Exam 1	
Calculus III	

Printed Name (Last, First):	 Student ID:	
TA Name:	Drill Time:	

<u>Instructions:</u> This exam has a total of 85 points. You have 50 minutes. **CLEARLY SHOW ALL YOUR WORK** to receive full credit. Put a <u>box</u> around your final answer. You may use any result covered in class. The points attached to each problem are indicated beside the problem.

Question	Score	Question	Score
1		5	
2		6	
3		7	
4			

1. [5 points	s each l Con:	sider the vecto	rs $u = (1, 3,)$	-2 and \mathbf{x}	$\tau = \langle 1, 1, -1 \rangle$

(a) Find the projection of \mathbf{u} onto \mathbf{v} and call this vector \mathbf{w} .

(b) Find the vector $\mathbf{u} - \mathbf{w}$.

(c) Show that $\mathbf{u} - \mathbf{w}$ is orthogonal to \mathbf{v} .

- 2. **[5 points each]** Consider the points P(1, 1, 3), Q(4, 0, 1), and R(0, 1, 6).
 - (a) Find the vectors \overrightarrow{PQ} and \overrightarrow{PR} .

(b) Find $\overrightarrow{PQ} \times \overrightarrow{PR}$.

(c) Find the area of the parallelogram whose sides are \overrightarrow{PQ} and \overrightarrow{PR} .

3.	[10 points] Find an equation of the plane that contains the point $(1,2,-3)$ and is perpendicular to the line with vector equation $\mathbf{r}(t) = \langle 2-3t, 3+t, -1 \rangle$.
4.	[5 points each] Suppose the position of a particle in space is given by
	$\mathbf{r}(t) = \langle 2\sin(t), e^t - 2t \rangle.$
	(a) Find the vector valued function that describes the velocity of the particle as a function of time.
	(b) What is the speed of the particle at $t = 0$?

	oints each] Consider the point $P(1,2,3)$ and the plane defined by the equation $x + y - 2z = 0$. In this lem, you will find the point on the plane that is closest to P .
_	Starting at P , in which direction should you travel to get to the plane as quickly as possible? You answer should be a vector.
(b)	Write parametric equations for the line through P in the direction of the vector from part (5a). If you did not get an answer for part (5a), you may use the direction vector $\mathbf{v} = \langle a,b,c \rangle$ instead.
(c)	[Extra Credit] Find the point Q on the plane that is closest to P . Then calculate the distance between these two points.

6. [10 points] A particle is moving in space with acceleration described by the function

$$\mathbf{a}(t) = \langle 2\sin t, 2\cos t, 0 \rangle.$$

At time t = 0 the particle has velocity $\overrightarrow{0}$ and is located at $\mathbf{r}(0) = \langle -1, 1, 1 \rangle$. Find the vector equation of the position function $\mathbf{r}(t)$.

7. [15 points] (3 for each blank) Each of the two surfaces below is defined by one of the five equations shown. Match each surface to its corresponding equation.

I.
$$\frac{x^2}{4} + y^2 + z^2 = 1$$

III.
$$2 = x^2 + y^2$$

V.
$$x^2 + y^2 - z^2 = 1$$

II.
$$z = x^2 - y^2$$

IV.
$$z = (x-1)^2 + y^2$$

Equation:

Equation:

(c) Consider the surface defined by $y = z^2 - x^2$. Describe the traces of this surface in each of the three coordinate planes:

xz-plane: _____ *yz*-plane: _____

SCRATCH WORK