CMIP6 Model Documentation

Institute: NOAA-GFDL
Model: GFDL-ESM2M
Topic: Atmosphere

Doc. Generated: 2018-12-17

Doc. Seeded From: N/A

Specialization Version: 1.1.0

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key Properties	3
2	Grid	7
3	Dynamical Core	9
4	Radiation	15
5	Turbulence Convection	28
6	Microphysics Precipitation	32
7	Cloud Scheme	34
8	Observation Simulation	38
9	Gravity Waves	41
10	Natural Forcing	45

1 Key Properties

Atmosphere key properties

1.1.1 Top level propertie	1.1.	$1 \ 1$	Гор	level	pro	pertie
---------------------------	------	---------	-----	-------	-----	--------

Atmosphere key properties

 $Name\ of\ atmos\ model\ code$

Gfdl atmospheric component: AM2p13

1.1.1.2 Keywords *

 $Keywords\ associated\ with\ atmos\ model\ code$

Enter COMMA SEPARATED list:

1.1.1.3 Overview *

Overview of atmos model.

Enter TEXT:

1.1.1.4 Model Family *

 $Type\ of\ atmospheric\ model.$

M	AGCM - Atmospheric General Circulation Mode
	ARCM - Atmospheric Regional Climate Model
	Other - please specify:

1.1.1.5 Basic Approximations *

 $Basic\ approximations\ made\ in\ the\ atmosphere.$

Primitive equations
Non-hydrostatic
Anelastic
Boussinesq
Hydrostatic
Quasi-hydrostatic
Other - please specify:

1.2.1 Resolution

Characteristics of the model resolution

1.2.1.1 Horizontal Resolution Name *

This is a string usually used by the modelling group to describe the resolution of the model grid, e.g. T42, N48.

Enter TEXT:

1.2.1.2 Canonical Horizontal Resolution *

Expression quoted for gross comparisons of resolution, e.g. 2.5 x 3.75 degrees lat-lon.

Enter TEXT:

1.2.1.3 Range Horizontal Resolution *

Range of horizontal resolution with spatial details, eg. 1 deg (Equator) - 0.5 deg

Enter TEXT:

1.2.1.4 Number Of Vertical Levels *

Number of vertical levels resolved on the computational grid.

Enter INTEGER value:

1.2.1.5 High Top *

 $Does \ the \ atmosphere \ have \ a \ high-top? \ High-Top \ atmospheres \ have \ a \ fully \ resolved \ stratosphere \ with \ a \ model \ top \ above \ the \ stratopause.$

Select either	TRUE or	FALSE
True		False

1.3.1 Timestepping

Characteristics of the atmosphere model time stepping

1.3.1.1 Timestep Dynamics *

 $Timestep\ for\ the\ dynamics\ in\ seconds$

600

1.3.1.2 Timestep Shortwave Radiative Transfer

Timestep for the shortwave radiative transfer in seconds.

Enter INTEGER value:

1.3.1.3 Timestep Longwave Radiative Transfer

Timestep for the longwave radiative transfer in seconds.

Enter INTEGER value:

1.4.1 Orography

Characteristics of the model orography

1.4.1.1	Type *
Type of o	rographic representation.
	Fixed: present day
	Fixed: modified - Provide details of modification below
	Other - please specify:
1.4.1.2	Modified
If the oro	graphy type is modified describe the adaptation.
Selec	t MULTIPLE options:
	Related to ice sheets
	Related to tectonics
	Modified mean
	Modified variance if taken into account in model (cf gravity waves)
	Other - please specify:
1.4.1.3	Time-varying
Describe d	any time varying orographic change

1.5.1 Tuning Applied

Tuning methodology for atmospheric component

1.5.1.1 Description *

Enter TEXT:

General overview description of tuning: explain and motivate the main targets and metrics retained. and Document the relative weight given to climate performance metrics versus process oriented metrics, and and on the possible conflicts with parameterization level tuning. In particular describe any struggle and with a parameter value that required pushing it to its limits to solve a particular model deficiency.

Enter TEXT:

1.5.1.2 Global Mean Metrics Used

List set of metrics of the global mean state used in tuning model/component

Enter COMMA SEPARATED list:

1.5.1.3 Regional Metrics Used

 $List\ of\ regional\ metrics\ of\ mean\ state\ used\ in\ tuning\ model/component$

Enter COMMA SEPARATED list:

1.5.1.4 Trend Metrics Used

List observed trend metrics used in tuning model/component

Enter COMMA SEPARATED list:

2 Grid

 $Atmosphere\ grid$

2.	1.1	1 To	p lev	el pro	$\mathbf{perties}$

 $Atmosphere\ grid$

2.1.1.1 Name

 $Name\ of\ grid\ in\ atmos\ model.$

Enter TEXT:

2.1.1.2 Overview

 $Overview\ of\ grid\ in\ atmos\ model.$

Enter TEXT:

2.1.2 Horizontal

Atmosphere discretisation in the horizontal

2.1.2.1 Scheme Type * Horizontal discretisation type

Spectral
Fixed grid
Other - please specify:

2.1.2.2 Scheme Method *

 $Horizontal\ discretisation\ method$

Ш	Finite elements
	Finite volumes
	Finite difference
	Centered finite difference

2.1.2.3 Scheme Order *

 $Horizontal\ discretisation\ function\ order$

Select SINGLE option:

Second

	Third
	Fourth
	Other - please specify:
2.1.2.4	Horizontal Pole
Horizont	al discretisation pole singularity treatment
	Filter
	Pole rotation
	Artificial island
	Other - please specify:
2.1.2.5	Grid Type *
Horizont	al grid type
Selec	et SINGLE option:
	Gaussian
	Latitude-Longitude
	Cubed-Sphere
	Icosahedral
	Other - please specify:
$2.1.3^{-1}$	Vertical
	here discretisation in the vertical
2.1.3.1	Coordinate Type *
Type of u	vertical coordinate system
Selec	et MULTIPLE options:
	Isobaric - Vertical coordinate on pressure levels
	Sigma - Allows vertical coordinate to follow model terrain
	Hybrid sigma-pressure - Sigma system near terrain and isobaric above
	Hybrid pressure
	Vertically lagrangian
	Other - please specify

3 Dynamical Core

Characteristics of the dynamical core

3.	1	.1	Top	level	pro	perties

 $Characteristics\ of\ the\ dynamical\ core$

3.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ dynamical\ core\ in\ atmos\ model.$

Enter TEXT:

3.1.1.2 Overview

 $Overview\ of\ characteristics\ of\ the\ dynamical\ core\ in\ atmos\ model.$

Enter TEXT:

3.1.1.3	Timestepping	Type	*
0.1.1.0	Timesocpping	- ., pc	

Temperature

3.1.1.3	Imestepping Type	
Timestepping framework type		
	Adams-Bashforth	
	Explicit	
	Implicit	
	Semi-implicit	
	Leap frog	
	Multi-step	
	Runge Kutta fifth order	
	Runge Kutta second order	
	Runge Kutta third order	
	Other - please specify:	
3.1.1.4 Prognostic Variables *		
List of th	e model prognostic variables	
	Surface pressure	
	Wind components	
	Divergence/curl	

	Potential temperature					
	Total water					
	Water vapour					
	Water liquid					
	Total water moments					
	Radiation					
	Other - please specify:					
3.2.1 Top Boundary Type of boundary layer at the top of the model						
3.2.1.1	Top Boundary Condition *					
Top bound	dary condition					
	Sponge layer					
	Radiation boundary condition					
	Other - please specify:					
3.2.1.2 Top Heat * Top boundary heat treatment						
Zero	flux					
3.2.1.3 Top Wind * Top boundary wind treatment						
	p zonal mean winds to zero					
3.3.1 Lateral Boundary						
Type of	lateral boundary condition (if the model is a regional model)					
3.3.1.1 Condition						
Type of lateral boundary condition						
Selec	t SINGLE option:					
	Sponge layer					
	Radiation boundary condition					

Other - please specify:		
3.4.1 Diffusion Horizontal Horizontal diffusion scheme		
3.4.1.1 Scheme Name Horizontal diffusion scheme name GFDL FV core		
3.4.1.2 Scheme Method * Horizontal diffusion scheme method Select SINGLE option: Literated Laplacian Bi-harmonic Other - please specify:		
3.4.2 Tracers Tracer advection scheme		
3.4.2.1 Scheme Name Tracer advection scheme name		
Select SINGLE option: Heun Roe and VanLeer Roe and Superbee Prather UTOPIA Other - please specify:		
3.4.2.2 Scheme Characteristics * Tracer advection scheme characteristics Eulerian Modified Euler		

	Semi-Lagrangian
	Cubic semi-Lagrangian
	Quintic semi-Lagrangian
	Mass-conserving
	Finite volume
	Flux-corrected
	Linear
	Quadratic
	Quartic
	Other - please specify:
3.4.2.3	Conserved Quantities *
	vection scheme conserved quantities
	Dry mass
	Tracer mass
	Other - please specify:
Ш	Other - please specify:
3 4 2 4 1	
	Conservation Method *
Tracer ad	Conservation Method * vection scheme conservation method
Tracer ad	Conservation Method *
Tracer ad	Conservation Method * vection scheme conservation method t SINGLE option: Conservation fixer
Tracer ad	Conservation Method * vection scheme conservation method t SINGLE option:
Tracer ad	Conservation Method * vection scheme conservation method t SINGLE option: Conservation fixer Priestley algorithm
Select	Conservation Method * vection scheme conservation method t SINGLE option: Conservation fixer Priestley algorithm
Select Se	Conservation Method * vection scheme conservation method t SINGLE option: Conservation fixer Priestley algorithm Other - please specify:
Select Select Select Moment	Conservation Method * vection scheme conservation method t SINGLE option: Conservation fixer Priestley algorithm Other - please specify: Momentum
Select Select Select Select Moments 3.4.3 N	Conservation Method * vection scheme conservation method t SINGLE option: Conservation fixer Priestley algorithm Other - please specify: Momentum um advection scheme
Select Select Select Select Select Momenta 3.4.3 N Momenta Momentan	Conservation Method * vection scheme conservation method t SINGLE option: Conservation fixer Priestley algorithm Other - please specify: Momentum um advection scheme Scheme Name
Select Select Select Select Select Momenta 3.4.3 N Momenta Momentan	Conservation Method * vection scheme conservation method t SINGLE option: Conservation fixer Priestley algorithm Other - please specify: Momentum um advection scheme Scheme Name n advection schemes name
Select Select Select Select Select Momenta 3.4.3 N Momenta Momentan	Conservation Method * vection scheme conservation method t SINGLE option: Conservation fixer Priestley algorithm Other - please specify: Momentum um advection scheme Scheme Name n advection schemes name t SINGLE option:

3.4.3.2 Scheme Characteristics * Momentum advection scheme characteristics	
Momentum advection echeme characteristics	
Momentum datection scheme characteristics	
2nd order	
X 4th order	
Cell-centred	
Staggered grid	
Semi-staggered grid	
Other - please specify:	
3.4.3.3 Scheme Staggering Type *	
Momentum advection scheme staggering type	
Select SINGLE option:	
Arakawa B-grid	
Arakawa C-grid	
Arakawa D-grid	
Arakawa E-grid	
Other - please specify:	
3.4.3.4 Conserved Quantities *	
$Momentum\ advection\ scheme\ conserved\ quantities$	
Angular momentum	
Horizontal momentum	
Enstrophy	
Mass	
Total energy	
☐ Vorticity	
Other - please specify:	
3.4.3.5 Conservation Method *	
Momentum advection scheme conservation method	

Select SINGLE option:

13

Conservation fixer
Other - please specify:

4 Radiation

Characteristics of the atmosphere radiation process

4.1.1 Top level properties

Characteristics of the atmosphere radiation process

4.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ radiation\ in\ atmos\ model.$

Enter TEXT:

4.1.1.2 Overview

Overview of characteristics of the atmosphere radiation process in atmos model.

Enter TEXT:

4.1.1.3 Aerosols *

Aerosols whose radiative effect is taken into account in the atmosphere model		
	Sulphate	
	Nitrate	
	Sea salt	
	Dust	
	Ice	
	Organic	
\boxtimes	BC - Black carbon / soot	
	SOA - Secondary organic aerosols	
	POM - Particulate organic matter	
	Polar stratospheric ice	
	NAT - Nitric acid trihydrate	
	NAD - Nitric acid dihydrate	
	STS - Supercooled ternary solution aerosol particle	
	Other - please specify:	

4.2.1 Shortwave Radiation

 $Properties \ of \ the \ shortwave \ radiation \ scheme$

4.2.1.1 Name		
Commonly used name for the shortwave radiation scheme		
Enter TEXT:		
4.2.1.2 Spectral Integration *		
Shortwave radiation scheme spectral integration		
Wide-band model		
Correlated-k		
Exponential sum fitting		
Other - please specify:		
4.2.1.3 Transport Calculation *		
Shortwave radiation transport calculation methods		
Select MULTIPLE options:		
☐ Two-stream		
Layer interaction		
Bulk - Highly parameterised methods that use bulk expressions		
$\hfill \Box$ Adaptive - Exploits spatial and temporal correlations in optical characteristics		
Multi-stream		
Other - please specify:		
4.2.1.4 Spectral Intervals *		
Shortwave radiation scheme number of spectral intervals		
18		
4.2.1.5 General Interactions *		
General radiative interactions e.g. with aerosols, cloud ice and cloud water		
Select MULTIPLE options:		
Emission/absorption,		
☐ Scattering		
Other - please specify:		

4.3.1 Shortwave GHG

 $Representation\ of\ greenhouse\ gases\ in\ the\ shortwave\ radiation\ scheme$

4.3.1.1 Greenhouse Gas Complexity *

 $Complexity\ of\ greenhouse\ gases\ whose\ shortwave\ radiative\ effects\ are\ taken\ into\ account\ in\ the\ atmosphere\ model$

Selec	et MULTIPLE options:
	CO2 - Carbon Dioxide
	CH4 - Methane
	N2O - Nitrous Oxide
concentra	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence tion of CFC-11
 equivalen	${ m CFC-12\ eq}$ - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a CFC-12 ce concentration
concentra	${ m HFC} ext{-}134a~{ m eq}$ - Summarize the radiative effect of other fluorinated gases with a ${ m HFC} ext{-}134a~{ m equivalence}$ equivalence ition
	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons
	$ Explicit \ other \ fluorinated \ gases \ - \ Explicit \ representation \ of \ other \ fluorinated \ gases \ e.g. \ HFCs \ and \ PFCs $
	O3
	H2O
	Other - please specify:
4.3.1.2 Ozone de model	ODS pleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere
Ozone de model	pleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere
Ozone de model	
Ozone de model	pleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere et MULTIPLE options:
Ozone de model	pleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere et MULTIPLE options: CFC-12 - CFC
Ozone de model Selec	pleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere et MULTIPLE options: CFC-12 - CFC CFC-11 - CFC
Ozone de model Selec	pleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere et MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC
Ozone de model Selec	pleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere et MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC
Ozone de model Selec	pleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere et MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC
Ozone de model Selec	pleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere et MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC HCFC-22 - HCFC
Ozone de model Selec	ct MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC HCFC-22 - HCFC
Ozone de model Selec	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC HCFC-12 - HCFC HCFC-141b - HCFC

	Methyl chloroform - CH3CCl3		
	Carbon tetrachloride - CCl4		
	Methyl chloride - CH3Cl		
	Methylene chloride - CH2Cl2		
	Chloroform - CHCl3		
	Methyl bromide - Ch3Br		
	Other - please specify:		
4.3.1.3 Other Flourinated Gases Other flourinated gases whose shortwave radiative effects are explicitly taken into account in the atmosphere model			
	et MULTIPLE options: HFC-134a - HFC		
	HFC-23 - HFC		
	HFC-32 - HFC		
	HFC-125 - HFC		
	HFC-143a - HFC		
	HFC-152a - HFC		
	HFC-227ea - HFC		
	HFC-236fa - HFC		
	HFC-245fa - HFC		
	HFC-365mfc - HFC		
	HFC-43-10mee - HFC		
	CF4 - PFC		
	C2F6 - PFC		
	C3F8 - PFC		
	C4F10 - PFC		
	C5F12 - PFC		
	C6F14 - PFC		
	C7F16 - PFC		
	C8F18 - PFC		
	C-CAES - PEC		

	NF3
	SF6
	SO2F2
	Other - please specify:
4.4.1 S	hortwave Cloud Ice
Shortwar	ve radiative properties of ice crystals in clouds
4.4.1.1 l	Physical Representation *
Physical re	epresentation of cloud ice crystals in the shortwave radiation scheme
Select	MULTIPLE options:
typically h	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: aundreds of microns
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes
than spher	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area ees
	Ice water path - Integrated ice water path through the cloud kg m-2 $$
	Crystal asymmetry
	Crystal aspect ratio
	Effective crystal radius
	Other - please specify:
4 4 1 0 4	O-4:1 M-41 d- *
	Optical Methods * ethods applicable to cloud ice crystals in the shortwave radiation scheme
	MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:

4.5.1 Shortwave Cloud Liquid

 $Shortwave\ radiative\ properties\ of\ liquid\ droplets\ in\ clouds$

Physical representation of cloud liquid droplets in the shortwave radiation scheme Select MULTIPLE options: Cloud droplet number concentration - CDNC Effective cloud droplet radii Droplet size distribution Liquid water path - Integrated liquid water path through the cloud kg m-2 Other - please specify: 4.5.1.2 Optical Methods * Optical methods applicable to cloud liquid droplets in the shortwave radiation scheme Select MULTIPLE options: Geometric optics - For non-spherical particles Mie theory - For spherical particles Other - please specify: 4.6.1 Shortwave Cloud Inhomogeneity Cloud inhomogeneity in the shortwave radiation scheme 4.6.1.1 Cloud Inhomogeneity * Method for taking into account horizontal cloud inhomogeneity Select SINGLE option: Monte Carlo Independent Column Approximation - McICA Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010 Analytic Other - please specify: 4.7.1 Shortwave Aerosols Shortwave radiative properties of aerosols 4.7.1.1 Physical Representation * Physical representation of aerosols in the shortwave radiation scheme

4.5.1.1 Physical Representation *

Select MULTIPLE options:

	Number concentration
	Effective radii
	Size distribution
	Asymmetry
	Aspect ratio
	Mixing state - For shortwave radiative interaction
	Other - please specify:
4.7.1.2	Optical Methods *
Optical m	nethods applicable to aerosols in the shortwave radiation scheme
Selec	et MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:
4.8.1	Longwave Radiation
Properti	ies of the longwave radiation scheme
4.8.1.1	Name
Common	ly used name for the longwave radiation scheme.
Ente	r TEXT:
4.8.1.2	Spectral Integration *
Longwave	e radiation scheme spectral integration
	Wide-band model
	Correlated-k
	Exponential sum fitting
	Other - please specify:

4.8.1.3	Transport Calculation *
Longwave	radiation transport calculation methods
Selec	t MULTIPLE options:
	Two-stream
	Layer interaction
	Bulk - Highly parameterised methods that use bulk expressions
	Adaptive - Exploits spatial and temporal correlations in optical characteristics
	Multi-stream
	Other - please specify:
4.8.1.4	Spectral Intervals *
Longwave	radiation scheme number of spectral intervals
10	
4.8.1.5	General Interactions *
General re	adiative interactions e.g. with aerosols, cloud ice and cloud water
Selec	t MULTIPLE options:
	Emission/absorption,
	Scattering
	Other - please specify:
4.9.1 I	Longwave GHG
Represer	ntation of greenhouse gases in the longwave radiation scheme
4.9.1.1	Greenhouse Gas Complexity *
Complexit	ty of greenhouse gases whose longwave radiative effects are taken into account in the atmosphere model
Selec	t MULTIPLE options:
	CO2 - Carbon Dioxide
	CH4 - Methane
	N2O - Nitrous Oxide
concentrat	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence tion of CFC-11

 $\hfill\Box$ CFC-12 eq - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a CFC-12 equivalence concentration

concentra	${ m HFC} ext{-}134a~{ m eq}$ - Summarize the radiative effect of other fluorinated gases with a ${ m HFC} ext{-}134a~{ m equivalence}$ equivalence ation
	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons
	Explicit other fluorinated gases - Explicit representation of other fluorinated gases e.g. HFCs and PFCs
	O3
	H2O
	Other - please specify:
4.9.1.2	
Ozone de model	pleting substances whose longwave radiative effects are explicitly taken into account in the atmosphere
Selec	et MULTIPLE options:
	CFC-12 - CFC
	CFC-11 - CFC
	CFC-113 - CFC
	CFC-114 - CFC
	CFC-115 - CFC
	HCFC-22 - HCFC
	HCFC-141b - HCFC
	HCFC-142b - HCFC
	Halon-1211 - Halon
	Halon-1301 - Halon
	Halon-2402 - Halon
	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:

4.9.1.3 Other Flourinated Gases

 $Other\ flour in ated\ gases\ whose\ longwave\ radiative\ effects\ are\ explicitly\ taken\ into\ account\ in\ the\ atmosphere\ model$

Select MULTIPLE options:					
	HFC-134a - HFC				
	HFC-23 - HFC				
	HFC-32 - HFC				
	HFC-125 - HFC				
	HFC-143a - HFC				
	HFC-152a - HFC				
	HFC-227ea - HFC				
	HFC-236fa - HFC				
	HFC-245fa - HFC				
	HFC-365mfc - HFC				
	HFC-43-10mee - HFC				
	CF4 - PFC				
	C2F6 - PFC				
	C3F8 - PFC				
	C4F10 - PFC				
	C5F12 - PFC				
	C6F14 - PFC				
	C7F16 - PFC				
	C8F18 - PFC				
	C-C4F8 - PFC				
	NF3				
	SF6				
	SO2F2				
	Other - please specify:				
4.10.1 Longwave Cloud Ice					
-					

Longwave radiative properties of ice crystals in clouds

4.10.1.1 Physical Reprenstation *

Physical representation of cloud ice crystals in the longwave radiation scheme

Select MULTIPLE options:

typically h	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: aundreds of microns
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes
than spher	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area res
	Ice water path - Integrated ice water path through the cloud kg m-2 $$
	Crystal asymmetry
	Crystal aspect ratio
	Effective crystal radius
	Other - please specify:
4.10.1.2	Optical Methods *
$Optical\ m$	ethods applicable to cloud ice crystals in the longwave radiation scheme
Select	t MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:
4.11.1	Longwave Cloud Liquid
Longwav	e radiative properties of liquid droplets in clouds
4.11.1.1	Physical Representation *
Physical r	epresentation of cloud liquid droplets in the longwave radiation scheme
Select	t MULTIPLE options:
	Cloud droplet number concentration - CDNC
	Effective cloud droplet radii
	Droplet size distribution
	Liquid water path - Integrated liquid water path through the cloud kg m-2
	Other - please specify:

4.11.1.2	2 Optical Methods *								
$Optical\ m$	ethods applicable to cloud liquid droplets in the longwave radiation scheme								
Selec	Select MULTIPLE options:								
	Geometric optics - For non-spherical particles								
	Mie theory - For spherical particles								
	Other - please specify:								
4.12.1	Longwave Cloud Inhomogeneity								
Cloud in	chomogeneity in the longwave radiation scheme								
4.12.1.1	Cloud Inhomogeneity *								
	r taking into account horizontal cloud inhomogeneity								
Selec	t SINGLE option:								
	Monte Carlo Independent Column Approximation - McICA								
	Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010								
	Analytic								
	Other - please specify:								
4.13.1	Longwave Aerosols								
Longway	ve radiative properties of aerosols								
4.13.1.1	Physical Representation *								
Physical r	representation of aerosols in the longwave radiation scheme								
Selec	t MULTIPLE options:								
	Number concentration								
	Effective radii								
	Size distribution								
	Asymmetry								
	Aspect ratio								
	Mixing state - For shortwave radiative interaction								
	Other - please specify:								

4.13.1.2	Optical	Methods	*
----------	---------	---------	---

 $Optical\ methods\ applicable\ to\ aerosols\ in\ the\ longwave\ radiation\ scheme$

Select MULTIPLE options:						
	T-matrix - For non-spherical particles					
	Geometric optics - For non-spherical particles					
	Finite difference time domain (FDTD) - For non-spherical particles $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left$					
	Mie theory - For spherical particles					
	Anomalous diffraction approximation					
	Other - please specify:					

5 Turbulence Convection

Atmosphere Convective Turbulence and Clouds

5.1.1 Top level properties

 $Atmosphere\ Convective\ Turbulence\ and\ Clouds$

5.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ turbulence\ convection\ in\ atmos\ model.$

Enter TEXT:

5.1.1.2 Overview

Overview of atmosphere convective turbulence and clouds in atmos model.

Enter TEXT:

5.2.1 Boundary Layer Turbulence

Properties of the boundary layer turbulence scheme

5.2.1.1 Scheme Name

Boundary layer turbulence scheme name

Selec	t SINGLE option:
	Mellor-Yamada
	Holtslag-Boville
	EDMF - Combined Eddy Diffusivity Mass-Flux
	Other - please specify:
5.2.1.2	Scheme Type *
Boundary	layer turbulence scheme type
	TKE prognostic
	TKE diagnostic
	TKE coupled with water
	Vertical profile of Kz
	Non-local diffusion
	Monin-Obukhov similarity
	Coastal Buddy Scheme - Separate components for coastal near surface winds over ocean and land

	Coupled with convection
	Coupled with gravity waves
	Depth capped at cloud base - Boundary layer capped at cloud base when convection is diagnosed
	Other - please specify:
5.2.1.3	Closure Order *
Boundary	y layer turbulence scheme closure order
Ente	r INTEGER value:
5.2.1.4	Counter Gradient *
Uses bour	ndary layer turbulence scheme counter gradient
\boxtimes	True
5.3.1	Deep Convection
Propert	ies of the deep convection scheme
5.3.1.1	Scheme Name
Deep con	vection scheme name
RAS	
5.3.1.2	Scheme Type *
Deep con	vection scheme type
	Mass-flux
	Adjustment
	Plume ensemble - Zhang-McFarlane
	Other - please specify:
5.3.1.3	Scheme Method *
Deep con	vection scheme method
Selec	et MULTIPLE options:
	CAPE - Mass flux determined by CAPE, convectively available potential energy.
	Bulk - A bulk mass flux scheme is used
	Ensemble - Summation over an ensemble of convective clouds with differing characteristics

sphere	${\it CAPE/WFN\ based\ -\ CAPE-Cloud\ Work\ Function:\ Based\ on\ the\ quasi-equilibrium\ of\ the\ free\ tropological and the statement of the $
	$\label{thm:thm:thm:mass} {\it TKE/CIN}\ \ {\it based}\ \ {\it -TKE-Convective}\ \ {\it Inhibition:}\ \ {\it Based}\ \ {\it on}\ \ {\it the}\ \ {\it quasi-equilibrium}\ \ {\it of}\ \ {\it the}\ \ {\it boundary}\ \ {\it layer}$
	Other - please specify:
	Processes *
Physical p	processes taken into account in the parameterisation of deep convection
	Vertical momentum transport
	Convective momentum transport
	Entrainment
	Detrainment
	Penetrative convection
	Updrafts
	Downdrafts
	Radiative effect of anvils
	Re-evaporation of convective precipitation
	Other - please specify:
5.3.1.5	Microphysics
Microphys	sics scheme for deep convection. Microphysical processes directly control the amount of detrainment of rometeor and water vapor from updrafts
Selec	t MULTIPLE options:
	Tuning parameter based
	Single moment
	Two moment
	Other - please specify:
- 4 - 1 - C	
	Shallow Convection
Properti	es of the shallow convection scheme
5.4.1.1	Scheme Name
Shallow c	onvection scheme name
Enter	TEXT:

5.4.1.2 Scheme Type *						
Shallow convection scheme type						
Selec	Select MULTIPLE options:					
	Mass-flux					
	Cumulus-capped boundary layer					
	Other - please specify:					
5.4.1.3	Scheme Method *					
Shallow o	convection scheme method					
	Same as deep (unified)					
	Included in boundary layer turbulence					
	${\bf Separate\ diagnosis\ -\ Deep\ and\ Shallow\ convection\ schemes\ use\ different\ thermodynamic\ closure\ criteria}$					
	Other - please specify:					
5.4.1.4	Processes *					
Physical	processes taken into account in the parameterisation of shallow convection					
Selec	et MULTIPLE options:					
	Convective momentum transport					
	Entrainment					
	Detrainment					
	Penetrative convection					
	Re-evaporation of convective precipitation					
	Other - please specify:					
5.4.1.5	Microphysics					
Microphy	sics scheme for shallow convection					
Selec	et MULTIPLE options:					
	Tuning parameter based					
	Single moment					
	Two moment					
	Other - please specify:					

6 Microphysics Precipitation

Large Scale Cloud Microphysics and Precipitation

6.1.1 Top level properties

Large Scale Cloud Microphysics and Precipitation

6.1.1.1 Name

Commonly used name for the microphysics precipitation in atmos model.

Enter TEXT:

6.1.1.2 Overview

Overview of large scale cloud microphysics and precipitation in atmos model.

Enter TEXT:

6.2.1 Large Scale Precipitation

Properties of the large scale precipitation scheme

6.2.1.1 Scheme Name

Commonly used name of the large scale precipitation parameterisation scheme

RAS

6.2.1.2 Hydrometeors *

Precipitating	hydrometeors	taken	into	account	in	the	large	scale	precipitation	scheme	

	Liquid	rain
--	--------	------

Hail

ш	SHOW

_	
	Graupel

_	
\sqcup	Other - please specify:

6.3.1 Large Scale Cloud Microphysics

Properties of the large scale cloud microphysics scheme

6.3.1.1 Scheme Name

Commonly used name of the microphysics parameterisation scheme used for large scale clouds.

RAS

Large scale cloud microphysics processes			
Selec	t MULTIPLE options:		
	Mixed phase		
	Cloud droplets		
	Cloud ice		
	Ice nucleation		
	Water vapour deposition		
	Effect of raindrops		
	Effect of snow		
	Effect of graupel		

Other - please specify:

6.3.1.2 Processes *

7 Cloud Scheme

Characteristics of the cloud scheme

7	.1.1	Top	level	pro	perties

Characteristics of the cloud scheme

7	7 1	1 1	1 1	1	N	· 2	m	6

 $Commonly\ used\ name\ for\ the\ cloud\ scheme\ in\ atmos\ model.$

Enter TEXT:

7.1.1.2 Overview

Overview of characteristics of the cloud scheme in atmos model.

Enter TEXT:

7.1.1.3	Scheme	Type	×
---------	--------	-------------	---

 $Describes\ the\ type(s)\ of\ cloud\ scheme:\ prognostic,\ diagnostic,\ other.$

Select MULTIPLE options:				
	Prognostic			
	Diagnostic			
	Other - please specify:			

7.1.1.4 Uses Separate Treatment *

 $Description \ for \ when \ different \ cloud \ schemes \ are \ used \ for \ different \ types \ of \ clouds \ e.g. \ convective, \ stratiform \ and \ boundary \ layer)$

Yes

7.1.1.5 Processes *

Processes included in the cloud scheme

Ш	Entrainment
	Detrainment
	Bulk cloud
	Other - please specify:

7.1.1.6 Prognostic Variables

List the prognostic variables used by the cloud scheme, if applicable.

Selec	t MULTIPLE options:
	Cloud amount
	Liquid
	Ice
	Rain
	Snow
	Cloud droplet number concentration - To document the use of two-moment cloud microphysics schemes
	Ice crystal number concentration - To document the use of two-moment cloud microphysics schemes
	Other - please specify:
	Atmos Coupling re components that are linked to the cloud scheme
Selec	t MULTIPLE options:
	Atmosphere_radiation
	Atmosphere_microphysics_precipitation
	$Atmosphere_turbulence_convection$
	Atmosphere_gravity_waves
	Atmosphere_natural_forcing
	Atmosphere_observation_simulation
	Optical Cloud Properties
7.2.1.1	Cloud Overlap Method
	r taking into account overlapping of cloud layers
Selec	t SINGLE option:
	Random
	Maximum
	Maximum-random - Combination of maximum and random overlap between clouds
	Exponential
	Other - please specify:

7	2 1	2	Cloud	In	hami	ocen	aits
ι.	. 4 . 1		Cioua	\mathbf{III}	поше	ogen	env

 $Method\ for\ taking\ into\ account\ cloud\ inhomogeneity$

Enter TEXT:

7.3.1 Sub Grid Scale Water Distribution

Sub-grid	scale water distribution
7.3.1.1 T	Type *
Sub-grid sc	ale water distribution type
	Prognostic
	Diagnostic
7.3.1.2 F	unction Name *
Sub-grid sc	ale water distribution function name
Klein	
7.3.1.3 F	unction Order *
Sub-grid sc	ale water distribution function type
Enter	INTEGER value:
7.3.1.4	Convection Coupling *
Sub-grid sc	ale water distribution coupling with convection
	Coupled with deep
	Coupled with shallow
	Not coupled with convection
7110	ub Grid Scale Ice Distribution
Sub-grid	scale ice distribution
7.4.1.1 T	Type *
Sub-grid sc	ale ice distribution type
Select	SINGLE option:

Prognostic

 ${\bf Diagnostic}$

Sub-grid scale ice distribution function name		
Enter TEXT:		
7.4.1.3 Function Order *		
Sub-grid scale ice distribution function type		
Enter INTEGER value:		
7.4.1.4 Convection Coupling *		
7.4.1.4 Convection Coupling *		
7.4.1.4 Convection Coupling * Sub-grid scale ice distribution coupling with convection		
• 0		
Sub-grid scale ice distribution coupling with convection		
Sub-grid scale ice distribution coupling with convection Select MULTIPLE options:		
Sub-grid scale ice distribution coupling with convection Select MULTIPLE options: Coupled with deep		

7.4.1.2 Function Name *

8 Observation Simulation

Characteristics of observation simulation

8.1.1 Top level properties

 $Characteristics\ of\ observation\ simulation$

8.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ observation\ simulation\ in\ atmos\ model.$

Enter TEXT:

8.1.1.2 Overview

 $Overview\ of\ characteristics\ of\ observation\ simulation\ in\ atmos\ model.$

Enter TEXT:

8.2.1 Isscp Attributes

ISSCP Characteristics

8.2.1.1 Top Height Estimation Method

 $Cloud\ simulator\ ISSCP\ top\ height\ estimation\ method\ Uo$

Select MULTIPLE options:		
	No adjustment	
	IR brightness	
	Visible optical depth	
	Other - please specify:	

8.2.1.2 Top Height Direction

Cloud simulator ISSCP top height direction

Select SINGLE option:		
	Lowest altitude level	
	Highest altitude level	
	Other - please specify:	

8.3.1 Cosp Attributes

 $CFMIP\ Observational\ Simulator\ Package\ attributes$

8.3.1.1 Run Configuration		
Cloud simulator COSP run configuration		
Select SINGLE option:		
Inline		
Offline		
Other - please specify:		
8.3.1.2 Number Of Grid Points		
Cloud simulator COSP number of grid points		
Enter INTEGER value:		
8.3.1.3 Number Of Sub Columns		
Cloud simulator COSP number of sub-cloumns used to simulate sub-grid variability		
Enter INTEGER value:		
8.3.1.4 Number Of Levels		
Cloud simulator COSP number of levels		
Enter INTEGER value:		
9 4 1 Dadan Inputs		
8.4.1 Radar Inputs Characteristics of the cloud makes simulators		
Characteristics of the cloud radar simulator		
8.4.1.1 Frequency		
Cloud simulator radar frequency (Hz)		
Enter FLOAT value:		
8.4.1.2 Type		
Cloud simulator radar type		
Select SINGLE option:		
Surface		
Space borne		
Other - please specify:		

	Gas Absor	_	
	t either TRU		-
	True		False
	Effective R		
	t either TRU		
	True		False
	Lidar Inpo		ud lidar simulator
	Ice Types	e type	
	t SINGLE o		
	Ice spheres		
	Ice non-spher	ical	
	Other - pleas	e spec	ify:
8.5.1.2	Overlap		
Cloud sin	nulator lidar on	verlap	
Selec	t MULTIPL	E opt	ions:
	Max		
	Random		
	Other - pleas	e snec	ify:

9 Gravity Waves

Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources

9.1.1 Top level properties

 $Characteristics\ of\ the\ parameterised\ gravity\ waves\ in\ the\ atmosphere,\ whether\ from\ orography\ or\ other\ sources$

9.1.1.1 Name

Commonly used name for the gravity waves in atmos model.

Enter TEXT:

9.1.1.2 Overview

 $Overview\ of\ characteristics\ of\ the\ parameterised\ gravity\ waves\ in\ the\ atmosphere,\ whether\ from\ orography\ or\ other\ sources\ in\ atmos\ model.$

Enter TEXT:

9.1.1.3	Sponge Layer *
Sponge la	yer in the upper levels in order to avoid gravity wave reflection at the top.
Selec	t SINGLE option:
	Rayleigh friction
	Diffusive sponge layer
	Other - please specify:
0111	Background *

9.1.1.4 Background *

 $Background\ wave\ distribution$

Selec	et SINGLE option:
	Continuous spectrum
	Discrete spectrum
	Other - please specify

9.1.1.5 Subgrid Scale Orography *

Subgrid	scale	orography	effects	taken	into	account.

Ш	Effect on drag
	Effect on lifting

	Enhanced topography - To enhance the generation of long waves in the atmosphere $$
	Other - please specify:
9.2.1	Orographic Gravity Waves
Gravity	waves generated due to the presence of orography
9.2.1.1	Name
Commonl	y used name for the orographic gravity wave scheme
Enter	r TEXT:
9.2.1.2	Source Mechanisms *
Orographi	ic gravity wave source mechanisms
	Linear mountain waves
	Hydraulic jump
	Envelope orography
	Low level flow blocking
	Statistical sub-grid scale variance
	Other - please specify:
9.2.1.3	Calculation Method *
Orographi	ic gravity wave calculation method
	Non-linear calculation
	More than two cardinal directions
	Other - please specify:
9.2.1.4	Propagation Scheme *
Orographi	ic gravity wave propogation scheme
	Linear theory
	Non-linear theory
	Includes boundary layer ducting
	Other - please specify:

9.2.1.5	Dissipation Scheme *
Orographi	c gravity wave dissipation scheme
	Total wave
	Single wave
	Spectral
	Linear
	Wave saturation vs Richardson number
	Other - please specify:
9.3.1	Non Orographic Gravity Waves
Gravity	waves generated by non-orographic processes.
9.3.1.1	Name
Commonl	y used name for the non-orographic gravity wave scheme
Enter	TEXT:
	Source Mechanisms *
Non-orogi	raphic gravity wave source mechanisms
Selec	t MULTIPLE options:
	Convection
	Precipitation
	Background spectrum
	Other - please specify:
9.3.1.3	Calculation Method *
Non-orogn	raphic gravity wave calculation method
Selec	t MULTIPLE options:
	Spatially dependent
	Temporally dependent
9.3.1.4	Propagation Scheme *
	raphic gravity wave propogation scheme

Select SINGLE option:

	Linear theory		
	Non-linear theory		
	Other - please specify:		
9.3.1.5	Dissipation Scheme *		
Non-orographic gravity wave dissipation scheme			
Select SINGLE option:			
	Total wave		
	Single wave		
	Spectral		
	Linear		
	Wave saturation vs Richardson number		
	Other - please specify:		

10 Natural Forcin	ıg
-------------------	----

$Natural_{j}$	forcing:	solar	and ve	olcanic.
---------------	----------	-------	--------	----------

10.1.1 Top level properties

Natural forcing: solar and volcanic.

10.1.1.1 Name

Commonly used name for the natural forcing in atmos model.

 ${f Enter\ TEXT}:$

10.1.1.2 Overview

Overview of natural forcing: solar and volcanic. in atmos model.

Enter TEXT:

10.2.1 Solar Pathways

Pathways for solar forcing of the atmosphere

10.2.1.1 Pathways *

Pathways for the solar forcing of the atmosphere model domain

	SW radiation - Shortwave solar spectral irradiance.
,	Precipitating energetic particles - Precipitating energetic particles from the sun (predominantly prothe magnetosphere (predominantly electrons) affect the ionization levels in the polar middle and upper e, leading to significant changes of the chemical composition
	Cosmic rays - Cosmic rays are the main source of ionization in the troposphere and lower stratosphere.

10.3.1 Solar Constant

Other - please specify:

Solar constant and top of atmosphere insolation characteristics

10.3.1.1 Type *

Time adaptation of the solar constant.

Transient

Fixed

If the solar constant is fixed, enter the value of the solar constant (W m -2).
Enter FLOAT value:
10.3.1.3 Transient Characteristics
Solar constant transient characteristics (W m-2)
Set by year value
10.4.1 Orbital Parameters
Orbital parameters and top of atmosphere insolation characteristics
10.4.1.1 Type *
Type of orbital parameter
Fixed
Transient
Transiene
10.4.1.2 Fixed Reference Date
Reference date for fixed orbital parameters (yyyy)
23
10.4.1.3 Transient Method
Description of transient orbital parameters
Enter TEXT:
10.4.1.4 Computation Method
$Method\ used\ for\ computing\ orbital\ parameters.$
Berger 1978
Laskar 2004
Other - please specify:
10.5.1 Insolation Ozone
$Impact\ of\ solar\ insolation\ on\ stratospheric\ ozone$
10.5.1.1 Solar Ozone Impact *
Does top of atmosphere insolation impact on stratospheric ozone?
☐ False

10.3.1.2 Fixed Value

10.6.1 Volcanoes Treatment

 $Characteristics\ and\ treatment\ of\ volcanic\ forcing\ in\ the\ atmosphere$

10.6.1.1 Volcanoes Characteristics *

 $Description\ of\ how\ the\ volcanic\ forcing\ is\ taken\ into\ account\ in\ the\ atmosphere.$

Enter TEXT:

10.6.1.2 Volcanoes Implementation *

 $How\ volcanic\ effects\ are\ modeled\ in\ the\ atmosphere.$

Select SINGLE option:		
	High frequency solar constant anomaly	
	Stratospheric aerosols optical thickness	
	Other - please specify:	