

Universidade Federal do Pará Instituto de Tecnologia Faculdade de Engenharia de Computação e Telecomunicações Sistemas de Controle Experiência 4 (Projeto por alocação de pólos) com $MatLab^{\bigodot}$ Prof a Adriana Castro

Danilo Souza - 10080000801

August 5, 2013

Contents

1	Experimento 1	3
2	Experimento 2	5
3	Experimento 3	8
4	Experimento 4	10

List of Figures

1.1	LGR origial do experimento 1	3
1.2	LGR com adição de umz zero do experimento 1	3
1.3	LGR com adição de um pólo do experimento 1	4
2.1	LGR da Equação (6)	5
2.2	LGR da Equação (7)	6
2.3	LGR da Equação (8)	6
2.4	LGR da Equação (9)	7
2.5	LGR da Equação (10)	7
3.1	Ganho do experimento 3	8
3.2	Resposta do sistema simulado em malha fechada	9
4.1	LGR e ganho do experimento 4	0
4.2	Resposta do sistema simulado em malha fechada	0

Experimento 1

As Figuras 1.1, 1.2 e 1.3 mostram, respectivamente, o LGR de $G(s) = \frac{2}{s(s+1)}$, o LGR de $G(s) = \frac{2}{s(s+1)}$ e o LGR de $G(s) = \frac{2}{s(s+1)(s+2)}$. Quando um zero é adiconado ao LGR, o sistema permanece estável para qualquer valor positivo de K ($K \ge 0$). Quando um pólo é adicionado ao LRG, conforme o servado abaixo, o LGR entra para o plano da instalbilidade (SPD), fazendo com que o valor de K possua uma faixa limitada de estabilidade que neste caso é $K \le 3$.

Figure 1.1: LGR origial do experimento 1

Figure 1.2: LGR com adição de umz zero do experimento 1

Figure 1.3: LGR com adição de um pólo do experimento $1\,$

Experimento 2

As Figuras 2.1, 2.2, 2.3, 2.4 e 2.5 mostram, respectivamente, os LGR's das funções de transferências (6), (7), (8), (9), (10) plotados no $MatLab^{\textcircled{\tiny 0}}$.

Figure 2.1: LGR da Equação (6)

Figure 2.2: LGR da Equação (7)

Figure 2.3: LGR da Equação (8)

Figure 2.4: LGR da Equação (9)

Figure 2.5: LGR da Equação (10)

Experimento 3

Usando a tabela fornecida podemos encontra o valor de R para $T_s = 3$. A Figura 3.1 mostra o valor do ganho para o valor de R encontrado.

$$T_{s_{5\%}} = -\frac{3}{R} \to R = -1$$

A Figura 3.2 mostra a resposta do sistema simulado em malha fechada, o valor encontrado foi $T_s=3,024$, confirmando o tempo de resposta desejado $T_{s_{desejado}}=3$.

Figure 3.1: Ganho do experimento 3

Figure 3.2: Resposta do sistema simulado em malha fechada

Experimento 4

A Figura 4.1 mostra o LGR e o ganho para que o sistema $G(s) = \frac{2}{s(s+1)}$ tenha sobre-sinal de 5% ($M_p = 0,05$). A Figura 4.2 mostra a resposta do sistema em malha fechada, o valor de encontrado foi $M_p = 0,49$ confirmando o valor desejado.

Figure 4.1: LGR e ganho do experimento 4

Figure 4.2: Resposta do sistema simulado em malha fechada