3. Un résultat universel de convergence

Soit $(a_n)_{n\in\mathbb{N}}$ une suite d'entiers naturels non nuls. On note $(p_n)_{n\in\mathbb{N}}$ et $(q_n)_{n\in\mathbb{N}}$ les suites définies par :

$$\begin{cases} p_0 = a_0 & \text{et} \\ q_0 = 1 \end{cases} \quad \text{et} \quad \begin{cases} p_1 = 1 + a_0 a_1 \\ q_1 = a_1 \end{cases} \quad \text{et} \quad \forall n \in \mathbb{N}, \quad \begin{cases} p_{n+2} = p_{n+1} a_{n+2} + p_n \\ q_{n+2} = q_{n+1} a_{n+2} + q_n \end{cases}$$

On **admet** que p_n et q_n sont des entiers naturels non nuls pour tout $n \in \mathbb{N}$ (récurrence immédiate).

- (a) Etudier la stricte monotonie de la suite $(q_n)_{n\in\mathbb{N}^*}$ et déterminer sa limite.
- (b) Montrer que pour tout $n \in \mathbb{N}$: $p_{n+1}q_n p_nq_{n+1} = (-1)^n$.
- (c) En déduire que les suites $\left(\frac{p_{2n}}{q_{2n}}\right)_{n\in\mathbb{N}}$ et $\left(\frac{p_{2n+1}}{q_{2n+1}}\right)_{n\in\mathbb{N}}$ sont adjacentes. On note ℓ leur limite commune.
- (d) Montrer que pour tout $n \in \mathbb{N}^*$: $\left| \ell \frac{p_n}{q_n} \right| < \frac{1}{q_n^2}$. On pourra remarquer que ℓ est compris entre $\frac{p_n}{q_n}$ et $\frac{p_{n+1}}{q_{n+1}}$.
- (e) En déduire que ℓ est irrationnel.
- (f) Montrer que pour tous $n \in \mathbb{N}$ et t > 0: $F_{n+2}(a_0, ..., a_{n+1}, t) = \frac{p_{n+1}t + p_n}{q_{n+1}t + q_n}$
- (g) En déduire que pour tout $n \in \mathbb{N}$: $F_n(a_0, ..., a_n) = \frac{p_n}{q_n}$. En conclusion, la suite de rationnels $(F_n(a_0, ..., a_n))_{n \in \mathbb{N}}$ converge vers un irrationnel, et ceci quelle que soit la suite $(a_n)_{n \in \mathbb{N}}$ d'entiers naturels non nuls choisie au départ.

4. Développement d'un irrationnel en fraction continue

Soit x un irrationnel supérieur à 1.

- (a) Justifier la bonne définition de la suite $(x_n)_{n\in\mathbb{N}}$ définie par : $x_0 = x$ et pour tout $n\in\mathbb{N}$, $x_{n+1} = \frac{1}{x_n \lfloor x_n \rfloor}$. On pose alors pour tout $n\in\mathbb{N}$: $a_n = \lfloor x_n \rfloor$.
- (b) Montrer que a_n est un entier naturel non nul pour tout n∈ N.
 On peut dès lors associer à la suite (a_n)_{n∈N} deux suites (p_n)_{n∈N} et (q_n)_{n∈N} comme à la question 3.
- (c) Montrer, en exploitant notamment le résultat de la question 3.(f), que pour tout $n \in \mathbb{N}$: $x = \frac{p_{n+1}x_{n+2} + p_n}{q_{n+1}x_{n+2} + q_n}$
- (d) En déduire que pour tout $n \in \mathbb{N}$: $\left| x \frac{p_{n+1}}{q_{n+1}} \right| < \frac{1}{q_{n+1}^2}$, puis que $\lim_{n \to +\infty} F_n(a_0, \dots, a_n) = x$.

 Conclusion: $x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$.

La suite $(a_n)_{n\in\mathbb{N}}$ est appelée le *développement de x en fraction continue*.