Software and engineering efforts at NYU Center for Data Science

Andreas Mueller

About me

Research Engineer @ NYU since 2014

Spend most on my time on scikit-learn

About the NYU Center for Data Science

Statistics

Inference

Big Data Technologies

Machine Learning

Python

Data management

Probabilistic Modeling

Sociology

Statistics

Inference

Big Data Technologies

Machine Learning

Python

Data management

Probabilistic Modeling

Urban Science

Business

Economics

Biology

Politics

Sociology

Neuroscience

Psychology

Master of Data Science

Moore-Sloan Data Science Environment

Master of Data Science

Class of 2015

Class of 2016

Master of Data Science

Class of 2015

Class of 2016

Class of 2017 66 Students

Statistics

Inference

Big Data Technologies

Machine Learning

Python

Data management

Probabilistic Modeling

Sociology

Statistics

Inference

Big Data Technologies

Machine Learning

Python

Data management

Probabilistic Modeling

Urban Science

Business

Economics

Biology

Politics

Sociology

Neuroscience

Psychology

Build bridges between methods and applications.

Build bridges between methods and applications. Create career paths for data scientists.

Build bridges between methods and applications.

Create career paths for data scientists.

Provide an ecosystem of open tools for data driven research.

MSDSE @ NYU

Fellows

Research Engineers

Ethnography

Connection to Library Sciences

- New position 50/50 CDS and Library
- Data provenance
- Metadata conventions
- Data handling, storage and versioning

Reproducibility and Open Science Working Group

Juliana Freire

Remi Rampin

Kyle Cranmer

ReproZip

ON THE ORIGINAL MACHINE

```
$ pip install reprozip
$ reprozip trace ./myexperiment -my --options inputs/somefile.csv other_file_here.bin
experiment: 0%... 25%... 50%... 75%... 100%
result: 42.137
Configuration file written in .reprozip/config.yml
Edit that file then run the packer -- use 'reprozip pack -h' for help
$ reprozip pack my_experiment.rpz
[REPROZIP] 17:26:42.588 INFO: Creating pack my_experiment.rpz...
[REPROZIP] 17:26:42.589 INFO: Adding files from package coreutils...
[REPROZIP] 17:26:42.601 INFO: Adding files from package libc6...
[REPROZIP] 17:26:43.450 INFO: Adding other files...
[REPROZIP] 17:26:43.450 INFO: Adding metadata...
```

ON ANOTHER MACHINE

```
$ pip install reprounzip[all]
$ reprounzip vagrant setup my_experiment.rpz mydirectory
Bringing machine 'default' up with 'virtualbox' provider...
==> default: Importing base box 'remram/debian-7-amd64'...
==> default: Booting VM...
==> default: Machine booted and ready!
==> default: Running provisioner: shell...
$ reprounzip vagrant run mydirectory
experiment: 0%... 25%... 50%... 75%... 100%
result: 42.137
$ reprounzip vagrant upload /tmp/new_config:global-config
$ reprounzip vagrant run mydirectory --cmdline ./myexperiment --other --options
inputs/somefile.csv
experiment: 0%... 25%... 50%... 75%... 100%
result: -17.814
```

VisTrails

Workflow and Provenance for Visualization and Data Exploration

VisTrails sklearn plugin

Software Working Group

Goals:

- Outreach to "Domain Sciences" to help with data sciences
- Education about software development
- Build and Support infrastructure for science
- Build community around software development at NYU

Software Working Group

- Chair: Claudio Silva
- Resources:
 - Me (for the first year)
 - Stefan Karpinski (started this summer)
 - Heiko Mueller (starting now)
 - Two more to come
- Six master students started this summer.

Successes

Machine Learning with Scikit Learn | SciPy 2015 Tutorial | Andreas Mueller & Kyle Kastner Part I

von Enthought vor 3 Monaten • 6.995 Aufrufe

HD

Machine Learning with Scikit Learn | SciPy 2015 Tutorial | Andreas Mueller & Kyle Kastner Part II

von Enthought vor 3 Monaten • 1.503 Aufrufe

HD

Scikit Learn Workshop with Andreas Mueller 3-30-2015

von NYC Data Science Academy

vor 6 Monaten • 1.608 Aufrufe

Scikit-learn is a machine learning library in Python, that has become a valuable tool for many data science practitioners. This talk ...

HD

Large scale non-linear learning on a single CPU

von Next Day Video

vor 2 Monaten • 763 Aufrufe

Andreas Mueller http://www.pyvideo.org/video/3809/large-scale-non-linear-... ...

Scikit Learn Workshop with Andreas Mueller 3-30-2015

von NYC Data Science Academy

vor 6 Monaten • 1.608 Aufrufe

Scikit-learn is a machine learning library in Python, that has become a valuable tool for many data science practitioners. This talk ...

HD

Voter Ethnicity Prediction (Tian Wang)

name	rank	count	prop100k	cum_prop100k	pctwhite	pctblack	pctapi	pctaian	pct2prace	pcthispanic
SMITH	1	2376206	880.85	880.85	73.35	22.22	0.4	0.85	1.63	1.56
JOHNSON	2	1857160	688.44	1569.3	61.55	33.8	0.42	0.91	1.82	1.5
WILLIAMS	3	1534042	568.66	2137.96	48.52	46.72	0.37	0.78	2.01	1.6
BROWN	4	1380145	511.62	2649.58	60.71	34.54	0.41	0.83	1.86	1.64
JONES	5	1362755	505.17	3154.75	57.69	37.73	0.35	0.94	1.85	1.44
MILLER	6	1127803	418.07	3572.82	85.81	10.41	0.42	0.63	1.31	1.43
DAVIS	7	1072335	397.51	3970.33	64.73	30.77	0.4	0.79	1.73	1.58
GARCIA	8	858289	318.17	4288.5	6.17	0.49	1.43	0.58	0.51	90.81
RODRIGUEZ	9	804240	298.13	4586.62	5.52	0.54	0.58	0.24	0.41	92.7
WILSON	10	783051	290.27	4876.9	69.72	25.32	0.46	1.03	1.74	1.73
MARTINEZ	11	775072	287.32	5164.22	6.04	0.52	0.6	0.64	0.46	91.72
ANDERSON	12	762394	282.62	5446.83	77.6	18.06	0.48	0.7	1.59	1.58
TAYLOR	13	720370	267.04	5713.87	67.8	27.67	0.39	0.75	1.78	1.61
THOMAS	14	710696	263.45	5977.33	55.53	38.17	1.63	1.01	2	1.66
HERNANDEZ	15	706372	261.85	6239.18	4.55	0.38	0.65	0.27	0.35	93.81
MOORE	16	698671	259	6498.17	68.85	26.92	0.37	0.65	1.7	1.5
MARTIN	17	672711	249.37	6747.54	77.47	15.3	0.71	0.94	1.59	3.99
JACKSON	18	666125	246.93	6994.47	41.93	53.02	0.31	1.04	2.18	1.53
THOMPSON	19	644368	238.87	7233.34	72.48	22.53	0.44	1.15	1.78	1.62
WHITE	20	639515	237 N7	7470 4	67 91	27 38	በ	1 ∩1	1 76	1 55

Census block ethnical distribution

x Last name ethnical distribution

Voter ethnicity

KNN Imputation (Tian Wang)

	6	3	7	3	6	
	7	?	7	2		
\	0	6	?	4	6	
	1	6	3	3	8	

KNN Imputation (Tian Wang)

6	3	7	3	6
7	? 🔺	7	2	5
0	6	? 🔻	4	6
1	6	3	3	8

Neural Network (Jiyuan Qian)

Neural Network (Jiyuan Qian)

Merged on Friday!

Robust PCA (Jiyuan Quian)

$$X=L+S$$
L low rank, S sparse

Solved via Trimmed Grassmann Average (TGA) by Hauberg et al

Huber Regression (Manoj Kumar)

Ying-Yan Kmeans (Manoj Kumar)

				No.			Assignment			Overa	ll Speedu) (X)
5 . 5 .		d	k	iter	Standard Speedup (X) over Standard				of Yinyang			
Data Set	n				time/iter			Yinyang K-means		over		
					(ms)	Elkan	Drake	t=1	elastic	Standard	Elkan	Drake
			4	50	2.7	1.29	1.97	2.08	2.08	1.14	1.09	1.07
I. Kegg Net-	6.5E4	28	16	52	9.9	1.62	2.13	2.48	2.48	1.61	1.36	1.12
work	0.3E4		64	68	28.0	1.78	2.21	2.55	3.37	2.61	1.98	1.56
			256	59	89.6	1.89	1.63	2.23	4.98	4.86	3.60	3.98
			4	16	3.1	4.60	4.34	4.68	4.68	1.13	1.07	1.11
П. С	1.4E4	120	16	54	5.4	2.84	2.01	2.70	2.70	1.41	1.07	1.27
II. Gassensor	1.4E4	129	64	66	20.3	5.08	3.08	3.17	5.49	3.29	1.82	2.28
			256	55	84.3	6.48	2.06	3.01	10.28	5.40	1.85	4.72
			4	24	10.1	0.72	1.23	1.36	1.36	1.18	1.24	1.17
III. Road Net-	4.3E5	4	64	154	80.0	0.85	3.42	4.10	3.85	3.63	3.82	1.12
work	4.3E3	4	1,024	161	1647.3	1.25	2.14	4.08	8.45	13.59	12.71	5.21
			10,000	74	16256.1	-	1.88	2.80	9.63	12.57	-	6.84
	2.5E6	68	4	6	182.0	1.88	1.94	2.08	2.08	1.10	1.04	1.04
IV. US Cen- sus Data			64	56	2176.4	3.57	4.56	4.85	8.47	5.40	2.43	2.14
			1,024	154	37603.9	0.23	2.96	3.56	24.89	23.45	89.53	6.33
			10,000	152	432976	-	- (1.64)	2.90	3.05	5.70	-	- (2.15)
	101 1E6	128	4	55	111.0	2.44	2.88	3.02	3.02	1.83	1.41	1.04
V. Caltech101			64	314	1432.6	5.52	5.07	5.64	10.21	8.65	1.79	1.26
v. Canech 101			1,024	369	22816.8	5.56	3.62	3.38	21.99	22.33	6.41	5.71
			10,000	129	316850	-	- (3.25)	3.12	20.24	22.23	-	- (6.74)
		4E5 128	4	145	46.8	2.85	3.38	3.69	3.69	2.40	1.65	1.05
VI.	4E5		64	232	585.8	5.27	4.57	4.29	6.81	6.16	1.88	1.76
NotreDame			1,024	149	9334.1	5.66	2.82	2.28	10.44	10.69	3.25	4.19
			10,000	47	126815	-	2.35	2.32	10.81	11.53	-	5.27
VII. Tiny	1E6	384	4	103	277.0	6.67	7.58	8.20	8.20	3.24	1.90	1.21
			64	837	4113.4	14.23	7.39	6.32	15.26	13.89	1.93	1.93
		304	1,024	488	64078.8	16.02	4.37	2.94	23.64	23.21	2.78	5.14
			10,000	146	781537	-	- (3.45)	2.35	15.51	16.13	-	- (5.96
	1E6	128	4	62	113.7	2.63	2.86	3.17	3.17	1.94	1.46	1.10
VIII. Uk- bench			64	506	1431.1	5.75	7.36	6.61	13.21	10.85	3.12	1.72
	1120		1,024	517	22787.4	5.95	4.28	3.42	23.41	24.26	6.85	5.18
			10,000	208	316299	-	- (3.92)	3.09	28.50	32.18	-	- (6.32
					average	4.33	3.39	3.51	9.87	9.36	6.12	3.08

Other scikit-learn contributions (Vighnesh Birodkar)

- Fixes to input validation in scikit-learn
- Fixes to K-Means clustering
- Fixes to preprocessing

```
y \sim x_1 + x_2 + x_3

log(y) \sim x_1 + x_2 + x_3

log(y) \sim x_1:x_2 + x_3

log(y) \sim x_1:x_2 + log(x_3)
```

```
y \sim x_1 + x_2 + x_3

log(y) \sim x_1 + x_2 + x_3

log(y) \sim x_1:x_2 + x_3

log(y) \sim x_1:x_2 + log(x_3)
```

```
model = PatsyModel(LogisticRegression(),
```

```
y \sim x_1 + x_2 + x_3

log(y) \sim x_1 + x_2 + x_3

log(y) \sim x_1:x_2 + x_3

log(y) \sim x_1:x_2 + log(x_3)
```

```
y \sim x_1 + x_2 + x_3

log(y) \sim x_1 + x_2 + x_3

log(y) \sim x_1:x_2 + x_3

log(y) \sim x_1:x_2 + log(x_3)
```

```
y \sim x_1 + x_2 + x_3

log(y) \sim x_1 + x_2 + x_3

log(y) \sim x_1:x_2 + x_3

log(y) \sim x_1:x_2 + log(x_3)
```

Dask-learn (with @mrocklin)

```
# from sklearn.pipeline import Pipeline
from dasklearn.pipeline import Pipeline
pipeline = Pipeline([("count", CountVectorizer()),
                         ("select fdr", SelectFdr()),
                         ("svm", LinearSVC())])
from dask.imperative import value
X train, y train, X test, y test = map(value, [X train, y train, X test, y test])
scores = [pipeline.set params(**params)
                .fit(X train, y train)
                .score(X test, y test)
          for params in parameters]
result = compute(scores, get=get sync)
```

Dask-learn (with @mrocklin)

Add Backlinks to Docs

Home

Installation

Documentation

Examples

Google™ Custom Search

Search ×

Previous sklearn.ense

Up API Reference

This documentation is for scikit-learn version

0.18.dev0 — Other versions

If you use the software, please consider citing scikit-learn.

3.2.4.3.1.

sklearn.ensemble.RandomForestC lassifier

3.2.4.3.1.1. Examples using sklearn.ensemble.RandomForestClas sifier

3.2.4.3.1. sklearn.ensemble.RandomForestClassifier

class sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None)

[source]

A random forest classifier.

A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if bootstrap=True (default).

Read more in the User Guide.

Parameters: n_estimators : integer, optional (default=10)

The number of trees in the forest.

criterion: string, optional (default="gini")

The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. Note: this parameter is tree-specific.

max features: int, float, string or None, optional (default="auto")

Thank you for your attention.