

Data Science at a Specialty Retailer

Nov 3, 2018

Bryan Kelley DAPT 2016

Lumber Liquidators

- Founded 1993; NYSE 2007
- Flooring Retailer: Solid wood, Engineered, Bamboo, Vinyl, Laminate, and more
- 400+ stores USA and Canada
- DIY and Pro customers; \$1B+ annual revenue

 Targeting Q4 2019 to move to new Libbie Mill HQ (Staples Mill and Broad)

My Role

- Manager, Financial Planning & Analysis
 - Wrangler of big data
 - Answerer of tough questions
 - Nay-sayer and parade-rainer (most of the time)
- Financial Planning & Analysis
 - Unit within Finance
 - Budgeting and planning
 - Analysis of new initiatives and tests
 - Corporate strategy development
 - Reporting and BI
- Partner with
 - Supply Chain, Store Operations, Marketing, Merchandising, and Finance

Three Examples

- Budgeting and Planning
 - Prophet package in R to create daily Total Company sales forecasts
- Supply Chain / Inventory Management
 - Cluster package in R as input to ABC inventory management
- Merchandising
 - Price Elasticity modeling for planning price changes for our assortment

Problem:

- Company must plan for certain levels of sales in order to manage expenses accordingly
- Each month the total company financial plan must be broken down from a top-line number and spread to each day and store

Solution:

 Use the Prophet package in R to create a timeseries forecast for Total Company sales at the day level and spread the monthly financial plan down to the individual day

- Prophet
 - Open source forecasting package
 - Developed by Sean J. Taylor and Ben Letham at Facebook
- At its core, the Prophet procedure is an additive regression model with four main components:
 - A piecewise linear or logistic growth curve trend. Prophet automatically detects changes in trends by selecting changepoints from the data.
 - A yearly seasonal component modeled using Fourier series.
 - A weekly seasonal component using dummy variables.
 - A user-provided list of important holidays.
- https://research.fb.com/prophet-forecasting-at-scale/

- Forecasting the amount of \$ picked up by customers each day (PGI)
- Retailers are closed, have promotions and marketing, and are subject to consumer demand

LIQUIDATORS

- We are a commissioned-based sales force
- Know your business but more importantly...FOLLOW THE MONEY

ABC Inventory Management

Problem

- Customers can only buy what we have in stock
- Maintain inventory levels that allow for customers to buy what they are looking for
- There is limited resources on the Inventory Management team and limited budget for inventory investments

Solution

- Categorize the articles in our assortment using clustering techniques in R
- "A" SKU's receive incremental oversight as they are key performing SKU's in the assortment
- "C" SKU's receive incremental investments; more volatile SKU's with flow or forecasting challenges

Shiny app for data exploration with business partners

Inventory ABC

ABC Inventory Management

- Inputs to clusters:
 - Sales Volatility (measured by relative standard deviation)
 - Forecast Error (measured by MAPE)
 - Sales Volume (measured by units sold)
- Methodology
 - Partition Around Medoids "PAM", more modern version of kmeans clustering

Price Elasticity Modeling

Problem

- Where should Category Managers set prices to optimize the profit we receive from sales?
- Raise prices too high, don't sell enough units. Make prices too low, don't make enough profit

Solution

 Create a workbook that allows Category Managers to see their optimal sales price for each article

Price Elasticity Modeling

- Price elasticity formula: $\epsilon = \frac{\% \triangle Q}{\% \triangle P} = \frac{\partial Q}{\partial P} \cdot \frac{P}{Q}$
- Use R to iterate through each article in our assortment to determine the relationship between change in quantity and change in price
- Write output to Excel planning workbook

Price Elasticity Work	sheet		
Article Description			
Enter the Old Article Name (IP Articles only)			
Article			
Category			
Class			
Avg Units Ordered per Week		118,104	
Avg ASP	\$		1.99
Price Elasticity		-4.22	
Volatility Index (Relative Std Deviation)		20%	
Volatility		Low Volatility	
Weeks of sales data		87	
Modeling Scenario			
New ASP (include assumptions about discounting)	\$		1.79
ASP Change	\$		- 0.20
Will this article be shown as a picture (room shot or small		Yes	
sample) in Marketing materials during a large event?		res	
Promotional lift			102,657
Projected Impact (per v	reek)		
Proj. Units Change		+204,145	
Lower estimate		270,371	
Higher estimate		374,126	
Projected GM \$			
Total Landed Cost per Unit	\$		1.56
Override Total Landed Cost per Unit (leave blank for default	\$		-
Proj. GM %		13%	
Optimal ASP for GM\$ (Lower)	\$		1.85
Optimal ASP for GM\$ (Upper)	\$		1.93

In Summary

- Using advanced analytic tools like R has several benefits over traditional tools
 - Overcome limitations of corporate data infrastructure
 - Blend multiple data sources together
 - Conduct analyses faster and at greater scale
 - Documented and repeatable analysis for the next analyst
 - Pre-built advanced statistical packages
- Drawbacks
 - You'll likely be on your own
 - Learning curve
 - Not likely the best choice for small / quick tasks

Thank You!

https://www.linkedin.com/in/bryan-kelley-rva/