

PROCESOS INDUSTRIALES

KPIS

KPIS

1. KPI 1. Eficiencia Global de los Equipos (OEE)

¿Qué mide?

El OEE (Overall Equipment Effectiveness), es un indicador que mide el desempeño de los equipos industriales, en función de tres factores:

- **Disponibilidad.** Tiempo real de operación vs. tiempo total disponible.
- Rendimiento. Velocidad de producción vs. capacidad máxima teórica.
- ✓ Calidad. Porcentaje de productos sin defectos.

Se calcula con la fórmula:

OEE=Disponibilidad x Rendimiento x Calidad

Donde:

Disponibilidad (%) =
$$\frac{Tiempo\ Operativo}{Tiempo\ Total\ Programado}\ x\ 100$$

Rendimiento (%) = $\frac{Producción\ Real}{Producción\ Teórica}\ x\ 100$

Calidad (%) = $\frac{Unidades\ Buenas}{Unidades\ Totales\ Producidas}\ x\ 100$

Ejemplo de aplicación

Si una máquina:

Opera 400 min en un turno de 500 min. **Disponibilidad** = 80 %.

Produce 450 piezas, pero su capacidad es 500 piezas. Rendimiento = 90 %.

Se generan 440 piezas sin defectos. Calidad = 97.7 %.

Entonces, el OEE será:

Si el **OEE** es bajo, se deben analizar las paradas de máquina, el desperdicio de material o los tiempos improductivos.

¿Para qué sirve?

- ✓ Detectar ineficiencias en el uso de equipos.
- ✓ Minimizar tiempos de inactividad y fallas.
- Optimizar la capacidad de producción.

¿Cómo se implementa?

- Registrar el tiempo total disponible de la máquina.
- ✓ Medir el tiempo efectivo de operación y calcular la disponibilidad.
- ✓ Determinar la velocidad de producción y calcular el rendimiento.
- ✓ Identificar la cantidad de productos defectuosos y calcular la calidad.
- ✓ Multiplicar los tres valores para obtener el OEE.
- Analizar los resultados y aplicar mejoras en mantenimiento y procesos.

2. KPI 2: Tasa de defectos y retrabajos

¿Qué mide?

Este KPI indica la cantidad de productos defectuosos que requieren corrección o descarte. Se calcula como:

$$Tasa\ de\ Defectos\ (\%) = \left(\frac{Unidades\ Defectuosas}{Unidades\ Totales\ Producidas}\right)\ x\ 100$$

Ejemplo de aplicación

Si en una jornada se producen 2,000 unidades y 50 presentan defectos, entonces:

$$\left(\frac{50}{2,000}\right) x 100 = 2.5 \%$$

Si este KPI es alto, se deben identificar las causas de los defectos y mejorar el control de calidad.

¿Para qué sirve?

- Mejorar la calidad del producto final.
- Reducir costos por desperdicio y retrabajos.
- ✓ Detectar problemas en el proceso productivo.

¿Cómo se implementa?

- Registrar la cantidad total de productos fabricados.
- ✓ Contar la cantidad de productos defectuosos.
- ✓ Calcular el porcentaje de defectos y analizar las causas.
- Implementar mejoras en procesos de producción y control de calidad.

3. KPI 3. Consumo energético por unidad de producción

¿Qué mide?

Este KPI indica cuánta energía se usa para producir una unidad. Se expresa en kWh/ unidad producida.

Fórmula:

$$Consumo\ Enereg\'etico\ por\ Unidad = \frac{Consumo\ Total\ de\ Energ\'ia\ (kWh)}{Unidades\ Totales\ Producidas}$$

Ejemplo de aplicación

Si en un mes se consumieron 50,000 kWh y se produjeron 10,000 unidades, el KPI sería:

$$\frac{50,000 \ kWh}{10,000 \ unidades} = 5 \ kWh/unidad$$

Si este valor es alto, se deben buscar oportunidades de ahorro energético, como optimizar el uso de maquinaria o mejorar la eficiencia operativa.

¿Para qué sirve?

- ✓ Identificar oportunidades de ahorro energético.
- ✓ Mejorar la sostenibilidad de los procesos.
- Reducir costos operativos.

¿Cómo se implementa?

- Registrar el consumo energético total en un período de producción.
- ✓ Determinar la cantidad de unidades producidas en el mismo período.
- ✓ Dividir el consumo energético total entre la cantidad de unidades producidas.
- Comparar con estándares de la industria y buscar mejoras.

4. KPI 4. Tiempo de ciclo y productividad

¿Qué mide?

El tiempo de ciclo mide el tiempo total necesario para fabricar un producto, desde el inicio, hasta la finalización.

Fórmulas

Tiempo de ciclo:

$$Tiempo de Ciclo = \frac{Tiempo Total de Producción}{Unidades Totales Producidas}$$

Mide cuánto tiempo tarda en fabricarse una unidad.

Productividad:

$$Productividad = \frac{Unidades\ Totales\ Producción}{Tiempo\ Total\ de\ Producción}$$

Mide la cantidad de productos generados en un período de tiempo.

Ejemplo de aplicación. Si una línea de producción funciona 8 horas al día (480 minutos) y fabrica 240 unidades, entonces:

Tiempo de ciclo:

$$\frac{480 \, min}{240 \, unidades} = 2 \, min/unidad$$

Cada unidad tarda 2 minutos en fabricarse.

Productividad:

$$\frac{240 \ unidades}{480 \ min} = 0.5 \ unidades/minuto$$

Se fabrican 0.5 unidades por minuto.

Si el tiempo de ciclo es demasiado alto, se deben buscar formas de optimizar el proceso, como eliminar tiempos muertos o mejorar la automatización.

¿Para qué sirve?

- ✓ Identificar cuellos de botella en la producción.
- ✓ Aumentar la eficiencia y reducir costos.
- ✓ Mejorar la planificación de producción.

¿Cómo se implementa?

- ✓ Medir el tiempo total desde que se inicia el proceso hasta su finalización.
- ✓ Analizar los factores que afectan la velocidad de producción.
- Reducir tiempos muertos y optimizar el flujo de trabajo.

5. KPI 5. Índices de seguridad y cumplimiento ambiental

¿Qué mide?

Este KPI evalúa la cantidad de incidentes de seguridad y el cumplimiento de normativas ambientales.

Fórmulas

Índice de Accidentes (frecuencia de accidentes):

Índice de Frecuencia =
$$\frac{Número\ de\ Accidentes\ en\ un\ Período}{Horas\ Hombre\ Trabajadas}\ x\ 1,000,000$$

Mide la cantidad de accidentes por cada millón de horas trabajadas.

Índice de Cumplimiento Ambiental:

Cumplimiento Ambiental (%) =
$$\left(\frac{Normas\ Cumplidas}{Normas\ Totales}\right) x\ 100$$

Mide el porcentaje de cumplimiento con regulaciones ambientales.

Ejemplo de aplicación

Si una empresa tuvo 3 accidentes en un mes y se trabajaron 500,000 horas hombre, el índice de accidentes sería:

$$\frac{3}{500,000} \times 1,000,000 = 6$$

Si la meta es mantenerlo por debajo de 5, se deben reforzar las medidas de seguridad.

Para el cumplimiento ambiental, si la empresa cumple 18 de 20 normativas ambientales, el KPI sería:

$$\left(\frac{18}{20}\right) x 100 = 90 \%$$

Si este valor es menor al objetivo (por ejemplo, 95 %), se deben revisar áreas de mejora para garantizar el cumplimiento total.

¿Para qué sirve?

- ✓ Garantizar la seguridad de los trabajadores.
- Cumplir con regulaciones ambientales.
- Minimizar riesgos operativos.

¿Cómo se implementa?

- Registrar la cantidad de accidentes y eventos ambientales.
- ✓ Comparar con estándares y normativas de seguridad.
- ✓ Implementar acciones correctivas y preventivas.

Estos **KPIs** son herramientas esenciales para mejorar la eficiencia, calidad y sostenibilidad en procesos industriales, permitiendo una toma de decisiones basada en datos y estrategias de mejora continua.

Si bien los **KPIs** permiten medir el desempeño, su verdadera utilidad se maximiza cuando se combinan con metodologías de mejora de la calidad.

Ejemplo. Si el **OEE** es bajo, no basta con conocer el valor; se debe investigar la causa mediante herramientas como Lean Manufacturing o Six Sigma.