Theoretical Computer Science

Winter semester 21/22 Prof. Dr. Georg Schied

Assignment 8

Deadline: Wednesday, 1 December 2021

10 out of 20 points have to be achieved in order to pass.

Exercise 8.1

Use elimination procedure 9.11 to convert this ϵ -NFA into an equivalent regular expression.

Exercise 8.2 - obligatory (8 points)

Convert this ε -NFA into an equivalent regular expression.

Show all important intermediate steps, so that the approach can be understood. Hint: In order to keep notation clear, you can introduce abbreviations for complex regular expressions.

Exercise 8.3 - obligatory (4 points)

- a) Specify an ϵ -NFA that accepts the language of the following Chomsky type-3 grammar:
 - $\begin{array}{ccc} \mathsf{S} \to & \mathsf{b} \mathsf{A} \\ & | \ \mathsf{a} \mathsf{S} \\ & | \ \mathsf{c} \mathsf{B} \end{array}$
 - A → bB | aA | ε
 - $B \rightarrow cS$ $\mid \epsilon$
- b) Specify a Chomsky type-3 grammar that generates the language of the following DFA:

Exercise 8.4

Let $\Sigma = \{0,1\}$. Which of the following languages are regular, which are not? Give a brief explanation.

- (1) $L_a = \{ 0^k 11(00)^m \mid k > 0, m \ge 0 \}$
- (2) $L_b = \{ w \in \Sigma^* \mid |w|_0 \text{ is odd } \}$ (number of 0 symbols is odd)
- (3) $L_c = \{w_1, ..., w_n\}$ (finite language, finite set of strings)
- (4) $L_d = \{ w \in \Sigma^* \mid w \text{ contains } 11 \text{ or } 000 \text{ as a substring} \}$
- (5) $L_e = \Sigma^* \setminus \{01101, 101\}$
- (6) $L_f = \{ w \in \Sigma^* \mid w \text{ contains } 00, \text{ but not } 000 \text{ as a substring} \}$

Exercise 8.5 - obligatory (4 points)

Let Σ = {a, b, c}. Which of the following languages are regular? Give a short justification in each case.

- (1) $L_1 = \{ (cc)^k ab \mid k > 0 \} \cup \{ a^n (bc)^m \mid n \ge 0, m \ge 0 \}$
- (2) $L_2 = \{ w \in \Sigma^* \mid |w| > 4 \}$ (strings longer than 4 symbols)
- (3) $L_3 = \{ c^k a^k \mid k \ge 0 \}$
- (4) $L_4 = \{ a^n w \mid n \geq 3, w \in \Sigma^* \} \cap \{ u(bc)^k \mid u \in \Sigma^*, k \geq 1 \}$

Exercise 8.6

Let $L = \{ a^nbc^k \mid k \ge n \}.$

- a) (difficult!) Prove that language L is not regular. Hint: Use the pumping lemma.
- b) (not so difficult) Show that L is a context-free language.

Exercise 8.7 - obligatory (4 points)

A push-down automaton $P = (Z, \Sigma, \Gamma, \Delta, z_0, k_0, E)$ is defined as following:

- Set of states $Z = \{ z_0, z_1, z_e \}$
- Input alphabet $\Sigma = \{0,1\}$
- Stack alphabet $\Gamma = \{ k_0, x \}$
- z₀ is start state
- k₀ is initial stack symbol
- accept states $E = \{ z_e \}$
- Transition relation Δ :

(1)
$$z_0, k_0 \xrightarrow{0} z_0, k_0 x$$

$$(2) \quad z_0, x \stackrel{0}{\rightarrow} z_0, xx$$

$$(3) \quad z_0, x \stackrel{1}{\rightarrow} z_1, x$$

$$(4) \quad z_1, x \stackrel{0}{\rightarrow} z_1, \varepsilon$$

(5)
$$z_1 k_0 \stackrel{\varepsilon}{\rightarrow} z_e, \varepsilon$$

- a) Which of the following strings are accepted by P?
 - (1) ε
 - (2) 00100
 - (3) 0010
 - (4) 0100
- b) Which language does the PDA accept?