

Dualité

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Dans les corrigés qui suivent, on ne suppose pas connue la notion d'orthogonalité au sens de la dualité.

Exercice 1 **I

- 1. Soient $n \in \mathbb{N}^*$ et $E = \mathbb{C}_n[X]$. Pour $a \in \mathbb{C}$, on définit l'application φ_a par : $\forall P \in E$, $\varphi_a(P) = P(a)$. Montrer que pour tout $a \in E$, $\varphi_a \in E^*$.
- 2. Soient a_0, a_1, \ldots, a_n n+1 nombres complexes deux à deux distincts. Montrer que la famille $(\varphi_{a_0}, \ldots, \varphi_{a_n})$ est une base de E^* et déterminer sa préduale.
- 3. Montrer qu'il existe $(\lambda_0, \dots, \lambda_n) \in \mathbb{C}^{n+1}$ tel que $\forall P \in \mathbb{C}_n[X], \int_0^1 P(t) dt = \lambda_0 P(a_0) + \dots + \lambda_n P(a_n)$ puis donner la valeur des λ_i sous la forme d'une intégrale.

Correction ▼ [005629]

Exercice 2 **

Sur $E = \mathbb{R}_3[X]$, on pose pour tout $P \in E$, $\varphi_1(P) = P(0)$ et $\varphi_2(P) = P(1)$ puis $\psi_1(P) = P'(0)$ et $\psi_2(P) = P'(1)$. Montrer que $(\varphi_1, \varphi_2, \psi_1, \psi_2)$ est une base de E^* et trouver la base dont elle est la duale.

Correction ▼ [005630]

Exercice 3 **

Soit E un \mathbb{K} -espace vectoriel et φ et ψ deux formes linéaires sur E. On suppose que pour tout x de E, on a $\varphi(x)\psi(x)=0$. Montrer que $\varphi=0$ ou $\psi=0$.

Correction ▼ [005631]

Exercice 4 ***

1. Soient $n \in \mathbb{N}^*$ puis $\varphi_1, ..., \varphi_n$ et φ n+1 formes linéaires sur un \mathbb{K} -espace vectoriel E de dimension finie.

Montrer que :
$$\left(\exists (\lambda_1,...,\lambda_n) \in \mathbb{K}^n / \varphi = \lambda_1 \varphi_1 + ... + \lambda_n \varphi_n \Leftrightarrow \bigcap_{i=1}^n \operatorname{Ker} \varphi_i \subset \operatorname{Ker} \varphi\right).$$

2. Signification du résultat précédent : dans \mathbb{R}^3 , équation d'un plan P contenant D : $\begin{cases} x+y+z=0\\ 2x+3z=0 \end{cases}$ et le vecteur u=(1,1,1)?

Correction ▼ [005632]

Exercice 5 ***

Soient $n \in \mathbb{N}^*$ puis $\varphi_1,..., \varphi_n$ n formes linéaires sur un \mathbb{K} -espace E de dimension n.

Montrer que la famille $(\varphi_1,...,\varphi_n)$ est liée si et seulement si il existe un vecteur x non nul tel que $\forall i \in [1,n]$, $\varphi_i(x)=0$.

Correction ▼ [005633]

Exercice 6 **

Rang du système de formes linéaires sur \mathbb{R}^4

$$f_1 = x_1 + 2x_2 - x_3 - 2x_4$$

$$f_2 = x_1 + x_2 + mx_3 + x_4$$

$$f_3 = x_1 + x_3 + (m+4)x_4$$

$$f_4 = x_2 - 3x_3 - mx_4$$
?

Correction ▼ [005634]

1. Soit $a \in \mathbb{C}$. Soient $(\lambda, \mu) \in \mathbb{C}^2$ et $(P, Q) \in E^2$.

$$\varphi_a(\lambda P + \mu Q) = (\lambda P + \mu Q)(a) = \lambda P(a) + \mu Q(a) = \lambda \varphi_a(P) + \mu \varphi_a(Q).$$

Donc, φ_a est une forme linéaire sur E.

2. On a déjà $\operatorname{card} \left(\varphi_{a_j} \right)_{0 \leqslant j \leqslant n} = n+1 = \dim(E) = \dim(E^*) < +\infty$. Il suffit donc de vérifier que la famille $\left(\varphi_{a_j} \right)_{0 \leqslant j \leqslant n}$ est libre.

Pour $k \in [0, n]$, on pose $P_k = \prod_{j \neq k} \frac{X - a_j}{a_k - a_j}$. Chaque P_k est un élément de E et de plus

$$\forall (j,k) \in \llbracket 0,n \rrbracket^2, \, \varphi_{a_j}(P_k) = \delta_{j,k} = \left\{ \begin{array}{l} 1 \text{ si } j \neq k \\ 0 \text{ si } j = k \end{array} \right. \quad (*).$$

Soit alors $(\lambda_0,\ldots,\lambda_n)\in\mathbb{C}^{n+1}$.

$$\sum_{j=0}^{n} \lambda_{j} \varphi_{j} = 0 \Rightarrow \forall P \in E, \sum_{j=0}^{n} \lambda_{j} \varphi_{j}(P) = 0 \Rightarrow \forall k \in [0, n], \sum_{j=0}^{n} \lambda_{j} \varphi_{j}(P_{k}) = 0 \Rightarrow \forall k \in [0, n], \sum_{j=0}^{n} \lambda_{j} \delta_{j,k} = 0$$
$$\Rightarrow \forall k \in [0, n], \lambda_{k} = 0.$$

Ceci montre que la famille $(\varphi_{a_j})_{0 \le j \le n}$ est libre et donc une base de E^* . Les égalités (*) montrent alors que la préduale de la base $(\varphi_{a_j})_{0 \le j \le n}$ de E^* est la famille $(P_k)_{0 \le k \le n}$.

3. Pour $P \in E$, posons $\varphi(P) = \int_0^1 P(t) \ dt$. φ est une forme linéaire sur E et donc, puisque la famille $(\varphi_{a_j})_{0 \leqslant j \leqslant n}$ est une base de E^* , il existe $(\lambda_0, \dots, \lambda_n) \in \mathbb{C}^{n+1}$ tel que $\varphi = \sum_{j=0}^n \lambda_j \varphi_{a_j}$ ou encore il existe $(\lambda_0, \dots, \lambda_n) \in \mathbb{C}^{n+1}$ tel que pour tout $P \in E$, $\int_0^1 P(t) \ dt = \lambda_0 P(a_0) + \dots + \lambda_n P(a_n)$ (les λ_j étant indépendants de P).

En appliquant cette dernière égalité au polynôme P_k , $0 \le k \le n$, on obtient $\lambda_k = \int_0^1 P_k(t) dt = \int_0^1 \prod_{j \ne k} \frac{t - a_j}{a_k - a_j} dt$.

$$\forall P \in \mathbb{C}_n[X], \ \int_0^1 P(t) \ dt = \sum_{k=0}^n \lambda_k P(a_k) \ \text{où} \ \forall k \in \llbracket 0, n \rrbracket, \ \lambda_k = \int_0^1 \prod_{j \neq k} \frac{t - a_j}{a_k - a_j} \ dt.$$

Correction de l'exercice 2 A

Les quatre applications φ_1 , φ_2 , ψ_1 et ψ_2 sont effectivement des formes linéaires sur E.

Cherchons tout d'abord la future base préduale de la famille $(\varphi_1, \varphi_2, \psi_1, \psi_2)$. On note (P_0, P_1, P_2, P_3) cette future base.

- On doit avoir $\varphi_1(P_2) = \varphi_2(P_2) = \psi_2(P_2) = 0$ et $\psi_1(P_2) = 1$. Ainsi, P_2 s'annule en 0 et en 1 et de plus $P'_2(1) = 0$. Donc P_2 admet 0 pour racine d'ordre 1 au moins et 1 pour racine d'ordre 2 au moins. Puisque P_2 est de degré inférieur ou égal à 3, il existe une constante a telle que $P_2 = aX(X-1)^2 = aX^3 2aX^2 + aX$ puis $P'_2(0) = 1$ fournit a = 1 puis $P_2 = X(X-1)^2$.
- De même, il existe une constante a telle que $P_3 = aX^2(X-1) = aX^3 aX^2$ et $1 = P_3'(1) = 3a 2a$ fournit $P_3 = X^2(X-1)$.
- P_0 admet 1 pour racine double et donc il existe deux constantes a et b telles que $P_0 = (aX + b)(X 1)^2$ puis les égalités $P_0(0) = 1$ et $P_0'(0) = 0$ fournissent b = 1 et a 2b = 0. Par suite, $P_0 = (2X + 1)(X 1)^2$.
- P_1 admet 0 pour racine double et il existe deux constantes a et b telles que $P_1 = (aX + b)X^2$ puis les égalités $P_1(1) = 1$ et $P'_1(1) = 0$ fournissent a + b = 1 et 3a + 2b = 0 et donc $P_1 = (-2X + 3)X^2$.

$$P_0 = (2X+1)(X-1)^2$$
, $P_1 = (-2X+3)X^2$, $P_2 = X(X-1)^2$ et $P_3 = X^2(X-1)$.

Montrons alors que $(\varphi_0, \varphi_1, \varphi_2, \varphi_3)$ est une base de E^* . Cette famille est libre car si $a\varphi_1 + b\varphi_2 + c\psi_1 + d\psi_2 = 0$, on obtient en appliquant successivement à P_0 , P_1 , P_2 et P_3 , a = b = c = d = 0. Mais alors, la famille $(\varphi_1, \varphi_2, \psi_1, \psi_2)$ est une famille libre de E^* de cardinal 4et donc une base de E^* . Sa préduale est (P_0, P_1, P_2, P_3) .

Correction de l'exercice 3

1 ère solution. On utilise le fait qu'une réunion de deux sous-espaces vectoriels est un sous-espace vectoriel si et seulement si l'un des deux contient l'autre. Donc

$$\varphi\psi=0\Rightarrow \mathrm{Ker}\varphi\cup\mathrm{Ker}\psi=E\Rightarrow \mathrm{Ker}\psi\subset\mathrm{Ker}\varphi=\mathrm{Ker}\varphi\cup\mathrm{Ker}\psi=E \text{ ou } \mathrm{Ker}\varphi\subset\mathrm{Ker}\psi=\mathrm{Ker}\varphi\cup\mathrm{Ker}\psi=E\Rightarrow \varphi=0 \text{ ou } \psi=0.$$

2ème solution. Supposons que $\phi \psi = 0$ et qu'il existe x et y tels que $\phi(x) \neq 0$ (et donc $\psi(x) = 0$) et $\psi(y) \neq 0$ (et donc $\varphi(y) = 0$). Alors $0 = \varphi(x+y)\psi(x+y) = (\varphi(x) + \varphi(y))(\psi(x) + \psi(y)) = \varphi(x)\psi(y)$ ce qui est une contradiction.

$$\forall (\varphi, \psi) \in (E^*)^2, \ (\forall x \in E, \ \varphi(x)\psi(x) = 0) \Rightarrow \varphi = 0 \text{ ou } \psi = 0.$$

Correction de l'exercice 4 A

- 1. Soit $\varphi \in E^*$.
 - \Rightarrow / Supposons qu'il existe $(\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$ tel que $\varphi = \lambda_1 \varphi_1 + \dots + \lambda_n \varphi_n$.

Soit $x \in \bigcap_{i=1}^{n} \operatorname{Ker} \varphi_{i}$. Alors $\varphi(x) = \lambda_{1} \varphi_{1}(x) + \ldots + \lambda_{n} \varphi_{n}(x) = 0 + \ldots + 0 = 0$ et donc $x \in \operatorname{Ker} \varphi$. On a montré que $\bigcap_{i=1}^{n} \operatorname{Ker} \varphi_{i} \subset \operatorname{Ker} \varphi$.

• \leftarrow / Supposons tout d'abord la famille $(\varphi_1, \dots, \varphi_n)$ libre. On complète éventuellement la famille libre $(\varphi_1,\ldots,\varphi_n)$ de E^* en une base $(\varphi_1,\ldots,\varphi_n,\varphi_{n+1},\ldots,\varphi_p)$ de E^* et on note $(e_1,\ldots,e_n,e_{n+1},\ldots,e_p)$ la préduale de la base $(\varphi_1, \ldots, \varphi_p)$.

Soit $x = \sum_{i=1}^{p} x_i e_i$ un élément de E.

$$x \in \bigcap_{i=1}^{n} \operatorname{Ker} \varphi_{i} \Leftrightarrow \forall i \in \llbracket 1, n \rrbracket, \ \varphi_{i}(x) = 0 \Leftrightarrow \forall i \in \llbracket 1, n \rrbracket, \ x_{i} = 0 \Leftrightarrow x \in \operatorname{Vect}(e_{n+1}, \dots, e_{p})$$

(avec la convention usuelle $\operatorname{Vect}(\varnothing) = \{0\}$ dans le cas p = n). Donc $\bigcap_{i=1}^n \operatorname{Ker} \varphi_i = \operatorname{Vect}(e_{n+1}, \dots, e_p)$. Soit alors $\varphi \in F^*$. Posons $\varphi = \nabla^p$

Soit alors $\varphi \in E^*$. Posons $\varphi = \sum_{i=1}^p \lambda_i \varphi_i$.

$$\bigcap_{i=1}^{n} \operatorname{Ker} \varphi_{i} \subset \operatorname{Ker} \varphi \Rightarrow \operatorname{Vect}(e_{n+1}, \dots, e_{p}) \subset \operatorname{Ker} \varphi \Rightarrow \forall j \in [n+1, p], \ \varphi(e_{j}) = 0$$

$$\Rightarrow \forall j \in [n+1, p], \ \lambda_{j} = 0 \Rightarrow \varphi = \sum_{i=1}^{n} \lambda_{i} \varphi_{i}.$$

Le résultat est donc démontré dans le cas où la famille $(\varphi_1, \dots, \varphi_n)$ est libre.

Si tous les φ_i , $1 \le i \le n$, sont nuls alors \bigcap Ker $\varphi_i = E$ puis Ker $\varphi = E$ et donc $\varphi = 0$. Dans ce cas aussi, φ est combinaison linéaire des φ_i , $1 \le i \le n$.

Si les φ_i , $1 \le i \le n$, ne sont pas tous nuls et si la famille $(\varphi_1, \dots, \varphi_n)$ est liée, on extrait de la famille $(\varphi_1,\ldots,\varphi_n)$ génératrice de $\mathrm{Vect}(\varphi_1,\ldots,\varphi_n)$ une base $(\varphi_{i_1},\ldots,\varphi_{i_m})$ de $\mathrm{Vect}(\varphi_1,\ldots,\varphi_n)$.

On a $\bigcap_{i=1}^n \operatorname{Ker} \varphi_i \subset \bigcap_{k=1}^m \operatorname{Ker} \varphi_{i_k}$ mais d'autre part, tout φ_i , $1 \leqslant i \leqslant n$, étant combinaison linéaire des φ_{i_k} ,

 $1 \leqslant k \leqslant m$, chaque $\operatorname{Ker} \varphi_i$, $1 \leqslant i \leqslant n$, contient $\bigcap_{k=1}^m \operatorname{Ker} \varphi_{i_k}$ et donc $\bigcap_{k=1}^m \operatorname{Ker} \varphi_{i_k} \subset \bigcap_{i=1}^n \operatorname{Ker} \varphi_i$. Finalement,

 $\bigcap_{k=1}^{n} \operatorname{Ker} \varphi_{i_k} = \bigcap_{i=1}^{n} \operatorname{Ker} \varphi_i \subset \operatorname{Ker} \varphi.$ D'après l'étude du cas où la famille est libre, φ est combinaison linéaire des φ_{i_k} , $1 \le k \le m$ et donc des φ_i , $1 \le i \le n$. La réciproque est démontrée dans tous les cas.

2. Soit φ une forme linéaire sur \mathbb{R}^3 telle que $P = \text{Ker}\varphi$ (en particulier φ n'est pas nulle). Soient φ_1 la forme linéaire $(x, y, z) \mapsto x + y + z$ et φ_2 la forme linéaire $(x, y, z) \mapsto 2x + 3z$. Alors la famille (φ_1, φ_2) est une famille libre du dual de \mathbb{R}^3 et $D = \text{Ker}\varphi_1 \cap \text{Ker}\varphi_2$. D'après 1)

$$D \subset P \Leftrightarrow \exists (a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}/\varphi = a\varphi_1 + b\varphi_2$$
 (théorie des faisceaux),

puis

$$u \in P \Leftrightarrow a\varphi_1(u) + b\varphi_2(u) = 0 \Leftrightarrow 3a + 5b = 0.$$

Une équation de P est donc 5(x+y+z) - 3(2x+3z) = 0 ou encore -x + 5y - 4z = 0.

Correction de l'exercice 5 ▲

Soit $f: E \to \mathbb{K}^n$. Il s'agit de démontrer que la famille $(\varphi_1, \dots, \varphi_n)$ est liée si et seulement $x \mapsto (\varphi_1(x),...,\varphi_n(x))$ si $Ker(f) \neq \{0\}$.

- Si la famille $(\varphi_1, \dots, \varphi_n)$ est libre, c'est une base de E^* (car dim $(E^*) = n$). Notons (u_1, \dots, u_n) sa préduale et notons (e_1, \dots, e_n) la base canonique de \mathbb{K}^n . Pour $1 \le i \le n$, on a $f(u_i) = e_i$. Ainsi, l'image par f d'une base de E est une base de \mathbb{K}^n et on sait alors que f est un isomorphisme. En particulier, $Ker(f) = \{0\}$.
- Si les φ_i sont tous nuls, tout vecteur non nul x annule chaque φ_i . Supposons alors que la famille $(\varphi_1, \dots, \varphi_n)$ est liée et que les φ_i ne sont pas tous nuls. On extrait de la famille $(\varphi_1, \dots, \varphi_n)$ une base $(\varphi_{i_1}, \dots, \varphi_{i_m})$ (avec $1 \le 1$ m < n) de Vect $(\varphi_1, \dots, \varphi_n)$. On complète la famille libre $(\varphi_{i_1}, \dots, \varphi_{i_m})$ en une base $(\varphi_{i_1}, \dots, \varphi_{i_m}, \psi_1, \dots, \psi_{n-m})$ de E^* . On note $(e_1, \ldots, e_m, e_{m+1}, \ldots, e_n)$ sa préduale. Les formes linéaires $\varphi_{i_1}, \ldots, \varphi_{i_m}$ s'annulent toutes en e_n et donc chaque φ_i s'annule en e_n puisque chaque φ_i est combinaison linéaire des φ_{i_k} , $1 \le i \le m$. Le vecteur e_n est donc un vecteur non nul x tel que $\forall i \in [1, n], \varphi_i(x) = 0$.

Correction de l'exercice 6

La matrice de la famille (f_1, f_2, f_3, f_4) dans la base canonique du dual de \mathbb{R}^4 est $A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ -1 & m & 1 & -3 \\ -2 & 1 & m+4 & -m \end{pmatrix}$.

La matrice A a même rang que la matrice $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & -1 & -2 & 1 \\ -1 & m+1 & 2 & -3 \\ -2 & 3 & m+6 & -m \end{pmatrix} \text{ (pour } 2 \leqslant j \leqslant 3, C_j \leftarrow C_j - C_1 \text{) puis}$ que la matrice $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ -1 & m+1 & -2m & m-2 \\ -2 & 3 & m & -m+3 \end{pmatrix} \text{ (}C_3 \leftarrow C_3 - 2C_2 \text{ et } C_4 \leftarrow C_4 + C_2 \text{)}$ $\bullet \text{ Si } m = 0, A \text{ a même rang que la matrice } \begin{pmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ -1 & 1 & -2 \\ -2 & 3 & 3 \end{pmatrix} \text{ et donc rg}(A) = 3.$ $\bullet \text{ Si } m \neq 0, A \text{ a même rang que la matrice } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ -1 & m+1 & -2 & m-2 \\ -2 & 3 & 1 & -m+3 \end{pmatrix} \text{ (}C_3 \leftarrow \frac{1}{m}C_3 \text{) puis que la matrice }$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ -1 & m+1 & -2 & 0 \\ -2 & 3 & 1 & -m+4 \end{pmatrix} (C_4 \leftarrow 2C_4 + (m-2)C_3)$$

Donc, si m = 4, rg(A) = 3 et si m n'est ni 0 ni 4, rg(A) = 4.

Si $m \notin \{0,4\}$, $\operatorname{rg}(f_1, f_2, f_3, f_4) = 4$ et si $m \in \{0,4\}$, $\operatorname{rg}(f_1, f_2, f_3, f_4) = 3$.