Cuerda vibrante

Resumen

En esta práctica usaremos un osciloscopio para estudiar ondas. Discriminaremos el primer armónico de una cuerda vibrante, estudiaremos la dependencia de la frecuencia con la longitud de la cuerda y su tensión, y la dependencia de la frecuencia de la cuerda con la densidad del material del que está formada.

1. Introducción

Como en la vibración de una cuerda se producen ondas transversales, y las oscilaciones serán pequeñas, podemos considerar la tensión uniforme a lo largo del hilo, y la fuerza neta en dirección longitudinal nula. Con ello llegamos a que las fuerzas son:

$$F_x = T\cos(\theta + \Delta\theta) - T\cos\theta \approx 0$$

$$F_y = T\sin(\theta + \Delta\theta) - T\sin\theta \approx T\Delta\theta$$

De este modo, para un pequeño trozo de hilo Δx de densidad μ , tenemos

$$T\Delta\theta = (\mu\Delta x)a_{\mu}$$

y puesto que $\tan \theta = \frac{\partial y}{\partial x}$,

$$\Delta \theta = \cos^2 \theta \frac{\partial^2 y}{\partial x^2} \Delta x \approx \frac{\partial^2 y}{\partial x^2} \Delta x$$

y de estas dos podemos deducir que

$$\frac{\partial^2 y}{\partial x^2} = \frac{\mu}{T} \frac{\partial^2 y}{\partial t^2}$$

que se trata de la función de onda, donde la velocidad de propagación es

$$v = \sqrt{\frac{T}{\mu}} = \sqrt{\frac{T}{s\rho}}$$

en este último caso hemos relacionado con la densidad volumetrica ρ y la sección s.

Al tratarse de un hilo con los extremos fijos, da lugar a ondas estacionarias. La frecuencia será:

$$f = \frac{nv}{2L} = \frac{1}{2L} \sqrt{\frac{T}{s\rho}}$$

2. Material y Métodos

Nuestro dispositivo experimental se compone de un sistema formado por un par de triangulos colocados de forma equidistante a los extremos sobre una regla graduada, de modo que sobre ellos repose un hilo enganchado a un tensador, con un dinamómetro para medir la tensión. A la altura del hilo tenemos una bombilla de 6V, alimentada por una fuente de alimentación, y en frente una fotocélula con diafragma lineal, de modo que pueda percibir cambios en la luz recibida de la bombilla debido a la oscilación del cable. Esta fotocélula está conectada a un osciloscopio que nos permitirá visualizarlo.

Disponemos de cables de distinta sección y materiales.

Tendremos que tener precaución con el voltaje para la bombilla, y tener cuidado con no sobrepasar los 30N de tensión para los hilos, ya que no aguantarán y se partirán. Golpearemos el hilo de forma suave, y esperaremos un poco para que la oscilación producida se estabilice.

El experimento se separa en cuatro partes.

- Dependencia de la frecuencia con la longitud del hilo: con un mismo cable, iremos variando la distancia entre los triangulos de apoyo
- Dependencia de la frecuencia con la tensión: con un mismo cable, y a una misma separación de los apoyos, iremos variando la tensión del hilo y midiendo los cambios en la frecuencia
- Dependencia de la frecuencia con la densidad: utilizaremos hilos de diferentes materiales y misma sección
- Dependencia de la frecuencia con la sección: utilizaremos hilos del mismo material, misma longitud, y misma tensión, pero diferente sección.

Figura 1: Dispositivo experimental

3. Resultados

3.1. Dependencia con la longitud

■ Hilo: Constatan

■ Sección: 0,3 mm

■ Tensión: 20±1N

Frecuencias recogidas en la Tabla 1

Separación (cm)	$20\pm0,1$
Medida 1	$387,6 \pm 0,01$
Medida 2	$323,62 \pm 0,01$
Medida 3	$319,49 \pm 0,01$
Media (Hz)	340 ± 20
Separación (cm)	$30\pm0,1$
Medida 1	$229,36 \pm 0,01$
Medida 2	$228,31 \pm 0,01$
Medida 3	$229,89 \pm 0,01$
Media (Hz)	$229,2 \pm 0,5$
Separación (cm)	$40\pm0,1$
Separación (cm) Medida 1	$ \begin{array}{c} 40 \pm 0, 1 \\ 180,83 \pm 0, 01 \end{array} $
	· · · · · · · · · · · · · · · · · · ·
Medida 1	$180,83 \pm 0,01$
Medida 1 Medida 2	$180,83 \pm 0,01 \\ 181,49 \pm 0,01$
Medida 1 Medida 2 Medida 3	$180,83 \pm 0,01$ $181,49 \pm 0,01$ $180,83 \pm 0,01$
Medida 1 Medida 2 Medida 3 Media (Hz)	$180,83 \pm 0,01$ $181,49 \pm 0,01$ $180,83 \pm 0,01$ $181,2 \pm 0,2$
Medida 1 Medida 2 Medida 3 Media (Hz) Separación (cm)	$180,83 \pm 0,01$ $181,49 \pm 0,01$ $180,83 \pm 0,01$ $181,2 \pm 0,2$ $50 \pm 0,1$
Medida 1 Medida 2 Medida 3 Media (Hz) Separación (cm) Medida 1	$180,83 \pm 0,01$ $181,49 \pm 0,01$ $180,83 \pm 0,01$ $181,2 \pm 0,2$ $50 \pm 0,1$ $150,83 \pm 0,01$

G	00 0 1
Separación (cm)	$60\pm0,1$
Medida 1	$182,87 \pm 0,01$
Medida 2	$131,93 \pm 0,01$
Medida 3	$132,98 \pm 0,01$
Media (Hz)	130 ± 20
Separación (cm)	70 $\pm 0, 1$
Medida 1	$111,23 \pm 0,01$
Medida 2	$111,36 \pm 0,01$
Medida 3	$112,108 \pm 0,01$
Media (Hz)	$111,6 \pm 0,3$
Separación (cm)	$80\pm0,1$
Medida 1	$102,04 \pm 0,01$
Medida 2	$101,11 \pm 0,01$
Medida 3	$102,67 \pm 0,01$
Media (Hz)	$101,9 \pm 0,5$

Tabla 1: Frecuencia según separación

3.2. Dependencia con la tensión

■ Hilo: Constatan

■ Diámetro: 0,3 mm

 \blacksquare Separación: $50\pm0,1~\mathrm{cm}$

Frecuencias recogidas en la Tabla 2

Tension (N)	10 ±1
Medida 1	$106,65 \pm 0,01$
Medida 2	$106,65\pm0,01$
Medida 3	$106,65 \pm 0,01$
Media (Hz)	$106,65 \pm 0,01$
Tension (N)	11 ±1
Medida 1	$111,54 \pm 0,01$
Medida 2	$111,54 \pm 0,01$
Medida 3	$108,61 \pm 0,01$
Media (Hz)	$110 \pm 1, 0$
Tension (N)	12 ±1
Medida 1	$121,33 \pm 0,01$
Medida 2	$117,41 \pm 0,01$
Medida 3	$116,43 \pm 0,01$
Media (Hz)	$118,4 \pm 1,5$
Tension (N)	13 ±1
Medida 1	$125,24 \pm 0,01$
Medida 2	$121,33 \pm 0,01$
Medida 3	$121,33 \pm 0,01$
Media (Hz)	$122,6 \pm 1,3$
Tension (N)	14 ±1
3.5.11.1	
Medida 1	$127,20 \pm 0,01$
Medida 1 Medida 2	$127,20 \pm 0,01 127,20 \pm 0,01$
	· · · · · · · · · · · · · · · · · · ·
Medida 2	$127,20 \pm 0,01$
Medida 2 Medida 3	$127,20 \pm 0,01 127,20 \pm 0,01$
Medida 2 Medida 3 Media (Hz)	$127,20 \pm 0,01$ $127,20 \pm 0,01$ $127,20 \pm 0,01$
Medida 2 Medida 3 Media (Hz) Tension (N)	$127,20 \pm 0,01$ $127,20 \pm 0,01$ $127,20 \pm 0,01$ 15 ± 1
Medida 2 Medida 3 Media (Hz) Tension (N) Medida 1	$127,20 \pm 0,01$ $127,20 \pm 0,01$ $127,20 \pm 0,01$ 15 ± 1 $133,72 \pm 0,01$
Medida 2 Medida 3 Media (Hz) Tension (N) Medida 1 Medida 2	$127,20 \pm 0,01$ $127,20 \pm 0,01$ $127,20 \pm 0,01$ 15 ± 1 $133,72 \pm 0,01$ $132,93 \pm 0,01$

(3) T)	40.4
Tension (N)	16 ±1
Medida 1	$136,01\pm0,01$
Medida 2	$136,01 \pm 0,01$
Medida 3	$135,03 \pm 0,01$
Media (Hz)	$135,7 \pm 0,3$
Tension (N)	17 ±1
Medida 1	$139,92 \pm 0,01$
Medida 2	$139,92 \pm 0,01$
Medida 3	$138,94 \pm 0,01$
Media (Hz)	$139,6 \pm 0,3$
Tension (N)	18 ±1
Medida 1	$145,79 \pm 0,01$
Medida 2	$146,77 \pm 0,01$
Medida 3	$145,79 \pm 0,01$
Media (Hz)	$146,12 \pm 0,3$
Tension (N)	19 ±1
Medida 1	$147,71 \pm 0,01$
Medida 2	$147,71 \pm 0,01$
Medida 3	$147,71 \pm 0,01$
Media (Hz)	$147,71 \pm 0,01$
Tension (N)	20 ±1
Medida 1	$152,64 \pm 0,01$
Medida 2	$151,66 \pm 0,01$
Medida 3	$151,66 \pm 0,01$
Media (Hz)	$152,0 \pm 0,3$

Tabla 2: Frecuencia según tensión

3.3. Dependencia con la densidad

■ Diámetro: 0,3 mm

 \blacksquare Separación: 50 $\pm 0, 1$ cm

■ Tensión: 12±1N

Frecuencias recogidas en la Tabla 3

Material	Constatan
Medida 1	$121,36 \pm 0,01$
Medida 2	$117,37\pm0,01$
Medida 3	$116,41 \pm 0,01$
Media (Hz)	$118,4 \pm 1,5$
Material	Cobre
Medida 1	$114,55 \pm 0,01$
Medida 2	$113,51 \pm 0,01$
Medida 3	$113,51\pm0,01$
Media (Hz)	$113,9 \pm 0,3$
Material	Kantal
Medida 1	$126,26\pm0,01$
Medida 2	$126,26 \pm 0,01$
Medida 3	$126,26 \pm 0,01$
Media (Hz)	$126,26 \pm 0,01$

Material	Hierro
Medida 1	$120,34 \pm 0,01$
Medida 2	$119,33\pm0,01$
Medida 3	$119,33\pm0,01$
Media (Hz)	$119,7 \pm 0,3$
Material	Niquel
Medida 1	100 05 10 01
medida 1	$122,25 \pm 0,01$
Medida 2	$122,25 \pm 0,01 118,34 \pm 0,01$

Tabla 3: Frecuencia según el material

3.4. Dependencia con el diámetro

■ Material: Constatán

■ Separación: $50\pm0,1~\mathrm{cm}$

■ Tensión: 12±1N

Frecuencias recogidas en las Tabla 4

Diámetro (mm)	0,2
Medida 1	$171,23 \pm 0,01$
Medida 2	$171,23 \pm 0,01$
Medida 3	$171,23 \pm 0,01$
Media (Hz)	$171,23 \pm 0,01$
Diámetro (mm)	0,3
Diámetro (mm) Medida 2	0,3 121,36 ±0,01
	,
Medida 2	$121,36 \pm 0,01$

Diámetro (mm)	0,4
Medida 3	$86,21 \pm 0,01$
Medida 4	$86,96 \pm 0,01$
Medida 5	$86,95 \pm 0,01$
Media (Hz)	$86,7 \pm 0,2$
Diámetro (mm)	0,5
Diámetro (mm) Medida 4	$0,5$ $70,42 \pm 0,01$
,	,
Medida 4	$70,42 \pm 0,01$

Tabla 4: Frecuencia según el diámetro

4. Discusión

 En la Tabla 5 y la Figura 2 se representa la frecuencia en función de la distancia. Hemos ajustado mediante regresión lineal

Distancia (m)	Frecuencia (Hz)	Δf
0,2	340	20
0,3	229,2	0,5
0,4	181,2	0,2
0,5	150,83	0,08
0,6	130	20
0,7	111,6	0,3
0,8	101,9	0,5

Tabla 5: Frencuencia según distancia

Figura 2: Frecuencia según la distancia

El ajuste nos queda:

$$y = Ax + B$$
$$A = -0.86(Hz/m)$$
$$B = 4.42(Hz)$$

■ En la Tabla 6 y Figura 3, se representa el logaritmo de la frecuencia frente al logaritmo de tensión, y la recta de ajuste

Tensión (N)	Frecuencia (Hz)	$\log(T)$	$\log(\mathrm{F})$
10	$106,65 \pm 0,01$	1	2,03
11	110 ± 1	1,04	2,04
12	118,4± 1,5	1,08	2,07
13	$122,6 \pm 1,3$	1,11	2,09
14	127 ± 0.01	1,15	2,10
15	$133,2 \pm 0,3$	1,18	2,12
16	$135,7 \pm 0,3$	1,20	2,13
17	$139,6 \pm 0,3$	1,23	2,15
18	$146,12 \pm 0,3$	1,26	2,16
19	$147,71 \pm 0,01$	1,28	2,17
20	$152,0 \pm 0,3$	1,30	2,18

Tabla 6: frecuencia según tensión

Figura 3: logaritmos de la frecuencia frente a la tensión

Con el ajuste

$$y = Ax + B$$
$$A = 0.52(Hz/N)$$

$$B = 1.51(Hz)$$

■ En la Figura 4 hemos representado los logaritmos de frecuencia según los logaritmos de densidad de cada material, especificadas en la Tabla 7.

Material	Densidad (kg/m ³)	Frecuencia (Hz)
constatan	8966	118 ± 2
Cobre	8960	$113,8 \pm 0,3$
kantal	7100	$126, 26 \pm 0, 01$
hierro	7874	$119,7 \pm 0,3$
niquel	8900	120 ± 1

Tabla 7: Densidad de los materiales

Figura 4: frecuencia según densidad

$$y = Ax + B$$
$$A = -0.29(Hz \cdot m^3/kg)$$
$$B = 7.43(Hz)$$

Vemos que no se ajusta muy bien, posiblemente debido a que algunos materiales presentan diferencias en otras propiedades que afecten a la frecuencia de vibración, a parte de las que hemos estudiado.

■ En la Figura 5 está representado en escala logarítmica la frecuencia en función del radio del hilo. Podíamos deducir que la frecuencia aumentará a menor radio, ya que implica menor sección, y $f = \frac{nv}{2L} = \frac{1}{2L} \sqrt{\frac{T}{s\rho}}$

Figura 5: Frecuencia frente al radio

$$y = Ax + B$$
$$A = -0.98(Hz/mm)$$
$$B = 2.90(Hz)$$

5. Cuestiones

Mediante regresión lineal, encuentre el valor de β y su error estándar que ajuste a:

$$f = \alpha \cdot L^{\beta}$$

Del ajuste obtenemos que $\beta = (-0.86 \pm 0.014) \text{Hz/m}$

De igual manera, encuentre el exponente β y su error para la relación de la frecuencia con la tensión:

$$f = \alpha \cdot T^{\beta}$$

Del ajuste obtenemos $\beta = (0.52 \pm 0.013)$ Hz/N

¿Por qué las ondas producidas en el cobre parecen distintas de las que aparecen en el níquel, de igual espesor, si su densidad es casi igual ($\rho = 8.9 \text{ g/cm}^3$)?

Esto es debido a las diferencias en otras propiedades físicas entre estos dos materiales, a parte del espesor o la densidad.

Encontrar la relación entre la frecuencia y la sección del hilo, teniendo presente que los datos del espesor que aparecen en las bobinas se refieren al diámetro. ¿Qué relación existe entre la frecuencia y el radio?

La expresión vista en la introducción,

$$f = \frac{1}{2L} \sqrt{\frac{T}{s\rho}}$$

relaciona la sección s con la frecuencia f.

Dado que $s=\pi r^2$, podemos deducir que la relación entre la frecuencia y el radio vendrá dada por:

$$f = \frac{1}{2L} \sqrt{\frac{T}{\pi r^2 \rho}} = \frac{1}{2Lr} \sqrt{\frac{T}{\pi \rho}}$$

Al igual que con la sección, la frecuencia se reduce cuanto mayor sea el radio.

Si la 6a cuerda de una guitarra da como fundamental la nota "MI"(f=329,63~Hz) y, a igual tensión, la 5a cuerda proporciona la nota "LA"(f=440~Hz), ¿qué relación hay entre sus diámetros, supo- niéndolas del mismo material?

Aplicamos la anterior expresión, teniendo en cuenta que comparten L, ρ y T:

$$329,63 = \frac{1}{2Lr_{MI}} \sqrt{\frac{T}{\pi \rho}} \to 329,63r_{MI} = \frac{1}{2L} \sqrt{\frac{T}{\pi \rho}}$$
$$440 = \frac{1}{2Lr_{LA}} \sqrt{\frac{T}{\pi \rho}} \to 440r_{LA} = \frac{1}{2L} \sqrt{\frac{T}{\pi \rho}}$$

De modo que:

$$440r_{LA} = 329,63r_{MI}$$

Y como los diámetros son el doble, la relación será la misma:

$$\frac{r_{LA}}{r_{MI}} = \frac{329,63}{440} = \frac{d_{LA}}{d_{MI}}$$

Referencias

- [1] (varios) Guiones de prácticas- Técnicas Experimentales II. Grado en Física. Versión 2.1 UNED, 2022 https://2022.cursosvirtuales.uned.es/o/3754218
- [2] (varios) Técnicas Experimentales I. Versión 3.5. UNED, 2021 https:// 2021.cursosvirtuales.uned.es/o/42035617
- [3] Densidad de materiales https://www.stemm.com/index.php/es/densidades-de-materiales