

Instituto Federal de Santa Catarina Campus Jaraguá do Sul - Rau Lista de Exercícios de Algoritmos / Introdução à Programação Prof. Frank Juergen Knaesel, MSc.

# Lista de Exercícios Estruturas de Repetição

# Parte 1 Controle da Repetição baseado em Contador

1. Crie um algoritmo para ler um número inicial e outro final e mostrar os números em **ordem crescente** deste intervalo, inclusive.

| Entrada             | Saída        |
|---------------------|--------------|
| Ini.: 3<br>Fim.: 7  | 3,4,5,6,7    |
| Ini.: 8<br>Fim.: 12 | 8,9,10,11,12 |

2. Elabore um algoritmo/programa que leia um número inicial e um final. Como resultado, este programa deverá mostrar os números do intervalo, bem como a soma e a média deles

| Entrada             | Saída                                  |
|---------------------|----------------------------------------|
| Ini.: 3<br>Fim.: 7  | 3,4,5,6,7<br>Soma: 25<br>Media.: 5.0   |
| Ini.: 9<br>Fim.: 12 | 9,10,11,12<br>Soma: 42<br>Media.: 10.5 |

3. Elabore um algoritmo que leia um número qualquer entre 1 e 10 e mostre a tabuada deste número.

| Entrada        | Saída                             |
|----------------|-----------------------------------|
| Tabuada do.: 6 | 6*0 = 0<br>6*1 = 6<br>6*2 = 12    |
|                | 6*8 = 48<br>6*9 = 54<br>6*10 = 60 |

- 4. Crie um algoritmo para efetuar a operação de multiplicação usando adições sucessivas. O usuário deve informar os fatores da multiplicação ("x" e "y")
  - → Use a variável "i" em parceria com a variável "x" para controlar a repetição
  - → Pense da adição sucessiva como um acumulador: soma = soma + ???;

| Entrada |       | Saída                              |  |  |
|---------|-------|------------------------------------|--|--|
| X.: 3   | Y.: 5 | 3 * 5 = 15<br>//5+5+5 = 15         |  |  |
| X.: 6   |       | 6 * 3 = 18<br>//3+3+3+3+3 = 18     |  |  |
| X.: 8   | Y.: 2 | 8 * 2 = 16<br>//2+2+2+2+2+2+2 = 16 |  |  |

5. Escreva um algoritmo que calcule e mostre o produto dos inteiros ímpares de 1 a 15. No caso... → 1 \* 3 \* 5 \* 7 \* 9 \* 11 \* 13 \* 15 = 2027025 → Multiplicações sucessivas

| Entrada | Saída               |
|---------|---------------------|
|         | Resultado.: 2027025 |

6. Desenvolva um algoritmo que imprima o quadrado e o cubo dos números de 1 a 10, gerando uma tabela como a que segue abaixo. Para tabular os dados (deixá-los alinhados), imprima usando interpolação e o caractere de tabulação "\t". Exemplo.:

#### Em Python:

| print("%d\t%d\t%d" % (a,b,c))                   | 1 | 2 | 3 |  |
|-------------------------------------------------|---|---|---|--|
| Em linguagem C:                                 |   |   |   |  |
| <pre>printf("%d \t %d \t %d \n", a, b, c)</pre> | 1 | 2 | 3 |  |

| Entrada | Saída |           |             |
|---------|-------|-----------|-------------|
|         | 1 2   | 1<br>4    | 1 8         |
|         | 3     | 9         | 27          |
|         | 9     | 81<br>100 | 729<br>1000 |

7. Faça um algoritmo que leia um número N e calcule o resultado da expressão abaixo.

$$S = N + \frac{N}{2} + \frac{N}{3} + \frac{N}{4} + \dots + \frac{N}{N}$$

Bonus Tip.: Pense! O primeiro termo a somar: N, não é igual a  $\frac{N}{1}$ ???

A fórmula acima não poderia ser:  $S = \frac{N}{1} + \frac{N}{2} + \frac{N}{3} + \frac{N}{4} + \dots + \frac{N}{N}$  ???

| Entrada | Saída         |  |  |
|---------|---------------|--|--|
| N = 2   | S = 3         |  |  |
| N = 3   | S = 5,5       |  |  |
| N = 4   | S = 8,333333  |  |  |
| N = 5   | S = 11,416666 |  |  |

8. Faça um algoritmo que leia um número N e calcule o resultado da expressão abaixo.

$$S = N + \frac{N-1}{2} + \frac{N-2}{3} + \frac{N-3}{4} + \dots + \frac{1}{N}$$

Exemplo.:

Bonus Tip 1.: Pense mais um pouco e verifique se a expressão acima é ou não equivalente à seguinte expressão:

$$S = \frac{N-0}{1} + \frac{N-1}{2} + \frac{N-2}{3} + \frac{N-3}{4} + \dots + \frac{1}{N}$$

Bonus Tip 2.: Se N=7, o último I será igual a 7 certo? Então, 
$$\frac{1}{N}$$
 não seria igual a  $\frac{N-6}{7}$ 

| Entrada | Saída         |  |  |
|---------|---------------|--|--|
| 1       | 1             |  |  |
| 2       | 2.5           |  |  |
| 3       | 4.3333333333  |  |  |
| 4       | 6.41666666666 |  |  |
| 5       | 8.7           |  |  |

| Entrada | Saída         |  |  |
|---------|---------------|--|--|
| 6       | 11.15         |  |  |
| 7       | 13.7428571428 |  |  |
| 8       | 16.4607142857 |  |  |
| 9       | 19.2896825396 |  |  |
| 10      | 22.2186507936 |  |  |

9. Uma rainha requisitou os serviços de um monge e disse-lhe que pagaria qualquer preço. O monge, necessitando de alimentos, indagou a rainha sobre o pagamento se poderia ser feito com grãos de trigo dispostos em um tabuleiro de xadrez (que possui 8x8 casas), de tal forma que o primeiro quadrado deveria ter apenas um grão e os quadrados seguintes, o dobro do anterior. Quantos grãos de trigo o monge recebeu?

Considerando que um grão de trigo pesa 65 miligramas (0.065g), qual o peso que o monge receberia em toneladas?

Considerando que um caminhão de 30m consegue transportar 45 toneladas, qual o tamanho da fila em Km?

Considerando que o diâmetro do planeta terra na linha do equador é aproximadamente 12.756,28 Km, quantas voltas essa fila de caminhões daria em torno da terra?

→ Observação.:

| 1   | 2   | 4    | 8    | 16   | 32   | 64 | 128 |
|-----|-----|------|------|------|------|----|-----|
| 256 | 512 | 1024 | 2048 | 4096 | 8192 |    |     |
|     |     |      |      |      |      |    |     |
|     |     |      |      |      |      |    |     |
|     |     |      |      |      |      |    |     |
|     |     |      |      |      |      |    |     |
|     |     |      |      |      |      |    |     |
|     |     |      |      |      |      |    |     |

Resposta: grãos 18446744073709600000 toneladas 1199038364791.12 caminhões 26645296995.35 fila em km 799358909.86 voltas 19946.57

10. Elabore um algoritmo/programa para calcular o fatorial de um número. O fatorial de um número é o produto de todos os inteiros positivos menores ou iguais a n, ou seja.: 5! = 1 \* 2 \* 3 \* 4 \* 5 = 120

| Entrada | Saída     |
|---------|-----------|
| 5       | 5! = 120  |
| 3       | 3! = 6    |
| 7       | 7! = 5040 |

11. Elabore um algoritmo/programa que pergunte ao usuário quantos números ele deseja informar. Em seguida o programa através de um laço deve ler cada um destes números. Ao final o programa deve mostrar a soma e a média destes números lidos.

| Entrada                                     | Saída                     |
|---------------------------------------------|---------------------------|
| Quantos números.: 4 n.: 5 n.: 8 n.: 3 n.: 7 | Soma.: 23<br>Média.: 5.75 |

12. A série de Fibonacci é formada pela sequência:

0, 1, 1, 2, 3, 5, 8, 13, 21, ... , ou seja, o próximo termo é a soma dos dois anteriores. Construa um algoritmo que gere e mostre a série até o vigésimo termo.

| Entrada | Saída                                                              |
|---------|--------------------------------------------------------------------|
|         | 0 1 1 2 3 5 8 13 21 34 55 89 144<br>233 377 610 987 1597 2584 4181 |

#### Parte 2 Controlado Por Contador com IF

13. Crie um algoritmo para ler um número inicial e outro final, mostrar os números pares deste intervalo, mesmo que os números inicial e final sejam ímpares e também mostrar quantos números pares foram encontrados.

Exemplo.: Entrada.: 5 15

| Entrada | Saída            |
|---------|------------------|
| 5       | 6,8,10,12,14     |
| 15      | Qtde.: 5 números |

14. Crie um algoritmo para ler um número inicial e outro final e mostrar a soma dos números ímpares deste intervalo, mesmo que os números inicial e final sejam pares.

| Entrada | Saída     |
|---------|-----------|
| 6       | 7,9,11,13 |
| 14      | Soma.: 40 |

15. Crie um algoritmo que mostre quais são os números múltiplos de 7 entre um número inicial e outro final fornecidos pelo usuário.

| Entrada | Saída                                 |
|---------|---------------------------------------|
| ini 5   | 7 14 21 28 35 42 49 56 63 70 77 84 91 |
| fim 100 | 98                                    |

16. Elabore um algoritmo/programa que leia um número inicial e outro final, e que mostre, some e conte os (P)ares ou (I)mpares conforme a entrada do usuário.

| Entrada | Saída                              |
|---------|------------------------------------|
| 6 14 I  | 7,9,11,13<br>Soma.: 40<br>Cont.: 4 |
| 7 13 P  | 8,10,12<br>Soma.: 30<br>Cont.: 3   |

17. Ler uma quantidade pré determinada de números (essa quantidade deve ser lida) e mostrar a média desses números, o maior e o menor número.

| Entrada | Saída                                            |
|---------|--------------------------------------------------|
| N.: 2   | Média 6<br>Maior Número.: 10<br>Menor Número.: 2 |

- 18. Para uma turma de X alunos, construa um algoritmo que determine:
  - a) A idade média dos alunos com menos de 1,70m de altura;
  - b) A altura média dos alunos com mais de 20 anos.

| Entrada                                             | Saída                           |  |
|-----------------------------------------------------|---------------------------------|--|
| X.: 5                                               | * A idade média dos alunos com  |  |
| Idade 1.: 12                                        | menos de 1,70m de altura = 17   |  |
| Altura 1.: 1,68                                     | * A altura média dos alunos com |  |
| Idade 2.: 16                                        | mais de 20 anos = 1.8           |  |
| Altura 2.: 1,72                                     |                                 |  |
| Idade 3.: 22                                        |                                 |  |
| Altura 3.: 1,65                                     |                                 |  |
| Idade 4.: 25                                        |                                 |  |
| Altura 4.: 1,98                                     |                                 |  |
| Idade 5 : 28                                        |                                 |  |
| Altura 5.: 1,77                                     |                                 |  |
| * Entradas para quem for usar map ou split (python) |                                 |  |
| 5 12 1.68 16 1.72 22 1.65 25 1.98 28 1.77           |                                 |  |

19. Faça um algoritmo que leia um número N e calcule o resultado da expressão abaixo.

$$S = +\frac{N}{1} - \frac{N}{2} + \frac{N}{3} - \frac{N}{4} + \frac{N}{5} - \frac{N}{6} \dots \pm \frac{N}{N}$$
 ... notem que a operação (+ ou –) alterna conforme o denominador da fração ;)

| Entrada | Saída          |
|---------|----------------|
| 3       | 2.5            |
| 4       | 2.33333333333  |
| 5       | 3.916666666666 |
| 6       | 3.7            |

| Entrada | Saída         |
|---------|---------------|
| 7       | 5.31666666666 |
| 8       | 5.07619047619 |
| 9       | 6.71071428571 |
| 10      | 6.45634920634 |

20. Faça um algoritmo que calcule a média de salários de uma empresa, pedindo ao usuário a quantidade de funcionários, o nome e o salário de cada funcionário e devolvendo a média, o nome e o salário que ganha mais e o nome e o salário do que ganha menos.

| Entrada                    |                   |                      | Saída                                                                        |
|----------------------------|-------------------|----------------------|------------------------------------------------------------------------------|
| Funcionários.: Nome: Nome: | Fulano<br>Ciclano | 2000<br>1111<br>3333 | Média: 2148<br>Maior Salario.: Beltrano 3333<br>Menor Salario.: Ciclano 1111 |

21. Elabore um programa/algoritmo que leia um numero inteiro qualquer e mostre quais são os números entre 1 e o próprio número que são divisores deste número.

A seguir, determine se este número é primo, contando quantos são os divisores deste número.

• Um número é denominado primo se ele possui apenas dois divisores diferentes: o 1 e ele mesmo.

| Entrada | Saída                        |
|---------|------------------------------|
| 3       | 1 3<br>Primo                 |
| 8       | 1 2 4 8<br>Não é Primo       |
| 17      | 1 17<br>Primo                |
| 20      | 1 2 4 5 10 20<br>Não é Primo |

- Todos os exercícios que usam um contador para controlar o número de repetições pode ser feito usando o comando *for*, ao invés do *while*.
- Experimente refazer alguns deles usando o *for*.

### Parte 3 Controle pelas Múltiplas Entradas

- 22. Escreva um algoritmo/programa que permita ao usuário informar/ler diversos valores. A leitura deve ser interrompida quando o usuário informar zero. Ao final, o algoritmo deverá mostrar a média dos valores informados:
  - → Durante a leitura, o algoritmo deve contar quantos valores foram digitados e determinar o somatório/acumulador destes valores digitados, para então conseguir calcular a média.

| Entrada             | Saída                              |
|---------------------|------------------------------------|
| 1 6 2 7 3 8 4 9 5 0 | Soma: 45<br>Qtde: 9<br>Média.: 5.0 |

23. Foi feita uma pesquisa com um grupo de alunos do IFSC, na qual se perguntou para cada aluno o número de vezes que utilizou a cantina no último mês.

Construa um algoritmo que determine:

- a) O percentual de alunos que utilizaram menos que 10 vezes o restaurante;
- b) O percentual de alunos que utilizaram entre 10 e 15 vezes;
- c) O percentual de alunos que utilizaram o restaurante acima de 15 vezes.
- \* Use o número -1 como sentinela para encerrar a leitura.

| Entrada | Saída         |
|---------|---------------|
| 14      | <10: 44,44%   |
| 11      | 1015.: 22,22% |
| 5       | >15: 33,33%   |
| 22      |               |
| 6       |               |
| 8       |               |
| 21      |               |
| 3       |               |
| 23      |               |
| -1      |               |

24. Faça um algoritmo que leia diversos números, e ao final, mostre o maior e o menor número. O número 0 deve ser usado como sentinela.

| Entrada             | Saída                |
|---------------------|----------------------|
| 6 6 2 7 3 8 4 8 5 0 | Maior: 8<br>Menor: 2 |

25. Faça um algoritmo que leia um conjunto de números (X) e imprima quantos destes números são pares (QPares) e quantos são ímpares (QImpares) lidos. Admita que o valor 0 é utilizado como sentinela para fim de leitura.

| Entrada     | Saída                   |
|-------------|-------------------------|
| 1 2 4 5 7 0 | Pares: 2<br>Ímpares.: 3 |

- 26. Foi feita uma pesquisa entre os habitantes de uma região. Foram coletados os dados de idade, sexo (M/F) . Faça um algoritmo que informe:
  - a) a média de idade do grupo
  - b) a média de idade dos homens
  - c) a média de idade das mulheres
  - d) o percentual de homens entre 25 e 33 anos
  - e) o percentual de mulheres entre 18 e 25 anos
  - f) a maior e a menor idade do grupo;
  - g) idade do homem mais idoso
  - h) idade da mulher mais idosa

Encerre a entrada de dados quando for digitada uma idade negativa.

| Entrada | Saída                  |
|---------|------------------------|
| 28 M    | Média Idade 23.57      |
| 27 F    | Média Idade Masc 24.66 |
| 20 M    | Média Idade Fem 22.75  |
| 19 F    | % Masc 25.33 66.67 %   |
| 21 F    | % Fem 18.25 75.00 %    |
| 26 M    | Maior Idade 28         |

| 24 F | Menor Idade       | 19 |
|------|-------------------|----|
| -1   | Homem mais idoso  | 28 |
|      | Mulher mais idosa | 27 |

### Parte 4 Controle pelo Valor Inicial e uma Expressão Não-Linear

27. Um determinado material radioativo perde um terço de sua massa a cada 50 segundos. Dada a massa inicial, em gramas, faça um programa que determine o tempo necessário para que essa massa se torne menor que 1 grama.

| Entrada | Saída                                                    |
|---------|----------------------------------------------------------|
| 100     | Massa Final.: 0.77<br>Tempo: 600seg<br>Tempo: 10min 0seg |
| 50      | Massa Final.: 0.86<br>Tempo: 500seg<br>Tempo: 8min 20seg |

28. Faça um algoritmo que leia dois números inteiros positivos (dividendo e divisor) e imprima o quociente e o resto da divisão do Dividendo pelo Divisor, utilizando a técnica das subtrações sucessivas, ou seja, apenas as operações de adição e subtração.

| Entrada | Saída |
|---------|-------|
| N1.: 11 | Q: 5  |
| N2.: 2  | R: 1  |
| N1.: 14 | Q: 3  |
| N2.: 4  | R: 2  |

29. Faça um algoritmo que leia um número e divida-o por dois (sucessivamente) até que o resultado seja menor que 1. Mostre o quociente da última divisão e a quantidade de divisões efetuadas.

| Entrada   | Saída                                      |
|-----------|--------------------------------------------|
| Número 99 | Divisões 7<br>Último Quociente.: 0.7734375 |

30. Chico tem 1,50 metros e cresce 2 centímetros por ano, enquanto Zé tem 1,30 metros e cresce 3 centímetros por ano. Construa um algoritmo que calcule e imprima quantos anos serão necessários para que Zé seja maior que Chico.

| Entrada | Saída   |
|---------|---------|
|         | 21 anos |

31. Escreva um algoritmo que leia um número n (número de termos de uma progressão aritmética), a1 (o primeiro termo da progressão) e r (a razão da progressão) e escreva os n termos desta progressão, bem como a soma dos elementos.

Uma progressão aritmética (abreviadamente, P. A.) é uma sequência numérica em que cada termo, a partir do segundo, é igual à soma do termo anterior com uma constante r (razão).

| Entrada                 | Saída                                   |
|-------------------------|-----------------------------------------|
| n: 10<br>a1.: 3<br>r: 2 | 3 5 7 9 11 13 15 17 19 21<br>Soma.: 120 |
| n: 8 a1.: 7 r: 3        | 7 10 13 16 19 22 25 28<br>Soma.: 140    |

32. Escreva um algoritmo que leia um número n (número de termos de uma progressão geométrica), a1 (o primeiro termo da progressão) e r (a razão da progressão) e escreva os n termos desta progressão, bem como a soma dos elementos.

Uma progressão geométrica (abreviadamente, P. G.) é uma sequência numérica em que cada termo, a partir do segundo, é igual ao produto do termo anterior com uma constante r (razão).

| Entrada                 | Saída                                           |
|-------------------------|-------------------------------------------------|
| n: 10<br>a1.: 3<br>r: 2 | 3 6 12 24 48 96 192 384 768 1536<br>Soma.: 3069 |
| n: 8 a1.: 7 r: 3        | 7 21 63 189 567 1701 5103 15309<br>Soma.: 22960 |

33. Mário e Kopas são investidores de aplicações de rentabilidade mensal em ações de empresas. Kopas investiu 41500 em ações na Cogumelo SA e Mário investiu 32100 na Peach Empreiteiras. Todo mês as ações de Kopas aumentam 1,2% enquanto as ações de Mário valorizam 1,5%. Faça um algoritmo para determinar em quantos meses o investimento de Mário superará o de Kopas.

| Entrada | Saída                                          |
|---------|------------------------------------------------|
|         | meses 87<br>mario 117233.22<br>kopas 117152.80 |

- 34. Dna Melânia, a mais conhecida confeiteira da cidade resolveu fazer pão. Durante o preparo da massa, ela coloca X gramas de farinha de trigo e Y gramas de fermento e Z ovos.
  - a) A quantidade de ovos depende da quantidade de farinha, no caso, para cada 400g de farinha será adicionado um ovo, caso a quantidade de ovos não seja um valor inteiro, arredondar para o inteiro mais próximo.
  - b) No início, consideramos que cada grama de farinha possui um volume de 1cm³. A relação entre o fermento e o trigo determina a taxa de crescimento do volume em termos percentuais. Cada minuto que passa, o volume cresce conforme essa taxa. Exemplo.: se a relação fermento/trigo é 1/100, o volume cresce 1% por minuto.

Depois de lida a massa inicial de farinha e a massa inicial do fermento, determine.:

i) A quantidade necessária de ovos

- ii) A taxa de crescimento
- iii) O tempo necessário para o volume da massa de pão ficar com o dobro do seu tamanho.

| Entrada | Saída                                                    |
|---------|----------------------------------------------------------|
|         | Ovos: 3 Taxa: 5.0% Tempo: 15min Volume Final.: 2078.9cm³ |

# **Parte 5 Loops Aninhados**

35. Construa um programa que peça um valor inteiro para o usuário, e que contenha dois laços aninhados, cada um deles, indo de 1 até o valor que o usuário forneceu. Dentro de cada laço, deve haver um contador, para saber quantas vezes o laço externo foi executado, e também o laço interno

| Entrada | Saída     |
|---------|-----------|
|         | Externo 3 |
|         | Interno 9 |

36. Elabore um programa para imprimir os números segundo este padrão:

| Entrada | Saída    |
|---------|----------|
|         | 11 12 13 |
|         | 21 22 23 |
|         | 31 32 33 |

37. Elabore um programa que solicite ao usuário um número inteiro, e que imprimir os números segundo este padrão, conforme o valor de entrada:

| Entrada | Saída                                     |
|---------|-------------------------------------------|
| 5       | 1<br>1 2<br>1 2 3<br>1 2 3 4<br>1 2 3 4 5 |
| 3       | 1<br>1 2<br>1 2 3                         |

38. Construa um programa que mostre quais são os números primos entre 1 e outro número escolhido pelo usuário.

| Entrada | Saída                                   |
|---------|-----------------------------------------|
|         | 1 não é primo<br>2 é primo<br>3 é primo |

| 4 não é primo<br>5 é primo |
|----------------------------|
|----------------------------|