ADAPTIVE GREEDY REJECTION SAMPLING

GERGELY FLAMICH AND LUCAS THEIS

26/06/2023

GERGELY-FLAMICH.GITHUB.IO

1. IN COLLABORATION WITH

Lucas Theis

2. BACKGROUND

Correlated r.v.s $X,Y\sim P_{X,Y}$

Correlated r.v.s $X,Y \sim P_{X,Y}$ Alice receives $Y \sim P_Y$

Correlated r.v.s $X,Y\sim P_{X,Y}$

Alice receives $Y \sim P_Y$

Bob wants to simulate $X \sim P_{X|Y}$

Correlated r.v.s $X,Y\sim P_{X,Y}$

Alice receives $Y \sim P_Y$

Bob wants to simulate $X \sim P_{X|Y}$

How many bits does Alice need to send to Bob?

Correlated r.v.s $X,Y\sim P_{X,Y}$

Alice receives $Y \sim P_Y$

Bob wants to simulate $X \sim P_{X|Y}$

How many bits does Alice need to send to Bob?

When common randomness S available (SFRL):

$$H[X \mid S] \le I[X;Y] + \log(I[X;Y] + 1) + 4.$$

2.2. LOSSY COMPRESSION

2.2. LOSSY COMPRESSION

2.2. LOSSY COMPRESSION

3. GREEDY REJECTION SAMPLING

3.1. GREEDY REJECTION SAMPLING

3.1. GREEDY REJECTION SAMPLING

Originally proposed by Harsha et al. (2006) for discrete distributions.

3.1. GREEDY REJECTION SAMPLING

Originally proposed by Harsha et al. (2006) for discrete distributions.

We extend it to Borel probability measures over Polish spaces.

Target
$$Q = \mathcal{N}(\mu, \sigma^2)$$
, proposal $P = \mathcal{N}(0, 1)$

Target $Q = \mathcal{N}(\mu, \sigma^2)$, proposal $P = \mathcal{N}(0, 1)$

Target
$$Q = \mathcal{N}(\mu, \sigma^2)$$
, proposal $P = \mathcal{N}(0, 1)$

Change of variables: $U = F_P(X)$

Target
$$Q = \mathcal{N}(\mu, \sigma^2)$$
, proposal $P = \mathcal{N}(0, 1)$

Change of variables: $U = F_P(X)$

If rejected, normalize upper half and repeat:

If rejected, normalize upper half and repeat:

To encode sample:

To encode sample:

Simulate $X_i \sim P$ with common randomness S

To encode sample:

Simulate $X_i \sim P$ with common randomness S

Count number of rejections K

To encode sample:

Simulate $X_i \sim P$ with common randomness S

Count number of rejections K

Transmit K using a Zeta coding distribution:

$$\zeta(k \mid \alpha) \propto k^{-\alpha}$$

3.5. GRS ANALYSIS

3.5. GRS ANALYSIS

For fixed Q and P:

$$H[K] \le D_{KL}[Q \parallel P] + \log(D_{KL}[Q \parallel P] + 1) + 4$$

3.5. GRS ANALYSIS

For fixed Q and P:

$$H[K] \le D_{KL}[Q \parallel P] + \log(D_{KL}[Q \parallel P] + 1) + 4$$

When $Q \leftarrow P_{X|Y}$ and $P \leftarrow P_X$, average over Y:

$$H[K] \le I[X;Y] + \log(I[X;Y] + 1) + 4$$

3.6. GRS ANALYSIS CONT'D

3.6. GRS ANALYSIS CONT'D

$$\mathbb{E}[K+1] = 2^{D_\infty[Q \parallel P]}$$

where

$$D_{\infty}[Q \parallel P] = \log \left(\operatorname{ess\,sup}_{x \in \Omega} \left\{ \frac{dQ}{dP}(x) \right\} \right)$$

$$X \mid \mu \sim \mathcal{N}(\mu,
ho^2 I), \quad \mu \sim \mathcal{N}(0, \sigma^2 I)$$

$$X \mid \mu \sim \mathcal{N}(\mu,
ho^2 I), \quad \mu \sim \mathcal{N}(0, \sigma^2 I)$$

Then:

$$P_X = \mathcal{N}(0, (\sigma^2 +
ho^2)I)$$

$$X \mid \mu \sim \mathcal{N}(\mu,
ho^2 I), \quad \mu \sim \mathcal{N}(0, \sigma^2 I)$$

Then:

$$P_X = \mathcal{N}(0, (\sigma^2 +
ho^2)I)$$

Now, we find:

$$\mathbb{E}[K+1] = \infty$$

3.8. THE GAUSSIAN CASE: OVERDISPERSION

3.8. THE GAUSSIAN CASE: OVERDISPERSION

Use overdispersed marginal:

$$P_s = \mathcal{N}(0, (s^2 +
ho^2)I), \quad \sigma^2 < s^2$$

3.8. THE GAUSSIAN CASE: OVERDISPERSION

Use overdispersed marginal:

$$P_s = \mathcal{N}(0, (s^2 +
ho^2)I), \quad \sigma^2 < s^2$$

4. ADAPTIVE GREEDY REJECTION SAMPLING

Most of sample space useless, adapt proposal:

Most of sample space useless, adapt proposal:

Most of sample space useless, adapt proposal:

Need suitable sequence of bounds B_1, B_2, \ldots

Need suitable sequence of bounds B_1, B_2, \ldots

Need to communicate $K, B_K!$

Need suitable sequence of bounds B_1, B_2, \ldots

Need to communicate $K, B_K!$

Theorem:

$$H[K] \le C + \log(C+1) + 3.63,$$

where
$$C = I[X;Y] + \mathbb{E}[\log P(B_{m_K})]$$
.

$$\lfloor c + U
ceil - U \stackrel{d}{=} c + U'$$

where $U, U' \sim \mathrm{Unif}(-1/2, 1/2)$

$$\lfloor c + U
ceil - U \stackrel{d}{=} c + U'$$

where $U, U' \sim \mathrm{Unif}(-1/2, 1/2)$

If
$$c \in [1/2, M-3/2)$$
, then $\lfloor c+U
ceil \in [0:M-1]$.

$$\lfloor c + U
ceil - U \stackrel{d}{=} c + U'$$

where $U, U' \sim \mathrm{Unif}(-1/2, 1/2)$

If
$$c \in [1/2, M-3/2)$$
, then $\lfloor c+U
ceil \in [0:M-1]$.

$$rac{\lfloor c + U
ceil - U}{M} \sim ext{Unif}\left(rac{c}{M} - rac{1}{2M}, rac{c}{M} + rac{1}{2M}
ight).$$

With DQ, we can encode any bound with size 1/M.

With DQ, we can encode any bound with size 1/M.

What about bounds with arbitrary rational sizes?

With DQ, we can encode any bound with size 1/M.

What about bounds with arbitrary rational sizes?

DQ + Bits-back: Bits-back Quantization (BBQ)

Apply AGRS to our Gaussian example:

Apply AGRS to our Gaussian example:

Apply AGRS to our Gaussian example:

1. Is there a sampling algorithm with $\mathcal{O}\left(2^{D_{KL}[Q \parallel P]}\right)$ or is $2^{D_{\infty}[Q \parallel P]}$ tight?

- 1. Is there a sampling algorithm with $\mathcal{O}\left(2^{D_{KL}[Q \parallel P]}\right)$ or is $2^{D_{\infty}[Q \parallel P]}$ tight?
- 2. Connection to Poisson Functional Representation (Li and El Gamal, 2017)? See Greedy Poisson Rejection Sampling (F., 2023)

- 1. Is there a sampling algorithm with $\mathcal{O}\left(2^{D_{KL}[Q \parallel P]}\right)$ or is $2^{D_{\infty}[Q \parallel P]}$ tight?
- Connection to Poisson Functional Representation (Li and El Gamal, 2017)? See Greedy Poisson Rejection Sampling (F., 2023)
- 3. Specialized algorithms for Gaussians?

6. REFERENCES

- P. Harsha, R. Jain, D. McAllester, and J.
 Radhakrishnan, "The communication complexity of correlation," IEEE Transactions on Information Theory, vol. 56, no. 1, pp. 438–449, 2010.
- C. T. Li and A. El Gamal, "Strong functional representation lemma and applications to coding theorems," IEEE Transactions on Information Theory, vol. 64, no. 11, pp. 6967–6978, 2018.
- F. "Greedy Poisson Rejection Sampling," arXiv preprint arXiv:2305.15313, 2023.

7. BBQ

