

Программируемой Логики Сусlone III

План

- Введение
- Логическая структура
 - Упражнение 1
- Встроенные умножители
- Модули памяти М9К
 - Упражнение 2
- Система синхронизации
 - Упражнение 3
- Элементы ввода вывода
- Конфигурация
 - Упражнение 4

Направление Low-Cost

Low Cost by Design

Развитие семейства Cyclone

- · 295-Kbits embedded RAM
- DDR support
- Nios® embedded processor

- 5 70K LEs
- 1.1-Mbits embedded RAM
- 150 18 x 18 multipliers for DSP
- DDR2 support
- Nios II embedded processor

- 50% lower power vs. Cyclone® II FPGAs
- 5 120K LEs
- 4-Mbits embedded RAM
- 288 18 x 18 multipliers for DSP
- Higher performance DDR2 support
- Nios II embedded processor

2002

2004

2007

Семейство Cyclone III

Device	LEs	M9K memory blocks	Total memory (Mbits)	18 X 18 Multipliers	PLLs	Global clocks
EP3C5	5,136	46	0.4	23	2	10
EP3C10	10,320	46	0.4	23	2	10
EP3C16	15,408	56	0.5	56	4	20
EP3C25	24,624	66	0.6	66	4	20
EP3C40	39,600	126	1.1	126	4	20
EP3C55	55,856	260	2.3	156	4	20
EP3C80	81,264	305	2.7	244	4	20
EP3C120	119,088	432	3.9	288	4	20

Корпуса СБИС Cyclone III

	E144	M164	Q240	F256	U256	F324	F484	U484	F780
Device	0.5 mm 22 x 22	0.5 mm 8 x 8	0.5 mm 35 x 35	1.0 mm 17 x 17	0.8 mm 14 x14	1.0 mm 19 x 19	1.0 mm 23 x 23	0.8 mm 19 x19	1.0 mm 29 x 29
EP3C5	94	106		182	182				
EP3C10	94	106		182	182				
EP3C16	84	92	160	168	168		346	346	
EP3C25	82		148	156	156	215			
EP3C40			128			195	331	331	535
EP3C55							327	327	377
EP3C80							295	295	429
EP3C120							283		531

Поддержка вертикальной миграции

Коды для заказа СБИС

Внутренняя структура СБИС Cyclone III

Cyclone III

Логическая структура

Логическая структура (Logic Structure)

Логическую структуру образуют:

- Логические блоки (LAB)
- Логические элементы (LE)
- Система соединения блоков и логических элементов

Организация логических блоков

Структура логического блока (LAB)

- 16 логических элементов (LEs)
- Локальная матрица соединения (Local interconnect)
- Блочные управляющие сигналы (Control Signals)
- Цепочные переносы (LE carry chain)
- Регистровые цепи (Register Chain)
- Прямые связи (Direct Link)

Control

Блочные управляющие сигналы

Логический элемент Cyclone III

Два режима работы логического элемента:

- Обычный режим (Normal Mode)
- Арифметический режим (Arithmetic mode)

Режим работы логического элемента устанавливается компилятором пакета QuartusII автоматически.

Логический элемент (Обычный режим)

Логический элемент (Обычный режим)

Логический элемент (Арифметический режим)

Логический элемент (Арифметический режим)

Логический элемент (Carry chain)

Цепочные переносы

- Между логическими элементами
- Между логическими блоками
- Регистровые цепи
 - Только внутри логического блока.

Режим работы логического элемента

Register Feedback

 Выход триггера подается на вход собственной таблицы

Режим работы логического элемента

Register Packing

 LUT и триггер одного логического элемента имеют независимые входы и выходы

Режим работы логического элемента

Register Chain

 Выход триггера соединен со входом триггера соседнего логического элемента

Система соединения

- Горизонтальные цепи (Horizontal Interconnects) Row
 - DirectLink (логических элементов соседних логических блоков)
 - R4
 - R24
- Вертикальные соединения (Vertical Interconnects) Column
 - Carry Chains (внутри и между логическими блоками)
 - Register Chains (только внутри логического блока)
 - C4
 - C16
- Каждые блок имеет непосредственную связь с R4/C4
- R24/C16 не соединяются с логическими блоками напрямую

R4

R24

C4

C16

Соединение соседних логических блоков - DirectLink

 Логические элементы могут напрямую передавать сигналы логическим элементам соседних блоков

Система соединения

	Destination											
Source	Register Chain	Local	Direct Link	R4	R24	64	616	31	M9K RAM Block	Embedded Multiplier	Column 10E	Row 10E
Register Chain	_	_	_	_	_	_		✓	_	_	_	_
Local Interconnect	_	_	_	_	_	_		~	✓	✓	✓	✓
Direct Link Interconnect	_	✓	_	_	_	_	_	_		_	_	_
R4 Interconnect		~	_	✓	✓	✓	\	_		_	_	_
R24 Interconnect	_	_	_	✓	✓	✓	✓	_	_	_	_	_
C4 Interconnect	_	~	_	✓	✓	✓	✓	_	_	_	_	_
C16 Interconnect	_	_	_	✓	✓	✓	✓	_	_	_	_	_
LE	✓	~	✓	✓	_	✓	_	_	_		_	_
M9K Memory Block	_	✓	✓	✓	_	✓	_	_	_	_	_	_
Embedded Multiplier	_	✓	✓	✓	_	✓		_		_	_	_
Column I/O Element	_	_	_	_	_	✓	\	_	_	_	_	_
Row I/O Element	_	_	✓	✓	✓	✓	_	_	_	_	_	_

Упражнение 1 (время 20-25 минут)

Cyclone III

Встроенные умножители

Встроенные умножители Embedded Multipliers

Device	Embedded Multipliers	9 × 9 Multipliers <i>(1)</i>	18 × 18 Multipliers <i>(1)</i>
EP3C5	23	46	23
EP3C10	23	46	23
EP3C16	56	112	56
EP3C25	66	132	66
EP3C40	126	252	126
EP3C55	156	312	156
EP3C80	244	488	244
EP3C120	288	576	288

Количество 18-bit умножителей

Возможности встроенных умножителей

- Два режима работы
 - Один умножитель 18 x 18
 - Два умножителя 9 x 9
- Вычисления без потери точности
- Специализированные регистры на входе и выходе (Input & Output Registers)
- динамическая поддержка знаковых и без знаковых вычислений
 - 1 = Signed; 0 = Unsigned

Структура встроенного умножителя режим 18*18

Структура встроенного умножителя

режим 9*9

Динамическое управление знаком

Da	ta A	Da	Result	
signa Value Logic Level		signb Value		
Unsigned	Low	Unsigned	Low	Unsigned
Unsigned	Low	Signed	High	Signed
Signed	High	Unsigned	Low	Signed
Signed	High	Signed	High	Signed

- Значение входов SIGNA & SIGNB может быть изменено непосредственно в процессе вычислений
- Сигналы SIGNA & SIGNB могут быть записаны в специализированный регистр
- В режиме 9*9 сигнал SIGNA управляет входами Data A Inputs двух 9-ти разрядных умножителей (тоже и для SIGNB)

Реализация умножителей

- Мегафункции для построения умножителей
 - LPM_MULT
 - ALTMULT_ADD
 - ALTMULT_ACCUM
 - ALTFP_MULT
 - Single Precision : 3½ Embedded Mults
 - Double Precision: 9 Embedded Mults
- Логика, необходимая для реализации арифметических операций отличных от умножения, реализуется на дополнительных логических элементах
- Поддерживается ввод в текстовом виде VHDL/Verilog

Мегафункция LPM_MULT

Мегафункция ALTMULT_ADD

Особенности реализации умножителей

 Умножители с разрядностью входных данных 9 и меньше автоматически упаковываются компилятором в один DSP блок

Исключения:

- Один умножитель signed, а другой unsigned
- Каждый умножитель имеет входы независимого динамического управления знаком

Производительность

Cyclone III Модули памяти М9К

Встроенная память СБИС

Объем встроенной памяти

Device	Number of M9K Blocks	Total RAM Bits		
EP3C5	46	423,936		
EP3C10	46	423,936		
EP3C16	56	516,096		
EP3C25	66	608,256		
EP3C40	126	1,161,216		
EP3C55	260	2,396,160		
EP3C80	305	2,810,880		
EP3C120	432	3.981,312		

Параметры М9К

Характеристики

- Объем 9216 бит
- Максимальная разрядность 36 бит
- Максимальная частота работы ~ 315 МГц

Режимы работы

- ROM
- Single-Port RAM
- Simple Dual-Port RAM
- True Dual-Port RAM
- FIFO
- Shift Register Mode

Режим ROM – Read Only Memory

- Реализация блок памяти RAM, в который запрещена запись
- Данные (содержимое памяти) хранятся в конфигурационном файле и загружаются в процессе конфигурации СБИС.

Мегафункции для реализации ROM

Мегафункции для реализации ROM

Режим Single-Port RAM

- Один адресный вход для чтения и для записи.
- Режимы синхронизации
 - Single Clock
 - Input/Output Clock Mode

Мегафункция RAM-1 Port

Режим Packed Mode

- Один блок памяти М9К может быть разбит на два независимых блока памяти
 - Используется только в режиме Single-Ports
 - Допустимо произвольное задание параметров модулей при выполнении следующих ограничений:
 - Объем каждого модуля памяти не более 4096 слов
 - Разрядность каждого модуля памяти не более 18 бит

Чтение в процессе записи

Режим Simple Dual-Port RAM

- Два адресных входа
 - Read Address
 - Write Address
- Возможность использования разной разрядности для записи и чтения (Mixed Width)
- Режимы синхронизации
 - Single Clock
 - Input/Output Clock Mode
 - Read/Write Clock Mode

Разрядность записи/чтения (Mixed Width)

	Write Port								
Read Port	8192 × 1	4096 × 2	2048 × 4	1024 × 8	512 × 16	256 × 32	1024 × 9	512 × 18	256 × 36
8192 × 1	✓	✓	✓	✓	✓	✓	_	_	_
4096 × 2	✓	✓	✓	✓	✓	✓	_	_	_
2048 × 4	✓	✓	✓	✓	✓	✓	_	_	_
1024 × 8	✓	✓	✓	✓	✓	✓	_	_	_
512 × 16	✓	✓	✓	✓	✓	✓	_	_	_
256 × 32	✓	✓	✓	✓	✓	✓	_	_	_
1024 × 9	_	_	_	_	_	_	✓	✓	✓
512 × 18	_	_	_	_	_	_	✓	✓	✓
256 × 36	_	_	_	_	_	_	✓	~	✓

Мегафункция RAM-2 Port

Чтение в процессе записи

Режим True Dual-Port RAM

- Два порта
 - Port A & Port B
- Возможность использования разной разрядности для порта A и порта B (Mixed Width)
- Режимы синхронизации
 - Single clock
 - Input/Output Clock Mode
 - Independent Clock Mode

Разрядность записи/чтения (Mixed Width)

	Write Port						
Read Port	8192 × 1	4096 × 2	2048 × 4	1024 × 8	512 × 16	1024 × 9	512 × 18
8192 × 1	✓	✓	✓	✓	✓	_	_
4096 × 2	✓	✓	✓	✓	✓	_	_
2048 × 4	✓	✓	✓	✓	✓	_	_
1024 × 8	✓	✓	✓	✓	✓	_	_
512 × 16	✓	✓	✓	✓	✓	_	_
1024 × 9	_	_	_	_	_	✓	✓
512 × 18	_	_	_	_	_	✓	✓

Мегафункция для True Dual-Port RAM

Чтение в процессе записи (same port)

Чтение в процессе записи (mixed port)

Режим FIFO - First-In First-Out

- Реализация
 - Реализуется на модулях памяти М4К
 - Для реализации управления и формирования признаков могут потребоваться дополнительные логические элементы
- Режимы синхронизации
 - Single Clock
 - Read/Write Clock Mode

Мегафункция FIFO

Режим сдвигающего регистра Shift Register Mode

Пример: 8 Bit Bus , 4 Taps , 4 Bits per Tap

Параметризируемый модуль – Shift register (RAM based)

Контроль четности (Parity)

- Поддерживается всеми блоками памяти
- Реализация один дополнительный бит на каждый байт данных (9126 бит = 8192 + 1024)
 - 1024X9, 512X18, 256X36
- Бит четности может генерироваться и проверяться с использованием дополнительных логических ресурсов СБИС

Mаскирование (Byte Enables)

- Поддерживается во всех блоках М9К
- Разрешается маскирование байт во время записи когда разрядность данных составляет 16,18,32,36 бит
- Маскироваться могут х8 или х9 бит

Соединение М9К с логическими ресурсами СБИС

Упражнение 2 (время 20-25 минут)

Cyclone III

Система синхронизации

Система синхронизации

В состав системы синхронизации СБИС входят:

- Ресурсы системы передачи тактовых сигналов (Global Clocking Resources)
- Умножители тактовых сигналов (PLLs)
- Блоки управления тактовыми сигналами (Clock Control Block)

Глобальные цепи передачи сигналов

Device	Number of Global Clocks
EP3C5	10
EP3C10	10
EP3C16	20
EP3C25	20
EP3C40	20
EP3C55	20
EP3C80	20
EP3C120	20

Структура системы синхронизации EP3C5 & EP3C10

Структура системы синхронизации EP3C5 & EP3C10

- clk специализированные тактовые входы
- dpclk тактовые входы двойного назначения

 По 5 блоков clock control block на каждой стороне

Возможности PLL

	Cyclone II	Cyclone III
Кол-во PLLs	2 – 4	2 – 4
Выходов на одну PLL	3	5
Число глоб. цепей	8 – 16	10 – 20
Min, Max частота PLL (MHz)	10 – 400	5 – 440
Динамическая реконфигурация	No	Frequency and Phase
Каскадное соединение PLL	No	Yes

Включение PLL

Каскадное включение PLLs

до 10 внутренних & 2 внешних тактовых сигнала от 1 источника

Структура PLL

Динамическое выравнивание фазы PLL Dynamic Phase Adjustment

- уменьшение/увеличение на один шаг
 - Величина шага определяется конфигурацией PLL

Позволяет осуществлять авто калибровку задержек физического уровня связи с внешней памятью (DDR2)

Переключение тактовых сигналов Clock Switch Over

- Автоматическое переключение от одного источника тактовых сигналов к другому при пропадании тактового сигнала
- Ручное переключение

Режимы обратной связи Compensation Modes

PLL Mode

Source Synchronous

No Compensation

Normal

Zero Delay Buffer

External Feedback

Режимы обратной связи Compensation Modes

- Source Synchronous: t_{AC} = t_{DE}
- Normal: t_{AC} = 0
- Zero Delay Buffer: t_{AF} = 0
- External Feedback: t_{AG} = 0

Режим: No Compensation

- Clock Delay Within the FPGA is Not Compensated
- No Engineering Delay Elements Used for Compensation
- Provides Best Jitter Performance

- (1) The internal clocks fed by the PLL are phase aligned to each other.
- (2) The internal & external clock output can lead or lag the PLL clock output signals

Режим: Source Synchronous

Режим: Normal

- Clock at Input Pin Aligned with Clock at IOE or Core Register, such that Clock Delay is 0
- Provides Best t_{co} Performance

(1) The external clock output can lead or lag the PLL clock output signals

Режим: Zero Delay Buffer

(1) The internal clock output can lead or lag the PLL clock output signals

Выбор режима в altpll MegaWizard

Блок управления тактовыми сигналами Clock Control Block

Один блок на глобальную цепь.

Мегафункция ALTCLKCTRL

Упражнение 3 (время 25-30 минут)

Cyclone III

Элементы ввода/вывода

Число пользовательских выводов

	E144	Q240	F256	U256	F324	F484	U484	F780
Device	0.5 mm 22 x 22	0.5 mm 35 x 35	1.0 mm 17 x 17	0.8 mm 14 x14	1.0 mm 19 x 19	1.0 mm 23 x 23	0.8 mm 19 x19	1.0 mm 29 x 29
EP3C5	94		182	182				
EP3C10	94		182	182				
EP3C16	84	160	168	168		346	346	
EP3C25	82	148	156	156	215			
EP3C40		128			195	331	331	535
EP3C55						327	327	377
EP3C80						295	295	429
EP3C120						283		531

возможность вертикальной миграции

Поддерживаемые стандарты

Single-Ended I/O Standards	использование
2.5-V SSTL Class I and II 1.8-V SSTL Class I and II 1.8-V/1.5V/1.2-V HSTL I and II 3.3-V PCI Compatible 3.3-V PCI-X 1.0 Compatible 3.3-V LVTTL 3.0-V/2.5-V/1.8-V LVTTL 3.0-V/2.5-V/1.8-V/1.5-V/1.2-V LVCMOS	DDR SDRAM DDR/DDR2 SDRAM QDR II SRAM Embedded Embedded System Interface System Interface System Interface
Differential I/O Standards	/
LVDS RSDS/Mini-LVDS Transmission LVPECL PCI Express* Serial RapidIO*	High-Speed Serial High-Speed Serial High-Speed Clocks Per Channel Per Channel

Банки ввода вывода

	Bank 8	Bank 7			
Bank 1	2.5-V LVTT 1.8-V LVTT 1.5-V LVCN 1.2-V LVCN 3.0-V PCI / 3.0-V PCI-X SSTL-2 CIa SSTL-18 CI HSTL-18 C	L / LVCMOS L / LVCMOS L / LVCMOS IOS IOS PCI-X ss I and II ass I and II lass I and II	Bank 6		
Bank 2	HSTL-12 Class I and II* LVDS RSDS mini-LVDS PPDS LVPECL Differential SSTL-2 Differential SSTL-18 Differential HSTL-18 Differential HSTL-15 PCI Express (using external PHY) Serial RapidIO (using external PHY)				
	Bank 3	Bank 4			

Электрические параметры

1. DC and Switching Characteristics

CIII52001-2.2

Table 1–13. Single-Ended I/O Standard Specifications (Note 1)

	V _{ccio} (V)		V _L (V)		V _H (V)		Vo.(V)	V _{eH} (V)	 OL	I ₀₁	
I/O Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	<i>(3)</i> (mA)	<i>(3)</i> (mA)
3.3-V LVTTL (2)	3.135	3.3	3.465	_	0.8	1.7	3.6	0.45	2.4	4	-4
3.3-V LVCMOS (2)	3.135	3.3	3.465	_	0.8	1.7	3.6	0.2	V _{ccio} - 0.2	2	-2
3.0-V LVTTL (2)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{ccio} + 0.3	0.45	2.4	4	-4
3.0-V LVCMOS (2)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{ccio} + 0.3	0.2	V _{ccio} - 0.2	0.1	-0.1

Временные параметры

1. DC and Switching Characteristics

CIII52001-2.2

Table 1–41. Maximum Input Toggle Rate on Cyclone III Devices (*Note 1*) (Part 1 of 2)

	Column I/O Pins (MHz)	Column I/O Pins (MHz)	Column I/O Pins (MHz)	Row I/O Pins (MHz)	Row I/O Pins (MHz)	Row I/O Pins (MHz)	Dedicate d Clock Inputs (MHz)	Dedicate d Clock Inputs (MHz)	Dedicate d Clock Inputs (MHz)
I/O Standard	C6	C7, I7	C8, A7	C6	C7, I7	C8, A7	C6	C7, I7	C8, A7
3.3-V LVTTL	250	250	250	250	250	250	250	250	250
3.3-V LVCMOS	250	250	250	250	250	250	250	250	250

 Table 1–42.
 Maximum Output Toggle Rate on Cyclone III Devices (Note 1), (6)
 (Part 1 of 4)

	Current Strength (mA) or OCT	Column I/O Pins (MHz)	Column I/O Pins (MHz)	Column I/O Pins (MHz)	Row I/O Pins (MHz)	Row I/O Pins (MHz)	Row I/O Pins (MHz)	Dedicated Clock Outputs (MHz)	Dedicated Clock Outputs (MHz)	Dedicated Clock Outputs (MHz)
I/O Standard	Setting (8)	C6	C7,I7	C8,A7	C6	C7,I7	C8,A7	C6	C7,I7	C8,A7
3.3-V LVTTL	4	127	106	85	127	106	85	127	106	85
	8	250	237	223	250	237	223	250	237	223
3.3-V LVCMOS	2	95	74	63	95	74	63	95	74	63
3.0-V LVTTL	4	180	148	116	180	148	116	180	148	116
	8	250	233	191	250	233	191	250	233	191
	12	250	237	225	250	237	225	250	237	225
	16	250	237	225	250	237	225	250	237	225

Общая структура элемента ввода вывода

Элемент ввода вывода в BIDIR режиме

Элемент ввода вывода в BIDIR режиме

Режимы использования ОСТ

- OCT On Chip Termination позволяет обеспечить «целостность сигналов» без использования внешних компонентов
- Два режима использования:
 - With OCT Calibration с автоматической калибровкой выходного сопротивления буфера,
 - Without OCT Calibration без автоматической калибровки.

OCT Without Calibration

OCT With Calibration

ОСТ без автоматической калибровки

Table 7-4. Selectable I/O Drivers for On-Chip Termination without Calibration (Part 1 of 2)

Для 3.3 V не используется

		ation without Calibration in ohms (Ω)
I/O Standard	Row I/O	Column I/O
3.0-V LVTTL	50	50
	25	25
3.0-V LVCMOS	50	50
	25	25
2.5-V LVTTL/LVCMOS	50	50
	25	25

- Предполагает использование блока автоматической калибровки
- Аппаратно реализован один блок на каждой стороне СБИС:
 - Banks 2 (L), 4(B), 5(R), 7(T)
- Автоматическая калибровка осуществляется для двух банков на стороне СБИС одновременно (если они используют одинаковое VCCIO)
- Каждый блок использует :
 - Пару выводов для R_{UP} & R_{DN}
 - Это выводы двойного назначения и могут использоваться как GPIO если не используется автоматическая ОСТ

■ Размещение блоков автоматической калибровки

Допустимые значения Rup и Rdn

I/O Standard	L/R Banks	T/B Banks
3.0-V, 2.5-V, 1.8-V LVTTL / LVCMOS	50 ohm	50 ohm
	25 ohm	25 ohm
1.5-V, 1.2-V LVTTL / LVCMOS	50 ohm	50 ohm /
		25 ohm/
SSTL - 2, 18 Class I & II	50 ohm	50 ohm
	25 ohm	25 ohm
HSTL - 18 Class I & II	50 ohm	50 ohm
	25 ohm	25 ohm
HSTL - 15, 12 Class I & II	50 ohm	50 ohm
	/	25 ohm

- Для назначения используется assignment editor (назначение <Termination>) допустимые значения <Series 50 Ohms with Calibration > или < Series 25 Ohms with Calibration >
- Калибровка осуществляется автоматически сразу после конфигурации СБИС
 - Выполняется за 18 тактов
 - Рекомендация все выводы на стороне СБИС для которой используется калибровка должны быть в состоянии покоя

*Per SII App Note 384, but pending final SW definition

LVDS буферы

- Специализированные выходные буферы LVDS в левых и правых банках СБИС
 - Максимальная скорость передачи данных 840 Mbps
 - Передатчики не требуют внешних резисторов
- Выходные буферы LVDS в верхних и нижних банках
 - Максимальная скорость передачи данных 640 Mbps
 - Передатчики требуют внешних резисторов.
- Входные буферы LVDS во всех банках
 - Максимальная скорость приема данных 875 Mbps
 - Передатчики требуют внешние 100 Ом резисторы.

Выходные буферы LVDS в левых и правых банках

- Специализированные выходные буферы LVDS в левых и правых банках СБИС
 - Максимальная скорость передачи данных 840 Mbps
 - Передатчики не требуют внешних резисторов

Figure 8-3. LVDS Interface with Dedicated Output Buffer on the Left and Right I/O Banks

Выходные буферы LVDS в верхних и нижних банках

- Выходные буферы LVDS в верхних и нижних банках
 - Максимальная скорость передачи данных 640 Mbps
 - Передатчики требуют внешних резисторов.

Figure 8–4. LVDS Interface with External Resistor Network on the Top and Bottom I/O Banks (Note 1)

Note to Figure 8-4:

(1)
$$R_s = 120 \Omega$$
; $R_p = 170 \Omega$

LVDS буферы

- Входные буферы LVDS во всех банках
 - Максимальная скорость приема данных 875 Mbps
 - Передатчики требуют внешние 100 Ом резисторы.

LVDS число буферов

				LVDS Pairs	
		Total	With	Without	
Package	Device	I/O	Dedicated Output Buffers	Dedicated Output Buffers	Total
	3C10	85	5	7	12
	3C16	67	3	4	7
E144	3C25	65	4	2	6
	3C16	143	17	18	35
	3C25	131	17	14	31
Q240	3C40	111	7	7	14
	3C10	173	21	36	57
	3C16	151	19	24	43
F256	3C25	139	18	24	42
	3C25	198	29	42	71
F324	3C40	178	22	27	49
	3C16	329	66	62	128
	3C40	314	58	56	114
	3C55	310	61	62	123
F484	3C80	278	53	48	101
	3C40	518	110	105	215
	3C55	360	68	83	151
F780	3C80	412	77	92	169

Cyclone III

Конфигурация

Режимы конфигурации СБИС

Programming Mode	Cyclone III	Cyclone I & II	Stratix III	Stratix II	Stratix
Active Serial	✓	✓	✓	✓	
Active Parallel	✓				
Passive Serial	✓	✓	✓	✓	1
Fast Passive Parallel	✓		✓	✓	/ /
JTAG	✓	✓	✓	✓ /	✓
Remote Update	✓		✓	√	✓

- Active: контроллер в FPGA; тактовый сигнал поступает из FPGA
- Passive: контроллер вне FPGA; тактовый сигнал поступает от внешнего источника.

Режимы конфигурации СБИС

Поддерживаемые режимы конфигурации в зависимости от логической емкости и типа корпуса СБИС

 Table 10–2.
 Cyclone III Devices Supported Configuration Schemes Across Device Densities and Package Options
 (Note 1)

	Package Options (4)								
Device	E144	M164	Q240	F256	F324	F484	F780	U256	U484
EP3C5	AS, PS, JTAG (2)	AS, PS, FPP, JTAG (2)	_	AS, PS, FPP, JTAG (2)	_	_	_	AS, PS, FPP, JTAG <i>(2)</i>	_
EP3C10	AS, PS, JTAG (2)	AS, PS, FPP, JTAG (2)	_	AS, PS, FPP, JTAG (2)	_	_	_	AS, PS, FPP, JTAG (2)	_
EP3C16	AS, PS, JTAG (2)	AS, PS, FPP, JTAG (2)	AS, PS, FPP, JTAG (2)	AS, PS, FPP, JTAG (2)	_	AS, PS, FPP, AP, JTAG (3)	_	AS, PS, FPP, JTAG <i>(2)</i>	AS, PS, FPP, AP, JTAG (3)
EP3C25	AS, PS, JTAG (2)	_	AS, PS, FPP, JTAG (2)	AS, PS, FPP, JTAG (2)	AS, PS, FPP, AP, JTAG (3)	_	_	AS, PS, FPP, JTAG <i>(2)</i>	
EP3C40	_	_	AS, PS, FPP, JTAG (2)	_	AS, PS, FPP, AP, JTAG (3)	AS, PS, FPP, AP, JTAG (3)	AS, PS, FPP, AP, JTAG (3), (5)		AS, PS, FPP, AP, JTAG (3)
EP3C55	_	_	_	_	_	AS, PS, FPP, AP, JTAG (3)	AS, PS, FPP, AP, JTAG (3)	_	AS, PS, FPP, AP, JTAG (3)
EP3C80	_	_	_	_	_	AS, PS, FPP, AP, JTAG (3)	AS, PS, FPP, AP, JTAG (3)	_	AS, PS, FPP, AP, JTAG (3)
EP3C120	_	_	_	_	_	AS, PS, FPP, AP, JTAG (3)	AS, PS, FPP, AP, JTAG (3)	_	_

Управление режимами конфигурации

Table 10–1. Cyclone III Configuration Schemes (Note 13) (Part 1 of 2)

Configuration Scheme	MSEL3 (10)	MSEL2	MSEL1	MSELO	Configuration Voltage Standard <i>(9)</i>
Passive Serial Standard (PS Standard POR) (6)	0	0	0	0	3.3/3.0/2.5 V (11)
Active Serial Standard (AS Standard POR) (1), (5), (6)	0	0	1	0	3.3 V (11)
Active Serial Standard (AS Standard POR) (1), (5), (6)	0	0	1	1	3.0/2.5 V (11)
Active Serial Fast (AS Fast POR) (1), (5), (6), (12)	0	1	0	0	3.0/2.5 V (11)
Active Parallel ×16 Fast (AP Fast POR) (1), (2), (3)	0	1	0	1	3.3 V (11)
Active Parallel ×16 Fast (AP Fast POR) (1), (2), (3)	0	1	1	0	1.8 V
Active Parallel ×16 (AP Standard POR) (1), (2), (3)	0	1	1	1	3.3 V (11)
Active Parallel ×16 (AP Standard POR) (1), (2), (3)	1	0	0	0	1.8 V
Active Parallel ×16 (AP Standard POR) (1), (2), (3)	1	0	1	1	3.0/2.5 V (11)

Размер конфигурационного файла

Table 10–3. Cyclone III Uncompressed Raw Binary File Sizes (Note 1)

Device	Data Size (Mbits)
EP3C5	3.0
EP3C10	3.0
EP3C16	4.1
EP3C25	5.8
EP3C40	9.6
EP3C55	14.9
EP3C80	20.0
EP3C120	28.6

Note to Table 10-3:

(1) Raw Binary File (.rbf)

Время конфигурации

 POR time и configuration time определяется пользователем с помощью (MSEL3..0)

Сравнение режимов конфигурации

Configuration Mode	Config Speed	Additional # Chips Required	# of Cyclone III Pins ^c	Data Compre- ssion	Remote Upgrade
Active Serial	292ms	1	4	✓	✓
Active Parallel	48ms	1	47		✓
Passive Serial	117ms	2	2	✓	/
Fast Passive Parallel	38ms	2	9		
JTAG ^d	210ms	0	4		
	<u>Для 3С80</u>				

c. Pin count excluding MSEL3..0, nStatus, CONF_Done, nCE, and nCEO

Выбор режима конфигурации

Режим Active Serial Configuration

- Самый простой режим
- Используется Altera Serial Configuration devices
 - Объем от 1Mb до 64Mb
- Требует только 4 вывода
- Корпуса конфиг. устройств
 - 8-Pin or 16-Pin SOIC package
- Доступно для всех СБИС Cyclone III

JTAG конфигурирование

- Может быть использовано при любом режиме конфигурации, установленном с помощью выводов MSEL[3..0]
- Используется только 4 специализированных вывода СБИС

Pin Name	Pin Type	Description
TDI	Test data input	Serial input pin for instructions as well as test and programming data. Data is shifted in on the rising edge of $\tau c \kappa$. If the JTAG interface is not required on the board, the JTAG circuitry can be disabled by connecting this pin to V_{cc} .
TDO	Test data output	Serial data output pin for instructions as well as test and programming data. Data is shifted out on the falling edge of TCK. The pin is tri-stated if data is not being shifted out of the device. If the JTAG interface is not required on the board, the JTAG circuitry can be disabled by leaving this pin unconnected.
TMS	Test mode select	Input pin that provides the control signal to determine the transitions of the TAP controller state machine. Transitions within the state machine occur on the rising edge of TCK. Therefore, TMS must be set up before the rising edge of TCK. TMS is evaluated on the rising edge of TCK. If the JTAG interface is not required on the board, the JTAG circuitry can be disabled by connecting this pin to VCC.
TCK	Test clock input	The clock input to the BST circuitry. Some operations occur at the rising edge, while others occur at the falling edge. If the JTAG interface is not required on the board, the JTAG circuitry can be disabled by connecting this pin to GND.

Программирование EPCS

 Программирование EPSC через JTAG интерфейс с помощью Serial Flash Loader

Программирование в системе

- Встроенный USB blaster позволяет:
 - Конфигурировать CycloneIII

USB

OUARTUS°II

119

Осуществлять программирование EPCS Flash памяти

Программирование в системе

- Программирование CycloneIII через JTAG интерфейс
- Программирование EPSC конфиг. Flash через JTAG интерфейс с помощью Serial Flash Loader

Упражнение 4 (время 20-25 минут)

Литература

http://www.altera.com/products/devices/cyclone3/literature/cy3-literature.jsp

