Record List Display

Generate Collection

Search Results - Record(s) 1 through 1 of 1 returned.

Document ID: US 5898306 A

Relevance Rank: 44

L4: Entry 1 of 1

File: USPT

Apr 27, 1999

US-PAT-NO: 5898306

DOCUMENT-IDENTIFIER: US 5898306 A

TITLE: Single circuit ladder resonator quadrature surface RF coil

DATE-ISSUED: April 27, 1999

INVENTOR-INFORMATION:

NAME

CITY

STATE ZIP CODE COUNTRY

Liu; Haiying

Minneapolis

MN

Truwit; Charles L.

Wayzata

MN

ASSIGNEE-INFORMATION:

CITY

STATE ZIP CODE COUNTRY TYPE CODE

Regents of the University of

Minnesota

Minneapolis MN

02

APPL-NO: 8/ 838604

DATE FILED: April 9, 1997

INT-CL: [6] G01V 3/00

US-CL-ISSUED: 324/322; 324/318

US-CL-CURRENT: 324/322; 324/318 FIELD-OF-SEARCH: 324/318, 324/322, 324/300, 324/314, 324/312, 324/307, 324/309

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

http://westbrs:8820/bin/gate.exe?f=TOC

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4707664	November 1987	Fehn et al.	324/322
4721913	January 1988	Hyde et al.	324/318
4752738	June 1988	Patrick et al.	324/318
<u>4816765</u>	March 1989	Boskamp	324/318
4839594	June 1989	Misic et al.	324/318
4879516	November 1989	Mehdizadeh et al.	324/318
4881032	November 1989	Bottomley et al.	324/309
4906933	March 1990	Keren	324/318
4918388	April 1990	Mehdizadeh et al.	324/322
4931734	June 1990	Kemner et al.	324/318
<u>4985678</u>	January 1991	Gangarosa et al.	324/318
5030915	July 1991	Boskamp et al.	324/318
5045792	September 1991	Mehdizadeh	324/318
5144240	September 1992	Mehdizadeh et al.	324/318
<u>5160891</u>	November 1992	Keren	324/318
5196796	March 1993	Misic et al.	324/322
5212450	May 1993	Murphy-Boesch et al.	324/322
5235277	August 1993	Wichern	324/318
5280248	January 1994	Zou et al.	324/318
5285160	February 1994	Loos et al.	324/318
5365173	November 1994	Zou et al.	324/322
5374890	December 1994	Zou et al.	324/318
5394087	February 1995	Molyneaux	324/318
5430378	July 1995	Jones	324/318
5521506	May 1996	Misic et al.	324/322

OTHER PUBLICATIONS

Ballon, D., et al., "A 64 MHz Half-Birdcage Resonator for Clinical Imaging", J. of Magnetic Resonance, 90, 131-140, (1990).
Hu, X., et al., "Reduction of Field of View for Dynamic Imaging", Magnetic Resonance in Medicine, 31, No. 6, 691-694, (1994).

Mehdizadeh, M., "RF Coils for Magnetic Resonance Imaging", RF Design, 29-38, (1991).

Panych, L.P., et al., "A Dynamically Adaptive Imaging Algorithm for Wavelet-Encoded MRI", Magnetic Resonance in Medicine, 32, No. 6, 738-746, (1994).

ART-UNIT: 287

PRIMARY-EXAMINER: Arana; Louis

ATTY-AGENT-FIRM: Schwegman, Lundberg, Woessner, and Kluth, P.A.

ABSTRACT:

A single-circuit quadrature surface coil is formed from two ladder resonator coils and includes a first mode circuit path for detecting or generating magnetic flux in a vertical axis from a body under investigation and a second mode circuit path for detecting or generating magnetic flux in a parallel axis, with the first mode and second mode currents 90 degrees out of phase. The surface coil, which supports two resonance current modes for quadrature operation on only one single coil conductor structure, provides a high signal-to-noise ratio (SNR) and a good B.sub.1 homogeneity over the imaging volume. This coil alone may be used either for both transmitting and receiving RF signals or for detecting RF signals as "receive only." This coil is well suited for imaging the human neck, spine and heart.

17 Claims, 7 Drawing figures

ļ	Full	Title	Citation	Front	Review	Classification	Date	Reference	KWMC Draww Desc Image

Generate Collection

Term	Documents
ORTHOGONAL.USPT.	79010
ORTHOGONALS.USPT.	20
MAGNETIC.USPT.	327513
MAGNETICS.USPT.	7243
FIELD.USPT.	1574678
FIELDS.USPT.	190990
GRADIENT.USPT.	105989
GRADIENTS.USPT.	30464
(3 AND (ORTHOGONAL ADJ MAGNETIC ADJ FIELD ADJ GRADIENT)).USPT.	1

Display 35 Documents, starting with Document: 1

Display Format: FRO Change Format

End of Result Set

Generate Collection

L4: Entry 1 of 1

File: USPT

Apr 27, 1999

DOCUMENT-IDENTIFIER: US 5898306 A

TITLE: Single circuit ladder resonator quadrature surface RF coil

BSPR:

present invention pertains generally to Magnetic Resonance imaging (MRI) apparatus, and more particularly to a quadrature surface coil for use with MRI apparatus.

MRI provides a unique non-invasive imaging method for discriminating the main components of human disease pathology. As a result, MRI is one of the most widely used diagnostic imaging tools in today's hospitals throughout the world. A typical MRI system includes a main magnet to generate a uniform DC magnetic field, three gradient coils to generate linear and orthogonal magnetic field gradients, a transmitting and receiving radio frequency (RF) antenna to generate imaging pulses and receive the resulting RF emissions, and an operator interface and control station. For human imaging the magnet is mainly superconducting in nature and has a cylindrical shape, although at the present time open "C" arm magnet geometries are also used for imaging the human body. For higher strength magnetic fields (0.5 T and higher), the superconducting magnet is used to generate a highly uniform static magnetic field with a clear bore diameter of 90 cm or larger for human patient access.

In MRI, the resultant radio-frequency signals, which are spatially encoded, are picked-up by the receiver RF coil, amplified and then demodulated/digitized by a receiver. A sequence controller controls or schedules the timing sequence of the three orthogonal gradients, RF pulse waveforms, frequency offset, RF phase, data sampling window of the receiver, as well as other events such as triggering to generate a variety of MRI sequences, such as spin echo imaging, gradient echo imaging, fast spin echo imaging, and echo planar imaging. An image reconstruction processor sorts the spatially encoded image data according to the order in which they are received and transforms the data to form the final MR image.

The radio frequency transmitter 40 and the gradient control 44 under the control of the sequence control 46 elicit simultaneous magnetic resonance responses in planes or slabs through each of the quadrature surface coils 1 (or 1' or 1") and 38. The signals from the two quadrature surface coils are conveyed to a pair of quadrature combiners 50, 52. The quadrature combiners impose a 90.degree. phase shift on one of the detected quadrature components and combine the components. Preamplifiers 54, 56 amplify the signals before they are received by a receiver means 60, such as a pair of digital quadrature receivers 60.sub.1, 60.sub.2, which receive and demodulate the resonance signals. An interface circuit 62 includes analog-to-digital converters 64, 66 for digitizing each received resonance signal to generate a digital data line.

Ballon, D., et al., "A 64 MHz Half-Birdcage Resonator for Clinical Imaging", J. of Magnetic Resonance, 90, 131-140, (1990).

Hu, X., et al., "Reduction of Field of View for Dynamic Imaging", Magnetic Resonance in Medicine, 31, No. 6, 691-694, (1994).

ORPL:

ORPL:

Mehdizadeh, M., "RF Coils for Magnetic Resonance Imaging", RF Design, 29-38, (1991).

ORPL:

Panych, L.P., et al., "A Dynamically Adaptive Imaging Algorithm for Wavelet-Encoded MRI", Magnetic Resonance in Medicine, 32, No. 6, 738-746, (1994).