BASE TEORICA

CÁLCULO CONDUTOR------

SE $indicador Potencia Aparente Informada \ FALSO$ potencia Aparente = potencia Ativa*fator De Potencia SE $indicador Potencia Aparente Informada \ VERDADEIRO$ potencia Aparente = potencia Aparente Informada

SE indicadorCircuitoTrifasico FALSO $correnteCircuito = \frac{potenciaAparente}{voltagem}$ SE indicadorCircuitoTrifasico VERDADEIRO $correnteCircuito = \frac{potenciaAparente}{\sqrt{3}*voltagem}$

$$fatorAgrupamento = \frac{1}{\sqrt{quantidadeCircuitosAgrupados}}$$

fatorTemperatura BUSCADO VIA TABELA COM temperaturaAmbiente e isolacaoCabo

$$corrente Projeto = \frac{corrente Circuito}{fator Agrupamento*fator Temperatura}$$

resistividadeCabo definida a partir do tipoCabo

valorVariacaoTensao definida a partir do tipoCircuito

 $\label{eq:second_seco$

SE indicadorCircuitoTrifasico VERDADEIRO

$$diametro Calculado = \frac{100*\sqrt{3}*resistividade Cabo*comprimento Fio*corrente Projeto}{valor Variacao Tensao*voltagem}$$

minimoDiametroCabo definido a partir do utilizacaoCircuito

cabosCarregados definido a partir do fasesVoltagem

 $secaoNominal Condutor \ e \ corrente Maxima Condutor \ BUSCADO \ VIA \ TABELA \ COM \\ metodo Instalação, cabos Carregados, material Cabo, isolamento Cabo, com valores de corrente \\ acima de \ corrente Projeto \ e \ valores \ para \ seção \ nominal \ acima \ de \ diametro Calculado$

diametro Externo Cabo Recomendado e diametro Nominal Cabo Recomendado BUSCADO VIA TABELA COM secao Nominal Condutor e cabos Carregados

CÁLCULO DISJUNTOR------

cabosCarregados definido a partir do fasesVoltagem

correnteNominalDisjuntorRecomendado e nomeDisjuntorRecomendado BUSCADO VIA TABELA COM cabosCarregados, com valores de corrente acima de correnteProjeto e abaixo de correnteMaximaCabo

CÁLCULO ELETRODUTO------

 $diametroCondutor = \sqrt{4*secaoNominalCondutor/_{\pi}}$

 $diametro Minimo Calculado = \frac{quantida de Circuitos Agrupados*diametro Condutor*100}{40}$

diametroNominalEletrodutoSugeridoPolegadas, diametroNominalEletrodutoSugeridoMilimetros, diametroExternoEletrodutoSugerido e diametroInternoEletrodutoSugerido BUSCADO VIA TABELA COM diametroMinimoCalculado

EXEMPLO PRATICO

fasesVoltagem = TRIFASICO fatorDePotencia = 0.8 metodoInstalacao = A1 potenciaAparente = 0 potenciaAtiva = 12000 quantidadeCircuitosAgrupados = 2 temperaturaAmbiente = 50

tipoCabo = ALUMINIO

comprimentoFio = 60

tipoCircuito = DISTRIBUICAO

utilizacaoCircuito = TOMADA

voltagem = 380

CÁLCULO CONDUTOR-----

indicador Potencia Aparente Informada = FALSO potencia Aparente = potencia Ativa*fator De Potencia potencia Aparente = 12000*0.8 potencia Aparente = 15000

indicador Circuito Trifasico = VERDADEIRO $corrente Circuito = \frac{potencia Aparente}{\sqrt{3}*voltagem}$

$$correnteCircuito = \frac{15000}{\sqrt{3} * 380}$$
$$correnteCircuito = 23$$

$$fatorAgrupamento = \frac{1}{\sqrt{quantidadeCircuitosAgrupados}}$$

$$fatorAgrupamento = \frac{1}{\sqrt{2}}$$

$$fatorAgrupamento = 0.7071067811865475$$

 $fator Temperatura~{\tt BUSCADO~VIA~TABELA~COM~temperatura} Ambiente~e~isolacao Cabo$ $fator Temperatura~{\tt BUSCADO~VIA~TABELA~COM~50~e~PVC}$

fatorTemperatura = 0.71

Tabela 40 — Fatores de correção para temperaturas ambientes diferentes de 30°C para linhas não-subterrâneas e de 20°C (temperatura do solo) para linhas subterrâneas

Temperatura		Isolação		
°C	PVC	EPR ou XLPE		
Ambiente				
10	1,22	1,15		
15	1,17	1,12		
20	1,12	1,08		
25	1,06	1,04		
35	0,94	0,96		
40	0,87	0,91		
45	0,79	0,87		
50	0,71	0,82		
55	0,61	0.76 0.71 0.65 0.58 0.50 0.41		
60	0,50			
65	-			
70	-			
75	-			
80	-			
Do solo				
10	1,10	1,07		
15	1,05	1,04		
25	0,95	0,96		
30	0,89	0,93		
35	0,84	0,89		
40	0,77	0,85		
45	0,71	0,80		
50	0,63	0,76		
55	0,55	0,71		
60	0,45	0,65		
65	-	0,60		
70	-	0,53		
75	-	0,46		
80	-	0,38		

Fonte: NBR5410

$$correnteProjeto = \frac{correnteCircuito}{fatorAgrupamento*fatorTemperatura}$$

$$correnteProjeto = \frac{23}{0.7071067811865475*0.71}$$

$$correnteProjeto = 45$$

resistividadeCabo definida a partir do tipoCabo resistividadeCabo definida a partir do ALUMINIO resistividadeCabo = 0.02857

valorVariacaoTensao definida a partir do tipoCircuito valorVariacaoTensao definida a partir do DISTRIBUICAO valorVariacaoTensao = 2

indicador Circuito Trifasico = VERDADEIRO $diametro Calculado = \frac{100*\sqrt{3}*resistividade Cabo*comprimento Fio*corrente Projeto}{valor Variacao Tensao*voltagem}$ $diametro Calculado = \frac{100*\sqrt{3}*0.02857*60*45}{2*380}$ diametro Calculado = 17.580087795402054

minimoDiametroCabo definido a partir do utilizacaoCircuito minimoDiametroCabo definido a partir do TOMADA minimoDiametroCabo = 2.5

cabosCarregados definido a partir do fasesVoltagem cabosCarregados definido a partir do TRIFASICO cabosCarregados = 3

 $secaoNominal Condutor \ e\ corrente Maxima Condutor \ BUSCADO\ VIA\ TABELA\ COM \\ metodo Instalação,\ cabos Carregados,\ material Cabo,\ isolamento Cabo,\ com\ valores\ de\ corrente \\ acima de\ corrente Projeto\ e\ valores\ para\ seção\ nominal\ acima\ de\ diametro Calculado$

 $secaoNominalCondutor \ e\ corrente Maxima Condutor \ BUSCADO\ VIA\ TABELA\ COM\ A1,3,\\ ALUMINIO,\ PVC\ ,\ com\ valores\ de\ corrente\ acima\ de\ 45\ e\ valores\ para\ seção\ nominal\ acima\ de\ 17.580087795402054$

secaoNominalCondutor = 25

correnteMaximaCondutor = 57

Tabela 36 — Capacidades de condução de corrente, em ampères, para os métodos de referênci. A1. A2. B1. B2. C.e.D.

> Condutores: cobre e alumínio Isolação: PVC Temperatura no condutor: 70°C

Temperaturas de referência do ambiente: 30°C (ar), 20°C (solo)

Tabela 37 — Capacidades de condução de corrente, em ampères, para os métodos d referência A1, A2, B1, B2, C e D Condutores: cobre e alumínio Isolação: EPR ou XLPE Temperatura no condutor: 90°C Temperatura de referência do ambiente: 30°C (ar), 20°C (solo)

Seções							indicados						Seções	1	A1
nominais		1	å	2		11		2	(C) .	nominais	<u> </u>	**
mm ²							tores can						mm ²	2	
	2	3	2	3	2	3	2	3	2	3	2	3			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(1)	(2)	(3
					0	obre							\vdash		_
0,5	7	7	7	7	9	8	9	8	10	9	12	10	0.5	10	
0,75	9	9	9	9	11	10	11	10	13	11	15	12	0.75	12	1
1	11	10	11	10	14	12	13	12	15	14	18	15	1	15	
1,5	14,5	13,5	14	13	17,5	15,5	16,5	15	19,5	17,5	22	18	1.5	19	
2,5	19,5	18	18,5	17,5	24	21	23	20	27	24	29	24	2.5	26	2
4	26	24	25	23	32	28	30	27	36	32	38	31	4	35	3
6	34	31	32	29	41	36	38	34	46	41	47	39	6	45	4
10	46	42	43	39	57	50	52	46	63	57	63	52	10	61	5
16	61	56	57	52	76	68	69	62	85	76	81	67	16	81	7
25	80	73	75	68	101	89	90	80	112	96	104	86	25	106	9
35	99	89	92	83	125	110	111	99	138	119	125	103	35	131	1
50	119	108	110	99	151	134	133	118	168	144	148	122	50	158	14
70	151	136	139	125	192	171	168	149	213	184	183	151	70	200	1
95	182	164	167	150	232	207	201	179	258	223	216	179	96	241	2
120	210	188	192	172	269	239	232	206	299	259	246	203	120	278	2
150	240	216	219	196	309	275	265	236	344	299	278	230	150	318	21
185	273	245	248	223	353	314	300	268	392	341	312	258	185	362	3
240	321	286	291	261	415	370	351	313	461	403	361	297	240	424	31
300	367	328	334	298	477	426	401	358	530	464	408	336	300	486	4
400	438	390	398	365	571	510	477	425	634	567	478	394	400	579	5
500	502	447	456	406	656	587	545	486	729	642	540	445	500	664	- 5
630	578	514	526	467	758	678	626	559	843	743	614	506	630	765	- 6
800	669	593	609	540	881	788	723	645	978	865	700	577	800	885	7
1 000	767	679	698	618	1 012	906	827	738	1 125	996	792	652	1 000	1014	90
	_	_	_	_		minio	_	_	_	_	_	_			_
16	48	43	44	41	60	53	54	48	66	59	62	52	16	64	- 5
25	63	57	58	53	79	70	71	62	83	73	80	66	25	84	1
35	77	70	71	66	97	86	86	77	103	90	96	80	35	103	- 5
50	93	84	86	78	118	104	104	92	125	110	113	94	50	125	1
70	118	107	108	98	150	133	131	116	160	140	140	117	70	158	1
95	142	129	130	118	181	161	157	139	195	170	166	138	96	191	1
120	164	149	150	135	210	186	181	160	226	197	189	157	120	220	1
150	189	170	172	155	241	214	206	183	261	227	213	178	150	253	2
185	215	194	195	176	275	245	234	208	298	259	240	200	185	288	2
240	252	227	229	207	324	288	274	243	352	305	277	230	240	338	3
300	289	261	263	237	372	331	313	278	406	351	313	260	300	387	3
400	345	311	314	283	446	397	372	331	488	422	366	305	400	462	4
500	396	356	360	324	512	456	425	378	563	486	414	345	500	530	4
630	458	410	416	373	592	527	488	435	653	562	471	391	630	611	5
800	529	475	482	432	687	612	563	502	761	654	537	446	800	708	6
1 000	607	544	552	495	790	704	643	574	878	753	607	505	1 000	812	7

Seções				Méto	dos de rei	ferência i	ndicados	na tabeli	a 33			
nominais	A	1	A			11	8		(0	D	
mm ²						de condut						
	2	3	2	3	2	3	2	3	2	3	2	3
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
(1)	(2)	(3)	(4)	(5)	(0)	(7)	(0)	(37)	(10)	(11)	(12)	(13)
					0	obre						
0,5	10	9	10	9	12	10	11	10	12	11	14	12
0,75	12	11	12	11	15	13	15	13	16	14	18	15
1	15	13	14	13	18	16	17	15	19	17	21	17
1,5	19	17	18,5	16,5	23	20	22	19,5	24	22	26	22
2,5	26	23	25	22	31	28	30	26	33	30	34	29
4	35	31	33	30	42	37	40	35	45	40	44	37
6	45	40	42	38	54	48	51	44	58	52	56	46
10	61	54	57	51	75	66	69	60	80	71	73	61
16	81	73	76	68	100	88	91	80	107	96	96	79
25	106	95	99	89	133	117	119	105	138	119	121	101
35	131	117	121	109	164	144	146	128	171	147	146	122
50	158	141	145	130	198	175	175	154	209	179	173	144
70	200	179	183	164	253	222	221	194	269	229	213	178
96	241	216	220	197	306	269	265	233	328	278	252	211
120	278	249	253	227	354	312	305	268	382	322	287	240
150	318	285	290	259	407	358	349	307	441	371	324	271
185	362	324	329	295	464	408	395	348	506	424	363	304
240	424	380	386	346	546	481	462	407	599	500	419	351
300	486	435	442	396	628	553	529	465	693	576	474	396
400	579	519	527	472	751	661	628	562	835	692	555	464
500	664	595	604	541	864	760	718	631	966	797	627	525
630	765	685	696	623	998	879	825	725	1 122	923	711	596
800	885	792	806	721	1 158	1020	952	837	1311	1 074	811	679
1 000	1014	908	923	826	1332	1 173	1 088	967	1 515	1 237	916	767
	_	_		_		mínio		_	_	_	_	_
16	64	58	60	55	79	71	72	64	84	76	73	61
25	84	76	78	71	105	93	94	84	101	90	93	78
35	103	94	96	87	130	116	115	103	126	112	112	94
50	125	113	115	104	157	140	138	124	154	136	132	112
70	158	142	145	131	200	179	175	156	198	174	163	138
95	191	171	175	157	242	217	210	188	241	211	193	164
120	220	197	201	180	281	251	242	216	280	245	220	186
150	253	226	230	206	323	289	277	248	324	283	249	210
185	288	256	262	233	368	330	314	281	371	323	279	236
240	338	300	307	273	433	389	368	329	439	382	322	272
300	387	344	352	313	499	447	421	377	508	440	364	308
400	462	409	421	372	597	536	500	448	612	529	426	361
500	530	468	483	426	687	617	573	513	707	610	482	408
630	611	538	556	490	794	714	658	590	821	707	547	464
800	708	622	644	566	922	830	760	682	958	824	624	529
1 000	812	712	739	648	1061	956	870	780	1108	950	706	598

Fonte: NBR5410

 $\label{local-continuity} diametro \textit{ExternoCaboRecomendado} \text{ BUSCADO } \\ \text{VIA TABELA COM } secao \textit{NominalCondutor} \text{ e } cabos \textit{Carregados} \\$

diametroExternoCaboRecomendado e diametroNominalCaboRecomendado BUSCADO VIA TABELA COM 25 e 3

diametroExternoCaboRecomendado = 19.9

diametroNominalCaboRecomendado = 6.5

Seção Nominal do Condutor (mm²)	Diâmetro Nominal do Condutor (mm)	Espessura Nominal da Isolação (mm)	Espessura Nominal da Capa (mm)	Diâmetro Nominal Externo (mm)			Peso (kg/100 n
1 x 1,5	1,5	0,7	0,9	4,5	•0•••	$\circ \square$	3,2
1 x 2,5	2,0	0,7	0,9	5,2	•0••	$\circ \bowtie$	4,3
1 x 4	2,4	0,7	0.9	5,5	• 0 • • •	$\circ \square$	5,8
1 x 6	2,9	0.7	0.9	6,1	•0••	$\circ \blacksquare$	7,7
1 x 10	3,9	0.7	1.0	7.6	•0••	\circ	12.2
1 x 16	5.0	0.7	1.0	8.4	•0••	$\circ \square$	17,5
1 x 25	6,5	0,9	1,1	10,3	•0••	0 🖂	26,9
1 x 35	7,5	0,9	1,1	11,4	•0•••	o =	36,4
1 x 50	9.0	1.0	1.2	13.3	•0•••	0 	50,6
1 x 70	10.6	1.1	1.2	15.7	•0•••	0 🖂	71,9
1 x 95	12,2	1,1	1,3	17,6	•0•••		93,6
1 x 120	14,2	1,2	1,3	19,5	•0•••		117,2
1 x 150	15,8	1,4	1,4	21,8	•0•••		146,7
1 x 185	17.0	1,6	1.4	23,8	•0••		174,3
1 x 240	20.0	1,7	1.5	26.8	•0•••		227.9
1 x 300	23,1	1,8	1,8	30,5	•0•••	三	287,1
2 x 1,5	1,5	0.7	1,0	8,0	•	о <u>П</u>	8,2
2 x 2,5	2,0	0.7	1.0	9,2	•	ö	11,5
2 x 4	2,4	0,7	1,1	9,9	•	оH	15,0
2 x 6	2,4	0,7	1.1	10.9	•	ö	20.9
2 x 10	3,9	0,7	1,1	13,3	:	° =	31,7
					:		
2 x 16 * 2 x 25	5,0	0,7	1,2	15,1	:		44,9
ZAZJ	6,5	0,9	1,3	19,2	:	_=	72,6
* 2 x 35	7,5	0,9	1,4	21,4	:	一日	93,8
* 2×50	9,0	1,0	1,5	25,0	:	0 📙	111,7
3 x 1.5	1.5 2.0	0.7	1.0	8,1 9,4	:	0	9,6
3 x 2,5 3 x 4		0,7	1.1	10.4	•	ö	
	2,4	0,7	1,1	11,5	:	° =	18,3 25,2
3 x 6		0,7			:		
3 x 10	3,9		1,2	14,1	:		38,7
3 x 16	5,0	0,7	1,3	16,3	:	-=	58,5
3 x 25	6,5	0,9	1,4	19,9	:	- =	92,2
3 x 35	7,5	0,9	1,5	22,8	:	日	124,5
3 x 50	9,0	1,0	1,6	28,0		- =	168,6
3 x 70	10,6	1,1	1,7	31,3	•		253,3
3 x 95	12,2	1,1	1,8	36,4	•		319,9
3 x 120	14,2	1,2	1,9	41,1	•		399,9
4 x 1,5	1,5	0,7	1,1	9,1	•	0	12,3
4 x 2,5	2,0	0,7	1,1	10,4	•	0	16,6
4 x 4	2,4	0,7	1,1	11,3	•	° =	22,3
4 x 6	2,9	0,7	1,2	12,6	•	0 🗖	31,7
4 x 10	3,9	0,7	1,2	15,9	•	0 🗏	49,2
4 x 16	5,0	0,7	1,3	18,5	•		76,3
4 x 25	6,5	0,9	1,5	22,5	•		116,2
4 x 35	7,5	0,9	1,5	25,4	•		157,0
4 x 50	9,0	1,0	1,7	29,9	•		219,9
4 x 70	10,6	1,1	1,8	36	•		315,5
4 x 95	12,2	1,1	1,9	41,6	•		418,3
4 x 120	14,2	1,2	2.1	46,3	•		508,2
5 x 1,5	1,5	0,7	1,1	10,6	•	\circ	15,5
5 x 2,5	2,0	0,7	1,1	12,2	•	\circ	22,3
5 x 4	2,4	0,7	1,2	12,8	•	\circ	30,4
5 x 6	2,9	0,7	1,2	14,4	•	$\circ \square$	40,7
5 x 10	3,9	0,7	1,3	17,7	•	ОH	63,3
5 x 16	5.0	0.7	1.4	20	•		97,3

O Rolo Boblina "Seção Nominal produzida sob encomenda

Marca: Sil

CÁLCULO DISJUNTOR------

cabosCarregados definido a partir do fasesVoltagem cabosCarregados definido a partir do TRIFASICO cabosCarregados = 3

correnteNominalDisjuntorRecomendado e nomeDisjuntorRecomendado BUSCADO VIA TABELA COM cabosCarregados, com valores de corrente acima de correnteProjeto e abaixo de correnteMaximaCabo

correnteNominalDisjuntorRecomendado e nomeDisjuntorRecomendado BUSCADO VIA

TABELA COM 3, com valores de corrente acima de 45 e abaixo de 57

 $corrente Nominal Disjuntor Recomendado = 50 \\ nome Disjuntor Recomendado = 5SL1~350-7MB$

Tabelas de Seleção

5SL1 - 3kA (NBR NM 60898-1)									
Corrente	Curva B (disparo er	m curto-circuito 3 a 5 x In)	Curva C (disparo em curto-circuito 5 a 10 x ln)						
Nominal	Monopolar (1P)	Bipolar (2P)	Monopolar (1P)	Bipolar (2P)	Tripolar (3P)				
2,0 A			5SL1 102-7MB	5SL1 202-7MB	5SL1 302-7MB				
4,0 A			5SL1 104-7MB	5SL1 204-7MB	5SL1 304-7MB				
6,0 A	5SL1 106-6MB	5SL1 206-6MB	5SL1 106-7MB	5SL1 206-7MB	5SL1 306-7MB				
10 A	5SL1 110-6MB	5SL1 210-6MB	5SL1 110-7MB	5SL1 210-7MB	5SL1 310-7MB				
13 A	5SL1 113-6MB	5SL1 213-6MB	5SL1 113-7MB	5SL1 213-7MB	5SL1 313-7MB				
16 A	5SL1 116-6MB	5SL1 216-6MB	5SL1 116-7MB	5SL1 216-7MB	5SL1 316-7MB				
20 A	5SL1 120-6MB	5SL1 220-6MB	5SL1 120-7MB	5SL1 220-7MB	5SL1 320-7MB				
25 A	5SL1 125-6MB	5SL1 225-6MB	5SL1 125-7MB	5SL1 225-7MB	5SL1 325-7MB				
32 A	5SL1 132-6MB	5SL1 232-6MB	5SL1 132-7MB	5SL1 232-7MB	5SL1 332-7MB				
40 A	5SL1 140-6MB	5SL1 240-6MB	5SL1 140-7MB	5SL1 240-7MB	5SL1 340-7MB				
50 A			5SL1 150-7MB	5SL1 250-7MB	5SL1 350-7MB				
63 A			5SL1 163-7MB	5SL1 263-7MB	5SL1 363-7MB				
70 A			5SL1 170-7MB	5SL1 270-7MB	5SL1 370-7MB				
80 A			5SL1 180-7MB	5SL1 280-7MB	5SL1 380-7MB				

Marca: Siemens

CÁLCULO ELETRODUTO------

$$diametroCondutor = \sqrt{4*secaoNominalCondutor/_{\pi}}$$

$$diametroCondutor = \sqrt{4*25/_{3.14}}$$

$$diametroCondutor = 5.639148871948674$$

$$diametro Minimo Calculado = \frac{quantida de Circuitos Agrupados*diametro Condutor*100}{40}$$

$$diametro Minimo Calculado = 2*5.639148871948674*100/_{40}$$

diametro Minimo Calculado = 28.195744359743365

diametroNominalEletrodutoSugeridoPolegadas, diametroNominalEletrodutoSugeridoMilimetros, diametroExternoEletrodutoSugerido e diametroInternoEletrodutoSugerido BUSCADO VIA TABELA COM diametroMinimoCalculado

diametroNominalEletrodutoSugeridoPolegadas, diametroNominalEletrodutoSugeridoMilimetros, diametroExternoEletrodutoSugerido e diametroInternoEletrodutoSugerido BUSCADO VIA TABELA COM 28.195744359743365

$\label{eq:diametroNominalEletrodutoSugeridoPolegadas} = 1.\,{}^{1}\!/_{4}\,^{\text{\tiny "}}$ $\label{eq:diametroNominalEletrodutoSugeridoMilimetros} = 30$ $\label{eq:diametroExternoEletrodutoSugerido} = 41.3$ $\label{eq:diametroInternoEletrodutoSugerido} = 31.5$

a		Ø externo	Øinterno		TAMANHO DO ROLO						
Ø nominal		D	d	Comprimento (m)	25 m	30 m	50 m	100			
Pol.	(mm)	(mm)	1000	25 m	30 m	50 M	100 m				
1.1/4"	30	41,3	31,5	50 – 100	¥	÷	0,85 x 0,32	1,10 x 0,32			
1.1/2"	40	56,0	43,0	50 – 100	=	-	1,00 x 0,31	1,10 x 0,44			
2"	50	63,4	50,8	50 – 100	-	-	1,15 x 0,35	1,25 x 0,53			
3"	75	89,5	75,0	50 – 100	21	¥	1,35 x 0,45	1,45 x 0,70			
4"	100	124,5	103,0	50 – 100	1 2	-	1,85 x 0,50	2,00 x 0,75			
5"	125	155,0	128,0	25 – 50	1,72 x 0,46	-	2,03 x 0,63	-			
6"	150	190,0	155,0	25 - 50	2,21 x 0,43	-	2,60 x 0,60	14.1			
7"	175	202,0	176,0	25 - 50	2,30 x 062	-	2,60 x 0,62	1 -			
8"	200	250,0	205,0	30		2,50 x 0,80	-				

Tabela 6 - CARACTERÍSTICAS DIMENSIONAIS

Obs.: Os valores acima descritos são apenas de referência

Marca: canaflex