МГТУ им. Н.Э. Баумана

Дисциплина электроника

Лабораторный практикум №1 по теме: «Исследование характеристик и параметров полупроводниковых диодов»

Работу выполнил: студент группы РЛ1-43 Трубников Дмитрий Работу проверил: Загидуллин Равиль Шамильевч

Москва, 2016 г.

Цель работы - проведение экспериментальных исследований (натурных и модельных в программах схемотехнического анализа *MathCad 14* и *Micro-Cap 9*) полупроводникового диода с целью получения исходных данных для расчёта параметров модели полупроводникового диода и внесение модели в базу данных программ схемотехнического анализа.

Ш							
Взам. инв. №							
Инв. № дубл.							
u dama				ı	 		
Подп.	Лu	Изм.	№ докум.	Подп.	Дата	Лабораторный пра	актикум №1
. № подп	Ра: П) Т. к	зраб. ров. онтр.	т <u>ч</u> ≘ оокум. Трубников Загидуллин	TIGOTI.	дата	Полупроводниковый диод	Лит Лист Листов 1 2 15 МГТУ им. Н.Э.Баумана
Инв.	н. контр. Утв.					Вариант №19	группа РЛ1-43

Для заданного диода марки D2D202D, соответствующий моему варианту, проведем моделирование лабораторного стенда для получения ВАХ диода в программе Micro-Cap 9 как на прямой, так и на обратной ветвях по показанным ниже схемам:

Подп. и дата

Взам. инв. №

Инв. № дубл.

Подп. и дата

Инв. № подп

выбор Данный схем объясняется следующими соображениями. Несмотря на то, что идеальных измерительных приборов не существует, всетаки амперметр должен обладать относительно малым сопротивлением, а вольтметр, наоборот, довольно значительным. При прямом включении диод имеет малое сопротивление, и, если параллельно к нему подключить вольтметр, то потери в токе будут не значительны, т.к. сопротивление вольтметра во много раз превышает сопротивление диода при прямом включении. При обратном включении такая схема не прокатит, сопротивления диода и вольтметра станут соизмеримы, и потери в токе окажутся весомыми. Поэтому следует точно измерить ток на ветви диода, вставив в нее амперметр, потерями напряжения можно пренебречь, т.к. падение напряжения на диоде при обратном включении будет гораздо больше потерь на амперметре. Проиллюстрируем сказанное графиками, построенным в Micro-Cap 9 по схемам, приведенным выше.

ı						Лабораторный практикум №1						
	Ли	Изм.	№ докум.	Подп.	Дата							
Pá	Pas	враб.	Трубников				Лит	Лист	Листов			
	П	ов.	Загидуллин			Полупроводниковый диод		3	15			
	Т. контр.					МГТУ им. Н.Э.Баумана						
	Н. контр.								Вариант №19			
	У	тв.					группа РЛ1-43					

Как хорошо видно из графиков, наши догадки оказались верны, и ВАХ, снятые по показаниям «приборов», ненамного отличаются от своих истинных значений. Поэтому, для чистоты эксперимента, сохраним в текстовом файле и будем использовать в дальнейшем данные, снятые по показаниям «приборов». Для анализа нашей ВАХ и нахождения физических параметров диода воспользуемся программой *MathCAD*. Чтобы вычислительный блок *Given...Minerr* сработал как можно точнее, возьмем 5 точек в наиболее нелинейной части ВАХ.

 $D := READPRN("C:\Users\) Дмитрий \) Desktop\) отчет электроника \) Прямая BAX.DNO")$

		U	I
		0	1
	0	0	0
	1	0.047	3.34.10-4
	2	0.09	1.03.10-3
Ī	3	0.127	2.292·10-3
	4	0.158	4.226.10-3
	5	0.182	6.78.10-3
D =	6	0.202	9.832·10-3
	7	0.218	0.013
Ī	8	0.231	0.017
	9	0.242	0.021
	10	0.251	0.025
Ī	11	0.26	0.029
	12	0.267	0.033
Ī	13	0.274	

$Id1 := \max \left(D^{\langle 1 \rangle} \right) = 9.886$	$Ud1 := linterp(D^{\langle 1 \rangle}, D^{\langle 0 \rangle}, Id1) = 1.142$
$Id2 := \frac{Id1}{4} = 2.471$	$Ud2 := linterp\left(D^{\left<1\right>}, D^{\left<0\right>}, Id2\right) = 0.619$
$Id3 := \frac{Id2}{2} = 1.236$	$Ud3 := linterp\left(D^{\left\langle 1 \right\rangle}, D^{\left\langle 0 \right\rangle}, Id3\right) = 0.514$
$Id4 := \frac{Id3}{2} = 0.618$	$Ud4 := linterp\left(D^{\langle 1 \rangle}, D^{\langle 0 \rangle}, Id4\right) = 0.447$
$Id5 := \frac{Id4}{2} = 0.309$	$Ud5 := linterp \left(D^{\left< 1 \right>}, D^{\left< 0 \right>}, Id5 \right) = 0.396$

Вычилсение параметров диода:

$$Id = Is \cdot \left(exp\left(\frac{Ud - Id \cdot Rb}{Ns \cdot Ft}\right) - 1\right)$$

$$Ud = Id \cdot Rb + Ft \cdot Ns \cdot In\left(\frac{Is + Id}{Is}\right)$$

$$Ft := 0.0255 \qquad Ns := 1.5 \qquad Rb := 10^{-3} \qquad Is := 10^{-6}$$

	$\left(4.028 \times 10^{-5}\right)$
SovDiod := Minerr(Is,Rb,Ns) =	0.062
	1.657

10					
8					/
6		2	2	/	
D ⁽¹⁾ 4					(C)
2					
000	0.2	0.4	0.6	0.8	
		D	(0)		

Подп. и дата

Взам. инв. №

Инв. № дубл.

Подп. и дата

Создадим в *Micro-Cap 9* новую модель диода по найденным нами параметрам. И сравним ВАХ новой модели (созданной нами) и старой (которая служила прототипом). В случае расхождения более чем на 10% используем функцию «Оптимизация», предусмотренную в Micro-Cap.

						Лабораторный пра	актику	/м №1	1
	Ли	Изм.	№ докум.	Подп.	Дата				
	Разраб.		Трубников				Лит	Лист	Листов
	Пров.		Загидуллин			Полупроводниковый диод		5	15
	Т. контр.						МГТУ им. Н.Э.Баумана группа РЛ1-43		
	Н. контр.					Вариант №19			
	У	тв.					ερ	yıııa PJ	11-43

Часть 2

Перейдем к снятию вольт-фарадной характеристики. Для получения ВФХ будем пользоваться схемой, приведенной внизу страницы. Наша цель – найти емкость диода при приложении к нему различного обратного

напряжения. Чтобы осуществить это, для начала, построим обычный параллельный колебательный колебательный справа. Активным сопротивлением мы пренебрегли, а потому можем воспользоваться формулой Томпсона $f_{\textit{pes}} = \frac{1}{2\pi\sqrt{L1C41}} \approx 503,3 \; (\kappa \Gamma \textit{ц}) \; \text{и получить}$

100k R1 L1 C1 1m + 100p

вполне точную резонансную частоту.

Подключив диод, мы добавим в параллельную ветвь еще один «конденсатор», эквивалентная емкость будет равняться сумме C_1 и C_d . Однако, чтобы диод проявил свою барьерную емкость, необходимо подключить к нему постоянное напряжение. Кроме того, нужно избежать влияния источника постоянного напряжения на остальную цепь, локализовав его действие только на диоде и влияния остальной цепи на источник. Этого мы добьемся путем подключения дополнительных конденсатора C_2 (обрывает постоянное напряжение) и катушки L_2 (обрывает переменное напряжение). Последовательно меняя приложенное к диоду постоянно напряжение, мы тем самым будем изменять барьерную емкость диода, а, следовательно, и резонансные частоты всей цепи. С помощью вспомогательного окна построим график зависимости резонансных частот от приложенного постоянного напряжения.

Приведенные выше графики являются лишь вспомогательными пунктами для вычисления и построения ВФХ. Как уже был сказано, суммарная емкость цепи равняется сумме емкости конденсатора из параллельного колебательного контура и барьерной емкости диода (емкостью C_2 можно пренебречь, т.к. она значительно больше емкости диода и включена с ним последовательно). Отправим полученные данные в MathCAD, выразим из формулы Томсона ёмкость и найдем барьерную емкость диода. После этого, пользуясь вычислительным блоком Given...Minerr, найдем динамические параметры диода.

Занесем найденные динамические параметры в базу данных *Micro-Cap 9*:

.model SovietDiod D(Is=4.028E-5 Rs=0.062 N=1.657 Cio=1.179E-012 Vi=1.5 M=.347)

Ли	Изм.	№ докум.	Подп.	Дата	
Pa	зраб.	Трубников			
П	ров.	Загидуллин			
Т. контр.					
Н. к	онтр.				
V	me				

Подп. и дата

⋛

Взам. инв.

Инв. № дубл.

Подп. и дата

Инв. № подп

Лабораторный практикум №1

Лит

Полупроводниковый диод Вариант №19

МГТУ им. Н.Э.Баумана группа РЛ1-43

Листов

Лист

<u>Часть 3</u>

Теперь создадим модель диода Д311, вольтамперные характеристики которого были получены нами на лабораторном стенде. Данные снимались согласно схемам, описанным в начале, чтобы обеспечения наименьшее расхождение результатов с реальными значениями. Для начала, занесём снятые характеристики в *MathCAD* и построим по ним прямую и обратную ветви:

Подп. и дата

Взам. инв. №

Инв. № дубл.

Подп. и дата

Инв. № подп

Аналогично предыдущим случаям воспользуемся вычислительным блоком *Given...Minerr*, чтобы подсчитать такие физические параметры диода, как объемное сопротивление, ток насыщения и коэффициент неидеальности. Затем отправим полученные данные в *Micro-Cap 9*, чтобы создать и испытать модель для лабораторного диода.

						Лабораторный пра	актик	vm Noʻ	1
Ли Pa	Лu	Изм.	№ докум.	Подп.	Дата				
_	Pas	зраб.	Трубников				Лит	Лист	Листов
	П	ров.	Загидуллин			Полупроводниковый диод		10	15
	Т. к	контр.				МГТУ им. Н.Э.Баумана			
	Н. контр	онтр.				Вариант №19	еруппа РЛ1-43		
	У	тв.					εμ	yılıla PJ	11 -4 3

Is :=
$$10^{-6}$$
 Rb := 10^{-2} N := 2 Ft := 0.0255 Ud := $A^{(0)}$ Id := $A^{(1)}$

Given

Ud = Id·Rb + N·Ft·ln
$$\left[\frac{(Is + Id)}{Is}\right]$$
 $10^{-12} < Is < 10^{-3}$ $0 < Rb < 1$ $1 < N < 2$

Minerr(Is,Rb,N) =
$$\begin{pmatrix} 1.801 \times 10^{-5} \\ 1 \\ 2.002 \end{pmatrix}$$

Создадим модель нашего диода в библиотеке *Micro-Cap 9*:

Построим ВАХ модели и передадим данные в MathCAD для сравнения:

После построения графиков стало очевидно, что погрешность между ВАХ модели и диода, при максимальном значении приложенного напряжения (U=0.35B), больше допустимых 10%.

B := READPRN("C:\Users\Дмитрий\Desktop\отчет электроника\BAX модели.DNO")

$$a := linterp(A^{\langle 0 \rangle}, A^{\langle 1 \rangle}, 0.35) = 9.077 \times 10^{-3}$$
$$b := linterp(B^{\langle 0 \rangle}, B^{\langle 1 \rangle}, 0.35) = 0.012$$

$$\frac{b}{a} = 1.35$$

Подп. и дата

Взам. инв. №

Инв. № дубл.

Подп. и дата

Инв. Nº подп

при напряжении 350 мВ погрешность составляет 35%

Чтобы исправить положение, воспользуемся функцией оптимизации в *Micro-Cap 9*. За опорные точки возьмем измеренные на лабораторной работе значения тока и напряжения диода. Оптимизированные параметры внесём в модель диода.

l		mellerie Hrielleri													
l						Лабораторный пра	Лабораторный практикум №1								
	Ли	Изм.	№ докум.	Подп.	Дата										
F	Pas	зраб.	Трубников				Лит	Лист	Листов						
Ī	П	ров.	Загидуллин			Полупроводниковый диод		12	15						
Ī	Т. контр. Н. контр.		<u> </u>				МГТУ им. Н.Э.Баумана								
Ī						Вариант №19									
	У	тв.			·		группа РЛ1-43								

Итого, мы имеем:

Подп. и дата

Взам. инв.

Инв. № дубл.

Подп. и дата

Инв. № подп

- Rs=19.16*10 ⁻⁶, получен путем оптимизации
- Is=5, получен путем оптимизации
- N=1.9, получен путем оптимизации
- **Ft=0.0255** договорились взять его за постоянную величину
- **Eg=0.7** приблизительно для германия
- RI=2,5*10 ⁶ получили из линейной части обратной ветви ВАХ
- **Bv=30** взяли из справочных материалов
- *Cj*=1.5*10 ⁻¹² взяли из справочных материалов

(фотографии справочников приложены в архиве)

Ли	Изм.	№ докум.	Подп.	Дата	
Разраб.		Трубников			
Пров.		Загидуллин			По.
Т. контр.					
Н. контр.					
У	тв.				

Лабораторный практикум №1

МГТУ им. Н.Э.Баумана еруппа РЛ1-43

Листов

Лист

Итог: в процессе выполнения практикума мы научились создавать, настраивать и заносить в базу данных различные модели диодов. В ходе работы мы использовали программное обеспечение Micro-Cap 9 и MathCAD 14. Полученные навыки мы продемонстрировали сначала на пробном образце, взятом из готовой базы Місто-Сар 9, чтобы впоследствии сравнить полученные результаты, а затем на германиевом диоде Д311, который мы исследовали на лабораторной работе в зале ОРЭ. В качестве результатов работы были приведены различные графики, том числе графики вольтамперных характеристик, чтобы наглядно можно было увидеть

Подп. и дата

Взам. инв. №

Инв. № дубл.

Подп. и дата

Инв. № подп

	pac	хождени	е реал	іьны.	х и моделируемых объекто	06.					
					Лабораторный практикум №1						
Ли	Изм.	№ докум.	Подп.	Дата							
Pa	зраб.	Трубников				Лит	Лист	Листов			
П	ров.	Загидуллин			Полупроводниковый диод		14	15			
Т. к	онтр.					МГТУ им. Н.Э.Баумана					
Н. контр.				Вариант №19	· ·						
V	me					еруппа РЛ1-43					