

Proposal: Minimizing Transportation costs & Maximizing Speed to Customer

Fractal Analytics

24th October 2018

Our understanding of your business requirements

Current scenario

- In current supply chain, SKUs flow from multiple vendors through 3 centralized fulfilment centers and then to 700 (approx.) store locations
- Only 30% of products are fulfilled by replenishment policies
- Buy Online, Pickup in Store (BOPIS) policy is based on current availability of inventory at store
- Promotions are often carried out sporadically to drive the sales throughout the year & move excess inventory
- In case of home delivery to customer promise date is 5 days

What's the need?

- The business objective is to minimize fulfillment & shipping costs
- Maximize the speed to customer
- DCSG wants inventory optimization for all e-Commerce sales and all categories
- Primary focus on 70% of products which don't have any replenishment policies
- Integrate the consumption layer of solution with existing JDA Allocation system

We will follow a structured problem solving approach to minimize fulfilment costs & maximize speed to customer

^{*} We have prioritized the specific use cases in Phase 1 basis the high level understanding of the requirements

Use cases

Phase 1

Phase 2

Phase 1

We will explore and deploy the right analytical techniques for each use case (Phase 1)

5. Minimum stock at store level 9. SKU profiling at DC level & Like 1. Cost drivers for sub-optimal 2. Store profiling 6. Recommend replenishment Use cases shipments item shipments frequency/quantity at stores · Annual demand Historical shipments by **Potential Drivers/** Historical shipments by Annual demand Transit lead time customer, stores, regions, DC input variables customer, stores, regions OH inventory Inventory unit cost of item Total demand Total demand Historical shipments/orders Buying cost of item Inventory unit cost of item Promo volumes (not exhaustive) Shipping cost per item OH inventory OH inventory Multi criteria inventory • Driver analysis using – Bayesian Clustering based on channels, **Analytical** classification Classification using Naive Bayes network volume, capacity, demand, techniques & Inventory optimization by & SVM Demand profiling & product attributes Product association rules models arriving at economic order SVM classification segmentation quantity & re-order points Products shipped sub optimally · Optimal set of store clusters to · Optimal ordering & replenishing • Set of strategic & profitable SKUs Output Freight costs matrix by region, be catered together Right SKU at right DC quantity SKUs which can be shipped Re-ordering point customers, stores (indicative) Min level or safety stock together

Model building

Model building

And deliver the following to DCSG

Phase 1 Project Plan

Our proposed engagement model during Phase 1

© 2018 Fractal Analytics Inc. All rights reserved | Confidential

Commercials

Project Cost: US \$190,000

Terms & Conditions:

- 1. Does not include any taxes and duties, as maybe applicable
- 2. Does not include any cost of Travel & Expenses, which will not exceed 15% of the total project cost and need to be pre-approved by DCSG
- 3. Any change in deliverables or scope will have a direct impact on costs

DCSG will lead the business and program management, while Fractal acts as the extended team to deliver on the desired outcomes

Stakeholders	Responsibility	
DCSG	 Align on leading and lagging KPI metrics Identify thresholds for each metric 	
Fractal	Data assessmentIdentify gaps in processes	

Stakeholders	Responsibility	
DCSG	 Help connect with business & IT teams Provide access to Data & infrastructure 	
Fractal	Data harmonization from various databases	

Stakeholders	Responsibility	
DCSG	Final output with accuracy calculationsUAT & business validations of insights	
Fractal	Connected insights across stores and products	

Deploy unified solution for connected insights

Minimizing fulfilment costs & maximizing speed to customer

Align on BI tools for development and desigr mock-ups

Stakeholders	Responsibility		
DCSG	Alignment on Mock ups		
Fractal	 Process understanding and deployment technology constraints to represent analysis effectively 		

Stakeholders	Responsibility
Fractal	Feature selectionModel building
&	Business alignment for
DCSG	selected features & validation of model outputs

Feature engineering & model development

Identification of key drivers

Stakeholders	Responsibility		
DCSG	Provide inputs on business alignment with identified factors		
Fractal	Identification of key variablesDetermination of statistically significant variables		

© 2018 Fractal Analytics Inc. All rights reserved | Confidential

Governance during Phase 1

Going beyond Phase 1

Beyond Phase 1, here are a few potential use cases that can be explored during Phase 2

Use cases	3. Grouping orders for FTLshipments4. Line items to be shipped in same delivery window	7. Optimize VFR for FTL/ LTL. 8. Optimize carrier selection	10. Determining the right DC with the right OH for the SKUs	11. Determining no. of trucks needed for next week demand 12. Determine optimal transit days
Potential Drivers/input variables (not exhaustive)	Weekly OH inventoryShipments historyOrder line itemsHistorical orders	 Transportation costs & fill rates Carriers/trucks capacity Historical shipments Available inventory Total demand & orders 	 Annual demand Transit lead time Inventory unit cost of item Buying cost of item OH inventory at DC 	 OH inventory Shipments history Replenishment frequency Future order volumes Carriers/trucks capacity
Analytical techniques & models	 Product association rules Correlation between shipment frequency & association groups 	Composite rankings for carriersBayesian techniques	Inventory optimization by arriving at economic order quantity & re-order points	 Decision Trees like XGBoost, Random Forest Multilayer Perceptron
Output (indicative)	 SKUs which can be shipped together to optimize truck load & maximize speed to customer Clubbing like orders 	 Daily optimized truck load plans Best carriers based on optimized cost 	 Min level or safety stock at DC Optimal OH inventory at DC Replenishment frequency at DC 	 Weekly schedule of trucks & loa capacity required based on demand and available inventory Recommend transit days for each order

Model building

Model building

Credentials in Supply Chain Analytics

Fractal has demonstrated expertise in delivering insights, impact and innovation across Supply Chain use cases (1/2)

80% forecast accuracy

- Agile, scalable forecasts & consumption trends for 150+ markets and 70+ segments
- Growth drivers based, quantitative methods & FVA approaches

\$1Bn

savings through e2e inventory optimization

- Non performing inventory root causes & depletion recommendations
- Optimal safety stocks for maximized service levels
- SKU portfolio rationalization

\$25Mn

annual savings across transportation

- Transportation cost drivers
- Carrier rationalization for least cost carriers & consolidation
- Maximized capacity utilization of volume & weight fill rates

Increased service levels

- Established Service level drivers and interdependencies
- Enabled Scenario planning to assess the service levels for distribution uncertainties

15

© 2018 Fractal Analytics Inc. All rights reserved | Confidential

Fractal has demonstrated expertise in delivering insights, impact and innovation across Supply Chain use cases (2/2)

\$500Mn

reduction in sourcing costs

- Commodity price modelling
- Alternative sourcing choices
- Recommended purchase frequency and volume while reducing scrap risk

15%

CAPEX reduction in outsourced manufacturing

- Determined Optimal
 Capacity to Demand ratio
- Recommendations on Optimal presses & molds
- Scenario planning for Service levels

\$3Mn

savings with reduced off spec

- Predicted output product quality from sensory tags
- Reduced excess give away of nutrients
- Real time anomaly detection

~5%

Reduction of total freight costs

- Reduced sub optimal shipments
- Enabled CPFR through allocation principles and replenishment strategies
- Identified right mix of Inventory at DCs

By solving complex challenges for our clients

A strategic analytics partner to the most admired fortune 500 companies globally and helps them power every Human decision in the enterprise by bringing analytics & AI to the Decision.

