Centres étrangers - mai 2022 - sujet 1

Exercice 1 (Dictionnaires et listes - 4 points)

On dispose de la liste jours suivante et du dictionnaire mois suivant :

- 1. (a) A partir de la liste jours, comment obtenir l'élément "lundi"?
 - (b) On rappelle que l'opérateur « modulo » % renvoie le reste de la division entière (division euclidienne). Exemple : 7%3 renvoie 1 qui est le reste de la division de 7 par 3 :

$$-\frac{7}{6} \begin{vmatrix} 3 \\ 2 \end{vmatrix}$$

Que renvoie l'instruction jours [18%7]?

2. On rappelle que jours.index[element] renvoie l'indice de element dans la liste jours.

Par exemple, jours.index["mercredi"] renvoie 3.

Le nom du jour actuel est stocké dans une variable j (par exemple : j = "mardi").

Recopier et compléter l'instruction suivante permettant d'obtenir le numéro du jour de la semaine n jours plus tard :

```
numero_jour =(jours.index( ... ) + ... )% ...
```

- 3. (a) A partir du dictionnaire mois, comment obtenir le nombre de jours du mois de mars?
 - (b) Le numéro du mois actuel est stocké dans une variable numero_mois.

Ecrire le code permettant d'obtenir le nom du mois qu'il sera x mois plus tard à partir du dictionnaire mois. Par exemple :

- * si numero_mois = 4 et x = 5, on doit obtenir "septembre";
- * $\sin \alpha = 10 \text{ et } x = 3$, on doit obtenir "janvier".
- 4. On définit une date comme un tuple : (nom_jour, numero_jour, numero_mois, annee).
 - (a) Sachant que date = ("samedi", 21, 10, 1995), que renvoie mois [date[2]][1]?
 - (b) Ecrire une fonction jour_suivant qui prend en paramètre une date date sous forme de tuple et qui renvoie un tuple désignant la date du lendemain. Par exemple :
 - * jour_suivant(("samedi", 21, 10, 1995)) renvoie("dimanche", 22, 10, 1995);
 - * jour_suivant(("mardi", 31, 10, 1995)) renvoie("mercredi", 1, 11, 1995).

On ne tient pas compte des années bissextiles et on considère que le mois de février comporte toujours 28 jours.

Exercice 2 (Files et POO - 4 points)

Un supermarché met en place un système de passage automatique en caisse. Un client scanne les articles à l'aide d'un scanner de codebarres au fur et à mesure qu'il les ajoute dans son panier. Les articles s'enregistrent alors dans une structure de données.

La structure de données utilisée est une file définie par la classe Panier, avec les primitives habituelles sur la structure de file. Pour faciliter la lecture, le code de la classe Panier n'est pas écrit.

```
class Panier():
    def __init__(self):
        """Initialise la file comme une file vide."""

    def est_vide(self):
        """Renvoie True si la file est vide, False sinon."""

    def enfiler(self, e):
        """Ajoute l'élément e en dernière position de la file, ne renvoie rien."""

    def defiler(self):
        """Retire le premier élément de la file et le renvoie."""
```

Le panier d'un client sera représenté par une file contenant les articles scannés. Les articles sont représentés par des tuples (code_barre, designation, prix, horaire_scan) où

- * code_barre est un nombre entier identifiant l'article;
- * designation est une chaine de caractères qui pourra être affichée sur le ticket de caisse;
- * prix est un nombre décimal donnant le prix d'une unité de cet article;
- * horaire_scan est un nombre entier de secondes permettant de connaître l'heure où l'article a été scanné.
- 1. On souhaite ajouter un article dont le tuple est le suivant (31002, "café noir", 1.50, 50525). Ecrire le code utilisant une des quatre méthodes ci-dessus permettant d'ajouter l'article à l'objet de classe Panier appelé panier1.
- 2. On souhaite définir une méthode remplir (panier_temp) dans la classe Panier permettant de remplir la file avec tout le contenu d'un autre panier_temp qui est un objet de type Panier.
 Recopier et compléter le code de la méthode remplir en remplaçant chaque par la primitive de file qui convient.

```
def chiffrer(mot, alpha):
    mc = ""
    for l in mot:
        mc = mc + alpha[l]
    return mc
```

- 3. Pour que le client puisse connaître à tout moment le montant de son panier, on souhaite ajouter une méthode prix_total à la classe Panier qui renvoie la somme des prix de tous les articles présents dans le panier.

 Ecrire le code de la méthode prix_total. Attention, après l'appel de cette méthode, le panier devra toujours contenir ses articles.
- 4. Le magasin souhaite connaître pour chaque client la durée des achats. Cette durée sera obtenue en faisant la différence entre le champ horaire_scan du dernier article scanné et le champ horaire_scan du premier article scanné dans le panier du client. Un panier vide renverra une durée égale à zéro. On pourra accepter que le panier soit vide après l'appel de cette méthode. Ecrire une méthode duree_courses de la classe Panier qui renvoie cette durée.

Exercice 3 (Dictionnaires - 4 points)

Afin d'organiser les dossiers et les fichiers sur un disque dur, une structure arborescente est utilisée. Les fichiers sont dans des dossiers qui sont eux-mêmes dans d'autres dossiers, etc.

Dans une arborescence, chaque dossier peut contenir des fichiers et des dossiers, qui sont identifiés par leur nom. Le contenu d'un dossier est modélisé par la structure de données dictionnaire. Les clés de ce dictionnaire sont des chaînes de caractères donnant le nom des fichiers et des dossiers contenus.

Illustration par un exemple : le dossier appelé Téléchargements contient deux fichiers rapport.pdf et jingle.mp3, et un dossier Images contenant simplement le fichier logo.png. Il est représenté ci-dessous.

Ce dossier Téléchargements est modélisé en Python par le dictionnaire suivant :

```
{"Images": {"logo.png": 36}, "rapport.pdf": 450, "jingle.mp3": 4800}
```

Les valeurs numériques sont exprimées en ko (kilo-octets). Ainsi, "logo.png": 36 signifie que le fichier logo.png occupe un espace mémoire de 36ko sur le disque dur.

On rappelle ci-dessous quelques commandes sur l'utilisation d'un dictionnaire :

- * dico = {} crée un dictionnaire vide appelé dico;
- * dico[cle] = contenu met la valeur contenu pour la clé cle dans le dictionnaire dico;
- * dico[cle] renvoie la valeur associée à la clé cle dans le dictionnaire dico;
- * cle in dico renvoie un booléen indiquant si la clé cle est présente dans le dictionnaire dico;
- * del dico[cle] supprime la clé cle et sa valeur associée du dictionnaire dico;
- * dico.keys () renvoie la liste des clés du dictionnaire dico.

L'adresse d'un fichier ou d'un dossier correspond au nom de tous les dossiers à parcourir depuis la racine afin d'accéder au fichier ou au dossier. Cette adresse est modélisée en Python par la liste des noms de dossier à parcourir pour y accéder. Par exemple, l'adresse du dossier /home/pierre/Documents/ est modélisée par la liste ["home", "pierre", "Documents"].

1. Dessiner l'arbre donné par le dictionnaire suivant, qui correspond au dossier Documents.

2. (a) On donne la fonction parcourir suivante qui prend en paramètres un dossier racine et une liste représentant une adresse, et qui renvoie le contenu du dossier cible correspondant à l'adresse.

Exemple: si la variable Documents contient le dictionnaire de l'exemple de la question 1 alors parcourir (Documents, ["Cours", "Philo"]) renvoie le dictionnaire {"Tractatus logicophilosophicus.epub": 2600}. Recopier et compléter la ligne 4.

```
SELECT auteur FROM Evaluations
```

(b) Soit la fonction suivante :

```
SELECT Nom_evaluation, Date FROM Evaluations WHERE auteur= "Peltier"
```

Qu'affiche l'instruction afficher (Documents, ["Cours", "NSI"], "TP.html") sachant que la variable Document contient le dictionnaire de la question 1?

3. (a) La fonction ajouter_fichier (racine, adr, nom_fichier, taille) suivante ajoute au dictionnaire racine, à l'adresse adr, la clé nom_fichier associé à la valeur taille.

Une ligne de la fonction donnée ci-dessous contient une erreur. Laquelle ? Proposer une correction.

```
def ajouter_fichier(racine, adr, nom_fichier, taille):
    dossier = parcourir(racine, adr)
    taille = dossier[nom_fichier]
```

- (b) Ecrire une fonction ajouter_dossier (racine, adr, nom_dossier) pour créer un dictionnaire représentant un dossier vide appelé nom_dossier dans le dictionnaire racine à l'adresse adr.
- 4. Ecrire une fonction taille qui prend en paramètre un dictionnaire dossier modélisant le contenu du répertoire dossier et qui renvoie le total de l'espace mémoire occupé par les fichiers contenus dans le dossier. On considère que le répertoire dossier ne contient que des fichiers et aucun sous-dossier.

Exercice 4 (Bases de données et SQL - 4 points)

Un rappel sur la syntaxe de quelques fonctions SQL est donné en annexe 1 en fin de sujet.

Dans le cadre d'une étude sur le réchauffement climatique, un centre météorologique rassemble des données. On considère que la base de données contient deux relations (tables) :

- ⋆ la relation Centres qui contient l'identifiant des centres météorologiques, la ville, la latitude, la longitude et l'altitude du centre;
- * la relationMesures qui contient l'identifiant de la mesure, l'identifiant du centre, la date de la mesure, la température, la pression et la pluviométrie mesurées.

Le schéma relationnel de la relation Centres est le suivant :

```
Centres (id_centre: INT, nom_ville: VARCHAR, latitude: FLOAT, longitude: FLOAT, altitude: FLOAT)
```

Le schéma relationnel de la relation Mesures est le suivant :

```
Mesures(id_mesure: INT, id_centre: INT, date: DATE, temperature: FLOAT, pression: INT, pluviometrie: FLOAT)
```

Relation Centres

id_centre	nom_ville	latitude	longitude	altitude
213	Amiens	49.894	2.293	60
138	Grenoble	45.185	5.723	550
263	Brest	48.388	-4.49	52
185	Tignes	45.469	6.909	2594
459	Nice	43.706	7.262	260
126	Le Puy-en-Velay	45.042	3.888	744
317	Gérardmer	48.073	6.879	855

Relation Mesures

id_mesure	id_centre	date	temperature	pression	pluviometrie
1566	138	2021-10-29	8.0	1015	3
1568	213	2021-10-29	15.1	1011	0
2174	126	2021-10-30	18.2	1023	0
2200	185	2021-10-30	5.6	989	20
2232	459	2021-10-31	25.0	1035	0
2514	213	2021-10-31	17.4	1020	0
2563	126	2021-11-01	10.1	1005	15
2592	459	2021-11-01	23.3	1028	2
3425	317	2021-11-02	9.0	1012	13
3430	138	2021-11-02	7.5	996	16
3611	263	2021-11-03	13.9	1005	8
3625	126	2021-11-03	10.8	1008	8

- 1. (a) Proposer une clé primaire pour la relation Mesures. Justifier votre choix.
 - (b) Avec quel attribut peut-on faire une jointure entre la relation Centres et la relation Mesures?
- 2. (a) Qu'affiche la requête suivante?

```
\textbf{SELECT} ~\star~ \textbf{FROM} ~\texttt{Centres} ~\textbf{WHERE} ~\texttt{altitude}{>}500
```

- (b) On souhaite récupérer le nom de la ville des centres météorologiques situés à une altitude comprise entre 700m et 1200m. Ecrire la requête SQL correspondante.
- (c) On souhaite récupérer la liste des longitudes et des noms des villes des centres météorologiques dont la longitude est supérieure à 5. La liste devra être triée par ordre alphabétique des noms de ville. Ecrire la requête SQL correspondante.

3. (a) Qu'affiche la requête suivante?

- (b) Ecrire une requête SQL permettant d'ajouter une mesure prise le 8 novembre 2021 dans le centre numéro 138, où la température était de 11°C, la pression de 1013 hPa et la pluviométrie de 0 mm. La donnée dont l'attribut est id_mesure aura pour valeur 3650.
- 4. (a) Expliquer ce que renvoie la requête SQL suivante?

```
SELECT * FROM Centres WHERE latitude = (SELECT MIN(latitude) FROM Centres)
```

5. (b) Ecrire une requête SQL donnant la liste des villes dans lesquelles on a enregistré une température inférieure à 10°C en octobre 2021. On utilisera le mot clé DISTINCT afin d'éviter d'avoir des doublons. On rappelle que l'on peut utiliser les opérateurs de comparaison avec les dates.

Exercice 5 (Architecture matérielle, réseaux et protocoles - 4 points)

Un nano-ordinateur est un ordinateur possédant une taille inférieure à un microordinateur. Les nano-ordinateurs (sans l'alimentation, le clavier, la souris et l'écran) tiennent dans la paume de la main. Le Soc (System on a cheap), littéralement un système sur une puce, est un système complet embarqué sur une seule puce (circuit intégré) pouvant comporter de la mémoire, un ou plusieurs microprocesseurs, des périphériques d'interface, ou tout autre composant. On souhaite comparer les performances de deux nano-ordinateurs contenant chacun un SOC différent dont les caractéristiques sont détaillées ci-dessous :

	SOC de deux nano-ordi		
Processeur	Broadcom BCM271	Broadcom BCM2835	
Architecture	ARMv8-A (64-bit)	ARMv6Z (32-bit)	
Microarchitecture	Cortex-A72	ARM11	
Famille du processeur0	BCM	BCM	
Coeur	4	1	
Fréquence de base	1,5 GHz	700 MHz	
Fréquence turbo	-	1,0 GHz	
Mémoire cache	1 MB	128 KB	
Capacité mémoire maxi	8 GB	512 MB	
Types de mémoire	LPDDR4-3200 SDRAM	SDRAM	
GPU (processeur graphique) integer	Broadcom VideoCore VI	Aucun	
GPU, unités d'exécution	4	-	
GPU, unités shader	64		
GPU, cadence	500 MHz		
GPU, flottant FP32	32 GFLOPS		
Drystone MIPS	22 740 DMIPS	1 190 DMIPS	
Résol affichage max	4K@60fps	1080p@30fps	
Décodage vidéo	H.265 4K@60fps, H.264 1080p@60fps	H.264 1080p@30fps	
Encodage vidéo	H.264 1080p@30fps	H.264 1080p@30fps	
Interface réseau	10/100/1000M Gigabit Ethernet	-	
Connectivité	USB 2.0, USB 3.0, HDMI 2.0	USB 2.0, HDMI 1.3	
Wifi	2.4GHz/5GHz 802.11 b/g/n/ac	-	
Bluetooth	Bluetooth 4.2	-	
Audio	I2S	I2S	

- 1. (a) Expliquer ce qui différencie un SOC d'un nano-ordinateur d'un microprocesseur classique?
 - (b) Lequel de ces SOC peut être connecté à un réseau filaire. Justifier la réponse.
 - (c) Citer deux caractéristiques permettant de comparer la puissance de calcul de ces deux SOC.
- 2. Un réseau local est relié à internet à l'aide d'une box faisant office de routeur. Un utilisateur connecte un nouveau nano-ordinateur à ce réseau et veut tester son fonctionnement. Il utilise en premier la commande ifconfig qui correspond à ipconfig sous environnement Windows. Cela lui donne le résultat suivant.

```
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 10.0.2.15 netmask 255.255.255.0 broadcast 10.0.2.255
    inet6 fe80::761a:3e85:cc97:6491 prefixlen 64 scopeid 0x20<link>
    ether 08:00:27:8b:c3:91 txqueuelen 1000 (Ethernet)
    RX packets 136 bytes 13703 (13.3 KiB)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 180 bytes 17472 (17.0 KiB)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
    device interrupt 9 base 0xd020
```

- (a) L'indication ether 08:00:27:8b:c3:91 correspond à une adresse MAC. Que représente-t-elle?
- (b) On s'intéresse ensuite à l'indication inet 10.0.2.15. Que représente 10.0.2.15?
- (c) Pour connaître la passerelle, l'utilisateur fait alors un traceroute dont la première ligne sortie est la ligne suivante :

1 _gateway (10.0.2.2) 0.328 ms 0.275 ms 0.267 ms

A quel type de matériel correspond l'adresse 10.0.2.2?

3. Cinq routeurs R1, R2, R3, R4, R5 sont connectés dans un réseau avec les caractéristiques suivantes :

Routeur 1 (R1)			
Destination	Direction	Saut	Débit (Mbits/s)
R2	R2	1	10
R3	R3	1	100
R4	R2	2	
R5	R5	1	10

Routeur 2 (R2)			
Destination	Direction	Saut	Débit (Mbits/s)
R1	R1	1	10
R3	R3	1	100
R4	R4	1	10
R5	R1	2	

Routeur 3 (R3)			
Destination	Direction	Saut	Débit (Mbits/s)
R1	R1	1	100
R2	R2	1	100
R4	R2	2	
R5	R1	2	

Routeur 4 (R4)			
Destination	Direction	Saut	Débit (Mbits/s)
R1	R2	2	
R2	R2	1	10
R3	R2	2	
R5	R2	3	

Routeur 5 (R5)			
Destination	Direction	Saut	Débit (Mbits/s)
R1	R1	1	10
R2	R1	2	
R3	R1	2	
R4	R1	3	

Dans cette question, on utilise le protocole de routage RIP, qui cherche à minimiser le nombre de sauts.

(a) Recopier et compléter le schéma ci-dessous qui représente le réseau : indiquer le nom des routeurs dans les cercles et tracer les connexions entre eux.

- (b) Quelle route faut-il prendre pour aller de R4 à R5?
- 4. Les cinq routeurs précédents sont connectés dans la même configuration que précédemment. Toutefois le protocole de routage appliqué est désormais le protocole OSPF qui prend en compte le débit (Mbits/s) pour minimiser le coût total de la transmission. Le coût pour passer d'un routeur à un autre est donné par la formule :

$$C = \frac{100}{\text{d\'ebit}}.$$

Quelle route faut-il prendre pour aller de R4 à R5 en respectant le protocole OSPF?

Annexe 1 - Langage SQL

(à ne pas rendre avec la copie)

* Types de données :

CHAR(t)	Texte fixe de t caractères
VARCHAR(t)	Texte de t caractères variables
TEXT	Texte de 65 535 caractères maximum
INT	Nombre entier de -2^{31} à $2^{31}-1$ (signé) ou de 0 à $2^{32}-1$ (non signé)
FLOAT	Réel à virgule flottante
DATE	Date format AAAA-MM-JJ

* Quelques exemples de syntaxe SQL:

• Insérer des enregistrements :

INSERT INTO Table (attribut1, attribut2) VALUES(valeur1, valeur2)

• Modifier des enregistrements :

UPDATE Table SET attribut1=valeur1, attribut2=valeur2 WHERE Selecteur

• Supprimer des enregistrements :

DELETE FROM Table WHERE Selecteur

• Sélectionner des enregistrements :

SELECT attributs FROM Table WHERE Selecteur

• Sélectionner des enregistrements dans un ordre ascendent :

SELECT attributs FROM Table WHERE Selecteur ORDER BY attribut ASC

• Sélectionner des enregistrements sans doublon :

SELECT DISTINCT attributs FROM Table WHERE Selecteur

• Effectuer une jointure :

SELECT attributs FROM TableA JOIN TableB ON TableA.cle1=TableB.cle2 WHERE Selecteur