PHYS306 - Summary Homework

Alfaifi, Ammar S.

March 19, 2022

Abstract

So far we have dealt with infinite-extent plane waves; now we need to consider electromaganetic waves confined to the interior of a hollow pipe, called **wave guide**

Boundary conditions We assume the wave guide is perfect conductor, so that $\vec{E} = \vec{0}$ and $\vec{B} = \vec{0}$ inside the material itself, thus the boundary conditions at the inner wall are

$$\begin{cases} \vec{E}^{||} = \vec{0} \\ \vec{B}^{\perp} = 0 \end{cases} \tag{1}$$

Wave Equations Notice that free charges and currents will be induced at the surface to enforce these constraints. We are intreseted in monochromatic waves that propagate through the tube. Thus, \vec{E} and \vec{B} are in form

$$\begin{cases} \vec{\tilde{E}}(x,y,z,t) = \vec{\tilde{E}}_0(x,y)e^{i(kz-\omega t)}, \\ \vec{\tilde{B}}(x,y,z,t) = \vec{\tilde{B}}_0(x,y)e^{i(kz-\omega t)}, \end{cases}$$
 (2)

Also the electric magnetic field must satisfy Maxwell's equations in the interior of the wave guide:

$$\begin{cases} \vec{\nabla} \cdot \vec{E} = 0 & \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\ \vec{\nabla} \cdot \vec{B} = 0 & \vec{\nabla} \times \vec{B} = \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} \end{cases}$$
(3)

Now we need just to find those amplitudes, $\vec{E_0}$ and $\vec{B_0}$, such that the fields Eq.(2) obey the differential equations Eq.(3), subject to boundary conditions Eq.(1).

Longitudinla Component In general, *confined* eaves are not transverse; in order to fit the boundary conditions we shall have to include longitudinal components E_z and B_z :

$$\vec{\tilde{E}}_0 = E_x \hat{x} + E_y \hat{y} + E_z \hat{z} \qquad \vec{\tilde{B}}_0 = B_x \hat{x} + B_y \hat{y} + B_z \hat{z}$$
 (4)

where each componen is a function of x and y.

Pluging Eq.9.180 into Maxwell-divergence equations yields:

$$\begin{cases}
\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + (\omega/c)^2 + k^2\right] E_z = 0 \\
\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + (\omega/c)^2 + k^2\right] B_z = 0
\end{cases}$$
(5)

If $E_z = 0$, we call these **TE waves**; if $B_z = 0$, they are called **TM waves**; if both vanishes, we call it **TEM waves**. But, TEM situation can never happen in a hollow wave guide.

TE Waves in a Recatngular Guide Now we consider a wave guide of recatangular shape, with height a and width b, we want to study the propagation of TE waves. Thus, the problem is to solve B_z in Eq.(5), subject to the boundary condition of B in Eq.(1). By separation of variables,

$$B_z(x,y) = X(x)Y(y) \tag{6}$$

so that

$$\frac{1}{X}\frac{d^2X}{dx^2} + \frac{1}{Y}\frac{d^2Y}{dy^2} + \left[(\omega/c)^2 - k^2\right] = 0 \tag{7}$$

We notice that the x- and y-dependent terms must be constant, So

$$\frac{1}{X}\frac{d^2X}{dx^2} = -k_x^2 \qquad \frac{1}{Y}\frac{d^2Y}{dy^2} = -k_y^2 \tag{8}$$

The general solution is

$$X(x) = A\sin(k_x x) + B\cos(k_x x) \tag{9}$$

But the boundary condition for B_x must be zero, that is, dX/dx = 0. This gives

$$k_x = m\pi/a, \quad k_y = n\pi/b \qquad m, n = 0, 1, 2, \dots$$
 (10)

Finaly, the solution of TE_{mn} mode is

$$B_z = B_0 \cos(m\pi/ax) \cos(n\pi/bx) \tag{11}$$

The wave number is given by

$$k = \sqrt{(\omega/c)^2 - \pi^2[(m/a)^2 + (n/b)^2]}$$
 (12)

If the value under the root is negative, there will be no propagating wave, but an exponentialy attenuated fileds. Hence we degine the **cutoff frequency** ω_{mn} as,

lowest possible
$$<\omega_{mn} \equiv c\pi\sqrt{(m/a)^2 + (n/b)^2} \le \omega$$
 (13)

The velocities are

$$v = \frac{\omega}{k}, \qquad v_g = \left(\frac{dk}{d\omega}\right)^{-1}$$
 (14)