

Fraunhofer-Institut für Integrierte Schaltungen IIS

Reinforcement Learning

Exercise 4: Model-free Prediction

Nico Meyer

Overview

Exercise Content

Week	Date	Торіс	Material	Who?
1	22.04.		no exercises	
2	29.04.	MDPs (slides)	ex1.pdf	Nico
3	06.05.	T.B.D.		
4	13.05.	Dynamic Programming (slides)	ex2.pdf, ex2_skeleton.zip	Alex
5	20.05.	OpenAl Gym, PyTorch-Intro (slides) TD-Learning (slides)		Nico
6	27.05.	TD-Control (slides)		Nico
7	03.06.	Intermediate exam		
8	10.06.		no exercises	
9	17.06.	DQN (slides)		Nico
10	24.06.	VPG (slides)		Alex
11	01.07.	A2C (slides)		Nico
12	08.07.	Multi-armed Bandits (slides)		Alex
13	15.07.	RND/ICM (slides)		Alex
14	22.07.	MCTS (slides)		Alex

Overview

Overall Picture

Model-free Prediction

Monte Carlo and TD Methods

- So far: We know our MDP model (S, A, P, R, γ) .
 - Planning by using dynamic programming
 - Solve a known MDP
- What if we don't know the model, i.e., \mathcal{P} or \mathcal{R} or both?
- We distinguish between 2 problems for unknown MDPs:
 - **Model-free Prediction:** Evaluate the future, given the policy π . (estimate the value function)

Model-free Control: Optimize the future by finding the best policy π . (optimize the value function)

Monte Carlo Policy Evaluation

- MC Policy Evaluation
 - MC methods learn from episodes of experience under policy π :

$$s_t, a_t, r_t, s_{t+1}, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T \sim \pi$$

- To evaluate a state $s \in S$ we keep track of the rewards received from that state onwards.
- First-Visit Monte-Carlo Policy Evaluation:
 - First time-step t that state s is visited in an episode
 - Increment counter $N(s) \leftarrow N(s) + 1$,
 - Increment total return $S(s) \leftarrow S(s) + G_{t}$,
 - Value is estimated by mean return: V(s) = S(s)/N(s)
 - Our estimation V(s) will come close to $V^{\pi}(s)$ as $N(s) \to \infty$. (considering the law of large numbers)

Temporal Difference Policy Evaluation

- Temporal-Difference Learning
 - Breaks up episodes and makes use of the intermediate returns
 - Learns from incomplete episodes (bootstrapping)
 - We update a guess towards a guess

$$V^{\pi}(s) = \underbrace{r(s, \pi(s))}_{s' \in S} + \underbrace{\gamma \sum_{s' \in S} \mathcal{P}(s'|s, \pi(s))}_{V^{\pi}(s')} V^{\pi}(s')$$

We don't know the transition model

But we have real transitions available

Let's assume that the reality is the transition we observed

→ and update our old estimate "a bit" in this direction

DP vs. MC vs. TD

DP Backup

<u>МС</u>

MC Backup TD Backup

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

TD and MC Algorithms

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Tabular TD(0) for estimating v_{π}

```
Input: the policy \pi to be evaluated Algorithm parameter: step size \alpha \in (0,1] Initialize V(s), for all s \in \mathbb{S}^+, arbitrarily except that V(terminal) = 0 Loop for each episode:

Initialize S
Loop for each step of episode:

A \leftarrow \text{action given by } \pi \text{ for } S
Take action A, observe R, S'
V(S) \leftarrow V(S) + \alpha \left[R + \gamma V(S') - V(S)\right]
S \leftarrow S'
until S is terminal
```

First-visit MC prediction, for estimating $V \approx v_\pi$

```
Input: a policy \pi to be evaluated Initialize: V(s) \in \mathbb{R}, \text{ arbitrarily, for all } s \in \mathbb{S} Returns(s) \leftarrow \text{ an empty list, for all } s \in \mathbb{S} Loop forever (for each episode): Generate an episode following \pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T G \leftarrow 0 Loop for each step of episode, t = T-1, T-2, \ldots, 0: G \leftarrow \gamma G + R_{t+1} Unless S_t appears in S_0, S_1, \ldots, S_{t-1}: Append G to Returns(S_t) V(S_t) \leftarrow \text{average}(Returns(S_t))
```

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Advantages and Disadvantages of MC and TD

- Which one should I use? Does it make any difference?
 - Bias/Variance Trade-Off
 - MC has high variance, but zero bias
 - good convergence (even with FA)
 - insensitive to initialization (no bootstrapping), simple to understand
 - only works for episodic problems (must wait until end of episode for update)
 - more efficient in non-Markov environments
 - TD has low variance, but some bias
 - TD(0) converges to $\pi_v(s)$ (be careful with FA: bias is a risk)
 - sensitive to initialization (because of the bootstrapping)
 - update after each step
 - exploits Markov property and is more efficient in Markov environment
 - usually more efficient in practice

Exercise Sheet 4

Model-free Prediction

Fraunhofer-Institut für Integrierte Schaltungen IIS

Thank you for your attention!