

E17e Lab Report

May 27, 2024

1 E17e Fourier Analysis of Coupled Electric Oscillations

Group #13

NG Kuok Fung | #3797903

Edgar Harutyunyan | #3775171

Overview of Tasks

- 1. Measure the time traces and frequency spectra of the free beat oscillations of the low-point circuit for ten different coupling capacitance values. Plot the ten frequency spectra into one graph. Determine the frequencies of the in-phase and out-of-phase oscillation modes. Calculate the coupling factors from the measured frequencies. Fit the theoretical expressions to the data to determine the value of the capacitance C.
- 2. Measure the time traces and frequency spectra of the free beat oscillations of the high-point circuit for ten different coupling capacitance values. Plot the ten frequency spectra into one graph. Determine the frequencies of the in-phase and out-of-phase oscillation modes. Calculate the coupling factors from the measured frequencies. Fit the theoretical expressions to the data to determine the value of the capacitance C.
- 3. Measure the beat period of the high-point circuit for one selected coupling factor. Compare the values to those obtained from the frequencies of the in-phase and out-of-phase oscillation modes. Make plots of both the time trace and the spectrum.
- 4. Measure the coupling factor for two inductively coupled resonant circuits as a function of the distance between the inductance coils. Plot the frequency spectra in one graph. Plot the coupling factor as a function of distance and analyze the distance dependence.

1.1 Task 1

Task Definition

- Measure the time traces and frequency spectra of the free beat oscillations of the low-point circuit for ten different coupling capacitance C_k values.
- Plot the ten frequency spectra into one graph.
- Determine the frequencies of the in-phase f_1 and out-of-phase f_2 oscillation modes.
- Calculate the coupling factors $k_{C,T}$ from the measured frequencies.
- Fit the theoretical expressions to the data to determine the value of the capacitance C.

$Theoretical\ Basis$

Figure 1.1: Low-Point Circuit [1]

Figure 1.2: Frequency Spectra: Beat Oscillation (Blue Curve) [1]

In task 1, a low-point resonant circuit is set up which produces beats. Fig 1.1.

A beat has an in-phase-oscillation f_1 and out-of-phase oscillation f_2 frequency, which depends on the total capacitance C and C_k Fig 1.2.

The values of f_1 and f_2 are related by the coupling constant $k_{C,T}$ given by:

$$k_{C,T} = \left| \frac{\omega_1^2 - \omega_2^2}{\omega_1^2 - \omega_2^2} \right| \tag{1.1}$$

$$\omega_i = 2\pi f_i$$

• ω_1 : In-phase angular frequency

• ω_2 : Out-of-phase angular frequency

Additionally, for a low-point circuit, the relationship between $k_{C,T}$, C and C_k is given by:

$$k_{C,T} = \frac{C}{C + C_k} \tag{1.2}$$

 \bullet C: Capacitance of Fixed Capacitor

• C_k : Capacitance of Coupling Capacitor

• $k_{C,T}$: Coupling factor of low-point circuit

Procedure

- 1. The circuit was set up following the circuit diagram **Fig 1.1**, and the value of C_k is varied using a capacitor decade.
- 2. The corresponding time trace and frequency spectrum was recorded using PicoScope 7 software installed on a host connected to the PicoScope 2000.
- 3. Based on frequency spectra **Fig 1.2**, the frequencies f_1 and f_2 were determined using find_peaks method from scipy.signal python module library.
- 4. The value of $k_{C,T}$ was calculated using Eq 1.1.
- 5. The process was repeated for 10 values of C_k
- 6. Linear regression was performed using the values of C_k , $k_{C,T}$ and fitting function 1.2.
- 7. Finally, the value of C is determined from the fit.

Figure 1.2: Frequency spectra plot of 12 measurements of low-point circuit.

Capacitance from fitting:

$$C = (0.15 \pm 0.003) \; \mu F$$
 4.2

1.2 Task 2

Task Definition

- Measure the time traces and frequency spectra of the free beat oscillations of the low-point circuit for ten different coupling capacitance C_k values.
- Plot the ten frequency spectra into one graph.
- Determine the frequencies of the in-phase f_+ and out-of-phase f_- oscillation modes.
- Calculate the coupling factors $k_{C,H}$ from the measured frequencies.
- Fit the theoretical expressions to the data to determine the value of the capacitance C.

$Theoretical\ Basis$

Figure 2.1: High-Point Circuit [1]

The coupling factor $k_{C,H}$ of high-point circuit:

$$k_{C,H} = \frac{\omega_2^2 - \omega_1^2}{\omega_2^2 + \omega_1^2} = \frac{C_K}{C + C_K}$$
 (2.1)

Procedure

1. The procedure has been carried out similar to Task1, and uses Eq 2.1 as the fitting function instead.

Figure 2.2: Frequency spectra plot of ten measurements of high-point circuit.

Capacitance from fitting:

$$C = (0.15 \pm 0.002) \ \mu F$$

Figure 2.3: Coupling factor as a function of coupling capacitance.

1.3 Task3

Task Definition

Measure the beat period of the high-point circuit for one selected coupling factor. Compare the values to those obtained from the frequencies of the in-phase and out-of-phase oscillation modes. Make plots of both the time trace and the spectrum.

Theoretical Basis

Beat mode is produced by short circuiting the right switch of the high-point circuit (Fig.2.2).

Angular frequency of the beat is:

$$\omega_S = \omega_2 - \omega_1 = \frac{2\pi}{T_S}$$

• T_S : Beat period

Procedure

- 1. The measurements in beat mode were carried out for the coupling capacitance $C_K=28\cdot 10^3 pF$.
- 2. Angular frequecies have been determined using find_peaks on the frequency spectra.
- 3. The coupling factor $K_{C,H}$ and capacitance C value were evaluated using Eq 2.1.
- 4. Using the measured angular frequencies the oscillation period T and beat period T_S were computed.

Figure 3.1: Frequency spectra plot of the high-point circuit.

Figure 3.2: Time trace plot of the high-point circuit.

Analysis

Angular frequency of out-of-phase mode is $w_2 = 56.33 \ rad \cdot ms^-$

Angular frequency of in-phase mode is $w_1 = 47.94 \ rad \cdot ms^2$

The beat period:

$$T_S = \frac{2\pi}{\omega_2 - \omega_1} = 0.75ms$$

Whereas, the oscillation period:

$$T = \frac{2\pi}{\omega_2} = 0.11ms$$

Hence, in a beat there are $\frac{T_S}{T}\approx 6$ oscillations.

The coupling factor:

$$k_{C,H} = \frac{\omega_2^2 - \omega_1^2}{\omega_2^2 + \omega_1^2} = 0.1599$$

The capacitance:

$$C = C_k \left(\frac{1}{k_{C,H}} - 1 \right) = 0.15 \ \mu F$$

It is observed, that the obtained result for the capacitance value is in agreement with the fitted result obtained in Task1 and Task2.

1.4 Task 4

Task Definition

Measure the coupling factor k_L for two inductively coupled resonant circuits as a function of the distance d between the inductance coils. Plot the frequency spectra in one graph. Plot the coupling factor as a function of distance and analyze the distance dependence.

Theoretical Basis

Figure 4.1: Coupled Resonant Circuit [1]

In Task4, a coupled resonant circuit is set up which produces beats similar to those in previous tasks. Fig 4.1.

The following conditions were imposed during the experiment:

- $C_A = C_B = C$
- $L_A = L_B$

Under such conditions, the coupling factor k_L and mutual inductance M are given by:

$$\omega_1 = \frac{\omega_0}{\sqrt{1 + k_L}}$$

$$k_L = \frac{\omega_0^2}{\omega_1^2} - 1 \tag{4.1}$$

$$M = k_L \cdot L \tag{4.2}$$

- $\omega_0 = 1/\sqrt{LC}$: Uncoupled angular frequ<cy measured during experiment
- ω_1 : In-phase angular frequency
- k_L : Coupling factor of Resonant Circuit
- \bullet M: Mutual Inductance

Procedure

- 1. The circuit was set up following the circuit diagram Fig 4.1, and the distance d between inductance coils L_1 and L_2 was recorded.
- 2. The corresponding frequency spectrum was recorded using PicoScope 7 software installed on a host connected to the PicoScope 2000.
- 3. Subsequently, the frequency f_1 is determined by analyzing the peaks in the frequency spectra **Fig 1.2**.
- 4. The values of k_L and M are calculated using Eq 4.1 and Eq 4.2 respectively.
- 5. The process was repeated for 8 values of d, and a graph of M(d) is plotted.
- 6. This graph is fitted to a power law.

Figure 4.1: Frequency spectra plot of two inductively coupled resonant circuits.

Figure 4.2: Mutual inductance as a function of distance between inductance coils.

$$A_1 = 10.16 \pm 0.766$$

$$A_2 = 253.98 \pm 67.785$$

1.5 References

1) E17e Lab instruction

Index der Kommentare

1.1	Test: 1.5 P
1.2	Formal stuff: 3 P
4.1	Measurements: 1 P
4.2	Value ok.
5.1	Measurements: 1 P
6.1	Value ok.
6.2	Where are the fits? 1.5 P
8.1	What is the value of the beat period as determined directly from the time trace? What are the uncertainties? 1 P
10.1	Measurements: 1 P
11.1	The resolution of your data could have been much better. Use longer measurement times to increase frequency resolution. 0.5 P