1

NETWORK MODEL

Referring to anisotropic characteristics in local cortical circuits of the rat's brain, a network model implementing anisotropic tissue geometry is developed. The introduction of a rewiring algorithm and qualitative anisotropy measure lay the foundation for the analysis of structural aspects of this model in Chapter ??.

1.1 NUMERICAL IMPLEMENTATION

Numerical implementation of the anisotropic random graph model was achieved in Python¹. Relying on NumPy as part of the scientific Python library SciPy² for the more complex mathematical computations, the implementation also uses graph-tool³, to ensure convenient and efficient handling of the created networks.

The algorithm for the generation of anisotropic networks closely resembles Definition ??. After randomly distributing N neurons on the square of side-length s, for every neuron a random axon horientation $a \in [0, 2\pi)$ is chosen and an affine transformation, such that the current neuron is located at the origin and its axon projection aligns with the positive x-axis, secures a straightforward implementation of connectivity, using the the inequalities in Definition ?? as a rule for establishing connections.

parameter set chosen to resemble cortical circuits To harness the numerical implemenation to generate networks, a set of parameters needs to be chosen. The network size N strongly influences the needed computational efforts in calculations based on the generated graphs and has thus been set to N=1000. Choosing the surface sidelength arbitrarily as s=100, the axon width w determines connectivity in the network, the relation between width w and overall connection probability p being shown in Figure 1.1. In their analysis of connectivity of thick-tufted layer V pyramidal cells in neonatal rats (day 14), Song et al. (2005) report an overall connection probability of p=0.116, consistent with prior reports of a cortical connection probability of $p\approx 0.1$. Choosing w to be constant, we determine the axon width such that overall connectivity matches the value report by Song et al. and obtain w/2=12.6 (Figure 1.1).

sample graphs as reference for structural analysis Having determined a suitable set of parameters as N=1000, s=100 and w=25.2, we generate 25 graphs with this parameter set (label: N1000w_ax126-flat_graph0-24). This set of sample graphs will serve as a reference for the following structural analysis. Extending the set by the (partially) rewired sample graphs (see Section $\ref{section}$) we obtain a resourceful reference for the analysis of structural features of anisotropic geometric graphs, that we will frequently employ to obtain quantitative and qualitative results.

¹ Python Software Foundation. Python Language Reference, version 2.7. Available at http://www.python.org

² Eric Jones, Travis Oliphant, Pearu Peterson and others. NumPy version 1.6.1. Available at http://www.scipy.org

³ Tiago P. Peixoto. Efficient network analysis. Version 2.2.18. Available at http://graph-tool.skewed.de/

Figure 1.1: Axon width dependent connection probability determines parameter for numerical analysis Generating anisotropic networks with different axon widths w and extracting probability p of directed connection between two random nodes, demonstrates the dependency of p on the width parameter w. A) At an axon width of over w=100, exceeding the square's side length, the connection probability saturates at p=0.5, as axon bands are essentially "cutting" the square in a connected and unconnected half (c5b64f3e). B) For small w the connection probability is a linear function of w, allowing the width ws/2 at which $p(w_S)=11.6$ to be determined by a linear fit as ws/2=12.6 (585a946f).

1.2 ANISOTROPY MEASURE

In the last section a method to rewire an anisotropic geometric graph, such that was introduced. From an . In this chapter we introduced. capturing ..

The $G_{n,\Phi}$ be a geometric graph. Then, for every is the *preferred direction* and its length is

Mardia and Jupp (2000)

Figure 1.2: illustrate varying levels of anisotropy

4 NETWORK MODEL

Figure 1.3: Rewiring significantly reduces anisotropy In data taken from the 25 sample graphs (Section 1.1), vertex isotropy degree distribution is shown for the original set of graphs ($\eta = 0$) The characteristic highly anisotropic profile found in the original is already significantly reduced by partial rewiring; anisotropy degree distribution in the fully rewired graphs resemble degree distribution of equivalent purely distance-dependent networks.

... suggesting that fully rewired anisotropic networks do not . There is however one difference in out-degree as an artifact of boundary confinment (Section ??).

1.3 SUMMARY AND DISCUSSION

BIBLIOGRAPHY

Mardia, Kanti V. and Peter E. Jupp (2000). *Directional Statistics*. 2nd ed. John Wiley & Sons Ltd.

Song, Sen, Per Jesper Sjöström, Markus Reigl, Sacha Nelson, and Dmitri B Chklovskii (2005). Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits. *PLoS Biol* 3.3, pp. 507–519. DOI: 10.1371/journal.pbio.0030068.