OEP Gregorics Tibor: Minta dokumentáció az 1. házi feladathoz

Gregorics Tibor	1. beadandó/0.feladat	2012. január 11.
NEPTUNCODE		
gt@inf.elte.hu		
0.csoport		

Feladat

Valósítsuk meg a diagonális mátrixtípust (amelynek négyzetes mátrixai csak a főátlójukban tartalmazhatnak nullától különböző számot)! Ilyenkor elegendő csak a főátló elemeit reprezentálni egy sorozatban. Implementáljuk a mátrix i-edik sorának j-edik elemét megváltoztató illetve azt lekérdező műveletet, valamint az összeadás és szorzás műveleteket! Ne feledkezzünk meg a megfelelő beolvasó és kiíró műveletekről sem!

Diagonális mátrix típus

Típusérték-halmaz¹

Olyan $n \times n$ -es $(n \in \mathbb{N})$ négyzetes mátrixok, amelynek elemei egész számok, és csak a főátlójukban tartalmazhatnak nullától különböző elemeket. (Az $n \in \mathbb{N}$ ennek a típusnak egy paramétere, amely a típusérték-halmaz mátrixainak méretét határozza meg.)

Formálisan: $Diag(n) = \{ a \in \mathbb{Z}^{n \times n} \mid \forall i,j \in [1..n]: i \neq j \rightarrow a[i,j] = 0 \}$

Típus-műveletek²

1. Lekérdezés

A mátrix *i*-edik sorának *j*-edik pozícióján $(i,j \in [1..n])$ álló érték kiolvasása: e:=a[i,j].

```
Formálisan: A = (a : Diag(n), i : \mathbb{Z}, j : \mathbb{Z}, e : \mathbb{Z})

Ef = (a=a' \land i=i' \land j=j' \land i,j \in [1..n])

Uf = (Ef \land e=a[i,j])
```

2. Felülírás

A mátrix *i*-edik sorának *j*-edik pozíciójára ($i,j \in [1..n]$) új érték beírása: a[i,j]:=e. A főátlón kívüli elemeket nem szabad felülírni, azaz i=j.

```
Formálisan: A = (a : Diag(n), i : \mathbb{Z}, j : \mathbb{Z}, e : \mathbb{Z})

Ef = (e = e' \land a = a' \land i = i' \land j = j' \land i, j \in [1..n] \land i = j)

Uf = (e = e' \land i = i' \land j = j' \land a[i,j] = e \land \forall k, l \in [1..n] : (k \neq i \lor l \neq j) \rightarrow a[k,l] = a'[k,l])
```

Megjegyezzük, hogy ez a művelet $i \neq j$ esetén hibás akkor, amennyiben egy nemnulla értéket akarunk a mátrixba tenni.

3. Összeadás

_

¹ A típusérték-halmazt kétféleképpen is le lehet írni: szövegesen és formálisan. Elég csak az egyik formát használni.

² A típusműveletek leírására is kétféle definíciót használok: egy informálist és egy formálist. Elég csak az egyik formát használni.

OEP Gregorics Tibor: Minta dokumentáció az 1. házi feladathoz

Két mátrix szorzata: *c:=a*b*. A szorzásban szereplő mátrixok azonos méretűek.

Formálisan: A = (a : Diag(n), b : Diag(n), c : Diag(n)) $Ef = (a=a' \land b=b')$ $Uf = (Ef \land \forall i,j \in [1..n]: c[i,j] = a[i,j] + b[i,j])$

Diagonális mátrixok esetén a fenti művelet jóval egyszerűbben is megfogalmazható: $\forall i \in [1..n]$: c[i,i] = a[i,i] + b[i,i] és $\forall i,j \in [1..n]$: $i \neq j \rightarrow c[i,j] = 0$.

4. Szorzás

Két mátrix összeadása: c:=a*b. Az összeadásban szereplő mátrixok azonos méretűek.

Formálisan: A = (a : Diag(n), b : Diag(n), c : Diag(n)) $Ef = (a = a' \land b = b')$ $Uf = (Ef \land \forall i,j \in [1..n]: c[i,j] = \sum_{k=1..n} a[i,k] * b[k,j])$

Diagonális mátrixok esetén a fenti művelet jóval egyszerűbben is megfogalmazható: $\forall i \in [1..n]$: c[i,i] = a[i,i]*b[i,i] és $\forall i,j \in [1..n]$: $i \neq j \rightarrow c[i,j] = 0$.

Reprezentáció

Egy $n \times n$ -es diagonális mátrixnak csak a főátlóját kell ábrázolni, azaz egy $n \cdot n$ darab elemet tartalmazó mátrix helyett, elég csak n darab elemet tárolni egy 0-tól n-1-ig indexelt egydimenziós tömbben (v).

$$a_{11} \ 0 \ 0 \ \dots \ 0$$
 $0 \ a_{22} \ 0 \ \dots \ 0$
 $a = \ 0 \ 0 \ a_{33} \ \dots \ 0$
 $0 \ 0 \ 0 \ \dots \ a_{nn}$
 $\longleftrightarrow v = < a_{11} \ a_{22} \ a_{33} \ a_{nn} > 0$

Ennek megfelelően:

$$a[i,j] = \begin{cases} v[i] & ha & i = j \\ 0 & ha & i \neq j \end{cases}$$

Implementáció

1. Lekérdezés

A v tömbbel ábrázolt a mátrix i-edik sorának j-edik elemét visszaadó e:=a[i,j] értékadás az alábbi programmal implementálható feltéve, hogy $1 \le i \le n$, ahol n a mátrix mérete:

$$A = (v : \mathbb{Z}^n, i : \mathbb{Z}, j : \mathbb{Z}, e : \mathbb{Z})$$

if $i=j$ then $e := v[i-1]$ else $e := 0$

2. Felülírás

A v tömbbel ábrázolt a mátrix i-edik sorának j-edik elemét megváltoztató a[i,j]:=e értékadás az alábbi programmal implementálható feltéve, hogy $1 \le i \le n$, ahol n a mátrix mérete:

$$A = (v : \mathbb{Z}^n, i : \mathbb{Z}, j : \mathbb{Z}, e : \mathbb{Z})$$

if $i=j$ **then** $v[i-1] := e$ **else** skip

3. Összeadás

A v tömbbel ábrázolt a mátrix és a t tömbbel ábrázolt b mátrix összege az u tömbbel ábrázolt c mátrixba kerül, ha az alábbi programot végrehajtjuk. A végrehajtás előtt ellenőrizni kell, hogy mindhárom mátrix, pontosabban az őket reprezentáló tömb azonos méretű-e.

$$A = (v : \mathbb{Z}^n, t : \mathbb{Z}^n, u : \mathbb{Z}^n)$$

$$\forall i \in [0..n-1]: u[i] := v[i] + t[i]$$

4. Szorzás

A v tömbbel ábrázolt a mátrix és a t tömbbel ábrázolt b mátrix szorzata az a tömbbel ábrázolt a mátrixba kerül, ha az alábbi programot végrehajtjuk. A végrehajtás előtt ellenőrizni kell, hogy mindhárom mátrix, pontosabban az őket reprezentáló tömb azonos méretű-e.

```
A = (v : \mathbb{Z}^n, t : \mathbb{Z}^n, u : \mathbb{Z}^n)
\forall i \in [0..n-1]: u[i] := v[i] * t[i]
```

Tesztelési terv

Megvalósított műveletek tesztelése (fekete doboz tesztelés)

- 1) Különféle méretű mátrixok létrehozása, feltöltése és kiírása.
 - a) 0, 1, 2, 5 dimenziójú mátrix
- 2) Mátrix adott pozíciójú értékének lekérdezése és megváltoztatása.
 - a) Diagonálisra eső elem lekérdezése és megváltoztatása
 - b) Diagonálison kívüli elem lekérdezése és megváltoztatása
 - c) Illegális index megadása, 0 dimenziós mátrix indexelése
- 3) A másoló konstruktor kipróbálása.
 - a) A b mátrix létrehozása az a mátrix mintájára, majd a két mátrix tartalmának összehasonlítása, majd az egyik mátrix megváltoztatása és a két mátrix tartalmának összehasonlítása.
- 4) Az értékadás operátor kipróbálása.
 - a) A b=a értékadás végrehajtása az a és b mátrixokra (az a és b mérete azonos illetve különbözik: egyik, illetve másik a nagyobb), majd a két mátrix tartalmának összehasonlítása, majd az egyik mátrix megváltoztatása és a két mátrix tartalmának összehasonlítása.
 - b) A c=b=a értékadás végrehajtása az a, b és c mátrixokra (ezek mérete lehet különböző), majd a és c mátrixok tartalmának összehasonlítása, majd az egyik mátrix megváltoztatása és a mátrixok tartalmának összehasonlítása.
 - c) Az a=a értékadás végrehajtása az a mátrixra, majd az a mátrix tartalmának ellenőrzése.
- 5) A c:=a+b mátrixösszeadás kipróbálása.
 - a) Eltérő méretű mátrixokkal (az a és b mérete különbözik, a c és a mérete különbözik)
 - b) Kommutativitás ellenőrzése (a + b == b + a)
 - c) Asszociativitás ellenőrzése (a + b + c == (a + b) + c == a + (b + c))
 - d) Null elem vizsgálata (a + 0 == a, ahol 0 a null mátrix)
- 6) A c:=a*b mátrixszorzás kipróbálása.
 - a) Eltérő méretű mátrixokkal. (az a és b mérete különbözik, a c és a mérete különbözik)
 - b) Kommutativitás ellenőrzése (a * b == b * a)
 - c) Asszociativitás ellenőrzése (a * b * c == (a * b) * c == a * (b * c))
 - d) Null elem vizsgálata (a * 0 == 0, ahol 0 a null mátrix)
 - e) Egység elem vizsgálata (a * 1 == a, ahol 1 az egység mátrix)

Megj: A beolvasó és kiíró operátorok teszteléséhez elég, hogy ezeket a fenti esetek tesztelésénél intenzíven használjuk.

Tesztesetek a kód alapján (fehér doboz tesztelés)

- 1. Extrém méretű (-1, 0, 1, 1000) mátrix létrehozása.
- 2. Kivételek generálása és elkapása.