Continuation

Customer Number or Bar Code Label

Divisional

•						
Please type a plus sign (+) inside this box -> + Under the Paperwork Reduction Act of 1995, no persons are requi	red to respo	Paten	App it and Trader	proved for use throu mark Office: U.S. Di	gn 09/30/00. Of	SB/05 (12/97) MB 0651-0032 F COMMERCE
Attorney		/ Docket No.		643CX4	Total Pages	ontrol number.
UTILITY		First Na	med Invent	tor or Application	ldentifier	
PATENT APPLICATION TRANSMITTAL	The	omas J. C	as J. CAMPANA, Jr. et al			
(Only for new nonprovisional applications under 37 CFR 1.53(b))		<u> </u>	<u> </u>			a 6
Only to new nonprovisional applications under 57 GFA 1.55(0))	Express	Mail Label N	0.			
APPLICATION ELEMENTS See MPEP chapter 600 concerning utility patent application conte	ents.	ADDR	ESS TO:	Assistant Commi Box Patent Appli Washington, DC	cation	ensy/
1. X Fee: \$551.00		6.	Microfiche (Computer Progra	m (Appendix)	jc67
Please charge any shortage the fees or credit any over payments therof to the de- account of Antonelli, Ter- Stout & Kraus, Deposit Account & Charles Company of the No. 01-2135.	er- posit ry,		icable, all ri	Amino Acid Sequecessary) Inputer Readable per Copy (identicatement verifying	Copy al to computer	сору)
		ACC	OMPAN	YING APPLICA	ATION PART	rs
3. X Drawing(s) (35 USC 113) [Total Sheets 1: 4. Oath or Declaration [otal Pages] a. Newly executed (original or copy) b. X Copy from a prior application (37 CFF (for continuation/divisional with Box 17 com [Note Box 5 below] i. DELETION OF INVENTOR(S) Signed statement attached do inventor(s) named in the prior a see 37 CFR 1.63(d)(2) and 1.3: 5. X Incorporation By Reference (useable if Box 4b is The entire disclosure of the prior application, 1 copy of the oath or declaration is supplied un is considered as being part of the disclosure accompanying application and is hereby incorporation.	3 1 2 1.63(d)) pleted) eleting pplication, 3(b). checked) from which der Box 4	12. X 13. 14. 15. 15. 16. X	37 CFR 3. (when their English Trust Information Statement Preliminar & Sub. Return Re (Should be Small Entit Statement Certified Colf foreign Other:	nt Papers (cover of PTEV - A. 73(b) Statement re is an assignee, anslation Document Disclosure (IDS)/PTO-1449 y Amendment & Appendix ceipt Postcard (he specifically item ty X Statem (s) X Status Copy of Priority Depriority is claimed Change of Correspinon of Form	ent (if applicable X Copie X Copie Citati IDS copie (54 pages MPEP 503) nized) ent filed in price still proper and cocument(s) f) Address ondence A	er of Attorney (le) es of IDS ons Les or application d desired
reference therein. 17. If a CONTINUING APPLICATION, check appropri	ate box an	d supply the r	equisite inf	ormation:		

11. SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT REQUIRED						
NAME		E. Stout	, ,			
SIGNATURE	ΔD	mort?	tout			-
DATE	December			REG.	NO.	26,422

18. CORRESPONDENCE ADDRESS

(kisert Qustomer No. or Attach bar code label bere)

Continuation-In-part (CIP)

020457

ANTONELLI, TERRY, STOUT & KRAUS, LLP

SUITE 1800

1300 NORTH SEVENTEENTH STREET ARLINGTON, VIRGINIA 22209

TELEPHONE (703) 312-6600 FACSIMILE (703) 312-6666 E-MAIL

09, 161, 462

of prior application No:

email@antonelli.com

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants:

Thomas J. CAMPANA, Jr. et al

Serial No.:

To Be Assigned

Filed:

December 6, 1999

(Concurrently Herewith)

For:

ELECTRONIC MAIL SYSTEM WITH RF

COMMUNICATIONS TO MOBILE PROCESSORS

Group:

2744 (Previous)

Examiner:

William Trost (Previous)

PRELIMINARY AMENDMENT AND INFORMATION DISCLOSURE STATEMENT

Assistant Commissioner for Patents Washington, D. C. 20231

December 6, 1999

sir:

Prior to examination of the above-identified application, please amend the specification as follows:

IN THE SPECIFICATION:

Page i (before Page 1), the Appendix, line 12, change
"10-14" to --10-12--.

In the actual Appendix pages, delete the original 15 pages of the Appendix as filed on May 20, 1991 and insert a substitute Appendix which is attached hereto.

Page ii, line 6, delete the blank line "_____" and insert therefor --07/702,319, now abandoned, which is a parent of United States Patent Application Serial 08/247,466, filed May 23, 1994, now United States Patent 5,438,611.--;

line 8, after "System" delete "(Attorney Docket)"

line 9, delete "No. 780.29766X00)";

line 11, delete the blank line "_____" and insert therefor --07/702,938, now U.S. Patent 5,479,472, issued December 26, 1995,--;

line 11, delete "Attorney" and insert therefor a period --.-; and

line 12, delete "(Attorney"; and
line 13, delete in its entirety and insert
therefor the following:

--This application is a Continuation of United States
Patent Application Serial No. 09/161,462, filed September 28,
1998, which is a Continuation of United States Patent
Application Serial No. 08/844,957, filed April 23, 1997, now
U.S. Patent No. 5,819,172; which is a continuation of
United States Patent Application Serial No. 08/443,430, filed
May 18, 1995, now U.S. Patent 5,625,670; which is a
continuation of United States Patent Application Serial No.
07/702,939, filed May 20, 1991, now U.S. Patent 5,436,960.--

Page 2, line 28, change "switch" to --switches--.

Page 5, line 31, after "finding" insert --a-- and change
"jacks" to --jack--; and

line 35, delete "and".

Page 6, line 15, delete "is" and insert --to be--.

Page 7, line 22, change "provides worldwide" to
--provided--;

line 26, delete "the Assignee's"; and line 32, change "is" to --was--.

Page 8, line 23, delete "than that provided by the
present invention--.

Page 10, line 16, change "transmitter to
--transmitters--; and

line 35, change "utilizes" to --utilized--.

Page 16, line 3, after "and" insert --be--.

Page 18, line 18, after "network" insert a period --.-;
and

line 19, delete "invention."

Page 22, line 16, change "transmission" to
--transmissions--.

Page 25, line 14, change "transmission" to
--transmissions--.

Page 27, at both lines 3 and 13, change "transmission" to
--transmissions--.

Page 35, line 16, change "19" to --119--.

Page 38, line 13, change "relay it" to --transfer the
information--.

- Page 39, line 18, change "relays" to --transfers--;
 line 26, change "relaying" to --transfer--.
- Page 40, line 33, change "relays" to --transfers--.
- Page 41, line 10, change "relays" to --transfers--.
- Page 43, line 16, change "relaying" to --transferring--.
- Page 45, line 1, change "an" to --a--;
 line 2, delete "electronic mail"; and
 line 11, change "a" to --an--.
- Page 46, line 24, change "104" to --314--;

 line 28, after "from" insert --one of-- and on

 the same line, change "processor" to --processors--; and

 line 34, after "Fig. 7", delete the handwritten

 asterisk "*" and the handwritten sentence at the bottom of the

 page and insert therefor --When the RF receiver is connected

 to the SAFARITM computer, the connection is powered by the
- Page 48, line 4, change "the RF transmissions of" to
 --RF transmission by--; and

SAFARI computer.--.

line 21, change "processor" to --processors--.

Page 49, line 12, change "Fig. 8, but optionally," to
--Fig. 8. Optionally,--;

line 15, delete "as";

line 16, delete "illustrated in Fig. 12"; and

line 28, change "functions" to --function--.

Page 50, line 13, change "relays" to --transfers--.

Page 51, line 23, change "relaying" to --transferring--.

Page 52, line 3, change "relaying" to --transfer--

Page 53, line 22, change "is" to --may be--.

Page 54, line 6, change "relaying" to --transferring--.

Page 55, line 33, delete "being".

Page 56, line 1, delete "being".

Page 57, line 21, change "relay" to --transfer--;
line 30, change "10-14" to --10-12--; and
line 32, change "interfaces" to --interfaced--.

IN THE CLAIMS:

Please cancel claim 2-85 without disclaimer or prejudice.

Please insert new claims 86-124 as follows

86. In a system comprising a communication system which transmits alphanumeric information, inputted in a digital format to the communication system from a processor which is processed by a modulator in the digital format to produce a modulated transmission which is transmitted by the communication system, and a RF system having a plurality of RF receivers which receive broadcasts from at least one broadcast location in the RF system, each broadcast including information contained within the alphanumeric information and an identification of each RF receiver to receive the broadcast, an interface comprising:

at least one input which receives the modulated transmission containing at least the alphanumeric information;

at least one output which outputs a processed output, the processed output including the alphanumeric information and the identification of each RF receiver which is to receive the broadcast alphanumeric information; and

a processor, coupled to the at least one input and to the at least one output, which processes the alphanumeric information to produce the processed output outputted by the at least one output.

87. An interface in accordance with claim 86 wherein:

the processing processes at least the alphanumeric information to produce the processed output.

- 88. An interface in accordance with claim 87 wherein:

 the processing of the alphanumerical information
 adds information to the alphanumerical information and the
 identification of each RF receiver to receive the
 alphanumerical information with the processed output
 containing the added information.
- 89. An interface in accordance with claim 87 wherein:

 the identification of each RF receiver is inputted
 by the processor and;

the processing of the alphanumerical information adds information to the alphanumerical information with the processed output containing the added information.

- 90. An interface in accordance with claim 88 wherein:

 the added information is a destination to which the
 processed output is transmitted within the RF system where the
 broadcast occurs.
- 91. An interface in accordance with claim 89 wherein:

 the added information is a destination to which the
 processed output is transmitted within the RF system where
 broadcast occurs.

- 92. An interface in accordance with claim 89 wherein:

 the added information comprises a packet containing
 a destination to which the processed output is transmitted
 within the RF system where the broadcast occurs.
- 93. An interface in accordance with claim 90 wherein:

 the added information comprises a packet containing
 a destination to which the processed output is transmitted
 within the RF system where the broadcast occurs.
- 94. An interface in accordance with claim 91 wherein:

 the added information comprises a packet containing
 a destination to which the processed output is transmitted
 within the RF system where the broadcast occurs.
- 95. An interface in accordance with claim 92 wherein:

 the packet also contains a destination of a switch
 in the RF system to which at least part of the packet is
 transmitted by the RF system.
- 96. An interface in accordance with claim 93 wherein:

 the packet also contains a destination of a switch
 in the RF system to which at least part of the packet is
 transmitted by the RF system.

- 97. An interface in accordance with claim 94 wherein:

 the packet also contains a destination of a switch
 in the RF system to which at least part of the packet is
 transmitted by the RF system.
- 98. An interface in accordance with claim 86 wherein:

 a security check is performed by the processor

 comparing an identification of each receiver, which is to

 receive the information, with actual identifications of

 RF receivers in the RF system with the processor providing the

 processed output when a match of the identification of each

 RF receiver which is to receive the information matches one of

 the RF receivers in the RF system.
- 99. An interface in accordance with claim 87 wherein:

 a security check is performed by the processor

 comparing an identification of each receiver, which is to

 receive the information, with actual identifications of

 RF receivers in the RF system with the processor providing the

 processed output when a match of the identification of each

 RF receiver which is to receive the information matches one of

 the RF receivers in the RF system.

a security check is performed by the processor comparing an identification of each receiver, which is to receive the information, with actual identifications of RF receivers in the RF system with the processor providing the processed output when a match of the identification of each RF receiver which is to receive the information matches one of the RF receivers in the RF system.

a security check is performed by the processor comparing an identification of each receiver, which is to receive the information, with actual identifications of RF receivers in the RF system with the processor providing the processed output when a match of the identification of each RF receiver which is to receive the information matches one of the RF receivers in the RF system.

a security check is performed by the processor comparing an identification of each receiver, which is to receive the information, with actual identifications of RF receivers in the RF system with the processor providing the processed output when a match of the identification of each RF receiver which is to receive the information matches one of the RF receivers in the RF system.

a security check is performed by the processor comparing an identification of each receiver, which is to receive the information, with actual identifications of RF receivers in the RF system with the processor providing the processed output when a match of the identification of each RF receiver which is to receive the information matches one of the RF receivers in the RF system.

a security check is performed by the processor comparing an identification of each receiver, which is to receive the information, with actual identifications of RF receivers in the RF system with the processor providing the processed output when a match of the identification of each RF receiver which is to receive the information matches one of the RF receivers in the RF system.

a security check is performed by the processor comparing an identification of each receiver, which is to receive the information, with actual identifications of RF receivers in the RF system with the processor providing the processed output when a match of the identification of each RF receiver which is to receive the information matches one of the RF receivers in the RF system.

106. An interface in accordance with claim 94 wherein:

a security check is performed by the processor comparing an identification of each receiver, which is to receive the information, with actual identifications of RF receivers in the RF system with the processor providing the processed output when a match of the identification of each RF receiver which is to receive the information matches one of the RF receivers in the RF system.

107. An interface in accordance with claim 95 wherein:

a security check is performed by the processor comparing an identification of each receiver, which is to receive the information, with actual identifications of RF receivers in the RF system with the processor providing the processed output when a match of the identification of each RF receiver which is to receive the information matches one of the RF receivers in the RF system.

108. An interface in accordance with claim 96 wherein:

a security check is performed by the processor comparing an identification of each receiver, which is to receive the information, with actual identifications of RF receivers in the RF system with the processor providing the processed output when a match of the identification of each RF receiver which is to receive the information matches one of the RF receivers in the RF system.

a security check is performed by the processor comparing an identification of each receiver, which is to receive the information, with actual identifications of RF receivers in the RF system with the processor providing the processed output when a match of the identification of each RF receiver which is to receive the information matches one of the RF receivers in the RF system.

110. A method of transmitting information comprising: inputting alphanumeric information in a digital format with a processor;

processing the inputted alphanumeric information with a modulator which converts the alphanumeric information into a modulated transmission encoding the alphanumeric information;

transmitting the modulated transmission with a communication system to an interface;

processing the modulated transmission with a processor at the interface to produce a processed output which includes the information and an identification of a RF receiver in a RF system which is to receive a broadcast of the alphanumerical information and an identification of the RF receiver;

transmitting the alpanumerical information and the identification of the RF receiver with the RF system to a broadcast location; and

broadcasting the alphanumeric information and the identification of the RF receiver to the RF receiver.

- 111. A method in accordance with claim 110 wherein:

 the processing processes at least the alphanumeric information to produce the processed output.
- 112. A method in accordance with claim 111 wherein:

 the processing of the alphanumeric information adds
 information to the alphanumeric information and the
 identification of the RF receiver to receive the
 alphanumerical information with the processed output
 containing the added information.
- 113. A method in accordance with claim 111 wherein:

 the identification of the RF receiver is inputted
 by the processor and;

the processing of the alphanumerical information adds information to the alphanumerical information with the processed output containing the added information.

114. A method in accordance with claim 112 wherein:

the added information is a destination to which the processed output is transmitted within the RF system where the broadcast occurs.

- 115. A method in accordance with claim 113 wherein:

 the added information is a destination to which the
 processed output is transmitted within the RF system where the
 broadcast occurs.
- 116. A method in accordance with claim 113 wherein:

 the added information comprises a packet containing
 a destination to which the processed output is transmitted
 within the RF system where the broadcast occurs.
- 117. A method in accordance with claim 114 wherein:

 the added information comprises a packet containing
 a destination to which the processed output is transmitted
 within the RF system where the broadcast occurs.
- 118. A method in accordance with claim 115 wherein:

 the added information comprises a packet containing
 a destination to which the processed output is transmitted
 within the RF system where the broadcast occurs.
- 119. A method in accordance with claim 116 wherein:

 the packet also contains a destination of a switch
 in the RF system to which at least part of the packet is
 transmitted by the RF system.

- 120. A method in accordance with claim 117 wherein:

 the packet also contains a destination of a switch
 in the RF system to which at least part of the packet is
 transmitted by the RF system.
- 121. A method in accordance with claim 118 wherein:

 the packet also contains a destination of a switch
 in the RF system to which at least part of the packet is
 transmitted by the RF system.
- a security check is performed by the processor comparing an identification of the RF receiver, which is to receive the alphanumeric information, with actual identifications of RF receivers in the RF system with the processor at the interface providing the processed output when a match of the identification of the RF receiver which is to receive the alphanumeric information matches one of the RF receivers in the RF system.
- 123. A method in accordance with claim 110 wherein:
 the alphanumeric information is stored in a memory
 coupled to the RF receiver.
- 124. A method in accordance with claim 123 wherein:

 another processor, coupled to the memory, processes
 the alphanumeric information stored in the memory.

<u>REMARKS</u>

The specification has been amended in a manner identical to patent application Serial No. 09/161,462, patent application Serial No. 07/702,939, patent application Serial No. 08/443,430, and patent application Serial No. 08/844,957.

A photocopy of each of the PTO 892 Forms used by the Examiner to make prior art of record in the various Office Actions in the above-referenced applications and a copy of the Information Disclosure Statements submitted with patent application Serial No. 07/702,939, patent application Serial No. 08/443,430, patent application Serial No. 08/844,957, and patent application Serial No. 09/161,462, as filed is submitted for purposes of making the Examiner specifically aware of the prior art cited in all of the above-identified However, it is requested that the Examiner patents. specifically consider and make of record all of the prior art cited in each of the enclosed PTO 892 forms. Copies of the references cited in the enclosed PTO 892 forms are contained in the above-referenced applications to which the Examiner is referred for their consideration pursuant to 37 C.F.R. §1.98(d). However, if these references are not available from the above-referenced files the Applicants will make them available to the Examiner.

The Substitute Appendix contains new numbered pages which are consistent with the description of the page numbers of the Appendix on page i of the specification as amended. The

copyright notices on pages 4 and 10 of the original Appendix have been deleted from pages 4 and 10 of the Substitute Appendix to be consistent with the copyright notice which precedes page 1 of the original and Substitute Appendix. The description of the Appendix on page i of the specification has been amended to refer to pages 10-12 as being the program for controlling the operation of the interface switch. Deleted pages 13 and 14 were not used as the code for controlling the interface.

Claims 86-124 correspond to claims 396-434 of parent patent application Serial No. 09/161,462, which were cancelled to permit prosecution in view of the Examiner's citation of United States Patents 4,994,747 and 4,814,763. Comments on these patents will be cited before the first Office Action.

Please charge any shortage in the fees due in connection with the filing of this paper, including extension of time fees, to the deposit account of Antonelli, Terry, Stout & Kraus, LLP, Deposit Account No. 01-2135 (780.29643CX4), and please credit any excess fees to such deposit account.

Respectfully submitted,

ANTONELLI TERRY, STOUT & KRAUS, LLP

Donald E. Stout

Registration No. 26,422

(703) 312-6600

DES:dlh

Applicant or Patentee: THOMAS J. CAMPANA, J.	R. et al
Serial or Patent No.:	Attorney's Docket No.: 780.29643X00
Filed or Issued: May 20, 1991	
For: ELECTRONIC MAIL SYSTEM WITH RF COMMU	NICATIONS TO MOBILE PROCESSORS
VERIFIED STATEMENT (DECLARATIO	N) CIDIMING SMAIL FUTITY
STATUS (37 CFR 1.9(f) and 1.27(b))	
As a below named inventor, I hereby declare that defined in 37 CFR 1.9(c) for purposes of paying of Title 35, United States Code, to the Patent and invention entitled "Electronic Mail System Wi	reduced fees under Section 41(a) and (b) i Trademark Office with regard to the the RF Communications to
Mobile Processors"	described in
[X] the specification filed herewith. [] Application Serial No.:, f	iled:
[] Patent No.:, is	ssued:
have not assigned, granted, conveyed or license contract or law to assign, grant, convey or license person who could not be classified as an independent person had made the invention, or to any cosmall business concern under 37 CFR 1.9(d) or a 1.9(e).	se, any rights in the invention to any lent inventor under 37 CFR 1.9(c) if ncern which would not qualify as a
Each person, concern or organization to which I lidensed or am under an obligation under contract license any rights in the invention is listed below	or law to assign, grant, convey, or
[] no such person, concern, or organization [X] persons, concerns, or organizations list	on. ed below.*
*NOTE: Separate verified statements as named person, concern, or or to the invention averring to the entities. (37 CFR 1.27).	ganization having rights
FULL NAME: Thomas J. Campana, Jr.	
ADDRESS: 3836 West 86th Street, Chicae	go, Illinois 60652
[X] INDIVIDUAL [] SMALL BUSINESS CON	
FULL NAME:	
ADDRESS:	
[] INDIVIDUAL [] SMALL BUSINESS CON	
FULL NAME:	
ADDRESS:	
[] INDIVIDUAL [] SMALL BUSINESS CON	CERN [] NONPROFIT ORGANIZATION

(Continued on Page 2)

I acknowledge the duty to file, in this application or patent, notification of any change in status resulting in loss of entitlement to small entity status prior to paying, or at the time of paying, the earliest of the issue fee or any maintenance fee due after the date on which status as a small entity is no longer appropriate. (37 CFR 1.28(b)).

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further, that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application, any patent issuing thereon, or any patent to which this verified statement is directed.

THOMAS J. CAMPANA, JR.	MICHAEL P. PONSCHKE	GARY F. THELEN
NAME OF INVENTOR	NAME OF INVENTOR	NAME OF INVENTOR
The Man / amparas	Michael P. Panall, St.	Gary J. Thelen
Signature of Inventor	Signature of Inventor	Signature of Inventor
= May 17 1891	2-17-91	5-17-91
Date	Date	Date

SUPPLEMENTAL DECLARATION FOR PATENT APPLICATION

As the below named inventors, we hereby declare that:

Our residence, post office address and citizenship are as stated below next to our names, we believe that we are an original, first and joint inventors of the subject matter which is claimed and for which a patent is sought on the invention entitled:

"ELECTRONIC MAIL SYSTEM WITH RF COMMUNICATIONS TO MOBILE PROCESSORS AND METHOD OF OPERATION THEREOF"

the specification of which was filed on May 20, 1991 as application Serial No. 07/702,939 and as amended in amendments attached hereto including claims 86-176.

We hereby state that we have reviewed and understand the contents of the amendments to the above-identified specification, and newly submitted claims 86-176, as attached.

We acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, §1.56(a).

We hereby declare that all statements made herein of my our knowledge are true and that all statements made on information and belief are believed to be true; and further, that these statements are made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Date: Vince 15 94	Inventor Will Company
	Thomas J. Campana, Jr.

Residence: Same As Post Office Address
Post Office Address: 3836 West 86th Street
Chicago, Illinois 60652

Date:	6-15-94	Inventor_	M. chael	Y. Yanichka
			Michael P.	Ponschke

 \cap \cap

Residence: Same As Post Office Address Post Office Address: 212 Tara Drive

Lockport, Illinois 60441

Date:	Inventor_	C. 12 024	1. Hickory
		Gary F.	Thelen

Residence: Same As Post Office Address
Post Office Address: 16 Fox Lane

Palos Park, Illinois 60464

Inventors:

THOMAS J. CAMPANA, JR., MICHAEL P. PONSCHKE,

and GARY F. THELEN

Invention:

ELECTRONIC MAIL SYSTEM WITH RF

COMMUNICATIONS TO MOBILE PROCESSORS

Antonelli, Terry, Stout & Kraus Suite 600 1919 Pennsylvania Avenue, N. W. Washington, D. C. 20006

SPECIFICATION

To all whom it may concern:

Be it known that We, Thomas J. Campana, Jr., Michael P. Ponschke, and Gary F. Thelen, citizens of the United States, residing respectively at 3836 West 86th Street, Chicago, Illinois 60652; 212 Tara Drive, Lockport, Illinois 60441; and 16 Fox Lane, Palos Park, Illinois 60464; have invented certain new and useful improvements in

ELECTRONIC MAIL SYSTEM WITH RF COMMUNICATIONS TO MOBILE PROCESSORS

of which the following is a specification.

Appendix

An Appendix containing a listing of control programs for controlling the transmission information between an RF receiver and a destination processor and controlling the operation of an interface switch in accordance with the invention is attached. The programs are written in the C programming language. program for controlling the transmission information from the RF receiver to the destination processor appears at pages 1-9 and the program for controlling the operation of the interface switch appears at pages 10-14. The Appendix contains subject matter which is copyrighted. A limited license is granted to anyone who requires a copy of the program disclosed therein for purposes of understanding or analyzing the invention, but no license is granted to make a copy for any other purposes including the loading of a processing device with code in any form or language.

15

10

5

को है हुँ क

---₈

v-i*

. . .

Cross-Reference to Related Applications

Reference is made to other applications which are filed on even date herewith which are incorporated by reference in their entirety.

United States Patent Application Serial No.

————, entitled "System for Interconnecting Electronic Mail Systems By RF Communications" (Attorney Docket No. 780.29767X00);

a saft. At is,

Description Electronic Mail System With RF Communications to Mobile Processors

Technical Field

5

10

15

20

25

30

The present invention relates to electronic mail systems for transmitting information between processors.

Background Art

use of computers to send and receive electronic mail messages is becoming very popular globally. Numerous companies (both network software related) offer electronic mail (E Mail) and services. Currently, electronic mail services provide a convenient alternative to the more formal facsimile transmissions of memos and documents. Electronic mail is typically used to send relatively short informal messages between computers within an organization, or to a party located at a distant location or company. Electronic mail services are basically a wire line-to-wire line, point-to-point type communications. Electronic mail, similar facsimile transmissions, provides a one-way message. A recipient typically does not have to interact with the message. Electronic mail, unlike facsimile, is a non-real-time message transmission architecture.

Fig. 1 illustrates a block diagram of a typical electronic mail system 10 in commercial use such as by AT&T Corporation. The electronic mail system 10 is comprised of a plurality of single processors or groups of processors #1-#N with N being any number with each group having individual processors A-N with N being any number. The groups of processors #1-#N may be distributed at locations which are linked by the public

10

15

20

25

30

35

switch telephone network 12. The individual processors may be portable personal computers with a modem which are linked to the public telephone switch network 12 through wired or RF communications as indicated by a dotted line. Groups of associated processors #1-#3 may diverse configurations with the illustrated configurations only being representative of possible architectures of groups of associated processors. groups of associated processors may be connected to a through host or mainframe computer various communication mechanisms such as direct telephone communications (#1), communications through a area network (#2), or communications through a private branch exchange (#3). should automatic It understood that the illustrated architecture of the single and associated groups of processors is only representative of the state of the art with numerous variations being utilized. Many of the groups of associated processors are contained within the database network of a single company or organization located at: distributed geographical locations throughout a country or in different countries.

Communications between an originating processor A-N, which may be any of the processors within the groups of associated processors #1-#3 or processor #N and a destination processor A-N are completed through the public switch telephone network 12 to one or more gateway switch with mailboxes 14 which function to store the message for delivery to the destination processor at a later point in time. The gateway switches with mailboxes 14 have a storage location, associated with each subscriber which may be any of the computers A-N within the associated of groups computers #1-#3 and individual computers #N, provides retrieval capability of the electronic message

10

15

20

25

30

35

when it is not delivered directly to the destination processor A-N such as when the destination processor does not go directly off hook in response to an attempt to deliver the message from storage in the electronic mail gateway mailbox storage location associated with the destination processor. In order to originate an electronic mail message, the originating processor A-N calls an associated gateway switch with mailboxes 14 via telephone through the usage of a modem connection. This connection is made through the public switch network 12. A gateway switch with mailboxes 14 answers and provides a data connection to the originating processor A-N. The gateway switch with mailboxes 14 typically contains the originating processor A-N file and verifies that the sending processor is able to originate an electronic mail message via some form of password protection. Upon verification of the entry password, the electronic gateway switch mailboxes 14 down loads software and entry screens that are displayed on the originating processor to permit a message to be composed. Thereafter, the message is composed transferred and from the originating processors gateway switch with mailboxes 14 to the destination processors gateway switch with mailboxes where the message is stored and an attempt is made to deliver the message to the destination processor via telephone connection through the public switch telephone network 12. TAP T

Electronic mail systems have several common items that must be entered in order to originate and send (format) an electronic message. These items include the destination address, which consists of either the person or company's name, an abbreviated form of the person's company or name, or a series of digits or alphanumeric characters that must be entered to

indicate to the electronic mail system the destination address of the recipient processor. Another item is an identification of the originating processor which may be an indication of the sender or the originator's name, company name, an abbreviated form of originator's name or company name, or a numeric or alphanumeric entry that comprises the sender's name or information is address. This collectively identification of the originating processor. item is the subject of the message which is typically a short reference as to the subject matter of the text or message that follows. Finally, the message or message text must be entered which is the information that is inputted by the person or machine which is originating the message at the originating processor A-N. completion of the message text, the user or machine operating the originating processor A-N enters a series of commands or keystrokes on the originating processor to transmit the message to the gateway switch with mailboxes 14 associated with the originating processor A-N.

The transmission of the message from the originating processor's gateway switch with mailboxes 14 to the destination processor's electronic mail gateway switch with mailboxes is via analog or digital communications through the public switch telephone network. The destination gateway switch with mailboxes 14 contains the destination address of the recipient destination processor.

Upon arrival of the information at the destination processor's gateway switch with mailboxes 14, one of two events takes place. The information is typically stored in the destination processor's electronic mailbox for later retrieval by the destination processor through interaction by the user of the

30

35

5

10

15

20

25

10

15

20

25

30

35

destination processor. This typically happens as a result of the fact that a person is not located at the destination processor at the time of delivery of the message to the gateway switch with mailboxes 14 or the destination processor is not turned on and connected to the public switch telephone network 12. A second methodology is that the destination processor's gateway switch with mailboxes automatically dials the gateway processor's telephone number to deliver information. In the situation where the destination processor is within a company or organization, information may be delivered to the host computer. The destination processor's host computer the information until the destination processor calls the host computer to retrieve the information. the methodologies described above, information delivery requires periodically calling a host computer or a mailbox at the gateway switch with mailboxes 14 to determine if new messages are present. This incurs additional costs in telephone calls and/or labor. If the host computer or gateway switch is not checked frequently, the information becomes untimely in its delivery. If the destination processor frequently checks the host computer or gateway switch, additional costs and telephone calls and/or labor are encountered.

As personal computers are used more frequently by business travellers, the problem of electronic mail becomes considerably more A business traveller carrying a portable PC has great difficulty in finding telephone jacks to connect the PC to fetch electronic mail from either a host computer or a gateway switch. Connections for a PC's modem are difficult to find in airports and with the advent: of: digital PABX's in businesses and the telephone

10

15

20

25

30

connectors are incompatible with a PC's analog modem. Hotels and motels oftentimes have internal PABX's that prevent calls from automatically being placed by the user's PC to electronic mail gateway switches to retrieve information. Most portable PC modems will only operate correctly when connected to a true outside telephone line that has telephone battery voltages and dial tone available to permit the number to be dialed The inability to find an appropriate connection to connect the PC modem when travelling has contributed to the degradation of electronic reception when the recipient is travelling. When travelling internationally, this problem is further compounded by the fact that most electronic mail gateway mailboxes require a 1-800 toll free number is dialed in order to connect the mailbox. Almost all 1-800 telephone numbers are available for continental use only and cannot be accessed from a foreign country.

Industry trends make it increasingly difficult to receive electronic mail. When PC's were exclusively considered an office or desktop machine, it was less difficult to deliver electronic mail. Advances in the state of the art in microelectronics have permitted PC's to be downsized to very lightweight portable (notebook), and notebook size computers. portable units have the computing and storage power of the former desktop units and have lent themselves to the trend that they now become very portable in their utilization. They are small enough that they can easily fit into an attache case and/or a suit pocket. The net result is that the portable unit no longer resides in the office or the desktop. The portable unit now may be taken home at night, as well as on travel with the user, such as for business travel.

10

15

20

25

30

35

Increased portability of PC's further aggravates the problem of automatic electronic mail delivery as a consequence of portability eliminating the wired communication paths which have been typically used in state of the art electronic mail systems. The electronic mail industry is currently experiencing a rapid growth rate.

Numerous communication companies are offering forms of electronic mail services. However, a problem arises that users of one electronic mail currently cannot send electronic mail to a subscriber of another electronic mail system (e.g., AT&T E-mail to Sprint Mail, etc.). Numerous attempts are currently underway in the industry to solve this problem. attempts are the utilization of Current common protocols between electronic mail systems (e.g. X.400). However, the proposed system does not resolve the problems resultant from portability and travelling situations described above. 2.

Fig. 2 illustrates a diagram of a prior art network 100 developed by Telefind Corporation of: Coral Gables, Florida, which provides worldwide paging and data transmission capability and is a preferred form of the RF information transmission network used in practicing the present invention. This network is described in detail in the Assignee's United States Patents 4,866,431, 4,868,558, 4,868,562, 4,868,860, 4,870,410, 4,878,051, 4,881,073, 4,875,039 4,876,538 and United States patent application Serial 409,390, 464,675, 465,894, 464,680, 429,541, 409,605, and 456,742 which are incorporated herein by reference in their entirety. The system is a distributed network of switches comprised of plurality of local switches 112, a plurality of lata switches 114 and a plurality of hub switches 116 with

10

15

20

25

30

35

each switch being located in a different geographical location within an area being serviced by the system. The hub switches 116 may be located totally within a country to provide national service or in multiple countries to provide international service. single portion of the network is labelled with reference numerals with it being understood repeating portions exist such as for that portion under the jurisdiction hub switch #P. Communication links which are illustrated as a dotted arrow represent network structure which has been omitted for clarity that is identical to structure that is illustrated in Additionally, one or more sublocal switches may optionally be provided within the system under the jurisdiction of the local switch as described in the aforementioned patents. The sublocal switches have been omitted for purposes of clarity. Each switch has jurisdiction over a geographic area. The functions performed by the local switch 112, the lata switch 114 and the hub switch 116 are described below. A local paging service 118 is typically connected to each of the local switches 112 which offers other paging services than that provided by the present invention although it should be understood that the local switch may be used exclusively to control all services offered at the local level. The local paging service 118 is typically an existing common carrier paging service which services an area within broadcast distance of a transmitter 115 under the jurisdiction of the local paging service to which the local switch 112 has been connected to permit the local paging service to function in the network to transmit pages plurality of paging receivers 119 (only one having been illustrated) connected to a peripheral device 119 which may be a data processor printer, telex

with the

10

15

20

25

30

35

facsimile service or other types of data processing devices. The paging receivers automatically download data stored in their memory upon connection to a printer for producing a printout of the data. printer is sold with the receiver by Telefind Corporation of Coral Gables, Florida. The paging receivers 119 are described in United States Patents 4,849,750, 4,851,830, 4,853,688, 4,857,915, 4,928,100, 4,935,732, 4,978,944 and 5,012,235 and United States Patent application Serial Nos. 381,483, 597,350 and 662,616 which are assigned to Telefind Corporation of Coral Gables, Florida. The transmitter 115 may be either an analog or digital transmitter. Communications between the local, lata and hub switches may be by any existing communication medium 120 such as direct dial-up circuits (IDD Circuits International), direct outward dial circuits (end-to-end), in-bound watts (and other in-bound services that are volume discounted), out-bound watts (and other out-bound services that are volume discounted), feature group A (U.S. service), feature group B (U.S. and European services), MF tie trunks (U.S. and European services), and direct inward dial (international service, where available), as well as any future medium which permits pages to be transmitted between switches. Each of services are indicated schematically these by bi-directional arrow 120 which interconnects a local switch 112 to a lata switch 114, a lata switch to a hub switch 116, and a hub switch to another hub switch. Furthermore, the local switches 112 are connected to a local paging service 118 by a communication link 122 of any conventional nature, including wires connecting the local switch to the local paging service. Each switch is provided with a local telephone trunk 127 which functions as a maintenance port. Furthermore, dotted

10

15

20

25

30

35

bi-directional lines 124 illustrate alternative communication paths between switches which may be used in the case of malfunction or busy conditions. It should be further understood that the network is not limited to any particular communication protocol linking switches, nor connecting the local switch to the local paging service. A telephone trunk 28 functions as an input for manual (telephone handset) and automatic device entry of pages as described below.

The network 110 provides numeric, alphanumeric and data services to all points within the United States participating countries. In the preferred embodiment of the network, a universal code is used for encoding transmissions of characters over both the communication links 120 and 122 which is compatible with existing analog and digital transmitter A universal code discussed in the aforementioned patents utilizes sixteen tones for encoding characters for transmission between switches or to a paging service 118. Each character transmitted as two successive tones. A X.25 modified transmission protocol which is disclosed aforementioned network patents is preferably utilized for transmitting packets of pages between switches.

The network 110 is economical to implement and operate as a consequence of utilizing distributed processing technologies and transmission of pages periodically in packets of pages between the switches. Dynamic interaction between a frequency agile pager, which preferably is of the type described in the above-referenced receiver patents and applications and the network 110 efficiently utilizes transmission time that is available in the frequency spectrum. One of the distinct advantages of the network 110 is that it utilizes existing paging common carriers to deliver

4

10

15

20

25

30

35

pages to the end user with existing paging RF coverage in the United States being greater than 85% of its geographical area with just two 150 MHz frequencies with a total of 10,500 additional frequencies being available for paging receiver use. Wire line common carriers, private systems, hospital, government, emergency and many other services can be accommodated by the utilization of dynamic frequency programming, by the network 110 to change the frequency band on which individual paging receivers may receive pages.

The network 110 provides an integrated sublocal, local, regional and nationwide paging network that is transparent to use by the subscriber and provides for (data transmissions) to be called existing local paging service 118 by the making of a local phone call on a telephone trunk 128 connected to the local switch 112 in a conventional fashion as well as to any lata switch 114 throughout the network 110 by a local phone call to telephone trunk 126. The functionality of permitting pages or data transmissions to be originated anywhere within the network 10 by local telephone call, preferably by calling a single number within the country (950-XXXX) avoids the telephone expense and system overhead caused by calling of a central switch to originate a page. It should be understood that the network's usage of periodically transmitting packets of pages between switches results lower cost than the cost much of 800 OFconventional long distance service. The phone trunk 126 for calling the lata switch 114 to place at page anywhere within the network 110 is indicated by bi-directional arrows to each lata switch. Regardless. of the location of the person making the telephone call to a lata switch 114 over telephone trunk 126 to originate a page, the lata switch will formulate a page

10

15

20

25

30

35

with the destination specified by geographically descriptive digits of the identification code inputted with the call to request a page or data transmission to the lata switch and the network 110 will automatically route the page through the switches of the network to the person being paged by way of the local switch 112, which stores a subscriber file that stores identification code of the subscriber and paging receiver. The local switch 112, which stores identification code inputted with the page in subscriber file, adds one or more destinations to the page and transmits the page(s) to the local paging service 118 and/or the network 110 by way of the lata switch 114 having jurisdiction. The person placing the page by calling the local switch 112 on telephone trunk 128 or the lata switch 114 on telephone trunk 126 does not have to know the location of the person receiving the page.

The local switch 112 is connected participating common carrier paging service 118 located in a particular geographic area. The local switch 112 has local direct inward dial trunks 128 which permits the subscriber to use a local telephone call to place a Pages over the local telephone trunks 128 may be (1) numeric characters which are entered manually by DTMF tones or other telephone coding mechanisms, (2) alphanumeric characters which are entered manually by DTMF tones or other coding mechanisms, (3) alphanumeric characters which are entered by an automatic message inputting device using an encoding format having a transmission protocol of conventional nature such as DTMF tones or (4) a high speed (baud rate) encoding protocol such as an X.25 protocol permitting a variable number of pages or transmissions each with its own network destination to

10

15

20

25

30

35

be formed into a packet which is transmitted to a single switch. The local switch 12 has voice prompting which facilitates the person placing a call on the telephone trunk 28 to enter a message to be transmitted as a page.

The local switch 112 processes the pages received from the telephone trunk 128 and from the associated lata switch 114 to which the local switch is connected by the communication link 120. It should be understood that the local switch 112 has programming which automatically and dynamically monitors paging traffic when a plurality of transmission frequencies are used and allocates the frequencies available to the paging service 118 for transmission to the paging receivers to maximize the local paging services paging throughput as described below. The local switch calls 112 resident local paging terminal of the paging service 118 and determines how much air time it has to batch of pages to the transmitter 115 associated with the local paging service. The local switch 112 then calls the local paging terminal of the local paging service 118 and transmits a batch of pages encoded in the hybrid encoding format described below which is compatible with existing analog and digital FM paging transmitters.

The local switch periodically transmits packets of pages or data transmissions stored in an outbound lata buffer over communication link 20 to the lata switch 114 having jurisdiction over it which provides cost efficient transmission and efficient page or data transmission processing. This architecture is highly efficient in routing the pages originating at the local switch 112 to be transmitted by the network 110 which are intended for broadcast by a transmitter remote from the local switch having a subscriber file storing the

> 。 第十四部

10

15

20

25

30

35

identification code of the subscriber to which data or a page is to be transmitted.

When the subscriber desires to receive regional. national, or international service, the local switch 112 is programmed by the subscriber by simple telephone area code entries which identify the service areas to which pages or data transmissions are to be transmitted. The programming is accomplished by adding or deleting one or more area codes of the subscriber's destination field contained in a subscriber maintained in the subscriber's local switch 112. In the United States, area codes are used for ease of subscriber use and telephone books may then serve as the service area directory. The same ease of use is available to worldwide customers with county-city code entries available from telephone books in any airport, hotel or business.

The local switch controls the generation individual pages or data transmissions having message detail as described below with reference to Fig. 6. The number of pages or data transmissions which are generated in response to a page received without an area destination from the telephone trunk 128 or from a lata switch 114 is determined by the central processor the local switch 112 interrogating any area destinations listed in the destination area code field of the local switch as described below with reference to Fig. 3. Each page or data transmission generated by the processor contains the same message content. A separate page or data transmission is generated for each destination area listed destination area code field and if the local service option of the service option field is selected, as described below, an additional page or data. transmission is generated for broadcast by the local

There was

10

15

20

25

30

35

paging service 118 without an area destination in the network which is processed by the local switch 112 as a page or data transmission received from the network for broadcast by the local paging service. Furthermore. each individual page or data transmission generated by a local switch 12 contains one or more commands. commands which to each are added page data transmission transmitting a message are determined by the operation of the central processor of the local switch 112 in response to interrogation of the selected service options of the subscriber. Programming of receivers with the channel programming command is in response to the local switch programming the receiver to receive one or more channels, subscriber programming of destination areas of reception in the destination area code field, and the degree of utilization of the channels of the local transmitter 115.

The central processor of the local switch 112 processes each individual page or data transmission received from the network to determine if it originated from a local switch 112 or a lata switch 114. determination is made by determining if a destination header identifying a lata switch 114 originating the page precedes the paging receiver identification code in a packet having the configuration of Fig. 6. absence of the header (which is a geographic identification of the originating lata switch 112 in network) in an individual page data transmission, the page or data transmission iš processed exclusively by the local switch 112 broadcast by the associated local paging service 118 without interrogation of a subscriber file in the local. If the header is found in a page or data transmission, the central processor processes the page as either a request to reprogram the subscriber file or

10

15

20

25

30

as a page received on the telephone port 128 without an area destination which must be processed to determine one or more area destinations and formed into new pages each with a different area destination from the area destination field if transmission by the network is to occur and into a page or data without an area destination if transmission by the local service 18 is to occur.

The local switch 112 also serves as the dynamic programming interface between the paging or receivers 119 and the network 110. The local paging service 18 may cause channels to be received receivers 19, change subscriber identification codes and add new customers to the network 110 utilizing the switch 112. functionality The of receiver 119 can be changed from a fixed channel to a multi-channel or a scanning receiver as required by use of the channel programming command.

Messages originating at the local switch 112 which are transmitted to the lata collector switch 114 having jurisdiction over it are packetized as described below with reference to Fig. 6. Destination area codes (telephone area codes or other geographically descriptive code) are added to pages or transmissions prior to transmission to the switch 114 and the receiver 119 is dynamically and automatically reprogrammed for the new service areas by the local switch 112 issuing channel programming command(s) which ensures that the receiver 119 to receive channels in programmed each designated The current channels remain in the receiver 119 to avoid loss of a message while a subscriber is still in the area.

10

15

20

25

30

35

The lata switch 114 provides a second tier of network intelligence. This intelligence includes page or data transmission processing, packetizing and routing. The lata switch 114 receives packets of pages from each of the local switches 112 within its jurisdiction as well as the hub switch 116 having jurisdiction over it. The lata switch 114 provides the geographical presence for the network 110 to originate and terminate pages or data transmissions utilizing dial-up or dedicated communication services.

The lata switch 114 is responsible for collection of pages from the local switches 112 within its jurisdiction. When a packet of pages is received from the local switch 112, it is disassembled, processed and stored for transmission to the proper destination(s) in one or more packets each consisting of one or more pages which are intended for destination(s) either within or outside the lata switch jurisdiction. lata switch 114 periodically transmits packets of pages stored in its outbound hub buffer and its outbound local buffer to the associated hub switch 116 having jurisdiction over it and to local switches 112 within jurisdiction which provides cost efficient transmission and efficient processing by processing by a single central switch controlling the network 110. This architecture is highly efficient in routing pages or data transmissions originating within the jurisdiction of the lata switch 114 which are intended for broadcast outside its jurisdiction as well as distributing pages or data transmissions from one local switch 112 to one or more additional switches within the jurisdiction of the lata switch. the page or data transmission is destined for distribution within the jurisdiction of switch 114, the page or data transmission is processed

· (1) 1000年11日 (1

10

15

20

25

30

into packets for transmission to each of the local switches 112 within its jurisdiction or alternatively less than all of the local switches The pages or data transmissions are then jurisdiction. periodically transmitted as packets to the switches 112 within the jurisdiction of the lata switch 114.

The lata switch 114 is also responsible for collection of pages outside its jurisdiction to be broadcast to the local switches 112 within its jurisdiction. Packets received from the hub switch 116 are disassembled, processed, and packetized for transmission to the destination local switches 112.

The function of the lata switch 114 in collecting requests for placing pages or data transmissions in the network or to reprogram the subscriber file of a local switch 112 by placing a local phone call on telephone trunk 126 is important aspect of the network. an Invention. The lata switch 114 places the discussed above, which geographically identifies the lata switch originating the page or data transmission in front of the receiver identification code, in a packet as illustrated in the message detail of Fig. 6 to enable the local switch 112 to differentiate between pages or data transmission which are for broadcast by the local service 118 associated with a receiving local switch 112 and pages or data transmission which require access to the subscriber files to generate one or more pages or data transmissions for broadcast for reprogramming a subscriber file. Preferably, the header is four digits comprised of a country code followed by the telephone area code identifying the switch 114 which received the the call for · 151 ~ originating page or data transmission.

10

15

20

25

The hub switch 116 provides the third tier of network intelligence and serves as an inter-regional communications link. One hub switch 116 preferably be located in each international region to a network routing switch. United States, a hub switch 116 will be located within the region served by each of the Bell companies (RBOC's). Accordingly, in the United States preferred implementation of the network 110 includes seven distinct hub switches 116. Each hub switch 116 in a preferred embodiment can have fifty-five lata switches 114 under its jurisdiction. The hub switch 116 also serves as a network routing switch for inter-hub calls when pages transmissions are to continue in the hub-to-hub network.

When a packet of pages is received from either another hub switch 116 or a lata switch 114 within its jurisdiction, the pages or data transmission disassembled for däta examination. Each page or transmission is examined for its destination A determination is made address(es). if the hub switch 116 should forward the page or data transmission to one of the six adjacent hub switches or forward the page or data transmission to a lata switch 114 within The pages or data transmissions are its jurisdiction. destination processed and packetized transmission to either another hub switch 116 or a lata - -,00 switch 114 within its jurisdiction.

10

15

20

25

Fig. 3 illustrates a memory map of the RAM of a local switch 112. The RAM has four main storage areas which are the subscriber files 154, channel files 156, lata buffers 158 and local buffers 160.

Each local switch 112 is allocated a capacity of, for example, 10,000 subscribers which are identified by a four-digit code stored in field 162 of the subscriber files 154.

Field 164 stores the subscriber's local telephone number within the area code serviced by the lata switch 114 having jurisdiction.

Field 166 is subscriber's the receiver identification code which uniquely identifies the subscriber and the receiver 119 of the subscriber which is to receive pages or data transmissions throughout the network 110. receiver identification The number (code) consists of 8 digits with the four most significant digits geographically representing the area serviced by the associated lata switch 114 (country the most significant digit as followed sequentially by area or city code lesser significant digits) and the four least significant digits being digits assigned to identify 10,000 subscribers within the jurisdiction of the local switch. The capacity of the network 110 is 100 million subscribers with the eight digit identification code. The least significant numbers of the identification code define subscribers of a specific local switch 112 within the jurisdiction of the lata switch 114.

Field 168 stores the service options which each subscriber may choose to have provided by the local service 118. The service options control the commands, which are used with pages or data transmissions sent to the receivers 119. The main CPU interrogates the particular subscriber file identified by the

10

15

20

25

30

35

identification code inputted with the request for a page or data transmission by telephone trunks 126 or 128, causes storage of the page or data transmission, determines the destination(s) of the page or data transmission and the appropriate system command to be used to transmit the page or data transmission. It should be understood that the service options may be dynamically programmed through voice prompted communications over the telephone trunk lines 128 with the local switch 112 and through telephone calls to the lata switch 114 by trunk 126 as described below.

The service options are described as follows. service option "a" is for no service which is condition when an active subscriber does not wish to receive any pages or data transmissions such as may occur when the subscriber is on vacation otherwise desirous of not being reached for a period of time but does not wish to be removed from subscriber base of the system. The service option "b" is for pages or data transmissions to be broadcast only by the transmitter 115 of the local service 118. service option "c" is for regional service which is for pages or data transmissions to be broadcast throughout all of the local services 118 which are within its lata switch jurisdiction. The service option "d" national service which is for pages transmissions to be broadcast from the local switch 112 to one or more lata switches 114 other than the lata switch having jurisdiction over the local switch. While not illustrated, an international service option The service option "e" is for a repeat may be added. of pages or data transmissions for any of the "b", "c" service options so that a page transmission is broadcast more than once. The service option "f" is for data service which causes the page or

rita i ili ya Madalese e

10

15

20

25

30

35

data transmission to be stored in a specified section of the receiver memory. The service option "g" is for external data service which commands the receiver 119 to output the page or data transmission to the external data port of the receiver. This option permits the receiver 119 to support peripheral devices such as printers or processors to provide a wide range of data services.

The following additional fields are provided. The fifth field 170 is the subscriber's name and the subscriber's specified account number. The sixth field 172 is the subscriber's account number entry for purposes of interval billing by the local service 118. The seventh field 174 is the subscriber's count (local, regional or national) which is a total of the number of pages or data transmission made in a billing period. The eighth field 176 is the total number of data characters sent during the billing period.

The ninth field 178 is the destination code(s)) of each of the pages or data transmissions. For local service, there is no area code specified. For regional service, the area code of the associated lata switch 114 having jurisdiction over the local switch 112 is specified and for national international service, one or more area codes or other geographic identification identifying lata switches other than the lata switch having jurisdiction over the local switch are specified. For international service, country code may be used to identify lata switches 114 within a particular country. Any number of area codes may be specified but in a preferred embodiment of the network 110, three area codes is a maximum number of lata switches 114 which may be specified as regions to receive pages from the local switch 112.

10

15

20

25

30

35

The above-referenced description describes the first file of the n (10,000) possible subscriber files stored in the subscriber files 154. It should be understood that the other subscriber files have the same configuration. Access to the subscriber file is obtained by a voice prompted message requiring the inputting of a secret code which if inputted correctly is followed by voice prompted requests requesting specification of the information of the subscriber file to be changed.

The frequency files 156 perform an important function in the network 110. The frequency files 156 contain n possible lata files with each individual file identifying up to, for example, 15 four-digit numbers that represent broadcast channels available within the service area of a lata switch 114. Thus, each of the individual lata switches 114 in the network 110 will have a separate frequency file which identifies all of the channels which are available to transmit pages or data transmissions from the transmitters 115 associated with the local services 118 under the jurisdiction of that lata switch 114. The channels are stored as a four-digit number in a hexadecimal numbering system which requires only four digits of space. A file containing all zeros (no channel) will cause an invalid area code message to be returned to a subscriber attempting to reprogram service areas. The frequency files are the source of channels which are utilized by channel programming command to program each receiver 119 for operation in each lata switch jurisdiction and the local switch jurisdiction. example, a receiver 119 which is to be serviced by only a single local service 118 may be programmed to receive only a single or a number of channels up to the number channels used by that local paging

Visit 1

10

15

20

25

30

35

Furthermore, for regional service or national service, frequency files 156 are used to program the receiver 119 to receive pages or data transmissions from the channels used by the local services 118 within the designated area codes representative of the service areas serviced by the lata switches 114. Furthermore, if a receiver 119 is to be programmed to receive messages in a particular area serviced by switch 114 as a consequence of the subscriber travelling, the channel programming command utilizes the channels stored in the file number corresponding to the jurisdiction of the lata switch 114 in the area to which the subscriber is to travel, to dynamically program the channel(s) which the paging receiver is to receive in that area. For service in a local region, the frequency files are used as a source of channels to used by the channel programming command dynamically shift the channels on which the paging receiver is to receive a page, to adjust the channels in the broadcast area used by the service 118 associated with the local switch 112 based on the amount of traffic on each channel and to further provide a source of channels which are to be used for specialized services for transmitting particular types of information to particular subscribers such as, but not limited to stock quotations.

The lata buffers 158 consist of an inbound lata buffer 180 and an outbound lata buffer 182. The inbound lata buffer 180 functions to receive pages or data transmissions coded in ASCII which have been processed to strip the X.25 transmission protocol used for transmitting pages from the lata switch 114 to the local switch 112 and converted from the hybrid code described below to ASCII. Pages or data transmissions which are initially stored in the inbound lata

10

15

20

25

30

35

buffer 180 are processed for destination and are either for broadcast by the associated local service 118 in case they are ultimately stored appropriate identification code buffer 186 which matches the least significant digit identification code contained with the page or data transmission or in the outbound lata buffer 182 if the page or data transmission originated from one of the lata switches 114 by calling on the telephone trunk 126 and which has a final destination which is determined by the field 178 of the subscriber file 154.

The local buffers 160 are comprised of an inbound buffer 184 for receiving all local inbound pages or data transmission which originate from the line 128 which is connected to the local switch 112 and a plurality of identification code buffers 186 which are each individually assigned to store outbound pages data transmissions with a particular significant identification code digit of the number base used for the subscriber identification code which are to be transmitted to a receiver 119. All of the received pages or data transmissions from the local switch 112 are initially stored in the buffer 184. Each of the individual identification code buffers 186 stores pages or data transmissions for broadcast by the local service 118 in batches which are grouped by the least significant digit of the subscriber identification code received with the page or data transmission after sorting by the CPU. In other words, least significant digit of the subscriber identification code within a page or data transmission for broadcast by a local service 118 determines which of the identification code buffers 186 the page or data transmission is stored. For example, if the last digit of the identification code of a page or data

and the state of t

10

15

20

25

30

35

transmission for broadcast by the local service 118 ends in the digit 0, the page or data transmission is stored in the identification code buffer identified by "0".

Fig. 4 is a memory map of the random access memory of the lata switch 114. The random access memory has three main areas and two optional areas. The three main areas are hub buffers 188, local buffers 190 and a lata identification code (ID) memory 192. The optional memory areas are an all call buffer 194 for storing nationwide pages or data transmissions received from the hub switch 116 which are to be transmitted to all of the local switches 112 under the jurisdiction of the lata switch 114 and an all call buffer 196 which stores pages or data transmissions received from one of the local switches 112 which are to be transmitted to all of the local switches under the jurisdiction of the lata switch 114.

The hub buffers 188 are an outbound hub buffer 198 and an inbound hub buffer 200. The outbound hub buffer 198 stores pages or data transmissions to be periodically transmitted to the hub switch 116 having jurisdiction over the lata switch 114 under the control of the CPU. The inbound hub buffer 200 stores pages or data transmissions which are periodically received from the associated hub switch 116 via storage in a buffer of the CPU.

The local buffers 190 are comprised of an inbound local buffer 202 which stores groups of inbound pages or data transmissions received from the local switches 112 and a plurality of outbound local buffers 204 each of which store groups of pages or data transmissions which are to be transmitted periodically to a specific one of the local switches with a separate outbound local buffer being provided for each of the

4.38

10

15

20

25

30

35

local switches under the jurisdiction of the lata switch 114. The CPU processes each of the pages or data transmission which is received in the inbound buffers 200 and 202 by destination and causes storage in the outbound buffers 198 and 204 which is associated with the destination of the page or data transmission.

The lata identification code memory 192 stores the subscriber identification numbers of all subscribers which are associated with each of the local switches 112 within its jurisdiction. The identification code memory 192 is used for determining the local switch 112 which stores a subscriber file of the subscriber used for pages or data transmission which are inputted to the system from a direct call by telephone trunk 126 to a lata switch 114 or from a direct call by telephone trunk 126 to a lata switch by a subscriber to program the reception area of pages or data transmissions by changing the destination 178 of or data transmissions. The lata identification code memory 192 may be organized by subscriber identification codes which are within the jurisdiction of each local switch 112 so that the matching of an identification code of a page or data transmission inputted to the lata switch 114 in the identification code memory 192 provides location of the particular local switch which stores the subscriber file 154 of that subscriber.

In order to avoid having to provide additional storage space in each of the outbound local buffers 204, the optional all call buffer 194 may be provided to store a single page or data transmission, received from the hub switch 116 having jurisdiction over the lata switch 114, which is to be transmitted to each of the local switches 112. Similarly, the optional all call buffer 196 may be provided for

WEST KETSE

10

15

20

25

30

35

receiving pages or data transmissions from an individual local switch 112 which are to be transmitted to all of the local switches within the jurisdiction of the lata switch 114.

pages, data transmissions or requests reprogram the subscriber file 154 which are made to a lata switch 114 over telephone trunk 126 which require access to a subscriber file outside the jurisdiction of lata switch, the CPU forms a page transmission contained in a packet having an area destination identified by the four most significant digits of the identification code inputted to the lata switch 114 preceded by the identification code of the receiver 119 to receive the page or data transmission, preceded by the geographical area identification of the lata switch receiving the call to originate a page or data transmission or to program the subscriber file which is transmitted by the network 110 to the specified area destination. For pages or data transmissions to be billed to subscribers stored in the subscriber file 154 of a local switch 112 within the jurisdiction of the lata switch 114 or requests to program the subscriber file 154, the CPU forms a packet having an area destination of the local switch 112 within its jurisdiction which stores the subscriber identification code as determined by interrogation of the lata identification code buffer 192 by the CPU. The ultimate destination of a page or data transmission determined by the destination field 178 subscriber file 154 matching the identification code of receiver 119 either within or outside jurisdiction of the lata switch that is called in overtelephone trunk 126. The local switch 112 containing the subscriber file 154 creates the one or more pages data transmissions in accordance

The same

10

15

20

25

30

35

information in the subscriber file including the adding destination(s) and the appropriate command. Transmission of the pages or data transmissions created by the local switch 112 in response to a call to a lata switch 114 is identical to the transmission of pages or data transmissions originating at the local switch 112 by the placing of a telephone call on telephone trunk In the case of requesting programming of the subscriber's file 154, the caller must in response to a voice prompted message enter a four-digit identification code to obtain access to the subscriber file with voice prompted messages being supplied under the control of the CPU to control the input programming information from the subscriber. To request a page or data transmission by calling the lata switch 114, the caller will receive a voice prompted message to enter the subscriber identification code and then the appropriate page or data transmission. . 5-35-55-

Fig. 5 is a memory map of the random access memory of the hub switch 116. The hub switch memory map is comprised of four main parts which are hub buffers 206, lata buffers 208, lata code tables 210 and hub routing codes 212. The hub buffers 206 are comprised of a plurality of inbound hub buffers 214 which correspond in number to the number of other hub switches 116 in the network 110 which have direct connection to the hub switch and a corresponding number of outbound hub buffers 216. The individual inbound hub buffers 214 each store pages or data transmissions received from the hub switches 116 with pages transmissions received from each adiacent switch 116 being stored in only a single one of the inbound hub buffers 214. Similarly, pages or data transmissions which are to be transmitted to another hub switch 116 are stored in the outbound hub:

Janes Williams

10

15

20

25

30

35

buffer 216 which is associated with the destination hub switch to which they are being transmitted with all pages or data transmissions which are to be routed to a single hub switch being stored in a corresponding one of the outbound hub buffers 216 with a separate hub buffer being associated with each hub switch to which pages or data transmissions are directly transmitted. The lata buffers 208 are comprised of a plurality of inbound lata buffers 218 which correspond to the number of lata switches 114 under the jurisdiction of the hub The inbound lata buffers 218 store all of switch 116. the pages or data transmissions received from the lata 114 under the jurisdiction of switch 116. The outbound lata buffers 220 correspond number to the lata switches 114 jurisdiction of the hub switch 116 with a separate lata buffer being associated with each of the switches. The outbound lata buffers 220 store groups of pages or data transmissions to be periodically transmitted to their associated lata switch 114. or data transmissions which are stored in the inbound hub buffers 214 are processed by destination by the CPU and stored in either the outbound hub buffer 216, which is the destination of the pages or data transmissions not to be received by a lata switch 114 under the jurisdiction of the hub switch 116, or in one or more of the outbound lata buffers 220 if the destination of the packets received from another hub switch 116 is a lata switch under the jurisdiction of the hub switch. The CPU also processes the pages or data transmissions stored in the inbound lata buffers 218 according to their destination and causes their storage in either the outbound hub buffers 216 if the pages or data transmissions are to be sent to a lata switch 114. outside of the jurisdiction of the hub switch 116 or to

10

15

20

25

30

35

one or more of the outbound lata switches 220 if the pages or data transmissions are to be received by one or more lata switches 114 under the jurisdiction of the hub switch 116.

The lata code tables 210 store each of the lata (telephone area or other geographic identifier) codes 222 under the jurisdiction of the hub switch 116 which are utilized by the comparison performed by the CPU with the pages or data transmissions stored in the inbound hub buffers 214 and inbound lata buffers 218 to determine in which of the outbound hub buffers 216 or outbound lata buffers 220 the pages data transmissions should be stored. Each separate lata code 222 corresponds to the geographical identification the lata switch 114 which in the preferred embodiment is the telephone area code of а switch's jurisdiction.

The routing codes 212 determine the transmission routes to other hub switches on a priority basis to which a packet should be sent which are not intended for a lata switch 114 within the jurisdiction of the hub switch 116. It should be understood that a number of factors may be considered in choosing the priority of a route to be used to transmit a packet from one hub switch 116 to another hub switch. It would appear on first analysis that a direct first hub switch to second hub switch route would be best but often the switching overhead of routing a packet through one or more intermediate switches is more than compensated for by efficiency of a route having one intermediate hub switches by adding additional pages or data transmissions to the packet which are inputted to the one or more intermediate hub switch(es) to the packets being transmitted to the second hub switch. The CPU compares the destination of the groups of pages

- FAM. 4

10

15

20

25

30

35

data transmissions stored in the inbound buffers 214 and the inbound lata buffers 218 determine if these pages or data transmissions should be routed to another hub switch 116. The hub routing codes 212 are referred to by default when a match is not found by the CPU in comparing the destination of the pages or data transmissions stored in the inbound hub buffers 214 and inbound lata buffers 218 with the codes stored in the lata code tables 210. Each page or data transmission stored in the inbound hub buffer 214 and inbound lata buffers 218 processed is destination by the CPU and caused to be stored in the outbound buffers 216 and 220 which correspond to its destination. Each individual hub routing code contains the hub switch destination priorities for pages or data transmissions to be sent to a single lata switch 114 outside the jurisdiction of the hub switch 116. example, for the lata switch 114 having jurisdiction over area code 312, the hub routing code 234 determines the priorities in descending order from the highest priority to the lowest priority such that the highest priority hub would be #1 followed by #2-#6. 1.7.

illustrates a preferred transmission protocol to be used for transmitting packets between switches. The protocol which is used is a modified X.25 protocol. As illustrated, each packet contains separate layers. The first layer destination telephone number which is the receiving port to receive the page or data transmission. reference to Fig. 2 if a packet of X.25 formatted pages or data transmissions were to be sent from a first lata switch 114 to its associated hub switch 116 over communication path 120, the destination number would be the telephone number of the hub switch. It should be further understood that the X.25

1431....

10

15

20

25

30

35

transmission protocol as described herein may utilized with other types of communication mediums between switches such that a destination telephone number may be replaced with another form of address of the receiving switch. The second layer indicates the packet size field in terms of succeeding layers of In the present case levels 3, 4 and 5 are provided which dictates that the packet size would store the number 3 to indicate the subsequently lower third, fourth and fifth layers. The third layer contains an origination switch address destination switch address which can be telephone numbers or real addresses within network 110. The fourth layer is the number of pages or data transmissions which are contained in a packet. As illustrated, this number may be any integer n. fifth layer is one or more pages or data transmissions which each correspond to an individual page or data transmission to be sent to a particular receiver 119.

Each message includes the following information. In accordance with standard X.25 protocol, a beginning of file header is included. Following the beginning of file header is a receiver I.D. code which is the identification code of the destination receiver which identical to the subscriber identification code stored in the subscriber files 154 of the subscriber to receive the page or data transmission. Following the I.D. code is the destination(s) of the page or data transmission which is geographically descriptive of the area to which the page or data transmission is to be transmitted and is added by the local switch 112 interrogating the destination field 178 of Fig. 3. preferred embodiment, the destination combination of country and area code as utilized by the telephone system to identify the area to which the page

10

15

20

25

30

35

or data transmission is destined. For each country, the same country code will be used so that if the system 110 as illustrated in Fig. 1 were to be utilized the United States, the first digit of destination would be a 1. Similarly, the destinations in other countries would be followed by different numbers identifying those countries followed by code which breaks up the identified country into smaller geographic regions. While the utilization of area codes under the telephone system facilitates the usage of the present invention, it should be understood that a destination which is not based on the telephone system is equally usable with the present invention. The field of special commands are the system commands are transmitted with which each page transmission to a receiver. The "page" "data or transmission" is the part which is to be displayed to the bearer of the receiver 119 and may be numeric or alphanumeric characters. The end of the file and file size information are part of a standard X.25 protocol.

Fig. 7 illustrates an interconnection between a paging receiver (left side) in accordance with the above-referenced receiver patents and a printer (right side) which has been offered for sale by Telefind Corporation of Coral Gables. Florida. "EXTERNAL ANTENNA" pin is for connection only to external antenna and connects the RF signal from the external antenna to the receiver internal antenna. The: "LINK" pin is detected by the printer to determine if the receiver 119 is connected or not. If the receiver. is not connected when peripheral power is on, then the CPU of the printer will detect that the "LINK" pin is Otherwise the "LINK" pin will be low. The pin "EXTERNAL BUZZER" outputs a 2KHz trigger signal when a or data transmission is received. The

10

15

20

"EXTERNAL BUZZER" pin also outputs the 2KHz trigger signal when display of a message is complete. "PRG VCC" is supplied 5 volt power by the attached printer to provide power to the receiver 119 whether the pager is powered or not. The "GROUND" pin is ground for the printer and receiver 119. "BUSY" is pulled high by the printer if the printer is too busy to handle input data bits on the "PRTDATA" pin of the receiver 119. The "PRTDATA" pin is the data output from the receiver 119 to the printer. data bits are fed to the printer to drive the printer to generate text corresponding to the data bits. "DIS AUDIO" pin provides external audio which may be the X.25 modified protocol of Fig. 6 encoded into audio tones which modulate the channel carrier on which information is received by the receiver 19. When the "DIS AUDIO" pin is high, it indicates that the display button is pressed. The memory of the receiver 119 stores the text to be printed by the printer. The text downloaded through the aforementioned interconnection upon connection to the printer to generate a hard copy of the text stored in the memory.

.

4 ·

10

15

20

25

30

35

Disclosure of Invention

The present invention provides an integration of electronic mail system with an RF information transmission network for transmitting electronic mail originating at processors either within or outside an electronic mail system by RF communication to at least one destination processor within an electronic mail system by a RF receiver which relays the information to the destination processor and method of use thereof. The RF receiver stores the received information which is to be relayed to the destination processor. in the RF receiver memory permits the reception of the information without a connection of the RF receiver to destination processor thus eliminating requirement that the destination processor is turned on and carried with the user of the destination processor. In a typical application with a portable PC functioning as the destination processor, it is important that reception of the information by the RF receiver does not require the drawing of power from the PC battery. The RF receiver automatically relays the information to destination processor upon connection of RF receiver to the destination processor. The destination processor may be within the same electronic mail system containing the originating processor which originated the information or another electronic mail system. While a preferred application of the invention is with portable destination processors, it should be understood that the originating and destination processors may be at a fixed site or portable. of the RF receiver to receive electronic mail permits fixed site destination processors to receive electronic mail without calling the electronic mail system as in the prior art by using the storage of the RF receiver which may be carried on the user of the destination

and the second

10

15

20

25

30

35

processor either within an office or other site or for travel. The RF receiver provides the automatic storage of electronic mail and review of its content without interaction with the destination processor. The stored messages may be transferred at later а automatically without manually keying the message which is an important consideration in using portable PC's. The problems of the prior art in delivering electronic mail to destination processors within an electronic mail system which are being exacerbated increasing portability of personal computers and the absence of a current system for delivering electronic mail between electronic mail systems are overcome by the present invention.

The present invention transmits electronic mail from an originating processor to at least one destination processor through an interface switch. The interface switch connects an electronic mail system and/or at least one additional processor to RF data transmission network which transmits the information to a RF receiver which is connectable to the destination processor to relay the received RF message from the RF receiver to the destination processor.

The invention is user friendly in that the minimum amount of information which must be provided to initiate the transmission of electronic mail from an originating processor to at least one destination processor is an identification of the destination processor and information indicating that the message is to be sent by the RF information transmission network. The inputting of information that information is to be sent by the RF information transmission network may be simplified to the extent icon driven display associated with the originating processor, such as a mouse, may be used to

10

15

20

25

30

35

point to an icon of a radio receiver. Alternatively, identification of the address of the interface switch through which the information is transmitted to the RF transmission network may be inputted by the operator or a machine operating the originating processor. Finally the entering of the destination processor identified in terms such as the user's name may be entered which is compared with a look up table to determine if a match exists. If a match exists, the matched identification of the destination processor supplies an address of the interface switch and an identification of an RF receiver to receive information and relay it to the destination processor. The inputting of the destination processor in terms such as the user's name to an originating processor may be used by the destination processor, gateway switch or addressed interface switch to look up an identification number of the RF receiver within the RF information transmission network which is connectable destination processor which is added to the information for use by the RF information transmission network. The electronic mail system or the interface switch may append the identification number of the RF receiver to receive the information which is utilized RF information transmission network to determine the final destination of the RF receiver to which the message is broadcast by the RF information transmission The appending of the identification number of the RF receiver to the information to be broadcast to destination processor may be inputted operator of the originating processor, added to the information by a comparison of the identification of the destination processor to stored identifications of destination processors stored by the originating_ processor to which RF messages are to be broadcast by

10

15

20

25

30

35

the RF information transmission network to identify the identification number of the RF receiver in the RF information transmission network, or by a gateway switch in the electronic mail system or the interface switch between the electronic mail system and the RF information transmission network.

intelligence for determining identification number of the RF receiver to receive the information less expensive and operates is efficiently when placed within the interface switch where the aforementioned matching may be produced without requiring modification of either individual originating processors within the electronic mail system or gateway switches within the electronic mail system which have additional functions for supporting other conventional aspects of electronic However, the determination of an identification number of the RF receiver which relays the information to the destination processor may be located anywhere between the originating processor and the RF information transmission network for practicing the invention. Similarly, the appending of the address of the interface switch to which the information transmitted by the electronic mail system for entry into the RF information transmission network broadcast to the RF receiver for relaying to the destination processor may be located within any one of the originating processor, gateway switch or interface switch.

An electronic mail system for transmitting information from one of a plurality of originating processors to at least one of a plurality of destination processors in accordance with the invention includes at least one gateway switch, a gateway switch storing information received from one of the at least

5.

10

15

20

25

30

one originating processor prior to transmission of the information to the at least one destination processor; an RF information transmission network for transmitting stored information received from one of the at least one gateway switch by RF transmission to at least one destination processor; at least one interface switch. an interface switch connecting a gateway switch to the RF information transmission network and transmitting stored information received from one of the at least one gateway switch to the RF information transmission network; and wherein the information is transmitted to a receiving interface switch by the electronic mail system in response to an address of the receiving interface switch which has been added information originated by the originating processor by either the originating processor or gateway switch and the information is transmitted from the receiving interface switch to the RF information transmission network with an address of the destination processor to receive the information which has been added by either the originating processor, a gateway switch or the receiving interface switch. The destination processors may be transported during operation by a user. receiving interface switch removes information added by electronic mail system to the information originated by the originating processor from the stored information received from one of the at least one gateway switch and adds information used by the RF information transmission network during transmission of the information to the information originated by the originating processor to an RF receiver in the RF information transmission network which receives the information and relays the information originated by the originating processor to the destination processor.

10

15

20

25

30

The RF receiver may be detached from the destination processor during reception of the information with a memory of the RF receiver storing the information. Storage in memory permits review of the information prior to transferring the information to the destination processor by connection the RF receiver to the destination processor. The address of the destination processor is preferably an identification of a RF receiver in the RF information transmission network which receives the information and relays it to the destination processor.

The receiving interface switch stores information which has been stored by at least one gateway switch that is received from a plurality of originating processors, assembles the information from a plurality of originating processors into a packet and transmits the packet to the RF information transmission network. The RF information transmission network comprises a switch which receives the packet from the receiving interface switch and disassembles the packet information from the plurality of originating processors. The RF information transmission network transmits the disassembled information, including the identification number of the RF receiver, to a switch in the RF information transmission network storing a file identified by the identification number and any destination of the RF receiver in the RF information transmission network to which the information identification number is to be transmitted by RF information transmission network. The switch adds any destination of the RF receiver to the information and the RF information transmission network in response to any added destination transmits the information and identification number to the destination

RF broadcast to the RF receiver for relaying to the destination processor.

The electronic mail system also transmits information between an originating processor and at least one destination processor through either a public switch or a private switch telephone network without transmission by the RF information transmission network. The destination processor is addressed by a different address during transmission to the destination processor when using the public or private switch telephone network than during transmission by the RF information transmission network.

The RF receiver is connectable to the destination processor and in response to connection RF receiver to the destination processor the RF receiver transfers information stored in a memory of the RF receiver received from the originating processor destination processor. The number originating processors is greater than a number interface switches. The plurality of originating processors also function as destination processors with a RF receiver coupled thereto.

The address of the receiving interface switch may be added to the information originated by the originating processor by a gateway switch. The address of the receiving interface switch may be added by the gateway switch by matching an identification of the destination processor such as a name of a user of the destination processor with a stored identification of a destination processor and adding an address of an interface switch stored with the matched identification of the destination processor to the information as the address of the receiving interface switch.

30

5

10

15

20

25

10

15

20

25

30

35

The address of the receiving interface switch may also be added by the originating processor. address of the receiving interface switch may be added an inputting of the address of the receiving interface switch along with an identification of the destination processor by an operator or a machine using originating processor or by matching an identification of the destination processor, such as the name of the user, with a stored identification of a. destination processor and adding an address of interface switch stored with the matched identification of the destination processor to the information as the address of the receiving interface switch.

The address of the destination processor, which preferably is an identification number of a RF receiver receiving the information and relaying the information to the destination processor, may be added to the information originated by the originating processor by operator or a machine using the originating The identification number may also be added processor. information originated by the originating the processor by matching an identification destination processor, such as a user the destination processor, with a stored identification of a destination processor and adding an identification number stored with the matched identification of the destination processor to the information identification number.

The address of the destination processor may also be added to the information originated by the originating processor by the gateway switch. The identification number may be added by the gateway switch by matching an identification of the destination processor, such as a name of a user of the destination processor, with a stored identification of a

destination processor and adding an identification number stored with the matched identification of the destination processor to the information as the identification number.

The address of the destination processor may also be added to the information originated by the originating processor by the receiving interface switch. The identification number may be added by the receiving interface switch to the information originated by the originating processor by matching an identification of the destination processor, such as a name of a user of a destination processor, with a stored identification of the destination processor and adding an identification number stored with the matched identification of the destination processor to the information as the identification number.

Brief Description of Drawings

Fig. 1 illustrates a prior art electronic mail system.

بِسَجُنيهُ * . .

Fig. 2 illustrates a prior art paging system used by the present invention.

Fig. 3 illustrates a memory map of the local switch of the prior art paging system of Fig. 2.

Fig. 4 illustrates a memory map of a lata switch of the prior art paging system of Fig. 2.

Fig. 5 illustrates a memory map of a hub switch of the prior art paging system of Fig. 2.

Fig. 6 illustrates a message format utilized by the prior art paging system of Fig. 2.

Fig. 7 illustrates a prior art connection between a receiver in the paging system of Fig. 2 and a printer.

10

5

15

20

25

30

Fig. 8 illustrates a block diagram of an electronic mail system in accordance with the present invention.

Fig. 9 illustrates a block diagram of the connection of a plurality of electronic mail systems through a plurality of interface switches to an input port of an RF information transmission network utilized by the present invention.

Fig. 10 illustrates a block diagram of the transmission of information originating from a plurality of electronic mail systems to a RF information transmission network to a plurality of destination processors and originating processors within a plurality of electronic mail systems in accordance with the present invention.

Fig. 11 illustrates possible distributed functions for performing data processing steps necessary to transmit information from an originating processor total destination processor using RF transmission in accordance with the present invention.

Fig. 12 is a block diagram of an interface switch in accordance with the present invention.

20

5

10

15

10

15

20

25

30

35

Best Mode for Carrying Out the Invention

a block diagram Figs. 8-10 illustrate electronic mail system 100 which has been integrated with an RF information transmission network 302 for transmitting information from an originating processor within the electronic mail system to a destination processor within the electronic mail system utilizing in accordance with the RF communications invention. Like reference numerals identify like parts Figs. 1-10 and 12. The integrated system 100 differs from the prior art of Figs. 1-7 in that the originating processor, which any may be processors within computing systems #1-#N is provided option of transmitting electronic (information) to at least one destination processor which may be any processor A-N within the processing systems #1-#N by means of an RF information transmission network 302 as described below. It should be understood that the present invention is not limited to the block diagram form of Figs. 8-10 12. Additionally, communications the. the switches 14 originating processors, gateway destination processors may be through either a public or private switch telephone network 104 and are not limited of telephone system to any type interconnection. information transmission The. RF network 302 functions to transmit the information which originated from the originating processorSA-N within any of the computing systems #1-#N to the destination processor A-N within any of the computing systems #1-#N by an RF transmission to an RF receiver 119. receiver 119 is connected to the destination processor with the same connections as illustrated in the prior art of Fig. 7.* Upon connection, the receiver 119 relays the information from the RF receiver * WHEN THE RF RECEIVER 119 IS CONNECTED TO THE SAFACI @ COMPUTER THE CONNECTION IS POWERED BY THE SAFARI COMPUTER.

10

15

20

25

30

35

destination processor. An important aspect of the present invention is that reception and review of electronic mail can be performed without connection of the RF receiver 119 to the destination processor A-N which permits the receiver to function as a mobile electronic mail receiver. As a result, the user may move from the site of the destination processor A-N either within an office or other location or during travel while receiving electronic mail which was not possible with the prior art. Furthermore, the connection of the RF receiver 119 to the destination processor automatically transfers the electronic mail stored within the memory of the RF receiver to the destination processor without manual keyboarding. program for controlling the transfer information from the receiver 119 to a SAFARI™ laptop computer of AT&T Corporation is contained within the attached Appendix at pages 1-9. This program automatically provides transfer of the stored electronic mail stored within the memory the RF receiver 119 into the destination processor A-N where it is accessible to application programs within the destination processor. As result, the deficiencies of the prior art in requiring substantial expense consequent from the making of telephone calls, substantial labor resultant from the lost time of persons making telephone calls and the inability to deliver electronic mail messages and the more difficult problem of delivering electronic mail messages to portable processors is overcome. Moreover, explained in detail below in conjunction with Fig. 11, the initiation of an information transmission from an originating processor A-N to a destination processor Aan RF transmission by the RF information transmission network 302 to an individual RF receiver

10

15

20

25

30

35

has many different options which are user friendly. The initiation of the transmission of information from originating processor A-N to а destination processor A-N using the RF transmissions of the RF information transmission network 302 only requires the identification of an address of the RF receiver, which preferably is the identification number receiver 119 in the RF information transmission network and the designation of an address of an interface switch in the form of an address such a "TF MOBOX" which connects the electronic mail system to the RF information transmission network as described below in conjunction with Figs. 9 and 10. The initiator of an electronic mail message, in the most user friendly form of the invention, is only required to input into the originating processor A-N an identification of destination processor A-N which typically is in the form of a name such as "John Doe". The distributed intelligence of the system implementing the present invention, which may be located in any one of the originating processor A-N, gateway switch 14 interface switch 304 or distributed therebetween described below with reference to Fig. 11, may be used to add the necessary address of the interface switch connecting the electronic mail system 1-N to the RF information transmission network 302 and identification of the RF receiver 119 in information transmission network from the inputting of only an identification of the destination processor A-The addition of the identification number of the RF receiver 119 and the address of the interface switch may be implemented by the originating processor A-N of one of the computing systems #1-#N, a gateway switch 14 or an interface switch 304 as described below with reference to Fig. 9.

10

15

20

25

30

35

Fig. 9 illustrates a block diagram of connection between a plurality of gateway switches with mailboxes 14 in different electronic mail systems to the RF information transmission network 302. It should be understood that multiple gateway switches with mailboxes 14 from a single electronic mail system 1-N may be connected to each interface switch 304 instead of the connection of a single gateway switch with mailbox to a single interface switch as illustrated. A plurality of interface switches 304 information transmitted from at least one electronic mail system as illustrated in Fig. 8, but optionally, a plurality of electronic mail systems 1-N each as illustrated in Fig. 8 are connected to a data input port of the RF information transmission system as illustrated in Fig. 12 which is preferably switch 116 of the prior art paging network described above with reference to Figs. 2-6. The dotted line communication paths 306 illustrate optional information transmissions in which information from a plurality of different electronic mail systems is concentrated at a single interface switch 304. The dotted line communication paths 307 illustrate connections additional gateway switches with mailboxes 14 within electronic mail systems 1-N.

The function of the interface switches 304 twofold. In the first place, the interface switches 304 functions as a security check to determine information transmissions originating from as gateway switch with mailbox 14 represent transmissions which should be coupled to a hub switch 116 of the RF information transmission network 302. The security check is performed by the interface switch 304 comparing the identification number the of RF. receiver 119 which has been added by either

10

15

20

25

30

35

originating processor A-N or a gateway switch with mailboxes 14 with permissible identification numbers or the interface switch performing the addition of the identification number. The interface switch 304 also removes information added by the electronic system 1-N to the information originated by originating processor A-N from the stored information received from one of the gateway switches 14 and adds information used by the RF information transmission network 302 during transmission of the information originated at the originating processor to receiver 119 in the RF information transmission. network 302 which receives the information and relays it to the destination processor A-N. Additionally, the interface switch 304 encodes data, which is required to format the display of the CRT of the destination processor for the electronic mail system to which the destination processor is connected, in the form of a character or characters which are decoded by either the RF receiver 119 or the destination processor A-N and added in decoded form back to the information which is processed by the destination processor with a format of the electronic mail system to which the destination processor A-N is connected.

The interface switches 304 function to store information which has been stored by at least gateway switch 114 that is received from a plurality of originating processors, assemble the information from a plurality of originating processors into a packet preferably having the format of that described above with reference to the prior art in Fig. 6 and transmit the packet to the hub switch 116 within the information transmission network 302. the While invention is not limited to the transmission of the packets from the interface switch 304 the to hub

10

15

20

25

30

35

switch 116 of the RF information transmission system 302, the hub switch is the preferable node in RF information transmission network communications from the gateway switches 14 should be transmitted as a consequence of it having jurisdiction over both lata switches 114 and the local switches 112 in the RF information transmission network which results in lesser network overhead.

The hub switch 116 receives the packet from the receiving interface switch 304 and disassembles the packet into information from the plurality originating processors either within single electronic mail system such as system 1 or from a plurality of electronic mail systems, systems 1-N, or from outside of any electronic mail system from at least one additional processor 312 which connected directly to interface switch 304 originate information to be transmitted destination processor A-N in an electronic mail system as described below. The RF information transmission network 302 transmits the disassembled information from the hub switch 116 including the identification number of the RF receiver 119 relaying information to the destination processor A-N to a local switch 112 storing the file 154 identified by the identification number and any destination 178 of the RF receiver in the RF information transmission network to which information and identification number transmitted by the RF information transmission network and adds any destination of the RF receiver to the information in accordance with the prior art system described above with reference to Figs. 2-6. information transmission network in response to any added destination transmits the information identification number to the destination in accordance

10

15

20

25 ·

30

35

with the prior art system described above with reference to Figs. 2-6 for RF broadcast to the RF receiver 119 for relaxing to the destination processor A-N.

The information is transmitted to a receiving interface switch 304 from one or more gateway switches 14 by one or more electronic mail systems 1-N in response to an address of the receiving interface switch which has been added to the information originated by the originating processor by either the originating processor or gateway switch. information is transmitted from the receiving interface switch 304 to the RF information transmission network with an address of the destination processor, such as a name of a user of the destination processor A-N, to receive the information which has been added by either the originating processor A-N, a gateway switch 14 or the receiving interface switch 304.

Various options exist for the adding of" the address of the receiving interface switch and address of the destination processor. Preferably, the address of the receiving interface switch is a code such as "TF-MOBOX", which is recognized throughout the electronic mail system when appended to information as directing the information transmitted to the interface switch 304. The address the destination processor is preferably the identification number of the RF receiver 119 within the RF information transmission network 302. The address of the receiving interface switch may be added to the information originated by the originating processor, by a gateway switch 14 or by the originating processor A N. The address of the receiving interface switch 304 added to the information by matching identification of the destination processor A-N which

10

15

20

25

30

35

The

at

least

one

originates information from outside of any electronic

additional

may be the name of the individual utilizing the processor or some other information and adds an address of an interface switch such as the aforementioned "TF-MOBOX" stored with the matched identification of the destination processor to the information as the of the receiving interface switch. Alternatively, the originating processor may be used to add the address of the receiving interface switch 14 by an inputting of the address of the receiving interface switch (TF-MOBOX) along with an identification of the destination processor A-N (name of recipient using the The originating processor A-N may also add processor). the address of the receiving interface switch 304 by matching an identification of the destination processor (name of the user of the processor) with a stored identification of a destination processor and adding an address of the interface switch (TF-MOBOX) stored with the matched identification of the destination processor to the information as the address of the receiving interface switch. The identification number may be added to the information originated by the originating or, alternatively, is processor added originating processor by matching an identification of the destination processor (the name of the user of the processor) with a stored identification destination processor (the authorized user destination processor) and adding an identification number stored with the matched identification of the destination processor to the information as the identification number of the RF receiver 119. Alternatively, the aforementioned matching process may be performed by either the gateway switch 14 or the interface switch 304. 75.

4 5 340

processor 312.

10

15

20

25

30

mail system. The processors 312 provide an address of at least one destination processor in an electronic mail system, such as the name of the user, to receive information transmitted by the RF information transmission system 302 or an identification number of the RF receiver 119 receiving information and relaying the information to the destination processor. interface switch 304 which receives the information from each processor 312 adds information used by the RF information transmission network 302 transmission of the information to the RF receiver 119 receiving the information in the same manner described above with respect to the interface switch 304.

The advantage of connecting the processors 312 directly to the interface switch 304 is that processors 312 are only required to have a telephone modem and support programming to format information for RF transmission to a destination processor A-N within any one of one or more electronic mail systems 1-N. The processors 312 are not required to have necessary electronic mail system software present if originating processors A-N or interconnections with an electronic mail system. As a result of the connection to the interface switch 304, information originating from the additional processors 312 may be transmitted by RF transmission to a destination processor A=N within any one or a plurality of electronic mail systems with the user of the processor 312 or processor 312 or the interface switch 304 only having to supply an identification number of the receiver 119 input information into the information RF transmission system 302 for RF transmission destination processor.

10

15

20

25

30

The difference between originating information by one of the additional processors 312 outside of any electronic mail system and originating information by one of the processors within one of the electronic mail systems is that the direct connection of the additional processor to the interface switch 304 eliminates the requirement for the adding of an address of the interface switch 304 which is required electronic mail systems to forward the information to the interface switch where necessary formatting of the information to be compatible with the RF information transmission system is performed. The interface switch 304 packetizes information originating from the additional processors 312 in the same described above with respect to information originating from within an electronic mail system. from within an electronic mail system and originating additional processors 312 outside electronic mail system may be formatted into the same packets which are forwarded to the hub switch 116. Additionally, an interface switch 304 may be connected only to the additional processors 312 to provide an interface only for processors outside of any electronic mail system to destination processors A-N within one or more electronic mail systems 1-N. The only information which is necessary to be inputted by the additional processors 312 address is the of the destination processor (user of the processor). The addition of the identification number of the receiver 119 may be added by matching of an identification of the destination processor with stored destination processors within the additional processor 312 or the interface switch 304 with an identification number of the receiver 119 being stored with an identification of destination a

10

15

20

25

30

35

processor A-N being used as an identification of the destination processor upon a match having been made.

Fig. 11 summarizes electronic mail message entry methods for messages (information) originating from originating processors within an electronic mail The first entry method adds the address of the interface switch 304 and the destination processor preferably in the form of a user's name; the gateway switch 14 takes no action; and the interface switch 304 adds the identification number of the RF receiver 119. second entry method adds the address interface switch 304 and the identification number of receiver 119; the gateway switch 14 takes action; and the interface switch 304 performs only the function of verifying that the identification number which was added by the originating processor is a valid identification number within the RF information transmission network 302. In the third method, the originating processor adds the destination processor preferably in the form of the user's name; the gateway switch adds the destination of the interface switch 304; and the interface switch 304 adds the identification of the receiver 119. In the fourth method, the originating processor adds the destination processor preferably in the form of the user's name only; the gateway switch 14 adds an address of the interface switch 304 and the identification number of the receiver 119; and the interface switch takes no action other than verification that the identification number of the receiver 119 added by the switch 14 is valid. In the fifth method, the operator of the originating processor adds the destination processor, points to an icon displayed on a CRT associated with the originating processor and originating processor adds the address of the interface

40.

10

15

20

25

30

35

switch 304; the gateway switch 14 adds the identification number of the receiver 119 the interface switch 304 takes no action other than verification. In the sixth method, the operator of the originating processor adds the destination processor, the user of the originating processor points to an icon displayed by a CRT associated with the originating processor which causes the addition of the address of the interface switch 304; the gateway switch takes no action and the interface switch 304 identification of the receiver 119. In the seventh method, the operator of the originating processor adds the destination processor, the user points to an icon displayed on a CRT associated with the originating processor causing the addition of the address of the interface switch 304 and the receiver identification number by comparing an identification the destination processor, such as user the destination processor, to an identification destination processors with identification numbers or RF receivers 119 which relay information destination processor; the gateway switch 14 takes no action; and the interface switch 304 takes no action.

Fig. 12 illustrates a block diagram interface switch 304 in accordance with the present The interface switch 304 has a main CPU 400 to which is connected a floppy drive 402 and as hard drive 404 for providing memory storage for use by the CPU in executing the various functions of the interface switch as described above. The program on pages 10-14 of Appendix implements the function interface switch 304 in a 3B2 computer which interfaces with the Telefind Corporation data transmission network described in the above-referenced patents and the AT&T Corporation electronic mail system. A diagnostic

10

15

20

25

30

and maintenance port 406 is connected to the CPU in accordance with standard practice. A main bus 408 is coupled to a plurality of serial ports 410 which are connected in series with a multispeed modem 412 which is connected to one of the additional processors 312 as discussed above with reference to Fig. 9, to at least one gateway switch with mailboxes 14 in at least one electronic mail system and to a plurality of network ports which are connected to a plurality X.25 modems 414 which are connected in series with a network port 416 which is connected to hub switch 116 A module bay controller 418 controls the of Fig. 9. bus 408 in accordance with standard practice. Alternatively, if the interface switch is not connected to a gateway switch with mailboxes 14, the interface switch functions only as a general purpose collector switch for the additional processors 312.

While the invention has been described in terms of its preferred embodiments, it should be understood that numerous modifications may be made thereto without departing from the spirit and scope as defined in the appended claims. For example, while the invention has been described in terms of utilizing a preferred RF information transmission network, it should understood that the invention is equally applicable to other forms of RF transmission systems for broadcasting information originating from an originating processor within an electronic mail system or from an additional processor outside of any electronic mail system to a destination processor connected to an electronic mail system. It is intended that all such modifications fall within the scope of the appended claims.

Claims

1. An electronic mail system for transmitting information from one of a plurality of originating processors to at least one of a plurality of destination processors during operation comprising:

at least one gateway switch, a gateway switch storing information received from one of the at least one originating processor prior to transmission of the information to the at least one destination processor;

a RF information transmission network for transmitting stored information received from one of the at least one gateway switch by RF transmission to at least one destination processor;

at least one interface switch, an interface switch connecting a gateway switch to the RF transmission network and transmitting stored information received from one of the at least one gateway switch to the RF information transmission network; and wherein

the information is transmitted to a receiving interface switch by the electronic mail system in response to an address of the receiving interface switch which has been added to the information originated by the originating processor by either the originating processor or gateway switch information is transmitted from the receiving interface switch to the RF information transmission network with an address of the destination processor to receive the information which has been added by either the originating processor, switch a gateway the receiving interface switch.

20

25

5

10

15

2. An electronic mail system in accordance with claim 1 wherein:

the receiving interface switch removes information added by the electronic mail system to the information originated by the originating processor from the stored information received from one of the at least one gateway switch and adds information used by the RF information transmission network during transmission of the information to the information originated by the originating processor to a RF receiver in the RF information transmission network which receives the information and relays it to the destination processor.

3. An electronic mail system in accordance with claim 1 wherein:

the address of the destination processor is an identification number of a RF receiver in the RF information transmission network which receives the information and relays it to the destination processor; and

the receiving interface switch stores information which has been stored by at least one gateway switch that is received from a plurality of originating processors, assembles the information from a plurality of originating processors into a packet and transmits the packet to the RF information transmission network.

25

20

5

10

10

15

20

4. An electronic mail system in accordance with claim 3 wherein the RF information transmission network comprises:

a switch which receives the packet from the receiving interface switch and disassembles the packet into information from the plurality of originating processors; and wherein

information transmission network transmits the disassembled information, including the identification number of the RF receiver relaying information to a destination processor to a switch in the RF information transmission network storing a file identified by the identification number destination of the RF receiver in the RF information transmission network to which the information identification number is to be transmitted by the RF information transmission network and adds destination of the RF receiver to the information and the RF information transmission network in response to any added destination transmits the information and identification number to the destination for RF broadcast to the RF receiver for relaying to the destination processor.

5. An electronic mail system in accordance with claim 2 wherein:

the address of the destination processor is an identification number of a RF receiver in the RF transmission network which receives the information and relays it to the destination processor; and

the receiving interface switch stores information which has been stored by at least one gateway switch that is received from a plurality of originating processors, assembles the information from a plurality of originating processors into a packet and

10

15

20

25

30

transmits the packet to the RF information transmission network.

6. An electronic mail system in accordance with claim 5 wherein the RF information transmission network comprises:

a switch which receives the packet from the receiving interface switch and disassembles the packet into information from the plurality of originating processors; and wherein

the RF information transmission transmits the disassembled information, including the identification number of the RF receiver relaying information to destination processor to a switch in the RF information transmission network storing a file identified by the identification number and destination of the RF receiver in the RF information transmission network to which the information and identification number is to be transmitted by the RF information transmission network and destination of the RF receiver to the information and the RF information transmission network in response to any added destination transmits the information and identification number to the destination RF broadcast to the RF receiver for relaying to the destination processor.

7. An electronic mail system in accordance with claim 1 wherein:

the electronic mail system also transmits information between an originating processor and at least one destination processor through either a public or private switch telephone network without transmission by the RF information transmission network with the destination processor being addressed by a

10

15

20

25

different address during transmission to the destination processor when using the public switch telephone network transmission network than during transmission by the RF information transmission network.

8. An electronic mail system in accordance with claim 2 wherein:

the electronic mail system also transmits information between an originating processor and at least one destination processor through either a public or private switch telephone network without transmission by the RF information transmission network with the destination processor being addressed by a different address during transmission to the destination processor when using the public switch telephone network transmission network than during transmission by the RF information transmission network.

9. An electronic mail system in accordance with claim 3 wherein:

the electronic mail system also transmits information between an originating processor and at least one destination processor through either a public or private switch telephone network without transmission by the RF information transmission network with the destination processor being addressed by a different address during transmission to the destination processor when using the public switch telephone network transmission network than during transmission by the RF information transmission network.

10

15

20

25

10. An electronic mail system in accordance with claim 4 wherein:

the electronic mail system also transmits information between an originating processor and at least one destination processor through either a public or private switch telephone network without transmission by the RF information transmission network with the destination processor being addressed by a different address during transmission to the destination processor when using the public switch telephone network transmission network than during transmission by the RF information transmission network.

11. An electronic mail system in accordance with claim 5 wherein:

the electronic mail system also transmits information between an originating processor and at least one destination processor through either a public or private switch telephone network without transmission by the RF information transmission network with the destination processor being addressed by a different address during transmission to the destination processor when using the public switch telephone network transmission network than during transmission by the RF information transmission network.

15

20

25

12. An electronic mail system in accordance with claim 6 wherein:

the electronic mail system also transmits information between an originating processor and at least one destination processor through either a public or private switch telephone network without transmission by the RF information transmission network with the destination processor being addressed by a different address during transmission to the destination processor when using the public switch telephone network transmission network than during transmission by the RF information transmission network.

- 13. An electronic mail system in accordance with claim 1 further comprising:
- a RF receiver connectable to the destination processor and in response to connection of the RF receiver to the destination processor the RF receiver transfers information stored in a memory of the RF receiver received from the originating processor to the destination processor;
- a number of originating processors is greater than a number of interface switches; and
- a plurality of originating processors also function as destination processors with a RF receiver connected thereto.
 - 14. An electronic mail system in accordance with claim 1 wherein:

the address of the receiving interface switch is added to the information originated by the originating processor by a gateway switch.

15. An electronic mail system in accordance with claim 1 wherein:

the address of the receiving interface switch is added by the originating processor.

5 16. An electronic mail system in accordance with claim 1 wherein:

the address of the destination processor is an identification number of a RF receiver receiving the information and relaying the information to the destination processor and is added to the information originated by the originating processor by the originating processor.

17. An electronic mail system in accordance with claim 1 wherein:

the address of the destination processor is an identification number of a RF receiver receiving the information and relaying the information to the destination processor and is added to the information originated by the originating processor by the gateway switch.

18. An electronic mail system in accordance with claim 1 wherein:

the address of the destination processor is an identification number of a RF receiver receiving the information and relaying the information to the destination processor and is added to the information originated by the originating processor by the receiving interface switch.

25

25

30

19. An electronic mail system in accordance with claim 2 wherein:

the address of the receiving interface switch is added to the information originated by the originating processor by a gateway switch.

20. An electronic mail system in accordance with claim 2 wherein:

the address of the receiving interface switch is added by the originating processor.

10 21. An electronic mail system in accordance with claim 2 wherein:

the identification number of the RF receiver is added to the information originated by the originating processor by the originating processor.

22. An electronic mail system in accordance with claim 2 wherein:

the identification number of the RF receiver is added to the information originated by the originating processor by the gateway switch.

23. An electronic mail system in accordance with claim 2 wherein:

the identification number of the RF receiver is added to the information originated by the originating processor by the receiving interface switch.

24. An electronic mail system in accordance with claim 3 wherein:

the address of the receiving interface switch is added to the information originated by the originating processor by a gateway switch.

10

20

25

25. An electronic mail system in accordance with claim 13 wherein:

the address of the receiving interface switch is added by the originating processor.

An electronic mail system in accordance with claim 13 wherein:

the identification number of the RF receiver added to the information originated by originating processor by the originating processor.

An electronic mail system in accordance with claim 13 wherein:

the identification number of the RF receiver added to the information originated by the originating processor by the gateway switch.

15 An electronic mail system in accordance with claim 13 wherein:

> the identification number of the RF receiver added to the information originated by the originating processor by the receiving interface switch.

29. An electronic mail system in accordance with claim 4 wherein:

the address of the receiving interface switch added to the information originated by the originating processor by a gateway switch.

An electronic mail system in accordance with claim 4 wherein:

the address of the receiving interface switch is added by the originating processor.

10

31. An electronic mail system in accordance with claim 4 wherein:

the identification number of the RF receiver receiving the information and relaying the information to the destination processor and is added to the information originated by the originating processor by the originating processor.

32. An electronic mail system in accordance with claim 4 wherein:

the identification number of the RF receiver is added to the information originated by the originating processor by the gateway switch.

33. An electronic mail system in accordance with claim 4 wherein:

the identification number of the RF receiver is added to the information originated by the originating processor by the receiving interface switch.

34. An electronic mail system in accordance with claim 5 wherein:

the address of the receiving interface switch is added to the information originated by the originating processor by a gateway switch.

35. An electronic mail system in accordance with claim 5 wherein:

the address of the receiving interface switch is added by the originating processor.

10

15

20

25

30

36. An electronic mail system in accordance with claim 5 wherein:

the identification number of the RF receiver is added to the information originated by the originating processor by the originating processor.

37. An electronic mail system in accordance with claim 5 wherein:

the identification number of an RF receiver is added to the information originated by the originating processor by the gateway switch.

38. An electronic mail system in accordance with claim 5 wherein:

the identification number of the RF receiver is added to the information originated by the originating processor by the receiving interface switch.

39. An electronic mail system in accordance with claim 6 wherein:

the address of the receiving interface switch is added to the information originated by the originating processor by a gateway switch.

40. An electronic mail system in accordance with claim 6 wherein:

the address of the receiving interface switch is added by the originating processor.

41. An electronic mail system in accordance with claim 6 wherein:

the identification number of the RF receiver is added to the information originated by the originating processor by the originating processor.

42. An electronic mail system in accordance with claim 6 wherein:

the identification number of the RF receiver is added to the information originated by the originating processor by the gateway switch.

43. An electronic mail system in accordance with claim 6 wherein:

the identification number of the RF receiver is added to the information originated by the originating processor by the receiving interface switch.

44. An electronic mail system in accordance with claim 14 wherein:

the address of the receiving interface switch is added by matching an identification of the destination processor with a stored identification of a destination processor and adding an address of an interface switch stored with the matched identification of the destination processor to the information as the address of the receiving interface switch.

45. An electronic mail system in accordance with claim 15 wherein:

the address of the receiving interface switch is added by an inputting of the address of the receiving interface switch along with an identification of the destination processor.

25

5

10

15

46. An electronic mail system in accordance with claim 15 wherein:

the address of the receiving interface switch is added by matching an identification of the destination processor with a stored identification of a destination processor and adding an address of an interface switch stored with the matched identification of the destination processor to the information as the address of the receiving interface switch.

47. An electronic mail system in accordance with claim 16 wherein:

the identification number is added to the information originated by the originating processor by inputting the identification number to the originating processor.

48. An electronic mail system in accordance with claim 16 wherein:

the identification number is added to the information originated by the originating processor by matching an identification of the destination processor with a stored identification of a destination processor and adding an identification number stored with the matched identification of the destination processor to the information as the identification number.

20

5

10

15

and the second s

49. An electronic mail system in accordance with claim 17 wherein:

the identification number is added to the information originated by the originating processor by matching an identification of the destination processor with a stored identification of a destination processor and adding an identification number stored with the matched identification of the destination processor to the information as the identification number.

10

15

5

50. An electronic mail system in accordance with claim 18 wherein:

the identification number is added to the information originated by the originating processor by matching an identification of the destination processor with a stored identification of a destination processor and adding an identification number stored with the matched identification of the destination processor to the information as the identification number.

20

51. An electronic mail system in accordance with claim 19 wherein:

the address of the receiving interface switch is added by matching an identification of the destination processor with a stored identification of a destination processor and adding an address of an interface switch stored with the matched identification of the destination processor to the information as the address of the receiving interface switch.

10

15

20

52. An electronic mail system in accordance with claim 20 wherein:

the address of the receiving interface switch is added by an inputting of the address of the receiving interface switch along with an identification of the destination processor.

53. An electronic mail system in accordance with claim 20 wherein:

the address of the receiving interface switch is added by matching an identification of the destination processor with a stored identification of a destination processor and adding an address of an interface switch stored with the matched identification of the destination processor to the information as the address of the receiving interface switch.

54. An electronic mail system in accordance with claim 21 wherein:

an identification number is added to the information originated by the originating processor by inputting the identification number to the originating processor.

55. An electronic mail system in accordance with claim 21 wherein:

the identification number is added to the information originated by the originating processor by matching an identification of the destination processor with a stored identification of a destination processor and adding an identification number stored with the matched identification of the destination processor to the information as the identification number.

30

25

ing street

56. An electronic mail system in accordance with claim 22 wherein:

the identification number is added to the information originated by the originating processor by matching an identification of the destination processor with a stored identification of a destination processor and adding an identification number stored with the matched identification of the destination processor to the information as the identification number.

10

15

5

57. An electronic mail system in accordance with claim 23 wherein:

the identification number is added to the information originated by the originating processor by matching an identification of the destination processor with a stored identification of a destination processor and adding an identification number stored with the matched identification of the destination processor to the information as the identification number.

20

58. An electronic mail system in accordance with claim 24 wherein:

the address of the receiving interface switch is added by matching an identification of the destination processor with a stored identification of a destination processor and adding an address of an interface switch stored with the matched identification of the destination processor to the information as the address of the receiving interface switch.

10

15

20

25

30

59. An electronic mail system in accordance with claim 25 wherein:

the address of the receiving interface switch is added by an inputting of the address of the receiving interface switch along with an identification of the destination processor.

60. An electronic mail system in accordance with claim 25 wherein:

the address of the receiving interface switch is added by matching an identification of the destination processor with a stored identification of a destination processor and adding an address of an interface switch stored with the matched identification of the destination processor to the information as the address of the receiving interface switch.

61. An electronic mail system in accordance with claim 26 wherein:

an identification number is added to the information originated by the originating processor by inputting the identification number to the originating processor.

62. An electronic mail system in accordance with claim 26 wherein:

the identification number is added to the information originated by the originating processor by matching an identification of the destination processor with a stored identification of a destination processor and adding an identification number stored with the matched identification of the destination processor to the information as the identification number.

63. An electronic mail system in accordance with claim 27 wherein:

the identification number is added to the information originated by the originating processor by matching an identification of the destination processor with a stored identification of a destination processor and adding an identification number stored with the matched identification of the destination processor to the information as the identification number.

10

15

5

64. An electronic mail system in accordance with claim 28 wherein:

the identification number is added to the information originated by the originating processor by matching an identification of the destination processor with a stored identification of a destination processor and adding an identification number stored with the matched identification of the destination processor to the information as the identification number.

20

25

65. An electronic mail system in accordance with claim 29 wherein:

the address of the receiving interface switch is added by matching an identification of the destination processor with a stored identification of a destination processor and adding an address of an interface switch stored with the matched identification of the destination processor to the information as the address of the receiving interface switch.

10

15

20

66. An electronic mail system in accordance with claim 30 wherein:

the address of the receiving interface switch is added by an inputting of the address of the receiving interface switch along with an identification of the destination processor.

67. An electronic mail system in accordance with claim 30 wherein:

the address of the receiving interface switch is added by matching an identification of the destination processor with a stored identification of a destination processor and adding an address of an interface switch stored with the matched identification of the destination processor to the information as the address of the receiving interface switch.

68. An electronic mail system in accordance with claim 31 wherein:

an identification number is added to the information originated by the originating processor by inputting the identification number to the originating processor.

69. An electronic mail system in accordance with claim 31 wherein:

the identification number is added to the information originated by the originating processor by matching an identification of the destination processor with a stored identification of a destination processor and adding an identification number stored with the matched identification of the destination processor to the information as the identification number.

30

70. An electronic mail system in accordance with claim 32 wherein:

the identification number is added to the information originated by the originating processor by matching an identification of the destination processor with a stored identification of a destination processor and adding an identification number stored with the matched identification of the destination processor to the information as the identification number.

10

15

5

71. An electronic mail system in accordance with claim 33 wherein:

the identification number is added to the information originated by the originating processor by matching an identification of the destination processor with a stored identification of a destination processor and adding an identification number stored with the matched identification of the destination processor to the information as the identification number.

20

25

72. An electronic mail system in accordance with claim 34 wherein:

the address of the receiving interface switch is added by matching an identification of the destination processor with a stored identification of a destination processor and adding an address of an interface switch stored with the matched identification of the destination processor to the information as the address of the receiving interface switch.

10

15

20

73. An electronic mail system in accordance with claim 35 wherein:

the address of the receiving interface switch is added by an inputting of the address of the receiving interface switch along with an identification of the destination processor.

74. An electronic mail system in accordance with claim 35 wherein:

the address of the receiving interface switch is added by matching an identification of the destination processor with a stored identification of a destination processor and adding an address of an interface switch stored with the matched identification of the destination processor to the information as the address of the receiving interface switch.

75. An electronic mail system in accordance with claim 36 wherein:

an identification number is added to the information originated by the originating processor by inputting the identification number to the originating processor.

76. An electronic mail system in accordance with claim 36 wherein:

the identification number is added to the information originated by the originating processor by matching an identification of the destination processor with a stored identification of a destination processor and adding an identification number stored with the matched identification of the destination processor to the information as the identification number.

30

25

12..... 42.00.50

77. An electronic mail system in accordance with claim 37 wherein:

the identification number is added to the information originated by the originating processor by matching an identification of the destination processor with a stored identification of a destination processor and adding an identification number stored with the matched identification of the destination processor to the information as the identification number.

10

15

5

78. An electronic mail system in accordance with claim 38 wherein:

the identification number is added to the information originated by the originating processor by matching an identification of the destination processor with a stored identification of a destination processor and adding an identification number stored with the matched identification of the destination processor to the information as the identification number.

20

25

79. An electronic mail system in accordance with claim 39 wherein:

the address of the receiving interface switch is added by matching an identification of the destination processor with a stored identification of a destination processor and adding an address of an interface switch stored with the matched identification of the destination processor to the information as the address of the receiving interface switch.

10

15

20

25

80. An electronic mail system in accordance with claim 40 wherein:

the address of the receiving interface switch is added by an inputting of the address of the receiving interface switch along with an identification of the destination processor.

81. An electronic mail system in accordance with claim 40 wherein:

the address of the receiving interface switch is added by matching an identification of the destination processor with a stored identification of a destination processor and adding an address of an interface switch stored with the matched identification of the destination processor to the information as the address of the receiving interface switch.

82. An electronic mail system in accordance with claim 41 wherein:

an identification number is added to the information originated by the originating processor by inputting the identification number to the originating processor.

83. An electronic mail system in accordance with claim 41 wherein:

the identification number is added to the information originated by the originating processor by matching an identification of the destination processor with a stored identification of a destination processor and adding an identification number stored with the matched identification of the destination processor to the information as the identification number.

84. An electronic mail system in accordance with claim 42 wherein:

the identification number is added to the information originated by the originating processor by matching an identification of the destination processor with a stored identification of a destination processor and adding an identification number stored with the matched identification of the destination processor to the information as the identification number.

10

5

85. An electronic mail system in accordance with claim 43 wherein:

15

the identification number is added to the information originated by the originating processor by matching an identification of the destination processor with a stored identification of a destination processor and adding an identification number stored with the matched identification of the destination processor to the information as the identification number.

5

10

15

20

25

30

Electronic Mail System With RF Communications To Mobile Processors

Abstract

A system (100) for transmitting information from one of a plurality of originating processors A-N to at least a plurality of destination processors (A-N) which may be transported during operation in accordance with invention includes at least one switch (14), a gateway switch storing information received from one of the at least one originating processor prior to transmission of the information to at least one destination processor; transmission network (302) RF information transmitting stored information received from one of the at least one gateway switch by RF transmission to least one destination processor; at least one interface switch (304), an interface switch connecting a gateway switch to the RF transmission network and transmitting stored information received from one of the at least one gateway switch to the RF information transmission network; and wherein the information is transmitted to a receiving interface switch by the electronic mail system in response to an address of the receiving interface switch which has been added to the information originated by the originating processor by either the originating processor or gateway switch and the information is transmitted from the receiving interface switch to the RF information transmission network with an address of the destination processor to receive the information which has been added by either the originating processor, a gateway switch or the receiving interface switch.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Thomas J. CAMPANA, Jr. et al

Serial No.: To Be Assigned

(Concurrently Herewith)

Filed: December 6, 1999

(Concurrently Herewith)

For: ELECTRONIC MAIL SYSTEM WITH RF

COMMUNICATIONS TO MOBILE PROCESSORS

Group: 2744 (Previous)

Examiner: William Trost (Previous)

SUBMISSION OF FORMAL DRAWINGS

Assistant Commissioner for Patents Washington, D. C. 20231 December 6, 1999

sir:

Submitted herewith are twelve (12) sheets of Formal Drawings (non-bristol boards) showing Figs. 1-12 in the above-identified application in compliance with the provisions of Rule 84.

Respectfully submitted,

ANTONELLI / TERRY, STOUT & KRAUS, LLP

Donald E. Stout

Registration No. 26,422

(703) 312-6600

DES:dlh

FIG. 3 (PRIOR ART)

	LOCA	L SWITCH	MEMORY	MAP		
			156	158	160	
154					}	_
104	SUBSCRIBER FILES N (9999)	FREQUEN FILES N	(1,000)	LATA BUFFERS	LOCAL BUFFERS	
162 164 166	① FILE#1 (0,000) ② TELEPHONE#	2 0-15 F		INBOUND	INBOUND PAGES	184
168	③ SUBSCRIBER AND PAGER ID CODE ④ SERVICE OPTIONS	in regi	S USED ON COR-	LATA BUFFER	0	
	① NO SERVICE ⑥ LOCAL ⓒ REGIONAL	RESPON FILE #	DING TO	180	2	
	♠ NATIONAL♠ ABOVE WITHREPEAT PAGING				3	
170 <	① DATA SERVICE ② EXTERNAL DATA			OUTDOUND	4	186
172 174 176	(5) SUBSCRIBER NAME/ACCOUNT (6) ACCOUNT # (7) PAGE COUNT (L,R,N)		_	OUTBOUND LATA BUFFER	5	
178	(8) # OF DATA CHARACTERS SENT (9) DESTINATIONS AREA CODE(S)			182	6	
			(000)		8	
	FILE # N (9,999)	FILE # N	(999)		9	
						ID CODE BUFFERS

F1G. 4

(PRIOR ART) **MEMORY** MAP SWITCH LATA 192 194 196 190 LOCAL BUFFERS LATA MEMORY HUB 188 OPTIONAL OPTIONAL ID BUFFERS INBOUND **PAGES** ALL PAGER ID OUTBOUND CODES OF LOCAL#1 **PAGES** 202 198 -ALL CALL ALL CALL OUTBOUND PAGES BUFFER BUFFER 1 LOCAL # 1 PAGES PAGES FROM FROM LOCAL HUB SWITCH **I SWITCHES** INBOUND 204 **PAGES** 200 -ALL PAGER ID CODES OF LOCAL # N (26)OUTBOUND LOCAL # N (25)

FIG. 5 (PRIOR ART)

HUB SWITCH MEMORY MAP

		Hop Officer	TIETION TO THE	
	206	208	210	212
	HUB BUFFERS	LATA BUFFERS	LATA CODE TABLES N (100)	HUB ROUTING CODES N (1000)
	INBOUND HUB# I	INBOUND LATA#1	LATA	ROUTING CODE 1,2,3,4,5,6 (312)
		218	CODE 222 # 1	
214				
	INBOUND HUB # N (6)	INBOUND LATA # N (100)	***************************************	
	OUTBOUND HUB I	OUTBOUND LATA I		
			- ,	
		 		
		220 ——	 	
/				
216				
			LATA	
		017704110	CODE	DOUTING CODE
	OUTBOUND HUB#N(6)	OUTBOUND LATA # N (100)	# N (100)	ROUTING CODE # N (999)

FIG. 6 PRIOR ART

Γ			111	I	
	PAGEN		END OF FILE FILE SIZE		
	PAGE 4		PAGE		
	PAGE 3	MESSAGE DETAIL	DESTINATION(S) SPECIAL COMMANDS	L S DIGIT ID CODE AREA CODES	
X .25 PACKEI	PAGE 2		DESTINA:	L COUNTIE CODE A	BEGINNING OF FILE
THE FIVE LAYER MODIFIED X .25 PACKE	PAGE 1)io	L BEGIN
THE FIVE L	NUMBER OF PAGES IN PACKET				
	ORIGINA- DESTI- TION NATION SWITCH SWITCH ADDRESS ADDRESS	•			
	PACKET SIZE (2)				
	DESTI- NATION TELEPHONE NUMBER				

FIG. 7
PRIOR ART

F/G. 10

INTERFACE SWITCH 304	ADDS ID OF RF RECEIVER 119	NO ACTION OTHER THAN ID VERIFICATION	ADDS ID OF RECEIVER 119	NO ACTION OTHER THAN ID VERIFICATION	NO ACTION OTHER THAN ID VERIFICATION	ADDS ID OF RECEIVER 119	NO ACTION OTHER THAN ID VERIFICATION
GATEWAY SWITCH 14	NO-ACTION	NO-ACTION	ADDS WIRELESS DESTINATION	ADDS WIRELESS DESTINATION AND ID OF RECEIVER 119	ADDS ID OF RECEIVER 119	NO-ACTION	NO-ACTION :).
ORIGINATING PROCESSOR	ADDS INTERFACE (WIRELESS) DESTINATION AND DESTINATION PROCESSOR	ADDS INTERFACE (WIRELESS) DESTINATION AND ID OF RECEIVER 119	ADDS DESTINATION PROCESSOR	ADDS DESTINATION PROCESSOR	ADDS DESTINATION PROCESSOR, OPERATOR POINTS TO DISPLAYED ICON, ORIGINATING PROCESSOR ADDS WIRELESS DESTINATION.	ADDS DESTINATION PROCESSOR, OPERATOR POINTS TO DISPLAYED ICON, ORIGINATING PROCESSOR ADDS WIRELESS DESTINATION.	ADDS DESTINATION PROCESSOR, OPERATOR POINTS TO DISPLAYED ICON, ORIGINATING PROCESSOR ADDS WIRELESS DESTINATION AND ID OF RECEIVER 119(BY COMPARING DESTINATION PROCESSOR TO ID TABLE).
ENTRY	Ψ-	71	m	4	ro.	ထ	

(Status: patented, pending, abandoned)

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name, I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled: "ELECTRONIC MAIL SYSTEM WITH RF COMMUNICATIONS TO MOBILE PROCESSORS" is attached hereto. the specification of which (check one) was filed on _ as Application Serial No. and was amended on _____ I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above. I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, §1.56(a). I hereby claim foreign priority benefits under Title 35, United States Code, §119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed: Priority Claimed Prior Foreign Application(s) None (Day/Month/Year Filed) (Country) (Number) (Day/Month/Year Filed) (Country) (Number) (Day/Month/Year Filed) (Country) (Number) (Day/Month/Year Filed) (Country) (Number) (Day/Month/Year Filed) (Number) (Country) (Day/Month/Year Filed) (Country) (Number) I hereby claim the benefit under Title 35, United States Code, § 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of this application: (Status: patented, pending, abandoned) (Filing Date) (Application Serial No.) (Status: patented, pending, abandoned) (Filing Date) (Application Serial No.) (Status: patented, pending, abandoned) (Filing Date) (Application Serial No.)

(Filing Date)

(Application Serial No.)

I hereby appoint as principal attorneys; Donald R. Antonelli, Reg. No. 2, 296; David T. Terry, Reg. No. 20,178; Melvin Kraus, Reg. No. 22,466; Stanley A. Wal, Reg. No. 26,432; William I. Solomon, Reg. No. 28,565; Gregory E. Montone, Reg. No. 28,141; Ronald J. Shore, Reg. No. 28,577; Donald E. Stout, Reg. No. 26,422; Alan E. Schiavelli, Reg. No. 32,087 and James N. Dresser, Reg. No. 22,973 to prosecute and transact all business connected with this application and any related United States application and international applications. Please direct all communications to the following address:

Antonelli, Terry, Stout & Kraus Suite 600 1919 Pennsylvania Avenue, N.W. Washington, D.C. 20006 Telephone: (202) 828-0300

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further, that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

A .	(Full Name)	(Signature)
Date May 17, 1991 Inventor	Thomas J. Campana,	Jr. / homas lampona
Residence Same As Post Office A	Address Citiz	enship U.S.) V
Post Office Address 3836 West 861	th Street, Chicago, I	11inois 60652
Date 5-17-91 Inventor	Michael P. Ponschke	Michael F. Panselle, &
Residence Same As Post Office	Address Citiz	enship U.S.
Post Office Address 212 Tara Driv	ve, Lockport, Illinoi	s 60441
Date 5-17-91 Inventor	Gary F. Thelen	. Cary J. Thelen
Residence Same As Post Office	Address Citiz	enship <u>U.S.</u>
Post Office Address 16 Fox Lane,	Palos Park, Illinois	60464
Date Inventor		
Residence	Citiz	enship
Post Office Address		AT 57 . 15
Date Inventor		
Residence	Citiz	enship
Post Office Address		
Date Inventor		
Residence	Citiz	enship
Post Office Address		
Date Inventor		
Residence	Citiz	enship
Post Office Address		
Date Inventor		
Residence		enship
Post Office Address		
Date Inventor		
Residence	*	
Post Office Address		
Date Inventor		
Residence	Citi	zenship
Post Office Address		

SUBSTITUTE APPENDIX

Copyright Thomas Campana, Jr. 1991

#define ATT_EMAIL_FILE #define DELIMITER

"TFHOBOX.TMP"

"End of Telefind Network Hessage\n"

```
#include <string.h>
#include <time.h>
#include <stdio.h>
#include <dos.h>
#include "safari.h"
void main(void)
       FILE *infile, *outfile;
       char buffer(81],chr,timestr(6],datestr(9];
       char msg_num(4);
       int msg_num_opt = 0;
       char *ptr;
       int x,day,month,line=1,attmail=0;
       time_t t;
       if ((infile = fopen(ATT_EMAIL_FILE,"rt")) == HULL)
               printf("%s does not exist\n",ATT_EHAIL_FILE);
               exit(0);
       }
       if ((outfile = fopen("tfmobox.SSS","wt")) == NULL)
       •
               printf("Can't open TFMOBOX.SSS\n");
               exit(0);
       }
       for(;;)
                       get characters from .tmp file */
               x = 0;
               do
               €
                       chr = fgetc(infile);
                       if (feof(infile))
                               fclose(infile);
                               fclose(outfile);
                               exit(0);
                       buffer(x++) = chr;
               >
                            until end of line
               while (chr != '\n' && x != 80);
               buffer(x) = 1 \cdot 0;
                                     /*
                                              terminate it
               if (line == 1)
                       ptr = strchr(buffer,')');
                                             /* was 3rd character */
                       if (ptr-buffer == 2)
                       €
                               sscanf(buffer,"X[")]",msg_num);
                               mag_num_opt = 1;
                               ptr++;
                       }
                       else
                               ptr = buffer;
                       if (*ptr == ':' && *(ptr+1) == '0')
                               attmail = 1;
              }
              if (attmail)
                      switch(line)
```

}

```
₹
                  case 1:
                                   datestr = mm/dd, timestr = hh:mm
                                                                           */
                         sscanf(datestr, "%d/%d", &month, &day);
                                                                           */
                                   get year from pc
                         t = time(NULL);
                         fprintf(outfile,"Date: %s",ctime(&t));
                 case 2:
                         fprintf(outfile,"From: %s",buffer);
                         break;
                 case 3:
                         fprintf(outfile,"Subject: %s",buffer);
                         fprintf(outfile,"To: <Name here>\n");
                         if (msg_num_opt)
                                  fprintf(outfile,"Message #%s\n",msg_num);
                         break:
                 default:
                         fprintf(outfile,"%s",buffer);
                         break;
        }
}
else
C
        if (line == 1)
                 t = time(NULL);
                 fprintf(outfile,"Date: %s",ctime(&t));
                 fprintf(outfile, "From: tfmobox\n");
                 fprintf(outfile,"Subject: Telefind Network Message\n");
                 fprintf(outfile,"To: <Name here>\n");
                if (msg_num_opt)
                €
                         fprintf(outfile,"Message #%s\n",msg_num);
                         fprintf(outfile,"%s",buffer+3);
                )
                else
                         fprintf(outfile,"%s",buffer);
        }
        else
                fprintf(outfile,"%s",buffer);
}
if (strcmp(buffer,DELIMITER) == 0)
        msg_num_opt = line = attmail = 0;
line ++;
```

```
03/13/91
         Program:
                                  SAFARI3.C
         Purpose:
                                  TO EXTRACT MESSAGES FROM A TELEFIND PAGER
                                  VIA IN RS-232 PORT ON A PC
         Compiler:
                                 TURBO C++ 1.0
         Memory Model:
                                  SMALL
 */
 #include <dos.h>
 #include <stdio.h>
 #include <comio.h>
 #include <string.h>
 #include <stdlib.h>
#include "safari.h"
                 CONSTANTS
                                         */
#define DTR_HI
                                 0x01
#define DTR_LO
                                 0xfe
#define RTS_HI
                                 0x02
#define RTS_LO
                                 0xfd
#define DSR_HI
                                 0x20
#define RING_IN
                                 0x40
#define CD_HI
                                 0x80
#define FIVE_TICK
                                 5
#define FIVE_SEC
                                 96
#define TWELVE_SEC
                                 220
#define LOG_FILE
                                 "LOG"
#define INTRO_STRING
                                 "Please standby, retrieving messages ..."
  Ü
      FUNCTION PROTOTYPES
/*_
                                 */
int beep(void);
void busyoff(void);
void busyon(void);
void disoff(void);
void dison(void);
ing link(void):
void print_message(void);
int rxdata(void);
int strobe(void);
int strobe_data(void);
unsigned ticks(void);
int timeout(unsigned start, int delay);
    VARIABLE DECLARATIONS
                                */
char pager_buffer(511);
int com_base,control_reg,status_reg,log_flag;
FILE *log_file;
void main(int num_arg, char **args)
        unsigned start;
        int restart,x;
       com_base = 0x3f8;
                                      use com 1 unless command line denotes otherwise */
               get command line arguments
```

MICHAEL P. PONSCHKE, SR.

Author:

```
all command line arguments begin with a single `-' and
must be seperated by a single space between each other
and the program name
- 1
       Use COM port 1
-2
       Use COM port 2
- F
       Log all activity to a file named LOG
                                                        */
if (num_arg > 1)
₹
        for (x=1; x<num_arg; x++)
        (
                if (strcmp(args(x),"-!") == 0)
                        com_base = 0x3f8;
                if (strcmp(args\{x\}, "-2") == 0)
                        com base = 0x2f8;
                if (strcmp(args(x), "-F") == 0)
                        log_flag = 1;
}
if (log_flag)
        if ((log_file = fopen(LOG_FILE,"at")) == NULL)
                printf("Unable to open LOG\n");
control_reg = com_base + 4;
status_reg = com_base + 6;
clrscr();
if (link() == 0)
                              is pager attached?
        printf("Please attach Message Receiver \n");
        exit(0);
       >
busyon();
                        /* start busy at logic high
if (log_flag)
        fprintf(log_file,"Initiating process \n");
printf("%s\n", INTRO_STRING);
dison();
               /* push display button */
sieep(2);
do
        start = ticks();
        restart = 0;
                if (beep())
                        print_message();
                        restart = 1;
                        start -= TWELVE SEC;
                        break;
        /* hold display button for 12 seconds */
        while(! timeout(start,TWELVE_SEC));
while(restart);
disoff();
                /* release the display button */
if (log_flag)
(
        fprintf(log_file, "Process Complete \n");
```

```
fclose(log_file);
 }
                   pager beep
 int beep(void)
         accesses the RI line via the Status Register
         which is activated when the pager beens
         unsigned start;
         start = ticks();
         while ( ! timeout(start,FIVE_TICK))
                  if ((inportb(status_reg) & RING_IN) == 0 )
                          return(1);
         return(0);
 )
         busyon & busyoff toggle the OTR line via the
Control Reg

woid busyoff(void)

outportb(co
         Control Register to strobe in data from the pager
         outportb(control_reg,inportb(control_reg) | DTR_HI);
         outportb(control_reg,inportb(control_reg) & DTR_LO);
E
<u>___</u>
dison & disoff toggle the RTS line via the Control Register
          to simulate the pressing of the display button on the pager
woid dison(void)
 (
          outportb(control_reg,inportb(control_reg) | RTS_HI);
 )
 void disoff(void)
 (
          outportb(control_reg,inportb(control_reg) & RTS_LO);
 int link(void)
          accesses the CD line via the Status Register
          which is logic high when pager is connected
          if ((inportb(status_reg) & CD_HI) == 0)
                 return(0);
          return(1);
 void print_message(void)
          FILE *file;
          unsigned start;
          int x,y=0,z=0,chr,bit;
```

- 6 -

```
busyoff(); /*
                      ready to accept pager data
               read until end code received
 while (chr != 3)
         chr = 0;
         start = ticks();
                wait for start bit */
         do
         ₹
                bit = strobe();
                if (bit == 0)
                        break;
        while (!timeout(start,FIVE_SEC));
        if (bit)
        (
                if (log_flag)
                        fprintf(log_file,"Transmission Error, recheck connection\n");
                disoff();
                exit(0);
        )
        /*
                       strobe out 8 bit data
                                                      */
        for (x=1; x<9; x++)
                chr <<= 1;
                chr += bit = strobe_data();
                      clear out stop bits
                                                      */
        for (x=1;x<3;x++)
               strobe_data();
        /* extract start and end codes from message
                               02, 18, 00, 33
             pager signon
             pager signoff
        if ((y > 3) && (chr != 3))
               /* pager characters 96 and 97 are converted to
                  OxFA and OxFB to display on pager
               if (chr == 0xfa)
                                           convert to CR
                      chr = '\n';
               if (chr == 0xfb)
                                            convert to TAB
                                                             */
                       chr = 0x09;
               pager_buffer(z) = chr;
               z ++;
       y ++;
pager_buffer(z) = '\0';
                                      /* null terminate */
busyon(); /*
                    finished receiving data
```

```
if (log_flag)
                fprintf(log_file,"%s\n",pager_buffer);
        if ((file = fopen(ATT_EMAIL_FILE, "at")) == NULL)
                fprintf(log_file,"Unable to open TFMOBOX.TMP\n");
        else
        {
                fprintf(file,"%s\n",pager_buffer);
                fprintf(file,"%s",DELIMITER);
                fclose(file);
        }
        start = ticks();
        while(!timeout(start,FIVE_SEC))
        /*
               wait for erase beep
                if (beep()) break;
        }
        sleep(1);
                                wait one more second
}
int rxdata(void)
•
        accesses the OSR line via the Status Register
        which returns the bits value
if (inport
        if (inportb(status_reg) & DSR_HI)
                return(0);
        return(1);
€□
        int bit;
        busyon();
delay(1);
       busyoff();
        delay(4);
        bit = rxdata();
        return(bit);
int strobe_data(void)
{
        int bit;
        busyon();
        delay(2);
        bit = rxdata();
        busyoff();
        delay(1);
        return(bit);
)
unsigned ticks(void)
•
                returns timer ticks (approx. 18.2/sec)
               using only lower registers
        union REGS in,out;
        in.x.ax = 0x0;
        int86(0x1a,&in,&out);
        return(out.x.dx);
```

```
/* mark the end of the command line you built, so you can add ending
           delimiter */
        sys command(i) = NULL:
        /* add the ending quote for the users message so shell wont
       interepert special characters */
strcat(sys_command, "\'");
       /* execute command you built */
       system(sys command);
       printf("sending message: %s\n", sys_command);
     else (
       if(strlen(mesq) == 0) {
          return(0):
       /* print error for invalid message length */
       printf("telemail error: invalid message length: %s\n", mesg);
       return(0);
     return(i);
     function: getline(hold-buffer, input-file-pointer)
     arguments: pointer to buffer where line read will be heald,
                 file pointer to input file
     description: reads 1 line of text from the input line and stores the
                   line read into the buffer passed.
     returns: -1 if EOF or number of characters read in
getline(buff, fp)
char *buff;
FILE *fp;
   int ch, cnt;
   /* keep on reading characetrs from file so long as end of file not
   reached or char is the end of line */
for(cnt = 0; ((ch = fgetc(fp)) != EOF) && ch != '\n'; cnt++) (
    /* MOD BY OT 11/29/90 convert tab to space */
        /* convert tabs to single space */
        if(ch == 9) {
   ch = '';
       /* MOD BY OT 11/29/90 dont allow control char */
        /* only load in ascii characters */
       if(isprint(ch) != 0) {
           buff(cnt) = ch:
       }
       else {
              /* turn control characters to spaces */
buff(cnt) = ' ';
              buff(cnt) = '
  /* mark the end of the buffer you built */
buff[cnt] = '\0';
```

```
function: send_mesg(message-pointer)
    arguments: pointer to text message (capcode, text) to be sent
    description: takes passed message text makes sure the first 8 positions
                    are numeric(capcode). it builds and executes the network
                    send command (netsend.sh) to sedn the message passed.
    returns: 0 if not sent otherwise the number of characters sent out
int send_mesg(mesg)
char *mesg;
   char sys_command(700);
   int i:
   int ch;
   char *mesg_ptr;
   /* left justify the message passed to remove leading spaces */
   strljust (mesg, 512);
   /* trim off trailing blank spaces from the message */
   strtrim(mesg);
   /* make sure you have a capcode at least */
   if(strlen(mesg) > 8) (
       /* start to build the command to be executed to send message retreleved
          from the mail box */
       strcpy(sys_command, "netsend.sh ");
      /* loop while still more characters in the message */
for(mesg_ptr = mesg, i = 11; *mesg_ptr != NULL; i++, mesg_ptr++) {
           /* make sure the first 8 positions of the message are numeric */
if((i < 19) && (*mesg_ptr < '0' || *mesg_ptr > '9')) {
    printf("telemail error: invalid capcode: %s\n", mesg);
                return 0;
           /* is the user didsnt seperate capcode & message then insert a
                space into the command */
           if(i == 19 64 *mesg ptr != ' ') {
    sys_command(19) = ' ';
               i = 20:
           /* enclose the users message with ' so shell wont interpet
               special characters */
           if(i == 20) {
              sys_command(20) = '\'';
i = 21;
          /* put the character from the message onto to the
          command to be executed **/
sys_command(i) = *mesg_ptr:
      )
```

}

* * *

```
/* since your just starting clear the message area */
  memset (mesg, NULL, MAXMSGLEN);
  /* keep on geting lines from the file until you reach end of file */ while (getline (buff, fp) !=-1) {
      /* every mail message start with the word "From " */
if(strncmp(buff, "From ", 5) == 0) {
          /* set flag telling you are currently going thru mail header
so you dont add it to the message */
          /* call routine to the last message if any exists */
          send_mesg(mesg);
          contInue;
     /* a mail header end with the following string */
if(strncmp(buff, "Content-Length:", 15) == 0) (
   /* turn off flag so you know you are no longer in mail
             message header */
         in_header = 0;
         /* clear the old message since this is a new one */
         memset (mesg, NULL, MAXMSGLEN);
         continue;
     /* if the line you are now reading in not part of the mail header
    add it to the message */
if(in_header == 0) {
        strljust (buff, 512);
        strtrim(buff);
        /* make sure you dont add more than the message length */
        if( (strlen(buff) + strlen(mesg)) < MAXMSGLEN) (
   strcat(mesg, ");
   strcat(mesg, buff);</pre>
    }
) /* end of read line while */
/* send the last message in the file ^{\star}/
send_mesg(mesg);
```

APPENDIX

Copyright Thomas Campana, Jr. 1991

Staffine ATT_SHATL_FILE Staffine SELIKITES PTPHOROX.TOP** Manual of Toloffod Notwork Manages\/Y

```
finclude estring.h>
Sinclude <time.h>
finclude estdio.h>
Finelude wice.h>
#include "meferi.h"
wid min(wid)
        FILE *infile, *outfile;
sher buffer[81], ohr, timestr[6], detestr[9];
        cher me_num(4);
        int meg_num_opt = 0;
        cher *ptr;
        fnt x,dey,month,line=1,ettmil=0;
        time_t t;
        if ((infile = fopen(ATT_BMAIL_FILE, "rt")) == HULL)
                 printf("Ks does not exist\r",ATT_BMIL_FILE);
                exit(0):
       )
if ((outf(le = fopen("tfmobox.988","rt")) == MULL)
                printf("Can't open TPMOSCX.885\n");
                 exit(0);
        3
        for(;;)
        €
                         get characters from .tmp file */
                x = 0;
do
(
                         chr = fgetc(infile);
if (feof(infile))
                                  fclose(infile);
                                  fclose(outfile);
                                  exit(0);
                         buffer(x++) = chr;
                              until and of line
                 while (chr l= ^{h_1} \Delta L \times l= 80);
                buffer(x) = '\0';
                                                  terminate it
                if (line == 1)
                         ptr = strchr(buffer,')');
If (ptr-buffer == 2) /* wee 3rd character */
                                  sacanf(buffer,"%[")]",msq_num);
                                  mag_num_opt = 1;
                                  Btr*+:
                         else
                                 ptr = buffer;
                         if (*ptr == ':' && *(ptr+1) == 'D')
                                 attmail = 1;
                if (attmail)
                         switch(Line)
```

)

```
€
                      case 1:
                                              detestr = mm/dd, timestr = hh:mm
                                 seconf(detestr,"%d/%d",&menth,&day);
/* set year from pc */
                                                                                                    */
                                              get year from po
                                 t = time(MULL);
                                  fprintf(outfile,"Pate: %e",ctime(&t));
                                  fprintf(outfile, #From: %e*, tuffer);
                                 breek;
                                 fprintf(outfile,"Bubject: %s",buffer);
fprintf(outfile,"To: diame hero*\n");
                                 if (mg_num_opt)
fprintf(outfile,"Message #Ks\n",mag_num);
                                 breek:
                      default:
                                 fprintf(outfile,"%e",buffer);
breek;
)
else
(
           if (line == 1)
                      t = time(MULL);

fprintf(outfile,"Date: %e",ctime(&t));

fprintf(outfile,"Prom: tfmobox(n");

fprintf(outfile,"Subject: Telefind Network Nessage\n");

fprintf(outfile,"To: slame
                      if (mg_num_opt)
                                 fprintf(outfile,"Message #No\n",msg_num);
fprintf(outfile,"%s",buffer>3);
                      else
                                 fprintf(outfile, "%e", buffer);
                      fprintf(outfile, "%a", buffer);
if (stromp(buffer,DELIMITER) == 0)
           meg_num_opt = line = ettmeil = 0;
>
line ++;
```

```
1990 TELEFIND CORP.
         Copyright:
                                     RICHAEL P. POWSCHKE, SR.
         Authors
                                     03/13/91
         Program:
                                     TO EXTRACT MESSAGES FROM A TELEFIND PAGER
         Purpose:
                                     VIA IN RS-232 PORT ON A PC
                                     TURBO C++ 1.0
         compiler:
         Memory Model:
#include <dos.h>
finclude estdio.h>
finclude econio.h>
finclude estring.h>
finclude estdiib.h>
Finclude "safari.h"
                  CONSTANTS
                                              •/
#define DTR_HI
#define DTR_LO
#define RTS_HI
                                     0x01
                                     Oxfe
                                     0x02
#define RTS_LO
#define DSR_HI
                                      0xfd
                                      0x20
#define RING_IN
                                      0x40
                                      0x80
 #define FIVE_TICK
 #define FIVE_SEC
                                      96
 Sdefine THELVE_SEC
                                      220
 #define LOG_FILE
                                      *L00*
                                      "Please standby, retrieving messages ..."
 Metine INTRO STRING
       FUNCTION PROTOTYPES
                                      •/
 int beep(void);
 void busyoff(void);
 wold busyon(void);
 weid disoff(void);
 veid dison(void);
 int link(void);
 void print_message(void);
int radate(void);
 int strobe(void);
 int atrobe_data(void);
 unsigned ticks(void);
 int timeout(unsigned start, int delay);
 /* VARIABLE DECLARATIONS
 char pager_buffer[51];
int com_base,control_reg,status_reg,log_flag;
FILE *log_file;
 veid main(int numbers, ther everys)
          unsigned start;
          int restert,x;
                                             use com 1 unless command line denotes otherwise 4/
          com_base = 0x3f8;
                    get command line arguments
                                                         •/
```

```
all command line organists begin with a single '-- and
must be esperated by a single space between each other
and the program name
        time COM port 1
Use COM port 2
         Log all activity to a fite named LOG
                                                               •/
if (mm_org > 1)
         for (x=1; x<num_ers; x++)
                  if (atresp(urga(x),=-1=) am 0)
com_base = 0x3f8;
                  if (stromptorgalid, -2") == 0)
com_bose = 0x2f8;
                  if (stremp(args(M), H-FH) == 0)
                           log_flog = 1;
>
 if (leg_flag)
         if ((log_file = fopen(LOG_FILE, Met")) == MULL)
printf("Unable to open LOG\n");
control_reg = com_base + 4;
statue_reg = com_base + 6;
 cirecr();
                                 is pager attached ?
 if (Link() == 0)
          printf("Please attach Hessage Receiver \n");
          exit(0);
                            /* start busy at togic high
 busyon();
 printf("Me\n", NTRO_STRING);
disen(); /* push disel
                  /* push display button */
 steep(2);
 do (
          start = ticks();
          restart = 0;
           •
                    if (beep())
                             print_message();
restart = 1;
                             start -= THELVE_SEC;
                             breek;
           /" hold display button for 12 seconds "/
while() timeout(start,TWELVE_MEC));
  unile(restart);
  disoff();
ff (log_flag)
                    /* release the display button */
  €
            fprintf(log_file, "Process Complete \n");
```

```
fclose(log_ffle);
>
                                        •/
int been(void)
             sees the RI line via the Status Register
        which is activated when the pager beeps
       start = ticks();
        while ( | timeout(start, FIVE_TICK))
                if ((importb(statum_reg) & RING_IN) == 0 )
                        return(1);
        return(0);
        busyon & busyoff toggle the DTR line via the
        Central Register to strobe in data from the pager
        eutportb(control_reg,inportb(control_reg) | DTR_HID;
void busyon(void)
        outportb(control_reg,inportb(control_reg) & DTR_LD);
        dison & disoff toggle the RTS line via the Control Register
        to simulate the pressing of the display button on the pager
void dison(void)
        eutportb(centrol_reg,inportb(control_reg) | RTE_NI);
void diseff(void)
        outportb(control_reg, importb(control_reg) & RTS_LO);
int link(void)
        accesses the CD line via the Status Register
        which is logic high when pager is connected
        if ((inportb(status_reg) & CD_HI) == 0)
                return(0);
        return(1);
3
void print_message(void)
        FILE offle;
        uneigned start;
int x,y=0,z=0,chr,bit;
```

```
ready to eccept pager data
busyoff();
               read until and code received
                                                       •/
white (ohr i= 3)
        chr = 0;
        stort = ticks();
               wait for start bit
               bit = strobe();
                1f (bit - 0)

while (itimeout(start,FIVE_SEC));
        if (bit)
                if (log_fies)
                        fprintf(leg_file,"Transmission Error, recheck connection\n");
                disoff();
                exit(0);
                                                        •/
                        strobe out 8 bit data
        for (x=1; x<9; x++)
                chr <<= 1;
                chr += bit = strobe_deta();
                        clear out stop bits
        for (x=1;x<3;x++)
                atrobe_data();
             extract start and end codes from message
                                02, 18, 00, 33
             pager signon
              pager signoff
                                03
        if ((y > 3) &£ (chr i= 3))
                 /* pager characters 96 and 97 are converted to
                   OxFA and OxFS to display on pager
                                                                •/
                                              convert to CR
                 if (chr = Oxfa)
                        chr = '\n';
                                              convert to TAS
                 if (chr == Oxfb)
                        chr = 0x09;
                pager_buffer(2) = chr;
z ++;
                                              nuli terminete
 pager_buffer(z) = '\0';
                      finished receiving data
                                                         */
 busyon(); /*
```

-

```
If (log_flas)
                  fprintf(log_file,"%a\n",pager_buffer);
          if ((file = fopen(ATT_BMIL_FILE, Met")) == MULL)
                  fprintf(log_file, "Unable to open TFHOSOK.TMP\n");
                  fprintf(file,"%a\n",pager_buffer);
fprintf(file,"%a",DELIMITER);
folcoe(file);
         start = tfoks();
while(!timeout(start,FEVE_SEC))
         {
/*
                 wait for erace beep
                  (f (beep()) break;
         steep(1);
                                   usit one more second */
>
 int radata(void)
         accesses the DSR line via the Status Register
         which returns the bits value
         if (inportb(status_reg) & DBR_HI)
                 return(0);
         return(1);
3
int strobe(void)
         int bit;
         delay(1);
         busyoff();
         delay(4);
        bit = rxdete();
return(bit);
int strobe_data(void)
         int bit;
         busyon();
        deley(2);
        bit = radete();
busyoff();
        delay(1);
        return(bit);
unsigned ticks(void)
                 returns timer ticks (approx. 18.2/sec)
                 using only lower registers
        union REGS injout;
        in.x.ax = 0x0;
        inchi(Oxia,&in,&out);
        return(out.x.dx);
```

v e -

9

Copyright Telefind Corporation 1990

```
/* mark the end of the command line you built, so you can add ending
          delimiter */
      sys_command(i) = NULL;
       /* add the ending quote for the users message so shell wont
      interepert special characters */
strcat(sys_command, "\'");
/* execute command you built */
      system(sys command);
      printf("sending message: %s\n", sys_command);
    else {
      if(strlen(mesg) == 0) {
          return(0);
       /* print error for invalid message length */
      printf("telemail error: invalid message length: %s\n", mesg);
      return(0);
    return(i);
    function: getline(hold-buffer, input-file-pointer)
    arguments: pointer to buffer where line read will be heald,
    file pointer to input file description: reads 1 line of text from the input line and stores the
                    line read into the buffer passed.
    returns: -1 if EOF or number of characters read in
                                                                               · 1989
getline(buff, fp)
char *buff;
FILE *fp;
   int ch, cnt;
   /* keep on reading characetrs from file so long as end of file not
  reached or char is the end of line */
   for(cnt = 0; ((ch = fgetc(fp)) != EOF) && ch != '\n'; cnt++) {
    /* MOD BY OT 11/29/90 convert tab to space */
        /* convert tabs to single space */
        if (ch == 9) {
    ch = '';
        /* MOD BY OT 11/29/90 dont allow control char */
        /* only load in ascii characters */
        if(isprint(ch) != 0) {
            buff[cnt] = ch;
                                                                                  , ~~...
                                                                                         1.15
                /* turn control characters to spaces */
               buff(cnt) = ' ';
    /* mark the end of the buffer you built */
   buff[cnt] = ' \setminus 0';
```

```
function: send mesg(message-pointer)
    arguments: pointer to text message(capcode, text) to be sent
    description: takes passed message text makes sure the first 8 positions
                  are numeric(capcode). it builds and executes the network
                  send command(netsend.sh) to sedn the message passed.
    returns: 0 if not sent otherwise the number of characters sent out
int send_mesg(mesg)
char *mesg;
   char sys_command[700];
   int i;
   int ch;
   char *mesg ptr;
   /* left justify the message passed to remove leading spaces */ strljust(mesg, 512);
   /* trim off trailing blank spaces from the message */
   strtrim (mesg);
   /* make sure you have a capcode at least */
   if(strlen(mesg) > 8) {
      /* start to build the command to be executed to send message retreieved
         from the mail box */
      strcpy(sys_command, "netsend.sh ");
                                                                          /* loop while still more characters in the message */
      for(mesg_ptr = mesg, i = 11; *mesg_ptr != NULL; i++, mesg_ptr++) {
           /* make sure the first 8 positions of the message are numeric */ if((i < 19) && (*mesg_ptr < '0' || *mesg_ptr > '9')) {
               printf("telemail error: invalid capcode: %s\n", mesg);
               return 0;
           }
                                                                        a describer and a series of
           /* is the user didsnt seperate capcode & message then insert a
          space into the command */
if (i == 19 && *mesg_ptr != ' ') {
    sys_command[19] = ' ';
    i = 20;
           /* enclose the users message with ' so shell wont interpet
              special characters */
           if(i == 20) {
              sys_command[20] = '\'';
i = 21;
                                                                          1
          /* put the character from the message onto to the
             command to be executed **/
          sys_command[i] = *mesg_ptr;
      }
```

}

```
/* since your just starting clear the message area */
memset (mesg, NULL, MAXMSGLEN);
/* keep on geting lines from the file until you reach end of file */ while (getline (buff, fp) !=-1) {
   /* every mail message start with the word "From " */
if(strncmp(buff, "From ", 5) == 0) {
   /* set flag telling you are currently going thru mail header
        so you do not add it to the message */
        in header = 1;
        /* call routine to the last message if any exists */
       send mesg(mesg);
        continue;
    }
    /st a mail header end with the following string st/
    if(strncmp(buff, "Content-Length:", 15) == 0) {
       /* turn off flag so you know you are no longer in mail
  message header */
        in header = 0;
       /* clear the old message since this is a new one */
memset(mesg, NULL, MAXMSGLEN);
        continue;
    /* if the line you are now reading in not part of the mail header
       add it to the message */
    if(in header == 0) {
                                                                                    and the second second
       strljust(buff, 512);
       strtrim(buff);
        /* make sure you dont add more than the message length */
       if( (strlen(buff) + strlen(mesg)) < MAXMSGLEN) {
    strcat(mesg, " ");</pre>
                                                                                    strcat (mesg, buff);
                                                                                    - Tell Line - I
        }
   )
                                                                                    -1425th
} /* end of read line while */
/* send the last message in the file */
send_mesg(mesg);
```

Free Secretary W. P. State Secretary

, at William

A CONTRACTOR OF THE SECOND

```
***************
    Program name: telemail.c network mail pickup Description: program searches the passed "mail" file and extracts
                    the messages from it. a message is delimited by the words "message length" and "From ". these messages are then out on the telefind network. non ascii characters
                     are skipped and invalid messages are displayed to the
                     standard output.
    author: Oren Tavory
    site: telefind.corp
    date: 11/25/90
    modification history:
            11/29/90 MOD BY OT fix problem of tabs being sent to network
                                   by converting tabs to a space char
            11/29/90 MOD BY OT fix problem of control characters being
                                   passed if the message
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#define MAXMSGLEN 512
#define MAXLINELEN 512
void main(argc, argv)
int argc;
char *argv[];
   FILE *fp;
   char *buff;
   char *mesg;
   int in_header;
   /* make sure user passed filename to be converted */
   if(argc != 2) {
        printf("telemail ERROR: Usage: telemail mail-filename\n");
        exit(1);
   }
   /* open the mail file */
if((fp = fopen(argv[1], "r")) == NULL) {
      printf("telemail error: cant open mail file %s\n", argv[1]);
       exit(2);
   /* allocate need buffer that will hold each line of the file */
if((buff = (char *) malloc( MAXLINELEN * sizeof(char))) == NULL) {
    printf("telemail error: cant allocate memory for buffer\n");
       exit(3);
   /* allocate buffer for message to be stored */
   if((mesg = (char *) malloc( MAXMSGLEN * sizeof(char))) == NULL) {
      printf("telemail error: cant allocate memory for message\n");
       exit(4);
```

```
if (ch == EOF) {
    return (-1);
}
else {
    return(cnt);
}
```

ıĽ.
alpo Est
Į.
F==

Please type a plus sign (+) inside this box ->	+	
icase type a piae sign (1)		

PTO/SB/122 (11-96)
Approved for use through 6/30/99. OMB 0651-0035
Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE ollection of information unless it displays a valid OMB control number.

Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number

CHANGE OF CORRESPONDENCE ADDRESS Application

Address to:

Assistant Commissioner for Patents Washington, D.C. 20231

sporte to a conection of informa	ilori uriless it displays a raile onle control names.
Application Number	
Filing Date	December 6, 1999
First Named Inventor	Thomas J. CAMPANA, Jr. et al
Group Art Unit	2744 (Previous)
Examiner Name	William Trost (Previous)
Attorney Docket Number	780.29643CX4

							υ 🚍
to:	omer Number	nce Address for the above 1920457 Type Customer Number I		fied a	application		20457
OR						PATEN (006111 HARK OFFICE
Firm or Donald E. Stout ANTONELLI, TERRY, STOUT & KRAUS, LLP							
Address	1300 N	orth Seventeenth	Street				
Address	Suite	1800					
City	Arling	gton	Sta	te	VA	ZIP	22209
Country	United	I States of Amer	ica	r	1		
Telephone	(703)	312-6600		Fax	(703) 312-	6666	
	ata Change" (PT : : : : : : : : : : : : : : : : : :	d with an existing CO/SB/124). If record of the entirunder 37 CFR 3.736 agent of record .	e interest.				
Typed or	Donald F	. Stout, Reg. No	26,422	2			
Printed Name			-			•••	
Signature		my Stout	,				
Date	December	6, 1999					

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

+

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants:

Thomas J. CAMPANA, Jr.

Serial No.:

To Be Assigned

Filed:

December 6, 1999

(Concurrently Herewith)

For:

ELECTRONIC MAIL SYSTEM WITH RF

COMMUNICATIONS TO MOBILE PROCESSORS

Group:

2744 (Previous)

Examiner:

William Trost (Previous)

CHANGE OF ADDRESS

Assistant Commissioner for Patents Washington, D. C. 20231 December 6, 1999

sir:

This is to advise that firm responsible for the above-identified application has moved (since the original oath was filed). All future communications are now to be directed to the following Address:

ANTONELLI, TERRY, STOUT & KRAUS, LLP

Suite 1800

1300 North Seventeenth Street

Arlington, Virginia 22209 Telephone: (703) 312-6600 Facsimile: (703) 312-6666

Respectfully submitted,

Donald E. Stout

Registration No. 26,422

ANTONELLI, TERRY, STOUT & KRAUS, LLP

DES:dlh