Question 1 (30 points)

Use the axiom(s) and/or theorems of general Boolean algabra to prove the following identities:

a.
$$(X + Y)'(X' + Y') = X'Y'$$
 (10 points)
b. $X'Z' + XYZ + XZ' = Z' + XY$ (10 points)
c. $Y + X'Z + XY' = X + Y + Z$ (10 points)

(a)
$$(x+y)'(x'+y') = x'y'$$

 $x'y'(x'+x'y'y' = x'y'$
 $x'y'(x'+x'y'y' = x'y'$
 $x'y' + x'y' = x'y'$

c)
$$1 + x' + x' + x' = x + y + 2$$

 $(y + x)(y + y') + x' + 2 = x + y + 2$
 $y + x + x' + 2 = x + y + 2$
 $y + x + x' + 2 = x + y + 2$
 $x + y + 2 = x + y + 2$

Question 2 (35 points)

Design a combinational logic circuit to detect following prime numbers (2,3,5,7,11,13) in BCD. The combinational circuit must have 4 binary inputs (x₁,x₂,x₃,x₄) and a single output (y). The output value will be "1" when the binary input is a prime number, otherwise the output will be "0".

- Derive the truth table of the design. (10 points)
- b. Simplfy the boolean function in sum of products form using Kamaugh Map method. (15 points)
- c. Draw the gate implementation of the corresponding logic circuit. (10 points)

Question 3 (35 points)

For the boolean function $F(A, B, C, D) = \sum m(0,2,5,7,11,14)$

- a. Simplify the function using Karnaugh-Map method. (10 points)
- Implement the function using 8-to-1 line multiplexer and external AND-OR logic gates if necessary.
 (25 points)

