

Ali Akbar Septiandri

Universitas Al Azhar Indonesia

April 7, 2019

Ulasan

Permutasi

Jumlah cara untuk mengurutkan n objek yang dapat dibedakan

$$n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n = \prod_{i=1}^{n} i$$

Kombinasi

Jumlah subhimpunan unik sejumlah k dari himpunan sejumlah n.

Objeknya dapat dibedakan dan tidak diurutkan.

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

Ruang Sampel

Apa itu?

S= himpunan dari semua keluaran yang mungkin terjadi

Example

```
lambang kartu remi S = \{ \blacktriangledown, \blacklozenge, \clubsuit, \clubsuit \} lemparan dua koin S = \{ (A,A), (A,G), (G,A), (G,G) \} lemparan dadu S = \{ 1,2,3,4,5,6 \} jumlah email dalam satu hari S = \mathbb{N} jam bermain Mobile Legends S = [0,24]
```

Kejadian

Apa itu?

```
E = \text{subhimpunan/subset dari } S \ (E \subseteq S)
```

Example

```
lambang kartu remi merah S = \{ \checkmark, \blacklozenge \}
 \geq 1 angka dari dua koin E = \{ (A,A), (A,G), (G,A) \}
 lemparan dadu \geq 3 E = \{ 3,4,5,6 \}
 # email dalam sehari \leq 5 E = \{ x | x \leq 5, x \in \mathbb{N} \}
 "hari-hari tidak produktif" E = [8,24]
```

Set operations

Union: outcomes that are in E or F

Set operations

Intersection: outcomes that are in E and F

Set operations

Complement: outcomes that are not in E

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$E = \{1, 2\}$$

$$\{2, 3\}$$

$$E^{c} = \{3, 4, 5, 6\}$$

Ilmu Sapu Jagat

These two books contain the sum total of all human knowledge 7:28 PM - Apr 5, 2013

28.2K 27.4K people are talking about this

Mengapa?

$E \cup E' = S$

De Morgan's Laws

"distributive laws" for set complement

$$\left(\bigcup_{i} E_{i}\right)^{c} = \bigcap_{i} \left(E_{i}^{c}\right)$$

$$(E \cap F)^c = E^c \cup F^c$$

$$\left(\bigcap_{i} E_{i}\right)^{c} = \bigcup_{i} \left(E_{i}^{c}\right)$$

Jadi, apa itu peluang/probabilitas?

• Kuantifikasi dari ketidakpastian

- Kuantifikasi dari ketidakpastian
- Nilai antara 0 dan 1 yang kita pautkan pada suatu kejadian

- Kuantifikasi dari ketidakpastian
- Nilai antara 0 dan 1 yang kita pautkan pada suatu kejadian
- Faktanya, persepsi kita terhadap ketidakpastian bisa berbeda-beda

Gambar: Persepsi akan probabilitas — Sumber: https://github.com/zonination/perceptions

Interpretasi Frequentist

$$P(E) = \lim_{n \to \infty} \frac{\#(E)}{n}$$

Aksioma Probabilitas

1.
$$0 \le P(E) \le 1$$

- 2. P(S) = 1
- 3. Jika $E \cap F = \emptyset$, maka $P(E \cup F) = P(E) + P(F)$

Akibatnya...

1.
$$P(E') = 1 - P(E)$$

- 2. Jika $E \subseteq F$, maka $P(E) \leq P(F)$
- 3. $P(E \cup F) = P(E) + P(F) P(E \cap F)$

Example

Dua dadu dilempar bersamaan, berapa peluang munculnya sisi kedua dadu berjumlah 7?

Example

Dua dadu dilempar bersamaan, berapa peluang munculnya sisi kedua dadu berjumlah 7?

Pertanyaan

Apa yang harus didefinisikan terlebih dahulu?

Example

Dua dadu dilempar bersamaan, berapa peluang munculnya sisi kedua dadu berjumlah 7?

Pertanyaan

Apa yang harus didefinisikan terlebih dahulu?

Jawab

Apa yang menjadi ruang sampelnya? Apa pula kejadiannya?

•
$$S = \{(1,1), (1,2), ..., (6,5), (6,6)\}$$

- $S = \{(1,1), (1,2), ..., (6,5), (6,6)\}$
- $E = \{(1,6), (2,5), ..., (5,2), (6,1)\}$

- $S = \{(1,1), (1,2), ..., (6,5), (6,6)\}$
- $E = \{(1,6), (2,5), ..., (5,2), (6,1)\}$
- $P(X_1 + X_2 = 7) = ?$

- $S = \{(1,1), (1,2), ..., (6,5), (6,6)\}$
- $E = \{(1,6), (2,5), ..., (5,2), (6,1)\}$
- $P(X_1 + X_2 = 7) = ?$
- $P((X_1 = 1 \cap X_2 = 6) \cup (X_1 = 2 \cap X_2 = 5) \cup ...) = \frac{6}{36}$

Example

Ada 3,200 mahasiswa UAI, Anda berteman dengan 40 orang di antaranya. Jika Anda pergi ke suatu acara yang didatangi 20 orang mahasiswa UAI, berapa peluang Anda menemukan *paling tidak* satu orang teman Anda?

Example

Ada 3,200 mahasiswa UAI, Anda berteman dengan 40 orang di antaranya. Jika Anda pergi ke suatu acara yang didatangi 20 orang mahasiswa UAI, berapa peluang Anda menemukan *paling tidak* satu orang teman Anda?

Definisikan

 $P(\text{paling tidak ada satu teman dari 40 orang}) = \dots$ Berapa banyak yang harus dihitung?

• Hitung saja peluang tidak bertemu dengan teman sama sekali, i.e. |E'|.

- Hitung saja peluang tidak bertemu dengan teman sama sekali, i.e. |E'|.
- Maka nilainya dapat dihitung dengan

$$P(E) = 1 - P(E')$$

$$= 1 - \frac{\binom{3200 - 40}{20}}{\binom{3200}{20}} = 0.2230$$

- Hitung saja peluang tidak bertemu dengan teman sama sekali, i.e. |E'|.
- Maka nilainya dapat dihitung dengan

$$P(E) = 1 - P(E')$$

$$= 1 - \frac{\binom{3200 - 40}{20}}{\binom{3200}{20}} = 0.2230$$

Coba lihat: http: //web.stanford.edu/class/cs109/demos/serendipity.html

Example

Terdapat n orang di dalam suatu ruangan. Berapa peluangnya paling tidak ada sepasang orang dengan tanggal ulang tahun yang sama?

Example

Terdapat n orang di dalam suatu ruangan. Berapa peluangnya paling tidak ada sepasang orang dengan tanggal ulang tahun yang sama?

Definisikan

Kejadian? Ruang sampel?

Anggap saja setiap orang ulang tahunnya berbeda, i.e.

$$|E'| = 365 \cdot 364 \cdot ... \cdot (365 - n + 1) = \frac{365!}{(365 - n)!} = {365 \choose n} \cdot n!$$

- Ruang sampel $|S| = 365^n$
- Maka

$$P(E) = 1 - P(E') = 1 - \frac{\binom{365}{n} \cdot n!}{365^n}$$

Gambar: Untuk mencapai P(E) = 0.5 hanya perlu 23 orang saja!

Materi kuliah ini diadaptasi dari:

CS109: Probability for Computer Scientists

3 - Probability by Will Monroe

Pekan depan:

Probabilitas Bersyarat

Terima kasih