Seasonal Adjustment of Infra-Monthly Time Series ICES Short Course

Tailoring classic algorithms

Anna Smyk (Insee), James Livsey (US Census Bureau)

Glasgow, June 17th 2024

Outline

- Characteristics of high-frequency data
- Seasonal adjustment specificities
- Tailoring classic algorithms
- Conclusion and Useful Links

High-frequency data

High-frequency data: usually refers to time series with a frequency higher than monthly

- weekly (ex: traffic casualties)
- daily (daily births, deaths)
- hourly (electricity consumption)

Motivation

High-frequency data:

- becomes ubiquitous in official statistics (digital transformations of data collection give access to infra-monthly economic data and covid-19 pandemic outbreak was a demand accelerator)
- can be seasonal and hence needs to be seasonally adjusted

Goal in this course: show how seasonal adjustment algorithms developed for monthly and quarterly series had to be modified (in JDemetra+ ν 3) for dealing with HF data

Tailoring classic algorithms

Seasonal adjustment steps (quick reminder)

- seasonality identification (plots, tests)
- linearization (removing outliers and calendar effects)
- decomposition (moving averages, model based...)
- computation of the final series sa series
- testing for residual seasonality

Characteristics of high-frequency data

Characteristics of high-frequency data

Example: Daily births in France 1968-2020

Example: Daily births in France zoom 2019-2020

Infra-yearly periodicities: multiple and non integer (1/2)

High-frequency data can display multiple and non integer periodicities

0000000

periodicities (number of observations par				
data	day	week	month	year
quarterly				4
monthly				12
weekly			4.348125	52.1775
daily		7	30.436875	365.2425
hourly	24	168	730.485	8765.82

Figure 1: Multiple Periodicities

Infra-yearly periodicities: multiple and non integer (2/2)

A daily series daily might display 3 periodicities

- weekly (p = 7): Mondays are alike and different from Sundays (DOW)
- intra-monthly (p = 30.44): the last days of each month are different from the fist ones (DOM), much less common than the previous one

Tailoring classic algorithms

• yearly periodicity (p = 365.25): from on year to another the 15th of June are alike, summer days are alike (DOY)

Seasonal adjustment specificities

Identification of seasonal patterns

Canova-Hansen test allows to identify multiple seasonal patterns

Decomposition into Unobservable Components

Usual decomposition for seasonal adjustment

$$Y_t = T_t \circ S_t \circ I_t$$

Tailoring classic algorithms

Modification for a daily series: (iterative) estimation of multiple seasonal factors

$$S_t = S_{t,7} \circ S_{t,30.44} \circ S_{t,365.25}$$

If decomposition is Additive ($\circ = +$), if multiplicative ($\circ = \times$)

Seasonality and calendar effects (1/2)

Structural calendar effects

- disturb the comparison between two similar periods
- this is will be modelled as a deterministic effect and corrected by regression in the pre-adjustment phase

Tailoring classic algorithms

The definition of a calendar effect depends on data granularity

For monthly or quarterly data: mostly trading days effect

regressors are numbers of days of a given type in contrast to Sundays + holidays

Seasonality and calendar effects (2/2)

For daily series

still need to remove holidays effect to make days of a given type comparable

- when estimating S_7
- when estimating $S_{365,25}$

The effect of fixed holidays can be directly allocated to $S_{365.25}$ or corrected as calendar effect

• regressors are vectors of 0's and 1's for a given holiday each year

Tailoring classic algorithms

Tailoring classic algorithms

Tailoring classic algorithms

Classic seasonal adjustment algorithms, designed for monthly or quarterly data, cannot tackle multiple and fractional periodicities

Tailoring classic algorithms

Two classes of solutions for fractional periodicities:

- use a Taylor approximation for fractional powers of the backshift operators $(B^{s+\alpha} \approx (1-\alpha)B^s + \alpha B^{s+1}$, see below)
- round periodicities

Decomposition might be done iteratively periodicity by periodicity starting with the smallest one (highest frequency) as:

- highest frequencies usually display the biggest and most stable variations
- cycles of highest frequencies can mix up with lower ones

Seasonal Adjustment Algorithms Key Modifications

Task	Genuine Principle	Key Modification
Pre-Adjustment	Reg-Arima modelling	Fractional powers (backshift operator), multiple seasonal patterns in Airline Model
SEATS	AMB Decomposition	Fractional powers (backshift operator), multiple seasonal patterns in Airline Model
X-11 decomposition	Moving average based sequential trend-cycle and seasonal extraction	Fractional powers (backshift operator), kernel-based trend-cycle filters, iterations on multiple seasonal patterns
STL	Loess filters	Rounding down fractional periodicities, iterations on multiple seasonal patterns
STS	Explicit modelling of components, one-step	Rounding down fractional periodicities

Tailoring classic algorithms

Series linearization with Reg-Arima model

In X13-Arima and Tramo-Seats

- Reg-Arima modelling step
- to remove deterministic effects: outliers and calendar
- outliers will be re-injected into the SA series

The Reg-ARIMA model is written as follows:

$$\left(Y_t - \sum \alpha_i X_{it}\right) \sim ARIMA(p,d,q)(P,D,Q)$$

These models contain seasonal backshift operators $B^s(y_t) = y_{t-s}$

Modification of the Airline model (1/2)

"Airline" model is ARIMA(0, 1, 1)(0, 1, 1):

$$(1-B)(1-B^s)y_t = (1-\theta_1B)(1-\theta_2B^s)\epsilon_t \quad \ \epsilon_t \sim \mathsf{NID}(0,\sigma^2_\epsilon)$$

Tailoring classic algorithms

for high-frequency data:

- ullet the model might contain several differentiations $\Delta_s=1-B^s$ and also B^s with non integer s
- we write $s = s' + \alpha$, with α real number i]0,1[(for example 52.18 = 52 + 0.18 is the yearly periodicity for weekly data)

Modification of the Airline model (2/2)

With a Taylor development around 1 of $f(x)=x^{\alpha}$

$$x^\alpha=1+\alpha(x-1)+\frac{\alpha(\alpha+1)}{2!}(x-1)^2+\frac{\alpha(\alpha+1)(\alpha+2)}{3!}(x-1)^3+\cdots$$
 $B^\alpha\cong(1-\alpha)+\alpha B$

Tailoring classic algorithms

Approximation of $B^{s+\alpha}$: fractional Airline model

$$B^{s+\alpha} \cong (1-\alpha)B^s + \alpha B^{s+1}$$

Two periodicities $p_1 = 7$ and $p_2 = 365.25$

$$(1-B)(1-B^7)(1-B^{365.25)}(Y_t-\sum\alpha_iX_{it}) = (1-\theta_1B)(1-\theta_2B^7)(1-\theta_3B^{365.25})\epsilon_t$$

$$\epsilon_t \sim \mathsf{NID}(0, \sigma^2_\epsilon)$$

with

$$1 - B^{365.25} = (1 - 0.75B^{365} - 0.25B^{366})$$

Moving average based decomposition

- global structure of iterations identical to genuine X-11
- iterative decomposition done periodicity by periodicity starting with the smallest one
- extension of the preliminary trend filter definition for removing seasonality
- extension of final trend estimation filters
 - genuine X-11: Henderson filters (+ Musgrave asymmetrical surrogates)
 - extended X-11: generalization of this method with local polynomial approximation (different weight distributions)
- modification of the seasonality extraction filters to take into account fractional periodicities

Modification of the first trend filter for removing seasonality

For the first trend estimation: generalization of centred and symmetrical moving averages with an order equal to the periodicity p;

Tailoring classic algorithms

- filter length longueur l: smallest odd integer greater than p
- ex : p=7, l=7, p=12 l=13, p=365.25, l=367, p=52.18 l=53
- central coefficients 1/p (1/12,1/7, 1/365.25)
- extreme coefficients $\mathbb{I}\{E(p) \text{ pair}\} + (p E(p))/2p$
- ex : p=12 (1/12 and 1/24) (we fall back on $M_{2\times 12}$ of the monthly case)
- ex : p=365.25 (1/365.25 and 0.25/(2*365.25)

Modification of seasonality extraction filters (1/2)

Computation is done on a given period

Example $M_{3\times3}$

$$M_{3\times 3}X = \frac{1}{9}(X_{t-2p}) + \frac{2}{9}(X_{t-p}) + \frac{3}{9}(X_t) + \frac{2}{9}(X_{t+p}) + \frac{1}{9}(X_{t+2p})$$

Tailoring classic algorithms

if p integer, nothing to change if p non integer we use the Taylor approximation of the backshift operator

$$B^{s+\alpha} \cong (1-\alpha)B^s + \alpha B^{s+1}$$

Modification of seasonality extraction filters (2/2)

For example, for p=30.44 filter 3×3 is written as follows:

$$\hat{s}_{t} = \frac{1}{9} \left[0.88 \times (\widehat{si})_{t-61} + 0.12 \times (\widehat{si})_{t-60} \right]
+ \frac{2}{9} \left[0.44 \times (\widehat{si})_{t-31} + 0.56 \times (\widehat{si})_{t-30} \right]
+ \frac{3}{9} (\widehat{si})_{t}
+ \frac{2}{9} \left[0.56 \times (\widehat{si})_{t+30} + 0.44 \times (\widehat{si})_{t+31} \right]
+ \frac{1}{9} \left[0.12 \times (\widehat{si})_{t+60} + 0.88 \times (\widehat{si})_{t+61} \right]$$

This approximation avoids data imputation

Daily births in France (1968-2020): final seasonal patterns (1/2)

Evolving seasonal patterns computed on a linearized series (outliers and calendar effects removed)

Daily births in France (1968-2020): final seasonal patterns (2/2)

Zoom on the year 2000: estimated seasonal factors: p=7 (black) and p=365.25 (red)

Tailoring classic algorithms

Daily births: raw, sa and trend

Tailoring classic algorithms

Residual seasonality

Canova-Hansen test on final SA series estimated with extended X-11

Daily births in France (1968-2020): final results in JDemetra+ GUI

Results of Extended airline linearization and Decomposition (SEATS) in the Graphical User Interface

Figure 4: Raw SA and trend

Tailoring classic algorithms

Algorithms in R

Available R packages (based on JDemetra+) for SA of high frequency data

Pre-treatment

Extended Airline Model in rjd3highfreq

Decomposition

- Extended SEATS in rjd3highfreq
- Extended X-11 in rjd3x11plus
- Extended STL rjd3stl

One-Step SA with explicit components

• SSF Framework rjd3sts

Conclusion and Useful Links

Conclusion

Main challenges when seasonally adjusting high-frequency data: multiple and non integer periodicities

Classic algorithms have been (partly) tailored to this purpose

On going investigations (around JDemetra+ v3.x algorithms)

- Seasonal factor estimation: cubic splines for p=365.25
- Automatic filter selection (X-11, STL)
 - Trend-cycle filters: modified I/C ratio? cross validation? Kernel Parameters?
 - Seasonal filters: Modified I/S ratio? Window length? Spectral approaches?
- Model extensions (pre-treatment and AMB)
 - Arima orders: beyond airline?
 - Fractional periodicities: beyond Taylor approximation ?

- Github repository for the course https://github.com/jlivsey/ICES2024-timeSeries
- Towards Seasonal Adjustment of Infra-Monthly Time Series with JDemetra+, Webel and Smyk (2023), Bundesbank Discussion Paper
- R Packages giving access to JDemetra+ v3.x: https://github.com/rjdverse
- Graphical User Interface version 3.x: https://github.com/jdemetra/jdplus-main
- JDemetra+ Online documentation: https://jdemetra-new-documentation.netlify.app/

Software Demonstration on JDemetra+ at this conference on Wednesday 19th, 12:45.

