4616 – Métodos Numéricos Computacionais

Larissa Oliveira oliveira.t.larissa@gmail.com

Na última aula...

INTEGRAÇÃO NUMÉRICA

Ideia Básica

Substituir a função por um polinômio que aproxime f(x) razoavelmente no intervalo [a,b].

Hoje...

Na Fórmula de Gauss para o cálculo de integral numérica, mais conhecido como Fórmula de Quadratura Gaussiana, os pontos não são mais escolhidos pela pessoa que utiliza o método, mas seguem um critério bem definido.

O problema continua sendo calcular

$$I = \int_{a}^{b} f(x).dx$$

Desejamos desenvolver uma fórmula de integração na forma:
$$I = \int_{a}^{b} f(x)dx = A_{0}f(x_{0}) + A_{1}f(x_{1}) + \dots + A_{n}f(x_{n})$$

✓ Dedução do Método de Gauss para *dois pontos* (para mais pontos, o procedimento é análogo):

Mudar o intervalo de integração de [a,b] para [-1,1]. Isto pode ser conseguido mediante uma troca de variável

$$x = \frac{1}{2}.[(b-a).t + (b+a)]$$

$$1.dx = \frac{1}{2}.(b-a).dt \Rightarrow dx = \frac{1}{2}.(b-a).dt$$

Então,

$$I = \int_{a}^{b} f(x).dx = \int_{-1}^{1} f\left(\frac{1}{2}.[(b-a).t + (b+a)]\right).\frac{1}{2}(b-a).dt$$

$$\therefore I = \int_{-1}^{1} F(t).dt \text{ onde, } F(t) = \frac{1}{2}(b-a).f\left(\frac{1}{2}.(b-a).t + \frac{b+a}{2}\right)$$

Para dois pontos de Gauss tem-se:

onde A_o , A_1 , t_o e t_1 são incógnitas a serem determinadas e independem da função F escolhida.

Para a determinação destas quatro incógnitas, são necessárias quatro equações, as quais podem ser facilmente obtidas se considerarmos $F(t) = t^k$, k = 0,1,2,3.

Então,

$$\int_{-1}^{1} t^{k}.dt = A_{o}.t_{o}^{k} + A_{1}.t_{1}^{k}, \quad k = 0,1,2,3$$

$$k = 0$$
 $\int_{-\infty}^{\infty} dt = A_0 + A_1 + A_2 + A_3 + A_4$

$$k = 1$$

$$\int_{1}^{1} \frac{1}{4!} dt = A_0 f_0' + A_1 f_1' \qquad 0 = A_0 f_0 + A_1 f_1$$

$$k = 2$$
 $\int_{1}^{1} \frac{t^{2}_{3}}{t^{2}_{3}} = A_{0}t_{0}^{2} + A_{1}t_{1}^{2}$ $\frac{2}{3} = A_{0}t_{0}^{2} + A_{1}t_{1}^{2}$

$$\frac{2}{3} = A_0 k_0^2 + A_1 k_1^2$$

$$k = 3$$

$$\int_{-1}^{1} t^{3} dt = A_{0} t^{3} + A_{1} t^{3}, \quad 0 = A_{0} t^{3} + A_{1} t^{3},$$

Assim, obtém-se o sistema:

$$\begin{cases} A_0 + A_1 = 2 \\ A_0 \cdot t_0 + A_1 \cdot t_1 = 0 \\ A_0 \cdot t_0^2 + A_1 \cdot t_1^2 = \frac{2}{3} \\ A_0 \cdot t_0^3 + A_1 \cdot t_1^3 = 0 \end{cases}$$

cuja solução é:

$$\begin{cases} A_0 = A_1 = 1 \\ t_0 = \frac{-\sqrt{3}}{3} \\ t_1 = \frac{\sqrt{3}}{3} \end{cases}$$

Então,

$$I = \int_{a}^{b} f(x).dx = \int_{-1}^{1} F(t).dt = 1.F(\frac{-\sqrt{3}}{3}) + 1.F(\frac{\sqrt{3}}{3})$$

com,

$$F(t) = \frac{1}{2}(b-a).f(\frac{1}{2}.(b-a).t + \frac{b+a}{2})$$

Observação: Essa fórmula é exata para o cálculo com polinômios até grau 3.

Exemplo:

Calcule o valor de $\int (x^3 + 1) dx$ pela Quadratura Gaussiana usando 2 pontos. ^{−1} ~

$$x = \frac{1}{2} [(b-a)t + (b+a)] = \frac{1}{2} [(1+1)t + 1-t] = t$$

$$dx = dx$$

$$\int_{-1}^{1} (x^3 + 1) dx = \int_{-1}^{1} t^3 + 1 dt$$

$$F(t)$$

$$dx = dx$$

$$\int_{-1}^{1} (x^{3} + 1) dx = \int_{-1}^{1} t^{3} + 1 dt$$

$$\int_{-1}^{1} (x^{3} + 1) dx = \int_{-1}^{1} t^{3} + 1 dt$$

$$\int_{-1}^{1} (x^{3} + 1) dx = \int_{-1}^{1} t^{3} + 1 dt$$

$$\int_{-1}^{1} (x^{3} + 1) dx = \int_{-1}^{1} t^{3} + 1 dt$$

$$\int_{-1}^{1} (x^{3} + 1) dx = \int_{-1}^{1} t^{3} + 1 dt$$

$$\int_{-1}^{1} (x^{3} + 1) dx = \int_{-1}^{1} t^{3} + 1 dt$$

$$\int_{-1}^{1} (x^{3} + 1) dx = \int_{-1}^{1} t^{3} + 1 dt$$

2)
$$\int_{-1}^{1} f(x) dx = \int_{-1}^{1} r(4) d4 \sim A_0 F(4_0) A_1 F(4_1) =$$

$$= 1F\left(-\frac{13}{3}\right) + 1F\left(\frac{\sqrt{3}}{3}\right) =$$

$$= \left(-\frac{13}{3}\right)^3 + 1 + \left(\frac{13}{3}\right)^3 + 1 = 2$$

$$1.\int_{0}^{1} (x^{3}+1) dx \leq 2$$

Exemplo:

Calcule o valor de $\int_0^{10} e^{-x} dx$ pela Quadratura Gaussiana usando 2 pontos.

$$X = \frac{1}{2}[(b-a)+(b+a)] = \frac{1}{2}[10+10] = 5+15$$

2)
$$\int_{0}^{10} e^{-x} dx = \int_{-1}^{1} e^{-(5t+5)} 5dt = 5 \int_{-1}^{1} e^{-5t-5} dt$$

$$\int_{0}^{10} e^{x} dx \simeq 5(0,1212) = 0.606$$

A Fórmula de Quadratura Gaussiana para *n* pontos é dado por:

$$I = \int_{-1}^{1} F(t).dt = \sum_{i=0}^{n-4} A_i.F(t_i)$$

sendo A_i e t_i, pesos e pontos de Gauss respectivamente, que variam dependendo do número de pontos n. H

Assim,

$$\int_{a}^{b} f(x).dx = \int_{-1}^{1} F(t).dt \ge \sum_{i=0}^{n-1} A_{i}.F(t_{i})$$

com

$$F(t) = \frac{1}{2}(b-a).f\left(\frac{1}{2}.(b-a).t + \frac{b+a}{2}\right)$$

	Portros			
n	i	t _i	A_{i}	
1	0	0	2	
2	0;1	±0.57735027	1	
3	0;2	±0.77459667	0.5555556	
3	1	0	0.8888889	
4	0;3	± 0.86113631	0.34785484	
4	1;2	±0.33998104	0.65214516	Ļ
	0;4	±0.90617985	0.23692688	
(5)	1;3	± 0.53846931	0.47862868	۱
	2	0	0.56888889	
	0;5	±0.93246951	0.17132450	
	•			
6	1;4	±0.66120939	0.36076158	
6	•	±0.66120939 ±0.23861919	0.36076158 0.46791394	
6	1;4			
	1;4 2;3	±0.23861919	0.46791394	
7	1;4 2;3 0;6	±0.23861919 ±0.94910791	0.46791394 0.12948496	
	1;4 2;3 0;6 1;5	±0.23861919 ±0.94910791 ±0.74153119	0.46791394 0.12948496 0.27970540	
	1;4 2;3 0;6 1;5 2;4	±0.23861919 ±0.94910791 ±0.74153119 ±0.40584515	0.46791394 0.12948496 0.27970540 0.38183006	
7	1;4 2;3 0;6 1;5 2;4	±0.23861919 ±0.94910791 ±0.74153119 ±0.40584515 0	0.46791394 0.12948496 0.27970540 0.38183006 0.41795918	
	1;4 2;3 0;6 1;5 2;4 3 0;7	± 0.23861919 ± 0.94910791 ± 0.74153119 ± 0.40584515 0 ± 0.96028986	0.46791394 0.12948496 0.27970540 0.38183006 0.41795918 0.10122854	

A Fórmula de Quadratura de Gauss oferece boa precisão, com vantagem de n não muito grande.

Sempre que possível, é aconselhável a sua utilização.

Entretanto, em situações práticas em que a forma analítica da função não é conhecida, ela não pode ser utilizada.

Exemplo:

Calcule o valor de $\int_{-1}^{1} (x^3 + 1) dx$ pela Quadratura Gaussiana usando 4 pontos. -1

1) JA visto
$$X=k$$
 $F(k)=(1^3+1)$

2)
$$\int_{-1}^{1} (x^3 + 1) dx = \int_{-1}^{1} (t^3 + 1) dt = A_0 F(t_0) + A_1 F(t_1) + A_2 F(t_2) + A_3 F(t_3) =$$

$$= 0.3479((-0.341)^{3}+1)+0.6521((-0.341)^{3}+1)+$$

$$+0.6521((0.34)^{3}+1)+0.3479((0.8611)^{3}+1)=2$$

$$\int_{-\Lambda}^{\Lambda} (\chi^3 + 1) d\chi \simeq 2$$

Atividade para presença - Aula sobre Integração - 25/08/2020.

Calcular $\int_1^3 3e^x dx$ usando a quadratura gaussiana para n=1 (2) pontos) e n=2 (3 pontos).

Λο Δι Α2

fo fo to