Aufgabenblatt 1

Matrix-Vektor-Multiplikation

Seien Matrizen $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times k}$ gegeben. Die Matrix-Vektor-Multiplikation ist gegeben durch

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} \text{ for all } i \in \{1, ..., m\}, j \in \{1, ..., k\}.$$
 (1)

Aufgabe 1

Berechne folgende Aufgaben per Hand:

1. AB mit

$$A := \left(\begin{array}{ccc} 1 & 2 & 4 \\ 2 & 4 & 5 \end{array}\right), B := \left(\begin{array}{ccc} 3 & 5 \\ 4 & 6 \\ 5 & 7 \end{array}\right).$$

2. Ax mit A wie in 1. und $x := (2,4,5)^T$. Hier bedeutet das hoch T, dass der Vektor transponiert ist, also

$$x = \begin{pmatrix} 2\\4\\5 \end{pmatrix}.$$

3. Die Matrix-Matrix-Multiplikation ist nicht kommutativ. Das heißt für $A,B\in\mathbb{R}^{n\times n}$ gilt nicht immer

$$AB = BA$$
.

Beweise dies, indem Du ein Beispiel findest mit $A, B \in \mathbb{R}^{n \times n}$ und

$$AB \neq BA$$
.

Die natürliche Zahl $n \in \mathbb{N}$ kann hier passend gewählt werden.

Aufgabe 2

Wir wollen nun Eigenschaften von Matrizen und Vektoren als Funktionen näher betrachten. Sei $A \in \mathbb{R}^{n \times n}$ und $f : \mathbb{R}^n \to \mathbb{R}^n$,

$$f(x) = Ax$$

Beweisen Sie, dass für alle $x, y \in \mathbb{R}^n$ und $c \in \mathbb{R}$ gilt:

$$f(x + y) = f(x) + f(y), f(cx) = cf(x).$$

(Eine solche Abbildung heißt in der linearen Algebra lineare Abbildung und hat einige interessante Eigenschaften. Siehe Vorlesungen des ersten und zweiten Semesters des Mathematikstudiums oder eines Studiums mit vielen Mathematikinhalten.)

Aufgabe 3

- 1. Programmiere die Matrix-Vektor-Multiplikation per Hand.
- 2. Programmiere eine zweite Version mit vertauschter Schleifenreihenfolge.
- 3. Nutze numpy für die Matrix-Vektor-Multiplikation.