Strona: 1 z 10 Imię i nazwisko: Wersja: 0

Programowanie L

Egzamin zasadniczy 29 maja 2012

Liczba punktów	Ocena
0 – 14	2.0
21 – 22	3.0
23 – 24	3.5
25 – 26	4.0
27 – 28	4.5
29 - 30	5.0

W każdym pytaniu proszę wyraźnie zaznaczyć dokładnie jedną odpowiedź. Jeśli zostanie zaznaczona więcej niż jedna odpowiedź, to za wybraną zostanie uznana ta, która *nie jest* otoczona kółkiem. Czas trwania egzaminu: 120 minut.

Pytanie 1. Rozważmy predykat:

```
p(X,X).

p(X,[a|Y]):-

p([b|X],Y).
```

i zapytanie

- ☐ a. Maszyna prologowa wygeneruje odpowiedź X = [a,a,a], a po nawrocie zapętli się.
- b. Jedną z odpowiedzi będzie X=[a,a,b,b,a,a,a].
- ☐ c. Maszyna prologowa wygeneruje cztery odpowiedzi, a po czwartym nawrocie zapętli się.
- □ d. Maszyna prologowa wygeneruje cztery odpowiedzi, a czwarty nawrót zakończy się niepowodzeniem.

Pytanie 2. Rozważmy predykat:

```
p([a|_]).
p([_|X]):-
p([a|X]).
```

i zapytanie

```
?-p(X).
```

 a. Jedną z odpowiedzi będzie podstawienie za X nieukonkretnionej zmiennej. b. W każdej z odpowiedzi za X będzie podstawiona lista otwarta. c. W każdej z odpowiedzi za X będzie podstawiona lista, której głową jest atom a. d. Po pewnej liczbie nawrotów nastąpi niepowodzenie.
Pytanie 3. Rozważmy zapytanie
<pre>?- append(X,X,X).</pre>
 □ a. Próbując spełnić ten cel maszyna prologowa zapętli się. ■ b. Jedyną odpowiedzią będzie X = [], a po nawrocie maszyna prologowa zapętli się. □ c. Jedyną odpowiedzią będzie X = [], a nawrót zakończy się niepowodzeniem. □ d. Jedną z odpowiedzi będzie lista cykliczna X = [_ X].
Pytanie 4. Rozważmy zapytanie
?- append(X,Y,Z), reverse(X,Z).
 □ a. Jedną z odpowiedzi będzie X = [_], Y = [], Z = [_]. □ b. Próbując spełnić ten cel maszyna prologowa zapętli się. □ c. Próba spełnienia tego celu zakończy się niepowodzeniem. ■ d. Odpowiedzi będą takie same, jak na zapytanie
?- reverse(X,X), Y = [], Z = X.
Pytanie 5. Rozważmy zapytanie
?- X \= Y.
■ a. Powyższy cel zawiedzie.
□ b. W kolejnych nawrotach za X i Y maszyna prologowa będzie podstawiać pary struktur, które się nie unifikują.
 c. Powyższy cel będzie spełniony na jeden sposób, a w odpowiedzi maszyna prologowa zunifikuje zmienne X i Y.
 d. Powyższy cel będzie spełniony na jeden sposób, a w odpowiedzi zmienne X i Y pozostaną nieukonkretnione.
Pytanie 6. Rozważmy predykaty
p(a). p(b).
q([]). q([X Y]) :- p(X), q(Y).

Strona: 3 z 10 Imię i nazwisko: Wersja: 0

```
i zapytanie
?-q(X).
☐ a. Po skończonej liczbie nawrotów maszyna prologowa zapętli się.
☐ b. Po skończonej liczbie nawrotów wystąpi niepowodzenie.
☐ c. Wśród odpowiedzi pojawi się każda lista acykliczna, której elementami są atomy a i b.
■ d. Odpowiedzi nie zmienią się, jeśli z programu usuniemy klauzulę p(b).
Pytanie 7. Rozważmy predykaty
p(a).
p(f(X,Y)) :-
   p(X),
   p(Y).
f(a,a).
f(b,b).
i zapytanie
?-p(X).
\square a. Jedną z odpowiedzi będzie podstawienie X = f(f(a,a),f(a,a)).
□ b. Jedną z odpowiedzi będzie podstawienie X = f(b,b).
☐ c. Jedną z odpowiedzi będzie podstawienie X = b.
■ d. Powyższy cel będzie spełniony na nieskończenie wiele sposobów.
Pytanie 8. Rozważmy zapytanie
?- \ + \ member(X, [a]), X = b.
☐ a. Cel będzie spełniony na jeden sposób i odpowiedzią będzie X = a.
■ b. Cel będzie spełniony na jeden sposób i odpowiedzią będzie X = b.
☐ c. Próba spełnienia tego celu zakończy się niepowodzeniem.
☐ d. Próba spełnienia tego celu zakończy się zapętleniem.
Pytanie 9. Rozważmy gramatykę
x \longrightarrow [1].
x \longrightarrow x, [+], x.
i zapytanie
?-x(X,[]).
■ a. Odpowiedzi będzie nieskończenie wiele. Każde słowo z języka opisanego powyższą gra-
      matyką zostanie podstawione za X w którejś z odpowiedzi.
□ b. Odpowiedzi będzie nieskończenie wiele, ale nie wszystkie słowa z języka opisanego po-
      wyższą gramatyką zostaną zwrócone w odpowiedziach.
□ c. Maszyna wygeneruje odpowiedź X = [1], a po nawrocie zapętli się.
☐ d. Żadna z powyższych trzech odpowiedzi nie jest poprawna.
```

Pytanie 10. Rozważmy predykat

```
p([a]).
p([H|T]) :-
!,
p(T).
```

i zapytanie

```
?- p([b,b,a]).
```

- ☐ a. Wynikiem tego zapytania będzie niepowodzenie.
- b. Wynikiem tego zapytania będzie sukces, a po nawrocie niepowodzenie.
- ☐ c. Usunięcie odcięcia z drugiej klauzuli spowoduje zmianę odpowiedzi na podane zapytanie.
- ☐ d. Kompilacja tego predykatu przebiegnie bez ostrzeżeń.

Pytanie 11. Rozważmy predykat

```
p([]).
p([a|X]) :-
  p(X),
!.
```

i zapytanie

$$?-p(X)$$
.

- ☐ a. Odpowiedzi będzie nieskończenie wiele.
- □ b. Odcięcie w drugiej klauzuli jest "zielone", tj. usunięcie go nie zmieni zachowania predykatu (będzie on jedynie działał być może szybciej).
- □ c. Jedyną odpowiedzią będzie X = [] i nie będzie nawrotów.
- d. Jedną z odpowiedzi będzie X = [a].

Pytanie 12. Rozważmy zapytanie

$$?- X + Y = := 0.$$

(Predykat =:=/2 jest spełniony, gdy jego argumenty są równe w sensie arytmetycznym).

- ☐ a. Zapytanie zakończy się niepowodzeniem.
- ☐ b. Odpowiedź na to zapytanie będzie taka sama, jak na zapytanie

$$?-X+Y$$
 is 0.

c. Odpowiedź na to zapytanie będzie taka sama, jak na zapytanie

$$?- 0 is X + Y.$$

☐ d. W odpowiedzi pod X i Y zostaną podstawione przeciwne liczby całkowite.

Strona: 5 z 10 Imię i nazwisko: Wersja: 0

Pytanie 13. Rozważmy predykat

p(N) :- N is 0. p(N) :p(N-1).

i zapytanie

?-p(-3).

- ☐ a. Obliczenie zakończy się sukcesem.
- ☐ b. Obliczenie zakończy się niepowodzeniem.
- c. Obliczenie zapętli się.
- □ d. Obliczenie zakończy się błędem "Arguments are not sufficiently instantiated in arithmetic expression".

Pytanie 14. Rozważmy zapytanie

?- X is 4, Y is 2, X is 2*Y, Z is 2*X.

- ☐ a. Obliczenie zakończy się niepowodzeniem.
- ☐ b. Obliczenie zapętli się.
- ☐ c. Obliczenie zakończy się błędem.
- d. Odpowiedzi na powyższe zapytanie i zapytanie

?- Y is 2, X is 4, Z is 2*X, X is 2*Y.

są takie same.

Pytanie 15. Rozważmy zapytanie

?-[[],[]|[]] = [[]|V].

- ☐ a. Obliczenie tego zapytania zakończy się niepowodzeniem.
- □ b. Wynikiem jest podstawienie V = [].
- c. Wynikiem jest podstawienie V = [[]].
- \square d. Wynikiem jest podstawienie V = [[], []].

Pytanie 16. Rozważmy funkcję

```
f :: Integer → Integer
f n = n * f $ n - 1
f 0 = 1
```

- ☐ a. Wartością wyrażenia f 5 jest 120.
- \square b. Wartością wyrażenia f 5 jest \bot .
- ☐ c. Obliczenie wyrażenia f 5 zakończy się błędem.
- d. Program jest niepoprawny.

Pytanie 17. Rozważmy program

- ☐ a. Wartością wyrażenia f undefined 42 jest 42.
- b. Wartością wyrażenia f undefined 42 jest ⊥.
- \square c. Wartością wyrażenia f undefined 42 jest $\bot * \bot$.
- ☐ d. Program jest niepoprawny.

Pytanie 18. Przyjmijmy, że

reverse :: [a] → [a] reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

Równość

$$(reverse . reverse) xs = xs$$

jest prawdziwa dla każdej

- \square a. listy xs := [a].
- b. skończonej listy xs := [a].
- \square c. nieskończonej listy xs := [a].
- \square d. częściowej listy xs := [a].

Pytanie 19. Wyrażenie

undefined undefined

- a. jest równe undefined.
- \square b. jest równe $\lambda _ \rightarrow$ undefined.
- \square c. jest różne od undefined.
- ☐ d. nie posiada typu.

Pytanie 20. Rozważmy program

$$f x y = x (y x)$$

Najogólniejszym typem funkcji f jest

- \square a. (a \rightarrow b) \rightarrow a \rightarrow b.
- \Box b. $((a \rightarrow b) \rightarrow a) \rightarrow b \rightarrow a$.
- $\blacksquare c. (a \rightarrow b) \rightarrow ((a \rightarrow b) \rightarrow a) \rightarrow b.$
- ☐ d. W definicji funkcji f występuje błąd typowy.

Pytanie 21. Rozważmy program

Typ (T_1,T_2) ma

- \square a. $n \cdot m$ wartości.
- \square b. $n \cdot m + 1$ wartości.
- \square c. $(n+1)\cdot(m+1)$ wartości.
- \blacksquare d. $(n+1)\cdot(m+1)+1$ wartości.

Pytanie 22. Niech

f :: Integer → Integer

$$f x = x$$

$$g x = \lambda y \rightarrow y$$

$$h x y = f (g x y)$$

Wtedy

$$\square$$
 a. $h = f$. g.

$$\blacksquare$$
 b. h x = f . (g x).

$$\square$$
 c. h x y = (f . g) x y.

□ d. h :: (Integer, Integer) -> Integer.

Pytanie 23. Lista

[x 'div' 2 |
$$x \leftarrow [1..100]$$
, x 'mod' $3 > 0$]

- \square a. ma 100 elementów.
- b. ma 67 elementów.
- ☐ c. ma 51 elementów.
- ☐ d. jest równa liście [1..50].

Pytanie 24. Niech

class C t where

$$m :: t \rightarrow t$$

Wtedy

$$\square$$
 a. m :: t \rightarrow t.

$$\square$$
 b. m :: C t \rightarrow C t.

$$\square$$
 c. m :: C => t \rightarrow t.

$$\blacksquare$$
 d. m :: C t => t \rightarrow t.

Strona: 8 z 10

Pytanie 25. Niech

```
a(x,y) = x
```

$$b (x,y) = y$$

$$f(x,y) z = (x z, y z)$$

$$g(x,y) = f(x . a, y . b)$$

$$h(x,y)(u,v) = (x u, y v)$$

Wtedy

$$\square$$
 a. $g = h$.

■ b. g, h ::
$$(x \rightarrow x', y \rightarrow y') \rightarrow (x,y) \rightarrow (x',y')$$
.

Egzamin zasadniczy

$$\square$$
 c. g :: $(x \rightarrow x', y \rightarrow y') \rightarrow (x',y')$.

☐ d. definicja funkcji g zawiera błąd typowy.

Pytanie 26. Wyrażenie

do

$$x \leftarrow [1,2,3]$$
 [x]

- \square a. ma typ Monad m => m [Integer].
- ☐ b. nie posiada typu.
- c. jest równe [1,2,3].
- ☐ d. jest równe [[1],[2],[3]].

Pytanie 27. Jednym z aksjomatów typu $t :: * \rightarrow *$ należącego do klasy Monad jest:

$$\square$$
 a. $\forall m, n, p :: t \ a \ (m >>= n) >>= p = m >>= (n >>= p).$

b.
$$\forall m :: t \ a \ \forall n :: a \rightarrow t \ b \ \forall p :: b \rightarrow t \ c \ (m >>= n) >>= p = m >>= (\lambda x \rightarrow (n \ x) >>= p).$$

- \square c. $\forall m :: t \ a \text{ return} >>= m = m$.
- ☐ d. żadna z powyższych równości.

Pytanie 28. Które z poniższych wyrażeń ma inną wartość niż pozostałe?

$$\Box$$
 b. [2*x | x \leftarrow [1..10], x 'mod' 2 == 0].

$$\square$$
 c. do { x \leftarrow [1..10]; if x 'mod' 2 == 0 then return (2*x) else [] }

$$\square$$
 d. do { x \(\tau \) [1..10]; guard\$ x 'mod' 2 == 0; return\$ 2*x }.

Pytanie 29. Oto definicja funkcji map:

map ::
$$(a \rightarrow b) \rightarrow [a] \rightarrow [b]$$

map f [] = []

$$map f (x:xs) = f x : map f xs$$

Wyrażenie map undefined []

Strona: 9 z 10 Imię i nazwisko: Wersja: 0

■ a. ma wartość [].
\square b. ma wartość \bot .
\square c. ma wartość $[\bot]$.
\square d. jest równe map undefined undefined.
Pytanie 30. Rozważmy funkcję
$f xs@(x:_) = x : g xs where g (y:ys) = g (y:y:ys)$
Jaka jest wartość wyrażenia head \$ f [0]?
■ a. 0
□ b. [0]
□ c. []

☐ d. obliczenie zapętli się.

Programowanie L Egzamin zasadniczy 29 maja 2012 Strona: 10 z 10