## تكليف پنچم

## پرسش ۱

الف) دو رشته ی 01 و 11 هر دو Homing Sequence هستند:

$$\begin{split} &\sigma(\epsilon) = \{\{A, B, C, D\}\} \\ &\sigma(0) = \{\{A, B\}_0, \{D\}_1\} \\ &\sigma(01) = \{\{D\}_{00}, \{B\}_{01}, \{C\}_{10}\} \Rightarrow 01 \ is \ HS \end{split}$$

$$\begin{split} &\sigma(\epsilon) = \{\{A,B,C,D\}\} \\ &\sigma(1) = \{\{C,D\}_0,\{A,B\}_1\} \\ &\sigma(11) = \{\{C\}_{00},\{A\}_{01},\{D\}_{10},\{B\}_{11}\} \Rightarrow 11 \ is \ HS \end{split}$$

ب) رشته ی 11 یک Distinguishing Sequence نیز میباشد:

$$next(A, 11) = 00$$
  
 $next(B, 11) = 11$   
 $next(C, 11) = 10$   
 $next(D, 11) = 01$ 

پ) به ازای HS = 11 و HS = 10 و با فرض اینکه ماشین در ابتدا در حالت A است، مساله را حل میکنیم: Set(X)/0 برای هر  $X \in \{A,B,C,D\}$  به ازای هریک از حالت های  $X \in \{A,B,C,D\}$  و  $X \in \{A,B,C,$ 

| test case  | Set(B) | 0 | status | Set(B) | 1 | status |
|------------|--------|---|--------|--------|---|--------|
| next state | B      | A | A      | B      | B | B      |
| output     | 0      | 0 | 00     | 0      | 1 | 01     |

حال برای جایگذین کردن Set(B) ابتدا از HS=11 استفاده میکنیم و چون در هر دو استفاده ی آن، از حالت A به حالت C میرویم، لازم است بعد از آن از رشته ی T(C,B)=10 استفاده کنیم:

| test case  | 11 | 10 | 0 | status | 11 | 10 | 1 | status |
|------------|----|----|---|--------|----|----|---|--------|
| next state | C  | B  | A | A      | C  | B  | B | B      |
| output     | 00 | 10 | 0 | 00     | 00 | 10 | 1 | 01     |

حال برای جایگذین کردن status کافیست یکبار از DS = 11 استفاده کنیم که بدانیم کجا بوده ایم و چون حالت تغییر میکند برای اینکه بفهمیم کجا هستیم یکبار دیگر از HS = 11 استفاده میکنیم (در اینجا برای دومین استفاده ی Set(B) انتفاده کرده ایم):

| test case  | 11 | 10 | 0 | 11 | 11 | 11 | 0 | 1 | 11 | 11 |
|------------|----|----|---|----|----|----|---|---|----|----|
| next state | C  | B  | A | C  | D  | A  | B | B | B  | B  |
| output     | 00 | 10 | 0 | 00 | 10 | 01 | 0 | 1 | 11 | B  |

الف) برای برقراری شرط ioco باید رابطه ی زیر برقرار باشد:

 $\forall \sigma \in Straces(S) \ . \ out(\hat{q_I} \ after \ \sigma) \subseteq out(\hat{q_S} \ after \ \sigma)$ 

پس ابتدا باید Straces(S) را مشخص کنیم که به صورت زیر است:

 $Straces(S) = ((\delta + ?a!b)^* ?a\delta^*?a!c)^*$ 

با کمی دقت میتوان فهمید که حکم بالا برای impl1 برقرار است. زیرا تنها چیزی که بیشتر از spec دارد این است که حالت a یک ورودی a به خودش دارد که هیچ تاثیری ندارد چرا که ورودی های a همگی از a میایند و بقیه عالی a حالت های a حالت های a هستند. در نتیجه برای هر a داریم:

 $out(\hat{q_{spec}} \ after \ \sigma) \subseteq out(\hat{q_{impl1}} \ after \ \sigma)$ 

در نتیجه رابطه ی impl1 ioco spec برقرار است.

اما رابطه ی  $\sigma=?a?a$  نمیست. زیرا به ازای  $\sigma=?a?a$  حکم برقرار نمیشود.

$$\begin{array}{c} out(q_{\hat{spec}} \ after \ ?a?a) = out(\{x\}) = \{!c\} \\ out(q_{\hat{impl2}} \ after \ ?a?a) = out(\{x,u\}) = \{!c,!b\} \\ \end{array} \\ \Rightarrow out(q_{\hat{impl2}} \ after \ ?a?a) \not\subset out(q_{\hat{spec}} \ after \ ?a?a) \\ \end{array} \\ \Rightarrow out(q_{\hat{impl2}} \ after \ ?a?a) \not\subset out(q_{\hat{spec}} \ after \ ?a?a) \\ \Rightarrow out(q_{\hat{impl2}} \ after \ ?a?a) \not\subset out(q_{\hat{spec}} \ after \ ?a?a) \\ \Rightarrow out(q_{\hat{impl2}} \ after \ ?a?a)$$

ب) درخت آزمون ioco زیر با impl2 نامنطبق است. همانطور که مشخص است به ازای ورودی a?a!b? باید fail شود ولی با اجرای آن روی impl2 به حالت fail نمیرود.

