Configuration

Select Optimization Method:

- Gradient Ascent
- ISGM Constant Step
- ISGM Decreasing Step

Select Sigma Values:

Duck Curve Optimization Visualizer

This application demonstrates different optimization methods for flattening the duck curve:

- Gradient Ascent: Traditional gradient ascent with fixed step size
- **ISGM Constant Step:** Incremental Stochastic Gradient Method with constant step size
- ISGM Decreasing Step: ISGM with dynamically decreasing step size

Individual Plots Combined Plot

Individual Results for ISGM Decreasing Step

Method Explanation

ISGM with Decreasing Step Size:

- Advanced version with dynamic step size $\alpha_k = 1/((1 + N/\sigma)^2 + k)$
- Step size decreases with iterations (k)
- Typically provides better convergence guarantees
- More robust to initial parameter choices

Configuration

Select Optimization Method:

- Gradient Ascent
- ISGM Constant Step
- ISGM Decreasing Step

Select Sigma Values:

b Duck Curve Optimization Visualizer

This application demonstrates different optimization methods for flattening the duck curve:

- Gradient Ascent: Traditional gradient ascent with fixed step size
- **ISGM Constant Step**: Incremental Stochastic Gradient Method with constant step size
- ISGM Decreasing Step: ISGM with dynamically decreasing step size

Individual Plots Combined Plot

Combined Results for ISGM Decreasing Step

Method Explanation

ISGM with Decreasing Step Size:

- Advanced version with dynamic step size $\alpha_k = 1/((1 + N/\sigma)^2 + k)$
- Step size decreases with iterations (k)
- Typically provides better convergence guarantees
- More robust to initial parameter choices