Příklady regulárních jazyků

Example 1.3 (regulární jazyk)

• $L = \{ w \mid w = ubaba, \\ w \in \{a, b\}^*, u \in \{a, b\}^* \}.$

Example 1.4 (regulární jazyk)

• $L = \{w | w \in \{0, 1\}^* \& w \text{ je binární zápis čísla dělitelného 5}\}.$

Example 1.5 (INEregulární jazyk)

• $L = \{0^n 1^n | w \in \{0, 1\}^*, n \in \mathbb{N}\}$ NENÍ regulání jazyk.

Iterační (pumping) lemma pro regulární jazyky

Theorem 1.1 (Ilterační (pumping) lemma pro regulární jazyky)

Mějme regulární jazyk L. Pak existuje konstanta $n \in \mathbb{N}$ (závislá na L) tak že každé $w \in L$; $|w| \ge n$ můžeme rozdělit na tři části, w = xyz, že:

- $y \neq \lambda$
- $|xy| \leq n$
- $\forall k \in \mathbb{N}_0$, slovo $xy^k z$ je také v L.

Example 1.6

- Lemma řeklo: n = 3.
- abbbba = a(b)bbba; $\forall i \geq 0; a(b)^i bbba \in L(A).$
- aaaaba = (aaa)aba; $\forall i \geq 0; (aaa)^i aba \in L(A).$
- aa nelze pumpovat, ale |aa| < n.

Automat A

Důkaz iteračního lematu pro regulární jazyky

Proof: iteračního lematu pro regulární jazyky

- Mějme regulární jazyk L, pak existuje DFA A s n stavy, že L = L(A).
- Vezměme libovolné slovo $a_1a_2\ldots a_m=w\in L$ délky $m\geq n,\ a_i\in \Sigma.$
- Definujme: $\forall i \ p_i = \delta^*(q_0, a_1 a_2 \dots a_i)$. Platí $p_0 = q_0$.
- Máme n+1 p_i a n stavů, některý se opakuje, vezměme první takový, tj. $(\exists i,j)(0 \le i < j \le n \& p_i = p_j)$.
- Definujme: $x = a_1 a_2 \dots a_i$, $y = a_{i+1} a_{i+2} \dots a_j$, $z = a_{j+1} a_{j+2} \dots a_m$, tj. w = xyz, $y \neq \lambda$, $|xy| \leq n$.

$$y=a_{i+1}a_{i+2}\dots a_j$$

 Smyčka nad p_i se může opakovat libovolně krát a vstup je také akceptovaný.

Kongruence, Myhill-Nerodova věta

Definition 2.1 (kongruence)

Mějme konečnou abecedu Σ a relaci ekvivalence \sim na Σ^* (reflexivní, symetrická, tranzitivní). Potom:

- ~ je **pravá kongruence**, jestliže $(\forall u, v, w \in \Sigma^*)u \sim v \Rightarrow uw \sim vw.$
- je konečného indexu, jestliže rozklad Σ^*/\sim má konečný počet tříd.
- Třídu kongruence \sim obsahující slovo u značíme $[u]_{\sim}$, resp. [u].

Theorem 2.1 (IMyhill–Nerodova věta)

Nechť L je jazyk nad konečnou abecedou Σ. Potom následující tvrzení jsou ekvivalentní:

- a) L je rozpoznatelný konečným automatem,
- b) existuje pravá kongruence \sim konečného indexu nad Σ^* tak, že L je sjednocením jistých tříd rozkladu Σ^*/\sim .

Proof: Důkaz Myhill-Nerodovy věty

- a) \Rightarrow b); tj. automat \Rightarrow pravá kongruence konečného indexu
 - definujeme $u \sim v \equiv \delta^*(q_0, u) = \delta^*(q_0, v)$.
 - je to ekvivalence (reflexivní, symetrická, transitivní)
 - je to pravá kongruence (z definice δ^*)
 - má konečný index (konečně mnoho stavů)
 - $L = \{w | \delta^*(q_0, w) \in F\} = \bigcup_{q \in F} \{w | \delta^*(q_0, w) = q\} = \bigcup_{q \in F} [w | \delta^*(q_0, w) = q]_{\sim}$

b) \Rightarrow a); tj. pravá kongruence konečného indexu \Rightarrow automat

- ullet abeceda automatu vezmeme Σ
- ullet za stavy Q volíme třídy rozkladu Σ^*/\sim
- ullet počáteční stav $q_0 \equiv [\lambda]$
- koncové stavy $F = \{c_1, \ldots, c_n\}$, kde $L = \bigcup_{i=1,\ldots,n} c_i$
- přechodová funkce $\delta([u],x)=[ux]$ (je korektní z def. pravé kongruence).
- L(A) = L $w \in L \Leftrightarrow w \in \bigcup_{i=1,\ldots,n} c_i \Leftrightarrow w \in c_1 \vee \ldots w \in c_n \Leftrightarrow [w] = c_1 \vee \ldots [w] = c_n \Leftrightarrow [w] \in F \Leftrightarrow w \in L(A)$ $\delta^*([\lambda], w) = [w]$

Algoritmus hledání rozlišitelných stavů v DFA

Následující algoritmus nalezne rozlišitelné stavy:

- Základ: Pokud p ∈ F (přijímající) a q ∉ F, pak je dvojice {p, q} rozlišitelná.
- Indukce: Nechť $p,q\in Q$, $a\in \Sigma$ a o dvojici $r,s;r=\delta(p,a)$ a $s=\delta(q,a)$ víme, že jsou rozlišitelné. Pak i $\{p,q\}$ jsou rozlišitelné.
 - opakuj dokud existuje nová trojice $p, q \in Q$, $a \in \Sigma$.

В	X						
C	х	X					
D	х	Х	X				
Е		X	X	X			
F	х	Х	Х		х		
G	X	X	X	X	X	X	
Н	X		X	X	X	X	x
	Α	В	С	D	Е	F	G

Křížek značí rozlišitelné dvojice. C je rozlišitelné hned, ostatní kromě $\{A,G\},\{E,G\}$ také. Vidíme tři ekvivalentní dvojice stavů.

Algoritmus hledání rozlišitelných stavů

Algoritmus nalezení reduktu DFA A

Algorithm: !Algorithmus nalezení reduktu DFA A

- Ze vstupního DFA A eliminujeme stavy nedosažitelné z počátečního stavu.
- Najdeme rozklad zbylých stavů na třídy ekvivalence.
- Konstruujeme DFA B na třídách ekvivalence jakožto stavech. Přechodovou funkci B označíme γ , mějme $S \in Q_B$. Pro libovolné $q \in S$, označíme T třídu ekvivalence $\delta(q,a)$ a definujeme $\gamma(S,a) = T$. Tato třída musí být stejná pro všechna $a \in S$.
- Počáteční stav B je třída obsahující počáteční stav A.
- Množina přijímajících stavů B jsou bloky odpovídající přijímajícím stavům A.

Ekvivalence nedeterministických a deterministických konečných automatů

Algorthm: !Podmnožinová konstrukce

Podmnožinová konstrukce začíná s NFA $N = (Q_N, \Sigma, \delta_N, S_0, F_N)$. Cílem je popis deterministického DFA $D = (Q_D, \Sigma, \delta_D, S_0, F_D)$, pro který L(N) = L(D).

- Q_D je množina podmnožin Q_N , $Q_D = \mathcal{P}(Q_N)$ (potenční množina). Nedosažitelné stavy můžeme vynechat.
- Počáteční stav DFA je stav označený S_0 , tj. prvek Q_D .
- $F_D = \{S : S \in \mathcal{P}(Q_N) \& S \cap F_N \neq \emptyset\}$, tedy S obsahuje alespoň jeden přijímající stav N.
- Pro každé $S \subseteq Q_N$ a každý vstupní symbol $a \in \Sigma$,

$$\delta_D(S,a) = \bigcup_{p \in S} \delta_N(p,a).$$

Příklad podmnožinové konstrukce pro $\{w.01|w \in \{0,1\}\}$

Příklady reguláních výrazů, priorita

Example 4.2 (Regulární výrazy)

Jazyk střídajících se nul a jedniček lze zapsat:

- \bullet (01)* + (10)* + 1(01)* + 0(10)*
- $(\lambda + 1)(01)^*(\lambda + 0)$.

Jazyk $L((\mathbf{0}^*\mathbf{10}^*\mathbf{10}^*\mathbf{1})^*\mathbf{0}^*) = \{w|w \in \{0,1\}^*, |w|_1 = 3k, k \ge 0\}.$

Definition 4.3 (priorita)

Nejvyšší prioritu má iterace *, nižší konkatenace (zřetězení), nejnižší sjednocení +.

Theorem (4.1alvarianta Kleeneho věty)

Každý jazyk reprezentovaný konečným automatem lze zapsat jako regulární výraz.

Každý jazyk popsaný regulárním výrazem můžeme zapsat jako λ -NFA (a tedy i DFA).

Od DFA k regulárním výrazům

Regulární výraz z DFA

Mějme DFA A, $Q_A = \{1, \ldots, n\}$ o n stavech.

Nechť $R_{ij}^{(k)}$ je regulární výraz, $L(R_{ij}^{(k)}) = \{w | \delta_{\leq k}^*(i, w) = j\}$ množina slov převádějících stav i do stavu j v A cestou, která neobsahuje stav s vyšším indexem než k.

Budeme rekruzivně konstruovat $R_{ij}^{(k)}$ pro $k = 0, \ldots, n$.

k = 0, $i \neq j$: $R_{ij}^{(0)} = \mathbf{a_1} + \mathbf{a_2} + \ldots + \mathbf{a_m}$ kde a_1, a_2, \ldots, a_m jsou symboly označující hrany i do j (nebo $R_{ii}^{(0)} = \emptyset$ nebo $R_{ii}^{(0)} = \mathbf{a}$ pro m = 0, 1).

 $k=0,\ i=j$: smyčky, $R_{ii}^{(0)}=\lambda+\mathbf{a_1}+\mathbf{a_2}+\ldots+\mathbf{a_m}$ kde a_1,a_2,\ldots,a_m jsou symboly na smyčkách v i.

INDUKCE. Mějme $\forall i, j \in Q \ R_{ij}^{(k)}$. Konstruujeme $R_{ij}^{(k+1)}$.

$$R_{ij}^{(k+1)} = R_{ij}^{(k)} + R_{i(k+1)}^{(k)} (R_{(k+1)(k+1)}^{(k)})^* R_{(k+1)j}^{(k)}$$

- Cesty z *i* do *j* neprocházející uzlem (k+1) jsou již v $R_{ii}^{(k)}$.
- Cesty z i do j přes (k+1) s případnými smyčkami můžeme zapsat $R_{i(k+1)}^{(k)}(R_{(k+1)(k+1)}^{(k)})^*R_{(k+1)j}^{(k)}$.
- regulární výrazy jsou uzavřené na sčítání (sjednocení), zřetězení i iteraci, tj. $R_{ij}^{k+1} \in RegE(\Sigma)$

Nakonec, $RegE = \bigoplus_{j \in F_A} R_{1j}^{(n)}$ sjedncení přes přijímající stavy j.

85 / 79 - 100

Chomského hierarchie

Definition 6.2 (Klasifikace gramatik podle tvaru přepisovacích pravidel)

- gramatiky typu 0 (rekurzivně spočetné jazyky \mathcal{L}_0)
 pravidla v obecné formě $\alpha \to \omega, \ \alpha, \omega \in (V \cup T)^*, \alpha$ obsahuje neterminál
- ullet gramatiky typu 1 (kontextové gramatiky, jazyky \mathcal{L}_1)
 - ullet pouze pravidla ve tvaru $\gamma Aeta
 ightarrow \gamma \omega eta$

$$A \in V, \gamma, \beta \in (V \cup T)^*, \omega \in (V \cup T)^+$$
!

- o jedinou výjimkou je pravidlo $S \to \lambda$, potom se ale S nevyskytuje na pravé straně žádného pravidla
- gramatiky typu 2 (bezkontextové gramatiky, jazyky \mathcal{L}_2) pouze pravidla ve tvaru $A \to \omega, A \in V, \omega \in (V \cup T)^*$
- ullet gramatiky typu 3 (regulární/pravé lineární gramatiky, regulární jazyky $\mathcal{L}_3)$

pouze pravidla ve tvaru $A \rightarrow \omega B, A \rightarrow \omega, A, B \in V, \omega \in T^*$

Uspořádanost Chomského hierarchie

Chomského hierarchie definuje uspořádání tříd jazyků

$$\mathcal{L}_0 \supseteq \mathcal{L}_1 \supseteq \mathcal{L}_2 \supseteq \mathcal{L}_3$$

dokonce vlastní podmnožiny (později)

$$\mathcal{L}_0\supset\mathcal{L}_1\supset\mathcal{L}_2\supset\mathcal{L}_3$$

- $\mathcal{L}_0\supseteq\mathcal{L}_1$ rekurzivně spočetné jazyky zahrnují kontextové jazyky pravidla $\gamma Aeta o \gamma \omega eta$ obsahují vlevo neterminál A
- $\mathcal{L}_2\supseteq\mathcal{L}_3$ bezkontextové jazyky zahrnují regulární jazyky pravidla $A o\omega B, A o\omega$ obsahují vpravo řetězec $(V\cup T)^*$
- $\mathcal{L}_1\supseteq\mathcal{L}_2$ kontextové jazyky zahrnují bezkontextové jazyky problém je s pravidly typu $A o\lambda$, ale ta umíme eliminovat.

Ekvivalence jazyků rozpoznávaných zásobníkovými automaty a bezkontextových jazyků

Theorem 7.1 (L(CFG), L(PDA), N(PDA))

Následující tvrzení jsou ekvivalentní

- Jazyk L je bezkontextový, tj. generovaný CFG
- Jazyk L je přijímaný nějakým zásobníkovým automatem koncovým stavem.
- Jazyk L je přijímaný nějakým zásobníkovým automatem prázdným zásobníkem

Důkaz bude veden směry dle následujícího obrázku.

Theorem 8.1 (IChNF)

Mějme bezkontextovou gramatiku G, $L(G) - \{\lambda\} \neq \emptyset$. Pak existuje CFG G_1 v Chomského normálním tvaru taková, že $L(G_1) = L(G) - \{\lambda\}$.

Example 8.6

 $R \rightarrow$)

```
I \rightarrow a|b|IA|IB|IZ|IU
F \rightarrow LER|a|b|IA|IB|IZ|IU
T \rightarrow TMF|LER|a|b|IA|IB|IZ|IU
                                                              F \rightarrow LC_3|a|b|Ia|IB|IZ|IU
E \rightarrow EPT|TMF|LER|a|b|IA|IB|IZ|IU
                                                              T \rightarrow TC_2|LC_3|a|b|IA|IB|IZ|IU
A \rightarrow a
                                                              E \rightarrow EC_1|TC_2|LC_3|a|b|IA|IB|IZ|IU
B \rightarrow b
                                                              C_1 \rightarrow PT
Z \rightarrow 0
                                                              C_2 \rightarrow MF
U \rightarrow 1
                                                              C_3 \rightarrow ER
P \rightarrow +
                                                              I, A, B, Z, U, P, M, L, R jako vlevo
M \rightarrow *
L \rightarrow (
```

Lemma o vkládání (pumping) pro bezkontextové jazyky

Theorem 8.2 (!!Lemma o vkládání (pumping) pro bezkontextové jazyky)

Mějme bezkontextový jazyk L. Pak existují dvě přirozená čísla p, q taková že každé $z \in L, |z| > p$ lze rozložit na z = uvwxy kde:

- $|vwx| \leq q$
- $vx \neq \lambda$
- $\forall i > 0$, $uv^i wx^i y \in L$.

ldea důkazu:

- vezmeme derivační strom pro z
- najdeme nejdelší cestu
- na ní dva stejné neterminály
- tyto neterminály určí dva podstromy

- podstromy definují rozklad slova
- nyní můžeme větší podstrom posunout (i > 1)
- nebo nahradit menším podstromem (i = 0)

Proof: |z| > p: z = uvwxy, $|vwx| \le q$, $vx \ne \lambda$, $\forall i \ge 0uv^i wx^i y \in L$

- vezmeme gramatiku v Chomského NF (pro $L = \{\lambda\}$ a \emptyset dk jinak).
- Nechť |V| = n. Položíme $p = 2^{n-1}, q = 2^n$.
- Pro $z \in L, |z| > p$, má v derivačním stromu z cestu délky > n
- vezmeme nejdelší cestu; terminál kam vede označíme t
- ullet Aspoň dva z posledních (n+1) neterminálů na cestě do t jsou stejné
- ullet vezmeme dvojici A^1,A^2 nejblíže k t (určuje podstromy T^1,T^2)
- ullet cesta z A^1 do t je nejdelší v podstromu \mathcal{T}^1 a má délku maximálně (n+1)

tedy slovo dané stromem T^1 není delší než 2^n (tedy $|vwx| \leq q$)

- z A^1 vedou dvě cesty (ChNF), jedna do T^2 druhá do zbytku vx ChNF je nevypouštějící, tedy $vx \neq \lambda$
- derivace slova $(A^1 \Rightarrow^* vA^2x, A^2 \Rightarrow^* w)$ $S \Rightarrow^* uA^1y \Rightarrow^* uvA^2xy \Rightarrow^* uvwxy$
- posuneme–li A^2 do A^1 • posuneme–li A^1 do A^2 (i=2,3,...) • $S\Rightarrow^*uA^1y\Rightarrow^*uvA^1xy\Rightarrow^*$ • $uvVA^2xxy\Rightarrow^*uvvwxxy$.

Cocke-Younger-Kasami algorithm náležení slova do CFL

Exponenciálně k |w|: vyzkoušet všechny derivační stromy dostatečné délky pro L.

Algorithm: ICYK algoritmus, v čase $O(n^3)$

- Mějme gramatiku v ChNF G = (V, T, P, S) pro jazyk L a slovo $w = a_1 a_2 \dots a_n \in T^*$.
- Vytvořme trohúhelníkovou tabulku (vpravo),
 - horizontální osa je w
 - X_{ij} jsou množiny neterminálů A takových, že A ⇒* a_i a_{i+1} . . . a_j.

Základ:
$$X_{ii} = \{A; A \rightarrow a_i \in P\}$$

Indukce: $X_{ij} = \{A \rightarrow BC; B \in X_{ik}, C \in X_{k+1,i}\}$

- Vyplňujeme tabulku zdola nahoru.
- Pokud $S \in X_{1,n}$, potom $w \in L(G)$.

Uzávěrové vlastnosti v kostce

jazyk	regulární (RL)	bezkontextové	deterministické CFL
sjednocení	ANO	ANO	NE
průnik	ANO	NE	NE
∩ s RL	ANO	ANO	ANO
doplněk	ANO	NE	ANO
homomorfismus	ANO	ANO	NE
inverzní hom.	ANO	ANO	ANO

