Familias de desigualdades válidas para el poliedro de packing de caterpillars

Javier Marenco

Departamento de Computación, FCEyN, Universidad de Buenos Aires, Argentina Instituto de Ciencias, Universidad Nacional de General Sarmiento, Argentina jmarenco@dc.uba.ar

Un caterpillar es un grafo conexo tal que la eliminación de todos sus vértices de grado 1 resulta en un camino. Dado un grafo G, un packing de caterpillars de G es un conjunto de subgrafos disjuntos de G (no necesariamente inducidos) tales que cada subgrafo es un caterpillar. Los packings de caterpillars de un grafo surgen en forma natural cuando se consideran las soluciones factibles del 2-schemes strip cutting problem with a sequencing constraint (2-SSCPsc). Este problema NP-hard aparece en el contexto de problemas de programación de la producción de máquinas corrugadoras, y fue presentado en 2007 por F. Rinaldi y A. Franz.

Dado un grafo G, estamos interesados en el conjunto de todos los packings de caterpillars de G. En este trabajo estudiamos el poliedro asociado con una formulación natural de 2-SSCPsc como un modelo de programación lineal entera. Estudiamos propiedades elementales de este poliedro, incluyendo un lema de lifting y las propiedades de facetitud de las restricciones del modelo.

Una característica interesante de este poliedro es que muchas de las desigualdades válidas que definen facetas se pueden deducir a partir de desigualdades válidas más sencillas. Sobre la base de esta observación presentamos varios procedimientos para construir desigualdades válidas a partir de desigualdades más sencillas, y estudiamos condiciones que garantizan que las desigualdades obtenidas definen facetas. Estos resultados permiten hallar varias familias de facetas de este poliedro y proponer procedimientos constructivos para los problemas de separación asociados con estas familias.

1