1 Обязательные задачи

1.

- а) Нашли медиану, сделали массив из элементов |pos(x) pos(median)|, нашли там k-ую порядковую, выписали все элементы, которые меньше этой k-ой.
- b) Нашли медиану, сделали массив из элементов | x median |, нашли там kую порядковую, выписали все элементы, которые меньше этой k-ой.

- а) $f=\sum_i(w_i(x_i-x^*)^2), f'=0$ при $x^*=\frac{w_ix_i}{n}, O(n).$ b) По каждой из осей можно решать независимо, то есть у нас есть задача $\sum_{i} (w_i | x_i - x^* |) \to min$, а это просто найти взвешенную медиану, O(n).
- \overline{c}) Повернём на $\frac{\pi}{4}$, теперь вместро суммы $|x_i-x^*|+|y_i+y^*|$ у нас $max(|x_i-x^*|,|y_i-y_i|)$ $y^*|) \rightarrow$ ответ на задачу – максимум из максимумов, то есть снова независмые задачи по каждой из координат. Надо решить задачу $max_i(w_i|x_i-x^*|) \to min.$ Это можно представить как отрезки, расширяющиеся со скоростью w_i , и нам надо найти первый момент времени, когда их пересечение непусто. Давайте посмотрим, где будет находиться самая левая из правых границ отрезков в каждый момент времени. Это возврастающая функция и она кусочно-линейная, её можно построить за O(sort+n), отсортировав точки по w_i и построив пересечение полуплоскостей. Аналогично строим для самой правой из левых границ. Нам нужен момент времени, когда самая правая из левых > самой левой из правых \rightarrow надо найти, где две кусочно-линейные функции пересекаются, это делается двумя указателями. Итого O(sort + n).
- 3. Отсортируем массив. Теперь если мы поставим две точки куда-то, то одна будет отвечать за некоторый префикс этого массива, а другая – за оставшийся суффикс. Пусть мы решили, за какой префикс должна отвечать первая точка. Тогда нам надо её поставить во взвешенную медиану этого префикса, а вторую – во взвешенную медиану оставшегося суффикса. Если мы будем перебирать этот предполагаемый префикс слева направо, то эти медианы можно поддерживать, как и суммы \rightarrow можно решить за O(sort+n) с помощью трёх указателей.

2 Дополнительные задачи

- 1. При фиксированном y^* и движении x^* слева направо функция будет выпуклой вниз, и наоборот \rightarrow давайте сделаем два вложенных тернарных поиска.
- 2. Пусть p[i][j] позиция, куда лучше всего поставить последнюю точку, если мы хотим оптимально разбить префикс длины і с помощью ј точек. Заметим, что $dp[i][j] < dp[i + 1][j] \rightarrow$ можно сделать Divide-and-conquer, пересчитывая р по слоям (разбить с помощью ј точек – это выбрать последнюю и потом

разбить оставшийся префикс с помощью j - 1 точки), решение за $O(nk\log n) = O(n\log n)$ в нашем случае.