

Optimering i geometri

Nikolai Bjørnestøl Hansen

OSLO METROPOLITAN UNIVERSITY
STORBYUNIVERSITETET

Optimering i geometri

1 Tangenter og normaler

2 Optimering

- 3 Optimering i geometri
 - Geometriske problemer

Dersom et rektangel har omkrets på 400 cm, kan arealet være mye rart.

- Dersom et rektangel har omkrets på 400 cm, kan arealet være mye rart.
- Men hva er det største arealet vi kan få?

- Dersom et rektangel har omkrets på 400 cm, kan arealet være mye rart.
- Men hva er det største arealet vi kan få?
- For å løse denne typen oppgaver, burde vi

- Dersom et rektangel har omkrets på 400 cm, kan arealet være mye rart.
- Men hva er det største arealet vi kan få?
- For å løse denne typen oppgaver, burde vi
 - 1 Sette navn på de viktige geometriske størrelsene.

- Dersom et rektangel har omkrets på 400 cm, kan arealet være mye rart.
- Men hva er det største arealet vi kan få?
- For å løse denne typen oppgaver, burde vi
 - 1 Sette navn på de viktige geometriske størrelsene.
 - 2 Skrive opp størrelsen vi skal optimere.

- Dersom et rektangel har omkrets på 400 cm, kan arealet være mye rart.
- Men hva er det største arealet vi kan få?
- For å løse denne typen oppgaver, burde vi
 - 1 Sette navn på de viktige geometriske størrelsene.
 - 2 Skrive opp størrelsen vi skal optimere.
 - 3 Skrive opp alle ekstra betingelser som formler.

- Dersom et rektangel har omkrets på 400 cm, kan arealet være mye rart.
- Men hva er det største arealet vi kan få?
- For å løse denne typen oppgaver, burde vi
 - 1 Sette navn på de viktige geometriske størrelsene.
 - 2 Skrive opp størrelsen vi skal optimere.
 - 3 Skrive opp alle ekstra betingelser som formler.
 - 4 Skrive om det vi skal optimere så den kun har én variabel, ved hjelp av betingelsene.

- Dersom et rektangel har omkrets på 400 cm, kan arealet være mye rart.
- Men hva er det største arealet vi kan få?
- For å løse denne typen oppgaver, burde vi
 - 1 Sette navn på de viktige geometriske størrelsene.
 - 2 Skrive opp størrelsen vi skal optimere.
 - 3 Skrive opp alle ekstra betingelser som formler.
 - 4 Skrive om det vi skal optimere så den kun har én variabel, ved hjelp av betingelsene.
 - 5 Finne ekstremalpunktene til funksjonen.

- Dersom et rektangel har omkrets på 400 cm, kan arealet være mye rart.
- Men hva er det største arealet vi kan få?
- For å løse denne typen oppgaver, burde vi
 - 1 Sette navn på de viktige geometriske størrelsene.
 - 2 Skrive opp størrelsen vi skal optimere.
 - 3 Skrive opp alle ekstra betingelser som formler.
 - 4 Skrive om det vi skal optimere så den kun har én variabel, ved hjelp av betingelsene.
 - 5 Finne ekstremalpunktene til funksjonen.
- I vårt eksempel kaller vi den ene siden i rektangelet for x og den andre for y.

- Dersom et rektangel har omkrets på 400 cm, kan arealet være mye rart.
- Men hva er det største arealet vi kan få?
- For å løse denne typen oppgaver, burde vi
 - 1 Sette navn på de viktige geometriske størrelsene.
 - 2 Skrive opp størrelsen vi skal optimere.
 - 3 Skrive opp alle ekstra betingelser som formler.
 - 4 Skrive om det vi skal optimere så den kun har én variabel, ved hjelp av betingelsene.
 - 5 Finne ekstremalpunktene til funksjonen.
- I vårt eksempel kaller vi den ene siden i rektangelet for *x* og den andre for *y*.
- Vi skal da optimere arealet, $A = x \cdot y$, under betingelsen

- Dersom et rektangel har omkrets på 400 cm, kan arealet være mye rart.
- Men hva er det største arealet vi kan få?
- For å løse denne typen oppgaver, burde vi
 - 1 Sette navn på de viktige geometriske størrelsene.
 - 2 Skrive opp størrelsen vi skal optimere.
 - 3 Skrive opp alle ekstra betingelser som formler.
 - 4 Skrive om det vi skal optimere så den kun har én variabel, ved hjelp av betingelsene.
 - 5 Finne ekstremalpunktene til funksjonen.
- I vårt eksempel kaller vi den ene siden i rektangelet for *x* og den andre for *y*.
- Vi skal da optimere arealet, $A = x \cdot y$, under betingelsen

$$x + y + x + y = 400$$

- Dersom et rektangel har omkrets på 400 cm, kan arealet være mye rart.
- Men hva er det største arealet vi kan få?
- For å løse denne typen oppgaver, burde vi
 - 1 Sette navn på de viktige geometriske størrelsene.
 - 2 Skrive opp størrelsen vi skal optimere.
 - 3 Skrive opp alle ekstra betingelser som formler.
 - 4 Skrive om det vi skal optimere så den kun har én variabel, ved hjelp av betingelsene.
 - 5 Finne ekstremalpunktene til funksjonen.
- I vårt eksempel kaller vi den ene siden i rektangelet for *x* og den andre for *y*.
- Vi skal da optimere arealet, $A = x \cdot y$, under betingelsen

$$x + y + x + y = 400$$
$$x + y = 200$$

- Dersom et rektangel har omkrets på 400 cm, kan arealet være mye rart.
- Men hva er det største arealet vi kan få?
- For å løse denne typen oppgaver, burde vi
 - 1 Sette navn på de viktige geometriske størrelsene.
 - 2 Skrive opp størrelsen vi skal optimere.
 - 3 Skrive opp alle ekstra betingelser som formler.
 - 4 Skrive om det vi skal optimere så den kun har én variabel, ved hjelp av betingelsene.
 - 5 Finne ekstremalpunktene til funksjonen.
- \blacksquare I vårt eksempel kaller vi den ene siden i rektangelet for x og den andre for y.
- Vi skal da optimere arealet, $A = x \cdot y$, under betingelsen

$$x + y + x + y = 400$$

 $x + y = 200$
 $y = 200 - x$.

Oppgave

Et rektangel har omkrets på 400 cm. Hva er det største arealet den kan ha?

Oppgave

Et rektangel har omkrets på 400 cm. Hva er det største arealet den kan ha?

Vi så på forrige side at om sidene i rektangelet heter x og y, får vi y = 200 - x, fra betingelsen på omkretsen.

Oppgave

Et rektangel har omkrets på 400 cm. Hva er det største arealet den kan ha?

- Vi så på forrige side at om sidene i rektangelet heter x og y, får vi y = 200 x, fra betingelsen på omkretsen.
- Arealet blir da

$$A = x \cdot y = x \cdot (200 - x) = 200x - x^2.$$

Oppgave

Et rektangel har omkrets på 400 cm. Hva er det største arealet den kan ha?

- Vi så på forrige side at om sidene i rektangelet heter x og y, får vi y = 200 x, fra betingelsen på omkretsen.
- Arealet blir da

$$A = x \cdot y = x \cdot (200 - x) = 200x - x^2.$$

Dette er en funksjon av x, så vi kan derivere.

Oppgave

Et rektangel har omkrets på 400 cm. Hva er det største arealet den kan ha?

- Vi så på forrige side at om sidene i rektangelet heter x og y, får vi y = 200 x, fra betingelsen på omkretsen.
- Arealet blir da

$$A = x \cdot y = x \cdot (200 - x) = 200x - x^2.$$

- Dette er en funksjon av x, så vi kan derivere.
- Vi får A'(x) = 200 2x, så A'(x) = 0 gir x = 100.

Oppgave

Et rektangel har omkrets på 400 cm. Hva er det største arealet den kan ha?

- Vi så på forrige side at om sidene i rektangelet heter x og y, får vi y = 200 x, fra betingelsen på omkretsen.
- Arealet blir da

$$A = x \cdot y = x \cdot (200 - x) = 200x - x^2.$$

- Dette er en funksjon av x, så vi kan derivere.
- Vi får A'(x) = 200 2x, så A'(x) = 0 gir x = 100.
- Om x = 100 får vi at arealet blir

$$A(100) = 200 \cdot 100 - 100^2 = 10000.$$

■ I eksempelet på forrige side må vi også sjekke endepunktene.

- I eksempelet på forrige side må vi også sjekke endepunktene.
- Men hva er definisjonsmengden til A(x)?

- I eksempelet på forrige side må vi også sjekke endepunktene.
- Men hva er definisjonsmengden til A(x)?
- Det laveste x kan være, er 0. Vi kan ikke ha negative lengder.

- I eksempelet på forrige side må vi også sjekke endepunktene.
- Men hva er definisjonsmengden til A(x)?
- Det laveste *x* kan være, er 0. Vi kan ikke ha negative lengder.
- Siden y = 200 x kan ikke x være større enn 200

- I eksempelet på forrige side må vi også sjekke endepunktene.
- Men hva er definisjonsmengden til A(x)?
- Det laveste *x* kan være, er 0. Vi kan ikke ha negative lengder.
- Siden y = 200 x kan ikke x være større enn 200
- Da ville y blitt negativ.

- I eksempelet på forrige side må vi også sjekke endepunktene.
- Men hva er definisjonsmengden til A(x)?
- Det laveste *x* kan være, er 0. Vi kan ikke ha negative lengder.
- Siden y = 200 x kan ikke x være større enn 200
- Da ville y blitt negativ.
- Definisjonsmengden til A(x) er derfor [0, 200].

- I eksempelet på forrige side må vi også sjekke endepunktene.
- Men hva er definisjonsmengden til A(x)?
- Det laveste *x* kan være, er 0. Vi kan ikke ha negative lengder.
- Siden y = 200 x kan ikke x være større enn 200
- Da ville y blitt negativ.
- Definisjonsmengden til A(x) er derfor [0, 200].
- Vi kunne diskutert om det burde vært ⟨0,200⟩.

- I eksempelet på forrige side må vi også sjekke endepunktene.
- Men hva er definisjonsmengden til A(x)?
- Det laveste *x* kan være, er 0. Vi kan ikke ha negative lengder.
- Siden y = 200 x kan ikke x være større enn 200
- Da ville y blitt negativ.
- Definisjonsmengden til A(x) er derfor [0, 200].
- Vi kunne diskutert om det burde vært ⟨0,200⟩.
- Er en rett strek et rektangel hvor den ene siden har lengde 0?

- I eksempelet på forrige side må vi også sjekke endepunktene.
- Men hva er definisjonsmengden til A(x)?
- Det laveste *x* kan være, er 0. Vi kan ikke ha negative lengder.
- Siden y = 200 x kan ikke x være større enn 200
- Da ville y blitt negativ.
- Definisjonsmengden til A(x) er derfor [0, 200].
- Vi kunne diskutert om det burde vært ⟨0,200⟩.
- Er en rett strek et rektangel hvor den ene siden har lengde 0?
- Uansett kan vi sette inn endepunktene og finne ut at arealet da blir 0.

- I eksempelet på forrige side må vi også sjekke endepunktene.
- Men hva er definisjonsmengden til A(x)?
- Det laveste *x* kan være, er 0. Vi kan ikke ha negative lengder.
- Siden y = 200 x kan ikke x være større enn 200
- Da ville y blitt negativ.
- Definisjonsmengden til A(x) er derfor [0, 200].
- Vi kunne diskutert om det burde vært ⟨0,200⟩.
- Er en rett strek et rektangel hvor den ene siden har lengde 0?
- Uansett kan vi sette inn endepunktene og finne ut at arealet da blir 0.
- Så x = 100 gir fremdeles det største arealet.

Oppgave

En bonde har 30 m langt gjerde, og skal spenne opp et rektangulært område langs en låvevegg. Hva er det største mulige arealet?

Oppgave

En bonde har 30 m langt gjerde, og skal spenne opp et rektangulært område langs en låvevegg. Hva er det største mulige arealet?

Vi har tegnet situasjonen til venstre, og gitt navn til sidene.

Oppgave

En bonde har 30 m langt gjerde, og skal spenne opp et rektangulært område langs en låvevegg. Hva er det største mulige arealet?

- Vi har tegnet situasjonen til venstre, og gitt navn til sidene.
- Vi skal maksimere $x \cdot y$, og vi har at x + y + x = 30.

Oppgave

En bonde har 30 m langt gjerde, og skal spenne opp et rektangulært område langs en låvevegg. Hva er det største mulige arealet?

- Vi har tegnet situasjonen til venstre, og gitt navn til sidene.
- Vi skal maksimere $x \cdot y$, og vi har at x + y + x = 30.
- Det gir oss y = 30 2x og $A(x) = x \cdot (30 2x) = 30x 2x^2$.

Oppgave

En bonde har 30 m langt gjerde, og skal spenne opp et rektangulært område langs en låvevegg. Hva er det største mulige arealet?

- Vi har tegnet situasjonen til venstre, og gitt navn til sidene.
- Vi skal maksimere $x \cdot y$, og vi har at x + y + x = 30.
- Det gir oss y = 30 2x og $A(x) = x \cdot (30 2x) = 30x 2x^2$.
 - Definisjonsmengden blir [0, 15].

■ Vi skal maksimere $A(x) = 30x - 2x^2$.

- Vi skal maksimere $A(x) = 30x 2x^2$.
- Vi deriverer og får A'(x) = 30 4x.

- Vi skal maksimere $A(x) = 30x 2x^2$.
- Vi deriverer og får A'(x) = 30 4x.
- Vi løser den deriverte lik null, og får

$$30 - 4x = 0 \iff x = 7,5.$$

- Vi skal maksimere $A(x) = 30x 2x^2$.
- Vi deriverer og får A'(x) = 30 4x.
- Vi løser den deriverte lik null, og får

$$30 - 4x = 0 \iff x = 7,5.$$

■ Våre mulige toppunkt er derfor x = 0, x = 7.5, og x = 15.

- Vi skal maksimere $A(x) = 30x 2x^2$.
- Vi deriverer og får A'(x) = 30 4x.
- Vi løser den deriverte lik null, og får

$$30 - 4x = 0 \iff x = 7,5.$$

- Våre mulige toppunkt er derfor x = 0, x = 7.5, og x = 15.
- Vi får

$$A(0) = 0,$$
 $A(7,5) = 112,5,$ $A(15) = 0.$

- Vi skal maksimere $A(x) = 30x 2x^2$.
- Vi deriverer og får A'(x) = 30 4x.
- Vi løser den deriverte lik null, og får

$$30 - 4x = 0 \iff x = 7,5.$$

- Våre mulige toppunkt er derfor x = 0, x = 7.5, og x = 15.
- Vi får

$$A(0) = 0,$$
 $A(7,5) = 112,5,$ $A(15) = 0.$

Det maksimale arealet er derfor når x = 7.5, og gir et areal på 112,5 m².

Vi skal klippe ut kvadratiske biter av et A4-ark, og brette resten til en boks. Se figur.

- Vi skal klippe ut kvadratiske biter av et A4-ark, og brette resten til en boks. Se figur.
- Hva er det største volumet vi kan få?

- Vi skal klippe ut kvadratiske biter av et A4-ark, og brette resten til en boks. Se figur.
- Hva er det største volumet vi kan få?
- Vi kaller høyden, lengden og bredden av boksen for *x*, *y*, og *z*.

- Vi skal klippe ut kvadratiske biter av et A4-ark, og brette resten til en boks. Se figur.
- Hva er det største volumet vi kan få?
- Vi kaller høyden, lengden og bredden av boksen for x, y, og z.
- Vi skal da maksimere $V = x \cdot y \cdot z$.

- Vi skal klippe ut kvadratiske biter av et A4-ark, og brette resten til en boks. Se figur.
- Hva er det største volumet vi kan få?
- Vi kaller høyden, lengden og bredden av boksen for x, y, og z.
- Vi skal da maksimere $V = x \cdot y \cdot z$.
- Vi ser fra figuren at y = 2,97 2x og z = 2,10 2x.

- Vi skal klippe ut kvadratiske biter av et A4-ark, og brette resten til en boks. Se figur.
- Hva er det største volumet vi kan få?
- Vi kaller høyden, lengden og bredden av boksen for x, y, og z.
- Vi skal da maksimere $V = x \cdot y \cdot z$.
- Vi ser fra figuren at y = 2,97 2x og z = 2,10 2x.
- Vi får derfor

$$V(x) = x \cdot (2,97 - 2x) \cdot (2,10 - 2x)$$
$$= 4x^3 - 10,14x^2 + 6,237x.$$

■ Vi har funnet ut at vi skal maksimere $V(x) = 4x^3 - 10,14x^2 + 6,237x$.

- Vi har funnet ut at vi skal maksimere $V(x) = 4x^3 10,14x^2 + 6,237x$.
- Definisjonsmengden er [0, 1,05].

- Vi har funnet ut at vi skal maksimere $V(x) = 4x^3 10,14x^2 + 6,237x$.
- Definisjonsmengden er [0, 1,05].
- Vi deriverer V og får

$$V'(x) = 12x^2 - 20,28x + 6,237.$$

- Vi har funnet ut at vi skal maksimere $V(x) = 4x^3 10,14x^2 + 6,237x$.
- Definisjonsmengden er [0, 1,05].
- Vi deriverer V og får

$$V'(x) = 12x^2 - 20,28x + 6,237.$$

Løser vi V'(x) = 0 får vi x = 0,4042 og x = 1,2858.

- Vi har funnet ut at vi skal maksimere $V(x) = 4x^3 10,14x^2 + 6,237x$.
- Definisjonsmengden er [0, 1,05].
- Vi deriverer V og får

$$V'(x) = 12x^2 - 20,28x + 6,237.$$

- Løser vi V'(x) = 0 får vi x = 0.4042 og x = 1.2858.
- Siden 1,2858 er utenfor definisjonsmengden, får vi at de mulige toppunktene er x = 0, x = 0,4042 og x = 1,05.

- Vi har funnet ut at vi skal maksimere $V(x) = 4x^3 10,14x^2 + 6,237x$.
- Definisjonsmengden er [0, 1,05].
- Vi deriverer V og får

$$V'(x) = 12x^2 - 20,28x + 6,237.$$

- Løser vi V'(x) = 0 får vi x = 0.4042 og x = 1.2858.
- Siden 1,2858 er utenfor definisjonsmengden, får vi at de mulige toppunktene er x = 0, x = 0,4042 og x = 1,05.
- Vi får

$$V(0) = 0,$$
 $V(0,4042) = 1,128,$ $V(1,05) = 0.$

- Vi har funnet ut at vi skal maksimere $V(x) = 4x^3 10{,}14x^2 + 6{,}237x$.
- Definisjonsmengden er [0, 1,05].
- Vi deriverer V og får

$$V'(x) = 12x^2 - 20,28x + 6,237.$$

- Løser vi V'(x) = 0 får vi x = 0.4042 og x = 1.2858.
- Siden 1,2858 er utenfor definisjonsmengden, får vi at de mulige toppunktene er x = 0, x = 0.4042 og x = 1.05.
- Vi får

$$V(0) = 0,$$
 $V(0,4042) = 1,128,$ $V(1,05) = 0.$

Det største volumet får vi derfor ved å klippe ut kvadrater med sidekanter 4,042 cm, og da får vi et volum på 1,128 dm³ = 1,128 L.

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET