Project 3

Anna Stray Rongve Knut Magnus Aasrud Amund Midtgard Raniseth

October 20, 2019

Abstract

This report adresses different numerical methods for solving a six-dimensional integral. The integral of interest is the energy between to electrons in a helium atom repelling eachother, due to the Coloumb interaction. We assume that the wave function for each electron can be modelled like the single-particle wave function of an electron in the hydrogen atom. Solving this integral is done using Gaussian-Quadrature with Legendre and Laguerre polynomials, as well as two approaches to the Monte Carlo method of integration. The standard deviation of these solutions are also calculated. In addition to this, every procedure is timed for comparison.

1 Introduction

Development in methods for solving integrals has been important in order to solve problems with a increasing degree of complexety. Guassian quadrature is a good example which is a method first developed by Jacobi in 1676. The first version gave exact results for algebraic polynomials of negree n-1 or less. The "new" Guassian version has a significant increase in accuaracy with exact results for polynomials of degree 2n-1 or less due to free choise of weights.

KILDE: woho

Gauss-Legendre and Gauss-Laguerre are two types of Guassian quadrature which, togheter with the well known Monte Carlo method, will be compared in accuaracy and speed for a multidimensional integral for a Helium atom.

Some theory is first presented with a following discussion of the three methodes mentioned above.

2 Theory

2.1 Wavefunction of Helium

The single-particle wave function of an electron i in the 1s state is given in terms of a dimensionless variable (the wave function is not normalized) as

$$\psi_{1s}(\vec{r_i}) = e^{-\alpha r_i}$$

Where the electron position \vec{r}_i is

$$\vec{r}_i = x_i \vec{e}_x + y_i \vec{e}_y + z_i \vec{e}_z$$

and its distance from the origin r_i is

$$r_i = \sqrt{x_i^2 + y_i^2 + z_i^2}$$

 α is a parameter set to 2, which corresponds to the carge of the Helium atom, Z=2.

For our system with two electrons, we have the product of the two 1s wave functions defined as

$$\Psi(\vec{r}_1, \vec{r}_2) = e^{-\alpha(r_1 + r_2)}$$

This leads to the integral which will be solved nummerically with the different methods mentioned earlier. The value of the integral corresponds to the expectation value of the energy between the two electrons repelling each other due to Columb interactions.

$$\langle \frac{1}{|\vec{r_1} - \vec{r_2}|} \rangle = \int_{\infty}^{\infty} d\vec{r_1} d\vec{r_2} e^{-2\alpha(r_1 + r_2)} \frac{1}{\vec{r_1} - \vec{r_2}}$$

This is the integration that will be performed numerically in multiple ways in this paper. The analytical result is $5\pi/16^2$.

2.2 Gaussian Quadrature

The main idea of Gaussian quadrature is to integrate over a set of points x_i not equally spaced with weights w_i , which are calculated in /code/Gauss-Quadrature/src/gauleg.cpp. The weights are found through orthogonal polynomials(Laguerre and Legendre polynomials) in a set interval. The points x_i are chosen in a optimal sense and lie in the interval.

The interal is approximated as

$$\int_{a}^{b} W(x)f(x) \approx \sum_{i=1}^{n} \omega_{i} f(x_{i})$$

For a more detalled derivation and explanation of Gaussian quadrature see [1].

2.2.1 Gauss-Legendre

Using Gauss-Legendre quadrature with Legendre polynomials will make it possible to solve the integral numerically. The first step is to change the integration limits from $-\infty$ and ∞ to $-\lambda$ and λ . The λ 's are found by inserting it for r_i in the expression $e^{-\alpha r_i}$ because $r_i \approx \lambda$ when $e^{-\alpha r_i} \approx 0$. From figure 1, $\lambda \in [-5, 5]$ is therefor a good approximation for the integration limits.

Figure 1: Plot of wavefunction in one dimension

The weights and mesh points are computed using /code/Gauss-Quadrature/src/gauleg.cpp. Eventually ending up with a sixdimensional integral, where all six integration limits are the same.

$$\int_a^b \int_a^b \int_a^b \int_a^b \int_a^b \int_a^b e^{-x} f(x) dx \approx \sum_{i=1}^n w_i f(x_i)$$

2.2.2 Improved Gauss-Quadrature- Laguerre

Gauss-Legendre quadrature gets the job done, but it is unstable and unsatisfactory. By changing to spherical coordinates and replacing Legendre- with Laguerre polynomials an improvement in accuracy is expected. The Laguerre polynomials are defined for $x \in [0, \infty)$, and in spherical coordinates:

$$d\vec{r}_1 d\vec{r}_2 = r_1^2 dr_1 r_2^2 dr_2 d\cos(\theta_1) d\cos(\theta_2) d\phi_1 d\phi_2$$

with

$$\frac{1}{r_{12}} = \frac{1}{\sqrt{r_1^2 + r_2^2 - 2r_1r_2cos(\beta)}}$$

and

$$cos(\beta) = cos(\theta_1)cos(\theta_2) + sin(\theta_1)sin(\theta_2)cos(\phi_1 - \phi_2)$$

For numerical integration, the deployment of the following relation is nessecary:

$$\int_0^\infty e^{-x} f(x) dx \approx \sum_{i=1}^n w_i f(x_i)$$

where x_i is the *i*-th root of the Laguerre polynomial $L_n(x)$ and the weight w_i is given by

$$w_i = \frac{x_i}{(n+1)^2 [L_{n+1}(x_i)]^2}$$

The Laguerre polynomials are defined by Rodrigues formula:

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} \left(e^{-x} x^n \right) = \frac{1}{n!} \left(\frac{d}{dx} - 1 \right)^n x^n$$

or the recursive relation:

$$L_0(x) = 1$$

$$L_1(x) = 1 - x$$

$$L_{n+1}(x) = \frac{(2n+1-x)L_n(x) - nL_{n-1}(x)}{n+1}$$

2.3 Monte Carlo

KILDE:https://cs.dartmouth.edu/wjarosz/publications/dissertation/appendixA.pdf Monte Carlo is numerical methods dependent of a random samlping from a function in order to approximate the integral.

In general the integral, F, of a function, $f(x), x \in [a, b]$

$$F = \int_{a}^{b} f(x)dx$$

can be approximated by taking avarage samples of f with a uniform distrubution of points in the interaval. Having N uniform random variables $x_i \in [a,b)$ with probability distrubution function, PDF $\frac{1}{b-a}$ the Monte-Carlo approximation of F is

$$\langle F^N \rangle = (b-a) \frac{1}{N-1} \sum_{i=0}^{N} f(x_i)$$

 x_i is constructed

2.3.1 Paralellization

To run the computations faster, openMP will be used to paralellize the code. This shares the workload across multiple processor threads and results in a substantional decrease in time spent for the same amount of operations. Some important remarks when doing Monte-Carlo integration in paralell is:

- Create a random number generator in earch thread.
- Keep the summations private for each thread.
- Sum the private summations from each thread together after the calculations are completed.

By doing this we avoid having the threads wait for the random number generator and writing to the same memory, thereby achieving optimal speedup.

The code is commented in for example /code/Monte-Carlo/src/naiveMC.cpp.

3 Results

3.1 Laguerre/Legendre

$$N \in [-5, 5]$$

Legandre				
N	Value	Error		
11	0.297447	0.104681		
15	0.315863	0.123098		
21	0.268075	0.075310		
25	0.240135	0.047370		
27	0.229623	0.036858		

Table 1: Fill me in!

Laguerre					
N	Value	Error			
11	0.183021	0.009743			
15	0.193285	0.000520			
21	0.194807	0.002050			
25	0.194804	0.002030			
27	0.194795	0.002029			

Table 2: Fill me in!

3.2 Paralellization

Our paralellization results was achieved using a quad core Intel Core i5-8250U processor with 6MB cache at 1.6GHz base clock, which boosted to 3.4GHz during testing. Thermal throttling was avoided. The memory was 4GB 1866MHz LPDDR3 soldered on board.

We also ran this test on an octa-core processor with memory of 8GB 1866MHz, and achieved no noticable speedup compared to the abovementioned computer.

Compile flags	-O3 -fopenMP	-O3	-fopenmp	no optimization
Naive MC	12s	31s	71s	173s
Improved MC	15s	38s	79s	200s

Table 3: Shows the time spent on the same calculations with different compile parameters on a quad core processor. $(N=10^8,\lambda=5)$

4 Discussion

4.1 Paralellization

From figure 3 it is easy to understand the impact of correct optimization. Not only was the paralellization of the code a big time-saver but also the vectorization flag (-O3) made a really dramatic impact.

Both from no optimization, to paralellization, and from vectorization to vectorization and paralellization, the time spent is halved. However, this was paralellized over four cores, so shouldn't the time be one fourth of the original? The bottleneck is probably memory speed, as we ran the same calculations on a octacore processor with more capacity, but same frequency RAM, and achieved the same results.

This means that further improvements on the paralellization can be done by using faster memory, or changing the code to access memory less frequent.

5 Conclusion

this is a reference to intro: 1

References

[1] Morten Hjorth-jensen. Computational Physics Lectures: Introduction to Monte Carlo methods. 2019.