STAT 230 SECTION 2

LECTURE 26

Today's Agenda

Last time:

- Exponential distribution as waiting time in a poisson process
- Mean and variance of the exponential distribution
- Memoryless property

Today (Lec 26, 07/04):

- Brief review exponential distribution
- Percentile
- Generating observations of random variables on a computer

■ If $X \sim Exp(\lambda)$, then $f(x) = \lambda \exp(-\lambda x)$ for x > 0.

- If $X \sim Exp(\lambda)$, then $f(x) = \lambda \exp(-\lambda x)$ for x > 0.
- If $\theta = 1/\lambda$, then we can also write $f(x) = \theta^{-1} \exp(-x/\theta)$ for x > 0.

- If $X \sim Exp(\lambda)$, then $f(x) = \lambda \exp(-\lambda x)$ for x > 0.
- If $\theta = 1/\lambda$, then we can also write $f(x) = \theta^{-1} \exp(-x/\theta)$ for x > 0.
- λ is the rate parameter from Poisson process, and θ is the waiting time parameter derived from it.

Properties of exponential distribution:

- If $X \sim Exp(\theta)$, then $E[X] = \theta$, $Var(X) = \theta^2$.
- If $X \sim Exp(\lambda)$, then $E[X] = 1/\lambda$, $Var(X) = 1/\lambda^2$.

- If $X \sim Exp(\lambda)$, then $f(x) = \lambda \exp(-\lambda x)$ for x > 0.
- If $\theta = 1/\lambda$, then we can also write $f(x) = \theta^{-1} \exp(-x/\theta)$ for x > 0.
- λ is the rate parameter from Poisson process, and θ is the waiting time parameter derived from it.

Properties of exponential distribution:

- If $X \sim Exp(\theta)$, then $E[X] = \theta$, $Var(X) = \theta^2$.
- If $X \sim Exp(\lambda)$, then $E[X] = 1/\lambda$, $Var(X) = 1/\lambda^2$.
- We can compute them easily with gamma function:

$$\Gamma(\alpha) = \int_0^\infty y^{\alpha - 1} e^{-y} dy, \ \alpha > 0.$$

- If $X \sim Exp(\lambda)$, then $f(x) = \lambda \exp(-\lambda x)$ for x > 0.
- If $\theta = 1/\lambda$, then we can also write $f(x) = \theta^{-1} \exp(-x/\theta)$ for x > 0.
- λ is the rate parameter from Poisson process, and θ is the waiting time parameter derived from it.

Properties of exponential distribution:

- If $X \sim Exp(\theta)$, then $E[X] = \theta$, $Var(X) = \theta^2$.
- If $X \sim Exp(\lambda)$, then $E[X] = 1/\lambda$, $Var(X) = 1/\lambda^2$.
- We can compute them easily with gamma function:

$$\Gamma(\alpha) = \int_0^\infty y^{\alpha-1} e^{-y} dy, \ \alpha > 0.$$

 Exponential distribution is the only memoryless continuous distribution:

$$P(X > s + t | X > s) = P(X > t).$$

Which of the following is true about gamma function?

A
$$\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$$
 for $\alpha > 1$

B
$$\Gamma(\alpha)=(\alpha-1)!$$
 for $\alpha\in\mathbb{N}$

C
$$\Gamma(1/2) = \sqrt{\pi}$$

D All of the above

Which of the following is true about gamma function?

A
$$\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$$
 for $\alpha > 1$

B
$$\Gamma(\alpha)=(\alpha-1)!$$
 for $\alpha\in\mathbb{N}$

C
$$\Gamma(1/2) = \sqrt{\pi}$$

D All of the above

Suppose the waiting time X until Mukhtar's next bus arrives follows an exponential distribution with parameter $\theta=1$. What's the waiting time w so that Mukhtar doesn't have to wait longer than w with probability 50%?

Suppose the waiting time X until Mukhtar's next bus arrives follows an exponential distribution with parameter $\theta=1$. What's the waiting time w so that Mukhtar doesn't have to wait longer than w with probability 50%?

Solution: We know $F(x)=P(X\leq x)=\int_0^x e^{-t}\,\mathrm{d}t=1-e^{-x}$ for $x\geq 0$. We want w such that $P(X\leq w)=0.5$, or

$$F(w) = 0.5 \Leftrightarrow 1 - e^{-w} = 0.5 \Leftrightarrow w = \log(2) \approx 0.693.$$

So with probability 50% Mukhtar won't have to wait longer than log(2). In other words, log(2) is the median of the distribution of X.

The $100 \times q$ th percentile (or $100 \times q\%$ quantile) of the distribution of X with cdf F_X is the value c_q , such that

$$F_X(c_q) = q$$
.

The quantile is the "inverse" of the cdf.

The $100 \times q$ th percentile (or $100 \times q$ % quantile) of the distribution of X with cdf F_X is the value c_q , such that

$$F_X(c_q) = q$$
.

The quantile is the "inverse" of the cdf.

Remark:

■ The probability that X is less than or equal to c_q is (at least) $100 \times q\%$.

The $100 \times q$ th percentile (or $100 \times q$ % quantile) of the distribution of X with cdf F_X is the value c_q , such that

$$F_X(c_q) = q$$
.

The quantile is the "inverse" of the cdf.

Remark:

- The probability that X is less than or equal to c_q is (at least) $100 \times a\%$.
- The **median** of a distribution is its 50% quantile.

The $100 \times q$ th percentile (or $100 \times q$ % quantile) of the distribution of X with cdf F_X is the value c_q , such that

$$F_X(c_q) = q$$
.

The quantile is the "inverse" of the cdf.

Remark:

- The probability that X is less than or equal to c_q is (at least) $100 \times q\%$.
- The **median** of a distribution is its 50% quantile.
- This is different from the **mode**, which is the most likely value, and different from the **mean** which is the expectation (long term "average").

Suppose $X \sim \textit{Exp}(\theta = 5)$, calculate the 25th percentile and the median of the distribution of X.

Suppose $X \sim \textit{Exp}(\theta = 5)$, calculate the 25th percentile and the median of the distribution of X. Solution

• $X \sim Exp(\theta = 5)$ has pdf $f(x) = (1/5) \exp(-x/5)$ for x > 0.

Suppose $X \sim \textit{Exp}(\theta = 5)$, calculate the 25th percentile and the median of the distribution of X. Solution

- $X \sim Exp(\theta = 5)$ has pdf $f(x) = (1/5) \exp(-x/5)$ for x > 0.
- The cdf of X is then $F(x) = \int_{-\infty}^{x} f(t) dt = \int_{0}^{x} (1/5) \exp(-t/5) dt = 1 \exp(-x/5).$

Suppose $X \sim \textit{Exp}(\theta = 5)$, calculate the 25th percentile and the median of the distribution of X. Solution

- $X \sim Exp(\theta = 5)$ has pdf $f(x) = (1/5) \exp(-x/5)$ for x > 0.
- The cdf of X is then $F(x) = \int_{-\infty}^{x} f(t) dt = \int_{0}^{x} (1/5) \exp(-t/5) dt = 1 \exp(-x/5).$
- Solving $F(c_q) = q$ for x where $q \in (0,1)$ gives

$$F(c_q) = q \Leftrightarrow 1 - q = \exp(-c_q/5) \Leftrightarrow c_q = -5\log(1-q)$$

Suppose $X \sim \textit{Exp}(\theta = 5)$, calculate the 25th percentile and the median of the distribution of X. Solution

- $X \sim Exp(\theta = 5)$ has pdf $f(x) = (1/5) \exp(-x/5)$ for x > 0.
- The cdf of *X* is then $F(x) = \int_{-\infty}^{x} f(t) dt = \int_{0}^{x} (1/5) \exp(-t/5) dt = 1 \exp(-x/5).$
- Solving $F(c_q) = q$ for x where $q \in (0,1)$ gives

$$F(c_q) = q \Leftrightarrow 1 - q = \exp(-c_q/5) \Leftrightarrow c_q = -5\log(1-q)$$

■ For q = 0.25 we get $c_{0.25} = -5 \log(0.75) \approx 1.438$ as the 25th percentile.

Suppose $X \sim \textit{Exp}(\theta = 5)$, calculate the 25th percentile and the median of the distribution of X. Solution

- $X \sim Exp(\theta = 5)$ has pdf $f(x) = (1/5) \exp(-x/5)$ for x > 0.
- The cdf of X is then $F(x) = \int_{-\infty}^{x} f(t) dt = \int_{0}^{x} (1/5) \exp(-t/5) dt = 1 \exp(-x/5).$
- Solving $F(c_q) = q$ for x where $q \in (0,1)$ gives

$$F(c_q) = q \Leftrightarrow 1 - q = \exp(-c_q/5) \Leftrightarrow c_q = -5\log(1-q)$$

- For q = 0.25 we get $c_{0.25} = -5 \log(0.75) \approx 1.438$ as the 25th percentile.
- For q = 0.5 we get $c_{0.5} = -5 \log(0.5) \approx 3.466$ as the median.

Suppose X and Y are continuous random variables satisfying $P(X \le x) < P(Y \le x)$. Let s_x and s_y denote the 50th percentiles of the distributions of X and Y, respectively. Then

- A $s_x < s_v$
- B $s_y < s_x$
- C It is possible that $s_x = s_y$
- D Unable to determine a relationship between s_x and s_y .

Suppose X and Y are continuous random variables satisfying $P(X \le x) < P(Y \le x)$. Let s_x and s_y denote the 50th percentiles of the distributions of X and Y, respectively. Then

- A $s_x < s_v$
- B $s_V < s_X$
- C It is possible that $s_x = s_y$
- D Unable to determine a relationship between s_x and s_y .

Suppose X and Y are continuous random variables satisfying $P(X \le x) < P(Y \le x)$. Let s_x and s_y denote the 50th percentiles of the distributions of X and Y, respectively. Then

- A $s_x < s_v$
- B $s_V < s_X$
- C It is possible that $s_x = s_v$
- D Unable to determine a relationship between s_x and s_y .

Solution: Note that $F_X(s_x) = 0.5 = F_Y(s_y)$. By assumption,

$$0.5 = F_X(s_x) < F_Y(s_x).$$

Since F_Y is increasing, we must have $s_Y < s_X$.

■ It is "easy" to sample from the continuous uniform distribution Unif(0,1) on a computer, that is, we can easily generate numbers that look like they come from Unif(0,1).

- It is "easy" to sample from the continuous uniform distribution Unif(0,1) on a computer, that is, we can easily generate numbers that look like they come from Unif(0,1).
 - ▶ In R: uniforms <- runif(n) creates a vector of length n with realizations of *Unif*(0,1).

- It is "easy" to sample from the continuous uniform distribution Unif(0,1) on a computer, that is, we can easily generate numbers that look like they come from Unif(0,1).
 - ▶ In R: uniforms <- runif(n) creates a vector of length n with realizations of *Unif*(0,1).
- But how can we sample from any distribution?

- It is "easy" to sample from the continuous uniform distribution Unif(0,1) on a computer, that is, we can easily generate numbers that look like they come from Unif(0,1).
 - ▶ In R: uniforms <- runif(n) creates a vector of length n with realizations of *Unif*(0,1).
- But how can we sample from any distribution?
- If F is a continuous and strictly increasing cdf of some random variable X and if $U \sim Unif(0,1)$, then the random variable $Y = F^{-1}(U)$ has cdf F:

- It is "easy" to sample from the continuous uniform distribution Unif(0,1) on a computer, that is, we can easily generate numbers that look like they come from Unif(0,1).
 - ▶ In R: uniforms <- runif(n) creates a vector of length n with realizations of *Unif*(0,1).
- But how can we sample from any distribution?
- If F is a continuous and strictly increasing cdf of some random variable X and if $U \sim Unif(0,1)$, then the random variable $Y = F^{-1}(U)$ has cdf F:

$$F_Y(y) = P(F^{-1}(U) \le y) = P(U \le F(y)) = F(y), \quad y \in \mathbb{R}.$$

■ So for continuous random variables with strictly increasing cdf, we have $Y = F^{-1} \sim F$. Let look at an example.

We sample uniforms <- runif(1000) and then exponentials <- -log(1-uniforms).

Generalization

More generally, one can show the following theorem (see p172).

Theorem

Let F be an arbitrary cdf and $U \sim Unif(0,1)$. The random variable $X = F^{-1}(U)$ has cdf F, where

$$F^{-1}(y) = \inf_{x \in \mathbb{R}} \{ F(x) \ge y \}.$$

A random variable X has a Burr(c, k) distribution, if X has pdf

$$f(x) = ckx^{c-1}(1+x^c)^{-k-1}, \quad x > 0,$$

where c, k are parameters.

- a) Show that f is a valid pdf.
- b) Derive a function g such that g(U) has pdf f if $U \sim Unif(0,1)$.

a) Note that $f(x) \ge 0$ for all x and

$$\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x = \int_{0}^{\infty} ckx^{c-1} (1+x^c)^{-k-1} \, \mathrm{d}x = \left[-(1+x^c)^{-k} \right]_{0}^{\infty} = 1.$$

b) We first compute the cdf as

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{0}^{x} ckt^{c-1} (1+t^{c})^{-k-1} dt = 1 - (1+x^{c})^{-k}$$

for x > 0 and 0 otherwise. From the theorem, we know we have to choose $g(u) = F^{-1}(u)$. Solving F(x) = u for x gives

$$g(u) = F^{-1}(u) = ((1-u)^{-1/k} - 1)^{1/c}$$
.