

82.05 - Análisis Predictivo - Examen Final

60784 - Paula González

\_

## Contenidos

- 1. Introducción
- 2. Base de Datos
- 3. Analisis Exploratorio
- 4. Preprocesamiento de Datos
- 5. Modelos Predictivos
- 6. Posibles mejoras y conclusiones

## Introducción



## Caso de negocio

**Predecir** qué **contenidos son explícitos** en función a sus características para el desarrollo del segmento **Spotify Kids**.

El mismo implica:

- Entorno seguro y adecuado
- Contenido curado y apropiado para la edad



## Base de Datos



#### Base de datos

El dataset analizado contiene canciones de Spotify en una variedad de **114 géneros** musicales. **Cada género incluye 1000 registros** e incluye las características sonoras del mismo.

A pesar de la divergencia que pueden llegar a tener los distintos géneros musicales, se optó por tomar la totalidad de los mismos.

#### **Variables**

#### **Numéricas**

- Speechiness [0-1]
- Acousticness [0-1]
- Instrumentalness [0-1]
- Liveness [0-1]
- Valence [0-1]
- Tempo

- Popularidad [0-100]
- Duración en milisegundos
- Danceability [0-1]
- Energy [0-1]
- Loudness (dB)

#### Categóricas

- Explicit T/F
- · Key
- Genre
- Mode 0/1
- Time Signature

#### **Extras**

- Track\_id
- Artista
- Album Name
- Track Name

# Análisis Exploratorio





## **Outliers**



### **Outliers**





#### Proporción de canciones explícitas y no explícitas



## Explicit en relación de otras variables



## Asociación entre Explicit y las categóricas

| Variable1 | Variable2 V-Cramer |       |
|-----------|--------------------|-------|
| explicit  | key                | 0.068 |
|           | mode               | 0.037 |
|           | time_signature     | 0.06  |
|           | genre              | 0.402 |

## Asociación entre Explicit y las numéricas

| Variable1 | Variable2        | p-valor |  |
|-----------|------------------|---------|--|
| explicit  | energy           | ≈ 0     |  |
|           | tempo            | 0.35    |  |
|           | loudness         | ≈ 0     |  |
|           | popularity       | ≈0      |  |
|           | speechiness      | ≈ 0     |  |
|           | duration_ms      | ≈ 0     |  |
|           | liveness         | ≈ 0     |  |
|           | valence          | 0.201   |  |
|           | acousticness     | ≈ 0     |  |
|           | danceability     | ≈ 0     |  |
|           | instrumentalness | ≈ 0     |  |

## Preprocesamiento

## Preprocesamiento de datos

Se realizaron modificaciones en la base de datos original, incluyendo la eliminación y adición de columnas, además de tratamientos como **limpieza**, **imputación** de valores **faltantes** y generación de nuevas características, con el fin de preparar los datos para análisis posteriores.

- Escalado de variables numéricas (en azul)
- Label encoding para algunas variables categóricas no-numéricas (en verde)

Popularidad [0-100]

Danceability [0-1]

Energy [0-1] Loudness (dB)

Duración en milisegundos

#### **Numéricas**

- Speechiness [0-1] Acousticness [0-1] Instrumentalness [0-1]
- Liveness [0-1]
- Valence [0-1]
- Tempo

#### Categóricas

- Explicit  $T/F \rightarrow 1/0$
- Key Genre
- Mode 0/1
- Time Signature

#### **Extras**

- Track id
- Artista
- Album Name
- Track Name

#### Columnas adicionales

- Valor **mínimo**, **máximo**, **mediana y promedio** de las siguientes características numéricas **por género**:
  - Energy, Danceability, Instrumentalness, Speechiness, Acousticness.
- Valor mínimo, máximo y mediana de la duración de las canciones por artista
- Promedio de la cantidad de canciones explicit por género y por artista.

### Base definitiva para el modelo

Al finalizar todo el preprocesamiento, obtuve una tabla de **42 columnas y 114000 registros**. Las columnas son las que se notan a continuación.

```
data.columns

√ 0.0s

Index(['popularity', 'duration ms', 'explicit', 'danceability', 'energy',
       'key', 'loudness', 'mode', 'speechiness', 'acousticness',
       'instrumentalness', 'liveness', 'valence', 'tempo', 'time signature',
       'energy max X track genre', 'energy min X track genre',
       'energy median X track genre', 'energy mean track genre',
       'danceability max X track genre', 'danceability min X track genre',
       'danceability median X track genre', 'danceability mean track genre',
       'instrumentalness max X track genre',
       'instrumentalness min X track genre',
       'instrumentalness median X track genre'.
       'instrumentalness mean track genre', 'speechiness max X track genre',
       'speechiness min X track genre', 'speechiness median X track genre',
       'speechiness mean track genre', 'acousticness max X track genre',
       'acousticness min X track genre', 'acousticness median X track genre',
       'acousticness mean track genre', 'max duration by artist',
       'min duration by artist', 'median duration by artist',
       'promedio explicit por artista', 'promedio explicit por genero',
       'artist encoded', 'genre encoded'],
     dtype='object')
```

# Modelos predictivos



#### **Variables**

- Target (y): "explicit"
- **Predictora** (X): las 41 variables

### Métricas de evaluación

#### 1. Exactitud

#### 2. Precisión

#### 3. Recall (sensibilidad)

#### 4. AUC-ROC

Área bajo la curva ROC dice qué tan bueno es el modelo para distinguir entre explicit y no explicit.

### **Probando modelos**

Con un test size del 0.2.

| Modelo              | Exactitud | Precisión | Recall | AUC-ROC |
|---------------------|-----------|-----------|--------|---------|
| Regresión Logística | 0.925     | 0.621     | 0.285  | 0.881   |
| XGBOOST             | 0.974     | 0.896     | 0.783  | 0.995   |
| Decision Tree       | 0.974     | 0.896     | 0.783  | 0.989   |
| Random Forest       | 0.974     | 0.896     | 0.783  | 0.993   |

Hiperparametros \_\_\_\_\_\_ n\_estimators=2000, max\_depth=None, min\_samples\_split=2, del RandomForest \_\_\_\_\_ min\_samples\_leaf=1, random\_state=42

## Conclusiones



## **Posibles mejoras**

- Realizar un **feature importance** en el modelo ganador
- Realizar un gráfico de curvas AUC-ROC para mejorar la visualización de los resultados.
- Ampliar la información acerca de las canciones que tengan que ver con métricas sobre los usuarios que escuchan las canciones.

#### **Conclusiones**

- El tempo y loudness es mayor en las canciones explícitas que en las no-explícitas.
- Como sólo un 8,55% de las canciones son explícitas no habría que filtrar tantas canciones para el armado del Spotify Kids.
- El tempo, la valence y el género de una canción influye significativamente en si una canción es explícita o no.
- Teniendo en cuenta las métricas elegidas, RandomForest es el mejor modelo para predecir las canciones explícitas.



### ¡Muchas gracias!

60784 - Paula González

paulgonzalez@itba.edu.ar