Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant les méthodes énergétiques

Chapitre 1 - Approche énergétique

Sciences
Industrielles de
l'Ingénieur

TD

Système de dépose de poudre

Concours Centrale Supelec – TSI 2016 Savoirs et compétences :

- Mod2.C18.SF1: Déterminer l'énergie cinétique d'un solide, ou d'un ensemble de solides, dans son mouvement par rapport à un autre solide.
- Res1.C1.SF1 : Proposer une démarche permettant la détermination de la loi de mouvement.

Mise en situation

Objectif L'objectif est de valider le choix du moteur effectué par le concepteur du système.

Le cahier des charges impose que la vitesse maximale du chariot sur l'axe \overrightarrow{x} soit de $V_{\rm max}=0.45\,{\rm m\,s^{-1}}$ et que l'accélération maximale du chariot soit de $\gamma_{\rm max}=10\,{\rm m\,s^{-2}}$.

Travail demandé

La transmission est réalisée de la façon suivante.

Notations

- Ω : vitesse de rotation du moteur;
- $r = n_{\text{axe poulie}}/n_{\text{moteur}} = \frac{1}{10}$: rapport de réduction du réducteur entre le moteur et les poulies;
- $M_2 = 25 \,\mathrm{kg}$: masse de l'ensemble mobile 2;
- $\phi = 28.65 \,\mathrm{mm}$ est le diamètre primitif des poulies;
- l'inertie des courroies est négligée;
- $J_m = 1.2 \times 10^{-5} \text{ kg m}^2$: moment d'inertie de l'arbre moteur;
- $J_1 = 4 \times 10^{-4} \text{ kg m}^2$: moment d'inertie de l'arbre 1;
- $C_r = 0.15 \,\mathrm{Nm}$: couple de frottements secs dans les liaisons ramené à l'arbre moteur;
- $\mu = 0.001 \, \mathrm{N} \, \mathrm{m} \, \mathrm{s} \, \mathrm{rad}^{-1}$: coefficient de frottements visqueux dans les liaisons ramené à l'arbre moteur.

Question 1 Déterminer la vitesse maximale de rotation du moteur Ω_{max} . Faire l'application numérique.

Correction

On a
$$V_{\rm max}=\Omega_{\rm max}\cdot r\cdot \frac{\phi}{2}$$
. En conséquence $\Omega_{\rm max}=V_{\rm max}\frac{2}{r\phi}$.

 $\label{eq:application_numérique} Application\ numérique: $\Omega_{max} = \frac{2\cdot 0,45\cdot 10}{28,65\times 10^{-3}} \simeq 314\, rad\, s^{-1} \simeq 3000\, tr\, min^{-1}.$

Question 2 Déterminer l'accélération maximale du moteur $\dot{\Omega}_{max}$. Faire l'application numérique.

Correction

1

En suivant un raisonnement similaire : $\dot{\Omega}_{\text{max}} = \gamma_{\text{max}} \frac{2}{r \phi}$.

Application numérique : $\dot{\Omega}_{max} = \frac{10 \cdot 2 \cdot 10}{28,65 \times 10^{-3}} \simeq 6981 \, \text{rad s}^{-2}$.

Question 3 Donner l'expression de l'énergie cinétique de l'ensemble mobile dans son mouvement le long de l'axe \overrightarrow{x} par rapport au bâti notée \mathcal{E}_c (ensemble/0). En déduire l'inertie équivalente J de l'ensemble mobile rapportée à l'arbre du moteur. Faire l'application numérique.

Correction

Le système peut être modélisé ainsi :

 \mathcal{E}_c (ensemble/0) = \mathcal{E}_c (1/0) + \mathcal{E}_c (2/0). Le solide 1 et l'arbre moteur sont en rotation par rapport au bâti et le solide 2 est en translation par rapport au bâti, on a donc :

•
$$\mathscr{E}_c(1/0) = \frac{1}{2} (J_m \Omega^2 + J_1 (r\Omega)^2) = \frac{1}{2} (J_m + J_1 r^2) \Omega^2$$

•
$$\mathscr{E}_c(2/0) = \frac{1}{2}MV^2 = \frac{1}{2}M\Omega^2 \left(\frac{r\phi}{2}\right)^2$$
.

$$\mathcal{E}_{c} \text{ (ensemble/0)} = \frac{1}{2} \left(\left(J_{m} + J_{1} r^{2} \right) + M \left(\frac{r \phi}{2} \right)^{2} \right) \Omega^{2}.$$
Application numérique : $J_{eq} = \left(J_{m} + J_{1} r^{2} \right) + \left(\frac{r \phi}{2} \right)^{2}$

Application numérique : $J_{eq} = (J_m + J_1 r^2) + M \left(\frac{r\phi}{2}\right)^2 = 5,9 \times 10^{-5} \text{ kg m}^2$.

Question 4 Établir l'expression du couple moteur maximal exercé par le moteur sur l'arbre moteur noté C_{max} . Faire l'application numérique.

Correction

Question 5 Donner l'expression de la puissance mécanique maximale que devra fournir le moteur électrique. Faire l'application numérique.

Correction

Le concepteur du système a choisi un moteur synchrone de vitesse nominale de $3000\,\mathrm{tr}\,\mathrm{min}^{-1}$ et de puissance utile $0.47\,\mathrm{kW}$.

Question 6 Valider le choix du moteur en le justifiant. Argumenter la présence éventuelle d'écart entre la puissance mécanique maximale calculée et la puissance nominale du moteur choisi.

Correction