mlads 6주차 정리

- 1. gradient
- : 스칼라장의 최대의 증가율을 보여주는 벡터장
- 2. gradient descent(경사 하강법)
- : gradient를 계산해 minima를 찾는 방법으로 gradient를 계산하고 그 반대 방향으로 간다.

$$w := w - \alpha \frac{\partial c}{\partial w}$$

local minnimum, saddle point(미분계수가 0이지만 극대 극소가 아님)에 빠질 가능성이 있다.

- 3. GD, SGD와 mini-batch GD 세가지가 있다.
- 첫 번째는 모든 점 이용
- 두 번째는 점 하나만 이용, 단 noise가 클 수 있다.
- 세 번째는 점 일부만 이용
- 난 이렇게 배웠지만 사람마다 다르게 쓰이기도 한다.

4. 최적화 방법들

5. 과적합과 과소적합

과적합은 데이터의 bias까지 너무 학습해서 읿반화가 어려운 상태를 말함. 과소적합은 모델의 성능이 training 단계부터 별로인걸 말함

6. bias와 variance

7. bias-variance trade-off

- 8. 과적합 막기.
- (1) Regularization: term을 추가해 오버피팅 막음

- Ridge: $R(w) = ||w||^2 = w_1^2 + \dots + w_n^2$
- Lasso: $R(w) = ||w||_1 = |w_1| + \cdots + |w_n|$
- Elastic Net: $R(w) = \lambda_2 ||w||^2 + \lambda_1 ||w||_1$

(2) Dropout

DNN에서 링크 몇 개를 랜덤으로 끊기

(3) Batch-normalization

배치 정규화 논문에서는 학습에서 불안정화가 일어나는 이유를 'Internal Covariance Shift' 라고 주장하고 있는데, 이는 네트워크의 각 레이어나 Activation 마다 입력값의 분산이 달라 지는 현상을 뜻한다.

이를 해결하기 위해 배치 정규화는 평균과 분산을 조정하는 과정이 별도의 과정으로 떼지 말고 신경망 안에 포함되어 학습 시 평균과 분산을 조정한다.