

rtpcr package (version >= 1.0.9)

'rtpcr' package was developed for amplification efficiency calculation, statistical analysis and graphical display of real-time PCR data in R.

res: A fpld change or relative efficiency table created by qpcrANOVAFC, apcrANOVARE, qpcrREPEATED or qpcrMeans function

Output tables & objects

qpcrTTEST()

Fold Change statistics

qpcrANOVARE()

Relative Expression statistics Im and ANOVA table

qpcrANOVAFC()

Fold Change statistics Im and ANOVA, and ANCOVA table

gpcrREPEATED()

Fold Change statistics Im and ANOVA

meanTech()

Table with mean of technical replicates

multiplot()

Producing multiple-plots plate using ggplot objects

efficiency()

standard curves Slope, Efficiency, & R2

qpcrMeans()

Fold Change statistics for desired factor or factor conbinations based on a model

J

```
qpcrTTESTplot(x,
 order = "none",
 numberOfrefGenes,
 paired = FALSE,
 var.equal = TRUE,
 width = 0.5,
 fill = "skyblue",
 y.axis.adjust = 0,
 y.axis.by = 2
 letter.position.adjust = 0.3,
 ylab = "Average Fold Change",
 xlab = "none",
 fontsize = 12,
 fontsizePvalue = 7,
 axis.text.x.angle = 0,
 axis.text.x.hjust = 0.5)
```

efficiency(x)

meanTech(x, groups)

qpcrANOVAFC(x, numberOfrefGenes, analysisType = "anova", mainFactor.column, mainFactor.level.order = NULL, block, width = 0.5, fill = "#BFEFFF", y.axis.adjust = 1, y.axis.by = 1, letter.position.adjust = 0.1, ylab = "Fold Change", xlab = "none", fontsize = 12, fontsizePvalue = 7, axis.text.x.angle = 0,

axis.text.x.hjust = 0.5,

p.adj = "none")

numberOfrefGenes, block, p.adj = "none", ...) oneFACTORplot(res. width = 0.2, fill = "skyblue", y.axis.adjust = 0.5, y.axis.by = 2,errorbar = "std", show.letters = TRUE, letter.position.adjust = 0.1, ylab = "Relative Expression", xlab = "none", fontsize = 12, fontsizePvalue = 7, axis.text.x.angle = 0, axis.text.x.hjust = 0.5

qpcrANOVARE(x,

twoFACTORplot(res. x.axis.factor, group.factor, width = 0.5, fill = "Blues", y.axis.adjust = 0.5, y.axis.by = 2,show.errorbars = TRUE, errorbar = "std", show.letters = TRUE, show.points = FALSE. letter.position.adjust = 0.1, ylab = "Relative Expression", xlab = "none", legend.position = c(0.09, 0.8), fontsize = 12, fontsizePvalue = 7, axis.text.x.angle = 0, axis.text.x.hjust = 0.5

threeFACTORplot(res, arrangement = c(1, 2, 3), bar.width = 0.5, fill = "Reds", xlab = "none", ylab = "Relative Expression", errorbar = "std", y.axis.adjust = 0.5, y.axis.by = 2letter.position.adjust = 0.3, legend.title = "Legend Title", legend.position = c(0.4, 0.8), fontsize = 12, fontsizePvalue = 7, show.letters = TRUE, axis.text.x.angle = 0, axis.text.x.hjust = 0.5)

multiplot(..., cols = **1**)

numberOfrefGenes,
paired = FALSE,
var.equal = FALSE)

qpcrREPEATED(x,
numberOfrefGenes,
factor,
block,
fill = "#BFEFFF",
y.axis.adjust = 1,
y.axis.by = 1,
ylab = "Fold Change",
xlab = "none",
fontsizePvalue = 7,
axis.text.x.angle = 0,
axis.text.x.hjust = 0.5,

x.axis.labels.rename = "none",

letter.position.adjust = 0,

p.adj = "none")

qpcrTTEST(x,

res <- qpcrANOVAFC(data_3factor, numberOfrefGenes = 1, mainFactor.column = 1, block = NULL) qpcrMeans(res\$Im_ANOVA, specs = "Conc | Type")

x.axis.labels.rename = "none",