

ECS763 Natural Language Processing

Unit 3: Language Models

Lecturer: Julian Hough

School of Electronic Engineering and Computer Science

OUTLINE

- 1) Language Models: motivation
- 2) Language Models: ngram models
- 3) Language Models: evaluation
- 4) Smoothing

OUTLINE

- 1) Language Models: motivation
- 2) Language Models: ngram models
- 3) Language Models: evaluation
- 4) Smoothing

Sequence Modelling Tasks

- We considered classification tasks last week (e.g. sentiment analysis) $d \rightarrow c$
- Many problems are about modelling (labelling, characterising, evaluating) sequences:
 - Part-of-speech tagging
 - Dialogue act tagging
 - Named entity recognition
 - Speech recognition
 - Spelling correction
 - Machine translation

•

Sequence Likelihood Tasks

Speech recognition

```
I saw a van eyes awe of an
```

Spelling correction

```
It's about fifteen minuets from my house It's about fifteen minutes from my house
```

Machine translation

```
vjetar će biti noćas jak:
the wind tonight will be strong
the wind tonight will be powerful
the wind tonight will be a yak
```

- To do effective sequence prediction we want to know the likelihood of different sequences (of words).
- Language models are designed to do this and are machines which play the Shannon Game (1951), reframing the challenge as:

 How well can we predict the next word given the history of previous words?

		mushrooms 0.1
		pepperoni 0.1
I always order pizza with cheese and	<i>)</i> \	anchovies 0.01
The 33rd President of the US was		fried rice 0.0001
I saw a		
		and 1e-100

OUTLINE

- 1) Language Models: motivation
- 2) Language Models: ngram models
- 3) Language Models: evaluation
- 4) Smoothing

What is a Language Model?

- Answering the following questions would be useful for assigning probabilities to sequences:
 - What is the probability of observed sequence O? $p(O) = p(o_1, o_2, o_3, ...o_n)$
 - Given observed sequence $O = o_1 ... o_{n-1}$, what is the probability of observing symbol o_n next?

$$p(o_n|o_1,o_2,o_3,...o_{n-1})$$

- i.e. What is p("john likes mary") or p("john likes") or p("mary"| "john likes")?
- A model which computes these is a language model.

What is a Language Model?

• A language model estimates the probability function *p*:

- For each context it gives a discrete probability distribution over all words in the vocabulary for w_i.
- It assigns a probability value for a given word observed at position w_i given the context observed at w₁ ...w_{i-1}

Remember: Discrete Probability Distributions

В

$$p(X = ? \mid A)$$

$$p(B \mid A) = \frac{|A \cap B|}{|A|} = \frac{1}{3}$$

$$p(C \mid A) = \frac{|A \cap C|}{|A|} = \frac{1}{3}$$

$$p(D \mid A) = \frac{|A \cap D|}{|A|} = \frac{1}{3}$$

What is a Language Model?

 The probability of the next word being a given value, (e.g. 'loves') independent of the previous words is the unigram probability. In event terms:

$$p(w_i = loves) = \frac{\left| w_i = loves \right|}{\sum_{x \in vocab} \left| w_i = x \right|}$$

- This is a bag-of-words model and doesn't consider the word order.
- Using the probability of the next word given the previous one i.e. the conditional probability $p(w_i|w_{i-1})$ (e.g. for 'john loves') is the **bigram** probability. In event terms:

$$p(w_i = loves | w_{i-1} = john) = \frac{|w_{i-1} = john \cap w_i = loves|}{|w_{i-1} = john|}$$

What is a Language Model?

$$p(w_{i} = likes | w_{i-1} = john) = \frac{|w_{i-1} = john \cap w_{i} = likes|}{|w_{i-1} = john|} = \frac{1}{3}$$

$$p(w_{i} = loves | w_{i-1} = john) = \frac{|w_{i-1} = john \cap w_{i} = loves|}{|w_{i-1} = john|} = \frac{1}{3}$$

$$p(w_{i} = eats | w_{i-1} = john) = \frac{|w_{i-1} = john \cap w_{i} = eats|}{|w_{i-1} = john|} = \frac{1}{3}$$

The Chain Rule

- In ngram models, how do we assign probabilities to an entire sequence of words, or the probability of a word given the words so far?
- We can address both via the Chain Rule (for probability)
- Recall the definition of conditional probabilities (through the product rule)

Rewriting: P(A,B) = P(A)P(B|A)

 More than two variables, apply the product rule over and over again, i.e. the Chain Rule in general:

$$P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)$$

The Chain Rule in a sequence model for a sequence of length n:

$$P(w_1, w_2, w_3, ..., w_n) = P(w_1)P(w_2|w_1)P(w_3|w_1, w_2)...P(w_n|w_1, ..., w_{n-1})$$

Using the chain rule

- How do we estimate probabilities? E.g. for the sentence 'Its water is so transparent'
- Count and divide:

```
p(its\ water\ is\ so\ transparent) = p(transparent\ |\ its\ water\ is\ so) = \frac{C(its\ water\ is\ so\ transparent)}{C(its\ water\ is\ so)}
```

According to the chain rule:

```
p("its water is so transparent") = \\ p(its) \times \\ p(water|its) \times \\ p(is|its water) \times \\ p(so|its water is) \times \\ p(transparent|its water is so)
```

- However, we'll never see enough data, so use the Markov Assumptionprobability of next word only depends on a fixed number of words back
- E.g. a bigram model only depends on previous word, a trigram model depends on the previous two words only.

Markov Assumption

Instead of:

- We approximate by:
 - "n-gram model of length k" (where k = n-1)

trigram model (k=2):

- In general not sufficient but often good approximation for high k.
 - Ignores long-distance dependencies:
 - "the computer I just put into the machine room on the fifth floor crashed"

- This can go up to any arbitrary length (or 'order'), e.g. unigram, bigram, trigram, 4-gram....7-gram... etc.
- In general n-gram models (Shannon, 1948).

4-gram etc.

- This can go up to any arbitrary length (or 'order'), e.g. unigram, bigram, trigram, 4-gram....7-gram... etc.
- In general n-gram models (Shannon, 1948).

4-gram etc.

- General method when processing sequences is to extract the relevant n-grams (word sequences) according to the value of n.
- In training count the frequency of the ngrams occurring in the training data and store the counts.
- In testing use those counts to get probabilities of sequences of unseen data.
- Deriving the probabilities can be done with a variety of methods, called n-gram language models.
- Watch out for terminology: 'n-gram' is used to mean either the word sequence itself or the predictive model that assigns it a probability.

 Unigram model: after training a Maximum Likelihood Estimation (MLE) model from counting function C from a corpus:

$$p(w_i) = \frac{C(w_i)}{\sum_{w \in Vocab} C(w)}$$
 Frequency of the word (unigram)

The summed frequencies of all the words in the vocabi.e. the length of the training data

• **Bigram model:** After training a Maximum Likelihood Estimation (MLE) bigram model from counting function *C* from a corpus:

• **General n-gram model:** After training a Maximum Likelihood Estimation (MLE) n-gram model from counting function *C* from a corpus:

Frequency of n-gram

$$p(w_i | w_{i-n+1} \dots w_{i-1}) = \frac{C(w_{i-n+1} \dots w_{i-1}, w_i)}{C(w_{i-n+1} \dots w_{i-1})}$$

Frequency of context (previous n-1 words from word in position i)

$$p(w_i | w_{i-1}) = \frac{C(w_{i-1}, w_i)}{C(w_{i-1})}$$

 Example corpus (note beginning (<s>) and end-of-sentence (</s>) markers):

<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

Exercise: what is the MLE bigram estimate for:

$$p(w_i | w_{i-1}) = \frac{C(w_{i-1}, w_i)}{C(w_{i-1})}$$

Example corpus
 (note beginning (<s>) and end-of-sentence (</s>)
markers):

<s>I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

Exercise: what is the MLE bigram estimate for:

$$p(||~~) = 2/3~~$$
 $p(Sam||~~) = 1/3~~$ $p(am||) = 2/3$ $p(|Sam) = 1/2$ $p(Sam|am) = 1/2$ $p(do||) = 1/3$

(Real corpus) Berkeley Restaurant Project sentences:

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day

• Bigram counts from 9222 sentences

Word i-1 (context) Word i (the bigram is Word i-1, Word i)									
		i	want	to	eat	chinese	food	lunch	spend
i		5	827	0	9	0	0	0	2
wa	nt	2	0	608	1	6	6	5	1
to		2	0	4	686	2	0	6	211
eat	t	0	0	2	0	16	2	42	0
ch	inese	1	0	0	0	0	82	1	0
foo	od	15	0	15	0	1	4	0	0
luı	nch	2	0	0	0	0	1	0	0
spe	end	1	0	1	0	0	0	0	0

$$p(w_i | w_{i-1}) = \frac{C(w_{i-1}, w_i)}{C(w_{i-1})}$$

- Bigram MLE estimates:
- Normalize by unigram counts (which are the w_{i-1} counts):

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

Result:

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

 Bigram MLE estimates (example knowledge of the model after counts):

- p(english|want) = .0011
- p(chinese|want) = .0065
- p(to|want) = .66
- p(eat|to) = .28
- p(food|to) = 0
- p(want|spend) = 0
- p(i|<s>) = .25

 Bigram MLE probability estimates of sentences/ sequences: use multiplication of probabilities of continuous n-grams assuming independence of bigram probabilities:

```
p(<s> I want english food </s>) =
 p(I|<s>)
  × p(want|I)
  × p(english|want)
  × p(food|english)
  × p(</s>|food)
  = .000031
```

- Practical reality: we do everything in log space
 - Avoids underflow on a digital computer.
 - Adding is faster than multiplying.
- Unigram:

$$log(p(w_1) \times p(w_2) \times p(w_3)) = log(p(w_1)) + log(p(w_2)) + log(p(w_3))$$

• Bigram:

$$log(p(w_1 | w_0) \times p(w_2 | w_1) \times p(w_3 | w_2)) = log(p(w_1 | w_0)) + log(p(w_2 | w_1)) + log(p(w_3 | w_2))$$

OUTLINE

- 1) Language Models: motivation
- 2) Language Models: ngram models
- 3) Language Models: evaluation
- 4) Smoothing

How do we evaluate a LM?

- Gather a corpus.
- Divide it into 3 standard sections:

Training Data

Test Data

- Gather all the counts/estimations from the training data
- Iteratively develop by assigning probability to the heldout (not the test!) data.
- Experiment with value of n and other parameters like discounts (more later).
- Get the Perplexity score on the Test data (measure of how confused the model is by the unseen corpus).

How do we evaluate a LM?

- Though, don't forget the preprocessing first!
 - Tokenizing raw text.
 - Spelling normalization (including capitalization).
 - Removal of punctuation (though possibly not all!)
- What about words not in the training data but which appear at testing time (remember language is Zipfian!), i.e. are not in the vocabulary?
 - These could give a zero and mess up the model/perplexity measures!
- How do we estimate how many unknown or 'out of vocabulary' (OOV) words we're likely to encounter at testing?

How do we evaluate a LM?

- As it's a sequence modelling task, unlike bag-of-words based classification, we shouldn't just remove OOV/unknown words, leads to ungrammatical sequences.
- Several approaches to OOV words:
 - 1. Define the vocab by stipulating a minimum document frequency for words in the training data (e.g. 2). Any words appearing less than that, replace with an unknown word token <unk/> in the training data.
 - 2. Define the vocab by setting some **heldout data** aside- any words appearing in that which are not in the main training data are defined as OOV- replace their occurrences with <unk/> in the training data.
- On test data, always replace all OOV words with <unk/>.
- Warning- for a fair comparison of different models' perplexities, the same vocab must be used!

1. OOV words with minimum doc frequency

Training Data- pass 1

John likes Mary John adores Mary John adores Bill Get counts only for the vocab selection.

Vocab counts: John: 3, likes:1, adores: 2, Mary: 2, Bill: 1

Min. Doc. freq = 2, Vocab = {John, adores, Mary}

Training Data pass 2

John likes Mary
John adores Mary
John adores Bill

Replace OOV words with <unk/>, then get counts for the language model.

John **<unk/>** Mary John adores Mary John adores **<unk/>**

Counts: John: 3, adores: 2,

Mary: 2, <unk/>: 2

Test Data

John despises Mary Bill adores John

John <unk/> Mary <unk/> adores John

2. OOV words from heldout training data

Training Data

John likes Mary John adores Mary John adores Bill Do the counts for all words without replacement and define vocab as all words observed in this data.

Counts: John: 3, likes:1, adores: 2, Mary: 2, Bill: 1

Vocab = {John, likes, Mary, adores, Bill}

Held-Out Training Data

John hates Mary Bill adores Mary Replace OOV words with <unk/>, then keep adding to the model counts

Counts: John: 4, likes:1, adores: 3,

Mary: 4, Bill: 2, <unk/>: 1

Test Data

John despises Mary Billl adores John

John **<unk/>** Mary Bill adores John

Perplexity

- The Shannon Game:
 - How well can we predict the next word?

I always order pizza with cheese and _____
The 33rd President of the US was _____
I saw a

mushrooms 0.1
pepperoni 0.1
anchovies 0.01
....
fried rice 0.0001
....
and 1e-100

- Unigrams are terrible at this game. (Why?)
- A better model of a text
 - is one which assigns a higher probability to the word that actually occurs.

Perplexity

- The best language model is one that best predicts an unseen test data W, i.e. the one that gives the highest probability for those sentences.
- Perplexity is the inverse probability of the test set, normalised by the number of words:

$$PP(W) = P(w_1 w_2 \dots w_N)^{-\frac{1}{N}}$$
$$= \sqrt[N]{\frac{1}{P(w_1 w_2 \dots w_N)}}$$

Chain rule:
$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1...w_{i-1})}}$$

For bigrams:
$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$$

Minimising perplexity is the same as maximising probability

Perplexity from Cross-Entropy

- Cross-entropy is another metric used for evaluating the confusion of the language model on a test corpus.
- Practically, it is easy to calculate as just the negative sum of the log probabilities divided by the length of the corpus:

$$H(W) = -\frac{1}{N}\log P(w_1w_2...w_N)$$

 Perplexity can be simply calculated from crossentropy as it's 2 (or whatever log base you're using) to the power of the cross-entropy:

Perplexity(W) =
$$2^{H(W)}$$

So, minimising cross-entropy is also the same as maximising probability

Lower perplexity, better model

 Training 38 million words, test 1.5 million words, Wall St. Journal

N-gram Order	Unigram	Bigram	Trigram
Perplexity	962	170	109

OUTLINE

- 1) Language Models: motivation
- 2) Language Models: ngram models
- 3) Language Models: evaluation
- 4) Smoothing

The danger of overfitting!

- N-gram models only work well for word prediction if the test corpus looks like the training corpus
 - In real life, it often doesn't!
 - We need to train robust models that generalise.
- One kind of generalisation: re-estimating ngrams with 0 counts:
 - To pre-empt sequences that don't ever occur in the training set
 - But occur in the test set

Zeros!

- Training set:
 - ... denied the allegations
 - ... denied the reports
 - ... denied the claims
 - ... denied the request

- Test set
 - •... denied the offer
 - •... denied the loan

$$p(offer | denied the) = 0$$

- ngrams with zero probability!
 - We will assign 0 probability to the test set and hence we cannot compute perplexity (can't divide by 0)!
 - Also, given the model has seen this context and this word before (though not together), a more intelligent model should be able to assign a probability based on its knowledge of similar sequences- deal with known unknowns...

What can we do about this?

Three main approaches:

Smoothing

Hold back some probability mass for unseen events

Backoff & Interpolation

Estimate n-gram probability from (n-1)-gram probability

Class-based models

Group words together, estimate class n-gram probability

Smoothing

When we have sparse statistics from the counts:

```
C(denied the, w)
3 allegations
2 reports
1 claims
1 request
7 total
```

 'Steal'/spread around probability mass to generalize better. I.e. **Discount** some of the seen counts and add that discount to unseen counts:

```
C(denied the, w)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total
```

- Also called Laplace smoothing
- Pretend we saw each word one more time than we did
- Just add one to all the counts!

• MLE estimate:

$$p(w_i | w_{i-1}) = \frac{C(w_{i-1}, w_i)}{C(w_{i-1})}$$

Add-1 estimate:

$$p^{add-one}(w_i \mid w_{i-1}) = \frac{C(w_{i-1}, w_i) + 1}{C(w_{i-1}) + V}$$
 Vocab size

Add one to all counts (can be done during testing too).
 New counts will look like this:

Add 1 to all counts.

Now no 0

counts.

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

 Results in a discount (reduction) of the seen counts, but adding to the unseen ones to give the smoothed probabilities.

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Now no 0 probs. Some higher non-0 probs slightly lower (discounted); some previously low probs now higher

- Add-1 estimation is a blunt instrument- too much mass given to unseen events, some seen events reduced too much.
- So add-1 isn't used very much for language modelling:
 - We'll have a look at a couple of better methods!
- But add-1 is used to smooth other NLP models
 - For text classification (e.g. often in Naive Bayes, as per Unit 2).
 - In domains where the number of zeros isn't huge.

Add-k smoothing (generalized additive smoothing)

- Also additive Laplace smoothing, though sometimes 'Lidstone'/ add-k smoothing
- Pretend we saw each word a value k_i (0,1], more than we did.
- MLE estimate:

$$p(w_i | w_{i-1}) = \frac{C(w_{i-1}, w_i)}{C(w_{i-1})}$$

Add-k estimate:

$$p^{add-k}(w_i | w_{i-1}) = \frac{C(w_{i-1}, w_i) + k}{C(w_{i-1}) + kV}$$

- Add-1 smoothing a special case where k=1.
- You can search for *k* that gives largest probability to the held-out data, using an optimisation/gradient descent method to find these efficiently, e.g. the Nelder-Mead algorithm.

Backoff and Interpolation

- Sometimes it helps to use less context
 - Condition on shorter context/history for contexts you haven't learned much about

Backoff:

- e.g. in a trigram model, use the trigram prob if you have good evidence, otherwise bigram, otherwise unigram
- Interpolation (with lower orders):
 - mix unigram, bigram, trigram
- Interpolation tends to work better in general.

Backoff and Interpolation

Simple interpolation

where:

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1}) + \lambda_2 P(w_n|w_{n-1}) + \lambda_3 P(w_n)$$

$$\sum_{i} \lambda_{i} = 1$$

Lambdas conditional on context:

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1(w_{n-2}^{n-1})P(w_n|w_{n-2}w_{n-1})
+ \lambda_2(w_{n-2}^{n-1})P(w_n|w_{n-1})
+ \lambda_3(w_{n-2}^{n-1})P(w_n)$$

Backoff and Interpolation

• Use a **held-out** corpus to get the right λs

Training Data

Test Data

- Choose λs to maximize the probability of held-out data:
 - Fix the N-gram probabilities (on the training data)
 - Then search for λs that give largest probability to held-out set
 - Again, you could use an optimisation/gradient descent method to find these efficiently, e.g. the Nelder-Mead algorithm.
- Advanced interpolation + backoff technique- Kneser-Ney smoothing. Uses absolute discounting and the lower-order models. See Goodman (2001).

- Intuition: a word like "Kong" may appear quite frequently in a certain text, however, it's likely only to be a continuation for very few words (e.g. "Hong", "King"). It should not be given high probability in general as it only occurs in those specific contexts.
- For the lower orders in the back-off, instead of probability of occurrence (a function of **token** frequency), use the probability of a word being a continuation in terms of how many **types** the word appears in as a continuation.

 e.g. For a tri-gram model, you can use a standard tri-gram model with a fixed absolute discount D for the main model:

$$\frac{C(w_{i-2}, w_{i-1}, w_i) - D}{C(w_{i-2}, w_{i-1})}$$

- But you also have two lower-order counts to back-off to and interpolate with:
 - For the unigram model, we want the number of bigram types the word w appears in as the continuation word: |{v : C(v,w) > 0}|

normalised by
$$\sum w'|\{v: C(vw') > 0\}|$$
 (number of bigram types)

Which means 'Kong' will have a low probability as a unigram.

• For the bigram model, we want the number of trigram types the words w_{i-1}, w_i appear in as the continuation: $|\{v : C(v, w_{i-1}, w_i) > 0\}|$

normalised by $\sum w'|\{v: C(v, w_{i-1}, w') > 0\}|$ (number of trigram types with this bigram's context word in position 2)

- Recursive formulation for lower orders.
- Highest order always uses counts of occurrences (tokens), lower orders use continuation type counts.

$$\begin{split} P_{\text{IKN}}(w_i|w_{i-2}w_{i-1}) &= \frac{C(w_{i-2}w_{i-1}w_i) - D}{C(w_{i-2}w_{i-1})} + \lambda(w_{i-2}w_{i-1})P_{\text{ikn-mod-bigram}}(w_i|w_{i-1}) \\ P_{\text{ikn-mod-bigram}}(w_i|w_{i-1}) &= \frac{|\{v|C(vw_{i-1}w_i) > 0\}| - D}{\sum_{w} |\{v|C(vw_{i-1}w) > 0\}|} + \lambda(w_{i-1})P_{\text{ikn-mod-unigram}}(w_i) \\ P_{\text{ikn-mod-unigram}}(w_i|w_{i-1}) &= \frac{|\{v|vw_i) > 0\}| - D}{\sum_{w} |\{v|C(vw) > 0\}|} \end{split}$$

```
def kneser ney ngram prob(ngram, discount, order):
  ngram :: list of strings, the ngram
  discount :: float, the discount used
  order :: int, order of the model
  # First, calculate the unigram continuation prob of the last token
  uni_num = |\{v : C(v, ngram[-1]) > 0\}| # number of bigram types the last word is the second word/continuation for
  uni_denom = \( \) w'\[\{v : C(vw') > 0\}\] # number of unigram continuation (i.e. bigram) types in total
  probability = previous prob = uni num / uni denom
  # Compute the higher order probs (from 2/bi-gram upwards) and interpolate them
  for d in range(2, order+1):
     context = ngram[-(d):-1]. # define the context for this ngram of order d
     # Get the context count for the denominator
     if d == order:
        # When d = order (n), this is the counts of tokens of this context counted
        ngram denom = C(context)
     else:
       # When d < order (n) this is the number of different n-gram types (not tokens) of order d+1 with this context
       ngram_denom = \mathbf{y}[w'|\{v: C(v, context, w') > 0\}]
     if ngram denom != 0:
       # Get the ngram count for the numerator
       if d == order:
          ngram num = C(ngram[-d:]) # number of tokens of ngram counted in corpus
       ngram_num = |\{v : C(v, ngram[-d:]) > 0\}| # number of types of ngram of n=d+1 which it is a continuation for current_prob = (ngram_num - discount) / ngram_denom # probability with fixed discount
       # Get the lambda for this context λ(context) = discount / ngram denom * [{w : C(context,w) > 0}]
       # the number of word types that can follow the context (number of time normalised discount has been applied)
       nonzero = |\{w : C(context, w) > 0\}|
       lambda context = discount / ngram denom * nonzero
       # interpolate with previous probability of lower orders calculated so far
       current prob += lambda context * previous prob
       previous prob = current prob
       probability = current prob
       # if this context (e.g. bigram context for trigrams) has never been seen,
       # then we can only use the last order with a probability (e.g. unigram) and halt
       probability = previous prob
       break
  return probability
```

• Goodman (2001) confirms KN smoothing is the best:

- Even in the era of neural language models using Recurrent Neural Nets (RNNs), 5-gram model with KN smoothing has been used in a voting system with RNNs to get the best results
- e.g. Mikolov (2010), training on 4 million words:

Model	PPL		
KN 5gram	93.7		
feedforward NN	85.1		
recurrent NN	80.0		
4xRNN + KN5	73.5		

Summary

- Language models offer a way to assign a probability to a sentence or other sequence of words, and to predict a word from preceding words.
- n-gram models are Markov models that estimate words from a fixed window of previous words. n-gram probabilities can be estimated by counting in a corpus and normalizing (the maximum likelihood estimate).
- n-gram language models are evaluated extrinsically in some task, or intrinsically using perplexity.
- The perplexity of a test set according to a language model is the geometric mean of the inverse test set probability computed by the model.

Summary

- Smoothing algorithms provide a more sophisticated way to estimate the probability of n-grams. Commonly used smoothing algorithms for n-grams rely on lowerorder n-gram counts through backoff or interpolation.
- Both **backoff** and **interpolation** use discounting to create probability distributions over different orders.
- <u>Lab activity (unassessed): Implement Add-one</u> smoothing, generalised additive smoothing and use Kneser-Ney smoothing,

Reading

- Manning and Schuetze (1999) Chapter 6
- Jurafsky and Martin (3rd Ed) Chapter 3
- (Optional) Goodman (2001)- "A bit of Progress in Language Modeling"