SNP detection and Genome Wide Association Study using Hadoop-BAM, CrossBow and Apache HIVE in Hadoop Cluster

Jyotsna Singh – PGDBD201901006

Paulami Das – PGDBD201901009

Poushali Gupta – PGDBD201901010

Institute of Bioinformatics & Applied Biotechnology, Bangalore

Next Generation Sequencing & Big Data

- The amount of NGS

 Data worldwide is predicted to double every 5 months which is must faster than Moore's law
- ➤ 1000 Genomes projects has Petabytes of human genome data sets
- ➤ In many GWAS and WGS studies multiple large files has to be processed sequentially

Kryder's law: Exponential growth of neuroimaging and genomics data, relative to increase of number of transistors per chip. By 2025 more than 100 PB of sequenced genome and 1 TB of neuroimaging data will be generated daily.

Different File Formats of Genomic Data

```
@HD
      VN:1.0 SO:coordinate
@S0
      SN:chr20
                    LN:64444167
      ID:TopHat
                    VN:2.0.14
                                 CL:/srv/dna tools/tophat/tophat -N 3 --read-edit-dist 5 --read-rea
lign-edit-dist 2 -i 50 -I 5000 --max-coverage-intron 5000 -M -o out /data/user446/mapping tophat/index/chr
20 /data/user446/mapping tophat/L6 18 GTGAAA L007 R1 001.fastq
HWI-ST1145:74:C101DACXX:7:1102:4284:73714
                                               chr20 190930 3
      CCGTGTTTAAAGGTGGATGCGGTCACCTTCCCAGCTAGGCTTAGGGATTCTTAGTTGGCCTAGGAAATCCAGCTAGTCCTGTCTCTCAGTCCCCCCTCT
    AS:i:-15
                 XM:i:3 X0:i:0 XG:i:0 MD:Z:55C20C13A9 NM:i:3 NH:i:2 CC:Z:= CP:i:55352714 HI:i:0
HWI-ST1145:74:C101DACXX:7:1114:2759:41961
                                               chr20 193953 50
                                                                   100M
      TGCTGGATCATCTGGTTAGTGGCTTCTGACTCAGAGGACCTTCGTCCCCTGGGGCAGTGGACCTTCCAGTGATTCCCCTGACATAAGGGGCATGGACGA
    DCDDDDEDDDDDDDDDDDDCCCDDDCDDDDDEEC>DFFFEJJJJJIGJJJJJIHGBHHGJIJJJJJJGJJJJJIHJJJJJJHHHHHFFFFFCCC
   AS: i:-16
                 XM:i:3 X0:i:0 XG:i:0 MD:Z:60G16T18T3 NM:i:3 NH:i:1
HWI-ST1145:74:C101DACXX:7:1204:14760:4030
                                               chr20 270877 50
                                                                   100M
      DDDDDDDDDCCDDDDDDDDDEEEEEEEFFFEFFEGHHHHFGDJJIHJJIJJJJIIIIGGFJJIHIIIJJJJJJJGHHFAHGFHJHFGGHFFFDD@BB
   AS:i:-11
                 XM:i:2 X0:i:0 XG:i:0 MD:Z:0A85G13 NM:i:2 NH:i:1
HWI-ST1145:74:C101DACXX:7:1210:11167:8699
                                               chr20 271218 50
                                                                   50M4700N50M
            GTGGCTCTTCCACAGGAATGTTGAGGATGACATCCATGTCTGGGGTGCACTTGGGTCTCCGAAGCAGAACATCCTCAAATATGACCTCTCG
accepted hits.sam
```

SAM/BAM Files

ReferenceGenome	Homo_sapiens\UCSC\hg19\Sequence\WholeGenomeFASTA				4
[Regions]					
Name	Chromosome	Start	End	Upstream Probe Length	Downstream Probe Len
WASH5P-chr1-14363-14829	chr1	14363	14829	0	
WASH5P-chr1-14970-15038	chr1	14970	15038	0	
WASH5P-chr1-15796-15947	chr1	15796	15947	0	
WASH5P-chr1-16607-16765	chr1	16607	16765	0	
WASH5P-chr1-16858-17055	chr1	16858	17055	0	
WASH5P-chr1-17233-17368	chr1	17233	17368	0	
WASH5P-chr1-17606-17742	chr1	17606	17742	0	

##fileformat=VCF4.2
##INFO= <id=svtype,number=1,type=string,< td=""></id=svtype,number=1,type=string,<>
Description="Type of structure variant">
##INFO= <id=end,number=1,type=integer,< td=""></id=end,number=1,type=integer,<>
Description="End position of the variant described in this record">
#CHROM POS ID REF ALT QUAL FILTER INFO

1 160929435 rs7520618 G A SVTYPE=SNP;END=160929436
1 160932043 rs113387749 A SVTYPE=INS;END=160932043
1 160932206 rs5778188 C SVTYPE=DEL;END=160932207
1 160932771 rs2256505 A G SVTYPE=SNP;END=160932772
1 160934077 rs2481074 T A SVTYPE=SNP;END=160934078
1 160934818 rs1023115 A G SVTYPE=SNP;END=160934819
1 160935328 . AAA TGC SVTYPE=SUB;END=160935331
1 160935334 rs75452934 AA TC SVTYPE=SUB;END=160935336

>@HWI-ST216_0180:4:1101:1096:2196#GGCTAC/1
TTTTCAGNGAATACTGCAAATCAATAAACTCTTTAG
>@HWI-ST216_0180:4:1101:1158:2236#GGCTAC/1
AAAAGCTCATTTCCTATAGTTAACAGGACATGCCTT
>@HWI-ST216_0180:4:1101:1448:2211#GGCTAC/1
ATTATATAAGATAGCGGCTTTTTCCGTTAGTTTCCT
>@HWI-ST216_0180:4:1101:1331:2227#GGCTAC/1
CACGTTCTCTGTCCCCAATGGTATTTGCATCCCTGT
>@HWI-ST216_0180:4:1101:1376:2237#GGCTAC/1
GCGTCCCTTAGCTGAACCTACCCAAACGTACGAATGC

Fasta Files

@HWI-ST216_0180:4:1101:1096:2196#GGCTAC/1
TTTTCAGNGAATACTGCAAATCAATAAACTCTTTAG
+HWI-ST216_0180:4:1101:1096:2196#GGCTAC/1
ceedb]]B[[]]]][ffffff\ddddedeeedf_fbd
@HWI-ST216_0180:4:1101:1158:2236#GGCTAC/1
AAAAGCTCATTTCCTATAGTTAACAGGACATGCCTT
+HWI-ST216_0180:4:1101:1158:2236#GGCTAC/1
ggggggggggggggggggggggfffggggggggfg
@HWI-ST216_0180:4:1101:1448:2211#GGCTAC/1
ATTATATAAGATAGCGGCTTTTTCCGTTAGTTTCCT

Fastq Files

Properties of Our Data Set

- Semi-Structured
- Reference Genome Fasta Format

3.2 GB

62743362 bp

Raw Data – Fastq Format

4.1 GB

27999799 bp

Read length - 150 bp

GC Content – 44%

Output File – BAM Format, VCF

Format

42 GB, 30 KB

Relationship of Human Genome with Other Species

Advantages of Hadoop

- Hadoop is Open Source distributed data processing system
- Based on Google's MapReduce architecture design
- Cheap commodity hardware for storage
- Fault tolerant distributed filesystems: **HDFS**
- Batch processing systems: Hadoop MapReduce, Apache Hive, Apache Pig (HDD), Apache Spark (RAM)
- Parallel SQL implementations for analytics: Apache Hive,
 Cloudera Impala, Apache Spark
- Fault tolerant distributed database: Hbase
- Distributed machine learning libraries, text indexing & search

Hadoop in Different Biological Aspects

- In Cancer treatments
- In monitoring Patient Vitals
- In the Hospital Network
- In Healthcare Intelligence
- In Structural Bioinformatics
 - 1) Molecular Docking
 - 2) Clustering of Protein-Ligand complex
 - 3) Structural Alignment
- In Genomic Data Analysis

Tools used in Hadoop For Biological Data Analysis

- Cloud Burst Uses Hadoop as a platform for alignment of short reads.
- Crossbow Uses Hadoop for SNP genotyping from short reads.
- Contrail Uses Hadoop for denovo assembly from short sequencing reads
- Myrna Uses Bowtie and R/Bioconductor for calculating differential gene expression from large RNASeq data sets
- Cloud Blast Uses Gene Set Enrichment Analysis in Hadoop
- **BlueSNP** Implements GWAS statistical tests in R & executes the calculations with Apache Hadoop using MapReduce formalism.
- HadoopBAM A library for processing NGS data format in parallel with both Hadoop and Spark.
- Amazon Elastic Compute Cloud & MapReduce.

Typical Genomics Data Analysis Using HDFS

Processing Data in main memory instead of files in hard disks = minimal I/O operations. Map/Reduce data from Petabytes to Gigabytes (million times less in the end

Project Proposal

- Genome Alignment using HADOOP-BAM
- SNP Detection using Crossbow (Bowtie+SOAPsnp) and HadoopBAM and comparing both
- Genome Wide Association Study (GWAS) using Apache HIVE across Human Genome of Different Population

SNP Detection using MapReduce Algorithm in Crossbow

- Copying the Fastq raw data and Fasta reference genome from Local File System to HDFS
- Running the Crossbow pipeline in Hadoop Cluster
- Crossbow's Map phase align reads with Bowtie 2 which employs a compact index of reference sequence requiring about 3 GB of memory using HG19
- The index is distributed to all computers in cluster via hadoop file or by instructing each node to independently obtain the index from a shared file
- The reduce phase performs SOAPsnp
- The output of Reduce phase is SNP tuple which stored on the Clustered distributed File System which can be transferred to Local File System.

SNP Detection using HadoopBAM

Genome Wide Association Study using Apache HIVE

- Processing of VCF Files in Data Browser and query using Apache HIVE
- Counting the Allele Frequency
- Taking Input Data from different population and finding Genome wide association using Log odds ratio/Likelihood ratio/Chi-square test across different population

References

- Searching for SNPs with cloud computing
 Ben Langmead, Michael C Schatz, Jimmy Lin, Mihai Pop and Steven L Salzberg
- The application of Hadoop in Structural Bioinformatics
 Jamie Alnasir, Hugh P. Shanahan
- Big Data Processing for Genomics
 Altti Ilari Maarala, Keijo Heljanko, Andre
 Schumacher, Ridvan Dongelci, Luca Pireddu,
 Matti Niemenmaa, Aleksi Kallio, Eija Korpelainen and
 Gianluigi Zanetti

Thank You