

Winning Space Race with Data Science

Chukwuemeka Okoli 2nd December 2021

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data Collection through API
 - Data Collection with Web Scraping
 - Data Wrangling
 - Exploratory Data Analysis with SQL
 - Exploratory Data Analysis with Data Visualization
 - Interactive Visual Analytics with Folium
 - Machine Learning Prediction
- Summary of all results
 - Exploratory Data Analysis result
 - Interactive analytics in screenshots
 - Predictive Analytics result

Introduction

Project background and context

Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore, if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch. This goal of the project is to create a machine learning pipeline to predict if the first stage will land successfully.

Problems you want to find answers

- What factors determine if the rocket will land successfully?
- The interaction amongst various features that determine the success rate of a successful landing.
- What operating conditions needs to be in place to ensure a successful landing program.

Methodology

Executive Summary

- Data collection using SpaceX API.
- Perform data wrangling: Applied one-hot encoding to categorical variables
- Perform EDA using visualization and SQL
- Perform interactive visual analytics using Folium
- Perform predictive analysis using classification models

Data Collection

- The data was collected using various methods
 - Data collection was done using get request to the SpaceX API.
 - Next, we decoded the response content as a Json using .json() function call and turn it into a pandas dataframe using .json_normalize().
 - We then cleaned the data, checked for missing values and fill in missing values where necessary.

Data Collection – SpaceX API

```
In [10]: static_json_url='https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/API

We should see that the request was successfull with the 200 status response code

In [11]: response.status_code

Out[11]: 200

Now we decode the response content as a Json using .json() and turn it into a Pandas dataframe using .json_normalize()

In [12]: # Use json_normalize meethod to convert the json result into a dataframe data = pd.json_normalize(response.json())
```

- We used the get request to the SpaceX API to collect data, clean the requested data and did some basic data wrangling and formatting.
- The link to the notebook is https://github.com/minhvuO1122001/IBM-Data-Science-Project/blob/main/1.%20Data%20Collection.ipynb

Data Wrangling

- We performed exploratory data analysis and determined the training labels.
- We calculated the number of launches at each site, and the number and occurrence of each orbits
- We created landing outcome label from outcome column and exported the results to csv.
- The link to the notebook is https://github.com/minhvuO1122001/IB M-Data-Science-Project/blob/main/2.%20Data%20Wrang ling.ipynb

EDA with SQL

- We applied EDA with SQL to get insight from the data. We wrote queries to find out for instance:
 - The names of unique launch sites in the space mission.
 - The total payload mass carried by boosters launched by NASA (CRS)
 - The average payload mass carried by booster version F9 v1.1
 - The total number of successful and failure mission outcomes
 - The failed landing outcomes in drone ship, their booster version and launch site names.
- The link to the notebook is

EDA with Data Visualization

 We explored the data by visualizing the relationship between flight number and launch Site, payload and launch site, success rate of each orbit type, flight number and orbit type, the launch success yearly trend.

 The link to the notebook is https://github.com/minhvuO1122001/I BM-Data-Science-Project/blob/main/4.%20EDA%20Data %20Viz.ipynb

Build an Interactive Map with Folium

- We marked all launch sites, and added map objects such as markers, circles, lines to mark the success or failure of launches for each site on the folium map.
- We assigned the feature launch outcomes (failure or success) to class 0 and 1.i.e., 0 for failure, and 1 for success.
- Using the color-labeled marker clusters, we identified which launch sites have relatively high success rate.
- We calculated the distances between a launch site to its proximities. We answered some question for instance:
 - Are launch sites near railways, highways and coastlines.
 - Do launch sites keep certain distance away from cities.

Predictive Analysis (Classification)

- We loaded the data using numpy and pandas, transformed the data, split our data into training and testing.
- We built different machine learning models and tune different hyperparameters using GridSearchCV.
- We used accuracy as the metric for our model, improved the model using feature engineering and algorithm tuning.
- We found the best performing classification model.
- The link to the notebook is https://github.com/chuksoo/IBM-Data-Science-Capstone-SpaceX/blob/main/Machine%20Learning%20Prediction.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

All Launch Site Names

We used the key word
 DISTINCT to show only unique launch sites from the SpaceX data.

```
In [9]:
         %%sql
         SELECT DISTINCT("Launch_Site") FROM SPACEXTABLE
        * sqlite:///my_data1.db
       Done.
Out[9]:
          Launch_Site
          CCAFS LC-40
          VAFB SLC-4E
           KSC LC-39A
         CCAFS SLC-40
```

Launch Site Names Begin with 'CCA'

```
Display 5 records where launch sites begin with the string 'CCA'

%%sql
SELECT * FROM SPACEXTABLE
where "Launch_Site" LIKE 'CCA%'
LIMIT 5
```

 We used the query above to display 5 records where launch sites begin with `CCA`

Total Payload Mass

 We calculated the total payload carried by boosters from NASA as 45596 using the query below

```
Display the total payload mass carried by boosters launched by NASA (CRS)

In [12]:

task_3 = '''

SELECT SUM(PayloadMassKG) AS Total_PayloadMass
FROM SpaceX
WHERE Customer LIKE 'NASA (CRS)'

"""

create_pandas_df(task_3, database=conn)

Out[12]:

total_payloadmass

0 45596
```

Average Payload Mass by F9 v1.1

 We calculated the average payload mass carried by booster version F9 v1.1 as 2928.4

Display average payload mass carried by booster version F9 v1.1

```
In [13]:
    task_4 = '''
        SELECT AVG(PayloadMassKG) AS Avg_PayloadMass
        FROM SpaceX
        WHERE BoosterVersion = 'F9 v1.1'
        '''
    create_pandas_df(task_4, database=conn)
```

Out[13]: avg_payloadmass

0 2928.4

First Successful Ground Landing Date

 We observed that the dates of the first successful landing outcome on ground pad

Successful Drone Ship Landing with Payload between 4000 and 6000

 We used the WHERE clause to filter for boosters which have successfully landed on drone ship and applied the AND condition to determine successful landing with payload mass greater than 4000 but less than 6000

on
22
26
1.2
1.2

Total Number of Successful and Failure Mission Outcomes

```
In [37]:
           %%sql
           SELECT COUNT("Mission Outcome") AS COUNT_VALUE, "Mission Outcome"
           FROM SPACEXTABLE
           GROUP BY "Mission Outcome"
         * sqlite:///my data1.db
        Done.
Out[37]: COUNT_VALUE
                                     Mission_Outcome
                                       Failure (in flight)
                     98
                                              Success
                                              Success
                      1 Success (payload status unclear)
```

Boosters Carried Maximum Payload

 We determined the booster that have carried the maximum payload using a subquery in the WHERE clause and the MAX() function.

```
In [39]:
          SELECT "Booster Version", "PAYLOAD MASS KG "
           FROM SPACEXTABLE
           WHERE "PAYLOAD_MASS__KG_" = (SELECT_MAX("PAYLOAD_MASS__KG_") FROM SPACEXTABLE)
         * sqlite:///my_data1.db
Out[39]: Booster_Version PAYLOAD_MASS_KG_
            F9 B5 B1048.4
                                         15600
            F9 B5 B1049.4
                                        15600
            F9 B5 B1051.3
                                        15600
            F9 B5 B1056.4
                                        15600
            F9 B5 B1048.5
                                        15600
            F9 B5 B1051.4
                                        15600
            F9 B5 B1049.5
                                        15600
            F9 B5 B1060.2
                                        15600
            F9 B5 B1058.3
                                        15600
            F9 B5 B1051.6
                                        15600
            F9 B5 B1060.3
                                        15600
            F9 B5 B1049.7
                                        15600
```

2015 Launch Records

• We used a combinations of the WHERE clause, LIKE, AND, and BETWEEN conditions to filter for failed landing outcomes in drone ship, their booster versions, and launch site names for year 2015

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

```
In [60]:
           SELECT COUNT("Landing_Outcome") AS COUNT_VALUE, "Landing_Outcome"
           (SELECT * FROM SPACEXTABLE
           WHERE Date>'2010-06-04' AND Date<'2017-03-20')
           GROUP BY "Landing Outcome"
           ORDER BY COUNT VALUE DESC
         * sqlite:///my_data1.db
        Done.
Out[60]: COUNT_VALUE
                             Landing Outcome
                     10
                                   No attempt
                          Success (ground pad)
                           Success (drone ship)
                            Failure (drone ship)
                             Controlled (ocean)
                           Uncontrolled (ocean)
                       1 Precluded (drone ship)
                             Failure (parachute)
```

Flight Number vs. Launch Site

• From the plot, we found that the larger the flight amount at a launch site, the greater the success rate at a launch site.

Payload vs. Launch Site

The greater the payload mass for launch site CCAFS SLC 40 the higher the success rate for the rocket.

Success Rate vs. Orbit Type

 From the plot, we can see that ES-L1, GEO, HEO, SSO, VLEO had the most success rate.

Flight Number vs. Orbit Type

• The plot below shows the Flight Number vs. Orbit type. We observe that in the LEO orbit, success is related to the number of flights whereas in the GTO orbit, there is no relationship between flight number and the orbit.

Payload vs. Orbit Type

• We can observe that with heavy payloads, the successful landing are more for PO, LEO and ISS orbits.

Launch Success Yearly Trend

• From the plot, we can observe that success rate since 2013 kept on increasing till 2020.

All launch sites global map markers

Markers showing launch sites with color labels

Launch Site distance to landmarks

Classification Accuracy

 The decision tree classifier is the model with the highest classification accuracy

```
models = {'KNeighbors':knn cv.best score ,
              'DecisionTree':tree cv.best score ,
              'LogisticRegression':logreg cv.best score ,
               'SupportVector': svm_cv.best_score_}
bestalgorithm = max(models, key=models.get)
print('Best model is', bestalgorithm,'with a score of', models[bestalgorithm])
if bestalgorithm == 'DecisionTree':
    print('Best params is :', tree cv.best params )
if bestalgorithm == 'KNeighbors':
    print('Best params is :', knn cv.best params )
if bestalgorithm == 'LogisticRegression':
    print('Best params is :', logreg cv.best params )
if bestalgorithm == 'SupportVector':
    print('Best params is :', svm cv.best params )
Best model is DecisionTree with a score of 0.8732142857142856
Best params is : {'criterion': 'gini', 'max_depth': 6, 'max_features': 'auto', 'min_samples_leaf': 2, 'min_samples_split': 5, 'splitter': 'random'}
```

Confusion Matrix

 The confusion matrix for the decision tree classifier shows that the classifier can distinguish between the different classes.
 The major problem is the false positives .i.e., unsuccessful landing marked as successful landing by the classifier.

Conclusions

We can conclude that:

- The larger the flight amount at a launch site, the greater the success rate at a launch site.
- Launch success rate started to increase in 2013 till 2020.
- Orbits ES-L1, GEO, HEO, SSO, VLEO had the most success rate.
- KSC LC-39A had the most successful launches of any sites.
- The Decision tree classifier is the best machine learning algorithm for this task.

