IGM Observation µExCAD

~MUlti-line observation with EXtended [CArbon-II] halo Detection~

安藤 梨花, 安藤 誠, 大工原 一貴吉岡 岳洋, 萩本 将都, 星岡 駿志 アドバイザー: 馬渡 健

Task

初期宇宙(赤方偏移およそ 2 以遠)の IGM/CGM について新たな知見が得られる 多波長観測 を自由に立案せよ。既存の望遠鏡、近い将来稼働が見込まれる計画の別は問わない。

Plan any multi-wavelength observations that will provide new insights into IGM/CGM in the early universe (beyond about redshift 2). It does not matter whether it is an existing telescope or a project that is expected to be operational in the near future.

by Umehata-san

参考文献:

Umehata et al. 2019: https://ui.adsabs.harvard.edu/abs/2019Sci...366...97U/abstract

Fu et al. 2021: https://ui.adsabs.harvard.edu/abs/2021ApJ...908. 188F/abstract

Vidal-Garcia et al. 2021: https://ui.adsabs.harvard.edu/abs/2021arXiv210510202V/abstract

Search for [OII], [OIII] blob & CGM physics

- It has been observed at z<1.5
- < metal-rich gas outflow
- < AGN, star-formation

[OII] 3726, 3728Å [OIII] 5007Å

Yuma et al. 2017

We want to observe [OII], [OIII] blobs at higher redshift (z>2)

Target

ALPINE sources with [CII] halo detection (Fujimoto+20)

- 6 sources at z~4.5 / 2 sources at z~5.7
- normal star-forming galaxies

(10 < SFR/[Msun/yr] < 100, log(Ms)~10)

Fujimoto+20

JWST

NIRSpec/IFU sensitivity

(credit: JWST User Documentation)

- Tagget line : [OII], H-beta, [OIII]
- Disperser-filter combination :

G235M/F170LP (1.66 – 3.17 μ m)

G395M/F290LP (2.87 – 5.27 μ m)

 $z \sim 5.5$

JWST sensitivity S/N=10, 10000s

NIRSpec/IFU FoV: 3" x 3"

ALMA observation

- Observed frequency: band3 (84-119 GHz)
- Target line: CO (5-4)
 - → lowest transitions observable with ALMA
- 2 sources are possibly detected by ~3 sigma

(Continuum sensitivity: ~5µJy)

adapted from Dessauges-Zavadsky+2020

Target name (Fujimoto+2020)	Total observation time			
VC5110377875 (z=4.5505)	~10h			
DC881725 (z=4.5777)	~16h			

Metal abundance profile

Guo et al. (2020) have investigated surface brightness (SB) profile of the metal lines for QSOs at z ~ 3.

SB profile of the nebular and molecular lines for the normal SFGs at $z \sim 4.5, 5.7$.

Metal enrichment and gas phase in CGM around normal high-z SFGs.

Guo et al. (2020)

Outflow/inflow

Velocity offset among the emission lines.

-> Inflow or outflow

Connection with galaxy formation.

gas accretion, feedback

Cassata et al. (2020)

SFR, sSFR profile

$${
m SFR}ig(M_{\odot}~{
m year}^{-1}ig) = (1.4 \pm 0.4) imes 10^{-41} L[{
m OII}]ig({
m ergss}^{-1}ig)$$

$$ext{SFR} > 0.33 imes 10^{-41} rac{L_{ ext{[OIII]}}}{ ext{ergs}^{-1}}$$

- How does the sSFR profile at z=4 compare to z=2?
- Understand where star formation occurs in the galaxy

Whether there are any signs of quenching

 ${
m sSFR}(r) = \Sigma_{
m SFR}(r)/\Sigma_{
m M}(r)$ (S. Tacchella et al. 2018)

[OIII]/[OII] ratio

Studying the ionisation state of star-forming galaxies

- Understanding the ionisation state of galaxies as a function of position by looking at the [OIII]/[OII] ratio in a 2D map.
- Ionisation parameters and metallicity
 - (1) Star-forming galaxies at z=2-3 have higher values than the local[OIII]/[OII] ratio
 - (2) From local to z=3, the [OIII]/[OII] ratio is mass dependent.
 - \rightarrow How about z=4 star-forming galaxies.

Summary

- [OII], [OIII] blobs have been observed at z<1.5.
- We target ALPINE at z~4.5 and 5.7 sources with [CII] halo detection.
- JWST can detect [OII], H-beta and [OIII] lines.
- ALMA possibly can detect CO (5-4) line in two galaxies.
- We investigate metal abundance and gas phase in halos around the SFGs, as well as the connection between the CGM and galaxy formation.

back up: sensitivity calculation of ALMA observation

 $log(LIR) = (1.17 \pm 0.03) log(L'CO(1-0)) + (0.28 \pm 0.23) from Dessauges-Zavadsky+2015$

log(LIR) reference: Béthermin+2020, Fudamoto+2020 (calculated from IRX-β relation)

L' $CO(1-0) \rightarrow L' CO(5-4)$: assuming luminosity ratio from Kirkpatrick+2019

Peak flux density: integrated flux divided by FWHM assuming [CII] line width is similar to CO that

target	redshift	RA[hh:mm:ss]	Dec[deg:min:s]	I co(Jykm/s)	FWHM(km/s)	L log10(L/Lsolor)	LIR-2.23	LIR-2.62
DC396844	4.5424	10:00:59.64	1:53:47.23	1.86	287	9.06	11.21	11.23
DC488399	5.6704	10:03:01.15	02:02:35.82	1.24	303	9.03	10.81	10.97
DC630594	4.4403	10:00:32.62	02:15:28.44	1.04	260	8.79	11.09	11.13
DC683613	5.542	10:00:09.43	02:20:13.91	0.95	216	8.9	11.16	11.12
DC880016	4.5415	9:59:55.18	02:38:08.18	0.89	274	8.74	11.02	11.04
DC881725	4.5777	10:00:13.56	02:38:16.85	1.09	198	8.84	11.36	11.34
VC5100537582	4.5501	10:01:33.52	01:50:20.40	0.71	206	8.65	10.25	10.66
VC5110377875	4.5505	10:01:32.33	02:24:30.27	2.77	234	9.23	11.58	11.57