Recitation 6

These problems will cover Markov's inequality, covariance matrices, PCA and convergence.

1. (Random Vector)

A random vector \tilde{x} with zero mean has a covariance matrix $\Sigma_{\tilde{x}}$ with the following eigendecomposition

$$\Sigma_{\tilde{x}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}. \tag{1}$$

- (a) What is the variance of each of the entries of the random vector \tilde{x}_1 , \tilde{x}_2 and \tilde{x}_3 ?
- (b) Is it possible to find a unit-norm vector \vec{u} such that the inner product between \tilde{x} and \vec{u} (i.e. the amplitude of the projection of \tilde{x} onto that direction) has variance greater than 1?
- (c) Find three constants a_1 , a_2 and a_3 , such that at least one of them is nonzero and $P(a_1\tilde{x}_1 + a_2\tilde{x}_2 + a_3\tilde{x}_3 = 0) = 1$. Justify your answer mathematically, and interpret it geometrically.
- 2. (Not centering) To analyze what happens if we apply PCA without centering, let \tilde{x} be a d-dimensional vector with mean $\mu \in \mathbb{R}^d$ and covariance matrix $\Sigma_{\tilde{x}}$ equal to the identity matrix. If we compute the eigendecomposition of the matrix $E(\tilde{x}\tilde{x}^T)$ what is the value of the largest eigenvalue? What is the direction of the corresponding eigenvector?

3. (Markov's inequality)

(a) For a discrete random variable \tilde{x} which takes integer values between 1 and n, prove

$$\sum_{x=1}^{n} x p_{\tilde{x}}(x) \ge a \sum_{x \ge a} p_{\tilde{x}}(x). \tag{2}$$

- (b) Use the inequality in Eq. (2) to prove Markov's inequality for random variables that take integer values between 1 and n.
- (c) Suppose we know that the number of items produced in a factory during a week is a random variable with mean 500. What can be said about the probability that this week's production will be at least 1000?
- 4. (Sample median as an estimator of the median)

 Prove that the sample median is a consistent estimator of the median of an iid sequence of random variables.