

- 1. Let X_1, X_2, \ldots, X_n be independent random variables with a common distribution depending on an unknown parameter $\theta \in \Theta$.
 - (a) (i) Explain what is meant by saying that $\widetilde{g}(\mathbf{X})$ is an unbiased estimator of a real-valued function $g(\theta)$ of the parameter θ .
 - (ii) Is the following true or false? You do NOT need to justify your answer.
 - (1) If $\hat{\theta}$ is a maximum likelihood estimator of the parameter θ , then $\hat{\theta}$ is unbiased.
 - (2) If $\hat{\theta}$ is a maximum likelihood estimator of the parameter θ , then $\hat{\theta}$ is efficient.
 - (3) If $\hat{\theta}$ is a maximum likelihood estimator of the parameter θ , then $\hat{\theta}$ is asymptotically efficient.
 - (4) If $\hat{\theta}$ is a moment estimator of the parameter θ , then $\hat{\theta}$ is unbiased.
 - (5) If $\hat{\theta}$ is a moment estimator of the parameter θ , then $\hat{\theta}$ is efficient.
 - (6) If $\hat{\theta}$ is a moment estimator of the parameter θ , then $\hat{\theta}$ is asymptotically

Assignment Project Exam Help

- (7) Suppose that $\hat{\theta}$ is the maximum likelihood estimator of θ and $g(\theta)$ is a real-valued function of θ . Then $g(\hat{\theta})$ is the maximum likelihood estimator of $g(\theta)$ https://powcoder.com
- (b) Suppose that the common distribution is the Gamma $\Gamma(2,\theta)$, that is, the common probability denoted with the common probability denoted by the common probability denoted b

$$f(x,\theta) = \frac{1}{\theta^2} x e^{-\frac{x}{\theta}}$$
 for $x > 0$,

where $\theta > 0$.

- (i) Find the maximum likelihood estimator $\hat{\theta}$ of the parameter θ .
- (ii) Is the estimator in (i) unbiased? Justify your answer.
- (c) Suppose that the common probability density function is

$$f(x, \theta) = \theta(\theta + 1)x^{\theta - 1}(1 - x)$$
 for $0 < x < 1$,

where $\theta > 0$. Find a moment estimator of the parameter θ .

- 2. Let $X_1, X_2, ..., X_n$ be independent random variables with a common probability density function/probability function $f(x, \theta)$.
 - (a) (i) Give the definitions of a sufficient statistic and a minimal sufficient statistic.
 - (ii) State, without proof, the Rao-Blackwell theorem.
 - (iii) Given a complete sufficient statistic T for θ , explain how to obtain a minimum variance unbiased estimator \hat{g} for a real-valued function $g(\theta)$.

(You need not define the notion of completeness.)

(b) Suppose that

$$f(x,\theta) = \theta^2 x e^{-\theta x}$$
 for $x > 0$,

where $\theta > 0$.

- (i) By writing the probability density function in exponential family form, show Abstrict and the probability density function in exponential family form, show
- (ii) Prove that $\tilde{\theta} = 1/X_1$ is an unbiased estimator of θ .
- (iii) Assuming the conditional probability density for time of X_1 given T=t is

$$f_{X_1|T}(x|t) = (2n-1)(2n-2)\frac{x}{t^{2n-1}}(t-x)^{2n-3}$$
 for $0 \le x \le t$,

show the Add WeChat powcoder $\hat{\theta} = \frac{1}{\sum_{i=1}^{n} X_i}$

is the minimum variance unbiased estimator of θ .

- 3. Let X_1, X_2, \ldots, X_n be independent random variables with a common probability density function/probability function $f(x, \theta)$.
 - (a) (i) Define the one-step Fisher information and the total Fisher information.
 - (ii) Assume that the regularity conditions of the Cramér-Rao Theorem hold. Give, without proof, an alternative formula for the one-step Fisher information.
 - (iii) State, without proof, the theorem about the attainment of the Cramér-Rao lower bound.

(You need not list the regularity conditions.)

(b) Suppose that the common distribution is the Gamma $\Gamma(4,\theta)$, that is

$$f(x,\theta) = \frac{x^3}{6\theta^4} \exp\left(-\frac{x}{\theta}\right)$$
 for $x > 0$ and $\theta > 0$.

(i) Find the Cramér-Rao lower bound for the variance of an unbiased estimator of $Assignment\ Project\ Exam\ Help$

(Assume that the regularity conditions are satisfied.)

(ii) Using the theorem about the attainment of the Cramér-Rao lower bound, identify the minimum variance unbiased estimator for θ.
 (Assume that the regularity conditions are satisfied.)

Add WeChat powcoder

- 4. (a) Let X_1, X_2, \ldots, X_n be random variables with a joint probability density function/probability function $f(\mathbf{x}, \theta) = f(x_1, x_2, \ldots, x_n, \theta)$, where $\theta \in \Theta$.
 - (i) Define the power function of a test C.
 - (ii) Suppose that C is a test for a null hypothesis $H_0: \theta \in \Theta_0$ against the alternative hypothesis $H_1: \theta \in \Theta_1$, where $\Theta_1 = \Theta \setminus \Theta_0$. Explain what is meant by saying that the test C is unbiased.
 - (iii) State, without proof, the Neyman-Pearson fundamental lemma for the test of a simple hypothesis $H_0: \theta = \theta_0$ against a simple alternative $H_1: \theta = \theta_1$.
 - (b) Let X_1, X_2, \ldots, X_n be a random sample from the normal distribution $N(0, \sigma^2)$.
 - (i) Obtain the Neyman-Pearson critical region of size α for the test of the null hypothesis $H_0: \sigma = \sigma_0$ against the alternative $H_1: \sigma = \sigma_1$ where $\sigma_1 > \sigma_0$. (You may assume that $\frac{1}{\sigma^2} \sum_{k=1}^n X_i^2$ has the $\chi^2(n)$ distribution.)
 - (ii) Specify the critical region when $n=21, \sigma_0=1.2, \sigma_1=1.8$ and $\alpha=0.01, and$ Assignment Project Exam Help

https://powcoder.com

- 5. (a) Explain the application of the likelihood ratio test to composite hypotheses.
 - (b) Let X_1, X_2, \ldots Act raw of any flat prover the first $N(\mu, \sigma^2)$, where both μ and σ are unknown. Suppose that C is the critical region for the likelihood ratio test for testing the null hypothesis $H_0: \mu = \mu_0$ against the alternative $H_1: \mu \neq \mu_0$.
 - (i) Show that C can be written as

$$C = \left\{ \mathbf{x} : \left(\frac{\hat{\sigma}^2}{\hat{\sigma}_0^2} \right)^{\frac{n}{2}} \le \lambda \right\},$$
where $\mathbf{x} = (x_1, x_2, \dots, x_n), \ \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2, \ \hat{\sigma}_0^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu_0)^2, \ \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i.$

(ii) Show that the critical region of size α can be specified using tables of the t-distribution. (You may assume that, if $\lambda \leq 1$, $\left(\frac{a^2}{b^2}\right)^{n/2} \leq \lambda$ is equivalent to $\sqrt{\frac{b^2-a^2}{a^2}} \geq \sqrt{\lambda^{-2/n}-1}$.)

Table of Standard Distributions

Binomial distribution B(n, p)

pf
$$f(x,p) = {n \choose x} p^x (1-p)^{n-x}; x = 0, 1, ..., n; 0$$

meanE(X) = np

Var(X) = np(1-p)variance

 $M(t) = ((1-p) + pe^t)^n$ mgf

Poisson distribution $P(\lambda)$

pf
$$f(x, \lambda) = \lambda^x e^{-\lambda} / x! \; ; \; x = 0, 1, 2, ... \; ; \; \lambda > 0$$

 $E(X) = \lambda$ meanvariance $Var(X) = \lambda$

 $M(t) = \exp\{\lambda(e^t - 1)\}\$ mgf

Geometric distribution G(p)

pf $f(x,p) = (1-p)^{x-1} p; x = 1, 2, ...; 0$

mean gnment Project Exam Help

 $M(t) = p(1 - (1 - p)e^{t})^{-1}, t < -\log(1 - p)$ mgf

Normal distribution Ntto S://powcoder.com $pdf \qquad f(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}; -\infty < x < \infty; -\infty < \mu < \infty; \sigma > 0$

 $E(X) = \mu$ mean

 $Var(X) = \sigma A dd$ $M(t) = \exp{\{\mu t + \sigma^2 t^2/2\}}$ We Chat powcoder variancemgf

Uniform distribution U(a, b)

$$pdf f(x,a,b) = \frac{1}{(b-a)}; \ a \le x \le b; \ a < b$$

E(X) = (a+b)/2mean $Var(X) = (b-a)^2/12$ variance $M(t) = \frac{e^{bt} - e^{at}}{(b-a)t}$ mgf

Exponential distribution $M(\theta)$

 $f(x,\theta) = \theta \exp\{-\theta x\}; x \ge 0; \theta > 0$ pdf

 $E(X) = 1/\theta$ mean $Var(X) = 1/\theta^2$ variance $M(t) = (1 - t/\theta)^{-1}$ mgf

Gamma distribution $\Gamma(\alpha, \beta)$

 $f(x,\alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}\exp\left\{-\frac{x}{\beta}\right\};\, x>0;\, \alpha,\beta>0$ pdf

 $E(X) = \alpha \beta$ mean $Var(X) = \alpha \beta^2$ variance $M(t) = (1 - \beta t)^{-\alpha}$ mgf

No further copying, distribution or publication of this exam paper is permitted. By printing or downloading this exam paper, you are consenting to these restrictions.