USB Data Logger

Spencer Julian, David Kauer, John Wyant, Jintao Zhang

Data Logger Functions

 Tracks all bytes being transferred to or from a USB device

- Transparent during communication
- Modifies all USB 2.0 or 3.0 handshake bytes to make the device run at USB 1.1
- Records all data bytes to a pre-initialized microSD card

Data Logger Usage Diagram

Operational Timeline

Data Logger Top-Level Architecture

Generic Success Criteria Results

- Test benches exist for all top-level components
- Data Logger synthesizes successfully
- Source and mapped versions behave identically with no timing errors
- A layout has been produced and passes geometry and connectivity checks.
- Design complies within most budgeted targets.
 - 11 pins
 - 140 MHz clock rate (7 ns)
 - 12 Mbps through USB, 50 Mbps through microSD
 - Core area too large at .787 mm² (vs .257 mm²)
 - Total area, however, hits target at 2.25 mm² precisely (vs. 1.97 mm² original calculated).

Data Logger Criteria Results

Correctly writes data to external microSD card

 Remains transparent when reading data from USB

- Recognizes token packets
- Modifies USB Protocol token to version 1.1

Layout, dimensions, and delays as generated by Encounter

Synthesis Critical Path: 1.78 ns Budgeted Critical Path: 4.3 ns

Total Area: 2.25 mm²

Test Results: USB 3.0 Modification

Test Results: Transparency

Test Results: Output to microSD card

Data Logger Project Conclusions

Tri-States are inconvenient

- microSD initialization is long
- Interception could be re-designed
- Component blocks could interact more cleanly

Discussion

Questions, Comments, Concerns

Test Case: USB 2.0 modification

Test case: USB Token Recognition

