ACKNOWLEDGMENT

First and foremost, we thank our parents for what we are and where we are today, without

whose hard work and sacrifice we would not be here today.

We deem it a privilege to place a deep sense of gratitude to our guide Mr. Ganesh V N,

Senior Assistant Professor, Electronics & Communication Engineering, who always stood

behind us and supported in each and every step of the project work.

Our sincere gratitude to our project coordinators, Dr. Srikrishna Shastri C, Associate

Professor and Mr. Ramalingam H M, Senior Assistant Professor, Electronics &

Communication Engineering for their valuable time, patience and suggestions and periodic

evaluation.

We are grateful to **Dr. Vinayambika S Bhat**, Head of the Department, Electronics &

Communication Engineering, Dean Quality Assurance, Mangalore Institute of Technology

& Engineering, Moodabidri for their support and encouragement.

We are indebted to our respected Principal Dr. M S Ganesha Prasad, beloved Chairman

Mr. Rajesh Chouta and the management of Mangalore Institute of Technology &

Engineering, Mangalore for having provided all the facilities that helped us in timely

completion of this project report.

Finally, we would like to thank all the teaching and non-teaching staff of the Department

of Electronics & Communication Engineering for their valuable help and support.

SUPRABHA SHRAVAN KUMAR M B SACHIN

SOORAJ SHETTY

i

ABSTRACT

The Cryptography is basically securing the data during the communication between different system. "Biometric", is used for authentication. To work with the biometrics authentication that is used to collect some raw biometric data (e.g., image) and then that data compares with the data (image) stored in the database for providing access. The attackers may use these opportunities to attack the data within the database. Therefore, the security of biometrics is of high importance. In this idea, a private image is bifurcated into two host face images such that it can be revealed only when both host images are simultaneously available; at the same time, the individual host images do not reveal the identity of the original image. In order to accomplish this, we use Visual Cryptography. Visual Cryptography is a process of creating shares from an image so that it would become unreadable for intruder or unauthenticated person. There are various dimensions on which VCS performance relay, i.e., accuracy, brightness, pixel widening, security, computer complexity, productive sharing is logical or pointless, type of secret image. This technique encrypts a secret image into shares such that stacking a sufficient number of shares reveals the secret image. This process encrypts a private image into stocks so that it can collect a sufficient number of shares produces a private image. This project uses VC of colored images in a biometric application.

Keywords: Visual Cryptography, Visual Cryptography scheme, Private image, Biometrics.

TABLE OF CONTENTS

			Page no. s
Acknowl	i		
Abstract	ii		
Table of	iii v vi vii		
List of fig			
List of ta			
Abbrevia			
Chapter	No.	Titles	Page no. s
Chapter	1	INTRODUCTION	1-14
	1.1	Biometrics	1
	1.2	Applications of Biometric systems	3
	1.3	Challenges in biometrics	3
	1.4	Cryptographic techniques	4
	1.5	Visual Cryptography	5
	1.6	Halftoning process	11
	1.7	Blowfish algorithm	12
	1.8	Multiple image Visual Cryptography	12
	1.9	Color Visual Cryptography	13
	1.10	Balanced Block Replacement	13
	1.11	Face Recognition	14
Chapter	2	LITERATURE SURVEY	15-20
	2.1	Literature review	15
	2.2	Motivation	19
	2.3	Scope of the project	19
	2.4	Existing system	19
	2.5	Problem statement	20

Chapter	3	DESIGN AND IMPLEMENTATION	21-30
	3.1	Introduction	21
	3.2	Methodology	21
	3.3	Implementation	25
Chapter	4	ALGORITHMS USED IN PROJECT DESIGN	31-33
	<i>4.1</i>	Algorithm for Shares Generation	31
	4.2	Floyd Steinberg Dithering Algorithm	31
	4.2	RANSAC algorithm	32
	4.3	XOR – based VCS	32
Chapter	5	RESULTS AND DISCUSSION	34-42
	5.1	Snapshots of the project website	34
	5.2	Results	36
	5.3	Comparison	41
Chapter	6	CONCLUSION	43
	6.1	Future scope	43
REFERI	ENCE	SS S	44-46
PROJECT OUTCOME			

LIST OF FIGURES

Fig.	No.	TITLES	Page no. s
Fig.	1.1	Biometric Component	2
Fig.	1.2	Possible attack points in generic biometric	2
Fig.	1.3	Commonly used traits for biometric authentication	4
Fig.	1.4	Encryption & decryption in VC	6
Fig.	1.5	Pixel share illustration	6
Fig.	1.6	VC Techniques	9
Fig.	1.7	Taxonomy of Visual Cryptography	9
Fig.	1.8	Blowfish Algorithm	12
Fig.	1.9	Additive Mode and Subtractive Model	13
Fig.	1.10	Face Recognition	14
Fig.	3.1	Data Flow diagram for the Proposed System	22
Fig.	3.2	Steps involved in generating 2 random shares	23
Fig.	3.3	Encryption rules	24
Fig.	3.4	Encryption Method	24
Fig.	3.5	Decryption Method	25
Fig.	3.6	Full-Stack Development	26
Fig.	3.7	Sample of 68 datapoints on the user's face	28
Fig.	5.1	Login Page	34
Fig.	5.2	Admin Details	34
Fig.	5.3	Image addition, editing and deletion page	35
Fig.	5.4	Database (Back-End)	35
Fig.	5.5	Sieving of the images	36
Fig.	5.6	Image Division	37
Fig.	5.7	Image Shuffling	37
Fig.	5.8	Image Encryption	38
Fig.	5.9	Adding Images for Decryption	39
Fig.	5.10	Decrypted Image	39
Fig.	5.11	Login Page of the Face Matching Page	40
Fig.	5.12	Face Matching	40

LIST OF TABLES

Table	No.	TITLES	Page no. s
Table	5.1	VCS COMPARISON - 1	41
Table	5.2	VCS COMPARISON – 2	41
Table	5.3	VCS COMPARISON - 3	42

ABBREVIATION

VC : Visual Cryptography

EVC : Extended Visual Cryptography

VCS : Visual Cryptography Scheme

EVCS : Extended Visual Cryptography Scheme

HVS : Human Visual System

HVC : Halftoning Visual Cryptography

DES : Data Encryption Standard

RGB : Red, Green, Blue

PSNR : Peak Signal to Noise Ratio

MSE : Mean Square Error

CSS : Cascading Style Sheets

HTML: Hypertext Markup Language

SQL : Structured Query Language