Machine Learning Foundation Hw3

資工四 B05902006 蕭縈瀅

Problem 1

Score: 100 %

Problem 2

Prove $err(w) = max(0, -yw^Tx)$ results in PLA .

The update on **PLA** algorithm $: w_{t+1} \leftarrow w_t + [y
eq sign(w^Tx)]yx$

$$abla_w err(w) = egin{cases} rac{\delta - y w^T x}{\delta w}, & if - y w^T x > 0 \ 0, & if - y w^T x < 0 \end{cases}$$

$$= egin{cases} -yx, & if\ yw^Tx < 0 \ 0, & if\ yw^Tx > 0 \end{cases}$$

$$=-[y
eq sign(w^Tx)]yx$$

It's obvious to see that $w_{t+1} \leftarrow w_t + [y
eq sign(w^Tx)]yx$

$$=w_t+\eta(-
abla_werr(w)),$$
 when $\eta=1$

Problem 3

To minimize $\hat{E_2}(\Delta u, \Delta v)$, we would like to find $\Delta u, \Delta v$ such that $\nabla \hat{E_2}(\Delta u, \Delta v) = 0$

$$abla \hat{E_2}(\Delta u, \Delta v) =
abla (E(u,v) + (\Delta u, \Delta v)
abla E(u,v) + rac{1}{2} ((\Delta u, \Delta v) (
abla E(u,v)))^2)$$

$$=
abla E(u,v)+(\Delta u,\Delta v)(
abla^2(u,v))=0$$

Therefore,
$$(\Delta u, \Delta v) = -(
abla^2 E(u,v))^{-1}
abla E(u,v)$$

Problem 4

 $likelihood(w) \propto \prod_{n=1}^{N} h_{y_n}(x_n) \propto \ln \prod_{n=1}^{N} h_{y_n}(x_n)$

 $\max_{w} likelihood(w) \propto \prod_{n=1}^{N} h_{y_n}(x_n)$

 $\max_w likelihood(w)
ightarrow \min_w rac{1}{N} \Sigma_{n=1}^N - \ln(h_{y_n}(x_n))$

$$ightarrow \min_w rac{1}{N} \Sigma_{n=1}^N \ln(\Sigma_{i=1}^k e^{w_i^T x_n}) - ln(e^{w_{y_n}^T x_n})$$

$$ightarrow \min_w rac{1}{N} \Sigma_{n=1}^N \ln(\Sigma_{i=1}^k e^{w_i^T x_n}) - w_{y_n}^T x_n$$

Therefore, $E_{in} = rac{1}{N}\Sigma_{n=1}^N \ln(\Sigma_{i=1}^k e^{w_i^T x_n}) - w_{y_n}^T x_n$

Problem 5

$$E_{in}(w_{lin}) = \min_{w} rac{1}{N+K} (\Sigma_{n=1}^{N}(y_n - w^T x_n) + \Sigma_{k=1}^{K}(ilde{y}_k - w^T ilde{x}_k))$$

$$=\min_{w}rac{1}{N+K}[(w^TX^TXw+2w^TX^Ty+y^Ty)+(w^T ilde{X}^T ilde{X}w+2w^T ilde{X}^T ilde{y}+ ilde{y}^T ilde{y})]$$

$$\Rightarrow
abla E_{in}(w_{lin}) = rac{2}{N+K}(x^TXw_{lin} - X^Ty + ilde{X}^T ilde{X}w_{lin} - ilde{X}^T ilde{y}) = 0$$

$$\Rightarrow (X^TX + { ilde{X}}^T{ ilde{X}})w_{lin} = X^Ty + { ilde{X}}^T{ ilde{y}}$$

$$\Rightarrow w_{lin} = (X^TX + { ilde{X}}^T{ ilde{X}})^{-1}(X^Ty + { ilde{X}}^T{ ilde{y}})$$

Problem 6

From above, we know the optimal solution $w_{reg} \leftarrow (Z^TZ + \lambda I)^{-1}Z^Ty$

That is,
$$ilde{X}^T ilde{X}=\lambda I, ilde{X}^T ilde{y}=0$$

$$\Rightarrow \tilde{X} = \sqrt{\lambda}I, \tilde{y} = 0$$

Problem 7

Finding:

• vibration: It is clearly to see the vibration of SGD is much bigger than GD. We can infer that

it is owing to SGD only trains 1 data each time, so each update can't lower the total error effectively.

• η : Big η (lr=0.01) can lower total error rate faster than small one lr=0.001.

Problem 8

Finding:

• **pattern**: The pattern of Eout is similar to Ein, while the value of Eout seems to be a little bit higher than Ein. We can infer that $hw3_train. dat$ and $hw3_test. dat$ has high correlation. Because Ein is proportional to Eout under the same hypothesis.

Bonus

(a)

$$egin{aligned} X^TXw_{lin} &= X^T(U\Gamma V^T)(V\Gamma^{-1}U^Ty) \ &= X^TU\Gamma(V^TV)\Gamma^{-1}U^Ty \ (\because commutation\ law) \ &= X^TU(\Gamma\Gamma^{-1})U^Ty \ (\because V^TV = I
ho) \ &= X^T(UU^T)y \ (\because \Gamma\Gamma^{-1} = I
ho) \ &= X^Ty \ (\because U^TU = I
ho) \end{aligned}$$