COLLE7 = MATRICES ET FONCTIONS DÉRIVABLES

Questions de cours :

Soient $n, p \in \mathbb{N}$ et $A, B \in \mathcal{M}_n(\mathbb{R})$.

- 1. Rappeler la définition d'une matrice élémentaire de $\mathcal{M}_{n,p}(\mathbb{R})$ et expliquer pourquoi toute matrice $A \in \mathcal{M}_{n,p}(\mathbb{R})$ peut se décomposer comme combinaison linéaire de matrices élémentaires de $\mathcal{M}_{n,p}(\mathbb{R})$.
- 2. Pour $(i,j) \in \{1,..,n\}^2$ donner le coefficient AB_{ij} en fonction des coefficients des matrices A et B. Montrer que Tr(AB) = Tr(BA).
- 3. Montrer que $(AB)^T = B^TA^T$. Si A est une matrice symétrique inversible, montrer que A^{-1} est aussi une matrice symétriques.
- 4. Démontrer la propriété suivante :

Propriété.

Soient $D \subset \mathbb{R}$, $f: D \to \mathbb{C}$ une fonction et $a \in D$. Si f est dérivable en a, alors f est continue en a.

- 5. Soit $n \in \mathbb{N}$. Démontrer que la fonction $x \in \mathbb{R} \mapsto x^n$ est dérivable en tout point de \mathbb{R} et donner sa fonction dérivée associée.
- 6. Démontrer que la fonction

$$\begin{array}{ccc}
\mathbb{R} & \to & \mathbb{R} \\
x & \longmapsto & \begin{cases}
x \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\
0 & \text{sinon}
\end{cases}$$

est continue en 0 mais non dérivable en 0.

Matrices:

Exercice 1.

Soit

$$A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

- 1. Montrer que le polynôme $P(X) = X^2 3X + 2$ est anulateur de la matrice A.
- 2. Donner le reste de la division Euclidienne de X^n par $X^2 3X + 2$ pour $n \ge 2$.
- 3. En déduire la valeur de A^n .

Exercice 2.

Les affirmations suivantes sont-elles vraies?

- 1. $\forall A, B, C \in \mathcal{M}_2(\mathbb{R}) : Tr(ABC) = Tr(BAC)$
- 2. $\exists A, B \in \mathcal{M}_n(\mathbb{R}) : AB BA = I_n$
- 3. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ tels que AB BA = A. Alors pour tout $n \in \mathbb{N}^*$ on a $Tr(A^n) = 0$

Exercice 3.

Soient A et B deux matrices de tailles n vérifiant AB-BA=A .Montrer que pout tout entier naturel k

$$A^{k+1}B - BA^{k+1} = (k+1)A^{k+1}$$

Exercice 4.

Soit $A \in \mathcal{M}_3(\mathbb{R})$

- 1. Pour tous $(i, j) \in \{1, 2, 3\}$ on note E_{ij} une matrice élémentaire de $\mathcal{M}_3(\mathbb{R})$. Expliquer ce que donne les produits matriciels I_3E_{ij} et $E_{ij}I_3$.
- 2. Considérons le centre de $\mathcal{M}_3(\mathbb{R})$:

$$\mathcal{Z}\left(\mathcal{M}_{3}\left(\mathbb{R}\right)\right):\left\{ A\in\mathcal{M}_{3}\left(\mathbb{R}\right);\forall M\in\mathcal{M}_{3}\left(\mathbb{R}\right):MA=AM\right\}$$

Niveau: Première année de PCSI

Montrer que :

$$\mathcal{Z}\left(\mathcal{M}_3\left(\mathbb{R}\right)\right) = \{\lambda I_3 : \lambda \in \mathbb{R}\}$$

Exercice 5.

Calculer les puissances n-ième des matrices suivantes :

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} , \ A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} , \ A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Exercice 6.

Soit T une matrice triangulaire supérieure de taille $n \in \mathbb{N}$. Montrer que T commute avec sa transposée, si et seulement si T est diagonale.

Niveau: Première année de PCSI

Fonctions dérivables :

Exercice 7.

Étudier la dérivabilité sur $\mathbb R$ des fonctions suivantes :

1.
$$x \mapsto \begin{cases} (x-1)^2 & \text{Si } x \leq 1\\ (x-1)^3 & \text{Si } x > 1 \end{cases}$$

2.
$$x \longmapsto \begin{cases} x^2 + x & \text{Si } x \leq 1 \\ ax^3 + bx + 1 & \text{Si } x > 1 \end{cases}$$
, $(a, b) \in \mathbb{R}^2$

$$3. \ x \longmapsto \frac{|x|}{1 + |x^2 - 1|}$$

Exercice 8.

Soit $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$. On fait l'hypothèse que :

$$\forall x \in \mathbb{R} : f \circ f(x) = \frac{x}{4} + 1$$

- 1. Montrer que : $f'(x) = f'\left(\frac{x}{4} + 1\right)$ pour tout $x \in \mathbb{R}$.
- 2. En déduire de f' est une fonction constante sur ${\mathbb P}$
- 3. Déterminer les fonctions $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ telles que $f \circ f(x) = \frac{x}{4} + 1$ pour tout $x \in \mathbb{R}$.

Exercice 9. Soit $a \in \mathbb{R}$ et $f : \mathbb{R} \to \mathbb{R}$ dérivable en a. Que vaut $\lim_{h\to 0} \frac{f(x+h) - f(x+h^2)}{h}$?

Exercice 10.

- 1. On note f la fonction $x \mapsto e^{x^2}$. Montrer qu'il existe pour tout $n \in \mathbb{N}$ une fonction polynomiale P_n pour laquelle $f^{(n)}(x) = P_n(x)e^{x^2}$ pour tout $x \in \mathbb{R}$, puis déterminer le degré de Pn.
- 2. On note f la fonction $x \mapsto \frac{1}{1+x^2}$. Montrer qu'il existe pour tout $n \in \mathbb{N}$ une fonction polynomiale P_n pour laquelle $f^{(n)}(x) = \frac{P_n(x)}{(1+x^2)^{n+1}} \text{ pour tout } x \in \mathbb{R} \text{ ,puis déterminer le degré de } P_n.$

Exercice 11.

Pour tous $n \in \mathbb{N}^*$, calculer la dérivée $n^{\text{ème}}$ de $x \mapsto x^{n-1} \ln(1+x)$ sur $]-1,+\infty[$.

Exercice 12.

Montrer que pour tous $n \in \mathbb{N}$ * et $x \in \mathbb{R}$ * :

$$\frac{d^n}{dx^n} \left(x^{(n-1)} \exp\left(\frac{1}{x}\right) \right) = \frac{(-1)^n}{x^{n+1}} \exp\left(\frac{1}{x}\right)$$