

Identification de paramètres et optimisation Cours de Master 2 STIM 2014-2015

Sébastien Adam

10 février 2016

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q (P

Plan du Cours

- Présentation de l'enseign(ant)ement
- 2 Introduction
- Méthodes des moindres carrés
- 4 Méthodes de descente locale
- 5 Réseaux de neurones
- Méthodes itératives globales
- Optimisation multi-objectif
- 8 Optimisation multi-objectif

Optimisation multi-objectif (1)

Contexte : la modélisation paramétrique

• Objectif : identifier les paramètres θ du modèle d'un système qui maximise un critère scalaire de ressemblance.

$$\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_N \end{pmatrix} y_S = \begin{pmatrix} Y_{S1} \\ Y_{S2} \\ \vdots \\ Y_{SN} \end{pmatrix} y_M = \begin{pmatrix} y_{M1} \\ y_{M2} \\ \vdots \\ \vdots \\ y_M \end{pmatrix}$$

Vers des critères multiples

• Beaucoup de problèmes réels ont des objectifs multiples $\rightarrow J(\theta) = (J_1(\theta), J_2(\theta), \dots, J_n(\theta))^T$

• Les $J_i(\theta)$ sont souvent antagonistes

Optimisation multi-objectif (2)

Exemple 1 : le sac à dos

- Exemple : comment remplir son sac à dos avec les objets suivants, en respectant un poids maximal et en maximisant le profit
 - ▶ 1 appareil photo \rightarrow profit : 5, poid 750
 - ▶ 1 couteau suisse \rightarrow profit : 7, poid 300
 - ▶ 1 bouteille thermos → profit : 8, poid 1500
 - ▶ 1 bouquin \rightarrow profit : 3, poid 1000

Remarques :

- Problèmes d'optimisation combinatoire très étudié depuis 1950
- Très nombreux algos proposés : glouton, métaheuristique, prog dynamique, B&B, Hybrides...
- ► Très nombreux problèmes dérivés : LKP (variables continues), variables entières (occurrences multiples), multidimensionnel (sur la contraintes), quadratique (gains co-occurrences), choix multiples (classes d'objets)
- Version multiobjectifs

イロト 4個ト 4 差ト 4 差ト 差 めなる

Optimisation multi-objectif (2)

Exemple 1 : le sac à dos

- Comment remplir son sac à dos avec les objets suivants :
 - ▶ 1 appareil photo \rightarrow profit : 5, poid 750
 - ▶ 1 couteau suisse → profit : 7, poid 300
 - ▶ 1 bouteille thermos \rightarrow profit : 8, poid 1500
 - ▶ 1 bouquin \rightarrow profit : 3, poid 1000
- 16 configurations

Optimisation multi-objectif (2)

Exemple 1 : le sac à dos

- Comment remplir son sac à dos avec les objets suivants :
 - ▶ 1 appareil photo \rightarrow profit : 5, poid 750
 - ▶ 1 couteau suisse → profit : 7, poid 300
 - ▶ 1 bouteille thermos \rightarrow profit : 8, poid 1500
 - ▶ 1 bouquin \rightarrow profit : 3, poid 1000
- 16 configurations

10 février 2016

Optimisation multi-objectif (3)

Exemple 2 : mécanique

- On cherche à déterminer la section d'une poutre telle que :
 - Son poid (donc sa section) soit minimal
 - ► Elle se déforme le moins possible

Les deux objectifs sont antagonistes : on cherche un compromis

Optimisation multi-objectif (4)

Exemple 3 : approximation de courbes

- On cherche à approximer une courbe par une séquence de points telle que :
 - Le nombre de point soit minimal
 - L'erreur d'approximation soit minimale
- Les deux objectifs sont antagonistes : on cherche un compromis

Optimisation multi-objectif (5)

Exemple 4: classification ROC

- On cherche à optimiser un classifieur à deux classes tel que
 - Le taux de vrais positifs (TPR) soit maximal
 - Le taux de faux potifis (FPR) soit minimal
- Les deux objectifs sont antagonistes : on cherche un compromis

	Predicted positive	Predicted negative	
Positive examples	TP	FN	Pos
Negative examples	FP	TN	Neg
	PPos	PNeg	N

Optimisation multi-objectif (6)

Formulation générale du problème d'optimisation

Minimiser $f_k(\overrightarrow{x})$ $k \in [1, K]$ sous contrainte de $g_j(\overrightarrow{x}) \ge 0$ $j \in [1, J]$ $h_l(\overrightarrow{x}) = 0$ $l \in [1, L]$ $i \in [1, N]$

Optimisation multi-objectif (7)

Conséquence du nombre multiple d'objectifs

- Il n'existe en général plus UNE meilleure solution
- If y a des solutions meilleures que d'autres (A vs C)
- Il y a des solutions équivalentes (A vs B)

→ Perte de la relation d'ordre total

La notion de dominance [Vilfredo Pareto]

Definition Une solution \overrightarrow{x} domine une autre solution \overrightarrow{y} si et seulement si $\forall k \in [1, K], f_k(\overrightarrow{x}) \leq f_k(\overrightarrow{y})$ et si $\exists k \in [1, K]/f_k(\overrightarrow{x}) < f_k(\overrightarrow{y})$. Une telle relation est notée $\overrightarrow{x} \prec \overrightarrow{y}$

Optimisation multi-objectif (8)

Optimisation multi-objectif (9)

Principes des méthode pondérée

- Approche la plus classique : facile à mettre en œuvre
- Repose sur la minimisation d'une combinaison des objectifs
- Exemple : $J(\theta) = \sum_{i=1}^{k} w_i J_i(\theta)$
- $w_i \ge 0$: importance relative des objectifs du problème.

- Peut fournir un ensemble de compromis mais ...
- Coûteux et inefficace si le Front de Pareto est concave
- Variantes : exponentielles, Tchebycheff, ...

Optimisation multi-objectif (10)

Principes des méthodes lexicographique

- Objectifs triés par ordre d'importance
- Optimisations scalaires successives sous contraintes

$$\min_{x \in X} F_i(x)$$

subject to $F_j(x) = F_j(x_j^*)$
 $j = 1, 2, ..., i - 1, i > 1$
 $i = 1, 2, ..., k$

- Problème 1 : minimisation du premier critère emmène l'algorithme vers une zone restreinte, d'où les autres critères ne peuvent plus sortir.
- Problème 2 : critères sont très souvent liés, et surtout, antagonistes

Optimisation multi-objectif (11)

Principes des méthodes ε -constraint

- Principe : minimiser uniquement l'objectif le plus important (ex J_i).
- Les autres objectifs J_k avec $k \neq i$ sont exprimés sous forme de contraintes telles que :

$$J_k(x) \le \varepsilon_k \tag{1}$$

- En faisant varier systématiquement les ε_k , on obtient un ensemble de solution du front de Pareto, en atteignant les concavités.
- Par contre, un mauvais choix d' ε_k peut entrainer une formulation non faisable.

Optimisation multi-objectif (12)

Optimisation multi-objectif (13)

Principes des méthodes "Pareto"

- Injecter les préférences a posteriori, au regard des compromis possibles
- Générer un ensemble de solutions (compromis) non dominées \rightarrow Les méthodes à base de population sont une réponse naturelle!!!
- Objectifs pour l'algorithmes d'optimisation
 - Se rapprocher le plus possible du Front de Pareto du problème
 - Couvrir au mieux l'ensemble du front (diversité + spreading)
- L'optimisation est elle même un problème à objectifs multiples

Optimisation multi-objectif (14)

Première approche à base de population : VEGA (Schaefer[85])

- i objectifs, P individus.
- Sélection de P/i individus pour chaque critère → i sous-populations contenant les meilleurs individus pour chacun des critères
- Sélection interclassée des individus

- Très facile à implémenter, variantes en modifiant les opérateurs de croisement pour inciter les mix de sous populations
- Individus très bons dans un seul domaine privilégiés, au détriment d'individus bons partout → Approche non Pareto

Optimisation multi-objectif (15)

Schéma général des méthodes "Pareto"

- Utilisation de la notion de rang de dominance
- Utilisation d'une archive conservant les solutions non dominées
- Gestion de la diversité

Optimisation multi-objectif (16)

Exemple de SPEA (Zitzler et Thiele en 1998)

Utilisation d'une archive contenant les individus non dominés

- A chaque itération :
 - Sélection dans (archive+population) sur la base d'un score
 - lacktriangle Enfants créés puis évalués, enfants non dominés ightarrow archive
 - Éléments dominés de l'archive sortis
 - ► Si la taille de l'archive est insuffisante : clustering

Optimisation multi-objectif (16)

Exemple de SPEA (Zitzler et Thiele en 1998)

- \bullet Fitness d'une solution dominée : somme des "forces" des individus de l'archive qui la dominent +1
- Force S=nb d'individus dominés / (nb d'individus de la pop +1)

- ullet Notion de Force + Clustering o Bonne distribution des solutions
- Formation de niches

Optimisation multi-objectif (17)

Exemple de NSGA-II

- Proposé par Deb en 2001
- Version améliorée d'un premier algorithme (NSGA)
- Utilisé comme référence dans beaucoup d'articles
- Originalités :
 - Fitness basé sur le rang de non-dominance
 - Méthode de Crowding-distance pour préserver la diversité

Attribution du fitness

- Les solutions non dominées ont le fitnesse le plus important
- On procède par suppresssions successives

Optimisation multi-objectif (18)

Préservation de la diversité

 distance de crowding = taille du cuboid

Algorithme NSGA-II


```
Algorithm 1 NSGA-II algorithm
   P_0 \leftarrow \text{pop-init}()
   Q_0 \leftarrow \text{make-new-pop}(P_0)
   t \leftarrow 0
   while t < M do
       R_t \leftarrow P_t \cup Q_t
       \mathcal{F} \leftarrow \text{non-dominated-sort}(R_t)
       P_{t+1} \leftarrow \emptyset
       i \leftarrow 0
       while |P_{t+1}| + |\mathcal{F}_i| \le N do
           P_{t+1} \leftarrow P_{t+1} \cup F_i
          crowding-distance-assignment(F_i)
          i \leftarrow i + 1
       end while
       Sort (\mathcal{F}_i, \prec_n)
       P_{t+1} \leftarrow P_{t+1} \cup F_i[1 : (N - |P_{t+1}|)]
       Q_{t+1} \leftarrow \text{make-new-pop}(P_{t+1})
       t \leftarrow t + 1
   end while
```

Optimisation multi-objectif (19)

Optimisation multi-objectif (20)

Très nombreuses autres méthodes

- PAES (Pareto Archived Evolution Strategy), Knowles 2000
 - ▶ Pas d'utilisation de population : (1,1)-ES
 - ▶ Utilisation d'une archive contenant l'approximation courante du front
 - ► Technique de crowding basée sur un découpage en hypercubes
 - Principales étapes
 - Génération aléatoire d'une solution c et ajout dans l'archive
 - 2 Production et évaluation d'une solution m par mutation de c
 - Si c domine m écarter m
 - 4 Si *m* domine *c* remplacer *c* par *m*
 - Si m est dominé par une soluton de l'archive écarter m
 - Sinon Appliquer Test(c,m,archive)
 - Test(c,m,archive) :
 - 1 Si l'archive n'est pas pleine : ajout de m à l'archive
 - Sinon, si m est dans une région moins encombrée qu'une solution x, changer x par m
 - 3 Remplacer c par m si elle est dans une région moins encombrée

Optimisation multi-objectif (21)

Rappel essaims particulaires

Population de particules

$$v_{i,t+1} = \omega.r_0.v_{i,t} + c_1.r_1.(p_{i,best} - x_{i,t}) + c_2.r_2.(p_{i,guide} - x_{i,t})$$
 $x_{i,t+1} = x_{i,t} + \chi(v_{i,t+1})$

Adaptation aux problèmes multiobjectifs

- Deux difficultés :
 - ▶ Gestion d'une archive → Problèmes de taille et de diversité
 - ▶ Gestion du guide et de la mémoire de la particule $(p_{i,best}$ et $p_{i,guide})$
- Contributions
 - Nouvelle dominance inspirée de l' ϵ -dominance
 - Sélection stochastique du guide guidée par la diversité

Optimisation multi-objectif (22)

Gestion de l'archive

• Nouvelle définition de la dominance incluant la diversité

Nouvelle dominance

Optimisation multi-objectif (23)

Gestion des guides

- Sélection probabiliste du guide : $P(p_i) = \frac{1}{densite}$
- Mémorisation d'un guide pour *n* itérations

Sélection probabiliste du guide

Optimisation multi-objectif: application (24)

Les hyperparamètres

 Un problème crucial de la sélection de modèle [Bernard]

Une littérature très « scalaire »

Espace ROC

- Problèmes à 2 classes mal définis (médical, fraude, biometrie)
 - Effectifs non balancés
 - ▶ Peu de données
 - Coût inconnus

Optimisation multi-objectif: application (25)

Approches courantes

- ullet ϵ -contrainte + Neyman-Pearson
 - \rightarrow Quelles bornes?
- Scalarisation : AUC
 - $\rightarrow \mbox{ Vision globale}$

	Predicted positive	Predicted negative	
Positive	TP	FN	Pos
examples			
Negative	FP	TN	Neg
examples			
	PPos	PNeg	N

Alternative proposée

- Front ROC
 - Population de classifieurs
 - Vision locale

 Un problème d'optimisation multiobjectif

Optimisation multi-objectif: application (26)

Approche choisie [PR'10]

- Classifieurs SVM
- Paramètres γ , C_+ , C_-
- Algorithme d'optimisation : NSGA-II ([DEB'00])

Résultats UCI

problem	Référence	AUC literature	AUF
australian	[Wu 05]	90.25 ± 0.6	96.22 ± 1.7
wdbc	[Ferri 02]	94.7 ± 4.6	99.59 ± 0.4
breast cancer	[Bostrom 05]	99.13	99.78 ± 0.2
ionosphere	[Rakoto 04]	98.7 ± 3.3	99.00 ± 1.4
heart	[Wu 05]	92.60 ± 0.7	94.74 ± 1.9
pima	[Cortes 04]	84.80 ± 6.5	87.42 ± 1.2

Optimisation multi-objectif: application (27)

Application sur un problème réel [Chatelain]

• Détection des champs numériques dans des couriers entrants

Optimisation multi-objectif: application (28)

Optimisation multi-objectif: application (28)

Résultats

Bilan

TP rate	98.8	99.04	99.26	99.48	99.76	99.96	100
F1-Measure	0.17	0.19	0.22	0.25	0.32	0.30	0.23

ullet Population o évolutivité o changement dynamique de classifieur