Apunte de teoremas

Análisis Matemático II Mariano Calcabrini

1. Parametrización por longitud de arco

Sea \mathcal{L} la curva dada por $\sigma:[a,b]\to\mathbb{R}^3$, una parametrización regular.

Se define $g(t) = \int_{a}^{t} \|\sigma'(\tau)\| d\tau$, la función de longitud de arco.

Como f(x) = ||x||es una función contínua y $\sigma'(\tau)$ es también lo es, entonces $||\sigma'(\tau)||$ es una función contínua y por el TFC, $g \in C^1$.

 $g(t) = \|\sigma(t)\| \neq 0$. Por el teorema de la función inversa

$$\exists g^{-1}/\gamma(s) = \sigma(g^{-1}(s)) \ \gamma : [0, l] \to [a, b], \ l = long(\mathcal{L})$$

La reparametrización por longitud de arco es tal que la nueva funcion longitud de arco coincide con el punto en el que se evalua.

2. Flujo a travez de una superficie

Sea S una superficie suave, decimos que esta es oriebntable si en cada punto $P\epsilon S$ es posible elegir un punto normal $\nu(P)$ de modo tal que la funcion vectoral asi definida resulte contínua sobre S.

Proposición: Sea S una superficie que tiene una parametrización regular $T:D\subseteq\mathbb{R}^2\to\mathbb{R}^3$. Entonces $\nu_{(P)}=\frac{Tu\times Tv}{\|Tu\times Tv\|}(u,v),\ P=T(u,v)$ define un campo de versores normales, contínuos y por lo tanto S es orientable.

Decimos que S está orientada por la parametrización T.

Definición: Sea S una superficie orientada por el campo de versores normales contínuo $\nu_{(P)}$. Sea F un campo vectorial contínuo sobre S. Definimos el flujo del campo F a travez de la superficie orientada S como:

$$\int\limits_{S} F.dS = \int\limits_{S} \int\limits_{S} \left\langle F \circ T, \nu \right\rangle du \, dv$$

2.1. Parametrizaciones y reparametrizaciones:

Sea S una superficie que tiene dos parametrizaciones regulares $T:D\subseteq\mathbb{R}^2\to\mathbb{R}^3$ y $T_1:D_1\subseteq\mathbb{R}^2\to\mathbb{R}^3$. Sea f una función continua sobre S. Entonces:

 $\int_{s} F \cdot dS$ resulta independiente de la parametrización elegida.

2.1.1. Demostración:

Sabemos que T y T_1 son dos parametrizaciones regulares de S, entonces T_1 es una reparametrización de T. Por ende $\exists G: D_1 \to D$, biyectiva, $det(DG)_{(u,v)} \neq 0 \ \forall (u,v) \epsilon D_1$ tal que $T_1(u,v) = T \circ G(u,v)$ Además vemos que $(T_1u \times T_1v)_{(u,v)} = (Tr \times Tt)_{G(u,v)}$. $JG_{(u,v)}$

$$\iint_{D_{\tau}} f(T_{1_{(u,v)}}) . \|Tu \times Tv\| \, du \, dv =$$

Si aplicamos el cambio de variable para integrar sobre D:

3 Teorema de Green

$$= \int_{D_1} \int f(T \circ G_{(u,v)}) . \|Tr \times Tt\|_{(G_{(r,t)})} . JG_{(u,v)} du \, dv =$$

si llamamos (r,t) = G(u,v):

$$= \iint_{D} f(T_{(r,t)}) \cdot ||Tr \times Tt||_{(r,t)} \cdot JG_{(u,v)} JG_{(r,t)}^{-1} dr dt =$$

$$= \iint_{D} f(T_{(r,t)}) \cdot ||Tr \times Tt||_{(r,t)} dr dt$$

3. Teorema de Green

3.1 Enunciado del teorema

Sea $D \subset \mathbb{R}^2$ una región elemental del plano de tipo 3. Sea δD la frontera de D, orientada en sentido positivo, sean $P \neq Q : D \to \mathbb{R}$ de clase C^1 . Entonces:

$$\int_{\delta D} P dx + Q dy = \int_{D} \int_{\delta D} \frac{\delta Q}{\delta x} - \frac{\delta P}{\delta y} dx dy$$

3.2. Demostración del teorema

3.2.1. Lema 1

Sea D una region elemental del plano de tipo 1. Sea δD la frontera de D orientada positivamente. Sea $P:D\to\mathbb{R}$ de clase C^1 . Entonces:

$$\int_{\delta D} P dx = -\int_{D} \int \frac{\delta P}{\delta y} \, dx \, dy$$

Para probar este lema consideremos la siguiente región de tipo 1:

Fig. 1: Región $D = \{(x, y) \in \mathbb{R}^2 / x \in [a, b], y \in [\phi_1(x), \phi_2(x)] \}$

Parametrizamos la curva δD como cuatro curvas $C_1,\,C_2,\,C_3\,y\,C_4$:

$$C_1^+: \ \sigma_1(t) = (t, \phi_1(t)) \quad t\epsilon [a, b]$$

$$C_2^+: \ \sigma_2(t) = (b, t) \quad t\epsilon [\phi_1(b), \phi_2(b)]$$

$$C_3^-: \ \sigma_3(t) = (t, \phi_2(t)) \quad t\epsilon [a, b]$$

$$C_4^-: \ \sigma_4(t) = (a, t) \quad t\epsilon [\phi_1(a), \phi_2(a)]$$

3 Teorema de Green

$$\begin{split} &\int_{\delta D} P\,dx = \int_{C_1} P\,dx + \int_{C_2} P\,dx - \int_{C_3} P\,dx - \int_{C_4} P\,dx \\ &= \int_b^a P(t,\phi_1(t)).\,1\,dt + \int_{\phi_1(b)}^{\phi_2(b)} P(b,t).\,0\,dt - \int_b^a P(t,\phi_2(t).\,1\,dt - \int_{\phi_1(a)}^{\phi_2(a)} P(a,t).\,0\,dt \\ &= \int_b^a P(t,\phi_1(t)).\,1\,dt - \int_b^a P(t,\phi_2(t).\,1\,dt \\ &= \int_b^a P(t,\phi_1(t)) - P(t,\phi_2(t)\,dt \end{split}$$
 Por otro lado...
$$&\int_D \frac{\delta P}{\delta y} dx\,dy = \int_{Por \ Fubini}^a \int_b^a \left(\int_{\phi_1(x)}^{\phi_2(x)} \frac{\delta P}{\delta y} dy\right) dx = \int_b^a P(x,y) \mid_{y=\phi_1(x)}^{y=\phi_2(x)} dx = \int_b^a P(x,\phi_1(x)) - P(x,\phi_2(x)) dx \end{split}$$
 Vemos entonces que hay una igualdad entre las expresiones y se cumple el lema

3.2.2. Lema 2

Sea D una region elemental del plano de tipo 2. Sea δD la frontera de D orientada positivamente. Sea $P:D\to\mathbb{R}$ de clase C^1 . Entonces:

$$\int_{\delta D} Q dx = \int_{D} \int_{\delta y} \frac{\delta Q}{\delta y} \, dx \, dy$$

Para probar este lema consideremos la siguiente región de tipo 2:

Fig. 2: Región $D = \{(x, y) \in \mathbb{R}^2 / y \in [c, d], x \in [\varphi_1(y), \varphi_2(y)] \}$

Parametrizamos la curva δD como cuatro curvas $C_1,\,C_2,\,C_3\,y\,C_4$:

$$C_{1}^{+}: \ \sigma_{1}(t) = (t,c) \quad t\epsilon \left[\varphi_{1}(c), \varphi_{2}(c)\right]$$

$$C_{2}^{+}: \ \sigma_{2}(t) = (\varphi_{2}(t), t) \quad t\epsilon \left[c, d\right]$$

$$C_{3}^{-}: \ \sigma_{3}(t) = (t, d) \quad t\epsilon \left[\varphi_{1}(d), \varphi_{2}(d)\right]$$

$$C_{4}^{-}: \ \sigma_{4}(t) = (\varphi_{1}(t), t) \quad t\epsilon \left[c, d\right]$$

$$\begin{split} &\int_{\delta D} Q \, dy = \int_{C_1} Q \, dy + \int_{C_2} Q \, dy - \int_{C_3} Q \, dy - \int_{C_4} Q \, dy \\ &= \int_{\varphi_1(c)}^{\varphi_2(c)} Q(t,c), 0 \, dy + \int_c^d Q(\varphi_2(t),t), 1 \, dy - \int_{\varphi_1(d)}^{\varphi_2(d)} Q(t,d), 0 \, dy - \int_c^d Q(\varphi_1(t),t), 1 \, dy \\ &= \int_c^d Q(\varphi_2(t),t) \, dy - \int_c^d Q(\varphi_1(t),t) \, dy \\ &= \int_c^d Q(\varphi_2(t),t) - Q(\varphi_1(t),t) \, dy \end{split}$$
 Por otra parte,
$$&\int_D \frac{\delta Q}{\delta x} dx \, dy \, \underset{Por \, Fubini}{=} \int_c^d \left(\int_{\varphi_1(y)}^{\varphi_2(y)} \frac{\delta Q}{\delta x} dx \right) dy = \int_c^d Q(x,y) \, \big|_{x=\varphi_1(y)}^{x=\varphi_2(y)} \, dy = \int_c^d Q(\varphi_2(y),y) - P(\varphi_1(y),y) \, dy \end{split}$$

Vemos entonces que hay una igualdad entre las expresiones y se cumple el lema

Sumando ahora los resultados de ambos lemas, llegamos a la expresión del enunciado. Como pedimos que D sea de tipo 1 y 2, entonces D es de tipo 3.

3.3. Forma vectorial del teorema de green

Sea F = (P, Q, 0) un campo C^1 y sea D una región donde vale el teorema de Green, si consideramos $n = \frac{(y', -x')}{\|(y', -x')\|}$, entonces:

$$\int_{\delta D} F \cdot n \, ds = \int_{D} \nabla \cdot F \cdot dA$$

4. Teorema de Stokes para superficies que son gráficos

4.1. Enunciado del teorema:

Sea S una superficie que es un gráfico, z = f(x, y), con $f: D \subseteq \mathbb{R}^2 \longrightarrow \mathbb{R}$ de clase C^1 , D región elemental.

Fig. 3: Gráfico de una función C^1

Sea $T:D\subset\mathbb{R}^2\to\mathbb{R}^3$ una parametrización de S. T(x,y)=(x,y,f(x,y)). T es una parametrización regular de S que la oprienta (z>0) con $T_x\times T_y=(-\frac{\delta f}{\delta x},-\frac{\delta f}{\delta y},1)$. Sea F una campo contínuo sobre S.

$$\oint_{\delta S} F.ds = \iint_{S} \nabla \times F.dS = \iint_{D} \langle \nabla \times F \circ T(x,y), T_{x} \times T_{y} \rangle dx dy$$

$$\oint_{\delta S} F.ds = \iint_{S} -\nabla \times F_{1}(x,y,f(x,y)) \frac{\delta f}{\delta x} - \nabla \times F_{2}(x,y,f(x,y)) \frac{\delta f}{\delta y} + \nabla \times F_{3}(x,y,f(x,y)) dx dy$$

4.2 Demostración del teorema:

Primero consideremos $c:[a,b] \longrightarrow \mathbb{R}^2$, c(t)=(x(t),y(t))una parametrización de δD que la orienta positivamente. Definimos entonces la curva frontera δS comola curva orientada cerrada y simple que es la imagen de la aplicación $\sigma:t\longmapsto (x(t),y(t),f(x(t),y(t)))$.

imagen de la aplicacion
$$\sigma: t \longmapsto (x(t), y(t), f(x(t), y(t))).$$

$$\int\limits_{D} \nabla \times F . dS = \int\limits_{D} \left\langle \nabla \times F, \left(-\frac{\delta f}{\delta x}, -\frac{\delta f}{\delta y}, 1\right) \right\rangle dA = \int\limits_{D} \left[\left(\frac{\delta F_3}{\delta y} - \frac{\delta F_2}{\delta f}\right) \left(-\frac{\delta f}{\delta x}\right) + \left(\frac{\delta F_1}{\delta f} - \frac{\delta F_3}{\delta x}\right) \left(-\frac{\delta f}{\delta y}\right) + \left(\frac{\delta F_2}{\delta x} - \frac{\delta F_1}{\delta y}\right) \right] dA$$

$$\oint_{\delta S} F.ds = \int_{\sigma} F.ds = \int_{\sigma} F_1 dx + F_2 dy + F_3 dz$$

Donde σ es la pametrización de δS que preserva la orientación definida al principio. $\sigma:[a,b]\longrightarrow\mathbb{R}^3$, $\sigma(t)=(x(t),y(t),f(x(t),y(t)))$. Entonces:

$$\oint_{\delta S} F.ds = \int_{\sigma} \left(F_1 \frac{dx}{dt} + F_2 \frac{dy}{dt} + F_3 \frac{df}{dt} \right) dt = \int_{a}^{b} \left(F_1 \frac{dx}{dt} + F_2 \frac{dy}{dt} + F_3 \left(\frac{\delta f}{\delta x} \frac{dx}{dt} + \frac{\delta f}{\delta y} \frac{dy}{dt} \right) \right) dt$$

$$= \int_{\sigma} \left(F_1 + F_3 \frac{\delta f}{\delta x} \right) dx + \left(F_2 + F_3 \frac{\delta f}{\delta y} \right) dy = \int_{\delta D} \left(F_1 + F_3 \frac{\delta f}{\delta x} \right) dx + \left(F_2 + F_3 \frac{\delta f}{\delta y} \right) dy$$

Si aplicamos el teorema de Green sobre esta última integral:

$$\oint_{\delta S} F.ds = \iint_{D} \left[\frac{\delta \left(F_{2} + F_{3} \frac{\delta f}{\delta y} \right)}{\delta x} - \frac{\delta \left(F_{1} + F_{3} \frac{\delta f}{\delta x} \right)}{\delta y} \right] dA =$$

$$= \iint_{D} \left[\left(\frac{\delta F_{2}}{\delta x} + \frac{\delta F_{2}}{\delta f} \frac{\delta f}{\delta x} + \frac{\delta F_{3}}{\delta x} \frac{\delta f}{\delta y} + \frac{\delta F_{3}}{\delta f} \frac{\delta f}{\delta x} \frac{\delta f}{\delta y} + F_{3} \frac{\delta^{2} f}{\delta x \delta y} \right) - \left(\frac{\delta F_{1}}{\delta y} + \frac{\delta F_{1}}{\delta f} \frac{\delta f}{\delta y} + \frac{\delta F_{3}}{\delta y} \frac{\delta f}{\delta x} + \frac{\delta F_{3}}{\delta f} \frac{\delta f}{\delta y} \frac{\delta f}{\delta x} + F_{3} \frac{\delta^{2} f}{\delta y \delta x} \right) \right] dA$$

$$= \iint_{D} \left[\left(\frac{\delta F_{2}}{\delta x} + \frac{\delta F_{2}}{\delta f} \frac{\delta f}{\delta x} + \frac{\delta F_{3}}{\delta x} \frac{\delta f}{\delta y} \right) - \left(\frac{\delta F_{1}}{\delta y} + \frac{\delta F_{1}}{\delta f} \frac{\delta f}{\delta y} + \frac{\delta F_{3}}{\delta y} \frac{\delta f}{\delta x} \right) \right] dA =$$

$$= \iint_{D} \left(\frac{\delta F_{3}}{\delta y} - \frac{\delta F_{2}}{\delta f} \right) \left(-\frac{\delta f}{\delta x} \right) + \left(\frac{\delta F_{1}}{\delta z} - \frac{\delta F_{3}}{\delta x} \right) \left(-\frac{\delta f}{\delta y} \right) + \left(\frac{\delta F_{2}}{\delta x} - \frac{\delta F_{1}}{\delta y} \right) \right)$$

Vemos ahora que hay una igualdad entre las dos integrales planteadas en el teorema.

5. Teorema de campos conservativos:

5.1 Enunciado del Teorema

Sea F un campo C^1 en \mathbb{R}^3 salvo, quizá, en un conjunto finito de puntos. Las siguientes afirmaciones sobre F son equivalentes:

- 1. $\oint_C F.ds = 0 \ \forall C$, curva cerrada, simple y orientada
- 2. $\int_{C_1} F.ds = \int_{C_2} F.ds$ para todo par de curvas C_1 , C_2 , con los mismos extemos y la misma orientación
- 3. $\exists f : \mathbb{R}^3 \longrightarrow \mathbb{R}, \ f \in C^1(\mathbb{R}) / F = \nabla f$
- 4. $\nabla \times F = \overrightarrow{0}$

Si se cumple alguna de estas proposiciones, se cumplen todas, y decimos que F es un campo conservativo.

5.2. Demostración del teorema

5.2.1. $1 \Rightarrow 2$

Supongamos que se cumple 1.:

Sean C_1 , C_2 dos curvas abiertas simples con los mismos extremos y la misma orientación: Consideremos la curva $C = C_1 \cup C_2$ tal como se observa en la figura 4:

Fig 4:

C es una curva cerrada simple, entonces: $\oint\limits_C F.ds = 0 = \int\limits_{C_1^+} F.ds + \int\limits_{C_2^-} F.ds = \int\limits_{C_1^+} F.ds - \int\limits_{C_2^+} F.ds \iff \int\limits_{C_1^+} F.ds = \int\limits_{C_2^+} F.ds$

5.2.2. $2 \Rightarrow 3$

Supongamos que F es C^1 . Definimos una función $f(x,y,z) = \int\limits_{Cxyz} F.ds$, donde C_{xyz} es cualquier curva abierta simple que una al origen con el punto (x,y,z). (2. prueba que f es independiente de la curva elegida). Consideremos entonces, tres trayectorias en particular. En primer lugar la descripta en la figura 5.

Fig. 5: Una curva posible que une al origen con el punto (x, y, z)

Parametrizamos las curvas anteriores como:

 $C_1: \sigma_1(t) = (t, 0, 0) \quad t \in [0, x]$ $C_2: \sigma_2(t) = (x, 0, t) \quad t \in [0, z]$ $C_3: \sigma_3(t) = (x, t, z) \quad t \in [0, y]$

$$f(x,y,z) = \int_{0}^{x} \langle F(t,0,0), (1,0,0) \rangle dt + \int_{0}^{z} \langle F(x,0,t), (0,0,1) \rangle dt + \int_{0}^{y} \langle F(x,t,z), (0,1,0) \rangle dt$$
$$f(x,y,z) = \int_{0}^{x} F_{1}(t,0,0) dt + \int_{0}^{z} F_{3}(x,0,t) dt + \int_{0}^{y} F_{2}(x,t,z) dt$$

Consideramos entonces la derivada:

$$\frac{\delta f}{\delta y}(x,y,z) = 0 + 0 + F_2(x,y,z)$$

De forma similar se pueden elegir curvas que prueban $\nabla f = (F_1, F_2, F_3)$. Decimos que F es un campo gradiente.

Como $F \epsilon C^1$, por el TFC $f \epsilon C^2$

5.2.3. $3 \Rightarrow 4$

Supongamos que $\exists f/\nabla f = (F_1, F_2, F_3), \text{ q.v.q. } \nabla \times F = 0$:

$$\nabla \times F = \left(\frac{\delta}{\delta y} \left(\frac{\delta f}{\delta z}\right) - \frac{\delta}{\delta z} \left(\frac{\delta f}{\delta x}\right); \frac{\delta}{\delta z} \left(\frac{\delta f}{\delta x}\right) - \frac{\delta}{\delta x} \left(\frac{\delta f}{\delta z}\right); \frac{\delta}{\delta x} \left(\frac{\delta f}{\delta y}\right) - \frac{\delta}{\delta y} \left(\frac{\delta f}{\delta x}\right)\right)$$

Como $f \in \mathbb{C}^2$ las derivadas cruzadas son iguales (Clairaut-Schwarz) y la expresión anterior es:

$$\nabla \times F = (0, 0, 0)$$

5.2.4. $4 \Rightarrow 1$

Sea $F/\nabla \times F = \overrightarrow{0}$, sea C una curva cerrada simple orientada. Entonces existe una superficie S que tiene a a C como frontera orientada (resultado que no probaremos). Por el Teorema de Stokes:

$$\oint\limits_{C=\delta S} \!\! F.ds \! = \!\! \int\limits_{S} \!\! \int \!\! \nabla \times F.dS = \int\limits_{S} \!\! \int \!\! 0.dS \! = \!\! 0$$

5.3. Propiedad de los campos conservativos

Sea F un campo conservativo tal que $\nabla f = F$. Sea C una curva abierta simple dada por una parametrización regular que la orienta $\sigma : [a, b] \longrightarrow \mathbb{R}^3$, entonces:

$$\int\limits_C F.ds = \int\limits_C \nabla f.ds = \int\limits_a^b \left\langle \nabla f \circ \sigma(t), \sigma'(t) \right\rangle dt = \int\limits_a^b \frac{d(f \circ \sigma(t))}{dt} dt = f \circ \sigma(b) - f \circ \sigma(a)$$

6. Teorema de Gauss o de la divergencia

6.1 Enunciado del teorema:

Sea Ω una región elemental simétrica de \mathbb{R}^3 , sea $\delta\Omega$ su frontera orientada con normal exterior, y sea F un campo C^1 en \mathbb{R}^3 . Entonces:

$$\iint\limits_{\Omega} \int \nabla \cdot F \, dV = \iint\limits_{\delta\Omega} \langle F, n \rangle \, .dS$$

Donde $n=(n_1, n_2, n_3)$ es la normal exterior de $\delta\Omega$.

6.2 Demostración del teorema:

Sea
$$F = (P, Q, R)$$
,
$$\int \int \int \nabla \cdot F \, dV = \int \int \delta \Omega \langle F, n \rangle . dS$$
$$\int \int \int \int P_x + Q_y + R_z dx \, dy \, dz = \int \int \partial P . n_1 + Q . n_2 + R . n_3 \, dS$$
Probaremos la igualdad:
$$\int \int \int \int R_z dx \, dy \, dz = \int \int \partial R . n_3 \, dS$$

Y analogamente se podrá probar para P y Q. Sumando las expresiones estas llegamos al enunciado del Teorema, entonces basta con probar la igualdad anterior.

Como Ω es una región elemental simétrica, podemos representarla del siguiente modo:

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 / (x, y) \in D \subset \mathbb{R}^2, f_1(x, y) \le z \le f_2(x, y) \right\}$$

Por otro lado:

$$\iint\limits_{\delta\Omega} R.n_3 \, dS = \iint\limits_{S_1} R.n_3 \, dS + \iint\limits_{S_2} R.n_3 \, dS + \iint\limits_{S_L} R.n_3 \, dS$$

Donde:

$$S_{1} = \{(x, y, z) \in \mathbb{R}^{3} / (x, y) \in D, z = f_{1}(x, y)\}$$

$$S_{2} = \{(x, y, z) \in \mathbb{R}^{3} / (x, y) \in D, z = f_{2}(x, y)\}$$

$$S_{L} = \{(x, y, z) \in \mathbb{R}^{3} / (x, y) \in \partial D, f_{1}(x, y) \leq z \leq f_{2}(x, y)\}$$

Podemos hacerlo porque Ω es simétrica.

Si $S_L \neq \phi 0$, tendremos que $n_3=0$

$$\begin{array}{l} \delta D \text{ se parametriza como } (X(u),Y(u)) \text{y } S_L \text{ como } T(u,v) = (X(u),Y(u),v) \\ T_u = (X'(u),Y'(u),0) \\ T_v = (0,0,1) \\ T_u \times T_v = (Y'(u),-X'(u),0) \\ \text{Entonces } \int\limits_{S_L} \int R.n_3 \, dS = 0 \end{array}$$

$$\iint_{\delta\Omega} R.n_3 dS = \iint_{S_1} R.n_3 dS + \iint_{S_2} R.n_3 dS$$

Si parametrizamos S_1 y S_2 con $T_1 = (x, y, f_1(x, y))$ y $T_2 = (x, y, f_2(x, y))$ respectivamente, y elegimos las normales exteriores $(-T_{1x} \times T_{1y} \text{ y } T_{2x} \times T_{2y})$, llegamos a:

 $\iint_{\delta\Omega} R.n_3\,dS = \iint_D R(x,y,f_2(x,y)) - R(x,y,f_1(x,y)) dxdy, \text{ Y probamos la igualdad que queríamos. Como } \Omega$ es una región elemental simétrica podemos probar lo anterior para P y Q de forma análoga.

7. Las soluciones de un sistema de ecuaciones diferenciales ordinarias forman un espacio vectorial de dimension n

Consideremos el sistema X'(t) = A(t).X(t), homogéneo. Sea $I \subseteq \mathbb{R}$ un intervalo abierto, sean $a_{ij}(t)$ funciones contínuas $\forall t \in I$. Sea $(A(t))_{ij} = a_{ij}$. Entonces el conjunto de solución del sistema de n ecuaciones diferenciales lineales con n incognitas es un espacio vectorial de dimensión n.

7.1 Demostración

Veamos que el conjunto de soluciones es un espacio vectorial:

- 1. $X(t) \equiv 0$ es solución
- 2. Sean $X_1(t)$ y $X_2(t)$ soluciones. Veamos que $X_1(t) + X_2(t)$ también es solución: $X(t) = X_1(t) + X_2(t); \ X'(t) = X_1'(t) + X_2'(t) = A(t)X_1(t) + A(t)X_2(t) = A(t)\left(.X_1(t) + X_2(t)\right).$ Entonces X(t) es solución.
- 3. Sea $X_1(t)$ solución y $c \in \mathbb{R}$, veamos que $cX_1(t)$ también es solución. $X(t) = cX_1(t)$; $X'(t) = c.X_1'(t) = c.A(t).X_1(t) = A(t).c.X_1(t) = A(t).X(t)$. Entonces X(t) es solución.

Probamos entonces que las soluciones forman un espacio vectorial. Veamos que tiene dimensión n: Sea $\tau \epsilon I$, sea $e_i \epsilon \mathbb{R}^n$ el iésimo vector canónico.

 $X_i/X_i' = A.X_i \ X_i(\tau) = e_i$. Por los teoremas de Existencia y Unicidad sbemos que $X_1...X_n$ existen y son únicas. Q.V.Q $\{X_1...X_n\}$ son una base del espacio vectorial de soluciones, es decir, que $\{X_1...X_n\}$ son linealmente independientes y generan a cualquier solución.

q.v.q.
$$c_1X_1 + ... + c_nX_n = \overrightarrow{0} \ \forall t \in I \Leftrightarrow c_1 = ... = c_n = 0$$

En particular la ecuación anterior se cumple para $t = \tau$, entonces:

 $c_1e_1 + ... c_ne_n = \overrightarrow{0}$. Esto se cumple unicamente si $c_1 = ... = c_n = 0$, porque $\langle e_1...e_n \rangle = \mathbb{R}^n$.

Debemos probar ademas que si X es solución, X es combinación lineal de $\{X_1, X_2\}$

8. Independencia de las soluciones

Sean $\{X_1...X_n\}$ soluciones de un sistema lineal homogéneo. $\{X_1(t)...X_n(t)\}$ son l.i. como funciones de $t \in I \Leftrightarrow$ los vectores $\{X_1(\tau)...X_n(\tau)\}$ son l.i. en \mathbb{R}^n .

Demostración:

 \Rightarrow

Supongamos que $\{X_1(t)...X_n(t)\}$ son l.i., q.v.q. $\{X_1(\tau)...X_n(\tau)\}$ son l.i. e.i. q.v.q. si existen constantes $c_1...c_n$ tales que $c_1X_1(\tau)+...+c_nX_n(\tau)=\overrightarrow{0} \Rightarrow c_1=...=c_n=0$

Sea $X = c_1 X_1 + ... + c_n X_n$. $X(\tau) = c_1 X_1(\tau) + ... + c_n X_n(\tau) = 0$. Entonces $X \equiv 0$, porque existe una única funcion que en τ vale 0 (teoremas de existencia y unicidad). Es decir $c_1 X_1 + ... + c_n X_n \equiv 0$. Pero como por hipótesis $\{X_1(t)...X_n(t)\}$ son l.i, $\Rightarrow c_1 = ... = c_n = 0$

 \Leftarrow

Supongamos ahora que $\{X_1(\tau)...X_n(\tau)\}$ son l.i.q.v.q. $\{X_1(t)...X_n(t)\}$ son l.i. e.i. si existen constantes $c_1...c_n$ tales que $c_1X_1(t)+...+c_nX_n(t)=\overrightarrow{0} \ \forall t \in I \ \text{q.v.q.} \Rightarrow c_1=...=c_n=0$ En particular tomo $t=\tau$. Como por hipóteisis $\{X_1(\tau)...X_n(\tau)\}$ son l.i., $\Rightarrow c_1=...=c_n=0$.

9. Método de variación de las constantes

9.1. Enunciado del teorema:

Sea $I \subseteq \mathbb{R}$ intervalo abierto, $A(t) \subset \mathbb{R}^{nxn}$, $b(t) \in \mathbb{R}^n$ contínuas en I. Sea $\{X_1(t)...X_n(t)\}$ una base de soluciones del sistema homogéneo. Entones Existen funciones continuamente diferenciables $C_1(t)....C_n(t)$ tales que $X_p = C_1(t)X_1(t) + ... + C_n(t).X_n(t)$ es solución particular del sistema no homogéneo X'(t) = A(t).X(t) + b(t). Las funciones $C_i(t)$ son primitivas de $C_i'(t)$, solucionanan el siguiente sistema homogéneo para todo $t \in I$: Q(t).C(t) = b(t) donde Q(t)es la matriz que tiene como columnas a $\{X_1(t)...X_n(t)\}$ (matriz fundamental).

9.2. Demostración del teorema:

Sabemos que cualquier solución del homogeneo es de la forma X = Q(t).C con C un vector constante. Proponemos una solución particular del no homogéneo de la forma $X_p = Q(t).C(t)$ con $C(t) = (C_1(t), ..., C_n(t)).$ $X_p = C_1(t) X_p(t) + \dots + C_n(t) X_n(t) Como queremos que X_p$ sea solución

 $X_p = C_1(t).X_1(t) + ... + C_2(t).X_2(t).$ Como queremos que X_p sea solución, $X'_p = Q'(t)C(t) + Q(t).C'(t) = A(t).(Q.(t)C(t)) + Q(t).C'(t) = A(t).X_p + Q(t).C'(t).$ Queremos que $X_p = A(t).X_p + b(t)$, entonces buscamos funciones C(t) tales que Q(t).C'(t) = b(t). Como Q(t) contiene como columnas vectores linealmente independientes, $det Q(t) \neq 0$. y por ende es inversible. Entonces $\exists Q(t)^{-1}/C'(t) = Q(t)^{-1}.b(t)$. Dado que las funciones individuales de Q(t)0 y b son contínuas, podemos hallar Q(t)0 integrando y el TFC nos asegura que las mismas son contínuamente diferenciables.

10. Ecuación diferencial y ecuación integral

Los siguientes sistemas son equivalentes:

ED:

$$X\epsilon C^{1} [\tau - \lambda, \tau + \lambda]$$

$$X'(t) = f(t, X(t))$$

$$X(\tau) = \varsigma$$
EI:
$$X\epsilon C [\tau - \lambda, \tau + \lambda]$$

$$X(t) = \varsigma + \int_{-\infty}^{t} f(s, X(s)) ds$$

Sea X solución de ED, $X \in C^1[\tau - \lambda, \tau + \lambda]$, entonces X es integrable en un entorno de τ :

$$\int_{\tau}^{t} X'(s)ds = \int_{\tau}^{t} f(s, X(s))ds$$

$$X(t) - X(\tau) = \int_{\tau}^{t} f(s, X(s))ds$$

$$X(t) = \varsigma + \int_{\tau}^{t} f(s, X(s))ds$$

Sea X solución de la ecuación integral:

$$X(\tau) = \varsigma + \int_{\tau} f(s, X(s)) ds = \varsigma$$

$$X'(t) = \left(\varsigma + \int_{\tau}^{t} f(s, X(s)) ds\right)' = 0 + f(t, X(t))$$

Además X es contínua y como es una integral, su primitiva es contínua, entonces X'es contínua $\Leftrightarrow X \in C^1[\tau - \lambda, \tau + \lambda]$

11. Solución general de una ecuación de segundo orden

Sea Y_p una solución particular de la ecuación lñineal homogenea de orden 2, y $Y_h = c_1U_1 + c_2U_2$ la solución general de la homogénea asociada. Entonces podemos escribir la ecuación general de la ecuación no homogénea como:

$$Y = Y_h + Y_p = c_1 U_1 + c_2 U_2 + Y_p$$

11.1 Demostración del teorema:

Consideremos el sistema lineal $L(Y) = Y'' + P_1Y' + P_2Y = R$, con P_1 , $P_2 y R$ funciones contínuas en $I \subseteq \mathbb{R}$. Sean Y_1 y Y_2 soluciones de la ecuación no homogénea L(Y) = R

$$L(Y_1 - Y_2) = L(Y_1) - L(Y_2) = R - R = 0$$

Entonces $Y_1 - Y_2$ es una solución del sistema homogéneo asociado L(Y) = 0. Podemos escribir entonces $Y_1 - Y_2$ como combinación lineal de soluciones del homogéneo:

$$Y_1 - Y_2 = c_1 U_1 + c_2 U_2$$

que es lo mismo que:

$$Y_1 = c_1 U_1 + c_2 U_2 + Y_2$$

donde c_1 , $c_2 \in \mathbb{R}$ y Y_1 y Y_2 dos soluciones cualquiera de la ecuación no homogénea.

Entonecs, si podemos determinar una solución particular $Y_2 = Y_p$ del no homogéneo, podemos expresar cualquier otra solución del no homogéneo como:

 $Y = c_1U_1 + c_2U_2 + Y_p$ Llamamos entonces a esta solución solución general o integral general de la ecuación no homogénea.

12. La matriz wronskiana es inversible

12.1. Definiciones:

Sean $X_1(t)...X_n(t)$ soluciones de una ecuación diferencial lineal de orden n, homogéna. Definimos $W(X_1(t)...X_n(t)) =$

$$\det \begin{bmatrix} X_1(t) & \dots & X_n(t) \\ X_1'(t) & \dots & X_n'(t) \\ \vdots & \dots & \vdots \\ X_1^{(n)}(t) & \dots & X_n^{(n)}(t) \end{bmatrix} \text{el wronskiano. Entonces,}$$

$$\exists \tau \epsilon I/W(\tau) \neq 0 \iff \forall t \epsilon I \ W(t) \neq 0 \iff \{X_1(t)...X_n(t)\} \ son \ l.i.$$

12.2. Demostración:

Consideramos el sistema homogeneo de primer orden de n ecuaciones (S) asociado a la ecuación de orden n (E).

Supongamos que $\{X_1(t)...X_n(t)\}$ son l.i. q.v.q. $\{\overline{X_1}(t)...\overline{X_n}(t)\}$ son l.i.

e.i. supongamos que $c_1\overline{X_1}+\ldots+c_n\overline{X_n}=0$ $\forall t \in I,$ q.v.q $c_1=\ldots=c_n=0.$ Mirando la primer fila de cada columna: $c_1X_1+\ldots+c_nX_n=0 \Longleftrightarrow c_1=\ldots=c_n=0,$ porque $\{X_1(t)...X_n(t)\}$ son l.i. \Leftrightarrow Supongamos que $\{\overline{X_1}(t)...\overline{X_n}(t)\}$ son l.i. q.v.q. $\{X_1(t)...X_n(t)\}$ son l.i. Si $c_1X_1+\ldots+c_nX_n=0$ $\forall t \in I,$ q.v.q. $c_1=\ldots=c_n=0$ si derivamos n-1 veces, obtenemos $c_1\overline{X_1}+\ldots+c_n\overline{X_n}=0,$ que son l.i. por hipótesis, entonces $c_1=\ldots=c_n=0$

Por otro lado, tenemos los resultados de los teoremas para sistemas de ecuaciones:

Sabemos que $\{\overline{X_1}(t)...\overline{X_n}(t)\}$ son base del espacio vectorial de soluciones del sistema, y que estos vectores son l.i. $\forall t \in I \Leftrightarrow \text{son l.i. en } \tau$. Entonces, como la matriz wronskiana tiene columnas linealmente independientes, tenemos $\det W \neq 0$, en todo t y en particular en τ .