CSC 211: DIGITAL ELECTRONICS II

MEDIUM SCALE INTEGRATED (MSI) DEVICES

Dr. Ronoh Saweh
Department of Computer Science
KIBABII UNIVERSITY

INTRODUCTION

- There are several specialized MSI components that have extensive use in digital systems.
 These are classified as standard components.
- These include adders, subtractors, comparators, decoders, encoders and multiplexers.

Binary Adder–Subtractor

 The most basic arithmetic operation is the addition of two binary digits. This simple addition consists of four possible elementary operations:

$$0+0=0$$

 $0+1=1$
 $1+0=1$
 $1+1=10$

Binary Adder–Subtractor

• The first three operations produce a sum (S) of one digit, but when both augend and addend bits are equal to 1 a carry (C) is also generated (this propagates to the next most significant stage of the addition).

Half Adder

Performs the addition of two bits.

х	у	С	S		
0	0	0	0		
0	1	0	1		
1	0	0	1		
1	1	1	0		

$$S = x'y + xy'$$

$$C = xy$$

Implementation

$$S = x'y + xy'$$
$$C = xy$$

Half Adder

$$S = x \oplus y$$
$$C = xy$$

Full Adder

Performs the arithmetic sum of three bits

x	у	z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1.	1	0	1	0
1	1	1	1	1

Full Adder

$$S = x'y'z + x'yz' + xy'z' + xyz$$

$$C = xy + xz + yz$$

= $xy + xy'z + x'yz$

Alternative Implementation

 The full adder can also be realized with two half adders and one OR-gate:

 The output S from the second half adder is the X OR of z and the output of the first half adder, giving:

$$S = z \oplus (x \oplus y)$$

$$= z'(xy' + x'y) + z(xy' + x'y')'$$

$$= z'(xy' + x'y) + z(xy + x'y')$$

$$= xy'z' + x'yz' + xyz + x'y'z$$

The carry output is:

$$C = z(xy' + x'y) + xy = xy'z + x'yz + xy$$

Binary Adder

Binary Adder

- Produces the arithmetic sum of two binary numbers.
- It can be realized with full adders (FAs) connected in cascade.
- A 4-bit binary ripple adder is realized as shown below:

Binary Adder

 An n-bit adder requires n full adders with each output carry connected to the input carry of the next higher-order full adder.

Example

- Consider the two binary numbers, A = 1011 and B = 0011.
- Their sum S = 1110 is formed with the 4-bit adders as follows:

Subscript i:	3	2	1	0	
Input carry	0	1	1	0	C_i
Augend	1	0	1	1	A_i
Addend	0	0	1	1	B_i
Sum	1	1	1	0	S_i
Output carry	0	0	1	1	C_{i+1}

- The longest propagation time in a binary ripple adder is the time it takes the carry to propagate through all full adders.
- The number of gate levels for the carry propagation can be found from the circuit of the full adder:

- The subscript i denotes a given stage in the adder.
- The signals P_i and G_i settle to their steady state values after they propagate through their gates.
- P_i and G_i are common to all full adders and depend only on the input augend and addend bits.

- The signal from the input carry C_i to the output carry C_i+1, propagates through two gates.
- If there are four full adders, the output carry C_4 would have 2 X 4 = 8 gate levels from C_0 to C_4 .
- Clearly, carry propagation time the limiting factor on the speed with which two numbers are added.

 The most widely used technique for reducing the carry propagation time in a parallel adder employs the principle of carry lookahead.
 Consider again the circuit of the full adder:

If two new binary variables are defined:

$$P_i = A_i \oplus B_i$$

 $G_i = A_i B_i$

the output sum and carry can be expressed as:

$$S_i = P_i \oplus C_i$$
$$C_{i+1} = G_i + P_i C_i$$

- G_i is called a carry generate and it produces a carry of 1, regardless of the input carry C_i.
- P_i is called a carry propagate because it is the term associated with the propagation of the carry from C_i to C_{i+1} .
- We can now write the Boolean functions for the carry outputs of each stage and substitute for each C_i its value from the previous equations

$$C_0$$
 = input carry
 $C_1 = G_0 + P_0C_0$
 $C_2 = G_1 + P_1C_1 = G_1 + P_1(G_0C_0) = G_1 + P_1G_0 + P_1P_0C_0$
 $C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$

 These expressions are implemented in the following carry lookahead generator:

- The construction of a 4-bit adder with a carry lookahead scheme is shown below:
- All output carries are generated after a delay through two levels of gates. Thus outputs S_1 through S_3 have equal propagation times. The two level circuit for the output carry C_4 is not shown. This can be derived by the equation-substitution method.

Binary Subtractor

- The subtraction of unsigned binary numbers can be simplified by means of complements.
- For example, A B can be done by taking the 2's complement of B and adding it to A.
- The 2's complement can be obtained by taking the 1's complement and adding 1 to the least significant pair of bits.
- The 1's complement can be realized with inverters and a 1 can be added to the sum through the input carry.
- A 4-bit adder-subtractor circuit is shown below:

Binary Subtractor

- M = 0; addition, M = 1; subtraction
- The V bit detects an overflow when the two binary numbers to be added are signed.

Overflow

- Sometimes, when an adder/subtractor is using signed arithmetic, there is arithmetic overflow from the most significant magnitude bit into the sign bit.
- An overflow may occur if the two numbers added are both positive or negative.
- An example of 4 possible situations that may arise is given below for a 4-bit (n = 4) word.
- For each case the carries C_{n-1} and C_n are recorded:

Overflow

Overflow

- In the case where the sum should +11 or -11,
 the corresponding binary sum is wrong.
- It is obvious that an overflow flag should be raised when $C_{n-1} = 1$ and $C_n = 0$, or, when $C_n 1 = 0$ and $C_n = 1$.
- Hence, the equation for overflow is:

$$V = C_{n-1} \oplus C_n$$

- Computers or calculators that perform arithmetic operations directly in the decimal number system represent decimal numbers in binary-coded form.
- The 8421 weighted coding scheme is the most commonly occurring in digital systems and is often referred to as simply BCD (binary-coded decimal).

- When using BCD, a single-decade decimal adder can be realized by first performing conventional binary addition on two binarycoded operands and then applying a corrective procedure.
- This is illustrated below:

Decimal sum	Binary sum				Required BCD sum					
	K	P ₃	P ₂	P_1	P_0	Cout	Z ₃	Z ₂	Z_1	Z,
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	1
2	0	0	0	1	0	0	0	0	1	0
3	0	0	0	1	1	0	0	0	1	1
4	0	0	1	0	0	0	0	1	0	0
5	0	0	1	0	1	0	0	1	0	1
6	0	0	1	1	0	0	0	1	1	0
7	0	0	1	1	1	0	0	1	1	1
8	0	1	0	0	0	0	1	0	0	0
9	0	1	0	0	1	0	1	0	0	1
10	0	1	0	1	0	1	0	0	0	0
11	0	1	0	1	1	1	0	0	0	1
12	0	1	1	0	0	1	0	0	1	0
13	0	1	1	0	1	1	0	0	1	1
14	0	1	1	1	0	1	0	1	0	0
15	0	1	1	1	1	1	0	1	0	1
16	1	0	0	0	0	1	0	1	1	0
17	1	0	0	0	1	1	0	1	1	1
18	1	0	0	1	0	1	1	0	0	0
19	1	0	0	1	1	1	1	0	0	1

- No correction to the binary sum is needed when
- $KP_3P_2P_1P_0 \le 01001$.
- However, 0110 (decimal 6) must be added to
- $P_3P_2P_1P_0$ when $KP_3P_2P_1P_0 > 01001$.
- The logic circuit that detects the necessary correction can be derived from the table entries.
- Clearly, a correction is needed when the binary sum has an output carry K = 1.
- For the other six combinations from 1010 through 1111 (that also need a correction), a Boolean expression is required to detect them:

$$f = P_3 P_2 + P_3 P_1$$

 The condition for a correction and an output carry can be expressed by the Boolean function:

$$Add 6 = K + P_3 P_2 + P_3 P_1$$

 The logic diagram of a single-decade BCD adder is shown below:

- Whenever $C_{out} = 0$, the outputs from the upper 4-bit binary adder are sent to the lower 4-bit adder and decimal 0 is added.
- However, whenever $C_{out} = 1$, decimal 6 is added to the outputs of the upper 4-bit binary adder so that the correct sum digit is obtained.
- A decimal adder for two n-digit BCD numbers can be constructed by cascading the above system in much the same way as was done for the ripple binary adder.