

Model Optimization and Tuning Phase Template

Date	July 5, 2024
Team ID	739892
Project Title	Customer segmentation using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters Optimal Values	
Decision tree	<pre># Define the Decision Tree classifier dt_classifier = DecisionTreeClassifier() # Define the hyperparameters and their possible values for tuning param_grid = { 'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'max_depth': [None, 10, 20, 30, 40, 50], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4] }</pre>	# Enalusts the performance of the based model According a scorring parely, jets, y pred] printiff butted Appearanters: (best person)*) printiff butted Appearanters: (best person)*) Optical Appearanters: ("criterion": "pin") "man, depth": Nove, "min, samples, leaf": 2, "min, samples, quilit": 10, "quilittes": "best") According on Text Set: 8.15578:115586547
Random forest	<pre># Define the Random Forest classifier rf_classifier = RandomForestClassifier() # Define the hyperparameters and their possible values for tuning param grid = { 'n_estimators': [50, 100, 200], 'criterion': ['gini', 'entropy'], 'max_depth': [None, 10, 20, 30], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], }</pre>	# Evaluate the performance of the tuned model accuracy = accuracy_score(_testn_pred) print("Optical Paperparaeters: (nest_parase()") print("Accuracy on Test Set: (accuracy)") Optical Paperparaeters: ("orizonics": entropy", "max_depth": 20, "min_samples_leaf": 1, "min_samples_solid": 2, "m_estimato Accuracy on Test Set: #.775197289898828


```
# Define the Gradient Boosting classifier
gb_classifier = GradientBoostingClassifier()

# Define the hyperparameters and their possible values for tuning
param_grid = {
    'n_estimators': [50, 100, 200],
    'learning_rate': [0.01, 0.1, 0.2],
    'max_depth': [3, 4, 5],
    'min_samples_split': [2, 5, 10],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
    'subsample': [0.8, 1.0]
}

# Define the Gradient Boosting classifier

# Define the hyperparameters and their possible values for tuning
param_grid = {
    'n_estimators': [50, 100, 200],
    'limin_setting_rate': [0.01, 0.1, 0.2],
    'max_depth': [3, 4, 5],
    'min_samples_split': [2, 5, 10],
    'min_samples_split': [2, 5, 10],
    'subsample': [0.8, 1.0]
```

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric
Decision tree	
Random forest	print(classification_report(y_test,y_pred))
Gradient boosting	print(classification_report(y_test,y_pred))

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	The gradient Boosting model was selected for its superior performance,
	exhibiting high accuracy during hyperparameter tuning. Its ability to
	handle complex relationships, minimize overfitting, and optimize
	predictive accuracy aligns with project objectives, justifying its
Gradient boosting	selection as the final model
Gradient boosting	