A Book of Abstract Algebra (2nd Edition)

Chapter 30, Problem 2EF

Bookmark

Show all steps: ON

Problem

By de Moivre's theorem,

$$\omega = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$$

is a complex seventh root of unity. Since

$$x^7 - 1 = (x - 1)(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)$$

 ω is a root of $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$.

Prove that

$$8\cos^3 \frac{2\pi}{7} + 4\cos^2 \frac{2\pi}{7} - 4\cos \frac{2\pi}{7} - 1 = 0$$

(Use part 1 and Exercise El.) Conclude that $\cos (2\pi/7)$ is a root of $8x^3 + 4x^2 - 4x - 1$.

Step-by-step solution

Step 1 of 5

Here, objective is to prove that
$$8\cos^3\frac{2\pi}{7} + 4\cos^2\frac{2\pi}{7} - 4\cos\frac{2\pi}{7} - 1 = 0$$
 and $\cos\frac{2\pi}{7}$ is a root of $8x^3 + 4x^2 - 4x - 1 = 0$

Comment

Step 2 of 5

De Moivre's theorem:

$$\omega = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$$
 is a complex seventh root of unity.

Since
$$x^7 - 1 = (x - 1)(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)$$

$$\omega$$
 is a root of $P(x) = (x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)$

Comment

Step 3 of 5

Consider
$$\omega = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$$

$$\frac{1}{\omega} = \cos \frac{2\pi}{7} - i \sin \frac{2\pi}{7}$$

$$\left(\omega + \frac{1}{\omega}\right) = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7} + \cos \frac{2\pi}{7} - i \sin \frac{2\pi}{7}$$

$$\left(\omega + \frac{1}{\omega}\right) = 2 \cos \frac{2\pi}{7}$$

Comment

Consider
$$\omega$$
 is a root of $P(x)=(x^6+x^5+x^4+x^3+x^2+x+1)$
Then, $P(\omega)=0$
 $(\omega^4+\omega^3+\omega^2+\omega+1)=0$

$$\omega^{2}(\omega^{2} + \omega + 1 + \omega^{-1} + \omega^{-2}) = 0$$

$$\omega^2 = 0$$
 or

$$\omega^3 + \omega^2 + \omega + 1 + \omega^{-1} + \omega^{-2} + \omega^{-3} = 0$$

$$\left(\omega + \frac{1}{\omega}\right)^3 + \left(\omega + \frac{1}{\omega}\right)^2 - 2\left(\omega + \frac{1}{\omega}\right) - 1 = 0$$

$$\left(2\cos\frac{2\pi}{7}\right)^{3} + \left(2\cos\frac{2\pi}{7}\right)^{2} - 2\left(2\cos\frac{2\pi}{7}\right) - 1 = 0$$

$$8\cos^3\frac{2\pi}{7} + 4\cos^2\frac{2\pi}{7} - 4\cos\frac{2\pi}{7} - 1 = 0$$

Comment

Step 5 of 5

put
$$x = \cos \frac{2\pi}{7}$$
 in above equation, then

$$8x^3 + 4x^2 - 4x - 1 = 0$$

Hence,
$$8\cos^3\frac{2\pi}{7} + 4\cos^2\frac{2\pi}{7} - 4\cos\frac{2\pi}{7} - 1 = 0$$

and
$$\cos \frac{2\pi}{7}$$
 is a root of $8x^3 + 4x^2 - 4x - 1 = 0$

Comment

COMPANY

About Chegg Chegg For Good College Marketing Corporate Development Investor Relations Jobs Join Our Affiliate Program Media Center Site Map

LEGAL & POLICIES

Advertising Choices
Cookie Notice
General Policies
Intellectual Property Rights
Terms of Use
Global Privacy Policy
Honor Code
Honor Shield

CHEGG PRODUCTS AND SERVICES

Cheap Textbooks
Chegg Coupon
Chegg Play
Chegg Study Help
College Textbooks
eTextbooks
Flashcards
Learn
Chegg Math Solver

Mobile Apps Sell Textbooks Solutions Manual Study 101

Textbook Rental Used Textbooks Digital Access Codes Chegg Money

CHEGG NETWORK

EasyBib Customer Service
Internships.com Give Us Feedback
Thinkful Help with eTextbooks
Help to use EasyBib Plus
Manage Chegg Study
Subscription
Return Your Books

CUSTOMER SERVICE

Textbook Return Policy