PROB 3-20 FS | USING THE PREVIOUS RESULTS FOR 3-20 AND A FACTOR OF SAFETY OF 2. DETERMINE A MATERIAL IN TABLE A-22 THAT CAN BE SAFELY USED.

GIVEN:

1. PRINCIPAL STRESSES O1 = 2104 Asi, V2 = 5.77 Asi, V3 = -27.7.1 Asi

2. FACTOR OF SAFETY

Assemptions:

J. LINEAR ELASTIC REPRISE

2. MATERIAL BELLU TIELD

FIND:

1. AN APPROPRIATE MATERIAL FROM 4-22

Surian:

 $\int_{Vm} = \int_{\frac{1}{2}} \left[(\nabla_1 - \nabla_2)^2 + (\nabla_1 - \nabla_3)^2 + (\nabla_2 - \nabla_1)^2 \right]_{\frac{1}{2}} \left[(21.04 \text{ h})_i - 5.224 \text{ s}_i)^2 + (21.04 \text{ h})_i + 27.34 \text{ s}_i)^2 + (5.224 \text{ s}_i)^2 + (5.224 \text{ s}_i)^2 \right]_{\frac{1}{2}} = 43.69 \text{ h}_{s};$

Orm = Sy => Sy, mn = n. Tym = 2.43.09.45i = 86.17.45i

THE OWLY TWO MINIEMENS THAT CAN BELCHADED AS STATED ARE STEEL 1045 & 4142

Table A-22

Results of Tensile Tests of Some Metals* Source: J. Datsko, "Solid Materials." chap. 32 in Joseph E. Shigley, Charles R. Mischke, and Thomas H. Brown, Jr. (eds.-in-chief), Standard Handbook of Machine Design, 3rd ed., McGraw-Hill, New York, 2004, pp. 32.49–32.52.

Number			Strength (Tensile)					
	Material	Condition	Yield S _{y/} MPa (kpsi)	Ultimate S _u , MPa (kpsi)	Fracture, σ_{tr} MPa (kpsi)	Coefficient (r ₀ , MPa (kpsi)	Strain Strength, Exponent m	Fracture Strain ϵ_i
1018	Steel	Annealed	220 (32.0)	341 (49.5)	628 (91.1) [†]	620 (90.0)	0.25	1.05
1144	Steel	Annealed	358 (52.0)	646 (93.7)	898 (130) [†]	992 (144)	0.14	0.49
1212	Steel	HR	193 (28.0)	424 (61.5)	729 (106) [†]	758 (110)	0.24	0.85
1045	Steel	Q&T 600°F	1520 (220)	1580 (230)	2380 (345)	1880 (273) [†]	0.041	0.81
4142	Steel	Q&T 600°F	1720 (250)	1930 (280)	2340 (340)	1760 (255) [†]	0.048	0.43
303	Stainless steel	Annealed	241 (35.0)	601 (87.3)	1520 (221) [†]	1410 (205)	0.51	1.16
304	Stainless steel	Annealed	276 (40.0)	568 (82.4)	1600 (233) [†]	1270 (185)	0.45	1.67
2011	Aluminum alloy	Т6	169 (24.5)	324 (47.0)	325 (47.2)*	620 (90)	0.28	0.10
2024	Aluminum alloy	T4	296 (43.0)	446 (64.8)	533 (77.3) [†]	689 (100)	0.15	0.18
7075	Aluminum alloy	Т6	542 (78.6)	593 (86.0)	706 (102) [†]	882 (128)	0.13	0.18

^{*}Values from one or two heats and believed to be attainable using proper purchase specifications. The fracture strain may vary as much as 100 percent.

*Derived value.

