SOS: Safe, Optimal* and Small Strategies for Hybrid Markov Decision Processes

<u>Pranav Ashok</u>¹, Jan Kretinsky¹, Kim Guldstrand Larsen², Adrien Le Coënt², Jakob Haahr Taankvist² and Maximilian Weininger¹

¹Technical University of Munich, Munich, Germany

²Aalborg University, Aalborg, Denmark

Outline

- 1. UPPAAL Stratego
- 2. Safe strategies
- 3. Compression of strategies
- 4. Our proposal: Stratego+
- 5. Results
- 6. Future directions

What is Stratego?

Generate, optimize, evaluate, compare strategies

Hybrid Markov Decision Process

costs, time, data variables ...

Accessed from: http://people.cs.aau.dk/~marius/stratego/

What is Stratego?

The tool allows for efficient and flexible "strategy-space" exploration before adaptation in a final implementation by maintaining strategies as first class objects in the model-checking query language.

What is Stratego?

Strategies from UPPAAL Stratego are huge and incomprehensible

safety: A[] distance ≥ 5 optimality: minimize aggregate distance

Ego

safety: A[] distance ≥ 5 optimality: minimize aggregate distance

Sample safe strategy

```
State: (Ego.No_acc Front.No_acceleration) distance=200 velocityEgo=16 accelerationEgo=0 velocityFront=12
accelerationFront=0
Wait.
State: (Ego.Choose Front.Negative_acc) distance=101 velocityEgo=-6 accelerationEgo=0 velocityFront=-4
accelerationFront=-2
Take transition Ego.Choose->Ego.No_acc
Take transition Ego.Choose->Ego.Positive_acc
Take transition Ego.Choose->Ego.Negative_acc
State: (Ego.No_acc Front.Positive_acc) distance=82 velocityEgo=2 accelerationEgo=0 velocityFront=10
accelerationFront=2
Wait.
State: ( Ego.No_acc Front.Positive_acc System.FrontNext Monitor._id12 ) distance=85
```

Stratego Internals

Generating a safe and optimal controller for cruise control

Problems

- 900k state action pairs, 300k controllable
- Incomprehensible for humans
- Lookup table too big for microcontrollers
- Executing inside Stratego takes too long

Would there exist a **small and safe** strategy?

Binary Decision Diagrams?

Each state is composed of variables with integer domains

```
State: (Ego.No_acc Front.No_acceleration) distance=200 velocityEgo=16 accelerationEgo=0 velocityFront=12
accelerationFront=0
Wait.
State: ( Ego.Choose Front.Negative_acc ) distance=101 velocityEgo=-6 accelerationEgo=0 velocityFront=-4
accelerationFront=-2
Take transition Ego.Choose->Ego.No_acc
Take transition Ego.Choose->Ego.Positive_acc
Take transition Ego.Choose->Ego.Negative_acc
State: (Ego.No_acc Front.Positive_acc) distance=82 velocityEgo=2 accelerationEgo=0 velocityFront=10
accelerationFront=2
Wait.
State: ( Ego.No_acc Front.Positive_acc System.FrontNext Monitor._id12 ) distance=85
```

Each state is composed of variables with integer domains

Nearby points behave same?

```
State: (Ego.No_acc Front.No_acceleration) distance=200 velocityEgo=16 accelerationEgo=0 velocityFront=12
accelerationFront=0
Wait.
State: ( Ego.Choose Front.Negative_acc ) distance=101 velocityEgo=-6 accelerationEgo=0 velocityFront=-4
accelerationFront=-2
Take transition Ego.Choose->Ego.No_acc
Take transition Ego.Choose->Ego.Positive_acc
Take transition Ego.Choose->Ego.Negative_acc
State: (Ego.No_acc Front.Positive_acc) distance=82 velocityEgo=2 accelerationEgo=0 velocityFront=10
accelerationFront=2
Wait.
State: ( Ego.No_acc Front.Positive_acc System.FrontNext Monitor._id12 ) distance=85
```


Decision Trees

- No magic inside, unlike many other ML techniques
- Simple to interpret
- Good with features which have inherent ordering
- Can be converted into executable code easily

Construction of DTs

- 1. Multi-label classification
- 2. All leaves homogeneous
- 3. Size-permissiveness tradeoff

Minimum split size

Consider splitting node only if # data points > k

Minimum split size

Consider splitting node only if # data points > k

Safe Pruning

Merge leaves if intersection non-empty

Stratego+ Framework

Experiments

cruise

strategy guarantees safety only at integer points

cruise-euler

enriched cruise strategy guarantees safety at all points

tworooms-euler

automatic climate control interaction between two rooms, env. and heaters

Experimental Results

Model	State-action pairs	Controllable	BDD (reordered)	DT T _{opt}
-cruise	1,790,034	308,216	5066	2,899
-cruise-euler	5,931,154	304,752	4728	2,713
cruise	817,278	295,970	2,730	1,005
cruise-euler	1,140,756	414,899	2,667	1,025
two-rooms	1,924,708	509,715	20,214	487

Min split size (k)	Rounds of pruning (p)			Min split	Rounds of pruning (p)		
	0	1	2	size (k)	0	1	2
2	2,713	1,725	1,267	2	2,627	3,618	4,240
10	2,705	1,733	1,249	10	2,696	3,596	4,210
20	2,667	1,733	1,131	20	2,778	3,625	14,039
30	2,657	1,695	993	30	2,778	3,589	14,108
40	2,627	1,669	1,015	40	2,778	3,600	14,096
50	2,557	1,695	1,003	50	2,825	3,614	14,037
60	2,635	1,489	963	60	2,905	3,673	14,074
70	2,613	1,441	955	70	2,898	3,714	14,095
80	2,519	1,537	915	80	2,907	3,717	14,092
90	2,455	1,323	923	90	3,006	3,741	14,077
100	1,929	1,023	877	100	3,030	14,061	14,292

Experimental Results: cruise-euler size-optimality tradeoff

```
Handcrafted
Strategy
```

d t(d, vE, vF, aE, aF, t) { return d + 0.5*(aF - aE)*t*t + (vF - vE)*t; check(d, vE, vF, aE, aF) { t1 = (vF + 10)/2;if (t1 > 0.5) { d1 = d t(d, vE, vF, aE, -2, 1);nvF = vF - 2;nvE = vE + aE;} else { d1 = d t(d, vE, vF, aE, 0, 1);nvF = vF;nvE = vE + aE;if (t1 > 1) { d2 = d t(d1, nvE, nvF, -2, -2, t1 - 1);nvE = nvE - 2*(t1 - 1);d2 = d1;t2 = (nvE + 10)/2;if (t2 > 0) { d3 = d t(d2, nvE, -10, -2, 0, t2);} else { d3 = d2;return d3;

strategy(action, vE, d, vF, aF, aE) {
 if (check(d, vE, vF, 2, aF) > 5) {
 return action == 1;

return action == 0;

return action == 2;

return 0 == 1;

} else if (check(d, vE, vF, 0, aF) > 5) {

} else if (check(d, vE, vF, -2, aF) > 5) {

Strategy Preview: cruise

Strategy Preview: tworooms

Concluding Remarks

Problem: Strategies from UPPAAL Stratego are large and incomprehensible

Solution: Stratego+ framework representing safe, small, optimal strategies as DTs

Takeaways

- BDDs are insufficient (uninterpretable, not that small either)
- Great prospects from decision trees

Future work

Linear/algebraic predicates + domain knowledge

Backup

Experimental Results

Model	State-action pairs	Controllable	BDD (median)	DT T _{safe}	DT T _{opt}
cruise	817,278	295,970	2,730	1,017	1,005
cruise-euler	1,140,756	414,899	4,728	1,045	1,025
two-rooms	1,924,708	509,715	20,214	543	487