6.4 习题

2024年7月12日

6.4.1

- (1) 序列 $(a_n)_{n=m}^{\infty}$ 收敛于 c,那么对任意实数 $\epsilon > 0$,都是最终 $\epsilon -$ 接近于 c 的,即:能够找到某个 $N \geq m$ 使得 $(a_n)_{n=N}^{\infty}$ 是 $\epsilon -$ 接近于 c 的。并且对于任意 $N' \geq m$,取 $N_0 := max(N,N')$,此时 $(a_n)_{n=N_0}^{\infty}$ 是 $\epsilon -$ 接近于 c 的,即: a_n 是 $\epsilon -$ 接近于 c,对 $n \geq N_0$ 均成立,所以 c 是 $\epsilon -$ 附着于 $(a_n)_{n=N'}^{\infty}$ 的。由 ϵ 的任意性,可知 c 是 $(a_n)_{n=m}^{\infty}$ 的极限点。
- (2) 反证法,存在另一个极限点 d,且 $d \neq c$ 。 $(a_n)_{n=m}^{\infty}$ 收敛于 c,那么对实数 $\epsilon > 0$,是最终 $\epsilon -$ 接近于 c 的。即:能够找到 $N \geq m$ 使得 $(a_n)_{n=N}^{\infty}$ 是 $\epsilon -$ 接近于 c 的。

同时 d 是 $(a_n)_{n=m}^{\infty}$ 的极限点,那么,d 是 ϵ — 附着于 $(a_n)_{n=N}^{\infty}$ 的,那么存在一个 $n \geq N$ 使得 a_n 是 ϵ — 接近于 d 的,如果 d > c,取 $0 < \epsilon < (d-c)/2$,此时, $|a_n - d| \leq \epsilon$ 与 $|a_n - c| \leq \epsilon$ 无法同时满足,即 a_n 无法同时 ϵ — 接近于 c,d。

 $d \leq c$ 同理。

6.4.2

这里只说明极限点和上极限,因为下极限的证明可以用上极限类推。 设 $(a_n)_{n=m}^\infty$ 是一个实数序列,c 是一个实数,且 $m' \ge m$ 是一个整数, $k \ge 0$ 是一个非负整数。

(1) 与习题 6.1.3 类似的结论

(1.1) c 是 $(a_n)_{n=m}^{\infty}$ 极限点, 当且仅当 c 是 $(a_n)_{n=m}^{\infty}$ 极限点。

 $\leftarrow c \in (a_n)_{n=m'}^{\infty}$ 的极限点。对任意 $\epsilon > 0$,对每一个 N,

如果 $N \ge m'$, 由于 c 是 $(a_n)_{n=m'}^{\infty}$ 的极限点,那么,c 都是 ϵ - 附着于 $(a_n)_{n=N}^{\infty}$ 的;

如果 $m \leq N < m'$,我们要证明此时 c 也是 ϵ - 附着于 $(a_n)_{n=N}^{\infty}$,即: 要证明存在一个 $n \geq N$ 使得 a_n 是 ϵ - 接近于 c。我们可以取 $n \geq m'$,那 么 n 也是大于 N,还是由 c 是 $(a_n)_{n=m'}^{\infty}$ 的极限点,保证了 n 的存在性。

综上 $c \in (a_n)_{n=m}^{\infty}$ 的极限点。

(1.2) c 是 $(a_n)_{n=m}^{\infty}$ 的上极限,当且仅当 c 是 $(a_n)_{n=m'}^{\infty}$ 的上极限。

反证法,假设 c 不是 $(a_n)_{n=m'}^{\infty}$ 的上极限,设 $(a_n)_{n=m'}^{\infty}$ 的上极限是 c' 【这里其实要证明 c' 的存在性。可以通过以下命题得到 c' 是存在的:有上界序列存在实数上极限,否则上极限不是实数,而是 $+\infty$ 】。

如果 c' > c,那么,存在 $m \leq N_0 < m'$ 使得 $c \leq a_{N_0}^+ < c'$,因为 $(a_n)_{n=m'}^{\infty}$ 是 $(a_n)_{n=N_0}^{\infty}$ 的子集,所以 $sup((a_n)_{n=m'}^{\infty}) \leq sup((a_n)_{n=N_0}^{\infty})$,又 因为 $c' \leq sup((a_n)_{n=m'}^{\infty})$,于是 $c' \leq sup((a_n)_{n=N_0}^{\infty})$,即: $c' \leq a_{N_0}^+$ 。这与 $c \leq a_{N_0}^+ < c'$ 矛盾。

如果 c > c',因为序列 $(a_N^+)_{N=m'}^\infty$ 是序列 $(a_N^+)_{N=m}^\infty$ 的子集,所以 $\inf((a_N^+)_{N=m'}^\infty) \geq \inf((a_N^+)_{N=m}^\infty)$,即: $c' \geq c$,这与 c > c' 矛盾。

综上,c = c'。

 $\Leftarrow c$ 是 $(a_n)_{n=m'}^{\infty}$ 的上极限,即: 序列 $(a_N^+)_{N=m'}^{\infty}$ 的下确界是 c。序列 $(a_N^+)_{N=m'}^{\infty}$ 是序列 $(a_N^+)_{N=m}^{\infty}$ 的子集。

反证法,假设 c 不是 $(a_n)_{n=m}^{\infty}$ 的上极限,设 $(a_n)_{n=m}^{\infty}$ 的上极限是 c'。

如果 c > c', 那么,存在 $m \le N_0 < m'$ 使得 $c' \le a_{N_0}^+ < c$, 因为 $(a_n)_{n=m'}^{\infty}$ 是 $(a_n)_{n=N_0}^{\infty}$ 的子集,所以 $sup((a_n)_{n=m'}^{\infty}) \le sup((a_n)_{n=N_0}^{\infty})$,又 因为 $c \le sup((a_n)_{n=m'}^{\infty})$,于是 $c \le sup((a_n)_{n=N_0}^{\infty})$,即: $c < a_{N_0}^+$ 。这与 $c' \le a_{N_0}^+ < c$ 矛盾。

如果 c < c',因为序列 $(a_N^+)_{N=m'}^{\infty}$ 是序列 $(a_N^+)_{N=m}^{\infty}$ 的子集,所以 $\inf((a_N^+)_{N=m'}^{\infty}) \geq \inf((a_N^+)_{N=m}^{\infty})$,即: $c' \geq c$,这与 c < c' 矛盾。

综上,c = c'。

与习题 6.1.4 类似的结论

该问题是 6.1.3 的拓展, 这里我只证明一种情况。

(2.1) c 是 $(a_n)_{n=m}^{\infty}$ 的极限点,当且仅当 c 是 $(a_{n+k})_{n=m}^{\infty}$ 的极限点。

如果我们能证明 $(a_n)_{n=m'}^{\infty}$ 与 $(a_{n+k})_{n=m}^{\infty}$ 相等的,然后通过(1.1)就可以证明该命题,接下来我们证明这两个序列的相等的。

通过定义 5.5.1 可知,序列就是函数,是一个从集合 Z 到 R 的函数。于是我们要证明两个序列相等,只需要证明其对应函数相等。通过定义 3.3.7 (函数的相等)来进行接下来的证明。

设 $f:N\to R$ 为函数 $f(n)=a_{n+k}$,设 $g:N\to N$ 为函数 g(m)=m。 那么 $f\circ g=f(g(m))=a_{q(m)+k}=a_{m+k}$ 。

设 $f':N\to R$ 为函数 $f'(n)=a_n$,设 $g':N\to N$ 为函数 g'(m)=m+k。 那么 $f'\circ g'=f'(g'(m))=a_{m+k}$ 。

由 $f \circ g$, $f' \circ g'$ 的构造过程可知两个具有相同的定义域,又对于任意的 $x \in N$, $f \circ g(x) = a_{x+k}$, $f' \circ g'(x) = a_{x+k}$, 所以 $f \circ g(x) = f' \circ g'(x)$, 由此可知两个函数相等,即两个序列相等。