

# JOB SHOP SCHEDULING













### **Dispatching rules**

- ☐ Dispatch rule can be **static** or **dynamic**.
- ☐ One machine problems (WSPT, EDD, MS, ATC)
- ☐ Parallel machines (LPT)
- ➤ Prioritize all waiting jobs
  - job attributes
  - machine attributes
  - current time
- Whenever a machine becomes free: select the job with the highest priority

João Miguel da Costa Sousa

132



# Release/due date related

- Earliest release date first (ERD) rule
  - · variance in throughput times
- ☐ Earliest due date first (EDD) rule
  - · maximum lateness
- ☐ Minimum slack first (MS) rule

$$\max(d_i - p_i - t, 0)$$

- maximum lateness
- ☐ Apparent tardiness cost first (ATC)
  - maximum total weighted lateness

João Miguel da Costa Sousa

...



# **Processing time related**

- □ Longest Processing Time first (LPT) rule
  - balance load on parallel machines
  - makespan
- ☐ Shortest Processing Time first (SPT) rule
  - sum of completion times
  - WIP
- ☐ Weighted Shortest Processing Time first (WSPT) rule
- ☐ Critical Path (CP) rule
  - precedence constraints
  - makespan

João Miguel da Costa Sousa

134



#### **Discussion**

- ☐ Very simple to implement
- □Optimal for special cases
- □Only focus on one objective
- □ Combine several dispatching rules:

**Composite Dispatching Rules** 

João Miguel da Costa Sousa

135



# Single machine models & WSPT

- $\square n$  jobs with  $p_i$ ,  $r_i$  and  $d_i$ .
- $\square$  *Total weighted completion time* should be minimized:

$$\sum w_j C_j$$

- ➤ Solution: Weighted Shortest Processing Time (WSPT) first is optimal.
  - Schedules jobs in decreasing order of  $w_i/p_i$ .
- **SPT** rule starts with job with the shortest  $p_j$ , moves on to job with second shortest  $p_j$ , and so on.

João Miguel da Costa Sousa

136



# Proof

- $\square$  Suppose it is not true and schedule *S* is optimal.
- $\square$  Then there are two adjacent jobs, say job j followed by job k such that

 $\frac{w_j}{n} < \frac{w_k}{n}$ 

 $\square$  Do a pairwise interchange to get schedule S'



João Miguel da Costa Sousa



#### **Proof**

The weighted completion time of the two jobs under *S* is  $(t + p_i)w_i + (t + p_i + p_k)w_k$ 

The weighted completion time of the two jobs under S' is

$$(t+p_k)w_k + (t+p_i+p_k)w_i$$

Then:

$$(t+p_j)w_j + (t+p_j+p_k)w_k = (t+p_j)w_j + p_jw_k + (t+p_k)w_k$$

$$> (t+p_j)w_j + p_kw_j + (t+p_k)w_k$$

$$= (t+p_k)w_k + (t+p_k+p_j)w_j$$

Contradicting that *S* is optimal.

João Miguel da Costa Sousa

138



### Single machine models & EDD

- $\Box r_i = 0$
- $\square$  Each job has its own  $d_i$
- lacktriangle Objective: minimize lateness  $L_{\max}$
- ☐ Earliest Due Date (EDD) results in optimal schedule
- $\triangleright$  Order operations in increasing order of  $d_i$

João Miguel da Costa Sous

420



# Types of dispatching rules

- ■WSPT and EDD are static.
- □ Static basis for ordering operations does not change based on scheduling decisions
  - · All operations can be sorted once
- □ Dynamic scheduling decisions change the order of remaining operations
  - Need to resort operations in queue (potentially) after every decision

João Miguel da Costa Sousa

140



# Single machine & Minimum Slack

- $\Box r_i = 0$
- $\Box$  **Objective**: minimize lateness  $L_{\text{max}}$
- □ Minimum Slack (MS) orders operations at time *t* in descending order of:
  - max $(d_i p_i t, 0)$
- ■MS does not guarantee optimal schedule!

João Miguel da Costa Sousa

141



### Composite rule

#### Two good heuristics:

- ☐ Weighted Shorted Processing Time (WSPT)
  - optimal with due dates zero
- ☐ Minimum Slack (MS)
  - Optimal when due dates are "spread out"

#### **□** Any real problem is somewhere in between

Combine the characteristics of these rules into one composite dispatching rule.

João Miguel da Costa Sousa

142



### **Composite Dispatching Rule**

- $\Box$  One-machine,  $r_i = 0$
- **Objective**: minimize weighted tardiness  $\sum w_i T_i$
- □ Apparent Tardiness Cost (ATC) rule orders operations in descending order (*K* is a parameter):



João Miguel da Costa Sousa



### **Special cases**

- $\square$  If *K* is very large:
  - ATC reduces to WSPT
- $\square$  If *K* is very small and no overdue jobs:
  - ATC reduces to MS
- $\square$  If *K* is very small and overdue jobs:
  - ATC reduces to WSPT applied to overdue jobs

João Miguel da Costa Sousa

144



## Choosing K

- $\square$  Value of K determined empirically
- ☐ Related to the *due date tightness* factor

$$\tau = 1 - \frac{\overline{d}}{C_{\text{max}}}$$

and the due date range factor

$$R = \frac{d_{\text{max}} - d_{\text{min}}}{C_{\text{max}}}$$

João Miguel da Costa Sousa

. . . . .



# Choosing K

- **□** Usually  $1.5 \le K \le 4.5$
- □Rules of thumb:
  - Fix K = 2 for single machine or flow shop.
  - Fix K = 3 for dynamic job shops.
- ☐ Adjusted to reduce weighted tardiness cost in extremely slack or congested job shops
- ☐ Statistical analysis/empirical experience

João Miguel da Costa Sousa

146



#### Jobs with different release dates

- $\square$  One-machine problem with different  $r_i$
- **Objective**: minimize lateness  $L_{\text{max}}$
- ☐ Problem is NP-hard
- ☐ Possible algorithms to solve the problem
  - Branch-and-bound (see Appendix B of Pinedo's book)
  - Dynamic programming

João Miguel da Costa Sousa

14



# **Parallel machines**

- $\square$  A set of *m* machines in parallel is available.
- $lue{Constraint}$  Objective: minimize makespan  $C_{max}$
- **□Longest Processing Time** (LPT) first
  - pick operations in descending order of processing time
- □LPT balances the loads of the machines (why?).
- □LPT does **not** guarantee optimality.

João Miguel da Costa Sousa

148



#### **Parallel machines**

- **Objective**: minimize completion time  $\sum C_i$
- ☐ SPT assures optimality, even when preemptions are allowed.
- **Objective**: minimize *weighted* completion time  $\sum w_i C_i$
- ■WSPT does **not** assures optimality.
- **Objective**: minimize total weighted tardiness  $\sum w_i T_i$
- ☐ This more general problem is even harder. ATC can be applied, but solutions can be poor.

João Miguel da Costa Sousa



















# **JSP and Mathematical Programming**

- $\square$  Job shop with n jobs and m machines.
- ☐ Each job visits some machines in a given order *without* recirculation.
- □ Processing of job j in machine i is operation (i, j) with duration  $p_{ij}$ , and  $(i, j) \in N$  nodes.
- **\*Objective:** minimize makespan  $C_{\text{max}}$
- □ Problem can be represented in a **disjunctive graph**.

João Miguel da Costa Sous

158



#### **JSP and Mathematical Programming**

- $\square$  Direct graph G = (N, A, B) with a set of N operations.
- ☐ Arcs A conjunctive arcs represent the precedence relationships between processing operations of a job.
- ☐ Arcs *B* **disjunctive** arcs connect two operations which belong to two different jobs, that are to be processed on the same machine.
- ☐ Disjunctive arcs form *n* **cliques** (in a clique any two nodes are connected to one another).
- $\square$  Source U and sink V.

João Miguel da Costa Sousa

15



### Disjunctive graph

Example of a job shop problem: 4 machines and 3 jobs



João Miguel da Costa Sousa

INCOME.

# Disjunctive graph

- ☐ Feasible schedule selection of one disjunctive arc from each pair. Each selection of arcs within a clique must be acyclic.
- $\square$  Let D be a subset of selected disjunctive arcs.
- $\square$  Makespan of a feasible schedule is the longest path in G(D) from the source U to the sink V.
- ☐ The problem is thus minimizing the longest (*critical*) path.

João Miguel da Costa Sousa



#### Disjunctive programming

- ☐ Based on the disjunctive graph.
- $\square$  Let  $y_{ii}$  be the starting time of operation (i, j) (operation of job j in machine i)
- $\square N$  set of all operations
- $\square A$  set of all conjunctive constraints
- $\square B$  set of all disjunctive constraints

João Miguel da Costa Sousa



# Disjunctive programming formulation

minimize

subject to

$$\begin{split} y_{hj} - y_{ij} &\geq p_{ij} & \text{for all } (i,j) \rightarrow (h,j) \in A \\ C_{\text{max}} - y_{ij} &\geq p_{ij} & \text{for all } (i,j) \in N \end{split}$$

$$C_{\max} - y_{ij} \ge p_{ij}$$

$$y_{ij} - y_{ik} \ge p_{ik}$$
 or  $y_{ik} - y_{ij} \ge p_{ij}$  for all  $(i, k)$  and  $(i, j)$ 

for all  $(i, j) \in N$ 

$$y_{ii} \ge 0$$

João Miguel da Costa Sousa



# Disjunctive programming formulation

minimize

 $C_{
m max}$ 

subject to

| $y_{hj} - y_{ij} \ge p_{ij}$                                 | for all $(i, j) \rightarrow (h, j) \in A$ |
|--------------------------------------------------------------|-------------------------------------------|
| $C_{\max} - y_{ij} \ge p_{ij}$                               | for all $(i, j) \in N$                    |
| $y_{ij} - y_{ik} \ge p_{ik}$ or $y_{ik} - y_{ij} \ge p_{ij}$ | for all $(i,k)$ and $(i,j)$               |
| v >0                                                         | for all $(i, i) \in M$                    |

An operation cannot start before the previous operation (in the job) ends

João Miguel da Costa Sousa



# Disjunctive programming formulation

 $C_{\max}$ minimize

$$y_{hj} - y_{ij} \ge p_{ij}$$

for all  $(i, j) \rightarrow (h, j) \in A$ 

$$C_{\max} - y_{ij} \ge p_{ij}$$

for all  $(i, j) \in N$ for all (i,k) and (i,j)

$$y_{ij} - y_{ik} \ge p_{ik}$$
 or  $y_{ik} - y_{ij} \ge p_{ij}$   
 $y_{ij} \ge 0$ 

subject to

for all  $(i, j) \in N$ 

All operations must end before makespan

João Miguel da Costa Sousa



# Disjunctive programming formulation

minimize

subject to

 $y_{hj} - y_{ij} \ge p_{ij}$ 

for all  $(i, j) \rightarrow (h, j) \in A$ 

 $C_{\max} - y_{ij} \ge p_{ij}$ 

for all  $(i, j) \in N$ 

 $y_{ij} - y_{ik} \ge p_{ik}$  or  $y_{ik} - y_{ij} \ge p_{ij}$  for all (i, k) and (i, j) $y_{ij} \ge 0$ 

for all  $(i, j) \in N$ 

One disjunctive arc must be chosen

João Miguel da Costa Sousa



# Disjunctive programming formulation

Start times cannot be negative

minimize

subject to

$$y_{hj} - y_{ij} \ge p_{ij}$$

for all  $(i, j) \rightarrow (h, j) \in A$ 

$$C_{\max} - y_{ij} \ge p_{ij}$$

for all  $(i, j) \in N$ 

for all  $(i, j) \in N$ 

 $y_{ij} - y_{ik} \ge p_{ik}$  or  $y_{ik} - y_{ij} \ge p_{ij}$  for all (i,k) and (i,j)

 $y_{ij} \ge 0$ 

João Miguel da Costa Sousa



#### **Solution Methods**

- ■Exact solution
  - Branch & Bound
  - 20 machines and 20 jobs
- ☐ Dispatching rules (16+)
  - Shifting Bottleneck
- ☐ Search heuristics
  - Tabu search, Simulated Annealing, Genetic Algorithms, etc.

João Miguel da Costa Sousa

168



#### **Shifting Bottleneck Heuristic**

- ☐ Minimize makespan in a job shop
- $\Box$  Let *M* denote the set of machines
- □ Let  $M_0 \subseteq M$  be machines for which disjunctive arcs have been selected

#### ☐ Basic idea:

- Select a machine in  $M M_0$  to be included in  $M_0$
- Sequence the operations on this machine

João Miguel da Costa Sousa

...



# **Shifting Bottleneck Algorithm**

#### **Step 1:** *Set the initial conditions*

- Set M<sub>0</sub> = Ø. Graph G is the graph with all the conjunctive arcs and no disjunctive arcs.
- Set  $C_{\text{max}}(M_0)$  equal to the longest path in graph G.

#### **Step 2:** Analysis of the machines still to be scheduled

- For each machine i in  $M-M_0$ : formulate a single machine problem with all operations subject to release dates and due dates. Release date is the longest path in G from the source to the node. Due date is the longest path in G from the node to the sink and subtracting  $p_{ij}$ .
- lacksquare Minimize  $L_{\max}$  in each machine.

João Miguel da Costa Sousa

170



# **Shifting Bottleneck Algorithm**

#### **Step 3:** Bottleneck selection

- The machine with the highest cost is designated the bottleneck.
- Insert all the corresponding disjunctive arcs in graph G.
- Insert machine which is the bottleneck in M<sub>0</sub>.

# Step 4: Resequencing all machines scheduled earlier

• Find the sequence that minimized the cost and insert the corresponding disjunctive arcs in graph *G*.

#### Step 5. Stopping condition

• If all machines are scheduled  $(M_0 = M)$  then STOP, else go to Step 2.

João Miguel da Costa Sousa

171



### **Example 5.4.2 (p. 89)**

| Jobs | Machines | Processing times                                                               |
|------|----------|--------------------------------------------------------------------------------|
| 1    | 1,2,3    | p <sub>11</sub> =10, p <sub>21</sub> =8, p <sub>31</sub> =4                    |
| 2    | 2,1,4,3  | p <sub>22</sub> =8, p <sub>12</sub> =3, p <sub>42</sub> =5, p <sub>32</sub> =6 |
| 3    | 124      | n -4 n -7 n -3                                                                 |



João Miguel da Costa Sousa

172









































