

Data Mining Association Analysis

马锦华

数据科学与计算机学院 中山大学

Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items	
1	Bread, Milk	
2	Bread, Diaper, Beer, Eggs	
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	
5	Bread, Milk, Diaper, Coke	

Example of Association Rules

```
{Diaper} \rightarrow {Beer},
{Milk, Bread} \rightarrow {Eggs,Coke},
{Beer, Bread} \rightarrow {Milk},
```

Implication means co-occurrence, not causality!

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

•	Support count	(o)	
---	---------------	------------------	--

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. $s(\{Milk, Bread, Diaper\}) = 2/5$

Frequent Itemset

 An itemset whose support is greater than or equal to a minsup threshold

TID	Items	
1	Bread, Milk	
2	Bread, Diaper, Beer, Eggs	
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	
5	Bread, Milk, Diaper, Coke	

Definition: Association Rule

Association Rule

- An implication expression of the form X → Y, where X and Y are itemsets
- Example:{Milk, Diaper} → {Beer}

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items	
1	Bread, Milk	
2	Bread, Diaper, Beer, Eggs	
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	
5	Bread, Milk, Diaper, Coke	

Example:

 $\{Milk, Diaper\} \Rightarrow \{Beer\}$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

Computational Complexity

- Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of possible association rules:

$$R = \sum_{k=1}^{d} \begin{bmatrix} d \\ k \end{bmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{bmatrix}$$
$$= 3^{d} - 2^{d+1} + 1$$

If
$$d=6$$
, $R=602$ rules

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)
{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)
{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)
{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)
{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)
{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup

2. Rule Generation

Generate high confidence rules from each frequent itemset,
 where each rule is a binary partitioning of a frequent itemset

Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database Transactions

 List of

	TID	Items	Candidates	
	1	Bread, Milk		A
Τ	2	Bread, Diaper, Beer, Eggs		
Ň	3	Milk, Diaper, Beer, Coke		M
1	4	Bread, Milk, Diaper, Beer		
\downarrow	5	Bread, Milk, Diaper, Coke		V
•		── W ──	•	

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \geq s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

TID	Items	
1	Bread, Diaper, Milk	
2	Beer, Bread, Diaper, Eggs	
3	Beer, Coke, Diaper, Milk	
4	Beer, Bread, Diaper, Milk	
5	Bread, Coke, Diaper, Milk	

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	5
Eggs	1

If every subset is considered,
$${}^6C_1 + {}^6C_2 + {}^6C_3$$

 $6 + 15 + 20 = 41$
With support-based pruning, $6 + 6 + 4 = 16$

TID	Items	
1	Bread, Diaper, Milk	
2	Beer, Bread, Diaper, Eggs	
3	Beer, Coke, Diaper, Milk	
4	Beer, Bread, Diaper, Milk	
5	Bread, Coke, Diaper, Milk	

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	5
Eggs	1

If every subset is considered,

$${}^6C_1 + {}^6C_2 + {}^6C_3$$

 $6 + 15 + 20 = 41$
With support-based pruning,
 $6 + 6 + 4 = 16$

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset
{Bread,Milk}
{Bread, Beer }
{Bread,Diaper}
{Beer, Milk}
{Diaper, Milk}
{Beer,Diaper}

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

If every subset is considered,

$${}^6C_1 + {}^6C_2 + {}^6C_3$$

 $6 + 15 + 20 = 41$
With support-based pruning,
 $6 + 6 + 4 = 16$

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Beer, Bread}	2
{Bread,Diaper}	4
{Beer,Milk}	2
{Diaper,Milk}	4
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

If every subset is considered,

$${}^6C_1 + {}^6C_2 + {}^6C_3$$

 $6 + 15 + 20 = 41$
With support-based pruning,
 $6 + 6 + 4 = 16$

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	4
{Milk,Beer}	2
{Milk,Diaper}	4
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Itemset	Triplets (3-itemsets)
{ Beer, Diaper, Milk} { Beer,Bread,Diaper}	,
{Bread, Diaper, Milk} { Beer, Bread, Milk}	

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

Itemset	Count
{ Beer, Diaper, Milk}	2
{ Beer,Bread, Diaper}	2
{Bread, Diaper, Milk}	3
{Beer, Bread, Milk}	1

Apriori Algorithm

- F_k: frequent k-itemsets
- L_k: candidate k-itemsets

Algorithm

- Let k=1
- Generate F₁ = {frequent 1-itemsets}
- Repeat until F_k is empty
 - Candidate Generation: Generate L_{k+1} from F_k
 - Candidate Pruning: Prune candidate itemsets in L_{k+1} containing subsets of length k that are infrequent
 - Support Counting: Count the support of each candidate in L_{k+1} by scanning the DB
 - Candidate Elimination: Eliminate candidates in L_{k+1} that are infrequent, leaving only those that are frequent => F_{k+1}

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L – f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

```
ABC \rightarrowD, ABD \rightarrowC, ACD \rightarrowB, BCD \rightarrowA, A \rightarrowBCD, B \rightarrowACD, C \rightarrowABD, D \rightarrowABC AB \rightarrowCD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrowAD, BD \rightarrowAC, CD \rightarrowAB,
```

If |L| = k, then there are 2^k – 2 candidate association rules (ignoring L → Ø and Ø → L)

Rule Generation

- In general, confidence does not have an antimonotone property
 - $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$
- But confidence of rules generated from the same itemset has an anti-monotone property
 - E.g., Suppose {A,B,C,D} is a frequent 4-itemset:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

 Confidence is anti-monotone w.r.t. number of items on the right hand side of the rule

Rule Generation for Apriori Algorithm

Factors Affecting Complexity of Apriori

- Choice of minimum support threshold
 - Lowering support threshold results in more frequent itemsets
 - This may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - More space is needed to store support count of each item
 - If number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - Since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - Transaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

Maximal Frequent Itemset

An itemset is maximal frequent if it is frequent and none of its immediate supersets is frequent

An illustrative example

Items

	Α	В	С	D	Е	F	G	Н	1	J
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

Support threshold (by count): 5
Frequent itemsets: {F}

An illustrative example

Items

	Α	В	С	D	Е	F	G	Н	1	J
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

Support threshold (by count): 5
Frequent itemsets: {F}

Support threshold (by count): 4 Frequent itemsets: {E}, {F}, {E,F}, {J}

An illustrative example

	Α	В	С	D	Е	F	G	Н	1	J
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

Support threshold (by count): 5
Frequent itemsets: {F}

Support threshold (by count): 4 Frequent itemsets: {E}, {F}, {E,F}, {J}

Support threshold (by count): 3 Frequent itemsets:

All subsets of {C,D,E,F} + {J}

An illustrative example

	Α	В	С	D	Е	F	G	Н	1	J
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

Support threshold (by count): 5

Frequent itemsets: {F} Maximal itemsets: ?

Support threshold (by count): 4

Frequent itemsets: {E}, {F}, {E,F}, {J}

Maximal itemsets: ?

Support threshold (by count): 3

Frequent itemsets:

All subsets of $\{C,D,E,F\} + \{J\}$

Maximal itemsets: ?

An illustrative example

	Α	В	С	D	Е	F	G	Н	1	J
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

Support threshold (by count): 5

Frequent itemsets: {F} Maximal itemsets: {F}

Support threshold (by count): 4

Frequent itemsets: {E}, {F}, {E,F}, {J}

Maximal itemsets: ?

Support threshold (by count): 3

Frequent itemsets:

All subsets of {C,D,E,F} + {J}

Maximal itemsets: ?

An illustrative example

	Α	В	С	D	Е	F	G	н	1	J
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

Support threshold (by count): 5

Frequent itemsets: {F} Maximal itemsets: {F}

Support threshold (by count): 4

Frequent itemsets: {E}, {F}, {E,F}, {J}

Maximal itemsets: {E,F}, {J}

Support threshold (by count): 3

Frequent itemsets:

All subsets of $\{C,D,E,F\} + \{J\}$

Maximal itemsets: ?

An illustrative example

	Α	В	С	D	Е	F	G	Н	1	J
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

Support threshold (by count): 5

Frequent itemsets: {F} Maximal itemsets: {F}

Support threshold (by count): 4

Frequent itemsets: {E}, {F}, {E,F}, {J}

Maximal itemsets: {E,F}, {J}

Support threshold (by count): 3

Frequent itemsets:

All subsets of $\{C,D,E,F\} + \{J\}$

Maximal itemsets:

 $\{C,D,E,F\},\{J\}$

Another illustrative example

Items

	Α	В	С	D	E	F	G	Н	1	J
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

Support threshold (by count): 5
Maximal itemsets: {A}, {B}, {C}

Support threshold (by count): 4 Maximal itemsets: {A,B}, {A,C},{B,C}

Support threshold (by count): 3
Maximal itemsets: {A,B,C}

Closed Itemset

- An itemset X is closed if none of its immediate supersets has the same support as the itemset X.
- X is not closed if at least one of its immediate supersets has support count as X.

TID	Items				
1	{A,B}				
2	$\{B,C,D\}$				
3	$\{A,B,C,D\}$				
4	$\{A,B,D\}$				
5	$\{A,B,C,D\}$				

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support
$\{A,B,C\}$	2
$\{A,B,D\}$	3
$\{A,C,D\}$	2
$\{B,C,D\}$	2
$\{A,B,C,D\}$	2

Maximal vs Closed Itemsets

Maximal vs Closed Frequent Itemsets

Example 1

Items

	Α	В	С	D	Е	F	G	Н	1	J
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

Itemsets	Support (counts)	Closed itemsets
{C}	3	
{D}	2	
{C,D}	2	

Example 1

Items

	Α	В	С	D	Е	F	G	Н	1	J
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

Itemsets	Support (counts)	Closed itemsets
{C}	3	✓
{D}	2	
{C,D}	2	✓

Example 2

Items

	Α	В	С	D	Е	F	G	н	1	J
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

Itemsets	Support (counts)	Closed itemsets
{C}	3	
{D}	2	
{E}	2	
{C,D}	2	
{C,E}	2	
{D,E}	2	
{C,D,E}	2	

Example 2

Items

	Α	В	С	D	Е	F	G	н	1	J
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

Itemsets	Support (counts)	Closed itemsets
{C}	3	✓
{D}	2	
{E}	2	
{C,D}	2	
{C,E}	2	
{D,E}	2	
{C,D,E}	2	✓

Example 3

Items

	Α	В	С	D	Е	F	G	Н	1	J
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

Closed itemsets: {C,D,E,F}, {C,F}

Example 4

Items

		Α	В	С	D	Е	F	G	Н	1	J
	1										
	2										
	3										
Suc	4										
sactic	5										
Transactions	6										
•	7										
	8										
	9										
	10										

Closed itemsets: {C,D,E,F}, {C}, {F}

Maximal vs Closed Itemsets

 Given the following transaction data sets (dark cells indicate presence of an item in a transaction) and a support threshold of 20%, answer the following questions

a. What is the number of frequent itemsets for each dataset? Which dataset will produce the most number of frequent itemsets?

 Given the following transaction data sets (dark cells indicate presence of an item in a transaction) and a support threshold of 20%, answer the following questions

- b. Which dataset will produce the longest frequent itemset?
- c. Which dataset will produce frequent itemsets with highest maximum support?

 Given the following transaction data sets (dark cells indicate presence of an item in a transaction) and a support threshold of 20%, answer the following questions

d. Which dataset will produce frequent itemsets containing items with widely varying support levels (i.e., itemsets containing items with mixed support, ranging from 20% to more than 70%)?

 Given the following transaction data sets (dark cells indicate presence of an item in a transaction) and a support threshold of 20%, answer the following questions

e. What is the number of maximal frequent itemsets for each dataset? Which dataset will produce the most number of maximal frequent itemsets?

 Given the following transaction data sets (dark cells indicate presence of an item in a transaction) and a support threshold of 20%, answer the following questions

e. What is the number of closed frequent itemsets for each dataset? Which dataset will produce the most number of closed frequent itemsets?

Pattern Evaluation

 Association rule algorithms can produce large number of rules

- Interestingness measures can be used to prune/rank the patterns
 - In the original formulation, support & confidence are the only measures used

Computing Interestingness Measure

 Given X → Y or {X,Y}, information needed to compute interestingness can be obtained from a contingency table

Contingency table

	Υ	Y	
X	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	N

 f_{11} : support of X and Y

 f_{10} : support of X and \overline{Y}

 f_{01} : support of \underline{X} and \underline{Y}

f₀₀: support of X and Y

Used to define various measures

 support, confidence, Gini, entropy, etc.

Drawback of Confidence

Custo mers	Tea	Coffee	•••
C1	0	1	
C2	1	0	•••
C3	1	1	
C4	1	0	•••

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence \cong P(Coffee|Tea) = 15/20 = 0.75

Confidence > 50%, meaning people who drink tea are more likely to drink coffee than not drink coffee

So rule seems reasonable

Drawback of Confidence

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 15/20 = 0.75

but P(Coffee) = 0.9, which means knowing that a person drinks tea reduces the probability that the person drinks coffee!

 \Rightarrow Note that P(Coffee|Tea) = 75/80 = 0.9375

Measure for Association Rules

- So, what kind of rules do we really want?
 - -Confidence($X \rightarrow Y$) should be sufficiently high
 - To ensure that people who buy X will more likely buy Y than not buy Y
 - -Confidence($X \rightarrow Y$) > support(Y)
 - Otherwise, rule will be misleading because having item X actually reduces the chance of having item Y in the same transaction
 - Is there any measure that capture this constraint?
 - + Answer: Yes. There are many of them.

Statistical Independence

 The criterion confidence(X → Y) = support(Y)

is equivalent to:

$$-P(Y|X) = P(Y)$$

$$-P(X,Y) = P(X) \times P(Y)$$

If $P(X,Y) > P(X) \times P(Y) : X \& Y$ are positively correlated

If $P(X,Y) < P(X) \times P(Y) : X \& Y$ are negatively correlated

Measures that take into account statistical dependence

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$

$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

lift is used for rules while interest is used for itemsets

$$PS = P(X,Y) - P(X)P(Y)$$

$$\phi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

Example: Lift/Interest

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence = P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 \Rightarrow Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

So, is it enough to use confidence/lift for pruning?

Lift or Interest

	Υ	Y	
X	10	0	10
X	0	90	90
	10	90	100

	Υ	Y	
X	90	0	90
X	0	10	10
	90	10	100

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10$$

$$Lift = \frac{0.9}{(0.9)(0.9)} = 1.11$$

Statistical independence:

If
$$P(X,Y)=P(X)P(Y) => Lift = 1$$

There are lots of measures proposed in the literature

7	# Measure	Formula
		$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
:	2 Goodman-Kruskal's (λ)	$\frac{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
;	Odds ratio (α)	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$
4	Yule's Q	$\frac{\frac{P(A,B)P(\overline{AB})-P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB})+P(A,\overline{B})P(\overline{A},B)}}{\frac{\alpha-1}{\alpha+1}} = \frac{\alpha-1}{\alpha+1}$
	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$
•	Kappa (κ)	$\frac{P(A,B)+P(A,B)-P(A)P(B)-P(A)P(B)}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}$
;	Mutual Information (M)	$\frac{\sum_{i} \sum_{j} P(A_i, B_j) \log \frac{P(A_i, B_j)}{P(A_i)P(B_j)}}{\min(-\sum_{i} P(A_i) \log P(A_i), -\sum_{j} P(B_j) \log P(B_j))}$
1	J-Measure (J)	$\max\left(P(A,B)\log(rac{P(B A)}{P(B)}) + P(A\overline{B})\log(rac{P(B A)}{P(\overline{B})}), ight)$
		$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(\overline{A})})$
	Gini index (G)	$= \max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \right)$
		$-P(B)^2-P(\overline{B})^2,$
		$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
		$-P(A)^2-P(\overline{A})^2\Big)$
1	0 Support (s)	P(A,B)
1	1 Confidence (c)	$\max(P(B A), P(A B))$
1	2 Laplace (L)	$\max\left(rac{NP(A,B)+1}{NP(A)+2},rac{NP(A,B)+1}{NP(B)+2} ight)$
1	3 Conviction (V)	$\max\left(rac{P(A)P(\overline{B})}{P(A\overline{B})},rac{P(B)P(\overline{A})}{P(B\overline{A})} ight)$
1	4 Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
1	5 cosine (IS)	$\frac{\frac{P(A,B)}{P(A)P(B)}}{\frac{P(A,B)}{\sqrt{P(A)P(B)}}}$
1	6 Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
1	7 Certainty factor (F)	$\max\left(rac{P(B A)-P(B)}{1-P(B)},rac{P(A B)-P(A)}{1-P(A)} ight)$
1	8 Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
1	9 Collective strength (S)	$\frac{\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})}}{\frac{P(A,B)}{P(A)+P(B)-P(A,B)}} \times \frac{\frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}}{\frac{P(A,B)}{P(A)+P(B)-P(A,B)}}$
2	0 Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
2	1 Klosgen (K)	$\sqrt{P(A,B)} \max(P(B A) - P(B), P(A B) - P(A))$

Property under Variable Permutation

	В	$\overline{\mathbf{B}}$
A	p	q
$\overline{\mathbf{A}}$	r	S

	A	$\overline{\mathbf{A}}$
В	p	r
$\overline{\mathbf{B}}$	q	S

Does M(A,B) = M(B,A)?

Symmetric measures:

support, lift, collective strength, cosine, Jaccard, etc

Asymmetric measures:

confidence, conviction, Laplace, J-measure, etc

Property under Row/Column Scaling

Grade-Gender Example (Mosteller, 1968):

	Female	Male	
High	2	3	5
Low	1	4	5
	3	7	10

	Female	Male	
High	4	30	34
Low	2	40	42
	6	70	76

Mosteller:

Underlying association should be independent of the relative number of male and female students in the samples

Property under Inversion Operation

Example: φ-Coefficient

 φ-coefficient is analogous to correlation coefficient for continuous variables

	Υ	Y	
Х	60	10	70
X	10	20	30
	70	30	100

	Υ	Y	
X	20	10	30
X	10	60	70
	30	70	100

$$\phi = \frac{0.6 - 0.7 \times 0.7}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}} \qquad \phi = \frac{0.2 - 0.3 \times 0.3}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}}$$
$$= 0.5238 \qquad = 0.5238$$

Property under Null Addition

	В	$\overline{\mathbf{B}}$			В	$\overline{\mathbf{B}}$
A	p	q		A	р	q
$\overline{\mathbf{A}}$	r	S	/	$\overline{\mathbf{A}}$	r	s + k

Invariant measures:

support, cosine, Jaccard, etc

Non-invariant measures:

correlation, Gini, mutual information, odds ratio, etc

Different Measures have Different Properties

Symbol	Measure	Inversion	Null Addition	Scaling
ϕ	ϕ -coefficient	Yes	No	No
α	odds ratio	Yes	No	Yes
κ	Cohen's	Yes	No	No
I	Interest	No	No	No
IS	Cosine	No	Yes	No
PS	Piatetsky-Shapiro's	Yes	No	No
S	Collective strength	Yes	No	No
ζ	Jaccard	No	Yes	No
h	All-confidence	No	No	No
s	$\operatorname{Support}$	No	No	No

References

 P.-N. Tan, M. Steinbach, V. Kumar: Introduction to data mining, Second Edition, https://www-users.cs.umn.edu/~kumar001/dmbook/index.php