I Dynamic Modeling I

1.1 The Art and Science of Mathematical Modeling									
1.2 Examples of Dynamic Models: Harmonic motion									
1.3 Examples of Dynamic Models: population dynamics.									
Exercises									
Existence and Uniqueness									
2.1 Review of Ordinary Differential Equations									
2.2 Existence and Uniqueness									
2.3 Continuation and Well Posedness									
2.4 Homogeneous Linear Systems									
2.5 Matrix Exponentials and Fundamental Matrices									
2.6 Non-Homogeneous Linear Systems									
Exercises									
Stability Theory									
3.1 Stability of Linear Systems									
3.2 Stability of Autonomous Systems									
3.3 Examples									
3.4 Structural stability									
3.5 Lyapunov's method									
5.5 Lyapunov s method									
3.6 *More Lyapunov Stability									
3.6 *More Lyapunov Stability									
3.6*More Lyapunov Stability3.7Poincare-Bendixson Theorem3.8*Stable Manifold Theorem									
3.6*More Lyapunov Stability3.7Poincare-Bendixson Theorem3.8*Stable Manifold Theorem									
3.6 *More Lyapunov Stability 3.7 Poincare-Bendixson Theorem 3.8 *Stable Manifold Theorem 3.9 *Center Manifold Theory Exercises									
3.6 *More Lyapunov Stability 3.7 Poincare-Bendixson Theorem 3.8 *Stable Manifold Theorem 3.9 *Center Manifold Theory Exercises Bifurcation Theory									
3.6 *More Lyapunov Stability 3.7 Poincare-Bendixson Theorem 3.8 *Stable Manifold Theorem 3.9 *Center Manifold Theory Exercises Bifurcation Theory 4.1 What is a bifurcation?									
3.6 *More Lyapunov Stability 3.7 Poincare-Bendixson Theorem 3.8 *Stable Manifold Theorem 3.9 *Center Manifold Theory Exercises Bifurcation Theory									

II Partial Differential Equations

Introduction

	5.1	Introduction to PDEs
	5.2	General form of a PDE
	5.3	Linearity
	5.4	Classification of 2nd order PDEs in dimension 1
	Exerci	ses
		1 II DDD
		rbolic PDE
	6.1	Conservation Laws
	6.2	Method of Characteristics
	6.3	Auxiliary conditions and the method of characteristics
	6.4	A canonical hyperbolic PDE: the wave equation
	6.5	Equation of motion for a vibrating string
	6.6	Traveling waves
	6.7	Standing/ plane waves
	Exerci	ses
	Auxil	iary Conditions, Well-Posedness, and Parabolic and Elliptic
	equat	
	7.1	Auxiliary conditions
	7.2	Well-posedness
	7.3	Parabolic equations: the canonical example of the heat equation
	7.4	Equilibrium/Elliptic Equations
	Exerci	Ses
	\mathbf{Eigen}	function Expansions
	8.1	Exponentials of linear differential operators
	8.2	Sturm-Liouville Problems
	Exerci	ses
	Green	a's Function
	9.1	Construction of the Green's function via eigenfunction expansion
	9.2	Distributions
	9.2	Distributions and PDE's
	9.4	Computation of the Green's Function
		Ses
	Exerci	555
III	Calcul	us of Variations
	Intro	duction to Optimization and the Calculus of Variations:
		round material
	10.1	Introductory concepts
	10.2	Formalizing the Optimization Process
	10.3	Gateaux differential
		ses
	220101	
	The S	Simplest Problem
	11.1	Formal Derivation of Euler's Equation
	11.2	Rigorous justification without integration by parts

	11.3	Examples
	11.4	Special Cases
	Exerc	ises
	Gene	eralizations of the Simplest Problem
	12.1	Variable endpoints
	12.2	Changes to natural boundary conditions
	12.3	Functionals of several variables
	12.4	Higher dimensional objects
	12.5	Further Generalizations
	Exerc	ises
	Cons	traints
	13.1	Introduction to constraints
	13.2	Integral (Isoperimetric) Constraints
	13.3	Non-Integral (Finite) Constraints
	Exerc	ises
	Ham	ilton's Principle
	14.1	Introduction to Hamilton's principle
	14.2	Some physical examples
	14.3	Hamiltonian description
	Exerc	ises
	Symr	metry and Conservation: Noether's Theorem
	15.1	Introduction and background material
	15.2	Noether's Theorem for one independent variable
	15.3	Generalization of Noether's Theorem
	Exerc	ises
	Nece	ssary AND Sufficient Conditions for Weak Maxima/Minima
	16.1	Necessary Conditions to distinguish between maxima/minima .
	16.2	Sufficient Conditions for a maximum/minimum
	Exerc	ises
	Stron	ng Extrema
	17.1	Strong versus Weak
	17.2	Weirstrass-Erdmann corner conditions
	17.3	Weirstrass function and necessary conditions for a minimum/maximum
	17.4	Sufficient conditions for strong extrema
	17.5	Final Discussion
		ises
IV	Optim	nal Control
	_	
		duction to Optimal Control ises

		al Derivation of Pontraygin's Maximum Principle
	19.1	Formal approach and the mother functional
	19.2	Pontraygin's maximum princple
	19.3	Examples
	Exerc	ises
	Bang	-bang and singular control problems
	Exerc	ises
	Diffe	rent forms of the cost-functional
	21.1	Bolza cost functional with a fixed end time
	21.2	Bolza cost functional with the final time varying
	21.3	Mayer form of the cost functional
	_	ises
	т:	O dti. Dl.t (4b - (
	22.1	ar Quadratic Regulator (the 'right' way to optimize) Introduction
	22.2	Derivation of LQR
	22.3	Summary and implementation of LQR
	22.4	Infinite Horizon and the inverted pendulum
	Exerc	ises
	Inogu	uality constraints
	23.1	Introduction and motivation
	23.1 23.2	Formal derivation of the KKT conditions
	23.2 23.3	Some examples
		ises
	Enero	
	Ham	ilton Jacobi Bellman Equation
	24.1	The Value Function
	24.2	Derivation of the HJB equation
	24.3	The HJB equation and sufficiency conditions
	Exerc	ises
\mathbf{V}	Optim	nal Control Theory
	Math	nematical Systems
	25.1	Introduction
	25.2	Mathematical Systems
	25.3	Stability
	Cont	rol Theory: Discrete Case
	26.1	Reachability
	26.1 26.2	Observability
	Linea	ar Control Theory
	27.1	Continuous Linear-Time Invariant Systems
	27.2	Controllability and Observability

27.3	Transfer functions	
27.4	Realizations	
27.5	Canonical Decomposition	
27.6	Pole Placement	
27.7	Optimal Control	
27.8	Linear Quadratic Regulator	
Exercis	ses	
Optin	nal Control	
28.1	The Problem and Notation	
28.2	The Maximum Principle	
28.3	The Adjoint Equation	
28.4	Summary	
28.5	Sufficient Conditions	
28.6	Another Example	
28.7	introduction	
28.8	Terminal constraints	
28.9	Free Terminal Time	
28.10	Current Value Formulation	
28.11	Summary of Current Value Conditions	
28.12	Interpretation of the Adjoint	
28.13	Interpretation of the Hamiltonian	
28.14	Continuous Wheat Trading Model	
28.15	Linear Quadratic Regulator	
Exercis	ses	