

Экспорт графических ресурсов для Next-Gen платформ

Александр Долбилов Арсений Капулкин CREAT Studios

С чего всё начиналось

- Технологическое демо для PS3 на PSSG
 - Портирование CREAT Engine на Xbox 360 (iZ3D)
 - Портирование CREAT Engine на PS3

План доклада

- Структура экспорта и импорта
- COLLADA
- Экспорт...
 - ... материалов и шейдеров
 - ... текстур
 - ... геометрии
 - ... анимации

План доклада

- Структура экспорта и импорта
- COLLADA
- Экспорт...
 - ... материалов и шейдеров
 - ... текстур
 - ... геометрии
 - ... анимации

Экспорт и импорт

Экспорт и импорт

Заякин Евгений, «Компиляция данных - think different»

Система сборки (SCons)

- Исходные данные
- Билдеры
 - алгоритмы преобразования данных
- Результат сборки бинарный образ игры
 - исполняемый файл игры
 - динамически подключаемые библиотеки
 - Уровни (90% от времени всей сборки)
 - динамически подгружаемые данные

Структура экспорта сейчас

Светлое будущее...

План доклада

- Структура экспорта и импорта
- COLLADA
- Экспорт...
 - ... материалов и шейдеров
 - ... текстур
 - ... геометрии
 - ... анимации

Content pipeline: связь с DCC

Было

- Export из Мауа проприетарным плагином
 - в промежуточный формат

• Стало

- Export из Max/Maya с помощью COLLADA
 - В частности, потому что существующий арт для демки был сделан «под» COLLADA
 - Уже настроенные ColladaFX материалы
 - Также ColladaFX казался удачным решением проблемы настройки материалов

COLLADA

- XML-based формат для хранения 3D сцен
 - XML Schema
 - Спецификация
- Экспортеры для ряда пакетов
 - Max, Maya, XSI, Blender, ...
- Настройка материалов в DCC
 - ColladaFX

ColladaFX

COLLADA — плюсы и минусы

• Плюсы

- Более отвязанный от Мауа пайплайн
- Настройка материалов в DCC (ColladaFX)
- Поддержка в сторонних приложениях

• Минусы

- Сложная и избыточная схема
- Медленный экспорт из DCC
- Все типичные проблемы с middleware

ColladaFX – не влезай, убьет!

ColladaMaya

- Очень неудобный интерфейс для художников
- Некорректно работает с batch build

ColladaMax

- В несколько раз хуже
- Много багов
 - Падения, некорректная работа, etc.
- Ощущение, что использовали только мы :-/

COLLADA – не панацея

- Это просто экспортер
 - Постоянная поддержка
 - Проблемы с системами координат, unit scale, etc.
- Это дополнительный слой кода
 - Отладка проще, если вы в нем уверены, и сложнее, если нет
- Мало/нет библиотек, облегчающих жизнь

- После того, как основная часть доклада была готова...
- No more free support for open-source COLLADA tools
 - ColladaMaya/Max будут развиваться opensource сообществом
 - Premium support от Feeling Software
 - 4000\$ USD в год для студии в 50 человек

План доклада

- Структура экспорта и импорта
- COLLADA
- Экспорт...
 - ... материалов и шейдеров
 - ... текстур
 - ... геометрии
 - ... анимации

Терминология

Shader

- Алгоритм рендеринга
- Как правило пара vertex shader + pixel shader и стандартный код настройки рендера
- Иногда последовательность custom команд рендера

Material

- Контейнер параметров шейдера
- Layout данных определяется шейдером

Параметры шейдера

- Vertex shader + pixel shader
 - Auto parameters
 - Параметры окружения, которые система может посчитать и поставить автоматически
 - WorldViewProjection matrix, Eye position, etc.
 - Custom parameters
 - Object color, normal map, etc.
- Render states
 - Alpha blend, depth test, etc.

Content pipeline - материалы

- Со стороны DCC поддержано 2 варианта получения материала:
 - COLLADA FX Material
 - явное задание пары vertex shader + pixel shader
 - Default Material
 - косвенное определение пары vertex shader + pixel shader по название стандартного материала (phong, blinn, lambert ...)

Default Material

- blinn == 'Default/Maya/blinn.cg'
 - vs_main и ps_main
- Поддержка разных типов параметров
 - diffuse (color или texture)

```
#ifdef CRS_DIFFUSE_COLOR
  float4 color = input.color;
#else
  float4 color = tex2D(DiffuseSampler, input.texcoord0);
#endif
```


Экспорт параметров

- Auto parameters
 - Использование имени переменной для определения типа параметра
- Custom parameters
 - Экспортятся COLLADA
- Render states
 - Есть поддержка в COLLADA
 - Используем custom флаги в DCC

Материалы - итоги

- Поддержка default materials обязательна
- Система настройки custom материалов нужна
 - ColladaFX возможное решение
 - К сожалению, не очень хорошее
- Материалы часть общего пайплайна
 - Связь с геометрией

План доклада

- Структура экспорта и импорта
- COLLADA
- Экспорт...
 - ... материалов и шейдеров
 - ... текстур
 - ... геометрии
 - ... анимации

Content pipeline: текстуры

TexLib

- Единая база данных текстур
- Настройки per platform (формат, размер, etc.)
- Работает с source данными (psd, bmp, tga)
- Визуальный тул для художников
- TexExporter
 - По данным из texlib собирает финальную текстуру

TexExporter

- Свой код сборки финальных данных для каждой платформы
 - Код оперирует массивом пикселей
 - (код чтения разных форматов файлов, генерации mip уровней и палитризации общий)
- Выход утилиты бинарный файл, из которого можно десериализовать текстуру
 - Текстура это common data + platform data
- Результаты работы кешируются

TexExporter: Win32

- Сборка всех мипов в нужном формате
 - BGRA (никакого reordering в load time)
 - DXT1-5
 - Для сжатия используется NVDXT/D3DX
- При загрузке стандартные операции
 - CreateTexture
 - Lock/Unlock/memcpy
 - Иначе никак :(

TexExporter: XBox360 (1)

Tiling

- Текстура разбивается на тайлы (32х32 блока)
 - блок 1х1 или 4х4 (DXT) пикселя
- В пределах тайла блоки переупорядочиваются
- XGTileSurface
- Mip tail packing
 - Уровни 16х16 пикселей и меньше упаковываются в 1 тайл
 - Минимизация потерянного пространства

TexExporter: XBox360 (2)

- Практически весь код для экспорта есть в SDK
- При загрузке fixup «объекта» текстуры (IDirect3DTexture9)
 - Так как нет разделения на system/video memory, а данные текстуры уже загружены при загрузке общего рак файла

TexExporter: PS3 (1)

Swizzling

- Только для power-of-two и не DXT текстур
- Если текстура не swizzled, то pitch обязан совпадать для всех (!) mipуровней

- Чем меньше non-POT текстур, тем лучше
 - +100% памяти на mip уровни

TexExporter: PS3 (2)

- При загрузке копирование данных в video memory
 - Лучше чем на РС все данные в НW формате
 - Хуже чем на XBох360 копирование
- В будущем
 - Копирование с помощью RSX (DMA)
 - Загрузка секций сразу в нужную память
 - С помощью SPU (DMA)

Текстуры - итоги

- Самый большой объем данных
 - Скорость обработки критична
 - Без кеша мы бы так и не закончили демку
- Standalone компонента
 - Отсутствие связей с другими компонентами
- Layout данных разный для всех платформ

План доклада

- Структура экспорта и импорта
- COLLADA
- Экспорт...
 - ... материалов и шейдеров
 - ... текстур
 - ... геометрии
 - ... анимации

Content pipeline: геометрия

- Чтение данных из .DAE
 - Triangle lists
- Уменьшение размера вершины
 - Выбор нужных атрибутов
 - По входным параметрам vertex shader
 - Сжатие атрибутов
- Уменьшение количества вершин
 - Индексирование

Сжатие атрибутов

- Квантование
 - float16 вместо float
 - HEND3N/CMP (11:11:10) вместо float3
- Сжимающее преобразование
 - Scale + offset или decompression matrix
 - Эффективная утилизация точности типа
 - float16 vs. short
- Максимальное сжатие в 4 раза!

Оптимизация по скорости

- Изменение порядка треугольников
 - Оптимизация для post-transform vertex cache
 - Оптимизация overdraw
- Изменение порядка вершин
 - Оптимизация для pre-transform vertex cache
 - D3DXOptimizeVertices
- Важен порядок осуществления оптимизаций

Post-Transform Vertex Cache

- Cache для трансформированных вершин
 - Уменьшает количество выполнений VS
 - Размер порядка 16-24 вершин на next-gen
- ACMR = # transformed vertices / # triangles
 - меняется в диапазоне [0.5 3]

Вариант	ACMR
Теоретически идеальный	0.5
Без оптимизации (среднестатистический)	1.5
С оптимизацией (среднестатистический)	0.7

Overdraw

• Переставляя местами треугольники можно уменьшить среднее значение overdraw в ~2

раза

Overdraw vs. ACMR

- Post-transform vertex cache
 - Hoppe (D3DXOptimizeFaces)
 - K-Cache
- Overdraw
 - Barczak
 - Nehab
- Overdraw + Post-transform vertex cache
 - TOOTLE 1.1 (Sander + Nehab + Barczak)
 - TOOTLE 2.0 (Sander + Nehab + Barczak)

Экспорт геометрии - итоги

- Потеря в скорости может быть критична
 - Одно из возможных узких мест на PS3
- Не забывайте про качество
 - Любая оптимизация с потерей точности отключается
 - Флаги в DCC для моделеров
- Большинство оптимизаций прозрачны для остального пайплайна

План доклада

- Структура экспорта и импорта
- COLLADA
- Экспорт...
 - ... материалов и шейдеров
 - ... текстур
 - ... геометрии
 - ... анимации

Content pipeline: анимация

- Из .DAE читается иерархия <node>
 - Каждый элемент переходит в узел SG в игре
 - Скелет
 - Локаторы с автоматической привязкой (attach to node)
- Задача сохранить анимацию узлов
 - Вне зависимости от типа
 - Кости, локаторы, узлы для геометрии
- Несколько анимаций в одном файле

To bake or not to bake?

- Два варианта экспорта анимаций
 - Анимационные кривые «как есть»
 - Sampling + сжатие
- На данный момент выбран первый вариант
 - Дешевле в реализации
 - Размер анимаций на данный момент не критичен
 - В будущем возможен переход на второй

Анимация - кривые «как есть»

- Есть очевидные проблемы
 - Разные типы интерполяции
 - Либо поддерживать все типы, либо ограничивать художников
 - DCC-specific детали
 - Segment scale compensate в Maya
 - Строго говоря, не про анимацию, но в случае sampling или статических трансформаций проблемы нет
 - Трансформация node не является TRS

Scene node vs. anim node

- В COLLADA трансформация узла это
 - Набор последовательных «примитивных» трансформаций (T/R/S/matrix)
- В Мауа трансформация узла это
 - До 11 T/R/S трансформаций (pivots, etc.)
- Старое решение размножать узлы SG
- Новое решение набор «анимационных» узлов

Анимация - итоги

- Standalone компонента
 - Связана с остальными компонентами через узлы SG
 - Иерархия SG не меняется
 - Скиннинг работает независимо
 - Кости узлы SG
- Весь код кросс-платформенный

Итоги

- Чем больше работы делается на экспорте
 - тем лучше
 - Конвертация в HW-specific форматы, оптимизация, byte reordering, etc.
- Чем быстрее работает экспорт тем лучше
 - Эффективные алгоритмы
 - Кеширование результатов
 - Distributed data builds, anyone?

Ссылки

- COLLADA Specification
 - http://khronos.org/collada/
- Feeling Software
 - http://www.feelingsoftware.com
- SCons
 - http://www.scons.org/
- ATI Tootle
 - http://ati.amd.com/developer/tootle.html

Вопросы

?

<u>a.dolbilov@creatstudio.com</u> <u>a.kapoulkine@creatstudio.com</u>

