Math 115A: Problem set 1

Sections 1 and 3. Instructor: James Freitag

Due 10/2

Problem 1 A vector space?

Let $V = \{(x, y) \in \mathbb{R}^2\}$. Consider the standard addition function on the set V and the scalar multiplication given by $c \cdot (x, y) \mapsto (cx, y)$. Prove or disprove that V is a vector space with respect to the standard addition operation and the scalar multiplication given here.

Problem 2 How to not be a subspace

- 1. Give an example of a subset of \mathbb{R}^3 which is closed under addition, but not under scalar multiplication.
- 2. Give an example of a subset of \mathbb{R}^3 which is closed under scalar multiplication, but not under addition.

Problem 3 Spanning relations

Work in the vector space \mathbb{R}^3 . Find three vectors, w, v, z with the following properties:

- $1. \ span(\{w,v\}) = span(\{v,z\}) = span(\{w,v,z\})$
- 2. $span(\{w, v, z\} \neq span(\{w, z\}))$

Suppose that w, v, z are any three vectors with the above listed properties. Then prove or disprove the following statements:

- 1. w, v are linearly independent.
- 2. v, z are linearly independent.
- 3. w, z are linearly dependent.

Problem 4 Give a basis

Give an example of a basis for $P_3(\mathbb{R})$, the vector space of polynomials over \mathbb{R} of degree at most three. Prove that your set is a basis.

Problem 5 Exercises from the book

Do the following exercises from book:

- 8 from section 1.2.
- \bullet 19 from section 1.3.
- 4 from section 1.4.