## Evaluate Temporal Overlap using Absolute Encounter Intensity

Yunyi Shen 10/27/2019

## Model Daily Activity Pattern using Time Inhomogeneous Poisson Process with Periodic Intensity Function

Detection of camera trapping can be viewed as time-to-event data. One common selection to model this type of process is Poisson point process. Two main assumptions for Poisson point process are:

- Independency: Number of events in any disjoint time intervals are independent
- Ordinariness:

$$P(N(t + \delta t) - N(t) = 1) = \lambda(t)\delta t + o(\delta t)$$
$$P(N(t + \delta t) - N(t) > 1) = o(\delta t)$$

From assumption 1, we can derive the waiting time  $(T - T_0)$ , how long did it take from time  $T_0$  to next event)'s distribution to be:

$$P(T - T_0 > t) = exp(\int_{T_0}^T \lambda(u)du)$$

Denote  $\int_0^t \lambda(u)du = \Lambda(t)$ , then  $\int_{T_0}^T \lambda(u)du = \Lambda(T) - \Lambda(T_0)$ . The  $\lambda(t) \geq 0$  is called *intensity function* and  $\Lambda(t)$  is called *leading function* of the process. The *intensity function* can be understand as in a short time period, how many events (e.g. detections) should be expect.

From assumption 1 and 2, we derive the likelihood function for time-at-event. Denote time to the *ith* event as  $T_i$ , then  $X_i = T_i - T_{i-1}$  and  $X_0 = T_0$ 

$$f_{T_1,T_2...T_n} = exp(-\Lambda(T_n)) \prod_{i=0}^n \lambda(T_i)$$

To model daily activity pattern from time-to-event data, we can consider a family of periodic intensity function with period of P=1 day=86400s. To construct this family of positive periodic functions, we could use an exponential of Fourier series with amplitude parameters  $A_i$  and phase parameters  $\phi_i$  and N terms, i.e.

$$\lambda(t) = exp(\frac{T_0}{2} + \sum_{i=1}^{N} A_i cos(\frac{2\pi it}{P} - \phi_i))$$

Then plug into likelihood function, we can have a MLE for parameters of the Fourier series and also an AIC to help us choose N.

## Result from the intensity function

From the intensity function of different species, we can derive different probabilities. Denote  $\lambda_i(t)$  as the detection intensity of species i.

Then

$$\int_{0}^{P} \lambda(u) du$$

is the detection probability for a day.

Also we have:

$$P(\text{it is spp i}|\text{detect spp i or j at t}) = \frac{\lambda_i(t)}{\lambda_i(t) + \lambda_j(t)}$$

## Some results with APIS, Stockton data:

AIC table for number of Fourier terms:

Table 1: Sample AIC table

|     | Bear_black | Coyote   | Fox_red |
|-----|------------|----------|---------|
| N=3 | 9375.146   | 3642.153 |         |
| N=4 | 9377.779   | 3645.593 |         |

Absolute intensity of fox and coyote:



Table 2: Daily Detection Probability

| P         |
|-----------|
| 0.6324003 |
| 0.3001481 |
| 0.0374846 |
|           |

For fox, the intensity did not changed so much compare with coyote, and in most of the time, we should expect to see a coyote rather than a red fox.