Findings & Justifications

I created a Structured Query Language (SQL) files of all the Dataset provided in the question.

- 1) HospitalProfiling.sql was created.
- 2) Cleaned Data of HospitalProfiling.sql by taking the avg Empoyee count and stored in HospitalProfiling_con_avg.sql

 $\label{lem:columns} Few & Columns & were & added \\ (Year_Average,Year_Median,Max_Year,Min_Year,First_Quarter_Sum,Second_Quarter_Sum,Third_Quarter_Sum,Fourth_Quarter_Sum,First_Quarter_Avg, \\$

Second_Quarter_Avg,Third_Quarter_Avg,Fourth_Quarter_Avg,First_Half_Year_Total,First_Half_Year_Average,Second_Half_Year_Total,Second_Half_Year_Average) to HospitalRevenue.csv to make HospitalRevenue_added_cols.sql

- 3) Removed "NO District Available" District_Dd rows from HospitalRevenue_added_cols.sql
- 4) Added Buy_or_not column to ProjectedRevenue.sql
- 5) Removed "NO District Available" District_id rows from ProjectedRevenue.sql
- 6) Created table `hospitalprofiling+revenue.sql` which contains the join of Hospital Profile and Hospital Revenue to get the Hospital_Employees with the Revenues table.
- 7) Checked for duplicates in hospitalprofiling+revenue table, none found :)
- 8) Created `projectedrevenue_added_cols.sql` by adding Buy_or_not as 1
- 9) Created `hospitalprofiling_projectedrevenue.sql` by joining `projectedrevenue_added_cols` & `hospitalprofiling+revenue` tables
- 10) Created `hospitalprofiling_minus_revenue.sql` by subtracting `hospitalprofiling_projectedrevenue` from `hospitalprofiling+revenue` tables
- 11) Created dataset.csv by combining 2 CSV files `hospitalprofiling_projectedrevenue` & `hospitalprofiling_minus_revenue`

Assuming the `hospitalprofiling_minus_revenue.csv` has the not sold data as they were not found to have the predicted values when we created `hospitalprofiling_projectedrevenue`

This dataset.csv was my Main Dataset.

Revenue Prediction:

- 1) I first chose Regression to find predicted Revenues.
- 2) Divided this dataset into 70%, 30% to create the training and testing dataset respectively.
- 3) Drew the correlation plots, box plots and summary plots to have a quick look at the trainset.
- 4) Next ran the regression algorithm using the `glm` library available in R.
- 5) Tested this against the testing set. Got fairly decent results.
- 6) Then scored the Solution.csv file with the predicted value from my model.

Buy_or_not Prediction:

- 1) I then chose the ADA Boost algorithm with 50 iterations to predict this target variable.
- 2) The same 70, 30 ratio was used for training and testing datasets.
- 3) After the testing gave 100% accuracy I scored the Solution.csv file with my new model.

The final Solution.csv that was generated was uploaded in the SQL table.

Wherever the Buy_or_not attribute was 0, the Predicted revenue value was made 0.

Queries used:

--- To find Duplicate data:

SELECT *,count(*) FROM `mytable` GROUP BY Hospital_ID,Region_ID,District_ID,Instrument_ID,Month_1,Month_2,Month_3,Month_4,Month_5,Month_6,Month_7,Month_8,Month_9,Month_10,Month_11,Month_12,Year_Total,Year_Average,Year_Median,Max_Year,Min_Year,First_Quarter_Sum,Second_Quarter_Sum,Third_Quarter_Sum,Fourth_Quarter_Sum,First_Quarter_Avg,Second_Quarter_Avg,Third_

Quarter_Avg,Fourth_Quarter_Avg,First_Half_Year_Total,First_Half_Year_Average,Second_Half_Year_Total,Second_Half_Year_Average HAVING count(*)>1 ORDER BY `Month_1` ASC

--- Hospital Profile and Hospital Revenue join

select

hr.Hospital_ID,hr.Region_ID,hr.District_ID,hr.Instrument_ID,Month_1,Month_2,Month_3,Month_4,Month_5,Month_6,Month_7,Month_8,Month_9,Month_10,Month_11,Month_12,Year_Total,Year_Average,Year_Median,Max_Year,Min_Year,First_Quarter_Sum,Second_Quarter_Sum,Third_Quarter_Sum,Fourth_Quarter_Sum,First_Quarter_Avg,First_Half_Year_Average,Second_Half_Year_Total,Second_Half_Year_Average,hp. Hospital_employees from hospitalprofiling_conv_avg hp,hospitalrevenue_added_cols hr where hr.Hospital_ID=hp.Hospital_ID and hr.District_ID=hp.District_ID

--- Hospital Revenue and Projected Revenue join

select

hpr.Hospital_ID,hpr.Region_ID,hpr.District_ID,hpr.Instrument_ID,Month_1,Month_2,Month_3,Month_4,Month_5,Month_6,Month_7,Month_8,Month_9,Month_10,Month_11,Month_12,Year_Total,Year_Ave rage,Year_Median,Max_Year,Min_Year,First_Quarter_Sum,Second_Quarter_Sum,Third_Quarter_Sum,Fourth_Quarter_Sum,First_Quarter_Avg,Second_Quarter_Avg,Third_Quarter_Avg,Fourth_Quarter_Avg,First_Half_Year_Total,First_Half_Year_Average,Second_Half_Year_Total,Second_Half_Year_Average,Hospital_employees,Annual_Projected_Revenue,Buy_or_not from `hospitalprofiling+revenue` hpr,projectedrevenue_added_cols pr where hpr.Hospital_ID=pr.Hospital_ID and hpr.District_ID=pr.District_ID and hpr.Instrument_ID=pr.Instrument_ID

*** `projectedrevenue_added_cols` - `hospitalprofiling_projectedrevenue` [Sold instruments, but not in my inventory

select Hospital_ID,District_ID,Instrument_ID from projectedrevenue_added_cols pra where not exists (select Hospital_ID,District_ID,Instrument_ID from hospitalprofiling_projectedrevenue hppr where pra.Hospital_ID=hppr.Hospital_ID and pra.District_ID=hppr.District_ID and pra.Instrument_ID=hppr.Instrument_ID)

--- `hospitalprofiling+revenue` - `projectedrevenue_added_cols` [NOT Sold instruments, but in my inventory]

select

pra.Hospital_ID,pra.District_ID,pra.Instrument_ID,Month_1,Month_2,Month_3,Month_4,Month_5,Month_6,Month_7,Month_8,Month_9,Month_10,Month_11,Month_12,Year_Total,Year_Average,Year_Median,Max_Year,Min_Year,First_Quarter_Sum,Second_Quarter_Sum,Third_Quarter_Sum,Fourth_QuarterS

um,First_Quarter_Avg,Second_Quarter_Avg,Third_Quarter_Avg,Fourth_Quarter_Avg,First_Half_Year_Total,First_Half_Year_Average,Second_Half_Year_Total,Second_Half_Year_Average,Hospital_employ ees from `hospitalprofiling+revenue` pra where not exists (select Hospital_ID,District_ID,Instrument_ID from projectedrevenue_added_cols hppr where pra.Hospital_ID=hppr.Hospital_ID and pra.District_ID=hppr.District_ID and pra.Instrument_ID=hppr.Instrument_ID)

Also,

Based on Correlation plots, removed Min _Year & Hospital_employees Column [Terribly low correlation]; removed

First.Quarter.Sum,Second.Quarter.Sum,Third.Quarter.Sum,Fourth.Quarter.Sum,Second.Half.Year.Total, Year.Total Columns since same correlation as their Average counterparts hence, created ds1.csv

Normalized ds1 by recentering.

--Abhishek Karan