FUNCTIONS

SRUJANA EE24BTECH11042 SECTION-A(D)

MCQs with One or More than One Correct Answer(2-11)

- 2) Let g(x) be a function defined on [-1, 1]. if the area of the equilateral triangle with two of its vertices at (0,0) and [x,g(x)] is $\frac{\sqrt{3}}{4}$, then the function g(x) is (1989-2 Marks)
 - a) $g(x) = \pm \sqrt{1 x^2}$ c) $g(x) = -\sqrt{1 x^2}$ b) $g(x) = \sqrt{1 x^2}$ d) $g(x) = \sqrt{1 + x^2}$
- 3) If $f(x) = \cos \left[\pi^2\right] x + \cos \left[-\pi^2\right] x$, where [x] stands for the greatest integer function, then (1991-2Marks)
 - a) $f(\frac{\pi}{2}) = -1$ b) $f(\pi) = 1$ c) $f(-\pi) = 0$ d) $f(\frac{\pi}{4}) = 1$
- 4) If f(x) = 3x 5, then $f^{-1}(x)$ (1998-2Marks)
 - a) is given by $\frac{1}{3x-5}$ b) is given by $\frac{x+5}{3}$

 - c) does not exist because f is not one-one
 - d) does not exist because f is not onto
- 5) If $g(f(x)) = |\sin|x$ and f(g(x)) $(\sin \sqrt{x})^2$, then (1998-2Marks)
 - a) $f(x) = \sin x^2, g(x) = \sqrt{x}$
 - b) $f(x) = \sin x, g(x) = |x|$
 - c) $f(x) = x^2, g(x) = \sin \sqrt{x}$
 - d) f and g cannot be determined
- 6) Let $f:(0,1) \rightarrow R$ be defined by f(x) = $\frac{b-x}{1-bx}$, where b is a constant such that 0 < b < 11.Then
 - a) f is not invertible on (0, 1)
 - b) $f \neq f^{-1}$ on (0,1) and $f^{1}(b) = \frac{1}{f^{1}(0)}$ c) $(c)f = f^{-1}$ on (0,1) and $f^{1}(b) = \frac{1}{f^{1}(0)}$

 - d) f^{-1} is differentiable (0, 1)
- 7) Let $f:(-1,1) \to IR$ be such that $f(\cos 4\theta) =$ $\frac{2}{2-\sec^2\theta}$ for $\theta \in \left(0, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$. Then the value(s) of $f(\frac{1}{3})$ is are

a)
$$1 - \sqrt{\frac{3}{2}}$$

b) $1 + \sqrt{\frac{3}{2}}$
c) $1 - \sqrt{\frac{2}{3}}$
d) $1 + \sqrt{\frac{2}{3}}$

- 8) The function f(x) = 2|x| + |x + 2| 2|x| has local minimum or local maximum at x= (JEE Adv.2013)
 - a) -2 b) $\frac{-2}{3}$ c) 2 d) $\frac{2}{3}$
- 9) Let $f: \left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \to R$ be given by f(x) = $(\log(\sec x + \tan x))^3$ Then (JEE Adv.2014)
 - a) f(x) is an odd function
 - b) f(x) is one-one function
 - c) f(x) is an onto function
 - d) f(x) is an even function
- 10) Let $a \in R$ and let $f : R \to R$ be given by $f(x) = x^5 - 5x + a$. Then (JEE Adv.2014)
 - a) f(x) has three real roots if a > 4
 - b) f(x) has only real root if a > 4
 - c) f(x) has three real roots if a < -4
 - d) f(x) has three real roots if -4 < a < 4
- 11) Let $f(x) = \sin\left(\frac{\pi}{6}\left(\frac{\pi}{2}\sin x\right)\right)$ for all $x \in R$ and $g(x) = \frac{\pi}{2} \sin x$ for all $x' \in R$. Let $(f \circ g)(x)$ denote f(g(x)) and (gof)(x) denote g(f(x)). Then which of the following are true?

(JEE Adv 2015)

- a) Range of f is $\left[\frac{-1}{2}, \frac{1}{2}\right]$
- b) Range of fog is $\left[\frac{-1}{2}, \frac{1}{2}\right]$
- c) $\lim_{x\to 0} \frac{f(x)}{g(x)} = \frac{\pi}{6}$ d) There is an $x \in R$ such that $(g \circ f)(x) = 1$

SECTION-A(E) Subjective Problems(1-5)

- 1) Find the domain and the range of the function $f(x) + \frac{x^2}{1+x^2}$. Is the function one one? (1978)
- 2) Draw the graph of $y = |x|^{\frac{1}{2}}$ for $-1 \le x \le 1$.

- 3) If $f(x) = x^9 6x^8 2x^7 + 12x^6 + x^4 7x^3 + 6x^2 + x 3$ find f(x) (1979)
- 4) Consider the following relations in the set of real numbers R.

R = {
$$(x, y) : x \in R, y \in R, x^2 + y^2 \le 25$$
} $R^1 = {(x, y) : x \in R, y \in R, y \ge \frac{4}{9}x^2}$

Find the domain and the range of $R \cap R^1$. Is the relation $R \cap R^1$ a function? (1979)

5) Let A and B be two sets each with a finite number of elements. Assume that there is an injective mapping from A to B and that there is an injective mapping from B to A.Prove that there is a bijective mapping from A to B. (1981-2Marks)