Indian Institute of Information Technology Allahabad Discrete Mathematical Structures Solution of C1 Review test

Program: B.Tech. 2nd Semester (IT+IB)

Duration: **60+ 10 minutes**Date: May 22, 2022

Full Marks: 16

Time:: 5:00 PM - 6:10 PM

1. Let us define sets A and B as follows:

 $A = \{ Your first name \}$ and $B = \{ Your last name \}$

In the absense of last name, take $B = \{l, a, s, t, n, m, e\}$

For example: if your name is Peter Massopust, then $A = \{p, e, t, r\}$ and $B = \{m, a, s, o, p, u, t\}$.

Now, $C := A \cup B = \{p, e, t, r, m, a, s, o, u\}$ and $D := A \cap B = \{p, t\}$. Then

(I) Construct two distinct partial order relations (name these relations R_1 and R_2 respectively) on C. [4]

Solution: Let us define a relation on C as follows:

$$R_1 := \{(p, p), (e, e), (t, t), (r, r), (m, m), (a, a), (s, s), (o, o), (u, u)\}.$$

It is simple to check that R_1 is reflexive, anti-symmetric and transitive. [2]

Now, we may define another relation on C as follows:

$$R_2 = \{(p, p), (e, e), (t, t), (r, r), (m, m), (a, a), (s, s), (o, o), (u, u), (p, e), (e, t), (p, t)\}$$

It is plain to see that R_2 is reflexive, anti-symmetric and transitive. [2]

(II) Find all maximal and minimal elements of the constructed partial ordered sets (C, R_1) and (C, R_2) . [4]

Solution: In (C, R_1) : the set of maximal elements= $\{p, e, t, r, m, a, s, o, u\}$, [1] and the set of minimal elements= $\{p, e, t, r, m, a, s, o, u\}$.

In
$$(C, R_2)$$
: the set of maximal elements= $\{t, r, m, a, s, o, u\}$, [1]

and the set of minimal elements=
$$\{p, r, m, a, s, o, u\}$$
. [1]

(III) Find the supremum and infimum (if they exist) of the constructed partial ordered sets (C, R_1) and (C, R_2) . [2]

Solution: Since there are more than one maximal elements, the partial ordered sets (C, R_1) and (C, R_2) have no supremum. [1]

Since there are more than one minimal elements, the partial ordered sets (C, R_1) and (C, R_2) have no infimum.

(IV) Determine whether the following sets are finite, countably infinite (countable) or uncountable: [3]

- (a) X =the collection of all functions from C to D. **Solution:** Finite (countable) because $|X| = |D|^{|C|} = 2^9$. [1]
- (b) Y = the collection of all functions from C to \mathbb{N} , where \mathbb{N} denotes the set of natural numbers.

Solution: Countably infinite because

$$|Y| = |\mathbb{N} \times \mathbb{N} \times \mathbb{N}|.$$

(c) Z = the collection of all functions from \mathbb{N} to C. **Solution:** Uncountable because $|Z| \geq 2^{|\mathbb{N}|} = |P(\mathbb{N})|$. [1]

2. Let $n \in \mathbb{N}$ and suppose we are given real numbers $a_1 \geq a_2 \geq \ldots \geq a_n \geq 0$. Show that Arithmetic mean (AM) = $\frac{a_1 + a_2 + \ldots a_n}{n} \geq (a_1 a_2 \ldots a_n)^{\frac{1}{n}} = \text{GM}$ (Geometric mean). [3] Solution:

The above statement, we will prove by mathematical induction. For n=2, we have

$$\frac{a_1 + a_2}{2} \geqslant (a_1 a_2)^{1/2} \,,$$

which can be obtained by following lines:

$$a_1 a_2 \le \frac{(a_1 + a_2)^2}{4}$$
 iff $(a_1 + a_2)^2 \ge 4a_1 a_2$ iff $(a_1 + a_2)^2 - 4a_1 a_2 \ge 0$ iff $(a_1 - a_2)^2 \ge 0$.

Suppose the statement is true for n-1 such numbers, that is,

$$\frac{b_1 + b_2 + \dots b_{n-1}}{n-1} \ge (b_1 b_2 \dots b_{n-1})^{\frac{1}{n-1}},$$

where $b_1 \ge b_2 \ge ... \ge b_{n-1} \ge 0$.

Given that $a_1 \geq a_2 \geq a_3 \dots \geq a_n$. Since $G = (a_1 a_2 \cdots a_n)^{1/n}$, we have $a_n \leqslant G_1 \leqslant a_1$. We claim that $a_1 + a_n \geq \frac{a_1 a_n}{G} + G$. Now,

$$a_1 + a_n - G - \frac{a_1 a_n}{G} = \frac{a_1}{G} (G - a_n) + (a_n - G)$$

= $\frac{1}{G} (a_1 - G) (G - a_n) \ge 0$,

the previous claim follows. Using the inductive hypothesis, we have

$$\frac{a_2 + a_3 + \dots + a_{n-1} + \frac{a_1 a_n}{G}}{n-1} \ge (G^n/G)^{1/n-1}.$$

This yields

$$a_2 + a_3 + \dots + a_{n-1} + \frac{a_1 a_n}{G} \ge (n-1)G.$$

Now, the above can be written as

$$\frac{a_2 + a_3 + \dots + a_{n-1} + \frac{a_1 a_2}{G} + G}{n} \ge G.$$

Using $a_1 + a_n \ge \frac{a_1 a_n}{G} + G$, we obtain

$$\frac{a_1 + a_2 + \dots + a_{n-1} + a_n}{n} \ge G,$$

completing the proof.

[1]

[1]