1 Interpretação de Expressões que Descrevem Probabilidades

Obs: Sempre que descrevermos textualmente uma probabilidade, devemos ser capazes de traduzir o evento descrito como conjunto de um S, que tenha todos os possíveis resultados.

Exemplo: $P(X^2 + X < 5Y)$, interprete como um conjunto de elementos $s \in S$ tais que $[X(s)]^2 + [X(s)] < 5Y(s)$.

2 Caso particular: Espaços Amostrais Finitos

Considere S um conjunto finito (de N elementos). Podemos denotar a cardinalidade de S como |S| = N.

Com frequência, cálculos de probabilidade de $A \subseteq S$ envolvem determinal o número de elementos de A. Ademais, o problema se reduz a um problema de **análise combinatorial**.

${f 2.1}$ Número binomial $inom{N}{k}$

Número de subconjuntos de k elementos tirados de um conjunto de N elementos. Refere-se ao número de combinações de k elementos proveniente de um conjunto de N elementos. Computacionalmente, nchoosek(N,k).

$$\binom{N}{k} = \frac{N!}{k!(N-k)!}$$
, num. de combinações

m!, número de permutações de m elementos

As permutações são sequências usando todos os m elementos uma única vez.

Esses dois valores - $\binom{N}{k}$ e m! - são comumente usado em análises de probabilidade referentes a conjuntos finitos em que os subconjuntos têm igual probabilidade.

Exemplo: Seja $S = \{1, 2, 3, 4, 5\}$ iid.

Nesse cenário, a probabilidade de qualquer $A \subseteq S$ é $P(A) = \frac{|A|}{|S|}$. Lembrando que só vale para espaços amostrais finitos com todos os subconjuntos unitários equiprováveis.

3 Um experimento populacional...

Conside N_P indivíduos sem contato entre si, selecionados aleatoriamente de uma população. Considere que cada indivíduo tem uma probabilidade p de ter contraído COVID-19. Qual a probabilidade de exatamente k pessoas dessas N ($0 \le k \le N_P$) tenha contraído COVID-19?

Definição para Eventos Independentes: Dado S e dados $A, B \subseteq S$ $(A, B \in S)$, A e B são independentes se e somente se: $P(A \cap B) = P(A)P(B)$ (definição de independência)

Solução:

Usando C para denotar indivíduos com COVID; H indivíduos sem COVID. Espaço Amostral: $S = \{(C, C, \dots, C), (C, C, \dots, H), \dots, (C, C, \dots, H, H), \dots, (H, H, \dots, H), \dots\}$

Cada subconjunto contém N_P elementos. Temos que a cardinalidade de S é: $|S|=2^{N_P}$

$$P(I_C^n) = p \qquad I_C^n \to \text{ind. } n \text{ contrain COVID-19}$$

$$I_C^n = \{(C, C_n, \dots, C), (C, C_n, \dots, H), \dots, (C, C_n, \dots, H, H), \dots, (H, C_n, \dots, H), \dots\}$$

$$\begin{split} &P(E_C^{1,2,...,k}) = ? \text{ indivíduos } 1,2,3,\ldots,k \text{ contraíram COVID-19, os demais não} \\ &E_C^{1,2,...,k} = \{C_1,C_2,\ldots,C_k,H_1,H_2,\ldots,H_{N-k}\} \\ &E_C^{1,2,...,k} = I_C^1 \cap I_C^2 \cap I_C^3 \ldots \cap I_C^k \cap \overline{I_C^{k+1}} \cap \overline{I_C^{k+2}} \cap \overline{I_C^N} \\ &P(E_C^{1,2,...,k}) = P(I_C^1) \cdot P(I_C^2) \cdot P(I_C^k) \cdot P(\overline{I_C^{k+1}}) \cdot P(\overline{I_C^{k+2}}) \cdot P(\overline{I_C^N}) \\ &P(E_C^{1,2,...,k}) = \underbrace{p \cdot p \ldots p}_k \cdot \underbrace{(1-p) \cdot (1-p) \ldots (1-p)}_{N-k} \\ &P(E_C^{1,2,...,k}) = p^k \cdot (1-p)^{N-k} \end{split}$$

Agora, precisamos generalizar o resultado para o caso de k indivíduos quaisquer, não só os k primeitos. Como existem $\binom{N}{k}$ possibilidades de extrair k pessoas a partir do grupo de N_P pessoas, e como os conjuntos E^{\dots} são disjuntos:

 $P(k \text{ contamidados}) = {N \choose k} p^k (1-p)^{N-k}$, sendo $k \text{ contamidados a união de todos os } E_C^{(...)}$.