

Prime Number Generator and Checker

Student name – Abhishek Singh

Roll no - 202401100300009

Branch-CSE AI

Subject- Al

Introduction

Prime numbers are fundamental in mathematics and have significant applications in cryptography, computer science, and number theory. A prime number is a natural number greater than 1 that has only two factors: 1 and itself. This report presents a simple Python program that checks whether a given number is prime and generates prime numbers up to a given limit. The implementation is designed to work in Google Colab and is structured across multiple cells for better modularity and execution control.

Methodology

The program is divided into six cells to allow for a step-by-step execution in Google Colab. The methodology follows these steps:

Prime Checker Function – A function is created to check whether a given number is prime by testing divisibility from 2 to the square root of the number.

User Input for Prime Check – The user inputs a number to test for primality.

Prime Checking Execution – The program verifies and prints whether the number is prime.

Prime Generator Function – A function generates all prime numbers up to a given limit.

User Input for Prime Generation – The user enters an upper limit for generating prime numbers.

Output of Prime Numbers – The program prints the list of prime numbers up to the specified limit.

This step-by-step approach ensures a clear understanding of the logic while allowing for flexible execution in Google Colab.

Python Code

```
# Cell 1: Define Prime Number Checker Function
def is_prime(n):
  if n < 2:
    return False
  for i in range(2, int(n**0.5) + 1):
    if n % i == 0:
      return False
  return True
# Cell 2: Take Input for Prime Checking
num = int(input("Enter a number to check if it's prime: "))
# Cell 3: Check If the Number is Prime
if is_prime(num):
  print(f"{num} is a prime number.")
else:
  print(f"{num} is not a prime number.")
# Cell 4: Define Prime Number Generator Function
def generate primes(limit):
  primes = []
  for num in range(2, limit + 1):
```

```
if is_prime(num): # Using function from Cell 1
    primes.append(num)

return primes

# Cell 5: Take Input for Prime Number Generation

limit = int(input("Enter a number to generate prime numbers up to: "))

# Cell 6: Generate and Print Prime Numbers

print(f"Prime numbers up to {limit}: {generate_primes(limit)}")
```

Output and Results

Example 1: Prime Check

Enter a number to check if it's prime: 7

7 is a prime number.

Example 2: Prime Generation

Enter a number to generate prime numbers up to: 20

Prime numbers up to 20: [2, 3, 5, 7, 11, 13, 17, 19]

References & Credits

Python Documentation - https://docs.python.org/3/

Number Theory Concepts - https://mathworld.wolfram.com/PrimeNumber.html

Google Colab Guide - https://colab.research.google.com/

Developed by: [Your Name]

Institution: [Your Institution]

This project was developed as part of a study on prime number detection and generation using Python.