

Overview of Cryptography

PKI Outreach Programme (POP)

Nationwide Awareness Programme, Centre for Development of Advanced Computing (C-DAC) Electronics City, Bangalore.

Agenda

- Introduction to Cryptography
 - Substitution Ciphers, Transposition Ciphers
- Hash Functions
- Symmetric Key Cryptography
- Asymmetric key Cryptography

What is Information security?

- General definition: Information security involves providing appropriate levels of assurance of
- Privacy/Confidentiality: preventing disclosure of information to unauthorized individuals or systems
- Authenticity: Ensuring that the user, data, transactions, communications or documents are genuine
- Integrity: Data cannot be modified without authorization
- Non-Repudiability: One party of a transaction can not deny having sent/received a transaction

Cryptography

- The study & practice of hiding, encrypting or secret writing;
- It uses mathematical & logical principles to secure information
 - Plaintext: The message which has to be sent to other party.
 - Encryption / Decryption: The process of transforming plain text input to an un-interpretable form is called Encryption. Decryption is reverse of Encryption. Therefore, this is a two-way function.

Cryptography ...

- Cipher text: The message after it is encoded
- **Key**. This is a unique value (bit pattern, alphabetical sequence) that is used by the cipher for encryption/decryption
- The Cryptosystems are broadly classified into two:
 - Symmetric Key Cryptography
 - Asymmetric Key Cryptography

Encryption / Decryption

"The quick brown fox jumps over the lazy dog"

"AxCv;5bmEseTfid3)fG smWe#4^,sdgfMwir3:d kJeTsY8R\s@!q3%" "The quick brown fox jumps over the lazy dog"

History

- Cryptography is quite old at least about 4000 years.
- Ancient Egyptians use Symbols to represent things, an early form of writing (1900 BC)
- 1500 BC The Phoenicians developed an alphabet
- 600 BC Palestinians use the Atbash cipher
- 500 BC The Spartans use the encryption process Scytale

History Contd...

- In 50 BC, Julius Caesar used an alphabet with a shift of three and hence named as Caesar cipher.
- Blaise de Vigenère discussed Vigenere cipher in 1585
 AD
- 1917 AD American, Gilbert S. Vernam, develops the One-time-pad
- 1976 AD Diffie-Hellman key exchange protocol is developed
- 1977 AD DES is developed by IBM
- 1977 RSA is developed, this method is still widely used today
- 2000 AD AES is chosen as the successor to DES

Hiding Message

Have you ever wanted to hide something from:

- Your friends?
- Your family?
- The Government?

Ancient Steganography

One hiding method was to engrave a message in a block of wood, then cover it with wax, so it looked like a blank wax tablet. When they wanted to retrieve the message, they would simply melt off the wax.

Digital Steganography

One byte can be used to represent each letter of the alphabet. This is what is used in text files.

$$01000001 = A$$
 $01000010 = B$
 $01000011 = C$

Colour Image Pixels

248 201 3

Each byte is interpreted as a number, which is how much of that color is used to make the final color of the pixel.

$$248 + 201 + 3 = Orange Color$$

Eg: Digital Steganography

Message: A 01000001

Image with 3 pixels:

Pixel 1: 11111000 11001001 00000011

Pixel 2: 11111000 11001001 00000011

Pixel 3: 11111000 11001001 00000011

Now we hide our message in the image:

Pixel 1: 11111000 11001001 00000010

Pixel 2: 11111000 11001000 00000010

Pixel 3: 11111000 11001001 00000011

New image:

Eg: Digital Steganography

Original

With Hidden Message

Substitution Ciphers

• Here each character is simply represented by another character

a	b	с	d	e	f	g	h	i	j	k	1	m	n	0	p	q	r	s	t	u	v	W	Х	у	Z
Н	Х	V	J	D	Ι	Т	U	Ε	R	G	Α	L	S	F	P	W	Z	М	K	Q	В	Y	О	С	N

- In its simplest form there is no logic in order of representation.
- A type of substitution cipher is Caesar Cipher (Shift cipher) where each character in cipher text is shifted by 'k' letters.

Eg: Caesar Ciphers

KRISHNA → nulvkqd obvious

Shift by k letters (here k = 3)

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Shift by k letters (here k = 6)

KRISHNA → qxoyntg ... still obvious(?!)

<u>Atbash</u>

This cipher simply represents letters of the alphabet in reverse order: Eg:

Plaintext: abcdefghijklmnopqrstuvwxyz

Ciphertext: ZYXWVUTSRQPONMLKJIHGFEDCBA

Vigenère cipher

 Encryption process combines one character of plain text and corresponding character of Key to get a character of cipher text

from Vigenere Square

• Eg: Text: SQUARE

Key: FROGFR

Cipher Text: XHIGWV

Playfair Cipher

- Makes use of diagrams and comprises of several small steps
 - Key: Treat your password like your toothbrush. Don't let anybody else use it, and get a new one every six months
 - TREAYOUPSWDLIKHBNGVXMCFQZ
- Plain Text: "Information is not knowledge"
 "IN FO RM AT IO NI SN OT KN OW LE DG EX"

T	R	E	A	Y		
О	U	P	S	W		
D	L	Ι	K	Н		
В	Ν	G	V	X		
M	C	F	Q	Z		

- Cipher Text: LG MP TC YR DP GL UV DO LV UO IR IB YG
- "Information is not knowledge"
- = lgmptcyrdpgluvdolvuoiribyg

Transposition Ciphers

Here the order of the character is changed

Rail Fence Cipher (Capture fox)

C P U E O

ATRFX

Cipher Text

CPUEOATRFX

Route Cipher (We are discovered Flee at once)

Cipher Text

WRIORFEOE

EESVELAN J

ADCEDETCX

EJXCTEDECDAEWRIORFEONALEVSE

Columnar Transposition (Deposit Four Crore Rupees in our Citi Bank Account)

KRISHNA -- Key

DEPOSIT

FOURCRO

Cipher Text

RERUPEE

SINOURC

TOECKTSCPUAUPURNICDFRSIAIRERNNEOEITCORUOBO

ITIBANK

ACCOUNT

Hash Function

- A hash function is a cryptographic mechanism that operates as one-way function
 - Creates a digital representation or "fingerprint"
 (Message Digest)
 - Fixed size output
 - > Change to a message produces different digest

Examples: MD5, Secure Hashing Algorithm (SHA)

Hash function -Properties

Consistency

Same input must produce the same message digest. No randomness

Uniqueness

© Computationally infeasible to identify two messages that will generate the same message digest

One way

© Computationally infeasible to identify the input given the message digest

Hash - Example

Message

Hi Jai,

I will be in the park at

3 pm

Veeru

Hi Jai,

I will be in the park at

8 pm

Veeru

cfa2ce53017030315fde705b9382d9f4

d4216ytf6b9385fe502b165dfe8cec17

Digests are Different

MD5 and SHA

Message

Hi Jai, I will be in the park at 3 pm Veeru

cfa2ce53017030315f de705b9382d9f4

128 Bits

Hi Jai, I will be in the park at 3 pm Veeru

160 Bits

Hi Jai, I will be in the park at 3 pm Veeru

2g5487f56r4etert654tr c5d5e8d5ex5gttahy55e

224/256/384/512

Example of Hash functions

- Also called as Secret Key Cryptography or Single Key Cryptography.
- Uses one key shared by both sender and receiver.
- This key is used for both encryption and decryption.
- Both parties have to agree on the key before start of the communication
- Encryption and Decryption is extremely fast comparing to asymmetric cryptography

Issues:

- Jai and Veeru must agree on the secret key without anyone else finding out
- Compromise of shared key leads to compromise of communication
- Secure Key Distribution and Scaling

What can be achieved using Symmetric Key?

- Confidentiality
- Integrity
- Authentication

What about Non-repudiation?

- Also called as Public Key Cryptography
- Uses a related key pair wherein one is Private key and another is Public key
 - One for encryption, another for decryption
- Knowledge of the *encryption* key doesn't give you knowledge of the *decryption* key
- A tool generates a related key pair (public & private key)
 - Publish the public key in a directory

Asymmetric Key

Public Key Pros and Cons

Weakness

-Extremely slow

Strength

-Solves problem of passing the key

Key Aspects

• Public key encryption; RSA

Misconceptions

- More secure
- Has made Symmetric encryption obsolete

Example Public Key

Datei Bearbeiten Ansicht Einfügen Format ?

----BEGIN PGP PUBLIC KEY BLOCK---Version: GnuPG v1.4.3-cvs (MingW32)

mQGiBEPE01ARBADP1bT8KfDJMjuOdLQrqqkO4zZb44sSEvyDj5BowpdBUnpXhymB UnvQSnqP2L4bzHjPsIV1WiWY1gers5vzPUkvCOb6SOx6QWK7Q8hK+fZKvtSBskoq KgcsAbMIwkAyVJbbxYPq/MbXavtANqbKZQ7MuFxn2WEZM3F6b7m6CWHIgwCgkpOP w8czwZLTI1LKRvNTIF9Lq5kEAI+nzPfkUq7YUDXCAbJAIn7GLjajhrKOMRxdYkxz rDWqF2jDiaHZ102bGW1M5bmnYhApjIfssFdnrcq4X/HqOR7PGBeCBxa24PCEE05L 3+oeny2xpiWSRarEP2900mXVLVqsSX+MAavaVBqfXJ4mqTBjn+fs3xo33MDRbpqI Sd/SBACRrxGsCUAJ29x4y/mZFicEenBeju2R9TINNQ1w33GbbFYgPzAZAk3wVU1R D78kHwDuuJqKJh8+e4bUddEKdNVUOOmkZaHA/SfJmI9okuoJ8nImYWCzrFQUEOM6 g6iLAFc2mAbRovV3dy4c1KZkGOK7h7GMJRLnaIsHasogGEjTarQpSGVpbnJpY2gg SGVpbmUqPGhlaW5yaWNoaEBkdWVzc2VsZG9yZi5kZT6IYAQTEQIAIAUCQ8TTUAIb IwYLCQqHAwIEFQIIAwQWAqMBAh4BAheAAAoJECqKerJJXJ+8yxUAn3+k5iEYKYbi QNc6vZmt4SGNPYkuAJ4ik2OhE2iUr8wf53fycE+MbIkubbkBDQRDxNNyEAQAmtgf 8s1F0i7GfRAo41JLuZttq15cffKbNCBnXQJXREwn1hFtYbp3xL2Po16B8vUne8RB 5USzzcZRR3i3Ieikn2OXNdUsIFKg2Ywj21/2Cecq23Mn0expmbpzZ9DnaKd7S49a vyFujFVQNn1Y4JFGRqOarWVWOf7aSfR7rK+iTw8AAwUEAIbsfdXIPbKVXy4vyDGf mnSGPgka/L6yWwrMn315SA8U+FqBohkgIzN8BCguqgcysejOmF+aOd+NydoC1PTT 8jzOR6QY7OXV5R/GcPE+O6UORLRzJBadoyEmD/G29VhHygqaCRyVxxAqIM4WnYTf +bJPMqtB+JnmX2apIYbGFAQDiEkEGBECAAkFAkPEO3ICGwwACqkQKop6sklcn7xO pACfUyuODaNmaLsOROGGCUE1mV+e8hAAmgK+xvYjsezXzJG9WSB3Xj46cd9F =J4dH

----END PGP PUBLIC KEY BLOCK----

Drücken Sie F1, um die Hilfe aufzurufen.

Public Key Encryption

= Private Key

Symmetric keys encrypt data; Public keys encrypt symmetric keys

Encrypt with Veeru's Public Key

Public-Key – Decryption

Decrypt with Veeru's Private Key

Public key and symmetric key cryptography are complementary technologies

References

- Cryptography and Network security principles and practice :
 William Stallings
- Applied Cryptography, Second Edition: Bruce Schneier
- www.certicom.com/index.php/ecc-turorial
- http://campustechnology.com/articles/39190_2
- http://csrc.nist.gov/
- Handbook of Applied Cryptography, by Menezes
- http://en.wikipedia.org
- Cryptographic Techniques for N/w Security

Thank You