Computer Vision

Triangulation and Absolute Orientation

Arjun Jain

Motivation

Given the relative orientation of two images, compute the points in 3D

Topic

Last lectures

Computing the relative orientation of two images

Today

Given the relative orientation of the images, compute the 3D location of corresponding points

Triangulation / forward intersection

Table of Contents

Triangulation

- 1. Geometric approach
- 2. Stereo normal case
- 3. Quality of the 3D Points

Absolute Orientation

Discussion of Orientation Solutions

1. Geometric Approach

The Problem

Find the Point H

Refresher from Camera Geometry

- Starting from $\lambda \mathbf{x} = KRX KRX_O$
- we obtain

$$X = (KR)^{-1}KRX_O + \lambda(KR)^{-1}x$$

$$= X_O + \lambda(KR)^{-1}x$$
3x1 Euclidean

• The term $(KR)^{-1}x$ describes the direction of the ray from the camera origin X_O to the 3D point X

Geometric Solution

Equation for two lines in 3D

$$f = p + \lambda r$$
 $g = q + \mu s$

- with the points
- $oldsymbol{p} = oldsymbol{X}_{O'} \quad oldsymbol{q} = oldsymbol{X}_{O''}$
- and the directions (calibrated camera)

$$r = R'^{\mathsf{T} k} \mathbf{x}' \qquad s = R''^{\mathsf{T} k} \mathbf{x}''$$

with

$${}^{k}\mathbf{x}' = (x', y', c)^{\mathsf{T}} \quad {}^{k}\mathbf{x}'' = (x'', y'', c)^{\mathsf{T}}$$

Geometric Solution

- The shortest connection requires that FG is orthogonal to both lines
- This leads to the constraint

$$(\boldsymbol{f} - \boldsymbol{g}) \cdot \boldsymbol{r} = 0$$
 $(\boldsymbol{f} - \boldsymbol{g}) \cdot \boldsymbol{s} = 0$

which directly leads to

$$(\mathbf{q} + \lambda \mathbf{s} - \mathbf{p} - \mu \mathbf{r}) \cdot \mathbf{s} = 0$$
$$(\mathbf{q} + \lambda \mathbf{s} - \mathbf{p} - \mu \mathbf{r}) \cdot \mathbf{r} = 0$$

Two equations, two unknowns

Geometric Solution

By solving the equations

$$\begin{array}{rcl} ({\pmb q}+\lambda {\pmb s}-{\pmb p}-\mu {\pmb r})\cdot {\pmb s}&=&0\\ ({\pmb q}+\lambda {\pmb s}-{\pmb p}-\mu {\pmb r})\cdot {\pmb r}&=&0\\ \text{we obtain}&\lambda,\mu \end{array}$$

- dir λ, μ y yield F and G
- We compute H as the middle of the line connecting F and G

2. For the Stereo Normal Case

Stereo Normal Case

1. Z-coordinate from intercept theorem

1. Z-coordinate from intercept theorem

$$\frac{Z}{c} = \frac{B}{-(x'' - x')}$$

$$p_x$$

$$Z = c \frac{B}{-(x'' - x')}$$

1. Z-coordinate from intercept theorem

$$\frac{Z}{c} = \frac{B}{-(x'' - x')}$$

2. X-coordinate

$$\frac{X}{x'} = \frac{Z}{c}$$

1. Z-coordinate from intercept theorem

$$\frac{Z}{c} = \frac{B}{-(x'' - x')}$$

2. X-coordinate

$$\frac{X}{x'} = \frac{Z}{c}$$

$$X = x' \frac{B}{-(x'' - x')}$$

1. Z-coordinate from intercept theorem

$$\frac{Z}{c} = \frac{B}{-(x'' - x')}$$

2. X-coordinate

$$\frac{X}{x'} = \frac{Z}{c}$$

3. Y-coordinate by mean

$$\frac{Y}{X} = \frac{\frac{y'+y''}{2}}{x'}$$

1. Z-coordinate from intercept theorem

$$\frac{Z}{c} = \frac{B}{-(x'' - x')}$$

2. X-coordinate

$$\frac{X}{x'} = \frac{Z}{c}$$

3. Y-coordinate by mean

$$\frac{Y}{X} = \frac{\frac{y' + y''}{2}}{x'}$$

Intersection of Two Rays for the Stereo Normal Case

$$X = x' \frac{B}{-(x'' - x')} \qquad Y = \frac{y' + y''}{2} \frac{B}{-(x'' - x')} \qquad Z = c \frac{B}{-(x'' - x')}$$

- x-parallax $p_x = x'' x'$ corresponds to depth Z
- y-parallax $p_y = y'' y'$ corresponds to the consistency of image points and should be small (due to stereo normal case)
- The parallax is also called disparity

Literature

• Förstner, Wrobel: Photogrammetric Computer Vision, Ch. 12.4 - 12.6

Slide Information

- The slides have been created by Cyrill Stachniss as part of the photogrammetry and robotics courses.
- I tried to acknowledge all people from whom I used images or videos. In case I made a mistake or missed someone, please let me know.
- The photogrammetry material heavily relies on the very well written lecture notes by Wolfgang Förstner and the Photogrammetric Computer Vision book by Förstner & Wrobel.
- Parts of the robotics material stems from the great
 Probabilistic Robotics book by Thrun, Burgard and Fox.

Arjun Jain, ajain@cse.iitb.ac.in