Examenul de bacalaureat național 2013 Proba E. c) Matematică *M șt-nat*

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte

- **5p** | **1.** Calculați produsul primilor trei termeni ai progresiei aritmetice $(a_n)_{n\geq 1}$, știind că $a_1=2$ și $a_2=1$.
- **5p** 2. Determinați valorile reale ale lui m pentru care $x^2 2x m > 0$, oricare ar fi $x \in \mathbb{R}$.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $\log_2 x + \log_2 (x-1) = \log_2 12$.
- **5p 4.** Calculați probabilitatea ca, alegând la întâmplare un număr natural de trei cifre, produsul cifrelor acestuia să fie egal cu 3.
- **5p** | **5.** Calculați $\vec{a} \cdot \vec{b}$, știind că $|\vec{a}| = 2$, $|\vec{b}| = 3$ și unghiul vectorilor \vec{a} și \vec{b} are măsura $\frac{\pi}{3}$.
- **5p 6.** În reperul cartezian xOy se consideră punctele A(1,3), B(0,1) și C(3,1). Determinați coordonatele ortocentrului triunghiului ABC.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Pentru n număr natural se consideră matricea $A = \begin{pmatrix} 0 & 0 & 1 \\ 2n+1 & n & 1 \\ 2n^2+1 & n^2 & 1 \end{pmatrix}$.
- **5p** a) Calculați suma elementelor matricei A.
- **5p b)** Determinați numerele naturale n pentru care matricea A are determinantul diferit de zero.
- **5p** c) În reperul cartezian xOy se consideră punctele O(0,0) și $A_n(2n+1,n)$, $n \in \mathbb{N}$, $n \ge 2$. Determinați valorile numărului natural n, $n \ge 2$ pentru care aria triunghiului $OA_nA_{n^2}$ este egală cu $n^2 3$.
 - **2.** Pe mulțimea numerelor reale se consideră legea de compoziție $x \circ y = x + ay + 1$, unde $a \in \mathbb{R}$.
- **5p** | **a**) Pentru a = 1 calculați $2011 \circ 2012$.
- **5p b)** Determinați numărul real a pentru care legea de compoziție " \circ " este asociativă.
- **5p** c) Pentru a = -1 rezolvați în mulțimea numerelor reale ecuația $4^x \circ 2^x = 1$.

SUBIECTUL al III-lea (30 de puncte)

- 1. Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x + \ln x$.
- **5p** a) Arătați că $\lim_{x\to 2} \frac{f(x) f(2)}{x 2} = \frac{3}{2}$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 1.
- **5p** c) Demonstrați că funcția f este concavă pe $(0, +\infty)$.
 - **2.** Pentru fiecare număr natural nenul n se consideră funcția $f_n: \mathbb{R} \to \mathbb{R}$, $f_n(x) = (x+n)e^x$.
- **5p** a) Calculați $\int_{0}^{1} f_1(x) dx$.
- **5p b)** Arătați că funcția f_{2011} este o primitivă a funcției f_{2012} .
- **5p** c) Demonstrați că $\int_{0}^{1} f_n(x) dx \ge \frac{9n+5}{6}$, pentru orice număr natural nenul n, folosind eventual inegalitatea $e^x \ge x+1$, adevărată pentru orice $x \in \mathbb{R}$.