CSE 201: Data Structures

Lecture 8: Multi-way Search Trees
Dr. Vidhya Balasubramanian

Multi-Way Search Trees

- Multi-Way search trees
 - Trees whose internal nodes have two or more children
 - e.g
 - 2,4 tree, red-black tree, B-Tree

Multi-Way Search Trees: Philosophy

- A key stored in the subtree of T rooted at a childnode v_i must be "in between" two keys stored at v
 - A d-node stored d-1 regular keys

Forms the basic of algorithm for searching in a multiway search tree

faculty.cs.niu.edu

19CSE 212: Data Structures & Algorithms

Multi-Way Search Trees

- A multi-way search tree is an ordered tree such that
 - Each internal node has at least two children and stores d -1 key-element items (k_i, o_i) , where d is the number of children
- For a node with children $v_1 v_2 \dots v_d$ storing keys $k_1 k_2 \dots k_{d-1}$
 - keys in the subtree of v_1 are less than k_1
 - keys in the subtree of v_{i} are between k_{i} –1 and k_{i}
 - i = 2, ..., d 1
 - keys in the subtree of v_d are greater than k_{d-1}

Multi-Way Inorder Traversal

- Visit item (k_i, o_i) of node v between the recursive traversals of the subtrees of v rooted at children v_i and v_{i+1}
- An inorder traversal of a multi-way search tree visits the keys in increasing order

Multi-way tree: Searching

- Similar to search in binary tree
- At each internal node with children $v_1 v_2 \dots v_d$ storing keys $k_1 k_2 \dots k_{d-1}$
 - If $k = k_i$ (i = 1, ..., d 1): search terminates successfully
 - If $k = k_1$: continue search in child v_1
 - If $k_{i-1} < k$ (i = 2, ..., d 1): continue search in child v_i
 - If $k>k_d$: continue search in child v_d
- Terminating at an external node terminates the search

Multi-way Searching: Example

• Search for 30

(2,4) Trees

- Multi-way search trees also called 2-4 or 2-3-4 trees
 - Keeps primary tree balanced
 - Secondary data structures stored at each node is small
- Properties
 - Node-Size Property
 - every internal node has at most four children
 - Depth Property
 - all the external nodes have the same depth
- Depending on the number of children, an internal node of a (2,4) tree is called a 2-node, 3-node or 4-node

(2,4) trees

- Each internal node has either
 - two children (2-node) and one data element
 - three children (3-node) and two data elements or
 - four children (4-node) and three data elements.

Src:anh.cs.luc.edu

Height of a (2,4) tree

- Theorem: Height of a (2,4) tree storing n items is Theta(logn)
- Proof
 - Let h be the height of a (2,4) tree with n items
 - Since there are at least 2^i items at depth i = 0, ..., h 1 and no items at depth h, we have
 - $n \ge 1 + 2 + 4 + ... + 2^{h-1} = 2^h 1$
 - Thus, $h \leq \log (n + 1)$
- Searching an item in a (2,4) tree takes O(logn) time

Insertion

- Insert a new item (k, o)
 - Let v be node reached when searching for k
 - Insert node at v
 - Will preserve depth property
 - May cause overflow
 - Node is 5-node (has 4 keys)

19CSE 212: Data Structures & Algorithms

Overflow and Split

- We handle an overflow at a 5-node v with a split operation:
 - let $v_1 \dots v_5$ be the children of v and $k_1 \dots k_4$ be the keys of v
 - node v is replaced with nodes v' and v"
 - v' is a 3-node with keys k_1 , k_2 and children v_1 , v_2 , v_3
 - v'' is a 2-node with key k_4 and children v_4 , v_5
 - key k_3 is inserted into the parent u of v (a new root may be created)
- The overflow may propagate to the root

Insertion: Example

- Cost of insertion depends on number of splits
 - Cost of each split (constant)
 - Atmost logn splits required

19CSE 212: Data Structures & Algorithms

Deletion

- Reduce the deletion to the case where item is at leaf
 - If item is not at a leaf, replace it with it its inorder successor (or, equivalently, with its inorder predecessor)
 - e.g to delete 24, replace with 27

19CSE 212: Data Structures & Algorithms

Underflow and Fusion

- Deleting an item from a node v may cause an underflow, where node v becomes a 1-node with one child and no keys
- Handling an underflow at node v with parent u
 - Case 1: the adjacent siblings of v are 2-nodes
 - Fusion operation: merge v with an adjacent sibling w and move an item from u to the merged node v'
 - The underflow may propagate to the parent u

19CSE 212: Data Structures & Algorithms

Underflow and Transfer

- Case 2: an adjacent sibling w of v is a 3-node or a 4-node
 - Transfer operation:
 - Move a child of w to v
 - Move an item from u to v.
 - Move an item from w to u
 - After a transfer, no underflow occurs

Example of Underflow Cascade

Exercise

- Consider the following sequence of keys. Insert them into an initially empty (2,4) tree in order.
 - 5,16,22,45,2,10,18,30,50,12,1
- Show the effect of insertion of the following values in the above tree
 - 75, 9, 60, 56
- Delete the following values
 - 16, 30, 56

(a,b) Trees

- Generalization of 2-4 trees
 - Each node has between a and b children
 - Stores between a-1 and b-1 keys
 - $-2 \le a \le (b1)/2$
- Size of nodes and running time of operations depend on a and b
- All external nodes have same depth
- Height of an (a,b) tree storing n items is O(logn/loga)

B-Trees

- Version of (a,b) tree which is best method for storing indexes in external memory
 - B-trees keep related records (that is, records with similar key values) on the same disk block, which helps to minimize disk I/O on searches due to locality of reference.
- A B-Tree of order d is an (a,b) tree with a = [d/2], and b = d
 - Each internal node, except for the root, has between [d/2] and d children
 - Underflow is when the number of children in a node is < d/2
 - Overflow occurs when the number of children in a node > d
 - Height-balanced and all children at same level
 - Root has atleast 2 children or is a leaf

19CSE 22: Latuse et is B-Tree Amerita School of Engineering Algorithms

B+Trees

- Stores values only at the leaf nodes
- Internal nodes store key values, but these are used solely as placeholders to guide the search
 - store keys to guide the search, associating each key with a pointer to a child B+-tree node

19CSE 212: Data Structures & Algorithms