

Challenges

Free-viewpoint human body synthesis with sparse camera views

Geometry-Guided Progressive NeRF for Generalizable and Efficient Neural Human Rendering

Mingfei Chen^{1,2}, Jianfeng Zhang³, Xiangyu Xu¹, Lijuan Liu¹, Yujun Cai¹, Jiashi Feng¹, and Shuicheng Yan¹

Sea AI Lab

² University of Washington

National University of Singapore

(b) Rendering pipeline: our efficient geometry-guided progressive pipeline (left) vs. previous (right). The amount of sampling points and forward time in blue are measured on the same data and model parameters.

- > The human body is highly non-rigid and commonly has selfocclusions over body parts, which may lead to ambiguous results
- High computational and memory cost of NeRF-based methods severely hinder human synthesis with accurate details in highresolution.

$\widetilde{F}^v \in R^{(\#p_i) \times d}$ shared learnt vertex **Volume Rendering** $Q_l \in R^d$ $\mathbf{v} \in \mathbf{R}^d$ μV $F_m(\pi(v_{lm})) \in R^d$ $F_m(\pi(p_i)) \in R^d$ (a) Geometry-guided Multi-view Feature Integration **Backbone:** feature extraction (b) Density Network (c) Appearance Network

Solutions

- > Propose a novel geometry-guided progressive NeRF (GP-NeRF) for generalizable and efficient human body rendering, which reduces the computational cost of rendering significantly and also gains higher generalization capacity simply based on the single-frame sparse views.
- > Propose an effective geometry-guided multi-view feature integration approach, where we let each view compensate the low-quality occluded information for other views with the guidance of the geometry prior.

Quantitative Results

	Dataset		Per-scene	Unseen		Results			
Method	Train	Test	training	Pose	Body	PSNR (†)	SSIM (↑)		
Performance on training frames									
NT [37]	ZJU-7	ZJU-7	✓	X	X	23.86	0.896		
NHR [39]	ZJU-7	ZJU-7	✓	X	X	23.95	0.897		
NB [28]	ZJU-7	ZJU-7	✓	X	X	28.51	0.947		
NHP [12]	ZJU-7	ZJU-7	X	X	X	28.73	0.936		
GP-NeRF (Ours)	ZJU-7	ZJU-7	X	X	X	28.91	0.944		
Performance on unseen frames from training data									
NV [19]	ZJU-7	ZJU-7	✓	✓	X	22.00	0.818		
NT [37]	ZJU-7	ZJU-7	✓	✓	X	22.28	0.872		
NHR [39]	ZJU-7	ZJU-7	✓	✓	X	22.31	0.871		
NB [28]	ZJU-7	ZJU-7	✓	✓	X	23.79	0.887		
NHP [12]	ZJU-7	ZJU-7	X	✓	X	26.94	0.929		
GP-NeRF (Ours)	ZJU-7	ZJU-7	X	✓	X	27.92	0.934		
Performance on test frames from test data									
NV [19]	ZJU-3	ZJU-3	✓	✓	X	20.84	0.827		
NT [37]	ZJU-3	ZJU-3	✓	✓	X	21.92	0.873		
NHR [39]	ZJU-3	ZJU-3	✓	✓	X	22.03	0.875		
NB [28]	ZJU-3	ZJU-3	✓	✓	X	22.88	0.880		
PVA [30]	ZJU-7	ZJU-3	X	✓	✓	23.15	0.866		
Pixel-NeRF [41]	ZJU-7	ZJU-3	X	✓	✓	23.17	0.869		
NHP [12]	ZJU-7	ZJU-3	X	✓	✓	24.75	0.906		
GP-NeRF (Ours)	ZJU-7	ZJU-3	X	✓	✓	25.96	0.921		
Generalization performance across datasets									
NHP [12]	AIST	ZJU-3	X	✓	✓	17.05	0.771		
GP-NeRF (Ours)	THUman-7	ZJU-3	X	1	1	24.74	0.907		
GP-NeRF (Ours)	THUman-all	ZJU-3	X	1	1	25.60	0.917		

THP [10]	0.063	4.03	4.03	1160	14.20
IHR [<mark>34</mark>]	0.063	4.03	4.03	636	10.20
IB [<mark>24</mark>]	0.063	4.03	4.03	611	21.80
$3P-NeRF^{\dagger}$ $3\times$	0.063 (-0.0%)	4.03 (-0.0%)	4.03 (-0.0%)	589 (-3.6%)	14.53 (-33.3%)
$3P$ -NeRF † 2×	0.063 (-0.0%)	4.03 (-0.0%)	4.03 (-0.0%)	567 (-7.2%)	20.74 (-4.9%)
SP-NeRF 2×	0.039 (-38.1%)	0.95 (-76.4%)	0.24 (-94.0%)	243 (-60.2%)	9.88 (-54.7%)
P-NeRF 1×	0.039 (-38.1%)	0.95 (-76.4%)	0.24 (-94.0%)	175 (-71.4%)	14.25 (-34.6%)
lethod	T^d -MLP (ms) (\downarrow)	T^d -total (ms) (\downarrow)	T^c -MLP (ms) (\downarrow)	T^c -total (ms) (\downarrow)	PSNR (†)
	100 =0		4.5.00	11500	

 $\#\mathbf{p}^{d}\left(\mathbf{M}\right)\left(\downarrow\right)$

 $\#\mathbf{r}(\mathbf{M})(\downarrow)$

 $\overline{\text{GP-NeRF}^{\dagger} 2\times 108.58}$ GP-NeRF 2× 28.08 (-74.1%) 83.65 (-63.1%) 10.02 (-93.1%) 26.67 (+0.4%) GP-NeRF 1× 23.55 (-78.3%) 74.07 (-67.3%) 9.50 (-93.5%) 10.27 (-93.0%) 26.67 (+0.4%)

Our GP-NeRF has achieved state-of-the-art performance on the ZJU-MoCap dataset, taking only 175ms on RTX 3090 and reducing time for rendering per image by over 70.

Qualitative Results

GT Ours GT

(c) Seen dataset, unseen body (human #2)

(d) Seen dataset, unseen body on THUman dataset (for each image pair, GT in the left, our results in the right)

(a) Seen human body

- Ours can stick to the normal human body geometry better than methods without geometry priors and can reconstruct more accurate lighting conditions.
- Our synthesis can reconstruct very close human body shape and clothes details like hoods and folds on unseen human bodies.

Our 3D reconstruction results