Sorbonne Université

Faculté des Sciences et Ingénierie

Rapport de projet LU3IN003

Fait par:

XIAO Carine - XU Audic

Olivier Spanjaard 2022 - 2023

Table des matières

1	Alig	nement de deux mots	3
	1.1	Question 1	3
	1.2	Question 2	3
2	Métl	node naïve par énumération	4
	2.1	Question 3	4
	2.2	Question 4	4
	2.3	Question 5	4
	2.4	Question 6	5
	2.5	Tâche A	5
3	Prog	rammation dynamique	6
	3.1	Question 7	6
	3.2	Question 8	6
	3.3	Question 9	6
	3.4	Question 10	7
	3.5	Question 11	7
	3.6	Quesiton 12	7
	3.7	Quesiton 13	8
	3.8	Quesiton 14	8
	3.9	Quesiton 15	8
	3.10	Quesiton 16	9
	3.11	Quesiton 17	9
	3.12	Quesiton 18	9
	3.13	Tâche B	10
4	Amé	lioration de la complexité spatiale du calcul de la distance	11
	4.1	Question 19	11
	4.2	Question 20	11
	4.3	Tâche C	12

5	Amélioration de la complexité spatiale du calcul d'un alignement optimal par la						
	méth	ode ''diviser pour régner''	13				
	5.1	Question 21	13				
	5.2	Question 22	14				
	5.3	Question 23	14				
	5.4	Question 24	15				
	5.5	Question 25	16				
	5.6	Question 26	16				
	5.7	Question 27	17				
	5.8	Question 28	17				
	5.9	Tâche D	17				
	5.10	Question 29	18				

1 Alignement de deux mots

1.1 Question 1

Soit (\bar{x}, \bar{y}) et (\bar{u}, \bar{v}) des alignements de (x, y) et (u, v) respectivement. Montrons que $(\bar{x} \cdot \bar{u}, \bar{y} \cdot \bar{v})$ est un alignement de $(x \cdot u, y \cdot v)$.

- (i) Montrons que $\pi(\bar x\cdot \bar u)=x\cdot u$: Par propriété de la concaténation, on a : $\pi(\bar x\cdot \bar u)=\pi(\bar x)\cdot \pi(\bar u)$. Et d'après les hypothèses sur $\bar x$ et $\bar u:\pi(\bar x\cdot \bar u)=x\cdot u$.
- (ii) Montrons que $\pi(\bar{y}\cdot\bar{v})=\bar{y}\cdot\bar{v}$:

 De même par propriété de la concaténation, on a : $\pi(\bar{y}\cdot\bar{v})=\pi(\bar{y})\cdot\pi(\bar{v})$.

 Et par hypothèses sur \bar{y} et \bar{v} : $\pi(\bar{y}\cdot\bar{v})=y\cdot v$.
- (iii) Montrons que $|\bar{x}\cdot\bar{u}|=|\bar{y}\cdot\bar{v}|$: Clair car $|\bar{x}\cdot\bar{u}|=|\bar{x}|+|\bar{u}|=|\bar{y}|+|\bar{v}|=|\bar{y}\cdot\bar{v}|$.
- (iv) Montrons que $\forall i \in \llbracket 1, |\bar{x}| + |\bar{u}| \rrbracket, (\bar{x} \cdot \bar{v})_i \neq -$ ou $(\bar{y} \cdot \bar{v})_i \neq -$: Soit $i \in \llbracket 1, |\bar{x}| + |\bar{y}| \rrbracket$, on distingue 2 cas. Si $i \leq |\bar{x}|$, alors $(\bar{x} \cdot \bar{u})_i = \bar{x}_i$ et $(\bar{y} \cdot \bar{v})_i = \bar{y}_i$. Par (iv) des alignements (\bar{x}, \bar{y}) et (\bar{u}, \bar{v}) , on obtient que $(\bar{x} \cdot \bar{v})_i \neq -$ ou $(\bar{y} \cdot \bar{v})_i \neq -$. Sinon $i > |\bar{x}|$, en posant $i' = i |\bar{x}| \in \llbracket 1, |\bar{u}| \rrbracket$, on a : $(\bar{x} \cdot \bar{u})_i = \bar{u}_{i'}$ et $\bar{y} \cdot \bar{v} = \bar{v}_{i'}$. Par (iv) des sous-alignements, on en conclut que : $(\bar{x} \cdot \bar{v})_i \neq -$ ou $(\bar{y} \cdot \bar{v})_i \neq -$.

D'où $(\bar{x}\cdot\bar{u},\bar{y}\cdot\bar{v})$ est un alignement de $(x\cdot u,y\cdot v)$.

1.2 Question 2

Soit $x \in \Sigma^*$ de longueur $n \in \mathbb{N}$ et $y \in \Sigma^*$ de longueur $m \in \mathbb{N}$. Construisons un alignement (\bar{x}, \bar{y}) de la façon suivante. Pour \bar{x} , on concatène le mot x avec m gaps. Puis pour \bar{y} , on concatène n gaps avec le mot y. (\bar{x}, \bar{y}) vérifie (i), (ii), (iii) et (iv) donc il s'agit bien d'un alignement de (x, y) de longueur n + m, qui est la longueur maximale. En effet, pour un alignement de longueur supérieure ou égale à n + m + 1, il existe $i_0 \in [\![1, |\bar{x}|]\!]$ tel que $\bar{x}_{i_0} = -$ et $\bar{y}_{i_0} = -$.

2 Méthode naïve par énumération

2.1 Question 3

Étant donné $x \in \Sigma^*$ un mot de longueur $n \in \mathbb{N}$, on cherche le nombre de façon de placer k gaps dans un mots de longueur n+k. Il y a donc $\binom{n+k}{k}=\binom{n+k}{n}$ possibilités de faire cela.

2.2 Question 4

Soit (x, y) de longueur respectives n et $m \in \mathbb{N}$ tel que $n \ge m$.

- 1) Si on ajoute k gaps à x pour obtenir \bar{x} , il faudra en ajouter n + k m à y pour obtenir \bar{y} .
- 2) On cherche le nombre de façon de placer n+k-m gaps dans \bar{y} qui est de longueur n+k. Or on nous rappel qu'un gap de \bar{y} ne doit pas être à la même position qu'un gap de \bar{x} . Il y a donc $\binom{n}{n+k-m}=\binom{n}{m-k}$ possibilités de faire cela.
- 3) On a vu qu'il y avait $\binom{n+k}{k}$ façon de placer k gaps dans x et qu'en ajoutant ces k gaps, il y avait $\binom{n}{n+k-m}$ alignements possible de (x,y). Or on a aussi vu qu'un alignement de x était de longueur au maximum n+m. On en déduit que le nombre d'alignement possibles de (x,y) est de : $\sum_{k=0}^{m} \binom{n+k}{k} \binom{n}{n+k-m}$.

Application numérique : pour |x| = 15 et |y| = 10, on trouve **298 199 265** alignements possibles.

2.3 Question 5

On a vu que le nombre d'alignement possible de (x,y) est de : $\sum_{k=0}^{m} \binom{n+k}{k} \binom{n}{n+k-m}$. On cherche à majorer ce terme, on a :

$$\binom{n+k}{k} \binom{n}{n+k-m} = \frac{(n+k)!}{k!} \frac{n!}{(m-k)!(n+k-m)} = \frac{(n+k)!}{k!} \frac{1}{(m-k)!(n+k-m)!} = \frac{(n+k)(n+k-1)...(n+k-m+1)}{k! \ (m-k)!}$$
 Or :
$$\frac{(n+k)(n+k-1)...(n+k-m+1)}{k! \ (m-k)!} \leqslant \frac{(n+k)^m}{k! \ (m-k)!} \leqslant \frac{(n+m)^m}{m}.$$

Donc le nombre d'alignement possible est majoré par : $\frac{(m+1)(n+m)^m}{m} \leqslant 2(n+m)^m$.

De plus, pour trouver la distance d'édition entre x et y, ou un alignement de coût minimal, il faut parcourir tous les alignements qui sont au maximum de taille (n+m). On en déduit que la complexité d'un tel algorithme naïf est en $O((n+m)(n+m)^m) = O((n+m)^{m+1})$, qui est donc exponentielle.

2.4 Question 6

Un algorithme naı̈f qui consisterait à énumérer tous les alignements de deux mots en vue de trouver la distance d'édition entre ces deux mots, aurait une compléxité spatiale de O(n+m). En effet, les alignements ont besoin, dans le pire cas, d'une chaı̂ne de taille n+m d'après la question 1, qu'on pourra écraser pour les suivants. Il faut de plus, deux entiers : l'un pour stocker la distance d'édition de l'alignement qu'on vient de produire, et l'autre pour le minimum des distances d'édition qu'on a trouvé jusqu'à maintenant. De même, pour un algorithme en vue de trouver un alignement de coût minimal, sa compléxité spatiale sera en O(n+m).

2.5 Tâche A

Nous avons testé notre implémentation sur les instances $nst_0000010_44.adn$, $Inst_0000010_7.adn$ et $Inst_0000010_8.adn$, et avons observé qu'elle est valide et renvoit bien 10, 8 et 2. On cherche maintenant à savoir jusqu'à quelle taille d'instance on peut résoudre les instances

Instances	taille n	taille m	temps(s)
Inst_0000013_45.adn	13	12	26.00
Inst_0000013_56.adn	13	12	26.39
Inst_0000013_89.adn	13	12	26.84
Inst_0000014_7.adn	14	12	58.29
Inst_0000014_23.adn	14	10	7.54
Inst_0000014_83.adn	14	10	7.5
Inst_0000015_2.adn	15	13	316
Inst_0000015_4.adn	15	12	124
Inst_0000015_76.adn	15	13	307

fournies en moins d'une minute. On obtient le tableau suivant.

Figure 1 : tableau des performances associées à DIST_NAIF

Le temps de calcul dépasse une minute lorsqu'on dépasse les instances de taille 14×12 .

Figure 2 : Utilisation de top pour |x| = 15

Concernant la consommation mémoire utilisée, on voit sur la figure 2 qu'elle est assez conséquente. Ce qui est attendu car l'implémentation est naïve et qu'elle peut donc être améliorée.

3 Programmation dynamique

3.1 Question 7

Soit (\bar{u}, \bar{v}) un alignement de $(x_{\llbracket 1.i \rrbracket}, y_{\llbracket 1.i \rrbracket})$ de longueur $l \in \mathbb{N}$.

Si
$$\bar{u}_l = -$$
 alors $\bar{v}_l \neq -$ donc $_l = y_j$.

Si
$$\bar{v}_l = -$$
 alors $\bar{u}_l \neq -$ donc $\bar{u}_l = x_i$.

Si
$$\bar{u}_l \neq -$$
 et $\bar{v}_l \neq -$ alors $\bar{u}_l = x_i$ et $\bar{v}_l = y_j$.

3.2 Question 8

En distinguant les trois cas de la quesiton 7, on trouve le résultat suivant.

$$\mathrm{Si}\; \bar{u}_l = -\; \mathrm{alors}\; C(\bar{u},\bar{v}) = C(\bar{u}_{\llbracket 1,l-1\rrbracket},\bar{v}_{\llbracket 1,l-1\rrbracket}) + c_{ins} = C(\bar{u}_{\llbracket 1,l-1\rrbracket},\bar{v}_{\llbracket 1,l-1\rrbracket}) + 2.$$

$$\mathrm{Si}\; \bar{v}_l = - \; \mathrm{alors}\; C(\bar{u},\bar{v}) = C(\bar{u}_{\llbracket 1,l-1\rrbracket},\bar{v}_{\llbracket 1,l-1\rrbracket}) + c_{del} = C(\bar{u}_{\llbracket 1,l-1\rrbracket},\bar{v}_{\llbracket 1,l-1\rrbracket}) + 2.$$

Si
$$\bar{u}_l \neq -$$
 et $\bar{v}_l \neq -$ alors $C(\bar{u}, \bar{v}) = C(\bar{u}_{\llbracket 1, l-1 \rrbracket}, \bar{v}_{\llbracket 1, l-1 \rrbracket}) + c_{sub}$.

3.3 Question 9

Soit $i \in [\![1,n]\!]$ et $j \in [\![1,m]\!]$, d'après les questions 7 et 8, on en déduit que :

1. si
$$\bar{u}_l = -$$
 alors $D(i, j) = D(i, j - 1) + c_{ins} = A$

2. si
$$\bar{v}_l = -$$
 alors $D(i, j) = D(i - 1, j) + c_{del} = B$

3. si
$$\bar{u}_l \neq -$$
 et $\bar{v}_l \neq -$ alors $D(i,j) = D(i-1,j-1) + c_{sub} = C$.

D étant la distance d'édition entre deux sous-mots, il s'agit du coût minimum des alignements entre ces deux sous-mots, on a alors : D(i, j) = min(A, B, C).

3.4 Question 10

On a
$$D(0,0) = d(x_{\emptyset}, y_{\emptyset}) = d(\varepsilon, \varepsilon) = 0$$
.

3.5 Question 11

Pour $j \in \llbracket 1, m \rrbracket$, $D(0, j) = d(x_{\emptyset}, y_{\llbracket 1, j \rrbracket}) = j \times c_{ins}$, ce qui correspond au coût pour insérer j lettres. De même, pour $i \in \llbracket 1, n \rrbracket$, $D(i, 0) = d(x_{\llbracket 1, i \rrbracket}, y_{\emptyset}) = i \times c_{del}$, ce qui correspond au coût pour supprimer i lettres.

3.6 Quesiton 12

Algorithme 1 Distance de manière naïve

```
fonction DIST_1(x, y):
n \leftarrow |x|;
m \leftarrow |y|;
T \leftarrow [n+1][m+1];
pour i = 0 \text{ à } n \text{ faire}
pour j = 0 \text{ a m faire}
si i == 0 \text{ alors}
T[i][j] \leftarrow j \times c_{ins};
si j == 0 \text{ alors}
T[i][j] \leftarrow i \times c_{del};
A \leftarrow T[i][j-1] + c_{ins};
B \leftarrow T[i-1][j] + c_{del};
C \leftarrow T[i-1][j-1] + c_{sub};
T[i][j] \leftarrow min(A, B, C);
retourne T;
```

3.7 Quesiton 13

La complexité spatiale de l'algorithme est en $\theta(n \times m)$

3.8 Quesiton 14

En supposant que le temps requis pour la comparaison, multiplication, addition, ainsi que la fonction min soit constant, la compléxité temporelle de l'algorithme est en $\theta(n \times m)$.

3.9 Quesiton 15

Nous allons montrer le premier cas.

Soit $(i,j) \in [0,n] \times [0,m]$. Supposons que j>0 et $D(i,j)=D(i,j-1)+c_{ins}$.

On veux montrer que : $\forall (\bar{s},\bar{t}) \in Al^*(i,j-1), (\bar{s}\cdot -,\bar{t}\cdot y_j) \in Al^*(i,j).$

Soit $(\bar{s},\bar{t})\in Al^*(i,j-1)$, alors (\bar{s},\bar{t}) est un alignement de $(x_{\llbracket 1,i\rrbracket},y_{\llbracket 1,j\rrbracket})$ tel que :

$$c(\bar{s},\bar{t})=d(x_{\llbracket 1,i\rrbracket},y_{\llbracket 1,j-1\rrbracket})=D(i,j-1).$$

Or $(\bar{s}\cdot -, \bar{t}\cdot y_j)$ est un alignement de $(x_{\llbracket 1,i\rrbracket}, y_{\llbracket 1,j\rrbracket})$.

 $\text{On a de plus}: c(x_{[\![1,i]\!]},y_{[\![1,j-1]\!]}) = c(\bar{s},\bar{t}) + c_{ins} = D(i,j-1) + c_{ins} = D(i,j) = d(x_{[\![1,i]\!]},y_{[\![1,j]\!]}).$

Donc $(\bar{s} \cdot -, \bar{t} \cdot y_j) \in Al^*(i, j)$.

3.10 Quesiton 16

Algorithme 2 Alignement minimal de (x,y)

```
fonction SOL_1(x, y, T):
     i \leftarrow |x|;
     j \leftarrow |y|;
     u \leftarrow \varepsilon;
     v \leftarrow \varepsilon;;
     tant que i > 0 ou j > 0 faire
          si j > 0 et T[i][j] == T[i][j-1] + c_{ins} alors
               u \leftarrow " - " · u;
               v \leftarrow y_i \cdot v;
               j \leftarrow j - 1;
          si i > 0 et T[i][j] == T[i-1][j] + c_{del} alors
                u \leftarrow x_i \cdot u;
               v \leftarrow " - " · v;
               i \leftarrow i - 1;
          si T[i][j] == T[i-1][j-1] + c_{sub} alors
                u \leftarrow x_i \cdot u;
               v \leftarrow y_j \cdot v;
                i \leftarrow i - 1;
                j \leftarrow j - 1;
     retourne (u, v);
```

3.11 Quesiton 17

On a vu que DIST_1 a une compléxité temporelle de $\theta(n \times m)$. Et SOL_1 fait (n + m) itérations. En supposant que les tests de comparaisons et les additions se font en temps constants, on en déduit qu'on résout le problème ALI en $\theta(n \times m)$.

3.12 Quesiton 18

On a vu que DIST_1 a une compléxité spatiale de $\theta(n \times m)$. Pour SOL_1, dans le pire cas, on a besoin de deux chaînes de charactères de taille n+m, ainsi que de deux entiers. Sa complexité spatiale est donc de $\theta(n+m)$. On en déduit que celle pour répondre au problème d'ALI est en $\theta(n \times m)$.

3.13 Tâche B

Nous avons testé la fonction $PROG_DYN$ sur les instances $nst_0000010_44.adn$, $Inst_0000010_7.adn$ et $Inst_0000010_8.adn$. Elle renvoit bien 10, 8 et 2 ainsi que des alignements valides de coût respectivement égal à leur distance d'édition.

Pour avoir un aperçu des perfomances de $PROG_DYN$, on a tracé le graphique suivant.

Figure 3 : Courbe de consommation de temps CPU en fonction de |x|

MiB Mem : 8139.6	total, 2899.3 free,	id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st 5016.3 used, 224.0 buff/cache 626.5 used. 2992.7 avail Mem						
	NI VIRT RES 0 1468340 1.2g	SHR S %CPU %MEM TIME+ COMMAND 476 R 52.5 14.7 0:08.30 mainB						

Figure 4 : Utilisation de top pour |x| = 20000

Pour une instance de très grande taille, la quantité de mémoire utilisée sera très importante. Plus l'instance est grande, plus la quantité de mémoire utilisée augmente.

4 Amélioration de la complexité spatiale du calcul de la distance

4.1 Question 19

Pour remplir la ligne i > 0 du tableau T:

T[i-1][j] ou T[i-1][j-1]

```
— pour j=0, on a T[i][j]=i\times c_{del} — pour j>0, on a vu à la question 12 que T[i][j] est rempli à l'aide de T[i][j-1],
```

On remarque alors que pour remplir la ligne i>0 du tableau T, il suffit d'avoir accès aux lignes i-1 et i du tableau.

4.2 Question 20

Algorithme 3 Calcul de la distance

```
fonction DIST_2(x, y):
Tc \leftarrow [];
T \leftarrow [];
pour j = 0 \text{ à } m \text{ faire}
T[j] = j \times c_{ins};
pour i = 1 \text{ à } n \text{ faire}
Tc[0] = i \times c_{del};
pour j = 1 \text{ à } m \text{ faire}
A \leftarrow Tc[j-1] + c_{ins};
B \leftarrow T[j] + c_{del};
C \leftarrow T[j-1] + c_{sub};
Tc[j] \leftarrow min(A, B, C);
T \leftarrow Tc;
retourne Tc[m];
```

4.3 Tâche C

Nous avons testé la fonction $DIST_2$ sur plusieurs instances et elle renvoit le même résultat que $DIST_1$.

Pour avoir un aperçu des perfomances de $DIST_2$, on a tracé le graphique suivant.

Figure 5 : Courbe de consommation de temps CPU en fonction de |x|

Pour comparer $DIST_2$ à $DIST_1$, nous avons le graphe des performances de $DIST_1$.

Figure 6 : Courbe de consommation de temps CPU en fonction de |x|

Figure 7 : Utilisation de top pour |x| = 20000

Pour une instance de très grande taille, la quantité de mémoire utilisée a été grandement améliorée comparée à $DIST_1$.

5 Amélioration de la complexité spatiale du calcul d'un alignement optimal par la méthode "diviser pour régner"

5.1 Question 21

```
Algorithme 4 Renvoie k gaps

fonction GAPS(k):

x \leftarrow \varepsilon;

pour i = 1 à k faire

x \leftarrow x \cdot " - ";

retourne x;
```

5.2 Question 22

Algorithme 5 Align lettre mot

```
\begin{aligned} & \textbf{fonction} \ \text{ALIGN\_LETTRE\_MOT}(\boldsymbol{x}, \mathbf{y}) : \\ & m \leftarrow |y|; \\ & i_0 \leftarrow -1; \\ & \textbf{pour} \ i = 0 \ \mathbf{\hat{a}} \ m - 1 \ \mathbf{faire} \\ & \mathbf{si} \ x == y[i] \ \mathbf{alors} \\ & \mathbf{retourne} \ (GAPS(i) \cdot x \cdot GAPS(m-i-1), y); \\ & \mathbf{si} \ y[i] \ \text{et} \ x \ \text{sont concordantes alors} \\ & i_0 \leftarrow i; \\ & \mathbf{si} \ i_0 \ ! = -1 \ \mathbf{alors} \\ & \mathbf{retourne} \ (GAPS(i_0) \cdot y[i_0] \cdot GAPS(m-i_0-1), y) \\ & \mathbf{retourne} \ (x \cdot GAPS(m-1), y); \end{aligned}
```

5.3 Question 23

```
Soit x^1 = BAL, x^2 = LON, y^1 = RO et y^2 = ND.
```

On pose $\bar{s}=\text{BAL}, \bar{t}=\text{RO-}, \bar{u}=\text{LON-}$ et $\bar{v}=-\text{ND},$ alors (\bar{s},\bar{t}) et (\bar{u},\bar{v}) sont respectivement les alignements optimaux de (x^1,y^1) et (x^2,y^2) .

Pourtant $(\bar{s} \cdot \bar{u}, \bar{t} \cdot \bar{v}) = (BALLON-, RO--ND)$ n'est pas un alignement optimal de (x,y).

En efffet, le coût de cet alignement est de 22, tandis que (BALLON-, - - ROND) est aussi un alignement de (x,y), mais de coût 17.

5.4 Question 24

Algorithme 6 Alignement minimal de (x,y)

```
fonction SOL_2(x, y):
     n \leftarrow |x|;
     m \leftarrow |y|;
     \mathbf{si} \; n = 0 \; \mathbf{alors}
           retourne (GAPS(m), y);
     \mathbf{si}\ y = 0\ \mathbf{alors}
           retourne (x, GAPS(n));
     si n = 1 alors
           retourne ALIGN\_LETTRE\_MOT(x, y);
     \mathbf{si}\ m=1\ \mathbf{alors}
           retourne ALIGN\_LETTRE\_MOT(y, x);
     i^* \leftarrow n/2;
     j^* \leftarrow coupure(x, y);
     (\bar{s}, \bar{t}) \leftarrow SOL_2(x_{\lceil 1, i^* \rceil}, y_{\lceil 1, j^* \rceil})
     (\bar{u}, \bar{v}) \leftarrow SOL_2(x_{\llbracket i^*+1, n \rrbracket}, y_{\llbracket j^*+1, m \rrbracket})
     retourne (\bar{s} \cdot \bar{u}, \bar{t} \cdot \bar{v});
```

5.5 Question 25

```
Algorithme 7 Déterminer la coupure j^* associée à i^* pour (x,y)
    fonction COUPURE(x, y):
         n \leftarrow |x|; \ m \leftarrow |y|;
         i^* \leftarrow |x|/2;
         T[i] \leftarrow []; Tc \leftarrow [];
         I[i] \leftarrow []; Ic \leftarrow [];
         pour i = 0 à m faire
               T[i] \leftarrow i \times c_{ins};
               I[i] \leftarrow i;
         pour i = 1 à n faire
               Tc[0] \leftarrow i \times c_{del};
               pour j = 1 à m faire
                     A \leftarrow Tc[j-1] + c_{ins};
                     B \leftarrow T[j] + c_{del};
                    C \leftarrow T[j-1] + c_{sub};
                    Tc[j] \leftarrow min(A, B, C);
                    si i > i^* alors
                          \operatorname{si} Tc[j] = A \operatorname{alors}
                                Ic[j] \leftarrow Ic[j-1];
                          \operatorname{si} Tc[j] = B \operatorname{alors}
                                Ic[j] \leftarrow I[j];
                          \operatorname{si} Tc[j] = C \operatorname{alors}
                                Ic[j] \leftarrow I[j-1];
               T \leftarrow Tc;
               \mathbf{si}\ i > i^* \ \mathbf{alors}
                     I \leftarrow Ic;
         retourne Ic[m]
```

5.6 Question **26**

Durant l'éxécution de la fonction COUPURE, on a eu besoin de quatre tableaux de taille (m+1), ainsi que de huit variables. La complexité spatiale de la fonction est donc en $\theta(m)$.

5.7 Question 27

La fonction SOL_2 est une fonction résursive de type diviser pour régner. A chaque appel, elle fait deux appels récursifs où la taille du premier argument est réduit de moitié. La profondeur de son arbre des appels est donc en $O(log_2(n))$. De plus, à chacun de ses appels, elle utilise la fonction COUPURE qui a une complexité spatiale en $\theta(m)$, ainsi que de deux chaînes de caractères tous majorées par (n+m). On en déduit que la compléxité spatiale de SOL_2 est en $O((m+n+m).log_2(n)) = O((n+m).log_2(n))$

5.8 Question 28

En supposant toujours que les opérations de comparaisons, de multiplications, d'additions et la fonction min se font en temps constant, alors la fonction COUPURE fait $(m+n\times m)$ itérations. Sa compléxité temporelle est donc en $\theta(n\times m)$.

5.9 Tâche D

Nous avons testé la fonction SOL_2 sur plusieurs instances et avons vérifié que la fonction retourne bien le résultat attendu. Pour avoir un aperçu des perfomances de SOL_2 , on a tracé le graphique suivant.

Figure 8 : Courbe de consommation de temps CPU en fonction de |x|

```
top - 00:19:17 up 13 min, 0 users, load average: 0.52, 0.58, 0.59
Tasks: 11 total, 2 running, 9 sleeping, 0 stopped, 0 zombie %Cpu(s): 18.4 us, 2.1 sy, 0.0 ni, 79.2 id, 0.0 wa, 0.3 hi, 0.0 si, 0.0 st MiB Mem: 8139.6 total, 4038.0 free, 3877.7 used, 224.0 buff/cache
               24576.0 total,
                                     23958.1 free,
                                                             617.9 used.
                                                                                4131.4 avail Mem
  PID USER
                      PR NI
                                    VIRT
                                               RES
                                                         SHR S
                                                                 %CPU %MEM
                                                                                       TIME+ COMMAND
  174 xu
                                  10992
                                                         472 R 100.0 0.0
                                                                                    0:09.29 mainD
```

Figure 9 : Utilisation de top pour |x| = 20000

5.10 Question 29

En comparant les performances de SOL_2 à celles de SOL_1 , nous remarquons qu'en effet, nous avons perdu en compléxité temporelle en améliorant la compléxité spatiale.