本节内容

图的存储

邻接矩阵法

图的存储——邻接矩阵法

无向图

	Α	В	С	D	Ε	F
Α	0	1	0	0	0	0
В	0	0	0	0	0	0
С	1	0	0	0	0	0
D	1	0	0	0	0	0
E	0	1	1	0	0	0
F	0	1	0	1	0	0

顶点中可以存 更复杂的信息

В

可以用 bool型 或枚举型变量 表示边

```
#define MaxVertexNum 100
typedef struct{
```

char Vex[MaxVertexNum];

int Edge[MaxVertexNum][MaxVertexNum];

int vexnum, arcnum;

} MGraph;

//顶点数目的最大值

//顶点表

有向图

//邻接矩阵,边表

//图的当前顶点数和边数/弧数

图的存储——邻接矩阵法

	Α	В	С	D	Ε	F
Α	0	1	0	0	0	0
В	0	0	0	0	0	0
С	1	0	0	0	0	0
D	1	0	0	0	0	0
E	0	1	1	0	0	0
F	0	1	0	1	0	0

结点数为n的图G = (V, E)的邻接矩阵A是 $n \times n$ 的。将G的顶点编号为 $v_1, v_2, ..., v_n$,则

$$A[i][j] = \begin{cases} 1, & \ddot{\Xi}(v_i, v_j) \vec{\otimes} \langle v_i, v_j \rangle \neq E(G) \text{中的边} \\ 0, & \ddot{\Xi}(v_i, v_j) \vec{\otimes} \langle v_i, v_j \rangle \neq E(G) \text{中的边} \end{cases}$$

图的存储——邻接矩阵法

无向图

有向图

	Α	В	C	D	Ε	F
Α	0	1	1	1	0	0
В	1	0	0	0	1	1
C	1	0	0	0	1	0
D	1	0	0	0	0	1
Ε	0	1	1	0	0	0
F	0	1	0	1	0	0

	Α	В	С	D	Ε	F
Α	0	1	0	0	0	0
В	0	0	0	0	0	0
С	1	0	0	0	0	0
D	1	0	0	0	0	0
E	0	1	1	0	0	0
F	0	1	0	1	0	0

第i个结点的度 = 第i行(或第i列)的非零元素个数

思考:如何求顶点的度、入度、出度?

如何找到与一个顶点相连的边/弧?

第i个结点的出度 = 第i行的非零元素个数 第i个结点的入度 = 第i列的非零元素个数 第i个结点的度 = 第i行、第i列的非零元素个数之和

邻接矩阵法求顶点的度/出度/入度的时间复杂度为 O(|V|)

邻接矩阵法存储带权图 (网)

无向网

有向网

Α	В	C	D	Ε	F
∞	5	8	8	8	8
8	8	8	8	8	8
1	8	8	8	8	8
	Last a				
8	3	3	8	8	8
8	4	8	2	∞	∞
	∞ ∞ 1 6	 ∞ 5 ∞ ∞ 1 ∞ 6 ∞ ∞ 3 	$\begin{array}{c ccc} \infty & 5 & \infty \\ \infty & \infty & \infty \\ 1 & \infty & \infty \\ 6 & \infty & \infty \\ \infty & 3 & 3 \end{array}$	$\begin{array}{c cccc} \infty & 5 & \infty & \infty \\ \infty & \infty & \infty & \infty \\ 1 & \infty & \infty & \infty \\ 6 & \infty & \infty & \infty \\ \infty & 3 & 3 & \infty \\ \end{array}$	A B C D E $ \infty 5 \infty \infty \infty \infty $ $ \infty \infty \infty \infty \infty \infty $ $ 1 \infty \infty \infty \infty \infty $ $ 6 \infty \infty \infty \infty \infty $ $ \infty 3 3 \infty \infty $ $ \infty 4 \infty 2 \infty $

可用int的上限 值表示"无穷" #define MaxVertexNum 100

#define INFINITY 最大的int值

typedef char VertexType;

typedef int EdgeType;

typedef struct{

VertexType Vex[MaxVertexNum];

EdgeType Edge[MaxVertexNum] [MaxVertexNum];

int vexnum, arcnum;

}MGraph;

//顶点数目的最大值

//宏定义常量"无穷"

//顶点的数据类型

//带权图中边上权值的数据类型

◢/顶点

//边的权

//图的当前顶点数和弧数

邻接矩阵法存储带权图 (网)

无向网

有向网

	Α	В	С	D	Ε	F
Α	0	5	8	8	8	8
В	∞	0	8	8	8	8
С	1	8	0	8	8	8
D	6	8	8	0	8	8
E	8	3	3	8	0	8
F	8	4	8	2	8	0

可用int的上限 值表示"无穷" #define MaxVertexNum 100

#define INFINITY 最大的int值

typedef char VertexType;

typedef int EdgeType;

typedef struct{

VertexType Vex[MaxVertexNum];

EdgeType Edge[MaxVertexNum] [MaxVertexNum];

int vexnum, arcnum;

}MGraph;

//顶点数目的最大值

//宏定义常量"无穷"

//顶点的数据类型

//带权图中边上权值的数据类型

◢/顶点

//边的权

//图的当前顶点数和弧数

邻接矩阵法的性能分析

0

有向图

	Α	В	С	D	Ε	F
Α	0	1	0	0	0	0
В	0	0	0	0	0	0
С	1	0	0	0	0	0
D	1	0	0	0	0	0
E	0	1	1	0	0	0
F	0	1	0	1	0	0

空间复杂度: $O(|V|^2)$ ——只和顶点数相关,和实际的边数无关

适合用于存储稠密图

无向图的邻接矩阵是对称矩阵,可以压缩存储(只存储上三角区/下三角区)

回顾: 对称矩阵的压缩存储

策略: 只存储主对角线+下三角区

按行优先原则将各元素存入一维数组中。

B[0] B[1] B[2] B[3]
$$B[\frac{n(n+1)}{2}-1]$$

$$a_{1,1}$$
 $a_{2,1}$ $a_{2,2}$ $a_{3,1}$ $a_{n,n-1}$ $a_{n,n}$

矩阵下标 >一维数组下标

$$a_{i,j} \rightarrow B[k]$$

a_{i,i} = a_{i,i}(对称矩阵性质)

$$k = \begin{cases} \frac{i(i-1)}{2} + j - 1, & i \ge j \text{ (下三角区和主对角线元素)} \\ \frac{j(j-1)}{2} + i - 1, & i < j \text{ (上三角区元素} a_{ij} = a_{ji}) \end{cases}$$

邻接矩阵法的性质

	Α	В	C	D
Α	0	1	0	0
В	1	0	1	1
C	0	1	0	1
D	0	1	1	0

设图G的邻接矩阵为A(矩阵元素为0/1),则 A^n 的元素 $A^n[i][j]$ 等于由顶点i到顶点j的长度为n的路径的数目

0	1	0	0
1	0	1	1
0	1	0	1
0	1	1	0

	0	1	0	0
	1	0	1	1
*	0	1	0	1
	0	1	1	ୃ0
	- 50	//, X	Co. Y	

$$A^{2}[1][4] = a_{1,1} a_{1,4} + a_{1,2} a_{2,4} + a_{1,3} a_{3,4} + a_{1,4} a_{4,4} = 1$$

$$A^{2}[2][2] = a_{2,1} a_{1,2} + a_{2,2} a_{2,2} + a_{2,3} a_{3,2} + a_{2,4} a_{4,2} = 3$$

$$A^{2}[3][3] = a_{3,1} a_{1,3} + a_{3,2} a_{2,3} + a_{3,3} a_{3,3} + a_{3,4} a_{4,3} = 1$$

$$A^{2}[1][2] = a_{1,1} a_{1,2} + a_{1,2} a_{2,2} + a_{1,3} a_{3,2} + a_{1,4} a_{4,2} = 1$$

	1	0	1	1
$A^2 =$	0	3	1	1
Л	1	1	2	1
	1	1	1	2

邻接矩阵法的性质

	Α	В	C	D
Α	0	1	0	0
В	1	0	1	1
C	0	1	0	1
D	0	1	1	0

设图G的邻接矩阵为A(矩阵元素为0/1),则 A^n 的元素 $A^n[i][j]$ 等于由顶点i到顶点j的长度为n的路径的数目

	0	1	0	0
	1	0	1	1
*	0	1	0	1
	0	1	1	0

0	3	1	1
3	2	4	4
1	4	2	3
1	4	3	2

知识回顾与重要考点

邻接矩阵法要点回顾:

- 如何计算指定顶点的度、入度、出度(分无向图、有向图来考虑)?时间复杂度如何?
- 如何找到与顶点相邻的边(入边、出边)?时间复杂度如何?
- 如何存储带权图?
- 空间复杂度——O(|V|²),适合存储稠密图
- 无向图的邻接矩阵为对称矩阵,如何压缩存储?
- 设图G的邻接矩阵为A(矩阵元素为0/1),则An的元素An[i][j]等于由顶点i到顶点j的长度为n 的路径的数目

