Examples of things LTL count do.

- From any state it is possible to get to a restart state (i.e., there is a path from all states to a state satisfying restart).
- The lift *can* remain idle on the third floor with its doors closed (i.e., from the state in which it is on the third floor, there is a path along which it stays there).

LtL Equivalence (contr.)

It's also the case that F distributes over \vee and G over \wedge , i.e.,

$$F(\phi \lor \psi) \equiv F \phi \lor F \psi$$

$$G(\phi \land \psi) \equiv G \phi \land G \psi.$$

$$G(\phi \land \psi) \equiv G \phi \land G \psi.$$

$$F \phi \equiv T U \phi$$

 $\phi U \psi \equiv \left(\phi W \psi\right) \wedge \left(F \psi\right) \tag{}$

To prove equivalence (3.2), suppose first that a path satisfies ϕ U ψ . Then, from clause 11, we have $i \geq 1$ such that $\pi^i \vDash \psi$ and for all $j = 1, \ldots, i-1$ we have $\pi^j \vDash \phi$. From clause 12, this proves ϕ W ψ , and from clause 10 it proves F ψ . Thus for all paths π , if $\pi \vDash \phi$ U ψ then $\pi \vDash \phi$ W $\psi \land F \psi$. As an exercise, the reader can prove it the other way around.

Then Dwy A Fy is the

Small adequate sets of connectives also exist in LTL. Here is a summary of the situation. • X is completely orthogonal to the other connectives. That is to say, its presence doesn't help in defining any of the other ones in terms of each other. Moreover, X cannot be derived from any combination of the others. Each of the sets $\{U, X\}$, $\{R, X\}$, $\{W, X\}$ is adequate.