Lecture

Unbalanced Three Phase Systems and Three Phase Power Measurement

Agenda Lecture Agenda

> R.D. del Mundo Ivan B.N.C. Cruz Christian. A. Yap

How do we measure power?

Denoes can only Power

Lecture Outcomes

at the end of the lecture, the student must be able to ...

- Define what makes a Three Phase system unbalanced.
- Outline how a single-phase wattmeter can be used for singlephase and three phase power measurements.

UNBALANCED THREE-PHASE SYSTEMS

Unbalanced Three-Phase Systems

An unbalanced system contains at least one of the following:

- Unbalanced three-phase source(s);
- Unbalanced loads; or
- Lines have unequal impedances.

Unbalance can be due to:

- → Difference in magnitudes; and/or
- rightharpoonupPhase angle displacements \neq 120°.

- Source phase voltages are not equal
- Load impedances are not equal
- Line impedances are not equal

Methods of Solution

- - Simplifying assumption source is a balanced three-phase source, either
 - Balanced three-phase voltage source; or
 - Balanced three-phase current source.
- 2. Symmetrical Components

Review Questions

- An Unbalanced System contains at least one of the following:
 - Unbalanced three-phase source(s);
 - Unbalanced loads; or
 - Lines have unequal impedances.

115

The Wattmeter

An instrument that has a potential coil and a current coil so arranged that its deflection is proportional to $VI \cos \Theta$

Single-Phase Power Measurement

Load
$$v(t) = V_m \cos \omega t$$
$$i(t) = I_m \cos(\omega t - \theta)$$

$$p(t) = v(t) \cdot i(t) = V_m I_m \cos \omega t \cos(\omega t - \theta)$$

$$= \frac{1}{2} V_m I_m \cos \theta + \frac{1}{2} V_m I_m \cos(2\omega t) + \frac{1}{2} V_m I_m \sin(2\omega t) \sin \theta$$

$$P_{ave} = \frac{1}{T} \int_0^T p(t) dt = \text{Re}\{V \cdot I^*\} = |V||I|\cos\theta$$

$$\cos^2 \omega t = \frac{1}{2}(1 + \cos 2\omega t)$$

$$\cos \omega t \sin \omega t = \frac{1}{2} \sin 2\omega t$$

Three-Phase Power Measurement

Three-wattmeter Method for 3-wire 3-phase Systems.

We know that total average power to 3 φ load over T:

$$P_{abc} = \frac{1}{T} \int_{0}^{T} (v_{an}i_{a'a} + v_{bn}i_{b'b} + v_{cn}i_{c'c})dt$$

Total average power measured by the 3 wattmeters:

$$P_{meters} = \frac{1}{T} \int_{0}^{T} \left(v_{ao} i_{a'a} + v_{bo} i_{b'b} + v_{co} i_{c'c} \right) dt$$

From KVL:

$$v_{ao} = v_{an} - v_{on}$$

$$v_{bo} = v_{bn} - v_{on}$$

$$V_{co} = V_{cn} - V_{on}$$

For a 3-wire 3-phase system:

$$i_{a'a} + i_{b'b} + i_{c'c} = 0$$

$$P_{meters} = \frac{1}{T} \int_{0}^{T} \left(v_{an} i_{a'a} + v_{bn} i_{b'b} + v_{cn} i_{c'c} \right) dt$$
$$- \frac{1}{T} \int_{0}^{T} v_{on} \left(i_{a'a} + i_{b'b} + i_{c'c} \right) dt$$

For a 3-wire 3-phase system:

$$\begin{split} P_{3\phi} &= \operatorname{Re}\left\{V_{ao}I_{a'a}^{*}\right\} + \operatorname{Re}\left\{V_{bo}I_{b'b}^{*}\right\} + \operatorname{Re}\left\{V_{co}I_{c'c}^{*}\right\} \\ &= \left|V_{ao}\right| \left|I_{a'a}\right| \cos\theta_{a} + \left|V_{bo}\right| \left|I_{b'b}\right| \cos\theta_{b} + \left|V_{co}\right| \left|I_{c'c}\right| \cos\theta_{c} \\ &\quad which \ we \ have \ shown \ to \ be \ equal \ to \\ &= \left|V_{an}\right| \left|I_{a'a}\right| \cos\theta_{a} + \left|V_{bn}\right| \left|I_{b'b}\right| \cos\theta_{b} + \left|V_{cn}\right| \left|I_{c'c}\right| \cos\theta_{c} \\ P_{3\phi} &= W_{A} + W_{B} + W_{C} \end{split}$$

For balanced loads:

$$W_A = W_B = W_C$$

Three-Wattmeter Method for 4-wire 3-phase systems

$$\begin{split} P_{3\phi} &= \operatorname{Re}\left\{V_{an}I_{a}^{*}\right\} + \operatorname{Re}\left\{V_{bn}I_{b}^{*}\right\} + \operatorname{Re}\left\{V_{cn}I_{c}^{*}\right\} \\ &= \left|\underline{V_{an}}\right| \left|\underline{I_{a}}\right| \cos\theta_{a} + \left|\underline{V_{bn}}\right| \left|\underline{I_{b}}\right| \cos\theta_{b} + \left|\underline{V_{cn}}\right| \left|\underline{I_{c}}\right| \cos\theta_{c} \\ P_{3\phi} &= W_{A} + W_{B} + W_{C} \end{split}$$

Two Wattmeter Method for 3-wire 3-phase Wye-Connected Systems

Recall: $p_{3\phi} = v_a i_a + v_b i_b + v_c i_c$

If the system is 3-wire wye-connected (KCL at the neutral point *n*):

$$p_{3\phi} = v_a i_a + v_b i_b + v_c \left(-i_a - i_b \right)$$

$$p_{3\phi} = v_a i_a + v_b i_b - v_c i_a - v_c i_b$$

$$p_{3\phi} = \left(v_a i_a - v_c i_a\right) + \left(v_b i_b - v_c i_b\right)$$

$$p_{3\phi} = (v_a - v_c)i_a + (v_b - v_c)i_b$$

$$P_{3\phi} = \left| V_{ac} \right| \left| I_a \right| \cos \theta_{Ia}^{Vac} + \left| V_{bc} \right| \left| I_b \right| \cos \theta_{Ib}^{Vbc}$$

Two Wattmeter Method for 3-phase Delta-Connected Systems

Recall:
$$p_{3\phi} = v_{ab}i_{ab} + v_{bc}i_{bc} + v_{ca}i_{ca}$$

C

VL along the delta legs):
$$p_{3\phi} = (-v_{bc} - v_{ca})i_{ab} + v_{bc}i_{bc} + v_{ca}i_{ca}$$

$$p_{3\phi} = (v_{bc}i_{bc} - v_{bc}i_{ab}) + (v_{ca}i_{ca} - v_{ca}i_{ab})$$

$$p_{3\phi} = v_{bc}(i_{bc} - i_{ab}) + v_{ca}(i_{ca} - i_{ab})$$

$$p_{3\phi} = v_{bc}(i_b) + v_{ca}(-i_a) = v_{ac}i_a + v_{bc}i_b$$

$$P_{3\phi} = |V_{ac}| |I_a| \cos \theta_{Ia}^{Vac} + |V_{bc}| |I_b| \cos \theta_{Ib}^{Vbc}$$

Two Wattmeter Method for 3-wire 3-phase Systems

$$\begin{aligned} W_1 &= \left| V_a - V_c \right| \left| I_a \right| \cos \theta_{Ia}^{(Va-Vc)} = \left| V_{ac} \right| \left| I_a \right| \cos \theta_{Ia}^{Vac} \\ W_2 &= \left| V_b - V_c \right| \left| I_b \right| \cos \theta_{Ib}^{(Vb-Vc)} = \left| V_{bc} \right| \left| I_b \right| \cos \theta_{Ib}^{Vbc} \\ P_{3\phi} &= W_1 + W_2 \end{aligned}$$

For a balanced 3-phase Y-connected load:

$$\mathbf{W}_1 = |\mathbf{V}_{ac}| |\mathbf{I}_{an}| \cos (30^{\circ} - \theta)$$

$$\mathbf{W}_2 = |\mathbf{V}_{bc}| |\mathbf{I}_{bn}| \cos (30^\circ + \theta)$$

What would happen if phase

$$W_1 = |V_{LL}| |I_L| \cos (30^{\circ} - \theta)$$

 $W_2 = |V_{LL}| |I_L| \cos (30^{\circ} + \theta)$

$$P_{2} = W_1 + W_2$$

 $+ \theta$) Note 2 PF is assumed lagging. What would happen if PF is

leading?

For a balanced Delta-connected load:

$$W_1 = |V_{ac}| |I_a| \cos (30^{\circ} - \theta)$$

 $W_2 = |V_{bc}| |I_b| \cos (30^{\circ} + \theta)$

$$W_1 = |V_{LL}| |I_L| \cos (30^{\circ} - \theta)$$

 $W_2 = |V_{LL}| |I_L| \cos (30^{\circ} + \theta)$

$$W_{1} = |V_{LL}| |I_{L}| \cos (30^{\circ} - \theta)$$

$$W_{2} = |V_{LL}| |I_{L}| \cos (30^{\circ} + \theta)$$

$$P_{3p} = W_{1} + W_{2}$$

θ	$cos(30 - \theta)$	$cos(30 + \theta)$	W1 + W2	$sqrt(3) cos \theta$
-90	-0.500	0.500	0.000	0.000
-60	0.000	0.866	0.866	0.866
-45	0.259	0.966	1.225	1.225
-30	0.500	1.000	1.500	1.500
0	0.866	0.866	1.732	1.732
30	1.000	0.500	1.500	1.500
45	0.966	0.259	1.225	1.225
60	0.866	0.000	0.866	0.866
90	0.500	-0.500	0.000	0.000

Consider
$$W_1 - W_2$$
:
 $W_1 - W_2 = |V||I| \cos (30 - \theta) - |V||I| \cos (30 + \theta)$

$$= |V||I|[\cos 30 \cos \theta + \sin 30 \sin \theta - \cos 30 \cos \theta + \sin 30 \sin \theta]$$

=
$$|V||I| \sin \theta$$

For balanced 3ϕ : Q_{3p} = $Sqrt(3)(W_1 - W_2)$

Thus, the for a balanced 3p

$$\tan \theta = Q_{3p} / P_{3p} = (Sqrt(3)(W_a - W_b)) / (W_a + W_b)$$

EXAMPLE: $W_1 = 800, W_2 = -400$

$$P = W_a + W_b = 800 + (-400) = 400 W$$

$$Q = Sqrt(3) (W_a - W_b) = Sqrt(3) [800 - (-400)] = 2078 Vars$$

CONCEPT TEST

Solve for the power readings in each wattmeter:

$$V_{ab} = 200 < 0^{\circ}$$
 $V_{bc} = 200 < -240^{\circ}$ $V_{ca} = 200 < -120^{\circ}$ $V_{ca} = 200 < -120$

6 kW, 0.8 pf **Delta-connected** load

SOLUTION:

- Calculate phase voltages (phasor).
- Calculate phase currents (phasor).
- Calculate line currents (phasor).
- Calculate power in each wattmeter.
- Check with the given total complex power.

Solving for line whent

Method 1

For a-c-bingative $I_L = \sqrt{3} I_P L_P + 30^{\circ}$ $\frac{(-36.87 + 30)}{(-36.87 + 30)}$ $I_A = 21.65 L - (-9.87) A$ $I_{AB} = 21.65 L - (-9.87) A$ $I_{AB} = 21.65 L - (-9.87) A$

Method 2
$$T_{q} = I_{ab} - I_{cq} = 21.65 \angle -6.87^{\circ} A$$

$$I_{b} = I_{bc} - I_{ab} = 21.65 \angle 113.13^{\circ} A$$

$$I_{c} = I_{ca} - I_{bc} = 21.65 \angle -126.87^{\circ} A$$

4.) Solving for $W_1 \& W_2$ $W_1 + W_2 = P_3 \phi = (e \& W)$ $\sqrt{3}(W_1 - W_2) = 623 \phi = 4.5 \text{ kvars}$ $W_1 = 4.3 \text{ kW} \qquad W_2 = 1.7 \text{ kW}$

End of Presentation

