

BACHELOR OF SCIENCE (HONS) IN - APPLIED COMPUTING - COMPUTER FORENSICS & SECURITY - ENTERTAINMENT SYSTEMS - THE INTERNET OF THINGS

EXAMINATION:

DISCRETE MATHEMATICS (COMMON MODULE) SEMESTER 1 - YEAR 1

DECEMBER 2022 DURATION: 2 HOURS

INTERNAL EXAMINERS: DR DENIS FLYNN DATE: 15 DEC 2022
DR KIERAN MURPHY TIME: 11.45 AM

DR KIERAN MURPHY
TIME: 11.45 AM
VENUE: MAIN HALL

EXTERNAL EXAMINER: MS MARGARET FINNEGAN

INSTRUCTIONS TO CANDIDATES

- 1. ANSWER ALL QUESTIONS.
- 2. TOTAL MARKS = 100.
- 3. EXAM PAPER (5 PAGES EXCLUDING THIS COVER PAGE) AND FORMULA SHEET (1 PAGE)

MATERIALS REQUIRED

- 1. NEW MATHEMATICS TABLES.
- 2. GRAPH PAPER

SOUTH EAST TECHNOLOGICAL UNIVERSITY

OUTLINE MODEL ANSWERS & MARKING SCHEME

	Course: BSc (H) in AC, in CF, in the IoT	Semester: 1 Page 1 of 6	
ĺ	Subject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr	K Murphy

Question 1

(a)

$$A = \{1, 4, 9\}, \qquad B = \{1, 8\}$$

(b)

Partial marks for correct parsing of expression, demonstrating ability to compute logical expression, using satisfiability/tautology/contradiction definitions.

$$\underbrace{((\neg(a \land b))}_{1} \land \underbrace{(c \lor b)}_{2}) \rightarrow \underbrace{(a \to c)}_{4}$$

			1	2	3	4	
a	b	c	$(\neg(a \land b))$	$(c \lor b)$	$((\neg(a \land b)) \land (c \lor b))$	$\overbrace{(a \to c)}^{4}$	E
0	0	0	1	0	0	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	0	0	0	1
1	0	1	1	1	1	1	1
1	1	0	0	1	0	0	1
1	1	1	0	1	0	1	1

Since there is one row in which the output is \mathbf{T} , the expression is satisfiable. It is tautology (has at all \mathbf{T} output) and not a contradiction (has at least one \mathbf{T} output). (5 + 2 marks)

- (i) Since the matrix contains entries other than 1s and 0s, G is not simple. For example, there are 2 edges from vertex 1 to vertex 4.
- (ii) The sum of the entries in any row is the degree of the vertex corresponding to that row. The degree sequence is therefore (2, 2, 3, 3, 4).
- (iii) The sum of the degrees is 14, and so G has 7 edges.

Function computes whether $A \subseteq B$ — will return **True** iff all elements of A are elements of B.

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF, in the IoT Subject: Discrete Mathematics Examiner: Dr D. Flynn, Dr K Mu Question 2 (a)							
Question 2							
	rphy						
(a)	Question 2						
()							
(i) Construct a logical expression to represent the output Y. (4 mag)	arks)						
$Y = (\neg A \land B) \lor (A \land \neg B) = A \oplus B$							
(ii) Is there an input case for which both outputs, X and Y , are \mathbf{F} ? (justify) (3 magnetic magneti	arks)						
Yes, Set $A = \mathbf{F}$ and $B = \mathbf{F}$.							
(iii) Is there an input case for which both outputs, X and Y , are \mathbf{T} ? (justify) (3 magnetic magnet	arks)						
No, $X = A \wedge B$ (only T when both A and B are T) while $Y = A \oplus B$ (only T	when						
A and B different). Hence X and Y cannot both be \mathbf{T} .	W11011						
11 one 2 aniorono). Tronce 11 ana 1 aminot 2001 20 2.							
(b)							
(i) "Everyone sent an email to everyone." $\rightarrow \forall x \forall y M(x,y)$							
(*,**)							
(i) "Everyone sent an email to everyone." \rightarrow $\forall x \forall y M(x,y)$ (ii) "There is a student who sent an email to everyone." \rightarrow $\exists x \forall y M(x,y)$							
(ii) "There is a student who sent an email to everyone." $\rightarrow \exists x \forall y M(x,y)$							
(ii) "There is a student who sent an email to everyone." $\rightarrow \exists x \forall y M(x,y)$							
(ii) "There is a student who sent an email to everyone." $\to \exists x \forall y M(x,y)$ (iii) "There is a student who sent an email to someone." $\to \exists x \exists y M(x,y)$	arks)						
(ii) "There is a student who sent an email to everyone." $\rightarrow \exists x \forall y M(x,y)$ (iii) "There is a student who sent an email to someone." $\rightarrow \exists x \exists y M(x,y)$	arks)						
(ii) "There is a student who sent an email to everyone." $\rightarrow \exists x \forall y M(x,y)$ (iii) "There is a student who sent an email to someone." $\rightarrow \exists x \exists y M(x,y)$ (c) $\equiv \exists x \exists y M(x,y)$,						
(ii) "There is a student who sent an email to everyone." $\rightarrow \exists x \forall y M(x,y)$ (iii) "There is a student who sent an email to someone." $\rightarrow \exists x \exists y M(x,y)$,						

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF, in the IoT	Semester: 1 Page 3 of 6
Subject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr K Murphy

Question 3

Determine the cardinality of the following sets.

- (i) $\{a\}$
- (ii) $\{a, \{a\}\}$
- (iii) $\{\{a\}\}$
- (iv) $\{a, \{a\}, \{a, \{a\}\}\}\$

 $(4 \times 1 \text{ marks})$

- (b) _____
- (i) Represent R using a digraph.

- (ii) Is R reflexive? symmetric? transitive?
- (iii) Is R an equivalence relation? and if yes, what the resulting equivalence classes?
- (c) _____

Partial marks for identifying graph. 4×2 marks

- (i) K_9 Complete graph so girth is 3.
- (ii) $K_{5,7}$ Complete bipartite graph, so girth is 4.
- (iii) C_8 Cycle graph has girth is 8.
- (iv) W_8 Wheel graph has girth of 3.

OUTLINE MODEL ANSWERS & MARKING SCHEME

Cou	irse: BSc (H) in AC, in CF, in the IoT	Semester: 1 Page 4 of 6				
-	oject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr K Murphy				
Que	Question 4					
(a)						
No +	- reason					
(b)						
Func	Function computes whether the two sets A and B are disjoint — will return True iff no element in A is an element of B .					
(i)	How many subsets are there of cardinality 4? $\binom{6}{4} = 15 \text{ subsets.}$					
(ii)	How many subsets of cardinality 4 have $\{a, b, c\}$ as					
	$\binom{3}{1} = 3$ subsets. We need to select 1 of t subset.	the 3 remaining elements to be in the				
(iii)	How many subsets of cardinality 4 contain at least	one vowel?				
	$\binom{6}{4} = 15$ subsets. All subsets of cardinality	4 must contain at least one vowel.				
(iv)	How many subsets of cardinality 4 contain exactly of	one vowel?				
	$\binom{3}{1} = 3$ subsets. Select 1 of the 3 vowels. in the set.	The three consonants of S must all be				
(.1)						
(d)	D : A C D 1 + f	2 d A				
$A \subset A$	$A \subset B$ since $A \subseteq B$ but, for example, $6 \in B$ but $6 \notin A$.					

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF, in the IoT	Semester: 1	Page 5 of 6
Subject: Discrete Mathematics	Examiner: D	r D. Flynn, Dr K Murphy

Question 5

- (a)
- (i) Start with the sub-string 101.
 No constraints on remaining 6 bits, so 2⁶.
- (ii) Have weight 5 (i.e., contain exactly five 1's) and start with the sub-string 101. In the remaining 6 bit, three of which must be 1, so $\binom{6}{3} = 20$
- (iii) Either start with 101 or end with 11 (or both).

Start with 101: No constraints on remaining 6 bits, so 2^6 .

Ends with 11: No constraints on preceeding 7 bits, so 2^7 .

Start with 101 and ends with 11: No constraints on middle 4 bits, so 2^4 .

Ans (remove double counting): $2^6 + 2^7 - 2^4 = 64 + 128 - 16 = 176$

(iv) Have weight 5, and starts with 101 and ends with 11.

The middle 4 digits must have weight 1 so that the entire string has weight 5. Hence have $\binom{4}{1} = 4$ possibilities.

(b) _____

$$1 3k+1 9k^2+6k+1 9k^2+6k+6 (3k+1)(9n^2+6n+6) = \underbrace{3\underbrace{(3k+1)(3n^2+2n+2)}_{\text{int}}}_{}$$

$$2 \qquad 3k+2 \quad 9k^2+12k+4 \quad 9k^2+12k+9 \quad (3k+2)(9n^2+12n+9) = \underbrace{3\underbrace{(3k+2)(3n^2+4n+3)}_{\text{int}}}_{\text{mult. of 3}}$$

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF, in the IoT	Semester: 1	Page 6 of 6
Subject: Discrete Mathematics	Examiner: D	r D. Flynn, Dr K Murphy

(c)

Marks awarded for proving identity by using meembereship tables or using set operation properties.

Using membership tables ...

$$\underbrace{(A \setminus B)}_{1} \setminus \underbrace{(B \setminus C)}_{2} = \underbrace{A \setminus B}_{4}$$

A	B	C	$\overbrace{A \setminus B}^{1}$	$\overbrace{B\setminus C}^2$	$\underbrace{\overbrace{(A \setminus B) \setminus (B \setminus C)}^{3}}_{1}$	$\overbrace{A\setminus B}^4$
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	1	0	0
0	1	1	0	0	0	0
1	0	0	1	0	1	1
1	0	1	1	0	1	1
1	1	0	0	1	0	0
1	1	1	0	0	0	0
				'	`	<u> </u>

equal output \Rightarrow expression true