Quantum Computing Assignment 5

Brennan W. Fieck

February 22, 2017

Problem E1. Pick one of the 4 Bell states $|\beta_{ij}\rangle$, i, j = 0, 1 (given on p. 75 of the textbook), and show that it is entangled.

Solution.

Most generally, to show that a 2-Qubit state $|\psi\rangle$ is entangled it must be shown that there are no values $(\alpha_0, \alpha_1, \beta_0, \beta_1) \in \mathbb{R}^4$ such that $|\psi\rangle = (\alpha_0|0\rangle + \alpha_1|1\rangle)(\beta_0|0\rangle + \beta_1|1\rangle$. Using the Bell state $|\beta_{00}\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$, we can see that this places the constraints that

$$\frac{1}{\sqrt{2}}|00\rangle = \alpha_0\beta_0|00\rangle \to \alpha_0 = \frac{1}{\beta_0\sqrt{2}}$$

and

$$\frac{1}{\sqrt{2}}|11\rangle = \alpha_1\beta_1|11\rangle \to \alpha_1 = \frac{1}{\beta_1\sqrt{2}}$$

However, since the Bell state has no $|01\rangle$ or $|10\rangle$ components, we also have the constraints:

$$0|10\rangle = \alpha_1\beta_0|10\rangle \rightarrow 0 = \alpha_1\beta_0$$

and

$$0|01\rangle = \alpha_0\beta_1|01\rangle \to 0 = \alpha_0\beta_1$$

This means that at least two of the values $(\alpha_0, \alpha_1, \beta_0, \beta_1) \in \mathbb{R}^4$ must be 0. However, according to the earlier constraints, setting any one of these values to 0 requires that some other value approach ∞ , which - strictly speaking - causes the group to lie outside \mathbb{R}^4 . Therefore, $|\beta_{00}\rangle$ cannot be written as the tensor product of two constituent states, which means that it is an entangled state.

Problem E2. Orthogonality on the Bloch sphere. Consider two points on the Bloch sphere: $|\psi\rangle$ with coordinates (θ, ϕ) and $|\chi\rangle$ with coordinates $(\pi - \theta, \phi + \pi)$. Show that $|\chi\rangle$ and $|\psi\rangle$ are orthogonal, i.e., $\langle \chi | \psi \rangle = 0$.

Solution.

States on the Bloch sphere with some coordinates (in spherical coordinates with r=1) (α, β) are represented in the form

$$\cos\left(\frac{\alpha}{2}\right)|0\rangle + e^{i\beta}\sin\left(\frac{\alpha}{2}\right)|1\rangle.$$

To prove orthogonality, we can convert each state to this form and directly take the inner product $(\langle \gamma | \sigma \rangle = (|\gamma|^*) |\sigma|)$

$$\begin{split} \langle \chi | \psi \rangle &= \chi^* \psi = \left(\cos \left[\frac{\theta}{2} \right] | 0 \rangle + e^{i\phi} \sin \left[\frac{\theta}{2} \right] | 1 \rangle \right)^* \left(\cos \left[\frac{\pi - \theta}{2} \right] | 0 \rangle + e^{i(\phi + \pi)} \sin \left[\frac{\pi - \theta}{2} \right] | 1 \rangle \right) \\ &= \left(\cos \left[\frac{\theta}{2} \right] \langle 0 | + e^{-i\phi} \sin \left[\frac{\theta}{2} \right] \langle 1 | \right) \left(\cos \left[\frac{\pi - \theta}{2} \right] | 0 \rangle + e^{i(\phi + \pi)} \sin \left[\frac{\pi - \theta}{2} \right] | 1 \rangle \right) \end{split}$$

Because the states $|0\rangle$ and $|1\rangle$ are defined to be orthonormal, we know that $\langle i|j\rangle = \delta_{ij}$ and so this product can be simplified:

$$\langle \chi | \psi \rangle = \cos \left[\frac{\theta}{2} \right] \cos \left[\frac{\pi - \theta}{2} \right] + e^{i(\phi + \pi - \phi)} \sin \left[\frac{\theta}{2} \right] \sin \left[\frac{\pi - \theta}{2} \right]$$

Now employ some trigonometric identities, including the double-angle formula:

$$\cos\left[\frac{\pi - x}{2}\right] = \sin\left[\frac{x}{2}\right] \to \langle \chi | \psi \rangle = \cos\left[\frac{\theta}{2}\right] \sin\left[\frac{\theta}{2}\right] + e^{i\pi} \sin\left[\frac{\theta}{2}\right] \sin\left[\frac{\pi - \theta}{2}\right]$$

$$\frac{\sin\left[2x\right]}{2} = \sin\left[x\right] \cos\left[x\right] \to \langle \chi | \psi \rangle = \frac{\sin\left[\theta\right]}{2} + e^{i\pi} \sin\left[\frac{\theta}{2}\right] \sin\left[\frac{\pi - \theta}{2}\right]$$

$$e^{i\pi} = -1 \to \langle \chi | \psi \rangle = \frac{\sin\left[\theta\right]}{2} - \sin\left[\frac{\theta}{2}\right] \sin\left[\frac{\pi - \theta}{2}\right]$$

$$\sin\left[\frac{\pi - x}{2}\right] = \cos\left[\frac{x}{2}\right] \to \langle \chi | \psi \rangle = \frac{\sin\left[\theta\right]}{2} - \sin\left[\frac{\theta}{2}\right] \cos\left[\frac{\theta}{2}\right]$$

$$\frac{\sin\left[2x\right]}{2} = \sin\left[x\right] \cos\left[x\right] \to \langle \chi | \psi \rangle = \frac{\sin\left[\theta\right]}{2} - \frac{\sin\left[\theta\right]}{2} = 0$$

and therefore $|\chi\rangle$ and $|\psi\rangle$ are orthogonal.