

# UNIVERSITÀ DEGLI STUDI DI PADOVA

### Single pixel operations

Stefano Ghidoni





### Agenda

IAS-LAB

Defining single-pixel operations

The first group operations

Examples

### Spatial operations

- Many different ways of transforming an image
- Single-pixel operations
  - Intensity transform, histogram equalization, ...
  - The output value of each pixel depends on the pixel initial value
- Local operations
  - Linear and non-linear filters
  - The output value depends on the initial values of the pixel
     + its neighbors
- Geometric transforms
  - Scaling, rotation, ...
  - "Moving" points



- Consider a grayscale image
  - -L gray levels
- Single-pixel operations/transforms (AKA intensity transforms) are functions that change the gray levels of an image
- Elements involved:
  - Function I(x, y) representing the image
  - Function  $T(\cdot)$  representing the grey level change







IAS-LAB



*r* − the input grey level





- Negative
- Logarithm
- Gamma
- Contrast stretching
- Intensity slicing
- Histogram equalization





- Let's start with three simple transforms
- Negative image
  - Switch dark and light
- Log transformation
  - Highlight the differences among pixels in given conditions
- Gamma transformation
  - Similar to log, but tunable

## Negative image

$$s = (L-1) - r$$







## Log transform

$$s = c \log(1+r), c = \frac{L-1}{\log L}$$





### Gamma transform

$$s = cr^{\gamma}$$
$$c = (L - 1)^{1 - \gamma}$$





# Gamma transform – example

IAS-LAB



 $\gamma < 1$ 

 $\gamma > 1$ 

### Gamma transform – application

**IAS-LAB** 

 The gamma transform was very popular when CRT monitors were used

 Physics regulating the light intensity for CRT monitors:

$$I = V^{\gamma}$$



### Gamma correction for monitors

IAS-LAB

 Compensation by the gamma transform

$$s = cr^{1/\gamma}$$



viewed on the same monitor

- Recap of the transformations analyzed so far
  - Negative
  - Logarithm
  - Gamma





# UNIVERSITÀ DEGLI STUDI DI PADOVA

### Single pixel operations

Stefano Ghidoni



