Programming Raspberry Pi with Python

Presentation Outline

- ☐ Controlling LED with Raspberry Pi
- ☐ Interfacing an LED and Switch with Raspberry Pi
- ☐ Interfacing a Light Sensor (LDR) with Raspberry Pi
- □ Summary

Introduction

- The general purpose input/output capability provided by the GPIO pins on Raspberry Pi makes it useful device for IoT
- We can interface a wide variety of sensors and actuators with Raspberry Pi using GPIO pins, SPI, I2C and Serial interfaces
- Input from sensors connected to Raspberry Pi can be processed and various actions can be taken
- Ex- sending data to server, sending an email, actuating a relay switch etc.

Raspberry Pi4 Pinouts

Raspberry Pi4 Pinouts

E 8			Physical P	ins		
5 ⁸ -	Function	BCM	pin#	pin#	BCM	Function
27 28 28	3.3 Volts		1	2		5 Volts
	GPIO/SDA1 (I2C)	2	3	4		5 Volts
0 =	GPIO/SCL1 (I2C)	3	5	6		TX UART/GPIO
8	GPIO/GCLK	4	7	8	14	RX UART/GPIO
	GND		9	10	15	GPIO
Se Summanue	GPIO	17	11	12	18	GPIO
22 Sammuna	GPIO	27	13	14		GND
	GPIO	22	15	16	23	GPIO
	3.3 Volts		17	18	24	GPIO
101	MOSI (SPI)	10	19	20		GND
	MISO(SPI)	9	21	22	25	GPIO
	SCLK(SPI)	11	23	24	28	CEO_N (SPI)
S. minimum.	GND		25	26	7	CE1_N (SPI)
	RESERVED		27	28		RESERVED
	GPIO	5	29	30		GND
	GPIO	6	31	32	12	GPIO
5 0 11 1	GPIO	13	33	34		GND
	GPIO	19	35	36	16	GPIO
DOC BUILDING	GPIO	26	37	38	20	GPIO
	GND		39	40	21	GPIO

557

- The schematic diagram of connecting an LED to Raspberry Pi is shown below
- Pin 11 (+Vcc) and 9 (GND) is used to connect and blink the LED

The schematic and the physical diagram of connecting an LED to Raspberry Pi is shown below Pi Pin 9 - GND Pi Pin 11 - +V

Interfacing Ultrasonic Sensor with Rpi -**DEMO**

Session Summary

In this session we have learned,

- Controlling LED with Raspberry Pi
- Interfacing an LED and Switch with Raspberry Pi
- ☐ Interfacing a Light Sensor (LDR) with Raspberry Pi

Review Question

- 1. How is Raspberry Pi different from a Desktop computer?
- 2. What is the use of GPIO pins?
- 3. What is the use of SPI and I2C interface on Raspberry Pi?

References

1. Arhdeep Bahga and Madisetti, Internet of Things A hands-on approach, Universities Press (India) Private Limited, 2014.

