—		100	495	496
B-0486	F—		100	426	427

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0487	F—	~~~°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	32	389	390
B-0488	F—		100	568	569
B-0489	F—		91	500	501
B-0490	F—		40	473	474
B-0491	F—		73	514	515

Example#	R²	₽Ĵ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0492	F—	4	89	400	401
B-0493	F—	7	100	42 0	421
B-0494	F—		100	400	401
B-0495	F—	CF ₃	100	454	455
B-0496	F—		100	442	443
B-0497	F—		50	512	513
B-0498	F-	CI CI	100	454	455

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0499	F—	S CN	98	411	412
B-0500	F—		100	436	437
B-0501	F—	F	100	422	423
B-0502	F—		100	422	423
B-0503	F—		92	440	441
B-0504	F—		67	454	455
B-0505	F—		68	428	429
B-0506	F-\	CF 3	98	472	473
B-0507	F-	F F	. 82	440	441
B-0508	F—	CF ₃	99	472	473

Example#	R²	Кı	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0509	F—	CF 3	100	472	473
B-0510	F-	CF ₃	96	472	473
B-0511	F-		100	472	473
B-0512	F-	CF,	100	472	473
B-0513	F-___________________	CF 3	100	472	473
B-0514	F—{}	a a	100	420	421
B-0515	F—		100	400	401
B-0516	F—	CI	100	454	455
B-0517	F—		100	404	405
B-0518	F—		99	422	423

Example#	R ²	R⁴	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0519	F—	G G	100	454	455
B-0520	F—	F	98	422	423
B-0521	F—	F F	99	440	441
B-0522	F—		88	404	405
B-0523	F—	F	100	422	423
B-0524	F—	F	100	422	423
B-0525	F—		100	420	421
B-0526	F—	Br	100	464	465
B-0527	F—	CF	100	454	455
B-0528	F-	₹ s	100	392	393

ļ.
Ü
1.2
-
-
E:
e: Įmä

Example#	R²	₽	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0529	F—	z o	94	405	406

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0530	F-		67	382	383
B-0531	F—		6 6	512	513
B-0532	F—		37	352	353
B-0533	F—		56	404	405
B-0534	F-		100	366	367
B-0535	F—		100	410	411
B-0536	F—		41	324	325

Example#	R²	B,	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0537	F-		100	364	365
B-0538	F—		29	350	351
B-0539	F—	B.	70	464	465
B-0540	F—		50	512	513
B-0541	F—		61	377	378
B-0542	F—————————————————————————————————————		61	396	397
B-0543	F—————————————————————————————————————		59	354	355
B-0544	F—————————————————————————————————————		45	416	417
B-0545	F—		100	454	455
B-0546	F—		44	440	441

Example#	R²	R ₁	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0547	F—	***	64	364	365
B-0548	F—		89	460	461
B-0 549	F—		100	430	431
B-0550	F—		100	430	431
B-0551	F—		81	400	401
B-0552	F—		38	386	387
B-0553	F—		31	378	379
B-0554	F—		100	387	388
B-0555	F—		66	387	388
B-0556	F—		32	387	388

Example#	R ²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0557	F—		.70	416	417
B-0558			57	430	431 _.
B-0559	F—		74	382	383
B-0560	F—		36	583	584
B-0561	F—		51	438	439

Example#	R²	R¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0562	F—	0	88	440	441
B-0563	F—		68	422	423
B-0564	F—		47	388	389
B-0565	F—	1-1-	100	448	449
B-0566	F—		76	436	437
B-0567	F—		9 9	458	459
B-0568	F—	S - CF 3	45	414	415

Example#	R²	R-J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0569	F—		88	440	441
B-0570	F—	0==0=0	61	388	389
B-0571	F—		58	402	403
B-0572	F—	0 	75	374	375
B-0573	F-	0 	72	360	361
B-0574	F—		97	452	453
B-0575	F		71	428	429
B-0576	F—		88	436 .	437
B-0577	F—		72	482	483
B-0578	F—		8 9	367	368

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0579	F—	NH 2	100	325	326
B-0580	F—		75	415	416
B-0581	F—		44	379	380
B-0582	F—		75	395	396
B-0583	F—		80	419	420
B-0584	F—		57	353	354
B-0585	F—		83	339	340
B-0586	F—————————————————————————————————————		71	415	416
B-0587	F—		100	419	42 0
B-0588	F—		94	429	430

-

Example#	R²	В ₁	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0589	F—		78	365	366
B-0590	F—		82	367	368
B-0591	F—		72	429	430
B-0592	F—		82	401	402
B-0593	F—		88	429	430
B-0594	F—		100	42 9	430
B-0595	F		99	419	420
B-0596	F		93	431	432
B-0597	F—		40	381	382
B-0598	F—		93	353	354

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0599	F—		100	461	462
B-0600	F—		98	406	407
B-0601	F—		6 6	366	367
B-0602	F—	* .	25	368	369
B-0603	F—	**	90	354	355
B-0604	F—		86	379	380
B-0605	F—	o min	87	379	380
B-0606	F—		72	368	3 69

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0607	F—	0=0=0	34	500	501
B-0608	F—		100	479	480
B-0609	F—	No Br	82	500	501
B-0610	F-	0=	100	456	457
B-0611	F-	0=0=0	76	496	497
B-0612	F-	0=0=0	69	496	497
B-0613	F—	2200	61	506	

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0614	F—	ه المسلم	18	4 66	
B-0615	F—		100	490	491
B-0616	F—		77	464	465
B-0617	F—		93	472	473
B-0618	F—		84	472	473
B-0619	F-		71	481	482
B-0620	F—		89	473	474
B-0621	F—___________________		68	515	516
B-0622	F-{}		70	490	491
B-0623	F—{}		92	464	465

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0624	F—		98	470	471
B-0625	F-		96	490	491
B-0626	F—		100	474	475
B-0627	F—		100	447	448
B-0628	F-		64	454	455
B-0629	F-		100	496	497
B-0630	F—		85	4 90	491
B-0631	F—		75	500	501
B-0632	F—		83	500	501
B-0633	F—		58	494	495

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0634	F—		63	482	483
B-0635	F—		95	490	491
B-0636	F—		100	4 90	491

Example#	R²	R٦	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0637	F—		91	450	451
B-0638	F—		96	436	437
B-0639	F—		100	456	457
B-0640	F—		100	456	457
B-0641	F-		88	490	491
B-0642	F—	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	99	490	491
B-0643	F—		92	474	475

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0644	F—		100	470	471
B-0645	F—		92	450	451
B-0646	F—		100	43 6	437
B-0647	F—		90	466	467
B-0648	F—	CF.	94	490	491
B-0649	F-		57	482	
B-0650	F—		82	462	463
B-0651	F—		100	530	531
B-0652	F—		53	472	
B-0653	F—		84	441	442

Example#	R²	R ¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0654	F		92	464	465
B-0655	F—		100	486	487
B-0656	F—		98	447	448
B-0657	F—		85	561	562
B-0658	F—{}		92	498	499
B-0659	F—	1	46	548	549
B-0660	F—	+00	80	505	506
B-0661	F—		100	568	569
B-0662	F-		98	495	496
B-0663	F—		74	426	427

Example#	R²	R³	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0664	F—	\$s	30	389	390
B-06 65	F—		100	568	569
B-0666	F—		93	500	501
B-0667	F—		54	473	474
B-0668	F—		66	- 514	515

Example#	R²	₽ ¹ .	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0669	F—		65	400	401
B-0670	F—	o o	45	420	421
B-0671	F—		43	400	401
B-0672	F—	CF,	45	454	455
B-0673	F—	SS	41	442	443
B-0674	[F—		16	512	513
B-0675	F-	CI CI	39	454	455

Example#	R²	R,	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0676	F—	S CN	34	411	412
B-0677	F—		46	436	437
B-0678	F—	F F	37	422	423
B-0679	F—	7 F	34	422	423
B-0680	F-		60	440	441
B-0681	F—	٥	31	454	455
B-0682	F—		37	428	429
B-0683	F—	CF 3	46	472	473
B-0684	F—	F	50	440	441
B-0685	F—	CF ₃	44	472	473

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0686	F-	CF ,	66	472	473
B-0687	F—	CF ₃	57	472	473
B-0688	F—		52	472	473
B-0689	F—	CF,	42	472	473
B-0690	F—	CF3	34	472	473
B-0691	F—		52	420	421
B-0692 ·	F-		41	400	401
B-0693	F—	[0]	56	454	455
B-0694	F—{}		38	404	405
B-0695	F—		43	422	423

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0696	F—	CI	57	454	455
B-0697	F—	F	51	422	423
B-0698	F—	F F	59	440	441
B-0699	F—	F	46	404	405
B-0700	F—		47	422	423
B-0701	F—	F O	46	422	423
B-0702	F—	C C	43	420	421
B-0703	F—	87	57	464	465
B-0704	F—	CF ₃	44	454	455
B-0705	F—	S	33	392	393

lah
I.
ĺ
٠.
£!
Į
II.
÷

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0706	F—		35	405	406

Example#	R²	R ¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0707	F—		76	516	517
B-0708	F—		61	498	499
B-0709	F—	₩ 	37	464	465
B-0710	F—		76	524	525
B-0711	F—		75	512	513
B-0712	F—		91	534	535
B-0713	F—	S CF 3	42	490	491

Example#	R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0714	F—		87	516	517
B-0715	F—	**************************************	60	464	465
B-0716	F—		59	478	479
B-0717	F—	O	61	450	451
B-0718		\$s	65	436	437
B-0719	F—		84	528	529
B-0720	F—		69	504	505
B-0721	F—		63	512	513
B-0722	F—		88	558	559
B-0723	F—		68	443	444

Example#	R ²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0724	F—	NH 2	75	401	402
B-0725	F—		83	491	492
B-0726	F—		24	45 5	456
B-0727	F—		67	471	472
B-0728	F—		89	495	496
B-0729	F—	*	38	429	430
B-0730	F—		76	415	416
B-0731	F—		60	491	492
B-0732	F—		86	495	496
B-0733	F—		81	505	506

Example#	R²	R ⁴	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0734	F-		87	441	442
B-0735	F—		83	443	444
B-0736	F—		91	50 5	506
B-0737	F—		9	477	-
B-0738	F—		87	505	506
B-0739	F—		82	505	506
B-0740	F—		85	495	496
B-0741	F—		68	507	508
B-0742	F—		14	457	-
B-0743	F—		77	429	430

Example#	R²	R ⁴	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0744	F—		· 8 6	537	538
B-0745	F—	\$	82	482	483
B-0746	F—		74	442	443
B-0747	F—		83	444	445
B-0748	F—		94	430	431
B-0749	F—		100	455	456
B-0750	F—		100	455	456
B-0751	F—		48	444.	445

Example#	R ²	H,	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0752	F—	\$_\$_\$	84	516	517
B-0753	F—		67	498	499
B-0754	F—		- 31	464	465
B-0755	F—		85	524	52 5
B-0756	F-		77	512	513
B-0757	F—————————————————————————————————————		57	534	535
B-0758	F—	S CF 3!	36	490	491

Example#	R²	В	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0759	F—		79	516	517
B-0760	F—	0==0	53	464	465
B-0761	F—		50	478	479
B-0762	F—	0 	60	450	451
B-0763	F—	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	75	436	437
B-0764	F—		43	528	529
B-0765	F—		75	504	505
B-0766	F—		67	512	513
B-0767	F—		43	558	559
B-0768	F-		78	443	444

Example	# R²	R⁴	%Yield	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-0769	F-	NH ₂	76	401	402
B-0770	F—		57	491	492
B-0771	F-{}		14	455	456
B-0772	F—		72	471	472
B-0773	F—		100	495	496
B-0774	F—		41	429	430
B-0775	F—	ST.	91	415	416
B-0776	F—		64	491	492
B-0777	F—		90	495	496
B-0778	F—		19	505	506

Example#	R²	₽¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0779	F—		79	441	442
B-0780	F—		40	443	444
B-0781	F—		93	505	506
B-0782	F—		57	477	478
B-0783	F—		99	50 5	506
B-0784	F—		100	505	506
B-0785	F—	# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	92	495	496
B-0786	F-		91	507	508
B-0787	F-		15	457	458
B-0788	F-	***	48	429	430

Example#	R ²	R ⁴	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0789	F—		91	537	538
B-0790	F—		93	482	483
B-0791	F—		76	442	443
B-0792	F—	*	96	444	445
B-0793	F—	***	54	430	431
B-0794	F—		100	455	456
B-0795	F—		100	455	456
B-0796	F—		94	444	445

Example#	R²	R ¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0797	F—		90	458	459
B-0798	F—		90	588	589
B-0799	<u>F</u>		82	428	429
B-0800	F—		92	480	481
B-0801	F-		82	442	443
B-0802			95	486	487
B-0803	F—		89	400	401

Example#	R²	БĄ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0804	F—		87	440	441
B-0805	F—		100	426	427
B-0806	F—		99	540	541
B-0807	F—		96	588	589
B-0808	F—		82	453	454
B-0809	F—		92	472	473
B-0810	F—	are the second s	98	430	431
B-0811	F—		88	492	493
B-0812	F—————————————————————————————————————		81	530	531
B-0813	F—		98	516	517

Example#	R ²	R ¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0814	F—	*	100	440	. 441
B-0815	F—		100	536	537
B-0816	F—		99	506	507
B-0817	F—		98	506	507
B-0818	F—		86	476	477
B-0819	F—		90	462	463
B-0820	F—		91	454	455
B-0821	F—		69	463	464
B-0822	F—		79	463	464
B-0823	F—		79	463	464

-	
17,	
ļ	
÷ 200	
į,	
1,000	
5:	
H	
1	
÷::2	
1	

Example#	R ²	R⁴	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0824	F—		. 82	492	493
B-0825	F—		100	506	507
B-0826	F—		97	458	459
B-0827	F—		100	659	660
B-0828	F—————————————————————————————————————		97	514	515

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0829	F—		63	458	459
B-830	[F-\]		70	588	589
B-0831	F—			428	429
B-0832	F—		81	480	481
B-0833	F—		73	442	443
B-0834	F—		79	486	487
B-0835	F-		5	400	401

Example#	R²	Кļ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0836	F—		28	440	441
B-0837	F—		81	426	427
B-0838	F—	B	84	. 540	541
B-0839	F—		80	588	589
B-0840	F—		71	453	454
B-0841	F—		55	472	473
B-0842	F—	Art o	71	430	431
B-0843	F—		68	492	493
B-0844	F-		61	530	531
B-0845	F-\(\)		84	516	517

Example	f R ²	٤٦	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0846	F—{}	*	87	440	441
B-0847	F—		86	536	537
B-0848	F—		79	506	507
B-0849	F—		81	506	507
B-0850	F—		69	476	477
B-0851	F—		83	462	463
B-0852	F—		77	454	455
B-0853	F—		87	463	464
B-0854	F-		73	463	464
B-0855	F—		92	463	464

Example#	R²	R ⁴	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0856	F—		7 5	492	493
B-0857	F—		86	506	507
B-0858	F—		84	458	459
B-0859	F—		80	659	660
B-0860	F—		94	514	515

Example#	R²	К ₁	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0861	F—		84	583	584
B-0862	F—		96	475	476
B-0863	F—		69	423	424
B-0864	F-		86	437	438
B-0865	F—		62	395	•
B-0866	F-		81	421	422
B-0867	F—	Br	100	535	536

Example	# R²	R.J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0868	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		89	583	584
B-0869	F-	J. S. N.	100	448	449
B-0870	F-		100	425	426
B-0871	F-		100	487	488
B-0872	F—		78	501	502
B-0873	F—		78	471	472
B-0874	F—		92	475	476
B-0875	F—	in the second se	37	458	459
B-0876	F—	***	69	507	508
B-0877	F—	0	70	445	446

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0878	F—	\$	91	431	432
B-0879	F—		92	511	512
B-0880	F—	D T T T T T T T T T T T T T T T T T T T	89	410	411
B-0881	F—		84 .	490	491
B-0882	F-		85	500	501
B-0883	F—	\	85	424	425
B-0884	F—		86	532	533

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0885	F——}		51	583	-
B-0886	F—		97	475	. -
B-0887	F——		29	423	424
B-0888	F—————————————————————————————————————		82	437	438
B-0889	F—		93	395	396
B-0890	F—{}		91	421	422
B-0891	F—	ar	43	535	536

Example#	R²	К ₁	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0892	F—		62	583	584
B-0893	;F—{}	**	95	448	449
B-0894	F—		100	425	426
B-0895	F—		76	487	488
B-0896	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		62	501	502
B-0897	F—		80	471	472
B-0898	F—		79	475	476
B-0899	F-		70	458	459
B-0900	F-{}		62	507	508
B-0901	F—{}		43	445	446

Example	R ²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0902	F—	\$s	93	431	432
B-0903	F—		100	511	512 ·
B-0904	F—		95	410	411
B-0905	F—		89	490	491
B-0906	F—		69	500	501
B-0907	F—		28	424	425
B-0908	F—		64	532	533

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0909	F——}	22,	83	542	543
B-0910	F		80	434	435
B-0911	F	***************************************	91	382	383
B-0912	iF—		100	396	397
B-0913	iF—		94	354	355
B-0914	F-		95	380	381
B-0915	IF—	ar.	98	494	495

Example#	R²	₽³	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0916	F—		84	542	543
B-0917	F—	r.F.	79	407	408
B-0918	F—	***	89	384	385
B-0919	F—		91	446	447
B-0920	F—		99	460	461
B-0921	F——}		84	430	431
B-0922	F—		81	434	435
B-0923	F—		76	417	418
B-0924	F—		70	466	467
B-0925	F-{}	0	64	404	405

Example#	R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0926	F-	\$\$	47	390	391
B-0927	F—		89	470	471
B-0928	F—		53	369	370
B-0929	F——}		100	449	450
B-0930	IF—		.14	459	460
B-0931	F-\		41	383	384
B-0932	F—		94	491	492

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0933	F—		48	447	448
B-0934	F—		44	429	430
B-0935	F—		33	485	486
B-0936	F—	A	30	479	•
B-0937	F-	HN —	68	367	368
B-0938	F—	a di	72	479	480
B-0939	F—		76	415	416

į.	:
[_	
; ===	=
Ĩ	
[]	:
÷,,,,,	
74	
2 222	
į	
91	
II II mell	•
200	;
ĺ,	;
*:4	
117	
[=	
į.	
- 2	

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0940	F—	NH CONTRACTOR OF THE CONTRACTO	36	397	398
B-0941	F—		41	441	442
B-0942	F—		27	473	474
B-0943	F—		55	493	494
B-0944	F-		53	473	474
B-0945	F—		82	429	430
B-0946	F—		100	459	460
B-0947	F—	## F	60	425	426
B-0948	F—		100	431	432
B-0949	F—		98	473	474

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0950	F—	II.	64	419	420
B-0951	F—		100	469	470
B-0952	F—	AN C	61	469	470
B-0953	F—		67	425	426
B-0954	F—		62	431	432
B-0955	F—		39	461	462
B-0956	F—	J. T.	66	429	430
B-0957	F—		93	429	430
B-0958	F—	HN	86	365	366
B-0959	F—	Ů PA	73	451	452

l c

Example	# R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0960	F—		98	485	486
B-0961	F—		100	469	470
B-0962	F—		100	419	420
B-0963	F—		83	401	402
B-0964	F—		38	429	430
B-0965	F—		90	411	412
B-0966	F—————————————————————————————————————		76	443	444
B-0967	F—		100	443	444
B-0968	F—	100	100	477	478
B-0969	F-		77	477	478
			·		

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0970	F—		38	461	462
B-0971	F-		95	469	470
B-0972	F—		98	479	480
B-0973	F—		96	485	486
B-0974	F—		74	443	444
B-0975	F—		100	495	496
B-0976	F—		70	453	454
B-0977	F-		100	467	468
B-0978	F—		91	431	432
B-0979	F—		54	491	492

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0980	F—		65	469	470

Example#	R ² ·	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0981	F—	*	78	382	383
B-0982	F—		82	512	513
B-0983	F-		94	352	353
B-0984	F—		81	404	405
B-0985	F—		84	366	367
B-0986	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		80	410	411
B-0987	F-{}		85	324	325

Example#	R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0988	F—		91	364	365
B-0989	F—		88	350	351
B-0990	F—{}	Br Br	68	464	465
B-0991	F—		86	512	513
B-0992	F—		79	377	378
B-0993	F—		81	396	397
B-0994	F—		100	354	355
B-0995	F—		75	416	417
B-09 <u>.</u> 96	F—		65	454	455

Example	¥ R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0997	F—		64	440	441
B-0998	F-{}		81	364	365
B-0999	F—{}		79	460	461
B-1000	F—	i	84	430	431
B-1001	F	3.1.5	78	430	431
B-1002	F-		85	400	401
B-1003	F—		83	386	387
B-1004	F—		87	378 .	379
B-1005	F-		57	387	388

-
IJ
ļ=ä
Ļ
Ħ
E
i=i
ħ
, ""
ii.

Example#	R²	R ^J .	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1006	F-\{\}		80	387	388
B-1007	F—		54	387	388
B-1008	F-		64	416	417
B-1009	F-		81	430	431
B-1010	F-		81	382	383
B-1011	F-		66	583	584
B-1012	F-		69	438	439

Example#	R²	R³	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1013	F—		53	440	.441
B-1014	F		61	422	423
B-1015	F—		47	388	389
B-1016	F—		74	448	449
B-1017	F—		63	436	437
B-1018	F—		82	458	459
B-1019	F-	S - CF 3	41	414	415

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1020	F-\{\}		100	440	441
B-1021	F—		100	388	389
B-1022	F—		74	402	403
B-1023	F—	S S S S S S S S S S S S S S S S S S S	76	374	375
B-1024	F-	\$	73	360	361
B-1025	F—		100	452	453
B-1026	F—	°=-\$=0	95	428	429
B-1027			98	436	437
B-1028	F—		100	482	483
B-1029	F—	å p	98	367	368

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1030	F—	NH 2	88	325	326
B-1031	F-{}		97	415	416
B-1032	F—		64	379	380
B-1033	F—		83	395	396
B-1034	F—		67	419	420
B-1035	F—	*	73	353	354
B-1036	F—		79	339	340
B-1037	F—		78	415	416
B-1038	F—	No.	100	419	420
B-1039	F-{}		95	429	430

Example#	R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1040	F—		91	365	366
B-1041	F—	E C	88	367	368
B-1042	F—		78	429	430
B-1043	F—		79	401	402
B-1044	F—		93	429	430
B-1045	F-		100	429	430
B-1046	F—		94	419	420
B-1047	F—		100	431	432
B-1048	F—		58	381	382
B-1049	F—	**	97	353	354

Example#	R²	H,	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1050	F-		100	461	462
B-1051	F—	\$	88	406	407
B-1052	F—		82	366	367
B-1053	F-		21	368	
B-1054	F—______	***	98	354	355
B-1055	F—		100	379	380
B-1056	F—		85	379	380
B-1057	F-\\\		30	368	369

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1058	F—		35	500	501
B-1059	F—	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	77	479	480
B-1060	[F-	S Br	37	500	501
B-1061		2/8/0	86	456	457
B-1062	F—	0	58	496	497
B-1063	F—	0=0=0	59	496	497
B-1064	F—	M = 0 = 0 = 0 = 0	58	506	-

Example#	R²	R ^J .	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1065	F—	0=0=0=0	24	466	•
B-1066	F—		100	490	491
B-1067	F—	000	74	464	465
B-1068	F—		79	472	473
B-1069	F—		97	472	473
B-1070	F—		54	481	482
B-1071	F—		67	473	474
B-1072	F—		35	515	516
B-1073	F—		100	490	491
B-1074	F—		100	464	465

Example#	R²	R,	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1075	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\)==0 	100	470	471
B-1076	F—	0 0	93	490	491
B-1077	F—		100	474	475
B-1078	F—		80	447	448
B-1079	F—		85	454	455
B-1080	F—		100	496	497
B-1081	F-		100	490	491
B-1082	F-		100	500	501
B-1083	F—	3 - S	93	500	501
B-1084	F—		81	494	495

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1085	F—		93	482	483
B-1086	F—		92	490	491
B-1087	F—	5 C C C C C C C C C C C C C C C C C C C	100	490	491

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1088	F—		97	450	451
B-1089			100	436	437
B-1090	[F-		100	45 6	457
B-1091	F—		100	456	457
B-1092	[F-\	2,	96	490	491
B-1093	F—		100	490	491
B-1094	[F—{}		100	474	475

Example#	R ²	Кļ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1095	F—	0=	81	470	471
B-1096	F—		77	450	451
B-1097	F—		100	436	437
B-1098	F—		93	466	467
B-1099	F—	CF ₃	100	490	491
B-1100	F—		47	482	-
B-1101	F—	2222	64	462	463
B-1102	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		98	530	531
B-1103	F——		65	472	•
B-1104	F—{}		88	441	442

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1105	F—		100	464	465
B-1106	F-		91	486	487
B-1107	F—		96	447	448
B-1108	F—		5 5	561	562
B-1109	F—		100	498	499
B-1110	F—		73	548	549
B-1111	F—	٠	94	505	506
B-1112	F—		100	568	569
B-1113	F—		100	495	496
B-1114	F—		73	426	427

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1115	F—		30	389	390
B-1116	F-\		100	568	569
B-1117	F—		83	500	501
B-1118	F—		55	473	-
B-1119	F—		70	514	5 15

Example	# R ²	R,	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1120	F—		84	400	401
B-1121	F—	- Cal	86	420	421
B-1122	F—		90	400	401
B-1123	F—	CF,	100	454	455
B-1124	F—	S S	91	442	443
B-1125	F-		50	512	513
B-1126	F—	CI	85	454	455

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1127	F—	SZ CN	93	411	412
B-1128	F—		87	436	437
B-1129	F—	ST F	78	422	423
B-1130	F—		96	422	423
B-1131	F—	مر المراجعة	84	440	441
B-1132	F—		77	454	455
B-1133	F—		62	428	429
B-1134	F—	CF ₃	91	472	473
B-1135	F—	F F	85	440	441
B-1136	F—	CF ₃	82	472	473

Example	# R ²	R,	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1137	F—	CF 3	95	472	473
B-1138	F—	CF ₃	100	472	473
B-1139	F—	CF,	100	472	473
B-1140	F—	CF ₃	92	472	473
B-1141	F—		100	472	473
B-1142	F—	ō	88	420	421
B-1143	F—		90	400	401
B-1144	F—	C C	87	454	455
B-1145	F—		93	404	405
B-1146	F—	F	90	422	423

Example	e# R²	R ³	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1147	F—	CI	100	454	455
B-1148	F—{}	F	87	422	423
B-1149	F—	F	87	440	441
B-1150	F—	F	90	404	405
B-1151	F—	F O	82	422	423
B-1152	F—	F F	85	422	423
B-1153	F—	Co	90	420	421
B-1154	F—	B r	78	464	465
B-1155	F—	CF ₃	79	454	455
B-1156	F—	₹ S	95	392	393

Example#	R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1157	F—	×,0	81	405	406

Example#	R²	₽	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1158	F—		54	396	397
B-1159	F—————————————————————————————————————		42	526	527
B-1160	F—	irr i	27	366	367
B-1161	F—	المرابع المراب	58	418	419
B-1162	F—		62	380	381
B-1163	F—		58	424	425
B-1164	F—	7 ²	67	338	339

Example#	R²	₽	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1165	F—		66	378	379
B-1166	F—		65	364	365
B-1167	F—		64	478	479
B-1168	F—		76	52 6	527
B-1169	F—		70	391	392
B-1170	F—		76	410	411
B-1171 ·	F—		82	3 68	369
B-1172	F—		73	430	431
B-1173	F—	GF 3	74	46 8	469
B-1174	F—		83	454	455

Example	≠ R²	Ħ ¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1175	F—	222	76	378	379
B-1176	F—		96	474	475
B-1177	F—		94	444	445
B-1178	F-\		90	444	445
B-1179	F—		. 57	414	415
B-1180	F—		75	400	401
B-1181	F—		66	392	393
B-1182	F—		74	401	402
B-1183	F—		62	401	402
B-1184	F—		51	401	402

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1185	F—		90	430	431
B-1186	F—		86	444	445
B-1187	F—	3 200	74	3 96	397
B-1188	F—		76	597	598
B-1189	F—		60	452	453

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1190			44	454	455
B-1191	F-		47	436	437
B-1192	F-	»—————————————————————————————————————	50	402	403
B-1193	F—		62	462	463
B-1194	F—		49	450	451
B-1195	F—		61	472	473
B-1196	F—	S—CF,	52	428	429

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1197	F-		54	454	455
B-1198	F—		44	402	403
B-1199	F-		67	416	417
B-1200	F—	0======================================	45	388	389
B-1201	F-	ο==α==0	52	374	375
B-1202	F—		100	466	467
B-1203	F-		91	442	443
B-1204	F—	0==0	100	450	451
B-1205	F—		83	496	497
B-1206	F-		97	381	382

Example	≠ R²	RJ	%Yleid	Calcd. Mass Spe	Observed Mass Spec (M+H)
B-1207	F-{}	NH 2	100	339	340
B-1208	F—		90	429	430
B-1209	F-		69	393	394
B-1210	F—_}		35	409	410
B-1211	F—		100	433	434
B-1212	F—	Ž	83	367	368
B-1213	F—	HZ	78	353	354
B-1214	F—		68	429	430
B-1215	F—		65	433	434
B-1216	F—		91	443	444

. . .

Example#	R ²	ВJ	%Yield	Calcd.	Observed Mass Spec (M+H)
B-1217	F—		99	379	380
B-1218	F—__\\\		92	381	382
B-1219	F-______\		74	443	444
B-1220	F—		67	415	416
B-1221	F—		14	443	444
B-1222	F—		19	443	444
B-1223	F—		71	433	434
B-1224	F—		100	445	446
B-1225	F—		75	395	396
B-1226	F-_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		58	367	368

Example#	R²	R³	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1227	F-		98	475	476
B-1228	F—		71	420	421
B-1229	F—		85	380	381
B-1230	F—	***	10	382	•
B-1231	F—	***	66	368	369
B-1232	F—		100	393	394
B-1233 ·	F—		96	393	394
B-1234	F—		66	382	3 83

Example#	R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1235	F—		50	514	515
B-1236	F—	0-4-0 TH	100	493	494
B-1237	F—	S S S S S S S S S S S S S S S S S S S	91	514	515
B-1238	F—	0 S S S S S S S S S S S S S S S S S S S	100	470	471
B-1239	F-(0=0=0	71	510	511
B-1240	F—	0=0=0	27	510	511
B-1241	F—	HO CI	73	520	

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed
B-1242	F—	S O O O O O O O O O O O O O O O O O O O	26	480	481
B-1243	F—		100	504	
B-1244	F—_________________\		52	478	479
B-1245	F—		100	486	487
B-1246	F-		56	486	487
B-1247	F—		43	495	496
B-1248	F—S		61	487	488
B-1249	F—		32	529	530
B-1250	F—————————————————————————————————————		56	504	505
B-1251	F-		58	478	479

Example#	R²	R³	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1252	F-		98	484	485
B-1253	F—		59	504	5 05
B-1254	F—		100	488	489
B-1255	F—		96	461	·
B-1256	F—		79	468	469
B-1257	F—		63	510	511
B-1258	F—		100	504	505
B-1259	F—		95	514	515
B-1260	F—		92	514	515
B-1261	F-		98	508	509

Example#	R²	R¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1262	F—		97	496	497
B-1263	F—		100	504	5 05
B-1264	F—	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100	504	505

Example#	R²	R ^J .	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1265	F—		100	464	465
B-1266	F—		79	466	451
B-1267	F—		100	470 ·	471
B-1268	F—		87	470	471
B-1269	F—	Z Z	100	504	505
B-1270	F—		100	504	505
B-1271	F—	CI C	56	488	489

Example#	R ²	ь	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1272	F—		98	484	485
B-1273	F—		90	464	465
B-1274	F—		87	450	451
B-1275	F—		94	480	481
B-1276	F—		100	504	505
B-1277	F—		60	496	511
B-1278	F—————————————————————————————————————		68	476	477
B-1279	F—————————————————————————————————————	8	100	544	545
B-1280	F—		68	486	-
B-1281	F—		98	455	456

Example#	R ²	ВĄ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1282	F—		100	478	479
B-1283	F—		58	500	501
B-1284	F—Ş	2,3	58	461	462
B-1285	F—	#Q.;	65	575	576
B-1286	F—		87	512	513
B-1287	F—		79	562	563
B-1288	F—		100	519	520
B-1289	F—		77	582	583
B-1290	F		100	509	510
B-1291	F—		91	440	441

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1292	F—		35	403	404
B-1293	F—		73	582	583
B-1294	F—		. 49	514	5 15
B-1295	F—		48	487	-
B-1296	F—		.76	528	529

Ÿ

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1297	F—		62	4 47	448
B-1298	F-		6 6	452	453
B-1299	F—		65	479	431
B-1300	F—		71	444	445
B-1301			100	472	473
B-1302	F—		75	410	411
B-1303	F—		74	424	425

Example	# R ²	Вì	%Yield	Laicd Mass Sp	Observed Mass Spe (M+H)	
B-1304	F—		11	430	431	
B-1305	F—		2	424	-	
B-1306	F—		30	433	434	
B-1307	F-	\$\footing	100	522	523	
B-1308	F—		100	508	509	
B-1309	F—		100	448	449	
B-1310	F—	NH NH	26	430	431	
B-1311	F—	24	45	397	398	
B-1312	F—	NH S	14	507	508	
B-1313	F—		67	450	451	

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1314	F-		69	. 444	445
B-1315	F—		57	450	451
B-1316	F—		75	393	394
B-1317	F—	Ma	100	461	462
B-1318	F—		31	450	451
B-1319	F—		23	464	465
B-1320	F—		59	512	513

Example#	R²	₽ì	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1321	F—	2,000	63	414	415
B-1322	F—		45	434	435
B-1323	F—		53	414	415
B-1324	F—	CF ₃	32	468	469
B-1325	F—		45	456	457
B-1326	F-		50	526	527
B-1327	F—	Co C	55	468	469

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1328	F—	S CN	29	425	426
B-1329	F—		67	450	451
B-1330	F—	F	59	436	437
B-1331	F—	P F	45	436	437
B-1332	F—		81	4 54	455
B-1333		a week	23	468	469
B-1334	F—		53	442	443
B-1335	F—	CF 3	81	486	487
B-1336	F-	F	69	454	455
B-1337	F—	CF ₃	67	486	487

Example#	R²	Н	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1338	F—	CF 3	39	486	487
B-1339	F	CF ₃	61	486	487
B-1340	F—	\$ 5 t	49	486	487
B-1341	F—	CF,	5 5	486	487
B-1342	F—	cr.	51	486	487
B-1343	F—	o o	72	434	435
B-1344	F—		52	414	415
B-1345	F—	CI	43	468	469
B-1346	F—	₹	40	418	419
B-1347	F—	F	67	436	437

Example#	R²	Кì	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1348	F-	CI	39	468	469
B-1349	F—	F F	68	436	437
B-1350	F—	F F	73	454	455
B-1351	F—		54	418	419
B-1352	F—________	F O	77	436	437
B-1353	F-\	F F	66	436	437
B-1354	F—	C C C C C C C C C C C C C C C C C C C	58	434	435
B-1355	F—{}	Br	77	478	479
B-1356	F-\\\\\\	CF ₃	50	468	469
B-1357	F-{}	S	36	406	407

Ī	
	2
H,	
٠	2
f	
5 :	
į.	
II,	
[
÷===	i
===	

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1358	F—	N O	39	419	420

Example	# R²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1359	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	34	95	552	553
B-1360	F—{}	2, L	77	444	445
B-1361	F-	3,4	100	392	393
B-1362	F—		85	406	407
B-1363	F—	2,4	100	364	365
B-1364	F—	2,4	99	390	391
B-1365	F—	ζ- BR	92	504	505

Example#	R²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1366	F—	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100	552	553
B-1367	F-	2, O	100	417	418
B-1368	F—	127	86	394	395
B-1369	F—		100	456	457
B-1370	F—		100	470	471
B-1371	F—		77	440	441
B-1372	F—	F1	100	444	445
B-1373	F—		42	427	428
B-1374	F—	750	60	476	477
B-1375	F—	750	94	414	415

Example#	R²	₽ŗ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1376	F—	- 5 % O	87	400	401
B-1377	F—		100	480	481
B-1378	F—————————————————————————————————————	7 > =	95	379	380
B-1379	F—		93	459	460
B-1380	F—		8 9	469	470
B-1381	F—	HN	84	393	394
B-1382	F—		85	501	502

Example#	R²	R ^L .	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1383	F—	~	46	416	417
B-1384	F—	s s	56	432	433
B-1385	F—	~	59	426	427
B-1386	F—	2	50	427	428
B-1387	F—	7	12	427	428
B-1388	F—	Br	66	504 ·	505
B-1389	F—\	2 0 c	48	460	461

Example	R ²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1390	F—		44	494	495
B-1391	F—		50	456	457
B-1392	F-		47	451	452
B-1393	F—	~	44	444	445
B-1394	F—	ر د د	52	460	461
B-1395	F—	~	77	440	441
B-1396	F—	Ž,	58	451	452
B-1397	F-		64	460 .	461
B-1398	F—	Br Br	65	504	505
B-1399	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	F ₃ C	50	494	495

Example#	R²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1400	F—	H ₃ C	74	440	441
B-1401	F—		76	462	463
B-1402	F—(65	462	463
B-1403	F—		64	445	446
B-1404	F—	F ₃ C	70 .	512	513
B-1405	F—	CF.	57	512	513
B-1406	F—	CF ₃	73	512	513
B-1407	F—	F,C F,C	80	512	513
B-1408	F—	F ₃ C F	2	512	513
B-1409	F—	F ₃ C 0	. 62	512	513

Example	e# R²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1410	F—	CF3	42	512	513
B-1411	F—		19	462	463
B-1412	F—	~ T	74	462	463
B-1413	F-	200	75	494	495
B-1414	F—		68	462	463
B-1415	F—		48	462	463
B-1416	F—	3	48	494	495
B-1417	F—	ر ما کام	57	494	495
B-1418	F-	CI	49	494	495
B-1419	F-\	Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-C	39	494	495

Example#	R ²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1420	F—	00	72	378	379
B-1421	F—	~~~~	74	406	407
B-1422	F—	~~	- 68	394	395
B-1423	F—	~~~	57	408	409
B-1424	F-	~~~\ ~~\	77	422	42 3
B-1425	F—	~~~_	26	408	409
B-1426	F—	4 ° ° °	41	406	407
B-1427	F——}	~~~	37	404	405
B-1428	F-	7°0	60	456	457
B-1429	F—	CF ₃	2	418	419

Example#	R²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1430	F—		61	442	443
B-1431	F—	0=0=0	64	428	429
B-1432	F—		71	429 ·	430
B-1433	F—		74	462	463
B-1434	F—		88	466	467
B-1435	F—__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	75	481	482
B-1436	F—	> = 0 = 0 = 0	71	504	505

Example#	R²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1437	F—	S S S S S S S S S S S S S S S S S S S	63	468	469
B-1438	F—		78	502	503
B-1439	F-		70	54 5	546
B-1440	F—		62	535	536
B-1441	F—		82	608	
B-1442	F—		79	555	556
B-1443	F—	0===0	28	513	514
B-1444	F—		75	522	523
B-1445	F—	0=0=0	74	526	527
B-1446	F—	0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	70	570	571

Example#	R²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1447	F—	\$_\$\text{\$\sigma}\$	73	506	507
B-1448	F—	0 = S = C	76	530	531
B-1449	F—	α 0=ω=0	82	530	531
B-1450	F—	0=0=0	83	530	531
B-1451	F—	0=0=0	74	530	531
B-1452	F—	0=%=0	76	530	531
B-1453	F-	∑—S=0	73	530	531
B-1454	F—	0 F 2 S F	81	498	499
B-1455	F—	0=0=0 F	83	498	499
B-1456	F-\	0 F S S F	78	498	499

B-1457 F	Example#	P² R²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1458 F	B-1457		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	74	496	497
B-1460 F	B-1458	F—		82	540	541
B-1460 F	B-1459	F—	[{ s⟨	80		477
B-1461 F	B-1460	F—	\\ _\ \	78		531
B-1463 F	B-1461	F—	>	82	487	488
B-1463 F	B-1462		0==0	71	540	541
B-1464 F	B-1463	F-	₹ 5 0 C	78	546	547
B-1466 F— 80 540 541	B-1464	F-		83	480	481
B-1466 F— 80 540 541	B-1465	F—	0=0=0	84	496	497
	B-1466	F—	O Br	80	540	541

Example	# R ²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1467	F—		79	476	477
B-1468	F—	S CF3	79	530	531
B-1469	F—__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	S CN	75	487	488
B-1470	F-__\	Z_5=0	80	480	481
B-1471	F—	0	74	496	497
B-1472	F—	O Br	75	540	541
B-1473	F-	0=0=0	77	476	477
B-1474	F—	O=00=O	81	530	. 531
B-1475	F—	Z S	70	487	488
B-1476	F——		54	540	541

Example#	R²	Я ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1477	F—_________________\	2 - S - CF 1	79	546	547

Example	R ²	₽ ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1478			87	394	395
B-1479		B.	41	504	505
B-1480			87	451	452
B-1481			18	416	417
B-1482			77	427	428
B-1483			74	406	407
B-1484			82	422	423

Example	# R²	R ^L	%Yield	Calcd. Mass Spe	Observe Mass Spe (M+H)	
B-1485			85	460	461	
B-1486			64	406	407	
B-1487			71	392	393	1
B-1488			82	427	428	T
B-1489			87	. 444	445	
B-1490			81	462	463	
B-1491			87	462	463	
B-1492			69	364	365	
B-1493			53	417	418	
B-1494			17	426	427	

*****	: 42	
	:22	
41111	===	
	1	
3144	-	
÷	=	1
	1	
	=	
i	÷	
2110110	1	4
711117	=	1
4	-	-
44116		-
	_	

Example#	R²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1495			79	460	461
B-1496			80	444	445
B-1497		a o	82	460	461
B-1498		***	72	378	379
B-1499		s o	70	432	433
B-1500			68	390	391
B-1501			63	394	395
B-1502			78	408	409
B-1503			55	404	405
B-1504		CF 3	39	418	419

Example	ŧ R²	R ^L	%Yleid	Calcd. Mass Spe	Observed Mass Spe (M+H)	
B-1505			69	540	541	
B-1506			69	462	463	
B-1507			70	496	497	
B-1508			65	480	481	
B-1509			56	414	415	
B-1510		\$s	62	400	401	
B-1511			30	468	469	
B-1512			50	476	477	
B-1513			44	540	541	
B-1514		a constant	42	530	531	

Example#	R ²	R ^L	%Yleld	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1515			68	496	497
B-1516			27	429	430
B-1517			92	466	467
B-1518		II O	33	379	380
B-1519			50	393	394
B-1520			82	435	436
B-1521			86	509	510
B-1522			12	405	406
B-1523			59	459	460
B-1524		70	81	459	460

PAGE INTENTIONALLY LEFT BLANK

Example#	R²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1525			57	419	420

Example#	R²	R ^L .	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1526		***	73	410	411
B-1527	CI.		66	520	521
B-1528			91	467	468
B-1529		1	73	432	433
B-1530			91	443	444
B-1531			74	422 ⁻	423
B-1532			68	438	439

Example#	R ²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1533			84	476	477
B-1534			72	422	423
B-1535			78	408	409
B-1536			77	443	444
B-1537			86	460	461
B-1538			74	478	479
B-1539			85	478	479
B-1540			71	380	381
B-1541			71	433	434
B-1542			89	442	443

Example#	R ²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1543			, 82	476	477
B-1544			76	460	461
B-1545			77	476	477
B-1546 _.			76	394	395
B-1547			58	448	449
B-1548			83	406	407
B-1549			67	410	411
B-1550			37	424	425
B-1551			55	420	421
B-1552		CF,	23	434	435

Example#	R²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1553			83	556	557
B-1554			84	478	479
B-1555			93	512	513
B-1556			83	496	497
B-1557		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	62	430	431
B-1558			45	416	417
B-1559			67	484	485
B-1560	i ci	0===0	16	492	493
B-1561			84	556	557
B-1562			74	546	547

Example#	R².	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1563			72	512	513
B-1564		©	57	445	446
B-1565			64	482	483
B-1566		li i	71	395	396
B-1567		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	54	409	410
B-1568			76	451	452
B-1569		\$ C5	70	52 5	526
B-1570	W		79	421	422
B-1571			60	475	476
B-1572			77	475	476

Example#	R ²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1573			65	435	436

Proton NMR data for selected members from Examples B-0001 through B-1573 are shown in the following table.

Plate ID	1H NMR(solvent), d ppm
	(DMF-d7) d 8.53(bd, J = 4.99Hz, 2H), 7.44-7.24(m, 11H), 4.41(s, 2H), 4.31(l)
B-0120	[2A)
_	(DMF-d7) d 8.56(bd, $J = 4.98Hz$, 2H), 7.78-7.69(m, 4H), 7.39-7.19(m, 6H),
B-0224	[4.20(b), 2h)
_	(DMF-d7) d 8.47(br, 2H), 7.91-7.75(m, 3H), 7.57-7.53(m, 1H), 7.38-7.34(m, 2H), 7.31-7.13(m, 4H), 4.00(h, 2H)
B-0235	12: 17: 7:21-7:13(11), 4:20(br, 2H)
	(CDCl3/CD3OD) d 8.38(d, J = 5.38 Hz, 1H), 7.62-7.32(m, 9H), 7.04-6.95(m, 4H), 6.86-6.80(m, 2H), 4.50(m, 4H), 6.86-6.80(m, 4H),
B-0244	(11, 7, 0.00, 0.00, 0.00, 0.00, 4.02(0.0) = 6.96 Hz 1H) 1 40/d 1 = 6.90 Hz 21.5
	(DMF-d7) d 8.45(bd, J = 2.85, 2H), 7.87(br s, 4H), 7.76-7.75(m, 2H), 7.53-
B-0256	
	(DMF-d7), 1.32(br, 3H), 1.67(br, 3H), 4.17(br, 2H), 5.12(br, 1H), 7.50(cr, 3H)
B-0426	
	(DMSO), $1.14(t, J = 6.9 \text{ Hz}, 3H), 4.54(m, 1H), 6.99(br, 2H), 7.21(br, 4H)$
B-0438	17.43(3, 11), $7.57(4, 3 = 6.7 Hz, 2H)$, $8.52(4, 3 = 5.2 Hz, 2H)$
	(DMF-07), 1.01(Drd, $J = 30.6$ Hz. 3H), 4.61 (br. 1H), 7.25(m, 6H), 7.65(m, 0H)
B-0466	$\frac{10.00(\text{D1, 211})}{10.00}$, $\frac{10.004(\text{D10, J} = 34.8 \text{ Hz. 1H})}{10.000}$.
	(CD3OD), 1.53(d, J = 7.2 Hz, 3H), 4.59(g, J = 7.2 Hz, 1H), 6.89(d, J, 4.15)
	1H), 7.09(m, 3H), 7.15(dd, $J = 4.4$, 1.6 Hz, 2H), 7.26(m, 2H), 8.46(d, $J = 6.0$
B-0473	1112, 211).
	(DMF), 1.80(br, 3H), 2.35(s, 1H), 4.98(br, 1H), 7.38(m, 6H), 7.85(m, 2H),
B-0477	10.45(01, 1H), $0.75(0, J = 6.0 Hz, 2H)$.
	(Methanol-d4), 1.57(d, $J = 5.6$ Hz. 3H), 4.74(br. 1H), 7.23(m, 4H), 7.60(m, 3H)
B-0479	17.01(III, 411), 6.67(Dr. 2H).
	(DMF), 1.78(s, 3H), 2.76(br, 6H), 4.85(br, 1H), 7.42(br, 2H), 7.54(br, 2H),
3-0487	17.00(01, 3H), 0.02(S. 2H).
	(CD3OD), 1.38(d, J = 7.2 Hz, 3H), 4.15(br, 2H), 4.50(br, 1H), 7.04(br, 2H), 7.18(br, 2H), 7.30(m, 7H), 2.45(m, 2H), 4.15(br, 2H), 4.50(br, 1H), 7.04(br, 2H),
3-0566	17:10(b), 211), 7:30(11), 7H), 8:45(M, 2H)
	(CD3OD), 1.56(br, 3H), 4.66(q, J = 6.7 Hz, 1H), 7.17(m, 8H), 7.56(m, 3H)
3-0569	10.47(S, ZH).
0004	(Methanol-d4), 1.49(br, 3H), 3.86(br, 3H), 4.60(br, 1H), 6.92(br, 2H), 7.19(br, 2H), 7.31(br, 2H), 7.75(br, 4H), 6.92(br, 2H), 6
3-0574	1211, 7.51 (bt, 2H), 7.76(m, 4H), 8.60(br, 2H)
2.0000	(DMF-d7), 1.58(brd, J = 30.0 Hz, 3H), 4.62(br, 1H), 7.25(m, 6H), 7.60(m, 4H), 8.59(br, 3H), 13.20(brd, 1.40.0 Hz, 3H), 4.62(br, 1H), 7.25(m, 6H), 7.60(m, 4H),
3-0639	10.33(D1, 2H), $13.30(Drd, J = 12.3 Hz)$
0040	7.18(m, 2H), 7.32(dd, J = 6.0, 4.4 Hz, 1H), 7.70(dd, J = 9.0, 5.8Hz, 1H),
3-0643	[6.43](40, J = 4.8, 3.2 Hz, 2H).
8-0650	(CD3OD), 1.58(br, 3H), 4.62(q, $J = 6.6$ Hz, 1H), 6.93(br, 1H), 7.17(m, 5H),
-0030	7.51(br, 2n), 8.51(br, 2H).
	(CDCI3/CD3OD) d 8.48 (d, J = 5.30 Hz, 2H), 7.72-7.59(m, 4H), 7.14-7.10(m, 2H), 7.03.6.97(m, 4H), 4.00(m, 4H),
-0656	1617, 7.00-0.37(10, 40), 4.00(0, 1 = 7.57Hz 14), 1.42/d 1 = 7.06U= 0.15
0000	(00300), $1.32(0, J = 6.8 Hz, 3H), 3.75(s, 3H), 7.21(m, 2H), 7.42(m, 2H)$
-0663	(1.57(5, 117), 7.76(5, 117), 7.98(pr. 2H), 8.76(br. 2H)
-11CF	[Hz, 2H), 3.06(m, 1H), 3.43(q, J = 6.1 Hz, 2H), 7.02(m, 2H), 7.14(m, 2H)
-1165	(1.5 (111, 40), 0.39(0, J = 5.6 Hz 2H)
-1169	= 1.6 Hz, 1H), 7.04(t, J = 8.6 Hz, 2H), 7.14(m, 2H), 7.36(m, 2H), 8.39(d, J = 1.
-1109	<u>[12, 111), 0.00(111, 211).</u>
-1171	6.83(br, 1H), 7.02(t, J = 8.7 Hz, 2H), 7.15(d, J = 5.6 Hz, 2H), 7.40(m, 2H),
-11/1	8.59(d, J = 5.0 Hz, 2H).

Plate ID	1H NMR(solvent), d ppm
	(CDCl3), 1.94(br, 2H), 2.53(s, 3H), 2.85(t, J = 6.2 Hz, 2H), 3.65(br, 2H),
B-1179	6.15(br, 1H), 7.04(m, 3H), 7.22(m, 3H), 7.41(br, 4H), 8.60(br, 2H).
	(CDCl3), 2.00(br, 2H), 2.85(br, 2H), 3.64(br, 2H), 7.03(br, 3H), 7.17(br, 2H),
B-1183	7.36(br, 2H), 7.66(br, 2H), 8.60(br, 2H), 8.77(br, 2H).
B-1194	(DMSO), 1.76(br, 2H), 2.66(br, 2H), 2.91(br, 2H), 4.30(s, 2H), 7.18(br, 5H), 7.35(m, 6H), 8.54(d, J = 5.8 Hz, 2H).
B-1200	(DMSO), 1.17(br, 3H), 1.76(br, 2H), 2.71(br, 2H), 2.97(br, 4H), 7.18(br, 4H), 7.36(br, 2H), 8.54(br, 2H).
B-1206	(DMSO), 1.03(s, 6H), 1.68(br, 2H), 2.63(br, 2H), 3.00(br, 2H), 3.65(br, 1H), 5.69(m, 2H), 7.16(br, 4H), 7.35(br, 2H), 8.54(br, 2H).
B-1216	(DMSO), 1.75(m, 2H), 2.14(s, 6H), 2.66(br, 2H), 3.10(br, 2H), 7.04(br, 3H), 7.18(br, 4H), 7.35(m, 2H), 7.47(br, 1H), 8.54(d, J = 4.8 Hz, 2H).
B-1226	(DMF), 1.25(br, 3H), 2.01(br, 2H), 3.35(br, 4H), 6.20(s, 1H), 6.30(s, 1H), 7.42(br, 4H), 7.65(br, 2H), 8.77(s, 2H).
B-1360	(DMSO-d6), 1.80(br, 4H), 2.82(br, 1H), 2.94(br, 1H), 3.10(br, 1H), 3.60(br, 1H), 4.54(br, 1H), 7.18(m, 4H), 7.30(m, 4H), 7.46(m, 2H), 8.54(br, 2H).
B-1361	(DMSO-d6), 0.99(br, 6H), 1.73(br, 4H), 2.89(br, 2H), 3.03(m, 1H), 4.04(br, 2H), 4.44(m, 1H), 7.18(m, 4H), 7.30(m, 2H), 8.57(d, J = 4.64 Hz, 2H).
B-1363	(DMSO-d6), 1.78(br, 4H), 2.01(s, 3H), 2.89(br, 1H), 3.05(br, 1H), 3.34(br, 1H), 3.85(br, 1H), 4.48(br, 1H), 7.12(br, 2H), 7.21(br, 2H), 7.30(br, 2H), 8.69(br, 2H).
B-1364	(CDCl3), 0.78(dd, J = 3.0, 2.9 Hz, 2H), 1.00(s, 2H), 1.78(m, 1H), 1.86(b, 4H), 2.64(m, 1H), 2.99(m, 1H), 3.16(m, 1H), 4.33(br, 1H), 4.70(br, 1H), 6.99(m, 2H), 7.14(s, 2H), 7.29(m, 2H), 8.64(s, 2H).
B-1368	(CDCl3), 1.89(s, 4H), 2.65(m, 1H), 2.96(m, 1H), 3.06(m, 1H), 3.43(s, 3H), 3.93(d, J = 13.2 Hz, 1H), 4.09(d, J = 13.5 Hz, 1H), 4.18(d, J = 13.5 Hz, 1H), 4.68(d, J = 12.4 Hz, 1H), 7.60(m, 2H), 7.12(s, 2H), 7.26(m, 2H), 8.63(s, 2H).

By analogy to the procedure identified above for the preparation of Examples B0001-B0048, the following examples B-1574 through B-2269 are prepared.

Examples B-1574 through B-1597 are prepared from Scaffold C-27

Example	2# R ²	R ^L		
B-1574		3.0	·	
B-1575		ا ا		
B-1576		3,4		
B-1577	Br			
B-1578	Br	2,4		
B-1579	Br	3,4		
B-1580	Br	S BB		

B-1581	Br	3,1			
B-1582	Br	07			
B-1583	Br	3-10			
B-1584	Br	2,00			
B-1585	Br				
B-1586	Br				
B-1587	Br				
B-1588	Br				
B-1589	Br	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
B-1590	Br	7,5%			
B-1591	Br	7.00			
			L		

B-1592	Br	5 % O		
B-1593	Br	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
B-1594	Br	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
B-1595	Br		·	
B-1596	Br	HN		
B-1597	Br A	**************************************		

Examples B-1598 through B-1621 are prepared from Scaffold C-28

Example# R² R^L

B-1598	H ₃ C	3/		·
B-1599	H ₃ C	Z.L.		
B-1600	H ₃ C	3,4		
B-1601	H ₃ C			
B-1602	H ₃ C	2,4		
B-1603	H ₃ C	2.H		
B-1604	H ₃ C) Z		

R² Example# $\mathbf{R}^{\mathbf{L}}$ H₃C B-1605 H₃C B-1606 H₃C B-1607 H₃C B-1608 H₃C B-1609 H₃C B-1610 H₃C B-1611 H₃C B-1612 H₃C B-1613 H₃C B-1614

Example# R² \mathbf{R}^{L} B-1615 H₃C B-1616 H₃C B-1617 ΝН H₃C B-1618 H₃C B-1619 H₃C B-1620 HN-H₃C B-1621

Examples B-1622 through B-1645 are prepared from Scaffold C-38

Example# R² R^L B-1622 B-1623 B-1624 B-1625 B-1626 B-1627 B-1628

B-1629	F—	الم			
B-1630	F—	0 N			
B-1631	F-	3,40			
B-1632	F—				
B-1633	F—		·		·
B-1634	F—				
B-1635	F—	- 70		·	
B-1636	F—	700			
B-1637	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
B-1638	F—	20%)			

Example#	, R ²	R ^L		
			· · · · · · · · · · · · · · · · · · ·	· · ·
B-1639	F—(750		
B-1640	F—————————————————————————————————————	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	·	
B-1641	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
B-1642	F—			
B-1643	F—————————————————————————————————————			
B-1644	F—	T NO		
B-1645	F—			

Examples B-1646 through B-1669 are prepared from Scaffold C-39

Example# R² R^L

B-1646	F—		•	
B-1647	F—			
B-1648	F—			
B-1649	F—			
B-1650	F—	2,4		
B-1651	F—			
B-1652	F—	Z. III		

Campie	, n	В			
B-1653	F—	3-1			
B-1654	F—	27.			
B-1655	F—	3,40	•	·	
B-1656	F—				
B-1657	F—				,
B-1658	F—				
B-1659	F—	F			
B-1660	F—	240			
B-1661	F—				
B-1662	F—	7,50			

Example#	R ²	R ^L	•	
B-1663	F—	7.8% 0.00		
B-1664	F—	1 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %		·
B-1665	F—	7 7 7		
B-1666	F—			·
B-1667	F—			
B-1668	F—	HN		
B-1669	F—	N N N N N N N N N N N N N N N N N N N		

Examples B-1670 through B-1693 are prepared from Scaffold C-65

Example# R² R^L

B-1670	F-	3	·	
B-1671	F—	المراجعة الم		
B-1672	F—	3,4		
B-1673	F—			
B-1674	F—	2,4		
B-1675	F—	27,		
B-1676	F—	O BR		

· R²

RL

		n 		
B-1677	F—	3,2		
B-1678	F—	0-2		
B-1679	F—	2,4	·	
B-1680	F—		·	
B-1681	F—			
B-1682	F—	770		
B-1683 ·	F—	4		
B-1684	F—	2		
B-1685	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
B-1686	F—	7.0%		

Example#	R²	R ^L			
B-1687	F-___\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
B-1688	F—	7, 80 F	·		
B-1689	F—	Z NH			·
B-1690	F—				
B-1691	F—		·		·
B-1692	F—	HN			
B-1693	F—			·	

Examples B-1694 through B-1717 are prepared from Scaffold C-66

Example# R²

 R^L

B-1694 F

B-1695 F

B-1696 F

B-1697 F

B-1698 F

B-1699 F

B-1700 F

B-1700 F

B-1694 F

B-1694 F

B-1695 F

B-1696 F

B-1697 F

B-1700 F

B-1700 F

B-1698 F

B-1700 F

B-170

	·	_		
B-1701	F—	7, 1		
B-1702	F—	0 7		
B-1703	F-	3,40	•	
B-1704	F—	2,1		
B-1705	F—		·	
B-1706	F—		-	
B-1707	F-\\\\	E. T.		
B-1708	F-	N Tro		
B-1709	F—			
B-1710	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		

B-1717

Examples B-1718 through B-1741 are prepared from Scaffold C-69

Example# R² R^L

			•	•
B-1718	F—	3/		·
B-1719	F—{}	2, L		
B-1720	F—	3,4		
B-1721	F—————————————————————————————————————			
B-1722	F—	2,4		
B-1723	F—————————————————————————————————————	2.4 D		
B-1724	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ş. ☐ BR		

R²

 $\mathbf{R}^{\mathbf{L}}$

B-1725	F-			·	
B-1726	F—	0-2			·
B-1727	F—	27			
B-1728	F—				
B-1729	F—		·		
B-1730	F—				
B-1731	F—	F 77 0			
B-1732	F—	7			
B-1733	F—	1,000			
B-1734	F—	7 % 0 7 % 0 7 % 0			·

 \mathbb{R}^2

 \mathbf{R}^{L}

B-1735	F—	2 % O	·	
B-1736	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
B-1737	F—	~ ± \		
B-1738	F—	٩		
B-1739	F—			
B-1740	F—	HN		
B-1741	F—	H A		

Examples B-1742 through B-1765 are prepared from Scaffold C-70

R²

RL

		•		
B-1742	F—	3/		
B-1743	F-	3, L		
B-1744	F—	3,4		
B-1745	F—			
B-1746	F—	2,4		
B-1747	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		·
B-1748	F—	O BR		

R²

 $\mathbf{R}^{\mathbf{L}}$

B-1749	F—	3,1		
B-1750	F—	27		
B-1751	F—	22		
B-1752	F—			
B-1753	F—			·
B-1754	F—			
B-1755	F—	4	·	
B-1756	F—	200		
B-1757	F—	7,000		
B-1758	F—	75%		

Example#	R ²	R ^L		
B-1759		10 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \		·
B-1760				
B-1761	F—	Y O NH	,	
B-1762	F—			
B-1763	F—			
B-1764	F—	HN		
B-1765	F—	F 7		

Examples B-1766 through B-1789 are prepared from Scaffold C-71

Example# R²

RL

R²

 \mathbf{R}^{L}

B-1773	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
B-1774	F—	27.		
B-1775	F—	3,40	,	·
B-1776	F—	3,1		
B-1777	F-			
B-1778	F—			
B-1779	F—	F		
B-1780	F—			
B-1781	F—			
B-1782	F—	7,5%		

Example#	R²	R ^L		
B-1783	F—	45%		
B-1784	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		·
B-1785	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
B-1786	F—————————————————————————————————————			·
B-1787	F—		·	·
B-1788	F—	HN		
B-1789	F—	HN Z		·

R²

Example#

B-1794

B-1795

B-1796

Examples B-1790 through B-1813 are prepared from Scaffold C-72

 R^L

B-1790	F—		·	
B-1791	F—	0 22,		
B-1792	F—	22		
B-1793	 F			

Example	R ²	R ^L		
B-1797	F—{}	3,4		
B-1798	F—	0-2		
B-1799	F—	3,-10		
B-1800	F—	7.1	·	
B-1801	F—			
B-1802	F—			
B-1803	F—	و کړی		
B-1804	F—			
B-1805	F—	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
B-1806	F—	7,8%		

Example#	R²	R ^L		
B-1807	F—	10% O		
B-1808	F—	₹°%,0		
B-1809	F—	2 ± \		
B-1810	F—		·	
B-1811	F—————————————————————————————————————		·	·
B-1812	F—	HN		
B-1813	F—			

Examples B-1814 through B-1837 are prepared from Scaffold C-73

Example# R² R^L

B-1814	F—	3/		
B-1815	F—	° ZZ		
B-1816	F—	3,4		
B-1817	F—			
B-1818	F—	24		
B-1819	F—			
B-1820	F-	O BR		

[=à
T.
įb
1
IJ
F:
i
11
*=_
*.,
1-5

Example#	R ²	R ^L		
B-1821	F—	ZÎ D		
B-1822	F—————————————————————————————————————	077		
B-1823	F—	3,40		
B-1824	F—	3, II 0 -		·
B-1825	F—			
B-1826	F—	7		
B-1827	F—	# 7°		
B-1828	F	2		
B-1829	F-__\\\			
B-1830	F—	7,80		

Example#	R²	R ^L		
B-1831	F—	10 % NO		
B-1832	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
B-1833	F—	- 0 = 1	•	·
B-1834	F—			
B-1835	F-			
B-1836	F-\(\)	HN	·	
B-1837	F—			

Examples B-1838 through B-1861 are prepared from Scaffold C-33

Example# R²

 R^L

n

B-1838	F—			·	je
B-1839	F—	2, L			
B-1840	F—	24	· .		
B-1841	F—				
B-1842	F—	2,1			
B-1843	F—	27,			
B-1844	F—	O BR			

R²

 $\mathbf{R}^{\mathbf{L}}$

		,		
B-1845	F—	3,2		
B-1846	F—	0-N		
B-1847	F—	3-4		
B-1848	F—			
B-1849	F—			
B-1850	F—	7		
B-1851	F—	4		
B-1852	F—	7		
B-1853	F—	1000 N		
B-1854	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		

Examples B-1862 through B-1885 are prepared from Scaffold C-45

Example	R ²	R ^L		
B-1862	F—	3/2	·	
B-1863	F—	Z.L.		
B-1864	F-	34		
B-1865	F-			
B-1866	F—	2,4	·	
B-1867	F——}			
B-1868	F—	O BR		

R²

 \mathbf{R}^{L}

B-1869	F-	ار ا			
B-1870	F—	3,1		·	
B-1871	F-	27-4-0		·	
B-1872	F—				
B-1873	F—		·		
B-1874	F—				
B-1875	F—	E 22°			
B-1876	F—	N Tho	TO.		
B-1877	F—				
B-1878	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			

 R^2

 $\mathbf{R}^{\mathbf{L}}$

B-1879	F—	200		
B-1880	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
B-1881	F—	7 7		
B-1882	F—\$			
B-1883	F—{}			
B-1884	F—	H N		
B-1885	F—	HN Y		

Examples B-1886 through B-1909 prepared from Scaffold C-42

Example#	R ²	R ^L		
B-1886	F-	34	·	
B-1887	F—	2 C		
B-1888	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
B-1889	F—			
B-1890	F—	2,4		
B-1891	F—			
B-1892	F—) BR		

 R^2

 $\mathbf{R}^{\mathbf{L}}$

B-1893	F—	3		
B-1894	F—	2,		
B-1895	F—	3-10		
B-1896	F—			·
B-1897	F—			
B-1898	F—			
B-1899	F—	F		
B-1900	F—	2,0		
B-1901	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
B-1902	F—	7,00		·

R²

 \mathbf{R}^{L}

	•			
B-1903	F—	4.8%		
B-1904	F—	7 % O	·	
B-1905	F—	7 > > > > > > > > > > > > > > > > > > >	·	·
B-1906	F—			
B-1907	F—			
B-1908	F—	HNO		
B-1909	F—	¥ .		

Examples B-1910 through B-1933 are prepared from Scaffold C-44

RL. $\mathbf{R}^{\mathbf{2}}$ Example# B-1910 B-1911 B-1912 B-1913 B-1914 B-1915 B-1916

R²

 R^L

B-1917	F	٦٩			
B-1918	F—	2,			
B-1919	F—	12-11-0		·	
B-1920	F—	22-			·
B-1921	F—		·	·	·
B-1922	F—				·
B-1923	F—	۳ ر و			
B-1924	F—	2,0			
B-1925	F—	7,000			
B-1926	F—	7,8%0			

Example# R² R^L

B-1927	F—	75 NO		
B-1928	F-\(\)			
B-1929	F—	Y NH	·	
B-1930	F—	Y		
B-1931	F—			
B-1932	F-_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	HN		
B-1933	F—	N N N		

Examples B-1934 through B-1957 are prepared from Scaffold C-41

Example# R² • R^L

B-1934	F—	3-1	·	
B-1935		Z, L		
B-1936	F—	3/4		
B-1937	F—			
B-1938	F—	24		·
B-1939	F—	24 D		
B-1940	F—	S BR		

Example# R²

R^L

			_	
B-1941	F—	3. L		
B-1942	F—	, , , , , , , , , , , , , , , , , , ,		
B-1943	F—	ن ا		
B-1944	F—	12,1		
B-1945	F—			
B-1946	F—	7		
B-1947	F—	FY		
B-1948	F—	200		
B-1949	F——	74.0		
B-1950	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		

Example# R²

RL

B-1951	F—————————————————————————————————————	1, s, o		
B-1952	F—			
B-1953	F—	L'A F		
B-1954	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		·
B-1955	F—		ý.	
B-1956	F—	HN O		
B-1957	F-			

Examples B-1958 through B-1981 are prepared from Scaffold C-43

R²

 R^L

B-1958	:F—			
B-1959	F—	2,4 2,4 F		
B-1960	F—			
B-1961	F—			
B-1962	 F	z.L		
B-1963	F—	2, L		
B-1964	F—	O BR		

B-1965	F-\(\)			1
B-1966	F—	2-0		
B-1967	F—	3,-10		·
B-1968	F—			
B-1969	F—		,	
B-1970	F—S			
B-1971	F—{}	F 7		
B-1972	F—	270		
B-1973	F—			
B-1974	F—	7,50		

Example# R² R^L

B-1975	F-(7,810			
B-1976	F—	F 0			
B-1977	F—	Y O NH			
B-1978	F—	Y. J.		0	
B-1979	F—		·		·
B-1980	F—	H N			
B-1981	F—	√√, -{} _ <u>₹</u>		•	

Examples B-1982 through B-2005 are prepared from Scaffold C-30

Example#	R²	RL		
B-1982		34	·	·
B-1983	S S	2.L		
B-1984		34		
B-1985				
B-1986	S→	2,4		
B-1987	S	3,4		
B-1988	S	Q BR		

R²

 R^L

Example				
B-1989		7.7. C		
B-1990		0-2		
B-1991	is S	2	·	
B-1992	$\stackrel{\square}{\Longrightarrow}$	22		
B-1993				
B-1994			,	
B-1995	S →	F-7C°		
B-1996	S→			
B-1997	S S			·
B-1998	S	75%		

Example#	R²	R ^L		
B-1999	s T	7.8%		
B-2000	IS >	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
B-2001	s >	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		·
B-2002				
B-2003				
B-2004		\(\frac{1}{2} \)		
B-2005 ·	S			
		0 - 7-		

	Examples B-2006	through B-2029 a	e prepared	from Scaff	old C-60
Example#	R²	R٦			
B-2006	F-				
B-2007	F-__\\	° F			
B-2008	F-{}	34			
B-2009	F—		-		:
B-2010	F—	2,4			
B-2011	F-	2,1			
B-2012	F-	O BR	·		

Example#	R²	R ³		
B-2013	F—			
B-2014	F-	0-2		
B-2015	F—	0		
B-2016	F—			
B-2017	F—			
B-2018	F—————————————————————————————————————	7,0		
B-2019	F—	4		
B-2020	F—	7		
B-2021	F—	7-850		
B-2022	F—	7,000		

The first factor and the first first factor for the first factor factor for the first factor factor factor for the first factor factor

l=
ΠŲ
إيدا
Œ
#:
1
1

Example#	R²	ВĄ		
B-2023	F—	2000		
B-2024	F—	1 % 0 F		
B-2025	F—	7 7		
B-2026	F—	S. T.		
B-2027	F—			
B-2028	F—	H N N		
B-2029	F-	E Z		

Examples B-2030 through B-2053 are prepared from Scaffold C-36

Example#

 \mathbb{R}^2

RJ

B-2030	F—			
B-2031	F—			
B-2032	F—			
B-2033	F—			
B-2034	F—	24		
B-2035	F—			
B-2036	F—	Z BR		

Example#

R²

R٦

B-2037	F—	3,1		
B-2038	F—	7, 0		
B-2039	F—	الم		
B-2040	F—			
B-2041	F—			
B-2042	F-			
B-2043	F—————————————————————————————————————	F		
B-2044	F—			
B-2045	F—			
B-2046	F—	7,00		·

Example#	R²	R₁		
B-2047	F—	4510		
B-2048	F—	1.00 1.00 1.00 1.00		
B-2049	F—	7 / 7 /		
B-2050	F—			
B-2051	F-			
B-2052	F-	HN		
B-2053	F—	F = 0		

Examples B-2054 through B-2077 are prepared from Scaffold C-34

Example#	R²	R ^J		
B-2054	F—	3-1		
B-2055	F—	o F		
B-2056	F—	3,4		
B-2057	F—		•	
B-2058	F-	2/2		
B-2059	F-	2,1		
B-2060	F-	O BR		

Example#

 R^2

RJ

B-2061	F—	3-1		
B-2062	F—	0 1 N		
B-2063	F-	340		
B-2064	F—	24		
B-2065	F—			
B-2066	F			
B-2067	F—	F7		
B-2068	F—	240		
B-2069	F—			
B-2070	F-	7,00		

Example#	R²	R ^J		
B-2071	F—	750		·
B-2072	F—	5 0 S 0		
B-2073	F—	× NH		
B-2074	F—			
B-2075	F—		·	
B-2076	F—	HN		
B-2077	F—	HN -		

Examples B-2078 through B-2101 are prepared from Scaffold C-57

Example#	R ²	R ^J		
B-2078	H	3. L		
B-2079	н	2, L		
B-2080	н	3,2	·	
B-2081	H			
B-2082	н	3,4		
B-2083	н—	3-11		
B-2084	H\$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		

Example#	R ²	К ₁
B-2085	H	3-1
B-2086	н	2-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
B-2087	H	3,10
B-2088	H	2,1
B-2089	H	
B-2090	H	
B-2091	н	Fr
B-2092	H	
B-2093	H	

...

Example#	R ²	R ^J		
B-2094	н	750		·
B-2095	H	75 0 10 10 10 10 10 10 10 10 10 10 10 10 1		
B-2096	H	7, 0 F_0		
B-2097	н—————————————————————————————————————	NH NH		
B-2098	H	i i	·	
B-2099	H			
B-2100	н——	HN		
B-210	1 H	HN VO		

Examples B-2102 through B-2125 are prepared from Scaffold C-52

Example#	R²	RJ		
B-2102	н	34		
B-2103	H	2.L		
B-2104	н	3,4		
B-2105	H			
B-2106	H	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
B-2107	н—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
B-2108	н——	Z,————————————————————————————————————		

 $\mathbf{R}^{\mathbf{J}}$ \mathbb{R}^2 Example# B-2109 B-2110 B-2111 B-2112 B-2113 B-2114 B-2115 B-2116 B-2117 B-2118

Example#	R²	R,		
B-2119	н—{	54 0 10		
B-2120	H	1,000 V		
B-2121	H	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		·
B-2122	H	\$ T		
B-2123	H			
B-2124	н	HN		
B-2125	н—	N N N		

. - .

Examples B-2126 through B-2149 are prepared from Scaffold C-56

Example#	R²	R ^J		
B-2126	H	<u>ئ</u> ے ا		
B-2127	н}	Z F		
B-2128	H	3,4		
B-2129	н—————————————————————————————————————			
B-2130	H	2/2		
B-2131	H	2,1		
B-2132	H}	S BR		

Example#	R²	R ^J		
B-2133	H	3.1		
B-2134	н——{	27		
B-2135	н———	3,40		
B-2136	H	2,1		
B-2137	H			
B-2138	H			
B-2139	н—	F		
B-2140	H	N N O		
B-2141	н			
B-2142	н—	740		

Example#	R²	R ^J		
B-2143	н	54.00		
B-2144	н			
B-2145	H	7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
B-2146	H			
B-2147	H			
B-2148	н—	HN		
B-2149	н	HN		

Examples B-2150 through B-2173 are prepared from Scaffold C-32 R^{J} R^2 Example# B-2150 B-2151 B-2152 B-2153 B-2154 B-2155 B-2156

Example#	R²	R ^J			
B-2157	F—	2-1			
B-2158	F—	22,			
B-2159	F—	3,40			
B-2160	F—	2,1			
B-2161	F—				
B-2162	F—				
B-2163	F—	F			
B-2164	4 F—		- -		
B-216	5		0		
B-216	6 -	7,0			

Example#	R²	R,		
B-2167	F—	7,0%0	·	
B-2168	F—	1-00 1-00 1-00 1-00 1-00 1-00 1-00 1-00		
B-2169	F—	7		
B-2170	F—			
B-2171	F-			
B-2172	F—	HN		
B-2173	F—	HN ~		

2197 are prepared from Scaffold C-64

	Examples 2174	through B-2197 are	prepared t	rom Scatto	la C-64
Example#	R²	R ^J			
B-2174	F—	3/			
B-2175	F—	Z, C			
B-2176	F-	3,4			
B-2177	F—{				
B-2178	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2,4			
B-2179	F-{}	2,-11		,	
B-2180	F—	O Z BR			

11
2
1270
ļ.i
1
II
£i
ļ.
H.
بيتة
Ī

Example#	Ħ²	RJ		
B-2181	F—	3,1		
B-2182	F—	- 2- 0- N		
B-2183	F—	الم الم		
B-2184	F—	3,11		
B-2185	F—			
B-2186	F-			
B-2187	F—	F		
B-2188	3 F—{}			
B-218	9 -		0	
B-219	00	7,0		

H
3 10000
N

M
£i
į.
i in
* 44

Į.

Example#	R²	R,			
B-2191	F—	7,000			
B-2192	F—	7 % O			
B-2193	F-	NH NH			
B-2194	F—			r	
B-2195	F—				
B-2196	F—	HN			
B-2197	F—	HN O			

	N/				
	Examples B-219	8 through B-2221 (e prepared	from Scaffo	old C-22
Example#	R²	R ^J			
B-2198	F—	المالية			
B-2199	F-	2, L			
B-2200	F-	34			
B-2201	F—				
B-2202	F—{}	2,1			
B-2203	3 F-\	2,-1			
B-220	4	Z, BR			

Example#	R²	R ^J		!
B-2205	F—	3-1		
B-2206	F—	27		
B-2207	F—{}	3,10		
B-2208	F—{}	2,1		
B-2209	F—			
B-2210	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
B-2211	F—	F		
B-2212	F—	N N O		
B-2213	F-\(\)			
B-2214	F—	750		

Example#	R²	R ^J		
B-2215	F—	7 % 0 7 % 0		
B-2216	F-	7 S O		
B-2217	F-	ZZ NH		
B-2218	F—			
B-2219	F—{}			
B-2220	F-{}	HN		
B-2221	F-{}	HN C		

Examples B-2222 through B-2245 are prepared from Scaffold C-29

Example#

R²

RJ

B-2222				
B-2223		0 // F		
B-2224				
B-2225	s >			
B-2226	s >	z.L		
B-2227	S S	2,-11		
B-2228	S S	S BR		

Example#	R²	K٦		
B-2229	s >			
B-2230		0-2		
B-2231	S	2		
B-2232	S			
B-2233	S			
B-2234		7,0	,	
B-2235		۴۲۰	,	
B-2236		770		
B-2237		7,00		

Example#	R²	R ^J
B-2238	S	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		7,7

B-2238	S S	750		
B-2239	s >	~ = 0		
B-2240	s >	7, 0 F 0		
B-2241	s >	NH NH		
B-2242	s >			
B-2243	ſ s			
B-2244	s	HN		
B-2245	S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Examples B-2246 through B-2269 are prepared from Scaffold C-35 R² Example# R٦ B-2246 B-2247 B-2248 B-2249 B-2250 B-225.1 B-2252

T.	
	-
* ====	
11	
£);	
į.	
n	
-	
٠	
*4.	
Ę.,	

	, 	, 	 r	
Example#	R²	₽		
B-2253	F—	3,1		
B-2254	F—	0-2		
B-2255	F—	22		
B-2256	F-			
B-2257	F—			
B-2258	F—			
B-2259	F—	27		
B-2260	F—	2700		
B-2261	F—	7000		
B-2262	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		

-	=
411.1	
.11111	
****	1
1	
÷	
.Hale.	I
	Į
Ξ	
	æ.
11111	First State
.,,,,,,,	-
4	==
-	
	:4:2

			 	
Example	₽ R²	ЬĄ		
B-2263	F—{	~ s = 0		
B-2264	F-	54 0 F 0		
B-2265	F-	ZZ O NET		
B-2266	F-			
B-2267	F—			
B-2268	F—	HN		
B-2269	F—	, IN ,		

5

10

Examples B-2270 through B-2317

15

20

25

30

In a parallel array reaction block containing 48 fritted vessels, each reaction vessel was charged with 250 mg of polymer bound carbodiimide B48 (1.0 mmol/g resin) and a solution of the acid-containing scaffold C-49 in dimethylformamide (0.1 M, 500 uL). To each slurry was added a solution of pyridine in dichloromethane (0.2 M, 1000 uL) followed by a solution of a unique amine B47 in dimethylformamide. (0.2 M,375 uL) The reaction mixtures were agitated on a Labline benchtop orbital shaker at 250 RPM for 16-20 h at ambient temperature. The reaction mixtures were filtered into conical vials washed with 1.5 mL and the polymer was of dimethylformamide and 2.0 mL of dichloromethane. The filtrates were evaporated to dryness in Savant apparatus and dimethylformamide (350 uL) was added to each conical vial to dissolve the residue. A solution of anhydride (1.0 150 uL) tetrafluorophthalic M, in dimethylformamide was added to the reconstituted conical vials and the mixture incubated for 2 hours at ambient temperature. Polyamine polymer B33 (4.0 meg N/g resin, 250 mg) and 1.0 mL dichloromethane was then added to the reaction mixture in each conical vial. After agitating the reaction mixtures for 16 h at 250 RPM on an orbital shaker at ambient temperature, the mixtures were filtered through a polypropylene syringe tube fitted with a porous washed twice frit. The polymers were dimethylformamide (1.0 mL.each) and the filtrates and washings collected in conical vials. The filtrates were evaporated to dryness and weighed to afford the desired amide products B-2270 through B-2317 as oils or solids. The analytical data and yields for the products prepared in this manner are listed below.

20

10

15

25

30

	R²	RB IN RC	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2270	F—	*	12	352	353
B-2271	F—	J. M.	39	432	433
B-2272	F—		26	400	-
B-2273	F—		14	396	397
B-2274	F—		30	434	435
B-2275	F—{}	Omen	43	443	-
B-2276	F—	NH NH	35	364	365

	Ħ²	RB N-RC	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2277	F-		33	490	-
B-2278	F—	A H	53	460	461
B-2279	F—		10	420	-
B-2280	F—		7	435	436
B-2281	F—	¥	18	401	402
B-2282	F—	O HN	22	390	413° *M+Na
B-2283	F—	F. F.	10	394	417ª ªM+Na
B-2284	F—{}		7	423	-
B-2285	F—		23	450	-
B-2286	F—{}	i, OO	4	506	•

	R²	R ^B N—R ^c	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2287	F—	NH 6	5	437	438
B-2288	F—		8	435	436
B-2289	F—		4	450	451
B-2290	F—	¥ ()	9	456	457
B-2291	F—		9	415	416
B-2292	F—	F. F.	5	368	369
B-2293	F—	Z Z	5	366	367
B-2294	F-{}	NH. NH.	5	381	382
B-2295	F—	NH.	16	410	411
B-2296	F-	Q H	4	483	<u>-</u>

	R²	R ^B N—R ^c	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2297	F—		7	490	•
B-2298	F—	نېئې	4	537	-
B-2299	F—		4	507	508 ·
B-2300	F—	\text{\tin}\text{\tetx{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\}\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex	7	442	-
B-2301	F—		20	396	397
B-2302	F—	بُر	30	459	-
B-2303	F—	S S S S S S S S S S S S S S S S S S S	6	482	
B-2304	F—__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		5	395	396
B-2305	F—		10	460	•
B-2306	F-__\\\	LL	11	466	467

	R²	RB N-RC	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2307	F—{		5	421	422
B-2308	F—		26	470	-
B-2309	F-{}		24	424	425
B-2310	F—		9	348 ·	-
B-2311	F—	O NH	21	338	339
B-2312	F—	S—/	28	398	399
B-2313	F—	NH	6	410	-
B-2314	F-	NH CN	15	363	364
B-2315	F-		11	444	-
B-2316	F-		11	418	-

	H²	R ^B N—R ^c	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2317	F-\{\}	NH NH	36	428	-

TOOPIFUL INCIUI

By analogy to the procedure identified above for the preparation of Examples B-2270 through B-2317, the following examples B-2318 through B-2461 were prepared.

	R²	RB I N RC	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2318	F—	E E	23	426	427
B-2319	F—	MH NH	23	394	-
B-2320	F—	D =	50	490	491
B-2321	F—	, , , , , , , , , , , , , , , , , , ,	49	426	427
B-2322	F—	, , , , , , , , , , , , , , , , , , ,	40	366	367
B-2323	F—		68	410	411
B-2324	F—	NH NH S	57	456	457

	R²	R ^B N—R ^c O	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2325	F—	O Z Z	41	382	383
B-2326	F—		71	440	441
B-2327	F—		36	464	465
B-2328	F—	== \(\)	32	467	468
B-2329	F—		34	465	466
B-2330	F—		26	364	365
B-2331	F—	0 Z	38	464	465
B-2332	F—	o N H	33	483	484
B-2333	F—	NH NH	36	378	379

	R²	RB N—RC	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2334	F—	NH NH	44	428	429
B-2335	F-	O NH	27	406	407
B-2336	F—	P F	41	428	429
B-2337	F—	0=\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	27	423	424
B-2338	F—	Z - Z	33	469	470
B-2339	F—	E S	52	518	519
B-2340	F—————————————————————————————————————	O NH	64	442	443
B-2341	F—	O NH	41	350	351
B-2342	F—————————————————————————————————————	O NH	34	414	415

	R²	RB N—RC	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2343	F-\	O N H	29	424	425
B-2344	F-	B r NH	33	492	493
B-2345	F—	O NH	30	420	421
B-2346	F—	NH NH	35	474	475
B-2347	F—	NH NH	34	392	393
B-2348	F—	NH SH	51	458	459
B-2349	F—	N N N N N N N N N N N N N N N N N N N	73	517	518
B-2350	F—	NH NH	22	448	449
B-2351	F—	O F O	64	486	487

	R²	R ⁸ N—R ^c	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2352	F—	NH O	41	482	483
B-2353	F—	NH NH	57	438	439
B-2354	F—	N N N	63	484	485
B-2355	F—	LIN N H N H N H N H N H N H N H N H N H N	28	536	537
B-2356	F—	HZ Y	29	408	409
B-2357	F—	N - N - N - N - N - N - N - N - N - N -	41	436	437
B-2358	F—		41	451	452
B-2359	F—_}	NH O	57	502	503
B-2360	F—	NH NH	46	496	497

	R²	RB	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2361	F—		13	476	477
B-2362	F—	7, 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	46	493	494
B-2363	F—	0=\\Z_\O_\O_\O_\O_\O_\O_\O_\O_\O_\O_\O_\O_\O	57	396	397
B-2364	F—	0= Z,, , , , , , , , , , , , , , , , , ,	61	438	439
B-2365	F—		72	424	425

	R²	R ^B N-R ^c	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2366	F—		34	380	381
B-2367	F—		52	480	481
B-2368	F—		35	407	407
B-2369	F—		31	435	436
B-2370	F—	-z/-	33	414	415
B-2371	F-	0-___\	28	366	367
B-2372	F-		37	422	423

	R²	RB I N-RC	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2373	F—		50	432	433
B-2374	F—_________________\) 	29	382	383
B-2375	F-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	35	395	396
B-2376	F—	/t-0	36	428	429
B-2377	F—		68	438	439
B-2378	F-	//- /- /- /-	55	446	447
B-2379	F—{}	// />=0 //	33	364	365
B-2380	F-_________________\		51	421	422
B-2381	F———}		52	429	430

	R²	RB N—RC	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2382	F—		48	407	408
B-2383	F-_\{		53	382	383
B-2384	<u>F</u>		38	447	448
B-2385	F—		59	498	450
B-2386	F—	, , , , , , , , , , , , , , , , , , ,	45	429	430
B-2387	F—		74	558	-
B-2388	F—	N	53	475	-
B-2389	F—		33	493	494
B-2390	F—		53	487	488

	R²	RB N—RC	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2391	F—\\\\\		30	435	436
B-2392	F-\		57	464	465
B-2393	F—		50	418	419
B-2394	F—		65	488	489
B-2395	F—	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	59	437	438
B-2396	F—	OMe OME	34	534	535
B-2397	F—	o N	32	516	517
B-2398	F—	0 2 2 0	81	533	534
B-2399	F—	O N O	55	502	•

F	R²	RB N—R°	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2400	F—	NHI ON NHI	34	381	382
B-2401	F—		32	378	379
B-2402	F—		71	519	520
B-2403	F-\	2	68	527	528
B-2404	F—		62	447	448
B-2405	F—		71	536	537
B-2406	F—	***************************************	47	394	395
B-2407	F—	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	65	508	509
B-2408	F—	N H N OME	34	495	496

	R²	RB N—RC	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2409	F—	S S	47	448	449
B-2410	F-\\\\		73	542	543
B-2411	F—\$		81	489	490
B-2412	F—	0-1/2 0	54	409	410
B-2413	F—	~~~~	37	493	494

	γ				
	R²	R ^B N-R ^c	Yield	Calcd. Mass Spec.	Observed Mass Spec · M+H
B-2414	F—	S C	14	473	474
B-2415	F—	O N N CI	19	421	422
B-2416	F-	0 = Z = -	13	. 386	387
B-2417	F—{}	, , , , , , , , , , , , , , , , , , ,	29	- 414	415
B-2418	F-	2 Z - C - C - C - C - C - C - C - C - C -	6	420	421
B-2419	F—	O NH CF 3	10	454	-
B-2420	F-\	O ZH	5	442	443

	R²	RB N-Rc	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2421	F—{}	O NH CI	28	454	455
B-2422	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ο Ξ α	47	420	421
B-2423	F—	O H	53	400	401
B-2424	F—	D=\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	15	400	401
B-2425	F-	NH F ₃ C CF ₃	18	522	523
B-2426	F-\		38	464	465
B-2427	F—		26	468	469
B-2428	F—	O NH S	22	432	433
B-2429	F—	NH NH	41	404	405

	R²	R ^B N—R ^c	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2430	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	O ₂ N NO ₂	15	476	477
B-2431	F-\	o Z Z	6	446	447
B-2432	F—	₹- 0={ /,	37	404	405
B-2433	F—	// = 0 	8	428	429
B-2434	F-	/ / / - <u>z</u>	13	476	477
B-2435	F-_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	DE C	23	442	443
B-2436	F—	0 X X X X X X X X X X X X X X X X X X X	5	486	487
B-2437	F-___________________		4	492	493
B-2438	F—	PH NH	58	422	423

	R²	RB I N—RC	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2439	F—	0 =	12	454	455
B-2440	F—		8	521	522
B-2441	F—		6	443	444
B-2442	F—	o ₹ √ ∫	37	514	515
B-2443	F—		15	518	-
B-2444	F———		52	520	ı
B-2445	F—		33	517	518
B-2446	F—	0 = 0 = 0 = 0	70	500	501
B-2447	F—		56	488	489

	R²	₹	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2448	F—		51	522	523
B-2449	F-___________________	SNH OC	19	512	513
B-2450	F—	HN-	16	538	539
B-2451	F—	ZI C	71	511	512
B-2452	F—	H. Oen	71	500	501
B-2453	F—	NH O CF ₃	61	470	-
B-2454	F-___________________	NH O	15	472	473
B-2455	F-{}	N-N N-N OF,	39	520	-
B-2456	F—	THOUSE THE SECOND SECON	51	533	534

	R²	RB N RC N RC	Yield	Calcd. Mass Spec.	Observed Mass Spec M+H
B-2457	F—		55	540	<u>-</u>
B-2458	F-		22	488	489
B-2459	F-	0-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8	486	487
B-2460	F—{}	NH S	13	534	535
B-2461	F—	HN C	13	542	-

Example C-1

5-AMINOMETHYL-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

1-(4-fluorophenyl)-2-(4-pyridyl)-1-ethanone. 4-picoline (40 g, 0.43 mol) was added to a LiHMDS solution (0.45 mol, 450 mL of a 1.0 M solution in THF) over 30 minutes at room temperature (a slight exotherm was observed) The resulting solution was stirred for 1 h. This solution was added to ethyl 4-fluorobenzoate (75.8 g, 0.45 mol, neat) over 1 h. The mixture was stirred overnight (16 h). Water (200 mL) was added and the mixture was extracted with EtOAc (2x200 mL). The organic layer was washed with brine (1x200 mL) and dried over

15

20

25

30

Na₂SO₄. The organic layer was filtered and the solvent was removed to leave oily solid. Hexane was added to the oil and the resulting solid was filtered and washed with hexane (cold). A yellow solid was isolated (50 g, 54%):

¹H NMR (CDCl₃) δ 8.58 (d, J = 5.7 Hz, 2H), 8.02 (dd, J = 5.5, 8.0, 2H), 7.12-7.21 (m, 4H), 4.23 (s, 2H);

¹⁹F NMR (CDCl₃) δ -104.38 (m); LC/MS, t_r = 2.14 minutes (5 to 95% acetonitrile/water over 15 minutes at 1 mL/min, at 254 nm at 50°C), M+H = 216; High Resolution MS Calcd for C₂₃H₂₀N₄O₂F (M+H): 216.0825. Found: 216.0830 (Δ mmu = 0.5).

N-benzyloxycarbonyl-5-aminomethyl-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole. A 3L round bottom flask fitted with a mechanical stirrer, N_2 inlet and an addition funnel was was charged with 557 mL (0.56 mol) of 1 M t-BuOK in THF and 53 mL (0.56 mol) of t-BuOH. The ketone, 1 (60 g, 0.28 mol) was dissolved in 600 mL of THF and added to the stirred mixture at room temperature. precipitate formed and the mixture was stirred for 1 h. N-benzyloxycarbonyl-glycinyl N-hydroxysuccinimide (128.6 g, 0.42 mol) was dissolved in 600 mL of THF and added dropwise at r.t. over 1h. The mixture was stirred for another 5 minutes and 150 mL of water was added. was adjusted to 6.7 with 70 mL of AcOH. Hydrazine monohydrate (41 mL in100 mL of water) was added via an addition funnel. The mixture was stirred for 1 h and was diluted with 500 mL of water and 500 mL of ethyl acetate. The biphasic mixture was transferred to a sep funnel and the layers were separated. The aqueous layer extracted with EtOAc (3x300 mL). The organic layer was

15

20

dried (Na_2SO_4) , filtered and evaporated to leave 157 g of a crude reddish oil.

The oil was suspended in CH2Cl2 and filtered to remove any insoluble material (DCU, hydrazone of the monoketone). The solution was split into two portions and each portion was chromatographed (Biotage 75L, EtOH/CH2Cl2 then 68 $EtOH/CH_2Cl_2$). The appropriate fractions were concentrated (some contamination from the monoketone and the hydrazone) from each portion to leave a yellow solid. The solid was suspended in ethyl acetate and heated to boiling for 10 minutes. The solution was allowed to cool to R.T. overnight. The precipitate was filtered to give 30 g of a white solid (27% yield of 2): ¹H NMR (DMF- d_7) δ 13.36 (s, 1H), 8.57 (d, J = 5.8 Hz, 2H), 7.16-7.52 (m, 11H), 5.11 (s, 2H), 4.48 (d, J = 5.4 Hz, 2H); ¹⁹F NMR (DMF- d_7) δ -114.9 (m), -116.8 (m) fluorine signal is due to the pyrazole tautomers); LC/MS, $t_r = 3.52$ minutes (5 to 95% acetonitrile/water over 15 minutes at 1 mL/min, at 254 nm at 50° C), M+H = 403; High Resolution MS Calcd for C23H20N4O2F (M+H): 403.1570. Found: $403.1581 (\Delta mmu = 1.1)$.

5-aminomethyl-4-(4-pyridyl)-3-(4-fluorophenyl)

pyrazole. To a 1L Parr bottle was added 7 g (17.4 mmol)

of 2 and 180 mL of MeOH and 90 mL of THF to give a clear
solution. The bottle was purged with nitrogen and 1.5 g

of 10% Pd/C (wet Degussa type E101) was added. The Parr
bottle was pressured to 40 psi (H₂) and was agitated.

Hydrogen uptake was 5 psi after 5 h. The bottle was

repressured to 42 psi and was agitated overnight. The
bottle was purged with N2 and was filtered through
Celite. The Celite was washed with MeOH (3x50 mL) and

the filtrate was concentrated to give 4.5 g of an off-white solid (94%). ^{1}H NMR (DMSO-d₆) δ 8.52 (d, J = 4.63 Hz, 2H), 7.36 (dd, J = 5.64, 8.1 Hz, 2H), 7.16-7.30 (m, 4H), 3.79 (s, 2H); ^{19}F NMR (DMSO-d₆) δ -114.56 (m); LC/MS, t_r = 1.21 minutes (5 to 95% acetonitrile/water over 15 minutes at 1 mL/min, at 254 nm at 50°C), M+H = 269 m/z; High Resolution MS Calcd for C₁₅H₁₄N₄F (M+H): 269.1202. Found: 269.1229 (Δ mmu = 2.7).

10

The following pyridylpyrazoles (C-2 through C-21, Table C-1) were prepared according to the experimental procedure described above for example C-1.

15

Table C-1.

Exampl	Structure	MW, M +	'H NMR (solvent), ppm
e No.		H	
		Calculat	
		ed	
		Found	
C-2	N-NH	323.1672	$(DMF-d_7): 8.77 (t, J =$
	F	323.1670	4.4 Hz, 2H), 7.60 (m, 2H),
			7.44 (t, $J = 4.4$ Hz, $2H$),
			7.35 (m, 2H), 3.22 (bd,
			2H), 3.01 (septet, J = 5.3
			Hz, 1H), 2.74 (m, 2H),
			1.95 (m, 4H)

C-3	N-NH	282.127	$(DMF-d_7): 8.77 (br s,$
C-3	NH ₂	(M)	2H), 7.64-7.62 (m, 2H),
	ČH ₃	282.1245	7.50 (br s, 2H), 7.38-7.34
	N.J.	(M, EI)	(m, 2H), 4.40-4.37 (m,
		(11)	1H), 1.56 (br s, 3H)
	N-NH	282.127	(DMF-d ₇): 8.77 (br s,
C-4	NH ₂	(M)	2H), 7.64-7.62 (m, 2H),
	ĒH ₃	282.1147	7.50 (br s, 2H), 7.38-7.35
	₽N_1		(m, 2H), 4.40-4.37 (m,
		(M, EI)	1H), 1.57 (br s, 3H)
		200 1620	•
C-5	N-NH NH	323.1672	(DMSO-d ₆): 8.56 (br, 2H),
		323.1687	7.32 (m, 2H), 7.18 (m,
	N. J		4H), 2.91 (m, 2H), 2.71
			(m, 2H) 1.88 (m, 1H), 1.65
			(m, 2H), 1.40 (m, 2H)
C-6	N-NH NH ₂	359	$(DMSO-d_6): 8.46 (d, J =$
	F	359	4.6 Hz, 2H), 7.32-7.13 (m,
			7H), 6.98-6.96 (m, 4H),
			4.06 (t, $J = 7.0$ Hz, 1H),
		·	2.98-2.95 (m, 2H)
C-7	N-NH NH ₂	359	$(DMSO-d_6): 8.46 (d, J =$
	F	359	5.4 Hz, 2H), 7.32-7.28 (m,
			2H), 7.20-7.12 (m, 5H),
			6.98-6.96 (m, 4H), 4.06
			(t, J = 7.0 Hz, 1H), 2.98-
			2.94 (m, 2H)
C-8	N-NH N-NH	313.1465	$(DMSO-d_6): 13.83 (bs,$
	F OCH	313.1492	1H), 8.61 (d, J = 5.7 Hz,
			2H), 8.33 (bs, 1H), 7.33
	N		(m, 6H), 4.44 (m, 1H),
			3.63 (m, 2H), 3.27 (s, 3H)
	<u> </u>		

C-9	N-NH	313.1465	$(DMSO-d_6): 8.55 (dd, J =$
	NH ₂	313.1457	1.5, 4.4 Hz, 2H), 7.37-
	OCH3	313.113.	7.32 (m, 2H), 7.26 (dd, J
	N ³		= 1.6, 4.4 Hz, 2H), 7.22-
		:	
			7.16 (m, 2H), 4.06 (t, J =
			6.5 Hz, 1H), 3.49 (d, J = 1.00)
			6.6 Hz, 2H), 3.20 (s, 3H)
C-10	N-NH NH ₂	354	$(DMSO-d_6): 13.03 (bs,$
) 	FOUNCE	354	1H), 8.50 (dd, J=1.6, 2.7
	N CONHCH		Hz, 2H), 7.58 (bq, J=4.3
i			Hz, 1H), 7.3 (m, 2H),
			7.12-7.21 (m, 4H), 3.77
			(t, J= 6.3 Hz, 1H), 2.45
			(d, J=4.5 Hz, 3H), 1.97
·			(t, J= 7.4 Hz, 2H), 1.85
			(dt, J=7.3, 7.1 Hz, 2H)
C-11	N-NH NH ₂	354	$(DMSO-d_6): 13.03 (bs,$
		354	1H), 8.50 (dd, J=1.6, 2.7
	N CONHCH3		Hz, 2H), 7.58 (bq, J=4.3
		·	Hz, 1H), 7.3 (m, 2H),
			7.12-7.21 (m, 4H), 3.77
			(t, J= 6.3 Hz, 1H), 2.45
		ā.	(d, J=4.5 Hz, 3H), 1.97
			(t, J= 7.4 Hz, 2H), 1.85
			(dt, J=7.3, 7.1 Hz, 2H)
C-12	N-NH	283.1359	$(DMSO-d_6): 8.53 (d, J =$
	F NH ₂	283.1363	5.0 Hz, 2H), 7.37-7.32 (m,
			2H), 7.21-7.17 (m, 4H),
			2.83(d, J = 6.0 Hz, 2H),
			2.77 (d, $J = 6.0$ Hz, $2H$)
C-13	N-NH NH	297.1515	$(DMSO-d_6): 8.53 (d, J =$
	FUT	297.1515	5.4 Hz, 2H), 7.34 (dd, J =
			5.8, 8.2 Hz, 2H), 7.18
		I	L

			(dd, J = 5.8, 9.8 Hz, 4H),
			2.68 (t, $J = 7.3 \text{ Hz}, 2H$),
			2.52 (m, 2H), 1.64 (m, 2H)
C-14	CI N-NH NH2	284.0829	(CD ₃ OD): 8.74 (br, 2H),
	(1.12)	284.0806	7.77 (br, 2H), 7.45-7.58
			(m, 3H), 7.30-7.40 (m,
	N N		1H), 4.43 (s, 2H)
C-15	N-NH N-NH	285	(DMSO-d ₆): 8.53 (br, 2H),
	CI-	285	7.56 (br, 2H), 7.26 (m,
			4H), 3.75 (br, 2H)
C-16	N-NH NH ₂	329, 331	$(DMSO-d_6): 8.53 (d, J =$
	Br Ni 12	329, 331	4.4 Hz, 2H), 7.42 (d, J =
			7.9 Hz, 2H), 7.34 (d, J =
	'N'		8.5 Hz, 2H), 7.24 (d, J =
			4.6 Hz, 2H), 3.76 (bs, 2H)
C-17	CI N-NH	339	$(DMSO-d_6): 8.53 (t, J =$
	NH	339	4.3 Hz, 2H), 7.33 (m, 3H),
			7.19.(t, J = 4.6 Hz, 2H),
	, N		7.14 (d, J = 7.3 Hz, 1H),
			3.23 (m, 2H), 2.88, (m,
		•	3H), 1.92, (m, 3H), 1.70
			(m, 1H)
C-18	N-NH	339	$(DMSO-d_6): 8.57 (d, J =$
	CINH	339	4.6 Hz, 2H), 7.41 (d, J =
			8.3 Hz, 2H), 7.29 (d, J =
			8.5 Hz, 2H), 7.20 (d, J =
			4.8 Hz, 2H), 3.18 (bd,
			2H), 2.88 (m, 1H), 2.76
			(m, 2H), 1.82 (br, 4H)
C-19	N-NH N-NH	383, 385	(DMSO-d ₆): 8.56 (br, 2H),
	Br	383, 385	7.52 (br, 2H), 7.14-7.29
			(m, 4H), 2.99 (br, 2H),
ı			

2.71 (br, 1H), 2.51 (br,
2H), 1.68 (br, 4H)

10

The following pyridylpyrazoles (C-22 through C-40, Table C-2) are prepared utilizing the general schemes C-1 and C-2 and the experimental procedure described for example 15 C-1 above.

Table C-2

Cmpd. No.	Structure
C-22	N-NH NH ₂
C-23	F N-NH NH2
C-24	F NH ₂

C-25	Br N-NH NH ₂
C-26	H ₃ C N-NH NH ₂
C-27	Br. N-NH NH
C-28	H ₃ C N-NH NH
C-29	N-NH NH ₂
C-30	N-NH N-NH
C-31	F ₃ C N-NH
C-32	F NH NH2
C-33	P-NH N-NH N-NH

	· ·
C-34	F NH2
C-35	F N-NH
C-36	N-NH NH ₂
C-37	F N-NH
C-38	F N-NH
C-39	F N-NH
C-40	F CO ₂ I-Bu
C-41	F N-NH H NH
C-42	F NH H NH
C-43	F HN
C-44	F HN

•	=	^
i		•
•		-
1		
-	1	=
	=	
	7.	
111111		-
711117	74	-
_		
1	:	
	=	2
	indi	
	indi	
	I I II II II II	The state of
	indi	The state of
Ante- or other time time	I I II II II II	The Street Street

15

C-45	F N-NH H
C-46	F CH,
C-47	P-NH CH3
C-48	P-NH H CH ₃

Example C-49

F CH₃

Step A

The pyrazole (2.60 g, 10.3 mmol) from example $\,$ C-4 was suspended in 52 mL of dichloroethane and 52 mL of 2.5 M

NaOH. Tetrabutylammonium hydroxide (0.5 mL of a 1 M aqueous solution) was added to the stirred mixture. To this mixture was added t-butyl bromoacetate (2.10 g, 10.8 mmol). The reaction mixture was stirred at room temperature for 4 h. The mixture was poured onto 200 mL of CH_2Cl_2 and 200 mL of H_2O . The phases were separated and the organic phase was washed with water (1x100 mL) and brine (1x100 mL). The organic layer was dried over Na_2SO_4 and was filtered. The solvent was removed to leave an off-white solid. This solid was triturated with hexane and the resulting solid isolated by filtration. The solid was washed with hexane to leave 3.4 g of a white solid (90%).

15

10

5

Step B

The alkylated pyrazole (3.7 g, 10.1 mmol) from Step 20 A was treated with 57 mL of 4 N HCL in dioxane. solution was stirred at room temperature for 4 h. The solvent was removed under reduced pressure and the The solution was treated residue was dissolved in THF. with propylene oxide (10.3 mmol) and was stirred for 1h at room temperature. The solvent was removed to leave an The residual solvent was chased with several oil. The resulting solid was triturated portions of EtOH. Example C-49 was with Et₂O and the title compound isolated by filtration to afford 3.0 g of an off-white solid (95%). Mass spec: M+H cald: 312; found 312. NMR (DMSO-d6): 8.81 (d, J = 6.4 Hz, 2H), 7.73 (d, J = 5.8 Hz, 2H), 7.40 (m, 2H), 7.23 (t, J = 8.5 Hz, 1H), 5.16 (s, 2H), 2.40 (s, 3H).

Example C-50

According to the procedure described above in Example C
49, Example C-50 was also prepared starting from 4-[3-(4-fluorophenyl)-1H-pyrazole-4-yl]pyridine. Mass spec: M+H

cald: 298; found 298.

H NMR (DMSO-d6): 8.75 (d, J = 6.4 Hz, 2H), 8.68 (s, 1H), 7.78 (d, J = 6.6 Hz, 2H), 7.52

(dd, J = 5.4, 8.5 Hz, 2H), 7.31 (t, J = 8.9 Hz, 2H),

5.16 (s, 2H).

Example C-51

20

5

Starting with the N-Boc-piperidinyl analog of Example C-2, Example C-51 is also prepared according to the methods described in Scheme C-1.

5

Step A: Picoline is treated with a base chosen from but not limited to n-BuLi, LDA, LiHMDS, tBuOK, or NaH in an organic solvent such as THF, ether, t-BuOH or dioxane from -78 °C to 50 °C for a period of time from 10 minutes The picoline solution is then added to a to 3 hours. solution of N-Cbz-(L)-phenylalaninyl hydroxysuccinimide. The reaction is allowed to stir from 30 minutes to 48 hours during which time the temperature may range from -20 °C to 120 °C. The mixture is then poured into water and extracted with an organic solvent. drying and removal of solvent the monoketone is isolated as a crude solid which could be purified by crystallization and/or chromatography.

20

25 Step B: A solution of the pyridyl monoketone in ether, THF, tBuOH, or dioxane is added to a base chosen from but

not limited to n-BuLi, LDA, LiHMDS, tBuOK, or NaH contained in hexane, THF, ether, dioxane, or tBuOH from - 78 °C to 50 °C for a period of time from 10 minutes to 3 hours. Formyl acetic anhydride is then added as a solution in THF, ether, or dioxane to the monoketone anion while the temperature is maintained between -50 °C and 50 °C. The resulting mixture is allowed to stir at the specified temperature for a period of time from 5 minutes to several hours. The resulting pyridyl diketone intermediate is utilized without purification in Step C.

Step C: The solution containing the pyridyl diketone is quenched with water and the pH is adjusted to between 4 and 8 utilizing an inorganic or organic acid chosen from HOAc, $\rm H_2SO_4$, HCl, or HNO₃. The temperature during this step is maintained between -20 °C and room temperature. Hydrazine or hydrazine hydrate is then added to the mixture while maintaining the temperature between -20 °C and 40 °C for a period of 30 minutes to several hours. The mixture is then poured into water and extracted with an organic solvent. The N-Cbz-protected pyridyl pyrazole is obtained as a crude solid which is purified by chromatography or crystallization.

5 Step: D
The CBZ protecting group is cleaved using hydrogen gas under pressure and Pd-C in an alcohol solvent, affording scaffold C-52 after filtration and concentration.

10

15 The following compounds C-53 through C-59 in Table C-3 are prepared according to the general procedure described above for the preparation of C-52.

Table C-3

Example No.	Structure
C-53	H ₂ N H

C-54	H ₂ N Boc
C-55	H ₂ N Boc
· C-56	H ₂ N N-NH H
C-57	H ₂ N N-NH H
C-58	H ₂ N N-NH NH-Boc
C-59	H ₂ N N-NH NH-Boc

5 Step A:

A Boc protected pyridylpyrazole is treated with benzaldehyde in methylene chloride at room temperature in

the presence of a drying agent for a period of time ranging from 1-24 h. Solvent is then evaporated and the resulting imine is used in step B without further purification.

Step B:

5

10

15

20

The pyridylpyrazole imine is dissolved in THF and stirred under nitrogen at temperatures ranging from -78 to -20 °C. A base such as LDA, n-BuLi, or LiHMDS is added dropwise to the mixture which is then stirred for an additional 10 minutes to 3 h. Two equivalents of a methyl iodide are then added to the mixture and stirring is continued for several hours. The mixture is then quenched with acid and allowed to warm to room temperature and stirred several hours until cleavage of the Boc and the imine functions is complete. The pH is adjusted to 12 and then the mixture is extracted with an organic solvent, which is dried and evaporated. The crude pyridylpyrazole is then crystallized and/or chromatographed to give purified C-60.

Step B

Example C-61

10 Example C-61 is prepared according to the method described in example C-60, substituting 1,4-dibromobutane for methyl iodide.

15

5

Example C-62

20

5

20

Example C-62 is prepared according to the method described in example C-60, substituting 1,3-dibromoethane for methyl iodide.

Example C-63

The synthesis of compound C-63 starts with the condensation reaction of bromomaleic anhydride B77 with 4-dimethoxybenzylamine in acetic acid and acetic The maleimide B78 is then treated with 4'anhydride. fluoroacetophenone in the presence of catalytic amount $Pd_2(dba)_3$ sodium t-butoxide to form and the fluoroacetophenone substituted maleimide B79. then treated with tert-butoxybis(dimethylamino)methane to yield the a-ketoenamine B80. The a-ketoenamine B80 is condensed with hydrazine to form the N-protected maleimide pyrazole B81. The 2,4-dimethoxybenzyl group is cleaved with ceric ammonium nitrate (CAN) to give the title compound C-63.

Example C-64

5

Using the method described in Schemes C-6 and C-7, 10 Example 64 is prepared.

5

Using the method described in Schemes C-6 and C-7, Example 65 is prepared.

10

Example C-66

F N-NH NH

15

Using the method described in Schemes C-6 and C-7, Example C-66 is synthesized, substituting N-2,4-20 dimethoxybenzyl-4-bromopyridone for B78.

25

5

Using the method described in Schemes C-6 and C-7, Example C-67 is synthesized, substituting N-2,4-10 dimethoxybenzyl-4-bromopyridone for B78, and substituting N-Boc-glycyl N-hydroxysuccinimide for B82.

Example C-68

15

Using the method described in Schemes C-6 and C-7, 20 Example C-68 is synthesized, substituting N-2,4-dimethoxybenzyl-4-bromopyridone for B78.

Using the method described in Schemes C-6 and C-7, Example 69 is prepared, substituting N-Boc-nipecotyl N-hydroxysuccinimide for B83.

Example C-70

Using the method described in Schemes C-6 and C-7, Example 70 is prepared, substituting N-Boc-nipecotyl N-hydroxysuccinimide for B83.

Example C-71

20

5

10

5

15

Using the method described in Schemes C-6 and C-7, Example 71 is prepared, substituting N-methyl-3-bromomaleimide for B78.

Example C-72

10 Using the method described in Schemes C-6 and C-7, Example 72 is prepared, substituting N-methyl-3-bromomaleimide for B78, and substituting N-Boc-nipecotyl N-hydroxysuccinimide for B83.

Example C-73

Using the method described in Schemes C-6 and C-7,
20 Example 73 is prepared, substituting N-methyl-3bromomaleimide for B78 and substituting N-Boc-nipecotyl
N-hydroxysuccinimide for B83.

General Synthetic Procedures

Scheme C-8 illustrates a general method that can be used for the introduction of various groups on an unsubstituted nitrogen atom that is present as part of pyrazole (Cviii) with appropriately substituted aldehydes (R₃₀₂CHO) or ketones (R₃₀₂COR₃₀₃) in the presence of a reducing agent such as sodium cyanoborohydride or sodium triacetoxyborohydride affords the desired products (Cix). Typical conditions for the reductive alkylation include the use of an alcoholic solvent at temperatures ranging from 20 °C to 80 °C. In Scheme C-8, R₃₀₂ and R₃₀₃ are selected from but not limited to alkyl, benzyl, substituted benzyl, arylalkyl, heteroarylalkyl.

Scheme C-9 illustrates another method for introduction of substituents on the unsubstituted nitrogen atom present as part of the C-3 position of the pyrazole (Cviii). Treatment of the pyrazole (Cviii) with

a suitable alkylating agent $(R_{304}X)$ such as an alkyl chloride, alkyl bromide, alkyl iodide or with an alkyl methanesulfonate or alkyl p-toluenesulfonate in the presence of a suitable base affords the desired alkylated pyrazoles (Cx). Examples of suitable bases include diisopropylethylamine, triethylamine, N-methylmorpholine, potassium carbonate and potassium bicarbonate.

Scheme C-9

$$R_{301}$$
 NH R_{304} R_{304} R_{301} R_{301} R_{304} R_{301} R_{304} R_{301} R_{304} R_{305} R_{306} R

include the alkylation for conditions Typical reaction with the suitable base in a polar acetonitrile, dimethylformamide, as such solvent dimethylacetamide or dimethyl sulfoxide at temperatures ranging from 20 °C to 150 °C. Typical R_{304} substituents are selected from but are not limited to alkyl, substituted substituted heteroalkyl heteroaromatic, benzyl, substituted heteroarylalkyl groups.

Compounds containing acyl, sulfonyl or ureidyl groups at the nitrogen atom can be prepared as shown in Scheme C-10. Treatment of the pyrazole **Cviii** with a suitable acylating agent in the presence of a base such as N-methylmorpholine, triethylamine, diisopropylethylamine or dimethylamino pyridine in an

[...]

organic solvent such as dichloromethane, dichloroethane or dimethylformamide at temperatures ranging from 20 °C to 120 °C affords the desired acylated pyrazoles (Cxi). Suitable acylating agents include acid halides, activated esters of acids such as the N-hydroxysuccinimde esters, p-nitrophenyl esters, pentafluorophenyl esters, sulfonyl halides, isocyanates, and isothiocyanates.

Scheme C-10

A general synthesis of 2-substituted pyrimidinylpyrazole compounds of type **Cxv** is shown in Scheme C-11.

Step A:

4-Methyl-2-methylmercaptopyrimidine is treated with a base selected from but not limited to n-BuLi, LDA, LiHMDS, t-BuOK, NaH in an organic solvent such as THF, ether, t-BuOH, dioxane from -78 °C to 50 °C for a period The resulting 4of time from 30 minutes to 5 hours. solution of to a is then added anion methyl The reaction is allowed to stir appropriate ester B88. from 30 minutes to 48 hours during which time the temperature may range from 0 °C to 100 °C. The reaction mixture is then poured into water and extracted with an organic solvent. After drying and removal of solvent the desired monoketone B89 is isolated as a crude solid which can be recrystallized or purified by chromatography.

Step B:

Monoketone B89 is treated with a base selected from but not limited to n-BuLi, LDA, LiHMDS, t-BuOK, NaH, K,CO, or Cs,CO, in an organic solvent such as THF, ether, t-BuOH, dioxane, toluene or DMF from -78 °C to 50 °C for a period of time from 30 minutes to 5 hours. A solution of an appropriately activated ester of a carboxylic acid CbzNR*-(CH₂)_aCR*(R°)-COOH or BocNR*-(CH₂)_aCR*(R°)-COOH, preferably but not limited to the N-hydroxysuccinimide ester B90 is then added to the monoketone anion while maintaining the temperature between 0 °C to 100 °C. The reaction is allowed to stir at the specified temperature for a period of time ranging from 30 minutes to 48 hours. The resulting pyrimidine diketone intermediate B91 is utilized without further purification in Step C.

Step C:

The solution or suspension containing the diketone intermediate B91 is quenched with water and the pH adjusted to between 4 and 8 using an acid chosen from AcOH, H₂SO₄, HCl or HNO, while maintaining the temperature between 0 °C to 40 °C. Hydrazine or hydrazine monohydrate is then added to the mixture while maintaining the temperature between 0 °C to 40 °C. The mixture is stirred

for a period of 30 minutes to 16 hours maintaining the temperature between 20 °C to 50 °C, poured into water and extracted with an organic solvent. The pyrimidinyl pyrazole CxiiBoc or CxiiCbz is obtained as crude solid which is purified by chromatography or crystallization.

Step D:

2-methylmercapto group in the pyrimidinyl The pyrazole (CxiiBoc or CxiiCbz) is oxidized to the 2the 2-methylsulfoxide (where n = 2) or methylsulfone (where n = 1) using either Oxone or m-chloroperbenzoic acid as an oxidizing agent in a suitable solvent at temperatures ranging from 25 °C to 100 °C. Solvents of oxidation include dichloromethane, choice for the acetonitrile, tetrahydrofuran or hydroalcoholic mixtures. The 2-methylsulfone (n = 2) or the 2-methylsulfoxide (n =1) (CxiiiBoc or CxiiiCbz) is purified by crystallization or chromatography.

Step E:

2-methylsulfone/2-methylsulfoxide group in or CxiiiCBz is conveniently displaced with various amines or alkoxides at temperatures ranging from 20 °C to 200 °C in solvents that include but are not dimethylformamide, acetonitrile, limited to tetrahydrofuran and dioxane. The alkoxides can be generated from their alcohols by treatment with a base selected from but not limited to sodium hydride, lithium potassium tertiary-butoxide hexamethyldisilazide, solvents such as tetrahydrofuran, dimethylformamide and dioxane at temperatures ranging from 0 °C to 100 °C. The resulting 2-amino or 2-oxo derivatives (CxivBoc or CxivCbz) are purified by either chromatography or crystallization.

Step F:

The carbamate protecting groups from CxivBoc or CxivCbz are removed to afford the desired compounds Cxv containing either a free primary amine (R" is hydrogen) or a free secondary amine $(R^{N}$ is not equal to hydrogen). Boc protecting groups are cleaved utilizing either in methylene chloride or trifluoroacetic acid hydrochloric acid in dioxane at room temperature for several hours. The Cbz protecting groups are cleaved using hydrogen gas at atmospheric or higher pressures and in an alcoholic a catalyst (palladium on charcoal) solvent. The resulting amines Cxv are then crystallized or purified by chromatography.

SCHEME C-11

Cxv

The following examples contain detailed descriptions of the methods of preparation of compounds that form part of the invention. These descriptions are presented for illustrative purposes only and are not intended as a restriction on the scope of the invention. All compounds showed NMR spectra consistant with their assigned structures.

Example C-74

5-(4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

C-1 method Example of the following ethyl-4methyl-4-chlorobenzoate for substituting N-t-butoxycarbonyl-isonipecotyl Nand fluorobenzoate N-benyloxycarbonyl-glycinyl for hydroxysuccinimide hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound as the hydrochloride salt: $^{1}HNMR$ (d₆-DMSO) δ 8.57 (d, J = 4.83 Hz, 2 H), 7.41 (d, J = 8.26 Hz, 2 H), 7.29 (d, J =8.26 Hz, 2 H), 7.20 (d, J = 4.63 Hz, 2 H), 3.18 (bd, J = 12.08 Hz, 2 H), 2.88 (m, 1 H), 2.76 (m, 2 H), 1.82 (bs, 4 H). MS (M+H): 339 (base peak).

Example C-75

5-(N-METHYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

To a solution of 5-(4-piperidyl)-4-(4-pyridyl)-3-(4chlorophenyl) pyrazole hydrochloride (Example C-74) (25 g, 61 mmol) in 140 mL of formic acid (96%) was added 50 g of formaldehyde (37%). The solution was stirred at 75 °C for 48 h and was cooled to room temperature. The excess formic acid was removed under reduced pressure and the residue was dissolved in 100 mL of water. The solution was added to concentrated NH,OH/H,O and the mixture was extracted with ethyl acetate (3 x 200 mL). The combined organic layers were washed with brine (1 x 250 mL) and was dried over Na,SO,. The solution was filtered and concentrated to leave a white solid. The solid was triturated with ether and was filtered to afford the title compound: MS (M+H): 353 (base peak).

5-(N-ACETYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

To a stirred suspension of 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) (1 g, 2.4 mmol) in 24 mL of CH₂Cl₂ was added 4-dimethylamino pyridine (0.88 g, 7.2 mmol) and acetyl chloride (0.21 g, 2.6 mmol). The solution was stirred for 3 h and the solvent was removed under reduced pressure. The residue was treated with saturated NH₄OH (20 mL) and the suspension was extracted with ethyl acetate (3 x 30 mL). The combined extracts were washed with brine (1 x 50 mL), dried over MgSO₄, filtered and concentrated to leave a solid. The solid was triturated with ether and was filtered to leave the title compound: MS (M+H): 381 (base peak).

5-(N-METHOXYACETYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting methoxy acetyl chloride for acetyl chloride the title compound was prepared: $^1\text{HNMR}$ (DMSO- d_{ϵ}) δ 8.75 (d, J = 6.72 Hz, 2 H), 7.70 (d, J = 6.72 Hz, 2 H), 7.38 (d, J = 8.60 Hz, 2 H), 7.29 (dd, J = 6.72, 1.88 Hz, 2 H), 4.40 (d, J = 11.8 Hz, 1 H), 4.05 (m, 2 H), 3.70 (d, J = 12.70 Hz, 1 H), 3.25 (s, 3 H), 3.0 (m, 2 H), 2.55 (m, 1 H), 1.7 (m, 4 H). MS (M+H): 411 (base peak).

Example C-78

5-(N-METHYLSULFONYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting methylsulfonyl chloride (2.0 equivalents) for acetyl chloride the title compound was prepared: 1 HNMR (DMSO- d_{6}) δ 8.70 (d, J = 6.72 Hz, 2 H), 7.72 (d, J = 6.72 Hz, 2 H), 7.38 (d, J = 7.66 Hz, 2 H), 7.30 (dd, J = 6.72, 1.88 Hz, 2 H), 3.58 (bd, J = 11.8 Hz, 2 H), 2.87 (m, 1 H), 2.82 (s, 3 H), 2.72 (m, 2 H), 1.85 (m, 4 H). MS (M+H): 417 (base peak).

Example C-79

5-[N-METHOXYETHYL-4-PIPERIDYL]-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

To a stirred suspension of 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) (500 mg, 1.2 mmol) in 12 mL of DMF was added Hunig's base (790 mg, 6.1 mmol) and 2-bromoethyl methyl ether (850 mg, 6.1 mmol). The solution was stirred at room temperature for 5 days. The solution was poured onto 2.5 N NaOH and was extracted with ethyl acetate (3 x 100 mL). The combined extracts were washed with water (3 x 100 mL) and brine (1 x 100 mL). The organic phase was dried over Na,SO, and was filtered. The

solvent was removed under reduced pressure to leave a solid. The solid was triturated and filtered to leave the title compound: $^{1}HNMR$ (CDCl,) δ 8.63 (d, J = 4.23 Hz, 2 H), 7.28 (m, 4 H), 7.14 (d, J = 4.43 Hz, 2 H), 3.57 (t, J = 5.24 Hz, 2 H), 3.38 (s, 3 H), 3.14 (bd, J = 10.1 Hz, 2 H), 2.79 (m, 1 H), 2.68 (t, J = 5.04, 2 H), 2.08 (m, 4 H), 1.92 (m, 2 H). MS (M+H): 397 (base peak).

Example C-80

5-(N-ALLYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of example C-79 and substituting allyl bromide for 2-bromoethyl methyl ether the title compound was prepared: MS (M+H): 379 (base peak)

5-(N-PROPARGYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of example C-79 and substituting propargyl bromide for 2-bromoethyl methyl ether the title compound was prepared: MS (M+H): 377 (base peak)

Example C-82

5-[N-(2-METHYLTHIAZOLYL)-4-PIPERIDYL]-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

To a suspension of 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) in 12 mL of MeOH was added trimethyl orthoformate (2.6 g,

24.4 mmol) and 2-thiazolecarboxaldehyde (1.4 g, 12.2 mmol). The suspension was stirred at room temperature for 2 h. To this mixture was added NaCNBH, (1.5 g, 24.4 mmol) and the resulting suspension was stirred at room temperature for 7 days. The mixture was poured onto 2.5 N NaOH and was extracted with ethyl acetate (2 x 100 mL). The combined extracts were washed with brine (1 x 100 mL), dried over Na₂SO₄, filtered and concentrated to leave a solid. This solid was triturated with ether and filtered to afford the title compound: MS (M+H): 436 (base peak).

Example C-83

5-(4-PIPERIDYL)-4-(4-PYRIDYL)-3-[4-(TRIFLUOROMETHYL)PHENYL] PYRAZOLE

following the method of Example Bv C-1 and substituting methyl-4-(trifluoromethyl)benzoate ethyl-4-fluorobenzoate and N-t-butoxycarbonylisonipecotyl N-hydroxysuccinimide for N-benyloxycarbonylglycinyl N-hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate

was accomplished with 4 N HCl in dioxane to afford the title compound as its hydrochloride salt: MS (M+H): 373 (base peak).

Example C-84

5-(N-METHYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-[4-(TRIFLUOROMETHYL) PHENYL] PYRAZOLE

By following the method of Example C-75 and substituting 5-(4-piperidyl)-4-(4-pyridyl)-3-[4-(trifluoromethyl)phenyl) pyrazole hydrochloride (Example C-83) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 387 (base peak).

Example C-85

5-[N-(2-PROPYL)-4-PIPERIDYL]-4-(4-PYRIDYL)-3-[4-(TRIFLUOROMETHYL)PHENYL] PYRAZOLE

To a solution of 5-(4-piperidyl)-4-(4-pyridyl)-3-[4-(trifluoromethyl)phenyl] pyrazole (Example C-83) (300 mg, 0.7 mmol) in 50 mL of acetone was added 1 mL of AcOH and NaBH(OAc), (15 g, 70.8 mmol). The mixture was warmed to reflux and was stirred for 5 days. The reaction mixture was poured onto 100 mL of 2.5 N NaOH and was extracted with ethyl acetate (2 x 100 mL). The extracts were combined and washed with brine (1 x 100 mL). The organic phase was dried over Na₂SO₄, filtered, and concentrated to afford the title compound: MS (M+H): 415 (base peak).

Example C-86

5-(4-PIPERIDYL)-4-(4-PYRIDYL)-3-[3-(TRIFLUOROMETHYL)PHENYL] PYRAZOLE

following the method of Example C-1 and methyl-3-(trifluoromethyl)benzoate for substituting *N-t-*butoxycarbony1ethyl-4-fluorobenzoate and isonipecotyl N-hydroxysuccinimide for N-benyloxycarbonylglycinyl N-hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound as its hydrochloride salt: MS (M+H): 373 (base peak).the pyrazole C-3 substituent (Cviii). Treatment of the

Example C-87

5-(N-METHYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-[3-(TRIFLUOROMETHYL)PHENYL] PYRAZOLE

By following the method of Example C-75 and substituting 5-(4-piperidyl)-4-(4-pyridyl)-3-[3-(trifluoromethyl)phenyl] pyrazole hydrochloride (Example C-86) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 387 (base peak).

5-(4-PIPERIDYL)-4-(4-PYRIDYL)-3-(3-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-1 ethyl-4methyl-3-chlorobenzoate for substituting and N-t-butoxycarbonyl-isonipecotyl fluorobenzoate for N-benyloxycarbonyl-glycinyl hydroxysuccinimide hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound: (M+H): 339 (base peak).

Example C-89

5-(N-METHYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(3-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-75 and substituting 5-(4-piperidyl)-4-(4-pyridyl)-3-(3-chlorophenyl) pyrazole hydrochloride (Example C-88) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 353 (base peak).

Example C-90

5-(3-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

method of Example C-1 and following the By N-t-butoxycarbonyl-nipecotyl Nsubstituting for N-benyloxycarbonyl-glycinyl hydroxysuccinimide Nhydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound as its hydrochloride salt: MS (M+H): 323 (base peak).

5-(N-METHYL-3-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-75 and substituting 5-(3-piperidyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole hydrochloride (Example C-90) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 337 (base peak).

Example C-92

5-cis-(4-AMINOCYCLOHEXYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-1 and substituting methyl-4-chlorobenzoate for ethyl-4-

N-t-butoxycarbonyl-cis-4and fluorobenzoate aminocyclohexanoyl N-hydroxysuccinimide Nfor benyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected The deprotection of the N-t-butoxycarbonyl compound. intermediate was accomplished with 4 N HCl in dioxane to afford the title compound: $^{1}HNMR$ (d₆-DMSO) δ 8.56 (d, J = 6.04 Hz, 2 H), 7.39 (d, J = 8.66 Hz, 2 H), 7.31 (d, J =8.46 Hz, 2 H), 7.17 (d, J = 5.84 Hz, 2 H), 3.05 (m, 1 H), 2.62 (m, 1 H), 1.99 (m, 2 H), 1.53 (m, 6 H). MS (M+H): 353 (base peak).

Example C-93

5-cis-(4-N, N-DIMETYLAMINOCYCLOHEXYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-75 and substituting 5-cis-(4-aminocyclohexyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole (Example C-92) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 381 (base peak).

5-[cis-4-N-(2-PROPYL) AMINOCYCLOHEXYL]-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

of 5-cis-(4-aminocyclohexyl)-4-(4-To slurry pyridyl)-3-(4-chlorophenyl) pyrazole (Example C-92) (1.0 g, 2.8 mmol, 1.0 eq) in methylene chloride (28 mL) was added acetone (0.5 mL), acetic acid (0.5 mL) and solid sodium triacetoxyborohydride. The slurry was stirred for 5 h and the volatiles were removed. The residue was partitioned between 2.5 M NaOH (25 mL) and ethyl acetate (25 mL) and the aqueous layer was extracted with ethyl The combined organic layer was acetate (3 \times 25 mL). dried over MgSO, washed with brine (50 mL), The residue was triturated with ether to evaporated. yield the title compound as a white powder: 'HNMR (d,-DMSO) δ 8.56 (d, J = 5.84 Hz, 2H), 7.40 (d, J = 8.26 Hz, 2H), 7.30 (d, J = 8.66 Hz, 2H), 7.18 (d, J = 5.64 Hz, 2H), 2.95 (m, 2H), 2.72 (m, 1H), 1.90 (m, 2H), 1.73 (m, 2H), 1.55 (m, 4H), 1.07 (d, J = 5.64 Hz, 6H). MS (M+H): 395 (base peak).

5-cis-[4-N-(ACETYL) AMINOCYCLOHEXYL]-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting 5-cis-(4-aminocyclohexyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole (Example C-92) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 395 (base peak).

Example C-96

5-cis-[4-N-(METHOXYACETYL)AMINOCYCLOHEXYL]-4-(4-PYRIDYL)3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting 5-cis-(4-aminocyclohexyl)-4-(4-pyridyl)-3-

(4-chlorophenyl) pyrazole (Example C-92) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) and methoxy acetyl chloride for acetyl chloride the title compound was prepared: MS (M+H): 425 (base peak).

Example C-97

5-cis-[4-N-(METHYLSULFONYL)AMINOCYCLOHEXYL]-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting 5-cis-(4-aminocyclohexyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole (Example C-92) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) and methylsulfonyl chloride for acetyl chloride the title compound was prepared: MS (M+H): 431 (base peak).

5-cis-(4-AMINOCYCLOHEXYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-1 and substituting N-t-butoxycarbonyl-cis-4-aminocyclohexanoyl N-hydroxysuccinimide for N-benyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound: MS (M+H): 337 (base peak).

Example C-99

5-(cis-4-N, N-DIMETHYLAMINOCYCLOHEXYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-75 and substituting 5-cis-(4-aminocyclohexyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (Example C-98) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 365 (base peak).

Example C-100

5-cis-[4-N-(2-PROPYL)AMINOCYCLOHEXYL]-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-94 and substituting cis-5-(4-aminocyclohexyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (Example C-98) for 5-(cis-4-n-(2-propyl)aminocyclohexyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole (Example C-92) the title compound was prepared: MS (M+H): 379 (base peak).

5-cis-(4-AMINOCYCLOHEXYL)-4-(4-PYRIDYL)-3-[4-(TRIFLUOROMETHYL)PHENYL] PYRAZOLE

Example C-1 the method of and following Ву methyl-4-(trifluoromethyl)benzoate for substituting N-t-butoxycarbonyl-cis-4and ethyl-4-fluorobenzoate N-hydroxysuccinimide aminocyclohexanoyl benyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound: MS (M+H): 387 (base peak).

Example C-102

5-cis-(4-N, N-DIMETHYLAMINOCYCLOHEXYL)-4-(4-PYRIDYL)-3-[4-(TRIFLUOROMETHYL)PHENYL] PYRAZOLE

By following the method of Example C-75 and substituting 5-cis-(4-aminocyclohexyl)-4-(4-pyridyl)-3-[4-(trifluoromethyl)phenyl] pyrazole (Example C-101) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 415 (base peak).

Example C-103

5-cis-(4-AMINOCYCLOHEXYL)-4-(4-PYRIDYL)-3-[3-(TRIFLUOROMETHYL) PHENYL] PYRAZOLE

method By following the of Example C-1 and substituting methyl-3-(trifluoromethyl)benzoate for ethyl-4-fluorobenzoate and N-t-butoxycarbonyl-cis-4aminocyclohexanoyl N-hydroxysuccinimide for Nbenyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected The deprotection of the N-t-butoxycarbonyl compound. intermediate was accomplished with 4 N HCl in dioxane to afford the title compound: MS (M+H): 387 (base peak).

5-cis-(4-N, N-DIMETHYLAMINOCYCLOHEXYL)-4-(4-PYRIDYL)-3-[3-(TRIFLUOROMETHYL) PHENYL] PYRAZOLE

By following the method of Example C-75 and substituting 5-cis-(4-aminocyclohexyl)-4-(4-pyridyl)-3-(3-(trifluoromethyl)phenyl) pyrazole (Example C-103) for <math>5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 415 (base peak).

Example C-105

5-cis-(4-AMINOCYCLOHEXYL)-4-(4-PYRIDYL)-3-(3-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-1 and substituting methyl-3-chlorobenzoate for ethyl-4-

fluorobenzoate and N-t-butoxycarbonyl-cis-4-aminocyclohexanoyl N-hydroxysuccinimide for N-benyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound: MS (M+H): 353 (base peak).

Example C-106

5-cis-(4-N, N-DIMETHYLAMINOCYCLOHEXYL)-4-(4-PYRIDYL)-3-(3-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-75 and substituting 5-cis-(4-aminocyclohexyl)-4-(4-pyridyl)-3-(3-chlorophenyl) pyrazole hydrochloride (Example C-105) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 381 (base peak).

5-(N-ACETIMIDO-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

To a suspension of 5-(4-piperidy1)-4-(4-pyridy1)-3-(4-fluoropheny1) pyrazole (Example C-2) (0.11 g, 0.35 mmol) in 2 mL EtOH was added ethyl acetamidate hydrochloride (0.065 g, 0.53 mmol) and the mixture was refluxed for 30 minutes. The solution was left at 5-10 °C for 16 h and filtered to obtain the title compound as a white solid: MS (M+H): 364 (base peak).

Example C-108

5-(N-CARBOXAMIDINO-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

To a stirred suspension of 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (C-2) (1.5 g, 4.7

mmol) in 47 mL of DMF was added Hunig's base (0.60 g, 4.7 mmol) and pyrazole carboxamide hydrochloride (0.68 g, 4.7 mmol). The slurry was allowed to stir at room temperature for 4 days. The reaction mixture was poured onto 300 mL of ether. The resulting precipitate was filtered to leave the title compound as the hydrochloride salt: MS (M+H): 365 (base peak).

Example C-109

5-(N-CYCLOPROPANOYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting cyclopropanoyl chloride for acetyl chloride the title compound was prepared: MS (M+H): 407 (base peak).

5-[N-(2-FLUORO)BENZOYL-4-PIPERIDYL]-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting 2-fluorobenzoyl chloride for acetyl chloride the title compound was prepared: MS (M+H): 461 (base peak).

Example C-111

5-(N-METHYLSULFONYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (Example C-2) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole (Example C-74)

and methylsulfonyl chloride for acetyl chloride the title compound was prepared: MS (M+H): 401 (base peak).

Example C-112

5-(N-METHOXYACETYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (Example C-2) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole (Example C-74) and methoxy acetyl chloride for acetyl chloride the title compound was prepared: MS (M+H): 395 (base peak).

Example C-113

5-(N-ACETYL-4-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole Example (C-2) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole Example (C-74) the title compound was prepared: MS (M+H): 365 (base peak).

Example C-114

5-[2-(1,1-DIMETHYL)AMINOETHYL]-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

Вy following the method of Example C-1 N-t-butoxycarbonyl-2-amino-2,2substituting dimethylpropanoyl N-hydroxysuccinimide for Nbenyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected The deprotection of the N-t-butoxycarbonyl compound. intermediate was accomplished with 4 N HCl in dioxane to afford the title compound as the hydrochloride salt: (M+H): 327 (base peak).

5-(METHOXYMETHYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-1 and substituting methyl-4-chlorobenzoate for ethyl-4-fluorobenzoate and 2-methoxyacetyl N-hydroxysuccinimide for N-benyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared: MS (M+H): 300 (base peak).

Example C-116

5-(4-AMINOBENZYL)-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-1 and substituting methyl-4-chlorobenzoate for ethyl-4-fluorobenzoate and N-t-butoxycarbonyl-4-aminophenyl

acetyl N-hydroxysuccinimide for N-benyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound as the hydrochloride salt: MS (M+H): 361 (base peak).

Example C-117

5-[4-(N, N-DIMETHYL) AMINOBENZYL]-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-75 and substituting 5-(4-aminobenzyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole (Example C-116) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 389 (base peak).

5-[4-(N-ACETYL) AMINOBENZYL]-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting 5-(4-aminobenzyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole (Example C-116) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 403 (base peak).

Example C-119

5-(N-METHYLAMINOMETHYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL)
PYRAZOLE

5-(N-formylaminomethyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole. To a suspension of 5-aminomethyl-

4-(4-pyridy1)-3-(4-fluoropheny1) pyrazole (Example C-1) (8.04 g, 30 mmol) in 120 mL dichloromethane was added p-nitrophenylformate (6.01 g, 36 mmol) as a solid. The suspension was stirred for 24 h at room temperature and the solvents removed under reduced pressure. The residue was triturated with ether and filtered to obtain the desired 5-(N-formylaminomethyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole derivative as a white solid: MS (M+H): 297 (base peak).

5-(N-methylaminomethyl)-4-(4-pyridyl)-3-(4-5-(Nsuspension of To a fluorophenyl) pyrazole. formylaminomethyl)-4-(4-pyridyl)-3-(4-fluorophenyl) mLanhydrous in 90 pyrazole (8.74 q, 29.5 .mmol) tetrahydrofuran was added a 1.0 M solution of borane in tetrahydrofuran (90 mL, 90 mmol) and the mixture was stirred at room temperature for 24 h. 1 N aqueous hydrochloric acid (100 mL) was then added to this mixture and the solution was refluxed for 5 hours and cooled to The solution was extracted with ether room temperature. (2 \times 250 mL) and the pH of the aqueous layer adjusted to 9 by addition of concentrated ammonium hydroxide. The aqueous layers (pH ~ 9) were then extracted with ethyl The organic extracts were dried acetate $(4 \times 150 \text{ mL})$. over sodium sulfate, filtered and evaporated to dryness under reduced pressure. The residue was triturated with acetonitrile and filtered to obtain the title compound as a white solid: MS (M+H): 283 (base peak).

5-[N-(2-AMINO-2,2-DIMETHYLACETYL)AMINOMETHYL]-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

5-(N-t-butoxycarbonylaminomethyl)-4-(4-pyridyl)-3a solution of 5-(4-fluorophenyl) pyrazole. To aminomethyl-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (Example C-1)(0.27 g,1 mmol) in anhydrous dimethylformamide (4 mL) was added N-tert-butoxycarbonyl aminoisobutyric acid N-hydroxysuccinimide ester (0.33 g, 1.1 mmol) and the mixture stirred at 40 °C for 24 h. resulting solution was evaporated to dryness residue was dissolved in reduced pressure. The dichloromethane (30 mL) and washed with a saturated solution of sodium bicarbonate (2 x 20 mL) and brine (20 The organic layers were dried over sodium sulfate, filtered and evaporated under reduced pressure to dryness 5-(N-t-butoxycarbonylaminomethyl)-4-(4afford pyridyl)-3-(4-fluorophenyl) pyrazole as a white solid.

5-(N-(2-amino-2,2-dimethylacetyl)aminomethyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole. To a solution of the above compound in acetonitrile (2 mL) was added 1 mL of a 4.0 M solution of hydrochloric acid in dioxane. The

reaction mixture was stirred at room temperature for 6 hours. The suspension was evaporated to dryness under reduced pressure. The resulting residue was stirred in acetonitrile (5 mL), filtered and dried in a vacuum dessicator to afford the title compound as a hydrochloride salt: MS (M+H): 354 (base peak).

Example C-121

5-[N-(2-AMINO-2,2-DIMETHYLACETYL)AMINOMETHYL]-4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-120 and substituting 5-aminomethyl-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole (Example C-15) for 5-aminomethyl-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (Example C-1) the title compound was prepared: MS (M+H): 370 (base peak).

5-[4-N-(2-DIMETHYLAMINOACETYL)PIPERIDYL]-4-(4-PYRIDYL)-3(4-CHLOROPHENYL) PYRAZOLE

To a solution of N, N-dimethylglycine hydrochloride (0.28 g, 2 mmol) in dimethylformamide (4 mL) was added (0.27)2 mmol), hydroxybenzotriazole g, diisopropylethyl amine (0.7 mL, 4 mmol) and polymer supported ethyl carbodimide (Example B-49) (1 g, To this solution after 30 minutes at room temperature was added 5-(4-piperidyl)-4-(4-pyridyl)-3-(4chlorophenyl) pyrazole hydrochloride (Example C-74), 0.41 The suspension was agitated on a labtop g, 1 mmol). orbital shaker for 24 h. The suspension was filtered, washed with dimethylformamide (2 \times 5 mL) filtrates evaporated under high pressure. The residue was dissolved in dichloromethane (30 mL), washed with a saturated solution of sodium bicarbonate (50 mL) and 'brine (50 mL). The organic layers were dried over sodium sulfate, filtered and evaporated under high vacuum to afford the title compound as a white solid: MS (M+H): 424 (base peak).

(S)-5-(2-PYROLIDINYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

following the method of Example C-1 By (S) -N-t-butoxycarbonyl-prolinyl Nsubstituting for N-benyloxycarbonyl-glycinyl hydroxysuccinimide Nhydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound: (M+H): 309 (base peak).

Example C-124

(S)-5-(N-METHYL-2-PYROLIDINYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

of Example C-75 method Byfollowing the (S)-5-(2-pyrolidinyl)-4-(4-pyridyl)-3-(4substituting C-123) pyrazole (Example for 5-(4fluorophenyl) piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 323 (base peak).

Example C-125

(R)-5-(2-PYROLIDINYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-1 and substituting (R)-N-t-butoxycarbonyl-prolinyl N-hydroxysuccinimide for N-benyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound: MS (M+H): 309 (base peak).

(R)-5-(N-METHYL-2-PYROLIDINYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-75 and substituting (R)-5-(2-pyrolidinyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (Example C-125) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 323 (base peak).

Example C-127

(R)-5-(3-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-1 and substituting (R)-N-t-butoxycarbonyl-nipecotyl N-hydroxysuccinimide for N-benyloxycarbonyl-glycinyl N-

hydroxysuccinimide the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound: MS (M+H): 323 (base peak).

Example C-128

(R)-5-(N-METHYL-3-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-75 and substituting (R)-5-(3-piperidyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (Example C-125) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: MS (M+H): 337 (base peak).

2,2-DIMETHYL-4-[4-(4-PYRIDYL)-3-(4-CHLOROPHENYL) PYRAZOLYL] BUTYRIC ACID

By following the method of Example C-1 and substituting methyl-4-chlorobenzoate for ethyl-4-fluorobenzoate and 2,2-dimethyl glutaric anhydride for N-benyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared: MS (M+H): 370 (base peak).

Example C-130

4-[4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLYL] BUTYRIC ACID

By following the method of Example C-1 and substituting glutaric anhydride for N-benzyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared: MS (M+H): 326 (base peak).

4-[4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLYL] BUTYRAMIDE

4-(4-(4-pyridyl)-3-(4-fluorophenyl) Methyl pyrazolyl) butyrate. To a solution of 4-(4-(4-pyridyl)-3-(4-fluorophenyl) pyrazolyl) butyric acid (Example C-130) (40 g, 123 mmol) in 650 mL of MeOH was added 20 mL of concentrated H2SO4. The solution was stirred overnight at room temperature. The solution was concentrated and diluted with 200 mL of water. The solution was cooled with an ice/water bath and to the solution was added 150 mL of saturated NaHCO,. The solution was neutralized further with 50% NaOH to pH 7. The resulting slurry was extracted with CH₂Cl₂ (3 \times 250 mL). The combined extracts were washed with water (1 x 300 mL) and saturated NaHCO, (1 \times 500 mL). The organic phase was dried over Na, SO, filtered and concentrated to afford methyl 4-(4-(4pyridy1)-3-(4-fluorophenyl) pyrazolyl) butyrate: (M+H): 340 (base peak).

4-(4-(4-pyridyl)-3-(4-fluorophenyl) pyrazolyl)
butyramide. A solution of methyl 4-(4-(4-pyridyl)-3-(4fluorophenyl) pyrazolyl) butyrate (39 g, 120 mmol) in 600
mL of MeOH was saturated with NH,. The solution was

periodically treated with additional NH, over a 24 h period. The solution was degassed with a stream of nitrogen and the solution was concentrated to leave a yellow solid. The solid was slurried in ether and filtered to leave the title compound: MS (M+H): 325 (base peak).

Example C-132

5-[4-(1-HYDROXY)BUTYL]-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

A stirred suspension of 4-(4-(4-pyridyl)-3-(4-fluorophenyl) pyrazolyl) butyric acid (Example C-130) (2 g, 6.15 mmol) in 100 ml of anhydrous ether was cooled to 0 °C under nitrogen. Lithium aluminum hydride (467 mg, 12.3 mmol) was added to this suspension slowly. After the addition was complete, the mixture was warmed to room temperature and stirred for additional 2 h. The reaction was quenched slowly with 1N KHSO, (80 ml). The mixture was transferred to a separatory funnel and the aqueous layer was removed. The aqueous layer was then made basic with K2CO, (pH 8). The aqueous solution was extracted with ethyl acetate (2 x 100 mL). The combined ethyl acetate extracts were washed with water (1 x 100

mL), dried over MgSO, filtered and concentrated to give the title compound: MS (M+H): 312 (base peak).

Example C-133

5-[4-(1,1-DIMETHYL-1-HYDROXY)BUTYL]-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

A solution of 4-(4-(4-pyridyl)-3-(4-fluorophenyl) pyrazolyl) butyric acid (Example C-130) (200 mg, 0.615 mmol) in 50 ml of MeOH was treated with 10 ml of 4 N HCl/dioxane. The reaction mixture was stirred for 5 hours and evaporated to dryness. To this residue was added 15 ml of 1N methyl magnesium bromide in butyl ether and 5 ml of anhydrous THF. The reaction was heated to reflux under nitrogen for 64 h.

The reaction was quenched with 20 ml of saturated ammonium chloride. This mixture was transferred to a separatory funnel and was extracted with 100 ml ethyl acetate (2 x 100 mL). The combined ethyl acetate extracts were washed with water (1 x 100 mL), dried over MgSO4, filtered and concentrated to afford a crude oil. The crude oil was subjected to column chromatography by using 3.5 % MeOH/CH2Cl2 followed by 6 % MeOH/CH2Cl2 to give the title compound: MS (M+H): 340 (base peak).

5-(4-(1-AMINO)BUTYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL)
PYRAZOLE

4-(4-(4-pyridyl)-3-(4suspension of To a fluorophenyl) pyrazolyl) butyramide (Example C-131) (2 g, 6.2 mmol) in 100 ml of anhydrous ether was added lithium aluminum hydride (467 mg, 12.3 mmol). After the addition was complete, the mixture was warmed to room temperature The reaction was and stirred for additional 2 h. quenched with 20 mL of ethyl acetate and was poured onto 100 mL of 2.5 N NaOH. The mixture was extracted with The combined extracts were ethyl acetate $(3 \times 50 \text{ mL})$. washed with brine (1 x 100 mL), dried over Na, SO,, filtered and concentrated to afford the title compound: MS (M+H): 311 (base peak).

4-(4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLYL) PROPIONIC ACID

By following the method of Example C-1 and substituting succinic anhydride for N-benyloxycarbonyl-glycinyl N-hydroxysuccinimide the title compound was prepared: MS (M+H): 312 (base peak).

Example C-136

5-(4-PIPERIDYL)-4-(4-PYRIMIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

method of Example C-1 following the By methyl-4-chlorobenzoate for ethyl-4substituting N-t-butoxycarbonyl-isonipecotyl Nfluorobenzoate, hydroxysuccinimide for N-benyloxycarbonyl-glycinyl hydroxysuccinimide and 4-methylpyrimidine for 4-picoline the title compound was prepared as the N-t-butoxycarbonyl protected compound. The deprotection of the N-t-butoxycarbonyl intermediate was accomplished with 4 N HCl in dioxane to afford the title compound as the hydrochloride salt: ¹H NMR (CDCl₃) δ 9.2 (s, 1 H), 8.48 (d, J = 5.19 Hz, 1 H), 7.31 (m, 4 H), 6.94 (d, J = 4.79 Hz, 1 H), (3.69 (m, 3 H), 3.12 (m, 2 H), 2.3 (m, 3 H), 1.24 (m, 2 H). MS (M+H): 340 (base peak).

Example C-137

5-(N-METHYL-4-PIPERIDYL)-4-(4-PYRIMIDYL)-3-(4-CHLOROPHENYL) PYRAZOLE

By following the method of Example C-75 and substituting 5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-chlorophenyl) pyrazole (Example C-136) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole hydrochloride (Example C-74) the title compound was prepared: 1H NMR (CDCl₃) δ 9.2 (d, J = 1.2 Hz, 1 H), 8.48 (d, J = 5.59 Hz, 1 H), 7.31 (m, 4 H), 6.95 (dd, J= 1.2, 5.6 Hz, 1 H), 3.39 (m, 1 H), 3.03 (d, J = 11.6 Hz, 2 H), 2.38 (s, 3 H), 2.06 (m, 4 H), 1.24 (m, 2 H). MS (M+H): 354 (base peak).

5-(N-ACETYL-3-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting 5-(3-piperidy1)-4-(4-pyridy1)-3-(4-fluoropheny1) pyrazole (C-90) for 5-(4-piperidy1)-4-(4-pyridy1)-3-(4-chloropheny1) pyrazole (C-74) the title compound was prepared: MS (M+H): 365 (base peak).

Example C-139

5-(N-METHOXYACETYL-3-PIPERIDYL)-4-(4-PYRIDYL)-3-(4-FLUOROPHENYL) PYRAZOLE

By following the method of Example C-76 and substituting 5-(3-piperidyl)-4-(4-pyridyl)-3-(4-fluorophenyl) pyrazole (C-90) for 5-(4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl) pyrazole (C-74) and methoxy

acetyl chloride for acetyl chloride the title compound was prepared: MS (M+H): 395 (base peak).

Additional compounds of the present invention which could be prepared using one or more of the reaction schemes set forth in this application include, but are not limited to, the following:

Example C-140

5-(4-N-t-butoxycarbonylpiperidinyl)-4-[4-(2-thiomethyl)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-141

5-(4-piperidinyl)-4-[4-(2-thiomethyl)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

5-(4-N-methylpiperidinyl)-4-[4-(2-thiomethyl)pyrimidinyl]-3-4-(chlorophenyl)pyrazole

Example C-143

5-(4-N-t-butoxycarbonylpiperidinyl)-4-[4-(2-methanesulfonyl)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-144

5-(4-piperidinyl)-4-[4-(2-methanesulfonyl)pyrimidinyl]-3(4-chlorophenyl)pyrazole

5-(4-N-methylpiperidinyl)-4-[4-(2-methanesulfonyl)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-146

5-(4-N-t-butoxycarbonylpiperidinyl)-4-[4-(2-amino)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-147

5-(4-piperidinyl)-4-[4-(2-amino)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

5-(4-N-methylpiperidinyl)-4-[4-(2-amino)pyrimidinyl]-3(4-chlorophenyl)pyrazole

Example C-149

5-(4-N-t-butoxycarbonylpiperidinyl)-4-[4-(2-methylamino)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-150

5-(4-piperidinyl)-4-[4-(2-methylamino)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

5-(4-N-methylpiperidinyl)-4-[4-(2-methylamino)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-152

5-(4-N-t-butoxycarbonylpiperidinyl)-4-[4-(2-isopropylamino)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-153

5-(4-piperidinyl)-4-[4-(2-isopropylamino)pyrimidinyl]-3(4-chlorophenyl)pyrazole

5-(4-N-methylpiperidinyl)-4-[4-(2-isopropylamino)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-155

5-(4-N-t-butoxycarbonylpiperidinyl)-4-[4-(2-(2-methoxyethylamino))pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-156

5-(4-piperidinyl)-4-[4-(2-(2-methoxyethylamino))pyrimidinyl]-3-(4-chlorophenyl)pyrazole

5-(4-N-methylpiperidinyl)-4-[4-(2-(2-methoxyethylamino))pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-158

5-(4-N-t-butoxycarbonylpiperidinyl)-4-[4-(2-methoxy)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-159

5-(4-piperidinyl)-4-[4-(2-methoxy)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

5-(4-N-methylpiperidinyl)-4-[4-(2-methoxy)pyrimidinyl]-3(4-chlorophenyl)pyrazole

Example C-161

5-(4-N-t-butoxycarbonylpiperidinyl)-4-[4-(2-isopropoxy)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-162

5-(4-piperidinyl)-4-[4-(2-isopropoxy)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

5-(4-N-methylpiperidinyl)-4-[4-(2-isopropoxy)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-164

5-(4-N-t-butoxycarbonylpiperidinyl)-4-[4-(2-(2-N,N-dimethylamino)ethoxy)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-165

5-(4-piperidinyl)-4-[4-(2-(2-N,N-dimethylamino)ethoxy)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

5-(4-N-methylpiperidinyl)-4-[4-(2-(2-N,N-dimethylamino)ethoxy)pyrimidinyl]-3-(4-chlorophenyl)pyrazole

Example C-167

5-(N-acetylhydroxylimido-4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-168

5-(N-benzylhydroxylimido-4-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-(N-phenylacethydroxylimido-4-piperidyl)-4-(4-pyridyl)3-(4-chlorophenyl)pyrazole

Example C-170

5-[N-methyl-4-(3,4-dehydro)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-171

5-[N-isopropyl-4-(3,4-dehydro)piperidyl]-4-(4-pyridyl)-3(4-chlorophenyl)pyrazole

5-[N-benzyl-4-(3,4-dehydro)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-173

5-[N-methyl-4-(4-fluoro)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-174

5-[N-methyl-4-(4-hydroxy)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[N-methyl-4-(4-methoxy)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-176

5-[N-methyl-4-(2,5-tetramethyl-4-fluoro)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-177

5-[N-methy1-4-(2,5-tetramethyl-4-hydroxy)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[N-methyl-4-(2,5-tetramethyl-4-methoxy)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-179

5-[4-(3-fluoro)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-180

5-[4-(N-methyl-3-fluoro)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[4-(N-isopropyl-3-fluoro)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-182

5-[4-(N-benzyl-3-fluoro)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-183

5-[4-(N-acety1-3-fluoro)piperidy1]-4-(4-pyridy1)-3-(4-chloropheny1)pyrazole

5-[4-(2-oxo)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-185

5-[4-(N-methyl-2-oxo)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[4-(N-isopropyl-2-oxo)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-187

5-[4-(N-benzyl-2-oxo)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-188

5-[4-(N-acetyl-2-oxo)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[5-(2-oxo)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-190

5-[5-(N-methyl-2-oxo)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-191

5-[5-(N-isopropyl-2-oxo)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[5-(N-benzyl-2-oxo)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-193

5-[5-(N-acetyl-2-oxo)piperidyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-194

5-(N-acethydroxylimido-3-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-(N-benzhydroxylimido-3-piperidyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-196

5-(N-phenacethydroxylimido-3-piperidyl)-4-(4-pyridyl)-3(4-chlorophenyl)pyrazole

Example C-197

5-(2-morpholinyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-(N-methyl-2-morpholinyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-199

5-(N-isopropyl-2-morpholinyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-200

5-(N-benzyl-2-morpholinyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-(N-acetyl-2-morpholinyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-202

5-[trans-4-(N-t-butoxycarbonylamino)methylcyclohexyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-203

5-(trans-4-aminomethylcyclohexyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[trans-4-(N-isopropylamino)methylcyclohexyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-205

5-[trans-4-(N, N-dimethylamino)methylcyclohexyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-206

5-[trans-4-(N-acetylamino)methylcyclohexyl)]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

996

Example C-207

5-[trans-4-(N-t-butoxycarbonylamino)cyclohexyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-208

5-(trans-4-aminocyclohexyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-209

5-[trans-4-(N, N-dimethylamino)cyclohexyl]-4-(4-pyridyl)3-(4-chlorophenyl)pyrazole

5-[trans-4-(N-isopropylamino)cyclohexyl)-4-(4-pyridyl)-3(4-chlorophenyl)pyrazole

Example C-211

5-[trans-4-(N-acetylamino)cyclohexyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-212

5-[cis-4-(N-t-butoxycarbonyl)methylaminocyclohexyl)]-4(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-(cis-4-methylaminocyclohexyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-214

5-[cis-4-(N,N-dimethyl)methylaminocyclohexyl)]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-215

5-[cis-4-(N-isopropyl)methylaminocyclohexyl)]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[cis-4-(N-acetyl)methylaminocyclohexyl)]-4-(4-pyridyl)3-(4-chlorophenyl)pyrazole

Example C-217

5-[3-(1,1-dimethyl-1-(N-t-butoxycarbonylamino)propyl-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-218

5-[3-(1,1-dimethyl-1-amino)propyl-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[3-(1,1-dimethyl-1-(N,N-dimethylamino)propyl-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-220

5-[3-(1,1-dimethyl-1-(N-isopropylamino)propyl-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-221

5-[3-(1,1-dimethyl-1-(N-acetylamino)propyl-4-(4-pyridyl)3-(4-chlorophenyl)pyrazole

5-[4-(1-carboxamidino)benzyl-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-223

5-[4-(1-N-methylcarboxamidino)benzyl-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-224

5-[4-(1-N-benzylcarboxamidino)benzyl-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[3-(1-carboxamidino)benzyl-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-226

5-[3-(1-N-methylcarboxamidino)benzyl-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-227

5-[3-(1-N-benzylcarboxamidino)benzyl-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[3-(N-t-butoxycarbonyl)aminobenzyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-229

5-(3-aminobenzyl)-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-230

5-[3-(N, N-dimethylamino)benzyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[3-(N-isopropylamino)benzyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-232

5-[3-(N-benzylamino)benzyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[3-(N-acetylamino)benzyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-234

5-[4-(2-amino)methylimidazolyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-235

5-[4-(2-N, N-dimethylamino)methylimidazolyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[4-(2-N-isopropylamino)methylimidazolyl]-4-(4-pyridyl)3-(4-chlorophenyl)pyrazole

Example C-237

5-[4-(2-N-benzylamino)methylimidazolyl]-4-(4-pyridyl)-3(4-chlorophenyl)pyrazole

Example C-238

5-[4-(2-N-acetylamino)methylimidazolyl]-4-(4-pyridyl)-3(4-chlorophenyl)pyrazole

5-[4-(2-amino)methyloxazolyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-240

5-[4-(2-N, N-dimethylamino)methyloxazolyl]-4-(4-pyridyl)3-(4-chlorophenyl)pyrazole

Example C-241

5-[4-(2-N-isopropylamino)methyloxazolyl]-4-(4-pyridyl)-3(4-chlorophenyl)pyrazole

5-[4-(2-N-benzylamino)methyloxazolyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-243

5-[4-(2-N-acetylamino)methyloxazolyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

Example C-244

5-[4-(2-amino)methylthiazolyl]-4-(4-pyridyl)-3-(4-chlorophenyl)pyrazole

5-[4-(2-N, N-dimethylamino)methylthiazolyl]-4-(4-pyridyl)3-(4-chlorophenyl)pyrazole

Example C-246

5-[4-(2-N-isopropylamino)methylthiazolyl]-4-(4-pyridyl)3-(4-chlorophenyl)pyrazole

5-[4-(2-N-benzylamino)methylthiazolyl]-4-(4-pyridyl)-3(4-chlorophenyl)pyrazole

Example C-248

5-[4-(2-N-acetylamino)methylthiazolyl]-4-(4-pyridyl)-3(4-chlorophenyl)pyrazole

Biological data from compounds of Examples B-0001 through B-1573 and of Examples B-2270 through B-2462 are shown in the following tables.

In vitro P38-alpha kinase inhibitory data are shown in the column identified as:

"P38 alpha kinase IC50, uM or % inhib @ conc. (uM)"

10

15

20

25

In vitro whole cell assay for measuring the ability of the compounds to inhibit TNF production in human U937 cells stimulated with LPS are shown in the column identified as:

"U937 Cell IC50, uM or % inhib @ conc., (uM)"

In vivo assessment of the ability of the compounds to inhibit LPS-stimulated TNF release in the mouse is shown in the column identified as:

"Mouse LPS Model, % TNF inhib @ dose @ predose time"
wherein in the dose is milligram per kilogram (mpk)
administered by oral gavage and the predose time
indicates the number of hours before LPS challenge when
the compound is administered.

In vivo assessment of the ability of the compounds to inhibit LPS-stimulated TNF release in the rat is shown in the column identified as:

wherein in the dose is milligram per kilogram (mpk) administered by oral gavage and the predose time

indicates the number of hours before LPS challenge when the compound is administered.

			 7	
	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF inhib @ dose @predose time	inhib @dose @predose time
Example#	inhib@conc. (uM)	inhib@conc. (uM)	epredose time	e predose time
B-0001	53.0%@1.0uM	40.0% @1.0uM		
B-0002	71.0%@1.0uM	28.0%@10.0uM		
B-0003	70.0%@1.0uM	76.0% 10.0uM		
B-0004	80.0%@1.0uM	4.61uM		
B-0005	95.0%@1.0uM	2.97uM		
B-0006	82.0%@1.0uM	80%@10.0uM		
B-0007	74.0%@1.0uM	85.0%@10.0uM		
B-0008	42.0%@1.0uM	65.0%@10.0uM		
B-0009	0.04 uM	0.72uM		
B-0010	0.52 uM	0.65uM		
B-0011	0.03 uM	4.47uM		
B-0012	30.0%@1.0uM	44.0% @1.0uM		
B-0013	70.0%@1.0uM	84.0%@10.0uM		
B-0014	79.0%@1.0uM	80.0%@10.0uM		
B-0015	82.0%@1.0uM	80.0%@10.0uM		
B-0016	94.0%@1.0uM	3.98uM		
B-0017	56.0%@1.0uM	79.0%@10.0uM		
B-0018	60.0%@1.0uM	59.0%@10.0uM		
B-0019	84.0%@1.0uM	100.0%@10.0uM		
B-0020	73.0%@1.0uM	81.0%@10.0uM		
B-0021	68.0%@1.0uM	76.0%@10.0uM		
B-0022	69.0%@1.0uM	44.0@1.0uM		
B-0023	90.0%@1.0uM	77.0%@10.0uM		
B-0024	94.0%@1.0uM	52.0%@1.0uM		
B-0025	89.0%@1.0uM	79.0%@10.0uM		
B-0026	96.0%@1.0uM	3.27uM		
B-0027	94.0%@1.0uM	11.0uM		
B-0028	69.0%@1.0uM	45.0%@10.0uM		
B-0029	91.0%@1.0uM	58.0%@10.0uM	<u> </u>	
B-0030	92.0%@1.0uM	75.0%@10.0uM		
B-0031	94.0%@1.0uM	100.0%@10.0uM	<u> </u>	
B-0032	94.0%@1.0uM	78.0%@10.0uM		
B-0033	97.0%@1.0uM	10.0uM		
B-0034	95.0%@1.0uM	10.0uM		
B-0035	94.0%@1.0uM	10.0uM		
B-0036	92.0%@1.0uM	8.24uM		
B-0037	91.0%@1.0uM	86.0%@10.0uM	``	
B-0038	71.0%@1.0uM	84.0%@10.0uM		
B-0039	89.0%@1.0uM	72.0%@10.0uM		
B-0040	93.0%@1.0uM	2.3uM		
B-0041	65.0%@1.0uM	66.0%@10.0uM		ļ
B-0042	94.0%@1.0uM	2.76uM		<u> </u>

	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF Inhib @ dose @predose time	inhib @dose @predose time
Example#	inhib@conc. (uM)	Inhib@conc. (uM)	wpredose time	e predose time
B-0043	0.22 uM	0.54uM		·
B-0044	0.14 uM	0.19uM		
B-0045	94.0%@1.0uM	1.01uM		
B-0046	96.0%@1.0uM	54.0%@1.0uM		
B-0047	94.0%@1.0uM	74.0%@10.0uM		
B-0048	94.0%@1.0uM	76.0%@10.0uM		
B-0049	88%@1.0uM	33.0%@1.0uM		
B-0050	73%@1.0uM	34.0%@1.0uM		
B-0051	3.3uM	2.15uM	47%@100mpk@-6h	79%@3mpk@-4h
B-0052	92%@1.0uM	15.0%@1.0uM		•
B-0053	95%@1.0uM	34.0%@1.0uM		
B-0054	90%@1.0uM	30.0%@1.0uM		
B-0055	93%@1.0uM	>1.0uM		
B-0056	96%@1.0uM	21.0%@1.0uM		
B-0057	96%@1.0uM	29.0%@1.0uM		
B-0058	79%@1.0uM	18.0%@1.0uM		
B-0059	83%@1.0uM	35.0%@1.0uM		
B-0060	73%@1.0uM	22.0%@1.0uM		
B-0061	62%@1.0uM	27.0%@1.0uM		
B-0062	94%@1.0uM	36.0%@1.0uM		
B-0063	96%@1.0uM	40.0%@1.0uM		
B-0064	90%@1.0uM	4.0%@1.0uM	<u> </u>	
B-0065	83%@1.0uM	21.0%@1.0uM		
B-0066	94%@1.0uM	28.0%@1.0uM		
B-0067	91%@1.0uM	1.0%@1.0uM		
B-0068	72%@1.0uM	22.0%@1.0uM		
B-0069	96%@1.0uM	37.0%@1.0uM		<u></u>
B-0070	92%@1.0uM	30.0%@1.0uM		
B-0071	86%@1.0uM	31.0%@1.0uM		
B-0072	77%@1.0uM	32.0%@1.0uM		
B-0073	91%@1.0uM	24.0%@1.0uM		
B-0074	92%@1.0uM	42.0%@1.0uM	<u> </u>	
B-0075	91%@1.0uM	35.0%@1.0uM		
B-0076	58%@1.0uM	21.0%@1.0uM		ļ
B-0077	0.8uM	10.0uM		
B-0078	80%@1.0uM	20.0%@1.0uM	<u> </u>	
B-0079	93%@1.0uM	13.0%@1.0uM		
B-0080	73%@1.0uM	73.0%@1.0uM		
B-0081	92%@1.0uM	13.0%@1.0uM		
B-0082	47%@1.0uM	27.0%@1.0uM		
B-0083	0.22uM	6.51uM	<u> </u>	
B-0084	56%@1.0uM	30.0%@1.0uM		

r				
	P38 alpha kinase IC50,uM or % Inhib@conc. (uM)	U937 Cell IC50,uM or % inhib@conc. (uM)	Mouse LPS Model % TNF Inhib @ dose @predose time	Rat LPS Model % Inhib @dose @predose time
Example#	000/ @4 035	21.0%@1.0uM		
B-0085	83%@1.0uM	37.0%@1.0uM		
B-0086	91%@1.0uM	2.26uM	200/ @20mmk@ 5h	
B-0087	0.55uM		38%@30mpk@-6h	
B-0088	96%@1.0uM	9.0%@1.0uM		
B-0089	0.04uM	3.33uM 52.0%@1.0uM		
B-0090	98%@1.0uM			
B-0091	96%@1.0uM	40.0%@1.0uM		
B-0092	97%@1.0uM	34.0%@1.0uM	200/ @20	
B-0093	3.18 uM	1.25uM	30%@30mpk@-6h	
B-0094	96%@1.0uM	52.0%@1.0uM		
B-0095	98%@1.0uM	38.0%@1.0uM		
B-0096	91%@1.0uM	22.0%@1.0uM		
B-0097	72.0%@10.0uM	38.0%@1.0uM		
B-0098	66.0%@10.0uM	12.0%@1.0uM		
B-0099	43.0% @1.0uM	>1.0uM .		
B-0100	75.0% @1.0uM	5.0uM		
B-0101	71.0% @1.0uM	2.11uM		
B-0102	81.0%@1.0uM	15.0%@1.0uM		
B-0103	71.0%@1.0uM	6.0%@1.0uM		
B-0104	56.0% @1.0uM	2.78uM		
B-0105	78.0%@1.0uM	5.0uM		
B-0106	62.0%@1.0uM	5.0uM	·	· · · · · · · · · · · · · · · · · · ·
B-0107	0.27uM	5.0uM		
B-0108	61.0%@1.0uM	4.85uM		·
B-0109	45.0%@1.0uM	19.0%@1.0uM		
B-0110	66.0%@1.0uM	13.0%@1.0uM		
B-0111	57.0%@1.0uM	>1.0uM		
B-0112	97.0%@1.0uM	1.12uM		
B-0113	75.0%@1.0uM	43.0%@1.0uM		
B-0114	45.0%@1.0uM	3.92uM		
B-0115	47.0%@1.0uM	2.0%@1.0uM		
B-0116	73.0%@1.0uM	35.0%@1.0uM	<u> </u>	
B-0117	0.46 uM	1.78 uM	30%@30mpk@-6h	
B-0118	1.18 uM	1.29 uM		
B-0119	89.0%@10.0uM	2.78uM		
B-0120	0.008 uM	0.21 uM	77%@100mpk@-6h	70%@3mpk@-4h
B-0121	79.0%@1.0uM	1.22uM		
B-0122	79.0%@10.0uM	2.0%@1.0uM		
B-0123	59.0%@1.0uM	>1.0uM		
B-0124	73.0%@1.0uM	15.0%@1.0uM		
B-0125	70.0%@10.0uM	17.0%@1.0uM		
B-0126	66.0%@1.0uM	1.57uM		

	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF inhib @ dose	inhib @dose
xample#	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
3-0127	82.0%@1.0uM	0.96uM		•
3-0128	78.0%@1.0uM	1.81uM		
3-0129	51.0%@1.0uM	31.0%@1.0uM		
3-0130	69.0%@1.0uM	58.0%@1.0uM		
3-0131	43.0%@1.0uM	46.0%@1.0uM		
3-0132	76.0%@1.0uM	8.0%@1.0uM		
3-0133	51.0%@1.0uM	42.0%@1.0uM		
B-0134	60.0%@1.0uM	2.17uM		
B-0135	78.0%@1.0uM	58.0%@1.0uM		
B-0136	77.0%@1.0uM	44.0%@1.0uM		
3-0137	41.0%@1.0uM	37.0%@1.0uM		
B-0138	50.0%@1.0uM	32.0%@1.0uM		
B-0139	54.0%@10.0uM	17.0%@1.0uM		
B-0140	67%@10.0uM	9.0%@1.0uM		
B-0141	78.0%@1.0uM	10.0%@1.0uM		
B-0142	86.0%@1.0uM	12.0%@1.0uM		
B-0143	42.0% @1.0uM	3.63uM		
B-0144	86.0% @1.0uM	43.0%@1.0uM		
B-0145	54.0% @10.0uM	12.0% @1.0uM		
B-0146	77.0% @10.0uM	28.0% @1.0uM		
B-0147	44.0% @1.0uM	22.0% @1.0uM		
B-0148	51.0% @1.0uM	>1.0uM		
B-0149	1.15 uM	10.0 uM		
B-0150	27.0% @10.0uM	35.0% @1.0uM		
B-0151	43.0% @1.0uM	30.0% @1.0uM		
B-0152	51.0% @1.0uM	24.0% @1.0uM		
B-0153	57.0% @1.0uM	21.0% @1.0uM		
B-0154	65.0% @10.0uM	14.0% @1.0uM		·
B-0155	40.0% @10.0uM	26.0% @1.0uM		
B-0156	42.0% @10.0uM	13.0% @1.0uM		
B-0157	48.0% @10.0uM	9.0% @1.0uM		
B-0158	58.0% @10.0uM	39.0% @1.0uM		
B-0159	54.0% @10.0uM	5.0% @1.0uM		
B-0160	59.0% @10.0uM	26.0% @1.0uM		
B-0161	72.0% @10.0uM	13.0% @1.0uM		
B-0162	23%@1.0uM	2.05 uM		
B-0163	20.0% @10.0uM	10.0% @1.0uM		
B-0164	37.0% @10.0uM	20.0% @1.0uM		
B-0165	70.0% @10.0uM	19.0% @1.0uM		
B-0166	45.0% @10.0uM	37.0% @1.0uM		
B-0167	40.0% @1.0uM	37.0% @1.0uM		
B-0168	44%@1.0uM	2.36 uM		<u> </u>

				1
1	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
!	IC50,uM or %	or %	TNF inhib @ dose	inhib @dose
Evennle#	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example# B-0169	43.0% @1.0uM	21.0% @1.0uM		
B-0170	43.0% @1.0uM	30.0% @1.0uM		
B-0170	61.0% @10.0uM	21.0% @1.0uM		
B-0171	16.0% @10.0uM	11.0% @1.0uM		
B-0172 B-0173	33.0% @10.0uM	48.0% @1.0uM		
B-0173	54.0% @10.0uM	43.0% @1.0uM		
B-0174	41.0% @10.0uM	31.0% @1.0uM		
B-0175	50.0% @1.0uM	30.0% @1.0uM		
B-0176	70.0% @10.0uM	27.0% @1.0uM		
B-0177	12.0% @10.0uM	35.0% @1.0uM		
B-0178	27.0% @10.0uM	37.0% @1.0uM		
B-0179	34.0% @10.0uM	23.0% @1.0uM		
B-0181	5.0%@1.0uM	2.0% @1.0uM		
B-0182	39.0% @10.0uM	40.0% @1.0uM		
B-0183	12.0% @10.0uM	34.0% @1.0uM		
B-0184	66.0% @10.0uM	17.0% @1.0uM		
B-0185	65.0% @10.0uM	25.0% @1.0uM		
B-0186	40.0% @1.0uM	25.0% @1.0uM		
B-0187	4.0% @10.0uM	14.0% @1.0uM		
B-0188	70.0% @10.0uM	35.0% @1.0uM		
B-0189	42.0% @10.0uM	9.0% @1.0uM		
B-0190	59.0% @10.0uM	31.0% @1.0uM		
B-0191	40.0% @1.0uM	29.0% @1.0uM		
B-0192	12.0% @10.0uM	47.0% @1.0uM		
B-0193	0.54 uM	6%@1.0uM		
B0194	1.31 uM	22%@1.0uM		
B-0195	1.03 uM	55%@1.0uM		
B-0196	2.24 uM	>1.0uM		
B-0197	2.0 uM	14%@1.0uM		
B-0198	1.2 uM	2%@1.0uM		
B-0199	1.34 uM	3%@1.0uM		
B-0200	1.31 uM	16%@1.0uM		
B-0201	0.29 uM	59%@1.0uM		
B-0202	0.55 uM	2.26 uM		
B-0203	0.16 uM	65%@1.0uM		
B-0204	0.21 uM	48%@1.0uM		
B-0205	0.096 uM	54%@1.0uM		
B-0206	5.76 uM	14%@1.0uM		
B-0207	0.12 uM	52%@1.0uM		
B-0208	0.067 uM	>1.0uM		
B-0209	0.29 uM	8%@1.0uM		
B-0210	0.057 uM	67%@1.0uM		

——-			T	
	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	or % inhib@conc. (uM)	@predose time	@predose time
Example#	inhib@conc. (uM)	mmbacone. (dm)	e predose time	Ор. осто
B-0211	0.25 uM	30%@1.0uM		-
B-0212	0.12 uM	28%@1.0uM		
B-0213	0.31 uM	39%@1.0uM		
B-0214	0.16 uM	50%@1.0uM		
B-0215	0.11 uM	51%@1.0uM		
B-0216	0.56 uM	>1.0uM		
B-0217	0.55 uM	>1.0uM		
B-0218	0.53 uM	18%@1.0uM		
B-0219	0.91 uM	18%@1.0uM		
B-0220	0.13 uM	40%@1.0uM		
B-0221	2.4 uM	>1.0uM		
B-0222	0.4uM	29.0%@1.0uM		
B-0223	0.2uM	1.0%@1.0uM		
B-0224	<0.1uM	93.0%@1.0uM		
B-0225	0.047uM	37.0%@1.0uM		
B-0226	0.074uM	20.0%@1.0uM		
B-0227	0.045uM	1.0%@1.0uM		
B-0228	. 0.15uM	44.0%@1.0uM		
B-0229	<0.1uM	61.0%@1.0uM		
B-0230	0.041uM	30.0%@1.0uM		
B-0231	0.055uM	40.0%1.0uM		
B-0232	0.048uM	24.0%@1.0uM		
B-0233	0.095uM	43.0%@1.0uM		
B-0234	0.11uM	68.0%@1.0uM		
B-0235	1.31uM	90.0%@1.0uM		
B-0236	0.077uM	46.0%@1.0uM		
B-0237	0.13uM	60.0%@1.0uM		
B-0238	0.47uM	82.0%@1.0uM		
B-0239	5.73uM	84.0%@1.0uM		
B-0240	0.2uM	70.0%@1.0uM		
B-0241	0.1uM	45.0%@1.0uM		
B-0242	<0.1uM	78.0%@1.0uM	 	
B-0243	0.039uM	53.0%@1.0uM		
B-0244	0.02uM	57.0%@1.0uM		
B-0245	0.13uM	24.0%@1.0uM >1.0uM		
B-0246	<0.1uM			
B-0247	0.082uM	75.0%@1.0uM		
B-0248	<0.1uM	11.0%@1.0uM		
B-0249	<0.1uM	75.0%@1.0uM		
B-0250	0.28uM	36.0%@1.0uM		
B-0251	0.31uM	54.0%@1.0uM		
B-0252	0.041uM	1 34.0 % 1.00M		

	P38 alpha kinase IC50,uM or %	U937 Cell IC50,uM or % inhib@conc. (uM)	Mouse LPS Model % TNF inhib @ dose @predose time	Rat LPS Model % Inhib @dose @predose time
Example#	inhib@conc. (uM)	innib@conc. (um)	W predose time	
B-0253	0.061uM	74.0%@1.0uM		-
B-0254	0.12uM	59.0%@1.0uM		
B-0255	0.32uM	68.0%@1.0uM		
B-0256	<0.1uM	88.0%@1.0uM		
B-0257	1.71uM	11.0%@1.0uM		
B-0258	0.37uM	63.0%@1.0uM		
B-0259	0.35uM	58.0%@1.0uM		
B-0260	0.56uM	23.0%@1.0uM		
B-0261	0.49uM	23.0%@1.0uM		
B-0262	0.41uM	89.0%@1.0uM		
B-0263	0.62uM	64.0%@1.0uM		<u> </u>
B-0264	0.14uM	18.0%@1.0uM		
B-0265	0.92uM	24.0%@1.0uM		
B-0266	0.25uM	24.0%@1.0uM		
B-0267	0.48uM	11.0%@1.0uM		
B-0268	3.39uM	19.0%@1.0uM		ļ
B-0269	9.81uM	19.0%@1.0uM		
B-0270	5.79uM	13.0%@1.0uM		
B-0271	7.55uM	12.0%@1.0uM		<u> </u>
B-0272	1.81uM	48.0%@1.0uM		
B-0273	5.03uM	13.0%@1.0uM		
B-0274	2.68uM	25.0%@1.0uM		
B-0275	2.67uM	33.0%@1.0uM		<u> </u>
B-0276	1.25uM	26.0%@1.0uM		<u> </u>
B-0277	0.68uM	34.0%@1.0uM		
B-0278	1.26uM	36.0%@1.0uM		
B-0279	1.39uM	33.0%@1.0uM		
B-0280	0.86uM	18.0%@1.0uM	<u> </u>	
B-0281	7.37uM	24.0%@1.0uM		
B-0282	0.75uM	38.0%@1.0uM	<u> </u>	
B-0283	6.66uM	29.0%@1.0uM		
B-0284	0.083uM	65.0%@1.0uM		
B-0285	4.57uM	29.0%@1.0uM		
B-0286	0.33uM	50.0%@1.0uM		
B-0287	4.0uM	22.0%@1.0uM		
B-0288	4.46uM	26.0%@1.0uM		
B-0289	0.15uM	55.0%@1.0uM		
B-0290	0.66uM	44.0%@1.0uM		
B-0291	1.33uM	20.0%@1.0uM		
B-0292	0.22uM	28.0%@1.0uM		
B-0293	0.66uM	53.0%@1.0uM		
B-0294	0.68uM	45.0%@1.0uM		

	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF inhib @ dose @predose time	inhib @dose @predose time
Example#	inhib@conc. (uM)	inhib@conc. (uM)	epredose time	& predose time
B-0295	0.82uM	45.0%@1.0uM		
B-0296	8.03uM	36.0%@1.0uM		
B-0297	0.78uM	30.0%@1.0uM		
B-0298	0.58uM	48.0%@1.0uM		
B-0299	0.87uM	54.0%@1.0uM		
B-0300	0.78uM	32.0%@1.0uM	·	
B-0301	0.19uM	50.0%@1.0uM		
B-0302	4.02uM	24.0%@1.0uM		
B-0303	0.22uM	10.0%@1.0uM		
B-0304	0.56uM	28.0%@1.0uM		
B-0305				
B-03 06				
B-0307				
B-0308				
B-0309	·			
B-0310			<u> </u>	
B-0311	· .			
B-0312				
B-0313				
B-0314				
B-0315				
B-0316				
B-0317				
B-0318	<u> </u>			
B-0319			<u> </u>	
B-0320			<u> </u>	
B-0321				
B-0322	ļ			
B-0323	<u> </u>			
B-0324	 			
B-0325				
B-0326		 		
B-0327 B-0328				
B-0328	 	 		
B-0329				
B-0331	 		1	
B-0332		<u> </u>		
B-0333				
B-0334				
B-0335				
B-0336		1		

	P38 alpha kinase IC50,uM or % inhib@conc. (uM)	U937 Cell IC50,uM or % inhib@conc. (uM)	Mouse LPS Model % TNF inhib @ dose @predose time	Rat LPS Model % inhib @dose @predose time
Example#	mino e conor (am)			
B-0337				
B-0338				
B-0339				
B-0340				
B-0341				
B-0342				
B-0343				
B-0344				
B-0345				
B-0346				
B-0347				
B-0348				
B-0349		<u> </u>		
B-0350				
B-0351				
B-0352				
B-0353	1.37uM	55%@1.0uM	10.01	540/ @2mmle@ 4hi
B-0354	1.0uM	0.66uM	51%@30mpk@-6h	54%@3mpk@-4h
B-0355	0.75uM	40.0%@1.0uM	ļ	
B-0356	0.66uM	24.0%@1.0uM		
B-0357	1.46uM	0.66uM		
B-0358	0.37uM	17.0%@1.0uM		
B-0359	0.45uM	47.0%@1.0uM		
B-0360	1.6uM	19.0%@1.0uM		
B-0361	0.33uM	46.0%@1.0uM		
B-0362	0.52uM	27.0%@1.0uM		
B-0363	4.67uM	25.0%@1.0uM		
B-0364	1.44uM	27.0%@1.0uM		<u> </u>
B-0365	0.96uM	27.0%@1.0uM		
B-0366	0.7uM	46.0%@1.0uM	ļ	
B-0367	1.0uM	23.0%@1.0uM	1000 - 100 Ch	
B-0368	1.0uM	0.64uM	37%@30mpk@-6h	
B-0369	0.16uM	57.0%@1.0uM		
B-0370	0.65uM	28.0%@1.0uM		
B-0371	0.49uM	28.0%@1.0uM		
B-0372	0.35uM	29.0%@1.0uM		
B-0373	0.45uM	18.0%@1.0uM		
B-0374	1.38uM	12.0%@1.0uM		
B-0375	1.0uM	19.0%@1.0uM		
B-0376	2.99uM	12.0%@1.0uM		
B-0377	1.29uM	36.0%@1.0uM		
B-0378	1.1uM	36.0%@1.0uM		<u> </u>

	P38 alpha kinase IC50,uM or % inhib@conc. (uM)	U937 Cell IC50,uM or % inhib@conc. (uM)	Mouse LPS Model % TNF inhib @ dose @predose time	Rat LPS Model % inhib @dose @predose time
Example#	0.70.31	24.0%@1.0uM		
B-0379	0.53uM	32.0%@1.0uM		
B-0380	1.41uM	47.0%@1.0uM		
B-0381	0.22uM	32.0%@1.0uM		
B-0382	0.41uM	10.0%@1.0uM		
B-0383	1.43uM	16.0%@1.0uM		
B-0384	4.02uM		30%@30mpk@-6h	0%@3mpk@-4h
B-0385	0.057uM	0.9uM	30%@30IIIpk@-0II	07860mpn 4m
B-0386	0.13uM	54.0%@1.0uM		
B-0387	0.41uM	52.0%@1.0uM		
B-0388	<0.1uM	36.0%@1.0uM		62%@3mpk@-4h
B-0389	0.01uM	0.05uM		62%@311ipk@-411
B-0390	0.089uM	55.0%@1.0uM		
B-0391	0.86uM	18.0%@1.0uM		
B-0392	0.13uM	57.0%@1.0uM		
B-0393	0.043uM	66.0%@1.0uM		
B-0394	0.13uM	45.0%@1.0uM		
B-0395	0.087uM	48.0%@1.0uM		
B-0396	0.097uM	0.44uM		
B-0397	0.17uM	41.0%@1.0uM	<u></u>	
B-0398	0.054uM	66.0%@1.0uM		
B-0399	0.14uM	39.0%@1.0uM		
B-0400	0.16uM	25.0%@1.0uM		
B-0401	0.46uM	52.0%@1.0uM		
B-0402	0.14uM	1.51uM		
B-0403	1.77uM	2.42uM	<u> </u>	
B-0404	0.31uM	48.0%@1.0uM	<u> </u>	
B-0405	0.79uM	30.0%@1.0uM	<u> </u>	
B-0406	0.54uM	35.0%@1.0uM	<u> </u>	
B-0407	0.76uM	27.0%@1.0uM		
B-0408	0.5uM	50.0%@1.0uM		
B-0409	0.53uM	30.0%@1.0uM		
B-0410	0.38uM	44.0%@1.0uM		
B-0411	0.62uM	50.0%@1.0uM		
B-0412	0.24uM	48.0%@1.0uM		
B-0413	0.18uM	55.0%@1.0uM		
B-0414	2.54uM	25.0%@1.0uM		
B-0415	0.42uM	43.0%@1.0uM		
B-0416	0.32uM	34.0%@1.0uM		
B-0417	0.91uM	28.0%@1.0uM		
B-0418	0.22uM	27.0%@1.0uM		
B-0419	0.85uM	41.0%21.0uM		
B-0420	0.83uM	49.0%@1.0uM		

				
	P38 alpha kinase IC50,uM or %	U937 Cell IC50,uM or %	Mouse LPS Model %	Rat LPS Model % Inhib @dose
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#	,			
B-0421	0.46uM	57.0%@1.0uM		•
B-0422	<0.1uM	40.0%@1.0uM		
B-0423	0.18uM	33.0%@1.0uM		
B-0424	0.083uM	32.0%@1.0uM		
B-0425	0.26uM	54.0%@1.0uM		
B-0426	0.055uM	0.74uM		41%@3mpk@-4h
B-0427	0.63uM	39.0%@1.0uM		
B-0428	0.99uM	27.0%@1.0uM		
B-0429	0.27uM	45.0%@1.0uM		
B-0430	0.29uM	75.0%@1.0uM		
B-0431	0.21uM	64.0%@1.0uM		
B-0432	<0.1uM	89.0%@1.0uM		
B-0433	<0.1uM	92.0%@1.0uM		
B-0434	0.12uM	65.0%@1.0uM		
B-0435	0.3uM	61.0%@1.0uM		
B-0436	1.11uM	71.0%@1.0uM		
B-0437	0.58uM	59.0%@1.0uM		
B-0438	<0.1uM	91.0%@1.0uM		
B-0439	2.12uM	65.0%@1.0uM		
B-0440	0.66uM	63.0%@1.0uM		
B-0441	0.8uM	58.0%@1.0uM		
B-0442	<0.1uM	91.0%@1.0uM		
B-0443	2.01uM	71.0%@1.0uM		
B-0444	1.01uM	51.0%@1.0uM		
B-0445	<0.1uM	83.0%@1.0uM		
B-0446	0.78uM	80.0%@1.0uM		
B-0447	0.19uM	71.0%@1.0uM		
B-0448	0.4uM	79.0%@1.0uM		
B-0449	0.83uM	81.0%@1.0uM		
B-0450	0.26uM	81.0%@1.0uM		
B-0451	0.071uM	83.0%@1.0uM	42%@30mpk@-6h	
B-0452	0.7uM	75.0%@1.0uM		
B-0453	0.47uM	75.0%@1.0uM		
B-0454	0.11uM	80.0%@1.0uM		
B-0455	<0.1uM	95.0%@1.0uM		36%@3mpk%-4h
B-0456	1.81uM	67.0%@1.0uM		
B-0457	0.089uM	81.0%@1.0uM		
B-0458	0.033uM	70.0%@1.0uM		
B-0459	0.099uM	76.0%@1.0uM		
B-0460	0.061uM	92.0%@1.0uM		
B-0461	0.025uM	96.0%@1.0uM		
B-0462	<0.1uM	97.0%@1.0uM		

	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF inhib @ dose	inhib @dose
F	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#	0.052uM	95.0%@1.0uM		
B-0463		91.0%@1.0uM		
B-0464	<0.1uM			
B-0465	0.084uM	98.0%@1.0uM		0%@3mpk@-4h
B-0466	<0.1uM	98.0%@1.0uM		0%@Silipk@4il
B-0467	<0.1uM	77.0%@1.0uM		
B-0468	0.031uM	93.0%@1.0uM		
B-0469	0.056uM	92.0%@1.0uM		
B-0470	0.063uM	92.0%@1.0uM		
B-0471	0.027uM	97.0%@1.0uM		
B-0472	0.19uM	54.0%@1.0uM		
B-0473	0.004uM	95.0%@1.0uM		
B-0474	0.024uM	86.0%@1.0uM		
B-0475	0.21uM	74.0%@1.0uM		
B-0476	0.56uM	69.0%@1.0uM		
B-0477	1.48uM	96.0%@1.0uM		
B-0478	0.034uM	87.0%@1.0uM		
B-0479	0.031uM	90.0%@1.0uM		15%@3mpk@-4h
B-0480	0.12uM	88.0%@1.0uM		
B-0481	0.014uM	95.0%@1.0uM		56%@3mpk@-4h
B-0482	0.97uM	68.0%@1.0uM		
B-0483	0.57uM	68.0%@1.0uM		
B-0484	0.28uM	62.0%@1.0uM		
B-0485	0.04uM	95.0%@1.0uM		
B-0486	0.24uM	80.0%@1.0uM		
B-0487	0.11uM	89.0%@1.0uM		54%@3mpk@-4h
B-0488	0.62uM	88.0%@1.0uM		
B-0489	0.3uM	80.0%@1.0uM		
B-0490	0.91uM	74.0%@1.0uM		
B-0491	0.43uM	66.0%@1.0uM		
B-0492	0.069uM	42.0%@1.0uM		
B-0493	0.3uM	36.0%@1.0uM		
B-0494	0.13uM	30.0%@1.0uM		
B-0495	0.12uM	25.0%@1.0uM		
B-0496	0.83uM	16.0%@1.0uM		
B-0497	0.44uM	31.0%@1.0uM		
B-0498	0.33uM	11.0%@1.0uM		
B-0499	0.39uM	37.0%@1.0uM		
B-0500	0.26uM	41.0%@1.0uM		
B-0501	0.049uM	52.0%@1.0uM	 	
B-0502	0.049UM	48.0%@1.0uM	 	
	0.065uM	73.0%@1.0uM	 	
B-0503		43.0%@1.0uM		
B-0504	0.4uM	1 40.0 /6 @ 1.0ulVI		<u></u>

	P38 alpha kinase IC50,uM or %	U937 Cell IC50,uM	Mouse LPS Model % TNF inhib @ dose	Rat LPS Model %
_	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#	0.00.41	44.0%@1.0uM		
B-0505	0.28uM			
B-0506	0.94uM	43.0%@1.0uM		
B-0507	0.18uM	75.0%@1.0uM		
B-0508	2.0uM	48.0%@1.0uM		
B-0509	0.1uM	86.0%@1.0uM	· ·	
B-0510	0.69uM	61.0%@1.0uM		
B-0511	0.007uM	90.0%@1.0uM		
B-0512	1.0uM	53.0%@1.0uM		
B-0513	0.72uM	52.0%@1.0uM		
B-0514	0.14uM	87.0%@1.0uM		
B-0515	0.42uM	61.0%@1.0uM		
B-0516	0.37uM	84.0%@1.0uM		
B-0517	0.094uM	52.0%@1.0uM		
	0.11uM	64.0%@1.0uM		
B-0518		87.0%@1.0uM		
B-0519	0.043uM			
B-0520	0.4uM	67.0%@1.0uM		
B-0521	1.37uM	52.0%@1.0uM		
B-0522	0.15uM	75.0%@1.0uM		
B-0523	0.19uM	83.0%@1.0uM		
B-0524	0.4uM	77.0%@1.0uM		
B-0525	0.16uM	76.0%@1.0uM		
B-0526	0.031uM	87.0%@1.0uM		
B-0527	1.09uM	63.0%@1.0uM		
B-0528	0.14uM	70.0%@1.0uM		
B-0529	0.11uM	73.0%@1.0uM		
B-0530	5.53uM	45.0%@1.0uM		
B-0531	0.5uM	48.0%@1.0uM		
B-0532	0.45uM	1.01uM	41%@30mpk@-6h	
B-0533	1.23uM	47.0%@1.0uM		
B-0534	0.41uM	54.0%@1.0uM	<u> </u>	
B-0535	0.44uM	0.87uM		
B-0536	0.46uM	0.15uM 51.0%@1.0uM		
B-0537	3.44uM	51.0%@1.0uM 45.0%@1.0uM	 	
B-0538 B-0539	1.13uM 2.84uM	21.0%@1.0uM		
B-0540	3.62uM	54.0%@1.0uM		
B-0541	3.24uM	28.0%@1.0uM		
B-0542	1.55uM	50.0%@1.0uM		
B-0543	1.56uM	43.0%@1.0uM		
B-0544	1.12uM	27.0%@1.0uM		
B-0545	1.06uM	41.0%@1.0uM		
B-0546	1.04uM	18.0%@1.0uM		
B-0547	1.24uM	21.0%@1.0uM	 	
B-0548	1.77uM	28.0%@1.0uM 22.0%@1.0uM		
B-0549	2.22uM	22.0 % W 1.0UM	1	

				
	P38 alpha kinase IC50,uM or %	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model % inhib @dose
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#	mmbeconc. (um)	mmbecone. (am)	epicados umo	ор. остоения
B-0550	2.41uM	14.0%@1.0uM		
B-0550 B-0551	1.08uM	56.0%@1.0uM		
B-0552	0.13uM	46.0%@1.0uM		
B-0553	1.44uM	47.0%@1.0uM		
B-0554	2.58uM	20.0%@1.0uM		
B-0555	1.87uM	34.0%@1.0uM		
B-0556	0.49uM	39.0%@1.0uM		
B-0557	1.37uM	32.0%@1.0uM		
B-0558	0.85uM	33.0%@1.0uM		
B-0559	0.53uM	49.0%@1.0uM		
B-0560	2.57uM	31.0%@1.0uM		
B-0561	2.07uM	40.0%@1.0uM		
B-0562	0.22uM	0.3uM		5%@3mpk@-4h
B-0563	0.18uM	0.13uM		
B-0564	0.82uM	58%@1.0uM		
B-0565	0.23uM	0.59uM		·
B-0566	<0.1uM	0.17uM		0%@3mpk@-4h
B-0567	0.14uM	0.28uM		07000mp.re m
B-0568	1.22uM	46.0%@1.0uM		
B-0569	0.15uM	0.26uM		
B-0570	0.13uM	46.0%@1.0uM		
B-0570	0.27 dW	44.0%@1.0uM		
B-0572	0.38dW 0.27uM	41.0%@1.0uM		
B-0572	0.27dM 0.36uM	1.7uM		
B-0574	0.13uM	0.66uM		37%@3mpk@-4h
B-0575	0.032uM	0.17uM	 	01 /00 011.p.t.0 11.
B-0576	0.052uM	0.39uM		65%@3mpk@-4h
B-0577	0.091uM	66.0%@1.0uM		00 /0 0 0
B-0578	1.88uM	47.0%@1.0uM		
B-0579	0.11uM	79.0%@1.0uM	 	
B-0580	2.23uM	0.84uM		
B-0581	0.26uM	2.17uM		
B-0582	1.03uM	37.0%@1.0uM		
B-0583	3.93uM	26.0%@1.0uM	 	
B-0584	0.66uM	54.0%@1.0uM		
B-0585	0.83uM	79.0%@1.0uM	50%@30mpk@-6h	
B-0586	0.81uM	51.0%@1.0uM	0070 G 0011 pre 011	
B-0587		38%@1.0uM	 	
	6.84uM	42%@1.0uM	 	
B-0588 B-0589	12.8uM	42%@1.0uM		
B-0599	1.71uM 1.57uM	38.0uM		
B-0591	3.59uM	29.0%@1.0uM		
B-0592		45.0%@1.0uM	 	
B-0593	1.62uM 1.22uM	36.0%@1.0uM	 	
B-0594	1.224191	41.0%@1.0uM	 	
B-0595	2.42uM	22.0%@1.0uM	 	
B-0596	20.0uM	41.0%@1.0uM	 	
B-0597	1.68uM	63.0%@1.0uM	 	
B-0598	2.12uM	50.0%@1.0uM	 	
2-0386		1 30.0 /6 W 1.00 W	J	L

	P38 alpha kinase IC50,uM or %	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model % inhib @dose
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#			· ·	
B-0599	4.16uM	21.0%@1.0uM		
B-0600	0.002uM	28.0%@1.0uM		
B-0601	0.089uM	1.31uM		43%@3mpk%-4h
B-0602	0.97uM	61.0%@1.0uM		
B-0603	0.09uM	51.0%@1.0uM		
B-0604	0.3uM	20.0%@1.0uM		
B-0605	0.18uM	47.0%@1.0uM		
B-0606	0.17uM	53.0%@1.0uM		
B-0607	2.79uM	70.0%@1.0uM		
B-0608	0.059uM	73.0%@1.0uM		
B-0609	<0.1uM	87.0%@1.0uM		
B-0610	<0.1uM	88.0%@1.0uM		
B-0611	0.65uM	60.0%@1.0uM		
B-0612	0.16uM	60.0%@1.0uM		
B-0613	0.17uM	76.0%@1.0uM		·
B-0614	0.76uM	70.0%@1.0uM		0%@3mpk@-4h
B-0615	0.08uM	83.0%@1.0uM		
B-0616	0.38uM	87.0%@1.0uM		·
B-0617	0.045uM	92.0%@1.0uM		
B-0618	0.37uM	80.0%@1.0uM		
B-0619	<0.1uM	88.0%@1.0uM		
B-0620	1.59uM	58.0%@1.0uM		
B-0621	0.36uM	68.0%@1.0uM		
B-0622	0.076uM	78.0%@1.0uM		
B-0623	0.12uM	76.0%@1.0uM		
B-0624	0.085uM	54.0%@1.0uM		
B-0625	0.023uM	88.0%@1.0uM		!
B-0626	<0.1uM	85.0%@1.0uM		
B-0627	0.25uM	69.0%@1.0uM		
B-0628	0.023uM	72.0%@1.0uM		
B-0629	0.2uM	79.0%@1.0uM		
B-0630	0.06uM	77.0%@1.0uM		
B-0631	0.065uM	81.0%@1.0uM	1	
B-0632	<0.1uM	79.0%@1.0uM		
B-0633	0.6uM	80.0%@1.0uM		
B-0634	0.6uM	40.0%@1.0uM		
B-0635	0.15uM	55.0%@1.0uM		
B-0636	<0.1uM	86.0%@1.0uM		
B-0637	0.11uM	92.0%@1.0uM		· · · · · · · · · · · · · · · · · · ·
B-0638	0.25uM	89.0%@1.0uM		#00/ O 0 : 0 ::
B-0639	0.051uM	93.0%@1.0uM		50%@3mpk@-4h
B-0640	0.36uM	94.0%@1.0uM		
B-0641	0.58uM	65.0%@1.0uM		
B-0642	0.49uM	90.0%@1.0uM		00/ 00- 100 0
B-0643	0.069uM	85.0%@1.0uM		0%@3mpk@-4h
B-0644	0.058uM	89.0%@1.0uM		
B-0645	0.58uM	80.0%@1.0uM		
B-0646	0.26uM	94.0%@1.0uM	ļ	
B-0647	1.61uM	76.0%@1.0uM	L	l

				 1
	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF inhib @ dose	inhib @dose
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#	mino e cono. (cin)	11111100001101 (4111)	-	
B-0648	<0.1uM	83.0%@1.0uM		-
B-0649	0.83uM	39.0%@1.0uM		
B-0650	0.006uM	95.0%@1.0uM		8%@3mpk@-4h
B-0651	1.78uM	81.0%@1.0uM		
B-0652	0.19uM	83.0%@1.0uM		
B-0653	2.01uM	74.0%@1.0uM		
B-0654	5.97uM	78.0%@1.0uM		
B-0655	1.25uM	76.0%@1.0uM		
B-0656	0.007uM	95.0%@1.0uM		28%@3mpk@-4h
B-0657	0.17uM	83.0%@1.0uM		
B-0658	1.14uM	91.0%@1.0uM		
B-0659	2.64uM	87.0%@1.0uM		
B-0660	0.088uM	92.0%@1.0uM		
B-0661	<0.1uM	90.0%@1.0uM		
B-0662	<0.1uM	95.0%@1.0uM		
B-0663	0.88uM	74.0%@1.0uM		
B-0664	0.39uM	80.0%@1.0uM		
B-0665	0.47uM	72.0%@1.0uM		
B-0666	0.17uM	73.0%@1.0uM		
B-0667	0.83uM	75.0%@1.0uM		
B-0668	0.27uM	78.0%@1.0uM		
B-0669	0.89uM	34.0%@1.0uM		
B-0670	3.15uM	32.0%@1.0uM		
B-0671	6.38uM	36.0%@1.0uM		
B-0672	6.59uM	32.0%@1.0uM		
B-0673	8.54uM	48.0%@1.0uM		
B-0674	2.81uM	42.0%@1.0uM		
B-0675	5.42uM	3.0%@1.0uM		
B-0676	2.09uM	22.0%@1.0uM		
B-0677	1.63uM	25.0%@1.0uM		
B-0678	0.38uM	52.0%@1.0uM		
B-0679	0.062uM	45.0%@1.0uM		
B-0680	0.42uM	67.0%@1.0uM		
B-0681	1.96uM	17.0%@1.0uM		
B-0682	0.76uM	39.0%@1.0uM		
B-0683	13.0uM	32.0%@1.0uM		
B-0684	0.54uM	68.0%@1.0uM	<u> </u>	
B-0685	15.4uM	33.0%@1.0uM		
B-0686	0.42uM	59.0%@1.0uM		
B-0687	10.1uM	15.0%@1.0uM		
B-0688	0.66uM	58.0%@1.0uM		
B-0689	14.6uM	27.0%@1.0uM		
B-0690	27.1uM	36.0%@1.0uM	<u> </u>	
B-0691	0.16uM	48.0%@1.0uM		
B-0692	0.38uM	29.0%@1.0uM		
B-0693	0.39uM	28.0%@1.0uM	ļ	
B-0694	0.62uM	21.0%@1.0uM		
B-0695	0.23uM	32.0%@1.0uM	<u> </u>	
B-0696	0.085uM	35.0%@1.0uM	<u> </u>	L

	P38 alpha kinase IC50,uM or %	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model % inhib @dose
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#		44.00/.04.0044		
B-0697	0.45uM	44.0%@1.0uM		
B-0698	2.33uM	43.0%@1.0uM		
B-0699	0.34uM	31.0%@1.0uM		
B-0700	0.24uM	56.0%@1.0uM		
B-0701	0.39uM	45.0%@1.0uM		
B-0702	0.036uM	39.0%@1.0uM_		
B-0703	0.12uM	39.0%@1.0uM	ļ	
B-0704	2.19uM	29.0%@1.0uM		
B-0705	0.44uM	21.0%@1.0uM	<u> </u>	
B-0706	0.44uM	32.0%@1.0uM		
B-0707	1.7uM			
B-0708	2.1uM			
B-0709	0.84uM			
B-0710	1.99uM			
B-0711	1.99uM		-	
B-0712	2.9uM		<u> </u>	<u></u>
B-0713	4.3uM		<u> </u>	
B-0714	3.7uM			
B-0715	3.2uM			
B-0716	4.6uM			
B-0717	4.3uM			
B-0718	1.4uM			
B-0719	3.4uM			
B-0720	1.3uM			
B-0721	3.8uM			
B-0722	0.07uM	>1.0uM		
B-0723	0.47uM			
B-0724	0.06uM	17.0%@1.0uM		
B-0725	9.7uM			
B-0726	1.4uM			
B-0727	0.51uM			
B-0728	20.0uM			
B-0729	0.87uM			
B-0730	0.25uM	11.0%@1.0uM		
B-0731	0.87uM	>1.0uM		
B-0732	14.0uM			
B-0733	32.0uM	<u> </u>		
B-0734	0.92uM			
B-0735	1.0uM			
B-0736	26.0uM			
B-0737	2.6uM			
B-0738	2.7uM			
B-0739	4.1uM			
B-0740	4.4uM			
B-0741	26.0uM	 		
B-0742	2.2uM	 	1	
B-0743	1.2uM	 		
B-0744	23.0uM			
B-0745			- 	
D-U/45	6.0uM	<u> </u>	.L	<u> </u>

·			,	
	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF inhib @ dose	inhib @dose
j	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•
B-0746	0.01uM	22.0%@1.0uM		
B-0747	1.1uM			
B-0748	1.2uM			
B-0749	4.4uM			
B-0750	0.92uM			
B-0751	1.6uM			
B-0752	0.33uM			
B-0753	0.37uM			
B-0754	0.55uM			
B-0755	2.3uM			
B-0756	0.94uM			
B-0757	0.54uM	16.0%@1.0uM		
B-0758	1.5uM			·
B-0759	0.3uM			
B-0760	0.01uM	13.0%@1.0uM		
B-0761	<0.1uM			
B-0762	0.13uM	5.0%@1.0uM		
B-0763	0.015uM	17.0%@1.0uM		
B-0764	0.67uM	26.0%@1.0uM		
B-0765	0.3uM	29.0%@1.0uM		
B-0766	0.95uM			
B-0767	0.08uM			
B-0768	1.4uM			
B-0769	12.7uM			
B-0770	2.3uM			
B-0771	0.5uM			
B-0772	0.8uM			
B-0773	14.0uM			
B-0774	1.5uM			
B-0775	0.6uM	>1.0uM		
B-0776	0.9uM	>1.0uM		
B-0777	21.0uM			
B-0778	51.0uM			
B-0779	0.5uM			
B-0780	1.1uM			
B-0781	48.0uM		 -	
B-0782	22.0uM			
B-0783	8.0uM		<u> </u>	
B-0784	7.0uM		<u> </u>	
B-0785	23.0uM		<u> </u>	
B-0786	24.0uM			
B-0787	1.5uM			
B-0788	1.2uM			
B-0789	33.0uM			
B-0790	1.0uM	4.0%@1.0uM	<u> </u>	
B-0791	0.3uM	>1.0uM		
B-0792	1.1uM	ļ	ļ	
B-0793	0.3uM		<u> </u>	
B-0794	2.9uM	2.0%@1.0uM	1	

IJ
1=4
الم
Ŋ
[_]
\$ 1
1=
يعة

				Rat LPS Model %
	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	inhib @dose
	IC50,uM or %	or %	TNF inhib @ dose	
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#		11.00/.01.0.11		
3-0795	1.9uM	11.0%@1.0uM		
3-0796	1.4uM		ļ	
B-0797	1.04uM			
3-0798	1.73uM	-		
3-0799	-	>1.0uM		
3-0800	1.01uM	>1.0uM		
3-0801	0.67uM	>1.0uM		
B-0802	•	>1.0uM		
B-0803	0.057uM	53.0%@1.0uM		
B-0804	0.3uM	32.0%@1.0uM		
B-0805	0.71uM	>1.0uM		
B-0806	3.28uM	>1.0uM		
B-0807	10.8uM	•		
B-0808	3.09uM	>1.0uM		
B-0809	1.22uM	7.0%@1.0uM		
B-0810	1.11uM	>1.0uM		
B-0811	2.79uM	2.0%@1.0uM		
B-0812	2.12uM	>1.0uM		
B-0813	3.02uM	>1.0uM		
B-0814	•	>1.0uM		
B-0815	2.11uM	>1.0uM		
B-0816	3.46uM	>1.0uM		
B-0817	3.07uM	33.0%@1.0uM		
B-0818	4.97uM	>1.0uM		
B-0819	1.08uM	>1.0uM		
B-0820	1.64uM	3.0%@1.0uM		
B-0821	1.44uM			,
B-0822	1.33uM			
B-0823	2.39uM	>1.0uM		
B-0824	3.41uM			
B-0825	3.41010			
B-0826	1.74uM			
	15.6uM	· .		
B-0827 B-0828	7.9uM	 		
B-0829	0.61uM	65.0%@1.0uM		
	0.54uM	34.0%@1.0uM	· · · · · · · · · · · · · · · · · · ·	
B-0830		>1.0uM		
B-0831	0.9uM 1.49uM	>1.0ul		
B-0832		23.0%@1.0uM	 	†
B-0833	0.95uM	23.0 /8 W 1.00 W		
B-0834	1.25uM	 		
B-0835	4.04:14			
B-0836	1.24uM		- 	
B-0837	1.96uM	>1.0uM		
B-0838	3.1uM			
B-0839	4.3uM	47.00/ 04.0	 	
B-0840	0.63uM	47.0%@1.0uM		
B-0841	0.32uM	36.0%@1.0uM		
B-0842	0.74uM	63.0%@1.0uM		
B-0843	0.61uM	>1.0uM		

	· · · · · · · · · · · · · · · · · · ·			
	P38 alpha kinase IC50,uM or %	U937 Cell IC50,uM	Mouse LPS Model % TNF inhib @ dose	Rat LPS Model % inhib @dose
İ	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#	minibe conc. (din)	111111111111111111111111111111111111111		•
B-0844	0.4uM	25.0%@1.0uM		
B-0845	1.78uM	•		
B-0846	1.8uM	-		
B-0847	0.73uM	21.0%@1.0uM		
B-0848	1.56uM	•		
B-0849	1.25uM	•		
B-0850	1.81uM			
B-0851	0.91uM	39.0%@1.0uM		
B-0852	1.02uM	-		
B-0853	•	38.0%@1.0uM		
B-0854	-	25.0%@1.0uM		
B-0855		8.0%@1.0uM		
B-0856	•	38.0%@1.0uM		
B-0857	6.25uM	•		
B-0858	2.1uM	48.0%@1.0uM		
B-0859	39.5uM	•		
B-0860	38.1uM			
B-0861	1.32uM	12.0%@1.0uM		
B-0862	2.15uM	4.0%@1.0uM		
B-0863	0.81uM	25.0%@1.0uM		
B-0864	0.39uM	40.%@1.0uM		
B-0865	0.66uM	46.0%@1.0uM	·	
B-0866	1.38uM	28.0%@1.0uM		
B-0867	0.62uM	>1.0uM		
B-0868	3.28uM	8.0%@1.0uM		
B-0869	4.19uM	>1.0uM		
B-0870	3.13uM	>1.0uM		
B-0871	1.9uM	>1.0uM		
B-0872	3.13uM	3.0%@1.0uM		
B-0873	6.92uM	>1.0uM		
B-0874	1.92uM	>1.0uM		
B-0875	2.13uM	8%@1.0uM	<u> </u>	
B-0876	0.89uM	>1.0uM		
B-0877	1.17uM	13.0%@1.0uM	<u> </u>	
B-0878	0.65uM	19.0%@1.0uM	<u> </u>	
B-0879	0.87uM	1.0%@1.0uM	<u> </u>	
B-0880	0.15uM	40.0%@1.0uM	<u> </u>	
B-0881	1.36uM	>1.0uM		
B-0882	1.48uM	9%@1.0uM		
B-0883	1.06uM	>1.0uM		
B-0884	1.89uM	<u> </u>		
B-0885		<u> </u>		
B-0886	ļ	ļ		
B-0887				
B-0888	ļ			
B-0889	ļ			
B-0890		ļ		
B-0891	ļ			
B-0892	<u> </u>	1		L

, ,			r	
	P38 alpha kinase IC50,uM or % inhib@conc. (uM)	U937 Cell IC50,uM or % inhib@conc. (uM)	Mouse LPS Model % TNF inhib @ dose @predose time	Rat LPS Model % Inhib @dose @predose time
Example#		,		
B-0893				· ·
B-0894				
B-0895				
B-0896				
B-0897				
B-0898				
B-0899				
B-0900				
B-0901				
B-0902				
B-0903				
B-0904				
B-0905				
B-0906				
B-0907				
B-0908				
B-0909				
B-0910				
B-0911				
B-0912				
B-0913				
B-0914				
B-0915				
B-0916				
B-0917				
B-0918				
B-0919				
B-0920				
B-0921				
B-0922				
B-0923				
B-0924			<u> </u>	
B-0925		•		
B-0926			<u> </u>	
B-0927		<u> </u>		
B-0928				
B-0929				
B-0930				
B-0931				
B-0932				<u> </u>
B-0933	47.0%@1.0uM	37.0%@1.0uM		
B-0934	67.0%@1.0uM	36.0%@1.0uM	ļ	
B-0935	69.0%@1.0uM	54.0%@1.0uM		
B-0936	69.0%@1.0uM	>1.0uM		
B-0937	64.0%@1.0uM	1.74uM		
B-0938	51.0%@1.0uM	29.0%@1.0uM		
B-0939	78.0%@1.0uM	14.0%@1.0uM		
B-0940	56.0%@1.0uM	22.0%@1.0uM		
B-0941	81.0%@1.0uM	25.0%@1.0uM	.1	<u> </u>

			,	
	P38 alpha kinase IC50,uM or %	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model % Inhib @dose
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#	20.00/.01.0.11	2.0%@1.0uM		-
B-0942	82.0%@1.0uM	24.0%@1.0uM		
B-0943	63.0% @10.0uM			
B-0944	45.0%@1.0uM	27.0%@1.0uM		
B-0945	96.0%@1.0uM	0.93uM 31.0%@1.0uM		
B-0946	76.0%@1.0uM			
B-0947	69.0%@1.0uM	34.0%@1.0uM		
B-0948	68.0%@1.0uM	1.81uM 17.0%@1.0uM		
B-0949	90.0%@1.0uM	0.58uM		
B-0950	81.0%@1.0uM	20.0%@1.0uM		
B-0951	82.0%@1.0uM			· · · · · · · · · · · · · · · · · · ·
B-0952	44.0%@1.0uM	21.0%@1.0uM 25.0%@1.0uM	 	
B-0953	63.0%@1.0uM	0.52uM		
B-0954	62.0%@1.0uM	0.52uM 0.54uM	 	
B-0955	49.0%@1.0uM	1.33uM		
B-0956	56.0%@1.0uM			
B-0957	79.0%@1.0uM	22.0%@1.0uM		
B-0958	74.0%@1.0uM	0.38uM 39.0%@1.0uM		
B-0959	83.0%@1.0uM	4.0%@1.0uM		
B-0960	48.0%@1.0uM			
B-0961	79.0%@1.0uM	23.0%@1.0uM		
B-0962	85.0%@1.0uM	2.71uM		<u> </u>
B-0963	76.0%@1.0uM	39.0%@1.0uM		
B-0964	94.0%@1.0uM	5.0uM		
B-0965	74.0%@1.0uM	1.1uM		
B-0966	50.0%@1.0uM	5.0%@1.0uM		
B-0967	80.0%@1.0uM_	29.0%@1.0uM		
B-0968	35.0%@1.0uM	26.0%@1.0uM		
B-0969	63.0%@1.0uM	35.0%@1.0uM		
B-0970	76.0%@10.0uM	0.88uM		
B-0971	61.0%@1.0uM	39.0%@1.0uM		
B-0972	85.0%@1.0uM	2.0%@1.0uM		
B-0973	66.0%@10.0uM	48.0%@1.0uM		
B-0974	57.0%@1.0uM	47.0%@1.0uM		
B-0975	82.0%@1.0uM	32.0%@1.0uM		<u></u>
B-0976	79.0%@1.0uM	36.0%@1.0uM		
B-0977	60.0%@1.0uM	26.0%@1.0uM		
B-0978	59.0%@1.0uM	36.0%@1.0uM 23.0%@1.0uM		
B-0979	56.0%@10.0uM			
B-0980	68.0%@1.0uM	31.0%@1.0uM 57.0%@1.0uM		
B-0981	62.0%@1.0uM	23.0%@1.0uM		
B-0982	65.0%@1.0uM	0.8uM		
B-0983	75.0%@1.0uM	51.0%@1.0uM		
B-0984	60.0%@1.0uM	0.75uM	 	
B-0985	86.0%@1.0uM	71.0%@1.0uM		
B-0986	70.0%@1.0uM		+	
B-0987	78.0%@1.0uM	79.0%@1.0uM 65.0%@1.0uM		
B-0988	72.0%@1.0uM 85.0%@1.0uM	0.85uM		
B-0989		26.0%@1.0uM		
B-0990	•	1 20.0 % W 1.00 W		L

	P38 alpha kinase IC50,uM or % Inhib@conc. (uM)	U937 Cell IC50,uM or % inhib@conc. (uM)	Mouse LPS Model % TNF inhib @ dose @predose time	Rat LPS Model % inhib @dose
Example#	and Cooner (din)	ining a conc. (uivi)	e predose time	@predose time
B-1040	72.0%@1.0uM	0.38uM		
B-1041	70.0%@1.0uM	73.0%@1.0uM		
B-1042	79.0%@1.0uM	12.0%@1.0uM		
B-1043	64.0%@1.0uM	53.0%@1.0uM		
B-1044	94.0%@1.0uM	0.93uM		
B-1045	78.0%@1.0uM	25.0%@1.0uM		
B-1046	72.0%@1.0uM	66.0%@1.0uM		· · · · · · · · · · · · · · · · · · ·
B-1047	72.0%@1.0uM	58.0%@1.0uM		
B-1048	67.0%@1.0uM	19.0%@1.0uM		
B-1049	67.0%@1.0uM	65.0%@1.0uM		
B-1050	•	0.54uM		
B-1051	68.0%@1.0uM	41%@1.0uM		
B-1052	69.0%@1.0uM	66%@1.0uM		
B-1053	78.0%@1.0uM	0.4uM		
B-1054	79.0%@1.0uM	55.0%@1.0uM		
B-1055	89.0%@1.0uM	63.0%@1.0uM		
B-1056	89.0%@1.0uM	0.76uM		
B-1057	85.0%@1.0uM	0.72uM		
B-1058	0.66uM	43.0%@1.0uM		
B-1059	0.18uM	24.0%@1.0uM		
B-1060	0.11uM	32.0%@1.0uM		
B-1061	0.03uM	19.0%@1.0uM		
B-1062	<0.1uM	26.0%@1.0uM		
B-1063	0.16uM	44.0%@1.0uM		
3-1064	0.39uM	50.0%@1.0uM		
3-1065	0.56uM	40.0%@1.0uM		
3-1066	<0.1uM	39.0%@1.0uM		
3-1067	1.6uM	32.0%@1.0uM		
3-1068	0.48uM	24.0%@1.0uM		
3-1069	0.22uM	27.0%@1.0uM		
3-1070	<0.1uM	44.0%@1.0uM		
3-1071	<0.1uM	48.0%@1.0uM		
3-1072	0.38uM	28.0%@1.0uM		
3-1073	<0.1uM	21.0%@1.0uM		
3-1074	0.23uM	33.0%@1.0uM		
3-1075	0.03uM	29.0%@1.0uM		<u> </u>
-1076	0.08uM	31.0%@1.0uM		
-1077	<0.1uM	38.0%@1.0uM		
-1078	0.26uM	48.0%@1.0uM		
-1079	<0.1uM	40.0%@1.0uM		
-1080	0.19uM	28.0%@1.0uM		···
-1081	<0.1uM	37.0%@1.0uM		
-1082	<0.1uM	54.0%@1.0uM		
-1083	<0.1uM	23.0%@1.0uM		
-1084	0.43uM	29.0%@1.0uM		
-1085	<0.1uM	29.0%@1.0uM		
-1086	<0.1uM	42.0%@1.0uM		
-1087	0.05uM	32.0%@1.0uM		
-1088	0.73uM	49.0%@1.0uM		

				
	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF inhib @ dose	inhib @dose
İ l	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#				
B-1089	<0.1uM	39.0%@1.puM		
B-1090	<0.1uM	90.0%@1.0uM		
B-1091	<0.1uM	73.0%@1.0uM		
B-1092	0.27uM	85.0%@1.0uM		
B-1093	0.33uM	36.0%@1.0uM		
B-1094	0.013uM	69.0%@1.0uM		
B-1095	<0.1uM	70.0%@1.0uM		
B-1096	<0.1uM	32.0%@1.0uM		
B-1097	<0.1uM	44.0%@1.07uM		
B-1098	<0.1uM	82.0%@1.0uM		
B-1099	0.26uM	74.0%@1.0uM		
B-1100	0.22uM	56.0%@1.0uM		
B-1101	0.026uM	82.0%@1.0uM		
B-1102	0.035uM	83.0%@1.0uM		
B-1103	0.094uM	90.0%@1.0uM		
B-1104	0.12uM	69.0%@1.0uM		
B-1105	<0.1uM	84.0%@1.0uM		
B-1106	<0.1uM	86.0%@1.0uM		
B-1107	0.057uM	84.0%@1.0uM		
B-1108	0.22uM	81.0%@1.0uM		
B-1109	0.054uM	80.0%@1.0uM		
B-1110	0.47uM	64.0%@1.0uM		
B-1111	0.19uM	64.0%@1.0uM		
B-1112	0.58uM	43.0%@1.0uM		
B-1113	<0.1uM	72.0%@1.0uM		
B-1114	0.069uM	51.0%@1.0uM		
B-1115	0.024uM	89.0%@1.0uM		
B-1116	0.41uM	81.0%@1.0uM		
B-1117	0.13uM	73.0%@1.0uM		
B-1118	0.33uM	91.0%@1.0uM		
B-1119	0.35uM	80.0%@1.0uM		
B-1120	0.47uM	9.0%@1.0uM		
B-1121	3.58uM	29.0%@1.0uM		
B-1122	1.84uM	32.0%@1.0uM		
B-1123	2.93uM	27.0%@1.0uM		
B-1124	1.49uM	52.0%@1.0uM		
B-1125	0.56uM	41.0%@1.0uM		
B-1126	1.5uM	>1.0uM	ļ	
B-1127	0.71uM	7.0%@1.0uM		
B-1128	2.55uM	26.0%@1.0uM	<u> </u>	
B-1129	1.07uM	46.0%@1.0uM		
B-1130	0.5uM	29.0%@1.0uM	<u> </u>	
B-1131	0.076uM	34.0%@1.0uM	ļ	
B-1132	0.72uM	11.0%@1.0uM	<u> </u>	
B-1133	0.38uM	33.0%@1.0uM	ļ	
B-1134	1.71uM	33.0%@1.0uM		
B-1135	0.23uM	38.0%@1.0uM	<u> </u>	
B-1136	1.17uM	40.0%@1.0uM		
B-1137	0.038uM	35.0%@1.0uM	<u> </u>	<u> </u>

			· · · · · · · · · · · · · · · · · · ·	
	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF inhib @ dose	inhib @dose
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#	(2,	,	- p	o process time
B-1138	1.82uM	>1.0uM		
B-1139	0.041uM	29.0%@1.0uM		
B-1140	1.68uM	39.0%@1.0uM		
B-1141	2.47uM	32.0%@1.0uM		
B-1142	0.11uM	37.0%@1.0uM		
B-1143	0.17uM	40.0%@1.0uM		
B-1144	0.44uM	72.0%@1.0uM		····
B-1145	1.07uM	71.0%@1.0uM		**************************************
B-1146	0.47uM	61.0%@1.0uM		
B-1147	0.095uM	53.0%@1.0uM		· · · · · · · · · · · · · · · · · · ·
B-1148	0.43uM	61.0%@1.0uM		
B-1149	1.55uM	48.0%@1.0uM		
B-1150	0.47uM	75.0%@1.0uM		
B-1151	0.32uM	72.0%@1.0uM		
B-1152	0.73uM	53.0%@1.0uM		
B-1153	2.22uM	52.0%@1.0uM		
B-1154	0.085uM	46.0%@1.0uM		
B-1155	3.22uM	30.0%@1.0uM		
B-1156	0.27uM	78.0%@1.0uM		
B-1157	0.26uM	66.0%@1.0uM		
B-1158	74%@1.0uM	0.68uM	53%@30mpk@-6h	
B-1159	66.0%@1.0uM	1.03uM	60%@30mpk@-6h	
B-1160	79.0%@1.0uM	0.38uM		,
B-1161	64.0%21.0uM	0.93uM	40%@30mpk@-6h	45%@3mpk@-4h
B-1162	79.0%@1.0uM	0.59uM	40%@30mpk@-6h	
B-1163	74.0%@1.0uM	0.37uM		
B-1164	•	0.35uM		
B-1165	66.0%@1.0uM	0.99uM		
B-1166	77.0%@1.0uM	0.39uM	50%@30mpk@-6h	50%@3mpk@-4h
B-1167	70.0%@1.0uM	1.06uM		
B-1168	66.0%@1.0uM	0.63uM		
B-1169	80.0%@1.0uM	0.11uM		
B-1170	82.0%@1.0uM	0.57uM		
B-1171	78.0%@1.0uM	0.23uM		
B-1172	68.0%@1.0uM	1.95uM		
B-1173	65.0%@1.0uM	62%@1.0uM		
B-1174	80.0%@1.0uM	0.86uM		
B-1175	72.0%@1.0uM	1.83uM		
B-1176	67.0%@1.0uM	67.0%@1.0uM		
B-1177	70.0%@1.0uM	1.16uM		
B-1178	92.0%@1.0uM	1.61uM		
B-1179	86.0%@1.0uM	0.41uM		
B-1180	78.0%@1.0uM	0.53uM		
B-1181	79.0%@1.0uM	66%@1.0uM		
B-1182	72.0%@1.0uM	0.65uM		
B-1183	77.0%@1.0uM	0.2uM		
B-1184	69.0%@1.0uM	0.63uM		
B-1185	71.0%@1.0uM	0.79uM		
B-1186	83.0%@1.0uM	60%@1.0uM		

	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF inhib @ dose	inhib @dose
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#		, ,		
B-1187	76.0%@1.0uM	1.89uM		
B-1188	•	36.0%@1.0uM		
B-1189	68.0%@1.0uM	0.83uM		
B-1190	78.0%@1.0uM	62.0%@1.0uM		
B-1191	74.0%@1.0uM	57.0%@1.0uM		
B-1192	84.0%@1.0uM	0.47uM		
B-1193	69.0%@1.0uM	65.0%@1.0uM		
B-1194	87.0%@1.0uM	0.58uM		
B-1195	52.0%@1.0uM	60.0%@1.0uM		
B-1196	74.0%@1.0uM	68.0%@1.0uM		
B-1197	77.0%@1.0uM	45.0%@1.0uM		
B-1198	92.0%@1.0uM	0.46uM		
B-1199	87.0%@1.0uM	49.0%@1.0uM		
B-1200	95.0%@1.0uM	0.64uM		
B-1201	84.0%@1.0uM	0.51uM		
B-1202	71.0%@1.0uM	58.0%@1.0uM		
B-1203	84.0%@1.0uM	58.0%@1.0uM		
B-1204	68.0%@1.0uM	59.0%@1.0uM		
B-1205	74.0%@1.0uM	46.0%@1.0uM		
B-1206	81.0%@1.0uM	0.34uM		
B-1207	90.0%@1.0uM	58.0%@1.0uM		
B-1208	82.0%@1.0uM	51.0%@1.0uM		
B-1209	86.0%@1.0uM	55.0%@1.0uM		
B-1210	82.0%@1.0uM	57.0%@1.0uM		
B-1211	88.0%@1.0uM	59.0%@1.0uM		
B-1212	90.0%@1.0uM	57.0%@1.0uM		
B-1213	84.0%@1.0uM	0.62uM		
B-1214	76.0%@1.0uM	58.0%@1.0uM		
B-1215	86.0%@1.0uM	0.23uM		
B-1216	88.0%@1.0uM	0.18uM		
B-1217	87.0%@1.0uM	0.46uM		
B-1218	88.0%@1.0uM	76.0%@1.0uM		
B-1219	85.0%@1.0uM	37.0%@1.0uM		
B-1220	81.0%@1.0uM	53.0%@1.0uM		
B-1221 B-1222	82.0%@1.0uM	44.0%@1.0uM 9.0%@1.0uM		
B-1223	65.0%@1.0uM	61.0%@1.0uM		
B-1224	80.0%@1.0uM 82.0%@1.0uM	74.0%@1.0uM		
B-1225		73.0%@1.0uM		
B-1225	89.0%@1.0uM 89.0%@1.0uM	0.18uM	<u> </u>	
B-1227	83.0%@1.0uM	0.18UM 0.22uM		
B-1228	90.0%@1.0uM	0.22uM 0.72uM	 	
B-1229	87.0%@1.0uM	0.65uM		
B-1230	90.0%@1.0uM	0.05uM 0.25uM	 	
B-1231	94.0%@1.0uM	0.56uM	 	
B-1232	81.0%@1.0uM	54.0%@1.0uM		<u> </u>
B-1233	85.0%@1.0uM	0.36uM		
B-1234	89.0%@1.0uM	0.49uM		
B-1235	0.04uM	76.0%@1.0uM	1	
	4		1	<u> </u>

B-1257 1.48uM 40.0%@1.0uM B-1258 0.07uM 56.0%@1.0uM B-1259 <0.1uM 0.48uM B-1260 0.11uM 48.0%@1.0uM B-1261 0.74uM 44.0%@1.0uM B-1262 <0.1uM 63.0%@1.0uM B-1263 1.05uM 57.0%@1.0uM B-1264 0.32uM 47.0%@1.0uM B-1265 0.43uM 51.0%@1.0uM B-1266 <0.1uM 58.0%@1.0uM B-1266 <0.1uM 73.0%@1.0uM B-1268 <0.1uM 79.0%@1.0uM B-1269 0.46uM 84.0%@1.0uM B-1270 0.47uM 83.0%@1.0uM B-1270 0.47uM 83.0%@1.0uM B-1270 0.014uM 38.0%@1.0uM B-1271 0.13uM 74.0%@1.0uM B-1272 0.014uM 38.0%@1.0uM B-1273 <0.1uM 36.0%@1.0uM B-1274 <0.1uM 36.0%@1.0uM B-1275 <0.1uM 36.0%@1.0uM B-1276 0.062uM 11.0%@1.0uM B-1277 <0.1uM 50.0%@1.0uM B-1278 0.1uM 47.0%@1.0uM B-1279 <0.062uM 11.0%@1.0uM B-1279 <0.062uM 11.0%@1.0uM B-1279 <0.062uM 11.0%@1.0uM B-1279 <0.014uM 85.0%@1.0uM B-1279 <0.1uM 47.0%@1.0uM B-1279 <0.1uM 79.0%@1.0uM B-1279 <0.1uM 79.0%@1.0uM B-1280 0.039uM 85.0%@1.0uM B-1280 0.039uM 83.0%@1.0uM B-1281 <0.1uM 85.0%@1.0uM B-1282 <0.1uM 75.0%@1.0uM B-1283 <0.1uM 75.0%@1.0uM			T		
CSO,UM or % Inhib @ conc. (uM) Inhib @ conc.	ı İ	P38 alpha kinase	H937 Cell IC50 uM	Mouse I PS Model %	Pat I PS Madel 9/
Inhib@conc. (uM)	!			1	
Example#	j			1	
B-1237 0.22uM 39.0%@1.0uM B-1238 0.14uM 16.0%@1.0uM B-1239 0.01uM 38.0%@1.0uM B-1240 0.04uM 81.0%@1.0uM B-1241 0.04uM 81.0%@1.0uM B-1242 0.08uM 83.0%@1.0uM B-1243 0.04uM 47.0%@1.0uM B-1244 0.26uM 44.0%@1.0uM B-1245 0.49uM 42.0%@1.0uM B-1246 0.27uM 40.0%@1.0uM B-1247 0.1uM 58.0%@1.0uM B-1248 0.1uM 58.0%@1.0uM B-1249 0.24uM 60.0%@1.0uM B-1250 0.14uM 18.0%@1.0uM B-1251 0.41uM 38.0%@1.0uM B-1252 0.17uM 46.0%@1.0uM B-1253 0.15uM 57.0%@1.0uM B-1255 12.9uM 75.0%@1.0uM B-1256 0.15uM 41.0%@1.0uM B-1257 1.48uM 40.0%@1.0uM B-1258 0.07uM 56.0%@1.0uM B-1259 0.01uM 56.0%@1.0uM B-1256 0.12uM 41.0%@1.0uM B-1257 1.48uM 40.0%@1.0uM B-1258 0.07uM 56.0%@1.0uM B-1259 0.1tuM 0.48uM B-1260 0.1tuM 44.0%@1.0uM B-1261 0.74uM 44.0%@1.0uM B-1262 0.1tuM 57.0%@1.0uM B-1263 0.15uM 57.0%@1.0uM B-1264 0.32uM 47.0%@1.0uM B-1265 0.12uM 56.0%@1.0uM B-1266 0.01uM 58.0%@1.0uM B-1267 0.01uM 58.0%@1.0uM B-1268 0.01uM 58.0%@1.0uM B-1269 0.46uM 58.0%@1.0uM B-1260 0.74uM 44.0%@1.0uM B-1261 0.74uM 44.0%@1.0uM B-1263 0.05uM 57.0%@1.0uM B-1264 0.32uM 57.0%@1.0uM B-1265 0.15uM 58.0%@1.0uM B-1266 0.01uM 58.0%@1.0uM B-1267 0.01uM 58.0%@1.0uM B-1268 0.01uM 58.0%@1.0uM B-1271 0.13uM 74.0%@1.0uM B-1271 0.13uM 74.0%@1.0uM B-1271 0.13uM 74.0%@1.0uM B-1273 0.01uM 38.0%@1.0uM B-1274 0.01uM 38.0%@1.0uM B-1275 0.01uM 38.0%@1.0uM B-1276 0.05uM 11.0%@1.0uM B-1277 0.01uM 38.0%@1.0uM B-1278 0.01uM 38.0%@1.0uM B-1279 0.01uM 38.0%@1.0uM B-1271 0.13uM 74.0%@1.0uM B-1272 0.01uM 38.0%@1.0uM B-1273 0.01uM 38.0%@1.0uM B-1274 0.01uM 38.0%@1.0uM B-1275 0.01uM 38.0%@1.0uM B-1288 0.01uM 38.0%@1.0uM B-1288 0.	Example#	\	and a contact (unit)	e predese time	e predose time
B-1237	B-1236	0.1uM	53.0%@1.0uM		
B-1238	B-1237				
B-1239	B-1238	0.14uM			
B-1240	B-1239				
B-1241 0.04uM 81.0%@1.0uM B-1242 0.08uM 83.0%@1.0uM B-1243 0.04uM 47.0%@1.0uM B-1244 0.26uM 44.0%@1.0uM B-1245 0.49uM 42.0%@1.0uM B-1246 0.27uM 40.0%@1.0uM B-1247 <0.1uM 58.0%@1.0uM B-1248 <0.1uM 68.0%@1.0uM B-1249 0.24uM 60.0%@1.0uM B-1249 0.24uM 60.0%@1.0uM B-1250 0.14uM 18.0%@1.0uM B-1251 0.41uM 38.0%@1.0uM B-1252 0.17uM 46.0%@1.0uM B-1253 0.15uM 57.0%@1.0uM B-1254 0.16uM 68.0%@1.0uM B-1255 12.9uM 75.0%@1.0uM B-1256 0.12uM 41.0%@1.0uM B-1257 1.48uM 40.0%@1.0uM B-1258 0.07uM 56.0%@1.0uM B-1259 <0.1uM 0.48uM B-1260 0.11uM 48.0%@1.0uM B-1261 0.74uM 44.0%@1.0uM B-1262 <0.1uM 63.0%@1.0uM B-1263 0.15uM 57.0%@1.0uM B-1264 0.32uM 47.0%@1.0uM B-1265 0.11uM 48.0%@1.0uM B-1266 0.11uM 48.0%@1.0uM B-1267 <0.1uM 58.0%@1.0uM B-1268 0.01uM 63.0%@1.0uM B-1269 0.46uM 51.0%@1.0uM B-1260 0.11uM 63.0%@1.0uM B-1261 0.74uM 44.0%@1.0uM B-1262 0.01uM 63.0%@1.0uM B-1263 0.01uM 58.0%@1.0uM B-1264 0.32uM 47.0%@1.0uM B-1265 0.43uM 51.0w@1.0uM B-1267 0.01uM 73.0%@1.0uM B-1268 0.46uM 84.0%@1.0uM B-1269 0.46uM 84.0%@1.0uM B-1269 0.46uM 84.0%@1.0uM B-1269 0.46uM 84.0%@1.0uM B-1270 0.47uM 83.0%@1.0uM B-1271 0.13uM 74.0%@1.0uM B-1272 0.01uM 36.0%@1.0uM B-1273 <0.1uM 36.0%@1.0uM B-1276 0.062uM 11.0%@1.0uM B-1277 0.1uM 47.0%@1.0uM B-1278 0.12uM 85.0%@1.0uM B-1279 <0.1uM 47.0%@1.0uM B-1278 0.12uM 85.0%@1.0uM B-1281 <0.1uM 85.0%@1.0uM B-1282 <0.1uM 85.0%@1.0uM B-1283 <0.1uM 85.0%@1.0uM B-1283 <0.1uM 85.0%@1.0uM B-1283 <0.1uM 64.0%@1.0uM B-1283 <0.1uM 64.0%@1.0uM B-1283 <0.1uM 64.0%@1.0uM	B-1240	<0.1uM			
B-1242	B-1241				
B-1243 0.04uM	B-1242				
B-1244					
B-1245	B-1244				
B-1245	B-1245				
B-1247	B-1246			-	
B-1248	B-1247				
B-1249	B-1248				
B-1250	B-1249	0.24uM			· · · · · · · · · · · · · · · · · · ·
B-1251	B-1250	0.14uM			
B-1252	B-1251				
B-1253	B-1252	0.17uM			
B-1254	B-1253				
B-1255 12.9uM 75.0%@1.0uM B-1256 0.12uM 41.0%@1.0uM B-1257 1.48uM 40.0%@1.0uM B-1258 0.07uM 56.0%@1.0uM B-1259 <0.1uM 0.48uM B-1260 0.11uM 48.0%@1.0uM B-1261 0.74uM 44.0%@1.0uM B-1262 <0.1uM 63.0%@1.0uM B-1263 1.05uM 57.0%@1.0uM B-1264 0.32uM 47.0%@1.0uM B-1265 0.43uM 51.0%@1.0uM B-1266 <0.1uM 58.0%@1.0uM B-1268 <0.1uM 58.0%@1.0uM B-1269 0.46uM 84.0%@1.0uM B-1270 0.47uM 83.0%@1.0uM B-1270 0.47uM 83.0%@1.0uM B-1271 0.13uM 74.0%@1.0uM B-1273 <0.1uM 36.0%@1.0uM B-1273 <0.1uM 36.0%@1.0uM B-1274 <0.1uM 36.0%@1.0uM B-1275 <0.1uM 36.0%@1.0uM B-1276 0.062uM 11.0wM B-1277 0.014uM 38.0%@1.0uM B-1279 0.014uM 38.0%@1.0uM B-1271 0.000M B-1273 <0.1uM 50.0%@1.0uM B-1274 <0.1uM 41.0%@1.0uM B-1275 <0.1uM 50.0%@1.0uM B-1276 0.062uM 11.0wM B-1277 <0.01uM 85.0%@1.0uM B-1278 0.12uM 85.0%@1.0uM B-1279 <0.1uM 79.0%@1.0uM B-1278 0.12uM 85.0%@1.0uM B-1279 <0.1uM 79.0%@1.0uM B-1279 <0.1uM 79.0%@1.0uM B-1280 0.039uM 83.0%@1.0uM B-1280 0.039uM 83.0%@1.0uM B-1280 0.039uM 83.0%@1.0uM B-1281 <0.1uM 75.0%@1.0uM B-1281 <0.1uM 75.0%@1.0uM B-1283 <0.1uM 75.0%@1.0uM	B-1254	0.16uM			
B-1256	B-1255	12.9uM			
B-1257	B-1256				
B-1258	B-1257	1.48uM			
B-1259	B-1258	0.07uM			
B-1261 0.74uM 44.0%@1.0uM B-1262 <0.1uM 63.0%@1.0uM B-1263 1.05uM 57.0%@1.0uM B-1264 0.32uM 47.0%@1.0uM B-1265 0.43uM 51.0%@1.0uM B-1266 <0.1uM 58.0%@1.0uM B-1267 <0.1uM 73.0%@1.0uM B-1268 <0.1uM 79.0%@1.0uM B-1269 0.46uM 84.0%@1.0uM B-1270 0.47uM 83.0%@1.0uM B-1271 0.13uM 74.0%@1.0uM B-1271 0.13uM 74.0%@1.0uM B-1272 0.014uM 38.0%@1.0uM B-1273 <0.1uM 36.0%@1.0uM B-1274 <0.1uM 41.0%@1.0uM B-1275 <0.1uM 41.0%@1.0uM B-1276 0.062uM 11.0%@1.0uM B-1277 <0.1uM 47.0%@1.0uM B-1278 0.12uM 85.0%@1.0uM B-1279 <0.1uM 85.0%@1.0uM B-1279 <0.1uM 85.0%@1.0uM B-1279 <0.1uM 85.0%@1.0uM B-1280 0.039uM 83.0%@1.0uM B-1281 <0.1uM 85.0%@1.0uM B-1282 <0.1uM 75.0%@1.0uM B-1283 <0.1uM 85.0%@1.0uM	B-1259	<0.1uM			
B-1261	B-1260	0.11uM			····
B-1262	B-1261	0.74uM			
B-1263	B-1262				
B-1264 0.32uM 47.0%@1.0uM B-1265 0.43uM 51.0%@1.0uM B-1266 <0.1uM 58.0%@1.0uM B-1267 <0.1uM 73.0%@1.0uM B-1268 <0.1uM 79.0%@1.0uM B-1269 0.46uM 84.0%@1.0uM B-1270 0.47uM 83.0%@1.0uM B-1271 0.13uM 74.0%@1.0uM B-1272 0.014uM 38.0%@1.0uM B-1273 <0.1uM 36.0%@1.0uM B-1274 <0.1uM 41.0%@1.0uM B-1275 <0.1uM 50.0%@1.0uM B-1276 0.062uM 11.0%@1.0uM B-1277 <0.1uM 47.0%@1.0uM B-1278 0.12uM 85.0%@1.0uM B-1279 <0.1uM 85.0%@1.0uM B-1280 0.039uM 83.0%@1.0uM B-1280 0.039uM 83.0%@1.0uM B-1281 <0.1uM 85.0%@1.0uM B-1282 <0.1uM 75.0%@1.0uM B-1283 <0.1uM 85.0%@1.0uM	B-1263	1.05uM			
B-1265	B-1264	0.32uM			
B-1267	B-1265	0.43uM			
B-1267 <0.1uM	B-1266	<0.1uM	58.0%@1.0uM		
B-1269	B-1267				
B-1269		<0.1uM	79.0%@1.0uM		
B-1271		0.46uM			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
B-1272	B-1270	0.47uM	83.0%@1.0uM		·
B-1273		0.13uM	74.0%@1.0uM		
B-1274		0.014uM	38.0%@1.0uM		
B-1275		<0.1uM	36.0%@1.0uM		
B-1276		<0.1uM	41.0%@1.0uM		
B-1277					
B-1278			11.0%@1.0uM		
B-1279 <0.1uM 79.0%@1.0uM B-1280 0.039uM 83.0%@1.0uM B-1281 <0.1uM 85.0%@1.0uM B-1282 <0.1uM 75.0%@1.0uM B-1283 <0.1uM 64.0%@1.0uM					
B-1280					
B-1281 <0.1uM 85.0%@1.0uM B-1282 <0.1uM 75.0%@1.0uM B-1283 <0.1uM 64.0%@1.0uM					
B-1282 <0.1uM 75.0%@1.0uM B-1283 <0.1uM 64.0%@1.0uM			83.0%@1.0uM		
B-1283 <0.1uM 64.0%@1.0uM					
07.0706 1.00111					
3 4004 I					
3-1284 <0.1uM 75.0%@1.0uM	B-1284	<0.1uM	75.0%@1.0uM		

	P38 alpha kinase	U937 Cell 1C50,uM	Mouse LPS Model %	Rat LPS Model %
l l	IC50,uM or %	or %	TNF inhib @ dose	inhib @dose
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#				
B-1285	0.057uM	80.0%@1.0uM		
B-1286	0.15uM	78.0%21.0uM		
B-1287	0.25uM	55.0%@1.0uM		
B-1288	0.15uM	74.0%@1.0uM		
B-1289	0.73uM	35.0%@1.0uM		
B-1290	0.26uM	75.0%@1.0uM		
B-1291	0.097uM	55.0%@1.0uM		
B-1292	0.01uM	74.0%@1.0uM		
B-1293	0.31uM	48.0%@1.0uM		
B-1294	0.013uM	54.0%@1.0uM		
B-1295	0.079uM	74.0%@1.0uM		
B-1296	0.038uM	48.0%@1.0uM		
B-1297	0.02uM	>1.0uM		
B-1298	0.055uM	20.0%@1.0uM		
B-1299	0.091uM	>1.0uM		
B-1300	0.071uM	18.0%@1.0uM		
B-1301	0.12uM	15.0%@1.0uM		
B-1302	0.023uM	11.0%@1.0uM		
B-1303	0.08uM	>1.0uM		
B-1304	0.11uM	10.0%@1.0uM		
B-1305	0.64uM	9.0%@1.0uM		
B-1306	0.11uM	>1.0uM		
B-1307	0.009uM	16.0%@1.0uM		
B-1308	<0.1uM	>1.0uM		
B-1309	0.045uM	>1.0uM		
B-1310	0.12uM	11.0%@1.0uM		
B-1311	0.05uM	57.0%@1.0uM		***
B-1312	0.35uM	>1.0uM		
B-1313	0.035uM	37.0%@1.0uM		
B-1314	0.045uM	24.0%@1.0uM		
B-1315	0.055uM	12.0%@1.0uM		
B-1316	0.026uM	36.0%@1.0uM		
B-1317	0.019uM	9.0%@1.0uM		
B-1318	<0.1uM	1.0%@1.0uM		
B-1319	0.24uM	>1.0uM		
B-1320	0.047uM	43.0%@1.0uM		
B-1321	0.47uM	66.0%@1.0uM		
B-1322	0.12uM	87.0%@1.0uM		
B-1323	0.013uM	85.0%@1.0uM		
B-1324	0.16uM	83.0%@1.0uM		
B-1325	0.27uM	95.0%@1.0uM		
B-1326	0.092uM	84.0%@1.0uM		
B-1327	0.13uM	65.0%@1.0uM		
B-1328	0.032uM	86.0%@1.0uM		
B-1329	0.66uM	54.0%@1.0uM		
B-1330	0.053uM	85.0%@1.0uM		
B-1331	0.004uM	85.0%@1.0uM		
B-1332	0.007uM	81.0%@1.0uM		
B-1333	0.45uM	76.0%@1.0uM		

	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF inhib @ dose	inhib @dose
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#				
B-1334	0.13uM	73.0%@1.0uM		
B-1335	0.097uM	63.0%@1.0uM		
B-1336	0.072uM	83.0%@1.0uM		
B-1337	0.4uM	90.0%@1.0uM		
B-1338	0.18uM	73.0%@1.0uM		
B-1339	0.12uM	67.0%@1.0uM		
B-1340	0.043uM	63.0%@1.0uM		
B-1341	0.42uM	52.0%@1.0uM		
B-1342	0.25uM	59.0%@1.0uM		
B-1343	0.065uM	83.0%@1.0uM		
B-1344	0.014uM	86.0%@1.0uM		
B-1345	0.27uM	73.0%@1.0uM		
B-1346	0.043uM	86.0%@1.0uM		
B-1347	0.021uM	84.0%@1.0uM	<u> </u>	
B-1348	0.009uM	69.0%@1.0uM	<u> </u>	
B-1349	0.037uM	86.0%@1.0uM		
B-1350	0.019uM	78.0%@1.0uM	L	
B-1351	0.068uM	78.0%@1.0uM		
B-1352	0.013uM	76.0%@1.0uM	<u> </u>	
B-1353	0.062uM	80.0%@1.0uM		
B-1354	0.013uM	83.0%@1.0uM		
B-1355	0.07uM	75.0%@1.0uM	<u> </u>	
B-1356	0.059uM	91.0%@1.0uM	<u> </u>	
B-1357	0.18uM	84.0%@1.0uM		
B-1358	0.16uM	76.0%@1.0uM		
B-1359	0.005	84.0%@1.0uM		
B-1360	0.11	0.15uM		54%@3mpk@-4h
B-1361	0.03	0.29uM		
B-1362	0.003	0.29uM		
B-1363	0.009	0.28uM	51.0%@30pmk @- 6H	53%@3mpk@-4h
B-1364	0.009	0.27uM	53.0%@30mpk@- 6.0H	17%@3mpk@-4h
B-1365	0.17	88.0%@1.0uM		
B-1366	0.04	0.27uM		<u></u>
B-1367	<0.1	0.22uM		
B-1368	0.031	0.33uM	44.0%@30mpk @-	
B-1369	<0.1	0.29uM		
B-1370	<0.1	0.77uM_		
B-1371	0.06	83.0%@1.0uM	<u> </u>	
B-1372	<0.1	0.41uM	48.0%@30mpk @-	
B-1373	0.016	0.17uM	ļ	
B-1374	<0.1	0.28uM	 	
B-1375	0.01	0.25uM		
B-1376	0.009	0.26uM	3.0%@30mpk @-6H	
B-1377	0.12	5.0uM	<u> </u>	
B-1378	0.02	1.04uM	 	
B-1379	<0.1	0.092uM	ļ	
B-1380	<0.1	0.26uM	1	

	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50.uM or %	or %	TNF inhib @ dose	inhib @dose
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#	`			
B-1381	0.055	0.73uM		
B-1382	<0.1	0.44uM		
B-1383	0.0012	0.15uM		
B-1384	0.57	0.37uM		
B-1385	<0.1	0.11uM		
B-1386	<0.1	0.25uM		
B-1387	<0.1	0.1uM		
B-1388	0.57	1.38uM		
B-1389	0.06	0.57uM		
B-1390	<0.1	71.0%@1.0uM		
B-1391	0.016uM	82.0%@1.0uM		
B-1392	0.059uM	82.0%@1.0uM		
B-1393	3.17uM	80.0%@1.0uM		
B-1394	0.32uM	78.0%@1.0uM		
B-1395	1.48	61.0%@1.0uM		
B-1396	1.55	73.0%@1.0uM		
B-1397	0.92	85.0%@1.0uM		
B-1398	0.67	83.0%@1.0uM		
B-1399	0.14	74.0%@1.0uM		
B-1400	0.024	83.0%@1.0uM		
B-1401	0.033	75.0%@1.0uM		
B-1402	0.12	76.0%@1.0uM		
B-1403	4.54	71%@1.0uM		
B-1404	0.6	70%@1.0uM		
B-1405	0.28	70%@1.0uM		
B-1406	1.39	56.0%@1.0uM		
B-1407	0.4	71.0%@1.0uM		
B-1408	0.27	69.0%@1.0uM		
B-1409	<0.1	72.0%@1.0uM		
B-1410	<0.1	69%@1.0uM		
B-1411	<0.1	81.0%@1.0uM		
B-1412	0.097	80.0%@1.0uM		
B-1413	0.016	78.0%@1.0uM		
B-1414	0.025	83.0%@1.0uM		
B-1415	1.41	79.0%@1.0uM		
B-1416	0.14	81.0%@1.0uM		
B-1417	0.069	69.0%@1.0uM		
B-1418	1.01	82.0%@1.0uM		
B-1419	0.3	84.0%@1.0uM		
B-1420	<0.1	82.0%@1.0uM		
B-1421	0.014	75.0%@1.0uM		
B-1422	0.58	68.0%@1.0uM		
B-1423	1.58	84.0%@1.0uM		
B-1424	0.86	76.0%@1.0uM		
B-1425	0.09	83.0%@1.0uM		
B-1426	0.19	80.0%@1.0uM		
B-1427	<0.1	84.0%@1.0uM		
B-1428	<0.1	86.0%@1.0uM		
B-1429	<0.1	87.0%@1.0uM		

			T	
	P38 alpha kinase	U937 Cell IC50,uM	Mouse LPS Model %	Rat LPS Model %
	IC50,uM or %	or %	TNF inhib @ dose	inhib @dose
	inhib@conc. (uM)	inhib@conc. (uM)	@predose time	@predose time
Example#		(2)	c produce time	e predose time
B-1430	0.75uM	35.0% @1.0uM		
B-1431	0.36uM	58.0% @1.0uM		
B-1432	0.11uM	51.0% @1.0uM		
B-1433	0.26uM	21.0% @1.0uM		
B-1434	0.19uM	28.0% @1.0uM		· · · · · · · · · · · · · · · · · · ·
B-1435	1.8uM	45.0% @1.0uM		· · · · · · · · · · · · · · · · · · ·
B-1436	1.0uM	20.0% @1.0uM		
B-1437	0.3uM	23.0% @1.0uM		
B-1438	2.01uM	27.0% @1.0uM		
B-1439	1.7uM	17.0% @1.0uM		
B-1440	0.87uM	3.0% @1.0uM		
B-1441	1.95uM	66.0% @1.0uM		
B-1442	1.54uM	18.0% @1.0uM		
B-1443	0.014uM	83.0% @1.0uM		
B-1444	0.3นM	24.0% @1.0uM		
B-1445	0.43uM	27.0% @1.0uM		
B-1446	0.77uM	36.0% @1.0uM		
B-1447	0.5uM	34.0% @1.0uM		· · · · · · · · · · · · · · · · · · ·
B-1448	1.43uM	22.0% @1.0uM		
B-1449	1.61uM	50.0%@1.0uM		
B-1450	2.1uM	49.0%@1.0uM		
B-1451	2.88uM	50% @1.0uM		····
B-1452	2.41uM	47.0%@1.0uM		
B-1453	2.53uM	49.0% @1.0uM		
B-1454	1.6uM	12.0% @1.0uM		
B-1455	1.21uM	8.0% @1.0uM		
B-1456	1.29uM	>1.0uM		
B-1457	0.43uM	43.0% @1.0uM		
B-1458	0.95uM	65.0% @1.0uM		
B-1459	0.67uM	46.0% @1.0uM		
B-1460	0.96uM	29.0% @1.0uM		
B-1461	0.4uM	39.0% @1.0uM		·····
B-1462	0.22uM	50.0% @1.0uM		
B-1463	2.34uM	26.0% @1.0uM		
B-1464	1.18uM	27.0% @1.0uM		
B-1465	3.23uM	31.0% @1.0uM		
B-1466	1.69uM	>1.0uM		
B-1467	1.22uM	1.0% @1.0uM		
B-1468	1.61uM	10.0% @1.0uM		
B-1469	0.37uM	14.0% @1.0uM		
B-1470	0.6uM	28.0% @1.0uM		
B-1471	0.85uM	25.0% @1.0uM		
B-1472	0.93uM	12.0%@1.0uM		
B-1473	1.24uM	14.0% @1.0uM		
B-1474	1.23uM	31.0% @1.0uM		
B-1475	2.1uM	24.0% @1.0uM		
B-1476	0.047uM	42.0% @1.0uM		
B-1477	2.5uM	34.0% @1.0uM		
B-1478				

Example#	P38 alpha kinase IC50,uM or % inhib@conc. (uM)	or %	Mouse LPS Model % TNF Inhib @ dose @predose time	Rat LPS Model % Inhib @dose @predose time
B-1479				

[==
T.
ļ-Ā
ايد.
ŢŢ.
11
ļ=ā
17,2
* 22. E

	mple#	P38 alpha IC50,uM inhib@cond	kinase or % c. (uM	U937 Cell I or inhib@cond	C50,uN % :. (uM	Mouse L TNF dose @p	PS Mode inhib @ redose ti	! %	inhib @dose
B-2		0.72ul		31%@10.		-			@predose time
	-2271 0.93uM			38%@10.	OUM	ļ		\Box	
B-22		0.26uA	1	53.0%@10				$\perp I$	
B-22		1.92uN	1	39.0%@10					
B-22		0.26uN	1	59.0%@10				\perp	
B-22		2.16uM		53.0%@10.				\perp	·
B-22		11.5uM		37.0%@10.	OUM			\perp	
B-22		14.9uM		44.0%@10.	DURA				
B-227		0.8uM		51.0%@10.	DUBA				
B-227		0.32uM		36.0%@10.0	IVIN			\perp	
B-228		0.4uM		57.0%@10.0					
B-228		0.81uM	1	60.0%@10.0	LIVI				
B-228		0.91uM		41.0%@10.0	UIVI				
B-228		0.04uM	5	3.0%@10.0	UIVI				
B-2284		4.61uM		2.0%@10.0					
B-2285		2.29uM		9.0%@10.0					
B-2286	1	0.017uM	_	0.78uM		0/ 0 =			
B-2287	1	2.56uM	6	1.0%@10.0L	NA 2:	%@30mp	k@-1h		
B-2288		6.51uM	40	6.0%@10.0u	NA				
B-2289		3.0uM		0.0%@10.0u					
B-2290		2.37uM		0.0%@10.0u					
B-2291		0.019uM		1%@10.0uN					
B-2292		8.82uM		.0%@10.0ul					
B-2293		2.11uM	56	.0%@10.0ul	<u>, </u>				
B-2294	 	1.68uM	50.	.0%@10.0ul	<u></u>				
B-2295		1.79uM	56.	0%@10.0uN	-				
B-2296		17.3uM		0%@10.0uN					
B-2297		3.59uM		0%@10.0uN					
B-2298		0.29uM		4.22uM	+				
B-2299		1.97uM	62.0	0%@10.0uM	+				
B-2300).07uM	43.0)%@10.0uM	 				
B-2301).18uM	44.0	%@10.0uM	 				
B-2302 B-2303		1.0uM		0%@1.0uM					
B-2304		011uM	54.0	%@10.0uM					
3-2304		.41uM	50.0	%@10.0uM					
3-2305		.54uM	60.09	%@10.0uM					
3-2306		88uM	39.09	%@10.0uM					
-2308		29uM	69.09	6@10.0uM					
-2309		66uM	56.0%	6@10.0uM					
2303	0.2	29uM	47.0%	@10.0uM					

				
Example#	P38 alpha kinase IC50,uM or %	or %	Mouse LPS Model % TNF Inhib @ dose @predose time	Rat LPS Model % inhib @dose @predose time
	inmowconc. (um)	minbecone. (dia)	dose opiedose time	e predose time
B-2310	0.12uM	1.2uM	50%@30mpk@-6h	
B-2311	7.18uM	60%@10.0uM		
B-2312	2.93uM	43.0%@10.0uM		
B-2313	42.3uM	58.0%@10.0uM		
B-2314	11.0uM	66.0%@10.0uM		
B-2315	0.49uM	36.0%@10.0uM		
B-2316	0.46uM	58.0%@10.0uM		
B-2317	1.0uM	60.0%@10.0uM		
B-2318	73.0%@10.0uM	25.0%@10.0uM		
B-2319	75.0%@10.0uM	40.0%@10.0uM		
B-2320	44.0%@10.0uM	35.0%@10.0uM		
B-2321	69.0%@10.0uM	27.0%@10.0uM		
B-2322	76.0%@10.0uM	38.0%@10.0uM		
B-2323	69.0%@10.0uM	46.0%@10.0uM		
B-2324	58.0%@10.0uM	36.0%@10.0uM		
B-2325	60.0%@10.0uM	51.0%@10.0uM		
B-2326	76.0%@10.0uM	33.0%@10.0uM		
B-2327	76.0%@10.0uM	23.0%@10.0uM		
B-2328	65.0%@10.0uM	28.0%@10.0uM		
B-2329	72.0%@10.0uM	53.0%@10.0uM		
B-2330	81.0%@10.0uM	37.0%@10.0uM		
B-2331	74.0%@10.0uM	44.0%@10.0uM		
B-2332	70.0%@10.0uM	47.0%@10.0uM		
B-2333	58.0%@10.0uM	36.0%@10.0uM		
B-2334	81.0%@10.0uM	45.0%@10.0uM		
B-2335	82.0%@10.0uM	50.0%@10.0uM		
B-2336	48.0%@10.0uM	35.0%@10.0uM		
B-2337	46.0%@10.0uM	59.0%@10.0uM	• *	
B-2338	73.0%@10.0uM	50.0%@10.0uM		
B-2339	84.0%@10.0uM	>10.0uM		
B-2340	35.0%@10.0uM	12.0%@10.0uM		
B-2341	75.0%@10.0uM	50.0%@10.0uM		
B-2342	83.0%@10.0uM	46.0%@10.0uM		
B-2343	43.0%@10.0uM	27.0%@10.0uM		
B-2344	71.0%@10.0uM	50.0%@10.0uM		
B-2345	64.0%@10.0uM	38.0%@10.0uM		
B-2346	45.0%@10.0uM	48.0%@10.0uM		
B-2347	49.0%@10.0uM	50.0%@10.0uM		
B-2348	76.0%@10.0uM	48.0%@10.0uM		
B-2349	75.0%@10.0uM	27.0%@10.0uM	<u> </u>	

P38 alpha kinase C50,uM or % inhib@conc. (uM) or % inhib @conc. (uM) or % inhib @conc. (uM)					
Inhib@conc. (uM) Inhib@conc. (uM) dose @predose time	Evennle#	r			
B-2351	Example#				- i
B-2351	B-2350	38.0%@10.0uM	56.0%@10.0uM		
B-2352 37.0%@10.0uM 19.0%@10.0uM B-2353 38.0%@10.0uM 33.0%@10.0uM B-2355 65.0%@10.0uM 55.0%@10.0uM B-2355 84.0%@10.0uM 45.0%@10.0uM B-2356 77.0%@10.0uM 45.0%@10.0uM B-2357 47.0%@10.0uM 45.0%@10.0uM B-2358 17.0%@10.0uM 52.0%@10.0uM B-2358 17.0%@10.0uM 52.0%@10.0uM B-2359 76.0%@10.0uM 51.0vM B-2360 45.0%@10.0uM 51.0vM B-2361 19.0%@10.0uM 45.0%@10.0uM B-2362 60%@10.0uM 39.0%@10.0uM B-2362 60%@10.0uM 46.0%@10.0uM B-2363 44.0%@10.0uM 40.0%@10.0uM B-2364 47.0%@10.0uM 43.0%@10.0uM B-2365 82.0%@10.0uM 43.0%@10.0uM B-2366 70.0%@10.0uM 55.0%@10.0uM B-2367 46.0%@10.0uM 55.0%@10.0uM B-2368 65.0%@10.0uM 55.0%@10.0uM B-2369 32.0%@10.0uM 51.0uM B-2371 54.0%@10.0uM 36.0%@10.0uM B-2372 55.0%@100.0uM 36.0%@10.0uM B-2373 50.0%@100.0uM 50.0%@10.0uM B-2374 35.0%@100.0uM 20.0%@10.0uM B-2375 62.0%@100.0uM 71.0vM B-2376 32.0%@100.0uM 51.0uM B-2377 34.0%@10.0uM 36.0%@10.0uM B-2378 48.0%@10.0uM 51.0uM B-2379 73.0%@10.0uM 51.0uM B-2371 54.0%@10.0uM 50.0w@10.0uM B-2372 55.0%@10.0uM 50.0w@10.0uM B-2373 50.0%@10.0uM 50.0w@10.0uM B-2374 35.0%@10.0uM 50.0%@10.0uM B-2375 52.0%@10.0uM 51.0uM B-2376 32.0%@10.0uM 51.0v@10.0uM B-2378 48.0%@10.0uM 53.0%@10.0uM B-2379 73.0%@10.0uM 53.0%@10.0uM B-2380 81%@10.0uM 53.0%@10.0uM B-2381 68%@10.0uM 50.0%@10.0uM B-2382 51.0%@10.0uM 50.0%@10.0uM B-2383 63.0%@10.0uM 50.0%@10.0uM B-2384 49%@10.0uM 50.0%@10.0uM B-2385 38.0%@10.0uM 50.0%@10.0uM B-2386 38.0%@10.0uM 50.0%@10.0uM B-2387 50.0%@10.0uM 50.0%@10.0uM B-2388 38.0%@10.0uM 50.0%@10.0uM B-2387 50.0%@10.0uM 50.0%@10.0uM B-2388 38.0%@10.0uM 50.0%@10.0uM B-2387 50.0%@10.0uM 50.0w@10.0uM B-2388 38.0%@10.0uM 50.0w@10.0uM B-2387 50.0%@10.0uM 50.0w@10.0uM	B-2351				
B-2353 38.0%@10.0uM 33.0%@10.0uM B-2354 65.0%@10.0uM 50.0%@10.0uM B-2355 84.0%@10.0uM 50.0%@10.0uM B-2355 84.0%@10.0uM 45.0%@10.0uM B-2356 77.0%@10.0uM 45.0%@10.0uM B-2357 47.0%@10.0uM 82.0%@10.0uM B-2358 17.0%@10.0uM 85.0%@10.0uM B-2359 76.0%@10.0uM 85.0%@10.0uM B-2360 45.0%@10.0uM 35.0%@10.0uM B-2361 19.0%@10.0uM 36.0%@10.0uM B-2362 60%@10.0uM 39.0%@10.0uM B-2362 60%@10.0uM 1.0%@10.0uM B-2364 47.0%@10.0uM 4.0%@10.0uM B-2365 82.0%@10.0uM 43.0%@10.0uM B-2365 82.0%@10.0uM 55.0%@10.0uM B-2366 70.0%@10.0uM 55.0%@10.0uM B-2369 32.0%@10.0uM 55.0%@10.0uM B-2369 32.0%@10.0uM 55.0%@10.0uM B-2370 73%@100.0uM 20.0%@10.0uM B-2371 54.0%@10.0uM 20.0%@10.0uM B-2371 55.0%@100.0uM 21.0.0uM B-2373 55.0%@100.0uM 20.0%@10.0uM B-2374 35.0%@100.0uM 20.0%@10.0uM B-2375 62.0%@10.0uM 20.0%@10.0uM B-2376 32.0%@10.0uM 31.0.0uM B-2376 32.0%@10.0uM 51.0.0uM B-2376 32.0%@10.0uM 51.0.0uM B-2376 32.0%@10.0uM 53.0%@10.0uM B-2376 32.0%@10.0uM 53.0%@10.0uM B-2376 32.0%@10.0uM 53.0%@10.0uM B-2378 48.0%@10.0uM 53.0%@10.0uM B-2378 48.0%@10.0uM 53.0%@10.0uM B-2380 81%@100.0uM 53.0%@10.0uM B-2381 68%@100.0uM 53.0%@10.0uM B-2381 68%@100.0uM 35.0%@10.0uM B-2382 51.0%@10.0uM 35.0%@10.0uM B-2383 63.0%@10.0uM 35.0%@10.0uM B-2384 49%@100.0uM 35.0%@10.0uM B-2385 50.0%@10.0uM 35.0%@10.0uM B-2386 38.0%@10.0uM 35.0%@10.0uM 35.0%@10.0uM B-2386 38.0%@10.0uM 35.0%@10.0uM 35.0%@10.0uM B-2386 38.0%@10.0uM 35.0%@10.0uM 35.0%@10.0uM 35.0%@10.0uM 35.0%@10.0uM 35.0%@10.0uM 35.0%@10.0uM 35.0%@10.0uM 35.0%@10.0uM 35.0%@10.0uM 35.0%@1	B-2352				
B-2354 65.0%@10.0uM 25.0%@10.0uM B-2355 84.0%@10.0uM 50.0%@10.0uM B-2355 84.0%@10.0uM 45.0%@10.0uM B-2357 47.0%@10.0uM 45.0%@10.0uM B-2357 47.0%@10.0uM 52.0%@10.0uM B-2359 76.0%@10.0uM 55.0%@10.0uM B-2359 76.0%@10.0uM 35.0%@10.0uM B-2360 45.0%@10.0uM 45.0%@10.0uM B-2361 19.0%@10.0uM 46.0%@10.0uM B-2362 60%@10.0uM 1.00%@10.0uM B-2363 44.0%@10.0uM 1.0%@10.0uM B-2364 47.0%@10.0uM 4.0%@10.0uM B-2365 82.0%@10.0uM 43.0%@10.0uM B-2365 82.0%@10.0uM 43.0%@10.0uM B-2366 70.0%@10.0uM 40.0%@10.0uM B-2366 70.0%@10.0uM 55.0%@10.0uM B-2366 65.0%@10.0uM 55.0%@10.0uM B-2368 65.0%@10.0uM 50.0%@10.0uM B-2370 73%@100.0uM 50.0%@10.0uM B-2371 54.0%@10.0uM 36.0%@10.0uM B-2371 54.0%@10.0uM 36.0%@10.0uM B-2372 55.0%@10.0uM 36.0%@10.0uM B-2373 50.0%@10.0uM 50.0w@10.0uM B-2373 50.0%@10.0uM 20.0%@10.0uM B-2375 62.0%@10.0uM 50.0w@10.0uM B-2375 62.0%@10.0uM 50.0w@10.0uM B-2376 32.0%@10.0uM 51.0uM B-2377 34.0%@10.0uM 51.0uM B-2378 35.0%@10.0uM 53.0%@10.0uM B-2379 73.0%@10.0uM 53.0%@10.0uM B-2379 73.0%@10.0uM 53.0%@10.0uM B-2379 73.0%@10.0uM 53.0%@10.0uM B-2380 81%@10.0uM 53.0%@10.0uM B-2380 81%@10.0uM 53.0%@10.0uM B-2381 68%@10.0uM 53.0%@10.0uM B-2382 51.0%@10.0uM 35.0%@10.0uM B-2383 63.0%@10.0uM 35.0%@10.0uM B-2384 49%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM 10					
B-2355 84.0%@10.0uM 50.0%@10.0uM B-2356 77.0%@10.0uM 45.0%@10.0uM B-2357 47.0%@10.0uM 41.0%@10.0uM B-2358 17.0%@10.0uM 52.0%@10.0uM B-2359 76.0%@10.0uM 35.0%@10.0uM B-2360 45.0%@10.0uM >10.0uM B-2361 19.0%@10.0uM 46.0%@10.0uM B-2362 60%@100.0uM 39.0%@10.0uM B-2363 44.0%@10.0uM 1.0%@10.0uM B-2364 47.0%@10.0uM 43.0%@10.0uM B-2365 82.0%@10.0uM 43.0%@10.0uM B-2366 67.00%@10.0uM 40.0%@10.0uM B-2367 46.0%@10.0uM 59.0%@10.0uM B-2368 65.0%@10.0uM 59.0%@10.0uM B-2370 73%@100.0uM >10.0uM B-2371 54.0%@10.0uM >10.0uM B-2371 55.0%@10.0uM >10.0uM B-2372 55.0%@10.0uM >10.0uM B-2373 50.0%@10.0uM ≥10.0uM B-2374 35.0%@10.0uM >10.0uM B-2375 62.0%@10.0uM >10.0uM B-2376 32.0%@10.0uM >10.0uM B-2377 34.0%@10.0uM >10.0uM B-2378 48.0%@10.0uM >10.0uM B-2379 73.0%@10.0uM >10.0uM B-2379 73.0%@10.0uM >10.0uM B-2376 32.0%@10.0uM >10.0uM B-2378 48.0%@10.0uM >10.0uM B-2378 48.0%@10.0uM >10.0uM B-2378 48.0%@10.0uM 51.00uM B-2378 48.0%@10.0uM 51.00uM B-2378 48.0%@10.0uM 51.00uM B-2380 81%@10.0uM 53.0%@10.0uM B-2380 81%@10.0uM 53.0%@10.0uM B-2380 81%@100.0uM 2.0%@10.0uM B-2381 68%@100.0uM 2.0%@10.0uM B-2382 51.0%@10.0uM 35.0%@10.0uM B-2383 63.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM					
B-2356					
B-2357					•
B-2358	B-2357				
B-2359 76.0%@10.0uM 35.0%@10.0uM B-2360 45.0%@10.0uM >10.0uM B-2361 19.0%@10.0uM 46.0%@10.0uM B-2362 60%@100.0uM 39.0%@10.0uM B-2363 44.0%@10.0uM 1.0%@10.0uM B-2364 47.0%@10.0uM 4.0%@10.0uM B-2365 82.0%@10.0uM 59.0%@10.0uM B-2366 70.0%@10.0uM 59.0%@10.0uM B-2367 46.0%@10.0uM 59.0%@10.0uM B-2368 65.0%@10.0uM 55.0%@10.0uM B-2369 32.0%@10.0uM >10.0uM B-2370 73%@100.0uM >10.0uM B-2371 54.0%@10.0uM 36.0%@10.0uM B-2371 54.0%@10.0uM >10.0uM B-2372 55.0%@10.0uM >10.0uM B-2373 50.0%@10.0uM >10.0uM B-2374 35.0%@10.0uM >10.0uM B-2374 35.0%@10.0uM >10.0uM B-2375 62.0%@10.0uM >10.0uM B-2376 32.0%@10.0uM >10.0uM B-2376 32.0%@10.0uM >5.0%@10.0uM B-2378 48.0%@10.0uM 17.0%@10.0uM B-2379 73.0%@10.0uM 17.0%@10.0uM B-2380 81%@100.0uM 45.0%@10.0uM B-2380 81%@100.0uM 53.0%@10.0uM B-2381 68%@100.0uM 35.0%@10.0uM B-2382 51.0%@10.0uM 10.0%@10.0uM B-2383 63.0%@10.0uM 10.0%@10.0uM B-2384 49%@10.0uM 10.0%@10.0uM B-2385 79.0%@10.0uM 10.0%@10.0uM B-2386 38.0%@10.0uM 10.0%@10.0uM B-2387 50.0%@10.0uM 10.0%@10.0uM B-2388 79.0%@10.0uM 10.0%@10.0uM B-2389 50.0%@10.0uM 10.0%@10.0uM B-2380 38.0%@10.0uM 10.0%@10.0uM B-2385 79.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM B-2386 50.0%@10.0uM 19.0%@10.0uM					
B-2360					
B-2362 60%@100.0uM 39.0%@10.0uM B-2363 44.0%@10.0uM 1.0%@10.0uM B-2364 47.0%@10.0uM 4.0%@10.0uM B-2365 82.0%@10.0uM 43.0%@10.0uM B-2366 70.0%@10.0uM 59.0%@10.0uM B-2367 46.0%@10.0uM 40.0%@1.0uM B-2368 65.0%@10.0uM 55.0%@10.0uM B-2369 32.0%@10.0uM >10.0uM B-2370 73%@100.0uM >10.0uM B-2371 54.0%@10.0uM 36.0%@10.0uM B-2372 55.0%@100.0uM >10.0uM B-2373 50.0%@100.0uM 6%@10.0uM B-2374 35.0%@10.0uM 20.0%@10.0uM B-2375 62.0%@100.0uM >10.0uM B-2376 32.0%@10.0uM 17.0%@10.0uM B-2377 34.0%@10.0uM 17.0%@10.0uM B-2378 48.0%@10.0uM 45.0%@10.0uM B-2378 48.0%@10.0uM 45.0%@10.0uM B-2381 68%@100.0uM 2.0%@10.0uM B-2382 51.0%@10.0uM 35.0%@10.0uM B-2383 63.0%@10.0uM 35.0%@10.0uM B-238	B-2360	45.0%@10.0uM	>10.0uM		
B-2362 60%@100.0uM 39.0%@10.0uM B-2363 44.0%@10.0uM 1.0%@10.0uM B-2364 47.0%@10.0uM 4.0%@10.0uM B-2365 82.0%@10.0uM 43.0%@10.0uM B-2366 70.0%@10.0uM 59.0%@10.0uM B-2367 46.0%@10.0uM 40.0%@1.0uM B-2368 65.0%@10.0uM 55.0%@10.0uM B-2369 32.0%@10.0uM >10.0uM B-2370 73%@100.0uM >10.0uM B-2371 54.0%@10.0uM 36.0%@10.0uM B-2372 55.0%@100.0uM >10.0uM B-2373 50.0%@100.0uM 6%@10.0uM B-2374 35.0%@10.0uM 20.0%@10.0uM B-2375 62.0%@100.0uM >10.0uM B-2376 32.0%@10.0uM 17.0%@10.0uM B-2377 34.0%@10.0uM 17.0%@10.0uM B-2378 48.0%@10.0uM 45.0%@10.0uM B-2378 48.0%@10.0uM 45.0%@10.0uM B-2381 68%@100.0uM 2.0%@10.0uM B-2382 51.0%@10.0uM 35.0%@10.0uM B-2383 63.0%@10.0uM 35.0%@10.0uM B-238	B-2361	19.0%@10.0uM	46.0%@10.0uM		
B-2363 44.0%@10.0uM 1.0%@10.0uM B-2364 47.0%@10.0uM 4.0%@10.0uM B-2365 82.0%@10.0uM 43.0%@10.0uM B-2366 70.0%@10.0uM 59.0%@10.0uM B-2367 46.0%@10.0uM 40.0%@1.0uM B-2368 65.0%@10.0uM 55.0%@10.0uM B-2369 32.0%@10.0uM >10.0uM B-2370 73%@100.0uM >10.0uM B-2371 54.0%@10.0uM 36.0%@10.0uM B-2372 55.0%@100.0uM >10.0uM B-2373 50.0%@100.0uM 6%@10.0uM B-2374 35.0%@10.0uM 20.0%@10.0uM B-2375 62.0%@100.0uM 20.0%@10.0uM B-2376 32.0%@10.0uM 17.0%@10.0uM B-2377 34.0%@10.0uM 17.0%@10.0uM B-2378 48.0%@10.0uM 45.0%@10.0uM B-2379 73.0%@100.0uM 45.0%@10.0uM B-2381 68%@100.0uM 2.0%@10.0uM B-2382 51.0%@10.0uM 35.0%@10.0uM B-2384 49%@100.0uM 10.0%@10.0uM B-2385 79.0%@10.0uM 19.0%@10.0uM <td< td=""><td></td><td>60%@100.0uM</td><td></td><td></td><td></td></td<>		60%@100.0uM			
B-2364 47.0%@10.0uM 4.0%@10.0uM B-2365 82.0%@10.0uM 43.0%@10.0uM B-2366 70.0%@10.0uM 59.0%@10.0uM B-2367 46.0%@10.0uM 40.0%@1.0uM B-2368 65.0%@10.0uM 55.0%@10.0uM B-2369 32.0%@10.0uM >10.0uM B-2370 73%@100.0uM 20.0%@10.0uM B-2371 54.0%@10.0uM 36.0%@10.0uM B-2372 55.0%@100.0uM >10.0uM B-2373 50.0%@100.0uM 54.00uM B-2374 35.0%@100.0uM 20.0%@10.0uM B-2375 62.0%@100.0uM >10.0uM B-2376 32.0%@10.0uM 17.0%@10.0uM B-2377 34.0%@10.0uM 17.0%@10.0uM B-2378 48.0%@10.0uM 61.0%@10.0uM B-2380 81%@100.0uM 45.0%@1.0uM B-2381 68%@100.0uM 2.0%@10.0uM B-2382 51.0%@10.0uM 24.0%@10.0uM B-2384 49%@100.0uM 10.0%@10.0uM B-2385 79.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM B-					
B-2365 82.0%@10.0uM 43.0%@10.0uM B-2366 70.0%@10.0uM 59.0%@10.0uM B-2367 46.0%@10.0uM 40.0%@1.0uM B-2368 65.0%@10.0uM 55.0%@10.0uM B-2369 32.0%@10.0uM >10.0uM B-2370 73%@100.0uM 20.0%@10.0uM B-2371 54.0%@10.0uM 36.0%@10.0uM B-2372 55.0%@100.0uM >10.0uM B-2373 50.0%@100.0uM 6%@10.0uM B-2374 35.0%@10.0uM 20.0%@10.0uM B-2375 62.0%@100.0uM >10.0uM B-2376 32.0%@10.0uM 17.0%@10.0uM B-2377 34.0%@10.0uM 17.0%@10.0uM B-2378 48.0%@10.0uM 61.0%@10.0uM B-2379 73.0%@10.0uM 45.0%@10.0uM B-2380 81%@100.0uM 53.0%@10.0uM B-2381 68%@100.0uM 2.0%@10.0uM B-2382 51.0%@10.0uM 35.0%@10.0uM B-2384 49%@100.0uM 10.0%@10.0uM B-2385 79.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM <td< td=""><td></td><td>47.0%@10.0uM</td><td></td><td></td><td></td></td<>		47.0%@10.0uM			
B-2366 70.0%@10.0uM 59.0%@10.0uM B-2367 46.0%@10.0uM 40.0%@1.0uM B-2368 65.0%@10.0uM 55.0%@10.0uM B-2369 32.0%@10.0uM >10.0uM B-2370 73%@100.0uM 20.0%@10.0uM B-2371 54.0%@10.0uM 36.0%@10.0uM B-2372 55.0%@10.0uM >10.0uM B-2373 50.0%@10.0uM 6%@10.0uM B-2374 35.0%@10.0uM 20.0%@10.0uM B-2375 62.0%@100.0uM >10.0uM B-2376 32.0%@10.0uM 17.0%@10.0uM B-2377 34.0%@10.0uM 17.0%@10.0uM B-2378 48.0%@10.0uM 61.0%@10.0uM B-2379 73.0%@100.0uM 45.0%@10.0uM B-2380 81%@100.0uM 53.0%@10.0uM B-2381 68%@100.0uM 2.0%@10.0uM B-2382 51.0%@10.0uM 24.0%@10.0uM B-2383 63.0%@10.0uM 35.0%@10.0uM B-2384 49%@10.0uM 10.0%@10.0uM B-2385 79.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM B-2387 50.0%@10.0uM 19.0%@10.0uM					
B-2367 46.0%@10.0uM 40.0%@1.0uM B-2368 65.0%@10.0uM 55.0%@10.0uM B-2369 32.0%@10.0uM >10.0uM B-2370 73%@100.0uM 20.0%@10.0uM B-2371 54.0%@10.0uM 36.0%@10.0uM B-2372 55.0%@100.0uM >10.0uM B-2373 50.0%@10.0uM 6%@10.0uM B-2374 35.0%@10.0uM 20.0%@10.0uM B-2375 62.0%@10.0uM >10.0uM B-2376 32.0%@10.0uM 17.0%@10.0uM B-2377 34.0%@10.0uM 17.0%@10.0uM B-2378 48.0%@10.0uM 61.0%@10.0uM B-2379 73.0%@10.0uM 51.00uM B-2380 81%@10.0uM 53.0%@10.0uM B-2381 68%@10.0uM 2.0%@10.0uM B-2382 51.0%@10.0uM 24.0%@10.0uM B-2383 63.0%@10.0uM 35.0%@10.0uM B-2384 49%@10.0uM 35.0%@10.0uM B-2385 79.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM B-2387 50.0%@10.0uM 19.0%@10.0uM					
B-2368 65.0%@10.0uM 55.0%@10.0uM B-2369 32.0%@10.0uM >10.0uM B-2370 73%@100.0uM 20.0%@10.0uM B-2371 54.0%@10.0uM 36.0%@10.0uM B-2372 55.0%@100.0uM >10.0uM B-2373 50.0%@100.0uM 6%@10.0uM B-2374 35.0%@10.0uM 20.0%@10.0uM B-2375 62.0%@10.0uM >10.0uM B-2376 32.0%@10.0uM 17.0%@10.0uM B-2377 34.0%@10.0uM 17.0%@10.0uM B-2378 48.0%@10.0uM 61.0%@10.0uM B-2379 73.0%@10.0uM 65.0%@10.0uM B-2381 68%@100.0uM 53.0%@10.0uM B-2381 68%@100.0uM 2.0%@10.0uM B-2382 51.0%@10.0uM 24.0%@10.0uM B-2383 63.0%@10.0uM 10.0%@10.0uM B-2384 49%@100.0uM 10.0%@10.0uM B-2385 79.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM B-2387 50.0%@10.0uM 19.0%@10.0uM	B-2367				
B-2369 32.0%@10.0uM >10.0uM B-2370 73%@100.0uM 20.0%@10.0uM B-2371 54.0%@10.0uM 36.0%@10.0uM B-2372 55.0%@100.0uM >10.0uM B-2373 50.0%@100.0uM 6%@10.0uM B-2374 35.0%@10.0uM 20.0%@10.0uM B-2375 62.0%@10.0uM >10.0uM B-2376 32.0%@10.0uM 17.0%@10.0uM B-2377 34.0%@10.0uM 17.0%@10.0uM B-2378 48.0%@10.0uM 61.0%@10.0uM B-2379 73.0%@10.0uM 65.0%@10.0uM B-2380 81%@100.0uM 53.0%@10.0uM B-2381 68%@100.0uM 2.0%@10.0uM B-2382 51.0%@10.0uM 24.0%@10.0uM B-2383 63.0%@10.0uM 35.0%@10.0uM B-2384 49%@100.0uM 10.0%@10.0uM B-2385 79.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM B-2387 50.0%@10.0uM 19.0%@10.0uM			55.0%@10.0uM		· · · · · · · · · · · · · · · · · · ·
B-2370 73%@100.0uM 20.0%@10.0uM B-2371 54.0%@10.0uM 36.0%@10.0uM B-2372 55.0%@100.0uM >10.0uM B-2373 50.0%@100.0uM 6%@10.0uM B-2374 35.0%@10.0uM 20.0%@10.0uM B-2375 62.0%@100.0uM >10.0uM B-2376 32.0%@10.0uM 17.0%@10.0uM B-2377 34.0%@10.0uM 17.0%@10.0uM B-2378 48.0%@10.0uM 61.0%@10.0uM B-2379 73.0%@10.0uM 45.0%@10.0uM B-2380 81%@100.0uM 53.0%@10.0uM B-2380 81%@100.0uM 2.0%@10.0uM B-2381 68%@100.0uM 2.0%@10.0uM B-2382 51.0%@10.0uM 24.0%@10.0uM B-2383 63.0%@10.0uM 35.0%@10.0uM B-2384 49%@100.0uM 10.0%@10.0uM B-2385 79.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM B-2387 50.0%@10.0uM >10.0uM					
B-2371 54.0%@10.0uM 36.0%@10.0uM B-2372 55.0%@100.0uM >10.0uM B-2373 50.0%@100.0uM 6%@10.0uM B-2374 35.0%@10.0uM 20.0%@10.0uM B-2375 62.0%@100.0uM >10.0uM B-2376 32.0%@10.0uM 17.0%@10.0uM B-2377 34.0%@10.0uM 17.0%@10.0uM B-2378 48.0%@10.0uM 61.0%@10.0uM B-2379 73.0%@100.0uM 45.0%@1.0uM B-2380 81%@100.0uM 53.0%@10.0uM B-2381 68%@100.0uM 2.0%@10.0uM B-2382 51.0%@10.0uM 24.0%@10.0uM B-2383 63.0%@10.0uM 35.0%@10.0uM B-2384 49%@100.0uM 10.0%@10.0uM B-2385 79.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM B-2387 50.0%@10.0uM >10.0uM		73%@100.0uM	20.0%@10.0uM		<u> </u>
B-2372 55.0%@100.0uM >10.0uM B-2373 50.0%@100.0uM 6%@10.0uM B-2374 35.0%@10.0uM 20.0%@10.0uM B-2375 62.0%@100.0uM >10.0uM B-2376 32.0%@10.0uM 17.0%@10.0uM B-2377 34.0%@10.0uM 17.0%@10.0uM B-2378 48.0%@10.0uM 61.0%@10.0uM B-2379 73.0%@100.0uM 45.0%@1.0uM B-2380 81%@100.0uM 53.0%@10.0uM B-2381 68%@100.0uM 2.0%@10.0uM B-2382 51.0%@10.0uM 24.0%@10.0uM B-2383 63.0%@10.0uM 35.0%@10.0uM B-2384 49%@100.0uM 10.0%@10.0uM B-2385 79.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM B-2387 50.0%@10.0uM 19.0%@10.0uM	B-2371	54.0%@10.0uM			
B-2374 35.0%@10.0uM 20.0%@10.0uM B-2375 62.0%@100.0uM >10.0uM B-2376 32.0%@10.0uM 17.0%@10.0uM B-2377 34.0%@10.0uM 17.0%@10.0uM B-2378 48.0%@10.0uM 61.0%@10.0uM B-2379 73.0%@100.0uM 45.0%@1.0uM B-2380 81%@100.0uM 53.0%@10.0uM B-2381 68%@100.0uM 2.0%@10.0uM B-2382 51.0%@10.0uM 24.0%@10.0uM B-2383 63.0%@10.0uM 35.0%@10.0uM B-2384 49%@100.0uM 10.0%@10.0uM B-2385 79.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM B-2387 50.0%@10.0uM >10.0uM					
B-2374 35.0%@10.0uM 20.0%@10.0uM B-2375 62.0%@100.0uM >10.0uM B-2376 32.0%@10.0uM 17.0%@10.0uM B-2377 34.0%@10.0uM 17.0%@10.0uM B-2378 48.0%@10.0uM 61.0%@10.0uM B-2379 73.0%@100.0uM 45.0%@1.0uM B-2380 81%@100.0uM 53.0%@10.0uM B-2381 68%@100.0uM 2.0%@10.0uM B-2382 51.0%@10.0uM 24.0%@10.0uM B-2383 63.0%@10.0uM 35.0%@10.0uM B-2384 49%@100.0uM 10.0%@10.0uM B-2385 79.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM B-2387 50.0%@10.0uM >10.0uM	B-2373	50.0%@100.0uM	6%@10.0uM		
B-2375 62.0%@100.0uM >10.0uM B-2376 32.0%@10.0uM 17.0%@10.0uM B-2377 34.0%@10.0uM 17.0%@10.0uM B-2378 48.0%@10.0uM 61.0%@10.0uM B-2379 73.0%@100.0uM 45.0%@1.0uM B-2380 81%@100.0uM 53.0%@10.0uM B-2381 68%@100.0uM 2.0%@10.0uM B-2382 51.0%@10.0uM 24.0%@10.0uM B-2383 63.0%@10.0uM 35.0%@10.0uM B-2384 49%@100.0uM 10.0%@10.0uM B-2385 79.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM B-2387 50.0%@100.0uM >10.0uM	B-2374				
B-2377 34.0%@10.0uM 17.0%@10.0uM B-2378 48.0%@10.0uM 61.0%@10.0uM B-2379 73.0%@100.0uM 45.0%@1.0uM B-2380 81%@100.0uM 53.0%@10.0uM B-2381 68%@100.0uM 2.0%@10.0uM B-2382 51.0%@10.0uM 24.0%@10.0uM B-2383 63.0%@10.0uM 35.0%@10.0uM B-2384 49%@100.0uM 10.0%@10.0uM B-2385 79.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM B-2387 50.0%@10.0uM >10.0uM	B-2375	62.0%@100.0uM	>10.0uM		
B-2378	B-2376	32.0%@10.0uM	17.0%@10.0uM		
B-2379 73.0%@100.0uM 45.0%@1.0uM B-2380 81%@100.0uM 53.0%@10.0uM B-2381 68%@100.0uM 2.0%@10.0uM B-2382 51.0%@10.0uM 24.0%@10.0uM B-2383 63.0%@10.0uM 35.0%@10.0uM B-2384 49%@100.0uM 10.0%@10.0uM B-2385 79.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM B-2387 50.0%@100.0uM >10.0uM	B-2377	34.0%@10.0uM	17.0%@10.0uM		
B-2380 81%@100.0uM 53.0%@10.0uM B-2381 68%@100.0uM 2.0%@10.0uM B-2382 51.0%@10.0uM 24.0%@10.0uM B-2383 63.0%@10.0uM 35.0%@10.0uM B-2384 49%@100.0uM 10.0%@10.0uM B-2385 79.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM B-2387 50.0%@100.0uM >10.0uM	B-2378	48.0%@10.0uM	61.0%@10.0uM		
B-2381 68%@100.0uM 2.0%@10.0uM B-2382 51.0%@10.0uM 24.0%@10.0uM B-2383 63.0%@10.0uM 35.0%@10.0uM B-2384 49%@100.0uM 10.0%@10.0uM B-2385 79.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM B-2387 50.0%@100.0uM >10.0uM	B-2379	73.0%@100.0uM	45.0%@1.0uM		
B-2382 51.0%@10.0uM 24.0%@10.0uM B-2383 63.0%@10.0uM 35.0%@10.0uM B-2384 49%@100.0uM 10.0%@10.0uM B-2385 79.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM B-2387 50.0%@100.0uM >10.0uM	B-2380	81%@100.0uM	53.0%@10.0uM		
B-2383 63.0%@10.0uM 35.0%@10.0uM B-2384 49%@100.0uM 10.0%@10.0uM B-2385 79.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM B-2387 50.0%@100.0uM >10.0uM	B-2381	68%@100.0uM			
B-2383 63.0%@10.0uM 35.0%@10.0uM B-2384 49%@100.0uM 10.0%@10.0uM B-2385 79.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM B-2387 50.0%@100.0uM >10.0uM		51.0%@10.0uM	24.0%@10.0uM		
B-2385 79.0%@10.0uM 19.0%@10.0uM B-2386 38.0%@10.0uM 19.0%@10.0uM B-2387 50.0%@100.0uM >10.0uM	B-2383				
B-2386 38.0%@10.0uM 19.0%@10.0uM B-2387 50.0%@100.0uM >10.0uM	B-2384	49%@100.0uM	10.0%@10.0uM		
B-2387 50.0%@100.0uM >10.0uM	B-2385	79.0%@10.0uM	19.0%@10.0uM		
	B-2386	38.0%@10.0uM	19.0%@10.0uM	······································	
B-2388 42.0%@10.0uM 24.0%@10.0uM	B-2387	50.0%@100.0uM	>10.0uM		
	B-2388	42.0%@10.0uM	24.0%@10.0uM	·	
B-2389 39.0%@10.0uM 29.0%@10.0uM	B-2389	39.0%@10.0uM	29.0%@10.0uM		

·				
		U937 Cell IC50,uM or %	Mouse LPS Model % TNF inhib @	Rat LPS Model % inhib @dose
Example#	IC50,uM or %		dose @predose time	@predose time
B-2390	34.0%@10.0uM	27.0%@1.0uM		
B-2391	40.0%@10.0uM	59.0%@10.0uM		
B-2392	63.0%@10.0uM	46.0%@10.0uM		
B-2393	43.0%@10.0uM	>10.0uM		
B-2394	37.0%@10.0uM	22.0%@10.0uM		
B-2395	32.0%@10.0uM	28.0%@10.0uM		
B-2396	75.0%@10.0uM	>10.0uM		
B-2397	83.0%@10.0uM	22.0%@10.0uM		
B-2398	55%@100.0uM	10.0%@10.0uM		
B-2399	69.0%@10.0uM	18.0%@10.0uM		
B-2400	60.0%@10.0uM	40.0%@10.0uM		
B-2401	78.0%@10.0uM	44.0%@10.0uM		
B-2402	43.0%@10.0uM	52.0%@10.0uM		
B-2403	72%@100.0uM	52.0%@10.0uM		
B-2404	58%@100.0uM	52.0%@10.0uM		-
B-2405	47%@100.0uM	>10.0uM		
B-2406	45.0%@10.0uM	24.0%@10.0uM		
B-2407	47%@100.0uM	27.0%@10.0uM		
B-2408	39.0%@10.0uM	10.0%@10.0uM		
B-2409	78.0%@10.0uM	26.0%@10.0uM		
B-2410	33.0%@10.0uM	32.0%@10.0uM		
B-2411	26%@100.0uM	13.0%@10.0uM		
B-2412	40.0%@10.0uM	31.0%@10.0uM		
B-2413	75.0%@10.0uM	37.0%@10.0uM		
B-2414	86.0%@10.0uM	38.0%@10.0uM		
B-2415	94.0%@10.0uM	50.0%@10.0uM		
B-2416	85.0%@10.0uM	43.0%@1.0uM		
B-2417	83.0%@10.0uM	18.0%@10.0uM		
B-2418	88.0%@10.0uM	34.0%@10.0uM		
B-2419	86.0%@10.0uM	66.0%@10.0uM		
B-2420	70.0%@10.0uM	34.0%@10.0uM		
B-2421	89.0%210.0uM	38.0%@10.0uM		
B-2422	90.0%@10.0uM	17.0%@10.0uM		
B-2423	85.0%@10.0uM	>10.0uM		
B-2424	86.0%@10.0uM	43.0%@10.0uM		
B-2425	79.0%@10.0uM	42.0%@10.0uM		
B-2426	88.0%@10.0uM	53.0%@10.0uM		
B-2427	87.0%@10.0uM	59.0%@10.0uM		
B-2428	82.0%@10.0uM	50.0%@10.0uM		
B-2429	92.0%@10.0uM	32.0%@10.0uM		

Example#	P38 alpha kinase IC50,uM or % inhib@conc. (uM)	or %	Mouse LPS Model % TNF inhib @ dose @predose time	Rat LPS Model % Inhib @dose @predose time
B-2430	90.0%@10.0uM	61.0%@10.0uM		
B-2431	85.0%210.0uM	68.0%@10.0uM		·
B-2432	86.0%210.0uM	40.0%@10.0uM		
B-2433	94.0%@10.0uM	84.0%@10.0uM		
B-2434	92.0%@10.0uM	63.0%@10.0uM		
B-2435	84.0%@10.0uM	4.0%@10.0uM		
B-2436	80.0%@10.0uM	54.0%@10.0uM		
B-2437	82.0%@10.0uM	41.0%@10.0uM		· · · · · · · · · · · · · · · · · · ·
B-2438	75.0%@10.0uM	40.0%@10.0uM		····
B-2439	81.0%@10.0uM	44.0%@10.0uM		
B-2440	77.0%@10.0uM	78.0%@10.0uM		
B-2441	86.0%@10.0uM	46.0%@10.0uM		
B-2442	86.0%@10.0uM	>10.0uM		
B-2443	84.0%@10.0uM	44.0%@10.0uM		
B-2444	89.0%@10.0uM	7.0%@10.0uM		
B-2445	94.0%@10.0uM	15.0%@10.0uM		
B-2446	90.0%@10.0uM	28.0%@10.0uM		
B-2447	94.0%@10.0uM	>10.0uM		
B-2448	75.0%@10.0uM	30.0%@10.0uM		
B-2449	86.0%@10.0uM	42.0%@10.0uM		
B-2450	87.0%@10.0uM	46.0%@1.0uM		
B-2451	87.0%@10.0uM	45.0%@10.0uM		· · · · · · · · · · · · · · · · · · ·
B-2452	89.0%@10.0uM	33.0%@10.0uM		
B-2453	91.0%@10.0uM	>10.0uM		
B-2454	88.0%@10.0uM	40.0%@10.0uM		· · · · · · · · · · · · · · · · · · ·
B-2455	87.0%@10.0uM	54.0%@10.0uM		
B-2456	86.0%@10.0uM	53.0%@10.0uM		
B-2457	90.0%@10.0uM	18.0%@10.0uM		
B-2458	83.0%@10.0uM	36.0%@10.0uM		
B-2459	82.0%@10.0uM	81.0%@10.0uM		
B-2460	80.0%@10.0uM	79.0%@10.0uM		
B-2461	67.0%@10.0uM	59.0%@10.0uM		

Biological data from a number of compounds of Examples C-74 through C-139 are shown in the following tables.

In vitro P38-alpha kinase inhibitory data are shown in the column identified as:

"P38 alpha kinase IC50, μM "

In vitro human whole blood assay data for measuring the ability of the compounds to inhibit TNF production in human whole blood stimulated with LPS are shown in the column identified as:

"Human Whole Blood IC50, µM or %Inhib@conc. (µM)"

In vivo assessment of the ability of the compounds to inhibit LPS-stimulated TNF release in the rat is shown in the column identified as:

"Rat LPS Model % Inhibition@dose@predose time"
wherin the dose is milligram per kilogram (mpk)
administered by oral gavage and the predose time
indicates the number of hours before LPS challenge when
the compound is administered.

Example#	P38 alpha kinase IC50, μΜ	Human Whole Blood IC50, µM or %Inhib@conc. (µM)	Rat LPS Model % Inhibition@ dose@predose time
C-74	0.037	0.56	54%@5mpk@-4h
C-75	0.045	0.4	71%@5mpk@-4h
C-76	0.07	3.24	66%@5mpk@-4h
C-77	0.071	8.2	92%@5mpk@-4h
C-78	0.068	10.5	87%@5mpk@-4h
C-79	0.045	0.52	83%@5mpk@-4h

Escamp l o#	nag alaha kinase	Human Whole Blood	Rat LPS Model	
Example#		IC50, µM or	% Inhibition@	
	IC50, μM	%Inhib@conc. (µM)	dose@predose	
		similateone. (pm)	time	
C-80	0.008	51%@ 5 μM		
C-81	0.037	40%@ 5 μM		
C-82	0.15	7.31		
C-83	0.24	1.23	25%@5mpk@-4h	
C-84	0.048	0.88	22%@5mpk@-4h	
C-85	0.57	>25		
C-86	0.007	0.19	66%@5mpk@-4h	
C-87	0.027	0.34		
C-88	0.012	0.3	59%@5mpk@-4h	
C-89	0.039	0.12	27%@5mpk@-4h	
C-90	0.037	0.48		
C-91	0.054	2.31	63%@5mpk@-4h	
C-92	0.024	0.28	66%@5mpk@-4h	
C-93	0.009	0.38	50%@5mpk@-4h	
C-94	0.02	0.27	73%@5mpk@-4h	
C-95	0.13	3.91	32%@5mpk@-4h	
C-96	0.077	2.1	38%@5mpk@-4h	
C-97	0.025	3.83.	21%@5mpk@-4h	
C-98	0.016	0.64	78%@5mpk@-4h	
C-99	0.062	0.38	36%@5mpk@-4h	
C-100	0.027	0.27	44%@5mpk@-4h	
C-101	0.083	3.71	52%@5mpk@-4h	
C-102	0.29	7.56	72%@5mpk@-4h	
C-105	0.033	0.13	46%@5mpk@-4h	
C-106	0.026	0.44	23%@5mpk@-4h	
C-107	0.014	0.38	11%@5mpk@-4h	
C-108	0.02	0.73	0%@5mpk@-4h	
C-111	0.21	6.05	39%@5mpk@-4h	
C-112	0.54	6.36	89%@5mpk@-4h	
C-113	0.082	2.72	77%@5mpk@-4h	
C-114	0.11	1.73	39%@5mpk@-4h	
C-115	0.042	10.2	39%@5mpk@-4h	
C-116	0.429	0.50	53%@5mpk@-4h	
C-117	3.42	7.26	71%@5mpk@-4h	
C-118	0.298	>25	39%@5mpk@-4h	
C-120	0.7	18.6	26%@5mpk@-4h	
C-121	0.11	15.3	39%@5mpk@-4h	
C-122	0.025		55%@5mpk@-4h	
C-123	0.67	>25.0		

Example#	P38 alpha kinase IC50, μM	Human Whole Blood IC50, µM or %Inhib@conc. (µM)	Rat LPS Model % Inhibition@ dose@predose time
C-124	0.17	4.56	51%@20mpk@-4h
C-125	7.22	>25.0	
C-126	0.71	>25.0	6%@20mpk@-4h
C-127	0.038	0.27	53%@5mpk@-4h
C-128	0.09	2.22	63%@5mpk@-4h
C-132	0.086	44%@ 5 µM	
C-133	0.16	4.54	55%@5mpk@-4h
C-135	6.0		
C-136	0.032		
C-137	0.051		58%@5mpk@-4h
C-138	0.28	0.68	26%@5mpk@-4h
C-139	0.2	3.66	46%@5mpk@-4h

Additional compounds of interest can be prepared as set forth above and as described below in Scheme D-1, wherein the R_1 and R_2 substituents are as defined previously.

5

The synthesis begins with the treatment of 4 -10 methylpyrimidine 2 with a base such as LiHMDS, tBuOK in an organic solvent such as THF or ether which is cooled in an ice bath (0-10 °C). To the resulting 4methylanion is added a solution of a suitably protected (Boc is shown) ethyl ester of isonipecotic acid 1 in THF 15 or ether. The reaction is allowed to warm to room

temperature and stirred for a period of 4 hours to 20 hours at which time the desired ketone 3 is isolated after aqueous work up. Condensation of the ketone 3 with tosylhydrazide in toluene or benzene as a solvent at refluxing temperatures for a period of 1 hour to 5 hours affords the hydrazone 4. The hydrazone 4 is reacted with a suitably substituted benzoyl chloride 5, in the presence of a base such as LiHMDS or LDA or tBuOK or triethylamine at temperatures ranging from 0 °C to 70 °C. The reaction is stirred for a period of 3-6 hours. Acidic hydrolysis 10 of the protecting groups with an aqueous acid such as HCl or H_2SO_4 and subsequent neutralization with an aqueous base such as NaOH or KOH affords the desired pyrazole 6. Treatment of the pyrazole 6 with an acid chloride 7 in the presence of base or with an acid 8 under standard peptide 15 coupling conditions (EDC or DCC or PyBrOP with an additive such as HOBt or HATU and base such as N-methylmorpholine or diisopropylethylamine or triethylamine) affords the desired pyrazole amide 9. In most instance the desired products can be obtained pure by direct trituration with 20 solvents such as methanol, ethyl acetate, acetonitrile or ether and/or recrystallization from suitable solvents.

The following examples contain detailed descriptions of the methods of preparation of these additional compounds that form part of the invention. These detailed descriptions are presented for illustrative purposes only and are not intended as a restriction on the scope of the invention. All compounds showed NMR spectra consistent with their assigned structures.

30

N-(2-Hydroxyacety1)-5-(4-piperidy1)-4-(4-pyrimidy1)-3-(4-chloropheny1)pyrazole

A 5 L 4-necked round bottom flask fitted 10 with an overhead mechanical stirrer, N, inlet and a thermocouple was charged with 600 g (2.75 mol) of di-tertbutyl-dicarbonate and 1.5 L of CH₂Cl₂. The solution was cooled to 0 °C and 428 g (2.73 mol) of ethyl isonipecotate was added dropwise via an addition funnel. The addition 15 took 45 minutes and the temperature rose from 0 °C to 17.4 The reaction mixture was stirred for an additional 2 hours at ambient temperature. The solvent was removed in vacuo to afford 725 g of a yellow oil (residual solvent remained).

20

Step 2: A 3 L 3-necked round bottom flask fitted with an overhead mechanical stirrer, a N_2 inlet, an addition funnel and a thermocouple was charged with 1850 mL (1.85 mol) of a 1.0 M solution of LiHMDS in THF. The flask was cooled to 5 °C and 68 mL (0.74 mol) of 4-methylpyrimidine to the stirred solution. was added (neat) To this added 198 g solution was (0.77 mol)of Ethyl-N-t-10 butylcarbonyl isonipecotate dissolved in 160 mL of THF. The ice bath was removed and the reaction was allowed to stir for 18 hours. The reaction was quenched with 500 mL of saturated NH₄Cl and was extracted with 500 mL of ethyl The organic phase was washed with 500 mL of brine, dried anhydrous over Na₂SO₄, filtered and concentrated in vacuo to afford 235 g of a brown oil.

20 A 2 L 3-necked round bottom flask fitted with an overhead mechanical stirrer, a Dean-Stark trap and

a thermocouple was charged with 1.5 L of toluene, 226 q of N-t-butylcarbonyl-1-(4-piperidyl)-2-(4pyrimidyl)-1-ethanone and 138.4 g (0.743 mol) of tosyl The mixture was warmed to reflux. solution was allowed to reflux for 2 hours and was cooled to ambient temperature. The reaction was allowed to stand A fine precipitate formed and was removed by overnight. filtration. The filtrate was concentrated in vacuo to afford a brown solid. The solid was suspended in 500 mL of ethyl acetate and the resulting mixture was placed in a sonication bath for 5 hours. The mixture was cooled in an ice bath and was filtered to afford 310 g of a wet solid. The solid was dried in a vacuum oven (40 °C, overnight to afford 248 g of the desired hydrazone (71%). ¹H NMR (CDCl₃) δ 9.03 (d, J = 1.2 Hz, 1H), 8.72 (d, J = 5.2Hz, 2H), 7.89 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 7.26 (dd, J = 5.2, 1.0 Hz, 1H), 4.03 (d, J = 12.1 Hz, 2H), 3.76 (s, 2H), 2.71 (t, J = 12.1 Hz, 2H), 2.43 (s, 3H), 2.34 (m, 1H), 1.66 (d, J = 13.5 Hz, 2H), 9H), 1.38 (m, 2H); MS (M + H): 474 (base peak).

Step 4:

10

15

15

20

25

30

1059

Method A. A 2 L 3-necked round bottom flask fitted with an overhead mechanical stirrer, a N_2 inlet, addition funnel and a thermocouple was charged with 400 mL (400 mmol) of a 1.0 M solution of LiHMDS in THF. solution was cooled to -21.9 °C and a solution of 62 g N-t-butylcarbonyl-1-(4-piperidyl)-2-(4-(131 mmol) of pyrimidyl)-1-ethanone p-toluenesulfonyl hydrazone in 400 mL of THF was added slowly. The temperature never exceeded -11 °C throughout the addition. The solution was re-cooled to -19.6 $^{\circ}\text{C}$ and 23.0 g (131 mmol in 250 mL of THF) of p-chlorobenzoylchloride was added slowly. The temperature never exceeded -13 °C throughout the addition. The cooling bath was removed and the reaction was allowed to warm to ambient temperature. After 3 hours the reaction was quenched with 600 mL of 3 N HCl. The reaction was warmed to reflux and was held at reflux for 2 The reaction was allowed to cool to ambient temperature overnight. The reaction mixture was washed with 1.4 L of $\rm Et_2O$ and the aqueous phase was neutralized with 1 L of 2.5 N NaOH. The aqueous phase was extracted with ethyl acetate (2 x 1000 mL). The combined organic phases were washed with brine (1 x 500 mL), dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo to afford 21 g of a yellow solid. The solid was suspended in 500 mL of 2:1 Et₂O/hexane. After sonication the solid was isolated by filtration to leave a wet solid. The solid was dried in a vacuum oven to afford 13.8 g of 5-(4piperidyl) -4-(4-pyrimidyl) -3-(4-chlorophenyl) pyrazole. 1 H NMR (DMSO- d_{6}) 9.18 (s, 1H), 8.65 (d, J = 5.2, 1H), 7.44 (d, J = 8.5, 2H), 7.37 (d, J = 7.7 Hz, 2H), 7.15 (d,

J = 5.2 Hz, 1H), 3.16 (m, 1H), 3.00 (d, J = 11.9 Hz, 2H), 2.52 (m, 2H), 1.69 (m, 4H); MS (M + H): 340 (base peak).

To a solution of 200 g (423 mmol) of N-t-Method B: butylcarbonyl-1-(4-piperidyl)-2-(4-pyrimidyl)-1-ethanone p-toluenesulfonyl hydrazone in 800 mL THF was added 70 mL (500 mmol) of triethylamine in a 3 L three necked flask. The solution was cooled in an ice/salt/water bath to 0-5 °C. To this cold solution was added a solution of 4chlorobenzoyl chloride (74 g, 423 mmol) in 100 mL THF dropwise, maintaining the temperature below 10 °C. the addition was complete the ice-bath was removed and replaced with heating mantle. 4-N, dimethylaminopyridine (5 g, 40 mmol) was added and the reaction mixture was heated to 50 °C for 15-30 minutes. The reaction mixture was filtered and the residue washed

5

10

15

15

20

with THF (100 mL). The combined filtrates were evaporated under reduced pressure to a semisolid.

The semisolid residue was dissolved in 450 mL THF and 180 mL of 12 N HCl was added to this solution rapidly. The reaction mixture was heated to 65 °C for 1.5-2 hours and transferred to a separatory funnel. The organic layer was discarded and the aqueous phase was washed twice with 200 mL of THF. The aqueous phase was transferred back to a 2 L flask and cooled to 0-10 °C in an ice bath. of the solution was adjusted to between ~ 9-10 by dropwise addition of 15 N ammonium hydroxide (~ 180 mL). mixture was transferred back to a separatory funnel and extracted with warm n-butanol (3 X 150 mL). The combined n-butanol phases were evaporated under reduced pressure to The residue was then stirred with methanol (200 mL), filtered and dried to obtain 129 q (90%) of the desired 5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-chlorophenyl) a off-white solid. as This identical in all respects to the material prepared by Method A.

Step 5: A 1 L round bottom flask was charged with 34.2 g (102 mmol) of 5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-chlorophenyl) pyrazole, 500 mL of CH₂Cl₂ and 26.6 mL (153 mmol) of Hunig's base. To this suspension was added 16.5

q (122 mmol) of 1-hydroxybenzotriazole and 8.1 g (106 mmol) of glycolic acid. The addition of glycolic acid was followed by the addition of 23.7 g (122 mmol) of 1-(3dimethylaminopropyl) - 3 - ethylcarbodiimide hydrochloride. The reaction was allowed to stir at ambient temperature The reaction was concentrated in vacuo to leave an oily residue. The residue was dissolved in 400 mL of methanol and 50 mL of 2.5 N NaOH. The reaction mixture was stirred at ambient temperature for 1 hour. 10 The mixture was acidified to pH 5 with 2 N HCl and was extracted with CH,Cl, (6 x 200 mL). The combined organic phases were filtered through phase paper and the filtrate was concentrated in vacuo to leave a yellow residue. residue was treated with 75 mL of acetonitrile. Α The solid was filtered and washed 15 precipitate formed. with additional acetonitrile and Et,O to afford 31.4 g of N-(2-hydroxyacety1)-5-(4-piperidy1)-4-(4-pyrimidy1)-3-(4-pyrimidy1)chlorophenyl) pyrazole. ¹H NMR (DMSO-d₆) 9.20 (s, 1H), 8.67 (d, J = 4.8, 1H), 7.40 (m, 4H), 7.17 (d, J = 4.0, 1H), 4.53 (m, 2H), 4.13 (s, 2H), 3.77 (m, 1H), 3.05 (t, J20 = 12.7 Hz, 1H, 2.69 (m, 1H), 1.90 (m, 2H), 1.73 (m, 2H);MS (M + H): 398 (base peak).

Example D-2

25

N-(2-Hydroxyacetyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole hydrochloride

A 25 mL round bottom flask was charged with 65 mg (0.164 mmol) of N-(2-hydroxyacetyl)-5-(4-piperidyl)-4-(4pyrimidyl)-3-(4-chlorophenyl) pyrazole and 2.5 dioxane. To this suspension was added 0.082 mL of 4 N HCl in dioxane. The mixture was stirred for 2 hours. The mixture was diluted with 5 mL of Et₂O and filtered. solid was dried over solid CaSO4 under vacuum for 12 h to afford 68 mg of N-(2-hydroxyacetyl)-5-(4-piperidyl)-4-(4pyrimidyl)-3-(4-chlorophenyl) pyrazole hydrochloride. ¹H NMR (DMSO- d_6) 9.18(s, 1H), 8.63(d, J=5.37 Hz, 1H), 7.40(d, J=8.59 Hz, 2H), 7.33(d, J=8.59 Hz, 2H), 7.15(m, 1H), 4.40(m, 1H), 4.06(m, 2H), 3.72(m, 1H), 3.33(m, 1H), 2.97(m, 1H), 2.62(m, 1H), 1.83(m, 2H), 1.64(m, 2H); MS (M+H): 398

Example D-3

20

15

10

N-(2-Methoxyacetyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole (fumarate salt)

10

15

20

25

To a suspension of 250 mg (0.74 mmol) piperidyl) -4-(4-pyrimidyl) -3-(4-chlorophenyl) pyrazole (Example C-1, Step 3) and 180 mg (1.48 mmol) of N,Ndimethylamino pyridine in 20 mL of CH,Cl, was added 88 mg (0.81 mmol) of 2-methoxyacetyl chloride. The reaction was stirred for 5 hours. The reaction was quenched with 20 mL of saturated NH4Cl. The mixture was extracted with nbutyl alcohol and the organic layer was washed with brine. The solvent was removed to afford 72 mg of an oil. oil was dissolved in 1 mL of warm MeOH. This solution was combined with a warm solution of 1 equivalent of fumaric acid in warm MeOH. The solution was cooled to ambient temperature and the reaction was allowed to stir for 1 The solvent was removed in vacuo and the residue was triturated with Et₂O. The resulting solid was isolated by filtration to yield 56 mg of an off-white ¹H NMR (DMSO-d₆) 13.23 (bs, 1H), 9.19 (d, J =1.2 Hz, 1H), 8.65 (d, J = 5.1 Hz, 1H), 7.41 (m, 4H), 7.16 (dd, J = 5.4, 1.2 Hz, 1H), 4.45 (bd, J = 11.1 Hz, 1H),4.11 $(q_{AB}, J = 39.0, 13.8 \text{ Hz}, 2H), 3.86 \text{ (bd, } J = 12.9 \text{ Hz},$ 1H), 3.32 (m, 4H), 3.04 (bt, J = 12.3 Hz, 1H), 2.63 (bt, J= 12.0 Hz, 1H), 1.77 (m, 4H); MS (M + H): 411 (base)peak).

N-(2-Hydroxy-2-methylpropionyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole hydrochloride

5

10

15

20

To a suspension of 2.05 g (6.1 mmol) of 5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-chlorophenyl) (Example C-1, Step 3) and 3.7 g (30.5 mmol) of N,Ndimethylamino pyridine in 30 mL of CH2Cl2 was added 1.06 mL (7.3 mmol) of 2-acetoxy-2-methylpropionyl chloride. The reaction was allowed to stir overnight at ambient temperature. The reaction was quenched with saturated and water. The resulting aqueous phase was extracted with CH,Cl,. The combined organic layers were concentrated in vacuo to leave an oily solid. The residue was treated with CH₃CN and allowed to stand for 15 minutes. The resulting suspension was diluted with Et20 and was filtered to afford 2.2 g of a solid. Analysis by LC/MS indicated that the solid was a mixture of the hydroxy derivative and the acetoxy derivative. This solid was carried on to the next step without further purification.

Step 2: A solution of 1 g of the solid from step 1 in 10 mL of MeOH was treated with 500 mg of solid K_2CO_3 . The mixture was allowed to stir overnight at ambient

10

15

20

The suspension was treated with water and the resulting solution was extracted with ethyl acetate. The organic phase was filtered through phase separation paper (to remove the residual water) and was concentrated in vacuo to leave an oily solid. The solid was dried under vacuum and was treated with CH₃CN. The suspension was filtered to afford 825 mg of an off-white solid. solid was suspended in 5 mL of dioxane and 0.5 mL of 4 N HCl in dioxane was added. The suspension was stirred for 1 hour and the suspension was filtered to leave a solid. washed with Et,O and the resulting solid was The suspension was filtered to give 900 mg of the title compound. ¹H NMR (DMSO-d₆) 9.23 (s, 1H), 8.69 (s, 1H), 7.45 (m, 4H), 7.19 (s, 1H), 4.8 (br m, 4H), 3.85 (m, 2H), 3.38 (m, 1H), 1.89 (m, 2H), 1.72 (m, 2H), 1.37 (s, 6H); MS (M + H): 426 (base peak).

Example D-5

(S)-N-(2-Hydroxypropionyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole hydrochloride

By following the method of Example C-1 and substituting (S)-lactic acid for glycolic acid the title compound was prepared. ^{1}H NMR (DMSO- d_{6}) 13.15(s, br, 1H), 9.12(d, J=1.07 Hz, 1H), 8.59(d, J=5.37Hz, 1H),

7.39(d, J=7.79Hz, 2H), 7.31(d, J=8.33, 2H), 7.10(dd, J=1.34, 5.1Hz, 1H), 4.76(m, 1H), 4.41(m, 2H), 3.99(m, 1H), 2.97(m, 1H), 2.45(m, 1H), 1.83(m, 2H), 1.64(m, 2H), 1.15(m, 3H); MS (M+H): 412 (base peak).

5

Example D-6

(R)-N-(2-Hydroxypropionyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole hydrochloride

10

25

following the method of Example substituting (R)-lactic acid for glycolic acid the title compound was prepared. 15 ¹H NMR (CDCl₃) 9.24(s, 1H), 8.52(d, J = 5.0 Hz, 1H), 7.32-7.36(m, 4H), 6.98(d, J = 5.3)Hz, 1H), 4.72(d, J = 10.5 Hz, 1H), 4.55(br, 1H), 3.88(d, J= 13.1 Hz, 1H), 3.66 (br, 1H), 3.19 (br, 1H), 2.82 (t, J = 1.66)12.4 Hz, 1H), 2.10 (br, 2H), 1.37 (d, J = 6.2 Hz, 3H), 1.81-20 1.90(m, 2H); MS (M + H): 412 (base peak).

Example D-7

(R)-N-(2-Hydroxy-2-phenylacetyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

By following the method of Example C-1 and substituting (R)-phenylacetic acid for glycolic acid the title compound was prepared. ¹H NMR (DMSO-d₆) 9.15 (d, J = 0.9 Hz, 1H), 8.63 (d, J = 5.4 Hz, 1H), 7.40 (m, 9H), 7.13 (t, J = 6.6 Hz, 1H), 5.43 (d, J = 19.5 Hz, 1H), 4.51 (s, 1H), 4.04 (m, 1H), 3.33 (m, 4H), 2.8 (m, 2H), 1.68 (m, 3H); MS (M + H): 474 (base peak).

10

Example D-8

N-(2-Hydroxyacetyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-fluorophenyl)pyrazole

15

By following the method of Example C-1 and substituting 4-fluorobenzoyl chloride for 4-chlorobenzoyl chloride the title compound was prepared. ^{1}H NMR (DMF-d₇) 1 13.48(s, 1H), 9.40(s, 1H), 8.86(d, J = 5.1 Hz, 1H), 7.71(br, 2H), 7.42(bd, J = 5.2 Hz, 3H), 4.78(br, 1H), 4.43(s, 2H), 4.04(br, 1H), 3.79(br, 1H), 3.70(s, 1H),

3.34(t, J = 12.2 Hz, 1H), 3.0(br, 1H), 2.21(d, J = 10.9 Hz, 2H), 2.08(br, 1H); MS (M + H): 382 (base peak).

Example D-9

5

N-(2-Hydroxyacetyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-trifluoromethylphenyl)pyrazole

10

By following the method of Example C-1 and substituting 4-trifluoromethylbenzoyl chloride for 4-chlorobenzoyl chloride the title compound was prepared.

¹H NMR (DMF-d₇) 13.47(s, 1H), 9.24(s, 1H), 8.73(d, J = 15 4.0 Hz, 1H), 7.77(bd, J = 13.3 Hz, 4H), 7.34(d, J = 4.3 Hz, 1H), 4.61(br, 1H), 4.26(s, 2H), 3.87(br, 1H), 3.52(s, 2H), 3.17(t, J = 12.0 Hz, 1H), 2.8 (br, 1H), 2.02(br, 2H), 1.91(br, 1H); MS (M + H): 432 (base peak).

20

Example D-10

N-(2-Hydroxyacetyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(4-trifluoromethoxyphenyl)pyrazole

By following the method of Example C-1 and substituting 4-trifluoromethoxybenzoyl chloride for 4-chlorobenzoyl chloride the title compound was prepared. 1 H NMR (DMF- d_{7}) 13.55(s, 1H), 9.40(s, 1H), 8.88(d, J = 4.6 Hz, 1H), 7.81(d, J = 7.7 Hz, 2H), 7.64(br, 2H), 7.47(d, J = 4.4 Hz, 1H), 4.75(br, 1H), 4.42(s, 2H), 4.04(d, J = 12.5 Hz, 1H), 3.69(br, 2H), 3.34(t, J = 12.0 Hz, 1H), 3.0(br, 1H), 2.20(d, J = 11.7 Hz, 2H), 2.05(br, 1H); MS (M + H): 448 (base peak).

Example D-11

N-(2-Hydroxyacetyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(3-chlorophenyl)pyrazole

By following the method of Example C-1 and substituting 3-chlorobenzoyl chloride for 4-chlorobenzoyl chloride the title compound was prepared. ^{1}H NMR (DMF-d₇) 13.41(s, 1H), 9.24(s, 1H), 8.73(d, J = 4.9 Hz, 1H), 7.56(s, 1H), 7.49(br, 2H), 7.41(br, 1H), 7.32(d, J = 4.2

Hz, 1H), 4.60 (d, J = 11.7 Hz, 1H), 4.25 (s, 2H), 3.87 (d, J = 12.7 Hz, 1H), 3.52 (bs, 2H), 3.17 (t, J = 12.1 Hz, 1H), 2.84 (d, J = 12.5 Hz, 1H), 2.03 (d, J = 11.9 Hz, 2H), 1.87 (br, 1H); MS (M + H): 398 (base peak).

Example D-12

N-(2-Hydroxyacetyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(3-fluorophenyl)pyrazole

10

5

By following the method of Example C-1 and substituting 3-fluorobenzoyl chloride for 4-chlorobenzoyl chloride the title compound was prepared. ^{1}H NMR (DMF- d_{7}) 13.38(s, 1H), 9.24(s, 1H), 8.72(d, J = 5.2 Hz, 1H), 7.49(dd, J = 8.0 and 6.2 Hz, 1H), 7.24-7.32(m, 4H), 4.60(d, J = 13.1 Hz, 1H), 4.25(s, 2H), 3.87(d, J = 13.3 Hz, 1H), 3.55-3.60(m, 1H), 3.52(s, 1H), 3.17(t, J = 12.2 Pz, 1H), 2.82(d, J = 12.9 Hz, 1H), 2.03(d, J = 10.9 Hz, 2H), 1.83-1.96(m, 1H); MS (M + H): 382 (base peak).

Example D-13

25 N-(2-Hydroxyacetyl)-5-(4-piperidyl)-4-(4-pyrimidyl)-3-(3-trifluoromethylphenyl)pyrazole

following the method of Example C-1 and By substituting 3-trifluoromethylbenzoyl chloride for 5 chlorobenzoyl chloride the title compound was prepared. ¹H NMR (DMF-d₂) 13.76(s, 1H), 9.41(s, 1H), 8.91(d, J =5.3 Hz, 1H), 8.02(s, 1H), 7.95(t, J = 6.5 Hz, 2H), 7.85(t, J = 7.5 Hz, 1H, 7.53 (d, J = 4.6 Hz, 1H), 4.78 (d, J = 11.9)Hz, 1H), 4.45(d, J = 16.3 Hz, 2H), 4.06(d, J = 12.5 Hz, 1H), 3.69(bs, 2H), 3.34(t, J = 11.3 Hz, 1H), 3.01(d, J = 11.310 13.1 Hz, 1H), 2.20(d, J = 11.1 Hz, 2H), 2.12(br, 1H); MS (M + H): 432 (base peak).

The following examples can be prepared in a manner 15 similar to that described above for the synthesis of Examples C1-C13.

Example D-14

5-[4-N-(2-hydroxy-2-(2-chlorophenyl)acetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

Example D-15

5-[4-N-(2-hydroxy-2-(3-chlorophenyl)acetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

5

Example D-16

5-[4-N-(1-hydroxy-1-cyclohexylacetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

15 Example D-17

5-[4-N-(2-hydroxy-1-cyclohexylacetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

5-[4-N-(3-hydroxy-1-cyclohexylacetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

Example D-19

10

5

5-[4-N-(4-hydroxy-1-cyclohexylacetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

15

Example D-20

5-[4-N-(1-hydroxy-1-cyclopentylacetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

5-[4-N-(2-hydroxy-1-cyclopentylacetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

Example D-22

10

5-[4-N-(3-hydroxy-1-cyclopentylacetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

15

Example D-23

5-[4-N-(3-hydroxypropionyl)piperidyl]-4-(4-pyrimidyl)-3(4-chlorophenyl)pyrazole

5-[4-N-(2-hydroxy-3,3,3-trifluoropropionyl)piperidyl]-4
(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

Example D-25

10

5-[4-N-(2-hydroxy-3-methylbutyryl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

15

Example D-26

5-[4-N-(2-hydroxyisocaproyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

5-[4-N-(2-hydroxy-2-cyclohexylacetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

Example D-28

10

5

5-[4-N-(2-hydroxy-2-(4-methoxyphenyl)acetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

15

Example D-29

5-[4-N-(2-hydroxy-2-(3-methoxyphenyl)acetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

5-[4-N-(2-hydroxy-2-(4-trifluoromethylphenyl)acetyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

Example D-31

5-[4-N-(2-hydroxy-3-phenylpropionyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

15

10

5

5-[4-N-(2-hydroxy-3-(4-hydroxyphenyl)propionyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

CI N-NH OH

Example D-33

5-[4-N-(2-hydroxy-3-imidazolpropionyl)piperidyl]-4-(4-pyrimidyl)-3-(4-chlorophenyl)pyrazole

15

20

5

The synthesis of 2-substituted pyrimidinyl pyrazoles Reaction of 2-methylmercapto-4is shown in Scheme 2. pyrimidine 10 with N-Boc methyl ester of methyl isonipecotic acid (1) under basic (base selected from LiHMDS or LDA or tBuOK) conditions in an anhydrous solvent such as tetrahydrofuran or ether affords the desired Condensation of the ketone 11 with tosyl ketone 11. hydrazine under refluxing conditions in either toluene or

benzene affords the hydrazone 12. The hydrazone 12 is deprotonated under basic (base selected from LiHMDS or LDA or tBuOK) conditions in an anhydrous solvent such as tetrahydrofuran or ether and the anion is reacted in situ with a suitably substituted benzoyl chloride 5 to afford, after mild aqueous work up, the desired and protected pyrazole 13. Oxidation of the 2-mercaptomethyl group present in 13 with oxidants selected from but not limited to Oxone, H,O, or mCPBA in solvents such as dichloromethane, acetonitrile or tetrahyrofuran affords 10 the 2-methane sulfonyl pyrazole 14. The 2-methanesulfone group in 14 is conveniently displaced with various amines, solvents such aryloxides or alkoxides in as dioxane, dimethylformamide or tetrahydrofuran, acetonitrile at temperatures ranging from 20 °C to 200 °C. Under these reaction conditions the tosyl protecting group is also simultaneously deprotected. pyrazole Aqueous workup affords the desired tosyl deprotected, 2alkoxy, or 2-aryloxy or 2-amino substituted pyrazoles 15. The alkoxides or aryloxides are generated from their 20 respective alcohols or phenols with suitable bases such as t.BuOK in solvents such LiHMDS, NaH. LDA or dimethylformamide. tetrahydrofuran, dioxane or Deprotection of the remaining N-Boc group in 15 accomplished with trifluoroacetic acid or hydrochloric 25 acid in solvents such as dichloromethane or dioxane to afford the pyrazole 16. Treatment of the pyrazole 16 with an acid chloride 7 in the presence of base or with an acid 8 under standard peptide coupling conditions (EDC or DCC

or PyBrOP with an additive such as HOBt or HATU and base

16

such as N-methylmorpholine or diisopropyl ethylamine) affords the desired final products 17.

Scheme D-2 TsNHNH₂ Base Вос 10 11 (i) Base SCH₃ 12 5 13 N-NH Oxone or **mCPBA** ArOH/ROH 14 15: Z = NHR, NR₂, OAr or OR R₂COOH R₂COCI/Base Coupling agent/ Base

The following 2-substituted pyrimidine compounds can be prepared as set forth above, particularly in a manner similar to that outlined above in Scheme D-2.

5 Example D-34

5-[4-N-(2-hydroxyacetyl)piperidyl]-4-[4-(2-thiomethyl)pyrimidyl]-3-(4-chlorophenyl)pyrazole

Example D-35

5-[4-N-(2-hydroxyacetyl)piperidyl]-4-[4-(2-methanesulfonyl)pyrimidyl]-3-(4-chlorophenyl)pyrazole

Example D-36

20

10

15

5-[4-N-(2-hydroxyacetyl)piperidyl]-4-[4-(2-amino)pyrimidyl]-3-(4-chlorophenyl)pyrazole

15

CI N-NH OH

Example D-37

5 5-[4-N-(2-hydroxyacetyl)piperidyl]-4-[4-(2-methylamino)pyrimidyl]-3-(4-chlorophenyl)pyrazole

Example D-38

5-[4-N-(2-hydroxyacetyl)piperidyl]-4-[4-(2-isopropylamino)pyrimidyl]-3-(4-chlorophenyl)pyrazole

Example D-39

5-[4-N-(2-hydroxyacetyl)piperidyl]-4-[4-(2-S-20 methylbenzylamino)pyrimidyl]-3-(4-chlorophenyl)pyrazole

Example D-40

5 5-[4-N-(2-hydroxyacetyl)piperidyl]-4-[4-(2-R-methylbenzylamino)pyrimidyl]-3-(4-chlorophenyl)pyrazole

Example D-41

5-[4-N-(2-hydroxyacetyl)piperidyl]-4-[4-(2-methoxy)pyrimidyl]-3-(4-chlorophenyl)pyrazole

Example D-42

15

5-[4-N-(2-hydroxyacetyl)piperidyl]-4-[4-(p-fluorophenoxy)pyrimidyl]-3-(4-chlorophenyl)pyrazole

Example D-43

5-[4-N-(2-hydroxyacetyl)piperidyl]-4-[4-(p-fluoroanilino)pyrimidyl]-3-(4-chlorophenyl)pyrazole

In a manner similar to that outlined above in Scheme D-1, for the synthesis of the piperidine analogs 6, the

15 aminocyclohexane analogs are prepared by substitution of 1 in Scheme D-1 with a suitably protected (Boc is shown) methyl or ethyl ester of cis-aminocyclohexane carboxylic acid 10 or trans-aminocyclohexane carboxylic acid 11 or trans-aminomethylcyclohexane carboxylic acid 12, which

5

affords the cis-aminocyclohexane 13, or transaminocyclohexane 14 or the trans-aminomethylcyclohexane 15
respectively (Scheme 3). Suitable reductive alkylations
on 13, 14 or 15 with 1-1.5 equivalents of aldehydes or
ketones in the presence of a reducing agent like sodium
cyanoborohydride or sodium triacetoxyborohydride in
solvents such as methanol, ethanol, acetic acid,
tetrahydrofuran or dichloromethane lead to the desired
mono-alkylated derivatives 16, 17 or 18 respectively.

10

Scheme 3

where R4 can be H

The dimethyl derivatives 19, 20 or 21 can be prepared by heating a solution of the aminocyclohexanes 13, 14 or 15

1087

respectively in a mixture of formaldehyde and formic acid at temperatures ranging from 40 °C to 110 °C.

An additional group of compounds of interest includes 10 the following:

Biological data for a number of compounds are shown in the following table. In vitro p38 alpha kinase inhibitory data are shown in the column identified as "p38 alpha IC_{50} (μ M)". In vitro human whole blood assay data for measuring the ability of the compounds to inhibit TNF production in human whole blood stimulated with LPS are shown in the column identified as: "HWB IC_{50} (μ M)". In vivo assessment of the ability of the compounds to inhibit LPS-stimulated TNF-release in the rat is shown in the column identified as: "ratLPS/%Inh@dose(mg/kg)" wherein the dose is in milligram per kilogram (mg/kg) administered by oral gavage, 4 hours before LPS challenge.

Example	p38 alpha	HWB IC ₅₀	ratLPS/%Inh	ratLPS/%Inh	ratLPS/%Inh
	IC ₅₀ (uM)	(uM)	@1.0(mg/kg)	@5.0(mg/kg)	@20.0(mg/kg)
D-1	0.17		83.0		
D-2	0.084	1.79	89.0	95.0	
D-3	0.095	0.46	69.0	88.0	91.0
D-4	0.91	1.55	42.3	83.0	99.0
D-5	0.14	4.09	65.0	78.5	83.0
D-6	0.083	1.33	82.0	96.0	100
D-7	0.44	>25.0		0	
D-8	0.18	1.3	65	85	
D-9	1.63	15.8	5	86	
D-10	3.95	14.8		80	
D-11	0.16	1.5	43	86	
D-12	0.82	7.06	71	91	
D-13	0.33	8.36	53	87	