

Período: 2019/2 Disciplina: IEC082 Cálculo Numérico

Prof. José Francisco de Magalhães Netto jnetto@icomp.ufam.edu.br

Proposta: 02/09/2019 Retorno: 03/09/2019 a 16/09/2019 - 23:55h

Importante:

Atividade individual:

 A nota da tarefa fará parte da avaliação da disciplina, conforme detalhado no Plano de Ensino.

Tarefa 1

1.Descrição da Tarefa

Elabore para os Métodos da Bissecção (MB) e da Falsa Posição (MF), um programa de computador, em uma linguagem de alto nível, para encontrar uma raiz real de um polinômio, tendo como entrada de dados o grau do polinômio, os coeficientes do polinômio, o termo independente, o número máximo de iterações e a precisão. O programa deve encontrar, caso exista, o intervalo I de números inteiros onde existe pelo menos uma raiz real. A aplicação dos métodos deve ser realizada no intervalo I. Dada uma equação, utilize o mesmo intervalo I ao executar os dois métodos.

2. Exemplos de Entrada e Saída de Dados

Exemplo 1

Polinômio $p(x) = 4 x^5 - 7 x^4 + 6 x^3 + 10 x^2 - 5 x - 12$, precisão 0,00001, número máximo de iterações 15.

Entrada de Dados:

	4	7	6	40		40	A E	0.00001
∣ ວ	4	-/	ט	10	- ວ	-12	15	0.00001

- // Grau do polinômio
- // Coeficiente da variável de grau 5
- // Coeficiente da variável de grau 4
- // Coeficiente da variável de grau 3
- // Coeficiente da variável de grau 2
- // Coeficiente da variável de grau 1
- // Termo independente
- // Número máximo de iterações
- // Precisão

Saída:

5 4 -7 6 10 5 -12 0.00001 15 1 2 MB 1.13806 12 MF 1.13807 8

Exemplo 2

Polinômio $p(x) = -6 x^2 - 3 x - 5$, precisão 0,00001, número máximo de iterações 15

Entrada de Dados:

2 -6 -3 -5 15 0.00001

- // Grau do polinômio
- // Coeficiente da variável de grau 2
- // Coeficiente da variável de grau 1
- // Termo independente
- // Número máximo de iterações
- // Precisão

Saída:

2 -6 -3 -50.00001 15A função não possui uma raiz real

O Arquivo de Testes está detalhado na Seção 6.

4. Relatório

O Relatório deve ter as seguintes seções:

- Identificação do computador (marca, modelo, processador, clock, tamanho da RAM, sistema operacional);
- Identificação da Linguagem de Programação (linguagem de programação, versão, fabricante, IDE usado)
- Resultados
- Análise dos Resultados

Utilize gráficos, tabelas e informações estatísticas para apresentar e analisar os resultados.

O relatório pode estar no formato doc, rtf ou pdf.

5. Procedimento de Entrega da Tarefa

Crie uma pasta com o nome CN 20192_Tarefa 1_X Y onde X é o seu primeiro nome e Y é seu último sobrenome. Dentro dessa pasta crie as subpastas Método da Bissecção, Método da Falsa Posição e Relatório.

Exemplo de Estrutura de Pastas, com um nome fictício:

CN 20192_Tarefa 1_José Silva
Método da Bissecção
Programa
Método da Falsa Posição
Programa
Relatório
Relatório da Tarefa 1

Zip a pasta principal **CN 20192_Tarefa 1_X Y** e envie para o email **jnetto@icomp.ufam.edu.br**, dentro do prazo acordado. Envie apenas o arquivo zipado. O email deve ter o assunto **[CN 20192] Tarefa 1_X Y.**

5. Critérios de Avaliação

Os programas recebidos serão executados usando as bases de dados como entrada.

Os critérios utilizados na avaliação serão:

- i. Será atribuída uma nota de 0.0 Pto a 3.5 Ptos a cada programa, considerando os aspectos de originalidade, simplicidade, documentação e eficiência;
- ii. Será atribuída uma nota de 0,0 Ptos a 3.0 Ptos ao Relatório;
- iii. Serão descontados 1.5 Ptos por dia de atraso na entrega.

6.Arquivo de Testes

Nos testes além do Arquivo de Testes, entradas de dados adicionais podem ser usadas.

5	3	6	0	9	2	1	12	0,00001
4	3	7	-2	7	2		12	0,00001
5	6	2	4	-8	7	7	12	0,00001
5	-4	-3	-1	0	5	4	12	0,00001
3	8	9	-8	-6			12	0,00001
5	6	1	-3	1	7	8	12	0,00001
3	5	-3	-9	3			12	0,00001
2	-4	-7	3				12	0,00001
5	8	-3	2	-3	4	7	12	0,00001
4	-8	7	2	-9	2		12	0,00001
3	7	-2	-7	7			12	0,00001
4	5	7	-9	-8	6		12	0,00001
5	3	7	-6	-3	8	4	12	0,00001
5	3	-8	9	-7	8	2	12	0,00001

4	9	-8	-7	9	2		12	0,00001
				3				
2	0	-6	-6	_			12	0,00001
5	-3	-3	3	7	-1	3	12	0,00001
2	6	-9	-3	_			12	0,00001
3	-9	-3	-6	3		_	12	0,00001
5	5	3	5	6	5	9	12	0,00001
4	9	4	-6	3	3		12	0,00001
5	6	-9	2	4	9	9	12	0,00001
5	-5	8	8	5	3	6	12	0,00001
3	-2	-9	0	-7			12	0,00001
5	-1	4	-7	8	4	5	12	0,00001
3	5	-2	4	-1			12	0,00001
2	-1	-2	8				12	0,00001
5	4	3	0	-5	3	6	12	0,00001
4	-4	3	7	1	4		12	0,00001
3	-2	-3	7	-5			12	0,00001
4	-3	-4	1	-4	4		12	0,00001
5	9	1	-5	-1	2	8	12	0,00001
5	-6	4	8	-1	6	4	12	0,00001
4	2	-7	8	3	6		12	0,00001
2	6	-3	8				12	0,00001
5	-2	1	8	6	1	2	12	0,00001
2	-5	-6	-7				12	0,00001
3	-8	3	3	-8			12	0,00001
5	5	-5	5	30	5	8	12	0,00001
5	-6	-7	8	3	9	7	12	0,00001
4	-3	-8	-3	3	7		12	0,00001
2	8	-4	0				12	0,00001
5	-5	0	-8	-2	7	1	12	0,00001
2	-6	-5	0				12	0,00001
3	-7	5	-6	7			12	0,00001
5	-6	2	-8	1	8	6	12	0,00001
5	-8	2	-9	2	5	2	12	0,00001
4	7	6	-6	-3	4		12	0,00001
2	-2	1	-2		-		12	0,00001
5	-8	-4	3	7	5	9	12	0,00001
_		_	_	•	_	_		3,0001