

Предсказание стоимости квартиры в Москве

А.С. Кропотова

Этапы выполнения работы:

1 Сбор данных

2 Первичный и визуальный анализ данных

3 Предобработка данных

4 Обучение моделей и выбор лучшей

5 Создание приложения

Использование библиотеки

Beautifuloup

Парсинг данных с сайта^с cian.ru

Ограничения:

28 объявлений на 1 странице

54 страницы для парсинга

Парсинг студий и 1-комн.квартир, новостройки, не апартаменты

```
data = []
                                                                                                               10
for p in range(1, 55):
                                                                                                                           except:
   print(p)
                                                                                                                              continue
   url = (f'https://www.cian.ru/cat.php?deal type=sale&engine version=2&foot min=45&object type%580%50=2&offer type
   r = requests.get(url)
   sleep(1)
   soup = BeautifulSoup(r.text, 'lxml')
   flats = soup.findAll('article', class_='_93444fe79c--container--Povoi_93444fe79c--cont--OzgVc')
   for flat in flats:
       try:
           link = flat.find('a', class = '93444fe79c--link--eoxce').get('href')
       except AttributeError:
             continue
       data.append[[link]]
```

```
for j in range(8, len(dfl)):
   print(j)
   url = dfl['link']]j]
   r = requests.get(url)
   #sleep(1)
   soup = BeautifulSoup(r.text, 'lxml')
       dfl''price'||j| = soup.find('div', class_='al@a3f92e9--page -O'ngf').find('div', class_='al@a3f92e9--aside--uqlEl').find('upon
       dfl['min_to_metro'][]] = soop.findf'div', class_='a18a3f92e9-page-OYngf').findf'div', class_='a18a3f92e9-center-b3Pe0').fin
       dfl'region_of_moscow'l(j) = soup.find('div', class_='al0a3f92e9-page-OYngf').find('div', class_='al0a3f92e9-center-b3Pw0'
       for 1 in range(0,6);
           if 'Obuse mnowagh' im soup.find['div', class_='al883f92e9-page-OYmgf').find('div', class_='al883f92e9-text-eplgM').text
               dfl|'total_area'||j| = soup.find('div', class_='al8a3f92e9--page--DYngf').find('div', class_='al8a3f92e9--text--eplgM'
               dfil'total area'l[]] = soup.find('div', class ='alea3f92e9-page-Oregf'),find('div', class ='alea3f92e9-center-b3Pea
       for 1 in range(8,4):
           if 'Awnes mnowage' in soup.find('div', class_='al0a3f92e9-page-OYngf').find('div', class_='al0a3f92e9-center-b3Pa0').f
               dfl['living_area'][j] = soup, find('dix', class_='al@a]f92e9-page_O(rogf'), find('dix', class_='al@a]f92e9-center-b3P
       for 1 in range(0,4);
           if '9:ax' in soup.find('div', class_w'aldm3f92e9--page--OYnof'),find('div', class_w'aldm3f92e9--center--b3PeB'),find('div'
               df1["floor"][j] = soup.find['div', class_='al@a3f92e9-page-OYngf').find('div', class_='al@a3f92e9-center-b3Pe0').fi
       for 1 in range(0,4):
           if 'Bram' in soup.find('div', class_='a10a3f92e9--page--Orngf'),find('div', class_='a10a3f92e9--center--b3Fe0'),find('div'
               dfl'number_of_floors'll]| = soup.find('div', class_='al8a3f92e9-_page-_OYngf').find('div', class_='al8a3f92e9--center-
           if 'Con cassa' in soup.find('div', class_='al0a3f92e9-page-GYngf').find('div', class_='al0a3f92e9-center-b3Pa0').find(
               df1["construction_year"|[]| = soup.find['div', class_"a18a3f92e9 - cage - 0Yngf').find('div', class_"a18a3f92e9 - center
               if "Bucora norances" im soup.find('div', class ='al0u3f92e9-page-OVngf'),find('div', class ='al0u3f92e9-center-b3Pr
                   dfl'ceiling_height'll]| = soup.find('div', class_='al0a3f92e9-_page-_OYngf').find('div', class_='al0a3f92e9--cente
   except AttributeError:
```


Итоговый датасет

Размерность: (1937, 12)

#	Column	Non-Null Count	Dtype
0	price	1937 non-null	int64
1	min_to_metro	1908 non-null	float64
2	region_of_moscow	1919 non-null	object
3	total_area	1919 non-null	float64
4	living_area	1264 non-null	float64
5	floor	1904 non-null	float64
6	number_of_floors	1648 non-null	float64
7	construction_year	1245 non-null	float64
8	is_new	1937 non-null	int64
9	is_apartments	1937 non-null	int64
10	ceiling_height	631 non-null	float64
11	number_of_rooms	1937 non-null	int64
44	61+64/7\+	CA(A) + /1)	

itypes: float64(7), int64(4), object(1)

nemory usage: 181.7+ KB

	price	min_to_metro	region_of_moscow	total_area	living_area	floor	number_of_floors	construction_year	is_sew	is_apartments	ceiling_height	number_of_rooms
price	1.000000	-0.206555	-0.240613	0.782794	0.692338	0.173664	0.060000	0.079912	-0.097024	0.0000037	0.363075	0.458756
min_to_metro	-0.266555	1,000000	0.173402	-0.271201	-0.215160	-0.141488	-0.130139	0.103726	0.127824	0.110511	-0.147725	0.125660
region_of_moscow	-0.240513	0.175402	1.000000	-0.203291	-0.176903	-0.128194	-0.134269	0.066288	0.118369	-0.138442	-0.100096	-0.124049
total_area	0.782294	-0.271201	-0.205291	1.000000	0.900997	0.288062	0.291385	0.037386	0.148324	0.060687	0.358493	0.706081
living_area	0.682339	-0.215160	-0.176903	0.900997	1.000000	0.260766	0.245794	-0.038494	-0.236518	0.062046	0.287757	0.696982
floor	0.173664	-0.141498	-0.128194	0.288062	0.260766	1.000000	0.775250	0.237217	-C 029638	0.134029	0.197921	0.175736
number_of_floors	0.088058	-0.130139	-0.104280	0.231385	0.245794		1.000000	0.320282	0.064298	0.001422	0.188462	0.094108
construction_year	0.078012	0.103726	0.066288	0.037386	0.038494	0.237217	0.320282	1.000000	0.513752	0.266663	0.245601	-0.050676
is_new	-0.09702#	0.127824	0.118369	-0.149024	-0.236618	-0.029638	0.064298	0.513752	1.000000	0.066651	0.244369	0.219900
is_apartments	0.060837	-0.330511	-0.138442	0.062057	0.062045	0.134009		0.266663	-0.000051	1.000000	0.286919	0 (==41)
celling_height	0.363075	0-0,147725	-0.160896	0.358493	0.287757	0.197921	0.168462	0.245801	0,244369	0.286919	1.000000	0.149360
number_of_rooms	0.458766	-0.129680	-0.124049		0.696982	0.175738		-0.050676	-0.219900	0.085411	0.149365	1.000000

Признак	Описание признака				
price	Целевая переменная. Стоимость квартиры				
min_to_metro	Количество минут до метро пешком				
region_of_moscow	Адм. округа и регионы Москвы				
total_area	Общее число кв. м квартиры				
living_area	Число жилых кв. и квартиры				
floor	Этаж, на котором располагается квартира				
number_of_floors	Этажность дома				
construction_year	Год постройки (сдачи) дома				
is_new	Бинарный признак. 0 - вторичное жилье, 1 - новостройка				
is_apartments	Бинарный признак. 0 - не апартаменты, 1 - апартаменты				
ceiling_height	Высота потолка квартиры				
number_of_rooms Количество комнат в квартире					
min_to_metro	Количество минут до метро пешком				

Признаки

0.6 - 0.4 - 0.2 - 0.0 - 0.4 - 0.2 - 0.0 - 0.4 - 0.2 - 0.0 - 0.4 - 0.2 - 0.0 - 0.4 - 0.2 - 0.0 - 0.4 - 0.2 - 0.0 - 0.4 - 0.2 - 0.0 - 0.4 - 0.2 - 0.0 - 0.4 - 0.2 - 0.0 - 0.4 - 0.2 - 0.0 - 0.4 - 0.2 - 0.0 - 0.4 - 0.2 - 0.0 - 0.4 - 0.2 - 0.0 - 0.4 - 0.2 - 0.0 - 0.4 - 0.2 - 0.0 - 0.4 - 0.2 - 0.0 - 0.4 - 0.2 - 0.0 - 0.4 - 0.2 - 0.0 - 0.4 - 0.2 - 0.0 - 0.4 - 0.2 - 0.2 - 0.0 - 0.4 - 0.2 - 0.2 - 0.0 - 0.4 - 0.2 - 0.2 - 0.0 - 0.4 - 0.2 - 0.2 - 0.0 - 0.4 - 0.2 -

Стоимость квартиры зависит от ее расположения

жилая площадь

Признаки

Признаки

Предобработка данных

Работа с выбросами

Замена пропущенных значений

KNNImputer – для числовых признаков SimpleImputer (strategy='most_frequent') – для категориальных признаков

Преобразование категориальных признаков

OneHotEncoder

LabelEncoder

Масштабирование данных

StandartScaler

Выбор и обучение моделей

```
get_score(X_train, X_test, y_train, y_test, model='LinearRegression', is_return=False):
assert model in ['LinearRegression', 'DecisionTreeRegressor', 'BaggingRegressor', 'RandomForestRegressor', 'VotingRegressor', 'StackingRegressor',
if model == 'LinearRegression':
   model = LinearRegression()
elif model == 'DecisionTreeRegressor':
   model = DecisionTreeRegressor(random_state=15, max_depth=8, min_samples_leaf=3)
elif model == 'BaggingRegressor':
   model = BaggingRegressor(estimator=DecisionTreeRegressor(), random state=15, n estimators=100)
elif model == 'RandomForestRegressor':
   model = RandomForestRegressor(random state=15, n estimators=100)
elif model == 'VotingRegressor':
   model = VotingRegressor(estimators=[('rf', RandomForestRegressor(random_state=15, n_estimators=100)),
                                       'bag', BaggingRegressor(estimator=DecisionTreeRegressor(), random_state=15, n_estimators=100)),
                                       'tree', DecisionTreeRegressor(random state=15, max depth=10, min samples leaf=3))
elif model == 'StackingRegressor':
   model = StackingRegressor(estimators=[('rf', RandomForestRegressor(random_state=15, n_estimators=100)),
                                         bag¹, BaggingRegressor(estimator=DecisionTreeRegressor(), random_state=15, n_estimators=100)).
                                         'tree', DecisionTreeRegressor(random state=15, max depth=10, min samples leaf=3))
                            final_estimator=RandomForestRegressor(random_state=1)
elif model == 'GradientBoostingRegressor':
                                                                                                                             RMSE train RMSE test R2 train R2 test
   model = GradientBoostingRegressor(random_state=15)
                                                                                  0
                                                                                                       LinearRegression
                                                                                                                                31 969 695
                                                                                                                                                26 853 582
model.fit(X_train, y_train)
y_train_pred = model.predict(X_train)
y test pred = model.predict(X test)
                                                                                  1
                                                                                                DecisionTreeRegressor
                                                                                                                                17 253 224
                                                                                                                                               21 576 890
RMSE_train = sgrt(mean_squared_error(y_train, y_train_pred))
RMSE_test = sqrt(mean_squared_error(y_test, y_test_pred))
R2_train = model.score(X_train, y_train)
                                                                                  2
                                                                                              RandomForestRegressor
                                                                                                                                10 958 846
                                                                                                                                                23 908 002
R2_test = model.score(X_test, y_test)
if is_return:
                                                                                  3
                                                                                                        VotingRegressor
                                                                                                                                11 170 754
                                                                                                                                               21 825 841
   print(model)
   print('RMSE_train:',RMSE_train)
   print('RMSE_test:',RMSE_test)
                                                                                                     StackingRegressor
                                                                                  4
                                                                                                                                17 206 619
                                                                                                                                                26 618 958
   print('R2_train:',R2_train)
   print('R2_test:',R2_test)
                                                                                  5
                                                                                           GradientBoostingRegressor
                                                                                                                                15 397 894
                                                                                                                                                25 984 686
return model
                                                                                  6
                                                                                           DecisionTreeRegressor GS
                                                                                                                                22 945 650
                                                                                                                                               27 655 807
```

7 GradientBoostingRegressor_RS

12 059 829

25 847 816

результаты

оценки

качества

моделей

0.69

0.9

0.96

0.96

0.9

0.93

0.84

0.96

0.6

0.74

0.68

0.74

0.6

0.63

0.58

0.63

Отбор признаков

	feature_name	importance
2	floor	0.766339
5	is_new	0.072733
0	min_to_metro	0.044178
4	construction_year	0.038531
1	total_area	0.030422
8	number_of_rooms	0.022665
3	number_of_floors	0.013958
7	ceiling_height	0.008030
9	region_of_moscow_BAO	0.001891
6	is_apartments	0.001253

Приложение

http://127.0.0.1:5000/

https://www.cian.ru/sale/flat/305311556/

Пожалуйста, введите данные для предсказания стоимости квартиры:

регион Москвы	
количество минут до метро пешком	
общая площадь квартиры (кв.м)	
этаж, на котором будет располагаться квартира	
количество этажей дома	
год постройки (сдачи квартиры)	
новостройка(1) / вторичка (0)	
апартаменты (1) / не апартаменты (0)	
высота потолков (стандартно-2,5 м)	
количество комнат	
ПОЛУЧИТЬ ПРОГНОЗ ПО СТОИМОСТИ КВАРТИРЫ	

Стоимость квартиры по заданным параметрам составит:

[6.43713105e+08]

Приложение

http://127.0.0.1:5000/

https://www.cian.ru/sale/flat/306614015/

Пожалуйста, введите данные для предсказания стоимости квартиры:

регион Москвы		
количество минут до метро пешком		
общая площадь квартиры (кв.м)		
этаж, на котором будет располагаться квартира		
количество этажей дома		
год постройки (сдачи квартиры)		
новостройка(1) / вторичка (0)		
апартаменты(1) / не апартаменты (0)		
высота потолков (стандартно-2,5 м)		
количество комнат		

Стоимость квартиры по заданным параметрам составит:

[23233872.67]

Приложение

http://127.0.0.1:5000/

https://www.cian.ru/sale/flat/301577738/

Пожалуйста, введите данные для предсказания стоимости квартиры:

регион Москвы	
количество минут до метро пешком	
общая площадь квартиры (кв.м)	
этаж, на котором будет располагаться квартира	
количество этажей дома	
год постройки (сдачи квартиры)	
новостройка(1) / вторичка (0)	
апартаменты(1) / не апартаменты (0)	
высота потолков (стандартно-2,5 м)	
количество комнат	
DOUGNALL DESCRISS DO CLOMMOCTA KRABLADA	

Стоимость квартиры по заданным параметрам составит:

[11953620.46]

Способы улучшения модели

- 1 Сбор большего количества разнообразных данных
 - 2 Добавление новых признак
- 3 Анализ рынка недвижимости и добавление новых признаков
- 4 Изучение текущей ситуации с программами: семейной, льготной, ипотеки, др. программ
 - 5 Добавление даты и сезонного признака

ЦЕНТР ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ

МГТУ им. Н.Э. Баумана

do.bmstu.ru

