Руководство пользователя (документация) по использованию программного инструмента «Моделирование роботов»

Приложение было разработано Ротахиной А.А. в рамках технического проекта для выпускной квалификационной работы по теме «Программные средства для моделирования исполнительных подсистем манипуляционных роботов» на кафедре проблем управления РТУ МИРЭА в 2022–2023. За основу был взят и технически усовершенствован аналогичный программный комплекс, разработанный в 1993 году Тягуновым О.А. и Козловым Д.В.

В качестве среды разработки было использовано бесплатное кроссплатформенное программное обеспечение РуСharm. Приложение было реализовано на языке программирования Руthon при использовании доступных библиотек и модулей для конструирования интерфейса, моделирования уравнений кинематики и динамики роботов и визуализации результатов моделирования в зависимости от задаваемых пользователем параметров.

Содержание

Словарь терминов	3
Задачи приложения	
Обзор используемых библиотек	6
Структура интерфейса приложения	9
Общие назначения функций	11
Пример выполнения работы на программном комплексе	

Словарь терминов

Робот-Декарт — двухзвенный робот, имеющий степени подвижности поступательного типа, одно из его звеньев заканчивается схватом, в котором может располагаться груз. Звенья перемещаются по координатной плоскости, вдоль осей х и у.

Робот-Цилиндр — двухзвенный робот, первая степень подвижности которого вращательного типа, а вторая — поступательного. Одно звено вращается вокруг шарнира в горизонтальной плоскости, второе — совершает поступательное перемещение.

Робот-Скара — двухзвенный робот, имеющий степени подвижности вращательного типа. Оба звена робота соединены с шарниром и вращаются в горизонтальной плоскости.

Робот-Колер – двухзвенный робот, первая степень подвижности которого поступательного типа, а вторая – вращательного. Одно звено совершает поступательное перемещение, второе – вращается вокруг шарнира в горизонтальной плоскости.

Рабочая область – геометрическое пространство, где может располагаться рабочий орган манипулятора при всех возможных значениях обобщённых координат в степенях подвижности манипулятора.

Рабочий орган (схват) — устройство для захватывания и удержания объектов манипулирования, служащее для взаимодействия с объектами внешней среды и перемещающееся в пределах рабочей области.

Контур — моделируемое перемещение рабочего органа в пределах рабочей области, как правило, имеет вид замкнутой фигуры.

Позиционное движение (управление) – управление роботом, реализуемое за счёт перемещения рабочего органа робота от одной позиции/точки к другой.

Контурное движение (управление) — управление роботом, при котором задаётся вся траектория движения и скорости перемещения по осям, траектория может иметь вид прямой или окружности.

Json — текстовый формат обмена и передачи данных, в случае работы приложения представляет собой сохраняемый и загружаемый файл, в котором содержатся все настройки программного инструмента от выбранного типа робота или управления до значений циклограммы.

Циклограмма — прямоугольная матрица, в которой заданы последовательность моментов времени и соответствующие положения

обобщённых координат, моменты времени задаются в возрастающем порядке.

Обобщённые координаты – преобразованные декартовые координаты или параметры, необходимые для определения положения механической системы робота в пространстве, соответствуют числу степеней свободы манипулятора, для поступательных звеньев характеризуют перемещение в метрах, для вращательных – угол поворота в радианах.

Конструктивные параметры — физические характеристики манипулятора, определяющие массу, моменты инерции и длины его звеньев, необходимы для реализации уравнений динамики роботов.

Ограничения по координатам — минимальные и максимальные значения поступательных и вращательных звеньев, определяющие размерность рабочей области.

Параметры двигателей — набор физических характеристик приводов манипулятора, которые осуществляют управление поворотами соответствующих звеньев робота в горизонтальной плоскости, необходимы для реализации уравнений динамики роботов.

J – момент инерции ротора.

n – передаточный коэффициент редуктора.

Umax – максимальное напряжение двигателя.

Ки – коэффициент управления по напряжению.

Кq – коэффициент противо-ЭДС.

Параметры регуляторов — набор коэффициентов, состоящий из пропорционального, интегрального и дифференцирующего коэффициентов ПИД-регулятора, которые отвечают за отладку процесса регулирования позиции, скорости и ускорения перемещения рабочего органа и используются для обеспечения стабильного и точного процесса моделирования.

Вычислитель – вычислительное устройство, осуществляющее управление приводами манипулятора.

Разрядность — параметр, определяющий точность решения траекторных задач прямой и обратной задач кинематики.

Цикл обмена – такт выдачи уставок на вычислительное устройство.

Цикл управления — такт выдачи управляющих сигналов на преобразователь импульсов.

Постоянная экспоненциального фильтра — ограничение скоростных перегрузок механических узлов робота.

Задачи приложения

	Разработанное приложение позволяет решать следующие задачи
моде	лирования манипуляционных роботов и может быть использовано для:
	изучения систем управления роботов и манипуляторов, где
	рассматриваются вопросы построения рабочих областей
	манипулятора при заданных характеристиках звеньев (длины звеньев,
	диапазоны углов поворота);
	изучения законов изменения обобщённых координат и их
	производных для различных траекторий рабочего органа
	манипулятора;
	решения задач статической и динамической точности роботов при
	выбранной структуре системы управления.
	Пля выполномия посторноми и запом программий иметримеми
пто п	Для выполнения поставленных задач программный инструмент
_	оставляет следующие возможности:
	выбирать кинематическую схему манипулятора и задавать его
	параметры (конструктивные параметры и ограничения по
	координатам);
	строить рабочую область манипулятора в зависимости от выбранного
	типа робота (Декарт, Цилиндр, Скара, Колер);
	задавать параметры системы управления, то есть параметры
	двигателей и регуляторов, и вычислительного устройства;
	исследовать точность работы робота для различных режимов работы:
	позиционное и контурное.

Обзор используемых библиотек

Ключевыми библиотеками и программными расширениями языка программирования Python, лежащими в основе разработки структуры и функционала программного комплекса, являются **PyQt6**, **Numpy** и **MatPlotLib**.

- □ PyQt6 обширная библиотека и инструмент для реализации графического интерфейса приложения посредством добавления виджетов (окон, полей ввода).
- Numpy расширение языка Python, предполагающее работу с многомерными массивами, векторами и позволяющее выполнять математические операции высокого уровня.
- **MatPlotLib** универсальный и многогранный инструментарий для работы с визуализацией и построением графиков различной степени сложности. В случае работы над приложением, отвечает за построение рабочих областей и отрисовку перемещения схвата при позиционном и контурном управлении.

Библиотека **PyQt6** отвечает за реализацию интерфейса приложения посредством создания рабочих окон и наполнения их виджетами, то есть функциональными элементами. **PyQt6** оперирует тремя основными модулями **QtCore**, **QtGui**, **QtWidgets**.

QtCore – параметрический модуль, отвечающий за корректировку внутрипрограммных настроек каждого отдельного виджета. В контексте работы приложения позволяет выравнивать текстовые виджеты по центру.

 \mathbf{QtGui} — графический модуль, отвечающий за косметическую составляющую интерфейса, в нашем случае, иллюстрируя рабочие вкладки опознавательными ярлыками и выводя изображения кинематических схем роботов на экран. Более того данный модуль является связующим звеном между виджетами и внутрипрограммными функциями и работает по принципу: пользователь кликает на виджет \rightarrow класс $\mathbf{QAction}$ инициирует действие \rightarrow происходит вызов функции.

QtWidgets — модуль виджетов, являющейся основой всего приложения и реализующий его посредством классов. Класс **QApplication** формирует отдельное приложение, контролирует его запуск и завершение.

QMainWindow выводит стартовое окно, внутри которого классом **QWidget** распределяются элементы интерфейса — виджеты. **QGridLayout** условно представляет собой пространственную сетку, где для каждого виджета указывается порядок в виде номера ряда и столбца.

Из всего многообразия к задействованным виджетам относятся: □ **QPushButton** – командная кнопка для подтверждения действия. ■ QLabel – текстовый ярлык для краткого описания. □ **QCheckBox** – список с полями для выбора одного из предложенных вариантов. □ **QMenuBar** – меню внутри основного окна с рядом функциональных вкладок. ■ **QPixmap** – виджет с загруженным изображением. □ QDoubleSpinBox – поле для ввода и сохранения данных с регулируемыми ограничениями ввода. Библиотека **Numpy** отвечает за математические операции внутри приложения и работу с массивами данных. np.sin, np.cos, np.tg, np.pi – нахождение углов поворота звеньев, работа с обобщёнными координатами и прочие тригонометрические операции. □ **np.nan_to_num** – преобразование неопределённых значений с плавающей запятой для повышения точности расчётов и результатов моделирования. □ **np.linspace**, **np.arange** — генерация списков с общим шагом для упрощённого формата хранения и использования данных. □ **np.concatenate** – работа с массивами данных и их объединением для их использования при построении рабочей области.

Библиотека **MatPlotLib** отвечает за визуализацию результатов моделирования роботов, то есть за визуализацию рабочих областей и построение контура перемещения схвата при позиционном и контурном управлении.

■ MatPlotLib.pyplot, MatPlotLib.figure — визуализация окна с декартовой координатной сеткой и осями абсцисс и ординат.
■ MatPlotLib.animation — перемещение рабочего органа в режиме реального времени при позиционном в зависимости от моментов времени и контурном управлении.
■ MatPlotLib.patches — построение рабочих областей посредством объединения простых фигур в сложные.
■ MatPlotLib.path — выявление списков координат для построения составных частей составных частей сложной фигуры с целью их последующего объединения в одну область.

Структура интерфейса приложения

Интерфейс приложения можно разделить на пять частей в соответствии с задачами, которые каждая из них выполняет, и количеством основных рабочих вкладок.

«Справочная информация» – содержит информацию о
разработчиках, кинематические схемы роботов, краткое описание
комплекса.
«Сохранения» – содержит функции: создать новый файл, загрузить
существующий, сохранить и сохранить как, предполагает работу с
загрузкой и сохранением файлов json с настройками параметров и
текущего прогресса приложения.
«Режим работы» – позволяет выбрать тип робота и тип его
движения/управления, с которыми система работает в настоящий
момент, представляет собой два окна с полями для выбора
необходимого типа.
«Настройка параметров» – отвечает за настройку параметров
роботов, системы управления, вычислителя и движения, представляет
собой ряд окон с вводом данных.
«Расчёт» – отвечает за вызов окна с визуализацией рабочей области
и отрисовку движения рабочего органа в зависимости от типа робота
и его движения.

Наиболее подробный вариант структуры изображён на схеме ниже.

Общие назначения функций

み				1	
Шинкиии	вкпапки	\mathcal{U}	равочная	инмо	nmanuaw
Ф ункции	ымидин	\\CII	pabo inan	шщи	рмации

	definit(self) - функция инициализации класса для создания
	приложения, вызывает стартовое рабочее окно, добавляет меню-
	виджет с пятью основными вкладками и при помощи класса QAction
	соединяет их и их содержимое с последующими функциями.
	def show1_about_window(self, checked) – функция, вызывающая
	окно с краткой информацией о разработчиках.
	def show1_robot_img_window(self, checked) — функция, вызывающая
_	окно с изображением кинематической схемы манипуляционного
	робота, с которым система работает в данный момент.
	def show1_help_window(self, checked) — функция, отвечающая за
	вызов окна с полной справочной информацией.
	BBSSB skille e Hoshion enpage mon impopulation.
Функ	щии вкладки «Сохранения»
	def show2_new_window(self, checked) – функция, сбрасывающая весь
	прогресс и возвращающая систему к настройкам по умолчанию.
	def show2_load_window(self, checked) – функция, загружающая
	существующие файлы сохранения в формате json .
	def show2_save_window(self, checked) — функция, сохраняющая все
	произведённые пользователем изменения в уже существующий файл
	сохранения, если такового нет, создаёт его.
	def show2_saveas_window(self, checked) — функция, создающая
	новый файл сохранения с выбором его имени и директории хранения.
Функ	сции вкладки « Режим работы»
	def show2_new_window(self, checked) – функция, сбрасывающая весь
	прогресс и возвращающая систему к настройкам по умолчанию.
	def show2_load_window(self, checked) – функция, загружающая
	существующие файлы сохранения в формате json .
	def show2_save_window(self, checked) – функция, сохраняющая все
	произведённые пользователем изменения в уже существующий файл
	сохранения, если такового нет, создаёт его.
	def show2_saveas_window(self, checked) – функция, создающая

новый файл сохранения с выбором его имени и директории хранения.

Функции вкладки «**Настройка параметров**»

def show4_select_param_dec(self, checked) – вызов окна с виджетами для указания конструктивных параметров робота-Декарта.
def show4_change_param_dec(self, change, key) — вспомогательная к
предыдущей функция для перезаписи параметров в соответствии с индексом виджета.
def show4_select_coord_dec(self, checked) — вызов окна с виджетами для указания ограничений по координатам рабочей области робота-Декарта.
def show4_change_coord_dec(self, change, key) — вспомогательная к
предыдущей функция для перезаписи параметров в соответствии с индексом виджета.
def show4_select_param_cil(self, checked) — вызов окна с виджетами
для указания конструктивных параметров робота-Цилиндра.
def show4_change_param_cil(self, change, key) — вспомогательная к
предыдущей функция для перезаписи параметров в соответствии с индексом виджета.
def show4_select_coord_cil(self, checked) — вызов окна с виджетами для указания ограничений по координатам рабочей области робота- Цилиндра .
def show4_change_coord_cil(self, change, key) — вспомогательная к предыдущей функция для перезаписи параметров в соответствии с индексом виджета.
def show4_select_param_scr(self, checked) – вызов окна с виджетами
для указания конструктивных параметров робота-Скары.
def show4_change_param_scr(self, change, key) — вспомогательная к предыдущей функция для перезаписи параметров в соответствии с
индексом виджета.
def show4_select_coord_scr(self, checked) – вызов окна с виджетами для указания ограничений по координатам рабочей области робота-

	Скары.
	def show4_change_coord_scr(self, change, key) — вспомогательная к
	предыдущей функция для перезаписи параметров в соответствии с
	индексом виджета.
	defelored colors reverse colorelf checked)
	def show4_select_param_col(self, checked) — вызов окна с виджетами
	для указания конструктивных параметров робота-Колера.
	def show4_change_param_col(self, change, key) – вспомогательная к
	предыдущей функция для перезаписи параметров в соответствии с
_	индексом виджета.
	def show4_select_coord_col(self, checked) — вызов окна с виджетами
	для указания ограничений по координатам рабочей области робота-
	Колера.
	def show4_change_coord_col(self, change, key) — вспомогательная к
	предыдущей функция для перезаписи параметров в соответствии с
	индексом виджета.
	def show4_select_engine(self, checked) — вызов окна с виджетами для
	указания параметров двигателей (J, n, Umax, Ku, Kq).
	def show4_change_eng(self, change, key) — вспомогательная к
	предыдущей функция для перезаписи параметров в соответствии с
	индексом виджета.
	def show4_select_reg(self, checked) — вызов окна с виджетами для
	указания коэффициентов ПИД-регуляторов.
	def show4_change_reg(self, change, key) — вспомогательная к
	предыдущей функция для перезаписи параметров в соответствии с
	индексом виджета.
	def show4_select_calc(self, checked) — вызов окна с виджетами для
	параметров вычислителя.
	def show4_change_calc(self, change, key) — вспомогательная к
	предыдущей функция для перезаписи параметров в соответствии с
	индексом виджета.

	def show4_select_pos_move(self, checked) — вызов окна виджетами
	для заполнения циклограммы позиционного движения.
	def show4_get_pos_values(self, change) – вспомогательная к
	предыдущей функция для перезаписи параметров в соответствии с
	индексом виджета.
	def show4_select_cont_line(self, checked) — вызов окна виджетами для
	выбора и настройки траектории-прямой при контурном типе
	управления, содержит кнопку с вызовом окна с рабочей областью для
	размещения траектории внутри её границ.
	def show4_change_line(self, change, key) — вспомогательная к
	предыдущей функция для перезаписи параметров в соответствии с
	индексом виджета.
	def show4_select_cont_circle(self, checked) — вызов окна виджетами
	для выбора и настройки траектории-окружности при контурном типе
	управления, содержит кнопку с вызовом окна с рабочей областью для
	размещения траектории внутри её границ.
	def show4_change_circle(self, change, key) — вспомогательная к
	предыдущей функция для перезаписи параметров в соответствии с
	индексом виджета.
Фуні	кции вкладки «Расчёт»
	def show5_graph(self, with_graph=False) – масштабная функция,
	отвечающая за вызов окна с рабочей областью заданного типа робота
	(при with_graph=False) и построение пути перемещения рабочего
	органа (при with_graph=True). Внутри неё происходит расчёт
	размерности рабочих областей, реализация позиционного и контурного управления, выбор регулируется условными операторами
	if-elif в соответствии с системными параметрами, хранящимися в
	соответствующем словаре.
	def show5_anim_pos(self, i) – вспомогательная функция,
_	добавляющая на окно с рабочей областью анимацию отрисовки
	контура при позиционном управлении в режиме реального времени.
	def show5_anim_cont(self, i) – вспомогательная функция,
_	· · · · · · · · · · · · · · · · · · ·
	добавляющая на окно с рабочей областью анимацию отрисовки

Пример выполнения работы на программном комплексе

Для изучения особенностей и процесса моделирования при **позиционном** управлении требуется провести ряд экспериментов для каждого доступного типа роботов. Для каждого робота (Декарт, Цилиндр, Колер, Скара) необходимо будет подобрать такое соотношение параметров, чтобы получить:

- Наиболее быстрый вариант отрисовки контура, где точностью можно пренебречь.
- □ Наиболее точный вариант отрисовки контура, где скоростью можно пренебречь.
- □ Оптимальный вариант отрисовки контура, где конечный результат будет оптимизирован по времени и точности.

Последовательность действий при этом следующая:

□ Во вкладке **«Режим работы»** необходимо задать нужный тип робота и его движения.

□ Затем перейти к вкладке «**Настройка параметров**» и для выбранного типа робота задать **ограничения по координатам**.

□ Предварительно правильность построения рабочей области можно проверить во вкладках «Расчёт» → «Рабочая область».

□ Далее идёт настройка конструктивных параметров во вкладке с соответствующим названием, здесь указываются динамические характеристики заданного робота, при этом следует отметить, что длины звеньев влияют на построение границ рабочих областей некоторых роботов.

□ Также необходимо обратить внимание на настройку параметров системы управления. Для этого в одноимённой вкладке нужно определиться с параметрами регуляторов и двигателей. Параметры регуляторов определяются экспериментальным путём. Необходимо подобрать пропорциональный, интегральный и дифференцирующий коэффициенты таким образом, чтобы контур движения схвата вышел наиболее точным без растяжений и астатизма.

□ После первичного определения всех необходимых параметров следует перейти к заполнению циклограммы для реализации позиционного управления. В случае, если результат построения контура получится неудовлетворительным, всегда можно будет вернуться к соответствующей вкладке и перенастроить любой из присутствующих компонентов до тех пор, пока контур не будет соответствовать желаемому результату. Первый ряд предполагает указание моментов времени для соответствующих обобщенных координат, второй и третий – указание самих обобщенных координат.

□ По мере завершения этапа с подготовкой можно от вкладки «Настройка параметров» перейти к вкладке «Расчёт» и запустить процесс моделирования. При корректной настройке контур движения должен находиться внутри рабочей области

□ Значения **циклограммы**, а конкретно моменты времени, необходимо скорректировать таким образом, чтобы получить три различных результата построения контура перемещения рабочего органа. То есть **быстрый**, **точный** и **оптимизированный** по времени и точности.

В качестве дополнительного задания можно попробовать провести оптимизацию моделирования каждого из роботов в режиме контурного управления. В этом случае при построении контура согласно заданной траектории необходимо будет соблюсти баланс между скоростью и параметрами самого робота.

Настройка всех необходимых параметров Декарта, Цилиндра, Колера или Скары, а также в отдельности их звеньев выполняется во вкладке с соответствующим названием, а для выбора типа траектории необходимо будет обратиться к подвкладке «Движение», затем выбрать подпункт «Контурное», где пользователю будет предоставлен выбор между прямой и окружностью. В каждом из всплывающих окон содержатся параметры самого контура и задаётся скорость отрисовки. Важно учесть, что для работы с данным режимом заранее нужно изменить тип управления роботом. Для этого следует обратиться к вкладке «Режим работы» и изменить движение с позиционного на контурное.

Перед началом моделирования необходимо настроить траекторию таким образом, чтобы её пределы не выходили за границы рабочей области. Для прямой пользователь может задавать стартовую и конечную точку, а для окружности — её центр и радиус. Для большего удобства программный инструмент предоставляет возможность предпросмотра через нажатие кнопки «Показать» прямо внутри окна с параметрами. Результаты изменений будут выведены в отдельное окно, что будет полезно для последующих доработок.

Когда все предварительные настройки будут завершены, можно приступать к процессу моделирования через вкладку «Расчёт». Как в случае с позиционным управлением, отрисовка установленного контура будет происходить в режиме реального времени в соответствующем окне. В случае контурного управления результат будет считаться удовлетворительным, если контур будет наиболее близок к условленной траектории, не будет растягиваться и выходить за пределы рабочей области и будет оптимизирован по скорости. Ряд подобных экспериментов должен быть произведён для каждого из доступных типов роботов.

