Word embeddings ----an introduction and applications

P. Meladianos, A. Tixier, M. Vazirgiannis

Language model

• Goal: determine $P(s = w_1 ... w_k)$ in some domain of interest

$$P(s) = \prod_{i=1}^{k} P(w_i \mid w_1 ... w_{i-1})$$

e.g.,
$$P(w_1w_2w_3) = P(w_1) P(w_2 | w_1) P(w_3 | w_1w_2)$$

• Traditional n-gram language model assumption: "the probability of a word depends only on context of n-1 previous words"

$$\Rightarrow \widehat{P}(s) = \prod_{i=1}^{k} P(w_i \mid w_{i-n+1} \dots w_{i-1})$$

- Typical ML-smoothing learning process (e.g., Katz 1987):
 - 1. compute $\widehat{P}(w_i \mid w_{i-n+1} \dots w_{i-1}) = \frac{\#w_{i-n+1} \dots w_{i-1}w_i}{\#w_{i-n+1} \dots w_{i-1}}$ on training corpus
 - 2. smooth to avoid zero probabilities

Representing Words

One-hot vector

- high dimensionality
- sparse vectors
- dimensions=|V| (10^6<|V|)
- unable to capture semantic similarity between words

food news

Distributional vector

- words that occur in similar contexts, tend to have similar meanings
- each word vector contains the frequencies of all its neighbors
- dimensions=|V|
- computational complexity for ML algorithms

Representing Words

Word embeddings

- store the same contextual information in a lowdimensional vector
- densification (sparse to dense)
- compression
 - dimensionality reduction
 - dimensions=m100<m<500
- able to capture semantic similarity between words
- learned vectors (unsupervised)
- Learning methods
 - SVD
 - word2vec
 - GloVe

Example

- We should assign similar probabilities (discover similarity) to <u>Obama speaks to the media in Illinois</u> and the <u>President addresses the press in Chicago</u>
- > This does not happen because of the "one-hot" vector space representation

One hot

$$\begin{array}{l} obama = [0 \ 0 \ 0 \ 0 \ \dots \ 0 \ 1 \ 0 \ 0] \\ president = [0 \ 0 \ 0 \ 1 \ \dots \ 0 \ 0 \ 0 \ 0] \\ speaks = [0 \ 0 \ 1 \ 0 \ \dots \ 0 \ 0 \ 0 \ 0] \\ addresses = [0 \ 0 \ 0 \ 0 \ \dots \ 0 \ 0 \ 0 \ 0] \\ illinois = [1 \ 0 \ 0 \ 0 \ \dots \ 0 \ 0 \ 0 \ 0] \\ chicago = [0 \ 1 \ 0 \ 0 \ \dots \ 0 \ 0 \ 0 \ 0] \\ \end{array} \right] \overrightarrow{illinois}. \overrightarrow{chicago} = \overrightarrow{0} \end{array}$$

SVD word embeddings

- > Dimensionality reduction on co-occurrence matrix
- Create a |V|x|V| word co-occurrence matrix X
- \triangleright Apply SVD $X = USV^T$
- Take first k columns of U
- Use the k-dimensional vectors as representations for each word
- Able to capture semantic and syntactic similarity

SVD problems

- > The dimensions of the matrix change when dictionary changes
- The whole decomposition must be re-calculated when we add a word
- Sensitive to the imbalance in word frequency
- Very high dimensional matrix
- Not suitable for millions of words and documents
- Quadratic cost to perform SVD
- Solution: Directly calculate a low-dimensional representation

Word analogy

- Words with similar meaning end up laying close to each other
- Words that share similar contexts may be analogous
 - Synonyms
 - Antonyms
 - Names
 - Colors
 - Places
 - Interchangeable words
- Vector arithmetics to work with analogies
- > i.e. king man + woman = queen

https://lamyiowce.github.io/word2viz/

But why?

what's an analogy?

$$\frac{p(w'|man)}{p(w'|woman)} \approx \frac{p(w'|king)}{p(w'|queen)}$$

Assume we have vectors s.t.

- 1. $PMI(w', w) \approx v_w v_{w'}^*$ *inner product*
- 2. Isotropic: $E_{w'}[(v_{w'}v_u)]^2 = ||v_u||^2$

Then

3.
$$argmin_w E_{w'} \left[ln \frac{p(w'|w)}{p(w'|queen)} - ln \frac{p(w'|man)}{p(w'|woman)} \right]^2$$

- 4. $argmin_w E_{w'}[(PMI(w'|w) PMI(w'|queen)) (PMI(w'|man) PMI(w'|woman))]^2$
- 5. $argmin_w ||(v_w v_{queen}) (v_{man} v_{woman})||^2$
- 6. $v_w \approx v_{queen} v_{woman} + v_{man}$ which is an analogy!
- > Arora et al shows that if (2) holds then (1) holds as well
- So we need to construct vectors from co-occurrence that satisfy (2)
- > d<<|V| in order to have isotropic vectors

Learning Word Vectors

- Corpus containing a sequence of T training words
- > Objective: $f(w_t, ..., w_{t-n+1}) = \widehat{P}(w_t \mid w_{t-n+1} ... w_{t-1})$
- > Decomposed in two parts:

$$w_i \in V \xrightarrow{\text{mapping } C} \mathbb{R}^m$$

- Mapping C (1-hotv => lower dimensions)
- Mapping any g s.t. (estimate prob t+1| t previous)

$$f(w_{t-1}, \dots, w_{t-n+1}) = g(C(w_{t-1}), \dots, C(w_{t-n+1}))$$

- C(i) is the i-th word feature vector (Word embedding)
- > Objective function: $J = \frac{1}{T} \sum f(w_t, ..., w_{t-n+1})$

Bengio, Yoshua, et al. "A neural probabilistic language model." The Journal of Machine Learning Research 3 (2003): 1137-1155.

Neural Net Language Model

For each training sequence: input = (context, target) pair: $(w_{t-n+1}...w_{t-1}, w_t)$

objective: minimize $E = -\log \widehat{P}(w_t \mid w_{t-n+1} \dots w_{t-1})$

NNLM Projection layer

Performs a simple table lookup in $C_{|V|,m}$: concatenate the rows of the shared mapping matrix $C_{|V|,m}$ corresponding to the context words

Example for a two-word context $w_{t-2}w_{t-1}$:

 $ightharpoonup C_{|V|,m}$ is **critical**: it contains the weights that are tuned at each step. After training, it contains what we're interested in: the **word vectors**

NNLM hidden/output layers and training

Softmax (log-linear classification model) is used to output positive numbers that sum to one (a multinomial probability distribution):

for the ith unit in the output layer:
$$\widehat{P}(w_i = w_t \mid w_{t-n+1} \dots w_{t-1}) = \frac{e^{y_{w_i}}}{\sum_{i'=1}^{|V|} e^{y_{w_{i'}}}}$$

Where:

- -y = b + U.tanh(d + H.x)
- tanh : nonlinear squashing (link) function
- -x: concatenation C(w) of the context weight vectors seen previously
- b : output layer biases (|V| elements)
- d : hidden layer biases (h elements). Typically 500 < h < 1000
- U: |V| * h matrix storing the hidden-to-output weights
- H:(h*(n-1)m) matrix storing the *projection-to-hidden* weights
- $\rightarrow \theta = (b, d, U, H, C)$
- Complexity per training sequence: n * m + n * m * h + h * |V| computational bottleneck: **nonlinear hidden layer** (h * |V| term)
- \succ **Training** is performed via stochastic gradient descent (learning rate ε):

$$\theta \leftarrow \theta + \epsilon \cdot \frac{\partial E}{\partial \theta} = \theta + \epsilon \cdot \frac{\partial \log \widehat{P} \left(w_{t} \mid w_{t-n+1} \dots w_{t-1} \right)}{\partial \theta}$$

(weights are initialized randomly, then updated via backpropagation)

NNLM facts

- tested on Brown (1.2M words, $|V| \cong 16K$) and AP News (14M words, $|V| \cong 150K$ reduced to 18K) corpuses
- \triangleright Brown: h = 100, n = 5, m = 30
- ightharpoonup AP News: h = 60, n = 6, m = 100, **3 week** training using **40 cores**
- \geq 24% and 8% relative improvement (resp.) over traditional smoothed n-gram LMs in terms of test set perplexity: geometric average of $1/\widehat{P}(w_t \mid w_{t-n+1} \dots w_{t-1})$
- Due to **complexity**, NNLM can't be applied to large data sets → poor performance on rare words
- Bengio et al. (2003) initially thought their main contribution was a more accurate LM. They let the interpretation and use of the word vectors as **future work**
- > On the opposite, Mikolov et al. (2013) focus on the word vectors

Word2Vec

- Mikolov et al. in 2013
- Key idea of word2vec: achieve better performance not by using a more complex model (i.e., with more layers), but by allowing a simpler (shallower) model to be trained on much larger amounts of data
- no hidden layer (leads to 1000X speedup)
- projection layer is shared (not just the weight matrix) C
- context: words from both history & future:
- Two algorithms for learning words vectors:
 - **CBOW**: from context predict target
 - **Skip-gram**: from target predict context

CBOW

- continuous bag-of-words
- continuous representations whose order is of no importance
- uses the surrounding words to predict the center word
- n-words before and after the target word

Efficient Estimation of Word Representations in Vector Space- Mikolov et al.

Continuous Bag-of-Words (CBOW)

For each training sequence:

input = (context, target) pair:
$$(w_{t-\frac{n}{2}} \dots w_{t-1} w_{t+1} \dots w_{t+\frac{n}{2}}, w_t)$$

objective: minimize $-log\widehat{P}(w_t \mid w_{t-n+1} \dots w_{t-1})$

17

input context: n/2

n/2 history words: $w_{t-\frac{n}{2}} \dots w_{t-1}$

n/2 future words: $w_{t+1} + \cdots + w_{t+\frac{n}{2}}$

Weight updating

- For each (context, target=w_t) pair, only the word vectors from matrix C corresponding to the context words are updated
- Recall that we compute $P(w_i = w_t \mid context) \forall w_i \in V$. We compare this distribution to the true probability distribution (1 for w_t , 0 elsewhere)
- Back propagation
- If P ($w_i = w_t$ I context) is **overestimated** (i.e., > 0, happens in potentially |V| 1 cases), some portion of $C'(w_i)$ is **subtracted** from the context word vectors in C, proportionally to the magnitude of the error
- Reversely, if P ($w_i = w_t$ I context) is **underestimated** (< 1, happens in potentially 1 case), some portion of C'(w_i) is **added** to the context word vectors in C
 - → at each step the words move away or get closer to each other in the feature space → clustering

Skip-gram

- skip-gram uses the center word to predict the surrounding words
- instead of computing the probability of the target word w_t given its previous words, we calculate the probability of the surrounding word w_{t+j} given w_t

>
$$p(w_{t+j}|w_t) = \frac{\exp(v_{w_t}^T v_{w_{t+j}}')}{\sum_{w \in V} \exp(v_{w_t}^T v_{w_{t+j}}')}$$

Objective function

$$J = \frac{1}{T} \sum_{t=1}^{T} \sum_{-n \le j \le n} \log p(w_{t+j} | w_t)$$

Efficient Estimation of Word Representations in Vector Space- Mikolov et al.

word2vec facts

- \triangleright Complexity is n * m + m * log|V| (Mikolov et al. 2013a)
- \triangleright On Google news 6B words training corpus, with $|V| \sim 10^6$:
 - CBOW with m=1000 took **2 days** to train on **140 cores**
 - Skip-gram with m=1000 took **2.5 days** on **125 cores**
 - NNLM (Bengio et al. 2003) took **14 days** on **180 cores**, for m = 100 only! (note that m = 1000 was not reasonably feasible on such a large training set)
- \blacktriangleright word2vec training speed \cong 100K-5M words/s
- Quality of the word vectors:
 - ✓ significantly with **amount of training data** and **dimension of the word vectors** (m), with diminishing relative improvements
 - measured in terms of accuracy on 20K semantic and syntactic association tasks. e.g., words in **bold** have to be returned:

Capital-Country	Past tense	Superlative	Male-Female	Opposite
Athens: Greece	walking: walked	easy: easiest	brother: sister	ethical: unethical

- ➤ Best NNLM: 12.3% overall accuracy. Word2vec (with Skip-gram): 53.3%
- References: https://code.google.com/p/word2vec/

Softmax

- Calculating the softmax is expensive
- Approximate the softmax
 - softmax-based
 - □ Hierarchical Softmax
 - Differentiated Softmax
 - □ CNN-Softmax
 - sampling-based
 - Importance Sampling
 - Adaptive Importance Sampling
 - □ Target Sampling
 - Noise Contrastive Estimation
 - Negative Sampling
 - □ Self-Normalisation
 - Infrequent Normalisation

Softmax classifier

Hidden layer

Projection layer

https://www.tensorflow.org/tutorials/word2vec/

Hierarchical Softmax

- Inspired by binary trees
- Flat softmax layer -> hierarchical layer that has the words as leaves
- Morin and Bengio
- Skip the expensive normalization over all words
- Speed-up 50xM via log(V) search in the tree.

Stephan Gouws (Quora)

Sampling-based Approaches

- Approximate the normalization of the softmax with some cheap to compute loss at training time
- The update rule consists of:
 - positive reinforcement for the target word
 - negative reinforcement for all other words
- approximate this negative reinforcement in less complex manner
- Without calculating the sum over the probabilities for all words in V but doing i.e. Monte Carlo

1.
$$J = -log \frac{\exp(h^T v'_{w_t})}{\sum_{w \in V} \exp(h^T v'_{w_i})}$$

$$\mathcal{E}(w) = -h^T v'_{w_t}$$
 and P=softmax probability

2.
$$\nabla J = \nabla \mathcal{E}(w) - \sum_{w \in V} P(w_i) \nabla \mathcal{E}(w_i)$$

3.
$$\sum_{w \in V} P(w_i) \nabla \mathcal{E}(w_i) = \mathbb{E}_{w_i \sim P} \nabla \mathcal{E}(w_i)$$

Negative Sampling

For every word w_i given its context c_i generate k noise samples $\widetilde{w_{ik}}$ from a noise distribution Q

Noise classifier

- Separate the correct words from the noise(binary classification)
- logistic regression to minimize the negative log-likelihood
- Also optimizes the goal of maximizing the probability of correct words
- Replacing the more expensive softmax

Hidden layer

Projection layer

https://www.tensorflow.org/tutorials/word2vec/

Which Approach?

Approach	Speed-up factor	During training?	During testing?	Performance (small vocab)	Performance (large vocab)	Proportion of parameters
Softmax	1x	-	-	very good	very poor	100%
Hierarchical Softmax	25x (50-100x)	X	-	very poor	very good	100%
Differentiated Softmax	2x	X	Х	very good	very good	< 100%
CNN-Softmax	-	X	-	-	bad - good	30%
Importance Sampling	(19x)	X	-	-	-	100%
Adaptive Importance Sampling	(100x)	x	-	-	-	100%
Target Sampling	2x	X	-	good	bad	100%
Noise Contrastive Estimation	8x (45x)	x	-	very bad	very bad	100%
Negative Sampling	(50-100x)	X	-	-	-	100%
Self-Normalisation	(15x)	Х	-	-	-	100%
Infrequent Normalisation	6x (10x)	Х	-	very good	good	100%

GloVe

- Count-based model
- Ratio of co-occurrence probabilities best distinguishes relevant words
- > Pennington, et al
- Weighted least squares regression model
- X co-occurrence matrix
- \succ f weighting function,
- b bias terms
- \rightarrow $w_i = word \ vector$
- $\sim \widetilde{w_i} = context \ vector$

$$J = \sum_{i,j=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij}\right)^2$$

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

Which is one is better?

- Open question
- SVD vs word2vec vs GloVe
- All based on co-occurrence
- Levy, O., Goldberg, Y., & Dagan, I. (2015)
 - SVD performs best on similarity tasks
 - Word2vec performs best on analogy tasks
 - No single algorithm consistently outperforms the other methods
 - Hyperparameter tuning is important
 - 3 out of 6 cases, tuning hyperparameters is more beneficial than increasing corpus size
 - word2vec outperforms GloVe on all tasks
 - CBOW is worse than skip-gram on all tasks

Applications

- Word analogies
- Find similar words
 - Semantic similarity
 - Syntactic similarity
- POS tagging
- Similar analogies for different languages
- Document classification

https://lamyiowce.github.io/word2viz/

Applications

- ➤ High quality word vectors boost performance of all NLP tasks, including document classification, machine translation, information retrieval...
- Example for English to Spanish machine translation:

About 90% reported accuracy (Mikolov et al. 2013c)

Mikolov, T., Le, Q. V., & Sutskever, I. (2013). Exploiting similarities among languages for machine translation. *arXiv preprint arXiv:1309.4168*.

Remarkable properties of word vectors

regularities between words are encoded in the difference vectors e.g., there is a constant **country-capital** difference vector

Mikolov et al. (2013b)

Distributed representations of words and phrases and their compositionality

Remarkable properties of word vectors

constant female-male difference vector

Remarkable properties of word vectors

constant male-female difference vector

constant **singular-plural** difference vector

 $W_{einstein} - W_{scientist} + W_{painter} \cong W_{picasso}$

Vector operations are supported and make intuitive sense:

$$w_{king} - w_{man} + w_{woman} \cong w_{queen}$$

 $w_{paris} - w_{france} + w_{italy} \cong w_{rome}$

 $W_{windows} - W_{microsoft} + W_{google} \cong W_{android}$

$$w_{italy} \cong w_{rome}$$
 $w_{his} - w_{he} + w_{she} \cong w_{her}$ $w_{copper} = w_{android}$ $w_{cu} - w_{copper} + w_{gold} \cong w_{au}$

Online <u>demo</u> (scroll down to end of tutorial)

Distributed Representations of Sentences and Documents

> Doc2vec

- Paragraph or document vectors
- Capable of constructing representations of input sequences of variable length
- Represent each document by a dense vector
- Trained to predict words in the document
- paragraph vector and word vectors are averaged or concatenated to predict the next word in a context
- can be thought of as another word shared across all contexts in document

Model	Error rate	Error rate
	(Positive/	(Fine-
	Negative)	grained)
Naïve Bayes	18.2 %	59.0%
(Socher et al., 2013b)		
SVMs (Socher et al., 2013b)	20.6%	59.3%
Bigram Naïve Bayes	16.9%	58.1%
(Socher et al., 2013b)		
Word Vector Averaging	19.9%	67.3%
(Socher et al., 2013b)		
Recursive Neural Network	17.6%	56.8%
(Socher et al., 2013b)		
Matrix Vector-RNN	17.1%	55.6%
(Socher et al., 2013b)		
Recursive Neural Tensor Network	14.6%	54.3%
(Socher et al., 2013b)		
Paragraph Vector	12.2%	51.3%

https://cs.stanford.edu/~quocle/paragraph_vector.pdf

Word Mover's distance

- Edit distance of 2 documents
- Based on word embedding representations
- Incorporate semantic similarity between individual word pairs into the document distance metric
- Based on "travel cost" between two words
- Calculates the cost of moving d to d'
- hyper-parameter free
- highly interpretable
- high retrieval accuracy

"minimum cumulative distance that all words in document 1 need to travel to exactly match document 2"

Word Mover's distance example

With the BOW representation D_1 and D_2 are at equal distance from D_0 . Word embeddings allow to capture the fact that D_1 is closer.

Kusner, M. J., Sun, E. Y., Kolkin, E. N. I., & EDU, W. From Word Embeddings To Document Distances. Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015. JMLR: W&CP volume 37.

CNN for document classification

- Use the high quality embeddings as input for Convolutional Neural Network
- Input must be fixed size
- max-pooling deals with variable document lengths
- Applies multiple filters to concatenated word vectors

$$\mathbf{x}_{1:n} = \mathbf{x}_1 \oplus \mathbf{x}_2 \oplus \ldots \oplus \mathbf{x}_n$$

Produces new features for every filter

$$c_i = f(\mathbf{w} \cdot \mathbf{x}_{i:i+h-1} + b)$$

And picks the max as a feature for the CNN

Yoon Kim - Convolutional Neural Networks for Sentence Classification

CNN for document classification

- Many variations of the model
- use existing vectors as input (CNN-static)
- > learn vectors for the specific classification task through backpropagation (CNN-rand)
- Modify existing vectors for the specific task through backpropagation(CNN-non-static)
- Combine multiple word embeddings
 - Each set of vectors is treated as a 'channel'
 - Filter is applied to both channels
 - Gradients are backpropagated only through one of the channels
 - Fine-tunes one set of vectors while keeping the other static

CNN for document classification

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static		45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	_	_	_	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	_	_	_	_
RNTN (Socher et al., 2013)	_	45.7	85.4	_	_	_	_
DCNN (Kalchbrenner et al., 2014)	_	48.5	86.8	_	93.0	_	_
Paragraph-Vec (Le and Mikolov, 2014)	_	48.7	87.8	_	_	_	_
CCAE (Hermann and Blunsom, 2013)	77.8	_	_	_	_	_	87.2
Sent-Parser (Dong et al., 2014)	79.5	_	_	_	_	_	86.3
NBSVM (Wang and Manning, 2012)	79.4	_	_	93.2	_	81.8	86.3
MNB (Wang and Manning, 2012)	79.0	_	_	93.6	_	80.0	86.3
G-Dropout (Wang and Manning, 2013)	79.0	_	_	93.4	_	82.1	86.1
F-Dropout (Wang and Manning, 2013)	79.1	_	_	93.6	_	81.9	86.3
Tree-CRF (Nakagawa et al., 2010)	77.3	_	_	_	_	81.4	86.1
CRF-PR (Yang and Cardie, 2014)	_	_	_	_	_	82.7	_
SVM_S (Silva et al., 2011)	_	_	_	_	95.0	_	

References

- Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A Neural Probabilistic Language Model. The Journal of Machine Learning Research, 3, 1137–1155. http://doi.org/10.1162/153244303322533223
- Mikolov, T., Corrado, G., Chen, K., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. Proceedings of the International Conference on Learning Representations (ICLR 2013), 1–12.
- Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. NIPS, 1–9.
- Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing. Proceedings of the 25th International Conference on Machine Learning - ICML '08, 20(1), 160–167. http://doi.org/10.1145/1390156.1390177
- Kim, Y., Jernite, Y., Sontag, D., & Rush, A. M. (2016). Character-Aware Neural Language Models. AAAI. Retrieved from http://arxiv.org/abs/1508.06615
- Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., & Wu, Y. (2016). Exploring the Limits of Language Modeling. Retrieved from http://arxiv.org/abs/1602.02410
- Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural Language Processing (almost) from Scratch. Journal of Machine Learning Research, 12 (Aug), 2493–2537. Retrieved from http://arxiv.org/abs/1103.0398
- Chen, W., Grangier, D., & Auli, M. (2015). Strategies for Training Large Vocabulary Neural Language Models, 12. Retrieved from http://arxiv.org/abs/1512.04906

More References

- Levy, O., Goldberg, Y., & Dagan, I. (2015). Improving Distributional Similarity with Lessons Learned from Word Embeddings. Transactions of the Association for Computational Linguistics, 3, 211–225. Retrieved from https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/570
- Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 1532–1543. http://doi.org/10.3115/v1/D14-1162
- Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don't count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. ACL, 238–247. http://doi.org/10.3115/v1/P14-1023
- Levy, O., & Goldberg, Y. (2014). Neural Word Embedding as Implicit Matrix Factorization. Advances in Neural Information Processing Systems (NIPS), 2177–2185. Retrieved from http://papers.nips.cc/paper/5477-neural-word-embedding-as-implicit-matrix-factorization
- Hamilton, W. L., Clark, K., Leskovec, J., & Jurafsky, D. (2016). Inducing Domain-Specific Sentiment Lexicons from Unlabeled Corpora. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Retrieved from http://arxiv.org/abs/1606.02820
- Hamilton, W. L., Leskovec, J., & Jurafsky, D. (2016). Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change. arXiv Preprint arXiv:1605.09096.

References- blogs

- Sebastian Ruder blog series on Word Embeddings, http://sebastianruder.com/
- Andy Jones blog on word2vec, http://andyljones.tumblr.com/post/111299309808/why-word2vec-works
- Arora et al, https://arxiv.org/pdf/1502.03520v7.pdf
- > Piotr Migdał, http://p.migdal.pl/2017/01/06/king-man-woman-queen-why.html