DESIGN OPTIMIZATION OF BRAKE DISC GEOMETRY USING DOE in ANSYS

Abstract:

In this study, Optimization of brake disc geometry in a four-wheeler vehicle using Design of Experiments (DOE) in ANSYS. The analysis is conducted on multiple objectives like minimize the maximum stress in the brake disc, design a brake disc for emergency braking conditions with minimal volume, minimize the maximum temperature in the brake disc and maximize the first natural frequency of the brake disc. Before performing the optimization, Static structural, Modal and Transient Thermal analysis is performed to analyze various parameters like stress, deformation, and heat flux. The same parameters are considered, and Optimization of the geometry is performed. Response surface is used as Design Exploration method and Latin Hypercube Sampling (LHS) is considered for DOE method. Multi-objective Genetic Algorithm (MOGA), Mixed-Integer Sequential Quadratic Programming (MISQP) is used as Optimization algorithm. The results show that both optimization methods converge.

Keywords: Design Optimization, Ansys, Design of Experiments (DOE), Mixed-Integer Sequential Quadratic Programming (MISQP), Multi-objective Genetic Algorithm (MOGA)

Contents:

- 1. Introduction
- 2. Design Problem Statement
- 3. Static Structural Analysis System
- 3.1. Equivalent Stress Analysis (Von-Mises)
- 4. Modal Analysis System
- 4.1. Total Deformation Analysis
- 5. Transient Thermal Analysis System
- 5.1. Temperature (Maximum)
- 6. Design Exploration
- 6.1. Response Surface
- 6.2. Response Surface Optimization
- 7. Results
- 8. References

1. Introduction

Design exploration:

Describes the relationship between the design variables and the performance of the product using Design of Experiments (DOEs) and Response surfaces. DOEs and response surfaces provide all the information required to achieve simulation-driven product development. Once the variation of product performance with respect to design variables is known, it becomes easy to understand and identify the changes required to meet requirements for the product. After response surfaces are created, we can analyze and share results using curves, surfaces, and sensitivities that are easily understood. The results obtained can be used at any time during the development of the product without requiring additional simulations to test a new configuration.

Latin Hypercube Sampling (LHS) DOE method:

This DOE method avoids clustering samples, and the points are randomly generated in a square grid across the design space, but no two points share the same value. That is, no point shares a row or a column of the grid with any other point. In this study, Full Quadratic Samples property is used to generate the samples, so that a full quadratic model is formed.

Response Surfaces:

Response surfaces are functions of varying natures in which the output parameters are described in terms of the input parameters. Built from the DOE, they quickly provide the approximated values of the output parameters throughout the design space without having to perform a complete solution.

The accuracy of a response surface depends on:

- Complexity of the variations of the solution
- Number of points in the original DOE
- Response surface type

Response Surface Types Used in this project are:

• Genetic Aggregation:

Genetic Aggregation is the default algorithm for generating response surfaces. It automates the process of selecting, configuring, and generating the type of response surface best suited to each output parameter in the problem.

From the different types of response surface available (Full 2nd-Order Polynomials, Non-Parametric Regression, Kriging, and Moving Least Squares), Genetic Aggregation automatically builds the response surface type that is the most appropriate approach for each output.

Genetic Aggregation takes more time than classical response surfaces such as Full 2nd order Polynomial, Non-Parametric Regression, or Kriging because of multiple solves of response surfaces and the cross-validation process. In general, Genetic Aggregation is more reliable than the classical response surface models.

The output solution is:

$$f_k(x_i) = K(\sum w_{jk} g_j(x_i))$$

Where K is a predefined function, such as the hyperbolic tangent or an exponential based function, to obtain something like the binary behavior of the electrical brain signal (like a step function). The function is continuous and differentiable.

The weight functions (W_{jk}) are issued from an algorithm that minimizes (as the least squares method) the distance between the interpolation and the known values (design points). This is called learning. The error is checked at each iteration with the design points that are not used for learning. Learning design points need to be separated from error-checking design points.

The error decreases and then increases when the interpolation order is too high. The minimization algorithm is stopped when the error is the lowest.

This method uses a limited number of design points to build the approximation. It works better when the number of design points and the number of intermediate cells are high. It can give interesting results with several parameters.

Goal-Driven Optimizations:

Response Surface Optimization: This system draws its information from its own Response Surface cell and so is dependent on the quality of the response surface. The available optimization methods are Screening, MOGA, NLPQL, and MISQP, which all use response surface evaluations rather than real solve.

In this project, only response surface optimization is performed and MOGA, MISQP optimization methods are used.

Direct Optimization: This system has only one cell, which utilizes real solves rather than response surface evaluations. The available optimization methods are Screening, NLPQL, MISQP, Adaptive Single-Objective, and Adaptive Multiple-Objective.

This system takes lot more time when compared to that of Response system as it solves everything without using any previous evaluations.

Optimization Methods:

Two optimization methods are used in project in-order to compare both the optimization results. Multiple objectives can be given in MOGA and one objective with different constraints is given in MISQP.

Multi-Objective Genetic Algorithm (MOGA):

MOGA used in GDO is a hybrid variant of the popular NSGA-II (Non-dominated Sorted Genetic Algorithm-II) based on controlled elitism concepts. It supports all types of input parameters.

The Pareto ranking scheme is done by a fast, non-dominated sorting method that is an order of magnitude faster than traditional Pareto ranking methods. The constraint handling uses the same non-dominance principle as the objectives. Therefore, penalty functions and Lagrange multipliers are not needed. This also ensures that the *feasible solutions are always ranked higher than the infeasible solutions*.

The first Pareto front solutions are archived in a separate sample set internally and are distinct from the evolving sample set. This ensures minimal disruption of Pareto front patterns already available from earlier iterations. You can control the selection pressure (and, consequently, the elitism of the process) to avoid premature convergence by altering the Maximum Allowable Pareto Percentage property.

Mixed-Integer Sequential Quadratic Programming (MISQP):

MISQP (Mixed-Integer Sequential Quadratic Programming) is a mathematical optimization algorithm as developed by Oliver Exler, Thomas Lehmann and Klaus Schittkowski (NLPQL). This method solves Mixed-Integer Non-Linear Programming (MINLP) of the form:

Minimize:
$$f(x,y)$$

Subject to:
$$g_j(x,y)=0$$
, $j=1,\ldots,m_e$,

$$g_j(x,y) \ge 0$$
, $j=m_e+1,\ldots,m$

Problem functions are evaluated only at integer points and never at any fractional values in between.

MISQP solves MINLP by a modified sequential quadratic programming (SQP) method. After linearizing constraints and constructing a quadratic approximation of the Lagrangian function, mixed-integer quadratic programs are successively generated and solved by an efficient branch-and-cut method. The algorithm is stabilized by a trust region method as originally proposed by Yuan for continuous programs. Second order corrections are retained. The Hessian of the Lagrangian function is approximated by BFGS updates subject to the continuous and integer variables. MISQP is able to solve also non-convex nonlinear mixed-integer programs.

2. Design Problem Statement

Objectives and Constraints for performing MOGA:

- Minimize the brake disc volume for emergency braking conditions
- Minimize the maximum stress in the brake disc
- Maximize the first natural frequency of the brake disc
- Minimize the maximum temperature in the brake disc
- No Constraints

Objectives and Constraints for performing MISQP:

• Minimize the maximum stress in the brake disc

Constraints:

- Natural frequency of the brake disc
- The maximum temperature in the brake disc.
- The brake disc volume for emergency braking conditions

Project Schematic:

3. Static Structural Analysis System

3.1. Equivalent Stress Analysis (Von-Mises)

FIGURE 4
Model (D4) > Static Structural (D5) > Solution (D6) > Equivalent Stress

4. Modal Analysis System

4.1. Total Deformation Analysis

TABLE 18 Model (E4) > Modal (E5) > Solution (E6) > Results

er (E4) > Modar (E5) > Solution (E6) > Res								
Object Name	Total Deformation							
State	Solved							
Sco	pe							
Scoping Method	Geometry Selection							
Geometry	All Bodies							
Defin	ition							
Туре	Total Deformation							
Mode	7.							
Identifier								
Suppressed	No							
Resu	ults							
Minimum	3.6413e-003 m							
Maximum	0.77453 m							
Average	0.32819 m							
Minimum Occurs On	Solid							
Maximum Occurs On	Solid							
Inform	ation							
Frequency	2081.2 Hz							

TABLE 19
Model (E4) > Modal (E5) > Solution (E6) > Total Deformation

1/-	
Mode	Frequency [Hz]
1.	
2.	0.
3.	
4.	2.0187e-003
5.	3.9598e-003
6.	5.8548e-003
7.	2081.2
8.	2087.2
9.	3628.9
10.	3649.5

5. Transient Thermal Analysis System

5.1. Temperature (Maximum)

 $\label{eq:FIGURE 4} \mbox{Model (F4) > Transient Thermal (F5) > Solution (F6) > Solution Information > Temperature - Global Maximum }$

Model (F4) > Transient Thermal (F5) > Solution (F6) > Solution Information > Temperature - Global Minimum

FIGURE 6
Model (F4) > Transient Thermal (F5) > Solution (F6) > Temperature

6. Design Exploration

6.1. Response Surface

6.1.1. Design of Experiments

			# Design Points	of Design of Ex	periments		
# La	tin Hypercu	be Samplir	ng Design : Full Qu	ıadratic Model	Samples : Ra	ndom Generat	or Seed = 0
					P35 -	P37 - Total	
				P34 -	Equivalen	Deformatio	P38 -
	P26 -	P27 -	P36 -	Temperatur	t Stress	n Reported	Geometry
	rotor_O	rotor_I	rotor thicknes	e Maximum	Maximu	Frequency	Volume
#	D (mm)	D (mm)	s (mm)	(C)	m (Pa)	(Hz)	(m^3)
Nam							
e	P26	P27	P36	P34	P35	P37	P38
							0.00110861
1	130.65	76.25	24.25	347.335	12168527	1929.873	1
							0.00141961
2	135.75	66.25	27.25	333.9154	14109384	1917.722	4
							0.00095153
3	123.85	86.25	26.75	343.1153	12709887	1797.193	5
							0.00111719
4	134.05	81.25	23.75	348.9974	12636418	1769.64	2
							0.00100340
5	125.55	78.75	24.75	343.3849	12326001	1970.954	2
							0.00125779
6	139.15	83.75	25.25	340.9189	13252820	1665.707	4
							0.00109225
7	132.35	88.75	26.25	342.8882	15267361	1648.022	6
	407.4-	70 7-	25	240.044	40754550	4042.22	0.00133082
8	137.45	73.75	25.75	340.044	12754570	1842.297	8
	420.05	74.25	27.75	224 6000	42265262	2444.60	0.00124110
9	128.95	71.25	27.75	334.6909	13365303	2111.68	9
10	427.25	60.75	22.25	250.7002	44047200	2050.005	0.00106330
10	127.25	68.75	23.25	350.7992	11817308	2059.065	8

			# Design Points	of Design of E	xperiments		
;	# Latin Hyp	ercube Sai	mpling Design : L		•	mber of Samp	oles = 10
				P34 -	P35 -	P37 - Total	
				Temperatu	Equivale	Deformatio	
	P26 -	P27 -	P36 -	re	nt Stress	n Reported	P38 -
	rotor_O	rotor_I	rotor_thickne	Maximum	Maximu	Frequency	Geometry
#	D (mm)	D (mm)	ss (mm)	(C)	m (Pa)	(Hz)	Volume (m^3)
Name	P26	P27	P36	P34	P35	P37	P38
					1363713		
1	130.65	76.25	27.5	337.1126	4	1991.4	0.001223531
	40= ==				1559357	2422 522	
2	135.75	66.25	33.5	323.6892	0	2122.609	0.001695269
3	123.85	86.25	32.5	329.6615	1487620 9	1929.376	0.001094238
3	123.63	80.23	32.3	329.0013	1383442	1929.576	0.001094236
4	134.05	81.25	26.5	340.7363	1383442	1815.742	0.001215403
	13 1.03	01.23	20.3	3 10.7303	1338807	1013.7 12	0.001213103
5	125.55	78.75	28.5	332.3253	6	2041.919	0.001116042
					1512326		
6	139.15	83.75	29.5	330.1255	0	1743.84	0.00142267
					1644464		
7	132.35	88.75	31.5	330.4062	7	1762.376	0.001251251
					1465223		
8	137.45	73.75	30.5	329.9389	9	1953.075	0.001531587
_					1599738		
9	128.95	71.25	34.5	326.2853	6	2291.631	0.001486068
4.0	427.25	60.75	25.5	244 5440	1220231	2424 502	0.004444356
10	127.25	68.75	25.5	341.5448	3	2121.502	0.001144356

Charts:

Parameters Parallel:

Figure 1: LHS-Full Quadratic Model Samples

Figure 2: LHS-User-defined samples

Design Points Vs Parameters

Figure 3: LHS-User defined samples

Figure 4: LHS - Full Quadratic Model Samples

6.1.2. Response Surface

	# Response Points – Full Quadratic Model samples											
	P26 - rotor_O	P27 - rotor_l	P36 - rotor_thickne	P34 - Temperatur e Maximum	P35 - Equivalent Stress Maximum	P37 - Total Deformati on Reported Frequency	P38 - Geome try Volume					
#	D (mm)	D (mm)	ss (mm)	(C)	(Pa)	(Hz)	(m^3)					
Name	P26	P27	P36	P34	P35	P37	P38					
Response							0.0011					
Point	131.5	77.5	25.5	343.2609	13084108	1842.302	53					

Response Points - LHS User define samples

						P37 - Total	
				P34 -	P35 -	Deformati	P38 -
		P27 -		Temperat	Equivale	on	Geome
	P26 -	rotor_I	P36 -	ure	nt Stress	Reported	try
	rotor_O	D	rotor_thickn	Maximum	Maximu	Frequency	Volume
#	D (mm)	(mm)	ess (mm)	(C)	m (Pa)	(Hz)	(m^3)
Name	P26	P27	P36	P34	P35	P37	P38
Respon							
se					1468365		0.0013
Point	131.5	77.5	30	331.6884	1	2000.125	21

	A	В	С	D	E
1		P34 - Temperature Maximum	P35 - Equivalent Stress Maximum	P37 - Total Deformation Reported Frequency	P38 - Geometry Volume
2	■ Coefficient of Determination (Best Value	= 1)			
3	Learning Points	0.9994	☆ 1	★ 1	1
4	Cross-Validation on Learning Points	- 0.93183	☆ 1	Å 1	0.99993
5	■ Root Mean Square Error (Best Value = 0				
6	Learning Points	0.13634	0.35899	0.00010309	1.4054E-09
7	Verification Points	5.4426	1.3243E+07	90.076	2.0852E-05
8	Cross-Validation on Learning Points	1.4557	1.5268	0.00058311	1.5781E-06
9	■ Relative Maximum Absolute Error (Best \	/alue = 0%)			
10	Learning Points	★ 4.3746	♣ 0	♣ •	☆ 0
11	Verification Points	X 154.08	X 279.93	XX 58.91	× 14.868
12	Cross-Validation on Learning Points	XX 51.304	0.00028905	0.00066378	★★ 1.6933
13	■ Relative Average Absolute Error (Best V	alue = 0%)			
14	Learning Points	★★ 1.9848	♣ 0	♣ •	☆ 0
15	Verification Points	X 50.672	X 129.91	X 36.37	7.717
16	Cross-Validation on Learning Points	×× 20.474	8.42E-05	0.00025522	0.59985

Figure 5: Response and Samples for Full Quadratic Model

Figure 6:Response and Samples for User-defined LHS

6.2. Response Surface Optimization

MISQP & MOGA

	A	В	С	D	E					
1	Optimization Study									
2	Minimize P35	Goal, Minimize P35 (Defaul	t importance)							
3	P34 <= 350.8 C	Strict Constraint, P34 valu	es less than or equals to 350	.8 C (Default importance)						
4	P37 >= 1648 Hz	Strict Constraint, P37 values greater than or equals to 1648 Hz (Default importance)								
5	P38 <= 0.0014196 m^3	P38 <= 0.0014196 m^3 Strict Constraint, P38 values less than or equals to 0.0014196 m^3 (Default importance)								
6	Optimization Method									
7	The MISQP method (Mixed-Integer Sequential Quadratic Programming) solves mixed-integer nonlinear programming problems by a modified sequential quadratic programming (SQP) method. Under the assumption that integer variables have a smooth influence on the model functions, i.e., that function values do not change drastically when in- or decrementing an integer variable, successive quadratic approximations are applied. It supports a single objective and multiple constraints. The starting point must be specified to determine the region of the design space to explore.									
8	Configuration Approximate derivatives by Central difference and find 3 candidates in a maximum of 20 iterations.									
9	Status	Converged after 22 evalua	ations.							
10	■ Candidate Points									
11		Starting Point	Candidate Point 1	Candidate Point 2	Candidate Point 3					
	P26 - rotor OD (mm)	131.5	123	123	123.41					
12	F20 -1001_CD (IIII)									
	P27 - rotor_ID (mm)	77.5	65	66.665	69.346					
12 13 14	= ` ` `	77.5 25.5	65 23	66.665 23	69.346 23					
13	P27 - rotor_ID (mm)									
13 14	P27 - rotor_ID (mm) P36 - rotor_thickness (mm)	25.5	23	23	23					
13 14 15	P27 - rotor_ID (mm) P36 - rotor_thickness (mm) P34 - Temperature Maximum (C)	25.5	23	23	23					

	Α	В	С		D	E	F	G	Н	I
1	Name	Parameter		(Objective			Constrair	nt	
2	Ivaille	Par ameter	Туре		Target	Tolerance	Туре	Lower Bound	Upper Bound	Tolerance
3	Minimize P35	P35 - Equivalent Stress Maximum	Minimize	•	0		No Constraint			
4	Minimize P34	P34 - Temperature Maximum	Minimize	▼	0		No Constraint			
5	Maximize P37	P37 - Total Deformation Reported Frequency	Maximize	▼	0		No Constraint			
6	Minimize P38	P38 - Geometry Volume	Minimize	▼	0		No Constraint			
*		Select a Parameter								

6.2.1. Candidate Points

MOGA

MISQP

	# Candidate Points - MISQP												
					P35 -	P37 - Total	P38 -						
				P34 -	Equivalen	Deformatio	Geometr						
	P26 -	P27 -	P36 -	Temperatur	t Stress	n Reported	у						
	rotor_O	rotor_ID	rotor_thickne	e Maximum	Maximu	Frequency	Volume						
# Name	D (mm)	(mm)	ss (mm)	(C)	m (Pa)	(Hz)	(m^3)						
Name	P26	P27	P36	P34	P35	P37	P38						
Starting					1308410								
Point	131.5	77.5	25.5	343.2609	8	1842.302	0.001153						
Candidat					1103802								
e Point 1	123	65	23	347.3505	4	2166.973	0.001003						
Candidat		66.6648			1106286								
e Point 2	123	1	23	346.8797	6	2155.183	0.00099						
Candidat		69.3456			1111709								
e Point 3	123.407	8	23	346.478	8	2133.243	0.000978						

6.2.2 Min-Max

MISQP

			# Output Param	eter Minimum	S		
#	P26 - rotor_O D (mm)	P27 - rotor_I D (mm)	P36 - rotor_thickne ss (mm)	P34 - Temperatu re Maximum (C)	P35 - Equivale nt Stress Maximu m (Pa)	P37 - Total Deformatio n Reported Frequency (Hz)	P38 - Geometr y Volume (m^3)
Name	P26	P27	P36	P34	P35	P37	P38
P34 - Temperatu re Maximum	133.049	65	28	330.6136	1400698 1	1975.712	0.00137
P35 - Equivalent Stress					1103802		0.00100
Maximum P37 - Total Deformatio n Reported	123	65	23	347.3505	1404855	2166.973	0.00120
Frequency	140	90	24.78804	341.1345	9	1612.776	2
P38 - Geometry Volume	123	90	23	346.586	1160298 4	1861.154	0.00089
# Output Par	ameter Ma	ximums					
#	P26 - rotor_O D (mm)	P27 - rotor_I D (mm)	P36 - rotor_thickne ss (mm)	P34 - Temperatu re Maximum (C)	P35 - Equivale nt Stress Maximu m (Pa)	P37 - Total Deformatio n Reported Frequency (Hz)	P38 - Geometr y Volume (m^3)
Name	P26	P27	P36	P34	P35	P37	P38
P34 - Temperatu re Maximum	135.040 5	73.6400	23	353.3691	1206493 0	1926.748	0.00118
P35 - Equivalent Stress Maximum	140	90	28	334.7573	1551727 0	1617.72	0.00129
P37 - Total Deformatio n Reported Frequency	123	65	23	347.3505	1103802 4	2166.973	0.00100

P38 -							
Geometry					1473779		0.00146
Volume	140	65	28	333.7561	2	1845.009	4

# Output Parameter Minimums									
'				P34 -	P35 -	P37 - Total	P38 -		
				Temperatu	Equivale	Deformation	Geometr		
	P26 -	P27 -	P36 -	re	nt Stress	Reported	у		
	rotor_O	rotor_l	rotor_thickne	Maximum	Maximu	Frequency	Volume		
#	D (mm)	D (mm)	ss (mm)	(C)	m (Pa)	(Hz)	(m^3)		
Name	P26	P27	P36	P34	P35	P37	P38		
P34 -									
Temperatu									
re	123.500				1373433		0.00141		
Maximum	8	65	34.06686	320.7636	6	2486.974	8		
P35 -									
Equivalent									
Stress					1015119		0.00107		
Maximum	123	65	25	340.1318	3	2200.309	6		
P37 - Total									
Deformatio									
n Reported					1417630				
Frequency	140	90	25	342.4128	1	1511.299	0.00122		
P38 -									
Geometry					1186205		0.00086		
Volume	123	90	25	344.2667	7	1720.996	4		

6.2.3. Goodness of Fit

MISQP

6.2.4. Local Sensitivity

MISQP

6.2.5. Local Sensitivity Curve:

MISQP

6.2.6. Convergence

MOGA

MISQP

6.2.7. Trade-off

MISQP

6.2.8. Spider Chart – MISQP

6.2.9. Tolerances - MOGA

	A	В	С	D	Е	F
1	Name	Calculated Minimum	Calculated Maximum	Maximum Predicted Error	Refinement	Tolerance 💌
2	P34 - Temperature Maximum (C)	320.76	345.89	3.8239		
3	P35 - Equivalent Stress Maximum (Pa)	1.0151E+07	1.8122E+07	1.5288		
4	P37 - Total Deformation Reported Frequency (Hz)	1511.3	2504.6	0.0008198		
5	P38 - Geometry Volume (m^3)	0.00086397	0.0018743	1.532E-05		

6.2.10. Verification Points

MISQP

# Verification Points								
				P34 -	P35 -			
				Temperatu	Equivalent	P37 - Total	P38 -	
	P26 -	P27 -	P36 -	re	Stress	Deformation	Geometr	
	rotor_O	rotor_I	rotor_thickn	Maximum	Maximum	Reported	y Volume	
#	D (mm)	D (mm)	ess (mm)	(C)	(Pa)	Frequency (Hz)	(m^3)	
Nam								
е	P26	P27	P36	P34	P35	P37	P38	

	138.32	65.139					
1	28	04	23.03976	352.7247	12520745	1688.421	0.001292
	123.87	89.974					
2	4	51	23.07008	355.5125	27869193	1606.918	0.000827
	123.27	65.242					
3	52	69	25.78306	346.202	13751906	2239.157	0.001101
	139.87	89.866					
4	32	11	27.97669	334.5982	33259196	1585.291	0.001311

MOGA

	# Verification Points								
					P35 -	P37 - Total			
				P34 -	Equivalen	Deformatio	P38 -		
	P26 -	P27 -	P36 -	Temperatur	t Stress	n Reported	Geometr		
	rotor_O	rotor_ID	rotor_thicknes	e Maximum	Maximum	Frequency	y Volume		
#	D (mm)	(mm)	s (mm)	(C)	(Pa)	(Hz)	(m^3)		
Nam									
e	P26	P27	P36	P34	P35	P37	P38		
	138.322	65.1390							
1	8	4	25.07951	342.1501	13133005	1760.59	0.001387		
		89.9745							
2	123.874	1	25.14016	346.6562	28719685	1646.308	0.000875		
	123.275	65.2426							
3	2	9	30.56612	335.1151	13134421	2406.026	0.001265		
	139.873	89.8661							
4	2	1	34.95338	328.2054	39014828	1736.539	0.001563		

7. Conclusion

In this study, Optimization of brake disc is performed using two different Optimization algorithms and DOE methods, and the results are documented.

The 2 different optimization techniques are as follows:

MISQP →LHS – Full Quadratic Model Samples – Neural Network – Single objective

MOGA→ LHS – User-defined Samples - Genetic Aggregation – Multiple Objectives

The results convergence, sensitivity analysis of both the optimized solutions.

8. References

<u>DesignOptimization2021Fall/Project 2 ansys design optimization.md at main · DesignInformaticsLab/DesignOptimization2021Fall (github.com)</u>

Ansys DesignXplorer Overview