Exercise 5.1

- (a)
- (b)

Exercise 5.2

- (a)
- (b)

Exercise 5.3

Exercise 5.4

- (a) Let R be a total order over an arbitrary set S and let $x, y \in S$. If x = y, then the statements xRy and yRx are the same statements and thus count as only one statement. If $x \neq y$, then we have, because partial relations are antisymmetric, that if $xRy \in R$, then $yRx \notin R$ and vice versa. Therefore, either $xRy \in R$ xor $yRx \in R$ is true.
- (b) I will disprove this statement by a counterexample. Let $S = \{a, b\}$. The only strict orders over S which exist are $R_1 = \{(a, b)\}$, $R_2 = \{(b, a)\}$. Let's look at the strict order R_1 . Here a is minimal, since there is no $y \in R_1$ with yR_1a . The element a is not maximal, since there exists $y \in R_1$ with aR_1y which is y = b. An analogous argument can be made for R_2 . Therefore, there does not exist a strict order over S where all $x \in S$ are both minimal and maximal. Thus the statement is false.

Exercise 5.5

- (a)
- (b)
- (c)
- (d)
- (e)
- (f)