Maths pour l'image : algèbre linéaire et géométrie Fiche d'exercices 2 - applications linéaires

Exercice 1

f,g,h sont des applications de \mathbb{R}^3 dans \mathbb{R}^3 définies comme suit. Sont-elles linéaires?

- 1. f(x, y, z) = (2x, y + z, 2x + 5y z)
- 2. g(x, y, z) = (y + 3z, 2y 4x, xz)
- 3. h(x, y, z) = (x, y, z + 1)

Exercice 2

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ avec f(x, y, z) = (x + 2y - z, x + y + z, z) et $\{e_1, e_2, e_3\}$ la base canonique de \mathbb{R}^3 .

- 1. Montrer que f est linéaire
- 2. Déterminer $f(e_1), f(e_2), f(e_3)$
- 3. Déterminer $Ker\ f$ et $Im\ f$

Exercice 3

Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ une application linéaire avec f(1,1,0)=(1,0), f(1,-1,0)=(-1,2) et f(1,0,1)=(0,2). Soit $\{e_1,e_2,e_3\}$ la base canonique de \mathbb{R}^3 . Trouver les images par f de e_1 , e_2 et e_3 .

Exercice 4

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ une application linéaire et $\{e_1, e_2, e_3\}$ la base canonique de \mathbb{R}^3 . On sait que $f(e_1) = (1, 2, 3), f(e_2) = (1, 0, 1), f(e_3) = (0, 1, 1).$

- 1. Déterminer l'image par f de $(x, y, z) \in \mathbb{R}^3$
- 2. Déterminer $Ker\ f$ et $Im\ f$

Exercice 5

Soient E, F, G des \mathbb{R} -espaces vectoriels, $f: E \to F, g: E \to F, h: F \to G$ des applications linéaires et $\lambda \in \mathbb{R}$. Montrer que les applications suivantes sont linéaires :

- 1. $f + g : E \to F$, f + g(v) = f(v) + g(v)
- 2. $\lambda f : E \to F, \lambda f(v) = \lambda \cdot f(v)$
- 3. $h \circ g : E \to G$, $h \circ g(v) = h(g(v))$