AMENDMENT TO THE CLAIMS

1. (Previously presented) A polymer comprising optionally substituted first repeat units of formula (I):

Docket No.: 14113-00039-US

$$R_1$$
 R_2 R_3 R_4

(I)

wherein R_1 , R_2 , R_3 and R_4 are selected from hydrogen, alkyl, alkyloxy, aryl, aryloxy, heteroaryl or heteroaryloxy groups, and R_1 and R_2 and I or I0 or I1 or I2 and I3 and I4 may be linked to form a monocyclic or polycyclic, aliphatic or aromatic ring system, provided that at least one of I3 and I4 comprises an aryl or heteroaryl group.

- 2. (Original) A polymer according to claim 1 wherein at least two of R_1 , R_2 , R_3 and R_4 comprise an aryl or heteroaryl group.
- 3. (Original) A polymer according to claim 1 wherein at least three of R₁, R₂, R₃ and R₄ comprise an aryl or heteroaryl group.
- 4. (Original) A polymer according to claim 1 wherein R_1 , R_2 , R_3 and R_4 comprise an aryl or heteroaryl group.
- 5. (Original) A polymer according to claim 1 wherein R₁ and R₂ comprise an aryl or heteroaryl group and R₃ and R₄ comprise an alkyl group.
- 6. (Previously presented) A polymer according to claim 5, wherein said aryl group comprises an optionally substituted phenyl group.
- 7. (Previously presented) A polymer according to claim 2 wherein said aryl group comprises a 4-octylphenyl group or a 4-*tert*-butyl-phenyl group.
- 8. (Previously presented) A polymer according to claim 1 comprising a second repeat unit.

9. (Previously presented) A polymer according to claim 8 wherein said second repeat unit is selected from the group consisting of triarylamines and heteroaromatics.

10. (Withdrawn) A monomer comprising an optionally substituted compound of formula (II):

$$\begin{array}{c|c} R_1 & R_2 \\ \hline P & & \\ R_3 & R_4 \\ \hline (II) \end{array}$$

wherein each P independently represents a polymerisable group and R₁, R₂, R₃ and R₄ are

independently hydrogen, alkyl, alkyloxy, aryl, aryloxy, heteroaryl or heteroaryloxy groups, and R_1 and R_2 and / or R_3 and R_4 may be linked to form a monocyclic or polycyclic, aliphatic or aromatic ring system, provided that at least one of R_1 , R_2 , R_3 and R_4 comprises an aryl or heteroaryl group.

- 11. (Withdrawn) A monomer according to 10 wherein each P is independently selected from a reactive boron derivative group selected from a boronic acid group, a boronic ester group and a borane group; a reactive halide group or a moiety of formula -O-SO₂-Z wherein Z is selected from the group consisting of optionally substituted alkyl and aryl.
- 12. (Withdrawn) A process for preparing a polymer comprising a step of reacting a first monomer wherein said first monomer is the monomer_as defined in claim 10 and a second monomer that may be the same or different from the first monomer under conditions so as to polymerise the monomers.
- 13. (Withdrawn) A process for preparing a polymer according to claim 12 which comprises polymerising in a reaction mixture:
 - (a) said first monomer wherein each P is a boron derivative functional group selected from a boronic acid group, a boronic ester group and a borane group, and an

aromatic monomer having at least two reactive functional groups independently selected from halides or a moiety of formula -O-SO₂-Z; or

Docket No.: 14113-00039-US

- (b) said first monomer wherein each P is independently selected from the group consisting of reactive halide functional groups functional groups independently selected from halides and a moieties of formula -O-SO₂-Z and Z is as defined in claim 11, and an aromatic monomer having at least two boron derivative functional groups selected from boronic acid groups, boronic ester groups and borane groups; or
- (c) said first monomer wherein one P is a reactive halide functional group or a moiety of formula -OSO₂-Z and Z is selected from the group consisting of optionally substituted alkyl and aryl, and the other P is a boron derivative functional group selected from a boronic acid group, a boronic ester group and a borane group,

wherein the reaction mixture comprises a catalytic amount of a catalyst suitable for catalysing the polymerisation of the aromatic monomers, and a base in an amount sufficient to convert the boron derivative functional groups into boronate anionic groups.

- 14. (Previously presented) An organic light emitting device comprising a polymer according to claim 1.
- 15. (Withdrawn) A monomer comprising an optionally substituted repeat unit of formula (III):

(III)

wherein R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} are the same or different and independently represent hydrogen, alkyl, alkyloxy, aryl, aryloxy, heteroaryl or heteroaryloxy groups, and R_8 and R_9 , R_{10} and R_{11} or R_{12} and R_{13} may be linked to form a monocyclic or polycyclic, aliphatic

Amendment to Office Action of August 17, 2009

or aromatic ring system; one or more of the pairs of R₈ and R₉, R₁₀ and R₁₁ or R₁₂ and R₁₃ may be linked to form a ring; and P independently represents a polymerisable group.

Docket No.: 14113-00039-US

- 16. (Withdrawn) A monomer according to claim 15 wherein R₈, R₉, R₁₀ and R₁₁ are independently selected from the group consisting of optionally substituted alkyl, alkoxy, aryl, aryloxy, heteroaryl or heteroaryloxy.
- (Withdrawn) A monomer according to claim 15, wherein P is selected from the 17. group consisting of functional halogens, a monovalent unit of formula -OSO₂Z or a monovalent unit of formula -B(OR₁₄)(OR₁₅) wherein R₁₄ and R₁₅ are the same or different and independently represent hydrogen or a substituent R₁₂ and R₁₃ and may be linked to form a ring; and Z is selected from the group consisting of optionally substituted alkyl and aryl.
- 18. (Withdrawn) A monomer according to claim 17, wherein R₁₂, R₁₃, R₁₄ and R₁₅ are the same or different and are selected from the group consisting of hydrogen and optionally substituted alkyl.
- 19. (Withdrawn) A monomer according to claim 18 wherein R₁₂ and R₁₃ and / or R₁₄ and R₁₅ are linked to form an optionally substituted ethylene group.
- 20. (Withdrawn) A process for preparing a polymer which comprises polymerising in a reaction mixture:
 - (a) said monomer according to claim 15, wherein P is a group of formula – B(OR₁₄)(OR₁₅) and R₁₄ and R₁₅ are the same or different and independently represent hydrogen or a substituent R₁₂ and R₁₃, and an aromatic monomer having at least two reactive functional groups independently selected from halide or moieties of formula -O-SO₂-Z and Z is as defined in; or
 - said monomer, wherein P is a reactive halide functional group or a moiety of (b) formula -O-SO₂-Z and Z is selected from the group consisting of optionally substituted alkyl and aryl,

Amendment to Office Action of August 17, 2009

wherein the reaction mixture comprises a catalytic amount of a catalyst suitable for catalysing the polymerisation of the aromatic monomers, and a base in an amount sufficient to convert the boron derivative functional groups into boronate anionic groups.

- (Withdrawn) A switching device comprising the polymer according to claim 9. 21.
- (Withdrawn) A field effect transistor comprising an insulator having a first side 22. and a second side; a gate electrode located on the first side of the insulator; a polymer according to claim 1 located on the second side of the insulator; and a drain electrode and a source electrode located on the polymer.
- (Withdrawn) An integrated circuit comprising a field effect transistor according 23. to claim 22.
- 24. (Withdrawn) A photovoltaic cell comprising a polymer according to claim 1.
 - 25. (New) The A polymer as claimed in claim 1 comprising first repeat units of formula (I):

$$R_1$$
 R_2 R_3 R_4

(I)

wherein R₁, R₂, R₃ and R₄ are selected from hydrogen, alkyl, alkyloxy, aryl, aryloxy, heteroaryl or heteroaryloxy groups, and R₁ and R₂ and / or R₃ and R₄ may be linked to form a monocyclic or polycyclic, aliphatic or aromatic ring system, provided that at least one of R₁, R₂, R₃ and R₄ comprises an aryl or heteroaryl group.