EDA for Particle
Identification

By: Adam Erler Data From Kaggle

EDA Focus

For our EDA we will be exploring only 4 features and see how they relate to a 5th. Our explanatory variables will be

SpdE - energy deposit associated to the track in the Spd

PrsE - energy deposit associated to the track in the Prs

EcalE - energy deposit associated to the track in the Ecal

HcalE - energy deposit associated to the track in the Hcal

Our dependent variable will be the label feature.

Spd stands for Scintillating Pad Detector, PrsE - Preshower, Ecal - electromagnetic calorimeter, Hcal - hadronic calorimeter

Variable Description

Variable	Description
EcalE	Energy deposited in the Electromagnetic Calorimeter Spd stands for Scintillating Pad Detector, Prs - Preshower, Ecal - electromagnetic calorimeter, Hcal - hadronic
	calorimeter
HcalE	Energy deposited in the Hadronic calorimeter
PrsE	Preshower energy measured
SpdE	Energy in the scintillating pad detector
Label	Either: Muon, Ghost, Pion, Proton, Kaon, Electron.

Objective

Our goal of this project is to see if we can use the features chosen to explain the label of particles in the detector.

Our null Hypothesis is that the measurements of EcalE, HcalE, PrsE, and SpdE in a detector can be used to correctly identify the type of particle 99% of the time.

Histograms of Variables -- SpdeE

Histograms of Variables -- PrsE

Histograms of Variables -- EcalE

Histograms of Variables -- HcalE

Histograms of Variables -- Label

Box Plot for Explanatory Values

Summary of Statistics

Variable	Mean	Mode	Median	Variance	Skew
SpdE	-144.38	3.20	3.20	125672.75	-2.00
PrsE	PrsE -133.89 -9		2.47	131694.75	-1.94
EcalE	2346.44	-999.0	659.10	32719796.24	8.45
HcalE	2900.03	-999.0	578.01	59081456.15	11.58

Summary of Descriptive stats.

We can see the values SpdE and PrsE have similar distributions, along with HcalE and EcalE.

The Label feature appears by design to be uniform in its distribution.

Since the goal of this project is to eventually expand this into a predictive model this distribution is logical.

Looking at the box and whisker plots we can see some clear outliers. In some contexts these would be concerning but since we measuring physical phenomena these values could be useful in identifying new or extreme physics.

PMF of EcalE

From this we can see most values expect to positive. To fully understand the impact of this we should consider what a negative meaning in the detector means. Until then we cannot fully interpret the result. This is something to consider for future research.

CDF of EcalE

Create 1 CDF with one of your variables, using page 41-44 as your guide, what does this tell you about your variable and how does it address the question you are trying to answer (Chapter 4).

Analytical Distribution

A Pareto Distribution for the energy measurement of particles decaying in the Electromagnetic Calorimeter is one that makes natural sense in the context. This informs me that is likely accurate data of a physical phenomena.

Scatter Plot 1 HcalE vs EcalE

The Pearson Correlation value is low for both a linear and non-linear measurements leading us to believe these two variables are not correlative.

Pearson Correlation	0.0725
Covariance	3187251.941
Non-Linear Pearson (HcalE ²)	0.014

Scatter Plot 2 PrsE vs SpdE In a linear and non-linear exploration we

In a linear and non-linear exploration we can see both variables move in a similar pattern. This tells us that if we were doing a feature reduction we could

consider dropping one of these.

Hypothesis Test for Variables Explanatory Power

The table below is a list of the permutations of hypothesis tests considering how well each Detectors measurement correlates with weather or not a dummy variable represent a labeled particle. In all cases our p-value was almost 0. We have overwhelming shown our EDA is worthwhile and need to do further study in this relationship.

Detector	Electron	Muon	Ghost	Proton	Kaon	Pion
SpdE	0	0	0	0	0	0
Prse	0	0	0	0	0	0
EcalE	0	0	0	0	0	0
HcalE	0	0	0	0	0	0

Regression of Labels as Dummy Variables

• The next 6 slides will serve as regressions for each of the labels as their own dummy variable.

						Omnibu	ı s : 33510	9.090	Durbin-	Watson:	2.003
Ghos	st Regi	ression	1		Prob(Omnibus)				Jarque-Bera (JB):		694598.148
						Ske	w: 1.769		P	rob(JB):	0.00
						Kurtos	is: 4.175		C	ond. No.	1.08e+04
Dep. Variable:	Ghost	R-squared:	0.007			coef	std err	t	P> t	[0.025	0.975]
Model:	OLS	Adj. R-squared:	0.007	Inter	rcep	0.1741	0.000	399.610	0.00	0.173	0.175
Method:	Least Squares	F-statistic:	2252.						U		
Date:	Wed, 17 Nov 2021	Prob (F-statistic):	0.00	Н	lcalE	-1.881e-0 6	4.51e-08	-41.739	0.00	-1.97e-0 6	-1.79e-0 6
Time:	20:56:12	Log-Likelihood:	-5.1379e+0 5	E	calE	-3.345e-0	6.22e-08	-53.733	0.00	-3.47e-0	-3.22e-0 6
No. Observations:	1200000	AIC:	1.028e+06			O			U	O	O
Df Residuals:	1199995	BIC:	1.028e+06	F	PrsE	7.133e-06	4.18e-06	1.705	0.08 8	-1.07e-0 6	1.53e-05
Df Model:	4										
Covariance Type:	nonrobust			s	SpdE	-4.756e-0 5	4.25e-06	-11.200	0.00 0	-5.59e-0 5	-3.92e-0 5

Proton Regressi

Dep. Variable: Proton

Method:

Date:

No. Observations: 1200000

Df Residuals: 1199995

Df Model: 4

Covariance Type: nonrobust

Model: OLS

Time: 20:57:53

Least Squares

Wed, 17 Nov

_		

R-squared: 0.007

F-statistic: 2182.

Prob

(F-statistic):

Log-Likelihood:

0.00

BIC: 1.028e+06

-5.1393e+0

1.028e+06

Adj. R-squared: 0.007

336115.13

0.000

Skew: 1.769

Kurtosis: 4.204

std err

4.51e-08 76.596

6.23e-08 -22.572

4.18e-06 -39.635

0.000

Durbin-Watson: 2.000

(JB):

Prob(JB): 0.00

[0.025

698240.988

1.08e+04

0.164

3.54e-06

-1.28e-0

-0.000

0.000

6

0.975]

Jarque-Bera

Cond. No.

0.162

3.36e-06

-1.53e-0

-0.000

0.000

t P>|t|

0.00

0.00

Omnibus:

Prob(Omnibus)

coef

0.1629

-1.405e-0

HcalE 3.452e-06

PrsE -0.0002

SpdE 0.0002

Intercep

EcalE

					Omnibu	ıs: 33567	0.612	Durbin-	Watson:	1.997
Pion Regression			ı	Prob(Omnibu	o.000		Jarque-Bera (JB):		696539.454	
					Ske	w: 1.771		P	rob(JB):	0.00
					Kurtos	is: 4.179		C	ond. No.	1.08e+04
					coef	std err	t	P> t	[0.02	5 0.975]
Dep. Variable:	Pion	R-squared:	0.006							
Model:	OLS	Adj. R-squared:	0.006	Intercep t	0.1704	0.000	391.008	0.00 0	0.170	0.171
Method:	Least Squares	F-statistic:	1797.							
Date:	Wed, 17 Nov 2021	Prob (F-statistic):	0.00	HcalE	2.18e-06	4.51e-08	48.351	0.00 0	2.09e-06	2.27e-06
Time:	21:18:23	Log-Likelihood:	-5.1469e+0 5	EcalE	-3.165e-0 6	6.23e-08	-50.800	0.00	-3.29e-0 6	-3.04e-0 6
No. Observations:	1200000	AIC:	1.029e+06							
Df Residuals:	1199995	BIC:	1.029e+06	PrsE	-0.0002	4.19e-06	-37.672	0.00 0	-0.000	-0.000
Df Model:	4									
Covariance Type:	nonrobust			SpdE	0.0002	4.25e-06	38.762	0.00 0	0.000	0.000

						Omnibus:			Durbin-Watson:		1.997
Elec	tron R	egress	ion		F	Prob(Omnibu	us) : 0.000		Jarque-Bera (JB)		696539.454
						Ske	ew: 1.771		P	rob(JB):	0.00
						Kurtos	i is: 4.179		C	ond. No.	1.08e+04
Dep. Variable:	Pion	R-squared:	0.006			coef	std err	t	P> t	[0.02	0.975]
Model:	OLS	Adj. R-squared:	0.006		Intercep	0.1704	0.000	391.008	0.00	0.170	0.171
Method:	Least Squares	F-statistic:	1797.		t	0.1701			0		
Date:	Wed, 17 Nov 2021	Prob (F-statistic):	0.00		HcalE	2.18e-06	4.51e-08	48.351	0.00 0	2.09e-06	2.27e-06
Time:	21:18:23	Log-Likelihood:	-5.1469e+0 5		EcalE	-3.165e-0	6.23e-08	-50.800	0.00	-3.29e-0 6	-3.04e-0 6
No. Observations:	1200000	AIC:	1.029e+06			O			U	U	O
Df Residuals:	1199995	BIC:	1.029e+06		PrsE	-0.0002	4.19e-06	-37.672	0.00	-0.000	-0.000
Df Model:	4								U		
Covariance Type:	nonrobust				SpdE	0.0002	4.25e-06	38.762	0.00	0.000	0.000

						Omnibus:			Durbin-Watson:		2.001
Muo	n Regr	ession	1		Prob(Omnibus) 0.000				Jarq	ue-Bera (JB):	643288.609
						Ske	ew: 1.711		P	rob(JB):	0.00
						Kurtos	i s: 4.077		C	ond. No.	1.08e+04
Dep. Variable:	Muon	R-squared:	0.033			coef	std err	t	P> t	[0.025	0.975]
Model:	OLS	Adj. R-squared:	0.033	Inte	ercep	0.2109	0.000	490.575	0.00	0.210	0.212
Method:	Least Squares	F-statistic:	1.038e+04		•				O		
Date:	Wed, 17 Nov 2021	Prob (F-statistic):	0.00	н	HcalE	-1.536e-0 6	4.45e-08	-34.551	0.00 0	-1.62e-0 6	-1.45e-0 6
Time:	21:18:24	Log-Likelihood:	-4.9786e+0 5	E	EcalE	-1.121e-0 5	6.14e-08	-182.57 0	0.00	-1.13e-0 5	-1.11e-05
No. Observations:	1200000	AIC:	9.957e+05								
Df Residuals:	1199995	BIC:	9.958e+05		PrsE	-0.0002	4.13e-06	-38.631	0.00 0	-0.000	-0.000
Df Model:	4										
Covariance Type:	nonrobust			\$	SpdE	0.0002	4.19e-06	57.474	0.00 0	0.000	0.000

						us : 33488	6.038	Durbin-Watson:		1.999
Kaon Regression				Prob(Omnibus)			Jaro	que-Bera (JB):	694384.352	
					Sko	ew: 1.758		P	rob(JB):	0.00
					Kurtos	sis: 4.234		С	ond. No.	1.08e+04
					coef	std err	t	P> t	[0.02	5 0.975]
Dep. Variable:	Kaon	R-squared:	0.011	Interce)			0.00		
Model:	OLS	Adj. R-squared:	0.011		0.1615 t	0.000	371.327	0	0.161	0.162
Method:	Least Squares	F-statistic:	3272.					0.00		
Date:	Sat, 20 Nov 2021	Prob (F-statistic):	0.00	Hcall	4.376e-06	4.5e-08	97.296	0	4.29e-06	4.46e-06
Time:	10:53:06	Log-Likelihood:	-5.1177e+05	Ecall	-1.352e-0	6.21e-08	-21.751	0.00 0	-1.47e-0 6	-1.23e-0 6
No. Observations:	1200000	AIC:	1.024e+06		· ·			Ü	v	Ŭ
Df Residuals:	1199995	BIC:	1.024e+06	Prsl	-0.0002	4.18e-06	-40.039	0.00	-0.000	-0.000
Df Model:	4							Ü		
Covariance Type:	nonrobust			Spdl	0.0002	4.24e-06	43.630	0.00 0	0.000	0.000