Taller de Geometría Diferencial semana 4

Juan Sebastián Gaitán

6 de agosto de 2018

Ejercicio 3.1

Para $r, a, b \in \mathbb{R}^+$ considere las helices parametrizadas en \mathbb{R}^3 por:

$$\gamma_1: r \mapsto (r \cdot \cos(at), r \cdot \sin(at), b \cdot (at)),$$

$$\gamma_2: r \mapsto (r \cdot \cos(-at), r \cdot \sin(-at), b \cdot (at)).$$

Calcule sus curvaturas κ_1, κ_2 y las torsiones τ_1, τ_2 respectivamente. Encuentre un movimiento euclidiano $\Phi: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $\gamma_2 = \Phi \circ \gamma_2$. $\xi \Phi$ conserva orientación?

Demostraci'on.

Ejercicio 3.3

Demuestre que la curva $\gamma: (-\frac{\pi}{2},\frac{\pi}{2}) \to \mathbb{R}^3$ con

$$\gamma: t \mapsto (2\cos^2 t - 3, \sin t - 8, 3\sin^2 t + 4)$$

es regular. Determine si la imagen de γ está contenida en:

- 1. una linea recta en \mathbb{R}^3 o no.
- 2. un plano en \mathbb{R}^3 o no.

Demostración. Note que las curvas parametrizadas por γ_1 y γ_2 son círculos y por lo tanto las curvaturas son $\frac{1}{r}$ y $\frac{-1}{r}$ respectivamente. Además, el movimiento rígido está dado por:

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Ejercicio 3.5

Sea $\gamma:I\to\mathbb{R}^3$ un a C^2 -curva regular en \mathbb{R}^3 con curvatura no nula. Entonces la torsion satisface:

$$\tau(t) = \frac{\det[\gamma'(t), \gamma''(t), \gamma'''(t)]}{|\gamma'(t) \times \gamma''(t)|^2}$$

Demostración. Tome $\alpha = \gamma \circ \tau$ una reparametrización de γ con $\alpha : (0, L(\gamma)) \to \mathbb{R}^2$ por longitud de arco, $\gamma : I \to \mathbb{R}^2$ y $\tau : (0, L(\gamma)) \to (a, b)$ como habíamos probado para curvas con parametrización natural que $\kappa(s)_{\alpha} = \langle \dot{T}(s), N(s) \rangle$ y tome $\gamma(t) = (x(t), y(t))$.

$$T = \dot{\alpha}$$

$$T = (\gamma \circ \tau)'(s)$$

$$T = \gamma'(\tau(s) \cdot \tau'(s))$$

$$T = (x'(\tau(s)), y'(\tau(s))\tau'(s))$$

$$T(s) = (\tau'(s)x'(\tau(s))), (\tau'(s)y'(\tau(s)))$$

$$\dot{T}(s) = [\tau''(s)x'(\tau(s)) + \tau^2(s)x''(\tau(s))\tau'(s), \tau''(s)y'(\tau(s)) + \tau'(s)y''(\tau(s))\tau'(s)]$$

$$= [\tau''(s)x'(\tau(s)) + (\tau'(s))^2x''(\tau(s)), \tau''(s)y'(\tau(s)) + (\tau'(s))^2y''(\tau(s))]$$

Además, note que:

$$N(s) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x'(\tau(s)) \cdot \tau'(s) \\ y'(\tau(s)) \cdot \tau'(s) \end{pmatrix} = \begin{pmatrix} -y'(\tau(s)) \cdot \tau'(s) \\ x'(\tau(s)) \cdot \tau'(s) \end{pmatrix}.$$

Y por lo tanto, se tiene que:

$$\kappa(s) = \langle \dot{T}(s), N(s) \rangle$$

$$= -y'(\tau(s))x'(\tau(s))\tau'(s)\tau''(s) - y'(\tau(s))\tau'(s)^3x''(\tau(s)) + y'(\tau(s))x'(\tau(s))\tau'(s)\tau''(s) + x'(\tau(s))\tau'(s)^3y''(\tau(s))$$

$$= [\tau'(s)]^3[x'(\tau(s))y''(\tau(s)) - x'(\tau(s))x''(\tau(s))]$$

y como $\tau'(s) = \frac{1}{\sigma'(\tau(s))} = \frac{1}{|\gamma'(t)|}$, entonces:

$$\kappa(s) = \frac{1}{|\gamma'(t)|^3} [x'(\tau(s))y''(\tau(s)) - x'(\tau(s))x''(\tau(s))]$$

$$= \frac{1}{|\gamma'(t)|^3} \det \begin{pmatrix} x'(\tau(s)) & x''(\tau(s)) \\ y'(\tau(s)) & y''(\tau(s)) \end{pmatrix}$$

$$= \frac{1}{|\gamma'(t)|^3} \det \begin{pmatrix} x'(t) & x''(t) \\ y'(t) & y''(t) \end{pmatrix}$$

Ejercicio 3.7

Sea $\gamma: \mathbb{R} \to \mathbb{R}^3$ una C^2 -curva regular cerrada en \mathbb{R}^3 con parametrización natural. busque una demostración del teorema de Fenchel:

$$L(\dot{\gamma}) \int_0^P \kappa(s) ds \ge 2\pi$$

Demostración. Sea $\gamma:[0,l]\to\mathbb{R}^3$ un a curva regular parametrizada por longitud de arco. Como γ tiene velocidad unitaria, su función velocidad \mathbf{v} , es una curva en S^2 .

Vamos a usar el hecho de que γ es cerrada para demostrar que la curva geométrica que describe \mathbf{v} interseca a todo circulo maximal de S^2 . Para esto, sea $P \subseteq \mathbb{R}^3$ un subespacio bidimensional arbitrario tal que $G = P \cap S^2$ es un ciculo maximal. Denote por \mathbf{n} el vector normal de P. Note que un punto en S^2 está en G si y solo si es ortogonal a \mathbf{n} . Como $\frac{d}{dt}\langle \gamma(t), \mathbf{n} \rangle = \langle \mathbf{v}(t), \mathbf{n} \rangle$, y por el teorema fundamental del calculo, se tiene:

$$\int_0^l \langle \mathbf{v}(t), \mathbf{n} \rangle dt = \langle \gamma(l), \mathbf{n} \rangle - \langle \gamma(0), \mathbf{n} \rangle = 0$$

. Como el valor medio de $\langle \mathbf{v}(t), \mathbf{n} \rangle$, entonces, se tiene $\langle \mathbf{v}(t_0), \mathbf{n} \rangle$ para algún $t_0 \in [0, l]$ y por lo tanto, \mathbf{v} interseca todo circulo maximal. Por el lema 2.17, se tiene que la longitud de arco de \mathbf{v} es mayor que 2π , de dinde se tiene:

$$\int_0^l \kappa(t)dt = \int_0^l |\mathbf{v}'(t)|dt \ge \pi.$$