Inner metric structure of complex surface singularities

Lorenzo Fantini

Université Aix-Marseille

Lille, May 16th, 2019

Joint work with André Belotto da Silva and Anne Pichon (arXiv:1905.01677)

A long history: Wirtinger 1895, Milnor 1968...

X complex variety, $0 \in X$ isolated singularity

$$(X,0) \hookrightarrow (\mathbb{C}^N,0)$$

Topology: the Conical Structure Theorem

$$0 < \varepsilon \ll 1 \implies X \cap B(0, \varepsilon) \stackrel{\text{homeo}}{\sim} \text{Cone}(X \cap S(0, \varepsilon))$$

Inner metric on (X,0)

$$d_{\text{inner}}(x, y) = \inf_{\substack{\gamma : [0,1] \to X, \\ \gamma(0) = x, \gamma(1) = y}} \{ \text{length}(\gamma) \}$$

I'm interested in the metric germ, not only on its bi-Lipschitz class!

A long history: Wirtinger 1895, Milnor 1968...

X complex variety. $0 \in X$ isolated singularity

$$(X,0) \hookrightarrow (\mathbb{C}^N,0)$$

$$0 < \varepsilon \ll 1 \implies X \cap B(0, \varepsilon) \stackrel{\text{homeo}}{\sim} \text{Cone}(X \cap S(0, \varepsilon))$$

$$d_{\text{inner}}(x,y) = \inf_{\substack{\gamma \colon [0,1] \to X, \\ \gamma(0) = x, \gamma(1) = y}} \left\{ \text{length}(\gamma) \right\}$$

A long history: Wirtinger 1895, Milnor 1968...

X complex variety, $0 \in X$ isolated singularity

$$(X,0) \hookrightarrow (\mathbb{C}^N,0)$$

Topology: the Conical Structure Theorem

$$0 < \varepsilon \ll 1 \implies X \cap B(0, \varepsilon) \stackrel{\mathsf{homeo}}{\sim} \mathsf{Cone}(X \cap S(0, \varepsilon))$$

Inner metric on (X,0)

$$d_{\text{inner}}(x,y) = \inf_{\substack{\gamma \colon [0,1] \to X, \\ \gamma(0) = x, \gamma(1) = y}} \left\{ \text{length}(\gamma) \right\}$$

I'm interested in the metric germ, not only on its bi-Lipschitz class!

(Mostovski 1985/ℂ, Parusiński 1987/ℝ, Birbrair-Neumann-Pichon 2014) \

A long history: Wirtinger 1895, Milnor 1968...

X complex variety, $0 \in X$ isolated singularity

$$(X,0)\ \hookrightarrow (\mathbb{C}^N,0)$$

Topology: the Conical Structure Theorem

$$0 < \varepsilon \ll 1 \implies X \cap B(0, \varepsilon) \stackrel{\mathsf{homeo}}{\sim} \mathsf{Cone}(X \cap S(0, \varepsilon))$$

Inner metric on (X,0)

$$d_{\text{inner}}(x, y) = \inf_{\substack{\gamma \colon [0, 1] \to X, \\ \gamma(0) = x, \gamma(1) = y}} \left\{ \text{length}(\gamma) \right\}$$

I'm interested in the metric germ, not only on its bi-Lipschitz class!

(Mostovski 1985/ℂ, Parusiński 1987/ℝ, Birbrair-Neumann-Pichon 2014)

A long history: Wirtinger 1895, Milnor 1968...

X complex variety, $0 \in X$ isolated singularity

$$(X,0)\ \hookrightarrow (\mathbb{C}^N,0)$$

Topology: the Conical Structure Theorem

$$0 < \varepsilon \ll 1 \implies X \cap B(0, \varepsilon) \stackrel{\mathsf{homeo}}{\sim} \mathsf{Cone}(X \cap S(0, \varepsilon))$$

Inner metric on (X,0)

$$d_{\text{inner}}(x, y) = \inf_{\substack{\gamma : [0, 1] \to X, \\ \gamma(0) = x, \gamma(1) = y}} \left\{ \text{length}(\gamma) \right\}$$

I'm interested in the metric germ, not only on its bi-Lipschitz class! \swarrow

(Mostovski 1985/ℂ, Parusiński 1987/ℝ, Birbrair-Neumann-Pichon 2014) \

I will focus on the case of surfaces.

The inner rate $\mathcal{I}(E)$ of E is the contact order between the two curves $\pi_*\gamma$ and $\pi_*\gamma'$ on (X,0), with respect to the inner metric:

$$d_{\mathrm{inner}}ig(\pi_*\gamma\cap S_{\mathbb{C}^n}(0,arepsilon),\pi_*\gamma'\cap S_{\mathbb{C}^n}(0,arepsilon)ig)pprox arepsilon^{\mathcal{I}(E)}$$

Interpretation

The inner rate $\mathcal{I}(E)$ measures the size of a small area $\mathcal{N}(E)$ of (X,0)

I will focus on the case of surfaces.

The inner rate $\mathcal{I}(E)$ of E is the contact order between the two curves $\pi_*\gamma$ and $\pi_*\gamma'$ on (X,0), with respect to the inner metric:

$$d_{\mathrm{inner}}ig(\pi_*\gamma\cap S_{\mathbb{C}^n}(0,arepsilon),\pi_*\gamma'\cap S_{\mathbb{C}^n}(0,arepsilon)ig)pprox arepsilon^{\mathcal{I}(E)}$$

Interpretation

The inner rate $\mathcal{I}(E)$ measures the size of a small area $\mathcal{N}(E)$ of (X,0)

I will focus on the case of surfaces.

The inner rate $\mathcal{I}(E)$ of E is the contact order between the two curves $\pi_*\gamma$ and $\pi_*\gamma'$ on (X,0), with respect to the inner metric:

$$d_{\mathrm{inner}}ig(\pi_*\gamma\cap S_{\mathbb{C}^n}(0,arepsilon),\pi_*\gamma'\cap S_{\mathbb{C}^n}(0,arepsilon)ig)pprox arepsilon^{\mathcal{I}(E)}$$

Interpretation

The inner rate $\mathcal{I}(E)$ measures the size of a small area $\mathcal{N}(E)$ of (X,0)

I will focus on the case of surfaces.

The inner rate $\mathcal{I}(E)$ of E is the contact order between the two curves $\pi_*\gamma$ and $\pi_*\gamma'$ on (X,0), with respect to the inner metric:

$$d_{\mathrm{inner}}ig(\pi_*\gamma\cap\mathcal{S}_{\mathbb{C}^n}(0,arepsilon),\pi_*\gamma'\cap\mathcal{S}_{\mathbb{C}^n}(0,arepsilon)ig)pproxarepsilon^{\mathcal{I}(m{E})}$$

Interpretation

The inner rate $\mathcal{I}(E)$ measures the size of a small area $\mathcal{N}(E)$ of (X,0)

I will focus on the case of surfaces.

The inner rate $\mathcal{I}(E)$ of E is the contact order between the two curves $\pi_*\gamma$ and $\pi_*\gamma'$ on (X,0), with respect to the inner metric:

$$d_{\mathrm{inner}}ig(\pi_*\gamma\cap\mathcal{S}_{\mathbb{C}^n}ig(0,arepsilonig),\pi_*\gamma'\cap\mathcal{S}_{\mathbb{C}^n}ig(0,arepsilonig)ig)pproxarepsilon^{\mathcal{I}(\mathcal{E})}$$

Interpretation:

The inner rate $\mathcal{I}(E)$ measures the size of a small area $\mathcal{N}(E)$ of (X,0)

I will focus on the case of surfaces.

The inner rate $\mathcal{I}(E)$ of E is the contact order between the two curves $\pi_*\gamma$ and $\pi_*\gamma'$ on (X,0), with respect to the inner metric:

$$d_{\mathrm{inner}}ig(\pi_*\gamma\cap\mathcal{S}_{\mathbb{C}^n}(0,arepsilon),\pi_*\gamma'\cap\mathcal{S}_{\mathbb{C}^n}(0,arepsilon)ig)pproxarepsilon^{\mathcal{I}(\mathcal{E})}$$

Interpretation:

The inner rate $\mathcal{I}(E)$ measures the size of a small area $\mathcal{N}(E)$ of (X,0)

$$E_8 = \{x^2 + y^3 + z^5 = 0\} \subset \mathbb{C}^3$$

$$\downarrow (y, z)$$

$$E_8 = \{x^2 + y^3 + z^5 = 0\} \subset \mathbb{C}^3$$

$$\downarrow (y, z)$$

discriminant
$$\{y^3+z^5=0\}\subset \mathbb{C}^2$$

$$E_8 = \{x^2 + y^3 + z^5 = 0\} \subset \mathbb{C}^3$$

$$\downarrow (y, z)$$

discriminant
$$\{y^3+z^5=0\}\subset \mathbb{C}^2$$

$$E_8 = \{x^2 + y^3 + z^5 = 0\} \subset \mathbb{C}^3$$

$$\downarrow (y, z)$$

discriminant
$$\{y^3+z^5=0\}\subset\mathbb{C}^2$$

$$E_8 = \{x^2 + y^3 + z^5 = 0\} \subset \mathbb{C}^3$$

Classical questions:

- How does the geometry (X,0) influence the inner rates?
- How to compute them?

$$E_8 = \{x^2 + y^3 + z^5 = 0\} \subset \mathbb{C}^3$$

Classical questions:

- How does the geometry (X,0) influence the inner rates?
- How to compute them?

factoring through $\mathrm{Bl}_0(X)$ and through the Nash transform

Theorem (Belotto-F-Pichon, 2019)

Let $\pi: X_{\pi} \to X$ be a good resolution of (X,0). Then all the inner rates of (X,0) are completely determined by:

- the topology of (X,0), i.e. the weighted dual graph Γ_{π} ;
- the arrows of a generic hyperplane section;
- the arrows of the polar curves of a **generic** projection $(X,0) \to (\mathbb{C}^2,0)$.

This is a consequence of an explicit formula that we will see later.

Analogous to the study of weight functions on curves (Baker–Nicaise 2016).

Definition (Boucksom–Favre–Jonsson, F)

$$NL(X,0) = \{v : \widehat{\mathcal{O}_{X,0}} \to \mathbb{R}_+ \cup \{+\infty\} \text{ semivaluation } | \min_{f \in \mathfrak{M}_{X,0}} \{v(f)\} = 1\}$$

e.g. divisorial valuation $\frac{\operatorname{ord}_{E}}{m(E)}$

It's a nice topological space, compact.

Example: $NL(\mathbb{A}^2_{\mathbb{C}}, 0) \cong \text{valuative tree}$ (Favre–Jonsson).

Non-archimedean avatar of the usual link

Theorem (F–Favre)

L(X,0) degenerates towards NL(X,0).

Moreover, we have

$$H_{\text{sing}}^{i}(\operatorname{NL}(X,0),\mathbb{Q})\cong W^{0}H_{\text{sing}}^{i}(\operatorname{L}(X,0),\mathbb{Q}).$$

Definition (Boucksom–Favre–Jonsson, F)

$$\mathsf{NL}(X,0) = \{v \colon \widehat{\mathcal{O}_{X,0}} \to \mathbb{R}_+ \cup \{+\infty\} \text{ semivaluation } | \min_{f \in \mathfrak{M}_{X,0}} \{v(f)\} = 1\}$$

e.g. divisorial valuation $\frac{\operatorname{ord}_{E}}{m(E)}$

It's a nice topological space, compact.

Example:
$$NL(\mathbb{A}^2_{\mathbb{C}},0)\cong valuative tree$$
 (Favre–Jonsson).

Non-archimedean avatar of the usual link:

Theorem (F-Favre)

L(X,0) degenerates towards NL(X,0).

Moreover, we have

$$H_{\operatorname{sing}}^{i}(\operatorname{NL}(X,0),\mathbb{Q})\cong W^{0}H_{\operatorname{sing}}^{i}(\operatorname{L}(X,0),\mathbb{Q}).$$

Definition (Boucksom–Favre–Jonsson, F)

$$\mathsf{NL}(X,0) = \left\{ v \colon \widehat{\mathcal{O}_{X,0}} \to \mathbb{R}_+ \cup \{+\infty\} \text{ semivaluation } \middle| \ \mathsf{min}_{f \in \mathfrak{M}_{X,0}} \{v(f)\} = 1 \right\}$$

e.g. divisorial valuation $\frac{\operatorname{ord}_{E}}{m(E)}$

It's a nice topological space, compact.

Example: $NL(\mathbb{A}^2_{\mathbb{C}},0)\cong valuative$ tree (Favre–Jonsson).

Non-archimedean avatar of the usual link:

Theorem (F–Favre)

L(X,0) degenerates towards NL(X,0).

Moreover, we have:

$$H_{\operatorname{sing}}^{i}(\operatorname{NL}(X,0),\mathbb{Q})\cong W^{0}H_{\operatorname{sing}}^{i}(\operatorname{L}(X,0),\mathbb{Q}).$$

Definition (Boucksom–Favre–Jonsson, F)

$$\mathsf{NL}(X,0) = \left\{ v \colon \widehat{\mathcal{O}_{X,0}} \to \mathbb{R}_+ \cup \{+\infty\} \text{ semivaluation } \middle| \ \mathsf{min}_{f \in \mathfrak{M}_{X,0}} \{v(f)\} = 1 \right\}$$

e.g. divisorial valuation $\frac{\operatorname{ord}_{E}}{m(E)}$

It's a nice topological space, compact.

Example: $NL(\mathbb{A}^2_{\mathbb{C}},0)\cong valuative$ tree (Favre–Jonsson).

Non-archimedean avatar of the usual link:

Theorem (F–Favre)

L(X,0) degenerates towards NL(X,0).

Moreover, we have:

$$H^{i}_{\mathsf{sing}}\big(\operatorname{NL}(X,0),\mathbb{Q}\big)\cong W^{0}H^{i}_{\mathsf{sing}}\big(\operatorname{L}(X,0),\mathbb{Q}\big).$$

Skeletons and combinatorics of NL(X, 0)

$$\mathsf{NL}(X,0) = \left\{v \colon \widehat{\mathcal{O}_{X,0}} \to \mathbb{R}_+ \cup \{+\infty\} \text{ semivaluation } \middle| \ \mathsf{min}_{f \in \mathfrak{M}_{X,0}} \{v(f)\} = 1\right\}$$

If $\pi: X_{\pi} \to X$ is a good resolution of (X,0) with dual graph Γ_{π} , there exists a natural embedding:

$$\Gamma_{\pi} \hookrightarrow \mathsf{NL}(X,0)$$

It seends a vertex v of Γ_{π} to the divisorial valuation associated with the exceptional component $E_v \subset \pi^{-1}(0)$ that corresponds to v.

This induces a canonical homeomorphism:

$$\varprojlim_{\pi} \Gamma_{\pi} \xleftarrow{\sim} \mathsf{NL}(X,0)$$

Skeletons and combinatorics of NL(X, 0)

$$\mathsf{NL}(X,0) = \left\{v \colon \widehat{\mathcal{O}_{X,0}} \to \mathbb{R}_+ \cup \{+\infty\} \text{ semivaluation } \middle| \ \mathsf{min}_{f \in \mathfrak{M}_{X,0}} \{v(f)\} = 1\right\}$$

If $\pi: X_{\pi} \to X$ is a good resolution of (X,0) with dual graph Γ_{π} , there exists a natural embedding:

$$\Gamma_{\pi} \hookrightarrow \mathsf{NL}(X,0)$$

It seends a vertex v of Γ_{π} to the divisorial valuation associated with the exceptional component $E_v \subset \pi^{-1}(0)$ that corresponds to v.

This induces a canonical homeomorphism:

$$\varprojlim_{\pi} \Gamma_{\pi} \xleftarrow{\sim} \mathsf{NL}(X,0)$$

Skeletons and combinatorics of NL(X, 0)

$$\mathsf{NL}(X,0) = \left\{ v \colon \widehat{\mathcal{O}_{X,0}} \to \mathbb{R}_+ \cup \{+\infty\} \text{ semivaluation } \middle| \ \mathsf{min}_{f \in \mathfrak{M}_{X,0}} \{v(f)\} = 1 \right\}$$

If $\pi: X_{\pi} \to X$ is a good resolution of (X,0) with dual graph Γ_{π} , there exists a natural embedding:

$$\Gamma_{\pi} \hookrightarrow \mathsf{NL}(X,0)$$

It seends a vertex v of Γ_{π} to the divisorial valuation associated with the exceptional component $E_v \subset \pi^{-1}(0)$ that corresponds to v.

This induces a canonical homeomorphism:

$$\varprojlim_{\pi} \Gamma_{\pi} \xleftarrow{\sim} \mathsf{NL}(X,0)$$

Natural metric on Γ_{π} :

$$I([v,v']) = \frac{1}{m(v)m(v')}$$

where m(v) is the multiplicity of E_v in $\pi^{-1}(0)$.

\longrightarrow Metric on NL(X,0)

The inner rates $\mathcal{I}(E)$ extend to a continuous and piecewise linear map:

$$\mathcal{I} \colon \mathsf{NL}(X,0) \longrightarrow \mathbb{R}_{\geq 1}$$

Laplacian of \mathcal{I} on Γ_{π} : $\Delta_{\Gamma_{\pi}}(\mathcal{I})(v) = \text{sum of the outgoing slopes of } \mathcal{I}|_{\Gamma_{\pi}}$ at v

Canonical divisor of
$$\Gamma_{\pi}$$
: $K_{\Gamma_{\pi}}(v) = \operatorname{val}_{\Gamma_{\pi}}(v) + 2g(v) - 2 = -\chi(\check{E}_{v})$

Theorem (Belotto-F-Pichon, 2019)

 $\Delta_{\Gamma_\pi}(\mathcal{I})(v) = \mathit{m}(v) \big(\mathit{K}_{\Gamma_\pi}(v) + 2\#\{\text{hyperplane arrows at } v\} - \#\{\text{polar arrows at } v\} \big)$

Natural metric on Γ_{π} :

$$I([v,v']) = \frac{1}{m(v)m(v')}$$

where m(v) is the multiplicity of E_v in $\pi^{-1}(0)$.

$$\longrightarrow$$
 Metric on $NL(X,0)$

The inner rates $\mathcal{I}(E)$ extend to a continuous and piecewise linear map:

$$\mathcal{I} \colon \mathsf{NL}(X,0) \longrightarrow \mathbb{R}_{>1}$$

 $E_{8} \qquad (3) \qquad \frac{1}{18} \qquad \frac{1}{24} \qquad \frac{1}{18} \frac{1}{30} \qquad \frac{1}{20} \qquad \frac{1}{12} \qquad \frac{1}{6}$ $m(v) = (2) \quad (4) \qquad (6) \qquad (5) \qquad (4) \qquad (3) \qquad (2)$

Laplacian of \mathcal{I} on Γ_{π} : $\Delta_{\Gamma_{\pi}}(\mathcal{I})(v) = \text{sum of the outgoing slopes of } \mathcal{I}|_{\Gamma_{\pi}}$ at v

Canonical divisor of
$$\Gamma_{\pi}$$
: $K_{\Gamma_{\pi}}(v) = \operatorname{val}_{\Gamma_{\pi}}(v) + 2g(v) - 2 = -\chi(\check{E}_{v})$

Theorem (Belotto-F-Pichon, 2019)

 $\Delta_{\Gamma_\pi}(\mathcal{I})(v) = \mathit{m}(v) \big(\mathit{K}_{\Gamma_\pi}(v) + 2\#\{\text{hyperplane arrows at } v\} - \#\{\text{polar arrows at } v\} \big)$

Natural metric on Γ_{π} :

$$I([v,v']) = \frac{1}{m(v)m(v')}$$

where m(v) is the multiplicity of E_v in $\pi^{-1}(0)$.

$$\longrightarrow$$
 Metric on $NL(X,0)$

The inner rates $\mathcal{I}(E)$ extend to a continuous and piecewise linear map:

$$\mathcal{I} \colon \mathsf{NL}(X,0) \longrightarrow \mathbb{R}_{>1}$$

 $E_{8} \qquad (3) \qquad \frac{1}{18} \qquad \frac{1}{24} \qquad \frac{1}{18} \qquad \frac{1}{30} \qquad \frac{1}{20} \qquad \frac{1}{12} \qquad \frac{1}{6}$ $m(v) = (2) \quad (4) \qquad (6) \qquad (5) \qquad (4) \qquad (3) \qquad (2)$

Laplacian of
$$\mathcal{I}$$
 on Γ_{π} : $\Delta_{\Gamma_{\pi}}(\mathcal{I})(v) = \text{sum of the outgoing slopes of } \mathcal{I}|_{\Gamma_{\pi}}$ at v

Canonical divisor of
$$\Gamma_{\pi}$$
: $K_{\Gamma_{\pi}}(v) = \operatorname{val}_{\Gamma_{\pi}}(v) + 2g(v) - 2 = -\chi(\check{E}_{v})$

Theorem (Belotto-F-Pichon, 2019)

$$\Delta_{\Gamma_\pi}(\mathcal{I})(v) = \mathit{m}(v) \big(\mathit{K}_{\Gamma_\pi}(v) + 2\#\{\text{hyperplane arrows at } v\} - \#\{\text{polar arrows at } v\} \big)$$

Natural metric on Γ_{π} :

$$I([v,v']) = \frac{1}{m(v)m(v')}$$

where m(v) is the multiplicity of E_v in $\pi^{-1}(0)$.

$$\longrightarrow$$
 Metric on $NL(X,0)$

The inner rates $\mathcal{I}(E)$ extend to a continuous and piecewise linear map:

$$\mathcal{I} \colon \mathsf{NL}(X,0) \longrightarrow \mathbb{R}_{>1}$$

 $E_{8} \qquad (3) \qquad \frac{1}{18} \qquad \frac{1}{24} \qquad \frac{1}{18} \frac{1}{30} \qquad \frac{1}{20} \qquad \frac{1}{12} \qquad \frac{1}{6}$ $m(v) = (2) \quad (4) \qquad (6) \qquad (5) \qquad (4) \qquad (3) \qquad (2)$

Laplacian of $\mathcal I$ on Γ_π : $\Delta_{\Gamma_\pi}(\mathcal I)(v)=$ sum of the outgoing slopes of $\mathcal I|_{\Gamma_\pi}$ at v

Canonical divisor of
$$\Gamma_{\pi}$$
: $K_{\Gamma_{\pi}}(v) = \operatorname{val}_{\Gamma_{\pi}}(v) + 2g(v) - 2 = -\chi(\check{E}_{v})$

Theorem (Belotto-F-Pichon, 2019)

 $\Delta_{\Gamma_{\pi}}(\mathcal{I})(v) = \mathit{m}(v) \big(\mathit{K}_{\Gamma_{\pi}}(v) + 2\#\{\text{hyperplane arrows at } v\} - \#\{\text{polar arrows at } v\} \big)$

Natural metric on Γ_{π} :

$$I([v,v']) = \frac{1}{m(v)m(v')}$$

where m(v) is the multiplicity of E_v in $\pi^{-1}(0)$.

$$\longrightarrow$$
 Metric on $NL(X,0)$

The inner rates $\mathcal{I}(E)$ extend to a continuous and piecewise linear map:

$$\mathcal{I} \colon \mathsf{NL}(X,0) \longrightarrow \mathbb{R}_{\geq 1}$$

 $E_{8} \qquad (3) \qquad \frac{1}{18} \qquad \frac{1}{24} \qquad \frac{1}{18} \qquad \frac{1}{30} \qquad \frac{1}{20} \qquad \frac{1}{12} \qquad \frac{1}{6}$ $m(v) = (2) \quad (4) \qquad (6) \qquad (5) \qquad (4) \qquad (3) \qquad (2)$

Laplacian of $\mathcal I$ on Γ_π : $\Delta_{\Gamma_\pi}(\mathcal I)(v)=$ sum of the outgoing slopes of $\mathcal I|_{\Gamma_\pi}$ at v

Canonical divisor of
$$\Gamma_{\pi}$$
: $K_{\Gamma_{\pi}}(v) = \operatorname{val}_{\Gamma_{\pi}}(v) + 2g(v) - 2 = -\chi(\check{E}_{v})$

Theorem (Belotto-F-Pichon, 2019)

 $\Delta_{\Gamma_{\pi}}(\mathcal{I})(v) = m(v) \big(K_{\Gamma_{\pi}}(v) + 2\#\{\text{hyperplane arrows at } v\} - \#\{\text{polar arrows at } v\} \big)$

Theorem (Belotto-F-Pichon, 2019)

$$\Delta_{\Gamma_{\pi}}(\mathcal{I})(v) = m(v) \big(K_{\Gamma_{\pi}}(v) + 2\#\{\text{hyperpl. arrows at } v\} - \#\{\text{polar arrows at } v\} \big)$$

Applications:

- Simple explicit computation of the inner rates
- Lê-Greuel-Teissier Formula
- We obtain strong restrictions on the relative positions of arrows.

- Lifting the formula for $NL(\mathbb{C}^2,0)$ to the singular case: topology and monodromy of the Milnor fiber of a generic linear form, Dehn twists
- Birational interpretation of the inner rates as (normalized) logarithmic
 Mather discrepancies: Fitting ideals, study of the zeroes and poles of some differential forms on resolutions.

Theorem (Belotto–F–Pichon, 2019)

$$\Delta_{\Gamma_{\pi}}(\mathcal{I})(v) = m(v) \big(K_{\Gamma_{\pi}}(v) + 2\#\{\text{hyperpl. arrows at } v\} - \#\{\text{polar arrows at } v\} \big)$$

Applications:

- Simple explicit computation of the inner rates
- Lê-Greuel-Teissier Formula
- We obtain strong restrictions on the relative positions of arrows.

- Lifting the formula for $NL(\mathbb{C}^2,0)$ to the singular case: topology and monodromy of the Milnor fiber of a generic linear form, Dehn twists
- Birational interpretation of the inner rates as (normalized) logarithmic
 Mather discrepancies: Fitting ideals, study of the zeroes and poles of some differential forms on resolutions

$$\{(zx^{2} + y^{3})(x^{3} + zy^{2}) + z^{7} = 0\} \subset \mathbb{C}^{3}$$

Theorem (Belotto–F–Pichon, 2019)

$$\Delta_{\Gamma_\pi}(\mathcal{I})(v) = \mathit{m}(v) \big(\mathit{K}_{\Gamma_\pi}(v) + 2\#\{\mathsf{hyperpl. arrows at } v\} - \#\{\mathsf{polar arrows at } v\} \big)$$

Applications:

- Simple explicit computation of the inner rates
- Lê-Greuel-Teissier Formula
- We obtain strong restrictions on the relative positions of arrows.

- Lifting the formula for $NL(\mathbb{C}^2,0)$ to the singular case: topology and monodromy of the Milnor fiber of a generic linear form, Dehn twists.
- Birational interpretation of the inner rates as (normalized) logarithmic
 Mather discrepancies: Fitting ideals, study of the zeroes and poles of some differential forms on resolutions.

$$\{(zx^{2} + y^{3})(x^{3} + zy^{2}) + z^{7} = 0\} \subset \mathbb{C}^{3}$$

Theorem (Belotto–F–Pichon, 2019)

$$\Delta_{\Gamma_{\pi}}(\mathcal{I})(v) = m(v) \big(K_{\Gamma_{\pi}}(v) + 2\#\{\text{hyperpl. arrows at } v\} - \#\{\text{polar arrows at } v\} \big)$$

Applications:

- Simple explicit computation of the inner rates
- Lê-Greuel-Teissier Formula
- We obtain strong restrictions on the relative positions of arrows.

- Lifting the formula for $NL(\mathbb{C}^2, 0)$ to the singular case: topology and monodromy of the Milnor fiber of a generic linear form, Dehn twists.
- Birational interpretation of the inner rates as (normalized) logarithmic
 Mather discrepancies: Fitting ideals, study of the zeroes and poles of some differential forms on resolutions.

$$\{(zx^2+y^3)(x^3+zy^2)+z^7=0\}\subset \mathbb{C}^3$$

Theorem (Belotto–F–Pichon, 2019)

$$\Delta_{\Gamma_{\pi}}(\mathcal{I})(v) = m(v) \big(K_{\Gamma_{\pi}}(v) + 2\#\{\text{hyperpl. arrows at } v\} - \#\{\text{polar arrows at } v\} \big)$$

Applications:

- Simple explicit computation of the inner rates
- Lê-Greuel-Teissier Formula
- We obtain strong restrictions on the relative positions of arrows.

- Lifting the formula for $NL(\mathbb{C}^2,0)$ to the singular case: topology and monodromy of the Milnor fiber of a generic linear form, Dehn twists.
- Birational interpretation of the inner rates as (normalized) logarithmic Mather discrepancies: Fitting ideals, study of the zeroes and poles of some differential forms on resolutions.

$$\{(zx^2 + y^3)(x^3 + zy^2) + z^7 = 0\} \subset \mathbb{C}^3$$

