Vorlesung Softwaretechnik I (SS 2025)

2. Projekte, Personen, Prozesse, Produkte

Prof. Dr. Jens Grabowski

Tel. 39 172022 grabowski@informatik.uni-goettingen.de

Inhalt

- Einführung
- Das Projekt
- Personen
- Prozesse
- Produkte
- Lernziele

Einführung – Typisches Softwareprojekt?

[Grechenig et. al.: Softwaretechnik. Pearson Studium, 2010]

Einführung – Top 10 Liste der Risikoelemente des Software Engineering

- Personalmängel
- Unrealistische Zeit- und Kostenpläne
- Entwicklung der falschen Funktionalität
- Unpassende Benutzerschnittstellen
- "Vergolden" eines Systems
- Häufige Änderungen der Anforderungen
- Qualitätsmängel bei extern vergebenen Komponenten
- Qualitätsmängel bei extern vergebenen Aufgaben
- Unzureichende Produktionsleistungen
- Projektziele an der Grenze des "State-of-the-Art"

Nach: [Dumke, R.: Software Engineering. Vieweg Verlag, Wiesbaden, 2003]

Inhalt

- Einführung
- Das Projekt
- Personen
- Prozesse
- Produkte
- Lernziele

Das Projekt - Definition

- In sich inhaltliches abgeschlossenes Vorhaben, in dem neuartige und unbekannte Probleme gelöst werden.
- Ein Projektteam.
- Klare Ziele.
- Beinhaltet eine oder mehrere Phasen.
- Unterschiedliche Methoden.
- Besonderes Risiko.
- Zeitlich begrenzt.
- Eigenes Budget.

Das Projekt

[Grechenig et. al.: Softwaretechnik. Pearson Studium, 2010]

Das Projekt – Merkmale eines Projekts

- Größe
- Dauer
- Anwendungsbereiche
- Quellen der Komplexität

- Zielsetzungen
- Ausgangs- & Zielprodukte
- Projekttypen

Merkmale eines Software-Projekts – Größe & Dauer & Anwendungsbereiche

Projektgrößen aus Softwaresicht (Fallbeispiele)

_	Jahre	#Team	PM	€ (2010)
 Sehr kleines Projekt 	0,25	1	3	15.000
Kleineres Projekt	0,5	2	12	80.000
Mittleres Projekt	1,5	5	60	600.000
 Große Hochschule 	3,0	15	500	6 Mio.
■ Tickets Staatl. Bahn	3,5	40	1400	25 Mio.
ID Paraguay	2,5	120	3500	55 Mio.
eHealth–Germany	5,0	500	30000	600 Mio.

[Grechenig et. al.: Softwaretechnik. Pearson Studium, 2010]

Merkmale eines Software-Projekts – Größe & Dauer & Anwendungsbereiche

"Size creates Complexity": Erläuterung und Grobschätzung der relativen Aufwände abhängig von der Projektgröße

	<u>PM</u>	Aufw.	Dauer	Größensymptom (Bsp.)
 Sehr kleines Projekt 	3	0.5	8.0	User = AG = Develop.
Kleineres Projekt	12	1	1	Benutzerhandbuch
Mittleres Projekt	60	3	1.5	Reviews, autom. Tests
 Große Hochschule 	500	6	4	perm. User-Workshops
■ Tickets Staatl. Bahn	1400	15	4	Call-Center, 99,995%
ID Paraguay	3500	10	8	präventive Medienarbeit
eHealth–Germany	30000	50	20	Projekt wird zur Behörde

Auswirkungen von Projektgröße und -typ auf Dauer und Aufwand für die Umsetzung von Anforderungen

[Grechenig et. al.: Softwaretechnik. Pearson Studium, 2010]

re.

Merkmale eines Software-Projekts – Quellen der Komplexität 1(2)

- Jedes der bisher genannten Projektmerkmale kann als Quelle von Komplexität auftreten.
 - □ Projektgröße
 - falls die Größe für das Unternehmen ungewohnt ist.
 - Zielsetzungen
 - falls diese unklar sind, oder sich während der Projektlaufzeit ändern.
 - □ Domäne
 - falls die Begriffe und Sprache der Domäne nicht ausreichend geklärt sind.
 - □ Neue Technologien
 - erfordern ggf. neue Vorgehensweisen, zusätzliche Mitarbeiterschulungen usw.

Merkmale eines Software-Projekts – Quellen der Komplexität 2(2)

Projektkomplexität aus User- und Interessens-Dynamik Beispiele und Größenordnungen zur Veranschaulichung							
<u>_Pr</u>	omotion	Core	User	Visitors	User-Kompl.		
 Sehr kleines Projekt 	1	2	10	200	0.01		
 Kleineres Projekt 	1	10	30	3000	0.25		
 Mittleres Projekt 	4	100	2000	20.000	1		
 Große Hochschule 	100	4000	40.000	1 Mio.	100		
Tickets Staatl. Bahn	15	8000	4 Mio.	20 Mio.	200		
ID Paraguay	50	15K	8 Mio.	> 8 Mio.	400		
eHealth–Germany	1000	200K	80 Mio.	> 80 Mio.	4000		
TU INSO							

Abbildung 2.5: Projektkomplexität. Promotoren sind die Führungsspitzen, die hinter dem System stehen, Core-User die professionellen Anwender und Informationsbereitsteller, User bezeichnen die normalen Nutzer, Visitor besuchen das System gelegentlich, surfend oder zufällig. Der Wert für User-Komplexität ist ein aggregierter Expertenschätzwert aus allen vier Teilkomplexitäten. Als Faktorbasis fungiert das mittlere Projekt.

[Grechenig et. al.: Softwaretechnik. Pearson Studium, 2010]

Merkmale eines Software-Projekts – Zielsetzungen

- Beweggrund, warum ein Projekt durchgeführt werden soll:
 - □ Kurzfristige ökonomische Interessen,
 - Strategisches Investitionsprojekt,
 - □ Projekt in der Krise,
 - □ Forschungsprojekt,
 - □...

Merkmale eines Software-Projekts – Ausgangs- und Zielprodukte

- Ausgangsprodukte
 - □ Keine Vorgaben
 - Produkte aus einem aktuellen Vorgängerprojekt
 - Bestehendes System als Vorlage

- Projekttypen
 - Analyseprojekt
 - □ Realisierungsprojekt

Wartungsprojekt

☐ Gesamtprojekt (beinhaltet Aspekte aller Projektarten)

Merkmale eines Software-Projekts – Projekttypen (nach Auftraggeber) 1(2)

		Auftraggeber			
Projekttyp	Ergebnis	internes Marketing	externer Kunde	internes Manage- ment	Verkauf / externer Kunde
Entwicklungs- projekt	Produkte, Systeme für den Markt	X	(X)	(X)	
Auftrags- projekt	Kundenspezifisches Softwaresystem		X		
EDV-Projekt	Datenverwaltung, Informationssysteme		(X)	X	
System- projekt	Industrieanlagen, technische Systeme			(X)	X

[Ludewig, Lichter: Software Engineering. dpunkt.verlag, 2010]

Das Projekt – Merkmale eines Projekts

- Größe
- Dauer
- Anwendungsbereiche
- Quellen der Komplexität

- Zielsetzungen
- Ausgangs- & Zielprodukte
- Projekttypen

Das Projekt

[Grechenig et. al.: Softwaretechnik. Pearson Studium, 2010]

Faktoren eines Softwareprojekts

Inhalt

- Einführung
- Das Projekt
- Personen
- Prozesse
- Produkte
- Lernziele

100

Die Personen – Industrial Needs ...

... for software engineers coming freshly from university.

- Knowledge of state-of-the-art technology.
- Knowledge of theoretical background.
- Ability to understand new methods and tools.
- Familiarity with current major paradigms of SE.
- Understanding of the whole process of SE.
- Ability and modesty to do any job within that process.
- Ability and modesty to do any job within the team.
- Understanding and respecting the value of actual project experience.

100

Die Personen – Rollen je nach Projektgröße

Projekt- Größe	Rollen
Sehr klein	Keine besondere Rolleneinteilung notwenig.
Klein	Kunde; Management, Programmierer und Tester vereinigt in einer Person.
Mittel	Kunde, Projektleiter, Analytiker, Integrator, Programmierer und Tester.
Groß	Kunden, oberes Management, wirtschaftlicher Projektleiter, technischer Projektleiter, Gruppenleiter, Analytiker, Integrator, Programmierer, Tester, Dokumentierer, Qualitätssicherer.
Sehr groß	Alle Rollen aus Projektgröße "groß" und zusätzliche Rollen je nach Projekt (z.B. Berater, Domänenexperten, Technologieexperten usw.).

Die Personen – Rollen

- Umfeld
 - □ Kunde
 - Management
- Team
 - □ Projektleiter
 - □ Gruppenleiter
 - Analytiker
 - Integrator
 - Programmierer
 - □ Tester
 - Qualitätssicherer

M

Die Personen – Anzahl der Mitarbeiter nach Rollen

Unternehmensgröße	Projekt -leiter	Arbeits- gruppen- leiter	Entwick- ler	Spezia- listen	Qualitäts- sicherer
Groß (ab 120 Mitarbeiter)	8-10	15-20	50-70	5-12	4-10
Mittel (bis 40 Mitarbeiter)	3-5	5-6	15-20	2-5	2-5
Klein (bis 15 Mitarbeiter)	1-2	2-3	5-7	0-2	0-1
Sehr klein (bis 5 Mitarbeiter)	1	1	5	0	0
Ungefähre Relation im Vergleich zu Projektleitern	1	2-3	5-10	0,5-1	0,5-1

rye.

Die Personen – Arbeitsgruppe 1(8)

- Zur Bedeutung von Arbeitsgruppen für die einzelne Person:
 - □ Stellen Sie sich vor, Ihr Chef hat Ihnen gerade eine Spezifikation auf den Tisch gelegt und gefragt: "Wie lange brauchen Sie mit einer weiteren Person, um das zu erledigen?" Welche Frage stellen Sie als Erstes?
 - Würden Sie fragen: "Können wir objektorientierte Methoden verwenden?" oder "Welches CASE-System können wir kaufen?" Natürlich nicht. Ihre erste Frage lautet: "Wer ist die andere Person?"

[T. DeMacro. Warum ist Software so teuer? Und andere Rätsel des Informationszeitalters. Hanser Verlag, München, 1997.]

100

Die Personen – Arbeitsgruppe 2(8)

- Arbeitsgruppen werden nach Bedarf zusammengestellt.
 Sie können in einer Zusammensetzung nur ein Projekt oder nacheinander für mehrere Projekte durchführen.
- (Theoretische) Modelle für die Zusammensetzung von Arbeitsgruppen:
 - Anarchische Arbeitsgruppe
 - Demokratische Arbeitsgruppe
 - Chefprogrammierer-Team
 - Typische Gruppenstruktur

м

Die Personen – Arbeitsgruppe 5(8)

- Chefprogrammierer-Team
 - □ Vergleichbar mit Operationsteam, in dem ein Chefarzt von einem Team von Spezialisten unterstützt wird.

Die Personen – Arbeitsgruppe 7(8)

Typische Gruppenstruktur

Die Personen – Arbeitsgruppe, Unternehmen & Kunde

 Arbeitsgruppe und ihre Einbindung im Unternehmen und ihre Verbindung zum Kunden.

Arbeitsgruppe:

Analytiker und Kenner der Anwendungsdomäne, Systemarchitekt, Benutzerschnittstellendesigner Tester, Redakteur Werkzeugmacher, Datenbankspezialist

[Grechenig et. al.: Softwaretechnik. Pearson Studium, 2010] Die Personen – Verbesserungs-Management vorschläge Kommunikationswege Reviewberichte bereitung Projektstart Qualitätsicherer Projektvision Mängel-Mängelberichte berichte Probleme Wochenberichte Teilprojektleiter Projektleiter Probleme Wochenbericht Probleme Implementierung Tagesbericht Wochenbericht Probleme Architektur Klärund Architekt Analyse Klärung Architektur Testberichte Stimmungsberichte Programmierer über den Kunden Kommunikation über schriftliche Dokumente Kommunikation über E-Mail oder Gespräch mit Gesprächsnotiz Abstimmung Kommunikation mündlich Testfälle Analytiker Tester 2-38

100

Die Personen – 1(12) Projekt- & Primärorganisation

- Primärorganisation
 - Organisationsstruktur des Herstellers
 - Aufgabenverteilung/Beziehungen zwischen den Mitarbeitern
- Sekundärorganisation
 - Projektgruppe
- Mögliche Organisationsformen
 - Linienprojektorganisation
 - Stabslinienprojektorganisation (Einflussprojektorganisation)
 - Matrixprojektorganisation
 - □ Reine Projektorganisation
 - Auftragsprojektorganisation
 - □ Projektgesellschaft

×

Die Personen – 2(12) Projekt- & Primärorganisation

Linienprojektorganisation

Die Personen – 10(12) Projekt- & Primärorganisation

Leitung Auftragsprojektorganisation Abteilung X Verkauf Produktion Projektmanagement MA 1 MA₂ MA3 Projektleiter 1 MA 1 MA 5 MA 4 MA 5 MA₆ Projektleiter 2

MA₆

Faktoren eines Softwareprojekts

Inhalt

- Einführung
- Das Projekt
- Personen
- Prozesse
- Produkte

Vorgehens- & Prozessmodelle – Software-Life-Cycle 1(2)

Wiederkehrende Schritte bei der Softwareentwicklung:

Analyse

Spezifikation der Anforderungen

Grobentwurf, Spezifikation der Module

Feinentwurf

Codierung und Modultest

Integration, Test, Abnahme

Betrieb, Wartung

© Ludewig, Lichter, 2006

м

Vorgehens- & Prozessmodelle – Software-Life-Cycle 2(2)

- Def. IEEE Glossar (IEEE Std. 610.12, 1990):
 - The period of time that begins when a software product is conceived and ends when the software is no longer available for use. The software life cycle typically includes a concept phase, requirements phase, design phase, implementation phase, test phase, installation and checkout phase, operation and maintenance phase, and, sometimes, retirement phase.
 - Note: These phases may overlap or be performed iteratively.

100

Vorgehens- & Prozessmodelle – Basismodell

Vorgehens- & Prozessmodelle – Vorgehensmodelle

- Strategien für die Durchführung eines Projektes, z.B.
 - □ Build-and-Fix (Code-and Fix)
 - Wasserfallmodell
 - Prototyping
 - Nichtlineare Vorgehensmodelle
 - Rapid Prototyping
 - Evolutionäre Software-Entwicklung
 - Iterative Software-Entwicklung
 - Inkrementelle Software-Entwicklung
 - Treppenmodell
 - Phasenmodell

Beispiel: Vorgehensmodel – Wasserfallmodell

re.

Vorgehens- & Prozessmodelle – Prozessmodelle

- detaillierte Anweisungen zur Durchführung von Softwareentwicklungsprojekten (Aussagen zu Organisation, Verantwortlichkeiten, zu erstellenden Dokumenten, zu verwendenden Methoden, usw.), z.B.
 - □ V-Modell
 - V-Modell XT
 - Unified Process
 - □ Agile Modelle
 - eXtreme Programming (XP)
 - Scrum

Beispiel Prozessmodell - Scrum

re.

Erwartungen an Vorgehensund Prozessmodelle

- Gemeinsame Sprache für Projekte.
- Weniger Nacharbeit.
- Vereinfachung von Routineabläufen.
- Basis kontinuierlicher Verbesserung.
- Wettbewerbsvorteil Zertifizierung.
- Hilfe für wenig erfahrene Projektmanager.
- Rascher Nutzen (z.B. Schulung neuer Mitarbeiter).
- Rücksicht auf typische Sonderfälle der Entwicklerrealität.

Faktoren eines Softwareprojekts

Inhalt

- Einführung
- Das Projekt
- Personen
- Prozesse
- Produkte
- Lernziele

Produkte – Zwischen- und Endprodukte

Produkte

- Produkte stellen die überprüfbaren Resultate eines Projektes dar.
- Produktmerkmale
 - □ Zweck
 - Zielpublikum
 - □ Art (Doku, Techn. ...)
 - Detailgrad
 - Reifestufe
 - □ Abnahmekriterien
 - □ Referenzen
 - Erstellungszeitpunkt

Produkte – Formaler Rahmen

- Begriffe
- Dokumentationsrichtlinien
- Dokumentationsstruktur
- Produktvorlagen
- Checklisten
- Versionsmanagement
- Änderungsmanagement
- Archivierungsmanagement

Produkte – Qualitätsmerkmale

- Dokumente
 - □ Vollständigkeit
 - □ Korrektheit
 - ☐ Konsistenz
 - □ Verständlichkeit
 - □ Änderbarkeit

- Technische Produkte
 - Benutzerfreundlichkeit
 - □ Korrektheit
 - □ Zuverlässigkeit
 - Effizienz
 - □ Wartungsfreundlichkeit

Faktoren eines Softwareprojekts

Inhalt

- Einführung
- Das Projekt
- Personen
- Prozesse
- Produkte
- Lernziele

Lernziele

- Softwareprojekte
 - Was ist ein Projekt (Definition)?
 - Was ist das Besondere an Softwareprojekten?
 - Was sind die Merkmale von Softwareprojekten?
- Personen
 - □ Welche Rollen gibt es in Softwareprojekten?
 - Wie setzen sich Arbeitsgruppen zusammen?
 - □ Wie lassen sich Arbeitsgruppen in Unternehmen einbinden?

Lernziele (2)

- Vorgehens- und Prozessmodelle
 - □ Was ist der Software-Life-Cycle?
 - □ Wie sieht das Basismodell für die Softwareentwicklung aus?
 - Welche Erwartungen hat man an Vorgehens- und Prozessmodelle?

Produkte

- Welche Merkmale haben Produkte in der Softwareentwicklung?
- Welchen formalen Rahmen benötigt man für die Produkterstellung?
- □ Welche Qualitätsmerkmale sollten Produkte erfüllen?