Singular Value Decomposition (SVD)

Recommended reading:

- Lectures 4, 5 in [4]
- Sections I.8 and I.9 in [3]

Literature:

- [1] R. Rannacher.

 Numerik 0 Einführung in die Numerische Mathematik.

 Heidelberg University Publishing, 2017.
- [2] G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, 2003.
- [3] G. Strang.

 Linear Algebra and Learning from Data.

 Wellesley-Cambridge Press, 2019.
- [4] L.N. Trefethen and D. Bau. Numerical linear algebra. SIAM, Soc. for Industrial and Applied Math., Philadelphia, 1997.

4 Singular Values and the Singular Value Decomposition (SVD)

We will extend the concept of eigenvalues and eigenvectors to general matrices $A \in \mathbb{R}^{m \times n}$.

4.1 Motivation and Introduction

Gilbert Strang: "The SVD $A = U\Sigma V^{\top}$ is the most important theorem in data science." ([3] Linear Algebra and Learning from Data, p.31)

Importance and Applications:

- The SVD of a matrix reveals many properties about the matrix itself (representation of the image and kernel, rank, invertibility, condition,...)
- Low-Rank Approximation
 - Data compression (e.g., image data)
 - Principal Component Analysis
- Pseudoinverse (generalization of the inverse matrix) and relation to the minimum-norm least squares solution

Image and data compression:

 3500×2333 greyscale image is interpreted as matrix

$$A \in [0,1]^{3500 \times 2333}.$$

The singular values are shown in the figure with the title " σ ".

The reconstructed image with the first 100 singular values only, i.e.,

$$A_{100} := U \mathsf{diag}(\sigma_1, \ldots, \sigma_{100}, 0, \ldots, 0) V^{\top}$$

is quite close to the original image but takes only

$$\frac{3500 \cdot 100 + 100 + 100 \cdot 2333}{3500 \cdot 2333} \approx 7\%$$

of the storage space.

Principal Component Analysis

Under the correct setup we have that the SVD equals the PCA, whose aim is dimension reduction:

The data represented by the blue dots can be fully explained by the red and blue line. However the red line might already capture a substantial part of the data's variance.

The Singular Value Decomposition (SVD)

For matrices $A \in \mathbb{R}^{m \times n}$ of general format, the equation $Av = \lambda v$ fails. Instead we define:

Definition 4.1 (Singular Values and Vectors) Let $A \in \mathbb{R}^{m \times n}$ be a matrix. Then a positive number $\sigma > 0$ is called **singular value**, if there exist nonzero vectors $v \in \mathbb{R}^n \setminus \{0\}$ and $u \in \mathbb{R}^m \setminus \{0\}$, such that

$$Av = \sigma u$$
 and $A^{\top}u = \sigma v$. (4)

The vectors v and u are called right and left **singular vectors of** A to the singular value σ .

Assume we had singular vectors v_i, u_i and values σ_i and put them into matrices V, U, Σ (as we did for the eigendecomposition). Then we find

$$AV = U\Sigma$$

This will lead to the impactful theorem of the singular value decomposition:

Theorem 4.2 (Singular value decomposition (SVD)) Let $A \in \mathbb{R}^{m \times n}$. Then there are orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ as well as a diagonal matrix $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0) \in \mathbb{R}^{m \times n}$, where $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$, $r \leq \min\{m, n\}$, are the sorted positive singular values, such that

$$A = U\Sigma V^{\top}$$
,

which is the so-called singular value decomposition of A.

4.2 Preparing Results

In order to understand and prove this central theorem we will put a few auxiliary results into position. The first one is about eigenvalues of symmetric and positive semi-definite matrices:

Lemma 4.3 (Eigenvalues and Positivity) Let $B \in \mathbb{R}^{n \times n}$ be symmetric and positive definite (semi-definite), then $\lambda > 0$ (≥ 0) for all eigenvalues $\lambda \in \sigma(B)$.

Proof. First of all we note that due to symmetry $\sigma(B) \subset \mathbb{R}$ and we can choose eigenvectors with real coefficients. We now perform a proof by contradiction:

Let B be positive definite and assume $\lambda \leq 0$ for some $\lambda \in \sigma(B)$ with eigenvector $v \in \mathbb{R}^n$, $v \neq 0$.

 $\Leftrightarrow x^{\top}Bx > 0 \ \forall x \neq 0 \qquad \qquad :\Leftrightarrow \exists v \neq 0 : Bv = 0$

Then we find

$$v^{\top}\underbrace{Bv}_{=\lambda v} = \lambda v^{\top}v = \underbrace{\lambda}_{\leq 0} \underbrace{\|v\|_2^2}_{> 0} \leq 0$$
 [contradiction to the positivity of A].

(Analogous proof for B positive semi-definite.) (Alternative proof via Rayleigh quotient.)

The next result is about the shared eigenvalues of product matrices:

Lemma 4.4 (Shared Eigenvalues of Products) Let $A \in \mathbb{F}^{m \times n}$ and $B \in \mathbb{F}^{n \times m}$. Then the products $AB \in \mathbb{F}^{m \times m}$ and $BA \in \mathbb{F}^{n \times n}$ have the same nonzero eigenvalues.

Proof. We prove this by mutual subset relation:

First let $\lambda \in \sigma(AB)$, $\lambda \neq 0$ be a nonzero eigenvalue of AB with eigenvector $v \in \mathbb{F}^n$, $v \neq 0$, i.e.,

$$ABv = \lambda v.$$

Now multiply both sides by B to obtain

$$BA(Bv) = \lambda Bv,$$

which implies that Bv is an eigenvector of BA with the same eigenvalue λ . To see this, note that $\lambda \neq 0$ implies that $ABv = \lambda v \neq 0$ and thus $Bv \neq 0$.

Similarly, let now $\lambda \in \sigma(BA)$, $\lambda \neq 0$ be a nonzero eigenvalue of BA with eigenvector $v \in \mathbb{F}^n$, $v \neq 0$, i.e., $BAv = \lambda v$. Then we multiply both sides by A to proceed along the same lines.

Remark:

- If $m \neq n$, then BA and AB have differently many eigenvalues. However the nonzero eigenvalues are the same. Thus both product matrices have at most $\ell := \min\{m, n\}$ nonzero eigenvalues!
- ullet In the special case that m=n and B invertible, we observe

$$B^{-1}(BA)B = (AB),$$

identifying the matrices AB and BA as being similar!

Now a special instance of the latter two results (choosing $B = A^{\top}$) leads us to the key lemma to prove the SVD Theorem 4.2:

Lemma 4.5 Let $A \in \mathbb{R}^{m \times n}$, then the matrices $A^{\top}A$ and AA^{\top} are symmetric, positive semi-definite and have the same positive eigenvalues.

Proof. We find

- 1) Symmetry: $(A^{\top}A)^{\top} = A^{\top}(A^{\top})^{\top} = A^{\top}A$ and similarly $(AA^{\top})^{\top} = AA^{\top}$
- 2) $p(s)d: x^{\top}A^{\top}Ax = ||Ax||_2^2 \ge 0, \quad x^{\top}AA^{\top}x = ||A^{\top}x||_2^2 \ge 0$
- 3) The same positive eigenvalues:
 - By Lemma 4.3 we know that the matrices only have nonnegative eigenvalues
 - By lemma 4.4 we know that the nonzero, i.e., positive, eigenvalues are the same

Remark:

Due to the symmetry of $A^{\top}A$ and AA^{\top} we also know that we find <u>orthonormal</u> eigenvectors v_1, \ldots, v_n and $u_1, \ldots, u_m!$ The SVD will connect them!

4.3 From Reduced to Full SVD

Recall:

- $\operatorname{Im}(A) \perp \ker(A^{\top})$ and $\operatorname{Im}(A^{\top}) \perp \ker(A)$
- $A^{\top}A$, AA^{\top} are
 - symmetric \Rightarrow real eigenvalues and we find orthonormal basis of eigenvectors
 - positive semi-definite \Rightarrow their eigenvalues are nonnegative, i.e., $\lambda \ge 0$
 - they have the same positive eigenvalues λ_i for $1 \le i \le r \le \min(m, n)$
 - $\ker(A) = \ker(A^{\top}A)$ and $\ker(A^{\top}) = \ker(AA^{\top})$

Proof of SVD: We are looking for nonzero vectors $u \in \mathbb{R}^m$, $v \in \mathbb{R}^n$ and positive numbers $\sigma > 0$, such that

$$Av = \sigma u \iff u = \frac{1}{\sigma} Av \in \operatorname{Im}(A),$$
 (5)

$$A^{\top}u = \sigma v \iff v = \frac{1}{2}A^{\top}u \in \operatorname{Im}(A^{\top}).$$
 (6)

1) So we have two equations for two unknown vectors. By inserting one into the other we obtain two equivalent formulations (this is *elimination*) Here, we insert (5) into (6) which gives

$$A^{\top}Av = \sigma^2 v \iff (\sigma^2, v) \text{ eigenpair of } A^{\top}A.$$
 (7)

(Note: Inserting (6) into (5) would give (σ^2, u) eigenpair of AA^{\top})

Let $\lambda_1, \ldots, \lambda_r > 0$ $(r \leq \min(m, n))$ be the positive eigenvalues of $A^{\top}A$ with orthonormal eigenvectors v_1, \ldots, v_r $(\in \operatorname{Im}(A^{\top}))$. Then according to $(\mathbf{5})$ and $(\mathbf{7})$ we set

$$\sigma_i := \sqrt{\lambda_i}, \quad u_i := \frac{1}{\sigma_i} A v_i \ (\in \operatorname{Im}(A)).$$

We then find

• By construction v_i , u_i are singular vectors to the singular value σ_i , i.e., we have

$$Av_i = \sigma_i u_i$$

and indeed

$$A^{ op}u_i = rac{1}{\sigma_i}\underbrace{A^{ op}Av_i}_{=\lambda,r} = rac{\lambda_i}{\sigma_i}v_i = \sigma_i v_i.$$

• For the SVD we want the u_i to be orthonormal. Let us check this:

$$u_i^\top u_j = \frac{1}{\sigma_i} \frac{1}{\sigma_j} (Av_i)^\top Av_j = \frac{1}{\sigma_i} \frac{1}{\sigma_j} v_i^\top \underbrace{A^\top Av_j}_{} = \underbrace{\frac{\sigma_j}{\sigma_i}}_{} \underbrace{v_i^\top v_j}_{} = \delta_{ij}.$$

3) Finally, choose orthonormal b

$$v_{r+1}, \dots, v_n \in \ker(A) \ (\perp \operatorname{Im}(A^\top)),$$

We note that these are eigenvectors of $A^{\top}A$ and AA^{\top} , respectively, to the eigenvalue 0. Then let us collect everything

With $\Sigma_r := \operatorname{diag}(\sigma_1, \ldots, \sigma_r)$ we can write

$$AV = (AV_r|0) = (U_r\Sigma_r|0) = U\Sigma$$

Now, since $V \in \mathbb{R}^{n \times n}$ is orthogonal (i.e., $V^{-1} = V^{\top}$), we can multiply with V^{\top} from the right and finally obtain the desired SVE

Remark: The zeros in Σ may justify to also allow for zero singular values $\sigma_{r+1} = \ldots = \sigma_\ell = 0$ with $\ell = \min(m, n)$ in Definition 4.1. However, we require singular values to be positive here. At this point the literature is not uniform.

Full, Reduced and Truncated SVD

$$A = \begin{pmatrix} | & & | & & | & & | & & | & & | & & | & & | &$$

The four fundamental subspaces revisited:

By Lemma ?? (note: $U_r\Sigma_r$ is injective and $\Sigma_rV_r^{\top}$ is surjective) we find

$$\operatorname{Im}(A) = \operatorname{Im}(U_r \Sigma_r V_r^{\top}) = \operatorname{Im}(U_r) = \operatorname{span}(u_1, \dots, u_r),$$

 $\operatorname{ker}(A) = \operatorname{ker}(U_r \Sigma_r V_r^{\top}) = \operatorname{ker}(V_r^{\top}) = \operatorname{Im}(V_r)^{\perp} = \operatorname{span}(v_{r+1}, \dots, v_n)$

and by considering $A^{\top} = V \Sigma^{\top} U^{\top}$ we find

$$\operatorname{Im}(A^{\top}) = \operatorname{span}(v_1, \dots, v_r),$$

 $\operatorname{ker}(A^{\top}) = \operatorname{span}(u_{r+1}, \dots, u_m)$

With other words

The SVD contains orthonormal bases for all four fundamental subspaces.

And even more than that, they are connected via

$$Av = \sigma u, \quad A^{\top}u = \sigma v.$$

Summary and Remarks

lacktriangle we can show $\overline{\mathrm{Im}(A)}=\mathrm{span}(u_1,\ldots,u_r)$ and $\ker(A)=\mathrm{span}(v_{r+1},\ldots,v_n)$, in particular

$$rank(A) = r$$

- columns of V are orthonormal eigenvectors of $A^{\top}A \in \mathbb{R}^{n \times n}$ and $A^{\top}A = V(\Sigma^{\top}\Sigma)V^{\top}$
- ullet columns of U are orthonormal eigenvectors of $AA^{ op} \in \mathbb{R}^{m imes m}$ and $AA^{ op} = U(\Sigma \Sigma^{ op})U^{ op}$
- σ_1^2 to σ_r^2 are the shared positive eigenvalues of both $A^{\top}A$ and AA^{\top}
- an SVD of the transpose A^{\top} is easily found by

$$A^{ op} = (U\Sigma V^{ op})^{ op} = V\Sigma^{ op}U^{ op}$$

- ullet for square matrices singular values and eigenvalues are different in general, take for example A=-I
- however, for symmetric matrices $A=Q\Lambda Q^{\top}$, the singular values are the absolute values of the eigenvalues, i.e., $\sigma_i=\sqrt{\lambda_i^2}$ (see exercises)

Example 4.6 (SVD by hand)

$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}, A^{\top} = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$$

$$A^{\top}A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix} = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix}$$

• Compute eigenvalues of $A^{\top}A$:

$$0 \stackrel{!}{=} \det(A^{\top}A - \lambda I) = \det\begin{pmatrix} 17 - \lambda & 8 \\ 8 & 17 - \lambda \end{pmatrix} = (17 - \lambda)^2 - 64$$

$$\Leftrightarrow 17 - \lambda = \pm 8$$

$$\Leftrightarrow \lambda = 17 \pm 8$$

$$\Leftrightarrow \lambda_1 = 25, \lambda_2 = 9$$

• Compute corresponding normalized eigenvectors:

a)
$$(A^{\top}A - \lambda_1 I)v_1 = \begin{pmatrix} -8 & 8 \\ 8 & -8 \end{pmatrix} v_1 \stackrel{!}{=} 0 \quad \Rightarrow \quad v_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

b) $(A^{\top}A - \lambda_2 I)v_2 = \begin{pmatrix} 8 & 8 \\ 8 & 8 \end{pmatrix} v_2 \stackrel{!}{=} 0 \quad \Rightarrow \quad v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

• Compute left singular vectors:

$$\sigma_{1} := \sqrt{\lambda_{1}} = 5,
u_{1} := \frac{1}{\sigma_{1}} A v_{1}
= \frac{1}{5} \frac{1}{\sqrt{2}} \begin{pmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}
= \frac{1}{5\sqrt{2}} \begin{pmatrix} 5 \\ 5 \\ 0 \end{pmatrix}
= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}
= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

$$\sigma_{2} := \sqrt{\lambda_{2}} = 3,
u_{2} := \frac{1}{\sigma_{2}} A v_{2}
= \frac{1}{3} \frac{1}{\sqrt{2}} \begin{pmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}
= \frac{1}{3\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

Find $u_3 \in \ker(A^\top)$:

$$A^{\top}u_{3} = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix} \begin{pmatrix} u_{3}^{1} \\ u_{3}^{2} \\ u_{3}^{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$u_{3} = \frac{1}{3} \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}$$

All in all:

$$V = \begin{pmatrix} | & | \\ v_1 & v_2 \\ | & | \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \in \mathbb{R}^{n \times n} = \mathbb{R}^{2 \times 2}$$

$$U = \begin{pmatrix} | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} & \frac{2}{3} \\ \frac{1}{\sqrt{2}} & -\frac{1}{3\sqrt{2}} & -\frac{2}{3} \\ 0 & \frac{4}{3\sqrt{2}} & -\frac{1}{3} \end{pmatrix} \in \mathbb{R}^{m \times m} = \mathbb{R}^{3 \times 3}$$

$$\Sigma = \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{pmatrix} \in \mathbb{R}^{m \times n} = \mathbb{R}^{3 \times 2}$$

$$\Rightarrow A = U\Sigma V^{\mathsf{T}}$$

Example: rank-1 pieces

Let $x \in \mathbb{R}^m \setminus \{0\}$ and $y \in \mathbb{R}^n \setminus \{0\}$, then

$$A := xy^{\top} = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} (y_1, \dots, y_n) = \begin{pmatrix} | & & | \\ y_1 x & \cdots & y_n x \\ | & & | \end{pmatrix} \in \mathbb{R}^{m \times n}.$$

What is the SVD of A?

$$A^{\top}A = (xy^{\top})^{\top}xy^{\top} = y\underbrace{x^{\top}x}_{=\|x\|^2}y^{\top} = \|x\|^2yy^{\top}$$

Compute eigenpairs: We find $A^{\top}Ay = \|x\|^2 y$ $\underbrace{y^{\top}y}_{=\|y\|^2} = \|x\|^2 \|y\|^2 y$

 $v_1:=rac{y}{\|y\|}$ is eigenvector to the eigenvalue $\lambda_1:=\|x\|^2\|y\|^2$

Set

$$\sigma_1 := \sqrt{\lambda_1} \stackrel{(\neq 0, \mathsf{since} x \neq 0 \neq y)}{=} \|x\| \|y\|$$

and

$$u_1 := \frac{1}{\sigma_1} A v_1 = \frac{1}{\|x\| \|y\|} x y^{\top} \frac{y}{\|y\|} = \frac{x}{\|x\|}$$

then

$$A = U \Sigma V^ op = rac{x}{\|x\|} (\|x\| \|y\|) rac{y^ op}{\|y\|} = x y^ op \checkmark \quad (o r = 1$$
, thus $\mathrm{rank}(A) = 1)$

4.4 The Geometry of the SVD

[Compare to the geometry of the eigendecomposition]

- The orthonormal bases V and U are connected via $Av_i = \sigma_i u_i$.
- Using these orthonormal bases, one can regard any matrix as a diagonal matrix.

4.5 Matrix condition and rank

Situation:

Let $A = U\Sigma V^{\top} \in \mathbb{R}^{n \times n}$ be invertible (i.e., $\sigma_i \neq 0 \ \forall i$) and assume we want to solve Ax = b. We also assume that the data is corrupted $\tilde{b} = b + \Delta b$ by some error Δb .

 \Rightarrow We obtain a perturbed solution $\tilde{x} = x + \Delta x$ with $\Delta x = A^{-1} \Delta b$.

Question:

How severe is the propagation of data error Δb to the resulting solution error Δx ?

 \rightarrow Singular (eigen-) values give us this information!

$$b = Ax \Rightarrow \|b\|_{2} = \|Ax\|_{2} = \|U\Sigma V^{\top}x\|_{2} = \|\Sigma V^{\top}x\|_{2} = \|\Sigma_{j=1}^{r}\sigma_{j}v_{j}^{\top}x\|_{2} \le \sigma_{1}\|V^{\top}x\|_{2} = \sigma_{1}\|x\|_{2}$$

$$\Delta x = A^{-1}\Delta b \Rightarrow \|\Delta x\|_{2} = \|A^{-1}\Delta b\|_{2} = \|V\Sigma^{-1}U^{\top}\Delta b\|_{2} = \|\Sigma^{-1}U^{\top}\Delta b\|_{2} \le \frac{1}{\sigma_{n}}\|\Delta b\|_{2}$$

$$\Rightarrow \frac{\|\Delta x\|_{2}}{\|x\|_{2}} \le \frac{1}{\sigma_{n}} \frac{\|\Delta b\|_{2}}{\|x\|_{2}} \le \frac{\sigma_{1}}{\sigma_{n}} \frac{\|\Delta b\|_{2}}{\|b\|_{2}}$$

Definition 4.7 (Condition number) Let $A \in \mathbb{R}^{n \times n}$ be a matrix. Then we call

$$cond_2(A) := \frac{\max\{\sigma_i\}}{\min\{\sigma_i\}}$$

the **condition number** of the matrix A.

Special Case: Symmetric Matrices (exercise)

Let $A \in \mathbb{R}^{n \times n}$ be a real symmetric matrix, then

$$\mathsf{cond}_2(A) = \frac{\max\{|\lambda| \colon \lambda \in \sigma(A)\}}{\min\{|\lambda| \colon \lambda \in \sigma(A)\}}.$$

Remark:

If some of the singular values are actually zero or close to zero, the condition number is (almost) ∞ . In this case, we cannot trust any numerical solver (for Ax = b) in finite precision, as errors in the data b (e.g., also due to rounding errors) may severely propagate to the computed solution x.

We also call such matrices rank deficient.

4.6 The Truncated SVD and its Best Approximation Property

Motivation:

Let the singular values be sorted $\sigma_1 \ge ... \ge \sigma_r > 0$, r := rank(A), then the reduced SVD reads as

$$A = \sigma_1 u_1 v_1^{\top} + \sigma_2 u_2 v_2^{\top} + \dots + \sigma_i u_i v_i^{\top} + \dots + \sigma_{r-1} u_{r-1} v_{r-1}^{\top} + \sigma_r u_r v_r^{\top}$$

If a σ_i is small, then the matrix $u_i v_i^{\top}$ does not contribute much to A, and similarly for $\sigma_{i+1}, \ldots, \sigma_r$.

What about leaving them out?

This gives rise to the following definition:

Definition 4.8 (Truncated SVD) Let
$$A = U\Sigma V^{\top} \in \mathbb{R}^{m\times n}$$
. For $k < r := rank(A)$ define $\Sigma_k := diag(\sigma_1, \ldots, \sigma_k) \in \mathbb{R}^{k\times k}$, $U_k := [u_1, \ldots, u_k] \in \mathbb{R}^{m\times k}$ and $V_k := [v_1, \ldots, v_k] \in \mathbb{R}^{n\times k}$. Then

$$A_k := U \operatorname{\mathsf{diag}}(\sigma_1, \ldots, \sigma_k, 0 \ldots, 0) V^ op = U_k \Sigma_k V_k^ op$$

is called **truncated SVD of** A.

We observe that

$$rank(A_k) = k$$
,

which is why A_k is also called rank-k-approximation of A.

Question: Leaving out some rank-1 summands, how much do we deviate from the original matrix?

With other words: In which sense does $A_k \in \mathbb{R}^{m \times n}$ approximate $A \in \mathbb{R}^{m \times n}$?

We first need to quantify the distance between matrices, i.e., we need a *norm* for matrices in $\mathbb{R}^{m \times n}$!

Here we consider the so-called Frobenius norm:

If we reshape a matrix $A \in \mathbb{R}^{m \times n}$ into a vector $v \in \mathbb{R}^{m \cdot n}$ (e.g., $v_{[(j-1) \cdot m+i]} := a_{ij}$), then we can use our norms for vectors, e.g.,

$$||A||_F := ||v||_2.$$

This is precisely:

Definition 4.9 (Frobenius norm) For any matrix $A \in \mathbb{R}^{m \times n}$, the **Frobenius norm** is defined as

$$||A||_F := \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}.$$

Exercise:

One can show that

$$||A||_F^2 = \operatorname{tr}(A^{\top}A),$$

where tr:="trace" denotes the sum of the diagonal entries.

• Using this fact, for $A = U\Sigma V^{\top}$ with $r = \operatorname{rank}(A)$ we also find

$$||A||_F^2 = \sum_{i=1}^r \sigma_i^2.$$

Finally, the truncated SVD satisfies a best approximation property:

Theorem 4.10 (Eckart-Young-Mirsky) Let $A \in \mathbb{R}^{m \times n}$ with SVD $A = U\Sigma V^{\top}$ and let $k \leq rank(A)$. Then, the truncated SVD A_k is the best approximation in the Frobenius norm among all matrices with rank k, i.e.

$$\|A-A_k\|_F \leq \|A-B\|_F$$
 , $\quad orall B \in \mathbb{R}^{m imes n}$, $\operatorname{\mathsf{rank}}(B) = k.$

In words:

Among all matrices with rank k, the truncated SVD is closest to A.

Proof. We use the so-called Weyl inequality (see (8) below): For matrices $C, D \in \mathbb{R}^{m \times n}$ with decreasingly ordered singular values, we denote by $\sigma_i(C), \sigma_i(C), \sigma_i(C+D)$ the *i*-th singular value of the respective matrix Then Weyl's inequality gives us the relation

$$\sigma_{i+\ell-1}(C+D) \le \sigma_i(C) + \sigma_\ell(D)$$
, with $i, \ell, i+\ell-1 \in \{1, ..., p\}$, $p := \min\{m, n\}$. (8)

We assume $\operatorname{rank}(B) = k$, which results in $\sigma_l(B) = 0$ for l > k and thus we conclude from Weyl's inequality (8) for C := A - B, D := B, $\ell := k + 1$ that

$$\sigma_{i+k}(A) \le \sigma_i(A-B) + \sigma_{k+1}(B) = \sigma_i(A-B) \text{ for } i = 1, ..., p-k$$

$$\Rightarrow \|A-B\|_F^2 = \sum_{i=1}^p \sigma_i(A-B)^2 \ge \sum_{i=1}^{p-k} \sigma_i(A-B)^2 \ge \sum_{i=k+1}^p \sigma_i(A)^2 = \|A-A_k\|$$

for all B with rank(B) = k

4.6.1 Image and Data Compression

 $\overline{3500 \times 2333}$ greyscale image is interpreted as matrix

$$A \in [0,1]^{3500 \times 2333}.$$

The singular values are shown in the figure with the title " σ ".

The reconstructed image with the first 100 singular values only, i.e.,

$$A_{100} := U \mathsf{diag}(\sigma_1, \ldots, \sigma_{100}, 0, \ldots, 0) V^{ op}$$

is quite close to the original image but takes only

$$\frac{3500 \cdot 100 + 100 + 100 \cdot 2333}{3500 \cdot 2333} \approx 7\%$$

of the storage space.

Note: The storage of A_k in general is $k \cdot (m+1+n)$.

Note: The same data compression can be performed with any matrix — and similarly with tensors.

4.6.2 Principal Component Analysis (PCA)

Situation:

n measurements / samples (e.g., questioning n persons) m features / variables (e.g., height and weight)

Example

Without loss of generality we can center the data by substracting the mean from each sample

Observation

Height and weight are proportional in some sense (i.e., they correlate), however there is some spread/variance

Aim:

Can we explain "most" of the variance with a lower dimensional subspace? (In the example above, e.g., a line may capture most of the variance)

More on the statistics:
$$(Var(X) = E(X - E(X))^2)$$

statistical variance = "normalized" sum of squared distances from the mean

statistical variance in height
$$=\frac{1}{n-1}\sum_{i=1}^n(\mathsf{height}_i-\underbrace{\overbrace{\mathsf{height}}}_{\mathsf{w.l.o.g.}=0})^2=\frac{1}{n-1}\sum_{i=1}^n\widehat{\mathsf{height}}_i^2=\frac{1}{n-1}\tilde{a}_1^T\tilde{a}_1$$

$$m$$
 feats $A = \downarrow \qquad \underbrace{\begin{pmatrix} -\tilde{a}_1 - \\ -\tilde{a}_2 - \end{pmatrix}}_{n \text{ people}} \leftarrow \text{centered} \qquad \begin{array}{l} \text{height measurements} \\ \text{weight measurements} \end{array}$

I hen:

$$rac{1}{n-1}AA^T = rac{1}{n-1}egin{pmatrix} - ilde{a}_1-\ - ilde{a}_2- \end{pmatrix}egin{pmatrix} deta & deta \ ilde{a}_1 & ilde{a}_2 \ deta & deta \end{pmatrix} = rac{1}{n-1}egin{pmatrix} ilde{a}_1^T ilde{a}_1 & ilde{a}_1^T ilde{a}_2 \ ilde{a}_2^T ilde{a}_1 & ilde{a}_2^T ilde{a}_2 \end{pmatrix}$$

(diagonals: variances, off-diagonals: co-variance)

Using SVD: $A = U\Sigma V^T$

$$\frac{1}{n-1}AA^T = \frac{1}{n-1}U\begin{pmatrix} \sigma_1^2 & 0 \\ & \ddots \\ 0 & \sigma_r^2 \end{pmatrix}U^T = \frac{1}{n-1}\sum_{i=1}^r \sigma_i^2 u_i u_i^T$$

Thus, the first few summands explain most of AA^I , i.e., the variance The singular vectors u_1, \ldots, u_r are called principal components in this setting $(\underbrace{\text{Remark:}} \|A\|_F = \operatorname{tr}(AA^T) = \sum_{i=1}^m \tilde{a}_i^T \tilde{a}_i = \operatorname{sum} \text{ of variances})$

Now to the geometry of the SVD:

$$A = \bigcup_{\substack{ \begin{pmatrix} | & & & \\ & | & \\ \\ | & & | \\ \\ | & & | \end{pmatrix}} \underbrace{\begin{pmatrix} | & & \\ | & & \\ \\ | & & | \\ \\ | & & | \end{pmatrix}}_{\text{orthonormal basis}} = U\Sigma V^T = \underbrace{\begin{pmatrix} | & & \\ | & & \\ | & & \\ | & & | \\ |$$

Thus, each sample $a_i \in \mathbb{R}^m$ is a linear combination of u_1, \ldots, u_m with coefficients $(\Sigma V^T)_i = c_i = \begin{pmatrix} c_1^i \\ c_2^i \end{pmatrix}$

The speciality about the particular orthonormal system $u_1, \ldots, u_m \ (m=2)$ is this

If we only take the first u_1, \ldots, u_k (k=1) then among all orthonormal systems which are composed of k vectors these give the best approximation to A (= the measurements) in the $\|\cdot\|_F$ -sense.

4.6.3 Pseudoinverses

With the help of the SVD one can define a generalized concept of an inverse matrix, called the *pseudoinverse*. This is closely related to the minimum-norm least-squares solution, so that we postpone a discussion to the section on least squares.

4.7 Numerical Computation of the SVD

Let us write equation (4) in matrix form:

$$\begin{pmatrix} 0 & A \\ A^\top & 0 \end{pmatrix} \cdot \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} Av \\ A^\top u \end{pmatrix} = \begin{pmatrix} \sigma u \\ \sigma v \end{pmatrix} = \sigma \begin{pmatrix} u \\ v \end{pmatrix}$$

. Then this reads as an eigenvalue problem for the symmetric matrix $S:=\left(egin{array}{cc} 0 & A \ A^ op & 0 \end{array}
ight)$

Thus we already identify r eigenpairs for S, namely,

$$(\sigma_1, \begin{pmatrix} u_1 \\ v_1 \end{pmatrix}), \ldots, (\sigma_r, \begin{pmatrix} u_r \\ v_r \end{pmatrix})$$

where $(\sigma_i, \begin{pmatrix} u_i \\ \sigma_i \end{pmatrix})$ are the r singular values and vectors of A, respectively

Also we easily find that

$$(-\sigma_1, \begin{pmatrix} -u_1 \\ v_2 \end{pmatrix}), \ldots, (-\sigma_r, \begin{pmatrix} -u_r \\ v_r \end{pmatrix})$$

are eigenpairs of S

For the remaining (m-r)+(n-r) eigenpairs take orthonomal bases $u_{r+1},\ldots,u_m\in\ker A^\top$ and $v_{r+1},\ldots,v_n\in\ker A$, then the $(0,\binom{u_i}{0})$ and $(0,\binom{0}{v_i})$ give the remaining eigenpairs (with eigenvalue 0).

Implications

- $A \to We$ can compute the SVD without computing A^+A or AA^+ .
- ightarrow Goes back to Gene Golub in the 1960s (ightarrow see his license plate)

Final Remark:

The SVD is a powerful tool and being able to compute it efficiently further facilitates, among others, the following:

- ullet standard method for computing matrix norms $\|A\|_F$ (or $\|A\|_2 := \sigma_1$)
- the best method for determining the rank of a matrix is to count the number of singular values greater than a judiciously chosen tolerance (note: the fundamental problem is distinguishing a small float which is prone to rounding errors from an actual zero!)
- most accurate method for finding an orthonormal basis of a range or a nullspace
- ullet standards for computing low-rank approximations w.r.t to $\|\cdot\|_F$
- ingredient in robust algorithms for least squares fitting via pseudoinverse