香港 寿 試 哥

HONG KONG EXAMINATIONS AUTHORITY

一九八四年香港中華會考

HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1984

WED: WATHEMATICS (FAFER 1) MARKING SCHEME

This is a restricted document.

It is meant for use by markers of this paper for marking purposes only.

Reproduction in any form is strictly prohibited.

9 香港市民局 吴雪坂·亳 Hong Kong Examinations Authority All Rights Reserved 1984

ni sagan menganan dalam da Galagai da da

RESTRICTED 內部文件

3.ಕ. ಎಕ ಡುಗಾ

THS I SOLUTION

SOLUTIONS	MARKS	REMARKS
1. (a) $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$	į	3 7 7
$= (-\vec{1} - \vec{j}) - (3\vec{1} - 2\vec{j})$		
$= -4\vec{1} + 3\vec{j}$	JIA	P
The unit vector = $\frac{-4\frac{1}{1} + 3\frac{1}{1}}{(-4)^2 + 3^2}$	1M	! A Method to find unit vector
$=-\frac{4}{5}\frac{1}{1}+\frac{3}{5}\frac{1}{5}$	lA	
(b) $\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$	1	$\frac{\text{Alternatively:}}{\overrightarrow{OP}} = \overrightarrow{mb}_{,+} + (1-m)\overrightarrow{a}$
$= \overline{OA} + m \overline{AB}^{2}$	LM	= m(-i+j) + (1-m)(3i-2j)
= (3i - 2j) + (-4mi + 3mj)		= $(3-4m)^{\frac{1}{1}} + (3m-2)^{\frac{1}{2}}$ 1
$= (3 - 4m)\vec{i} + (3m - 2)\vec{j}$	1.A	
	7	
2. $S = 4 \text{ m } r^2$, $V = \frac{4}{3} \text{ m } r^3$		
$\frac{dS}{dz} = \frac{dS}{dr} \cdot \frac{dr}{dz} = 8\pi r \cdot \frac{dr}{dz}$	IA+IA	
$\therefore 300 \text{ m} \frac{dx}{dt} = 3$	1M	Equate $\frac{dS}{dT} = 3$
At $S = 36 \pi$, $r = 3$	1.4	
$\frac{dr}{dt} = \frac{3}{8 \pi r} = \frac{1}{3\pi}$ $\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt}$	lA	
$= 4 \pi r^2 \cdot \frac{dr}{dt}$	IA	
At $S = 36\pi$, $\frac{dV}{d\tau} = 36\pi \cdot \frac{1}{3\pi}$	1M	Sub for r
= 12		
The volume is increasing at a rate of 12 cm ³ /s	1A	
A 3 m	, 3	
Alternatively $S = 4\pi r^2$		
$\bar{v} = \frac{4}{3} \bar{\pi} r^3 = \frac{4}{3} \bar{\pi} . \left(\frac{s}{\sqrt{s}} \right)^{\frac{3}{2}}$	224.0	227
		lM for attempt to eliminate
$\frac{dV}{dz} = \frac{dV}{dS} \cdot \frac{dS}{dz}$ $= \frac{4}{3}\pi \cdot \left(\frac{1}{4\pi}\right)^{\frac{1}{2}} \cdot \frac{3}{2}S^{\frac{1}{2}} \cdot \frac{dS}{dz}$	1	• .
$= \frac{3\pi}{3\pi} \cdot (\frac{4\pi}{4\pi})^2 \cdot \frac{2}{2} \cdot \frac{3}{4\pi}$ $= \frac{4}{3\pi} (\frac{1}{4\pi})^{\frac{1}{2}} \cdot \frac{3}{2} (36\pi)^{\frac{1}{2}} \cdot 3$	IA lM+iA	1V === 4S
$= \frac{3}{3} \ln \left(\frac{4}{4} \frac{\pi}{\pi} \right)^{2} \cdot \frac{2}{2} \left(\frac{36\pi}{36\pi} \right)^{2} \cdot \frac{3}{5}$ $= 12$		IM for sub $S = 36\pi$, $\frac{dS}{dt} = 8$
The volume is increasing at a rate of 12 cm ³ /s	iA	
rue vorume is increasing at a race or 14 cm ⁻ /s	1A	

SOLUTIONS	MARKS	REMARKS
(a) $z = (1 - 2i)^{5}$	-	
$= 1 + 5(-2i) + 10(-2i)^{2} + 10(-2i)^{3}$	1A	•
$+ 5(-2i)^4 + (-2i)^5$		
= (1 - 40 + 80) + (-10 + 30 - 32)i		
= 41 + 38i	1A	
$(b) \frac{1}{z} = \frac{1}{41 + 381}$		
$= \frac{1}{(41)^2 + (38)^2} (41 - 38i)$	IM	Rationalisation
$Re(\frac{1}{2}) = \frac{41}{41^2 + 38^2}$	lA	
$= \frac{41}{3125} (= 0.013)$		
$Re(z + \frac{1}{z}) = 41 + \frac{41}{3125}$	1M	$\operatorname{Re}(z + \frac{1}{z}) = \operatorname{Re}(z) + \operatorname{Re}(\frac{1}{z})$
		This step may be emitted in correct answer is directly given.
= 41 (correct to the nearest integer)	1.4	
:	5	
i		
r		
		•
		•

RESTRICTED MIXA

SOLUTIONS	MARKS	REMARKS
4. 2 x - 1		
-2 \ 2 \x\ - 1 \ 2	1A+1A	·
-1 \ 2 x \ 3		
$-\frac{1}{2} \leqslant \mathbf{x} \leqslant \frac{3}{2} (\text{ or } \mathbf{x} \leqslant \frac{3}{2})$	1A	•
$\therefore \frac{3}{2} \leqslant \times \leqslant \frac{3}{2}$	1A+1A	-l if strict inequality ' < given in any line
	5	
Alternatively		
(i) Let $2 x -1\geqslant 0$, then $ x \geqslant \frac{1}{2}$		
i.e. $x \geqslant \frac{1}{2}$ or $x \leqslant -\frac{1}{2}$		
$ 2 x -1 \leqslant 2 \implies 2 x -1 \leqslant 2$		
$\Rightarrow x \leqslant \frac{3}{2}$		
$\Rightarrow -\frac{3}{2} \leqslant x \leqslant \frac{3}{2}$	1A	
Combining with the assumption,		
$\frac{1}{2} \leqslant \pi \leqslant \frac{3}{2} \text{ or } -\frac{3}{2} \leqslant \pi \leqslant -\frac{1}{2}.$	là.	
(ii) Let $2 x -1 < 0$, then $ x < \frac{1}{2}$	'4	
i.e. $-\frac{1}{2} < x < \frac{1}{2}$.		-
$ 2 x -1 \leqslant 2 \implies 1-2 x \leqslant 2$		
$\Rightarrow -\frac{1}{2} \leqslant x $		
This is true for all x .	IA	
$x = \frac{1}{2} < x < \frac{1}{2}.$	1A	
Combining (i) and (ii),		
$-\frac{3}{2} \leqslant \kappa \leqslant \frac{3}{2}$	14	

RESTRICTED MEXIC

	SOLUTIONS	MARKS	REMARKS
5.	(a) $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$	i à	Alternatively:
	= $3^2 + 4(m^2 - m + 1)$ (sub $\frac{x + 3}{\times 3}$)	→ 1M+1M	$D = 4 + 4(m^2 - m + 1)$
	$= 4(m^2 - m \div 2)$.	: -	$= 4(m^2 - m + 2) \dots 18$
	= $4[(m-\frac{1}{2})^2+\frac{7}{4}]$ completing square	\rightarrow 1M+1A	> 0 because the
	> 0 . (♥ m ∈ ;R)		discriminant of $4(m^2-m+2) =$
			is negative andly
			coeff. of m ² is positive!M
			$(\prec, \beta$ are real & distinctlM
			Hence $(\alpha - \frac{1}{3})^2 > 01A$
) Since $(\alpha - \beta)^2$ is real, $ x - \beta = \sqrt{(\alpha - \beta)}$)2	·
	Minimum value of $ x - \beta $		
	is $\sqrt{7}$.	1M+1A	lM for $(m - \frac{1}{2})^2 = 0$
			-
	Let AP = x. Since AB = AC,		Alternatively:
			Lec PD = x .
	AD \perp BC and \angle SAD = \angle CAD = \ominus		$AD + BC$, $\angle BAD = \angle CAD = 9$
	$7E = 7F = x \sin \theta.$		$PE = PF = (h - x) \sin \theta$
	Product of distances $p = x^2 \sin^2 \theta \ (h - x)$	1111	$p = x(n - x)^2 \sin^2\theta$
	$\sin^2 \theta = \sin^2 \theta (2\pi h - 3\pi^2)$		$\frac{dp}{dx} = (h^2 - 4hx + 3x^2) \sin^2\theta$
	$= x\sin^2\theta \ (2h - 3x)$		$= (h-3x)(h-x)\sin^2\theta = 0$
	$\frac{dp}{dx} = 0 \iff x = 0 \text{ or } \frac{2}{3} \text{ a}$	1M±1A	$\frac{dp}{dx} = 0 \Rightarrow x = h \text{ or } \frac{1}{3}h$
	At $x = \frac{2}{3}h$, $\frac{dp}{dx}$ changes sign from +ve to)		Max. at $x = \frac{1}{3}h$
	-ve.)	1A	(working necessary)
	. p is a maximum at $x = \frac{2}{3}h$.		
		5	
	·		

RESTRICTED MEXA

From 2nd equation $\frac{4}{5r} = 1 \div m = 1 + k$) $5r = \frac{4}{5r}$ $1M+1A$ $k = 1$	/		· · · · · · · · · · · · · · · · · · ·	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SOLUTIONS	MARKS	REMARKS
$\Rightarrow \cos \theta = \frac{k - \alpha}{\sqrt{(\alpha^2 + 2\alpha + 2)(k^2 + 2k + 2)}}$ $\Rightarrow \cos \theta = \frac{k - \alpha}{\sqrt{(\alpha^2 + 2\alpha + 2)(k^2 + 2k + 2)}}$ $1A$ 8 $(b) (1) \overline{AE} = \frac{1}{5} (\overline{AP} + 4\overline{AD})$ $= \frac{1 + k}{5} \cdot \overline{2} + \frac{4}{5} \cdot \overline{3}$ $= r(\overline{1} + (1 + \alpha)\overline{3})$ $= r\overline{1} + r(1 + \alpha)\overline{3}$	7. (3		IM 1A	
$ = \frac{1+k}{5} \cdot \frac{1}{2} + \frac{4}{5} \cdot \frac{1}{3} $ $ = r(\frac{1}{3} - (1+\pi)\frac{7}{3}) $ $ = r\overline{1} + r(1+\pi)\frac{7}{3} $ $ = r$		$\Rightarrow \cos \theta = \frac{k - \pi}{\sqrt{(\pi^2 + 2\pi + 2)(k^2 + 2k + 2)}}$		<u> </u>
$= r(\overline{1} + (1+n)\overline{1})$ $= r\overline{1} + r(1+n)\overline{1}$ $(iii) \text{ If } \theta = 90^{\circ} \text{ , } \cos \theta = 0$ $\therefore k = m$ $\text{Equating } \overline{AE} \text{ in } (b)(i) \text{ and } (ii),$ $\frac{1+k}{5} = r , \frac{4}{5} = r(1+m).$ $\text{From 1st equation } 1+k=5r$ $\text{From 2nd equation } \frac{4}{5r} = 1+m=1+k$ $5r = \frac{4}{5r}$ $r^{2} = \frac{4}{25}$ $r = \frac{2}{5} \text{ (-ve root rejected)}$ $m = k = 1$ $1A$ $1A$ $1A$ $1A$ $1A$ $1A$ $1A$ 1	· (č	2		•
(iii) If $\theta = 90^\circ$, $\cos \theta = 0$ $\therefore k = m$ Equating \overrightarrow{AE} in (b)(i) and (ii), $\frac{1+k}{5} = r, \frac{4}{5} = r(1+m).$ From 1st equation $1+k=5r$ $\text{From 2nd equation } \frac{4}{5r} = 1+m=1+k$ $5r = \frac{4}{5r}$ $r^2 = \frac{4}{25}$ $r = \frac{2}{5}$ (-ve root rejected) $m = k = 1$ 1A Attempt to solve $r = \frac{2}{5}$ $1M+1A$ $+$ $1A$ $r = \frac{2}{5}$ $1M+1A$ $+$ $1A+1A$		= r(1+a))		
Equating \overrightarrow{AE} in (b)(i) and (ii), IM $\frac{1+k}{5} = r , \frac{4}{5} = r(1+m).$ From 1st equation $1+k=5r$ From 2nd equation $\frac{4}{5r} = 1+m=1+k$ $5r = \frac{4}{5r}$ $r^2 = \frac{4}{25}$ $r = \frac{2}{5}$ (-ve root rejected) $m = k = 1$ Attempt to solve $r = \frac{2}{5}$ $1M+1A$ $+$ $1A$ $m = 1$ $1A+1A$ $m = 1$ -1 for not rejects negative roots		(iii) If $\theta = 90^{\circ}$, $\cos \theta = 0$	lA	į
From 2nd equation $\frac{4}{5r} = 1 + m = 1 + k$) $5r = \frac{4}{5r}$ $r^2 = \frac{4}{25}$ $r = \frac{2}{5}$ $r = \frac{2}{5}$ $1M+1A$ $m = 1$ $1A+1A$ $m = 1$ $-1 \text{ for not rejects negative roots}$ $n = k = 1$		Equating \overrightarrow{AE} in (b)(i) and (ii),	IM	
1.2		From 2nd equation $\frac{4}{5r} = 1 \div m = 1 + k$) $5r = \frac{4}{5r}$) $r^2 = \frac{4}{25}$) $r = \frac{2}{5} \text{ (-ve root rejected)}$)	- +	Attempt to solve
			12	

RESTRICTED MIXI

	SOLUTIONS	MARKS	REMARKS
3. (a)	$f(\frac{1}{2}) = 5(\frac{1}{2})^2 - 5(\frac{1}{2}) - 6$	1	
	$\therefore \frac{5}{4} - \frac{5}{2} + c < 0$	là	
	Consider $5x^2 + bx + c = 0$ Discriminant = $b^2 - 20c$	1A	-
	$> 5^2 + 20(\frac{5}{4} + \frac{5}{2})$	1M	(sub. c)
	$= 5^2 + 105 + 25$		
	. = (5 ÷ 3) ² .	lM	
	Thus the discriminant is always positive	-	
	f(x) = 0 has two distinct real roots.	1A	
		6	
(5)	(i) $f(x) = 5x^2 + bx + c$		The omission of the factor 5
	$= 5(x - \infty)(x - \beta)$	2A	ωίμ not be penalised again.
	Since $\vec{z}(\frac{1}{2}) < 0$		
	$\left(\frac{1}{2} - \infty\right) \left(\frac{1}{2} - \beta\right) < 0$	IM	
	Δ either $\beta < \frac{1}{2} < 2$ or $\lambda < \frac{1}{2} < \beta$	LA	Accept " , "
	$since \times \langle \rangle$,		
		1.A	Explanation necessary
	Further $\times \beta = \frac{c}{5}$	1	
	$\therefore \ \cancel{\beta} > 0 \ \frac{(a \rightarrow b)}{(a \rightarrow b)}$	la	
	and $\propto > 0$ as $\beta > 0$	1A	
	$2.0 < 4 < \frac{1}{2} < 3$		
	-	8	
(p)	$(ii) \alpha - \frac{1}{2} = \beta - \frac{1}{2} $		
	$\Rightarrow \frac{1}{2} - \alpha = \hat{\beta} - \frac{1}{2}$	1A	
	$\Rightarrow \checkmark + \beta = 1$	1A	
	1. b = -5(× + β) •	1M —	- K+1 - 4 - 4 - 4.
	= -5	1 A	
	$\frac{3}{4} + \frac{5}{2} + c < 0 \implies c < \frac{3}{4}$	1M -	i garija Namara ka
	$\therefore 0 < z < \frac{5}{4}$	l A	en e
	<u> </u>	6	

RESTRICTED MINXH

/				
-		SOLUTION	MARKS	REMARKS
9.	(a)	$\begin{array}{ccc} (\mathbf{i}) & w^3 = 1 \\ \Rightarrow v^3 - 1 = 0 \end{array}$: -	
		$\Rightarrow w^{2} - 1 = 0$ $\Rightarrow (w - 1)(w^{2} + w + 1) = 0$ $\Rightarrow w^{2} + w + 1 = 0 \text{ since } w \neq 1$	l A l A	must mention $w \neq 1$
		(ii) $(w^2)^{3k+1} + w^{3k+1} + 1$:	
		$= (w^3)^{2k} \cdot w^2 + (w^3)^k w + 1$	1M	Factorise powers of w ³
٠		$= w^2 + w \div 1 = 0$	l A	
		$(w^2)^{3k+2} + w^{3k+2} + 1$		•
		$= (w^3)^{2k} \cdot w^4 + w^{3k}w^2 + 1$		
		$= w^4 + w^2 + 1$		
		$= w^2 + w \div 1 = 0$	1 A	
			6	
	(b)	$\left 1 - \overline{wz}\right ^{2} = \left(1 - \overline{wz}\right) \overline{\left(1 - \overline{wz}\right)}$	1	
		$= (1 - w\overline{z})(\frac{1}{\bullet} - \overline{w}z)$		
		= 1 → w2 − W2 ÷ wW22	ı	
		$= 1 - w\overline{z} - \overline{w}z + z\overline{z}$	IA	
		$ z - w ^2 = (z - w)(\overline{z - w})$	1	
		$= (z - w)(\overline{z} - \overline{w})$		
		≈ 22 - 2 2 - 2w + ww		
		$= z\overline{z} - z\overline{w} + \overline{z}w + 1$	1A	•
	<i>:</i> .	$ 1 - w\overline{z} = z - w $	1A	
			5	
	(c)	$\begin{vmatrix} 1 - w\overline{z} \end{vmatrix} = c$ $\Rightarrow z - w = c$	2	
		which is a circle with centre w and radius c	1A 1A	
		Let $w_1 = -\frac{1}{2} + \frac{\sqrt{3}}{2} i$ (= cis $\frac{2}{3}$ T)	1A	
		$w_2 = -\frac{1}{2} - \frac{\sqrt{3}}{2} i$ (= cis $-\frac{3}{2} \top$)	1A	
		2 2 2 2 2 2 1 7		
			3	Deduct 1 mark for ommision of each of the following
		$ z-\omega_1 =\frac{1}{2}$ $\left(\omega_1+\frac{1}{2}\right)$		features: (i) 2 circles in appropriate
		7		quadrants : (ii) radius = 1
				(iii) touching y-axis (iv) not cutting x-axis
		$ z-\omega_1 =\frac{1}{2}$ $\left(\omega_1-\frac{1}{2}\right)$	9	note (iii) ⇒ (ii)

	SOLUTIONS	MARKS	REMARKS
10. (a)	Get G be the pentre of the two		Alternacively:
	squares and BG bisects PQ at T		$PG = \frac{1}{2} \left(4x^2 + 4x^2 \right)^{\frac{1}{2}}$
	$BG = \frac{1}{2} \sqrt{AB^2 + 3C^2}$	1	$= \times \sqrt{2} \dots \dots$
	$=\frac{1}{2}\sqrt{3+3}$		$9E = \sqrt{2}(1 - x)1A$
	= 2	l A	$BP = \sqrt{BE^2 + PE^2}$
	3.3T = 2 - x	l.A.	$= \sqrt{4 - 4x - 2x^2} \dots 1A$
	The height of the pyramid		Height = $\sqrt{3P^2 - PG^2}$ 2
	$= \sqrt{BT^2 - TG^2}$	2	$= \sqrt{4 - 4x + 2x^2 - 2x^2}1A$
	$= \sqrt{(2 - x)^2 - x^2}$	iA	$= 2\sqrt{1-x}$
	$=$ $2\sqrt{1-x}$ metres		3
	Volume = $\frac{1}{3}$ base area K height		
	$V = \frac{1}{3} \times (2\pi)^2 \times 2 \sqrt{1-\kappa}$	1M	
	$=\frac{8}{3} \times^2 \sqrt{1-x}$	1 <u>2</u> 4	
		3	$\frac{1}{2\pi} = \frac{1}{2\pi} $
(5)	$\frac{47}{4x} = \frac{8}{3} \left(2x \sqrt{1 - x} - \frac{x^2}{2\sqrt{1 - x}} \right)$	111	
	•		
	$=\frac{4x(4-5x)}{3\sqrt{\frac{1}{b}-x}}$	lA	Follow if constant factor of V incorrect.
*	$\frac{dV}{dx} = 0 \text{iff} x = 0 \text{or} \frac{4}{5}$	1.4	
	. the stationary points are		
	$(0, 0), (\frac{4}{5}, \frac{128}{75\sqrt{5}})$	1A	Accept (0.3, 0.763)
	At $\kappa = 1$, $V = 0$, , , , , , , , , , , , , , , , , , , ,
	and the slope is infinite	là	
	\cdot Equation of tangent at $x = 1$ is	-	
	x - 1 = 0	1A	
	Equations of tangent at stationary points are $V = 0$, $V = 0.763$	1A+1A	
	1		I mark for slope at (0, 0), I mark for slope at (1, 0),
	(8.0) 0.737-7		I mark for range, I mark for maximum with
Gra	ph 5.5	4	coordinates labelled.
s f		12	
	The state of the s	;	
	•		

ADD MATHS I SOLUTION

	SOLUTIONS	MARKS	REMARKS
. (a)	$GP = h \sec \theta + (\frac{h}{\cos \theta})$, la	1
	28 = h tan 9	1 A	
	AP = 50 - h tan θ N = 2h sec θ + (50 - h tan θ) N=2CP+4P-	IM+LA	. //
		4	
(5)	If $h = 50$, $N = 100 \sec \theta + 50 - 50 \tan \theta$		
	$\frac{dN}{d\theta} = 2h \sec \theta \tan \theta - h \sec^2 \theta$	1.4	
	\approx 100 sec9 tan9 - 50 sec ² 9		† <u>/</u> ,
	$\frac{dN}{d\theta} = 0 \Rightarrow 50 \sec \theta (2 \tan \theta - \sec \theta) = 0$	1M	÷ >
	\Rightarrow 2tan θ - sec θ = 0		
	$\Rightarrow \sin \theta = \frac{1}{2}$	1.A	
	$\Rightarrow \theta = \frac{\pi}{6} (30^{\circ})$	İ	
	$\frac{d^2N}{d\theta^2} = 100(\sec^3\theta + \sec\theta\tan^2\theta - \sec^2\theta\tan\theta)$	IM	Compulators house falls
•	$= \frac{200}{\sqrt{3}} > 0 \text{at} 9 = \frac{7}{2}$	1.4 . 1.4	Compulsory, however, follow if omitted or wrong
	$\sqrt{3}$ is least at $\theta = \frac{\pi}{3}$.	2.24	
	The least transportation cost from 0 to \mathbb{A} in	5	
	$3 < 100 \times \frac{2}{13} - 50 - 50 \times \frac{1}{3}$		
	$= \$ 50(\frac{3+\sqrt{3}}{\sqrt{3}}) = 3 50(\sqrt{3}+1)$	ia.	
	43	7	
(c)	(i) As (0 ≤)9 ≤ 4 AC3	1	'. $AP = 50 - htan 9 \ge 0 \dots$
	tan θ ≤ tan 4 AC3	1A	$\tan \theta \leqslant \frac{50}{h} \dots$
	$= \frac{50}{h}$	1	h
	For $h > 50 \sqrt{3}$, tan $9 < \frac{1}{\sqrt{3}}$	la !	
	∴ 9 < 7	lA :	
	Hence $\frac{dN}{d\theta}$ = hsec θ (2tan θ - sec θ)		
	$= \frac{h}{\cos^2 \theta} (2\sin \theta - 1)$	ΞA	
	< 0 as $\sin \theta < \frac{1}{2}$	1A	
	(ii) If h = 200 *		
	then $h > 50 \sqrt{3}$	la	
	$\frac{dN}{dQ} < 0$		
	J.N decreases as 9 increases	- :	
	Goods should be transported directly from C to A by track for		
		. !	
	minimum cost.	la l	