Overview

Role of data in machine learning

Features and labels

The machine learning workflow

Feature engineering to convert data to features

Training, test, and validation data

A machine learning algorithm is an algorithm that is able to learn from data

Machine Learning

Work with a huge maze of data

Find patterns

Make intelligent decisions

Types of Machine Learning Problems

Classification

Regression

Clustering

Dimensionality Reduction

Types of Machine Learning Problems

Classification

Regression

Clustering

Dimensionality Reduction

Whales: Fish or Mammals?

Mammals

Members of the infraorder Cetacea

Fish

Look like fish, swim like fish, move with fish

Corpus

Classification Algorithm **ML-based Classifier**

x Variables

The attributes that the ML algorithm focuses on are called features

Each data point is a list - or vector - of such features

Thus, the input into an ML algorithm is a feature vector

Feature vectors are usually called the x variables

y Variables

The attributes that the ML algorithm tries to predict are called labels

Labels are usually called the y variables

Types of labels

- categorical (classification)
- continuous (regression)

Garbage In, Garbage Out

If data fed into an ML model is of poor quality, the model will be of poor quality

Basic Machine Learning Workflow

What Data Do You Have to Work With?

Load and Store Data

Data Preprocessing

Selecting and Extracting Features

Critical and Time-consuming Steps

Decision Trees, Support Vector Machines?

Training to Find Model Parameters

Evaluate the Model

Score the Model

Different Algorithm, More Data, More Training?

Iterate Till Model Finalized

Model Used for Predictions

Retrained Using New Data

Basic Machine Learning Workflow

Feature Engineering

Basic Machine Learning Workflow

Selecting and Extracting Features

Feature Engineering

Feature Engineering

Engineering your features so that you get the best out of your ML model.

Feature Engineering

Block and tackle work

Bespoke - specific to:

- Problem
- Data

Not quite art, not quite science...

... More just engineering

Scope of Feature Engineering

Feature selection

Feature learning

Feature extraction

Feature combination

Dimensionality reduction

Scope of Feature Engineering

Feature selection

Feature learning

Feature extraction

Feature combination

Dimensionality reduction

Feature Selection

Choosing the best subset from within an existing set of features (x-variables), without substantially transforming them.

Choosing Feature Selection

Use Case

Possible Solution

Many X-variables

Most of which contain little information

Some of which are very meaningful

Meaningful variables are independent of each other

Feature selection

Feature Selection Techniques

methods

methods

Filter Methods

Applying statistical techniques to select the most relevant features

Embedded Methods

Relevant features selected by training a machine learning model i.e. Lasso regression, decision trees

Wrapper Methods

Build candidate models by selecting feature subsets - choose the subset which gives the best model

Scope of Feature Engineering

Feature selection

Feature learning

Feature extraction

Feature combination

Dimensionality reduction

Feature Learning

Rely on ML algorithms rather than human experts to "learn" the best representations of complex data such as images, videos.

(Also known as Representation Learning)

Supervised Feature Learning

Features are learnt using labeled data

Neural networks are classic example

Greatly reduce need for expert judgment

"Traditional" ML-based systems rely on experts to decide what features to pay attention to

"Representation" ML-based systems figure out by themselves what features to pay attention to

Neural networks are examples of such systems

Unsupervised Feature Learning

Features need to be learned in absence of labeled corpus

- Clustering
- Dictionary learning
- Autoencoders

Scope of Feature Engineering

Feature selection

Feature learning

Feature extraction

Feature combination

Dimensionality reduction

Feature Extraction

Differs from feature selection in that input features are fundamentally transformed into derived features, which are often unrecognizable and hard to interpret.

Feature Extraction

Image descriptors for images

Principal components for matrices

Tf-Idf for documents

Feature Extraction

Feature extraction usually also leads to dimensionality reduction

However explicit objective is to reexpress feature in a "better" form

Not to reduce number of X columns

Scope of Feature Engineering

Feature selection

Feature learning

Feature extraction

Feature combination

Dimensionality reduction

Feature Combination

Some features naturally work better when considered together

Original feature might be raw or too granular

Improve the predictive power of features

Feature Combination

Feature cross in predicting traffic

- Day-of-week
- Time-of-day

Feature cross in predicting temperature

- Season
- Time-of-day

Scope of Feature Engineering

Feature selection

Feature learning

Feature extraction

Feature combination

Dimensionality reduction

Dimensionality Reduction

Apply pre-processing algorithms to reduce complexity of raw features

Specifically aim to reduce number of input features

Excessive number of features leads to severe problems

- Curse of Dimensionality

Dimensionality Reduction

Dimensionality reduction explicitly aim to solve Curse of Dimensionality

While also preserving as much information as possible

Form of unsupervised learning

Dimensionality Reduction

Principle Components Analysis (PCA)

Manifold Learning

Latent Semantic Analysis

Autoencoding

Basic Machine Learning Workflow

Validate and Iterate Till Model Finalized

Data

All data

All the data available

Training Data

All data

Use all data to train your model

Training Data

Data used to train a model cannot be used to evaluate a model

Model may have memorized training instances

Model robustness cannot be measured on instances it has seen before

All data

Training data

Test data

Typically 80% of the data used to train the model

All data

Training data

Test data

20% set aside to sanity-check or measure model performance

All data

Training data

Test data

One training process to generate one candidate model

All data

Training data

Test data

For N candidate models, run N training and N test processes

Test set can be used to choose the best candidate model

Model evaluation on instances the model has not seen during training

Evaluation can become biased

Overfitting on Test Set

Choosing best candidate model on the Test Set leads to this form of overfitting. Occurs when data is split into just two sets: Training and test.

Cross-validation

Carve out a separate validation set of data points; use this to evaluate different candidate models. Data now split into three sets: Training, validation and test.

All data

Training data

Validation data

Test data

Hold out 2 subsets of the original data, validation data and test data

All data

Training data

Validation data

Test data

Training data to produce candidate models - validation data to evaluate models

All data

Training data

Validation data

Test data

Test data applied to the selected model to provide an unbiased evaluation of the final model

All data

Training data

Validation data

Test data

Now can have multiple candidate models, and select the best one - Hyperparameter Tuning

All data

Training data

Validation data

Test data

For N candidate models, run N training and N validation processes but just 1 test process

All data

Training data

Validation data

Test data

Training data

Validation data

Test data

Candidate Model 1

Training data

Validation data

Training data

Candidate Model 1

Training data

Validation data

Validation data

Validation data

Validation data

Validation data

Validation data

	All data		
	Training data	Validation data	Test data
Candidate Model 1	Training data	Validation data	
Candidate Model 2	Training data	Validation data	
Candidate Model 3	Training data	Validation data	
Candidate Model 4	Training data	Validation data	
Candidate Model 5	Training data	Validation data	

The model's performance on the validation set is incorporated into the model itself - this may introduce bias

For each candidate model, repeatedly train, and validate using different subsets of training data. Much more computationally intensive, but very robust - does not "waste" data.

For each candidate model, repeatedly train, and validate using different subsets of training data. Much more computationally intensive, but very robust - does not "waste" data.

For each candidate model, repeatedly train, and validate using different subsets of training data. Much more computationally intensive, but very robust - does not "waste" data.

All data

Training data

Test data

All data

Training data

Test data

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

	All data			
	Training data	Test data		
	Fold 1 Fold 2 Fold 3	Fold 4 Fold 5		
Split 1	Fold 1 Fold 2 Fold 3	Fold 4 Fold 5		
Split 2	Fold 1 Fold 2 Fold 3	Fold 4 Fold 5		

	All data				
	Training data	Test data			
	Fold 1 Fold 2 Fold 3 Fold 4 Fold 5	5			
Split 1	Fold 1 Fold 2 Fold 3 Fold 4 Fold	5			
Split 2	Fold 1 Fold 2 Fold 3 Fold 4 Fold	5			
Split 3	Fold 1 Fold 2 Fold 3 Fold 4 Fold	5			

