Instructions: For each problem, circle the letter of the best answer. You must show all work for credit. Partial credit may be awarded as appropriate.

- 1. Given the function defined by $f(x) = 3x^5 20x^3$, find all values of x for which the graph of f is concave up.
 - (a) x > 0
 - (b) $-\sqrt{2} < x < 0 \text{ or } x > \sqrt{2}$
 - (c) -2 < x < 0 or x > 2
 - (d) $x > \sqrt{2}$
 - (e) -2 < x < 2
- 2. If $f(x) = x + \frac{1}{x}$, then the set of values for which f increases is
 - (a) $(-\infty, -1] \cup [1, \infty)$
 - (b) [-1,1]
 - (c) $(-\infty, \infty)$
 - (d) $(0,\infty)$
 - (e) $(-\infty,0)\cup(0,\infty)$
- 3. At what values of x does $f(x) = 3x^5 5x^3 + 15$ have a relative maximum?
 - (a) -1 only
 - (b) o only
 - (c) 1 only
 - (d) -1 and 1 only
 - (e) -1, 0 and 1
- 4. The graph of $y = \frac{-5}{x-2}$ is concave downward for all values of x such that
 - (a) x < 0
 - (b) x < 2
 - (c) x < 5
 - (d) x > 0
 - (e) x > 2

5.	If the graph of $y = x^3 + ax^2 + bx - 4$ has a point of inflection at $(1, -6)$, what is the value of b ?
	(a) -3
	(b) 0
	(c) 1
	(d) 3
6.	The function f given by $f(x) = x^3 + 12x - 24$ is
	(a) increasing for $x < -2$, decreasing for $-2 < x < 2$, increasing for $x > 2$
	(b) decreasing for $x < 0$, increasing for $x > 0$
	(c) increasing for all x
	(d) decreasing for all x
	(e) decreasing for $x < -2$, increasing for $-2 < x < 2$, decreasing for $x > 2$
7.	The derivative of f is $x^4(x-2)(x+3)$. At how many points will the graph of f have a relative maximum?
	(a) None
	(b) One
	(c) Two
	(d) Three
	(e) Four
8.	If $f(x) = x^2 e^x$, then the graph of f is decreasing for all x such that
	(a) $x < -2$
	(b) $-2 < x < 0$
	(c) $x \succ 2$
	(d) $x < 0$
	(e) $x > 0$

9. The graphs of the derivatives of the functions f, g, and h are shown below. Which of the functions f, g, or h have a relative maximum on the open interval a < x < b?

- (a) f only
- (b) g only
- (c) h only
- (d) f and g only
- (e) f, g, and h

10. The graph of a twice-differentiable function f is shown in the figure below.

Which of the following is true?

- (a) f(1) < f'(1) < f''(1)
- (b) f(1) < f''(1) < f'(1)
- (c) f'(1) < f(1) < f''(1)
- (d) f''(1) < f(1) < f'(1)
- (e) f''(1) < f'(1) < f(1)

Free Response

The function

$$f(x) = \frac{1}{x^2 - 4}$$

has first derivative

$$f'(x) = \frac{-2x}{(x^2 - 4)^2}$$

and second derivative

$$f''(x) = \frac{6x^2 + 8}{\left(x^2 - 4\right)^3}$$

Sketch the graph of f(x) after completing the following questions:

- 1. State any domain restrictions for f(x)
- 2. Determine any critical points of f(x)
- 3. State intervals on which f(x) is increasing or decreasing
- 4. State intervals on which f(x) is concave up or concave down
- 5. Calculate any horizontal asymptotes of f(x)