Шпоры по математическому анализу.

1. Разбиения множеств в \mathbb{R}^n (определение, свойства)

Опр. 1 Разбиением τ мн-ва $\mathcal{S} \subseteq \mathbb{R}^n$ назыв. семейство мн-в \mathcal{S}_{α} , таких что:

- $\forall \alpha, \beta : \mu(S_{\alpha} \cap S_{\beta}) = 0$, где μ мера Жордана.
- $\bigcup_{\tau} \mathcal{S}_{\alpha} = \mathcal{S}$ Обознач. : $\{\tau_k\}, \tau_k = \{\mathcal{S}_{k,1}, \mathcal{S}_{k,2}, \dots, \mathcal{S}_{k,j_k}\}$

2. Измеримые множества в \mathbb{R}^n (определение, критерий)

Определение

Опр. 2 Множество $\mathcal{S}\subseteq\mathbb{R}^n$ называют измеримым (по Жордану), если $\lim_{k\to\infty}\mu(\mathcal{S}_k)<+\infty$, где μ - мера Жордана. При этом полагают, что $\mu(\mathcal{S})=\lim_{k\to\infty}\mu(\mathcal{S}_k)$.

Критерий

Теор. 1 Мн-во $S \subset \mathbb{R}^n$ измеримо $\Leftrightarrow S$ - огранич. $u \exists \mu(\delta S) = 0$.

3. Интегральные суммы и суммы Дарбу в \mathbb{R}^n

Опр. 3 Пусть $b: \mathcal{S} \subseteq \mathbb{R}^n \to \mathbb{R}$, тогда величина $\mathcal{I}(b, \tau_k, \xi_{k,1}, \xi_{k,2}, \dots, \xi_{k,j_k}) = \sum_{j=1}^{j_k} b(\xi_{k,j}) \mu(\mathcal{S}_{k,j})$ называется интегральной суммой(Римана) для функции b, cooms. разбиению τ_k .

Опр. 4 Обозначим $\tau = \{S_k\}_{k=1}^{\infty}$; $\mathcal{M}_k = \sup_{x \in S_k} b(x)$; $m_k = \inf_{x \in S_k} b(x)$; Tогда величины: $\overline{\mathbb{S}}(\tau) = \sum_{k=1}^n \mathcal{M}_k \mu(S_k)$ и $\underline{\mathbb{S}}(\tau) = \sum_{k=1}^n m_k \mu(S_k)$ называют соответственно верхней ниженей суммой Дарбу для \mathfrak{G} -ии b(x), cooms. разбиению τ .

4. Кратный интеграл Римана(определение, свойства)

Опр. 5 Eсли $\exists \mathcal{I}=\lim_{k\to\infty}\mathcal{I}(b,\tau_k,\xi_{k,1},\xi_{k,2},\ldots,\xi_{k,j_k})$, не зависящий:

- От выбора $\{\tau_k\}$ с $|\tau_k| \to 0$
- От выбора $\xi_{k,i}$

То ф-ю b называютинтегрируемой по Pиману на мн-ве S, а величину $\mathcal I$ назыв. интегралом Pимана от ф-ии b по мн-ву S. Обозн. : $\int_S b(x)dx$ или $\int \int \dots \int b(x_1,\dots,x_n)dx_1\dots dx_n$.

Свойства кратного интеграла Римана:

- 1) Пусть $\mathcal{S} \subset \mathbb{R}^n$ измеримо. Тогда $\int_{\mathcal{S}} dx = \mu(\mathcal{S})$.
- 2) Линейность. $\int_{\mathcal{S}} (\alpha b(x) + \beta g(x)) dx = \alpha \int_{\mathcal{S}} b(x) dx + \beta \int_{\mathcal{S}} g(x) dx; \, \mathcal{S} \subset \mathbb{R}^n; b, g: \mathcal{S} \to \mathbb{R}; \, \alpha, \beta \in \mathbb{R}.$
- 3) $S \subset \mathbb{R}^n$ измеримо. $b \in \mathcal{R}(S)$ ограничено, где $\mathcal{R}(S)$ мн-во всех функций инегрируемых по Риману на S. Тогда $b \in \mathcal{R}(S')$.
- 4) Аддитивность по мн-ву. Пусть $S_1, S_2 \subset \mathbb{R}^n$ измеримы.; $\mu(S_1 \cap S_2) = 0; b \in \mathcal{R}(S_1) \cap \mathcal{R}(S_2)$ ограничено. Тогда $b \in \mathcal{R}(S_1 \cap S_2)$ и $\int_{S_1 \cap S_2} b(x) dx = \int_{S_1} b(x) dx + \int_{S_2} b(x) dx$.
- 5) Пусть $S \subset \mathbb{R}^n$ измеримо; $b,g \in \mathcal{R}(S);$ Если $\inf_{x \in S} |g(x)| > 0$, то $\frac{b}{q} \in \mathcal{R}(S).$
- 6) Монотонность. Пусть $S \subset \mathbb{R}^n$ измеримо; $b, g \in \mathcal{R}(S)$; $\forall x \in Sb(x) \geq g(x)$; Тогда $\int_S b(x) dx \geq \int_S g(x) dx$.
- 7) Пусть $S \subset \mathbb{R}^n$ измеримо; $b \in \mathcal{R}(S)$ огр.; Тогда $|b| \in \mathcal{R}(S)$, причем $|\int_S b(x) dx| = \int_S |b(x)| dx$.
- 8) Пусть $S \subset \mathbb{R}^n$ измеримо; $b \in \mathcal{R}(S)$ огр.; $b \in \mathcal{R}(S)$ огр.; $\forall x \in Sb(x) \geq 0$; $\exists x_0 \in S : b(x_0) > 0$ и b непрерывно в x_0 . Тогда $\int_S b(x) dx > 0$.
- 9) Полная аддитивность. Пусть $\mathcal{S} \subset \mathbb{R}^n$ измеримо; $\{\mathcal{S}_k\}_{n \in \mathbb{N}} : \forall n \in \mathbb{N} \mathcal{S}_n \subset \mathcal{S}_{n+1};$ $\bigcup_{n=1}^{\infty} \mathcal{S}_n = \mathcal{S}; b \in \mathcal{R}(\mathcal{S});$ Тогда $\lim_{n \to \infty} \int_{\mathcal{S}_n} b(x) dx = \int_{\mathcal{S}} b(x) dx$.
- 10) Теорема о среднем. Пусть $\mathcal{S} \subset \mathbb{R}^n$ измеримо; b непр. и огр. в \mathcal{S} ; Тогда $\exists x_0 \in \mathcal{S}: \int_{\mathcal{S}} b(x_0) dx = b(x_0) \mu(\mathcal{S}) = \int_{\mathcal{S}} b(x) dx$.

5. Критерии интегрируемости ϕ -й в \mathbb{R}^n

Критерий Дарбу.

Теор. 2 Если

 $\exists \mathcal{I} = \inf_{\tau} \overline{\mathbb{S}}(\tau) = \sup_{\tau} \underline{\mathbb{S}}(\tau) < \infty$ по всем разбиениям τ измеримого мн-ва \mathcal{S} для ϕ -ии $b: \mathcal{S} \to \mathbb{R} \Leftrightarrow b \in \mathcal{R}(\mathcal{S})$ и $\int_{\mathcal{S}} b(x) dx = \mathcal{I}$.

Критерий Лебега.

Теор. 3 Пусть $\mathcal{S} \subset \mathbb{R}^n$ - измеримо; $b \in \mathcal{R}(\mathcal{S})$ - огр.; $\exists \mathcal{S}_1, \mathcal{S}_2 \subset \mathcal{S}: \mathcal{S}_1 \cap \mathcal{S}_2 = \phi; \mathcal{S}_1 \cup \mathcal{S}_2 = \mathcal{S}; b$ - непрерывно на $\mathcal{S}_1, \mu(\mathcal{S}_2) = 0$. Тогда и только тогда $b \in \mathcal{R}(\mathcal{S})$.

6. Сведение кратного интеграла к повторному

Teop. 4 Пусть S- стандартная область относительно O_y ; $b: S \to \mathbb{R}$ - непр; Тогда $(1) \int \int_{\mathcal{S}} b(x,y) dx dy = \int_a^b dx (2) \int_{\phi(x)}^{\psi(x)} b(x,y) dy$, где (1) - существует по крит. Лебега, а (2) - F(x) - непр.

7. Замена переменных в кратном интеграле (2 теоремы)

Teop. 5 Если X измеримое мn-во со своим замыканием $G: \overline{X} \subset G \subset \mathbb{R}^n_x$, $F: G \to \mathbb{R}^n_x$ - непр. диффер. отображение с якобианом $\mathcal{J}_F \neq 0$, а функция f непр. на мn-ве $\overline{F(X)}$, то: то: $\int_{\overline{F(x)}} b(y) dy = \int_{\overline{X}} b(F(x)|\mathcal{J}_F(x)|dx$. $\int_{\phi(a)}^{\phi(b)} b(y) dy = \{y = \phi(x)\} = \int_{\mathbb{R}}^b b(\phi(x)) \phi'(x) dx$

Teop. 6 $\Pi ycmb \ F: G \subset \mathbb{R}^n_x \to \mathbb{R}^n_y$:

- Взаимно однозначно.
- Henp. дифф.
- якобиана $\mathcal{J}_F \neq 0G$.
- F и \mathcal{J}_F непр. продолжены на \overline{G} .
- ullet f непр. непрерывна на G*:=F(G) и непр. продолжаема на G*

Тогда $\int_{G*} f(y) dy = \int_{G} f(F(x)) |\mathbb{J}_{F}(x)| dx$

Док-во: Так как G* измеримо, то $\overline{G*}$ измеримый компакт, и продолжение f*ф-ии f интегр, на нём в силу непр., а след., и f интегр на G*. Аналог. док. интегр. $f(F(x))|\mathbb{J}_F(x)|$ на G. Представим G в виде объед. монотонной послед. измеримых открытых мн-ств $G = \bigcup_{k=1}^n G_k$, где $\overline{G_k} \in G_{k+1}, k \in \mathbb{N}$. Применяя предыдущую теор. получим $\int_{F(G_k)} f(y) dy = \int_{G_k} f(F(x)) |\mathbb{J}_F(x)| dx$ В силу полной аддаптивности интеграла имеем $\lim_{k\to\infty}\int_{G_k} f(F(x))|\mathbb{J}_F(x)|dx =$ $\int_C f(F(x)) |\mathbb{J}_F(x)| dx$. Так как мн-ва $F(G_k)$ также открыты и G* = $\bigcup_{k=1}^{n} F(G_k), \overline{F(G_k)} \in F(G_{k+1}), k \in (N), \text{ TO}$ аналог. получаем $\lim_{k \to \infty} \int_{F(G_k)} f(y) dy = \int_{G_*} f(y) dy.$ Переходя к пределу при $k \to \infty$ в 1 равенстве получаем равенство теоремы.

8. Криволинейный интеграл 1-го рода (определение, свойства)

Опр. 6 Пусть - $\mathcal{L} = \{M(s): 0 \leq s \leq S\}$, где M(s) = (x(s), y(s), z(s)) - уравнение линии.; b(x,y,z) - ф-я. Тогда $\int_{\mathcal{L}} bds := \int_{0}^{S} b(x(s), y(s), z(s))ds$ - криволинейный интеграл І-го рода, а \mathcal{L} - путь интегрирования.

Св-ва:

- Если b непр. на [0, S], т.е на \mathcal{L} , тогда $\exists \int_{\mathcal{L}} b ds$;
- $\int_{\mathcal{L}} b ds$ не зависит от направления обхода.
- Пусть ϕ, ψ, ξ непр. дифф на [a, b]; $\exists [\phi'(t)]^2 + [\psi'(t)]^2 + [\xi'(t)]^2 \neq 0 \forall t \in [a, b]$; Тогда $\int_{\mathcal{L}} b ds = \int_a^b b(\phi(t), \psi(t), \xi(t)) \sqrt{[\phi'(t)]^2 + [\psi'(t)]^2 + [\xi'(t)]^2} ds$

9. Криволинейный интеграл 2-го рода (определение, свойства)

Опр. 7 Пусть L=AB - гладкая ориентированная кривая; $\overline{r}(s)=(x(s),y(s),z(s)), 0\leq s\leq S$ - её векторное представление, A=r(0),B=r(S); $\overline{a}(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))$ - вектор функция. Тогда $\int_{AB}\overline{a}d\overline{r}=\int_{AB}\overline{ar}ds$ - криволипейный интеграл 2-го рода.

Св-ва:

- Если ф-ии P, Q, R непрерывны, то интеграл существует.
- При изменении ориентации кривой интеграл меняет знак.
- Пусть $x(t), y(t), z(t), a \le t \le b$ векторное представление гладкой кривой L. Тогда $\int_{T}^{D} \overline{a} d\overline{r} = \int_{0}^{b} \overline{ar} dt$.

10. Формула Грина и её следствие

Teop. 7 Пусть G - элемент. область; $P,Q:G\to\mathbb{R};\ P,Q,\frac{\partial P}{\partial x},\frac{\partial Q}{\partial y}$ - непрерывны ϵ G. Тогда для крив. инт. 2-го рода вида $\oint Pdx+Qdy$ имеет место формула Грина: $\oint_G Pdx+Qdy=\int_G \left(\frac{\partial P}{\partial x}-\frac{\partial Q}{\partial y}\right)dxdy$.

Следствие: Пусть G - обл. огр. простым замкн. контуром, кот. можно разбить на конечн. число элем. областей. $P,Q:G\to\mathbb{R}; P,Q,\frac{\partial P}{\partial x},\frac{\partial Q}{\partial y}$ - непрерывны в G. Тогда имеет место формула Грина.

11. Поверхности и их ориентация. Площадь поверхности

Поверхность.

Onp. 8 Пусть $G \subset \mathbb{R}^2_{u,v}$. Тогда поверхностью $\mathbb S$ называют отображение $\overline r:G \to \mathbb{R}^3_{x,y,z}$. Обозн. $\overline r(u,v)=\{x(u,v),y(u,v),z(u,v)\}.$

Ориентация.

Опр. 9 Если на поверхн. $\mathbb S$ можно задать непрерывное поле нормали $\bar{\delta}(u,v),$ то такую поверхность называют ориентированной, а само такое поле - ориентацией.

Площадь поверхности $\mathbb S$ можно вычислить по формуле Грина: $S(\mathbb S)=\frac{1}{2}\int_{\delta\mathbb S}xdy-ydx.$

12. Поверхностный интеграл1-го рода

Опр. 10 Поверхностным интегралом первого рода от ф-ии b по поверхности $\mathbb S$ называется интеграл вида: $\int \int_{(\mathbb S)} b ds = \int \int_D b(x(u,v),y(u,v),z(u,v)) * \sqrt{g_{11}(u,v)g_{22}(u,v)-g_{12}^2} dv du, \ \textit{rde } g_{11}(u,v) = |\overline{r}_u|^2, g_{22}(u,v) = |\overline{r}_v|^2, g_{12} = |\overline{r}_u * \overline{r}_v|.$

13. Поверхностный интеграл2-го рода

Опр. 11 Поверхностным интегралом второго рода называется интеграл вида: $\int \int_{\mathbb{S}^+} \overline{a\delta} ds = \int \int_{\mathbb{S}^+} (P \cos\alpha + Q \cos\beta + R \cos\gamma) ds = \int \int_{\mathbb{S}^+} P dy dz + Q dx dz + R dx dy.$

14. Формула Гаусса-Остроградского

Teop. 8 Пусть $S \subset \mathbb{R}^3$ - область, элементарная относительно Ox,Oy,Oz; $\mathbb{S} = \delta S$ - замкнутая кусочно-гладкая поверхность; $S = (x,y) \in D, \phi(x,y) \leq z \leq \psi(x,y), \ \partial e \ \phi, \psi: D \to \mathbb{R}$ - непрерывн. ф-ии и $\forall (x,y) \in D: \phi(x,y) \leq \psi(x,y)$ - элем. обл. отн. оси Oz. Torda $\int \int_{\mathbb{S}^+} (Pcos\alpha + Qcos\beta + Rcos\gamma) dS = \int \int \int_S div \overline{a} dx dy dz, \ \partial e \ div \overline{a} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}.$

15. Формула Стокса

Теор. 9 Пусть $\overline{a} \in C^1(s), b \in C^2(\overline{G})$. Тогда имеет место формула Стокса $\oint_{T+} \overline{a} ds = \int \int_S \overline{\delta} rot \overline{a} ds$.

16. Градиент, дивергенция, ротор

Градиент

Onp. 12 $\nabla b(x,y,z) = \operatorname{grad} b(x,y,z) = \{ \frac{\partial b}{\partial x}, \frac{\partial b}{\partial y}, \frac{\partial b}{\partial z} \} = \frac{\partial b}{\partial x} i + \frac{\partial b}{\partial y} j + \frac{\partial b}{\partial y} k$ - градиент скалярного поля b.

Дивергенция

Опр. 13 div $\overline{a}(x,y,z)=\nabla\overline{a}(x,y,z)=rac{\partial a}{\partial x}+rac{\partial a}{\partial y}+rac{\partial a}{\partial y}$ - дивергенция скалярного поля \overline{a} .

Ротор

Опр. 14 Пусть

 $\overline{a}(x,y,z) = P(x,y,z) + Q(x,y,z) + R(x,y,z), \label{eq:alpha}$ morda rot

$$\overline{a}(x,y,z) = \nabla \times \overline{a}(x,y,z) = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \\ (\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z})i - (\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z})j + (\frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y})k - \\ pomop (вихръ) векторного поля $\overline{a}$$$

17.Потенциальные и Соленоидальные поля (определения, условия)

Соленоидальные:

Опр. 15 Вект. поле $a: G \to \mathbb{R}^3$ наз. соленоидальным, если поток этого поля через любую кусочно-гладкую пов-сть. S, ограничивающую область $G' \subset G$ равен 0.

Условие соленоидальности

Teop. 10 Henp. дифф. поле $a:G\to\mathbb{R}^3$ соленоидально тогда и только тогда, когда $\forall M\in G:\ div\ a(M)=0.$

Док-во: Необходимость: пусть поле а соленоидально. Тогда по Th. о геом. смысле дивергенц.: $\forall M \in G \ div$

$$a(M)=\lim_{n\to\infty}rac{\iint_{S_n=G_n}ad\overline{s}}{\mu(G_n)}=0$$
, где
$$\iint_{S_n=G_n}ad\overline{s}=0\ \ no\ \ onp.\ \ coленоидальности.$$
 Доказательство достаточности следует

из ф-лы Гаусса-Остроградского.

Потенциальные:

Опр. 16 Поле $\overline{a}(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z)),\overline{a}:D\in\mathbb{R}^3\to\mathbb{R}^3$ назыв. потенциальным если $\exists U:D\to\mathbb{R}$ - потенциальная ф-я, такая что $\nabla U(x,y,z)=\overline{a}(x,y,z),$ т.е $\frac{\partial U}{\partial x}=P(x,y,z)$ и т.д

1-й критерий потенциальности

Teop. 11 Hen. дифф. вект. поле $\overline{a}:D\to\mathbb{R}^3$ явл. потенциальным если криволинейный инт. второго рода $\int_{\mathcal{L}} \overline{a}d\overline{s}$ не зависит от напр. пути $\mathcal{L}\in D$, а зависит только от его начальнойи конечной точки. При этом $\int_{\mathcal{L}} \overline{a}d\overline{s} = U(M) - U(M_0)$.

2-й критерий потенциальности

Teop. 12 Hen. дифф. вект. поле $\overline{a}:D\to\mathbb{R}^3$, где D - односвязно, явл. потенциальным если $\forall M\in D:$ rot $\overline{a}(M)=0$.

Док-во: Необходимость: Расписать ротор от поля \overline{a} как градиента потенциальной ф-ии, т.е ротор от вектор-функции, составленной из записей частных производных потенциальной ф-ии $\overline{a}(x,y,z) = \nabla U(x,y,z)$. Далее необходимо показать, что в силу равенства частных проиводных второго порядка, ротор становится равен 0i+0j+0k т.е нулю. Достаточность следует из формулы Cтокса.

18. Числовой ряд, его сумма, сходимость, остаток.

Пусть: $(1)\{a_n\}_{n=1}^{\infty}$ - числовая последовательность; $S_1=a_1; S_2=a_1+a_2;\ldots; S_n=a_1+\ldots+a_n; (2)\{S_n\}_{n=1}^{\infty}$. Тогда пара числовых последовательностей (1) и (2) наз. числовым рядом $\sum_{n=1}^{\infty}a_n$. При том S_n - наз. част. суммой. Если $S=\lim_{n\to\infty}S_n\in\mathbb{R}$ то говорят, что ряд сходится (иначе расходится. S - называют суммой ряда. Ряд вида $\sum_{n=n_0+1}^{\infty}a_n$ называют остатком ряда $\sum_{n=1}^{\infty}a_n$, $\forall n_0\in\mathbb{N}$.

19. Необходимое условие сходимости числового ряда.

Teop. 13 Если ряд $\sum_{n=1}^{\infty} a_n$ - сходится, то $\lim_{n\to\infty} a_n = 0$; Док-во: $S_n = S_{n-1} + a_n \Rightarrow a_n = S_n - S_{n-1}$; $\lim_{n\to\infty} a_n = \lim_{n\to\infty} S_n - \lim_{n\to\infty} S_{n-1} = S - S = 0$;

20. Расходимость гармонического ряда.

Teop. 14 Гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ - расходится.

Док-во: По критерию коши, для сходимости этого ряда необходимо и достаточно: $\forall \varepsilon > 0, \exists N_{\varepsilon}, \forall n > N_{\varepsilon}, \forall p > 0$:

$$\begin{vmatrix} \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+p} \end{vmatrix} < \varepsilon. \; \textit{Возъмем}$$

$$\varepsilon = \frac{1}{2}; p = n. \; \textit{Тогда:}$$

$$\begin{vmatrix} \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+p} \end{vmatrix} =$$

$$\begin{vmatrix} \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \end{vmatrix} >$$

$$\begin{vmatrix} \frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n} \end{vmatrix} = \frac{1}{2} = \varepsilon. \; \textit{Критерий не выполняется, следовательно ряд расходится.}$$

21. Признаки сходимости числовых рядов

Признак сравнения:

Teop. 15 Пусть даны два ряда с неотрицательными членами:

Док-во: $S_n^{(A)} \leq S_n^{(B)}$ следует из усл. $0 \leq a_n \leq b_n$. Пусть (B) - сход. Тогда $S_n^{(B)}$ - огранич. а значит и $S_n^{(A)}$ - ограничено. Следовательно ряд (A) - сход. 2-е можно доказать от противного к первому.

Предельный признак:

Теор. 16 Пусть даны два ряда с неот. членами: $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + ... + a_n + ...(A);$

$$\sum_{n=1}^{\infty} b_n = b_1 + b_2 + \dots + b_n + \dots (B); Ecnu$$

$$cywecmsyem npeden:$$

$$\lim_{n \to \infty} a_n - K0 < K < +\infty \mod n$$

 $\lim_{n \to \infty} \frac{a_n}{b_n} = K0 < K < +\infty, \ morдa \ pяды \ (A)$ $u \ (B)$ cxoдятся или pacxoдятся одновременно.

Док-во: Докажем для сходимости в одну сторону: Пусть ряд (B) сходится. Из опр. предела: $\forall \varepsilon > 0 \exists N_\varepsilon : \forall n > N_\varepsilon \left| \frac{a_n}{b_n} - K \right| < \varepsilon \Leftrightarrow K - \varepsilon < \frac{a_n}{b_n} < K + \varepsilon$. Из неравенства получим: $a_n < b_n(K + \varepsilon)$. Ряд $\sum_{n=1}^{\infty} b_n(K + \varepsilon)$ сходится, так как это ряд полученный умножением членов ряда (B) на постоянное число $K + \varepsilon$. Тогда по признаку сравнения ряд (A) сходится.

22. Признак Даламбера сходимости числового ряда.

Teop. 17 Пусть дан ряд с неот. членами: $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + ... + a_n + ... a_n > 0 \ \textit{Если}$ начин. с нек. номера $n_0 \in \mathbb{N} \forall n > n_0$ вып. нерав. $\frac{a_{n+1}}{a_n} \leq q < 1q \in \mathbb{R}$, то ряд сходится. $\textit{Если} \ \exists n_0 \in \mathbb{N} : \forall n > n_0 \frac{a_{n+1}}{a_n} \geq 1$, то ряд расходится.

рассионнем.

Док-во: Рассм. нерав. $\frac{a_{n+1}}{a_n} \leq q$ для n=1 и n=2. $n=1:\frac{a_2}{a_1} \leq q \Leftrightarrow a_2 \leq q*a_1;$ $n=2:\frac{a_3}{a_2} \leq q \Leftrightarrow a_3 \leq q*a_2 \leq q^2*a_1;$ След. $\forall n$ будет справ. нерав. $a_n \leq q^{n-1}*a_1$. При этом ряд $\sum_{n=1}^{\infty} q^{n-1}*a_1$ явл. сход., значит по признаку сравнения ряд $\sum_{n=1}^{\infty} a_n$ тоже сход. Если fraca $_{n+1}a_n \geq 1$, то справ. нерав. $a_{n+1} \geq a_n > 0$, что против. необх. усл. сходимости ряда ($\lim_{n\to\infty} a_n = 0$). Значит ряд $\sum_{n=1}^{\infty} a_n$ расходится.

23. Радикальный признак Коши

Teop. 18 Пусть дан ряд с неотрицательными слагаемыми:

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \ldots + a_n + \ldots a_n \geq 0; \ Ecnu$$

$$naчunas \ c \ nomepa \ n_0 \in \mathbb{N} \forall n > n_0 \ \text{ sun. nepas.}$$

$$\sqrt[n]{a_n} \leq q < 1q \in \mathbb{R}, \ mo \ psd \ cxod. \ Ecnu$$

$$\exists n_0 \in \mathbb{N} : \forall n > n_0 \ \sqrt[n]{a_n} \geq 1, \ mo \ psd \ pacxod.$$

$$\mathbf{Hok-bo:} \ Hycmb$$

$$\exists n_0 \in \mathbb{N} : \forall n > n_0 \ \sqrt[n]{a_n} \leq q \Leftrightarrow a_n \leq q^n. \ Tak$$

$$\kappa a\kappa d < q < 1, \ mo \ psd \ \sum_{n=1}^{\infty} q^n \ \text{ bydem } cxod.,$$

$$a \ shavum \ no \ npush. \ cpashehus \ psd \ \sum_{n=1}^{\infty} a_n$$

$$mak \ ske \ cxod. \ Ecnu$$

$$\exists n_0 \in \mathbb{N} : \forall n > n_0 \ \sqrt[n]{a_n} \geq 1 \Leftrightarrow a_n \geq 1, \ vmo$$

$$npomus. \ neofx. \ ycnosino \ cxodumocmu$$

24. Интегральный признак сходимости. Сходимость обощенного ряда Дирихле.

 $(\lim_{n\to\infty}a_n=0)$. Значит ряд $\sum_{n=1}^\infty a_n$

Интегральный признак.

расходится.

Teop. 19 Пусть функция f определенная при $acex\ x \ge 1$, неотриц. acc y = 0 убыв., тогда ряд $\sum_{n=1}^{\infty} f(n)$ сходится тогда acc y = 0 тогда, когда сходится интеграл $\int_{1}^{+\infty} f(x) dx$.

 $\vec{\mathbf{Д}}$ **ок-во:** $T.\kappa$ ϕ -я монотонна на $(1,+\infty)$ то она инт. по Риману. Если $k \le x \le k+1$, тогда $f(k) \ge f(x) \ge f(k+1), k=1,2,...$ (функция убыв.). Проинт. это перав. [k,k+1] имеем:

$$f(k) \geq \int\limits_{k}^{k+1} f(x) dx \geq f(k+1), k=1,2,...;$$
 Суммируя от $k=1$ до $k=n$ получим:
$$\sum\limits_{k=1}^{n} f(k) \geq \int\limits_{1}^{n+1} f(x) dx \geq \sum\limits_{k=1}^{n} f(k+1);$$
 Положим $s_n = \sum\limits_{k=1}^{n} f(k),$ будем иметь $s_n \geq \int\limits_{1}^{n} f(x) dx \geq s_{n+1} - f(1)n = 1,2,...;$ Если интеграл сход, то в силу неотрици f справ. неравенство:
$$\sum\limits_{n=1}^{n+1} f(x) dx \leq \int\limits_{1}^{n} f(x) dx.$$
 Отсюда следует:
$$\sum\limits_{n=1}^{n+1} f(x) dx \leq \int\limits_{1}^{n} f(x) dx.$$
 Отсюда следует: $s_{n+1} \leq f(1) + \int\limits_{1}^{+\infty} f(x) dx,$ следовательно, т.к последовательность частичных сумм ограничена сверху, то ряд сходится.

Сходимость обощенного гарм. ряда(ряда Дирихле):

Теор. 20 Ряд вида $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ расходится при всех $\alpha \leq 1$ и сходится при всех $\alpha > 1$. Док-во: При $\alpha = 1$ получаем гарм. ряд, а он расходится. При $0 < \alpha < 1$ имеем: $S_n(\alpha) = 1 + \frac{1}{2^{\alpha}} + \dots + \frac{1}{n^{\alpha}} \ge n \cdot \frac{1}{n^{\alpha}} =$ $n^{1-\alpha} \underset{n \to \infty}{\longrightarrow} \infty$; Из этого следует, что $S_n(\alpha) \to +\infty$, а из этого следует расходимость ряда. Рассмотрим случай $\alpha > 1$. Выберем такое натуральное т, что $n < 2^m$. Тогда имеем: $S_n(\alpha) < S_{2^m-1}(\alpha) =$ $1+\left(\frac{1}{2^{\alpha}}+\frac{1}{3^{\alpha}}\right)+\left(\frac{1}{4^{\alpha}}+\frac{1}{5^{\alpha}}+\frac{1}{6^{\alpha}}+\frac{1}{7^{\alpha}}\right)+\cdots+$ $\left(\frac{1}{(2^{m-1})^{\alpha}} + \frac{1}{(2^{m-1}+1)^{\alpha}} + \dots + \frac{1}{(2^{m}-1)^{\alpha}} \right) \le 1 + 2^{1-\alpha} + (2^2)^{1-\alpha} + \dots + (2^{m-1})^{1-\alpha} = 1 + 2^{1-\alpha} + (2^{1-\alpha})^2 + \dots + (2^{1-\alpha})^{m-1} =$ $\frac{1-(2^{1-lpha})^m}{1-2^{1-lpha}}$. Отсюда следует, что при $\alpha > 1$ имеем $S_n(\alpha) \leq \frac{1}{1-2^{1-\alpha}}$, m.e. nocn. частич. сумм ограниченна сверху, и по теореме о сходимости рядов с неот. членами ряд cxod. $npu \alpha > 1$.

25. Знакочередующиеся ряды. Признак Лейбница. Оценка остаточного члена.

Опр. 17 Числовой ряд вида $u_1-u_2+u_3-u_4+...+(-1)^{n-1}u_n+...$, где u_n - это модуль члена ряда, называется знакочередующимся числовым рядом.

Teop. 21 Если для знакочеред. ряда $u_1-u_2+u_3-u_4+...+(-1)^{n-1}u_n+...(*)$ Выполняются два условия: 1) Члены ряда монот. убыв. по модулю $u_1>u_2>...>u_n>...$ 2) $\lim_{n\to\infty}u_n=0$ то

ряд (*) сходится, при этом сумма положительна и не превосходит первого члена ряда.

Док-во: Част. сумму чётного порядка запишем так:

 $S_{2n} = (u_1 - u_2) + (u_3 - u_4) + \dots + (u_{2n-1} - u_{2n})$ Π о условию $u_1 > u_2 > ... > u_{2n-1} > u_{2n}$, след. все разн. в скобках положительны. значит, S_{2n} увелич. с возрастанием n и $S_{2n} > 0$ при любом п.Если переписать так $S_{2n} = u_1 - [(u_2 - u_3) + (u_4 - u_5) + \dots +$ $(u_{2n-2}-u_{2n-1})+u_{2n}$]. Выраж. в скобках положе. $u S_{2n} > 0$, поэтому $S_{2n} < u_1 \forall n$. След. посл. частичных сумм S_{2n} ограничена и возрастает, след., существует конечный $\lim_{n\to\infty} S_{2n} = S$. Πpu этом $0 < S_{2n} \le u_1. \Pi epexods \kappa$ частичной сумме нечётн порядка, имеем $S_{2n+1} = S_{2n} + u_{2n+1}$. Перейдём в посл. равенстве к пределу при $n \to \infty : \lim_{n \to \infty} S_{2n+1} =$ $\lim_{n \to \infty} S_{2n} + \lim_{n \to \infty} u_{2n+1} = S + 0 = S.$ Таким образом, частичные суммы как чётного, так и нечётного порядка имеют один и тот эксе предел S, поэтому $\lim_{n\to\infty} S_n = S$, следовательно данный ряд сходится.

Остаток знакочередующегося ряда по модулю всегда меньше первого отброш. члена.

26. Абсолютная и условная сходимость знакопеременных рядов. Теорема о связи абсолютной и обычной сходимости.

Опр. 18 Пусть ряд вида $(2)\sum_{n=1}^{\infty}a_n$ - знакопеременный, т.е количество отрицательных и неотрицательных a_n бесконечно. Тогда гооврят, что если сходится ряд вида $(1)\sum_{n=1}^{\infty}|a_n|$ - то ряд сходится абсолютно. А если (1) - расходится, но сходится ряд (2), то ряд сходится условно.

Связь абсолютной и условной сходимости:

Teop. 22 Ecnu cxodumc \mathfrak{s} p \mathfrak{s} d (1), mo cxodumc \mathfrak{s} u p \mathfrak{s} d (2).

Док-во: Пусть S_n - частичная сумма ряда (2), а α_n - част. сумм. ряда (1); По условию, существует конеч. пред. $\lim_{n\to\infty}\alpha_n=\alpha$, при этом: (3) $\forall n\in\mathbb{N}:\alpha_n\leq\alpha$; Пусть $S*_n$ - сумма положительных, а $S\&_n$ - сумма

отрицательных членов. Тогда: $(4): S_n = S*_n - S\&_n; (5): \alpha_n = S*_n + S\&_n. \\ Buдн. что посл. не убывают. Из (5) след. \\ что они огран. <math>S*_n \leq \alpha_n \leq \alpha$ и $S\&_n \leq \alpha_n \leq \alpha$. След. сущ. $\lim_{n \to \infty} S*_n = S*_n u \lim_{n \to \infty} S\&_n = S\&. \\ Omcoda, s cuny$ $(4): \lim_{n \to \infty} S_n = \lim_{n \to \infty} (S*_n - S\&_n) = \lim_{n \to \infty} S*_n - \lim_{n \to \infty} S\&_n = S*_n - S\&.$ Значит ряд сходится.

Признаки Дирихле и Абеля сходимости рядов (без доказательства).

Дан ряд вида:

(1):
$$\sum_{n=1}^{\infty} a_n b_n = a_1 b_1 + a_2 b_2 + \ldots + a_n b_n + \ldots$$
, где соотв. a_n и b_n - две числовых последовательности. Признак Дирихле:

Teop. 23 Psd (1) cxodumcs, $ecnu: 1) <math>\Pi ocn$. uacm. <math>cymm psda $\sum_{n=1}^{\infty} b_n$ orpahuueha(m.e psd $cxodumcs); 2) <math>\Pi ocnedobamen$ ьность a_n монотонно cmpemumcs κ nyno.

Признак Абеля:

Teop. 24 Pnd (1) cxodumcn, ecnu: 1)Pnd $\sum_{n=1}^{\infty} b_n \ cxodumcn$; 2) $\Pi ocnedosamenьность <math>\{a_n\}$ - монотонна и ограничена.

28. Функциональные последовательности и ряды. Поточечная и равномерная сходимость.

Опр. 19 Пусть каждому $n \in \mathbb{N}$ ставится в соотв. ф-я $f_n(x): E \to \mathbb{R}$. Тогда говорят, что $\{f_n(x)\}$ - функциональная последовательность. Выражение вида $f_1(x) + f_2(x) + \ldots + f_n(x) + \ldots = \sum_{n=1}^{\infty} f_n(x)$ называют функциональным рядом.

Поточечная сходимость:

Опр. 20 Если в нек. точке $x_0 \in E$ (или некотором конечном числе таких точек) числовой ряд $\sum_{n=1}^{\infty} f_n(x_0)$ сходится, то говорят, что ряд сходится поточечно.

Равномерная сходимость:

Опр. 21 Pяд называется равномерно сходящимся на мн-ве E если последовательноть его частичных сумм $S_n(x)$ сходится на E. Иначе говоря: $\forall \varepsilon > 0$ $\exists n_\varepsilon \in \mathbb{N} : \forall n \geq n_\varepsilon \ \forall x \in E \Rightarrow |r_n(x)| < \varepsilon$, где $S_n(x) - S(x) = r_n(x)$ - n- \check{u} остаток ряда. $r_n(x) = \sum_{k=n+1}^{\infty} f_k(x)$.

29. Признак Вейерштрасса равномерной сходимости функциональных рядов.

Теор. 25 Если для функ. ряда $\sum_{n=1}^{\infty} u_n(x)$ можно указать такой сход. числ. ряд $\sum\limits_{n=1}^{\infty}a_{n},\ \mathit{что}\ \forall n\geq n_{0}\ \mathit{u}\ \forall x\inarepsilon}$ вып. условие $|u_n(x)| \le a_n$ то ряд $\sum\limits_{n=1}^\infty u_n(x)$ сходится абсолютно и равномерно на множестве Е. Док-во: Согласно условию $|u_n(x)| < a_n$ - $\forall n > n_0, \ \forall p \in N \ u \ \forall x \in \varepsilon \ \text{вып. нерав.}$ $\left| \sum_{k=n+1}^{n+p} u_k(x) \right| \le \sum_{k=n+1}^{n+p} |u_k(x)| \le$ $\sum_{k=n+1}^{n+p} a_k$. Из сход. $\sum_{n=1}^{\infty} a_n$ следует, что для него вып. условие Коши, т.е. $\forall \varepsilon > 0 \exists N_{\varepsilon} : \forall n \geq N_{\varepsilon} \forall p \in N \to \sum_{n=1}^{\infty} a_n \ u$ $\exists N_{\varepsilon} : \forall n \geq N_{\varepsilon} \forall p \in N \to \sum_{n=1}^{\infty} a_n \ u$ $\exists N_{\varepsilon} : \forall n \geq N_{\varepsilon} \forall p \in N \forall x \in E \to$ $\left|\sum_{k=n+1}^{\infty}u_k(x)\right|<arepsilon$, u ε cuny $\kappa pumepus$ Коши равн. сход. ряда этот ряд сход. равн. на множестве Е. Абс. сход. $\sum_{n=1}^{\infty} u_n(x) \ \forall x \in \varepsilon \ \text{следует} \ \text{из правого}$ нерав. $\left|\sum_{k=n+1}^{n+p} u_k(x)\right| \le \sum_{k=n+1}^{n+p} |u_k(x)| \le$ $\sum_{k=n+1}^{n+p} a_k.$

30. Теорема о непрерывности суммы равномерно сходящегося ряда (без доказательства).

Теор. 26 Пусть все члены функ. ряда $u_1(x) + u_2(x) + \ldots + u_n(x) + \ldots$ определены u непрерывны на отрезке [a,b], а сам ряд равномерно сходится на этом отрезке. Тогда сумма ряда S(x) будет непрерывной функцией на этом сегменте:

31. Теоремы о почленном дифференцировании и интегрировании функциональных рядов (без доказательства).

Почленное дифференцирование:

Теор. 27 Пусть на [a;b] задана посл. непрерывно дифф. ф-й $\{u_n\}$, такая, что $\sum_{n=1}^{\infty} u_n(x) \, cxo\partial.$ в $x \in [a;b]$, а ряд $\sum_{n=1}^{\infty} u'_n(x) \, cxo\partial.$ равномерно на [a;b]. Тогда исходный $\sum_{n=1}^{\infty} u_n(x)$ равном. cxod.на всем [a; b], его сумма явл. непрерывно дифф. ф-й и справ. равенство $\left(\sum_{n=1}^{\infty} u_n(x)\right)' = \sum_{n=1}^{\infty} u'_n(x) \ (x \in [a; b]).$

Почленное интегрирование:

Теор. 28 Пусть $\{u_n\}$ — послед. непрерыв. на [a;b] ф-й такова, что $\sum_{n=1}^{\infty} u_n(x)$ сход. равномерно на [a; b]. Тогда справ. равенство:

$$\int_{a}^{b} \sum_{n=1}^{\infty} u_n(x) dx = \sum_{n=1}^{\infty} \int_{a}^{b} u_n(x) dx;$$

32. Степенные ряды. Теорема Абеля.

Опр. 22 Ряд, членами которого являются степенные функции аргумента х, называется степенным рядом: $\sum_{n=1}^{\infty} a_n x^n =$ $a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n + \ldots$ Так-же имеет место степ. ряд сл. вида: $\sum_{n=1}^{\infty} a_n (x - x_0)^n =$ $a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \dots + a_n (x - x_0)^n + \dots$

Теорема Абеля:

Teop. 29 *Ecnu cmen. pяд:* $(1) \sum_{n=1}^{\infty} a_n z^n$ cxodumcs npu $z=z_0\neq 0$, mo on abc. cxod. $\forall z: |z| < |z_0|$. Док-во: $\Pi ycmb$: $K = \{z : |z| < |z_0|\}$;

 $ho = \frac{|z|}{|z_0|},
ho < 1;$ Из сходимости ряда (1) в точке z_0 следует сходимость ряда $\sum_{n=1}^{\infty} a_n z_0^n$, отюсда по небх. усл. $\lim_{n\to\infty}a_nz_0^n=0$; Тогда посл. $a_nz_0^n$ - огр., $m.e \exists M > 0 \forall n : |a_n z_0^n| < M.$ Имеем: $|a_n z^n| = |a_n z^n| \cdot \left| \frac{z_0^n}{z_0^n} \right| = \left| a_n z_0^n \cdot \frac{z^n}{z_0^n} \right| =$ $\left|a_nz_0^n\right|\cdot\left|rac{z^n}{z_0^n}\right|=\left|a_nz_0^n\right|
ho^n < M
ho^n$. Ряд $\sum_{n=0}^{\infty} M\rho^n \operatorname{cxodumcs}, \ m.\kappa \ \rho < 1. \ Omcoda$ по призн. сравнения ряд (1) сходится в поставленных гранииах.

33. Радиус, интервал и область сходимости степенного ряда.

Опр. 23 Областью называют область определения ф-ии $f(x) = \sum_{n=1}^{\infty} a_n x^n$, т.е мн-во таких точек, в которых ряд сходится. Если эта область представима в виде $[x_0 - R, x_0 + R], R > 0$, то такую область называют интервалом сходимости, а R - радуисом сходимости. Притом сходимость в граничных точках должна быть проверена отдельно.

Вычисление радиуса: 1)По формуле из рад. призн. Коши $R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{a_n}}$; 2)По форм.

из призн. Даламбера: $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$

34. Ряды Тейлора и Маклорена. Достаточное условие разложимости функции в ряд Тейлора (без доказательства).

Ond. 24 $\Pi ucm_b \ f : U(x_0) \to \mathbb{R}$ - $\delta eck. \partial u \phi \phi$ в т. x_0 . Тогда $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$ называют рядом Тейлора $(npu\ x_0)$ рядом маклорена) ф-ии f(x) в $m.x_0$.

Дост. усл. разложимости в ряд Тейлора.

Теор. 30 Если ф-я f имеет произв. всех порядков на пром. $(1)(x_0 - R, x_0 + R)$ и все произв. orp. m.e $\exists L > 0 : \forall x \in (1)$ u $\forall n \in \{1, 2, ...\}$ вып.: $|f^{(n)}(x)| < L$, где L не зав. от п, то ф-я представима в виде ряда тейлора.

35. Разложение основных элементарных функций в ряд Маклорена.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots =$$

$$\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, x \in \mathbb{R}(2);$$

$$\operatorname{sh} x = x + \frac{x^{3}}{3!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots =$$

$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, x \in \mathbb{R}(3);$$

$$\bullet \operatorname{ch} x = 1 + \frac{x^{2}}{2!} + \dots + \frac{x^{2n}}{(2n)!} + \dots =$$

 $\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, x \in \mathbb{R}(4);$ $\sin x = x - \frac{x^3}{3!} + \ldots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \ldots =$ $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, x \in \mathbb{R}(5);$ $\cos x = 1 - \frac{x^2}{2!} + \ldots + (-1)^n \frac{x^{2n}}{(2n)!} + \ldots =$ $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, x \in \mathbb{R}(6);$ $\ln(1+x) = x - \frac{x^2}{2} + \ldots + (-1)^{n+1} \frac{x^n}{n} + \ldots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}, (8)$ при $x \in (-1,1];$ $(1+x)^{\alpha} =$ $1+\sum_{n=1}^{\infty}rac{lpha(lpha-1)...(lpha-n+1)}{n!}x^n+\ldots,$ (10) при $x\in (-1,1); \ rac{1}{1+x}=1-x+x^2-\ldots=$ $\sum_{n=0}^{\infty} (-1)^n x^n, x \in \mathbb{R}(11);$

36. Тригонометрические ряды Фурье.

Опр. 25 Тригонометрический ряд Фурье есть предстваление нек-й ф-ии f с периодом т в виде сл. ряда: $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx), \ \epsilon \partial \epsilon:$ $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx; a_n =$ $\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) cos(nx) dx; b_n =$ $\frac{1}{\pi} \int_{-\pi} \pi f(x) \sin(nx) dx;$

37. Достаточное условие сходимости тригонометрического ряда Фурье в точке (без доказательства).

Teop. 31 Pad фурье ϕ -uu f(x) cxodumca, если интеграл $\int_{-\pi}^{\pi} (f(x+z) - f(x)) D_n(z) dz = 0$, $z \partial e \ D_n(z)$ - n-е ядро дирихле. $D_n(z) = \frac{\sin(n+\frac{1}{2})z}{\sin\frac{z}{2}} = 2(\frac{1}{2} + \sum_{n=1}^{N} cosnz)$