Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

24 de janeiro de 2018

Plano de Aula

Revisão

2 Conjunto Incontáveis

Sumário

Revisão

2 Conjunto Incontáveis

Contribuição

Criou o método da diagonalização em 1873.

Quem?

George Cantor (1845-1918)

Matemático russo.

Problema

Se temos dois conjuntos infinitos, como podemos dizer se um conjunto é maior que o outro (ou se eles têm o mesmo tamanho)?

Problema

Se temos dois conjuntos infinitos, como podemos dizer se um conjunto é maior que o outro (ou se eles têm o mesmo tamanho)?

Conjuntos finitos

Podemos utilizar o método da contagem.

Problema

Se temos dois conjuntos infinitos, como podemos dizer se um conjunto é maior que o outro (ou se eles têm o mesmo tamanho)?

Conjuntos finitos

Podemos utilizar o método da contagem.

Proposta de Cantor

Dois conjuntos finitos têm o mesmo tamanho se os elementos de um deles puder ser emparelhados com os elementos do outro. Basta estendermos essa ideia para os conjuntos infinitos!

Função um-para-um

Sejam dois conjuntos A e B e uma função f de A para B. Dizemos que f é **um-para-um** se ela nunca mapeia dois elementos diferentes para um mesmo lugar (ou seja, $f(a) \neq f(b)$ sempre que $a \neq b$).

Função um-para-um

Sejam dois conjuntos A e B e uma função f de A para B. Dizemos que f é **um-para-um** se ela nunca mapeia dois elementos diferentes para um mesmo lugar (ou seja, $f(a) \neq f(b)$ sempre que $a \neq b$).

Função Sobrejetora

Uma função f é **sobrejetora** se ela atinge todo elemento de B (ou seja, se para todo $b \in B$ existir um $a \in A$ tal que f(a) = b).

Correspondência

Uma correspondência é uma função que é tanto um-para-um, quanto sobrejetora. Em uma correspondência $f:A\to B$, todo elemento de A é mapeado para um único elemento de B e cada elemento de B tem um único elemento de A mapeando para ele.

Correspondência

Uma correspondência é uma função que é tanto um-para-um, quanto sobrejetora. Em uma correspondência $f:A\to B$, todo elemento de A é mapeado para um único elemento de B e cada elemento de B tem um único elemento de A mapeando para ele.

Tamanho de conjuntos

Dois conjuntos A e B são de **mesmo tamanho** se existe uma correspondência de A para B.

Exemplo 1

- $\mathbb{N} = \{1, 2, 3, ...\}$
- $P = \{x \mid x \text{ \'e par }\}$

Exemplo 1

- $\mathbb{N} = \{1, 2, 3, ...\}$
- $P = \{x \mid x \text{ \'e par }\}$

 \mathbb{N} e P têm o mesmo tamanho

Exemplo 1

- $\mathbb{N} = \{1, 2, 3, ...\}$
- $P = \{x \mid x \text{ \'e par }\}$

N e P têm o mesmo tamanho

• É possível encontrar uma correspondência entre \mathbb{N} e P;

Exemplo 1

- $\mathbb{N} = \{1, 2, 3, ...\}$
- $P = \{x \mid x \text{ \'e par }\}$

\mathbb{N} e P têm o mesmo tamanho

- É possível encontrar uma correspondência entre № e P;
- $f: \mathbb{N} \to P$ em que f(n) = 2n;

n	f(n)
1	2
2	4
3	6
:	:

Figura: Visualização de f através de uma tabela.

Considerações

• Pode parecer contra-intuitivo, pois $P \subseteq \mathbb{N}$;

Considerações

- Pode parecer contra-intuitivo, pois $P \subseteq \mathbb{N}$;
- Mas é possível fazer a correspondência entre os conjuntos;

Considerações

- Pode parecer contra-intuitivo, pois $P \subseteq \mathbb{N}$;
- Mas é possível fazer a correspondência entre os conjuntos;
- Logo, declaramos que esses conjuntos têm o mesmo tamanho.

Considerações

- Pode parecer contra-intuitivo, pois $P \subseteq \mathbb{N}$;
- Mas é possível fazer a correspondência entre os conjuntos;
- Logo, declaramos que esses conjuntos têm o mesmo tamanho.

Conjunto Contável

Um conjunto A é **contável** se é finito ou se tem o mesmo tamanho de \mathbb{N} .

Exemplo 2

Seja $\mathcal{Q} = \{m/n \mid m, n \in \mathbb{N}\}$ o conjunto dos racionais positivos.

Exemplo 2

Seja $\mathcal{Q} = \{m/n \mid m, n \in \mathbb{N}\}$ o conjunto dos racionais positivos.

Q é contável (curiosamente)

Logo $\mathcal Q$ é finito ou tem o mesmo tamanho de $\mathbb N$.

Considerações

 Ao ver o exemplo de Q, há uma ligeira impressão de que qualquer conjunto é contável;

Considerações

- Ao ver o exemplo de Q, há uma ligeira impressão de que qualquer conjunto é contável;
- Mas existe conjuntos incontáveis;

Considerações

- Ao ver o exemplo de Q, há uma ligeira impressão de que qualquer conjunto é contável;
- Mas existe conjuntos incontáveis;
- Cantor provou que R é incontável introduzindo o método da diagonalização.

Considerações

- Ao ver o exemplo de Q, há uma ligeira impressão de que qualquer conjunto é contável;
- Mas existe conjuntos incontáveis;
- Cantor provou que R é incontável introduzindo o método da diagonalização.

Teorema 4.17

 \mathbb{R} é incontável.

Sumário

Revisão

2 Conjunto Incontáveis

Teorema 4.17

 \mathbb{R} é incontável.

Teorema 4.17

 \mathbb{R} é incontável.

Ideia da Prova

- De forma a mostrar que $\mathbb R$ é incontável, mostramos que nenhuma correspondência existe entre $\mathbb N$ e $\mathbb R$.
 - Supomos, a princípio, que a correspondência f existe.
 - Logo após, apresentamos um valor $x \in \mathbb{R}$ que não está emparelhado com valor algum em \mathbb{N} (o que indica um absurdo).

n	f(n)
1	3,14159
2	55,55555
3	0,12345
4	0,50000
•	:

Figura: Suposta correspondência f entre \mathbb{N} e \mathbb{R} .

f(n)	
3, <u>1</u> 4159	
55,5 <u>5</u> 555	
0,12 <u>3</u> 45	x = 0,4641
0,500 <u>0</u> 0	
:	
	3, <u>1</u> 4159 55,5 <u>5</u> 555 0,12 <u>3</u> 45

Figura: Construção de x a partir da correspondência f.

Considerações

Apenas deve-se ter o cuidado de escolher dígitos para x diferentes de 0 e 9, devido ao fato de

$$3,999...=4,000...$$

Corolário do Teorema 4.17

Algumas linguagens não são Turing-reconhecíveis.

Corolário do Teorema 4.17

Algumas linguagens não são Turing-reconhecíveis.

<u>Idei</u>a da Prova

 Observar que o conjunto de todas as máquinas de Turing é contável;

Corolário do Teorema 4.17

Algumas linguagens não são Turing-reconhecíveis.

Ideia da Prova

- Observar que o conjunto de todas as máquinas de Turing é contável;
- ② Observar que o conjunto de todas as linguagens é incontável.

Corolário do Teorema 4.17

Algumas linguagens não são Turing-reconhecíveis.

<u>Idei</u>a da Prova

- Observar que o conjunto de todas as máquinas de Turing é contável:
- Observar que o conjunto de todas as linguagens é incontável.
- Ocomo há mais linguagens do que máquinas de Turing, então algumas linguagens não podem ser Turing-reconhecíveis.

O conjunto de todas as máquinas de Turing é contável

Σ* é contável;

- Σ* é contável;
- Cada máquina de Turing pode ser codificada em uma cadeia (M);

- Σ* é contável;
- Cada máquina de Turing pode ser codificada em uma cadeia (M);
- O conjunto C de todas as máquinas de Turing pode ser representado por um conjunto de cadeias (M);

- Σ* é contável;
- Cada máquina de Turing pode ser codificada em uma cadeia (M);
- O conjunto C de todas as máquinas de Turing pode ser representado por um conjunto de cadeias (M);
- É possível enumerar C;

- Σ* é contável;
- Cada máquina de Turing pode ser codificada em uma cadeia (M);
- O conjunto C de todas as máquinas de Turing pode ser representado por um conjunto de cadeias (M);
- É possível enumerar C;
- Logo *C* é contável.

Figura: Construção de $\mathcal{X}A$ a partir da correspondência Σ^* .

O conjunto de todas as linguagens é incontável

 O conjunto B de todas as sequências binárias infinitas é incontável;

- O conjunto B de todas as sequências binárias infinitas é incontável;
- Qualquer linguagem pode ser descrita como uma sequência característica;

- O conjunto B de todas as sequências binárias infinitas é incontável;
- Qualquer linguagem pode ser descrita como uma sequência característica;
- O conjunto *L* de todas as linguagens podem ser representado por um conjunto de sequências

- O conjunto B de todas as sequências binárias infinitas é incontável;
- Qualquer linguagem pode ser descrita como uma sequência característica;
- O conjunto L de todas as linguagens podem ser representado por um conjunto de sequências característica;

- O conjunto B de todas as sequências binárias infinitas é incontável;
- Qualquer linguagem pode ser descrita como uma sequência característica;
- O conjunto L de todas as linguagens podem ser representado por um conjunto de sequências característica;
- A função f: L → B
 (em que f(A) é igual à sequência característica de A)
 é uma correspondência;

- O conjunto B de todas as sequências binárias infinitas é incontável;
- Qualquer linguagem pode ser descrita como uma sequência característica;
- O conjunto L de todas as linguagens podem ser representado por um conjunto de sequências característica;
- A função f: L → B
 (em que f(A) é igual à sequência característica de A)
 é uma correspondência;
- Logo, como B é incontável, L é incontável.

Exercício

Mostrar que o problema da parada é indecidível.

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

24 de janeiro de 2018

