Question	Scheme	Marks
number		
9. (a) (i)	$\alpha + \beta = \left(\frac{4}{3}\right)$ $\alpha\beta = \frac{6}{3} = 2$	B1
(ii)	$\alpha\beta = \frac{6}{3} = 2$	B1 (2)
(b)	$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) \Rightarrow \left(\frac{4}{3}\right)^3 - 3\times2\times\left(\frac{4}{3}\right) = -\frac{152}{27}$	M1M1A1
	152	(3)
(c)	$\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2} = \frac{\alpha^3 + \beta^3}{\alpha^2 \beta^2} = \frac{-\frac{132}{27}}{4} = -\frac{38}{27}$	M1A1
	$\frac{\alpha}{\beta^2} \times \frac{\beta}{\alpha^2} = \frac{1}{\alpha\beta} = \frac{1}{2}$	B1
	$x^{2} + \frac{38}{27}x + \frac{1}{2} = 0 \Rightarrow 54x^{2} + 76x + 27 = 0$ oe (integer multiples)	M1A1 (5) (10)

Notes		
(a) (i)	B1	For the sum $\alpha + \beta = \left(\frac{4}{3}\right)$
(ii)	B1	For the product $\alpha\beta = \frac{6}{3}$ oe
(b)	M1	For the correct algebra to find $\alpha^3 + \beta^3$ e.g., $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ $\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta)$ $\alpha^3 + \beta^3 = (\alpha + \beta)((\alpha + \beta)^2 - 3\alpha\beta)$
	M1	Their final expansion must be given in a form such that they can substitute their sum and product directly. For substituting their values for the sum and product into their $\alpha^3 + \beta^3$ Note $\alpha^2 + \beta^2 = -\frac{20}{9}$
	A1	For $-\frac{152}{27}$ Note: This is a 'show' question. Every step must be correct for the award of this mark.

(c)	M1	For the correct algebra on the sum $\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2} = \frac{\alpha^3 + \beta^3}{\alpha^2 \beta^2}$ and substitution of
		their $\alpha + \beta$ and $\alpha\beta$.
	A1	_152
		For the correct sum of $-\frac{38}{27}$ allow $-\frac{27}{4}$
	B1	For the correct product of $\frac{1}{2}$
	M1	For using their sum and their product correctly to form an equation.
		$(x^2 + (-sum) \times x + product) = 0$ (condone missing = 0)
	A1	For the correct equation as shown. Accept any integer multiples.
		e.g $108x^2 + 152x + 54 = 0$ etc
ALT (c)	M1	Attempts to form the equation as follows. Must be -ve sum, + ve product
		$\left(x - \frac{\alpha}{\beta^2}\right)\left(x - \frac{\beta}{\alpha^2}\right) = x^2 - \left(-x\left(\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2}\right)\right) + \frac{\alpha\beta}{\left(\alpha\beta\right)^2} (=0)$
	M1	$\left(x - \frac{\alpha}{\beta^2}\right)\left(x - \frac{\beta}{\alpha^2}\right) = x^2 - \left(-x\left(\frac{\alpha^3 + \beta^3}{\alpha^2 \beta^2}\right)\right) + \frac{\alpha\beta}{\left(\alpha\beta\right)^2}$ Correct algebra only
	First	(152)
	A1	$\left \left(x - \frac{\alpha}{\beta^2} \right) \left(x - \frac{\beta}{\alpha^2} \right) = x^2 + x \left(\frac{\frac{132}{27}}{4} \right) + \frac{\alpha\beta}{(\alpha\beta)^2} = x^2 + x \left(\frac{38}{27} \right) + \frac{\alpha\beta}{(\alpha\beta)^2}$
	B1	$\left(x - \frac{\alpha}{\beta^2}\right)\left(x - \frac{\beta}{\alpha^2}\right) = x^2 + x\left(\frac{38}{27}\right) + \frac{2}{4}$
	Final A1	$x^2 + \frac{38}{27}x + \frac{1}{2} = 0 \Rightarrow 54x^2 + 76x + 27 = 0$ oe with integer multiples