Лекция 10. Степенные ряды (продолжение).

$$\sum_{n=0}^{\infty} c_n (z - z_0)^n \tag{1}$$

Теорема 3 (Абель). Если степенной ряд (1) сходится в точке $z_1 \neq z_0$, то он сходится равномерно на отрезке $\Delta_{z_0,z_1} = \{z \in \mathbb{C} : z = z_0 + t(z_1 - z_0), \ t \in [0,1]\}.$

▲ Последовательность $\{t^n\}$ монотонна $\forall t \in [0,1]$ и равномерно ограничена на [0,1]. По условию $\sum_{n=0}^{\infty} c_n (z_1 - z_0)^n$ сходится. Поэтому по прищнаку Абеля для функциональных рядов ряд вида $\sum_{n=0}^{\infty} c_n (z_1 - z_0)^n t^n$ сходится равномерно на [0,1]. Сделав замену $t = \frac{z-z_0}{z_1-z_0}$, получим ряд (1). Следовательно, ряд (1) сходится равномерно на Δ_{z_0,z_1} . \blacksquare

Замечание. Если $z \in B_R(z_0)$, то теорема Абеля следует из теоремы 2.

Лемма. Степенные ряды

$$\sum_{n=0}^{\infty} c_n (z - z_0)^n, \quad \sum_{n=1}^{\infty} n c_n (z - z_0)^{n-1}, \quad \sum_{n=0}^{\infty} \frac{c_n}{n+1} (z - z_0)^{n+1}$$

имеют одинаковый радиус сходимости.

▲ Обозначим радиус сходимости первого ряда через R. Т.к. $\lim_{n\to\infty} \sqrt[n]{n} = 1$, то множества частичных пределов последовательностей $\left\{\sqrt[n]{|c_n|}\right\}$ и $\left\{\sqrt[n]{|c_n|}\right\}$ совпадают и, значит,

$$\overline{\lim}_{n \to \infty} \sqrt[n]{n|c_n|} = \overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|}$$

По формуле Коши-Адамара радиус сходимости ряда $\sum_{n=0}^{\infty} nc_n(z-z_0)^n$ равен R, следовательно и радиус сходимости второго ряда равен R. Первый ряд получается из третьего почленным дифференцированием \Rightarrow радиусы сходимости этих рядов совпадают.

Теорема 4. Если $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$ - сумма степенного ряда с радиусом сходимости R>0, то f бесконечно дифференцируема в круге сходимости $B_R(z_0)$, причем в $\forall m\in\mathbb{N}$ в этом круге имеет место равенство

$$f^{(m)}(z) = \sum_{n=m}^{\infty} n(n-1)\dots(n-m+1)c_n(z-z_0)^{n-m}$$

 \blacktriangle По лемме 1 при дифференцировании радиус сходимости степенного ряда не меняется, поэтому достаточно доказать утверждение для m=1 и применить индукцию. Без ограничения общности можно считать $z_0=0$.

Возьмем $w \in B_R(0)$ и покажем, что производная функции $f(z) = \sum_{n=0}^{\infty} c_n z^n$ в точке w равна числу l, где

$$l = \sum_{n=0}^{\infty} nc_n w^{n-1}$$

Зафиксируем r так, чтобы |w| < r < R. Для $z \neq w, |z| < r$ рассмотрим разность

$$\frac{f(z) - f(w)}{z - w} - l = \sum_{n=0}^{\infty} c_n \left(\frac{z^n - w^n}{z - w} - nw^{n-1} \right) = \sum_{n=0}^{\infty} c_n \left(z^{n-1} + z^{n-2}w + \dots + zw^{n-2} + w^{n-1} - nw^{n-1} \right)$$
(2)

Перепишем выражение в скобках в следующем виде:

$$(z^{n-1} - w^{n-1}) + w(z^{n-2} - w^{n-2}) + \ldots + w^{n-2}(z - w) =$$

$$= (z - w) \left[(z^{n-2} + z^{n-3}w + \ldots + w^{n-2}) + w(z^{n-3} + z^{n-4}w + \ldots + w^{n-3}) + \ldots + w^{n-2} \right]$$

Т.к. $(n-1)+(n-2)+\ldots+1=\frac{n(n-1)}{2},$ то для n-го члена (2) справедливо

$$\left| c_n(z^{n-1} + z^{n-2}w + \ldots + w^{n-1} - nw^{n-1}) \right| \le |z - w| |c_n| \frac{n(n-1)}{2} r^{n-2}$$

Ряд $\sum_{n=2}^{\infty} |c_n| \frac{n(n-1)}{2} r^{n-2}$ сходится, т.к. r < R и дважды дифференцированный ряд имеет радиус сходимости R.

$$\left| \frac{f(z) - f(w)}{z - w} - l \right| \le |z - w| \sum_{n=2}^{\infty} \frac{n(n-1)}{2} |c_n| r^{n-2} \to 0, \ z \to w$$

и, значит, $\exists\lim_{z\to w} \frac{f(z)-f(w)}{z-w}=l$. \blacksquare Следствие 1. Степенной ряд (1) с радиусом сходимости R>0 имеет в круге сходимости первообразную

$$F(z) = C + \sum_{n=0}^{\infty} \frac{c_n}{n+1} (z - z_0)^{n+1}$$

Следствие 2. Если степенной (1) имеет радиус сходимости R > 0, то его коэффициенты однозначно определяются по формуле

 $c_m = \frac{f^{(m)}(z_0)}{m!}, m = 0, 1, 2, \dots$

Следствие 3 (теорема единственности). Если степенные ряды $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ и $\sum_{n=0}^{\infty} b_n (z-z_0)^n$ сходятся в некотором круге $B_{\delta}(z_0)$, и их суммы в $B_{\delta}(z_0)$ совпадают, то $a_n=b_n,\ n=0,1,2,\ldots$

Определение. Если функция f в точке z_0 имеет производные всех порядков, то степенной ряд вида

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

называется рядом Тейлора функции f в точке z_0 . Для $z_0=0$ называется рядом Маклорена.

Действительные степенные ряды. Представление функций рядом Тейлора.

Будем говорить, что функция f на промежутке $I\subset\mathbb{R}$ представима в виде ряда $\sum\limits_{n=0}^{\infty}a_n(x-x_0)^n,$ если ряд сходится на и f является его суммой на I. Промежуток $(x_0 - R, x_0 + R)$ назовём интервалом сходимости степенного ряда.