Machine Learning (Unsupervised Learning)

Hello!

I am Eslam Ahmed

l am a software engineer.

You can find me at jeksogsa@gmail.com

Hello!

I am Eman Ehab

I am a ML research engineer.

You can find me at emanehab.ieee@gmail.com

- Machine Learning
- Supervised Learning
 - Regression
 - Simple Linear Regression
 - Multiple Linear Regression
 - Polynomial Regression
 - Evaluating Model Performance
 - Classification
 - Logistic Regression
 - K-Nearest Neighbors (KNN)
 - Naive Bayes
 - SVM
 - Decision Trees
 - Ensemble Methods
 - What is Bagging & Boosting
 - Random Forests
 - XGBoost
 - Evaluating Model Performance

- Unsupervised Learning
 - Clustering
 - KMeans
 - Hierarchical Clustering
 - Density Based Clustering DBSCAN
 - Association rule mining
 - Apriori
 - Dimension Reduction
 - PCA
 - LDA
 - Evaluating Model Performance
- Model Selection & Evaluation
 - Cross Validation
 - Hyperparameter Tuning
 - Grid Search
 - Randomized Search
- Recommendation Systems

- Machine Learning
- Supervised Learning
 - Regression
 - Simple Linear Regression
 - Multiple Linear Regression
 - Polynomial Regression
 - Evaluating Model Performance
 - Classification
 - Logistic Regression
 - K-Nearest Neighbors (KNN)
 - Naive Bayes
 - SVM
 - Decision Trees
 - Ensemble Methods
 - What is Bagging & Boosting
 - Random Forests
 - XGBoost
 - Evaluating Model Performance

- Unsupervised Learning
 - Clustering
 - KMeans
 - Hierarchical Clustering
 - Density Based Clustering DBSCAN
 - Association rule mining
 - Apriori
 - Dimension Reduction
 - PCA
 - LDA
 - Evaluating Model Performance
- Model Selection & Evaluation
 - Cross Validation
 - Hyperparameter Tuning
 - Grid Search
 - Randomized Search
- Recommendation Systems

STEP 2: Select at random K points, the centroids (not necessarily from your dataset)

STEP 3: Assign each data point to the closest centroid → That forms K clusters

STEP 4: Compute and place the new centroid of each cluster

STEP 5: Reassign each data point to the new closest centroid. If any reassignment took place, go to STEP 4, otherwise go to FIN.

STEP 5: Reassign each data point to the new closest centroid. If any reassignment took place, go to STEP 4, otherwise go to FIN.

STEP 4: Compute and place the new centroid of each cluster

STEP 5: Reassign each data point to the new closest centroid. If any reassignment took place, go to STEP 4, otherwise go to FIN.


```
1 from sklearn.cluster import KMeans
2
3 kmeans = KMeans(n_clusters=3)
4 kmeans.fit(X)
5 kmeans.predict(X)
```

- Machine Learning
- Supervised Learning
 - Regression
 - Simple Linear Regression
 - Multiple Linear Regression
 - Polynomial Regression
 - Evaluating Model Performance
 - Classification
 - Logistic Regression
 - K-Nearest Neighbors (KNN)
 - Naive Bayes
 - SVM
 - Decision Trees
 - Ensemble Methods
 - What is Bagging & Boosting
 - Random Forests
 - XGBoost
 - Evaluating Model Performance

- Unsupervised Learning
 - Clustering
 - KMeans
 - Hierarchical Clustering
 - Density Based Clustering DBSCAN
 - Association rule mining
 - Apriori
 - Dimension Reduction
 - PCA
 - LDA
 - Evaluating Model Performance
- Model Selection & Evaluation
 - Cross Validation
 - Hyperparameter Tuning
 - Grid Search
 - Randomized Search
- Recommendation Systems


```
1 import scipy.cluster.hierarchy as sch
2 from sklearn.cluster import AgglomerativeClustering
3
4 # visualize dendrogram
5 dendrogram = sch.dendrogram(sch.linkage(x, method='ward'))
6
7 # train model
8 model = AgglomerativeClustering(n_clusters=3)
9 y_labels = model.fit_predict(x)
```

- Machine Learning
- Supervised Learning
 - Regression
 - Simple Linear Regression
 - Multiple Linear Regression
 - Polynomial Regression
 - Evaluating Model Performance
 - Classification
 - Logistic Regression
 - K-Nearest Neighbors (KNN)
 - Naive Bayes
 - SVM
 - Decision Trees
 - Ensemble Methods
 - What is Bagging & Boosting
 - Random Forests
 - XGBoost
 - Evaluating Model Performance

- Unsupervised Learning
 - Clustering
 - KMeans
 - Hierarchical Clustering
 - Density Based Clustering DBSCAN
 - Association rule mining
 - Apriori
 - Dimension Reduction
 - PCA
 - LDA
 - Evaluating Model Performance
- Model Selection & Evaluation
 - Cross Validation
 - Hyperparameter Tuning
 - Grid Search
 - Randomized Search
- Recommendation Systems

Density Based Clustering – DBSCAN (Core point)

Density Based Clustering – DBSCAN (Border point)


```
1 from sklearn.cluster import DBSCAN
2
3 model.DBSCAN(eps=0.3, min_samples=10)
4 y_labels = model.fit_predict(x)
```

- Machine Learning
- Supervised Learning
 - Regression
 - Simple Linear Regression
 - Multiple Linear Regression
 - Polynomial Regression
 - Evaluating Model Performance
 - Classification
 - Logistic Regression
 - K-Nearest Neighbors (KNN)
 - Naive Bayes
 - SVM
 - Decision Trees
 - Ensemble Methods
 - What is Bagging & Boosting
 - Random Forests
 - XGBoost
 - Evaluating Model Performance

- Unsupervised Learning
 - Clustering
 - KMeans
 - Hierarchical Clustering
 - Density Based Clustering DBSCAN
 - Association rule mining
 - Apriori
 - Dimension Reduction
 - PCA
 - LDA
 - Evaluating Model Performance
- Model Selection & Evaluation
 - Cross Validation
 - Hyperparameter Tuning
 - Grid Search
 - Randomized Search
- Recommendation Systems

Apriori

Apriori

Questions ?!

Thanks!

>_ Live long and prosper

