Full-State Keyed Duplex With Built-In Multi-User Support

Joan Daemen, Bart Mennink, Gilles Van Assche

Radboud University (The Netherlands), STMicroelectronics (Belgium)

> ASIACRYPT 2017 December 6, 2017

Sponges [BDPV07]

- Cryptographic hash function
- SHA-3, XOFs, lightweight hashing, ...
- ullet Behaves as RO up to query complexity $pprox 2^{c/2}$ [BDPV08]

Keying the Sponges

Keyed Sponge

- $\mathsf{PRF}(K, M) = \mathsf{Sponge}(K || M)$
- Message authentication
- Keystream generation

Keying the Sponges

Keyed Sponge

- $\bullet \ \mathsf{PRF}(K,M) = \mathsf{Sponge}(K \| M)$
- Message authentication
- Keystream generation

Keyed Duplex

- Authenticated encryption
- Multiple CAESAR submissions

Evolution of Keyed Sponges

Outer Keyed Sponge [BDPV11,ADMV15,NY16]

Evolution of Keyed Sponges

- Outer Keyed Sponge [BDPV11,ADMV15,NY16]
- Inner Keyed Sponge [CDHKN12,ADMV15,NY16]

Evolution of Keyed Sponges

- Outer Keyed Sponge [BDPV11,ADMV15,NY16]
- Inner Keyed Sponge [CDHKN12,ADMV15,NY16]
- Full-State Keyed Sponge [BDPV12,GPT15,MRV15]

Evolution of Keyed Duplexes

Unkeyed Duplex [BDPV11]

Evolution of Keyed Duplexes

- Unkeyed Duplex [BDPV11]
- Outer Keyed Duplex [BDPV11]

Evolution of Keyed Duplexes

- Unkeyed Duplex [BDPV11]
- Outer Keyed Duplex [BDPV11]
- Full-State Keyed Duplex [MRV15]

Full-State Keyed Duplex [MRV15]

Security
$$pprox rac{\mu N}{2^k} + rac{M^2}{2^c}$$

- M: data complexity (calls to construction)
- N: time complexity (calls to primitive)
- $\mu \leq 2M$: multiplicity ("maximum outer collision of f")

Full-State Keyed Duplex [MRV15]

Security
$$pprox rac{\mu N}{2^k} + rac{M^2}{2^c} \begin{cases} \hline & \text{similar bound for} \\ & \text{full-state keyed sponge} \\ \hline \end{cases}$$

- M: data complexity (calls to construction)
- N: time complexity (calls to primitive)
- $\mu \leq 2M$: multiplicity ("maximum outer collision of f")

Full-State Keyed Duplex [MRV15]

Limitations

- ullet Dominating term $\mu N/2^k$ rather than $\mu N/2^c$
- ullet Multiplicity μ only known a posteriori
- No multi-user security
- Limited flexibility in modeling adversarial power

New Core: Full-State Keyed Duplex

Features

- ullet Multi-user by design: index δ specifies key in array
- ullet Initial state: concatenation of $\mathbf{K}[\delta]$ and iv
- Full-state absorption, no padding
- Re-phasing: f, Z, σ instead of σ, f, Z
- Refined adversarial strength

Security Result

Security
$$pprox rac{q_{\mathrm{iv}}N}{2^k} + rac{(L+\Omega+
u^M_{r,c})N}{2^c}$$

- M: data complexity (calls to construction)
- N: time complexity (calls to primitive)
- ullet $q_{
 m iv}$: max # init queries with same ${
 m iv}$
- L: # queries with repeated path (e.g., nonce-violation)
- Ω : # queries with overwriting outer part (e.g., RUP)
- ullet $u^M_{r,c}$: some multicollision coefficient o often small constant

Multicollision Coefficient $\nu_{r,c}^{M}$

- M balls, 2^r bins
- $u^M_{r,c}$ is smallest x such that $\Pr\left(|\mathsf{fullest\ bin}|>x\right) \leq \frac{x}{2^c}$

Multicollision Coefficient $u_{r,c}^{M}$

- M balls, 2^r bins
- $u^M_{r,c}$ is smallest x such that $\Pr\left(|\mathsf{fullest\ bin}|>x\right) \leq \frac{x}{2^c}$
- For r+c=256, $\nu_{r,c}^{M}$ versus proven upper bounds:

Application to Full-State Keyed Sponge

- Overwrites possible and no nonce restriction
- $L + \Omega \leq M/2$, $\nu_{r,c}^M$ is negligible, $q_{\mathrm{iv}} \leq u$

Security
$$pprox rac{uN}{2^k} + rac{MN}{2^c}$$

Improves [MRV15]: better bound and multi-user support

Application to Authenticated Encryption

General Bound (Nonce-Violating)

- $L + \Omega \leq M/2$
- $\nu_{r,c}^{M}$ is negligible

Security
$$pprox rac{q_{
m iv}N}{2^k} + rac{MN}{2^c}$$

Application to Authenticated Encryption

General Bound (Nonce-Violating)

- $L + \Omega \leq M/2$
- ullet $u^M_{r,c}$ is negligible

Security
$$pprox rac{q_{
m iv}N}{2^k} + rac{MN}{2^c}$$

Nonce-Respecting and No RUP

- $L = \Omega = 0$
- ullet Second term dominated by $u^M_{r,c}$

Security
$$pprox rac{q_{
m iv}N}{2^k} + rac{
u_{r,c}^MN}{2^c}$$

Application to Authenticated Encryption

• Security strength if $Mr \leq 2^a$:

	İ	Parar	neters	nonce-	nonce- respecting	
Scheme		b	c	r		
 Ketje	Jr.	200	184	16	189 – a	$\min\{196-a, 177\}$
	Sr.	400	368	32	374 - a	$\min\{396-a, 360\}$
Ascon	128	320	256	64	263 - a	$\min\{317-a, 248\}$
	128a	320	192	128	200 - a	$\min\{318-a, 184\}$
NORX	32	512	128	384	137 - a	127
	64	1024	256	768	266 - a	255
Keyak	River	800	256	544	266 - a	255
	Lake	1600	256	1344	267 - a	255

Conclusion

Full-Stated Keyed Duplex

- Versatile primitive
- Flexible bound covering many use cases
- Makes life easier for sponge mode designer

Conclusion

Full-Stated Keyed Duplex

- Versatile primitive
- Flexible bound covering many use cases
- Makes life easier for sponge mode designer

Looking Forward

- Generalized FSKD found adoption in Keyak v2
- Further applications of tight multi-collision analysis

Thank you for your attention!

Supporting Slides

SUPPORTING SLIDES

Comparison of Schemes

• "Pure bound" means that derived security bound is expressed purely as a function of the adversary's capabilities.

	Full state absorption	Extendable output	Multi-target	Pure bound
Bertoni et al. [BDPV11]	_	√	_	✓
Bertoni et al. [BDPV11]	_	\checkmark		\checkmark
Chang et al. [CDHKN12]	_	\checkmark		✓
Andreeva et al. [ADMV15]	_	\checkmark	\checkmark	
Gaži et al. [GPT15]	\checkmark	_		✓
Mennink et al. [MRV15]	\checkmark	\checkmark		
Naito and Yasuda [NY16]	_	\checkmark		✓
This work	\checkmark	\checkmark	\checkmark	\checkmark