TD 2: Research Design ECO 567A

Geoffrey Barrows¹

¹CREST, CNRS, Ecole polytechnique, Université Paris-Saclay

Jan 17, 2024

► Start from linear model:

$$y = X\theta + \varepsilon$$

► Start from linear model:

$$y = X\theta + \varepsilon$$

$$\varepsilon | X \sim \mathcal{N}\left(0, \sigma^2 I\right)$$

Start from linear model:

$$y = X\theta + \varepsilon$$

$$\varepsilon | X \sim \mathcal{N} \left(0, \sigma^2 I \right)$$

- ▶ Zero conditional expectation: On average, X is not informative about error term
- ► Homoskedasticity: Error term has the same variance for all individuals

Start from linear model:

$$y = X\theta + \varepsilon$$

$$\varepsilon | X \sim \mathcal{N} \left(0, \sigma^2 I \right)$$

- ► Zero conditional expectation: On average, X is not informative about error term
- ► Homoskedasticity: Error term has the same variance for all individuals
- ▶ Then, sampling distribution of the OLS estimator:

$$\hat{ heta}_{OLS} \sim \mathcal{N}\left(heta, \sigma^2 \left(X'X
ight)^{-1}
ight)$$

Start from linear model:

$$y = X\theta + \varepsilon$$

$$\varepsilon | X \sim \mathcal{N}\left(0, \sigma^2 I\right)$$

- ► Zero conditional expectation: On average, X is not informative about error term
- ► Homoskedasticity: Error term has the same variance for all individuals
- Then, sampling distribution of the OLS estimator:

$$\hat{\theta}_{OLS} \sim \mathcal{N}\left(\theta, \sigma^2 \left(X'X\right)^{-1}\right)$$

- Unbiasedness: Expectation of the sampling distribution is the true value
- ▶ Effiency: OLS has the smallest variance among unbiased linear estimators

$$se\left(\hat{ heta}_{OLS}
ight) = \sqrt{rac{e'e}{n-k}\left(X'X
ight)^{-1}}$$

$$se\left(\hat{\theta}_{OLS}\right) = \sqrt{\frac{e'e}{n-k}\left(X'X\right)^{-1}}$$

- ► Empirical residuals: $e = y X\hat{\theta}_{OLS}$
- **Degrees** of freedom: $k = \text{Number of parameters estimated in } \hat{\theta}_{OLS}$

$$se\left(\hat{\theta}_{OLS}\right) = \sqrt{\frac{e'e}{n-k}\left(X'X\right)^{-1}}$$

- Empirical residuals: $e = y X\hat{\theta}_{OLS}$
- **Degrees** of freedom: $k = \text{Number of parameters estimated in } \hat{\theta}_{OLS}$
- ▶ Then, sampling distribution of the t-statistic: $\frac{\hat{\theta}_{OLS} \theta}{se(\hat{\theta}_{OLS})} \sim \text{Student t}$

$$se\left(\hat{\theta}_{OLS}\right) = \sqrt{\frac{e'e}{n-k}\left(X'X\right)^{-1}}$$

- Empirical residuals: $e = y X\hat{\theta}_{OLS}$
- **Degrees of freedom**: $k = \text{Number of parameters estimated in } \hat{\theta}_{OLS}$
- ► Then, sampling distribution of the t-statistic: $\frac{\hat{\theta}_{OLS} \theta}{se(\hat{\theta}_{OLS})} \sim \text{Student t}$

► This allows hypothesis testing:

$$H0: \theta = \theta_0 \text{ vs. } H1: \left\{ egin{array}{ll} \theta > \theta_0 & (i) \\ \theta < \theta_0 & (ii) \end{array}
ight.$$

► This allows hypothesis testing:

$$H0: \theta = \theta_0 \text{ vs. } H1: \left\{ egin{array}{ll} \theta > \theta_0 & (i) \\ \theta < \theta_0 & (ii) \end{array} \right.$$

▶ Under H1 (i): t-statistic is too large; under H1 (i): t-statistic is too small

► This allows hypothesis testing:

$$H0: \theta = \theta_0 \text{ vs. } H1: \left\{ egin{array}{ll} \theta > \theta_0 & (i) \\ \theta < \theta_0 & (ii) \end{array}
ight.$$

- ▶ Under H1 (i): t-statistic is too large; under H1 (i): t-statistic is too small
- Choose a confidence level, say 95%, and then:

► E.g., if $\frac{\hat{\theta}_{OLS} - \theta_0}{\sec(\hat{\theta}_{OLS})} > t_{0.025}$, accept H1(i) and reject H0

► This allows hypothesis testing:

$$H0: \theta = \theta_0 \text{ vs. } H1: \left\{ egin{array}{ll} \theta > \theta_0 & (i) \\ \theta < \theta_0 & (ii) \end{array}
ight.$$

- ▶ Under H1 (i): t-statistic is too large; under H1 (i): t-statistic is too small
- Choose a confidence level, say 95%, and then:

- ► E.g., if $\frac{\hat{\theta}_{OLS} \theta_0}{\text{se}(\hat{\theta}_{OLS})} > t_{0.025}$, accept H1 (i) and reject H0
- ▶ 95% confidence interval: $(\hat{\theta}_{OLS} \pm t_{.025} * se(\hat{\theta}_{ols}))$

But...

► Can we assume by default?

$$\varepsilon | X \sim \mathcal{N}\left(0, \sigma^2 I\right)$$

▶ Or more generally, can we assume?

$$E(\varepsilon|X)=0$$

► Today: (i) why we need a **research design** and (ii) how it could look like

Outline

```
When Do We Have E\left[\varepsilon|X\right] \neq 0?
Omitted Variable Bias
Reverse Causality / Simultaneity
In the Potential Outcome Framework
```

What Happens When $E[\varepsilon|X] \neq 0$?

What To Do When $E[\varepsilon|X] \neq 0$? Instrumental Variables Randomized Control Trials (RCTs) Fixed Effects Difference-in-Differences

Review Question

When Do We Have $E[\varepsilon|X] \neq 0$?

When Do We Have $E[\varepsilon|X] \neq 0$?

Omitted Variable Bias

First category of issues: Omitted variable bias

- First category of issues: Omitted variable bias
- ► Imagine we posit the following model:

$$y_i = \alpha + \beta x_i + u_i$$

Where y stands for income and x for education

- First category of issues: Omitted variable bias
- ► Imagine we posit the following model:

$$y_i = \alpha + \beta x_i + u_i$$

Where y stands for income and x for education

▶ And, by doing so, we "forget" about parents' education z:

$$\begin{cases} u_i &= \gamma z_i + \epsilon_i \\ x_i &= \lambda + \mu z_i + \eta_i \end{cases}$$

- First category of issues: Omitted variable bias
- Imagine we posit the following model:

$$y_i = \alpha + \beta x_i + u_i$$

Where y stands for income and x for education

▶ And, by doing so, we "forget" about parents' education *z*:

$$\begin{cases} u_i &= \gamma z_i + \epsilon_i \\ x_i &= \lambda + \mu z_i + \eta_i \end{cases}$$

- Parents' education directly affects income: Better professional network, etc.
- Parents' education also affects child's education: Role model, information, etc.

$$\mathrm{Cov}(x_i,u_i) = \mathrm{Cov}(\lambda + \mu z_i + \eta_i, \gamma z_i + \epsilon_i)$$

$$Cov(x_i, u_i) = Cov(\lambda + \mu z_i + \eta_i, \gamma z_i + \epsilon_i)$$

= $\mu \gamma Cov(z_i, z_i) + \mu Cov(z_i, \epsilon_i) + \gamma Cov(\eta_i, z_i) + Cov(\eta_i, \epsilon_i)$

$$Cov(x_i, u_i) = Cov(\lambda + \mu z_i + \eta_i, \gamma z_i + \epsilon_i)$$

= $\mu \gamma Cov(z_i, z_i) + \mu Cov(z_i, \epsilon_i) + \gamma Cov(\eta_i, z_i) + Cov(\eta_i, \epsilon_i)$
= $\mu \gamma Cov(z_i, z_i)$

$$Cov(x_i, u_i) = Cov(\lambda + \mu z_i + \eta_i, \gamma z_i + \epsilon_i)$$

$$= \mu \gamma Cov(z_i, z_i) + \mu Cov(z_i, \epsilon_i) + \gamma Cov(\eta_i, z_i) + Cov(\eta_i, \epsilon_i)$$

$$= \mu \gamma Cov(z_i, z_i)$$

$$= \mu \gamma Var(z_i, z_i) \neq 0$$

▶ When we estimate our wrong model, we have:

$$Cov(x_i, u_i) = Cov(\lambda + \mu z_i + \eta_i, \gamma z_i + \epsilon_i)$$

$$= \mu \gamma Cov(z_i, z_i) + \mu Cov(z_i, \epsilon_i) + \gamma Cov(\eta_i, z_i) + Cov(\eta_i, \epsilon_i)$$

$$= \mu \gamma Cov(z_i, z_i)$$

$$= \mu \gamma Var(z_i, z_i) \neq 0$$

▶ It follows that $E(u|x) \neq 0$ and OLS estimator may be biased

$$Cov(x_i, u_i) = Cov(\lambda + \mu z_i + \eta_i, \gamma z_i + \epsilon_i)$$

$$= \mu \gamma Cov(z_i, z_i) + \mu Cov(z_i, \epsilon_i) + \gamma Cov(\eta_i, z_i) + Cov(\eta_i, \epsilon_i)$$

$$= \mu \gamma Cov(z_i, z_i)$$

$$= \mu \gamma Var(z_i, z_i) \neq 0$$

- ▶ It follows that $E(u|x) \neq 0$ and OLS estimator may be biased
- In the above, we see that there is no issue if:

$$Cov(x_i, u_i) = Cov(\lambda + \mu z_i + \eta_i, \gamma z_i + \epsilon_i)$$

$$= \mu \gamma Cov(z_i, z_i) + \mu Cov(z_i, \epsilon_i) + \gamma Cov(\eta_i, z_i) + Cov(\eta_i, \epsilon_i)$$

$$= \mu \gamma Cov(z_i, z_i)$$

$$= \mu \gamma Var(z_i, z_i) \neq 0$$

- ▶ It follows that $E(u|x) \neq 0$ and OLS estimator may be biased
- In the above, we see that there is no issue if:
 - $\mu = 0$: Omitted variable is unrelated to education
 - $ightharpoonup \gamma = 0$: Omitted variable does not affect income directly
 - $ightharpoonup \operatorname{Var}(z_i,z_i)=0$: Omitted variable is a constant (not super interesting)

▶ Other example: What is the causal effect of pollution on health?

- Other example: What is the causal effect of pollution on health?
- Places with more pollution also have more labor demand
- Which means more income
- And hence better health outcomes

- Other example: What is the causal effect of pollution on health?
- Places with more pollution also have more labor demand
- Which means more income
- And hence better health outcomes
- ▶ So, "income" is an omitted variable related to both pollution and health

▶ What is the causal effect of government programs on poverty reduction?

- What is the causal effect of government programs on poverty reduction?
- Governments might target areas that are growing anyways
- And that would have seen poverty decrease even absent the program

- What is the causal effect of government programs on poverty reduction?
- Governments might target areas that are growing anyways
- And that would have seen poverty decrease even absent the program
- ▶ So, "expected growth" could be a problematic omitted variable

When Do We Have $E[\varepsilon|X] \neq 0$?

Reverse Causality / Simultaneity

► Second category of issues: Reverse causality / Simultaneity

- Second category of issues: Reverse causality / Simultaneity
- ► Imagine we posit the following model:

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

Where y stands for crime prevalence and x for crowd density

- Second category of issues: Reverse causality / Simultaneity
- ▶ Imagine we posit the following model:

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

Where y stands for crime prevalence and x for crowd density

▶ But we "forget" that criminality also affects people's movements:

$$\begin{cases} y_i = \alpha + \beta x_i + \varepsilon_i \\ x_i = \gamma + \delta y_i + \nu_i \end{cases}$$

- Second category of issues: Reverse causality / Simultaneity
- ▶ Imagine we posit the following model:

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

Where y stands for crime prevalence and x for crowd density

But we "forget" that criminality also affects people's movements:

$$\begin{cases} y_i = \alpha + \beta x_i + \varepsilon_i \\ x_i = \gamma + \delta y_i + \nu_i \end{cases}$$

- Crowd density has a causal effect on crime: Deterrence?
- Crime has a causal effect on density: Lower attractivity

$$\mathrm{Cov}(x_i,u_i) = \mathrm{Cov}(\gamma + \delta y_i + \nu_i,\varepsilon_i)$$

$$Cov(x_i, u_i) = Cov(\gamma + \delta y_i + \nu_i, \varepsilon_i)$$
$$= \delta Cov(y_i, \varepsilon_i)$$

$$Cov(x_i, u_i) = Cov(\gamma + \delta y_i + \nu_i, \varepsilon_i)$$

$$= \delta Cov(y_i, \varepsilon_i)$$

$$= \delta Cov(\alpha + \beta x_i + \varepsilon_i, \varepsilon_i)$$

$$Cov(x_i, u_i) = Cov(\gamma + \delta y_i + \nu_i, \varepsilon_i)$$

$$= \delta Cov(y_i, \varepsilon_i)$$

$$= \delta Cov(\alpha + \beta x_i + \varepsilon_i, \varepsilon_i)$$

$$= \beta \delta Cov(x_i, \varepsilon_i) + \delta Var(\varepsilon_i)$$

▶ When we estimate our wrong model, we have:

$$Cov(x_i, u_i) = Cov(\gamma + \delta y_i + \nu_i, \varepsilon_i)$$

$$= \delta Cov(y_i, \varepsilon_i)$$

$$= \delta Cov(\alpha + \beta x_i + \varepsilon_i, \varepsilon_i)$$

$$= \beta \delta Cov(x_i, \varepsilon_i) + \delta Var(\varepsilon_i)$$

▶ Solving the equation: $Cov(x_i, \varepsilon_i) = \frac{\delta}{1-\beta\delta} Var(\varepsilon_i) \neq 0$

$$Cov(x_i, u_i) = Cov(\gamma + \delta y_i + \nu_i, \varepsilon_i)$$

$$= \delta Cov(y_i, \varepsilon_i)$$

$$= \delta Cov(\alpha + \beta x_i + \varepsilon_i, \varepsilon_i)$$

$$= \beta \delta Cov(x_i, \varepsilon_i) + \delta Var(\varepsilon_i)$$

- ▶ Solving the equation: $Cov(x_i, \varepsilon_i) = \frac{\delta}{1-\beta\delta} Var(\varepsilon_i) \neq 0$
- ▶ It follows that $E(u|x) \neq 0$ and OLS estimator may be biased

$$Cov(x_i, u_i) = Cov(\gamma + \delta y_i + \nu_i, \varepsilon_i)$$

$$= \delta Cov(y_i, \varepsilon_i)$$

$$= \delta Cov(\alpha + \beta x_i + \varepsilon_i, \varepsilon_i)$$

$$= \beta \delta Cov(x_i, \varepsilon_i) + \delta Var(\varepsilon_i)$$

- ▶ Solving the equation: $Cov(x_i, \varepsilon_i) = \frac{\delta}{1-\beta\delta} Var(\varepsilon_i) \neq 0$
- lt follows that $E(u|x) \neq 0$ and OLS estimator may be biased
- In the above, we see that there is no issue if:

$$Cov(x_i, u_i) = Cov(\gamma + \delta y_i + \nu_i, \varepsilon_i)$$

$$= \delta Cov(y_i, \varepsilon_i)$$

$$= \delta Cov(\alpha + \beta x_i + \varepsilon_i, \varepsilon_i)$$

$$= \beta \delta Cov(x_i, \varepsilon_i) + \delta Var(\varepsilon_i)$$

- ▶ Solving the equation: $Cov(x_i, \varepsilon_i) = \frac{\delta}{1-\beta\delta} Var(\varepsilon_i) \neq 0$
- ▶ It follows that $E(u|x) \neq 0$ and OLS estimator may be biased
- In the above, we see that there is no issue if:
 - $\delta = 0$, which essentially denies reverse causality

When Do We Have $E[\varepsilon|X] \neq 0$?

In the Potential Outcome Framework

Introducing the Potential Outcome Framework

▶ Imagine we study a treatment (e.g., ban on polluting cars)

Treatment
$$X_i = \begin{cases} 1 & \text{if treated} \\ 0 & \text{if otherwise} \end{cases}$$

Introducing the Potential Outcome Framework

▶ Imagine we study a treatment (e.g., ban on polluting cars)

Treatment
$$X_i = \begin{cases} 1 & \text{if treated} \\ 0 & \text{if otherwise} \end{cases}$$

▶ We want to assess its effect on a given outcome (e.g., pollution)

Potential Outcome =
$$\begin{cases} Y_{1i} & \text{if } X_i = 1 \\ Y_{0i} & \text{if } X_i = 0 \end{cases}$$

Introducing the Potential Outcome Framework

Imagine we study a treatment (e.g., ban on polluting cars)

Treatment
$$X_i = \begin{cases} 1 & \text{if treated} \\ 0 & \text{if otherwise} \end{cases}$$

▶ We want to assess its effect on a given outcome (e.g., pollution)

Potential Outcome =
$$\begin{cases} Y_{1i} & \text{if } X_i = 1 \\ Y_{0i} & \text{if } X_i = 0 \end{cases}$$

We only observe the outcome that is actually realized

Observed Outcome
$$Y_i = \begin{cases} Y_{1i} & \text{if } X_i = 1 \\ Y_{0i} & \text{if } X_i = 0 \end{cases} = Y_{0i} + \underbrace{(Y_{1i} - Y_{0i})}_{\text{Treatment effect}} *X_i$$

► Estimate with OLS:

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

Estimate with OLS:

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

Amounts to:
$$\hat{\beta} = \underbrace{\hat{E}(Y_i|X_i=1)}_{\text{Mean of }Y \text{ among }X=1} - \underbrace{\hat{E}(Y_i|X_i=0)}_{\text{Mean of }Y \text{ among }X=0}$$

Estimate with OLS:

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

- Amounts to: $\hat{\beta} = \underbrace{\hat{E}(Y_i|X_i=1)}_{\text{Mean of }Y \text{ among }X=1} \underbrace{\hat{E}(Y_i|X_i=0)}_{\text{Mean of }Y \text{ among }X=0}$
- \blacktriangleright Expectation of the sampling distribution: $E(\hat{\beta}) = E(Y_i|X_i=1) E(Y_i|X_i=0)$
 - Where: $E[Y_i|X_i=1] = \alpha + \beta + E[\varepsilon_i|X_i=1]$
 - And: $E[Y_i|X_i=0] = \alpha + E[\varepsilon_i|X_i=0]$

Estimate with OLS:

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

- Amounts to: $\hat{\beta} = \underbrace{\hat{E}(Y_i|X_i=1)}_{\text{Mean of }Y \text{ among }X=1} \underbrace{\hat{E}(Y_i|X_i=0)}_{\text{Mean of }Y \text{ among }X=0}$
- ► Expectation of the sampling distribution: $E(\hat{\beta}) = E(Y_i|X_i = 1) E(Y_i|X_i = 0)$ ► Where: $E[Y_i|X_i = 1] = \alpha + \beta + E[\varepsilon_i|X_i = 1]$
 - And: $E[Y_i|X_i=0] = \alpha + E[\varepsilon_i|X_i=0]$
- We can assess unbiasedness:

$$E(\hat{\beta}) = E[Y_i|X_i = 1] - E[Y_i|X_i = 0]$$

$$= \beta + E[\varepsilon_i|X_i = 1] - E[\varepsilon_i|X_i = 0]$$

$$= \beta + \underbrace{E[Y_{0i}|X_i = 1] - E[Y_{0i}|X_i = 0]}_{\text{Risk of selection bias}}$$

What Happens When $E\left[\varepsilon|X\right] \neq 0$?

Monte Carlo Experiment

► Assume a true model

$$y_i = \alpha + \beta * x_i + a_i + \varepsilon_i$$

 $\alpha = 10$
 $\beta = 2$

Monte Carlo Experiment

Assume a true model

$$y_i = \alpha + \beta * x_i + a_i + \varepsilon_i$$

 $\alpha = 10$
 $\beta = 2$

- Examine three cases:
 - Case 1: Exogenous a
 - Variable is omitted but it is unrelated to the regressor of interest
 - Case 2: Endogenous a, and we don't know it
 - ▶ Variable is omitted, and it is related to the regressor of interest
 - Case 3: Endogenous a, but we know it
 - Variable is related to the regressor of interest, but it is not omitted

► True model:

$$y_i = \alpha + \beta x_i + a_i + \varepsilon_i$$

$$E(a + \varepsilon | x) = E(a | x) + E(\varepsilon | x) = E(a | x) = 0$$

► True model:

$$y_i = \alpha + \beta x_i + a_i + \varepsilon_i$$

$$E(a + \varepsilon | x) = E(a | x) + E(\varepsilon | x) = E(a | x) = 0$$

Estimate:

$$y_i = \alpha + \beta x_i + \underbrace{u_i}_{=a_i + \varepsilon_i}$$

► True model:

$$y_i = \alpha + \beta x_i + a_i + \varepsilon_i$$

$$E(a + \varepsilon | x) = E(a | x) + E(\varepsilon | x) = E(a | x) = 0$$

Estimate:

$$y_i = \alpha + \beta x_i + \underbrace{u_i}_{=a_i + \varepsilon_i}$$

Prediction:

► True model:

$$y_i = \alpha + \beta x_i + a_i + \varepsilon_i$$

$$E(a + \varepsilon | x) = E(a | x) + E(\varepsilon | x) = E(a | x) = 0$$

Estimate:

$$y_i = \alpha + \beta x_i + \underbrace{u_i}_{=a_i + \varepsilon_i}$$

Prediction: OLS estimator should be unbiased

Case 1: Exogenous ability — Experiment

► Monte Carlo experiment:

$$x_i \sim \mathcal{U}(0,20)$$

 $a_i \sim \mathcal{N}(0,5)$
 $\varepsilon_i \sim \mathcal{N}(0,5)$
 $y_i = \alpha + \beta x_i + a_i + \varepsilon_i$

Data:

Table: Summary statistics

Variable	Mean	Std. Dev.	Min.	Max.	N
у	30.268	13.734	-3.795	60.018	100
×	10.169	5.758	0.156	19.923	100
а	0.012	4.899	-13.5	12.748	100
eps	-0.083	5.251	-11.975	11.012	100

Case 1: Exogenous ability — Results

Estimation equation:
$$y_i = \alpha + \beta x_i + \underbrace{u_i}_{=a_i+\epsilon_i}$$

Case 1: Exogenous ability — Results

► True model:

$$y_i = \alpha_1 + \beta x_i + a_i + \varepsilon_i$$

$$x_i = \alpha_2 + \delta a_i + \eta_i$$

$$\delta = 0.5$$

► True model:

$$y_i = \alpha_1 + \beta x_i + a_i + \varepsilon_i$$

$$x_i = \alpha_2 + \delta a_i + \eta_i$$

$$\delta = 0.5$$

Estimate:

$$y_i = \alpha_1 + \beta x_i + \underbrace{u_i}_{=a_i + \varepsilon_i}$$

► True model:

$$y_i = \alpha_1 + \beta x_i + a_i + \varepsilon_i$$

$$x_i = \alpha_2 + \delta a_i + \eta_i$$

$$\delta = 0.5$$

Estimate:

$$y_i = \alpha_1 + \beta x_i + \underbrace{u_i}_{=a_i + \varepsilon_i}$$

Prediction:

► True model:

$$y_i = \alpha_1 + \beta x_i + a_i + \varepsilon_i$$

$$x_i = \alpha_2 + \delta a_i + \eta_i$$

$$\delta = 0.5$$

Estimate:

$$y_i = \alpha_1 + \beta x_i + \underbrace{u_i}_{=a_i + \varepsilon_i}$$

Prediction: OLS estimator is likely biased

Case 2: Endogenous a, and we don't know it — Experiment

► Monte Carlo experiment:

$$\eta \sim N(0,1)$$
; $a_i \sim N(0,5)$; $\varepsilon_i \sim N(0,5)$
 $x_i = \alpha_2 + \delta a_i + \eta_i$
 $y_i = \alpha_1 + \beta x_i + a_i + \varepsilon_i$

Data:

Table: Summary statistics

Variable	Mean	Std. Dev.	Min.	Max.	N
у	31.212	12.035	4.037	60.175	100
Χ	10.472	2.852	3.142	16.819	100
a	0.940	5.418	-11.25	14.065	100
eps	-0.672	4.947	-13.5	10.32	100
eta	0.002	1.02	-2.068	2.252	100

Case 2: Endogenous a, and we don't know it — Results

Estimation Equation:
$$y_i = \alpha_1 + \beta * x_i + \underbrace{u_i}_{=a_i+\varepsilon_i}$$

Case 2: Endogenous a, and we don't know it — Results

► True Model

$$y_i = \alpha_1 + \beta x_i + a_i + \varepsilon_i$$

$$x_i = \alpha_2 + \delta a_i + \eta_i$$

$$\delta = 0.5$$

► True Model

$$y_i = \alpha_1 + \beta x_i + a_i + \varepsilon_i$$

$$x_i = \alpha_2 + \delta a_i + \eta_i$$

$$\delta = 0.5$$

Estimate:

$$y_i = \alpha_1 + \beta * x_i + a_i + \varepsilon_i$$

► True Model

$$y_i = \alpha_1 + \beta x_i + a_i + \varepsilon_i$$

$$x_i = \alpha_2 + \delta a_i + \eta_i$$

$$\delta = 0.5$$

Estimate:

$$y_i = \alpha_1 + \beta * x_i + a_i + \varepsilon_i$$

► Prediction:

► True Model

$$y_i = \alpha_1 + \beta x_i + a_i + \varepsilon_i$$

$$x_i = \alpha_2 + \delta a_i + \eta_i$$

$$\delta = 0.5$$

Estimate:

$$y_i = \alpha_1 + \beta * x_i + a_i + \varepsilon_i$$

Prediction: OLS estimator should be unbiased

Case 3: Endogenous a, but we know it — Experiment

► Monte Carlo experiment:

$$\eta \sim N(0,1)$$
; $a_i \sim N(0,5)$; $\varepsilon_i \sim N(0,5)$
 $x_i = \alpha_2 + \delta a_i + \eta_i$
 $y_i = \alpha_1 + \beta x_i + a_i + \varepsilon_i$

Data:

Table: Summary statistics

Variable	Mean	Std. Dev.	Min.	Max.	N
у	31.212	12.035	4.037	60.175	100
Χ	10.472	2.852	3.142	16.819	100
a	0.940	5.418	-11.25	14.065	100
eps	-0.672	4.947	-13.5	10.32	100
eta	0.002	1.02	-2.068	2.252	100

Case 3: Endogenous a, but we know it — Results

Estimation equation: $y_i = \alpha_1 + \beta x_i + a_i + \varepsilon_i$

Case 3: Endogenous a, but we know it — Results

What To Do When $E[\varepsilon|X] \neq 0$?

What To Do When $E[\varepsilon|X] \neq 0$?

Instrumental Variables

Context

▶ Suppose $E[\varepsilon|X] \neq 0$. E.g., x correlated with a, which also determines y:

$$x_i = \alpha_2 + \delta a_i + z_i + \eta_i$$

Context

▶ Suppose $E[\varepsilon|X] \neq 0$. E.g., x correlated with a, which also determines y:

$$x_i = \alpha_2 + \delta a_i + z_i + \eta_i$$

▶ If you omit *a* and simply estimate:

$$y_i = \alpha_1 + \beta x_i + \underbrace{u_i}_{=a_i + \varepsilon_i}$$

Then, we fall into omitted variable bias, and OLS is biased

Context

▶ Suppose $E[\varepsilon|X] \neq 0$. E.g., x correlated with a, which also determines y:

$$x_i = \alpha_2 + \delta a_i + z_i + \eta_i$$

▶ If you omit *a* and simply estimate:

$$y_i = \alpha_1 + \beta x_i + \underbrace{u_i}_{=a_i + \varepsilon_i}$$

Then, we fall into omitted variable bias, and OLS is biased

- Instrumental variable approach:
 - \triangleright Find another z variable which correlates with x...
 - ...but not with a...
 - \triangleright ...and use it to recover $\beta!$

▶ Back to the effect of crowd density (x) on crime prevalence (y)

- ▶ Back to the effect of crowd density (x) on crime prevalence (y)
- ightharpoonup Our instrumental variable (z) must satisfy:
 - ► Strong first stage: z must correlate with x
 - **Exclusion restriction**: z must not correlate with the error term

- ▶ Back to the effect of crowd density (x) on crime prevalence (y)
- Our instrumental variable (z) must satisfy:
 - Strong first stage: z must correlate with x
 - Exclusion restriction: z must not correlate with the error term
- ightharpoonup Alternative framing: z should be related with y solely through its effect on x

- ▶ Back to the effect of crowd density (x) on crime prevalence (y)
- ightharpoonup Our instrumental variable (z) must satisfy:
 - ► Strong first stage: z must correlate with x
 - Exclusion restriction: z must not correlate with the error term
- ightharpoonup Alternative framing: z should be related with y solely through its effect on x
- ► E.g., subway station maintenance operations
 - Strong first stage: Clear negative correlation with crowd density
 - Exclusion restriction: Arguably random with respect to crime prevalence

- ightharpoonup Back to the effect of crowd density (x) on crime prevalence (y)
- ightharpoonup Our instrumental variable (z) must satisfy:
 - Strong first stage: z must correlate with x
 - Exclusion restriction: z must not correlate with the error term
- ightharpoonup Alternative framing: z should be related with y solely through its effect on x
- ► E.g., subway station maintenance operations
 - Strong first stage: Clear negative correlation with crowd density
 - Exclusion restriction: Arguably random with respect to crime prevalence
- Strong first stage can be tested, not the exclusion restriction in general

In Practice: Two-stage Least Squares (2SLS)

1. First, use z to predict x:

$$x_{i} = \pi_{1} + \pi_{2}z_{i} + \underbrace{\gamma_{i}}_{=\delta a_{i} + \eta_{i}}$$

$$\hat{x}_{i} = \hat{\pi}_{1} + \hat{\pi}_{2} * z_{i}$$

In Practice: Two-stage Least Squares (2SLS)

1. First, use z to predict x:

$$x_{i} = \pi_{1} + \pi_{2}z_{i} + \underbrace{\gamma_{i}}_{=\delta a_{i} + \eta}$$

$$\hat{x}_{i} = \hat{\pi}_{1} + \hat{\pi}_{2} * z_{i}$$

2. Second, run OLS on \hat{x} , not x:

$$y_i = \alpha + \beta \hat{x}_i + \underbrace{u_i}_{=a_i + \varepsilon_i}$$

In Practice: Two-stage Least Squares (2SLS)

1. First, use z to predict x:

$$x_{i} = \pi_{1} + \pi_{2}z_{i} + \underbrace{\gamma_{i}}_{=\delta a_{i} + \eta_{i}}$$

$$\hat{x}_{i} = \hat{\pi}_{1} + \hat{\pi}_{2} * z_{i}$$

2. Second, run OLS on \hat{x} , not x:

$$y_i = \alpha + \beta \hat{x}_i + \underbrace{u_i}_{=a_i + \varepsilon_i}$$

- ► Then: $E(u_i|\hat{x}_i) = E(a_i + \varepsilon_i|\hat{\pi}_1 + \hat{\pi}_2 * z_i) = E(a_i|\hat{\pi}_1 + \hat{\pi}_2 * z_i) + E(\varepsilon_i|\hat{\pi}_1 + \hat{\pi}_2 * z_i) = 0$
- \hat{x} uncorrelated with a: Extracted the random component in x, and **OLS** is unbiased

► True model:

$$y_i = \alpha_1 + \beta x_i + a_i + \varepsilon_i$$

$$x_i = \alpha_2 + \delta a_i + z_i + \eta_i$$

$$\delta = 0.5$$

► True model:

$$y_i = \alpha_1 + \beta x_i + a_i + \varepsilon_i$$

$$x_i = \alpha_2 + \delta a_i + z_i + \eta_i$$

$$\delta = 0.5$$

Estimate:

$$x_{i} = \pi_{1} + \pi_{2} * z_{i} + \underbrace{\gamma_{i}}_{=\delta a_{i} + \eta_{i}} \Longrightarrow \hat{x}_{i} = \hat{\pi}_{1} + \hat{\pi}_{2} * z_{i}$$

$$y_{i} = \alpha_{1} + \beta * \hat{x}_{i} + \underbrace{u_{i}}_{=a_{i} + \varepsilon_{i}}$$

► True model:

$$y_i = \alpha_1 + \beta x_i + a_i + \varepsilon_i$$

$$x_i = \alpha_2 + \delta a_i + z_i + \eta_i$$

$$\delta = 0.5$$

Estimate:

$$x_{i} = \pi_{1} + \pi_{2} * z_{i} + \underbrace{\gamma_{i}}_{=\delta a_{i} + \eta_{i}} \Longrightarrow \hat{x}_{i} = \hat{\pi}_{1} + \hat{\pi}_{2} * z_{i}$$

$$y_{i} = \alpha_{1} + \beta * \hat{x}_{i} + \underbrace{u_{i}}_{=a_{i} + \varepsilon_{i}}$$

Prediction:

► True model:

$$y_i = \alpha_1 + \beta x_i + a_i + \varepsilon_i$$

$$x_i = \alpha_2 + \delta a_i + z_i + \eta_i$$

$$\delta = 0.5$$

Estimate:

$$x_{i} = \pi_{1} + \pi_{2} * z_{i} + \underbrace{\gamma_{i}}_{=\delta a_{i} + \eta_{i}} \implies \hat{x}_{i} = \hat{\pi}_{1} + \hat{\pi}_{2} * z_{i}$$

$$y_{i} = \alpha_{1} + \beta * \hat{x}_{i} + \underbrace{u_{i}}_{=a_{i} + \varepsilon_{i}}$$

Prediction: 2SLS estimator should be unbiased

Monte Carlo Experiment — Specification

$$\eta \sim N(0,1)$$
 $\varepsilon_i \sim N(0,5)$
 $a_i \sim N(0,5)$
 $z_i \sim N(0,2)$
 $x_i = \alpha_2 + \delta * a_i + z_i + \eta_i$
 $y_i = \alpha_1 + \beta * x_i + a_i + \varepsilon_i$

Table: Summary statistics

Variable	Mean	Std. Dev.	Min.	Max.	N
у	30.581	12.304	-1.62	64.849	100
Χ	10.502	3.345	1.364	19.494	100
а	0.248	5.039	-13.628	10.604	100
eps	-0.672	4.947	-13.5	10.32	100
eta	0.002	1.02	-2.068	2.252	100
Z	0.376	2.167	-4.5	5.626	100

Monte Carlo Experiment — Results

Estimation equation:
$$y_i = \alpha + \beta \hat{x}_i + \underbrace{u_i}_{=a_i+\epsilon_i}$$

Monte Carlo Experiment — Results

Monte Carlo Experiment — Results

	First Stage	Second Stage		
	X	у	у	у
Z	0.88***			
	(0.13)			
×		3.16***	1.97***	
		(0.19)	(0.21)	
a			1.11***	
			(0.14)	
â				1.85***
				(0.62)
Constant	10.17***	-2.61	9.59***	11.13*
	(0.28)	(2.09)	(2.26)	(6.62)
# Observations	100	100	100	100
R squared	0.329	0.738	0.840	0.083
Mean Dep. Var	10.502	30.581	30.581	30.581

What To Do When $E[\varepsilon|X] \neq 0$?

Randomized Control Trials (RCTs)

- ▶ In the previous section:
 - ▶ We introduced the principle of instrumental variables
 - ▶ We discussed cases where a possibly relevant z arises in the data

- ▶ In the previous section:
 - ▶ We introduced the principle of instrumental variables
 - ▶ We discussed cases where a possibly relevant *z* arises in the data
- But researchers can also create their own z!

- ► In the previous section:
 - ▶ We introduced the principle of instrumental variables
 - ▶ We discussed cases where a possibly relevant z arises in the data
- But researchers can also create their own z!
- ► E.g., effect of disposable income on consumption expenditures¹
 - Many possible confounders: Type of job, education, household composition, etc.
 - Solution?

- ► In the previous section:
 - ▶ We introduced the principle of instrumental variables
 - ▶ We discussed cases where a possibly relevant z arises in the data
- But researchers can also create their own z!
- ► E.g., effect of disposable income on consumption expenditures¹
 - Many possible confounders: Type of job, education, household composition, etc.
 - Solution? Randomize (part of) disposable income thanks to direct transfers

- ► In the previous section:
 - ▶ We introduced the principle of instrumental variables
 - ▶ We discussed cases where a possibly relevant z arises in the data
- ▶ But researchers can also create their own z!
- ► E.g., effect of disposable income on consumption expenditures¹
 - Many possible confounders: Type of job, education, household composition, etc.
 - Solution? Randomize (part of) disposable income thanks to direct transfers
- Sounds crazy?
 - Boehm, Fize, and Jaravel (2025) spent around €300,000
 - ➤ Some customers of a bank receive €300, some don't; allocation is random
 - ▶ Use the transfer as an instrument for income and recover the desired parameter

In Practice

► What we call Randomized Control Trials (RCTs)

- What we call Randomized Control Trials (RCTs)
- Often used in Development Economics, Labor Economics, etc.
- ▶ 2019 Nobel Prize to Esther Duflo, Abhijit Banerjee, and Michael Kremer

- What we call Randomized Control Trials (RCTs)
- Often used in Development Economics, Labor Economics, etc.
- ▶ 2019 Nobel Prize to Esther Duflo, Abhijit Banerjee, and Michael Kremer
- In terms of identification, the best we can do

- What we call Randomized Control Trials (RCTs)
- Often used in Development Economics, Labor Economics, etc.
- 2019 Nobel Prize to Esther Duflo, Abhijit Banerjee, and Michael Kremer
- In terms of identification, the best we can do
- Potential limitations:
 - Feasibility / Cost
 - ► Ethical concerns: € transfers are OK, but could we randomize education choices?
 - External validity

What To Do When $E[\varepsilon|X] \neq 0$?

Fixed Effects

- ► We now move from cross-sectional to panel data
 - ▶ Instead of solely comparing units *i* (individuals, countries, cities, etc.) once in time
 - We observe different units *i* over time *t*

- We now move from cross-sectional to panel data
 - ▶ Instead of solely comparing units *i* (individuals, countries, cities, etc.) once in time
 - We observe different units i over time t
- Suppose the true model is

$$y_{it} = \alpha + \beta x_{it} + \underbrace{a_i + \varepsilon_{it}}_{u_{it}} \text{ with } E\left[\varepsilon_{it}|x_{it}\right] = 0 \text{ and } E\left[u_{it}|x_{it}\right] \neq 0$$

Some unobserved, time-invariant heterogeneity a_i correlates with x_{it}

- We now move from cross-sectional to panel data
 - ▶ Instead of solely comparing units *i* (individuals, countries, cities, etc.) once in time
 - We observe different units i over time t
- Suppose the true model is

$$y_{it} = \alpha + \beta x_{it} + \underbrace{a_i + \varepsilon_{it}}_{u_{it}} \text{ with } E\left[\varepsilon_{it}|x_{it}\right] = 0 \text{ and } E\left[u_{it}|x_{it}\right] \neq 0$$

Some unobserved, time-invariant heterogeneity a_i correlates with x_{it}

OLS is biased when estimated on:

$$y_{it} = \alpha + \beta * x_{it} + u_{it}$$

Within estimator:

Let:
$$\bar{y}_{it} = \frac{1}{T} \sum_{t=1}^{T} \left(\alpha + \beta x_{it} + \underbrace{a_i + \varepsilon_{it}}_{u_{it}} \right) = \alpha + \beta \bar{x}_{it} + a_i + \bar{\varepsilon}_{it}$$

Within estimator:

Let:
$$\bar{y}_{it} = \frac{1}{T} \sum_{t=1}^{T} \left(\alpha + \beta x_{it} + \underbrace{a_i + \varepsilon_{it}}_{u_{it}} \right) = \alpha + \beta \bar{x}_{it} + a_i + \bar{\varepsilon}_{it}$$

Then: $y_{it} - \bar{y}_{it} = \beta * (x_{it} - \bar{x}_{it}) + (\varepsilon_{it} - \bar{\varepsilon}_{it})$

Within estimator:

Let:
$$\bar{y}_{it} = \frac{1}{T} \sum_{t=1}^{T} \left(\alpha + \beta x_{it} + \underbrace{a_i + \varepsilon_{it}}_{u_{it}} \right) = \alpha + \beta \bar{x}_{it} + a_i + \bar{\varepsilon}_{it}$$

- Then: $y_{it} \bar{y}_{it} = \beta * (x_{it} \bar{x}_{it}) + (\varepsilon_{it} \bar{\varepsilon}_{it})$
- And exogeneity condition is satisfied: $E(\varepsilon_{it} \bar{\varepsilon}_{it}|x_{it} \bar{x}_{it}) = 0$

Within estimator:

Let:
$$\bar{y}_{it} = \frac{1}{T} \sum_{t=1}^{T} \left(\alpha + \beta x_{it} + \underbrace{a_i + \varepsilon_{it}}_{u_{it}} \right) = \alpha + \beta \bar{x}_{it} + a_i + \bar{\varepsilon}_{it}$$

- ► Then: $y_{it} \bar{y}_{it} = \beta * (x_{it} \bar{x}_{it}) + (\varepsilon_{it} \bar{\varepsilon}_{it})$
- And exogeneity condition is satisfied: $E(\varepsilon_{it} \bar{\varepsilon}_{it}|x_{it} \bar{x}_{it}) = 0$

First-difference estimator:

Consider instead:

$$\Delta y_{it} = y_{it} - y_{it-1} = \beta \Delta x_{it} + \Delta \varepsilon_{it}$$

Within estimator:

- Let: $\bar{y}_{it} = \frac{1}{T} \sum_{t=1}^{T} \left(\alpha + \beta x_{it} + \underbrace{a_i + \varepsilon_{it}}_{u_{it}} \right) = \alpha + \beta \bar{x}_{it} + a_i + \bar{\varepsilon}_{it}$ Then: $v_{it} \bar{v}_{it} = \beta * (x_{it} \bar{x}_{it}) + (\varepsilon_{it} \bar{\varepsilon}_{it})$
- And exogeneity condition is satisfied: $E(\varepsilon_{it} \bar{\varepsilon}_{it}|x_{it} \bar{x}_{it}) = 0$

First-difference estimator:

Consider instead:

$$\Delta y_{it} = y_{it} - y_{it-1} = \beta \Delta x_{it} + \Delta \varepsilon_{it}$$

• Again, exogeneity condition is satisfied: $E(\Delta \varepsilon_{it} | \Delta x_{it}) = 0$

Fixed Effects

► First-difference estimator

$$\Delta y_{it} = \beta * \Delta x_{it} + \Delta \varepsilon_{it}$$

Is functionally equivalent to estimating fixed effect model:

$$y_{it} = \alpha + \beta x_{it} + \sum_{j=1}^{N} \alpha_j \mathbb{1}\{j=i\} + \varepsilon_{it}$$

l.e., controlling for a set of dummy variables for all units $\{\mathbb{1}\{j=i\}\}_{j\in[1;N]}$

▶ **NB**: To lighten notations, we often write that we estimate the model:

$$y_{it} = \alpha + \beta x_{it} + \alpha_i + \varepsilon_{it}$$

What To Do When $E[\varepsilon|X] \neq 0$?

Difference-in-Differences

Consider again panel data; suppose the true model is:

$$y_{it} = \alpha + \beta * x_{it} + \underbrace{a_i + \gamma_t + \varepsilon_{it}}_{u_{it}} \text{ with } E\left[\varepsilon_{it}|x_{it}\right] = 0 \text{ and } E\left[u_{it}|x_{it}\right] \neq 0$$

Compared with the above, **unobserved trend** γ_t may correlate with x_{it}

Consider again panel data; suppose the true model is:

$$y_{it} = \alpha + \beta * x_{it} + \underbrace{a_i + \gamma_t + \varepsilon_{it}}_{u_{it}} \text{ with } E\left[\varepsilon_{it}|x_{it}\right] = 0 \text{ and } E\left[u_{it}|x_{it}\right] \neq 0$$

Compared with the above, **unobserved trend** γ_t may correlate with x_{it}

- ▶ E.g., think about health (y_{it}) and pollution (x_{it})
 - ightharpoonup Some regions are most developed industrially, which drives pollution and health (a_i)
 - **COVID** (part of γ_t) affects all regions with an impact on x_{it} and y_{it}

Consider again panel data; suppose the true model is:

$$y_{it} = \alpha + \beta * x_{it} + \underbrace{a_i + \gamma_t + \varepsilon_{it}}_{u_{it}} \text{ with } E\left[\varepsilon_{it}|x_{it}\right] = 0 \text{ and } E\left[u_{it}|x_{it}\right] \neq 0$$

Compared with the above, **unobserved trend** γ_t may correlate with x_{it}

- ▶ E.g., think about health (y_{it}) and pollution (x_{it})
 - ightharpoonup Some regions are most developed industrially, which drives pollution and health (a_i)
 - ▶ COVID (part of γ_t) affects all regions with an impact on x_{it} and y_{it}
- ▶ Again, OLS is biased when estimated on: $y_{it} = \alpha + \beta * x_{it} + u_{it}$

Spirit

► Take the first difference along the time dimension:

$$\Delta y_{it} = \beta \Delta x_{it} + \Delta \gamma_t + \Delta \varepsilon_{it}$$

► Take another difference between units:

$$\Delta y_{it} - \Delta y_{jt} = \beta \left(\Delta x_{it} - \Delta x_{jt} \right) + \left(\Delta \varepsilon_{it} - \Delta \varepsilon_{jt} \right)$$

▶ Applying OLS to this model yields an unbiased estimator of β if:

$$E\left(\Delta\varepsilon_{it}-\Delta\varepsilon_{jt}\right|\Delta x_{it}-\Delta x_{jt})=0$$

- ▶ Often used when x_{it} is a binary treatment (e.g., getting a subsidy or not)
 - Treatment group (T) receives the treatment past a given point in time
 - ► Control group (C) never receives the treatment

- \triangleright Often used when x_{it} is a binary treatment (e.g., getting a subsidy or not)
 - Treatment group (T) receives the treatment past a given point in time
 - ► Control group (C) never receives the treatment
- ▶ Method = Compare the T-C difference after the treatment with that before

- ightharpoonup Often used when x_{it} is a binary treatment (e.g., getting a subsidy or not)
 - Treatment group (T) receives the treatment past a given point in time
 - Control group (C) never receives the treatment
- Method = Compare the T-C difference after the treatment with that before
- ▶ **Assumption**: Absent the treatment, both groups evolve similarly in post-period
 - ► Fundamental "parallel trends" assumption that researchers must defend

- \triangleright Often used when x_{it} is a binary treatment (e.g., getting a subsidy or not)
 - Treatment group (T) receives the treatment past a given point in time
 - Control group (C) never receives the treatment
- ▶ Method = Compare the T-C difference after the treatment with that before
- Assumption: Absent the treatment, both groups evolve similarly in post-period
 - ► Fundamental "parallel trends" assumption that researchers must defend
- Can we test this assumption?
 - We can check that both groups evolve similarly before the treatment
 - But we cannot test this after the treatment is deployed!

Graphical Illustration

Graphical Illustration

Graphical Illustration

➤ You want to learn about the relationship between temperature and GDP. You have a cross section for a single year with the GDP and the average annual temperature for many different countries.

- ➤ You want to learn about the relationship between temperature and GDP. You have a cross section for a single year with the GDP and the average annual temperature for many different countries.
 - Under what condition is OLS unbiased?

- ➤ You want to learn about the relationship between temperature and GDP. You have a cross section for a single year with the GDP and the average annual temperature for many different countries.
 - Under what condition is OLS unbiased?
 - Is this condition likely to be met?

- You want to learn about the relationship between temperature and GDP. You have a cross section for a single year with the GDP and the average annual temperature for many different countries.
 - Under what condition is OLS unbiased?
 - Is this condition likely to be met?
 - ▶ What can you do to recover the causal impact of temperature on GDP?

References

▶ Joshua, D. Angrist. MOSTLY HARMLESS ECONOMETRICS. 2009.