

UNIVERSIDADE FEDERAL DO CEARÁ Campus de Quixadá Prof. Thiago Werlley Bandeira da Silva QXD0005- Arquitetura de Computadores

Nome:			Matrícula:	
1. Considere agora u	m espaço de endereça	amento de 4 Giga o	rganizada com mapeamento c	lireto.
a) Como ficaria palavras?	a divisão de bits par	ra uma cache de 40	196 posições que trabalhe con	n blocos de 16
	(Tag)	(Linha)	(Palavra)	
b) Quanto tem e	efetivamente de dado	s nessa cache, cons	derando palavras de 32 bits?	
2. Considere um espa	aço de endereçament	o de 2 ³² .		
a) Como ficaria de 16 palavra		endereço para uma	cache associativa de 4096 po	sições e blocos
	(Tag)	/T	Palayra)	

- b) Qual o tamanho da memória associativa?
- 3. Considerando uma cache com 1024 posições com palavra de 32 bits, um espaço de endereçamento de 4 Gigabytes, responda as perguntas que seguem:4 conjuntos associativos
 - a) Quanto tem efetivamente de dados nessa cache?
 - b) Considere 2 conjuntos (S=2). Qual tamanho de cada memória associativa?
 - c) Considere 4 conjuntos (S=4). Qual tamanho de cada memória associativa?
 - d) Como ficaria divisão do endereço de cache de 4 conjuntos com 2048 posições (bloco com 4 palavras de 32 bits)?

(Tag)	(Conjunto)	(Palavra)

- 4. Dado uma cache L1 4-Way (sendo 4-Way é igual a 4 linhas por cj) de 64 Kbytes e com processador Ultra Sparc III (assumir bloco de 32 palavras de 64 bits)? *Tamanho da linha da cache* = 32 * 64 bits = 2048 bits
 - a) Quantos conjuntos possui cache L1 4-Way?
 - b) Como ficaria a divisão do endereço de cache com 2048 posições (blocos 16 palavras de 32 bits)?

(Tag)	(Conjunto)	(Palavra)

- 5. Considere um sistema de computação que possui uma memória principal, organizada em células de 1 byte cada e apenas uma memória cache externa, organizada com mapeamento direto, sendo cada linha de 32 bytes. Em um dado instante, o processador inicia uma acesso colocando no Endereço de Memória com um o endereço hexadecimal: 5D7A9F2. Sabendo-se que, neste sistema cada linha da cache tem atribuído 512 blocos da MP, pergunta-se:
 - a) Qual deverá ser a largura do endereço de memória do sistema?

(Tag)	(Linha)	(Palavra)	

- b) Qual foi a linha acessada pelo processador?
- 6. A área de memória disponível para implementação de uma cache L2 é 512 Kbytes. Considerando que a memória a ser endereçada possui 64 Mbytes (2²⁶) e a cache deve trabalhar com blocos de 16 palavras de 32 bits calcule para a técnica totalmente associativa e conjunto associativa (4 conjuntos):
 - a) Divisão de bits do endereço
 - b) Aproveitamento efetivo da área da cache (relação entre dados e controle)
 - c) Número de linhas da cache
 - d) Quantidade e tamanho em Kbytes das memórias associativas (quando necessário)
- 7. Considere a memória cache mostrada na figura 12.4 e responda os itens a seguir. Obs. Considere que a cache está inicialmente zerada e que o dado contido em cada endereço da memória principal é igual ao valor do byte menos significativo do endereço.
 - Ex. O endereço 0x82000000 contém o dado igual a 0x00.
 - Ex. O endereço 0x8200004C contém o dado igual a 0x4C.
 - a) Mostre o conteúdo da cache (apenas das linhas que mudarem) após a execução sequencial das instruções abaixo. Desconsidere os bits v e d.

```
1 LDR R0, =0x82000000

2 LDR R1, =0x82040024

3 LDR R2, =0x82040028

4 LDR R3, =0x8200008C

5 LDR R0, =0x82F00080

6 LDR R1, =0x82F0008E

7 LDR R2, =0x82F00018

8 LDR R3, =0x82F0004C
```

- b) Projete uma memória cache associativa de forma que não ocorra nenhum cache miss caso sejam repetidos os acessos do item anterior, na mesma ordem.
- 8. Considere a execução do código abaixo em um sistema com memória cache vitual, de mapeamento direto, de tamanho 1KB e com linhas de 64 bytes e resolva o que se pede:

```
.foo:
                      r0, #0x1000
              mov
                      r1, #0x20
              mov
              mov
                      r2, #0
.loop1:
               add
                      r2, r2, #1
                      r2, r1
               cmp
                      .fim
              bgt
                      r3, #0
              mov
.loop2:
               add
                      r3, r3, #1
                      r3, r1
               cmp
              bgt
                      .loop1
                      r6, [r0], #4
               ldr
               add
                      r7, r7, r6
              b
                      .loop2
.fim:
              bx lr
```

- a) Mostre o conteúdo do campo cache-tag de todas as linhas da cache após a execução do código.
- b) Indique o endereço inicial e o final contido em cada linha da cache após a execução do código.
- c) Qual a taxa de cache miss ao final da execução, assumindo que a cache está inicialmente vazia?
- d) Projete uma memória cache de mapeamento direto (informe o tamanho total da cache, a quantidade de linhas, o total de words por linha e quais bits do endereço correspondem aos campos cache-tag, set index e data index) capaz de armazenar todos os dados lidos pelo programa da questão anterior sem a necessidade de reposição de linhas.
- 9. Assuma que o código da questão 1 está sendo executado a partir do endereço virtual 0x4000. Mostre como seriam as PTEs L1 e L2 envolvidas no mapeamento de forma a atender as seguintes condições:
 - \rightarrow As páginas com os endereços nos intervalos de [0x0000 a 0x3FFF] e [0x4000 a 0x7FFF] devem ser mapeadas para as molduras de página nos intervalos [0x08002000 a 0x08005FFF] e [0x08200000 a 0x08203FFF], respectivamente.
 - → Cache e Write Buffer estão desabilitados e o domínio é igual a 5.
 - → A tabela L2 está no endereço base 0x1C400
 - \rightarrow As páginas que contiverem a memória de programa deverão ter permissão somente de leitura para todos os modos, enquanto que as demais páginas deverão ter permissão read/write para todos os modos.