

Lecture 21: Introduction to
Generalized Linear Models;

<u>Course</u> > <u>Unit 7 Generalized Linear Models</u> > <u>Exponential Families</u>

- 9. More examples of Continuous
- > Distributions
- 9. More examples of Continuous Distributions Gamma, Inverse Gamma, and Inverse Gaussian Distribution

Practice: Gamma distribution as Exponential Family

1/1 point (graded)

Recall from the slides that the Gamma distribution can be reparameterized using the two parameters a, the shape parameter, and μ , the mean. The pdf looks like

$$f_{(a,\mu)}\left(y
ight) \; = \; rac{1}{\Gamma\left(a
ight)}igg(rac{a}{\mu}igg)^a\,y^{a-1}\,e^{-rac{ay}{\mu}}$$

Let $m{ heta} = egin{pmatrix} a \\ \mu \end{pmatrix}$ and rewrite this as the pdf of a 2-parameter exponential family. Enter $m{\eta}(m{ heta}) \cdot \mathbf{T}(\mathbf{y})$ below.

STANDARD NOTATION

Solution:

$$egin{aligned} f_{(a,\mu)}\left(y
ight) &=& rac{1}{\Gamma\left(a
ight)}igg(rac{a}{\mu}igg)^a y^{a-1}\,e^{-rac{ay}{\mu}} \ &=& \exp\left(\left(-rac{ay}{\mu}+\left(a-1
ight)\ln\left(y
ight)
ight)+\left(a\ln\left(rac{a}{\mu}
ight)-\ln\left(\Gamma\left(a
ight)
ight)
ight) \end{aligned}$$

Hence, we have $\boldsymbol{\eta}(\boldsymbol{\theta}) \cdot \mathbf{T}(\mathbf{y}) = \left(-\frac{ay}{\mu} + (a-1)\ln(y)\right)$, where possibly $\boldsymbol{\eta} = \begin{pmatrix} -\frac{a}{\mu} \\ a-1 \end{pmatrix}$ and $\mathbf{T}(\mathbf{y}) = \begin{pmatrix} y \\ \ln(y) \end{pmatrix}$. Here, $\boldsymbol{\eta}$ and \mathbf{T} are not unique since we can multiple $\boldsymbol{\eta}$ by an overall scalar and divide \mathbf{T} by the same.

On the other hand, $B\left(oldsymbol{ heta}
ight) = -\left(a\ln\left(rac{a}{\mu}
ight) - \ln\left(\Gamma\left(a
ight)
ight)
ight)$.

Submit

You have used 2 of 3 attempts

Answers are displayed within the problem

© All Rights Reserved