Deep Learning Framework for Natural Language Processing

Semiconductor Systems Engineering

SKKU

Young Dae KWON

Named Entity Recognition (NER)

- 1. Classify 5 Categories
 - 1. Person
 - 2. Organization
 - 3. Location
 - 4. Miscellaneous
 - 5. None of Those Above

$$z = W \begin{bmatrix} x_s \\ x_1 \\ x_2 \end{bmatrix} + b^{(1)}$$

$$a = f(z)$$

$$h = g(U^T a + b^{(2)}).$$

Named Entity Recognition (NER)

$$\hat{y} = softmax \left(W^{(S)} f(Wx + b) \right)$$

2 UML (Overview)

NER +reg: double +alpha: double +paramsW: 2D array +paramsU: 2D array +paramsBias1: 1D array +paramsBias2: 1D array +sparamsL: Map +gradW: 2D array +gradU: 2D array +gradBias1: 1D array +gradBias2: 1D array +sgradL: Map +accGrads() +predictProbs() +predictLabels() +computeLoss()

 NER Class : Named Entity Recognition 작업에 사용되는 알고리즘의 실제 코 드를 담고 있다.

LossFunctions +negLogLikelihood() +squareError() +regLoss() DataUtils +loadWordVec() +invertDict() +savePredictions() +loadPredictions()

- LossFunctions Class : Neural Networks의 Loss를 구하는 여러 종류의 함수를 담 고 있다.
- DataUtils Class :
 Neural Networks의 입력값
 으로 사용되는 Word Vector
 을 다루기 위한 함수가 정의되어 있다.

- NeuronUnits Class :
 Forward Propagation시 각
 Neuron Unit에서 Non Linearity를 계산하는 함수를
 담고 있다.
- 2. Derivatives Class :
 Back Propagation시 각
 Neuron Unit의 Gradient를
 계산하는 함수를 담고 있다.

- MathModule Class :
 Neural Networks의 출력값
 계산에 필요한 함수와 여러 수
 학 함수를 담고 있다.
- 2. RandomModule Class : 매개변수를 임의로 초기화 시키는 여러 종류의 함수를 담고있다.

3 Experiments Setting

3. 1 Data Description

	Train	Dev	Word Vector
단어 수	203,621	51,362	100,232

3. 2 Parameter Setting

Word Vector	Output	Regularization	Epoch
Dimension	Dimension	Factor	
50	5	0.001	3

==== 1st Model ==== Hidden Layer Dim: 100 Batch Size : 1 Learning Rate : 0.1

==== 2nd Model ==== Hidden Layer Dim: 100 Batch Size: 1 Learning Rate: 0.03

==== 3rd Model ==== Hidden Layer Dim: 100 Batch Size: 1 Learning Rate: 0.01

==== 1st Model ==== Hidden Layer Dim: 100 Batch Size : 1 Learning Rate : 0.1 ==== 2nd Model ==== Hidden Layer Dim: 100 Batch Size: 1 Learning Rate: 0.03 ==== 3rd Model ==== Hidden Layer Dim: 100 Batch Size: 1 Learning Rate: 0.01

==== 4th Model ==== Hidden Layer Dim: 100 Batch Size : 5 Learning Rate : 0.1

A. Great Learning Experience

B. Much Fun