2016 Duration of Dual Antiplatelet Therapy Guideline Focused Update Data Supplement

Table of Contents

Data Supplement 1. RCTs of Shorter (3–6 Month) Duration of DAPT in Patients Treated With Stent Implantation	2
Data Supplement 2. RCTs of Prolonged/Extended (>12 Month) Duration of DAPT in Patients Treated With Stent Implantation	4
Data Supplement 3. Meta-Analyses of Duration of DAPT	6
Data Supplement 4. RCTs, RCT Subgroup Analyses, and Meta-Analyses of RCTs of DAPT Post-MI or Post-ACS	9
Data Supplement 5. RCTs and RCT Subgroup Analyses Comparing Clopidogel With Prasugrel or Ticagrelor In Patients With ACS	15
Data Supplement 6. Studies and Comparisons of Short-Term or Chronic Aspirin Dose in Patients With Coronary Artery Disease	17
Data Supplement 7. RCTs Comparing Antiplatelet Therapy With Anticoagulant Therapy in Patients Undergoing Coronary Stenting	20
Data Supplement 8. Nonrandomized Studies of DAPT Duration After BMS or DES	21
Data Supplement 9. Randomized Studies of 1 Versus 12 Months of DAPT After BMS	22
Data Supplement 10. Studies and Meta-Analyses Comparing Graft Patency Post-CABG in Patients Treated With Either Antiplatelet Monotherapy or DAPT	22
Data Supplement 11. Studies Comparing Outcome Post–CABG in Patients Treated With Either Aspirin or DAPT	25
Data Supplement 12. Studies of Timing of Noncardiac Surgery After PCI	27
References	31

Data Supplement 1. RCTs of Shorter (3–6 Month) Duration of DAPT in Patients Treated With Stent Implantation

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Studies of shorte	er (3-6 mo) vs. 12 mo dura	ion of DAPT			
ISAR-SAFE Schulz-Schupke S, et al., 2015 (1) 25616646	Aim: Test if 6 mo DAPT is noninferior to 12 mo DAPT Study type: RCT, noninferiority trial Size: 6,000 pts (4,005 pts actually enrolled, 4,000 pts analyzed)	Inclusion criteria: Pts being treated with DAPT 6 mo after DES Exclusion criteria: Left main PCI, MI in the initial 6 mo after stent, previous stent thrombosis	Intervention: 6 additional mo DAPT after initial 6 mo of DAPT (n=2,003) Comparator: No further clopidogrel after initial 6 mo (n=1,997)	1º endpoint: Composite endpoint of death, MI, stent thrombosis, CVA, or TIMI major bleeding 9 mo after randomization (15 mo after stent) ■ 1.5% with no additional DAPT (6 mo total) vs. 1.6% with 6 additional mo DAPT (12 mo total) (p<0.001 for noninferiority)	 Trial stopped early due to slow recruitment Lower than expected event rates Stent thrombosis and TIMI major bleeding rates low and not statistically different
SECURITY Colombo A, et al., 2014 (2) 25236346	Aim: Test noninferiority of 6 vs. 12 mo DAPT after 2nd generation DES Study type: RCT, noninferiority trial Size: 1,399 pts	Inclusion criteria: Pts with stable angina, unstable angina, or silent ischemia Exclusion criteria: Recent STEMI or NSTEMI, left main PCI, SVG PCI, CKD, active bleeding or significant bleeding risk	Intervention: 6 mo DAPT (n=682) Comparator: 12 mo DAPT (n=717)	1° endpoint: Cardiac death, MI, CVA, stent thrombosis or BARC type 3 or 5 bleeding • 4.5% with 6 mo DAPT vs. 3.7% with 12 mo DAPT (risk difference 0.8%; 95% CI: -2.4%–1.7%; p=0.469) • p<0.05 for noninferiority	Stent thrombosis rates low and not significantly different Relatively low-risk population enrolled
OPTIMIZE Feres, et al., 2013 (3) 24177257	Aim: Assess whether 3 mo of DAPT is clinically noninferior to 12 mo in pts undergoing PCI with ZES Study type: RCT, noninferiority trial Size: 3,211 pts	Inclusion criteria: Stable angina, low-risk ACS Exclusion criteria: STEMI for primary or rescue PCI, PCI with BMS in nontarget lesion <6 mo prior to index procedure, previous DES Rx., schedule elective surgery within 12 mo after index procedure, any contraindication to ASA and clopidogrel, SVG lesion, DES stenosis	Intervention: 3 mo DAPT (1,605) Comparator: 12 mo DAPT (1,606)	1° endpoint: NACCE. At 1 y follow-up • 93 pts with 3 mo Rx vs. 90 pts with 12 mo Rx (95% CI: 1.52–1.86) • p=0.002 for noninferiority Safety endpoint: GUSTO major bleeding • 0.2% with 3 mo Rx vs. 0.4% with long term Rx (HR: 0.50, 95% CI: 0.16–1.11)	 Stent thrombosis (5 pts in short term vs. 4 pts in long term) Study not powered to detect small differences in ischemic and bleeding events after 90 d. Overall event rate for NACCE was lower than anticipated.

RESET Kim BK, et al., 2012 (4) 22999717	Aim: Evaluate noninferiority of shorter DAPT after DES Study type: RCT, open label, noninferiority trial Size: 2,117 pts	Inclusion criteria: Pts undergoing DES implantation Exclusion criteria: Contraindication to antiplatelet agents, bleeding, STEMI within 48 h or cardiogenic shock, left main PCI	Intervention: 3 mo DAPT with E-ZES (n=1059) Comparator: 12 mo DAPT with other DES (n=1058)	1° endpoint: CV death, MI, stent thrombosis, TVR, bleeding at 1 y. • 4.7% with 3 mo DAPT/E-ZES vs. 4.7% with 12 mo DAPT/other DES (difference 0.0%; 95% CI: -2.5–2.5; p=0.84) • p<0.001 for noninferiority	 No significant differences in rates of stent thrombosis, bleeding or TVR Study underpowered due to low event rates Same stents not used in the 2 randomization arms
EXCELLENT Gwon HC, et al., 2012 (5) 22179532	Aim: Evaluate whether 6 mo DAPT would be noninferior to 12 mo DAPT after DES Study type: RCT, open label, noninferiority trial Size: 1,443 pts	Inclusion criteria: >50% lesion with evidence of myocardial ischemia or >75% lesion (with or without documented ischemia) Exclusion criteria: MI within 72 h, LVEF<25% or cardiogenic shock, recent major bleeding or surgery	Intervention: 6 mo DAPT after DES (n=722) Comparator: 12 mo DAPT after DES (n=721)	1° endpoint: Target vessel failure (cardiac death, MI, ischemia-driven TVR) at 12 mo • 4.8% with 6 mo DAPT vs. 4.3% with 12 mo DAPT (p=0.001 for noninferiority)	 Stent thrombosis 0.9% with 6 mo DAPT vs. 0.1% with 12 mo DAPT (HR: 6.02; 95% CI: 0.72–49.96; p=0.10) TIMI major bleeding 0.3% with 6 mo DAPT vs. 0.6% with 12 mo DAPT (HR: 0.50; 95% CI: 0.09–2.73; p=0.42) Target vessel failure occurred more frequently with 6 mo DAPT in diabetic pts Study underpowered for death or MI
	r (6 mo) vs. 24 mo duratio				
ITALIC Gilard M, et al., 2015 (6) 25461690	Aim: Evaluate noninferiority of 6 mo DAPT vs. 24 mo DAPT with newer generation (Xience) DES Study type: RCT, open label, noninferiority trial Size: 2,031 pts (actual 1,850 pts)	Inclusion criteria: Pts undergoing PCI Exclusion criteria: Primary PCI for STEMI, left main PCI, ASA nonresponder	Intervention: 6 mo DAPT (n=926) Comparator: 24 mo DAPT (n=924)	1º endpoint: Death, MI, urgent TVR, CVA, major bleeding at 12 mo post-stenting 1.6% with 6 mo vs. 1.5% with 24 mo (p=0.85) p<0.00002 for noninferiority (absolute risk difference 0.11%; 95% CI: -1.04–1.26%)	 Study terminated early due to recruitment problems No significant differences in stent thrombosis or bleeding complications Low event rates (lower than expected)
PRODIGY Valgimigli M, et al., 2012 (7) 22438530	Aim: To evaluate the impact of up 6 or 24 mo DAPT after BMS or DES Study type: RCT Size: 2,013 pts (1970 eligible for randomization at 30 d)	Inclusion criteria: SIHD or ACS pts undergoing PCI Exclusion criteria: Bleeding diathesis, bleeding or stroke within 6 mo, oral anticoagulant therapy	Intervention: 24 mo DAPT (n=987) Comparator: 6 mo DAPT (n=983)	1° endpoint: Death, MI or CVA at 2 y • 10.1% with 24 mo DAPT vs. 10.0% with 6 mo DAPT (HR: 0.98; 95% CI: 0.74–1.29; p=0.91) 1° Safety endpoint: BARC type 2, 3 or 5 bleeding • 7.4% with 24 mo DAPT vs. 3.5% with 6 mo DAPT (HR:0.46; 95% CI 0.31–0.69; p=0.00018)	Stent thrombosis rates low and not significantly different between treatment groups

ACS indicates acute coronary syndrome; ASA, aspirin; BARC, Bleeding Academic Research Consortium; BMS, bare metal stent; CKD, chronic kidney disease; CVA, cerebrovascular accident; CV, cardiovascular; DAPT, dual antiplatelet therapy; DES, drug-eluting stent; LVEF, left ventricular ejection fraction; MI, myocardial infarction; NACCE, Net Adverse Clinical and Cerebral Events; NSTEMI, non–ST-elevation myocardial infarction; PCI, percutaneous coronary intervention; RCT, randomized controlled trial; Rx, prescription; STEMI, ST-elevation myocardial infarction; SIHD, stable ischemic heart disease; SVG, saphenous vein graft; TIMI, Thrombolysis In Myocardial Infarction; and TVR, target-vessel revascularization.

Data Supplement 2. RCTs of Prolonged/Extended (>12 Month) Duration of DAPT in Patients Treated With Stent Implantation

Study Acronym Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
OPTIDUAL Helft G, et al., 2015 (8) 26364288	Aim: Evaluate hypothesis that continuing clopidogrel would be superior to stopping clopidogrel at 12 mo following DES Study type: RCT, open label, superiority trial Size: 1,966 pts (1385 included in ITT analysis)	Inclusion criteria: Pts (SIHD or ACS) undergoing PCI with DES free of MACCE or major bleeding after 12 mo DAPT Exclusion criteria: Need for oral anticoagulation, unprotected left main PCI, life expectancy <2 y	Intervention: Additional 36 mo DAPT (n=695) Comparator: ASA therapy alone (n=690)	1º endpoint: Net adverse clinical events (death, MI, CVA or major bleeding) ■ 5.8% with additional 36 mo DAPT vs. 7.5% with ASA alone (HR: 0.75; 95% CI: 0.50–1.28; p=0.017)	 Study terminated early due to slow recruitment Actual median follow-up 33.4 mo Rates of death 2.3% with extended DAPT vs. 3.5% with ASA alone (HR: 0.65; 95% CI: 0.34–1.22; p=0.18) Rates of major bleeding identical at 2.0% (p=0.95) Post hoc analysis of MACCE (death, MI or CVA) found rates of 4.2% with extended DAPT vs. 6.4% with ASA alone (HR: 0.64; 95% CI: 0.40–1.02; p=0.06)
ITALIC Gilard M, et al., 2015 (6) 25461690	Aim: Evaluate noninferiority of 6 mo DAPT vs. 24 mo DAPT with newer generation (Xience) DES Study type: RCT, open label, noninferiority trial Size: 2,031 pts (actual 1850 pts)	Inclusion criteria: Pts undergoing PCI Exclusion criteria: Primary PCI for STEMI, left main PCI, ASA nonresponder	Intervention: 6 mo DAPT (n=926) Comparator: 24 mo DAPT (n=924)	1° endpoint: Death, MI, urgent TVR, CVA, major bleeding at 12 mo post-stenting •1.6% with 6 mo vs. 1.5% with 24 mo (p=0.85) • p<0.00002 for noninferiority (absolute risk difference 0.11%; 95% CI: -1.04–1.26%)	Study terminated early due to recruitment problems No significant differences in stent thrombosis or bleeding complications Low event rates (lower than expected)

DAPT Mauri L, et al., 2014 (9) 25399658	Aim: To assess benefits and risks of >12 mo DAPT after BMS or DES Study type: RCT, placebo-controlled Size: 9,961 pts	Inclusion criteria: Pts treated with BMS or DES, but only DES-treated pts included in this report Exclusion criteria: MI, CVA, repeat revascularization, stent thrombosis, or moderate-severe bleeding during the 1st 12 mo DAPT after DES (before randomization); oral anticoagulant use	Intervention: Additional 18 mo of DAPT after initial 12 mo Comparator: Placebo thienopyridine after initial 12 mo DAPT	Co-1° endpoints (after additional 18 mo Rx): • Stent thrombosis: 0.4% with continued DAPT vs. 1.4% with placebo thienopyridine (HR: 0.29; 95% CI: 0.17− 0.48; p=0.001) • MACCE (death, MI, CVA): 4.3% with continued DAPT vs. 5.9% with placebo thienopyridine (HR: 0.71; 95% CI: 0.59− 0.85; p<0.001) 1° Safety endpoint: GUSTO moderate or severe bleeding • 2.6% with continued DAPT vs. 1.6% with placebo thienopyridine (p=0.001)	All-cause death 2.0% with continued DAPT vs. 1.5% with placebo thienopyridine (HR: 1.36; 95% CI:1.00–1.85; p=0.05) Increased death due to more non–CV deaths Only DES-treated pts included in this report DES included 1st and 2nd generation stents
ARCTIC-Interruption Collet JP, et al., 2014 (10) 25037988	Aim: To demonstrate superiority of continued (>12 mo) vs. interrupted (12 mo) DAPT Study type: Planned extension of ARTIC-Monitoring trial. Pts treated with 1 y DAPT randomized to interrupt (stop) therapy or continue therapy. RCT, open label. Size: 1,259 pts	Inclusion criteria: Pts prior enrolled in ARCTIC-Monitoring trial without an event at 12 mo Exclusion criteria: Primary PCI, bleeding diathesis, chronic anticoagulation use	Intervention: Interruption (cessation) of DAPT after 12 mo Rx (n=624) Comparator: Continuation of DAPT after 12 mo Rx for an additional 6-18 mo (n=635)	1° endpoint: Death, MI, stent thrombosis, CVA or urgent TVR • 4% of interruption group vs. 4% of continuation group (HR: 1.17; 95% CI: 0.68–2.03; p=0.58) 1° Safety endpoint: STEEPLE major bleeding • <0.5% of interruption group vs. 1% of continuation group (HR: 0.15; 95% CI: 0.02–1.20; p=0.073)	High-risk pts not enrolled No differences in secondary endpoints, including stent thrombosis
DES-LATE Lee CW, et al., 2014 (11) 24097439	Aim: To compare 12 mo DAPT to >12 mo DAPT after DES Study type: RCT, open label Size: 5,045 pts	Inclusion criteria: Pts treated with DES event-free after 12-18 mo of DAPT Exclusion criteria: Recent ACS, ischemic or bleeding event on DAPT before enrollment	Intervention: Continued DAPT after 12 mo of Rx (n=2514) Comparator: ASA monotherapy (n=2531)	1º endpoint: CV death, MI, CVA 24 mo after randomization • 2.4% in ASA alone vs 2.6% in continued DAPT (HR: 0.94; 95% CI: 0.66−1.35; p=0.75)	Publications includes pts from ZEST-LATE and REAL-LATE (the results of which were first published by Park SJ in 2010) and an additional 2,344 pts TIMI major bleeding at 24 mo follow-up occurred in 1.1% of ASA alone vs. 1.4 of continued DAPT (HR: 0.71; 95% CI: 0.42–1.20; p=0.20); difference was statistically significant by the end of all follow-up No significant difference in stent thrombosis

PRODIGY Valgimigli M, et al., 2012 (7) 22438530	Aim: To evaluate the impact of up 6 or 24 mo DAPT after BMS or DES Study type: RCT Size: 2,013 pts (1,970 eligible for randomization at 30 d)	Inclusion criteria: SIHD or ACS pts undergoing PCI Exclusion criteria: Bleeding diathesis, bleeding or stroke within 6 mo, oral anticoagulant therapy	Intervention: 24 mo DAPT (n-987) Comparator: 6 mo DAPT (n=983)	1° endpoint: Death, MI or CVA at 2 y • 10.1% with 24 mo DAPT vs. 10.0% with 6 mo DAPT (HR: 0.98; 95% CI: 0.74– 1.29; p=0.91) 1° Safety endpoint: BARC type 2, 3 or 5 bleeding • 7.4% with 24 mo DAPT vs. 3.5% with 6 mo DAPT (HR: 0.46; 95% CI: 0.31–0.69; p=0.00018)	Stent thrombosis rates low and not significantly different between treatment groups
Park SJ, et al., 2010 (12) 20231231	Aim: Compare ASA + clopidogrel to ASA alone in pts treated with DES who were event free for 12 mo Study type: RCT, open label Size: 2,701 pts	Inclusion criteria: Pts treated with DES who were event free for 12 mo Exclusion criteria: Ischemic or bleeding event during first 12 mo of DAPT after DES implantation	Intervention: ASA + clopiodogrel Comparator: ASA alone	1° endpoint: MI or cardiac death at 2 y ■1.8% with DAPT vs. 1.2% with ASA (HR: 1.65; 95% CI: 0.80–3.36; p=0.17)	Study combined pts from ZEST-LATE and REAL-LATE

ACS indicates acute coronary syndrome; ASA, aspirin; BMS, bare metal stent; CI, confidence interval; CV, cardiovascular; CVA, cerebrovascular accident; DAPT, dual antiplatelet therapy; DES, drug-eluting stent; f/u, follow up; HR, hazard ratio; ITT, intent to treat; MACE, major adverse cardiac event; MI, myocardial infarction; PCI, percutaneous coronary intervention; RCT, randomized controlled trial; Rx, prescription; SIHD, stable ischemic heart disease; STEMI, ST-elevation myocardial infarction; and TVR, target-vessel revascularization.

Data Supplement 3. Meta-Analyses of Duration of DAPT

Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Udell JA, et al., 2015 (13) 26324537	Aim: Compare benefits and risks of more than one y of DAPT with ASA alone in high-risk pts with Hx of prior MI Study type: Metaanalysis Size: 33,435 pts	Inclusion criteria: RCTs of secondary prevention in pts with MI randomized to extended duration (>12 mo) DAPT compared with ASA alone Exclusion criteria: ≤12 mo of follow-up, trials of oral anticoagulant therapies, trials of pts with	Intervention: >12 mo DAPT Comparator: ASA therapy alone	1° endpoint: MACE (CV death, nonfatal MI, and nonfatal stroke) • 6.4% with DAPT vs. 7.5% with ASA alone (RR: 0.78; 95% CI: 0.67–0.90; p=0.001)	 Studies included in analysis: CHARISMA, PRODIGY, ARCTIC-Interruption, DAPT, DES-LATE, and PEGASUS-TIMI 54 For all studies except PEGASUS-TIMI 54, a subgroup of the study population was used for the meta-analysis CV death 2.3% with DAPT vs. 2.6% with ASA alone (RR: 0.85; 95% CI: 0.74–0.98; p= 0.03),

Elmariah S, et al., 2015 (14) 25467565	Aim: Assess the effect of extended duration DAPT on mortality Study type: Hierarchical Bayesian random effects model meta-analysis, trial level data Size: 14 RCT; total n=69,644 pts	Patients: Pts enrolled in RCTs of extended vs. short duration DAPT or DAPT vs. ASA alone. Clinical settings of studies included post-PCI, post-ACS, atrial fibrillation, lacunar stroke, and documented or high-risk of CV disease	Intervention: Longer duration DAPT Comparators: Shorter duration DAPT or ASA alone	CV Mortality: 4.2% with longer DAPT vs. 4.1% with shorter DAPT/ASA alone (HR:1.01; 95% credible interval: 0.93–1.12; p=0.81) Non-CV Mortality: 1.7% with longer DAPT vs. 1.7% with shorter DAPT/ASA alone (HR: 1.04; 95% credible interval: I: 0.90–1.26; p=0.66) All-cause mortality: 5.8% with longer DAPT vs. 5.7% with shorter DAPT/ASA alone (HR: 1.04; 95% credible interval: I: 0.96–1.18; p=0.17)	No increase in non–CV death (RR: 1.03; CI: 0.86–1.23; p= 0.76). Major bleeding 1.85% with DAPT vs. 1.09% with ASA (RR: 1.73; 95% CI: 1.19–2.50; p=0.004) Trial level data used Authors concluded extended-duration APT not associated with differences in all-cause, CV, or non–CV death compared with ASA alone or short duration DAPT
Palmerini T, et al., 2015 (15) 25790880	Aim: To compare clinical outcomes between short- (≤6 mo) and long-term (1 y) DAPT in pts treated with DES Study type: Individual pts data pairwise and network meta-analysis of RCTs Size: 4 RCT; total n=8,180 pts	Inclusion criteria: RCTs comparing short-duration (3 or 6 mo) with longer-duration DAPT (≥1 y).	Intervention: Short- term (≤6 mo) DAPT Comparator: Long- term (1 y) DAPT	1º endpoint: MACE (cardiac death, MI, stent thrombosis) For short-term DAPT, HR: 1.11 (95% CI: 0.86–1.42; p=0.44) Safety endpoint: Bleeding For short-term DAPT, HR: 0.66 (95% CI: 0.46–0.94; p=0.03)	No significant differences in 1 y rates of MACE among 3 mo vs. 1 y DAPT, 6-mo vs. 1 y DAPT, or 3 mo vs. 6 mo DAPT
Giustino G, et al., 2015 (16) 25681754	Aim: Evaluate the efficacy and safety of DAPT after DES Study type: Meta-analysis of RCT, trial level data Size: 10 RCT; total	Patients: Pts treated with DES enrolled in RCTs of shorter vs. longer duration DAPT	Comparators: Shorter duration vs. Longer duration DAPT	Stent thrombosis: 0.9% with shorter vs. 0.5% with longer (OR: 1.71; 95% CI:1.26–2.32, p=0.001) Clinically significant bleeding: 1.2% with shorter vs. 1.9% with longer (OR: 0.63, 95% CI: 0.52–0.75; p<0.001	Trial level data used The effect of shorter DAPT on stent thrombosis was attenuated with the use of second-generation DES (OR: 1.54; 95% CI: 0.96–2.47) compared with the use of first-generation DES (OR: 3.94; 95% CI: 2.20–7.05); p for interaction=0.008. All-cause mortality 2.0% with shorter

	n=32,135 pts				vs. 2.2% with longer (OR: 0.87; 95% CI: 0.74–1.01; p=0.073)
Navarese, et al., 2015 (17) 25883067	Aim: To assess the benefits and risks of short term (<12 mo) or extended (>12 mo) DAPT vs. 12 mo DAPT after DES. Study type: Meta-analysis of RCT, trial level data Size: 10 RCT; total n=32,287	Patients: Pts treated with DES enrolled in RCT of shorter vs. longer duration DAPT	Comparator: Shorter or longer duration DAPT compared to 12 mo DAPT	MI:	Trial level data used Authors concluded that compared with standard 12 mo DAPT, shorter duration reduced bleeding with no apparent increase in ischemic complications and could be considered for most pts. In selected pts with low bleeding risk and very high ischemic risk, extended DAPT could be considered
Palmerini T, et al., 2015 (18) 26065988	Aim: Investigate mortality and other clinical outcomes with different DAPT strategies Study type: Pair wise and Bayesian network meta-analysis of RCT, trial level data	Patients: Pts treated with DES enrolled in RCT of shorter vs. longer duration DAPT	Comparators: Shorter duration vs. longer duration DAPT	All-cause mortality: Shorter vs. longer DAPT: HR: 0.82; 95% CI: 0.69–0.98; p=0.02; NNT=325	Trial level data used Reduced mortality with shorter compared to longer DAPT attributable to lower non-cardiac mortality (HR: 0.67; 95% CI: 0.51–0.89; p=0.006; NNT=347) with similar cardiac mortality (HR: 0.93; 95% CI: 0.73–1.17; p=0.52) Shorter DAPT associated with lower risk of major bleeding, but a higher risk of MI and stent thrombosis

	Size: 10 RCT; total n=31,666 pts				
Spencer FA, et	Aim: To summarize	Patients: Pts treated with	Comparators:	MI: 1.7% with longer vs. 2.6% with shorter	Trial level data used
al.,	data on clinical outcome	DES enrolled in RCT of	Shorter duration vs.	(RR: 0.73; CI: 0.58–0.92)	 Authors concluded moderate-quality
2015	with longer vs. shorter	shorter vs. longer duration	longer duration DAPT		evidence showed that longer-duration
(19)	duration DAPT after	DAPT		Major Bleeding: 1.4% with longer vs.	DAPT decreased risk for MI and
26005909	DES			0.8% with shorter (RR: 1.66; 95% CI:	increased mortality, and that high-quality
				1.34–1.99)	evidence showed that DAPT increased
	Study type: Meta-			,	risk for major bleeding
	analysis of RCT, trial			Total Mortality: 2.0% with longer vs.	Authors calculated that extended DAPT
	level data			1.7% with shorter (RR–1.19; 95% CI:	associated with 8 fewer MI per 1000
				1.04–1.36)	treated per year but 6 more major
	Size: 9 RCT; total			,	bleeding events per year than shorter-
	n=28,808				duration DAPT

ACS indicates acute coronary syndrome; ASA, aspirin; CV, cardiovascular; DAPT, dual antiplatelet therapy; DES, drug-eluting stent; HR, hazard ratio; Hx, history; MACE, major adverse cardiac events; MI, myocardial infarction; NNT, number need to treat; PCI, percutaneous coronary intervention; RCT, randomized controlled trial; SIHD, stable ischemic heart disease; and TIMI, Thrombolysis In Myocardial Infarction.

Data Supplement 4. RCTs, RCT Subgroup Analyses, and Meta-Analyses of RCTs of DAPT Post-MI or Post-ACS

Study Acronym Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Udell JA, et al., 2015 (13) 26324537	Aim: Compare benefits and risks of more than one y of DAPT with ASA alone in high-risk pts with Hx of prior MI Study type: Metaanalysis Size: 33,435 pts	Inclusion criteria: RCTs of secondary prevention in pts with MI randomized to extended duration (>12 mo) DAPT compared with ASA alone Exclusion criteria: ≤12 mo of follow-up, trials of oral anticoagulant therapies, trials of pts with SIHD alone undergoing PCI	Intervention: >12 mo DAPT Comparator: ASA therapy alone	1° endpoint: MACE (CV death, nonfatal MI, and nonfatal stroke) • 6.4% with DAPT vs. 7.5% with ASA alone (RR: 0.78; 95% CI: 0.67–0.90; p=0.001)	• Studies included in analysis: CHARISMA, PRODIGY, ARCTIC- Interruption, DAPT,-LATE, and PEGASUS-TIMI 54 • For all studies except PEGASUS- TIMI 54, a subgroup of the study population was used for the meta- analysis • CV death 2.3% with DAPT vs. 2.6% with ASA alone (RR: 0.85; 95% CI: 0.74–0.98; p=0.03), • No increase in non–CV death (RR: 1.03; 95% CI: 0.86–1.23; p=0.76). • Major bleeding 1.85% with DAPT vs 1.09% with ASA (RR: 1.73; 95% CI:1.19–2.50; p=0.004)

DAPT (MI subgroup analysis) Yeh RW, et al., 2015 (20) 25787199	Aim: Assess benefits and risks of extended DAPT in subgroups of pts in the DAPT study with MI and stable presentations Study type: Post-hoc analysis of the DAPT trial Size: 11,648 pts	Inclusion criteria: Pts enrolled in DAPT trial treated with either BMS or DES Exclusion criteria: N/A	Intervention: Additional 18 mo DAPT after initial 12 mo Comparator: Placebo thienopyridine after initial 12 mo DAPT Subgroup analysis: Pts with MI (n=3,576) and without MI (n=8,072)	Co-1° endpoints (after additional 18 mo Rx): • Stent thrombosis in MI group: 0.5% with extended DAPT vs. 1.9% with placebo thienopyridine (HR: 0.27; CI: 0.13–0.57, p<0.001) • MACCE (death, MI, CVA) in MI group: 3.9% with continued DAPT vs. 6.8% with placebo thienopyridine (HR: 0.56; CI: 0.42–0.76; p<0.001) 1° Safety endpoint: GUSTO moderate or severe bleeding	• All cause death 1.4% with extended DAPT vs. 1.6% with placebo thienopyridine (HR: 0.87; Cl: 0.50–1.50, p=0.61)
				• In pts with MI: 1.9% with continued DAPT vs. 0.8% with placebo thienopyridine (HR: 2.38; CI: 1.28–4.43, p=0.005)	
PEGASUS-TIMI 54 Bonaca MP, et al., 2015 (21) 25773268	Aim: To investigate the efficacy and safety of ticagrelor beyond 1 y after a MI Study type: RCT, placebo controlled Size: 21,162 pts	Inclusion criteria: MI 1-3 y prior, age ≥50, and an additional high-risk feature Exclusion criteria: Bleeding disorder, Hx of ischemic stroke of ICH, CNS tumor, GI bleeding within 6 mo, major surgery within 30 d, oral anticoagulant use	Intervention: Ticagrelor 90 mg (n=7050) or ticagrelor 60 mg (n=7045) Comparator: Placebo (n=7067)	1° endpoint: CV death, MI or stroke at median 33 mo follow-up • 7.85% with 90 mg ticagrelor, 7.77% with 60 mg ticagrelor, and 9.04% with placebo •HR for 90 mg vs. placebo: 0.85; 95% CI: 0.75–0.96; p=0.008 • HR for 60 mg vs. placebo: 0.84; 95% CI: 0.74–0.95; p=0.004	All pts treated with ASA No differences in death between the either dose of ticagrelor and placebo
		use		1° Safety endpoint: TIMI major bleeding • 2.60 with 90 mg ticagrelor, 2.30 with 60 mg ticagrelor, and 1.06% with placebo (p<0.001 for each dose vs. placebo)	

TRILOGY Row MT, et al., 2012 (22) 22920930	Aim: To compare prasugrel with clopidogrel in pts with NSTE-ACS not undergoing revascularization Study type: RCT Size: 7,243 pts	Inclusion criteria: Pts with NSTE-ACS selected for medical management without revascularization Exclusion criteria: Hx CVA or TIA, PCI or CABG within prior 30 d, renal failure requiring dialysis, concomitant oral anticoagulation treatment	Intervention: Prasugrel Comparator: Clopidogrel	1° endpoint: MACE (CV death, MI or CVA) in pts <75 y at 30 mo 13.9% with prasugrel vs. 16.0% with clopidogrel (HR: 0.91; 95% CI: 0.79–1.05; p=0.21) Safety endpoint): GUSTO severe or life-threatening bleeding 0.9% with prasugrel vs. 0.6% with clopidogrel (HR: 0.94; 95% CI: 0.44–1.99; p=0.87)	All pts treated with ASA
PLATO James SK, et al., 2011 (23) 21685437	Aim: To evaluate efficacy and safety outcomes in pts in PLATO who at randomization were planned for a noninvasive treatment strategy. Study type: Pre-specified subgroup analysis of the PLATO RCT Size: 5,216 pts	Inclusion criteria: Pts with ACS admitted to hospital with planned noninvasive management Exclusion criteria: Pts in PLATO with planned invasive management	Intervention: Ticagrelor (90 mg bid) Comparator: Clopidogrel (75 mg qD)	1° endpoint: Vascular death, MI or CVA • 12.0% with ticagrelor compared to 14.3% with clopidogrel (HR: 0.85; 95% CI: 0.73–1.00; p=0.04) Safety endpoint: • Total major bleeding: (11.9% with ticagrelor vs. 10.3% with clopidogrel (HR: 1.17; 95% CI: 0.98–1.39; p=0.08) • Non-CABG major bleeding: 4.0% with ticagrelor vs. 3.1% with clopidogrel (HR: 1.30, 95% CI:0.95–1.77; p=0.10)	• N/A
PLATO Steg PG, et al., 2010 (24) 21060072	Aim: To examine the efficacy and safety of ticagrelor compared with clopidogrel in pts with STE-ACS intended for reperfusion with primary PCI. Study type: Pre specified subgroup analysis of PLATO; RCT Size: 7,544 pts	Inclusion criteria: Pts enrolled in PLATO with STEMI Exclusion criteria: Same as PLATO study	Intervention: Ticagrelor Comparator: Clopidogrel	1º endpoint: MACE (CV death, MI, CVA) • 9.4% with ticagrelor vs. 10.8% with clopdiogrel; (HR: 0.87; 95% CI: 0.75–1.01; p=0.07) Safety endpoint: major bleeding • No difference in major bleeding (HR: 0.98; p=0.76).	 72% of pts with STEMI underwent primary PCI Definite stent thrombosis lower with ticagrelor (HR: 0.66; p=0.03). Risk of stroke higher with ticagrelor (1.7% vs. 1.0%; HR: 1.63; 95% CI: 1.07–2.48; p=0.02).

TRITON-TIMI 38 Montalescot, et al., 2009 (25) 19249633	Aim: To asses prasugrel vs. clopidogrel in pts undergoing PCI for STEMI enrolled in TRITON-TIMI 38 Study type: Double-blind RCT Size: 3,534 pts	Inclusion criteria: Pts undergoing PCI for STEMI Exclusion criteria: Increased risk of bleeding, anemia, recent fibrinolytic administration, need from chronic oral anticoagulants, cardiogenic shock, or thienopyridine treatment within 5 d of randomization.	Intervention: Prasugrel (n=1,769) Comparator: Clopidogrel (n=1,765)	1° endpoint: CV death, nonfatal MI, nonfatal stroke at 15 mo. • 10.0% with prasugrel vs. 12.4% with clopidogrel (HR: 0.79; 95% CI: 0.65-0.97; p=0.0221) Safety endpoint: • No significant different in non–CABG related TIMI major bleeding at 30 d or 15 mo	• Secondary endpoint of CV death, nonfatal MI or target vessel revascularization at 30 d 6.5% with prasugrel vs. 9.5% with clopidogrel (HR: 0.75; 95% CI: 0.59–0.96; p=0.0205)
TRITON Wiviott SD, et al., 2007 (26) 17982182	Aim: To compare prasugrel with clopidogrel in pts with ACS scheduled for PCI Study type: RCT, double-blind, double-dummy design Size: 13,608 pts	Inclusion criteria: ACS (NSTE-ACS or STEMI) pts undergoing planned PCI Exclusion criteria: Increased risk of bleeding, anemia, thrombocytopenia	Intervention: Prasugrel (10 mg qD) (n=6,813) Comparator: Clopidogrel (75 mg qD) (n=6,795)	1º endpoint: CV death, MI, CVA • 9.9% with prasugrel vs. 12.1% with clopidogrel (HR: 0.81; CI: 0.73–0.90; p<0.001) 1º Safety endpoint: Non–CABG related TIMI major bleeding • 2.4% with prasugrel vs. 1.8% with clopidogrel (HR: 1.32; 95% CI: 1.03–1.68, p=0.03)	 Stent thrombosis rate lower with prasugrel (1.1% vs. 2.4%, p=0.001) Life-threatening bleeding higher with prasugrel (1.4% vs. 0.9%, p=0.01) Fatal bleeding higher with prasugrel (0.4% vs. 0.1%, p=0.002) Increased rate of ICH in those treated with prasugrel with Hx of CVA or TIA Increased risk of bleeding in those with Hx CVA or TIA, elderly (≥75 y) and body weight <60 kg
CHARISMA Bhatt DL, et al., 2006, 2007 (27,28) 7498584 16531616	Aim: Assess effect of DAPT in a broad population of pts at high risk for atherothrombotic events Study type: RCT, placebo controlled Size: 15,603 pts	Inclusion criteria: Age ≥45 with multiple atherothrombotic risk factors and/or documented CAD, cerebrovascular disease, or PAD Exclusion criteria: Long-term use of oral antithrombotic medications of NSAID, recent ACS	Intervention: ASA + clopidogrel (n=7,802) Comparator: ASA + placebo (n=7,801)	1° endpoint: CV death, MI or CVA (median follow-up 28 mo) • 6.8% with ASA+clopidogrel vs. 7.4% with ASA+placebo (RR: 0.93; 95% CI: 0.83–1.05; p=0.22) 1° Safety endpoint: GUSTO severe bleeding • 1.7% with ASA+clopidogrel vs. 1.3% with ASA+placebo (RR: 1.25; 95% CI: 0.97–1.61; p=0.09)	• In a post hoc subgroup analysis of those with Hx of prior MI, composite endpoint of CV death, MI and CVA occurred in 8.3% of placebo-treated pts and 6.6% of clopidogrel-treated pts (HR: 0.774; 95% CI: 0.613–0.978; p=0.031)

COMMIT-CCS 2 Chen ZM, et al., 2005 (29) 16271642	Aim: To compare ASA alone to ASA + clopidogrel in pts with STEMI Study type: RCT Size: 45,852 pts	Inclusion criteria: Pts with suspected MI within 24 H Exclusion criteria: Pts undergoing primary PCI, highrisk of adverse event with study treatments	Intervention: ASA + clopidogrel Comparator: ASA alone	Co-1° endpoints (during scheduled treatment – discharge or d 28): • MACE (death, reinfarction, CVA): 9.2% with DAPT vs. 10.1% with ASA (RRR: 9%; 95% CI: 3%–14%; p=0.002) • Death: 7.5% with DAPT vs. 8.1% with ASA (RRR: 7%; 95% CI: 1%–13%; p=0.03) Safety endpoint: Life-threatening bleeding • 0.58% with DAPT vs. 0.55% with ASA (p=0.59)	• 87% with ST elevation; 6% with bundle branch block; and 7% with ST depression
PCI-CLARITY Sabatine MS, et al., 2005 (30) 16143698	Aim: Determine if clopidogrel pretreatment before PCI in pts with recent STEMI is superior to clopidogrel treatment initiated at the time of PCI in preventing MACE Study type: RCT; prespecified subgroup analysis of pts in CLARITY-TIMI 28 who underwent PCI Size: 1,863 pts	Inclusion criteria: Pts receiving fibrinolytics for STEMI undergoing subsequent angiography and PCI enrolled in CLARITY Exclusion criteria: Planned treatment with clopidogrel or a GPI before angiography, cardiogenic shock, prior CABG	Intervention: Clopidogrel pretreament Comparator: Standard therapy (clopidogrel at the time of PCI)	1º endpoint: MACE at 30 d • 3.6% with pretreatment vs. 6.2% with standard Rx; (adjusted OR=0.54; 95% CI: 0.35–0.85; p=0.008) Safety endpoint: TIMI major or minor bleeding • 2.0% with pretreatment vs. 1.9% with standard Rx (p>0.99)	Pretreatment with clopidogrel also reduced the incidence of MI or stroke prior to PCI (4.0% vs. 6.2%; OR: 0.62; 95% CI: 0.40–0.95; p=0.03)
Sabatine MS, et al., 2005 (31) 15758000	Aim: To assess benefit of addition of clopidogrel to ASA in pts with STEMI treated with fibrinolytic therapy Study type: RCT Size: 3,491 pts	Inclusion criteria: Pts with STEMI being treated with fibrinolytic therapy and ASA Exclusion criteria: recent clopidogrel treatment or GPI, planned performance of angiography within 48 h, prior CABG, cardiogenic shock	Intervention: Clopidogrel + ASA Comparator: Placebo + ASA	1º endpoint: Composite of occluded infarct-related artery (TIMI flow grade 0 or1) at angiography, or death or recurrent MI before angiography • 15.0% with DAPT vs. 21.7% with ASA (absolute reduction 6.7%; RRR: 36%; 95% CI: 24%–47%; p<0.001) Safety endpoint: TIMI major bleeding • 1.3% with DAPT vs. 1.1% with ASA (p=0.64)	At 30 d, DAPT reduced composite endpoint of CV death, recurrent MI or recurrent ischemia leading to urgent TVR by 20% (from 14.1% – 11.6%; p=0.03) Angiography performed 48-192 h after the start of the study

CURE Fox KA, et al., 2004 (32) 15313956	Aim: To assess benefits and risks of ASA plus clopidogrel in pts undergoing CABG for NSTE-ACS Study type: Post hoc subgroup analysis of CURE; RCT Size: 12,562 pts entire study population; 1,061 pts underwent CABG	Inclusion criteria: NSTE-ACS within <24 h Exclusion criteria: NYHA class IV HF, PCI or CABG <3 mo, contraindication to antiplatelets and antithrombotics, hemorrhagic or IC stroke, severe thrombocytopenia	Intervention: Clopidogrel + ASA Comparator: Placebo + ASA	1° endpoint: MACE (CV death, MI or stroke) • 14.5% with DAPT vs. 16.2% with ASA (RR: 0.89; 95% CI: 0.71–1.11)	• Benefits of DAPT with CABG were deemed "consistent" (test for interaction among strata 0.53) with the benefits in pts undergoing PCI (9.6% with DAPT vs. 13.2% with ASA; RR: 0.72; 95% CI: 0.47–0.90) and in those treated with medical therapy alone (8.1% with DAPT vs. 10.0% with ASA; RR: 0.80; 95% CI: 0.69–0.92)
CURE CURE Investigators, 2001 (33) 11519503	Aim: Compare efficacy and safety of DAPT in pts with NSTE-ACS treated 3-12 mo Study type: Randomized, doubleblind, placebo controlled trial Size: 12,562 pts	Inclusion criteria: Pts with NSTE-ACS hospitalized within 24 h of symptom onset Exclusion criteria: STEMI, high bleeding risk, oral anticoagulant use	Intervention: ASA + clopidogrel (DAPT) (n=6,259) Comparator: ASA + placebo (n=6,303)	1° endpoint: CV death, MI or CVA • 9.3% with DAPT vs. 11.4% with ASA alone (RR: 0.80; 95% CI: 0.72–0.90; p<0.01) 1° Safety endpoint: Major bleeding • 3.7% with DAPT vs. 2.7% with ASA alone (RR: 1.38; p=0.001)	Mean duration of treatment was 9 mo Results comparable in those with and without a Dx of "MI"
PCI-CURE Mehta SR, et al., 2001 (34) 11520521	Aim: To assess whether pretreatment with clopidogrel followed by long-term Rx after PCI is superior to no pretreatment and 4 wk Rx Study type: Analysis of those pts in CURE who were treated with PCI Size: 2,658 pts	Inclusion criteria: Pts enrolled in CURE undergoing PCI Exclusion criteria: N/A	Intervention: ASA + clopidogrel (DAPT) (n=1,313) Comparator: ASA + placebo (n=1,345)	1º endpoint: CV death, MI or urgent TVR within 30 d of PCI ■ 4.5% with ASA+clopidogrel vs. 6.4% with ASA+placebo (RR: 0.70; 95% CI: 0.50–0.97; p=0.03)	• CV death or MI rate between PCI and end of follow-up: 6.0% with ASA+clopidogrel vs. 8.0% with ASA+placebo (RR: 0.75; 95% CI: 0.56–1.00; p=0.047)

ACS indicates acute coronary syndrome; ASA, aspirin; bid, two times per day; BMS, bare metal stent; CABG, coronary artery bypass graft; CAD, coronary artery disease; CI, confidence interval; CNS, central nervous system; CVA, cerebrovascular accident; CV, cardiovascular; DAPT, dual antiplatelet therapy; DES, drug-eluting stent; Dx, diagnosis; GI; gastrointestinal; GPI, glycoprotein inhibitor; HR, hazard ratio; Hx, history; ICH, intracerebral hemorrhage; MACE, major adverse cardiac and cerebrovascular events; MI, myocardial infarction; NSTE-ACS, non–ST-elevation acute coronary syndrome; NSAID, nonsteroidal anti-inflammatory drug; NYHA, New York Heart Association; PAD, peripheral artery disease; PCI, percutaneous coronary intervention; RCT, randomized

controlled trial; RR, relative risk; Rx, prescription; TIA, transient ischemic attack; TIMI, Thrombolysis In Myocardial Infarction; SIHD, stable ischemic heart disease; STE-ACS, ST-elevation acute coronary syndrome; STEMI, ST-elevation myocardial infarction; and TVR, target-vessel revascularization.

Data Supplement 5. RCTs and RCT Subgroup Analyses Comparing Clopidogel With Prasugrel or Ticagrelor In Patients With ACS

Study Acronym Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
TRILOGY Row MT, et al., 2012 (22) 22920930	Aim: To compare prasugrel with clopidogrel in pts with NSTE-ACS not undergoing revascularization Study type: RCT Size: 7,243 pts	Inclusion criteria: Pts with NSTE-ACS selected for medical management without revascularization Exclusion criteria: Hx CVA or TIA, PCI or CABG within prior 30 d, renal failure requiring dialysis, concomitant oral anticoagulation treatment	Intervention: Prasugrel Comparator: Clopidogrel	1° endpoint: MACE (CV death, MI or CVA) in pts <75 y at 30 mo •13.9% with prasugrel vs. 16.0% with clopidogrel (HR: 0.91; 95% CI: 0.79−1.05; p=0.21) Safety endpoint): GUSTO severe or life-threatening bleeding • 0.9% with prasugrel vs. 0.6% with clopidogrel (HR: 0.94; 95% CI: 0.44−1.99; p=0.87)	All pts treated with ASA
PLATO James SK, et al., 2011 (23) 21685437	Aim: To evaluate efficacy and safety outcomes in pts in PLATO who at randomization were planned for a noninvasive treatment strategy. Study type: Prespecified subgroup analysis of the PLATO RCT Size: 5,216 pts	Inclusion criteria: Pts with ACS admitted to hospital with planned noninvasive management Exclusion criteria: Pts in PLATO with planned invasive management	Intervention: Ticagrelor (90 mg bid) Comparator: Clopidogrel (75 mg qD)	1° endpoint: Vascular death, MI or CVA • 12.0% with ticagrelor compared to 14.3% with clopidogrel (HR: 0.85; 95% CI: 0.73–1.00; p=0.04) Safety endpoint: • Total major bleeding: (11.9% with ticagrelor vs. 10.3% with clopidogrel (HR: 1.17; 95% CI: 0.98–1.39; p=0.08) • Non–CABG major bleeding: 4.0% with ticagrelor vs. 3.1% with clopidogrel (HR: 1.30, 95% CI: 0.95–1.77; p=0.10)	• N/A

PLATO Steg PG, et al., 2010 (24) 21060072	Aim: To examine the efficacy and safety of ticagrelor compared with clopidogrel in pts with STE-ACS intended for reperfusion with primary PCI. Study type: Prespecified subgroup analysis of PLATO; RCT Size: 7,544 pts	Inclusion criteria: Pts enrolled in PLATO with STEMI Exclusion criteria: Same as PLATO study	Intervention: Ticagrelor Comparator: Clopidogrel	1° endpoint: MACE (CV death, MI, CVA) •9.4% with ticagrelor vs. 10.8% with clopdiogrel; HR: 0.87; 95% CI: 0.75–1.01; p=0.07 Safety endpoint: major bleeding • No difference in major bleeding (HR: 0.98; p=0.76).	 72% of pts with STEMI underwent primary PCI Definite stent thrombosis lower with ticagrelor (HR: 0.66; p=0.03). Risk of stroke higher with ticagrelor (1.7% vs. 1.0%; HR: 1.63; 95% CI: 1.07–2.48; p=0.02).
PLATO Wallentin L, et al., 2009 (35) 19717846	Aim: To compare ticagrelor and clopidogrel in pts with ACS Study type: RCT, double-blind, double-dummy design Size: 18,624 pts	Inclusion criteria: ACS with symptom onset within 24 h Exclusion criteria: Fibrinolytic therapy within 24 h, oral anticoagulant therapy, increased risk of bradycardia, concomitant therapy with a strong cytochrome P-450 3A inhibitor or inducer	Intervention: Ticagrelor (90 mg bid) (n=9,333) Comparator: Clopidogrel (75 mg qD) (n=9,291)	1° endpoint: Vascular death, MI or CVA • 9.8% with ticagrelor vs. 11.7% with clopidogrel (HR: 0.84; 95% CI: 0.77–0.92; p<0.001 1° Safety endpoint: Trial-defined major bleeding • 11.6% with ticagrelor vs. 11.2% with clopidogrel (p=0.43)	 All pts treated with ASA Study included both NSTE-ACS and STEMI pts, with treatment either med Rx alone or med Rx plus revascularization Ticagrelor associated with higher rate of non–CABG related bleeding (4.5% vs. 3.8%, p=0.03 Stent thrombosis rate lower with ticagrelor (1.3% vs. 1.9%, HR: 0.67; 95% CI: 0.50–0.91; p=0.009)
TRITON-TIMI 38 Montalescot, et al., 2009 (25) 19249633	Aim: To asses prasugrel vs. clopidogrel in pts undergoing PCI for STEMI enrolled in TRITON-TIMI 38 Study type: Doubleblind RCT Size: 3,534 pts	Inclusion criteria: Pts undergoing PCI for STEMI Exclusion criteria: Increased risk of bleeding, anemia, recent fibrinolytic administration, need from chronic oral anticoagulants, cardiogenic shock, or thienopyridine treatment within 5 d of randomization.	Intervention: Prasugrel (n=1,769) Comparator: Clopidogrel (n=1,765)	1° endpoint: CV death, nonfatal MI, nonfatal stroke at 15 mo. • 10.0% with prasugrel vs. 12.4% with clopidogrel (HR: 0.79; 95% CI: 0.65–0.97; p=0.0221) Safety endpoint: • No significant different in non–CABG related TIMI major bleeding at 30 d or 15 mo	• Secondary endpoint of CV death, nonfatal MI or TVR at 30 d 6.5% with prasugrel vs. 9.5% with clopidogrel (HR: 0.75; 95% CI: 0.59–0.96; p=0.0205)

TRITON Wiviott SD, et al., 2007 (26) 17982182	Aim: To compare prasugrel with clopidogrel in pts with ACS scheduled for PCI Study type: RCT, double-blind, double-dummy design Size: 13,608 pts	Inclusion criteria: ACS (NSTE-ACS or STEMI) pts undergoing planned PCI Exclusion criteria: Increased risk of bleeding, anemia, thrombocytopenia	Intervention: Prasugrel (10 mg qD) (n=6,813) Comparator: Clopidogrel (75 mg qD) (n=6,795)	1° endpoint: CV death, MI, CVA • 9.9% with prasugrel vs. 12.1% with clopidogrel (HR: 0.81; 95% CI: 0.73–0.90; p<0.001) 1° Safety endpoint: Non–CABG related TIMI major bleeding • 2.4% with prasugrel vs. 1.8% with clopidogrel (HR: 1.32; CI: 1.03–1.68; p=0.03)	• Stent thrombosis rate lower with prasugrel (1.1% vs. 2.4%, p=0.001) • Life-threatening bleeding higher with prasugrel (1.4% vs. 0.9%, p=0.01) • Fatal bleeding higher with prasugrel (0.4% vs. 0.1%, p=0.002) • Increased rate of ICH in those treated with prasugrel with Hx of CVA or TIA • Increased risk of bleeding in those with Hx CVA or TIA, elderly (≥75 y) and body weight <60 kg
---	--	--	--	--	--

ACS indicates acute coronary syndrome; ASA, aspirin; bid, two times per day; CABG, coronary artery bypass graft; CI, confidence interval; CVA, cerebrovascular accident; CV, cardiovascular; DAPT, dual antiplatelet therapy; HR, hazard ratio; Hx, history; MACE; major adverse cardiac events; MI, myocardial infarction; NSTE-ACS, non–ST-elevation acute coronary syndrome; NSTEMI, non–ST-elevation myocardial infarction; PCI, percutaneous coronary intervention; RCT, randomized controlled trial; RR, relative risk; Rx, prescription; TIA, transient ischemic attack; TIMI, Thrombolysis In Myocardial Infarction; SIHD, stable ischemic heart disease; STEMI, ST-elevation myocardial infarction; and TVR, target-vessel revascularization.

Data Supplement 6. Studies and Comparisons of Short-Term or Chronic Aspirin Dose in Patients With Coronary Artery Disease

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
TRANSLATE-	Aim: Compare outcome of	Inclusion criteria: Pts	Intervention: ASA dose	<u>1° endpoint</u> : MACE	High-dose ASA was 325 mg;
ACS	pts in TRANSLATE-ACS	enrolled in TRANSLATE-	(nonrandomized)	MACE not statistically significantly different	low-dose ASA was 81 mg
Xian Y, et al.,	treated with high-dose	ACS		between treatment groups	
2015	(325 mg) or low-dose (81		Comparator: Higher or	• 8.2% with high dose vs. 9.2% with low-dose	
(36)	mg) ASA	Exclusion criteria: Pts	lower ASA dose	(adjusted HR: 0.99; 95% CI: 0.85-1.17).	
<u>25995313</u>	Study type: Analysis of data in the TRANSLATE-ACS observational study Size: 10,213 pts	died in-hospital, were not discharged on ASA or were missing ASA dosing information, did not undergo stent implantation, or did not complete follow-up		Safety endpoint: bleeding (BARC) • BARC (1-5) bleeding higher with high-dose ASA (unadjusted 24.2% with high-dose vs. 22.7% with low-dose; adjusted HR: 1.19; 95% CI:1.06–1.33)	
CURRENT- OASIS 7 Mehta SR, et al.,	<u>Aim</u> : To assess the efficacy and safety of standard vs. double-dose	Inclusion criteria: Pts with ACS (STEMI or non–STEMI) undergoing	Intervention 1: High- dose ASA (300-325 mg)	1º endpoint: CV death, MI, or stroke at 30 d • 4.1% with high-dose ASA vs. 4.2% with low-dose ASA (HR: 0.98; 95% CI: 0.84–1.13;	
2010 (37)	clopidogrel and of high- vs. low-dose ASA in pts	PCI	Intervention 1: Low-dose ASA (75-100 mg)	p=0.76)	
<u>20817281</u>	with ACS undergoing PCI	Exclusion criteria:		Safety endpoint: Major bleeding	

	Study type: Randomized factorial trial. Analysis of pts in CURRENT-OASIS 7 undergoing PCI Size: 17,260 pts	Increased risk of bleeding or active bleeding		• 1.5% with high-dose ASA vs. 1.3% with low-dose ASA (HR: 1.18; 95% CI: 0.92–1.53; p=0.20)	
PCI-CURE Jolly SS, et al., 2009 (38) 18819961	Aim: Evaluate the safety of different doses of ASA after PCI in PCI-CURE Study type: Post hoc analysis of PCI-CURE Size: 2,658 pts	Inclusion criteria: NSTE-ACS pts in CURE who underwent PCI (PCI-CURE cohort) Exclusion criteria: N/A	Intervention: ASA dose (nonrandomized) Comparator: Higher or lower ASA dose	1° endpoint: N/A Safety endpoint: Major bleeding at 30 d and long term (mean 8 mo) • Major bleeding increased with high-dose ASA • 1.9% with low-dose, 1.5% with moderate dose, and 3.9% with high-dose • For high vs. low-dose HR: 2.05 (95% CI: 1.20–3.50; p=0.009)	ASA doses were categorized as low-dose (≤100 mg), moderate dose (101–199 mg), and high-dose (≥200 mg Net adverse clinical events (death, MI, stroke, major bleeding) favored Low-dose over high-dose ASA (8.4% vs. 11.0%; HR: 1.31; 95% CI: 1.00–1.73; p=0.056).
CHARISMA Steinhubl, et al., 2009 (39) 19293071	Aim: Assess MACE based on ASA dose in CHARISMA Study type: Post hoc observational analyses Size: 15,595 pts	Inclusion criteria: Pts enrolled in CHARISMA Exclusion criteria: N/A	Intervention: ASA dose (nonrandomized) Comparator: Higher or lower ASA dose	1° endpoint: MACE MI, CVA or CV death) • The hazard the same regardless of dose • Adjusted HR: 0.95, 95% CI: 0.80–1.13, for 100 mg vs. <100 mg • Adjusted HR: 1.0; 95% CI: 0.85–1.18; for >100 mg vs. <100 mg. Safety endpoint: Severe or life-threatening bleeding • Hazard similar regardless of dose • Adjusted HR: 0.85; 95% CI: 0.57–1.26, for 100 mg vs. <100 mg • Adjusted HR: 1.05; 95% CI: 0.74–1.48, for > 100 mg vs. <100 mg.	 ASA doses were categorized as <100 mg (75 mg or 81 mg), 100 mg or>100 mg (150 mg or 162 mg) In pts also receiving clopidogrel, daily ASA doses >100 mg seemed to be nonstatistically significantly associated with reduced efficacy (adjusted HR: 1.16; CI: 0.93–1.44]) and increased harm (adjusted HR: 1.30; CI: 0.83–2.04]).
Patrono C, et al., 2008 (40) 18574266	Aim: Comparison of OR in vascular events with different ASA doses Study type: Indirect comparison of ASA doses reducing vascular events in high-risk pts; data from prior studies and publications	Inclusion criteria: Studies of ASA in highrisk pts Exclusion criteria: N/A	Intervention: Different ASA dosing ranges	1° endpoint: Odds reduction in vascular events • 500–1,500 mg/d: OR: 19±3% • 160–325 mg/d: OR: 26±3% • 75–150 mg/d: OR: 32±6% • <75 mg/d: OR: 13±8%	• N/A

	Size: 68 trials; >50,000 pts				
Serebruany, et al., 2005 (41) 15877994	Aim: To compare the risk of bleeding with low, moderate and high-doses of ASA Study type: Systematic overview of 31 trials Size: 192,036 pts	Inclusion criteria: Clinical trials with follow- up of ≥1 mo and contained a detailed description of hemorrhagic complications, pts characteristics, therapy duration and concomitant agents used. Exclusion criteria: Studies not meeting above criteria	Intervention: ASA dose (nonrandomized) Comparator: Higher or lower ASA dose	1° endpoint: None specifically defined Major bleeding event rates (most commonly TIMI bleeding): • 1.56% with low-dose; 1.54% with moderate dose; 2.29% with high-dose; p=0.0001 for comparison of low-dose vs. high-dose Total bleeding event rates: • 3.72% with low-dose; 11.31% with moderate dose; 9.8% with high-dose; p=0.0001 for comparisons of low-dose with either moderate or high-dose	Low-dose ASA defined as <100 mg; moderate-dose ASA 100–200 mg; high-dose ASA >200 mg
CURE Peters, et al., 2003 (42) 14504182	Aim: To study the benefits and risks of adding clopidogrel to different doses of ASA in the treatment of pts with ACS Study type: Post hoc analysis of the CURE study Size: 12,562 pts	Inclusion criteria: Pts with NSTE-ACS enrolled in the CURE study	Intervention: ASA dose (nonrandomized) Comparator: Higher or lower ASA dose	1º endpoint: MACE Impact of clopidogrel in preventing MACE was not significantly heterogeneous by ASA dose -high-dose group, 9.8% vs. 13.6%; RR: 0.71; 95% 95% CI: 0.59 -medium-dose group, 9.5% vs. 9.8%; RR: 0.97; 95% CI: 0.77–1.22 -low-dose group, 8.6% vs. 10.5%; RR: 0.81; 95% CI: 0.68–0.97 Safety endpoint: Major bleeding The incidence of major bleeding complications increased significantly with increasing ASA dose both in the placebo (1.9%, 2.8%, 3.7%; p=0.0001) and the clopidogrel (3.0%, 3.4%, 4.9%; p=0.0009) groups	• Incidence of MACE not heterogeneous in pts receiving ASA alone when examined by dose (highest and medium ASA dose groups compared with the low-dose group: adjusted OR, 1.0 (95% CI: 0.82–1.23) and 1.2 (95% CI: 1.08–1.51), respectively
Antithrombotic Trialists' Collaboration, 2002 (43) 11786451	Aim: To determine the effects of antiplatelet therapy among pts at high-risk of occlusive vascular events. Study type: Collaborative	Inclusion criteria: Randomized trials of an antiplatelet regimen vs. control or one regimen vs. another regimen	Intervention: ASA Comparator: Control or placebo	1º endpoint: Series vascular event (nonfatal MI, nonfatal stroke, vascular death) • The proportional reduction in vascular events was 19% (3%) with 500–1500 mg daily, 26% (3%) with 160–325 mg daily, and 32% (6%) with 75–150 mg daily; parentheses denote standard error.	• N/A

	meta-analyses				
	Size: 135,000 pts for comparisons of antiplatelet therapy vs. control and 77,000 pts for comparisons of different antiplatelet regimens				
Lorenz RL, et al.,	Aim: To study the effect of ASA in the prevention of	Inclusion criteria: Pts undergoing	Intervention: 100 mg of ASA once daily (n=29)	1° endpoint: Grafts occluded at 4 mo angiographic follow-up	100 mg/d dose of ASA found to effectively block platelet
1984	aortocoronary bypass	aortocoronary bypass	riori orioo daiij (ii 27)	• 4/40 (10%) with ASA vs. 17/53 (32%) with	thromboxane formation and
(44)	occlusion	, ,.	Comparator: Placebo	placebo (2p=0.012)	thromboxane-supported
<u>6144975</u>		Exclusion criteria:	(n=31)	, , ,	aggregation on collagen
	Study type: Prospective,	Peptic ulcer,		Safety endpoint: N/A	
	double blind RCT	anticoagulant therapy,		-	
		acute MI			
	<u>Size</u> : 60 pts				

ACS indicates acute coronary syndrome; ASA, aspirin; CI, confidence interval; CVA, cerebrovascular accident; CV, cardiovascular; HR, hazard ratio; MACE; major adverse cardiac events; MI, myocardial infarction; N/A, not available; NSTE-ACS, non–ST-elevation acute coronary syndrome; PCI, percutaneous coronary intervention; OR, odds ratio; RCT, randomized controlled trials; and RR, relative risk.

Data Supplement 7. RCTs Comparing Antiplatelet Therapy With Anticoagulant Therapy in Patients Undergoing Coronary Stenting

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
STARS Leon MB, et al., 1998 (45) 9834303	Aim: To compared the efficacy and safety of three antithrombotic-drug regimens — ASA alone, ASA and warfarin, and ASA and ticlopidine — after coronary stenting (BMS) Study type: RCT Size: 1,653 pts	Inclusion criteria: Pts undergoing successful coronary stent implantation Exclusion criteria: Left main or bifurcation stenting, AMI, bleeding diathesis	Intervention 1: ASA alone Intervention 2: ASA + warfarin Intervention 3: ASA + ticlopidine	1º endpoint: Death, TLR, Angiographically-evident thrombosis, or MI within 30 d • 3.6% with ASA alone; 2.7% with ASA + warfarin; 0.5% with ASA + ticlopidine (p=0.001 for the comparison of all 3 groups). Safety endpoint: bleeding complications • 1.8% with ASA alone; 6.2% with ASA + warfarin; 5.5% with ASA + ticlopidine (p<0.001 for the comparison of all 3 groups)	• Compared to ASA alone, ASA + ticlopidine reduced incidence of primary endpoint (RR: 0.15; CI: 0.05–0.43; p<0.001

Schomig A, et	Aim: To compare	Inclusion criteria: Pts	Intervention: ASA +	1° endpoint: Primary cardiac endpoint a	● N/A
al.,	antiplatelet therapy with	undergoing coronary stent	ticlopidine (antiplatelet	composite of CV death, MI, CABG or	
1996	conventional anticoagulant	implantation (BMS)	therapy)	repeated angioplasty.	
(46)	therapy with respect to			• 1.6% with antiplatelet therapy vs. 6.2%	
<u>8598866</u>	clinical outcomes 30 d after	Exclusion criteria: Stent	Comparator:	with anticoagulation therapy	
	coronary-artery stenting	placed as a bridge to CABG,	anticoagulant therapy	(RR: 0.25; 95% CI: 0.06-0.77)	
	(BMS)	cardiogenic shock, need for	(intravenous heparin,		
		mechanical ventilation	phenprocoumon, and	Safety endpoint: Bleeding events	
	Study type: RCT		ASA)	• 0% with antiplatelet therapy vs. 6.5% with	
				anticoagulant therapy RR: 0.00; p<0.001)	
	<u>Size</u> : 517 pts				

ASA indicates aspirin; BMS, bare metal stent; CABG, coronary artery bypass graft; CI, confidence interval; CV, cardiovascular; HR, hazard ratio; MI, myocardial infarction; N/A, not available; OR, odds ratio; RCT, randomized controlled trial; RR, relative risk; and TLR, target-lesion revascularization.

Data Supplement 8. Nonrandomized Studies of DAPT Duration After BMS or DES

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Brar SS, et al., 2008 (47) <u>18534267</u>	Aim: To asses long term clinical outcomes with BMS or DES by duration of clopidogrel use in pts with DM Study type: Retrospective, observational Size: 749 pts	Inclusion criteria: Pts with DM who underwent stent implantation with either BMS or DES Exclusion criteria: Pts with CABG, pts who received both a BMS and DES, pts with valvular disease, nonhealth plan members	Intervention: Clopidogrel >6 mo Comparator: No clopidogrel >6 mo	1° endpoint: All-cause death and nonfatal MI ■ 3.2% with >9 mo clopidogrel; 9.4% with 6–9 mo clopidogrel; and 16.5% with <6 mo clopidogrel (p<0.001)	• For pts treated with DES adjusted HR: 0.48; 95% CI: 0.16– 1.47; p=0.48) for >6 mo clopidogrel vs. no clopidogrel >6 mo
Eisenstein, et al., 2007 (48) <u>17148711</u>	Aim: Assess the association between clopidogrel use and long-term clinical outcomes of pts receiving DES and BMS Study type: Observational study	Inclusion criteria: Consecutive pts treated at 1 institution undergoing BMS or DES	Comparators: Duration of self-reported clopidogrel use	1° endpoints in DES-treated pts at 24 mo follow-up: • Death: 2.% with clopidogrel vs. 5.3% without clopidogrel (difference -3.3%; CI: -6.3%0.3%; p=0.03) • Death or MI: 3.1% with clopidogrel vs. 7.2% without clopidogrel (difference -4.1%;	Results based on landmark analysis of those event-free at 6 or 12 mo follow-up (6 mo results included in this table)

<u>Size</u> : 4,666 pts; 3,165		95% CI: -7.6% – -0.6%; p=0.02)	
BMS and 1,501 DES		·	

ASA indicates aspirin; BMS, bare metal stent; CABG, coronary artery bypass graft; CI confidence interval; DES, drug-eluting stent; DM, diabetes mellitus; HR, hazard ratio; MI, myocardial infarction; N/A, not available; OR, odds ratio; RCT, randomized controlled trial; and RR, relative risk.

Data Supplement 9. Randomized Studies of 1 Versus 12 Months of DAPT After BMS

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Steinhubl SR, et	Aim: To evaluate the	Inclusion criteria: Pts	Intervention: ASA +	1° endpoint: 1 y incidence of	All study pts treated with DAPT for
al., 2002	benefit of long-term (12 mo) treatment with	referred for planned PCI	clopidogrel	MACE (death, MI or stroke) • RRR: 26.9% (CI: 3.9%–	the first 28 d • Absolute risk reduction 3% with
(49)	clopidogrel (in addition	Exclusion criteria:	<u>Comparator</u> : ASA +	44.4%; p=0.02)	DAPT
<u>12435254</u>	to ASA) after PCI in pts treated with BMS	Contraindications to antiplatelet or antithrombotic	placebo		
	Study type: RCT	therapy, recent STEMI, recent use of GPI,		Safety endpoint: Major bleeding	
	<u>Size</u> : 2,116 pts	clopidogrel, or thrombolytic therapy		• 8.8% with DAPT vs. 6.7% with ASA (p=0.07)	

ASA indicates aspirin; BMS, bare metal stent; CI, indicates confidence interval; DAPT, dual antiplatelet therapy; DES, drug-eluting stent; DM, diabetes mellitus; HR, hazard ratio; MACE, major adverse cardiac events; MI, myocardial infarction; N/A, not available; OR, odds ratio; PCI, percutaneous coronary intervention; RCT, randomized controlled trial; RR, relative risk; and STEMI, ST-elevation myocardial infarction.

Data Supplement 10. Studies and Meta-Analyses Comparing Graft Patency Post-CABG in Patients Treated With Either Antiplatelet Monotherapy or DAPT

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Randomized Trials			, , ,	,	
Mannacio VA, et al., 2012 (50) 22942294	Aim: To determine the individual variability in the response to ASA and/or clopidogrel and its impact on graft patency after off-pump CABG	Inclusion criteria: Consecutive pts undergoing off-pump CABG Exclusion criteria: Additional surgical procedures, emergency	Intervention: ASA + clopidogrel Comparator: ASA	1° endpoint: Platelet resistance and inhibition • In the ASA group 32.6% were ASA resistant and, in the ASA-clopidogrel group, 12.6% were ASA and clopidogrel resistant.	Secondary endpoint of SVG graft occlusion at 12 mo as assessed by CTA: 7.4% with DAPT vs. 13.1% with ASA (p=0.04)

	Study type: Single center RCT Size: 300 pts	operations, active bleeding or bleeding diathesis		Safety endpoint: Major bleeding • 1.3% with DAPT vs. 1.3% with ASA (p=1.00)	
Sun JCJ, et al., 2010 (51) 21146675	Aim: Assess graft patency 1 mo after CABG in pts treated with ASA alone or ASA+clopidogrel Study type: RCT, pilot study Size: 100 pts (79 of whom underwent follow-up CTA)	Inclusion criteria: Pts undergoing on-pump CABG treated with ≥1 free bypass graft Exclusion criteria: Indication for anticoagulation, Hx of GI or intracranial bleeding	Intervention: ASA+clopidogrel Comparator: ASA+ placebo	1° endpoint: Proportion of pts with ≥ occluded grafts at 1 mo as assessed by CTA • 17.5% with ASA+clopidogrel vs. 23.1% with ASA+placebo (RR: 0.95; 95% CI: 0.80–1.14; p=0.54) Safety endpoint: Major bleeding complication • 6.1% with ASA+clopidogrel vs. 6.0% with ASA+placebo (p=1.00)	N/A
CASCADE Kulik A, et al., 2010 (52) 21135365	Aim: Assess if addition of clopidogrel to ASA after CABG inhibits SVG disease at 1 y as assessed by IVUS Study type: RCT Size: 113 pts (92 underwent follow-up IVUS)	Inclusion criteria: Pts undergoing 1st time CABG treated with at least 2 SVG with or without the use of cardiopulmonary bypass Exclusion criteria: Concomitant valve surgery, need for oral anticoagulation	Intervention: Clopidogrel (in addition to ASA) Comparator: Placebo (in addition to ASA)	1º endpoint: Mean SVG intimal area per pts at 1 y follow-up • 4.1 mm² with clopidogrel vs. 4.5 mm² with placebo (p=0.90) Safety endpoint: Major bleeding • 1.8% with clopidogrel vs. 0% with placebo (p=0.50)	 Overall 1 y graft patency 95.2% with clopidogrel vs. 95.5% with placebo (p=0.90) 1 y SVG patency 94.3% with clopidogrel vs. 95.5% with placebo (p=0.90)
Gao G, et al., 2010 (53) 21050973	Aim: Assess 3 mo graft patency after CABG in those treated with or without clopidogrel (in addition to baseline ASA) Study type: Single center, RCT Size: 249 pts (244 underwent CTA)	Inclusion criteria: Pts referred for isolated CABG, with or without cardiopulmonary bypass Exclusion criteria: Thrombocytopenia, previous CABG, concomitant valve surgery or aneurysm resection	Intervention: Clopidogrel (n=113) Comparator: No clopiodogrel (n=111)	no (assessed by CTA) • 91.6% with clopidogrel vs. 85.7% without clopidogrel (RR: 1.7; 95% CI: 1.0−2.9; p=0.043)	 In the multivariate analysis, combined antiplatelet therapy independently Increased venous graft patency (RR: 1.996; CI: 1.015–3.922; p=0.045).
Gao C, et al 2009 (54) 19559191	Aim: Assess 1 and 12 mo SVG patency after CABG with either clopidogrel alone or clopidogrel+ASA Study type: RCT	Inclusion criteria: Elective CABG Exclusion criteria: Thrombocytopenia, concomitant valve surgery	Intervention: Clopidogrel + ASA (n=95) Comparator: Clopidogrel alone	1º endpoint: SVG patency rates (as assessed by CTA) • 1 mo: 98.2% with clopdigrel+ASA vs. 98.1% with clopidogrel alone (p=0.73) • 12 mo: 96.3% with clopiodgrel+ASA	 All pts underwent CABG performed by one surgeon Treatment assignment was alternated every wk in consecutively treated pts Report states no obvious

	Size: 197 pts	or aneurysm resection	(n=102)	vs. 93.5% with clopidogrel alone (p=0.25)	bleeding events in any pts
Nonrandomized St	·			1 1 1 2 27	
ROOBY Ebrahimi R, et al., 2014 (55) 24206971	Aim: Evaluate the role of clopidogrel use post CABG to improve graft patency when added to ASA therapy. Study type: Post hoc substudy analysis of the ROOBY trial Size: 2,203 pts enrolled in trial; 953 pts included in analysis	Inclusion criteria: Pts who were enrolled in the ROOBY trial with complete data on clopidogrel use and with 1 y angiographic data Exclusion criteria (for substudy): No data on clopidogrel use, no 1 y angiographic follow-up	Intervention: Clopidogrel use at discharge (nonrandomized) (n=345) Comparator: No clopidogrel use at discharge (n=608)	1º endpoint: 1 y graft patency rates at angiography • 86.5% with clopiogrel vs. 85.3% without clopidogrel (p=0.43)	No significant difference in graft patency found in those who underwent on-pump CABG nor in those who underwent off-pump CABG
Ibrahim K, et al., 2006 (56) 17060036	Aim: To evaluate the effect of clopidogrel on midterm graft patency following off-pump coronary revascularization surgery Study type: Single center study in which the first 36 pts were treated with ASA alone then the next 58 pts were treated with ASA + clopidogrel Size: 94 consecutively treated pts; 62 pts underwent angiographic follow-up	Inclusion criteria: Pts undergoing off-pump CABG	Intervention: ASA + clopidogrel Comparator: Antiplatelet monotherapy	1° endpoint: Overall graft patency at 6 mo angiographic follow-up • 42/45 (93%) with ASA + clopidogrel vs. 31/37 (84%) with ASA alone (p=NS)	● LIMA patency: 28/29 (96%) with DAPT vs. 23/35 (92%) with ASA (p=NS) ■ SVG patency: 14/16 (87%) with DAPT vs. 7/11 (66%) with ASA (p=NS)
Meta-Analyses and	d Systematic Overviews				
Deo SV, et al., 2013 (57) 23488578	Aim: Assess effects of clopidogrel (in addition to ASA) after CABG Study type: Meta-analysis Size: 5 RCT and 6 observations studies; 25,728	Inclusion criteria: Studies of isolated CABG, on-pump or off-pump	Intervention: Clopidogrel (in addition to ASA) Comparator: ASA alone	1° endpoint: SVG patency as assessed by coronary angiography or CT angiography in the 5 RCT • Early SVG occlusion rates reduced with DAPT (RR: 0.59; 95% CI: 0.43–0.82; p=0.02).	Trend towards a higher incidence of major bleeding episodes with DAPT (RR: 1.17; CI: 1.00–1.37; p=0.05)

Nocerino AG, et al., 2013 (58) 24035160	pts Aim: Assess whether DAPT is superior to antiplatelet monotherapy to improve graft patency early after CABG Study type: Meta-analysis of 5 RCT Size: 958 pts; 2,919 grafts	Inclusion criteria: RCT of single vs. dual antiplatelet therapy for ≥30 d Exclusion criteria: Nonrandomized studies	Intervention: DAPT Comparator: Antiplatelet monotherapy	1º endpoint: Overall graft patency • Early graft occlusion 5.0% with DAPT vs. 7.7% with monotherapy (p=0.005) • OR=1.59 for graft occlusion with monotherapy (95% CI: 1.16–2.1)	Follow-up in studies ranged from 3 d to 12 mo For SVG only, monotherapy, when compared to DAPT, associated with increased graft loss rate (10.8% vs. 6.6%; OR: 1.70; p=0.03) No significant reduction in arterial graft occlusion with DAPT found
de Leon N, et al., 2012 (59) 22570427	Aim: Evaluate the evidence for DAPT post–CABG Study type: Systematic overview Size: 4 RCT evaluating surrogate endpoints and 9 studies evaluating clinical endpoints	Inclusion criteria: Peer- reviewed studies that evaluated DAPT after CABG	Intervention: DAPT after CABG Comparator: Antiplatelet monotherapy	Primary relevant finding: • 3 clinical trials assessing surrogate end points failed to demonstrate an improvement in graft patency with DAPT use, while 1 clinical trial found an increase in graft patency.	• N/A

ASA indicates aspirin; CABG, coronary artery bypass graft; CI, confidence interval; CTA, computed tomography angiography; DAPT, dual antiplatelet therapy; GI, gastrointestinal; HR, hazard ratio; Hx, history; N/A, not available; LIMA, left internal mammary artery; OR, odds ratio; RCT, randomized controlled trials; RR, relative risk; and SVG, saphenous vein graft.

Data Supplement 11. Studies Comparing Outcome Post-CABG in Patients Treated With Either Aspirin or DAPT

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Sorenson, et al., 2001 (60) <u>21371637</u>	Aim: To study efficacy of post–op clopidogrel treatment in pts with MI undergoing CABG Study type: Registry study Size: 3,545 pts	Inclusion criteria: Pts surviving ≥ 30 d after CABG, pts observed 18 mo. after CABG Exclusion criteria: Those not meeting above inclusion criteria	Intervention: Clopidogrel (n=957) Comparator: No clopidogrel (n=2,588)	1° endpoint: Death or recurrent MI ■4.1% with clopidogrel vs. 7.8% without clopidogrel (HR: 0.59; 95% CI: 0.42–0.85; p=0.0003) ■By propensity score (total n=945) 4.0% with clopidogrel vs. 6.0% without clopidogrel (HR: 0.67; 95% CI: 0.44–1.00; p=0.05)	◆ N/A

Kim DH, et al.,	Aim: To determine	Inclusion criteria: Pts	Intervention: ASA +	1° endpoint: In-hospital mortality	• Adjusted HR: 0.83 (CI: 0.61–
2009 (61)	benefit and risk of ASA + clopidogrel use (vs.	undergoing CABG treated in the early post–operative	clopidogrel (n=3,268)	• 0.95% with DAPT vs. 1.78% with	1.12) for in-hospital
19931667	ASA alone)	period with ASA or	Comparator: ASA	ASA (adjusted OR: 0.50; 95% CI: 0.25–0.99)	mortality or 30 d readmission with DAPT compared to ASA
17701001	postoperatively following	clopidogrel + ASA	(n=11,799)	0.23-0.77)	Brit i compared to rieri
	on-pump or off-pump			Safety endpoint: in-hospital bleeding	
	CABG.	Exclusion criteria: Pre-op		events	
	Study type:	and late post-op clopidogrel use, prolonged		• 4.19% with DAPT vs. 5.17% with	
	Observational	hospitalization >1wk before		ASA (adjusted OR: 0.70; 95% CI: 0.51–0.97)	
		surgery, valvular procedure,		0.31-0.77)	
	Size: 15,067 pts	warfarin use			
CURE	Aim: To assess benefits	Inclusion criteria:	Intervention: Clopidogrel	1° endpoint: MACE (CV death, MI	Benefits of DAPT with CABG
Fox KA, et al., 2004	and risks of ASA plus clopidogrel in pts	NSTE-ACS within <24 h	+ ASA	or stroke) • 14.5% with DAPT % vs. 16.2% with	were deemed "consistent" (test for interaction among strata 0.53)
(32)	undergoing CABG for	Exclusion criteria:		ASA (RR: 0.89; 95% CI: 0.71–1.11)	with the benefits in pts
<u>15313956</u>	NSTE-ACS	NYHA class IV HF, PCI or	Comparator:	7.57 (1.11)	undergoing PCI (9.6% with DAPT
		CABG <3 mo,	Placebo + ASA		vs. 13.2% with ASA; RR: 0.72; CI:
	Study type: Post hoc	contraindication to			0.47–0.90) and in those treated
	subgroup analysis of CURE; RCT	antiplatelets and antithrombotics,			with medical therapy alone (8.1% with DAPT vs. 10.0% with ASA;
	JOIL, NOT	hemorrhagic or IC stroke,			RR: 0.80; CI: 0.69–0.92)
	Size: 12,562 pts entire	severe thrombocytopenia			,
	study population; 1,061				
	pts underwent CABG				

pts underwent CABG pts underwent

Data Supplement 12. Studies of Timing of Noncardiac Surgery After PCI

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Kaluza, et al., 2000 (62) 10758971	Aim: To assess the clinical course of pts who have undergone coronary stent placement >6 wk before noncardiac surgery. Study type: Retrospective cohort Size: 40 pts	Inclusion criteria: Consecutive pts who underwent coronary stent placement >6 wk before noncardiac surgery requiring a general anesthesia were included in the study Exclusion criteria: N/A	Intervention: N/A Comparator: N/A	1º endpoint: ■ MI: 7 pts Major Bleeds: 11pts Deaths: 8 ■ All deaths/MI and 8/11 bleeds occurred if surgery <14 d from stent placement	 DAPT not well described Single center
Wilson, et al., 2003 (63) 12875757	Aim: To determine the frequency and timing of complications at our institution when surgery was performed within 2 mo of coronary stent placement. Study type: Retrospective cohort Size: 207 pts	Inclusion criteria: Analysis of the PCI database and the General Surgery database at Mayo Clinic for pts who underwent noncardiac surgery within 60 d of coronary stent placement. Surgical procedures included in this analysis were those that required a significant incision and had the potential for perioperative bleeding. Exclusion criteria: Procedures such as joint aspirations, endoscopy, and skin biopsies, among others, were not	Intervention: N/A Comparator: N/A	1° endpoint: • MACE: 8/207 1° Safety endpoint: • Excessive bleeding: 2/207	• Single center

Nuttal, et al., 2008 (64) 18813036	Aim: To address the hypothesis that the risk of MACEs and bleeding events is related to the time interval between PCI with BMS and NCS Study type: Retrospective Size: 889 pts	Inclusion criteria: Analysis of pts who underwent NCS within 1 y after PCI with BMS at Mayo Clinic (Rochester, Minnesota) between January 1, 1990, and January 1, 2005. Pts were identified using the Mayo Clinic PCI registry and the Mayo Clinic Surgical database. Exclusion criteria: Pts on long-term warfarin therapy	Intervention: N/A Comparator: N/A	1º endpoint: • MACE- 47 (5.2%; 95% CI: 3.8–6.7%) • Frequency of MACEs was 10.5% (95% CI: 6.7–14.3%) when NCS was performed 30 or fewer d after PCI with BMS, 3.8% (95% CI: 1.5–6.2%) when NCS was 31–90 d after PCI with BMS, and 2.8% (95% CI: 1.2–4.5%) when NCS was 91 or more d after PCI with BMS	 DAPT not well described Single center
Wijeysundera, et al., 2012 (65) 22893606	Aim: To evaluate the outcomes of pts who underwent elective intermediate- to high-risk noncardiac surgery in Ontario, Canada after stent implantation. Study type: A population-based cohort study Size: 8,116 pts	Inclusion criteria: All Ontario residents who were ≥40 y, underwent any 1 of 16 prespecified elective noncardiac surgeries between April 1, 2003 and March 31, 2009, and underwent coronary stent implantation within 10 y before their index surgery. The included surgeries were abdominal aortic aneurysm repair, carotid endarterectomy, peripheral vascular bypass, total hip replacement, total knee replacement, large bowel resection, partial liver resection, Whipple procedure, pneumonectomy, pulmonary lobectomy, gastrectomy, esophagectomy, total abdominal hysterectomy, radical prostatectomy, nephrectomy, and cystectomy. Exclusion criteria: Individuals who underwent CABG surgery between the preoperative PCI and subsequent index noncardiac surgery were excluded. Low-risk ambulatory surgeries	Intervention: N/A Comparator: N/A	1º endpoint: • Overall risk of 30 d MACE was relatively low at 2.1% (n=170), whereas the risk of 1 y MACE was 9.8% (n=798). • The rate of postoperative mortality was 1.2% (n=100) at 30 d and 5.2% (n=419) at 1 y. • BMS: 1-45 d OR: 2.35 (95% CI: 0.98–5.64); 46–180 d OR: 1.06 (95% CI: 0.58–1.92); 181–365 d OR 1.89 (1.08–3.32) • DES: 1-45 d OR: 11.58 (95% CI: 4.08-32.80); 46-180 d OR: 1.71 (95% CI: 0.73–4.01); 181-365 d OR: 0.64 (95% CI: 0.20–2.04)	Administrative database
EVENT Registry Berger, et al., 2010 (66) 20850090	Aim: To determine the frequency of noncardiac surgery and adverse postoperative events among pts who recently	Inclusion criteria: The EVENT registry, consecutive pts who underwent attempted stent placement at 42 hospitals between July 2004 and September 2005 were enrolled	Intervention: Pts who underwent major surgery Comparator:	1° endpoint: • In the 7 d after surgery, 4 pts had a cardiac death, myocardial infarction, or stent thrombosis (1.9%; 95%	DAPT status and bleeding endpoint not well described

	received a DES following noncardiac surgery Study type: Registry Size: 206 pts	and followed for 1 y. Major noncardiac surgical procedures in which a significant surgical incision was required from which bleeding would result were included in this analysis. Exclusion criteria: Pts who underwent CABG or valve surgery (n=67), pacemaker and defibrillator placement (n=46), and pts who underwent surgery whose nature could not be determined (n=50) were prospectively excluded from this analysis. Pts who underwent minor surgical procedures (n=27), such as minor dermatological procedures, endoscopic procedures, joint aspirations, and cataract surgery	Pts who did not undergo major surgery	CI=0.5%-4.9%). • The risk of the composite outcome was increased 27-fold in the wk following noncardiac surgery compared with any other wk after stent implantation (HR: 27.3; 95% CI: 10.0−74.2; p <0.001).	
PARIS Mehran, et al., 2013 (67) 24004642	Aim: To determine the association between different modes of DAPT cessation and cardiovascular risk after PCI in the PARIS Registry Study type: Retrospective analysis of a prospective registry Size: 5,031 pts undergoing PCI	Inclusion criteria: Adult pts (≥18 y) undergoing successful stent implantation in ≥1native coronary artery and discharged on DAPT were eligible for enrolment. Exclusion criteria: Pts participating in an investigational device or drug study or with evidence of stent thrombosis at the index procedure were excluded.	DAPT Cessation 1: physician recommended discontinuation DAPT Cessation 2: brief interruption (for surgery) DAPT Cessation 3: disruption (noncompliance or because of bleeding	1° Findings: Overall incidence DAPT cessation 57.3% (discontinuation 40.8%; interruption 10.5%; disruption 14.4% Compared with those on DAPT, the adjusted HR for MACE due to discontinuation was 0.63 (95% CI: 0.46–0.86); for interruption was 1.41 (95% CI: 0.94–2.12; p=0.10) and for disruption was 1.50 (95% CI: 1.14–1.97; p=0.004). Within 7 d, 8–30 d, and more than 30 d after disruption, adjusted HRs were 7.04 (95% CI: 3.31–14.95), 2.17 (95% CI: 0.97–4.88), and 1.3 (95% CI: 0.97–1.76), respectively.	• N/A

Holcomb, et al., 2015 (68) (68) 26720292 Aim: To better understand the factors contributing to cardiac risk in pts who have undergone recent PCI and require noncardiac surgery, we comparatively examined the postoperative MACE associated with 3 distinct subgroups of stent indication: (1) MI; (2) unstable angina; and (3) non–ACS revascularization. Study type: Retrospective Control Size: 26,661 pts Inclusion criteria: All pts with coronary stents implanted in the VA between January 1, 2000, and December 31, 2010 Comparato Comparator Comp	 Postoperative MACE rates were significantly higher in the MI group (7.5%) compared with the unstable
--	--

ACS indicates acute coronary syndrome; BMS, bare metal stent; CABG, coronary artery bypass graft; CI, confidence interval; DAPT, dual antiplatelet therapy; DES, drug-eluting stent; HR, hazard ratio; MACE, major adverse cardiac events; MI, myocardial infarction; N/A, not available; NCS, noncardiac surgery; OR, odds ratio; PCI, percutaneous coronary intervention; RCT, randomized controlled trials; RR, relative risk; and VA, US Veterans Affairs Hospital.

ARCTIC indicates Assessment by a Double Randomisation of a Conventional Antiplatelet Strategy Versus a Monitoring-Guided Strategy for Drug-Eluting Stent Implantation and of Treatment Interruption Versus Continuation 1 Year AfterS; DAPT, dual antiplatelet therapy; DES, drug-eluting stent; DES-LATE, Optimal Duration of Clopidogrel Therapy With Drug Eluting Stents to Reduce Late Coronary Arterial Thrombotic Events; EXCELLENT, Efficacy of Xience/Promus Versus Cypher to Reduce Late Loss After Stenting; ISAR-SAFE, Intracoronary Stenting and Antithrombotic Regimen: Safety and Efficacy of 6 Months Dual Antiplatelet Therapy After Drug-Eluting Stenting; ITALIC, Is There A Life for DES After Discontinuation of Clopidogrel; MACCE, major adverse cardiac and cerebrovascular events (death, MI, or stroke); MI, myocardial infarction; OPTIDUAL, Optimal Dual Antiplatelet Therapy; OPTIMIZE, Optimized Duration of Clopidogrel Therapy Following Treatment With the Zotarolimus-Eluting Stent in Real-World Clinical Practice; NACCE, net adverse cardiac and cerebrovascular events (death, MI, stroke or major bleeding); PRODIGY, Prolonging Dual Antiplatelet Treatment After Grading Stent-Induced Intimal Hyperplasia; REAL-LATE, REAL-world patients treated with drug-eluting stent implantation and Late coronary Arterial Thrombotic Events; RESET, Real Safety and Efficacy of 3-month Dual Antiplatelet Therapy Following Endeavor Zotarolimus-Eluting Stent Implantation; revasc, revascularization; SECURITY, Second Generation Drug-Eluting Stent Implantation Followed by Six- Versus Twelve-Month Dual Antiplatelet Therapy; ST, stent thrombosis; TIMI, Thrombolysis In Myocardial Infarction; TVF, target-vessel failure; TVR, target-vessel revascularization; and ZEST-LATE, Zotarolimus-Eluting Stent, Sirolimus-Eluting Stent, or Paclitaxel-Eluting Stent Implantation for Coronary Lesions-Late coronary Arterial Thrombotic Events.

References

- 1. Schulz-Schupke S, Byrne RA, ten Berg JM, et al. ISAR-SAFE: a randomized, double-blind, placebo-controlled trial of 6 versus 12 months of clopidogrel therapy after drug-eluting stenting. Eur Heart J. 2015;
- 2. Colombo A, Chieffo A, Frasheri A, et al. Second-generation drug-eluting stent implantation followed by 6- versus 12-month dual antiplatelet therapy: the SECURITY randomized clinical trial. J Am Coll Cardiol. 2014;64:2086-97.
- 3. Feres F, Costa RA, Abizaid A, et al. Three vs twelve months of dual antiplatelet therapy after zotarolimus-eluting stents: the OPTIMIZE randomized trial. JAMA. 2013;310:2510-22.
- 4. Kim BK, Hong MK, Shin DH, et al. A new strategy for discontinuation of dual antiplatelet therapy: the RESET Trial (REal Safety and Efficacy of 3-month dual antiplatelet Therapy following Endeavor zotarolimus-eluting stent implantation). J Am Coll Cardiol. 2012;60:1340-8.
- 5. Gwon HC, Hahn JY, Park KW, et al. Six-month versus 12-month dual antiplatelet therapy after implantation of drug-eluting stents: the Efficacy of Xience/Promus Versus Cypher to Reduce Late Loss After Stenting (EXCELLENT) randomized, multicenter study. Circulation. 2012;125:505-13.
- 6. Gilard M, Barragan P, Noryani AA, et al. 6- versus 24-month dual antiplatelet therapy after implantation of drug-eluting stents in patients nonresistant to aspirin: the randomized, multicenter ITALIC trial. J Am Coll Cardiol. 2015;65:777-86.
- 7. Valgimigli M, Campo G, Monti M, et al. Short- versus long-term duration of dual-antiplatelet therapy after coronary stenting: a randomized multicenter trial. Circulation. 2012;125:2015-26.
- 8. Helft G, Steg PG, Le FC, et al. Stopping or continuing clopidogrel 12 months after drug-eluting stent placement: the OPTIDUAL randomized trial. Eur Heart J. 2015;
- 9. Mauri L, Kereiakes DJ, Yeh RW, et al. Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents. N Engl J Med. 2014;371:2155-66.
- 10. Collet JP, Silvain J, Barthelemy O, et al. Dual-antiplatelet treatment beyond 1 year after drug-eluting stent implantation (ARCTIC-Interruption): a randomised trial. Lancet. 2014;384:1577-85.
- 11. Lee CW, Ahn JM, Park DW, et al. Optimal duration of dual antiplatelet therapy after drug-eluting stent implantation: a randomized, controlled trial. Circulation. 2014;129:304-12.
- 12. Park SJ, Park DW, Kim YH, et al. Duration of dual antiplatelet therapy after implantation of drug-eluting stents. N Engl J Med. 2010;362:1374-82.
- 13. Udell JA, Bonaca MP, Collet JP, et al. Long-term dual antiplatelet therapy for secondary prevention of cardiovascular events in the subgroup of patients with previous myocardial infarction: a collaborative meta-analysis of randomized trials. Eur Heart J. 2015;
- 14. Elmariah S, Mauri L, Doros G, et al. Extended duration dual antiplatelet therapy and mortality: a systematic review and meta-analysis. Lancet. 2015;385:792-8.
- 15. Palmerini T, Sangiorgi D, Valgimigli M, et al. Short- versus long-term dual antiplatelet therapy after drug-eluting stent implantation: an individual patient data pairwise and network meta-analysis. J Am Coll Cardiol. 2015;65:1092-102.
- 16. Giustino G, Baber U, Sartori S, et al. Duration of Dual Antiplatelet Therapy After Drug-Eluting Stent Implantation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Am Coll Cardiol. 2015;65:1298-310.
- 17. Navarese EP, Andreotti F, Schulze V, et al. Optimal duration of dual antiplatelet therapy after percutaneous coronary intervention with drug eluting stents: meta-analysis of randomised controlled trials. BMJ. 2015;350:h1618.
- 18. Palmerini T, Benedetto U, Bacchi-Reggiani L, et al. Mortality in patients treated with extended duration dual antiplatelet therapy after drug-eluting stent implantation: a pairwise and Bayesian network meta-analysis of randomised trials. Lancet. 2015;385:2371-82.
- 19. Spencer FA, Prasad M, Vandvik PO, et al. Longer Versus Shorter Duration Dual-Antiplatelet Therapy After Drug-Eluting Stent Placement: A Systematic Review and Meta-analysis. Ann Intern Med. 2015;
- 20. Yeh RW, Kereiakes DJ, Steg PG, et al. Benefits and Risks of Extended Duration Dual Antiplatelet Therapy after PCI in Patients With and Without Acute Myocardial Infarction. J Am Coll Cardiol. 2015;
- 21. Bonaca MP, Bhatt DL, Cohen M, et al. Long-Term Use of Ticagrelor in Patients with Prior Myocardial Infarction. N Engl J Med. 2015;
- 22. Roe MT, Armstrong PW, Fox KA, et al. Prasugrel versus clopidogrel for acute coronary syndromes without revascularization. N Engl J Med. 2012;367:1297-309.
- 23. James SK, Roe MT, Cannon CP, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes intended for non-invasive management: substudy from prospective randomised PLATelet inhibition and patient Outcomes (PLATO) trial. BMJ. 2011;342:d3527.
- 24. Steg PG, James S, Harrington RA, et al. Ticagrelor versus clopidogrel in patients with ST-elevation acute coronary syndromes intended for reperfusion with primary percutaneous coronary intervention: A Platelet Inhibition and Patient Outcomes (PLATO) trial subgroup analysis. Circulation. 2010;122:2131-41.

- 25. Montalescot G, Wiviott SD, Braunwald E, et al. Prasugrel compared with clopidogrel in patients undergoing percutaneous coronary intervention for ST-elevation myocardial infarction (TRITON-TIMI 38): double-blind, randomised controlled trial. Lancet. 2009;373:723-31.
- 26. Wiviott SD, Braunwald E, McCabe CH, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;357:2001-15.
- 27. Bhatt DL, Flather MD, Hacke W, et al. Patients with prior myocardial infarction, stroke, or symptomatic peripheral arterial disease in the CHARISMA trial. J Am Coll Cardiol. 2007;49:1982-8.
- 28. Bhatt DL, Fox KA, Hacke W, et al. Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. N Engl J Med. 2006;354:1706-17.
- 29. Chen ZM, Jiang LX, Chen YP, et al. Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet. 2005;366:1607-21.
- Sabatine MS, Cannon CP, Gibson CM, et al. Effect of clopidogrel pretreatment before percutaneous coronary intervention in patients with ST-elevation myocardial infarction treated with fibrinolytics: the PCI-CLARITY study. JAMA. 2005;294:1224-32.
- 31. Sabatine MS, Cannon CP, Gibson CM, et al. Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST-segment elevation. N Engl J Med. 2005;352:1179-89.
- 32. Fox KA, Mehta SR, Peters R, et al. Benefits and risks of the combination of clopidogrel and aspirin in patients undergoing surgical revascularization for non-ST-elevation acute coronary syndrome: the Clopidogrel in Unstable angina to prevent Recurrent ischemic Events (CURE) Trial. Circulation. 2004;110:1202-8.
- 33. Yusuf S, Zhao F, Mehta SR, et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med. 2001;345:494-502.
- 34. Mehta SR, Yusuf S, Peters RJ, et al. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study. Lancet. 2001;358:527-33.
- 35. Wallentin L, Becker RC, Budaj A, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2009;361:1045-57.
- 36. Xian Y, Wang TY, McCoy LA, et al. The Association of Discharge Aspirin Dose With Outcomes After Acute Myocardial Infarction: Insights From the TRANSLATE-ACS Study. Circulation. 2015;
- 37. Mehta SR, Tanguay JF, Eikelboom JW, et al. Double-dose versus standard-dose clopidogrel and high-dose versus low-dose aspirin in individuals undergoing percutaneous coronary intervention for acute coronary syndromes (CURRENT-OASIS 7): a randomised factorial trial. Lancet. 2010;376:1233-43.
- 38. Jolly SS, Pogue J, Haladyn K, et al. Effects of aspirin dose on ischaemic events and bleeding after percutaneous coronary intervention: insights from the PCI-CURE study. Eur Heart J. 2009;30:900-7.
- 39. Steinhubl SR, Bhatt DL, Brennan DM, et al. Aspirin to prevent cardiovascular disease: the association of aspirin dose and clopidogrel with thrombosis and bleeding. Ann Intern Med. 2009;150:379-86.
- 40. Patrono C, Baigent C, Hirsh J, et al. Antiplatelet drugs: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 2008;133:199S-233S.
- 41. Serebruany VL, Steinhubl SR, Berger PB, et al. Analysis of risk of bleeding complications after different doses of aspirin in 192,036 patients enrolled in 31 randomized controlled trials. Am J Cardiol. 2005;95:1218-22.
- 42. Peters RJ, Mehta SR, Fox KA, et al. Effects of aspirin dose when used alone or in combination with clopidogrel in patients with acute coronary syndromes: observations from the Clopidogrel in Unstable angina to prevent Recurrent Events (CURE) study. Circulation. 2003;108:1682-7.
- 43. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324:71-86.
- 44. Lorenz RL, Schacky CV, Weber M, et al. Improved aortocoronary bypass patency by low-dose aspirin (100 mg daily). Effects on platelet aggregation and thromboxane formation. Lancet. 1984;1:1261-4.
- 45. Leon MB, Baim DS, Popma JJ, et al. A clinical trial comparing three antithrombotic-drug regimens after coronary-artery stenting. Stent Anticoagulation Restenosis Study Investigators. N Engl J Med. 1998;339:1665-71.
- 46. Schomig A, Neumann FJ, Kastrati A, et al. A randomized comparison of antiplatelet and anticoagulant therapy after the placement of coronary-artery stents. N Engl J Med. 1996;334:1084-9.
- 47. Brar SS, Kim J, Brar SK, et al. Long-term outcomes by clopidogrel duration and stent type in a diabetic population with de novo coronary artery lesions. J Am Coll Cardiol. 2008;51:2220-7.
- 48. Eisenstein EL, Anstrom KJ, Kong DF, et al. Clopidogrel use and long-term clinical outcomes after drug-eluting stent implantation. JAMA. 2007;297:159-68.
- 49. Steinhubl SR, Berger PB, Mann JT, III, et al. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. JAMA. 2002;288:2411-20.
- 50. Mannacio VA, Di TL, Antignan A, et al. Aspirin plus clopidogrel for optimal platelet inhibition following off-pump coronary artery bypass surgery: results from the CRYSSA (prevention of Coronary arteRY bypaSS occlusion After off-pump procedures) randomised study. Heart. 2012;98:1710-5.

- 51. Sun JC, Teoh KH, Lamy A, et al. Randomized trial of aspirin and clopidogrel versus aspirin alone for the prevention of coronary artery bypass graft occlusion: the Preoperative Aspirin and Postoperative Antiplatelets in Coronary Artery Bypass Grafting study. Am Heart J. 2010;160:1178-84.
- 52. Kulik A, Le May MR, Voisine P, et al. Aspirin plus clopidogrel versus aspirin alone after coronary artery bypass grafting: the clopidogrel after surgery for coronary artery disease (CASCADE) Trial. Circulation. 2010;122:2680-7.
- 53. Gao G, Zheng Z, Pi Y, et al. Aspirin plus clopidogrel therapy increases early venous graft patency after coronary artery bypass surgery a single-center, randomized, controlled trial. J Am Coll Cardiol. 2010;56:1639-43.
- 54. Gao C, Ren C, Li D, et al. Clopidogrel and aspirin versus clopidogrel alone on graft patency after coronary artery bypass grafting. Ann Thorac Surg. 2009;88:59-62.
- 55. Ebrahimi R, Bakaeen FG, Uberoi A, et al. Effect of clopidogrel use post coronary artery bypass surgery on graft patency. Ann Thorac Surg. 2014;97:15-21.
- 56. Ibrahim K, Tjomsland O, Halvorsen D, et al. Effect of clopidogrel on midterm graft patency following off-pump coronary revascularization surgery. Heart Surg Forum. 2006;9:E581-E856.
- 57. Deo SV, Dunlay SM, Shah IK, et al. Dual anti-platelet therapy after coronary artery bypass grafting: is there any benefit? A systematic review and meta-analysis. J Card Surg. 2013;28:109-16.
- 58. Nocerino AG, Achenbach S, Taylor AJ. Meta-analysis of effect of single versus dual antiplatelet therapy on early patency of bypass conduits after coronary artery bypass grafting. Am J Cardiol. 2013;112:1576-9.
- 59. de LN, Jackevicius CA. Use of aspirin and clopidogrel after coronary artery bypass graft surgery. Ann Pharmacother. 2012;46:678-87.
- 60. Sorensen R, Abildstrom SZ, Hansen PR, et al. Efficacy of post-operative clopidogrel treatment in patients revascularized with coronary artery bypass grafting after myocardial infarction. J Am Coll Cardiol. 2011;57:1202-9.
- 61. Kim DH, Daskalakis C, Silvestry SC, et al. Aspirin and clopidogrel use in the early postoperative period following on-pump and off-pump coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2009;138:1377-84.
- 62. Kaluza GL, Joseph J, Lee JR, et al. Catastrophic outcomes of noncardiac surgery soon after coronary stenting. J Am Coll Cardiol. 2000;35:1288-94.
- 63. Wilson SH, Fasseas P, Orford JL, et al. Clinical outcome of patients undergoing non-cardiac surgery in the two months following coronary stenting. J Am Coll Cardiol. 2003;42:234-40.
- 64. Nuttall GA, Brown MJ, Stombaugh JW, et al. Time and cardiac risk of surgery after bare-metal stent percutaneous coronary intervention. Anesthesiology. 2008;109:588-95.
- 65. Wijeysundera DN, Wijeysundera HC, Yun L, et al. Risk of elective major noncardiac surgery after coronary stent insertion: a population-based study. Circulation. 2012;126:1355-62.
- 66. Berger PB, Kleiman NS, Pencina MJ, et al. Frequency of major noncardiac surgery and subsequent adverse events in the year after drug-eluting stent placement results from the EVENT (Evaluation of Drug-Eluting Stents and Ischemic Events) Registry. JACC Cardiovasc Interv. 2010;3:920-7.
- 67. Mehran R, Baber U, Steg PG, et al. Cessation of dual antiplatelet treatment and cardiac events after percutaneous coronary intervention (PARIS): 2 year results from a prospective observational study. Lancet. 2013;382:1714-22.
- 68. Holcomb CN, Hollis RH, Graham LA, et al. Association of Coronary Stent Indication With Postoperative Outcomes Following Noncardiac Surgery. JAMA Surg. 2015;1-8.