Alice

Bob

$$A=g^a \ mood \ p$$

A, g, p

b

$$B = g^b \bmod p$$

 $K = B^a \mod p$

 $K = A^b \mod p$

- In modular arithmetic, a branch of number theory, a number g is a **primitive root modulo** n if every number a coprime to n is congruent to a power of g modulo n. That is, for every integer a coprime to n, there is an integer k such that $g^k \equiv a \pmod{n}$. Such k is called the **index** or **discrete logarithm** of a to the base g modulo n.
- In other words, g is a generator of the multiplicative group of integers modulo n.

The Diffie-Hellman algorithm depends for its effectiveness on the difficulty of computing discrete logarithms. Briefly, we can define the discrete logarithm in the following way. Recall from Chapter 8 that a primitive root of a prime number p as one whose powers modulo p generate all the integers from 1 to p-1. That is, if a is a primitive root of the prime number p, then the numbers

$$a \bmod p$$
, $a^2 \bmod p$, ..., $a^{p-1} \bmod p$

are distinct and consist of the integers from 1 through p-1 in some permutation. For any integer b and a primitive root a of prime number p, we can find a unique exponent i such that

$$b \equiv a^i \pmod{p}$$
 where $0 \le i \le (p-1)$

The exponent i is referred to as the **discrete logarithm** of b for the base a, mod p. We express this value as $dlog_{a,p}(b)$. See Chapter 8 for an extended discussion of discrete logarithms.

Asymmetric Encryption: RSA

- Choose two large prime numbers p & q
- Compute n=pq and z=(p-1)(q-1)
- Choose number e, less than n, which has no common factor (other than 1) with z
- Find number d, such that ed 1 is exactly divisible by z
- Keys are generated using n, d, e
 - Public key is (n,e)
 - Private key is (n, d)
- Encryption: $c = m^e \mod n$
 - m is plain text
 - c is cipher text
- Decryption: $m = c^d \mod n$
- Public key is shared and the private key is hidden

Asymmetric Encryption: RSA

- \bullet P=5 & q=7
- n=5*7=35 and z=(4)*(6) = 24
- \bullet e = 5
- \bullet d = 29, (29x5 = 1 mod 24)
- Keys generated are
 - Public key: (5, 35)
 - Private key is (29, 35)
- Encrypt the word love using $(c = m^e \mod n)$
 - Assume that the alphabets are between 1 & 26

Plain Text	Numeric Representation	m ^e	Cipher Text $(c = m^e \mod n)$	
1	12	248832	17	
О	15	759375	15	
V	22	5153632	22	
e	5	3125	10	

Asymmetric Encryption: RSA

- Decrypt the word love using $(m = c^d \mod n)$
 - d=29, n=35

Cipher Text	c ^d	$(\mathbf{m} = \mathbf{c}^{d} \bmod \mathbf{n})$	Plain Text
17	481968572106750915091411825223072000	12	1
15	12783403948858939111232757568359400	15	0
22	852643319086537701956194499721110000000	22	V
10	100000000000000000000000000000000000000	5	e