1. ATQ, final we awant a qubit which gives head (0), 60% of times 2 tails (1) 40% of times when measured.

Here or
$$\beta(0) = 0.6$$
 $\beta(1) = 0.4$
Let a final qubit be $|q\rangle = \begin{bmatrix} a \\ b \end{bmatrix}$

Here probability of 9 to measure out to be 0 will be $\frac{a^2}{a^2+b^2}$ (Born Rule)

$$0.6 = \frac{a^2}{a^2 + b^2}$$

$$0.6a^2 + 0.6b^2 = a^2$$

$$0.4a^2 = 0.6b^2$$

$$0 = \frac{3}{2}b^2$$

$$a = \sqrt{\frac{3}{2}} b$$
.: Matrix > 19> = $\sqrt{\frac{13}{2}}$ b \(\alpha \) | $\sqrt{\frac{13}{2}}$ b \(\alpha \) | $\sqrt{\frac{3}{2}}$ b \(\al

Also using RY(θ), gate, we can tronsform qubit from state $|0\rangle$ to: $|4\rangle = \cos \frac{\theta}{2} |0\rangle + \sin \frac{\theta}{2} |1\rangle$

on
$$\cos \frac{\theta}{2} = \sqrt{\frac{3}{2}b}$$
 $\sin \frac{\theta}{2} = b$

$$\frac{49}{2}$$
 $\frac{\sin \theta/2}{\cos \theta/2}$ $\frac{2}{3}$

$$a \frac{\theta}{3} = 100^{-1} \frac{1}{3} = 0.6847$$

$$\alpha \theta = 1.3694$$

We apply RY (1.3694) gate to 10> qubit.

$$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}$$

New applying H gate:

$$|q|H\rangle = \frac{1}{[2]} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{[2]} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$|q|H\rangle = \frac{1}{[2]} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{[2]} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$|q|H\rangle = \frac{1}{[2]} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 & -1 \end{bmatrix}$$
(Superposition State)