Differential Motor Intent Decoding in ECoG: Hand vs Tongue Movements

By: Mohamed Waleed Ansari, Malavika Rudrakumar, Mai Ghaith, Jamana, Gurjot Kaur, Shitong Wu, Weiduo Luo

Group name: Thor

Introduction & Background

Introduction:

Electrocorticography (ECoG): A technique to record brain activity directly from the cortex, capturing high-frequency signals in the high gamma band (70–200 Hz).

Motor Execution Connection: High gamma activity is strongly associated with motor functions, reflecting neural processes during movement.

BCI Applications: ECoG enables brain-computer interfaces (BCIs) for neurorehabilitation, aiding patients with stroke, paralysis, or movement disorders.

Background:

Key Challenge: Accurately distinguishing actual movement from imagined movement in single-trial ECoG data remains difficult.

Impact on BCIs: This limitation slows the development of reliable, personalized BCIs for clinical use in neurorehabilitation.

Study Objective: Investigate whether high gamma power can effectively differentiate executed versus imagined tongue and hand movements using human ECoG data.

The Kai Miller Datasets

What are these datasets?

Collection of high-resolution **electrocorticography (ECoG) recordings** acquired from patients performing motor and language tasks, offering a rare window into the dynamics of the human brain at the cortical surface.

Produced by Dr. Kai Miller, a neurosurgeon at Stanford along with his team to better understand the correlation between actual and imagery movements.

We used the 2019 Dataset, tracking ECog readings from 7 epilepsy patients

What data does it provide us?

- Preprocessed and raw ECoG signals
- Task onset annotations
- Subject demographics
- Electrode locations (registered to cortical surfaces)

But why this specific dataset?

It contains finely sampled electrocorticography (ECoG) recordings from patients performing **hand and tongue movements**, with a clear distinction between **overt actions and motor imagery**. This makes it particularly well-suited to investigate the neural signatures of movement intention versus execution.

Research Question

The significance

- Personalized BCIs
- Neurophysiological Insights
- Enhanced Rehabilitation
- Neural Prosthesis Design

Methodology

Preprocessing:

Voltage data were extracted from Brodmann Areas: 2, 3, 4, 6, 9, 43, 45 (closely linked to motor control and sensory processing)

Feature Extraction:

- Compute Power Spectral Density (PSD) for each trial and electrode using Welch's method
- Flatten the PSD (frequency × channels) into a 1D vector
- Apply Principal Component Analysis (PCA) to reduce to 11 key features
- Extract **labels** for each trial: 0 = hand movement, 1 = tongue movement

Classifiers:

- Logistic Regression: A linear classifier using regularization
- SVM: Finds a separating hyperplane; good for high-dimensional data
- Random Forest: Ensemble of decision trees; captures complex feature interactions

Results

Comparison of hand and tongue movement for electrode 20

Mean voltage comparison for tongue and hand movements for selected Brodmann areas

Results

ECoG Motor Imagery Spectrograms for Participant 0

Logistic Regression Classification Results

SUMMARY: Model	Train Acc	Test Acc	CV Mean
Logistic Regression	0.562	0.536	0.467
SVM	0.708	0.560	0.462
Random Forest	1.000	0.429	0.474

Conclusion

1. Temporal dynamics

- Executed hand movements produced rapid, high-amplitude gamma surges peaking within ~0.3–0.5 s of stimulus onset.
- Imagined tongue movements elicited smaller, delayed gamma increases within the same window.

2. Spatial localization

- Hand execution: high-gamma enhancements localized predominantly to primary motor cortex (Brodmann 4, 6).
- Tongue imagery: comparatively greater (though weaker) activity in ventral regions (Brodmann 43, 45).

3. Single-trial specificity

 Channel-wise comparisons at peak response times confirmed these region-specific patterns on a per-trial basis.

Future directions

Real-time Closed-looped Feedback and Adaptive BCIs

- Data Augmentation, regularization methods or implementing more complex models
- Range of electrode selections in different regions and different dynamic behaviors (Mustile et al., 2024)

Neuropathological Implication and Clinical Translation

 Stroke and Neurodegenerative Diseases Rehabilitation (Cunningham et al., 2021)

