TFML 2019, Kraków

Michał Kuźba

Articles

- Krzysztof J. Geras, Stacey Wolfson, Yiqiu Shen, Nan Wu, S. Gene Kim, Eric Kim, Laura Heacock, Ujas Parikh, Linda Moy and Kyunghyun Cho High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks (2017)
- Nan Wu, Krzysztof J. Geras, Yiqiu Shen, Jingyi Su, S. Gene Kim, Eric Kim, Stacey Wolfson, Linda Moy and Kyunghyun Cho Breast density classification with deep convolutional neural networks (2018)
- Konrad Żołna, Krzysztof J. Geras and Kyunghyun Cho Classifier-agnostic saliency map extraction (2018)

Breast cancer screening

Problem specification

- · Multi view
- · labelled by doctor decision not the actual cancer development
- · large resolution (2600x2000), cannot be reduced
- category "not clear"
- · one channel

Dataset

- · around 200,000 mammographic exams, almost 900,000 images
- orders of magnitude larger than previous datasets
- · 4TB, dataset not available publicly, streaming from disk
- no Transfer Learning
- natural distribution (13%, 46%, 41%)

	br	l			
	0	1	2	3	
$\frac{1}{2}$	1702	9607	12656	1839	25804
2 1	9803	40060	37167	5157	92187
<u>i</u> 2	8434	35998	34029	4727	83188
	19939	85665	83852	11723	
IB 2				., .,	-

Architecture

layer	kernel size	stride	#maps	repetition
global	average pooling	256]	
convolution	3×3	1×1	256	×3
max pooling	2×2	2×2	128]
convolution	3×3	1×1	128	× 3
max pooling	2×2	2×2	128]
convolution	3×3	1×1	128	× 3
max pooling	2×2	2×2	64	1
convolution	3×3	1×1	64	× 2
convolution	3×3	2×2	64	
max pooling	3×3	3×3	32]
convolution	3×3	2×2	32]
	input	1]	

Classifier $p(y x)$						
Fully connected layer (1024 hidden units)						
Concatenation (256×4 dim)						
DCN DCN DCN DCN						
L-CC	R-CC	L-MLO	R-MLO			

Results

TABLE V AVERAGE AUC (MACAUC) AS A FUNCTION OF THE CONFIDENCE THRESHOLD $T_{P\%}$. When P=30%, we refer to the MacAUC as a high-confidence macAUC (HC-macAUC).

$T_{P\%}$	$T_{10\%}$	$T_{20\%}$	$T_{30\%}$	$T_{50\%}$	$T_{100\%}$
macAUC	0.865	0.827	0.811	0.781	0.732

Comparison with human performance

TABLE VI
RESULTS OF OUR READER STUDY COMPARING ACCURACIES OBTAINED BY
THE COMMITTEE OF RADIOLOGISTS, OUR NEURAL NETWORK (MV-DCN)
AND AN ENSEMBLE OF THE TWO.

	radiologists	MV-DCN	radiologists + MV-DCN
0 vs. others	0.650	0.547	0.653
1 vs. others	0.765	0.757	0.792
2 vs. others	0.699	0.759	0.759
macAUC	0.704	0.688	0.735

Next steps

- · actual cancer labels
- more complex pipeline, including other information about patients, history, other exams, breast density
- \cdot learning where to look

Visualization

Breast density classification

Breast density classification

- · easier problem, less data required
- density has "masking effect" and the risk increases

		br				
		0	1	2	3	
DS	0	1702	9607	12656	1839	25804
BI-RADS	1	9803	40060	37167	5157	92187
BI-	2	8434	35998	34029	4727	83188
		19939	85665	83852	11723	

Results

· same architecture, Transfer Learning (speeds up)

Classifier-agnostic saliency map extraction

Levels of agnosticism:

- · works for specific architecture, e.g. ResNet50
- · works for any given classifier
- · works without any classifier; explains the data

Here agnosticism is not an objective, but a remedy. ImageNet dataset.

Map extraction

```
• m : \mathbb{R}^{W \times H \times 3} \to [0, 1]^{W \times H}

• m = argmax_{m'}S(m', f)

• S(m, f) = \frac{1}{N} \sum_{n=1}^{N} [l(f((1 - m(x_n)) \cdot x_n), y_n) + R(m(x_n))]

• L(m, f) = \frac{1}{N} \sum_{n=1}^{N} [l(f((1 - m(x_n)) \cdot x_n), y_n)]

• m = argmax_{m'} \mathbb{E}_f[S(m', f)]
```

Algorithm

Algorithm 1: Classifier-agnostic saliency map extraction

```
input : an initial classifier f^{(0)},
                    an initial mapping m^{(0)},
                    dataset D.
                    number of iterations K
   output: the final mapping m^{(K)}
    Initialize a sample set F^{(0)} = \{f^{(0)}\}.
    for k \leftarrow 1 to K do
          \theta_{f^{(k)}} \leftarrow \theta_{f^{(k-1)}} - \eta_f \nabla_{\theta_f} L(m^{(k-1)}, f^{(k-1)})
F^{(k)} \leftarrow F^{(k-1)} \cup \left\{ f^{(k)} \right\}
f' \leftarrow \text{Sample}(F^{(k)})
\theta_{m^{(k)}} \leftarrow \theta_{m^{(k-1)}} + \eta_m \nabla_{\theta_m} S(m^{(k-1)}, f')
F^{(k)} \leftarrow \text{Thin}(F^{(k)})
```

Modifications

- entropy instead of loss in the score (adversarial artifacts)
- · thinning
- regularization L1 norm of m

Architecture

Details

- sharing weights
- discretize masks (>= average value)
- largest connected component

Evaluation

- visualization
- · testing on various classifiers
- object localization (weakly supervised localization)

Masks

(b) CASM (L)

Figure 2: The original images are in the first row. In the following rows masked-in images, masked-out images and inpainted masked-out images are shown, respectively. Note that the proposed approach (a-b) remove all relevant pixels and hence the inpainted images show the background only. Seven randomly selected consecutive images from validation set are presented here. Please look into the appendix for extra visualizations.

(c) Baseline

Unkown classes localization

	A	В	C	D	E	F	All
F	46.5	46.4	48.1	45.0	45.7	41.3	44.9
E, F	39.5	41.2	43.1	40.3	39.5	38.7	40.0
D, E, F	37.9	39.3	40.0	38.0	38.0	37.4	38.1
C, D, E, F	38.2	38.5	39.9	37.9	37.9	37.8	38.1
B, C, D, E, F	36.7	36.8	39.9	37.4	37.0	37.0	37.4
-	35.6	36.1	39.0	37.0	36.6	36.7	36.9