Přednáška #8: Paralelní třídící algoritmy

Úvod do paralelního třídění založeného na operaci porovnání

- Tato přednáška: <u>Paralelní deterministické</u> třídící algoritmy založené na operaci porovnej-a-vyměň (Compare-and-Exchange, C&E).
- ightharpoonup N = délka vstupní posloupnosti.
- Spodní mez na počet C&E operací pro setřídění N čísel je $\Omega(N \log N)$.
- ∃ optimální sekvenční algoritmy (HeapSort, MergeSort, QuickSort (někdy), ...).
- \exists časově a cenově optimální PRAM // třídící algoritmy: Coleův MergeSort. Třídí N čísel na N-uzlovém EREW PRAM v $O(\log N)$ // C&E krocích.
- \exists asymptoticky optimální // třídící algoritmy na mřížkách: Třídí N čísel na N-uzlové 2-D mřížce v $k\sqrt{N}$ krocích, 2 < k < 3.
- Nejpraktičtější // třídící algoritmus na hyperkubických sítích: Batcherův MergeSort. Třídí N čísel na N-uzlové síti v $O(\log^2 N)$ krocích.
- \blacksquare \exists // třídící algoritmy pro třídění N čísel na N-uzlové hyperkubické síti v $O(\log N(\log \log N))$ krocích. Skrytá konstanta je velmi vysoká.
- lacktriangle asymptoticky cenově optimální // třídící sítě hloubky $O(\log N)$: expandéry. Velmi komplikované, obrovské skryté konstanty, zajímavé pouze teoreticky.

Nepřímé třídící sítě

- \blacksquare (a) = $\underline{\mathsf{T}\check{\mathsf{r}}\check{\mathsf{i}}\mathsf{d}\check{\mathsf{i}}\check{\mathsf{c}}\check{\mathsf{i}}\check{\mathsf{i}}\mathsf{d}'=\mathsf{levo-prav}\check{\mathsf{a}}\check{\mathsf{s}}\check{\mathsf{i}}\mathsf{d}'\mathsf{s}\mathsf{lo}\check{\mathsf{z}}\mathsf{e}\mathsf{n}\check{\mathsf{a}}\mathsf{d}'\mathsf{z}\mathsf{e}\mathsf{n}\check{\mathsf{a}}\mathsf{d}'\mathsf{z}\mathsf{e}\mathsf{n}\check{\mathsf{a}}\mathsf{d}'\mathsf{z}\mathsf{e}\mathsf{n}\check{\mathsf{a}}\mathsf{d}'\mathsf{z}\mathsf{e}\mathsf{n}\check{\mathsf{a}}\mathsf{d}'\mathsf{z}\mathsf{e}\mathsf{n}\check{\mathsf{a}}\mathsf{d}'\mathsf{z}\mathsf{e}\mathsf{n}\check{\mathsf{a}}\mathsf{d}'\mathsf{z}\mathsf{e}\mathsf{n}\check{\mathsf{a}}\mathsf{d}'\mathsf{z}\mathsf{e}\mathsf{n}\check{\mathsf{a}}\mathsf{d}'\mathsf{z}\mathsf{e}\mathsf{n}\check{\mathsf{a}}\mathsf{d}'\mathsf{z}\mathsf{e}\mathsf{n}\check{\mathsf{a}}\mathsf{d}'\mathsf{z}\mathsf{e}\mathsf{n}\check{\mathsf{a}}\mathsf{d}'\mathsf{z}\mathsf{e}\mathsf{n}\check{\mathsf{a}}\mathsf{e}\mathsf{n}\mathsf{d}'\mathsf{z}\mathsf{e}\mathsf{n}\check{\mathsf{a}}\mathsf{e}\mathsf{n}\mathsf{e$
- (b) = Komparátor = HW implementace operace C&E (vzestupně, sestupně).
- Nesetříděná vstupní posloupnost $X = [x_1, \ldots, x_N]$ je permutována na setříděnou výstupní posloupnost (klesající, rostoucí, bitonickou) $Y = [y_1, \ldots, y_N]$.
- Statická třídící síť = HW implementace datově necitlivého třídícího algoritmu.
- Počet // C&E kroků = hloubka třídící sítě = délka nejdelší cesty ze vstupu na výstup.
- Je-li N > počet vstupních vodičů \implies operace Sluč-a-Rozděl (Merge-and-Split, M&S).

- Paralelní C&E v přímé propojovací síti při x > y: $x \mapsto x$
- Topologie: PRAM, hyperkrychle a hyperkubické sítě, mřížky.
- Výběr vhodného <u>lineárního indexování</u> procesorů P_1, \ldots, P_N :
 - Má vliv na složitost C&E třídění pro danou topologii.
 - Je triviální, pokud ∃ hamiltonovská cesta.
 - V ostatních případech ∃ indexování s dilatací nejvýše 3 (viz přednáška 5).

Různá schemata pro lineární indexování procesorů v mřížkách.

- Přímý třídící alg. = posloupnost dokonalých párování procesorů (perfect matchings) odvozených z indexování.
 - 1 dokonalé párování se skládá z |p/2| disjunktních dvojic.
 - <u>Datově necitlivé třídění</u> \Longrightarrow párování nejsou závislá na vstupních hodnotách.

Škálovatelnost při p < N

- N/p čísel na 1 procesor + operace Sluč-a-Rozděl (M&S)
 - ullet Každý procesor setřídí svých N/p čísel v $O((N/p)\log(N/p))$ krocích.
 - Všechny procesory provádějí přímý třídící algoritmus, kde používají M&S místo C&E.
- $M\&S(P_i, P_j)$, i < j, lze implementovat 2 asympt. ekvivalentními způsoby:
 - I. Plně-duplexní kanály:
- P_i a P_j si vymění své podposloupnosti.
- Každý provede M&S se svou a s obdrženou podposloup.
- Každý si ponechá svou polovinu a druhou zahodí.
- (1) P_i pošle svou podposloupnost P_j .
- II. Polo-duplexní kanály: (2) P_j provede operaci M&S.
 - P_i vrátí 1. polovinu výsledku P_i a ponechá si druhou.

Časová složitost třídících algoritmů

Věta 1. Nechť $\tau(N) = T(N,N)$ je počet paralelních C&E kroků třídění N čísel na N-procesorové síti G. Pak počet par. C&E kroků třídění N čísel na p-procesorové síti G je

$$T(N,p) = O\left(\frac{N}{p}\log\frac{N}{p}\right) + O\left(\tau(p)\frac{N}{p}\right). \tag{1}$$

Naivní PRAM třídící algoritmus

Algorithm NaivePRAMsort $(X = [x_1, \dots, x_N])$ on EREW PRAM(N, p)

- (1) Každému P_i je přiřazena podposloup. N/p čísel v sdílené paměti.
- (2) Každý P_i setřídí svých N/p čísel v $O((N/p)\log(N/p))$ C&E krocích.
- (3) Všechny P provedou paralelní redukci <u>sloučením</u> setříděním podposloup.:
 - **1. fáze:** p/2 Ps sloučí p/2 párů podposloup. o velikosti N/p.
 - **2. fáze:** p/4 Ps sloučí p/4 párů podposloup. o velikosti 2N/p.

... atd.

($\log p$)-tá fáze: 1 zbývající P sloučí poslední 2 podposloup. o velikosti N/2.

$$T(N,p) = O\left(\frac{N}{p}\log\frac{N}{p}\right) + O\left(\frac{N}{p} + \frac{2N}{p} + \dots + N\right) = O\left(\frac{N}{p}\log\frac{N}{p} + N\right)$$

- $\blacksquare T_{\min}(N,p) = T(N,N) = O(N)$
- $\blacksquare E(N,p) = \Theta\left(\frac{\log N}{\log(N/p) + p}\right) = \Theta\left(\frac{\log N}{\log N + p}\right)$
- $lacksquare \psi_1(p) = (2^p/p)^{O(1)} = \Theta(\exp(p))$ a $\psi_2(N) = \log N$ a $\psi_3(N) = \log N$

Závěr

NAIVEPRAMSORT má špatnou škálovatelnost: čas je řádově stejný pro $p \in \{\log N, \dots, N\}$!!!!!!

Datově necitlivé třídění a 0-1 Třídící Lemma

Lemma 2. Nechť $f = \underline{monotonně\ rostoucí}$ funkce na lineárně uspořádané množině S,

čili
$$\forall x, y \in S; \ x \leq y \Leftrightarrow f(x) \leq f(y).$$

Pak:

Důkaz. (Indukcí přes hloubku sítě.)

1. Samotný komparátor je datově necitlivý vzhledem k jakékoli m.r. funkci f (pro $x,y\in\mathcal{S}$, komparátor vymění f(x) a $f(y)\iff$ vymění x a y)

$$\begin{array}{c|c}
x & \longrightarrow & min(x,y) \\
y & \longrightarrow & max(x,y)
\end{array} \implies \begin{array}{c}
f(x) & \longrightarrow & min(f(x),f(y)) = f(min(x,y)) \\
f(y) & \longrightarrow & max(f(x),f(y)) = f(max(x,y))
\end{array}$$

2. Indukční krok:

Nese-li určitý vodič v třídící síti hodnotu x_i , když je na vstupu posloupnost X, pak tentýž vodič nese hodnotu $f(x_i)$, když je na vstupu f(X).

0-1 Třídící Lemma

Lemma 3.

Jestliže datově necitlivý třídící algoritmus dokáže setřídit <u>libovolnou binární</u> vstupní posloupnost, pak dokáže setřídit <u>libovolnou</u> vstupní posloupnost.

Důkaz. (Sporem.)

- Předpokládejme, že třídící síť třídí správně všechny binární posloupnosti.
- Předpokládejme ale, že nesetřídí správně nebinární posloupnost $X = [x_1, \ldots, x_N]$ $\implies \exists x_i < x_j \text{ v } X \text{ takové, že } x_j \text{ je na výstupu umístěn před } x_i.$
- Definujme

$$f(z) = \begin{cases} 0, & \text{jestliže } z \leq x_i, \\ 1, & \text{jestliže } z > x_i. \end{cases}$$

■ f je monotonně rostoucí & f(X)= binární vstupní posloupnost & platí Lemma 2 $\implies f(x_j)=1$ je na výstupu umístěn před $f(x_i)=0$, je-li na vstupu $f(X)\implies$ spor.

Třídění na mřížkových sítích

Sudo-lichá transpozice (paralelní bubble-sort) na 1-D mřížce

```
Algorithm \text{EOTSORT}(X = \langle x_1, \dots, x_N \rangle) on M(N) for j := 1 \dots \lceil N/2 \rceil do_sequentially begin for all i := 1, 3, \dots, 2 \lfloor N/2 \rfloor - 1 do_in_parallel C\&E(x_i, x_{i+1}); for all i := 2, 4, \dots, 2 \lfloor (N-1)/2 \rfloor do_in_parallel C\&E(x_i, x_{i+1}); end
```

Věta 4. EOTSORT setřídí N čísel na mřížce M(N) v N krocích. **Důkaz.** (Pomocí 0-1 Třídící Lemmy.)

- Předpokládejme jakoukoli vstupní posloupnost k hodnot 1 a N-k hodnot 0, $1 \le k \le N-1$.
- 1. jednička zprava má napravo pouze nuly ⇒ začne se pohybovat doprava nejpozději v 2. kroku a setrvá v pohybu bez přerušení, dokud nedosáhne své konečné pozice.
- Podobně, 2. jednička zprava se dá do pohybu doprava nejpozději v 3. kroku.
- Konečně, poslední k-tá jednička zprava se dá do pohybu směrem k pozici N-k+1 nejpozději v kroku k+1.
- Tudíž, v nejhorším případě je celkový počet kroků k + (N k) = N.

Škálovatelnost

Důsledek 5. (vět 1 a 4.) EOTSORT setřídí N čísel na mřížce M(p), p < N, v

$$T(N,p) = O\left(rac{N}{p}\lograc{N}{p}
ight) + O(N)$$
 krocích.

Důkaz. Věta 4 dává $\tau(N)=N$ a dle Věty 1 platí

$$T(N, p) = O\left(\frac{N}{p}\log\frac{N}{p}\right) + O\left(p\frac{N}{p}\right).$$

Závěr

- Stejně špatná škálovatelnost jako u NAIVEPRAMSORT:
 - Cenová optimalita: $C(N,p) = O(N \log N)$, pouze je-li $p = O(\log N)$. Např.: $C(N,N) = O(N^2)$.
 - Paralelní čas je O(N), pouze je-li $p = \Omega(\log N)$ čili pro $p \in \{\log N, \dots, N\}$.
- Nicméně: EOTSORT je topologicky optimální!!!!

SHEARSORT na 2-D mřížce

```
Algorithm ShearSort(X=\langle x_1,\ldots,x_N\rangle) na 2-D mřížce M(n,m), kde N=nm for i=1,\ldots,2\log n+1 do_sequentially if (i je liché) then setřiď všechny řádky střídavými směry (* řádková fáze *) else setřiď všechny sloupce směrem dolů (* sloupcová fáze *)
```

Výrok 6. 1 řádková a 1 sloupcová fáze zmenší počet nečistých řádek na nejméně polovinu. **Důkaz.** (Pomocí 0-1 Třídící Lemmy.) Uvažujme jakoukoli binární $n \times m$ matici.

- V matici obecně ∃ čisté jedničkové, <u>čisté nulové</u> a <u>nečisté</u> řádky.
- \blacksquare \exists pouze 3 případy aplikace 1 řádkové + sloupcové fáze na 2 sousední špinavé řádky.
- Ve všech případech klesne počet špinavých řádků ze 2 na 1 nebo na 0.

Věta 7. ShearSort třídí hadovitě nm čísel na M(n,m) $v \lceil \log n \rceil + 1$ řádkových fázích a $\lceil \log n \rceil$ sloupcových fázích.

Důkaz. Na začátku může vstupní matice v nejhorším případě obsahovat n nečistých řádků. Po $\log n$ řádkových a $\log n$ sloupcových fázích, zbývá max. 1 nečistý řádek \implies nutné ještě 1 třídění řádků.

Pět fází ShearSortu na M(4,4)

Poznámka 8. Modifikovaný algoritmus s tříděním řádků stejným směrem nefunguje.

Škálovatelnost ShearSortu na
$$M(\sqrt{p},\sqrt{p})$$

Důsledek 9. (vět 1 a 7.) Algoritmus ShearSort setřídí N čísel na 2-D mřížce $M(\sqrt{p},\sqrt{p})$ v

$$T(N,p) = O\left(rac{N}{p}\lograc{N}{p}
ight) + O\left(\log prac{N}{\sqrt{p}}
ight)$$
 paralelních C&E krocích a

$$\psi_1(p) = p^{lpha\sqrt{p}}$$
 a $\psi_2(N) = \left(rac{\log N}{\log\log N}
ight)^2$ a $\psi_3(N) = N.$

Spodní mez složitosti hadovitého třídění na 2-D mřížce

Věta 10. Nechť $N=n^2$. Jakýkoliv datově necitlivý hadovitý třídící algoritmus na mřížce M(n,n) vyžaduje

nejméně
$$\max(2n-2,3n-2\sqrt{n}-4)$$
 kroků.

Důkaz. (Konstruktivní) Rozděl M(n,n) na oblasti R a S dle obrázku:

Oblast R obsahuje 2n čísel 0 nebo N.

Oblast S obsahuje N-2n čísel $1,\ldots,N-1$.

Vzdálenost mezi oblastí R a dolním pravým rohem je $2(n-1)-2\sqrt{n}=2n-2\sqrt{n}-2.$

- $\blacksquare \ r = {
 m obsah} \ {
 m spodního} \ {
 m prav\'eho} \ {
 m rohu} \ {
 m m\'r}$ ížky v kroku $2n-2\sqrt{n}-3$ (nedotčený čímkoli z R).
- Nechť C(q), $0 \le q \le 2n$, je číslo <u>správného</u> sloupce pro r, jestliže R obsahuje q nul a 2n-q hodnot N.
- \blacksquare Had bude končit buď v levém nebo v pravém spodním rohu, v závislosti na paritě n.
- q probíhá skrz $\{0,\ldots,2n\}$ \implies C(q) probíhá skrz $\{1,\ldots,n\}$ dvakrát \implies pro n liché nebo sudé, můžeme vždy nalézt q' takové, že C(q')=1.
- Je-li q=q', musíme po kroku $2n-2\sqrt{n}-3$ provést nejméně n-1 dalších kroků.

Důsledek 11. Podobná spodní mez platí i pro řazení po řádkách čí sloupcích.

3DSort: Lexikografické třídění na 3-D mřížce M(n,n,n)

Algorithm $3DSORT(X = [x_1, \dots, x_N])$ na 3-D mřížce M(n, n, n), kde $N = n^3$

- Fáze 1. Setřiď všechny xz-roviny v zx-pořadí.
- Fáze 2. Setřiď všechny yz-roviny v zy-pořadí.
- Fáze 3. Setřiď všechny xy-roviny v yx-pořadí střídavě ve směru y.
- Fáze 4. Proveď jednu licho-sudou a jednu sudo-lichou transpozici ve všech sloupcích.
- Fáze 5. Setřiď všechny xy-roviny v yx-pořadí.

Věta 12. Alg. 3DSORT na mřížce M(n,n,n) setřídí $N=n^3$ čísel lexikograficky v zyx pořadí v $O(\sqrt[3]{N}\log N)$ paralelních C&E krocích, je-li v rovinách použit ShearSort.

Důkaz. (Pomocí 0-1 Třídící Lemmy.) Uvažujme libovolnou binární vstupní posloupnost.

- Po fázi 1, v každé xz-rovině, existuje nejvýše 1 nečistý řádek, a proto:
 - ullet jakékoli 2 yz-roviny se mohou lišit v nejvýše n nulách,
 - ullet a všech n yz-rovin obsahuje ve svých nečistých řádcích souhrnně nejvýše n^2 prvků.
- Tudíž, po fázi 2, všechny nečisté řádky mohou překlenout nejvýše 2 xy-roviny.
- \blacksquare Je-li nečistá xy-rovina pouze jedna, jdeme přímo na fázi 5 a jsme hotovi.
- lacksquare \exists -li 2 nečisté xy-roviny, fáze 3 a 4 vyčistí aspoň 1 z nich a fáze 5 dokončí třídění.

Škálovatelnost v $M(\sqrt[3]{p},\sqrt[3]{p},\sqrt[3]{p})$ (je-li v rovinách použit ShearSort)

$$T(N,p) = O\left(\frac{N}{p}\log\frac{N}{p}\right) + O\left(\frac{N}{\sqrt[3]{p^2}}\log p\right) \quad \text{a} \quad \psi_1(p) = p^{\alpha\sqrt[3]{p}} \quad \text{a} \quad \psi_2(N) = \left(\frac{\log N}{\log\log N}\right)^3.$$

Třídění na hyperkubických sítích

Batcherovy algoritmy: Sudo-Lichý MergeSort, Bitonický MergeSort.

Sudo-Lichý MergeSort (EOMS)

 $EOMS(a_0, \ldots, a_{2N-1}) = EOMERGE(EOMS(a_0, \ldots, a_{N-1}), EOMS(a_N, \ldots, a_{2N-1}))$

Sudo-Liché Sloučení (EOMERGE)

 $L = \mathrm{EOMerge}(A, B) = \mathrm{Parovane_CE}(\mathrm{Promichani}(\mathrm{EOMerge}(\mathrm{even}(A), \mathrm{odd}(B)), \\ \mathrm{EOMerge}(\mathrm{odd}(A), \mathrm{even}(B))).$

C = EOMerge(even(A), odd(B))

D = EOMerge(odd(A), even(B))

L' = Promichani(C, D)

 $L = \text{EOMerge}(A, B) = \text{Parovane_CE}(L')$

Důkaz správnosti Sudo-Lichého slučování

Věta 13. EOMERGE sloučí 2 setříděné posloupnosti A, B délky N $v \log N + 1$ paralelních C&E krocích použitím $N(\log N + 1)$ komparátorů.

Důkaz. (Pomocí 0-1 Třídící Lemmy.) Věta platí pro N=1. Nechť $N=2^k$, $k\geq 1$. Nechť $\gamma=\lceil \alpha/2\rceil+|\beta/2|$ a $\delta=|\alpha/2|+\lceil \beta/2\rceil \implies |\gamma-\delta|\leq 1$

 \implies počet nul v C a D se může lišit nejvýše o jedna.

Časová složitost EOMERGE

Nechť

- $\blacksquare \ d_{\mathrm{m}}(2N) = \mathsf{hloubka} \ \mathrm{EOMerge}(N,N)$,
- $d_{\rm m}(2) = 1$ (1 komparátor).

Potom

■ EOMERGE(N, N) je rekurzivní a každý stupeň rekurze přidá právě 1 sloupec komparátorů:

$$d_{\rm m}(2N) = d_{\rm m}(N) + 1$$

$$d_{\rm m}(2N) = \log N + 1 = \log(2N).$$

Cenová složitost EOMERGE = počet komparátorů

$$c_{\rm m}(2N) = Nd_{\rm m}(2N) = N\log(2N)$$

Časová a cenová složitost EOMS

Věta 14. EOMS(N) dokáže setřídit N čísel v $O(\log^2 N)$ paralelních C&E krocích s použitím $O(N\log^2 N)$ komparátorů.

Důkaz. Nechť

- $lacksquare d_{\mathrm{s}}(N) = \mathsf{hloubka}\;\mathsf{EOMS}(N)$,
- $lackbox{ } c_{\mathrm{s}}(N) = \mathsf{počet} \ \mathsf{komparátor} \ \mathsf{EOMS}(N).$

Potom

■
$$d_{s}(2) = 1$$

& $d_{s}(2N) = d_{s}(N) + d_{m}(2N) = d_{s}(N) + \log(2N)$
⇒ $d_{s}(N) = \log N(\log N + 1)/2 = O(\log^{2} N)$

$$c_{s}(2) = 1$$
& $c_{s}(2N) = 2c_{s}(N) + c_{m}(2N) = 2c_{s}(N) + N\log(2N)$

$$\Rightarrow$$

$$c_{s}(N) = Nd_{s}(N)/2 = O(N\log^{2}N).$$

Rozvinutí sítě EOMS

- lacktriangle EOMS zachází se vstupní posloupností jako s posloupností N dvojic.
- Po průchodu komparátorem, každá dvojice se stane setříděnou podposloupností délky 2.
- Tyto podposloupnosti se pak sloučí do N/2 setříděných podposloupností délky 4, pak do N/4 podposloupností délky 8, atd.
- V posledním slučovacím kroku, 2 setříděné rostoucí posloupnosti délky N jsou sloučeny do výsledné posloupnosti délky 2N.

Sudo-Sudý MergeSort (EEMS)

$$\begin{split} & \text{EEMS}(a_0, \dots, a_{2N-1}) = \text{EEMerge}(\text{EEMS}(a_0, \dots, a_{N-1}), \text{EEMS}(a_N, \dots, a_{2N-1})) \\ & \text{EEMerge}(A, B) = \text{Parovane_CE}(\text{Sudo_Liche_Promichani}(C, D)) \end{split}$$

C = EEMerge(even(A), even(B))

 $D = \mathrm{EEMerge}(\mathrm{odd}(A), \mathrm{odd}(B))$

Bitonické posloupnosti

1 <u>údolí</u> a 1<u>vrchol</u> nezávisle na rotacích.

Bitonické rozdělení

Lemma 15. Je-li $A=a_0,a_1,\ldots,a_{2N-1}$ bitonická, její <u>bitonické rozdělení</u> je $A'=A_{\rm L}A_{\rm H}$, kde

$$A_{\rm L} = \min(a_0, a_N), \min(a_1, a_{N+1}), \dots, \min(a_{N-1}, a_{2N-1}),$$

 $A_{\rm H} = \max(a_0, a_N), \max(a_1, a_{N+1}), \dots, \max(a_{N-1}, a_{2N-1}).$

Pak: (1) $A_{\rm L}$ a $A_{\rm H}$ jsou opět bitonické.

(2) Každé číslo v $A_{\rm L}$ je menší než libovolné číslo v $A_{\rm H}$.

Pozorování

Rekurzivní aplikace bitonického rozdělení na bitonickou A ji změní na monotonní!!

⇒ Bitonické Sloučení ⇒ Bitonický MergeSort

Bitonický MergeSort (BMSort)

 $BMS^{+}(a_0,\ldots,a_{2N-1}) = BMERGE(BMS^{+}(a_0,\ldots,a_{N-1})BMS^{-}(a_N,\ldots,a_{2N-1}))$ $BMERGE(A) = BMERGE(A_L)BMERGE(A_H), \text{ kde } (A_LA_H) = \text{Bitonicke_Rozdeleni}(A)$

Implementace EOMS na topologii motýlek oBF_n

Realizace L = EOMerge(A, B) na $oBF_n =$

- (a) Přenos 1. stupněm A v horní půlce rovně a B v dolní půlce křížem.
- (b) Rekurzivní konstrukce:
 - $lacksquare C = \mathrm{EOMerge}(\mathrm{even}(A), \mathrm{odd}(B)) \ \mathbf{v} \ \mathsf{MODR\acute{E}M} \ oBF_{n-1}$,
 - $D = \text{EOMerge}(\text{odd}(A), \text{even}(B)) \text{ v } \check{\textbf{CERVENÉM}} \text{ } oBF_{n-1}.$
- (c) Konstrukce $L = \text{Parovane_CE}(\text{Promichani}(C, D))$ zpětným průchodem <u>prvním</u> stupněm motýlka.

Sudo-Lichý MergeSort 8 čísel na Q_3

Pozorování:

Každá druhá podposloupnost je otočena (rostoucí → klesající) ALE to je přesně to, co Bitonický MergeSort dělá zadarmo!!!!

CubeBMS: Bitonický MergeSort 8 čísel na Q_3

Časová složitost a škálovatelnost CubeBMS

Věta 16. Algoritmus CubebmS pro $N=2^n$ čísel na Q_n vyžaduje $T(N,N)=O(\log^2 N)$ paralelních C&E kroků. Pro $p=2^k$, k< n,

$$T(N,p) = O\left(rac{N}{p}\lograc{N}{p}
ight) + O\left(rac{N}{p}\log^2 p
ight) \quad extbf{a} \quad \psi_1(p) = p^{lpha\log p} \quad extbf{a} \quad \psi_2(N) = 2^{\sqrt{lpha'\log N}}$$

Implementace ${\tt CUBEBMS}$ na PRAM

Triviální.

MESHBMS: Simulace CubeBMS na 2-D mřížce

- lacktriangleq Peanova křivka indukuje vnoření $(\varphi,\xi):Q_n \stackrel{\mathrm{emb}}{\longrightarrow} M_n$, kde
 - 1. $M_n=M(2^{\frac{n}{2}},2^{\frac{n}{2}})$ pro sudá n,
 - 2. $M_n = M(2^{\frac{n-1}{2}}, 2^{\frac{n+1}{2}})$ pro lichá n,
 - a dilatace hyperkubické hrany dimenze i je $2^{\left\lfloor\frac{i}{2}\right\rfloor}$, $0\leq i\leq n-1$, protože mřížková vzdálenost mezi $\varphi(u)$ a $\varphi(u\oplus 2^i)$ je $d_i=2^{\left\lfloor\frac{i}{2}\right\rfloor}$ pro všechna $u\in\mathcal{B}^n$.

■ CubeBMS na M_n vyžaduje celkově $\frac{n(n+1)}{2}$ komunikací na vzdálenosti d_i pro realizaci operací C&E (nebo M&S), kde i probíhá posloupnost

$$[0, 1, 0, 2, 1, 0, 3, 2, 1, 0, \dots, n-1, n-2, \dots, 1, 0].$$

Věta 17. Pro $N=2^n$, MESHBMS na M_n setřídí N čísel v pořadí Peanova indexování a celkový počet paralelních komunikací **mezi sousedy** je $T(N,N)\approx 7\sqrt{N}$.

Důkaz. Předpokládejme, že n je sudé (důkaz pro liché n je velmi podobný).

Protože $\sum_{i=0}^{k} 2^i = 2^{k+1} - 1$, dostáváme

$$T(N,N) = \sum_{i=0}^{n-1} \sum_{j=0}^{i} d_j = \sum_{i=0}^{n-1} \sum_{j=0}^{i} 2^{\left\lfloor \frac{j}{2} \right\rfloor} = \sum_{i=1}^{n/2} 4(2^i - 1) - (2^{\frac{n}{2}} - 1)$$

$$= 4 \cdot 2^{\frac{n}{2} + 1} - 8 - 2n - 2^{\frac{n}{2}} + 1 = 7\sqrt{N} - O(\log N).$$

Lemma 18. Permutace Peanova indexování na řádkové vyžaduje kolem $4\sqrt{N}/3 - \sqrt[4]{N}$ paralelních komunikací mezi sousedy na plně-duplexní SF mřížce s XY přepínáním.

Důsledek 19. (vět 1 a 17.) Nechť $p=2^{2k}$, 2k < n, a $N=2^n$. Předpokládejme, že komunikační latence výměny k čísel mezi sousedními procesory je téhož řádu jako časová složitost operace M&S 2 setříděných posloupností velikosti k. Pak algoritmus MESHBMS setřídí N čísel na 2-D mřížce $M(\sqrt{p},\sqrt{p})$ v

$$T(N,p) = O\left(\frac{N}{p}\log\frac{N}{p}\right) + O\left(\frac{N}{\sqrt{p}}\right)$$
 paralelních C&E krocích

$$\psi_1(p)=2^{\sqrt{p}}$$
 a $\psi_2(N)=\log^2 N.$

