Лабораторная работа №6

Задача об эпидемии

Белов Максим Сергеевич, НПИбд-01-21

Содержание

Цель р	работы	4
Задані	ие	5
Теорет	гическое введение	6
Зада	ача об эпидемии	6
Выпол	нение лабораторной работы	7
	Моделирование на Julia	7
	Моделирование на Modelica	12
Вывод		15

Список иллюстраций

1	Динамика изменения числа людей в каждой группе для первого случая .	9
2	Динамика изменения числа людей в каждой группе для второго случая .	12
3	Динамика изменения числа людей в каждой группе для первого случая	
	(Modelica)	13
4	Динамика изменения числа людей в каждой группе для второго случая	
	(Modelica)	14

Цель работы

Построить модель для задачи об эпидемии

Задание

33 вариант ((1032219262 % 70) + 1)

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=12100) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=120, А число здоровых людей с иммунитетом к болезни R(0)=52. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0).

Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае: 1) если $I(0) <= I^*$ 2) если $I(0) > I^*$

Теоретическое введение

Задача об эпидемии

Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа — это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) — это здоровые особи с иммунитетом к болезни.

До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированы и не заражают здоровых. Когда $I(t)>I^*$,тогда инфицирование способны заражать восприимчивых к болезни особей.

Выполнение лабораторной работы

Моделирование на Julia

• 1. Построим динамику изменения числа людей для каждой из трех групп для первого случая: $I(0) <= I^*$

В качестве коэффициентов α и β я выбрал значения 0.3 и 0.1 соответственно. Исходный код:

```
using Plots
using DifferentialEquations
```

```
N = 12100
I0 = 120
R0 = 52
S0 = N - I0 - R0
alpha = 0.3
beta = 0.1
```

```
function ode_fn(du, u, p, t)
S, I, R = u
du[1] = 0
du[2] = -beta*u[2]
du[3] = beta*u[2]
```

end

```
v0 = [S0, I0, R0]
tspan = (0.0, 60.0)
prob = ODEProblem(ode_fn, v0, tspan)
sol = solve(prob, dtmax = 0.05)
S = [u[1] \text{ for } u \text{ in } sol.u]
I = [u[2] \text{ for } u \text{ in } sol.u]
R = [u[3] \text{ for } u \text{ in } sol.u]
T = [t for t in sol.t]
plt = plot(
    dpi=300,
    legend= :topright
)
plot!(
    plt,
    Τ,
    S,
    label="Восприимчивые особи",
    color=:blue
)
plot!(
    plt,
    Τ,
    I,
    label="Инфицированные особи",
```

```
color=:green
)

plot!(
   plt,
   T,
   R,
   label="Особи с иммунитетом",
   color=:red
)

savefig(plt, "lab6_1.png")
```

Получившиеся график:

Рис. 1: Динамика изменения числа людей в каждой группе для первого случая

По графику видим, что инфицированные особи изолированы (не заражают восприимчивых) и со временем выздоравливают.

• 2. Построим динамику изменения числа людей для каждой из трех групп для

```
второго случая: I(0)>I^*
  Исходный код:
using Plots
using DifferentialEquations
N = 12100
I0 = 120
R0 = 52
S0 = N - I0 - R0
alpha = 0.3
beta = 0.1
function ode_fn(du, u, p, t)
    S, I, R = u
    du[1] = -alpha*u[1]
    du[2] = alpha*u[1]-beta*u[2]
    du[3] = beta*u[2]
end
v0 = [S0, I0, R0]
tspan = (0.0, 60.0)
prob = ODEProblem(ode_fn, v0, tspan)
sol = solve(prob, dtmax = 0.05)
```

S = [u[1] for u in sol.u]

I = [u[2] for u in sol.u]

R = [u[3] for u in sol.u]

T = [t for t in sol.t]

```
plt = plot(
    dpi=300,
    legend= :topright
)
plot!(
    plt,
    Τ,
    S,
    label="Восприимчивые особи",
    color=:blue
)
plot!(
    plt,
    Τ,
    I,
    label="Инфицированные особи",
    color=:green
)
plot!(
    plt,
    Τ,
    R,
    label="Особи с иммунитетом",
    color=:red
)
```

```
savefig(plt, "lab6_2.png")
```

Получившийся график:

Рис. 2: Динамика изменения числа людей в каждой группе для второго случая

В этот раз инфицированные особи заражают восприимчивых и со временем выздоравливают (восприимчивые и инфицированные стремятся к 0, а особи с иммунитетом стремятся к N)

Моделирование на Modelica

• 1. Построи аналогичные графики, используя Modelica Для первого случая:

Исходный код:

```
model lab6_1
Real N = 12100;
Real S;
Real I;
Real R;
Real alpha = 0.3;
```

```
Real beta = 0.1;
initial equation

I = 120;
R = 52;
S = N - I - R;
equation
der(S) = 0;
der(I) = -beta*I;
der(R) = beta*I;
annotation(
    experiment(StartTime = 0, StopTime = 100, Tolerance = 1e-6, Interval = 0.05));
end lab6_1;
```

График (Modelica):

Рис. 3: Динамика изменения числа людей в каждой группе для первого случая (Modelica)

• 2. Для второго случая:

Исходный код:

```
model lab6_2
Real N = 12100;
Real S;
Real I;
```

```
Real R;
Real alpha = 0.3;
Real beta = 0.1;
initial equation
I = 120;
R = 52;
S = N - I - R;
equation
der(S) = -alpha*S;
der(I) = alpha*S - beta*I;
der(R) = beta*I;
annotation(
    experiment(StartTime = 0, StopTime = 100, Tolerance = 1e-6, Interval = 0.05));
end lab6_2;
```

График:

Рис. 4: Динамика изменения числа людей в каждой группе для второго случая (Modelica)

Вывод

В ходе работы я построил модели для задачи об эпидемии