National University of Computer and Emerging Sciences, Lahore Campus

STICHAL UNIVERS
* * * * *
Woo as
STHENGING STATES

Course Name:	NLP	Course Code:	CS4063
Degree Program:	BS-CS	Semester:	Spring 2023
Exam Duration:	60 Minutes	Total Marks:	82
Paper Date:	28-02-2023	Weight	
Sections:	ALL	No of Page(s):	
Exam Type:	Midterm I	•	

Student : Name:_	Roll No	Section:
Instruction/Notes:	Attempt all questions. Programmable calculators are not allowed.	
Q1. You are give	en the following training corpus.	(1+2+2+5+2) 12
<s> i want to ea</s>	·	

- <s> we ate pakistani food </s>
- <s> i ate apples </s>
- <s> they ate thai food </s>
- a) Calculate the probability of the following test sentence. Include </s> in your counts just like any other token.

<s> i ate thai food </s>

- i) Unigram Model
- ii) Bigram Model
- iii) Trigram Model
- iv) Bigram model with linear interpolation Λ_1 = 0.7, Λ_2 = 0.3
- b) Calculate the perplexity of the test sentence using bigram model.

i. Unigram Model
$$= P(I) \times P(ate) \times P(chineste) \times P(food) \times P(
$$= \frac{2}{3} \times \frac{3}{3} \times \frac{2}{3} \times \frac{3}{3} \times \frac{4}{21} = 3.52$$
ii. Bigram Model
$$= P(I | < s >) \times P(ate | I) \times P(chineste) \times P(food | chinese) \times P(s | s) | food$$

$$= \frac{2}{4} \times \frac{1}{3} \times \frac{1}{3} \times \frac{2}{3} \times \frac{3}{3} = \frac{1}{12} = 0.83$$

$$= \frac{2}{4} \times \frac{1}{3} \times \frac{1}{3} \times \frac{2}{3} \times \frac{3}{3} = \frac{1}{12} = 0.83$$
iii. Trigram Model
$$= P(I | < s > < s >) \times P(ate | < s > I) \times P(chinese | I ate) + P(food | ate chinese) \times P(I | < s > < s >) \times P(ate | < s > I) \times P(chinese | I ate) + P(food | ate chinese) \times P(I | < s > < s >) \times P(ate | < s > I) \times P(a$$$$

iv. Bigram language model with linear interpolation.
$$0.\overline{7}$$
 0.3 0.3 0.7 $0.$

Q3: You are given two documents:

Doc 1 = the car is in the parking and the bike is in the garage (13)

Doc 2 = the truck is driven on the highway and the tractor is in the farm parking (15)

a) Compute the normalized term frequency and un-smoothed logarithmic inverse document frequency for the given corpus. You can use log of base 10 for the calculation of IDF. Fill the table based on your calculations: (15+10)

IDF: log(N/n)

Term	Count (doc1)	Count (doc2)	TF (doc1)	TF (doc2)	IDF	TF*IDF (doc1)	TF*IDF (doc2)

Term	Count	Count	Tf (doc 1)	Tf (doc 2)	IDF	TF*IDF (doc 1)	TF*IDF (doc 2)
	(doc 1)	(doc 2)					
the	4	4	0.30769231	0.26666667	0	0	0
car	1	0	0.07692308	0	0.301	0.02315385	0
is	2	2	0.15384615	0.13333333	0	0	0
in	2	1	0.15384615	0.06666667	0	0	0
parking	1	1	0.07692308	0.06666667	0	0	0
and	1	1	0.07692308	0.06666667	0	0	0
bike	1	0	0.07692308	0	0.301	0.02315385	0
garage	1	0	0.07692308	0	0.301	0.02315385	0
truck	0	1	0	0.06666667	0.301	0	0.02006667
driven	0	1	0	0.06666667	0.301	0	0.02006667
on	0	1	0	0.06666667	0.301	0	0.02006667
highway	0	1	0	0.06666667	0.301	0	0.02006667
tractor	0	1	0	0.06666667	0.301	0	0.02006667
farm	0	1	0	0.06666667	0.301	0	0.02006667

b) From TF*IDF vectors calculated in part a, compute Euclidean Distance and Cosine Similarity (write the formulae too).

	Euclidean Distance:	
	0.0634	
	Cosine Similarity:	
	cosine similarity.	
	0	
Q4: Aı	nswer the following.	(10)
1.	Which of the following is a type of Minkowski distance?	
II.	(a. Hamming , b. Levenshtein, c. Jaro) Damerau-Levenshtein allows4 edit operations, while	e Hamming allows 1 operations. (0, 1, 2, 3, 4, 5)
III.	Root of the word "antidisestablishmentarianism" is estable	
IV.	What are the derivational morphemes in each of these wo	
V.	"realism", and "higher"? (en-, re-, none, un-, -ism Mention all of the following expressions that the regex /bla+	· ·
	lat! black! bla?! bla.?! bla+?!	
a.	bla! b. blaa! c. blat! d. black! e. bla ?! f. bla+?! g. bla?! h. bl a	a.?! i. bla +?! j. bla+.?!

Q5. Find the Levenshtein distance between PAYMENTS and APARTMENTS. Use the same algorithm and weights as discussed in the class (i.e. cost(Insertion)=1, cost(Deletion)=1, cost(Substitution)=2). (20)

	#	A	P	A	R	T	M	E	N	T	S
#	0	1	2	3	4	5	6	7	8	9	10
P	1	2	1	2	თ	4	5	6	7	8	9
A	2	1	2	1	2	3	4	5	6	7	8
Y	3	2	3	2	3	4	5	6	7	8	9
M	4	3	4	3	4	5	4	5	6	7	8
E	5	4	5	4	5	6	5	4	5	6	7
N	6	5	6	5	6	7	6	5	4	5	6
T	7	6	7	6	7	6	7	6	5	4	5
S	8	7	8	7	8	7	8	7	6	5	4

	_	
Minimum	Edit Distance	
	con instance	

• Show the optimal alignment between the sequences and one possible minimal edit sequence (a sequence of inserts *I*, deletes *D* and substitutions *S*) that would result in an optimal conversion from PAYMENTS to APARTMENTS.

	P	A		Y	M	Е	N	Т	S		
A	P								S		
I	S	S	I	S	S	S	S	S	S		

National University of Computer and Emerging Sciences, Lahore Campus

Course: Natural Language Processing Program: BS(Computer Science)

Duration: 60 Minutes
Paper Date: 26-Feb-18
Section: ALL

Exam: Sessional 1 Solution

Course Code: CS 535 Semester: Spring 2018

Total Marks: 20 Weight 13% Page(s): 4

Q1) You are given the following corpus: [5 + 5 = 10 Marks]

<s> I am Sam </s>

<s> Sam I am </s>

<s> I am Sam </s>

<s> I do not like green eggs and Sam </s>

a) Calculate the probability of following test sentence using trigram language model with linear interpolation. Include <s> and </s> in your counts just like any other token.

 λ_1 = trigram weight, λ_2 = bigram weight, λ_3 = unigram weight,

$$\lambda_1 = 0.5, \ \lambda_2 = 0.3, \ \lambda_3 = 0.2$$

<s> I like green eggs </s>

P (like | <s> I) = (0.5) (0) + 0.3(0) + 0.2 (1/25) = 1/125 P(green | I like) = 77/250 P(eggs | like green) = 101 / 125 P(</s> | green eggs) = 4/125

P (<s> I like green eggs </s>) = (1/125) (77/250) (101 / 125) (4 / 125) = 6.37 * 10⁻⁷

b) Calculate the probability of P(Sam \mid am) using Kneser Ney smoothing from the corpus given above. d = discounting factor = 0.5

$$P(Sam \mid am) = (2 - 0.5) / 3 + 1/3(2/14) = 0.55$$

Q3) a) Let S = { a , b, c } the sample space. Suppose you are given following bigram probabilities $P(b \mid a) = 0.125$, $P(a \mid c) = 0.25$, $P(c \mid c) = 0.25$, $P(a \mid a) = 0.25$, $P(c \mid b) = 0.125$, $P(a \mid$

Can you compute $P(b \mid c)$ from the information given. If yes what is $P(b \mid c)$? [2 + 3 = 5 Marks]

Yes, P (b | c) =
$$1 - (0.25 + 0.25 + 0.1 + 0.1) = 1 - 0.7 = 0.3$$

b) What is perplexity of bigram distribution from part (a) if computed against following data

$$<$$
s $>$ b c a $<$ \s $>$

=
$$\frac{1}{4}$$
 (log (0.1) + log (0.125) + log (0.25) + log (0.1)) = -2.91
Perplexity = 2^{-1} = $2^{2.91}$ = 7.52

Name:	Reg #:	Section
· · · · · · · ·	1109 111	300000

Q4) Detect most probable real word spelling error from following sentence. Use Noisy Channel Model with bigram probabilities as given in Table 1. Probabilities of 1 character spelling mistakes are also given in Table 2. Assume all words with 1 edit distance from the words in test sentence are given in Table 1. α = Probability of word being correct = 0.95. **Show all calculations** [5 Marks]

<s> Three off the </s>

	Three	off	the	there	tree	of	then		<s></s>
Three	0.0001	0.0002	0.003	0.003	0.003	0.21	0.003	0.003	0.003
off	0.003	0.003	0.0003	0.003	0.003	0.003	0.003	0.003	0.003
the	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.01	0.01
there	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
tree	0.003	0.003	0.003	0.003	0.004	0.003	0.003	0.001	0.003
of	0.003	0.003	0.22	0.003	0.003	0.003	0.003	0.003	0.003
then	0.003	0.003	0.003	0.003	0.075	0.003	0.003	0.003	0.003
<s></s>	0.004	0.003	0.003	0.01	0.003	0.003	0.003	0.003	0.003
	0.003	0.003	0.003	0.003	0.04	0.003	0.003	0.003	0.003

Table 1: Bigram Probabilities. P(of | Three) = 0.21

x w	P(x w)
re er	0.03
Th T	0.02
ff f	0.05
e ew	0.05

Table 2: x is spell error and w is correct

Solution:

P (
$$<$$
s $>$ Tree off the $<$ /s $>) = 5.4 * 10-13$

P (
$$<$$
s> Three off the $<$ /s>) = 2.7 * 10⁻² P ($<$ s> Three of the $<$ /s>) = 9.24 * 10⁻⁸

The probability of "Three of the" is highest so spelling error is "off" instead of "of"

Name:	Reg #:	Section: