Discussion 2

1. Let X and Y be random variables with

$$E(X) = 2$$
, $E(Y) = 5$, $Var(X) = 4$, $Var(Y) = 1$.

Define Z = 2X - Y.

- a) Find E(Z).
- b) Find Var(Z) and Cov(X, Z) if X and Y are independent.
- c) Find Var(Z) and Cov(X, Z) if Cov(X, Y) = 2.
- 2. Let X, Y, and Z be random variables with

$$\mathrm{E}(X) = \mathrm{E}(Y) = \mathrm{E}(Z) = 0, \quad \mathrm{Var}(X) = \mathrm{Var}(Y) = \mathrm{Var}(Z) = 4,$$
 $\mathrm{Cov}(X,Y) = 1, \quad \mathrm{Cov}(X,Z) = 2, \quad \mathrm{Cov}(Y,Z) = 0.$

- a) Find Var(X + Y).
- b) Find Var(Z + Y).
- c) Find Cov(X + Y, X + Z).
- d) Find Cov(X + 3Y, 2Y Z).
- 3. Consider the process $X_t = Z_t + \theta Z_{t-1}$, where $\{Z_t\}$ are i.i.d. random variables with mean 0 and variance σ^2 . In terms of θ and σ^2 express the following:
 - a) The variance $Var(X_t)$.
 - b) The autocovariance $\gamma(h) = \text{Cov}(X_t, X_{t+h})$ for lags $h = 1, 2, 3, \cdots$.
 - c) The autocorrelation $\rho(h) = \operatorname{Corr}(X_t, X_{t+h})$ for lags $h = 1, 2, 3, \cdots$.
- 4. Consider the process $X_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2}$, where $\{Z_t\}$ are i.i.d. random variables with mean 0 and variance σ^2 . In terms of θ_1 , θ_2 and σ^2 express the following:
 - a) The variance $Var(X_t)$.
 - b) The autocovariance $\gamma(h) = \text{Cov}(X_t, X_{t+h})$ for lags $h = 1, 2, 3, \cdots$.

- c) The autocorrelation $\rho(h) = \operatorname{Corr}(X_t, X_{t+h})$ for lags $h = 1, 2, 3, \cdots$.
- 5. We say a process $\{X_t\}$ is (weakly) stationary if
 - $E(X_t)$ is constant for all t,
 - $Var(X_t)$ is constant for all t,
 - $Cov(X_t, X_{t+h})$ does not depend on t for all $h = 0, \pm 1, \pm 2, \cdots$.

Suppose X_t and Y_t are stationary. Show that $X_t + Y_t$ is also stationary.