Chapter 1

2024-04-20 – The basic Hopf fibre bundles

1.1 Explicit construction

Definition 1.1.1. For $k = \mathbb{R}^n$ assume a multiplication $\mu \colon k \otimes_{\mathbb{R}} k \to k$ making $k^{\times} \supset \mathbb{S}(k) \cong \mathbb{S}^{n-1}$ into an H-space. Then we can construct a fibre bundle as follow: Consider the unit sphere in $\mathbb{S}(k \times k)$, which can be identified as $\mathbb{S}(\mathbb{R}^{2n}) = \mathbb{S}^{2n-1}$, and the one-point compactification of $\mathbb{S}^k = \mathbb{S}^{dim_{\mathbb{R}}k} = \mathbb{S}^n$.

Notice that for $\mathbb{S}(k^2)$ the components can be written as pairs of elements of k with norms each less than or equal to one, and norm-squares summing to one. Thus consider the map:

$$m_k$$
: $\mathbb{S}^{2n-1} = \mathbb{S}(k \times k) \to \mathbb{S}^k$
 $a, b \mapsto a \cdot b^{-1}$.

where $(\bullet) \cdot b^{-1}$ has to be defined as ∞ for b = 0, (note that this implies |a| = 1, so $a \neq 0$.)

Proposition 1.1.2. This is a fibre bundle for $k = \mathbb{R}, \mathbb{C}, \mathbb{H}$, with fibre $F = \mathbb{S}(k) = \mathbb{S}^0, \mathbb{S}^1, \mathbb{S}^3$.

Proof. Consider first the case $k=\mathbb{R}$. The case $k=\mathbb{R}$ can be identified as $\mathbb{Z}/2 \to \mathbb{S}^1 \to \mathbb{S}^1$, where the first circle is a unit sphere in \mathbb{R}^2 and the second circle is the one-point-compactification of $k=\mathbb{R}$. Let $t\in\mathbb{R}^+$ with |t|<1, it defines a subset of $\mathbb{S}(\mathbb{R}\times\mathbb{R})$ with

$$U_t := \{ (x, y) \in \mathbb{S}(\mathbb{R} \times \mathbb{R}) \mid xy^{-1} = t \wedge |x|^2 + |y|^2 = 1 \}.$$

With |t| < 1 and $z, t \in \mathbb{R}$ the fibre condition and the unit sphere condition assemble to give:

$$xy^{-1} = t$$
$$|x|^2 + |y|^2 = 1$$
$$|t| \le 1$$