LAB REPORT 4

Name: Swarup Padhi

Roll:20CS30062

EC29201

BATCH-05

PART 1 AIM

After this experiment, we will learn,

- 1. Structure of Bipolar Junction Transistor
- 2. Operation of Bipolar Junction Transistor
- 3. Working of Common Base configuration of Bipolar Junction Transistor

Circuit diagram

Theory with equations

Saturation Region

Both junction are forward biased, base-emites function is forward biased. (VBE>0) and also collector-base function is forward biased (VBE>0). Maximum currents flows is forward biased (VBE>0). Maximum currents flows through the transistor with only a small voltage drop across the collector function. It also dep supond to any change in IE or \$ VBE.

It is used as a closed switch -

peresse-Active Sugion

Bose-emitter-reverse braced (VBELO)
Bose-collector-forward braced (VCBLO)

current gain - smaller than forward active modeunsuitable for amplification in general,

Application: In digital circuits and analog switching circuits

IE = - de x Ict IEO

XR = reverse ausvent transfer ratio IEO = Emitter reverse saturation current

most transistors are doped so as \$421 so |4A << automatically (very low)

Equations for BJT-CB amplifies These equations are for n-p-n transistor. IE=IB+Ic IE - input current Te - output put current Ic= LIE=BIB Common borse amplifier avirent train/voltage gain $Ai = \frac{iont}{iin} = \frac{\beta}{\beta + 1} \approx 1$ Av = Vout = Ve = Fere Or Av = «Re = Ai Re Av= dre - Ailre A V= RC Resistance gain AR = Zing Zin=REllre

At output impedance of the amplifier looking back into the Collector terminal can potentially be very large, the CB circuit operates almost like an ideal current source taking the input current from low input impedance side and sending

RE>>> xe , Zin=xe Zout = RC||R_ ≈ RC the current to high output impedance side. Thus the CB configuration is also referred to as a : current buffer or configuration, and opposite of the common—collector (c) configuration which is referred to as a voltage follower.

Observation table with graphs Input Characteristics

EXPERIMENTAL TABLE		
Serial	Base-Collector Voltage 1.000 V	
No.	Base-Emitter Voltage V	Emitter Current mA
1	0.02000	0.76
2	0.06000	0.80
3	0.1000	0.85
4	0.2000	0.98
5	0.3000	1.1
6	0.3800	1.3
7	0.5000	1.5
8	0.6600	1.9
9	0.7200	2.1
10	0.8200	2.4
11	0.9400	2.8
12	1.040	3.3
13	1.100	3.5

Serial	Base-Collector Voltage 2.000 V	
No.	Base-Emitter Voltage V	Emitter Current mA
1	0.02000	0.76
2	0.1000	0.85
3	0.2400	1.0
4	0.3800	1.3
5	0.4400	1.4
6	0.5600	1.6
7	0.6800	1.9
8	0.8400	2.4
9	0.9600	2.9
10	1.100	3.5
11	1.280	4.6
12	1.380	5.3
13	1.500	6.3

Serial	Base-Collecto 3.000	or Voltage V
No.	Base-Emitter Voltage V	Emitter Current mA
1	0.02000	0.76
2	0.1000	0.85
3	0.2000	0.98
4	0.3200	1.2
5	0.4600	1.4
6	0.6000	1.7
7	0.7200	2.1
8	0.8200	2.4
9	0.9000	2.7
10	1.020	3.2
11	1.140	3.8
12	1.220	4.2
13	1.300	4.7

Output Characteristics

	Emitter (_
Serial	2.0	mA
No.	Base-Collector	Collector
	Voltage	Current
	V	mA
1	-0.6000	-1.074
2	-0.2000	-0.3948
3	0.2000	0.3948
4	0.8000	1.328
5	1.300	1.723
6	1.800	1.894
7	2.400	1.967
8	2.900	1.988
9	3.700	1.998
10	4.500	2.000
11	4.800	2.000
12	5.300	2.000
13	6.000	2.000

	Emitter Current	
Serial No.	Base-Collector Voltage V	Collector Current mA
1	0.08000	0.06043
2	0.3800	0.3654
3	0.6800	0.5959
4	1.080	0.7991
5	1.780	0.9517
6	2.180	0.9820
7	2.580	0.9959
8	3.080	1.003
9	3.280	1.005
10	3.880	1.007
11	4.180	1.007
12	4.480	1.007
13	4.980	1.007

Conclusion and Observations

- 1. The input characteristics follow an exponential curve.
- 2. The output characteristics remain linear with Vce but become constant after some time.
- 3.In the v-labs experiment page for output characteristic of CB, upon increasing le beyond 20 micro-amperes, the vlab page was able to give only 6 readings.
- 4. The different data-sets for different values of base collector voltage are same for all values of Vbc which is a glitch in Vlab, which is a glitch in vlab
- 5. The part where Ic varies with Vbc in output characteristics is the saturation region.

PART 2 AIM

After this experiment, we will learn,

1.Working of Common Base configuration of Bipolar Junction Transistor and knowing the circuit equations

Circuit diagram

Theory with equations

Equations for BJT-CE circuit

Behaviours: It can be described by Ebers-Moll Model.

IF = IES (exp(VBE)-1)

IR = ICS (exp(VCB)-1)

IES is borse-emitter saturation currents
ICS is borse-collector saturation currents

V1=KT K=1.381×10-23 V/K [Boltzmann's Constant]

9=1.6 ×10-106 T=temp in kelvin

BF = dF/rdf / BR = dR/rdR

Where \$\beta is large synal forward current gain of CE configuration | \$\beta_{\beta}\$ is large signal current goun of the CE configuration

dr = BF/1+BF; dr = BP/1+BR

Ic = XFXIF-IR

IE = -IF + XXIR

IB= (1-2F) IF + (1-2F) IR

dr & dr — depend on doping cone and current purchan depths

Is = Is x A

Is: transport saturation current density

A: area of emitter.

Observation table with graphs Input characteristics

	Collector-Em	itter Voltage V
Serial No.	Base-Emitter Voltage V	Base Current(μA)
1	0.02000	2.058
2	0.1400	2.443
3	0.2800	2.984
4	0.4400	3.750
5	0.5800	4.580
6	0.7200	5.594
7	0.8400	6.640
8	0.8800	7.031
9	1.020	8.587
10	1.160	10.49
11	1.280	12.45
12	1.460	16.10
13	1.600	19.67
14	1.720	23.34

Serial	Collector-Emitter Voltage 2.000 V	
No.	Base-Emitter Voltage V	Base Current(μA)
1	0.02000	2.058
2	0.04000	2.118
3	0.1800	2.586
4	0.3000	3.070
5	0.3800	3.442
6	0.4400	3.750
7	0.5200	4.204
8	0.5400	4.326
9	0.6000	4.713
10	0.6600	5.135
11	0.7600	5.923
12	0.8400	6.640
13	0.9400	7.660
14	1.060	9.092

Contal	Collector-Emi	itter Voltage V
Serial No.	Base-Emitter Voltage V	Base Current(μA)
1	0.02000	2.058
3	0.1000	2.307
3	0.2200	2.739
4	0.3200	3.159
5	0.4400	3.750
6	0.5800	4.580
7	0.7200	5.594
8	0.8200	6.453
9	0.9800	8.110
10	1.100	9.627
11	1.180	10.79
12	1.280	12.45
13	1.440	15.65
14	1.540	18.05

Output Characteristics

EXPERIMENTAL TABLE		
Cardal	Base-Current 14.92 μΑ	
Serial No.	Collector-Emitter Voltage V	Collector Current mA
1	0.1000	3.290
	0.3000	16.79
3	0.5000	26.63
4	1.000	43.88
5	1.500	52.16
6	1.900	55.10
7	2.600	56.99
8	3.400	57.49
9	3.800	57.56
10	4.300	57.60
11	4.900	57.61
12	5.400	57.62

57.62

5.700

	,	
	Base-Current	
Serial	20.43	μΑ
No.	Collector-Emitter Voltage V	Collector Current mA
1	0.1000	9.202
2	0.5000	42.66
3	0.9000	66.13
4	1.400	81.74
5	1.900	88.28
6	2.500	91.09
7	3.000	91.87
8	3.400	92.12
9	3.700	92.21
10	4.100	92.27
11	4.600	92.31
12	5.000	92.32
13	5.200	92.32

Conclusion and Summary

- 1. Upon increasing the base current in the output characteristics, the number of readings was few beyond 2mA.
- 2.The Ib vs Vbe plot in input characteristics looks pretty much like the diode curve as the BE junction behaves as p-n junction without getting much affected by the other junction.
- 3.As Ib increases, collector current also increases in output characteristics.
- 4.In Ib vs Vbe plot in input characteristics, as cutoff point shifts right on increasing Vce.

PART 3 AIM

After this experiment, we will have learnt,

- 1. Calculate gain factor for CE amplifier circuit at various frequencies and compare them
- 2. Frequency response of a CE amplifier circuit.

Circuit diagram

Theory with equations

 $T = B \quad Y_0 = V_1$

$$g_m = \frac{I_{CB}}{V_{Th}} / \delta_m = \frac{\beta}{g_m} / \delta_0 = \frac{V_A}{I_C}$$

Operation
This configuration has both voltage and current amplification of the configuration has both voltage and current amplification of the configuration of the configuration

By pass Capacitor

RE (emittor resistance) in required to obtain the DC Q-point

RE (emittor resistance) in required to obtain the DC Q-point

RE (emittor resistance) in required to obtain the DC Q-point

RE (emittor resistance) in required to obtain the DC Q-point

RE (emittor resistance) in required to obtain the DC Q-point

RE (emittor resistance) in required to obtain the DC Q-point

RE (emittor resistance) in required to obtain the DC Q-point

RE (emittor resistance) in required to obtain the DC Q-point

RE (emittor resistance) in required to obtain the DC Q-point

RE (emittor resistance) in required to obtain the DC Q-point

RE (emittor resistance) in required to obtain the DC Q-point

Resistance in the Resistance in resistance

Frequency response of CE Amplifier

Emitter bypass capacitors are wood to short circuit the emitter resister and thus increases the gain at high frequency. The coupling and bypass capacitors cause the fall of the signal in the low frequency response of the amplifier because impedance of the capacitors is large causing them to behave as open circuit. In the mid-frequency range, large capacitors are effectively short circuits and stray capacitors are open circuits, so that no capacitance appears in mid frequency grange. Hence, the mid band frequency gain is maximum. At high frequencies, the bypass and coupling capacitors are replaced by short circuits. The stray capacitors and Isansistor then determine the response.

Rin is medium - independent of R_

$$A_{m} = \frac{V_{0}}{V_{S}} = -\beta(\mathcal{C}_{E}) \frac{R_{C} | R_{L}}{R_{B} + \mathcal{C}_{\Pi}} \frac{R_{B}}{R_{B} + \mathcal{C}_{\Pi}} \frac{R_{B} | \mathcal{C}_{\Pi}}{R_{B} + \mathcal{C}_{\Pi}}$$

(mid band gain) - The circuit for deriving this Equation is the figure below

small signal hyperid TT model

model for calculating midband gain by short chrouting. all external capacitors.

At high frequency, equivalent of CE amplifies is as shown,

Cu: collector base capacitance

CIT: emitter base capacitance

of: resistance of material of base region and
an internal base termal B

Expected of gain vs frequency

Observation table with graphs

Serial No.	Frequency(Hz)	Magnitude(dB)
1	50	10.599
2	80	14.39246
3	126	18.25316
4	264	24.2756
5	605	29.9652
6	1827	33.6182
7	4186	34.2308
8	9590	34.358
9	13862	34.3738
10	41862	34.3864
11	66347	34.3864
12	126421	34.3824
13	240891	34.367
14	418620	34.3238
15	874621	34.1124
16	1386180	33.7256
17	2641310	32.3504
18	3817860	30.8644
19	6050900	28.2154
20	9590030	24.8974
21	16665600	20.437
22	21969500	18.11174
23	28961400	15.75542
24	38178600	13.38066
25	50329200	10.99534

Conclusion and Observation

- 1.The gain obtained at low frequencies is less as the capacitors offer a high impedance, at high frequencies, the gain is still less as all capacitors are short circuited and the effect of stray capacitors if observed. But at middle frequency maximum gain is obtained as there are no stray capacitor effects interfering much
- 2. The bypass capacitor is necessary to stabilize the DC Q point but it reduces the gain at high frequencies, therefore a bypass capacitor shorts it at high frequencies and the gain increases.
- 3. The coupling capacitors block the DC part of the impure AC signal so that a pure sinusoid/AC signal is obtained at the output.
- 4. The biasing is done wisely such that the Q point is obtained at a point across which the ac variations refine confined within the active region only.
- 5.In the Vlabs experiment page, the Draw circuit part of the experiment has a linear scale of frequency on x axis whereas the other page provides a graph where the x axis is a log scale of frequency.