Занятие 3

ТОЧЕЧНЫЕ ОЦЕНКИ НЕИЗВЕСТНЫХ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ ИССЛЕДУЕМОЙ СЛУЧАЙНОЙ ВЕЛИЧИНЫ

Краткие теоретические сведения

Пусть известен закон распределения для СВ X (нормальный, Пуассона, показательный и т. д.), зависящий от одного или нескольких параметров. Требуется по выборке, полученной в результате n экспериментов, оценить (найти приближенно) неизвестный параметр распределения. Оценка, определяемая одним числом, называется **точечной**.

Оценкой неизвестного параметра распределения называют функцию от наблюдаемых значений случайной величины.

Оцениваемый параметр обозначим через θ , а его оценку – $\bar{\theta}$: $\bar{\theta} = f(x_1, x_2, ..., x_n)$.

 $\bar{\theta}$ является случайной величиной.

Точечная оценка должна удовлетворять определенным требованиям:

- быть несмещенной, т. е. $M(\overline{\theta}) = \theta$;
- быть эффективной, т. е. если неизвестный параметр имеет несколько оценок, вычисленных по выборкам одного и того же объема n, то нужно выбрать ту, которая имеет наименьшую дисперсию;
- быть состоятельной, т. е. при $n \to \infty$ стремится по вероятности к оцениваемому параметру: $\lim_{n \to \infty} P(\left|\overline{\theta} \theta\right| < \varepsilon) = 1 \ \forall \varepsilon > 0$.

Выборочная средняя $\overline{x}_{\rm B}$ является несмещенной, состоятельной и эффективной для математического ожидания генеральной совокупности.

Несмещенной и состоятельной оценкой для дисперсии генеральной совокупности является исправленная выборочная дисперсия:

$$D_{\text{\tiny M}} = S^2 = \frac{n}{n-1} D_{\text{\tiny B}}; \qquad D_{\text{\tiny M}} = \frac{\sum\limits_{i=1}^k \left(x_i - \overline{x}_{\text{\tiny B}}\right)^2 \cdot n_i}{n-1}.$$

Исправленным средним квадратическим отклонением является

$$S = \sqrt{D_{\text{\tiny M}}}; \qquad S = \sqrt{S^2} = \sqrt{\frac{n}{n-1}D_{\text{\tiny B}}}.$$

Для вычисления $\overline{x}_{\rm B}$, $D_{\rm B}$ используют наиболее распространенный метод – метод произведений.

Целесообразно составить таблицу:

- 1) в первый столбец записывают x_i , располагая в порядке возрастания;
- 2) во второй столбец записывают число экспериментов, в которых получено соответствующее значение x_i и сумму $\sum_{i=1}^k n_i$;
- 3) в третий столбец записывают условные варианты $U_i = \frac{x_i b}{h}$, где h шаг разбиения, b «ложный нуль».

В качестве b берется варианта, стоящая посередине вариационного ряда, или варианта, имеющая максимальную частоту. В клетках над нулем пишут последовательно -1, -2, -3, ..., а под нулем пишут 1, 2, 3, ...;

4) находят $n_i \cdot U_i$ и сумму $\sum_{i=1}^k n_i \cdot U_i$ и записывают в четвертый столбец;

- 5) в пятый столбец записывают $n_i \cdot U_i^2$ и сумму $\sum_{i=1}^k n_i \cdot U_i^2$;
- 6) в шестой столбец записывают $n_i(U_i+1)^2$ и сумму $\sum_{i=1}^k n_i(U_i+1)^2 \ .$

Если сумма $\sum_{i=1}^k n_i (U_i+1)^2$ будет равна сумме $\sum_{i=1}^k n_i + 2\sum_{i=1}^k n_i \cdot U_i + \dots$

 $+\sum_{i=1}^{k} n_i \cdot U_i^2$, то вычисления произведены правильно.

Определяем условные начальные моменты 1-го и 2-го порядков:

$$\overline{\mathbf{v}}_1 = \frac{1}{n} \sum_{i=1}^k U_i \cdot n_i \; ; \qquad \overline{\mathbf{v}}_2 = \frac{1}{n} \sum_{i=1}^k U_i^2 \cdot n_i .$$

Находим выборочное среднее $\overline{x}_{\mathrm{B}}$ и выборочную дисперсию D_{B} :

$$\overline{x}_{\text{B}} = \overline{v}_{\text{l}} \cdot h + b; \qquad D_{\text{B}} = \left(\overline{v}_{2} - (\overline{v}_{1})^{2}\right) \cdot h^{2}.$$

Пример 3.1. Методом произведений вычислить выборочную среднюю и выборочную дисперсию по данным выборки (табл. 3.1).

Таблица 3.1

X_i	12	14	16	18	20	22
n_{i}	5	15	50	16	10	4

Решение. В качестве «ложного нуля» возьмем варианту 16. Следовательно, b=16 , $U_i=\frac{x_i-16}{2}$.

Результаты вычислений сведем в табл. 3.2.

Таблица 3.2

x_i	n_i	U_i	$n_i \cdot U_i$	$n_i \cdot U_i^2$	$n_i(U_i+1)^2$
12	5	-2	-10	20	5
14	15	-1	-15	15	0
16	50	0	0	0	50
18	16	1	16	16	64
20	10	2	20	40	90
22	4	3	12	36	64
Σ	100	_	23	127	273

Контроль: 273 = 100 + 46 + 127.

Равенство выполнено, следовательно, таблица заполнена верно.

Вычислим условные начальные моменты:

$$\overline{v}_1 = \frac{1}{100} \cdot 23 = 0,23;$$
 $\overline{v}_2 = \frac{127}{100} = 1,27.$

Вычислим выборочную среднюю и выборочную дисперсию: $\overline{x}_{\rm B}=0,23\cdot 2+16=16,46$; $D_{\rm B}=(1,27-(0,23)^2)\cdot 4=(1,27-0,0529)\cdot 4=1,2171\cdot 4=4,8684\approx 4,87$.

Определим исправленную выборочную дисперсию: $D_{\rm u}=S^2=\frac{100}{99}\cdot 4,87=4,92\ ,\ {\rm u}\ {\rm uсправленноe}\ {\rm среднеe}\ {\rm квадратическоe}\ {\rm отклонениe}\colon S=\sqrt{4,92}=2,22\ .$

Получим несмещенные оценки для математического ожидания, дисперсии и среднего квадратического отклонения.

Задачи для аудиторной работы

Задача 3.1.

По данным выборки (табл. 3.3) найти несмещенные оценки для математического ожидания и дисперсии.

Таблица 3.3

x_i	48	52	56	60	64	68	72	76	80	84
n_i	2	4	6	8	12	30	18	8	7	5

Задача 3.2.

Найти несмещенные оценки для математического ожидания и дисперсии по данным выборки (табл. 3.4).

Таблица 3.4

x_i	7,9	8,1	8,3	8,5	8,7	8,9
n_i	5	20	80	95	40	10

Задача 3.3.

По данным выборки (табл. 3.5) найти:

- а) несмещенные оценки для математического ожидания и дисперсии;
 - б) коэффициент асимметрии и эксцесс.

Таблица 3.5

$x_i - x_{i+1}$	[0-5)	[5–10)	[10–15)	[15–20)	[20–25)	[25–30)
n_i	49	41	26	14	17	3