Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Samoylov Evgeny Гр. 320201

Вариант 7

Часть І. Планирование адресного пространства IPv6

Задание 1.1: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4ee9:4576:6765:6e00:0/103

Задание 1.2: разбить сеть из п.1.1 на 4 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней подсетей.

Решение 1.2 (макс. 20 баллов):

Префикс $N_{\text{С\'{\Gamma}C},}$	2001: db8: 0: 4ee9: 4576: 6765: 6e00: 0/105
Префикс $N_{\rm C,PePS}$	2001:db8:0:4ee9:4576:6765:6f80:0/105

Часть II. Планирование адресного пространства IPv4

X0= целая часть (N*16)/256+10= целая часть (7*16)/256+10=10

X1 = остаток от деления (N*16)/256 = остаток от деления (7*16)/256 = 112

Дано: Сеть 10.112.0.0/12

Задание 2.1.1: разбить сеть на 8 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	112	U	U
Адрес сети	00001010	01110000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 3 бит из 3-го октета.

3. Итого, получается, что сеть 10.112.0.0/12 мы разбили на 8 подсети, в каждой из которых по 131070 узлов, указываем первые 5 подсетей:

	10	112	0	0
Адрес сети дв.с	00001010	01110000	00000000	00000000
Маска дв.с	11111111	11111110	00000000	00000000
	255	254	0	0

200	204 0
$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	10.112.0.0/15
Адрес первого узла N_1	10.112.0.1
Адрес последнего узла N_1	10.113.255.254
Широковещательный адрес N_1	10.113.255.255
Адрес сети $N_2/$ Префикс N_2	10.114.0.0/15
Адрес первого узла N_2	10.114.0.1
Адрес последнего узла N_2	10.115.255.254
Широковещательный адрес N_2	10.115.255.255
Адрес сети $N_3/$ Префикс N_3	10.116.0.0/15
Адрес первого узла N_3	10.116.0.1
Адрес последнего узла N_3	10.117.255.254
Широковещательный адрес N_3	10.117.255.255
$oxedsymbol{A}$ дрес сети $N_4/$ Префикс N_4	10.118.0.0/15
Адрес первого узла N_4	10.118.0.1
Адрес последнего узла N_4	10.119.255.254
Широковещательный адрес N_4	10.119.255.255
$oxedsymbol{A}$ дрес сети $N_5/$ Префикс N_5	10.120.0.0/15
Адрес первого узла N_5	10.120.0.1
Адрес последнего узла N_5	10.121.255.254
Широковещательный адрес N_5	10.121.255.255

Дано: Сеть 10.112.0.0/12

Задание 2.1.2: разбить сеть на 28 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

2. Чтобы разбить данную сеть на $(28\leqslant 2^5=32)$ подсетей необходимо заимствовать 4 бит из 3-го октета и 1 бит из 2-го октета (получается, что сеть можно разбить на 32 подсетей: $2^5=32$; оставшиеся 15 бит идут под узлы: $2^{15}-2=32766$ в каждой подсети).

3. Указываем первую и последнюю подсети:

Широковещательный адрес N_2

$ig $ Адрес сети $N_1/$ Префикс N_1	10.112.0.0/17
Λ дрес первого узла N_1	10.112.0.1
Λ дрес последнего узла N_1	10.112.127.254
Широковещательный адрес N_1	10.112.127.255
Адрес сети $N_2/$ Префикс N_2	10.125.128.0/17
Λ дрес первого узла N_2	10.125.128.1
Адрес последнего узла N_2	10.125.255.254
	l

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 256 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

10.125.255.255

- адрес подсети;
- адрес первого узла;

- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	112	0	0
Адрес сети	00001010	01110000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=8, т.к. $2^8-2=254$. Т.е. нужно выбрать такую маску, которря выделит ровно 8 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^{12}=8192$ подсетей по 254 узла(ов) в каждой.

3. Указываем последние 5 подсетей:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	10.127.251.0/24
Адрес первого узла N_1	10.127.251.1
Адрес последнего узла N_1	10.127.251.254
Широковещательный адрес N_1	10.127.251.255
$oxed{A}$ дрес сети $N_2/$ Префикс N_2	10.127.252.0/24
Адрес первого узла N_2	10.127.252.1
Адрес последнего узла N_2	10.127.252.254
Широковещательный адрес N_2	10.127.252.255
$oxed{A}$ дрес сети $N_3/$ Префикс N_3	10.127.253.0/24
Адрес первого узла N_3	10.127.253.1
Адрес последнего узла N_3	10.127.253.254
Широковещательный адрес N_3	10.127.253.255

$oxed{A$ дрес сети $N_4/$ Префикс N_4	$\fbox{10.127.254.0/24}$
Адрес первого узла N_4	10.127.254.1
Адрес последнего узла N_4	10.127.254.254
Широковещательный адрес N_4	10.127.254.255
$oxedsymbol{A}$ дрес сети $N_5/$ Префикс N_5	$\fbox{10.127.255.0/24}$
Адрес первого узла N_5	10.127.255.1
Адрес последнего узла N_5	10.127.255.254
Широковещательный адрес N_5	10.127.255.255

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 80 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	112	0	0
Адрес сети	00001010	01110000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=7, т.к. $2^7-2=126 \geqslant 80$.

	10	112	U	Ü
Адрес сети дв.с	00001010	01110000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	10000000
	255	255	255	128

3. Указываем первую и последнюю подсети

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	10.112.0.0/25
Λ дрес первого узла N_1	10.112.0.1
Адрес последнего узла N_1	10.112.0.126
Широковещательный адрес N_1	10.112.0.127

Адрес сети $N_2/$ Префикс N_2	10.127.255.128/25
Адрес первого узла N_2	10.127.255.129
Адрес последнего узла N_2	10.127.255.254
Широковещательный адрес N_2	10.127.255.255

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее 32 АКТИВНЫХ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- \bullet широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3 (макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	112	0	0
Адрес сети	00001010	01110000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=6, т.к. $2^6-2=62$.

	10	112	0	0
Адрес сети дв.с	00001010	01110000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	11000000
	255	255	255	192

3. Указываем последние 5 подсетей:

$oxed{A}$ дрес сети $N_1/$ Префикс N_1	10.127.254.192/26	
Λ дрес первого узла N_1	10.127.254.193	
Адрес последнего узла N_1	10.127.254.254	
Широковещательный адрес N_1	10.127.254.255	
$oxed{A}$ дрес сети $N_2/$ Префикс N_2	10.127.255.0/26	
Адрес первого узла N_2	10.127.255.1	
Адрес последнего узла N_2	10.127.255.62	
Широковещательный адрес N_2	10.127.255.63	

Λ дрес сети $N_3/$ Префикс N_3	$\boxed{10.127.255.64/26}$
${ m A}$ дрес первого узла N_3	10.127.255.65
Адрес последнего узла N_3	10.127.255.126
Широковещательный адрес N_3	10.127.255.127
Λ дрес сети $N_4/$ Префикс N_4	10.127.255.128/26
${ m A}$ дрес первого узла N_4	10.127.255.129
${ m A}$ дрес последнего узла N_4	10.127.255.190
Широковещательный адрес N_4	10.127.255.191
Λ дрес сети $N_5/$ Префикс N_5	10.127.255.192/26
${ m A}$ дрес первого узла N_5	10.127.255.193
${ m A}$ дрес последнего узла N_5	10.127.255.254
Широковещательный адрес N_5	10.127.255.255