Complete representability for canonical extensions of representable cylindric algebras

Daniel Rogozin

1 The problem itself

- Given $C \in \mathbf{RCA}_{\omega}$, whether C^+ has a complete, ω -dimensional representation? The conjecture is yes. [5]
- Whether \mathbf{RCA}_{ω} is barely canonical. The conjecture is yes.

2 Atomic Representations

A representation of a Boolean algebra \mathcal{B} is an embedding h of \mathcal{B} to some field of sets.

Let $a \in \mathcal{B}$ be an element of a Boolean algebra \mathcal{B} , a is called an atom, if for every $b \in \mathcal{B}$ b < a implies b = 0. That is, an atom is a minimal non-zero element. At(\mathcal{B}) is the set of all atoms of \mathcal{B} .

Let \mathcal{B} be a Boolean algebra and \mathcal{F} a field of sets such that $h: \mathcal{B} \to \mathcal{F}$ is a representation of \mathcal{B} , then \mathcal{B} is a complete representation of \mathcal{B} , if for every $A \subseteq \mathcal{B}$ we have the following whenever ΣA is defined:

$$h(\Sigma A) = \bigcup h[A]$$

A representation h is called atomic, if $x \in h(1)$ there exists $b \in At(\mathcal{B})$ such that $x \in h(b)$.

Theorem 1. Let \mathcal{B} be a Boolean algebra, then \mathcal{B} is atomic iff \mathcal{B} is completely representable. See [4, Corollary 6].

3 BAOs and Duality

By default, we assume that all operators are at most unary. Here is the rigorous definition:

Definition 1.

- 1. Let $\mathcal{B} = \langle B, +, -, 0, 1 \rangle$ be a Boolean algebra. An operator is a function $\Omega : B \to B$ satisfying the following conditions:
 - Normality: $\Omega(0) = 0$
 - Additivity: $\Omega(b+b') = \Omega(b) + \Omega(b')$
- 2. Let I be an index set, a Boolean algebra with operators (BAO) is an algebra $\langle B, +, -, 0, 1, (\Omega_i)_{i \in I} \rangle$ such that $\langle B, +, -, 0, 1 \rangle$ is a Boolean algebra and for each $i \in I$ Ω_i is an operator.

Definition 2. Let $\mathcal{B} = \langle B, +, -, 0, 1, (\Omega_i)_{i \in I} \rangle$ be a BAO, then

1. An operator Ω is completely additive, if for every $X \subseteq B$ such that ΣX is defined, one has

$$\Omega(\sum X) = \sum_{x \in X} \Omega(x)$$

- 2. \mathcal{B} is completely additive, if for each $i \in I$ Ω_i is additive,
- 3. A class K of BAOs is completely additive, if every $B \in K$ is completely additive.

3.1 Atom structures and canonical extensions

Definition 3. Let I be an index set and $(\Omega_i)_{i\in I}$ a set of function symbols

- 1. A structure is a relational structrure $\mathcal{F} = \langle W, (R_i)_{i \in I} \rangle$ such that R_i is a binary relation symbol for a function symbol $\Omega_{i \in I}$ with the corresponding index,
- 2. Let \mathcal{B} be an atomic BAO of the signature I, the atom structure of \mathcal{B} , written as \mathfrak{AtB} , is a structure $\langle \operatorname{At}(\mathcal{B}), (R_i)_{i \in I} \rangle$ such that for all $a, b \in \operatorname{At}(\mathcal{B})$ and for all $i \in I$

$$\mathfrak{AtB} \models R_i(a,b) \text{ iff } \mathcal{B} \models a \leqslant \Omega_i(b)$$

3. Let $\mathcal{F} = \langle W, (R_i)_{i \in I} \rangle$ be an atom structure, the complex algebra of \mathcal{F} , written as $\mathfrak{Cm}\mathcal{F}$, is a $BAO \langle \mathcal{P}(W), \cup, -, \varnothing, W, (\Omega_{R_i})_{i \in I} \rangle$ such that for all $X \subseteq W$ and for each $i \in I$:

$$\Omega_{R_i}(X) = \{a \in W \mid \exists b \in X \mathcal{F} \models R_i(a,b)\}$$

Definition 4. Let $\mathcal{F} = \langle W, (R_i)_{i \in I} \rangle$ and $\mathcal{F}' = \langle W', (R'_i)_{i \in I} \rangle$, then a function $f : \mathcal{F} \to \mathcal{F}'$ is a bounded morphism, if the following holds:

- 1. xR_iy implies $f(x)R'_if(y)$;
- 2. $f(x)R'_iz$, then there exists $y \in W$ such that xR_iy and f(y) = z.

A bounded morphism $f: \mathcal{F} \to \mathcal{F}'$ is a p-morphism, if f is onto. $\mathcal{F} \twoheadrightarrow \mathcal{F}'$ iff there exists a p-morphism from \mathcal{F} onto \mathcal{F}' , or \mathcal{F}' is a p-morphic image of \mathcal{F} .

Definition 5. Let $\mathcal{F} = \langle W, (R_i)_{i \in I} \rangle$ is an inner substructure ¹ of $\mathcal{F}' = \langle W', (R'_i)_{i \in I} \rangle$, if $W \subseteq W'$ and the embedding $\mathcal{F} \hookrightarrow \mathcal{F}'$ is a bounded morphism. Let \mathbb{F} be a class atom structures, then $\mathbb{S}(\mathbb{F})$ is the closure of \mathbb{F} under generated subframes.

Let \mathbb{F} be a class of structures, define:

- 1. $\mathfrak{Cm}(\mathbb{F}) = \{ \mathcal{B} \mid \mathcal{B} \cong \mathfrak{Cm}(\mathcal{F}) \text{ for some } \mathcal{F} \in \mathbf{F} \}.$
- 2. $\mathbf{Up}(\mathbb{F})$ is the class of structures isomorphic to disjoint unions of elements of \mathbb{F} .
- 3. $\mathbf{S}(\mathbb{F})$ is the closure of \mathbb{F} under inner substructures.

Let A be a non-empty subset of a Boolean algebra \mathcal{B} , A is a *filter*, if A is closed under finite infima and it is upward closed. A is an ultrafilter, if it has no non-trivial extensions. That is, if $A \subseteq A'$, then $A' = \mathcal{B}$. This is a well-known fact that every filter can be extended to a maximal one using Zorn's lemma.

The following definition is due to, for example, [7, Definition 5.40].

¹Or alternatively, a generated subframe

Definition 6. Let $\mathcal{B} = \langle B, +, -, 0, 1, (\Omega_i)_{i \in I} \rangle$ be a BAO and $\mathbf{Spec}(\mathcal{B})$ the set of its ultrafilters. The ultrafilter frame of \mathcal{B} (or the canonical frame) is a relational structure $\mathcal{F}_{\mathcal{B}} = \langle \mathbf{Spec}(\mathcal{B}), R_{\Omega_i} \rangle$ such that for all ultrafilters U_1, U_2 one has

$$\mathbf{Spec}(\mathcal{B}) \models R_{\Omega_i}(U_1, U_2) \text{ iff } \{\Omega_i(b) \mid b \in U_1\} \subseteq U_2.$$

Given \mathcal{B} be a BAO, we denoted as \mathcal{B}^+ as the complex algebra of the canonical frame $\mathfrak{Cm}(\mathcal{F}_{\mathcal{B}})$, that is, the canonical extension of \mathcal{B} . A class of BAOs \mathbf{K} is canonical, if it is closed under canonical extensions. That is, $\mathcal{B}^+ \in \mathbf{K}$ whenever $\mathcal{B} \in \mathbf{K}$.

Theorem 2. Let \mathcal{A} , \mathcal{B} be BAOs,

- 1. There exists $\iota : \mathcal{A} \hookrightarrow \mathcal{A}^+$ such that $\iota : a \mapsto \{\gamma \in \mathbf{Spec}(\mathcal{A}) \mid a \in \gamma\}.$
- 2. $i: \mathcal{A} \hookrightarrow \mathcal{B} \text{ implies } i^+: \mathcal{A}^+ \hookrightarrow \mathcal{B}^+$

4 Representable cylindric algebras

Let α be an ordinal. Denote $\{f \mid f\alpha \to U\}$ as ${}^{\alpha}U$. x_i stands for x(i), where $x \in {}^{\alpha}U$ and $i < \alpha$. A subset of ${}^{\alpha}U$ is an α -ry relation on U. For $i, j < \alpha$, the i, j-diagonal D_{ij} is the set of all elements of ${}^{\alpha}U$ such that $y_i = y_j$.

If $i < \alpha$ and X is an α -ry relation on U, then the i-th cylindrification C_iX is the set of all elements of U that agree with some element of X on each coordinate except, perhaps, the i-th one. To be more precise,

$$C_i X = \{ y \in {}^{\alpha}U \mid \exists x \in X \forall i < \alpha \ (i \neq j \Rightarrow y_i = x_i) \}.$$

We define the following equivalence relation for $i < \alpha$ and $x, y \in {}^{\alpha}U$:

$$x \equiv_i y \Leftrightarrow \forall j \in \alpha \ (i \neq j \Rightarrow x(i) = y(j))$$

Then one may reformulate the definition of the i-th cylindrification in the following way:

$$C_i X = \{ y \in {}^{\alpha}U \mid \exists x \in X \ x \equiv_i y \}$$

According to this version of the definiton, one may think of the cylindrification as an ${f S}5$ modal operator.

Definition 7. A cylindic set algebra of dimension α is an algebra consisting of a set S of α -ry relation on some base set U with the constants and operations $0 = \emptyset$, $1 = {}^{\alpha}U$, \cap , -, the diagonal elements $(D_{ij})_{i,j<\alpha}$, the cylindrifications $(C_i)_{i<\alpha}$. A generalised cylindric set algebra of dimension α is a subdirect of cylindric algebras that have dimension α . Cs_{α} denotes the class of all cylindric set algebras of dimension α .

Definition 8. A cylindric algebra of dimension α is an algebra $\mathcal{C} = \langle \mathcal{B}, \{c_i\}_{i < \alpha}, \{d_{ij}\}_{i,j < \alpha} \rangle$ such that

- \mathcal{B} is a Boolean algebra, for each $i, j < \alpha$ c_i is an operator and $d_{ij} \in \mathcal{B}$
- For each $i < \alpha$, $a \le c_i a$, $c_i(a \cdot c_i b) = c_i a \cdot c_i b$ and $d_{ii} = 1$
- For every $i, j < \alpha$, $c_i c_j a = c_j c_i a$
- If $k \neq i, j < \alpha$, then $d_{ij} = c_k(d_{ij} \cdot d_{jk})$

• If $i \neq j$, then $c_i(d_{ij} \cdot a) \cdot c_i(d_{ij} \cdot -a) = 0$

 $\mathbf{C}\mathbf{A}_{\alpha}$ is the class of all cylindric algebras of dimension α .

One may define a representation of a cylindric algebra explicitly in the following way:

Definition 9. Let \mathcal{A} be a cylindric algebra of dimension α . A representation of \mathcal{A} over the non-empty domain X is a map $f: \mathcal{A} \hookrightarrow 2^{\alpha U}$ such that:

- 1. $f(1) = \bigcup_{i \in I} {}^{\alpha}X_i$ for some disjoint family $\{X_i\}_{i \in I}$ where each $X_i \subseteq X$
- 2. $h: A \to 2^{f(1)}$ is a representation of a Boolean reduct
- 3. for all $\lambda, \eta < \alpha$, $x \in h(d_{\lambda \eta})$ iff $x_{\lambda} = x_{\eta}$
- 4. for all $\lambda < \alpha$ and $a \in \mathcal{A}$, $x \in h(c_{\lambda}(a))$ iff there is $y \in X$ such that $x[\lambda \mapsto y] \in h(a)$

An α -dimensional cylindric algebra C is representable, if there exists a representation of h. \mathbf{RCA}_{α} is the class of all representable cylindric algebras that have dimension α . In particular, we are interested in the case $\alpha = \omega$.

It is well known that \mathbf{RCA}_{α} is a variety, \mathbf{RCA}_{α} ($\alpha \leq 2$) is finitely axiomatisable and \mathbf{RCA}_{α} ($2 < \alpha < \omega$) has no finite axiomatisation, see [3].

Let $A \in \mathbf{CA}_{\omega}$, then A has a complete representation, if its representation preserves all existing suprema. In other words, A is completely representable.

5 RCA $_{\omega}$ and canonicity

The following definition of an ω -frame is due to [6].

Definition 10. A cylindric ω -frame is a structure $\mathcal{F} = \langle W, (R_i)_{i < \omega}, (E_{ij})_{i,j < \omega} \rangle$ where $(R_i)_{i < \omega}$ are binary relations and $(E_ij)_{i,j < \omega}$ are unary relations such that, for all $i, j, k < \omega$:

- 1. Every R_i is an equivalence relation on W,
- 2. $R_i \circ R_j = R_j \circ R_i$, that is, the set $(R_i)_{i < \omega}$ forms a commutative semigroup under composition.
- 3. For all $x \in W$, $E_{ii}(x)$ holds.
- 4. For all $x, y, z \in W$, $xR_iy \& E_{ij}(y) \& xR_iz \& E_{ij}(y)$ implies y = z.
- 5. For all $x \in W$, $E_{ij}(x)$ iff there exists $y \in W$ such that xR_ky , $E_{ik}(y)$, and $E_{kj}(y)$.

 $\mathcal{C}\mathfrak{a}_{\omega}$ is the class of all ω -frames.

If $\mathcal{F} \in \mathcal{C}\mathfrak{a}_{\omega}$ and $x \in \mathcal{F}$, then \mathcal{F}^x is a generated subframe generated by x, which is defined standardly. Generally, \mathcal{F}_1 is a generated subframe of \mathcal{F}_2 , if $\underline{\mathcal{F}_1} \subseteq \underline{\mathcal{F}_2}$ and $\underline{\mathcal{F}_1}$ is closed under under R_{i2} equivalences for every $i < \omega$. That is:

For all
$$i < \omega$$
 and $x \in \mathcal{F}_1$, we have $R_{i2}(x) \subseteq \mathcal{F}_1$ and, thus, $R_{i1}(x) = R_{i2}(x)$.

We have the following connection betweens ω -frames and their generated subframes, which is standard for modal logic:

Proposition 1. Let $\mathcal{F} \in \mathcal{C}\mathfrak{a}_{\omega}$, then

1.
$$\mathcal{F} = \coprod_{x \in \mathcal{F}} \mathcal{F}^x$$
,

2.
$$\mathfrak{Cm}(\mathcal{F}) \cong \prod_{x \in \mathcal{F}} \mathfrak{Cm}(\mathcal{F}^x),$$

3. $\mathfrak{Cm}(\mathcal{F}^x)$ is subdirectly irreducible.

It is known that $\mathcal{C}\mathfrak{a}_{\omega}$ forms an elementary class, since one can express the conditions of an ω -frame with the first-order language.

The following fact is by Venema, see [6, Proposition 2.1.5]:

Proposition 2. An ω -frame \mathcal{F} is cylindric iff $\mathfrak{Cm}(\mathcal{F})$ is a cylindric algebra of dimension ω .

A cylindric ω -frame \mathcal{F} is completely representable, if $\mathfrak{Cm}(\mathcal{F})$ is completely representable as a cylindric algebra of dimension ω .

We are interested in the special case of cylindric ω -frames called Cartesian structure of dimension ω . To be more precise:

Definition 11. Let U be a set and $V \subseteq {}^{\omega}U$ be a non-empty subset of the full Cartesian space of dimension ω , then an α -dimension Cartesian structure generated by V is an ω -frame $\mathfrak{S}(V) = \langle V, (R_i)_{i < \omega}, (E_{ij})_{i,j < \omega} \rangle$ such that:

1.
$$R_i = \{(w, v) \mid w, v \in V, w_k = w_k, k < \omega, i \neq k\}$$

2.
$$E_{ij} = \{ w \in V \mid w_i = w_j \}$$

 $\mathfrak{S}(^{\omega}U)$ is the full ω -dimensional Cartesian structure. $\mathcal{F}\mathfrak{ct}_{\omega}$ is the class of all full ω -dimensional Cartesian structures.

Clearly $\mathcal{F}\mathfrak{ct}_{\omega} \subseteq \mathcal{C}\mathfrak{a}_{\omega}$.

We have the following connection between \mathbf{RCA}_{ω} , \mathbf{IGs}_{ω} , and complex algebras of full Cartesian structures:

$$\mathbf{RCA}_{\omega} = \mathbf{IGs}_{\omega} = \mathbf{S\mathfrak{Cm}Ud}\mathcal{F}\mathfrak{ct}_{\omega} = \mathbf{SP\mathfrak{Cm}}\mathcal{F}\mathfrak{ct}_{\omega}.$$

This follows from the fact that $\mathbf{Cs}_{\omega} = \mathfrak{CmFct}_{\omega}$. Every generalised cylindric set algebra is a subdirect product of cylindric set algebras, thus, a generalised cylindric set algebra is a complex algebra of disjoint union of some full Cartesian spaces. But \mathbf{RCA}_{ω} is the closure of \mathbf{Cs}_{ω} under isomorphism.

Definition 12. The weak Cartesian space with base U and dimension ω determined by $x \in {}^{\omega}U$ is the set:

$$^{\omega}U^{(x)} = \{ y \in {}^{\omega}U \mid |\{k < \omega \mid x_k \neq y_k\}| < \aleph_0 \}$$

 $\mathfrak{S}(^{\omega}U^{(x)})$ is a weak Cartesian structure of dimension ω . Wet $_{\omega}$ is the class of all weak Cartesian structure of dimension ω up to isomorphism.

Note that we have $\mathcal{W}\mathfrak{ct}_{\omega} \subseteq \mathcal{Ca}_{\omega}$.

Every cylindric set algebra is a subalgebra of some complex algebra induced by an ω -dimensional Cartesian structure. In other words,

Lemma 1. $ICs_{\omega} = S\mathfrak{Cm}\mathcal{F}\mathfrak{ct}_{\omega}$.

In this section, we reproduce the results related to characterisation \mathbf{RCA}_{ω} . The following results are due to Goldblatt [2]. This denotes that a cylindric algebra of dimension algebra is representable iff it is isomorphic to a subalgebra of the complex algebra of disjoint sum of some full ω -dimensional Cartesian structure. Assuming the duality, this is equivalent to the standard definition of representability formulated in terms of sublagebras of subdirect products.

$$\label{eq:loss_def} \textbf{Lemma 2. } \mathbf{RCA}_{\omega} = \mathbf{S} \ \mathfrak{CmSUd} \mathcal{F} \mathfrak{ct}_{\omega} = \mathbf{S} \ \mathfrak{CmSUd} \mathcal{W} \mathfrak{ct}_{\omega} = \mathbf{IGws}_{\omega}$$

$$Proof.$$

Here we use the following fact related to canonical varieties generated by some class of complex algebras. Let \mathbf{K} be an elementary class of relational structures, then:

If **K** is closed under p-morphic images, generated subframes, and disjoint unious, then \mathbf{SCmK} is a canonical variety.

One may think of this fact a more abstract version of Fine's theorem which claims that every elementary modal logic is canonical [1]. This version denotes the same fact, but it is formulated in terms of varieties BAOs generated by complex algebras of some atom structures.

This is a specialised version of [2, Theorem 4.4] formulated for dimension ω .

Theorem 3. RCA $_{\omega}$ is a canonical variety.

Proof. By Lemma 2, \Box

6 Representability games

References

- [1] Kit Fine. Some connections between elementary and modal logic. In *Studies in Logic and the Foundations of Mathematics*, volume 82, pages 15–31. Elsevier, 1975.
- [2] Robert Goldblatt. Elementary generation and canonicity for varieties of boolean algebras with operators. *Algebra Universalis*, 34(4):551–607, 1995.
- [3] Leon Henkin, J. Donald Monk, and Alfred Tarski. Cylindric algebras. part ii. *Journal of Symbolic Logic*, 53(2):651–653, 1988.
- [4] Robin Hirsch and Ian Hodkinson. Complete representations in algebraic logic. *Journal of Symbolic Logic*, pages 816–847, 1997.
- [5] Robin Hirsch and Ian Hodkinson. Relation algebras by games. Elsevier, 2002.
- [6] Yde Venema. Cylindric Modal Logic, pages 249–269. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
- [7] Yde Venema, Maarten de Rijke, and Patrick Blackburn. *Modal logic*. Cambridge tracts in theoretical computer science 53. Cambridge University Press, 4. print. with corr edition, 2010.