CS 4320 / 7320 Software Engineering

Week 3 – Design: UML and Data Models

Design: UML and Data Models

Requirements:

Use Cases and Use Case Diagrams

Design:

Entity-Relationship Modeling Diagrams Class Diagrams Activity Diagrams Sequence Diagrams State Machines

Use Case Diagrams

Gives a top down perspective of the system

Shows and describes the functional requirements of the system Does not show the steps to each function or the code Does not give an order to the system

Describes the typical interactions between the actors and the system

Use Case Diagrams: Basic Symbols

Actors – key players to the system

Use Cases – key functions to the system

Included Functions – required functions

Extended Functions – optional functions

Use Case Descriptions

Overall description of the system Possible situations of the system

Use Case Descriptions: Typical Elements

Title (active verb phrase, states main goal)

Description

Triggers

Actors

Preconditions

Main Success Scenario (Goals)

Failed End Condition

Extensions

Steps of Execution (Requirements)

Use Case Example

Writing Effective use Cases by Alistair

Cockburn

ISBN-13: 978-0201702255

ISBN-10: 0201702258

Publisher: Addison-Wesley Professional;

(October 15, 2000)

From the pre-publication draft online: http://alistair.cockburn.us/get/2465

Use Case 1: ■ Buy stocks over the web ≾

Primary Actor: Purchaser

Scope: Personal Advisors / Finance package ("PAF")

Level: User goal

Stakeholders and Interests:

Purchaser - wants to buy stocks, get them added to the PAF portfolio automatically.

Stock agency - wants full purchase information.

Precondition: User already has PAF open.

Minimal guarantee: sufficient logging information that PAF can detect that something went wrong and can ask the user to provide details.

<u>Success guarantee</u>: remote web site has acknowledged the purchase, the logs and the user's portfolio are updated.

Main success scenario:

- 1. User selects to buy stocks over the web.
- 2. PAF gets name of web site to use (E*Trade, Schwabb, etc.) from user.
- 3. PAF opens web connection to the site, retaining control.
- User browses and buys stock from the web site.
- 5. PAF intercepts responses from the web site, and updates the user's portfolio.
- 6. PAF shows the user the new portfolio standing.

Extensions:

- 2a. User wants a web site PAF does not support:
 - 2a1. System gets new suggestion from user, with option to cancel use case.
- 3a. Web failure of any sort during setup:
 - 3a1. System reports failure to user with advice, backs up to previous step.
 - 3a2. User either backs out of this use case, or tries again.
- 4a. Computer crashes or gets switched off during purchase transaction:
 - 4a1. (what do we do here?)
- 4b. Web site does not acknowledge purchase, but puts it on delay:
 - 4b1. PAF logs the delay, sets a timer to ask the user about the outcome.
 - 4b2. (see use case Update questioned purchase)
- 5a. Web site does not return the needed information from the purchase:
 - 5a1. PAF logs the lack of information, has the user Update questioned purchase.

Data Modeling

What are the data entities of the system?

What are the attributes of each entity?

What are the constraints on the attributes of the entities?

What can be used to uniquely identify entities in the system?

How are the different entities related?

Data Modeling

Entity: a person, place, or thing about which we want to collect and store multiple instances of data

Attribute: data that describes the entity

Constraints: specific rules like not null, unique, check constraints (value < 10), default values

Unique identifiers: primary or surrogate key (be careful!)

Data Modeling

Relationships: associations between entities In logical and physical models, requires foreign keys

Cardinality constraints

zero or more; one or more; one and only one; zero or one

ERD: Chen vs. Crow's Foot

Object Oriented Design

What

Representing the components of a system as objects, which have a strong correlation to real-world entities

Modeling the attributes and actions of these entities

Modeling their inter-relationships and associations

Why

Clear approach to capturing the real-world needs in the model Straight-forward conversion from model to components

Object Oriented Design What is an Object?

Some entity that models a real-world concept that is either:

- Actor
- Environment
- Entity

Objects are defined by a Class definition

- Attributes / Fields / Members / State
- Actions / Methods

An instantiated Class is an Object

The class is the blueprint!

Object Oriented Design

Other topics in OOD:

- Encapsulation (information hiding)
- Abstraction
- Inheritance
- Polymorphism

Object Diagram

Class Diagram

UML Class Diagram: HasA

Figure 6-6: Aggregation and Composition

UML Class Diagram: Inheritance

BankAccount

owner : String balance : Dollars

deposit (amount ; Dollars) withdrawal (amount : Dollars)

CheckingAccount

insufficientFundsFee: Dollars

processCheck (checkToProcess : Check)

withdrawal (amount : Dollars)

SavingsAccount

annualInterestRate: Percentage

depositMonthlyInterest ()
withdrawal (amount : Dollars)

UML Activity Diagrams

Used to describe procedural logic and work flow

Similar to a flowchart

Sometimes used to describe a Use Case Shows the procedures needed for each Use Case

Supports parallel behavior

UML Activity Diagrams: Symbols

```
Action
Initial function to describe

Fork / Join
Parallel processes not needed to run in order

Decision / Merge
Conditional statements
If-then-else statements

Flow / Edges
```

UML Activity Diagram

UML Sequence Diagram

Interactive Design

Passes messages between participants (objects)

Shows the process of a single scenario

Shows how long each participant is active

Shows what each participant contributes to the process

UML Sequence Diagram: Symbols

Object

Timeline

How long each object is active

Active Object

Method Call

Reaching the next object with a call

Messages

UML Sequence Diagrams:

UML Sequence Diagram: Advanced Symbols

Creating and Deleting Objects

Objects only last while as an active object

Loops, Conditional Statements *if – then statements*

Synchronous and Asynchronous Calls

Sending several messages in parallel

Common Operators for Interaction Frames

UML Sequence Diagrams

UML Sequence Diagram: Loops

UML Sequence Diagram: Threads

UML
Sequence
Diagram:
Loop/Interaction

UML State Machines

Another way to describe the behavior of a system Similar style to the Activity Diagrams

Closest diagram that represents the code

In Object-oriented approaches, the state machine diagram shows the lifetime behavior of a single object

State Machines are good at describing the behavior across several use cases.

UML State Machines: Description/Tables

State Machines model the change of states and the events that cause them

UML State Machines: Basic Symbols

Initial State – Starting Position Final State – Ending Position

Do Behavior

UML State Machines: Basic Symbols

Event / Transition

Transitions from one state to another

Trigger-signature – trigger to change the state

[guard] - Boolean Condition for transition to occur

Activity – Event that happens during transition

UML State Machines: Advanced Symbols

State Internal Behavior

Internal Behavior

Entry Behavior / Exit Behavior

Internal Events / Do Behaviors

Internal Transitions *Transition Label*

UML State Machines: Advanced Symbols

Concurrent States

Fork / Join

Concurrent Boundary

Choice Pseudostates

Choice Pseudostates (Boolean decisions)

