Formal Method in Software Engineering (SE-313)

Course Teacher

Assistant Professor Engr. Mustafa Latif

Predicate logic

Syntax of Predicate Logic

- Two key types in predicate logic: terms and formulas
- Terms
- Basic components of predicate logic are called terms
- Any constant is a term.
 - We often use constants in math; we introduce them by writing things like Let S be the set {1; 2; 3}.
 - In this case, we have introduced a constant and made its denotation clear; we have given it an interpretation.
 - Definition: A constant of type T is a name that denotes some particular object in the set T.

Syntax of Predicate Logic

- Any variable is a term.
 - A variable can stand for anything in a set of objects.
 - That is, a variable of type $\mathbb N$ could stand for any of the natural numbers.
 - The variable x may stand for one of the days. We may let x = Monday, x = Tuesday, etc.
 - A collection of objects is called the domain of objects.
- Definition: A variable of type T is a name that can denote any value in the set T.

Predicate logic

Syntax of Predicate Logic

- Any function is a term.
 - The idea of functional terms in logic is similar to the idea of a function in programming: recall that in programming, a function is a procedure that takes some arguments, and returns a value.
 - PROCEDURE $f(a_1:T_1; ... a_n:T_n): T$; this function takes n arguments; the first is of type T_1 , the second is of type T_2 , and so on. The function returns a value of type T.
 - Each symbol corresponds to a particular function.
 - Each function symbol is associated with a natural number called its arity. This is just the number of arguments it takes.
- Definition: Let f be an arbitrary function symbol of type T, with arity $n \in \mathbb{N}$, taking arguments of type T_1 ; :::; T_n respectively. Also, let τ_1 ; :::; τ_n be terms of type T_1 ; :::; T_n respectively. Then $f(\tau_1$; :::; τ_n) is a functional term.

Syntax of Predicate Logic

Formula

- A well-formed formula in predicate logic is defined as
- If P is an n-ary predicate symbol and $t_1,...,t_n$ are terms, then $P(t_1,...,t_n)$ is a formula. P, P(x,y,z)
- If the equality symbol (=) is considered part of logic and t_1 and t_2 are terms, then t_1 = t_2 is a formula. P(a,b)=P(c,d)
- If φ is a formula asnd x is a variable, then $(\forall x \varphi)$ and $(\exists x \varphi)$ are formulas. $[(\forall x)A(x)]' \Leftrightarrow (\exists x)[A(x)]'$

Predicate logic

Ouantifiers

- Propositional wffs have rather limited expressive power. E.g., "For every x, x > 0".
- Quantifiers: Quantifiers are phrases that refer to given quantities, such as "for some" or "for all" or "for every", indicating how many objects have a certain property.
- Two kinds of quantifiers:
- Universal Quantifier: represented by ∀, "for all", "for every", "for each", or "for any".
- Existential Quantifier: represented by ∃, "for some", "there exists", "there is a", or "for at least one".

,

Predicates

- Predicate: It is the verbal statement which describes the property of a variable. Usually represented by the letter P, the notation P(x) is used to represent some unspecified property or predicate that x may have.
 - P(x) = x has 30 days.
 - P(April) = April has 30 days.
 - What is the truth value of $(\forall x)P(x)$ where x is all the months and P(x) = x has less than 32 days
- Combining the quantifier and the predicate, we get a complete statement of the form $(\forall x)P(x)$ or $(\exists x)P(x)$
- The collection of objects is called the domain of interpretation, and it must contain at least one object.

Predicate logic

Unary, Binary,..., N-ary Predicates

- Predicates involving properties of a single variable: unary predicates
- Binary, ternary and n-ary predicates are also possible
- $(\forall x)$ $(\exists y)Q(x,y)$ is a binary predicate. This expression reads as "for every x there exists a y such that Q(x,y)"
- Constants are also allowed in expressions, such as a, b, c, 0, 1, 2, etc.

Interpretation

- An interpretation for an expression involving predicates consists of the following:
 - A collection of objects, called domain of interpretation, which must include at least one object.
 - An assignment of a property of the objects in the domain to each predicate in the expression.
 - An assignment of a particular object in the domain to each constant symbol in the expression.
- Predicate wffs can be built similar to propositional wffs using logical connectives with predicates and quantifiers.
- Must obey the rules of syntax to be considered a wff
- Examples of predicate wffs
 - $(\forall x)[P(x) \rightarrow Q(x)]$
 - $(\forall x) ((\exists y)[P(x,y) V Q(x,y)] \rightarrow R(x))$
 - $S(x,y) \wedge R(x,y)$

9

Predicate logic

Scope of a Variable in an Expression

- The parentheses or brackets are used wisely to identify the scope of the variable:
 - $(\forall x) ((\exists y)[P(x,y) V Q(x,y)] \rightarrow R(x))$
 - Scope of $(\exists y)$ is P(x,y) V Q(x,y) while the scope of $(\forall x)$ is the entire expression
 - $(\forall x)S(x) V (\exists y)R(y)$
 - Scope of $(\forall x)$ is S(x) while the scope of $(\exists y)$ is R(y)
 - $(\forall x)[P(x,y) \rightarrow (\exists y) Q(x,y)]$
 - Scope of variable y is not defined for P(x,y) hence y is called a free variable. Such expressions might not have a truth value at all.
 - P(x): x > 0; $P(y)^P(5)$, P(y) V P(5).
- What is the truth of the wff $(\exists x)(A(x) \land (\forall y)[B(x,y) \rightarrow C(y)])$, where A(x) is "x > 0", B(x, y) is "x > y", C(y) is " $y \le 0$ ", and x is the domain of positive integers and y is the domain of all integers?

Translation of Verbal Statements to Symbolic Form Using Intermediate Statements

- "Every person is nice" can be rephrased as "For any thing, if it is a person, then it is nice". So, if P(x) is "x is a person" and Q(x) be "x is nice", the statement can be symbolized as
 - $(\forall x)[P(x) \rightarrow Q(x)]$
- Variations: "All persons are nice" or "Each person is nice".
- "There is a nice person" can be rewritten as "There exists something that is both a person and nice" in symbolic form
 - $(\exists x)[P(x) \land Q(x)]$
- Variations: "Some persons are nice" or "There are nice persons"
- So almost always, \exists goes with Λ (conjunction) and \forall goes with \rightarrow (implication)

11

Translation of Verbal Statements to Symbolic

- Example for forming symbolic forms from predicate symbols:
 - D(x) is "x is dog"
 - R(x) is "x is a rabbit"
 - C(x,y) is "x chases y"
- All dogs chase all rabbits ⇔
 - For anything, if it is a dog, then for any other thing, if it is a rabbit, then the dog chases it $\Leftrightarrow (\forall x)[D(x) \to (\forall y)(R(y) \to C(x,y))]$
- Some dogs chase all rabbits ⇔
 - There is something that is a dog and for any other thing, if that thing is a rabbit, then the dog chases it \Leftrightarrow $(\exists x)[D(x) \land (\forall y)(R(y) \rightarrow C(x,y))]$
- Only dogs chase rabbits ⇔
 - For anything, if it is a rabbit then, if anything chases it, that thing is a dog \Leftrightarrow $(\forall y) [R(y) \rightarrow (\forall x) (C(x, y) \rightarrow D(x))]$
 - Or, for any two things, if one is a rabbit and the other chases it, then the other is a dog $(\forall y) (\forall x)[R(y) \land C(x,y) \rightarrow D(x)]$

Negation of Statements

- \bullet A(x): Everything is beautiful
 - •Negation will be "it is false that everything is beautiful", i.e. "something is not beautiful"
 - •In symbolic form, $[(\forall x)A(x)]' \Leftrightarrow (\exists x)[A(x)]'$
 - •Similarly, negation of "Something is beautiful" is "Nothing is beautiful" or "Nothing is beautiful"
 - •Hence, $[((\exists x)A(x)]' \Leftrightarrow (\forall x)[A(x)]'$

13

More Examples on Negation

- Some pictures are old and faded.
 - •Every picture is not old or not faded.
- •All people are tall and thin.
 - •Someone is short or fat.
- •Some students eat only pizza.
 - Every student eats something which is not a pizza
- •Only students eat pizza.
 - •There is a non-student who eats pizza.

S(x): x is a student
I(x): x is intelligent

M(x): x likes music

- Write wffs than express the following statements:
 - All students are intelligent.
 - Some intelligent students like music.
 - Everyone who likes music is a stupid student.
 - Only intelligent students like music.

For anything, if it is a student, then it is intelligent $\Leftrightarrow (\forall x)[S(x) \to I(x)]$

There is something that is intelligent and it is a student and it likes music $\Leftrightarrow (\exists x)[I(x) \land S(x) \land M(x)]$

For anything, if that thing likes music, then it is a student and it is not intelligent ⇔

 $(\forall x)(M(x) \rightarrow S(x) \land [I(x)]')$

For any thing, if it likes music, then it is a student and it is intelligent ⇔

 $(\forall x)(M(x) \rightarrow S(x) \land I(x))$