It's Raw! Audio Generation with State-Space Models

Рецензия

Авторы - Stanford University:

- Albert Gu & Karan Goel
 - Efficiently modeling long sequences with structured state spaces [2021] S4 block
 - Combining recurrent, convolutional, and continuous-time models with linear state space layers [2021]
 - Linear State Space Layers (Не представлены в текущей статье)

Chris Donahue

- O Adversarial Audio Synthesis [2019] Первая попытка применить ГАНы в синтезе аудио
- GANSynth: Adversarial neural audio synthesis [2019] Супер эффективно по скорости и памяти генерируем аудио. Побили WaveNet
- <u>Expediting TTS Synthesis with Adversarial Vocoding</u> [2019] TTS в сотни раз быстрее чем умели до этого, путем устранения ботлнека предыдущих подходов.
- Christopher Ré

Что было дальше?

- ISTFTNET: Fast and Lightweight Mel-Spectrogram Vocoder Incorporating Inverse Short-Time Fourier Transform [4 march 2022]
- AudioLM: a Language Modeling Approach to Audio Generation [7 September 2022]
- BigVGAN: A Universal Neural Vocoder with Large-Scale Training [9 June 2022]

Что ещё?

Авторегрессионные ранние подходы, на которые опирались авторы:

- Generating long sequences with sparse transformers
- An unconditional end-to-end neural audio generation model
- Wavenet: A generative model for raw audio

Самые важные цитирования:

 A Survey on Artificial Intelligence for Music Generation: Agents, Domains and Perspectives

Обзор текущих моделей генерации музыки.

2. GoodBye WaveNet - A Language Model for Raw Audio with Context of 1/2 Million Samples

SotA в генерации аудио. Побили даже SaShiMi. С помощью CNN и Трансформера решили проблему сохранения долгосрочных связей и зависимостей в аудио.

3. GAN You Hear Me? Reclaiming Unconditional Speech Synthesis from Diffusion Models

AudioStyleGAN на базе диффузионных моделей.

Вопросы:

Почему именно YouTubeMusic и Beethoven?

Почему лишь SC09?

Почему не LJSpeech?

Хотелось бы оценки по дополнительным музыкальным бенчмаркам.

Сильные стороны

Очень подробное и обширное сравнение с предыдущими моделями

Model	NLL	Тіме/еросн	THROUGHPUT	PARAMS
SampleRNN-2 Tier	1.762	800s	112K SAMPLES/S	51.85M
SampleRNN-3 Tier	1.723	850s	116K SAMPLES/S	35.03M
WaveNet-512	1.467	1000s	185K samples/s	2.67M
WAVENET-1024	1.449	1435s	182K SAMPLES/S	4.24M
SaShiMi-2 layers	1.446	205s	596K SAMPLES/S	1.29M
SaShiMi-4 Layers	1.341	340s	316K SAMPLES/S	2.21M
SaShiMi-6 Layers	1.315	675s	218K SAMPLES/S	3.13M
SaShiMi-8 layers	1.294	875s	129K SAMPLES/S	4.05M
ISOTROPIC S4-4 LAYERS	1.429	1900s	144K SAMPLES/S	2.83M
ISOTROPIC S4-8 LAYERS	1.524	3700s	72K SAMPLES/S	5.53M

Model	TEST NLL	MOS (FIDELITY)	MOS (MUSICALITY)
SAMPLERNN	1.723	2.98 ± 0.08	1.82 ± 0.08
WAVENET	1.449	2.91 ± 0.08	2.71 ± 0.08
SaShiMi	1.294	2.84 ± 0.09	3.11 ± 0.09
DATASET	_	3.76 ± 0.08	4.59 ± 0.07

Слабые стороны

Как можно продолжить исследование?

Раскрыть тему TTS.

Тяжело обучать TTS модель на длинных последовательностях

Было бы круто если применить нашу модель к тому чтобы учитывать контекст любой ширины имея эффективность и скорость выполнения как в этой статье.