



Época de Recurso 19-02-2009

| N.º |                                                                             |         | Nome                                 |                                             |  |  |  |
|-----|-----------------------------------------------------------------------------|---------|--------------------------------------|---------------------------------------------|--|--|--|
|     | -                                                                           | -       | 75 minutos                           |                                             |  |  |  |
| Per | guntas                                                                      | de esco | ha múltipla: cada resposta incorrect | a desconta 1/3 do valor da pergunta         |  |  |  |
| Par | rte Teór                                                                    | ica     |                                      | 30% – 8 valores mín.                        |  |  |  |
| 1.  | 1. O design de interfaces do tipo WIMP (Windows, Icons, Menus and Pointers) |         |                                      |                                             |  |  |  |
|     | a.                                                                          | Não de  | ve contemplar o uso de teclas aceler | radoras, pois o mesmo implica um esforço de |  |  |  |

- memorização considerável por parte do utilizador b. Deve ser centrado no sistema e não no utilizador, pois o comportamento deste último é
- imprevisível
- c. Não deve basear-se em analogias com o mundo real, pois pode suscitar confusão na mente do utilizador
- d. Nenhuma das anteriores
- 2. A visualização, no ecrã de um vulgar computador, de um gráfico descrito no formato BMP (*Bitmap*)
  - a. Não é de todo possível, dada a incompatibilidade do dispositivo e da representação
  - b. Requer a prévia realização de uma operação de rasterização
  - c. Dispensa o recurso a técnicas sofisticadas de reconhecimento de padrões
  - d. Só é possível em sistemas cuja arquitectura contempla um processador gráfico (GPU)
- 3. As translações e as rotações
  - a. São exemplos de transformações lineares afim
  - b. São exemplos de transformações rígidas
  - c. Podem ser representadas na forma matricial
  - d. Todas as anteriores
- 4. As coordenadas homogéneas [6, 12, 8, 0]<sup>T</sup> designam
  - a. Um ponto de coordenadas x = 6, y = 12, z = 8
  - b. Um vector de componentes x = 6, y = 12, z = 8
  - c. Um sólido com 6 faces, 12 arestas e 8 vértices
  - d. Nenhuma das anteriores
- 5. Complete a seguinte frase:

| No pipel | ine de | trans   | formaç  | ões do  | Open    | GL as  | coord | denada   | as c | orresp  | onden  | tes aos  | vértices | dos   |
|----------|--------|---------|---------|---------|---------|--------|-------|----------|------|---------|--------|----------|----------|-------|
| objectos | são    | multip  | licadas | pela    | matriz  | de     | mode  | lação    | е    | visuali | zação  | , dando  | origen   | n às  |
|          |        |         |         |         | Seg     | gue-se | a mu  | ltiplica | ção  | pela n  | natriz | de proje | cção, da | qual  |
| resultam | as c   | orrespo | ondent  | es      |         |        |       |          |      | ·       | Em     | seguida, | realiza- | se a  |
| operação | de di  | visão p | perspec | tiva, o | btendo- | se ass | im as |          |      |         |        |          |          | . Por |
| último,  | efect  | ua-se   | a tr    | ansforr | nação   | view   | port  | e a      | C    | onsequ  | iente  | determ   | ninação  | das   |





- 6. A codificação Winged-Edge de sólidos
  - a. É usada na representação de sólidos por fronteira (B-Rep)
  - b. Armazena informação numa estrutura associada às arestas
  - c. Permite determinar em tempo constante os 9 tipos de adjacência de vértices, arestas e faces
  - d. Todas as anteriores
- 7. Na representação de sólidos por fronteira (B-Rep Boundary Representation)
  - a. Há ambiguidade, pois a uma mesma representação podem corresponder vários modelos
  - b. O modelo é representado através da superfície que o delimita
  - c. O modelo é representado por uma árvore em que os nós internos designam operações de conjuntos ou transformações lineares afim e as folhas denotam objectos primitivos
  - d. O modelo é representado com base na divisão do espaço em cubos cujos lados são potências de base 2
- 8. Para iluminar uma cena com uma fonte de luz posicional do tipo projector, deverá
  - a. Activar o modelo de iluminação do OpenGL
  - b. Especificar para a posição um conjunto de coordenadas tal que w ≠ 0
  - c. Especificar para o ângulo de *cutoff* um valor compreendido entre 0º e 90º
  - d. Todas as anteriores
- 9. A contribuição dada pela componente de iluminação ambiente do modelo de Phong
  - a. Depende da geometria do objecto iluminado
  - b. Depende do co-seno do ângulo de incidência da luz
  - c. Depende da posição do observador
  - d. Nenhuma das anteriores
- 10. No mapeamento de texturas em OpenGL, o processo de filtragem designado por GL\_NEAREST\_MIPMAP\_NEAREST
  - a. Escolhe o *texel* que mais se aproxima do centro do pixel no *mipmap* que melhor se adequa ao contexto de minificação existente
  - b. Calcula uma média pesada da matriz de 2 x 2 *texels* que mais se aproxima do centro do pixel no *mipmap* que melhor se adequa ao contexto de minificação existente
  - c. Escolhe o texel que mais se aproxima do centro do pixel em cada um dos dois mipmaps que melhor se adequam ao contexto de minificação existente; em seguida, efectua uma interpolação linear destes dois valores
  - d. Calcula uma média pesada da matriz de 2 x 2 *texels* que mais se aproxima do centro do pixel em cada um dos dois *mipmaps* que melhor se adequam ao contexto de minificação existente; em seguida efectua uma interpolação linear destes dois valores





Época de Recurso 19-02-2009

| N.º Nome              |                                                                                                                                                                                                                                         |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parte Teorico-Prática | 40% – 10 valores mín.                                                                                                                                                                                                                   |
|                       | um método paralelepipedo ( $L$ , $A$ , $P$ ) que desenha um anto inferior esquerdo na origem e largura $L$ , altura $A$ e profundidade $P$                                                                                              |
| C B                   | Pimensões dos objectos  A: L <sub>A</sub> , A <sub>A</sub> , P <sub>A</sub> B: L <sub>B</sub> , A <sub>B</sub> , P <sub>B</sub> C: L <sub>C</sub> , A <sub>C</sub> , P <sub>C</sub> D: L <sub>D</sub> , A <sub>D</sub> , P <sub>D</sub> |
| Figura 1              | Figura 2                                                                                                                                                                                                                                |
|                       | vore de cena com os nós correspondentes aos objectos e às necessárias para desenhar o modelo da figura 1.                                                                                                                               |
|                       | Árvore de cena                                                                                                                                                                                                                          |
|                       |                                                                                                                                                                                                                                         |
|                       |                                                                                                                                                                                                                                         |
|                       |                                                                                                                                                                                                                                         |
|                       |                                                                                                                                                                                                                                         |
|                       |                                                                                                                                                                                                                                         |
|                       |                                                                                                                                                                                                                                         |
|                       |                                                                                                                                                                                                                                         |
|                       |                                                                                                                                                                                                                                         |
|                       |                                                                                                                                                                                                                                         |
|                       |                                                                                                                                                                                                                                         |
|                       |                                                                                                                                                                                                                                         |
|                       |                                                                                                                                                                                                                                         |
|                       |                                                                                                                                                                                                                                         |
|                       |                                                                                                                                                                                                                                         |
|                       |                                                                                                                                                                                                                                         |





|      | b.     | figura 1.      | equencia d | e instruço | oes Op   | enGL ne    | cessarias | para  | i desenhar i | o model  | o da |
|------|--------|----------------|------------|------------|----------|------------|-----------|-------|--------------|----------|------|
|      |        |                |            |            |          |            |           |       |              |          |      |
|      |        |                |            |            |          |            |           |       |              |          |      |
|      |        |                |            |            |          |            |           |       |              |          |      |
|      |        |                |            |            |          |            |           |       |              |          |      |
|      |        |                |            |            |          |            |           |       |              |          |      |
|      |        |                |            |            |          |            |           |       |              |          |      |
|      |        |                |            |            |          |            |           |       |              |          |      |
|      |        |                |            |            |          |            |           |       |              |          |      |
|      |        |                |            |            |          |            |           |       |              |          |      |
|      |        |                |            |            |          |            |           |       |              |          |      |
|      |        |                |            |            |          |            |           |       |              |          |      |
|      |        |                |            |            |          |            |           |       |              |          |      |
|      |        |                |            |            |          |            |           |       |              |          |      |
|      |        |                |            |            |          |            |           |       |              |          |      |
|      |        |                |            |            |          |            |           |       |              |          |      |
|      |        |                |            |            |          |            |           |       |              |          |      |
|      |        |                |            |            |          |            |           |       |              |          |      |
|      |        |                |            |            |          |            |           |       |              |          |      |
| 2. ( | Comple | ete a seguinte | frase:     |            |          |            |           |       |              |          |      |
|      |        | fine um conju  |            | ões de re  | gisto de | e callbaci | ks, entre | as qu | ais:         |          |      |
|      |        |                |            |            |          |            |           | •     |              |          |      |
|      |        |                |            |            |          |            | eventos   | de di | spositivos d | e entrad | a;   |
| (    | iii)   |                | , que      | permite    | criar    | acções     | cíclicas  | no    | programa,    | desde    | que  |
|      |        |                |            |            |          |            |           |       |              |          |      |





Época de Recurso 19-02-2009

| N.º | 2 Nome                                                                  |
|-----|-------------------------------------------------------------------------|
|     |                                                                         |
| 3.  | Indique as diferenças entre o modo picking e o modo selecção do OpenGL. |
|     |                                                                         |
|     |                                                                         |
|     |                                                                         |
|     |                                                                         |

4. Indique as componentes das normais (não necessariamente unitárias) identificadas pelos vectores A (complanar com XY) e B (perpendicular a XY) dos polígonos descritos na seguinte figura:



- 5. Supondo que a sua cena tem apenas um fonte de iluminação cuja componente difusa é (0.5, 1, 0.5) que incide sobre um objecto cujo material tem apenas componente difusa com características (0.5, 0, 1), qual a cor resultante no ecrã para esse objecto?
  - a. (0.5, 1, 0.5)
  - b. (0.25, 0, 0.5)
  - c. (0.5, 0, 1)
  - d. (0.25, 0, 1)





6. Suponha que foi activado o mapeamento de uma textura representativa do logótipo do ISEP. O seguinte conjunto de instruções gera que imagem final no ecrã?

```
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glBegin(GL_QUADS);
    glTexCoord2f(0.0, 0.0);
    glVertex3f(-2.0, -1.0, 0.0);
    glVertex3f(-2.0, 1.0, 0.0);
    glVertex3f(-2.0, 1.0, 0.0);
    glVertex3f(0.0, 1.0);
    glVertex3f(0.0, 1.0, 0.0);
    glVertex3f(0.0, -1.0, 0.0);
    glTexCoord2f(1.0, 0.0);
    glVertex3f(0.0, -1.0, 0.0);
    glVertex3f(0.0, -1.0, 0.0);
```

a.



b.



c.



d.







Época de Recurso 19-02-2009

| N.º                                | Nome                                                                                                                                                                                                                                                                                                                                                                               |                                    |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| cu<br>or<br>er                     | omplete o seguinte programa de forma que o utilizador possa viajar pela cena<br>bo de diferentes ângulos, utilizando as teclas X, x, Y, y, Z e z. O cubo encontr<br>igem. Suponha que as reticências correspondem ao código OpenGL que<br>icontraria nessa função e preencha apenas as linhas com o código necessário<br>vegação (nem todas as linhas necessitam ser preenchidas). | a-se centrado na<br>normalmente se |
| <pre>#incl #incl #incl #incl</pre> | <pre>de <stdio.h> de <string.h> de <stdlib.h> de <stdlib.h> de <math.h> de <time.h> de <gl glut.h=""></gl></time.h></math.h></stdlib.h></stdlib.h></string.h></stdio.h></pre>                                                                                                                                                                                                      |                                    |
| typed                              | def struct {                                                                                                                                                                                                                                                                                                                                                                       |                                    |
|                                    | delo_t;                                                                                                                                                                                                                                                                                                                                                                            |                                    |
|                                    | <pre>def struct {</pre>                                                                                                                                                                                                                                                                                                                                                            |                                    |
| } Est                              | tado_t;                                                                                                                                                                                                                                                                                                                                                                            |                                    |
| Estac                              | do_t estado;                                                                                                                                                                                                                                                                                                                                                                       |                                    |
| void<br>{                          | <pre>Init(void)</pre>                                                                                                                                                                                                                                                                                                                                                              |                                    |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                    |                                    |
| }                                  |                                                                                                                                                                                                                                                                                                                                                                                    |                                    |
| void                               | <pre>desenhaCubo(void) { }</pre>                                                                                                                                                                                                                                                                                                                                                   |                                    |
| void<br>{                          | Draw(void)                                                                                                                                                                                                                                                                                                                                                                         |                                    |

glClear(GL\_COLOR\_BUFFER\_BIT | GL\_DEPTH\_BUFFER\_BIT);





```
desenhaCubo();
  glFlush();
}
void Key(unsigned char key, int x, int y)
  switch (key) {
     . . .
     case 'X' : _____
        break;
     case 'x':
        break;
     case 'Y' : _____
        break;
     case 'y' : _____
     case 'Z' : _____
       break;
     case 'z' :
       break;
  }
  // redesenhar o ecra
  glutPostRedisplay();
}
void main(int argc, char **argv)
   . . .
   Init();
   . . .
  glutMainLoop();
}
```