



SUPERVISED LEARNING IN R. REGRESSION

# Evaluating a model graphically

Nina Zumel and John Mount Win-Vector LLC



## Plotting Ground Truth vs. Predictions

#### A well fitting model



#### A poorly fitting model



- x = y line runs through center of points
- "line of perfect prediction"

- Points are all on one side of x = y line
- Systematic errors



#### The Residual Plot

#### A well fitting model



#### A poorly fitting model



- Residual: actual outcome prediction
- Good fit: no systematic errors

Systematic errors



#### The Gain Curve



Measures how well model sorts the outcome

- x-axis: houses in model-sorted order (decreasing)
- y-axis: fraction of total accumulated home sales

Wizard curve: perfect model



## Reading the Gain Curve



• GainCurvePlot(houseprices, "prediction", "price", "Home price model")





#### SUPERVISED LEARNING IN R. REGRESSION

# Let's practice!





SUPERVISED LEARNING IN R. REGRESSION

# Root Mean Squared Error (RMSE)

Nina Zumel and John Mount Win-Vector LLC



## What is Root Mean Squared Error (RMSE)?

$$RMSE = \sqrt{\overline{(pred-y)^2}}$$

where

- pred y: the error, or residuals vector
- $\overline{(pred-y)^2}$ : mean value of  $(pred-y)^2$



#### RMSE of the Home Sales Price Model

```
# Calculate error
> err <- houseprices$prediction - houseprices$price
```

- price: column of actual sale prices (in thousands)
- prediction: column of predicted sale prices (in thousands)



#### RMSE of the Home Sales Price Model

```
# Calculate error
> err <- houseprices$prediction - houseprices$price
# Square the error vector
> err2 <- err^2</pre>
```



#### RMSE of the Home Sales Price Model

```
# Calculate error
> err <- houseprices$prediction - houseprices$price

# Square the error vector
> err2 <- err^2

# Take the mean, and sqrt it
> (rmse <- sqrt(mean(err2)))
[1] 58.33908</pre>
```

•  $RMSE \approx 58.3$ 



## Is the RMSE Large or Small?

```
# Take the mean, and sqrt it
> (rmse <- sqrt(mean(err2)))
[1] 58.33908

# The standard deviation of the outcome
> (sdtemp <- sd(houseprices$price))
[1] 135.2694</pre>
```

- $RMSE \approx 58.3$
- $sd(price) \approx 135$





#### SUPERVISED LEARNING IN R. REGRESSION

# Let's practice!





#### SUPERVISED LEARNING IN R. REGRESSION

# R-Squared ( $R^2$ )

Nina Zumel and John Mount Win-Vector LLC



## What is $R^2$ ?

A measure of how well the model fits or explains the data

- A value between 0-1
  - near 1: model fits well
  - near 0: no better than guessing the average value

# Calculating $R^2$

 $R^2$  is the variance explained by the model.

$$R^2 = 1 - rac{RSS}{SS_{Tot}}$$

where

- $RSS = \sum (y prediction)^2$ 
  - Residual sum of squares (variance from model)
- $SS_{Tot} = \sum (y \overline{y})^2$ 
  - Total sum of squares (variance of data)



## Calculate $\mathbb{R}^2$ of the House Price Model: RSS

Calculate error

```
> err <- houseprices$prediction - houseprices$price
```

Square it and take the sum

```
> rss <- sum(err^2)
```

- price: column of actual sale prices (in thousands)
- pred: column of predicted sale prices (in thousands)
- $RSS \approx 136138$



# Calculate $R^2$ of the House Price Model: $SS_{Tot}$

Take the difference of prices from the mean price

```
> toterr <- houseprices$price - mean(houseprices$price)</pre>
```

Square it and take the sum

```
> sstot <- sum(toterr^2)</pre>
```

- $RSS \approx 136138$
- $SS_{Tot} \approx 713615$



## Calculate $R^2$ of the House Price Model

```
> (r_squared <- 1 - (rss/sstot) )
[1] 0.8092278
```

- $RSS \approx 136138$
- $SS_{Tot} \approx 713615$
- $R^2 \approx 0.809$



# Reading $R^2$ from the Model

For lm() models:

• From summary():

```
> summary(hmodel)
## ...
## Residual standard error: 60.66 on 37 degrees of freedom
## Multiple R-squared: 0.8092, Adjusted R-squared: 0.7989
## F-statistic: 78.47 on 2 and 37 DF, p-value: 4.893e-14
> summary(hmodel)$r.squared
[1] 0.8092278
```

• From glance():

```
> glance(hmodel)$r.squared
[1] 0.8092278
```

#### Correlation and $R^2$

```
> rho <- cor(houseprices$prediction, houseprices$price)
[1] 0.8995709
> rho^2
[1] 0.8092278
```

- $\rho = \text{cor(prediction, price)} = 0.8995709$
- $\rho^2 = 0.8092278 = R^2$
- True for models that minimize squared error:
  - Linear regression
  - GAM regression
  - Tree-based algorithms that minimize squared error
- True for training data: NOT true for future application data





#### SUPERVISED LEARNING IN R. REGRESSION

# Let's practice!





SUPERVISED LEARNING IN R: REGRESSION

# **Properly Training a Model**

Nina Zumel and John Mount Win-Vector, LLC



# Models can perform much better on training than they do on future data.



• Training  $R^2$ : 0.9; Test  $R^2$ : 0.15 -- **Overfit** 



# Test/Train Split



Recommended method when data is plentiful



# Example: Model Female Unemployment



• Train on 66 rows, test on 30 rows

### Model Performance: Train vs. Test



- Training: RMSE 0.71,  $R^2$  0.8
- Test: RMSE 0.93, R<sup>2</sup> 0.75





Preferred when data is not large enough to split off a test set















### Create a cross-validation plan

```
> library(vtreat)
> splitPlan <- kWayCrossValidation(nRows, nSplits, NULL, NULL)</pre>
```

- nRows: number of rows in the training data
- nSplits: number folds (partitions) in the cross-validation
  - e.g, nfolds = 3 for 3-way cross-validation
- remaining 2 arguments not needed here



### Create a cross-validation plan

```
> library(vtreat)
> splitPlan <- kWayCrossValidation(10, 3, NULL, NULL)</pre>
```

#### First fold (A and B to train, C to test)

```
> splitPlan[[1]]
## $train
## [1] 1 2 4 5 7 9 10
##
## $app
## [1] 3 6 8
```

#### Train on A and B, test on C, etc...

```
> split <- splitPlan[[1]]
> model <- lm(fmla, data = df[split$train,])
> df$pred.cv[split$app] <- predict(model, newdata = df[split$app,])</pre>
```



## Final Model





## Example: Unemployment Model

| Measure type     | RMSE      | $R^2$     |
|------------------|-----------|-----------|
| train            | 0.7082675 | 0.8029275 |
| test             | 0.9349416 | 0.7451896 |
| cross-validation | 0.8175714 | 0.7635331 |





#### SUPERVISED LEARNING IN R. REGRESSION

# Let's practice!