List of theoretical questions for the final exam

Dr. Tim Shilkin

Leipzig University, WiSe 2023/24

Information on the final exam

- Form of the final attestation: written exam
- Date of the final exam: February 21, 2024 (Wednesday), from 12:00 till 14:00
- Date of the re-examination: March 27, 2024 (Wednesday), from 12:00 till 14:00
- For the final exam students will be asked to solve several computational problems similar to homework problems (estimated from 5 points each problem) and write exactly **one** theoretical proof of a result from the list below (the theoretical proof will be estimated from 8 points).

Contents

1	${f List}$	of theoretical questions in the final exam	2
	1.1	Limit of a function. Equivalence of definitions	2
	1.2	Continuity. Intermediate value theorems	4
	1.3	Continuity. Extreme value theorems	6
	1.4	Fermat's and Rolle's theorems	8
	1.5	Lagrange's and Cauchy's theorem	9
	1.6	Investigation of functions using derivatives. Convexity	10
	1.7	Riemann integral. Basic condition for integrability	12
	1.8	Mean value formula and fundamental theorem of calculus	14
	1.9	Dirichlet–Abel test for convergence of improper integrals	16
	1.10	Cauchy's and D'Alambert's tests for convergence of infinite series	18

1 List of theoretical questions in the final exam

Limit of a function. Equivalence of definitions 1.1

THEOREM. Definitions of the limit of a function according to Cauchy and Heine are equivalent.

We are given: $f:(a,b)\to\mathbb{R}, x_0\in(a,b), y_0\in\mathbb{R}$

PROOF of (Cauchy \Longrightarrow Heine)

1. Use Cauchy's definition of the limit of a function:

$$\forall \varepsilon > 0 \quad \exists \delta(\varepsilon) > 0: \quad \forall x \in (a, b), \quad x \neq x_0 \qquad |x - x_0| < \delta \implies |f(x) - y_0| < \varepsilon \quad (C)$$

Take $\{x_n\}_{n=1}^{\infty} \subset (a,b)$: $x_n \to x_0, x_n \neq x_0$. We want to show that $f(x_n) \to y_0$.

Assume $\varepsilon > 0$ is arbitrary. Applying (C) we obtain $\exists \delta = \delta(\varepsilon) > 0$ such that (C) holds.

2. Use the definition of the limit of a sequence:

$$x_n \to x_0 \implies \exists N(\delta) \in \mathbb{N}: \forall n \ge N(\delta) |x_n - x_0| < \delta.$$

3. Use the assumption:

$$(C) \wedge |x_n - x_0| < \delta \implies |f(x_n) - y_0| < \varepsilon$$

4. Check the definition of $\lim_{n\to\infty} f(x_n) = y_0$

The following moments must be indicated (marked above with a blue color):

$$\forall \varepsilon > 0$$
 $\exists N(\delta(\varepsilon)) \in \mathbb{N}:$ $\forall n \geq N(\delta(\varepsilon))$ $|f(x_n) - y_0| < \varepsilon$

PROOF of (Heine \Longrightarrow Cauchy)

5. Use Heine's definition of the limit of a function:

$$\forall \{x_n\}_{n=1}^{\infty} \subset (a,b): \quad x_n \neq x_0 \qquad x_n \underset{n \to \infty}{\longrightarrow} x_0 \quad \Longrightarrow \quad f(x_n) \underset{n \to \infty}{\longrightarrow} f(x_0) \tag{H}$$

We want to show $\forall \varepsilon > 0 \quad \exists \delta(\varepsilon) > 0$: $|x - x_0| < \varepsilon \implies |f(x) - y_0| < \varepsilon$

6. Proof by contradiction. Assume

$$\exists \varepsilon_0 > 0: \ \forall \delta > 0 \ \exists x_\delta \in (a, b): \ |x_\delta - x_0| < \delta \land |f(x_\delta) - y_0| \ge \varepsilon_0$$

7. Choose $\delta > 0$ in the specific way:

Take
$$\delta = 1 \implies \exists x_1 \in (a, b) : |x_1 - x_0| < 1 \land |f(x_1) - y_0| \ge \varepsilon_0$$

Take
$$\delta = \frac{1}{2} \implies \exists x_2 \in (a, b) : |x_2 - x_0| < \frac{1}{2} \land |f(x_2) - y_0| \ge \varepsilon_0$$

Take
$$\delta = \frac{1}{2} \implies \exists x_2 \in (a, b) : |x_2 - x_0| < \frac{1}{2} \land |f(x_2) - y_0| \ge \varepsilon_0$$

Take $\delta = \frac{1}{3} \implies \exists x_3 \in (a, b) : |x_3 - x_0| < \frac{1}{3} \land |f(x_3) - y_0| \ge \varepsilon_0$

Take
$$\delta = \frac{1}{n} \implies \exists x_n \in (a, b) : |x_n - x_0| < \frac{1}{n} \land |f(x_n) - y_0| \ge \varepsilon_0$$

We obtain $\{x_n\}_{n=1}^{\infty}$: $\forall n \in \mathbb{N} ||x_n - x_0|| < \frac{1}{n} \land ||f(x_n) - y_0|| \ge \varepsilon_0$.

8. Obtain the contradiction:

$$|x_n - x_0| < \frac{1}{n} \implies x_n \longrightarrow x_0 |f(x_n) - y_0| \ge \varepsilon_0 \implies f(x_n) \not\longrightarrow y_0$$
 This contradicts to (H) !!!

1.2 Continuity. Intermediate value theorems

Theorem 1. f is continuous on $[a,b], f(a) \le 0, f(b) \ge 0 \implies \exists c \in [a,b]: f(c) = 0$

PROOF. Denote $a_0 = a$, $b_0 = b$

1. Construct the sequence of nested intervals:

Step 1.

- Split the interval $[a_0,b_0]$ onto $\left[a_0,\frac{a_0+b_0}{2}\right]$ and $\left[\frac{a_0+b_0}{2},b_0\right]$
- If $f\left(\frac{a_0+b_0}{2}\right) \ge 0$ denote $[a_1,b_1] := \left[a_0,\frac{a_0+b_0}{2}\right]$
- If $f\left(\frac{a_0+b_0}{2}\right) < 0$ denote $[a_1,b_1] := \left[\frac{a_0+b_0}{2},b_0\right]$
- In any case we obtain the interval $[a_1, b_1] \subset [a_0, b_0]$ such that $f(a_1) \leq 0$ and $f(b_1) \geq 0$

Step 2.

- Split the interval $[a_1, b_1]$ onto $[a_1, \frac{a_1+b_1}{2}]$ and $[\frac{a_1+b_1}{2}, b_1]$
- If $f\left(\frac{a_1+b_1}{2}\right) \ge 0$ denote $[a_2,b_2] := [a_1,\frac{a_1+b_1}{2}]$
- If $f\left(\frac{a_1+b_1}{2}\right) < 0$ denote $[a_2,b_2] := \left[\frac{a_1+b_1}{2},b_1\right]$
- In any case we obtain the interval $[a_2,b_2]\subset [a_1,b_1]$ such that $f(a_2)\leq 0$ and $f(b_2)\geq 0$

. . .

Step n.

- Split the interval $[a_{n-1}, b_{n-1}]$ onto $\left[a_{n-1}, \frac{a_{n-1}+b_{n-1}}{2}\right]$ and $\left[\frac{a_{n-1}+b_{n-1}}{2}, b_{n-1}\right]$
- If $f\left(\frac{a_{n-1}+b_{n-1}}{2}\right) \ge 0$ denote $[a_n, b_n] := \left[a_{n-1}, \frac{a_{n-1}+b_{n-1}}{2}\right]$
- If $f\left(\frac{a_{n-1}+b_{n-1}}{2}\right) < 0$ denote $[a_n, b_n] := \left[\frac{a_{n-1}+b_{n-1}}{2}, b_{n-1}\right]$
- In any case we obtain $[a_n, b_n] \subset [a_{n-1}, b_{n-1}]$ such that $f(a_n) \leq 0$ and $f(b_n) \geq 0$

. . .

2. Use the monotone sequence theorem:

$$[a_n,b_n] \subset [a_{n-1},b_{n-1}] \implies \forall n \in \mathbb{N} \quad a_{n-1} \leq a_n \leq b_n \leq b_{n-1}$$

$$\{a_n\}_{n=1}^{\infty} \longrightarrow \text{ and bounded from above } (a_n \leq b_0) \implies \exists c_1 \in [a,b]: \ c = \lim_{n \to \infty} a_n$$

$$\{b_n\}_{n=1}^{\infty} \longrightarrow \text{ and bounded from below } (b_n \geq a_0) \implies \exists c_2 \in [a,b]: \ c_2 = \lim_{n \to \infty} b_n$$

3. Show that $c_1 = c_2$:

$$c_2 - c_1 = \lim_{n \to \infty} (b_n - a_n) = \lim_{n \to \infty} \frac{b_0 - a_0}{2^n} = 0 \implies c := c_1 = c_2$$

4. Use continuity of f:

f is continuous on $[a,b], c \in [a,b] \implies f$ is continuous at c

f is continuous at c, $a_n \to c \implies f(c) = \lim_{n \to \infty} f(a_n)$

f is continuous at c, $b_n \to c \implies f(c) = \lim_{n \to \infty} f(b_n)$

5. Show that f(c) = 0:

If limits exist, one can pass to the limit in the inequality: $x_n \leq y_n \implies \lim_{n \to \infty} x_n \leq \lim_{n \to \infty} y_n$

$$\forall n \in \mathbb{N} \quad f(a_n) \le 0 \quad \Longrightarrow \quad f(c) = \lim_{n \to \infty} f(a_n) \le 0$$

$$\forall n \in \mathbb{N} \quad f(b_n) \ge 0 \quad \Longrightarrow \quad f(c) = \lim_{n \to \infty} f(b_n) \ge 0$$

$$f(c) \le 0$$
 and $f(c) \ge 0 \implies f(c) = 0$

Theorem 2. f is continuous on $[a,b], \ f(a)=y_1, \ f(b)=y_2, \ y_1\leq y_2 \implies [y_1,y_2]\subset R(f)$

Proof.

6. Use the definition of R(f)

Take any $y_0 \in [y_1, y_2]$. We want to show: $\exists x_0 \in [a, b]$ $f(x_0) = y_0$

7. Construct an auxiliary function $g:[a,b]\to\mathbb{R}$:

Define $g(x) := f(x) - y_0, \ x \in [a, b] \implies g$ is continuous on [a, b]

As $y_0 \in [y_1, y_2]$ we obtain $y_1 \le y_0 \le y_2$.

Hence $g(a) \leq 0$ and $g(b) \geq 0$.

8. Apply Theorem 1:

 $g:[a,b] \to \mathbb{R}$ is continuous on $[a,b], \ g(a) \le 0, \ g(b) \ge 0 \implies \exists \ x_0 \in [a,b]: \ g(x_0) = 0$ $g(x_0) = 0 \iff f(x_0) = y_0$

1.3 Continuity. Extreme value theorems

THEOREM 1. $[a,b] \subset \mathbb{R}$ is a closed bounded interval, $f:[a,b] \to \mathbb{R}$ is continuous on $[a,b] \Longrightarrow f$ is bounded on [a,b], i.e.

$$\exists M > 0: \quad \forall x \in [a, b] \quad |f(x)| \leq M$$

Proof.

1. Proof by contradiction:

Assume $\forall M > 0 \quad \exists x_M \in [a, b]: \quad |f(x_M)| > M$

2. Construct a sequence $\{x_n\}_{n=1}^{\infty} \subset [a,b]$

Take
$$M = 1 \implies \exists x_1 \in [a, b]: |f(x_1)| > 1$$

Take
$$M = 2 \implies \exists x_2 \in [a, b]: |f(x_2)| > 2$$

Take
$$M = 3 \implies \exists x_3 \in [a, b]: |f(x_3)| > 3$$

. . .

Take
$$M = n \implies \exists x_n \in [a, b]: |f(x_n)| > n$$

. . .

So, we obtain
$$\{x_n\}_{n=1}^{\infty} \subset [a,b]: \forall n \in \mathbb{N} |f(x_n)| > n$$

3. Use Bolzano–Weierstrass theorem:

$$\{x_n\}_{n=1}^{\infty}$$
 is bounded \implies \exists a subsequence $\{x_{n_k}\}_{k=1}^{\infty} \subset \{x_n\}_{n=1}^{\infty}, \exists c \in \mathbb{R}: x_{n_k} \to c$
One can pass to the limit in the inequality: $a \leq x_{n_k} \leq b \implies a \leq c \leq b \implies c \in [a, b]$

4. Use continuity to obtain a contradiction:

$$x_{n_k} \to c$$
, f is continuous on $[a, b] \implies f(x_{n_k}) \to f(c)$

Convergent sequence is bounded
$$\implies \exists L > 0: \forall k \in \mathbb{N} \quad |f(x_{n_k})| \leq L$$

$$\forall k \in \mathbb{N} \quad |f(x_{n_k})| > n_k \to \infty$$
 — this contradicts to the boundedness of $\{f(x_{n_k})\}_{k=1}^{\infty}$!!!

THEOREM 2. $[a,b] \subset \mathbb{R}$ is a closed bounded interval, $f:[a,b] \to \mathbb{R}$ is continuous on $[a,b] \implies f$ achieves on [a,b] its maximum and minimal values, i.e. $\exists \ c_1, \ c_2 \in [a,b]$ such that

$$f(c_1) = \inf_{x \in [a,b]} f(x)$$
 and $f(c_2) = \sup_{x \in [a,b]} f(x)$

PROOF. Let us prove that f achieves its maximum. The proof for the minimum is analogous.

5. Function which is continuous on a closed bounded interval is bounded:

 $M = \sup_{x \in [a,b]} f(x)$ f is continuous on $[a,b] \implies f$ is bounded on $[a,b] \implies \exists M \in \mathbb{R}$:

6. Use the characterization of supremum using the quantifiers:

 $\forall \varepsilon > 0 \ \exists x_{\varepsilon} \in [a, b]: \ M - \varepsilon < f(x_{\varepsilon}) \le M$

Take $\varepsilon = 1$ $\exists x_1 \in [a, b]$: $M - 1 < f(x_1) \le M$

Take $\varepsilon = \frac{1}{2}$ $\exists x_2 \in [a, b]$: $M - \frac{1}{2} < f(x_2) \le M$ Take $\varepsilon = \frac{1}{3}$ $\exists x_3 \in [a, b]$: $M - \frac{1}{3} < f(x_3) \le M$

Take $\varepsilon = \frac{1}{n}$ $\exists x_n \in [a, b]$: $M - \frac{1}{n} < f(x_n) \le M$

So, we obtain $\{x_n\}_{n=1}^{\infty} \subset [a,b]$: $\forall n \in \mathbb{N}$ $M - \frac{1}{n} < f(x_n) \leq M$

Two policemen theorem $\implies f(x_n) \to M$

7. Use Bolzano–Weierstrass theorem:

 $\{x_n\}_{n=1}^{\infty}$ is bounded \implies \exists a subsequence $\{x_{n_k}\}_{k=1}^{\infty} \subset \{x_n\}_{n=1}^{\infty}, \ \exists c \in [a,b]: \ x_{n_k} \to c$

8. Use continuity of f and uniqueness of the limit:

f is continuous at $c \in [a, b], x_{n_k} \to c \implies f(x_{n_k}) \to f(c)$

 $f(x_{n_k}) \to M, \ f(x_{n_k}) \to f(c) \implies f(c) = M$

1.4 Fermat's and Rolle's theorems

1. Statement of Fermat's theorem:

THEOREM 1. Assume $f:(a,b)\to\mathbb{R}$ has a local extremum (maximum or minimum) on the interval (a,b) at some internal point $c\in(a,b)$, i.e.

$$\exists c \in (a,b): \forall x \in (a,b) \quad f(x) \le f(c) \quad \left(\text{ or } \forall x \in (a,b) \quad f(x) \le f(c) \right)$$

If f is differentiable at c then f'(c) = 0.

PROOF. Assume $\forall x \in (a,b)$ $f(x) \leq f(c)$. The case of minimum is similar.

2. Use the characterization of the limit in terms of one-sided limits:

$$\exists f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c - 0} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c + 0} \frac{f(x) - f(c)}{x - c}$$

3. Compute the limit from the left:

$$\forall x \in (a,c), \quad f(x) \le f(c) \quad \Rightarrow \quad \frac{f(x) - f(c)}{x - c} \ge 0 \quad \Rightarrow \quad \lim_{x \to c - 0} \frac{f(x) - f(c)}{x - c} \ge 0 \quad \Rightarrow \quad f'(c) \ge 0$$

Compute the limit from the right:

$$\forall x \in (c,b), \quad f(x) \le f(c) \quad \Rightarrow \quad \frac{f(x) - f(c)}{x - c} \le 0 \quad \Rightarrow \quad \lim_{x \to c + 0} \frac{f(x) - f(c)}{x - c} \le 0 \quad \Rightarrow \quad f'(c) \le 0$$

Compare limits from the left and from the right:

$$f'(c) \ge 0$$
 and $f'(c) \le 0 \implies f'(c) = 0$

4. Statement of Rolle's theorem:

THEOREM 2. Assume $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). Assume that f(a) = f(b). Then there exists $c \in (a,b)$ such that f'(c) = 0.

5. Proof. Use the extreme value theorem:

$$\exists c_1, c_2 \in [a, b]:$$
 $f(c_1) = \inf_{x \in [a, b]} f(x),$ $f(c_2) = \sup_{x \in [a, b]} f(x)$

6. Consider the case f(x) = const:

$$f(c_1) = f(c_2) \implies \forall x \in [a, b] \quad f(x) = f(a) = f(b) \implies \forall x \in (a, b) \quad f'(x) = 0$$

7. Consider the case $f(x) \neq const$:

 $f(c_1) \neq f(c_2) \implies$ at least one of the points c_1 and c_2 is different from a and b denote by c those of c_1 and c_2 for which $c \neq a$ and $c \neq b \implies c \in (a, b)$

8. Use Fermat's theorem:

Assume
$$c \in (a, b)$$
, $f(c) = \sup_{x \in [a, b]} f(x) \Rightarrow \forall x \in (a, b) \quad f(x) \le f(c) \stackrel{\text{Fermat}}{\Longrightarrow} f'(c) = 0$

The case $c \in (a, b)$, $f(c) = \inf_{x \in [a, b]} f(x)$ is similar.

1.5 Lagrange's and Cauchy's theorem

1. Statement of Lagrange's theorem

THEOREM 3. Assume $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). Then there is a point $c \in (a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

2. Proof. Define the auxiliary function h(x):

$$h(x) := f(x) - f(a) - \frac{f(b) - f(a)}{b - a} \cdot (x - a), \quad x \in [a, b]$$

3. Verify the assumptions of Rolle's theorem for h(x):

$$h(a) = f(a) - f(a) = 0$$
, $h(a) = f(b) - f(a) - \frac{f(b) - f(a)}{b - a} \cdot (b - a) = 0 \implies h(a) = h(b) = 0$
 $h: [a, b] \to \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b) .

4. Use Rolle's theorem for h(x):

$$\exists c \in (a,b): h'(c) = 0, h'(x) = f'(x) - \frac{f(b) - f(a)}{b - a} \implies f'(c) = \frac{f(b) - f(a)}{b - a}$$

5. Statement of Cauchy's theorem:

THEOREM 4. Assume functions $f, g : [a, b] \to \mathbb{R}$ are continuous on [a, b] and differentiable on (a, b). Assume $g'(x) \neq 0$ for any $x \in (a, b)$. Then there is a point $c \in (a, b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

6. Show that $g(b) \neq g(a)$ and hence $\frac{f(b)-f(a)}{g(b)-g(a)}$ is well-defined.

By contradiction, assume $g(b) = g(a) \stackrel{\text{Rolle}}{\Longrightarrow} \exists c \in (a,b): g'(c) = 0$ — contradicts to $g'(x) \neq 0$

7. Define the auxiliary function h(x):

$$h(x) := f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot (g(x) - g(a)), \quad x \in [a, b]$$

8. Use Rolle's theorem for h(x):

$$h(a) = f(a) - f(a) = 0, \ h(a) = f(b) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot \left(g(b) - g(a)\right) = 0 \implies h(a) = h(b) = 0$$

 $h:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b)

$$\exists c \in (a,b): \quad h'(c) = 0, \quad h'(x) = f'(x) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g'(x) \quad \Longrightarrow \quad f'(c) = \frac{f(b) - f(a)}{b - a} \cdot \underbrace{g'(c)}_{\neq 0}$$

1.6 Investigation of functions using derivatives. Convexity.

THEOREM. Assume $f:(a,b)\to\mathbb{R}$ is twice differentiable on (a,b). Then

$$f$$
 is convex on (a,b) \iff $f'' \ge 0$ on (a,b)

Proof □

1. Assume f is convex on (a, b). Use the definition of convexity:

$$\forall x_1, x_2 \in (a, b), x_1 < x_2, \forall \lambda \in [0, 1]$$
 $f((1 - \lambda)x_1 + \lambda x_2) \le (1 - \lambda)f(x_1) + \lambda f(x_2)$

2. Take arbitrary $x_1 < x < x_2$ and choose $\lambda \in (0,1)$ in a specific way:

$$\lambda := \frac{x - x_1}{x_2 - x_1} \qquad \Longrightarrow \qquad 1 - \lambda = \frac{x_2 - x}{x_2 - x_1}, \qquad (1 - \lambda)x_1 + \lambda x_2 = x$$

3. Proof the inequality for slopes of the secants:

$$x_1 < x < x_2$$
 \Longrightarrow $\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}$

Indeed,

$$f((1-\lambda)x_{1} + \lambda x_{2}) \leq (1-\lambda)f(x_{1}) + \lambda f(x_{2}) \iff$$

$$f(x) \leq \frac{x_{2}-x}{x_{2}-x_{1}} f(x_{1}) + \frac{x-x_{1}}{x_{2}-x_{1}} f(x_{2}) \iff$$

$$\underbrace{\frac{x-x_{1}}{x_{2}-x_{1}} f(x) + \frac{x_{2}-x}{x_{2}-x_{1}} f(x)}_{= f(x)} \leq \frac{x_{2}-x}{x_{2}-x_{1}} f(x_{1}) + \frac{x-x_{1}}{x_{2}-x_{1}} f(x_{2}) \iff$$

$$\frac{x_{2}-x}{x_{2}-x_{1}} \left(f(x) - f(x_{1}) \right) \leq \frac{x-x_{1}}{x_{2}-x_{1}} \left(f(x_{2}) - f(x) \right) \iff$$

$$\underbrace{\frac{f(x) - f(x_{1})}{x - x_{1}}}_{= f(x_{2}) - f(x_{2})} \leq \underbrace{\frac{f(x_{2}) - f(x_{2})}{x_{2}-x_{2}}}_{= f(x_{2}) - f(x_{2})}$$

(You can omit everything in blue color if you find it routine).

4. Proof $f' - \nearrow$ on (a, b). Take any $x_1, x_2 \in (a, b)$ such that $x_1 < x_2$.

$$\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}, \quad x \to x_1 + 0 \implies f'(x_1) \le \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

$$\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}, \quad x \to x_2 - 0 \implies \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le f'(x_2)$$

$$f'(x_1) \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le f'(x_2), \ \forall x_1 < x_2 \implies f' - \nearrow \text{ on } (a, b) \implies f'' \ge 0 \text{ on } (a, b)$$

Proof (

- 5. Assume $f'' \ge 0$ on $(a, b) \implies f' \nearrow$ on (a, b).
- 6. Proof the inequality for slopes of the secants:

$$x_1 < x < x_2$$
 \implies $\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}$

Indeed, from the Lagrange theorem we obtain

$$\exists c_1 \in (x_1, x) : \qquad \frac{f(x) - f(x_1)}{x - x_1} = f'(c_1)$$

$$\exists c_2 \in (x, x_2) : \qquad \frac{f(x_2) - f(x)}{x_2 - x} = f'(c_2)$$

$$c_1 \in (x_1, x), \quad c_2 \in (x, x_2) \implies c_1 < c_2$$

$$f \longrightarrow \text{on } (a, b) \implies \frac{f(x) - f(x_1)}{x - x_1} = f'(c_1) \le f'(c_2) = \frac{f(x_2) - f(x)}{x_2 - x}$$

7. Take arbitrary $x_1 < x_2$ and $\lambda \in (0,1)$ and choose $x \in (x_1, x_2)$ in a specific way:

$$x = (1 - \lambda)x_1 + \lambda x_2$$
 \implies $\lambda = \frac{x - x_1}{x_2 - x_1}, \quad 1 - \lambda = \frac{x_2 - x_1}{x_2 - x_1}$

8. Verify the definition of convexity for f:

$$\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x} \iff \frac{x_2 - x}{x_2 - x_1} \left(f(x) - f(x_1) \right) \le \frac{x - x_1}{x_2 - x_1} \left(f(x_2) - f(x) \right) \iff \frac{x - x_1}{x_2 - x_1} f(x) + \frac{x_2 - x}{x_2 - x_1} f(x) \le \frac{x_2 - x}{x_2 - x_1} f(x_1) + \frac{x - x_1}{x_2 - x_1} f(x_2) \iff f(x) \le \frac{x_2 - x}{x_2 - x_1} f(x_1) + \frac{x - x_1}{x_2 - x_1} f(x_2) \iff f((1 - \lambda)x_1 + \lambda x_2) < (1 - \lambda)f(x_1) + \lambda f(x_2)$$

(You can omit everything in blue color if you find it routine). \square

1.7 Riemann integral. Basic condition for integrability

THEOREM. Assume f is bounded on [a, b]. Then f is integrable on [a, b] if and only if $\forall \varepsilon > 0$ $\exists \delta(\varepsilon) > 0$ such that for any partition T of [a, b] the following implication holds

$$\lambda(T) < \delta \implies S(T) - s(T) < \varepsilon,$$

where $\lambda(T)$ is the mesh of the partition T.

Proof →

1. Use the definition of the integrable function:

$$\exists I \in \mathbb{R}: \ \forall \varepsilon > 0 \ \exists \delta\left(\frac{\varepsilon}{3}\right) > 0: \ \forall \text{ tagged partition } (T,\xi): \ T = \{x_j\}, \ \xi = \{\xi_j\}, \ \xi_j \in [x_{j-1},x_j] \\ \lambda(T) < \delta \quad \Longrightarrow \quad I - \frac{\varepsilon}{3} < \sigma(T,\xi) < I + \frac{\varepsilon}{3}$$

2. Use the property of the Darboux sums:

$$\begin{split} s(T) &= \inf_{\xi} \sigma(T; \xi), \quad I - \tfrac{\varepsilon}{3} < \sigma(T, \xi) < I + \tfrac{\varepsilon}{3} \quad \Longrightarrow \quad I - \tfrac{\varepsilon}{3} \le s(T) < I + \tfrac{\varepsilon}{3} \\ S(T) &= \sup_{\xi} \sigma(T; \xi), \quad I - \tfrac{\varepsilon}{3} < \sigma(T, \xi) < I + \tfrac{\varepsilon}{3} \quad \Longrightarrow \quad I - \tfrac{\varepsilon}{3} < S(T) \le I + \tfrac{\varepsilon}{3} \end{split}$$

3. Use the fact that both numbers s(T) and S(T) lay in the interval $\left[I-\frac{\varepsilon}{3},I+\frac{\varepsilon}{3}\right]$:

$$\lambda(T) < \delta\left(\frac{\varepsilon}{3}\right) \quad \Longrightarrow \quad I - \frac{\varepsilon}{3} \le s(T) \le S(T) \le I + \frac{\varepsilon}{3} \quad \Longrightarrow \quad S(T) - s(T) \le \frac{2\varepsilon}{3} < \varepsilon.$$

Proof (

4. Use the property if the Darboux sums:

$$\forall$$
 partitions T and T_0 of $[a,b]$ $s(T) \leq S(T_0) \implies$ the set $\{s(T)\}_T$ is bounded from above

5. Define the number $I \in \mathbb{R}$. Denote

Least upper bound axiom
$$\implies \exists I := \sup \{ s(T) \mid T \text{ is a partition of } [a, b] \}$$

where the supremum is taken over all possible partitions T of the interval $[a, b]$

6. Use the property of the sup (the least upper bound less or equal than some upper bound):

$$\forall \text{ partitions } T, T_0 \qquad s(T) \leq S(T_0) \implies \sup_{T} s(T) \leq \underbrace{S(T_0)}_{\text{some u.b.}} \implies I \leq S(T_0)$$

7. Use the fact that the partition T_0 is also arbitrary:

$$\forall \text{ partition } T_0 \qquad I \leq S(T_0) \implies \forall \text{ partition } T \quad s(T) \leq I \leq S(T)$$

8. Use assumption and the definition of the Riemann integral:

 $\forall \, \varepsilon > 0 \quad \exists \, \delta(\varepsilon) > 0 : \quad \forall \text{ partition } T = \{x_j\}_{j=1}^N \quad \lambda(T) < \delta \quad \Longrightarrow \quad S(T) - s(T) < \varepsilon$ Let $\xi = \{\xi_j\}_{j=1}^N, \, \xi_j \in [x_{j-1}, x_j]$. Then $\forall \text{ tagged partition } (T, \xi) \text{ if } \lambda(T) < \delta(\varepsilon) \text{ then}$

$$\implies \left. \begin{array}{l} s(T) \leq \sigma(T,\xi) \leq S(T) \\ s(T) \leq I \leq S(T) \\ S(T) - s(T) < \varepsilon \end{array} \right\} \quad \Longrightarrow \quad |I - \sigma(T,\xi)| \, \leq \, \varepsilon$$

Use the definition of the Riemann integral: the lined colored in blue imply

$$\exists I = \int_{a}^{b} f(x) \, dx$$

1.8 Mean value formula and fundamental theorem of calculus

Theorem. $f:[a,b]\to\mathbb{R}$ is continuous on $[a,b]\implies\exists \ c\in[a,b]$:

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Proof.

1. Use the extreme value theorem:

f is continuous on $[a,b] \implies f$ is bounded on [a,b]

Denote

$$m:=\inf_{x\in[a,b]}f(x), \qquad M:=\sup_{x\in[a,b]}f(x) \Longrightarrow \qquad R(f)=[m,M]$$

2. Use the property of the definite integral:

$$\forall x \in [a, b]$$
 $m \le f(x) \le M$ \Longrightarrow $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$

3. Use the intermediate value theorem:

$$y_0 := \frac{1}{b-a} \int_a^b f(x) dx \implies m \le y_0 \le M \implies y_0 \in R(f)$$

$$f$$
 is continuous on $[a,b]$ \Longrightarrow $\exists c \in [a,b]:$ $f(c)=y_0$ \Longrightarrow $f(c)=\frac{1}{b-a}\int_a^b f(x)\,dx$

THEOREM. Assume $f:[a,b]\to\mathbb{R}$ is integrable on [a,b]. Define $\Phi:[a,b]\to\mathbb{R}$,

$$\Phi(x) := \int_a^x f(t) \ dt, \quad x \in [a,b]$$
 is the integral with variable upper limit.

If f is continuous on [a, b] then Φ is differentiable on [a, b] and

$$\forall x_0 \in (a, b) \qquad \Phi'(x_0) = f(x_0).$$

Proof.

4. Use the property of the definite integral:

$$\forall x \in [a, b], \quad x > x_0 \qquad \Longrightarrow \qquad \frac{\Phi(x) - \Phi(x_0)}{x - x_0} = \frac{1}{x - x_0} \int_{x_0}^x f(t) dt$$

5. Use the mean value formula:

$$f$$
 is continuous on $[x_0, x] \implies \exists c_x \in [x_0, x] : \frac{1}{x - x_0} \int_{x_0}^x f(t) dt = f(c_x)$

6. Use the two policemen theorem and continuity of f:

$$x_0 \le c_x \le x$$
 \Longrightarrow $c_x \xrightarrow[x \to x_0]{} x_0$ $\stackrel{f \text{ is continuous}}{\Longrightarrow}$ $f(c_x) \xrightarrow[x \to x_0]{} f(x_0)$

7. Use the definition of the derivative

$$\exists \Phi'(x_0) = \lim_{x \to x_0} \frac{\Phi(x) - \Phi(x_0)}{x - x_0} = \lim_{x \to x_0} f(c_x) = f(x_0)$$

8. Consider the case $x < x_0$:

$$x < x_0 \implies \frac{\Phi(x) - \Phi(x_0)}{x - x_0} = \frac{1}{x - x_0} \int_{x_0}^x f(t) dt = \frac{1}{x_0 - x} \int_x^{x_0} f(t) dt \stackrel{c_x \in [x, x_0]}{=} f(c_x) \to f(x_0)$$

1.9 Dirichlet-Abel test for convergence of improper integrals

PROBLEM. Proof the Dirichlet–Abel test for convergence of improper integrals.

1. Recall the statement of the Dirichlet–Abel test:

THEOREM. Assume $f, g : [a, +\infty) \to \mathbb{R}$ satisfy the conditions

- 1) f is continuous on $[a, +\infty)$ and its primitive F is bounded on $[a, +\infty)$
- 2) g is non-negative, non-increasing, differentiable on $[a, +\infty)$ and g' is continuous on $[a, +\infty)$
- $3) \quad \lim_{x \to +\infty} g(x) = 0$

Then the improper integral of fg over $[a, +\infty)$ is convergent:

$$\int_{a}^{+\infty} f(x)g(x) dx$$
 is convergent.

Proof.

2. Recall the definition of a primitive:

$$F:[a,+\infty)\to\mathbb{R}$$
 is differentiable on $[a,+\infty),\quad F'(x)=f(x),\quad |F(x)|\leq M,\ \forall\,x\in[a,+\infty)$

3. Recall the property of a non-increasing differentiable function:

$$\forall x \in [a, +\infty)$$
 $g(x) \ge 0$, $g'(x) \le 0$ \Longrightarrow $|g'(x)| = -g'(x)$

4. Use integration by parts formula:

$$\int_{a}^{c} f(x)g(x) dx = \int_{a}^{c} g(x) dF(x) = \left[\text{ by parts } \right] = g(x)F(x) \Big|_{x=a}^{x=c} - \int_{a}^{c} f(x)dg(x) =$$

$$= g(c)F(c) - g(a)F(a) - \int_{a}^{c} F(x)g'(x) dx$$

5. Use the Newton–Leibniz formula:

$$\int_{a}^{c} |g'(x)| dx = -\int_{a}^{c} g'(x) dx = g(a) - g(c) \le g(a) \implies \int_{a}^{+\infty} |g'(x)| dx \text{ is convergent}$$

6. Use the comparison test of absolute convergence of an improper integral:

$$|F(x)g'(x)| \le M|g'(x)|, \quad \forall x \in [a, +\infty) \implies \int_a^{+\infty} F(x)g'(x) dx$$
 is absolutely convergent

7. Use the fact that g(x) vanishes as $x \to +\infty$

$$\lim_{c \to +\infty} g(c) = 0, \quad |F(c)| \le M, \quad \forall c \in [a, +\infty) \quad \Longrightarrow \quad \lim_{c \to +\infty} \left(g(c)F(c) \right) = 0$$

8. Use the definition of an improper integral:

$$\exists \lim_{c \to +\infty} \int_{a}^{c} f(x)g(x) dx = \underbrace{\lim_{c \to +\infty} \left(g(c)F(c) \right)}_{=0} - g(a)F(a) - \underbrace{\lim_{c \to +\infty} \int_{a}^{c} F(x)g'(x) dx}_{\text{is convergent}} = -g(a)F(a) - \int_{0}^{+\infty} F(x)g'(x) dx$$

1.10 Cauchy's and D'Alambert's tests for convergence of infinite series

Theorem. Assume $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}$ and assume there exists a finite limit

$$\alpha := \lim_{n \to \infty} \sqrt[n]{|a_n|}.$$

Then

- 1) $\alpha < 1 \implies \sum_{n=1}^{\infty} a_n$ is absolutely convergent;
- 2) $\alpha > 1 \implies \sum_{n=1}^{\infty} a_n$ is divergent;

Proof.

1. Assume $0 \le \alpha < 1$. Use the definition of a limit:

$$\alpha := \lim_{n \to \infty} \sqrt[n]{|a_n|} \iff \forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \ge N(\varepsilon) \qquad \left| \sqrt[n]{|a_n|} - \alpha \right| < \varepsilon$$

2. Choose $\varepsilon > 0$ in a clever way:

Take any
$$q \in (\alpha, 1)$$
 and take $\varepsilon = q - \alpha \implies \forall n \ge N(\varepsilon) \qquad \sqrt[n]{|a_n|} < \alpha + \varepsilon = q < 1$

3. Use majorant test (or comparison test) for absolute convergence:

$$\sqrt[n]{|a_n|} < q < 1 \implies |a_n| < q^n, \quad \forall n \ge N$$

$$q < 1 \implies \sum_{n=N}^{\infty} q^n \text{ is convergent } \implies \sum_{n=N}^{\infty} |a_n| \text{ is convergent}$$

$$\implies \sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{N-1} |a_n| + \sum_{n=N}^{\infty} |a_n| \text{ is convergent}$$

4. Assume $\alpha > 1$. Choose $\varepsilon > 0$ in a clever way:

Take any
$$q \in (1, \alpha)$$
 and take $\varepsilon = \alpha - q \implies \forall n \ge N(\varepsilon) \qquad \sqrt[n]{|a_n|} > \alpha - \varepsilon = q > 1$

$$|a_n| > 1 \implies \text{ the necessary condition of convergence } \lim_{n \to \infty} a_n = 0 \text{ is violated.}$$

THEOREM. Assume $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}, a_n \neq 0$, and assume there exists a finite limit

$$\beta := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

Then

1)
$$\beta < 1 \implies \sum_{n=1}^{\infty} a_n$$
 is absolutely convergent;

2)
$$\beta > 1 \implies \sum_{n=1}^{\infty} a_n$$
 is divergent;

Proof.

5. Assume $0 \le \beta < 1$. Use the definition of a limit and choose $\varepsilon > 0$ in a clever way:

$$\beta := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \quad \Longleftrightarrow \quad \forall \, \varepsilon > 0 : \quad \exists \, N(\varepsilon) : \quad \forall \, n \ge N(\varepsilon) \qquad \left| \frac{|a_{n+1}|}{|a_n|} - \beta \, \right| < \varepsilon$$

Take any
$$q \in (\beta, 1)$$
 and take $\varepsilon = q - \beta \implies \forall n \ge N(\varepsilon) \frac{|a_{n+1}|}{|a_n|} < \beta + \varepsilon = q < 1$

6. For any n > N we have

$$\frac{|a_n|}{|a_N|} = \underbrace{\frac{|a_n|}{|a_{n-1}|} \cdot \underbrace{\frac{|a_{n-1}|}{|a_{n-2}|} \cdot \underbrace{\frac{|a_{n-2}|}{|a_{n-3}|} \cdot \dots \cdot \underbrace{\frac{|a_{N+1}|}{|a_N|}}_{< q}}_{n \text{ N factors}} < q^{n-N} \implies |a_n| < |a_N| q^{n-N}$$

7. Use majorant test (or comparison test) for absolute convergence:

$$q < 1 \implies |a_N| \sum_{n=N+1}^{\infty} q^{n-N}$$
 is convergent $\implies \sum_{n=N+1}^{\infty} |a_n|$ is convergent $\implies \sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{N} |a_n| + \sum_{n=N+1}^{\infty} |a_n|$ is convergent

8. Assume $\beta > 1$. Choose $\varepsilon > 0$ in a clever way:

Take any
$$q \in (1, \beta)$$
 and take $\varepsilon = \beta - q \implies \forall n \ge N(\varepsilon) \frac{|a_{n+1}|}{|a_n|} > \beta - \varepsilon = q > 1$

$$\forall n \ge N \frac{|a_{n+1}|}{|a_n|} > 1 \implies \{a_n\}_{n=N}^{\infty} - \nearrow \implies \forall n \ge N \quad a_n \ge a_N$$

$$|a_n| > |a_N| \implies$$
 the necessary condition of convergence $\lim_{n \to \infty} a_n = 0$ is violated.