27.1 (27.2)
$$m(x) = E[Y|Y] = X'B \overline{G}(\frac{X|B}{\sigma}) + \sigma \overline{g}(\frac{Y'B}{\sigma})$$

$$= u \left(1 - \overline{\Phi}\left(\frac{0 - u}{\sigma}\right)\right) + \sigma \phi\left(\frac{0 - u}{\sigma}\right)$$

$$= x^{\prime}\beta\left(1 - \overline{\Phi}\left(\frac{-x^{\prime}\beta}{\sigma}\right)\right) + \sigma \phi\left(\frac{-x^{\prime}\beta}{\sigma}\right)$$

$$= x^{1}\beta \Phi \left(\frac{x^{1}\beta}{\sigma}\right) + \sigma \phi \left(\frac{x^{1}\beta}{\sigma}\right)$$

(27.3)
$$m^{4}(x) = E[Y^{4}(x] = x^{1}\beta + \sigma\lambda\left(\frac{x^{1}\beta}{\sigma}\right)]$$

$$=\mu+\varphi\lambda\left(\frac{\mu-0}{\sigma}\right)$$

$$= X'B + \sigma \lambda \left(\frac{X'B}{\sigma} \right)$$

$$\hat{\beta} = \mathcal{E}[XX']^{-1} E[X'Y]$$

$$= E[XX']^{-1} E[X'Y^*] Y^* \leq T \cdot P(Y^* \leq T)$$

$$= E[XX']^{-1} E[X'Y^*] \cdot P(Y^* \leq T)$$

$$= \beta \cdot P(Y^* \leq T)$$

This is not a consistent estimator for β .

This estimator $\hat{\beta}$ will be below the true value of β

27.4. min
$$\left(\begin{array}{cc} 4 - x' \beta \Phi \left(\frac{x' \beta}{\sigma} \right) - \sigma \phi \left(\frac{x' \beta}{\sigma} \right) \right)^2$$

27.8
$$(27.7) E[Y|X_1, 2_1, S=1] = X'B + \sigma_{21}\lambda(z'Y)$$

$$E[Y|X_13, S=1] = E[Y^*|X_12] \cdot Pr(S=1)$$

$$= E[Y^*|X_13] \cdot Pr(S^*70)$$

$$= E[Y^*|X] \cdot Pr(Z'Y+U70)$$

$$= E[X'\beta+e|X] \cdot Pr(Z'Y+U70)$$

$$= X'\beta \cdot Pr(U^2-Z'Y)$$

$$= X'\beta + \delta_{21} \lambda(Z'Y)$$

27.9

. reg transfers income Dincome df Source SS MS

101549.791

49.72515

Model

cons

Residual	3316402.29	8,681	382.02998		uared R-squared	=	0.0297 0.0295
Total	3417952.08	8,683	393.63723	•		=	19.546
transfers	Coef.	Std. Err.	t	P> t	[95% Cor	f.	Interval]
income Dincome	-42.76098 42.76697	2.623992 2.624527	-16.30 16.30	0.000 0.000	-47.90462 37.62228		-37.61733 47.91167

2 50774.8957

19.12

0.000

Number of obs =

44.62781

F(2, 8681)

Prob > F

8,684

132.91

0.0000

54.82248

b. 22.46% of observations have transfers=0, so censoring could be an issue for these.

2.600365

C. . reg transfers income Dincome

_cons

50.53024

Source	SS	df	MS	Number of obs		6,734
Model Residual	106525.362 3168438.69	2 6,731	53262.6812 470.723323	R-squared	=	113.15 0.0000 0.0325
Total	3274964.05	6,733	486.404879	Adj R-squared Root MSE	=	0.0322 21.696
transfers	Coef.	Std. Err.	t	P> t [95% C	onf.	Interval]
income Dincome	-42.81576 42.85625	2.946075 2.946915		0.000 -48.5 0.000 37.079		-37.04052 48.63314

17.35

0.000

44.82089

56.23958

<u>.</u> ر	Tobit regression	Number of obs	=	6,734
		Uncensored	=	6,733
	Limits: lower = 0.00	Left-censored	=	1
	upper = +inf	Right-censored	=	e
		LR chi2(2)	=	222.66
		Prob > chi2	=	0.0000
	Log likelihood = -30272.069	Pseudo R2	=	0.0037

2.912459

tran	sfers	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
i	ncome	-42.81828	2.9457	-14.54	0.000	-48.59278	-37.04377
Di	ncome	42.85877	2.94654	14.55	0.000	37.08262	48.63492
100	_cons	50.53051	2.912087	17.35	0.000	44.82189	56.23912
var(e.tran	sfers)	470.6032	8.110936			454.9688	486.7749

Initial sa Final samp Pseudo R2	ole size	= 6734					
Bootstrap	statisti	cs					
Variable	Reps	Observed	Bias	Std. Err.	[95% Con	f. Interva	1]
income	100	-46.11266	4893832	7.185244	-60.36974	-31.85557	(N)
					-58.74292	-34.88314	(P)
					-58.70982	-30.40741	(BC)
Dincome	100	46.11775	.4897029	7.185284	31.86059	60.37492	(N)
					34.88919	58.74852	(P)
					30.41023	58.71731	(BC)
const	100	48	.4817194	7.18257	33.74822	62.25178	(N)
777171					36.80779	60.581	(P)
					36.80779	60.581	(BC)

The regressions in A, C, and D have very similar coefficients in E, the constant is slightly smaller and the coefficients on income and Dincome are larger in magnitude. The standard errors in A,C, and D are much smaller than in E.

28.12 Model 1 4766.0346 4814.0936 Model 2 4379.6882 4427.7471 Model 3 4390.1824 4468.2782 Model 4 4756.7389 4816.8126 Model 5 4369.7779 4429.8516 4379.712 4469.8225 Model 6 Model 7 4758.6806 4824.7616

> Model 8 4371.7655 4437.8466 Model 9 4381,664 4477,7819

AIC

BIC

For each criterion, the first best model is highlighted in pint, and the second best is highlighted in blue. Since model 5 is the best for AC and the second best for BIC, this is what I would choose.