Homework Assignment 13

Due Saturday, May 7

- 1. In class we proved a cancellation law for integral domains. We can actually say something a bit stronger (and quite useful). Let R be a ring and $a, b, c \in R$. Suppose that a is not zero or a zero divisor, and that ab = ac. Prove b = c.
- 2. Let R and S be rings and $\varphi: R \to S$ a ring homomorphism.
 - (a) Show that $\operatorname{im} \varphi$ is a subring of S.
 - (b) Show that $\ker \varphi$ is a (two-sided) ideal of R.
 - (c) Suppose $J \subseteq S$ is an ideal. Show that $\varphi^{-1}(J)$ is an ideal of R.
 - (d) Suppose R and S are unital rings with *nonzero* identities 1_R and 1_S respectively. Prove that if $\varphi(1_R) \neq 1_S$ then $\varphi(1_R)$ is either zero, or a zero divisor in S.
 - (e) Deduce that if S is an integral domain and φ is nonzero then $\varphi(1_R) = 1_S$. (Remark: many authors require rings to be unital, and also require ring homomorphisms to take the identity to the identity.)
- 3. In this exercise we prove the third and fourth isomorphism theorems for rings.
 - (a) We start with the fourth isomorphism theorem. Let R be a ring and $I \subseteq R$ an ideal. In particular (since R is abelian), I is a normal subgroup. Therefore, applying the fourth isomorphism theorem for groups (HW7 Problem 3), there is a bijection:

$$\left\{\begin{array}{l} \text{Subgroups } A \leq R \\ \text{such that } I \leq A \end{array}\right\} \Longleftrightarrow \left\{\begin{array}{l} \text{Subgroups} \\ \overline{A} \leq R/I \end{array}\right\}$$

Prove the following ring theoretic enhancements hold:

- i. A is a subring of R if and only if A is a subring of R/I.
- ii. If A is a subring of R, then I is an ideal of A and that $A/I \cong \overline{A}$.
- iii. A is a left ideal of R if and only if \overline{A} is a left ideal of R/I.
- iv. A is a right ideal of R if and only if \overline{A} is a right ideal of R/I.
- v. A is an ideal of R if and only if \overline{A} is an ideal of R/I.
- (b) We now prove the third isomorphism theorem for rings. Let $J \subseteq I \subseteq R$, with J, I ideals of a ring R. By part (a) we know that I/J is an ideal of R/J. Prove that:

$$\frac{R/J}{I/J} \cong \frac{R}{I}.$$

(c) We finish with a ring theoretic analog of passing to the quotient. Suppose $\varphi: R \to S$ is a ring map, and suppose that $I \subseteq \ker \varphi$. Prove that there is a unique map $\overline{\varphi}: R/I \to S$ such that the following diagram commutes:

$$R \xrightarrow{\varphi} S$$

$$\downarrow^{\pi}$$

$$R/I$$

That is, $\overline{\varphi}$ is the unique map so that $\overline{\varphi} \circ \pi = \varphi$. (*Hint*: We already know from group theory that there is a unique such map on the level of group homomorphisms. What remains is to confirm that map is a ring homomorphism.)

- 4. Let R be a ring.
 - (a) Suppose $\{I_j\}$ is a collection of left ideals of R. Show that the intersection $\cap I_j$ is a left ideal of R.
 - (b) Show that part (a) also holds for right ideals and two-sided ideals.
 - (c) Let R be a ring with $1 \neq 0$. Recall that:

$$RAR := \{r_1 a_1 s_1 + \dots + r_n a_n s_n | r_i, s_i \in R \text{ and } a_i \in A.\}$$

$$(A) := \bigcap_{A \subset I \text{ an ideal}} I.$$

Prove that RAR is an ideal of R, and that RAR = (A).

- (d) State the analog for part (c) for left and right ideals. (The proof will be identical, so I won't make you repeat yourself.)
- 5. Let I and J be ideals of a ring R.
 - (a) Prove that I + J is the smallest ideal of R containing both I and J.
 - (b) Recall that:

$$IJ = \{i_1j_1 + \dots + i_nj_n | i_k \in I \text{ and } j_k \in J.\}$$

Show that IJ is an ideal contained in $I \cap J$

- (c) Give an example where $IJ \neq I \cap J$
- (d) Suppose R is commutative and unital, and that I + J = R. Show $IJ = I \cap J$.
- 6. Let R be a commutative ring with $1 \neq 0$.
 - (a) Fix $a \in R$. Show that (a) = R if and only if $a \in R^{\times}$.
 - (b) Fix $a, b \in R$, and suppose that a is not a zero divisor. Show that (a) = (b) if and only if a = ub for some unit $u \in R^{\times}$.
 - (c) Let I be any ideal. Show that I = R if and only if I contains a unit $u \in R^{\times}$.
 - (d) Prove that R is a field if and only if the only ideals in R are (0) and R itself.
 - (e) Now suppose S is a (not necessarily commutative) ring with $1 \neq 0$. Show that S is a division ring if and only if the only all left, right, and 2-sided ideals are one of S or (0). (*Hint*: Start by proving a version of part (c) for noncommutative rings.)
- 7. Let R be a ring. The *nilradical* of R is $\mathfrak{N}(R) = \{r \in R : r \text{ is nilpotent}\}$. By HW12 Problem 3 we know that $\mathfrak{N}(R)$ is an ideal of R.
 - (a) Show that $R/\mathfrak{N}(R)$ is reduced. This is often called the *reduction of* R, and is denoted R_{red} .
 - (b) Compute $\mathfrak{N}(R)$ and R_{red} for the following two rings.
 - i. $R = \mathbb{Z}[x]/(x)^n$ for $n \ge 2$.
 - ii. $R = \mathbb{Z}/p^n\mathbb{Z}$ for $n \geq 2$.
 - (c) Let $\varphi: R \to S$ be any ring homomorphism. Show that $\varphi(\mathfrak{N}(R)) \subseteq \mathfrak{N}(S)$. Deduce that if S is reduced then $\mathfrak{N}(R)$ is contained in the kernel of φ .

(d) Let S be a reduced ring. Show that there is a bijection:

 $\{ \text{Ring homomorphisms } \varphi: R \to S \} \Longleftrightarrow \{ \text{ Ring homomorphisms } \tilde{\varphi}: R_{red} \to S \}.$

Hint: Use passing to the quotient! Remark: This should feel reminicient of the abelianization from HW7 Problem 5. In fact, both are examples of something more general, called a universal property. Keep your eyes open for things like this, they appear all over mathematics!