Skoltech

Машинное обучение для Временных Точечных –

Процессов

Алексей Зайцев

Старший преподаватель, Skoltech

Читает: Владислав Жужель

Аспирант, Skoltech

Времнные точечные процессы (TPPs): Приложения

Пример: финансовые транзакции как последовательности событий —

Пример: операции на бирже как последовательность событий

Множество дискретных событий в неперывном времени

Онлайн активности

Финансовые торги

Динамика болезней

Финансовые транзакции

Разнообразие процессов как причина событий

События – это (шумные) наблюдения за разнообразными сложными динамическими процессами...

Торговля

акциями Распространение

Создание статей на Википедии

Распространение новостей в Твиттере

Отзывы и продажи на

Заказы такси

Репутация пользователя в Quora

FAST

...в различных временных масштабах.

Пример I: Распространение информации

Они могут влиять на события за пределами сети theguardian

> Click and elect: how fake news helped Donald Trump win a real election

Пример 2: история откликов

Пример 3: разработка

1 год студента по компьютерным наукам

Разве это не просто временные ряды?

Временные точечные процессы(TPPs): Введение

- 1. Функция интенсивности
- 2. Основной строительный блок
- 3. Суперпозиция

Временные точечные процессы

Временной точечный процесс:

Случайный процесс реализация которого состоит из дискретных событий локализованных во времени $\mathcal{H} = \{t_i\}$

Время как случайная величина

Правдоподобие послед.: $f^*(t_1) \ f^*(t_2) \ f^*(t_3) \ f^*(t) \ S^*(T)$

Проблема параметризации плотности(I)

Сложно для построения модели и интерпретируемости:

- 1. Интеграл плотности должен быть равен 1
- 2. Сложно комбинировать последовательности

Функция интенсивности

Интенсивность:

Вероятность в [t, t+dt) но не раньше t

$$\lambda^*(t)dt = \frac{f^*(t)dt}{S^*(t)} \ge 0 \implies \lambda^*(t)dt = \mathbb{E}[dN(t)|\mathcal{H}(t)]$$

Наблюдение: $\lambda^*(t)$ Частота = # событий / единица времени 15

Преимущества параметризации интенсивности (I)

$$\lambda^{*}(t_{1}) \lambda^{*}(t_{2}) \lambda^{*}(t_{3}) \lambda^{*}(t) \exp \left(-\int_{0}^{T} \lambda^{*}(\tau) d\tau\right)$$

$$\langle w, \phi^{*}(t_{1}) \rangle \qquad \langle w, \phi^{*}(t_{3}) \rangle \qquad \exp \left(-\int_{0}^{T} \langle w, \phi^{*}(\tau) \rangle d\tau\right)$$

Подходид для построения модели и интерпретируемости:

- 1. Интенсивности только неотрицательны
- 2. Легко комбинировать последовательности

Соотношения между f^* , F^* , S^* , λ^*

Представления: Временные Точечные Процессы

- 1. Функция интенсивности
- 2. Основной строительный блок
- 3. Суперпозиция

Пуассоновский процесс

Интенсивность Пуассоновского процесса

$$\lambda^*(t) = \mu$$

Наблюдения:

- 1. Интенсивность не зависит от истории
- 2. Однородные случайные появления
- 3. Временные интервалы в соответсвии с экспоненциальным распределением

Обучение и генерация для Пуассона

Обучение максимизацией правдоподобия:

$$\mu^* = \underset{\mu}{\operatorname{argmax}} 3 \log \mu - \mu T = \frac{3}{T}$$

Генерация методом обратного преобразования: Uniform(0,1)

$$t \sim \mu \exp(-\mu(t-t_3))$$
 $t = -\frac{1}{\mu} \log(1-u) + t_3$

$$f_{t}^{*}(t)$$

skoltech

Неоднородный Пуассоновский процесс

Интенсивность неоднородного Пуассоновского процесса

$$\lambda^*(t) = g(t) \geqslant 0$$
 — Не зависит от истории

$$\lambda^*(t) = \sum_j \alpha_j k(t-t_j)$$

Обучение и генерация для неоднородного Пуассона

Обучение максимизацией правдоподобия:

maximize
$$\sum_{i=1}^{n} \log g(t_i) - \int_{0}^{T} g(\tau) d\tau$$

Выборка с отклонением + метод обратного преобразования*:

- 1. Выбираем t из пуассоновского процесса с интенсивностю μ с помощью метода обратного преобразования
- 2. Генерируем $u_2 \sim Uniform(0,1)$
- 3. Сохраняем если $u_2 \leq g(t) / \mu$

Терминационный (или выживающий) процесс

Интенсивность терминационного (или выживающего)

процесса

$$\lambda^*(t) = g^*(t)(1 - N(t)) \geqslant 0$$

Наблюдение:

1. Ограниченное количество появлений

стенерировать и

Самовозбуждающийся процесс Хокса

Наблюдение:

- 1. Кластерное появление событий
- 2. Интенсивность стохастическая и зависит от истории

Обучение Хоксовской модели

Обучение максимизацией правдоподобия:

Выборка с отклонением + метод обратного преобразования *:

Ключевая идея: максимум интенсивности λ_0 меняется во времени

Вывод

Строительные блоки представляют **различные динамические процессы**:

Самовозбуждающийся процесс:

$$\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}(t)} \kappa_{\omega}(t - t_i)$$

Представления: Временные Точечные Процессы

- 1. Функция интенсивности
- 2. Основной строительный блок
- 3. Суперпозиция

Взаимно возбуждающие процессы

Кластеризованные появления под воздействием соседей

$$\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}_{c}(t)} \kappa_{\omega}(t - t_i) + \beta \sum_{t_i \in \mathcal{H}_{c}(t)} \kappa_{\omega}(t - t_i)$$

Взаимно возбуждающие терминационные процессы

Кластеризованные появления под воздействием соседей

$$\lambda^*(t) = (1 - N(t)) \left(g(t) + \beta \sum_{t_i \in \mathcal{H}_c(t)} \kappa_\omega(t - t_i) \right)$$