Foundation Calculus & Mathematical Techniques

CELEN037

Weekly Worksheet-10

Topics: Differential Equation and its applications

Type 1: Solving Variable-Separable form ordinary differential equations (ODEs):

1. Solving the following Variable-Separable form ODEs:

$$(i) \qquad \frac{dy}{dx} = -\frac{x}{y} \qquad \qquad (ii) \qquad \frac{dy}{dx} = \frac{y}{x}$$

(iii)
$$\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$$
 (iv) $\frac{dy}{dx} = \frac{1+x^2}{1+y^2}$

$$(v) \qquad \frac{dy}{dx} = \frac{y^2}{x+1} \qquad (vi) \qquad x^2 \frac{dy}{dx} = y+1$$

$$(vii) \qquad \frac{dy}{dx} = x^2 (1 + y^2) \qquad (viii) \qquad x \frac{dy}{dx} = y + xy$$

(ix)
$$(1+y^2) \frac{dy}{dx} = y e^x$$
 (x) $y \frac{dy}{dx} = (1+y^2) \tan x$

$$(xi)$$
 $\frac{dy}{dx} = \tan x \, \tan y$ (xii) $\ln(\sin x) \, \frac{dy}{dx} = \cot x$

$$(xiii) \frac{dy}{dx} + y = y \sec^2 x (xiv) \frac{dy}{dx} = \frac{\tan y}{x \sec^2 y}$$

$$(xv)$$
 $(e^x + e^{-x}) \frac{dy}{dx} = e^x - e^{-x}$ (xvi) $\frac{dy}{dx} = \frac{x e^x}{y \sqrt{1 + y^2}}$

$$(xvii) \quad \frac{dy}{dx} = e^{x-y} + x^2 e^{-y} \qquad (xviii) \quad \frac{dy}{dx} = \frac{y \cos x}{1 + \sin x}$$

$$(xix)$$
 $x dy = (2x^2 + 1) dx$ (xx) $y(1 + e^x) dy = (y + 1) e^x dx$

$$(xxi)$$
 $xy(y+1) dy = (x^2+1) dx$ $(xxii)$ $y \ln y dx = x dy$

$$(xxiii)$$
 $\csc y \, dx + \cos^2 x \, dy = 0$ $(xxiv)$ $(x+1) \, dy - (y-1) \, dx = 0.$

Type 2: Solving initial value problems (IVPs) of Variable-Separable form:

2. Solving the following IVPs of Variable-Separable form:

(i)
$$\frac{dy}{dx} = \frac{x^2}{y^2}$$
; $y(0) = 2$ (ii) $\frac{dy}{dx} + 4xy^2 = 0$; $y(0) = 1$

(iii)
$$\frac{dy}{dx} = \frac{y \sin x}{1 + y^2}$$
; $y(0) = 1$ (iv) $\frac{dy}{dx} = y \tan x$; $y(0) = 1$

$$(v) \qquad \frac{dy}{dx} = \frac{(\sec x \tan x) \cdot (y+1)}{\sec x + 1} \quad ; \quad y(0) = 1$$

(vi)
$$x + 2y\sqrt{x^2 + 1} \frac{dy}{dx} = 0$$
 ; $y(0) = 1$

(vii)
$$x \sin y \, dx + (x^2 + 1) \cos y \, dy = 0$$
; $y(1) = \frac{\pi}{2}$

(viii)
$$e^{\frac{dy}{dx}} = x + 1$$
 $(x > -1)$; $y(0) = 3$.

Type 3: Solution of differential equations:

- 3. (i) Show that $y = C_1 \sin 4x + C_2 \cos 4x$ is a solution of the ODE $\frac{d^2y}{dx^2} + 16y = 0$, where C_1 and C_2 are arbitrary constants.
 - (ii) Show that $y=C_1 e^{2x}+C_2 e^{3x}$ is a solution of the ODE $\frac{d^2y}{dx^2}-5\frac{dy}{dx}+6y=0$, where C_1 and C_2 are arbitrary constants.
 - (iii) Show that $y=C_1 e^{-2x}+C_2 e^x$ is a solution of the ODE $\frac{d^2y}{dx^2}+\frac{dy}{dx}-2y=0$, where C_1 and C_2 are arbitrary constants.
 - (iv) Show that $y=a\cos^{-1}x+b$ (a, b are arbitrary constants) is a solution of the differential equation $(1-x^2)\frac{d^2y}{dx^2}-x\frac{dy}{dx}=0$.
 - (v) Show that $y = e^{-x} + ax + b$ is a solution of the ODE $e^x \left(\frac{d^2y}{dx^2} \right) 1 = 0$, where a and b are arbitrary constants.
 - (vi) Show that $y=\frac{a}{x}+b$, where a and b are arbitrary constants, is a solution of the ODE $\frac{d^2y}{dx^2}+\frac{2}{x}\frac{dy}{dx}=0.$

Type 4: Applications of ODE of Variable-Separable form:

- 4. (i) The rate of increase of population of a country is proportional to the population (P) at that time. Formulate a differential equation to show that the population at time t is $P = P_0 \cdot e^{kt}$, where k > 0 is constant and P_0 is the initial population.
 - (ii) The rate of decay of a radio active material is proportional to the amount (m) of material present at that time.
 - (a) Formulate a differential equation to show that the amount of material at time t is $m=m_0\cdot e^{kt}$ where k<0 is constant and m_0 is the initial amount.
 - (b) If it takes 2000 years for half the original amount to decay, find the percentage of the original amount that remains after 400 years.
 - (iii) The population of a city increases at the rate of 2% per year. How many year will it take for the population to double.