Week 5 Video Lecture Notes

A. Learning Outcomes and Key Concepts

introduces EDA techniques and concepts for analyzing and interpreting numerical data

What is Numerical Data?

- It is data predominantly analysed using regression analysis (regression is a major part of statistics)
- the chapter covers:
 - · univariate data analysis
 - bivariate data analysis correlation of variables and related concepts
- Introduces Simple linear regression concepts
 - · how this technique is being used for real data sets

Modelling or Plotting Numerical data

- use of histograms, boxplots and scatter plots
- can be done for both univariate and bivariate data sets

B. Motivation

- attempt to solve issue problem using real housing data collected in Singapore
- Dataset (housing-raw.csv): Sales of HDB Resale flat information between Jan 2017 to Jun 2021

Using the PPDAC

Problem: What factors may affect the popularity and pricing of resale flats sold in Singapore?

Plan: Narrow down the factors in the Problem state (by shortlisting)

- · Age? (of the resale flats at the point of sale)
- Floor Area?
- Time Period?

Data: Clean and prepare the data

- Remove irrelevant columns from 11 down to 4 in the cleaned dataset (have just month, floor_area_sqm, age and relae_price left)
- Filter the months to include just Jan to Jun 2021
- create the age column using calculation

C. Univariate Data Analysis

def: A distribution is an orientation of data points broken down by their observed number of frequency of occurrence.

can present / relate the variables age with its frequency (which can be called freq_of_ages) in a tabular form

· may not be very useful to see the patterns in the data

Histogram

graphical display of the distribution that organizes data points into bins

provides a view of data density (higher bars = more common)

Steps for Creation of the histogram plot

- divide frequency table into smaller bins containing a range of values (i.e. distinct age counts of 2, 3, 4, 5, 6, 7,
 become 0-2, 2-4, 4-6 etc.)
 - bins exclude the lower end-point and include the upper end-point of the interval
- · Construct bars for each bin on the x-axis
- · deciding bin range: often unclear and requires iterations
 - is an important factor since data gets grouped differently after adjusting the bin sizes and can affect our description/judgement based on the data
 - · affects how we "estimate" the central tendency and skew of the distributions

Considerations / Best practices

- avoid histograms with large bin widths that group data to a limited number of bins (no variability in description of data)
 - · loose interesting details
- avoid histograms with small bin widths that group data into too many bins (also affects one perception of distribution)
 - · difficult to get an overall picture of the distribution
- may have to iterate over different bin sizes and see which is the most appropriate (based on ability to extract useful insights)
- · don't confuse histograms with bar plots
 - one shows distribution across numerical bins/ranges while the other compares categories of the same variable
 - · one has breakages or gaps while the other doesn't
 - numerical order doesn't matter for matter for bar plots but matters for histograms

Histograms

Range 4-6 years:

- Most frequent
- 17% of flats sold
- Due to MOP?

Advantages

- presents the same info as a frequency table but is easier to understand
 - · good for describing shapes of distributions
- ullet useful for large(r) data sets \Longrightarrow impractical to show the value of individual observations

Describing distributions

When graphing a distribution of a quantitative variable we look out for the:

- Overall pattern (Shape, Centre and Spread)
- Deviations/Exceptions from the general pattern (Outliers)

1. Shape

We look out for the shape of the distributions via its peaks and skewness (a.k.a. descriptors)

Modality

Good to imagine a smooth curve outlining the distribution

Types

- · unimodal distribution: have one distinct peak
- · bimodal distribution: have two peaks
 - may indicate the presence of two distinct groups
- · multimodal distribution: have multiple peaks
- · uniform distribution: no apparent trend

Characteristics of Unimodal/Bimodal distributions

Classifications

- · Symmetrical: Left and right halves are approximate mirror images, peak is in the centre
- · Left-skewed: long left tail, peak to the right
- · Right-skewed: long right tail, peak to the left

2. Measures of Central Tendency (or centre)

- use mean, median and mode are the measures of skewness to describe a distribution more precisely
- usual occurrence of mean, median and mode in the different types of distributions listed below (usually <u>but not always</u> true)

Mode < Median < Mean

3. Spread

- variability of the distribution around their measures of central tendency using the measures of range and standard deviation
- "spread" across a wider range or higher frequency at the centre?
- def: the range of a data variable is the difference between the highest and lowest recorded data points
- may be misleading at times (give the wrong impression if we don't consider the distribution)

4. Outliers

- def: Outliers are observations that fall well above or well below the overall bulk of the data
- use our judgement or more precise calculation/plotting methods (i.e. using a box plot computation)

Why examine outliers?

- 1. to identify strong skew in a distribution
- 2. for identifying possible data collection and/or entry errors
- 3. providing interesting insights to the data

Key considerations

- mean may be affected as a result of outliers such that it does not stand a good measure of central tendency
- median and mode are called robust statistics (since outliers don't have effects on these)
 - robust to extreme observations (i.e. outliers) \implies values at the endpoints are irrelevant to its calculation
- standard deviation may indicate the spread of value and hence may change drastically if there are many outliers
- may be worth repeating data analysis twice (to evaluate/provide some justifications to whether they should be dropped)
 - with outliers
 - without outliers (with them removed)

 should not be removed unnecessarily and may be a naive approach
- don't remove outliers if they have minimal effect on conclusions ⇒ need to have good justifications to remove

Boxplots

- use a five-number summary to construct the box plot
 - Minimum (Q0)
 - Quartile 1 (Q1)
 - Median (Q2)
 - Quartile 3 (Q3)
 - Maximum (Q4)
- IQR is calculated using Q3-Q1
 - find the median and then the median of upper and lower halves
 - computation of quartiles also differ in Excel (use a different computational algorithm)

Outlier definition in terms of statistics used

An Outlier is valid if it meets one of the two conditions: $outlier > Q3 + (1.5 \times IQR) \lor outlier < Q1 - (1.5 \times IQR)$

Steps in constructing box plots

- 1. Draw a box from Q1 to Q3
- 2. Draw a vertical line in the box where the median is (also can be labelled as Q2)
- 3. Draw lines touching the box, as per the specifications below (a.k.a. whiskers)
 - 1. Extend a line from Q1 to the smallest value that is not an outlier (i.e. $value \geq Q1 1.5 \cdot IQR$)
 - 2. Extend the line also from Q3 to the largest value that is not an outlier (i.e. $value \leq Q3 1.5 \cdot IQR$)
- 4. Indicate outlier points with **dots** (using the considerations above).

- 5. Add the mean (indicated by *X* on the box plot), if necessary.
 - 1. can be added in excel

Describing Boxplots

- · can obtain the "shape" of the plot

 - i.e. is it right or left skewed, or is it a normal distribution?
- looking at the **spread**: not really meaningful on its own (need some basis of comparison)
 - are there many outliers? where do the outliers lie (nearer to Quartile 3??)
 - look at the trends over different time periods (by comparing box plots)

Histograms versus Boxplots

- Histogram provide a better sense of the shape of the distribution variable, especially when great differences in the frequencies in data points
- · Boxplots are more useful
 - when comparing distributions of different datasets (of the same category to draw some conclusion \implies trends)
 - identify and exhibit outliers clearly (dots are very apparent)
- Boxplots don't give information with how many data points there are while histograms are able to show the frequencies

D. Bivariate Data Analysis

- use analytical techniques to answer questions investigating relationships
- two-variable data (i.e. using two columns)
 - · use other forms of visualization to pick up patterns

Can be done through a combination of

- 1. Scatter Plots give idea of the pattern
- 2. combined with Correlation Coefficients checks for linear r/s
- 3. Regression Analysis fit a line or curve to the data

Relationships

Deterministic Relationships

def: the value of one variable can be **determined exactly** if we know the value of the other variable in question. (and probably the function of computation, f)

- commonly represented by straight lines on a plot
 - i.e. Fahrenheit-Celsius conversion or Meter-Feet conversion

Non-deterministic Relationships

- · is the main focus of this section
- often not possible for a statistical or non-deterministic relationship to find or approximate the value of one variable given another (i.e. not predictable)
 - · associative relationship is used instead to describe how entities are linked to each other

Association between two variables

- natural variability exists in measurements of two variables
- average value of one of the variable can be described based on the value of the other variable

Scatter plots

- use if data points are patchy (lots of data)
- if not sure which is the independent and which is the dependent variable, then arbitrarily choose both

Describing Scatter Plots

when describing these plots overall pattern / the "general trend", we use a combination of:

- Direction
 - Positive Relationship: ↑ indep, ↑ dep variable (↑ explanatory, ↑ response)
 - **Negative** Relationship: ↑ indep, ↓ dep variable
- Form
 - its general shape (linear or non-linear/curve patterns) \implies linear if it appear to scatter around a straight line
- Strength
 - description of how closely data follows the form (as described above)
 - · do points deviate from the best fit curve or line?

i.e. Positive Linear relationship or Negative Non-linear relationship

and for deviations, we look at outliers.

Univariate data		Bivariate data	
Overall pattern	Deviation	Overall pattern	Deviation
	from the pattern		from the pattern
1) Shape	Outliers	1) Direction	Outliers
2) Center		2) Form	
3) Spread		3) Strength	