Cadenas de Markov y Aplicaciones (2025-II)

Tarea 1: Aplicación del muestreo de Gibbs a los modelos *Hard-Core* y q-coloraciones

Profesor: Freddy Hernández-Romero

Instrucciones de Entrega

- Formato de Trabajo: Escriba un "notebook" (usando Python, Julia o R) realizando los experimentos descritos a continuación.
- Grupos: El trabajo debe realizarse en grupos de 2 o 3 alumnos.
- Entrega: Solo un miembro por grupo debe subir la tarea al Classroom. La entrega debe consistir en:
 - 1. Un **reporte en formato PDF** que contenga las explicaciones, el código, los resultados y las gráficas generadas.
 - 2. Un enlace de acceso al notebook. Se recomienda trabajar en Google Colab y compartir el enlace correspondiente.

Ejercicios

1. Muestreo de Gibbs para el Modelo Hard-Core

a) Implemente el algoritmo Gibbs sampler visto en clase para generar muestras de una distribución que se aproxime a la distribución uniforme sobre las configuraciones factibles del modelo Hard-Core.

El modelo se debe implementar en una rejilla cuadrada de tamaño $K \times K$. Se sugiere experimentar con tamaños de rejilla donde K esté en el rango de $3 \le K \le 20$.

Visualización: Lo ideal es que se puedan visualizar las muestras generadas (es decir, las configuraciones finales de la rejilla) y también algunos pasos intermedios de la trayectoria de la Cadena de Markov que condujo a la muestra final.

Sugerencia: Tome un tiempo final para la cadena de Markov de $X_{10,000}$ o $X_{100,000}$ para asegurar que la cadena ha llegado a su distribución estacionaria.

b) Estimación del Número de Partículas

Use las muestras generadas en el ejercicio anterior para estimar el número de partículas "típico" que tiene una configuración factible en la rejilla $K \times K$.

Análisis: Lo ideal sería generar un histograma de frecuencias que muestre la distribución del número de partículas en las muestras obtenidas.

Verificación: Verifique cómo cambia el histograma si, en lugar de tomar el estado final de la cadena ($X_{10,000}$ o $X_{100,000}$), se toman otros tiempos de la cadena. ¿Qué observa?

2. Generalización a q-Coloraciones

Replicar lo hecho en el item a) del punto anterior para generar muestras de la distribución uniforme sobre las q-coloraciones propias de la rejilla. Además, replicar lo hecho en b) para estimar el número "típico" de partículas de cada color.

Parámetros sugeridos:

- Número de colores, $q: 2 \le q \le 10$.
- Tamaño de la rejilla, K: $3 \le K \le 20$.

Visualice algunas de las coloraciones obtenidas.