Zväzovo usporiadané množiny

Nech \preceq je relácia usporiadania na množine X. Hovoríme, že (X, \preceq) je **zväzovo usporiadaná množina**, ak pre každú svoju dvojprvkovú podmnožinu obsahuje množina X aj jej supremum a infimum.

Zväzy

Nech X je množina, \land, \lor sú operácie na X, pre ktoré platí:

- $\forall x \in X \colon x \lor x = x, \ x \land x = x,$ (idempotencia)
- $\forall x, y \in X \colon x \lor y = y \lor x, \ x \land y = y \land x,$ (komutativita)
- $\forall x, y, z \in X \colon (x \lor y) \lor z = x \lor (y \lor z), \ (x \land y) \land z = x \land (y \land z),$ (asociativita)
- $\forall x, y \in X \colon x \land (x \lor y) = x, \ x \lor (x \land y) = x.$ (absorbčné zákony)

Potom trojicu (X, \vee, \wedge) nazývame **zväzom** na X. Operáciu \vee nazývame **spojenie** a operáciu \wedge nazývame **priesek**.

Podzväzy

Hovoríme, že zväz (Y,\vee,\wedge) je **podzväz** zväzu (X,\vee,\wedge) , ak platí:

- \bullet $Y \subseteq X$,
- $\forall x, y \in Y : x \lor y \in Y, x \land y \in Y$.

Izomorfizmus

Nech (X, \vee_X, \wedge_X) , (Y, \vee_Y, \wedge_Y) sú zväzy. Ak existuje bijekcia $f: X \to Y$ taká, že $\forall x, y \in X$ platí:

$$f(x \vee_X y) = f(x) \vee_Y f(y) \quad \land \quad f(x \wedge_X y) = f(x) \wedge_Y f(y),$$

potom hovoríme, že (X, \vee_X, \wedge_X) , (Y, \vee_Y, \wedge_Y) sú **izomorfné zväzy**.

Klasifikácia zväzov

Nech (X, \vee, \wedge) je zväz. Hovoríme, že (X, \vee, \wedge) je

ullet modulárny, ak $\forall x,y,z\in X$ platí

$$x \leq z \Rightarrow x \lor (y \land z) = (x \lor y) \land z,$$

• distributívny, ak $\forall x, y, z \in X$ platí

$$x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z),$$

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z),$$

• komplementárny, ak v X existuje najmenší prvok 0 a najväčší prvok 1 a ku každému $x \in X$ existuje $\overline{x} \in X$ taký, že:

$$x \wedge \overline{x} = 0, x \vee \overline{x} = 1.$$

Prvok \overline{x} nazývame **komplementom** (doplnkom) prvku x.

Klasifikácia zväzov

- 1 Každý distributívny zväz je modulárny.

Klasifikácia zväzov

Zväz (X, \vee, \wedge) je

- ullet modulárny \Longleftrightarrow neobsahuje podzväz izomorfný s N_5 .
- ullet distributívny $\ \Longleftrightarrow$ neobsahuje podzväz izomorfný s M_5 ani $N_5.$

Booleove algebry

Nech $(X,\oplus,\otimes,',0,1)$ je algebra s dvoma binárnymi operáciami \oplus,\otimes unárnou operáciou ' a dvoma nulárnymi operáciami 0,1. Potom $(X,\oplus,\otimes,',0,1)$ je Booleova algebra, práve vtedy, keď sú pre všetky $x,y,z\in X$ splnené tieto podmienky:

- $(x \oplus y) \oplus z = x \oplus (y \oplus z), (x \otimes y) \otimes z = x \otimes (y \otimes z),$ (asociativita)
- $x \oplus y = y \oplus x$, $x \otimes y = y \otimes x$, (komutativita)
- $x \oplus (y \otimes z) = (x \oplus y) \otimes (x \oplus z),$ $x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z),$ (distributivita)
- $\bullet \ x \oplus 0 = x, \ x \otimes 1 = x,$
- $\bullet \ x \oplus x' = 1, \ x \otimes x' = 0.$

Booleove zväzy

Nech (X,\vee,\wedge) je distributívny a komplementárny zväz s najmenším prvkom $0\in X$ a najväčším prvkom $1\in X$. Potom (X,\vee,\wedge) nazývame **Booleovým zväzom.**

Konečné Booleove zväzy

- Nech (X,\vee,\wedge) je Booleov zväz s najmenším prvkom $0\in X$. Hovoríme, že $a\in X$ je **atóm** zväzu X, ak pokrýva najmenší prvok 0.
- Nech (X,\vee,\wedge) je konečný Booleov zväz. Potom (X,\vee,\wedge) je izomorfný so zväzom $(\mathcal{P}(Y),\cup,\cap)$, kde Y je množina všetkých atómov zväzu (X,\vee,\wedge) .