Deep Learning

Ian Goodfellow Yoshua Bengio Aaron Courville

Contents

Website			
A	cknow	ledgments	ix
N	otatio	n	xiii
1	Intro 1.1 1.2	Who Should Read This Book?	
Ι	Appl	lied Math and Machine Learning Basics	27
2	Line	ar Algebra	29
	2.1	Scalars, Vectors, Matrices and Tensors	29
	2.2	Multiplying Matrices and Vectors	32
	2.3	Identity and Inverse Matrices	34
	2.4	Linear Dependence and Span	35
	2.5	Norms	37
	2.6	Special Kinds of Matrices and Vectors	38
	2.7	Eigendecomposition	40
	2.8	Singular Value Decomposition	42
	2.9	The Moore-Penrose Pseudoinverse	43
	2.10	The Trace Operator	44
	2.11	The Determinant	45
	2.12	Example: Principal Components Analysis	45
3	Prob	pability and Information Theory	51
	3.1	Why Probability?	52

CONTENTS

	3.2	Random Variables	54
	3.3	Probability Distributions	54
	3.4	Marginal Probability	56
	3.5	Conditional Probability	57
	3.6	The Chain Rule of Conditional Probabilities	57
	3.7	Independence and Conditional Independence	58
	3.8	Expectation, Variance and Covariance	58
	3.9	Common Probability Distributions	60
	3.10	Useful Properties of Common Functions	65
	3.11	Bayes' Rule	68
	3.12	Technical Details of Continuous Variables	69
	3.13	Information Theory	71
	3.14	Structured Probabilistic Models	73
4	Num	nerical Computation	78
	4.1	Overflow and Underflow	78
	4.2	Poor Conditioning	80
	4.3	Gradient-Based Optimization	80
	4.4	Constrained Optimization	91
	4.5	Example: Linear Least Squares	94
5	Mac	hine Learning Basics	96
5	Mac l	hine Learning Basics Learning Algorithms	96
5			96 97
5	5.1	Learning Algorithms	96 97 108
5	5.1 5.2	Learning Algorithms Capacity, Overfitting and Underfitting	96 97 108 118
5	5.1 5.2 5.3	Learning Algorithms Capacity, Overfitting and Underfitting Hyperparameters and Validation Sets	96 97 108 118 120
5	5.1 5.2 5.3 5.4	Learning Algorithms Capacity, Overfitting and Underfitting Hyperparameters and Validation Sets Estimators, Bias and Variance	96 97 108 118 120 129
5	5.1 5.2 5.3 5.4 5.5	Learning Algorithms Capacity, Overfitting and Underfitting Hyperparameters and Validation Sets Estimators, Bias and Variance Maximum Likelihood Estimation	96 97 108 118 120 129 133
5	5.1 5.2 5.3 5.4 5.5 5.6	Learning Algorithms Capacity, Overfitting and Underfitting Hyperparameters and Validation Sets Estimators, Bias and Variance Maximum Likelihood Estimation Bayesian Statistics	96 97 108 118 120 129 133 137
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7	Learning Algorithms Capacity, Overfitting and Underfitting Hyperparameters and Validation Sets Estimators, Bias and Variance Maximum Likelihood Estimation Bayesian Statistics Supervised Learning Algorithms	96 97 108 118 120 129 133 137 142
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Learning Algorithms Capacity, Overfitting and Underfitting Hyperparameters and Validation Sets Estimators, Bias and Variance Maximum Likelihood Estimation Bayesian Statistics Supervised Learning Algorithms Unsupervised Learning Algorithms	96 97 108 118 120 129 133 137 142 149
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Learning Algorithms Capacity, Overfitting and Underfitting Hyperparameters and Validation Sets Estimators, Bias and Variance Maximum Likelihood Estimation Bayesian Statistics Supervised Learning Algorithms Unsupervised Learning Algorithms Stochastic Gradient Descent	96 97 108 118 120 129 133 137 142 149 151
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Learning Algorithms Capacity, Overfitting and Underfitting Hyperparameters and Validation Sets Estimators, Bias and Variance Maximum Likelihood Estimation Bayesian Statistics Supervised Learning Algorithms Unsupervised Learning Algorithms Stochastic Gradient Descent Building a Machine Learning Algorithm Challenges Motivating Deep Learning	96 97 108 118 120 129 133 137 142 149 151 152
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Learning Algorithms Capacity, Overfitting and Underfitting Hyperparameters and Validation Sets Estimators, Bias and Variance Maximum Likelihood Estimation Bayesian Statistics Supervised Learning Algorithms Unsupervised Learning Algorithms Stochastic Gradient Descent Building a Machine Learning Algorithm	96 97 108 118 120 129 133 137 142 149 151
1II 6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Learning Algorithms Capacity, Overfitting and Underfitting Hyperparameters and Validation Sets Estimators, Bias and Variance Maximum Likelihood Estimation Bayesian Statistics Supervised Learning Algorithms Unsupervised Learning Algorithms Stochastic Gradient Descent Building a Machine Learning Algorithm Challenges Motivating Deep Learning	96 97 108 118 120 129 133 137 142 149 151 152
П	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Learning Algorithms Capacity, Overfitting and Underfitting Hyperparameters and Validation Sets Estimators, Bias and Variance Maximum Likelihood Estimation Bayesian Statistics Supervised Learning Algorithms Unsupervised Learning Algorithms Stochastic Gradient Descent Building a Machine Learning Algorithm Challenges Motivating Deep Learning P Networks: Modern Practices	96 97 108 118 120 129 133 137 142 149 151 152 162

	6.3	Hidden Units	187
	6.4	Architecture Design	193
	6.5	Back-Propagation and Other Differentiation	
		Algorithms	200
	6.6	Historical Notes	220
7	Regi	ularization for Deep Learning	224
	7.1	Parameter Norm Penalties	226
	7.2	Norm Penalties as Constrained Optimization	233
	7.3	Regularization and Under-Constrained Problems	
	7.4	Dataset Augmentation	236
	7.5	Noise Robustness	
	7.6	Semi-Supervised Learning	240
	7.7	Multitask Learning	
	7.8	Early Stopping	241
	7.9	Parameter Tying and Parameter Sharing	249
	7.10	Sparse Representations	251
	7.11	Bagging and Other Ensemble Methods	253
	7.12	Dropout	255
	7.13	Adversarial Training	265
	7.14	Tangent Distance, Tangent Prop and Manifold	
		Tangent Classifier	267
8	Opti	imization for Training Deep Models	271
	8.1	How Learning Differs from Pure Optimization	272
	8.2	Challenges in Neural Network Optimization	279
	8.3	Basic Algorithms	290
	8.4	Parameter Initialization Strategies	296
	8.5	Algorithms with Adaptive Learning Rates	302
	8.6	Approximate Second-Order Methods	307
	8.7	Optimization Strategies and Meta-Algorithms	313
9	Con	volutional Networks	326
	9.1	The Convolution Operation	327
	9.2	Motivation	329
	9.3	Pooling	335
	9.4	Convolution and Pooling as an Infinitely Strong Prior	339
	9.5	Variants of the Basic Convolution Function	342
	9.6	Structured Outputs	352
	9.7	Data Types	354

	9.8	Efficient Convolution Algorithms	356		
	9.9	Random or Unsupervised Features			
	9.10	The Neuroscientific Basis for Convolutional			
		Networks	358		
	9.11	Convolutional Networks and the History of Deep Learning $\ . \ . \ .$	365		
10	Sequ	ence Modeling: Recurrent and Recursive Nets	367		
	10.1	Unfolding Computational Graphs	369		
	10.2	Recurrent Neural Networks	372		
	10.3	Bidirectional RNNs	388		
	10.4	Encoder-Decoder Sequence-to-Sequence			
		Architectures	390		
	10.5	Deep Recurrent Networks	392		
	10.6	Recursive Neural Networks	394		
	10.7	The Challenge of Long-Term Dependencies	396		
	10.8	Echo State Networks	399		
	10.9	Leaky Units and Other Strategies for Multiple			
		Time Scales	402		
	10.10	The Long Short-Term Memory and Other Gated RNNs	404		
		· · · · · · · · · · · · · · · · · · ·	408		
		Explicit Memory			
11	Practical Methodology 416				
	11.1	Performance Metrics	417		
	11.2	Default Baseline Models	420		
	11.3	Determining Whether to Gather More Data	421		
	11.4		422		
	11.5	Debugging Strategies	431		
	11.6	Example: Multi-Digit Number Recognition	435		
12	Appl	ications	438		
	12.1		438		
	12.2	Computer Vision			
	12.3		453		
	12.4	Natural Language Processing			
		Other Applications	473		

Ш	De	ep Learning Research	482		
13	Line	ar Factor Models	485		
	13.1	Probabilistic PCA and Factor Analysis	486		
	13.2	Independent Component Analysis (ICA)	487		
	13.3	Slow Feature Analysis	489		
	13.4	Sparse Coding	492		
	13.5	Manifold Interpretation of PCA	496		
14	Autoencoders				
	14.1	Undercomplete Autoencoders	500		
	14.2	Regularized Autoencoders	501		
	14.3	Representational Power, Layer Size and Depth	505		
	14.4	Stochastic Encoders and Decoders	506		
	14.5	Denoising Autoencoders	507		
	14.6	Learning Manifolds with Autoencoders	513		
	14.7	Contractive Autoencoders	518		
	14.8	Predictive Sparse Decomposition	521		
	14.9	Applications of Autoencoders	522		
15	Repr	resentation Learning	524		
	15.1	Greedy Layer-Wise Unsupervised Pretraining	526		
	15.2	Transfer Learning and Domain Adaptation	534		
	15.3	Semi-Supervised Disentangling of Causal Factors	539		
	15.4	Distributed Representation	544		
	15.5	Exponential Gains from Depth	550		
	15.6	Providing Clues to Discover Underlying Causes	552		
16	Stru	ctured Probabilistic Models for Deep Learning	555		
	16.1	The Challenge of Unstructured Modeling	556		
	16.2	Using Graphs to Describe Model Structure	560		
	16.3	Sampling from Graphical Models	577		
	16.4	Advantages of Structured Modeling	579		
	16.5	Learning about Dependencies	579		
	16.6	Inference and Approximate Inference	580		
	16.7	The Deep Learning Approach to Structured			
		Probabilistic Models	581		
17	Mon	te Carlo Methods	587		
	17.1	Sampling and Monte Carlo Methods	587		

	17.2	Importance Sampling	589
	17.3	Markov Chain Monte Carlo Methods	592
	17.4	Gibbs Sampling	596
	17.5	The Challenge of Mixing between Separated	
		Modes	597
10	Conf	wanting the Doutition Function	ens
10		ronting the Partition Function The Land Helihard Credient	603
	18.1	The Log-Likelihood Gradient	
	18.2	Stochastic Maximum Likelihood and Contrastive Divergence	
	18.3	Pseudolikelihood	
	18.4	Score Matching and Ratio Matching	
	18.5	Denoising Score Matching	
	18.6	Noise-Contrastive Estimation	
	18.7	Estimating the Partition Function	621
19	Appr	oximate Inference	629
	19.1	Inference as Optimization	631
	19.2	Expectation Maximization	632
	19.3	MAP Inference and Sparse Coding	633
	19.4	Variational Inference and Learning	636
	19.5	Learned Approximate Inference	648
20	Deep	Generative Models	651
	20.1	Boltzmann Machines	651
	20.2	Restricted Boltzmann Machines	653
	20.3	Deep Belief Networks	
	20.4	Deep Boltzmann Machines	
	20.5	Boltzmann Machines for Real-Valued Data	673
	20.6	Convolutional Boltzmann Machines	679
	20.7	Boltzmann Machines for Structured or Sequential Outputs	681
	20.8	Other Boltzmann Machines	
	20.9	Back-Propagation through Random Operations	
	20.10	Directed Generative Nets	
		Drawing Samples from Autoencoders	
		Generative Stochastic Networks	710
		Other Generation Schemes	
		Evaluating Generative Models	713
		Conclusion	
Bib	oliogra	aphy	717

Index 773

Website

www.deeplearningbook.org

This book is accompanied by the above website. The website provides a variety of supplementary material, including exercises, lecture slides, corrections of mistakes, and other resources that should be useful to both readers and instructors.