WHAT IS CLAIMED IS:

1. A compound of formula (I):

 $A \longrightarrow Y^1 \longrightarrow L \longrightarrow Y^2 \longrightarrow C \longrightarrow X^2 \longrightarrow H \qquad (I)$

wherein

ĪŪ 9

__10

⊨ ∏13

TU₁₄

<u>□</u>15 ⊢ 16

17

18

19

20

21

22

23

24

25

26

1

U

A\is a cyclic moiety selected from the group consisting of C₃₋₁₄ cycloalkyl, 3-14 membered heterocycloalkyl, C₄₋₁₄ cycloalkenyl, 3-14 membered heterocycloalkenyl, aryl, or heteroaryl; the cyclic moiety being optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxyl, hydroxylalkyl, halo, haloalkyl, amino, alkylcarbonyloxy, alkyloxycarbonyl, alkylcarbonyl, alkylsulfonylamino, aminosulfonyl, or alkylsulfonyl;

each of X^1 and X^2 , independently, is O or S;

each of Y^1 and Y^2 , independently, is -CH₂-, -O-, -S-, -N(R^a)-, -N(R^a)-C(O)-O-, -O-C(O)-N(R^a)-, -N(R^a)-C(O)-N(R^b)-, -O-C(O)-O-, or a bond; each of R^a and R^b,

independently, being hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl;

L is a straight C₃₋₁₂ hydrocarbon chain optionally containing at least one double bond, at least one triple bond or at least one double bond and one triple bond; said hydrocarbon chain being optionally substituted with C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ alkoxy, hydroxyl, halo, amino, nitro, cyano, C₃₋₅ cycloalkyl, 3-5 membered heterocycloalkyl, monocyclic aryl, 5-6 membered heteroaryl, C₁₋₄ alkylcarbonyloxy, C₁₋₄ alkyloxycarbonyl, C₁₋₄ alkylcarbonyl, or formyl; and further being optionally interrupted by -O-, -N(R^c)-, -N(R^c)-C(O)-O-, -O-C(O)-N(R^c)-, -N(R^c)-C(O)-N(R^d)-, or -O-C(O)-O-; each of R^c and R^d, independently, being hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl; provided that when L contains two or more double bonds, the double bonds are not adjacent to each other; and further provided that when L contains less than 6 carbon atoms in the hydrocarbon chain, Y¹ is not a bond;

2. The compound of claim 1, wherein X^1 is O.

or a salt thereof.

- 1 4. The compound of claim 1, wherein each of X^1 and X^2 is O.
- 5. The compound of claim 1, wherein each of Y¹ and Y², independently, is -CH₂-, -O-,
- 2 $-N(R^a)$ -, or a bond.
- 6. The compound of claim 1, wherein L is a saturated C₃₋₈ hydrocarbon chain optionally
- substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or
- $3 -N(C_{1-2} \text{ alkyl})_2.$
 - 7. The compound of claim 1, wherein L is an unsaturated C_{4-8} hydrocarbon chain containing at least one double bond and no triple bond, said unsaturated hydrocarbon chain being optionally substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
 - 8. The compound of claim 7, wherein the double bond is in trans configuration.
 - 9. The compound of claim 1, wherein L is an unsaturated C_{4-8} hydrocarbon chain containing at least one double bond and one triple bond, said unsaturated hydrocarbon chain being optionally substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or
- 4 $-N(C_{1-2} \text{ alkyl})_2$.
- 10. The compound of claim 9, wherein the double bond is in trans configuration.
- 1 11. The compound of claim 1, wherein A is a C₅₋₈ cycloalkenyl or 5-8 membered
- 2 heteroalkenyl containing at least two double bonds.
- 1 12. The compound of claim 1, wherein A is phenyl, naphthyl, indanyl, or tetrahydronaphthyl.
 - 13. The compound of claim 1, wherein A is phenyl optionally substituted with alkyl alkenyl, alkynyl, alkoxy, hydroxyl, hydroxylalkyl, halo, haloalkyl, or amino.

3

- 14. The compound of claim 13, wherein L is a C₃₋₈ saturated hydrocarbon chain optionally
- substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or
- $3 -N(C_{1-2} \text{ alkyl})_2.$
- 1 15. The compound of claim 14, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 ,
- independently, is -CH₂-, -O-, -N(R^a)-, or a bond.
- 1 16. The compound of claim 13, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- 2 containing only double bonds in trans configuration, said unsaturated hydrocarbon chain
- being optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or
- 4 $-N(C_{1-2} \text{ alkyl})_2$.
- 1 17. The compound of claim 16, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 ,
- independently, is $-CH_2$ -, -O-, $-N(R^a)$ -, or a bond.
 - 1 18. The compound of claim 13, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- containing at least one double bond and one triple bond, said unsaturated hydrocarbon chain
- being substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or
- 4 $-N(C_{1-2} \text{ alkyl})_2$.
- 1 19. The compound of claim 18, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 ,
- independently, is $-CH_2$ -, -O-, $-N(R^a)$ -, or a bond.
 - 20. The method of claim 1, said compound being 4-chloro-5-phenyl-2,4-pentadienoic acid, 5-(4-dimethylaminophenyl)-2,4-pentadienoic acid, 5-(2-furyl)-2,4-pentadienoic acid, 5-phenyl-2-en-4-yn pentanoic acid, 7-phenyl-2,4,6-heptatrienoic acid, or 8-phenyl-3,5,7-octatrienoic
 - acid.
- 1 21. The method of claim 1, said compound being 7-phenyl-2,4,6-heptatrienoic acid or 8-
- 2 phenyl-3,5,7-octatrienoic acid.

22. A compound of formula (I):

2

4

5

6

7

18

19

wherein

a is a cyclic moiety selected from the group consisting of aryl or heteroaryl; the cyclic moiety being optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, or amino;

each of X^1 and X^2 , independently, is O or S;

each of Y^1 and Y^2 , independently, is -CH₂-, -O-, -S-, -N(R^a)-, -N(R^a)-C(O)-O-, -O-C(O)-N(R^a), -N(R^a)-C(O)-N(R^b)-, -O-C(O)-O-, or a bond; each of R^a and R^b , independently, being hydrogen, alkyl, hydroxylalkyl, or haloalkyl;

L is a straight C_{3-12} hydrocarbon chain optionally containing at least one double bond, at least one triple bond, or at least one double bond and one triple bond; said hydrocarbon chain being optionally substituted with C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, C_{1-4} alkoxy, or amino, and further optionally interrupted by -O- or -N(R^c)-, where R^c is hydrogen, alkyl, hydroxylalkyl, or haloalkyl; provided that when L contains two or more double bonds, the double bonds are not adjacent to each other; and further provided that when L contains less than 6 carbon atoms in the hydrocarbon chain, Y^1 is not a bond;

or a salt thereof.

- 1 23. The compound of claim 22, wherein L is a C₃₋₈ saturated hydrocarbon chain optionally
- substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or
- $3 \qquad -N(C_{1-2} \text{ alkyl})_2.$
- 1 24. The compound of claim 23, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 ,
- independently, is $-CH_{2}$ -, -O-, $-N(R^{a})$ -, or a bond.
- 1 25. The compound of claim 22, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- 2 containing only double bonds in trans configuration, said unsaturated hydrocarbon chain

8

9

10

11

12

13

14

15

16

- being optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or
- 4 $-N(C_{1-2} \text{ alkyl})_2$.
- 1 26. The compound of claim 25, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 ,
- 2 independently, is -CH₂-, -O-, -N(R^a)-, or a bond.
- 1 27. The compound of claim 22, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- containing at least one double bond and one triple bond, said unsaturated hydrocarbon chain
- being optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂,
- 4 -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
 - 28. The compound of claim 27, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 , independently, is -CH₂-, -O-, -N(\mathbb{R}^a)-, or a bond.
 - 29. A compound of formula (I):

$$A - Y^{1} - L - Y^{2} - C - X^{2} - H$$
 (I)

wherein

A is a heteroaryl optionally substituted with alkyl, alkenyl, alkynyl, alkoxy,

6 hydroxylalkyl, or amino;

each of X^1 and X^2 , independently, is O or S;

each of Y¹ and Y², independently, is -CH₂-, -O-, -S-, -N(R^a)-, -N(R^a)-C(O)-O-,

-O-C(O)-N(R^a)-, -N(R^a)-C(O)-N(R^b)-, -O-C(O)-O-, or a bond; each of R^a and R^b,

independently, being hydrogen, alkyl, hydroxylalkyl, or haloalkyl;

L is a straight C_{3-12} hydrocarbon chain optionally containing at least one double bond, at least one a triple bond, or at least one double bond and one triple bond; said hydrocarbon chain being optionally substituted with C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, C_{1-4} alkoxy, or amino, and further optionally interrupted by -O- or -N(R^c)-, where R^c is hydrogen, alkyl, hydroxylalkyl, or haloalkyl;

or a salt thereof.

- 30. The compound of claim 29, wherein L is a C₃₋₈ saturated hydrocarbon chain optionally 1
- substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or 2
- $-N(C_{1-2} \text{ alkyl})_2$. 3
- 31. The compound of claim 30, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 , 1
- independently, is -CH₂-, -O-, -N(R^a)-, or a bond. 2
- 32. The compound of claim 29, wherein L is an unsaturated C₄₋₈ hydrocarbon chain 1
- containing at least one double bond in trans configuration and no triple bond, said 2
- unsaturated hydrocarbon chain being optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, 3
- hydroxyl, $-NH_2$, $-NH(C_{1-2}$ alkyl), or $-N(C_{1-2}$ alkyl)₂.
 - 33. The compound of claim 32, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 ,
- independently, is -CH₂-, -O-, -N(R^a)-, or a bond.
 - 34. The compound of claim 29, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- containing at least one double bond and one triple bond, said unsaturated hydrocarbon chain
- 上 1 1 1 1 1 3 1 4 being optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂,
 - -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
 - 35. The compound of claim 34, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 , 1
 - independently, is -CH₂-, -O-, -N(R^a)-, or a bond. 2
 - 36. The compound of claim 29, wherein A is furyl, thienyl, pyrrolyl, or pyridyl. 1
 - 37. The compound of claim 36, wherein L is a C₃₋₈ saturated hydrocarbon chain optionally 1
 - substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or 2
 - $-N(C_{1-2} \text{ alkyl})_2$; X^1 is O; X^2 is O; and each of Y^1 and Y^2 , independently, is $-CH_2$ -, -O-, 3
 - -N(R^a)-, or a bond. 4

- 38. The compound of claim 36, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- containing at least one double bond in trans configuration and no triple bond, said 2
- unsaturated hydrocarbon chain being optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, 3
- hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or -N(C₁₋₂ alkyl)₂; X¹ is O; X² is O; and each of Y¹ and Y², 4
- independently, is -CH₂-, -O-, -N(R^a)-, or a bond. 5
- 39. The compound of claim 36, wherein L is an unsaturated C₄₋₈ hydrocarbon chain 1
- containing at least one double bond and one triple bond, said unsaturated hydrocarbon chain 2
- being optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, 3
- -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂; X^1 is O; X^2 is O; and each of Y^1 and Y^2 , independently, is 0025947 123501
 - $-CH_{2}$ -, -O-, $-N(R^{a})$ -, or a bond.
 - 40. A compound of formula (I):

$$A \longrightarrow Y^1 \longrightarrow L \longrightarrow Y^2 \longrightarrow C \longrightarrow X^2 \longrightarrow H \qquad (I)$$

wherein

A is a phenyl optionally substituted with alkyl, alkenyl, alkynyl, alkoxy,

- hydroxylalkyl, or amino; 6
- each of X¹ and X², independently, is O or S; 7
- each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^a)-, -N(R^a)-C(O)-O-, 8
- $-O-C(O)-N(R^a)-$, $-N(R^a)-C(O)-N(R^b)-$, -O-C(O)-O-, or a bond; each of R^a and R^b , 9
- independently, being hydrogen, alkyl, hydroxylalkyl, or haloalkyl; 10
- L is a straight C₃₋₁₂ hydrocarbon chain containing at least one double bond and one 11
- triple bond; said hydrocarbon chain being optionally substituted with C₁₋₄ alkyl, C₂₋₄ alkenyl, 12
- C₂₋₄ alkynyl, C₁₋₄ alkoxy, or amino, and further optionally interrupted by -O- or -N(R^c)-, 13
- where R^c is hydrogen, alkyl, hydroxylalkyl, or haloalkyl; 14
- or a salt thereof. 15

- 41. The compound of claim 40, wherein L is a C₃₋₈ saturated hydrocarbon chain optionally
- substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or
- $3 -N(C_{1-2} \text{ alkyl})_2.$

- 42. The compound of claim 41, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 ,
- independently, is -CH₂-, -O-, -N(R^a)-, or a bond.
 - 43. The compound of claim 40, wherein L is an unsaturated C_{4-8} hydrocarbon chain containing at least one double bond in trans configuration and no triple bond, said unsaturated hydrocarbon chain being optionally substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
 - 44. The compound of claim 43, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 , independently, is -CH₂-, -O-, -N(\mathbb{R}^a)-, or a bond.
 - 45. The compound of claim 40, wherein L is an unsaturated C_{4-8} hydrocarbon chain containing at least one double bond and one triple bond, said unsaturated hydrocarbon chain being optionally substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
- 46. The compound of claim 45, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 ,
- independently, is $-CH_2$ -, -O-, $-N(R^a)$ -, or a bond.
- 1 47. A compound of formula (I):

4 wherein

2

```
A is a saturated branched C<sub>3-12</sub> hydrocarbon chain or an unsaturated branched C<sub>3-12</sub>
    5
                 hydrocarbon chain optionally interrupted by -O-, -S-, -N(Ra)-, -C(O)-, -N(Ra)-SO2-, -SO2-
    6
                 N(R^a)-, -N(R^a)-C(O)-O-, -O-C(O)-N(R^a)-, -N(R^a)-C(O)-N(R^b)-, -O-SO_2-, -SO_2-O-, or
    7
                 -O-C(O)-O- where each of R<sup>a</sup> and R<sup>b</sup>, independently, is hydrogen, alkyl, alkenyl, alkynyl,
    8
                 alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl; each of the saturated and the unsaturated
    9
                  branched hydrocarbon chain being optionally substituted with alkyl, alkenyl, alkynyl, alkoxy,
  10
                  hydroxyl, hydroxylalkyl, halo, haloalkyl, amino, alkylcarbonyloxy, alkyloxycarbonyl,
  11
                  alkylcarbonyl, alkylsulfonylamino, aminosulfonyl, or alkylsulfonyl;
   12
                                 each of X1 and X2, independently, is O or S;
   13
                                 each of Y^1 and Y^2, independently, is -CH<sub>2</sub>-, -O-, -S-, -N(R<sup>c</sup>)-, -C(O)-, -N(R<sup>c</sup>)-SO<sub>2</sub>-,
_14
___1
                  -SO_2-N(R^c)-,\ -N(R^c)-C(O)-O-,\ -O-C(O)-N(R^c)-,\ -N(R^c)-C(O)-N(R^d)-,\ -O-SO_2-,\ -SO_2-O-,\ -N(R^c)-C(O)-N(R^d)-,\ -N(R^c)-C(O)-N(R^d)-,\ -N(R^c)-C(O)-N(R^d)-,\ -N(R^c)-C(O)-N(R^d)-,\ -N(R^c)-C(O)-N(R^d)-,\ -N(R^d)-(R^d)-,\ -N(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(R^d)-(
-O-C(O)-O-, or a bond; each of R<sup>c</sup> and R<sup>d</sup>, independently, being hydrogen, alkyl, alkenyl,
                  alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl;
                                 L is a straight C<sub>2-12</sub> hydrocarbon chain optionally containing at least one double bond,
                   at least one a triple bond, or at least one double bond and one triple bond; said hydrocarbon
                   chain being optionally substituted with C<sub>1-4</sub> alkyl, C<sub>2-4</sub> alkenyl, C<sub>2-4</sub> alkynyl, C<sub>1-4</sub> alkoxy,
                   hydroxyl, halo, amino, nitro, cyano, C<sub>3-5</sub> cycloalkyl, 3-5 membered heterocycloalkyl,
                   monocyclic aryl, 5-6 membered heteroaryl, C<sub>1-4</sub> alkylcarbonyloxy,
                   C<sub>1-4</sub> alkyloxycarbonyl, C<sub>1-4</sub> alkylcarbonyl, or formyl; and further being optionally interrupted
 -23
                   by -O-, -S-, -N(Re)-, -C(O)-, -N(Re)-SO<sub>2</sub>-, -SO<sub>2</sub>-N(Re)-, -N(Re)-C(O)-O-, -O-C(O)-N(Re)-,
    24
                    -N(Re)-C(O)-N(Rf)-, -O-SO2-, -SO2-O-, or -O-C(O)-O-; each of Re and Rf, independently,
     25
                    being hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl;
     26
                    provided that when L contains two or more double bonds, the double bonds are not adjacent
     27
                    to each other; and further provided that A contains a heteroatom selected from the group
     28
                    consisting of O, S, or N or a double or triple bond;
     29
                            or a salt thereof.
     30
                     48. The compound of claim 47, wherein X^1 is O.
       1
```

- 1 49. The compound of claim 47, wherein X^1 is O.
- 50. The compound of claim 47, wherein each of X^1 and X^2 is O.

- 51. The compound of claim 47, wherein each of Y¹ and Y², independently, is -CH₂-, -O-, 1
- $-N(R^c)$ -, or a bond. 2
- 52. The compound of claim 47, wherein each of Y¹ and Y², independently, is -CH₂- or a 1
- bond. 2
- 53. The compound of claim 47, wherein L is a saturated C₃₋₈ hydrocarbon chain optionally 1
- substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or 2
- $-N(C_{1-2} \text{ alkyl})_2$. 3
- 54. The compound of claim 47, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- containing at least one double bond and no triple bond, said unsaturated hydrocarbon chain
- being optionally substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂,
 - -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
 - 55. The compound of claim 54, wherein the double bond is in trans configuration.
 - 56. The compound of claim 47, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
 - containing at least one double bond and one triple bond; said unsaturated hydrocarbon chain
 - being optionally substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂,
 - -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂. 4
 - 57. The compound of claim 56, wherein the double bond is in trans configuration. 1
 - 58. The compound of claim 47, wherein A is a saturated branched C₄₋₁₀ hydrocarbon chain 1
 - $interrupted \ by \ -N(R^a)-, \ -N(R^a)-C(O)-O-, \ -O-C(O)-N(R^a)-, \ -N(R^a)-C(O)-N(R^b)-, \ -O-C(O)-, \ or \ -N(R^a)-C(O)-N(R^b)-, \ -N(R^a)-C(O)-N(R^b)-, \ -N(R^a)-(O)-N(R^b)-, \$ 2
 - -C(O)-O- where each of R^a and R^b, independently, is hydrogen, alkyl, alkoxy, hydroxylalkyl, 3
 - or hydroxyl. 4

- substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or
- $3 -N(C_{1-2} \text{ alkyl})_2.$
- 1 60. The compound of claim 59, wherein each of X^1 and X^2 is O; and each of Y^1 and Y^2 ,
- 2 independently, is -CH₂-, -O-, -N(R^c)-, or a bond.
- 1 61. The compound of claim 58, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- 2 containing only double bonds, said unsaturated hydrocarbon chain being optionally
- substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or
- $-N(C_{1-2} \text{ alkyl})_2.$
 - 62. The compound of claim 61, wherein each of X^1 and X^2 is O; and each of Y^1 and Y^2 , independently, is -CH₂-, -O-, -N(R^c)-, or a bond.
 - 63. The compound of claim 58, wherein L is an unsaturated C_{4-8} hydrocarbon chain containing at least one double bond and one triple bond; said unsaturated hydrocarbon chain being optionally substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂,
 - -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
- 1 64. The compound of claim 63, wherein each of X^1 and X^2 is O; and each of Y^1 and Y^2 ,
- independently, is $-CH_2$ -, -O-, $-N(R^c)$ -, or a bond.
- 1 65. The compound of claim 47, wherein A is an unsaturated branched C₄₋₁₀ hydrocarbon
- chain optionally interrupted by -N(R^a)-, -N(R^a)-C(O)-O-, -O-C(O)-N(R^a)-,
- $-N(R^a)-C(O)-N(R^b)-$, -O-C(O)-, or -C(O)-O- where each of R^a and R^b , independently, is
- 4 hydrogen, alkyl, alkoxy, hydroxylalkyl, or hydroxyl.
- 1 66. The compound of claim 65, wherein A contains at least one double bond in trans
- 2 configuration and no triple bond.

- 67. The compound of claim 66, wherein L is a saturated C₃₋₈ hydrocarbon chain optionally
- substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or
- $3 -N(C_{1-2} \text{ alkyl})_2.$
- 1 68. The compound of claim 67, wherein each of X^1 and X^2 is O; and each of Y^1 and Y^2 ,
- independently, is $-CH_2$ -, -O-, $-N(R^c)$ -, or a bond.
- 1 69. The compound of claim 66, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- 2 containing at least one double bond in trans configuration and no triple bond, said
- unsaturated hydrocarbon chain being optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy,
 - hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
 - 70. The compound of claim 69, wherein each of X^1 and X^2 is O; and each of Y^1 and Y^2 , independently, is -CH₂-, -O-, -N(R^c)-, or a bond.
 - 71. The compound of claim 66, wherein L is an unsaturated C_{4-8} hydrocarbon chain containing at least one double bond in trans configuration and one triple bond; said unsaturated hydrocarbon chain being optionally substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
- 1 72. The compound of claim 71, wherein each of X^1 and X^2 is O; and each of Y^1 and Y^2 ,
- independently, is $-CH_2$ -, -O-, $-N(R^c)$ -, or a bond.
- 1 73. The compound of claim 65, wherein A contains at least one double bond and one triple
- 2 bond.

. []2 []3

- 74. The compound of claim 73, wherein L is a saturated C₃₋₈ hydrocarbon chain optionally
- substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or
- 3 $-N(C_{1-2} \text{ alkyl})_2$.

- independently, is -CH₂-, -O-, -N(\mathbb{R}^{c})-, or a bond.
- 76. The compound of claim 73, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- 2 containing only double bonds, said unsaturated hydrocarbon chain being optionally
- substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or
- 4 $-N(C_{1-2} \text{ alkyl})_2$.
- 1 77. The compound of claim 76, wherein each of X^1 and X^2 is O; and each of Y^1 and Y^2 ,
- independently, is $-CH_2$ -, -O-, $-N(R^c)$ -, or a bond.
- 78. The compound of claim 73, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- containing at least one double bond and one triple bond; said unsaturated hydrocarbon chain
- being optionally substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂,
- 4 -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
 - 79. The compound of claim 78, wherein each of X^1 and X^2 is O; and each of Y^1 and Y^2 ,
 - independently, is -CH₂-, -O-, -N(R^c)-, or a bond.