CSCE 633: Machine Learning

Lecture 11: Support Vector Machines

Texas A&M University

9-18-19

Last Time

- Maximal Marginal Classifier
- Support Vector Classifier

Goals of this lecture

• Support Vector Machines - an overview

Maximal Marginal Hyperplane

- The maximal margin hyperplane depends directly on the points that lie on the margin
- These are called the support vectors
- So how do we build it?

$$x_1, \cdots, x_n \in \mathbb{R}^p$$

 $y_1, \cdots, y_n \in \{-1, +1\}$

Then we want to:

$$maximize_{\beta_0,\beta_1,\cdots,\beta_n,M}M$$

Subject to constraints:

$$\sum_{i=1}^{p} \beta_j^2 = 1$$

and

Mortagasi CSE
$$y_i(\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}) \geq M \forall i = 1, \dots, n$$

Support Vector Classifier

$$x_1, \cdots, x_n \in \mathbb{R}^p$$

 $y_1, \cdots, y_n \in \{-1, +1\}$

Then we want to:

 $maximize_{\beta_0,\beta_1,\dots,\beta_p,M}M$

Subject to constraints:

$$\left(\sum_{j=1}^{p} \beta_j^2 = 1\right)$$

and

To make sure there's only 1 set of betas (Otherwise a plane equation can be multiplied by any numbers, which give different betas)

$$y_i(\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i)$$

 $\forall i = 1, \dots, n$

Support Vector Classifier: Slack Variables

$$y_i(\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i)$$

 $\forall i = 1, \dots, n$

where

$$\epsilon_i \ge 0$$

$$\sum_{i=1}^n \epsilon_i \le C$$

- C is a non-negative tuning parameter
- *M* is the width of the margin
- ϵ_i are the slack variables. When $\epsilon_i > 1$ the object is on the wrong side of the hyperplane, when $\epsilon_i > 0$ the object violates the margin
- Therefore, C determines the number and severity of margin violations

SVC

Non-separable

Support Vector Machines

- SVC is natural for 2 class decision
- Remember back to Logistic Regression with interaction terms
- $x_1, x_2, \dots, x_p, x_1^2, x_2^2, \dots, x_p^2$ now we have p terms
- We can re-write SVC to maximize M subject to

$$y_i(\beta_0 + \sum_{i=1}^{p} \beta_{j1} x_{ij} + \sum_{i=1}^{p} \beta_{j2} x_{ij}^2 \ge M(1 - \epsilon_i)$$

and

$$\sum_{i=1}^{p} \sum_{k=1}^{2} \beta_{jk}^{2} = 1$$

Can we enlarge the feature space even more? Would this give us non-linear decision boundaries?

• SVC is solved through the kernel space, with an inner product

- SVC is solved through the kernel space, with an inner product
- $\langle x_i, x_{i'} \rangle = \sum_{i=1}^p x_{ij} x_{i'j}$
- Linear SVC finds $f(x) = \beta_0 + \sum_{i=1}^n \alpha_i < x, x_i >$

- SVC is solved through the kernel space, with an inner product
- $\langle x_i, x_{i'} \rangle = \sum_{i=1}^{p} x_{ij} x_{i'j}$
- Linear SVC finds $f(x) = \beta_0 + \sum_{i=1}^n \alpha_i < x, x_i >$
- where $n \alpha_i$ exist per training example to estimate $\alpha_1, \dots, \alpha_n$ and β

- SVC is solved through the kernel space, with an inner product
- $\langle x_i, x_{i'} \rangle = \sum_{i=1}^{p} x_{ij} x_{i'j}$
- Linear SVC finds $f(x) = \beta_0 + \sum_{i=1}^n \alpha_i < x, x_i >$
- where $n \alpha_i$ exist per training example to estimate $\alpha_1, \dots, \alpha_n$ and β
- For this we need $\binom{n}{2}$ inner products

- SVC is solved through the kernel space, with an inner product
- $\langle x_i, x_{i'} \rangle = \sum_{i=1}^p x_{ij} x_{i'j}$
- Linear SVC finds $f(x) = \beta_0 + \sum_{i=1}^n \alpha_i < x, x_i >$
- where $n \alpha_i$ exist per training example to estimate $\alpha_1, \dots, \alpha_n$ and β
- For this we need $\binom{n}{2}$ inner products
- $\alpha_i \neq 0$ only for the support vectors, so we can re-write as

- SVC is solved through the kernel space, with an inner product
- $\langle x_i, x_{i'} \rangle = \sum_{i=1}^{p} x_{ij} x_{i'j}$
- Linear SVC finds $f(x) = \beta_0 + \sum_{i=1}^n \alpha_i < x, x_i > 0$
- where $n \alpha_i$ exist per training example to estimate $\alpha_1, \dots, \alpha_n$ and β
- For this we need $\binom{n}{2}$ inner products
- $\alpha_i \neq 0$ only for the support vectors, so we can re-write as
- $f(x) = \beta_0 + \sum_{i \in S} \alpha_i < x, x_i >$

Support Vector Machines: Higher Dimensions

- In higher dimensions, we don't need to know the full feature space, just how to calculate the inner product $K(x_i, x_{i'})$
- K is a kernel it quantifies similarity of two observations
- when $K(x_i, x_{i'}) = \sum_{j=1}^p x_{ij} x_{i'j}$ we get linear SVC. This is called the linear kernel.
- Similarly we can define $K(x_i, x_{i'}) = (1 + \sum_{j=1}^p x_{ij} x_{i'j})^d$ as the polynomial kernel of degree d, which is much more flexible with the decision boundary but needs more data to train.

SVM, then, defines:

$$f(x) = \beta_0 + \sum_{i \in S} \alpha_i K(x, x_i)$$

Support Vector Machines: Radial Kernel

$$K(x_i, x_{i'}) = \exp(-\gamma \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2)$$

- This is a popular kernel, requires even more data to train
- It has very local behavior, because of the sum of squared difference
- Rather than simply adding additional features, using these kernels is better computationally
- Feature space is implicit and infinite-dimensional so we could never compute the full model in those spaces

RBF Decision Boundary

• Consider the margin boundary $y_i \cdot f(x) = y_i(\beta_0 + \sum_{j=1}^p \beta_j \phi(x_{ij}))$

- Consider the margin boundary $y_i \cdot f(x) = y_i(\beta_0 + \sum_{j=1}^p \beta_j \phi(x_{ij}))$
- Why do we multiply y by f(x)?

- Consider the margin boundary $y_i \cdot f(x) = y_i(\beta_0 + \sum_{i=1}^p \beta_i \phi(x_{ij}))$
- Why do we multiply y by f(x)?
- Can we somehow relate SVM's margin boundary to Regression's Loss Functions?

- Consider the margin boundary $y_i \cdot f(x) = y_i(\beta_0 + \sum_{i=1}^p \beta_i \phi(x_{ij}))$
- Why do we multiply y by f(x)?
- Can we somehow relate SVM's margin boundary to Regression's Loss Functions?
- Recall $y \hat{y} = y f(x)$ is our residual (error)

• The classification rule for SVM is G(x) = sgn(f(x))

- The classification rule for SVM is G(x) = sgn(f(x))
- Now, how do we classify error?

- The classification rule for SVM is G(x) = sgn(f(x))
- Now, how do we classify error?
- Recall $y_i \in \{-1, +1\}$

- The classification rule for SVM is G(x) = sgn(f(x))
- Now, how do we classify error?
- Recall $y_i \in \{-1, +1\}$
- So, $y_i \cdot G(x_i) > 0$ if samples are classified correctly

- The classification rule for SVM is G(x) = sgn(f(x))
- Now, how do we classify error?
- Recall $y_i \in \{-1, +1\}$
- So, $y_i \cdot G(x_i) > 0$ if samples are classified correctly
- Why? two cases: $y_i = -1$ and $G(x_i) = -1$ or $y_i = +1$ and $G(x_i) = +1$

0-1 Loss

• If we define a decision boundary as f(x) = 0, then more generally

0-1 Loss

- If we define a decision boundary as f(x) = 0, then more generally
- L(y, f(x)) is called the 0-1 loss in this case

0-1 Loss

- If we define a decision boundary as f(x) = 0, then more generally
- L(y, f(x)) is called the 0-1 loss in this case
- $L(y, f(x)) = \mathbb{I}(y \cdot f(x) < 0)$

Support Vector Machines: Hinge Loss

$$L(X, y, \beta) = \sum_{i=1}^{n} \max[0, 1 - y_i(\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip})]$$

instead of the common loss for logistic regression

$$L(X, y, \beta) = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{i=1}^{p} \beta_i x_{ij})^2$$

Support Vector Machines: Hinge Loss

$$L(X, y, \beta) = \sum_{i=1}^{n} \max[0, 1 - y_{i}(\beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{\rho}x_{i\rho})]$$

instead of the common loss for logistic regression

$$L(X, y, \beta) = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2$$

Optimal Hyperplane and Support Vectors

FIGURE 12.1. Support vector classifiers. The left

- **Margin of separation** *M*: distance between the separating hyperplane and the closest input point.
- Support vectors: input points closest to the separating hyperplane.

Mathematical Aside: Lagrange Multipliers

Turn a constrained optimization problem into an unconstrained optimization problem by absorbing the constraints into the cost function, weighted by the *Lagrange multipliers*

Example: Find point on the circle $x^2 + y^2 = 1$ closest to the point (2,3)

- Minimize $F(x, y) = (x 2)^2 + (y 3)^2$ subject to the constraint $x^2 + y^2 1 = 0$.
- Absorb the constraint into the cost function, after multiplying the Lagrange multiplier $\alpha > 0$:

$$F(x, y, \alpha) = (x - 2)^2 + (y - 3)^2 + \alpha(x^2 + y^2 - 1).$$

Mathematical Aside: Lagrange Multipliers

Formulate Lagrangian (primal problem):

$$F(x, y, \alpha) = (x - 2)^2 + (y - 2)^2 + \alpha(x^2 + y^2 - 1)$$
, with $\alpha > 0$

The optimization problem becomes $\max_{\alpha} \min_{x,y} F(x,y,\alpha)$ Minimize $\min_{x,y} F(x,y,\alpha)$

$$\frac{\partial F}{\partial x} = 2(x - 2) + 2\alpha x = 0 \Rightarrow x = \frac{2}{1 + \alpha}$$

$$\frac{\partial F}{\partial x} = 2(x - 2) + 2\alpha x = 0 \Rightarrow x = \frac{2}{1 + \alpha}$$

$$\frac{\partial F}{\partial y} = 2(y-2) + 2\alpha y = 0 \Rightarrow y = \frac{2}{1+\alpha}$$

We substitute x, y in the Lagrangian and express it in terms of its dual from wrt α and maximize it

$$\frac{\partial F}{\partial \alpha} = x^2 + y^2 - 1 = 0 \Rightarrow \left(\frac{2}{1+\alpha}\right)^2 + \left(\frac{2}{1+\alpha}\right)^2 = 1 \Rightarrow \alpha = 2\sqrt{2} - 1$$

20

Recover the solution for the x,y $(x,y) = (1/\sqrt{2},1/\sqrt{2})$ B Mortazavi CSE

Primal Problem: Constrained Optimization

Linearly separable case

For the training set $\mathcal{D}^{train} = \{(\mathbf{x}_n, y_n)\}_{n=1}^N$ find β and β_0 such that

- they minimize the *inverse* separation margin $(\frac{1}{M} = \frac{\|\beta\|}{2})$ while satisfying a constraint (all examples are correctly classified):
 - Cost function: $\Phi(\beta) = \frac{1}{2}\beta^T\beta$
 - Constraint: $y_n(\beta^T \mathbf{x}_i + \vec{b}) \ge 1$ for i = 1, 2, ..., N

$$\min \frac{1}{2} \|\beta\|_2^2$$
, such that (s.t.) $y_n(\beta^T \mathbf{x} + \beta_0) \ge 1$, $n = 1, ..., N$

This problem can be solved using the *method of Lagrange multipliers* (see next two slides)

$$\min \frac{1}{2} \|\beta\|_2^2$$
, such that (s.t.) $y_n(\beta^T \mathbf{x} + \beta_0) \ge 1$, $n = 1, ..., N$

1) Formulate Lagrangian function (primal problem)

$$L_p = \frac{1}{2} \|\beta\|_2^2 - \sum_{n=1}^N \alpha_n \left[y_n (\beta^T \mathbf{x}_n + \beta_0) - 1 \right]$$

2) Minimize Lagrangian to solve for primal variables β, β_0

$$\frac{\partial L_p}{\partial \beta} = 0 \quad \Rightarrow \quad \beta = \sum_{n=1}^N \alpha_n y_n \mathbf{x_n}$$

$$\frac{\partial L_{\rho}}{\partial \beta_0} = 0 \Rightarrow \sum_{n=1}^{N} \alpha_n y_n = 0$$

3) Substitute the primal variables β, β_0 into the Lagrangian and express in terms of dual variables α_n

$$L_d = \frac{1}{2} \|\beta\|_2^2 - \beta^T \sum_{n=1}^N \alpha_n y_n \mathbf{x_n} - \beta_0 \sum_{n=1}^N \alpha_n y_n + \sum_{n=1}^N \alpha_n$$
$$= -\frac{1}{2} \beta^T \beta + \sum_{n=1}^N \alpha_n = -\frac{1}{2} \sum_{n=1}^N \sum_{m=1}^M \alpha_n \alpha_m y_n y_m \mathbf{x_n}^T \mathbf{x_m} + \sum_{n=1}^N \alpha_n$$

$$\min \frac{1}{2} \|\beta\|_2^2$$
, such that (s.t.) $y_n(\beta^T \mathbf{x} + \beta_0) \ge 1$, $n = 1, ..., N$

4) Maximize the Lagrangian with respect to dual variables (dual problem)

$$\max_{\alpha_n} L_d = \max_{\alpha_n} \left\{ -\frac{1}{2} \sum_{n=1}^N \sum_{m=1}^M \alpha_n \alpha_m y_n y_m \mathbf{x}_n^T \mathbf{x}_m + \sum_{n=1}^N \alpha_n \right\}$$

s.t.
$$\sum_{n=1}^{N} \alpha_n y_n = 0$$
 and $\alpha_n \ge 0$, for $n = 1, ..., N$

- · Solved numerically using quadratic optimization methods
- The dual depends on data size N and not on data dimensionality D
- Most of the α_n will vanish with $\alpha_n=0$, only a small percentage will have $\alpha_n>0$
- The set of $\mathbf{x_n}$ whose $\alpha_n > 0$ are the support vectors

$$\min \frac{1}{2} \|\beta\|_2^2$$
, such that (s.t.) $y_n(\beta^T \mathbf{x} + \beta_0) \ge 1$, $n = 1, ..., N$

5) Recover the solution (for the primal variables) from the dual variables

- Find β : Substitute α_n from (4) to $\beta = \sum_{n=1}^N \alpha_n y_n \mathbf{x_n}$
- Find β_0 :
 - From $\beta^T \mathbf{x_n} + \beta_0 = y_n$, where $\mathbf{x_n}$ is a support vector, calculate $\beta_0 = y_n \beta^T \mathbf{x_n}$.
 - For numerical stability average β_0 values estimated from all support vectors.

Testing

- Testing doesn't enforce a margin, i.e. $g(\mathbf{x}) = \beta^T \mathbf{x} + \beta_0$
- Choose C_1 if $g(\mathbf{x}) > 0$, C_2 otherwise
- Function $g(\mathbf{x_n}) = \beta^T \mathbf{x} + \beta_0 = \sum_{m=1}^N \alpha_m y_m \mathbf{x_m}^T \mathbf{x_n} + \beta_0$ does not need explicit calculation of β
 - $g(\mathbf{x_n})$ be calculated from the dot product between the input vectors $\mathbf{x_n}^T \mathbf{x_n}$ (keep this in mind for later)

- Samples $\mathbf{x_n}$ for which $\alpha_n = 0$
 - majority of samples
 - lie away from the hyperplane: $y_n(\beta^T \mathbf{x_n} + \beta_0) > 1$
 - have no effect on the hyperplane
- Samples $\mathbf{x_n}$ for which $\alpha_n = 0$
 - support vectors
 - lie close to the hyperplane: $y_n(\beta^T \mathbf{x_n} + \beta_0) = 1$
 - determine the hyperplane

- If two classes are not linearly separable, we look for the hyperplane that yields the least error
- We define slack variables $\xi_n \ge 0$ which represent the deviation from the margin

$$y_n(\beta^T \mathbf{x_n} + \beta_0) \ge 1 - \xi_n$$

- Case (a): Far away from the margin, $\xi_n = 0$
- Case (b): On the right side and far from margin, $\xi_n = 0$
- Case (c): On the right side, but in the margin, $0 \le \xi_n \le 1$
- Case (d): On the wrong side, $\xi_n \geq 1$

We incorporate the number of misclassifications $\#\{\xi_n > 1\}$ and the number of non-separable points $\#\{\xi_n > 0\}$ as a soft error $\sum_n \xi_n$.

$$\min \tfrac{1}{2} \|\beta\|_2^2 + C \textstyle \sum_{n=1}^N \xi_n, \quad \text{s.t.} \quad y_n(\beta^T \mathbf{x} + \beta_0) \geq 1 - \xi_n \quad \text{and} \quad \xi_n \geq 0 \ , \quad \forall n \in \mathbb{N}$$

1) Formulate Lagrangian function (primal problem)

$$L_{p} = \frac{1}{2} \|\beta\|_{2}^{2} + C \sum_{n=1}^{N} \xi_{n} - \sum_{n=1}^{N} \alpha_{n} \left[y_{n} (\beta^{T} \mathbf{x}_{n} + \beta_{0}) - 1 + \xi_{n} \right] - \sum_{n=1}^{N} \mu_{n} \xi_{n}$$

2) Minimize Lagrangian to solve for primal variables β, β_0

$$\frac{\partial \hat{L}_p}{\partial \beta} = 0 \quad \Rightarrow \quad \beta = \sum_{n=1}^N \alpha_n y_n \mathbf{x_n}$$

$$\frac{\partial L_p}{\partial \beta_0} = 0 \implies \sum_{n=1}^N \alpha_n y_n = 0$$

$$\frac{\partial L_p}{\partial \xi_n} = 0 \implies C - \alpha_n - \mu_n = 0$$

B Mortazavi CSE

3) Substitute the primal variables β, β_0 into the Lagrangian and express in terms of dual variables α_n

$$L_{d} = \frac{1}{2} \|\beta\|_{2}^{2} + C \sum_{n=1}^{N} \xi_{n} - \beta^{T} \sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n}$$

$$- \beta_{0} \sum_{n=1}^{N} \alpha_{n} y_{n} + \sum_{n=1}^{N} \alpha_{n} - \sum_{n=1}^{N} \alpha_{n} \xi_{n} - \sum_{n=1}^{N} \mu_{n} \xi_{n}$$

$$= \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} \alpha_{n} \alpha_{m} y_{n} y_{m} \mathbf{x}_{n}^{T} \mathbf{x}_{m} + \sum_{n=1}^{N} \xi_{n} (C - \alpha_{n} - \mu_{n}) -$$

$$- \sum_{m=1}^{N} \alpha_{m} y_{m} \mathbf{x}_{m}^{T} \cdot \sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n} - \beta_{0} \sum_{n=1}^{N} \alpha_{n} y_{n} + \sum_{n=1}^{N} \alpha_{n}$$

$$= \sum_{n=1}^{N} \alpha_{n} - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} \alpha_{n} \alpha_{m} y_{n} y_{m} \mathbf{x}_{n}^{T} \mathbf{x}_{m}$$

B Mortazavi CSE

4) Maximize the Lagrangian with respect to dual variables (dual problem)

$$\max_{\alpha_n} \left\{ \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} \alpha_n \alpha_m y_n y_m \mathbf{x}_n^T \mathbf{x}_m \right\}$$

s.t.
$$\sum_{n=1}^{N} \alpha_n y_n = 0$$
 and $0 \le \alpha_n \le C$, for $n = 1, ..., N$

- Solved numerically using quadratic optimization methods
- $\alpha_n = 0$: instances at the correct side of the hyperplane with sufficient margin
- $\alpha_n > 0$: support vectors
 - $0 < \alpha_n < C$: instances lying on the margin
 - $\alpha_n = C$: instances in the margin or misclassified

Support Vector Machines: Hinge Loss

- Decision rule: $f(\mathbf{x}) = \operatorname{sign}(\beta^T \mathbf{x} + \beta_0)$
 - $f(\mathbf{x}) = 1$, if $\beta^T \mathbf{x} + \beta_0 > 0$
 - $f(\mathbf{x}) = -1$, if $\beta^T \mathbf{x} + \beta_0 < 0$
- If $f(\mathbf{x})$ is the output and y_n the actual label

$$I^{\text{hinge}}(f(\mathbf{x}), y) = \begin{cases} 0 & \text{if } y(\beta^T \mathbf{x} + \beta_0) \ge 1 \\ 1 - y(\beta^T \mathbf{x} + \beta_0) & \text{otherwise} \end{cases}$$

Intuition: penalize more if incorrectly classified

Support Vector Machines: Tuning C

So far

- SVM aims at finding the hyperplane from which instances have a margin of distance
- Prime and dual problem formulation (Lagrange multiplies)
- Support vectors: instances closest to separating hyperplane
- Linearly separable case: maximize margin of separation between two classes
- Non-separable case: look for the hyperplane that yields the least error (soft error)
 - Prime: minimizes Lagrangian wrt the primal variables of the problem
 - Dual: maximizes Lagrangian wrt multipliers

Takeaways and Next Time

- Support Vector Machines
- Next Time: Support Vector Machines Kernels