

Universidade de Coimbra

Faculdade de Ciências e Tecnologia Departamento de Engenharia Informática

Estratégias Algorítmicas Exame Época Normal – 9 de junho de 2025

Nome:		N° de estudante:
15 pontos no total, 2 l	horas, sem consulta.	
1. A estrutura <i>union-fi a</i> pertence.	find utiliza o método $\mathit{find}(a)$ para id	lentificar a raiz da árvore à qual o elemento
o vetor $P = find(1)$. Assu	[2,0,4,2,4,2], indique qual será	uma variante desse método, e considerando o conteúdo do vetor após a execução de ma variável global e que seu primeiro ele-
Function fin if $P[a] \neq a$ t P[a] = fi return $P[a]$	then $ind(P[a])$	
mesmo métod	- ,	é recursivo. Escreva o pseudo-código do sua complexidade computacional no pior

2. Considere o seguinte grafo.

a) Desenhe o caminho mais curto do nó 9 a cada nó do grafo usando o algoritmo de Dijkstra, indicando a distância mais curta em cada nó. Assuma que pode ir em ambos os sentidos em cada aresta. Indique os nós visitados pela ordem que o algoritmo os seleciona (2 pontos).

7 8 9

Nós visitados:

b) Considere o problema de encontrar o caminho entre dois nós num grafo em que a distância máxima associada a um arco ou aresta nesse caminho é a menor possível. Que alteração no algoritmo de Dijkstra deve efetuar para encontrar esse caminho (1.5 pontos)?

3.	Cons	sidere a seguinte recorrência para $i = 0, \dots, n$ e $c_i \ge 0$:
		$S(i) = \begin{cases} c_i & \text{se } i = 0 \text{ or } i = 1 \\ c_i + \min\{S(i-1), S(i-2)\} & \text{caso contrário} \end{cases}$
	a)	Tendo em conta que o valor que pretende obter é retornado por $\min\{S(n-2),S(n-1)\}$, apresente o pseudo-código de um algoritmo de programação dinâmica descendente ($top-down$) que explore a recorrência acima para obter esse valor. (1.5 pontos)
	b)	Apresente de seguida o pseudo-código de um algoritmo de programação dinâmica ascendente (<i>bottom-up</i>) que explore a recorrência acima para obter esse valor e discuta a sua complexidade computacional e espacial. (1.5 pontos)
	c)	Discuta possíveis melhorias na sua abordagem apresentada na alínea b), com foco na otimização do uso de memória (1 ponto).

4. Considere uma matriz M de tamanho 3×3 e um inteiro k , com $0 \le k \le 4$.		
	a)	Escreva o pseudo-código de um algoritmo recursivo que imprima todas as configurações distintas possíveis de colocar k símbolos x em posições adjacentes (cima, baixo, esquerda, direita) à posição central de M . Cada configuração deve conter exatamente k símbolos colocados em posições distintas e adjacentes à posição central. Assuma que k e a matriz M estão declaradas como variáveis globais, e que existe um método $print(M)$ que imprime o conteúdo da matriz M . Adicione comentários ao seu código (3 pontos).
	b)	Qual é a complexidade temporal da sua abordagem, em termos do número de chamadas recursivas, em função de k ? Justifique a sua resposta (1 ponto).

