РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ ПРЯМЫМИ МЕТОДАМИ. ТЕОРИЯ ВОЗМУЩЕНИЙ

Теоретический материал к данной теме содержится [1, глава 5].

Отчет по лабораторной работе должен содержать следующие материалы по каждой задаче: 1) постановка задачи; 2) необходимый теоретический материал; 3) аналитическое решение **тестового** примера и результат вычислительного эксперимента по тесту; 4) решение поставленной задачи; 5) анализ полученных результатов; 6) графический материал (если необходимо);

7) тексты программ.

Варианты заданий к задачам 3.1-3.10 даны в ПРИЛОЖЕНИИ 3.А.

3адача 3.1. Дана система уравнений Ax = b порядка n. Исследовать зависимость погрешности решения x от погрешностей правой части системы b.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Задать матрицу системы A и вектор правой части b. Используя встроенную функцию, найти решение x системы Ax = b
- с помощью метода Гаусса.
- $2.\ C$ помощью встроенной функции вычислить число обусловленности матрицы $\ A.$
- 3. Принимая решение x, полученное в п. 1, за точное, вычислить вектор $d = (d_1, ..., d_n)^T$,

$$d_i = \frac{||x-x^i||_{\infty}}{||x||_{\infty}}$$
, i =1, ..., n , относительных погрешностей решений x^i систем $Ax^i = b^i$, i =1, ..., n , где

компоненты векторов b^i вычисляются по формулам: $b^i_k = \begin{cases} b_k + \Delta, & k = i, \\ b_k, & k \neq i, \end{cases}$

(Δ — произвольная величина погрешности).

- 4. На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту b_m вектора b, которая оказывает наибольшее влияние на погрешность решения.
- 5. Оценить теоретически погрешность решения χ^m по формуле:

 $\delta(x^m) \leq cond(A) \cdot \delta(b^m)$. Сравнить значение $\delta(x^m)$ со значением практической погрешности d_m . Объяснить полученные результаты.

УКАЗАНИЕ. Пусть функция $\mathbf{cond}(A)$ возвращает число обусловленности матрицы A, основанное на ∞ норме. Для вычисления $||\cdot||_{\infty}$ вектора удобно воспользоваться встроенной функцией, возвращающей максимальную компоненту вектора v.

Задача 3.2. Для системы уравнений Ax=b из **задачи 3.1** исследовать зависимость погрешности решения системы от погрешностей коэффициентов матрицы A (аналогично **задаче 3.1**). Теоретическая оценка

погрешности в этом случае имеет вид: $\delta(x^*) \leq cond(A) \cdot \delta(A^*)$, где x^* - решение системы с возмущенной матрицей A^* .

Задача 3.3. Дана матрица A. Найти число обусловленности матрицы, используя вычислительный эксперимент.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Выбрать последовательность линейно независимых векторов b^i , i=1,...k . Решить k систем уравнений $Ax^i=b^i$, i=1,...,k , используя встроенную функцию.
- 2. Для каждого найденного решения x^i вычислить отношение $\dfrac{\mid\mid x^i\mid\mid}{\mid\mid b^i\mid\mid}$, i=1, ...,k.

3. Вычислить норму матрицы
$$A^{-1}$$
 по формуле $||A^{-1}|| \approx \max_{1 \leq i \leq k} \frac{||x^i||}{||b^i||}$, вытекающей из неравенства

$$||x|| \le ||A^{-1}|| \cdot ||b||.$$

4. Вычислить число обусловленности матрицы A по формуле $cond(A) \approx ||A|| \cdot ||A^{-1}||$.

Задача 3.4. Решить систему уравнений Ax=b из **задачи 3.1**, используя LU-разложение матрицы A. ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Составить функцию $\mathbf{lu}(A)$, и с ее помощью получить LU- разложение матрицы A.
- 2. Преобразовать вектор b по формулам прямого хода метода Гаусса. С помощью обратной подстановки найти решение системы x.

УКАЗАНИЕ. Функция $\mathbf{lu}(A)$ должна возвращать матрицу, в которой содержатся матрицы P, L и U такие, что PA=LU (P- матрица перестановок).

Задача 3.5. Дана система уравнений Ax=b порядка n с симметричной положительно определенной матрицей A. Решить систему методом Холецкого.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Написать функцию **cholesky**(A), и с ее помощью получить LL^T разложение матрицы A.
- 2. Решить последовательно системы Ly=b и $L^Tx=y$ с треугольными матрицами.

УКАЗАНИЕ. Функция cholesky(A) должна возвращать нижнетреугольную матрицу L.

Задача 3.6.* Дана система уравнений Ax=b порядка n, где A=A(t), t - параметр. Исследовать зависимость решения системы Ax=b от вычислительной погрешности при заданных значениях параметра t. ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Составить программу, реализующую метод Гаусса (схема частичного выбора) для произвольной системы Ax=b. Используя составленную программу, найти решение заданной системы Ax=b.
- 2. Составить программу округления числа до m знаков после запятой. Вычислить элементы матрицы A и вектора b по формулам индивидуального варианта, производя округление до m- знаков после запятой (в результате будут получены матрица A1 и вектор b1).
- 3. Решить систему уравнений A1x1=b1 методом, указанным в п.1, обращаясь каждый раз к программе округления. Оценить практически полученную погрешность решения.
- 4. Сравнить результаты, полученные при разных значениях параметра t.

Задача 3.7.* Исследовать зависимость числа обусловленности матрицы A из **задачи 3.1** от порядка n матрицы.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Составить программу, выполняющую $\,$ LU- разложение $\,$ матрицы произвольного порядка $\,$ n (схема единственного деления).
- 2. Используя составленную программу, для каждого n=1,2,3,...,k (k максимально возможное значение, при котором удается решить задачу) найти обратную матрицу A^{-1} .
- 3. Вычислить число обусловленности матрицы по формуле $cond(A) = \|A\| \cdot \|A^{-1}\|$ для каждого значения n.
- 4. Построить график зависимости cond(A) от n.

Задача 3.8.* Дана система уравнений Az(x)=b(x) порядка n. Построить график функции $y(x)=\sum_{i=1}^n z_i(x)$

на отрезке [a, b]; здесь $z(x) = (z_1(x), z_2(x), ..., z_n(x))^T$ - решение системы. Для решения системы уравнений использовать метод Гаусса (схема полного выбора).

^{*} Задачи 3.6 –3.10 выполняются на <u>АЛГОРИТМИЧЕСКОМ ЯЗЫКЕ</u>. Для проверки правильности работы запрограммированных алгоритмов необходимо провести расчет для тестового примера.

Задача 3.9.* Решить систему уравнений Ax=b порядка n из **задачи 3.5** методом Холецкого. Вычислить число обусловленности матрицы A.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Составить программу, выполняющую LL^T разложение симметричной положительно определенной матрицы произвольного порядка n .
- 2. Используя составленную программу, найти решение системы Ax=b и обратную матрицу A^{-1} .
- 3. Вычислить число обусловленности матрицы по формуле $cond(A) \approx \|A\| \cdot \|A^{-1}\|$.

УКАЗАНИЕ. Предусмотреть компактное размещение элементов матрицы в памяти ЭВМ.

Задача 3.10.* Дана система уравнений Ax=b порядка n с разреженной матрицей A. Решить систему методом прогонки.

УКАЗАНИЕ. Предусмотреть компактное размещение элементов матрицы в памяти ЭВМ.

ПРИЛОЖЕНИЕ 3.А.

Схема вариантов к лабораторной работе N Выполняемые задачи Выполняемые задачи N Выполняемые задачи 3.1.1, 3.5.1, 3.10.1 3.1.11, 3.3.3, 3.10.3 21 3.1.21, 3.5.6, 3.6.5 1 11 3.1.22. 2 3.1.2. 3.4. 3.9.1** 12 3.1.12. 3.2. 3.9.3** 22 3.4. 3.7 3.8.1 3.1.23, 3.1.3, 3.3.6, 3.8.5 3 3.3.1, 13 3.1.13, 3.5.4, 3.8.3 23 4 3.1.4, 3.1.14, 3.1.24, 3.3.2, 3.9.5** 3.2, 3.7 14 3.4, 24 3.7 3.10.5 5 3.1.5, 3.5.2, 3.6.1 3.1.15, 3.6.3 25 3.1.25, 3.3.7, 15 3.3.4, 3.4, 3.10.2 3.1.16, 3.2, 26 3.1.26, 3.4, 3.7 3.1.6, 16 3.10.4 3.9.4** 3.9.2** 3.6.6 3.1.7, 3.3.2, 17 3.1.17, 3.5.5, 27 3.1.27, 3.3.7, 3.8.4 8 3.1.8, 3.2, 3.8.2 18 3.1.18, 3.4, 28 3.1.28, 3.2, 3.10.6 3.1.9, 3.5.3, 3.7 19 3.1.19, 3.3.5, 3.7 29 3.1.29, 3.3.8, 3.8.6 3.6.2 3.9.6** 3.1.10, 3.4, 20 3.1.20, 3.2, 3.6.4 30 3.1.30, 3.4,

ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ

Таблица к задаче 3.1

Компоненты вектора b во всех вариантах задаются формулой $b_i=N$, $\forall i=1...n$, коэффициенты

$$c=c_{ij}$$
 = $0.1 \cdot N \cdot i \cdot j$, $\forall i,j=1...n$, N - номер варианта.

N	n	a_{ij}	N	n	a_{ij}
3.1.1	6	15	3.1.16	5	100
		$4 \cdot c^5 + 6 \cdot c + 1$			$\overline{(3+0.3\cdot c)^5}$
3.1.2	6	125	3.1.17	4	115
		$(4+c\cdot 0.25)^6$			$3c + 4c^3$
3.1.3	6	12	3.1.18	5	123
		$\overline{4c+4}$			$\frac{1}{2c^3 + 5c^2}$
3.1.4	7	55	3.1.19	5	_100
		$\overline{c^2 + 3 \cdot c + 100}$			$\overline{(11+c)^5}$

 $^{^*}$ Задачи 3.6-3.10 выполняются на <u>АЛГОРИТМИЧЕСКОМ ЯЗЫКЕ</u>. Для проверки правильности работы запрограммированных алгоритмов необходимо провести расчет для тестового примера.

^{**} 3.9.i = 3.5.i, i=1,2,3,4,5,6.

3.1.5	7	125	3.1.20	6	(-)
3.1.5	,	$\frac{135}{\left(2+0.3\cdot c\right)^5}$	3.1.20		$\cos\left(\frac{c}{25}\right)$
3.1.6	7	3	3.1.21	6	1000
		$\frac{3}{c^4 - 4 \cdot c^3}$			$\frac{1000}{3c^2 + c^3}$
3.1.7	6	256	3.1.22	5	150
		$\frac{256}{(5+c\cdot 0.256)^5}$			$\overline{13c^3 + 777c}$
3.1.8	6	1	3.1.23	5	11.7
		$\sqrt{c^2 + 0.58 \cdot c}$			$\overline{(1+c)^7}$
3.1.9	5	3	3.1.24	4	159
		$(1+c)^2$			$10c^3 + c^2 + 25$
3.1.10	5	$\sin\left(\frac{c}{8}\right)$	3.1.25	5	$\frac{321}{\left(1+c\right)^6}$
					$(1+c)^6$
3.1.11	4	1	3.1.26	5	31
		$67 + c^4$			$\sqrt{c^2+6c}$
3.1.12	4	111	3.1.27	6	350
		$\overline{c^4 + 13 + 3c}$			$\frac{350}{(5+0.35c)^3}$
3.1.13	5	1	3.1.28	5	500
		$\overline{(1+c)^3}$			$\frac{500}{\left(8\cdot c - 5\right)^2}$
3.1.14	7	1.5	3.1.29	6	10
		$\overline{0.001c^3 - 2.5c}$			$0.3c^3 + 10c$
3 <mark>.1.15</mark>	6	88.5	3.1.30	5	1
		$\overline{c + 0.03c^2}$			$0.4c^3 + 20c$

Таблица к задаче 3.3

		Таоли	
N	A	N	A
3.3.1	1 2 3 4 5	3.3.5	1 1 1 1 1
	1 1 2 3 4		16 8 4 2 1
	1 2 1 2 3		81 27 9 3 1
	1 3 2 1 2		256 64 16 4 1
	1 4 3 2 1		625 125 25 5 1
3.3.2	3 1 0 0 0	3.3.6	611 196 -192 407
	1 2 1 0 0		196 899 113 -192
	0 1 1 1 0		-192 113 899 196
	0 0 1 0 1		407 -192 196 611
	0 0 0 1 1		
3.3.3	1 1 1 1	3.3.7	1 0.5 0.333 0.25 0.2
	1 2 3 4 5		0.5 0.333 0.25 0.2 0.167
	1 3 6 10 15		0.333 0.25 0.2 0.167 0.143
	1 4 10 20 35		0.25 0.2 0.167 0.143 0.125
	1 5 15 35 70		0.2 0.167 0.143 0.125 0.111

3.3.4	1	1	1	1	3.3.8	1	1	1	1	
	8	4	2	1		1	2	3	4	
	27	9	3	1		1	3	6	10	
	64	16	4	1		1	4	4	20	

Таблица к задаче 3.5

Элементы матрицы А вычисляются по формулам:

$$A_{ij} = \begin{cases} \frac{i+j}{m+n}, & i \neq j, \\ n+m^2 + \frac{j}{m} + \frac{i}{n}, & i = j, \end{cases}$$

где i,j=1,...n. Элементы вектора b задаются в индивидуальном варианте.

N	n	m	b_i , $i=1,,n$	N	n	m	b_i , $i=1,,n$
3.5.1	40	10	$b_i = n \cdot i + m$	3.5.4	50	15	$b_i = m \cdot n - i^3$
3.5.2	20	8	$b_i = 200 + 50 \cdot i$	3.5.5	30	20	$b_i = m \cdot i + n$
3.5.3	30	9	$b_i = i^2 - 100$	3.5.6	25	10	$b_i = i^2 - n$

Таблица к задаче 3.6

Элементы матрицы А вычисляются по формулам:

$$A_{ij} = \begin{cases} q_M^j, & i \neq j, \\ q_M^j + t, & i = j, \end{cases}$$

где $q_M = 0.993 + (-1)^M \cdot M \cdot 10^{-4}, \ i,j = 1,...n$. Параметр t =0.0001, 1, 10000. Элементы вектора

b вычисляются по формулам: $b_j = q_M^{\ (n+1-j)}, \ j=1,...n$.

N	M	n	m	N	M	n	m	N	M	n	m
3.6.1	1	50	6	3.6.3	3	40	7	3.6.5	5	45	4
3.6.2	2	100	5	3.6.4	4	120	4	3.6.6	6	100	6

Таблица к задаче 3.8

Элементы матрицы A вычисляются по формулам:

$$A_{ij} = \begin{cases} q_M^{i+j} + 0.1 \cdot (j-i), & i \neq j, \\ (q_M - 1)^{i+j}, & i = j, \end{cases} \text{ где } q_M = 1.001 - 2 \cdot M \cdot 10^{-3}, & i, j = 1, \dots n.$$

Элементы вектора b задаются в индивидуальном варианте. Во всех вариантах отрезок [a, b]=[-5, 5].

N	М	n	b_i , $i=1,,n$	N	М	n	b_i , $i=1,,n$
3.8.1	1	50	$n \cdot e^{\frac{x}{i}} \cdot \cos(x)$	3.8.4	4	100	$n \cdot \exp\left(\frac{x}{i}\right) \cdot \cos(x)$
3.8.2	2	40	$ x - \frac{n}{10} \cdot i \cdot \sin(x)$	3.8.5	5	100	$ x - \frac{n}{10} \cdot i \cdot \sin(x)$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\left(\frac{x}{i}\right)$ 3.8.6 6	100	$x \cdot \exp\left(\frac{x}{i}\right) \cdot \cos\left(\frac{x}{i}\right)$
---	------------------------------------	-----	---

Таблица к задаче 3.10

N	n	A	b_i , $i=1,,n$
3.10.1	50	на главной диагонали элементы равны 1000, на первой наддиагонали элементы равны 1, на 3 наддиагонали элементы равны 1, на 1 поддиагонали элементы равны 1.	$b_i = i \cdot e^{\frac{18}{i}}$
3.10.2	35	на главной диагонали элементы равны 100, на 1, 2 и 3 наддиагоналях элементы равны 1, на 1 поддиагонали элементы равны 1.	$b_i = i \cdot e^{\frac{22}{i}} \sin\left(\frac{9}{i}\right)$
3.10.3	40	на главной диагонали элементы равны 100, на 1и 2 наддиагоналях элементы равны 1, на 2 поддиагонали элементы равны 3.	$b_i = i \cdot e^{\frac{10}{i}}$
3.10.4	50	на главной диагонали элементы равны 100, на первой наддиагонали элементы равны 1, на 1 поддиагонали элементы равны 2, $a_{1,n-1} = a_{2,n} = 1$.	$b_i = i \cdot e^{\frac{10}{i}} \cos\left(\frac{9}{i}\right)$
3.10.5	40	на главной диагонали элементы равны 100, на 1 наддиагонали элементы равны 2, на 1 и 2 поддиагоналях элементы равны 7.	$b_i = i \cdot e^{\frac{10}{i}}$
3.10.6	30	на главной диагонали элементы равны 100, на 1 наддиагонали элементы равны 47, на 20 наддиагонали 1, на 1 поддиагонали 47, на 20 поддиагонали 1.	$b_i = i \cdot e^{\frac{22}{i}}$

ЛИТЕРАТУРА

1. Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров. М.: Высшая школа, 1994.