(Big) Data Engineering In Depth From Beginner to Professional

Mostafa Alaa Mohamed Senior Big Data Engineer

mustafa.alaa.mohamed@gmail.com

¹Big Data & Analytics Department, Epam Systems

The Definitive Guide to Big Data Engineering Tasks

Table of Contents I

- Course Introduction
 - Learning Objectives and Audience
 - Getting max benefit from this course
 - Chapter Dependencies
 - Assignments, Labs, and Text Books
- Introduction To Data Management and Data Warehouse
 - Data Management
 - Data Abstraction
 - Introduction to DWH
 - Motivation to Data Warehouse (DWH)
 - Differences Between DWH and Operational DB
 - Types of DWH
 - Use Cases of Operational DB vs DWH
 - DWH Characteristics
 - Hot vs Cold Storage

Table of Contents II

- DWH Architecture
 - Source System Integration Process
 - Extraction Layer
 - Staging Layer
 - Data Modeling
 - ETL Process
 - Storage layer
 - Logical layer
 - Reporting (UI) layer
 - Metadata layer
 - System operations layer
- File Formats
- Data Encoding and Formats
- Data Compression Technique
- Data Archiving and Retention
- DWH On Cloud

Table of Contents III

- Further Readings and Assignment
- Introduction To Distributed Systems
 - Distributed Systems Concepts
 - Distributed Systems Architecture
 - Distributed Systems Challenges
 - Design Simple Distributed System
 - Further Readings and Assignment
- Madoop and Map-Reduce
 - Hadoop Architecture
 - Storage
 - YARN
 - Hadoop I/O
 - Processing
 - Map-Reduce
 - Map-Reduce Components

Table of Contents IV

- Word-Count Example
- Pig
- Hive
- ZooKeeper
- Further Readings and Assignment
- 5 Introduction to Functional Programming
 - Why functional programming commonly used in distributed systems?
 - Introduction to Scala
 - Further Readings and Assignment
- Spark Framework
 - Spark Philosophy towards the Engine and the Programming languages
 - Spark Basics

Table of Contents V

- Spark Programming using RDDs
 - Spark RDD
 - Spark Working With Key/Value Pairs
- Spark Datasets/Dataframe
 - Spark SQL
 - Dataframes/Datasets vs. RDDs
- Spark on Production
- Spark For Batch Processing
- Building custom input and output connector using Spark
- Spark Streaming
- Spark using other Programming Languages
 - PySpsark for Python Geeks
 - RSpark for R Geeks
- Spark For Data Scientist
- Spark Graph Dataframe/Graphx

Table of Contents VI

- Tuning your Spark Jobs
- Further Readings and Assignment
- Real World Applications
 - Big Data Development Life Cycle
 - Template Concept for Data Engineering
 - Template for ETL Application
 - Template for QA
 - Template for Streaming Applications
 - Template for Machine Learning Applications
 - Further Readings and Assignment
- Massaging Systems
 - Motivation
 - Massaging Systems Architecture
 - JMS as an example
 - Introduction to Kafka

Table of Contents VII

- Kafka Architecture
- Kafka Topics
- Partitions
- Kafka Producers
- Kafka Consumers
- Kafka Connector
- Kafka Custom Connectors
- Kafka Configuration
- Kafka Configuration Optimizations
- Kafka Operations
- Kafka Integration with Enterprise tools
- Further Readings and Assignment
- Data Orchestration
 - Motivation
 - Enterprise vs Open source tools
 - Open source tools (Oozie as an Example)

Table of Contents VIII

- Enterprise source tools
- How to choose the right tool?
- Further Readings and Assignment
- **10** NOSQL
 - Introduction to NoSQL Databases.
 - Cassandra
 - Why Cassandra?
 - Introducing Cassandra
 - The Cassandra Data Model
 - Architecture
 - Reading and Writing Data
 - Integrating Hadoop
 - Further Readings and Assignment
- Elastic
 - Further Readings and Assignment

Table of Contents IX

- Data Architecture Design
 - Further Readings and Assignment
- Appendix
 - Appendix A- Shell Programming
 - Appendix B- Java Programming
 - Appendix C- Scala Programming
 - Appendix D- SQL Programming
 - Appendix E- Oozie Orchestration
 - Appendix F- DWH Concepts and Data Modeling Design
 - Appendix G- Machine Learning Concepts Data Engineers
 - Appendix H- Docker for Data Engineers

Introduction To Distributed Systems

Moustafa Alaa Data Engineering In Depth November 9, 2019 129 / 278

Chapter Objectives

• Understand the distributed systems concepts.

Chapter Objectives

- Understand the distributed systems concepts.
- Replication and its usage in distributed systems.

130 / 278

Chapter Objectives

- Understand the distributed systems concepts.
- Replication and its usage in distributed systems.
- Partitioning and its usage in distributed systems .

Distributed Systems Concepts

Moustafa Alaa Data Engineering In Depth November 9, 2019 131 / 278

Distributed Systems Concepts

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

Distributed Systems Architecture

Moustafa Alaa Data Engineering In Depth November 9, 2019 133 / 278

Distributed Systems Architecture

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

Distributed Systems Challenges

Moustafa Alaa Data Engineering In Depth November 9, 2019 135 / 278

Distributed Systems Challenges

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

Design Simple Distributed System

Design Simple Distributed System

- Any Big Data solution working based distributed systems.
- What is distributed systems in brief?

Further Readings and Assignment

Moustafa Alaa Data Engineering In Depth November 9, 2019 139 / 278