Gru & Attention

Manfred Klenner

Department of Computerlinguistik University of Zurich

November 9, 2020

- if we use gradient-based learning (descend) and backpropagation
- given deep architectures the chain rule produces a lot of products
- if gradients are small, multiplication makes it ever smaller
- weights then might no longer change
- may completely stop the neural network from further training
- in this worst case, the neural network might became static

- if we use gradient-based learning (descend) and backpropagation
- given deep architectures the chain rule produces a lot of products
- if gradients are small, multiplication makes it ever smaller
- weights then might no longer change
- may completely stop the neural network from further training
- in this worst case, the neural network might became static

- if we use gradient-based learning (descend) and backpropagation
- given deep architectures the chain rule produces a lot of products
- if gradients are small, multiplication makes it ever smaller
- weights then might no longer change
- may completely stop the neural network from further training
- in this worst case, the neural network might became static

- if we use gradient-based learning (descend) and backpropagation
- given deep architectures the chain rule produces a lot of products
- if gradients are small, multiplication makes it ever smaller
- weights then might no longer change
- may completely stop the neural network from further training
- in this worst case, the neural network might became static

- if we use gradient-based learning (descend) and backpropagation
- given deep architectures the chain rule produces a lot of products
- if gradients are small, multiplication makes it ever smaller
- weights then might no longer change
- may completely stop the neural network from further training
- in this worst case, the neural network might became static

- if we use gradient-based learning (descend) and backpropagation
- given deep architectures the chain rule produces a lot of products
- if gradients are small, multiplication makes it ever smaller
- weights then might no longer change
- may completely stop the neural network from further training
- in this worst case, the neural network might became static

- residual (skip) connections
 - they allow gradient information to pass through the layers
 - creating "highways" of information
 - output of a previous layer is added to the output of a deeper layer
- change activation function
 - e.g ReLU only saturates in one direction (but now exploding is possible)
- use LSTM, GRU to prevent vanishing
 - the forget gate gets rid of some values
 - the cell states is used additively (preventing values from getting smaller)
 - we only have positives values, since we are using sigmoid function
- use gradient clipping to prevent exploding
 - use a threshold on the gradients
 - if ||g|| > threshold $g = \frac{threshold *g}{||g||}$ where ||.|| denotes the length
- weight regularization: L1 or L2

- residual (skip) connections
 - they allow gradient information to pass through the layers
 - creating "highways" of information
 - output of a previous layer is added to the output of a deeper layer
- change activation function
 - e.g ReLU only saturates in one direction (but now exploding is possible)
- use LSTM, GRU to prevent vanishing
 - the forget gate gets rid of some values
 - the cell states is used additively (preventing values from getting smaller)
 - we only have positives values, since we are using sigmoid function
- use gradient clipping to prevent exploding
 - use a threshold on the gradients
 - if ||g||> threshold $g=rac{threshold*g}{||g||}$ where ||.|| denotes the length
- weight regularization: L1 or L2

- residual (skip) connections
 - they allow gradient information to pass through the layers
 - creating "highways" of information
 - output of a previous layer is added to the output of a deeper layer
- change activation function
 - e.g ReLU only saturates in one direction (but now exploding is possible)
- use LSTM, GRU to prevent vanishing
 - the forget gate gets rid of some values
 - the cell states is used additively (preventing values from getting smaller)
 - we only have positives values, since we are using sigmoid function
- use gradient clipping to prevent exploding
 - use a threshold on the gradients
 - if |g| > threshold $g = \frac{d \log \log g}{|g|}$ where ||.|| denotes the length
- weight regularization: L1 or L2

- residual (skip) connections
 - they allow gradient information to pass through the layers
 - creating "highways" of information
 - output of a previous layer is added to the output of a deeper layer
- change activation function
 - e.g ReLU only saturates in one direction (but now exploding is possible
- use LSTM, GRU to prevent vanishing
 - the forget gate gets rid of some values
 - the cell states is used additively (preventing values from getting smaller)
 - we only have positives values, since we are using sigmoid function
- use gradient clipping to prevent exploding
 - use a threshold on the gradients
 - ullet if ||g||> threshold $g=rac{uneshold*g}{||g||}$ where ||.|| denotes the length
- weight regularization: L1 or L2

- residual (skip) connections
 - they allow gradient information to pass through the layers
 - creating "highways" of information
 - output of a previous layer is added to the output of a deeper layer
- change activation function
 - e.g ReLU only saturates in one direction (but now exploding is possible)
- use LSTM, GRU to prevent vanishing
 - the forget gate gets rid of some values
 - the cell states is used additively (preventing values from getting smaller)
 - we only have positives values, since we are using sigmoid function
- use gradient clipping to prevent exploding
 - use a threshold on the gradients
 - if |g| > threshold $g = \frac{threshold*g}{|g|}$ where ||.|| denotes the length
- weight regularization: L1 or L2

- residual (skip) connections
 - they allow gradient information to pass through the layers
 - creating "highways" of information
 - output of a previous layer is added to the output of a deeper layer
- change activation function
 - e.g ReLU only saturates in one direction (but now exploding is possible)
- use LSTM, GRU to prevent vanishing
 - the forget gate gets rid of some values
 - the cell states is used additively (preventing values from getting smaller)
 - we only have positives values, since we are using sigmoid function
- use gradient clipping to prevent exploding
 - use a threshold on the gradients
 - ullet if ||g||> threshold $g=rac{threshold*g}{||g||}$ where ||.|| denotes the length
- weight regularization: L1 or L2

- residual (skip) connections
 - they allow gradient information to pass through the layers
 - creating "highways" of information
 - output of a previous layer is added to the output of a deeper layer
- change activation function
 - e.g ReLU only saturates in one direction (but now exploding is possible)
- use LSTM, GRU to prevent vanishing
 - the forget gate gets rid of some values
 - the cell states is used additively (preventing values from getting smaller)
 - we only have positives values, since we are using sigmoid function
- use gradient clipping to prevent exploding
 - use a threshold on the gradients
 - if ||g|| > threshold $g = \frac{ancsnood*g}{||g||}$ where ||.|| denotes the length
- weight regularization: L1 or L2

- residual (skip) connections
 - they allow gradient information to pass through the layers
 - creating "highways" of information
 - output of a previous layer is added to the output of a deeper layer
- change activation function
 - e.g ReLU only saturates in one direction (but now exploding is possible)
- use LSTM, GRU to prevent vanishing
 - the forget gate gets rid of some values
 - the cell states is used additively (preventing values from getting smaller)
 - we only have positives values, since we are using sigmoid function
- use gradient clipping to prevent exploding
 - use a threshold on the gradients
 - ullet if ||g||> threshold $g=rac{uneshold*g}{||g||}$ where ||.|| denotes the length
- weight regularization: L1 or L2

- residual (skip) connections
 - they allow gradient information to pass through the layers
 - creating "highways" of information
 - output of a previous layer is added to the output of a deeper layer
- change activation function
 - e.g ReLU only saturates in one direction (but now exploding is possible)
- use LSTM, GRU to prevent vanishing
 - the forget gate gets rid of some values
 - the cell states is used additively (preventing values from getting smaller)
 - we only have positives values, since we are using sigmoid function
- use gradient clipping to prevent exploding
 - use a threshold on the gradients
 - if |g| > threshold $g = \frac{threshold*g}{|g|}$ where ||.|| denotes the length
- weight regularization: L1 or L2

- residual (skip) connections
 - they allow gradient information to pass through the layers
 - creating "highways" of information
 - output of a previous layer is added to the output of a deeper layer
- change activation function
 - e.g ReLU only saturates in one direction (but now exploding is possible)
- use LSTM, GRU to prevent vanishing
 - the forget gate gets rid of some values
 - the cell states is used additively (preventing values from getting smaller)
 - we only have positives values, since we are using sigmoid function
- use gradient clipping to prevent exploding
 - use a threshold on the gradients
 - ullet if ||g||> threshold $g=rac{threshold*g}{||g||}$ where ||.|| denotes the length
- weight regularization: L1 or L2

- residual (skip) connections
 - they allow gradient information to pass through the layers
 - creating "highways" of information
 - output of a previous layer is added to the output of a deeper layer
- change activation function
 - e.g ReLU only saturates in one direction (but now exploding is possible)
- use LSTM, GRU to prevent vanishing
 - the forget gate gets rid of some values
 - the cell states is used additively (preventing values from getting smaller)
 - we only have positives values, since we are using sigmoid function
- use gradient clipping to prevent exploding
 - use a threshold on the gradients
 - \bullet if ||g||> threshold $g=\frac{threshold*g}{||g||}$ where ||.|| denotes the length
- weight regularization: L1 or L2

- residual (skip) connections
 - they allow gradient information to pass through the layers
 - creating "highways" of information
 - output of a previous layer is added to the output of a deeper layer
- change activation function
 - e.g ReLU only saturates in one direction (but now exploding is possible)
- use LSTM, GRU to prevent vanishing
 - the forget gate gets rid of some values
 - the cell states is used additively (preventing values from getting smaller)
 - we only have positives values, since we are using sigmoid function
- use gradient clipping to prevent exploding
 - use a threshold on the gradients
 - if ||g|| > threshold $g = \frac{threshold*g}{||g||}$ where ||.|| denotes the length
- weight regularization: L1 or L2

- residual (skip) connections
 - they allow gradient information to pass through the layers
 - creating "highways" of information
 - output of a previous layer is added to the output of a deeper layer
- change activation function
 - e.g ReLU only saturates in one direction (but now exploding is possible)
- use LSTM, GRU to prevent vanishing
 - the forget gate gets rid of some values
 - the cell states is used additively (preventing values from getting smaller)
 - we only have positives values, since we are using sigmoid function
- use gradient clipping to prevent exploding
 - use a threshold on the gradients
 - if ||g|| > threshold $g = \frac{threshold*g}{||g||}$ where ||.|| denotes the length
- weight regularization: L1 or L2

- residual (skip) connections
 - they allow gradient information to pass through the layers
 - creating "highways" of information
 - output of a previous layer is added to the output of a deeper layer
- change activation function
 - e.g ReLU only saturates in one direction (but now exploding is possible)
- use LSTM, GRU to prevent vanishing
 - the forget gate gets rid of some values
 - the cell states is used additively (preventing values from getting smaller)
 - we only have positives values, since we are using sigmoid function
- use gradient clipping to prevent exploding
 - use a threshold on the gradients
 - if ||g|| > threshold $g = \frac{threshold *g}{||g||}$ where ||.|| denotes the length
- weight regularization: L1 or L2

- are RNNs
- solve the vanishing gradient problem
- are a variation of LSTM
- perform quite good
- they use update gates (what to keep) and reset gates (what to forget)

- are RNNs
- solve the vanishing gradient problem
- are a variation of LSTM
- perform quite good
- they use update gates (what to keep) and reset gates (what to forget)

- are RNNs
- solve the vanishing gradient problem
- are a variation of LSTM
- perform quite good
- they use update gates (what to keep) and reset gates (what to forget)

- are RNNs
- solve the vanishing gradient problem
- are a variation of LSTM
- perform quite good
- they use update gates (what to keep) and reset gates (what to forget)

- are RNNs
- solve the vanishing gradient problem
- are a variation of LSTM
- perform quite good
- they use update gates (what to keep) and reset gates (what to forget)

- update gate: $z_t = \sigma(W^z x_t + U^z h_{t-1})$
- $\bullet \ \sigma = {\rm sigmoid} \ {\rm function}$

• update gate: $z_t = \sigma(W^z x_t + U^z h_{t-1})$

• reset gate: $r_t = \sigma(W^r x_t + U^r h_{t-1})$

- update gate: $z_t = \sigma(W^z x_t + U^z h_{t-1})$
- reset gate: $r_t = \sigma(W^r x_t + U^r h_{t-1})$
- current memory context: $h_t' = tanh(Wx_t + r_t \odot Uh_{t-1})$

- update gate: $z_t = \sigma(W^z x_t + U^z h_{t-1})$
- reset gate: $r_t = \sigma(W^r x_t + U^r h_{t-1})$
- current memory context: $h'_t = tanh(Wx_t + r_t \odot Uh_{t-1})$
- output: $h_t = z_t \odot h_{t-1} + (1 z_t) \odot h'_t$

Overfitting the data

- if the model learns on the basis of idiosyncracies of the data
- if the model adopts to the noice in the data
- if the model takes the training data to seriously

Prevent overfitting by

- use a larger training set
- use a smaller network
- early stopping
- data normalization (might help)
- weight decay (regularization): penalize large weights
- model averaging
- dropout

Prevent overfitting

early stopping

- use (also) a validation set to determine the loss
- stop learning if it reaches a minimum (and afterwards starts to increase again)

Data normalization

i.e. scale the input features of a neural network, so that all features are scaled similarly

Dropout (only in training mode)

- goal: prevent nodes from creating to strong connections/dependencies among each other
- we randomly drop (zero) out portions of neurons from each training iteration

Regularization

high weights indicate overfitting

- here means: add the (scaled) length of the weight vector to the loss function
- the loss gets higher the larger the weights
- since we are minimizing, weights are kept small(er)
- L1 regularization: $\sum k|w_k|$
- mathematically, this encourages weights to be exactly 0
- L2 regularization: $\sum k \ w_k^2$
- mathematically, the weight is pushed towards 0
- combination of L1 and L2 regularization: add a term $\sum k|w_k| + \sum kw_k^2$ to the loss function

In PyTorch, a parameter weight_decay can be used e.g. in SGD and other optimizers