Homework 1

Weiyu Yan

1 Perceptron Algorithm and Convergence Analysis

1. (a)
$$y = f(x_1, x_2) = x_1$$

(b) A truth table for this function could be:

x_1	x_2	y
0	0	1
0	1	0
1	0	0
1	1	1

We can plot those points in a figure.

The perceptron algorithm gives us a weight vector which corresponds to its orthogonal hyperplane to divide points into 2 parts. In this figure since we can't find a hyperplane to divide the 2 kinds, this function can't be separated by single perceptron.

(c)
$$y = f(x_1, x_2, x_3) = x_3$$

2. Since β is a weight vector perpendicular to the hyperplane, for $x_0 \in \{x | f(x) = 0\}$, the signed Euclidean Distance of the point x to the hyperplane is given by:

$$d = \frac{(x - x_0) \cdot \beta y}{\|\beta\|_2}$$

$$\therefore f(x) = \beta_0 + \beta^T x$$

$$\therefore \beta^T x_0 = -\beta_0$$

$$d = \frac{y(x \cdot \beta - x_0 \cdot \beta)}{\|\beta\|_2}$$

$$= \frac{y(\beta^T x - \beta^T x_0)}{\|\beta\|_2}$$

$$= \frac{y(\beta^T x + \beta_0)}{\|\beta\|_2}$$

$$= \frac{yf(x)}{\|\beta\|_2}$$
(1)

3. By perceptron convergence theorem we get that the perceptron algorithm makes at most $\frac{1}{\delta^2}$ mistakes after T steps:

$$T \le \frac{1}{\delta^2}$$

2 Programming Assignment

- 1. Please refer code in "perceptron.py"
 - (a) Epoch number is set to 100. The figure is shown below:

The accuracy increases drastically before $I\approx 15$. Then it rises shakingly and slowly.

By increasing/decreasing I the shape of the curve won't change but just reveals more/less of the curve in the figure.

(b) Epoch number is set to 100. The figure is shown below:

Red one is for training data, while blue one is for testing data. For testing data, the result is even better. As the accuracy continues to rise(shakingly).

(c) accuracy: 0.9939728779507785

confusion matrix:

$$\left[\begin{array}{cc} 1009 & 40 \\ 0 & 942 \end{array}\right]$$

(d)

- (e) $\mathrm{AUC}(w')=0.9877518533678995$ $\mathrm{AUC}(w^*)=0.9999666948582919$ The greater the AUC value, the bigger area that is under the ROC curve, the 'upper' that the ROC curve goes.
- 2. (a)
 - (b)