Signaler och System

ELA405, Signaler och Signalbehandling 20190121, Västerås elaine.astrand@mdh.se

Vad är en signal?

→En funktion av en eller flera oberoende variabler ofta innehållande information

→ **System** används för att behandla signaler

Intro - Signaler

- 1. Tidskontinuerliga signaler
 - Ljud, lufttryck, muskelaktivitet..

- 2. Tidsdiskreta signaler
 - Aktiemarknad, bostadspriser...

Bild

→ ljusstyrka(horiz, vert)

Intro - System

LTI = Linear TimeInvariant

linjärtidsinvarianticke-linjärtidsvarierande

Domäner för analys och representation av signaler och system:

- 1. Tidsdomänen
- 2. Frekvensdomänen
 - Fourier transform
 - Laplace transform
 - Z-transform

3 bassignaler som är viktiga i signalbehandling:

- Sinusvågor
- Reella exponentialer
- Komplexa exponentialer

Tidskontinuerliga sinusvågor

Sinusvåg:
$$x(t) = A\cos(\omega_0 t + \emptyset)$$

amplitud frekvens fas

Periodisk

$$x(t) = x(t + T_0)$$
, period = minsta T_0

Tidsförskjutning ←→ fasändring

$$x(t+t_0) = \cos(\omega_0 t + \omega_0 t_0)$$

$$\emptyset_0$$

Tidskontinuerliga sinusvågor

Jämn signal: symmetrisk kring y-axeln \rightarrow x(t) = x(-t)

$$\phi = 0 \to x(t) = \cos(\omega_0 t)$$

Udda signal: antisymmetrisk kring y-axeln $\rightarrow x(t) = -x(-t)$

$$\phi = \frac{\pi}{2} \to x(t) = \cos\left(\omega_0 t + \frac{\pi}{2}\right) = \sin(\omega_0 t)$$

Tidsdiskreta sinusvågor

Sinusvåg:
$$x[n] = Acos(\Omega_0 n + \emptyset)$$

amplitud frekvens fas

 n_0 måste vara ett heltal!

Sekvens/Tidsförskjutning \longleftrightarrow fasändring $x[n+n_0] = \cos(\Omega_0 n + \Omega_0 n_0)$ \emptyset_0

- Tidskontinuerliga sinusvågor är alltid periodiska
- Tidsdiskreta sinusvågor kan vara icke-periodiska

$$x[n] = A\cos(\Omega_0 n + \phi)$$

Om periodisk: x[n] = x[n+N]

$$Acos(\Omega_0(n+N)+\phi) = Acos(\Omega_0n+\Omega_0N+\phi)$$

$$\Omega_0 N = 2\pi m, m = 1,2,3,...$$

heltalsmultipel av 2π

$$N = \frac{2\pi m}{\Omega_0}$$
 N måste vara ett heltal för att x[n] ska vara periodisk

$$\Omega_0 = \frac{2\pi}{12}$$

Vad är perioden N?

$$\Omega_0 = \frac{2\pi}{12} \qquad N = \frac{2\pi}{\Omega_0} = 12$$

$$\Omega_0 = \frac{8\pi}{31}$$

n
$$\Omega_0=rac{8\pi}{31}$$
 $N=rac{2\pi}{\Omega_0}=rac{31}{4}k$ N måste vara ett heltal! $ightarrow N=31, k=4$

$$\Omega_0 = \frac{1}{6}$$

$$\Omega_0 = \frac{1}{6}$$
 $N = \frac{2\pi}{\Omega_0} = 12\pi k$ Signalen är inte periodisk!

periodisk!

- Tidskontinuerliga sinusvågor: **skilda** signaler för alla värden av frekvensen, ω_0
- Tidsdiskreta sinusvågor: **identiska** signaler för värden av frekvensen, Ω_0 , som skiljer sig med 2π

$$x(t) = A\cos((\omega_0 + 2\pi m)t + \phi)$$
, t är inte alltid ett heltal $x[n] = A\cos((\Omega_0 + 2\pi m)n + \phi)$, n är alltid ett heltal

Viktig skillnad mellan tidskontinuerliga och tidsdiskreta sinusvågor!

Tidskontinuerliga sinusvågor

$$x(t) = \cos(\omega_0 t + \phi)$$

- Periodisk för alla värden av ω_0
- Skilda signaler för alla värden av ω_0

Tidsdiskreta sinusvågor

$$x[n] = \cos(\Omega_0 n + \phi)$$

Periodisk enbart om:

$$\Omega_0 = \frac{2\pi m}{N}$$
, m, N är heltal

• Identiska signaler för värden av Ω_0 som skiljer sig med 2π

Reella exponentiella signaler

Tidskontinuerliga signaler

$$x(t) = Ce^{at}$$
, C och a är reella

Reella exponentiella signaler

Tidsdiskreta signaler

$$x[n] = Ce^{\beta n} = C\alpha^n$$
, C, α är reella

Om $\alpha > 0$ då är $\beta = \ln(\alpha)$ Om $\alpha < 0$ då är β imaginärt

-->

Man brukar använda formen: $u[n] = C a^n$

$$x[n] = C\alpha^n$$

Tidskontinuerliga signaler

$$x(t) = Ce^{at}$$
, C, a är komplexa

$$C = |C|e^{j\theta}$$
 (polär form)
 $a = r + j * \omega_0$ (rektangulär form)

$$x(t) = |C|e^{rt}e^{j(\omega_0 t + \theta)}$$

Euler's relation: $\cos(\omega_0 t + \theta) + j\sin(\omega_0 t + \theta) = e^{j(\omega_0 t + \theta)}$

$$x(t) = |C|e^{rt}\cos(\omega_0 t + \theta) + j|C|e^{rt}\sin(\omega_0 t + \theta)$$

→ Dämpade sinusvågor

Tidsdiskreta signaler

$$x[n] = C\alpha^n, C, \alpha$$
 är komplexa

$$C = |C|e^{j\theta}$$
$$\alpha = |\alpha|e^{j\Omega_0}$$

$$x[n] = |\mathcal{C}| |\alpha|^n e^{j(\Omega_0 n + \theta)}$$

Euler's relation: $\cos(\Omega_0 n + \theta) + j\sin(\Omega_0 n + \theta) = e^{j(\Omega_0 n + \theta)}$

$$x[n] = |C||\alpha|^n \cos(\Omega_0 n + \theta) + j|C||\alpha|^n \sin(\Omega_0 n + \theta)$$

Signaler

- Sinusvågor
- Reella exponentialer
- Komplexa exponentialer

Mer komplicerade signaler kan ofta brytas ner till dessa bassignaler

Signalenergi och medeleffekt

Energi i en oändlig signal:

Tidskontinuerlig signal:

$$E_{\infty} \triangleq \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt$$

Tidsdiskret signal:

$$E_{\infty} \triangleq \lim_{N \to \infty} \sum_{n=-N}^{N} |x[n]|^2$$

Power i en oändlig signal:

Tidskontinuerlig signal:

$$P_{\infty} \triangleq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$

Tidsdiskret signal:

$$P_{\infty} \triangleq \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$

För periodiska signaler krävs endast integrering/summering över en period.

System

- Tidskontinuerliga system
- Tidsdiskreta system

System som är ihopkopplade:

Kaskad

Ordningen $x_2=y_1$ $x_3=y_3$ System 2 x_1 System 2 $x_2=y_1$ $x_3=y_3$ System 2 x_1 System 2 $x_2=y_1$ $x_2=y_1$ System 2 x_1 System 2 $x_2=y_1$ System 2 x_1

System

System som är ihopkopplade:

- Kaskad
- Parallel

Ordningen spelar ingen roll

$$x_1=x_2=x$$

System - egenskaper

- **Utan minne** ett system där utsignalen i en specifik tidpunkt beror enbart på insignalen i samma tidpunkt
 - $x(t)@t = t_0 \rightarrow y(t)@t = t_0$
 - $x[n]@ n = n_o \rightarrow y[n]@ n = n_0$
- Inverterbar Med en känd utsignal finns endast en unik insignal
- Kausalitet utsignalen för en godtycklig tid beror enbart på insignalen innan eller lika med den tiden

$$x_1(t) \rightarrow y_1(t)$$

 $x_2(t) \rightarrow y_2(t)$
Om $x_1(t) = x_2(t), t < t_0$
Då är: $y_1(t) = y_2(t), t < t_0$

System

- **Stabilitet** för alla begränsade insignaler produceras en begränsad utsignal
- Tidsinvariant om insignalen tidsförskjuts så kommer även utsignal att tidsförkjutas på samma sätt

$$x(t) \to y(t)$$

$$x(t - t_0) \to y(t - t_0)$$

 Linjäritet – En linjär kombination av insignaler ger samma linjära kombination av varje relaterad utsignal

```
Om x_1(t) \rightarrow y_1(t) x_2(t) \rightarrow y_2(t) då är ax_1(t) + bx_2(t) \rightarrow ay_1(t) + by_2(t)
```


Signaler och System

<u>Läsning</u>:

Oppenheim A. Signals and Systems. 2nd Ed. (2014):

<u>Kap 1</u>: 1.1-1.3, 1.5-1.6 (inte feedback system)

Gör tillhörande uppgifter