Criptografia FIB

7. Primalitat

Anna Rio

Departament de Matemàtica Aplicada II • Universitat Politècnica de Catalunya

Nombres primers

Un nombre enter $p \ge 2$ és primer si els seus únics divisors són $\pm 1, \pm p$

• Quants nombres primers hi ha?

2 + 1 = 3

Infinits

Prova d'Euclides: $p_1p_2...p_n + 1$ té factors primers diferents de $p_1,...,p_n$

$$2 \cdot 3 + 1 = 7$$

$$2\cdot 3\cdot 5+1=31$$

$$2\cdot 3\cdot 5\cdot 7+1=211$$

$$2\cdot 3\cdot 5\cdot 7\cdot 11+1=2311$$

$$2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 + 1 = 59 \cdot 509$$

$$2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 + 1 = 19 \cdot 97 \cdot 277$$

A. Rio (MA2-UPC) Criptografia FIB 2 / 22

Nombres primers

 Com estan distribuïts?
 Si π(n) indica el nombre de primers menors o iguals que n, aleshores

$$\lim_{n\to\infty}\frac{\pi(n)}{n/\log n}=1$$

n	10 ²	10 ³	10 ⁴	10 ⁶	10 ⁷
$n/\log n$	21.7	144.8	1085.7	72382.4	620421
$\pi(n)$	25	168	1229	78498	664579

Nombres primers: densitat

- En el conjunt dels enters positius menors o iguals que n, la proporció dels que són primers és el quocient $\frac{\pi(n)}{n}$
- Aquest quocient mesura la probabilitat que un nombre aleatori de l'interval d'enters [1, n] sigui primer.
- També mesura la densitat dels primers en el conjunt dels enters positius.
- Si ens restringim al conjunt dels enters positius *senars*, la funció de densitat seria $\frac{\pi(n)}{n/2} = \frac{2\pi(n)}{n}$ i s'aproxima per $\frac{2}{\log n}$

n	10 ³	10 ¹⁵⁵	21024
2	1	1	1
log n	3.45	178	355

Hi ha bastants nombres primers

CERCA DE NOMBRES PRIMERS

Si disposem d'un certificat o un test de primalitat, una manera raonable de fer cerca de nombres primers és

- N aleatori (senar) (de longitud fixada)
- Passar el test a N, N + 2, N + 4,... fins obtenir resposta afirmativa

```
 \begin{aligned} & \text{N} = \text{Random [ Integer, } \{10^2, 10^3\} \,] & 472 \\ & \text{N} = \text{N} - 1 + \text{N} \text{ mod } 2 & 471 \\ & \text{While[ !PrimeQ[N], N = N + 2]} & 471 \\ & 473 \\ & 475 \\ & 477 \\ & 479 \end{aligned}
```

El cas pitjor faria 10 iteracions: 887 i 907 són primers consecutius.

GARBELL D'ERATÒSTENES

Eratosthenes of Cyrene Born 276 BC in (now) Libya Died 194 BC in Alexandria

Eratosthenes develops Sieve to Find all Prime Numbers

Description of the State of the

GARBELL D'ERATÒSTENES

 $N = ab \Rightarrow$ algun dels dos factors és $\leq \sqrt{N}$

Taula de primers $\leq N$

- Inicialitzar la llista {2,3,4,5,6,7,..., N − 1, N}
- El primer element de la llista és guarda com a primer, s'eliminen tots els seus múltiples.
- Això és repeteix fins que el primer element de la llista és $> \sqrt{N}$. Llavors tot el que resta són primers

```
2 {3,5,7,9,11,...,99} longitud 49
3 {5,7,11,13...,97} longitud 32
5 {7,11,13,17,...,97} longitud 25
7 {11,13,17,19,23,29,31,37,41,43,
```

47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}

GARBELL D'ERATÒSTENES

>	2	3	A	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

- Requereix memòria però no operacions.
- S'utilitza per fer taules de primers "petits"
 El tamany de la taula emmagatzemada depèn de cada sistema.
- El primer pas d'un test de primalitat consisteix a comprovar que el candidat no és divisible per cap dels primers de la taula

PRIMALITAT ≠ FACTORITZACIÓ

Petit teorema de Fermat

Si p és primer i gcd(p, b) = 1, aleshores

$$b^{p-1} \equiv 1 \mod p$$

Si trobem *b* tal que gcd(n, b) = 1 però $b^{n-1} \not\equiv 1 \mod n$, llavors

- sabem que n no és primer
- no sabem res de la factorització de n

```
n = 7687675443233456788991

b = 2

gcd(2, n) = 1

2^{n-1} \pmod{n} = 4186772532328717942860 \neq 1 \Rightarrow n \text{ compost}
```


CERTIFICATS DE PRIMALITAT

Wilson-Lagrange (1773)

 $N \text{ primer} \Leftrightarrow (N-1)! \equiv -1 \pmod{N}$

Problema: si N és gran, el càlcul de (N-1)! és massa costós

Lucas (1891)

Si existeix b > 1 tal que

- $b^{N-1} \equiv 1 \pmod{N}$
- $b^m \not\equiv 1 \pmod{N}$ per a tot m divisor estricte de N-1,

llavors N és primer.

Problema: requereix la factorització de N − 1

TESTS DE PRIMALITAT

Test de Fermat

Calcular $b^{N-1} \pmod{N}$ i mirar si dóna 1 o no

Si N és senar compost, o bé passa el test per a totes les bases, o bé la **probabilitat** que el passi per a una base arbitrària és < 1/2.

Algoritme

Donat un enter N senar,

- Triem aleatòriament b tal que 1 < b < N
- Calculem d = (b, N) mitjançant l'algoritme d'Euclides
- Si d > 1, N no és primer i d n'és un divisor no trivial. **Fi**
- Si d = 1, calculem $b^{N-1} \pmod{N}$ mitjançant l'algoritme d'exponenciació modular
- Si el resultat és ≠ 1, llavors N no és primer. Fi
- Si el resultat és 1, tornem a començar

Test de Fermat

Quan haguem fet això per a k bases b diferents, la probabilitat que N sigui compost és menor o igual que $1/2^k$

excepte que *N* sigui un nombre compost que passa el test per a totes les bases (nombre de Carmichael)

Per exemple, $561 = 3 \cdot 11 \cdot 17$ és un nombre de Carmichael

Problema: Hi ha infinits nombres de Carmichael i les caracteritzacions conegudes requereixen la factorització

TEST DE MILLER-RABIN: preliminars

Si p és primer, les classes mòdul p formen un cos (tot element $\neq 0$ té invers)

$$Z/pZ = F_p = \{0, 1, ..., p-1\}$$

Si p > 2 és un nombre primer, l'equació $X^2 = 1 \mod p$ té exactament dues solucions: 1 i p - 1 (és a dir, ± 1)

mod 7:
$$1^2 = 1$$
, $2^2 = 4$, $3^2 = 2$, $4^2 = 2$, $5^2 = 4$, $6^2 = 1$

$$\mathbf{mod}\ \mathbf{8}:\ \mathbf{1}^2=\mathbf{1},\ \mathbf{2}^2=\mathbf{4},\ \mathbf{3}^2=\mathbf{1},\ \mathbf{4}^2=\mathbf{0},\ \mathbf{5}^2=\mathbf{1},\ \mathbf{6}^2=\mathbf{4},\ \mathbf{7}^2=\mathbf{1}$$

TEST DE MILLER-RABIN

N>1 senar. Sigui $N-1=2^tN_0$, amb $t\geq 1$ i N_0 senar. Si b és un enter tal que $\gcd(b,N)=1$, definim $x_0=b^{N_0}\pmod N$ i els quadrats successius

$$x_1 = x_0^2 \pmod{N}$$
 = $b^{2N_0} \pmod{N}$
...
 $x_k = x_{k-1}^2 \pmod{N}$
...
 $x_t = x_{t-1}^2 \pmod{N}$ = $b^{2^t N_0} = b^{N-1} \pmod{N}$.

Direm que N passa el test de Miller-Rabin per a la base b si o bé $x_0 = 1$ o bé $N - 1 \in \{x_0, x_1, \dots, x_{t-1}\}.$

La probabilitat d'error en el test de Miller-Rabin (pseudoprimers forts) és $\leq 1/4$

《四》《圖》《意》《意》

Fixem $k \ge 1$. Donat un enter senar N,

- Es prenen aleatòriament enters b_1, \ldots, b_k tals que $1 < b_i < N$
- Per a cada i es calcula gcd(N, b_i). Si algun és diferent de 1, aleshores N és compost. Fi
- Si tots són 1, es fa el test de Miller-Rabin per a cada b_i. Si per a algun no el passa, N és compost. Fi
- Si el passa per a tots, es decideix que N és primer

Per a cada base fem un gcd, una exponenciació modular i menys de $t = O(\log_2 N)$ quadrats.

Fixem $k \ge 1$. Donat un enter senar N,

- Es prenen aleatòriament enters b_1, \ldots, b_k tals que $1 < b_i < N$
- Per a cada i es calcula gcd(N, b_i). Si algun és diferent de 1, aleshores N és compost. Fi
- Si tots són 1, es fa el test de Miller-Rabin per a cada b_i. Si per a algun no el passa, N és compost. Fi
- Si el passa per a tots, es decideix que N és primer

Per a cada base fem un gcd, una exponenciació modular i menys de $t = O(\log_2 N)$ quadrats.

Fixem $k \ge 1$. Donat un enter senar N,

- Es prenen aleatòriament enters b_1, \ldots, b_K tals que $1 < b_i < N$
- Per a cada i es calcula gcd(N, b_i). Si algun és diferent de 1, aleshores N és compost. Fi
- Si tots són 1, es fa el test de Miller-Rabin per a cada b_i. Si per a algun no el passa, N és compost. Fi
- Si el passa per a tots, es decideix que N és primer

Per a cada base fem un gcd, una exponenciació modular i menys de $t = O(\log_2 N)$ quadrats.

Fixem $k \ge 1$. Donat un enter senar N,

- Es prenen aleatòriament enters b_1, \ldots, b_k tals que $1 < b_i < N$
- Per a cada i es calcula gcd(N, b_i). Si algun és diferent de 1, aleshores N és compost. Fi
- Si tots són 1, es fa el test de Miller-Rabin per a cada b_i. Si per a algun no el passa, N és compost. Fi
- Si el passa per a tots, es decideix que N és primer

Per a cada base fem un gcd, una exponenciació modular i menys de $t = O(\log_2 N)$ quadrats.

- Si el resultat és que N és compost, aleshores podem estar segurs que N és compost.
- Si el resultat és que N és primer, hi ha una probabilitat d'error menor que 1/4^k

(Algoritme probabilístic de Monte-Carlo)

Entrada: Longitud ℓ i paràmetre de seguretat k **Sortida**: Un enter de ℓ bits probablement primer

- Generar aleatòriament un enter senar N de ℓ bits
- Passar el test de Miller Rabin amb k bases. Si respon primer, retornar N. Sinó, anar al pas 1.

 $p_{\ell,k}$ = probabilitat que l'algoritme retorni un nombre compost

- 2 $p_{\ell,k} < \ell^{3/2} 2^k k^{-1/2} 4^{2-\sqrt{k\ell}}$ per a $(k=2,\ell \geq 88)$ o $(3 \leq k \leq \ell/9,\ \ell \geq 21)$.
- $p_{\ell,k} < \frac{7}{20} \ell \, 2^{-5k} + \frac{1}{7} \ell^{15/4} 2^{-\ell/2 2k} + 12\ell \, 2^{-\ell/4 3k}$ per a $\ell/9 \le k \le \ell/4, \ \ell \ge 21.$
- $p_{\ell,k} < \frac{1}{7} \ell^{15/4} 2^{-\ell/2 2k}$ per a $k \ge \ell/4, \ \ell \ge 21$.

- $\begin{array}{l} {\color{red} 2} \ \, p_{\ell,k} < \ell^{3/2} 2^k k^{-1/2} 4^{2-\sqrt{k\ell}} \\ \\ \text{per a } (k=2,\ell \geq 88) \text{ o } (3 \leq k \leq \ell/9, \; \ell \geq 21). \end{array}$
- $\begin{array}{l} \bullet & p_{\ell,k} < \frac{1}{7}\ell^{15/4} \, 2^{-\ell/2 2k} \\ & \text{per a } k \ge \ell/4, \ \ell \ge 21. \end{array}$

- $\begin{array}{l} \textbf{2} \ \ \, p_{\ell,k} < \ell^{3/2} 2^k k^{-1/2} 4^{2-\sqrt{k\ell}} \\ \ \ \, \text{per a } (k=2,\ell \geq 88) \text{ o } (3 \leq k \leq \ell/9, \ \ell \geq 21). \end{array}$
- $\begin{array}{l} \text{ 3} \quad p_{\ell,k} < \frac{7}{20}\ell \, 2^{-5k} + \frac{1}{7}\ell^{15/4}2^{-\ell/2-2k} + 12\ell \, 2^{-\ell/4-3k} \\ \text{ per a } \ell/9 \leq k \leq \ell/4, \ \ell \geq 21. \end{array}$
- $p_{\ell,k} < \frac{1}{7} \ell^{15/4} 2^{-\ell/2 2k}$ per a $k \ge \ell/4, \ \ell \ge 21$.

- 2 $p_{\ell,k} < \ell^{3/2} 2^k k^{-1/2} 4^{2-\sqrt{k\ell}}$ per a $(k=2,\ell \geq 88)$ o $(3 \leq k \leq \ell/9,\ \ell \geq 21)$.
- $\begin{array}{l} \text{ 3} & p_{\ell,k} < \frac{7}{20}\ell \, 2^{-5k} + \frac{1}{7}\ell^{15/4}2^{-\ell/2-2k} + 12\ell \, 2^{-\ell/4-3k} \\ & \text{per a } \ell/9 \le k \le \ell/4, \ \ell \ge 21. \end{array}$
- $\begin{array}{l} \bullet & p_{\ell,k} < \frac{1}{7}\ell^{15/4} \, 2^{-\ell/2 2k} \\ & \text{per a } k \ge \ell/4, \ \ell \ge 21. \end{array}$

$$p_{\ell,k} \leq \frac{1}{2^i}$$

ℓ	k = 1	k = 2	<i>k</i> = 3	k=4	<i>k</i> = 5	<i>k</i> = 6	<i>k</i> = 7	k = 8
500	56	63	70	78	85	92	99	106
550	65	72	79	86	93	100	107	113
600	75	82	88	95	102	108	115	121

- Per generar un primer de 1024 bits amb probabilitat d'error menor que ¹/₂₈₀ només cal fer el test de Miller-Rabin amb 3 bases.
- Per generar un primer de 512 bits amb probabilitat d'error menor que ¹/₂₈₀ només cal fer el test de Miller-Rabin amb 5 bases.

Entrada: Longitud ℓ i paràmetre de seguretat k **Sortida**: Un enter de ℓ bits probablement primer

- Generar aleatòriament un enter senar N de ℓ bits
- Decidir si N és divisible per algun "primer petit"
- Passar el test de Miller Rabin amb k bases. Si respon primer, retornar N. Sinó, anar al pas 1.

Probabilitat que l'algoritme retorni un nombre compost és $\leq p_{\ell,k}$

Entrada: Longitud ℓ i paràmetre de seguretat k **Sortida**: Un enter de ℓ bits probablement primer

- Generar aleatòriament un enter senar N de ℓ bits
- Decidir si N és divisible per algun "primer petit"
- 3 Passar el test de Miller Rabin en base 2 i k-1 bases aleatòries. Si respon primer, retornar N. Sinó, anar al pas 1.

Fixar b=2 en la primera execució del test de Miller-Rabin millora el temps esperat d'execució de l'algoritme perquè l'exponenciació modular en base 2 és més eficient que en altres bases i perquè molts nombres compostos fallen el test per a aquesta base

Entrada: Longitud ℓ i paràmetre de seguretat k **Sortida**: Un enter de ℓ bits probablement primer

- Generar aleatòriament un enter senar N de ℓ bits
- Decidir si N és divisible per algun "primer petit"
- **3** Passar el test de Miller Rabin en base 2 i k-1 bases aleatòries. Si respon primer, retornar N. Sinó, $N \leftarrow N+2$ i anar al pas 2.