Loss of function annotation (LOF) Splice sites

Pablo Cingolani Mathieu Blanchette Rob Sladek

Splicing

Donor & acceptor sites

- "Essential splice sites" is only two bases in the intronic part (usually donor "GT", acceptor "AG")
- There is conservation beyond those two bases.
- There is conservation in the exonic part.
- There is no "gold standard" to predict branch point.

Analysis

Step 1 Goal: Find conserved donor & acceptor pairs

- Create quaternary trees counting occurrences of donor (or acceptor) sites.
- Find low entropy nodes in the trees (defined as bottom 0.05 quantile)
- For those nodes, find child nodes have high probability (i.e. top 0.95 quantile).
- Select those child nodes and create new quaternary trees only for those sites.
- Repeat the process selecting paired acceptor (or donor).
- Create a list of "significant donor-acceptor pairs"

Analysis

Step 2

Goal: Find Branch points

- For all "significant donor-acceptor pairs":
- Create sets of sequences 50 bases before the acceptor.
- Run motif finding using EM algorithm.
- Find overexpressed motifs
- Found U12 motif: Confirmation that the analysis was OK.

Results

i-) Some donor-acceptor pairs have higher degree of conservation in the donor and exon.

Donor type	Count	Donor Motif	U12 matches (Observed / Expected)	Acceptor Motif
ALL	346355	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0 (0.00)	文本表表 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
GTAAG_AG	76416	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	4163 (1.09)	天天天 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
GTGAGT_CAG	30901	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1278 (0.83)	表表表 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
GTAA_AG	29477	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1808 (1.23)	5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
GTA_AG	28146	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1625 (1.15)	5
GTGAG_CAG	27933	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	989 (0.71)	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
GTAGG_AG	17625	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	880 (1.00)	文章 表表
GTGAGT_AG	13443	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	734 (1.09)	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Results

i-) Some donor-acceptor pairs have higher degree of conservation in acceptor.

Results

i-) Branch point associated with donor-acceptor pairs: Over 100 times the expected values (red square).

Proposed changes: LOF

- Extend splice site donor & acceptor definitions to include highly conserved sequences (i.e. low entropy).
- Extend sites to exons whenever conservation is significant.
- Add U12 branch points predictions, but only in donor-acceptor subsets where enrichment is significant.
- Use PWMs scores (or similar scores) to "predict" LOF annotation of those sites.