# PRESTO: Progressive Pretraining **Enhances Synthetic Chemistry Outcomes**







He Cao<sup>•</sup>, Yanjun Shao<sup>•</sup>, Zhiyuan Liu, Zijing Liu, Xiangru Tang, Yuan Yao, Yu Li

• equal contribution



#### Motivation

- > Multimodal Large Language Models (MLLMs) in in biomolecular disciplines neglect multiple molecular graph interactions and lack clear downstream tasks to validate framework effectiveness.
- > The effectiveness of MLLMs is influenced by inconsistent pretraining strategies, underscoring the necessity for systematic evaluation to optimize performance in synthetic chemistry.

## **Progressive Pretraining Strategy: PRESTO**

- ✓ Bridges molecule-text modality gap
- ✓ Enhances multi-graph understanding
- ✓ Tailored for synthetic chemistry tasks



- Stage1: Molecule-Text Alignment
  - Cultivates cross-modal alignment ability
- **Stage2: Domain Incremental Pretraining**
- Focuses on multi-graph understanding
- Injects domain knowledge of synthetic chemistry
  - Interleaved text-molecule understanding
  - Molecule name/format conversion tasks

# Interleaved Dataset for Stage-2 Pretraining

- Over 3 million detailed synthetic procedures from USPTO-Patent [Lowe, 2017]
  - Use BERN2 [Sung et al., 2022] to extract molecule entities
- Molecule name conversions:
  - IUPAC [Favre and Powell, 2014], chemical formulas [Hill, 1900], and SMILES [Weininger, 1988]



#### **Dataset for PRESTO Downstream Tasks**



## RESTO supports various synthetic chemistry tasks:

- Reaction prediction
- Forward reaction prediction
- Retrosynthesis prediction
- Reaction condition prediction
- Reagent
- Catalyst
- Solvent
- Reaction condition recommendation
- Reaction type classification
- Yield prediction

## Addressing Data Leakage in Benchmarks

- **Issues:** Data leakage in Mol-Instruction [Fang et al., 2023] benchmark
  - Overlapping (i.e., high scaffold similarities, avg  $\approx$  0.8) between train and test sets)
  - **Consequences:** Overestimated performance, limited generalizability
- Our solution:
  - Non-overlapping, scaffold-based splits who more challenging test set
  - Unique test set reactions, molecular scaffold splitting (similarity threshold: 0.5-0.6)





#### **Experiments: Key Findings**



- Progressive pretraining strategy enhances performance
  - ✓ Align modalities → Domain incremental pretrain → Downstream SFT
- Molecular representation granularity matters

# **Experiments: Key Findings**



- Base and instruction-tuned LLMs show similar capabilities
- Interleaved data and name-conversion data is crucial for domain knowledge injection.

#### **Additional Findings**





- \* Scaling SFT Train Time
- Updating LLMs is essential
  - full-finetune > PEFT to get better results on domain tasks
- Balancing SFT training time optimizes downstream task performance
  - 3-epoch is OK
- Coverage and diversity of the SFT dataset are critical for better results

Training Size Downscale Factor

## **Conclusions and Future Directions**

- > PRESTO: A versatile framework for synthetic chemistry. Bridges modality gap and enhances LLM multi-graphs understanding. Potential to advance synthetic chemistry and drug discovery.
- > Future Work:
  - > Expand to including 3D molecular representations.
  - > Enhance dialogue capabilities. Develop larger domain-specific LLMs.