1. Establish the Foundation

- **Function Signatures** describe how data is modeled and represented.
- Foundation: Start with **Fourier (1D)**, extend to **Zernike (2D)**, and then **Spherical Harmonics (3D)**.

Domain	Basis Functions	Example Input
1D	Sines/Cosines	f(x)
2D (disk)	Zernike Polynomials	f(x,y)
3D (sphere)	Spherical Harmonics	$f(heta,\phi)$

2. Trivial Example: Constant Sphere

• Input: $f(\theta, \phi) = 1$

• Output: Only $c_{00} \neq 0$ in the SH expansion.

uniform_sphere.png

1	m	Clm
0	0	1.0
1	-1. 0. 1	0.0

3. Perturbed Sphere: Higher Modes

- A small localized **bump** perturbs the sphere.
- Higher *I*-modes are excited in the SH expansion.

bumped_sphere.png

1	m	c _{lm} (Uniform)	c _{lm} (Bumped)
0	0	1.0	0.95
1	-1. 0. 1	0.0	Small nonzero

4. Connecting to Visuals

- Pick an angle (θ, ϕ) , e.g., $(90^{\circ}, 0^{\circ})$.
- Value $f(\theta, \phi)$ determines the color/height at that point.
- **Higher SH coefficients c_{lm} ** add detail to the surface.

rcs_visual.png

5. Function Signature

$$\sigma(\theta,\phi) \approx \sum_{l=0}^{L} \sum_{m=-l}^{l} c_{lm} Y_{lm}(\theta,\phi)$$

- **Inputs**: Angles (θ, ϕ) .
- **Outputs**: Scalar values $f(\theta, \phi)$ (RCS, etc.).
- **Spherical Harmonics Coefficients c_{lm} ** describe the function.