Lab 5 Introduction

UART Initialization and Programming

Lab 5

Figure 11.8. Flowcharts of InChar and OutChar using busy-wait synchronization.

Lab 5 Functionality

- Send and receive data between the CyBot and PC using your own code for initialization of the UART interface
 - First half of the initialization (GPIO alternate function for UART)
 - Second half of the initialization (UART configuration)
- Write your own UART send and receive functions using the polling (busy-wait) method of I/O
- Implement round-trip communication between the CyBot and PuTTY using your own code

Background: UART Code in Labs 3 and 4

Code provided in pre-compiled library

- cyBot uart.h
- libcybotUART.lib

cyBot getByte()

Background: UART Code in Lab 5 – Part 1

cyBot_sendByte()


```
NEW pre-compiled library
```

- cyBot uart.h
- libcybotUART.lib

```
void cyBot_uart_init(void);
void cyBot_uart_init_clean(void);
void cyBot_uart_init_PHJ_first_half(void);
void cyBot_uart_init_last_half(void);
void cyBot_sendByte(char data);
char cyBot_getByte_blocking(void);
```

```
cyBot_uart_init_clean()
//YOUR OWN CODE FOR GPIO INIT (see lab5_template.c)
cyBot_uart_init_last_half()
```

cyBot_getByte_blocking()

Background: UART Code in Lab 5 – Part 2

Your own code

- uart.h
- uart.c

Suggestion: Incrementally replace library functions with your own code.

```
void uart_init(void);
void uart_sendChar(char data);
char uart_receive(void);
void uart_sendStr(const char *data);
```

uart_sendChar()

uart_receive()

uart_init () (see uart.c for partial code)