### Signaux et Systèmes Cours n°3

Mohamed CHETOUANI
Professeur des Universités
Institut des Systèmes Intelligents et de Robotique (ISIR)
Sorbonne Université

mohamed.chetouani@sorbonne-universite.fr









1





### Résumé cours 2

- Introduction à l'analyse spectrale
- Séries de Fourier
- Transformée de Fourier
- Connaître les transformations des signaux usuels, les propriétés...

3





#### Plan

- Systèmes de transmission et de filtrage
- Produit de convolution
- Théorème de Plancherel





# Systèmes de transmission, de commande...

- Définition:
- Un système peut-être défini comme un ensemble d'éléments exerçant collectivement une fonction déterminée.
- Un système communique avec l'extérieur par l'intermédiaire de grandeurs (souvent fonction du temps), appelés signaux.
- Un système peut-être composé d'un certain nombre d'entrées M et de sorties N.
- L'application des signaux d'entrée génèrent des signaux de sortie que l'on appelle respectivement excitation et réponse du système.



5





# Systèmes réels, linéaires, invariants, causaux

- Un système est dit réel si les excitations (entrées) et les réponses (sorties) sont des fonctions réelles.
- Un système est dit linéaire si la réponse à une combinaison linéaire de signaux d'entrée est égale à la combinaison linéaire des réponses:
- Soient y<sub>1</sub>(t) et y<sub>2</sub>(t) les réponses du système correspondant respectivement aux entrées x<sub>1</sub>(t) et x<sub>2</sub>(t), si on applique une combinaison linéaire de ces entrées:

$$x(t) = a x_1(t) + b x_2(t)$$

alors on obtient la sortie suivante:

$$y(t) = a y_1(t) + b y_2(t)$$

 Remarque : Cette propriété de linéarité est également appelée principe de superposition.





# Systèmes réels, linéaires, invariants, causaux

- Un système est dit invariant si la réponse du système à une entrée x(t) différée d'un temps T est la même réponse y(t) mais différée de T:
- Ce qui se traduit par la relation suivante:



7





# Systèmes réels, linéaires, invariants, causaux

- Un système est dit causal si l'effet (la sortie) ne précède pas la cause (l'entrée).
- Les systèmes physiques sont réels, le plus souvent linéaires (du moins on en fait l'hypothèse), invariants et causaux.

$$y(t) = 0 \ \text{pour} \ t < 0$$
 Signal d'entrée Système Système





## Réponses temporelles des systèmes à une entrée quelconque...

 La réponse y(t) d'un système linéaire à une entrée quelconque x(t) peut s'exprimer sous la forme d'un produit de convolution entre le signal d'entrée x(t) et la réponse impulsionnelle h(t)



9





## Réponses temporelles des systèmes à une entrée quelconque...

• Réponse impulsionnelle h(t): réponse du système à l'application d'une impulsion de Dirac



 Le système étant linéaire et invariant, la réponse associée à

$$x(\tau)\delta(t-\tau) \to x(\tau)h(t-\tau)$$





## Réponses temporelles des systèmes à une entrée quelconque...

 Le signal x(t) peut s'écrire sous la forme infinie de composantes à base d'impulsions de Dirac

$$x(t) = \int_{-\infty}^{+\infty} x(\tau)\delta(t - \tau)d\tau$$

• La réponse du système à une entrée x(t) est donc:

$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau$$

11





### Réponses temporelles des systèmes à une entrée quelconque...

Interprétation graphique







# Propriétés du produit de convolution

- Commutativité: x(t)\*g(t) = g(t)\*x(t)
- Distributivité: [x(t)+s(t)]\*g(t) = x(t)\*g(t)+s(t)\*g(t)
- Associativité [x(t)\*s(t)]\*g(t) = x(t)\*[s(t)\*g(t)]
- Dérivation: [x(t)\*y(t)]'=x'(t)\*y(t)=x(t)\*y'(t)

13





# Propriétés du produit de convolution

• Dirac: élément neutre du produit de convolution

$$\delta(t) * g(t) = \int_{-\infty}^{+\infty} \delta(\tau)g(t - \tau)d\tau$$
$$= \int_{-\infty}^{+\infty} \delta(\tau)g(t)d\tau$$
$$= g(t) \int_{-\infty}^{+\infty} \delta(\tau)d\tau$$
$$= g(t)$$





# Propriétés du produit de convolution

• Elément de translation

$$\delta(t - t_0) * g(t)$$

$$= \int_{-\infty}^{+\infty} \delta(\tau - t_0) g(t - \tau) d\tau$$

$$= g(t - t_0)$$

15





# Propriétés du produit de convolution

Convolution avec un peigne de Dirac

$$|_{\mathbf{I}} |_{\mathbf{I}}(t) * g(t) = \left[ \sum_{k=-\infty}^{+\infty} \delta(t - kT) \right] * g(t) := \sum_{k=-\infty}^{+\infty} \left[ \delta(t - kT) * g(t) \right] = \sum_{k=-\infty}^{+\infty} g(t - kT)$$

Exemple: Soit le signal g(t) défini entre [-T/2;T/2]
 Que vaut g(t) convoluer avec le peigne de Dirac?









# Propriétés du produit de convolution

• On considère les signaux suivants:

$$x(t) = \prod_{\frac{T}{2}}(t) \text{ et } g(t) = \prod_{T}(t - T)$$



• Calculons y(t)=x(t)\*g(t)

17





# Propriétés du produit de convolution

• On considère les signaux suivants:

$$x(t) = \prod_{\frac{T}{2}}(t) \text{ et } g(t) = \prod_{T}(t-T)$$

$$y(t) = x(t) * g(t) = \int_{-\infty}^{+\infty} x(u)g(t-u)du$$

$$\uparrow^{g(t-u)}$$









### **Exemples:**



19





### **Exemples:**







# Produit de convolution d'un système causal

- Un système est dit causal, si la sorite ne dépend que des valeurs de l'entrée précédent la sortie
- h(t)=0 pour t<0

$$y(t) = x(t) * h(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau = \int_{-\infty}^{+\infty} h(\tau)x(t-\tau)d\tau$$
$$= \int_{0}^{+\infty} h(\tau)x(t-\tau)d\tau$$
$$= \int_{0}^{t} x(\tau)h(t-\tau)d\tau$$

21





### Application à la réponse d'un circuit RC

Un circuit RC est un système linéaire



Modélisation par un produit de convolution:

$$y(t) = x(t) * h(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau = \int_{-\infty}^{+\infty} h(\tau)x(t-\tau)d\tau$$





## Application à la réponse d'un circuit RC

Que vaut la réponse impulsionnelle h(t)?



• Réponse impulsionnelle d'un circuit RC:

$$h(t) = \frac{1}{RC} e^{-\frac{t}{RC}} u(t)$$

$$y(t) = x(t) * h(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau = \int_{-\infty}^{+\infty} h(\tau)x(t-\tau)d\tau$$







## Application à la réponse d'un circuit RC

Réponse à un échelon

$$\begin{split} y(t) &= u(t) * h(t) = \int_{-\infty}^{+\infty} u(\tau)h(t-\tau)d\tau \\ &= \int_{0}^{+\infty} u(\tau)h(t-\tau)d\tau \\ &= \frac{1}{RC} \int_{O}^{t} e^{-\frac{t-\tau}{RC}} u(t-\tau)d\tau \\ &= \frac{1}{RC} \left[ RCe^{-\frac{t-\tau}{RC}} u(t-\tau) \right]_{0}^{t} = \left( 1 - e^{-\frac{t}{RC}} \right) u(t) \end{split}$$





# Et maintenant dans le domaine fréquentiel

- Le produit de convolution permet de décrire la sortie d'un système caractérisé par sa réponse impulsionnelle.
- On peut également caractérisé un système dans le domaine fréquentiel (filtrage, transmission de signaux...)
- On considère un système de réponse impulsionnelle h(t) et d'entrée x(t)  $x(t) = X_0 e^{2\pi j f_o t}$

La sortie est donnée par le produit de convolution:

$$y(t) = h(t) * x(t) = \int_{-\infty}^{+\infty} h(\tau) X_0 e^{2\pi j f_o(t-\tau)} d\tau$$

25





# Et maintenant dans le domaine fréquentiel

La sortie est donnée par le produit de convolution:

$$y(t) = h(t) * x(t) = \int_{-\infty}^{+\infty} h(\tau) X_0 e^{2\pi j f_o(t-\tau)} d\tau$$
$$= X_0 e^{2\pi j f_o t} \int_{-\infty}^{+\infty} h(\tau) e^{-2\pi j f_o \tau} d\tau$$

Gain complexe ou fonction de transfert H(f) du système: TF de h(T)

$$H(f_0) = \int_{-\infty}^{+\infty} h(\tau) e^{-2\pi j f_o \tau} d\tau$$





# Et maintenant dans le domaine fréquentiel

La sortie y(t) s'écrit alors:

$$y(t) = X_0 e^{2\pi j f_o t} H(f_0)$$

 Pour un système linéaire excité par une excité par une exponentielle complexe de fréquence f<sub>0</sub>, la sortie un signal de même fréquence.

27





# Et maintenant dans le domaine fréquentiel

 Un signal x(t) quelconque peut s'exprimer comme une somme infinie d'exponentielles complexes (via la Transformée de Fourier inverse):

$$x(t) = \int_{-\infty}^{+\infty} X(f)e^{2\pi jft}df$$

• A chacune des composantes:  $X(f)e^{2\pi jft}$ 

correspond alors une sortie:  $X(f)H(f)e^{2\pi jft}$ 

• Par superposition:  $y(t) = \int_{-\infty}^{+\infty} X(f)H(f)e^{2\pi jft}df$ 





### Et maintenant dans le domaine fréquentiel

• On en déduit que la transformée de Fourier de la sortie, Y(f), vaut:

$$Y(f) = X(f)H(f)$$

On obtient alors le Théorème de Plancherel:

$$\mathrm{TF}[x(t) * y(t)] \to X(f)Y(f)$$

$$\mathrm{TF}[x(t)y(t)] \to X(f) * Y(f)$$

29



#### Relation entre Série de Fourier et TF



 Soit x(t) un signal périodique de période T, il peut être décomposé en série de Fourier:  $x(t) = \sum_{n=0}^{+\infty} C_n e^{\frac{2\pi j n t}{T}}$ 

$$x(t) = \sum_{n = -\infty}^{+\infty} C_n e^{\frac{2\pi j n t}{T}}$$

En prenant la TF de cette expression, on obtient **X(f)**:

$$X(f) = \sum_{n=-\infty}^{+\infty} C_n \delta\left(f - \frac{n}{T}\right)$$



#### SORBONNE

### Relation entre Série de Fourier et TF

Soit x<sub>T</sub>(t) le signal tronqué (correspondant à un motif):

 $x_{T}(t) = \begin{cases} x(t) \text{ si } t \in \left[\frac{T}{2}, \frac{T}{2}\right] \\ 0 \text{ Ailleurs} \end{cases}$ 

• x(t) s'exprime comme une convolution de  $x_T(t)$  et un peigne de Dirac:

$$x(t) = x_T(t) * |_I_|_T(t)$$

• Et en prenant la TF:

$$X(f) = \frac{1}{T} X_{T}(f) |_{T} |_{\frac{1}{T}} (f)$$

31



### Relation entre Série de Fourier et TF



 En comparant la décomposition en série de Fourier et la TF

$$\mathbf{X}(\mathbf{f}) = \frac{1}{\mathbf{T}} \mathbf{X}_{\mathbf{T}}(\mathbf{f}) \left| \mathbf{I}_{-} \right|_{\frac{1}{\mathbf{T}}} (\mathbf{f}) \quad \mathbf{X}(f) = \sum_{n=-\infty}^{+\infty} C_{n} \delta \left( f - \frac{n}{T} \right)$$

• On en déduit la relation:  $C_n = \frac{X_T\left(\frac{n}{T}\right)}{T}$ 

Le spectre d'un signal périodique est discret



## Relation entre Série de Fourier et TF



• Exemple: TF de la fonction porte

$$x(t) = \prod_{\tau/2} (t)$$
  $X(f) = \tau \sin c(\pi f \tau)$ 





y(t) «périodisé» de x(t)





33





### Résumé

- Modélisation de la réponse d'un système par un produit de convolution
- Propriétés du produit de convolution
- Théorème de Plancherel
- Relation TF Série de Fourier
- Connaître ces propriétés...