Wilson's Theorem:

Let p be a prime number. Then,

 $(p-1)!\equiv -1 \pmod{p}$.

Proof: The theorem is clear for p=2,3.

Assume that $p \ge 5$.

For each $a \in \mathbb{Z}$ such that $1 \le a \le p-1$,

There exists $a \in \mathbb{Z}, 1 \le a \le p-1$ such that

a $\overline{a} \equiv 1 \mod p \dots (1)$

Further, $a=\overline{a}$ if, and only if, a=1 or a=p-1.

Note that, for $1 \le b \le p-1$,

 $b^2 \equiv 1 \pmod{p}$ if, and only if, b=1 or b=p-1.

Pairing a and \overline{a} in the product below and using(1),We have

$$(p-1)!=1\times (p-1)(\prod_{9=2}^{P-2} j) \equiv -1 \pmod{p}.$$

Theorem: The quadralic congruence

$$x^2 \equiv -1 \pmod{p}, ----(1)$$

p a prime, has a solution if, and only if, p=2 or $p \equiv 1 \pmod{4}$.

Proof: If p=2,then x=1 is a solution.

So, let p be odd. then,

$$-1 \equiv (\mathbf{p}-1)! = \left(1 \dots \frac{p_{-1}}{2}\right) \left(\frac{P+1}{2} \dots (P-1)\right)$$

$$= \prod_{j=1}^{(p_{-1})/2} j(p-j)$$

$$= (-1)^{(\mathbf{p}-1)/2} \prod_{j=1}^{(p_{-1})/2} j^2 \pmod{p}.$$

So, if
$$x = 1.... \left(\frac{p-1}{2}\right) x^2 \equiv -1 \pmod{p}$$
.

Thus, if $p \equiv 1 \pmod{4}$, then x is a solution to the equation(1).

On the other hand, if $Y \in \mathbb{Z}$ is a solution to (1), Then
$$Y^2 \equiv -1 \pmod{p}$$
 and $p+y$. Raising it to the power of $\frac{(p-1)}{2}$,
$$(Y^2)^{\frac{-1}{2}} \equiv (-1)^{\frac{-1}{2}} \pmod{p}.$$
 Applying Fermat's last theorem to the left hand side, We get,
$$P^{-1} = 1 \equiv (-1)^{\frac{-1}{2}} \pmod{p}.$$
 So, $p \equiv 1 \pmod{4}$.

Theorem:

Let p be a prime such that

$$p \equiv 1 \pmod{4}$$
.

Then, $p=a^2+b^2$ for some integers a and b.

Proof: Since $p \equiv 1 \pmod{4}$, there

exists an integer x such that

$$x^2 \equiv -1 \pmod{4}$$

Let k be the largest integer less than \sqrt{p} .

There, $k < \sqrt{p} < k+1$. Define

$$A=[0,k+1]\times[0,k+1]\cap\mathbb{Z}\times\mathbb{Z}$$

And $F:A \rightarrow \mathbb{Z}p$

By $f(u,v) = u+x \ v(mod \ p)$.

Then,p<|A|.So,there exist distinct elements (u_1,v_1) (u_2,v_2) in A, Such that $f(u_1,v_1) = f(u_2,v_2) \pmod{p}$. Let $a = u_1 - u_2$ and $b = v_1 - v_2$. Then $a \equiv -x b \pmod{p}$. So, $\mathbf{a}^2 \equiv \mathbf{x}^2 \, \mathbf{b}^2 \equiv -\mathbf{b}^2 \pmod{\mathbf{p}}$. Thus, p $| (a^2+b^2)----(i) |$ Since $0 \le m \le k$ and $u_2 \ge 0$, $0 \le a^2 < p$. Similarly, $0 \le b^2 \le p$. Further, either a or b in non zero. So, $O < a^2 + b^2 < 2p - (ii)$ Now (i) and (ii) implies that $p=a^2+b^2$.

Theorem:(Fermat)

Let p be a prime, $p \equiv 3 \pmod{4}$, and $a,b \in \mathbb{Z}$ such that $a^2+b^2 \equiv 0 \pmod{p}$. Then,p divides both a and b. **Proof:** We show that, if p does not divide a as well as b,then $p \equiv 1 \pmod{4}$. Since (a,p)=1 and (b,p)=1, there exist integers a_1 and b_1 such that $a a_1 \equiv 1 \pmod{p}$ and $bb_1 \equiv 1 \pmod{p}$. So, $1 \equiv (a \ a_1) \equiv - (b \ \overline{a})^2 \pmod{p}$ because, $a^2 \equiv -b^2 \pmod{p}$.

Consequently, $x^2 \equiv -1 \pmod{p}$ has a solution. But by theorem,

 $p \equiv 1 \pmod{4}$, a contradiction to the hypothesis.

So, p divides either a or b.

But since p divides a^2+b^2 ,

P divides both a and b.

Theorem (Fermat)

Let $n \in \mathbb{Z}$, n>0 and

$$\mathbf{n} = 2^{\mathbf{a}} \left(\prod_{i=1}^{r} p_{\mathbf{i}}^{b_i} \right) \left(\prod_{i=6}^{\mathbf{s}} q_i^{c_i} \right) - \cdots - (\mathbf{i})$$

be the prime factorization of n.Here a,b_i,c_i are non negative integers, $p_i \equiv 1 \pmod{4}$ and $q_i \equiv 3 \pmod{4}$ for each i.

Then, n is a sum of squares of integers, if, and only if c_i is even for each i=1,...,s.

Proof: (i) 'if' part: For a,b,c,d $\in \mathbb{Z}$, $(a^2+b^2)(c^2+d^2)=(ac-bd)^2+(ad-bc)^2$. Thus, the product of two numbers, each of which is a sum of two squares, each of which is a sum of 2 squares. Since $2=1^2+1^2$, p is a sum of two squares of integers, It follows that n is a sum of squares if each c_i is even. (Since we can write q_i^{ci} as $(q_i^{ci/2})^2 + 0$).

(ii) 'Only if' part:

Assume that $n=a^2+b^2$ for some integers a and b. If q is a prime dividing n and $q \equiv 3 \pmod{4}$, Then, by Theorem, q divides both a and b. So, q^2 divides n. Now, we apply induction to complete the proof of the fact that each c_i is even.