ACH2025 Laboratório de Bases de Dados Aula 2

Revisão de Conceitos

Professora:

Fátima L. S. Nunes

Conceitos Básicos

- Campo representação informatizada de um dado real / menor unidade de informação com valor significativo para o usuário
- Dado conteúdo do campo
- Registro conjunto de campos
- Arquivo conjunto de registros
- Banco de Dados armazenamento físico dos arquivos
- Sistema Gerenciador de Banco de Dados (SGBD)
 - software responsável pelo armazenamento e recuperação dos dados do BD.

- Redundância
- Inconsistência
- Dificuldade no acesso a dados
- Isolamento dos dados
- Múltiplos usuários
- Segurança
- Integridade
- Atomicidade

Redundância

- Arquivos e aplicações criados e mantidos por diferentes programadores → arquivos com formatos diferentes e programas escritos em diversas linguagens de programação.
- Informação repetida em diversos lugares (arquivos).

Inconsistência

- Decorrência da redundância.
- Várias cópias dos dados poderão divergir ao longo do tempo.

- Dificuldade no acesso aos dados
 - Necessidade de construir programas para obter qualquer informação solicitada.

Exemplo

Uma empresa precisa dos nomes de todos os clientes que fazem aniversário no mês de fevereiro, mas esta solicitação não foi prevista no projeto do sistema → existe somente uma aplicação para gerar a relação de todos os clientes da empresa.

Alternativas:

- 1) separar manualmente da lista de todos os clientes aqueles que necessita
- 2) requisitar um programador para escrever o programa necessário.

Ambas alternativas são insatisfatórias.

...Mais tarde a empresa precisa saber os clientes que têm saldo negativo.

Isolamento dos dados

 Dados dispersos em vários arquivos e arquivos em diferentes formatos → difícil escrever novas aplicações para recuperação apropriada dos dados.

Múltiplos usuários

 Atualizações concorrentes podem resultar em inconsistências.

Exemplo

Conta corrente com saldo = R\$500,00

Dois clientes debitam da conta A simultaneamente (\$50 e \$100, respectivamente)

Na execução dos programas, ambos lêem o saldo antigo, retiram, cada um seu valor correspondente, sendo o resultado armazenado.

Dependendo de qual deles registre seu resultado primeiro, o saldo da conta A será \$450 ou \$400, ao invés do valor correto de \$350.

- Segurança
 - Definir autorizações de acesso a diferentes usuários.

Integridade

 Valores dos dados armazenados devem satisfazer a certas restrições para manutenção da consistência.

Exemplo

O valor da nota final de um aluno deve estar entre 0 e 10. Os programadores determinam o cumprimento desta restrição através da adição de código apropriado aos vários programas aplicativos.

Entretanto, quando aparecem novas restrições, é difícil alterar todos os programas para incrementá-las. O problema é ampliado quando as restrições atingem diversos itens de dados em diferentes arquivos.

Atomicidade

 Algumas operações devem ser feitas de forma única, atômica, a fim de assegurar a integridade e consistência dos dados.

um programa para transferir R\$50,00 da conta A para uma conta B. Se ocorrer falha no sistema durante sua execução, é possível que

os 50 reais sejam debitados da conta A sem serem creditados na

conta B, criando um estado inconsistente no banco de dados.

É essencial para a consistência do banco de dados que ambos, débito e crédito ocorram, ou nenhum deles seja efetuado. Isto é, a transferência de fundos deve ser uma operação *atômica* – deve ocorrer por completo, ou não ocorrer.

Exemplo

Regras para que um sistema de manipulação de dados seja um SGBD

- Auto-contenção conter dados, suas descrições, relacionamentos e formas de acesso.
- Independência dos Dados aplicações imunes a mudanças na estrutura de armazenamento e à estratégia de acesso a dados.
- Abstração dos Dados usuário não precisa saber detalhes sobre armazenamento real.
- Visões formas diferentes de ver os dados de acordo com necessidade dos usuários.
- Transações gerenciar integridade sem precisar de aplicativos.
- Controle automático de acesso vários usuários, travamento eficiente.

Características de um SGBD

- Controle de Redundâncias informações armazenadas em um único lugar.
- Compartilhamento dos Dados garantir concorrência ao acesso dos dados, sem erro.
- Controle de Acesso seleção de permissões por usuário.
- Interfaceamento facilidade para recuperação de informação.
- Esquematização mecanismos que possibilitem a compreensão do relacionamento entre as tabelas e sua manutenção.
- Controle de Integridade aplicações e acessos não podem comprometer integridade dos dados.
- Backups facilidade para recuperar falhas de hardware e software.

Abstração de Dados

- SGBD: estruturas complexas para a representação dos dados no banco de dados.
- Complexidade precisa ser escondida dos usuários.
- Níveis de abstração: grande vantagem dos SGBD
 - Nível físico: mais baixo descreve como os dados são armazenados
 - Nível conceitual ou lógico: quais dados são armazenados e quais relacionamentos entre eles.
 - Nível visão: expõe apenas parte do banco de dados.

Abstração de Dados

Instâncias e Esquemas

- instância → conjunto de informações contidas em determinado BD em um dado momento.
- esquema → projeto geral do BD → mudados com pouca freqüência.

Analogia com linguagem de programação:

var ClienteNovo: cliente

Área de memória que contém um registro do tipo cliente. Valor de ClienteNovo em um dado momento é análogo à instância. Definição do tipo é análogo ao esquema.


```
SISTEMAS DE INFORMAÇÃO
```

```
Type cliente = record
    cliente-nome: string;
    cliente-CPF: string;
    cliente-endereco: string;
    cliente-cidade: string
end;
```


Independência de Dados

Capacidade de modificar a definição dos esquemas em determinado nível, sem afetar o esquema do nível superior

- ➤ <u>Independência de dados física</u>: modifica o esquema físico sem que, com isso, qualquer programa aplicativo precise ser reescrito (ocasionais para aumento de desempenho).
- ➤ <u>Independência de dados lógica</u>: modifica o esquema lógico sem que, com isso, qualquer programa aplicativo precise ser reescrito (sempre que uma estrutura lógica do BD é alterada)
 - mais difícil de ser atingida.

Linguagens de Banco de Dados

SGBDs:

- Uma linguagem para os esquemas (DDL)
- Uma linguagem para consultas e atualizações (DML)
- Data Definition Languagem (DDL):
 - Especificação do esquema de dados
 - resultado da compilação de instruções DDL -> conjunto de tabelas que constituem o <u>dicionário de dados</u> ou <u>diretório de dados</u>
 - dicionário de dados: arquivo de metadados (dados a respeito de dados)
 no SGBD o diretório é consultado antes que o dado real seja modificado
 - Estrutura de memória e método de acesso usados pelo BD: DDL especial denominada (linguagem de definição e armazenamento de dados – data storage and definition language)

Linguagem de Manipulação de Dados (DML)

- Data Manipulation Language (DML)
 - manipulação de dados:
 - recuperação das informações armazenadas no BD

 - > remoção de informações do BD
 - modificação das informações do BD
 - Objetivo
 proporcionar interação humana eficiente com o sistema.
 - DML viabiliza o acesso (manipulação) dos dados organizados por um modelo de dados apropriado.

Modelo Entidade-Relacionamento

- Projeto de um BD:
 - (1) modelo conceitual
 - (2) projeto lógico
- Modelo Entidade-Relacionamento:
 - modelo conceitual de dados
 - criado em 1976 por Peter Chen
 - representado graficamente pelo Diagrama Entidade-Relacionamento (DER)

Modelo Entidade-Relacionamento

Diagrama Entidade-Relacionamento (DER)

Entidades e atributos -• Exemplo: Representação

Representação de Relacionamentos

Exemplo:

Representação de Relacionamento Ternário

Relacionamentos e Conjuntos de Relacionamentos

Exemplo:

Relacionamentos e Conjuntos de Relacionamentos

- Uma instância de relacionamento em um esquema E-R representa a existência de uma associação entre a entidade e o mundo real no qual se insere o empreendimento que está sendo modelado.
- Atributos descritivos

 atributos próprios do conjunto de relacionamentos.
 - Exemplo: data poderia ser um atributo do conjunto de relacionamentos ClienteConta, especificando quando aquela conta foi movimentada pela última vez.

Representação do Modelo E-R

Cardinalidade de mapeamentos

- Há dois tipos de cardinalidade: máxima e mínima
- Cardinalidade máxima:
 - expressa o número máximo de entidades ao qual outra entidade pode estar associada via um relacionamento.
 - úteis principalmente em relacionamentos binários
- Cardinalidade mínima:
 - expressa o número mínimo de entidades ao qual outra entidade pode estar associada via um relacionamento.

Cardinalidade – Outras notações

Exemplo: cardinalidade um-para-muitos

Representação de autorrelacionamento

 Papel deve ser especificado através de rótulos nas linhas que ligam os retângulos aos losangos.

Cardinalidade de Relacionamento Ternário

 Em um relacionamento R entre três entidades A, B e C, a cardinalidade de A e B dentro de R indica quantas ocorrências de C podem estar associadas a um par de ocorrências de A e B.

Cardinalidade Mínima

- Número mínimo de entidades que são associadas a uma ocorrência de outro conjunto de entidades através de um relacionamento.
- Consideramos apenas duas cardinalidades mínimas: zero e 1
- A cardinalidade mínima 1 também recebe a denominação de associação obrigatória.
- A cardinalidade mínima 0 também recebe a denominação de associação opcional.

Chaves Primárias

- Conceitualmente, entidades e relacionamentos são distintos, mas como diferenciá-los no Banco de Dados?
- Para conjunto de entidades:
 - Distinção → superchave
 - - Exemplo:
 - podem ser superchaves de cliente:

```
CPF
```

Nome-cliente + CPF

- Nome-cliente + data_nascimento + endereço (considerando que não há pessoas como mesmo nome, nascidas na mesma data, morando no mesmo endereço)
- não pode ser superchave de cliente:

```
Nome-cliente
```


Chaves Primárias

- Se K é uma superchave, qualquer conjunto de atributos que contenha K é uma superchave.
- superchave pode conter atributos desnecessários
- O que nos interessa superchaves menores
 possíveis aquelas em que nenhum subconjunto é
 superchave chaves candidatas.
 - Exemplo
 - podem ser chaves candidatas:

não pode ser chave candidata:

Chaves Primárias

- - Exemplo: chave primária de cliente:
 - → CPF
- Chave (primária, candidata, superchave) → propriedade do conjunto de entidade e não de uma entidade individualmente.
 - Duas entidades individuais em um mesmo conjunto não podem ter, simultaneamente, valores iguais em seus atributos-chaves.

Chaves Primárias - representação no DER

Dependência de existência

- A existência de uma entidade A depende da existência da entidade B.
 - A é <u>dependente da existência</u> de B.
 - Se B for excluído, o mesmo deve acontecer com A.
 - A é chamada <u>entidade subordinada</u>
 - B é chamada <u>entidade dominante</u>

Dependência de existência

- A participação de um conjunto de entidades E no conjunto de relacionamento R é dita total se todas as entidades em E participam em pelo menos um relacionamento R.
- Se somente algumas entidades em E participam no relacionamento R, a participação do conjunto de entidades E no relacionamento R é dita parcial.
- A participação total está estreitamente relacionada à existência de dependência

Chaves Primárias – Entidade Forte e Fraca

 Um conjunto de entidades pode não possuir atributos suficientes para formação de uma chave primária.

Exemplo:

- conjunto de entidades transação, com os atributos número-transação, data e valor.
- movimentações em contas diferentes podem ter o mesmo número de transação.

Representação de Entidade Fraca

Chaves Primárias – Entidade Forte e Fraça

- Entidade fraca

 <u>não possui</u> chave primária própria

- Discriminador de um conjunto de entidades fracas

 conjunto de atributos que permite distingüir uma particular entidade em um subconjunto de entidades, mas não permite distingüi-la de todas as demais entidades.
 - Também conhecido como identificador ou chave parcial
 - Exemplo:
 - conjunto de entidades transação: número-transação identificam unicamente uma transação para cada conta.

Chaves Primárias – Entidade Forte e Fraca

 Chave primária de um conjunto de entidades fracas → chave primária da entidade forte da qual é existencialmente dependente + discriminador.

- Exemplo:
 - Chave primária de transação:
 - → (<u>número-conta</u>, <u>número-transação</u>)

- Grande parte dos bancos de dados podem ser modelados com os conceitos básicos do DER.
- No entanto, algumas extensões permitem refinamentos que podem ser muito úteis.
- Modelo Entidade-Relacionamento Estendido:
 - Especialização
 - Generalização
 - Conjuntos de entidades de nível superior e inferior
 - Herança de atributos
 - Agregação

Especialização

- Resultado da separação de entidades de nível superior, formando um conjunto de entidades de nível inferior.
- Processo top-down
- Por quê? Atributos não se aplicam a todas as entidades.

- Exemplo:
 - Conjunto de entidades conta, com atributos número-conta e saldo
 - Cada conta pode ser classificada como:
 - → conta-corrente: com atributos adicionais data-abertura e valor-limite
 - → conta-poupança: com atributos adicionais taxa-juros e data-última-movimentação
 - Então:
 - → conta: conjunto de entidades de nível superior: superclasse
 - → conta-corrente e conta-poupança: conjuntos de entidades de nível inferior: subclasses

Generalização

Processo inverso da Especialização – bottom up.

 Resultado da união de dois ou mais conjuntos de entidades de nível inferior produzindo um conjunto de entidades de nível superior.

 Por quê? Atributos são comuns a dois ou mais conjuntos de entidades.

Generalização Uma conta deve ser uma conta-corrente ou número conta uma conta-poupança. agência E pode ser somente uma delas. É UMA data-abertura datamovimento valor-limite

conta-

corrente

conta-

poupança

Taxa juros

Generalização e Especialização podem conviver no mesmo conjunto de entidades

Exemplo: cada *empregado* é ou um *secretário* ou um *encarregado-empréstimo*. Cada *secretário* ou *encarregado-empréstimo* tem um *gerente*, que por sua vez, é um *empregado*.

- Agregação
 - Limitação do Modelo E-R → não consegue expressar relacionamentos entre relacionamentos.
 - Solução: mecanismo de agregação -->
 transformação de um conjunto de
 relacionamentos em conjunto de entidades.

 Exemplo: empregado que trabalha em um projeto e usa diversas máquinas para realizar seu trabalho.

Agregação

 abstração através da qual relacionamentos são tratados como entidades de nível mais alto.

Conjunto de entidades

 tabela com número de colunas = número de atributos.

Entidades fortes:

- Se E é um conjunto de entidades fortes com atributos $a_1, a_2, ..., a_n$.
- E será representada por uma tabela chamada E com n
 colunas distintas, cada uma correspondendo a um
 atributo de E.
- Cada linha da tabela corresponde a uma entidade do conjunto de entidades

• Exemplo:

Entidades fracas:

- Se A é um conjunto de entidades <u>fracas</u> com atributos
 a₁,a₂, ..., a_r.
- Se B é um conjunto de entidades <u>fortes</u> do qual A é dependente.
- Se a chave primária B é constituída de atributos $b_1, b_2, ..., b_s$.
- A será representada por uma tabela chamada A com uma coluna para cada tributo do conjunto

$$\{a_1,a_2,...,a_r\}$$
 U $\{b_1,b_2,...,b_s\}$

Conjunto de relacionamentos

 depende da cardinalidade máxima.

Relacionamentos um para vários:

Relacionamentos vários para um:

 Relacionamentos um para um: escolhe-se a melhor chave para ser chave estrangeira

- Relacionamentos vários para vários:
 - Se R é um conjunto de relacionamentos envolvendo os conjuntos de entidades $E_1, E_2, ..., E_n$.
 - Se (E_i) é o conjunto de atributos que forma a chave primária para o conjunto de entidades E_i
 - Se R possui atributos descritivos chamados $\{r_1, r_2, ..., r_m\}$, R será representado por uma tabela com o seguinte conjunto de atributos:

$$\bigcup_{i=1}^{n}$$

Exemplo:

Sempre é necessário verificar se a chave primária resultante é suficiente para garantir a unicidade de chaves!

CPF	número-conta	data
123.456.765-55	900	01/02/99
544.443.965-66	556	08/02/00
975.365.876-11	647	30/03/02
120.332.436-23	801	05/11/99

CLIENTECONTA

- Generalização e Especialização:
 - Trata-se de forma semelhante a relacionamento um-para-um, considerando:
 - chave primária da entidade superior torna-se a chave primária de todas entidades inferiores
 - Acrescenta-se <u>atributo na tabela resultante da</u> <u>entidade superior</u> para distingüir entidade inferior.

Generalização e Especialização:

Agregação:

- A agregação é o resultado de um relacionamento com cardinalidade vários para vários:
 - o relacionamento é transformado em uma tabela, contendo: chaves primárias dos conjuntos de entidades envolvidos e os atributos descritivos do relacionamento.

INFORMAÇÃO

Modelo Relacional

- Conceito de relação matemática (semelhante a tabela de valores) como seu bloco de construção básica.
- Base teórica: teoria dos conjuntos e lógica de predicados de primeira ordem.
- Implementações comerciais:
 - Década de 80: SGBD Oracle e sistema SQL/DS, componente do SO MVS, da IBM.
 - SGBDRs mais conhecidos:
 - DB2 e Informix Dynamic Server (IBM)
 - Oracle e Rdb (Oracle)
 - SQL Server e Access (Microsoft)

Modelo Relacional

Banco de Dados: coleção de relações ->
 cada relação tem um nome único.

 Informalmente, uma relação é semelhante a uma tabela de valores.

Modelo Relacional - Conceitos

atributos

tuplas

Relação CONTA

Domínio = conjunto de valores permitidos para o atributo → atômicos (indivisíveis)

Restrições do Modelo Relacional

- Regras a respeito dos valores que podem ser armazenados nas relações
 - Garantem que mudanças feitas no BD por usuários não resultem em inconsistência dos dados.
 - Valores devem ser sempre satisfeitos em quaisquer das relações R de um banco de dados BD.

Três categorias:

- Restrições inerentes baseadas em modelo.
 - Exemplo: relação não pode ter tuplas repetidas.
- Restrições baseadas em esquemas: que podem ser expressas diretamente nos esquemas do modelo de dados.
 - Exemplo: intervalo de um atributo, chave estrangeira.
- Restrições baseadas em aplicação: devem ser expressas e impostas nos programas de aplicação.
 - Exemplo: tuplas que um usuário pode acessar em uma relação.

1. Restrições de domínio

 Dentro de cada tupla , o valor de cada atributo A deve ser um valor atômico do domínio dom(A).

2. Restrições de chave

 Duas tuplas distintas não podem ter valores idênticos para todos os atributos da chave primária e superchaves (unicidade de chave).

3. Restrições de valores nulos

 Especifica que um atributo da relação não pode ser nulo. Por exemplo: NOME is not null.

4. Restrições de integridade de entidade

Nenhum valor de chave primária pode ser nulo.

5. Restrições de integridade referencial

- o conceito de integridade referencial depende do conceito de chave estrangeira
- Chave estrangeira:
 - Dois conjuntos de atributos C e D <u>compatíveis</u> → existe uma ordem entre os atributos de ambos os domínios tal que o primeiro atributo de C tenha o mesmo domínio do primeiro atributo de D, o mesmo valendo para os segundos atributos, e assim por diante.
 - chave estrangeira → conjunto de atributos D ⊆ R1 que não é chave em R1, é compatível com outro conjunto de atributos C ⊆ Rk que é a chave primária da relação Rk.

chave estrangeira → conjunto de atributos

D ⊆R1 que não é chave na relação R1, mas é compatível com a chave primária de uma outra relação.

A restrição de integridade referencial determina que o valor dos atributos D numa tupla qualquer t(D) da relação R1 onde D não é chave:

- ou é igual ao valor t(C) na relação Rk onde C é chave
- ou é *nulo*.

Exemplo 1:

Professor (número-professor, nome, data-admissão)

Disciplina (código, nome-disc, prof-responsável)

Professor

número- professor	nome	data- admissão
213	Antônio	02/02/1999
400	José	02/04/2000
67	Joana	05/01/1998
43	João	10/11/1997
25	Maria	14/11/1996

Disciplina

código	nome-disc	prof- responsável
CC876	Banco Dados	43
CC566	Linguagem I	NULL
AS654	Algoritmos	43
AS543	Compiladores	400

Restrições baseadas em esquema 6. Outros tipos de restrições

- Restrições de integridade semântica
 - Exemplos:
 - salário do empregado deve ser menor que o do chefe
 - Número máximo de horas-extras é 35.
 - Feitas através dos programas de aplicação ou da linguagem de especificação de restrição (gatilhos e asserções)
- Restrições de dependência funcional
 - Estabelece relacionamento funcional entre dois conjuntos de atributos X e Y, sendo que X determina o valor de Y em todos os estados da relação.
 - Exemplo: o RA 335432 determina sempre o nome da aluna Júlia Neme Delgado.

ACH2025 Laboratório de Bases de Dados Aula 2

Revisão de Conceitos

Professora:

Fátima L. S. Nunes

