Лабораторная работа № 11.

Исследование трехфазного синхронного генератора

Цель работы — построение основных характеристик синхронного генератора, исследование влияния реакций якоря при различном характере его нагрузки и определение эксплуатационных параметров.

ОСНОВНОЕ ОБОРУДОВАНИЕ

Объектом исследования в лабораторной установке, полная электрическая схема которой показана на рисунке 1, является трехфазный неявнополюсный синхронный генератор, который приводится во вращение двигателем постоянного тока.

Рисунок 1 - Полная электрическая схема лабораторной установки

Обмотка возбуждения распределена на роторе генератора и через контактные кольца питается постоянным током от независимого источника. Эдс индуктируется в трехфазной обмотке статора. Таким образом, ротор синхронного генератора является индуктором, а статор – якорем.

Основная группа характеристик синхронного генератора при активной нагрузке по существу не отличается от характеристик генератора постоянного тока с независимым возбуждением. Однако при нагрузке индуктивного или емкостного характера внешние и регулировочные характеристики синхронного генератора могут иметь немаловажные особенности, обусловленные реакцией якоря, которая проявляет себя по-разному в зависимости от рода нагрузки. В качестве трехфазной симметричной нагрузки используются реостат, индукционный регулятор и батарея конденсаторов.

2. ТЕХНИКА БЕЗОПАСНОСТИ ПРИ ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

При выполнении лабораторной работы соблюдать основные правила:

- 1) перед началом работы необходимо убедиться, что все выключатели питания находятся в положении «отключено»;
- 2) при сборке схемы избегать натяжения проводов; обратить особое внимание на количество соединенных проводов, там, где возможно, ставить наконечники проводов под зажим;
- 3) после сборки схемы убрать с рабочего стола лишние провода, приборы, книги и другие предметы, а также освободить проход к рабочему месту;
- 4) запрещается включать схему без проверки ее преподавателем или лаборантом;
- 5) убедиться перед включением схемы, что никто не касается ее токоведущих элементов или подвижных частей машин;
 - 6) запрещается включать схему без предупреждения;
- 7) запрещается находиться напротив незакрытых вращающихся соединительных муфт и дисков.

- 8) при возникновении каких-либо неисправностей немедленно отключить питание схемы и сообщить об этом преподавателю или лаборанту;
- 9) запрещается производить переключения проводов в схеме, если она находится под напряжением;
 - 10) запрещается оставлять без присмотра включенные схемы.

После завершения работы в первую очередь отключить питание стенда, а затем разобрать схему.

3. ПРОГРАММА РАБОТЫ

- 3.1. Записать паспортные данные синхронного генератора.
- 3.2. Снять характеристику холостого хода, $\mathbf{E} = \mathbf{f}(\mathbf{i})$ при $\mathbf{f} = \mathbf{f}_{\mathbf{H}} = \mathbf{const}$, $\mathbf{I} = \mathbf{0}$.
 - 3.3. Снять внешние характеристики, $\mathbf{U} = \mathbf{f} (\mathbf{I})$ при $\mathbf{f} = \mathbf{f}_{\mathbf{H}} = \mathbf{const}$, $\mathbf{i} = \mathbf{const}$ с активной нагрузкой \mathbf{R} , индуктивной нагрузкой $\omega \mathbf{L}$, емкостной нагрузкой $1/\omega \mathbf{C}$
- 3.4. Снять регулировочные характеристики, $\mathbf{i} = \mathbf{f} \ (\mathbf{I}) \$ при $\mathbf{f} = \mathbf{f}_{\mathbf{H}} = \mathbf{const}$, $\mathbf{U} = \mathbf{const}$ при активной R, индуктивной ωL и емкостной нагрузке $1/\omega C$.
- 3.5. Определить изменение напряжения $\Delta U\%$ при внезапном сбросе номинальной активно-индуктивной нагрузки.
- 3.6. Снять характеристики трех-, двух- и однофазного короткого замыка- ния, $\mathbf{I} = \mathbf{f}(\mathbf{i})$ при $\mathbf{f} = \mathbf{f}_H = \mathbf{const}$, $\mathbf{U} = \mathbf{0}$.

Ход работы

4.1. Одним из важнейших требований к синхронному генератору является стабильность частоты эдс $\mathbf{f} = \mathbf{f}_H = \mathbf{const}$. Поэтому после запуска агрегата необходимо, изменяя ток возбуждения приводного двигателя \mathbf{i}_{I} , установить номинальную скорость вращения и в любом режиме поддерживать ее постоянной. 4.2. Для снятия характеристики холостого хода следует при разомкнутом выключателе, изменяя ток возбуждения генератора \mathbf{i} , установить эдс $\mathbf{E} \approx 2\mathbf{U}_{\mathsf{H}}$, а затем плавно снижать \mathbf{i} до нуля. Результаты измерений записать в таблицу 1:

Таблица 1 - Результаты измерений опыта холостого хода $f=f_H=const$, I=0

I[A]	0,85	0,8	0,45	0,35	0,3	0,25	0,15
E[B]	254	200	150	125	100	80	50

4.3. Для снятия внешней характеристики с активной нагрузкой сначала необходимо при разомкнутых **B**, **B1**, **B2** и **B3** установить номинальное напряжение на зажимах генератора U_H . Величину тока возбуждения **i**, соответствующую U_H , записать и поддерживать в опыте постоянной. Затем замкнуть **B** и **B1** и при **i** = **const** постепенно увеличивать ток нагрузки генератора в пределах $0 \le I \le I_H$. Результаты измерений записать в таблицу 2.

При том же значении $\mathbf{i} = \mathbf{const}$ опыты следует повторить с индуктивной нагрузкой, когда разомкнуты $\mathbf{B1}$ и $\mathbf{B3}$, и с емкостной нагрузкой, когда разомкнуты $\mathbf{B1}$ и $\mathbf{B2}$. После опыта с емкостной нагрузкой батарею конденсаторов следует разрядить на реостат. Для этого необходимо при разомкнутом \mathbf{B} замкнуть $\mathbf{B1}$ и $\mathbf{B3}$. Результаты измерений записать в таблицу 2.

 Таблица 2 - Результаты измерений внешней характеристики при $f=f_{\mbox{\tiny H}}=$ const , i= const

$Z=R; \phi=0$								
I[A]	0,5	0,7	0,8	0,9	1	1,2	1,3	
U[B]	105	100	95	90	85	70	50,5	
	$Z=\omega L$; $\varphi=\pi/2$							
I[A]	0,5	0,7	0,8	0,9	1	1,2	1,3	
U[B]	105	100	95	90	85	70	50,5	
	$Z=1/\omega C$; $\varphi=-\pi/2$							
I[A]	0,2	0,65	0,9	1,15	1,4	1,7	2	
U[B]	150	170	200	210	220	240	250	

4.4. Для снятия регулировочных характеристик необходимо сначала при холо-стом ходе генератора установить заданное преподавателем значение напряжения (обычно $\mathbf{U} \approx \mathbf{U_H}$). Затем включить нагрузочный реостат и постепенно увеличивать ток якоря генератора \mathbf{I} до номинального значения; напряжение поддерживать посто-янным, изменяя \mathbf{i} . При том же значении напряжения опыты повторить с индуктивной и емкостной нагрузкой. После опыта с емкостью конденсаторы следует разрядить на реостат. Результаты измерений записать в таблицу 3:

 Таблица 3 - Результаты измерений регулировочной характеристики при $f=f_{\,{}_{\rm H}}=const$, U=const

Z=R; φ=0								
I[A]	0,7	1	1,5	1,7	0,22	0,2	0,17	
U[B]	0,45	0,5	0,55	0,6	0,7	0,75	0,8	
	$Z=\omega L$; $\varphi=\pi/2$							
I[A]	0,2	0,3	0,4	0,5	0,6	0,8	1	
U[B]	0,45	0,45	0,5	0,5	0,55	0,6	0,65	
$Z=1/\omega C$; $\varphi=-\pi/2$								
I[A]	0,2	0,5	0,65	0,7	0,8	0,9	1	
U[B]	0,3	0,35	0,25	0,2	0,15	0,15	0,1	

4.5. Для определения величины $\Delta U\%$ необходимо установить номинальный режим генератора при активно-индуктивной нагрузке: \mathbf{f}_{H} , \mathbf{U}_{H} , \mathbf{I}_{H} , \mathbf{cos} ϕ_{H} . Затем замкнуть \mathbf{B} и установить $\mathbf{f} = \mathbf{f}_{\mathsf{H}}$, измерить эдс \mathbf{E}_{0H} на зажимах генератора. Результат измерений записать в табл. 11.4.

Таблица 4 - Результаты измерений для определения величины $\Delta U\%$ ($f=f_H$; $U=U_H$; $I=I_H$; $\cos \varphi = \cos \varphi_H$)

Ir [A]	IL [A]	i [A]	cos φ	Еон [В]	U% _{расч} .	U% опыт.
1,3	2,3	0,75	0,89	225	77,1	72,3

$$\Delta U\% = \frac{E_{\text{OH}} - U_{\text{H}}}{U_{\text{H}}} \cdot 100\% = \frac{225 - 127}{127} = 77,1$$

4.6. Схема соединений обмоток статора в опытах трех-, двух- и однофазного короткого замыкания показаны на рисунке 2:

Рисунок 2 - Схемы соединений обмоток статора при коротком замыкании

Перед каждым опытом необходимо устанавливать $\mathbf{i} \ \Box \ \mathbf{0}$. Магнитная цепь машины в режиме короткого замыкания не насыщена. Поэтому при снятии характеристик в любом случае достаточно трех замеров в пределах $\mathbf{0} \le \mathbf{I} \le \mathbf{1}, \mathbf{2I}_{\mathtt{H}}$ Результат измерений записать в таблицу $\mathbf{5}$:

Таблица 5 - Результаты измерений опыта короткого замыкания при $f=f_{\scriptscriptstyle H}$, U=0

Трехфазное к.з.								
i[A]	0	0,21	0,25	0,25	0,3			
I[A]	0	0,5	1	1,3	1,7			
	Двухфазное к.з.							
i[A]	0,1	0,15	0,22	0,3	0,35			
I[A]	0,5	1	1,3	1,7	2			
Однофазное к.з.								
i[A]	0,1	0,12	0,25	0,2	0,25			
I[A]	0,5	1	1,3	1,7	2			

5. ОБРАБОТКА ОПЫТНЫХ ДАННЫХ

5.1. На рисунке 3 показаны внешние характеристики синхронного генератора при активной, индуктивной и емкостной нагрузке, совмещенных для удобства сравнения.

Рисунок 3 - Внешние характеристики синхронного генератора

5.2. Регулировочные характеристики также необходимо совместить. Вид этих характеристик показан на рисунке 4:

Рисунок 4 - Регулировочные характеристики синхронного генератора

5.3. На рисунке 5 совмещены характеристики одно-, двух- и трехфазного короткого замыкания (соответственно кривые 1, 2 и 3).

Рисунок 5 - Характеристики короткого замыкания синхронного генератора

5.4. Расчетная величина $\Delta U\%$ вычисляется графическим методом. Для этого необходимо воспользоваться характеристиками холостого хода и трехфазного короткого замыкания, совмещенными на рисунке 6 :

Рисунок 6 - Совмещение характеристик холостого хода и короткого замыкания

Здесь i_1 — ток возбуждения, необходимый для создания I_H в режиме короткого замыкания. Ток якоря I_H вызывает падение напряжения $I_H x_s$ на индуктивном сопротивлении рассеяния x_s ; для создания соответствующей эдс $E_s = I_H$ x_s необходим ток возбуждения i_2 . Отрезок $F_a = i_1 - i_2$ в масштабе тока возбуждения равен намагничивающей силе, компенсирующей реакцию якоря, обусловленную током I_H .

Выбрав масштабы напряжения, тока якоря и намагничивающий силы, следует построить векторную диаграмму, соответствующую режиму работы генератора перед внезапным сбросом нагрузки, которая называется диаграммой Потье (рисунок 7)

Рисунок 7 - Диаграмма Потье синхронного генератора

Вектор \mathbf{U}_{H} откладывается на плоскости произвольно, а вектор \mathbf{I}_{H} – под известным углом $\pmb{\phi}$. Затем к вектору \mathbf{U}_{H} достраиваются векторы падений напряже-

ния $\mathbf{I}_{\mathbf{H}}$ $\mathbf{r}_{\mathbf{a}}$ и $\mathbf{j}\mathbf{I}_{\mathbf{H}}$ $\mathbf{x}_{\mathbf{s}}$ для получения вектора эдс $\mathbf{E}_{\mathbf{\delta}}$, которая на рис. 11.6 соответствует намагничивающей силе $\mathbf{F}_{\mathbf{\delta}}$ в масштабе тока возбуждения. На векторной диаграмме эта намагничивающая сила опережает вектор $\mathbf{E}_{\mathbf{\delta}}$ по фазе на угол $\mathbf{\pi}$ / 2.

Для получения намагничивающей силы обмотки возбуждения F_0 в масштабе i, необходимо к вектору F_δ достроить вектор $-F_a$, находящийся в противофазе с вектором I_H . На рис. 11.6 намагничивающей силе F_0 — соответствует эдс холостого хода E_{0H} . На векторной диаграмме эта эдс отстает по фазе от F_0 на угол $\pi/2$. Изменение напряжения генератора $\Delta U\%$ является относительной величиной. Для ее расчета достаточно при известной длине вектора U_H подставить найденную длину вектора E_{0H} в формулу $\Delta U\% = \frac{E_{0H}-U_H}{U_H} \cdot 100\%$ По данной формуле вычисляется $\Delta U\%$ на основе опытных данных