製工化學化學	实验题目:	配合物的生质	成与性质
* * ****	学院:	学号:	姓名:
1921 1921 SOMEERING XIMED TO SOME THE S	日期:	指导教师:	成绩

一、实验原理

二、实验内容

1. 配合物的生成和组成

实验步骤	实验现象	现象解释及方程式
1) 取一支小试管,加入1 mL 0.1		
mol·L ⁻¹ CuSO ₄ 溶液,逐滴加入 6		
mol·L-1 NH ₃ ·H ₂ O,边加边振荡,观		
察产生沉淀的颜色和状态。		
2)继续加氨水,直到沉淀完全溶		
解,观察溶液的颜色。		
将此溶液分成两份: 1) 一份加入几		
滴0.1 mol·L-1 BaCl ₂ 溶液;		
2)另一份加入几滴 0.1 mol·L-1 NaOH		
溶液,观察实验现象。		

小结:

2. 配离子和简单离子性质的比较

(1) **Fe³⁺与[Fe(CN)₆]³⁻的性质的比较**

实验步骤	实验现象	现象解释及方程式
分别向两支盛着1) 0.5 mL 0.1 mol·L-1		
FeCl ₃ 和2) 0.1 mol·L ⁻¹ K ₃ [Fe(CN) ₆] 溶		
液的小试管中加入几滴 0.5 mol·L-1		
KSCN 溶液,观察现象。		
两种化合物中都有 Fe(III),为什么实		
验结果不同?		

(2) **Fe²⁺与[Fe(CN)₆]⁴的性质的比较**

实验步骤	实验现象	现象解释及方程式
分别两支盛有1) 0.5 mL 0.1 mol·L ⁻¹ 硫酸亚铁铵溶液和2) 0.1 mol·L ⁻¹ K ₄ [Fe(CN) ₆] 溶液的小试管中加入几滴0.5 mol·L ⁻¹ Na ₂ S 溶液,是否都有 FeS 沉淀生成?为什么?		

(3) 简单离子的性质

实验步骤	实验现象	现象解释及方程式
取少量明矾[K ₂ SO ₄ ·Al ₂ (SO ₄) ₃ ·24H ₂ O]		
晶体放入试管里,用蒸馏水溶解,		
分装三支试管,分别用1)		
$Na_3[Co(NO_2)_6]^{1)}$, 2) NaOH, 3)		
BaCl ₂ 溶液检出其中的 K+、Al ³⁺ 和		
SO ₄ ²⁻ 。		

¹⁾ 在弱酸性或弱碱性溶液中, K^+ 与 $Na_3[Co(NO_2)_6]$ 起反应生成黄色沉淀(可用玻棒摩擦试管内壁, 促进沉淀生成): $2K^+ + Na^+ + [Co(NO_2)_6]^{3^-} = K_2Na[Co(NO_2)_6] \downarrow$

小结:

3. 配离子稳定性的比较

实验步骤	实验现象	现象解释及方程式
1) 向小试管中加入 0.5 mL 0.5		
mol·L ⁻¹ Fe ₂ (SO ₄) ₃ 溶液, 然后逐滴		
加入6 mol·L ⁻¹ HCl 溶液。		
观察溶液颜色的变化。		

2) 再往溶液中加 1 滴 0.01 mol·L·1 NH ₄ SCN溶液,溶液颜色有何变化? 3) 再往溶液中滴加适量的 10% NH ₄ F溶液 (加至溶液颜色完全褪为无色)。 4) 最后溶液中加几滴饱和(NH ₄) ₂ C ₂ O ₄ 溶液,溶液颜色有何变化?	
在0.5 mL 碘水中,逐滴加入 0.1 mol·L ⁻¹ K ₄ [Fe(CN) ₆] 溶液,振 荡。比较 $\varphi_{Fe^{3+}/Fe^{2+}}$ 与 $\varphi_{[Fe(CN)_6]^{3-}/[Fe(CN)_6]^4}$ 大小,并比较 $[Fe(CN)_6]^{3-}$ 和 $[Fe(CN)_6]^{4-}$ 稳定性	

小结:

4. 酸碱平衡与配位平衡

实验步骤	 现象解释及方程式
1) 向0.5 mL 0.2 mol·L ⁻¹ CuSO ₄ 溶液中逐滴加入 2 mol·L ⁻¹ NH ₃ ·H ₂ O,振荡,直到最初生成的浅蓝色沉淀溶解为止,观察溶液颜色。 2) 再向溶液中逐滴加入 1 mol·L ⁻¹ H ₂ SO ₄ 溶液,溶液的颜色有何变化? 是否有沉淀生成? 3) 继续加入H ₂ SO ₄ 到溶液显酸性又有什么变化?	*/da//di-11/2//
1) 向 2 滴 0.1 mol·L ⁻¹ Fe ₂ (SO ₄) ₃ 溶液中加入 10滴饱和(NH ₄) ₂ C ₂ O ₄ 溶液,溶液颜色有何变化?生成了什么? 2) 加入1滴0.5 mol·L ⁻¹ NH ₄ SCN溶液,溶液颜色有无变化? 3) 再向溶液中逐滴加入 6 mol·L ⁻¹ HCl,溶液颜色又有何变化? 写出有关的反应式。	

向 0.5 mL Na ₃ [Co(NO ₂) ₆] 溶液中逐	
滴加入 6 mol·L-1 NaOH 溶液,并	
振荡试管,观察[Co(NO ₂) ₆] ³⁻ 被破	
坏和Co(OH)3沉淀的生成。	

小结:

5. 沉淀平衡与配位平衡

5. 沉淀半衡与配位半衡 实验步骤	实验现象	现象解释及方程式
1) 向0.5 mL 0.2 mol·L ⁻¹ CuSO ₄ 溶液中逐滴加入 2 mol·L ⁻¹ NH ₃ ·H ₂ O,振荡试管至生成的浅蓝色沉淀溶解为止。 2) 向溶液中逐滴加入Na ₂ S 溶液,是否有沉淀生成?	大规则	グルタンボイナンスノノイエエリ
1) 向离心管中加入 0.5 mL 0.1 mol·L ⁻¹ AgNO ₃ 溶液和 0.5 mL 0.1 mol·L ⁻¹ NaCl 溶液,离心分离,弃去清液。用蒸馏水洗涤沉淀两次. 2) 然后加入 2 mol·L ⁻¹ NH ₃ ·H ₂ O 至沉淀刚好溶解为止。向溶液中加 1滴 0.1 mol·L ⁻¹ NaCl 溶液,是否有AgCl 沉淀生成?		
3) 再加入 1 滴 0.1 mol·L ⁻¹ KBr溶液,有无 AgBr 沉淀生成? 沉淀是什么颜色? 4) 继续加入 KBr 溶液,至不再产生 AgBr 沉淀为止。离心分离,弃去清液,并用少量蒸馏水把沉淀洗涤两次.		
5) 然后加入 0.5 mol·L ⁻¹ Na ₂ S ₂ O ₃ 溶 液,直到沉淀刚好溶解为止。向溶 液中加 1 滴 0.1 mol·L ⁻¹ KBr 溶 液,是否有 AgBr 沉淀生成? 6) 再加 1 滴 0.1 mol·L ⁻¹ KI 溶 液,有没有AgI 沉淀产生?		

由以上试验,讨论沉淀平衡与配位平衡的相互影响,并比较 AgCl、AgBr、AgI 的 K_{sp} 的大小和 $[Ag(NH_3)_2]^+$ 、 $[Ag(S_2O_3)_2]^{3-}$ 的 K_{ab} 的大小。

6. 氧化还原平衡与配位平衡

实验步骤	实验现象	现象解释及方程式
1) 向 5 滴 0.1 mol·L ⁻¹ KI 溶液中加入		
5 滴 0.1 mol·L ⁻¹ FeCl ₃ 溶液,振荡试		
管,观察溶液颜色的变化,发生了		
什么反应?		
2) 再 向 溶液中逐滴加入饱和		
(NH ₄) ₂ C ₂ O ₄ 溶液,溶液颜色又有什		
么变化?又发生了什么反应?		
写出反应式,并讨论配位平衡对氧		
化还原平衡的影响。		

小结:

7. 配位离解平衡的移动

实验步骤	实验现象	现象解释及方程式
在5 mL 0.5 mol·L-1 CuSO4中加入		
适量6 mol·L-1 NH ₃ ·H ₂ O,至沉淀完		
全溶解为止,得到[Cu(NH ₃) ₄] ²⁺ 溶		
液。将溶液一分为四,利用不同反		
应破坏[Cu(NH ₃) ₄] ²⁺ :		
a. 酸碱反应: 加入1 mol·L ⁻¹ HCl		
b. 沉淀反应: 加入 Na ₂ S 溶液		
c. 氧化还原反应: 加入 Zn 片(早		
做,静置,最后观察Zn片变化)		
d. 生成更稳定配合物: 加入数滴		
0.1mol·L ⁻¹ EDTA溶液		

小结:

8. 配合物的某些应用

实验步骤	实验现象	现象解释及方程式
利用生成有色配合物来鉴定某些离		
子: 在白色点滴板上加入 Ni ²⁺ 试液		
(0.1 mol·L ⁻¹ NiSO ₄)、6 mol·L ⁻¹ 氨水		
和 1%二乙酰二肟溶液(秋加耶夫试		
剂)各 1 滴,有鲜红色沉淀生成,表		
示有Ni ²⁺ 存在。		
利用生成配合物掩蔽干扰离子:		
各取 1 滴 0.1 mol·L ⁻¹ CoCl ₂ 和 FeCl ₃		
溶液于小试管中,加 8~10滴饱和		
NH4SCN 溶液,有何现象?		
逐滴加入 2 mol·L-1NH ₄ F 溶液,并		
摇动试管,有何现象?继续滴加至		
溶液变为淡红色(Co ²⁺ 的颜色);		
然后加 6 滴戊醇,振荡试管、静		
置、观察戊醇层的颜色。		

小结:

三、问题与思考

1. KSCN 溶液检查不出 K_3 [Fe(CN)₆]溶液中的 Fe³⁺,Na₂S 溶液不能与 K_4 [Fe(CN)₆]溶液中的 Fe²⁺反应生成 FeS 沉 淀,这是否表明这两种配合物的溶液中不存在 Fe³⁺和 Fe²⁺? 为什么Na₂S溶液不能使 K_4 [Fe(CN)₆]溶液产生FeS 沉 淀,而饱和 H_2 S 溶液能使铜氨配合物的溶液产生CuS沉淀?

2. 已知 [Ag(S ₂ O ₃) ₂] ³⁻ 比[Ag(NH ₃) ₂] ⁺ 稳定,如果打	巴 Na ₂ S ₂ O ₃ 溶液加到[Ag(NH ₃) ₂]+ 浴	溶液中,会发生什么变化?
3. 设计一实验方案,确证光卤石 KMgCl ₃ ·6H ₂ C) 是复盐而不是配合物。	
4. 衣服上沾有铁锈时,可用草酸洗去,试说明	月原理?	
5. 在印染液中,常因某些离子(如 Fe ³⁺ 、Cu 说明原理。	l ²⁺ 等)使染料颜色改变,加入 E	EDTA 便可纠正此弊。试
6. 在检出卤素离子混合物中的Cl·时,用 2 mc HNO ₃ 酸化得白色沉淀,或在氨水处理液中的存在。为什么?		