**Q 1.** Let  $f(x) = \ln x$  and  $g(x) = 4 - x^2$  be functions defined in their natural domains. Write formulas for  $f \circ g$ ,  $f \circ f$  and find the domain of each.

**Q** 2. Start with the graph of  $y = \ln x$ . Find an equation of the graph and draw that results

- a) shifting down 4, right 2 units
- b) vertical stretching by a factor of 4
- c) reflecting about line y = x
- d) horizantal and vertical compression by a factor of 2.

**Q** 3. The accompanying figure shows the graph of a function f(x) with domain [-3,3] and range [0, 2]. Find the domains and ranges of the following functions, and sketch their graphs.



a) 
$$f(x) - 2$$

b) 
$$f(x-2)$$

c) 
$$f(-3x+2)$$

c) 
$$f(-3x+2)$$
 d)  $2-2f(3x+2)$ .

**Q** 4. Draw the graph of  $y = 2\sin(3x + \frac{3\pi}{4})$  by describing the each steps of transformations. Then find the amplitude and period.

**Q 5.** Solve for angle  $\theta$ , where  $0 \le \theta \le 2\pi$ 

$$\cos 2\theta + \cos \theta = 0.$$

**Q** 6. Find the domain and range for each function

a) 
$$g(x) = \frac{3}{1 - e^{2x}}$$
 b)  $h(x) = \log \frac{x^2 - 3x + 2}{x + 1}$ .

Q 7. For the functions given by a graph and formulas in below determine whether it is one-to-one.

a)

$$y = x^4 - x^2$$

b) 
$$f(x) = x^2 - 2x$$
  $c) g(t) = 1/t$ .

$$c) g(t) = 1/t$$

 ${f Q}$  8. For the following function

$$\log_a(x + \sqrt{x^2 + 1}), \quad (a > 0, \ a \neq 1)$$

- a) show that it is symmetric about the origin.
- b) find the inverse if exists.
- **Q** 9. Find  $f^{-1}(x)$  and identify the domain and range of  $f^{-1}(x)$  for the following function

$$f(x) = \frac{x+2}{x-3}.$$

As a check show that

$$(f \circ f^{-1})(x) = (f^{-1} \circ f)(x) = x.$$