

#### Trường Đại học Công nghệ Thông tin





ACL 2021

#### **Natural language processing**

# DefSent: Sentence Embeddings using Definition Sentences

Hayato Tsukagoshi, Ryohei Sasano, Koichi Takeda

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing



Instructor Mas. Nguyễn Thị Quý







Method

**Experiment** 

Conclusion









Method

**Experiment** 

Conclusion





## What is sentence embedding



• Sentence embedding represent sentences as dense vectors in low

dimensional space.

Semantic vector space

The school children head home.

Children going home from school.

The children are at the library.

The children are walking in the afternoon.





#### Introduction



- Sentence embedding methods using natural language inference (NLI) datasets have been successfully applied to various tasks.
- These methods are only available for limited languages due to relying heavily on the large NLI datasets
- In this paper, They propose **DefSent**, a sentence embedding method that uses definition sentences from a word dictionary
- → This have more applicable uses





### **NLI** dataset





a: Jon walked back to the town to the smithy.

b: Jon traveled back to his hometown.

Contradicts

a: Tourist Information offices can be very helpful.

b: Tourist Information offices are never of any help.

Entails

a: I'm confused.

b: Not all of it is very clear to me.









Sentence-BERT (left) and DefSent (right).

NLP





#### Introduction



## 日本語から

「有休はいつ取るの?」。上司からこんな質問をされる場面が今後、増えてきそうだ。今国会で、年5日分の有給休暇の取得を義務化する労働基準法改正案が提出されたためだ。成立すれば、来年4月に施行される。休みをスムーズに取るには、どんな"働き方改革"が求められるのだろうか。

六花亭製菓(北海道帯広市)の流通部門のリーダー 村部千鶴子さん(49)は毎年、有休を使って旅行 出かけている。村部さんは「みんな気兼ねなくリフ ッシュしている」と話す。

同社の取得率は1989年度以降、25年連続で1 00%だ。その秘訣(ひけつ)を、同社の小田豊社長 は「経営の姿勢を変えたこと」だと強調する。きっか けは、80年代、休みが取りづらい職場で難職者が相 次ぎ、規模拡大の先行きにも限りがみえたこと。「社 員が健康でなければ、おいしいお菓子はできないとい う原点に立ち返った」と小田社長は振り返る。

## To English

"When are you taking your paid vacation?"

It seems soon more will be getting asked this question by their bosses. The reason being, during the current Diet session, a proposal was made to reform the Labor Standards Act to require workers to take 5 paid holidays a year. If it passes, it'll go into effect April of next year. What kind of "work reform" are they asking for workers to easily take vacations?

Chizuko Murabe (49) oversees distribution for Rokkakei fectionery (Obihiro, Hokkaido). Every year she uses paid vacation and goes on a trip. "Everyone is refreshed and not stressed out," says Murabe.

For 25 years straight at this company, 100% of employees have taken paid vacations. The company president, Yutaka Oda, emphasizes that the secret was a "change in management's attitude." It stemmed from the 80s when it was difficult to take a vacation, leading to employees retiring. Management saw how this limited future expansion. "It all comes back to the fact that if my employees aren't healthy, they can't make good candy," reflects Oda.









Method

**Experiment** 

Conclusion



26/06/2023







Figure 1: The Transformer - model architecture.

- BERT stand for: Bidirectional Encoder Representation from Transformer
- Transformers are made up of stacks of transformer blocks
- Simple linear layers feedforward networks, and self-attention layers

X

NLP







Figure 1: The Transformer - model architecture.

- BERT stand for: Bidirectional Encoder Representation from Transformer
- Transformers are made up of stacks of transformer blocks
- Simple linear layers feedforward networks, and self-attention layers



NLP







Figure 1: The Transformer - model architecture.

- BERT stand for: Bidirectional Encoder Representation from Transformer
- Transformers are made up of stacks of transformer blocks
- Simple linear layers feedforward networks, and self-attention layers

X

NLP







Figure 1: The Transformer - model architecture.

- BERT stand for: Bidirectional Encoder Representation from Transformer
- Transformers are made up of stacks of transformer blocks
- Simple linear layers feedforward networks, and self-attention layers

X

NLP





14



Figure 1: The Transformer - model architecture.



NLP



26/06/2023







Figure 1: The Transformer - model architecture.

26/06/2023

15



## **Transformer**





NLP





## **Self- Attention**







Backward-looking self-attention model

Bidirectional self-attention model

Compare with LSTMs : Can scalable, run paralel ightarrow Reduce time and utilize computation



## Masked Language Model



- Masked Language Modeling (MLM): learns to perform a fill-in-the-blank task, technically called the cloze task
- In BERT, 15% of the input tokens in a training sequence are sampled for learning







## **Masked Language Model**





26/06/2023



## RoBERTa



- 1. Training the model longer, with bigger batches, over more data;
- 2. Removing the next sentence prediction objective;
- 3. Training on longer sequences
- 4. Dynamically changing the masking pattern applied to the training data.





## **DefSent**











Method

**Experiment** 

Conclusion



26/06/2023



## Word prediction



## Oxford Dictionary dataset from <u>Learning to Describe</u> Unknown Phrases with Local and Global Contexts

Shonosuke Ishiwatari, Hiroaki Hayashi, Naoki Yoshinaga, Graham Neubig, Shoetsu Sato, Masashi Toyoda, Masaru Kitsuregawa NAACL 2019

| All               | Words  | Definitions | Avg. length |
|-------------------|--------|-------------|-------------|
| Train             | 29,413 | 97,759      | 9.921       |
| Dev               | 3,677  | 12,127      | 9.874       |
| Test              | 3,677  | 12,433      | 9.846       |
| In BERT vocab.    | Words  | Definitions | Avg. length |
| Train             | 7,732  | 54,142      | 9.531       |
| Dev               | 936    | 6,544       | 9.512       |
| Test              | 979    | 6,930       | 9.551       |
| In RoBERTa vocab. | Words  | Definitions | Avg. length |
| Train             | 7,269  | 53,935      | 9.376       |
| Dev               | 901    | 6,625       | 9.372       |
| Test              | 925    | 6,945       | 9.41        |





# **Word prediction**





| Model            | Pooling | MRR   | Top1   | Top3  | Top10            |
|------------------|---------|-------|--------|-------|------------------|
| BERT-base        | CLS     | .0009 | .0000. | .0000 | $\frac{1}{0000}$ |
| (no fine-tuning) | Mean    | .0132 | .0001  | .0043 | .0242            |
|                  | Max     | .0327 | .0157  | .0320 | .0626            |
| BERT-base        | CLS     | .3200 | .2079  | .3670 | .5418            |
|                  | Mean    | .3091 | .1972  | .3524 | .5356            |
|                  | Max     | .2939 | .1840  | .3350 | .5207            |
| BERT-large       | CLS     | .3587 | .2388  | .4139 | .6011            |
|                  | Mean    | .3286 | .2091  | .3792 | .5723            |
|                  | Max     | .2925 | .1814  | .3356 | .5194            |
| RoBERTa-base     | CLS     | .3436 | .2241  | .3983 | .5836            |
|                  | Mean    | .3365 | .2170  | .3906 | .5783            |
|                  | Max     | .3072 | .1941  | .3523 | .5386            |
| RoBERTa-large    | CLS     | .3863 | .2611  | .4460 | .6364            |
|                  | Mean    | .3995 | .2699  | .4634 | .6599            |
|                  | Max     | .3175 | .2015  | .3646 | .5543            |

|  | 0.299 | 0.202 | 0.356 | 0.528 |
|--|-------|-------|-------|-------|
|--|-------|-------|-------|-------|

| 0.317 0.217 | 0.374 | 0.560 |
|-------------|-------|-------|
|-------------|-------|-------|









| Model                                           | STS12 | STS13 | STS14 | STS15 | STS16 | STS-B | SICK-R | Avg.  |
|-------------------------------------------------|-------|-------|-------|-------|-------|-------|--------|-------|
| Avg. GloVe embeddings (Pennington et al., 2014) | 55.14 | 70.66 | 59.73 | 68.25 | 63.66 | 58.02 | 53.76  | 61.32 |
| Avg. BERT embeddings                            | 38.78 | 57.98 | 57.98 | 63.15 | 61.06 | 46.35 | 58.40  | 54.81 |
| BERT CLS-vector                                 | 20.16 | 30.01 | 20.09 | 36.88 | 38.08 | 16.50 | 42.63  | 29.19 |
| InferSent - Glove (Conneau et al., 2017)        | 52.86 | 66.75 | 62.15 | 72.77 | 66.87 | 68.03 | 65.65  | 65.01 |
| Universal Sentence Encoder (Cer et al., 2018)   | 64.49 | 67.80 | 64.61 | 76.83 | 73.18 | 74.92 | 76.69  | 71.22 |
| Sentence-BERT-base (Mean)                       | 70.97 | 76.53 | 73.19 | 79.09 | 74.30 | 77.03 | 72.91  | 74.89 |
| Sentence-BERT-large (Mean)                      | 72.27 | 78.46 | 74.90 | 80.99 | 76.25 | 79.23 | 73.75  | 76.55 |
| Sentence-RoBERTa-base (Mean)                    | 71.54 | 72.49 | 70.80 | 78.74 | 73.69 | 77.77 | 74.46  | 74.21 |
| Sentence-RoBERTa-large (Mean)                   | 74.53 | 77.00 | 73.18 | 81.85 | 76.82 | 79.10 | 74.29  | 76.68 |
| DefSent-BERT-base (CLS)                         | 67.56 | 79.86 | 69.52 | 76.83 | 76.61 | 75.57 | 73.05  | 74.14 |
| DefSent-BERT-large (CLS)                        | 66.22 | 82.07 | 71.48 | 79.34 | 75.38 | 73.46 | 74.30  | 74.61 |
| DefSent-RoBERTa-base (CLS)                      | 65.55 | 80.84 | 71.87 | 78.77 | 79.29 | 78.13 | 74.92  | 75.62 |
| DefSent-RoBERTa-large (Mean)                    | 58.36 | 76.24 | 69.55 | 73.15 | 76.90 | 78.53 | 73.81  | 72.36 |









| sts12  | sts13  | sts14  | sts15  | sts16  | stsB   | sickR  | avg mode |
|--------|--------|--------|--------|--------|--------|--------|----------|
| 66.448 | 79.946 | 68.042 | 76.941 | 75.009 | 76.743 | 71.589 | 73.531   |
| 65.996 | 82.346 | 72.274 | 78.666 | 75.315 | 78.881 | 70.791 | 74.896   |
| 63.519 | 81.728 | 71.966 | 78.216 | 74.727 | 77.722 | 70.644 | 74.075   |
| 64.446 | 82.001 | 69.375 | 80.390 | 74.265 | 75.214 | 72.743 | 74.062   |
| 60.849 | 82.076 | 73.009 | 80.055 | 76.625 | 79.514 | 73.213 | 75.049   |
| 57.379 | 80.675 | 72.122 | 77.572 | 74.722 | 77.552 | 71.989 | 73.144   |
| 66.431 | 80.958 | 71.950 | 80.120 | 78.598 | 80.348 | 74.349 | 76.108   |
| 59.968 | 77.366 | 68.844 | 76.478 | 76.815 | 78.992 | 72.453 | 72.988   |
| 63.560 | 77.626 | 68.012 | 77.534 | 78.222 | 80.356 | 73.770 | 74.154   |
| 64.413 | 79.298 | 72.893 | 75.870 | 76.984 | 80.204 | 74.776 | 74.920   |
| 54.017 | 70.686 | 66.853 | 73.120 | 73.636 | 80.527 | 73.906 | 70.392   |
| 61.099 | 79.687 | 71.361 | 76.857 | 78.685 | 80.693 | 72.933 | 74.473   |







Comparision between my exprimental and paper's exprimental on sts12 dataset.







Comparision between my exprimental and paper's exprimental on sts13 dataset.







Comparision between my exprimental and paper's exprimental on sts16 dataset.







Comparision between my exprimental and paper's exprimental on stsB dataset.







Comparision between my exprimental and paper's exprimental on sickR dataset.







Comparision between my exprimental and paper's exprimental on avg dataset.







|  | _/ |
|--|----|
|  |    |
|  |    |
|  | \  |
|  | \  |

| Task   | Туре                            | #train | #test | needs_train | set_classifier |
|--------|---------------------------------|--------|-------|-------------|----------------|
| MR     | movie review                    | 11k    | 11k   | 1           | 1              |
| CR     | product review                  | 4k     | 4k    | 1           | 1              |
| SUBJ   | subjectivity status             | 10k    | 10k   | 1           | 1              |
| MPQA   | opinion-polarity                | 11k    | 11k   | 1           | 1              |
| SST    | binary sentiment analysis       | 67k    | 1.8k  | 1           | 1              |
|        |                                 |        |       |             |                |
| SST    | fine-grained sentiment analysis | 8.5k   | 2.2k  | 1           | 1              |
| TREC   | question-type classification    | 6k     | 0.5k  | 1           | 1              |
|        |                                 |        |       |             |                |
| SICK-E | natural language inference      | 4.5k   | 4.9k  | 1           | 1              |
| SNLI   | natural language inference      | 550k   | 9.8k  | 1           | 1              |
| MRPC   | paraphrase detection            | 4.1k   | 1.7k  | 1           | 1              |





|    | $\overline{}$ |
|----|---------------|
| _/ |               |
|    | \             |
|    | • ,           |

| Model                        | MR    | CR    | SUBJ  | MPQA  | SST-2 | TREC  | MRPC  | Avg.  |
|------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Avg. GloVe embeddings        | 77.25 | 78.30 | 91.17 | 87.85 | 80.18 | 83.00 | 72.87 | 81.52 |
| Avg. BERT embeddings         | 78.66 | 86.25 | 94.37 | 88.66 | 84.40 | 92.80 | 69.45 | 84.94 |
| BERT CLS-vector              | 78.68 | 84.85 | 94.21 | 88.23 | 84.13 | 91.40 | 71.13 | 84.66 |
| InferSent - GloVe            | 81.57 | 86.54 | 92.50 | 90.38 | 84.18 | 88.20 | 75.77 | 85.59 |
| Universal Sentence Encoder   | 80.09 | 85.19 | 93.98 | 86.70 | 86.38 | 93.20 | 70.14 | 85.10 |
| Sentence-BERT-base (Mean)    | 83.64 | 89.43 | 94.39 | 89.86 | 88.96 | 89.60 | 76.00 | 87.41 |
| Sentence-BERT-large (Mean)   | 84.88 | 90.07 | 94.52 | 90.33 | 90.66 | 87.40 | 75.94 | 87.69 |
| DefSent-BERT-base (CLS)      | 80.94 | 87.57 | 94.59 | 89.98 | 85.78 | 89.73 | 73.82 | 86.06 |
| DefSent-BERT-large (CLS)     | 85.79 | 90.54 | 95.58 | 90.15 | 91.17 | 90.47 | 73.74 | 88.20 |
| DefSent-RoBERTa-base (CLS)   | 83.94 | 90.44 | 94.05 | 90.70 | 89.16 | 90.80 | 75.52 | 87.80 |
| DefSent-RoBERTa-large (Mean) | 86.47 | 91.53 | 95.02 | 91.15 | 90.77 | 92.33 | 73.91 | 88.74 |



Paper experiment







| model                           | MR_acc | CR_acc | SUBJ_acc | MPQA_acc | SST2_acc | TREC_acc | MRPC_acc | SICKEntailment_acc | avg_acc  |
|---------------------------------|--------|--------|----------|----------|----------|----------|----------|--------------------|----------|
| defsent-bert-base-uncased-cls   | 80.64  | 86.6   | 93.78    | 89.37    | 85.45    | 84.2     | 72.93    | 81.14              | 84.26375 |
| defsent-bert-base-uncased-mean  | 81.53  | 87.31  | 94.37    | 89.68    | 86.16    | 88.8     | 75.77    | 82.61              | 85.77875 |
| defsent-bert-base-uncased-max   | 80.5   | 86.49  | 94.03    | 89.73    | 85.56    | 85.8     | 73.33    | 82.24              | 84.71    |
| defsent-bert-large-uncased-cls  | 85.24  | 90.09  | 95.06    | 89.7     | 90.55    | 91       | 73.62    | 81.73              | 87.12375 |
| defsent-bert-large-uncased-mean | 84.39  | 88.95  | 94.8     | 89.86    | 89.95    | 87.8     | 74.61    | 78.91              | 86.15875 |
| defsent-bert-large-uncased-max  | 83.08  | 88.93  | 93.56    | 89.74    | 87.31    | 84.6     | 76.17    | 81.73              | 85.64    |
| defsent-roberta-base-cls        | 83.55  | 88.79  | 92.91    | 90.54    | 89.95    | 87.6     | 74.9     | 81.57              | 86.22625 |
| defsent-roberta-base-mean       | 84.16  | 89.46  | 93.88    | 90.07    | 89.9     | 88.6     | 75.88    | 81.69              | 86.705   |
| defsent-roberta-base-max        | 83.79  | 88.85  | 93.29    | 90.45    | 89.46    | 92       | 77.91    | 82.59              | 87.2925  |
| defsent-roberta-large-cls       | 84.45  | 89.09  | 94.31    | 90.91    | 90.06    | 93.6     | 72.87    | 82.32              | 87.20125 |
| defsent-roberta-large-mean      | 85.03  | 90.81  | 94.71    | 90.9     | 90.06    | 92.8     | 73.33    | 80.82              | 87.3075  |
| defsent-roberta-large-max       | 84.36  | 90.38  | 93.84    | 91.04    | 89.13    | 86.8     | 76.75    | 82.57              | 86.85875 |

My experiment











# Link(Repo)





# **Github**



26/06/2023







# Cảm ơn mọi người đã lắng nghe

