CO342 Graph Theory

Austin Xia

May 21, 2020

Contents

1	Math239 Review	
2	Connectivity	4
	2.1 Vertex Cut	4
	2.2 Connectivity	4

List of Figures

List of Tables

1 Math239 Review

adjacent

two vertex are adjacent if they are joined by edge

• incident

vertex v is incident to edge e if e contains v

neighbor

vertex u is neighbor of vertex v if there is edge uv

 \bullet neighborhood

neighborhood of u is all vertex that are neighbor to u

 \bullet degree

size of neighborhood

• complete graph K_n :

a graph has n vertex and all possible arcs

• bipartite graph

very edge join two vertex in different set

 \bullet k-regular

every vertex has degree k

• subgraph

h contains some of vertex and some of the edges of G

• path

a set of adjacent vertex

- cycle
- connected graph
- component

a maximal connected subgraph

- \bullet tree
- planar graph

can be drawn in a plane without crossing

• subdivision

subdivision of edge e(uv) yields a graph containing new vertex w and with an edge set replacing uw by uw and vw

• face of a planar graph

connected region of plane bounded by vertex and edge

2 Connectivity

2.1 Vertex Cut

Definition 2.1.1 (Cut Vertex)

Let G be a connected graph and let $x \in V(G)$. We say x is cutvertex of G if graph G-x obtained from G by deleting the vertex x is disconnected

Definition 2.1.2 (Vertex Cut)

We say $w \subseteq V(G)$ is a vertex cut of connected graph G if G-w is disconnected

Theorem 2.1.1

If G is a connected graph that is not complete, then G has a vertex cut

2.2 Connectivity

Definition 2.2.1 (k-connectivity)

Let G be a connected graph, and let $k \geq 1$ be an integer, we say G is k-connected if

- $|V(G)| \ge k + 1$
- a has no vertex cut of size $\leq k-1$

Definition 2.2.2 (Minimum Degree)

$$\delta(G) = \min\{d(v); v \in V(G)\}\$$

Lemma 2.2.1

If G is k-connected, then $\delta(G) \geq k$

Proof

Let $x \in V(G)$ be a vertex of degree $\delta(G)$, by definition $|V(G)| \ge k+1$ If $|V(G)| \ge \delta(G) + 2$ then N(x) is a vertex cut of G, So $|N(x)| = \delta(G) \ge k$ If $|V(G)| \le \delta(G) + 1$ Then $k+1 \le |V(G)| \le \delta(G) + 1$ In both case $k \le \delta(G)$

Note: converse of this lemma is NOT true

Lemma 2.2.2

Let G be a graph with n vertex, let $1 \le k \le n-1$. If $\delta(G) \ge \frac{n+k-2}{2}$, then G is k-connected

Proof

we have $|V(G)| \ge k+1$. Suppose on the contrary that G has a vertex cut W with $|w| \le k-1$. Let H be the smallest component of G-w. Then $|H| \le \frac{n-|W|}{2}$. For $v \in V(H)$, v can have edge in H or W only. we see $d(v) \le |W| + (|H| - 1)$. So

$$\delta(G) \leq d_G(v) \leq |W| + |H| - 1 \leq |W| + \frac{n - |W|}{2} - 1 \leq \frac{n}{2} + \frac{|W|}{2} - 1 \leq \frac{n}{2} + \frac{k - 1}{2} - 1 = \frac{n + k - 3}{2}$$

this is contradiction to our assumption, so G has no vertex cut with size $\leq k-1$. G is k-connected

Note: this lemma is NOT if and only if