

Informe 9 Laboratorio de máquinas: Curvas de una bomba centrifuga

Alumno: Joaquín Cerda Santander.

Asignatura: Laboratorio de maquina ICM 557-1

Profesor: Cristóbal Galleguillos Meterte

Tomás Herrera Muñoz.

Ayudante: Ignacio Ramos

Fecha: 13/12/2020

índice

1.	Objetivo	S	2
2.	Introduc	cion	2
3.	Datos me	edidos	3
4.		lculados	
5.		lo	
5		endimiento y potencia vs caudal	
	5.1.1.	¿Cuáles son las condiciones óptimas de operación de esta bomba?	
	5.1.2.	¿Las curvas tiene la forma esperada?	
	5.1.3.	¿Cuál es la potencia máxima consumida?	7
	5.1.4.	¿Qué tipo de curvas son?	7
5	.2. PHI	vs PSI	8
	5.2.1.	¿La nube de puntos que conforman esta curva son muy dispersos?	8
	5.2.2.	Al observar todas las curvas anteriores ¿Qué tipo de bomba centrifuga es? Justifíquelo	
	5.2.3. concorda	Calcule la velocidad específica y determine si las características constructivas y operacionales so antes con esa velocidad específica y su respuesta 3.4.3.2	

1	Oh	ietivos.	

Analizar el comportamiento de una bomba centrífuga mediante sus curvas características.

2. introducción.

En este informe se realizará el análisis de los datos otorgados por el profesor de una bomba centrifuga, y con estos se procederá a calcular las curvas características de una bomba centrifuga en especial, junto a lo cual se tendrá preguntas al final del informe para poder concluir si estar curvas se encuentran realizadas de forma correcta o no.

3. Datos medidos.

				Va	alor medid	os				
					3700 RPM					
Datos	n	cpax cpdx nx pax pdx Dhx Fx								Patm
[-]	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mmHg]	[kp]	[°C]	[mmHg]
1	3070	115	165	3075	89.5	6.5	146	1.54	16	758.7
2	3070	115	165	3076	92	13.6	133	1.68	16	758.7
3	3070	115	165	3076	94.8	19.4	118	1.79	16	758.7
4	3070	115	165	3076	97	24.5	104	1.85	16	758.7
5	3070	115	165	3077	99.4	29.1	91	1.89	16	758.7
6	3070	115	165	3078	101.7	34.4	76	1.91	16	758.7
7	3070	115	165	3078	105.2	41.3	59	1.92	16	758.7
8	3070	115	165	3078	107.6	46.2	45	1.89	16	758.7
9	3070	115	165	3078	110	49.2	32	1.83	16	758.7
10	3070	115	165	3077	112.5	54.4	17	1.69	16	758.7
11	3070	115	165	3078	114.3	56.9	9	1.55	16	758.7
12	3070	115	165	3078	120.5	62.1	0	1.13	16	758.7

Tabla 1 "Tabla de datos de la bomba a 3700 RPM"

				Va	alor medid	os				
					2900 RPM					
Datos	n	cpax cpdx nx pax pdx Dhx Fx								Patm
[-]	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mmHg]	[kp]	[°C]	[mmHg]
1	2900	115	165	2903	91.5	6.2	134	1.37	16	758.7
2	2900	115	165	2903	93.9	12.7	121	1.47	16.5	758.7
3	2900	115	165	2903	96.3	16.4	109	1.55	16.5	758.7
4	2900	115	165	2903	98.7	21.4	95	1.62	17	758.7
5	2900	115	165	2903	100.5	26.1	82	1.65	17	758.7
6	2900	115	165	2902	103.4	30.5	70	1.68	17	758.7
7	2900	115	165	2904	105.6	35.5	56	1.69	17	758.7
8	2900	115	165	2902	108.1	40.2	43	1.68	17	758.7
9	2900	115	165	2903	110	44.3	30	1.6	17	758.7
10	2900	115	165	2903	112.3	48.1	17	1.49	17	758.7
11	2900	115	165	2904	114.6	51.2	8	1.37	17	758.7
12	2900	115	165	2904	119.5	56.1	0	0.94	17	758.7

Tabla 2 "Tabla de datos de la bomba a 2900 RPM"

				Va	alor medid	os							
	2700 RPM												
Datos	n	срах	cpdx	nx	pax	pdx	Dhx	Fx	Т	Patm			
[-]	[rpm]	[mm]	[mm]	[rpm]	[%]	[%]	[mmHg]	[kp]	[°C]	[mmHg]			
1	2700	115	165	2702	94.3	5.8	118	1.16	17	758.7			
2	2700	115	165	2703	96.8	10.5	106	1.24	17	758.7			
3	2700	115	165	2703	98.5	14.5	95	1.3	17	758.7			
4	2700	115	165	2703	100	18.1	84	1.34	17	758.7			
5	2700	115	165	2702	102.4	22.6	72	1.38	17	758.7			
6	2700	115	165	2703	104.8	26.9	60	1.4	17	758.7			
7	2700	115	165	2703	107.1	32.1	47	1.4	17	758.7			
8	2700	115	165	2702	109.1	36.1	35	1.38	17	758.7			
9	2700	115	165	2702	111.3	39.9	23	1.3	17	758.7			
10	2700	115	165	2703	113.6	43.5	11	1.18	17	758.7			
11	2700	115	165	2703	114.9	45.3	5	1.05	17	758.7			
0	2700	115	165	2703	119.6	49.1	0	0.78	17	758.7			

Tabla 3 "Tabla de datos de la bomba a 2700 RPM"

	Caracteristica de bombas Leader - M18											
DN/DA												
[in]	[in] [in] [mm] [mm] [mm] [mm] ° ° [-]											
4	4	71	135	30	37	24.3	16	20	5			

Tabla 4 "características bombas"

4. Datos calculados.

						3700	RPM						
Q_x	Q	Pax	Pdx	H _x	Н	Nex	Ne	Nh	η_{gl}	U ₂	cm ₂	Φ	ψ
[m ³ /s]	[m³/hr]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[KW]	[KW]	[KW]	[-]	[m/s]	[m/s]	[-]	[-]
0.032	115.013	-1.165	2.765	3.930	3.917	3.483	3.466	1.226	35.385	21.701	3.100	0.143	0.163
0.031	111.382	-0.915	5.605	6.520	6.495	3.801	3.779	1.969	52.114	21.701	3.002	0.138	0.270
0.029	104.196	-0.635	7.925	8.560	8.527	4.050	4.026	2.419	60.073	21.701	2.808	0.129	0.355
0.027	97.010	-0.415	9.965	10.380	10.340	4.185	4.161	2.731	65.622	21.701	2.615	0.120	0.430
0.025	89.795	-0.175	11.805	11.980	11.926	4.277	4.248	2.915	68.620	21.701	2.420	0.112	0.496
0.023	82.585	0.055	13.925	13.870	13.798	4.324	4.290	3.102	72.301	21.701	2.226	0.103	0.574
0.021	75.404	0.405	16.685	16.280	16.195	4.347	4.313	3.324	77.081	21.701	2.032	0.094	0.674
0.018	64.632	0.645	18.645	18.000	17.907	4.279	4.245	3.151	74.209	21.701	1.742	0.080	0.745
0.015	53.860	0.885	19.845	18.960	18.862	4.143	4.111	2.765	67.275	21.701	1.452	0.067	0.785
0.010	35.918	1.135	21.925	20.790	20.696	3.825	3.799	2.024	53.270	21.701	0.968	0.045	0.861
0.006	21.544	1.315	22.925	21.610	21.498	3.509	3.482	1.261	36.212	21.701	0.581	0.027	0.895
0.000	0.000	1.935	25.005	23.070	22.950	2.558	2.538	0.000	0.000	21.701	0.000	0.000	0.955

Tabla 5 "datos calculados por el alumno"

						2900	RPM						
Q_x	Q	Pax	Pdx	H _x	Н	Nex	Ne	Nh	η_{gl}	U ₂	cm ₂	Ф	ψ
[m ³ /s]	[m³/hr]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[KW]	[KW]	[KW]	[-]	[m/s]	[m/s]	[-]	[-]
0.031	111.485	-0.965	2.645	3.610	3.603	2.925	2.916	1.093	37.493	20.499	3.005	0.147	0.168
0.029	104.292	-0.725	5.245	5.970	5.958	3.139	3.129	1.691	54.057	20.499	2.811	0.137	0.278
0.028	100.696	-0.485	6.725	7.210	7.195	3.309	3.299	1.972	59.780	20.499	2.714	0.132	0.336
0.026	93.503	-0.245	8.725	8.970	8.951	3.459	3.448	2.278	66.077	20.499	2.520	0.123	0.418
0.024	86.311	-0.065	10.605	10.670	10.648	3.523	3.512	2.502	71.234	20.499	2.326	0.113	0.497
0.022	79.145	0.225	12.365	12.140	12.123	3.586	3.578	2.612	72.992	20.499	2.133	0.104	0.565
0.020	70.103	0.445	14.365	13.920	13.882	3.610	3.595	2.649	73.694	20.499	1.889	0.092	0.647
0.018	62.957	0.695	16.245	15.550	15.529	3.586	3.578	2.661	74.371	20.499	1.697	0.083	0.724
0.015	53.944	0.885	17.885	17.000	16.965	3.416	3.406	2.491	73.150	20.499	1.454	0.071	0.791
0.011	39.559	1.115	19.405	18.290	18.252	3.181	3.172	1.966	61.975	20.499	1.066	0.052	0.851
0.006	21.570	1.345	20.645	19.300	19.247	2.926	2.914	1.130	38.782	20.499	0.581	0.028	0.898
0.000	0.000	1.835	22.605	20.770	20.713	2.008	1.999	0.000	0.000	20.499	0.000	0.000	0.966

Tabla 6 "datos calculados por el alumno"

						2700	RPM						
Q_x	Q	Pax	Pdx	H _x	Н	Nex	Ne	Nh	η_{gl}	U ₂	cm ₂	Ф	ψ
[m ³ /s]	[m³/hr]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[KW]	[KW]	[KW]	[-]	[m/s]	[m/s]	[-]	[-]
0.029	104.323	-0.685	2.485	3.170	3.165	2.305	2.300	0.899	39.080	19.085	2.812	0.147	0.170
0.027	97.092	-0.435	4.365	4.800	4.789	2.465	2.457	1.266	51.521	19.085	2.617	0.137	0.258
0.026	93.496	-0.265	5.965	6.230	6.216	2.584	2.576	1.582	61.421	19.085	2.520	0.132	0.334
0.025	88.102	-0.115	7.405	7.520	7.503	2.664	2.655	1.800	67.776	19.085	2.375	0.124	0.404
0.023	82.379	0.125	9.205	9.080	9.067	2.743	2.736	2.033	74.302	19.085	2.220	0.116	0.488
0.021	75.516	0.365	10.925	10.560	10.537	2.783	2.774	2.166	78.082	19.085	2.035	0.107	0.567
0.018	64.728	0.595	13.005	12.410	12.382	2.783	2.774	2.182	78.653	19.085	1.745	0.091	0.666
0.016	57.557	0.795	14.605	13.810	13.790	2.743	2.736	2.161	78.957	19.085	1.551	0.081	0.742
0.013	46.765	1.015	16.125	15.110	15.088	2.584	2.578	1.921	74.511	19.085	1.260	0.066	0.812
0.010	35.960	1.245	17.565	16.320	16.284	2.346	2.338	1.594	68.177	19.085	0.969	0.051	0.876
0.006	21.576	1.375	18.285	16.910	16.872	2.087	2.081	0.991	47.632	19.085	0.582	0.030	0.908
0.000	0.000	1.845	19.805	17.960	17.920	1.551	1.546	0.000	0.000	19.085	0.000	0.000	0.964

Tabla 7 "datos calculados por el alumno"

5. Desarrollo.

5.1. Isorendimiento y potencia vs caudal.

Grafica 1 "Isorendimiento vs Caudal"

Grafica 2 "Potencia vs Caudal"

5.1.1. ¿Cuáles son las condiciones óptimas de operación de esta bomba?

Las condiciones optimas de funcionamiento se deberian encontrar en el punto en donde el rendimiento global fuera mayor, por ende, deberia ser a 2700 RPM con un caudal de 68.32 [m3/hr], teniendo una eficiencia global de 83.03%.

5.1.2. ¿Las curvas tiene la forma esperada?

Si, ya que a medida que se aumenta el caudal, aumenta la potencia del eje y el rendimiento hasta llegar a 80 [m3/hr], posterior a eso tanto la potencia en el eje como el rendimiento disminuye.

5.1.3. ¿Cuál es la potencia máxima consumida?

La potencia máxima consumida es aproximadamente 4.3 [KW].

5.1.4. ¿Qué tipo de curvas son?

Las curvas que presenta esta bomba poseen caracterisitcas ascendentes, en donde la altura que puede alcanzar la bomba aumenta a medida que el caudal decrece, por lo que presenta un funcionamiento estable sin ningun tipo de anomalia o esfuerzos extremos.

5.2. PHI vs PSI

Grafica 3 "Grafico PHI vs PSI"

5.2.1. ¿La nube de puntos que conforman esta curva son muy dispersos?

No, presentan una concavidad bastante apreciable.

5.2.2. Al observar todas las curvas anteriores ¿Qué tipo de bomba centrifuga es? Justifíquelo.

Es una bomba de tipo radial, esto se puede determinar gracias a la velocidad especifica de la bomba, junto tambien a los rendiminetos que esta tiene a una cierta altura y caudal, por lo que se procedera a calcular en la siguiente pregunta.

5.2.3. Calcule la velocidad específica y determine si las características constructivas y operacionales son concordantes con esa velocidad específica.

$$n_{SQ2} = \frac{rpm(gpm)^{1/2}}{(ft)^{3/4}}$$
 [-]

Ilustración 1 "Velocidad especifica, libro turbo maquinas mege"

$$RPM = 2700$$

$$Q = 57.55 \left[\frac{m^3}{hr} \right] = 253.41 [gpm]$$

$$H = 13.7 [m] = 44.94 [ft]$$

$$n_{SQ2} = 1537.476 [-]$$

$$\eta_{gl} = 78.9 \%$$

La eficiencia y el caudal determinado no se encuentran relacionadas de manera correcta, ya que para obtener esa eficiencia se nececitaria un caudal superior a la que se posee actualmente en el punto a analisar, por ende, los datos obtenidos por la tabla podrian encontrarce errados, sin embargo, los calculos y las proximaciones que se tuvieron deberian ser lo suficientemente presisos para aproximar estos valores.