Аналитический подход к решению минимаксных задач планирования эксперимента

Торбеева Ольга Юрьевна, гр. 14.Б02-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: к.ф.-м.н. Шпилев П.В.

Рецензент: д.ф.-м.н., проф. Мелас В.Б.

Санкт-Петербург 2018 г.

<u>Осно</u>вные понятия,

Пусть результаты эксперимента описываются уравнением регрессии:

$$y_i = \eta(x_i, \theta) + \varepsilon_i, \quad i = 1, \dots, n,$$

где

- $\eta(x,\theta)$ функция регрессии, известная с точностью до вектора параметров $\theta=(\theta_1,\ldots,\theta_m)\in\mathbb{R}^m$;
- $x_1, \ldots, x_n \in \mathfrak{X}$ условия проведения эксперимента;
- y_1, \ldots, y_n результаты наблюдений;
- ullet $arepsilon_i \sim N(0,\sigma^2)$ независимые случайные ошибки.

Определение

Планом эксперимента называется дискретная вероятностная мера на множестве планирования $\mathfrak X$ с конечным носителем, задаваемая таблицей:

$$\xi = \left(\begin{array}{cccc} x_1 & x_2 & \dots & x_n \\ \omega_1 & \omega_2 & \dots & \omega_n \end{array}\right),$$

- ullet x_i точки, в которых проводятся измерения;
- ullet ω_i доля наблюдений, проводимых в точке $x_i, \sum_{i=1}^n \omega_i = 1$, $\omega_i > 0$.

Рассмотрим тригонометрические регрессионные модели на множестве планирования $\mathfrak{X}=[0,2\pi)$:

$$\eta_1(x,\theta_1) = \theta_{1,0} + \sum_{i=1}^m \left(\theta_{1,2i-1} \sin(ix) + \theta_{1,2i} \cos(ix) \right),$$

$$\eta_2(x,\theta_2) = \theta_{2,0} + \sum_{i=1}^{m-2} \left(\theta_{2,2i-1} \sin(ix) + \theta_{2,2i} \cos(ix) \right).$$

Введем разность моделей:

$$\bar{\eta}(x,q,b) = b_1 \cos(mx) + b_2 \sin(mx) + b_3 \cos((m-1)x) + b_4 \sin((m-1)x) + \sum_{i=1}^{m-2} (q_{2i} \cos(ix) + q_{2i-1} \sin(ix)) + q_0.$$

В дальнейшем будем рассматривать только случай $b_1^2 + b_2^2 = 1$.

Определения T-оптимальных планов

Определение

 Π лан ξ^* называется **Т-оптимальным планом**, если

$$\xi^* = \arg\max_{\xi} \min_{q \in \mathbb{R}^{2m-3}} \int_{\mathfrak{X}} \bar{\eta}(x, q, b)^2 \xi(dx),$$

$$R_{\xi}(b) = \min_{q \in \mathbb{R}^{2m-3}} \int_{\mathfrak{X}} \bar{\eta}(x, q, b)^2 \xi(dx), \quad \bar{R}(b) = \max_{\xi} R_{\xi}(b).$$

Определение

1. План ξ^* называется **байесовским Т-оптимальным планом**, если он максимизирует величину

$$\int_{\mathbb{R}^4} R_{\xi}(b) \,\bar{\pi}(db),$$

где $ar{\pi}$ — априорное распределение параметра b.

 План ξ* называется стандартизированным максиминным Т-оптимальным планом, если он максимизирует величину эффективности

$$\operatorname{eff}(\xi) = \inf_{b \in \mathfrak{B} \subset \mathbb{R}^4} \frac{R_{\xi}(b)}{\bar{R}(b)}.$$

T-оптимальные планы для дискриминации тригонометрических моделей

Определение (Сильно симметричный план)

Будем говорить, что план ξ сильно симметричен относительно α , если он одновременно симметричен относительно α и $\alpha+\frac{\pi}{2}$.

Определение

Будем говорить, что $\bar{\eta}(x,q,b)$ является

ullet разностью типа $\cos{-\cos}$ со сдвигом lpha, если при q=0 она имеет вид:

$$\bar{\eta}(x,0,b) = \cos(m(x-\alpha)) + b\cos((m-1)(x-\alpha)) =: CC_{m,\alpha}(x,b).$$

ullet разностью типа $\cos -\sin co$ сдвигом lpha, если ее степень m четна и при q=0 она имеет вид:

$$\bar{\eta}(x,0,b) = \cos(m(x-\alpha)) + b\sin((m-1)(x-\alpha)) =: CS_{m,\alpha}(x,b).$$

ullet разностью типа $\sin\cos c$ со сдвигом lpha, если ее степень m нечетна и при q=0 она имеет вид:

$$\bar{\eta}(x,0,b) = \sin(m(x-\alpha)) + b\cos((m-1)(x-\alpha)) =: SC_{m,\alpha}(x,b).$$

Т-оптимальные планы для дискриминации тригонометрических моделей

Лемма (О виде $R_{\mathcal{E}}$)

Для разностей $\cos{-\cos}$, $\sin{-\cos}$, $\cos{-\sin}$ и сильно симметричного относительно α плана ξ справедливо следующее: выражение

$$\mathcal{M}_{m,\alpha}(x,b) + \sum_{i=0}^{m-2} (q_{2i}^* \cos(ix) + q_{2i+1}^* \sin(ix)),$$

где

$$(q_0^*, \dots, q_{2m-3}^*) =$$

$$= \arg \min_{q \in \mathbb{R}^{2m-2}} \int_{\mathfrak{X}} \left| \mathcal{M}_{m,\alpha}(x,b) + \sum_{i=0}^{m-2} (q_{2i}\cos(ix) + q_{2i+1}\sin(ix)) \right|^2 d\xi,$$

является многочленом от $\cos(x-\alpha)$ для $\mathcal{M}_{m,\alpha}=CC_{m,\alpha}$ и многочленом от $\sin(x-\alpha)$ для $\mathcal{M}_{m,\alpha}=SC_{m,\alpha}$ и $\mathcal{M}_{m,\alpha}=CS_{m,\alpha}$.

Т-оптимальные планы для дискриминации тригонометрических моделей

Лемма (О $ar{R}(b)$)

Выражение

$$\mathcal{M}_{m,\alpha}(x,b) + \sum_{i=0}^{m-2} (q_{2i}^* \cos(ix) + q_{2i+1}^* \sin(ix)),$$

где

$$(q_0^*, \dots, q_{2m-3}^*) =$$

$$= \arg \min_{q \in \mathbb{R}^{2m-2}} \max_{x \in \mathfrak{X}} \left| \mathcal{M}_{m,\alpha}(x, b) + \sum_{i=0}^{m-2} (q_{2i} \cos(ix) + q_{2i+1} \sin(ix)) \right|^2,$$

является многочленом от $\cos(x-\alpha)$ для $\mathcal{M}_{m,\alpha}=CC_{m,\alpha}$ и многочленом от $\sin(x-\alpha)$ для $\mathcal{M}_{m,\alpha}=SC_{m,\alpha}$ и $\mathcal{M}_{m,\alpha}=CS_{m,\alpha}$. При этом

$$\bar{R}(b) = \max_{x \in \mathfrak{X}} \left| \mathcal{M}_{m,\alpha}(x,b) + \sum_{i=0}^{m-2} (q_{2i}^* \cos(ix) + q_{2i+1}^* \sin(ix)) \right|^2.$$

Т-оптимальные планы для дискриминации тригонометрических моделей

Предполагаем $m \geq 2$.

Рассмотрим нули $-1 = t_0 < \ldots < t_m = 1$ многочлена

$$(t^2-1)(U_{m-1}(t)+\beta U_{m-3}(t)).$$

Положим $\varphi_k = \arccos(t_k)$, $k = 0, \dots, m$,

$$p_0 = p_m = \frac{1+\beta}{2[m+\beta(m-2)]}, \quad p_k = \frac{1}{2} \left[m - 1 - \frac{(1+\beta)U_{m-2}(t_k)}{U_m(t_k) + \beta U_{m-2}(t_k)} \right]^{-1}.$$

Определим план $\xi_{m,\beta,lpha}$:

$$\xi_{m,\beta,\alpha} = \begin{pmatrix} \varphi_m + \alpha & \dots & \varphi_1 + \alpha & \varphi_0 + \alpha & 2\pi - \varphi_1 + \alpha & \dots & 2\pi - \varphi_{m-1} + \alpha \\ p_m & \dots & p_1 & p_0 & p_1 & \dots & p_{m-1} \end{pmatrix}.$$

T-оптимальные планы для дискриминации тригонометрических моделей

А1. $\bar{\pi}(db)$ — произвольное распределение, симметричное относительно нуля, с конечным математическим ожиданием (тогда оно равно нулю)

$$\xi_{m,\beta,\alpha} = \begin{pmatrix} \varphi_m + \alpha & \dots & \varphi_1 + \alpha & \varphi_0 + \alpha & 2\pi - \varphi_1 + \alpha & \dots & 2\pi - \varphi_{m-1} + \alpha \\ p_m & \dots & p_1 & p_0 & p_1 & \dots & p_{m-1} \end{pmatrix}$$

Теорема (О байесовских T-оптимальных планах)

При $\beta = \min\{1, \int b^2 \, \bar{\pi}(db)\}$ планы

- $\xi_{m,\beta,\alpha}$ для разности \cos - \cos ,
- ullet $\xi_{m,eta,lpha+rac{\pi}{2}}$ для разности $\operatorname{cos-sin}$ и четного m,
- ullet $\xi_{m,eta,lpha+rac{\pi}{2}}$ для разности \sin - \cos и нечетного m

есть единственные байесовские T-оптимальные планы на множестве сильно симметричных относительно α планов при априорном распределении $\bar{\pi}(db)$, удовлетворяющем предположению ${\bf A1}$.

T-оптимальные планы для дискриминации тригонометрических моделей

 ${f A2.}\,\,{\mathfrak B}$ — произвольное замкнутое множество из ${\mathbb R}$, симметричное относительно нуля

$$\xi_{m,\beta,\alpha} = \begin{pmatrix} \varphi_m + \alpha & \dots & \varphi_1 + \alpha & \varphi_0 + \alpha & 2\pi - \varphi_1 + \alpha & \dots & 2\pi - \varphi_{m-1} + \alpha \\ p_m & \dots & p_1 & p_0 & p_1 & \dots & p_{m-1} \end{pmatrix}$$

Tеорема (О максиминных T-оптимальных планах)

При $\beta = 1 - 2h^*$ планы

- $\xi_{m,\beta,\alpha}$ для разности \cos - \cos ,
- ullet $\xi_{m,eta,lpha+rac{\pi}{2}}$ для разности $\operatorname{cos-sin}$ и четного m,
- ullet $\xi_{m,eta,lpha+rac{\pi}{2}}$ для разности \sin - \cos и нечетного m

есть единственные стандартизированные максиминные T-оптимальные планы на множестве сильно симметричных относительно α планов с множеством \mathfrak{B} , удовлетворяющим предположению $\mathbf{A2}$, где h^* — единственная на интервале $[0,\frac{1}{2}]$ точка максимума функции

$$\inf_{b \in \mathfrak{B}} \frac{b^2 + h}{\bar{R}(b)} (1 - h).$$

Рассмотрим один из простейших случаев, когда разность моделей не сводится к полиному. Пусть эта разность равна

$$\bar{\eta}(x, b, q) = \sin 2x + b \cos x + q.$$

- При $\mathfrak{B} = [-d,d]$ опорные точки максиминных планов симметричны как относительно 0, так и относительно $\frac{\pi}{2}$, а веса равны между собой
- ullet При $d \geq d_* pprox 1.15$ максиминный план постоянен и равен

$$\xi_{d_*} = \begin{pmatrix} 0.62 & 2.57 & 3.76 & 5.67 \\ 0.25 & 0.25 & 0.25 & 0.25 \end{pmatrix},$$

при этом величина эффективности ${
m eff}(\xi_{d_*}) pprox 0.5$

Численное решение задачи оптимизации

При $d < d_*$ максиминные планы зависят от d, а ${
m eff}(\xi_d)$ монотонно возрастает с уменьшением d и достигает 1 в нуле.

График зависимости величины эффективности максиминных планов от d.

Результаты

- Исследована задача дискриминации тригонометрических регрессионных моделей, отличающихся на два порядка.
- Несколько типов таких задач удалось свести к задаче дискриминации полиномиальных моделей.
- Для нескольких задач, сводящихся к полиномиальным моделям, и одной из задач, не сводящейся к полиномиальным моделям, решение получено численно.