25. Теореми за крайните нараствания

Теорема на Рол

Теорема 1 (Рол)

Нека f(x) е непрекъсната в [a,b] и диференцируема в (a,b). Ако f(a)=f(b), то $\exists c \in (a,b): f'(c)=0$.

Геометрична интерпретация:

Върху графиката съществува точка, в която допирателната е хоризонтална.

Д-во на т-мата на Рол

Щом f(x) е непрекъсната в [a,b], то от т-мата на Вайерщрас $\implies f(x)$ има НГ и НМ ст.

Ако поне едната от тях се достига в т. $c \in (a, b)$, то тя непренно е точка на локален екстемум.

T-ма на Φ ерма \implies f'(c) = 0.

Ако, в противен случай, нито НГ, нито НМ ст. на f(x) не се достигат в точка от (a,b), то тогава това става в т. a или т. b. Но f(a)=f(b). Следователно

$$f_{\rm H\Gamma} = f_{\rm HM} \implies f(x) \equiv {\rm const}$$
 (1)

$$\implies f'(x) = 0 \quad \forall x \in (a, b). \tag{2}$$

Теорема/формула за крайните нараствания

Теорема 2 (Теорема за крайните нараствания, Лагранж)

Нека f(x) е непрекъсната в [a,b] и диференцируема в (a,b). Тогава $\exists c \in (a,b) : f(b) - f(a) = f'(c)(b-a)$ (формула за крайните нараствания).

Геометрична интерпретация:

 $\frac{f(b)-f(a)}{b-a}$ е ъгловият коефициент на правата през т. (a, f(a)) и (b, f(b)); f'(c) е ъгловият коефициент на допирателната към графиката в т. (c, f(c)).

Следствие (Теорема за крайните нараствания)

Нека f(x) е непрекъсната в [a,b] и диференцируема в (a,b). Нека $x_1,x_2\in [a,b]$ са произволни. Тогава $\exists \, c$ между x_1 и x_2 такова, че $f(x_2)-f(x_1)=f'(c)(x_2-x_1)$ (формула за крайните нараствания).

Д-во на т-мата за крайните нараствания

Ще сведем твърдението към т-мата на Рол.

Въвеждаме функцията $h(x) := f(x) - kx, x \in [a, b],$ като определяме константата k така, че h(a) = h(b).

Имаме

$$h(a) = h(b)$$
 r.e. $f(a) - ka = f(b) - kb \iff k = \frac{f(b) - f(a)}{b - a}$. (3)

Освен това очевидно, че щом f(x) е непрекъсната в [a,b] и диференцируема в (a,b), то и h(x) е такава.

Така h(x) удовлетворява предположенията на т-мата на Рол.

Прилагаме тази т-ма към h(x). Така получаваме, че

$$\exists c \in (a,b) : h'(c) = 0.$$

Пресмятаме, че h'(x) = f'(x) - k. Следователно f'(c) - k = 0, т.е. f'(c) = k. Предвид (3) последното дава точно твърдението на т-мата.

Обобщена теорема/формула за крайните нараствания

Теорема 2 (Обобщена теорема за крайните нараствания, Коши)

Нека f(x) и g(x) са непрекъснати в [a,b] и диференцируеми в (a,b). Нека $g'(x) \neq 0$ при $x \in (a,b)$. Тогава

 $\exists c \in (a,b): \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$ (обобщена формула за крайните нараствания).

Бележка 1

При направените предположения върху g(x), имаме, че $g(a) \neq g(b)$, защото в противен случай от т-мата на Рол, приложена към g(x), би следвало, че $\exists c \in (a,b) : g'(c) = 0$, което е в противоречие с направеното предположение, че $g'(x) \neq 0$ при $x \in (a,b)$.

Бележка 2

Т-ма 1 следва от Т-ма 2: прилагаме Т-ма 2 с g(x) := x.

Д-во на обобщената т-ма за крайните нараствания

Отново ще сведем твърдението към т-мата на Рол.

Въвеждаме функцията $h(x) := f(x) - kg(x), x \in [a, b],$ като определяме константата k така, че h(a) = h(b).

Имаме

$$h(a) = h(b) \text{ T.e. } f(a) - kg(a) = f(b) - kg(b)$$

$$\iff k[g(b) - g(a)] = f(b) - f(a) \overset{g(b) - g(a) \neq 0}{\iff} k = \frac{f(b) - f(a)}{g(b) - g(a)}. \quad (4)$$

Освен това очевидно, че щом f(x) и g(x) са непрекъснати в [a,b] и диференцируеми в (a,b), то и h(x) е такава.

Така h(x) удовлетворява предположенията на т-мата на Рол.

Прилагаме тази т-ма към h(x). Така получаваме, че

$$\exists c \in (a,b) : h'(c) = 0.$$

Пресмятаме, че h'(x) = f'(x) - kg'(x). Следователно

$$f'(c) - kg'(c) = 0$$
, т.е. $\frac{f'(c)}{g'(c)} = k$. Предвид (4) последното дава точно твърдението на т-мата.

7 / 7