Lecture 1

Crystals vs Lattices

Lattices are the empty space that atoms can occupy, and crystals are crystals

Cells in 2D

Primitive: 1 lattice point per cell Double: 2 lattice points per cell Triple: 3 lattice points per cell

etc

Crystal families, systems

Families:

- Isometric
- Tetragonal
- Orthorhombic
- Monoclinic
- Anorthic
- Hexagonal

Systems:

- Cubic
- Tetragonal
- Orthorhombic
- Monoclinic
- Triclinic
- Hexagonal
- Trigonal

Hermann-Mauguin Space Lattice Letters

P: primitive

C: base centered

I: body centered

F: face centered

R: simple rhombohedral

Lattice Symbols

a: anorthic

m: monoclinico: orthogonal

t: tetragonal

h: hexagonal c: cubic

Letter combination

E.g. tI6, where t is for tetragonal, I for body centered, and there are 6 atoms per unit cell

Structure Report Designations (Strukturbericht)

A: elements

B: AB compounds

C: AB2 compounds

D: AmBn compounds

 $\mathbf{A1}\quad\mathrm{fcc}$

A2 bcc

####A3 hcp

B1 Halite Structure, e.g. NaCl, Pearson Symbol cF8, Z: 4{NaCl}

C4 Rutile Structure, e.g. TiO2, Pearson Symbol tP6, Z: 2{TiO2}

C1 Fluorite Structure, e.g. CaF2, Pearson Symbol cF12, Z: 4{CaF2}

Urea Pearson: $tP16,Z = 2\{CH4N2O\}$

Density of a Crystal

 $n_i = \text{number of atoms}, m_i = \text{mass of atom}$

$$\rho = \frac{\sum_{i=1}^{q} n_i m_i}{V}$$

where the 1000 comes from converting grams to kilograms.