Теория по векторам для №2 из ЕГЭ от «Школково»

Содержание

1	Понятие вектора	2
2	Коллинеарные векторы	2
3	Равенство векторов	2
4	Сложение векторов	3
	4.1 Правило треугольника	3
	4.2 Правило параллелограмма	3
5	Вычитание векторов	4
6	Умножение вектора на число	4
7	Разложение вектора по базису	5
	7.1 Разложение вектора по двум неколлинеарным векторам	5
	7.2 Решаем задачи	5
	7.3 Разложение по единичным векторам	7
	7.4 Длина вектора по его координатам	7
8	Координаты вектора	8
	8.1 Связь координат вектора с координатами его начала и конца	8
	8.2 Сложение, вычитание, умножение на число	8
	8.3 Задача про медиану треугольника	9
9	Угол между векторами	10
10	Скалярное произведение	10
11	Скалярное произведение векторов, заданных координатами	10
12	Свойства скалярного произведения	10
13	Задачи на скалярное произведение векторов	12

1 Понятие вектора

Рассмотрим произвольный отрезок AB. На нём можно указать два направления: от A к B и наоборот.

Чтобы выбрать одно из этих направлений, одну из точек A и B назовём началом отрезка, а вторую — концом отрезка и будем считать, что отрезок направлен от начала к концу.

<u>Определение</u> Отрезок, для которого указано, какая из его граничных точек считается началом, а какая — концом, называется *направленным отрезком*, или *вектором*.

На рисунках вектор изображается отрезком со стрелкой, показывающей направление вектора. Векторы обозначают двумя заглавными латинскими буквами со стрелкой над ними, например \overrightarrow{AB} . Первая буква обозначает начало вектора, вторая — его конец. Векторы часто обозначают и одной строчной латинской буквой со стрелкой над ней, например \overrightarrow{a} .

Любая точка плоскости также является вектором. В этом случае вектор называется нулевым. Начало нулевого вектора совпадает с его концом. Нулевой вектор обозначается символом $\vec{0}$.

Aлиной, или модулем ненулевого вектора \overrightarrow{AB} , называется длина отрезка AB. Длина вектора \overrightarrow{AB} обозначается так: $|\overrightarrow{AB}| = AB$. Длина нулевого вектора считается равной нулю: $|\overrightarrow{0}| = 0$.

2 Коллинеарные векторы

Два ненулевых вектора называются коллинеарными, если они лежат на параллельных прямых или на одной прямой.

Пусть две пунктирные прямые параллельны. Тогда \vec{a} , \vec{b} , \vec{c} и \vec{d} коллинеарны, а вот \vec{f} не коллинеарен ни одному из них, так как он не находится ни на одной из пунктирных прямых, ни на прямой, параллельной им.

Коллинеарные векторы можно разбить на две группы: conanpasnehhue и npomusonoложно направленные векторы. В нашем примере conanpasnehhum являются векторы \vec{a} , \vec{b} и \vec{d} ; векторы \vec{c} и \vec{a} являются противоположно направленными; векторы \vec{c} и \vec{b} являются противоположно направленными; векторы \vec{c} и \vec{d} являются противоположно направленными.

Нулевой вектор $\vec{0}$ считается колинеарным и сонаправленным любому вектору.

3 Равенство векторов

Определение Векторы называются равными, если они сонаправлены и их длины равны.

На самом деле вектор \overrightarrow{AB} — это сдвиг точки A в точку B. Тогда этот вектор двигает не только точку A, но и всю плоскость.

Векторы равны, если они сонаправлены и их длины равны, поэтому не важно, где находится наш вектор. Мы можем отложить от разных точек направленный отрезок \vec{a} , но с точки зрения векторов это будет один и тот же вектор. Получается, что вектор это не только конкретный направленный отрезок, на самом деле это целый класс всех равных направленных отрезков, которые одинаково двигают плоскость. Таким образом, в задачах любой вектор мы можем рисовать где угодно в удобном для нас месте.

4 Сложение векторов

Пусть точка переместилась из положения A в положение B, а затем из положения B в положение C. В результате этих двух перемещений, которые можно представить векторами \overrightarrow{AB} и \overrightarrow{BC} , точка переместилась из положения A в положение C. Поэтому результат перемещения можно представить как вектор \overrightarrow{AC} .

Поскольку перемещение из A в C складывается из перемещения из A в B и перемещения из B в C, то

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

4.1 Правило треугольника

Пусть \vec{a} и \vec{b} — два вектора, которые мы хотим сложить. Обозначим начало вектора \vec{a} за точку A, его конец за точку B и параллельно перенесем начало вектора \vec{b} в точку B. Пусть получился вектор \overrightarrow{BC} , равный \vec{b} . Тогда вектор \overrightarrow{AC} называется суммой векторов \vec{a} и \vec{b} . Такое правило сложения векторов называется npaeunom mpeyeonbhuka.

4.2 Правило параллелограмма

Рассмотрим случай, когда векторы \vec{a} и \vec{b} выходят из одной точки. В таком случае мы можем достроить эту конструкцию до парадлелограмма и получить из каждой пары противоположных сторон пары равных векторов.

Тогда по правилу треугольника

$$\vec{a} + \vec{b} = \vec{c} = \vec{b} + \vec{a}$$

5 Вычитание векторов

Для начала поймем, что «—» перед вектором просто меняет его направление. Таким образом, векторы \vec{b} и — \vec{b} равны по длине, коллинеарны и противоположно направлены.

$$\xrightarrow{\vec{b}}$$
 $-\vec{b}$

Пусть есть векторы \vec{a} и \vec{b} , отложенные из одной точки. Пусть при этом вектор \vec{c} такой, что $\vec{a} = \vec{b} + \vec{c}$, то есть вектор \vec{a} можно получить, сложив векторы \vec{b} и \vec{c} по правилу треугольника.

Тогда обозначим $\vec{c} = \vec{a} - \vec{b}$ и назовем вектор \vec{c} разностью векторов \vec{a} и \vec{b} .

Разность векторов можно определить и по-другому. При тех же исходных условиях заменим вектор \vec{b} на вектор $-\vec{b}$. Тогда разностью векторов \vec{a} и \vec{b} назовем вектор \vec{c} , равный

$$\vec{c} = \vec{a} + \left(-\vec{b}\right) = -\vec{b} + \vec{a}.$$

Таким образом, можем изобразить вектор \vec{c} :

Как мы видим, вектор \vec{c} получается один и тот же независимо от способа определения. Следовательно, на практике можем искать разность двух векторов тем способом, который в условиях конкретной задачи кажется более удобным.

6 Умножение вектора на число

Возьмем вектор \vec{a} . Попробуем найти вектор $2\vec{a}=a+a$. Тогда переместить точку на вектор $2\vec{a}$ —это то же самое, что и дважды переместить её на вектор \vec{a} .

Также можем разделить вектор \vec{a} на два равных вектора и получить вектор $\frac{1}{2}\vec{a}$.

Правила умножения вектора на число

Пусть α и β — некоторые числа, \vec{a} и \vec{b} — некоторые векторы. Тогда

- 1. $(\alpha + \beta) \cdot \vec{a} = \alpha \cdot \vec{a} + \beta \cdot \vec{a}$;
- 2. $\alpha \cdot (\vec{a} + \vec{b}) = \alpha \cdot \vec{a} + \alpha \cdot \vec{b};$
- 3. $(\alpha \cdot \beta) \cdot \vec{a} = \alpha \cdot (\beta \cdot \vec{a})$.

7 Разложение вектора по базису

7.1 Разложение вектора по двум неколлинеарным векторам

Пусть даны два неколлинеарных вектора \vec{a} и \vec{b} . Тогда любой вектор \vec{c} можно представить в виде

$$\vec{c} = x \cdot \vec{a} + y \cdot \vec{b}$$
, где x, y — некоторые числа.

Нарисуем векторы \vec{a} , \vec{b} и \vec{c} из общего начала и проведем через начало и конец вектора \vec{c} прямые, параллельные векторам \vec{a} и \vec{b} .

Пусть A, B, C и D— вершины получившегося параллелограмма. Тогда по правилу параллелограмма

$$\vec{c} = \overrightarrow{AB} + \overrightarrow{AD}$$

Векторы \vec{a} и \overrightarrow{AB} коллинеарны, поэтому найдется такое число x, что $\overrightarrow{AB} = x \cdot \vec{a}$. Векторы \vec{b} и \overrightarrow{AD} коллинеарны, поэтому найдется такое число y, что $\overrightarrow{AD} = y \cdot \vec{b}$.

Таким образом, для некоторых чисел x и y получаем

$$\vec{c} = \overrightarrow{AB} + \overrightarrow{AD} = x \cdot \vec{a} + y \cdot \vec{b}$$

7.2 Решаем задачи

1. Дан параллелограмм ABCD. Точки M и N лежат на стороне AB и делят её на три равных отрезка (точка M лежит между точками A и N). Точка L лежит на стороне AD и делит её пополам. Пусть $\overrightarrow{AM} = \overrightarrow{a}$, $\overrightarrow{AL} = \overrightarrow{b}$, $\overrightarrow{AC} = x \cdot \overrightarrow{a} + y \cdot \overrightarrow{b}$, где x, y— некоторые числа. Найдите x и y.

Ответ

x = 3, y = 2

Решение

Мы уже знаем, что по правилу параллелограмма

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$$
.

Заметим, что

$$\overrightarrow{AB} = \overrightarrow{AM} + \overrightarrow{MN} + \overrightarrow{NB} = 3\overrightarrow{a}$$

$$\overrightarrow{AD} = \overrightarrow{AL} + \overrightarrow{LD} = 2\overrightarrow{b}.$$

Тогда получаем

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD} = 3\overrightarrow{a} + 2\overrightarrow{b}.$$

Значит, x = 3, y = 2.

Ответ

0

Решение

Вектор можно воспринимать как перемещение, тогда $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$ — перемещение из A в B, затем из B в C, затем из C в D—в итоге это перемещение из A в D.

При такой трактовке имеем:

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{AD} + \overrightarrow{DA}.$$

Векторы \overrightarrow{AD} и \overrightarrow{DA} противоположно направлены и имеют одинаковую длину, поэтому

$$\overrightarrow{AD} + \overrightarrow{DA} = \overrightarrow{0}.$$

Нулевой вектор $\vec{0}$ имеет длину, равную 0.

3. Дан параллелограмм ABCD. Точки K и L лежат на сторонах BC и CD соответственно, причем BK : KC=3:1, а L — середина CD. Пусть $\overrightarrow{AB}=\vec{a}$, $\overrightarrow{AD}=\vec{b}$ и $\overrightarrow{KL}=x\cdot\vec{a}+y\cdot\vec{b}$, где x и y — некоторые числа. Найдите число, равное x+y.

Ответ

-0.25

Решение

По правилу треугольника имеем:

$$\overrightarrow{KL} = \overrightarrow{KC} + \overrightarrow{CL} = \frac{1}{4}\overrightarrow{BC} + \frac{1}{2}\overrightarrow{CD} = \frac{1}{4}\overrightarrow{AD} + \frac{1}{2}\overrightarrow{BA} = \frac{1}{4}\overrightarrow{b} - \frac{1}{2}\overrightarrow{a}.$$

Таким образом, $x = -\frac{1}{2}, y = \frac{1}{4}$, то есть

$$x + y = -\frac{1}{2} + \frac{1}{4} = -0.25.$$

7.3 Разложение по единичным векторам

Рассмотрим декартову систему координат. Обозначим единичные векторы как $\vec{e_1}$ и $\vec{e_2}$. Тогда $|\vec{e_1}|=1=|\vec{e_2}|$. Вектор, выходящий из начала координат, назовем радиус-вектором. Возьмем радиус-вектор \vec{a} , конец которого находится в точке (3; 2).

Мы знаем, что любой вектор можно разложить по двум неколлинеарным векторам. Тогда можем разложить \vec{a} по векторам $\vec{e_1}$ и $\vec{e_2}$:

$$\vec{a} = 3 \cdot \vec{e_1} + 2 \cdot \vec{e_2}.$$

Значит, радиус-вектор \vec{a} имеет координаты (3; 2), то есть координаты его конца.

Таким образом, любой вектор мы можем воспринимать как движение по горизонтали + движение по вертикали, при этом перемещения по горизонтали и вертикали будут соответственно равны координатам вектора по осям абсцисс и ординат.

7.4 Длина вектора по его координатам

Так как система координат прямоугольная, то, разложив вектор по базису, мы получаем прямоугольный треугольник. Тогда длина вектора из примера выше по теореме Пифагора равна

$$|\vec{a}| = \sqrt{3^2 + 2^2} = \sqrt{13}.$$

Обобщая, получаем следующую формулу длины вектора \vec{b} с координатами (x;y):

$$|\vec{b}| = \sqrt{x^2 + y^2}$$

8 Координаты вектора

8.1 Связь координат вектора с координатами его начала и конца

Пусть есть вектор \vec{a} с началом в точке $(x_1; y_1)$ и концом в точке $(x_2; y_2)$.

Вектор — последовательное перемещение по горизонтали и по вертикали. Тогда для перемещения из начала вектора, точки $(x_1;y_1)$, в его конец, точку $(x_2;y_2)$, надо сначала сместиться по горизонтали на x_2-x_1 , а затем по вертикали на y_2-y_1 . Таким образом, координаты вектора \vec{a} равны $(x_2-x_1;y_2-y_1)$, то есть для получения координат вектора нужно вычесть из координат его конца координаты его начала.

8.2 Сложение, вычитание, умножение на число

• При сложении векторов $\vec{a}(x_1;y_1)$ и $\vec{b}(x_2;y_2)$ их координаты складываются, то есть

$$\vec{a}(x_1; y_1) + \vec{b}(x_2; y_2) = \vec{c}(x_1 + x_2; y_1 + y_2).$$

• При вычитании из вектора $\vec{a}(x_1; y_1)$ вектора $\vec{b}(x_2; y_2)$ их координаты вычитаются, то есть

$$\vec{a}(x_1; y_1) - \vec{b}(x_2; y_2) = \vec{c}(x_1 - x_2; y_1 - y_2).$$

• При умножении вектора $\vec{a}(x_1;y_1)$ на число k его координаты уножаются на k :

$$k \cdot \vec{a}(x_1; y_1) = \vec{\alpha}(kx_1; ky_1).$$

8.3 Задача про медиану треугольника

Вспомним правило параллелограмма. Возьмем два вектора \vec{a} и \vec{b} с общим началом. Пусть $\vec{a} + \vec{b} = \vec{c}$.

Диагонали параллелограмма точкой пересечения делятся пополам, поэтому вектор-медиана треугольника, образованного векторами \vec{a} и \vec{b} , есть половина вектора \vec{c} .

Таким образом,

$$\vec{d} = \frac{1}{2}\vec{c} = \frac{1}{2}\left(\vec{a} + \vec{b}\right).$$

4. На координатной плоскости отмечены точки A, B и C. Найдите длину медианы AM треугольника ABC.

Ответ

6,5

Решение

Для медианы AM треугольника ABC имеем:

$$\overrightarrow{AM} = \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right).$$

Найдем координаты точек $A,\,B,\,C:A(2;7),\,B(6;2)$ и C(10;7).

Отсюда получаем

$$\overrightarrow{AB} = (6-2; 2-7) = (4; -5)$$

 $\overrightarrow{AC} = (10-2; 7-7) = (8; 0)$

Тогда имеем:

$$\overrightarrow{AM} = \frac{1}{2} \left((4+8); (-5+0) \right) = \frac{1}{2} \left(12; -5 \right) = \left(\frac{12}{2}; -\frac{5}{2} \right)$$

Следовательно, длина медианы AM равна

$$AM = \sqrt{\left(\frac{12}{2}\right)^2 + \left(-\frac{5}{2}\right)^2} = \frac{13}{2} = 6.5$$

9 Угол между векторами

<u>Определение</u> Пусть даны два вектора \vec{a} и \vec{b} . Чтобы найти угол между ними, выберем произвольную точку O и отложим от неё векторы \overrightarrow{OA} и \overrightarrow{OB} , соответственно равные векторам \vec{a} и \vec{b} . Полученный угол AOB и есть угол между векторами \vec{a} и \vec{b} .

10 Скалярное произведение

$$\vec{a} \cdot \vec{b} = \left| \vec{a} \right| \cdot \left| \vec{b} \right| \cdot \cos \varphi.$$

Здесь $|\vec{a}|$ и $|\vec{b}|$ — длины соответствующих векторов. Иногда скалярное произведение векторов \vec{a} и \vec{b} обозначают как $\left(\vec{a},\vec{b}\right)$.

11 Скалярное произведение векторов, заданных координатами

Если есть векторы $\vec{a}\left(x_a;y_a\right)$ и $\vec{b}\left(x_b;y_b\right)$, то

$$\vec{a} \cdot \vec{b} = x_a \cdot x_b + y_a \cdot y_b.$$

Так как в координатах $|\vec{a}| = \sqrt{x_a^2 + y_a^2}$ и $|\vec{b}| = \sqrt{x_b^2 + y_b^2}$, то с помощью координат можно определить угол между векторами через его косинус:

$$\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{x_a \cdot x_b + y_a \cdot y_b}{\sqrt{x_a^2 + y_a^2} \cdot \sqrt{x_b^2 + y_b^2}}.$$

12 Свойства скалярного произведения

1.
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$
.

$$2. \ k\vec{a} \cdot \vec{b} = k \left(\vec{a} \cdot \vec{b} \right);$$

3.
$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c};$$

4.
$$\vec{a}\cdot\vec{a}=\left|\vec{a}\right|^{2}\geqslant0$$
, причем равенство достигается, только если $\vec{a}=\vec{0};$

5.
$$(\vec{a} + \vec{b})^2 = \vec{a}^2 + 2 \cdot \vec{a} \cdot \vec{b} + \vec{b}^2;$$

6.
$$\vec{a} \cdot \vec{b} = \frac{1}{4} \left(\left(\vec{a} + \vec{b} \right)^2 - \left(\vec{a} - \vec{b} \right)^2 \right);$$

7. Для ненулевых векторов \vec{a} и \vec{b} верно, что $\vec{a} \cdot \vec{b} = 0 \iff \vec{a} \perp \vec{b}$.

Свойство 1: $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$.

Действительно, если угол между векторами \vec{a} и \vec{b} равен φ , то

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \varphi = |\vec{b}| \cdot |\vec{a}| \cdot \cos \varphi = \vec{b} \cdot \vec{a}.$$

Свойство 2: $k\vec{a}\cdot\vec{b}=k\left(\vec{a}\cdot\vec{b}\right)$.

Пусть $\vec{a}(x_a;y_a)$, $\vec{b}(x_b;y_b)$. Тогда

$$k\vec{a} \cdot \vec{b} = kx_a \cdot x_b + ky_a \cdot y_b = k \cdot x_a x_b + k \cdot y_a y_b = k \cdot (x_a x_b + y_a y_b) = k \cdot \left(\vec{a} \cdot \vec{b}\right)$$

Свойство 3: $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$.

Пусть $\vec{a}(x_a;y_a)$, $\vec{b}(x_b;y_b)$ и $\vec{c}(x_c;y_c)$. Тогда

$$\vec{b} + \vec{c} = \{x_b + x_c; y_b + y_c\}.$$

Значит,

$$\vec{a} \cdot (\vec{b} + \vec{c}) = x_a \cdot (x_b + x_c) + y_a \cdot (y_b + y_c) = x_a \cdot x_b + x_a \cdot x_c + y_a \cdot y_b + y_a \cdot y_c = \vec{c} \cdot (x_b + x_c) + y_a \cdot (y_b + y_c) = \vec{c} \cdot (x_b + x_c) + y_a \cdot (x_b + x_c) + y_$$

$$= (x_a \cdot x_b + y_a \cdot y_b) + (x_a \cdot x_c + y_a \cdot y_c) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}.$$

Свойство 4: $\vec{a} \cdot \vec{a} = \left| \vec{a} \right|^2 \geqslant 0$, причем равенство достигается, только если $\vec{a} = \vec{0}$. Заметим, что вектор \vec{a} сонаправлен самому себе, поэтому $\angle(\vec{a}; \vec{a}) = 0$. Тогда

$$\cos \angle (\vec{a}; \vec{a}) = \cos 0 = 1.$$

Значит,

$$\vec{a} \cdot \vec{a} = \left| \vec{a} \right| \cdot \left| \vec{a} \right| \cdot \cos \angle \left(\vec{a} ; \vec{a} \right) = \left| \vec{a} \right|^2.$$

При этом если $\vec{a} \neq 0$, то $|\vec{a}| > 0$, то есть $\vec{a} \cdot \vec{a} > 0$.

Свойство 5: $\left(\vec{a} + \vec{b}\right)^2 = \vec{a}^{\,2} + 2 \cdot \vec{a} \cdot \vec{b} + \vec{b}^{\,2}$. По свойствам 3 и 1 имеем:

$$\left(\vec{a} + \vec{b}\right)^2 = \left(\vec{a} + \vec{b}\right) \cdot \vec{a} + \left(\vec{a} + \vec{b}\right) \cdot \vec{b} = \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} = \vec{a}^2 + 2 \cdot \vec{a} \cdot \vec{b} + \vec{b}^2.$$

Свойство 6: $\vec{a} \cdot \vec{b} = \frac{1}{4} \left(\left(\vec{a} + \vec{b} \right)^2 - \left(\vec{a} - \vec{b} \right)^2 \right).$

По свойствам 5 и 2 имеем:

$$\left(\vec{a} + \vec{b}\right)^2 = \vec{a}^2 + 2 \cdot \vec{a} \cdot \vec{b} + \vec{b}^2,$$

$$\left(\vec{a} - \vec{b}\right)^2 = \vec{a}^2 - 2 \cdot \vec{a} \cdot \vec{b} + \vec{b}^2.$$

Тогда

$$\frac{1}{4} \left(\left(\vec{a} + \vec{b} \right)^2 - \left(\vec{a} - \vec{b} \right)^2 \right) = \frac{1}{4} \left(\vec{a}^2 + 2 \cdot \vec{a} \cdot \vec{b} + \vec{b}^2 - \vec{a}^2 + 2 \cdot \vec{a} \cdot \vec{b} - \vec{b}^2 \right) = \frac{1}{4} \left(4 \cdot \vec{a} \cdot \vec{b} \right) = \vec{a} \cdot \vec{b}.$$

Свойство 7: Для ненулевых векторов \vec{a} и \vec{b} верно, что

$$\vec{a} \cdot \vec{b} = 0 \quad \Leftrightarrow \quad \vec{a} \perp \vec{b}.$$

Если векторы перпендикулярны, то угол между ними равен 90° и косинус угла между этими векторами равен 0. Поэтому скалярное произведение перпендикулярных векторов равно 0:

$$\vec{a} \perp \vec{b} \quad \Rightarrow \quad \vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos 90^{\circ} = |\vec{a}| \cdot |\vec{b}| \cdot 0 = 0.$$

Верно и обратное утверждение: если скалярное произведение ненулевых векторов равно 0, то эти векторы перпендикулярны:

$$\vec{a} \cdot \vec{b} = 0 \quad \Rightarrow \quad |\vec{a}| \cdot |\vec{b}| \cdot \cos \varphi = 0 \quad \Rightarrow \quad \varphi = 90^{\circ} \quad \Rightarrow \quad \vec{a} \perp \vec{b}.$$

Таким образом,

$$\vec{a} \cdot \vec{b} = 0 \quad \Leftrightarrow \quad \vec{a} \perp \vec{b}.$$

13 Задачи на скалярное произведение векторов

5. На координатной плоскости изображены векторы \vec{a} и \vec{b} . Найдите скалярное произведение этих векторов.

Ответ

-30

Решение

Если $A(x_1; y_1)$ и $B(x_2; y_2)$ — точки на координатной плоскости, то вектор \overrightarrow{AB} имеет координаты $(x_2 - x_1; y_2 - y_1)$. Найдем координаты векторов \vec{a} и \vec{b} :

$$\vec{a} = (5-2; 9-3) = (3; 6)$$

$$\vec{b} = (1 - 7; 1 - 3) = (-6; -2)$$

Скалярное произведение двух векторов $\vec{a}(x_1;y_1)$ и $\vec{b}(x_2;y_2)$ равно

$$\vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2$$

Следовательно, скалярное произведение векторов \vec{a} и \vec{b} равно

$$\vec{a} \cdot \vec{b} = 3 \cdot (-6) + 6 \cdot (-2) = -30$$

6. Длины векторов \vec{a} и \vec{b} равны 3 и 5, а угол между ними равен 60° . Найдите скалярное произведение $\vec{a} \cdot \vec{b}$.

Ответ

7,5

Решение

Мы знаем, что если ϕ — угол между векторами \vec{a} и \vec{b} , то скалярное произведение равно

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot \left| \vec{b} \right| \cdot \cos \phi$$

Тогда получаем

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \phi = 3 \cdot 5 \cdot \cos 60^{\circ} = 15 \cdot \frac{1}{2} = 7.5$$

7. Даны векторы $\vec{a}\left(\frac{5}{3};5\right)$ и $\vec{b}(4;2)$. Найдите угол между векторами \vec{a} и \vec{b} . Ответ дайте в градусах.

Ответ

45

Решение

Скалярное произведение двух векторов \vec{a} и \vec{b} равно $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \alpha$.

Здесь $|\vec{a}|$ — длина вектора \vec{a} , α — угол между векторами \vec{a} и \vec{b} .

Найдем длины векторов \vec{a} и \vec{b} :

$$|\vec{a}| = \sqrt{\left(\frac{5}{3}\right)^2 + 5^2} = \sqrt{\frac{25}{9} + 25} = \frac{5}{3}\sqrt{10}, \quad |\vec{b}| = \sqrt{4^2 + 2^2} = \sqrt{16 + 4} = \sqrt{20}$$

С другой стороны, скалярное произведение двух векторов $\vec{a}(x_1;y_1)$ и $\vec{b}(x_2;y_2)$ равно

$$\vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2 = \frac{5}{3} \cdot 4 + 5 \cdot 2 = \frac{50}{3}$$

Таким образом, получаем уравнение

$$\frac{50}{3} = \frac{5}{3}\sqrt{10} \cdot \sqrt{20} \cdot \cos \alpha \quad \Leftrightarrow \quad \cos \alpha = \frac{\sqrt{2}}{2}$$

Так как $\alpha \in [0^\circ; 180^\circ]$, то $\alpha = 45^\circ$.

8. На координатной плоскости изображены векторы \vec{a} и \vec{b} . Найдите скалярное произведение векторов \vec{a} и $2\vec{b}$.

Ответ

112

Решение

Найдем координаты векторов \vec{a} и \vec{b} . Так как каждая координата вектора равна разности соответствующих координат конца и начала вектора, то

$$\vec{a} = \{-6 - (-2); -4 - 5\} = \{-4; -9\}$$

$$\vec{b} = \{1 - 6; -2 - 2\} = \{-5; -4\}$$

Тогда $2\vec{b} = \{-10; -8\}$. Следовательно, так как скалярное произведение векторов равно сумме произведений соответствующих координат двух векторов, то имеем

$$\vec{a} \cdot 2\vec{b} = -4 \cdot (-10) + (-9) \cdot (-8) = 112$$

9. Даны векторы $\vec{a}(14;-2)$ и $\vec{b}(-7;-1)$. Найдите $\cos \alpha$, где α — угол между векторами \vec{a} и \vec{b} .

Ответ

-0,96

Решение

Заметим, что, с одной стороны, скалярное произведение векторов $\vec{a}(x_1;y_1)$ и $\vec{b}(x_2;y_2)$ равно

$$\vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2$$

С другой стороны, скалярное произведение равно

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \alpha$$

Следовательно, в нашем случае имеем:

$$14 \cdot (-7) + (-2) \cdot (-1) = \vec{a} \cdot \vec{b} = \sqrt{14^2 + (-2)^2} \cdot \sqrt{(-7)^2 + (-1)^2} \cdot \cos \alpha$$
$$\cos \alpha = \frac{-96}{10\sqrt{2} \cdot 5\sqrt{2}} = \frac{-96}{100} = -0.96$$