CL=CSCI 160

CLASS 10

<u>Review</u> <u>Topics</u>

- (1) Number Representations
 - (r 1)'s, r's complements, algorithm for subtraction, etc
 - Find basis x if $(...)_x = ...$
- (2) (3) Boolean algebra:
 - Expression manipulation
 - Boolean operators
- (4) Circuit logic diagram (gates)
 - B. functions; truth table

- (4) distribution (both)
- (12) absorption
- (10) De Morgan

(4) Gates

Find the truth table + expression of f

×	У	Z	f
0	0	0	
0	0	1	
0	1	0	
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	
1	1	1	

$$f = ((x+y')xy'z')' = = (x+y')' + x' + y + z = = x'y + x' + y + z = x' + y + z x' (12)$$

What can we say about the truth table for f? When do we have f = 0, and when is f = 1? It is 0 exactly when x'=0, and y=0, and z=0, that is for the triple x y z = 100. In rest we have f = 1.

(3) Operators

HW 8.1

(a) Prove: Inhibition is not associative

We chose
$$F_2 = x/y = x y'$$
 F_2 associative $\stackrel{\text{Det}}{\Leftrightarrow} F_2 (F_2 (x, y), z) = F_2 (x, F_2 (y, z)) \quad \forall x, y, z$

$$F_2 (xy', z) = F_2 (x, yz')$$

$$xy'z' = x(yz')'$$

$$100$$

$$xy'z' = x(y'+z) \quad \forall x, y, z$$

$$F_2$$
 not associative $\Leftrightarrow \exists x, y, z: xy'z' \neq x(y'+z)$

Make, say, RS = 1, while LS = 0: We need: x = 1 and (y' = 1 or z = 1)

There are multiple such counterexamples.

We only need one, for instance x = 1, z = 1, and any value for y, say y = 0.

We have $LS = 0 \neq 1 = RS$. We just proved: F_2 is not associative

(3) Operators - continued <u>HW 8.1</u> - continued

(b) Prove: Exclusive OR (XOR) is commutative

The equality holds for both binary operations + and \cdot are commutative.

We just proved: F_6 , that is Exclusive OR (XOR) is commutative

(2) Expression manipulation

Basically what we have been doing all along - old HW

2.6)

a)
$$(xy' + x'y)' = (x' + y) \cdot (x + y') = xy + x'y'$$

b)
$$((AB' + C) D' + E)' = ((A' + B) \cdot C' + D) E' = (A' + B + D)(C' + D) E'$$

c)
$$((x + y' + z)(x' + z')(x + y))' = x' \cdot y \cdot z' + x \cdot z + x' \cdot y'$$

More exercises:
$$x'y$$

A. $xyz' + x'yz + xyz + x'yz' = xy + yz + x'y = y + yz = y$

(4)

(5)

(2)

 $xy(z+z') = xy$

C. Prove:
$$xy + x'z + yz = xy + x'z$$

Expand the terms that are in LS $\$ RS, namely yz

LS =
$$xy + x'z + (x + x')yz = xy + x'z + xyz + x'yz =$$

= $xy + x'z = RS$

(1) Number Representations

Review conversions and operations in any base.

Let's do the r's / (r-1)'s complements and apply the algorithm for subtracting two numbers.

1.
$$r = 16$$

Compute the (r-1)'s complement of $3ABF09_{hex}$. We have r - 1 = 16 - 1 = 15. Subtract each digit from F=15:

$$(3ABF09_{hex})_{15'C} = C540F6$$

Let's do it via r = 2 (all computations are in binary). How?

```
\frac{1's complement}{1100 0101 0100 0000 1111 0110_2} = C540F6_{hex}
```

2. Let's apply the algorithm for subtracting two numbers

$$r = 8$$
 $n = 4$, $m = 2$

n = 4, m = 2 Remember: N =

$$M + N_{(r-1)c}$$

2)

- a) e.a.c. -> add it to l.s.d.
- b) no e.a.c. \rightarrow compute -(r-1)'s compl. of 1)

Perform M - N using the algorithm using (r-1)'s rep.

Let $M_8 = 1671.02$, $N_8 = 2016.12$

1st solution-direct:

$$M_8 = {}^{11}_{16}71.02 + M_{7c} = 5761.65$$

7652.67

No e.a.c., branch 2b), so do - 7'c Result: -0125.10₈

2nd solution-convert to binary:

M₂: 001 110 111 001. 000 010 N₂:010 000 001 110. 001 010

 M_2 : 001 110 111 001. 000 010 +

N_{1C}: 101 111 110 001. 110 101

111 110 101 010, 110 111

No e.a.c., branch 2b), so do - 1'c

-000 001 010 101.001 000 Convert to base 8 to get same result as above.

NOTE

We can do these conversions to other bases and back only if self-complementary:

hex binary Yes, for self-complementary

Decimal (2421) code (8, 4, -2, -1) code Yes, for self-complementary

Decimal BCD No, not self-complementary

see next slide!

Remember:

Decimal BCD No, not self-complementary

TableFour Different Binary Codes for the Decimal Digits

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110