1 ls.net: Network Least Squares Regression for Continuous Proximity Matrix Dependent Variables

Use network least squares regression analysis to estimate the best linear predictor when the dependent variable is a continuously-valued proximity matrix (a.k.a. sociomatrices, adjacency matrices, or matrix representations of directed graphs).

1.0.1 Syntax

```
> z.out <- zelig(y ~ x1 + x2, model = "ls.net", data = mydata)
> x.out <- setx(z.out)
> s.out <- sim(z.out, x = x.out)</pre>
```

1.0.2 Examples

1. Basic Example with First Differences

Load sample data and format it for social networkx analysis:

```
> data(sna.ex)
```

Estimate model:

```
> z.out <- zelig(Var1 ~ Var2 + Var3 + Var4, model = "ls.net", data = sna.ex)
```

Summarize regression results:

```
> summary(z.out)
```

Set explanatory variables to their default (mean/mode) values, with high (80th percentile) and low (20th percentile) for the second explanatory variable (Var3).

```
> x.high <- setx(z.out, Var3 = quantile(sna.ex$Var3, 0.8))
> x.low <- setx(z.out, Var3 = quantile(sna.ex$Var3, 0.2))</pre>
```

Generate first differences for the effect of high versus low values of Var3 on the outcome variable.

```
> try(s.out <- sim(z.out, x = x.high, x1 = x.low))
> try(summary(s.out))
> plot(s.out)
```


1.0.3 Model

The ls.net model performs a least squares regression of the sociomatrix \mathbf{Y} , a $m \times m$ matrix representing network ties, on a set of sociomatrices \mathbf{X} . This network regression model is a directly analogue to standard least squares regression element-wise on the appropriately vectorized matrices. Sociomatrices are vectorized by creating Y, an $m^2 \times 1$ vector to represent the sociomatrix. The vectorization which produces the Y vector from the \mathbf{Y} matrix is preformed by simple row-concatenation of \mathbf{Y} . For example if \mathbf{Y} is a 15×15 matrix, the $\mathbf{Y}_{1,1}$ element is the first element of Y, and the \mathbf{Y}_{21} element is the second element of Y and so on. Once the input matrices are vectorized, standard least squares regression is performed. As such:

• The stochastic component is described by a density with mean μ_i and the common variance σ^2

$$Y_i \sim f(y_i|\mu_i,\sigma^2).$$

• The systematic component models the conditional mean as

$$\mu_i = x_i \beta$$

where x_i is the vector of covariates, and β is the vector of coefficients.

The least squares estimator is the best linear predictor of a dependent variable given x_i , and minimizes the sum of squared errors $\sum_{i=1}^{n} (Y_i - x_i \beta)^2$.

1.0.4 Quantities of Interest

The quantities of interest for the network least squares regression are the same as those for the standard least squares regression.

• The expected value (qi\$ev) is the mean of simulations from the stochastic component,

$$E(Y) = x_i \beta,$$

given a draw of β from its sampling distribution.

• The first difference (qi\$fd) is:

$$FD = E(Y|x_1) - E(Y|x)$$

1.0.5 Output Values

The output of each Zelig command contains useful information which you may view. For example, you run z.out <- zelig(y x, model="ls.net", data), then you may examine the available information in z.out by using names(z.out), see the coefficients by using z.out\$coefficients, and a default summary of information through summary(z.out). Other elements available through the \$ operator are listed below.

- From the zelig() output stored in z.out, you may extract:
 - coefficients: parameter estimates for the explanatory variables.
 - fitted.values: the vector of fitted values for the explanatory variables
 - residuals: the working residuals in the final iteration of the IWLS fit.
 - df.residual: the residual degrees of freedom.
 - zelig.data: the input data frame if save.data = TRUE
- From summary(z.out), you may extract:
 - mod.coefficients: the parameter estimates with their associated standard errors, p-values, and t statistics.

$$\hat{\beta} = \left(\sum_{i=1}^{n} x_i' x_i\right)^{-1} \sum x_i y_i$$

– sigma: the square root of the estimate variance of the random error ε :

$$\hat{\sigma} = \frac{\sum (Y_i - x_i \hat{\beta})^2}{n - k}$$

- r.squared: the fraction of the variance explained by the model.

$$R^{2} = 1 - \frac{\sum (Y_{i} - x_{i}\hat{\beta})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

- adj.r.squared: the above R^2 statistic, penalizing for an increased number of explanatory variables.
- cov.unscaled: a $k \times k$ matrix of unscaled covariances.
- From the sim() output stored in s.out, you may extract:
 - qi\$ev: the simulated expected values for the specified values of x.
 - qi\$fd: the simulated first differences (or differences in expected values) for the specified values of x and x1.

How to Cite

How to Cite Network Linear Model

Matt Owen, Kosuke Imai, Olivia Lau, and Gary King. ls.net: Network Least Squares Regression for Continuous Proximity Matrix Dependent Variables, 2011

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. "Zelig: Everyone's Statistical Software," http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). "Toward A Common Framework for Statistical Analysis and Development." Journal of Computational and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The network least squares regression is part of the sna package by Carter T. Butts [1]. In addition, advanced users may wish to refer to help(netlm).

References

- [1] C.T. Butts and K.M. Carley. Multivariate methods for interstructural analysis. Technical report, CASOS working paper, Carnegie Mellon University, 2001.
- [2] Matt Owen, Kosuke Imai, Olivia Lau, and Gary King. ls.net: Network Least Squares Regression for Continuous Proximity Matrix Dependent Variables, 2011.