

СОДЕРЖАНИЕ

- Обзор
- Виды архитектур
- Message Passing Interface
- QSAR Датасеты

Обзор

GNNs - методы глубокого обучения, которые работают с графами.

Модули:

- 1) Propagation Module
- 2) Sampling Module
- 3) Pooling Module

Input и обозначения

Input (граф):

- Обозначения:
- 1) Х(Н)- матрица со свойствами вершин
- 2) А матрица смежности
- 3) Е матрица свойств ребер

 $h_v(x_v)$ - вектор свойств вершины v e_v - вектор свойств ребра v

Типы задач

- Node level.
 - Например, классификация вершины.
- 2 Edge level
 - Например, предсказание связи
- 3 Graph level

Например, классификация графа

Spectral approaches

- Идея: 1) сделаем графовое преобразование Фурье для сигнала х
 - 2) Делаем свертку
 - 3) Делаем обратное преобразование..

$$\mathscr{F}(\mathbf{x}) = \mathbf{U}^T \mathbf{x},$$

 $\mathscr{F}^{-1}(\mathbf{x}) = \mathbf{U}\mathbf{x}.$

U - нормализованный Лаплассиан Графа или матрица собственных векторов матрицы L.

$$\mathbf{L} = \mathbf{I}_N - \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$$

$$\mathbf{g} \star \mathbf{x} = \mathcal{F}^{-1}(\mathcal{F}(\mathbf{g}) \odot \mathcal{F}(\mathbf{x}))$$
$$= \mathbf{U}(\mathbf{U}^T \mathbf{g} \odot \mathbf{U}^T \mathbf{x}),$$

$$\mathbf{g}_{w} \star \mathbf{x} = \mathbf{U}\mathbf{g}_{w}\mathbf{U}^{T}\mathbf{x}.$$

Spectral Approaches

ChebNet: приближаем g_w многочленами Чебышева до степени К.

 $\mathbf{g}_{w} \star \mathbf{x} \approx \sum_{k=0}^{K} w_{k} \mathbf{T}_{k} \left(\tilde{\mathbf{L}} \right) \mathbf{x},$

GCN: K=1. Большая производительность.

$$\mathbf{g}_{w} \star \mathbf{x} \approx w \left(\mathbf{I}_{N} + \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}} \right) \mathbf{x}.$$

$$\mathbf{H} = \tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}} \mathbf{X} \mathbf{W},$$

Формула обновления состояний

Spatial Approaches

Идея: будем агрегировать информацию в исходном пространстве.

1) Basic

$$\mathbf{t} = \mathbf{h}_{v}^{t} + \sum_{u \in \mathscr{N}_{v}} \mathbf{h}_{u}^{t},$$

$$\mathbf{h}_{v}^{t+1} = \sigma \Big(\mathbf{t} \mathbf{W}_{|\mathscr{N}_{v}|}^{t+1} \Big),$$

2) GraphSage. Сэмплируем соседей. AGG - mean pooling, LSTM и т.д

$$\mathbf{h}_{\mathcal{N}_{v}}^{t+1} = \mathrm{AGG}_{t+1} \left(\left\{ \mathbf{h}_{u}^{t}, \forall u \in \mathcal{N}_{v} \right\} \right),$$

$$\mathbf{h}_{v}^{t+1} = \sigma \left(\mathbf{W}^{t+1} \cdot \left[\mathbf{h}_{v}^{t} \parallel \mathbf{h}_{\mathcal{N}_{v}}^{t+1} \right] \right).$$

3) GAT

$$\mathbf{h}_{v}^{t+1} = \rho \left(\sum_{u \in \mathcal{N}_{v}} \alpha_{vu} \mathbf{W} \mathbf{h}_{u}^{t} \right),$$

$$\alpha_{vu} = \frac{\exp(\text{LeakyReLU}(\mathbf{a}^{T}[\mathbf{W} \mathbf{h}_{v} \parallel \mathbf{W} \mathbf{h}_{u}]))}{\sum_{k \in \mathcal{N}_{v}} \exp(\text{LeakyReLU}(\mathbf{a}^{T}[\mathbf{W} \mathbf{h}_{v} \parallel \mathbf{W} \mathbf{h}_{k}]))},$$

Reccurent Modules

Different variants of recurrent operators.				
Variant	Aggregator	Updater		
GGNN	$\mathbf{h}_{\mathscr{N}_{\pmb{\nu}}}^t = \sum_{k \in \mathscr{N}_{\pmb{\nu}}} \mathbf{h}_k^{t-1} + \mathbf{b}$	$\begin{split} \mathbf{z}_{\nu}^t &= \sigma(\mathbf{W}^t \mathbf{h}_{\mathcal{N}_{\nu}}^t + \mathbf{U}^t \mathbf{h}_{\nu}^{t-1}) \\ \mathbf{r}_{\nu}^t &= \sigma(\mathbf{W}^t \mathbf{h}_{\mathcal{N}_{\nu}}^t + \mathbf{U}^t \mathbf{h}_{\nu}^{t-1}) \\ \mathbf{h}_{\nu}^{\tilde{t}} &= \tanh(\mathbf{W} \mathbf{h}_{\mathcal{N}_{\nu}}^t + \mathbf{U}(\mathbf{r}_{\nu}^t \odot \mathbf{h}_{\nu}^{t-1})) \\ \mathbf{h}_{\nu}^t &= (1 - \mathbf{z}_{\nu}^t) \odot \mathbf{h}_{\nu}^{t-1} + \mathbf{z}_{\nu}^t \odot \tilde{\mathbf{h}}_{\nu}^t \end{split}$		
Tree LSTM (Child sum)	$egin{aligned} \mathbf{h}_{\mathscr{N}_{oldsymbol{ u}}}^{ti} &= \sum\limits_{k \in \mathscr{N}_{oldsymbol{ u}}} \mathbf{U}^{i} \mathbf{h}_{k}^{t-1} \ \mathbf{h}_{\mathscr{N}_{oldsymbol{ u}}}^{tf} &= \mathbf{U}^{f} \mathbf{h}_{k}^{t-1} \ \mathbf{h}_{\mathcal{N}_{oldsymbol{ u}}}^{to} &= \sum\limits_{k \in \mathscr{N}_{oldsymbol{ u}}} \mathbf{U}^{o} \mathbf{h}_{k}^{t-1} \ \mathbf{h}_{\mathscr{N}_{oldsymbol{ u}}}^{tu} &= \sum\limits_{k \in \mathscr{N}_{oldsymbol{ u}}} \mathbf{U}^{u} \mathbf{h}_{k}^{t-1} \end{aligned}$	$\begin{aligned} \mathbf{i}_{\nu}^{t} &= \sigma(\mathbf{W}^{t} \mathbf{x}_{\nu}^{t} + \mathbf{h}_{\mathcal{N}_{\nu}}^{tt} + \mathbf{b}^{t}) \\ \mathbf{f}_{\nu k}^{t} &= \sigma(\mathbf{W}^{f} \mathbf{x}_{\nu}^{t} + \mathbf{h}_{\mathcal{N}_{\nu} k}^{tf} + \mathbf{b}^{f}) \\ \mathbf{o}_{\nu}^{t} &= \sigma(\mathbf{W}^{o} \mathbf{x}_{\nu}^{t} + \mathbf{h}_{\mathcal{N}_{\nu}}^{to} + \mathbf{b}^{o}) \\ \mathbf{u}_{\nu}^{t} &= \tanh(\mathbf{W}^{u} \mathbf{x}_{\nu}^{t} + \mathbf{h}_{\mathcal{N}_{\nu}}^{tu} + \mathbf{b}^{u}) \\ \mathbf{c}_{\nu}^{t} &= \mathbf{i}_{\nu}^{t} \odot \mathbf{u}_{\nu}^{t} + \sum_{k \in \mathcal{N}_{\nu}} \mathbf{f}_{\nu k}^{t} \odot \mathbf{c}_{k}^{t-1} \\ \mathbf{h}_{\nu}^{t} &= \mathbf{o}_{\nu}^{t} \odot \tanh(\mathbf{c}_{\nu}^{t}) \end{aligned}$		

Tree LSTM (N-ary)
$$\mathbf{h}_{\mathcal{N}_{v}}^{ti} = \sum_{l=1}^{K} \mathbf{U}_{l}^{i} \mathbf{h}_{vl}^{t-1}$$

$$\mathbf{h}_{\mathcal{N}_{v}k}^{to} = \sum_{l=1}^{K} \mathbf{U}_{kl}^{o} \mathbf{h}_{vl}^{t-1}$$

$$\mathbf{h}_{\mathcal{N}_{v}}^{to} = \sum_{l=1}^{K} \mathbf{U}_{l}^{o} \mathbf{h}_{vl}^{t-1}$$

$$\mathbf{h}_{\mathcal{N}_{v}}^{tu} = \sum_{l=1}^{K} \mathbf{U}_{l}^{u} \mathbf{h}_{vl}^{t-1}$$
 Graph LSTM in (Peng et al., 2017)
$$\mathbf{h}_{\mathcal{N}_{v}k}^{ti} = \sum_{k \in \mathcal{N}_{v}} \mathbf{U}_{m(v,k)}^{i} \mathbf{h}_{k}^{t-1}$$

$$\mathbf{h}_{\mathcal{N}_{v}k}^{to} = \sum_{k \in \mathcal{N}_{v}} \mathbf{U}_{m(v,k)}^{o} \mathbf{h}_{k}^{t-1}$$

$$\mathbf{h}_{\mathcal{N}_{v}}^{tu} = \sum_{k \in \mathcal{N}_{v}} \mathbf{U}_{m(v,k)}^{u} \mathbf{h}_{k}^{t-1}$$

$$\mathbf{h}_{\mathcal{N}_{v}}^{tu} = \sum_{k \in \mathcal{N}_{v}} \mathbf{U}_{m(v,k)}^{u} \mathbf{h}_{k}^{t-1}$$

Виды архитектур

Виды архитектур

Message Passing Interface

Общий фреймворк для некоторых spatial методов.

- 1) Используем функцию М_t для агрегации информации от соседей
- 2) Используем функцию U_t для обновления скрытых состояний
- 3) Используем R readout функцию для агрегации информации со всего графа.

$$\mathbf{m}_{v}^{t+1} = \sum_{u \in \mathscr{N}_{v}} M_{t}(\mathbf{h}_{v}^{t}, \mathbf{h}_{u}^{t}, \mathbf{e}_{vu}),$$
 $\mathbf{h}_{v}^{t+1} = U_{t}(\mathbf{h}_{v}^{t}, \mathbf{m}_{v}^{t+1}).$

$$\widehat{\mathbf{y}} = R(\{\mathbf{h}_{v}^{T} | v \in G\}),$$

Идеи.

- 1) Зацикливание информации может создавать шум
- 2) Перейдем к связям
- 3) Сделаем граф ориентируемым

https://pubs.acs.org/doi/pdf/10.1021/acs.jcim.9b00237

Ход обучения

$$h_{vw}^0 = \tau(W_i \operatorname{cat}(x_v, e_{vw}))$$

$$m_{vw}^{t+1} = \sum_{k \in \{N(v) \setminus w\}} h_{kv}^{t}$$

$$h_{vw}^{t+1} = \tau (h_{vw}^{0} + W_{m} m_{vw}^{t+1})$$

$$m_{\nu} = \sum_{w \in N(\nu)} h_{\nu w}^{T}$$

$$h_{\nu} = \tau(W_a \operatorname{cat}(x_{\nu}, m_{\nu}))$$

$$h = \sum_{v \in G} h_v$$
 $\hat{y} =$

Инициализация

Table 1. Atom Featuresa

feature	description	size
atom type	type of atom (ex. C, N, O), by atomic number	100
# bonds	number of bonds the atom is involved in	6
formal charge	integer electronic charge assigned to atom	5
chirality	unspecified, tetrahedral CW/CCW, or other	4
# Hs	number of bonded hydrogen atoms	5
hybridization	sp, sp2, sp3, sp3d, or sp3d2	5
aromaticity	whether this atom is part of an aromatic system	1
atomic mass	mass of the atom, divided by 100	1

^aAll features are one-hot encodings except for atomic mass, which is a real number scaled to be on the same order of magnitude.

Table 2. Bond Features^a

feature	feature description	
bond type	single, double, triple, or aromatic	4
conjugated	whether the bond is conjugated	1
in ring	whether the bond is part of a ring	1
stereo	none, any, E/Z or cis/trans	6

Некоторые результаты

- 1) Они применили модель глубокого обучения под названием Chemprop, которая прогнозировала антибиотические свойства молекул: подавление размножения кишечной палочки.
- 2) Хорошее качества на множестве публичных датасетов

Table 8. Number of Public Data Sets Where D-MPNN Is Statistically Significantly Better than, Equivalent to, or Worse than Each Baseline Model

baseline	D-MPNN is better	D-MPNN is the same	D-MPNN is worse	no. of data sets
MoleculeNet ²	5	3	2	10
Mayr et al. 12	8	10	1	19
RF on Morgan	14	0	1	15
FFN on Morgan	14	5	0	19
FFN on Morgan Counts	15	4	0	19
FFN on RDKit	8	5	4	19

data set	no. of tasks	task type	no. of compounds	metric
QM7	1	regression	6,830	MAE
QM8	12	regression	21,786	MAE
QM9	12	regression	133,885	MAE

- 1) QM9 вычисленные геометрические, энергетические, электронные и термодинамические свойства 134 тыс. Стабильных малых органических молекул из CHONF.
- 2) QM8 Электронные спектры

Возможные направления исследования

- 1) Graph Pretraining
- 2) Graph AutoEncoder
- 3) Попробовать улучшить какую-нибудь архитектуру, например, ChemProp