Trees

Family Tree

Tree - Definition

A tree is a finite set of one or more nodes such that:

- 1. There is a specially designated node called the *root*.
- 2. The remaining nodes are partitioned in $n \ge 0$ disjoint sets $T_1, T_2, ..., T_n$, where each of these sets is a tree.
- 3. $T_1, T_2, ..., T_n$ are called the *sub-trees* of the root.

Tree

Node Types

- Root (no parent)
- Intermediate nodes (has a parent and at least one child)
- Leaf nodes (0 children)

Degree of a Node Number of Children

Level of a Node Distance from the root

Height of the Tree = Maximum Level of any Node in the tree

Terminology

- The degree of a node is the number of subtrees of the node.
- The node with degree o is a leaf or terminal node.
- Children of the same parent are siblings.
- The ancestors of a node are all the nodes along the path from the root to the node.
- The descendant of a node are all the nodes towards the root that has parent of that node and parent's of that node.

Terminology

- Height of a tree is the maximum number of Levels in a tree.
- Depth is the reverse of Height.
- Depth of a tree is maximum level of any leaf in the tree.

Root has maximum height.

Leaf has maximum Depth.

Representation of Trees

- List Representation
 - (A(B(E(K,L),F),C(G),D(H(M),I,J)))
 - The root comes first, followed by a list of sub-trees

How many link fields are needed in such a representation?

A Tree Node

- Every tree node:
 - object useful information
 - children pointers to its children nodes

Binary Trees

- A special class of trees: max degree for each node is 2
- Recursive definition: A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees called *the left* subtree and the right subtree.

Examples of Binary Trees

ADT Binary Tree

objects: a finite set of nodes either empty or consisting of a root node, left *BinaryTree*, and right *BinaryTree*.

method:

Bintree create()::= creates an empty binary tree
Boolean isEmpty()::= if (*this==empty binary
tree) return TRUE else return FALSE

Bintree leftChild()::= if (IsEmpty()) return error
else return the left subtree of *this
element data()::= if (IsEmpty()) return error
else return the data in the node of *this
Bintree rightChild()::= if (IsEmpty()) return error
else return the right subtree of *this

Samples of Binary Trees

Properties of Binary Trees

- The maximum number of nodes on level i of a binary tree is 2^{i-1} , $i \ge 1$
- The maximum number of nodes in a binary tree of height k is $2^k 1$, $k \ge 1$

Full Binary Tree

A binary tree of height k having $2^k - 1$ nodes is called a *full* binary tree

Complete Binary Tree

A binary tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right, is called a *complete* binary tree

Binary Tree Representations

- If a complete binary tree with *n* nodes
 - parent(i) is at i/2 if i!=1. If i=1, i is at the root and has no parent.
 - leftChild(i) is at 2i if 2i <= n. If 2i > n, then i has no left child.
 - rightChild(i) is at 2i+1 if 2i+1 <= n. If 2i+1 > n, then i has no right child.

Sequential Representation

[1]

[2]

B

Linked Representation

```
struct tnode {
  int data;
  tnode *left, *right;
};
```

left	data	right
------	------	-------

Binary Tree No node has a degree > 2

```
struct TreeNode {
   int
            data;
   TreeNode *left, *right; // left subtree and right subtree
Class BinaryTree {
   private:
    TreeNode * root;
   public:
    BinaryTree() { root = NULL; }
    void add (int data);
    void remove (int data);
    void InOrder();  // In order traversal
    ~ BinaryTree();
```

Binary Tree Traversals

- Let L, V, and R stand for moving left, visiting the node, and moving right.
- There are six possible combinations of traversal
 - LRV, LVR, RLV, RVL, VRL, VLR
- Adopt convention that we traverse left before right, only 3 traversals remain
 - LVR, LRV, VLR
 - inorder, postorder, preorder

Binary Tree Traversal In order Traversal (LVR)

```
void BinaryTree::InOrder()  // work horse function
{
    InOrder(root);
}
```

```
void BinaryTree::InOrder(TreeNode *t)
{
    if (t) {
        InOrder(t->left);
        visit(t);
        InOrder(t->right);
    }
}
```

void BinaryTree::visit (TreeNode *t) { cout << t->data; }

In Order Traversal

- Informally, inorder traversal calls for moving down the tree towards left until you can not go further.
- Then visit the node.
- Move one node to the right and continue.
- If you can not move to right, go back one more node.

Binary Tree Traversal In Order Traversal (LVR)

Binary Tree Traversal Pre Order Traversal (VLR)

```
void BinaryTree::PreOrder()
{
   PreOrder(root);
void BinaryTree::PreOrder(TreeNode *t) // work horse function
  if (t) {
   visit(t);
    PreOrder(t->left);
    PreOrder(t->right);
void BinaryTree::visit (TreeNode *t) {    cout << t->data; }
```

PreOrder Traversal

- In words we say visit the node, traverse left and continue.
- When you can not continue, move right and begin again or move back until you can not move right and resume.

Binary Tree Traversal Pre Order Traversal (VLR)

Binary Tree Traversal Post Order Traversal (LRV)

```
void BinaryTree::PostOrder()  // work horse function
{
    PostOrder(root);
}
```

```
void BinaryTree::PostOrder(TreeNode *t)
{
    if (t) {
        PostOrder(t->left);
        PostOrder(t->right);
        visit(t);
    }
}
```

void BinaryTree::visit (TreeNode *t) { cout << t->data; }

Binary Tree Traversal Post Order Traversal (LRV)

Binary Tree Traversal

VLR – visit when at the left of the Node

LVR – visit when under the Node

LRV – visit when at the right of the Node

ABCQMHKLXP

QCM BHALKXP

QMC HBLPXKA

Expression Tree

LVR: A+B*C-D/E*F

VLR: -+A*BC/D*EF

LRV: ABC*+DEF*/-

BinaryTree ::~ BinaryTree();

Which Algorithm?

Delete both the left child and right child before deleting itself

LRV

Non-Recusive Inorder Traversal

```
void Tree::Nonreclnorder(){
Stack<TreeNode*> s;
TreeNode *CurrentNode=root;
while(1){
   while(CurrentNode){
      s.push(CurrentNode);
      CurrentNode=CurrentNode LeftChild;
   if(!s.lsEmpty()){
      CurrentNode=s.pop();
      CurrentNode=CurrentNode RightChild;
   else break;
```