CS178 F21 Final Examination

Michael Glushchenko, 9403890 December 10, 2021

Problem 1.

Given: A keyed hash function with the security parameter λ :

$$H = \{h_k : \{0,1\}^m \to \{0,1\}^n\}_{k \in \{0,1\}^{\lambda}},$$

where $m = m(\lambda)$ and $n = n(\lambda)$ are polynomial in λ . For a fixed $f : \{0,1\}^m \to \{0,1\}^n$, we say H is f-secure if \forall PPT \mathcal{A} ,

$$\mathcal{P}[h_k(x) = f(x) : k \stackrel{\$}{\leftarrow} \{0, 1\}^{\lambda}, x \leftarrow \mathcal{A}(1^{\lambda}, k)] \leq \text{negligible}(\lambda).$$

Part A.

All we have to do here is find an m, n, and \mathcal{A} such that \mathcal{A} can give us an x such that $h_k(x) = f_1(x)$, for a $f_1 : \{0,1\}^m \to \{0,1\}^n$. Go ahead and set f_1 to be any invertible function. The intuition is that we need an invertible function, so that there actually exists some clever way us to create this x we need. I think that if we made f_1 take the modulus of 2^{m-n} of the input, we would have good chance of $h_k(x) = f(x)$, I am simply not sure how to show it.

Part B.

Goal: Find f_2 such that H is f_2 -secure.

Solution: Consider an f_2 constructed in the following way:

$$f_2 := \{h_{\mathbf{k'}} : \{0,1\}^m \to \{0,1\}^n\}_{\mathbf{k'} \in \{0,1\}^{\lambda}}.$$

That is, we set f_2 to be a keyed hash function after sampling our own key. The goal now is to show that H is f_2 -secure. Suppose not. Then $\exists \text{ PPT } \mathcal{A}$ such that

$$\mathcal{P}[h_k(x) = f(x) : k \xleftarrow{\$} \{0, 1\}^{\lambda}, x \leftarrow \mathcal{A}(1^{\lambda}, k)] = \epsilon(\lambda),$$

and $\epsilon(\lambda)$ is a non-negligible function; label the above statement as the probability that \mathcal{A} wins; i.e., \mathcal{A} wins if it can give us an x that would result in $f_2(x) = h_k(x)$ with non-negligible probability ϵ . Naturally, there's two disjoint cases possible:

• Case 1: k = k'. If so, $f_2(x) = h_k(x)$ on every input $x \in \{0, 1\}^m$, which means \mathcal{A} would succeed 100% of the time given this case; however, the probability of the case happening is

$$\mathcal{P}[k=k'] = \frac{1}{2^{\lambda}} = \text{negligible}(\lambda).$$

• <u>Case 2</u>: $k \neq k'$. If so, \mathcal{A} needs an x that maps to the same hash of two differently-keyed hash functions, i.e., \mathcal{A} needs to invert one of the hash functions to perform the necessary task; hash function pre-image resistance tells us

$$\mathcal{P}[\mathcal{A}(h(x)) \to x \text{ s.t. } h(x) = x] = \text{negligible}(\lambda)$$

So, the probability \mathcal{A} can find the pre-image of at least one of the keyed hash functions is also negligible.

As a result, we have a contradiction:

 $\mathcal{P}[\mathcal{A} \text{ "wins" the game and outputs a valid x}]$

$$= \mathcal{P}[\mathcal{A} \text{ "wins" in case 1}] + \mathcal{P}[\mathcal{A} \text{ "wins" in case 2}]$$
$$= \text{negligible} = \epsilon(\lambda),$$

when, in fact, we declared ϵ to be non-negligible.

Problem 2.

Given: An RSA encryption scheme (Gen, Enc, Dec) without padding. Claim: (Gen, Enc, Dec) is subject to an attack where a PPT \mathcal{A} , without knowing m_0 or m_1 , can find the encryption of $m_0 \cdot m_1$, where \cdot is modular multiplication in \mathbb{Z}_N .

Solution: In RSA, the *Enc* algorithm is defined as follows:

$$Enc((N, e), m) = m^e \pmod{N}.$$

Given $m_0, m_1 \stackrel{\$}{\leftarrow} \{0, 1\}^{\lambda}$ their ciphertexts are

$$ct_0 = m_0^e \pmod{N}$$
 & $ct_1 = m_1^e \pmod{N}$.

But then consider a PPT \mathcal{A} that takes in two ciphertexts, and outputs a new ciphertext:

$$\mathcal{A}(ct_{1}, ct_{2}) = ct_{1} \cdot ct_{2} = ct_{1}ct_{2} \pmod{N}$$

$$= (Enc((N, e), m_{0})Enc((N, e), m_{1})) \pmod{N}$$

$$= ((m_{0}^{e} \pmod{N})(m_{1}^{e} \pmod{N})) \pmod{N}$$

$$= ((m_{0} \pmod{N})^{e}(m_{1} \pmod{N})^{e}) \pmod{N}$$

$$= (((m_{0} \pmod{N})(m_{1} \pmod{N}))^{e}) \pmod{N}$$

$$= ((m_{0} \pmod{N})^{e}) \pmod{N} = Enc((N, e), m_{0} \cdot m_{1})$$

$$\Rightarrow \mathcal{A}(ct_{1}, ct_{2}) \to Enc((N, e), m_{0} \cdot m_{1}) = ct$$

Why is this classified as an attack on (Gen, Enc, Dec)?

Because the above statement shows a clear relation between how a change in some message will result in a change in that message's cipher, as well as the fact that \mathcal{A} extracts previously-unknown information out of the interaction: it's the ciphertext ct. The adversary \mathcal{A} can now be used to create a reduction \mathcal{B} that successfully recovers encoded messages of (Gen, Enc, Dec), without knowledge of the private key (N, d) or the message m, in polynomial time (eventually with very good probability). \mathcal{B} can be chosen to run a number of cipher-only attacks, including a chosen cipher attack, a frequency analysis attack, and more, based on the fact that \mathcal{A} extracts brandnew information out of its interaction with the Enc oracle.

Problem 3.

Given: An public-key encryption scheme (Gen, Enc, Dec).

Part A.

Given: $\exists m_0, m_1$ with ciphertext distributions

$$\mathcal{D}_b := \{ (pk, Enc(pk, m_b)) : (pk, sk) \leftarrow Gen(1^{\lambda}) \}, b \in \{0, 1\},$$

such that \forall unbounded \mathcal{A} , we have

$$|\mathcal{P}[1 \leftarrow \mathcal{A}(1^{\lambda}, (pk, ct)) : (pk, ct) \leftarrow \mathcal{D}_{0}]$$

$$-\mathcal{P}[1 \leftarrow \mathcal{A}(1^{\lambda}, (pk, ct)) : (pk, ct) \leftarrow \mathcal{D}_{1}]|$$

$$\leq \frac{1}{2}$$

Claim: (Gen, Enc, Dec) does not satisfy correctness.

Proof: We know that correctness is satisfied if, $\forall m$,

$$\mathcal{P}[Dec(sk, Enc(pk, m)) = m : (pk, sk) \leftarrow Gen(1^{\lambda})] = 1.$$

Suppose (Gen, Enc, Dec) does satisfy correctness. Given 1^{λ} , pk, and a ciphertext ct we will have our \mathcal{A} iterate through picking a message, encoding it, and see if the encoding matches the ciphertext it received. Once \mathcal{A} finds such an encoding, it'll output 1. Since \mathcal{A} is unbounded, we know that the probability it distinguishes the ciphertext distributions of (any) pair of two arbitrary messages m_0 and m_1 should be exactly $1 \to a$ contradiction.

$$|\mathcal{P}[1 \leftarrow \mathcal{A}(1^{\lambda}, (pk, ct)) : (pk, ct) \leftarrow \mathcal{D}_{0}]$$
$$-\mathcal{P}[1 \leftarrow \mathcal{A}(1^{\lambda}, (pk, ct)) : (pk, ct) \leftarrow \mathcal{D}_{1}]|$$
$$\neq 1.$$

 \Rightarrow (Gen, Enc, Dec) does not satisfy correctness,

and it also means that Dec, in this case, must be a probabilistic algorithm, rather than a deterministic one; a deterministe Dec would satisfy security but fall to an unbounded \mathcal{A} .

Part B.

Given: $|ct| \leq C \log \lambda$, for some constant C.

Claim: (Gen, Enc, Dec) does not satisfify CPA security.

Proof: This time, define \mathcal{D}_b for any pair of messages m_0, m_1 chosen by some PPT \mathcal{A} , as

$$\mathcal{D}_b := \{ (pk, Enc(pk, m_b)) : (pk, sk) \leftarrow Gen(1^{\lambda}) \}, \quad b \in \{0, 1\}.$$

We will show an \mathcal{A} , such that it can guess the message that goes with the ciphertext given to it with probability greater than $\frac{1}{2}$. Formally,

$$|\mathcal{P}[b=b';b'\leftarrow\mathcal{A}(1^{\lambda},(pk,ct)):(pk,ct)\leftarrow\mathcal{D}_b]$$

 $\geq \frac{1}{2} + \epsilon(\lambda),$

where $\epsilon(\lambda)$ is non-negligible. That is, $\epsilon(\lambda) = \frac{1}{q(\lambda)}$, where $q(\lambda)$ is some polynomial. We will show a PPT algorithm \mathcal{A} such that

$$\mathcal{P}[\mathcal{A} \text{ successfully "wins" the game above}] = \frac{1}{2} + \frac{1}{q(\lambda)},$$

for some polynomial $q(\lambda)$. Here, \mathcal{A} wins if it outputs a b' = b. Take the set of all possible ciphertexts, given λ :

$$\mathcal{S} := \{ Enc(pk, m) : m \leftarrow \{0, 1\}^*, |Enc(pk, m)| \le Clog\lambda, pk \leftarrow Gen(1^{\lambda}) \}$$

We know that the size of S is the sum of the sets of all possible ciphertexts of lengths 1, 2, ..., λ . Thus,

$$|\mathcal{S}| = \sum_{i=0}^{Clog\lambda} |\{0,1\}^i| = \sum_{i=0}^{Clog\lambda} 2^i = 2^{Clog\lambda+1} - 1 = 2^C\lambda - 1,$$

since the right-most series above is geometric; we go on to design A:

$$\mathcal{A}(1^{\lambda}, pk, ct) \to \begin{cases} 0 & \text{if } ct \leftarrow \mathcal{D}_0, \\ 1 & \text{if } ct \leftarrow \mathcal{D}_1, \\ x \xleftarrow{\$} \{0, 1\} & \text{otherwise.} \end{cases}$$

Define $ct_0 := Enc(pk, m_0)$ and $ct_1 := Enc(pk, m_1)$. ct is arbitrary, given to \mathcal{A} . Given $ct \in \{ct_0, ct_1\}$, we break this into 2 cases, to see when \mathcal{A} wins (because if $ct \notin \{ct_0, ct_1\}$), we can resample (without replacement) our own random ct^* and set $ct = ct^*$ and run the same thing until $ct \in \{ct_0, ct_1\}$. We know eventually ct will be one of the two ciphertexts because of the amount of total possible ciphertexts.

• Case 1: b = 0. We want the probability that \mathcal{A} wins, i.e. $\mathcal{A} \to 0$:

$$\mathcal{P}[\mathcal{A} \text{ outputs } 0] = \mathcal{P}[\mathcal{A} \to 0 | ct = ct_0].$$

By Law of Total Probability, we have $\mathcal{P}[\mathcal{A} \to 0|ct = ct_0]$ is

$$\geq \mathcal{P}[\mathcal{A} \to 0] \mathcal{P}[ct = ct_0] + \mathcal{P}[\mathcal{A} \to 0] \mathcal{P}[ct \neq ct_0]$$

$$= 1 * \mathcal{P}[ct = ct_0] + \frac{1}{2} * \mathcal{P}[ct \neq ct_0]$$

$$= \frac{1}{2} * \mathcal{P}[ct = ct_0] + \frac{1}{2} * \mathcal{P}[ct = ct_0] + \frac{1}{2} * \mathcal{P}[ct \neq ct_0]$$

$$= \frac{1}{2} \mathcal{P}[ct = ct_0] + \frac{1}{2} (\mathcal{P}[ct = ct_0] + \mathcal{P}[ct \neq ct_0])$$

$$= \frac{1}{2} \mathcal{P}[ct = ct_0] + \frac{1}{2} (1)$$

$$\geq \frac{1}{2} \mathcal{P}[ct = ct_0 \in \mathcal{S}] + \frac{1}{2}$$

$$\geq \frac{1}{2} \mathcal{P}[(ct \in \mathcal{S}) \land (ct_0 \in \mathcal{S})] + \frac{1}{2},$$

where ct and ct_0 are independently chosen because \mathcal{A} only selects ct_0 , and is given ct. From $|\mathcal{S}|$, we know that

$$\frac{1}{2}\mathcal{P}[((ct \in \mathcal{S}) \land (ct_0 \in \mathcal{S})) : ct \perp ct_0] + \frac{1}{2} = \frac{1}{2} \frac{1}{(2^C \lambda - 1)^2} + \frac{1}{2}$$
$$\Rightarrow \mathcal{P}[\mathcal{A} \text{ wins given it outputs } 0] = \frac{1}{2} \frac{1}{(2^C \lambda - 1)^2} + \frac{1}{2}$$

• Case 2: b = 1. Here, we want $\mathcal{P}[A \to 1]$. By symmetry,

$$\mathcal{P}[\mathcal{A} \text{ outputs } 1] = \frac{1}{2} \frac{1}{(2^C \lambda - 1)^2} + \frac{1}{2}.$$

Now,

$$\mathcal{P}[b = b' : b \xleftarrow{\$} \{0, 1\}, b' \leftarrow \mathcal{A}(1^{\lambda}, pk, ct)]$$

can be written as

$$\frac{1}{2}\mathcal{P}[\mathcal{A} \to 0|ct = ct_0] + \frac{1}{2}\mathcal{P}[\mathcal{A} \to 1|ct = ct_1]$$

$$\geq \frac{1}{2} * 2 * (\frac{1}{2(2^C\lambda - 1)^2} + \frac{1}{2})$$

$$= \frac{1}{(2^C\lambda - 1)^2} + \frac{1}{2}.$$

Here, we can finally see that our $q(\lambda)=2(2^C\lambda-1)^2$, and thus $\epsilon(\lambda)$ is non-negligible

 $\Rightarrow (Gen, Enc, Dec)$ does not satisfy CPA security.

Part C.

Given: Instead, suppose that Enc uses, at most, $log\lambda$ random bits.

Claim: (Gen, Enc, Dec) does not satisfy CPA security.

Proof: This problem can be directly reduced to problem 3, part b. That is, there is only $log\lambda$ bits of randomness used, and thus a polynomial reduction is possible to convert this problem A into a problem B, where the the probability of an adversary winning the type of game we described in part b (no need to formally define this for part c) is **at least** as high as the probability of some PPT \mathcal{B} solving problem B, as its guesses in the ciphertext space will still be directly related to $Clog\lambda$.

Problem 4.

Given: Let (Gen, Sign, Ver) be a many-time secure signature scheme. Consider (Gen', Sign', Ver'), constructed in the following way:

- Gen'() is the same as Gen()
- Sign'(sk, m) samples a fresh key pair $(sk^*, vk^*) \leftarrow Gen'(1^{\lambda})$, and outputs $\mu \leftarrow (vk^*, Sign(sk, vk^*), Sign(sk^*, m))$.
- $Ver'(vk, m, \mu)$ parses μ as $\mu = (vk^*, \mu_1, \mu_2)$, and outputs VALID only if $Ver(vk, vk^*, \mu_1)$ outputs VALID and $Ver(vk^*, m, \mu_2)$ outputs VALID.

Assume the verification keys lie in the message space.

Claim: (Gen', Sign', Ver') is many-time secure.

Proof: Suppose not. $\Rightarrow \exists \text{ PPT } \mathcal{A}$ that can break the signature scheme (Gen', Sign', Ver') with a non-negligible probability $\epsilon(\lambda)$. That is, we want some PPT \mathcal{A} that can get Ver' to output VALID when it shouldn't, with probability $\epsilon(\lambda)$. But if our \mathcal{A} makes Ver' output a wrong output with probability $\epsilon(\lambda)$, then one of the following two cases occur: either this \mathcal{A} can give us a μ'_1 such that $Ver(vk, vk^*, \mu'_1)$ outputs valid and $\mu'_1 \neq \mu_1$, or \mathcal{A} can give us a μ'_2 such that $Ver(vk^*, m, \mu'_2)$ outputs valid and $\mu'_2 \neq \mu_2$.

- Case 1: In this case, a PPT \mathcal{A} can get Ver to output VALID when it shouldn't given a verification key vk, and a message vk^* ; but this implies that (Gen, Sign, Ver) is not multi-time secure \Rightarrow a contradiction. This case implies that \mathcal{A} somehow recovers sk in polynomial time.
- Case 2: In this case, a PPT \mathcal{A} can get Ver to output VALID when it shouldn't given a verification key vk^* , and a message m; but this implies that (Gen, Sign, Ver) is not multi-time secure \Rightarrow a contradiction. This case implies that \mathcal{A} somehow recovers sk^* is polynomial time.

Both cases led to a contradiction

 $\Rightarrow (Gen', Sign', Ver')$ is many-time secure.

Problem 5. I don't know

Problem 6.

Given: An RSA signature scheme (Gen, Sign, Ver). Define a security game as follows:

- Given the security parameter 1^{λ} , \mathcal{A} chooses an m.
- Challenger samples a $(sk, vk) \leftarrow Gen(1^{\lambda})$ and sends back $\mu \leftarrow Sign(sk, m)$ to \mathcal{A} .
- \mathcal{A} outputs a message pair (m', μ') ;
- \mathcal{A} wins if $(Ver(vk, m', \mu') = VALID)$ and $(m' \neq m \text{ or } \mu' \neq \mu)$.

Claim: No PPT \mathcal{A} can win the above game with a non-negligible probability.

Proof: Suppose not; $\Rightarrow \exists$ a PPT \mathcal{A} that can win the above game with a non-negligible probability $\epsilon(\lambda)$. There's two cases here: either $m' \neq m$ or $\mu' \neq \mu$, and $Ver(vk, m', \mu')$ outputs VALID.

By the union bound, the probability \mathcal{A} succeeds in either of the two cases is less than or equal to the sum of the probabilities that it succeeds in each case.

• Case 1: $m' \neq m$ and $\mu' = \mu$. In this case, \mathcal{A} is able to get $Ver(vk, m', \mu')$ to output valid on a different message. That is, \mathcal{A} is looking for a different message m' to sign, that gives us the same signature $\mu' = \mu$, such that

$$(\mu' = m^e \pmod{N}) \wedge (\mu' = (m')^e \pmod{N}) \wedge (m' \neq m).$$

But Ver is a deterministic algorithm, and thus can only return valid on a given signature and public key for **one** given message, which comes from correctness of (Gen, Sign, Ver). So, we have reached a contradiction, as it is impossible for \mathcal{A} to do what we described above.

• Case 2: m' = m and $\mu' \neq \mu$. In this case, \mathcal{A} is able to get $Ver(vk, m', \mu')$ to output valid on a different signature (but the same message). This implies that \mathcal{A} finds a $\mu' \neq \mu$ such that

$$m=\mu^e\pmod N=\mu'^e\pmod N.$$

This, however, reduces to \mathcal{A} having to factor N or somehow recover the secret key d in polynomial time \Rightarrow a contradiction.

Those are the only ways for \mathcal{A} to succeed in this case, because it cannot run brute force to find d, and because the Unique Prime Factorization Theorem tells us that \mathcal{A} won't randomly stumble upon a different private key d that it can use the get Ver to output valid.

We reach a contradiction in all cases, and thus can conclude that No PPT \mathcal{A} can win the above game with a non-negligible probability, that is, given a signature on a message, not only is it hard to forge a signature on a different message, but it is hard to forge a different signature on the same message.

Problem 7.

Given: An interactive protocol, where the prover P is trying to prove to the verifier V that the graphs (G_0, G_1) are isomorphic:

- V sends $b_1, b_2 \stackrel{\$}{\leftarrow} \{0, 1\}$ to P.
- P picks $b'_1, b'_2 \stackrel{\$}{\leftarrow} \{0, 1\}$, and two random permutations σ_1 and σ_2 on the vertex set. P calculates $H_1 = \sigma_1(G_{b'_1})$ and $H_2 = \sigma_2(G_{b'_2})$, and sends H_1 and H_2 to V.
- V picks a random index $i \stackrel{\$}{\leftarrow} \{1,2\}$ and sends it to P.
- P sends a permutation π on the vertex set to V.
- V accepts if and only if $\pi(H_i) = G_{b_i}$.

Claim: The protocol described does not have soundness.

Proof: All we have to show, is a prover P, that can trick the verifier V into thinking two graphs G_0 and G_1 are isomorphic, when they really aren't. Consider a scenario with some prover P and two non-isomorphic graphs G_0 and G_1 . We will show a P such that the verifier V always says two non-isomorphic graphs are, indeed isomorphic. Rephrasing the statement slightly, this is the same as showing that given our prover P, the following is true:

$$(V \text{ accepts } (G_0, G_1)) \Rightarrow (G_0 \text{ is not isomorphic to } G_1).$$

From the above statement, we now can assume that V accepts G_0 and G_1 as isomorphic graphs, which means $\pi(H_i) = G_{b_i}$, which means either $\pi(H_1) = G_{b_1}$ or $\pi(H_2) = G_{b_2}$. Consider the following prover P:

- the protocol above happens as described, until right before P sends a permutation π on the vertex set to V.
- here, prover P knows i, and thus knows which H_i to find a permutation for to obtain G_{b_i} .
- the prover P sends $\sigma_i^{-1}(H_i)$ back to the verifier V

It's important to note, that $\not\equiv$ a permutation that would take us from G_0 to G_1 , or vice versa, which implies $\not\equiv$ a permutation that could take us from H_1 to $G_{b'_2}$, and likewise there's no permutation that would take us from H_2 to $G_{b'_1}$, because G_0 and G_1 are not isomorphic.

This means that, in this protocol, verifier V will actually only accept graphs that are non-isomorphic from our prover P.

 $\Rightarrow\,$ the protocol described above does not have soundness.

Bonus Problem. Part A.

The idea here is to construct g using f, since otherwise there's no way to prove that g is actually a one-way function. We can use the idea that's very similar to parts b and c below. Using f, we can construct a $g:\{0,1\}^{\lambda} \to \{0,1\}^3$, such that g(x) is equal to the 3 least-significant binary digits of the output f(x). The function g is one way, since the opposite would imply that f is not one way. And, g makes an RSA scheme insecure if used for hashing there, simply because we will be running RSA on a 3-bit output of g, and thus any PPT \mathcal{A} would easily break such a scheme with good probability.

Part B.

Given: $H: \{0,1\}^m \to \{0,1\}^{\lambda}$ is a collision-resistant function, where $m(\lambda)$ is a polynomial function. We define H' as follows – pick three distinct inputs $x_1, x_2, x_3 \in \{0,1\}^m$, and set

$$H'(x) := \begin{cases} H(x)||0, & x \notin \{x_1, x_2, x_3\} \\ 3, & x = x_1 \\ 5, & x = x_2 \\ 15, & x = x_3, \end{cases}$$

where values $\{3, 5, 15\}$ correspond to their $(\lambda+1)$ -bit representation. **Claim:** H' is collision-resistant.

Proof: Suppose not. $\Rightarrow \exists$ a PPT \mathcal{A} that can find $x, y \in \{0, 1\}^m$, with $x \neq y$, s.t. H'(x) = H'(y) with non-negligible probability $\epsilon(\lambda)$. Since x_1, x_2, x_3 are distinct inputs, the only way for out \mathcal{A} to do this is when $x, y \notin \{x_1, x_2, x_3\}$. Thus, \mathcal{A} can find x, y such that

$$H(x)||0 = H(y)||0,$$

 $\Rightarrow \mathcal{A} \text{ found } x \neq y \text{ s.t. } H(x) = H(y)$

with probability $\epsilon(\lambda)$. This is a contradiction, showing that breaking collision-resistance of H' implies breaking collision-resistance of H,

 $\Rightarrow H'$ is collision-resistant.

Part C.

Claim: \exists a collision-resistant function H' such that if H' was used for hashing in the RSA signature scheme, it becomes insecure.

Proof: Consider the following H' – we pick 2^{λ} distinct inputs $x_1, x_2, ..., x_{2^{\lambda}} \in \{0, 1\}^m$, and set

$$H'(x) := \begin{cases} (\lambda + 1) - \text{bit representation of x,} & x = x_i, i \in [1, 2^{\lambda}] \\ H(x)||0, & \text{otherwise.} \end{cases}$$

That is, H'(x) individually maps the first 2^{λ} inputs to their $(\lambda+1)$ -bit binary representation, and uses H(x) for the rest of the inputs. It's clear to see that, if this hash was used for an RSA encryption scheme, a PPT adversary \mathcal{A} would be able to distinguish 2^{λ} encryptions, and thus be able to break an RSA encryption scheme (Gen, Sign, Ver) with non-negligible probability. We could show the exact probability that this \mathcal{A} can break the RSA scheme by correctly winning the sort of game described in problem 3; but it is enough that we know that m is polynomial in λ , and thus the probability of a ciphertext given to \mathcal{A} being one of the ciphertexts \mathcal{A} chose would be $\frac{1}{poly(\lambda)}$, and thus we have proven that this H', when used for hashing, makes an RSA scheme (Gen, Sign, Ver) insecure.