Algorytm Dijkstry Znajdowanie najkrótszej drogi w labiryncie. OMP

Paweł Sawicki

1 Wprowadzenie

Algorytm Dijkstry, opracowany przez holenderskiego informatyka Edsgera Dijkstre, służy do znajdowania najkrótszej ścieżki z pojedynczego źródła w grafie o nieujemnych wagach krawedzi.

2 Działanie

Majac dany graf z wyróżnionym wierzchołkiem (źródłem) algorytm znajduje odległości od źródła do wszystkich pozostałych wierzchołków. Łatwo zmodyfikować go tak, aby szukał wyłacznie (najkrótszej) ścieżki do jednego ustalonego wierzchołka, po prostu przerywajac działanie w momencie dojścia do wierzchołka docelowego, badź transponujac tablice incydencji grafu. Algorytm Dijkstry znajduje w grafie wszystkie najkrótsze ścieżki pomiedzy wybranym wierzchołkiem a wszystkimi pozostałymi, przy okazji wyliczajac również koszt przejścia każdej z tych ścieżek. Algorytm ten jest przykładem algorytmu zachłannego.

3 Algorytm

Nazwijmy wierzchołek startowy v
0. Niech odległość wierzchołka Y bedzie odległościa od wierzchołka v
0 do wierzchołka Y. Algorytm przydzieli im odległości poczatkowe, a potem te odległości poprawi.

- 1. Przydziel każdemu wierzchołkowi odległość(d):d[v0]=0, dla reszty d[vi]=inf.
- 2. Zaznacz wszystkie wierzchołki jako nieodwiedzone. Ustaw v0 jako aktualny wierzchołek. Stwórz tablice nieodwiedzonych wierzchołków.
- 3.Dla aktualnego wierzchołka rozważ nieodwiedzonych sasiadów i porównaj ich wagi. Wybierz najmniejsza. Nastepnie ustaw wierzchołek z najmniejsza waga jako aktualny i usuń z wierzchołków nieodwiedzonych.
- 4. Kiedy zostana rozważeni wszyscy sasiedzi wierzchołka, ustaw go jako odwiedzony i usuń z nieodwiedzonych. Odwiedzony wierzchołek nie bedzie wiecej sprawdzany.
- 5. Jeżeli wierzchołek docelowy jest ustawiony jako odwiedzony(planujac droge pomiedzy dwoma konkretnymi wierzchołkami) albo jeżeli jego waga wynosi nieskończoność to koniec. Algorytm został zakończony.
- 6. Wybierz nieodwiedzony wierzchołek, który ma najmniejsza wage i ustaw jako aktualny wierzchołek, a potem wróć do kroku trzeciego.

4 Rozwiazanie

Program sekwencyjny został napisany tak aby wykonywał normalny algorytm dijkstry(odległość od wierzchołka poczatkowego do każdego wierzchołka w grafie). Jedynie drukowana jest odległość od wybranego wierzchołka v1 do wybranego wierzchołka końcowego. Program równoległy jest taki sam z wyjatkiem drukowania, tutaj drukowane sa dodatkowo wszystkie odległości. Dodatkowo jest wydruk od v1 do vk. Jedynie kroki algorytmu dijkstry sa równoległe, wczytywanie z pliku i drukowanie sa sekwencyjne.

5 Dane wejściowe 2

5 Dane wejściowe

Generator po otrzymaniu ilości wierzchołków jakie chcemy mieć w grafie(labiryncie) generuje nam krawedzie pomiedzy wierzchołkami. ./a.out liczbav vkoncowe iloscscian plikwyjsciowy

```
psawicki@sigma:~/ITHPC$ ./a.out 50 47 3 dane.txt
psawicki@sigma:~/ITHPC$ cat dane.txt

47
200
1 2 1
1 0 1
1 11 1
2 3 1
2 1 1
2 12 1
```

Fig. 1: Przykład generowania

Labirynty generowane sa w formie:

Fig. 2: Przykładowy labirynt

Plik dane.txt (plik w folderze obok).W miejcach gdzie sa czerwone połaczenia wagi wynosza 100, w czarnych 1. Wagi 100 'symuluja' ściany labiryntu. Na takim labiryncie wykonano pierwsze 2 testy.

6 Pomiar Czasu

Każdy test odpalany był 5 razy i do tabelki został wpisany średni wynik.

6 Pomiar Czasu 3

Test	4	watki Sigma (8 watków)	32 watki	Xeon Phi 240 watków
	Time:	Time:	Time:	Time:
Sekwencyjnie 169 dróg	Time:	Time:	Time:	Time:
	0.000408515	0.001370413	0.000329656	0.001110299
	Read:	Read:	Read:	Read:
	0.000152748	0.000112501	0.000144364	0.0005944
	Steps:	Steps:	Steps:	Steps:
	0.000035639	0.000016141	0.000030662	0.0000468
OMP 50	Time:	Time:	Time:	Time:
	0.019825061	0.033928341	0.017841893	0.278055531
	Read:	Read:	Read:	Read:
	0.000111322	0.000099244	0.000144509	0.000701645
	Steps:	Steps:	Steps:	Steps:
	0.019491082	0.032262697	0.017456805	0.250724569
OMP 100	Time:	Time:	Time:	Time:
	0.001321087	0.00175629700	0.043707225	0.273716571
	Read:	Read:	Read:	Read:
	0.000245507	0.00012285100	0.000116262	0.000977124
	Steps:	Steps:	Steps:	Steps:
	0.000408094	0.000389783	0.02523804	0.271734131
OMP 1000	Time:	Time:	Time:	Time:
	0.018177334	0.134693921	0.028073719	0.292792703
	Read:	Read:	Read:	Read:
	0.002951574	0.002354198	0.000876282	0.008462411
	Steps:	Steps:	Steps:	Steps:
	0.014092035	0.110725065	0.009335235	0.253203801
OMP 10000	Time:	Time:	Time:	Time:
	0.41508565	0.193165775	0.036099128	0.424844348
	Read:	Read:	Read:	Read:
	0.013204211	0.008954283	0.000858164	0.086286142
	Steps:	Steps:	Steps:	Steps:
	0.393656946	0.160013222	0.021397569	0.258833177
OMP 10000	Time:	Time:	Time:	Time:
01.11 10000	39.7326325639999993	12.0788551389999999	0.043406191	1.8360153440000002
	Read:	Read:	Read:	Read:
	0.097112304	0.09575919	0.008435412	0.9781656870000001
	Steps:	Steps:	Steps:	Steps:
	39.57622549700	11.9192767530000001	0.013507856	0.417627523
OMP 500000	Time:	Time:	Time:	Time:
01.11 000000	83.63712682	15.02447536	0.593838284	1.76472193
	Read:	Read:	Read:	Read:
	0.189289604	0.09248116	0.088157858	0.901385709
	Steps:	Steps:	Steps:	Steps:
	83.3847826070000053	12.2416325	0.461420997	0.427203886
OMP 1000000	Time:	Time:	Time:	Time:
23.22 200000	141.26182324	21.02447536	0.971426213	1.8761751
	Read:	Read:	Read:	Read:
	0.241487416	0.15153216	0.1371435	0.9813547
	Steps:	Steps:	Steps:	Steps:
	139.9571	19.9012991	0.8161478	0.443157231
I	100.0011	13.3012331	0.0101410	0.440101201