# AFTS - Ch2 - Ex15

## Thalles Quinaglia Liduares

2023-03-20

setwd('C:\\Program Files\\R\\FinancialData')

#### Upload data

data<-read.table('def.txt', header= TRUE)</pre>

#### Step 2: Transform the data into a time series object

 $ts_data \leftarrow ts(data[,4], start = c(1947,1), frequency = 4)$ 

ts\_data

| 00/2020, | 20.20 |        |                  |                  |                  |
|----------|-------|--------|------------------|------------------|------------------|
| ##       |       | Qtr1   | Qtr2             | Qtr3             | Qtr4             |
|          | 947   | 15.105 |                  | -                | 15.989           |
|          |       | 16.111 |                  |                  |                  |
| ## 1     | 949   | 16.531 | 16.350           | 16.256           | 16.272           |
| ## 1     | 950   | 16.222 | 16.286           | 16.630           | 16.950           |
| ## 1     | 951   | 17.582 | 17.690           | 17.700           | 17.896           |
| ## 1     | 952   | 17.879 | 17.913           | 18.119           | 18.172           |
| ## 1     | 953   | 18.172 | 18.206           | 18.276           | 18.316           |
| ## 1     | 954   | 18.375 | 18.392           | 18.425           | 18.477           |
| ## 1     | 955   | 18.566 | 18.644           | 18.783           | 18.973           |
| ## 1     | 956   | 19.165 | 19.276           | 19.524           | 19.599           |
| ## 1     | 957   | 19.876 | 20.012           | 20.131           | 20.133           |
| ## 1     | 958   | 20.355 | 20.419           | 20.553           | 20.656           |
| ## 1     | 959   | 20.704 | 20.704           | 20.753           | 20.840           |
| ## 1     | 960   | 20.931 | 21.004           | 21.084           | 21.146           |
| ## 1     | 961   | 21.192 | 21.237           | 21.303           | 21.375           |
| ## 1     | 962   | 21.501 | 21.533           | 21.585           | 21.653           |
| ## 1     | 963   | 21.702 | 21.745           | 21.788           | 21.951           |
| ## 1     | 964   | 22.016 | 22.073           | 22.160           | 22.270           |
| ## 1     | 965   | 22.383 | 22.480           | 22.563           | 22.707           |
| ## 1     | 966   | 22.855 | 23.048           | 23.291           | 23.505           |
| ## 1     | 967   |        | 23.741           | 23.975           |                  |
| ## 1     |       |        | 24.763           | 25.008           | 25.362           |
| ## 1     | 969   | 25.626 | 25.958           | 26.332           | 26.675           |
| ## 1     | 970   | 27.056 | 27.428           | 27.647           | 28.004           |
|          |       | 28.425 | 28.798           | 29.089           | 29.322           |
| ## 1     |       |        | 29.959           |                  | 30.652           |
|          |       | 31.020 |                  |                  |                  |
| ## 1     |       | 33.376 |                  |                  |                  |
|          |       |        |                  | 38.313           |                  |
|          |       |        |                  | 40.385           |                  |
|          |       |        | 42.401           | 42.917           | 43.852           |
|          |       |        | 45.321           | 46.072           |                  |
|          |       |        | 49.058           | 50.115           |                  |
|          |       |        | 53.349           | 54.560           |                  |
|          |       |        | 58.598           | 59.641           | 60.729           |
|          |       |        | 62.302           | 63.182           | 63.863           |
|          |       |        | 64.853           | 65.517           | 66.012<br>68.385 |
|          |       |        | 67.414<br>69.550 | 67.953<br>69.838 |                  |
|          |       |        | 71.015           | 71.426           |                  |
|          |       |        | 72.882           | 73.425           |                  |
|          |       |        | 75.300           | 76.141           | 76.712           |
|          |       |        | 78.324           | 78.879           | 79.425           |
|          |       |        | 81.311           | 82.031           | 82.646           |
|          |       |        | 84.165           | 84.762           |                  |
|          |       |        | 86.190           | 86.580           |                  |
|          |       |        | 88.190           | 88.570           |                  |
|          |       |        | 89.954           | 90.530           | 90.952           |
|          |       |        | 91.859           | 92.289           | 92.733           |
|          |       |        | 93.659           | 93.951           | 94.450           |
|          |       |        | 95.206           |                  |                  |
|          |       |        | 96.249           | 96.600           |                  |
|          |       |        | 97.674           | 98.013           | 98.432           |
| ## 2     |       |        | 99.745           | 100.259          | 100.666          |
|          |       |        |                  |                  |                  |

```
## 2001 101.478 102.252 102.675 103.191
## 2002 103.568 103.938 104.328 104.907
## 2003 105.724 106.062 106.611 107.190
## 2004 108.175 109.178 109.793 110.671
## 2005 111.765 112.346 113.468 114.525
## 2006 115.533 116.317 117.107 117.732
## 2007 118.956 119.547 119.997 120.743
## 2008 121.508 121.890 123.056 123.244
```

#### Step 3: Plot the time series

```
plot(ts_data, main = "Quarterly GDP Implicit Price Deflator",
    xlab = "Year", ylab = "Price Deflator")
```

## **Quarterly GDP Implicit Price Deflator**



#### Check for stationarity

```
library(tseries)

## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo

adf.test(ts_data)
```

```
##
## Augmented Dickey-Fuller Test
##
## data: ts_data
## Dickey-Fuller = -2.6022, Lag order = 6, p-value = 0.3223
## alternative hypothesis: stationary
```

The p-value of the ADF test is 0.3223, which suggests that the series is not stationary.

Apply differencing to make the series stationary

```
diff_ts_data <- diff(ts_data, differences = 1)</pre>
```

Plot the ACF and PACF to determine the order of the ARIMA model

```
library(forecast)
ggtsdisplay(diff_ts_data)
```



Fit the ARIMA model to the time series

```
fit <- auto.arima(ts_data, ic = "bic")
summary(fit)</pre>
```

```
## Series: ts_data
## ARIMA(0,2,1)
##
## Coefficients:
             ma1
##
##
         -0.5862
          0.0486
## s.e.
##
## sigma^2 = 0.02873: log likelihood = 87.86
## AIC=-171.72
                 AICc=-171.67
##
## Training set error measures:
##
                         ME
                                  RMSE
                                             MAE
                                                        MPE
                                                                 MAPE
                                                                            MASE
## Training set 0.003095975 0.1684768 0.1243017 0.01220345 0.285456 0.07058748
##
## Training set -0.04402516
```

#### Check the residuals of the fitted model for white noise

checkresiduals(fit)



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,2,1)
## Q* = 17.801, df = 7, p-value = 0.0129
##
## Model df: 1. Total lags used: 8
```

#### Make forecasts for the next few quarters

```
fc<-forecast(fit, h = 4)
```

#### Plot the forecasts

```
autoplot(fc, main = "Forecast of Quarterly GDP Implicit Price Deflator",
    xlab = "Year", ylab = "Price Deflator")
```

## Forecast of Quarterly GDP Implicit Price Deflator

