

AARHUS SCHOOL OF ENGINEERING

SUNDHEDSTEKNOLOGI 3. SEMESTERPROJEKT

Dokumentation

Gruppe 1

Lise Skytte Brodersen (201407432) Mads Fryland Jørgensen (201403827) Albert Jakob Fredshavn (201408425) Malene Cecilie Mikkelsen (201405722) Mohamed Hussein Mohamed (201370525) Sara-Sofie Staub Kirkeby (201406211) Martin Banasik (201408398) Cecilie Ammizbøll Aarøe (201208778)

Vejleder Studentervejleder Lars Mortensen Aarhus Universitet

Indholdsfortegnelse

Kapitel	l 1 Kı	ravspecifikation	1
1.1	Indled	ning	1
1.2	Funkti	onelle krav	1
	1.2.1	Aktør-kontekstdiagram	1
	1.2.2	Aktørbeskrivelse	2
	1.2.3	Use case-diagram	3
	1.2.4	Use Cases	3
1.3	Ikke-fu	ınktionelle krav	6
	1.3.1	$(F)URPS+ \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	6

Kravspecifikation

Version Dato Ansvarlig Beskrivelse

1.1 Indledning

1.2 Funktionelle krav

De funktionelle krav vil nedenstående beskrives ud fra Aktør-kontekstdiagram, aktørbeskrivelse, Use Cases samt Use Case diagram.

1.2.1 Aktør-kontekstdiagram

 $Figur~1.1:~Akt \'{o}r-kontekst diagram$

1.2.2 Aktørbeskrivelse

Aktørnavn Type Beskrivelse	Bruger Primær Person med relevant baggrundsviden inden for blodtryksanalyse
Aktørnavn Type Beskrivelse	Borger Sekundær Borger er en kombination af Physionet og Analog Discovery. Borger repræsenterer data fra Physionet leveret til blodtryksmålingssystemet igennem Analog Discovery
Aktørnavn Type Beskrivelse	Database Sekundær Database bruges i blodtryksmålingssystemet til at gemme data
Atørnavn Type Beskrivelse	Physionet Ekstern Physionet er en ekstern database, som indeholder blodtrykssignalet fra forskellige patienter
Aktørnavn Type Beskrivelse	Analog Discovery Ekstern Analog Discovery omdanner data fra Physionet til at analogt signal

Tabel 1.2: Aktørbeskrivelse

1.2. Funktionelle krav ASE

1.2.3 Use case-diagram

Figur 1.2: Use case-diagram

1.2.4 Use Cases

Use Case 1

Navn	Vis Måling
Use case ID	1
Samtidige forløb	1
Primær aktør	Bruger
Sekundære aktør	Borger
Referencer	UC2
Mål	Bruger ønsker at vise blodtrykssignal uden digitalt filter
Initiering	Startes af Bruger
Forudsætninger	System er aktivt og tilgængeligt
Resultat	Blodtrykssignalet udskrives
Hovedforløb 1.	System spørger om der skal foretages en kalibrering [1.a Bruger ønsker at kalibrere]

2.	Blodtryk	signal	udsk	rives
----	----------	--------	------	-------

Undtagelser 1.a UC2 gennemføres hvorefter UC1 fortsætter ved punkt 2	
--	--

Tabel 1.3: Fully dressed Use Case 1.

Use Case 2

Navn		Kalibrér	
Use case ID		2	
Samtidige forløb		1	
Primær aktør		Bruger	
Sekundære aktør			
Reference			
Mål		Bruger ønsker at kalibrere blodtrykssignal	
Initiering		Startes af Bruger	
Forudsætninger		System er aktivt og tilgængeligt. UC1 kører	
Resultat		Blodtrykssignalet er kalibreret	
Hovedforløb	1.	System spørger om valg af kalibrering	
	2.	Bruger ønsker kalibrering [2.a Bruger ønsker ikke kalibrering]	
	3.	System kalibrerer og udskriver at kalibreringen er gennemført	
Undtagelser	2.a	System fortsætter i UC1 ved punkt 2	

Tabel 1.4: Fully dressed Use Case 2.

Use Case 3

Navn	Nulpunktsjustér blodtrykssignal
Use case ID	3
Samtidige forløb	1
Primær aktør	Bruger

1.2. Funktionelle krav ASE

Sekundære aktør	Borger	
Reference		
Mål Bruger ønsker at nulpunktsjustere blodtrykssignal		
Initiering	Startes af Bruger	
Forudsætninger	Borger er tilsluttet systemet. Systemet er aktivt og tilgængeligt	
Resultat	Blodtrykssignalet er nulpunktsjusteret	
Hovedforløb	. Bruger starter nulpunktsjustering	
:	2. System udskriver, at nulpunktsjustering er gemmenført	
Undtagelser		

Tabel 1.5: Fully dressed Use Case 3.

•	т	\sim	
	Jse	Case	4

Navn		Aktivér digitalt filter
Use case ID		4
Samtidige forløb		1
Primær aktør		Bruger
Sekundære aktør		Borger
Reference		
Mål		Bruger ønsker at filtere blodtrykssignalet igennem et digitalt filter
Initiering		Startes af Bruger
Forudsætninger		Systemet er aktivt og tilgængeligt. UC1 kører.
Resultat		Digitalt filtreret blodtrykssignal udskrives
Hovedforløb	1.	Bruger aktiverer filter
	2.	Systemet meddeler at filteret er aktivt
Undtagelser		

Tabel 1.6: Fully dressed Use Case 4.

Use Case 5

Navn		Gem måling		
Use case ID		5		
Samtidige forløb		*		
Primær aktør		Bruger		
Sekundære aktør		Database, Borger		
Reference				
Mål		Bruger ønsker at gemme data		
Initiering		Startes af Bruger		
Forudsætninger		Systemet er aktivt og tilgængeligt. UC1 kører.		
Resultat		Data er gemt i en database		
Hovedforløb 1.		Bruger trykker på "Gem"-knap		
		[1.a Borgerens data er gemt fra forrige målinger]		
	2.	System åbner Gem-vinduet til indtastning af oplysninger		
3.		Bruger indtaster oplysninger		
4. 5.		Bruger trykker på "OK"-knap		
		System lukker Gem-vinduet		
	6.	System udskriver i Monitor-vinduet, at data er gemt		
Undtagelser	1.a	UC5 forsættes ved UC5 ved punkt 6		

Tabel 1.7: Fully dressed Use Case 5.

1.3 Ikke-funktionelle krav

1.3.1 (F)URPS+

MoSCoW er angivet i parentes med hhv. M, S, C eller W.

Usability

- (M) Brugeren skal kunne starte en default-måling maksimalt 20 sek. efter opstart af programmet
- \bullet (M) Login-vinduet skal indeholde en "login"-knap til at logge på og få vist EKG-vinduet

- (M) EKG-vinduet skal indeholde en "start"-knap til at igangsætte målingerne
- (M) EKG-vinduet skal indeholde en "log ud"-knap
- (M) EKG-vinduet skal indeholde en "gem"-knap
- (M) Information-vinduet skal indeholde en "gem"-knap

Reliability

• (M) Systemet skal have en effektiv MTBF (Mean Time Between Failure) på 20 minutter og en MTTR (Mean Time To Restore) på 1 minut.

$$Availability = \frac{MTBF}{MTBF + MTTR} = \frac{20}{20+1} = 0,952 = 95,2\%$$
 (1.1)

Performance

- (M) Der skal vises en EKG-graf i EKG-vinduet, hvor spænding vises op af y-aksen (-1V til 1V) og tiden på x-aksen
- (M) Grafen skal være scrollbar på x-aksen, så brugeren selv ved brug af musen kan vælge det udsnit af grafen, der skal vises mere detaljeret
- (M) Skal tage en sample over et brugerbestemt interval, hvor frekvensen er tilpasset målingerne, således at grafen er analyserbar

Supportability

• (M) Softwaren er opbygget af trelagsmodellen