```
In [1]:
         import numpy as np
         import pandas as pd
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import StandardScaler
         from sklearn.linear model import LinearRegression
         from sklearn.metrics import r2_score
         import matplotlib.pyplot as plt
         df=pd.read_csv('D:/OASIS/5.SALES PREDCTION WITH PYTHON/archive/Advertising.csv')
In [2]:
         df.head()
In [3]:
Out[3]:
            Unnamed: 0
                         TV Radio Newspaper Sales
         0
                    1 230.1
                               37.8
                                          69.2
                                                22.1
         1
                        44.5
                               39.3
                                          45.1
                                                10.4
         2
                        17.2
                              45.9
                                          69.3
                                                 9.3
                    3
                               41.3
         3
                    4 151.5
                                          58.5
                                                18.5
         4
                    5 180.8
                              10.8
                                          58.4
                                               12.9
```

In [4]: df.tail()

Out[4]:		Unnamed: 0	TV	Radio	Newspaper	Sales
	195	196	38.2	3.7	13.8	7.6
	196	197	94.2	4.9	8.1	9.7
	197	198	177.0	9.3	6.4	12.8
	198	199	283.6	42.0	66.2	25.5
	199	200	232.1	8.6	8.7	13.4

In [5]: df.shape

Out[5]: (200, 5)

In [6]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	200 non-null	int64
1	TV	200 non-null	float64
2	Radio	200 non-null	float64
3	Newspaper	200 non-null	float64
4	Sales	200 non-null	float64

dtypes: float64(4), int64(1)

memory usage: 7.9 KB

```
df.describe()
In [7]:
                Unnamed: 0
                                    TV
                                             Radio
                                                                     Sales
Out[7]:
                                                    Newspaper
                  200.000000
                             200.000000 200.000000
                                                                200.000000
                                                     200.000000
          count
                  100.500000 147.042500
                                          23.264000
                                                      30.554000
                                                                 14.022500
          mean
                   57.879185
                              85.854236
                                                      21.778621
                                                                   5.217457
                                          14.846809
            std
                   1.000000
                             0.700000
                                           0.000000
                                                      0.300000
                                                                  1.600000
           min
           25%
                   50.750000
                             74.375000
                                          9.975000
                                                      12.750000
                                                                 10.375000
           50%
                  100.500000 149.750000
                                          22.900000
                                                      25.750000
                                                                 12.900000
           75%
                  150.250000 218.825000
                                          36.525000
                                                      45.100000
                                                                 17.400000
                                                                 27.000000
                  200.000000 296.400000
                                          49.600000
                                                     114.000000
           max
          df=df.drop(columns=["Unnamed: 0"])
In [8]:
          df
In [9]:
Out[9]:
                TV Radio Newspaper Sales
           0 230.1
                       37.8
                                   69.2
                                         22.1
                44.5
                       39.3
                                         10.4
                                   45.1
            2
               17.2
                       45.9
                                   69.3
                                          9.3
            3 151.5
                       41.3
                                   58.5
                                         18.5
            4 180.8
                       10.8
                                   58.4
                                         12.9
               •••
                       •••
                                   •••
                                         •••
         195
                38.2
                       3.7
                                   13.8
                                          7.6
          196
               94.2
                       4.9
                                    8.1
                                          9.7
          197 177.0
                       9.3
                                    6.4
                                         12.8
          198 283.6
                       42.0
                                   66.2
                                         25.5
         199 232.1
                        8.6
                                    8.7
                                         13.4
```

200 rows × 4 columns

In [10]: x=df.iloc[:, 0:-1]

In [11]:

Out[11]:		TV	Radio	Newspaper
	0	230.1	37.8	69.2
	1	44.5	39.3	45.1
	2	17.2	45.9	69.3
	3	151.5	41.3	58.5
	4	180.8	10.8	58.4
	•••			
	195	38.2	3.7	13.8
	196	94.2	4.9	8.1
	197	177.0	9.3	6.4
	198	283.6	42.0	66.2
	199	232.1	8.6	8.7

200 rows × 3 columns

```
In [12]: y=df.iloc[:,-1]
In [13]: y
                22.1
Out[13]:
                10.4
                 9.3
         3
                18.5
                12.9
                 . . .
         195
                 7.6
         196
                 9.7
         197
                12.8
         198
                25.5
         199
                13.4
         Name: Sales, Length: 200, dtype: float64
In [14]: #Model train and test
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=43)
In [15]: x_train
```

Out[15]:		TV	Radio	Newspaper
	116	139.2	14.3	25.6
	138	43.0	25.9	20.5
	155	4.1	11.6	5.7
	82	75.3	20.3	32.5
	160	172.5	18.1	30.7
	•••	•••		
	58	210.8	49.6	37.7
	21	237.4	5.1	23.5
	49	66.9	11.7	36.8
	64	131.1	42.8	28.9
	68	237.4	27.5	11.0

160 rows × 3 columns

In [16]: x_test

Out[16]:

	TV	Radio	Newspaper
56	7.3	28.1	41.4
37	74.7	49.4	45.7
67	139.3	14.5	10.2
79	116.0	7.7	23.1
80	76.4	26.7	22.3
188	286.0	13.9	3.7
183	287.6	43.0	71.8
10	66.1	5.8	24.2
128	220.3	49.0	3.2
62	239.3	15.5	27.3
65	69.0	9.3	0.9
17	281.4	39.6	55.8
133	219.8	33.5	45.1
195	38.2	3.7	13.8
146	240.1	7.3	8.7
38	43.1	26.7	35.1
173	168.4	7.1	12.8
149	44.7	25.8	20.6
93	250.9	36.5	72.3
29	70.6	16.0	40.8
0	230.1	37.8	69.2
2	17.2	45.9	69.3
122	224.0	2.4	15.6
180	156.6	2.6	8.3
95	163.3	31.6	52.9
121	18.8	21.7	50.4
185	205.0	45.1	19.6
39	228.0	37.7	32.0
66	31.5	24.6	2.2
19	147.3	23.9	19.1
11	214.7	24.0	4.0
45	175.1	22.5	31.5
41	177.0	33.4	38.7

	TV	Radio	Newspaper
92	217.7	33.5	59.0
168	215.4	23.6	57.6
1	44.5	39.3	45.1
57	136.2	19.2	16.6
189	18.7	12.1	23.4
151	121.0	8.4	48.7
167	206.8	5.2	19.4

```
In [17]: y_train
         116
138
                 12.2
Out[17]:
                  9.6
         155
                  3.2
          82
                 11.3
          160
                 14.4
                 . . .
          58
                 23.8
          21
                 12.5
                  9.7
          49
          64
                 18.0
          68
                 18.9
         Name: Sales, Length: 160, dtype: float64
In [18]: y_test
```

```
5.5
         56
Out[18]:
         37
                 14.7
         67
                 13.4
         79
                 11.0
         80
                 11.8
         188
                 15.9
         183
                 26.2
         10
                  8.6
         128
                 24.7
                 15.7
         62
         65
                  9.3
         17
                 24.4
         133
                 19.6
         195
                 7.6
         146
                 13.2
         38
                 10.1
         173
                 11.7
         149
                 10.1
         93
                 22.2
         29
                 10.5
         0
                 22.1
         2
                  9.3
         122
                 11.6
         180
                 10.5
         95
                 16.9
         121
                  7.0
         185
                 22.6
         39
                 21.5
                  9.5
         66
         19
                 14.6
         11
                 17.4
         45
                 14.9
         41
                 17.1
         92
                 19.4
         168
                 17.1
         1
                 10.4
         57
                 13.2
         189
                  6.7
         151
                 11.6
         167
                 12.2
         Name: Sales, dtype: float64
In [19]:
         #Convert float to int
          x_train=x_train.astype(int)
          y_train=y_train.astype(int)
          x_test=x_test.astype(int)
          y_test=y_test.astype(int)
         Sc=StandardScaler()
In [20]:
          x_train_scaled=Sc.fit_transform(x_train)
          x_test_scaled=Sc.fit_transform(x_test)
In [21]:
         #LinearRegression
In [22]:
         lr=LinearRegression()
          lr.fit(x_train_scaled,y_train)
          y_pred=lr.predict(x_test_scaled)
          r2_score(y_test,y_pred)
```

```
Out[22]: 0.9222988021105912
```

```
In [23]: #Scatter Graph
plt.scatter(y_test,y_pred,color='red')
```

Out[23]: <matplotlib.collections.PathCollection at 0x29ef5022e50>

In [24]: plt.scatter(x_test,x_test_scaled,color='blue')

Out[24]: <matplotlib.collections.PathCollection at 0x29ef506ab20>

In []: