# Battle of the neighborhoods

Berlin vs Hamburg

Alexandros Chrysidis 15/05/2021

## 1. Introduction

In this project we will try to find similarities between the cities of Berlin and Hamburg, Germany. Specifically, this report will be targeted to:

- Citizens from either city, interested in moving to the other.
- Companies interested in relocating or expanding in either city.

Since there are lots of venues in Berlin and Hamburg, we will try to detect neighbourhoods that are similar to each other, by analysing the most common venues.

We will use our data science powers to generate a few most promising neighbourhoods based on this criterion. Advantages of each area will then be clearly expressed so that best possible final neighbourhood can be chosen by the interested parties.

## 2. Data

#### 2.1 Data source

For this analysis we will need 2 types of data. The postal codes and coordinates of the cities, which can be found on GitHub, <u>here</u>. Moreover, we are going to need venue location and information, in order to compare the neighborhoods. This is achieved by scraping data from the Foursquare API.

#### 2.2 Data cleaning

First step was to clean the ZIP-Code data obtained, since the original document had multiple columns of irrelevant data and many major cities which were not needed. After cleaning the original dataset, we were left with 296 rows and 4 columns of data for the cities of Berlin and Hamburg.

Next, the venues were scrapped, normalized, and put into a dataframe in order to prepare them for further analysis.

In order to achieve that, we had to scrap venues for each area code of each city, clean the data and then merge into one table as shown below.

|   | Zipcode | State  | Zipcode Latitude | Zipcode Longitude | Venue                                    | Venue Latitude | Venue Longitude | Venue Category         |
|---|---------|--------|------------------|-------------------|------------------------------------------|----------------|-----------------|------------------------|
| 0 | 10115   | Berlin | 52.5323          | 13.3846           | Hotel i31                                | 52.531107      | 13.384270       | Hotel                  |
| 1 | 10115   | Berlin | 52.5323          | 13.3846           | Hotel ULTRA Concept Store                | 52.529362      | 13.396969       | Furniture / Home Store |
| 2 | 10115   | Berlin | 52.5323          | 13.3846           | Deutsches Theater                        | 52.523970      | 13.382001       | Theater                |
| 3 | 10115   | Berlin | 52.5323          | 13.3846           | Ackerstadtpalast                         | 52.529721      | 13.396777       | Performing Arts Venue  |
| 4 | 10115   | Berlin | 52.5323          | 13.3846           | Sammlung Boros                           | 52.523352      | 13.384213       | Art Gallery            |
| 5 | 10115   | Berlin | 52.5323          | 13.3846           | Factory Kitchen                          | 52.537449      | 13.394714       | Restaurant             |
| 6 | 10115   | Berlin | 52.5323          | 13.3846           | Hamburger Bahnhof – Museum für Gegenwart | 52.528513      | 13.372067       | Art Museum             |
| 7 | 10115   | Berlin | 52.5323          | 13.3846           | Du Bonheur                               | 52.536310      | 13.397558       | Pastry Shop            |
| 8 | 10115   | Berlin | 52.5323          | 13.3846           | Bandol sur Mer                           | 52.528992      | 13.395436       | French Restaurant      |
| 9 | 10115   | Berlin | 52.5323          | 13.3846           | H Gedenksfätte Berliner Mauer            | 52.535750      | 13.390708       | Tram Station           |

The data is scraped, aggregated and summarized. Next step is to start analyzing each neighborhood seperately in order to prepare forclustering.

# 3. Data analysis

#### 3.1 Calculations

In order to analyze the neighborhoods of the two cities, we had to define our parameters. Firstly, we needed to calculate the top venue categories for each area code and sort them in descending order, to create the parameter with which we were going to cluster the neighborhoods.

Since the two cities have a larger gap in the amount of residents, we then normalized the results in order to show venue categories per capita (per mil.). Lastly, we visualized the results to get a better understanding of the shape of our dataset.



#### 3.2 k-Means clustering

Now that we created our top 20 categories, we needed to cluster the area codes according to this dataset. k-Means is a type of partition-based clustering in order to partitioning the data base into groups of individuals with similar characteristics. It divides data into non-overlapping subsets (clusters) without any cluster-internal structure. k-Means tries to minimize intra-cluster distances (e.g. Euclidean or other methods for measuring of distance) and maximize inter-cluster distances. It is an iterative algorithm, but the results depend on the initial defined number of clusters. In turn, this means that results (i.e. clusters) are guaranteed, but may be the optimum. Therefore, the algorithm will be run several times with different amount of initially defined clusters. The algorithm returns inertia, or cost, which can be recognized as a measure of how internally coherent clusters are.

In order to find the best k (the number of clusters with the minimum inter-cluster-distance) we assumed a range from 1 to 25 and ran the algorithm to calculate the cost of each k.

> But what became clear was, that the cost always dropped with an increasing amount of clusters.

We had to find a method to pick out the **best k.** The method we used is known as the elbow method.

The elbow method uses the visualized data to determine, at which point the cost value sharply shifts to form the tip of the elbow.

|    | k  | Cost      |
|----|----|-----------|
| 0  | 1  | 31.411739 |
| 1  | 2  | 29.175120 |
| 2  | 3  | 27.933183 |
| 3  | 4  | 26.953626 |
| 4  | 5  | 26.063333 |
| 5  | 6  | 25.354706 |
| 6  | 7  | 24.973040 |
| 7  | 8  | 23.927760 |
| 8  | 9  | 22.992647 |
| 9  | 10 | 22.708074 |
| 10 | 11 | 22.285820 |
| 11 | 12 | 21.902745 |
| 12 | 13 | 21.597440 |
| 13 | 14 | 20.662899 |
| 14 | 15 | 20.795345 |
| 15 | 16 | 20.311052 |
| 16 | 17 | 20.086581 |
| 17 | 18 | 19.529389 |
| 18 | 19 | 19.074907 |
| 19 | 20 | 18.919807 |
| 20 | 21 | 18.477108 |
| 21 | 22 | 18.706107 |
| 22 | 23 | 18.302873 |
| 23 | 24 | 17.953517 |



# 3.3 Mapping

We created our clusters, our top 20 categories and our cleaned area codes. Next step was to merge the data and create a map, showing the different clusters in both cities.

Since 20 categories would only clutter the dataset, we decided to continue with the top 10 most common venue categories per neighborhood and combine them with their respective clusters.

The resulting dataset consisted of 267 rows and 15 columns.

|   | zipcode | state  | latitude | longitude | Cluster Labels | 1st Most Common Venue | 2nd Most Common Venue | 3rd Most Common Venue | 4th Most Common Venue | 5th Most Common Venue | 6th Most Common Venue |
|---|---------|--------|----------|-----------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 0 | 10115   | Berlin | 52.5323  | 13.3846   | 7              | Café                  | Restaurant            | Coffee Shop           | Hotel                 | Art Gallery           | Pastry Shop           |
| 1 | 10117   | Berlin | 52.5170  | 13.3872   | 14             | Hotel                 | History Museum        | Plaza                 | Chocolate Shop        | Exhibit               | Monument / Landmark   |
| 2 | 10119   | Berlin | 52.5305  | 13.4053   | 7              | Coffee Shop           | Italian Restaurant    | Ice Cream Shop        | Bakery                | Café                  | Bookstore             |
| 3 | 10178   | Berlin | 52.5213  | 13.4096   | 14             | Hotel                 | Plaza                 | Café                  | Bookstore             | Gym / Fitness Center  | Scenic Lookout        |
| 4 | 10179   | Berlin | 52.5122  | 13.4164   | 14             | Hotel                 | Nightclub             | Bakery                | Café                  | Thai Restaurant       | Event Space           |

The results were visualized on a map to create a better understanding of the clusters.



# 4. Conclusion

It became certainly clear, that there are some clusters with more ZIP-Codes and others that only had 1.

It was a result that could have been expected, since some neighbourhoods shared the same structure (e.g. predominantly housing, office etc.). Those neighbourhoods fell into the same cluster, as they shared a similar venue structure.

Purple, red, yellow and dark blue were some of the clusters with many neighbourhoods. Areas that populated cluster 1 (purple) are observed around the city centres, while others (dark blue, yellow) were more peripheral, indicating -probably heavily weighted- housing areas.

### 5. Discussion

This tool certainly makes it easier, to some extent, to analyze neighborhoods and the similarities between them.

One point of discussion could be, that only the venue structure is not a great amount of information to conclude that two areas are similar to each other. If we wanted to take this analysis a

step further, we could also analyze the climate of the cities/areas and even the location in relation to commute times and economic indexes.

Nevertheless, it could be used as an important step for an individual or corporations who are thinking of moving or expanding to another city, which areas share some similarities to their existing one.

Thank you for reading.