Instituto de Matemática e Estatística

Hélio Hideki Assakura Moreira

EP4 - Artista Aleatório

Objetivo do EP:

Estudar a aproximação da estrutura estatística de um texto usando o **Modelo de Markov**. Para isso, construiremos uma Cadeia de Markov, que é um processo estocástico onde a mudança de estado depende apenas de seu estado atual. No EP, o estado atual são os últimos **k** caracteres. O próximo caracter é gerado aleatoriamente, usando as probabilidades do modelo de Markov.

Teste Realizados:

Para a realização dos testes, será usado o livro "The Iliad", de Homero.

Aqui serão colocados apenas os tempos obtidos para cada teste. Os textos gerados serão colocados em um arquivo anexado juntamente com o Relatório e com o arquivo fonte do EP.

k = 0, t = 100:		k = 1, t = 1000:		k = 3, t = 1000:	
real	0m1.663s	real	0m2.101s	real	0m2.260s
user	0m0.100s	user	0m0.142s	user	0m0.305s
sys	0m0.000s	sys	0m0.004s	sys	0m0.008s
k = 3, t = 10000:		k = 50, t = 1000:		k = 100, t = 1000:	
real	0m2.539s	real	0m5.336s	real	0m5.142s
user	0m0.308s	user	0m1.846s	user	0m2.004s
sys	0m0.004s	sys	0m0.052s	sys	0m0.088s
k = 100, t = 1.000.000:		k = 1000, t = 10000:		k = 5000, t = 100000:	
real	0m10.234s	real	0m9.420s	real	0m23.263s
user	0m4.103s	user	0m4.790s	user	0m17.406s
sys	0m0.146s	sys	0m0.304s	sys	0m1.239s

Para textos maiores, como o "Novo dicionário da língua portuguesa by Cândido de Figueiredo", (http://www.gutenberg.org/ebooks/31552), que contém cerca de 12,6 milhões de caracteres, demora mais tempo:

k = 0, t = 5000		k = 10, t = 5000		k = 100, t = 10000	
real	0m2.581s	real	0m27.579s	real	0m58.880s
user	0m1.097s	user	0m25.311s	user	0m54.355s
sys	0m0.000s	sys	0m0.236s	sys	0m0.711s

Conclusões do Teste:

Para textos pequenos, a diferença do tempo de execução é bem pequena, mesmo variando ${\bf k}$ e ${\bf t}$. Quando o texto começa a aumentar de tamanho, o tempo de execução tende a aumentar quanto maior o ${\bf k}$ e o tamanho do texto. Como visto nos exemplos acima, a diferença começa a ficar grande, como quando ${\bf k}=0$ e ${\bf k}=5000$, por exemplo. Além disso, com valores bem grandes de ${\bf t}$, o tempo também aumenta. Isso deve-se ao fato de que o numero de comparações e a cópia de string começa a ficar muito grande, demandando muito tempo para ser realizada. Apesar de que quanto maior o ${\bf k}$, mais semelhante o texto fica do original, é menos provável que ocorra a mesma sequência de ${\bf k}$ caracteres. Assim, a ABB começa a ficar maior, demorando mais para realizar a busca, cálculo da frequência relativa e acumulada, sorteio de ${\bf k}$ caracteres etc.

Quanto maior o texto, consequentemente, maior será a árvore. Se **k** também for alto o bastante para que não haja tantas ocorrências repetidas, acontece o que pôde se ver no exemplo em que foi usado o **Novo dicionário da língua portuguesa**, onde o tempo de execução é extremamente maior que **Ilíada**, com praticamente os mesmos parâmetros, por exemplo.