BAB I PENDAHULUAN

1.1 Latar Belakang

Pabrik kimia merupakan susunan atau rangkaian berbagai unit pengolahan yang terintegrasi satu sama lain secara sistematik dan rasional. Tujuan pengoperasian pabrik kimia secara keseluruhan adalah mengubah bahan baku menjadi produk yang lebih bernilai guna. Dalam pengoperasiannya pabrik akan selalu mengalami gangguan (disturbance) dari lingkungan eksternal. Selama beroperasi, pabrik diharuskan mempertimbangkan aspek keteknikan, keekonomisan, dan kondisi sosial agar tidak terlalu signifikan terpengaruh oleh perubahan-perubahan eksternal tersebut.

Agar proses selalu stabil dibutuhkan instalasi alat-alat pengendalian. Alat-alat pengendalian dipasang dengan tujuan menjaga keamanan dan keselamatan kerja, memenuhi spesifikasi produk yang diinginkan, menjaga peralatan proses dapat berfungsi sesuai yang diinginkan dalam desain, menjaga agar operasi pabrik tetap ekonomis, dan memenuhi persyaratan lingkungan.

Untuk memenuhi persyaratan diatas diperlukan pengawasan (monitoring) yang terus menerus terhadap operasi pabrik kimia dan intervensi dari luar (external intervention) untuk mencapai tujuan operasi. Hal ini dapat terlaksana melalui suatu rangkaian peralatan (alat ukur, pengendali, dan komputer) serta intervensi manusia (plant managers dan plants operators) yang secara bersama membentuk control system. Dalam pengoperasian pabrik diperlukan berbagai prasyarat dan kondisi operasi tertentu sehingga diperlukan usaha-usaha pemantauan terhadap kondisi operasi pabrik dan pengendalian proses supaya kondisi operasinya stabil (Liu et al., 2023).

1.2 Rumusan Masalah

Dalam keberjalanan suatu proses produksi di industri dibutuhkan penjagaan untuk kualitas dan kuantitas dari suatu proses tersebut. Penjagaan

tersebut merupakan suatu sistem yang disebut sebagai pengendalian proses. Pengendalian proses dilakukan untuk menekan atau mengurangi *human error* dan meningkatkan efisiensi dalam keakuraratan reaksi sebuah alat yang bekerja secara otomatis terhadap suatu gangguan dibandingkan dengan alat yang digerakkan secara manual. Maka dari itu diperlukan pemahaman dalam pengoperasian sistem pengendali dan variasi dari segi *proportional* (P), *Proportional Integral* (I), dan *Proportional Integral Derivative* (PID).

1.3 Tujuan Praktikum

- 1. Mampu mengoperasikan suatu proses dengan sistem pengendali.
- 2. Mampu mengevaluasi proses dengan variasi sistem pengendali umpan balik atau feedback controller (Proportional (P), Proportional Integral (I), dan Proportional Integral Derivative (PID).
- 3. Mampu mengkaji grafik hubungan antara *level* dan *elapsed time* terhadap *set point*, interval data, PID, dan variasi *oriface*.

1.4 Manfaat Praktikum

- 1. Mahasiswa diharapkan mampu mengetahui pengoperasian suatu proses dengan sistem pengendali.
- 2. Mahasiswa diharapkan mampu mengevaluasi proses dengan variasi sistem pengendali umpan balik atau *feedback controller* (*Proportional* (P), *Proportional Integral* (I), dan *Proportional Integral Derivative* (PID).
- 3. Mahasiswa diharapkan mampu mengkaji grafik hubungan antara *level* dan *elapsed time* terhadap *set point*, interval data, PID, dan variasi *oriface*.

Process

BAB II TINJAUAN PUSTAKA

2.1 Pengendalian Proses

Sistem pengendalian adalah susunan komponen komponen fisik yang dirakit sedemikian rupa sehingga berfungsi untuk mengendalikan sistem itu sendiri atau sistem lain yang berhubungan dengan sebuah proses baik dalam keadaan *open loop* atau *close loop* (Bennet, 1993). Dalam pengertian lain sistem pengendalian adalah suatu proses/pengendalian terhadap suatu atau beberapa besaran sehingga berada pada suatu harga atau *range* tertentu. Hampir semua proses dalam dunia industri membutuhkan peralatan-peralatan otomatis untuk mengendalikan parameter—parameter prosesnya. Otomatisasi tidak saja diperlukan demi kelancaran operasi, keamanan, ekonomi, maupun mutu produk, tetapi lebih merupakan kebutuhan pokok. Dalam sebuah industri tidak mungkin jika tidak melibatkan pengendalian proses, contohnya pengendalian disuatu proses pengilangan minyak.

Ada banyak parameter yang harus dikendalikan di dalam suatu proses. Di antaranya yang paling umum adalah tekanan (*pressure*) di dalam sebuah *vessel* atau pipa, aliran (*flow*) didalam pipa, suhu (*temperature*) di unit proses seperti *heat exchanger*, atau permukaan zat cair (*level*) disebuah tangki (Dong *et al.*, 2024). Selain itu, ada beberapa parameter lain diluar keempat parameter di atas yang cukup penting dan juga perlu dikendalikan karena kebutuhan spesifik proses, diantaranya: pH di industri petrokimia, *water cut* (BS & W) di ladang minyak mentah, warna produk di suatu fasilitas pencairan gas (NGL) dan sebagainya.

Process

Pada akhirnya pengendalian otomatis memegang peranan penting dan memberikan kemudahan dalam mendapatkan performansi dalam suatu sistem dinamik, mempertinggi kualitas, menurunkan biaya produksi, dan mempertinggi laju produksi, serta meniadakan pekerjaan-pekerjaan rutin yang harus dilakukan oleh manusia. Namun, semua peran operator manual digantikan oleh sebuah alat yang disebut *controller*. Tugas membuka dan menutup *valve* tidak lagi dikerjakan oleh operator tetapi atas perintah *controller*. Untuk keperluan pengendalian otomatis, *valve* harus dilengkapi dengan alat yang disebut *actuator* sehingga unit *valve* yang sekarang menjadi unit yang disebut *control valve*. Semua peralatan pengendalian inilah (*controller* dan *control valve*) yang disebut sebagai instrumentasi pengendalian proses.

2.2 Pengendalian Proporsional (P)

Pengendalian proposional merupakan suatu pengendali yang isyarat keluarannya (p(t)) proporsional terhadap kesalahan (e(t)), yaitu beda antara *set point*-nya dengan hasil pengukuran yang secara matematis dapat dinyatakan sebagai berikut:

$$\Delta \mathbf{Q}_{output} = \mathbf{Kc}_{Error} \tag{2.1}$$

Berdasarkan pendekatan tersebut dimana Kc adalah *proportional gain* yang menunjukkan *responsiveness controller* terhadap proses *setting up*. *Proportional gain* dapat diatur untuk membuat keluaran pengendali berubah sesensitif yang diperlukan terhadap penyimpangan antara *set point* dengan variabel terkendali.

Pengendali proporsional memiliki 2 parameter yaitu: pita proporsional (*proportional bend*) dan konstanta proporsional. Daerah kerja efektif *controller* dicerminkan oleh *proportional bend*, sedangkan konstanta proporsional menunjukkan nilai faktor penguatan terhadap sinyal kesalahan, KP. Hubungan antara *proportional bend* (PB) dengan konstanta *proportional* (KP) ditunjukkan sebagai berikut:

$$PB = (1/Kc) \times 100\% \tag{2.2}$$

Sistem pengendalian ini merupakan bentuk sistem pengendalian proses yang sangat sederhana dengan respon yang sangat cepat terhadap set point dan gangguan pada proses, tetapi mempunyai karakteristik besaran steady state error yang besar.

Ciri-ciri pengontrol proporsional:

- Apabila nilai Kc kecil, pengontrol proporsional hanya mampu melakukan koreksi kesalahan yang kecil sehingga akan menghasilkan respon sistem yang lambat (menambah rise time).
- Apabila nilai Kc dinaikkan, respon/tanggapan sistem akan semakin cepat mencapai keadaan mantapnya (mengurangi *rise time*).
- 3. Namun, jika nilai Kc diperbesar sehingga mencapai harga yang berlebihan, akan mengakibatkan sistem bekerja tidak stabil atau respon sistem akan berosilasi.
- Nilai Kc dapat diatur sedemikian sehingga mengurangi steady state error, tetapi tidak menghilangkannya.

Pengendalian Proportional Integral (PI) 2.3

Bentuk keluaran pengendali tergantung pada integral dari kesalahan isyarat pada seluruh waktu, dimana:

$$\Delta Q_{\text{output}} = \text{Ki} \int i. \, dt$$
 (2.3)

$$\Delta Q_{\text{output}} = \text{Ki} \int i. \, dt$$

$$\text{atau}$$

$$p(t) = \bar{p} + \frac{1}{\tau_i} \int_0^t e(t) \, dt \qquad (2.4)$$

Ki = Integral gain atau "reset rate" (repeat/minute)

= Waktu integral atau waktu reset au_1

Pengendalian integral dikenal pula sebagai "reset" yang mempunyai respon yang relatif lambat tapi cukup efektif untuk pengendalian proses yang berlangsung cepat, mengandung unsur gangguan yang besar dan didominasi oleh adanya sifat deadtime pada transportasi produk. Pengaruhnya terhadap steady state error relatif kecil. Pengendalian ini biasa digunakan untuk mengurangi adanya offset antara set point dan process variable.

2.4 Pengendalian Proportional Integral Derivative (PID)

Derivative controller dikenal dengan aksi kecepatan, pre-act, atau pengendali antisipatif. Fungsinya adalah mengantisipasi kelakuan isyarat kesalahan yang akan terjadi dengan memperhatikan kecepatan perubahan. Derivatif kontrol ini umumnya dikenal juga sebagai "rate". Model persamaan yang digunakan adalah:

$$\Delta \mathbf{Q}_{output} = \mathbf{Kd} \frac{\mathbf{de}}{\mathbf{dt}}$$
 (2.5)

$$p(t) = \overline{p} + \tau_D \frac{de}{dt}$$
 (2.6)

Kd = time constant

 τ_D = waktu derivative

Model *derivative* tidak pernah berdiri sendiri tetapi selalu bersama proporsional atau proporsional integral. Dalam pengendalian PID ada tiga parameter yang dapat diatur yaitu Kc, τ_i , dan τ_D . Dalam kontrol PID sendiri perlu dihindari terjadinya *derivative kick* (gangguan yang besar) dengan mengatur parameter parameter yang ada.

Process

Gambar 2.1 PCT50 level control

PCT50 adalah proses kontrol level yang menggunakan air sebagai fluida kerja untuk keamanan dan kenyamanan penggunaan. Air yang disimpan di tangki penampung bawah ditransfer ke bejana proses atas melalui pompa sentrifugal kecepatan variabel yang terendam. Konektor pelepas cepat memungkinkan tabung *outlet* pompa fleksibel untuk dilepaskan untuk membantu *priming* pompa setelah mengisi tangki bawah dengan air. Pengaturan saluran masuk vertikal dalam bejana proses memungkinkan visualisasi air yang masuk ke bejana, terlepas dari ketinggian air dan katup satu arah yang tidak terpisahkan mencegah air mengalir kembali ke bejana penampung ketika kecepatan pompa dikurangi atau dihentikan. Katup bola sebaris (CV1) di atas konektor pelepas cepat memungkinkan aliran air yang masuk ke bejana proses divariasikan, tidak tergantung pada kecepatan pompa, agar sesuai dengan demonstrasi tertentu.

Ketinggian air di dalam bejana proses diukur dengan menggunakan sensor tekanan elektronik yang dipasang di tepi bejana. Satu sisi sensor tekanan

terhubung ke tabung di dalam bejana proses dan sisi lainnya terbuka ke atmosfer sehingga memungkinkan tekanan di dalam bejana proses diukur secara relatif terhadap atmosfer. Oleh karena itu, sensor ini mengukur tingkat air di dalam bejana proses. Level ketinggian juga ditunjukkan pada skala di sisi bejana proses. Air mengalir dari bejana proses kembali ke tangki penampung bawah melalui dua saluran keluar di dasar bejana proses. Aliran melalui saluran keluar utama bersifat kontinyu. Aliran melalui *outlet* kedua dapat dijalankan dan dihentikan oleh katup solenoid (SOL) dengan kendali jarak jauh. Kedua *outlet* dilengkapi dengan katup bola yang dioperasikan secara manual (CV2 dan CV3) yang memungkinkan aliran air divariasikan secara terus menerus agar sesuai dengan demonstrasi tertentu. Kedua *outlet* juga dilengkapi dengan lubang yang dapat diubah-ubah (3 dan 5) yang memungkinkan aliran ditetapkan pada ukuran yang telah ditentukan. Ukuran lubang diubah dengan membuka tutup plastik yang berisi lubang dan menggantinya dengan alternatif yang diperlukan. Pemasangannya menggunakan segel cincin 'O' dan hanya membutuhkan pengencangan dengan tangan. Ukuran alternatif lubang disimpan dalam lubang berulir di bagian depan pelat dasar saat tidak digunakan.

Overflow dalam bejana proses berfungsi mengembalikan air ke tangki penampung sehingga pengisian berlebih pada bejana proses saat penggunaan dapat dicegah. Sensor tekanan yang mengukur level, pompa sentrifugal, dan katup solenoida terhubung ke *electrical interface* yang menggabungkan pengkondisian sinyal yang diperlukan, sehingga proses dapat dioperasikan langsung dari PC menggunakan satu port USB. Perangkat lunak komputer yang disertakan dengan PCT50 memungkinkan kontrol proses level dan pencatatan data respons menggunakan PC. Opsi lainnya, perangkat lunak ini memungkinkan pencatatan data hanya saat mengoperasikan proses dari jarak jauh menggunakan pengontrol PID. Ketika diisi dengan air, PCT50 mandiri hanya membutuhkan pasokan listrik utama ke konverter DC *in-line* dan koneksi ke PC melalui port USB. Unit ini dikeringkan menggunakan pembuangan air yang terletak di bagian belakang.

BAB III

METODE PRAKTIKUM

3.1 Rancangan Praktikum

3.1.1 Rancangan Praktikum

Gambar 3.1 Rancangan praktikum

3.1.2 Penetapan Variabel

3.2 Bahan dan Alat Yang Digunakan

3.2.1 Bahan

Aquadest 8 Liter

3.2.2 Alat

PCT 50 Level Control

3.3 Gambar Alat

Gambar 3.2 Alat PCT 50 level control dan bagian-bagiannya

- (1) Upper Process Vessel (9) Quick Release Connector (10) Centrifugal Pump (3) Manual Discharge Port (11) Water Discharge
 - (4) Electrical interface (12) Alternative sizes of Orifice

(5)	Solenoid Discharge Port	CV1	Control Valve 1
(6)	Overflow	CV2	Control Valve 2
(7)	Inlet	CV3	Control Valve 3
(8)	Integral non-return valve	SOL	Solenoid Drain Valve

3.4 Prosedur Praktikum

3.4.1 Installing Software Armfield Level Control

- 1. *Install driver* terlebih dahulu dengan pergi ke *this PC*, klik kanan lalu pilih *properties* kemudian pilih *device manager*.
- 2. Masukkan USB ke laptop, setelahnya akan muncul COM 5 dengan tanda seru. Pastikan PCT-50 telah menyala dengan indikator lampu hijau yang menyala.
- 3. Hilangkan tanda seru dengan meng-*update* atau memperbaharui *driver*. Cari folder PCT-50 lalu pilih ikon urutan kedua dari atas kemudian pilih *install* dengan mengikuti langkah–langkah pada *driver*. Laptop akan secara otomatis *restart* setelah proses *installing* selesai.
- 4. Pastikan USB terhubung dengan sempurna agar koneksi antara alat PCT-50 dengan laptop tidak terputus tiba–tiba. Pastikan juga saat hendak digunakan tidak dalam keadaan *scanning*.

3.4.2 Pelaksanaan Praktikum

- 1. Tancapkan kabel power alat pada sumber listrik;
- 2. Lakukan kalibrasi alat dengan prosedur sebagai berikut:
 - 1) Tutup katup keluaran CV2 di dasar bejana proses, lalu tuangkan sekitar 10 mm aquadest ke dalam bejana proses.
 - 2) Buka *outlet valve* CV2 dan biarkan aquadest mengalir dari bejana proses ke bak penampung sehingga bejana proses kosong.
 - 3) Pastikan bahwa katup penguras di bagian belakang tangki bak tertutup rapat, lalu isi tangki bak bagian bawah dengan aquadest bersih hingga kira-kira 30 mm di bawah lubang di bagian depan tangki.

- 4) Pastikan *flow control valve* CV1 benar-benar terbuka pada inlet bejana proses sehingga aquadest dapat mengalir ke bejana proses saat pompa sedang berjalan.
- 5) Pastikan katup keluaran CV2 terbuka penuh di dasar bejana proses untuk memungkinkan aquadest kembali ke tangki bak saat bejana proses terisi aquadest.
- 6) Pastikan katup keluaran CV2 terbuka penuh di dasar bejana proses untuk memungkinkan aquadest kembali ke tangki bak saat bejana proses terisi aquadest.
- 7) Pastikan katup CV3 terbuka penuh di atas *solenoid valve* SOL untuk mengalirkan *aquadest* kembali ke tangki bak saat *solenoid valve* terbuka dan bejana proses berisi aquadest.
- 8) Buka katup penguras untuk mengeluarkan air yang ada di tangki bak.
- 3. Membuka valve CV2 dan menutup katup penguras;
- 4. Isi tangki dengan *aquadest* sebanyak 8 liter;
- 5. Nyalakan komputer/laptop yang sudah terinstall software PCT-50;
- 6. Hidupkan pompa dan buka *selenoid valve* CV3 melalui *software* PCT-50;
- 7. Atur kecepatan pompa sesuai yang telah ditentukan;
- 8. Operasikan alat sesuai dengan variabel yang ditentukan;
- 9. Amati dan ambil data hasil praktikum sesuai dengan data yang tertera pada aplikasi PCT-50 (excel);
- 10.Setelah semua dilakukan, lakukan pembersihan alat dengan membuka katup penguras sehingga air pada tangki terkuras keluar, pastikan air pada tangki dan bejana proses benar-benar hilang;
- 11.Setelah dibersihkan dan dikeringkan, alat dapat dimatikan secara bertahap.

Process

Gambar 3.3 Langkah-langkah penggunaan software Armfield PCT50

Process Laboratory

DAFTAR PUSTAKA

- Bennet, S. (1993). Development of the PID controller. *IEEE Control Systems*, 13(6), 58–62.doi:10.1109/37.248006
- Dong, W., He, F., Wang, J., Wu, N., & Li, X. (2024). Modeling and numerical analysis of PID-controlled phase-change transpiration cooling. *International Journal of Thermal*Sciences, 196, 108729. https://doi.org/10.1016/j.ijthermalsci.2023.108729
- Liu, H., Yu, Q., & Wu, Q. (2023). PID control model based on back propagation neural network optimized by adversarial learning-based grey wolf optimization. *Applied Sciences*, 13(8), 4767. https://doi.org/10.3390/app13084767
- Smith, C.A. & Armando B. Corripio. (1997). Principles and Practice of Automatic Process Control Second Edition .New York: John Willey & Sons, Inc.

Process