Univerzita Pardubice Fakulta elektrotechniky a informatiky

Zpracování dat pro předmět NMAST

Bc. Lukáš Milar, Bc. Tomáš Prudký

Semestrální práce

OBSAH

Se	znam	obrázků	4
Se	znam	tabulek	5
Úv	od		6
1	Pop	is dat	7
2	Pop	isná statistika	8
3	Zákl	ladní grafy	10
	3.1	Histogram	10
	3.2	Bodový graf	14
	3.3	Boxplot	19
	3.4	3D graf	21
	3.5	Hexbin	23
	3.6	Chernoff faces	24
	3.7	QQPlot	25
4	Test	ování statistických hypotéz	26
	4.1	Jednovýběrový Studentův test vůči střední hodnotě	26
	4.2	Dvouvýběrový Studentův test	28
	4.3	Wilcox test	29
	4.4	Fisherův test	30
	4.5	Shapiro Wilk test	30
5	ANG	OVA	31
6	Vari	lance	32
7	Kor	elace	34
	7.1	Korelační matice	34
8	Kov	ariance	37
	8.1	Kovarianční matice	37
9	Test	ování v kontingenčních tabulkách	40
	9.1	Pearsonův Chí-kvadrát test	40
10	Pair	s	41
Zá	věr		42

Použitá literatura	43
Seznam příloh	44
Příloha A	45

SEZNAM OBRÁZKŮ

1	Histogram zlog. klouzavý průměr nových případů	10
2	Histogram zlog. nových případů na milión	10
3	Histogram zlog. klouzavého průměru nových případů na milión	11
4	Histogram hospitalizovaných pacientů v ČR	11
5	Nove testovani v Cesku	12
6	Nove pripady v Cesku	12
7	Nové testy pro Česko a Německo	13
8	Bodový graf zlogaritmovaných nových případů	14
9	Bodový graf nových testů	14
10	Bodový graf reprodukčního čísla	15
11	Bodový graf pacientů na icu	15
12	Bodový graf hospitalizovaných pacientů	16
13	Bodový graf týdenních přírůstků na icu	16
14	Bodový graf týdenních hospitalizací	17
15	Bodový graf pozitivity testů	17
16	Bodový graf nových očkování	18
17	Bodový graf smrtnosti	18
18	Boxplot graf pro nové případy na milión	19
19	Boxplot graf pro reprodukční číslo	19
20	Boxplot graf pro zlogaritmované nové smrti	20
21	3D graf počtu případů a počtu testů	21
22	3D graf zlogaritmovaných počtu případů a počtu testů	21
23	3D graf počtu případů a počtu nových očkování	22
24	3D graf počtu nových případů	22
25	3D graf reprodukčního čísla	23
26	Hexbin graf nových zlog. nových případů a nových úmrtí	23
27	Chernoff faces graf tabulky popisné statistiky	24
28	QQPlot graf nových případů a nových úmrtí	25
29	QQPlot graf nových testů a nových případů	25
30	Anova graf nových testů, případů a úmrtí	31
31	Heatmap graf korelační matice	35
32	Heatmap graf korelační matice	38
33	Graf korelační matice	38
34	GGQQPlot graf korelační matice	39
35	Grafy párů	41

SEZNAM TABULEK

1	Cásti popisné statistiky aplikované na da	ata								•		•		•					•		5
---	---	-----	--	--	--	--	--	--	--	---	--	---	--	---	--	--	--	--	---	--	---

ÚVOD

1 POPIS DAT

2 POPISNÁ STATISTIKA

	n_p	n_p_s	$n_p_n_m$	$n_p_n_m_s$	h_p	h_p_n_m
prumer	2940.58	2936.89	274.19	273.85	2370.49	221.03
modus	75.00	57.57	6.99	5.37	69.00	6.43
median	416.00	422.29	38.79	39.38	339.00	31.61
max	17773.00	12954.86	1657.22	1207.96	9509.00	886.66
min	-2214.00	2.71	-206.44	0.25	0.00	0.00
skewness	1.55	1.16	1.55	1.16	0.86	0.86
kurtosis	1.38	-0.07	1.38	-0.07	-0.86	-0.86
deviation	4277.10	3876.20	398.81	361.43	2973.01	277.22
var	18293577.15	15024928.55	159052.40	130633.34	8838793.84	76848.36

Tabulka 1: Části popisné statistiky aplikované na data

3 ZÁKLADNÍ GRAFY

3.1 Histogram

Histogram zlog. klouzavého průměru nových případů

Obrázek 1: Histogram zlog. klouzavý průměr nových případů

Histogram zlog. nových případů na milión

Obrázek 2: Histogram zlog. nových případů na milión

Histogram zlog. klouzavého průměru nových případů na mili

Obrázek 3: Histogram zlog. klouzavého průměru nových případů na milión

Histogram hospitalizovaných pacientů v ČR

Obrázek 4: Histogram hospitalizovaných pacientů v $\check{\mathbf{C}}\mathbf{R}$

Nove testovani v Cesku

Obrázek 5: Nove testovani v Cesku

Nove pripady v Cesku

Obrázek 6: Nove pripady v Cesku

Nové testy: Česko vs Německo

Obrázek 7: Nové testy pro Česko a Německo

3.2 Bodový graf

Bodový graf vývoje nových případů v čase

Obrázek 8: Bodový graf zlogaritmovaných nových případů

Bodový graf vývoje nových testů v čase

Obrázek 9: Bodový graf nových testů

Bodový graf vývoje reprodukčního čísla v čase

Obrázek 10: Bodový graf reprodukčního čísla

Bodový graf vývoje pacientů na icu v čase

Obrázek 11: Bodový graf pacientů na icu

Bodový graf vývoje hospitalizovaných pacientů v čase

Obrázek 12: Bodový graf hospitalizovaných pacientů

Bodový graf vývoje týdenních přírůstků na icu v čase

Obrázek 13: Bodový graf týdenních přírůstků na icu

Obrázek 14: Bodový graf týdenních hospitalizací

Bodový graf vývoje pozitivity testů v čase

Počet dnů od 7. 3. 2020

Obrázek 15: Bodový graf pozitivity testů

Bodový graf vývoje nových očkování v čase

Obrázek 16: Bodový graf nových očkování

Bodový graf vývoje smrtnosti v čase

Obrázek 17: Bodový graf smrtnosti

3.3 Boxplot

Nové případy na milión

Obrázek 18: Boxplot graf pro nové případy na milión

Reprodukční číslo

Obrázek 19: Boxplot graf pro reprodukční číslo

Česko zlogaritmované nové smrti

Obrázek 20: Boxplot graf pro zlogaritmované nové smrti

3.4 3D graf

Graf počtu případů a počtu testů

Obrázek 21: 3D graf počtu případů a počtu testů

Graf zlogaritmovaného počtu případů a počtu testů

Obrázek 22: 3D graf zlogaritmovaných počtu případů a počtu testů

Graf počtu případů a počtu očkování

Obrázek 23: 3D graf počtu případů a počtu nových očkování

Graf počtu nových případů

Obrázek 24: 3D graf počtu nových případů

Graf vývoje reprodukčního čísla

Obrázek 25: 3D graf reprodukčního čísla

3.5 Hexbin

Graf zlog. nových případů a nových úmrtí

Obrázek 26: Hexbin graf nových zlog. nových případů a nových úmrtí

3.6 Chernoff faces

"height of ear

effect of variables: modified item Var "height of face " "countriesMeanNewCases" "width of face " "countriesMeanTotalCases" "structure of face" "countriesPopulation" "height of mouth " "countriesMeanNewCases" "width of mouth " "countriesMeanTotalCases" " "countriesPopulation" "smiling " "countriesMeanNewCases" "height of eyes "width of eyes " "countriesMeanTotalCases" "height of hair " "countriesPopulation" "width of hair " "countriesMeanNewCases" "style of hair "countriesMeanTotalCases" "height of nose "countriesPopulation" "width of nose " "countriesMeanNewCases" "width of ear "countriesMeanTotalCases"

"countriesPopulation"

Obrázek 27: Chernoff faces graf tabulky popisné statistiky

3.7 QQPlot

Graf nových případů a nových úmrtí

Obrázek 28: QQPlot graf nových případů a nových úmrtí

Graf nových testů a nových případů

Obrázek 29: QQPlot graf nových testů a nových případů

4 TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

4.1 Jednovýběrový Studentův test vůči střední hodnotě

One Sample t-test

```
data: data_czech$new_cases
t = -2.0168, df = 575, p-value = 0.04418
alternative hypothesis: true mean is not equal to 3300
95 percent confidence interval:
2590.550 3290.603
sample estimates:
mean of x
 2940.576
        One Sample t-test
data: data_czech$new_cases_smoothed
t = 18.184, df = 575, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 2619.672 3254.109
sample estimates:
mean of x
  2936.89
        One Sample t-test
data: data_czech$new_cases_per_million
t = 16.5, df = 575, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 241.5531 306.8289
sample estimates:
mean of x
  274.191
```

One Sample t-test

data: data_czech\$new_cases_smoothed_per_million
t = 18.184, df = 575, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 244.2687 303.4260
sample estimates:
mean of x
 273.8474</pre>

One Sample t-test

data: data_czech\$hosp_patients
t = 19.019, df = 568, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 2125.690 2615.294
sample estimates:
mean of x
 2370.492</pre>

One Sample t-test

data: data_czech\$hosp_patients_per_million
t = 19.019, df = 568, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 198.2078 243.8604
sample estimates:
mean of x
 221.0341</pre>

4.2 Dvouvýběrový Studentův test

Welch Two Sample t-test

```
data: p1 and p2
t = -4.518, df = 537.03, p-value = 7.683e-06
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2272.4359 -895.1752
sample estimates:
mean of x mean of y
 2148.674 3732.479
        Welch Two Sample t-test
data: data_czech$new_cases_per_million and data_slovakia$new_cases_per_million
t = 7.7283, df = 817.84, p-value = 3.194e-14
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 105.8863 177.9857
sample estimates:
mean of x mean of y
  274.191 132.255
        Two Sample t-test
data: data_czech$new_cases_per_million and data_germany$new_cases_per_million
t = 10.844, df = 1150, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 152.3817 219.7075
sample estimates:
mean of x mean of y
274.19103 88.14644
```

Two Sample t-test

```
data: data_czech$new_cases_per_million and data_poland$new_cases_per_million
t = 7.5404, df = 1150, p-value = 9.477e-14
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 103.9326 177.0431
sample estimates:
mean of x mean of y
 274.1910 133.7032
       Two Sample t-test
data: data_czech$new_cases_per_million and data_austria$new_cases_per_million
t = 7.2242, df = 1150, p-value = 9.157e-13
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  95.01377 165.86690
sample estimates:
mean of x mean of y
274.1910 143.7507
```

4.3 Wilcox test

Wilcoxon rank sum test with continuity correction

```
data: data_czech$new_cases_per_million and data_slovakia$new_cases_per_million
W = 205293, p-value = 2.97e-12
alternative hypothesis: true location shift is not equal to 0
```

Wilcoxon rank sum test with continuity correction

```
data: data_czech$new_cases_per_million and data_germany$new_cases_per_million
W = 188720, p-value = 5.261e-05
alternative hypothesis: true location shift is not equal to 0
```

4.4 Fisherův test

F test to compare two variances

```
data: lm(data_czech$new_cases_per_million ~ 1) and lm(data_slovakia$new_cases_per_million ~ 1)
F = 4.5141, num df = 575, denom df = 575, p-value < 2.2e-16
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
    3.832723 5.316656
sample estimates:
ratio of variances
    4.514119</pre>
```

4.5 Shapiro Wilk test

Shapiro-Wilk normality test

data: data_czech\$new_tests
W = 0.82915, p-value < 2.2e-16</pre>

5 ANOVA

182 observations deleted due to missingness

Fitted values aov(data_czech\$new_tests ~ data_czech\$new_cases + data_czech\$new_dea

Obrázek 30: Anova graf nových testů, případů a úmrtí

6 VARIANCE

7 KORELACE

7.1 Korelační matice

```
[,1]
                      [,2]
                                  [,3]
                                              [,4]
                                                         [,5]
                                                                    [,6]
[1,] 1.00000000 -0.62274409 -0.129186615 -0.285154793 0.66579693 0.57478261
[2,] -0.62274409 1.00000000 0.151838159 0.209449286 -0.43366681 -0.44705372
[3,] -0.12918662  0.15183816  1.000000000  0.250435635  -0.36067001  -0.33492826
[4,] -0.28515479  0.20944929  0.250435635  1.000000000  -0.10668415  -0.03613412
[5,] 0.66579693 -0.43366681 -0.360670011 -0.106684148 1.00000000 0.50445750
[6,] 0.57478261 -0.44705372 -0.334928261 -0.036134119 0.50445750 1.00000000
[7,] 0.05132667 -0.14357190 -0.163185379 0.386541958 0.15705896 -0.13049153
[8,] 0.89739130 -0.55838227 0.004784689 -0.171528226 0.57403785 0.69391304
[9,] 0.30782609 -0.09088933 -0.482383691 0.227688483 0.39791260 0.43652174
 \begin{bmatrix} 10, \end{bmatrix} \quad 0.72869565 \quad -0.63448577 \quad 0.187472832 \quad -0.359599784 \quad 0.45966516 \quad 0.17739130 
[11,] -0.66869565 0.54794522 -0.131361474 0.079233851 -0.46488368 -0.32956522
[12,] 0.42782609 -0.34007394 0.016093955 0.404005569 0.37442923 0.02869565
[13,] 0.38695652 -0.12002610 -0.172683792 -0.201567434 0.10784954 0.64347826
[14,] -0.27478261 0.13785606 -0.133971305 0.135394108 -0.09306371 -0.34956522
 \begin{bmatrix} 15, \end{bmatrix} \quad 0.61043478 \quad -0.47358122 \quad 0.410613349 \quad -0.280365934 \quad 0.17612525 \quad 0.16434783 
[17,] -0.31652174 0.21743858 0.533710359 0.180235243 -0.17090672 -0.62434783
[21,] 0.32347826 -0.23265928 -0.586341943 -0.168916121 0.30876278 0.09043478
[22,] 0.23483367 -0.11048282 0.382423329 -0.190289684 -0.11439756 0.20656665
[23,] 0.25701240 -0.24880383 -0.511638037 0.139995729 0.47498913 0.25179387
[24,] 0.59143293 -0.52522836 0.291929526 0.050729401 0.30230535 0.09088933
           [,7]
                       [,8]
                                    [,9]
                                              [,10]
                                                          [,11]
[1,] 0.05132667 0.897391304 0.3078260870 0.72869565 -0.668695652
[2,] -0.14357190 -0.558382270 -0.0908893259 -0.63448577 0.547945218
[3,] -0.16318538   0.004784689 -0.4823836907   0.18747283 -0.131361474
[4,] 0.38654196 -0.171528226 0.2276884833 -0.35959978 0.079233851
[5,] 0.15705896 0.574037848 0.3979125991 0.45966516 -0.464883681
[6,] -0.13049153   0.693913043   0.4365217391   0.17739130 -0.329565217
[7,] 1.00000000 -0.029578080 0.2801218186 -0.05480644 -0.334058318
[8,] -0.02957808 1.000000000 0.3043478261 0.62956522 -0.664347826
[9,] 0.28012182 0.304347826 1.0000000000 -0.23304348 0.008695652
[10,] -0.05480644 0.629565217 -0.2330434783 1.00000000 -0.646086957
[11,] -0.33405832 -0.664347826 0.0086956522 -0.64608696 1.0000000000
[12,] 0.68595048 0.310434783 0.2269565217 0.28782609 -0.530434783
```


Obrázek 31: Heatmap graf korelační matice

8 KOVARIANCE

8.1 Kovarianční matice

V1	V2	V3	V4
Min. :-33.435	Min. :-31.717	Min. :-29.3043	Min. :-17.957
1st Qu.:-16.168	1st Qu.:-21.842	1st Qu.:-13.8859	1st Qu.: -8.467
Median : 12.293	Median : -5.761	Median : -3.1087	Median : 2.473
Mean : 5.465	Mean : -2.097	Mean : 0.1916	Mean : 3.088
3rd Qu.: 28.946	3rd Qu.: 12.046	3rd Qu.: 13.0217	3rd Qu.: 9.364
Max. : 50.000	Max. : 49.978	Max. : 49.9565	Max. : 49.870
V5	V6	V7	V8
Min. :-23.435	Min. :-34.304	Min. :-29.1739	Min. :-33.217
1st Qu.:-16.016	1st Qu.:-13.087	1st Qu.:-10.8207	1st Qu.:-17.967
Median : 6.620	Median : 4.533	Median : 0.5435	Median : 8.315
Mean : 4.815	Mean : 3.619	Mean : 2.1472	Mean : 5.156
3rd Qu.: 20.663	3rd Qu.: 14.897	3rd Qu.: 14.7663	3rd Qu.: 25.891
Max. : 49.978	Max. : 50.000	Max. : 49.9565	Max. : 50.000
V9	V10	V11	V12
Min. :-34.435	Min. :-36.435	Min. :-33.435	Min. :-31.174
1st Qu.:-10.658	1st Qu.:-17.337	1st Qu.:-23.321	1st Qu.:-14.668
Median : 8.826	Median : 6.196	Median : -1.522	Median : 10.457
Mean : 4.632	Mean : 3.081	Mean : -1.861	Mean : 4.583
3rd Qu.: 16.087	3rd Qu.: 23.522	3rd Qu.: 9.120	3rd Qu.: 16.321
Max. : 50.000	Max. : 50.000	Max. : 50.000	Max. : 50.000
V13	V14	V15	V16
Min. :-35.739	Min. :-25.9348	Min. :-30.8696	Min. :-33.783
1st Qu.: -8.989	1st Qu.:-17.0652	1st Qu.:-17.2446	1st Qu.:-17.913
Median : 3.685	Median : -3.0435	Median : 0.4348	Median : -5.250
Mean : 2.385	Mean : 0.5525	Mean : 2.7237	Mean : -2.403
3rd Qu.: 17.924	3rd Qu.: 14.1957	3rd Qu.: 21.7337	3rd Qu.: 8.435
Max. : 50.000	Max. : 50.0000	Max. : 50.0000	Max. : 50.000
V17	V18	V19	V20
Min. :-34.4348	Min. :-36.435	Min. :-35.739	Min. :-27.087
1st Qu.:-17.0543	1st Qu.:-19.696	1st Qu.:-19.120	1st Qu.:-19.397
Median : -0.6956	Median : -5.652	Median : -3.815	Median : -2.185
Mean : -1.3895	Mean : -3.584	Mean : -3.570	Mean : -2.415
3rd Qu.: 9.1413	3rd Qu.: 6.598	3rd Qu.: 8.679	
Max. : 50.0000	Max. : 50.000	Max. : 50.000	Max. : 49.978
V21	V22	V23 37	V24
Min. :-29.304		Min. :-25.565	Min. :-33.783
1st Qu.: -9.234	1st Qu.:-14.495	1st Qu.:-12.223	1st Qu.: -9.245

Obrázek 32: Heatmap graf korelační matice

Obrázek 33: Graf korelační matice

Obrázek 34: GGQQPlot graf korelační matice

9 TESTOVÁNÍ V KONTINGENČNÍCH TABULKÁCH

9.1 Pearsonův Chí-kvadrát test

Pearson's Chi-squared test

data: data_czech\$new_tests and data_czech\$new_cases
X-squared = 147356, df = 146982, p-value = 0.245

10 PAIRS

Obrázek 35: Grafy párů

ZÁVĚR

POUŽITÁ LITERATURA

[1] Our World in Data Data on COVID-19 (coronavirus) [online]. 2021 [cit. 2021-11-18]. Dostupné z: https://github.com/owid/covid-19-data/tree/master/public/data

SEZNAM PŘÍLOH

Příloha A					?'	١
i inoma ii	 	 	 	 	 	•

PŘÍLOHA A

Příloha A zahrnuje ZIP soubor, který obsahuje: