Problem Set #2, Set 2

Charlie Walker

Exercise 1

Take any $w, w' \in \mathcal{C}, x \in \mathbb{R}$.

$$\begin{split} |Uw(x) - Uw'(x)| & \leq \rho \sup_{U} |\int \{w[F(x, u, z)] - w'[F(x, u, z)]\} \Phi(dz)| \\ & \leq \rho \sup_{U} \int |w[F(x, u, z)] - w'[F(x, u, z)]| \Phi(dz)| \\ & \leq \rho \sup_{U} \int \|w - w'\| \Phi(dz) \\ & = \rho \|w - w'\| \end{split}$$

Taking the sup over x finishes the proof $\Longrightarrow U$ is a contraction mapping. Banach's Fixed Point Theorem implies that U has one and only one fixed point w^* . There exists a policy function $\sigma \in \Sigma$ satisfying $Uw^* = U_{\sigma}w^*$. For this policy we have $w^* = Uw^* = U_{\sigma}w^*$. But, v_{σ} is the only fixed point of U_{σ} , so $w^* = v_{\sigma} \Longrightarrow w^* \leq v^*$, since $v_{\sigma} \leq v^*$, $\forall \sigma \in \Sigma$. v_{σ} is thus the unique fixed point of U in \mathscr{C} .

Exercise 2

See exercises2.ipny for solutions.