Beyond Correlation

Causality & Counterfactual Reasoning

Tanmayee Narendra IBM Research

Obligatory Comic

Karl Pearson

- "Beyond such discarded fundamentals as 'matter' and 'force' lies still another fetish amidst the inscrutable arcana of modern science, namely, the category of cause and effect."
- He categorically denied the need for an independent concept of causal relation beyond correlation.

Why Causality?

An Example

Peters, Jonas, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations and learning algorithms. MIT press, 2017.

An Example

Peters, Jonas, Dominik Janzing, and Bernhard Schölkopf. *Elements of causal inference: foundations and learning algorithms*. MIT press, 2017.

Statistical Inference Paradigm

Pearl, Judea. Causality. Cambridge university press, 2009.

Causal Inference Paradigm

Pearl, Judea. Causality. Cambridge university press, 2009.

Questions a Causal Model must Answer

What if we see A?
(Observation)

What if we do A?

(Intervention)

What if we did things differently?

(Counterfactual)

Causal Model

Causal Graph Distribution

Intervention Distributions

Counterfactual

Causal Bayesian Network

$$P(X) = \prod_{i=1}^{n} P(X_i | Pa(X_i))$$
 where $Pa(X_i)$ stands for parents of X_i

Difference between BN and CBN

These two graphs entail the same probability distributions, but their causal interpretations are different.

Prediction

Would the pavement be slippery if we find the sprinkler off?

Pearl, Judea. Causality. Cambridge university press, 2009.

Intervention

Would the pavement be slippery if we make sure the sprinkler is on?

14

Structural Causal Models

- Each observed variable is a function of a subset of variables
- This subset corresponds to parents in the causal graph
- U_i are unknown variables which are jointly independent

- $X_1 := U_1$
- $X_2 := f_1(X_1, U_2)$
- $X_3 := f_1(X_1, U_3)$
- $X_4 := f_1(X_2, X_3, U_4)$
- $X_5 := f_1(X_4 U_5)$

Causal Bayesian Networks and Structural Causal Model (SCM) are canonically equivalent

Peters, Jonas, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations and learning algorithms. MIT press, 2017.

Learning Causal Models from Data

Probabilistic Approaches

- Score based methods Greedy Equivalence Search
- Conditional independence methods PC Algorithm, SGS Algorithm
- Information Geometry approaches

Parametric Approaches

- Linear Gaussian Acyclic Models (LinGAM)
- Additive Noise Models (ANM)
- Causal Additive Models (CAM)

Some Examples

Eye Disease

Consider a treatment for eye disease –

- For 99% of patients, the treatment works and the patient is cured (T = 1, B = 0)
 - If untreated, they turn blind in a day (B = 1)
- For the remaining 1%, if given the treatment, they turn blind in a day (T = 1, B = 1)
 - If untreated, they regain normal vision
- The category of a patient is controlled by a rare condition $(N_B = 1)$, that is unknown to the doctor

Assume the underlying SCM €-

- $T := N_T$
- $B := T \cdot N_B + (1 T) \cdot (1 N_B)$
- Now, imagine a patient with poor eyesight who goes blind after the treatment
- What would have happened if the doctor administered treatment T=0
- We need to compute do(T := 0).
- This is a counterfactual question

Eye Disease

- Underlying SCM ℂ −
 - $T := N_T$
 - $B := T \cdot NB + (1 T) \cdot (1 NB)$
- For the given patient, $N_B = 1$
- To answer the counterfactual, first update the distribution based on the observation
 - T := 1
 - $B := T \cdot 1 + (1 T) \cdot (1 1) = T$

- Now, calculate the effect of do(T := 0)
 - T := 0
 - B := T
 - Clearly, $P^{\mathfrak{C}|B=1,T=1;do(T:=0)}(B=0)=1$
 - The patient would have been cured if the doctor had not given him the treatment

Correlation and Causation

- Consider the SCM ℂ
 - $X_1 := N_1$
 - $Y := X_1 + N_Y$
 - $X_2 := Y + N_2$
- With N_1 , $N_Y \sim \mathcal{N}(0,1)$ and $N_2 \sim \mathcal{N}(0,0.1)$

 X_1 X_2

- If we are interested in predicting Y from X₁ and X₂ then, X₂ is a better predictor
- If we want to change Y however, interventions on X₂ are useless

Computational Advertisement

- Complex system with several ML components, and actors with varied interests
- Causal Modelling helps in design of the system, by making it principled and cheaper
- Will I get a higher click-through rate if I change my machine learning model for ad-placement?
- Changing the ad-placement algorithm is an intervention in the system
- Use the causal graph to track the consequences of these interventions

Bottou, Léon, et al. "Counterfactual reasoning and learning systems: The example of computational advertising." The Journal of Machine Learning Research 14.1 (2013): 3207-3260.

Exoplanet Search

- Removing systemic noise from observations of the Kepler space observatory
- New technique called Half-Sibling Regression

Advances in Causal Inference

- UCLA Judea Pearl
- CMU Peter Spirtes, Clark Glymour, Richard Scheines
- Harvard Donald Rubin
- ETH-Zurich Jonas Peters, Peter Buhlmann,
 Nicolai Meinshausen, Stefen Bauer
- MPI-Tubingen Dominik Janzing, Bernhard Scholkopf
- Others Joris Mooij, Patrik Hoyer and many others

Thank You

Tanmayee Narendra Software Engineer, IBM Research

n.tanmayee@gmail.com triptoes1.github.io