If anyone would like to share any other resources that helped them, and especially if anyone would be willing to post their cheatsheet (at the end of this document) it would be much appreciated. Good luck everyone!

Course Start	
Chapter 1 - The Foundations: Logic and Proofs 1.7 Introduction to Proofs	
In pursuit of a pythagorean proof	(KA, M)
Proof of Pythagorean Theorem	(?, V)
Origami Proof of Pythagoras	(KA, V)
1.1 - 1.6	
Introduction to Logic	
<u>Truth Tables</u>	
<u>Truth Table Proofs</u>	
<u>Logic Laws</u>	
Conditionals, Converses, Inverses, Contrapo	<u>sitives</u>
Quantificational Logic	
1.8 Proof Methods and Strategy †	
Direct Proof	(TT, V)
Proof by Case	(TT, V)
Proof by Contraposition	(TT, V)
Proof by Contradiction	(TT, V)
Mathematical Induction	(TT, V)
Chapter 2 - Basic Structures: Sets, Functions, Sequences, S	Sums
2.1 - Sets	(D. T)
Review of Sets, Notation	(B, T)
<u>Sets</u>	(TT, V)
<u>Sets</u>	(EC, V)
2.2 - Set Operations	
Set Operations	(TT, V)
2.3 - Functions	
Intro to Functions	(TT, V)
Onto,1-2-1,Surjective,Injective, etc.	(TT, V)
Onto,1-2-1,Surjective,Injective, etc.	(KA, V)

2.4 - Sequences and Summations		
Sequences and Series		(KA, m)
<u>Summations</u>		(KA, ?)
Sequences and Series		(EC, V)
Chapter 3 - Algorithms	†	
3.2 - Growth of Functions		
Asymptotic Notation		(KA, T)
Functions in Asymptotic Notation		(KA, T)
3.3 - Complexity of Algorithms		
Complexity O, Omega, Theta		(X, V)
Big Theta Notation		(KA, T)
Big O Notation		(KA, T)
Big Omega Notation		(KA, T)
Prove $f(x)$ is Big-O of $g(X)$		(R, V)
Prove $f(x)$ is Big-Theta of $g(X)$		(R, V)
Prove f(x) is Big-Omega of g(X)		(R, V)
		(, ,
Chapter 4 (not really sovered)		
Chapter 4 - (not really covered)		
4.1 Divisibility and Modular Arithmetic		(EC \/)
Division Algorithm		(EC, V)
GCD Euclidean Algorithm		(TT, V)
4.2 Integer Representations and Algorithms4.3 Primes and Greatest Common Divisors		
4.3 Solving Congruences		
4.5 Applications of Congruences		
4.6 Cryptography		
Chapter 5 - Induction and Recursion	††	
5.1 - Mathematical Induction		
<u>Induction (sum of first n integers)</u>		(KA, V)
Mathematical Induction		(TT, V)
5.2 - Strong Induction and Well-Ordering		
Well Ordering		(TT, V)
Strong Induction Proof		(DB, V)
5.3 - Recursive Definitions and Structural Induction		, , - /
Recursive Algorithms		(KA, T)
5.4 - Recursive Algorithms		•

Chapter 6 - Counting	†	
6.1 - Basics of Counting <u>Counting & Selection</u> <u>Additional Uses For Perms and Combs</u> <u>Counting (Probability)</u>		(EC, V) (EC, V) (KA, V)
6.2 - Pigeonhole Principle		
Pigeonhole Principle		(TT, V)
6.3 - Permutations and Combinations Shortcuts Permutations and Combinations Permutations, Combinations, Probability		(EC, V) (EC, V) (KA, V)
6.4 - Binomial Coefficients and Identities Intro to Binomial Theorem Generalizing to Binomial Theorem		(KA, V) (KA, V)

MIDTERM

	_	
Chapter 2 - Basic Structures: Sets, Functions, Sequences,	Sums	
2.5 - Cardinality of Sets (countability of infinite sets)	†	
Chapter 4		
4.1 Divisibility and Modular Arithmetic		
Division Algorithm		(EC, V)
GCD Euclidean Algorithm		(TT, V)
<u></u>		(, .)
Chapter 6 - Counting (continued)	†	
6.5 - <u>Distribution & Derangement</u>		(EC, V)
Chapter 8 - Advanced Counting Techniques		†
8.1 - Applications of Recurrence Relations		
Recurrence Relations		(TT, V)
Recurrence Relations		(KA, V)
8.2 - Solving Linear Recurrence Relations		, ,
Homogeneous Recurrence Relations		(TT, V)
Non-Homogeneous Recurrence Relations		(TT, V)
		, ,

Chapter 9 - Relations	†
9.1 - Relations and Their Properties	
Intro to Relations	(TT, V)
9.3 - Representing Relations	
9.5 - Equivalence Relations	
Chapter 10 - Graphs (no Dijkstra)	† †
10.1 - Graphs and Graph Models	
Graph Representation and describing graph	<u>hs</u> (KA, T)
Representing Graphs	(KA, T)
10.2 - Graph Terminology and Special Types of Gr	aphs
Graph Terminology	(TT, V)
Vertex Degree and Regular Graphs	(TT, V)
10.3 - Representing Graphs and Graph Isomorphis	sm
Isomorphism and Bipartite Graphs	(TT, V)
10.4 - Connectivity	
Subgraphs, Complements, and Complete C	Graphs (TT, V)
10.5 - Euler and Hamilton Paths	
Euler Circuits / Paths	(TT, V)
Hamilton Paths	(TT, V)
10.6 - Shortest Path (not covered)	
10.7 - Planar Graphs	
Proof: Euler's Equation (e-v+2=r)	(3B, V)
Euler's Theorem	
(TT, V)	
<u>Planar Graph</u>	(?, V)
<u>Planar Graph</u>	(TT, V)
Chapter 13 - Modeling Computation	†
Languages, Grammars, and FSMs	
13.1 - Languages and Grammars	
Formal Languages	
Formal Language Examples	
13.2 - Finite-State Machines with Output	
albert Finite State Machines	
Formal Definition of a Finite State Machine	
13.3 - Finite-State Machines with No Output	

Chapters are from Rosen (PDF, Amazon). There is another book also, Epp (PDF, Amazon)

```
Sources = {
       KA = Khan Academy *
       R = Randerson
       TT = <u>TrevTutor</u>
       B = Berkeley CS70
       X = xoax.net
       DB = Math Doctor Bob
       EC = Endeavor Careers *
       3B = <u>3Blue1Brown</u>
}
Methods = {
       V = Video
       T = Text
       M = Mixed Media
* = Very Clear
† = Likely exam question
```