

FEOR – Optimisation II

Introduction to Scheduling Agnès Gorge

abs.um6p.ma

What do we mean by scheduling?

Scheduling is the allocation of shared resources over time to competing activities

Machine scheduling problem:

- Activities → jobs = a set of operations
- Resources → machines that can process at most one operations at a time

A simple example

Jobs

- 10 jobs to allocate either on M1, or on M2
- Each job = one single operation
- Each job can be done on the two machines but with different duration

Machine

- Non preemptive
- Precedence constraints

What's the difference between planning & scheduling?

Planning

- ► Tactical (mid-term)
- **▶** Discrete time
- ► For each time step, look if the capacity is sufficient to complete a series of task
- ► "Think globally" = the task will be done during the time step but we don't know exactly when
- In the case where the order impacts the capacity to produce (typically: changeover) → risk of being overoptimist (~ constraint relaxation)
- ➤ Small time step implies better precision but higher computation time

3 time-steps of 10

Scheduling

- ► Operational (short-term)
- ► Continuous time (No need to discretize)
- ► Each task is allocated to the resource within a precise time slot
- ► Make it possible to consider changeover
- ▶ 2 key decision variables :
 - Loading = assignment to resources
 - Sequencing = order in which they are carried out (notion of sucessor and/or predecessor)

4 majors fields of applications of scheduling problems

Production

Flexible manufacturing
Assembly problems
With or without transportation

3 Project management

Multi-resource scheduling Precedence constraints
PERT

2 Computer science

CPU Scheduling

Mono or multi processor systems

4 Workforce management

Timetabling scheduling problems (education, health, transport, ...)

Key characteristics

Operations characteristics

- Preemption or not
- Processing time

Operations per job

- Single
- Ordered
- Precedence (represented through an acyclic graph)
- **Non ordered** = totally free

Machine type

- Identical
- Uniform (different yield)
- Homogeneous

Work process = Possible machine per operations

- Only one dedicated machine
- Several but with different processing time
- Several with same processing time

Constraints

- Earliest date or deadline
- Changeover or setup
- Same machine
- ••••

Objective

Let C_i be the completion time of job J_i : objective = f(C)

- Cost function
- Makespan
- Weighted flowtime = $\Sigma_i w_i C_i$
- •••

3 famous scheduling problems

Flow shop

- Each job J_i consists of the same set of operations O_{ij} with various processing time
- Dedicated machines
- Strict order: $O_{i1} \rightarrow O_{i1} \rightarrow ... \rightarrow O_{in}$

Open shop

- Each job J_i consists of a set of operations O_{ij}
- Dedicated machines
- No precedence relations between operations

Job shop

- Each job J_i consists of a specific set of operations O_{ij}
- Dedicated machines
- Strict order: $O_{i1} \rightarrow O_{i1} \rightarrow ... \rightarrow O_{in}$

Mass production

Customisation

Various way of (re) scheduling to cope with uncertainty

	The sched	uling scheme	The rescheduling	scheme
Trigger	Periodic (off-line)	New task appears (on- line, or real-time)	Periodic (if period < time-horizon)AdaptiveReactive	
Considering uncertainty	• No = Deterministic opt°	 Heuristics (= rules) Optimal policies → 	• No = Deterministic	
Methodology	 Yes = Proactive = Robust or stochastic opt° 	Dyn. programming Rules & policies may incorporate or not uncertainties	Deterministic optimization	Heuristics (= rules)
Objective	PerformanceRobustnessStability		PerformanceDisturbance	
Decision scope	• All		AllA part of them (= recourse decisions)	None (= repair). Ex : match-up

Example of a periodic off-line (re)scheduling

How to solve scheduling problems which are amongst the hardest of NP-hard problems

Exact methods

For specific problems, there exist exact polynomial algorithm

For small instances, you can try a MILP

- Ex: Johnson's algorithm for min makespan on a flow shop with 2 machines
- Shortest path if an infinite number of machine with predence graph (Central Scheduling Problem)

- Tabu search

y a

3 widely used general formulations:

- Time-indexed formulation
- Rank-based formulation
- Disjunctive formulation

A creuser

Approximation methods

Meta-heuristics

Priority rules

Also work for dynamic problems

Dedicated algorithm

- Genetic algorithm
- Simulated annealing
- **FCFS** = First Come First Serve
- SPT = Shortest Processing Time
- **EDD** = Earlist Due Date
- CR = Critical Ratio (= Processing time / time until due)
- Active schedule generation heuristics
- Shifting bottleneck for job shop

Job-shop example: 3 possible formulations as a MIP

- j=1,...,J jobs of duration d[j]
- m=1,...,M machines
- t=1,...,T time step

Variables

Key constraints

Time-indexed

• X[t][j][m] in {0,1} #equal to 1 if job j starts at time t at machine i.

• $\Sigma[j][t-d[j]+1 \le t' \le t] X[t][j][m] \le 1 # for all j, m$

Rank-indexed

- X[j][m][k] in {0,1} #equal to 1 if job j is scheduled at the k-th position on machine I
- Y[m][k] #start time of the job at the k-th position of machine i
- $Y[m][k] + \Sigma[j] d[j] Y[m][k] X[j][m][k] \le Y[m][k+1]$ # for all m, k

Disjunctive

- X[j][j'] [m] in {0,1} #equal to 1 if j precedes j' on machine m
- Y[j][m] #start time of job j on machine m

• $Y[j][m] + d[j] \le Y[j'][m] + M X[j][j'] [m] #for all j, j', m$

References

PROJET: MINE SCHEDULING

Phosphate extraction consists of a sequence of operations

These operations can take place in multiple areas / trenchs / layer

Mine planning involves scheduling the operations of each machine

Illustration

We have broken down the problem in order to make it tractable

Quelle fonction objectif pour le module décapage ?

Mine scheduling

Problem description

Our mine is constituted of **a list of job** to perform potentially: j = 1, ..., J, corresponding to a geographical zone, on a given trench and layer characterized by a volume volume[j] of waste to move.

A job can be done by multiple machine m, with various duration. Maximum one machine can be used for a job & maximum one job per machine at the same time.

Each job provides a production (of phosphate for instance).

Each machine need time to move from one job to another: switchingTime[m][j][j']

Some job can start only when another job (called Predecessor) has been finished.

Objectif: maximize production on the given horizon

Simplification to consider

- **For objective :** consider only the production of the task that are totally finished at the end of the horizon
- **Bonus :** Consider even the « not-finished » task, with a prorata rule (ex : if 20% of the duration has been spent, then 20% of the production is available)
- In reality: the production follows a demand constraint (per rock type and time-period) and the objective function is the cost
- Bonus: What is the risk/limits of maximizing the production, or minimizing the cost?

What we expect from you

- 1. Present and explain the formulation (you don't have to stick to the proposed formulation, do not hesitate if you want to innovate)
 - What are decision variables Vs. Simulation variables Vs. State variables ?
 - You may suggest ways to reduce the size of the problem
- 2. Present your results on the small Data Set (production, computation time) when the time horizon varies
- 3. Present the limits of this simplified way of modeling the problem
- 4. As a conclusion, present 3 key learnings of this module

Defense:

- 15 min presentation
- 5 min Q&A

Open-office next week to explain the formulation (ex : Friday 6pm)

Formulation

Variables

Per job:

- isOver[j] in {0,1}
- start[j] in [0, horizonDuration]

Per possible pair [j, m]:

- allocation[j][m] in {0,1}
- isFirst[j][m] in {0,1}

Per possible succession : j1 → j2 on machine m

isSuccessorVar[m][j1][j2] in {0,1}

Objective

Sum[j] production[j] * isOverVar[j]

Constraints

- 1. Max one allocation per job
- 2. Max one "isFirst" job per machine
- 3. Constraint stating than start[j] + duration[m][j] + switchingTime[m][j][j'] ≤ start[j'] if j' is j's successor on m
- 4. Constraint stating the "isOver" variable
- 5. Constraint stating that to be allocated, a job shall either be the first, or be the successor of another job
- 6. Max one successor per job
- 7. Constraint stating that if isOver = 1, then at least one allocation = 1
- 8. Constraint stating that IsSuccessor[m][j1][j2] = 1 --> allocation[j1][m] = 1
- 9. Constraint stating that if start > 0, then then at least one allocation = 1
- 10. Constraint stating that if Sum allocation = 1, then start >= 1.0 : just to check easily which job has started or not
- 11. Constraint imposing predecessors: if vPred is the predecessor of j
 - 1. $isOver[j] = 1 \rightarrow isOver[vPred] = 1$
 - 2. j shall start only once vPred has finished

Data set

d	Α	В	С	D	E	F	G
	Id	Zone	Trench	Layer	PredecessorId	Volume	Production
	Job1	Zone1	1	1		172	58
	Job2	Zone1	1	2	Job1	212	43
	Job3	Zone1	1	3	Job2	270	82
100		Param Job	JobMachine	Switching	+ : 1	250	40

A	А	В		U	E	Г
1	Job	Zone	Trench	Layer	Machine	Duration
2	Job1	Zone1	1	1	Bull	17,2
3	Job2	Zone1	1	2	Bull	28,3
4	Job3	Zone1	1	3	Bull	54,0
5	Job3	Zone1	1	3	SmallDragline	45,0
6	Joh4	Param Job	JobMachine 1	Switching	Small Dragling	16.0

	А		R
Ouratio	n (day)	Machi	ne
	30	Bull	
		Draglin	e
)	Param	Job	JobMachi
	Ouratio	Ouration (day)	Ouration (day) Machin 30 Bull Draglin

	А	В		U	
	Machine Job1		Job2	SwitchingTime (day)	
	Bull Job1		Job2	2	
;	Bull	Job1	Job3	3	
1	Bull	Job1	Job7	1	
	PII P	aram Job	JobMachine	Switching +	

Constraint stating than start[j] + duration[j] ≤ start[j'] if j' is j's successor

 $x \le V + M (1 - b)$ \Rightarrow start[j] + duration[m][j] + switchingTime[m][j][j'] <= start[j'] + M (1 - isSuccessor[m][j][j'])

Allocation variable

	M1	M2	М3	M4	
Job1					
Job2					
Job3					
14	1				
15					
16	1				
17					
18					
19					
I10	1				

isOver[job] in {0,1} = 1 si job est terminé à la fin de l'horizon

Allocation[Job][m] in {0,1}

Start[job] in R : date de début de mon job

isSuccessor[m][j][j'] in {0,1}

 $isFirst[m][job] in {0,1} = 1 si job is the first on m$

Obj: max Sum[job] *Production[job]** isOver[job]

Sum[m] Allocation[Job][m] <= 1, for all job

Sum[job] is First[m][job] = 1, for all m

Allocation variable

	M1	M2	M3	M4	
Job1					
12					
13					
14	1				
15					
16	1				
17					
18					
19					
I10	1				

Obj = max Sum[job] production[job] * isOver[j]

Sum[machines m] Allocation[Job][m] <= 1

Start[job] : date de début de mon job

isFirst[m][job] in $\{0, 1\} = 1$ is job is the first on machine m

isSuccessor[m][j][j'] in $\{0,1\}$ = 1 si machine m passe de j à j'