2020-2021: DS - Analysis

Problem Set - 3: 16 - 01 - 2021

In Problems 1-6, find the derivatives of the given functions, indicating where the functions and the derivatives are well-defined.

1. $f(x) = \sqrt{e^{2x} + 3}.$

2. $f(x) = \frac{(2x^2 + x - 1)^{\frac{5}{2}}}{(3x + 2)^9}.$

3. $f(x) = \sin[\log(2x+1)].$

4. $g(x) = \frac{\sin(5x+2)}{\cos(x^2-1)}.$

5. $g(x) = e^{\sin(x^3 + 1)}.$

6. $g(x) = \frac{\log(x^2 + 2)}{e^{-x}}.$

7. Let f be given by

$$f(x) = x^3, \ 0 \le x,$$

= 0, -1 \le x \le 1,
= (x+1)^3, x \le -1.

Find f'(x), wherever f is differentiable. Find also the points where f'(x) = 0. Draw the graphs of f and f', over the interval [-5, 3].

8. Find the equation of the tangent line to the graph of the function

$$g(t) = \frac{t}{t+5},$$

when t=2.

9. Find the equation of the tangent line to the graph of the function

$$f(x) = x^{\frac{1}{4}} + 2x^{\frac{3}{4}},$$

when x = 16.

- 10. Suppose a gas is pumped into a spherical balloon at a constant rate of 50 cm³/ sec. Assume that the gas pressure remains constant, and that the balloon always has a spherical shape. How fast is the radius increasing when the radius is 5 cm.? (Volume of a sphere of radius r is $V = \frac{4}{3}\pi r^3$.)
- 11. Sand is falling on a pile, always having the shape of a cone, at the rate of 3 cm³/ sec. Assume that the diameter at the base of the pile is always three times the height. At what rate is the height is increasing when the height is 4 cm.? (Volume of a cone of height h, and radius of the base r is $\frac{1}{3}\pi r^2h$.)