2014-2015, LICENCE 3^{ème} ANNÉE PARCOURS MATHÉMATIQUES

M66, Modélisation et analyse numérique

TD2 : Courbes de Bézier

Exercice 1 (Propriétés de base)

Les polynômes de Bernstein d'ordre n sont les polynômes

$$B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i} \text{ pour } i = 0, \dots, n$$

Lorsque n est fixé, on notera simplement B_i au lieu de B_i^n .

On considère n+1 points A_0, \ldots, A_n , d'un espace affine $V, n \ge 1$ (le plus souvent n=3 et $V=\mathbb{R}^2$). On définit la courbe paramétrée de Bézier $M:[0,1] \to V$, associée à ces points de contrôle:

$$M(t) = B_0(t)A_0 + B_1(t)A_1 + \dots + B_n(t)A_n$$
 pour $t \in [0, 1]$.

- a) Montrer que la courbe M([0,1]) est dans l'enveloppe convexe des points de contrôle A_0, \ldots, A_n .
- **b)** Montrer que $M(0) = A_0$ et $M(1) = A_1$.
- c) Montrer qu'il existe une constante λ , à déterminer, telle que $M'(0) = \lambda \overrightarrow{A_0 A_1}$ et $M'(1) = \lambda \overrightarrow{A_{n-1} A_n}$.
- d) Montrer que si les A_i sont tous alignés et équidistants, alors $M(t) = (1-t)A_0 + tA_n$.
- e) Soit $B: V^n \longrightarrow V^{[0,1]}$, l'application qui associe aux n+1 points de V la courbe de Bézier d'ordre n, ayant ces points comme points de contrôle. Montrer que B est une application affine, et que si V est un espace vectoriel, alors B est linéaire.
- f) On note $B_{[A_0,...,A_n]}$ la courbe de Bézier dont les points de contrôle sont $A_0,...,A_n$. Soit $T:V\to W$ une application affine. Montrer que $T(B_{[A_0,...,A_n]}(t))=B_{[T(A_0),...,T(A_n)]}(t)$ pour tout $t\in\mathbb{R}$.

Exercice 2 (Élévation de degré)

Soient $A_0 = (0,1)$, $A_1 = (1,1)$, $A_2 = (1,0)$.

- a) Calculer la courbe de Bézier ayant A_0, A_1 et A_2 pour points de contrôle. La dessiner.
- b) Montrer qu'il existe des points B_0 , B_1 , B_2 et B_3 tels que la courbe de Bézier associée soit la même que pour les points A_0 , A_1 et A_2 .

c) Comment peut-on généraliser la question précédente pour n+1 points A_0, \ldots, A_n quelconques? Indication: $B_i = \frac{i}{n+1}A_{i-1} + \frac{n+1-i}{n+1}A_i$ pour i = 1, ..., n.

Exercice 3 (Construction itérative)

On note par $B_{[A_0,...,A_n]}$ la courbe de Bézier dont les points de contrôle sont $A_0,...,A_n$.

a) Montrer que

$$B_{[A_0,\dots,A_n]}(t) = (1-t)B_{[A_0,\dots,A_{n-1}]}(t) + tB_{[A_1,\dots,A_n]}(t).$$

- b) Déduire, de la question précédente, la question (d) de l'exercice 1.
- c) Soit $B'_{[A_0,\dots,A_n]}$ la courbe dérivée de $B_{[A_0,\dots,A_n]}$. Montrer (par récurrence) que

$$B'_{[A_0,\dots,A_n]} = n \left(B_{[A_1,\dots,A_n]} - B_{[A_0,\dots,A_{n-1}]} \right)$$

 $B'_{[A_0,\dots,A_n]}=n\left(B_{[A_1,\dots,A_n]}-B_{[A_0,\dots,A_{n-1}]}\right)$ d) On note $\Delta_i:=\overrightarrow{A_iA_{i+1}}$ pour $i=0,\dots,n-1.$ En déduire que

$$B'_{[A_0,...,A_n]} = nB_{[\Delta_0,...,\Delta_{n-1}]}.$$

e) Déduire, de la question précédente, la question (c) de l'exercice 1.

Exercice 4 (Courbes polynomiales)

Soit V un espace affine de dimension n (on peut dans un premier temps prendre n=2 et $V=\mathbb{R}^2$). On dit que $M:\mathbb{R}\to V$ est une courbe polynomiale de degré k si dans un repère on a $M(t) = (P_1(t), \dots, P_n(t))$ avec $P_i \in \mathbb{R}_k[X]$ pour $i = 1, \dots, n$.

- a) Montrer que la définition de courbe polynomiale de degré k ne dépend pas du repère
- b) Montrer que toute courbe polynomiale M(t) de degré k peut s'écrire de façon unique comme courbe de Bézier d'ordre k.
- c) En déduire que toute spline de degré k avec n+1 nœuds distincts peut être réalisée comme la jonction de n courbes de Bézier d'ordre k.
- d) Redémontrer la question (c) de l'exercice 2.

Exercice 5 (Jonction de courbes de Bézier)

Soient $A_0, A_1, ..., A_n$ et $B_0, B_1, ..., B_n$ deux ensembles de points de contrôle pour deux courbes de Bézier M(t) et N(t), $t \in [0,1]$. On considère la courbe paramétrée

$$S(t) = \begin{cases} M(2t) & \text{si } t \in [0, \frac{1}{2}[\\ N(2t-1) & \text{si } t \in [\frac{1}{2}, 1] \end{cases}$$

- a) Sous quelle condition sur les points de contrôle la courbe S est-elle continue?
- b) Sous quelle condition sur les points de contrôle la courbe S est-elle C^1 ?
- c) Sous quelle condition sur les points de contrôle la courbe S est-elle C^k ?