CMPS 130 Homework 1

Textbook Exercises

- 0.1a. The set of odd natural numbers
 - b. The set of even integers
 - c. The set of even natural numbers
 - d. The set of natural numbers divisible by 6
 - e. The set of palindromes over the alphabet $\{0,1\}$
 - f. The empty set
- $0.2a. \{1, 10, 100\}$
 - b. $\{n \in \mathbb{Z} \mid n > 5\} \text{ or } \{6, 7, 8, ...\}$
 - c. $\{n \in \mathbb{N} \mid n < 5\}$ or $\{1, 2, 3, 4\}$
 - d. {aba}
 - e. $\{\epsilon\}$
 - f. $\{\}$ or \emptyset
- 0.3 a. No
 - b. Yes
 - c. $A \cup B = \{x, y, z\} = A$
 - d. $A \cap B = \{x, y\} = B$
 - e. $A \times B = \{(x, x), (x, y), (y, x), (y, y), (z, x), (z, y)\}$
 - f. $\{\{\}, \{x\}, \{y\}, \{x, y\}\}$
- 0.4. $|A \times B| = |A| \cdot |B| = ab$
- 0.5. $|\mathcal{P}(C)| = 2^{|C|} = 2^{c}$
- 0.6 a. f(2) = 7
 - b. Domain = $X = \{1, 2, 3, 4, 5\}$

Range =
$$\{6, 7\}$$

(Note: Codomain = $Y = \{6, 7, 8, 9, 10\}$

c.
$$g(2, 10) = 6$$

d. Domain = $X \times Y = \{(x, y) \mid x \in X \text{ and } y \in Y\}$ Range = $Y = \{6, 7, 8, 9, 10\}$ (Note: Range = Codomain in this case)

e. g(4, f(4)) = g(4, 7) = 8

0.7 a.

b.

c.

0.8.

n	deg(n)
1	3
2	3
3	2
4	2

One possible path from 3 to 4 is highlighted in red.

0.9.
$$G = (V, E)$$

 $V = \{1, 2, 3, 4, 5, 6\}$
 $E = \{\{1, 4\}, \{1, 5\}, \{1, 6\}, \{2, 4\}, \{2, 5\}, \{2, 6\}, \{3, 4\}, \{3, 5\}, \{3, 6\}\}$

- 0.10. The flaw in this proof occurs when both sides of the equation are divided by (a-b). You cannot do this when a=b, because then you would be dividing by 0.
- 0.12. The flaw in this proof occurs during the assertion that H₁ containing horses of the same color and H₂ containing horses of the same color implies that H contains horses of the same color. In the case where H has 2 horses, H₁ contains only one horse and H₂ contains the other horse. Subsets H₁ and H₂ clearly only have one color each, but do not necessarily have to be the same color.
- 0.13. Every (undirected) graph with two or more nodes contains two nodes that have equal degrees.

 Proof:

- The maximum degree of a node is |V| 1 (a node that is connected to every other node in the graph).
- The minimum degree of a node is 0 (a node that is not connected to any other node).
- It is impossible for a graph to have a node with degree
 |V| 1 and a node with degree 0. A node that is connected
 to every other node in the graph implies that there is no
 node that is not connected to any other node and vice
 versa.
- The degrees of each node can be in the range $\{1, 2, 3, ..., |V| 1\}$ or $\{0, 1, 2, ..., |V| 2\}$. In either case, there are at most |V| 1 possible degrees.
- Since there are |V| nodes and at most |V| − 1 possible degrees, the pigeonhole principle tells us that at least two nodes in a graph have equal degrees.

Extra Problems

- $(\overline{A \cap B}) = (\overline{A} \cup \overline{B})$ Proof:
 - $(\overline{A \cap B}) \subseteq (\overline{A} \cup \overline{B})$ If x is an element of $(\overline{A \cap B})$, then x is not in $(A \cap B)$, by the definition of the complement of a set. If x is not in A and B (definition of the intersection of two sets), then x is either not in A, or not in B. In other words, x is an element of $(\overline{A} \cup \overline{B})$.
 - $(\overline{A} \cup \overline{B}) \subseteq (\overline{A \cap B})$ If x is an element of $(\overline{A} \cup \overline{B})$, then x is an element of \overline{A} or \overline{B} , by the definition of the union of two sets. If x is not in A or not in B (definition of the complement of a set), then x is not in A and B. In other words, x is an element of $(\overline{A} \cap \overline{B})$.
 - Since $(\overline{A \cap B}) \subseteq (\overline{A} \cup \overline{B})$ and $(\overline{A} \cup \overline{B}) \subseteq (\overline{A \cap B})$, $(\overline{A \cap B}) = (\overline{A} \cup \overline{B})$.
- The set of odd natural numbers is countable

$n \in \mathbb{N}$	m ∈ odd natural numbers
1	1
2	3
3	5
:	:

$$m = 2n - 1$$

(The above shows that the set of odd natural numbers has a one to one correspondence with the natural numbers, and is therefore countable)

• The set of odd integers is countable

$n \in \mathbb{N}$	m ∈ odd integers
1	1
2	-1

3	3
4	-3
5	5
6	-5
•	:

$$m = \begin{cases} n, & \text{if n is odd} \\ 1 - n, & \text{if n is even} \end{cases}$$

(The above shows that the set of odd integers has a one to one correspondence with the natural numbers, and is therefore countable)

- For all $n \in \mathbb{N}$, $\overline{\bigcap_{i=1}^{n} A_i} = \bigcup_{i=1}^{n} \overline{A_i}$ Proof (by induction):
 - Base case (n = 1): $\overline{A_1} = \overline{A_1}$
 - o Induction hypothesis: Assume for $k \geq 1$ that $\overline{\bigcap_{i=1}^k A_i} = \bigcup_{i=1}^k \overline{A_i}$
 - o Inductive step: We now need to show that $\overline{\bigcap_{i=1}^{k+1}A_i}=\bigcup_{i=1}^{k+1}\overline{A_i}$

 - $\overline{\bigcap_{i=1}^{k+1} A_i} = \overline{S_k \cap A_{k+1}} \text{ where } S_k = \bigcap_{i=1}^k A_i$ $\overline{S_k \cap A_{k+1}} = \overline{S_k} \cup \overline{A_{k+1}} \text{ by De Morgan's law for two sets }$ (proved earlier in this homework)
 - $\overline{S_k} \cup \overline{A_{k+1}} = \bigcup_{i=1}^k \overline{A_i} \cup \overline{A_{k+1}}$ by the induction hypothesis
 $\bigcup_{i=1}^k \overline{A_i} \cup \overline{A_{k+1}} = \bigcup_{i=1}^{k+1} \overline{A_i}$
- Every non-empty finite set of positive integers contains a least element.

Proof (by induction):

- o Base case: If a set has one element, that element is the least element of the set.
- Induction hypothesis: Assume that any set with k integers has a least element.
- Inductive step: We must now show that a set with k+1integers (S_{k+1}) contains a least element. Take any subset of

size k (S_k) from this set. By the induction hypothesis, this subset has a least element (least(S_k)). Now compare this least element with the element not included in this subset (x). Because elements of a set are unique and unique integers are either less than or greater than each other, either least(S_k) or x are smaller than the other.

- Case 1: least(S_k) < xIn this case, least(S_k) is the least element of S_{k+1} because it is smaller than every other element in S_{k+1} .
- Case 2: $x < least(S_k)$ In this case, x is the least element of S_{k+1} because the transitivity of the < relation implies that it is smaller than every other element in S_{k+1} .