

MRI Scan-Time Reduction Using Complex Valued AI In Image Space

by

Md Tauheed Ansari (21AG3AI06)

Under the guidance of Prof. Mahesh Mohan M R

Department Artificial Intelligence Indian Institute of Technology, Kharagpur

Contents

	1.	Introduction	
	2.	Justification	
	3.	Objectives	
4. Literature Review		Literature Review	
		- MRI Fundamentals	
		- Existing Methods	
	5.	Materials And Methods	
	6.	Results and Discussions	
	7.	Conclusion	
	8.	Future works and References	

INTRODUCTION

- Magnetic Resonance Imaging (MRI)
 - -medical imaging technique
 - -visualizes anatomy and physiological processes
 - -without ionizing radiation.
- MRI uses strong magnetic fields, gradients, and radio waves to generate detailed images.
- Unlike CT and PET scans, MRI does not involve harmful radiation, making it safer for repeated diagnostics.
- MRI offers superior soft tissue contrast, useful in
 - -brain
 - -muscle
 - -abdominal imaging.

JUSTIFICATION

- Long scan times cause discomfort for injured and paining patients.
- Motion artifacts reduce image quality during lengthy scans.
- **Higher operational costs** due to low patient throughput.
- Limited accessibility in busy or resource-constrained hospitals.
- Need for faster MRI to improve patient care and system efficiency.

OBJECTIVES

- Reduce MRI scan time without compromising image quality.
- Enhance diagnostic throughput by accelerating MRI imaging.
- Apply complex-valued AI techniques for faster k-space data reconstruction.
- Evaluate performance using standard image quality metrics (e.g., PSNR, SSIM).
- **Develop a scalable solution** for real-time MRI scan acceleration.

LITERATURE REVIEW

Research Paper	Year	Major Findings
SENSE Pruessmann et al.	1999	Introduced sensitivity encoding (SENSE) , enabling faster MRI scans by exploiting multiple receiver coils for parallel imaging, thus reducing scan times.
GRAPPA Griswold et al.	2002	Developed GRAPPA (Generalized Autocalibrating Partially Parallel Acquisition), a method that accelerates MRI by using parallel coils and calibration-free reconstruction.
ESPIRiT Uecker et al.	2014	Proposed ESPIRIT (Extended Sensitivity Encoding with Iterative Reconstruction), enhancing parallel MRI techniques by improving coil sensitivity maps for more accurate reconstructions.
Compressed Sensing Jaspan et el.	2015	Applied compressed sensing to MRI, showing how under-sampled data can still lead to high-quality images, significantly reducing scan time without sacrificing image resolution.
Deep SENSE Xi Peng et al.	2021	Combined deep learning with SENSE to improve image reconstruction quality and accelerate MRI scans, providing a hybrid approach that outperforms traditional methods.

MRI Fundamentals

MRI Fundamentals

- The signals are collected in K-space (a frequency domain).
- Each point in K-space holds phase and frequency information needed to reconstruct the final image.
- Using mathematical algorithms (like Fourier Transform), the data from K-space is processed into a detailed 2D or 3D image.

K-Space Visualisations

Aliasing Problem

Aliasing in Accelerated MRI

- Acceleration skips k-space lines → undersampling.
- Causes aliasing: overlapping image structures.
- Multicoil data helps resolve aliasing using the concept of coil sensitivity.
- Reconstruction methods (e.g., SENSE) correct the artifacts.

Parallel Imaging - Our best tool

Two kinds of Techniques-

- 1. **IMAGE- DOMAIN** based technique
 - -performed in image space after reconstruction of data from the individual coils
- 2. **K-SPACE** based technique
 - -operate primarily on k-space data before image reconstruction

SENSE (1999) Sensitivity Encoding for Fast MRI

Visual representation of Sampling under Acceleration

(a) Random mask with 4-fold acceleration

(b) Random mask with 8-fold acceleration

(c) Equispaced mask with 4-fold acceleration

(d) Equispaced mask with 8-fold acceleration $\,$

ALIASING- Resolution Approach

Materials and Methods

fastMRI Dataset: An Open Dataset and Benchmarks for Accelerated MRI

Designed to advance MRI reconstruction.

The fastMRI raw k-space data is stored in the HDF5 (.h5) file format, which efficiently organizes large, complex datasets, enabling fast access to MRI raw data and associated metadata for training and evaluation.

Data Types:

Raw multi-coil k-space data (complex-valued measurements)

Emulated single-coil k-space data (simulated from multi-coil)

Ground-truth images (root-sum-of-squares reconstruction)

DICOM images (diverse scanners, post-processed)

Tasks Enabled:

Single-coil reconstruction
Multi-coil reconstruction

Modalities & Organs:

Knee MRI (1,594 multi-coil raw scans; 10,000 DICOM scans)

Brain MRI (6,970 multi-coil raw scans; 10,000 DICOM scans)

BART: Berkeley Advanced Reconstruction Toolbox

-Computational Magnetic Resonance Imaging

- Free and open-source framework for Computational MRI.
- Designed **for research use only** (not for diagnostic use).
- Over 100 commands covering diverse reconstruction tasks.
- Strong support for FFT and Non-Uniform FFT (NUFFT) operations.
- Facilitates parallel imaging (SENSE, POCSENSE) and compressed sensing.
- Scriptable via **command-line interface** for easy automation.

Key Features-

- Nonlinear inversion and compressed sensing reconstruction.
- Deep learning integration with TensorFlow and Reconet.
- Synthetic data generation (phantoms, fake k-space).
- Image evaluation tools (NMRSE, ROI stats, MIP views).
- Wavelet transforms, TGV and ICTV regularization.
- Fast, lightweight, suitable for rapid MRI research prototyping.

var

wavepsf

vec

whiten

version

window

transpose

walsh

wshf1

twixread

wave

zeros

upat

zexp

wavelet

Methodology: MRI Reconstruction Pipeline

1. Input Handling

- Supports both .cfl (BART-native) and .h5 (fastMRI) data formats.
- Data is preprocessed and formatted for compatibility with BART tools.

2. Preprocessing

- -.cfl: Loaded directly with readcfl, already compatible with BART.
- -.h5: Slice selected, transposed, reshaped, and written to .cfl using writecfl.

3. Coil Sensitivity Map Estimation

- -Used BART's ecalib command for ESPIRiT calibration.
- -r24 selects central k-space lines; -m1 generates one map per coil for SENSE.

4. Undersampling via Masking

- fastMRI-style Variable-Density Masks: Created using RandomMaskFunc, controlled by center_fraction and acceleration.
- Custom Centered Masks: Manually defined masks for clearer control and interpretability

5. Image Reconstruction

- Reference: Inverse FFT followed by coil combination using fft and fmac.
- **SENSE**: BART's pics with regularized least-squares and single-set sensitivity maps.
- **ESPIRIT**: Robust multi-map method using pics with ESPIRIT sensitivity maps.

6. Visual Evaluation

- Side-by-side comparison of reference, SENSE, and ESPIRiT reconstructions.
- Focused on aliasing, blurring, and sharpness.

7. Quantitative Analysis

- Generated difference maps to measure deviation from the reference.
- Highlighted areas of high error, especially at tissue boundaries or low-SNR regions.

DATALOADER

Dataset Preparation

- Defined Custom_FastMRIDataset class based on torch.utils.data.Dataset.
- Loaded .npy MRI data with mmap_mode='r' to save RAM.
- Applied undersampling masks on k-space (apply_mask).

DataLoader Setup

- Created train_loader_check with batch size 4 and shuffling.
- Checked data shapes and types to verify correct loading.

Transformations

- Converted k-space to image-space (convert_K_to_I).
- Created Root-Sum-of-Squares (RSS) combined images

Flexible Data Return

Return options controlled by flags: k-space (K),
 image-space (I), or RSS-combined (rss_combine)

Visualization

- Picked first item from batch (batchidx=0).
- Displayed the ground truth (loader_rss) and masked version (loader_masked_rss) using matplotlib.pyplot.imshow() with grayscale colormap.

Results and Discussions

BART Implementation

- -Implemented BART on CFL files
- -Implemented BART on fastMRI data file

1. Reference Scan Visualization

Downsampled Scan with AF=2

Calibration: bart ecalib estimates coil sensitivity maps from k-space data.

Fourier Transform: bart fft -i converts k-space data to coil images.

Combination: bart fmac -C performs a **sensitivity-weighted sum** across coils to generate the final image.

Scan Reconstruction Result Comparison

1. Reference Scan 2. ESPIRIT 3. SENSE 4. Downsampled(with AF=2)

Difference Map Comparison

Scan Reconstruction Result Comparison

1. Reference Scan 2. ESPIRIT 3. SENSE 4. Downsampled(with AF=4)

Difference Map Comparison

1. Reference Scan

2. ESPIRIT

3. SENSE

ESPIRIT Results for Various Acceleration Factors

CVNN Training Loss Result Plot

- Sharp drop in training loss during early epochs.
- Validation loss decreases steadily, indicating good generalization.
- Both losses stabilize after ~5 epochs, showing convergence.
- No overfitting observed validation closely follows training loss.
- Confirms effective training of the complex-valued U-Net for 2x upscaling.

Conclusion

Implemented a complete MRI reconstruction pipeline:

- Used BART toolbox to reconstruct MR images with classical methods like SENSE, ESPIRIT, and PICS.
- Understood and applied concepts of fourier transforms, coil sensitivity estimation, and parallel imaging.

Built robust masking and preprocessing functions:

- 1. Designed custom **undersampling masks** including acceleration factor and centre fraction as arguments, suitable for accelerated MRI acquisition simulation.
- 2. Developed *efficient preprocessing steps* like **k-space masking**, **inverse Fourier transforms**, **root sum-of-squares (RSS) image combination**.
- 3. Carefully structured the pipeline to maintain consistency between masked and unmasked data pairs.

Designed robust masking functions and preprocessing pipelines (k-space masking, Fourier transforms, RSS combination) ensuring clean and standardized inputs.

Trained and Plotted training and validation loss curves for complex-valued U-Net to verify effective learning and convergence during 2x upscaling training.

Built flexible, memory-efficient DataLoaders supporting multiple data formats (k-space, image-space, RSS) for scalable training.

Future Works

- 1. **Extend current classical reconstruction methods** by incorporating *Compressed Sensing MRI* techniques for better sparsity-based recovery.
- 2. **Implement deep learning-driven reconstruction models** like *DeepSense* and *SENSE with GAN* for learned k-space to image-space mappings.
- 3. **Explore advanced architectures** such as *Self-Attention CNNs* and *High-Frequency Diffusion Models* to enhance structural preservation in reconstructions.
- 4. **Develop densely connected and transformer-based models** (*DenseNet*, *Swin Transformer*, *ReconFormer*) for faster and more accurate MRI reconstruction.
- 5. **Benchmark and compare all DL models** against the strong *mathematical baselines* (SENSE, ESPIRIT, PICS) already established.

References used:

- Hirose, A. Complex-Valued Neural Networks: The Merits and Their Origins, IJCNN, IEEE, 2009.
- Dash, B.N., Khare, N. Deep Complex Neural Network Applications in Remote Sensing, SPIE, 2021.
- Dola, A.D. Complex Valued CNNs for Image Restoration, MSc Thesis, IIT Kharagpur, 2023.
- □ Zbontar, J. et al. fastMRI: An Open Dataset and Benchmarks for Accelerated MRI, arXiv:1811.08839, 2018.
- □ Pruessmann, K.P. et al. SENSE: Sensitivity Encoding for Fast MRI, MRM, 1999.
- Uecker, M. et al. *ESPIRIT: An Eigenvalue Approach to Parallel MRI*, MRM, 2014.
- Peng, X. et al. *DeepSENSE: Learning Coil Sensitivity with Deep Learning*, MRM, 2022.
- Lv, J. et al. GANs for Multi-Channel MRI Reconstruction, Comp. in Biology & Medicine, 2021.
- □ Lee, C. et al. Complex-Valued Neural Networks: A Comprehensive Survey, IEEE/CAA JAS, 2022.

Thanks

&

Questions are Welcomed!