T6.GB.P02. Momento flector y fuerza cortante en una viga sujeta a una carga uniforme.

Las siguientes relaciones se pueden utilizar para analizar vigas sujetas a cargas uniformemente distribuídas:

$$\theta(x) = \frac{\mathrm{dy}}{\mathrm{dx}}, \frac{d\theta}{\mathrm{dx}} = \frac{M(x)}{E \cdot I}, \ V(x) = \frac{\mathrm{dM}}{\mathrm{dx}}, \ -w(x) = \frac{\mathrm{dV}}{\mathrm{dx}}$$

donde:

x = distancia a lo largo de la viga (m)

y = deflexión (m)

 $\theta(x)$ = pendiente (m/m)

 $E = \text{m\'odulo de elasticidad } \left(\frac{N}{m^2}\right)$

I = momento de inercia (m⁴)

 $M(x) = \text{momento flector } (N \cdot m)$

V(x) = fuerza cortante (N)

 $w(x) = \text{carga distribuida } \left(\frac{N}{m}\right)$

Se miden las siguientes deflexiones a lo largo de una viga uniforme simplemente apoyada:

Sabiendo que $E=200~\mathrm{GPa}$ y $I=0.0003~m^4$, mediante diferenciación numérica calcula:

1

- a) (2,5p) La pendiente.
- b) (2,5p) El momento en N·m

- c) (2,5p) La fuerza cortante en N
- d) (2,5p) La carga distribuida en N/m

En todos los casos:

Da los resultados en forma de tabla en las que las columnas incluyan x(m), y(m) y lo que se calcula.

Representa los puntos obtenidos en función de x y la spline cúbica que los interpola en la misma gráfica.

Respuesta

a) Pendiente $\frac{dy}{dx} = \theta(x)$

```
clc, clear, clf x = 0:0.375:3; y = [0 -0.2571 -0.9484 -1.9689 -3.2262 -4.6414 -6.1503 -7.7051 -9.275]/100; [theta d2ydx] = PrimSegDeriv(x,y); T1 = table(x',y', theta'); T1.Properties.VariableNames = {'x(m)','y(m)','theta (m/m)'}; disp(T1)
```

y(m)	theta (m/m)
0	-0.0010667
-0.002571	-0.012645
-0.009484	-0.022824
-0.019689	-0.030371
-0.032262	-0.035633
-0.046414	-0.038988
-0.061503	-0.040849
-0.077051	-0.041663
-0.09275	-0.042065
	0 -0.002571 -0.009484 -0.019689 -0.032262 -0.046414 -0.061503 -0.077051

Gráfica

```
xp = linspace(min(x)+0.001,max(x)-0.001,100);
for i=1:100
    yp(i) = SplineCub(x,theta,xp(i));
end
plot(x,theta,'or','LineWidth',2)
hold on
plot(xp,yp,'-k','LineWidth',2)
xlabel('x(m)')
ylabel('{\theta} (m/m)')
title ('Pendiente {\theta} (m/m)')
legend('Puntos dados','Pendiente {\theta}')
hold off
```


b) Momento

$$M(x) = E \cdot I \cdot \frac{d\theta}{dx} = E \cdot I \cdot \frac{d^2y}{dx^2}$$

```
E = 200*1e9;
I = 0.0003;
M = E * I * d2ydx;
T2 = table(x',y', M');
T2.Properties.VariableNames = {'x(m)','y(m)','M(N·m)'};
disp(T2)
```

x(m)	y(m)	M(N·m)
0	0	-2.3006e+06
0.375	-0.002571	-1.8526e+06
0.75	-0.009484	-1.4046e+06
1.125	-0.019689	-1.0103e+06
1.5	-0.032262	-6.7371e+05
1.875	-0.046414	-3.9979e+05
2.25	-0.061503	-1.9584e+05
2.625	-0.077051	-64427
3	-0.09275	66987

Gráfica

```
for i=1:100
    ym(i) = SplineCub(x,M,xp(i));
end
plot(x,M,'or','LineWidth',2)
hold on
plot(xp,ym,'-k','LineWidth',2)
xlabel('x(m)')
ylabel('Momento (N·m)')
```

```
title ('Momento flector')
legend('Puntos dados','Momento flector')
hold off
```


c) Fuerza cortante: $V(x) = \frac{dM}{dx}$

```
[V w] = PrimSegDeriv(x,M);
T3 = table(x',y', V');
T3.Properties.VariableNames = {'x(m)','y(m)','V (N)'};
disp(T3)
```

x(m)	y(m)	V (N)
0	0	1.1947e+06
0.375	-0.002571	1.1947e+06
0.75	-0.009484	1.123e+06
1.125	-0.019689	9.7451e+05
1.5	-0.032262	8.1408e+05
1.875	-0.046414	6.3716e+05
2.25	-0.061503	4.4715e+05
2.625	-0.077051	3.5044e+05
3	-0.09275	3.5044e+05

```
for i=1:100
    yv(i) = SplineCub(x,V,xp(i));
end
plot(x,V,'or','LineWidth',2)
hold on
plot(xp,yv,'-k','LineWidth',2)
xlabel('x(m)')
ylabel('V(N))')
title ('Fuerza cortante')
legend('Puntos dados','Fuerza cortante')
```


d) Carga distribuida

```
w = -w;
T4 = table(x',y', w');
T4.Properties.VariableNames = {'x(m)','y(m)','w (N/m)'};
disp(T4)
```

x(m)	y(m)	w (N/m)
0	0	-3.8229e+05
0.375	-0.002571	3.3114e-09
0.75	-0.009484	3.8229e+05
1.125	-0.019689	4.096e+05
1.5	-0.032262	4.4601e+05
1.875	-0.046414	4.9759e+05
2.25	-0.061503	5.1579e+05
2.625	-0.077051	4.2116e-08
3	-0.09275	-5.1579e+05

Gráfica de la carga:

```
plot(x,w,'or','LineWidth',2)
hold on
for i=1:100
    yw(i) = SplineCub(x,w,xp(i));
end
plot(xp,yw,'-k','LineWidth',2)
yline(0)
xlabel('x(m)')
ylabel('{\omega} (N/m))')
title ('Carga distribuida')
legend('Puntos dados','Carga distribuida ({\omega})','Location','best')
```

