SynCron

Efficient Synchronization Support for Near-Data-Processing Architectures

Christina Giannoula

Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas Ivan Fernandez, Juan Gómez Luna, Lois Orosa Nectarios Koziris, Georgios Goumas, Onur Mutlu

Near-Data-Processing (NDP) Systems

Graph Analytics

Neural Networks

Recommendation Systems

Bioinformatics

Synchronization is Necessary

Graph Analytics

Databases

Concurrent **Data Structures**

Challenge: Efficient Synchronization

SynCron

The first end-to-end synchronization solution for NDP architectures

SynCron's Benefits:

- 1. High System Performance
- 2. Low Hardware Cost
- 3. Programming Ease
- 4. General Synchronization Support

Outline

NDP Synchronization Solution Space

Our Mechanism: SynCron

Evaluation

Baseline NDP Architecture

Synchronization challenges in NDP systems:

- (1) Lack of hardware cache coherence support
- (2) Expensive communication across NDP units
- (3) Lack of a shared level of cache memory

Lack of hardware cache coherence support

[EuroPar'06]

MPPs:

Cohort Locks [TOPC'15] Ticket Locks [TOCS'91] ...

QOLB [ASPLOS'89]

Expensive communication across NDP units

Lack of a shared level of cache memory

Prior schemes are not suitable or efficient for NDP systems

Outline

NDP Synchronization Solution Space

Our Mechanism: SynCron

Evaluation

SynCron: Overview

SynCron consists of four key techniques:

- 1. Hardware support for synchronization acceleration
- 2. Direct buffering of synchronization variables
- 3. Hierarchical message-passing communication
- 4. Integrated hardware-only overflow management

1. Hardware Synchronization Support

- ✓ No Complex Cache Coherence Protocols
- ✓ No Expensive Atomic Operations
- ✓ Low Hardware Cost

2. Direct Buffering of Variables

2. Direct Buffering of Variables

4. Integrated Overflow Management

4. Integrated Overflow Management

- ✓ Low Performance Degradation
- ✓ High Programming Ease

Counters

SynCron's Supported Primitives

Lock primitive

- lock_acquire()
- lock_release ()

Barrier primitive

- barrier_wait_within_NDP_unit()
- barrier_wait_across_NDP_units()

Semaphore primitive

- sem_wait()
- sem_post()

Condition variable primitive

- cond_wait()
- cond_signal()
- cond_broadcast()

All NDP cores compete for the same lock variable

Lock Operation

More details in the paper

Outline

NDP Synchronization Solution Space

Our Mechanism: SynCron

Evaluation

Evaluation Methodology

Simulators:

- Zsim [Sanchez+, ISCA'13]
- Ramulator [Kim+, CAL'15]

System Configuration:

- 4x NDP units of 16 in-order cores
- 16KB L1 Data + Instr. Cache
- 4GB HBM memory

SynCron's Default Parameters:

- Synchronization Processing Unit @1GHz
- 12-cycle worst-case latency for a message to be served [Aladdin]
- 64 entries in Synchronization Table, 1-cycle latency [CACTI]
- 256 entries in indexing counters 2-cycle latency [CACTI]

Workloads:

- 9x Pointer-chasing Data Structures from ASCYLIB [David+, ASPLOS'15]
- 6x Graph Applications from Crono [Ahmad+, IISWC'15]
- Time Series Analysis from Matrix Profile [Yeh+, ICDM'16]

Comparison Points for SynCron

1. SynCron

- 2. Central [Ahn+, ISCA'15]:
 - Synchronization Server: One NDP core of the NDP system
 - Centralized hardware message-passing communication
- 3. <u>Hier</u> [Gao+, PACT'15 / Tang+, ASPLOS'19]:
 - Synchronization Servers: One NDP core per NDP unit
 - Hierarchical hardware message-passing communication

4. Ideal

Zero overhead for synchronization

Throughput of Pointer Chasing

Throughput of Pointer Chasing

SynCron achieves the highest throughput under all scenarios

Speedup in Real Applications

SynCron performs best across all real applications

System Energy in Real Applications

SynCron reduces system energy significantly

Area and Power Overheads

		Synchronization Engine	ARM Cortex A7
Technology		40nm	28nm
Area	9.78%	Total: 0.0461mm2	Total: 0.45mm2
Power	2.70%	2.7mW	100mW

SynCron has low area and power overheads

Sensitivity Studies

- Different memory technologies (HBM, HMC, DDR4)
- Various data placement techniques
- Various transfer latencies on links across NDP units
- Overflow management cost
- Various sizes for the Synchronization Table

SynCron is effective for a wide variety of configurations

Summary & Conclusion

- Synchronization is a major system challenge for NDP systems
- Prior schemes are not suitable or efficient for NDP systems
- SynCron is the first end-to-end synchronization solution for NDP architectures
- Syncron consists of four key techniques:
 - i. Hardware support for synchronization acceleration
 - ii. Direct buffering of synchronization variables
 - iii. Hierarchical message-passing communication
 - iv. Integrated hardware-only overflow management
- SynCron's benefits: 90.5% and 93.8% of performance and energy of an Ideal zero-overhead scheme
- SynCron is highly-efficient, low-cost, easy-to-use, and general to support many synchronization primitives

SynCron

Efficient Synchronization Support for Near-Data-Processing Architectures

Christina Giannoula christina.giann@gmail.com

Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas Ivan Fernandez, Juan Gómez Luna, Lois Orosa Nectarios Koziris, Georgios Goumas, Onur Mutlu

