VE414 Lecture 12

Jing Liu

UM-SJTU Joint Institute

October 21, 2019

• Consider a small town, in which 30% of the married women get divorced each year and 20% of the single women get married each year.

$$\mathbf{w}_1 = \mathbf{A}\mathbf{w}_0$$
 where $\mathbf{A} = \begin{bmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{bmatrix}$ and $\mathbf{w}_0 = \begin{bmatrix} 800 \\ 200 \end{bmatrix}$

Q: Consider the following Julia outputs, what do you notice?

$$julia > A = [0.7 \ 0.2; \ 0.3 \ 0.8]$$

$$julia > w0 = [800; 200]$$

```
2-element Array{Int64,1}:
800
200
```

```
julia > A * w0
2-element Array {Float64,1}:
 600.0
 400.0
julia > A^2 * w0
2-element Array{Float64,1}:
 499.999999999994
 500.0
julia > A^4 * w0
2-element Array {Float64,1}:
 425.0
 575.0
```

```
julia > A^8 * w0
2-element Array {Float64,1}:
 401.56250000000006
 598.4375000000002
julia > A^16 * w0
2-element Array{Float64,1}:
 400.00610351562517
 599.9938964843755
julia > A^20 * w0
2-element Array {Float64,1}:
 400.0003814697268
 599.9996185302739
```

```
julia > A^20 * w0
  2-element Array {Float64,1}:
   400.0003814697268
   599.9996185302739
  julia > A^40 * w0
  2-element Array {Float64,1}:
   400.000000003645
   599.999999996372
• It seems the Markov Chain \{\mathbf{w}_0, \mathbf{w}_1, \dots, \} converges to [400, 600]^T
  julia > A^80 * w0
  2-element Array {Float64,1}:
   400.00000000000136
   600.000000000002
```

```
julia > w0 = [123; 877]; A^80 * w0
2-element Array {Float64,1}:
 400.000000000014
 600.0000000000023
julia > w0 = [877; 123]; A^80 * w0
2-element Array {Float64,1}:
 400.00000000000136
 600.0000000000022
julia > w0 = [159; 841]; A^80 * w0
2-element Array {Float64,1}:
 400.000000000014
 600.0000000000023
```

ullet And it seems it converges to the same limit independent of the initial \mathbf{w}_0 .

Of course, people get married and get divorced change from year to year

$$\mathbf{w}_k \to \begin{bmatrix} 400\\ 600 \end{bmatrix}$$
 as $k \to \infty$

however, it seems the proportion/probability reminds the same, if we set

$$\mathbf{p}_k = \frac{1}{1000} \mathbf{w}_k$$

then p_k is essentially the pmf of being married or single at the kth year.

• Let X=0 denote married and X=1 as single, and

$$\pi_X(x) = \begin{cases} 0.4 & \text{for } x = 0, \\ 0.6 & \text{for } x = 1, \end{cases}$$

then $X_{k-1} \sim \pi_X$ implies $X_k \sim \pi_X$.

ullet Distributions π_X are called invariant, stationary or equilibrium distribution.

ullet For this simple model, where $\mathcal{D}=\{0,1\}$, convergence is easy to show

$$\mathbf{p}_k = \mathbf{A}^k \mathbf{p}_0 = \mathbf{A}^k \left(\alpha_{10} \mathbf{v}_1 + \alpha_{20} \mathbf{v}_2 \right)$$

where \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors of \mathbf{A} corresponding eigenvalues λ_1 and λ_2 .

2-element Array{Float64,1}:

0.5

1.0

which leads to the following convergence result as $k \to \infty$,

$$\mathbf{p}_{k} = \alpha_{10} \mathbf{A}^{k} \mathbf{v}_{1} + \alpha_{20} \mathbf{A}^{k} \mathbf{v}_{2} = \alpha_{10} \left(\frac{1}{2}\right)^{k} \mathbf{v}_{1} + \alpha_{20} \left(1\right)^{k} \mathbf{v}_{2} \to a_{20} \mathbf{v}_{2} = \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix}$$

Q: In this simple case, we can easily identify the conditions lead to convergence, but what is the general condition under which a Markov chain will converge?

• Note this example can be understood in terms of a different Markov chain,

by thinking in terms of individual marriage status, then the matrix

$$\mathbf{A} = \begin{bmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{bmatrix}$$

is closely related to the transition matrix of this new Markov chain

$$P = A^T$$

• Let π_k be the column vector consists of $f_{X_k}(j) = \Pr(X_k = j \mid X_0)$, then

$$oldsymbol{\pi}_k^{\mathrm{T}} = oldsymbol{\pi}_0^{\mathrm{T}} \mathbf{P}^k$$
 where $oldsymbol{\pi}_0$ denote the initial condition

Q: What does each component of π_k represent? How about $\lim_{k \to \infty} \pi_k$?

• The convergence result on the proportions,

$$\mathbf{p}_{k} = \mathbf{A}^{k} \mathbf{p}_{0} = \alpha_{10} \left(\frac{1}{2}\right)^{k} \mathbf{v}_{1} + \alpha_{20} \left(1\right)^{k} \mathbf{v}_{2} \to \alpha_{20} \mathbf{v}_{2} \quad \text{as} \quad k \to \infty$$

$$\to \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix} = \mathbf{p}_{\infty} \quad \text{as} \quad k \to \infty$$

i.e. 40% of women are married and 60% of women are single for a large k,

$$oldsymbol{\pi}_k^{\mathrm{T}} = oldsymbol{\pi}_0^{\mathrm{T}} \mathbf{P}^k = \mathbf{p}_0^{\mathrm{T}} \mathbf{P}^k = \left(\left(\mathbf{P}^k \right)^{\mathrm{T}} \mathbf{p}_0 \right)^{\mathrm{T}} = \left(\mathbf{A}^k \mathbf{p}_0 \right)^{\mathrm{T}} \ o \mathbf{p}_{\infty}^{\mathrm{T}} \implies oldsymbol{\pi}_{\infty} = \mathbf{p}_{\infty}$$

which means any individual has a 40% chance of being married for a large k.

- It is easier to grasp the concept of convergence and show convergence for a specific Markov chain using eigenvalues and eigenvectors. But doing so for a general Markov chain will either require too much maths or too little insight.
- We are interested in properties of Markov chains that lead to convergence in general rather than a tool to determine whether a specific chain converges.

Q: Would a Markov chain $\{X_k\}$ with the following transition matrix converge

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

having the above transition matrix means the two states are disconnected,

In this case, the chain is trapped in one of the two absorbing states

$$X_k = X_0,$$
 for all $k \ge 0$.

so what it converges to depends on on the initial state/distribution.

• We do not include those like the one above as having a limiting distribution.

Definition

The distribution f_X is called the limiting distribution of the Markov chain $\{X_n\}$ if

$$f_X(j) = \lim_{k \to \infty} \Pr\left(X_k = j \mid X_0 = i\right)$$

for all i and j in the state space \mathcal{S} , and it is often denoted by

$$\pi_X = f_X$$

or in terms of a vector

$$\boldsymbol{\pi}^{\mathrm{T}} = \begin{bmatrix} \pi_0 & \pi_1 & \pi_2 & \cdots \end{bmatrix}$$

where

$$\pi_j = \lim_{k \to \infty} \Pr\left(X_k = j \mid X_0 = i\right)$$

ullet When a limiting distribution exists, it does't depend on the initial state $X_0.$

Q: Would a Markov chain $\{X_k\}$ with the following transition matrix converge

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

having the above transition matrix means it has a periodic behaviour,

$$X_{k+2} = X_k$$
, for all $k \ge 0$.

• In particular, $X_k = \begin{cases} X_0 & \text{if } n \text{ is even,} \\ X_1 & \text{if } n \text{ is odd,} \end{cases}$ so it will NOT converge to a single

$$\pi_{\infty}$$

thus no limit, furthermore it also depends on the initial state/distribution.

ullet For example, consider the limit when $m{\pi}_0=egin{bmatrix}1\\0\end{bmatrix}$, and then when $m{\pi}_0=egin{bmatrix}0\\1\end{bmatrix}$.

Definition

Let \gcd denote the greatest common divisor of the integers in the set, then

$$d(i) = \gcd\{n \ge 1 \mid \Pr(X_n = i \mid X_0 = i) > 0\}$$

is known as the period of a state i.

- If d(i) > 1, we say the state i is periodic.
- If d(i) = 1, we say the state i is aperiodic.

Q: Let a state be period k, is it always possible to return to the state in k steps?

• All states in the same communicating class have the same period.

$$i \leftrightarrow j \iff d(i) = d(j)$$

- A class is said to be a/periodic if its states are a/periodic.
- Finally, a Markov chain is said to be aperiodic if all of its states are aperiodic.

Q: Is the following Markov chain periodic?

Q: How about the following?

where having an arrow mean the transition probability is nonzero.

Finite Markov Chains

We have seen no limiting distribution exist if there are two absorbing states

and no limiting distribution exist if there are two absorbing states

• It is not difficult to extend the above findings for classes rather than states.

Theorem

Suppose $\{X_k\}$ is a finite Markov chain, that is, the state space of $\{X_k\}$ is finite. If the chain is irreducible and aperiodic, then the limiting distribution exists.

 \bullet Consider a Markov chain $\{X_k, k \geq 0\}$ with two possible states $\mathcal{S} = \{0, 1\}$

$$\mathbf{P} = \begin{bmatrix} 1 - a & a \\ b & 1 - b \end{bmatrix}$$

where a and b are two real numbers in the interval [0,1] such that

$$0 < a + b < 2$$

Q: Does this Markov chain have a limiting distribution?

Q: What is the limiting distribution π of this Markov chain?

Q: What are the mean return times m_0 and m_1 for this Markov chain?

Q: Do you notice the connection between π and the mean return times?

Definition

The state i is known as recurrent if $h_{ii} = 1$, and transient if $h_{ii} < 1$, where

$$h_{ii} = \Pr\left(X_k = i \mid X_0 = i\right)$$
 for some $k \ge 1$.