You have 90 minutes to complete this exam. You may assume without proof any statement proved in class.

1 Consider the following context-free grammar:

(2 pts)

- **a.** Describe the language generated by this grammar.
- **b.** Prove that this grammar is ambiguous.
- c. Give an equivalent unambiguous grammar.

Solution.

a. Nonempty strings of the form $a^{N_1}b^{n_1}a^{N_2}b^{n_2}\dots a^{N_k}b^{n_k}$, where

$$N_1 \geqslant n_1,$$
 $N_2 \geqslant n_2,$
 \vdots
 $N_k \geqslant n_k.$

b. The string *aab* has at least two parse trees:

c.
$$S \rightarrow ATS \mid TS \mid AT \mid A \mid T$$

 $A \rightarrow aA \mid a$
 $T \rightarrow aTb \mid ab$.

- Give context-free grammars for the following languages over the binary alphabet: 2
- (2 pts) a. nonempty even-length strings with the two middle symbols equal
- (2 pts) **b.** strings with twice as many 0s as 1s
- **c.** $\{0^n 1^m : n < m < \frac{2015}{2014} n\}.$ (3 pts)

Solution:

a.
$$S \rightarrow \Sigma S \Sigma \mid 00 \mid 11$$

 $\Sigma \rightarrow 0 \mid 1$

b. $S \rightarrow 1S0S0S \mid 0S1S0S \mid 0S0S1S \mid \varepsilon$

c.
$$S \to 0S1 \mid 0T1$$

 $T \to 0^{2014}T1^{2015} \mid 0^{2014}1^{2015}$

2015 < 20/6 < 20/5×20/4

- True or false? Prove your answer. 3
- (2 pts) **a.** If L is context-free, then the set of all substrings of strings in L is a context-free language.
- **b.** If L is not context-free and F is finite, then $L \setminus F$ is not context-free. (3 pts)

Solution.

- **a.** True. The set of all substrings of strings in L is prefix(suffix(L)), which is context-free whenever L is context-free (by the closure of context-free languages under prefix and suffix).
- **b.** True. We will prove the contrapositive: if F is finite and $L \setminus F$ context-free, then L is context-free. For this, write

$$L = (L \setminus F) \cup (L \cap F).$$

For any finite F, the language $L \cap F$ is also finite, hence regular, hence context-free. We conclude that, with F finite and $L \setminus F$ context-free, L is the union of two context-free languages and is therefore itself context-free (by the closure of context-free languages under union).

- **a.** nonempty even-length strings with the two middle symbols equal
- **b.** strings with twice as many 0s as 1s

c.
$$\{0^n 1^m : n < m < \frac{2015}{2014}n\}$$
.

a.
$$S \to A \mid B$$

 $A \to XAX \mid aa$
 $B \to XBX \mid bb$
 $X \to a \mid b$
b. $S \to oSoSi \mid oSiSo \mid iSoSo \mid SS \mid 2$
c. $S \to oSi \mid oTi$
 $T \to o2o14 T \mid 2015 \mid o2o14 \mid 2015$
 $S \to oSi \mid o2o14 S \mid 2015 \mid o2o15 \mid 201b$

(3 pts) 4 Let L be a given context-free language. Explain how to obtain a PDA for reverse(L) from a PDA for L.

Your solution must not involve context-free grammars in any way. In particular, the following argument must not be used: convert the PDA to a grammar, reverse each rule, and convert back to a PDA.

Solution. The transformation is similar to that for DFAs and NFAs, except that one must now be careful not to forget about the stack. Suppose that, schematically, the original PDA $(Q, \Sigma, \Gamma, \delta, q_0, F)$ looks like this:

Fix a symbol, say \perp , that is not currently in Γ . To obtain a PDA for reverse(L), we make the structural changes shown in red:

The added loop plays a vital role in this construction. Its purpose is to "guess" the final contents of the stack for some accepting computation and to populate the stack accordingly.

- 5 For each of the following languages over the binary alphabet, determine whether it is contextfree and prove your answer:
- (2 pts) **a.** $\{wvw : w \in \{0,1\}^+, v \in \{0,1\}^*\}$
- (2 pts) **b.** $\{0^n 1^m 0^k 1^{n+m} : n, m, k \ge 0\}$
- (2 pts) c. palindromes with equally many 0s and 1s.

Solution. In all parts, L stands for the language is question.

- **a.** Not context-free. Take an arbitrary integer $p \ge 1$ and consider the string $w = 0^p 1^p 0^p 1^p \in L$. Fix any decomposition w = uvxyz for some strings u, v, x, y, z with $|v| + |y| \ne 0$ and $|vxy| \le p$. There are two cases to examine: (i) if vxy is contained entirely within the first p symbols or entirely within the last p symbols, then $uv^2xy^2z \notin L$ (here, it is crucial that we pump up rather than down); (ii) if vxy overlaps with the middle 2p characters of w, then $uxz \notin L$. By the pumping lemma, L is not context-free.
- **b.** Context-free, with grammar

$$S \to 0S1 \mid T$$

$$T \to 1T1 \mid U$$

$$U \to 0U \mid \varepsilon.$$

c. Not context-free. Take an arbitrary integer $p \ge 1$ and consider the string $1^p0^{2p}1^p \in L$. Fix any decomposition $1^p0^{2p}1^p = uvxyz$ for some strings u, v, x, y, z with $|v|+|y| \ne 0$ and $|vxy| \le p$. There are two cases to examine: (i) if $v \in 0^*$ and $v \in 0^*$, then v^2xy^2z contains more 0s than 1s and hence is not in v^2 ; (ii) if v^2 or v^2 contains a 1, then the length restriction $|vxy| \le p$ implies that v^2 contains unequal numbers of 1s on the left and on the right and therefore is not a palindrome: $v^2 \ne v^2$. By the pumping lemma, $v^2 \ne v^2$ is not context-free.

5 For each of the following languages over the binary alphabet, determine whether it is conte free and prove your answer:	xt-
a. $\{wvw : w \in \{0, 1\}^+, v \in \{0, 1\}^*\}$ b. $\{0^n 1^m 0^k 1^{n+m} : n, m, k \ge 0\}$	
c. palindromes with equally many 0s and 1s.	
a.分成义L=3wrw wefo,1j+,vefo,1j*)是cfl.	
则N>0, L满起乳褶。	
取l=onINONIN, 爱我DW=ONIN, V=E.	
l >N. l= uvayz. 其中 vay <n. +e.<="" td="" vy=""><td></td></n.>	
1.若 vay属于阿N个O或后N个I有.	
ルグスダモ 今し、	
ii. 若 vay处于中间 2NT元素	
RI WAZ & L.	
绵上 也不满是pump lemma. 假没不成立	
b. S > 051 T	
T -> T D	

b.
$$S \Rightarrow 0SI T$$

$$T \Rightarrow 1TI \mid P$$

$$P \Rightarrow 0P \mid Q$$

		each of the following languages over the binary alphabet, determine whether it is context- and prove your answer:
	b.	$\{wvw: w \in \{0,1\}^+, v \in \{0,1\}^*\}$ $\{0^n 1^m 0^k 1^{n+m}: n, m, k \ge 0\}$ palindromes with equally many 0s and 1s.
C	1	対決 L= JW WE Eo, 1j*. palindromes 国之}
	取	$Z = D^N I^{2N} D^N Z > N$
	W	Z 满足家引强, Z= UVWay
	其	$\psi vwx \leq N \cdot vx \neq \varepsilon$
ì	岩	のWス属于商N或后N个元表.易有 NVNX y & L
îì	. 若	VUX属于中国2NT元惠.则nwy年L(0.1岁意等