Para aprobar, se requiere resolver correcta y justificadamente $(4 + \epsilon)$ ítems.

3-

- 1. Sea la función $f(z) = \frac{1 \cos(1/z)}{z}$. Hallar el desarrollo en Serie de Laurent válido en un entorno de z = 0. ¿Cuál es el dominio de convergencia? ¿Qué tipo de singularidad es z = 0 y cuánto vale el residuo en ese punto?
- 2. Dadas las series $S_1(z) = \sum_{n=0}^{\infty} a_n (z-i)^n$, cuyo radio de convergencia es $R_1 = 1,5$ y $S_2(z) = \sum_{n=0}^{\infty} b_n (z+i)^n$, con radio de convergencia $R_2 = \sqrt{2}$, hallar, donde sea posible, el

valor de las siguientes series: $S_A = \sum_{n=0}^{\infty} a_{2n+1}$, $S_B = \sum_{n=0}^{\infty} a_n - b_n$ y $S_C = \sum_{n=0}^{\infty} b_{2n}$

- 4. Dada la función $g(z) = \frac{z^2 1}{z^2(e^{i2\pi z} 1)}$. Clasificar todas las singularidades de g(z) en el plano complejo \mathbb{C} . Clasificar la singularidad en el ∞ , calcular el residuo en z = 2 e indicar claramente cómo se calcula el residuo en z = 0.
- 5. Sea f una función entera que cumple con: $\max\{|f'(z)|, z \in \mathbb{C}\} = 5$, f(1) = 4i y f(-1) = 6 4i. Calcular $\oint_{|z|=15} \frac{f(z)}{z^n} dz$, n = 1, 2, 3.

B

6. Hallar todos los $z \in \mathbb{C}$ que cumplen con: |z| - z = 3 + 3i.

R

7. Analizar la convergencia de la integral: $\int_0^\infty \frac{dx}{(1+x^2)^2}$ y calcularla.

6

8. Hallar una transformación conforme T tal que $\mathbb{E}=T(\mathbb{D}),$ siendo $\mathbb{D}:\{z\in\mathbb{C}/Re(z)+Im(z)>3\}$ y $\mathbb{E}:\{z\in\mathbb{C}/|z|<2\}$