Digital Design with Verilog

Lecture 2: Review of Combinational Logic Design

Combinational Logic

 Combinational logic forms its outputs as Boolean functions of its input variables on an instantaneous basis.

Block diagram symbol for combinational logic

• At any time t the outputs y_1 , y_2 , and y_3 depend on only the values of a, b, c, and d at time t.

Common Logic Gates

Schematic symbols and Boolean relationships for some common logic gates.

Boolean Logic Symbols and Operations

Symbol	Logic Operation
+	Logic "or"
•	Logical "and"
\oplus	Exclusive "or"
\wedge	Exclusive "or"
,	Logical negation
<u>-</u> -0	Logical negation (overbar)

ASIC Library Cells

CMOS transistor-level schematics: (a) inverter with output load capacitance, (b) inverter with pull-up (charging) signal paths, and (c) inverter with pull-down (discharging) signal paths.

Three input CMOS NAND Gate

Views of a CMOS Inverter

Views of a CMOS inverter: (a) circuit-symbol view, (b) transistor-schematic view, and (c) simplified composite fabrication mask view.

Inverter-Cross Section

Simplified side view showing the doping regions of a CMOS inverter.

Standard Cell Library

- Circuits that implement basic and moderately complex Boolean functions are characterized for
 - Functional, electrical, and timing properties,
 - Packaged in a library for repeated use in multiple designs.
- Such libraries commonly contain basic logic gates, flipflops, latches, muxes, and adders.
- Synthesis tools build complex integrated circuits by mapping the result of logic synthesis onto the parts of a cell library to implement the specified functionality with acceptable performance.

Boolean Algebra

- The operations of logic circuits are described by Boolean algebra.
- A Boolean algebra consists or a set of values B = {0, 1} and the operators "+" and " · .

Laws of Boolean Algebra	SOP Form	POS Form
Combinations with 0, 1	a+0=a	$a \cdot 1 = a$
	a + 1 = 1	$a \cdot 0 = 0$
Commutative	a+b=b+a	ab = ba
Associative	(a + b) + c = a + (b + c) = $a + b + c$	(ab)c = a(bc) = abc
Distributive	a(b+c)=ab+ac	a + bc = (a + b)(a + c)
Idempote	a + a = a	$a \cdot a = a$
Involution	(a')'=a	
Complementarity	a+a'=1	$a \cdot a' = 0$

Boolean Space

Points in a Boolean space: (a) represented by vectors of binary variables and (b) represented symbolically.

DeMorgan's Laws

 DeMorgan's laws allow us to transform a circuit from an SOP form to a POS form, and vice versa.

Venn diagrams illustrating DeMorgan's law: $(a + b)' = a' \cdot b'$

DeMorgan's Laws

Venn diagrams illustrating DeMorgan's law: $(a \cdot b)' = a' + b'$.

Theorems for Boolean Algebraic Minimization

Theorem	SOP form	POS form
Logical adjacency	ab + ab' = a	(a+b)(a+b')=a
Absorption	a + ab = a $ab' + b = a + b$ $a + a'b = a + b$	a(a + b) = a $(a + b')b = ab$ $(a' + b)a = ab$
Multiplication and factoring	(a+b)(a'+c) = ac + a'b	ab + a'c = (a+c)(a'+b)
Consensus	ab + bc + a'c = ab + a'c	(a+b)(b+c)(a'+c) = (a+b)(a'+c)

Theorems for Boolean Algebraic Minimization

Venn diagrams: (a) logical adjacency and (b) consensus.

Exclusive-OR laws

Exclusive-OR laws	
Combinations with 0, 1	$a \oplus 0 = a$
	$a \oplus 1 = a'$
	$a \oplus a = 0$
	$a \oplus a' = 1$
Commutative	$a \oplus b = b \oplus a$
Associative	$(a \oplus b) \oplus c = a \oplus (b \oplus c) = a \oplus b \oplus c$
Distributive	$a(b\oplus c)=ab\oplus ac$
Complement	$(a \oplus b)' = a \oplus b' = a' \oplus b = ab + a'b'$

Representation of Combinational Logic

- Three common representations of combinational logic:
 - Structural (i.e., gate-level) schematics
 - Truth tables
 - Boolean equations
- Binary decision diagram (BDD)s are used primarily within EDA software tools because they can be more efficient and easier to manipulate than truth tables.

Half Adder

	Inputs	Outputs				
a	b	c_out	sum			
0	0	0	0			
0	1	0	1			
1	0	0	1			
1	1	1	0			
(a)						

Half adder: (a) truth table, (b) block diagram symbol, and (c) schematic.

Full Adder

	Input	Outputs		
a	b	c_in	c_out	sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full adder: (a) truth table, (b) block diagram symbol, and (c) schematic for a full adder composed of half adders and glue logic.

Sum-of-Products Representation

- A cube is formed as the product of literals in which a literal appears in either uncomplemented or complemented form.
- A Boolean expression is a set of cubes and is typically expressed in an SOP form as the "OR" of product terms (cubes), rather than in set notation.
- A minterm is a cube in which every variable appears.
 The variable will be in either true (uncomplemented) or complemented form (but not both).

Sum-of-Products Representation

- A Boolean expression in SOP form is said to be canonical if every cube in the expression has a unique representation in which all of the literals are in complemented or uncomplemented form.
- A *canonic* (standard) SOP function is also called a standard sum of products (SSOP).
- A Boolean function is a set of minterms (vertices) at which the function is asserted. A Boolean function in SOP form is expressed as a sum of minterms.

Sum-of-Products Representation

Correspondence between minterms and vertices in **B**³.

$$sum = m_1 + m_2 + m_4 + m_7 = \sum m(1, 2, 4, 7)$$

$$c_out = m_3 + m_5 + m_6 + m_7 = \sum m(3, 5, 6, 7)$$

Products-of-Sums Representation

- A Boolean function can also be expressed in a POS form in which the expression is written as a product of Boolean factors, each of which is a sum of literals.
- A Boolean expression in POS form is said to be canonical (i.e., a unique representation for a given function) if each factor has all of the literals in complemented or uncomplemented form, but not both.
- A maxterm is an OR-ed sum of literals in which each variable appears exactly once in true or complemented form.

Simplification of Boolean Functions

- Minimization is important because the cost of hardware implementing a Boolean expression is related to
 - The number of terms in the expression and
 - The the number of literals in a term, that is, in a cube in an SOP expression.
- A Boolean expression in SOP form is said to be minimal, if it contains a minimal number of product terms and literals (i.e., a given term cannot be replaced by another that has fewer literals).

Simplification of Boolean Functions

Approaches for minimizing Boolean Expressions:

Application of Boolean theorems,

Karnaugh maps,

Quine-McCluskey minimization, and

Synthesis tools (Espresso-II).

Simplification of Boolean Functions

- Logic minimization searches for efficient representations of Boolean functions.
- In a Boolean expression, a cube that is contained in another cube is said to be redundant---a cube is redundant if its set of vertices is properly contained in the set of vertices of another cube of the function.
- A Boolean expression is nonredundant (irredundant) if no cube contains another cube.
- The cubes of an irredundant expression do not share a common vertex, that is, their corresponding sets of vertices are pairwise disjoint

Building Blocks for Logic Design

NAND-NOR Structures

Circuit transformations to obtain a NAND/Inverter realization of an SOP expression.

NAND-NOR Structures

Circuit transformations to obtain a NOR/Inverter realization of a POS expression.

Multiplexers

 Multiplexer circuits are used to steer data through functional units of computers and other digital systems.

Gate-level schematic for a two-channel multiplexer circuit.

Multiplexers/Data selectors

- A multiplexer is a combinational circuit that selects binary information from one of many input lines and directs it to a single output line.
 - The selection of a particular input line is controlled by a set of selection lines.
 - Normally, there are 2ⁿ input lines and n selection lines whose bit combinations determine which input is selected.

4x1 multiplexer

S_0	Y
0	I_0
1	$I_0 I_1$
0	I_2 I_3
1	I_3
	0

(b) Function table

Demultiplexer

- Multiplexer (MUX)
 - Routes one of many inputs to a single output
 - Also called a selector

- Demultiplexer (DEMUX)
 - Single data input; n control inputs ("selects"); 2ⁿ outputs
 - Single input connects to one of 2ⁿ outputs
 - "Selects" decide which output is connected to the input

3x8 Demux

The input is called an "enable" (G)


```
3:8 Decoder:
Out0 = G • S2' • S1' • S0'
Out1 = G • S2' • S1' • S0
Out2 = G • S2' • S1 • S0'
Out3 = G • S2' • S1 • S0'
Out4 = G • S2 • S1' • S0'
Out5 = G • S2 • S1' • S0'
Out6 = G • S2 • S1 • S0'
Out7 = G • S2 • S1 • S0'
```


Encoders

 An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder has 2ⁿ (or fewer) input lines and n output lines.

Truth Table of an Octal-to-Binary Encoder

	Inputs							Output	s	
D_0	D ₁	D ₂	D_3	D_4	D ₅	D_6	D ₇	х	y	Z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

 It is assumed that only one input has a value of 1 at any given point in time.

Encoders (Contd.)

 The encoder can be implemented with OR gates whose inputs are determined directly from the truth table.

$$z = D_1 + D_3 + D_5 + D_7$$

 $y = D_2 + D_3 + D_6 + D_7$
 $x = D_4 + D_5 + D_6 + D_7$

- Two problems
 - What if two inputs are active simultaneously?
 - Output with all 0's generated when all the inputs are 0; but this same as when D₀ is equal to 1.

Priority Encoder

 A priority encoder is an encoder circuit that includes the priority function. The operation of the priority encoder is such that if two or more inputs are equal to 1 at the same time, the input having the highest priority will take precedence.

Truth Table of a Priority Encoder

Inputs				Outpu	ts	
D_0	D ₁	D ₂	D_3	X	y	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
\mathbf{X}	1	0	0	0	1	1
\mathbf{X}	\mathbf{X}	1	0	1	0	1
X	X	X	1	1	1	1

Input D₃ has the highest priority.

Decoders

 A decoder is a combinational circuit that converts binary information from n input lines to an 2ⁿ unique output lines.

- Some Applications:
 - Microprocessor memory system: selecting different banks of memory.
 - Microprocessor I/O: Selecting different devices.
 - Memory: Decoding memory addresses (e.g. in ROM).

2-to-4-line DECODER with Enable

- The decoder is enabled when E = 0. The output whose value = 0 represents the minterm is selected by inputs A and B.
- The decoder is inactive when $E = 1 \rightarrow D0 \dots D3 = 1$
 - A Decoder with enable input is called a decoder/demultiplexer.
- Demultiplexer receives directs it to the output I

E	A	B	D_0	D_1	D_2	D_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

Thank you