

Linear Filters

Class 2

Artificial Vision

Today

- Image construction
- Spatial and photometric resolution
 - Histogram and image contrast enhancement
- Linear filters
 - Examples: smoothing filters
- Convolution / correlation
- Smoothing
- Linear filters with Gaussians

Historical context

- Pinhole model: Mozi (470-390 BCE),
 Aristotle (384-322 BCE)
- Principles of optics (including lenses):
 Alhacen (965-1039 CE)
- Camera obscure: Leonardo da Vinci (1452-1519)
- First photo: Joseph Nicephore Niepce (1822)
- Cinema (Lumière Brothers, 1895)
- Color Photography (Lumière Brothers, 1908)
- Television (Baird, Farnsworth, Zworykin, 1920s)
- First consumer camera with charge-coupled device (<u>CCD</u>): Sony Mavica (1981)
- First fully digital camera: Kodak DCS100 (1990)

Niepce, "La Table Servie," 1822

CCD chip K. Graumar

Slide credit: L. Lazebnik

Digital camera

A digital camera replaces film with a sensor array

 Each cell in the array is light-sensitive diode that converts photons to electrons

Digital images

Think of images as matrices taken from the CCD array.

Digital images

520 j=1 i=1 Intensity: [0,255] **500** height Matlab: >>im=imread('monkey.jpg'); im[194][203] im[176][201] has value >>size(im) ans= 500 520 has value 37 164 >>im(10,20) % grey imatge ans=20K. Graumar

width

Images in Matlab

- Images represented as a matrix
- Type (class) of images: double, uint8, indexed, binary.
- Rule:
 - When processing convert into double.
 - im=zeros(256, 256, 'double')
 - When visualizing or saving convert to uint8.
 - figure, imshow(uint8(im))
- How many values can have a double image? What is the maximal/minimal possible value of it?
- How many values can have an uint8 image? What is the maximal/minimal possible value of it?
- What is the value of pixel (1,1) in:

```
Matlab:

>>im=ones(256, 256);
>>im=uint8(im);
>>disp(im(1,1))

>>im(1,1)=256;
>>disp(im(1,1))

>>im(1,1)=1000;
>>disp(im(1,1))
```

Digital images

- Sample the 2D space on a regular grid
- Quantize each sample (round to nearest integer)

Image is represented as a matrix of integer values.

Digital images

- Sample the 2D space on a regular grid
- Quantize each sample (round to nearest integer)
- Image is represented as a matrix of integer values.

How do we obtain color images?

Light is an energy source that carries coded information about the world, which can be read from a distance through the images!

A typical human eye will respond to wavelengths from about 380 to 750 nm.

Color sensing in digital cameras

Bayer grid

Estimate missing components from neighboring values (demosaicing)

Source: Steve Seitz

Images in Matlab

Images can be grey-value (1 channel) or color images (3 channels)

Suppose we have an NxM RGB image called "im"

- im(1,1,1) = top-left pixel value in R-channel
- im(y, x, 3) = y pixels down, x pixels to right in the bth channel
- im(N, M, 3) = bottom-right pixel in B-channel

column

0.49

0.86

0.96

0.69

0.79

0.91

0.62

0.84

0.67

0.49

0.73

0.94

Matlab:

>>imGV=zeros(25,25) >>imCOL=zeros(25,25,3)

Matlab:

>>im=imread('flowers.jpg');

>>size(im)

ans= 500 520 3

>>im(10,20) % grey imatge

ans= 20

0.99 0.91 0.92 0.95

0.85

0.33

>>im(:,:,2) % G channel

.

row

0.92	0.93	0.94	0.97	0.62	0.37	0.85	0.97	0.93	0.92
0.95	0.89	0.82	0.89	0.56	0.31	0.75	0.92	0.81	0.95
0.89	0.72	0.51	0.55	0.51	0.42	0.57	0.41	0.49	0.91
0.96	0.95	0.88	0.94	0.56	0.46	0.91	0.87	0.90	0.97
າ 71	Λ Ω1	∩ <u>8</u> 1	0.87	0.57	0.37	0.80	0.88	0 8a	0.70

0.60 | 0.58 | 0.50 | 0.60 | 0.58 | 0.50 | 0.61 | 0.45

R

		G			
0.92	0.99				
0.95	0.91				
0.91	0.92				
		0.92	0.99		
0.97	0.95	0.95	0.91		
0.79	0.85	0.95	0.91		
0.79	0.65	0.91	0.92		
0.45	0.33				
		0.97	0.95		
0.49	0.74	0.79	0.85		
		0.79	0.00		

									1 /1 () /	1 /1 (16		
0.74	0.58	0.51	0.39	0.73	0.92	0.91	0.49	0.74	0.97	0.95	0.95	0.91
0.54	0.85	0.48	0.37	0.88	0.90	0.94	0.82	0.93	0.79	0.85	0.91	0.92
									0.45	0.33	0.97	0.95
0.56	0.66	0.43	0.42	0.77	0.73	0.71	0.90	0.99	0.49	0.74	0.79	0.85
0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.82	0.93		
0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	0.90	0.99	0.45	0.33
0.00	0.70	0.00	0.00	0.40	0.72	0.11	0.70	0.71	 		0.49	0.74
0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.82	0.93
0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	0.90	0.99
		0.00	0.70	0.00	0.00	0.70	U.72	0.77	0.70	0.7 1	0.90	0.99
		0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97
		0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93

Slide credit: Derek Hoier

B

Exercise

 What are the colors of each quadrant, if we compose a color image with the following channels?

Color images, RGB color space

Why are the chairs tops appearing in black?
What are the values of the chair pixels in the color image?

Today

Image construction

- Spatial and photometric resolution
 - Histogram and image contrast enhancement
- Linear filters
 - Examples: smoothing filters
- Convolution / correlation
- Smoothing
- Linear filters with Gaussians

Spatial resolution

 Sensor resolution: size of real world scene element that images to a single pixel

Image resolution: number of pixels

[fig from Mori et al]

Influences what analysis is feasible, it affects best representation choice.

Image magnification

The number of pixels determines the spatial resolution of an image (imresize()).

Example: imresize(im,2) => ? imresize(im,0.5) =>?

Image reduction

Matlab: imresize(im,0.5)

Photometric resolution

>>mm=zeros(256, 256, 'uint8'); %Creating an image of grey level _____?

Given an image of type uint8, how many grey levels we can have at most?

A histogram of an image represents the frequencies of the image gray levels.

- Does it depend on the spatial distribution?
- Can it be considered as a measure of image quality?

The number of different grey levels (different pixel values in each color channel) determines the photometric resolution of the image.

Histogram

Matlab:

imhist(im)

stem(X,COUNTS) plots COUNTS according to bins X

Histogram

How will look the histogram of the right image?

Example: imhist(im(:,:,1)/2+80,10)

Histogram: How should the histograms look?

Histogram manipulation for contrast enhancement

Multiply the image to augment its contrast:

$$BV_{out} = \left(\frac{BV_{in} - \min_{k}}{\max_{k} - \min_{k}}\right) quant_{k}$$

where:

- BV_{in} is the original input brightness value (i.e. the original image)
- quant_k is the range of the brightness values that can be displayed on the CRT (eg 255),
- min_k is the minimum value in the image,
- max_k is the maximum value in the image, and
- BV_{out} is the output brightness value.

Histogram manipulation for contrast enhancement

$$BV_{out} = \left(\frac{BV_{in} - \min_{k}}{\max_{k} - \min_{k}}\right) quant_{k}$$

Did we augment the photometric quality really?

Today

- Image construction
- Spatial and photometric resolution
 - Histogram and image contrast enhancement
- Linear filters mean filter
- Convolution / correlation
- Smoothing
- Median filter
- Linear filters with Gaussians

Image filtering

- Filtering: Compute a function of the local neighborhood at each pixel in the image
 - Function specified by a "filter" or mask saying how to combine values from neighbors.

- Uses of filtering:
 - Enhance an image (denoise, resize, etc)
 - Extract information (texture, edges, etc)
 - Detect patterns (template matching)

Common types of noise

 Salt and pepper noise: random occurrences of black and white pixels

Impulse noise: random occurrences of white pixels

Original

Salt and pepper noise

 Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Impulse noise

Gaussian noise

Gaussian noise

$$f(x,y) = \overbrace{\widehat{f}(x,y)}^{\text{Ideal Image}} + \overbrace{\eta(x,y)}^{\text{Noise process}}$$

Gaussian i.i.d. ("white") noise: $\eta(x,y) \sim \mathcal{N}(\mu,\sigma)$

>> noise = randn(size(im)).*sigma;
>> output = im + noise;

What is the impact of sigma?

Fig: M. Hebert

Motivation: noise reduction

 Even multiple images of the same static scene will not be identical.

Motivation: noise reduction

- Even multiple images of the same static scene will not be identical.
- How could we reduce the noise, i.e., give an estimate of the true intensities?
 - Take the average of the grey values per pixel.
- What if there's only one image?

First attempt at a solution

 Let's replace each pixel with an average of all the values in its neighborhood

- Assumptions:
 - Expect pixels to be like their neighbors
 - Expect noise processes to be independent from pixel to pixel

Remember: an image is a matrix & topographic map

First attempt at a solution

 Let's replace each pixel with an average of all the values in its neighborhood

Moving average in 1D:

Weighted Moving Average – Mean filter

- Weights [1, 1, 1, 1, 1] / 5
- Why are we dividing by 5?

Can we add weights to our moving average? Why?

Weighted Moving Average

Non-uniform weights [1, 4, 6, 4, 1] / 16

• What is the difference with the previous one?

Moving Average in 2D

G[x,y]

Moving Average in 2D

39

Moving Average in 2D

Source: S. Seitz

40

Moving Average In 2D

Source: S. Seitz

Moving Average in 2D

G[x,y]

42

Moving Average in 2D

	10	20	30	30	30	20	10	
	20	40	60	60	60	40	20	
	30	60	90	90	90	60	30	
	30	50	80	80	90	60	30	
	30	50	80	80	90	60	30	
	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10						

Source: S. Seitz

Convolutional filtering

Say the averaging window size is 2k+1 x 2k+1:

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

Attribute uniform weight to each pixel

Loop over all pixels in neighborhood around image pixel F[i,j]

14:58 **4**4

Convolutional filtering

Now generalize to allow **different weights** depending on neighboring pixel's relative position:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

Non-uniform weights

14:58 45

Convolutional filtering

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called **convolution**, denoted as: $G = H \otimes F$

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter "**kernel**" or "**mask**" H[u,v] is the prescription for the weights in the linear combination.

Mean filter

 What values do belong in the kernel H for the moving average example?

$$G = H \otimes F$$

Mean filter

Normalization: why do we need to divide the mask by
9?

$$G = H \otimes F$$

Smoothing by averaging

What is the effect if the filter size was 5 x 5 instead of 3 x 3?

Filtering an impulse signal

What is the result of filtering the impulse signal (image) *F* with the arbitrary kernel *H*?

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

G[x,y]

0	0	0
0	1	0
0	0	0

?

Original

Original

0	0	0
0	1	0
0	0	0

Filtered (no change)

\mathbf{O}	rig) ii	ıal
V	1 15	511	lai

0	0	0
0	0	1
0	0	0

?

Original

Shifted left by 1 pixel with correlation

\mathbf{O}	riş	σiι	กล	1
V	1.15	31 1	lla	I

1	1	1	1
<u> </u>	1	1	1
9	1	1	1

?

Original

Blur (with a box filter)

0	0	0	1	1	1	1
0	2	0	- − − − − − − − − − − − − − − − − − − −	1	1	1
0	0	0	9	1	1	1

?

Original

Properties of convolution

Shift invariant:

 Operator behaves the same everywhere, i.e. the value of the output depends on the pattern in the image neighborhood, not the position of the neighborhood.

Superposition:

•
$$h * (f1 + f2) = (h * f1) + (h * f2)$$

Smoothing with a rectangular filter

A

1,1,1,1,1

h[i,j]

f[x,y]

```
I[x,y] 1,1,1,1,1
1,1,1,1,1
Mask= 1,1,1,1,1
1,1,1,1,1
```

Matlab:

mask=[[1,1,1,1,1],[1,1,1,1,1],...] f=conv2(mask,im)

Smoothing with a rectangular filter

Smoothing with a rectangular filter

I[x,y]

:

h[i,j]

1, 1, 1,

1

f[x,y]

Exercise

- Apply a smoothing on the Schwarzenegger image with a uniform masks.
- Compare the histograms of the original and resulting image.

Exercise

- Apply a smoothing on the Schwarzenegger image with a uniform masks.
- Compare the histograms of the original and resulting image.

Boundary issues

- What is the size of the output?
- MATLAB: output size / "shape" options
 - shape = 'full': output size is sum of sizes of f and g
 - shape = 'same': output size is same as f
 - shape = 'valid': output size is difference of sizes of f and g

Source: S. Lazebnik

Boundary issues

- What about near the edge?
 - the filter window falls off the edge
 - need to extrapolate
 - methods:
 - clip filter (black)
 - copy edge
 - reflect across edge

Boundary issues

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods (MATLAB):
 - clip filter (black): imfilter(f, g, 0)
 - copy edge: imfilter(f, g, 'replicate')
 - reflect across edge: imfilter(f, g, 'symmetric')
 - g -> is a mask (image)

Today

- Image construction
- Spatial and photometric resolution
 - Histogram and image contrast enhancement
- Linear filters mean filter
- Convolution / correlation
- Smoothing
- Median filter
- Linear filters with Gaussians

Median filter

What is the behavior of the mean filter in the impulse noise pixels?

 No new pixel values introduced

 Removes spikes: good for impulse, salt & pepper noise

•Non-linear filter (it can be proved)

Median filter

Plots of a row of the image

Matlab: output im = medfilt2(im, [h w]);

Source: M. Hebert

Median filter

Median filter is edge preserving

What would be the result of a mean filter?

Today

- Image construction
- Spatial and photometric resolution
 - Histogram and image contrast enhancement
- Linear filters
 - Examples: smoothing filters
- Convolution / correlation
- Smoothing
- Linear filters with Gaussians

Weighted Moving Average

- Weights [1, 1, 1, 1, 1] / 5
- Non-uniform weights [1, 4, 6, 4, 1] / 16

Adding weights to our moving average? Why?

Source: S. Marschner

Gaussian filter

What if we want nearest neighboring pixels to have the most influence on the output?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F[x,y]

$$egin{array}{c|c|c|c} 1 & 2 & 1 \\ \hline 16 & 2 & 4 & 2 \\ \hline 1 & 2 & 1 \\ \hline & H[u,v] \end{array}$$

• Removes high-frequency components from the image ("low-pass filter").

Smoothing with a Gaussian

Gaussian filters

- What parameters do matter here?
- Size of kernel or mask
 - Note, Gaussian function has infinite support, but discrete filters use finite kernels

Gaussian filters

- What parameters do matter here?
- Variance of Gaussian: determines extent of smoothing

Matlab

```
>> hsize = 10;
>> sigma = 5;
>> h = fspecial('gaussian' hsize, sigma);
>> mesh(h);
>> imagesc(h);
>> outim = imfilter(im, h); % convolution
>> imshow(outim);
                                         outim
```

Smoothing with a Gaussian filter

Parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.

imshow(out);

pause;

end

Local vs global analysis

Dali

Properties of smoothing filters

Smoothing

- Values positive
- Sum to 1 → constant regions same as input
- Amount of smoothing proportional to mask size
- Remove "high-frequency" components; "low-pass" filter

Summary

- Digital images: resolution, "noise"
- Histograms a tool to visualize the statistical distribution of grey levels of pixels
- Linear filters and convolution useful for
 - Enhancing images (smoothing, removing noise)
 - Box filter
 - Impact of scale / width of smoothing filter
- Gaussians how to use analytical functions to control processing scale
- Next: convolutions for image Gradient estimation