Question	Données	Hypothèse nulle (H0)	Exemples	<u>Tests paramétriques</u> "Echantillons Appariés" (mêmes individus)	Conditions de validité (tests paramétriques)	<u>Tests non-paramétriques</u> "Echant. Non appariés"
Comparaison d'une moyenne observée avec une tendance théorique	mesures sur 1 échantillon ; moyenne théorique (1 chiffre)	moyenne observée = moyenne théorique	Comparaison à une norme d'un taux de pollution mesuré	Test t (<i>Student</i>) pour un échantillon	2	Test de Wilcoxon pour un échantillon
Comparaison de deux positions* observées (échantillons indépendants)	mesures sur 2 échantillons	Les positions* sont identiques	Comparaison de notes d'étudiants entre deux classes	Test t (Student) pour échantillons indépendants	1;3;5	Mann-Whitney
Comparaison de plusieurs positions* observées (échantillons indépendants)	mesures sur plusieurs échantillons	Les positions* sont identiques	Comparaison du rendement de maïs selon 4 engrais différents	ANOVA	1;3;4;6	Kruskal-Wallis
Comparaison de deux positions* observées (échantillons dépendants)	deux séries de mesures quanti sur les mêmes individus (avant-après)	Les positions* sont identiques	Comparaison du taux d'hémoglobine moyen avant / après l'application d'un traitmeent sur un groupe de patients	Test t (Student) pour échantillons appariés	10	Wilcoxon
Comparaison de plusieurs positions* observées (échantillons dépendants)	Plusieurs séries de mesures quanti sur les mêmes individus (avant-après)	Les positions* sont identiques	Suivi de la concentration d'un élément trace au cours du temps au sein d'un groupe de plantes	ANOVA à mesures répétées; modèles mixtes	10 ; Sphéricité	Friedman
Comparaison de plusieurs séries de mesures binaires (échantillons dépendants)	Plusieurs séries de mesures binaires sur les mêmes individus (avant-après)	Les positions* sont identiques	Différents juges évaluent la présence/l'absence d'un attribut sur différents produits			Test Q de Cochran
Comparaison de 2 variances (peut être utilisé pour tester condition 3)	Mesures sur deux échantillons	variance(1) = variance(2)	Comparaison de la dispersion naturelle de la taille de 2 variétés d'un fruit	Test de <i>Fisher</i>		
Comparaison de plusieurs variances (peut être utilisé pour tester condition 3)	Mesures sur plusieurs échantillons	variance(1) = variance(2) = variance(n)	Comparaison de la dispersion naturelle de la taille de plusieurs variétés d'un fruit	Test de <i>Levene</i> Test de <i>Bartlett</i>		
Comparaison d'une proportion observée avec une proportion théorique	une proportion observée ; son effectif associé ; une proportion théorique	proportion observée = proportion théorique	Comparaison de la proportion de femelles à une proportion de 0.5 dans un échantillon	Test pour une proportion (khi²)		
Comparaison de plusieurs proportions observées	Effectif de chaque catégorie	<pre>proportion(1) = proportion(2) = proportion(n)</pre>	Comparaison des proportions de 3 couleurs d'yeux dans un échantillon	khi²		
Comparaison de proportions observées à des proportions théoriques	Proportion théorique et effectif associés à chaque catégorie	proportions observées = proportions théoriques	Comparer les proportions de génotypes obtenus par croisement F1xF1 à des proportions mendéliennes (1/2, 1/4, 1/2)	Test d'ajustement multinomial		
Test d'association entre deux variables qualitatives	Tableau de contingence	variable 1 et variable 2 sont indépendantes	La présence d'un attribut est-elle liée à la présence d'un autre attribut?	khi² sur un tableau de contingence	1;9	Test exact de Fisher ; méthode de Monte Carlo
Test d'association entre deux variables quantitatives	mesures de deux variables sur un échantillon	variable 1 et variable 2 sont indépendantes	La biomasse de plante change-t-elle avec la concentration de Pb?	Corrélation de Pearson (& Neyman)	7;8	Corrélation de <i>Spearman</i>
Comparer une distribution observée à une distribution théorique	Mesures d'une variable quantitative sur un échantillon; paramètres de la distribution théorique	Les distributions observée et théorique sont les mêmes	Les salaires d'une société suivent-ils une distribution normale de moyenne 2500 et d'écart-type 150?			<i>Kolmogorov</i> -Smirnov
Comparer deux distributions observées	Mesures d'une variable quantitative sur deux échantillons	Les deux échantillons suivent la même distribution	Les distributions de poids humain sont-elles différentes entre ces deux régions?			Kolmogorov -Smirnov
Tests pour les valeurs extrêmes	Mesures sur un échantillon	L'échantillon ne comprend pas de valeur extrême (selon la distribution normale)	Cette donnée est-elle une valeur extrême?	Test de <i>Dixon</i> / test de <i>Grubbs</i>		Boxplot
Tests de normalité d'une série de mesures (peuvent être utilisés pour tester les conditions 2, 4, 7)	Mesures sur un échantillon	L'échantillon suit une distribution normale	La distribution observée s'écarte-t-elle d'une distribution normale?	Tests de normalité <i>Shapiro-Wilk</i>		

p de Fisher si pas de besoin de Décisions, et voir une souplesse sur l'interprétation de la valeur. Permet de nuancer l'analyse en fonction de p

Fonctionne si l'effectif sur lequel vous travaillez n'est pas trop petit (cad > quelques dizaines) et si les pourcentages ne sont pas trop proches de 0 ni de 100%.

Sinon appliquer le Test Exact de Fisher

Neyman et Pearson quand il va y avoir une prise de décision concrète et très importante à l'issue de l'expérience.

Conditions de validité des tests paramétriques

Les conditions de validité suggérées sont uniquement des pistes qui peuvent changer en fonction du type de données et des domaines d'application spécifiques. Il est vivement recommandé de se référer aux recommandations propres à vos domaines.

- 1) Les mesures sont indépendantes
- 2) La population ayant généré l'échantillon suit une distribution normale (supposer ou vérifier)
- Les échantillons ont des variances égales
- 4) Les résidus suivent une distribution normale (supposer or vérifier)
- 5) Au moins 20/(30 mooc fun) individus par échantillon, ou normalité des populations de chaque échantillon supposée ou vérifiée 6) Au moins 20/(30 mooc fun) individus dans le dispositif, ou normalité des résidus supposée ou vérifiée
- 7) Chaque variable suit une distribution normale
- 8) Au moins 20/(30 mooc fun) individus dans l'échantillon (recommandé)
- 9) Pas d'effectifs théoriques inférieurs à 5 dans les cases du tableau
- 10) Les différences entre séries suivent des distributions normales