EPITECH PROBABILITES ET STATISTIQUES

Année 2011-2012 Mini-projet 210random

1 Objectif

Votre programme génère aléatoirement 1000 chiffres compris entre 0 et 9 et applique le test du χ^2 pour juger du bon choix de la loi uniforme.

2 Modélisation

On commence par générer aléatoirement 1000 chiffres compris entre 0 et 9. Ceci s'effectue avec le générateur aléatoire de votre choix. Pour chaque chiffre compris entre 0 et 9, on stocke le nombre d'apparitions du chiffre. On affiche les résultats obtenus.

On peut alors effectuer le calcul de la variable X^2 du test du χ^2 . L'autre paramètre de la loi du χ^2 est le nombre ν de degrés de liberté. Dans ce sujet, nous aurons toujours $\nu=9$ (voir cours). Vous devrez alors utiliser la table du χ^2 et entrer en dur dans le programme la ligne de la table correspondant à $\nu=9$. Vous pourrez alors déterminer quelles probabilités vous aviez d'obtenir la variable d'écart X^2 que vous avez calculée. Cela vous permettra de juger de l'ajustement. Sur une dernière ligne, on affiche la valeur de X^2 , dans quelle fourchette de valeurs est comprise la valeur de X^2 et la fourchette de probabilités correspondantes.

3 Le logiciel

Le ramassage se fait par svn. Vous recevrez un mail, lorsque les dépôts seront ouverts. Si vous avez des questions sur le rendu, lisez la documentation **doc user kscm.pdf**, sinon demandez au labo Koala.

Nom de l'exécutable : 210random

 $Exemple \ de \ lancer:$

> 210random

En sortie : les résultats comme affichés dans l'exemple ci-dessous.

4 Stocker dans le code

La ligne de tableau du χ^2 pour $\nu=9$

X^2	0	4,168	5,380	6,393	8,343	10,656	12,242	14,684	16,919	19,679	21,666	1000
P	100%	90%	80%	70%	50%	30%	20%	10%	5%	2%	1%	0%

Quand vous avez calculé X^2 , il vous suffit de déterminer dans quelle fourchette de valeurs il se trouve, pour en déduire la fourchette de probabilités.

5 Questions

- 1° Pour appliquer le text du $\chi^2,$ on calcule la somme notée $X^2.$ Que représente-t-elle ?
- 2° Que peut-on dire si $X^2 = 0$?
- 3° Que peut-on dire qualitativement de la valeur de $X^2\,?$
- 4° On veut tester un programme informatique qui génère des nombres au hasard. Par quelle loi de probabilités peut-on tenter un ajustement?
- 5° Sur une même série observée, plusieurs ajustements théoriques peuvent-ils être reconnus acceptables d'après le test du χ^2 ?

6 Exemple

X2 = 3,960

0,000 <= X2 <= 4,1680,900 <= P <= 1,000