### 지능화 캡스톤 프로젝트-06



# 수업 안내

2023. 04. 12

김 현 용

충북대학교 산업인공지능학과

### 강의 일정



| 주차 | 날짜   | 발표 주제                                                                          | 비고      |
|----|------|--------------------------------------------------------------------------------|---------|
| 1  | 3/08 | [강의] 오리엔테이션 / 조 편성                                                             | 비대면수업   |
| 2  | 3/15 | [강의] Project #1: CNN을 이용한 불량 검출                                                | 대면수업(1) |
| 3  | 3/22 | 조별토의 및 멘토링, [ <b>강의</b> ] <b>OpenCV 기본 명령어</b>                                 | 비대면수업   |
| 4  | 3/29 | 조별토의 및 멘토링, <b>[강의] Numpy와 Matplotlib 시각화</b>                                  | 비대면수업   |
| 5  | 4/05 | Project #1 주제발표(5) : 한희주, 명성구, 권진관, 백정흠, 신건철                                   | 대면수업(2) |
| 6  | 4/12 | Project #1 주제발표(3) : 박영제, 김현기, 원윤재 , 조별토의 및 멘토링                                | 비대면수업   |
| 7  | 4/19 | 프로젝트 최종점검(사전발표)                                                                | 비대면수업   |
| 8  | 4/26 | Project #1 발표평가                                                                | 대면수업(3) |
| 9  | 5/03 | [학과행사] 가디언별 토의 → 장소, 시간 별도 통보 (22~23학번 통합)                                     | 대면수업(4) |
| 10 | 5/10 | [강의] Project #2 : YOLO를 이용한 객체 검출                                              | 비대면수업   |
| 11 | 5/17 | 조별토의 및 멘토링, <b>[강의] CUDA 및 YOLO 환경구성, Numpy와 Pytorch, 전과정 시연</b>               | 비대면수업   |
| 12 | 5/24 | Project #2 주제발표(11) : 이선명, 김홍열, 임강혁, 안병승, 안성인, 송동건, 이재익, 이정현,<br>장현우, 한병엽, 이진우 | 대면수업(5) |
| 13 | 5/31 | 조별토의 및 멘토링,[ <b>강의] YOLOv8과 객체분할</b>                                           | 비대면수업   |
| 14 | 6/07 | 프로젝트 최종점검(사전발표): 테스트 데이터 공개 → 검출결과 제출                                          | 비대면수업   |
| 15 | 6/14 | Project #2 발표평가                                                                | 대면수업(6) |



| 구분    | 구분 시간           |     | 수업 내용                                      |  |  |
|-------|-----------------|-----|--------------------------------------------|--|--|
| 강의    | 19:00~19:10     | 10′ | 수업 안내 / 출석체크<br>(중간고사 답안 미제출자 확인)          |  |  |
| 0-1   | 19:10~20:00 50′ |     | 주제발표 (3명)                                  |  |  |
| 조별 활동 | 20:00~20:30     | 30′ | 조별 토의 / 휴식                                 |  |  |
| 조별 발표 | 20:30~21:00     | 30′ | 프로젝트 진행상황 점검 ( <b>팀장, 팀원 모두</b> )<br>Q & A |  |  |
| 마무리   | 21:00 ~21:10    | 10' | 과제 안내                                      |  |  |

#### ■ 학과 공지사항

- 애로사항 발생 시에는 가디언, 지도교수, 센터장 등과 상담 후 결정
- 포트폴리오 깃허브 관리 부실 -> 수업/업무 시 작성한 코드, 작품, 문서 정리



3

### 개인별 발표 주제 선정



#### ■ 주제발표 방법

- 10분 발표+5분 질의응답
- 발표주제 및 순서

| Project#1 (4/5) |     |                   |  |  |  |  |
|-----------------|-----|-------------------|--|--|--|--|
| #               | 성명  | 주제                |  |  |  |  |
| 1               | 김현기 | 데이터 증량            |  |  |  |  |
| 2               | 백정흠 | 데이터증량             |  |  |  |  |
| 3               | 신건철 | 데이터증량             |  |  |  |  |
| 4               | 명성구 | CNN구현(tensorflow) |  |  |  |  |
| 5               | 권진관 | CNN구현(tensorflow) |  |  |  |  |
| 6               | 원윤재 | CNN구현(pytorch)    |  |  |  |  |
| 7               | 한희주 | 학습기법              |  |  |  |  |
| 8               | 박영제 | 학습기법              |  |  |  |  |
|                 |     |                   |  |  |  |  |

#### ■ 평가방법

| 항목  | 내용                                                      | 점수 |
|-----|---------------------------------------------------------|----|
| 충실도 | <ul><li>논문, 인터넷, 책자 등 활용 가능</li><li>출처를 명시할 것</li></ul> | 40 |
| 전달력 | • 이해하기 쉽도록 발표 자료 작성 및 설명력                               | 30 |
| 이해도 | • 질의응답에 대한 답변 능력                                        | 30 |

#### Project #2 (5/24) 성명 주제 # 이선명 주석 임강혁 YOLO 데이터 증량 한병엽 YOLO 데이터 증량 3 김홍열 YOLO 사용법 안병승 YOLO 사용법 이재익 YOLO 사용법 송동건 YOLO 변종 이정현 YOLO 변종 안성인 평가지표 이진우 객체분할 장현우 TensorRT 11

### 조별 프로젝트 진행상황 발표



#### ■ 조별 토의 및 멘토링

- (조별) 프로젝트 진행상황 발표 → 간단한 자료, 결과물 등 줌공유 활용 가능
- (개인별) 프로젝트를 위해 수행하고 있는 내용 발표
- (Q&A) 수행 중 애로사항, 성공 비법 등 공유 (조-교수자-학생)

| 조 | 조원                    | 프로젝트 진행상황 | 비고 |
|---|-----------------------|-----------|----|
| 1 | 박영제, <b>이정현</b> , 임강혁 |           |    |
| 2 | 이진우, <b>송동건</b>       |           |    |
| 3 | 원윤재, <b>김현기</b>       |           |    |
| 4 | <b>권진관</b> , 안병승      |           |    |
| 5 | <b>이재익</b> , 백정흠      |           |    |
| 6 | <b>안성인</b> , 한병엽      |           |    |
| 7 | <b>장현우</b> , 명성구      |           |    |
| 8 | 김홍열, 이선명              |           |    |
| 9 | <b>신건철</b> , 한희주      |           |    |



5

### 과제물



| 구분  | 세부 내용                                                                                                                                                                                                                                                        | 비고                                                |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 조별  | <ul> <li>데이터셋 다운로드 및 데이터 포맷 확인 (Kaggle 참고)</li> <li>딥러닝 환경 구축 : H/W, S/W</li> <li>신경망 구현 연습 (참고문헌 참고)</li> <li>데이터 증량 (OpenCV, 딥러닝 프레임워크, alimentation 모듈)</li> <li>중간발표 양식 배포</li> <li>논문 모델 구현 및 학습, 전이학습(VGG-16) 등 비교/분석</li> <li>프로젝트 #1 발표평가</li> </ul> | ~3/22<br>~3/29<br>~4/12<br>~4/19<br>~ <b>4/26</b> |
| 개인별 | • 주제발표 준비                                                                                                                                                                                                                                                    | ~4/24                                             |



### 학습 결과 (1) – imbalanced data



#### ■ 데이터셋 분할

- 원래 데이터는 클래스별로 0.1% ~ 85.2%의 극심한 **불균형 분포**를 보임
- train : val : test = 17,982 : 5,129 : 3,847 (약 20%)

#### ■ 데이터 분포 (테스트셋)







### INDUSTRIAL AI RESEARCH CENTER

### 학습 결과 (1) – imbalanced data

#### ■ 학습 결과

• (정확도) train: val: test = 98.24% : 98.64% : **98.48**%

• (transforms) train : val : test = O : X : X

• 학습조건 : batch size 112, Adam(lr=0.001)50 epoch, 2hr 소요

# 데이터 transform 정의

Resize(224),

RandomRotation(45, fill=1),

RandomHorizontalFlip(),

RandomVerticalFlip(),

RandomResizedCrop(224, scale=(0.9, 1.0), ratio=(0.8, 1.25)),

RandomAffine(scale=(0.8, 1.2), shear=5, fill=1)





### 학습 결과 (2) – Balanced data



#### ■ 데이터셋 분할

• 클래스별로 under/over-sampling을 통해 동일한 개수로 만듦

• train : val : test = 18,000 : 5,535 : **4,158** (20%)

■ 학습 결과: (Accuracy) train: val: test = 95.69%: 93.53%: 93.55%







9

### 학습 결과 (3) – 비교



#### ■ 학습 결과 비교

• 불균형 데이터셋 학습/테스트 VS 균일 데이터셋 학습/테스트

| No.     | Defect Class | Imba      | lanced dat | aset     | Balanced dataset |        |          |
|---------|--------------|-----------|------------|----------|------------------|--------|----------|
| NO.     |              | Precision | Recall     | F1-score | Precision        | Recall | F1-score |
| 0       | Center       | 89.32     | 94.16      | 91.68    | 95.97            | 98.05  | 97.00    |
| 1       | Donut        | 91.41     | 89.83      | 90.61    | 96.65            | 93.82  | 95.16    |
| 2       | Edge-Loc     | 74.69     | 79.22      | 76.89    | 84.14            | 90.69  | 87.29    |
| 3       | Edge-Ring    | 96.91     | 95.02      | 95.96    | 95.57            | 98.05  | 96.79    |
| 4       | Loc          | 79.32     | 55.63      | 65.40    | 84.97            | 84.42  | 84.69    |
| 5       | Near-full    | 93.26     | 95.89      | 94.56    | 99.78            | 100.00 | 99.89    |
| 6       | none         | 51.59     | 95.02      | 66.87    | 93.82            | 91.99  | 92.90    |
| 7       | Random       | 92.69     | 68.61      | 78.85    | 97.99            | 94.81  | 96.37    |
| 8       | Scratch      | 93.26     | 56.93      | 70.70    | 93.92            | 90.26  | 92.05    |
| Average |              | 84.72     | 81.15      | 82.89    | 93.65            | 93.57  | 93.57    |

### 학습 결과 (2) – balanced data



#### ■ 학습결과 비교

• Confusion matrix 비교 (actual label 기준 비율)







11

### 전이학습(1) - EfficientNetBO



#### ■ EfficientNet B0

```
(classifier): Sequential(
  (0): Dropout(p=0.2, inplace=True)
  (1): Linear(in_features=1280, out_features=1000, bias=True)
)
```

### ■ pretrained model 불러오기

```
model = torchvision.models.efficientnet_b0(weights='DEFAULT')

if freeze_convnet: # ConvNet as fixed feature extractor vs. Finetuning
for param in model.parameters():
    param.requires_grad = False # 파라미터 고정

# 새로 생성된 모듈의 메개변수는 기본값이 requires_grad=True임
num_in_features = model.classifier[1].in_features
model.classifier[1] = nn.Linear(in_features=num_in_features,
    out_features=num_class)
```



### 전이학습(2) – EfficientNetB0



#### ■ EfficientNet\_B0

- 학습 조건 : batch size 24, Adam(Ir=0.001), 50 epoch, 3hr 소요
- 학습 결과 : (Accuracy) train : val : test = 98.21% : 94.35% : 93.15%







13

## 전이학습(3) – EfficientNetB0



- 학습결과 비교
  - Balanced data
  - EfficientNetB0 vs 제안하는 CNN 모델

| No.  | Defect Class | EfficientNetB0 |        |          | 제안하는 CNN 모델 |        |          |
|------|--------------|----------------|--------|----------|-------------|--------|----------|
| 140. |              | Precision      | Recall | F1-score | Precision   | Recall | F1-score |
| 0    | Center       | 94.87          | 96.10  | 95.48    | 95.97       | 98.05  | 97.00    |
| 1    | Donut        | 95.20          | 94.37  | 94.78    | 96.65       | 93.82  | 95.16    |
| 2    | Edge-Loc     | 84.51          | 90.91  | 87.59    | 84.14       | 90.69  | 87.29    |
| 3    | Edge-Ring    | 97.52          | 93.51  | 95.47    | 95.57       | 98.05  | 96.79    |
| 4    | Loc          | 87.24          | 81.39  | 84.21    | 84.97       | 84.42  | 84.69    |
| 5    | Near-full    | 99.78          | 100.00 | 99.89    | 99.78       | 100.00 | 99.89    |
| 6    | none         | 88.11          | 97.84  | 92.72    | 93.82       | 91.99  | 92.90    |
| 7    | Random       | 97.12          | 95.02  | 96.06    | 97.99       | 94.81  | 96.37    |
| 8    | Scratch      | 95.15          | 89.18  | 92.07    | 93.92       | 90.26  | 92.05    |
|      | Average      | 93.28          | 93.15  | 93.21    | 93.65       | 93.57  | 93.57    |

### 전이학습(4) - EfficientNetB0



#### Confusion matrix





15



