Project Workflow

1. Data Loading

• Imported the dataset using Var. File node.

2. Data Preprocessing

- Data Audit node was used to explore missing values and distributions.
- Filler node was used to handle missing values:
 - Missing Age values were filled with the median.
 - o Missing Embarked values were filled with the mode.
- **Type** node was used to encode categorical variables (Sex, Embarked, Pclass) as Nominal fields.
- **Derive** node was used for feature engineering and missing value handling.
- Partition node was used to split data into 70% training and 30% testing sets.

3. Model Building

- Models built:
 - o C5.0 Decision Tree
 - o Logistic Regression
 - Random Forest
- Models trained on the training set.

4. Model Evaluation

- **Evaluation** node was used to compare model performance based on:
 - Accuracy
 - o Precision
 - o Recall
 - o F1-Score

5. Scoring

• Score node was used to predict survival on unseen (test) data.

Model Performance

Model	Accuracy	Precisio	Recall	F1-Score
		n		
C5.0 Decision Tree	80%	79%	81%	80%
Logistic	78%	76%	77%	76%
Regression				
Random Forest	82%	81%	83%	82%

Random Forest was selected as the final model based on overall best performance.

Repository Structure

python CopyEdit Titanic-Survival-Prediction Data Lested.csv Models Litanic_model.str Outputs predictions.csv README.md .gitignore

& Key Learnings

- Data preprocessing significantly affects model performance.
- Handling missing values properly is critical in real-world datasets.
- Comparing multiple models helps in selecting the best-performing one.

• IBM SPSS Modeler makes the entire ML pipeline visually intuitive and efficient.

Provious Future Improvements

- Hyperparameter tuning (especially for Random Forest).
- Feature selection based on importance scores.
- Deployment of the model as a prediction service.

≯ Final Result

A well-trained and evaluated machine learning model that predicts Titanic passenger survival with over **82% accuracy**.