(0 items)

 $\underline{\mathsf{Home}} > \underline{\mathsf{Sensors} \ \& \ \mathsf{Modules}} > \underline{\mathsf{All Products}} > \underline{\mathsf{TCM 5LT}}$

Full-tilt accuracy in real-world conditions.

TCM 5LT

360° tilt-compensated heading module

Full Tilt Compensation

± 90° pitch; ± 180° roll

Heading accuracy 0.3°

0.05 μT (0.0005 Gauss)

High Resolution Field Measurement

40 to 70 ms from power down for valid

Wide Field Measurement Range

10 to 25 ms from power down to power up ackn

High Precision

Instant Startup

Ultra-Compact Size

± 80 µT (± 0.8 Gauss)

Binary Digital Interface

 0.5° (Tilt > 70°) 0.3° (Tilt < 70°)

3.3 × 3.1 × 1.3 cm

LVCMOS (UART)

Digital Interface

Binary

TCM 5LT

The TCM5LT combines a full 360 degrees of tilt compensation with transistor-to-transistor level (TTL) output — providing ultraprecise digital compass heading information and magnetometer measurements while using less power than any other tilt-compensated compass module.

The TCM5LT combines PNI's patented magneto-inductive sensors with a 3-axis MEMS accelerometer in a single temperature- and noise-stabilized ASIC that's inherently free of offset drift. And using its included hard- and soft-iron correction algorithms, the TCM5LT calibrates out most magnetic anomalies for repeatable, high-resolution measurement across a wide range of navigation and tracking applications.

3-AXIS MEASUREMENT

3D ORIENTATION

HARD-IRON CORRECTION

HIGH-RESOLUTION/ACCURACY

INTEGRATED PROCESSOR

MODULE

SOFT IRON CORRECTION

Purchase Options

TCM 5LT \$1.849.00 Module only

Product Information

Specifications

Downloads Datasheet

Manual **Application Notes** Software

Support

FAQs Request a Quote

Find Sensors & Modules

By Application By Feature All Products

Flexible Mounting Options

Horizontal or vertical

Hard and Soft Iron Calibration

Customizable by user

High Resolution

Compass heading 0.1°

High Tilt Repeatability

 0.05°

Low Power 7.2 to 11.5 mA typical draw;

85 to 220 µA in sleep mode

Wide Temperature Range

-40 to 85 °C (operational)

Compact Size

3.33 × 3.1 × 1.35 cm

RoHS Compliant

Heading Specifications

Accuracy (RMS)

Max Dip Angle Repeatability (RMS)1 0.05° Resolution

Magnetometer Specifications

Calibrated Field Measurement Range ± 80 µT Magnetic Repeatability $\pm 0.1 \mu T$

6/13/2009 12:07 AM 1 of 2

© 2009 PNI Sensor Corporation | Legal | Privacy | Site Map

Magnetic Resolution $\pm 0.05 \ \mu T$

Tilt Specifications

 Pitch Accuracy
 0.2° RMS

 Roll Accuracy (RMS)
 0.2° (Pitch < 65°)</td>

 0.5° (Ritch < 90°)</td>
 0.5° (Ritch < 90°)</td>

0.5° (Pitch < 80°) 1.0° (Pitch < 86°) ± 90° Pitch ± 180° Roll

 $\begin{tabular}{ll} Tilt Repeatability 2 & 0.1° \\ Tilt Resolution & 0.1° \\ \end{tabular}$

Calibration

Tilt Range

Hard Iron Calibration Yes
Soft Iron Calibration Yes

Mechanical Specifications

Connector for RS-232 Interface 4-Pin

 $\begin{array}{lll} \mbox{Dimensions (L \times W \times H)} & 3.3 \times 3.1 \times 1.3 \mbox{ cm} \\ \mbox{Mounting Options} & \mbox{Screw} \\ \mbox{Mounts/Standoffs} \\ \mbox{Horizontal} \\ \end{array}$

Weight 10 grams

I/O Specifications

Communication Rate 300 to 115200 baud

Latency from Power-On ≤ 25 ms

Latency from Sleep Mode ≤ 70 ms valid measure

Maximum Sample Rate 20 samples/sec

Output Formats Binary High Performance Protocol

Power Specifications

Idle Mode 7.2 mA RMS (push mode)

11.5 mA RMS (poll mode)

Sleep Mode Current Draw 85 to 220 µA

Supply Voltage (VDC)

Typical Current Draw
(Continuous Output)

3.6 to 5 V (Unregulated)

Maximum: 22 mA

Typical: < 20 mA

Environmental Specifications

Humidity Non-condensing / Qualified to MIL-STD-810F

Operating Temperature Range -40 to 85 °C

Shock 2500 g, per MIL-STD-810F

Storage Temperature Range $$-40\ \text{to}\ 125\ ^{\circ}\text{C}$$

Vibration Qualified to MIL-STD-810F

2 of 2 6/13/2009 12:07 AM

¹Repeatability is based on statistical data at ± 3 sigma limit about the mean.

 $^{^2\}mbox{Repeatability}$ is based on statistical data at \pm 3 sigma limit about the mean.