Teorema 4.1: Il Pumping Lemma per Linguaggi Regolari

Se L è un linguaggio regolare, per il Pumping Lemma, allora Allora $\exists n, \forall w \in L : |w| \geq n \Rightarrow w = xyz$ tale che:

- $|xy| \leq n$

Esempio: $L_{\it pal}$

- Sia L_{pal} il linguaggio delle stringhe palindrome.
- Supponiamo che L_{pal} sia regolare. Allora $w=0^n10^n\in L_{pal}$.
- Per il pumping lemma, w=xyz, $|xy|\leq n$, $y\neq\epsilon$ e $xy^kz\in L_{pal}$

$$w = \underbrace{000 \cdots 00}_{x} \underbrace{0...0100 \cdots 00}_{z}$$

- In particolare, $xz \in L_{pal}$, ma xz ha meno zeri a sinistra di quelli a destra.
- Il linguaggio non è regolare, ma è libero. Ne abbiamo già visto la grammatica.

Esempio: L_1

• Sia L_1 il linguaggio seguente:

$${a^n b^m c^{n+m} \in {a,b}^* | n > = 1, m > = 0}$$

- Supponiamo che L_1 sia regolare. Allora $w = a^n b^m c^{n+m} \in L_1$.
- Per il pumping lemma, w = xyz, $|xy| \le n$, $y \ne \epsilon$ e $xy^kz \in L_1$
- Fissiamo n come costante e $w = a^n b^m c^n + m$. Per la suddivisione notiamo che, in ogni caso, $y = a^j$, con $0 < j \le n$.
- In particolare, xz dovrebbe essere in L_1 , ma $xz = a^{n-j}b^mc^{n+m}$ ha meno a e quindi $|a^{n-j}b^m| \neq |c^{n+m}|$. Di conseguenza non appartiene a L_1 .
- Il linguaggio non è regolare, ma è libero. Pensare a una grammatica libera per L_1 .

Esempio: L_2

• Sia *L*₂ il linguaggio seguente:

$${a^{i}b^{j} \in {a,b}^{*}|mcd(i,j) = 1}$$

- Supponiamo che L_2 sia regolare.
- Fissiamo n come costante e $w = a^q b^{(q-1)!}$, in cui q e il più piccolo primo maggiore di n.
- Allora y è formato da sole a. In particolare, xz dovrebbe essere in L_2 , ma $xz = a^{q-j}b^{(q-1)!}$ è tale che mcd(q-j,(q-1)!) = q-j. Di conseguenza non appartiene a L_2 .
- Il linguaggio non è regolare. Non è nemmeno libero.

Esempio: L_3

• Sia *L*₃ il linguaggio seguente:

$$\{0^{n^2}|n \text{ intero}\}$$

- Supponiamo che L_3 sia regolare.
- Fissiamo *n* come costante e $w = 0^{n^2}$.
- Allora $y = 0^j$ è formato di 0, con $1 \le j \le n$. In particolare, xyyz dovrebbe essere in L_3 ,
- ma xyyz è tale che $n^2 + 1 < |xyyz| < n^2 + n$. Il successivo quadrato è tuttavia $(n+1)^2 = n^2 + 2n + 1$. Di conseguenza non pu ò appartenere a L_3 .
- Il linguaggio non è regolare. Non è nemmeno libero.

Propriet à di Chiusura 1

Si definisce min di un linguaggio L come l'insieme delle stringhe w in L tali che nessun prefisso proprio (ovvero diverso da ϵ e da w stessa) di w sia in L.

$$min(L) = \{ w \in L : \not\exists u \in L, v \in \Sigma^+, t.c. \ w = uv \}$$

Ad esempio, se $L' = \{00, 001, 0011, 101\}$ allora $min(L') = \{00, 101\}$. Dimostrare, in generale, che se L è regolare, allora lo è anche min(L).

Proprietà di Chiusura 1

Dimostrazione. Sia L riconosciuto da un DFA

$$A = (Q_A, \Sigma, \delta_A, q_0, F_A).$$

Vogliamo scegliere solo quegli stati finali q per i quali non esiste un percorso dallo stato iniziale q_0 a q che passi per un altro stato finale. Modifichiamo la DFA, cancellando tutti gli archi che escono da qualsiasi stato accettante (inclusi i cappi) e reindirizzandoli verso uno stato pozzo. Allora $L(B) = \min(L)$.

Tagliare le transizioni che escono da ogni stato di accettazione

Proprietà di Chiusura 2

Sia L un linguaggio e a un simbolo, allora si definisce L/a il quoziente di L e a, come l'insieme delle stringhe w tali che $wa \in L$. Ad esempio se $L = \{a, aa, baa\}$, allora $L/a = \{\epsilon, a, ba\}$. Dimostrare che se L è regolare anche L/a lo è. (Si consiglia di partire da un DFA per L e di dire come modificarlo per ottenere un DFA per L/a.)

Dimostrazione. Sia L riconosciuto da un DFA

$$A = (Q_A, \Sigma, \delta_A, q_0, F_A).$$

Si costruisca un nuovo DFA B, che è fatto come quello per A, tranne per il fatto che uno stato q è finale per B se e solo se $\delta(q, a)$ è finale per A.

Di conseguenza B accetta una stringa w se e solo se A accetta wa. Allora L(B) = L/a.