Trabajo Práctico Integrador II Programación I

IMPLEMENTACIÓN
DE ÁRBOLES
EN PYTHON

ALUMNAS

Alexia Rubin María Victoria Volpe

Objetivos \(\)

- Marco teórico Árboles en Python
- O2 Caso Práctico 1
- O3 Conclusiones

Árbol: estructura jerárquica no lineal sin ciclos, con un nodo raíz y nodos conectados por ramas.

Árbol binario: cada nodo tiene como máximo dos hijos (izquierda y derecha).

Aplicaciones de los árboles

- Sistemas de archivos
 Organización jerárquica como carpetas y subcarpetas.
 - Bases de datos

Uso de estructuras como B-trees para índices.

Inteligencia artificial

Árboles de decisión para tomar decisiones automáticas.

Ventajas de los Árboles Binarios

- ✓ Permiten búsqueda y organización eficiente (por ejemplo, árboles BST).
 - ✓ Fáciles de recorrer de forma sistemática y ordenada.
- ✓ Son simples de implementar de manera recursiva.

Características

- Raíz:
- Nodo principal del árbol (no tiene padre).
- Padre / Hijo:
- Relación directa entre nodos conectados.
- Un padre puede tener varios hijos.
- Hermanos:
- Nodos que comparten el mismo padre.
- Hojas:
- Nodos sin hijos (están al final del árbol).
- Nodos internos:
- Tienen al menos un hijo (no son hojas).
- Ancestros / Descendientes:
- Relaciones según el recorrido del árbol.
- Figure Ejemplo: un abuelo-nieto en estructura de árbol.

Cada generación dentro del árbol

Un árbol vacío tiene 0 niveles
El nivel de la Raíz es 1
El nivel de cada nodo se calculado contando cuantos nodos existen sobre el, hasta llegar a la raíz + 1, y de forma inversa también se podría, contar cuantos nodos existes desde la raíz hasta el nodo buscado + 1.

Fuente de las imágenes sobre árboles:

https://www.oscarblancarteb log.com/2014/08/22/estructur a-de-datos-arboles/

Altura

número máximo de niveles de un Árbol

Peso

Conocemos como peso a el número de nodos que tiene un Árbol. Este factor es importante por que nos da una idea del tamaño del árbol y el tamaño en memoria que nos puede ocupar en tiempo de ejecución

Grado

El grado de un árbol en Python se calcula encontrando el nodo con el mayor número de hijos

Orden

número máximo de hijos que puede tener un Nodo

Recorridos de árbol binario

Recorrido Pre-orden: El recorrido inicia en la Raíz y luego se recorre en pre-orden cada unos de los sub-árboles de izquierda a derecha.

- 1. Se comienza por la raíz.
- 2. Se baja hacia el hijo izquierdo de la raíz.
- 3. Se recorre recursivamente el subárbol izquierdo.
- 4. Se sube hasta el hijo derecho de la raíz.
- 5. Se recorre recursivamente el subárbol derecho.

Recorridos de árbol binario

Recorrido Pos-orden: Se recorre el pos-orden cada uno de los sub-árboles y al final se recorre la raíz.

- 1. Se comienza por el nodo hoja que se encuentre más a la izquierda de todos.
- 2. **Se visita su nodo hermano.**
- 3. **Se sube hacia el padre de ambos.**
- 4. Si tuviera hermanos, se visita su nodo hermano.
- 5. Se repiten los pasos 3 y 4 hasta terminar de recorrer el subárbol izquierdo.
- 6. Se recorre el subárbol derecho, comenzando por el nodo hoja que se encuentre más a la izquierda y siguiendo el mismo procedimiento que con el subárbol izquierdo
- 7. **Se visita el nodo raíz.**

Recorridos de árbol binario

Recorrido in-orden: Se recorre en in-orden el primer sub-árbol, luego se recorre la raíz y al final se recorre en in-orden los demas sub-árboles

- 1. Se comienza por el nodo hoja que se encuentre más a la izquierda de todos.
- 2. **Se sube hacia su nodo padre.**
- 3. **Se baja hacia el hijo derecho del nodo** recorrido en el paso **2.**
- 4. Se repiten los pasos 2 y 3 hasta terminar de recorrer el subárbol izquierdo.
- 5. **Se visita el nodo raíz.**
- 6. Se recorre el subárbol derecho de la misma manera que se recorrió el subárbol izquierdo.

Caso Práctico

