## 厦门大学《微积分 III-2》课程期末试卷

试卷类型: (经管类 A 卷) 考试日期 2016.6.15



1. 计算 $\int_L xy dx$ ,其中L为抛物线 $y^2 = x$ 从点A(1,-1)到B(1,1)的一段弧。

| 得分  |  |
|-----|--|
| 评阅人 |  |

2. 计算 $\int_{\Gamma} (x^2 + 2y^2) ds$ , 其中曲线 $\Gamma$ 为球面 $x^2 + y^2 + z^2 = a^2$ 被平面z = y所載得的圆周(a > 0)。

二、解答题 (每小题 7分, 共 14分):

1. 判断级数  $\sum_{n=1}^{\infty} \frac{1}{[\ln(n+1)]^n}$  的敛散性。

| 得分  |  |
|-----|--|
| 评阅人 |  |

2. 已知  $y_1 = xe^x + e^{2x}$ ,  $y_2 = xe^x - e^{-x}$ ,  $y_3 = xe^x - e^{-x} + e^{2x}$  是某二阶线性非齐次微分方程的三个特解,请写出此微分方程的通解。

| 得 分 |  |
|-----|--|
| 评阅人 |  |

四、求无穷级数  $\sum_{n=1}^{\infty} (-1)^n n(n+1)x^n$  的和函数,并指出其收敛域。(10 分)

| 得 分 |  |
|-----|--|
| 评阅人 |  |

五、求下列方程的通解: (每小题 8 分, 共 16 分)

1. 求差分方程  $y_{t+1} - y_t = (t+1) \cdot 3^t + 6$  的通解。

| 得 分 |  |
|-----|--|
| 评阅人 |  |

2. 求微分方程 $(y^3-4x)y'+2y=0$ 的通解。

六、将函数  $f(x) = \arctan \frac{1-2x}{1+2x}$  展开成 x 的幂级数, 指出其收敛域, 并求  $\sum_{n=1}^{\infty} \frac{(-1)^n}{2x+1}$  的和。(10 分)

| $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1}$ | 的和。 | (10分) |
|-------------------------------------------|-----|-------|
|-------------------------------------------|-----|-------|

| 得 分 |  |
|-----|--|
| 评阅人 |  |

七、设 f(x) 具有二阶连续导数,已知  $\left[x^2 - f(x)\right]y dx + \left[f'(x) + x\right] dy = 0$  为一阶全微分方程,且 f(0) = 0, f'(0) = 1,求 f(x) 及此全微分方程的 通解。(12 分)

| 得 分 |  |
|-----|--|
| 评阅人 |  |

八、已知 $u_n>0$ , $\alpha>0$ ,且  $\lim_{n\to\infty}n^\alpha[\ln(1+n)-\ln n]u_n=3$ ,试讨论级数  $\sum_{n=1}^\infty u_n$ 的敛散性。(10 分)

| 得 分 |  |
|-----|--|
| 评阅人 |  |

九、求极限  $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{3^k} \left( 1 + \frac{1}{k} \right)^{k^2}$  。(6 分)

| 得   | 分 |  |
|-----|---|--|
| 评阅人 |   |  |