Politechnika Wrocławska Wydział Podstawowych Problemów Techniki

Obliczenia naukowe

Sprawozdanie z zajęć laboratoryjnych

Lista 4

Autor: Jakub Pezda 221426

1.1 Opis problemu

Ćwiczenie polega na napisaniu funkcji obliczającej ilorazy różnicowe.

1.2 Rozwiązanie

Ilorazy różnicowe oblicza się rekurencyjnie stosując wzór:

$$f[x_0, x_1, ..., x_k] = \frac{f[x_1, x_2, ..., x_k] - f[x_0, x_1, ..., x_{k-1}]}{x_k - x_0}$$

Ilorazy rzędu zerowego i pierwszego można przedstawić więc następująco:

$$f[x_0] = f(x_0)$$

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Do wykonania ćwiczenia użyto algorytmu, którego pseudokod prezentuje się następująco:

```
function ilorazyRoznicowe(x, f)
  for i = 1:n
    fx[i] = f[i]
  for j = 2:n
    for i = n:-1:j
        fx[i] = (fx[i] - fx[i - 1])/(x[i] - x[i - j + 1])
    end
end
```

Listing 1.1: pseudokod algorytmu obliczającego ilorazy różnicowe

Powyższa implementacja przyjmuje jako parametry wektor zawierający węzły $x_0, x_1, ..., x_n$ oraz wektor zawierający wartości interpolowanej funkcji w węzłach $f(x_0), f(x_1), ..., f(x_n)$.

2.1 Opis problemu

Celem ćwiczenia jest zaimplementowanie funkcji obliczającej wartość wielomianu w punkcie za pomocą uogólnionego algorytmu Hornera.

2.2 Rozwiązanie

Uogólniony algorytm Hornera prezentuje się następująco:

$$w_n(x) := f[x_0, x_1, ..., x_n]$$

$$w_k(x) := f[x_0, x_1, ..., x_k] + (x - x_k) * w_{k+1}(x) \quad (k = n - 1, ..., 0)$$

$$N_n(x) := w_0(x)$$

Na podstawie powyższych wzorów można napisać algorytm wyznaczający wartość wielomianu w czasie O(n). Poniższy pseudokod przedstawia takie rozwiązanie

```
function warNewton(x, fx, t)
  nt = fx[n]
  for i = n - 1: -1: 1
    nt = fx[i] + (t - x[i]) * nt
  end
```

Listing 2.1: pseudokod algorytmu obliczającego wartość wielomianu w punkcie

3.1 Opis problemu

Celem ćwiczenia jest zaimplementowanie funkcji interpolującej podaną funkcję oraz rysującej wielomian interpolacyjny i interpolowaną funkcję.

3.2 Rozwiązanie

Do rozwiązania zadania użyto funkcji zaimplementowanych w ćwiczeniu pierwszym oraz drugim. Aby narysować funkcję oraz wielomian skorzystano z pakietu PyPlot. Algorytm w pierwszej kolejności oblicza wartości funkcji dla węzłów. Następnie używając funkcji z pierwszego zadania oblicza ilorazy różnicowe. W ostatnim kroku tworzy wykresy. Wartości wielomianu oblicza są przy użyciu algorytmu z drugiego zadania.

4.1 Opis problemu

Celem ćwiczenia jest przetestowanie funkcji z zadania trzeciego na następujących przykładach:

```
(a) e^x, [0, 1], n = 5, 10, 15
(b) x^2 \sin x, [-1, 1], n = 5, 10, 15
```

4.2 Rozwiązanie

Aby wykonać ćwiczenie podstawiono dane podane w treści zadania do funkcji z zadania trzeciego.

4.3 Wyniki

4.4 Wnioski

Wykresy funkcji interpolowanej oraz wielomianu interpolacyjnego są identyczne. Nie widać rozbieżności pomiędzy nimi. Przybliżenie wykresów rośnie wraz ze wzrostem stopnia wielomianu.

5.1 Opis problemu

Celem ćwiczenia jest przetestowanie funkcji z zadania trzeciego na następujących przykładach:

(a)
$$|x|$$
, [-1, 1], n = 5, 10, 15

(b)
$$\frac{1}{1+x^2}$$
, [-5, 5], n = 5, 10, 15

5.2 Rozwiązanie

Aby wykonać ćwiczenie podstawiono dane podane w treści zadania do funkcji z zadania trzeciego.

5.4 Wnioski

Interpolacja wielomianami wysokich stopni przy stałych odległościach węzłów prowadzi do poważnych odchyleń od interpolowanej funkcji zwłaszcza na końcach przedziału. Interpolacja na środkowych częściach jest natomiast dobra i użyteczna. Różnica na końcach przedziału rośnie wraz ze wzrostem stopnia wielomianu. Błąd interpolacji w pierwszej funkcji jest spowodowany tym, że funkcja jest nie różniczkowalna.