

Hackathon: Breast cancer survival time analysis

August 29, 2024

Daniel Dehncke, Lisa-Marie Bente

Division Data Science in Biomedicine Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School daniel.dehncke@plri.de, lisa-marie.bente@plri.de, www.plri.de

Content

- Breast Cancer
- Survival time analysis
- Tasks
 - Challenge 1: Survival Prediction
 - Challenge 2: Cox Regression
- Dataset
- Wrap-up

- type of cancer that starts in the cells of the breast.
- most common cancer among women worldwide.
- risk factors can be age, family history, genetic mutations, hormonal factors, and lifestyle.
- Treatment options include surgery, radiation therapy, chemotherapy and hormone therapy.

Survival Time Analysis

- used to analyze the time until an event of interest occurs.
- Concepts:
 - Censoring: Data points where the event of interest has not occurred by the end of the study.
 - Survival Function: Probability of surviving past a certain time point.
 - Hazard Function: Instantaneous rate of occurrence of the event.
- Cox Proportional Hazards Model:
 - Parametric method for analyzing the association between covariates and survival time.

Challenges

• Challenge 1: Survival Prediction

- Task: Predicting survival outcomes of breast cancer patients.
- Objective: Develop models to estimate survival time or predict survival status based on patient characteristics.

Challenge 2: Cox Regression

- Train a Cox Regression model for breast cancer survival.
- Assess the impact of various covariates (e.g., age, tumor stage, treatment types) on survival time.

Decision Trees

- Non-parametric, supervised
- Classification, regression
- Splitting criteria (e.g. Gini impurity, variance reduction)
- highly interpretable

Elements of a decision tree

Random Forest

- Ensemble of decision trees
- Bagging: build multiple subsets of original dataset and use to train trees
- Random subspace: use random subset of features for each tree
- Voting/averaging to get final output
- Advantages: less prone to overfitting, better performance

Neural Networks

- 3 layer types: input, hidden, output (and a whole lot of other types)
- Black box: what happens in hidden layers?
 - ightarrow bad interpretability

Neural Networks

- Nodes have weight
- Optimizer updates weights of nodes
- ullet Goal: minimize loss function o good performance

How to measure performance? (for classification problems)

- Accuracy: number of correct predictions among all predictions
- Confusion matrix

• Precision: $\frac{TP}{TP+FP}$

• Recall: $\frac{TP}{TP+FN}$

• F1 score: $\frac{2}{\frac{1}{precision} + \frac{1}{recall}}$

AUROC

- Often interested in the time until something happens.
 - How long will a cancer patient survive?
 - What's the probability of survival over 12 months?
 - When will I finish my PhD?
- The "sth" is typically called **event**.
- Almost always, data to investigate these questions is censored.

Censored Data

- right censored: don't know what happened after specific point in time
- left censored: don't know what happened before specific point in time
- interval censored: don't know when exactly the event happened

ID	Time	Event
1	5	1
2	10	0
3	10	1
4	13	0
5	20	0

- Survival function: S(t) = P(T > t), with T being a continuous random variable, ususally time, and S(t) denoting the proportion of oberservations without event, yet.
- Kaplan-Meier Estimate:

$$\hat{\mathcal{S}}(t) = \prod_{t' \leq t} (1 - rac{f_{t'}}{r_{t'}})$$

with $f_{t'}$ and $r_{t'}$ being # individuals failing or at risk at t', respectively.

Kaplan-Meier Curves and Estimates

Stögbauer et al., submitted

Cox Regression

- Association between the survival time of patients and predictor variables.
- Indicating how much a unit change in the covariate affects the hazard of the event.

- Hazard function: $h(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t \mid T \ge t)}{\Delta t}$
- Cox regression (a.k.a. proportional hazards regression) model has the form

$$h_z(t) = h_0(t) \exp(\beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p)$$

- Coefficients determined by maximum likelihood approach
- Hazard and survival function determine each other.

(1)

Survival function vs Hazard function

Dataset

- Contains 1522 patients
- Survival rate: 32.6 % of the patients died from cancer.
- Patients that died from other causes are considered as survivors.

- clone the repository at: https://rb.gy/lb09c3
- In the files x_train.csv and y_train.csv, you can find the data we are going to work with.
- data contains 22 features, like age at diagnosis, tumor_stage or if they received chemotherapy.
- death_from_cancer gives the survival status.
- **Challenge 1:** In the file x_test.csv, you find test data without a label. Predict the label, and send it us. We will evaluate your predictions and elect the winner

• The winner is presenting their analysis, with an open discussion.

References & Additional Reading

- Some material adopted from
 - https:

//www2.stat.duke.edu/courses/Spring21/sta102.001/slides/lecture-20.pdf

• https:

//socialsciences.mcmaster.ca/jfox/Courses/soc761/survival-analysis.pdf

Name your .csv file: < name > .csv e.g.: lisa.csv

Send results to lisa-marie.bente@plri.de

Rank	Name	Accuracy [%]
1		
2		
3		
4		
5		
6		
7	Benchmark	75.00

Rank	Name	Accuracy [%]
1		
2		
3		
4		
5		
6	Sadat	77.43
7	Benchmark	75.00

Rank	Name	Accuracy [%]
1		
2		
3		
4		
5	tim (chatGPT)	79.53
6	Sadat	77.43
7	Benchmark	75.00

Rank	Name	Accuracy [%]
1		
2		
3		
4	Tegegne	80.32
5	tim (chatGPT)	79.53
6	Sadat	77.43
7	Benchmark	75.00

Rank	Name	Accuracy [%]
1		
2		
3	Anna	81.10
4	Tegegne	80.32
5	Tim (chatGPT)	79.53
6	Sadat	77.43
7	Benchmark	75.00

Rank	Name	Accuracy [%]
1		
2	Corinna	82.15
3	Anna	81.10
4	Tegegne	80.32
5	Tim (chatGPT)	79.53
6	Sadat	77.43
7	Benchmark	75.00

Rank	Name	Accuracy [%]
1	Luca	85.04
2	Corinna	82.15
3	Anna	81.10
4	Tegegne	80.32
5	Tim (chatGPT)	79.53
6	Sadat	77.43
7	Benchmark	75.00