Probability:

1.

1. p(identical twins/twins)

$$=\frac{1\cdot\frac{1}{300}}{\frac{17}{1500}}=\frac{5}{34}$$

2. p(bowl\chocolate)

$$=\frac{\frac{3}{4}\cdot\frac{1}{2}}{\frac{5}{8}}=\frac{3}{5}$$

2. p(1994/yellow)

$$=\frac{\frac{2}{10}\cdot\frac{1}{2}}{0.5^2\cdot0.2\cdot0.14}=\frac{10}{17}$$

3.

1. p(positive/sick)

$$=\frac{0.99 \cdot \frac{1}{10000}}{0.01} = 0.01$$

2. p(positive/sick)

$$=\frac{0.99 \cdot \frac{1}{200}}{0.0149} = 0.3322$$

Random variables:

1.
$$\frac{1}{6} \cdot \frac{1}{6} \cdot 12 = \frac{1}{3}$$

Win-
$$\frac{1}{3} \cdot 6 = 2$$
 lose- $\frac{2}{3} \cdot 3 = 2$ expected value- 0.

2. more than 12-
$$\frac{6}{25}$$
 less than 12- $\frac{15}{25}$ expected value- $-\frac{12}{5}$.

3. Male- $\frac{2}{5}$ mean- $\frac{2}{5} \cdot 8 = 3.2$ standard deviation-

$$\theta = \sqrt{\frac{\Sigma(x - 3.2)^2}{9}} = \sqrt{\frac{65.759}{9}} = \sqrt{7.306} = 2.7$$

- **4.** $\mu = 26$ std = 2 $p(26 < x < 30) = p\left(\frac{26 \mu}{std} < x < \frac{30 \mu}{std}\right) = p(0 < x < 2)$ = 0.472
- **5.** $\frac{0.4 \cdot 5}{2} = 100\% \quad \frac{0.4 \cdot 2}{2} = x > 3$ $p(x > 3) = \frac{0.4 \cdot 2}{\frac{0.4 \cdot 5}{2}} = 0.4$
- **6.** $\frac{6}{10} \cdot \frac{6}{10} \cdot \frac{6}{10} \cdot \frac{4}{10} \cdot 4 = 0.3456$
- 7. $0.1 \cdot -10 + 0.35 \cdot -5 + 0 \cdot 0.1 + 0.35 \cdot 5 + 0.1 \cdot 10 = 0$