Progettazione di Algoritmi

Simone Lidonnici

10 luglio 2024

Indice

1	Teo	oria dei grafi
	1.1	Tipi di grafi
		1.1.1 Grafi diretti e non diretti
		1.1.2 Passeggiate e cammini
		1.1.3 Grafi connessi e fortemente connessi
		1.1.4 Grafi ciclici
	1.2	Rappresentare un grafo
		1.2.1 Matrici di adiacenza
		1.2.2 Liste di adiacenza
	1.3	Trovare il ciclo in un grafo
	1.4	DFS (Ricerca in profondità)
		1.4.1 DFS ottimizzata
		1.4.2 DFS ricorsiva
		1.4.3 DFS in grafi diretti
		1.4.4 Componenti e DFS con componenti
	1.5	Ordinare un grafo
		1.5.1 Trovare l'ordine topologico in grafi diretti
		1.5.2 Trovare l'ordine topologico in grafi non diretti
	1.6	Intervalli di visita e tipi di archi
		1.6.1 Tipi di archi
		1.6.2 Algoritmo per controllare i tipi di archi
	1.7	Alberi di visita e cicli
		1.7.1 Grafi non diretti
		1.7.2 Grafi diretti
		1.7.3 Vettore dei padri
	1.8	Ponti
		1.8.1 Algoritmo per trovare i ponti
	1.9	Componenti fortemente connessi

1

Teoria dei grafi

Definizione di Grafo

Un **grafo** G è una coppia (V, E) in cui V è un insieme di nodi e E un insieme di archi che collegano due nodi. Un grafo si dice **semplice** se:

- Non ha cappi, cioè nessun nodo è collegato con se stesso
- Ogni coppia di nodi è collegata da massimo un arco

1.1 Tipi di grafi

1.1.1 Grafi diretti e non diretti

I grafi possono essere di due tipologie in base a se gli archi sono **orientati**, cioè partono da un nodo e arrivano ad un altro senza essere percorribili al contrario. Se il grafo ha archi orientati si dice **diretto**.

Grafo non diretto

Grafo diretto

1.1.2 Passeggiate e cammini

Nodi adiacenti

Due nodi collegati da un arco si dicono **adiacenti** (o vicini) e l'arco che li collega viene detto incidente. Per indicare che due nodi sono adiacenti scriviamo $x \backsim y$. Si definisce il grado di un nodo $\deg(x)$ come il nomero dei suoi nodi adiacenti, uguale al numero di archi incidenti.

1. Teoria dei grafi 1.1. Tipi di grafi

Definizione di passeggiata

Una **passeggiata** su un grafo è una sequenza di archi e nodi:

$$v_0e_1v_1e_2\dots e_nv_n$$

In cui ogni arco e_i collega il nodo v_{i-1} al nodo v_i .

Un cammino è una passeggiata in cui non si ripetono i nodi.

1.1.3 Grafi connessi e fortemente connessi

Definizione di grafo connesso

Un grafo G si dice **connesso** se per qualsiasi coppia di nodi esiste un cammino che li collega:

$$\forall v_i, v_j \in V(G) \exists \text{cammino} | v_1 \to v_j \lor v_j \to v_i$$

Un grafo G si dice **fortemente connesso** se per qualsiasi coppia di nodi esiste un cammino che li collega partendo da entrambi i nodi:

$$\forall v_i, v_j \in V(G) \exists \text{cammino} | v_1 \to v_j \land v_j \to v_i$$

Nel caso di grafi non diretti ogni grafo connesso è anche fortemente connesso.

Grafo non connesso

Grafo connesso

Grafo fortemente connesso

Esiste un tipo specifico di passeggiata detta **passeggiata Euleriana** in cui si attraversano tutti i nodi una sola volta. Può esistere una passeggiata Euleriana in un grafo solo se il grafo è connesso e ci sono al massimo 2 nodi con grado dispari, che saranno inizio e fine.

1.1.4 Grafi ciclici

Definizione di grafo ciclico

Un grafo G è ciclico se esiste un sottograpo connesso in cui ogni vertice ha grado ≥ 2 . Se nel grafo tutti i vertici hanno grado ≥ 2 allora il grafo è sicuramente ciclico.

$$\forall v \in V(G)\deg(v) \geq 2 \implies G$$
ciclico

In un grafo diretto se ogni nodo ha almeno un arco uscente allora il grafo è ciclico.

1.2 Rappresentare un grafo

1.2.1 Matrici di adiacenza

I grafi possono essere rappresentati con delle matrici di adiacenza in cui se v_i è adiacente a v_j la matrice conterrà 1 nella posizione (i, j):

	v_1	 v_{j}	 v_n
v_1	0		
v_i		1	
v_n			0

Costo per controllare se x è vicino di y: O(1)Spazio necessario per l'archiviazione: $O(n^2)$

1.2.2 Liste di adiacenza

Per rappresentare i grafi si può anche usare una lista di adiacenza in cui ogni nodo ha una lista contenente tutti i suoi vicini:

$$v_1$$
.neighbors = $[\dots]$
 v_n .neighbors = $[\dots]$

Nel caso di un grafo diretto, ogni nodo avrà due liste:

- v_i .neighbors_out che contiene i nodi collegati da archi uscenti da v_i
- v_i .neighbors_in che contiene i nodi collegati da archi entranti in v_i

Costo per controllare se x è vicino di y: O(n)Spazio necessario per l'archiviazione: $O(n^2)$

Lunghezza della lista di vicini di un determinato nodo v_i : deg (v_i)

Grandezza totale delle liste: $O(n) + O(\sum_{i=1}^{n} \deg(v_i)) = O(n+m)$

1.3 Trovare il ciclo in un grafo

Dato un grafo G in cui ogni vertice ha grado ≥ 2 , l'algoritmo per trovare il ciclo:

Algoritmo: Ricerca di un ciclo in un grafo G

Input:

• G: grafo

return C

Output:

• C: nodi che formano il ciclo

1.4 DFS (Ricerca in profondità)

La **DFS** (Depth first search) è un modo per visitare un grafo che consiste nel partire da un nodo e spostarsi in un vicino casuale non ancora visitato e nel caso tutti i vicini di un nodo siano già stati visitati ritornare al nodo precedente. Per implementare questo roll-back si utilizza uno Stack. L'algoritmo ritorna tutti i nodi visitabili dal nodo di partenza, quindi nel caso di grafo non connesso, ritornerà solo i vertici nel sottografo contenente il nodo di partenza.

Dimostrazione per assurdo:

```
Supponiamo esista y|\exists \text{cammino } x \to y \text{ ma } y \notin \text{Vis e sia } i \text{ un indice per cui } v_i \in \text{Vis} \land v_{i+1} \notin \text{Vis.}
v_i \in \text{Vis} \implies \begin{cases} v_i \text{ è stato inserito in } S \\ v_i \text{ è stato tolto da } S \end{cases} \implies \text{ogni vicino di } v_i \text{ è stato inserito in Vis} \implies v_{i+1}
\text{è stato inserito in Vis}
```

DFS ottimizzata 1.4.1

L'algoritmo di base della DFS è poco ottimizzato per via del costo dell'if che richiede $O(\deg(y))$. n), per ottimizzarlo si cambia la struttura di Vis rendendolo un array lungo n in cui:

$$Vis[v] = \begin{cases} 0 & v \text{ non è stato visitato} \\ 1 & v \text{ è stato visitato} \end{cases}$$

Con questo cambiamento l'algoritmo diventa:

```
Algoritmo: DFS ottimizzata
```

```
Input:
   • G: grafo
   • x: nodo di partenza
def DFS_ott(G, x):
   Vis[x]=1
   Stack S=[x]
   while len(S)!=0:
      y=S.top()
      if Vis[y.neighbors[0]] == 1 : // O(deg(y) \cdot n)
         z=y.neighbors[0]
         Vis[z]=1
         S.push(z)
      y.neighbors.remove(0)
      if len(y.neighbors==0) :
         S.pop()
   return Vis
```

Avendo tutto costo O(1) tranne il ciclo while con costo O(n+m), l'algoritmo ha costo complessivo O(n+m).

1.4.2 DFS ricorsiva

Della DFS si può fare anche una versione ricorsiva:

Il costo di questo algoritmo è O(n+m).

1.4.3 DFS in grafi diretti

Nel caso di grafi diretti bisogna cambiare l'algoritmo per controllare solo gli archi uscenti e non quelli entranti quando si cambia nodo:

```
Algoritmo: DFS
Input:
    • G: grafo

    • x: nodo di partenza

def DFS_dir(G, x):
    | Vis[x]=1
    | Stack S=[x]
    | while len(S)!=0:
    | y=S.top()
    | if \( \frac{1}{2} \) in y.neighbors_out | Vis[z]==0:
    | Vis[z]=1
    | S.push(z)
    | else
    | S.pop()
    | return Vis
```

1.4.4 Componenti e DFS con componenti

Definizione di componente

Un **componente** è l'insieme di nodi di un sottografo connesso, però non connesso al resto del grafo.

```
Comp[x] = nodi nello stesso componente che contiene x
Comp[x] = Comp[y] \iff x, y appartengono allo stesso sottografo
```

L'algoritmo che visita tutti i componenti è una modifica della DFS ricorsiva in cui:

$$Comp[v] = \begin{cases} 0 & v \text{ non è ancora stato visitato} \\ i & v \text{è nel componente } i \end{cases}$$

Si aggiunge inoltre una funzione per cambiare componente in cui si trova il nodo corrente:

```
Algoritmo: DFS per trovare componenti
 Input:
    • G: grafo
 def CComp(G):
    comp_count=0
    for x in V:
       if Comp[x] == 0:
          comp_count+=1
          DFS_ric_comp(G, x, Comp, comp_count)
    return Comp
 def DFS_ric_comp(G, x, Comp, comp_count):
    Comp[x]=comp_count
    for y in x.neighbors:
       if Comp[y] == 0:
          DFS_ric_comp(G, y, Comp, comp_count)
    return Comp
```

1.5 Ordinare un grafo

Un grafo diretto G ha un **ordine topologico** se esiste un ordine per cui ogni nodo ha archi uscenti che vanno solo verso nodi successivi nell'ordine e archi entranti solo da nodi precedenti nell'ordine. Inoltre:

G ciclico $\iff \#$ ordine topologico

Corollario:

G non ciclico $\implies \exists v \in V | v$ non ha archi uscenti

1.5.1 Trovare l'ordine topologico in grafi diretti

Per trovare l'ordine topologico in grafi diretti si usa un'algoritmo:

```
Algoritmo: DFS per trovare l'ordine topologico in grafi diretti
 Input:
    • G: grafo
 def DFS_ord(G):
    1=[]
    while len(G)!=0: // O(n)
       x=no_archi(G)
       1.insert(x,0)
       elimina(x)
    return 1
 \operatorname{def} no_archi(G): // O(n)
    for v in V:
       if len(v.neighbors_out)==0 :
        l return v
 def elimina(x): // O(m)
    for e in E:
       if x in e :
           E.remove(e)
```

Il ciclo while esegue n
 volte le funzioni no archi e elimina, quindi il costo dell'algoritmo sarà:
 O(n(n+m))

1.5.2 Trovare l'ordine topologico in grafi non diretti

Per trovare l'ordine topologico in grafi non diretti si usa un'algoritmo:

```
Algoritmo: DFS per trovare l'ordine topologico in grafi non diretti

Input:

• G: grafo

def ord_top(G):

L=[]
for v in V:

if Vis[v]==0:

| DFS_ord(G, v, Vis, L)

return L

def DFS_ord(G, v, Vis, L):

Vis[v]=1
for w in v.neighbors:

if Vis[w]==0:

| DFS_ord(G, w, Vis, L)

L.insert(v,0)
```

1.6 Intervalli di visita e tipi di archi

Dato un grafo G aggiungiamo un contatore C alla DFS, che parte da 1 e viene aumentato di uno ogni volta che si visita un nodo nuovo.

Ad ogni nodo $v \in V$ associamo:

- t(v): valore di C quando v viene visitato per la prima volta
- \bullet T(v): valore di C quando v viene rimosso dallo Stack
- $\operatorname{Int}(v) = [t(v), T(v)]$

Esempio:

Una possibile tabella contenente gli intervalli usando una DFS partendo da v_1 è:

v	t(v)	T(v)
$\overline{v_1}$	1	5
v_2	2	5
v_3	3	5
v_4	5	5
v_5	4	4

Dalla tabella e dal grafico possiamo osservare che:

- $t(v_i) \neq t(v_i) \ \forall i, j$
- $t(v_i) \leq T(v_i)$
- $t(v_i) = T(v_i) \iff v_i$ non ha archi uscenti e non è radice
- v_i radice \iff Int $(v_i) = [1, n]$ con G che ha n nodi

Inoltre confrontando gli intervalli tra due nodi v_1 e v_2 ci sono 3 possibilità:

- $\operatorname{Int}(v_1) \subset \operatorname{Int}(v_2)$
- $\operatorname{Int}(v_1) \supset \operatorname{Int}(v_2)$
- $\operatorname{Int}(v_1) \cap \operatorname{Int}(v_2) = \emptyset$

1.6.1 Tipi di archi

Albero di visita

Un albero di visita è un sottografo connesso e aciclico composto solo dagli archi che sono stati usati per raggiungere i vertici visitati. Nel caso di grafi diretti viene detto arborescenza ed è un'albero con tutti gli archi orientati dalla radice verso le foglie.

Preso un'arborescenza A creata tramite una DFS su un grafo G, ogni arco $(v_i, v_j) \in E$ non in A può essere classificato in 3 categorie:

- 1. Arco all'indietro: se va da un discendente ad un antenato, cioè $\operatorname{Int}(v_i) \subset \operatorname{Int}(v_i)$
- 2. Arco in avanti: se va da un antenato a un discendente, cioè $\operatorname{Int}(v_i) \supset \operatorname{Int}(v_j)$
- 3. Arco di attraversamento: se i due nodi non hanno correlazioni, cioè $\operatorname{Int}(v_i) \cap \operatorname{Int}(v_j) = \emptyset$

Nei grafi non diretti non essendoci differenza tra gli archi (v_i, v_j) e (v_j, v_i) , l'unico caso possibile è che sia un arco all'indietro perché:

$$t(v_i) < t(v_j) \implies \operatorname{Int}(v_i) \subset \operatorname{Int}(v_j)$$

Esempio:

Gli archi non presenti nell'arborescenza A sono $(v_2, v_4), (v_4, v_1)$ e (v_4, v_5) . Questi archi sono classificati:

- $\bullet \ (v_2, \, v_4)$ è in avanti perchè $[2{,}5]{\supset}[4{,}5]$
- $\bullet \ (v_4, \, v_1)$ è indietro perchè $[5,\!5] \supset [1,\!5]$
- $(v_4,\,v_5)$ è di attraversamento perchè $[5,\!5]\cap[4,\!4]=\emptyset$

1.6.2 Algoritmo per controllare i tipi di archi

return Back, Cross, Forward

Per controllare i tipi di archi usiamo un'algoritmo modificato della DFS che da in output 3 insiemi Back, Forward e Cross che contengono rispettivamente gli archi appartenenti alle tre categorie. Aggiungo un contatore C e anche due array t e T in cui segno gli intervalli dei vari nodi.

Algoritmo: DFS per classificare gli archi Input: • G: grafo • x: nodo di partenza def DFS_archi(G, x): C=0Vis[x]=1t[x]=1Stack S=[x]while len(S)!=0: y=S.top() while len(y.neighbors_out)!=0 : z=y.neighbors_out[0] y.neighbors_out.remove(0) if Vis[z] == 0 : C+=1t[z]=CVis[z]=1S.push(z)break if t[z] < t[y] and T[z] == 0: Back.add((y,z))elif t[z] < t[y] and T[z]!=0: Cross.add((y,z)) else Forward.add((y,z)) if y==S.top(): S.pop() T[y]=C

1.7 Alberi di visita e cicli

1.7.1 Grafi non diretti

Dato un grafo non diretto G connesso con un albero di visita T generato da una DFS, allora:

 \exists arco all'indietro \iff G ciclico

1.7.2 Grafi diretti

Dato un grafo diretto G con un'arborescenza T generata da una DFS, definiamo che:

- un nodo u è discendente di un altro nodo v se esiste un cammino $v \to u$, cioè $\mathrm{Int}(v) \subseteq \mathrm{Int}(v)$
- un nodo v è antenato di un altro nodo u se un arco (u, v) è un arco all'indietro. Gli antenati di u sono tutti i nodi nel cammino radice $\to u$

Anche in questo caso:

 \exists arco all'indietro \iff G ciclico

Esempio:

Un pozzo universale è un nodo x per cui:

- $\nexists(x,y) \in E \ \forall y \in V(G)$
- $\exists (y, x) \in E \ \forall y \in V(G)$

Scrivere un algoritmo con costo O(n) per stabilire se esiste un pozzo universale avendo in input il grafo come matrice di adiacenza. La matrice se ci fosse un pozzo x sarebbe:

	v_1		x		v_n
v_1	0		1		
		0	1		
\boldsymbol{x}	0	0	0	0	0
			1	0	
v_n			1		0

Il codice dell'algoritmo:

Algoritmo: Ricerca di un pozzo

Input:

• M: matrice di adiacenza del grafo

1.7.3 Vettore dei padri

Un modo di salvare un albero di visita è il vettore dei padri, cioè un vettore P in cui P[v] = nodo tramite cui si è arrivati a v. Per la radice P[v] = v.

Esempio:

n questo caso partendo da v_6 il vettore dei padri sarebbe:

$$P = [6, 1, 5, 6, 1, 6, 5, 2]$$

Per trovare gli antenati di un nodo v si può usare un algoritmo con costo O(n):

1. Teoria dei grafi 1.8. Ponti

1.8 Ponti

Definizione di ponte

Dato un grafo non diretto G, si dice **ponte** un arco che se tolto fa diventare il grafo non connesso:

Per controllare se un determinato arco (u, v) è un ponte lo elimino e controllo se esiste un altro cammino $u \to v$:

- \bullet esiste $\implies (u, v)$ non ponte
- ullet non esiste $\implies (u,v)$ ponte

Se volessimo trovare tutti i ponti in un grafo controllando ogni arco il costo computazionale sarebbe O(m(n+m)).

Dato T l'albero di visita di una DFS su un grafo G:

(u,v)ponte $\iff \nexists$ arco all'indietro da T_v a fuori T_v

Dove T_v è l'insieme dei discendenti di v.

1.8.1 Algoritmo per trovare i ponti

Dato un grafo G per trovare tutti i ponti si usa un'algoritmo che tiene segnato con Back[v] il punto più indietro che si può raggiungere da un determinato nodo v:

```
Algoritmo: DFS per trovare i ponti
 def Ponti(G):
    C=0
    v=V[0]
    DFS_ponte(G, v, v, t, C, P, Ponti)
    return Ponti
 def DFS_ponte(G, u, v, t, C, P, Ponti):
    C+=1
    t[v]=C
    Back[v]=t[v]
    for u in v.neighbors_out :
       if t[u] == 0:
          P[u]=v
          DFS_ponte(G, v, u, , C, P, Ponti)
          if Back[u] < Back[v] :</pre>
             Back[v]=Back[u]
       elif u!=P[v] and t[u]<Back[v]:
        | Back[v]=t[u]
    if Back[v] == t[v]:
       P.add((u,v))
```

1.9 Componenti fortemente connessi