操作系统第一次作业

1. 进程之间交换数据不能通过()途径进行。

D. 该阻塞线程将永远不可能再执行

A. 共享文件

B. 消息传递

C. 访问进程地址空间

D. 访问共享存储区

2.	操作系统是根据()来对并发执行的进程进行控制和管理的。						
	A. 3	进程的基本状态					
	В.	进程控制块					
	C. §	多道程序设计					
	D. 3	进程的优先权					
3.	下面的说法中,正确的是()。						
	Α.	不论是系统支持的线程还是用户级线程,其切换都需要内核的支持					
	В.	线程是资源分配的单位,进程是调度和分派的单位					
	C. 7	不管系统中是否有线程,进程都有拥有资源的独立单位					
	D. ?	在引入线程的系统中,进程仍是资源调度和分派的基本单位					
4.	在多	8对一的线程模型中,当一个多线程进程中的某个线程被阻塞后,()。					
	A. 1	该进程的其他线程仍可继续运行					
	B. 3	整个进程都被阻塞					
	C. 1	该阻塞线程将被撤销					

- 5. 下面的叙述中,正确的是()。
 A. 线程是比进程更小的能独立运行的基本单位,可以脱离进程独立运行
 B. 引入线程可提高程序并发执行的程度,可进一步提高系统效率
 C. 线程的引入增加了程序执行时的时空开销
 D. 一个进程一定包含多个线程
- 6. 在进程转换时,下列()转换是不可能发生的。
 - A. 就绪态→运行态
 - B. 运行态→就绪态
 - C. 运行态→阻塞态
 - D. 阻塞态→运行态
- 7. 设有 4 个作业同时到达,每个作业的执行时间均为 2h,它们在一台处理器上按单道式运行,则平均周转时间为 ()。
 - A. 1h
 - B. 5h
 - C. 2.5h
 - D. 8h
- 8. 现在有三个同时到达的作业 J1、J2 和 J3,它们的执行时间分别是 T1、T2、T3,且 T1<T2<T3。系统按单道方式运行且采用短作业优先调度算法,则平均周转时间是()。
 - A. T1+T2+T3
 - B. (3T1+2T2+T3)/3
 - C. (T1+T2+T3)/3
 - D. (T1+2T2+3T3)/3

- 9. 采用时间片轮转调度算法分配 CPU 时,当处于运行态的进程用完一个时间片后,它的状态是()状态。
 - A. 阻塞
 - B. 运行
 - C. 就绪
 - D. 消亡
- 10. 有以下的进程需要调度执行(见下表):
 - (1) 若用非抢占式短进程优先调度算法,问这5个进程的平均周转时间是多少?
 - (2) 若采用抢占式短进程优先调度算法,问这5个进程的平均周转时间是多少?
 - A. 8.62; 6.34
 - B. 8.62; 6.8
 - C. 10.62; 6.34
 - D. 10.62; 6.8

进程名	到达时间	运行时间
P1	0.0	9
P2	0.4	4
P3	1.0	1
P4	5. 5	4
P5	7	2

主观题: 假设一个系统中有 5 个进程,它们的到达时间和服务时间如表所示。 忽略 I/O 以及其他开销时间,若分别按先来先服务(FCFS)、非抢占的短作业优先(SJF)、抢占的短作业优先(SJF)、时间片轮转(RR,时间片=1)、多级反馈队列调度算法(FB,第 i 级队列的时间片= 2^{i-1})以及立即抢占的多级反馈队列调度算法(FB,第 i 级队列的时间片= 2^{i-1})进行 CPU 调度,请给出各进程的完成时间、周转时间、带权周转时间、平均周转时间和平均带权周转时间并画出甘特图。

进程 到达时间 服务时间 A 0 3 В 2 6 \mathbf{C} 4 4 5 6 D E 8 2

表 1 进程到达和需服务的时间

示例:

表 2 进程的完成时间和周转时间(部分示例)

	进程	A	В	C	D	E	平均
	完成时间	3	9	13	18	20	
FCFS	周转时间	3	7	9	12	12	8.6
	带权周转时间	1	1.17	2.25	2.4	6.0	2.56