Variable Compleja I

Tema 8: Equivalencia entre analiticidad y holomorfía

 \bigcirc Analiticidad \iff Holomorfía

2 Fórmula de Cauchy para las derivadas

3 Teorema de extensión de Riemann

Analiticidad \iff Holomorfía

Desarrollo en serie de Taylor

Si $\Omega = \Omega^{\circ} \subset \mathbb{C}$ y $f \in \mathcal{H}(\Omega)$, entonces f es analítica en Ω , y en particular f es indefinidamente derivable en Ω . Además:

• Si $\Omega = \mathbb{C}$, para todo $a \in \Omega$, la serie de Taylor $\sum_{n \geqslant 0} \frac{f^{(n)}(a)}{n!} (z-a)^n$ tiene radio de convergencia infinito y

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z - a)^n \qquad \forall z \in \mathbb{C}$$

• Si $\Omega \neq \mathbb{C}$, $a \in \Omega$ y $R_a = d(a, \mathbb{C} \setminus \Omega)$, la serie de Taylor $\sum_{n \geqslant 0} \frac{f^n(a)}{n!} (z-a)^n$ tiene radio de convergencia mayor o igual que R_a y:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n \qquad \forall z \in D(a, R_a)$$

Comentarios al teorema: caso $\Omega = \mathbb{C}$

Lo que ya sabíamos

$$\Lambda = \left\{ \alpha : \mathbb{N} \cup \{0\} \to \mathbb{C} : \lim_{n \to \infty} |\alpha(n)|^{1/n} = 0 \right\}$$

Para $\alpha \in \Lambda$ se tiene:

- La serie $\sum \alpha(n)z^n$ tiene radio de convergencia infinito (Fórmula de Cauchy-Hadamard)
- \bullet Si $f_\alpha(z)=\sum \alpha(n)z^n$ para todo $z\in\mathbb{C},$ entonces $f_\alpha\in\mathcal{H}(\mathbb{C})$ (Holomorfía de la suma de una serie de potencias)
- $\beta \in \Lambda$, $f_{\beta} = f_{\alpha} \implies \beta = \alpha$ (Principio de identidad para series de potencias)

Comentarios al teorema: caso $\Omega = \mathbb{C}$

Lo que ahora sabemos

$$\Lambda = \left\{ \alpha : \mathbb{N} \cup \{0\} \to \mathbb{C} : \lim_{n \to \infty} |\alpha(n)|^{1/n} = 0 \right\}$$

- Toda función entera es analítica en \mathbb{C} : f_{α} analítica en \mathbb{C} $\forall \alpha \in \Lambda$
- Si $f \in \mathcal{H}(\mathbb{C})$ y $\alpha(n) = \frac{f^{(n)}(0)}{n!} \quad \forall n \in \mathbb{N} \cup \{0\}, \text{ entonces:}$

$$\alpha \in \Lambda$$
 y $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n = f_{\alpha}(z) \ \forall z \in \mathbb{C}$

Hemos "parametrizado" el conjunto de todas las funciones enteras:

$$\mathcal{H}(\mathbb{C}) = \{ f_{\alpha} : \alpha \in \Lambda \}$$

•
$$f \in \mathcal{H}(\mathbb{C}) \implies f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n \quad \forall a, z \in \mathbb{C}$$

El desarrollo en serie de Taylor de una función entera, centrado en cualquier punto del plano, es válido en todo el plano

Lo que ya sabíamos

$$\Lambda_R = \left\{ \alpha : \mathbb{N} \cup \{0\} \to \mathbb{C} : \limsup_{n \to \infty} \left| \alpha(n) \right|^{1/n} \leqslant 1/R \right\}$$

Para $\alpha \in \Lambda_R$ se tiene:

- ullet La serie $\sum \alpha(n)z^n$ tiene radio de convergencia mayor o igual que R(Fórmula de Cauchy-Hadamard)
- $f_{\alpha}(z) = \sum_{n=0}^{\infty} \alpha(n) (z-a)^n \quad \forall z \in D(a,R) \implies f_{\alpha} \in \mathcal{H}(D(a,R))$ (Holomorfía de la suma de una serie de potencias)
- $\beta \in \Lambda$, $f_{\beta} = f_{\alpha} \implies \beta = \alpha$ (Principio de identidad para series de potencias)

Comentarios al teorema: caso $\Omega = D(a,R)$ con $a \in \mathbb{C}$ y $R \in \mathbb{R}^+$

Lo que ahora sabemos

$$\Lambda_R = \left\{ \alpha : \mathbb{N} \cup \{0\} \to \mathbb{C} : \limsup_{n \to \infty} |\alpha(n)|^{1/n} \leqslant 1/R \right\}$$

- Toda $f \in \mathcal{H}\big(D(a,R)\big)$ es analítica en $D\big(D(a,R)\big)$: f_{α} analítica en D(a,R) $\forall \alpha \in \Lambda_R$
- Si $f \in \mathcal{H}(D(a,R))$ y $\alpha(n) = \frac{f^{(n)}(a)}{n!} \quad \forall n \in \mathbb{N} \cup \{0\}, \text{ entonces:}$

$$\alpha \in \Lambda_R$$
 y $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n = f_{\alpha}(z) \quad \forall z \in D(a,R)$

Hemos "parametrizado" el conjunto de todas las funciones holomorfas en cualquier disco abierto: $\mathcal{H}(D(a,R)) = \{f_{\alpha} : \alpha \in \Lambda_{R}\}$

• Si $f \in \mathcal{H}(D(a,R))$, $b \in D(a,R)$ y $R_b = R - |b-a|$ entonces:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(b)}{n!} (z-b)^n \quad \forall z \in D(b, R_b)$$

Analiticidad

Comentarios al teorema: caso general $\Omega \neq \mathbb{C}$ y Ω no es un disco abierto

Lo que por ahora sabemos

No tenemos una descripción "global" de cada función holomorfa en Ω como suma de una serie de potencias (no es posible tenerla).

Por tanto no tenemos una "parametrización" de $\mathcal{H}(\Omega)$, es decir, un método que nos permita construir todas las funciones holomorfas en Ω .

El teorema nos da información "local":

- $f \in \mathcal{H}(\Omega) \implies f$ analítica en Ω
- Si $f \in \mathcal{H}(\Omega)$, $a \in \Omega$ y $R_a = d(a, \mathbb{C} \setminus \Omega)$, entonces la serie Taylor de f centrada en a tiene radio de convergencia mayor o igual que R_a y se verifica que:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z - a)^n \qquad \forall z \in D(a, R_a)$$

El desarrollo en serie de Taylor de f en cada punto $a\in\Omega$ es válido en el disco de centro a y cuyo radio es el máximo posible

Fórmula de Cauchy para las derivadas: motivación

Repaso de dos fórmulas conocidas

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \quad f \in \mathcal{H}(\Omega), \quad a \in \Omega, \quad r \in \mathbb{R}^+, \quad \overline{D}(a,r) \subset \Omega$$

• Fórmula de Cauchy:

$$f(z) = \frac{1}{2\pi i} \int_{C(a,r)} \frac{f(w)}{w - z} dw \quad \forall z \in D(a,r)$$

 \bullet Para $k\in\mathbb{N}\cup\{0\},$ ahora sabemos que $f^{(k)}\in\mathcal{H}(\Omega),$ luego

$$f^{(k)}(z) = \frac{1}{2\pi i} \int_{C(a,r)} \frac{f^{(k)}(w)}{w - z} dw \quad \forall z \in D(a,r)$$

Esto no es nuevo, no es la fórmula que buscamos.

• En la demostración del desarrollo de Taylor vimos que:

$$\frac{f^{(k)}(a)}{k!} = \frac{1}{2\pi i} \int_{C(a,r)} \frac{f(w)}{(w-a)^{k+1}} dw \quad \forall k \in \mathbb{N} \cup \{0\}$$

Para k=0 obtenemos la fórmula de Cauchy, ji pero sólo para z=a!!

Teorema

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \quad f \in \mathcal{H}(\Omega), \quad a \in \Omega, \quad r \in \mathbb{R}^{+}, \quad \overline{D}(a,r) \subset \Omega$$

Entonces:

$$f^{(k)}(z) = \frac{k!}{2\pi i} \int_{C(a,r)} \frac{f(w)}{(w-z)^{k+1}} dw \quad \forall z \in D(a,r), \ \forall k \in \mathbb{N} \cup \{0\}$$

Funciones derivables en un abierto salvo en un punto

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \quad z_0 \in \Omega, \quad f \in \mathcal{H}(\Omega \setminus \{z_0\})$$

Consideremos las siguientes afirmaciones:

- (1) $\exists g \in \mathcal{H}(\Omega) : g(z) = f(z) \ \forall z \in \Omega \setminus \{z_0\}$
- (2) $\exists \lim_{z \to z_0} f(z) = w \in \mathbb{C}$
- (3) $\exists \delta, M \in \mathbb{R}^+ : D(z_0, \delta) \subset \Omega \quad \text{y} \quad |f(z)| \leq M \quad \forall z \in D(z_0, \delta) \setminus \{z_0\}$
- (4) $\lim_{z \to z_0} (z z_0) f(z) = 0$

Es evidente que
$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$$

Para funciones reales de variable real, ninguna implicación es reversible

Teorema de extensión de Riemann

Teorema

Analiticidad

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \quad z_0 \in \Omega, \quad f \in \mathcal{H}(\Omega \setminus \{z_0\})$$

Las siguientes afirmaciones son equivalentes:

- (1) $\exists g \in \mathcal{H}(\Omega) : g(z) = f(z) \ \forall z \in \Omega \setminus \{z_0\}$
- (2) $\exists \lim_{z \to z_0} f(z) = w \in \mathbb{C}$
- (3) $\exists \delta, M \in \mathbb{R}^+ : D(z_0, \delta) \subset \Omega$ y $|f(z)| \leq M \ \forall z \in D(z_0, \delta)$ Acotada
- (4) $\lim_{z \to z_0} (z z_0) f(z) = 0 \Longrightarrow \text{Esto es la mais de bil}$

Basta obviamente probar que $(4) \Rightarrow (1)$

Corolario

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \quad z_0 \in \Omega, \quad f: \Omega \to \mathbb{C}$$

Supongamos que $f \in \mathcal{H}(\Omega \setminus \{z_0\})$ y que f es continua en z_0

Entonces
$$f \in \mathcal{H}(\Omega)$$