

By Naresh kumar

** importing libaries

```
In [1]: import numpy as np
import pandas as pd
```

uploading dataset

```
In [2]: df=pd.read_csv(r'C:\Users\hp\Downloads\CAR DETAILS (1).csv')
```

Reading dataset

In [4]: df

Out[4]:

	name	year	selling_price	km_driven	fuel	seller_type	transmission	owner
0	Maruti 800 AC	2007	60000	70000	Petrol	Individual	Manual	First Owner
1	Maruti Wagon R LXI Minor	2007	135000	50000	Petrol	Individual	Manual	First Owner
2	Hyundai Verna 1.6 SX	2012	600000	100000	Diesel	Individual	Manual	First Owner
3	Datsun RediGO T Option	2017	250000	46000	Petrol	Individual	Manual	First Owner
4	Honda Amaze VX i-DTEC	2014	450000	141000	Diesel	Individual	Manual	Second Owner
4335	Hyundai i20 Magna 1.4 CRDi (Diesel)	2014	409999	80000	Diesel	Individual	Manual	Second Owner
4336	Hyundai i20 Magna 1.4 CRDi	2014	409999	80000	Diesel	Individual	Manual	Second Owner
4337	Maruti 800 AC BSIII	2009	110000	83000	Petrol	Individual	Manual	Second Owner
4338	Hyundai Creta 1.6 CRDi SX Option	2016	865000	90000	Diesel	Individual	Manual	First Owner
4339	Renault KWID RXT	2016	225000	40000	Petrol	Individual	Manual	First Owner

4340 rows × 8 columns

In [5]: df.head()

Out[5]:

	name	year	selling_price	km_driven	fuel	seller_type	transmission	owner
0	Maruti 800 AC	2007	60000	70000	Petrol	Individual	Manual	First Owner
1	Maruti Wagon R LXI Minor	2007	135000	50000	Petrol	Individual	Manual	First Owner
2	Hyundai Verna 1.6 SX	2012	600000	100000	Diesel	Individual	Manual	First Owner
3	Datsun RediGO T Option	2017	250000	46000	Petrol	Individual	Manual	First Owner
4	Honda Amaze VX i-DTEC	2014	450000	141000	Diesel	Individual	Manual	Second Owner

```
In [6]: df.sample(5)
```

Out[6]:

	name	year	selling_price	km_driven	fuel	seller_type	transmission	owner
976	Mahindra Thar CRDe	2018	950000	20000	Diesel	Individual	Manual	First Owner
4022	Maruti Wagon R LXI Minor	2008	200000	90000	Petrol	Individual	Manual	Second Owner
2287	Hyundai Santro Xing XG	2005	70000	68500	Petrol	Dealer	Manual	First Owner
452	Maruti Alto 800 LXI	2018	310000	5000	Petrol	Individual	Manual	First Owner
2191	Tata Tiago 1.2 Revotron XZ	2018	539000	10000	Petrol	Individual	Manual	First Owner

In [7]: df.shape

Out[7]: (4340, 8)

Data preprocessing

rows = 4340 columns = 8

df.info()

In the data set

we clearly see year column is int data type form but we known year is the date data type

```
In [8]: df.isnull().sum()
Out[8]: name
                           0
                           0
         year
         selling_price
                           0
         km_driven
         fuel
                           0
         seller_type
                           0
         transmission
                           0
         owner
         dtype: int64
         ** their is no null values
In [3]: df.duplicated().sum()
```

Out[3]: 763

^{**} we have 763 duplicate values

```
In [4]:
        df.drop_duplicates(inplace=True)
In [5]: df.shape
Out[5]: (3577, 8)
In [6]: df.duplicated().sum()
Out[6]: 0
In [7]: |df["name"].nunique()
Out[7]: 1491
         ** we have 1491 unique values
        car_names=list(df['name'])
In [8]:
         #print(car_names)
        print(len(car_names))
        3577
In [9]:
        brand, model, sub_class=[],[],[]
        for car in car_names:
            parts=car.split()
            x=parts[0]
            y=parts[1]
            z=parts[2:]
            brand.append(x)
            model.append(y)
             sub_class.append(z)
        print(len(brand))
        print(len(model))
        print(len(sub_class))
         3577
        3577
         3577
```

```
In [10]: sub_class=[' '.join(map(str, item)) for item in sub_class]
    df['brand']=brand
    df['model']=model
    df['sub_class']=sub_class
    df.head()
```

Out[10]:

	name	year	selling_price	km_driven	fuel	seller_type	transmission	owner	brand
0	Maruti 800 AC	2007	60000	70000	Petrol	Individual	Manual	First Owner	Maruti
1	Maruti Wagon R LXI Minor	2007	135000	50000	Petrol	Individual	Manual	First Owner	Maruti
2	Hyundai Verna 1.6 SX	2012	600000	100000	Diesel	Individual	Manual	First Owner	Hyundai
3	Datsun RediGO T Option	2017	250000	46000	Petrol	Individual	Manual	First Owner	Datsun
4	Honda Amaze VX i- DTEC	2014	450000	141000	Diesel	Individual	Manual	Second Owner	Honda
4									•

In [11]: df.drop('name',axis=1,inplace=True)
 df.head()

Out[11]:

	year	selling_price	km_driven	fuel	seller_type	transmission	owner	brand	model
0	2007	60000	70000	Petrol	Individual	Manual	First Owner	Maruti	800
1	2007	135000	50000	Petrol	Individual	Manual	First Owner	Maruti	Wagon
2	2012	600000	100000	Diesel	Individual	Manual	First Owner	Hyundai	Verna
3	2017	250000	46000	Petrol	Individual	Manual	First Owner	Datsun	RediGO
4	2014	450000	141000	Diesel	Individual	Manual	Second Owner	Honda	Amaze
4									>

In [12]: # Get the count of unique values in the 'brand' column
brand_counts = df['brand'].value_counts()

```
In [13]: brand_counts
Out[13]: Maruti
                           1072
         Hyundai
                            637
         Mahindra
                            328
         Tata
                            308
         Ford
                            220
         Honda
                            216
         Toyota
                           170
         Chevrolet
                            151
         Renault
                            110
         Volkswagen
                            93
         Nissan
                             52
         Skoda
                             49
         Fiat
                             32
         Audi
                             31
         Datsun
                             29
         BMW
                             25
         Mercedes-Benz
                             21
         Jaguar
                              5
                              5
         Mitsubishi
                              5
         Land
                              4
         Volvo
         Jeep
                              3
                              3
         Ambassador
                              2
         MG
                              2
         OpelCorsa
         Daewoo
                              1
         Force
                              1
         Isuzu
                              1
         Kia
                              1
         Name: brand, dtype: int64
```

In [14]: # correlation
 df.corr()

Out[14]:

	year	selling_price	km_driven
year	1.00000	0.424260	-0.417490
selling_price	0.42426	1.000000	-0.187359
km_driven	-0.41749	-0.187359	1.000000

EDA

```
In [15]: ## importing data visulization libaries
```

In [16]: import matplotlib.pyplot as plt
import seaborn as sns

ploting the count of the brand

```
In [23]: plt.figure(figsize=(10,5))
    sns.countplot(x=df.brand)
    plt.title("Cars Brand")
    plt.xticks(rotation=90)
    ax=sns.countplot(x='brand',data=df)
    for bars in ax.containers:
        ax.bar_label(bars)
```


all numerical columns pair plot

In [23]: sns.pairplot(df)

Out[23]: <seaborn.axisgrid.PairGrid at 0x2000262cf10>

In [24]: sns.pairplot(df,hue='transmission')

Out[24]: <seaborn.axisgrid.PairGrid at 0x20004767e80>


```
In [25]: df.year.value_counts()
Out[25]: 2017
                  346
          2012
                  338
          2015
                  332
          2014
                  321
          2013
                  298
          2018
                  295
          2016
                  283
                  247
          2011
          2010
                  210
          2009
                  169
          2019
                  162
          2008
                  129
          2007
                  117
                   93
          2006
          2005
                   61
                   45
          2020
          2004
                   38
          2003
                   22
          2002
                   18
          2001
                   16
                   12
          2000
          1998
                    9
                    9
          1999
                    3
          1997
                    2
          1996
          1995
                    1
          1992
          Name: year, dtype: int64
```

ploting count of the years

ploting count of fuel types

ploting count of owner types

how does the year effect the price of sell?

```
In [17]: # selling price convert into multiplus of 10 thousands form
selling_price=df.selling_price/10000
```

```
In [18]:
          selling_price
Out[18]:
                    6.0000
          1
                  13.5000
          2
                  60.0000
          3
                  25.0000
          4
                  45.0000
          4335
                  40.9999
          4336
                  40.9999
                  11.0000
          4337
          4338
                  86.5000
          4339
                  22.5000
          Name: selling_price, Length: 3577, dtype: float64
```

```
In [27]: sns.scatterplot(y=selling_price,x=df.year)
    plt.title("selling_price Vs year")
    plt.show()
```


ploting count of selling types

```
In [28]: plt.figure(figsize=(10,5))
    sns.countplot(x=df.seller_type)
    plt.title("seller_type")
    ax=sns.countplot(x='seller_type',data=df)
    for bars in ax.containers:
        ax.bar_label(bars)
```


ploting count of transmission

```
In [29]: plt.figure(figsize=(10,5))
    sns.countplot(x=df.transmission)
    plt.title("transmission")
    ax=sns.countplot(x='transmission',data=df)
    for bars in ax.containers:
        ax.bar_label(bars)
```


Correlation Between selling_price and km_driven

```
In [30]: plt.figure(figsize=(10,5))
    plt.title('km_driven by selling_price Distribution', fontsize=18)
    sns.scatterplot(data=df, x='km_driven', y='selling_price')
    plt.ticklabel_format(style='plain', axis='y')
```


ploting corelation

```
In [31]: sns.heatmap(df.corr(),annot=True)
```

Out[31]: <AxesSubplot:>

Data prepration Model

```
In [21]: df.head()
```

Out[21]:

	year	selling_price	km_driven	fuel	seller_type	transmission	owner	brand	model
0	2007	60000	70000	Petrol	Individual	Manual	First Owner	Maruti	800
1	2007	135000	50000	Petrol	Individual	Manual	First Owner	Maruti	Wagon
2	2012	600000	100000	Diesel	Individual	Manual	First Owner	Hyundai	Verna
3	2017	250000	46000	Petrol	Individual	Manual	First Owner	Datsun	RediGO
4	2014	450000	141000	Diesel	Individual	Manual	Second Owner	Honda	Amaze
4									•

In [22]: df.drop(['sub_class'],axis=1,inplace=True)
 df.head()

Out[22]:

	year	selling_price	km_driven	fuel	seller_type	transmission	owner	brand	model
0	2007	60000	70000	Petrol	Individual	Manual	First Owner	Maruti	800
1	2007	135000	50000	Petrol	Individual	Manual	First Owner	Maruti	Wagon
2	2012	600000	100000	Diesel	Individual	Manual	First Owner	Hyundai	Verna
3	2017	250000	46000	Petrol	Individual	Manual	First Owner	Datsun	RediGO
4	2014	450000	141000	Diesel	Individual	Manual	Second Owner	Honda	Amaze
4									•

In [23]: df.drop(['model'],axis=1,inplace=True)
 df.head()

Out[23]:

	year	selling_price	km_driven	fuel	seller_type	transmission	owner	brand
0	2007	60000	70000	Petrol	Individual	Manual	First Owner	Maruti
1	2007	135000	50000	Petrol	Individual	Manual	First Owner	Maruti
2	2012	600000	100000	Diesel	Individual	Manual	First Owner	Hyundai
3	2017	250000	46000	Petrol	Individual	Manual	First Owner	Datsun
4	2014	450000	141000	Diesel	Individual	Manual	Second Owner	Honda

In [24]: df.columns

```
In [25]: df.shape
Out[25]: (3577, 8)
```

Applying one hot encoding

```
In [26]: dummy_df=pd.get_dummies(df)
In [27]: dummy_df
```

Out[27]:

	year	selling_price	km_driven	fuel_CNG	fuel_Diesel	fuel_Electric	fuel_LPG	fuel_Petr
0	2007	60000	70000	0	0	0	0	
1	2007	135000	50000	0	0	0	0	
2	2012	600000	100000	0	1	0	0	
3	2017	250000	46000	0	0	0	0	
4	2014	450000	141000	0	1	0	0	
4335	2014	409999	80000	0	1	0	0	
4336	2014	409999	80000	0	1	0	0	
4337	2009	110000	83000	0	0	0	0	
4338	2016	865000	90000	0	1	0	0	
4339	2016	225000	40000	0	0	0	0	
0577	. .	47 1						

3577 rows × 47 columns

In [28]: dummy_df.shape

Out[28]: (3577, 47)

```
In [29]: pd.get_dummies(df,drop_first=True)
```

Out[29]:

	year	selling_price	km_driven	fuel_Diesel	fuel_Electric	fuel_LPG	fuel_Petrol	seller_t
0	2007	60000	70000	0	0	0	1	
1	2007	135000	50000	0	0	0	1	
2	2012	600000	100000	1	0	0	0	
3	2017	250000	46000	0	0	0	1	
4	2014	450000	141000	1	0	0	0	
4335	2014	409999	80000	1	0	0	0	
4336	2014	409999	80000	1	0	0	0	
4337	2009	110000	83000	0	0	0	1	
4338	2016	865000	90000	1	0	0	0	
4339	2016	225000	40000	0	0	0	1	
3577 ו	rows ×	42 columns						
4								•

Spliting data into training and test set

```
In [30]: x=dummy_df.drop('selling_price',axis=1)
In [31]: x
```

Out[31]:

	year	km_driven	fuel_CNG	fuel_Diesel	fuel_Electric	fuel_LPG	fuel_Petrol	seller_type
0	2007	70000	0	0	0	0	1	
1	2007	50000	0	0	0	0	1	
2	2012	100000	0	1	0	0	0	
3	2017	46000	0	0	0	0	1	
4	2014	141000	0	1	0	0	0	
4335	2014	80000	0	1	0	0	0	
4336	2014	80000	0	1	0	0	0	
4337	2009	83000	0	0	0	0	1	
4338	2016	90000	0	1	0	0	0	
4339	2016	40000	0	0	0	0	1	
3577 1	rows ×	46 columns	5					

```
y=dummy_df['selling_price']
In [32]:
In [33]:
         У
Out[33]: 0
                   60000
          1
                  135000
          2
                  600000
          3
                  250000
          4
                  450000
          4335
                  409999
          4336
                  409999
          4337
                  110000
          4338
                  865000
          4339
                  225000
          Name: selling_price, Length: 3577, dtype: int64
In [34]: from sklearn.model_selection import train_test_split
          # Assuming x and y are your feature and target variable, respectively
          # Your data preprocessing and feature engineering steps would go here
          # Check the Lengths of x and y
          print(len(x))
          print(len(y))
          # Split the data into training and testing sets
          x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, rar
          3577
          3577
In [35]: x_train, x_test, y_train, y_test
Out[35]:
                        km_driven fuel_CNG fuel_Diesel fuel_Electric fuel_LPG
                 year
           3078
                 2011
                           120000
                                           0
                                                         1
                                                                         0
                                                                                   0
           2702
                 2012
                            26000
                                           0
                                                         1
                                                                         0
                                                                                   0
           2381 2015
                            55000
                                           0
                                                         1
                                                                         0
                                                                                   0
           693
                 2016
                            80000
                                           0
                                                         1
                                                                         0
                                                                                   0
           3529
                                                                                   0
                 2015
                           146000
                                           0
                                                         1
                                                                         0
                  . . .
           . . .
                              . . .
                                                                        . .
                                                                                  . . .
           1941
                 2004
                           100000
                                           0
                                                         0
                                                                         0
                                                                                   0
           1968
                 2011
                                           0
                                                         0
                                                                         0
                                                                                   0
                            50000
           500
                 2016
                           155201
                                           0
                                                         1
                                                                         0
                                                                                   0
           2467
                 2012
                                           0
                                                                                   0
                            60236
                                                         1
                                                                         0
           3658 2013
                            75000
                                                         1
                                                                         0
                               seller_type_Dealer seller_type_Individual
                 fuel Petrol
           3078
                            0
                                                                           1
                                                 0
           2702
                            0
                                                 0
                                                                           1
           2381
                            0
                                                 1
                                                                           0
           693
                            0
                                                 0
                                                                           1
```

```
In [36]: print("X_train:", x_train.shape)
print("X_test:", x_test.shape)
print("y_train:", y_train.shape)
print("y_test:", y_test.shape)

X_train: (2861, 46)
X_test: (716, 46)
y_train: (2861,)
y_test: (716,)
```

Features Scaling

```
In [53]: from sklearn.preprocessing import StandardScaler
In [54]: scaler=StandardScaler()
In [55]: scaler.fit(x_train)
Out[55]: StandardScaler()
In [56]: x_train_scaled=scaler.transform(x_train)
    x_test_scaled=scaler.transform(x_test)
```

```
In [57]: # Create DataFrames with columns
    x_train_df = pd.DataFrame(x_train_scaled, columns=x_train.columns)
    x_test_df = pd.DataFrame(x_test_scaled, columns=x_test.columns)

# Check the first few rows of the DataFrames
    print(x_train_df.head())
    print(x_test_df.head())
```

```
km driven fuel CNG fuel Diesel fuel Electric fuel LPG \
       year
0 -0.471714
              1.090132 -0.104662
                                      0.995466
                                                           0.0 -0.07957
1 -0.234572
            -0.917559 -0.104662
                                      0.995466
                                                           0.0
                                                                -0.07957
2
   0.476853
             -0.298165 -0.104662
                                      0.995466
                                                           0.0
                                                                 -0.07957
3
   0.713995
              0.235796 -0.104662
                                      0.995466
                                                           0.0
                                                                -0.07957
   0.476853
              1.645451 -0.104662
                                      0.995466
                                                           0.0
                                                                -0.07957
   fuel_Petrol seller_type_Dealer
                                     seller_type_Individual \
0
     -0.961927
                          -0.500437
                                                     0.51514
1
     -0.961927
                          -0.500437
                                                     0.51514
2
     -0.961927
                           1.998254
                                                    -1.94122
3
     -0.961927
                          -0.500437
                                                     0.51514
4
     -0.961927
                           1.998254
                                                    -1.94122
   seller_type_Trustmark Dealer
                                       brand_Mercedes-Benz brand_Mitsubish
                                 . . .
i
0
                                                  -0.081764
                       -0.097607
                                                                     -0.04184
1
1
                       -0.097607
                                                  -0.081764
                                                                     -0.04184
1
2
                       -0.097607
                                                  -0.081764
                                                                     -0.04184
1
3
                                                                     -0.04184
                       -0.097607
                                                  -0.081764
1
4
                       -0.097607
                                                  -0.081764
                                                                     -0.04184
1
   brand_Nissan brand_OpelCorsa brand_Renault brand_Skoda brand_Tata
\
0
      -0.126412
                        -0.026449
                                        -0.182277
                                                     -0.120578
                                                                  -0.312138
1
      -0.126412
                        -0.026449
                                        -0.182277
                                                     -0.120578
                                                                  -0.312138
2
      -0.126412
                        -0.026449
                                        -0.182277
                                                     -0.120578
                                                                  -0.312138
3
      -0.126412
                        -0.026449
                                        -0.182277
                                                     -0.120578
                                                                  -0.312138
4
      -0.126412
                        -0.026449
                                        -0.182277
                                                     -0.120578
                                                                  -0.312138
   brand_Toyota
                 brand_Volkswagen
                                    brand Volvo
0
      -0.221671
                         -0.166307
                                      -0.037418
1
      -0.221671
                         -0.166307
                                      -0.037418
2
      -0.221671
                         -0.166307
                                      -0.037418
3
       4.511180
                         -0.166307
                                       -0.037418
4
      -0.221671
                         -0.166307
                                      -0.037418
[5 rows x 46 columns]
             km driven fuel CNG
                                   fuel Diesel
                                                 fuel Electric
                                                                fuel LPG
       year
   0.476853
                                      0.995466
              0.125159 -0.104662
                                                           0.0
                                                                -0.07957
1
  0.002570
            -0.768050 -0.104662
                                      0.995466
                                                           0.0
                                                                -0.07957
2
  0.002570
              2.905598 -0.104662
                                     -1.004554
                                                           0.0
                                                                -0.07957
                                                           0.0
3
   0.239711
              0.235796 -0.104662
                                      0.995466
                                                                 -0.07957
4 -1.183140
            -0.404957 -0.104662
                                     -1.004554
                                                           0.0
                                                                -0.07957
   fuel Petrol
                                     seller_type_Individual
                seller_type_Dealer
0
     -0.961927
                          -0.500437
                                                     0.51514
1
     -0.961927
                          -0.500437
                                                     0.51514
2
      1.039580
                          -0.500437
                                                     0.51514
3
     -0.961927
                           1.998254
                                                    -1.94122
4
      1.039580
                          -0.500437
                                                     0.51514
   seller_type_Trustmark Dealer
                                 ... brand Mercedes-Benz brand Mitsubish
i
0
                       -0.097607
                                                  -0.081764
                                                                     -0.04184
                                  . . .
```

1

1		-0.097607	• • •	-0.081764	-0.04184
1 2		-0.097607		-0.081764	0 0/10/
1		-0.09/60/	• • •	-0.081/64	-0.04184
3		-0.097607		-0.081764	-0.04184
1		0.037.007	•••	0.002701	0.0.120.1
4		-0.097607	•••	-0.081764	-0.04184
1					
	brand_Nissan	brand_OpelCorsa	brand_Renault	brand_Skoda	brand_Tata
\					
0	-0.126412	-0.026449	-0.182277	-0.120578	-0.312138
1	-0.126412	-0.026449	-0.182277	-0.120578	-0.312138
2	-0.126412	-0.026449	-0.182277	-0.120578	-0.312138
3	-0.126412	-0.026449	-0.182277	-0.120578	-0.312138
4	-0.126412	-0.026449	-0.182277	-0.120578	-0.312138
	brand_Toyota	brand_Volkswagen	brand_Volvo		
0	-0.221671	-0.166307	-0.037418		
1	-0.221671	-0.166307	-0.037418		
2	-0.221671	-0.166307	-0.037418		
3	-0.221671				
4	-0.221671	-0.166307			

[5 rows x 46 columns]

In [58]: x_train_df.describe().round(2)

Out[58]:

		year	km_driven	fuel_CNG	fuel_Diesel	fuel_Electric	fuel_LPG	fuel_Petrol	seller_t
-	count	2861.00	2861.00	2861.00	2861.0	2861.0	2861.00	2861.00	
	mean	-0.00	0.00	-0.00	0.0	0.0	0.00	0.00	
	std	1.00	1.00	1.00	1.0	0.0	1.00	1.00	
	min	-4.98	-1.47	-0.10	-1.0	0.0	-0.08	-0.96	
	25%	-0.71	-0.70	-0.10	-1.0	0.0	-0.08	-0.96	
	50%	0.00	-0.17	-0.10	1.0	0.0	-0.08	-0.96	
	75%	0.71	0.45	-0.10	1.0	0.0	-0.08	1.04	
	max	1.66	15.75	9.55	1.0	0.0	12.57	1.04	

8 rows × 46 columns

Model Evaluation

In [89]: from sklearn.metrics import *

```
In [90]:
         def model_eval(x_train,x_test,y_train,y_test,model,mname):
              model.fit(x_train,y_train)
              ypred=model.predict(x_test)
              mae=mean_absolute_error(y_test,ypred)
              mse=mean_squared_error(y_test,ypred)
              rmse=np.sqrt(mse)
              train_scr=model.score(x_train,y_train)
              test_scr=model.score(x_test,y_test)
              res=pd.DataFrame({"Train_scr":train_scr,"Test_scr":test_scr,'RMSE':rmse,
                               "MAE":mae},index=[mname])
              return res
          def mscore(model):
              train_scr=model.score(x_train,y_train)
              test_scr=model.score(x_test,y_test)
              print("Training Score", train_scr)
              print("Testing Score",test_scr)
In [91]: from sklearn.model_selection import train_test_split
          from sklearn.preprocessing import StandardScaler
In [92]:
         x.head()
Out[92]:
             year km_driven fuel_CNG fuel_Diesel fuel_Electric fuel_LPG fuel_Petrol seller_type_De
          0 2007
                      70000
                                   0
                                             0
                                                        0
                                                                 0
          1 2007
                      50000
                                   0
                                             0
                                                        0
                                                                 0
                                                                            1
          2 2012
                     100000
                                   0
                                             1
                                                        0
                                                                            0
          3 2017
                                   0
                                             0
                                                        0
                                                                            1
                      46000
                                                                 0
          4 2014
                     141000
                                   0
                                             1
                                                        n
                                                                            0
          5 rows × 46 columns
In [93]:
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25,random_sta
          print(x_train.shape)
          print(x test.shape)
          print(y_train.shape)
          print(y_test.shape)
          (2682, 46)
          (895, 46)
          (2682,)
          (895,)
```

```
print(x.columns)
In [94]:
          Index(['year', 'km_driven', 'fuel_CNG', 'fuel_Diesel', 'fuel_Electric',
                   fuel_LPG', 'fuel_Petrol', 'seller_type_Dealer'
                  'seller_type_Individual', 'seller_type_Trustmark Dealer', 'transmission_Automatic', 'transmission_Manual', 'owner_First Owne
          r',
                   'owner_Fourth & Above Owner', 'owner_Second Owner',
                   'owner_Test Drive Car', 'owner_Third Owner', 'brand_Ambassador',
                  'brand_Audi', 'brand_BMW', 'brand_Chevrolet', 'brand_Daewoo', 'brand_Datsun', 'brand_Fiat', 'brand_Force', 'brand_Ford',
                  'brand_Honda', 'brand_Hyundai', 'brand_Isuzu', 'brand_Jaguar',
                   'brand_Jeep', 'brand_Kia', 'brand_Land', 'brand_MG', 'brand_Mahindr
          a',
                   'brand_Maruti', 'brand_Mercedes-Benz', 'brand_Mitsubishi',
                  'brand_Nissan', 'brand_OpelCorsa', 'brand_Renault', 'brand_Skoda',
                   'brand_Tata', 'brand_Toyota', 'brand_Volkswagen', 'brand_Volvo'],
                 dtype='object')
          from sklearn.linear_model import LinearRegression,Lasso,Ridge
          from sklearn.tree import DecisionTreeRegressor
          from sklearn.ensemble import RandomForestRegressor,BaggingRegressor,AdaBoost
          from sklearn.neighbors import KNeighborsRegressor
```

linear Regression

```
In [96]: lg=LinearRegression()
lg_res=model_eval(x_train,x_test,y_train,y_test,lg,"Linear")
lg_res
Out[96]:
```

 Train_scr
 Test_scr
 RMSE
 MSE
 MAE

 Linear
 0.640987
 0.625082
 277079.445306
 7.677302e+10
 173418.33341

Ridge Regression

```
In [97]: rd=Ridge(0.75)
rd_res=model_eval(x_train,x_test,y_train,y_test,rd,"Ridge")
rd_res
```

Out[97]:

 Train_scr
 Test_scr
 RMSE
 MSE
 MAE

 Ridge
 0.639284
 0.627576
 276156.305652
 7.626231e+10
 173932.885676

Lasso

```
In [98]: ls=Lasso(alpha=0.8)
ls_res=model_eval(x_train,x_test,y_train,y_test,rd,"Lasso")
ls_res
```

Out[98]:

	Train_scr	Test_scr	RMSE	MSE	MAE
Lasso	0.639284	0.627576	276156.305652	7.626231e+10	173932.885676

DecisionTreeRegressor

```
In [99]: dt=DecisionTreeRegressor(max_depth=10,min_samples_split=10,random_state=40)
    dt_res=model_eval(x_train,x_test,y_train,y_test,dt,"Decision Tree")
    dt_res
```

Out[99]:

	Train_scr	Test_scr	RMSE	MSE	MAE
Decision Tree	0.759999	0.583758	291950.481368	8.523508e+10	160529.58527

BaggingRegressor for Decision Tree

```
In [115]: # Create the BaggingRegressor
bg1 = BaggingRegressor(n_estimators=100, base_estimator=dt, max_features=x_t
# Fit the model
bg1.fit(x_train, y_train)

# Make predictions
predictions = bg1.predict(x_test)
bag1_res=model_eval(x_train,x_test,y_train,y_test,dt,"Bagging for DT")
bag1_res
```

Out[115]:

```
        Train_scr
        Test_scr
        RMSE
        MSE
        MAE

        Bagging for DT
        0.759999
        0.583758
        291950.481368
        8.523508e+10
        160529.58527
```

AdaBoostRegressor for DEcision Tree

```
In [102]: adboost1=AdaBoostRegressor(n_estimators=45)
ada1_res=model_eval(x_train,x_test,y_train,y_test,dt,"AddaBoost for DT")
ada1_res
```

Out[102]:

	Train_scr	Test_scr	RMSE	MSE	MAE
AddaBoost for DT	0.759999	0.583758	291950.481368	8.523508e+10	160529.58527

RandomForestRegressor

```
In [103]: rf=RandomForestRegressor(n_estimators=60,max_depth=14,min_samples_split=7)
    rf_res=model_eval(x_train,x_test,y_train,y_test,dt,"Random Forest")
    rf_res
```

Out[103]:

	Train_scr	Test_scr	RMSE	MSE	MAE
Random Forest	0.759999	0.583758	291950.481368	8.523508e+10	160529.58527

BaggingRegressor for RandomForestRegressor

```
In [116]: # Create a RandomForestRegressor directly
    rf = RandomForestRegressor(n_estimators=80, max_features=x_train.shape[1], r

# Fit the model
    rf.fit(x_train, y_train)

# Make predictions
    predictions = rf.predict(x_test)
    bag2_res=model_eval(x_train,x_test,y_train,y_test,dt,"Bagging for RF")
    bag2_res
```

Out[116]:

	Train_scr	Test_scr	RMSE	MSE	MAE
Bagging for RF	0.759999	0.583758	291950.481368	8.523508e+10	160529.58527

AdaBoostRegressor for RandomForestRegressor

```
In [106]: adaboost2=AdaBoostRegressor(n_estimators=120)
    ada2_res=model_eval(x_train,x_test,y_train,y_test,rf,"AdaBoost for RF")
    ada2_res
```

Out[106]:

	Train_scr	Test_scr	RMSE	MSE	MAE
AdaBoost for RF	0.856569	0.732001	234262.707443	5.487902e+10	138771.396774

KNeighborsRegressor

```
In [107]: Knn1=KNeighborsRegressor(n_neighbors=5)
knn1_res=model_eval(x_train,x_test,y_train,y_test,Knn1,"KNeighbours")
knn1_res
```

Out[107]:

	Train_scr	Test_scr	RMSE	MSE	MAE
KNeighbours	0.429181	0.004778	451436.032237	2.037945e+11	249125.330503

```
In [108]: def optimal_K():
    k = list(range(3,40,2)) # k= 3,5,7,9....,35,37,39
    acc = []
    for i in range(len(k)):
        knn_model = KNeighborsRegressor(n_neighbors=k[i])
        knn_model.fit(x_train,y_train)
        acc.append(knn_model.score(x_test,y_test))
    print('Accuracy\n',acc)
    plt.plot(k,acc,color='maroon',marker='o')
    plt.xlabel('Num of Nearest Nerighbors')
    plt.ylabel('Test accuarcy')
    plt.grid()
    plt.show()
```

In [109]: optimal_K()

Accuracy

[-0.0027976510246443542, 0.004778188410675233, 0.07757046668527001, 0.105 35116054475568, 0.11875875125184099, 0.1238196002215517, 0.155077074239280 3, 0.15082602948093904, 0.14883914387539754, 0.15088802298234916, 0.152699 7322771103, 0.1488271234223285, 0.14712155149288997, 0.14601567374480295, 0.14622468858640614, 0.1480448528319832, 0.15109342451752694, 0.1511501211 8580518, 0.15016118627837216]

BaggingRegressor for KNeighborsRegressor

In [111]: bag3=BaggingRegressor(n_estimators=25)
bag3_res=model_eval(x_train,x_test,y_train,y_test,Knn1,"Bagging for KN")
bag3_res

Out[111]:

 Train_scr
 Test_scr
 RMSE
 MSE
 MAE

 Bagging for KN
 0.429181
 0.004778
 451436.032237
 2.037945e+11
 249125.330503

AdaBoostRegressor for KNeighborsRegressor

In [112]: adaboost3=AdaBoostRegressor(n_estimators=70)
 ada3_res=model_eval(x_train,x_test,y_train,y_test,Knn1,"AdaBoost for KN")
 ada3_res.round(5)

Out[112]:

 Train_scr
 Test_scr
 RMSE
 MSE
 MAE

 AdaBoost for KN
 0.42918
 0.00478
 451436.03224
 2.037945e+11
 249125.3305

Out[117]:

	Train_scr	Test_scr	RMSE	MSE	MAE
Linear	0.641	0.625	277079.445	7.677302e+10	173418.333
Ridge	0.639	0.628	276156.306	7.626231e+10	173932.886
Lasso	0.639	0.628	276156.306	7.626231e+10	173932.886
Decision Tree	0.760	0.584	291950.481	8.523508e+10	160529.585
Bagging for DT	0.760	0.584	291950.481	8.523508e+10	160529.585
AddaBoost for DT	0.760	0.584	291950.481	8.523508e+10	160529.585
Random Forest	0.760	0.584	291950.481	8.523508e+10	160529.585
Bagging for RF	0.760	0.584	291950.481	8.523508e+10	160529.585
AdaBoost for RF	0.857	0.732	234262.707	5.487902e+10	138771.397
KNeighbours	0.429	0.005	451436.032	2.037945e+11	249125.331
Bagging for KN	0.429	0.005	451436.032	2.037945e+11	249125.331
AdaBoost for KN	0.429	0.005	451436.032	2.037945e+11	249125.331

Hyper Parameter Tunning

```
In [ ]: from sklearn.model_selection import GridSearchCV
In [*]:
        # Define the hyperparameter grid to search
        param_grid = {
            'n_estimators': [50, 100, 200],
            'max_depth': [ 10,15,20],
            'min_samples_split': [2, 5, 10,15],
            'min_samples_leaf': [1, 2, 4]
        }
        # Create the GridSearchCV object
        grid_search = GridSearchCV(rf, param_grid, cv=5)
        # Fit the grid search to the data
        grid_search.fit(x_train, y_train)
        # Print the best hyperparameters
        print("Best hyperparameters found:")
        print(grid_search.best_params_)
        # Evaluate the model with the best hyperparameters on the test set
        best rf model = grid search.best estimator
        accuracy = best_rf_model.score(x_test, y_test)
        print(f"Accuracy on the test set: {accuracy:.2f}")
In [*]: rf1=RandomForestRegressor(n_estimators=200,max_depth=15,min_samples_split=5,
        rf_res=model_eval(x_train,x_test,y_train,y_test,rf1,"Random Forest")
        rf_res
In [ ]: bg4=BaggingRegressor(n_estimators=200,estimator=rf1,max_features=x_train.sha
                                max_samples=x_train.shape[0])
        bag1_res=model_eval(x_train,x_test,y_train,y_test,rf1,"Bagging for Rf")
        bag1_res
In [ ]: | add5=BaggingRegressor(n_estimators=100,estimator=rf1)
        bag1 res=model eval(x train,x test,y train,y test,rf1,"adda for rf")
        bag1_res
        ## Choosing the Best model
In [ ]: import pickle
In [ ]: final_model=RandomForestRegressor(n_estimators=200,max_depth=15,min_samples_
        final model.fit(x train,y train)
In [ ]: | pickle.dump(final model,open('final.pkl','wb'))
```

Analysing data in Details for Web Devolp

```
In [ ]: df2=pd.read_csv(r'C:\Users\hp\Downloads\CAR DETAILS (1).csv')
        df2.head()
In [ ]: brand=set(brand)
        print(brand)
In [ ]: |fuel=set(df2['fuel'])
        fuel
In [ ]:
        car_name=list(df2['name'])
        #print(car_names)
        print(len(car_names))
In [ ]: brand, model, sub_class=[],[],[]
        for car in car_name:
            parts=car.split()
            x=parts[0]
            y=parts[1]
            z=parts[2:]
            brand.append(x)
            model.append(y)
            sub_class.append(z)
        print(len(brand))
        print(len(model))
        print(len(sub_class))
In [ ]: sub_class=[' '.join(map(str, item)) for item in sub_class]
In [ ]: df2['brand1']=brand
        df2['model1']=model
        df2.head()
In [ ]: df2.columns
In [ ]: | seller type=set(df2['seller type'])
        seller_type
In [ ]: transmission=set(df2['transmission'])
        transmission
In [ ]: owner=set(df2['owner'])
        owner
In [ ]: model=set(df2['model1'])
        print(model)
```