

$\it ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ <math>\it N~3~,~2001$

Электронный журнал, рег. N П23275 от 07.03.97

http://www.neva.ru/journal e-mail: diff@osipenko.stu.neva.ru

> <u>Оптимальное управление</u> <u>Прикладные задачи</u>

ОБ ОДНОМ ИЗ СПОСОБОВ ЭКСТРЕМАЛЬНОГО ПРИЦЕЛИВАНИЯ ДЛЯ СИСТЕМ С НЕПРЕРЫВНОЙ ПРАВОЙ ЧАСТЬЮ

Л.В. Хлопин

Институт математики и механики УрО РАН Математико-механический факультета УрГУ e-mail: khlopin@imm.uran.ru

Аннотация.

В работе исследуется вопрос равномерной аппроксимации обобщенных траекторий управляемой дифференциальной системы при помощи траекторий, порожденных кусочно-постоянными управлениями. Предложенная вариация метода экстремального прицеливания Н.Н. Красовского позволяет приближать порожденные "скользящими режимами" траектории в предположениях, не включающих требований единственности решения системы, или подлинейного роста правой части уравнения динамики.

 $^{^{0}}$ Статья выполнена при финансовой поддержке РФФИ, грант N01-01-96-450, представлена в редакцию д.ф.-м.н. Ченцовым А.Г.

1. Введение

Принцип максимума Л.С. Понтрягина играет ключевую роль в работах по теории управления. Этот принцип для теории дифференциальных игр воплотился, в частности, в конструкции экстремального прицеливания Н.Н. Красовского. На основе этой конструкции Н.Н. Красовским и А.И. Субботиным была доказана теорема об альтернативе [4]. Вариациями экстремального прицеливания также являются метод управления с поводырем [4],[7], а также метод экстремального сдвига [3].

Метод экстремального прицеливания часто применяют для конструктивного построения оптимального управления или стратегии. В частности, в работе [5] была рассмотрена дифференциальная игра сближения-уклонения и доказана соответствующая теорема об альтернативе в предположениях не включающих требования липшицевости системы. При этом, подобно конструкции управления с поводырем, игрок наряду с траекторией системы строил некоторое впомогательное квазидвижение-фантом, на которое и "прицеливалось" оптимальное управление.

В нелинейных задачах, для обеспечения теорем существования оптимального управления, а также для исключения других нежелательных эффектов некомпактности пучка "обычных" решений, исходное множество допустимых "обычных "управлений целесообразно погрузить в подходящий компакт, компакт обобщенных управлений. При этом, после нахождения оптимального обобщенного управления возникает задача аппроксимации траектории, порожденной известным обобщенным управлением, при помощи "обычных" траекторий (см., в частности, [1],[4],[7]).

В работе [6] рассматривалась задача минимизации функционала на траекториях управляемой динамической системы в случае разрывной по управлению правой части уравнения динамики; в качестве обобщенных управлений применялись конечно-аддитивные меры, а идея метода экстремального прицеливания была применена для приближенной реализации таких обобщенных траекторий при помощи траекторий, порожденных кусочно-постоянными управлениями.

В данной работе в качестве множества обобщенных управлений используется множество всех регулярных борелевских мер с "лебеговской проекцией" (порождающих скользящие режимы), а для реализации ее обобщенных элементов предложена модификация экстремальной конструкции [5]. Эта модификация позволяет при помощи кусочно-постоянных управ-

лений равномерно аппроксимировать траектории, порождаемые данным обобщенным управлением; при этом условия, накладываемые на дифференциальную систему, не включают в себя предположений о липшицевости или подлинейном росте правой части уравнения динамики, не требуется даже единственности решений системы.

2. Обозначения и условия

Пусть $\mathbb{R}^m (m \in \mathbb{N})$ — m-мерное евклидово пространство. Евклидову норму в \mathbb{R}^m обозначим через $||\cdot||_m$. Кроме того, для любых $x,y \in \mathbb{R}^m$ под x'y будем понимать скалярное произведение векторов x и y.

Для любого топологического пространства X и любого замкнутого множества $A \subset \mathbb{R}^m$ под $\mathcal{B}_m(X,A)$ будем понимать множество всех ограниченных, измеримых по Борелю функций, действующих из топологического пространства X в множество A; введем на $\mathcal{B}_m(X,A)$ норму равномерной сходимости $||\cdot||_{\mathcal{B}_m(X,A)}$. Для краткости примем $\mathcal{B}_m(X) \stackrel{\triangle}{=} \mathcal{B}_m(X,\mathbb{R}^m)$. Подпространство всех ограниченных непрерывных функций из $\mathcal{B}_m(X)$ будем обозначать через $C_m(X)$. Кроме того, пусть $\mathcal{P}(X)$ — множество всех подмножеств множества X.

Пусть управляемая система описывается следующим дифференциальным уравнением:

$$\dot{x} = f(t, x, u), \ x(t_0) = x_0, \ t \in I_0 \stackrel{\triangle}{=} [t_0, T] \subset \mathbb{R}, \ x \in \mathbb{R}^m, u \in P,$$
 (1)

где P —некоторый компакт в конечномерном арифметическом пространстве, а функция $f \in C_m(I_0 \times \mathbb{R}^m \times P)$ — непрерывна по совокупности переменных. Любую измеримую по Борелю функцию $u(\cdot)$, действующую из I_0 в P, будем называть допустимым программным управлением системы (1). Множество всех таких управлений обозначим через \mathcal{U} .

Определим множество обобщенных программных управлений. Пусть \mathcal{J}_0 , \mathcal{K}_0 — σ -алгебры борелевских подмножеств из множеств I_0 и $I_0 \times P$ соответственно. Обозначим через $\tilde{\mathcal{U}}$ множество всех неотрицательных счетноаддитивных мер ν на \mathcal{K}_0 таких, что для любого $\Gamma \in \mathcal{J}_0$ выполнено равенство $\nu(\Gamma \times P) = \lambda_0(\Gamma)$, где λ_0 — мера Лебега на \mathcal{J}_0 . Множество $\tilde{\mathcal{U}}$ снабдим *-слабой топологией τ_* (слабейшая топология, в которой интеграл $\int_{I_0 \times P} g(t,u) \mu(d(t,u))$ непрерывно зависит от меры $\mu \in \tilde{\mathcal{U}}$ при всяком выборе непрерывной функции $g \in C_m(I_0 \times P)$). Тогда по теореме Алаоглу (см. [2,

с. 459]) топологическое пространство $(\tilde{\mathcal{U}}, \tau_*)$ компактно. Элементы из $\tilde{\mathcal{U}}$ и будем называть обобщенными управлениями.

Для любых начальных условий $(t_*, x_*) \in I_0 \times \mathbb{R}^m$ рассмотрим множество всех обобщенных траекторий системы (1), порожденных заданным обобщенным управлением $\mu \in \tilde{\mathcal{U}}$ на весь промежуток времени $[t_*, T]$:

$$\Phi_{t_*,x_*}(\mu) \stackrel{\triangle}{=} \{ g \in C_m([t_*,T]) \mid \forall t \in [t_*,T] \quad g(t) = \\
= x_* + \int_{[t_*,t[\times P]} f(\tau,g(\tau),u)\mu(d(\tau,u)) \}. \quad (2)$$

В силу теоремы Данфорда-Петтиса (см. [1, с.298]) существует алгебраический изоморфизм множества \mathcal{U} всех допустимых управлений на некоторое подмножество множества $\tilde{\mathcal{U}}$; в частности, для любого $u(\cdot) \in \mathcal{U}$ существует такое обобщенное управление-мера $\triangle_{u(\cdot)} \in \tilde{\mathcal{U}}$, что для любой функции $g(t,u) \in C_m(I_0 \times P)$ имеет место $\int_{I_0} g(\tau,u(\tau))d\tau = \int_{I_0 \times P} g(\tau,u)\triangle_{u(\cdot)}(d(\tau,u)).$ Таким образом любое допустимое управление можно считать обобщенным, а следовательно не различать допустимое управление $u(\cdot) \in \mathcal{U}$ и обобщенное управление $\triangle_{u(\cdot)} \in \tilde{\mathcal{U}}$.

В дальнейшем, говоря о траекториях движения системы (1) (как допустимых, так и обобщенных) мы будем иметь ввиду лишь продолжимые на весь промежуток $[t_*,T]$ траектории (траектории, принадлежащие одному из пучков $\Phi_{t_*,x_*}(\mu)$), считая другие, непродолжимые траектории (если они и есть для каких-либо программных управлений) физически неосуществимыми. При этом на начальные условия системы также наложим дополнительные условия.

Пусть \mathcal{D} — множество всех таких пар $(t_*, x_*) \in I_0 \times \mathbb{R}^m$, для которых имеет место:

- 1) (существование) для любого обобщенного управления $\mu \in \tilde{\mathcal{U}}$ множество $\Phi_{t_*,x_*}(\mu)$ непусто;
- 2) (неупреждаемость) для любого момента времени $\theta \in]t_*, T]$, для любых таких обобщенных управлений $\mu, \mu_1 \in \tilde{\mathcal{U}}$, что $\mu|_{[t_*,\theta[} = \mu_1|_{[t_*,\theta[},$ для любой траектории $x(\cdot) \in \Phi_{t_*,x_*}(\mu)$ существует такая траектория $x_1(\cdot) \in \Phi_{t_*,x_*}(\mu_1)$, что $x(\cdot)|_{[t_*,\theta]} = x_1(\cdot)|_{[t_*,\theta]}$;
- 3) (ограниченность) множество $\Phi(t_*, x_*) \stackrel{\triangle}{=} \cup_{\mu \in \tilde{\mathcal{U}}} \Phi_{t_*, x_*}(\mu)$ множество всех продолжимых траекторий ограничено.

Иными словами, если начальные условия управляемой системы принадлежат множеству \mathcal{D} , то для любого обобщенного управления найдется хотя бы одна порожденная им обобщенная траектория движения системы на всем отрезке $[t_*, T]$; в случае изменения в некоторый момент времени одного обобщенного программного управления на другое, система может продолжить движение по новой продолжимой траектории; кроме того потребуем, чтобы все движения управляемой системы, продолжимые на весь оставшийся отрезок, осуществлялись в некотором ограниченном множестве из \mathbb{R}^m .

Заметим, что, как следует из условия 2), если $(t_*, x_*) \in \mathcal{D}$, то любая обобщенная траектория из $\Phi(t_*, x_*)$ в любой момент времени из отрезка $[t_*, T]$ принадлежит множеству \mathcal{D} . Поэтому далее достаточно считать, что начальная позиция $(t_0, x_0) \in \mathcal{D}$.

Заметим, что при стандартных предположениях на систему (1) (функция f(t,x,u) непрерывна, липшицева по x и удовлетворяет условию подлинейного роста) для любого управления локальное решение существует (и даже единственно), все решения продолжимы на любой промежуток времени, а множество всех решений ограничено; таким образом, при стандартных предположениях на систему, $\mathcal{D} = I_0 \times \mathbb{R}^m$.

3. Вспомогательные утверждения

Введем множество всех конечных разбиений отрезка I_0 . А именно, присво-им

$$\mathcal{S} \stackrel{\triangle}{=} \{(t_0, t_1, \dots, t_{k-1}, t_k = T) \in [t_0, T]^k \mid k \in \mathbb{N}, \forall i \in \mathbb{N} (i \le k) t_{i-1} < t_i \}.$$

Любому разбиению $\Delta = \{t_0 = t_0 < t_1 < \dots < t_k = T\} \in \mathcal{S}$ можно сопоставить число $(diam)(\Delta) \stackrel{\triangle}{=} \max_{1 \le i \le k} (t_i - t_{i-1})$ — мелкость этого разбиения.

Для любой функции $g(\cdot) \in \mathcal{B}_m(I_0)$ и для любого обобщенного управления $\mu \in \tilde{\mathcal{U}}$ введем квазидвижение $Q(g,\mu)(\cdot) \in C_m(I_0)$ по правилу: для любого $t \in I_0$

$$Q(g,\mu)(t) \stackrel{\triangle}{=} x_0 + \int_{[t_0,t[} f(\tau,g(\tau),u)\mu(d(\tau,u)).$$

Кроме того введем множество

$$\mathcal{Q}_{t_0,x_0} \stackrel{\triangle}{=} \{ Q(x,\mu)(\cdot) \in C_m(I_0) \mid x(\cdot) \in \Phi(t_0,x_0), \ \mu \in \tilde{\mathcal{U}} \}$$

— множество квазидвижений, порождаемых какими-либо обобщенными траекториями. Заметим, что $\Phi(t_0,x_0)\subset \mathcal{Q}_{t_0,x_0}$, так как $x(\cdot)\in \Phi_{t_0,x_0}(\mu)$ тогда и только тогда, когда $x(\cdot)\in C_m(I_0)$ удовлетворяет уравнению $x(t)=Q(x,\mu)(t)$.

Предложение 1. Пусть $(t_0, x_0) \in \mathcal{D}$, тогда отображение

$$(g,\mu) \mapsto Q(g,\mu)(\cdot)$$

из $\mathcal{B}_m(I_0) \times \tilde{\mathcal{U}}$ в $C_m(I_0)$ непрерывно по совокупности переменных, а $\Phi(t_0, x_0)$, \mathcal{Q}_{t_0, x_0} — компакты в $C_m(I_0)$.

Доказательство.

Зафиксируем некоторое обобщенное управление $\mu_0 \in \tilde{\mathcal{U}}$ и функцию $g_0(\cdot) \in \mathcal{B}_m(I_0)$. Обозначим через K замкнутый в \mathbb{R}^m шар радиусом $1+||g_0(\cdot)||_{\mathcal{B}_m(I_0)}$.

Заметим, что функция f(t,x,u) равномерно непрерывна на компакте $I_0 \times K \times P$, поэтому для любого числа $\varepsilon > 0$ существует такое $\delta(\varepsilon) \in]0,1[$, что для любой функции $g(\cdot) \in \mathcal{B}_m(I_0)$, такой что $||g(\cdot) - g_0(\cdot)||_{B(I_0)} < \delta(\varepsilon)$, имеет место $||f(t,g(t),u) - f(t,g_0(t),u)||_{B_m(I_0 \times P)} < \varepsilon$.

Зафиксируем некоторое $\varepsilon>0$. Пусть $k\in\mathbb{N}$ таково, что

$$k > ||f(t, x, u)||_{C_m(I_0 \times K \times P)}/\varepsilon.$$

Сопоставим такому числу k разбиение $\Delta_k = \{t_i = t_0 + i(T - t_0)/k \mid i \in \mathbb{Z}, 0 \le i \le k\} \in \mathcal{S}$. и *-слабую окрестность обобщенного управления-меры μ_0 :

$$W_k \stackrel{\triangle}{=} \{ \mu \in \tilde{\mathcal{U}} \mid \forall i \in \mathbb{Z}, \ 0 \le i \le k, \\ \left| \left| \int_{[t_0, t_i[\times P} f(\tau, g_0(\tau), u) \mu(d(\tau, u)) - \int_{[t_0, t_i[\times P} f(\tau, g_0(\tau), u) \mu_0(d(\tau, u)) \right| \right|_m < \varepsilon \}.$$

Тогда для любых $\mu \in \tilde{\mathcal{U}}, \ g(\cdot) \in \mathcal{B}_m(I_0)$ таких, что $||g(\cdot) - g_0(\cdot)||_{B(I_0)} < \delta(\varepsilon)$, а μ принадлежит окрестности $W_k \subset \tilde{\mathcal{U}}$, для любого момента времени $t \in [t_0, T]$ существует такой номер $i \in \mathbb{N}$, что $t \in [t_i, t_{i+1}]$ и имеет место

$$\begin{aligned} ||Q(g,\mu)(t) - Q(g_0,\mu_0)(t)||_m &\leq \int_{[t_0,t_i[\times P]} ||f(\tau,g(\tau),u) - f(\tau,g_0(\tau),u)||_m \mu(d(\tau,u)) + \\ &\left|\left|\int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu(d(\tau,u)) - \int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu_0(d(\tau,u))\right|\right|_m + \\ &\left|\left|\int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu(d(\tau,u)) - \int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu_0(d(\tau,u))\right|\right|_m + \\ &\left|\left|\int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu(d(\tau,u)) - \int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu_0(d(\tau,u))\right|\right|_m + \\ &\left|\left|\int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu(d(\tau,u)) - \int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu_0(d(\tau,u))\right|\right|_m + \\ &\left|\left|\int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu(d(\tau,u)) - \int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu_0(d(\tau,u))\right|\right|_m + \\ &\left|\left|\int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu(d(\tau,u)) - \int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu_0(d(\tau,u))\right|\right|_m + \\ &\left|\left|\int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu(d(\tau,u)) - \int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu_0(d(\tau,u))\right|\right|_m + \\ &\left|\left|\int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu(d(\tau,u)) - \int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu(d(\tau,u))\right|\right|_m + \\ &\left|\left|\int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu(d(\tau,u)) - \int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu(d(\tau,u))\right|\right|_m + \\ &\left|\left|\int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu(d(\tau,u)) - \int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu(d(\tau,u))\right|\right|_m + \\ &\left|\left|\int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu(d(\tau,u)) - \int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu(d(\tau,u))\right|_m + \\ &\left|\int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu(d(\tau,u)) - \int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu(d(\tau,u)) + \\ &\left|\int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu(d(\tau,u)) - \int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu(d(\tau,u)) + \\ &\left|\int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu(d(\tau,u)) - \int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) \mu(d(\tau,u)) + \\ &\left|\int_{[t_0,t_i[\times P]} f(\tau,g_0(\tau),u) + \\ &$$

$$\int_{[t_{i},t[\times P]} ||f(\tau,g(\tau),u)||_{m} \mu(d(\tau,u)) + \int_{[t_{i},t[\times P]} ||f(\tau,g_{0}(\tau),u)||_{m} \mu_{0}(d(\tau,u)) < \varepsilon(T-t_{0}) + \varepsilon + 2||f(t,x,u)||_{C_{m}(I_{0}\times K\times P)} (T-t_{0})/k < \varepsilon(3(T-t_{0})+1).$$

Таким образом, отображение $(g, \mu) \mapsto Q(g, \mu)$ непрерывно.

Поскольку множество $\Phi(t_0,x_0)\subset C_m(I_0)$ ограничено, существует некоторый компакт $K'\subset\mathbb{R}^m$, в котором лежат все обобщенные траектории из $\Phi(t_0,x_0)$. Но тогда, в силу ограниченности функции f(t,x,u) на компакте $I_0\times K'\times P$, из определения обобщенной траектории легко следует, что множество $\Phi(t_0,x_0)$ равностепенно непрерывно. Таким образом выполнены все условия теоремы Арцела-Асколи (см. [2, с. 289]), а следовательно множество $\Phi(t_0,x_0)$ – компакт. Но тогда и множество \mathcal{Q}_{t_0,x_0} , как непрерывный образ компакта $\Phi(t_0,x_0)\times \tilde{\mathcal{U}}$, также компактно в $C_m(I_0)$.

Предложение 2. Пусть $(t_0, x_0) \in \mathcal{D}$, тогда отображение $\mu \mapsto \Phi_{t_0, x_0}(\mu)$ из $\tilde{\mathcal{U}}$ в $\mathcal{P}(\Phi(t_0, x_0))$ полунепрерывно сверху.

Доказательство.

Пусть $\{\mu_i\}_{i\in\mathbb{N}}\in \tilde{\mathcal{U}}^{\mathbb{N}}$ — произвольная *-слабо сходящаяся последовательность обобщенных управлений. Пусть $\mu\in \tilde{\mathcal{U}}$ — предел этой последовательности. Для каждого $i\in\mathbb{N}$ выберем какую-либо траекторию $x_i(\cdot)$ из пучка $\Phi_{t_0,x_0}(\mu_i)$ так, чтобы получившаяся последовательность $\{x_i(\cdot)\}_{i\in\mathbb{N}}$ оказалась равномерно сходящейся. Предел этой последовательности траекторий обозначим через $\tilde{x}(\cdot)\in C_m(I_0)$.

Тогда, по предложению 1, квазидвижения $Q(x_i, \mu_i)(\cdot)$ должны равномерно сходиться к квазидвижению $Q(\tilde{x}, \mu)(\cdot)$. Но поскольку $x_i(\cdot) = Q(x_i, \mu_i)(\cdot)$ для любого $i \in \mathbb{N}$, имеем $x_i(\cdot) = Q(\tilde{x}, \mu)(\cdot)$, тогда в силу единственности предела $\tilde{x}(\cdot) = Q(\tilde{x}, \mu)(\cdot)$, то есть $\tilde{x} \in \Phi_{t_0, x_0}(\mu)$, таким образом отображение $\mu \mapsto \Phi_{t_0, x_0}(\mu)$ полунепрерывно сверху.

4. Построение экстремального управления

Пусть известны начальные условия $(t_0, x_0) \in \mathcal{D}$ и обобщенное управление $\mu \in \tilde{\mathcal{U}}$. Пусть также задано некоторое конечное разбиение $\Delta = \{t_0 = t_0 < t_1 < \cdots < t_k = T\} \in \mathcal{S}$. Рассмотрим задачу приближения обобщенных траекторий из пучка $\Phi_{t_0,x_0}(\mu)$ при помощи траекторий, порожденных допустимыми програмными управлениями, постоянными на любом промежутке

 $[t_i, t_{i+1}[(0 \le i \le k-1).$ Для этого, в отличие от классической конструкции [4], наряду с собственно допустимым программным управлением $u^*(\cdot) \in \mathcal{U}$ и какой-либо порожденной им траекторией $x(\cdot) \in \Phi_{t_0,x_0}(u^*)$, необходимо построить пошагово некоторое квазидвижение-фантом $z(\cdot) \in C_m(I_0)$, на которое и будет производиться "прицеливание".

На промежутке $[t_0, t_1[$ выберем произвольное мгновенное управление $u_0^* \in P$ и для любого $t \in [t_0, t_1[$ установим $u^*(t) = u_0^*,$ тогда на промежутке $[t_0, t_1]$ управляемая система движется по какой-либо траектории $x(\cdot)$ из пучка $\Phi_{t_0,x_0}(u^*)$. Фантом $z(\cdot)$ построим на этом промежутке по правилу:

$$z(t) \stackrel{\triangle}{=} x_0 + \int_{[t_0,t]\times P} f(\tau,x(t_0),u)\mu(d(\tau,u)).$$

Пусть построены управление $u^*(\cdot)$, движение $x(\cdot)$ и фантом $z(\cdot)$ вплоть до момента $t_i < T$; продолжим их до момента t_{i+1} .

В силу компактности множества P существует хотя бы одно мгновенное управление $u_i^* \in P$, удовлетворяющее условию

$$(x(t_i) - z(t_i))' f(t_i, x(t_i), u_i^*) = \min_{u \in P} (x(t_i) - z(t_i))' f(t_i, x(t_i), u);$$
(3)

присвоим $u^*(t)$ равным u_i^* для любого $t \in [t_i, t_{i+1}]$, в качестве траектории системы на промежутке $]t_i, t_{i+1}]$ возьмем произвольную траекторию из пучка $\Phi_{t_i, x(t_i)}(u^*)$ (заметим, что в силу неупреждаемости системы $(t_i, x(t_i)) \in \mathcal{D}$), теперь $x(\cdot)$, как траектория системы на всем отрезке $[t_0, t_{i+1}]$, принадлежит множеству $\Phi_{t_0, x_0}(u^*)$. Фантом $z(\cdot)$ на промежутке $]t_i, t_{i+1}]$ продолжим равенством:

$$z(t) \stackrel{\triangle}{=} z(t_i) + \int_{[t_i, t] \times P} f(\tau, x(t_i), u) \mu(d(\tau, u)); \tag{4}$$

Таким образом, для любого конечного разбиения Δ на всем отрезке I_0 построено кусочно-постоянное программное управление $u^*(\cdot)$, некоторая порожденная им траектория $x(\cdot)$ и фантом $z(\cdot)$, соответствующий этой траектории.

Покажем, что так построенный фантом $z(\cdot)$ — квазидвижение. Для этого введем вспомогательную функцию $\bar{x}(\cdot) \in \mathcal{B}(I_0)$, а именно, на каждом промежутке $[t_i, t_{i+1}[, 0 \leq i \leq k-1, \text{ определим } \bar{x}(t) \stackrel{\triangle}{=} x(t_i), \text{ для полноты примем также } \bar{x}(T) = x(T)$. Теперь формулу (4) можно переписать для любого $t \in]t_i, t_{i+1}[$ следующим образом:

$$z(t) = z(t_i) + \int_{[t_i, t] \times P} f(\tau, \bar{x}(\tau), u) \mu(d(\tau, u)),$$

но тогда для любого $t \in I_0$

$$z(t) = x_0 + \int_{[t_0, t] \times P} f(\tau, \bar{x}(\tau), u) \mu(d(\tau, u)) = Q(\bar{x}, \mu)(t).$$
 (5)

Заметим, что для каждого разбиения $\Delta \in \mathcal{S}$ выбор управления $u^*(\cdot)$, как и траектории $x(\cdot)$, вообще говоря неоднозначен. Поэтому введем множество $(ARM)_{t_0,x_0}(\mu,\Delta)$ всех троек $(u^*(\cdot),x(\cdot),z(\cdot)) \in \mathcal{U} \times \Phi(t_0,x_0) \times C_m(I_0)$, удовлетворяющих условиям:

- 1) для любого $i \in \mathbb{Z}$ такого, что $0 \le i \le k-1$, для любого $t \in [t_i, t_{i+1}[$ имеет место равенство $u^*(t) = u_i^*$, где u_i^* какое-либо "мгновенное" управление из P, удовлетворяющее условию (3);
 - 2) $x(\cdot) \in \Phi_{t_0,x_0}(u^*);$
 - 3) $z(\cdot) = Q(\bar{x}, \mu)(\cdot)$.

Как следует из сказанного выше, если начальные условия $(t_0, x_0) \in \mathcal{D}$, то множество $(ARM)_{t_0,x_0}(\mu, \Delta)$ непусто.

В отличие от предложенной конструкции, в [5] в качестве $z(\cdot)$ рассматривалось квазидвижение $Q(x,\mu)(\cdot)$, а управление u^* для любого момента времени выбиралось по правилу (3).

5. Сходимость метода

Предложение 3. Пусть $(t_0, x_0) \in \mathcal{D}$. Тогда для любого обобщенного управления $\mu \in \tilde{\mathcal{U}}$ и для любого $\varepsilon > 0$ существует такое $\delta > 0$, что для любого разбиения $\Delta \in \mathcal{S}$ с мелкостью $(diam)(\Delta) < \delta$ и для любой тройки $(u^*(\cdot), x(\cdot), z(\cdot)) \in (ARM)_{t_0, x_0}(\mu, \Delta)$ имеет место

$$||x(\cdot) - z(\cdot)||_{C_m(I_0)}^2 < 2\varepsilon(T - t_0).$$

Доказательство.

Зафиксируем $(t_0, x_0) \in \mathcal{D}$. Поскольку по предложению 1 \mathcal{Q}_{t_0, x_0} — компакт в $C_m(I_0)$, то и множество $K' \stackrel{\triangle}{=} \{y(t) \in \mathbb{R}^m \mid t \in I_0, y(\cdot) \in \mathcal{Q}_{t_0, x_0}\}$ также компактно в \mathbb{R}^m .

Рассмотрим функцию f(t,x,u) на компакте $I_0 \times K' \times P$. Введем $M \stackrel{\triangle}{=} ||f(t,x,u)||_{C_m(I_0 \times K' \times P)} \in \mathbb{R}$, тогда для любой траектории $x(\cdot) \in \Phi(t_0,x_0)$ и любых $t',t'' \in I_0$ имеет место $||x(t')-x(t'')||_{C_m(I_0)} < M|t'-t''|$. Вместе с тем f(t,x,u) равномерно непрерывна на этом компакте, следовательно для

любого $\varepsilon>0$ существует такое $\omega(\varepsilon)>0$, что для любых моментов времени $t',t''\in I_0$ таких, что $|t'-t''|<\omega(\varepsilon)$, и для любой траектории $x(\cdot)\in\Phi(t_0,x_0)$ имеют место

$$||f(t', x(t'), \cdot) - f(t'', x(t'), \cdot)||_{C_m(P)} < \varepsilon,$$

$$||f(t', x(t'), \cdot) - f(t'', x(t''), \cdot)||_{C_m(P)} < \varepsilon.$$

Зафиксируем $\varepsilon > 0$, $\mu \in \tilde{\mathcal{U}}$, рассмотрим произвольное разбиение

$$\Delta = \{t_0 < t_1 < \dots < t_k = T\} \in \mathcal{S}$$

с мелкостью $(diam)(\Delta)$ не более $\delta' = \min(\omega(\varepsilon/8M(T-t_0)), \varepsilon/4M^2)$, зафиксируем некоторую тройку $(u^*(\cdot), x(\cdot), z(\cdot)) \in (ARM)_{t_0, x_0}(\mu, \Delta)$. Кроме того, для любого $i \in \mathbb{Z}, \ 0 \le i \le k$ введем $s_i \stackrel{\triangle}{=} x(t_i) - z(t_i) \in \mathbb{R}^m$.

В силу ограниченности сужения функции f(t,x,u) на компакт K' для любых $\mu \in \tilde{\mathcal{U}}$ и $y(\cdot) \in B(I_0,K')$ имеет место $||Q(y,\mu)(\cdot)-x_0||_{C_m(I_0)} \leq M(T-t_0)$, следовательно

$$||z(\cdot) - x(\cdot)||_{C_m(I_0)} = ||Q(\bar{x}, \mu)(\cdot) - Q(x, u^*)(\cdot)||_{C_m(I_0)} \le 2M(T - t_0)$$
 (6)

Зафиксируем некоторое $i \in \mathbb{Z}, \ 0 \le i < k,$ и момент времени $t \in]t_i, t_{i+1}].$ Для сокращения записи введем $I = [t_i, t[.$

Заметим, что

$$||x(t)-z(t)||_{m}^{2} =$$

$$= ||s_{i}||_{m}^{2} + 2s'_{i}(x(t)-x(t_{i})-z(t)+z(t_{i})) + ||x(t)-x(t_{i})-z(t)+z(t_{i})||_{m}^{2}.$$
(7)

Благодаря ограниченности функции f(t, x, u) на $I_0 \times K' \times P$, последнее слагаемое в (7) можно оценить следующим образом:

$$||x(t) - x(t_i) - z(t) + z(t_i)||_m^2 \le (\int_I M d\tau + \int_{I \times P} M \mu(d(\tau, u)))^2 \le 4M^2(t - t_i)\delta' \le \varepsilon(t - t_i).$$
(8)

Для оценки второго слагаемого в (7) разобьем его следующим образом:

$$s'_{i}(x(t)-x(t_{i})-z(t)+z(t_{i})) = s'_{i} \int_{I \times P} f(\tau, x(\tau), u^{*}) - f(\tau, x(t_{i}), u) \mu(d(\tau, u)) =$$

$$s'_{i} \int_{I} f(\tau, x(\tau), u^{*}) - f(t_{i}, x(t_{i}), u^{*}) d\tau + \qquad (9)$$

$$\int_{I \times P} s'_{i} f(t_{i}, x(t_{i}), u^{*}) - s'_{i} f(t_{i}, x(t_{i}), u) \mu(d(\tau, u)) + (10)$$

$$s'_{i} \int_{I \times P} f(t_{i}, x(t_{i}), u) - f(\tau, x(t_{i}), u) \mu(d(\tau, u)). \qquad (11)$$

Поскольку $t-t_i < \delta' \le \omega(\varepsilon/8M(T-t_0))$, то в (9) и (11) подинтегральные функции по норме меньше $\varepsilon/8M(T-t_0)$, а следовательно каждое из этих двух слагаемых не превосходит $||s_i||_m (t-t_i)\varepsilon/8M(T-t_0)$. Кроме того, в силу выбора управления u^* по правилу (3), подинтегральная функция в (10) не превосходит нуля. Таким образом $s_i'(x(t)-x(t_i)-z(t)+z(t_i)) < ||s_i||_m (t-t_i)\varepsilon/4M(T-t_0)$, и из (7) и (8) имеем:

$$||x(t) - z(t)||_m^2 < ||s_i||_m^2 + ||s_i||_m \varepsilon(t - t_i)/2M(T - t_0) + \varepsilon(t - t_i).$$

Поскольку $s_i = x(t_i) - z(t_i)$, в силу (6) имеем $||s_i||_m \le 2M(T-t_0)$. Следовательно $||x(t) - z(t)||_m^2 < ||s_i||_m^2 + 2\varepsilon(t-t_i)$ для любого $t \in]t_i, t_{i+1}]$. В частности, для $t = t_{i+1}$ имеем

$$||s_{i+1}||_m^2 = ||x(t_{i+1}) - z(t_{i+1})||_m^2 < ||s_i||_m^2 + 2\varepsilon(t_{i+1} - t_i) < ||s_0||_m^2 + 2\varepsilon(t_{i+1} - t_0).$$

Таким образом, для любого $\varepsilon>0$ при достаточно мелком разбиении Δ имеем

$$||x(\cdot) - z(\cdot)||_{C_m(I_0)}^2 < 2\varepsilon(T - t_0).$$

Итак, взяв достаточно мелкое разбиение Δ , можно добиться сколь угодно хорошего приближения фантома $z(\cdot)$ траекторией $x(\cdot)$.

Теорема 1. Пусть даны некоторые начальные условия $(t_0, x_0) \in \mathcal{D}$, обобщенное управление $\mu \in \tilde{\mathcal{U}}$, а также такая последовательность разбиений $\{\Delta_i\}_{i\in\mathbb{N}}\in\mathcal{S}^\mathbb{N}$, что $(diam)(\Delta_i)\to 0$.

Тогда для любой последовательности троек $\{(u_i^*(\cdot), x_i(\cdot), z_i(\cdot))\}_{i \in \mathbb{N}}$, такой что для любого $i \in \mathbb{N}$ $(u_i^*(\cdot), x_i(\cdot), z_i(\cdot)) \in (ARM)_{t_0, x_0}(\mu, \Delta_i)$ имеет место:

- 1) из последовательности траекторий $\{x_i(\cdot)\}_{i\in\mathbb{N}}$ можно выделить подпоследовательность, равномерно сходящуюся на отрезке I_0 к некоторой обобщенной траектории $\tilde{x}(\cdot) \in \Phi_{t_0,x_0}(\mu)$,
- 2) все предельные точки последовательности $\{x_i(\cdot)\}_{i\in\mathbb{N}}$ принадлежат множеству $\Phi_{t_0,x_0}(\mu),$

3)
$$\lim_{i \to \infty} \inf_{\tilde{x} \in \Phi_{t_0, x_0}(\mu)} ||x_i(\cdot) - \tilde{x}(\cdot)||_{C_m(I_0)} = 0.$$

Доказательство.

Зафиксируем начальные условия $(t_0, x_0) \in \mathcal{D}$ и обобщенное управление $\mu \in \tilde{\mathcal{U}}$. Рассмотрим произвольные последовательности $\{(u_i^*(\cdot), x_i(\cdot), z_i(\cdot))\}_{i \in \mathbb{N}}$ и $\{\Delta_i\}_{i \in \mathbb{N}}$, удовлетворяющие условиям теоремы.

Поскольку каждая траектория $x_i(\cdot)$ принадлежит компакту $\Phi(t_0, x_0)$, существуют такие монотонно возрастающая функция $i(k) \colon \mathbb{N} \to \mathbb{N}$ и обобщенная траектория $\tilde{x}(\cdot) \in \Phi(t_0, x_0)$, что

$$x_{i(k)}(\cdot) \stackrel{\sim}{\to} \tilde{x}(\cdot).$$
 (12)

Заметим, что из равностепенной непрерывности траекторий $x_{i(k)}$ и условия $(diam)(\Delta_i) \to 0$ следует, что $||x_i(\cdot) - \bar{x}_i(\cdot)||_{C_m(I_0)} \to 0$, но тогда и подпоследовательность $\{\bar{x}_{i(k)}(\cdot)\}_{k\in\mathbb{N}}$ равномерно сходится к $\tilde{x}(\cdot)$. В силу (5) $z_{i(k)}(\cdot) = Q(\bar{x}_{i(k)}, \mu)(\cdot)$, воспользовавшись предложением 1, получаем

$$z_{i(k)}(\cdot) \supseteq Q(\tilde{x}, \mu)(\cdot).$$
 (13)

С другой стороны, по предложению 3, $||z_{i(k)}-x_{i(k)}||_{C_m(I_0)}\to 0$. Тогда, в силу единственности предела, из (12) и (13) следует, что

$$\tilde{x}(\cdot) = Q(\tilde{x}, \mu)(\cdot),$$

то есть для любого $t \in I_0$ имеет место

$$\tilde{x}(t) = x_0 + \int_{[t_0, t] \times P} f(\tau, \tilde{x}(\tau), u) \mu(d(\tau, u)),$$

таким образом $\tilde{x} \in \Phi_{t_0,x_0}(\mu)$.

Итак, из любой удовлетворяющей условиям теоремы последовательности траекторий $\{x_i(\cdot)\}_{i\in\mathbb{N}}$ можно выделить подпоследовательность, сходящуюся к некоторой обобщенной траектории из пучка $\Phi_{t_0,x_0}(\mu)$, таким образом первое утверждение теоремы доказано.

Пусть последовательность траекторий имеет в качестве предельной точки некоторую функцию $y(\cdot) \in C_m(I_0)$, выделим из этой последовательности подпоследовательность, сходящуюся к $y(\cdot)$. Но поскольку и из этой подпоследовательности, как показано выше, можно выделить подпоследовательность, сходящуюся к какой-либо обобщенной траектории из $\Phi_{t_0,x_0}(\mu)$, в силу единственности предела, имеем $y(\cdot) \in \Phi_{t_0,x_0}(\mu)$.

Для доказательства заключительной части теоремы заметим, что если предположить противное, то существует последовательность траекторий, удовлетворяющая всем условиям теоремы, но не имеющая при этом ни одной предельной точки из $\Phi_{t_0,x_0}(\mu)$, что невозможно в силу первого утверждения теоремы.

Заметим, что если выбранное управление доставляет min в (3) только с некоторой точностью, идущей к нулю при $(diam)(\Delta) \to 0$, то предложение 3, а с ним и теорема 1, выполняются и для такого приближенного прицеливания.

6. Необходимое условие сходимости

Предположим, что помимо условий 1)-3), для начальной позиции (t_0, x_0) выполнено также условие

4) (единственность) для любого обобщенного управления $\mu \in \tilde{\mathcal{U}}$ пучок $\Phi_{t_*,x_*}(\mu)$ одноэлементен.

Через \mathcal{D}_u обозначим множество всех таких позиций. Теперь для любого обобщенного управления $\mu \in \mathcal{U}$ вместо пучка $\Phi_{t_0,x_0}(\mu)$ естественно рассматривать его единственный элемент — траекторию $\tilde{\varphi}_{t_0,x_0}(\cdot,\mu) \in C_m(I_0)$.

Теорема 2. Пусть $(t_0, x_0) \in \mathcal{D}_u$, тогда для любой кривой $g(\cdot) \in C_m(I_0)$ следующие условия эквивалентны:

- (1) существует такая последовательность кусочно-постоянных управлений $\{u_i(\cdot)\}_{i\in\mathbb{N}}\in\mathcal{U}^{\mathbb{N}}$, что траектории $\varphi_{t_0,x_0}(\cdot,u_i)$ равномерно на I_0 сходятся к $g(\cdot)$.
- (2) существует такая последовательность обобщенных управлений $\{\mu_i(\cdot)\}_{i\in\mathbb{N}}\in \tilde{\mathcal{U}}^{\mathbb{N}}$, что обобщенные траектории $\tilde{\varphi}_{t_0,x_0}(\cdot,\mu_i)$ сходятся поточечно к $g(\cdot)$ на I_0 .
 - (3) $g(\cdot) \in \Phi(t_0, x_0)$, то есть $g(\cdot)$ обобщенная траектория.

Доказательство.

- $(3) \Rightarrow (1)$. Пусть $g(\cdot) = \tilde{\varphi}_{t_0,x_0}(\cdot,\mu) \in \Phi(t_0,x_0)$. Каждому $k \in \mathbb{N}$ сопоставим разбиение $\Delta_k = \{t_i = t_0 + i(T-t_0)/k \mid i \in \mathbb{Z}, \ 0 \leq i \leq k\} \in \mathcal{S}$ и некоторую аппроксимативную тройку $(u_k^*(\cdot),x_k(\cdot),z_k(\cdot))$ из множества $(ARM)_{t_0,x_0}(\mu,\Delta_k)$. Поскольку $(diam)(\Delta_k) = 1/k \to 0$, по теореме 1 траектории $x_k(\cdot) = \varphi_{t_0,x_0}(\cdot,u_k)$ равномерно на I_0 сходятся к $g(\cdot) = \tilde{\varphi}_{t_0,x_0}(\cdot,\mu)$.
- $(1) \Rightarrow (2)$. Для доказательства достаточно заметить, что любому программному управлению $u(\cdot) \in \mathcal{U}$ можно сопоставить такое обобщенное управление $\Delta_{u(\cdot)} \in \tilde{\mathcal{U}}$, что $\tilde{\varphi}_{t_0,x_0}(\cdot,\Delta_{u(\cdot)}) = \varphi_{t_0,x_0}(\cdot,u)$.
- $(2)\Rightarrow (3)$. Пусть последовательность обобщенных управлений $\{\mu_i\}_{i\in\mathbb{N}}\in \tilde{\mathcal{U}}^{\mathbb{N}}$ такова, что выполнено (2). В силу предложения 1 $\Phi(t_0,x_0)$ компакт, следовательно существуют монотонно возрастающая функция $i(k)\colon \mathbb{N}\to\mathbb{N}$ и обобщенная траектория $\tilde{\varphi}_{t_0,x_0}(\cdot,\mu)\in\Phi(t_0,x_0)$ такие, что при $k\to\infty$ траектории $\tilde{\varphi}_{t_0,x_0}(\cdot,\mu_{i(k)})$ сходятся равномерно к $\tilde{\varphi}_{t_0,x_0}(\cdot,\mu)$ на I_0 . С другой стороны, по исходной посылке, обобщенные траектории $\tilde{\varphi}_{t_0,x_0}(\cdot,\mu_{i(k)})$ сходятся поточечно к $g(\cdot)$ на I_0 , теперь из единственности предела следует, что $g(\cdot)=\tilde{\varphi}_{t_0,x_0}(\cdot,\mu)$, таким образом $g(\cdot)$ обобщенная траектория.

Заметим, что условие (2) теоремы 2 можно еще больше ослабить, например вместо сходящейся поточечно последовательности обобщенных траекторий взять обобщенную последовательность (см., например, [2]) обобщенных траекторий, сходящуюся в какой-либо хаусдорфовой топологии пространства $C_m(I_0)$, более слабой чем топология равномерной сходимости.

Список литературы

- [1] Варга Дж. Оптимальное управление дифференциальными и функциональными уравнениями. М.: Наука, 1977, 622 с.
- [2] Данфорд Н., Шварц Дж. Т. Линейные операторы: Общая теория. М.: Изд-во иностр. лит., 1962, 855 с.
- [3] Красовский Н.Н. Управление динамической системой: задача о минимуме гарантированного результата. М. Наука, 1985, 518 с.
- [4] Красовский Н.Н. Субботин А.И. Позиционные дифференциальные игры. М.: Наука, 1974, 456 с.

- [5] Кряжимский А.В. К теории позиционных дифференциальных игр сближения-уклонения.// Доклады АН СССР, 1978, т.239, № 4, с. 779-782.
- [6] Пашаев А.Б., Ченцов А.Г. Обобщенная задача управления в классе конечно-аддитивных мер.// Кибернетика, 1986, № 2, с. 110-112.
- [7] Субботин А.И. Ченцов А.Г. Оптимизация гарантии в задачах управления. М.: Наука, 1977, 288 с.