Stochastic Price Path Simulators

Janice Wu

October 12, 2025

Overview

simulator.py provides NumPy implementations for simulating financial price paths under several standard models and a utility for converting prices to per–period log returns. These simulations can later be used to evaluate the performance of time–series generation models.

- prices_to_logreturns: convert prices to $\log(S_{t+1}/S_t)$.
- gbm: Geometric Brownian Motion (GBM).
- cev: Constant Elasticity of Variance (CEV) with Milstein/Euler schemes and boundary handling.
- merton: Merton jump-diffusion with Poisson jumps and lognormal jump sizes.
- variance_gamma: Variance—Gamma (VG) pure-jump model via gamma subordination, with optional martingale correction to enforce $\mathbb{E}[S_t] = S_0 e^{(r-q)t}$.
- heston: Heston stochastic volatility with Full-Truncation Euler (variance) and log-Euler (price); supports time-varying parameters and correlated shocks.
- garch_ret: GARCH(1,1) (Normal or standardized Student-t innovations) with optional AR(1) mean; returns integrated to prices.

All simulators accept scalars or time-varying vectors for parameters (broadcast over N paths), return arrays with shapes documented below, and expose a seed for reproducibility.

Notation

Throughout, N denotes number of paths, T the number of steps, and Δt the step size dt > 0. We use $Z_t \sim \mathcal{N}(0,1)$ i.i.d., and for Merton jumps $K_t \sim \text{Poisson}(\lambda \Delta t)$ with jump sizes $J = \exp(Y)$, $Y \sim \mathcal{N}(m_J, s_J^2)$.

1 prices_to_logreturns

Signature. prices_to_logreturns(prices, axis=1, check_positive=True)

Purpose. Convert prices to per–step log returns:

$$r_t \equiv \log \frac{S_{t+1}}{S_t} = \log S_{t+1} - \log S_t.$$

Parameters.

- prices: array-like with time along axis (shape (N, T+1), (T+1,), or broadcastable).
- axis (int, default 1): time axis; if your data is (T+1, N), set axis=0.
- check_positive (bool, default True): if True, raises ValueError when any price in a ratio is ≤ 0 .

Returns. Array of log returns with the same shape as prices except length reduced by 1 along axis.

Notes. Works for single series or batched paths. Uses np.diff(np.log(prices), axis=axis); with check_positive, validates positivity of prices used in ratios.

2 gbm

Signature. gbm(N,T,mu,sigma,S0=100.0,dt=1.0,seed=None)

Model. Geometric Brownian Motion:

$$dS_t = \mu S_t dt + \sigma S_t dW_t \quad \Rightarrow \quad \log \frac{S_{t+1}}{S_t} \sim \mathcal{N}\left(\left(\mu - \frac{1}{2}\sigma^2\right)\Delta t, \ \sigma^2 \Delta t\right).$$

Parameters. $N,T\in\mathbb{N}.$ μ,σ can be scalars or length-T arrays (broadcast across paths). $S_0>0.$ dt>0. seed for RNG.

Returns. $S \in \mathbb{R}^{N \times (T+1)}$ with $S_{\cdot,0} = S_0$.

Implementation. Exact log step:

$$\log S_{t+1} = \log S_t + \left(\mu - \frac{1}{2}\sigma^2\right)\Delta t + \sigma\sqrt{\Delta t} Z_t, \quad Z_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1).$$

3 cev

Signature. cev(N,T,mu,sigma,beta,S0=100.0,dt=1.0,scheme='milstein', boundary='truncate',seed=None)

Model. Constant Elasticity of Variance:

$$dS_t = \mu_t S_t dt + \sigma_t S_t^{\beta_t} dW_t, \qquad \beta \in \mathbb{R}.$$

Discretizations.

- Euler–Maruyama: $S_{t+1} = S_t + \mu_t S_t \Delta t + \sigma_t S_t^{\beta_t} \sqrt{\Delta t} Z_t$.
- Milstein (recommended for state-dependent diffusion):

$$S_{t+1} = S_t + \mu_t S_t \, \Delta t + \sigma_t S_t^{\beta_t} \sqrt{\Delta t} \, Z_t + \frac{1}{2} \sigma_t^2 \, \beta_t \, S_t^{2\beta_t - 1} \, (\Delta t) \, (Z_t^2 - 1).$$

Boundary handling. After proposing S_{t+1} , apply:

- 'truncate': set negative values to a small floor (e.g., $\varepsilon > 0$).
- 'absorb': once $S \leq 0$, keep it at zero thereafter.
- 'reflect': reflect through zero, $S \leftarrow |S|$.

Parameters. $N,T\in\mathbb{N}.$ μ,σ,β scalars or length-T. $S_0>0,$ dt>0. scheme \in {'milstein',' euler'}. boundary \in {'truncate','absorb','reflect'}. seed optional.

Returns. $S \in \mathbb{R}^{N \times (T+1)}$.

Notes. For $\beta = 1$ with Milstein, the scheme reduces toward GBM behavior; for $\beta < 1$ the diffusion weakens as $S \to 0$, making boundary handling important.

4 merton

Signature. merton(N,T,mu,sigma,lamb,mJ,sJ,S0=100.0,dt=1.0,adjust_drift=True,seed=None)

Model. Merton jump-diffusion:

$$\frac{dS_t}{S_t} = \mu \, dt + \sigma \, dW_t + (J-1) \, dN_t, \qquad \ln J \sim \mathcal{N}(m_J, s_J^2), \ N_t \sim \text{Poisson}(\lambda t).$$

Exact discrete log step

$$\log \frac{S_{t+1}}{S_t} = \underbrace{\left(\mu - \frac{1}{2}\sigma^2 - \lambda\kappa\right)\Delta t}_{\text{if adjust drift}} + \sigma\sqrt{\Delta t} \, Z_t + \sum_{i=1}^{K_t} Y_i,$$

with $K_t \sim \operatorname{Poisson}(\lambda \Delta t), Y_i \sim \mathcal{N}(m_J, s_J^2), \text{ and } \kappa = \mathbb{E}[J-1] = e^{m_J + \frac{1}{2}s_J^2} - 1.$ When adjust_drift =False, the drift term omits $-\lambda \kappa$.

Parameters. $N, T \in \mathbb{N}$. $\mu, \sigma, \lambda, m_J, s_J$ scalars or length-T. $S_0 > 0$, dt > 0. seed optional.

Returns. $S \in \mathbb{R}^{N \times (T+1)}$.

Notes. The jump sum conditional on $K_t = k$ is Normal with mean $k m_J$ and variance $k s_J^2$ (additivity of Normals), enabling an efficient draw per step.

5 variance_gamma

Signature. variance_gamma(N, T, dt, S0=100.0, r=0.0, q=0.0, theta=-0.1, sigma=0.2, nu =0.2, seed=None, martingale=True)

Model. The Variance–Gamma (VG) process is a Brownian motion with drift θ and scale σ evaluated at a gamma subordinator G_t with variance rate ν :

$$G_{\Delta t} \sim \Gamma \left(\text{shape} = \frac{\Delta t}{\nu}, \text{ scale} = \nu \right), \qquad Z \sim \mathcal{N}(0, 1),$$

$$\Delta X = \theta G_{\Delta t} + \sigma \sqrt{G_{\Delta t}} Z.$$

The (log) price update is

$$\log S_{t+\Delta t} = \log S_t + (r - q + \omega) \Delta t + \Delta X,$$

with the martingale correction

$$\omega = \begin{cases} \nu^{-1} \, \log (1 - \theta \nu - \frac{1}{2} \sigma^2 \nu), & \text{if martingale} = \text{True}, \\ 0, & \text{otherwise}. \end{cases}$$

Setting ω as above enforces $\mathbb{E}[S_t] = S_0 e^{(r-q)t}$ under the risk-neutral measure.

Parameters.

• martingale If True, applies ω so that the discounted price is a martingale.

Returns. By default the function returns prices $S \in \mathbb{R}^{N \times (T+1)}$ with $S_{\cdot,0} = S_0$. (Optionally, you may also return the VG process X if desired; see the example.)

Notes.

- The increment construction is i.i.d. across steps; the model is pure-jump with infinite activity and finite variance.
- When martingale = True, ensure $1 \theta \nu \frac{1}{2}\sigma^2 \nu > 0$ so that ω is well-defined.

6 heston

Signature. heston(N, T, dt, mu=0.0, kappa=2.0, theta=0.04, xi=0.5, rho=-0.7, S0=100.0, v0=None, seed=None, clip_eps=1e-12)

Model. Heston (1993) stochastic volatility:

$$dS_t = \mu S_t dt + \sqrt{v_t} S_t dW_t^S,$$

$$dv_t = \kappa (\theta - v_t) dt + \xi \sqrt{v_t} dW_t^v, \qquad \operatorname{corr} (dW_t^S, dW_t^v) = \rho.$$

Discretization (this implementation).

- Variance: Full-Truncation Euler (FTE). Use $v_t^+ = \max(v_t, 0)$ in both drift and diffusion, step v_{t+1} , then floor at 0.
- **Price:** Log–Euler with the same v_t^+ : $S_{t+1} = S_t \exp\left(\left(\mu \frac{1}{2}v_t^+\right)\Delta t + \sqrt{v_t^+}\Delta W_t^S\right)$.
- Correlation: Build $\Delta W_t^S = \rho \, \Delta W_t^v + \sqrt{1-\rho^2} \, Z_t$ with independent standard Normal Z_t .

Parameters.

• clip_eps Tiny positive floor applied to prices for numerical hygiene.

Returns. $S \in \mathbb{R}^{N \times (T+1)}$ with $S_{\cdot,0} = S_0$.

7 garch_ret

Signature. garch_ret(N,T,omega,alpha,beta,mu=0.0,phi=0.0,dist='normal',nu=8,S0=100.0,v0=None.seed=None)

Model. Returns follow a mean model with GARCH(1,1) volatility:

$$r_t = \mu + \phi r_{t-1} + \sigma_t z_t,$$
 $z_t \sim \begin{cases} \mathcal{N}(0,1) & \text{if dist = normal,} \\ t_{\nu} \text{ (standardized)} & \text{if dist = t,} \end{cases}$ $\sigma_t^2 = \omega + \alpha r_{t-1}^2 + \beta \sigma_{t-1}^2.$

Stationarity requires $\omega > 0$, $\alpha \ge 0$, $\beta \ge 0$, and $\alpha + \beta < 1$.

Initialization. If v0 is omitted, the unconditional variance $\sigma_{\infty}^2 = \omega/(1 - \alpha - \beta)$ is used to start σ_0^2 . For dist='t', innovations are scaled to unit variance.

Integration to prices. Prices are formed from log returns:

$$S_0$$
 given, $\log S_{t+1} = \log S_t + r_t \Rightarrow S_{t+1} = S_t e^{r_t}$.

Parameters.

- $N, T \in \mathbb{N}$.
- $\omega, \alpha, \beta > 0$ (real scalars).
- μ (intercept), ϕ (AR(1) coefficient).
- dist \in {'normal','t'}; $\nu > 2$ (df for t).
- $S_0 > 0$. Optional v0 for initial variance. seed optional.

Returns. $S \in \mathbb{R}^{N \times (T+1)}$. (You can recover the simulated returns by applying prices_to_logreturns.)

Minimal Examples

Practical Tips

- Use small Δt (e.g., 1/252) for daily steps; prefer Milstein for cev.
- For merton, adjust_drift=True makes the expected growth under the jump component neutral via $-\lambda \kappa$.
- For garch_ret, prefer $\alpha + \beta < 1$ well below 1 to avoid extremely persistent volatility; when using dist='t', choose $\nu > 4$ for finite kurtosis of returns.