ALGEBRAIC NUMBER THEORY Example Sheet 2

- 1. Let $p \geq 3$ be a prime. Let $\zeta_p = \exp(2\pi i/p)$. (i) Show that the roots of $X^{p-1} + X^{p-2} + \cdots + 1$ are $\zeta, \zeta^2, \ldots, \zeta^{p-1}$.
 - (ii) Suppose that $a \in \mathbb{Z} \setminus \{0\}$. Let $\sqrt[p]{a}$ be the real p-th root of a. Show that the roots of $X^p - a$ are $\sqrt[p]{a}\zeta^i$ for $i = 0, 1, \dots, p-1$.
- 2. In this exercise we will complete the proof that \mathcal{O} is a subring of \mathbb{C} . Suppose α , $\beta \in \mathcal{O}$. We showed that $\alpha + \beta \in \mathcal{O}$ (before continuing you should revise this proof). We would like to show that $\alpha\beta \in \mathcal{O}$.
 - (i) If $\alpha = 0$ or $\beta = 0$ then $\alpha\beta = 0 \in \mathcal{O}$. Suppose $\alpha \neq 0, \beta \neq 0$. Let β_1, \ldots, β_m be the conjugates of β . Show that all these are non-zero.
 - (ii) Let

$$f_{\alpha}(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{0} \qquad (a_{i} \in \mathbb{Z})$$

be the minimal polynomial of α . Let

$$g(X) = \prod_{i=1}^{m} \beta_i^n f(X/\beta_i).$$

Show that g(X) is monic and has coefficients in \mathbb{Z} , and $g(\alpha\beta) = 0$. Hence $\alpha\beta \in \mathcal{O}$.

- (iii) Complete the proof that \mathcal{O} is a subring of \mathbb{C} by showing that $-\alpha \in \mathcal{O}$ (this has a one line proof).
- 3. Let α be a root of $f(X) = X^3 2X 2$ and $\beta = \sqrt{-1}$. Construct the minimal polynomials of $\alpha + \beta$ and $\alpha\beta$. What are their norms and traces.
- 4. Suppose $\alpha \in \mathcal{O}$. Suppose $f(x) \in \mathbb{Z}[x]$ is monic and let $\beta \in \mathbb{C}$ be a root of the equation $f(x) = \alpha$. Show that $\beta \in \mathcal{O}$.
- 5. Suppose α is an algebraic number. Show that there is some non-zero $m \in \mathbb{Z}$ such that $m\alpha \in \mathcal{O}$. Deduce that if K is a number field then $K = \mathbb{Q}(\alpha)$ for some algebraic integer α .
- 6. Let $f(X) = X^3 + X^2 + 1$.
 - (i) Show that f is irreducible.
 - (ii) Let θ be a root of f and $K = \mathbb{Q}(\theta)$. Write the following elements as \mathbb{Q} -linear combinations of 1, θ , θ^2 :

$$(\theta+1)^4, \qquad \frac{1}{\theta^2-1}, \qquad \frac{\theta+1}{\theta^2+1}.$$

- 7. We say that a number field K is quadratic if it has degree 2. Show that every quadratic number field is of the form $\mathbb{Q}(\sqrt{d})$ for some square-free integer $d \neq 0, 1$.
- 8. Let K be a number field of degree n and $\theta \in K$. Define $F_{\theta}: K \to K$ by $F_{\theta}(u) = \theta u$.
 - (i) Show that F_{θ} is a linear transformation on the \mathbb{Q} -vector space K.
 - (ii) Show that F_{θ} is singular (non-invertible) if and only if $\theta = 0$.
 - (iii) Suppose that $\theta \in \mathbb{Q}$ and $K = \mathbb{Q}(\alpha)$. Write down the matrix of F_{θ} with respect to the \mathbb{Q} -basis $1, \alpha, \ldots, \alpha^{n-1}$ and compute its determinant.
 - (iv) Suppose that $K = \mathbb{Q}(\sqrt{-3})$ and $\theta = (1 + \sqrt{-3})/2$. Write down the matrix of F_{θ} with respect to the \mathbb{Q} -basis 1, $\sqrt{-3}$ and compute its determinant. Let f(x) be the characteristic polynomial of this matrix. Calculate f and show that $f(\theta) = 0$. How does this tie in with the Cayley-Hamilton Theorem?