Minimization of Static Cost Functions

Robert Stengel
Optimal Control and Estimation, MAE 546, Princeton University,
2015

- J = Static cost function with control parameter vector, u
- Conditions for a minimum in J with respect to u
- Analytical and numerical solutions

Copyright 2015 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE546.html

http://www.princeton.edu/~stengel/OptConEst.html

1

Static Cost Function

- Minimum value of the cost, J, is fixed, but may be unknown
- Corresponding control parameter, u*, also is fixed but possibly unknown
- Cost function preferably has
 - Single minimum
 - Locally smooth, monotonic contours away from the minimum

Vector Norms for Real Variables

- "Norm" = Measure of length or magnitude of a vector, x
 - Scalar quantity
- Taxicab or Manhattan norm

$$\boxed{L^1 norm = \left\|\mathbf{x}\right\|_1 = \sum_{i=1}^n \left|x_i\right|}$$

Euclidean or Quadratic Norm

$$L^2 \ norm = \|\mathbf{x}\|_2 = (\mathbf{x}^T \mathbf{x})^{1/2} = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$$

• p Norm

$$\left| L^p \ norm = \left\| \mathbf{x} \right\|_p = \left(\sum_{i=1}^n \left| x_i \right|^p \right)^{1/p}$$

3

P Norm Example

$$L^p \ norm = \|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

15-dimensional vector

p norms of the vector

p	L ^p
1	24.0000
2	7.2111
4	4.6312
8	4.0957
16	4.0050
32	4.0000

 As p increases, the norm approaches the value of the maximum component of the vector

"Apples and Oranges" Problem

Suppose elements of x represent quantities with different units

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} Velocity, m / s \\ Angle, rad \\ \dots \\ Temperature, {}^{\circ}K \end{bmatrix}$$

- What is a reasonable definition for the norm?
- One solution: Vector, y, normalized by ranges of elements of x

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix} \equiv \begin{bmatrix} d_1 x_1 \\ d_2 x_2 \\ \dots \\ d_n x_n \end{bmatrix} \equiv \begin{bmatrix} x_1 / (x_{1_{\text{max}}} - x_{1_{\text{min}}}) \\ x_2 / (x_{2_{\text{max}}} - x_{2_{\text{min}}}) \\ \dots \\ x_n / (x_{n_{\text{max}}} - x_{n_{\text{min}}}) \end{bmatrix} = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \cdots & d_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = \mathbf{D}\mathbf{x}$$

Weighted Euclidean (Quadratic) Norm of x

$$\|\mathbf{y}\|_{2} = (\mathbf{y}^{T}\mathbf{y})^{1/2} = (y_{1}^{2} + y_{2}^{2} + \dots + y_{m}^{2})^{1/2}$$

$$= (\mathbf{x}^{T}\mathbf{D}^{T}\mathbf{D}\mathbf{x})^{1/2} = \|\mathbf{D}\mathbf{x}\|_{2}$$

$$\dim(\mathbf{y}) = m \times 1$$

- If m = n,
 - D is square
 - D⁷D is square and symmetric
- · If D is diagonal
 - D⁷D is diagonal

- If $m \neq n$,
 - D is not square
 - D⁷D is square and symmetric
- Rank(D) $\leq m, n > m$
- Rank(D) $\leq n, n < m$

Rank of Matrix D

- Maximal number of linearly independent rows or columns of D
- Order of the largest non-zero minor of D
- Examples

$$\mathbf{D} = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}; \text{ maximal rank } \le 2$$

$$\mathbf{D} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}; \text{ maximal rank } \le 2$$

7

Quadratic Forms

$$\mathbf{x}^T \mathbf{D}^T \mathbf{D} \mathbf{x} \triangleq \mathbf{x}^T \mathbf{Q} \mathbf{x} = \mathbf{Quadratic form}$$

 $\mathbf{Q} \triangleq \mathbf{D}^T \mathbf{D} = \mathbf{Defining matrix}$ of the quadratic form

- $\dim(\mathbf{Q}) = n \times n$
- Q is symmetric
- x^TQx is a scalar
- Rank(Q) $\leq m, n > m$
- Rank(\mathbb{Q}) $\leq n, n < m$
- Useful identity for the trace of the quadratic form

$$\mathbf{x}^{T}\mathbf{Q}\mathbf{x} = Tr(\mathbf{x}^{T}\mathbf{Q}\mathbf{x}) = Tr(\mathbf{x}\mathbf{x}^{T}\mathbf{Q}) = Tr(\mathbf{Q}\mathbf{x}\mathbf{x}^{T})$$

$$[(1 \times n)(n \times n)(n \times 1)] = [(1 \times 1)] = Tr(1 \times 1) = Tr[(n \times n)] = Tr[(n \times n)] = Scalar$$

Why are Quadratic Forms Useful?

2 x 2 example

$$J = \begin{bmatrix} \mathbf{x}^T \mathbf{Q} \mathbf{x} \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= q_{11}x_1^2 + q_{22}x_2^2 + (q_{12} + q_{21})x_1x_2$$
$$= q_{11}x_1^2 + q_{22}x_2^2 + 2q_{12}x_1x_2 \text{ for symmetric matrix}$$

- Asymmetric Q can always be replaced by a symmetric Q
- · Large values are weighted more heavily than small values
- Some terms can count more than others
- · Coupling between terms can be considered
- · Gradient is well-defined everywhere

$$\partial J/\partial \mathbf{x} = \begin{bmatrix} \partial J/\partial x_1 & \partial J/\partial x_2 \end{bmatrix} = \begin{bmatrix} (2q_{11}x_1 + 2q_{12}x_2) & (2q_{22}x_2 + 2q_{12}x_1) \end{bmatrix}$$

c

Definiteness

Definiteness of a Matrix

If $\mathbf{x}^T \mathbf{Q} \mathbf{x} > 0$ for all $\|\mathbf{x}\| \neq 0$

- a) The scalar is definitely positive
- b) The matrix **Q** is a **positive definite matrix**

	1	0	0	
Q =	0	2	0	
	0	0	3	

If $\mathbf{x}^T \mathbf{Q} \mathbf{x} \ge 0$ for all $\|\mathbf{x}\| \ne 0$

 ${f Q}$ is a positive semi - definite matrix

$$\mathbf{Q} = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

If
$$\mathbf{x}^T \mathbf{Q} \mathbf{x} < 0$$
 for all $\|\mathbf{x}\| \neq 0$

Q is a **negative definite matrix**

$$\mathbf{Q} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$

11

Positive-Definite Matrix

- · Q is positive-definite if
 - All leading principal minor determinants are positive
 - All eigenvalues are real and positive

Characteristic Polynomial

Characteristic polynomial of a matrix, F

$$|s\mathbf{I} - \mathbf{F}| = \det(s\mathbf{I} - \mathbf{F}) =$$
Scalar
 $\equiv \Delta(s) = s^{n} + a_{n-1}s^{n-1} + ... + a_{1}s + a_{0}$
 $= s^{n} - Tr(\mathbf{F})s^{n-1} + ... + a_{1}s + a_{0}$

where

$$(s\mathbf{I} - \mathbf{F}) = \begin{pmatrix} (s - f_{11}) & -f_{12} & \dots & -f_{1n} \\ -f_{21} & (s - f_{22}) & \dots & -f_{2n} \\ \dots & \dots & \dots & \dots \\ -f_{n1} & -f_{n2} & \dots & (s - f_{nn}) \end{pmatrix}$$
 (n x n)

Eigenvalues

Characteristic equation of the matrix

$$\Delta(s) = s^{n} + a_{n-1}s^{n-1} + \dots + a_{1}s + a_{0} \equiv 0$$

= $(s - \lambda_{1})(s - \lambda_{2})(\dots)(s - \lambda_{n}) \equiv 0$

 λ_i are solutions that set $\Delta(s) = 0$

- They are called
 - the eigenvalues of F
 - the roots of the characteristic polynomial

$$a_{n-1} = ?$$

$$a_0 = ?$$

$$a_0 = (-1)^i \prod_{i=1}^n \lambda_i$$

14

Examples of Positive Definite Matrices

Inertia matrix of a rigid body

$$\begin{bmatrix} I = \int\limits_{Bo\,dy} \begin{bmatrix} (y^2 + z^2) & -xy & -xz \\ -xy & (x^2 + z^2) & -yz \\ -xz & -yz & (x^2 + y^2) \end{bmatrix} dm = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{xy} & I_{yy} & -I_{yz} \\ -I_{xz} & -I_{yz} & I_{zz} \end{bmatrix}$$

Diagonal matrix with positive elements

Rotation matrix

	$\cos\theta\cos\psi$	$\cos \theta \sin \psi$	$-\sin\theta$
$\mathbf{H}_{I}^{B}(\phi,\theta,\psi) =$	$-\cos\phi\sin\psi + \sin\phi\sin\theta\cos\psi$	$\cos\phi\cos\psi + \sin\phi\sin\theta\sin\psi$	$\sin\phi\cos\theta$
	$\sin \phi \sin \psi + \cos \phi \sin \theta \cos \psi$	$-\sin\phi\cos\psi + \cos\phi\sin\theta\sin\psi$	$\cos\phi\cos\theta$

15

Conditions for a Static Minimum

The Static Minimization Problem

- Find the value of a continuous control parameter, u, that minimizes a continuous scalar cost junction, J
- Single control parameter

$$\min_{wrt \, u} J(u); \quad \dim(J) = 1, \quad \dim(u) = 1$$

$$u^* = \operatorname*{arg\,min}_{u} J(u)$$

Many control parameters

$$\left| \min_{wrt \, \mathbf{u}} J(\mathbf{u}); \quad \dim(J) = 1, \quad \dim(\mathbf{u}) = m \times 1 \right|$$

$$\mathbf{u}^* = \arg\min_{\mathbf{u}} J(\mathbf{u})$$

17

Necessary Condition for Static Optimality

Single control

$$\left. \frac{dJ}{du} \right|_{u=u^*} = 0$$

- i.e., the slope is zero at the optimum point
- Example:

$$J = (u-4)^{2}$$

$$\frac{dJ}{du} = 2(u-4)$$

$$= 0 \quad when \ u^{*} = 4$$

Necessary Condition for Static Optimality

Multiple controls

$$\left| \frac{\partial J}{\partial \mathbf{u}} \right|_{\mathbf{u} = \mathbf{u}^*} = \left[\begin{array}{ccc} \frac{\partial J}{\partial u_1} & \frac{\partial J}{\partial u_2} & \dots & \frac{\partial J}{\partial u_m} \end{array} \right]_{\mathbf{u} = \mathbf{u}^*} = \mathbf{0}$$

Gradient, defined as a <u>row</u> vector

- · i.e., all the slopes are concurrently zero at the optimum point
- · Example:

$$J = (u_1 - 4)^2 + (u_2 - 8)^2$$

$$\frac{dJ}{du_1} = 2(u_1 - 4) = 0 \quad \text{when } u_1^* = 4$$

$$\frac{dJ}{du_2} = 2(u_2 - 8) = 0 \quad \text{when } u_2^* = 8$$

$$\left[\frac{\partial J}{\partial \mathbf{u}} \right|_{\mathbf{u} = \mathbf{u}^*} = \left[\begin{array}{cc} \frac{\partial J}{\partial u_1} & \frac{\partial J}{\partial u_2} \end{array} \right]_{\mathbf{u} = \mathbf{u}^* = \left[\begin{array}{c} 4\\8 \end{array} \right]} = \left[\begin{array}{cc} 0 & 0 \end{array} \right]$$

19

... But the Slope can be Zero for More than One Reason

Minimum

Either

Neither (Inflection Point)

... But the Gradient can be Zero for More than One Reason

Minimum

Maximum

Either

Neither (Saddle Point)

21

Sufficient Condition for Extremum

Single control

- Minimum
 - Satisfy necessary condition
 - plus

- i.e., the curvature is positive at the optimum point
- Example:

$$J = (u - 4)^{2}$$
$$\frac{dJ}{du} = 2(u - 4)$$
$$\frac{d^{2}J}{du^{2}} = 2 > 0$$

- Maximum
 - Satisfy necessary condition
 - plus

$$\left| \frac{d^2 J}{du^2} \right|_{u=u^*} < 0$$

- i.e., the curvature is negative at the optimum point
- Example:

$$J = -(u - 4)^{2}$$

$$\frac{dJ}{du} = -2(u - 4)$$

$$\frac{d^{2}J}{du^{2}} = -2 < 0$$

Sufficient Condition for a Minimum

Multiple controls

Satisfy necessary condition

- plus

$$\frac{\left| \frac{\partial^2 J}{\partial \mathbf{u}^2} \right|_{\mathbf{u} = \mathbf{u}^*} = \left[\begin{array}{cccc} \frac{\partial^2 J}{\partial u_1^2} & \frac{\partial^2 J}{\partial u_1 \partial u_2} & \dots & \frac{\partial^2 J}{\partial u_1 \partial u_m} \\ \frac{\partial^2 J}{\partial u_2 \partial u_1} & \frac{\partial^2 J}{\partial u_2^2} & \dots & \frac{\partial^2 J}{\partial u_2 \partial u_m} \\ \dots & \dots & \dots & \dots \\ \frac{\partial^2 J}{\partial u_m \partial u_1} & \frac{\partial^2 J}{\partial u_2 \partial u_m} & \dots & \frac{\partial^2 J}{\partial u_m^2} \end{array} \right]_{\mathbf{u} = \mathbf{u}^*} > \mathbf{0}$$

23

Minimized Cost Function, J*

- · Gradient is zero at the minimum
- Hessian matrix is positive-definite at the minimum

$$J(\mathbf{u}^* + \Delta \mathbf{u}) \approx J(\mathbf{u}^*) + \Delta J(\mathbf{u}^*) + \Delta^2 J(\mathbf{u}^*) + \dots$$

$$\Delta J(\mathbf{u}^*) = \begin{bmatrix} \frac{\partial J}{\partial \mathbf{u}} \Big|_{\mathbf{u} = \mathbf{u}^*} \end{bmatrix} \Delta \mathbf{u} = 0$$

$$\Delta^2 J(\mathbf{u}^*) = \frac{1}{2} \Delta \mathbf{u}^T \begin{bmatrix} \frac{\partial^2 J}{\partial \mathbf{u}^2} \Big|_{\mathbf{u} = \mathbf{u}^*} \end{bmatrix} \Delta \mathbf{u} \ge 0$$
• First variation is zero at the minimum
• Second variation positive at the minimum

- zero at the minimum
- · Second variation is positive at the minimum

Equality Constraints

25

Static Cost Functions with Equality Constraints

- Minimize J(u'), subject to c(u') = 0
 - $\dim(\mathbf{c}) = [n \times 1]$
 - $\dim(u') = [(m + n) \times 1]$

Two Approaches to Static Optimization with a Constraint

1. Use constraint to reduce control dimension

$$\mathbf{u'} = \left[\begin{array}{c} u_1 \\ u_2 \end{array} \right]$$

Example: $\min_{u_1, u_2} J$ subject to $c(\mathbf{u}') = c(u_1, u_2) = 0 \rightarrow u_2 = fcn(u_1)$

ther

 $J(\mathbf{u}') = J(u_1, u_2) = J[u_1, fcn(u_1)] = J'(u_1)$

2. Augment the cost function to recognize the constraint

Lagrange multiplier, λ , is an unknown constant

$$\dim(\mathbf{\lambda}) = \dim(\mathbf{c}) = n \times 1$$

$$J_A(\mathbf{u}') = J(\mathbf{u}') + \boldsymbol{\lambda}^T \mathbf{c}(\mathbf{u}')$$

Warning

Lagrange multiplier, λ , is not the same as an eigenvalue, λ

27

Solution Example: First Approach

Cost function

$$J = u_1^2 - 2u_1u_2 + 3u_2^2 - 40$$

Constraint

$$c = u_2 - u_1 - 2 = 0$$

$$u_2 = u_1 + 2$$

Solution Example: Reduced Control Dimension

Cost function and gradient with substitution

$$J = u_1^2 - 2u_1u_2 + 3u_2^2 - 40$$

$$= u_1^2 - 2u_1(u_1 + 2) + 3(u_1 + 2)^2 - 40$$

$$= 2u_1^2 + 8u_1 - 28$$

$$\frac{\partial J}{\partial u_1} = 4u_1 + 8 = 0$$

Optimal solution

$$u_1^* = -2$$

$$u_2^* = 0$$

$$J^* = -36$$

29

Solution: Second Approach

- Partition u' into a state, x, and a control, u, such that
 - $\dim(x) = [n \times 1] = \dim(c)$
 - $\dim(\mathbf{u}) = [m \times 1]$

$$\mathbf{u'} = \left[\begin{array}{c} \mathbf{x} \\ \mathbf{u} \end{array} \right]$$

Add constraint to the cost function, weighted by Lagrange multiplier, λ

$$J_{A}(\mathbf{u}') = J(\mathbf{u}') + \lambda^{T} \mathbf{c}(\mathbf{u}')$$
$$J_{A}(\mathbf{x}, \mathbf{u}) = J(\mathbf{x}, \mathbf{u}) + \lambda^{T} \mathbf{c}(\mathbf{x}, \mathbf{u})$$

• c is required to be zero when J_A is a minimum

$$c(\mathbf{u}') = c\begin{pmatrix} \mathbf{x} \\ \mathbf{u} \end{pmatrix} = \mathbf{0}$$

Solution: Adjoin Constraint with Lagrange Multiplier

Gradients with respect to \mathbf{x} , \mathbf{u} , and $\boldsymbol{\lambda}$ are zero at the optimum point

$$\frac{\partial J_A}{\partial \mathbf{x}} = \frac{\partial J}{\partial \mathbf{x}} + \mathbf{\lambda}^T \frac{\partial \mathbf{c}}{\partial \mathbf{x}} = \mathbf{0}$$

$$\frac{\partial J_A}{\partial \mathbf{u}} = \frac{\partial J}{\partial \mathbf{u}} + \boldsymbol{\lambda}^T \frac{\partial \mathbf{c}}{\partial \mathbf{u}} = \mathbf{0}$$

$$\frac{\partial J_A}{\partial \lambda} = \mathbf{c} = \mathbf{0}$$

31

Simultaneous Solutions for State and Control

(2n+m) values must be found: $(\mathbf{x},\mathbf{u},\boldsymbol{\lambda})$

- First equation: form for optimizing Lagrange multiplier (n scalar equations)
- Second and third equations: (n + m) scalar equations that specify the state and control

$$\lambda^{*T} = -\frac{\partial J}{\partial \mathbf{x}} \left(\frac{\partial \mathbf{c}}{\partial \mathbf{x}} \right)^{-1} \quad [Row]$$

$$or$$

$$\lambda^{*} = -\left[\left(\frac{\partial \mathbf{c}}{\partial \mathbf{x}} \right)^{-1} \right]^{T} \left(\frac{\partial J}{\partial \mathbf{x}} \right)^{T} \quad [Column]$$

$$\frac{\partial J}{\partial \mathbf{u}} + \boldsymbol{\lambda} *^{T} \frac{\partial \mathbf{c}}{\partial \mathbf{u}} = \mathbf{0}$$
$$\frac{\partial J}{\partial \mathbf{u}} - \frac{\partial J}{\partial \mathbf{x}} \left(\frac{\partial \mathbf{c}}{\partial \mathbf{x}} \right)^{-1} \frac{\partial \mathbf{c}}{\partial \mathbf{u}} = \mathbf{0}$$

$$c(x,u)=0$$

Solution Example: Lagrange Multiplier

Cost function

$$J = u^2 - 2xu + 3x^2 - 40$$

Constraint

$$c = x - u - 2 = 0$$

Partial derivatives

$$\frac{\partial J}{\partial x} = -2u + 6x$$

$$\frac{\partial C}{\partial x} = 1$$

$$\frac{\partial J}{\partial u} = 2u - 2x$$

$$\frac{\partial C}{\partial u} = -1$$

$$\frac{\partial c}{\partial x} = 1$$
$$\frac{\partial c}{\partial u} = -1$$

33

Solution Example: Lagrange Multiplier

From first equation

$$\lambda^* = 2u - 6x$$

From second equation

$$(2u-2x)+(2u-6x)(-1)$$

$$\therefore x=0$$

From constraint

$$u = -2$$

Optimal solution

$$x^* = 0$$

$$u^* = -2$$

$$J^* = -36$$

Numerical Optimization

- What if J is too complicated to find an analytical solution for the minimum?
- ... or J has multiple minima?
- Use numerical optimization to find local and/or global solutions

Two Approaches to Numerical Minimization

• Evaluate $\partial J/\partial u$ and search for zero [Gradient-Based Search]

$$\begin{split} &\left[\left(\frac{\partial J}{\partial \mathbf{u}}\right)_{o} = \frac{\partial J}{\partial \mathbf{u}}\bigg|_{\mathbf{u} = \mathbf{u}_{0}} = starting \ guess \\ &\left(\frac{\partial J}{\partial \mathbf{u}}\right)_{n} = \left(\frac{\partial J}{\partial \mathbf{u}}\right)_{n-1} + \Delta \left(\frac{\partial J}{\partial \mathbf{u}}\right)_{n} = \frac{\partial J}{\partial \mathbf{u}}\bigg|_{\mathbf{u} = \mathbf{u}_{n}} \ such \ that \quad &\left|\frac{\partial J}{\partial \mathbf{u}}\right|_{n} < \left|\frac{\partial J}{\partial \mathbf{u}}\right|_{n-1} \end{split}$$

37

Gradient-Free vs. Gradient-Based Searches

- J is a scalar
- J provides no search direction
- Search may provide a global minimum

- ∂J/∂u is a vector
- **3J/3u** indicates feasible search direction
- Search defines a local minimum

Gradient-Free Search

(Based on J)

Downhill Simplex Search (Nelder-Mead Algorithm)

- <u>Simplex</u>: *N*-dimensional figure in control space defined by
 - N+1 vertices
 - (N+1) N/2 straight edges between vertices

Search Procedure for Downhill Simplex Method

- Select starting set of vertices
- Evaluate cost at each vertex
- Determine vertex with largest cost (e.g., J₁ at right)

- Project search from this vertex through middle of opposite face (or edge for N = 2)
- Evaluate cost at new vertex (e.g., J₄ at right)
- Drop J_1 vertex, and form simplex with new vertex
- · Repeat until cost is small

Humanoid Walker optimized via Nelder-Mead http://www.youtube.com/watch?v=BcYPLR_j5dg

Gradient-Free Search

- Structured random search
 - Nelder-Mead (Downhill Simplex) algorithm
 - Simulated annealing
 - shown as modification to D-S method
 - Genetic algorithm
 - crossover, reproduction, mutation of parameter codes
 - Particle-swarm optimization
 - positions and velocities of parameter swarm

MATLAB Implementations of Gradient-Free Search

- Nelder-Mead (Downhill Simplex) algorithm
 - http://www.mathworks.com/help/matlab/ref/ fminsearch.html
- Simulated annealing
 - http://www.mathworks.com/help/gads/ simulated-annealing.html
- Genetic algorithm
 - http://www.mathworks.com/help/gads/ genetic-algorithm.html
 - Example: edit gaconstrained
- Particle-swarm optimization
 - http://www.mathworks.com/help/gads/ particle-swarm.html

43

Gradient Search to Minimizea Quadratic Function

- Cost function, gradient, and Hessian matrix of a quadratic function
- $J = \frac{1}{2} (\mathbf{u} \mathbf{u}^*)^T \mathbf{R} (\mathbf{u} \mathbf{u}^*), \quad \mathbf{R} > \mathbf{0}$ $= \frac{1}{2} (\mathbf{u}^T \mathbf{R} \mathbf{u} \mathbf{u}^T \mathbf{R} \mathbf{u}^* \mathbf{u}^{*T} \mathbf{R} \mathbf{u} + \mathbf{u}^{*T} \mathbf{R} \mathbf{u}^*)$ $\frac{\partial J}{\partial \mathbf{u}} = (\mathbf{u} \mathbf{u}^*)^T \mathbf{R} = \mathbf{0} \text{ when } \mathbf{u} = \mathbf{u}^*$ $\frac{\partial^2 J}{\partial \mathbf{u}^2} = \mathbf{R} = \text{symmetric constant}$
- Guess a starting value of u, u_o
- Solve gradient equation

$$\left| \frac{\partial J}{\partial \mathbf{u}} \right|_{\mathbf{u} = \mathbf{u}_o} = \left(\mathbf{u}_o - \mathbf{u}^* \right)^T \mathbf{R} = \left(\mathbf{u}_o - \mathbf{u}^* \right)^T \frac{\partial^2 J}{\partial \mathbf{u}^2} \Big|_{\mathbf{u} = \mathbf{u}_o}$$
$$\left(\mathbf{u}_o - \mathbf{u}^* \right)^T = \frac{\partial J}{\partial \mathbf{u}} \Big|_{\mathbf{u} = \mathbf{u}_o} \mathbf{R}^{-1} \quad (row)$$
$$\mathbf{u}^* = \mathbf{u}_o - \mathbf{R}^{-1} \left[\frac{\partial J}{\partial \mathbf{u}} \right|_{\mathbf{u} = \mathbf{u}_o} \right]^T \quad (column)$$

Optimal Value Found in a Single Step

For a quadratic cost function

$$\mathbf{u}^* = \mathbf{u}_o - \mathbf{R}^{-1} \left[\frac{\partial J}{\partial \mathbf{u}} \Big|_{\mathbf{u} = \mathbf{u}_o} \right]^T$$

$$= \mathbf{u}_o - \left[\frac{\partial^2 J}{\partial \mathbf{u}^2} \Big|_{\mathbf{u} = \mathbf{u}_o} \right]^{-1} \left[\frac{\partial J}{\partial \mathbf{u}} \Big|_{\mathbf{u} = \mathbf{u}_o} \right]^T$$

- Gradient establishes general search direction
- Hessian fine-tunes direction and tells exactly how far to go

45

Numerical Example

Cost function and derivatives

$$J = \frac{1}{2} (\mathbf{u} - \mathbf{u}^*)^T \mathbf{R} (\mathbf{u} - \mathbf{u}^*), \quad \mathbf{R} > \mathbf{0}$$

$$J = \frac{1}{2} \left\{ \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} - \begin{pmatrix} 1 \\ 3 \end{bmatrix} \right]^T \begin{bmatrix} 1 & 2 \\ 2 & 9 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} - \begin{pmatrix} 1 \\ 3 \end{bmatrix} \right\}$$
$$\begin{pmatrix} \frac{\partial J}{\partial \mathbf{u}} \end{pmatrix}^T = \begin{bmatrix} u_1 \\ u_2 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \end{pmatrix} \end{bmatrix}^T \begin{bmatrix} 1 & 2 \\ 2 & 9 \end{bmatrix}; \quad \mathbf{R} = \begin{bmatrix} 1 & 2 \\ 2 & 9 \end{bmatrix}$$

 First guess at optimal control (details of the actual cost function are unknown)

 $\left(\begin{array}{c} u_1 \\ u_2 \end{array}\right)_0 = \left(\begin{array}{c} 4 \\ 7 \end{array}\right)$

 Derivatives evaluated at starting point

$$\frac{\partial J}{\partial \mathbf{u}}\Big|_{\mathbf{u}=\mathbf{u}_0} = \left[\begin{pmatrix} 4\\7 \end{pmatrix} - \begin{pmatrix} 1\\3 \end{pmatrix} \right] \left[\begin{array}{cc} 1&2\\2&9 \end{array} \right] = \begin{pmatrix} 11\\42 \end{pmatrix}; \quad \mathbf{R} = \left[\begin{array}{cc} 1&2\\2&9 \end{array} \right]$$

Solution from starting point

$$\mathbf{u}^* = \mathbf{u}_o - \mathbf{R}^{-1} \left[\left. \frac{\partial J}{\partial \mathbf{u}} \right|_{\mathbf{u} = \mathbf{u}_o} \right]^T$$

$$\mathbf{u}^* = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}^* = \begin{pmatrix} 4 \\ 7 \end{pmatrix} - \begin{bmatrix} 9/5 & -2/5 \\ -2/5 & 1/5 \end{bmatrix} \begin{pmatrix} 11 \\ 42 \end{pmatrix}$$
$$= \begin{pmatrix} 4 \\ 7 \end{pmatrix} - \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

Newton-Raphson Iteration

- Many cost functions are not quadratic
- However, the surface is well-approximated by a quadratic in the vicinity of the optimum, u*

$$J(\mathbf{u}^* + \Delta \mathbf{u}) \approx J(\mathbf{u}^*) + \Delta J(\mathbf{u}^*) + \Delta^2 J(\mathbf{u}^*) + \dots$$
$$\Delta J(\mathbf{u}^*) = \Delta \mathbf{u}^T \frac{\partial J}{\partial \mathbf{u}}\Big|_{\mathbf{u} = \mathbf{u}^*} = 0$$
$$\Delta^2 J(\mathbf{u}^*) = \frac{1}{2} \Delta \mathbf{u}^T \left[\frac{\partial^2 J}{\partial \mathbf{u}^2} \Big|_{\mathbf{u} = \mathbf{u}^*} \right] \Delta \mathbf{u} \ge 0$$

Optimal solution requires multiple steps

47

Newton-Raphson Iteration

 Newton-Raphson algorithm is an iterative search patterned after the quadratic search

$$\mathbf{u}_{k+1} = \mathbf{u}_k - \left[\left. \frac{\partial^2 J}{\partial \mathbf{u}^2} \right|_{\mathbf{u} = \mathbf{u}_k} \right]^{-1} \left[\left. \frac{\partial J}{\partial \mathbf{u}} \right|_{\mathbf{u} = \mathbf{u}_k} \right]^T$$

Difficulties with Newton-Raphson Iteration

$$\mathbf{u}_{k+1} = \mathbf{u}_k - \left[\left. \frac{\partial^2 J}{\partial \mathbf{u}^2} \right|_{\mathbf{u} = \mathbf{u}_k} \right]^{-1} \left[\left. \frac{\partial J}{\partial \mathbf{u}} \right|_{\mathbf{u} = \mathbf{u}_k} \right]^T$$

- · Good when close to the optimum, but ...
- Hessian matrix (i.e., the curvature) may be
 - Difficult to estimate from local measurements of the cost
 - May have the wrong sign (e.g., not positive-definite)
 - May lead to large errors in incremental control variation

49

Steepest-Descent Algorithm Multiplies Gradient by a Scalar Constant ("Gain")

- Replace Hessian matrix by a scalar constant
- Gradient is orthogonal to equal-cost contours

Choice of Steepest- Descent Constant

- If gain is too small
 - Convergence is slow
- If gain is too large
 - Convergence oscillates or may fail

Solution: Make gain adaptive

51

Optimal Steepest-Descent Gain

Find optimal gain by evaluating cost, J, for intermediate solutions (with same $\partial J/\partial \mathbf{u}$)

Adjustment rule for ε

- Starting estimate, J_0
- First estimate, J_1 , using ε
- Second estimate, J_2 , using 2ε

If $J_2 > J_1$

- Quadratic fit through three points to find ε^*
- Else, third estimate, J_3 , using 4ε
- ...

Use optimal gain, ε^* , on each major iteration

Generalized Direct Search Algorithm

$$\mathbf{u}_{k+1}(t) = \mathbf{u}_{k}(t) - \mathbf{K}_{k} \left[\frac{\partial J}{\partial \mathbf{u}}(t) \right]_{k}^{T}$$

Choose optimal elements of K by sequential line search before recalculating the gradient

Ad Hoc Modifications to the **Newton-Raphson Search**

$$\mathbf{u}_{k+1} = \mathbf{u}_k - \varepsilon \left[\frac{\partial^2 J}{\partial \mathbf{u}^2} \Big|_{\mathbf{u} = \mathbf{u}_k} \right]^{-1} \left[\frac{\partial J}{\partial \mathbf{u}} \Big|_{\mathbf{u} = \mathbf{u}_k} \right]^T, \quad \varepsilon < 1$$

$$\mathbf{u}_{k+1} = \mathbf{u}_k - \left[\begin{bmatrix} \frac{\partial^2 J}{\partial u_1^2} & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \frac{\partial^2 J}{\partial u_m^2} \end{bmatrix} \right]^{-1} \left[\frac{\partial J}{\partial \mathbf{u}} \Big|_{\mathbf{u} = \mathbf{u}_k} \right]^T$$

$$\mathbf{u}_{k+1} = \mathbf{u}_k - \left[\frac{\partial^2 J}{\partial \mathbf{u}^2} \Big|_{\mathbf{u} = \mathbf{u}_k} + \mathbf{K} \right]^{-1} \left[\frac{\partial J}{\partial \mathbf{u}} \Big|_{\mathbf{u} = \mathbf{u}_k} \right]^T, \quad \mathbf{K} > 0, \text{ diagonal}$$

$$\mathbf{u}_{k+1} = \mathbf{u}_k - \left[\frac{\partial^2 J}{\partial \mathbf{u}^2} \bigg|_{\mathbf{u} = \mathbf{u}_k} + \varepsilon \mathbf{I} \right]^{-1} \left[\frac{\partial J}{\partial \mathbf{u}} \bigg|_{\mathbf{u} = \mathbf{u}_k} \right]^T \qquad \qquad \textbf{With varying } \boldsymbol{\varepsilon}, \text{ this is the Levenberg-Marquardt algorithm}$$

Conjugate Gradient Algorithm

First step

$$\mathbf{u}_{1}(t) = \mathbf{u}_{k}(t) - \mathbf{K}_{0} \left[\frac{\partial H}{\partial \mathbf{u}} (t) \right]_{0}^{T}$$

Calculate ratio of integrated gradient magnitudes squared

$$b = \int_{t_o}^{t_f} \left[\frac{\partial H}{\partial \mathbf{u}}(t) \right]_1 \left[\frac{\partial H}{\partial \mathbf{u}}(t) \right]_1^T dt$$
$$\int_{t_o}^{t_f} \left[\frac{\partial H}{\partial \mathbf{u}}(t) \right]_0 \left[\frac{\partial H}{\partial \mathbf{u}}(t) \right]_0^T dt$$

Second step

$$\mathbf{u}_{k+1}(t) = \mathbf{u}_{2}(t) = \mathbf{u}_{1}(t) - \mathbf{K}_{1} \left\{ \left[\frac{\partial H}{\partial \mathbf{u}}(t) \right]_{1}^{T} - b \left[\frac{\partial H}{\partial \mathbf{u}}(t) \right]_{0}^{T} \right\}$$

Calculate gradient of improved trajectory

Rosenbrock Function

 Typical test function for numerical optimization algorithms

$$J(u_1, u_2) = (1 - u_1)^2 + 100(u_2 - u_1^2)^2$$

- Wolfram Alpha
 - Plot (D ((1-u1)^2+100 (u2 u1^2)^2, u1), D ((1-u1)^2+100 (u2 u1^2)^2, u2))
 - Minimize[(1-u1)^2+100 (u2 u1^2)^2, u1, u2]

How Many Maxima/Minima does the "Mexican Hat" $[z = (\sin R)/R]$ Have?

- Wolfram Alpha
 - · (sin(sqrt(u1^2 + u2^2))) / (sqrt(u1^2 + u2^2))
 - maximize(sin(sqrt(u1^2 + u2^2))) / (sqrt(u1^2 + u2^2))

57

Next Time: Principles for Optimal Control of Dynamic Systems

Reading: OCE: Sections 3.1, 3.2, 3.4

Supplemental Material

59

Infinity Norm

- ∞ Norm
 - As p -> ∞
 - Norm is the value of the maximum component

$$\boxed{ L^p \ norm = \|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \xrightarrow{p \to \infty} \left(\sum_{i=1}^n |x_i|^{\infty}\right)^{1/\infty} = \mathbf{x}_{i_{\max}} = L^{\infty} \ norm }$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$
$$\dim(\mathbf{x}) = n \times n$$

- Also called
 - Supremum norm
 - Chebyshev norm
 - Uniform norm

$$\underline{L^{\infty} norm} = \|\mathbf{x}\|_{\infty} = \max\{|x_1|, |x_2|, \dots, |x_n|\}$$

