Multi-modal and Multi-scale Spatial Environment Understanding for Immersive Visual Text-to-Speech

Rui Liu^{1*}, Shuwei He¹, Yifan Hu¹, Haizhou Li^{2, 3}

¹Inner Mongolia University, China

²Shenzhen Research Institute of Big Data, School of Data Science, The Chinese University of Hong Kong, Shenzhen, China ³Department of Electrical and Computer Engineering, National University of Singapore, Singapore liurui_imu@163.com, shuwei_he@163.com, hyfwalker@163.com, haizhouli@cuhk.edu.cn

A. Detailed Experimental Settings

We list the detailed model setup of M²SE-VTTS. The detailed experimental settings are shown in Table 1.

Hyperparameter		M ² SE-VTTS
Multi-modal and Multi-scale scheme	Feature Dimension	512
	RGB Detector Attention Heads	4
	Attention Dropout	0.1
	Top_k	140
	Local-aware Attention Heads	4
	Semantic-guild Attention Heads	4
TTS-Encoder	Pre-net Layers	3
	Pre-net Hidden	512
	Phoneme Embedding	512
	Encoder Layers	4
	Encoder Conv1d Kernel	9
	Conv1D Filter Size	1024
	Encoder Dropout	0.5
Variance Predictor	Conv1D Kernel	3
	Conv1D Filter Size	512
	Dropout	0.5
Denoiser	Diffusion Embedding	384
	Transformer Layers	5
	Transformer Hidden	384
	Attention Heads	12
	Position Embedding	384
	Scale/Shift Size	384
Total Number of Parameters		105.35M

Table 1: Detailed Model Setup of M²SE-VTTS.

B. Case Study

To more intuitively illustrate the outcomes of the Local Spatial Understanding, we present some visual instances. These include both the RGB and Depth images of the same scene, the spatial environment prompt, the environment captions acquired with Gemini Pro Vision, and the Top_k patch regions identified in the RGB space and selected from the Depth space based on the aforementioned environment caption, where the patches identified are marked in red.

As shown in Fig. 1, Gemini first accurately describes the spatial information of the current environment, such as the

*Corrposending Author. Copyright © 2025, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. relative positioning of the picture and the counter with respect to the speaker's location in the first example. In addition, the Local Spatial Understanding can effectively select semantic-aware patches that are relevant to the captions. Specifically, based on the speaker elements identified in each caption, the patches that correspond to the speakers' locations are selected. In the first example, the patches corresponding to the semantic information "the counter" are accurately identified. After conducting experimental comparisons, we selected the top 140 patches from a total of 256 as the final result, with each patch having a size of 16×16 pixels.

Figure 1: Results of the Case Study