Durée : 1 heure. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

— I	Les questions peuvent présenter une ou plusieurs réponses valides.
— Ţ	Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.
— I	En cas d'erreur, utilisez du « blanco ».
<u> </u>	Soyez très vigilant, avant de répondre à une question, de cocher la bonne ligne dans la grille.
— N	N'oubliez pas vos NOM, PRÉNOM et LOGIN (p62xxx). Par exemple, p62375 s'encode ainsi :
	Identifiant: 0 1 2 3 4 5 6 7 8 9 Chiffre 1:
	Nom: PEDALETTI Prénom: PAOLO
	Bon courage!
	* * * * * * * * * * * * * * * * * * * *
	n considère l'ensemble $A=\{0,1,6,9,12,15,18,180\}$ avec la relation de divisibilité. Cocher le inimum et le maximum de cet ensemble.
2. b e	$a ext{ signifie } \dots$ (1) \square $a ext{ divise } b$ (2) \square $a ext{ est multiple de } b$ (3) \square
3. Sc	pient a et b deux entiers relatifs. Parmi les affirmations suivantes, lesquelles sont vraies?
	$a 0 \text{ et } 1 a$ $a 0 \text{ et } 1 a$ $a b \text{ et } b a \Rightarrow b = a$ $a b+c \Rightarrow a b \text{ et } a c$ $a b+c \Rightarrow a b \text{ et } a b$ $a b+c \Rightarrow a b \text{ et } a c$ $a b \text{ et } c d \Rightarrow ac bd$ $a b \text{ et } c d \Rightarrow ac bd$ $a b \text{ et } c d \Rightarrow ac bd$

4.	. Soient a et b deux entiers relatifs. Parmi les affirmations suivantes, lesquelles sont vraies?		
	$\begin{array}{ll} (1)\square & D(0) = \{0\} \\ (2)\square & D(1) = \{-1,1\} \\ (3)\square & n\mathbb{Z} = \{qn,q\in\mathbb{Z}\} \\ (4)\square & \forall a,b\in\mathbb{Z} \text{ on a } : b a\Leftrightarrow a\in D(b)\Leftrightarrow b\in a\mathbb{Z} \\ (5)\square & \text{aucune des réponses précédentes n'est correcte.} \end{array}$		
5.	Soit $a = bq + r$ la division euclidienne de $a \in \mathbb{Z}$ par $b \in \mathbb{N}^*$. Alors $\begin{array}{ccc} (1)^{\square} & b a \\ (2)^{\square} & 0 \leqslant b < r \\ (3)^{\square} & a \wedge b = b \wedge r \\ (4)^{\square} & q \text{ et } r \text{ sont uniques.} \\ (5)^{\square} & \text{aucune des réponses précédentes n'est correcte.} \end{array}$		
6.	Une relation binaire R est une relation d'équivalence dans un ensemble E si :		
	elle est réflexive, symétrique et transitive elle est réflexive, antisymétrique et transitive elle est réflexive, antisymétrique et transitive		
	Soit (E') l'équation diophantienne $3x + 7y = 4$.		
7.	Quel(s) couple(s) est(sont) solution(s) particulière(s) de (E')?		
	$_{(1)}\Box S=\varnothing \qquad _{(2)}\Box (-2;1) \qquad _{(3)}\Box (-8;4) \qquad _{(4)}\Box (-1;1)$		
	$_{(5)}\square$ aucune des réponses précédentes n'est correcte.		
8.	. Quel(s) est (sont) l'ensemble(s) S des solutions de l'équation diophantienne (E') de la que stior précédente?		
	$\begin{array}{ll} (1)^{\square} & S = \varnothing \\ (2)^{\square} & S = \{(-2+7k;1-3k), k \in \mathbb{Z}\} \\ (3)^{\square} & S = \{(-8-7k;4+3k), k \in \mathbb{Z}\} \\ (4)^{\square} & S = \{(-1+7k;1-3k), k \in \mathbb{Z}\} \\ (5)^{\square} & \text{aucune des réponses précédentes n'est correcte.} \end{array}$		
9.	La congruence $45 \equiv 63$ implique		
	$_{(1)}\Box$ $47\stackrel{=}{=}64$ $_{(2)}\Box$ $\frac{45}{3}\stackrel{=}{=}\frac{63}{3}$ $_{(3)}\Box$ $45^5\stackrel{=}{=}63^5$ $_{(4)}\Box$ $45\cdot 16\stackrel{=}{=}63\cdot 16$ $_{(5)}\Box$ aucune des réponses précédentes n'est correcte.		
10.	Parmi les affirmations suivantes, lesquelles sont vraies?		
	Si $ac \equiv bc$, alors $a \equiv b$ Soit $d = c \land n$, si $ac \equiv bc$, alors $a \equiv b$ Soit $d = c \land n$, si $ac \equiv bc$, alors $a \equiv b$ Si $a \equiv b$, $ma \equiv mb$, $\forall m \in \mathbb{Z}$ Si $a \equiv b$ et $c \equiv d$, alors $a - c \equiv b - d$		
	$\frac{(4)}{(5)}$ aucune des réponses précédentes n'est correcte.		

11.	1. Soient a, b et c trois entiers relatifs. Parmi les affirmations suivantes, lesquelles sont vraies?			
	$(1) \square$ $(2) \square$ $(3) \square$ $(4) \square$ $(5) \square$	$(a \wedge b)(a \vee b) = a \cdot b $ Il existe des uniques $u, v \in \mathbb{Z}$ tels que $au + bv = \operatorname{pgcd}(a, b)$ Il existe $u, v \in \mathbb{Z}$ tels que $au + bv = 1$ Si $a \wedge b = 1$ et $a \wedge c = 1 \Rightarrow a \wedge bc = 1$ aucune des réponses précédentes n'est correcte.		
12.	Quel est l	e reste de la division euclidienne de $N=2^{456}$ par 5?		
	₍₁₎ 0	$_{(2)}\Box$ 1 $_{(3)}\Box$ 2 $_{(4)}\Box$ 3 $_{(5)}\Box$ aucune des réponses précédentes n'est correcte.		
13.	Quel est l	ensemble des nombres entiers positifs qui divisent à la fois 910 et 1008?		
	(2)	$ \{1,2,5,10\} \\ \{1,2,7,14\} \\ \{1,2,3,5,7,13\} \\ \{1,2,3,4,6,8,12,16,18\} \\ \text{aucune des réponses précédentes n'est correcte.} $		
14.	Détermine	er l'ensemble S des solutions entières de $3x \equiv -2$.		
	(2) \square (3) \square	$S = \{ 2-4k, k \in \mathbb{Z} \}$ $S = \{ -2+4k, k \in \mathbb{Z} \}$ $S = \{ 2+4k, k \in \mathbb{Z} \}$ $S = \varnothing$ aucune des réponses précédentes n'est correcte.		
15.	5. Soient $84 = 2^2 \cdot 3 \cdot 7$ et $270 = 2 \cdot 3^3 \cdot 5$. Nous avons :			
	(1)	$\square 84 \land 270 = 2 \cdot 3 \qquad {}_{(2)}\square 84 \land 270 = 2 \cdot 3 \cdot 7 \cdot 5 \qquad {}_{(3)}\square 84 \lor 270 = 2^2 \cdot 3^3 \cdot 7 \cdot 5$		
		$_{(4)}\square$ $84\vee 270=2^2\cdot 3^3$ $_{(5)}\square$ aucune des réponses précédentes n'est correcte.		
16.	Parmi les	congruences suivantes, lesquelles sont vraies?		
		$_{(1)}\Box 5^2 \equiv 1 \qquad _{(2)}\Box 5^3 \equiv 1 \qquad _{(3)}\Box 5^4 \equiv 1 \qquad _{(4)}\Box 5^5 \equiv 1$		
		$_{(5)}\Box$ aucune des réponses précédentes n'est correcte.		
17.	On s'intér	esse à 122 et 455. Cocher les congruences correctes, s'il y en a.		
	(1)	$122 + 455 \underset{11}{\equiv} 5 \qquad {}_{(2)}\square 122 + 455 \underset{11}{\equiv} 7 \qquad {}_{(3)}\square 122 \cdot 455 \underset{11}{\equiv} 10 \qquad {}_{(4)}\square 122 \cdot 455 \underset{11}{\equiv} 4$ $ {}_{(5)}\square \text{aucune des réponses précédentes n'est correcte.}$		
18.	On consid	ère l'ensemble quotient $\mathbb{Z}/8\mathbb{Z}$.		
	$(1) \square$ $(2) \square$ $(3) \square$ $(4) \square$ $(5) \square$	$\mathbb{Z}/8\mathbb{Z}$ a 7 éléments $\overline{3} \cdot \overline{3} = \overline{1}$ $\overline{3} + \overline{5} = \overline{0}$ $\overline{3}$ est diviseur de zéro et inversible. aucune des réponses précédentes n'est correcte.		

- 19. Soient a, b et c trois entiers relatifs. Parmi les affirmations suivantes, lesquelles sont vraies?
 - $a \wedge b = 1$, a|c et $b|c \Rightarrow ab|c$ \Box (1)
 - (2) \square (3) \square $a \wedge (a+1) = 1$
 - $a \wedge b = 1$ et $(m,n) \in \mathbb{N}^2 \Rightarrow a^m \wedge b^n = 1$ $a \wedge b = 1$ et $b|ac \Rightarrow a|c$
 - (4)
 - (5)aucune des réponses précédentes n'est correcte.
- 20. Déterminer l'ensemble S des solutions entières de $10x \equiv 14.$
 - (1)
 - (2)
 - $S = \{ 2 15k, k \in \mathbb{Z} \}$ $S = \{ -2 + 15k, k \in \mathbb{Z} \}$ $S = \{ 2 + 14k, k \in \mathbb{Z} \}$ (3)
 - (4) $S = \varnothing$
 - (5)aucune des réponses précédentes n'est correcte.