Theorem 3.6. Suppose T=(T(t)) is an irreducible semigroup with generator A and spectral bound s(A)=0. Assume that there exists a positive linear form $\Psi\neq 0$ such that $A^{\dagger\Psi}=0$. (This is automatically satisfied whenever X is compact (see Thm.1.6).)

If $P\sigma(A) \cap i\mathbb{R}$ is non-empty, then the following assertions are true:

- (a) $P\sigma(A) \cap i\mathbb{R}$ is a (additive) subgroup of $i\mathbb{R}$.
- (b) The eigenspaces corresponding to $\lambda \in P\sigma(A) \cap i\mathbb{R}$ are one-dimensional.
- (c) If $Ah = i\alpha h$ ($h \neq 0$, $\alpha \in \mathbb{R}$), then h has no zeros in X . In case $\alpha = 0$ then h(x)/|h(x)| is constant; otherwise, $\{h(x)/|h(x)|: x \in X\}$ is a dense subset of Γ .
- (d) If $Ah = i\alpha h$ $(h \neq 0, \alpha \in \mathbb{R})$, then
- (3.5) $S_h(D(A)) = D(A)$ and $S_h^{-1} \circ A \circ S_h = (A + i\alpha)$.

In particular, spectrum and point spectrum of A are invariant under translations by $i\alpha$.

(e) 0 is the only eigenvalue admitting a positive eigenfunction.

<u>Proof.</u> By Prop.3.5(c) the invariant linear form Ψ is strictly positive and it satisfies $T(t)'\Psi = \Psi$ ($t \ge 0$).

- (d) Supposing $Ah = i\alpha h$ ($h \neq 0$, $\alpha \in \mathbb{R}$) then A|h| = 0 by (2.14) and (2.15). By Prop.3.5(b) |h| is strictly positive, thus Thm.2.4(b) implies (3.5).
- (b) Assertion (d) implies that S_h maps $\ker(i\alpha + A)$ onto $\ker A$ whenever $i\alpha \in P\sigma(A) \cap i\mathbb{R}$. Moreover, we have seen in the proof of (d) that $\ker A \neq \{0\}$ hence it is one-dimensional by Prop.3.5(d).
- (a) Assume that Ah = $i\alpha h$, Ag = $i\beta g$ ($\alpha,\beta\in\mathbb{R}$, $h\neq 0$, $g\neq 0$) . By (3.5) we have $S_{\overline{g}}$ A $S_{\overline{g}}$ = A + $i\beta$ and $S_{\overline{h}}$ A $S_{\overline{h}}$ = A $i\alpha$, therefore

(3.6)
$$A + i(\beta - \alpha) = S_h(A + i\beta)S_{\overline{h}} = S_hS_{\overline{q}} A S_qS_{\overline{h}}$$
.

It follows that $\ker[A + i(\beta - \alpha)] = S_h S_g^-(\ker A) \neq \{0\}$, hence $i(\beta - \alpha) \in P\sigma(A)$.

(e) If $Af = \lambda f$ where f > 0, then

$$\lambda \cdot \langle f, \Psi \rangle = \langle Af, \Psi \rangle = \langle f, A'\Psi \rangle = 0.$$

Since Ψ is strictly positive we have $\langle f, \Psi \rangle > 0$ hence $\lambda = 0$.

(c) We already know that $Ah = i\alpha h$ implies that A|h| = 0. It follows from Prop.3.5(b) that h is strictly positive; i.e., h has no zeros in X. By Prop.3.5(d) ker A is one-dimensional hence every