COMBINING LATENT TOPICS WITH DOCUMENT ATTRIBUTES IN TEXT ANALYSIS

Nelson Auner

Advisors: Prof. Matt Taddy & Prof. Stephen Stigler

University of Chicago

May 13, 2014

NA (UChicago)

Outline

- 📵 Text as Data
 - Multinomial Models
 - Metadata and Computation
 - Topic Models
- Cluster Model
 - Algorithm
 - Cluster Initialization
- Application
 - Congressional Speech Data

• A document is a collection of phrases.

- A document is a collection of phrases.
- Our datasets are collections of documents

- A document is a collection of phrases.
- Our datasets are collections of documents

Table: What did homework consist of?

- A document is a collection of phrases.
- Our datasets are collections of documents

Table: What did homework consist of?

Document	Content
1	Some computation and formula proving, a lot of R code
2	Problems, computation using R
3	Some computations and writing R code
4	Proofs, problems, and programming work

13.05.2014

 If order doesn't matter, then we can treat each document as a "bag of words".

- If order doesn't matter, then we can treat each document as a "bag of words".
- The number of words can be modeled as a multinomial

- If order doesn't matter, then we can treat each document as a "bag of words".
- The number of words can be modeled as a multinomial

Table: Creating a word-count matrix from text

Document	Some	comp	formula	prov	R	code	use	problem	writ	program	work
1	1	1	1	1	1	1	0	0	0	0	0
2	0	1	0	0	1	0	1	1	0	0	0
3	1	1	0	0	1	0	0	0	1	0	0
4	0	0	0	1	0	0	0	1	0	1	1

- If order doesn't matter, then we can treat each document as a "bag of words".
- The number of words can be modeled as a multinomial

Table: Creating a word-count matrix from text

Document	Some	comp	formula	prov	R	code	use	problem	writ	program	work
1	1	1	1	1	1	1	0	0	0	0	0
2	0	1	0	0	1	0	1	1	0	0	0
3	1	1	0	0	1	0	0	0	1	0	0
4	0	0	0	1	0	0	0	1	0	1	1

• We would like to add structure to the model for inference or prediction

- We would like to add structure to the model for inference or prediction
- Metadata is data that accompanies a document

- We would like to add structure to the model for inference or prediction
- Metadata is data that accompanies a document

Table: What did homework consist of?

- We would like to add structure to the model for inference or prediction
- Metadata is data that accompanies a document

Table: What did homework consist of?

Grade	Content
A+	Some computation and formula proving, a lot of R code
В	Problems, computation using R
В	Some computations and writing R code
C+	Proofs, problems, and programming work

Metadata and Computation

- *n* documents with metadata that takes *m* discrete values:
- Normally, n >> m
- $\bullet \Rightarrow$ "Collapse" by outcome variables.
- Model as m observations, instead of n

Document	Some	comp	formula	prov	R	code	use	problem	writ	program	work
A+	1	1	1	1	1	1	0	0	0	0	0
В	1	2	0	0	2	0	1	1	1	0	0
С	0	0	0	1	0	0	0	1	0	1	1

◆□▶ ◆□▶ ◆豊▶ ◆豊▶ 豊 めぬ○

Metadata and Computation

- n documents with metadata that takes m discrete values:
- Normally, n >> m

NA (UChicago)

- ⇒ "Collapse" by outcome variables.
- Model as m observations, instead of n

Document	Some	comp	formula	prov	R	code	use	problem	writ	program	work
A+	1	1	1	1	1	1	0	0	0	0	0
В	1	2	0	0	2	0	1	1	1	0	0
С	0	0	0	1	0	0	0	1	0	1	1

Reality: There are thousands of course reviews

Hidden Structure

13.05.2014

In a topic model, documents are the realizations of mixtures of topics. A topic is a distribution of words.

- A book about triathalon training $\sim heta_1$ Running + $heta_2$ Biking + $heta_3$ Swimming
- Problem: We can no longer collapse observations, must use all n observations

In a topic model, documents are the realizations of mixtures of topics.

A topic is a distribution of words.

Running Topic

Stride, Pacing,

Stretch

- A book about triathalon training $\sim heta_1$ Running + $heta_2$ Biking + $heta_3$ Swimming
- Problem: We can no longer collapse observations, must use all n observations

In a topic model, documents are the realizations of mixtures of topics.

A topic is a distribution of words.

Running Topic Stride, Pacing, Stretch

Bike Topic Pedal, Helmet, Gears

- ullet A book about triathalon training $\sim heta_1$ Running $+ heta_2$ Biking $+ heta_3$ Swimming
- Problem: We can no longer collapse observations, must use all n observations

In a topic model, documents are the realizations of mixtures of topics.

A topic is a distribution of words.

Running Topic Stride, Pacing, Stretch

Bike Topic
Pedal, Helmet, Gears

Swimming Stroke, Air, Water

- ullet A book about triathalon training $\sim heta_1$ Running $+ heta_2$ Biking $+ heta_3$ Swimming
- Problem: We can no longer collapse observations, must use all n observations

NA (UChicago) Hidden Structure 13.05.2014 7 / 17

Outline

- Text as Data
 - Multinomial Models
 - Metadata and Computation
 - Topic Models
- Cluster Model
 - Algorithm
 - Cluster Initialization
- Application
 - Congressional Speech Data

Cluster Model

Goal

- Want to use the Topic Model but incorporate Metadata
- Also want computational ease

Approach

- Restrict each document to only one topic ⇒ "cluster"
- Can collapse observations over unique (metadata, cluster)
 combination
- $x_i \sim MN(q_{ij}, m_{ij}); \quad q_{ij} = \frac{\exp(\alpha_j + y_i \phi_j + u_i \Gamma_{kj})}{\sum_{l=1}^p \exp(\alpha_l + y_i \phi_l + u_i \Gamma_{kl})}$

NA (UChicago) Hidden Structure 13.05.2014 9 / 17

Algorithm for Cluster Membership Model with Gamma

Lasso Penalty

- Initialize u_i for $i = 1, \ldots, n$
- ② Determine parameters α, ϕ, Γ by fitting a multinomial regression on $y_i|x_i, u_i$ with a gamma lasso penalty (Taddy 2013)
- **3** For each document i, determine new cluster u_i membership as $argmax_{k=1,...,K} \left[\ell(u_i | \alpha, \phi, \Gamma) \right]$
- Check if current cluster assignment is different from previous cluster assignment , $(\mathbf{u}^{(t)} = \mathbf{u}^{(t-1)})$. If so, return to step 2. If not, end algorithm.

NA (UChicago) Hidden Structure 13.05.2014 10 / 17

How do we initialize the clusters?

We test three different approaches:

- Randomly assign each observation to a cluster
- Group documents by k-means, then assign clusters
- Regress metadata on text, then group residual's by k-means to clusters
- We'll look at the efficacy of each apprach.

Outline

- Text as Data
 - Multinomial Models
 - Metadata and Computation
 - Topic Models
- Cluster Model
 - Algorithm
 - Cluster Initialization
- 3 Application
 - Congressional Speech Data

Congressional Speech and Restaurant Reviews

- We apply the algorithm to two datasets:
 - Congressional Speech records, most famously used to investigate media slant (Moskowitz and Shapiro, 2010)
 - A corpus of restaurant reviews called we8there.
- Can this simple model capture the variation explained by a topic model?
- How does choice of cluster initialization affect the fit?

Comparison with the Topic Model

Good news: We are able to recover similar topics with our model:

Table: Comparison of top word loadings on a stem-cell topic

Cluster Membership	Topic Model (LDA)*
umbilic.cord.blood	pluripotent.stem.cel
cord.blood.stem	national.ad.campaign
blood.stem.cel	cel.stem.cel
adult.stem.cel	stem.cel.line

^{*}Results reported in Taddy (2012)

An Example Cluster

	term	loading
1	nation.oil.food	20.09
2	united.nation.oil	12.09
3	liberty.pursuit.happiness	8.11
4	life.liberty.pursuit	8.11
5	minority.women.owned	6.73
6	universal.health	6.67
7	white.care.act	6.64
8	ryan.white.care	6.6
9	universal.health.care	5.99
10	growth.job.creation	5.39
11	drilling.arctic.national	5.3
12	tax.relief.package	5.29
13	judge.john.robert	5.26
14	fre.enterprise	5.07
15	arctic.refuge	4.93

NA (UChicago) Hidden Structure

Comparison with the Topic Model

Good news: We are able to recover similar topics with our model:

Table: Comparison of top word loadings on a stem-cell topic

Cluster Membership	Topic Model (LDA)*
umbilic.cord.blood	pluripotent.stem.cel
cord.blood.stem	national.ad.campaign
blood.stem.cel	cel.stem.cel
adult.stem.cel	stem.cel.line

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

^{*}Results reported in Taddy (2012)

Incorporating metadatal

Table: Comparison of top word loadings on a stem-cell topic

Cluster Membership	Topic Model (LDA)*
umbilic.cord.blood	pluripotent.stem.cel
cord.blood.stem	national.ad.campaign
blood.stem.cel	cel.stem.cel
adult.stem.cel	stem.cel.line

^{*}Results reported in Taddy (2012)