6.图

邻接表

邓俊辉

deng@tsinghua.edu.cn

邻接表

- ❖ 如何避免关联矩阵的空间浪费?
 - 将关联矩阵的各行组织为列表
 - 只记录存在的边
- ❖ 等效于,每一顶点∨对应于列表

$$L_v = \{ u \mid \langle v, u \rangle \in E \}$$

实例

- ❖4个顶点,5条弧
- **❖不必占用4** × 4 = 16个单元

但还是占用了9个单元,另加4个表头

∞	A	В	С	D
A		9	3	5
В	9	7		2
С	3			
D	5	2		

空间复杂度

注意:无向弧被重复存储

问题:如何改进?

❖ 适用于稀疏图

较之邻接矩阵,有极大改进

时间复杂度

- ❖建立邻接表(递增式构造): O(n+e) //如何实现
 ❖枚举所有以顶点v为尾的弧: O(1+deg(v)) //遍历v的邻接表
 ❖枚举(无向图中)顶点v的邻居: O(1+deg(v)) //遍历v的邻接表
 ❖枚举所有以顶点v为头的弧: O(n+e) //遍历所有邻接表可改进至 O(1+deg(v)) //建立逆邻接表为此,空间需增加多少?
- ❖ 计算顶点v的出度/入度

增加度数记录域: O(n)附加空间

增加/删除弧时更新度数:0(1)时间

每次查询 0(1)时间!

//总体Ø(e)时间

时间复杂度

❖给定顶点u和v,判断是否<u, v> ∈ E

有向图:搜索u的邻接表, ∅(deg(u)) = ∅(e)

无向图:搜索u或v的邻接表,O(max(deg(u), deg(v))) = O(e)

"并行"搜索: 𝒪(2 × min(deg(u), deg(v))) = 𝒪(e)

能够达到邻接矩阵的0(1)吗?

❖ 散列!如果装填因子选取得当

-a="

弧的判定:expected-0(1),与邻接矩阵 "相同"

空间: O(n + e) , 与邻接表相同

❖ 为何有时仍使用邻接矩阵?仅仅因为实现简单?不,有更多用处!

如:可处理Euclidean graph和intersection graph之类的

隐式图 (implicitly-represented graphs)

//保持兴趣

取舍原则

- ❖空间/速度
- ❖ 顶点类型
 - bit
 - int
 - float
 - struct
 - class
 - -
- ❖弧类型(方向 / 权值)
- ❖ 图类型 (稀疏 / 稠密)

	邻接矩阵	邻接表	
适用场合	经常检测边的存在 经常做边的插入/删除 图的规模固定 稠密图	经常计算顶点的度数 顶点数目不确定 经常做遍历 稀疏图	