EXERCISES

- 1. Solve $u_{tt} = c^2 u_{xx}$, $u(x, 0) = e^x$, $u_t(x, 0) = \sin x$.
- 2. Solve $u_{tt} = c^2 u_{xx}$, $u(x, 0) = \log(1 + x^2)$, $u_t(x, 0) = 4 + x$.
- 3. The midpoint of a piano string of tension T, density ρ , and length l is hit by a hammer whose head diameter is 2a. A flea is sitting at a distance l/4 from one end. (Assume that a < l/4; otherwise, poor flea!) How long does it take for the disturbance to reach the flea?
- 4. Justify the conclusion at the beginning of Section 2.1 that *every* solution of the wave equation has the form f(x + ct) + g(x ct).
- 5. (The hammer blow) Let $\phi(x) \equiv 0$ and $\psi(x) = 1$ for |x| < a and $\psi(x) = 0$ for $|x| \ge a$. Sketch the string profile (u versus x) at each of the successive instants t = a/2c, a/c, 3a/2c, 2a/c, and 5a/c. [Hint: Calculate

$$u(x,t) = \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) \, ds = \frac{1}{2c} \{ \text{length of } (x-ct, x+ct) \cap (-a, a) \}.$$

Then u(x, a/2c) = (1/2c) {length of $(x - a/2, x + a/2) \cap (-a, a)$ }. This takes on different values for |x| < a/2, for a/2 < x < 3a/2, and for x > 3a/2. Continue in this manner for each case.]

- 6. In Exercise 5, find the greatest displacement, $\max_{x} u(x, t)$, as a function of t.
- 7. If both ϕ and ψ are odd functions of x, show that the solution u(x, t) of the wave equation is also odd in x for all t.
- 8. A *spherical wave* is a solution of the three-dimensional wave equation of the form u(r, t), where r is the distance to the origin (the spherical coordinate). The wave equation takes the form

$$u_{tt} = c^2 \left(u_{rr} + \frac{2}{r} u_r \right)$$
 ("spherical wave equation").

- (a) Change variables v = ru to get the equation for v: $v_{tt} = c^2 v_{rr}$.
- (b) Solve for v using (3) and thereby solve the spherical wave equation.
- (c) Use (8) to solve it with initial conditions $u(r, 0) = \phi(r)$, $u_t(r, 0) = \psi(r)$, taking both $\phi(r)$ and $\psi(r)$ to be even functions of r.
- 9. Solve $u_{xx} 3u_{xt} 4u_{tt} = 0$, $u(x, 0) = x^2$, $u_t(x, 0) = e^x$. (*Hint:* Factor the operator as we did for the wave equation.)
- 10. Solve $u_{xx} + u_{xt} 20u_{tt} = 0$, $u(x, 0) = \phi(x)$, $u_t(x, 0) = \psi(x)$.
- 11. Find the general solution of $3u_{tt} + 10u_{xt} + 3u_{xx} = \sin(x+t)$.