

OpenHarmonyOS 基础外设开发--LCD

目 录

CONTENTS

01 什么是LCD

LCD工作原理

03 LCD相关接口

04 如何控制LCD

01 什么是LCD

液晶显示屏,英文简称为LCD,全称是Liquid Crystal Display,是属于平面显示器的一种。现在广泛应用于物联网设备、手机、电视机及计算机的屏幕显示。该显示屏的优点是耗电量低、体积小、辐射低。

LCD工作原理

LCD液晶屏显示的基本原理,是将液晶置于两片导电玻璃基板之间,在上下玻璃基板的两个电极作用下,引起液晶分子扭曲变形,改变通过液晶盒光束的偏振状态,实现对背光源光束的开关控制。

03 LCD相关接口

任务接口的头文件

/vendor/lockzhiner/rk2206/samples/b4_1cd/include/**lcd.h** OpenHarmonyOS内核开发中,任务接口有很多,主要分为几大类:

- (1) 初始化、释放LCD;
- (2) LCD填充;
- (3) LCD绘制画;
- (4) LCD绘制字符;
- (5) LCD绘制图片。

任务的接口

功能分类	接口名	功能描述
初始化、释放LCD	lcd_init	lcd液晶屏设备初始化
	lcd_deinit	lcd液晶屏设备注销
LCD填充	lcd_fill	lcd液晶屏指定区域填充颜色
LCD绘制画	lcd_draw_point	lcd液晶屏指定位置画一个点
	lcd_draw_line	lcd液晶屏指定位置画一条线
	lcd_draw_rectangle	lcd液晶屏指定位置画矩形
	lcd_draw_circle	lcd液晶屏指定位置画圆
LCD绘制字符	lcd_show_chinese	lcd液晶屏显示汉字串
	lcd_show_char	lcd液晶屏显示一个字符
	lcd_show_string	lcd液晶屏显示字符串
	lcd_show_int_num	lcd液晶屏显示—个整数
	lcd_show_float_num1	lcd液晶屏显示两位小数变量
LCD绘制图片	lcd_show_picture	lcd液晶屏显示图片

LCD相关接口

unsigned int lcd_init();

该函数主要功能是1cd液晶屏设备初始化。 返回0为成功,反之为失败。

unsigned int lcd_deinit();

该函数主要功能是1cd液晶屏设备注销。 返回0为成功,反之为失败。

03 LCD相关接口

void lcd_fill(uint16_t xsta, uint16_t ysta, uint16_t xend, uint16_t yend, uint16_t color);

该函数主要功能是1cd液晶屏指定区域填充颜色。

- 参数xsta: 指定区域的起始点X坐标
- ■参数ysta: 指定区域的起始点Y坐标
- 参数xend: 指定区域的结束点X坐标
- 参数yend: 指定区域的结束点Y坐标
- 参数color: 指定区域的颜色

03 LCD相关接口

void lcd_draw_point(uint16_t x, uint16_t y, uint16_t color);

该函数主要功能是1cd液晶屏设备注销。

- ■参数x: 指定点的X坐标
- 参数y: 指定点的Y坐标
- 参数color: 指定点的颜色

LCD相关接口

void lcd_draw_line(uint16_t x1, uint16_t y1, uint16_t x2, uint16_t y2, uint16_t color);

该函数主要功能是1cd液晶屏指定位置画一条线。

- 参数 x 1: 指定线的起始点 X 坐标
- 参数y1: 指定线的起始点Y坐标
- 参数x2: 指定线的结束点X坐标
- 参数y2: 指定线的结束点Y坐标
- 参数color: 指定线的颜色

LCD相关接口

```
void lcd_draw_rectangle(uint16_t x1, uint16_t y1, uint16_t x2, uint16_t y2, uint16_t color);
```

该函数主要功能是1cd液晶屏指定位置画矩形。

- 参数 x 1: 指定矩形的起始点 X 坐标
- 参数y1: 指定矩形的起始点Y坐标
- 参数x2: 指定矩形的结束点X坐标
- 参数y2: 指定矩形的结束点Y坐标
- 参数color: 指定矩形的颜色

LCD相关接口

void lcd_draw_circle(uint16_t x0, uint16_t y0, uint8_t r, uint16_t color);

该函数主要功能是1cd液晶屏指定位置画圆。

- 参数x0: 指定圆的中心点X坐标
- 参数y0: 指定圆的中心点Y坐标
- 参数r: 指定圆的半径
- 参数color: 指定圆的颜色

如何控制LCD

1、打开sdk下面路径的文件

vendor/lockzhiner/rk2206/samples/b4_lcd/lcd_example.c

2、创建任务

在Icd_example函数中,通过LOS_TaskCreate函数创建Icd_process任务。

task.pfnTaskEntry = (TSK_ENTRY_FUNC)lcd_process;

task.uwStackSize = 20480;

task.pcName = "lcd process";

task.usTaskPrio = 24;

ret = LOS_TaskCreate(&thread_id, &task);

如何控制LCD

```
lcd_process函数初始化LCD设备
```

```
ret = lcd_init()
```

lcd_process函数每1秒往LCD显示屏填充图片、字符串、整数、浮点数等。

```
while (1)
```

{

```
printf("*********Lcd Example********\n");
```

lcd_show_picture(15, 0, 210, 62, &glmage_lingzhi[0]);

lcd_show_string(0, 100, "Welcome to XiaoLingPai!", LCD_RED, LCD_WHITE, 16, 0);

Icd_show_string(0, 130, "URL: http://www.fzlzda.com", LCD_RED, LCD_WHITE, 16, 0);

lcd_show_string(0, 160, "LCD_W:", LCD_BLUE, LCD_WHITE, 16, 0);

如何控制LCD

```
lcd_show_int_num(128, 160, LCD_H, 3, LCD_BLUE, LCD_WHITE, 16);
lcd_show_string(80, 160, "LCD_H:", LCD_BLUE, LCD_WHITE, 16, 0);
lcd_show_string(0, 190, "Increaseing Num:", LCD_BLACK, LCD_WHITE, 16, 0);
lcd_show_float_num1(128, 190, t, 4, LCD_BLACK, LCD_WHITE, 16);
t += 0.11;
lcd_fill(0, 220, LCD_W, LCD_H, LCD_WHITE);
lcd_show_chinese(0, 220, chinese_string, LCD_RED, LCD_WHITE, cur_sizey, 0);
```


如何控制LCD

3、修改编译脚本

修改 vendor/lockzhiner/rk2206/sample 路径下 BUILD.gn 文件, 指定 lcd_example 参与编译。

"./b4_lcd:lcd_example",

修改 device/lockzhiner/rk2206/sdk_liteos 路径下 Makefile 文件,添加 -llcd_example 参与编译。

hardware_LIBS = -lhal_iothardware -lhardware -llcd_example

4、编译固件

hb set -root .

hb set

hb build -f

如何控制LCD

- 5、烧写固件
- 6、通过串口查看结果

运行结果

***********Lcd Example*******

***********Lcd Example******

.

谢谢聆听

单击此处添加副标题内容