SICSS Edinburgh

CSS in Practice Predicting User's Attributes

Walid Magdy

Task/Purpose

- Learn/Predict something about a given user
- Learn/Understand characteristics of certain user groups
- Consideration: ETHICS
- Examples RQs:
 - Can we predict users' actions in the future?
 - Can we predict users' hidden information?
 - What makes a given user have a given leaning?
- Example applications: predicting voting, extremism ...

Outlines

Examples of using CSS for predicting user's information

- 6 Example Studies
- No technical details (ask if you need details)
- Sharing main methodology
- Topics: might be sensitive!!

Antecedent of Support?

Where ISIS supporters come from?

- Signals of ISIS support is frequently noticed on SM
- Collected 3 million tweets mentioning ISIS
- Labeling:

• 57K (11K + 46K) users talking about ISIS (10 tweets at least)

Data Collection

- Collect tweets timeline for 57K users → 123 million tweets
- Identify tweets of users before even mention ISIS
- Filter-out accounts with no pre-ISIS data

Classifier

- Pro-ISIS accounts with pre-ISIS tweets = 7,700 users
- Balance Data: random select 7,700 Anti-ISIS account with pre-ISIS tweets
- Train classifier with Pre-ISIS tweets
- Mission: Predict if the user will be in the future Pro- or Anti- ISIS
- Features: tweets content (BOW)
- Accuracy → 87%
- Analysis:
 - Find most distinguishing feats for Pro-ISIS (before being supporters to ISIS)

Findings

- Most distinguishing features:
 - Related to Arab spring (Egypt, Syria, Libya)
 - Related to protesting against Arab regimes (SA, Kuwait, Iraq)

Qualitative

Date	Tweet (translated)
May 25, 2012	Don't be surprised if it rains today martyrs are spitting on us
Nov. 9, 2014	Preliminary schizophrenia: I like ISIS, but I want to watch Chris Nolan's new movie
Nov. 17, 2014	Check the gazes of Bashar's soldiers before slaughter by #Islamic_State in #despite_the_disbelivers

Support of ISIS is <u>not ideological</u>, but for <u>revenge</u>

Methodology

 Use old textual data on user's social media page to predict their potential future leanings

Ref:

- Magdy W., K. Darwish, and I. Weber. "I like ISIS, but I want to watch Chris Nolan's new movie": Exploring ISIS Supporters on Twitter. *Hypertext 2015*
- Magdy W., K. Darwish, and I. Weber. #FailedRevolutions: Using Twitter to Study the Antecedents of ISIS Support. First Monday, 2016

Predicting Unseen Views!

#ParisAttacks

#ParisAttacks – next few hours

#ParisAttacks – Data Collection

- Collection: 8.4 million tweets about #ParisAttacks
- 900K tweets talking about Islam
- Sampling + label propagation → 336K tweets (in 10 languages)
 Attacking Muslims / Defending Muslims / Neutral

#ParisAttacks – Top Hashtags

Positive	Count	Negative	Count
#MuslimsAreNotTerrorist	34,925	#IslamIsTheProblem	3,154
#MuslimAreNotTerrorist	17,759	#RadicalIslam	1,618
#NotInMyName	4,728	#StopIslam	1,598
#MuslimsStandWithParis	1,228	#BanIslam	460
#MuslimsAreNotTerrorists	1,106	#StopIslamicImmigration	333
#ThisisNotIslam	781	#IslamIsEvil	290
#NothingToDoWithIslam	619	#IslamAttacksParis	280
#ISISareNotMuslim	316	#ImpeachTheMuslim	215
#ExtremistsAreNotMuslim	306	#KillAllMuslims	206
#ISISisNotIslam	243	#DeportAllMuslims	186

Research Questions

- Can we predict user stances?
- What if the user never talked about the topic before?
- What are the key features?

- US-based polarized users → 44K users
- Latest 400 tweets/user before attacks + Profile info
- 12.6M tweets + Network interactions + Profile info

Predicting Stances

- Features:
 - Content: BOW, hashtags
 - Profile: name, desc., location
 - Network: retweets, replies, mentions
- SVM + linear kernel
- 10-fold cross-validation
- Divide to:
 - Mentioned Islam before (10.5K → 6.6K+4K)
 - Never mentioned Islam (33.5K → 27.5K+6K)

Results

Features	Mentioned-before		Never mentioned-before	
Set	Accuracy	F-score	Accuracy	F-score
Content	0.83	0.82	0.84	0.73
Profile	0.73	0.70	0.79	0.62
Network	0.86	0.85	0.88	0.77
All	0.85	0.84	0.87	0.76

- Network interactions are the most effective features
- Predictability is high even for users never mentioned the topic before

Feature Analysis

Defending Muslims

Attacking Muslims

#TCOT

Lessons

- People's unspoken views are predictable
- User's network is a key factor for future behavior
- Humans tend to group into homophily, even on SM

Ref:

- Magdy W., K. Darwish, A. Rahimi, N. Abukhodair, T. Balswin. #ISISisNotIslam or #DeportAllMuslims? Predicting Unspoken Views. Web Science 2016
- Darwish K., W. Magdy, A. Rahimi, N. Abukhodair, T. Baldwin. Predicting Online Islamophopic Behavior after #ParisAttacks. Journal of Web Science 2017

What can reveal your Stance?

SemEval Stance Detection Task 2016

- 4K tweets on 5 topics labeled by stance {for, against, none}
- Topics: Abortion, Atheism, Feminism, Clinton, & Climate Change
- State-of-the-art:
 - SVM + n-gram features → F-score 69%
 - Other approaches: deep learning → F-score < 69%
 - Focus on content features only! → user discussed the topic!
- RQ: How detecting stance could be done if:
 - User never discussed the topic!
 - User never tweeted, but has some online activity!
 - User has no content and no activity!

Detecting Stance in Four Situations

- TXT: tweet Text content
- IN: Interaction Network → network user retweet, reply, mention
- PN: Preference Network → network in tweets user like
- CN: Connection Network → network user follows

What can reveal your stance?

Lesson

 Every activity for us online can give indication about our stances and leanings, whether we express it or not!

Ref:

 Aldayel A and W. Magdy. Your Stance is Exposed! Analysing Possible Factors for Stance Detection on Social Media. CSCW 2019

Fake Accounts / Catfishes Can your style online show you are fake?

Catfishes

Catfish: pretends different person

Data/Approach

100K user accounts

5% verified accounts

Data Sample

```
<USER>
   <TD>8423012381</TD>
   <TYPE>0</TYPE> <!-- 1 for verified accounts -->
   <AGE>27</AGE>
   <PROFILE>Girl,Single,Girls,united%states<!-- gender, status, interested in,</pre>
   country -->
   <ACTIVITY>7611,202</ACTIVITY> <!-- #videos watched, #posts -->
   <FRIENDS>1350,594,76,680/FRIENDS> <!-- #total friends, males, females, others -->
   <SUBSCRIBERS>605,246,25,334/SUBSCRIBERS> <!-- same as above -->
   <SUBSCRIBEDTO>106,40,7,59</SUBSCRIBEDTO> <!-- same as above -->
   <NCOMMENTS>11,10,87,54/NCOMMENTS> <!-- #comments, #unique comments, #words, #unique</pre>
   words -->
   <COMMENTS>
       <comment count=2>thanx sugar</comment>
       <comment count=1>I can definitely say the same! You are damn sexy!</comment>
       <comment count=1>Awwwww you guys are so sweet to this poor horny girl!!!</comment>
       <comment count=1>Thanx you all are real sweet</comment>
       <comment count=1>Mmmmmm PLEASE!!!!</comment>
       <comment count=1>Well thank you sugar!</comment>
       <comment count=1>Ohhh yeah I think I could
       <comment count=1>Heheheehehe thanx sugar!</comment>
       <comment count=1>No problem...my pleasure in fact!</comment>
       <comment count=1>Damn you are one fine woman!!!! *kiss kiss*</comment>
       <comment count=1>GRRRR I NEED SOMEONE XXXXXX MY XXXX AND XXX RIGHT NOW!!!</comment>
   </COMMENTS>
</USER>
```

Predicting Gender & Age

Gender

Features	Accuracy
Comments	85.9%
Network/Activity	88.7%
All	92.0%

Age

Features	Correlation	MAE (yrs)
Comments	0.509	5.58
Network/Activity	0.234	6.12
All	0.440	5.78

Who Catfishes?

- 25% are likely lying about their age
- Males pretend to be young females
- Females pretend to be older males

Lesson

 From your online public social activity, hidden personal information could be estimated

Ref:

 Magdy W., Y. Elkhatib, G. Tyson, S. Joglekar, N. Sastry. Fake it till you Make it. Fishing for Catfishes. ASONAM 2017

Prediction is sometimes Scary!

Demographic Prediction

- Different research showed that demographic information can be predicted about users using their posts
- Experiment:
 - Collected timelines of 20,000 Twitter users (WW, NYC, London, Johannesburg)
 - Annotate <u>ethnicity</u> and <u>gender</u> of user based on profile pic.
 - Use their posts to predict their demographics

What about the Emoji they use?

- There are 2600 emoji out there!
- 20% of social media posts contain emoji
- Does general emoji usage differ by demographic?
- Can we use them for prediction instead of text?

Top Used Emoji

Difference in Usage by Demographics

Demographics Estimation by Emoji

- Are these differences enough to estimate user's demographic information?
- Train classifiers for gender/race using emoji in timeline only!

Classifier	Posts	Emoji
Gender	80.6%	80.4%
Ethnicity	85.2%	84.5%

Lesson

 Minor signals in our posts online, such as emoji, can tell a lot about our identity, including gender and ethnicity.

Ref:

Benkhedda Y., P. Xiao, and W. Magdy. Emoji are Effective Predictors of User's Demographics.
 ASONAM 2023

Takeaways

- We have many signals and footprints online
- These signals can be used to infer information about us.
- We can predict user's leanings, biases, and demographics
- CSS is a method to make us learn about ourselves and our societies in a fast way → ETHICS
- Can be an excellent informative motivation for more in depth social studies.

- Presented work was using <u>public</u> social media data,
 - → Think about the data that companies own!

Final Words

- Computational Social Science
- Interdisciplinary field
 - Social Science + Computer/Data Science
- Conferences:
 - CSCW, ICWSM, CHI, the WebConf, WebSci, SocInfo, ASONAM
- Journals:
 - Nature Human Behavior, ACM TSC, Springer SNAM
- NLP:
 - Models: Huggingface
 - Tasks: SemEval

Thank You

wmagdy@inf.ed.ac.uk

y @walid_magdy

http://homepages.inf.ed.ac.uk/wmagdy/

https://smash.inf.ed.ac.uk/

