Relations

Previous Lecture

- Venn diagrams
- Operations of
 - Intersection
 - Union
 - Symmetric difference
 - Complement
 - Difference

HAVE YOU BEEN PLAYING AROUND WITH GENETIC

Relations

`Relation', the connection between things or people

Between people, family relations

`to be brothers' x is a brother of y

`to be older' x is older than y

`to be parents' x and y are parents of z

Between things, numerical relations

`to be greater than' x < y on the set of real numbers

`to be divisible by' x is divisible by y on the set of integers

Between things and people, legal relations

`to be an owner' x is an owner of y

Cartesian Product

• The Cartesian product of sets A and B, denoted by $A \times B$, is the set of all ordered pairs of elements from A and B.

$$A \times B = \{ (a,b) \mid a \in A, b \in B \}$$

- The elements of the Cartesian product are ordered pairs. In particular, (a,b) = (c,d) if and only if a = c and b = d.
- If sets are thought of as `1-dimensional' objects, Cartesian products are 2-dimensional

Cartesian Product of More Than Two Sets

Instead of ordered pairs we may consider ordered triples, or, more general, k-tuples.

```
(a,b,c), an ordered triple
(a,b,c,d), an ordered quadruple
(a_1,a_2,...,a_k) a k-tuple
```

Triples, quadruples, and k-tuples are elements of Cartesian products of 3, 4, and k sets, respectively

$$A \times B \times C = \{ (a,b,c) \mid a \in A, b \in B, c \in C \}$$

 $A \times B \times C \times D = \{ (a,b,c,d) \mid a \in A, b \in B, c \in C, d \in D \}$
 $A_1 \times A_2 \times ... \times A_k = \{ (a_1,a_2,...,a_k) \mid a_1 \in A_1, a_2 \in A_2,...,a_k \in A_k \}$

Cartesian Product of More Than Two Sets

Cartesian product of 3 sets can be viewed as a `3-dimensional' set

Cartesian product of more than 3 sets is a multi-dimensional set

Cardinality of Cartesian Product

Theorem.

$$|A \times B| = |A| \cdot |B|$$

 $|A_1 \times A_2 \times ... \times A_k| = |A_1| \cdot |A_2| \cdot ... \cdot |A_k|$

Proof

When creating an ordered pair (a,b), to each of the |A| elements of A we can add any of the |B| elements of B. Totally, we have $|A| \cdot |B|$ ordered pairs.

Q.E.D.

Binary Relations

• A binary relation from set A to set B is any subset of $A \times B$. If A = B then we say that the relation is on the set A

```
'x is a brother of y' \subseteq People \times People 
'x is older than y' \subseteq People \times People
```

'x is an owner of y' \subseteq People \times Properties

 $\mathbf{x} < \mathbf{y}'$ $\subseteq \mathbb{R} \times \mathbb{R}$

`x divides y' $\subseteq \mathbb{Z} \times \mathbb{Z}$

More Relations (cntd)

- Binary relations can be generalized to subsets of Cartesian products of more than two sets.
- Any subset of the Cartesian product of 3 sets is called a ternary relation
 - `x and y are parents of z' is a subset of People \times People
- Any subset of the Cartesian product of k sets is called a k-ary relation

$$\{(a_1,a_2,\ldots,a_k)\mid a_1+a_2+\ldots+a_k=3\}$$
 is a subset of $\mathbb{R}\times\mathbb{R}\times\ldots\times\mathbb{R}$

Sets, Relations, and Predicates

Observe that sets, relations and predicates are essentially the same object.

Unary predicate

P(x)

Set

$$A = \{ x \mid P(x) \}$$

Binary predicate

P(x,y)

Binary relation

$$R = \{ (x,y) \mid P(x,y) \}$$

Ternary predicate

P(x,y,z)

Ternary relation

$$R = \{ (x,y,z) \mid P(x,y,z) \}$$

Relational Databases

A relational database is a collection of tables like

No.	Name	Student ID	Supervisor	Thesis title
1.	Bradley Coleman	30101234	Petra Berenbrink	Algebraic graph theory
•••	•••	•••	•••	•••

A table consists of a schema and an instance ...

The instance of this table is a 5-ary relation, a subset of the Cartesian product

 $\mathbb{Z}^+ \times \text{Names} \times \text{8-strings_of_digits} \times \text{Names} \times \text{Meaningful_Sentences}$

Describing Binary Relations

A list of pairs.

Among 6 people, Mark, Jerry, John, Randy, Aaron, and Ralph, Mark and Randy are brothers, and also John, Aaron and Ralph are brothers

Describing Binary Relations (cntd)

Matrix of a relation.

Matrix of a relation $R \subseteq A \times B$ is a rectangular table, rows of which are labeled with elements of A (in any but fixed order), and columns are labeled with elements of B. We write 1 in the intersection of row a and column b if and only if $(a,b) \in R$; otherwise we write 0.

Brotherhood		Mark	Jerry	John	Randy	Aaron	Ralph
	Mark	0	0	0	1	0	0)
	Jerry	0	0	0	0	0	0
	John	0	0	0	0	1	1
	Randy	1	0	0	0	0	0
	Aaron	0	0	1	0	0	1
	Ralph	0	0	1	0	1	0

Describing Binary Relations (cntd)

Graph of a relation

Graph of a relation $R \subseteq A \times B$ consists of two sets of vertices labeled by elements of A and B. A vertex a is connected to a vertex b with an edge (arc) if and only if $(a,b) \in R$.

Mark
Jerry
John
Randy
Aaron
Ralph
Mark
Jerry
Aarron
Randy
Randy
Randy
Ralph

If A = B then we may use only one set of vertices

Cartesian Product, Intersection and Union

Theorem. For any sets A,B,C

(1)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

(2)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

(3)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

(4)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

Proof (of (2))

$$A \times (B \cup C) = \{ (a,b) \mid a \in A \land b \in B \cup C \}$$

$$= \{ (a,b) \mid a \in A \land (b \in B \lor b \in C) \}$$

$$= \{ (a,b) \mid (a \in A \land b \in B) \lor (a \in A \land b \in C) \}$$

$$= \{ (a,b) \mid a \in A \land b \in B \} \cup \{ (a,b) \mid a \in A \land b \in C \}$$

$$= (A \times B) \cup (A \times C)$$
Q.E.D.

Homework

Exercises from the Book:

No. 1, 4, 5a (page 252)

- Prove part (3) of the theorem on slide 13-14