ISA SOFTWARE V.1.3

1. Caso di studio : Grafo $P_2^{(1)}\times P_7^{(1)}$

Definition 1.1. Un grafo (non orientato e finito) $\ddot{\mathbf{E}}$ una coppia ordinata (V, E) dove $V \ddot{\mathbf{E}}$ un insieme finito ed $E \ddot{\mathbf{E}}$ un multiinsieme di coppie non ordinate di elementi di V. L'insieme V contiene i vertici del grafo ed E i suoi lati. Per un generico grafo G, l'insieme dei suoi vertici $\ddot{\mathbf{E}}$ indicato con V(G) e quello dei suoi lati con E(G).

La struttura dati con la quale si $\ddot{\rm E}$ scelto di memorizzare il grafo $\ddot{\rm E}$ la matrice di adicenza.

Definition 1.2. La matrice di adiacenza di un grafo G i cui vertici siano v_1, v_2, \ldots, v_n Ë una matrice A(G) = [a(i, j)] simmetrica di ordine $n \times n$ in cui si pone:

$$a(i,j) = \begin{cases} 1 & \text{se } (v_i, v_j) \in E(G) \\ 0 & \text{altrimenti} \end{cases}$$

Di seguito viene mostrata invece la lista di adiacenza che permette una pi? facile lettura delle adiacenze:

$$\begin{pmatrix}
(1;1) & \longrightarrow & (2;1), (1;2), \\
(2;1) & \longrightarrow & (1;1), (2;2), \\
(1;2) & \longrightarrow & (1;1), (2;2), (1;3), \\
(2;2) & \longrightarrow & (2;1), (1;2), (2;3), \\
(1;3) & \longrightarrow & (1;2), (2;3), (1;4), \\
(2;3) & \longrightarrow & (2;2), (1;3), (2;4), \\
(1;4) & \longrightarrow & (1;3), (2;4), (1;5), \\
(2;4) & \longrightarrow & (2;3), (1;4), (2;5), \\
(1;5) & \longrightarrow & (1;4), (2;5), (1;6), \\
(2;5) & \longrightarrow & (2;4), (1;5), (2;6), \\
(1;6) & \longrightarrow & (1;5), (2;6), (1;7), \\
(2;6) & \longrightarrow & (2;5), (1;6), (2;7), \\
(1;7) & \longrightarrow & (1;6), (2;7), \\
(2;7) & \longrightarrow & (2;6), (1;7), \\

1.1) & 1.2 & 1.3 & 1.4 & 1.5 & 1.6 & 1.7$$
1.2 & 1.3 & 1.4 & 1.5 & 1.6 & 1.7

1.1 & 1.2 & 1.3 & 1.4 & 1.5 & 1.6

1.2 & 1.3 & 1.4 & 1.5 & 1.6

1.3 & 1.4 & 1.5 & 1.6

1.7 & 1.2 & 1.7

1.9 & 1.1 & 1.2 & 1.7

1.1 & 1.2 & 1.3 & 1.4

1.2 & 1.3 & 1.4

1.3 & 1.4 & 1.5 & 1.6

1.7 & 1.7 & 1.9 & 1.9

1.1 & 1.1 & 1.1 & 1.1

1.2 & 1.2 & 1.2 & 1.2

1.3 & 1.4 & 1.5 & 1.6

1.7 & 1.9 & 1.9 & 1.9

1.1 & 1.2 & 1.9 & 1.9

1.2 & 1.3 & 1.4

1.3 & 1.4 & 1.5

1.4 & 1.5 & 1.6

1.7 & 1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9 & 1.9

1.1 & 1.9 & 1.9 & 1.9

1.1 & 1.9 & 1.9 & 1.9

1.2 & 1.9 & 1.9 & 1.9

1.2 & 1.9 & 1.9 & 1.9

1.3 & 1.4 & 1.5 & 1.6

1.7 & 1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9 & 1.9

1.1 & 1.9 & 1.9 & 1.9

1.1 & 1.9 & 1.9 & 1.9

1.2 & 1.9 & 1.9 & 1.9

1.3 & 1.9 & 1.9 & 1.9

1.4 & 1.9 & 1.9 & 1.9

1.5 & 1.9 & 1.9 & 1.9

1.7 & 1.9 & 1.9 & 1.9

1.8 & 1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9

1.9 & 1.9 & 1.9

Date: December 5, 2016.

Key words and phrases. sample.tex.

1.1. Calcolo insiemi indipendenti con metodo forza bruta.

Definition 1.3. Un insieme indipendente di un grafo $\ddot{\mathrm{E}}$ un insieme di vertici non adiacenti del grafo.

Definiamo T(n,k) il numero di k-sottoinsiemi indipendenti di Grafo $P_2^{(1)} \times P_7^{(1)}$. Ecco alcuni valori

T(n,k)	k = 0	1	2	3	4	5	6	7
0	1							
1	1	2						
2	1	4	2					
3	1	6	8	2				
4	1	8	18	12	2			
5	1	10	32	38	16	2		
6	1	12	50	88	66	20	2	
7	1	14	72	170	192	102	24	2

Seguono le successioni delle antidiagonali, della somma delle righe e dei valori massimali di k per cui esistono insiemi indipendenti:

n	0	1	2	3	4	5	6	7
AD_n	1	1	3	5	9	17	31	57
RS_n	1	3	7	17	41	99	239	577
K_n	0	1	2	3	4	5	6	7

Ricerca delle bijezioni disabilitata per questa stampa.

1.2. Il problema.

Nel loro lavoro [Wilf], Wilf e Calkin basano la ricerca del numero di insiemi indipendenti di una supergriglia, SG(m,n), sul concetto di matrice di trasferimento, TM nel seguito.

Il procedimento per costruire l'automa associato a questa supergriglia Ë il seguente

Il sistema ottenuto dai possibili proseguimenti (di un passo) Ë il seguente:

$$\left\{ \begin{array}{l} e \longrightarrow e + u + d \\ d \longrightarrow e + u \\ u \longrightarrow e + d \end{array} \right.$$

Un risultato di algebra lineare afferma che la somma degli elementi della matrice $(I-xTM)^{-1}$ Ë la funzione generatrice degli insiemi indipendenti. La matrice TM di questo esempio Ë

TM	d	u	e
d	0	1	1
u	1	0	1
e	1	1	1

La funzione generatrice $\ddot{\mathbf{E}}$

$$F(x) = \frac{(-3-x)}{(-1+2x+x^2)} = 3+7x+17x^2+41x^3+99x^4+239x^5+O(x^6)$$

Dalla espansione in serie della f
go otteniamo i valori di $RS_n\ (^1)$

 $^{^{1}\}mathrm{Ricordiamo}$ che il metodo di Wilf non considera il grafo vuoto