23 May 2022

12.1 Sine formula for the area of a triangle

HSG.SRT.D.9

- 1. Right triangle $\triangle ABC$ is shown with side lengths marked. Identify the sides.
 - (a) Which length is the hypotenuse?

- (b) Which length is opposite angle A?
- (c) Which length is *adjacent* to angle A?
- 2. $\triangle ABC$ is shown with $m \angle C = 90^{\circ}$. The lengths of the triangle's sides are a, b, and c. Express each trigonometric ratio as a fraction of two variables.

- (a) $\sin A =$
- (b) $\cos A =$
- (c) $\tan A =$
- 3. Use the sine function to find the height h of the right $\triangle ABC$ shown below.

Find the area of $\triangle ABC$ using the formula $A = \frac{1}{2}bh$

- 4. Given $\triangle ABC$ with AC=9 centimeters, altitude h=7 cm, and the base $BC=13\frac{1}{2}$ cm.

 diagram not to scale
 - (a) Write down $\sin C$ as a fraction.

 $\sin C =$

(b) Find the area of $\triangle ABC$.

- 5. Two sides of $\triangle ABC$ are given AC=10 and BC=12, with the included angle $\text{m} \angle C=37^{\circ}$.
 - (a) Find altitude h using $\sin 37^{\circ} = \frac{h}{10}$.

(b) Find the area of $\triangle ABC$.

Sine formula for the area of a triangle $A = \frac{1}{2}ab\sin C$

6. Find the area of the given triangle.

7. Given right $\triangle JKL$ with $\overline{JK} \perp \overline{KL}$, JL = 12.4, $m \angle J = 41^{\circ}$. Find the length JK, rounded to the nearest hundredth.

8. Right triangle ABC is shown with AB = 20, $m \angle A = 33^{\circ}$. Find the value of BC = x.

9. Express the result to the nearest thousandth.

(a)
$$\sin 32^{\circ} =$$

(c)
$$\cos 58^{\circ} =$$

(b)
$$\cos 29^{\circ} =$$

(d)
$$\sin 61^{\circ} =$$

10. Express the result to the nearest whole degree.

(a)
$$\sin^{-1} 0.420 =$$

(c)
$$\cos^{-1} 0.850 =$$

(b)
$$\cos^{-1} 0.675 =$$

(d)
$$\sin^{-1} 0.125 =$$