

Dictionaries with implicit keys

Rasmus Pagh

IT UNIVERSITY OF COPENHAGEN

Supported by:

Agenda

- The retrieval problem "storing a function"
- Perfect hashing a recursive construction
 - Static
 - Use with signatures
 - Dynamic
- Retrieval without perfect hashing.
- Exercise: Linear data structures for storing sets

Retrieval problem

- For field \overline{F} and set $S \subseteq F$, represent a function $f: S \to F$.
- Solution: Polynomial degree *k*-1 hash function:

$$p(x) = \sum_{i=0}^{k-1} a_i x^i$$

Retrieval problem

- For field F and set $S \subseteq F$, represent a function $f: S \to F$.
- Solution: Polynomial degree *k*-1 hash function:

$$p(x) = \sum_{i=0}^{k-1} a_i x^i$$

- Space $|S| \log |F|$ bits.
 - Pay only for storing values, not for keys!

Retrieval problem

- For field \overline{F} and set $S \subseteq F$, represent a function $f: S \to F$.
- Solution: Polynomial degree *k*-1 hash function:

$$p(x) = \sum_{i=0}^{k-1} a_i x^i$$

- Space $|S| \log |F|$ bits.
 - Pay only for storing values, not for keys!

Q: Can we map to {0,1} with close to 1 bit/key?

Perfect hashing

- Given set S of size n.
 - Without loss of generality, 2 log *n* bits/key.
- **Idea**: Carefully choose a hash function *h* that has:
 - No collisions among items in *S*, and
 - Hashes to $\{1,...,r\}$, where r = O(n).

Perfect hashing

- Given set *S* of size *n*.
 - Without loss of generality, 2 log *n* bits/key.
- **Idea**: Carefully choose a hash function *h* that has:
 - No collisions among items in *S*, and
 - Hashes to $\{1,...,r\}$, where r = O(n).

Such functions are extremely rare!

"Less than perfect" hashing

• Suppose r = 2n and h is 2-independent, then the expected number of collisions is:

$$\binom{n}{2}/r < (n^2/2)/(2n) = n/4$$

- Conclusion: Set $S_1 \subseteq S$ of at least n/2 items are not involved in a collision.
- Idea: Store $h(S_1)$ as a bit map, and recurse on $S \setminus S_1$.

 $\frac{2n}{n}$ $\frac{n/2}{n/4}$

```
2n
                  n/2
 Total size: 4n bits [improvable to en]
#levels: log n [improvable to log log n]
```


n

Idea: Replace bits by signatures of (e.g.) log log *n* bits

n/2

n/4

n/8

•

Idea: Replace bits
by signatures of
(e.g.) log log n bits

Answer membership
queries with false
positive prob. $1/\log n$

Idea: Replace bits
by signatures of
(e.g.) log log n bits

Answer membership
queries with false
positive prob. $1/\log n$

Insert(x): Search
for space to place
signature. If hash
value and
signature coincide,
store x explicitly.

Insert(x): Search
for space to place
signature. If hash
value and
signature coincide,
store x explicitly.

Total size: $2n \log \log n + O(n)$ bits

#levels: log n [improvable to log log n]

Retrieval w/o perfect hashing

- The best "implementable" solutions of perfect hashing with range *n* use 2-3 bits/key.
- Lower bound: Need > 1.44 bits/key.
- Is it possible to get rid of this fixed cost per key?

Choice graph

Choice graph

$$V = \{1, \dots, r/2\} \cup \{r/2 + 1, \dots, r\}$$
$$E = \{\{h_1(x), h_2(x)\} \mid x \in S\}$$

Idea: Choose hash table entries s.t $f(x)=T[h_1(x)]+T[h_2(x)]$

Works if choice graph is acyclic!

Random graph theory

Assuming fully random hash functions

- Kind of random graph depends on whether $n < r/(2+\varepsilon)$ (threshold).
- Below threshold: Connected components are all *pseudotrees* (trees + at most 1 edge) with high probability.
- In fact, acyclic with constant probability.

Choice matrix

• The choice graph as a sparse 0-1 matrix:

$$h_1(x)$$
 $h_2(x)$
 v_x 1 1

• Row v_x = the set of hash values of a key x. Generalizes to k > 2 hash functions.

Choice matrix properties

- Lemma: If choice hypergraph is acyclic, choice matrix *A* has full rank (any field).
- Ratio r/n needed for peelability:

```
k 2 3 4 5 6 7

r n 2.000 1.222 1.295 1.425 1.570 1.721
```

• For k=3: Enough to store 1.23 values/key

Choice matrix properties

- Lemma: If choice hypergraph is acyclic, choice matrix *A* has full rank (any field).
- Ratio r/n needed for peelability:

```
k 2 3 4 5 6 7

r n 2.000 1.222 1.295 1.425 1.570 1.721
```

• For k=3: Enough to store 1.23 values/key

By increasing k, value of r/n can be made arbitrarily close to 1.

Choice matrix properties

- Lemma: If choice hypergraph is acyclic, choice matrix *A* has full rank (any field).
- Ratio r/n needed for peelability:

```
k 2 3 4 5 6 7
r n 2.000 1.222 1.295 1.425 1.570 1.721
```

• For k=3: Enough to store 1.23 values/key

By increasing k, value of r/n can be made arbitrarily close to 1.

Drawback: Solving the linear systems becomes more demanding.

Some references

- Broder & Karlin: Multilevel Adaptive Hashing <u>http://dl.acm.org/citation.cfm?id=320181</u> (behind paywall)
- Lu, Prabhakar, & Bonomi: Perfect Hashing for Network Applications web.stanford.edu/~balaji/papers/06perfecthashing.pdf
- Dietzfelbinger & Pagh: Succinct Data Structures for Retrieval and Approximate Membership www.itu.dk/people/pagh/papers/bloomier.pdf
- Mortensen, Pagh & Patrascu: On Dynamic Range Reporting in One Dimension [section 2]
 http://www.itu.dk/people/pagh/papers/dyn1d.pdf
- Pagh, Segev, & Wieder. How to Approximate A Set Without Knowing Its Size in Advance http://www.itu.dk/people/pagh/papers/dynbloom.pdf