Particle spectrograph

Wave operator and propagator

	$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{\#2}{}_{lphaeta}$	$f_1^{\#1}$	$\omega_{1^{-}\alpha}^{\#1}$	$\omega_{1^{-}\alpha}^{\#2}$	$f_{1^-}^{\#1}$	$f_{1^-}^{\#2} \alpha$
$\omega_1^{\#1} + \alpha \beta$	$\frac{2t_2}{3}$	$\frac{\sqrt{2}t_2}{3}$	$\frac{1}{3}$ i $\sqrt{2}$ kt ₂	0	0	0	0
$\omega_1^{\#2} + \alpha \beta$	$\frac{\sqrt{2} t_2}{3}$	2 2	<u>ikt2</u> 3	0	0	0	0
$f_{1}^{#1} + \alpha \beta$	$-\frac{1}{3}$ i $\sqrt{2}$ kt ₂	$-\frac{1}{3}\bar{l}kt_2$	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	0	0	0	$\frac{1}{6} \left(-9 k^2 r_3 + 4 t_3 \right)$	$-\frac{\sqrt{2}t_3}{3}$	0	$-\frac{2}{3}ikt_3$
$\omega_1^{\#2} +^{lpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	13 3	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$f_{1}^{\#1} +^{\alpha}$	0	0	0	0	0	0	0
$f_1^{\#2} + \alpha$	0	0	0	2 i k t 3 3	$\left -\frac{1}{3} \tilde{l} \sqrt{2} k t_3 \right $	t ₃ 0	$\frac{2k^2t_3}{3}$
Source	Source constraints/dauge generators	nande d	enerators	$\omega_{2}^{\#1}$	$\omega_{2}^{\#1}_{+lphaeta}f_{2}^{\#1}_{+lphaeta}\omega_{2}^{\#1}$	$^{*1}_{2^-}$ $^{aeta\chi}$	
SO(3) irreps	reps	Multip	Multiplicities	$\omega_{2}^{#1} + \alpha \beta - \frac{3k^2 r_3}{r_3}$	0	0	
$\tau_{0}^{\#2} == 0$		Н		_	C	С	
$ au_0^{\#1} - 2 i$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	1) (
$L_{1}^{*2\alpha} + L_{1}^{*3}$	$t_1^{\#2}\alpha + 2ik \ \sigma_1^{\#2}\alpha == 0$	3			>	>	

	Multiplicities 1	ities	$\omega_2^{*+} + \alpha \beta$ $f_2^{*+} + \alpha \beta$	2 2 0	eo.I	0
$i k \sigma_{0+}^{\#1} == 0$ 1			$\omega_2^{*1} + \alpha \beta \chi$	0		0
) 			•	$\sigma_{2}^{\#1}{}_{lphaeta}$		$\tau_{2}^{\#1}_{\alpha\beta} \ \sigma_{2}^{\#1}_{\alpha\beta}$
$+ik \sigma_{1}^{\#1}\alpha\beta == 0$			$\sigma_{2}^{\#1} + \alpha^{eta}$	$-\frac{2}{3k^2r_3}$		0
$\sigma_{1}^{\#2}\alpha\beta$ 3			$\tau_{2}^{\#1} + \alpha^{\beta}$	0		0
2			$\sigma_{2}^{*1} +^{lphaeta\chi}$	0		0
5						
 Total constraints: 24						
$\tau_0^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_{0^{\text{-}}}^{\#1}$		$\omega_{0}^{\#1}$,	$f_{0}^{\#1}$
$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0			- <u> </u>	$-i\sqrt{2}kt_3$
$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0	f#+ †	$\sqrt{2} kt_3$	7	$\begin{array}{c} 2 k^2 t_3 \\ 0 \end{array}$
0	0	0	$\omega_{0^-}^{\#1} +$	0		0
0	0	$\frac{1}{k^2 r_2 + t_2}$	J	-		

0

0

0

Massive and massless spectra

? Massive particle Pole residue:
$$-\frac{1}{r_2} > 0$$
 Polarisations: 1 Square mass: $-\frac{t_2}{r_2} > 0$ Spin: 0 Parity: Odd

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$