

Teorie informací a hodnocení statistických modelů

Bakalářská Práce

Tomáš Petit 505485@mail.muni.cz

Přírodovědecká fakulta, Masarykova Univerzita

27-06-2023

Obsah Práce

- Teorie Informace
 - Shannonova Entropie
 - Relativní Entropie
- Akaikeho informační kritétium
 - Metoda maximální věrohodnosti
 - Asymptotické vlastnosti věrohodnosti
 - Střední hodnota logaritmu věrohodnostní funkce
 - Vychýlení logaritmu věrohodnostní funkce
 - AIC
- Modelování pomocí AIC
 - Lineární a polynomiální regrese
 - Histogramy
 - Rovnost dvou diskrétních distribucí
 - Rovnost středních hodnot a rozptylů
 - Mallowsovo C_p
 - Analýza hlavních komponent

Motivace do problematiky

Test podílem věrohodnosti

- Statistický model s prostorem parametrů Θ
- Věrohodnostní funkce $L(\theta)$
- H₀ Nulová vs. H₁ Alternativní hypotéza
 - Parametr $\theta \in \Theta_0 \subseteq \Theta$
 - Parametr $\theta \in \Theta \setminus \Theta_0$

$$\lambda_{LR} = -2 \ln \left[\frac{\sup_{\theta \in \Theta_0} L(\theta)}{\sup_{\theta \in \Theta} L(\theta)} \right] \tag{1}$$

$$=-2[l(\theta_0)-l(\hat{\theta})], \tag{2}$$

kde

$$l(\hat{\theta}) = \ln[\sup_{\theta \in \Theta} L(\theta)] \tag{3}$$

$$l(\theta_0) = \text{maximum za platnosti } H_0$$
 (4)

Kullback-Leiblerova divergence

Statistické modely dány pomocí f(x), g(x) spojité náhodné veličiny X.

$$\ln\left(\frac{f(x)}{g(x)}\right) \tag{5}$$

Pak

$$I(f;g) = E_{f(x)} \left[\ln \left(\frac{f(x)}{g(x)} \right) \right] = \int_{-\infty}^{\infty} f(x) \ln \left(\frac{f(x)}{g(x)} \right) dx \tag{6}$$

Divergence \neq metrika!

"Pravda" vypadne

$$E_{f(x)}\left[\ln\left(\frac{f(x)}{g(x)}\right)\right] = E_{f(x)}[\ln(f(x))] - E_{f(x)}[\ln(g(x))] \tag{7}$$

Expected likelihood

$$E_{f(x)}[\ln(g(x))] = \int_{-\infty}^{\infty} f(x) \ln(g(x)) dx$$
 (8)

$$=\sum_{\alpha=1}^{n}\hat{f}(x_{\alpha})\ln(g(x_{\alpha}))\tag{9}$$

$$=\frac{1}{n}\sum_{\alpha=1}^{n}\ln(g(x_{\alpha}))\tag{10}$$

Tedy

$$n\int_{-\infty}^{\infty} f(x) \ln(g(x)) dx = \sum_{\alpha=1}^{n} \ln(g(x_{\alpha}))$$
 (11)

Informační kritéria

Takeuchiho informační kritérium

$$TIC = -2\sum_{1}^{n} \ln f(X_{\alpha}|\hat{\boldsymbol{\theta}}) + 2\operatorname{tr}\{J(\boldsymbol{\theta})I(\boldsymbol{\theta})^{-1}\}$$
 (12)

Akaikeho informační kritérium

$$AIC = -2\sum_{n=1}^{n} \ln f(X_{\alpha}|\hat{\boldsymbol{\theta}}) + 2p$$
 (13)

Aplikace

- Hodnocení statistických modelů
 - Lineární regresní modely (polynomiální, ANOVA etc.)
 - PCA
 - Histogramy
 - Ekvivalence množin kategoriálních dat
 - Časové řady
 - Testování rovnosti středních hodnot

Příklad 1

Volně dostupná data Swiss

- Model 1 Fertility \sim Catholic
- \blacksquare Model 2 Fertility \sim Catholic + Education + Infant.Mortality + Agriculture
- Model 3 Full model

Model	AIC	R^2	R_{adj}^2
1	364.3479	0.215	0.1976
2	325.2408	0.6993	0.6707
3	326.0716	0.7067	0.671

Table: Srovnání AIC, R^2 a R^2_{adi}

Příklad 2

Shrnutí

- Základ v teorii maximální věrohodnosti
- Lze provést bodové odhady i intervaly spolehlivosti
- Lze použít jako základ pro statistiku

MASARYK UNIVERSITY