- 1. A sample of N=50 people from a population with mean equal to 50 is given a treatment. After treatment, we find a sample mean of $\overline{X}=51$ with SS=27,220. Does the treatment result in larger scores compared to the general population?
 - (a) explicitly define \mathcal{H}_0 and \mathcal{H}_1 .
 - (b) calculate and report the observed t-score

(c) calculate and report the resulting Bayes factor

(d) calculate and report the posterior probability of the "winning" model.

(e) write a good conclusion

- 2. A sample of N=16 individuals is selected from a population with mean 70 and given a treatment. After treatment, the sample mean is found to be $\overline{X}=63.4$ with SS=960. Does the treatment result in smaller scores compared to the general population?
 - (a) explicitly define \mathcal{H}_0 and \mathcal{H}_1 .
 - (b) calculate and report the observed t-score

(c) calculate and report the resulting Bayes factor

(d) calculate and report the posterior probability of the "winning" model.

(e) write a good conclusion

- 3. Two groups of N=18 are enrolled in an experimental trial. The first group (who receives an experimental drug) had a mean score of $\overline{X}_1=86.4$ with $SS_1=1550$. The second group (a control group who received a placebo) had a mean score of $\overline{X}_2=78.8$ with $SS_2=1204$. Is there a difference in the population means of these two groups?
 - (a) explicitly define \mathcal{H}_0 and \mathcal{H}_1 .
 - (b) calculate and report the observed t-score

(c) calculate and report the resulting Bayes factor

(d) calculate and report the posterior probability of the "winning" model.

(e) write a good conclusion