

Chapter 11: Graphs

Dr. Sirasit Lochanachit

Outline

Graphs

- Definition, elements and types
- Graph Representation

Graph Algorithms

- Traversal
 - Depth-first
 - Breadth-first
- Shortest Path

What is a Graph?

- A graph is a set of objects, called vertices or nodes, where the actual data is stored and a collection of connections between them, called edges or arcs^[1].
- A graph can be used to represent relationships between pairs of objects.

Graphs

The Basic Elements of Graph The Basic Elements of Graph

INTERNATIONAL & INTERDISCIPLINARY ENGINEERING PROGRAM The Basic Elements of Graph

The Basic Elements of Graph

 Formally, a graph G is a set V of vertices and a collection E of pairs of vertices, called edges^[1].

Graph Types

- An edge (u, v) is directed from u to v if the pair (u, v) is ordered.
- An edge (u, v) is undirected if the pair (u, v) is not ordered.

Graph Terminology

$$V = \{D, I, J\}$$

$$E = \{(D, I), (D, J)\}$$

- **Endpoints**: Two nodes (u, v) that are joined by an edge.
 - These two nodes are adjacent.
- Origin: First endpoint (u) on a directed edge.
- Destination: Second endpoint (v) on a directed edge.

Adjacency Matrix

- V = {A, B, C, D, E, F}
- E = {(C, A), (A, D), (B, A), (D, F), (F, D), (E, B), (F, B), (E, E)}

	A	В	С	D	E	F
Α	0	0	0	1	0	0
В	1	0	0	0	0	0
С	1	0	0	0	0	0
D	0	0	0	0	0	1
Ε	0	1	0	0	1	0
F	0	1	0	1	0	0

Adjacency Matrix

01526102 Data Structures and Algorithms

- V = {A, B, C, D, E, F}
- E = {(C, A), (A, D), (B, A), (D, F), (F, D), (E, B), (F, B), (E, E)}

Adjacency List

01526102 Data Structures and Algorithms

Node Representation

Node	Name	Phone
А	Able	
В	Baker	
С	Charlie	
D	Denver	
E	Ethan	
F	Fred	

Edge Representation

	A	В	C	D	Ε	F
Α	0	0	0	1	0	0
В	1	0	0	0	0	0
C	1	0	0	0	0	0
D	0	0	0	0	0	1
Ε	0	1	0	0	1	0
F	0	1	0	1	0	0

Adjacency Matrix

Graph Terminology

- A **path** is a sequence of nodes and edges that starts at a node and ends at a node such that each node is adjacent to the next one^[2].
- Formally, a path is a sequence of nodes V_1 , V_2 , V_3 , ..., V_n where (V_1, V_2) , (V_2, V_3) , ..., $(V_{n-1}, V_n) \in E$.

- A **loop** is a special case of path where two endpoints are the same.
 - An edge that starts and ends with the same node.

Graph Properties

- A cycle is a path that starts and ends at the same node, having at least one edge.
- A simple path is a path that does not contain the same edge more than once.
- A simple cycle is a simple path that starts and ends at the same node.

A, D, I

Simple?

Cyclic?

A, B, A

Simple?

Cyclic?

A, D, A

Graph Notations

- A graph is connected if, for any two nodes, there is a path between them.
- The in-degree of a node v is the number of the incoming edges of v.
- The **out-degree** of a node *v* is the number of the outgoing edges of *v*.

Graph Algorithms

- Traversals
 - Depth-first traversal
 - Breadth-first traversal
- Minimum Spanning Tree
 - Prim-Jarnik Algorithm
 - Kruskal's Algorithm
- Shortest Path
 - Dijkstra Algorithm
- Etc.

Graph Traversals

- A traversal is a systematic procedure for exploring a graph by examining all of its nodes and edges.
- Graph traversal algorithms are key to answering many fundamental questions about graphs involving the notion of **reachability**, that is, in determining how to travel from one node to another while following paths of a graph^[1].
- Two efficient graph traversal algorithms: depth-first traversal and breadth-first traversal.

NTERNATIONAL & INTERDISCIPLINARY ENGINEERING PROGRAMS To propose the strict of Technology Ladiraham To propose the st

INTERNATIONAL & INTERDISCIPLINARY ENGINEERING PROGRAMS To Mongkur's Institute of Technology Ladivalum Depth-First Traversal with Stack

Stack

Output: 0

INTERNATIONAL & INTERDISCIPLINARY ENGINEERING PROGRAMS King Mongluts Institute of Technology Luddraham Breadth-First Traversal with Queue

01526102 Data Structures and Algorithms

Breadth-First Traversal with Queue

Output:

Depth-First and Breadth-First Exercise Depth-First and Breadth-First Exercise

Shortest Path Problem

Shortest Path Problem

The network of routers can be represented as a graph with weighted edges.

Shortest Path Problem

- The breadth first strategy can be used to find a **shortest path** from some starting node to every other node in a connected graph.
 - This approach is suitable in cases where each edge is equal to others.
 - However, for other situations, this approach is not efficient.
- It is natural, therefore, to consider graphs whose edges are <u>not</u> weighted equally.

Weighted Graphs

- A weight graph is a graph that has a numeric label w(e) associated with each edge e, called the weight of edge e.
- For e = (u, v), w(u, v) = w(e).
- Such weights might represent:
 - Costs
 - Lengths
 - Capacities
 - o etc.

School of International & Interdisciplinary Engineering Programs Kirj Morgaus Intimuted Teaching Configuration of Teachin

- Let *G* be a weighted graph.
- The **length** (or **weight**) of a **path** is the sum of the weights of the edges of P.

$$P = ((v_0, v_1), (v_1, v_2), ..., (v_{k-1}, v_k))$$

- Length of P, denoted w(P) is defined as $w(P) = \sum_{i=0}^{k-1} w(v_i, v_{i+1})$.
- The distance from a node u to a node v in G, denoted d(u, v) is the length of a minimum-length path (also called **shortest path**) from u to v.

Shortest Paths Algorithms

- Shortest path in a graph with all equal weights can be solved with breadth-first traversal algorithm.
- Distance cannot be arbitrarily low negative numbers.
 - For instance, the weight of edges represent the cost to travel between cities. If someone pay you to go between the cities, the cost would be negative.
 - Edge weights in G should be nonnegative (that is, w(e) >= 0) for each edge.

- An iterative algorithm that provides the shortest path from one starting node to all other nodes in the graph^[2].
- Apply greedy method to solve the problem by repeatedly selecting the best choice from among those available in each iteration.
 - Useful for optimising cost function over a collection of objects.
- "Weight" breadth-first search starting at the source node s.
- Used in link-state routing protocols in computer network.

B

Q = {'A', 'B', 'C', 'D', 'E'}

Node	Cumulative weight #1	Cumulative weight #2	Cumulative weight #3	Cumulative weight #4	Route
А					
В					
С					
D					
Е					

A

Ε

Dijkstra's Algorithm Exercise

Find the shortest path for each node from node A

Find the distance from A to F

Node	Cumulative weight #1	Cumulative weight #2	Cumulative weight #3	Cumulative weight #4	Cumulative weight #5	Cumulative weight #6	Route
Α							
В							
С							
D							
Е							
F							
G							

- Dijkstra's algorithm works only when the weights are all positive.
 - If there is a negative weight on one of the edges in the graph, the algorithm would never exit.
- Another problem is a complete representation of the graph must be presented for the algorithm to run.
 - Every router has a complete map of all the routers: Not practical.
- Other algorithms allow each router to discover the graph as they go.
 - For instance, distance vector routing algorithm (Computer Networks).
 - Each node computes best path without full view of graph, exchanging link information as they go.