Drought means 'not enough water', true.

Drought is the Natural Disaster that stalks up silently.

BUT I was surprised that my initial understanding was WAY off the real meaning.

What do you know about Drought? Follow along to see what I learned.

The data showed me that Georgia had more Drought than Arizona ... I was incredulous. Confused. Is the data wrong, I wondered?

Turns out the data was excellent, I needed to learn more about how and what Drought was.

This is about that journey and it is about finding ways to have enough water to live well now and in the future.

My hope is that together we will find solutions, innovations and ways to save and reuse water.

Water is Life, so my hope is that we will all have more life.

US Drought Data:

U.S. Drought Monitor: https://droughtmonitor.unl.edu National Drought Mitigation Center (NDMC)

#DATA: https://droughtmonitor.unl.edu/Data/DataDownload/ComprehensiveStatistics.aspx #ABOUT: https://droughtmonitor.unl.edu/About/About/About/About/StatisticsExplanation.aspx

Produced weekly, however,

Limited to the range of the Water Usage Data (2011 - 2015)

Continental USA county level status by week

RangeIndex: 843378 entries, 0 to 843377 Data columns (total 12 columns):								
Data								
#	Column	Non-Nu	ll Count	Dtype				
0	MapDate_P	843378	non-null	int64				
1	FIPS	843378	non-null	int64				
2	County	843378	non-null	object				
3	State	843378	non-null	object				
4	None_P	843378	non-null	object				
5	D0_P	843378	non-null	object				
6	D1_P	843378	non-null	object				
7	D2_P	843378	non-null	object				
8	D3_P	843378	non-null	object				
9	D4_P	843378	non-null	object				
10	ValidStart	843378	non-null	object				
11	ValidEnd	843378	non-null	object				
dtypes: int64(2), object(10)								

Water Usage Data:

The U.S. Department of Agriculture (USDA)

Continental USA county level estimate sum (2011 -2015)

#https://water.usgs.gov/watuse/data/data2015.html

#Estimated Use of Water in the United States - County-Level Data for 2015 #Publication Date: 2017-09-28

#Citation: Dieter, C.A., Linsey, K.S., Caldwell, R.R., Harris, M.A., Ivahnenko, T.I., Lovelace, J.K., Maupin, M.A., and Barber, N.L., 2018, Estimated Use of Water in the United States County-Level Data for 2015 (ver. 2.0, June 2018): U.S. Geological Survey data release, https://doi.org/10.5066/F7TB15V5.

The data set was originally 124 Columns, 31 Columns used

	eIndex: 322 columns (to			
ŧ	Column		Null Count	Dtype
3	STATE	3223	non-null	object
l	COUNTY	3223		object
2	FIPS	3223		int64
3	TP-TotPop	3223		float64
ļ.	PS-Wtotl	3223	non-null	float64
5	DO-PSDel	3223	non-null	float64
5	DO-PSPCp	3219	non-null	float64
7	DO-WDelv	3223		float64
3	IN-Wtotl	3223	non-null	float64
9	IR-WFrTo	3223	non-null	float64
10	IR-IrTot	3223	non-null	float64
1	IC-WFrTo	3223	non-null	object
12	IC-IrTot	3223	non-null	object
L3	IG-WFrTo	3223	non-null	object
4	IG-IrTot	3223	non-null	object
.5	LI-WFrTo	3223	non-null	float64
16	AQ-Wtotl	3223	non-null	float64
.7	MI-Wtotl	3223	non-null	float64
.8	PT-Wtotl	3223	non-null	float64
.9	PT-RecWW	3223	non-null	object
20	PT-PSDel	3223	non-null	object
21	PT-CUTot	3223	non-null	float64
22	PO-Wtotl	3223	non-null	float64
23	PO-PSDel	3223	non-null	object
24	PO-CUTot	3223	non-null	float64
25	PC-Wtotl	3223	non-null	float64
26	PC-PSDel	3223	non-null	object
27	PC-CUTot	3223	non-null	float64
8	TO-WGWTo	3223	non-null	float64
29	TO-WSWTo	3223	non-null	float64
80	TO-Wtotl	3223	non-null	float64
yp	es: float64	(20),	int64(1),	object(10

Executive Presentation

A World of Opportunity to the Research & Development Innovators that Provide Technologies aimed at Drought Mitigation, Water-Saving and Water Reuse

Population Drought Levels by State

Between 2011 and 2015,

California had over 7 Billion People
experiencing Drought.

Texas had 50 Million Acres in drought.

5-year Estimate shows **79**% is: **Power Generation** and **Irrigation**Public Water Supply is only **12% of Total Water Use**

Total US Water Usage percent of whole

Quantify: What if we could save only 5% of our water?

What Ideas Do You Have to

Develop and Provide Ways to

Save and Reuse Water?

Drought is a natural disaster that creeps in quietly.

Drought is not a measure of aridity. It is more about a lack of regular sustaining moisture levels according to each region's normal environment.

When we think of Drought, we think of Failed Crops or Thirsty Livestock or Forest Fires...

There are a lot of resources aimed at how to predict drought & rise awareness with quality data provided to the public.

U.S. Drought Monitor: https://droughtmonitor.unl.edu National Drought Mitigation Center (NDMC) National Oceanic and Atmospheric Administration (NOAA), and the U.S. Department of Agriculture (USDA)

Where in the USA has most Drought?

50m Acres in TX in Drought; 7 bn People in CA in Drought

Non-Technical Presentation

Capstone 2 – Slide Deck Outline – NonTechnical **Drought is a natural disaster that creeps in quietly.**

Drought is not a measure of aridity. It is more about a lack of regular sustaining moisture levels according to each region's normal environment.

When we think of Drought, we think of Failed Crops or Thirsty Livestock or Forest Fires...

Capstone 2 – Slide Deck Outline – NonTechnical Water availability is an issue in the USA, not just far away

Reliable access to sources of clean water is increasingly the divide between the affluent and poor as well as a measure of one's security.

South Sudan

West Virginia

Capstone 2 – Slide Deck Outline – NonTechnical Where in the USA has most Drought?

showing Severe to Exceptional Drought

Capstone 2 – Slide Deck Outline – NonTechnical Public Water Supply is only 12% of Total Water Use

Develop and Provide Ways to Save and Reuse Water is:

Good for the Earth,
Good for People,
for Crops,
for Animals,
Good for All.

Where Does most of the water go?

5-year Estimate shows **79**% is: **Power Generation** and **Irrigation**

Total US Water Usage percent of whole

Hint: Your County/City may have a chart unique from this one

Capstone 2 – Slide Deck Outline – NonTechnical If we could save only 5% of our water usage, How much is that?

What Ideas Do You Have to

Develop and Provide Ways to

Save and Reuse Water?

1-Million-Gallon Water-Tank

Technical Presentation

Capstone 2 – Slide Deck Outline – Technical

Drought is a natural disaster that creeps in quietly.

Drought is not a measure of aridity.

It is more about a **lack of regular** sustaining moisture levels according to each region's normal environment.

There are a lot of resources aimed at how to predict drought & rise awareness with Quality Data provided to the public.

The US Drought Monitor keeps great stats and provides a Weekly report of Drought levels by State and County.

U.S. Drought Monitor: https://droughtmonitor.unl.edu National Drought Mitigation Center (NDMC) National Oceanic and Atmospheric Administration (NOAA), and the U.S. Department of Agriculture (USDA)

Saving Water May Help Drought Stressed Areas

Discovery & Development
of technologies
to Save and Reuse Water
Is essential to a Future that
Includes Devastating Drought

Only 5% Water Savings is:

1-Million-Gallon Water-Tank

5-year Estimate shows **79**% is: **Power Generation** and **Irrigation**Public Water Supply is only **12% of Total Water Use**

Total US Water Usage percent of whole

Hint: Your County/City may have a chart unique from this one ...
github.com/CHegler/Drought-WaterUse

Drought is Hard to Quantify Simply – Hard to Spot

To the Right:

Drought History for Texas 2011 – 2015 By severity level

Below:

Map for Continental US
With a synthesized Metric
to show the Drought Severity
An easier visual to read...

Capstone 2 – Slide Deck Outline – Technical

Complex Drought Data Simplified

A Simple Metric

RankTAC can be charted against any other variable to dig deeper.

The resulting RankTAC creates a number between 0 and 40 based on the percentage affected and the severity of drought.

Drought Grouped & Summed by State

Gradient based on Metric of Drought Levels

The Metric Balanced Area and Severity, Saw Consistent Results

The Top 6: NM, CA, NV, TX, OK, KS

Pop Metric by State

Comb_Metric by State

Strategic Focal Points for Drought Mitigation

Invitation to Participate

github.com/CHegler/Drought-WaterUse