PSALTer results panel $S = \iiint \left(\frac{1}{4} \left(2 \, a. \, \mathcal{A}_{\alpha}^{\alpha \beta} \, \mathcal{A}_{\beta \chi}^{\chi} + \mathcal{A}^{\alpha \beta \chi} \left(-2 \, a. \, \mathcal{A}_{\beta \chi \alpha}^{\alpha \beta} + 4 \, w_{\alpha \beta \chi} \right) + 4 \, \mathcal{T}^{\alpha \beta} \, h_{\alpha \beta}^{\alpha \beta} - a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\alpha \beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\alpha \beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\alpha \beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\alpha \beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\alpha \beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\alpha \beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\alpha \beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\alpha \beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\alpha \beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\alpha \beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\alpha \beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\chi}^{$ **Wave operator** $\overset{0^{+}h^{\perp}}{\overset{0^{+}h^{\parallel}}{\overset{0^{+}}{\mathcal{A}}_{a}}\parallel\overset{0^{+}}{\overset{0^{+}}{\mathcal{A}}_{s}}\overset{1^{+}}{\overset{0^{+}}{\mathcal{A}}_{s}}\parallel\overset{0^{+}}{\overset{0^{+}}{\mathcal{A}}_{s}}\overset{h}{\overset{0^{-}}{\overset{0^{-}}{\mathcal{A}}_{a}}}\parallel$ ${}^{0^{+}}\mathcal{A}_{a}{}^{\parallel}$ † ⁰⁻Æa[∥]† ${}^{1^{+}}_{\cdot}\mathcal{A}_{a}{}^{\parallel}{}_{\alpha\beta}$ ${}^{1^{+}}_{\cdot}\mathcal{A}_{a}{}^{\perp}{}_{\alpha\beta}$ ${}^{1^{+}}_{\cdot}\mathcal{A}_{s}{}^{\perp}{}_{\alpha\beta}$ ${}^{1}_{\bullet}\mathcal{A}_{\mathsf{S}}{}^{\parallel\mathsf{h}}{}_{\alpha}$ $^{1^{+}}_{\cdot}\mathcal{A}_{\mathsf{a}}{}^{\perp}\,\dagger^{\alpha\beta}$

					4 7/2		4 76	. , , ,	4 V3	4 76							
${}^{1}_{\cdot}\mathcal{A}_{a}{}^{\parallel}\dagger^{\alpha}$	0	0	Θ	$-\frac{ia.k}{0}$	$\frac{1}{4} \left(-a \cdot -c \cdot k^2 \right)$	$\frac{a_{\stackrel{\bullet}{0}}}{2\sqrt{2}}$	$-\frac{c_{\cdot}k^{2}}{4\sqrt{3}}$	$-\frac{1}{4} \sqrt{\frac{5}{3}} c_{1} k^{2}$	$-\frac{c_{2}k^{2}}{2\sqrt{6}}$	$\frac{c_{\cdot} k^2}{4 \sqrt{3}}$							
${}^{1} \cdot \mathcal{A}_{a}^{\perp} \dagger^{\alpha}$	0	0	Θ	0	$\frac{a_{\stackrel{\circ}{0}}}{2\sqrt{2}}$	0	0	0	0	0							
$^{1}_{\bullet}\mathcal{A}_{S}^{\perpt}\dagger^{\alpha}$	Θ	Θ	0	$\frac{i a \cdot k}{4 \sqrt{6}}$	$-\frac{c_{2}k^{2}}{4\sqrt{3}}$	Θ	$\frac{1}{12} \left(-4 a \cdot -c \cdot k^2 \right)$	$\frac{1}{12} \sqrt{5} \left(2 a \cdot - c \cdot k^2 \right)$	0 V 2	$\frac{1}{12} \left(-2 a \cdot c \cdot k^2 \right)$							
${}^{1}_{\bullet}\mathcal{A}_{S}{}^{\parallelt}\dagger^{\alpha}$	0	0	0	$-\frac{1}{4} i \sqrt{\frac{5}{6}} a_0$	$\int_{0}^{\infty} k - \frac{1}{4} \sqrt{\frac{5}{3}} c_{1} k^{2}$	0		$\frac{1}{12} \left(4 a \cdot - 5 c \cdot k^2 \right)$	$-\frac{1}{6} \sqrt{\frac{5}{2}} \left(a_{\bullet} + c_{\bullet} k^2 \right)$	$\frac{1}{12} \sqrt{5} \left(-2 a \cdot + c \cdot k^2 \right)$							
$^{1}_{\bullet}\mathcal{A}_{S}^{\perph}\dagger^{\alpha}$	0	0	Θ	$\frac{i a \cdot k}{4 \sqrt{3}}$	$-\frac{c_{2}k^{2}}{2\sqrt{6}}$	Θ	$-\frac{a_{\cdot}+c_{\cdot}k^2}{6\sqrt{2}}$	$-\frac{1}{6} \sqrt{\frac{5}{2}} \left(a_{\stackrel{\bullet}{0}} + c_{\stackrel{\bullet}{2}} k^2 \right)$	$\frac{1}{6} \left(2 a \cdot - c \cdot k^2 \right)$	$\frac{a \cdot + c \cdot k^2}{6 \sqrt{2}}$							
${}^{1}\mathcal{A}_{S}{}^{\parallelh}\dagger^{\alpha}$	0	0	0	$\frac{i a \cdot k}{4 \sqrt{6}}$	$\frac{c_{\frac{1}{2}}k^2}{4\sqrt{3}}$	Θ		$\frac{1}{12} \sqrt{5} \left(-2 a_{0} + c_{1} k^{2} \right)$		$\frac{1}{12}\left(5\ a_{\stackrel{\cdot}{0}}-c_{\stackrel{\cdot}{2}}k^2\right)$	2 ⁺ _h _{αβ}	$^{2^{+}}_{\bullet}\mathcal{A}_{a}^{\parallel}_{\alpha\beta}$	$^{2^{+}}_{\cdot}\mathcal{A}_{s}^{\parallel}_{\alpha\beta}$	$^{2^{+}}_{\bullet}\mathcal{A}_{S}^{\perp}{}_{\alpha\beta}$	${}^{2^{-}}\mathcal{A}_{a}{}^{\parallel}{}_{\alpha\beta\chi}$	$^{2^{-}}\mathcal{A}_{S}^{\parallel}_{\alpha\beta\chi}$	
										$\stackrel{2^+}{\cdot}h^{\parallel} \uparrow^{\alpha\beta}$	0	$-\frac{i a \cdot k}{4 \sqrt{2}}$	$-\frac{i a \cdot k}{4 \sqrt{3}}$	$\frac{i a \cdot k}{4 \sqrt{6}}$	0	0	
										${}^{2^{+}}_{\bullet}\mathcal{A}_{a}{}^{\parallel}$ † ${}^{\alpha\beta}$	$\frac{i a \cdot k}{4 \sqrt{2}}$	$\frac{a}{\frac{0}{9}}$	0	0	Θ	0	
										${}^{2^{+}}_{\bullet}\mathcal{A}_{S}^{\parallel}\dagger^{\alpha\beta}$	$\frac{i a \cdot k}{4 \sqrt{3}}$	0	$-\frac{a}{0}$	0	Θ	0	
										${}^{2^{+}}_{\bullet}\mathcal{A}_{S}{}^{\perp}\dagger^{lphaeta}$	$-\frac{i a \cdot k}{4 \sqrt{6}}$	0	0	$\frac{a}{0}$	0	0	
										$2^{-}\alpha \parallel \perp^{\alpha\beta\chi}$		Α.	Α.	0	a. 0	0	

 $-\frac{i a \cdot k}{4 \sqrt{3}}$

 $-\frac{i a \cdot k}{4 \sqrt{6}}$

Saturated propagator

	${\stackrel{0^+}{\cdot}}\mathcal{T}^\perp$	° ⁺ ∵∥	o⁺ _{Wa} ∥	${}^{0^+}_{\bullet}W_{\mathtt{S}}^{\mathtt{t}}$	0⁺ _{Ws} ∥	% W _s ^{⊥h}	${}^{0^{-}}\mathcal{W}_{a}{}^{\parallel}$
^{0⁺} .∵∵†	$-\frac{36 k^2}{a_{\cdot 0} (16+3 k^2)^2}$	$\frac{4 \sqrt{3}}{16 a + 3 a k^2}$	$\frac{2 i \sqrt{6} k}{16 a + 3 a k^2}$	$-\frac{72 i k}{a \cdot \left(16+3 k^2\right)^2}$	$\frac{8 i k (19+3 k^2)}{a_0 (16+3 k^2)^2}$	$-\frac{4 i \sqrt{2} k (10+3 k^2)}{a_0 (16+3 k^2)^2}$	0
^{⊙⁺} ∵″†	$\frac{4 \sqrt{3}}{16 a + 3 a k^2}$	$\frac{4}{a_{0}k^{2}}$	$\frac{2 i \sqrt{2}}{a \cdot k}$	$\frac{8 i \sqrt{3}}{16 a. k+3 a. k^3}$	$-\frac{8i}{\sqrt{3}\left(16a_{0}k+3a_{0}k^{3}\right)}$	$-\frac{8 i \sqrt{\frac{2}{3}}}{16 a. k+3 a. k^{3}}$	0
^{0⁺} Wa [∥] †	$-\frac{2 i \sqrt{6} k}{16 a.+3 a. k^2}$	$-\frac{2 i \sqrt{2}}{a \cdot k}$	0	$\frac{4 \sqrt{6}}{16 a +3 a \cdot k^2}$	$-\frac{4\sqrt{\frac{2}{3}}}{16 a.+3 a. k^{2}}$	$-\frac{8}{\sqrt{3}\left(16a_{0}+3a_{0}k^{2}\right)}$	0
^{0⁺} Ws ^{⊥t} †	$\frac{72 i k}{a \cdot \left(16+3 k^2\right)^2}$	$-\frac{8 i \sqrt{3}}{16 a_{0} k+3 a_{0} k^{3}}$	$\frac{4 \sqrt{6}}{16 a + 3 a k^2}$	$-\frac{144}{a_{0}\left(16+3 k^{2}\right)^{2}}$	$\frac{16 \left(19+3 k^2\right)}{a_{0} \left(16+3 k^2\right)^2}$	$-\frac{8\sqrt{2}(10+3k^2)}{a_{0}(16+3k^2)^2}$	0
⁰⁺ Ws †	$-\frac{8 i k (19+3 k^2)}{a_0 (16+3 k^2)^2}$	$\frac{8 i}{\sqrt{3} \left(16 a_0 k+3 a_0 k^3\right)}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a_{.0} + 3a_{.0}k^2}$	$\frac{16\left(19+3k^2\right)}{a_0\left(16+3k^2\right)^2}$	$-\frac{16(35+6k^2)}{3a_{\cdot 0}(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22+3k^2)}{3a_{\cdot 0}(16+3k^2)^2}$	0
^{0⁺} W _s ^{⊥h} †	$\frac{4 i \sqrt{2} k \left(10+3 k^2\right)}{a \cdot \left(16+3 k^2\right)^2}$	$\frac{8 i \sqrt{\frac{2}{3}}}{16 a_0 k+3 a_0 k^3}$	$-\frac{8}{\sqrt{3}\left(16a_{0}+3a_{0}k^{2}\right)}$	$-\frac{8\sqrt{2}(10+3k^2)}{a_{0}(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22+3k^2)}{3a_0(16+3k^2)^2}$	$\frac{32 \left(13+3 k^2\right)}{3 a_0 \left(16+3 k^2\right)^2}$	0
⁰⁻ Wa [∥] †	0	0	0	0	0	0	$-\frac{2}{a}$

 $^{1^{+}}_{\cdot}\mathcal{A}_{\mathsf{S}}^{\perp}^{\dagger}^{\alpha\beta}$

 $\frac{1}{\cdot}h^{\perp}\uparrow^{\alpha}$

 $0 \qquad \frac{1}{4} \left(a \cdot - c \cdot k^2 \right)$

a. 0	$\ W_a \ _{\alpha\beta}$	$W_{a}^{\perp}_{\alpha\beta}$	$W_{s}^{\perp}_{\alpha\beta}$	${}^{1}_{\bullet}\mathcal{T}^{\perp}{}_{\alpha}$	$\mathbb{R}_{a}^{\parallel}_{\alpha}$	W_{a}^{\perp}	W_{s}^{it}	$W_{s}^{I^{-}}$	W_{s}^{1n}	$W_s^{\parallel n}_{\alpha}$	
$^{1^{+}}W_{a}^{\parallel}\dagger^{\alpha\beta}$	Θ	$-\frac{2\sqrt{2}}{a_{0}}$	0	0	0	Θ	Θ	Θ	0	0	
$^{1^{+}}_{\cdot}W_{a}^{\perp}\dagger^{\alpha\beta}$	$-\frac{2\sqrt{2}}{a_{\stackrel{\circ}{0}}}$	$\frac{2}{a_{\stackrel{\cdot}{\circ}} - c_{\stackrel{\cdot}{\circ}} k^2}$	$-\frac{2\sqrt{2}c_{1}k^{2}}{a_{0}^{2}-a_{0}c_{2}k^{2}}$	0	0	Θ	Θ	0	0	0	
$^{1^{+}}W_{S}^{\perp}\dagger^{\alpha\beta}$	0	$-\frac{2\sqrt{2}c_{2}k^{2}}{a_{0}^{2}-a_{0}c_{2}k^{2}}$	$\frac{4}{a_{\stackrel{.}{0}}-c_{\stackrel{.}{2}}k^2}$	0	0	Θ	0	0	0	Θ	
$^{1}_{\bullet}\mathcal{T}^{\perp}\dagger^{\alpha}$	0	Θ	Θ	$\frac{2 k^2}{a_{\cdot 0} (2+k^2)^2}$	$\frac{2 i \sqrt{2} k}{2 a + a k^2}$	$\frac{i k \left(4+k^2\right)}{a \cdot \left(2+k^2\right)^2}$	$-\frac{i \sqrt{\frac{2}{3}} k (4+3 k^2)}{a_{0} (2+k^2)^2}$	0	$-\frac{i k (8+3 k^2)}{\sqrt{3} a_0 (2+k^2)^2}$	Θ	
1 $^{-}$ \mathcal{W}_{a} $^{\parallel}$ $^{\alpha}$	0	Θ	Θ	$-\frac{2 i \sqrt{2} k}{2 a + a \cdot k^2}$	0	$\frac{\sqrt{2} (4+k^2)}{a_{0}(2+k^2)}$	$-\frac{2 k^2}{\sqrt{3} \left(2 a_0 + a_0 k^2\right)}$	0	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a + a k^2}$	0	
1 · W_a $^{\perp}$ $^{\alpha}$	0	Θ	Θ	$-\frac{i k (4+k^2)}{a_0 (2+k^2)^2}$	$\frac{\sqrt{2} \left(4+k^2\right)}{a \cdot \left(2+k^2\right)}$	$\frac{(4+k^2)^2}{2 a_0 (2+k^2)^2}$	$-\frac{8+8 k^2+k^4}{\sqrt{6} a_{0}(2+k^2)^2}$	$-\frac{\sqrt{\frac{10}{3}}}{a_{0}}$	$\frac{-16-4 k^2+k^4}{2 \sqrt{3} a_0 (2+k^2)^2}$	$-\frac{2\sqrt{\frac{2}{3}}}{a_{0}}$	
1 · W_{s} 1 †	Θ	Θ	0	$\frac{i \sqrt{\frac{2}{3}} k (4+3 k^2)}{a_0 (2+k^2)^2} -$	$-\frac{2 k^2}{\sqrt{3} \left(2 a + a \cdot k^2\right)}$	$-\frac{8+8 k^2+k^4}{\sqrt{6} a_{0}(2+k^2)^2}$	$\frac{1}{3} \left(-\frac{1}{c_{\frac{1}{2}}k^2} + \frac{-16 - 8 k^2 + k^4}{a_{\frac{1}{6}} (2 + k^2)^2} \right)$	$-\frac{\sqrt{5} \left(a_{0}-2 c_{2} k^{2}\right)}{3 a_{0} c_{2} k^{2}}$	$-\frac{\frac{2}{c_{2}k^{2}}+\frac{-1-\frac{4}{(2\cdot k^{2})^{2}}}{\frac{a_{0}}{2}}}{3\sqrt{2}}$	$\frac{4}{3 a_{\bullet}} - \frac{2}{3 c_{\bullet} k^2}$	
$\mathcal{W}_{s}^{\dagger}$ †	0	Θ	Θ	0	0	$-\frac{\sqrt{\frac{10}{3}}}{a_{0}}$	$-\frac{\sqrt{5}\left(a_{0}-2c_{2}k^{2}\right)}{3a_{0}c_{2}k^{2}}$	$\frac{4}{3a_{\bullet}} - \frac{5}{3c_{\bullet}k^2}$	$-\frac{\sqrt{10} \left(a_{0}+c_{2} k^{2}\right)}{3 a_{0} c_{2} k^{2}}$	$-\frac{2\sqrt{5}\left(a_{0}-2c_{2}k^{2}\right)}{3a_{0}c_{2}k^{2}}$	
1 · W_{s} $^{\perp h}$ $^{\alpha}$	0	0	Θ	$\frac{i k (8+3 k^2)}{\sqrt{3} a_{0} (2+k^2)^2}$	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a + a \cdot k^2}$	$\frac{-16-4 k^2+k^4}{2 \sqrt{3} a_{0} (2+k^2)^2}$	$\frac{-\frac{2}{c. k^2} + \frac{-1 - \frac{4}{(2 \kappa^2)^2}}{\frac{a}{6}}}{3 \sqrt{2}}$	$-\frac{\sqrt{10}\left(a.+c.k^2\right)}{3a.c.k^2}$	$\frac{1}{6} \left(-\frac{4}{c_{\frac{1}{2}}k^2} + \frac{32 + 16 k^2 + k^4}{a_{\frac{1}{6}} (2 + k^2)^2} \right)$	$-\frac{2\sqrt{2}\left(a_0+c_1k^2\right)}{3a_0c_1k^2}$	
$\cdot \mathcal{W}_{s}^{\parallel h} \uparrow^{\alpha}$	0	Θ	Θ	0	0	$-\frac{2\sqrt{\frac{2}{3}}}{a_{\stackrel{\circ}{0}}}$	$\frac{4}{3a_{\bullet}} - \frac{2}{3c_{\bullet}k^2}$	$-\frac{2\sqrt{5}\left(a_{0}-2c_{2}k^{2}\right)}{3a_{0}c_{2}k^{2}}$	$-\frac{2\sqrt{2}\left(a_{\theta}+c_{2}k^{2}\right)}{3a_{\theta}c_{2}k^{2}}$	$\frac{4}{3}\left(\frac{5}{a_{\cdot 0}}-\frac{1}{c_{\cdot 2}k^2}\right)$	2⁺ • 1

$\frac{4}{9}\left(\frac{5}{2}-\frac{1}{2}\right)$							
$\frac{4}{3}\left(\frac{5}{a_{\cdot}}-\frac{1}{c_{\cdot}k^2}\right)$	$^{2^{+}}\mathcal{T}^{\parallel}_{\alpha\beta}$	$^{2^{+}}W_{a}^{\parallel}_{\alpha\beta}$	$^{2^{+}}W_{s} _{\alpha\beta}$	$^{2^{+}}W_{S}^{\perp}{}_{\alpha\beta}$	2 · W_a $\ _{\alpha\beta\chi}$	$^{2}W_{s}^{\parallel}_{\alpha\beta\chi}$	
$^{2^{+}}\mathcal{T}^{\parallel}$ † lphaeta	$-\frac{8}{a_{0}k^{2}}$	$-\frac{4 \sqrt{2}}{a_{0} k}$	$\frac{4\pi}{\sqrt{3} a_{0} k}$	$\frac{4 \sqrt{3}}{a \cdot k}$	0	Θ	
${}^{2^+}W_a{}^{\parallel}\dagger^{lphaeta}$	$\frac{4i\sqrt{2}}{aik}$	0	$\frac{2\sqrt{\frac{2}{3}}}{a_{0}}$	$\frac{4}{\sqrt{3} \ a_{\stackrel{\circ}{0}}}$	0	Θ	
$\overset{2^{+}}{\cdot} w_{s}^{\parallel} + \overset{\alpha\beta}{\cdot}$ $\overset{2^{+}}{\cdot} w_{s}^{\perp} + \overset{\alpha\beta}{\cdot}$	$-\frac{4i}{\sqrt{3}}a_{0}k$	$\frac{2\sqrt{\frac{2}{3}}}{a_{\bullet}}$	$-\frac{8}{3 a_{\bullet}}$	$-\frac{2\sqrt{2}}{3a_{\stackrel{\circ}{0}}}$	Θ	Θ	
$^{2^{+}}W_{S}^{\perp}\dagger^{\alpha\beta}$	$-\frac{4 i \sqrt{\frac{2}{3}}}{a \cdot k}$	$\frac{4}{\sqrt{3} \ a_{0}}$	$-\frac{2\sqrt{2}}{3a_{0}}$	$\frac{8}{3a{0}}$	0	Θ	
2 · w_{a} $^{\parallel}$ $^{\alpha\beta\chi}$	0	0	0	Θ	$\frac{4}{a}$	0	
$2^{-}W_{s}^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	0	0	0	$\frac{4}{a}$	3-,
						3 $^{-}$ W_{s}^{\parallel} $^{\alpha\beta\chi}$	

Source constraints

Spin-parity form	Covariant form	Multiplicities					
$k \cdot \mathcal{W}_{S}^{\parallel} + 2 k \cdot \mathcal{W}_{S}^{\perp h} - 6 i \cdot \mathcal{T}^{\perp} = 0$	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} + \partial_{\chi} \partial^{\chi} \partial_{\alpha} \mathcal{W}^{\alpha\beta}_{ \beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} \mathcal{W}^{\alpha\beta\chi}$	1					
$k \overset{0}{\cdot} \mathcal{W}_{S}^{\perp t} + 2 i \overset{0}{\cdot} \mathcal{T}^{\perp} == 0$	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} \mathcal{W}^{\alpha\beta\chi}$	1					
$k \stackrel{1}{\cdot} W_s^{\perp h^{\alpha}} - 6 i \stackrel{1}{\cdot} \mathcal{T}^{\perp^{\alpha}} = k \left(3 \stackrel{1}{\cdot} W_a^{\perp^{\alpha}} + \stackrel{1}{\cdot} W_s^{\perp t^{\alpha}} \right)$	$2\ \partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\mathcal{W}^{\beta\alpha\chi} = 2\ \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta} + \partial_{\delta}\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{W}^{\beta\chi\delta}$	3					
Total expected gauge generators:							

Massive spectrum

Pole residue:	$-\frac{6}{c_{\cdot 2}} > 0$
Square mass:	$\frac{\frac{a}{0}}{\frac{c}{2}} > 0$
Spin:	1
Parity:	Even

Massless spectrum

Unitarity conditions

(Demonstrably impossible)