МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа аэрокосмических технологий

Лабораторная работа №5.1.2 Исследование эффекта Комптона

> Работу выполнила Цветкова Амелия Антоновна Б03-305

Цели работы

- 1. Исследовать энергетический спектр γ -квантов, рассеянных на графите, с помощью сцинтилляционного спектрометра;
- 2. Определить энегию рассеянных γ -квантов в зависимости от угла рассеяния;
- 3. Определить энергию покоя частиц, на которых происходит комптоновское рассеяние.

Теоретические сведения

В составе рассеянного излучения γ -лучей, измеренного Комптоном, кроме исходной волны с частотой w_0 появляется дополнительная длинноволновая компонента. Появление этой компоненты объяснимо, если считать, что γ -излучение представляет собой поток квантов (фотонов), имеющих энергию $\hbar w$ и импульс $p=\hbar w/c$.

Эффект Комптона - увеличение длины волны рассеянного излучения по сравнению с падающим - интерпретируется как результат упругого соударения двух частиц: γ -кванта и свободного электрона.

Рассмотрим элементарную теорию эффекта Комптона. Пусть электрон до соударения покоился (его энергия равна энергии покоя mc^2), а γ -квант имел начальную энергию $\hbar w_0$ и импульс $\hbar w_0/c$. После соударения электрон приобретает энергию γmc^2 и импульс γmv , где $\gamma = \frac{1}{\sqrt{1-v^2/c^2}}$, а γ -квант рассеивается на некоторый угол θ по отношению к первоначальному направлению движения. Энергия и импульс γ -кванта становятся соответственно равными $\hbar w_1$ и $\hbar w_1/c$.

Законы сохранения энергии и импульса:

$$mc^{2} + \hbar w_{0} = \gamma mc^{2} + \hbar w_{1},$$

$$\frac{\hbar w_{0}}{c} = \gamma mv \cos \varphi + \frac{\hbar w_{1}}{c} \cos \theta,$$

$$\gamma mv \sin \varphi = \frac{\hbar w_{1}}{c} \sin \theta.$$

Переходя от частот w_0 и w_1 к длинам волн λ_0 и λ_1 :

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta) = \Lambda_k (1 - \cos \theta), \tag{1}$$

где λ_0 и λ_1 - длины волн γ -кванта до и после рассеяния, а величина

$$\Lambda_k = \frac{h}{mc} = 2,42 \cdot 10^{-10} \text{cm}$$

называется комптоновской длиной волны электрона.

Рис. 1: Векторная диаграмма рассеяния γ -кванта на электроне

Из формулы (1) следует, что комптоновское смещение не зависит ни от длины волны первичного излучения, ни от рода вещества, в котором наблюдается рассеяние.

При контоновском рассеянии каждый электрон атома ведет себя независимо от других, поскольку рассеяние в этом случае происходит на каком-либо одном из атомных электронов. При рэлеевском рассеянии фотоны излуччаются всеми электронами атомной оболочки, колеблющимися синфазно.

Основной целью данной работы является проверка соотношения (1). Преобразуем формулу (1) от длин волн к энергии γ -квантов:

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta \tag{2}$$

Здесь $\varepsilon_0=E_0/(mc^2)$ - выраженная в единицах mc^2 энергия γ -квантов, падающтх на рассеиватель, $\varepsilon(\theta)$ - выраженная в тех же единицах энергия квантов, испытавших копмтоновское рассеяние на угол θ , m - масса электрона.

Экспериментальная установка

Источником излучения 1 служит $^{137}\mathrm{Cs}$, испускающий γ -лучи с энергией 662 к9в. Он помещен в толстостенный свинцовый контейнер с коллиматором. Сформированный коллиматором узкий пучок γ -квантов попадает на графитовую мишень 2.

Рис. 2: Векторная диаграмма рассеяния γ -кванта на электроне

Кванты, испытавшие комптоновское рассеяние в мишени, регистрируются сцинтилляционным счетчиком. Он состоит из фотоэлектронного умножителя 3 (ФЭУ) и сцинтиллятора 4. Сцинтиллятором служит кристалл NaI(Tl) цилиндрической формы диаметром 40 мм и высотой 40 мм, его выходное окно находится в оптическом контакте с фотокатодом ФЭУ. Сигналы, возникающие на аноде ФЭУ, подаются на ЭВМ для амплитудного анализа. Кристалл и ФЭУ расположены в светонепроницаемом блоке, укрепленном на горизонтальной штанге. Штанга вместе с этим блоком может вращаться относительно мишени, угол поворотаютсчитывается по лимбу 6.

Головная часть сцинтилляционного блока закрыта свинцовым коллиматором 5, который формирует входной пучок и защищает детектор от постороннего излучения.

При работе ФЭУ в спектрометрическом режиме величина выходного электрического импульса, снимаемого с анода ФЭУ, пропорциональна энергии регистрируемого γ -кванта. Световая вспышка в сцинтилляторе вызывается не самими γ -квантами, а образующимися в кристалле под действием γ -квантов электронами. Процесс преобразования энергии γ -кванта в определенное число фотонов на выходе сцинтиддятора состоит из трех стадий: рождение быстрых электронов, возбуждение атомов и молекул сцинтиллятора этими электронами и излучение световых фотонов возбужденными атомами и молекулами. Существуют три механизма взаимодействия γ -квантов с веществом: комптоновское рассеяние, фотоэффект и рождение электорнозитронных пар.

Ход работы

- 1. Включаем все измерительные устройства и компьютер;
- 2. Запускаем программу и входим в режим измерения спектра;
- 3. Проверяем функционированиие установки в этом режиме при малом времени экспозиции (порядка 1 минуты) и снимаем спектр при $\theta=0^\circ$
- 4. Проделываем измерения при θ с шагом 10° до 110°

$\theta,^{\circ}$	0	5	10	15	20	30	40	50	60	70	80	90	100	110
σ_{θ} , $^{\circ}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1
N	875	916	847	901	760	644	578	506	451	395	351	310	294	270
n	6451	4863	3593	2615	1783	1914	1820	1672	1526	1387	1277	1184	1115	1043
σ_N	0.29	0.34	0.39	0.46	0.55	0.54	0.55	0.57	0.60	0.63	0.65	0.68	0.70	0.73

5. Оценим погрешность измерения номера канала следующим образом. Предположим, что форма пика близка к Гауссовой. Тогда: $\Delta \approx 2.35\sigma_p$, где Δ - ширина пика на половине его высоты, σ_p - стандартное отклонение, характеризующее ширину пика. Глядя на все пики на изображении, можно оценить, что их ширина на половине высоты составляет примерно 50-60 каналов. Возьмем для расчёта среднее значение: $\Delta \approx 55$.

Теперь рассчитаем стандартное отклонение пика: $\sigma_p \approx 23.4$ канала.

Погрешность определения математического ожидания (центра) гауссова распределения по n измерениям равна: $\sigma_N = \sigma_p/\sqrt{n}$, где n - интегральное количество отсчётов под пиком.

Пример расчета погрешности для $\theta = 0^{\circ}$: $\sigma_N = 23.4/\sqrt{6451} \approx 0.29$ канала.

6. Используя экспериментальные данные, построим график $\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta)$, откладывая по абсцисс величину $1 - \cos \theta$, а по оси ординат величину $1/N(\theta)$ и ее ошибку. Проводим через полученные точки наилучшую прямую.

$\theta,^{\circ}$	$x = 1 - \cos \theta$	σ_x	$y = 1/N(\theta)$	σ_y
0	0.0000	0.0000	1142.9	0.38
5	0.0038	0.0015	1091.7	0.40
10	0.0152	0.0030	1180.6	0.54
15	0.0341	0.0045	1109.9	0.56
20	0.0603	0.0060	1315.8	0.96
30	0.1340	0.0087	1552.8	1.30
40	0.2340	0.0112	1730.1	1.64
50	0.3572	0.0134	1976.3	2.24
60	0.5000	0.0151	2217.3	2.95
70	0.6580	0.0164	2531.6	4.04
80	0.8264	0.0172	2849.0	5.30
90	1.0000	0.0175	3225.8	7.09
100	1.1736	0.0172	3401.4	8.14
110	1.3420	0.0164	3703.7	9.98

7. С помощью графика с формулы: $mc^2=E(0)\frac{E(90)}{E(0)-E(90)}=E_{\gamma}\frac{N(90)}{N(0)-N(90)}$ определим энергию покоя частицы, на которой происходит комптоновское рассеяние первичных γ -квантов

$$N(0) = 1/b$$
 $N(90) = 1/(k+b)$

Рис. 3: Зависимость $1/N(\theta)$ от $(1-\cos\theta)$

где $k,\,b$ - коэффициенты аппроксимирующей прямой Считаем $E_{\gamma}=662$ к Эв

$$mc^2=E_{\gamma}\cdot rac{N(90)}{(N(0)-N(90))}=402.13$$
кЭв
$$\sigma_{mc^2}^2=\left(rac{\partial mc^2}{\partial E_{\gamma}}
ight)^2\sigma_{E_{\gamma}}^2+\left(rac{\partial mc^2}{\partial k}
ight)^2\sigma_k^2+\left(rac{\partial mc^2}{\partial b}
ight)^2\sigma_b^2$$

где частные производные равны:

$$\frac{\partial mc^{2}}{\partial E_{\gamma}} = \frac{N_{90}}{N_{0} - N_{90}}$$

$$\frac{\partial mc^{2}}{\partial k} = \frac{E_{\gamma}}{(k+b)^{2}} \cdot \frac{N_{0}}{(N_{0} - N_{90})^{2}}$$

$$\frac{\partial mc^{2}}{\partial b} = \frac{E_{\gamma}}{(k+b)^{2}} \cdot \frac{N_{90}}{(N_{0} - N_{90})^{2}}$$

Подставляя производные, получаем итоговую формулу:

$$\sigma_{mc^2}^2 = \left(\frac{N_{90}}{N_0 - N_{90}}\right)^2 \sigma_{E_\gamma}^2 + \left(\frac{E_\gamma}{(k+b)^2} \cdot \frac{N_0}{(N_0 - N_{90})^2}\right)^2 \sigma_k^2 + \left(\frac{E_\gamma}{(k+b)^2} \cdot \frac{N_{90}}{(N_0 - N_{90})^2}\right)^2 \sigma_b^2 = 3.05 \text{k}$$
Эв

Табличное значение: $mc_{\text{табличное}}^2 = 511$ к Эв. Отклонение: 21.31%

$$mc^2 = (402.13 \pm 3.05)$$
к Θ в $(\varepsilon = 0.76\%)$

Выводы

В ходе работы был исследован энергетический спектр γ -квантов, рассеянных на графите с помощью сцинтилляционного спектрометра. Была доказана справедливость эффекта Комптона в силу линейности графика.

Также была определена энергия покоя частиц, на которых происходит комптоновское рассеяния. Результаты совпадают по порядку величины, но в пределах погрешностей не совпадают. Это может быть вызвано недостаточной длительностью экспозиций при проведении эксперимента.

Приложение

Рис. 4: Спектр при разных значениях угла θ