Lesson 7-Supplement A Review of Sequences
and Sends and Their
Limite
We saw the definision of the
linit et a sequence

ling on = L () VESO, FNO ENS. E n> No > | an-L| < E Def. Partial Sums: for a sequence {ap, Sn= E ax is called a partial Sum of ax's. Def: The limit li Sn2 lnd 5 ax

is called an infinite somes

and is shown as 5 ax

k=1 ax

Example: $a_{k} = q^{k}$ $S_{n} = \sum_{k=1}^{N} q^{k}$ $= \sum_{k=1}^{$

Also, one can show that

\[
\begin{align*}
\begin{align*}
\left & \quad \\ \ & \quad \quad \\ \ & \quad \quad \\ \ & \quad \qq \quad \quad \qq \quad \quad \qq \quad \quad \qq \qq \quad \qq \qq \qq

Desc Absolute Convergence):

Solute Convergence):

Solute is said to converge

K=0

Cubsolutely, if f 5 | ak | convergence)

Def (Conditional Convergence).
Sou ak is said to converge conditional
if it converges, but closesn't con verge
absolutely
Tests for Convergence

(a) The Ratio Test:
Assume that we want to test
whether 5 ax converges.
Lot L= lin akt1

L<1 =) Sax converges absolutely
L>1 => 5 ax diverges
L=1 => The test is silent.
(b) Test for the convergence
\$\frac{5}{K^2} \rightarrow \k^2 \rightar

Convergence (=> p>1	
divergence (>> PSI	

(6) Alternating Series Test
S (-1) ax convergos il ax
is positive and decreasing, i.e.
ak > ak+1 > o and.
lin ak =0 K-300

Example	
5 (-1) k+1	, 0
K=1 K	converges to log 2,
although it	doesn't absolutely
Converge.	<u>u</u>

Example: Dou 5 n! converge? M=1 nn	
$\frac{(n+1)!}{(n+1)^{(n+1)}} = \frac{n}{n} \frac{(n+1)!}{n!}$	
$\frac{1}{n^{n}} \frac{n}{n} \frac{1}{n+1-1} \frac{n}{n-1} \frac{1}{n-1} $	n Fl)

, 0 3 - 0 ,
= li (1-1) li (1-1)-1 t->0 (1-1) t->0 (1-1)-1
= e x 2 e <
Therefore, the series is convergent

Remark: There is a hierarchy
of convergence.
Qcn) r n! nn
Faster convergence to a
Where 3p is a polynomial of degree
AD

Than in San in volves division of
a sequence with a faster convergence
rate by a sequence with a slover

convergence, is the series is

dirergent forexample is dirergent.	5 n n n n n + n + 3
Otherwise, it is converded and 2 2	jent, form is convergent
n=1 n!	

Power series:
Power series involve finite or
infinite sums of polynomials.
For example
MacLaurin Series @ for fea)

$$f(n) = \sum_{n=0}^{\infty} f^{(n)}(0) g^{(n)}$$

$$= f(0) + f^{(0)}(0) x + f^{(0)}(0) x^{2} + f^{(0)}(0) x^{3} + \cdots$$

$$= \frac{1}{2!} + \frac{1}{3!}$$

$$= \frac{1}{3!} + \frac{1}{3!}$$

$$= \frac{1}{2!} + \frac{1}{3!}$$

$$= \frac{1}{3!} + \frac{1}{$$

Power series usually converge	e der
specific values of a, called	region
of convergence (ROC).	
Example: Find the ROC	of
the Series $\frac{2}{K=1}$ $\frac{2}{K+5}$	

the ratio test
(K+1) 25 = (x (K+1) 25 <)
K2+5
The series converges if /x/<1

(It also converges for a sol
by the alternating series test)
$= \Re ROC = \Re \Re \{\pi \in [-1,1]\}$
A very in portant Taylor/Maclauri
expansion is that if ex

	∞			
e=	2	9ck		
	120	KI		
			The state of the s	

-	Ren	ark	Tw	o -Sic	ded!	senès	Can
	also	be	defino	ط	if	sequ	mas
	ore	e de	fined	os	fine	tions	J.
_	inte	gers	a	k:	4-	3R.	
						NINZ	

Sequence	ak: 2	-> IR	_ <u>_</u>
defined as			
	Nz		
-SMIN2 =	5 K=-N,	T/L	
Def. We	define	+ 00 57 K= - 00	T <u>K</u>
es li 5 NyN2 > as	N1, N2.	p- w	

Example. Does 5 \pm converge. $k=-\infty$ A naire (and incorrect) answer

to this question would be $\pm \infty$ 5 1/2 = [1+(-1)]+(1-1/2)+(1-1/3) $1/2 = \infty$ $1/2 = \infty$

However, this series does not converge, because the limit depends on the path on which N, and N. tond to infinity:

N=N2 2) lin 5 1/2 = 0 N,N2-20 N,
$\frac{N_{2}-2N_{1}}{N_{1}-N_{1}} = \frac{3N_{1}}{N_{1}} =$
Ny N-) a -N, /k = 2N, Ny N-) a -N, /k = 0 N,) a -N, /k = 0
$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$

Therefore, one must not e the	t
li Zak is different from	
N-Jan K=-N	
Zak.	