Cálculo Diferencial e Integral 2 Respostas à Ficha de Trabalho 11 (modificada)

- 1. (a) $g(x) = (x, x^3) \text{ com } -\infty < x < +\infty.$
 - (b) $g(t) = (\frac{\cos t}{2}, \frac{\sin t}{3}) \text{ com } 0 \leqslant t < 2\pi.$
- 2. (a) Recta tangente definida pelas equações: x-y=0; 4x-z=2. Plano normal definido pela equação: x+y+4z=10.
 - (b) Recta tangente definida pelas equações: $x=1\,;\,2y-z=0.$ Plano normal definido pela equação: y+2z=0.
- 3. $\frac{1}{15} \left((1 + 20\pi^2)^{\frac{3}{2}} 1 \right)$.
- **4**. (1, 0, 0).
- 5. (a) $\frac{8\pi^3}{3}$.
 - (b) $8\pi^4 2\pi$.
- 6. (a) $\frac{19}{2}$.
 - (b) 0.
 - (c) -4π .
- 7. (a) Não conservativo.
 - (b) $b = \nabla \phi \text{ com } \phi(x,y) = \frac{x^4}{4} + xy + \frac{y^3}{3}$.
 - (c) $c = \nabla \phi \operatorname{com} \phi(x, y) = e^x + e^y$.
 - (d) $d = \nabla \phi \operatorname{com} \phi(x, y) = \frac{1}{2} \ln(x^2 + y^2).$
 - (e) $e = \nabla \phi \operatorname{com} \phi(x, y, z) = xy + z^2$.
 - (f) Não conservativo.
- 8. (a) $4\pi^2$.
 - (b) 0.