2017-10-30

Lecture 21: Solubility and Intro to Acid-Base Chemistry

Mixtures vs Solutions

- Mixtures = any combination of two or more substances
 - Mixtures can be homogenous or heterogeneous
 - * Homogeneous = uniform throughout; well-mixed
 - * **Heterogeneous** = not uniform throughout; not perfectly mixed
- Solution = a special term for a homogenous mixture

Sollubility

- Mantra goes "like dissolves like"
 - This means that polar/ionic compounds dissolve polar/ionic compounds, whereas nonpolar compounds dissolve nonpolar compounds
- $K_{SP} =$ a metric of the equilibrium point for which a compound dissolves eq. For

$$AB(s) \to A^{+}(aq) + B^{-}(aq),$$

 $K_{SP} = [A^{+}][B^{-}]$

- Note that [AB] isn't included in calculation, because it is **solid**

ΔG_{sol} and ΔH_{sol}

- K_{SP} is an indication of what the Gibbs Free Energy change over the course of dissolving
 - High K_{SP} indicates spontenaity and negative ΔG_{sol}
- You can measure ΔH_{sol} and use the equation of Gibbs free energy to do additional analysis

$$\Delta G = \Delta H - T\Delta S$$

Sollubility of Gasses

• **Henry's Law** = the sollubility of a gas is directly proportional to it's partial pressure

$$C = kP_{aas}$$

Acid-Base Chemistry

- Arrhenius definition
 - Arrhenius acid = substance that increases the concentration of $hydronium(H_3O^+)$

- Arrhenius base = substance that increases the concentration of $hydroxide(OH^-)$
- Bronsted-Lowry definition

 - Bronsted-Lowry acid = a proton donor
 Bronsted-Lowry base = a proton acceptor
- Conjugate pair = the corresponding acid/base which is created when a base/acid is neutralized