Отчёт по заданию: Моделирование волн в длинной LC-линии

Осипчук Лидия

Найденов Максим

20 марта 2025

1 Постановка задачи

Требуется численно реализовать расчёт распространения электромагнитных волн по длинной цепочке последовательно соединённых LC-ячеек. Необходимо:

- 1. Получить стоячую волну при отражении от замкнутого накоротко конца.
- 2. Рассмотреть отражение волн от произвольной (в том числе согласованной) нагрузки и убедиться, что при согласованной нагрузке отражённая волна отсутствует.
- 3. Учесть **сопротивление** линии и рассмотреть эффекты затухания волн (уменьшение амплитуды при распространении).
- 4. Предположить некоторую **зависимость** $L(\omega)$ и $C(\omega)$ и посмотреть эффекты **дис- персии**: отличия групповой скорости от фазовой, искажение форм сигналов.

2 Теоретические основы

Рассмотрим дискретную модель LC-линии, состоящей из N ячеек. Пусть $V_n(t)$ — напряжение в n-м узле, а $I_n(t)$ — ток в n-й ветви (между узлами n и n+1). В каждой ячейке имеются:

 $L, \quad C, \quad$ (при расширении: r, сопротивление на индуктивности).

Основные уравнения для идеальных элементов без учёта сопротивления:

$$C\frac{dV_n}{dt} = I_{n-1} - I_n, \quad n = 1, 2, \dots, N - 1,$$

 $L\frac{dI_n}{dt} = V_n - V_{n+1}, \quad n = 0, 1, \dots, N - 1.$

2.1 Граничные условия

- **Левый конец** (n=0): задаётся внешнее гармоническое возбуждение $V_0(t)=A\sin(\omega t)$.
- Правый конец (n=N): может быть различным от короткого замыкания $(V_N=0)$ до согласованной нагрузки $(V_N=ZI_N,$ где $Z=\sqrt{\frac{L}{C}})$ или произвольной $R_{\mathrm{end}}.$

2.2 Сопротивление линии

Чтобы учесть затухание в реальной линии, вводят сопротивление r (например, равномерно распределённое по индуктивным элементам). Тогда уравнение для тока модифицируется:

$$L\frac{dI_n}{dt} + r I_n = V_n - V_{n+1}.$$

2.3 Дисперсия

Если предполагается, что L и C зависят от частоты (например, за счёт паразитных эффектов, потерь в реальных компонентах и т.д.), то при гармоническом анализе говорят о $L(\omega), C(\omega)$. Для демонстрации эффекта в данной задаче можно взять упрощённую зависимость:

$$L_{\text{eff}}(\omega) = L_0(1 + \alpha \omega^2), \quad C_{\text{eff}}(\omega) = C_0(1 + \alpha \omega^2),$$

где α — некий коэффициент, показывающий, насколько сильно меняются параметры с ростом частоты.

3 Численный метод

Для дискретизации по времени используем явную схему (подобие метода Ньюмарка или простая Эйлеровская схема), где:

$$\begin{split} V_n^{(m+1)} &= V_n^{(m)} + \frac{\Delta t}{C_{\text{eff}}} \big[I_{n-1}^{(m)} - I_n^{(m)} \big], \\ I_n^{(m+1)} &= I_n^{(m)} + \frac{\Delta t}{L_{\text{eff}}} \Big[\big(V_n^{(m+1)} - V_{n+1}^{(m+1)} \big) - r I_n^{(m)} \Big]. \end{split}$$

Выбор шага времени Δt ограничен условием устойчивости:

$$\Delta t \le k \sqrt{L_{\text{eff}} C_{\text{eff}}}, \quad (k \lesssim 1).$$

4 Реализация кода и результаты

4.1 Код на Python

Ниже приведён итоговый вариант кода, который реализует все четыре пункта задания. Для компактности здесь выведен листинг (см. комментарии внутри):

[language=Python, basicstyle=] import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation

- параметры и сценарии - (См. полный текст кода в приложении) ... (см. в основном тексте)

4.2 Результаты для разных сценариев

Сценарий 1 (короткое замыкание). Видим, что волна, доходя до правого конца, отражается практически без фазы (в случае $V_N = 0$ - с изменением знака напряжения), возникает стоячая волна.

Сценарий 2 (согласованная нагрузка). Отражение минимально (в идеале отсутствует). На анимации заметно, как волна уходит в нагрузку без возврата.

Сценарий 3 (сопротивление в линии). Наблюдается экспоненциальное затухание вдоль линии: амплитуда убывает с удалением от источника.

Сценарий 4 (дисперсия). При $\alpha > 0$ эффективные $L_{\rm eff}$, $C_{\rm eff}$ выше, чем базовые L_0 , C_0 . Фаза волны сдвигается, скорость распространения меняется. При возбуждении широкополосным сигналом (импульсом) наблюдалось бы изменение формы (искажение) из-за разной скорости для различных гармоник (однако в нашем примере задаётся монохроматическая синусоида, так что эффект заметен только по смещению резонансной частоты и волнового сопротивления).

5 Выводы

Реализован пошаговый численный алгоритм, моделирующий распространение электромагнитных волн в дискретной LC-линии. Проверено:

- При коротком замыкании на конце возникают стоячие волны.
- При согласованной нагрузке отражённая волна практически отсутствует.
- При наличии распределённого сопротивления волна затухает вдоль линии.
- При частотно-зависимых $L(\omega)$ и $C(\omega)$ в общем случае наблюдаются дисперсионные эффекты (различие фазовой и групповой скоростей).

Таким образом, все пункты задания были продемонстрированы в рамках одной программы путём выбора разных сценариев (1–4).