ONE HOUR THIRTY MINUTES

A list of constants is enclosed.

UNIVERSITY OF MANCHESTER

Complex Variables and Integral Transforms

16 May 2012, 09:45 - 11:15

Answer <u>ALL</u> parts of question 1 and <u>TWO</u> other questions
Electronic calculators may be used, provided that they cannot store text.

The numbers are given as a guide to the relative weights of the different parts of each question.

1 of 4 P.T.O

1. (a) For a function f(z) = u(x,y) + iv(x,y) (where z = x + iy), state the Cauchy-Riemann equations. Show that they are satisfied for $f(z) = \exp(z^2)$.

[6 marks]

(b) Using the definition of the derivative, differentiate z^2 . Show that the derivative of $|z|^2$ does not exist.

[7 marks]

(c) Evaluate $\int_C \frac{1}{z} dz$, where the end-points are a = 1 and b = -1, and C is a path of your choosing which, apart from the end-points, lies entirely in the upper half plane. Without further explicit integration, write down the result for a path which lies in the lower half plane.

[6 marks]

Sketch the following regions of, or pains in, the compact pain i) 2<|z-3|<4; ii) $\pi/2<{\rm Arg}[z-i]<\pi;$ iii) |z-2|=|z-4|. [6 marks] (d) Sketch the following regions of, or paths in, the complex plane:

2. In this question you may use the polar form of the Cauchy-Riemann equations

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$,

and of the Laplacian

$$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}.$$

a) A function w(z) has real part $u(r,\theta) = (r - R^2/r) \sin \theta$, where R is a constant. Given that w(z) is analytic (except at the origin), find the corresponding imaginary part and express w as a function of z.

9 marks

Show that u is a harmonic function.

[3 marks]

Hence by demonstrating that it obeys the appropriate boundary conditions, show that $\phi = -E_0 u$ is the electrostatic potential outside an infinitely long earthed cylinder of radius R, placed with its axis perpendicular to the xy-plane in a constant electric field $E = E_0 \hat{y}$. Sketch the equipotentials and field lines.

[7 marks]

b) Show that the mapping $w = \operatorname{Ln} z$ maps the real axis to a pair of parallel lines in the w-plane; include a sketch to show the mappings of the points $z = -2, -1, -\frac{1}{2}, \frac{1}{2}, 1, 2$. Suggest a physical problem in electrostatics which can be solved by considering this mapping (the solution is not required).

[6 marks]

3 of 4 P.T.O

- 3. Use Cauchy's residue theorem and a suitable choice of contour to do <u>TWO</u> of the following three problems. If Jordan's lemma is used, ensure that all the conditions for its validity are satisfied.
 - (a) Evaluate the following integral:

$$\int_0^{2\pi} \frac{1}{(5+3\cos\theta)^2} \,\mathrm{d}\theta.$$

(b) Evaluate the following integral:

$$\int_{-\infty}^{\infty} \frac{\sin x}{x(1+x^2)} \, \mathrm{d}x.$$

(c) Use an appropriate contour integral of the function $\frac{1}{z\cos z}$ to prove the following result:

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}.$$

[25 marks]

- 4. (a) Find the Taylor or Laurent series, as appropriate, of $\frac{z^2-1}{(z+2)(z+3)}$:
 - i) about z = 0 for |z| > 3;
 - ii) about z = -2 for |z + 2| < 1.

[13 marks]

(b) Show that the Laplace Transform of the Heaviside step function $\theta(t-t_0)$ is e^{-st_0}/s provided $t_0 > 0$. Hence solve the following differential equation

$$\frac{d^2y}{dt^2} + 4y = \begin{cases} 0 & \text{if } 0 \le t < 2, \\ 1 & \text{if } t > 2, \end{cases}$$

subject to the initial conditions y(0) = 0 and y'(0) = 2.

[12 marks]

END OF EXAMINATION PAPER

PHYSICAL CONSTANTS AND CONVERSION FACTORS

SYMBO	L DESCRIPTION	NUMERICAL VALUE
C	Velocity of light in vacuum	299792458 m s ⁻¹ , exactly
μ_0	Permeability of vacuum	$4\pi \times 10^{-7} \text{ N A}^{-2}$, exactly
€o	Permittivity of vacuum where $c = \frac{1}{\sqrt{\epsilon_0 \mu_0}}$	$8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
h	Planck constant	$6.626 \times 10^{-34} \text{ Js}$
72.	$h/2\pi$	$1.055 \times 10^{-34} \text{ J s}$
\overline{G}	Gravitational constant	$6.674 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$
e	Elementary charge	1.602 × 10 ⁻¹⁹ C
eV	Electronvolt	1.602 × 10 ⁻¹⁹ J
α	Fine-structure constant, $\frac{e^2}{4\pi\epsilon_0\hbar c}$	<u>1</u> 137.0
m_e	Electron mass	$9.109 \times 10^{-31} \text{ kg}$
$m_{\epsilon}c^2$	Electron rest-mass energy	0.511 MeV
$\mu_{\mathcal{B}}$	Bohr magneton, $\frac{e\hbar}{2m_e}$	$9.274 \times 10^{-34} \text{ J T}^{-1}$
R_{∞}	Rydberg energy $\frac{\alpha^2 m_e c^2}{2}$	13.61 eV
a0	Bohr radius $\frac{1}{G}\frac{\hbar}{m_e c}$	$0.5292 \times 10^{-10} \text{ m}$
Å	Angstrom	10 ⁻¹⁰ m
772 ₁	Proton mass	1.673 × 10 ⁻²⁷ kg
$m_p c^2$	Proton rest-mass energy	938.272 MeV
$m_n c^2$	Neution rest-mass energy	939.565 MeV
MN	Nuclear magneton, etc.	$5.051 \times 10^{-27} \text{ J T}^{-1}$
ím	Femtometre or fermi	$10^{-25} \mathrm{m}$
Ъ	Barn	10 ⁻²⁸ m ²
น	Atomic mass unit, $\frac{1}{12}m(^{12}C$ atom)	$1.661 \times 10^{-27} \text{ kg}$
N_A	Avogadro constant, atoms in gram mol	$6.022 \times 10^{28} \text{ mol}^{-1}$
T_t	Triple-point temperature	273.16 K, exactly
k	Boltzmann constant	$1.381 \times 10^{-23} \text{ J K}^{-1}$
R	Molar gas constant, $N_A k$	8.314 J mol ⁻¹ K ⁻¹
σ	Stefan-Boltzmann constant, $\frac{\pi^2}{60} \frac{k^4}{\tilde{n}^3 c^2}$	$5.670 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$
M_E	Mass of Earth	5 97 × 10 ²⁴ kg
\mathcal{R}_E	Mean radius of Earth	$6.4 \times 10^6 \text{ m}$
g	Standard acceleration of gravity	9.80665 m s ⁻² , exactly
atm	Standard atmosphere	101 325 Pa, exactly
M_{\odot}	Solar mass	1.989 × 10 ³⁹ kg
R_{\odot}	Solar radius	$6.96 \times 10^8 \text{ m}$
L_{\odot}	Solar luminosity	$3.84 \times 10^{26} \text{ W}$
T_{\odot}	Solar effective temperature	58×10 ³ K
AU	Astronomical unit, mean Earth-Sun distance	$1.496 \times 10^{17} \text{ m}$
рс	Parsec	$3.086 \times 10^{16} \text{ m}$
	Year	$3.156 \times 10^7 \text{ s}$