Exercice 1:

Pour réaliser ces graphiques il faut calculer les effectifs et ensuite les secteurs angulaires. Ici on arrondit la fréquence au millième.

Modalité	Effectif (ni)	Fréquence <i>(f_i)</i>	Secteur angulaire (α_i)
TVA	348	0,415	149,4
Impôt sur le revenu	163	0,195	70,2
Impôt sur les sociétés	71	0,085	30,6
Taxe s. produits pétroliers	54	0,064	23,04
Autres impôts	161	0,192	69,12
Recettes non fiscales	41	0,049	17,64
TOTAL	838	1	360

1)

Diagramme à tuyaux d'orgue

On peut le réaliser avec l'effectif ou la fréquence. L'axe des ordonnées ne dépasse jamais l'effectif total ou 1.

2)

Diagramme circulaire

On le réalise avec le secteur angulaire.

Exercice 2:

Salaire annuel en F	Nombre d'ouvriers	Nombre d'ouvrières	Fréquence pour les ouvriers	Fréquence cumulées (ouvriers)	Fréquence pour les ouvrières	Fréquence cumulées (ouvrieres)
Moins de 35000	3145	2664	0,074	0,074	0,222	0,222
[35000,4000 0[2465	2640	0,058	0,132	0,22	0,442
[40000,4500 0[4675	2196	0,11	0,242	0,183	0,625
[45000,5500 0[11220	2808	0,264	0,506	0,234	0,859
[55000,6500 0[9180	996	0,216	0,722	0,083	0,942
[65000,8500 0[8160	516	0,192	0,914	0,043	0,985
85000 et plus	3655	180	0,086	1	0,015	1
<u>Total</u>	42500	12000	1		1	

1)

On ne connait pas l'amplitude de la classe « Moins de 35000 », de plus elle change de 5000 elle passe à 10000 puis 20 000.

Vu qu'on ne connait pas la borne inférieure de la première classe et la borne supérieure de la dernière classe nous allons les calculer.

Première classe :

- Ouvrier :

On a une masse salariale de 78,625 millions donc 78 625 000.

Ainsi le salaire moyen est de 78 625 00 / 3145 = 25 000.

Il représente le centre des salaires. Il y a une différence de $35\,000 - 25\,000 = 10\,000$ entre le centre et la borne supérieure.

Ainsi la borne inférieure est à : 25 000 - 10 000 = 15 000.

On a une amplitude de : 35 000 – 15 000 = 20 000.

- Ouvrière :

On a une masse salariale de 66,600 millions donc 66 600 000.

Ainsi le salaire moyen est de 66 600 000 / 2664 = 25 000.

Il représente le centre des salaires. Il y a une différence de 35 000 − 25 000 = 10 000€ entre le centre et la borne supérieure.

Ainsi la borne inférieure est à : 25 000 - 10 000 = 15 000.

On a une amplitude de : 20 000.

Dernière classe (7^{ième}):

- Ouvrier :

On a une masse salariale de 345,225 millions donc 345 225 000.

Ainsi le salaire moyen est de 345 225 000 / 3655 = 94 500. (On a arrondi à la centaine)

Il représente le centre des salaires. Il y a une différence de **94500 – 85000 = 9 500** entre le centre et la borne inférieure.

Ainsi la borne supérieure est à **94500 + 9500 = 104 000**.

On a une amplitude de 19 000.

- Ouvrière :

On a une masse salariale de 16,650 millions donc 16 650 000.

Ainsi le salaire moyen est de : 16 650 000 / 180 = 92 500.

Il représente le centre des salaires. Il y a une différence de **92500 – 85000 = 7 500** entre le centre et la borne inférieure.

Ainsi la borne supérieure est à 92500 + 7500 = 100 000.

On a une amplitude de 15 000.

Dessiner la courbe cumulative : la fréquence est associée à la borne supérieure. La borne inférieure de la première classe est à 0 et la bonne supérieure de la dernière classe est à 1.

Calcul de la médiane :

Qui dit médiane dit 50% des valeurs plus petite et 50% plus grande. Le salaire médian devrait être le salaire correspondant à la fréquence 0,5. On l'écrira (μ ,0,5).

La médiane devrait se trouver dans la classe [45000; 55000[.

Ainsi on obtient les points : (4500 ;0,245) et (55 ;0,506)

On va calculer le coefficient directeur de notre courbe avec la formule : $\frac{x_2 - x_1}{y_2 - y_3}$

$$\leftrightarrow \frac{n-45}{0,506-0,242} = \frac{55-45}{0,506-0,242}
\leftrightarrow \frac{n-45}{0,258} = \frac{10}{0,264}
\leftrightarrow n-45 = (\frac{10}{0.264}) * 0.258
\leftrightarrow n-45 = 9,77
\leftrightarrow n = 9,77 + 45
\leftrightarrow n = 54,77$$

2)

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{7} n_i c_i \text{ , ou } c_i \text{ est le millieu de la classe } n^\circ = i$$

$$\leftrightarrow \sum_{i=1}^{7} f_i c_i$$

$$\leftrightarrow \frac{1}{42500} [3145 * 2500 + 2465 * 37500 + 4675 * 42500 + 11200 * 50000 + 9180 * 60000 + 81600 * 75000 + 3655 * 94500]$$

$$= 57.387$$

Exercice 3:

	ni	Ni	fi	α_i	h _i *100	Fi	
[10,20[9	9	0,0978	10	0,978	0,0978	
[20,40[26	35	0,2826	20	1,413	0,38	
[40,50 [19	54	0,2065	10	2,065	0,587	
[50,80[24	78	0,2608	30	0,869	0,848	
[80,100[14	92	0,1522	10	0,7511	1	
<u>Total :</u>	92		1				

<u>0)</u>

Calcule du 5^{ième} effectif:

$$n_5 = 92 - 78 = 14$$

1)

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{5} n_i c_i$$

$$\leftrightarrow \frac{1}{92} [9 * 15 + 26 * 30 + 19(\frac{40 + x}{2}) + 24(\frac{80 + x}{2}) + 14 * 90] = 49,89$$

$$\leftrightarrow \frac{1}{92} [135 + 780 + 380 + \frac{19x}{2} + \frac{24x}{2} + 960 + 1260] = 49,89$$

$$\leftrightarrow [\frac{43x}{2} + 3515] = 92 * 49,89$$

$$\leftrightarrow \frac{43x}{2} = 92 * 49,89 - 3515$$

$$\leftrightarrow x = \frac{2(92 * 49,89 - 3515)}{43}$$

$$\leftrightarrow x = 50$$

2)

$$\frac{N}{2} = \frac{92}{2} = 46$$

$$\mu \in [40, x[$$

Les points pour le calcul de la médiane sont : (40;35), (45,79;46), (x;54)

$$\leftrightarrow \frac{x - 40}{54 - 35} = \frac{45,79 - 40}{46 - 35} = \frac{5,79}{11}$$
$$\leftrightarrow x - 40 = 19 * \frac{5,79}{11} = 10$$

 $\chi = 30$

3)

$$100 * h_i = \frac{f_i}{\alpha_i} * 100$$

- Classe modale = **[40,50**[
- $M_0 = 45$

4)

- L'effectif 1 ier quartile théorique n/4 = 92/4 = 23, $Q_1 \in [20,40[$
- L'effectif 3 ième quartile théorique 3n/4 = 92/4 = 69, $Q_3 \in [50,80[$
- Les points pour calculer Q₁: (20;9), (Q₁;23), (40;35)

$$\frac{Q_1 - 20}{23 - 9} = \frac{40 - 20}{35 - 9} = \frac{20}{26}$$

$$\leftrightarrow Q_1 - 20 = 14 * \frac{20}{26} = 10,77$$

$$\rightarrow Q_1 = 20 + 10,77 = 30,77$$

- Les points pour calculer Q₃: (50;54), (Q₃;69), (80;78)

$$\frac{Q_3 - 50}{69 - 54} = \frac{80 - 50}{78 - 54} = \frac{30}{24}$$

$$\leftrightarrow Q_3 - 50 = 15 * \frac{30}{24} = 18,75$$

$$\rightarrow Q_3 = 50 + 18,75 = 68,75$$

⇒ L'intervalle interquartile est [30,77 ;68,75[.

Box plot

5)

6)

- Moyenne:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{5} n_i c_i = 49,89$$

- Variance :

$$Var(X) = \frac{1}{n} \sum_{i=1}^{5} n_i (x_i - \bar{X})^2$$

$$= \frac{1}{n} \sum_{i=1}^{5} n_i c_i^2 - (\bar{X})^2$$

$$= \frac{1}{92} [9 * 15^2 + 20 * 30^2 + 19x45^2 + 24 * 65^2 + 14 * 90^2] - (48,89)^2$$

$$= 540,3357$$

- Coefficient de Fisher :

$$\mu_3 = \frac{1}{n} \sum_{i=1}^{5} n_i (c_i - \bar{X})^3$$

$$= \frac{1}{92} [9 * (15 - 49,89)^3 + 20 * (30 - 49,89)^3 + 19 * (45 - 49,89)^3 + 24 * (65 - 49,89)^3 + 14 * (90 - 49,89)^3]$$

$$= 4830,033$$

$$\sigma^3 = (\sqrt{Var(X)})^3 = (\sqrt{Var(540,3357)})^3 = 12560.169$$

$$\gamma_i = \frac{\mu_3}{\sigma^3} = \frac{4830,033}{12560,169} = 0.3845$$

<u>Conclusion</u>: La série statistique n'est pas symétrique. Elle est oblique à gauche et étalée à droite

7) //

Exercice 4:

Dépense en	Effectif	Fi	hi	100h _i	Ni	
10 ³ francs	n _i					
[0,4[6	0.06	4	1,5	6	
[4,8[25	0.25	4	6,25	31	
[8,12[24	0.24	4	6	55	
[12, <mark>16</mark> [17	0.17	4	4.25	72	
[16, 22 [14	0.14	6	2.35	86	
[22, 30 [11	0.11	8	1.37	97	
[30, 42 [3	0.03	12	0.25	100	
<u>Total :</u>	<u>100</u>	<u>1</u>				

 $n_2 + n_3 + 51 = 100 \Leftrightarrow n_2 + n_3 = 49$

Les point pour calculer d4 sont :

 $(8; 6+n_2), (9,5; 40), (12, 6+n_2+n_3)$

$$\frac{40-6-n_2}{9,5-8} = \frac{6+n_2+n_3-6+n_2}{12-8} = \frac{n_3}{4}$$

$$\frac{34-n_2}{1,5} = \frac{n_3}{4} \leftrightarrow 34-n_2 = \frac{1,5}{4}n_3$$

$$136-4n_2 = 1,5n_3 \leftrightarrow 4-n_2+1,5n_3 = 136$$

$$n_2 + n_3 = 49 * -1,5$$

 $4n_2 + 1,5n_3 = 136$
 $-1,5n_2 -1,5n_3 = -73,5$
 $4n_2 + 1,5n_3 = 136$
 $n_2 + n_3 = 49$
 $2,5n_2 = 62,5$
 $n_3 = 24 \text{ et } n_2 = 25$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{5} n_i c_i$$

$$\leftrightarrow \frac{1}{100} [6 * 2 + 25 * 6 + 24 * 10 + 17(\frac{12 + x}{2}) + 14(\frac{x + 22}{2}) + 11 * 26 + 3 * 36]$$

$$\leftrightarrow \frac{1}{100} [12 + 150 + 240 + 102 + + \frac{17x}{2} + \frac{14x}{2} + 154 + 286 + 108] = 13$$

$$\leftrightarrow [\frac{31x}{2} + 1052] = 1300$$

$$\leftrightarrow \frac{31x}{2} = 1300 - 1052 = 248$$

$$\leftrightarrow x = \frac{248 * 2}{31}$$

$$\leftrightarrow x = 16$$

Q3 [16,22], les points pour calculer Q3 sont : (16,72) (Q3; 75) (22; 97)

$$\frac{Q_3 - 16}{75 - 72} = \frac{22 - 16}{86 - 72} = \frac{6}{14}$$

$$Q_3 - 16 = \frac{3 * 6}{14} = \frac{18}{14} = 1.286$$

$$Q_3 = 17.286$$

$$Var(X) = \frac{1}{n} \sum_{i=1}^{7} n_i (x_i - \bar{X})^2$$

$$= \frac{1}{n} \sum_{i=1}^{7} n_i c_i^2 - (\bar{X})^2$$

$$= \frac{1}{100} [6 * 2^2 + 25 * 6^2 + 24 * 10^2 + 17 * 14^2 + 14 * 19^2 + 11 * 26^2 + 3$$

$$* 36^2] - (13)^2$$

$$= 61.34$$

$$\gamma_1 = \frac{1}{n} \sum_{i=1}^{7} n_i (x_i - \bar{X})^3 = 465$$

$$\mu_1 = \frac{\mu_3}{(\sqrt{Var(X)})^3} = 0,968$$

Exercice 5:

Exercice 6:

$$Var(X) = 4.93, \ \sum_{i=1}^{k} fixi^2 = 166.24, \sum_{i=1}^{k} nixi^2 = 1905$$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{\kappa} nixi = \frac{1905}{n_2}$$

$$Var(X) = 166,23 - (\frac{1905}{n})^2 = 4.93$$

$$166,23 - 4.93 = (\frac{1905}{n})^2$$

$$161,3 - 4.93 = (\frac{1905}{n})^2$$

$$n = \frac{1905}{\sqrt{161.3}} = 150$$

$$f_1 = F_1 = 0.04$$

 $f_2 = F_2 - F_1 = 0.14 - 0.04 = 0.1$
 $f_3 = F_3 - F_2 = 0.44 - 0.14 = 0.3$
 $f_4 = F_4 - F_3 = 0.96 - 0.44 = 0.52$
 $f_5 = F_5 - F_4 = 1 - 0.96 = 0.04$
 $f_1 = n_1/n \Leftrightarrow n_1 = n*f_1$
 $n_1 = 6$
 $n_2 = 15$
 $n_3 = 45$
 $n_4 = 78$
 $n_5 = 6$

Exercice 7:

X\Y	15	25	35	45	Marge de X
-1	40	168	320	68	596 => n ₁ .
0	54	28	48	16	176 => n ₂ .
1	128	32	24	44	228 => n ₃ .
Marge de Y	252	228	392	128	10000
	(n _{.1})	(n _{.2})	(n _{.3})	(n _{.4})	(n)

Les distributions marginales des effectifs sont :

Pour X: (596; 176; 228)

Pour Y: (252; 228; 392; 128)

Les distributions marginales des fréquences :

$$f_i = \frac{n_i}{n}$$

Pour X: (0.596; 0.176; 0.228)

Pour Y: (0.252; 0.228; 0.392; 0.128)

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{k} n_i x_i = \frac{1}{1000} [-1 * 596 + 0 * 176 + 1 * 228] = -0.368$$

$$Var(X) = \frac{1}{n} \sum_{i=1}^{k} n_i x_i^2 - \bar{X}^2 = \frac{1}{1000} [-1 * 596^2 + 0 * 176^2 + 1 * 228^2] - (-0.368)^2 = 0.688576$$

$$Y = \frac{1}{n} \sum_{j=1}^{l} n_j y_j = \frac{1}{1000} [252 * 15 + 228 * 25 + 392 * 35 + 128 * 45] = 28.96$$

$$Var(Y) = \frac{1}{n} \sum_{j=1}^{l} n_j x_j^2 - \bar{X}^2 = \frac{1}{1000} [252 * 15^2 + 228 * 25^2 + 392 * 35^2 + 128 * 45^2] - (28.96)^2$$

$$= 99.9184$$

Distribution de Y sachant X = 0

$$f_{j/2} = \frac{n2j}{n2.}$$

$$f_{1/2} = \frac{84}{176} = 0.477$$

$$f_{2/2} = \frac{28}{176} = 0.159$$

$$f_{3/2} = \frac{48}{176} = 0.273$$

$$f_{4/2} = \frac{16}{176} = 0.091$$

$$Y = \frac{1}{n_2} \sum_{j=1}^{l} n_{2j} y_j = \frac{1}{176} [84 * 15 + 28 * 25 + 48 * 35 + 16 * 45] = 24.772$$

$$Var(Y)_2 = \frac{1}{n} \sum_{j=1}^{l} n_{2j} x_j^2 - Y_2^2 = \frac{1}{176} [84 * 15^2 + 28 * 25^2 + 48 * 35^2 + 16 * 45^2] - (24.772)^2$$

$$= 111,348016$$

$$O_2(Y) = \sqrt{Var(Y)_2} = \sqrt{111,348016} = 10.552$$

$$n_{ij} = \frac{n_{i.} * n_{.j}}{n}$$

X\Y	15	25	35	45
-1	150.2	135.89	233.63	76.29
0	44.35	40.128	68.99	22.528
1	57.46	51.984	89.376	29.184

Exercice 8:

X\Y	5-8	8-10	10-12	12-15	15-19	Marge de <u>X</u>
5-8	9	12	1	3	0	25
8-10	3	16	12	13	0	41
10-12	0	1	30	13	1	45
12-15	0	0	3	24	8	35
15-19	0	0	0	1	3	4
Marge de	12	29	46	51	12	150
<u>Y</u>						

Diagramme différentiel pour une variable

Continue = Histogramme

Diagramme intégral = courbe cumulative

Fréquences relatives pour X

$$f_1 = 0.167$$

$$f_2 = 0.273$$

$$f_3 = 0.3$$

$$f_4 = 0.233$$

$$f_5 = 0.027$$

$$h_1 = \frac{f_{1.}}{a_1} = \frac{25/150}{3} = \frac{25}{450} = 0.059$$

$$h_2 = 0.136$$

$$h_3 = 0.15$$

$$h_4 = 0.077$$

$$h_5 = 0.0066$$