

SPECIES INFO

- From species_info.csv, we have data on 5541 unique species across our various national parks.
- They are tabulated by common name, scientific name, species category, and conservation status.
- There are 7 species categories: 'Mammal', 'Bird', 'Reptile', 'Amphibian', 'Fish', 'Vascular Plant', and 'Nonvascular Plant'.
- There are 5 categories of conservation status: 'No Intervention', 'In Recovery', 'Species of Concern', 'Threatened', and 'Endangered'.

CONSERVATION STATUS BY SPECIES

- We counted the number of species by their conservation status and categorized them from greatest to least concern.
- A majority of our species require no protection (5363) or are in recovery (4).
- However, I51 species may be in need of conservation and 25 species are threatened or endangered.

Conservation Status	Scientific Name	
Endangered	15	
Threatened	10	
Species of Concern	151	
In Recovery	4	
No Intervention	5363	

COMPARING SPECIES BY CATEGORY

- Are certain types of species more likely to be endangered?
- To answer this question, we created a pivot table (next slide) and grouped species by their category and protection status:
- The 'Protected' column displays the count of unique species requiring intervention (status # 'No Intervention').
- The 'Not Protected' column displays the count of unique species not requiring intervention (status = 'No Intervention').

SPECIES BY CATEGORY AND PROTECTED STATUS

	CATEGORY	PROTECTED	NOT PROTECTED	PERCENT PROTECTED
- 1	Amphibian	7	73	8.75%
2	Bird	79	442	15.16%
3	Fish		116	8.66%
4	Mammal	38	176	17.76%
5	Nonvascular Plant	5	328	1.50%
6	Reptile	5	74	6.33%
7	Vascular Plant	46	4424	1.03%

COMPARING SPECIES CATEGORIES

- How can we determine if there is a significant difference between two categories of species and their protection status?
- For example, 17% of *Mammals* are protected while 15% of *Birds* are protected. We'd like to know if mammals are more likely to be endangered than birds.
- To compare differences in categorical data (presented with our species categories data), we'll conduct two chi squared tests.

CHI SQUARED TEST #1: COMPARING MAMMALS AND BIRDS

- Null Hypothesis: there is no significant difference between the mammal and bird dataset.
- To reject this hypothesis, we need to look for a p-value of less than 5%.
- Our results came out to a 44.59% margin or error, and we can confidently say there is no significant difference between the protection of birds and mammals.

CHI SQUARED TEST #2: COMPARING MAMMALS AND REPTILES

- Is the difference between protected Reptiles (6%) and protected Mammals (17%) significant?
- Null Hypothesis: there is no significant difference between the mammal and reptile dataset.
- Once again, to reject this hypothesis, we need to look for a p-value of less than 5%.
- With a new contingency table and using the chi2 contingency function, we received a p-value of 2.33%, less than 5%.
- Therefore, we reject our null hypothesis, and see there IS a significant difference in protected species of reptiles and mammals.

OBSERVATIONS OF PARK ENDANGERED SPECIES

- While there may not be a significant difference between the data of Mammals and Birds, they are trending to be species that need our attention the most for protection.
- We can calculate these results by observing our 'Percentage
 Protected' values. The higher they are, then it's likely the species will be threatened and endangered.
- Amphibians and Fish are species we'll need to keep a watch on with Reptiles not far behind. Vascular and Non-Vascular appear to be the least threatened category overall.

SHEEP SIGHTINGS

- Conservationists have been recording sightings of different species of sheep at several national parks for the past seven days. Data is collected from the provided datafile, observations.csv.
- We combined data from our species data and filtered the categories to 'Mammal' and data in 'Common Name' contains 'Sheep'.

SHEEP SIGHTINGS

- Our data shows that there are three unique sheep species in our national parks listed:
- Domestic Sheep (Ovis Aries)
- Bighorn Sheep (Ovis Canadensis)
- Sierra Nevada Bighorn Sheep (Ovis Canadensis Sierrae)

SHEEP OBSERVATIONS BY PARK

 We grouped the total sheep sightings (across all three species) from each national park by grouping the <u>sum of observations</u> by each <u>park name</u>.

	PARK NAME	OBSERVATIONS
	Bryce National Park	250
2	Great Smoky Mountains National Park	149
3	Yellowstone National Park	507
4	Yosemite National Park	282

SHEEP OBSERVATIONS BY PARK (CONTINUED)

 Yellowstone National Park had the most sheep sightings (507) out of the four national parks collected from our data.

FOOT AND MOUTH DISEASE STUDY AMONGST PARK SHEEP

- Our scientists know that 15% of sheep at Bryce National Park have foot and mouth disease.
- Park rangers at Yellowstone National Park are running a program to reduce the rate of foot and mouth disease at that park.
- Our scientists want to know whether or not this program is working by performing an A/B test; they want to be able to detect reductions of at least five percentage points. For instance, if 10% of sheep in Yellowstone have the disease, they'd like to know this with confidence.

FINDING THE SAMPLE SIZE FOR A/B TEST

- We used a sample size calculator from Optimizely to calculate the number of sheep that we need to observe from each park.
- Our data for the calculator:
- Baseline conversion rate: 15%
- Minimum detectable effect: 100*5 percentage points/baseline = 33.33%
- Statistical significance: 90%

SHEEP SAMPLE CONCLUSIONS

- We calculated that a sample size of 510 sheep from each park need to be observed to detect reductions of at least 5 percentage points.
- To calculate how long it would take to observe enough sheep, we divided the sample size per park by its sheep observations.
- Therefore, we need 2 weeks at Bryce National Park (510/250) and about 1 week at Yellowstone National Park (510/507) to observe enough sheep.