

TMIP Web Knowledge and Information Exchange:

Scenario Testing August 7, 2008

> Brian Gregor and Becky Knudson Oregon Department of Transportation

> > Transportation Planning Section, Transportation Development Division

Oregon Department of Transportation

TMIP Web Knowledge and Information Exchange: Scenario Testing: August 7, 2008

Use of Scenarios with the Oregon Statewide Integrated Model

Becky Knudson, Oregon Department of Transportation

Outline

- Brief overview of Oregon modeling program
- Statewide Integrated Model 1 case studies
 - Big picture visioning
 - Infrastructure investment
 - Problem definition and investment prioritization
- Statewide Integrated Model 2 development
 - Current phase of performance evaluation

Transportation Planning Section, Transportation Development Division

Overview of Oregon Program

Integrated Models

- Oregon Modeling Improvement Program (OMIP) established in 1994:
 - Improve modeling practices throughout Oregon
 - Meet new state and federal mandates
 - Provide analysis and information for decisionmakers
 - Make ODOT an effective participant in decisions

Oregon Model Applications Big Picture Visioning

- Big picture visioning
 - Willamette Valley Alternative Futures
 - Oregon Transportation Plan

Willamette Valley Project Approach

- Help decision-makers understand:
 - How different land use and transportation policies are likely to affect land use patterns and state highway congestion
 - Sensitivities of growth patterns and highway congestion to different land use and transportation policies

Transportation Planning Section, Transportation Development Division

Oregon Department of Transportation

Willamette Valley Scenario Descriptions

- Phase 1
 - No-Action (Reference Case)
 - Compact Development
 - Significant Highway Expansion
 - Significant Transit Expansion
 - Transportation Tax
- Phase 2
 - Hybrid 1: Transit vision
 - transit in urban areas, rural highways, graduated tax
 - Hybrid 2 Balanced Transportation Expansion
 - Moderate transit and highway, minimal graduated tax

Willamette Valley Findings

- Expanding highway capacity tends to draw people and jobs to outlying areas
- Expanding public transit tends to concentrate jobs in major urban centers and pull population to outlying cities
- Restricting land supply tends to direct more pop/employment growth away from major urban centers to smaller cities
- Effects differ by location characteristics, but not always apparent at the regional level or statewide.

Transportation Planning Section, Transportation Development Division

Oregon Department of Transportation

Oregon Model Applications Big Picture Visioning

- Big picture visioning
 - Willamette Valley Alternative Futures
 - Oregon Transportation Plan

Oregon Transportation Plan Update

- The Plan is Oregon's long-range multimodal transportation planning document
- Assesses state, regional, and local public and private facilities
- Establishes goals, policies, strategies to address future needs and challenges

Transportation Planning Section, Transportation Development Division

Oregon Department of Transportation

OTP Scenarios

Reference Scenario

Sensitivity Scenario 1 High Fuel Prices

Sensitivity Scenario 2 Relaxed Land Use Controls

Alternate Scenario 1 Flat Revenue

Alternate Scenario 2 Max Operations & Maintenance

without Pricing

Alternate Scenario 3 Major Improvements

Alternate Scenario 4 Pricing

OTP Performance Measures				
	Model Generated Output			
Performance Criteria				
Accessibility/ Mobility				
Economic Vitality				
Efficiency & Cost Effectiveness				
Equity				
Reliability/ Responsiveness				
Safety				
Sustainability				
Public Support/Financial Feasibility				

Transportation Planning Section, Transportation Development Division

Oregon Department of Transportation

OTP Performance Measures

Accessibility/ Mobility Performance Criteria

- •Average annual recurring and non-recurring delay per capita average delay, Hh, region; average delay vehicle region
- •Average travel time per trip (peak, off-peak, by purpose, region, income class)
 - -average travel time; average trip distance
- Variable passenger transportation user cost as percent of income (by region, income class)
 - -Passenger costs as percent of income by income category & region
- Percent of trips with viable transit, bicycle and walk options
 Proportion of trips with transit as choice

Oregon Department of Transportation

OTP Performance Measures

Economic Vitality Performance Criteria

- •Change in economic output between alternatives
 - -Total statewide production
- •Change in employment between alternatives
 - -Employment by industry
- •Variable passenger transportation user costs as percent of income
 -Total labor income as percent of total transport costs by income group
- •Number of workers within 30 minutes of the average job
 - -Number of HH (workers) within 30 min by region

Transportation Planning Section, Transportation Development Division

Oregon Department of Transportation

Reference Case – Summary of Impacts

	Passenger Surface Transport	Trucking	Rail Freight	Aviation	Ports
Accessibility	↔	1	+	↔	Ţ
Mobility	1	1	Ţ	↔	Ţ
Economic Vitality	+	1	1	+	Ţ
Effectiveness and Efficiency	↔	1	1	+	+
Equity	↔	+	+	↔	1
Public Support & Financial Feasibility	+	↔	+	+	↔
Safety	↔	+	Ţ	+	↔
Sustainability	↔	1	Ţ	+	1

Oregon Model Applications Infrastructure Investment

- East/Central Oregon Freeway
- Bridge Options/ Investment Prioritization

Oregon Department of Transportation

- Simple answer: No
- Modeling analysis showed:
 - Generally increase speed and reduce travel time from border to border
 - May benefit Washington or California more than Eastern or Central Oregon
 - Where access to the Willamette Valley improves, the larger market attracts more growth
- Better question:
- "What can we do to divert traffic and development from I-5 and the Willamette Valley to Eastern and Central Oregon?"

Transportation Planning Section, Transportation Development Division

Oregon Department of Transportation

Oregon Model Applications Infrastructure Investment

- East/Central Oregon Freeway
- Bridge Options/ Investment Prioritization

Bridge Analysis Results

- Model served to illuminate the root issue
- Wasn't an engineering problem
- Economic impacts were the issue
- Effects varied by region
- Scenarios used to evaluate proposed solutions and reveal economic impacts
- Final solution avoided 90% of economic impacts of "Do Nothing" approach for nearly half the cost

Transportation Planning Section, Transportation Development Division

Oregon Department of Transportation

Scenario Representation of Future

- Modeling showed no immediate crisis, but large loss of future jobs and production with no action
- Regional and industry impacts defined constituent issues
- Model results helped to clearly define the problem & build a staged solution
- ODOT changing from "worst first" to "corridor analysis"

Phase 2 Statewide Model Development

- Develop a model with more detail
 - Transport: modes, freight
 - Industry: commodity,
 - Land Use: floor space industries
 - Households: income/size/ worker occupation
- Use a modular form to accommodate model improvements
- Add features desired for analysis

Model Calibration

- Stage 1: Statistical Parameter Estimation
- Stage 2: Calibrate Modules in Isolation
- -- Full Model Integration -
- Stage 3: Full Model Calibration
 - 1998 Base Year
 - 1998-2006 initial over time
 - 1990-2000 compare to 2000 targets
 - Model performance evaluation

Transportation Planning Section, Transportation Development Division

Oregon Department of Transportation

Stage3 Calibration results

- Key Base-year Measures are reasonable
 - Activity forecasts (ED)
 - Activity Location/quantity (PI)
 - Labor and Goods Flows (PI)
 - Trip Lengths (PI+PT+CT)
 - Trip Rates (PT)
 - Traffic Count Comparisons (TS)
- Ready for scenario testing

Scenario Testing Goals

- Test policy levers
- Push the model
- Train agency staff
- Improve data management/archiving
- Automate output processing
- Develop visualization tools

Transportation Planning Section, Transportation Development Division

Oregon Department of Transportation

Begin testing in three basic areas

- 1. Added highway capacity
- 2. High travel costs
- 3. Stochastic variability

Test 1: Add Highway Capacity

- Add 4+ lanes I-5 Eugene through I-205 to WA
- A Priori Expectations:
 - Reduced travel times
 - More growth in urban Willamette Valley
 - Greater dispersion of HH
 - More long distance commuting
 - Lower land prices in Portland, higher in outlying areas
- Results:
 - Growth: HH, employment
 - Floor space: price
 - Travel: time,

Test 2: High Cost Test

- Travel cost ten times higher than 1990
- A Priori Expectations:
 - More compact urban development
 - Less intercity commuting
 - Portland attract larger proportion of economic activity
 - Higher land prices in Portland
- Results:
 - Growth: HH location and income, workers, employment
 - Floor space: priceTravel: time, trips,

Transportation Planning Section, Transportation Development Division

Oregon Department of Transportation

Major Findings

- Successfully ran multiple scenarios over time
- Initial look: results seem reasonable
 - In multiple dimensions
 - Direction
 - Further investigation of magnitudes
- Boise takes on role of "urban competitors"

Major Findings cont'd

- Higher travel costs caused growth in central Willamette Valley more than Portland
- Adding capacity had limited effect statewide
- Micro-simulation variations are small at statewide level

Transportation Planning Section, Transportation Development Division

Oregon Department of Transportation

What Went Well

- Oscillations not problematic
- Transition to Agency operation and analysis
- Hardware worth the effort
- Careful organization of file structure worth effort
- Building off of reference case
 - Creating consistent reference case is challenging

Challenges...

- Response to capacity change seems small
- Reaching convergence in later years in high travel cost scenario
- Fixed economy brought into focus given Boise response
- Tools to digest model outputs
- Runtime reduction
- Never enough time...
 - 30 year runs changed to 12 years
 - Five truck classed reduced to two
 - Delay several calibration tasks
 - Agency staff assigned to other projects

Transportation Planning Section, Transportation Development Division

Oregon Department of Transportation

Next Steps

- Review results at greater detail
 - Spatially
 - Categorically
- Less extreme travel cost increase
- Expand visualization tools
- Run times
- Further calibration
- Real world policy application
- Feedback to economy

