

SIM800系列_ Embedded AT_睡眠说明

GPRS 模组

芯讯通无线科技(上海)有限公司

上海市长宁区金钟路633号晨讯科技大楼B座6楼

电话: 86-21-31575100

技术支持邮箱: support@simcom.com

官网: www.simcom.com

文档名称:	SIM800 系列_Embedded AT_睡眠说明		
版本:	1.03		
日期:	2020.6.15		
状态:	已归档		

版权声明

本手册包含芯讯通无线科技(上海)有限公司(简称:芯讯通)的技术信息。除非经芯讯通书面许可,任何单位和个人不得擅自摘抄、复制本手册内容的部分或全部,并不得以任何形式传播,违反者将被追究法律责任。对技术信息涉及的专利、实用新型或者外观设计等知识产权,芯讯通保留一切权利。芯讯通有权在不通知的情况下随时更新本手册的具体内容。

本手册版权属于芯讯通,任何人未经我公司书面同意进行复制、引用或者修改本手册都将承担法律责任。

芯讯通无线科技(上海)有限公司

上海市长宁区金钟路 633 号晨讯科技大楼 B座 6楼

电话: 86-21-31575100

邮箱: simcom@simcom.com 官网: www.simcom.com

了解更多资料,请点击以下链接:

http://cn.simcom.com/download/list-230-cn.html

技术支持,请点击以下链接:

http://cn.simcom.com/ask/index-cn.html_或发送邮件至 support@simcom.com

版权所有 © 芯讯通无线科技(上海)有限公司 2020, 保留一切权利。

www.simcom.com 2/9

关于文档

版本历史

版本	日期	作者	备注
1.00	2012-10-10	毛斌	第一版
1.01	2015-02-10	毛斌	适用范围更新
1.02	2015-08-10	毛斌	增加SIM800C
1.03	2020-06-15	方凡	修改文档结构和风格

适用范围

本文档适用于 SIM800 系列 Embedded AT 模块,包括 SIM800W,SIM840W,SIM800V,SIM800H,SIM800,SIM800M64,SIM800K,SIM800C 的 Embedded AT 模块。

本文档描述了 EmbeddedAT 的睡眠功能的使用及相关注意事项。

www.simcom.com 3/9

目录

版权	7声明		2
关于	-文档		3
	版本历	史	3
	适用范	围	3
日気	.		4
1	接口.		5
2	说明.	睡眠进入、退出	6
	2.1	睡眠进入、退出	6
	2.2	睡眠唤醒	6
	2.3	睡眠耗流	7
	2.4	串口状态	8

1 接口

www.simcom.com 5/9

2 说明

2.1 睡眠进入、退出

eat_sleep_enable(EAT_TRUE)设定系统允许进入睡眠,eat_sleep_enable(EAT_FALSE)禁止系统进入睡眠。

注意:

- ▶ eat_lcd_light_sw(KAL_TRUE), eat_kpled_sw(KAL_TRUE), 即当背光灯打开的情况下,系统无法进入睡眠,设定系统进入睡眠之前需要关闭背光灯,即使用 eat_lcd_light_sw(KAL_FALSE)和eat_kpled_sw(KAL_FALSE)。
- ➤ 在 USB (SIM800V、SIM800W 或者 SIM840W 无 USB) 插入或者 VCHG 管脚有电源(4.4V~7V)接入的情况下,是无法进入睡眠的。
- ▶ 设置允许系统进入睡眠后,系统并不一定会立即进入睡眠,而是依赖于网络及其他任务执行状态,只有 当系统空闲后才会进入睡眠状态。例如通话中设置了睡眠,则系统会在通话结束后再进入睡眠。

2.2 睡眠唤醒

睡眠时,只有下表格所列出的这些唤醒源(来电话、来短信、定时器时间到、按键、GPIO中断)可以唤醒模块,其他操作不能唤醒模块。在唤醒模块一段时间后,模块还会自动进入睡眠模式。所以在唤醒模块后,如果不再需要模块进入睡眠模式,必须使用 eat_sleep_enable (EAT_FALSE)来主动禁止系统再次进入睡眠模式。

唤醒源	上报消息	相关信息
来电	EAT_EVENT_MDM_READY_RD	上报"\r\nRING\r\n"
短信	EAT_EVENT_MDM_READY_RD	上报"\r\n+CMTI: xxx\r\n"
定时器	EAT_EVENT_TIMER	event.data.timer.timer_id
按键	EAT_EVENT_KEY	event.data.key
GPIO 中断	EAT_EVENT_INT	event.data. interrupt
USB 插入	会调用 eat_usb_eint_callback_func	硬件唤醒(SIM800W 或 SIM840W 无 USB)

www.simcom.com 6/9

VCHG 上电(4.4V~7V) 无

硬件唤醒

- 来电、来短信唤醒时:会上报 EAT EVENT MDM READY RD 消息,并有相关 AT 指令数据上报,使 用 eat_modem_read(buf, len)获取数据。
- 定时器唤醒时:会上报 EAT_EVENT_TIMER 消息,event 参数中包含该定时器 ID。
- 按键唤醒时:会上报 AT_EVENT_KEY 消息, event 参数包含该键值及状态。
- GPIO 中断唤醒时:会上报 EAT_EVENT_INT 消息, event 参数包含 pin 脚值及状态。
- USB 插入时,如果注册了 USB 插入的回调函数 (使用接口 eat usb eint register),则会调用该回调函 数。SIM800V、SIM800W 或者 SIM840W 无 USB 接口。
- VCHG 有电源接入时,如果模块已经进入睡眠,会自动唤醒,在软件上无消息上报。

2.3 睡眠耗流

模块进入睡眠模式后,底电流小于 1mA,使用仪器进行网络注册平均耗流在 1.4mA 左右,实网环境下会大一 些。

模块进入睡眠后,会周期性的自动唤醒,以便和网络进行通信。这个过程是自动的,不需要客户干预,并且 每次时间很短,唤醒几十个毫秒后,自动再次进入睡眠。在睡眠状态下的耗流如下图所示:

Low 0.5657mA Min -542.8620uA X2 2.6381s High 119.1490mA Max 119.1490mA dX 1.2869s

7/9 www.simcom.com

图 1: 模块睡眠耗流图

下图为局部放大图:

图 2: 模块睡眠耗流局部图

2.4 串口状态

在睡眠状态下,串口不工作,所以不能通过外部往串口写数据来唤醒模块。

但如果在自动唤醒的间隙,例如图 2 中的 x1~x2 时刻,串口则可以正常收发数据,但时间很短,只有几十毫秒。在这种情况下收到的数据,可能是不完整的,有数据丢失。在图 2 中的 x2~x3 时刻,串口无法收发数据。

在使用 eat sleep enable (EAT TRUE) 后,如果需要串口接收数据,有几种方法

▶ 如果串口用作 AT 通道,在设置 eat_sleep_enable(EAT_TRUE)之前设置"AT+CSCLK=1\r\n"。在设置 eat_sleep_enable(EAT_TRUE)后,睡眠以后通过向模块持续发送"AT+CSCLK=0\r\n",当模块返回"OK" 后,可以正常进行 AT 通信。

如果需要再次进入睡眠,则只能通过 AT 指令"AT+CSCLK=1\r\n"使能睡眠功能。

www.simcom.com 8/9

- ▶ 如果串口被 APP 使用,在串口读入的数据中查找特定数据。当外设需要往串口发数据时,先持续发送特定的数据,APP 收到特定数据后,使用 eat_sleep_enable 接口函数禁止系统再次进入睡眠,并返回响应数据到串口。外设接收到响应字符串后,再进行数据的发送。
- ▶ 通过外部中断管脚进行唤醒,当需要串口通信时,通过拉高或拉底模块一个中断脚;在 app 程序中,当外部中断到来后,再根据中断管脚电平状态,使用 eat_sleep_enable()接口禁止或允许系统进入睡眠。

SIMCom 建议使用最后一种方法。

www.simcom.com 9/9