Final: Theory Questions (extra credit)

Julian Lehrer

Question 1.

- a. We define the iteration to be $x^{(k+1)} = Tx^{(k)} + c$. In the Jacobi iteration case, we have that $T = D^{-1}(L+U)$ and $c = D^{-1}b$
- b. In the case of Gauss-Seidel, we have that $T=(D-L)^{-1}U$ and $c=(D-L)^{-1}b$.

Question 2. Let x_0 be an arbitary vector. Since A is not defective, consider that A has an eigenbasis and therefore we can write that $x_0 = \sum_{i=1}^m a_i v_i$ where $\{v_i\}$, i = 1, ...m are the set of eigenvectors of A. Then consider

$$Ax_0 = A\left(\sum_{i=1}^m a_i v_i\right) = \sum_{i=1}^m Aa_i v_i = \sum_{i=1}^m \lambda_i a_i v_i$$
$$= \lambda_1 a_1 v_1 + \dots + \lambda_m a_m v_m$$

Now, we can rewrite this as

$$Ax_0 = a_1 \lambda_1 \left(v_1 + \frac{a_2}{a_1} \left(\frac{\lambda_2}{\lambda_1} \right) v_2 + \dots + \frac{a_m}{a_1} \left(\frac{\lambda_m}{\lambda_1} \right) v_m \right)$$

Therefore

$$A^k x_0 = a_1 \lambda_1^k \left(v_1 + \frac{a_2}{a_1} \left(\frac{\lambda_2}{\lambda_1} \right)^k v_2 + \dots + \frac{a_m}{a_1} \left(\frac{\lambda_m}{\lambda_1} \right)^k v_m \right)$$

Since $(\lambda_1/\lambda_i)^k \longrightarrow 0$ as $k \longrightarrow \infty$. Therefore, Since we are normalizing by $||Ax_0|| \longrightarrow \lambda_1$ as $k \longrightarrow \infty$, we have that the power iteration converges to v_1 , the eigenvector associated with the largest eigenvalue of A. Now, consider the case where

Consider the case where $|\lambda_1| = ... = |\lambda_r|$ for 1 < r < m, specifically where $\lambda_1 = -\lambda_j$ for one or more j for 1 < j < r. Then, we'll have that the power iteration is

$$A^{k}x_{0} = a_{1}\lambda_{1} \left(v_{1} + ... + \frac{a_{j}}{a_{1}} \left(-1 \right)^{k} v_{j} + ... + \frac{a_{m}}{a_{1}} \left(\frac{\lambda_{m}}{\lambda_{1}} \right)^{k} v_{m} \right)$$

Then we'll have that the iteration oscillates for k = 2n and k = 2n + 1 where $(-1)^k \in \{-1, 1\}$.

Question 3.

a.

Question 4.

a. First, we prove that H is symmetric. That is, we have that

$$H^T = (I - 2\frac{vv^T}{v^Tv})^T = I^T - 2\frac{(vv^T)^T}{v^Tv} = I - 2\frac{v^T(T)v^T}{v^Tv} = I - 2\frac{vv^T}{v^Tv} = H$$

Therefore, H is symmetric. Now,

$$\begin{split} H^T H &= \left(I - 2 \frac{vv^T}{v^T v}\right) \\ &= I - 4 \frac{vv^T}{v^T v} + 4 \frac{vv^T vv^T}{(v^T v)^2} \\ &= I - 4 \frac{vv^T}{v} + 4 \frac{v(v^T v)v^T}{(v^T v)^2} = I - 4 \frac{vv^T}{v^T v} + 4 \frac{vv^T}{v^T v} = I \end{split}$$

Therefore, the Householder transformation is both orthogonal and symmetric. $\,$

b. We have that

$$\begin{split} Ha &= \left(I - 2\frac{(a + \alpha e_1)(a^T + \alpha e_1^T)}{(a^T + \alpha e_1^T)(a + \alpha e_1)}\right) a \\ &= a - 2\left(\frac{aa^T + \alpha ae_1^T + \alpha e_1a^T + \alpha^2 e_1e_1^T}{a^Ta + \alpha a^Te_1 + \alpha e_1^Ta + e_1^Te_1}\right) a \\ &= a - 2\left(\frac{a(a^Ta) + \alpha a(e_1^Ta) + \alpha e_1(a^Ta) + \alpha^2(e_1^Ta)}{a^Ta + \alpha a^Te_1 + \alpha e_1^Ta + e_1^Te_1}\right) \\ &= a - 2\left(\frac{(a + \alpha e_1)(a^Ta + 2\alpha a^Te_1 + e_1^Te_1)}{(a^Ta + 2\alpha a^Te_1 + e_1^Te_1)}\right) \end{split}$$