Álgebra Universal e Categorias

Exame de recurso

___ duração: 2h30min ____

Grupo I

Justifique convenientemente todas as respostas.

1. Seja $\mathcal{A}=(A;f^{\mathcal{A}},g^{\mathcal{A}})$ a álgebra do tipo (2,1), onde $A=\{1,2,3,4,5\}$ e $f^{\mathcal{A}}:A^2\to A$, $g^{\mathcal{A}}:A\to A$ são as operações definidas por

$f^{\mathcal{A}}$												
1						-						
2	2	2	2	2	2		x	1	2	3	4	5
3	2	2	2	2	2		$g^{\mathcal{A}}(x)$	2	3	4	2	5
4	3	3	3	4	1		'	•				
5	3	3	3	1	5							

Determine $Sg^{\mathcal{A}}(\{2\})$ e $Sg^{\mathcal{A}}(\{5\})$. Diga se $Sg^{\mathcal{A}}(\{2\}) \cup Sg^{\mathcal{A}}(\{5\})$ é um subuniverso de \mathcal{A} . Justifique.

2. Seja $\mathcal{A}=(A;f^{\mathcal{A}},g^{\mathcal{A}})$ a álgebra de tipo (1,1) onde $A=\{a,b,c,d\}$ e $f^{\mathcal{A}},$ $g^{\mathcal{A}}$ são as operações definidas por

- (a) Considere as congruências $\theta_1 = \triangle_A \cup \{(a,c),(c,a),(b,d),(d,b)\}$ e $\theta_2 = \theta(c,d)$. Determine θ_2 . Justifique que (θ_1,θ_2) é um par de congruências fator.
- (b) Justifique que existem álgebras \mathcal{B} e \mathcal{C} não triviais tais que $\mathcal{A} \cong \mathcal{B} \times \mathcal{C}$. Indique álgebras \mathcal{B} e \mathcal{C} nas condições indicadas.
- (c) A álgebra \mathcal{A} é sudiretamente irredutível? Justifique a sua resposta.
- 3. Sejam ${\bf C}$ uma categoria e $f:A\to B$ e $g:B\to C$ morfismos de ${\bf C}$. Mostre que se $g\circ f$ é um morfismo invertível à esquerda, então f é um monomorfismo.

Grupo II

Relativamente às questões deste grupo, responda a quatro, e apenas quatro, das questões a seguir indicadas. Caso responda às cinco questões, apenas serão consideradas as respostas às questões 4., 6., 7. e 8. Justifique todas as respostas.

- 4. Sejam $\mathcal{A}=(A;F)$ e $\mathcal{B}=(B;G)$ álgebras do mesmo tipo e $\alpha:\mathcal{A}\to\mathcal{B}$ um homomorfismo. Seja $\beta:A/\ker\alpha\to B$ a aplicação definida por $\beta([a]_{\ker\alpha})=\alpha(a)$, para todo $[a]_{\ker\alpha}\in A/\ker\alpha$. Mostre que β é um monomorfismo de $\mathcal{A}/\ker\alpha$ em \mathcal{B} .
- 5. Considere os operadores de classes de álgebras H e S. Mostre que SHS é um operador de fecho.
- 6. Sejam $f:A\to B,\ g:B\to C,\ h:C\to D$ e $k:C\to D$ morfismos de uma categoria ${\bf C}$. Mostre que se g é um monomorfismo e $(A,g\circ f)$ é um igualizador de h e k, então (A,f) é um igualizador de $h\circ g$ e $k\circ g$.
- 7. Sejam ${\bf C}$ uma categoria com objeto inicial I e $i_A:A\to C$, $i_B:B\to C$, $f_A:I\to A$ e $f_B:I\to B$ morfismos de ${\bf C}$. Mostre que se $(C,(i_A,i_B))$ é um coproduto de A e B, então $(C,(i_A,i_B))$ é uma soma amalgamada de (f_A,f_B) .
- 8. Sejam C e D categorias e $F: C \to D$ um funtor. Mostre que se F é um funtor fiel, pleno e sobrejetivo nos objetos, então F preserva monomorfismos.