111B - Hall Effect in Semiconductors

Neil Pichay

Table of contents

01

Theory

Semiconductors, Hall Effect, Van Der Pauw Method

02

Experimental Apparatus

Equipment used in the experiment

03

Procedures

How the experiment was conducted

04

Analysis

Plots and measurements of resistivity, Hall coefficient, mobilities, concentration, etc..

Semiconductors

Hall Effect

Van der Pauw Method

Contact points
made up of Boron
dopant layered
with Palladium,
gold, and indium

Electrometer

Gaussmeter

Apparatus

Source Meter

LabView Program

Temperature Controller

Gold Box

Magnet Power Supply

Apparatus

Procedures

- 1. Turn on all the electronics
- 2. Open the Return valve, then the Main Water valve
- 3. Turn on the two power supplies, followed by the Gold Box
- 4. Open the "Control Program v9_multified" LabView Program
- 5. Set your initial parameters
 - a. Temperature range
 - b. Sample Current
 - c. Sample Magnetic field
- 6. Run the experiment
- 7. With blue gloves and a face shield, carefully fill the white dewar with LN2
- 8. Add LN2 to the Cryostat until temperature is sufficiently low
- 9. When the sample is cool enough (~ 98K), experiment will begin
- 10. Repeat steps 5-8 for various initial parameters

Resistivity vs. Inverse

$$\rho = \frac{\pi d}{\ln(2)} \cdot \frac{(R_{AB,DC} + R_{AD,BC})}{2} \cdot f\left(\frac{R_{AB,DC}}{R_{AD,BC}}\right)$$

Hall Coefficient vs. Inverse

Hall Coefficient:
$$R_H = \frac{V_H * t}{I * B} \frac{R_{AC,BD} + R_{BD,AC}}{2} * \frac{t}{B}$$

At room temperature: $R_H = -8.96 \times 10^{-4} \text{ cm}^3 \text{ C}^{-1}$ $\varrho = 80.1 \Omega \text{ cm}$

In extrinsic regime: hole concentration: p = 1.9x10 ¹²cm⁻³

$$R_H = -1/ep$$
.

Mobility: $\mu = 1.1 \times 10^{3} \text{ cm}^{2} \text{V}^{-1} \text{sec}^{-1}$

mobility:
$$\mu = \frac{2ln(2)}{\pi B} \frac{\Delta R_{AC,BD}}{R_{AB,CD} + R_{BC,AD}} \frac{1}{f} \left[\frac{cm^2}{V * sec} \right]$$

Hall Mobility vs. Inverse Temperature

Fit: μ_{H} a CT $^{\beta}$ β =-1.5 \mp 0.019

$$\mu_{H}(p) = 3.11x10^{-3}$$

cm²V⁻¹sec⁻¹

Resistivity vs Temperature

Fit: ϱ a CT $^{\beta}$ β =2.05 \mp 0.027

b = 1.55 $\mu_{H}(n) = 4.83 \times 10^{-3}$ cm²V⁻¹sec⁻¹

$$b = \frac{R_e(T = T_0)}{R_e(T = T_0) - R_0(T = T_0)} = \frac{\mu_H(n)}{\mu_H(p)} \to \mu_H(n) = b * \mu_H(p)$$

Resistance Comparisons

Signatures:

