

Maschinen- und Roboterethik: (draft)

Die komplexe Ethik autonomer Kraftfahrzeuge

Florian Schmidt^{1, ⊠}

¹ Fakultät für Informatik, Technische Universität München (TUM), Boltzmannstr. 3, 85748 Garching, Deutschland ☑ fs.schmidt@tum.de
22. Juli 2020

Das autonome Fahren ist eine sehr gegenwärtige wissenschaftliche, wie technische Errungenschaft, die verspricht, innerhalb der nächsten Dekaden den Straßenverkehr umfassend zu revolutionieren. Am Horizont stehen in diesem Kontext selbstund leer fahrende geteilte Fahrzeuge im Rahmen eines modernisierten Carsharings, die innerhalb von Großstädten maßgeblich zur Entzerrung der fahrzeuggefüllten Innenstädten beitragen können – und auf dem Land selbstredend auch die Verkehrsinfrastruktur ausbauen könnten.

Bis entsprechende Fahrzeuge allerdings vollständig autonom auf den Straßen dieser Welt unterwegs sein können, sind allerdings noch einige Fragen offen. Fragen, auf die es möglicherweise auch keine schwarz-weißen, generalisierbaren Antworten geben könnte – ja womöglich auch nicht geben kann. Fragen, die ethisch und moralisch höchst prekäre Entscheidungen einer algorithmisch denkenden oder künstlich intelligenten Maschine abverlangen, die den Kontext der Situation womöglich gar nicht verstehen kann. Fragen, denen sich die Gesellschaft früher oder später stellen muss, und für die im besten Fall eine globale Lösung gefunden werden könnte.

Die folgenden Überlegungen beschäftigen sich vorrangig mit ebendiesen ethischen Überlegungen des autonomen Fahrens.

1 Grobeinordnung in die Maschinenethik

Zu Beginn des Artikels wollen wir uns grundlegend mit der Maschinenethik beschäftigen, um die vorliegende Spezialisierung in den richtigen Kontext einzuordnen.

1.1 Definition und Abgrenzung

Grundsätzlich beschäftigt sich die Maschinenethik als solches mit den Konzepten der maschinellen Moral beziehungsweise der moralischen Maschine also mit der Überlegung, wie das doch relativ abstrakte Konzept der Moral mit der konkreten, technischen Maschine in Einklang zu bringen ist.

Kern der Überlegung ist ein naheliegender Gedanke: Mit der Forschung auf dem Gebiet der künstlichen Intelligenz werden technische Systeme geschaffen, die Anzeichen von Intelligenz nachweisen (sollen). Ist eine Maschine nun derart intelligent, liegt es dementsprechend auch nahe, dass sie auch Anzeichen von einer Moralvorstellung aufweisen könnte [1, S. 3f.].

Es zeigt sich, dass die beiden Phänomene der Intelligenz sowie der Moral zwar per se unabhängig sind, aber in ihrer Existenz dennoch korrelieren (siehe Abbildung 1 auf der nächsten Seite). Ähnlich verhält es sich auch mit den Disziplinen der Maschinenethik und der Forschung an der künstlichen Intelligenz. Genauso wie die Maschinenethik an moralischen Maschinen forscht, versucht die Gegenseite künstlich intelligente Systeme zu erschaffen.

Analog kann man die Differenzierung zwischen der schwachen und starken Eigenschaft von der Forschung zur künstlichen Intelligenz übernehmen. Wir sprechen von schwacher maschineller Moral wie schwacher KI, wenn die entsprechende Eigenschaft simuliert oder in Teilen dem Vorbild nachgeahmt wird; erst die starke KI oder starke maschinelle Moral strebt danach, die Eigenschaft vollständig zu erreichen [1, S. 17]. Die starke KI stellt hiermit also eine Art *allgemeine* künstliche Intelligenz dar – spätestens hier sind Überlegungen zur Moral in jedem Fall angebracht¹.

Abgegrenzt wird die Maschinenethik in der Regel von den mit ihr verwandten Bereichsethiken

 der digitalen Ethik, die sich im Kern mit informationstechnologischen Systemen und den damit einhergehenden Überlegungen zu informationeller Autonomie auseinandersetzt, sowie

¹Offen bleibt natürlich die Frage, ob die menschliche Moral in diesem Kontext das erstrebenswerte Ziel ist. Es kann ebenso Ziel sein, eine Art "Moral" zu erzeugen, die sich gänzlich von der des Menschen unterscheidet [1, S. 23].

Abbildung 1 Begriffliche Abgrenzung der maschinellen Moral und künstlichen Intelligenz [1, S. 17].

 der Technikethik, die sich allgemeiner gefasst mit technischen und wissenschaftlichen Entwicklungen beschäftigt und ebendiese mit ethischen Wertungen versieht.

1.2 Kernfragen

Die zentrale Idee der Maschinenethik ist also, die Maschine also als Subjekt und nicht nur als Objekt der Moral zu sehen – sprich die Maschine im Sinne der Moral auf eine dem Menschen gleichgestellte Ebene zu heben.

Die Notwendigkeit dieser Überlegungen ergibt sich direkt aus der wachsenden Autonomie der Maschinen. Trifft eine Maschine Entscheidungen, die ohne Zutun eines Menschen erfolgen, ist die Moral automatisch relevant. Erst recht gilt dies, sofern dieser Maschine eine Entscheidungsgewalt über Leben und Tod zusteht.

Evident ist, dass für diese Art von extremer Entscheidungsfindung ein gewisses Verständnis des Kontext der Handlung nötig ist. Konzepte wie Leben und Tod, Bewusstsein und Menschenwürde sind schwierig in imperative Programmzeilen zu encodieren – genau das verlangen wir allerdings von moralisch entscheidenden Maschinen.

Die Disziplin stellt sich im Prinzip drei Kernfragen, die maßgeblich die Überlegungen charakterisieren (nach [1, S. 13ff.]):

1. Wie kommt die Moral in die Maschine?

Wie können wir es schaffen, das abstrakte Konzept einer "Moral" in ein für Maschinen verständliches Konzept zu verwandeln, inklusive aller Nuancen und Kontextüberlegungen die daraus folgen?

2. Wie viel Entscheidungsgewalt überlassen wir Maschinen?

Selbst, wenn wir von dem Vorhandensein einer maschinellen Moral ausgehen, bleibt die Frage offen, wie viel Macht wir dieser Maschine überlassen wollen. Ist es erstrebenswert, dass (vor allem in militärischen Anwendungsgebieten) die Maschinen vollständig autonom agieren können?

3. In welcher Form trägt die Maschine Verantwortung über ihr Handeln?

Unklar ist ebenfalls, inwieweit eine Maschine retrospektiv für eine getroffene Entscheidung oder durchgeführte Handlung zur Rechenschaft gezogen werden kann. Zur Illustration sei die folgende Frage gestellt: Bis wir zu vollständig selbstlernenden Maschinen gekommen sind, sind auch die fortschrittlichsten Computer in gewisser Weise an ihre Algorithmik oder ihre Trainingsdatenmenge gebunden; Kann man hier von Verantwortung sprechen?

1.3 Anwendungsgebiet autonomes Fahren

Im Folgenden möchten wir uns auf das Anwendungsgebiet des autonomen Fahrens konzentrieren. Dieses berührt alle drei der im vorigen Abschnitt aufgeführten Kernfragen, und ist nebenbei auch noch sehr Alltagsrelevant. Wir haben als Gesellschaft viel Berührung mit den Überlegungen, die auf den kommenden Seiten folgen werden. Gerade durch die Möglichkeiten einer zukünftig durch hochautomatisierte Fahrzeuge befahrene Innenstadt sprechen wir eben nicht von weit entfernten militärischen Operationen, sondern vom alltäglichen Straßenverkehr.

Die Motivation der technischen Entwicklung ist nach einem kurzen Blick in die Verkehrsunfallstatistik auf deutschen Straßen relativ klar erkenntlich.

Von den in 2018 ca. 2,5 Millionen polizeilich erfassten Verkehrsunfällen fußten ca. 88,4 % maßgeblich auf dem Fehlverhalten der involvierten Fahrzeugführer (aus [2], [3], [4]). Das zeigt deutlich: der Faktor Mensch verschwindet vorerst nicht aus dem Straßenverkehr. Immer und überall da. wo der Mensch beim Fahren konkrete Aktionen durchführt sei es Überholen, Einfädeln oder Abbiegen – werden Fehler passieren. Aus diesem Grund helfen seit geraumer Zeit diverse Assistenzsysteme im Fahrzeug mit. Diese tragen maßgeblich zu der bis dato utopischen Vorstellung bei, dass wir mit deren Hilfe effizienter, eleganter und entspannter unterwegs sein werden. Dazu müssen die Systeme ja nicht perfekt fahren - sie müssen lediglich statistisch besser (und sicherer) fahren als wir.

2 Technische Automatisierungsstufen nach der SAE

Zur Konkretisierung wird die technische Entwicklung an dieser Stelle in der Regel in sechs spezifische Automatisierungsstufen (auch *Levels*) aufgeteilt. Diese stellen aufsteigend das Fortschreiten von vollständig manuellem Fahren bis hin zur vollständigen Autonomie des Fahrzeugs dar.

Die Idee hinter einer derartigen Klassifizierung ist, dass hierdurch die Klärung der anfallenden rechtlichen und verantwortungstechnischen Fragen einfacher fällt. Es lässt sich nun sehr einfach sagen, ab welchem Punkt die Maschine hier vorrangig die Verantwortung für ihr eigenes Handeln trägt – eine Information, die in (straf-)rechtlichem Kontext durchaus wertvoll sein kann.

Im Folgenden möchten wir auf diese Automatisierungsstufen genauer eingehen (nach [6], [7]).

2.1 Levels 0–2: menschlich gelenktes Fahren

Level 0. Die überwiegende Mehrheit der Fahrzeuge auf deutschen Straßen ist mit der Automatisierungsstufe 0 unterwegs: als Selbstfahrer, bzw. "Driver only". Hier übernimmt ganz klassisch der menschliche Fahrer alle Aspekte der Fahraufgabe², und ist dementsprechend natür-

lich auch vollständig für sein eigenes Handeln verantwortlich.

Level 1. Viele moderne Neuwagen bewegen sich nun mindestens auf dem Gebiet der Automatisierungsstufe 1, indem sie ihrem Fahrer bestimmte unterstützende und vor allem auf der Langstrecke der Ermüdung entgegenwirkende Assistenzsysteme anbieten. Dies kann beispielsweise ein adaptiver Tempomat sein, welcher im Kontrast zu einem regulären nichtadaptiven Tempomaten die eingestellte Geschwindigkeit unterschreitet, um den eingestellten Sicherheitsabstand zum vorausfahrenden Fahrzeug zu halten. Konkret geht es hierbei darum, dass die Technik jeweils ausschließlich entweder die Quer-, oder die Längssteuerung des Fahrzeugs übernehmen kann – aber nicht beides gleichzeitig. Auch Spurwechselassistenten im Sinne von Totwinkelwarnern und Spurhalteassistenten mit der Möglichkeit zu einem korrigierenden, aber isolierten Lenkeingriff stellen hier also wertvolle Fahrhilfen dar. Eine Fahrhilfe ist allerdings genau das, was diese Systeme bieten: eine Hilfe beim Fahren für den eigentlichen Fahrer.

Der Mensch fährt immer noch selbst und muss demnach bei der Verwendung der Systeme dauerhaft wachsam bleiben und jederzeit zur vollständigen und sofortigen Übernahme der Steuerung bereit sein. Somit liegt auch hier wie bei Level-0-Fahrzeugen die Verantwortung für Fahrhandlungen eindeutig beim Fahrzeugführer.

Level 2. Als Beispiele für Fahrzeuge der Automatisierungsstufe 2 können sehr anschaulich die Fahrzeuge der Firma *Tesla Motors* dienen. Diese sind mit dem *Autopiloten* ausgestattet, der alle Level 2-Features anschaulich demonstriert [8]:

Diese Fahrzeuge sind gemäß der Spezifikation im SAE-Standard in der Lage, im Gegensatz zum Level 1 nun sowohl die Längs-, als auch die Querlenkung gleichzeitig zu übernehmen. Das System muss zwar vom Fahrer noch überwacht werden, kann allerdings in bestimmten Fahrsituationen (beispielsweise auf der Autobahn) das Fahrzeug eben autonom in der Spur halten und auch Gas und Bremse selbstständig bedienen [7, S. 1]. Dies geschieht durch eine Mischung aus Kameradaten, lokaler Sensorik

²Was nicht bedeutet, dass keine technischen Features vorhanden sein können – diese haben dann allerdings lediglich nur informierende oder isoliert eingreifende Wirkungen.

SAE J3016™LEVELS OF DRIVING AUTOMATION

Abbildung 2 Die Automatisierungsstufen nach SAE-Standard J3016 (aus [5]).

Abbildung 3 Ein autonom fahrender Tesla Model 3 auf einem US-amerikanischen Highway [9].

und GPS-basierten Kartendaten aus dem Navigationssystem.

Darüber hinaus kann es bedingt durch die künstlich-intelligente Struktur der Programmierung während der Fahrt aus seinen eigenen Fehlern lernen und mit der Zeit bessere Fahrverhalten entwickeln. Begegnet das System allerdings einer Fahrsituation, mit der es nicht selbstständig umgehen kann, muss es die Steuerung sofort und ohne Verzögerung vollständig an den menschlichen Fahrer abgeben können³.

Somit steht auch hier der Fahrer bei allen Fahrsituationen oder im Falle eines Unfalls in der Verantwortung über die Aktionen des teilautonomen Fahrzeugs, und muss im Falle einer rechtswidrigen oder gefährlichen Situation unbedingt eingreifen.

2.2 Levels 3–5: technisch gelenktes Fahren

Aus ethischer Sicht interessant wird die Betrachtung allerdings erst richtig ab der nächsthöheren Automatisierungsstufe 3. Ab hier bewegen wir uns nämlich in Gebieten, in denen das Fahrzeug zumindest streckenweise die Verantwortung für sein eigenes Handeln übernehmen muss.

Level 3. Ab hier übernimmt das autonome System nämlich in konkret abgesteckten Fahrsituationen komplett die Beobachtung der Umgebung sowie die angemessene Reaktion auf äußere Impulse.

Dabei kennt das System seine eigenen Grenzen und muss in der Lage sein, bei jeder auftretenden Situation risikominimierend zu wirken [7, S. 1]. Der menschliche Fahrer muss zwar noch im Fahrzeug anwesend sein und in einem angemessenen Zeitraum auf eine eventuelle Anfrage des Fahrzeugs zur Übernahme der Steuerung eingehen [10, S. 8], entzieht sich allerdings innerhalb der Funktionsgrenzen des Systems vollständig der Verantwortung.

Als anschauliches Beispiel können wir hierzu den sogenannten Staupiloten im Audi A8 heranziehen. Dieser kann, so zumindest die Spezifikation, auf Autobahnen im Stau oder bei Ko-Ionnenverkehr mit Geschwindigkeiten unter 60 km/h vollständig das Steuer übernehmen. Bemerkenswert ist hier demnach, dass der Fahrer somit seine Verantwortung an Audi abgibt: er kann die Hände dauerhaft vom Lenkrad und die Füße von den Pedalen nehmen und sich einer anderen Beschäftigung widmen. Soweit leider zumindest nur die Theorie - hier war die technologische Entwicklung schneller als die Gesetzgebung in Europa: nachdem die Zulassung für Fahrzeuge dieser Klasse bis heute nicht in Aussicht steht, hat der Fahrzeughersteller aus Ingolstadt die Pläne für das System nun gestrichen [11] - das Prinzip steht allerdings natürlich trotzdem.

Level 4, Level 5. Die folgenden beiden höchsten Automatisierungsstufen 4 und 5 stellen die restliche Übernahme der Fahrerrolle durch die Technik dar: bei Level 4 muss noch ein Fahrer anwesend sein, der in nicht-definierten Fahrsituationen – also bei Level 3 der Regelfall, hier der Ausnahmefall – übernehmen kann, während Level 5 die vollständige Autonomie darstellt, in der das Auto selbst die kompletten Fähigkeiten eines menschlichen Fahrers ersetzt und, so weit die Theorie, auch leer und vollkommen eigenständig fahren kann [10, S. 8].

3 Unfallprävention und Unfallfolgenminimierung

Spätestens hier eröffnen sich allerdings eine schwierige ethische Dilemmas, die so beim menschlichen Fahren aufgrund der unterschiedlichen Natur des menschlichen beziehungsweise

³Das ist sehr wichtig zu betonen, denn die beim Fahren wahrgenommene vermeintliche Sicherheit einiger Level-2-Systeme ist sicherlich auch für manch nachlässigen Umgang mit ebendenselben verantwortlich.

maschinellen Treffens von Entscheidungen nicht auftreten können.

Weiterhin ist klar: auch bei der Prävalenz von autonomen Fahrzeugen auf den Straßen sind Unfallsituationen unausweichlich.

Der Unfallfaktor Mensch wird in naher Zukunft auch bei einem Popularitätszuwachs der autonomen Fahrzeuge nicht verschwinden, da sich auf einen nicht absehbaren Zeitraum menschliche und elektronische Fahrer die Straße teilen werden (auch "gemischter Verkehr" genannt) [12, S. 1278].

In einer idealen, rein autonomen Fahrwelt ist die Unfallprävention nur bei Systemfehlfunktionen relevant, da Maschinen bei fehlerfreier Programmierung intrinisch fehlerfrei handeln. Von Maschine zu Maschine ist eine Kommunikation der Fahrzeuge untereinander durchaus denkbar und zum kooperativen Informationsaustausch auch in Zukunft angedacht; das noch menschlich gefahrene Auto ist allerdings für das elektronische System immer eine Komponente voller Überraschungen, die selbst fortgeschrittene prediktive Algorithmen nicht umfassend umreißen können.

3.1 Strategien in Systemgrenzbereichen

In den funktionalen Grenzbereichen der aktuellen, teilautonomen Systeme besteht die Vorgehensweise zur Gefahrenminimierung beziehungsweise Unfallvermeidung fast immer in der Kontrollübergabe an den zwangsweise noch vorhandenen menschlichen Fahrer, welcher anschließend durch seine Erfahrung und seinen Instinkt die Situation entschärfen kann.

Problematisch wird dies allerdings, sobald man sich in höhere Automatisierungsniveaus bewegt: Selbst wenn noch ein menschlicher Fahrer im Auto vorhanden ist, ist die Übergabe im Falle einer gefährlichen Situation oder gar eines Unfalls oft nicht rechtzeitig möglich und die Reaktionszeit eines vorher völlig rechtmäßigerweise abgelenkten Fahrers viel zu hoch, um hier präventiv zu wirken. Darüber hinaus stellt sich spätestens in Level-5-Fahrzeugen ein menschliches Eingreifen mangels Lenkrad und Pedalen als eher diffizil heraus.

Daher ist eines klar: das Fahrzeug muss wissen, wie es sich im Falle des Unfalls zu verhalten hat. Unfallvermeidung ist aufgrund der Einzigartigkeit der Situationen speziell im menschlich-mechanisch gemischten Verkehr nicht immer möglich und Unfallfolgenminimierung setzt konkrete Handlungen voraus [13, S. 71].

3.2 Reaktionen vs. aktive Entscheidungen

Das hier zugrundeliegende Problem ist, wie bereits am Anfang des Abschnitts angesprochen, dadurch begründet, dass Mensch und Maschine die vorliegende Situation auf eine völlig unterschiedliche Weise verarbeiten und bewältigen.

Besonders ist an dieser Stelle die Differenzierung zwischen einer aktiven, qualifizierten Entscheidung und einer instinktiven Reaktion relevant.

Eine Unfallreaktion des Menschen ist genau das – eine Reaktion. Eine unkoordinierte, reflexartige, spontane, ja eventuell sogar panische Reaktion auf die von außen wahrgenommenen Reize [13].

Ein menschlicher Fahrer stellt hierfür keine vorherigen Planungen auf, sondern reagiert spontan auf sein Umfeld. Die Maschine allerdings ist im Gegensatz dazu in der Lage, selbst bei unvermeidbaren Unfällen extrem schnell eine große Anzahl an Handlungsalternativen durchzurechnen, und aufgrund von bestimmten einprogrammierten Prinzipien eine aktive, qualifizierte Entscheidung zu treffen [12, S. 1278].

Tatsächlich, kann man argumentieren, muss es das sogar, da eine solche Eventualität bei der Programmierung nicht einfach außen vor gelassen werden kann, wenn es utilitaristisch begründbar ist, dass die Betrachtung dieser Fälle positive Auswirkungen haben könnte.

3.3 Deterministische Perspektiven

Das Stichwort "einprogrammiert" ist hier allerdings von besonderer Relevanz. Es bedeutet, dass die Entscheidung, die das Fahrzeug in einer bestimmten Situation treffen wird, im Prinzip im Voraus bereits determiniert ist – vorbestimmt durch genau die Prinzipien, die der Programmierer des Algorithmus dem Fahrzeug zur Bewertung der Situation vorgegeben hat.

Dies bedingt im Allgemeinen eine fundamental andere Sichtweise auf Verkehrsunfallfolgen, die nicht mehr nur von spontanen Fahrmanövern abhängig sind, sondern konkret im Voraus determiniert werden können *und müssen*. Weiterhin zwingt dies zur Konfrontation mit ethischen Dilemmasituationen, die beim menschlichen Fahren nie auftreten würden, da kein Mensch in solch plötzlichen, kritischen Situationen so differenziert reagieren kann wie ein elektronischer Algorithmus.

Die Wahl der besagten Entscheidungsmaximen ist allerdings alles andere als trivial. Naheliegend

wäre als Ursprungsgedanke ein utilitaristischer Ansatz im Sinne eines Minimierens der negativen Folgen des vermeintlichen Unfalls auf Leib, Leben und Eigentum. Das wiederum stellt uns allerdings vor Situationen, die dem klassischen Trolley-Problem vermeintlich nicht unähnlich sind.

4 Typische Abwägungsszenarien

Im Folgenden möchten wir uns exemplarisch mit manchen der angesprochenen dilemmatischen Situationen beschäftigen, um ein Gefühl für die offenstehende Problematik zu erlangen.

4.1 Die Parallele zum Trolley-Problem

Das Trolley-Problem selbst ist ein bekanntes Gedankenexperiment, das als Anwendungsbeispiel für ethische Theorien genutzt wird.

Es handelt von einem Straßenbahnwagen, der ohne funktionstüchtige Bremsen auf eine Gruppe von fünf Menschen zurollt. Bevor dieser allerdings die Menschengruppe erreicht, passiert er eine Weiche, an der sich ein Weichensteller befindet. Die Weiche könnte den Bahnwagen auf ein weiteres Gleis umleiten, auf dem sich allerdings auch eine Person befindet. Alle Menschen schaffen es nicht mehr rechtzeitig, den Gleisbereich vor Aufprall des Wagens zu verlassen und die Kollision endet mit Sicherheit für alle Verwickelten tödlich.

Sollte der Weichensteller die Weiche umstellen? Durch die Nichtaktion beziehungsweise Unterlassung des Weichenstellers würden fünf Menschen ihr Leben verlieren; durch das Handeln des Weichenstellers involviert er sich in die Situation und rettet die fünf Personen, allerdings nur auf Kosten des Lebens der einen Person auf dem zweiten Gleis.

Der oben erwähnte utilitaristische Ansatz hätte hier klar das Handeln des Weichenstellers zur Folge (also das Umstellen der Weiche und dadurch bedingt den Tod der auf dem zweiten Gleis befindlichen Person), da utilitaristisch abgewägt der Schaden des fünffachen Todes schwerwiegender ist als der des einfachen Todes.

Gleichzeitig könnte auch die moralische Gewichtung der Handlung des Weichenstellens und somit der Tötung der einen Person mit der Unterlassung, also einem passiven "Sterben lassen" von fünf Personen abgewägt werden.

Ähnliche Situationen und ethische Dilemmata tauchen also auch bei der Programmierung der

Spezialfälle in der Verkehrsunfallbehandlung auf, dort aber mit sehr zentralen Differenzierung, die die Parallele zum Trolley-Problem etwas abschwächt: Die ethisch relevanten Entscheidungen werden nicht in Echtzeit getroffen. Gerade deshalb ist die Situation ethisch so hochinteressant.

Im Trolley-Szenario sowie im gegenwärtigen Straßenverkehr (im Rahmen der bereits angesprochenen instinktiven Unfallreaktionen) müssen in Sekundenbruchteilen Entscheidungen über Leben und
Tod aller Beteiligten getroffen werden, was auch
im Zweifel die Haftbarkeit des (menschlichen) Entscheidenden zumindest rechtlich ausschließt. Anders und vor allem ethisch schwieriger sieht es
bei der Wahl der bereits erwähnten Entscheidungsmaximen aus: ein solches Festsetzen von Prinzipien geht zwangsweise mit einer gewissen ethischen
Verantwortungsübernahme für ebendiese einher
und bedingt das kritische Hinterfragen und besonders die Rechtfertigung der gewählten Maximen.

4.2 Ethische Beispielargumentation

Im Folgenden wollen wir uns exemplarisch einmal in eine solche gedankenexperimentelle Situation hineinversetzen.

Abbildung 5 auf der nächsten Seite zeigt eine für die Anwendung der besagten Maximen typische Situation (frei nach [13, S. 69f.] adaptiert):

Nehmen wir an, vor dem autonomen Fahrzeug befinden sich zwei Personen auf der Fahrbahn: ein acht Jahre altes Mädchen und eine achtzig Jahre alte Großmutter. Fährt das Fahrzeug unverändert weiter, trifft es beide Personen und die restliche Wegstrecke reicht nicht aus, um das Fahrzeug nennenswert abzubremsen. Zudem befinden sich links wie rechts von der Fahrbahn Barrikaden, die auch ein Ausweichen des Fahrzeugs verhindern.

Also steht das autonome Fahrzeug vor der grausamen Wahl, entweder nach links auszuweichen und das junge Mädchen zu überfahren, oder nach rechts und die Großmutter zu überrollen. Bedingt durch die Geschwindigkeit und das Gewicht des Fahrzeugs endet der Aufprall für beide Personen mit Sicherheit tödlich.

Wie trifft man diese Entscheidung?⁴

Oder, besser: Wie gibt man dem Fahrzeug vor, wie es sich in einem solchen Fall zu verhalten hat?

⁴Natürlich sprechen wir hier von konstruierten Szenarien, die speziell so gestaltet sind, sodass sie diese Art von Überlegung provozieren. Dieser Punkt wird in Abschnitt 6 auf Seite 9 erneut aufgegriffen.

- (a) Das klassische Trolley-Problem.
- (b) Das Trolley-Problem im autonomen Fahren.

Abbildung 4 Die Parallele zum klassischen Trolley-Problem im autonomen Fahren (aus und nach [14]).

Abbildung 5 Ein gedankenexperimentelles Szenario des autonomen Fahrens, dargestellt von der *Moral Machine* [15].

Nun könnte man argumentieren – und diese Argumente fühlen sich moralisch bereits falsch an –, dass vor dem jungen Mädchen noch ihr ganzes Leben, ihre Familie, ihre Karriere und ihr zukünftiges Glück liegt, während die Großmutter ihr eigenes erfülltes Leben bereits in großen Teilen erleben durfte. Dass das Leben der Großmutter natürlich genau so wertvoll ist, wie das des Kindes, ist hoffentlich offensichtlich – dennoch gäbe es im Rahmen dieser Überlegungen Gründe, wenn auch diese moralisch absolut verwerflich sein mögen, die Diskussion bei einem unvermeidbaren Unfall in die eine oder die andere Richtung zu lenken [13, S. 69f.].

Ethisch gesehen sind aber beide "Auswahlmöglichkeiten" aber schlicht falsch. Ein solches objektifiziertes Abwägen zweier oder mehr Menschenleben geht nicht nur gegen jegliche Natur des menschlichen Moralverständnisses, sondern ist als klarer Verstoß gegen Artikel 1 Absatz 1 des deutschen Grundgesetzes auch rechtlich nicht zulässig.

Des Weiteren geht natürlich eine konkrete Situationsbewertung vor dem Hintergrund einer Klassifizierung zum Finden von allgemeingültigen Lösungen automatisch mit einer Diskriminierung von, be-

ziehungsweise einem Targeting gegen bestimmte Bevölkerungsgruppen einher.

4.3 Versuch generalisierbarer Lösungsansätze

Können wir uns nicht ethisch korrekt für einen Pfad entscheiden, bleibt als logische Konsequenz also die Nichtaktion. Das Fahrzeug behält den Pfad bei und könnte so beide auf der Fahrbahn befindliche Personen treffen. Dass diese Alternative objektiv (beziehungsweise utilitaristisch) gesehen schlimmere Konsequenzen aufweist als die beiden anderen genannten, ist evident [13, S. 70].

Die übrige Option wäre somit die zufällige, unparteiische und vom Kontext der Situation unbeeinflusste Wahl des Fahrweges, die sozusagen jeder der beiden Personen die gleichen Überlebenschancen zuschreibt. Aber selbst das ließe sich als fahrlässig einordnen: Die zufällige Auswahl, trotz der Tatsache, dass es Gründe für die Bevorzugung einer der beiden Auswahlmöglichkeiten geben könnte, wenn auch diese moralisch verwerflich sind, wirkt falsch [13, S. 71].

Eine ethisch und moralisch korrekte Antwort auf das Dilemma zu finden, ist scheinbar nicht möglich.

Dennoch zeigen diese Szenarien anschaulich die aus der Konfrontation mit bis dato unmöglichen Situationen resultierende allgemeine Ratlosigkeit.

In gewisser Weise stellt dies auch einen Appell an die Ethik der nahen Zukunft dar – im Rahmen der schnelllebigen technologischen Entwicklung des gegenwärtigen Zeitalters sind dies Probleme, die in nicht allzu langer Zeit eine gewissermaßen alltagstaugliche Lösung erwarten.

4.4 Die Moral Machine des MIT

Wichtig ist vor allem: Wenn Lösungsansätze gefunden werden sollen, dann muss dies global und gemeinsam als Gesellschaft passieren.

Aus diesem Grund stellte im Jahr 2018 das Massachusetts Institute of Technology (MIT) mit der *Moral Machine* [15] eine Plattform im Internet auf die Beine, die die Nutzer vor ebendiese ethischen Dilemmasituationen des autonomen Fahrens stellt.

Neben der bildenden Funktion der Internetseite stellte sie weiterhin eine Möglichkeit zur globalen Datensammlung in diesem Kontext dar. Hierbei entspringen interessante Tendenzen für manche Auswahlmöglichkeiten, die sich global beobachten lassen – maßgeblich geht es hierbei um das Verschonen von Menschen vs. Tieren, Passagieren vs. Passanten, älteren vs. jüngeren Menschen, et cetera.

Die im selben Jahr in der *Nature* publizierten Ergebnisse bieten interessante Einblicke in die Moralvorstellungen der Menschen (siehe [16, S. 61]), sowie insbesondere der kulturellen Unterschiede ebenderselben (siehe [16, S. 62]).

5 Lösungsansätze der deutschen Ethikkommission

6 Reflektion der Überlegungen

Literatur

- [1] Oliver Bendel. *Handbuch Maschinenethik*. Springer, 2019.
- [2] Kraftfahrtbundesamt. "Jahresbilanz des Fahrzeugbestandes am 1. Januar 2020". In: (2020). URL: https://www.kba.de/DE/Statistik/Fahrzeuge/Bestand/pseudo_bestand_node.html (besucht am 26.04.2020).
- [3] Statistisches Bundesamt (Destatis). "Verkehrsunfälle in Deutschland (Grafiken)". In: (2020). URL: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Verkehrsunfaelle/_inhalt.html (besucht am 26.04.2020).
- [4] Statistisches Bundesamt (Destatis). "Verkehrsunfälle (Fachserie 8 Reihe 7)". In: (2019). URL: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Verkehrsunfaelle/Publikationen/Downloads-Verkehrsunfaelle/verkehrsunfaelle-jahr-2080700187004.pdf.

- [5] SAE Levels of Automation. URL: https: //www.sae.org/binaries/content/ gallery/cm/articles/press-releases/ 2018/12/j3016-levels-of-automationimage.png (besucht am 15.07.2020).
- [6] SAE. "Taxonomy and definitions for terms related to driving automation systems for onroad motor vehicles". In: SAE International (J3016) (2016).
- [7] Bundesanstalt für Straßenwesen (BASt). "Rechtsfolgen zunehmender Fahrzeugautomatisierung". In: (2012). URL: http://www. bast . de / DE / Publikationen / Foko / Downloads / 2012 - 11 . pdf ? _ _ blob = publicationFile (besucht am 17.12.2018).
- [8] Tesla Autopilot. 2020. URL: https://www.tesla.com/autopilot (besucht am 02.05.2020).
- [9] Tesla Autopilot. URL: https://electrek. co/wp-content/uploads/sites/3/ 2019/10/Tesla-Autopilot-hero-4-e1570845324247.jpg (besucht am 16.07.2020).
- [10] Conference of European Directors of Roads. CEDR Transnational Road Research Programme Call 2014: Mobility & ITS. Dez. 2014. URL: http://www.bast.de/DE/BASt/Forschung/Forschungsfoerderung/Downloads/cedr_call_2014_2.pdf?__blob=publicationFile&v=2 (besucht am 17.12.2018).
- [11] Herbie Schmidt. "Audi steckt beim autonomen Fahren zurück". In: Neue Zürcher Zeitung (2020). URL: https://www.nzz.ch/mobilitaet/auto-mobil/autonomes-fahren-stufe-3-audi-verzichtet-im-a8-auf-staupilot-ld.1553933 (besucht am 16.07.2020).
- [12] Sven Nyholm und Jilles Smids. "The Ethics of Accident-Algorithms for Self-Driving Cars: an Applied Trolley Problem?" In: Ethical Theory and Moral Practice 19.5 (2016), S. 1275—1289. DOI: 10.1007/s10677-016-9745-2. URL: https://doi.org/10.1007/s10677-016-9745-2.
- [13] Markus Maurer et al. *Autonomous Driving Technical, Legal and Social Aspects.* Springer, 2016. URL: https://link.springer.com/book/10.1007/978-3-662-48847-8.

- [14] Trolley Problem. URL: https://upload. wikimedia.org/wikipedia/commons/ thumb/f/fd/Trolley_Problem.svg/ 1345px-Trolley_Problem.svg.png (besucht am 19.07.2020).
- [15] Moral Machine. URL: http://moralmachine.mit.edu/(besucht am 03.05.2020).
- [16] Edmond Awad u.a. "The Moral Machine experiment". In: *Nature* 563.7729 (2018), S. 59–64. DOI: 10.1038/s41586-018-0637-6. URL: https://doi.org/10.1038/s41586-018-0637-6.