CS 5602 Lecture 12 **Probability** Homeworks

George Markowsky Department of Computer Science Missouri University of Science & Technology

The Birthday Problem

- $S = \{(b_1, b_2, ..., b_{23}) \mid b_i \in \underline{365} \}$ and we are using the uniform distribution
- Let $A = \{ s \in S \mid \text{at least two elements of } s \text{ are } \}$ equal}
- It is tricky to compute Pr(A) because you need to look at pairs being equal, triples, etc.
- Consider $B = \{ s \in S \mid \text{no two components in } S \}$ are equal }

The Birthday Problem

- · How many people need to be in a room before you have a 50% chance that at least two of them have the same birthday?
- The surprising answer is that once you have 23 people in a room, you have at least a 50% chance that two of them have the same birthday
- · How to see this?

2

3

• What is the sample space? the probability space?

The Birthday Problem

- Let $A = \{ s \in S \mid \text{at least two elements of s are } \}$
- Let $B = \{ s \in S \mid \text{no two components in } S \text{ are }$ equal }
- Note that A = S B, so Pr(A) = 1 Pr(B)
- |B| = P(365,23)
- $Pr(B) = P(365,23)/365^{23} = (365/365)*$ $(364/365)*(363/365)*...(343/365) \approx .4927$
- So $Pr(A) \approx .5073$

5

The Sample Space

- We can use $S = \{(b_1, b_2, ..., b_{23}) \mid b_i \in \underline{365} \}$
- What about February 29th birthdays?
- · What probability distribution do you want to use?
- · How about uniform?
- · Is this reasonable?
- How large is S?
- $|S| = 365^{23}$

Some Calculations

N	Pr(B)	Pr(A)	23	0.492703	0.507297	343	3E-122	1
1	1	Ó	24	0.461656	0.538344	344	1.8E-123	1
2	0.99726	0.00274	25	0.4313	0.5687	345	1.1E-124	1
3	0.991796	0.008204	26	0.401759	0.598241	346	5.8E-126	1
4	0.983644	0.016356	27	0.373141	0.626859	347	3E-127	1
5	0.972864	0.027136	28	0.345539	0.654461	348	1.5E-128	1
6	0.959538	0.040462	29	0.319031	0.680969	349	6.9E-130	1
7	0.943764	0.056236	30	0.293684	0.706316	350	3E-131	1
8	0.925665	0.074335	31	0.269545	0.730455	351	1.2E-132	1
9	0.905376	0.094624	32	0.246652	0.753348	352	4.8E-134	1
10	0.883052	0.116948	33	0.225028	0.774972	353	1.7E-135	1
11	0.858859	0.141141	34	0.204683	0.795317	354	5.6E-137	1
12	0.832975	0.167025	35	0.185617	0.814383	355	1.7E-138	1
13	0.80559	0.19441	36	0.167818	0.832182	356	4.6E-140	1
14	0.776897	0.223103	37	0.151266	0.848734	357	1.1E-141	1
15	0.747099	0.252901	38	0.135932	0.864068	358	2.5E-143	1
16	0.716396	0.283604	39	0.12178	0.87822	359	4.8E-145	1
17	0.684992	0.315008	40	0.108768	0.891232	360	7.9E-147	1
18	0.653089	0.346911	41	0.096848	0.903152	361	1.1E-148	1
19	0.620881	0.379119	42	0.08597	0.91403	362	1.2E-150	1
20	0.588562	0.411438	43	0.076077	0.923923	363	9.7E-153	1
21	0.556312	0.443688	44	0.067115	0.932885	364	5.3E-155	1
22	0.524305	0.475695	45	0.059024	0.940976	365	1.5E-157	1

Markowsky S&T 1

The Two Disks Problem

Can we place the smaller over the larger so that that are at least 4 matches?

10

A General Result

 If you have a set of n birthdays and k people in a room all of whose birthdays are from the set, the probability (assuming a uniform distribution) that at least two people have the same birthday is:

$$\frac{P(n,k)}{n^k} = \frac{n}{n} \times \frac{(n-1)}{n} \times \frac{(n-2)}{n} \times \dots \times \frac{(n-(k-1))}{n}$$

How Can You Solve This Problem?

- Is this a probability problem?
- Why would you expect to solve it using probabilistic methods?
- Because probabilistic methods are really combinatorial in nature
- You need to start with the correct sample space

8

11

The Two Disks Problem

- Suppose you have two disks each with 128 pie-shaped sectors, 64 of which are painted red and 64 of which are painted white
- The two patterns can be completely arbitrary
- Can we place one over the other such that at least 64 sectors on each disk have the same color?

Sample Space

- What is the sample space?
- $S = \{1, 2, ..., 128\} = \underline{128}$
- Why? What do the numbers mean?
- The number j means that slice 1 of the small disk is placed over slice j of the large disk
- Have R.V. Matches:S → R given by Matches(j) = number of matches when small disk's slice 1 is over large disk's slice j

9

12

Markowsky S&T

Now What?

- Want to compute E(Matches), but how?
- Use indicator variables
- Let $M_i:S \to \mathbf{R}$ be given by
- $M_i(j) = 1$ if slice i of the small disk has a match when the small disk is in position j
- $M_i(j) = 0$ otherwise
- Note that $E(Matches) = \sum_{i=1...128} E(M_i)$

4	A		В	
1	C(n,k)	n		ī
2	k		23	
3	(0	1	
4	1	1	23	
4 5 6 7 8	- 2	2	253	27
6	3	3	1,771	2,02
7	4	4	8,855	10,626
8		5	33,649	42,504
9		6	100,947	134,596
10	-	7	245,157	346,104
11	8	8	490,314	735,471
12	9	9	817,190	1,307,504
13	10	0	1,144,066	1,961,256
14	11	1	1,352,078	2,496,144
15	12	2	1,352,078	2,704,156
16	13		1,144,066	2,496,144
17	14	4	817,190	1,961,256
18	15		490,314	1,307,504
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	16	6	245,157	735,471
20	17	7	100,947	346,104
21	18	8	33,649	134,596
22	19	9	8,855	42,504
23	20	0	1,771	10,626
24	21		253	2,024
25	22	2	23	276
26	23	3	1	24
27	24	4		1
28	Sum		8,388,608	16,777,216
29			8,388,608	16,777,216

13

Well, Now What?

- It is easy to see that $E(M_i) = \frac{1}{2}$ because half the slices of the large disk are the same color as slice i of the small disk and half are the other color
- $E(M_i) = 1*(1/2) + 0*(1/2) = \frac{1}{2}$
- Thus, E(Matches) = 64
- So what?
- By the Average Value Theorem, there exists a $j \in \underline{128}$ s.t. Matches $(j) \ge 64$

14

HW 01

- As I read through the HWs I found that there was a big disconnect between what I was getting and what I was expecting so I thought we should treat HW 01 as a learning exercise
- I will now review some of the issues that need to be addressed
- Will review orally and give you a more detailed document on Canvas by tomorrow

15

Markowsky S&T

16