الجمهورية الجزائرية الديمقراطية الشعبية

وزارة التربية الوطنية

دورة: 2020

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: تسيير واقتصاد

المدة: 03 سا و 30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

التمرين الأوّل: (04 نقاط)

 $[2;+\infty]$ و $[-\infty;2]$ و $[-\infty;2]$ معرّفة وقابلة للاشتقاق على كلّ من المجالين . $\left(O; \vec{i}, \vec{j} \right)$ التمثيل البياني لf في المستوي المنسوب إلى المعلم المتعامد المتجانس المستوي المنسوب الم

أجب ب: صحيح أو خاطئ مع التبرير في كل حالة من الحالات التالية:

- $1-\infty$ عند C_f مقارب له y=2 عند (1) المستقيم ذو المعادلة
 - $oldsymbol{\cdot} \left(C_f
 ight)$ النّقطة A(3;2) تنتمي إلى المنحنى (2
 - f(2020) > f(2019) (3
- المستقيم ذو المعادلة y=1 يقطع $\begin{pmatrix} C_f \end{pmatrix}$ في نقطة واحدة.

f'(x) $+\infty$ f(x)

التمربن الثاني: (04 نقاط)

يتقاضى موظف خلال 2019 راتبا شهريا ثابتا يقدر بـ DA 000 DA ، في شهر جانفي استهلك منه 80% و ابتداءً من شهر فيفري قرّر تخفيض مبلغ الاستهلاك شهريا بنسبة 5% من المبلغ المستهلك في الشهر الذي قبله.

- 1) أ. ما هو المبلغ المستهلك في شهر جانفي ؟
 - ب. حدّد المبلغ المستهلك في شهر فيفري.
- نضع: u_1 المبلغ المستهلك في شهر جانفي و u_n المبلغ المستهلك في الشهر n، حيث u_1 عدد طبيعي (2 غير معدوم.
 - عبر عن u_{n+1} بدلالة u_n و استنتج أنّ u_n متتالية هندسية أساسها
 - n اكتب عبارة الحدّ العام u_n بدلالة (3
 - 4) أ. احسب المبلغ المستهلك خلال سنة 2019.
 - ب. أوجد المبلغ المدخر خلال هذه السنة.

اختبار في مادة: الرياضيات \ الشعبة: تسيير واقتصاد \بكالوريا 2020

التمرين الثالث: (04 نقاط)

 $u_{n+1} = \frac{2}{3}u_n + \frac{3}{2}$: n عدد طبیعي عدد طبیعي $u_0 = 1$: المتتالیة العددیة u_0 معرّفة بحدّها الأول u_0 حیث: u_0 عدد طبیعی

$$u_n < \frac{9}{2}$$
 : n عدد طبیعي . أ (1

 $m{\cdot}$. ادرس اتجاه تغیّر المتتالیة (u_n) و استنتج أنّها متقاربة .

$$v_n = u_n - \frac{9}{2}$$
: سنع من أجل كلّ عدد طبيعي (2

.
$$v_0$$
 أنّ المتتالية (v_n) هندسية أساسها $\frac{2}{3}$ يُطلب حساب حدّها الأول

 $\lim_{n\to +\infty} u_n$ بدلالة n ثمّ احسب عبّر عن v_n بدلالة

.
$$S_n = u_0 + u_1 + u_2 + \dots + u_n$$
: n نضع من أجل كل عدد طبيعي (3 . n بدلالة S_n بدلالة

التمرين الرابع: (08 نقاط)

- . $g(x)=x^2-1+\ln x$ بـ : $]0;+\infty[$ بي معرّفة على المجال (I
 - $\lim_{x \to +\infty} g(x)$ و $\lim_{x \to +\infty} g(x)$ احسب کلا من $\lim_{x \to +\infty} g(x)$
- درس اتجاه تغيّر الدّالة g على المجال $]0;+\infty[$ ثمّ شكّل جدول تغيّراتها.
- .] $0;+\infty[$ على المجال g(x) على استنتج حسب قيم x اشارة g(1) على المجال (3

.
$$f(x) = \frac{1}{3}x^3 - 2x + 2 + x \ln x$$
 بـ: (II) الدّالة العددية f معرّفة على المجال $g(x) = \frac{1}{3}x^3 - 2x + 2 + x \ln x$

$$\cdot \left(O; \overrightarrow{i}, \overrightarrow{j} \right)$$
 التّمثيل البياني لـ f في المستوي المنسوب إلى المعلم المتعامد المتجانس البياني لـ $\left(C_f \right)$

- $(\lim_{x \to \infty} x \ln x = 0 :$ احسب $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ احسب (1)
 - . f'(x) = g(x): موجب تماما عدد حقیقی x موجب عدد کلّ عدد حقیقی (2
- (3 استنتج اتجاه تغیّر الدّالة f على المجال $]0;+\infty[$ ثمّ شكّل جدول تغیّراتها.
 - $\cdot (C_f)$ ثمّ انشی f(2) احسب (4
- $F(x) = \frac{1}{12}x^4 \frac{5}{4}x^2 + 2x 8 + \frac{1}{2}x^2 \ln x$ بيّن أنّ $F(x) = \frac{1}{12}x^4 \frac{5}{4}x^2 + 2x 8 + \frac{1}{2}x^2 \ln x$ بيّن أنّ $F(x) = \frac{1}{12}x^4 \frac{5}{4}x^2 + 2x 8 + \frac{1}{2}x^2 \ln x$ بيّن أنّ $F(x) = \frac{1}{12}x^4 \frac{5}{4}x^2 + 2x 8 + \frac{1}{2}x^2 \ln x$ بيّن أنّ $F(x) = \frac{1}{12}x^4 \frac{5}{4}x^2 + 2x 8 + \frac{1}{2}x^2 \ln x$ بين أنّ $F(x) = \frac{1}{12}x^4 \frac{5}{4}x^2 + 2x 8 + \frac{1}{2}x^2 \ln x$ بين أنّ $F(x) = \frac{1}{12}x^4 \frac{5}{4}x^2 + 2x 8 + \frac{1}{2}x^2 \ln x$

انتهى الموضوع الأول

الموضوع الثاني

التمرين الأول: (04 نقاط)

 $f(x) = \frac{1}{3}x^2 - 2x$ الدّالة العددية f معرّفة على \mathbb{R} يـ

. $\left(O;\vec{i},\vec{j}\right)$ التمثيل البياني له f في المستوي المنسوب إلى المعلم المتعامد المتجانس المياني له $\left(C_{f}\right)$

عين الاقتراح الصّحيح الوحيد من بين الاقتراحات الثّلاثة التّالية مع التبرير.

: على F على الدّالة الأصلية لـ f على الدّالة \mathcal{R} الدّالة الأصلية الـ f على الدّالة الأصلية الـ f

$$F(x) = \frac{1}{9}x^3 - x^2$$
 (ب

$$F(x) = x^3 - x^2 \quad (1)$$

(2) القيمة المتوسطة للدّالة f على المجال [0;1] هي:

$$\frac{8}{9}$$
 (=

$$\frac{-8}{9}$$
 (ب

$$\frac{1}{9}$$
 ()

(3) الدّالة f متزايدة تماما على المجال:

$$[-3;+\infty[$$
 (\hookrightarrow

المستقيم ذو المعادلة $y=rac{-5}{3}$ يقطع المنحنى C_f في نقطتين فاصلتاهما:

التمرين الثاني: (04 نقاط)

 $\int \ln v_5 + \ln v_3 = 8 \ln 2$ المتتالية الهندسية (v_n) حدّها الأول v_0 وأساسها q موجبان تماما و: $\int \ln v_5 - \ln v_3 = 2 \ln 2$

 $v_3 = 8$ و $v_5 = 32$ **(1)**

 $v_0 = 1$ و q = 2 . أ. بيّن أنّ: **2**

 \cdot ، اکتب v_n بدلالة

 (v_n) ج. هل العدد 1024 حدّ من حدود المتتالية

 $w_n = 2n - 3 + 2^n$ بالمتتالية (w_n) معرّفة على مجموعة الأعداد الطبيعية (w_n) بالمتتالية المتتالية (w_n)

. u_0 متتالية حسابية يُطلب تعيين أساسها وحدّها الأول (u_n) متتالية حسابية يُطلب تعيين أساسها وحدّها الأول

 $S_n = w_0 + w_1 + \cdots + w_n$ نضع: n نضع عدد طبیعي n نضع

 $S_n = (n+1)(n-3) + 2^{n+1} - 1$: n عدد طبیعي بیّن أنّه من أجل كل عدد طبیعي

التمرين الثالث: (04 نقاط)

 $u_{n+1} = \frac{5}{7}u_n + \frac{6}{7}$: n عدد طبيعي عدد طبيعي $u_0 = 5$ عدث: $u_0 = 0$ عدد عدد الأول $u_0 = 0$ عدد الأول عدد عدد الأول $u_0 = 0$ عدد الأول عدد الأول عدد الأول عدد عدد الأول عدد الأو

 $u_n > 3$: n برهن بالتّراجع أنّه من أجل كلّ عدد طبيعي (1

اختبار في مادة: الرياضيات \ الشعبة: تسيير واقتصاد \بكالوريا 2020

ادرس اتجاه تغيّر المتتالية (u_n) واستنتج أنّها متقارية.

 $v_n = u_n - 3$: بالمتتالية العددية $u_n = u_n - 3$ معرّفة من أجل كلّ عدد طبيعي $u_n = u_n - 3$. بيّن أنّ المتتالية $u_n = u_n - 3$ هندسية يُطلب تعيين أساسها وحدّها الأول.

 \cdot ، اکتب عبارة v_n بدلالة

 $\cdot (u_n)$ عدد طبیعي $u_n = 2 \times (\frac{5}{7})^n + 3$: n عدد طبیعي عدد طبیعي به اینه استنتج أنّه من أجل كل عدد طبیعي

 $u_n < \frac{7}{2}$:التي يكون من أجلها العدد الطبيعي n التي يكون من أجلها (4

التمرين الرابع: (08 نقاط)

الجدول المقابل هو جدول تغيرات الدّالة g المعرّفة $(\mathbf{I}$

$$g(x) = 3x^3 - 2 + 4 \ln x$$
 : ب]0;+∞[على المجال

$$0.9 < \alpha < 1$$
 : حيث أنّ المعادلة $g(x) = 0$ تقبل حلا وحيدا (1

.]0;+ ∞ [من x من g(x) من (2

$$f(x) = 3x - 2 - \frac{2\ln x}{x^2}$$
 بـ : $\int (1 + \infty) \int (1 + \infty) dx$ بالدّالة العددية f معرّفة على المجال الدّالة العددية f

(2cm في المستوي المنسوب إلى المعلم المتعامد المتعامد المتعامد وحدة الطول (
$$(C_f)$$

$$\left(\lim_{x\to +\infty} \frac{\ln x}{x^2} = 0 :$$
 يُعطى $\int_{x\to +\infty} \int_{x\to +\infty} f(x)$ و $\lim_{x\to +\infty} f(x)$ احسب کلا من $\int_{x\to +\infty} \frac{\ln x}{x^2} = 0$

 $\cdot (C_f)$ مقارب مائل للمنحنى y=3x-2 ذا المعادلة (Δ) ذا للمنحنى (Δ) أ. بيّن أنّ

. (Δ) ادرس وضعية المنحنى (C_f) بالنسبة إلى المستقيم

$$f'(x) = \frac{g(x)}{x^3}$$
 :]0;+∞[من المجال x عدد حقيقي x من المجال عدد (3

 $oldsymbol{\psi}$ ب. استنتج اتجاه تغیّر الدّالة f، ثم شکّل جدول تغیّراتها.

$$\left(f\left(lpha
ight)pprox0,9$$
 لرسم کلا من $\left(\Delta
ight)$ و $\left(\Delta
ight)$ ارسم کلا من $\left(\Delta
ight)$

$$H(x) = \frac{1 + \ln x}{x}$$
 بالدّالة $H(x) = \frac{1 + \ln x}{x}$ بالدّالة بالمجرّفة على المجال $H(x) = \frac{1 + \ln x}{x}$

.]
$$0;+\infty[$$
 على المجال $x\mapsto -\frac{\ln x}{x^2}$ على المجال H دالة أصلية للدالة:

ب. احسب ب cm^2 مساحة الحيّز المستوي المحدّد بالمنحنى (C_f) و حامل محور الفواصل والمستقيمين اللذين x=2 و x=1:

انتهى الموضوع الثاني

0

g'(x)

g(x)

العلامة		/ t = £ t			
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)			
التمرين الأوّل: (04 نقاط)					
1	2×0.5	$\lim_{x \to -\infty} f(x) \neq 2$ خاطئة، لأنّ $2 \neq 1$			
1	2×0.5	f(3) < 1خاطئة، لأنّ $f(3) < 1$			
1	2×0.5	\cdot]2; $+\infty$ [متزايدة تماما على f متزايدة تماما على f			
1	2×0.5	$]2;+\infty[$ ولا تقبل حلا في $]-\infty;2[$ ولا تقبل حلا في $f(x)=1$			
		التّمرين الثّاني: (04 نقاط)			
1	0.5	1) أ. المبلغ المستهلك في شهر جانفي هو 56000DA			
	0.5	ب. المبلغ المستهلك في شهر فيفري هو 53200DA			
1	0.5	$u_{n+1} = \frac{19}{20}u_n$ و $u_1 = 56000$ نجد: (2			
	0.5	الاستنتاج: (u_n) متتالية هندسية أساسها 0.95			
1	0.25 0.75	$u_n = 56000 \left(\frac{19}{20}\right)^{n-1}$ $\dot{q} = u_1 \times q^{n-1}$ (3)			
		4) أ. حساب المبلغ المستهلك خلال سنة 2019			
	0.5	$\left[1-\left(\frac{19}{20}\right)^{12}\right]$			
1		$u_1 + u_2 + u_3 + \dots $ $u_{12} = 56000 \frac{\left(1 - \left(\frac{19}{20}\right)^{12}\right)}{1 - \left(\frac{19}{20}\right)} = 514796.7018 \ DA$			
	0.5	ب. المبلغ المدّخر خلال هذه السنة			
	0.5	$12 \times 70000 - 514796.7018 = 325203.2982DA$			
التّمرين الثّالث: (04 نقاط)					
	0.75	$u_n < \frac{9}{2}$ ، n أ. إثبات بالتّراجع أنّه من اجل كل عدد طبيعي المراجع أنّه من المراجع أنّه أنّه من المراجع أنّه أنّه من المراجع أنّه من المراجع أنّه من المراجع أنّه أنّه من المراجع أنّه من المراجع أنّه من المراجع أنّه أنّه من المراجع أنّه أنّه أنّه من المراجع أنّه أنّه أنّه أنّه أنّه أنّه أنّه أنّه			
1.5	0.5	$u_{n+1} - u_n \ge 0$ ومنه $u_{n+1} - u_n = -\frac{1}{3} \left(u_n - \frac{9}{2} \right)$ ب			
	0.25	استنتاج أن (u_n) متقاربة			
	0.5 0.25	$v_0 = -\frac{7}{2}$ ومنه (v_n) متتالیة هندسیة أساسها $\frac{2}{3}$ و $v_{n+1} = \frac{2}{3}v_n$ أ. نجد:			
1.75	0.25	$v_n = -\frac{7}{2} \times \left(\frac{2}{3}\right)^n . $			
	0.25 0.5	$\lim_{n \to +\infty} u_n = \frac{9}{2} \qquad \qquad u_n = -\frac{7}{2} \times \left(\frac{2}{3}\right)^n + \frac{9}{2}$ لدينا:			
0.75	0.75	$S_n = \frac{21}{2} \left(\left(\frac{2}{3} \right)^{n+1} - 1 \right) + \frac{9}{2} \left(n + 1 \right) $ (3			

2020 تابع للإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعب(ة): تسيير واقتصاد/ بكالوريا

العلامة		/ t "\$t c . : t		
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)		
لتّمرين الرابع: (08 نقاط)				
1	2×0.5	$\lim_{x \to +\infty} g(x) = +\infty \text{o} \lim_{x \to 0} g(x) = -\infty (1 \text{ (I)})$		
	0.25	$g'(x) = \frac{2x^2+1}{x}$: $]0;+\infty[$ من أجل كل x من أجل كل		
1	0.25	x 0 0 $+\infty$ $]0;+\infty[$ الدّالة g متزايدة تماما على المجال		
	0.5	g(x) + $g(x)$		
	0.25	و بما أن g متزايدة تماما على $g(1) = 0$ فإن:		
1	0.75	g سالبة تماما على المجال $[0;1]$ وموجبة تماما على المجال g		
1	2×0.5	$\lim_{x \to +\infty} f(x) = +\infty \lim_{x \to +\infty} f(x) = 2 (1 \text{ (II)})$		
1	1	$f'(x) = x^2 - 1 + \ln(x) = g(x)$ (2		
1	0.5	[1;+ ∞] الدالة f متناقصة تماما على المجال $[0;1]$ ومتزايدة تماما على		
	0.5	جدول تغيرات.		
	0.25	$f(2) = \frac{2}{3} + 2\ln 2$ (4		
1	0.75	$\left(C_f ight)$ simil		
1	1	$F'(x) = f(x)$: $]0; +\infty[$ من أجل كل x من المجال (5		

تابع للإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعب(ة): تسيير واقتصاد/ بكالوريا 2020

العلامة					
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثّاني)			
	التّمرين الأوّل: (04 نقاط):				
1	2×0.5	F(1) = 0 و $F'(x) = f(x)$ لأنّ (x) و المحيح: ج)، لأنّ (1)			
1	2×0.5	$\frac{F(1)-F(0)}{1-0} = -\frac{8}{9}$ الاقتراح الصحيح: ب)، لأنّ $\frac{2}{9}$			
1	2×0.5	[3;+ ∞] الاقتراح الصحيح: أ)، لأنّ $f'(x) \ge 0$ على المجال			
1	2×0.5	x = 5 أو $x = 1$			
التّمرين الثّاني: (04 نقاط)					
1	2× 0.5	$v_3 = 8$ و $v_5 = 32$ بيان أنّ: 32			
	0.75 0.25	$v_0=1$ و $q=2$ أ . بيان أنّ: $q=2$ و $q=2$			
02	0.5	$v_n = 2^n \cdot \mathbf{y}$			
	0.5	$n=10$ وبالتالي $v_n=1024$ ج. $v_n=1024$			
	0.5	$u_0 = -3$ و $u_n = 2n - 3$ کیت: $u_n = 2n - 3$ حیث: $u_n = u_n + v_n$. (3)			
1	0.5	$S_n = (n+1)(n-3) + 2^{n+1} - 1$ ب. بیان اُنّ: 1			
التّمرين التّالث: (04 نقاط)					
1	0.25 0.75	$u_n > 3$: n البرهان بالتّراجع أنّه من أجل كلّ عدد طبيعي البرهان بالتّراجع أنّه من أجل كلّ عدد البيعي			
	0.75	متناقصة تماما (u_n) متناقصة تماما			
1	0.25	متناقصة تماما ومحدودة من الأسفل فهي متقاربة $\left(u_{n} ight)$			
	0.75 0.25	$v_0=2$ ومنه $\left(v_n ight)$ هندسية أساسها $\frac{5}{7}$ و $v_{n+1}=\frac{5}{7}v_n$. أ			
1.75	0.25	$v_n = 2\left(\frac{5}{7}\right)^n \cdot \mathbf{y}$			
	2x0.25	$\lim_{n\to\infty} u_n = 3 u_n = 2 \times (\frac{5}{7})^n + 3 \text{(i)}$ ج. استنتاج أنّ:			
0.25	0.25	5 ومنه أصغر قيمة ل $u_n < rac{7}{2}$ ومنه أصغر $u_n < rac{7}{2}$ ومنه أصغر قيمة ل			

تابع للإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعب(ة): تسيير واقتصاد/ بكالوريا 2020

العلامة		
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثّاني)
		التّمرين الرابع: (08 نقاط)
1	0.75	g مستمرة ومتزايدة تماما على $]0+;0[$ وتأخذ قيمها في $]\infty+;\infty-[$
	0.25	ومنه المعادلة $g(x)=0$ تقبل حلا وحيدا α في $g(x)=0$ وبما أنّ:
	0.20	$0.9 < \alpha < 1$: فإن $g(0.9) \times g(1) < 0$
0.5	0.5	$g(\alpha) = 0$ و $g(x) < 0$: $]0; \alpha[$ و على $g(x) > 0$ و $[\alpha; +\infty[$ على المجال
1	2×0.5	$\lim_{x \to +\infty} f(x) = +\infty \qquad \lim_{x \to 0} f(x) = +\infty (1(II)$
	0.25	(C_f) مقارب مائل لـ $\lim_{x \to +\infty} (f(x) - (3x - 2)) = 0$. أ
	0.25	$:(\Delta)$ بالنسبة (C_f) بالنسبة بالنسبة (Δ)
1		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1		$\left]0;1 ight[$ علی $\left(\Delta ight)$ فوق $\left(C_{f} ight)$
	0.5	رن (A) علی $[1;+\infty[$ علی (A) علی (C_f)
		$A(1;1)$ يقطع (Δ) في النقطة (C_f)
	0.5	$f'(x) = \frac{g(x)}{x^3}$: بيان أنّ
1.5	0.5	$[lpha;+\infty[$ متزایدة تماما علی $[lpha;+\infty[$ ومتناقصة تماما علی ومتناقصة تماما علی
	0.5	جدول التغيرات
1	0.25	$\cdot(C_f)$ و Δ انشاء (Δ) (Δ) انشاء (Δ) (Δ) (Δ) انشاء (Δ) (
	0.75	
2	1	$H'(x) = -\frac{\ln x}{x^2}$: $]0; +\infty[$ من أجل كل x من أجل كل (5
	1	$\int_{1}^{2} f(x) dx = 2(3 + 2\ln 2)cm^{2}$: