12 Oct 53

WADC TECHNICAL REPORT 52-194

DO NOT DESTROY
RETURN TO
TECHNICAL DOG: MENT
CONTROL SECTION
WCOSI-3

'ANTENNA COUPLER CU-215/APT (Balancing Transformer)

LUCIEN A. REGNIER
AIRCRAFT RADIATION LABORATORY

AUGUST 1952

Statement A Approved for Public Release

WRIGHT AIR DEVELOPMENT CENTER

20020611025

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The information furnished herewith is made available for study upon the understanding that the Government's proprietary interests in and relating thereto shall not be impaired. It is desired that the Judge Advocate (WCJ), Wright Air Development Center, Wright-Patterson Air Force Base, Ohio, be promptly notified of any apparent conflict between the Government's proprietary interests and those of others.

0000000000

ANTENNA COUPLER CU-215/APT (Balancing Transformer)

Lucien A. Regnier Aircrast Radiation Laboratory

August 1952

RDO No. 112-110

Wright Air Development Center Air Research and Development Command United States Air Force Wright-Patterson Air Force Base, Ohio

FOREWORD

This report describes the design of Antenna Coupler CU-215/APT (Balancing Transformer). The equipment was designed and tested by Mr. Lucien A. Regnier, of Antenna Design Section, Aircraft Radiation Laboratory, as a sub-project of Research and Development Order No. 112-110, "Flush-Mounted Antennas for Guided Missiles and New Aircraft." Mr. Lucien Regnier was project engineer on the work conducted.

Acknowledgement is gratefully made to the following WADC personnel: to Mr. Robert Rawhouser for mathematical assistance; to Mr. Warren S. D. Leland and Mr. Everett O. Miller for fabrication and suggested mechanical design of the experimental model; to Mr. John S. Brown for drawing and final mechanical design of the balancing transformers. Acknowledgement is also made to Mr. John Albano, formerly of Aircraft Radiation Laboratory, for help and advice in the design of the equipment.

ABSTRACT

The design, development, and testing of a transformer to convert an unbalanced to a balanced transmission line are described. Application of known principles has resulted in a transformer of broad frequency range. There is, also, a brief mathematical explanation of the theory involved in the procedure. An impedance match with a voltage standing wave ratio of 2:1 or less was obtained. Although two 50-ohm dummy loads were used in the design, application of the transformer with loads which have a mismatch of not greater than 2:1 voltage standing wave ratio proved satisfactory.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER:

CLARENCE H. LEWIS

Colonel, USAF

Chief, Aircraft Radiation Laboratory

Directorate of Laboratories

TABLE OF CONTENTS

	Page
INTRODUCTION	v
SECTION I - DISCUSSION OF THE MECHANICAL CONSTRUCTION	1
SECTION II - DISCUSSION OF THEORY	1
SECTION III - DISCUSSION OF CALCULATION AND THEORETICAL	
DESIGN PROCEDURE	6
SECTION IV - FABRICATION OF EXPERIMENTAL MODEL	9
SECTION V - CONCLUSIONS	9
BIBLIOGRAPHY	9
DISTRIBUTION LIST	3/1

INTRODUCTION

In order to obtain more complete pattern coverage, it is sometimes necessary to install two antennas, using unbalanced transmission lines or coaxial cable, one on each side of the airplane, both excited from the same source and complementing each other. A balancing transformer converts the unbalanced transmission line to a balanced transmission line. One of these two conductors of the balanced line becomes the inner conductor of one unbalanced transmission line and the other conductor becomes the inner conductor of another unbalanced transmission line. The currents in the two unbalanced lines maintain the same relation as the currents in the two balanced conductors, or, in other words, 180° out of phase. Incorporated in the balancing transformer is an impedance-matching network which maintains an impedance match with a 50-ohm transmission line of a voltage standing wave ratio of not over 2:1 over the respective frequency band.

SECTION I

DISCUSSION OF THE MECHANICAL CONSTRUCTION

Factual Data

The balancing transformer which was developed in the course of this study is shown on Air Force Drawing No. 49Cl4638. The unit is in the form of a cross whose over-all dimensions are approximately 1 in. in diameter, 8 in. in length on the long member, and 5 in. in length on the short member. It is constructed of brass and Textolite (1422) dielectric and weighs approximately 6.37 lbs. It complies with joint Army-Navy Specification AN-E-19.

Description

The balancing transformer consists of a brass tube 6-1/2 in. long with the outer diameter 1.00 in. and the inner diameter .944 in. One end of the tube is fitted with a type LN connector. The other end of the tube is closed. The pin of the connector forms the end of a brass rod of .093 in. diameter, which is the inner conductor and extends half of the length of the tube and is centered in the tube.

Around the .093 in. rod is a dielectric tube of .359 in. outer diameter. The dielectric tube is also inside of a brass tube of outer diameter .409 in. and inner diameter .359 in. and extends half of the length of the larger tube. The impedance between the rod of .093 in. diameter and the smaller brass tube is 50 ohms. Also, the impedance between the smaller brass tube and the larger brass tube is 50 ohms.

The end of the brass rod of .093 in. diameter is connected to a tube of .409 in. outer diameter which extends the other half of the larger tube.

The two balanced conductors are connected opposite each other, normal to the tube and at a midpoint of the length of the tube. The length of each balanced conductor is 1.39 in. plus the type LN connector. The diameters of the balanced conductors are such that each is 34 ohms impedance.

SECTION II

DISCUSSION OF THEORY

The purpose of a balancing transformer is to convert an unbalanced transmission line to a balanced transmission line, or vice versa. In order to outline the theory of a balancing transformer, it is first necessary to consider the operation of a simple unbalanced transmission line. In such a transmission line, there exist currents on both the outer surface of the inside conductor and the inner surface of the outside conductor. The current on the inner conductor of a coaxial line is theoretically equal and opposite to the current on the outer conductor. Likewise, for the proper operation of a balancing transformer, the same relationship in current amplitude and phase must be maintained between the two balanced lines. (See Fig. la.)

If a skirt is placed over the coaxial line, shorted to the outer conductor at one end and open at the other end, which is a quarter wave in length as shown in Fig. 1b, or \hbar/l_1 where \hbar is the wavelength, the impedance between the open end of the skirt and the outer conductor of the coaxial line is infinite at one frequency; that is, between points B and C. At other frequencies, the impedance is equal to $Z = Z_0$ Tan $(2 \pi l/h)$ or Z_0 Tan 9 where Z_0 is the characteristic impedance between the skirt and the outer conductor and θ is the electrical length of this section. When θ is equal to $\hbar/2$, there is a direct short between the open end of the skirt and the outer conductor, or points B and C.

Furthermore, the points on the inner and outer conductors of the coaxial line one quarter wavelength from the shorted ends are isolated in space. It is only necessary then to form two transmission lines: the inner conductor of one connected to the inner conductor of the coaxial line and the inner conductor of the other connected to the outer conductor of the coaxial line, as shown in Fig. 1c. The currents in the two additional transmission lines will be equal and the phase relation maintained.

By extending the length of the skirt an additional quarter wave and shorting the extended end to the inner conductor of the coaxial line, which for the additional section has become equal in diameter to the outer diameter of the coaxial line,—as shown in Fig. ld—the impedance between the inner conductor of the coaxial line and the skirt is equal to the impedance between the outer conductor of the coaxial line and the skirt or infinite at one frequency. The extension of the outer skirt puts its impedance in series with the impedance of the other quarter wave section; that is, doubles the impedance of the shorted shunt section. This condition permits broader bandwidth as shown in Paragraph entitled "Calculation" on page 6 of this report.

In order that there be maximum power transfer, the impedance of the balanced lines must be matched to the impedance of the unbalanced lines. The input impedance must be nearly equal to the load impedance with no more than 2:1 voltage standing wave ratio over the frequency band specified.

The logical procedure in designing a matching network is to measure the impedance characteristics first of the unit when it is terminated in the load impedance and calculate the dimensions of the network from the data. But, in this case it is impossible, because there is already a shorted shunt section formed by the outer skirt of the balancing transformer and the outer conductor of the coaxial transmission line. The diameters of this shorted shunt section must still be determined.

From the transmission line equation

$$Zin = \frac{Zo \quad Z_1 \neq j Zo \quad Tan \Theta}{Zo \neq jZ_1 \quad Tan \Theta}$$

Where Z_1 is the load impedance; Zin is the input impedance; Zo is the characteristic impedance of the line transformer; Θ is the electrical length of the line transformer. It is shown below that when Θ equals 90° , the tangent of the angle is infinite and the characteristic impedance of the line transformer

Figure 1. Development of Antenna Coupler CU-215/APT From a Transmission Line

equals the square root of the product of the load impedance and the input impedance. The input impedance is matched to the load impedance by a line transformer one quarter wave in length.

Where Zin is the impedance at the input of the line transformer, Z_{Θ} the impedance of the antenna, Zo the characteristic impedance of the line transformer, and Θ is the electrical length of the line transformer.

Divide numerator and denominator by Tan ..

Then:
$$\frac{Z_{e} \neq jZ_{o}}{Tan \Theta}$$

$$\frac{Z_{in} = Z_{o}}{Z_{o} \neq jZ_{e}}$$

$$\frac{Z_{in} \neq jZ_{e}}{Tan \Theta}$$

As 9 approaches 90°, Tan 9 approaches infinity. A finite number divided by infinity is zero.

$$Z_{in} = Z_{o}^{\dagger} \qquad \left(\begin{array}{c} \underline{1}Z_{o}^{\dagger} \\ \underline{j}Z_{o} \end{array} \right)$$

The j's cancel

$$Zin = \frac{Zo^{2}}{Z_{0}}$$

$$Zo = \frac{1}{2} Zin \qquad Z_{0}$$

It is therefore possible to determine theoretically the dimensions of the matching network. For, it is known that at one frequency where the length of the line transformer is one quarter of the wavelength, the reactance is zero. At other frequencies, the electrical length of the line transformer, maintaining the same physical length, will no longer be a quarter wavelength. The ratio of the mismatch is Z_1/Z in. By rotating this ratio on a Smith chart through a quarter wave, it is readily seen that the load impedance and the input impedance are matched. The impedance characteristics at other frequencies are obtained by rotating the ratio through the respective fraction of a wavelength. The impedance curve for frequencies each side of the resonant frequency can be plotted. Since it is more convenient to design a parallel section, the admittance curve for a 70 ohm line transformer is shown in Table I. From these data, the impedance of the shorted shunt section can be determined, as the

TABLE I

THEORETICAL DATA FOR MATCHING NETWORK FOR ANTENNA COUPLER CU-215/APPT

_
(Shunt)
Ohms
90
11
20
(ea)
Seri
) su
Ohn
2
Z ₀
20

	0,7			1.							0				
Air $\left 1 \right \left \frac{R/Z_o}{X^2} \right $		$\left R/Z_{o} \right X/Z$	X/Z		œ;	×	74 75	~×	$R^{2}+X^{2}$ × 10^{-2} × G	x 10 ⁻²	x 10-2 B	Ф	Cot.0	щ	щ
63 cm .110 1.0038	1.00	1	1	1	70	-26.6	7,900	707.5	5607.5	1.24	+7474+	39.66	1.2088	-1,208	734
60 .116 .97 37	.97		137		6.79	-25.9	1610	670.8	6280.8	1.28	67.+	1,1.70	1,1224	-1.122	632
.139	**************************************				9.19	-23	3794	529	4323	1.42	+.53	50°04°	.8391	<i>-</i> •839	339
65- 87 8451- 64	.83				58	-20.3	13364	712	3776	1.53	+.537	55.72°	.68173	89• -	143
37.5 .1858 .7520	.75				52.5	-17-	2756	196	2952	1.77	+.47	.88.99	.42722	1427	+.043
•209	.72				50.4	6	2540	81	2621	1.92	+.34	75.24°	.26359	263	+.077
90:-	90*- 02*	90:-	90:-		64	7-	2401	16	2417	2.02	+.165	83.50	.1139	1139	+.051
27.9 .25 .704 0	.7du o	0	0		1,9.2	0	2420	0	5/150	2.03	0	0 06	0	0	0
27.2 .256 .69 +.02	69•				15.31	+1.4	2332	1.96	2353.9	2.06	059	92.16°	.03929	+.039	- 05
•278	.77				49.7	+6.3	2470	39.6	2509.6	1.98	25	100°	.17933	+.179	071
23.07 .302 .74 +.17	•7/4				51.8	+11.9	2683	14.1	2692	1.92		108.70	.33848	+.338	102
	.77	.77 +.24	+.24		53.9	+16.8	2905	282.2	3817.2	1.69	527	1170	.50953	+.509	018
	78.	.84 +.30	+.30		58.8	+21	3457	147	3686	1.50	538	1250	.70021	+.700	+,162
18.75 .371 .93 +.35	•93	.93 +.35	+.35		65	+24.5	1225	600.2	7,4284	1.34	507	133.50	96g†6·	8t/6°+	+•44
17.9 .389 1.00 +.37	1.00				20	+25.9	7,900	670.8	5570.8	1.25	179t7•-	2770	1,1918	+1.191	+.727
	1	1	1	1											

1 = 6.97 cm. at 1075 Mc.

 $\theta = 2\pi 1/\lambda$

length is already known, being one quarter wavelength at the resonant frequency. The effect of the shorted shunt section is plotted in Fig. 2. With the impedance of the shorted shunt section known, the diameter of the outer skirt of the balancing transformer can be calculated from the formula

$$Z = 138 (log. d/D)$$

Where d is the outer diameter of the coaxial transmission line and D is the inner diameter of the skirt.

The theoretical calculated data for the line transformer and the shorted shunt section are shown in Table I.

SECTION III

DISCUSSION OF CALCULATION AND THEORETICAL DESIGN PROCEDURE

Design Procedure

The admittance curve for the theoretical line transformer was plotted, as shown in Fig. 2 for the frequencies from 475 to 1675 megacycles. This shows the effect of the line transformer. To determine the impedance of the shorted shunt section, the following equation is used.

Where B is the greatest numerical value of the susceptance; that is, the highest point on the admittance curve of the line transformer. Θ is the electrical length of the shorted shunt section for that particular frequency which is known. Z_0 , which is to be determined, is the impedance of the shorted shunt section. The equation is solved for Z_0 .

Calculation

From Table I at the frequency 700 megacycles, which is the highest point of the admittance curve.

For convenience, 100 ohms was chosen for the impedance Zo.

the impedance of the shorted shunt section. For the equation Z_0 138 log. d/D

d is the smaller diameter which is known (that is, the outer diameter of the coaxial line). As there are two shunt sections in series, Z_0 is 100/2 or 50

Figure 2. Admittance Curve of Final Experimental Model Antenna Coupler CU-215/APT

Figure 4. Antenna Coupler CU-215/APT (Without Mounting Plate)

Figure 5. Antenna Coupler CU-215/AFT (Unassembled Showing Detail Structure)

ohms. The equation is solved for D which is the larger diameter of the shunt sections or the inner diameter of the outer skirt of the balancing transformer.

SECTION IV

FABRICATION OF EXPERIMENTAL MODEL

Model

An experimental model was fabricated with variable shorts for the two shunt sections; also, line transformers a little longer and shorter than the calculated length. Measurements of the voltage standing wave ratio were made after terminating the balanced lines in dummy loads of 50 ohms each until an optimum was reached. The final data are recorded on Table II. The final dimensions are shown on the drawing of Fig. 7. The voltage standing wave ratio from the experimental data is plotted on Fig. 6.

Correlation of Experimental Data

The balancing transformer was designed with an ideal load for a voltage standing wave ratio of not less than 2:1. When it is used with a different load such as an antenna that has a mismatch of a voltage standing wave ratio of 2:1, it is possible that the resulting mismatch might be more than 2:1. Measurements were taken using two antennas connected to the balancing transformer and mounted each on a ground screen which was at right angles to the other screen. The results were satisfactory.

SECTION V

CONCLUSIONS

The conversion from a 50 ohm unbalanced transmission to a balanced 100 ohm line was accomplished with a balancing transformer CU-215/APT with a voltage standing wave ratio under 2:1 over the frequency range from 475 to 1675 megacycles and under 3:1 over a frequency range from 325 to 1800 megacycles. The balancing transformer CU-215/APT is a small, compact unit easily mounted on a standard mounting base MT-784/U as shown in Fig. 3. The same design technique can be used for frequencies other than those specified in this report.

BIBLIOGRAPHY

- 1. Radio Research Laboratory, Very High Frequency Techniques. First Edition. McGraw-Hill, New York, 1947; Chapter 3.
- 2. Marchand, Nathan. Ultra High Frequency Transmission and Radiation. John Wiley and Sons, Inc., New York, 1947; Chapter 8.
- 3. Coleman, Paul D. Unbalanced to Balanced Line Transformer Using Flexible Cable.
 Aircraft Radiation Laboratory Engineering Report No. 385, 1945.

Figure 6. Curve Showing Voltage Standing Wave Ratio of the Final Model

Figure 7. Air Force Assembly Drawing No. 49C14639 of Antenna Coupler CU-215/APT

TABLE II

IMPEDANCE DATA, FINAL EXPERIMENTAL MODEL ANTENNA COUPLER CU-215/APT

Freq.	E max	E min	<u></u> <i>Q</i> ²	6
200	98	3	<u> 5</u> 2.6	5•7
250	92.7	5•7	16.13	4.03
300	92.2	8.7	10.63	3.2
400	95	16	5•93	2.143
500	96.7	28	3.45	1.85
600	93	40	2.34	1.52
700	94	595	1.57	1.25
୪ ୦୦	98	63	1.55	1.24
900	93•5	58.2	1.76	1.32
1000	98•5	42.2	2.33	1.52
1100	93•5	28	3•33	1.82
1200	92	28	3.28	1.81
1300	95	32	2.96	1.72
1400	93	49•5	1.87	1.36
1500	94	47	2,00	1.41
1600	93.2	27.7	3.36	1.86
1700	96.5	27.5	3.32	1.82
1800	92.7	10.5	ి .83	2.96

TABLE III

DRAWING INDEX

Drawing Number	Part Name
49014638	Antenna Coupler CU-215/APT
746c174e36	Stub - Matching
<u> </u> 49в14640	Line - R F Transmission
49814641	Line Section - R F Transmission, Lower
49874642	Line Section - R F Transmission, Upper
49A14643	Insulator - Line, R F Transmission
49BJ4644	Rod - Line, R F Transmission
49A 14645	Contact - Line, R F Transmission
Ti3CJT19F19	Cavity - Tuned
49BI4647	Shell - Connector, Bottom
49вл4648	Shell - Connector, Side
L19A 1L16L19	Contact - Stub, Side
49A14650	Insulator - Stub, Side
49414651	Insulator - Bead
49014652	Base
կ9014653	Plate -Base
49814654	Holder - Base
49B114655	Clamp

DISTRIBUTION LIST FOR WADC TECHNICAL REPORT 52-194

CYS	ACTIVITIES AT W-PAFB	cys	ACTIVITIES
2	DSC-SA	1	Commander Air Proving Ground Command
4 2	BACR-CD, Mrs. D. Martin		ATTN: Class. Tech. Data Br.,D/OI Eglin Air Force Base, Florida
د	WCAPP	1	Director
1	WCLO	_	Air University Library Maxwell Air Force Base, Alabama
12	WCLR	1	Director of Communications and Electronics
	DEPT. OF DEFENSE ACTIVITIES OTHER THAN THOSE AT W-PAFB		Air Defense Command Ent Air Force Base ATTN: AC&W Coordinating Division Coloredo Springs Coloredo
	Air Force		Colorado Springs, Colorado
	- And Control of Andron Control	1	Commander
1	Director of Research and Development Headquarters, USAF		Strategic Air Command
	Washington 25, D.C.		ATTN: Operations Analysis Office Offutt Air Force Base, Nebraska
1	Commander		Navy
	Air Research and Development Command ATTN: RDOL		Chief of Naval Research
	ATTN: RDOL P.C. Box 1395		Chief of Naval Research Department of the Navy
	ATTN: RDOL	,	Department of the Navy Washington 25, D.C.
1	ATTN: RDOL P.C. Box 1395 Baltimore 3, Maryland	6	Department of the Navy Washington 25, D.C. ATTN: Planning Div., Code N-482
1	ATTN: RDOL P.C. Box 1395 Baltimore 3, Maryland Commander	6	Department of the Navy Washington 25, D.C.
1	ATTN: RDOL P.C. Box 1395 Baltimore 3, Maryland Commander Rome Air Development Center ATTN: RCIIP		Department of the Navy Washington 25, D.C. ATTN: Planning Div., Code N-482 ATTN: Elec. Section, Code 427 Chief, Bureau of Ordnance
1	ATTN: RDOL P.C. Box 1395 Baltimore 3, Maryland Commander Rome Air Development Center ATTN: RCIIP Griffiss Air Force Base	1	Department of the Navy Washington 25, D.C. ATTN: Planning Div., Code N-482 ATTN: Elec. Section, Code 427 Chief, Bureau of Ordnance Department of the Navy
1	ATTN: RDOL P.C. Box 1395 Baltimore 3, Maryland Commander Rome Air Development Center ATTN: RCIIP	1	Department of the Navy Washington 25, D.C. ATTN: Planning Div., Code N-482 ATTN: Elec. Section, Code 427 Chief, Bureau of Ordnance Department of the Navy ATTN: Code AD-3
1	ATTN: RDOL P.C. Box 1395 Baltimore 3, Maryland Commander Rome Air Development Center ATTN: RCIIP Griffiss Air Force Base Rome, New York Commander	1	Department of the Navy Washington 25, D.C. ATTN: Planning Div., Code N-482 ATTN: Elec. Section, Code 427 Chief, Bureau of Ordnance Department of the Navy ATTN: Code AD-3 Washington 25, D.C.
_	ATTN: RDOL P.C. Box 1395 Baltimore 3, Maryland Commander Rome Air Development Center ATTN: RCIIP Griffiss Air Force Base Rome, New York Commander Air Force Cambridge Research Center	1	Department of the Navy Washington 25, D.C. ATTN: Planning Div., Code N-482 ATTN: Elec. Section, Code 427 Chief, Bureau of Ordnance Department of the Navy ATTN: Code AD-3 Washington 25, D.C. Chief, Bureau of Ships
_	ATTN: RDOL P.C. Box 1395 Baltimore 3, Maryland Commander Rome Air Development Center ATTN: RCIIP Griffiss Air Force Base Rome, New York Commander	1	Department of the Navy Washington 25, D.C. ATTN: Planning Div., Code N-482 ATTN: Elec. Section, Code 427 Chief, Bureau of Ordnance Department of the Navy ATTN: Code AD-3 Washington 25, D.C.
_	ATTN: RDOL P.C. Box 1395 Baltimore 3, Maryland Commander Rome Air Development Center ATTN: RCIIP Griffiss Air Force Base Rome, New York Commander Air Force Cambridge Research Center 230 Albany Street Cambridge 39, Massachusetts AF Development Field Representative	1	Department of the Navy Washington 25, D.C. ATTN: Planning Div., Code N-482 ATTN: Elec. Section, Code 427 Chief, Bureau of Ordnance Department of the Navy ATTN: Code AD-3 Washington 25, D.C. Chief, Bureau of Ships Department of the Navy ATTN: Technical Data Section Washington 25, D.C.
1	ATTN: RDOL P.C. Box 1395 Baltimore 3, Maryland Commander Rome Air Development Center ATTN: RCIIP Griffiss Air Force Base Rome, New York Commander Air Force Cambridge Research Center 230 Albany Street Cambridge 39, Massachusetts	1	Department of the Navy Washington 25, D.C. ATTN: Planning Div., Code N-482 ATTN: Elec. Section, Code 427 Chief, Bureau of Ordnance Department of the Navy ATTN: Code AD-3 Washington 25, D.C. Chief, Bureau of Ships Department of the Navy ATTN: Technical Data Section Washington 25, D.C. Director U.S. Naval Research Laboratory ATTN: Technical Data Section
1	ATTN: RDOL P.C. Box 1395 Baltimore 3, Maryland Commander Rome Air Development Center ATTN: RCIIP Griffiss Air Force Base Rome, New York Commander Air Force Cambridge Research Center 230 Albany Street Cambridge 39, Massachusetts AF Development Field Representative Naval Research Laboratory ATTN: Major Edgar Van Rosen Washington 25, D.C. Director, Joint Tactical Air	1 1	Department of the Navy Washington 25, D.C. ATTN: Planning Div., Code N-482 ATTN: Elec. Section, Code 427 Chief, Bureau of Ordnance Department of the Navy ATTN: Code AD-3 Washington 25, D.C. Chief, Bureau of Ships Department of the Navy ATTN: Technical Data Section Washington 25, D.C. Director U.S. Naval Research Laboratory ATTN: Technical Data Section Washington 25, D.C.
1	ATTN: RDOL P.C. Box 1395 Baltimore 3, Maryland Commander Rome Air Development Center ATTN: RCIIP Griffiss Air Force Base Rome, New York Commander Air Force Cambridge Research Center 230 Albany Street Cambridge 39, Massachusetts AF Development Field Representative Naval Research Laboratory ATTN: Major Edgar Van Rosen Washington 25, D.C. Director, Joint Tactical Air Support Board	1	Department of the Navy Washington 25, D.C. ATTN: Planning Div., Code N-482 ATTN: Elec. Section, Code 427 Chief, Bureau of Ordnance Department of the Navy ATTN: Code AD-3 Washington 25, D.C. Chief, Bureau of Ships Department of the Navy ATTN: Technical Data Section Washington 25, D.C. Director U.S. Naval Research Laboratory ATTN: Technical Data Section Washington 25, D.C. CO & Director
1	ATTN: RDOL P.C. Box 1395 Baltimore 3, Maryland Commander Rome Air Development Center ATTN: RCIIP Griffiss Air Force Base Rome, New York Commander Air Force Cambridge Research Center 230 Albany Street Cambridge 39, Massachusetts AF Development Field Representative Naval Research Laboratory ATTN: Major Edgar Van Rosen Washington 25, D.C. Director, Joint Tactical Air	1 1	Department of the Navy Washington 25, D.C. ATTN: Planning Div., Code N-482 ATTN: Elec. Section, Code 427 Chief, Bureau of Ordnance Department of the Navy ATTN: Code AD-3 Washington 25, D.C. Chief, Bureau of Ships Department of the Navy ATTN: Technical Data Section Washington 25, D.C. Director U.S. Naval Research Laboratory ATTN: Technical Data Section Washington 25, D.C.

DISTRIBUTION LIST FOR WADC TECHNICAL REPORT 52-194, Cont'd

CYS ACTIVITIES

- 1 Commander U.S. Naval Ordnance Test Station China Lake, Inyokern, California
- Superintendent
 United States Naval Postgraduate School
 Monterey, California
- Commander
 U.S. Naval Air Development Center
 ATTN: Electronics Laboratory
 Johnsville. Pennsylvania
- 1 Commander U.S. Naval Ordnance Laboratory Silver Spring 19, Maryland

Army

2 Commanding Officer
Signal Corps Eng Laboratory
ATTN: Technical Reports Library
Fort Monmouth, New Jersey

CYS ACTIVITIES

Research and Development Board

Research and Development Board
Library Branch, Info. Offices
Room 3D1041
The Pentagon
Washington 25, D.C.

Special Projects

Document Room
Project LINCOLN
Massachusetts Institute of
Technology
P.O. Box 390
Cambridge 39, Massachusetts
ATTN: Ethel R. Branz

OTHERS

- 1 Chance-Vought Aircraft Corp. ATTN: Mr. John A. Albano Dallas, Texas
- 2 THRU: WCOWP
 Rand Corporation
 1700 Main Street
 Santa Monica, California