

CHAPTER 4

Signal Transmission

(Part 2 of 2)

4.4 Modulation

Modulation

The process of shifting the frequency of baseband signal to a higher frequency band

Varying the amplitude, phase or frequency of a high frequency sinusoid (carrier) in accordance with the baseband signal.

Modulation for practical antenna length

Efficient transmission

The ability of the waves to travel very far without the need for high transmission power.

Antenna length required for efficient radio transmission:

Antenna length
$$\geq 0.1\lambda$$

$$\lambda = \frac{v_{(prop)}}{f}$$
 The higher the frequency, the shorter the antenna is required.

The minimum antenna length I_{\min} for efficient transmission and good reception:

$$I_{(min)} = 0.1\lambda = 0.1 \times \frac{V_{(prop)}}{f}$$

Modulation for practical antenna length

Speech, music, video and data:

- → contain low frequency components
- → requires very long antenna

For a signal of frequency 100 Hz, the minimum antenna length required

minimum antenna length =
$$0.1 \lambda = 0.1 x c/f$$

= $0.1 x 3 x 10^8/100$
= 300 km Impractical!

How to reduce antenna length for low frequency signals?

Modulation for practical antenna length

How to reduce antenna length for low frequency signals?

Ans: Shift the baseband signal to a higher frequency band.

If the 100 Hz signal is shifted to a 100 MHz, the minimum antenna length

minimum antenna length =
$$0.1 \lambda = 0.1 \times c/f$$

= $0.1 \times 3 \times 10^8/100 \times 10^6$ m
= 0.3 m \leftarrow Practical to construct and use

Modulation for Simultaneous Transmission without Interference

When two or more stations broadcast speech simultaneously, it is impossible for one to listen to one station without hearing the other stations.

Co-channel Interference/ Cross talk

The signals occupy the same frequency band (0.1 - 10 kHz).

Modulation for Simultaneous Transmission without Interference

When each station is modulated onto a different carrier frequency, all the stations can be broadcast simultaneously without interference.

Assign different carrier frequency to each channel using modulation.

Modulation for Simultaneous Transmission without Interference

The listener can tune to a station of her choice without interference from other stations.

Tuned to 93.3MHz

Ms W Listener

Modulation for Simultaneous Transmission without Interference

Modulation allows simultaneous transmission of signals without interference by the use of different carrier frequencies.

Modulation to Reduce the Effects of Noise

Certain types of modulation (such as FM) can minimise the effects of noise.

Example 4.2

A signal has 4 frequency components as shown.

What is the minimum antenna length to transmit the signal efficiently?

Solution

$$L_{(\min)} = 0.1\lambda = \underbrace{0.1c}_{f}$$

For 99MHz, min. length required = L_1 = 0.1c/99MHz = 0.303m

For 102MHz, min. length required = L_2 = 0.1c/102MHz = 0.294m

For 100 & 101MHz, min. length required will be between L_1 and L_2 .

Use L₁ because it will be long enough for ALL the 4 frequency components.

L₂ will be too short for the 99, 100 & 101MHz component.

- A modulator combines the low frequency modulating signal with a high frequency carrier to produce a high frequency passband signal.
- Modulation can be grouped under two categories:

Analog Modulation Digital Modulation

Analog Modulation

Analog Modulation

Modulating signal is analog.

There are three basic analog modulation techniques used in analog communication systems:

Amplitude modulation (AM)

Radio broadcasting in MF band

Frequency modulation (FM)

Radio broadcasting in the VHF band as well as in cordless phones and walkie-talkies.

Phase modulation (PM) (not included in the syllabus)

Analog Modulation

Digital Modulation

Digital Modulation

Modulating signal is digital.

- There are three basic digital modulation techniques used in digital communication systems.
 - The amplitude, frequency or phase of the sinusoidal carrier is varied in accordance with the logic states of the modulating signal.

Amplitude Shift Keying (ASK)

Frequency Shift Keying (FSK)

Phase Shift Keying (PSK)

Used in digital communication system e.g. Internet, Cellular systems

Digital Modulation

Modulated signal

Varying the amplitude of the carrier in accordance with the digital baseband signal. **ASK**

End

CHAPTER 4

(Part 2 of 2)

