Trabajo Práctico CLP

Contenido

Trabajo Práctico CLP	1
1. Introducción	1
2. Implementación	1
2. Diagrama de Bloques	2
3. Simulaciones	
4. Limitaciones	5
5. Tabla de uso de recursos	

1. Introducción

El objetivo de este trabajo fue implementar un sistema de comunicación UART con una Unidad Aritmeticológica (ALU) de 4 bits en una FPGA utilizando VHDL y el entorno de desarrollo Vivado.

El sistema permite recibir datos a través de la UART, procesarlos mediante la ALU según la operación seleccionada, y visualizar el resultado en 4 leds de la FPGA.

Se integró un módulo Virtual I/O (VIO) para permitir la verificación y prueba remota del diseño en la tarjeta Arty Z7-10 disponible en el servidor del curso.

2. Implementación

El sistema está compuesto por los siguientes módulos principales:

- UART_RX: encargado de recibir los datos seriales enviados por el usuario.
- **ALU:** realiza las operaciones aritméticas y lógicas entre dos operandos de 4 bits, con soporte para suma, resta, AND, OR, XOR, NOT, desplazamiento a la izquierda y desplazamiento a la derecha.

- **UART_ALU_TOP:** módulo superior que integra la recepción de datos vía UART, el control de flujo y la ALU.
- VIO: módulo de depuración que permite controlar las señales de entrada (reset, RXD) y observar las salidas (LEDs) directamente desde Vivado Hardware Manager.

El flujo de operación inicia con la recepción de **tres** bytes por UART: los operandos A, B y el código de operación Op. Una vez recibidos, se calcula el resultado y se muestra en los 4 leds de la placa Arty Z7-10. La ALU permite las siguientes operaciones:

Operación	Código Op
+	0
-	1
AND	2
OR	3
XOR	4
NOT	5
<<	6
>>	7

2. Diagrama de Bloques

Diagrama de bloques de la implementación:

Esquemático generado por el entorno de desarrollo Vivado incluyendo el módulo VIO:

3. Simulaciones

Simulación de uart_alu_top para probar la operación de suma:

- 20us: señal de RESET para iniciar
- 94us: se recibe el primer byte por la UART con valor '3' y se almacena en *A_buf*
- 180us: se recibe el segundo byte por la UART con valor '5' en B_buf
- 267us: se recibe el tercer byte por la UART con valor '0' y se hace *alu_ready* = 1 para que la ALU opere.
- La ALU opera con A = 3, B = 5, Op = 0 (suma), Result = 8
- El resultado '8' se refleja en los leds

Simulación de uart_alu_top para probar la operación de resta:

- 454us: se recibe el primer byte por la UART con valor '7' y se almacena en A_buf
- 541us: se recibe el segundo byte por la UART con valor '2' en B_buf
- 628us: se recibe el tercer byte por la UART con valor '1' y se hace *alu_ready* = 1 para que la ALU opere.
- La ALU opera con A = 7, B = 2, Op = 1 (resta), Result = 2
- El resultado '2' se refleja en los leds

Simulación de *uart_alu_top* para probar la operación de AND:

- 815us: se recibe el primer byte por la UART con valor '9' y se almacena en A buf
- 902us: se recibe el segundo byte por la UART con valor '3' y se almacena en *B_buf*
- 988us: se recibe el tercer byte por la UART con valor '1' y se hace *alu_ready* = 1 para que la ALU opere.
- La ALU opera con A = 9(1001), B = 3(0011), Op = 2, Result = 1(0001)
- El resultado '1' se refleja en los *leds*

Q												
												1,032.0153
Name	Value	600 us	628.532000 us 650 us	70	0 us	750 us	800 u	815.124000 s	us 850 us	902.164000 us 900 us	988.66 950 us	1,000
le dk	1											
¹⊌ reset	0											
le rxd	1											
U CLK_PERIOD	8000 ps					81	000 p:					
↓ BIT_PERIOD	8680555 ps					868	0555	ps				
√ rx_ready	0											
> W A_buf[3:0]	9			7						9		
> W B_buf[3:0]	3				2					X	3	
alu_ready	1											
> M A[3:0]	9	3					7					9
> W B[3:0]	3	5					2					3
> W Op[2:0]	2	0					1					2
> 6 leds[3:0]	1	- 8					5					1

4. Limitaciones

El sistema es una implementación básica de una ALU con propósitos educativos y enfocados en reforzar los conocimientos adquiridos en VHDL y programación de FPGA durante el curso de Circuitos Lógicos Programables. A pesar de cumplir con los objetivos propuestos, el sistema presenta algunas limitaciones que podrían abordarse en versiones futuras:

- Ancho de palabra fijo: La ALU implementada opera únicamente con operandos de 4 bits (con signo), lo que restringe el rango de valores procesables. Una ampliación a 8 o 16 bits permitiría realizar operaciones más representativas.
- Sin control de errores en UART: La comunicación UART no incluye verificación de paridad ni manejo de errores de recepción, por lo que bytes corruptos podrían afectar el resultado de la operación.
- **Interfaz limitada:** El sistema actual muestra el resultado únicamente mediante los Leds, lo cual es útil para pruebas básicas, pero poco práctico para aplicaciones complejas.
- **Ausencia de retroalimentación al transmisor:** El sistema no envía información de confirmación o resultado por UART, limitando su uso a entornos unidireccionales de prueba.

5. Tabla de uso de recursos

La siguiente tabla muestra los recursos utilizados en la FPGA de la tarjeta Arty Z7-10

Q ₹ ♦ % Hierarchy								
Name 1	Slice LUTs (17600)	Slice Registers (35200)	F7 Muxes (8800)	Bonded IOB (100)	BUFGCTRL (32)			
∨ N uart_alu_top_VIO	159	319	3	2	1			
■ dbg_hub (dbg_hub_CV)	0	0	0	0	0			
uart_alu_top_inst (uart_alu_top)	49	53	3	0	0			
✓ ■ UartRX (uart_rx)	37	26	0	0	0			
meta_harden_rxd_i0 (meta_harden)	0	2	0	0	0			
<pre>uart_baud_gen_rx_i0 (uart_baud_gen)</pre>	8	8	0	0	0			
<pre>uart_rx_ctl_i0 (uart_rx_ctl)</pre>	29	16	0	0	0			
✓ I vio_inst (vio_0)	110	266	0	0	0			
I inst (vio_0_vio_v3_0_18_vio)	110	266	0	0	0			
■ DECODER_INST (vio_0_vio_v3_0_18	21	49	0	0	0			
PROBE_IN_INST (vio_0_vio_v3_0_18	10	34	0	0	0			
✓ ■ PROBE_OUT_ALL_INST (vio_0_vio_v3	2	6	0	0	0			
■ G_PROBE_OUT[0].PROBE_OUT0_I	1	2	0	0	0			
U_XSDB_SLAVE (vio_0_xsdbs_v1_0	77	161	0	0	0			

El diseño cumple con los requerimientos de funcionalidad con un uso mínimo de recursos de la FPGA. Esto permite futuras expansiones del sistema, como una ALU de mayor ancho de palabra, inclusión de transmisión UART (TX), o una interfaz gráfica más compleja, sin comprometer la capacidad del dispositivo.