Interval dependency and unequally spaced measurements

Modeling Intensinve Longitudinal Data

Noémi K. Schuurman

Researcher 1: half-hourly effect

Researcher 1: half-hourly effect

Researcher 2: hourly effect

Researcher 1: half-hourly effect

Researcher 2: hourly effect

Both sets of measurements are neatly evenly spaced.

Effects depend on interval size

Researcher 1: half-hourly effect

Researcher 2: hourly effect

AR model: effect depends on interval

- ► Half-hourly effect:
 - $\phi_{res1} = .5$
- ► Hourly effect: $\phi_{res2} = \phi_{res1}^2 = .25$

Researcher 1: half-hourly effect

Researcher 2: hourly effect

Researcher 3: blended effect

Solutions for unequally spaced measurements:

► AR models are discrete time models: Continuous time models can take the length of the time intervals into account.

Solutions for unequally spaced measurements:

- ► AR models are discrete time models: Continuous time models can take the length of the time intervals into account.
- ► Ad hoc solution: add in missing observations to equally space measurements

Solutions for unequally spaced measurements:

- ► AR models are discrete time models: Continuous time models can take the length of the time intervals into account.
- ► Ad hoc solution: add in missing observations to equally space measurements
 - TINTERVAL function in Mplus
 - r-package ...

