ČESKÁ ZEMEDĚLSKÁ UNIVERZITA V PRAZE

Provozně ekonomická fakulta

Semestrální projekt

z předmětu:

Ekonometrie

Ceny mléka na různých stupních zpracování

Zpracovali: Darya Chornaya, Vladyslav Zhuk

Cvičení: Pátek 12:15

Vyučující: Ing. Tomáš Maier, Ph.D.

1.1. Ekonomický model a ekonometrický model

Teoretická východiska

Jednorovnicový model je postaven na základě toho, jaké faktory ovlivňují cenu produktu, konkrétně cenu mléka. V modelu vystupuje endogenní proměnná cena zemědělských výrobců (y_1 Kč/l), která je vysvětlena zpožděnou cenou zemědělských výrobců($y_{1(t-1)}$, Kč/l), cenou průmyslových výrobců(x_1 , Kč/l), zpožděnou cenou průmyslových výrobců($x_{1(t-1)}$, Kč/l) a zpožděným indexem průmyslových cen krmiv($x_{2(t-6)}$, %). Pro model máme následující hypotézy:

- Cena zemědělských výrobců se zvýší s růstem zpožděné ceny zemědělských výrobců
- Cena zemědělských výrobců se zvýší s růstem ceny průmyslových výrobců
- Cena zemědělských výrobců se zvýší s růstem zpožděné ceny průmyslových výrobců
- Cena zemědělských výrobců se zvýší s růstem zpožděného indexu průmyslových cen krmiv

Formulace ekonomického modelu:

$$y_{1t} = f(y_{1(t-1),}x_{1t,}x_{1(t-1),}x_{2(t-6)})$$

Zápis ekonometrického modelu:

$$y_{1t} = \gamma_{10}x_{0t} + \beta_{11}y_{1(t-1)} + \gamma_{11}x_{1t} + \gamma_{11}^*x_{1(t-1)} + \gamma_{12}x_{2t(t-6)}$$

Deklarace proměnných:

	Název proměnné	Zkrátka	Popis proměnné	Jednotky proměnné
y 1	cena zemědělských výrobců	CZV	Endogenní	Kč/l
y 1(t-1)	cena zemědělských výrobců v minulém období	CZV_1	Predeterminovaná	Kč/l
x1	cena průmyslových výrobců	CPV	Predeterminovaná	Kč/l
x1 (t-1)	cena průmyslových výrobců v minulém období	CPV_1	Predeterminovaná	Kč/l
x2(t-6)	Index průmyslové ceny krmiv před šestí období	KR_6	Predeterminovaná	%
X0	Jednotkový vektor	Const.	Predeterminovaná	-
Ut	Náhodná složka	-	Stochastická	-

1.2.Popis dat

Deskriptivní statistika

Proměnná	Max	Min	Střední hodnota	Medián	Směrodatná odchylka
CZV	9,81	6,12	8,38	8,58	0,90
CZV_1	9,81	6,12	8,38	8,58	0,90
CPV	14,1	10,74	12,29	12,1	0,89
CPV_1	14,1	10,74	12,29	12,1	0,89
KR_6	115,3	93,5	99,55	98,95	5,08

Korelační matice

Multikolinearita modelu byla zkontrolována pomocí korelační matice. Multikolinearita je přítomna tehdy, jestliže je některý z párových korelačních koeficientů vyšší než +0,8 a pod -0,8. Výskyt tohoto jevu je nežádoucí.

```
Correlation Coefficients, using the observations 2013:07 - 2020:09
5% critical value (two-tailed) = 0.2108 for n = 87

CZV CZV_1 CPV KR_6 CPV_1
1.0000 0.9794 0.6242 0.1734 0.5712 CZV
1.0000 0.6584 0.1511 0.6222 CZV_1
1.0000 0.6718 0.9846 CPV
1.0000 0.6525 KR_6
1.0000 CPV 1
```

Multikolinearita se vyskytla mezi proměnné CPV a CPV_1. Pro řešení byla použita metoda postupných diferencí, konkrétně výměna proměnné CPV_1 za její první diferenci – dCPV_1. Nová korelační matice vyšla následovně:

```
Correlation Coefficients, using the observations 2013:08 - 2020:09
5% critical value (two-tailed) = 0.2120 for n = 86

CZV CZV_1 CPV KR_6 dCPV_1
1.0000 0.9794 0.6259 0.1851 0.3814 CZV
1.0000 0.6606 0.1640 0.3003 CZV_1
1.0000 0.6880 0.1178 CPV
1.0000 0.1124 KR_6
1.0000 dCPV 1
```

Nová korelační matice již neukazuje na multikolineritu, došlo však ke ztrátě jednoho období.

1.3.Odhad modelu

Vektor Y a Matice X (T=86) jsou zkráceny kvůli velké délce podkladových dat:

Vektor Y
CZV
8,38
8,5
8,72
9,05
9,37
9,57
9,73
9,8
9,81
9,78
9,68

		Matice X		
JV	CZV_1	CPV	KR_6	dCPV_1
1	8,31	12,96	115,2	0,03
1	8,38	13,4	115,3	0,18
1	8,5	13,51	113,6	0,44
1	8,72	13,56	113,5	0,11
1	9,05	13,58	113,2	0,05
1	9,37	13,67	112,8	0,02
1	9,57	13,81	111,4	0,09
1	9,73	13,88	105,8	0,14
1	9,8	13,83	102,1	0,07
1	9,81	13,82	101,6	-0,05
1	9,78	13,93	101,5	-0,01

Výstupy odhadu modelu v SW Gretl:

Model 1: OLS, using observations 2013:08-2020:09 (T = 86) Dependent variable: CZV

	coeffici	ient	std.	error	t-ratio	p-value	
const	-0.29111	18	0.38	5482	-0.7552	0.4523	
CZV 1	1.02072	2	0.032	22917	31.61	2.51e-047	***
CPV	-0.12329	91	0.042	28978	-2.874	0.0052	***
KR 6	0.01642	237	0.009	568879	2.887	0.0050	***
dCPV_1	0.45745	56	0.119	9917	3.815	0.0003	***
Mean depende	nt var	8.3830	023	S.D. der	pendent va	r 0.91218	88
Sum squared :	resid	2.0594	161	S.E. of	regression	n 0.15949	54
R-squared		0.9708	382	Adjusted	d R-square	d 0.9694	14
F(4, 81)		675.18	393	P-value	(F)	2.54e-6	51
Log-likeliho	od	38.443	311	Akaike d	criterion	-66.8862	23
Schwarz crit	erion -	-54.614	149	Hannan-(Quinn	-61.947	12
rho		0.5404	103	Durbin's	s h	5.25253	37

Ekonometrický model:

$$y_{1t} = -0.291 + 1.0207y_{1(t-1)} - 0.123x_{1t} + 0.0164x_{1(t-1)} + 0.457x_{2t} + u_{1t}$$

1.4. Ekonomická verifikace

- a) Pokud se cena zemědělských výrobců v minulém období zvýší o 1 Kč/l, cena zemědělských výrobců vzroste o 1,02 Kč/l za podmínky ceteris paribus. Toto tvrzení <u>je v</u> souladu s naší hypotézou. CZV_1 odpovídá.
- b) Pokud se cena průmyslových výrobců zvýší o 1 Kč/l, cena zemědělských výrobců klesne o 0,12 Kč/l za podmínky ceteris paribus. Toto tvrzení **není v souladu** s předpokladem. CPV neodpovídá.
- c) Pokud se index průmyslové ceny krmiv zvýší o 1 %, cena zemědělských výrobců vzroste o 0,01 Kč/l za podmínky ceteris paribus. Toto tvrzení **je v souladu** s naší hypotézou. KR_6 odpovídá
- d) Pokud se diference ceny průmyslových výrobců v minulém období zvýší o 1, cena zemědělských výrobců vzroste o 0,45 Kč/l za podmínky ceteris paribus. Toto tvrzení <u>je v souladu</u>s naší hypotézou. dCPV_1 odpovídá

1.5. Statistická verifikace

Testování významnosti odhadnutých parametrů:

Proměnná	p-hodnota	α	Interpretace
const	0,4523	0,01	Nevýznamný
CZV_1	2,51e-047	0,01	Významný
CPV	0,0052	0,01	Významný
KR_6	0,0050	0,01	Významný
dCPV_1	0,0003	0,01	Významný

Všechny parametry, kromě konstanty, jsou významné na hladině významnosti $\alpha = 0.01$.

Testování významnosti modelu:

P-hodnota F-testu je 2,54e-61 < 0.05, což znamená, že model je statisticky **významný**. Koeficient determinace $R^2=97$ %. To znamená, že změny v ceně zemědělských výrobců jsou z 97% vysvětlené změnami ve vysvětlujících proměnných.

1.6. Ekonometrická verifikace

• Testování autokorelace (Breusch-Godfreyův test):

H₀: V modelu je přítomná autokorelace reziduí

```
Test statistic: LMF = 46.509319,
with p-value = P(F(1,80) > 46.5093) = 1.57e-009
Alternative statistic: TR^2 = 31.616655,
with p-value = P(Chi-square(1) > 31.6167) = 1.88e-008
Ljung-Box Q' = 25.9977,
with p-value = P(Chi-square(1) > 25.9977) = 3.42e-007
```

P-hodnota = 1,57e-009 < 0,05, zamítáme nulovou hypotézu, což znamená, že se v modelu vyskytuje nežádoucí autokorelace reziduí.

Testování normality (Chí-kvadrát test):

H₀: Rezidua mají normální rozdělení

```
Test for null hypothesis of normal distribution:
Chi-square(2) = 1.417 with p-value 0.49250
```

P-hodnota = 0,49250 > 0,05. Přijímáme nulovou hypotézu. Rezidua mají normální rozdělení.

Testování heteroskedasticity (Whiteův test):

H₀: Homoskedasticida

```
Unadjusted R-squared = 0.102800
Test statistic: TR^2 = 8.840781,
with p-value = P(Chi-square(14) > 8.840781) = 0.841113
```

P-hodnota = 0,841113 > 0,05. Přijímáme nulovou hypotézu. V modelu se nevyskytuje heteroskedasticida.

1.7. Aplikace modelu

Výpočet pružností pro časové období 03/2015:

Model:

$$y_{1t} = -0.291 + 1.021y_{1(t-1)} - 0.123x_{1t} + 0.016x_{1(t-1)} + 0.457x_{2t} + u_{1t}$$

$$y_{1(t-1)} = 8.61$$
 $x_{1t} = 13.24$

$$x_{1t} = 13.24$$

$$x_{1(t-1)} = -0.25$$
 $x_{2(t-6)} = 101.4$

$$x_{2(t-6)} = 101,4$$

Výpočet:

$$\hat{y}_{1t} = -0.291 + 1.021 * 8.61 - 0.123 * 13.24 + 0.016 * 101.4 + 0.457$$

$$* (-0.25) = 8.4170$$

$$E = \frac{\partial y_1}{\partial y_{1(t-1)}} * \frac{y_{1(t-1)}}{\hat{y}} = 1,021 * (8,61/8,4170) = 1,044\%$$

Interpretace: Když se zvýší cena zemědělských výrobců v minulém období o 1 %, zvýší se cena zemědělských výrobců o 1,044% za podmínek ceteris paribus pro časové období 03.2015.

$$E = \frac{\partial y_1}{\partial x_{1t}} * \frac{x_{1t}}{\hat{y}} = -0,123 * (13,24/8,4170) = -0,19 \%$$

Interpretace: Když se zvýší cena průmyslových výrobců o 1 %, sníží se cena zemědělských výrobců o 0,19 % za podmínek ceteris paribus pro časové období 03.2015.

$$E = \frac{\partial y_1}{\partial x_{1(t-1)}} * \frac{x_{1(t-1)}}{\widehat{y}} = 0,016 * (101,4/8,4170) = 0,20\%$$

Interpretace: Když se zvýší index průmyslových cen krmiv o 1 %, zvýší se cena zemědělských výrobců o 0,20 % za podmínek ceteris paribus pro časové období 03.2015.

$$E = \frac{\partial y_1}{\partial x_{2t}} * \frac{x_{2t}}{\widehat{y}} = 0,457 * ((-0,25)/8,4170) = -0,013\%$$

Interpretace: Když se zvýší cena průmyslových výrobců v minulém období o 1 %, sníží se cena zemědělských výrobců o 0,013 % za podmínek ceteris paribus pro časové období 03.2015.

Závěr: Z výpočtů vyplývá, že ceny zemědělských výrobců nejvíce ovlivňují index průmyslových cen krmiv.

Simulace definovaných scénářů:

Simulační scénář: Jak se změní cena zemědělských výrobců, pokud se index průmyslových cen krmiv zvýší o 15 %.

x... index průmyslových cen krmiv 03.2015 = 101,4% y... cena zemědělských výrobců 03.2015 = 8,48 (Kč/l) E... přímá cenová elasticita = 0,20% Δ x o 15%... Δ X = 14,79%

Dosadíme: E * %
$$\Delta$$
 x = % Δ y 0,20 % * 14,79 = % Δ y % Δ y = **2,958**

Z výpočtů vyplívá, že při zvýšení indexů průmyslových cen krmiv o 15 %, zvýší se cena zemědělských výrobců o 2,958 %

```
100 \%...... 8,48
 2,958 \%......0,25
 nová y = 8,48 + 0,25 = 8,73 (Kč/l)
```

Interpretace: V případě zvýšení index průmyslových cen krmiv o 15 %, dojde ke zvýšení ceny zemědělských výrobců o 0,25 Kč/l, celková cena zemědělských výrobců bude činit 8,73 (Kč/l).

Simulační scénář: Jak se změní cena zemědělských výrobců, pokud se zvýší cena průmyslových výrobců o 5 Kč.

x... cena průmyslových výrobců 03.2015 = 13,24 (Kč/l) y... cena zemědělských výrobců 03.2015 = 8,48 (Kč/l) E... přímá cenová elasticita = -0,19 % Δx o 5 Kč... % $\Delta x = 37,76$ (Kč/l)

Dosadíme: E * %
$$\Delta$$
 x= % Δ y
-0,20 %* 37,76 = % Δ y
% Δ y = -7,14

Z výpočtů vyplívá, že při zvýšení ceny průmyslových výrobců o 5 Kč, cena zemědělských výrobců sníží se o 7,14%.

```
100 %...... 8,48
-7,14 %.....-0,60
nová y = 8,48 -0,60= 7,88 (Kč/l)
```

Interpretace: V případě zvýšení ceny průmyslových výrobců o 5 Kč, dojde ke snížení ceny zemědělských výrobců o 0,60 Kč/l, celková cena zemědělských výrobců bude činit 7,88 (Kč/l).

2. Simultánní model

2.1. Ekonomický model a ekonometrický model

Teoretická východiska

Model je sestaven na základě teorie cenové transmise. Konkrétně se jedná o ceny mléka, které se navzájem ovlivňují. Z pohledu nabídky mléka farmářské ceny stanovují výší průmyslových cen a průmyslové ceny stanovují výši spotřebitelských cen. Z pohledu poptávky je proces brán opačným směrem. Výchozím bodem je spotřebitelská cena, na tvorbě které se podílejí zákazníci, kteří jsou ochotní koupit mléko co nejlevněji a takhle tvoří nátlak na nízkou cenu pro všechny tři vrstvy.

V první rovnici jako endogenní proměnná vystupuje cena zemědělských výrobců, která je vysvětlena zpožděnou cenou zemědělských výrobců, cenou průmyslových výrobců, zpožděnou cenou průmyslových výrobců a zpožděným indexem průmyslových cen krmiv.

Ve druhé rovnici jako endogenní proměnná vystupuje ceny průmyslových výrobců, která je vysvětlena zpožděnou cenou průmyslových výrobců, cenou zemědělských výrobců a zpožděnou spotřebitelskou cenou.

Ekonomické předpoklady pro první rovnici:

- Cena zemědělských výrobců se zvýší s růstem zpožděné ceny zemědělských výrobců
- Cena zemědělských výrobců se zvýší s růstem ceny průmyslových výrobců
- Cena zemědělských výrobců se zvýší s růstem zpožděné ceny průmyslových výrobců
- Cena zemědělských výrobců se zvýší s růstem zpožděného indexu průmyslových cen krmiv

Ekonomické předpoklady pro druhou rovnici:

- Cena průmyslových výrobců se zvýší s růstem zpožděné ceny průmyslových výrobců
- Cena průmyslových výrobců se zvýší s růstem ceny zemědělských výrobců
- Cena průmyslových výrobců se zvýší s růstem zpožděné spotřebitelské ceny

Formulace ekonomického modelu

$$y_{1t} = f(y_{1(t-1),y_{2t,y_{2(t-1),x_{1(t-6)}}})$$
$$y_{2t} = f(y_{1t,y_{2(t-1),x_{2(t-1)}}})$$

Formulace ekonometrického modelu

$$y_{1t} = \beta_{12}y_{2t} + \gamma_{10}x_0 + \beta_{11}y_{1(t-1)} + \beta_{12}^*y_{2(t-1)} + \gamma_{11}x_{1(t-6)} + u_{1t}$$

$$y_{2t} = \beta_{21}y_{1t} + \gamma_{20}x_0 + \beta_{22}y_{2(t-1)} + \gamma_{22}x_{2(t-1)} + u_{2t}$$

Deklarace proměnných

Označení	Název	Zkrátka	Popis	Jednotky
y_{1t}	Cena zemědělských výrobců	CZV	endogenní	Kč/l
y_{2t}	Cena průmyslových výrobců	CPV	endogenní	Kč/l
$y_{1(t-1)}$	Zpožděná cena zemědělských výrobců (o 1 období)	CZV_1	predeterminovaná	Kč/l
$y_{2(t-1)}$	Zpožděná cena průmyslových výrobců (o 1 období)	CPV_1	predeterminovaná	Kč/l
x_0	Jednotkový vektor	Const.	predeterminovaná	
$x_{1(t-6)}$	Zpožděný index průmyslových cen krmiv(o 6 období)	KR_6	predeterminovaná	%, (bazický index 2015=100)
$x_{2(t-1)}$	Zpožděná spotřebitelská cena (o 1 období)	SC_1	predeterminovaná	Kč/l

2.2. Popis dat

Deskriptivní statistiky

Proměnná	Průměr	Medián	Směrodatná odchylka	Min	Max
CZV	8,38	8,56	0,91	6,12	9,81
CZV_1	8,38	8,56	0,91	6,12	9,81
CPV	12,29	12,07	0,89	10,74	14,1
CPV_1	12,30	12,14	0,89	10,74	14,1
KR_6	99,74	99	5,35	93,5	115,3
SC_1	19,64	19,72	0,97	16,86	21,18

Korelační matice

Correlation Coefficients, using the observations 1960:01 - 1967:03 5% critical value (two-tailed) = 0.2108 for n = 87

```
CZV CPV CZV_1 CPV_1 KR_6

1.0000 0.6242 0.9794 0.5712 0.1734 CZV

1.0000 0.6584 0.9846 0.6718 CPV

1.0000 0.6222 0.1511 CZV_1

1.0000 0.6525 CPV_1

1.0000 KR_6
```

SC_1 0.8189 CZV 0.6322 CPV 0.8558 CZV_1 0.6243 CPV_1 0.0447 KR_6 1.0000 SC 1

V modelu se vyskytla nežádoucí multikolinearita mezi predeterminovanými proměnnými SC_1 a CZV_1. Tyto dvě proměnné však pochází ze dvou různých rovnic, navíc hodnota sotva přesahuje hranici, a proto ji tam necháme. Multikolinearitu mezi CZV a CZV_1, CZV a SC_1 neřešíme vzhledem k tomu, že se jedná o multikolinearitu mezi vysvětlovanou a vysvětlující proměnnou, která je žádoucí. Je však třeba odstranit multikolinearitu mezi CPV a CPV_1, protože obě dvě proměnné vystupují jako vysvětlující v první rovnici.

Po výměně proměnné CPV_1 za její první diferenci dCPV_1 se již multikolinearita nevyskytuje.

Correlation Coefficients, using the observations 2013:08 - 2020:09 5% critical value (two-tailed) = 0.2120 for n = 86

CZV	CPV	CZV_1	dCPV_1	KR_6	
1.0000	0.6259	0.9794	0.3814	0.1851	CZV
	1.0000	0.6606	0.1178	0.6880	CPV
		1.0000	0.3003	0.1640	CZV_1
			1.0000	0.1124	dCPV_1
				1.0000	KR_6

SC_1 0.8201 CZV 0.6384 CPV 0.8566 CZV_1 0.2054 dCPV_1 0.0675 KR_6 1.0000 SC_1

2.3. Identifikace modelu

Počet endogenních proměnných v modelu je g=2, počet predeterminovaných proměnných v modelu je k=5.

	$oldsymbol{k}_{**}$	$oldsymbol{g}_*$	$k_{**} \geq g_* - 1$	Interpretace
Rovnice 1	1	2	$1 \ge 2 - 1$	Přesně identifikovaná
Rovnice 2	2	2	$2 \ge 2 - 1$	Identifikovaná

 k_{**} - počet predeterminovaných proměnných v rovnici nezahrnutých

 g_* - počet endogenních proměnných v rovnici

Žádná z rovnic není podidentifikovaná, což znamená, že model je **řešitelný** a v souladu s ekonomickou teorií.

2.4. Odhad modelu

1. rovnice

Výstup v SW Gretl pro první rovnici

```
Model 1: TSLS, using observations 2013:08-2020:09 (T = 86)
Dependent variable: CZV
Instrumented: CPV
Instruments: const CZV 1 KR 6 SC 1 dCPV 1
```

ient s	std.	error	t-ratio	p-value	
98 (0.459	643	-0.5896	0.5571	
0 (0.056	4158	18.03	4.40e-030	***
41 (0.133	342	3.466	0.0008	***
84 (0.089	4096	-1.308	0.1944	
570	0.010	0570	1.567	0.1211	
8.38302	23	S.D. de	pendent va:	r 0.91218	8
2.06001	11	S.E. of	regression	n 0.15947	5
0.97087	74	Adjuste	d R-square	d 0.96943	6
673.372	27	P-value	(F)	2.82e-6	1
-211.749	93	Akaike	criterion	433.498	6
445.770	04	Hannan-	Quinn	438.437	4
0.54022	24	Durbin'	s h	5.87854	3
	98 0 41 84 570 8.3830 2.0600 0.9708 673.377 -211.74 445.770	98 0.459 0 0.056 41 0.133 84 0.089 570 0.010 8.383023 2.060011 0.970874 673.3727 -211.7493	98 0.459643 0 0.0564158 41 0.133342 84 0.0894096 570 0.0100570 8.383023 S.D. de 2.060011 S.E. of 0.970874 Adjuste 673.3727 P-value -211.7493 Akaike 445.7704 Hannan-	98	98 0.459643

Přepis do rovnice

$$y_{1t} = -0.271 + 1.017y_{1(t-1)} + 0.462y_{2(t-1)} - 0.117y_{2t} + 0.016x_{1(t-6)} + u_{1t}$$

2. rovnice

Výstup v SW Gretl pro druhou rovnici

```
Model 1: TSLS, using observations 2013:08-2020:09 (T = 86)
Dependent variable: CPV
Instrumented: CZV
Instruments: const CZV_1 KR_6 SC_1 CPV_1
```

		_	_	_	_		
	coeffi	cient	std.	error	t-ratio	p-value	
const	0.787	596	0.36	5358	2.156	0.0340	**
CZV	0.133	541	0.03	02874	4.409	3.12e-05	***
CPV 1	0.951	980	0.02	16548	43.96	8.85e-059	***
sc_ī	-0.067	4780	0.02	92421	-2.308	0.0235	**
Mean depender	nt var	12.28	570	S.D. c	lependent va	r 0.8952	72
Sum squared :	resid	1.555	916	S.E. o	f regressio	n 0.1377	48
R-squared		0.977	162	Adjust	ed R-square	d 0.9763	27
F(3, 82)		1167.	410	P-valu	ie (F)	3.93e-	67
rho		-0.003	797	Durbir	n's h	-0.0359	41
Hausman test	_						

Null hypothesis: OLS estimates are consistent Asymptotic test statistic: Chi-square(1) = 2.28229 with p-value = 0.130859

Přepis do rovnice

$$y_{2t} = 0,788 + 0,134y_{1t} + 0,952y_{2(t-1)} - 0,067x_{2(t-1)} + u_{2t}$$

2.5. Ekonomická verifikace

1. rovnice

CZV_1: Pokud se cena zemědělských výrobců v předchozím období zvýší o 1 Kč/l, tak se současná cena zemědělských výrobců zvýší o 1,017 Kč/l, ceteris paribus. Toto tvrzení <u>je v souladu</u> s předpokladem.

dCPV_1: Pokud se diference ceny průmyslových výrobců v předchozím období zvýší o 1, tak se současná cena zemědělských výrobců zvýší o 0,462 Kč/l, ceteris paribus. Toto tvrzení **je v souladu** s předpokladem.

CPV: Pokud se ceny průmyslových výrobců zvýší o 1 Kč/l, tak se cena zemědělských výrobců sníží o 0,117 Kč/l, ceteris paribus. Toto tvrzení **není v souladu** s předpokladem.

KR_6: Pokud se index průmyslových cen krmiv před šestí měsíci zvýší o 1 %, tak se cena zemědělských výrobců zvýší o 0,016 Kč/l, ceteris paribus. Toto tvrzení **je v souladu** s předpokladem.

2. rovnice

CZV: Pokud se cena zemědělských výrobců zvýší o 1 Kč/l, tak se cena průmyslových výrobců zvýší o 0,134 Kč/l, ceteris paribus. Toto tvrzení **je v souladu** s předpokladem.

CPV_1: Pokud se cena průmyslových výrobců v předchozím období zvýší o 1 Kč/l, tak se současná cena průmyslových výrobců zvýší o 0,952 Kč/l, ceteris paribus. Toto tvrzení **je v souladu** s předpokladem.

SC_1: Pokud se spotřebitelská cena v předchozím období zvýší o 1 Kč/l, tak se cena průmyslových výrobců sníží o 0,067 Kč/l, ceteris paribus. Toto tvrzení **není v souladu** s předpokladem.

2.6. Statistická verifikace

Testování významnosti odhadnutých parametrů

1. rovnice			2. rovnice			
proměnná	p-hodnota	interpretace	proměnná	p- hodnota	interpretace	
const	0,5571	nevýznamný	const	0,0340	Významný na hladině 0,05	
CZV_1	4,40e-030	významný na hladině 0,01	CZV	3,12e-05	Významný na hladině 0,01	
dCPV_1	0,0008	významný na hladině 0,01	CPV_1	8,85e-059	Významný na hladině 0,01	
CPV	0,1944	nevýznamný	SC_1	0,0235	Významný na hladině 0,05	
KR_6	0,1211	nevýznamný				

Testování významnosti modelu

1. rovnice

P-hodnota F-testu je 2.82e-61 < 0.05, model je statisticky významný.

Koeficient determinace $R^2 = 97$ %, což znamená, že změny predeterminovaných proměnných z 97 % vysvětlují změny endogenní proměnné.

2. rovnice

P-hodnota F-testu je 3.93e-67 < 0.05, model je statisticky významný.

Koeficient determinace $R^2 = 97,7$ %, což znamená, že změny predeterminovaných proměnných z 97,7 % vysvětlují změny endogenní proměnné.

2.7. Ekonometrická verifikace

1. rovnice

• Test heteroskedasticidy

```
Test statistic: HET_1 = |-0.000332| / 0.000229 = 1.450179, with p-value = 2 * P(z > 1.450179) = 0.147
```

Ho: Homoskedasticida

P-hodnota = 0,147 > 0.05, přijímáme nulovou hypotézu. V modelu není přítomná heteroskedasticida.

• Test normality reziduí

```
Test for null hypothesis of normal distribution:
Chi-square(2) = 1.336 with p-value 0.51283
```

Ho: Rezidua mají normální rozdělení

P-hodnota = 0,51283 > 0.05, přijímáme nulovou hypotézu. Rezidua mají normální rozdělení.

• Test autokorelací reziduí

```
Test statistic: Pseudo-LMF = 5.131376,
with p-value = P(F(12,81) > 5.13138) = 4.7e-006
```

Ho: Není přítomná autokorelace reziduí

P-hodnota = 4,7e-006 < 0.05, zamítáme nulovou hypotézu. V modelu je přítomná nežádoucí autokorelace reziduí. Šlo by ji odstranit například lagoritmickou transformací.

2. rovnice

Test heteroskedasticidy

```
Test statistic: HET_1 = |0.000127| / 0.000153 = 0.830598, with p-value = 2 * P(z > 0.830598) = 0.406
```

Ho: Homoskedasticida

P-hodnota = 0,406 > 0.05, přijímáme nulovou hypotézu. V modelu není přítomná heteroskedasticida.

• Test normality reziduí

```
Test for null hypothesis of normal distribution:
Chi-square(2) = 5.505 with p-value 0.06376
```

Ho: Rezidua mají normální rozdělení

P-hodnota = 0,06376 > 0.05, přijímáme nulovou hypotézu. Rezidua mají normální rozdělení.

• Test autokorelací reziduí

```
Test statistic: Pseudo-LMF = 1.047583, with p-value = P(F(12,82) > 1.04758) = 0.417
```

Ho: Není přítomná autokorelace reziduí

P-hodnota = 0.417 > 0.05, přijímáme nulovou hypotézu. V modelu není přítomná autokorelace reziduí.

2.8. Matice β , matice Γ a matice M. Redukovaný tvar modelu

$$\beta = \begin{pmatrix} y_{1t} & y_{2t} \\ 1 & 0.117 \\ -0.134 & 1 \end{pmatrix}$$

$$\begin{matrix} x_0 & y_{1(t-1)} & x_{1(t-6)} & y_{2(t-1)} & x_{2(t-1)} \\ \Gamma = \begin{pmatrix} 0.271 & -1.017 & -0.016 & -0.462 & 0 \\ -0.788 & 0 & 0 & -0.952 & 0.067 \end{pmatrix}$$

$$M = \begin{pmatrix} x_0 & y_{1(t-1)} & x_{1(t-6)} & y_{2(t-1)} & x_{2(t-1)} \\ 0.74 & 0.134 & 0.002 & 0.998 & -0.066 \end{pmatrix}$$

Redukovaný tvar modelu:

$$y_{1t} = -0.358 + 1.001y_{1(t-1)} + 0.016x_{1(t-6)} + 0.345y_{2(t-1)} + 0.008x_{2(t-1)} + u_{1t}$$
$$y_{2t} = 0.74 + 0.134y_{1(t-1)} + 0.002x_{1(t-6)} + 0.998y_{2(t-1)} - 0.066x_{2(t-1)} + u_{2t}$$

Interpretace redukovaného tvaru modelu:

1. rovnice

- **CZV_1:** Pokud se cena zemědělských výrobců v předchozím období zvýší o 1 Kč/l, tak se současná cena zemědělských výrobců zvýší o 1,001 Kč/l, ceteris paribus. Toto tvrzení **je v souladu** s předpokladem. Výsledek se skoro neliší oproti výsledku strukturálního tvaru.
- **KR_6**: Pokud se index průmyslových cen krmiv před šestí měsíci zvýší o 1 %, tak se cena zemědělských výrobců zvýší o 0,016 Kč/l, ceteris paribus. Toto tvrzení **je v souladu** s předpokladem. Výsledek je stejný jako ve strukturálním tvaru, jedná se o přímou vazbu.
- **dCPV_1**: Pokud se diference ceny průmyslových výrobců v předchozím období zvýší o 1, tak se současná cena zemědělských výrobců zvýší o 0,345 Kč/l, ceteris paribus. Toto tvrzení <u>je v souladu</u> s předpokladem. Výsledek je trochu nižší oproti výsledku strukturálního tvaru.

SC_1: Pokud se spotřebitelská cena v předchozím období zvýší o 1 Kč/l, tak se cena zemědělských výrobců zvýší o 0,008 Kč/l, ceteris paribus. Toto tvrzení **je v souladu** s předpokladem. Jedná se o zprostředkovanou vazbou s hodně malým působením.

2. rovnice

CZV_1: Pokud se cena zemědělských výrobců v předchozím období zvýší o 1 Kč/l, tak se současná cena průmyslových výrobců zvýší o 0,134 Kč/l, ceteris paribus. Toto tvrzení **je v souladu** s předpokladem. Jedná se o zprostředkovanou vazbou s logickou intenzitou působení.

KR_6: Pokud se index průmyslových cen krmiv před šestí měsíci zvýší o 1 %, tak se cena průmyslových výrobců zvýší o 0,002 Kč/l, ceteris paribus. Toto tvrzení **je v souladu** s předpokladem. Jedná se o zprostředkovanou vazbou s hodně malým působením.

CPV_1: Pokud se cena průmyslových výrobců v předchozím období zvýší o 1 Kč/l, tak se současná cena průmyslových výrobců zvýší o 0,998 Kč/l, ceteris paribus. Toto tvrzení **je v souladu** s předpokladem. Výsledek se skoro neliší oproti výsledku strukturálního tvaru.

SC_1: Pokud se spotřebitelská cena v předchozím období zvýší o 1 Kč/l, tak se cena průmyslových výrobců sníží o 0,066 Kč/l, ceteris paribus. Toto tvrzení **není v souladu** s předpokladem. Výsledek je stejný jako ve strukturálním tvaru, jedná se o přímou vazbu.

2.9. Aplikace modelu

Výpočet pružností pro období 09/2020:

1. rovnice

$$y_{1t} = -0,271 + 1,017y_{1(t-1)} + 0,462y_{2(t-1)} - 0,117y_{2t} + 0,016x_{1(t-6)} + u_{1t}$$

$$\hat{y} = -0.271 + 1.017 \times 8.23 + 0.462 \times 0 - 0.117 \times 11.98 + 0.016 \times 96.8 = 8.246$$

• **CZV_1**:
$$E = 1,017 \times \left(\frac{8,23}{8,246}\right) = 1,015 \%$$

Pokud se cena zemědělských výrobců v předchozím období zvýší o 1 %, tak se současná cena zemědělských výrobců zvýší o 1,015 % Kč/l, ceteris paribus. Toto tvrzení **je v souladu** s předpokladem.

• **dCPV_1:**
$$E = 0.462 \times \left(\frac{0}{8.246}\right) = 0.462 \%$$

Pokud se diference ceny průmyslových výrobců v předchozím období zvýší o 1 %, tak se současná cena zemědělských výrobců zvýší o 0,462 %, ceteris paribus. Toto tvrzení <u>je v souladu</u> s předpokladem.

• **CPV:**
$$E = -0.117 \times \left(\frac{11.98}{8.246}\right) = -0.17 \%$$

Pokud se cena průmyslových výrobců zvýší o 1 %, tak se cena zemědělských výrobců sníží o 0,17 %, ceteris paribus. Toto tvrzení **není v souladu** s předpokladem.

• **KR_6:**
$$E = 0.016 \times \left(\frac{96.8}{8.246}\right) = 0.188 \%$$

Pokud se index průmyslových cen krmiv před šestí měsíci zvýší o 1 %, tak se cena zemědělských výrobců zvýší o 0,188 %, ceteris paribus. Toto tvrzení **je v souladu** s předpokladem.

2. rovnice

$$y_{2t} = 0.788 + 0.134y_{1t} + 0.952y_{2(t-1)} - 0.067x_{2(t-1)} + u_{2t}$$

$$\hat{y} = 0.788 + 0.134 \times 8.21 + 0.952 \times 11.96 - 0.067 \times 19.41 = 11.974$$

• **CZV**:
$$E = 0.134 \times \left(\frac{8.21}{11.974}\right) = 0.092 \%$$

Pokud se cena zemědělských výrobců zvýší o 1 %, tak se cena průmyslových výrobců zvýší o 0,092 %, ceteris paribus. Toto tvrzení **je v souladu** s předpokladem.

• **CPV_1**:
$$E = 0.952 \times \left(\frac{11.96}{11.974}\right) = 0.95 \%$$

Pokud se cena průmyslových výrobců v předchozím období zvýší o 1 %, tak se současná cena průmyslových výrobců zvýší o 0,95 %, ceteris paribus. Toto tvrzení **je v souladu** s předpokladem.

• SC_1:
$$E = -0.067 \times \left(\frac{19.41}{11.974}\right) = -0.109 \%$$

Pokud se spotřebitelská cena v předchozím období zvýší o 1 %, tak se cena průmyslových výrobců sníží o 0,109 %, ceteris paribus. Toto tvrzení **není v souladu** s předpokladem.

Simulace definovaných scénářů:

Simulace 1: Jak se změní cena zemědělských výrobců, pokud se cena zemědělských výrobců v předchozím období sníží o 30 %? (09/2020)

Při snížení ceny zemědělských výrobců v předchozím období o 30 % dojde ke snížení ceny zemědělských výrobců o 30,45 % na částku 5,71 Kč.

Simulace 2: Jak se změní cena průmyslových výrobců, pokud se cena zemědělských výrobců sníží o 2 Kč? (09/2020)

Cena průmyslových výrobců se sníží o 24,36*0,092 = 2,24 % 100 %......11,98 Kč

Při snížení ceny zemědělských výrobců o 2 Kč dojde ke snížení ceny průmyslových výrobců o 0,27 Kč.

3. Závěr

V první části byla uvedena endogenní proměnná cena zemědělských výrobců (CZV), která byla vysvětlena zpožděnou cenou zemědělských výrobců (CZV_1), cenou průmyslových výrobců (CPV), zpožděnou cenou průmyslových výrobců (CPV_1) zpožděným indexem cen krmiv (KR_6). Pro odstranění autokorelaci bylo nutný proměnnou CPV_1 vyměnit za její první diferenci dCPV_1. Podle odhadu v SW Gretl, vypovídací schopnost modelu je 97 % a model je statisticky významný. Všechny proměnné kromě const. jsou statisticky významné. Z toho jenom proměnná CPV neprošla ekonomickou verifikací. V modelu se vyskytuje autokorelace reziduí, ostatní předpoklady jsou splněný. Koeficienty u významných proměnných jsou CZV_1-1,02, KR_6-0,016, dCPV_1-0,46, což by mohlo odpovídat realitě zemědělské výroby mléka.

Ve druhé části byl původní model rozšířen na simultánní, kde jako endogenní proměnné vystupují CZV a CPV, predeterminované proměnné jsou CZV_1, CPV_1, KR_6, SC_1 (zpožděná spotřebitelská cena). Zase bylo nutný odstranit multikolinearitu pomocí dCPV_1. Model je identifikovaný. Obě dvě rovnice mají vysokou vypovídací schopnost (kolem 97 %) a F-testy prokázaly významnost modelu. V první rovnici (CZV) se jako statisticky a ekonomicky významné jeví proměnné CZV_1 (koef = 1,02) a dCPV_1 (koef = 0,46), což odpovídá realitě. Proměnná KR_6 je taky skoro významná (p-hodnota = 0,12). Ve druhé rovnici (CPV) jsou všechny proměnné statisticky významné, z toho jsou ekonomicky významné CPV_1 (koef = 0,95) a CZV (koef = 0,13), což odpovídá realitě. Testy předpokladu: v první rovnici je výskyt autokorelaci rezidují, u druhé rovnici je všechno v pořádku.

Model by mohl být zlepšen odstraněním autokorelací rezidují a přidáním dalších významných proměnných jako například výše dotací pro zemědělce, index spotřebitelských cen atd, ale celkové je vhodný a prokazuje hlavní předpoklad o tom, že se ceny zemědělských výrobců a ceny průmyslových výrobců navzájem ovlivňují.

4. Datová tabulka

	CZV	CZV_1	CPV	KR_6	SC_1	dCPV_1	CPV_1
01.08.2013	8,38	8,31	12,96	115,2	19,21	0,03	12,78
01.09.2013	8,5	8,38	13,4	115,3	19,03	0,18	12,96
01.10.2013	8,72	8,5	13,51	113,6	19,14	0,44	13,4
01.11.2013	9,05	8,72	13,56	113,5	19,49	0,11	13,51
01.12.2013	9,37	9,05	13,58	113,2	19,49	0,05	13,56
01.01.2014	9,57	9,37	13,67	112,8	20,49	0,02	13,58
01.02.2014	9,73	9,57	13,81	111,4	19,86	0,09	13,67
01.03.2014	9,8	9,73	13,88	105,8	19,96	0,14	13,81
01.04.2014	9,81	9,8	13,83	102,1	21,07	0,07	13,88
01.05.2014	9,78	9,81	13,82	101,6	21,18	-0,05	13,83
01.06.2014	9,68	9,78	13,93	101,5	21,07	-0,01	13,82
01.07.2014	9,55	9,68	13,96	102,8	21,05	0,11	13,93
01.08.2014	9,52	9,55	14,1	103	21,14	0,03	13,96
01.09.2014	9,33	9,52	13,79	103,5	20,83	0,14	14,1
01.10.2014	9,16	9,33	13,78	103,8	20,21	-0,31	13,79
01.11.2014	9,09	9,16	13,47	104,2	21,07	-0,01	13,78
01.12.2014	9,01	9,09	13,38	103,9	20,9	-0,31	13,47

01.01.2015	8,95	9,01	13,64	103,9	20,59	-0,09	13,38	
01.02.2015	8,61	8,95	13,39	103,5	20,33	0,26	13,64	
01.03.2015	8,48	8,61	13,24	101,4	21,04	-0,25	13,39	
01.04.2015	8,38	8,48	13,3	100,3	20,8	-0,15	13,24	
01.05.2015	8,24	8,38	12,88	99,5	20,52	0,06	13,3	
01.06.2015	7,82	8,24	12,88	99	20,27	-0,42	12,88	
01.07.2015	7,53	7,82	12,75	99,2	19,86	0	12,88	
01.08.2015	7,31	7,53	12,74	99,5	18,62	-0,13	12,75	
01.09.2015	7,14	7,31	12,4	100,2	18,98	-0,01	12,74	
01.10.2015	7,14	7,14	12,44	100,1	19,07	-0,34	12,4	
01.11.2015	, 7,31	7,14	12,37	100,2	19,51	0,04	12,44	
01.12.2015	7,44	7,31	12,33	100	18,55	-0,07	12,37	
01.01.2016	, 7,5	7,44	12,32	100,2	17,8	-0,04	12,33	
01.02.2016	, 7,33	, 7,5	12,23	100,4	19,21	-0,01	12,32	
01.03.2016	7,07	7,33	11,87	100,2	18,74	-0,09	12,23	
01.04.2016	6,83	7,07	11,9	100	17,53	-0,36	11,87	
01.05.2016	6,59	6,83	11,43	100,1	18,59	0,03	11,9	
01.06.2016	6,27	6,59	11,17	99,9	17,81	-0,47	11,43	
01.07.2016	6,14	6,27	10,74	100	17,44	-0,26	11,17	
01.08.2016	6,12	6,14	10,75	99,4	16,86	-0,43	10,74	
01.09.2016	6,2	6,12	10,76	98,7	17,63	0,01	10,75	
01.10.2016	6,44	6,2	10,74	98,4	17,27	0,01	10,76	
01.11.2016	6,8	6,44	10,83	97,7	17,89	-0,02	10,74	
01.12.2016	7,23	6,8	10,86	97,8	18,32	0,09	10,83	
01.01.2017	7,63	7,23	11,08	98	18,61	0,03	10,86	
01.02.2017	7,84	7,63	11,16	97,5	18,73	0,22	11,08	
01.03.2017	8,07	7,84	11,49	95,6	19,35	0,08	11,16	
01.04.2017	8,2	8,07	11,39	95,2	19,04	0,33	11,49	
01.05.2017	8,3	8,2	11,39	94	19,8	-0,1	11,39	
01.06.2017	8,34	8,3	11,31	93,9	18,71	0	11,39	
01.07.2017	8,41	8,34	11,39	93,8	19,58	-0,08	11,31	
01.08.2017	8,48	8,41	11,41	93,5				
01.09.2017	8,64	8,48	11,62	93,8	20,01	0,02	11,41	
01.10.2017	8,88	8,64	11,81	94,5	19,72	0,21	11,62	
01.11.2017	9,15	8,88	11,87	94,5	19,92	0,19	11,81	
01.12.2017	9,31	9,15	11,89	94,6	20,47	0,06	11,87	
01.01.2018	9,37	9,31	11,92	94,3	20,32	0,02	11,89	
01.02.2018	9,05	9,37	11,83	94,3	20,32	0,03	11,92	
01.03.2018	8,84	9,05	11,83	94,8	20,55	-0,09	11,83	
01.04.2018	8,6	8,84	11,74	94,8	19,44	0	11,83	
01.05.2018	8,38	8,6	11,81	94,9	19,68	-0,09	11,74	
01.06.2018	8,23	8,38	11,75	94,7	19,66	0,07	11,81	
01.00.2018	8,19	8,23	11,73	94,9	19,17	-0,06	11,75	
01.07.2018	8,13	8,23 8,19	11,84	94,9	20,19	0,00	11,73	
01.08.2018	8,23 8,28	8,23	11,83	94,8	20,19	0,03	11,84	
01.09.2018	8,46	8,28	11,83	94,8 95	20,08	-0,0 4	11,83	
01.10.2018	8,40 8,77	8,46	11,79	95,1	20,23 19,57	-0,03 -0,02	11,83	
01.11.2018	9,02	8,40 8,77	11,79	95,1 95,1	19,45	-0,02 -0,02	11,79	
01.12.2010	9,02	0,77	11,/0	33,1	13,43	-0,02	11,/3	

01.01.2019	9,15	9,02	11,91	95,3	19,67	-0,01	11,78
01.02.2019	9,11	9,15	12,07	96	19,27	0,13	11,91
01.03.2019	9,05	9,11	12,15	98,3	20,12	0,16	12,07
01.04.2019	8,99	9,05	12,14	98,8	20,22	0,08	12,15
01.05.2019	8,93	8,99	12,19	98,7	20,06	-0,01	12,14
01.06.2019	8,86	8,93	12,19	99,1	20,75	0,05	12,19
01.07.2019	8,69	8,86	12,27	98,6	19,95	0	12,19
01.08.2019	8,6	8,69	12,2	98,9	20,24	0,08	12,27
01.09.2019	8,56	8,6	12,17	98,9	20,38	-0,07	12,2
01.10.2019	8,62	8,56	12,36	99,2	20,06	-0,03	12,17
01.11.2019	8,77	8,62	12,4	99,5	20,34	0,19	12,36
01.12.2019	8,89	8,77	12,38	99,6	20,55	0,04	12,4
01.01.2020	8,95	8,89	12,18	99,5	20,79	-0,02	12,38
01.02.2020	8,9	8,95	11,98	99,2	19,39	-0,2	12,18
01.03.2020	8,83	8,9	12,06	98,3	19,69	-0,2	11,98
01.04.2020	8,77	8,83	12,01	97,5	20,07	0,08	12,06
01.05.2020	8,64	8,77	12,02	96,7	19,9	-0,05	12,01
01.06.2020	8,33	8,64	11,98	96,4	20,03	0,01	12,02
01.07.2020	8,27	8,33	11,96	96,9	19,32	-0,04	11,98
01.08.2020	8,23	8,27	11,96	96,6	19,26	-0,02	11,96
01.09.2020	8,21	8,23	11,98	96,8	19,41	0	11,96
PRŮMĚR	8,38	8,38	12,29	99,74	19,64	-0,01	12,3
MEDIÁN	8,56	8,56	12,07	99	19,72	0	12,14
MIN	6,12	6,12	10,74	93,5	16,86	-0,47	10,74
MAX	9,81	9,81	14,1	115,3	21,18	0,44	14,1
SMĚRODATNÁ							
ODCHYLKA	0,91	0,91	0,89	5,35	0,97	0,16	0,89

Použitá literatura

ČSÚ: Porovnání cen vybraných zemědělských a průmyslových výrobků a spotřebitelských cen potravinářského zboží. Dostupné z: https://vdb.czso.cz/vdbvo2/faces/cs/index.jsf?page=vystup-objekt&z=T&f=TABULKA&katalog=31785&pvo=CEN02A2&evo=v1570_!_CEN02A2 -2020_1

ČSÚ: Indexy cen průmyslových výrobců – bazický index. Dostupné z: https://vdb.czso.cz/vdbvo2/faces/cs/index.jsf?page=vystup-objekt&z=T&f=TABULKA&skupId=68&katalog=31783&pvo=CEN04AA&pvo=CEN04AA&evo=v676_!_CEN-PRU-BAZIC2005-M_1&evo=v2763_!_PRUMklasifikacelek-IR15_1