AD	

Award Number: DAMD17-00-1-0031

TITLE: Functional Analysis of C-CAM Tumor Suppressor Gene by

Targeted Gene Deletion

PRINCIPAL INVESTIGATOR: Sue-Hwa Lin, Ph.D.

CONTRACTING ORGANIZATION: University of Texas M.D. Anderson Cancer

Center

Houston, Texas 77030

REPORT DATE: January 2002

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command

Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;

Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching satisfing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND			
	January 2002	Annual (1 Jan			
4. TITLE AND SUBTITLE Functional Analysis of C	-CAM Tumor Suppressor	Gene by	5. FUNDING DAMD17-00		
Targeted Gene Deletion					
6. AUTHOR(S)					
Sue-Hwa Lin, Ph.D.					
7. PERFORMING ORGANIZATION NAM University of Texas M.D. Houston, Texas 77030		er	8. PERFORMING ORGANIZATION REPORT NUMBER		
E-Mail: slin@notes.mdacc.tmc.	edu				
9. SPONSORING / MONITORING AGE	NCV NAME(S) AND ADDRESS(ES	3	10 SPONSOI	RING / MONITORING	
		,,		REPORT NUMBER	
U.S. Army Medical Research and M Fort Detrick, Maryland 21702-5012					
11. SUPPLEMENTARY NOTES	20.000				
12a. DISTRIBUTION / AVAILABILITY S				12b. DISTRIBUTION CODE	
Approved for Public Rele	ase; Distribution Unl	imited			
13. ABSTRACT (Maximum 200 Words))			-	
C-CAM1 (also named Ceacan	n1) is a cell adhesion mole	ecule of the immun	oglobulin sı	pergene family. We have	
shown that C-CAM1 plays cri					
an early event in the developm					
have suggested the involveme C-CAM1 in normal prostate d		•		•	
propose to determine the role					
by using gene targeting and e					
designed a gene targeting str					
targeted vector was flanked l	•		_		
Ceacam1 gene. The targeting					
recombinant gene allele have blastocysts for germ line trans		•	cen cione	s nave been injected into	
orastooysto for gorin fine trans.	imposion of the targoting of	mon uct.			
14. SUBJECT TERMS				15. NUMBER OF PAGES	
Prostate Cancer				23 16. PRICE CODE	

19. SECURITY CLASSIFICATION

Unclassified

OF ABSTRACT

OF REPORT

17. SECURITY CLASSIFICATION

Unclassified

18. SECURITY CLASSIFICATION

Unclassified

OF THIS PAGE

20. LIMITATION OF ABSTRACT

Unlimited

Table of Contents

Cover1
SF 2982
Table of Contents3
Introduction4-6
Body6-9
Key Research Accomplishments10
Reportable Outcomes10
Conclusions10
References11
Appendices12-17

(4) INTRODUCTION

C-CAM is a cell adhesion molecule of the immunoglobulin supergene family [1]. We have recently shown that C-CAM plays critical roles in prostate cancer initiation and progression and that loss of C-CAM is an early event in the development of prostate cancer [2]. Although tumorigenesis studies in mouse xenograft model have suggested the involvement of C-CAM in epithelial cell growth and differentiation, the functional roles of C-CAM in normal prostate development, prostate homeostasis, and prostate tumorigenesis remain unclear. Towards the aim of determining the roles of C-CAM's growth suppressive activity in prostate growth and tumorigenesis, we propose to use gene targeting and embryonic stem cell technologies to generate C-CAM knockout mice. Specifically, we plan (1) to determine the roles of C-CAM's growth suppressive function in vivo by generating mice with a targeted deletion of the C-CAM cytoplasmic domain; (2) to determine the roles of C-CAM's growth suppressive function in prostate development and tumorigenesis by generating mice with a prostate-specific knockout of the C-CAM cytoplasmic domain. The proposed work was divided into two Tasks to be carried out in parallel.

<u>Task 1</u>. Generate mice with targeted deletion of C-CAM cytoplasmic domain to determine the roles of C-CAM's growth suppressive function in vivo (months 1-30)

Task 2. Prostate-specific loss of function of C-CAM gene in prostate (months 7-36)

Genetic manipulation of mouse genes in vivo is a powerful approach for understanding the function of a gene, both during embryonic development and in adult tissues. This method requires full knowledge of the genomic structure of the gene of interest. Unlike humans and rats, which each have one C-CAM1 (renamed as Ceacam1 [3]) gene, two Ceacam1-like genes,

Ceacam1 and Ceacam2, were identified in mice. This poses potential problems in any attempt to manipulate these genes. First, if the two genes have the same function, deletion of one gene may not produce any phenotypic alteration. Second, if there is no significant difference in the genes' sequences, any genetic manipulation may not be specific for a single gene, or it might be difficult to ascertain which gene was altered. It is, therefore, essential to determine the complete sequences and expression profiles of these related Ceacam genes in the 129sv mouse strain before genetic manipulation performed.

In the previous study, we have isolated and sequenced two closely related Ceacam (C-CAM) genes, i.e. Ceacam1 and Ceacam2, from a mouse 129 Sv/Ev library [4]. We have also examined the tissue-specific and embryonic expressions of these mouse Ceacam1 and Ceacam2 genes [4]. Our sequence analysis revealed that the genes encoded nine exons and spanned approx. 16-17 kb (Ceacam1) and 25 kb (Ceacam2). The genes were highly similar (79.6%). The major differences in the protein-coding regions were located in exons 2, 5 and 6. To determine whether functional redundancy exists between Ceacam1 and Ceacam2, we examined their expression in 16 mouse tissues by using semi-quantitative reverse transcription-PCR. As in human and rat, in the mouse Ceacam1 mRNA was highly abundant in the liver, small intestine, prostate and spleen. In contrast, Ceacam2 mRNA was only detected in kidney, testis and, to a lesser extent, spleen. In the mouse embryo, Ceacam1 mRNA was detected at day 8.5, disappeared between days 9.5 and 12.5, and re-appeared at day 19. On the other hand, no Ceacam2 mRNA was detected throughout embryonic development. The different tissue expression patterns and regulation during embryonic development suggest that the CEACAM1 and CEACAM2 proteins, although highly similar, may have different functions both during mouse development and in adulthood.

Results from this study allow us to design a gene targeting strategy that is specific to Ceacam1 gene and also allow us to perform both straight and conditioned knockout of Ceacam1 gene in parallel. In this study, we have designed a gene targeting strategy that is specific to Ceacam1 gene. In addition, the Ceacam1 gene in the targeted vector was flanked by loxP sites to allow for generation of both straight and conditional knockout of Ceacam1 gene. The targeting vector has been constructed and 24 embryonic stem cell clones containing the recombinant gene allele have been established. Three of the embryonic cell clones have been injected into blastocysts for germ line transmission of the targeting construct.

(5) BODY (Progress report)

Because Task 1 and Task 2 are being performed in parallel, we describe the progresses in these aspect together.

5. 1. Screening of a BAC library for the isolation of Ceacam genes.

To construct the targeting vector for the knockout of Ceacam1 gene, we screened a 129Sv/Ev mouse genomic library in BAC vector using a probe generated from cDNA coding for full-length Ceacam1. Three positive BAC clones were identified and their structure were determined by restriction mapping. Consistent with our previous study, two closely related genes, i.e. Ceacam1 and Ceacam2, were identified from restriction mapping.

5. 2. Development of gene targeting strategy

In our previous study, we have examined the expression patterns of Ceacam1 and Ceacam2 genes in adult mouse tissues and during embryonic development. Several conclusions can be made from the study. First, the Ceacam1 and Ceacam2 genes contained sufficient

sequence differences that targeted gene deletion specific to either gene should be feasible. Second, functional redundancy may not be a problem when only one of these two genes is deleted because although *Ceacam1* and *Ceacam2* were highly homologous, they had different tissue expression patterns. Third, *Ceacam1* is probably more important than *Ceacam2* in the mouse because *Ceacam1's* tissue expression pattern was similar to those of the single Ceacam genes in humans and rats. Conservation of the expression profile among these different species suggests that *Ceacam1's* function may be essential. Fourth, *Ceacam2* plays no role in embryonic development; it is not expressed in the mouse embryo. Thus, it seems that Ceacam1 is functionally more important than Ceacam2 gene.

Knocking out a gene can have no phenotypic effect if related genes have similar functions. We showed that *Ceacam1* and *Ceacam2* were expressed in different tissues in the mouse. *Ceacam1* message was detected in tissues rich in epithelial cells which is consistent with expression of the CEACAM1 homologue in rats and humans [5-7]. In contrast, *Ceacam2* message was abundantly expressed in testis, which does not express *Ceacam1* message. In addition, *Ceacam2* message was undetectable in the mouse embryo, whereas *Ceacam1* message was developmentally regulated. Thus, it appears that the two mouse *Ceacam* genes are not functionally redundant. However, we cannot rule out the possibility that the loss of *Ceacam1* expression may upregulate expression of *Ceacam2*. These studies would have to await targeted gene deletion of these two related genes.

5. 3. Gene targeting strategy

The results of the previous study provide important information for designing gene targeting strategies for functional studies of *Ceacam* genes. Based on the information from the

genomic characterization of Ceacam1 and Ceacam2 gene, we decided to delete the cytoplasmic domain of Ceacam1. This strategy is due to the following reasons: (1) The Ceacam1 gene is functionally more important than Ceacam2 gene; (2) The entire Ceacam1 gene, which is around 20 kb, is too large to delete; (3) The cytoplasmic domain of CEACAM1 is critical for tumor suppressor function. The knockout construct planned for is a conditional knockout construct deleting exon 7~9. This way we will have the option of deleting this region both in ES cells and in the mice. For straight knockout, which is the goal of Task 1, we will transfect the cre recombinase expression plasmid to the ES cells and screen for ES cells that have deletions in exon 7-9 of its Ceacam1 gene before injection the ES cells to blastocysts. For the conditional knockout, which is the goal of Task 2, the ES cells that has targeting vector will be injected into blastocysts and the mice carry the conditional Ceacam1 allele will be generated. The Ceacam1 gene will be deleted in prostate by crossing with transgenic mouse carrying probasin-driven cre recombinase. Therefore, Task 1 and Task 2 are being performed in parallel. The gene knockout strategy is shown in Fig. 1.

5. 4. Targeting vector construction

There are 4 steps in the vector construction strategy. First, the 3.4 kb HindIII-SacI 3'-arm fragment from subclone SacI-1, 3.7 kb XmnI-HindIII middle fragment from subclone HindIII-8 and 4.3 kb XmnI-XmnI 5'-arm fragment from subclone HindIII-8 were cloned into pZero-2 vector, respectively. These were necessary for the easy vector construction and later DNA sequencing confirmation. Second, the 3.4 kb HindIII-SacI 3'-arm fragment was subcloned into 38LoxPNeo vector and the 3'-arm vector with correct orientation was obtained. Third, the 3.7 kb XmnI-HindIII middle fragment was cloned into BamHI site of the 3'-arm vector and the mid-3'-vector with right orientation was obtained. Finally, the 4.3 kb XmnI-XmnI 5'-arm fragment was

cloned into XhoI site of the mid-3'-vector for the construction of the final targeting vector. The targeting vector was verified by restriction mapping (Fig. 2).

5. 5. Transfection and generation of embryonic stem cells containing targeting vector

The targeting vector was transfected into embryonic stem cells by electroporation. A total of 270 ES cell clones were obtained from two electroporations. Genomic DNA was extracted from these ES cell clones. Half of the DNA from each sample was digested with SphI and processed for Southern blot analysis. The 5' probe used is a 0.7kb ApaI/SpeI fragment from subclone BamHI-A. Using the 5' probe, a ~9.2 kb band corresponding to the endogenous allele of Ceacam-1 and a ~10kb band corresponding to Ceacam-2 could be visualized in most samples. Many clones (a total of 24) contained an additional hybridization signal at the size predicted for the homologous recombinant allele, 8.1 kb (Fig. 3). The clones identified as potential positives using the 5' probe were digested with Xho I and hybridized with the 3' probe, which is 1.2kb Sac I/Xho I fragment from subclone Apa I-4. A ~15.3 kb band corresponding to the endogenous allele of Ceacam-1 and a ~17.1 kb band corresponding to recombinant allele were detected in 16 clones (Fig. 4). These 16 clones were also positive with Neo probe, which gave a 17.1 kb band in Southern blot analysis. Taken together, a total of 16 ES cell clones containing the Ceacam1 conditional allele were generated.

5. 6. Injection into mouse blastocysts

Three ES cell clones were injected into mouse blastocysts using procedures as described in Chang et al. [8]. Briefly, chimeric mice are generated by microinjection of 8-20 ES cells into the blstocoel of embryonic d 3.5 C57Bl/6J mouse embryos. The embryos are transferred to the uteri of postcoitum d 2.5 pseudopregnant ICR mice, and the embryos are allowed to gestate. Ten mice were born from these mice and will be genotyped.

(6) KEY RESEARCH ACCOMPLISHMENTS

- Screen a mouse 129Sv/Ev genomic library in BAC vector and isolate several BAC clones.
- ❖ Map the BAC clones.
- ❖ Design knockout strategy that allows both Task1 and Task2 being carried out in parallel.
- Construct the targeting vector.
- Transfect the targeting vector into embryonic stem cells and selected 24 positive ES cell clones.
- ❖ Inject three ES cell clones into blastocysts.

(7) REPORTABLE OUTCOMES

Han, E., Phan, D., Lo, P., Poy, M. N., Behringer, R., Najjar, S., and Lin, S.-H.: Difference in tissue-specific and embryonic expression of mouse Ceacam1 and Ceacam2 genes. Biochem. J. (2001) 355, 417-423.

(8) CONCLUSION We propose to determine the roles of CEACAM's growth suppressive activity in prostate growth and tumorigenesis by using gene targeting and embryonic stem cell technologies to generate CEACAM knockout mice. We have designed and constructed a gene targeting vector that is specific to Ceacam1 gene. This gene targeting strategy will allow us to perform both straight and conditioned knockout of Ceacam1 gene in parallel. Embryonic stem cells containing the knockout construct have been generated and injected into blastocysts. The mice carrying Ceacam1 conditional knock out allele are being generated.

(9) REFERENCES

- Beauchemin, N. and S.-H. Lin, Role of C-CAM as a tumor suppressor. Cell adhesion and communication mediated by the CEA family: basic and clinical perspectives., ed. C.
 Stanners. 1998, Amsterdam: Harwood Academic Publishers.
- 2. Lin, S.-H. and Y.-S. Pu, Function and therapeutic implication of C-CAM cell-adhesion molecule in prostate cancer. Seminars in Oncology, 1999. **26**: p. 227-233.
- 3. Beauchemin, N., et al., Redefined nomenclature for members of the carcinoembryonic antigen family. Exp. Cell Res., 1999. **252**: p. 243-249.
- 4. Han, E., et al., Differences in tissue-specific and embryonic expression of mouse Ceacam1 and Ceacam2 genes. Biochem. J., 2001. 355: p. 417-423.
- 5. Cheung, P.H., et al., Cell-CAM105 isoforms with different adhesion functions are coexpressed in adult rat tissues and during liver development. J. Biol. Chem., 1993. 268: p. 6139-46.
- 6. Thompson, J.A., F. Grunert, and W. Zimmermann, Carcinoembryonic antigen gene family: molecular biology and clinical perspectives. J. Clin. Lab. Anal., 1991. 5: p. 344-366.
- 7. Hinoda, Y., et al., Molecular Cloning of a cDNA coding biliary glycoprotein I: Primary structure of a glycoprotein immunologically crossreactive with carcinoembryonic antigen. Proc. Natl. Acad. Sci., 1988. 85: p. 6959-6963.
- 8. Chang, A.S.Y., M.J. Reardon, and F.J. DeMayo, *Germline genetic engineering techniques in endocrinology*. Contemporary Endocrinology: Transgenics in endocrinology., ed. M. Matzuk, C.W. Brown, and T.R. Kumar. 2000, Totowa, NJ: Humana Press Inc.

Fig. 1. Ceacam1 gene knockout strategy.

Screening Strategy:

SphI digestion for genomic DNA 5' probe: 9.2 kb 8.2 kb wildtype allele:

recombinant allele:

XhoI digestion for genomic DNA

3° probe:

15.5 kb wildtype allele:

17.4 kb recombinant allele: Note: Ap=Apal; B=BamHI; E=EcoRI; H=HindIII; K=KpnI; RV=EcoRV; S=SacI; Sf=SfiI; Sp=SpeI; Sph=SphI; X=XbaI; Xh=XhoI; Xm=XmnI.

LoxP site 1 kb

Fig. 2. Restriction mapping of targeting vector.

Abbreviation: Ap=Apal; B=BamHI; E=EcoRI; H=HindIII; K=KpnI; RV=EcoRV; S=SacI; Sf=SfiI; Sp=SpeI; Sph+SphI; X=XbaI; Xh=XhoI; Xm=XmnI.

1 kb _____

Not1 or KpnI can be used to linearize the final targeting vector.

genomic DNA was digested with SphI and hybridized with 5' probe. Clone 137 is a wild-type ES cells while clone 138 contains Ceacam1 recombinant allele. Fig. 3. Screening of ES cells with homologous recombinant allele. The

The genomic DNA was digested with XhoI and hybridized with 3' probe. Fig. 4. Screening of ES cells with homologous recombinant allele.

Differences in tissue-specific and embryonic expression of mouse *Ceacam1* and *Ceacam2* genes

Eric HAN*, Dillon PHAN*, Piao LO*, Matthew N. POY†, Richard BEHRINGER‡, Sonia M. NAJJAR† and Sue-Hwa LIN*1

*Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, U.S.A., †Department of Pharmacology and Therapeutics, Medical College of Ohio, Toledo, OH 43614, U.S.A., and ‡Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, U.S.A.

The intercellular adhesion molecule CEACAM1, also known as C-CAM1 (where CAM is cell-adhesion molecule), can function as a tumour suppressor in several carcinomas, including those of the prostate, breast, bladder and colon. This suggests that CEACAM1 may play an important role in the regulation of normal cell growth and differentiation. However, there is no direct evidence to support this putative function of CEACAM1. To elucidate its physiological function by targeted gene deletion, we isolated the Ceacam genes from a mouse 129 Sv/Ev library. Although there is only one Ceacam1 gene in humans and one in rats, two homologous genes (Ceacam1 and Ceacam2) have been identified in the mouse. Our sequence analysis revealed that the genes encoded nine exons and spanned approx. 16-17 kb (Ceacam1) and 25 kb (Ceacam2). The genes were highly similar (79.6%). The major differences in the protein-coding regions were located in exons 2, 5 and 6 (76.9%, 87.0% and 78.5% similarity respectively). In addition, introns 2, 5 and 7 were also significantly different, being 29.7%, 59.8% and 64.5% similar respectively. While most of these differences were due to nucleotide substitutions, two insertions of 418 and 5849 bp occurred in intron 2 of Ceacam2, and another two insertions of 1384 and

197 bp occurred in introns 5 and 7 respectively. To determine whether functional redundancy exists between Ceacam1 and Ceacam2, we examined their expression in 16 mouse tissues by using semi-quantitative reverse transcription-PCR. As in human and rat, in the mouse Ceacam1 mRNA was highly abundant in the liver, small intestine, prostate and spleen. In contrast, Ceacam2 mRNA was only detected in kidney, testis and, to a lesser extent, spleen. Reverse transcription-PCR using testis RNA indicated that Ceacam2 in the testis is an alternatively spliced form containing only exons 1, 2, 5, 6, 8 and 9. In the mouse embryo, Ceacam1 mRNA was detected at day 8.5, disappeared between days 9.5 and 12.5, and re-appeared at day 19. On the other hand, no Ceacam2 mRNA was detected throughout embryonic development. The different tissue expression patterns and regulation during embryonic development suggest that the CEACAM1 and CEACAM2 proteins, although highly similar, may have different functions both during mouse development and in adulthood.

Key words: C-CAM, cell-adhesion molecule, gene expression, tumour suppressor.

INTRODUCTION

The intercellular adhesion molecule CEACAM1, also known as C-CAM1 [1] (where CAM is cell-adhesion molecule), is a member of the Ig gene family [2]. In addition to its cell-adhesion function, CEACAM1 is also a tumour suppressor in prostate [3], breast [4], bladder [5] and colon [6] carcinomas. Consistent with its role as a tumour suppressor, loss of CEACAM1 expression was observed in hepatomas [7], colon carcinomas [8–10] and endometrial [11] and prostate [12,13] cancers. This suggests that CEACAM1 may regulate cell growth and differentiation.

To elucidate the physiological functions of CEACAM1, we plan to generate mice with targeted *Ceacam* deletions. Genetic manipulation of mouse genes *in vivo* is a powerful approach for understanding the function of a gene, both during embryonic development and in adult tissues. This method requires full knowledge of the genomic structure of the gene of interest. Unlike humans and rats, which each have one *Ceacam1* gene [14–16], two *Ceacam1*-like genes, *Ceacam1* and *Ceacam2*, were identified in BALB/c mice [17]. This poses potential problems in any attempt to manipulate these genes. First, if the two genes have the same function, deletion of one gene may not produce any phenotypic alteration. Secondly, if there is no significant

difference in the sequences of the genes, any genetic manipulation may not be specific for a single gene, or it might be difficult to ascertain which gene was altered. It is, therefore, essential to determine the complete sequences and expression profiles of these related *Ceacam* genes in the 129 Sv mouse strain before genetic manipulation is performed.

We report herein the isolation and sequencing of the full-length mouse Ceacam1 and Ceacam2 genes. They both encode nine exons, with significant sequence differences in certain regions. These sequence differences will allow selective targeting of one Ceacam gene compared with another. In addition, the tissue-specific distributions of CEACAM1 and CEACAM2 were different, and only Ceacam1 was expressed during embryonic development. The differences in their tissue and developmental expression patterns suggest that these two genes may have different functions in vivo.

MATERIALS AND METHODS

Isolation and characterization of Ceacam1 and Ceacam2

A 129 Sv/Ev mouse genomic library in λ LEX (provided by Dr Li-Yuan Yu-Lee, Baylor College of Medicine, Houston, TX,

Abbreviations used: CAM, cell-adhesion molecule; RT-PCR, reverse transcription-PCR.

¹ To whom correspondence should be addressed: Department of Molecular Pathology, Box 89, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, U.S.A (e-mail slin@notes.mdacc.tmc.edu).

The Ceacam1 and Ceacam2 sequences have been deposited in the GenBank®/EMBL/DDBJ/GSDB Nucleotide Sequence Databases with accession numbers AF287911 and AF287912 respectively.

U.S.A.) was screened with the 1.6 kb full-length mouse Ceacam1 cDNA [18], which had been labelled by using the Klenow fragment of DNA polymerase I, random hexanucleotide primers and [α-32P]dCTP [19]. A total of 24 positive clones were identified in the initial screening of this genomic library. PCR with Oligo 127 (5'-GTGTCACTCTAGGCTACAGGAAAT-3') and Oligo 122 (5'-GAGGCCAGCTCCATGTCTCTGCTG-3'), which are specific to the 5' region of mouse Ceacam1 [20], showed that seven of the clones had the N-terminal Ceacam1 sequence. Similarly, PCR with Oligo 120 (5'-GAAGTCTGGCGGATCT-GGCTCCTT-3') and Oligo 131 (5'-TTGAAGTTCAGGACA-GTGTATGCG-3') showed that seven clones had the 3' Ceacam1 sequence. These clones were isolated by secondary and tertiary screening and characterized by restriction mapping. The nucleotide sequences of the exons and introns were determined by primer walking using specific oligonucleotide primers. Sequencing was performed by the DNA Sequencing Core Facilities at M. D. Anderson Cancer Center with an automated fluorescent DNA sequencer (Applied Biosystems Inc., Ramsey, NJ, U.S.A.).

Analysis of *Ceacam1* and *Ceacam2* expression using a mouse cDNA panel

A mouse cDNA panel containing first-strand cDNA prepared from mouse tissues and normalized for β -actin expression was purchased from OriGene Technologies Inc. (Rockville, MD, U.S.A.) and used to analyse the expression of Ceacam1 and Ceacam2 in various mouse tissues. Oligonucleotides specific to exon 2 of Ceacam1 (Oligo 116, 5'-AATCTGCCCCTGGCG-CTTGGAGCC-3'; Oligo 179, 5'-AAATCGCACAGTCGCC-TGAGTACG-3') and to exon 2 of Ceacam2 (Oligo 117, 5'-AATATGATGAAGGGAGTCTTGGCC-3'; Oligo 180, 5'-AAATTGTCCAGTCAGGACCCTACG-3') were used as primers to detect specific mRNAs for Ceacam1 and Ceacam2 by PCR. PCR cycling conditions were as follows: (1) predenaturation (94 °C, 3 min) for one cycle; (2) denaturation (94 °C, 30 s), annealing (60 °C, 30 s) and extension (72 °C, 2 min) for 35 cycles; and (3) final extension (72 °C, 5 min). The predicted size of the PCR products was 246 bp. These PCR products were analysed by agarose-gel electrophoresis, transferred on to a nylon membrane and hybridized with 32P-labelled oligonucleotide probes specific to Ceacam1 (Oligo 181; 5'-AACAC-TACGGCTATAGACAAA-3') and Ceacam2 (Oligo 182; 5'-TCTACTACGTCTACAAATGCT-3').

Ceacam2 cDNA sequence from mouse testis

RESULTS

Isolation and characterization of mouse Ceacam1 and Ceacam2

The seven clones with the 5' sequence of Ceacam1 had different restriction maps, as did another seven clones with the 3' end. The different restriction maps seemed to reflect different genes. Grouping these clones according to their restriction maps and DNA sequences revealed two distinct sequences, representing Ceacam1 and Ceacam2. The overlapping genomic clones that spanned Ceacam1 and Ceacam2 are shown in Figure 1. DNA sequence analysis of both strands of these two genes revealed that Ceacam1 and Ceacam2 each contain nine exons each, with sizes of approx. 18.3 and 24.65 kb respectively (Figure 1).

The sizes of the exons and introns and the intron/exon boundary sequences for *Ceacam1* and *Ceacam2* are shown in Tables 1 and 2 respectively. The first exon, which codes for the first two-thirds of the signal sequence, is 304 bp in both *Ceacam1* and *Ceacam2*. In contrast, exons 2–5 are each approx. 300 bp, and each codes for one Ig-like domain in both *Ceacam1* and *Ceacam2*. The transmembrane domain is encoded by exon 6 and the cytoplasmic domain by exons 7–9. Consistent with the RNA splicing rule [21], each intron starts with GT at the 5' end and ends with AG at the 3' end (Tables 1 and 2).

Comparison of Ceacam1 and Ceacam2 genes

The overall similarity between Ceacam1 and Ceacam2, including all exons and introns, is approx. 79.6 %. The similarities between

Figure 1 Structures of the mouse Ceacam1 and Ceacam2 genes

Numbered open boxes indicate exons. The thick lines connecting the exons represent introns. (A) The maps of two overlapping λ clones (λ 3 and λ 7) that contain *Ceacam1*. (B) The maps of two overlapping λ clones (λ 13 and λ 15) that contain *Ceacam2*. The restriction maps are aligned with the intron/exon map. E, *Eco*R1; H, *Hind*III; X, *Xba*I. The enzyme sites in parentheses are from the multiple cloning region of the λ phage vector. (C) Comparison of the mouse *Ceacam1* and *Ceacam2* genes.

Table 1 Intron/exon boundaries of Ceacam1

Exon	Size (bp)	Exon 3'		Intron	Size (bp)		Exon	5′
1	304	ACA G Thr A	gtaaggagatattcc	1	767	tetettecetettag	CC la	TCA Ser
2	360	CAC C His P	gtaagtaattatctg	2	1540	ctattatctgcacag	CC ro	ATA Ile
3	285	ATC T Ife T	gtgagtaacttcttc	3	467	ttctgtttgctccag	AT yr	GGT Gly
4	255	CTT G Leu G	gtaagtggatctctg	4	1727	tctgtttgtccacag	AG In	CCA Pro
5	276	ATA T Ile P	gtgagtgacctcgcc	5	5358	ttctttccctgacag	TT he	GAC Asp
6	121	GGC GG Gly Gl	gtaggacagtctttc	6	796	ctcatatttatttag	G y	GGA Gly
7	53	CAC A His A	gtaagtaaagccaat	7	587	ttcttcctcccctag	AT sn	CTG Leu
8	32	AAC AAG Asn Lys	gtgagcactgccact	8	948	ctctcatcctttcag	GTG Val	GAT Asp
9	1180							

Table 2 Intron/exon boundaries of Ceacam2

Exon	Size (bp)	Exon 3'		Intron	Size (bp)		Exon	5′
1	304	ACA G Thr A	gtaaggagatattcc	1	766	tctcttccctcttag	CC la	TCA Ser
2	360	CAC A His T	gtaagtaattctctg	2	7807	acacagtgcagacag	CC hr	CTA Leu
3	285	ATC T Ile T	gtgagtaacttcttt	3	465	tettgtttgeteeag	AT yr	GGT Gly
4	255	CTT G Leu G	gtaagtggatctctg	4	1717	totgtttgtccacag	AG lu	CCA Pro
5	276	ATA T Ile P	gtgagtgaccttgcc	5	6737	ttctttccctgacag	TT he	GAC Asp
6	118	CGC TG Arg Tr	gtaggacagtctttc	6	798	ctcatatttatttag	G p	GGA Gly
7	53	CAC A His A	gtaagtaaagccaat	7	771	ctcttcctcccctag	AT sn	CTG Leu
8	32	AAC AAG Asn Lys	gtgagcactgccact	8	973	ctctcatattttcag	GTG Val	GAT Asp
9	1180							

Table 3 Intron/exon lengths and similarities of Ceacam1 and Ceacam2

	Length (bp)		Similarity (%)		Length (bp)		
Exon	Ceacam1	Ceacam2		Intron	Ceacam1	Ceacam2	Similarity (%)
1	304	304*	88.9	1	767	766	97.4
2	360	360	76.9	2	1540	7807	29.7
3	285	285	97.9	3	467	465	94.7
4	255	255	99.6	4	1726	1717	97.9
5	276	276	87.0	5	5358	6737	59.8
6	121	118	78.5	6	796	798	98.5
7	53	53	100	7	587	771	64.5
8	32	32	100	8	948	973	94.3
9	1180	1180†	86.8				

 $^{^{\}ast}$ Includes 240 bp of promoter and 5' untranslated sequence. † Includes 889 bp of 3' untranslated sequence.

	Exon 2	(nucleoti	de)				
		843	853	863	873	883	893
0	COMORCE	843 	CTCGACCCC	TGCCACCAC		ACCATTGAGG	CTGTGC
Ceacaml			********	: :::::::	:::::	:: :: ::	:: : :
Ceacam2	CCTCACT	TTTAGCCTC	CTGGAGCCC	TCCCACCACT	GCACAAGTG	ACTGTTATGG	CTTTTC
CCGCame	00101101	840	850	860	870	880	890
		903	913	923	933	943	953
Ceacam1	CGCCCCA	GGTTGCTGA	AGACAACAA	TGTTCTTCT	ACTTGTTCAC	AATCTGCCCC	::
_	: : :::	: ::::::	:: ::::::	TOTAL TITLE	: ::::: ::	AATATGATGA	
Ceacam2	CACTCCA	CGCTGCTGA 900	AGGCAACAA 910	920	930	940	950
		900	910	320	550	2.0	
		963	973	983	993	1003	1013
Ceacam1	TTGGAGO	CTTTGCCTG	GTACAAGGG	AAACACTAC	GCTATAGAC	AAAQAAATTG	CACGAT
OCG COM2					: ::: : :	1111111	:::::
Ceacam2	TCTTGGC	CTTTAGCT	GCACAAGGG	ATCTACTAC	STCTACAAAT	GCTGAAATTG	TACGAT
		960	970	980	990	1000	1010
				1043	1053	1063	1073
		1023	1033	1043		GGCAGAGAGA	
Ceacam1	TTGTACC		ATATGAATII		: : ::::	:::::::::	: :::
Ceacam2	TTCTAAC	AGGCACTA	TANGACTAT	AAAAGGGCC'		GGCAGAGAGG	CACTAT
Ceacamz	IIGIAA	1020	1030	1040	1050	1060	1070
		1010					
		1083	1093	1103	1113	1123	1133
Ceacam1	ACAGCA	TGGATCCCT	TGCTCTTCCA	AATGATCAC	CATGAAGGAT	ATGGGAGTCT	ACACAC
	::::::	:::::::::		:: : ::::		: ::::::::	11111
Ceacam2	ACAGCA				CATGAAGGAT	ACGGGAGTCT 1120	1130
		1080	1090	1100	1110	1120	1130
				1163	1173	1183	1193
		1143	1153	TIOS		CGATTTCATG	
Ceacam1	TAGATAT	GACAGATGA	AAAACTATCG	GIACICA	IIIII	i iiiiiiii	11111
Ceacam2	TACAAA	CACACATC	AGACTATCG			CAATTTCATG	
Ceacamz	I AGAAA.	1140	1150	1160	1170	1180	1190
		1110					
	Exon 2	(protein))				
			40	52	62	72	82
	OT 7 N OT 2	32	42	DNNULLUUM	NI.PLALGAFA	WYKGNTTAID	
Ceacam1					: ::	: :: ::	:: ::
Ceacam2	SLLASW	SPPTTAOVT	VMAFPLHAAE	GNNVILVVY	NMMKGVLAFS	WHKGSTTSTN	AEIVRF
ceacamz	222,000	32	42	52	62	72	82

Figure 2 Comparison of the nucleotide and protein sequences of exon 2 of Ceacam1 and Ceacam2

::::::

102

VPNSNMNFTGQAYSGREIIYSNGSLLFQMITMKDMGVYTLDMTDENYRRTQATVRFHVH

VTGTNKTIKGPVHSGREALYSNGSLLIQRVTMKDTGVYTIXMTDQDYRRRVLTGQFHVH

Oligonucleotides for PCR analyses are underlined. Oligonucleotides for hybridization (Oligo 181 and Oligo 182) are boxed. The nucleotides are numbered with the A of the start ATG as the first nucleotide according to the genomic sequence. The amino acids are numbered with the start methionine (ATG) as the first amino acid.

the exons and introns of Ceacam1 and Ceacam2 are shown in Table 3. The major differences between these two genes are in exon 2, intron 2, intron 5, exon 6 and intron 7, which are 76.9%, 29.7%, 59.8%, 78.5% and 64.5% similar respectively. The nucleotide and the deduced amino acid sequences of exon 2 for Ceacam1 and Ceacam2 are shown in Figure 2. It is apparent that most of the sequence substitutions in exons 2, which code for the first Ig domain, do result in amino acid substitutions in Ceacam1 and Ceacam2. Thus the amino acid identity between the first Ig domains of CEACAM1 and CEACAM2 is 57.1%, which is significantly lower than the similarity of other domains. In addition, insertions of 418 bp and 5849 bp in intron 2, and of 1384 bp and 197 bp in introns 5 and 7 respectively, are found in Ceacam2 compared with Ceacam1 (Table 3 and Figure 1C).

Expression of Ceacam1 and Ceacam2 mRNAs in mouse tissues

To determine the tissue-specific distribution of *Ceacam1* and *Ceacam2*, we performed semi-quantitative RT-PCR on a panel

Figure 3 Expression of Ceacam1 and Ceacam2 mRNAs in various mouse tissues

(A) Specificity of Oligos 181 and 182 in distinguishing Ceacam1 from Ceacam2. (B, C) Tissue-specific expression of Ceacam1 (B) and Ceacam2 (C) analysed by RT-PCR and hybridization with Oligo 181 and Oligo 182 respectively. The positions of the PCR products are indicated by the arrows on the right.

of mouse cDNAs from various tissues by using Ceacam1- and Ceacam2-specific oligonucleotide pairs. The PCR products were hybridized further with Ceacam1- and Ceacam2-specific oligonucleotides derived from exon 2, the least similar exon (Figure 2). The specificities of these two oligonucleotides were confirmed by Southern blot analysis. As shown in Figure 3(A), Oligo 181 hybridized to DNA from $\lambda 3$ (Ceacam1) but not from $\lambda 13$ (Ceacam2), whereas Oligo 182 only hybridized to λ13 DNA. Both Ceacam1 and Ceacam2 mRNAs were detected, although not in the same tissues. This observation supports the notion that both Ceacam1 and Ceacam2 are expressed in mouse (Figures 3B and 3C). High levels of Ceacam1 mRNA were detected in liver, small intestine, prostate and spleen (Figure 3B), similar to the tissue expression pattern in humans [22] and rats [23,24]. Ceacam1 mRNA was also detected in heart, kidney, stomach, muscle, skin and uterus. In contrast, Ceacam2 mRNAs were detected only in kidney, testis and, to a lesser extent, spleen (Figure 3C). These

- 121 TTTCCACTCCACGCCGCTGAAGGCAACAATGTTATTCTAGTTGTTTACAATATGATGAAG 180 F P L H A A E G N N V 1 L V V Y N M M K
- 241 CGATTTGTAACAGGCACTAATAAGACTATAAAAGGGCCTGTACACAGTGGCAGAGAGACA 300 R F V T G T N K T I K G P V H S G R E T
- 301 CTATACAGCAATGGATCCCTGCTCATCCAAAGGGTCACCATGAAGGATACGGGAGTCTAC 360 L Y S N G S L L I Q R V T M K D T G V Y
- H K P V T Q P S L Q V T N T T V K E L D
- 481 TCTGTCACCCTGACCTGCTTGTCGAAAGACCGTCAAGCCCACATCCATTGGATCTTCAAC 540 S V T L T C L S K D R Q A H I H W I F N
- 541 AATGATÄCTCTTCTAATCACAGAGAAGATGACAACCTCTCAGGCGGGACTCATCCTCAAA 600 N D T L L I T E K M T T S Q A G L I L K
 601 ATAGACCCTATTAAGAGGGAAGATGCCGGCGGAGTATCAGTGTGAAATCTCGAATCCAGTC 660
- I D P I K R E D A G E Y Q C E I S N P V

 661 AGCGTCAAGAGGGAGCAACTCAATCAAACTGGAAGTAATATTTGACTCAACATATGACATT 720
 S V K R S N S I K L E V I F D S T Y D I
- S V K R S N S I K L E V I F D S T Y D 1

 721 TCAGATGTCCCCATTGCTGTAATCATAACTGGAGCTGTGGCCGGGGTGATTCTAATAGCA 780
 S D V P I A V I I T G A V A G V I L I A
- 781 GGGCTGGCATATCGCCTCTGTTCCAGGAAGTCTCGCTGATCTGGCTCCTTCTGACAACTC 840
- 841 TCCTAACAAGGTGGATGACGTCGCATACACTGTCCTGAACTTCAATTCCCAGCAACCCAA 900

LAYRLCSRKSR

- 901 CCGGCCAACTTCAGCCCCTTCTTCTCCAAGAGCCACAGAAACAGTTTATTCAGAAGTAAA 960
- 961 AAAGAAG

Figure 4 Ceacam2

(A) cDNA structure. The numbered boxes indicate exons. The thick lines connecting the exons represent introns. The broken lines show the portions of the exon sequences included in testis Ceacam2 cDNA. (B) cDNA and protein sequences.

observations demonstrate that the Ceacam1 and Ceacam2 genes are differentially expressed in mouse tissues.

Ceacam2 cDNA

Although it was detected in testis, kidney and spleen, Ceacam2 mRNA may not contain open reading frames for protein translation. As testis expressed only Ceacam2, the cDNAs coding for Ceacam2 were obtained from testis RNA by RT-PCR with Oligo 630, which contained the 5' untranslated region of exon 1, and Oligo 631, complementary to the exon 9 coding region at the termination codon TGA. The 1 kb PCR product obtained only hybridized to Ceacam2-specific Oligo 182, and not to Ceacam1-specific Oligo 181, suggesting that the fragment codes for Ceacam2. This result is consistent with the tissue distribution of Ceacam2 (Figure 3C). The PCR product was then subcloned

Figure 5 Expression of Ceacam1 (A) and Ceacam2 (B) mRNAs during embryonic development

(A) Analysis of RT-PCR products of *Ceacam1* on an agarose gel and gene-specific hybridization using Oligo 181. (B) Analysis of RT-PCR products of *Ceacam2* on an agarose gel and gene-specific hybridization using Oligo 182. Marker sizes are indicated by thin arrows, and the size of the PCR product is indicated by thick arrow.

and its sequence was determined (Figure 4). The mouse testis cDNA contained exons 1, 2, 5, 6, 8 and 9, and had an open reading frame of 273 amino acids (Figure 4B).

Expression of Ceacam1 and Ceacam2 during mouse embryonic development

The expression of *Ceacam1* and *Ceacam2* was examined in mouse embryos at days 8.5, 9.5, 12.5 and 19 of embryonic development by RT-PCR hybridization as described above. Using *Ceacam1*-specific Oligo 181, we observed age-related differences in mRNA levels: we detected the mRNA at day 8.5, it had disappeared at days 9.5–12.5, and it re-appeared at day 19 (Figure 5A). In contrast, no hybridization signal was detected when *Ceacam2*-specific Oligo 182 was used (Figure 5B). This result suggests that the expression of *Ceacam1*, but not that of *Ceacam2*, is developmentally regulated.

DISCUSSION

Because targeted gene deletion is performed in the 129 Sv mouse, we determined in the present studies the complete genomic structure and DNA sequences of the mouse Ceacam1 and Ceacam2 genes in a 129Sv/Ev mouse genomic library. We also examined the expression patterns of these two genes in adult mouse tissues and during embryonic development. Several conclusions can be made from this study. First, the Ceacam1 and Ceacam2 genes contain sufficient sequence differences that targeted gene deletion specific to either gene should be feasible. Secondly, functional redundancy may not be a problem when only one of these two genes is deleted, because, although Ceacam1 and Ceacam2 are highly homologous, they have different tissue expression patterns. Thirdly, Ceacam1 is probably more important than Ceacam2 in the mouse, because the tissue expression pattern of Ceacam1 is similar to those of the single Ceacam genes in humans and rats. Conservation of the expression profile among these different species suggests that the function of Ceacam1 may be essential. Fourthly, Ceacam2 plays no role in embryonic development; it is not expressed in the mouse embryo.

The results of the present study provide important information for the design of gene targeting strategies for functional studies of Ceacam genes, by either deleting or introducing mutations into the Ceacam genes in the mouse germline. The differences in the two DNA sequences can be used to target a specific gene. As Ceacam1 lacks the 418 and 5849 bp insertions in Ceacam2 intron 2 and the 1384 bp insertion present in Ceacam2 intron 5 (Figure 1C), gene-targeting vectors containing introns 2 or 5 of Ceacam1 or Ceacam2 could be used to achieve selective homologous recombination in the desired gene. If mutant mice in which only one Ceacam gene is deleted survive, then they can be crossed further to generate mice deficient in both Ceacam genes. However, as Ceacam1 and Ceacam2 are both on chromosome 7, it is possible that they are too close to allow construction of doublegene-knockout mice by crossing the single-gene-knockout mice.

The existence of the highly similar second Ceacam gene, Ceacam2, in mice raises the possibility that Ceacam2 is a pseudogene. However, our results indicate that Ceacam2 is probably not a pseudogene, since (1) Ceacam2 contains a complete set of exons and introns typical of a Ceacam gene; (2) Ceacam2 is transcribed in mouse, as shown by the presence of Ceacam2 mRNA in several tissues; and (3) Ceacam2 mRNA contains an open reading frame of 273 amino acids in testis, as has been shown in CMT-93 mouse rectal carcinoma cells [17]. These findings raise the interesting question of the function of Ceacam2. One of the functions of CEACAM1 is inhibition of tumour growth [3,6]. This suggests that this protein may play an important role in regulating cell growth and differentiation. Structural and functional analyses of rat CEACAM1 have revealed that the tumour-suppressive function requires a long cytoplasmic domain, generated by alternative splicing [4,6,24]. Because the cytoplasmic domains of CEACAM1 and CEACAM2 are identical, CEACAM2 may also have growth-suppressive activity. However, the role of CEACAM2 in testis, which is composed of rapidly dividing cells in spermatogenesis, is not clear. Thus the in vivo function of CEACAM2 may not be revealed until its gene is deleted in the mouse.

Knocking out a gene may have no phenotypic effect if related genes have similar functions. We showed that *Ceacam1* and *Ceacam2* are expressed in different tissues in the mouse. *Ceacam1* mRNA was detected in tissues rich in epithelial cells, which is consistent with expression of the CEACAM1 homologue in rats and humans [25–27]. In contrast, *Ceacam2* mRNA was abundantly expressed in testis, which does not express *Ceacam1* mRNA. In addition, *Ceacam2* mRNA was undetectable in the mouse embryo, whereas *Ceacam1* mRNA was developmentally regulated. Thus it appears that the two mouse *Ceacam* genes are not functionally redundant. However, we cannot rule out the possibility that the loss of *Ceacam1* expression may up-regulate expression of *Ceacam2*. These studies will have to await targeted gene deletion of these two related genes.

This work was supported by grant CA 64856 from the National Institutes of Health and grant DAMD17-00-1-0031-1 from the U.S. Department of Defense (to S.-H.L.), core grant CA 16672 to the M. D. Anderson Cancer Center, and grants DK 54254 and DK 57497 from the National Institutes of Health (to S.M.N.).

REFERENCES

Beauchemin, N., Draber, P., Dveksler, G., Gold, P., Gray-Owen, S., Grunert, F., Hammarstrom, S., Holmes, K. V., Karlsson, A., Kuroki, M. et al. (1999) Redefined nomenclature for members of the carcinoembryonic antigen family. Exp. Cell Res. 252, 243—249

- 2 Lin, S. H., Culic, O., Flanagan, D. and Hixson, D. C. (1991) Immunochemical characterization of two isoforms of rat liver ecto-ATPase that show an immunological and structural identity with a glycoprotein cell-adhesion molecule with M_r 105000. Biochem. J. 278, 155-161
- 3 Hsieh, J. T., Luo, W., Song, W., Wang, Y., Kleinerman, D. I., Van, N. T. and Lin, S. H. (1995) Tumor suppressive role of an androgen-regulated epithelial cell adhesion molecule (C-CAM) in prostate carcinoma cell revealed by sense and antisense approaches. Cancer Res. 55, 190–197
- 4 Luo, W., Wood, C., Earley, K., Hung, M.-C. and Lin, S.-H. (1997) Suppression of tumorigenicity of breast cancer cells by an epithelial cell adhesion molecule (C-CAM1): The adhesion and growth suppression are mediated by different domains. Oncogene 14, 1697–1704
- 5 Kleinerman, D. I., Dinney, C. P. N., Zhang, W.-W., Lin, S.-H., Van, N. T. and Hsieh, J.-T. (1996) Suppression of human bladder cancer growth by increased expression of C-CAM1 gene in an orthotopic model. Cancer Res. 56, 3431–3435
- 6 Kunath, T., Ordonez-Garcia, C., Turbide, C. and Beauchemin, N. (1995) Inhibition of colonic tumor cell growth by biliary glycoprotein. Oncogene 11, 2375–2382
- 7 Thompson, N. L., Lin, S. H., Panzica, M. A. and Hixson, D. C. (1994) Cell CAM 105 isoform RNA expression is differentially regulated during rat liver regeneration and carcinogenesis. Pathobiology 62, 209–220
- 8 Neumaier, M., Paululat, S., Chan, A., Matthaes, P. and Wagener, C. (1993) Biliary glycoprotein, a potential human cell adhesion molecule, is downregulated in colorectal carcinomas. Proc. Natl. Acad. Sci. U.S.A. 90, 10744-10748
- 9 Nollau, P., Scheller, H., Kona-Horstmann, M., Rohde, S., Hagenmuller, F., Wagener, C. and Neumaier, M. (1997) Expression of CD66a (human C-CAM) and other members of the carcinoembryonic antigen gene family of adhesion molecules in human colorectal adenomas. Cancer Res. 57, 2354–2357
- 10 Rosenberg, M., Nedellec, P., Jothy, S., Fleiszer, D., Turbide, C. and Beauchemin, N. (1993) The expression of mouse biliary glycoprotein, a carcinoembryonic antigen-related gene, is down-regulated in malignant mouse tissues. Cancer Res. 53, 4938—4945
- Bamberger, A. M., Riethdorf, L., Nollau, P., Naumann, M., Erdmann, I., Gotze, J., Brummer, J., Schulte, H. M., Wagener, C. and Loning, T. (1998) Dysregulated expression of CD66a (BGP, C-CAM), an adhesion molecule of the CEA family, in endometrial cancer. Am. J. Pathol. 152, 1401–1406
- 12 Kleinerman, D. I., Troncoso, P., Lin, S. H., Pisters, L. L., Sherwood, E. R., Brooks, T., von Eschenbach, A. C. and Hsieh, J. T. (1995) Consistent expression of an epithelial cell adhesion molecule (C-CAM) during human prostate development and loss of expression in prostate cancer: implication as a tumor suppressor. Cancer Res. 55, 1215–1220
- Pu, Y. S., Luo, W., Lu, H.-H., Gingrich, J., Greenberg, N. and Lin, S.-H. (1999) Differential expression of C-CAM protein in prostate cancer progression in a transgenic adenocarcinoma mouse model. J. Urol. 162, 802, 806.
- 14 Brandriff, B. F., Gordon, L. A., Tynan, K. T., Olsen, A. S., Mohrenweiser, H. W., Fertitta, A., Carrano, A. V. and Trask, B. J. (1992) Order and genomic distances among members of the carcinoembryonic antigen (CEA) gene family determined by fluorescence in situ hybridization. Genomics 12, 773–779
- Najjar, S. M., Boisclair, Y. R., Nabih, Z. T., Philippe, N., Imai, Y., Suzuki, Y., Suh, D. S. and Ooi, G. T. (1996) Cloning and characterization of a functional promoter of the rat pp120 gene, encoding a substrate of the insulin receptor tyrosine kinase. J. Biol. Chem. 271, 8809—8817
- 16 Cheung, P. H., Culic, O., Qiu, Y., Earley, K., Thompson, N., Hixson, D. C. and Lin, S. H. (1993) The cytoplasmic domain of C-CAM is required for C-CAM-mediated adhesion function: studies of a C-CAM transcript containing an unspliced intron. Biochem. J. 295, 427–435
- 17 Nedellec, P., Dveksler, G. S., Daniels, E., Turbide, C., Chow, B., Basile, A. A., Holmes, K. V. and Beauchemin, N. (1994) Bgp2, a new member of the carcinoembryonic antigen-related gene family, encodes an alternative receptor for mouse hepatitis viruses. J. Virol. 68, 4525–4537
- Williams, R. K., Jiang, G.-S. and Holmes, K. V. (1991) Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoprotein. Proc. Natl. Acad. Sci. U.S.A. 88, 5533-5536
- 19 Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd edn, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
- 20 Nedellec, P., Turbide, C. and Beauchemin, N. (1995) Characterization and transcriptional activity of the mouse biliary glycoprotein 1 gene, a carcinoembryonic antigen-related gene. Eur. J. Biochem. 231, 104–114
- 21 Senapathy, P., Shapiro, M. B. and Harris, N. L. (1990) Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to genome project. Methods Enzymol. 183, 252–278

- Prall, F., Nollau, P., Neumaier, M., Haubeck, H. D., Drzeniek, Z., Helmchen, U., Loning, T. and Wagener, C. (1996) CD66a (BGP), an adhesion molecule of the carcinoembryonic antigen family, is expressed in epithelium, endothelium, and myeloid cells in a wide range of normal human tissues. J. Histochem. Cytochem. 44, 35–41
- Odin, P., Asplund, M., Busch, C. and Obrink, B. (1988) Immunohistochemical localization of cell CAM 105 in rat tissues: appearance in epithelia, platelets, and granulocytes. J. Histochem. Cytochem. 36, 729-739
- Estrera, V. T., Luo, W., Phan, D., Hixson, D. and Lin, S.-H. (1999) The cytoplasmic domain of C-CAM1 is necessary and sufficient in suppression of the growth of prostate cancer cells. Biochem. Biophys. Res. Commun. 263, 797–803

Received 16 August 2000/8 January 2001; accepted 2 February 2001

- 25 Cheung, P. H., Thompson, N. L., Earley, K., Culic, O., Hixson, D. and Lin, S. H. (1993) Cell-CAM105 isoforms with different adhesion functions are coexpressed in adult rat tissues and during liver development. J. Biol. Chem. 268, 6139–6146
- 26 Thompson, J. A., Grunert, F. and Zimmermann, W. (1991) Carcinoembryonic antigen gene family: molecular biology and clinical perspectives. J. Clin. Lab. Anal. 5, 344–366
- 27 Hinoda, Y., Neumaier, M., Hefta, S. A., Drzeniek, Z., Wagener, C., Shively, L., Hefta, L. J. F., Shively, J. E. and Paxton, R. (1988) Molecular cloning of a cDNA coding biliary glycoprotein I: Primary structure of a glycoprotein immunologically crossreactive with carcinoembryonic antigen. Proc. Natl. Acad. Sci. U.S.A. 85, 6959–6963