CS60010: Deep Learning Spring 2021

Sudeshna Sarkar

Regularization Continued
15 Feb 2021

Solutions for Overfitting

- Regularization
 - L1-norm penalty
 - L2-norm penalty
- Data Augmentation
- Dropout (2012)
 - A method of bagging applied to neural networks
 - An inexpensive but powerful method of regularizing a broad family of models
- Batch Normalization (2015)

InfoLab 2

Research in Dropout

- First proposed by G.E. Hinton (2012)
- Became popular by AlexNet (2012)
 - Winner in ILSVRC-2012 (ImageNet challenge)
 - AlexNet outperforms the other models at most 2x
 - CNN model with ReLU, Dropout, Data augmentation, GPU
 - Applied the dropout at Full-Connected layer
- Reinforced by S. Nitish (2014)
 - Strengthen the theoretical background, extend to convolutional layer

Dropout

 Training with dropout consists of training sub-networks that can be formed by removing non-output units from an underlying base network

Forces the network to have a redundant representation.

Dropout

During training

- For each data point
- Randomly set input to 0 with probability 0.5 (or p) – dropout ratio

Training

- During training
 - For each data point
 - Randomly set input to 0 with probability 0.5 "dropout ratio".
- During testing
 - Halve weights
 - No dropout

- During training
 - For each data point
 - Randomly set input to 0
 with probability p "dropout
 ratio".
- During testing
 - Multiply weights by 1 p
 - No dropout

- During training
 - For each data point
 - Randomly set input to 0 with probability p "dropout ratio".
- During testing
 - Multiply data by 1 p
 - No dropout

- During training
 - For each data point
 - Randomly set input to 0 with probability p "dropout ratio".
- During testing
 - Multiply data by 1 p
 - No dropout

- During training
 - For each data point
 - Randomly set input to 0
 with probability p "dropout
 ratio".
- During testing
 - Multiply data by 1 p
 - No dropout

Dropout on MLP

Without dropout

With dropout

Dropout

- Bagging with shared weights
 - Exponentially many architectures

(a) Standard Neural Net

(b) After applying dropout.

Bagging: reduces generalization error through combining several models

- Train k different models on k different subsets of training data
- Have all of the models vote on the output for test examples

DropConnect

A generalization of Dropout

- Dropout omit the all connections which related to the unit
- DropConnect only omit the connections and leave the unit alive

InfoLab 17

- A Difficulty in Training Deep Neural Networks
 - A deep model involves composition of several functions

- Distribution of inputs to a layer is changing during training
- Harder to train: smaller learning rate, careful initialization
- Easier if distribution of inputs stayed same
- How to enforce same distribution?

- Batch normalization (batch norm) is a method used to make neural networks faster and more stable through normalization of the input layer by re-centering and re-scaling.
- Consider a batch of activations at some layer. To make each dimension unit gaussian, apply:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Where to insert, i.e. **before** or after non-linearities?

Differing opinions on this: different options have worked in different models.

Usually inserted after Fully Connected / (or Convolutional) layers, and before nonlinearity.

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Normalize:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

And then allow the network to squash the range if it wants to:

$$y^{(k)} = \gamma^{(k)}\widehat{x}^{(k)} + \beta^{(k)}$$

Note, the network can learn:

$$\gamma^{(k)} = \sqrt{\operatorname{Var}[x^{(k)}]}$$

$$\beta^{(k)} = \mathbf{E}[x^{(k)}]$$

to recover the identity mapping.

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$ // scale and shift

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i)$$
 // scale and shift

Note: at test time BatchNorm layer functions differently:

The mean/std are not computed based on the batch. Instead, a single fixed empirical mean of activations during training is used.

(e.g. can be estimated during training with running averages)

[loffe and Szegedy, 2015]

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_n^2 + \epsilon}}$$
 // normalize

$$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i)$$
 // scale and shift

 Improves gradient flow through the network

- Allows higher learning rates
- Reduces the strong dependence on initialization
- Acts as a form of regularization in a funny way, and slightly reduces the need for dropout, maybe