1. Introduction

- This script analyzes a dataset containing the number of cases recorded over different quarters across a span of five years (1984-1988).
- The goal is to fit a Poisson regression model to understand the trend of case counts over time.

2. Library Loading

• The tidyverse library is loaded for data manipulation and visualization.

3. Data Preparation

- A data frame is created with three columns: year, quarter, and cases.
- A new column time_period is generated representing the time order of the observations.
- Log transformations are performed on cases and time_period to linearize the relationships, resulting in ln_cases and ln_time_period.

4. Data Visualization

• A scatter plot of ln_cases against ln_time_period is created to visualize the relationship between the log-transformed variables.

5. Parameter Initialization

- Beta coefficients (beta) are initialized to zeros.
- Constants for the maximum number of iterations (max_iter) and convergence threshold (epsilon) are defined for the iterative optimization process.

6. Fisher's Scoring Method

- An iterative process (Fisher's scoring method) is performed to estimate the beta coefficients of the Poisson regression model.
- In each iteration:
 - Expected values (mu) and variance (V) are calculated based on the current beta coefficients.
 - ullet Working response (z) and working weights (W) are computed.
 - ullet The design matrix (X) is formulated.
 - Beta coefficients (beta) are updated.
 - Convergence is checked based on the difference between the new and old beta coefficients. If the change is less than the defined threshold (epsilon), the process stops.

7. Beta Coefficient Output

• The estimated beta coefficients are printed to the console.

8. GLM Fitting

- The glm function is used to fit a generalized linear model (GLM) assuming a Poisson distribution with a log link function.
- A summary of the model is printed, providing various statistics including the estimated coefficients, standard errors, z-values, and p-values, among others.

9. Conclusion

- This script demonstrates a manual implementation of Poisson regression via Fisher's scoring method and also utilizes the glm function to fit a Poisson regression model.
- The resulting beta coefficients and model summary provide insights into the relationship between the time period and the number of cases.