Running head: TITLE

1

Something Clever...

Cameron S. Kay¹, Stefania R. Ashby¹, & Ashley L. Miller¹

¹ University of Oregon

Author Note

Correspondence concerning this article should be addressed to Cameron S. Kay, 1451 Onyx Street, Eugene, OR 97403. E-mail: ckay@uoregon.edu

Abstract

TBD

Keywords: american, social media, internet, pew research center

Something Clever...

A common definition for a social media site is that it is an internet-based service allowing for the creation and broadcast of user-generated information (Boyd & Ellison, 2008; Kaplan & Haenlein, 2010; Obar & Wildman, 2015). Obar and Wildman (2015) emphasize the user-generated aspect of this definition, arguing that this content is the lifeblood of social media. Although that may sound hyperbolic, it logically follows that if a site is created with the express purpose of providing user-generated content, it must have user-generated content to function as intended. By way of illustration, without videos created by users, YouTube, a social media site that allows its users to upload and share videos, would fail to serve its primary purpose. Netflix, a site that allows users to only stream videos, does not require user-generated content, as it does not serve user-generated content, and, by extension is not a social media site. Beyond the functional aspects of social media sites, the user-generated focus also highlights the importance of individual differences in the user-service relationship, as users invariably have characteristics that affect how they consume and generate content.

Methods

The data for the current study was collected by the Pew Research Center (2018).

Participants

Two thousand, two people were surveyed by telephone (75.02% cell phone; 24.98% landline) over a period of 7 days in January of 2018. We excluded any participants who reported that they do not even occasionally use the internet or email (n = 273). The resulting sample comprised 1729 people (45.29% female). Ages ranged from 18 to 97 (M

age = 48.29; SD age = 17.94)¹. Concerning race, 68.48% identified as white, 12.78% identified as black, 3.64% identified as Asian, 2.95% identified as mixed race, and 12.15% refused to answer or reported being from some other race.

Material

Procedure

Data analysis

We used R (Version 3.5.1; R Core Team, 2018) and the R-packages bindrcpp (Version 0.2.2; Müller, 2018), cowplot (Version 0.9.3; Wilke, 2018), dplyr (Version 0.7.8; Wickham, François, Henry, & Müller, 2018), forcats (Version 0.3.0; Wickham, 2018a), Formula (Version 1.2.3; Zeileis & Croissant, 2010), ggplot2 (Version 3.1.0; Wickham, 2016), here (Version 0.1; Müller, 2017), Hmisc (Version 4.1.1; Harrell Jr, Charles Dupont, & others., 2018), lattice (Version 0.20.38; Sarkar, 2008), lme4 (Version 1.1.19; Bates, Mächler, Bolker, & Walker, 2015), lmerTest (Version 3.0.1; Kuznetsova, Brockhoff, & Christensen, 2017), lubridate (Version 1.7.4; Grolemund & Wickham, 2011), magrittr (Version 1.5; Bache & Wickham, 2014), Matrix (Version 1.2.15; Bates & Maechler, 2018), pander (Version 0.6.3; Daróczi & Tsegelskyi, 2018), papaja (Version 0.1.0.9842; Aust & Barth, 2018), purrr (Version 0.2.5; Henry & Wickham, 2018), readr (Version 1.1.1; Wickham, Hester, & Francois, 2017), rio (Version 0.5.10; C.-h. Chan, Chan, Leeper, & Becker, 2018), stringr (Version 1.3.1; Wickham, 2018b), survival (Version 2.43.1; Terry M. Therneau & Patricia M. Grambsch, 2000), tibble (Version 1.4.2; Müller & Wickham, 2018), tidyr (Version 0.8.2; Wickham & Henry, 2018), tidyverse (Version 1.2.1; Wickham, 2017), and wesanderson (Version 0.3.6; Ram & Wickham, 2018) for all our analyses.

¹ Note that the descriptive statistics for age are slightly lower than reality. Ages 97 and older were recorded as simply 97 in the data.

Results

Discussion

References

- Aust, F., & Barth, M. (2018). papaja: Create APA manuscripts with R Markdown.

 Retrieved from https://github.com/crsh/papaja
- Bache, S. M., & Wickham, H. (2014). *Magrittr: A forward-pipe operator for r*. Retrieved from https://CRAN.R-project.org/package=magrittr
- Bates, D., & Maechler, M. (2018). *Matrix: Sparse and dense matrix classes and methods*.

 Retrieved from https://CRAN.R-project.org/package=Matrix
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. *Journal of Statistical Software*, 67(1), 1–48. doi:10.18637/jss.v067.i01
- Boyd, D. M., & Ellison, N. B. (2008). Social networking sites: Definitions, history, and scholarship. *Journal of Computer-Mediated Communication*, 13, 210–230.
- Chan, C.-h., Chan, G. C., Leeper, T. J., & Becker, J. (2018). Rio: A swiss-army knife for data file i/o.
- Daróczi, G., & Tsegelskyi, R. (2018). *Pander: An r 'pandoc' writer*. Retrieved from https://CRAN.R-project.org/package=pander
- Grolemund, G., & Wickham, H. (2011). Dates and times made easy with lubridate.

 *Journal of Statistical Software, 40(3), 1–25. Retrieved from http://www.jstatsoft.org/v40/i03/
- Harrell Jr, F. E., Charles Dupont, & others. (2018). *Hmisc: Harrell miscellaneous*. Retrieved from https://CRAN.R-project.org/package=Hmisc
- Henry, L., & Wickham, H. (2018). Purrr: Functional programming tools. Retrieved from https://CRAN.R-project.org/package=purrr
- Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. *Business Horizons*, 53, 59–68.

- doi:10.1016/j.bushor.2009.09.003
- Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. *Journal of Statistical Software*, 82(13), 1–26. doi:10.18637/jss.v082.i13
- Müller, K. (2017). Here: A simpler way to find your files. Retrieved from https://CRAN.R-project.org/package=here
- Müller, K. (2018). Bindrcpp: An 'rcpp' interface to active bindings. Retrieved from https://CRAN.R-project.org/package=bindrcpp
- Müller, K., & Wickham, H. (2018). *Tibble: Simple data frames*. Retrieved from https://CRAN.R-project.org/package=tibble
- Obar, J. A., & Wildman, S. (2015). Social media definition and the governance challenge: An introduction to the special issue. *Telecommunications Policy*, 39(9), 745–750.
- Pew Research Center. (2018). Core trends survey. Retrieved from http://www.pewinternet.org/dataset/jan-3-10-2018-core-trends-survey/
- R Core Team. (2018). R: A language and environment for statistical computing. Vienna,

 Austria: R Foundation for Statistical Computing. Retrieved from

 https://www.R-project.org/
- Ram, K., & Wickham, H. (2018). Wesanderson: A wes anderson palette generator.

 Retrieved from https://CRAN.R-project.org/package=wesanderson
- Sarkar, D. (2008). Lattice: Multivariate data visualization with r. New York: Springer.

 Retrieved from http://lmdvr.r-forge.r-project.org
- Terry M. Therneau, & Patricia M. Grambsch. (2000). *Modeling survival data: Extending the Cox model.* New York: Springer.
- Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis. Springer-Verlag New

- York. Retrieved from http://ggplot2.org
- Wickham, H. (2017). *Tidyverse: Easily install and load the 'tidyverse'*. Retrieved from https://CRAN.R-project.org/package=tidyverse
- Wickham, H. (2018a). Forcats: Tools for working with categorical variables (factors).

 Retrieved from https://CRAN.R-project.org/package=forcats
- Wickham, H. (2018b). Stringr: Simple, consistent wrappers for common string operations.

 Retrieved from https://CRAN.R-project.org/package=stringr
- Wickham, H., & Henry, L. (2018). Tidyr: Easily tidy data with 'spread()' and 'gather()' functions. Retrieved from https://CRAN.R-project.org/package=tidyr
- Wickham, H., François, R., Henry, L., & Müller, K. (2018). *Dplyr: A grammar of data manipulation*. Retrieved from https://CRAN.R-project.org/package=dplyr
- Wickham, H., Hester, J., & Francois, R. (2017). Readr: Read rectangular text data.

 Retrieved from https://CRAN.R-project.org/package=readr
- Wilke, C. O. (2018). Cowplot: Streamlined plot theme and plot annotations for 'ggplot2'.

 Retrieved from https://CRAN.R-project.org/package=cowplot
- Zeileis, A., & Croissant, Y. (2010). Extended model formulas in R: Multiple parts and multiple responses. *Journal of Statistical Software*, 34(1), 1–13. doi:10.18637/jss.v034.i01