1) Given an image dataset for object detection, how would you preprocess the data and create region proposals for Fast R-CNN? Consider the following code snippet:	nt		
investora			
import cv2 import numpy as np			
from skimage.feature import hog	-		-
· · · · · · · · · · · · · · · · · · ·			
image = cv2.imread('path_to_image.jpg') resized_image = cv2.imread('path_to_image,jpg') resized_image = cv2.resize(image, (600, 600)) hog_features = hog(resized_image, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(2, 2), visualize=False, multichannel=True) def generate_proposals(image, window_size=(128, 128), step_size=32): proposals=! for y in range(0, image.shape[0] - window_size[1], step_size): proposals.appened((x, y, x + window_size[0], y + window_size[1])) style=proposals.appened((x, y, x + window_size[0], y + window_size[1]))			_
resized_image = cv2.resize(image, (600, 600))			
hog_features = hog(resized_image, orientations=9, pixels_per_cell=(8, 8),			
- cells_per_block=(2, 2), visualize=False, multichannel=True) - hog features			
def generate_proposals(image, window_size=(128, 128), step_size=32):	اماد		
proposals = 1	4.0		_
for y in range(0, image.shape[0] - window_size[1], step_size):			
for x in range(0, image.shape[1] - window_size[0], step_size):			
proposals.append((x, y, x + window_size[0], y + window_size[1])) return proposals			
Tetal i proposas			
region_proposals = generate_proposals(resized_image)			
Which of the following steps is NOT a part of Fast R-CNN preprocessing?			
Third of the following steps is not a part of tast it only preprocessing:			_
(a) Resize the input image to a fixed size.			
(b) Extract features using HOG.			
— O (c) Generate region proposals.			
○ (d) Classify each region proposal directly. —			
O) Which of the following statements consults differentiate For PONN for VOICE			_
2) Which of the following statements correctly differentiates Fast R-CNN from YOLO?	π		
(a) Fast R-CNN is a single-stage detector, while YOLO is a two-stage detector.	-	0	_
Jolo → Sxs	~	Buroling	
(b) Fast R-CNN relies on external region proposals, whereas YOLO divides the image into a grid for detection.	-	13RX	_
(c) YOLO uses Selective Search for region proposals, while Fast R-CNN performs end-to-end detection in one step.	1	13-4 1-4	
(b) 1020 does detective dealer for region proposals, militer does to that performs and to the detection in one step.		grid like	
O (d) Both Fast R-CNN and YOLO perform detection and classification in a single stage.		Structur	
α — α		4 Dancing	΄.
			Ť
3) Consider the following code snippet that outlines the steps of extracting regions of interest (RoI) for object detection:	nt		
	-		_
import cv2 import numpy as np			
— from sklearn.svm import SVC			_
from skimage.feature import hog			
import numpy as np from sklearn.svm import SVC from skimage.feature import hog image = cv2 imread(dog cat ing) SVM kiniar			
Maga 012			
ss = cv2.ximgproc.segmentation.createSelectiveSearchSegmentation() ss.setBaseImage(image)			
ss.switchToSelectiveSearchFast()	-		_
region_proposals = ss. <u>process()</u>			
			_
## Extract features using convnet # Step 3: Train a classifier (SVM) on the extracted features			
## Extract features using convnet # Step 3: Train a classifier (SVM) on the extracted features classifier = SVC(kernel="linear")			
classifier.fit(features, labels) # labels are pre-defined for training			
-			
Which architecture follows this approach of using region proposals, feature extraction, and a classifier for object detection?			_
detection?			
─ ○ (a) Fast R-CNN	-		_
(b) R-CNN (Slow R-CNN)			
	-		_
O (c) YOLO			
(d) Faster RCNN	-		_
4) The following code snippet demonstrates a simplified implementation of a Region Proposal Network (RPN) used 1 point	_		_
in Faster R-CNN:			
; manada and			
import torch import torch.nn as nn			
import torch.nn.functional as F			
	-		_
# Input feature map from a backbone network (e.g., ResNet)			
feature_map = torch.randn(1, 512, 50, 50) # (Batch, Channels, Height, Width)	-		_
# RPN layers			
class RegionProposalNetwork(nn.Module):			
definit(self, in_channels, num_anchors):			
super(RegionProposalNetwork, self)init()			
self.conv = nn.Conv2d(in_channels, 512, kernel_size=3, stride=1, padding=1) self.cls_layer = nn.Conv2d(512, num_anchors * 2, kernel_size=1) # Classification	_		_
self.reg_layer = nn.Conv2d(512, num_anchors * 4, kernel_size=1) # Regression			


```
task:
  import numpy as np
  # Predicted boxes with confidence scores and ground truth boxes
  predictions = [
      ('bbox': [50, 50, 100, 100], 'score': 0.9, 'class': 'cat'},
       {'bbox': [30, 30, 70, 70], 'score': 0.8, 'class': 'dog'},
      ('bbox': [200, 200, 250, 250], 'score': 0.7, 'class': 'cat')
  # Ground truth boxes
  ground_truths = [
      ('bbox': [50, 50, 100, 100], 'class': 'cat'},
      {'bbox': [30, 30, 70, 70], 'class': 'dog'}
  # Function to calculate IoU (Intersection over Union)
  def calculate_iou(box1, box2):
      x1 = \max(box1[0], box2[0])
      y1 = max(box1[1], box2[1])
       x2 = min(box1[2], box2[2])
       y2 = min(box1[3], box2[3])
       intersection = max(0, x2 - x1) * max(0, y2 - y1)
       area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
       area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
       union = area1 + area2 - intersection
       return intersection / union if union > 0 else 0
       # Evaluate precision and recall
       tp, fp = 0, 0
       matched_gt = set()
       precision_recall_curve = []
       for pred in predictions:
           matched = False
           for i. at in enumerate(ground truths):
               if gt['class'] == pred['class'] and i not in matched_gt:
                   iou = calculate_iou(pred['bbox'], gt['bbox'])
                  if iou >= 0.5: # IoU threshold
                       tp += 1
                       matched_gt.add(i)
                       matched = True
                       break
           if not matched:
                                                                                                                                            prucusian = 0.67
Mecall = 1
               fp += 1
       precision, recall = precision_recall(tp, fp, tn, fn)
       # Calculate mAP as the average precision
       mAP = np.mean([p for p, r in precision_recall_curve])
       print(f"Mean Average Precision (mAP): {mAP:.2f}")
       precision_recall_curve.append((precision, recall))
       Given the predictions and ground truths, what is the Mean Average Precision (mAP)?
       O (a) 0.33
       (b) 0.50
(c) 0.67
       7) Consider the following code snippet
       import torch
       import torch.nn as nn
       import torch.nn.functional as F
       from torchvision.ops import roi_pool
       Step 1
       feature_map = # Input feature map (e.g., from a CNN backbone like ResNet)
       # Region proposals as (x1, y1, x2, y2)
       region_proposals = torch.tensor([
          [0, 0, 7, 7],
          [2, 2, 10, 10],
           [4, 4, 14, 14]
      ], dtype=torch.float32)
       Step 2
       # ROI Pooling
      pooled_features = roi_pool(
           feature_map,
          [region_proposals],
           output_size=(7, 7) # Fixed size for each region
   Step 3 #Fully connected layer for classification and regression class FastRCNNHead(rn Module): def __inf__setf__in_f_eathers, nurn__classes): super(TastRCNNHead_setf)__inf__() setf__fc1 = nn_inear(fin_features, 1024) setf__fc2 = nn_inear(fin_features, 1024) setf__fc2 = nn_inear(fin_features, 1024) setf__fc2 = nn_inear(fin_features, 1024) setf__fc2 = nn_inear(fin_features, 1024) setf__fc1 = nn_inear(fin_features, 1024) setf___fc1 = nn_inear(fin_features, 1024) setf__fc1 = nn_inear(fin
                                                                                                           fast RCNN > bbax & liniar svy
   Which architecture incorporates the above components for object detection?
   (a) R-CNN (Slow R-CNN)
         (b) Fast R-CNN
  (c) Faster R-CNN
```

1 point

6) The following code snippet demonstrates the calculation of Mean Average Precision (mAP) for an object detection

time compa	er R-CNN,theRegion Proposal Network (RPN) doesn't share convolutional <u>layers with the backbone network</u> to generate region proposals, reducing computation ared to external proposal methods. (True/False)
false	