Лекции по дискретной математике

me and boyz

5 октября 2021 г.

Содержание

1	Дискретные функции и их представление. Индуктивное определение формулы. Полные системы. Критерий полноты.	- 1
2	Классическое представление булевых функций. КНФ. ДНФ. 2.1 Метод Блейка	6 8 9
3	Представление дискретных функций в базисах функциональных пространств. Алгоритм БП Φ .	- 10
4	Трансверсали.	14
1	Дискретные функции и их представлени	
	Индуктивное определение формулы. Полни	ые

<u>Определение.</u> Дискретной функцией называется любая функция, отображающая конечное множество A в конечное множество B.

Область определения дискретной функции часто представляется в виде декартового произведения множеств относительно небольшой мощности.

Если $f:A\to B$ - дискретная функция и $A=A_1\times\ldots\times A_n$, то f обозначают следующим образом $f(x_1;\ldots;x_n)$ и называют дискретной функцией от n переменных x_1,\ldots,x_n . При этом x_i принимает всевозможные значения из A_i . Если $A_1=\ldots=A_n=B$ и $B=\{0,1\}$, то f называется булевой функцией.

Определение. Обозначим далее $\Omega = \{0,1\}$, тогда булевой функцией от n переменных называется любое отображение $f:\Omega^n \to \Omega$.

0-местными булевыми функциями будем называть элементы $0,1\in\Omega.$

Замечание. Существуют функции k - значной логики.

системы. Критерий полноты.

Обозначать булеву функцию будем $f(x_1; ...; x_n)$ или $f(\vec{x})$, если количество переменных известно из контекста.

Определение. Если $f(x_1; \ldots; x_n)$ - булева функция и $\vec{\alpha} = (a_1; \ldots; a_n) \in$ Ω^n , то образ $\vec{\alpha}$ при отображении f называют значением функции f на наборе $\vec{\alpha}$. Обозначение: $f(\vec{\alpha})$.

Определение. Если рассматривать 0 и 1 как числа $\in \mathbb{N}_0$, то для набора $\vec{\alpha} = (a_1; \dots; a_n)$ обозначим $||\vec{\alpha}|| = a_1 + \dots + a_n$ - вес вектора $\vec{\alpha}$.

$$\widetilde{a} = \sum_{i=1}^{n} a_i 2^{n-i}$$
 - лексикографический порядок.

Пример.

$$\vec{\alpha} = (1; 1; 0; 1) \Rightarrow ||\vec{\alpha}|| = 1 + 1 + 0 + 1 = 3.$$

Естественным образом задания является табличный, при этом координата *i*-вектора f^{\downarrow} соответствует значению $f(\vec{\alpha})$, где $\tilde{a}=i$.

 Π ример.

$$\begin{array}{cccc} x_0 & x_1 & f^{\downarrow} \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}$$

Утверждение. $|F_2(n)| = 2^{2^n}$.

Определение. Весом булевой функции f называют величину ||f|| = $|\{\vec{\alpha} \in \Omega^n \mid f(\vec{\alpha}) = 1\}|.$

Onpedenehue. Функция от n-1 переменной, определяемая равенством $\varphi(a_{i_n};\ldots;a_{i_n})=f'(a_1;\ldots;a_{i-1};b;a_{i+1};\ldots;a_n),$ называется функцией полученной из f' фиксацией i-ой переменной значением b.

Обозначением $\varphi=f_i^b(x_1;\ldots;x_n)$, аналогично фиксация k переменных значениями $b_1,\ldots,b_k:\varphi=f_{i_1;\ldots;i_n}^{b_1;\ldots;b_k}(x_1;\ldots;x_n)$. Общее название таких функци φ - подфункции f.

Если $f(a_1;\ldots;a_{i-1};0;a_{i+1};\ldots;a_n)=f(a_1;\ldots;a_{i-1};1;a_{i+1};\ldots;a_n)$, то переменная x_i называется несущественной переменной функции f, в противном случае - существенной.

Onpedeneue. Пусть x_i -несущественная (фиктивная) переменная функции f, g получена из f фиксацией x_i любой константой, тогда говорят, что g получена удалением из f несущественной переменной x_i , а f получена из g добавлением фиктивной переменной x_i .

Пусть задано множество функций $\mathbb{K} = \{f_i : i \in I\}$ и множество символов переменных $X = \{x_1; ...; x_n\}.$

Определение.

- 1. Любой символ переменной есть формула над классом К.
- 2. Если f_j символ m местной функции из $\mathbb{K},$ а A_1,\ldots,A_m формулы над \mathbb{K} , то $f_i(A_1; \ldots; A_m)$ - формула над \mathbb{K} .
- 3. Других формул нет.

Множество формул над \mathbb{K} обозначается $\Phi(\mathbb{K})$. При m=0 формула есть символ над К, т.е. константа.

Определение. Число символов функций из \mathbb{K} , встречающихся в формуле A назовем рангом формулы A. Обозначение: r(A).

Определение.

- 1. Подформула формулы x_i только она сама.
- 2. Подформулы $f_j(A_1; ...; A_n)$ на сама и все подформулы формулы $A_1; ...; A_n$.

Определение. Пусть A - произвольная формула, в ее записи присутствует только переменные x_{i_1},\ldots,x_{i_k} . Набор x_{j_1},\ldots,x_{j_m} называется допустимым, если $\{x_{i_1},\ldots,x_{i_k}\}\subseteq\{x_{j_1},\ldots,x_{j_m}\}$.

Каждой формуле при фиксированном допустимом наборе $(x_1; ...; x_n)$ сопоставляется по следующему правилу:

- 1. Если A есть x_i , то ей сопоставляется функция f, значения которой определяются равенством $f(a_1; \ldots; a_n) = a_i, (a_1; \ldots; a_n) \in \Omega^n$.
- 2. Если A есть $f_j(A_1; \ldots; A_m)$ и формулам A_1, \ldots, A_m сопоставлены функции $\varphi_1(x_1; \ldots; x_n); \ldots; \varphi_m(x_1; \ldots; x_n)$, то формуле A сопоставляется функция f, значения которой определяются равенством $f(a_1; \ldots; a_n) = f_j(b_1; \ldots; b_n)$, где $b_{\zeta} = \varphi_{\zeta}(a_1; \ldots; a_n), \zeta \in \overline{1, n}$.

Определение. Формулы A и B равносильны, если они представляют одну и ту же функцию на любом допустимом наборе. Обозначение: $A \equiv B$.

Определение. Пусть A - произвольная формула над классом $\mathbb{K} = (\&, \lor, \neg)$. Двойственной к A называется формула полученная из A заменой $\& \leftrightarrow \lor$. Обозначение: A^* .

Teopema. $A^*(x_1; \ldots; x_n) = \overline{A(\overline{x_1}; \ldots; \overline{x_n})}.$

Cnedcmeue. $A \equiv B \Leftrightarrow A^* \equiv B^*$.

Определение. Замыканием системы \mathbb{K} булевых функций называют множество всех булевых функций представимых формулами над \mathbb{K} . Обозначение: $[\mathbb{K}]$.

Утверждение.

- 1. $\mathbb{K} \subseteq [\mathbb{K}]$
- 2. $\mathbb{K}_1 \subseteq \mathbb{K}_2 \Rightarrow [\mathbb{K}_1] \subseteq [\mathbb{K}_2]$
- 3. $[[\mathbb{K}]] = [\mathbb{K}]$

 ${\it Onpedenehue}.$ Система ${\mathbb K}$ называется полной, если (замыкание) $[{\mathbb K}]=F_2.$

 Π ример.

$$\mathbb{K}_{0} = \{x_{1} \cdot x_{2}; x_{1} \vee x_{2}; \overline{x_{1}}\}\$$
 $\mathbb{K}_{5} = \{x_{1} \cdot x_{2}; x_{1} \oplus x_{2}; 1\}$ Полные

 ${\it Onpedenehue.}$ Класс булевых функций называется замкнутым, если $\mathbb{K} = [\mathbb{K}].$

Говорят, что набор $\vec{\beta}$ мажорирует набор $\vec{\alpha}$, если $\forall i \in \overline{1,n}: a_i \leq b_i$. Обозначение: $\vec{\alpha} \preccurlyeq \vec{\beta}$.

Пример.

$$T_0 = \{ f(x_1; \dots; x_n) \mid f(0; \dots; 0) = 0 \}$$

$$T_1 = \{ f(x_1; \dots; x_n) \mid f(1; \dots; 1) = 1 \}$$

$$L=\{f(x_1;\ldots;x_n)=a_1x_1\oplus\ldots\oplus a_nx_n\mid a_i\in\Omega, i\in\overline{0,n}\}$$
 – класс линейных функций

$$S = \{f(x_1; \ldots; x_n) \mid f(x_1; \ldots; x_n) \equiv \overline{f(\overline{x_1}; \ldots; \overline{x_n})}\}$$
 – класс самодвойственных функций

$$M = \{f(x_1; \dots; x_n) \mid \text{верно}\vec{\alpha} \preccurlyeq \vec{\beta}, \text{то}f(\vec{\alpha} \leq f(\vec{\beta})) \forall \vec{\alpha}, \vec{\beta} \in \Omega^n\}$$
 — класс монотонных функций

Лемма. Булева функция $f(x_1; \dots; x_n)$ не является монотонной $\Leftrightarrow \exists \vec{\alpha}$ и $\vec{\beta}$ отличающиеся только в одной координате (соседние наборы), такие что $\vec{\alpha} \preccurlyeq \vec{\beta}$ и $f(\vec{\alpha}) > f(\vec{\beta})$.

Теорема. T_0, T_1, M, S, L - замкнуты.

Теорема. (Критерий Поста)

Система булевых функций $\mathbb K$ полна $\Leftrightarrow \mathbb K$ содержит функции из $F_2 \backslash T_0, F_2 \backslash T_1, F_2 \backslash M, F_2 \backslash S, F_2 \backslash L$. Док-во:

Необходимость

 \forall произвольного замкнутого класса $G \neq F_2$, если \mathbb{K} не содержит ни одной функции из $F \backslash G$, то $\mathbb{K} \subset G \Rightarrow [\mathbb{K}] \subset [G] \neq F_2 \Rightarrow \mathbb{K}$ - не является полной.

Достаточность

Рассмотрим функции $f_1 \notin T_0, f_2 \notin T_1, f_3 \notin L, f_4 \notin S, f_5 \notin M$. Покажем, что если $\mathbb{K} \not\subseteq G$, где $G \in \{T_0, T_1, S, M, L\}$, то \overline{x} и $x_1 \cdot x_2 \in [\mathbb{K}]$.

Рассмотрим 2 случая:

1. $f_1(1;...;1) = 1$, но тогда $f(x;...;x) = 1 \in [\mathbb{K}]$. Т.к. $\mathbb{K} \nsubseteq T_1$, то $\exists f_2 \in \mathbb{K} \mid f_2(1;...;1) = 0 \in [\mathbb{K}]$. Покажем, что $\overline{x} \in [\mathbb{K}]$. Т.к. $\mathbb{K} \nsubseteq M$, то $\exists f_3 \in \mathbb{K} \mid f_3 \notin M$, т.е. $\exists \vec{\alpha} \preccurlyeq \vec{\beta} \mid f_3(\vec{\alpha}) > f_3(\vec{\beta})$.

Рассмотрим функцию $f(a_1;\ldots;a_{j-1};x_j;a_{j+1};\ldots;a_n)\equiv \overline{x_j}$, т.к. 0 и 1 $\in [\mathbb{K}]$, то и $\overline{x}\in [\mathbb{K}]$.

2. $f_1(1; ...; 1) = 0$, то $f_1(x; ...; x) = \overline{x} \in [\mathbb{K}]$. Покажем, что 0 и $1 \in [\mathbb{K}]$. Рассмотрим $f_4 \in \mathbb{K} \mid f_4 \notin S \Rightarrow \exists (a_1; ...; a_n) \mid f_4(a_1; ...; a_n) = f_4(\overline{a_1}; ...; \overline{a_n}) = const \in \{0, 1\} \in [\mathbb{K}]$. Т.к. $\overline{x} \in [\mathbb{K}]$, то 0 и $1 \in [\mathbb{K}]$.

Покажем $x_1 \cdot x_2 \in [\mathbb{K}].$

Т.к. $\mathbb{K} \notin L$, то $\exists f_5 \in \mathbb{K} \mid f_5 \notin L$, т.е. в ее многочлене Жегалкина \exists моном степени больше $1(*) \Rightarrow \exists$ моном, содержащий $x_1 \cdot x_2$.

Рассмотрим многочлен Жегалкина функции f_5 :

$$f_5(x_1;\ldots;x_n) = x_1 \cdot x_2 \cdot g_1(x_3;\ldots;x_n) \oplus x_1 \cdot g_2(x_3;\ldots;x_n) \oplus x_2 \cdot g_3(x_3;\ldots;x_n) \oplus g_4(x_3;\ldots;x_n).$$

Рассмотрим функцию f, полученную из f_5 , следующим образом:

$$f(x_1; x_2) = f_5(x_1; x_2; a_3; \dots; a_n) = x_1 x_2 C_1 \oplus x_1 C_2 \oplus x_2 C_3 \oplus C_4.$$

 $C_1=1$, т.к. см (*). Рассмотрим функцию $f(x_1\oplus C_3;x_2\oplus C_2)=x_1x_2\oplus C_2C_3\oplus C_4\Rightarrow x_1x_2\in [\mathbb{K}].$

Классическое представление булевых функций. КНФ. ДНФ.

Рассмотрим класс $K_0 = \{\cdot, \vee, \bar{}\}$ Символом x^a , где $a \in \Omega$, обозначим функцию переменной x, принимающую значение 1, если x=a, и 0 в противном случае. Таким образом:

$$x^a = \begin{cases} \mathbf{x}, \, \mathbf{a} = 1\\ \bar{x}, \, a = 0 \end{cases}$$

 ${\it Onpedenehue.}\ \Pi$ усть i_1,\ldots,i_k - различные натуральные числа. Форму-

ла вида $x_{i_1}^{a_1} \lor \ldots \lor x_{i_k}^{a_k}$ называется элементарной дизъюнкцией ранга k. Если заменить \lor на &, то получаем элементарную конъюнкцию ранга k.

Если элементраная дизъюнкция рассматривается как формула от переменной x_1, \ldots, x_n и её ранг равен n, то она назвается совершенной.

Определение. Конъюктивной нормальной формой (КНФ) называется ∀ формула представляющая собой конъюнкцию конечного числа элементарных дизъюнкций.

Теорема. \forall булевая функция может быть представлена в виде $f(x_1,\ldots,x_n)=$ $\&_{(b_1,\ldots,b_k)=\Omega^k}x_{i_1}^{\bar{b}_{i_1}},\ldots,x_{i_k}^{\bar{b}_{i_k}}f_{i_1,\ldots,i_n}^{\bar{b}_{i_n}}(x_1,\ldots,x_n)$ **Замечание.** Аналогичным образом определяется элементарная дизъ-

юнкция $(ДН\Phi)$.

Теорема. \forall булевой функции $k \leq n$ представима формулой $f(x_1,\ldots,x_n) = \bigvee_{(a_1,\ldots,a_k)} x_{i_1}^{a_{i_1}},\ldots,x_{i_k}^{a_{i_k}} f_{i_1,\ldots,i_n}^{a_{i_1}}(x_1,\ldots,x_n)$ $\mathbf{Cnedcmeue.}\ f(x_1,\ldots,x_n) \equiv \overline{x_1} f(0,x_2,\ldots,x_n) \vee x_1 f(1,x_2,\ldots,x_n)$

В случае k=n получаем совершенные КНФ и ДНФ, называемые СКНФ и СДНФ.

Утверждение. $\exists ! \ CДНФ \ и \ CKHΦ \ \forall f \in F_2.$

Пример. (две ДНФ одной функции)

$$\overline{x_1x_2}x_3 \vee \overline{x_1}x_2x_3 \vee x_1x_2 \equiv \overline{x_1}x_3 \vee x_1x_2$$

Определение. Многочленом Жегалкина от переменных x_1, \ldots, x_n называется формула над классом $K_5 = \{\oplus, \cdot, 1\}$ вида

$$a_0 \oplus \sum_{i_1,\dots,i_k} a_{i_1,\dots,i_n} x_{i_1} \cdot \dots \cdot x_{i_n}$$

$$1 \le i_1 \le \dots \le i_k \le n; a_0, a_{i_1}, \dots, a_{i_n} \in \Omega$$

Здесь знак суммы означает исключающее "или"и сумирование ведётся по всем непустым подмножествам $\{i_1,\ldots,i_k\}$ множества $\{1,\ldots,n\}$.

Определение. Элементарной конъюнкцией входящей в многочлен Жегалкина в качестве слогаемых называется одночлен (моном), элементы $a_{i_1,...,i_k}$ коэффиценты многочлена, a_0 - свободный член. Ранг конъюнкции называется степенью одночлена.

Степенью неленейности функции представляемой многочленом Жегалкина называется максимальная из степеней многочлена, входящих в многочлен Жегалкина этой функции с коэффицентом 1.

 $\it Teopema. \ orall \$ булевая функция однозначно представима многочленом Жегалкина.

Определение. Двоичным n-мерным кубом называют множество точек пространства \mathbb{R}^n с координатами a_1, \ldots, a_n , где $a_i \in \Omega$

Для задания булевой функции $f(x_1,\ldots,x_n)$ на n-мерном кубе отмечают вершины соответствующие носителю этой функции.

Определение. Гранью п-мерного куба ранга k (или иначе разморности n-k) называется множество его вершин, соответсвующее N_{φ} , где φ - произвольная элементарная конъюнкция ранга k, т.е. $\varphi=x_{i_1}^{a_1},\ldots,x_{i_n}^{a_k}$

Утверждение. (свойства)

1.
$$f = \varphi \Leftrightarrow N_f = N_{\varphi}$$

2.
$$N_{f \cdot \varphi} = N_f \cap N_{\varphi}$$

3.
$$N_{f \cup \varphi} = N_f \cup N_{\varphi}$$

4.
$$f \cup \varphi \equiv f \Leftrightarrow N_{\varphi} \subseteq N_f$$

5.
$$f \equiv \bigvee_{i=1}^{m} \varphi_i \Leftrightarrow N_f = \bigcup_{i=1}^{m} N_{\varphi_i}$$

Определение. Длиной ДНФ называется сумма рангов входящих в неё элементарных конъюнкций. ДНФ с минимальной длиной называется минимальной ДНФ (МДНФ).

Определение. Элементарная конъюнкция $\psi = x_{i_1}^{a_1} \cdot \ldots \cdot x_{i_k}^{a_k}$ называется имплекантой функции $f(x_1,\ldots,x_n)$, если она входит в некоторую ДНФ представляющуюю функцию f.

Утверждение. (эквивалентно)

1. ψ - имплеканта функции f

2.
$$\psi \cup f \equiv f$$

3.
$$\psi \to f \equiv 1$$

4.
$$\psi \cdot f = \psi$$

Определение. Говорят, что g поглащается функцией f, если $g \lor f \equiv f$, т.е. имплеканта это элементарная конъюнкция, поглощаемая функцией f.

Onpedeneнue. Имплеканта функции f называется простой, если никакая её собственная часть не поглощается функцией f.

Пример.

$$\underline{f(x_1, x_2, x_3)} \equiv x_1 x_2 \lor x_1 \overline{x_2} \lor \overline{x_2 x_3}$$

 $\overline{x_2x_3}$ - простая.

 x_1x_2 - нет, т.к. x_1 поглощается f.

Лемма. Пусть φ_1 и φ_2 имплеканты f, φ_1 поглощает $\varphi_2 \Leftrightarrow \varphi_1$ - часть φ_2

Теорема. \forall имплеканта функции f, содержащаяся в какой-либо МДНФ функции f является простой.

Теорема. Пусть $\varphi_1 \cup \ldots \cup \varphi_m$ - дизъюнкция всех простых имплекант функции f, тогда $f \leq \varphi_1 \vee \ldots \vee \varphi_m$

Определение. Дизъюнкция всех простых имплекант функции f называется сокращенной ДНФ.

Определение. ДНФ $\varphi_1 \cup \ldots \cup \varphi_m$ функции f называется тупиковой, если все φ_i , $i \in \overline{1, k}$, входящие в неё, являются простыми имплекантами f и φ .

Всюду далее f - n-местная булевая функция отличается от константы.

2.1 Метод Блейка

Метод Блейка строит из ДНФ сокращённую ДНФ.

Основной операцией данного алгоритма является операция неполного склеивания, в основе которого лежит тождество:

$$x\varphi_1 \vee \bar{x}\varphi_2 \equiv x\varphi_1 \vee \bar{x}\varphi_2 \vee \varphi_1\varphi_2$$

Вход: ДНФ

Выход: Сокращённая ДНФ

<u>Этап 1</u> В исходной ДНФ нааходим пару имплекант, в которой некоторая переменная входит в разных степенях: $\varphi_i = x_k \varphi_i'$ и $\varphi_j = \overline{x_k} \varphi_j'$.

Формируем $\varphi_1\varphi_2$ и добавляем её в ДНФ, повторяем до тех пор, пока не перестанут повялятся новые имплеканты.

<u>Этап 2</u> В полученной ДНФ применяем операцию поглащения используя тождество $\varphi\psi\lor\varphi\equiv\varphi$ до тех пор пока это возможно.

Теорема. Полученная на выходе алгоритма ДНФ является сокращённой ДНФ.

 \mathcal{A} ок-во: Покажем, что ДНФ, полученная на $\underline{\text{Этапе 1}}$ содержит все простые имплеканты функции f(индукция по n).

Пусть n=1. Утверждение очевидно, т.к. ДНФ функции одной переменной отличной от константы есть x_1 или $\overline{x_1}$.

Пусть \forall ДНФ и для \forall функции от n-1 переменной после $\underline{\text{Этапа 1}}$ образуется ДНФ, содержащая все простые имплеканты.

Пусть теперь f - функция от n переменных и φ её имплеканта

а) Если ранг φ равен n, то φ содержится в \forall ДНФ функции f. Действительно пусть $\varphi = x_1^{a_1} \cdot \ldots \cdot x_n^{a_n}$, тогда она принемает значения $1 \Leftrightarrow$ все x_i равны a_i в любой ДНФ функции f должна присутствовать

имплеканта φ' , принимающая значение 1 на $(a_1, \ldots, a_n) \Rightarrow$ все переменные входят в неё в тех же степенях, что и в φ , но

б) Если ранг φ меньше, то $\exists x_i$ не входящее в φ .

Представим f в виде $f=x_ih\vee\overline{x_i}g\vee t$, где h,g,t - некоторые булевые функции, независящие от x_i . Т.к. φ - имплекация функции f, то $\varphi\vee x_ih\vee\overline{x_i}g\vee t$ совпадает с $x_ih\vee\overline{x_i}g\vee t$. Полагая $x_i=0$ или 1 имеем $\varphi\vee g\vee t\equiv g\vee t$ и $\varphi\vee h\vee t\equiv h\vee t$ соответственно. Возьмём конъюнкцию этих

тождеств и применим к левой части закон дистрибутвности. Получим $\varphi \lor (g \lor t)(h \lor t) \equiv (g \lor t)(h \lor t) \Rightarrow \varphi$ является имплекантой функции $f_1 = (h \lor t)(g \lor t) \equiv hg \lor t$.

ДНФ этой функции получается с помощью операции "неполного склеивания" из имплекант, входящих в ДНФ функции $x_ih \lor \overline{x_i}g \lor t$. При этом φ - простоая для f, т.к. φ - простая для f_1 , а f поглащает f_1 .

Тогда по предположению индукции φ содержится в ДНФ, полученной после <u>Этапа 1</u>, применнёного к ДНФ функции f_1 , но $\varphi \in$ аналогичной ДНФ функции f, т.к. \forall непростая имплеканта поглащается некоторой простой, то после <u>Этапа 2</u> в ДНФ окажутся только простые имплеканты.

 $\pmb{\mathcal{J}\!\mathit{еммa}}.$ Путь ДНФ $A=\bigcup_{i=1}^k \varphi_i$ поглащает элементарную конъюнкцию φ и $\varphi\varphi_k\equiv 0.$ Тогда φ поглащается ДНФ $A^1=\bigcup_{i=1}^k \varphi_i$

 ${\it Onpedenenue}.$ Функции f_1 и f_2 называются ортогональными, если $f_1f_2\equiv 0$

Теорема. (Критерий поглощения)

Пусть $A=\bigcup_{i=1}^k u_i$ - ДНФ некоторой функции, φ_0 - элементарная конъюнкция не ортогональная ни одной из конъюнкций $\varphi_1,\dots,\varphi_k$. Обозначим φ_{0_i} - конъюнкцию членов входящих в φ_0 и в φ_i , а φ_{1_i} - конъюнкция членов φ_i , невходящих в φ_0 (если $\varphi_i=\varphi_{0_i},\varphi_{1_i}=1$) ДНФ поглощает $\varphi\Leftrightarrow\bigvee_{i=1}^k\varphi_{1_i}\equiv 1$

Утверждение. Если f монотонна, то сокращённая ДН $\Phi = MДН\Phi$.

2.2 Метод Квайна

Составляется таблица, строчки которой обозначают всеми простыми имлекантами длиной функции, столбцы - наборами, на которых функция принимает значение 1. На пересечении ставится значение имплеканты на соответствующем наборе. Для построения ДНФ или МДНФ надо удалять строки так, чтобы в каждом столбце была хотя бы одна 1.

3 Представление дискретных функций в базисах функциональных пространств. Алгоритм БПФ.

Определение. Пусть К - произвольное поле, 0 и 1 - нуль и единица поля К соответствует псевдобулевой функции от п переменных называется произвольное отображение $f:\{0,1\}^n \longrightarrow K$. Обобщение $GF(p)^n \longrightarrow K$. Множества таких функций будем называть $K_p(n)$. На $K_p(n)$ естественным образом задаются операции + и \cdot на элементах поля.

Утверэнсдение. $K_p(n)$ - векторное пространство над K размерности p^n **Теорема.** Множеству всех различных гомоморфизмов $\varphi: (GF(p)^n, +) \longrightarrow (\mathbb{C}, *)$ состоит из p^n различных гомоморфизмов $\mathcal{X}_{\alpha}; \ \alpha = (\alpha_1, \dots, alpha_n) \in GF(p)^n$, каждый из которых однозначно определяется своим действием на вектора стандартного базиса $e_j, j \in \overline{1,n}$ следующим образом $\mathcal{X}_{\alpha}(e_j) = \exp(\frac{2\pi i}{p} \cdot \alpha_i)$.

Утверждение. Для любых $\alpha, \beta \in GF(p)^n$ верно $\frac{1}{p^n} \sum_{\gamma \in GF(p)^n}^n \mathcal{X}_{\alpha}(\gamma) \overline{\mathcal{X}_{\beta}(\gamma)} = \delta_{\alpha,\beta}$, т.е.

$$\delta_{\alpha,\beta} = \begin{cases} 1, \alpha = \beta \\ 0, \alpha \neq \beta \end{cases}$$

Теорема. $\{\mathcal{X}_{\alpha} \mid \alpha \in (GF(p))^n\}$ - базис $\mathbb{C}_p(n)$

Определение. Разложение произвольной функции $f \in \mathbb{C}_p(n)$ по базису характера $\{\mathcal{X}_\alpha \mid \alpha \in (GF(p))^n\}: f(\vec{x}) = \sum_{\alpha \in GF(p)^n} C_\alpha^f \mathcal{X}_\alpha(\vec{x})$ называется разложением f в ряд Фурье, соответствующий набору α . Комплексное число C_α^f - коэффициент Фурье функциий f соотвествующий набору α .

Определение. Преобразование из $\mathbb{C}_p(n)$ в \mathbb{C}^{p^n} , ставящее в соответствие каждой функции ее коэффициенты Фурье(«Спектр Фурье»), будем называть преобразование Фурье.

Утверждение.

- 1. Пусть $\gamma \in GF(p)^n$, тогда $C_{\gamma}^f = \frac{1}{r^n} \sum_{\beta \in GF(p)^n} f(\beta) \overline{\mathcal{X}_{\alpha}(\beta)}$.
- 2. Пусть f булева функция, тогда $C^f_{\gamma} = \frac{1}{2^n} ||(f(\overline{x})||.$

В некоторых случаях вместо функции f удобнее свойства функции $F(\vec{x})=(-1)^{f(\vec{x})}$. Коэффиценты Фурье такой функции называется коэффициентом Уолша-Адамара второго рода функции f(x). Обозначается $C^F_{\alpha}=W^f_{\alpha}$.

Свойства.

1.
$$W^f_{\alpha}=1-\frac{1}{2^{n-1}}||f(\vec{x})\oplus<\alpha,\vec{x}>||,$$
 где $<\alpha,\vec{x}>=\alpha_1x_1\oplus\cdots\oplus\alpha_nx_n.$

2.

$$W_{\alpha}^{f} = \begin{cases} -2C_{\alpha}^{f} : \alpha \neq \vec{0} \\ 1 - 2C_{\alpha}^{f} : \alpha = \vec{0} \end{cases}$$

3.
$$\sum_{\alpha \in \Omega_2^n} W_{\alpha}^f = (-1)^{f(\overline{0})}$$

4.
$$\sum_{\alpha \in \Omega_2^n} (W_{\alpha}^f)^2 = 1$$

5.
$$\frac{1}{2^{\frac{n}{2}}} \leq \max_{\alpha \in \Omega_2^n} |W_{\alpha}^f| \leq 1$$

Зафиксируем некоторую обратимую $2^n \times 2^n$ матрицу A над полем K. Пусть f^{\downarrow} - вектор столбцов значений f из $K_2(n)$. $\widehat{f^{\downarrow}} = A^{-1}f^{\downarrow}$, тогда задано биективное отображение из $K_2(n)$ в K^{2^n} . Вектор $\widehat{f^{\downarrow}}$ - представление функции f. Если столбцы матрицы A занумеровать наборами из Ω_2^n , то $f^{\downarrow} = \sum_{\alpha \in \Omega_2^n} g_{\alpha}^{\downarrow} \widetilde{f}(\alpha)$. Каждый столбец g_{α}^{\downarrow} есть задание некоторой функции из $K_2(n)$, A - невырожденная $\Rightarrow \{g_{\alpha}\}_{\alpha \in \Omega_2^n}$ - базис $K_2(n)$.

<u>Определение.</u> Пусть A и B - матрицы над размеров $m \times n$ и $n \times n$ над полем K соответственно. Тензорным произведением матриц A и B называется матрица $A \otimes B$ следующего вида:

$$C = \begin{pmatrix} \alpha_{11}\beta & \alpha_{12}\beta & \dots & \alpha_{1m}\beta \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1}\beta & \alpha_{m2}\beta & \dots & \alpha_{mn}\beta \end{pmatrix} - \text{размерность } mn \times mn.$$

Утверждение.

1.
$$A \otimes (B \otimes C) = (A \otimes B) \otimes C$$

2.
$$(A+B) \otimes C = A \otimes C + B \otimes C \ (m=n)$$

 $A \otimes (B+C) = A \otimes B + A \otimes C$

3.
$$A, C \in K_{m:m}, B, D \in K_{n:n} \Rightarrow (A \otimes B)(C \otimes D) = AC \otimes BD$$

4.
$$A \oplus B$$
 обратимо $\Leftrightarrow A$ и B обратимы, причем $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$

Лемма. Пусть A - матрица размера $2^n \times 2^n$ над K и $A = B \otimes A'$, где $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $a,b,c,d \in K$, а A - матрица размером $2^{n-1} \times 2^{n-1}$ причем обе матрицы B и A' невырожденные. Пусть столбцы матриц A и A' задают базисы функциональных пространств $K_2(n), K_2(n-1)$, функции из которых обозначаются g_α и ${g'}_\alpha$ соответственно. Тогда $\forall \alpha \in \Omega_2^{n-1}$ верно:

$$g_{\alpha}(0,\alpha') = (a\overline{x_1} + cx_1)g_{\alpha'}(x_2; \dots; x_n)$$

$$g_{\alpha}(1,\alpha') = (b\overline{x_1} + dx_1)g_{\alpha'}(x_2; \dots; x_n).$$

Теорема. Пусть A - тензорное произведение матриц $B_j \in K_{2\times 2}^*$ вида $\begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix}$, т.е. $A = \otimes \prod_{i=1}^n B_i$, тогда базисная функция g_ω , соотвествующая столбцу A и занумерованная набором $\omega = (\omega_1, \ldots, \omega_n)$ имеет вид $g_\omega(x_1; \ldots; x_n) = \prod_{i=1}^n \omega_i(a_i\overline{x_i} + c_ix_i) + \omega_i(b_i\overline{x_i} + d_ix_i)$. Пример.

$$B = \begin{cases} 1 & 0 \\ 0 & 1 \end{cases}$$
 — тождественное преобразование.

$$B = \begin{cases} 1 & 0 \\ 1 & 1 \end{cases}$$
 — многочлен Жегалкина.

$$B = \begin{cases} 1 & 1 \\ 1 & -1 \end{cases}$$
 — коэффициент Фурье.

Теорема. Пусть B - невырожденная матрица размера 2×2 над K, $A=B^{[n]}$ - тензорная степень. Тогда существует алгоритм вычисления \widetilde{f}^\downarrow по вектору f^\downarrow , имеющий сложность $O(n\cdot 2^n)$ операций поля K)

 \mathcal{A} ок-во: Пусть $B^{-1}=egin{pmatrix} a & b \\ c & d \end{pmatrix}$. Из свойств тензорного произведения матриц вытекает, что $A^{-1}=(B^{-1})^{[n]}=D_n\cdot D_{n-1}\cdot\ldots\cdot D_1$, где D_i - матрица вида:

$$D_i = \left(E_2^{[n-i]} \otimes egin{pmatrix} a & b \ c & d \end{pmatrix} \otimes E_2^{[i-1]}
ight)$$
, где $E_2 = egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$.

Обозначим $f_0^\downarrow=f^\downarrow$ и $\forall i\in\overline{1,n}\mid f_i^\downarrow=D_i\cdot f_{i-1}^\downarrow$, тогда $\widetilde{f^\downarrow}=f_n^\downarrow$. Покажем, что каждое из умножений D_i на f_{i-1}^\downarrow может быть выполнено

Покажем, что каждое из умножений D_i на f_{i-1}^{\downarrow} может быть выполнено за $O(2^n)$ операций поля K. Тогда общее количество операций, необходимое для вычисления $\widetilde{f^{\downarrow}}$ по f^{\downarrow} будет составлять $0(n2^n)$ операций.

$$D = \left(E_{2^{n-i}} \otimes \begin{pmatrix} aE_{2^{i-i}} & bE_{2^{i-i}} \\ cE_{2^{i-i}} & dE_{2^{i-i}} \end{pmatrix}\right) = \begin{pmatrix} \overset{\wedge}{D_i} & & 0 \\ & \ddots & \\ 0 & & \overset{\wedge}{D_i} \end{pmatrix}$$

 $\overset{\smallfrown}{D}_i$ - матрица размера $2^i \times 2^i$ вида

$$\begin{pmatrix} aE_{2^{i-1}} & bE_{2^{i-1}} \\ cE_{2^{i-1}} & dE_{2^{i-1}} \end{pmatrix}.$$

Пусть теперь X^{\downarrow} произвольный вектор длины 2^n над полем K. Опишем алгоритм умножения D_i на X^{\downarrow} .

1. Разобьем X^{\downarrow} на 2^{n-1} частей длины 2^i , тогда

$$X^{\downarrow}=egin{pmatrix} X_1^{\downarrow} \ dots \ X_{2^{n-i}}^{\downarrow} \end{pmatrix}$$
, тогда $D_iX^{\downarrow}=egin{pmatrix} \hat{D}_iX_1^{\downarrow} \ dots \ \hat{D}_iX_{2^{n-i}}^{\downarrow} \end{pmatrix}$.

2. Каждый из векторов X_j^\downarrow разбиваем на 2 подвектора равной длины.

$$\begin{split} X_j^{\downarrow} &= \begin{pmatrix} X_{j_0}^{\downarrow} \\ X_{j_1}^{\downarrow} \end{pmatrix}, \text{тогда } D_i X_j^{\downarrow} = \begin{pmatrix} a E_{2^{i-1}} & b E_{2^{i-1}} \\ c E_{2^{i-1}} & d E_{2^{i-1}} \end{pmatrix} \begin{pmatrix} X_{j_0}^{\downarrow} \\ X_{j_1}^{\downarrow} \end{pmatrix} = \\ &= \begin{pmatrix} a E_{2^{i-1}} X_{j_0}^{\downarrow} + b E_{2^{i-1}} X_{j_0}^{\downarrow} \\ c E_{2^{i-1}} X_{j_1}^{\downarrow} + d E_{2^{i-1}} X_{j_1}^{\downarrow} \end{pmatrix} = \begin{pmatrix} a X_{j_0}^{\downarrow} + b X_{j_0}^{\downarrow} \\ c X_{j_1}^{\downarrow} + d X_{j_1}^{\downarrow} \end{pmatrix}. \end{split}$$

Таким образом для вычисления $\widetilde{f^\downarrow}$ необходимо $O(n\cdot 2^n)$ операций.

4 Трансверсали.

Определение. Пусть 2^X - булеан множества X, т.е. совокупность всех подмножеств множества X. Пусть $(X_1; \ldots; X_n)$ - некоторая n-выборка из булеана. Вектор $(x_1; \ldots; x_n)$, состоящий из элементов множества X, называется трансверсалью семейства $(X_1; \ldots; X_n)$, если выполнены следующие отношения:

- 1. $x_i \notin X_i$; $1 \le i \le n$;
- 2. $x_i \neq x_j$; $i \neq j$; $1 \neq i, j \leq n$.

Иными словами имеем систему различных представителей семейства $(X_1;\ldots;X_n)$.

Теорема. (Критерий Ф.Холла) Для того, чтобы семейство $(X_1; ...; X_n)$ имело трансверсаль, необходимо и достаточно, чтобы $\forall k \in \overline{1,n}$ и $\forall k$ -сочетания $i \leq j_1 < \dots < j_k \leq n$ выполнялось условие:

$$|X_{j_1} \cup \cdots \cup X_{j_k}| \geq k.$$
 (*)

Доказательство:

Необходимость:

Пусть $\exists (x_1; \ldots; x_n)$ тр. $(X_1; \ldots; X_n)$. Тогда $\forall k \in \overline{1,n}$ и \forall набора $1 \leq j_1 < \cdots < j_k \leq n$ имеем $x_{j_1} \in X_{j_1}, \ldots, x_{j_k} \in X_{j_k}$ и $x_{j_s} \neq x_{j_t}$ при $j_t \neq j_s \Rightarrow |X_{j_1} \cup \cdots \cup X_{j_k}| \geq k = |x_1; \ldots; x_k|$.

Достаточность:

Индукция по n. Пусть n=1 , тогда $|X_1| \le 1 \Rightarrow x_1$ тр X_1 . Предположение индукции: $\forall n' < n$ из условия $(*) \Rightarrow \exists$ трансверсали для n' множеств.

Рассмотрим 2 случая:

а) Для всех $1 \le k \le n-1$ и $\forall 1 \le j_1 < \dots < j_k \le n$ верно $|X_{j_1} \cup \dots \cup X_{j_k}| \ge k+1$ (**) При k=1 $|X_1| \ge 2 \Rightarrow \exists$ трансверсаль x_1 тр. X.

Рассмотрим семейство $(X_2';\ldots;X_n')$, где $X_i=X_i$ $x_i,2\leq i\leq n$. Согласно (**) для этого семейства при $\forall 1\leq k< n$ и $\forall 2\leq j_1<\cdots< j_k\leq n$ имеем $|X_{j_1}'\cup\cdots\cup X_{j_k}'|\geq k$ и по предположению индукции существует $(x_2;\ldots;x_n)$ тр. $(X_2';\ldots;X_n')$, но тогда (x_1,x_2,\ldots,x_n) тр. $(X_1;\ldots;X_n)$.

б) $\exists k$ и такое сочетание $1 \leq j_1 < \dots < j_k \leq n$, что $|X_{j_1} \cup \dots \cup X_{j_k}| = k$. Т.к. можно перенумеровать подмножества, то не ограничивая общности считаем $|X_1 \cup \dots \cup X_k| = k$. По предположению индукции \exists трансверсаль $(x_1; \dots; x_k)$ тр. $(X_1; \dots; X_k)$, т.к. k < n и $x_1; \dots; x_k = |X_1 \cup \dots \cup X_k|$.

Рассмотрим семейство множеств $(X_{k+1};\ldots;X_n)$, где $X_i'=X_i\,x_1;\ldots;x_k,k+1\leq i\leq n$. Для этого семейства верно условие (*), т.к. $\forall 1\leq l\leq n-k$ и $\forall 1\leq \nu_1<\cdots<\nu_l\leq n-k$ имеем $|X_{k+\nu_1}'\cup\cdots\cup X_{k+\nu_l}'\cup X_1\cdots\cup X_k|-k\geq |X_{k+\nu_1}'\cup\cdots\cup X_{k+\nu_l}\cup X_1\cdots\cup X_k|-k\geq \text{Штрихи можно снять, т.к.}$

 $x_1; \ldots; x_k$ и так содержится в $X_1 \cup \cdots \cup X_k \ge k + l - k = l$, т.к. верно условие (*) для нештрихованных множеств. Таким образом $\exists (x_{k+1}; \ldots; x_n)$ тр. $(X'_{k+1}; \ldots; X'_n) \Rightarrow \exists (x_1; \ldots; x_n)$ тр. $(X_1; \ldots; X_n)$.

Пример. 1. Представители различных классов эквивалентности Пример. 2. Остовное дерево графа. Его ребра - трансверсали множества рёбер графа.

Определение. Пусть P = GF(q) - конечное поле из q элементов, $q = p^d$, где $p \in \mathbb{P}$ (простое). Пусть F(x) - реверсивный многочлен (т.е. $F(0) \neq 0$) над P. Найдутся $a \in P$ и $k \in \mathbb{N}$: $F(x)|x^k - a$. Наименьшее k с таким свойством назовём редуцированным периодом (Обозначение: Tred(F)). Элемент a назовём мультипликатором многочлена F(x). Обозначение (Mult(F)) - множество всех мультипликаторов.

Пусть $F(x)|x^t-b$, где t=Tred(F). Тогда Утверждение.

- 1. Mult(F) = < b >;
- 2. t * |Mult(F)| = T(F);
- 3. Если f примитивный, то $t=\frac{q^m-1}{q-1},$ где $m=deg(f(x)),Multi(F)=P^*,b=F(0).$

Рассмотрим следующую модель ДСЧ (Датчик случайных чисел).

Пусть F_1, \ldots, F_k - многочлены попарно взаимопростых степеней $m_1, \ldots m_k$. Тогда $T = [T(F_1), \ldots, T(F_k)] = \frac{(q^{m_1}-1)\cdot\ldots\cdot(q^{m_k}-1)}{(q-1)^{k-1}}$.

 $(q^{m_1}-1)*(q^{m_k}-1)$, каждый из них лежит на цикле длины T и таких циклов $(q-1)^{k-1}$. Будем считать, что начальное состояние $\vec{\alpha_0}=(u_1(0),\ldots,u_1(m_i-i),u_2(m_2-1),\ldots,u_k(0),\ldots,u_k(m_k-1))$ выбирается из множества S всех состояний, тогда $\vec{\alpha_i}=(u_i(i),\ldots,u_i(i+m_1-1),\ldots,u_k(i),\ldots,u_k(i+m_k-1)\in S$. Последовательность $(\vec{\alpha_i}_{i=0})$ - чисто периодическая с периодом T. Каждый вектор $\vec{\alpha}\in S$ запишем в виде $\vec{\alpha}=(\vec{\alpha}(i);\ldots;\vec{\alpha}(k))$, где $\vec{\alpha}(j)\in P^{m_j}$ $\vec{0}$.

Зададим отношение $|\forall \vec{\alpha}, \vec{\beta}\vec{\alpha} \ \vec{\beta} \Leftrightarrow \exists c_1, \dots, c_k \in P^* | \vec{\alpha}(j) = c_j \vec{\beta}(j) \forall j \in \overline{1,k}$ Пусть q_j - корень многочлена $F_j(x)$ в расширении $GF(q^{m_j})$ поля P, где $j \in \overline{1,k}$. Из пункта 3 утверждения следует, что $b_j = a_j \frac{q^{m_j}-1}{q-1} = a_j Tred(F_j), i \in \overline{1,k}$, т.е. имеем мультипликатор многочлена $F_j(x)$. Пусть $m=m_1;\dots;m_k$, положим $\forall \vec{\alpha}, \vec{\beta} \in S\vec{\alpha} \overset{red}{\sim} \vec{\beta} \Leftrightarrow \exists i \in 0,\dots,q-2 | \vec{\alpha}(j) = \vec{\beta}(j) * b^{m/m_j}, \forall j \in \overline{1,k}$. Для любого вектора \exists ровно q-1 вектор, находящийся с ним в отноше-

нии $\stackrel{red}{\sim}$.

Теорема. Пусть $\vec{\gamma_1}, \vec{\gamma_2} \in S$, тогда

- 1) $\vec{\gamma_1} \vec{\gamma_2}$

2) $\vec{\gamma_1}$ $\stackrel{red}{\sim}$ $\vec{\gamma_2}$ Тогда $\vec{\gamma_1}$ и $\vec{\gamma_2}$ лежат на различных циклах.