

Projet Génie Logiciel

Manuel d'utilisation

Réalisé par : Mouez JAAFOURA, Ilyas MIDOU, Meriem KAZDAGHLI, Salim KACIMI, Mehdi DIMASSI

Date: 09 janvier 2025

Grenoble INP - Ensimag & Phelma Université Grenoble Alpes

Table des matières

1	Util	lisation	2
	1.1	Structure du projet	2
	1.2	Commandes disponibles	2
	1.3	Exemple d'exécution	3
	1.4	Script	3
2	Uti	lisation du langage Deca	3
3	Erre	eurs	5
	3.1	Erreurs contextuelles et syntaxiques	5
	3.2	Erreurs de génération de code	15
4	Lim	itations	15
5	Ext	ension	16
	5.1	Présentation	16
	5.2	Mode Operatoire	16
		5.2.1 Déclaration d'un tableau	16
		5.2.2 Initialisation	17
		5.2.3 Assignation	17
		5.2.4 Accès aux éléments	18
	5.3	Bibliothèque TAB.decah	18
		5.3.1 Classe MatrixFloat	18
		5.3.2 Classe ListFloat	19
6	Con	nclusion	19

1 Utilisation

1.1 Structure du projet

Le projet se compose de plusieurs modules :

- src/main/java/fr/ensimag/deca/: Contient le code source principal du projet.
- **src/test/deca/** : Contient les tests unitaires permettant de valider le bon fonctionnement du projet.
 - syntax/: Contient les tests unitaires pour la vérification syntaxique.
 - **context**/ : Contient les tests unitaires pour la vérification contextuelle.
 - **gencode**/ : Contient les tests unitaires pour la génération de code.
- **docs**/: Contient la documentation du projet ainsi que les fichiers de configuration.

1.2 Commandes disponibles

compilation : Pour compiler un fichier .deca en fichier .ass en utilisant le module
 IMA. On utilise la commande suivante :

Option	Description	
-b	Affiche la bannière du programme et termine l'exécution im-	
	médiatement.	
-p Arrête après l'analyse syntaxique et affiche l'AST déce		
	truit.	
-v Arrête après la vérification. Aucun résultat affiché s'il n'y		
pas d'erreurs.		
-n Désactive les vérifications à l'exécution (comme le dél		
	ment ou les pointeurs nuls).	
-r <num> Limite le nombre de registres disponibles à <num> (val</num></num>		
	entre 4 et 16).	
-P	Active la compilation parallèle pour optimiser les perfor-	
	mances.	
-d	Active les traces de debug. Répétez cette option plusieurs	
	fois pour augmenter le niveau de détail des traces.	

Table 1 – Options de la commande decac

— **simulation** : Le fichier .ass généré sera situé dans le même répertoire que le fichier .deca. Pour lancer la simulation, exécutez la commande suivante :

ima path/to/file/fichier.ass

1.3 Exemple d'exécution

Voici un exemple d'utilisation de la commande de compilation :

- \$./src/main/bin/decac -p src/test/deca/codegen/valid/provided/entier1.deca
- \$ ima src/test/deca/codegen/valid/provided/entier1.ass

1.4 Script

Les scripts se trouvent dans le répertoire suivant : src/test/script/. Voici les principaux scripts disponibles et leurs fonctions respectives :

- basic-synt.sh: Utilise le script fourni par le professeur (test_synt) pour exécuter les tests syntaxiques sur notre base de tests valides et invalides:
 - src/test/deca/syntax/valid/ourTests/: Tests syntaxiques valides.
 - src/test/deca/syntax/invalid/ourTests/: Tests syntaxiques invalides.
- basic-context.sh: Utilise le script fourni par le professeur (test_context) pour exécuter les tests contextuels sur notre base de tests valides et invalides:
 - src/test/deca/context/valid/provided/: Tests contextuels valides.
 - src/test/deca/context/invalid/provided/: Tests contextuels invalides.
- basic-gencode.sh: Compile les fichiers de test avec notre compilateur avec l'option -P, puis exécute les simulations avec ima:
 - src/test/deca/codegen/valid/ourTests/: Tests sémantiques valides.
 - src/test/deca/codegen/invalid/ourTests/: Tests sémantiques invalides.
- test-options.sh: Teste toutes les options du compilateur decac sur notre base de tests valides invalides:
 - src/test/deca/codegen/valid/ourTests/: Tests sémantiques valides.
 - src/test/deca/context/invalid/provided/: Tests contextuels invalides.

2 Utilisation du langage Deca

Nous avons implémenté toutes les règles représentées dans le polycopié. Ainsi, dans notre langage, il est important de respecter l'ordre suivant :

 Déclaration des classes : Les classes doivent être déclarées en premier dans le fichier.

sinon une erreur lexical indiquant la ligne et l'indice de caractere est sortie de la forme :

```
path/to/file/file.deca:ligne:indice: mismatched input 'class'
expecting {'instanceof','&&', ',', ')', '.', '=', '==', '>=',
```

```
'>', '<=', '<', '-', '!=', '||', '%', '+', '/', '*'}</pre>
```

- **Déclaration du main** : Le point d'entrée du programme (main) doit suivre cet ordre :
 - **Déclaration des variables**: Voici les types disponibles dans le langage: boolean, int, float, classes_iden et les tableaux (voir 5.1). une declaration apres une ou plusieurs instruction provoque cette erreur.

path/to/file/file.deca:ligne:indice:
no viable alternative at input 'a'

- Affectation des variables : Les variables doivent être initialisées dans l'ordre de leur déclaration. Sinon, un comportement indéterminé peut se produire. Pour les tableaux (voir 5.2).
- Instructions disponibles :
 - Les instructions d'affichage, telles que print, println, printx, et printlnx.
 - Les boucles while (*condition) { ... } : La condition peut inclure des affectations, des comparaisons ou des opérations arithmétiques, tant qu'elle retourne une valeur boolean à la fin. Sinon, une erreur contextuelle sera générée.
 - Les structures conditionnelles if (*condition) { ... } else { ... }.
- Restrictions dans le main : Il n'est pas possible d'utiliser un return dans le main, car il est considéré comme une méthode de type void.

Note sur les conditions : Une condition peut inclure des affectations, des comparaisons ou des opérations arithmétiques, mais elle doit toujours retourner une valeur de type boolean. Sinon, une erreur contextuelle sera levée.

path/to/file/file.deca:ligne:indice:

Les opérandes doivent être de méme type.

Impossible de comparer entre type1 et type2.

4

3 Erreurs

3.1 Erreurs contextuelles et syntaxiques

Erreurs	Explication
(Type) valable seulement pour un type	Une expression utilisée comme condition
Boolean.	(par exemple dans un if ou un while) n'est
	pas de type Boolean

Table 2 – Type invalide pour une condition

Erreurs	Explication
L'opération '+ - * /' n'est pas définie	Vous essayez d'utiliser un opérateur arith-
pour les types !	métique sur des types non compatibles,
	tels que les booléens ou les chaînes de ca-
	ractères. Assurez-vous que les types des
	opérandes sont corrects et qu'ils prennent
	en charge les opérations arithmétiques.

Table 3 – Erreur de type pour une opération arithmétique

	Explications
type. Impossible de comparer entre sa type_gauche et type_droite.	Cette erreur se produit lorsque vous essayez d'utiliser un opérateur de comparaison (comme >, <, >=, <=) sur des types non compatibles. Cela peut arriver dans les cas suivants : — Les opérandes de l'opérateur de comparaison sont de types différents et une conversion implicite n'est pas possible. — Les opérandes utilisés avec ces opérateurs ne sont pas des types numériques (comme int ou float).

Table 4 – Erreur de type pour les opérateurs de comparaison

Erreurs	Explications
Print est valable seulement pour les types :	Cette erreur se produit lorsque vous tente
int, float et string.	d'afficher une expression dont le type n'est
	pas pris en charge. Les types autorisés
	pour une instruction print sont :
	— int
	— float
	— string

Table 5 – Erreur de type pour les instructions print, printl
n, printl
n, printl
nx $\,$

Erreurs	Explications
On ne peut pas affecter à type_gauche un type type_droite.	Cette erreur se produit lorsqu'une expression tente d'affecter une valeur à une variable ou une structure dont le type n'est pas compatible. Par exemple :
	— Une affectation entre deux types in- compatibles (e.g., string vers int).
	— Une affectation qui ne respecte pas la hiérarchie des sous-types (sauf pour les cas spécifiques comme int \rightarrow float)

Table 6 – Erreur de type lors d'une affectation

Erreurs	Explications
la super-classe nom_super_classe n'est pas définie dans l'environnement.	Lors de la définition d'une classe, le compilateur vérifie que la super-classe spécifiée existe dans l'environnement des types. Cette erreur se produit si: — La super-classe n'a pas été déclarée
	 La super-classe n'a pas èté déclarée ou définie avant l'utilisation. Il y a une faute de frappe dans le nom de la super-classe.

Table 7 – Super-classe non définie

Erreurs	Explications
L'attribut 'nom_attribut' est défini plu-	Cette erreur survient lorsqu'un champ (ou
sieurs fois.	attribut) d'une classe est déclaré plusieurs
	fois avec le même nom dans la même
	classe. Cela viole la règle de l'unicité des
	champs dans une classe.

Table 8 – Attribut défini plusieurs fois

Erreurs	Explications
Le type d'un attribut ne peut pas être type.	Cette erreur se produit lorsque vous es- sayez d'attribuer un type non autorisé ou inexistant à un attribut. Cela peut arriver dans les cas suivants :
	— Le type spécifié n'est pas défini ou n'existe pas dans le contexte du pro- gramme.
	— Le type utilisé est réservé ou interdit (par exemple, des mots-clés spécifiques au langage).
	 Le type est mal orthographié ou mal déclaré.
	Solution : Vérifiez que le type spécifié est correctement défini et valide dans le contexte de votre programme.

Table 9 – Type d'attribut non autorisé

Erreurs	Explications
La méthode sous le nom nom_méthode	Une méthode avec le même nom a déjà
est définie plusieurs fois.	été déclarée dans l'environnement parent,
	ce qui entraîne un conflit.

Table 10 – Méthode redéfinie plusieurs fois

Erreurs	Explications
Le type <nom_du_type> n'est pas défini.</nom_du_type>	Cette erreur survient lorsque vous tentez
	d'utiliser un type qui n'est pas défini dans
	l'environnement des types. Cela peut arri-
	ver si le type n'a pas été déclaré ou est mal
	orthographié.

Table 11 – Type non défini pour un attribut

Erreurs	Explications
La variable <nom_de_la_variable> est</nom_de_la_variable>	Cette erreur survient lorsqu'une variable
définie plusieurs fois.	est déclarée plusieurs fois dans le même
	contexte ou bloc de code. Chaque va-
	riable doit avoir un nom unique dans son
	contexte.

Table 12 – Variable redéfinie

Erre	urs				Explications
Le	paramètre	sous	le	nom	Cette erreur se produit lorsqu'un para-
<nom_< td=""><td>_du_parametre</td><td>> est</td><td>défini</td><td>plu-</td><td>mètre d'une méthode est défini plusieurs</td></nom_<>	_du_parametre	> est	défini	plu-	mètre d'une méthode est défini plusieurs
sieurs	s fois.				fois avec le même nom. Chaque para-
					mètre dans une méthode doit avoir un nom
					unique.

Table 13 – Paramètre redéfini avec le même nom

Erreurs	Explications
Le type <nom_du_type> est inconnu.</nom_du_type>	Cette erreur se produit lorsque le type spé-
	cifié pour un paramètre de méthode ou une
	variable n'est pas défini ou est invalide.
	Cela peut arriver si le type n'est pas dé-
	claré dans l'environnement ou si vous uti-
	lisez void, ce qui n'est pas autorisé pour
	les paramètres ou variables.

Table 14 – Type de paramètre inconnu ou non valide

Erreurs	Explications
La variable ne peut pas avoir void comme	Cette erreur survient lorsqu'une variable
type.	est déclarée avec le type void, ce qui n'est
	pas valide. Une variable doit toujours avoir
	un type concret pour stocker une valeur.

Table 15 – Type de variable non valide

Erreurs	Explications
On ne peut pas affecter à type_gauche un	Cette erreur se produit lorsqu'une expres-
type type_droite.	sion tente d'affecter une valeur à une va-
	riable ou une structure dont le type n'est
	pas compatible.

Table 16 – Erreur de type lors d'une affectation

Erreurs	Explications
Le type d'un attribut ne peut pas être	Cette erreur se produit lorsque vous es-
void.	sayez d'attribuer un type non autorisé ou
	inexistant à un attribut.

Table 17 – Type d'attribut non autorisé

Erreurs	Explications
Le type <nom_du_type> n'est pas défini.</nom_du_type>	Cette erreur survient lorsque vous tentez
	d'utiliser un type qui n'est pas défini dans
	l'environnement des types.

Table 18 – Type non défini pour un attribut

Erreurs	Explications
On utilise Instanceof sur des classes qui	Cette erreur se produit si les types utilisés
ne sont pas définies dans l'environnement-	avec l'opérateur instanceof ne sont pas des
Type.	classes définies dans l'environnement des
	types. L'opérateur instanceof est réservé à
	la vérification de l'appartenance ou de la
	sous-classe d'un type objet.

Table 19 – Instance
of sur des types non valides $\,$

Erreurs	Explications
Un problème dans les paramètres d'entrée	Les signatures de la méthode redéfinie
de la méthode redéfinie <nom méthode="">.</nom>	dans la classe actuelle et dans la super-
Attendue : <signature classe="" super=""> Pré-</signature>	classe ne correspondent pas. Cela viole les
sentée : <signature actuelle="" classe=""></signature>	règles de redéfinition des méthodes.

Table 20 – Problème dans les paramètres d'entrée de la méthode redéfinie

Erreurs	Explications
Lors de la redéfinition de la méthode	Le type de retour de la méthode redéfinie
<nom méthode="">, le type <type super<="" td=""><td>dans la classe actuelle n'est pas un sous-</td></type></nom>	dans la classe actuelle n'est pas un sous-
classe> n'est pas un sous-type de <type< td=""><td>type du type de retour de la méthode dans</td></type<>	type du type de retour de la méthode dans
classe actuelle>.	la super-classe.

Table 21 – Type de retour de la méthode redéfinie incompatible

Erreurs	Explications
L'index doit être de type int.	Cette erreur se produit lorsqu'une expres-
	sion utilisée comme index pour accéder à
	un tableau n'est pas de type int. Les ta-
	bleaux en Deca doivent être indexés par
	des entiers.

Table 22 – Index non valide pour un tableau

Erreurs	Explications
Expression Invalide. Valide seulement à	Cette erreur se produit lorsqu'une mé-
l'intérieur d'une classe.	thode est utilisée dans un contexte où au-
	cune classe n'est définie (e.g., hors d'une
	classe ou dans un contexte global).

Table 23 – Expression invalide hors d'une classe

Erreurs	Explications
La méthode utilisée sous le nom <nom de<="" th=""><th>Cette erreur survient si la méthode appe-</th></nom>	Cette erreur survient si la méthode appe-
la méthode> n'est pas définie dans l'envi-	lée n'existe pas dans l'environnement de la
ronnement.	classe actuelle. Cela peut être dû à : Une
	faute de frappe dans le nom de la méthode.
	Une méthode non déclarée dans la classe.

Table 24 – Méthode non définie

Erreurs	Explications
Expression Invalide!, valable seulement	Cette erreur survient lorsque new est uti-
pour les classes ou pour les tableaux.	lisé avec un type qui n'est ni une classe ni
	un tableau. Par exemple, utiliser new avec
	des types primitifs comme int ou float n'est
	pas valide.

Table 25 – Utilisation de new avec un type non valide

Erreurs	Explications
Not ne peut pas être appliqué à une ex-	Cette erreur se produit lorsque l'opérateur
pression de type <nom du="" type="">. Appli-</nom>	unaire Not (!) est appliqué à une expres-
cable seulement pour les booleans.	sion qui n'est pas de type boolean. L'opé-
	rateur Not est exclusivement réservé aux
	expressions de type boolean.

Table 26 – Type de l'expression incompatible avec l'opérateur Not

Erreurs	Explications
return ne peut pas être utilisé à l'intérieur	Cette erreur se produit lorsqu'une instruc-
d'une instruction de type void	tion return est utilisée dans une méthode
	déclarée avec un type de retour void. Dans
	une telle méthode, return ne peut pas être
	suivi d'une expression.

Table 27 – return dans une méthode de type void

Erreurs	Explications
On ne peut pas retourner un type <type< td=""><td>Cette erreur se produit lorsque le type de</td></type<>	Cette erreur se produit lorsque le type de
expr> pour une méthode de type <type< td=""><td>l'expression retournée ne correspond pas</td></type<>	l'expression retournée ne correspond pas
return>.	au type de retour attendu par la méthode.

Table 28 – Incompatibilité entre le type de retour et l'expression retournée

Erreurs	Explications
Invalide Type! (<nom du="" type="">), l'utili-</nom>	Cette erreur se produit lorsque l'expres-
sation des attributs est valable seulement	sion située à gauche d'une sélection (.)
pour les classes.	n'est pas de type classe. La sélection
	d'attributs est réservée aux instances de
	classes.

Table 29 – Type de l'expression gauche d'une sélection invalide

Erreurs	Explications
La classe <nom classe=""> n'a pas d'attribut</nom>	Cette erreur survient lorsque l'attribut
<nom attribut="">.</nom>	spécifié n'existe pas dans la classe ou ses
	superclasses.

Table 30 – Attribut inexistant dans la classe

Erreurs	Explications
l'identificateur This est utilisé seulement à	Cette erreur se produit lorsque l'identifica-
l'intérieur d'une classe.	teur this est utilisé en dehors du contexte
	d'une classe. L'utilisation de this est ré-
	servée pour référencer l'instance courante
	d'une classe dans une méthode ou un
	constructeur de cette classe.

Table 31 – This en dehors d'une classe

Erreurs	Explications
Cast invalide : impossible de convertir	Cette erreur survient lorsque le cast ex-
<pre><type source=""> en <type cible=""></type></type></pre>	plicite entre le type de la variable et le
	type cible n'est pas autorisé. Les conver-
	sions valides sont limitées à : Identité (int
	ightarrow int, float $ ightarrow$ float, boolean $ ightarrow$ boo-
	lean). Conversion implicite (int \rightarrow float).
	Conversion explicite (float \rightarrow int).

Table 32 – Cast non autorisé

Erreurs	Explications
Type invalide! (<nom du="" type="">), valide</nom>	Cette erreur se produit lorsque l'opérateur
pour un type int ou un type float.	unaire UnaryMinus (opérateur -) est appli-
	qué à une expression qui n'est ni de type
	int ni de type float. L'opérateur UnaryMi-
	nus est conçu pour être utilisé uniquement
	avec des types numériques.

Table 33 – Type de l'opérande invalide pour l'opérateur UnaryMinus

Erreurs	Explications
La classe sous le nom <nom du="" type=""> est</nom>	Cette erreur survient lorsqu'un tableau ou
déjà définie.	une liste est affecté(e) à une autre, mais
	que leurs dimensions (tailles) ne corres-
	pondent pas.

Table 34 – Incompatibilité des tailles dans une affectation de tableau

Erreurs	Explications
Problème dans les tailles des listes.	Cette erreur se produit lorsqu'une classe
	est déclaré plusieurs fois avec le même
	nom dans le même environnement. Chaque
	type doit avoir un nom unique.

Table 35 – Déclaration multiple d'une classe

Erreurs	Explications
La variable < nom de la variable > n'est pas	Cette erreur se produit lorsqu'une variable
définie.	ou un identifiant est utilisé sans avoir été
	déclaré ou défini au préalable dans l'envi-
	ronnement local. Cela signifie que le com-
	pilateur ne peut pas trouver de définition
	correspondante pour l'identifiant utilisé

Table 36 – Utilisation d'une variable non définie

Erreurs	Explications
Expression Invalide!, valable seulement	Cette erreur se produit lorsque l'expres-
pour les tableaux.	sion sur laquelle une opération d'indexa-
	tion est effectuée n'est pas de type ta-
	bleau/liste. Les opérations d'accès par in-
	dex (e.g., arr[0]) ne sont valides que pour
	des types définis comme tableaux

Table 37 – Type de la variable non conforme à une liste/tableau

Erreurs	Explications
Problème dans les dimensions du tableau.	Cette erreur se produit lorsque le nombre
	d'indices spécifiés pour accéder à un ta-
	bleau multidimensionnel ne correspond
	pas aux dimensions du tableau.

Table 38 – Mauvaise dimension dans l'accès à un tableau multidimensionnel

Erreurs	Explications
Invalide Type! (<type>), l'utilisation des</type>	Cette erreur se produit lorsque vous tentez
méthodes est valable seulement pour les	d'utiliser une méthode sur une expression
classes.	qui n'est pas de type classe. Seules les ins-
	tances de classes peuvent appeler des mé-
	thodes.

Table 39 – Utilisation de méthodes sur un type non conforme

Erreurs	Explications
L'attribut <nom attribut=""> est défini</nom>	Cette erreur survient lorsqu'un attribut
comme protected.	défini comme protected est accédé depuis
	une classe qui ne fait pas partie de la hié-
	rarchie de la classe où l'attribut est défini.

Table 40 – Accès à un attribut protégé depuis une classe non autorisée

3.2 Erreurs de génération de code

Erreurs	Explications
Erreur : Modulo par zéro	Vous tentez d'effectuer une opération de
	modulo avec un entier divisé par 0. Cela
	n'est pas permis et génère une erreur.
Erreur : Division par zero	Vous tentez d'effectuer une opération de
	divison par 0. Cela n'est pas permis et gé-
	nère une erreur.
Erreur : Débordement flottant	Cette erreur survient lorsqu'il y a un
	dépassement de capacité (overflow) lors
	d'une opération arithmétique sur des
	nombres flottants. Cela signifie que la va-
	leur obtenue dépasse la plage autorisée
	pour un float, qui est comprise entre
	-3.4028235E38 et 3.4028235E38.
Erreur : Débordement de la pile	Vous avez dépassé la taille maximale de la
	pile, qui est limitée à 10 000 adresses.
Erreur : Erreur lecture	Cette erreur se produit lorsque vous entrez
	une valeur invalide pour une instruction
	readInt ou readFloat.
Erreur : Heap overflow	Un dépassement de mémoire heap (heap
	overflow) se produit lorsque un utilisateur
	essaye d'allouer trop de classes, trop de
	champs dans une classe.
Erreur : Déréférencement null	Une variable dont la valeur est null a été
	utilisée pour un appel de fonction ou pour
	accéder à un attribut.
Erreur: Return null dans une fonc-	Vous avez oublié un return dans une mé-
tion non-void null	thode de type non-void.

Table 41 – Liste des erreurs d'exécution

4 Limitations

Notre compilateur présente les limitations suivantes :

— Il ne supporte pas la déclaration de plusieurs méthodes portant le même nom mais ayant des paramètres différents (surcharge de méthodes) dans la même classe. En effet, la vérification actuelle se base uniquement sur le nom de la méthode, sans prendre en compte les types ou le nombre des paramètres. Cependant, une redéfinition (override) d'une méthode dans une sous-classe est correctement prise en charge.

— Notre compilateur ne vérifie pas si le résultat d'un cast explicite (int) appliqué à une valeur flottante est dans les limites des valeurs maximales d'un entier. Cela peut entraîner une erreur lors de l'exécution du code généré par le compilateur. Par exemple :

```
{
    float x = 2147483647; // Valeur maximale pour un entier
    int c = 100;
    c = (int)(x + c); // Cast explicite
    println(c);
}
```

Dans ce cas, le compilateur génère une erreur de type IMA lors de l'exécution:

```
** IMA ** ERREUR ** Ligne 39 : WINT avec R1 flottant
```

5 Extension

5.1 Présentation

En plus de l'implémentation du compilateur conformément aux spécifications du sujet, nous avons décidé d'enrichir le langage Deca en y ajoutant une extension dédiée à la prise en charge et à la manipulation des tableaux. Cette nouveauté élargit les possibilités offertes par le langage et le rend plus adapté à des besoins complexes. Pour la syntaxe, nous nous sommes inspirés des langages Java et C, afin de garantir une expérience intuitive et familière pour les développeurs.

De plus, nous avons conçu une bibliothèque spécifique pour le calcul matriciel, nommée TAB.decah. Cette bibliothèque propose une gamme d'outils permettant de réaliser des opérations sur des matrices flottantes, directement dans le langage Deca. Grâce à cette extension, Deca devient encore plus puissant et flexible pour les utilisateurs.

5.2 Mode Operatoire

Jusqu'à aujourd'hui, nous avons uniquement implémenté la partie A et B ainsi que la bibliothèque.

5.2.1 Déclaration d'un tableau

La déclaration d'un tableau se fait selon la syntaxe suivante :

— Le type du tableau, qui peut être int, float, boolean ou encore une classe personnalisée.

- Sa dimension, représentée par des paires de crochets vides directement après le type. Le nombre de paires de crochets correspond à la dimension du tableau.
- Enfin, son identifiant, qui est le nom du tableau.

```
<type> [] <identifiant>;
```

Par exemple, pour déclarer un tableau d'entiers à une dimension :

```
int[] tableau;
```

Et pour un tableau à deux dimensions (un tableau de tableaux) :

```
int[][] tableau2D;
```

5.2.2 Initialisation

L'initialisation d'un tableau se fait à l'aide de l'une des formes suivantes :

1ère forme : uniquement pour les types primitifs (int, float, boolean)

2ème forme : pour tous les types

L'index du tableau doit être un entier positif.

Tous les éléments du tableau sont initialisés comme suit :

- Pour les int et float, la valeur par défaut est 0.
- Pour les boolean, la valeur par défaut est false.
- Pour les objets, la valeur par défaut est null.

Exemple:

```
int[] tableau = new int[3];
```

5.2.3 Assignation

Une fois des tableaux déclarés ou initialisés, il est possible de faire des assignations entre tableaux de même dimension. Par exemple, assigner les deux tableaux suivants :

```
int[] tableau1=[1, 2, 3];
int[] tableau2=new int[3];
tableau2=tableau1;
```

5.2.4 Accès aux éléments

La première case d'un tableau est indexée à 0. Par exemple, pour changer la 2ème case d'un tableau et lui attribuer la valeur 1, on peut faire comme suit :

```
int[] tableau = [1, 2, 3];
tableau[1] = 1;
```

5.3 Bibliothèque TAB.decah

La bibliothèque TAB. decah fournit des outils pour la gestion des matrices de flottants et des listes de flottants dynamiques dans le langage Deca. Elle comprend deux classes principales : MatrixFloat et ListFloat, chacune offrant une série de méthodes pour manipuler des matrices et des listes de manière flexible et efficace.

5.3.1 Classe MatrixFloat

La classe MatrixFloat est une classe utilitaire pour la gestion des matrices de flottants. Elle permet d'effectuer diverses opérations sur les matrices, telles que :

- **getElement(float[][] matrix, int row, int col)**: Cette méthode permet d'obtenir un élément spécifique dans une matrice 2D en fonction des indices de ligne **row** et de colonne **col**.
- printMatrix(float[][] matrix, int rows, int cols): Affiche la matrice sous forme textuelle en ligne, séparant les éléments par des espaces. Les paramètres rows et cols spécifient le nombre de lignes et de colonnes de la matrice.
- transpose(float[][] matrix, int rows, int cols): Effectue la transposition d'une matrice, échangeant ses lignes et ses colonnes. Les paramètres rows et cols spécifient la taille de la matrice.
- trace(float[][] matrix, int rows, int cols): Calcule la trace de la matrice, c'està-dire la somme des éléments diagonaux. Les paramètres rows et cols spécifient le nombre de lignes et de colonnes.
- determinant(float[][] matrix, int size) : Calcule le déterminant d'une matrice, même pour les matrices de taille supérieure à 2x2, en utilisant la méthode de réduction de Gauss. Le paramètre size spécifie la taille de la matrice carrée.
- multiply(float[][] A, int rowsA, int colsA, float[][] B, int rowsB, int colsB):
 Multiplie deux matrices A et B. Les paramètres rowsA et colsA spécifient les dimensions de la matrice A, tandis que rowsB et colsB spécifient celles de la matrice B
- add(float[][] A, int rowsA, int colsA, float[][] B, int rowsB, int colsB):
 Additionne deux matrices A et B. Les paramètres rowsA, colsA, rowsB et colsB spécifient les dimensions respectives des matrices.
- subtract(float[][] A, int rowsA, int colsA, float[][] B, int rowsB, int colsB):
 Soustrait deux matrices A et B. Les paramètres rowsA, colsA, rowsB et colsB
 spécifient les dimensions des matrices.

- printMatrix(float[][] matrix, int rows, int cols) : affiche les elements de la matrice sous une forme lisible et structurée.
- cmpMatrix(float[[[] A, int rowsA, int colsA, float[[[] B, int rowsB, int colsB): compare les deux matrices A et B. et renvoie true ou false. Les paramètres rowsA, colsA, rowsB et colsB spécifient les dimensions des matrices.

5.3.2 Classe ListFloat

La classe ListFloat implémente une liste dynamique de flottants. Elle permet de gérer une collection d'éléments de manière flexible, avec des méthodes pour ajouter, accéder, et supprimer des éléments. Les fonctionnalités incluent :

- init() : Initialise la liste avec une capacité de 10 éléments. Aucun paramètre.
- add(float value) : Ajoute un élément value à la fin de la liste. Si la capacité est atteinte, la liste est redimensionnée automatiquement.
- **get(int index)** : Récupère un élément à l'index **index**. Si l'index est hors limites, une erreur est générée.
- **remove(int index)** : Supprime un élément à l'index **index**. Si l'index est hors limites, une erreur est générée.
- **getSize()** : Renvoie la taille actuelle de la liste. Aucun paramètre.
- quickSort() : Effectue un tri rapide (Quicksort) sur la liste. Aucun paramètre.
- binarySearch(float target): Recherche un élément target dans la liste en utilisant la recherche binaire. La liste doit être triée. Renvoie l'index de l'élément ou -1 si non trouvé.
- linearSearch(float target) : Effectue une recherche linéaire pour un élément target dans la liste. Renvoie l'index de l'élément ou -1 si non trouvé.
- **printList(float[]**, **int rows**, **int cols)**: affiche les elements de la liste sous une forme lisible et structurée.
- cmpList(float[] A, int sizeA, float[] B, int sizeB) : compare les deux Listes A et B. et renvoie true ou false. Les paramètres sizeA, sizeB et colsB spécifient les dimensions des Listes.

Cette bibliothèque est particulièrement utile pour les opérations mathématiques impliquant des matrices et des collections de nombres flottants. Elle permet d'effectuer des calculs complexes de manière simple et optimisée, tout en offrant une gestion dynamique des ressources avec les listes de flottants.

6 Conclusion

Ce rapport avait pour objectif de présenter l'état actuel de notre compilateur ainsi que de fournir quelques directives d'utilisation à un utilisateur potentiel. Bien que le projet soit déjà bien avancé et qu'il couvre un large éventail de fonctionnalités, certains aspects demeurent perfectibles. Nous avons identifié plusieurs pistes d'amélioration et de corrections qui seront abordées dans les prochaines étapes du développement. Nous restons convaincus que ces ajustements permettront de renforcer la stabilité, l'efficacité et la convivialité de notre compilateur, tout en offrant une expérience optimale aux utilisateurs.