problemset-1b.R

Aaryan Agarwal

2023-09-12

```
# This assignment is done in a group of three
# Prajwal Kaushal, Sumukha Sharma, Aaryan Agarwal
# Part a
#Question 1
data=read.csv("D:/Programs/Personal/MSDS/Machine Learning with stats data/Advertising.csv")
data[1:5,]
         TV Radio Newspaper Sales
## 1 1 230.1 37.8
                       69.2 22.1
## 2 2 44.5 39.3
                       45.1 10.4
## 3 3 17.2 45.9
                       69.3
                            9.3
## 4 4 151.5 41.3
                       58.5 18.5
## 5 5 180.8 10.8
                       58.4 12.9
#removing the first row as it is just the index
data=data[,2:5]
data[1:5,]
##
       TV Radio Newspaper Sales
## 1 230.1 37.8
                     69.2 22.1
                     45.1 10.4
## 2 44.5 39.3
## 3 17.2 45.9
                     69.3 9.3
## 4 151.5 41.3
                    58.5 18.5
## 5 180.8 10.8
                     58.4 12.9
#summary of data
summary(data)
##
         TV
                       Radio
                                      Newspaper
                                                        Sales
                    Min. : 0.000 Min. : 0.30
## Min. : 0.70
                                                    Min. : 1.60
## 1st Qu.: 74.38
                    1st Qu.: 9.975
                                   1st Qu.: 12.75
                                                     1st Qu.:10.38
## Median :149.75
                    Median :22.900
                                    Median : 25.75
                                                     Median :12.90
## Mean :147.04
                    Mean
                         :23.264
                                    Mean : 30.55
                                                     Mean :14.02
                                                     3rd Qu.:17.40
## 3rd Qu.:218.82
                    3rd Qu.:36.525
                                    3rd Qu.: 45.10
## Max.
         :296.40
                    Max. :49.600
                                    Max. :114.00
                                                           :27.00
                                                     Max.
#plotting the data
plot(data)
```

```
#Question 2
#Linear Regression between Sales and TV
model1=lm(Sales~TV, data = data)
summary(model1)
##
## Call:
## lm(formula = Sales ~ TV, data = data)
## Residuals:
##
      Min
               1Q Median
                               3Q
## -8.3860 -1.9545 -0.1913 2.0671 7.2124
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.032594
                         0.457843
                                    15.36
                                            <2e-16 ***
## TV
              0.047537
                         0.002691
                                    17.67
                                            <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.259 on 198 degrees of freedom
## Multiple R-squared: 0.6119, Adjusted R-squared: 0.6099
## F-statistic: 312.1 on 1 and 198 DF, p-value: < 2.2e-16
#R sq 0.609 is a good fir
#Linear Regression between Sales and Radio
model2=lm(Sales~Radio, data = data)
summary(model2)
##
## Call:
## lm(formula = Sales ~ Radio, data = data)
## Residuals:
       Min
                 10 Median
                                   3Q
                                           Max
## -15.7305 -2.1324 0.7707
                               2.7775
                                        8.1810
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.31164
                          0.56290 16.542
## Radio
                          0.02041
               0.20250
                                   9.921
                                            <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 4.275 on 198 degrees of freedom
## Multiple R-squared: 0.332, Adjusted R-squared: 0.3287
## F-statistic: 98.42 on 1 and 198 DF, p-value: < 2.2e-16
#R sq 0.328 is a avg fit
#Linear Regression between Sales and Newspaper
model3=lm(Sales~Newspaper, data = data)
summary(model3)
```

```
##
## Call:
## lm(formula = Sales ~ Newspaper, data = data)
## Residuals:
                 1Q Median
##
       \mathtt{Min}
                                   3Q
                                           Max
## -11.2272 -3.3873 -0.8392 3.5059 12.7751
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.35141
                          0.62142
                                   19.88 < 2e-16 ***
                                     3.30 0.00115 **
               0.05469
                          0.01658
## Newspaper
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
##
## Residual standard error: 5.092 on 198 degrees of freedom
## Multiple R-squared: 0.05212,
                                   Adjusted R-squared: 0.04733
## F-statistic: 10.89 on 1 and 198 DF, p-value: 0.001148
#R sq 0.047 is a bad fit
#Question 3
#Multiple Linear Regression
model4=lm(Sales~TV+Newspaper+Radio,data=data)
summary (model4)
##
## Call:
## lm(formula = Sales ~ TV + Newspaper + Radio, data = data)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
## -8.8277 -0.8908 0.2418 1.1893 2.8292
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 2.938889 0.311908 9.422 <2e-16 ***
               0.045765 0.001395 32.809
## TV
                                             <2e-16 ***
                          0.005871 -0.177
## Newspaper
              -0.001037
                                               0.86
## Radio
               0.188530
                          0.008611 21.893 <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 1.686 on 196 degrees of freedom
## Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956
## F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16
\#R sq 0.895 is a good fit
library(rgl)
```

library(car)

```
## Warning: package 'car' was built under R version 4.2.3
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.2.2
```

Loading required namespace: mgcv

scatter3d(Sales~TV+Radio,data=data)

Loading required namespace: MASS


```
#Question 4
# Multiple Regression with Interaction Term between TV and Radio
model5=lm(Sales ~ TV * Radio, data=data)
summary(model5)
```

```
##
## Call:
## lm(formula = Sales ~ TV * Radio, data = data)
```

```
##
## Residuals:
##
      Min
               1Q Median
                                      Max
## -6.3366 -0.4028 0.1831 0.5948 1.5246
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.750e+00 2.479e-01 27.233
                                             <2e-16 ***
## TV
              1.910e-02 1.504e-03 12.699
                                             <2e-16 ***
              2.886e-02 8.905e-03
## Radio
                                    3.241
                                             0.0014 **
## TV:Radio
            1.086e-03 5.242e-05 20.727
                                             <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.9435 on 196 degrees of freedom
## Multiple R-squared: 0.9678, Adjusted R-squared: 0.9673
## F-statistic: 1963 on 3 and 196 DF, p-value: < 2.2e-16
#R sq 0.967 is a very good fit
#Better fit than previous models
#Other Interaction terms
model6=lm(Sales ~ TV * Newspaper, data=data)
summary(model6)
##
## Call:
## lm(formula = Sales ~ TV * Newspaper, data = data)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -9.1860 -1.5521 -0.0648 1.8062 8.7276
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.4042175 0.7333818
                                      8.732 1.1e-15 ***
               0.0426585 0.0043105
                                      9.896
                                            < 2e-16 ***
## Newspaper
               0.0241103 0.0192716
                                      1.251
                                               0.212
## TV:Newspaper 0.0001324 0.0001079
                                      1.228
                                               0.221
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.117 on 196 degrees of freedom
## Multiple R-squared: 0.6485, Adjusted R-squared: 0.6432
## F-statistic: 120.6 on 3 and 196 DF, p-value: < 2.2e-16
#R sq 0.643 good fit
model7=lm(Sales ~ Radio * Newspaper, data=data)
summary(model7)
##
```

Call:

```
## lm(formula = Sales ~ Radio * Newspaper, data = data)
##
## Residuals:
##
       Min
                 1Q
                     Median
                                   3Q
                                           Max
## -15.6981 -2.1955
                      0.7567
                               2.7191
                                        8.2228
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   8.7904734 1.0224848
                                          8.597 2.58e-15 ***
## Radio
                   0.2145684 0.0382985
                                          5.603 7.08e-08 ***
## Newspaper
                   0.0220611 0.0345866
                                          0.638
                                                   0.524
## Radio:Newspaper -0.0005259 0.0010642 -0.494
                                                   0.622
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.292 on 196 degrees of freedom
## Multiple R-squared: 0.3335, Adjusted R-squared: 0.3233
## F-statistic: 32.7 on 3 and 196 DF, p-value: < 2.2e-16
#R sq 0.33 avg fit
model8=lm(Sales ~ TV * Radio * Newspaper, data=data)
summary(model8)
##
## Call:
## lm(formula = Sales ~ TV * Radio * Newspaper, data = data)
## Residuals:
               1Q Median
                               3Q
## -5.8955 -0.3883 0.1938 0.5865 1.5240
##
## Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
                      6.556e+00 4.655e-01 14.083 < 2e-16 ***
## (Intercept)
## TV
                      1.971e-02 2.719e-03
                                            7.250 9.95e-12 ***
## Radio
                      1.962e-02 1.639e-02
                                            1.197
                                                      0.233
## Newspaper
                      1.311e-02 1.721e-02
                                           0.761
                                                      0.447
## TV:Radio
                      1.162e-03 9.753e-05 11.909 < 2e-16 ***
                                           -0.595
## TV:Newspaper
                     -5.545e-05 9.326e-05
                                                      0.553
## Radio:Newspaper
                      9.063e-06 4.831e-04
                                            0.019
                                                      0.985
                                                      0.778
## TV:Radio:Newspaper -7.610e-07 2.700e-06 -0.282
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.9406 on 192 degrees of freedom
## Multiple R-squared: 0.9686, Adjusted R-squared: 0.9675
## F-statistic: 847.3 on 7 and 192 DF, p-value: < 2.2e-16
#R sq 0.967 is a very good fit
#Question 5
#Linear Regression between Sales and (TV+Radio+TV:Radio)
```

```
model9=lm(Sales ~ TV + Radio + TV:Radio , data=data)
summary(model9)
##
## Call:
## lm(formula = Sales ~ TV + Radio + TV:Radio, data = data)
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -6.3366 -0.4028 0.1831 0.5948 1.5246
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.750e+00 2.479e-01 27.233
                                            <2e-16 ***
## TV
             1.910e-02 1.504e-03 12.699 <2e-16 ***
             2.886e-02 8.905e-03 3.241
## Radio
                                             0.0014 **
## TV:Radio 1.086e-03 5.242e-05 20.727 <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9435 on 196 degrees of freedom
## Multiple R-squared: 0.9678, Adjusted R-squared: 0.9673
## F-statistic: 1963 on 3 and 196 DF, p-value: < 2.2e-16
beta1=coef(model9)["TV"]
beta1
##
## 0.01910107
beta2=coef(model9)["Radio"]
beta2
##
       Radio
## 0.02886034
beta3=coef(model9)["TV:Radio"]
beta3
##
     TV:Radio
## 0.001086495
# optimal values of TV and Radio
newTV=(beta1-beta2+300*beta3)/(2*beta3)
newTV
##
        TV
## 145.5088
```

```
newRadio=300-newTV
newRadio
## 154.4912
newdata=data.frame(TV=newTV, Radio=newRadio)
##
          TV
               Radio
## TV 145.5088 154.4912
#optimal sales
newSales=predict(model9,newdata = newdata)
newSales
##
       TV
## 38.41248
#confidence interval for the prediction
ci=predict(model9, newdata=newdata, interval="confidence")
         fit.
                 lwr
## TV 38.41248 37.23716 39.5878
# Part B
# What is the goal of Machine Learning?
# Machine learning specialists are often primarily concerned with developing
# high-performance computer systems that can provide useful predictions in the
# presence of challenging computational constraints.
# It offers a set of tools that can usefully summarize various sorts
# of nonlinear relationships in the data.
# The goal of machine learning is typically to achieve good out-of-sample predictions.
# In other words, the aim is to build models that perform well on new, unseen data,
# rather than just on the data they were trained on.
# What does Varian mean by "good out-of-sample predictions"?
# "Good out-of-sample predictions" refers to the ability of a model to generalize
# well to new data that it hasn't seen before (data that was not used in training the model).
# A model that makes accurate predictions on new data has good out-of-sample performance
# What is overfitting?
# Overfitting occurs when a model is too complex and fits the training data too closely,
# capturing even its noise. Such a model will perform poorly on new, unseen data
# because it has become too tailored to the training set.
```

What is model complexity?

Model complexity refers to the number of parameters in a model or the intricacy of its structure.

A more complex model might fit the training data very well but may not generalize well to new

data, leading to overfitting. Varian suggests that if we have a numeric measure of model complexity,

we can view it as a parameter that can be adjusted or "tuned" to achieve the best out-of-sample # predictions.

What is the training data?

Training data is used to estimate or train a model. In the process of building a model,

data is typically split into training, validation, and testing sets.

The model is trained on the training data, the best model structure or hyperparameters are

chosen using the validation data, and the model's performance is evaluated on the testing data.