Counting Patterns: Equipopularity in Permutation Classes

Cheyne Homberger

University of Maryland, Baltimore County US Department of Defense

Howard University 2016

Definition

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

Definition

$$\{(1,\pi(1)),(2,\pi(2)),\cdots(n,\pi(n))\}\subset\mathbb{R}^2$$

$$\pi = 35142$$

Definition

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

$$\pi = 35142$$

Definition

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

Definition

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

$$\pi = 35142$$

Definition

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

$$\pi = 35142$$

Definition

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

$$\pi = 35142$$

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Example

~

•

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

$$\pi = 35142$$

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

$$\pi = 35142$$

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Example

 $\pi = 35142$

Patterns

Patterns

Patterns

Patterns

Patterns

Patterns

 ν_{123}

35357

 ν_{123}

35357

 ν_{123}

2426

ν_{123}	ν_{132}	ν_{213}	ν_{231}	ν_{312}	ν_{321}	Avg
2426	0	14874	15208	14896	114296	26950

Patterns as Random Variables

Theorem (Bóna 2007)

For a (uniformly) randomly selected permutation of length n, the random variables ν_σ are asymptotically normal as n approaches infinity.

Patterns as Random Variables

Theorem (Bóna 2007)

For a (uniformly) randomly selected permutation of length n, the random variables ν_σ are asymptotically normal as n approaches infinity.

Theorem (Janson, Nakamura, Zeilberger 2013)

For a randomly selected permutation of length n and two patterns σ and ρ , the random variables ν_{σ} and ν_{ρ} are asymptotically jointly normally distributed as $n \to \infty$.

Motivation

Fact

In \mathfrak{S}_n , the number of occurrences of a specific pattern depends only on the length of the pattern. That is, for a pattern $\sigma \in \mathfrak{S}_k$, we have

$$\nu_{\sigma}(\mathfrak{S}_n) = \frac{n!}{k!} \binom{n}{k}.$$

Motivation

Fact

In \mathfrak{S}_n , the number of occurrences of a specific pattern depends only on the length of the pattern. That is, for a pattern $\sigma \in \mathfrak{S}_k$, we have

$$\nu_{\sigma}(\mathfrak{S}_n) = \frac{n!}{k!} \binom{n}{k}.$$

Question

How does this change when we replace \mathfrak{S}_n with a proper permutation class?

Motivation

Fact

In \mathfrak{S}_n , the number of occurrences of a specific pattern depends only on the length of the pattern. That is, for a pattern $\sigma \in \mathfrak{S}_k$, we have

$$\nu_{\sigma}(\mathfrak{S}_n) = \frac{n!}{k!} \binom{n}{k}.$$

Question

How does this change when we replace \mathfrak{S}_n with a proper permutation class?

Fact

In \mathfrak{S}_n , the number of occurrences of a specific pattern depends only on the length of the pattern. That is, for a pattern $\sigma \in \mathfrak{S}_k$, we have

$$\nu_{\sigma}(\mathfrak{S}_n) = \frac{n!}{k!} \binom{n}{k}.$$

Question

How does this change when we replace \mathfrak{S}_n with a proper permutation class?

Equipopularity

Definition

The *popularity* of a pattern σ in a class C is equal to

$$\sum_{n\geq 1}\nu_{\sigma}(C_n).$$

Definition

Patterns are said to be *equipopular* if they have the same number of occurrences (within a specified set or across two different sets).

Equipopularity — Example

Fact

For a class C and a pattern σ , we have

$$\nu_{\sigma}(\mathit{C}_{n}) = |\{(\pi;\sigma) : \pi \in \mathit{C}_{n}, \ \sigma \prec \pi\}|.$$

Equipopularity — Example

Fact

For a class C and a pattern σ , we have

$$\nu_{\sigma}(C_n) = |\{(\pi; \sigma) : \pi \in C_n, \ \sigma \prec \pi\}|.$$

Proposition

In the class Av(132), σ and σ^{-1} are equipopular.

Proof.

This follows from the fact that π avoids 132 if and only if π^{-1} avoids 132, and the fact that $\sigma \prec \pi$ if and only if $\sigma^{-1} \prec \pi^{-1}$. \square

Theorem (Bóna 2010)

Within the class Av(132):

$$\nu_{213} = \nu_{231} = \nu_{312}$$
.

Theorem (Bóna 2010)

Within the class Av(132):

$$\nu_{213} = \nu_{231} = \nu_{312}$$
.

Theorem (Rudolph 2013)

If two patterns have the same structure, then they are equipopular within Av(132).

Theorem (Bóna 2010)

Within the class Av(132):

$$\nu_{213} = \nu_{231} = \nu_{312}$$
.

Theorem (Rudolph 2013)

If two patterns have the same structure, then they are equipopular within Av(132).

Theorem (Chua, Sankar 2013)

If two patterns are equipopular in Av(132), then they have the same structure.

Definition

The separable permutations are those which avoid both 2413 and 3142. We denote the class Av(2413, 3142) by S.

Definition

The separable permutations are those which avoid both 2413 and 3142. We denote the class Av(2413, 3142) by S.

Theorem (Albert, H, Pantone)

Two patterns are equipopular in the separables if and only if they have the same structure. Further, the equipopularity classes are in bijection with the set of integer partitions.

Definition

Given two permutations π and σ , their *direct sum* $(\pi \oplus \sigma)$ and *skew sum* $(\pi \ominus \sigma)$ are defined as follows:

Alternate Definition

The separable permutations are those which can be constructed via arbitrary skew and direct sums of the permutation 1.

Alternate Definition

The separable permutations are those which can be constructed via arbitrary skew and direct sums of the permutation 1.

Example

The permutation $\pi=215643798$ is separable, since

$$\pi = \Big(1\ominus 1\Big) \oplus \Big((1\oplus 1)\ominus 1\ominus 1\Big) \oplus 1 \oplus \Big(1\ominus 1\Big).$$

$$\pi = 215643798 = \Big(1\ominus 1\Big) \oplus \Big((1\oplus 1)\ominus 1\ominus 1\Big) \oplus 1 \oplus \Big(1\ominus 1\Big).$$

$$\pi = 215643798 = \Big(1\ominus 1\Big) \oplus \Big((1\oplus 1)\ominus 1\ominus 1\Big) \oplus 1 \oplus \Big(1\ominus 1\Big).$$

$$\pi = 215643798 = \Big(1\ominus 1\Big) \oplus \Big((1\oplus 1)\ominus 1\ominus 1\Big) \oplus 1 \oplus \Big(1\ominus 1\Big).$$

$$\pi = 215643798 = \Big(1\ominus 1\Big) \oplus \Big((1\oplus 1)\ominus 1\ominus 1\Big) \oplus 1 \oplus \Big(1\ominus 1\Big).$$

$$\pi = 215643798 = \Big(1\ominus 1\Big) \oplus \Big((1\oplus 1)\ominus 1\ominus 1\Big) \oplus 1 \oplus \Big(1\ominus 1\Big).$$

$$\pi = 215643798 = \Big(1\ominus 1\Big) \oplus \Big((1\oplus 1)\ominus 1\ominus 1\Big) \oplus 1 \oplus \Big(1\ominus 1\Big).$$

$$\pi = 215643798 = \Big(1\ominus 1\Big) \oplus \Big((1\oplus 1)\ominus 1\ominus 1\Big) \oplus 1 \oplus \Big(1\ominus 1\Big).$$

 \oplus

$$\pi = 215643798 = \left(1\ominus 1\right) \oplus \left((1\oplus 1)\ominus 1\ominus 1\right) \oplus 1 \oplus \left(1\ominus 1\right).$$

$$\pi = 215643798 = \Big(1\ominus 1\Big) \oplus \Big((1\oplus 1)\ominus 1\ominus 1\Big) \oplus 1 \oplus \Big(1\ominus 1\Big).$$

$$\pi = 215643798 = \left(1\ominus 1\right) \oplus \left((1\oplus 1)\ominus 1\ominus 1\right) \oplus 1 \oplus \left(1\ominus 1\right).$$

Tree Containment

Equipopularity

Question

If two patterns are equipopular, how are their trees related?

Strategy

Strategy

Part 1

Find the operations on trees which preserve popularity.

Strategy

Part 1

Find the operations on trees which preserve popularity.

Part 2

Show that equipopularity implies that their trees are related by one of these operations.

Symmetries

Permutation | Tree

Symmetries

Permutation	
Complement	Flip signs

Symmetries

Permutation	Tree
Complement	
Reverse	Reversal and sign flip

Symmetries

Permutation	Tree
Complement	
Reverse	Reversal and sign flip
Inverse	Reversal and sign flip Reverse children of ⊖ nodes

Symmetries

Permutation	Tree
Complement	Flip signs
Reverse	Reversal and sign flip
Inverse	Reverse children of \ominus nodes

Fact

If two permutations (or trees) are related by any of the above symmetries, then they are equipopular.

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Preserving Popularity

Lemma (Albert, H, Pantone)

- Reversal
- Complementation
- Inversion
- Shuffling
- Rotation

Canonical Representatives

Canonical Representatives

Canonical Representatives

The Other Direction

Lemma (Albert, H, Pantone)

If two patterns are equipopular, one can be transformed into the other by the above operations.

The Other Direction

Lemma (Albert, H, Pantone)

If two patterns are equipopular, one can be transformed into the other by the above operations.

Corollary

The set of equipopularity classes for patterns of length n are in bijection with the set of partitions of the integer n-1.

Idea # 1

Given any arbitrary pattern, we can factor its popularity generating function into the popularity generating functions for monotone runs.

Idea # 1

Given any arbitrary pattern, we can factor its popularity generating function into the popularity generating functions for monotone runs.

Idea #2

Given a product of monotone popularity generating functions, we can uniquely factor into its component parts, and thus recover the lengths of each monotone pattern.

Idea #2

Given a product of monotone popularity generating functions, we can uniquely factor into its component parts, and thus recover the lengths of each monotone pattern.

How?

Idea #2

Given a product of monotone popularity generating functions, we can uniquely factor into its component parts, and thus recover the lengths of each monotone pattern.

How?

Recursively build a bivariate popularity generating function for all monotone patterns.

Idea #2

Given a product of monotone popularity generating functions, we can uniquely factor into its component parts, and thus recover the lengths of each monotone pattern.

How?

- Recursively build a bivariate popularity generating function for all monotone patterns.
- Notice (or let Sage/Maple/Mathematica/Singular tell you) that these are related to the Gegenbauer polynomials, a family of orthogonal polynomials.

Idea #2

Given a product of monotone popularity generating functions, we can uniquely factor into its component parts, and thus recover the lengths of each monotone pattern.

How?

- Recursively build a bivariate popularity generating function for all monotone patterns.
- Notice (or let Sage/Maple/Mathematica/Singular tell you) that these are related to the Gegenbauer polynomials, a family of orthogonal polynomials.
- Use the orthogonality of these polynomials to uniquely factor any product.

Conclusion

Length n canonical representative \leftrightarrow partition of the integer n-1.

Questions?