1 nalen

$$x \in y$$
 .7 $x \subseteq y$.3 $x \in y$.2 $x \subseteq y$.8

ה.
$$x \subseteq y$$
 ז $x \subseteq y$ ח. שניהם. $x \subseteq y$

2 nalen

א. מהגדרת ⊕,

$$A \oplus B = (A - B) \cup (B - A)$$

לפי ההדרכה לשאלה, נבחר U המכילה את A,B ונרשום

$$= (A \cap B') \cup (B \cap A')$$

בעזרת דיסטריבוטיביות החיתוך מעל האיחוד (עמי 17 בספר הלימוד)

$$= (A \cup B) \cap (A \cup A') \cap (B' \cup B) \cap (B' \cup A')$$

 $A \cup A' = B \cup B' = U$ לפי טענה בתחתית עמי 22 בספר,

לפי שאלה 1.11 בעמי 16 בספר, ניתן לזרוק את U מהחיתוך.

נקבל בהמשך לשוויון המקורי,

$$= (A \cup B) \cap (B' \cup A')$$

בעזרת כלל דה-מורגן (סעיף 1.4.3 בספר)

$$= (A \cup B) \cap (B \cap A)'$$

ולבסוף, שוב לפי ההדרכה לשאלה

$$= (A \cup B) - (B \cap A)$$

ב. נתחיל בעזרת ההדרכה לשאלה:

$$(A-B)\cup (B-C)=(A\cap B')\cup (B\cap C')$$

: מכאן בעזרת שימוש חוזר בפילוג (דיסטריבוטיביות, סעיף 1.3.4 בספר) של האיחוד מעל החיתוך

$$= (A \cup B) \cap (A \cup C') \cap (B' \cup B) \cap (B' \cup C')$$

 $B' \cup B$ נזרוק את $B' \cup B$ (נימוק רי בצעד דומה בהוכחת סעיף אי למעלה)

$$= (A \cup B) \cap (A \cup C') \cap (B' \cup C')$$

שימוש בכלל דה-מורגן בגורם הימני, וכינוס שני האיברים השמאליים בעזרת חוק הפילוג:

$$= (A \cup (B \cap C')) \cap (B \cap C)'$$

ובעזרת ההדרכה לשאלה

$$= (A \cup (B - C)) - (B \cap C)$$

ג. נתחיל בעזרת ההדרכה לשאלה:

$$(A-B)\cap (C-D)=(A\cap B')\cap (C\cap D')$$

בעזרת קיבוץ (אסוציאטיביות) וחילוף (קומוטטיביות, עמי 15 בספר) החיתוך

$$= (A \cap C) \cap (B' \cap D')$$

ולפי כלל דה-מורגן:

$$= (A \cap C) \cap (B \cup D)'$$

ושוב לפי ההדרכה לשאלה:

$$= (A \cap C) - (B \cup D)$$

3 noien

 $A:A: \mathcal{A}$ נבצע בשני האגפים הפרש סימטרי עם . $X \oplus A = Y \oplus A$ א.

$$(X \oplus A) \oplus A = (Y \oplus A) \oplus A$$

לפי שאלה 1.22 (אסוציאטיביות) נקבל

$$X \oplus (A \oplus A) = Y \oplus (A \oplus A)$$

: ולכן קיבלנו , $A \oplus A = \emptyset$, ואלה, שאלה בי באותה

$$X \oplus \emptyset = Y \oplus \emptyset$$

ולפי טענה אחרת באותו סעיף (הפרש סימטרי עם הקבוצה הריקה) קיבלנו

$$X = Y$$

, (שוב 22.12) הערה: הפרש סימטרי הוא פעולה חילופית

X=Y אז $A\oplus X=A\oplus Y$ אם אכן כלומר: אם משמאל, משמאל לצמצם אווכל לצמצם לכן קיבלנו

- $A \oplus A = arnothing$: ב. כיוון אחד (אם A = B מיידי משאלה ב. כיוון אחד (אם
- $A \oplus A = \emptyset$ כיוון שני : אם $A \oplus B = A \oplus A$ משמע $A \oplus B = \emptyset$ כיוון שני

A = A : B = A בסעיף אי: מכאן לפי כלל הצמצום משמאל שהוכחנו

ים ופרטים) אם (השלימו הפרטים) אם אם A=B' אם אם A=B' אם אם אם אם אם אוניעזר בשאלה א

כיוון שני: נובע מהכיוון הראשון בעזרת כלל הצמצום, בדומה לסעיף ב׳:

 $A \oplus A' = U$, גניח של סעיף הראשון בכיוון האמור בכיוון . $A \oplus B = U$ נניח

. B=A' : לכן אי: $A\oplus B=A\oplus A'$ לפי כלל הצמצום מסעיף אי

ד. כיוון אחד: אם $\varnothing=B$ אז אB=A לפי שאלה ב1.22 (הפרש סימטרי עם הקבוצה .. כיוון אחד: אם מהכיוון הראשון בעזרת כלל הצמצום, בדומה לסעיפים ב, ג.

4 22167

n אי הכפולות של , $B_n = \{n \cdot k \mid k \in \mathbf{N}^*\}$ א.

$$B_n \cap B_m = \{nk \mid k \in \mathbb{N}^*\} \cap \{ms \mid s \in \mathbb{N}^*\}$$

:משמע: c(n,m)ב מתחלק מתחלק של אבר שכל שכל נובע נובע שבהדרכה, לפי מכאן, לפי

$$B_n \cap B_m \subseteq B_{c(n,m)}$$

c(n,m) - מצד שני, $x \in B_{c(n,m)}$ יהי משמע, $x \in B_{c(n,m)}$

לפיכך . m -ב והן ב- n והן ב- n לכן .m -ב והן ב- n והן ב- n לפיכך

$$B_{c(n,m)} \subseteq B_n \cap B_m$$

. $B_n \cap B_m = B_{c(n,m)}$: משתי ההכלות

על תכונות הכפולה המשותפת המינימלית ראו

http://mathworld.wolfram.com/LeastCommonMultiple.html

http://en.wikipedia.org/wiki/Least_common_multiple

 $m\in \mathbb{N}$ הייל. יהי m אינו שייך לחיתוך הנ"ל. m , $m\in \mathbb{N}$ ב. בראה כי לכל m , $m\in \mathbb{N}$ אינו שייך לחיתוך הנ"ל. $m\notin B_{m+1}$ כללית, מהגדרת $m\notin B_{m+1}$ כל אברי $m\notin B_m$ גדולים או שווים

.לפיכך m אינו שייך לחיתוך כל ה- B_n -ים

ג. קבוצה זו היא קבוצת המספרים הראשוניים. נוכיח זאת:

. $D_n = \varnothing$ יהי נוכיח מספר מספר מספר מספר $n \in \mathbb{N}^*$ יהי יהי כיוון אחד:

: כזה: x נראה שלא ייתכן , $x \in D_n$ יהי

. n = km - כך ש- , 1 < m, k < n , $m, k \in \mathbf{N}^*$ כך ש- ההנחה ש- n

 $x \in B_m$ בפרט . m -ב מתחלק ב- n מתחלק ב- , m בפרט מספר מכיון ש- מכיון ש

. מכיון ש- אז מהגדרת D_n נקבל כי $x \notin D_n$ בסתירה להנחה. מכיון ש-

. ריקה שאינו ש- D_n שאינו ראשוני D_n

 $n \in D_n$ ולכן בפרט ווי, נראה כי $n \in D_n$ מצד שני, אם אם ראשוני, נראה כי

 $n \in B_n$ מתקיים $n \in \mathbf{N} *$

 $n \notin B_m$ ולכן , m ב- אינו מתחלק ב- n אינו n טבעי המקיים א טבעי המקיים n

. מהגדרת D_n נקבל אפוא כי $n\in D_n$ ולכן D_n אינה ריקה

משני הכיוונים יחד, הראינו שקבוצת ערכי nעבור שקבוצת יחד, היא משני משני משני משני

הראשוניים.

איתי הראבן