International Application No. PCT/JP00/04894

Attorney Docket No. 09/868737 KOD9B.001APC

Date: June 19, 2001

Page 1

TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US) **CONCERNING A FILING UNDER 35 USC 371**

International Application No.:

PCT/JP00/04894

International Filing Date:

July 21, 2000

Priority Date Claimed:

October 22, 1999

Title of Invention:

WATER CONTAINING FULLERANCES AND METHOD FOR

PRODUCING THE SAME

Applicant(s) for DO/EO/US:

Yoshihiro Hirata

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

- 1. (X) This is a FIRST submission of items concerning a filing under 35 USC 371.
- 2. (X) This express request to begin national examination procedures (35 USC 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 USC 371(b) and PCT Articles 22 and 39(1).
- 3. (X) A copy of the International Application as filed (35 USC 371(c)(2))
 - a) 0 is transmitted herewith (required only if not transmitted by the International Bureau).
 - b) 0 has been transmitted by the International Bureau.
 - c) (X) A copy of Form PCT/1B/308 is enclosed.
 - d) is not required, as the application was filed in the United States Receiving Office 0 (RO/US).
- 4. (X) A translation of the International Application into English (35 USC 371(c)(2)).
- 5. Amendments to the claims of the International Application under PCT Article 19 (35 USC (X)371(c)(3)
 - () a) are transmitted herewith (required only if not transmitted by the International Bureau).
 - **b**) 0 have been transmitted by the International Bureau.
 - c) 0 have not been made; however, the time limit for making such amendments has NOT
 - d) (X) have not been made and will not be made.
- 6. An Information Disclosure Statement under 37 CFR 1.97 and 1.98. (X)
- 7. (X) International Application as published.
- 8. Drawing in four (4) pages. (X)
- 9. (X) The present application qualifies for small entity status under 37 C.F.R. § 1.27.
- 10. (X) A return prepaid postcard.
- 11. (X) The following fees are submitted:

09/868737 Attorney Docket No. KOD9B.001APC

Date: June 19, 2001

531 Rec'd PCT.

19 JUN 200 2

						FEES
			BASIC FEE			\$860
CLA	IMS		NUMBER FILED	NUMBER EXTRA	RATE	
Total	Claims		6 - 20 =	0 ×	\$18	\$0
Independent Claims		3 - 3=	0 ×	\$80	\$0	
Multi	ple depen	ident claims(s) (if a	pplicable)		\$270	\$270
***			TOTAL OF A	BOVE CALCULATION	ONS \$1,130	
			all entity (if applicab TE 37 CFR 1.9, 1.2	le). Verified Small Er 7, 1.28)	ntity \$565	
			TOTAL FEES	ENCLOSED		\$565
12.	(X)	The fee for later paid upon subm	submission of the s ission of the declarat	igned oath or declarati	ion set forth in 37 C	CFR 1.492(e) will be
13.	(X)	A check in the amount of \$565.00 to cover the above fees is enclosed.				
14.	(X)	The Commissioner is hereby authorized to charge only those additional fees which may b required, now or in the future, to avoid abandonment of the application, or credit an overpayment to Deposit Account No. 11-1410.				

NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.

SEND ALL CORRESPONDENCE TO:

Daniel E. Altman Reg. No. 34,115

Customer No. 20,995

H:\DOCS\KOA\KOA-7982.DOC 061901

531 Rec'd PCT/... 19 JUN 2001

KOD9B.001APC

PATENT

Specification

WATER CONTAINING FULLERANCES AND METHOD FOR PRODUCING THE SAME

Field of the Invention

The present invention relates to water containing fullerences. It relates to a method for producing water containing fullerences floating, which comprise 60 carbon atoms forming a spheroidal structure, and an apparatus for producing the same, and healthy drinking water obtained from the same.

Background of the invention

Since long ago, charcoal and carbon have been of use in various ways in various fields, and found useful particularly for deodorization and preservation from decay, etc. Carbon's effects on the human body in health and medical treatment have also been recognized. Coping with recent social trends in health consciousness, use of carbon for health-related aspects is seen in a new light. Bicho-charcoal and bamboo charcoal are sold and used for water quality improvement and cooking. and charcoal and carbon are increasingly attracting attention.

In fields of using charcoal and carbon materials, a new material called "fullerence" was discovered more than ten years ago and was recognized as the third crystallization following diamond and graphite. In 1990, German and US joint research successfully isolated fullerences from soot produced under special conditions. Since it was reported that a potassium-metal-doped fullerence film exhibited superconductivity at the critical temperature of 18K, fullerence research has accelerated at a stretch. Due to good prospects for mass production methods for isolating fullerences and physical properties exhibited by fullerences, it attracts researchers' curiosities in both basic and applied disciplines still more. If fullerence research and technological development should advance to health-related fields, a Nobel prize will be awarded for such achievements (K. Tanigaki, K. Kikuchi, Y. Ajiha, & K. Iriyama. *Fullerence*. Sangyo-tosho Co. Ltd., Oct. 1992, xvii.)

Typically, a fullerence comprises 60 carbon atoms forming a spheroidal structure. It is a carbon molecule with a structure of a soccer-ball like pattern combining pentagons and hexagons. It is a physically and chemically stable molecule and is known to have physical properties shown in FIG. 4 (op. cit. p.16).

Synthesis of a fullerence by a chemical reaction has not been reported. As described above, producing fullerence by physical methods has become possible. A typical production method is that: graphite is vaporized by arc discharge or laser beam irradiation to generate carbon vapor, the carbon vapor is cooled down to form soot, and a fullerence is generated in soot. Fullerence obtained by these methods has a soccer-ball like structure of 60 carbon atoms forming a spheroidal structure as shown in FIG. 3. This structure is considered to form as follows: Graphite is isolated from impurities; A five-hexagon structure changes to a morning-glory-flower-shape like structure; Carbon atoms are rearranged to approach a spherical shape and changes to a soccer-ball shape, which is energy-wise a stable structure. Fullerence generated in soot is isolated and refined by dissolving it in a solution using a refining method such as a column liquid chromatography method, etc.

The soccer-ball like structure of fullerence has been confirmed by a C_{60} peak by a mass spectrum, crystal structure analysis by an X-ray, and a 13 C-NMR spectrum, an infrared absorption spectrum, etc.

Thus, as production and refining methods for fullerence have been established and its physical and chemical properties have become clear, it attracts attention as a new next-generation functionality material and its serviceable use in various fields begins developing. Technologies for using fullerence are being developed: for example, in the electronics field it is used as a superconductive material, a semiconductor material or a material with strong magnetism; in the physical material field as a non-linear optical material, a catalyst, etc.; in the mechanical material field, as micro lubricant, a buffer agent, etc. Furthermore, use of fullerence for bioactive materials, food materials or medicines is also being proposed.

Additionally, although its details are not clear, it is reported that development of a new structural material including metal atoms such as K or La inside a spheroidal structure also attracted interests.

It is usual that a number of patent applications are reported as a new material technology develops. Fullerence is no exception to this rule. A wide range of patent information from improvement of methods for producing and refining fullerence to using it in the electronics, physical material or mechanical material fields has been laid open. Almost no patent journal information on use of fullerence for bioactive materials, food materials or medicines has been laid open. If seeing a few technologies laid open until now in these fields, technologies which have been

reported include: method for preserving the high degree of freshness and quality by infiltrating an ultrafine particle carbon composition solution containing fullerences into food such as grain reported in the Japanese Patent Laid-open No.10-45408 journal, method for inactivating a virus by oxygen in a singlet state where fullerences are activated and by applying rays reported in the Japanese Patent Laid-open No.9-322767 journal, cosmetic for sunburn care containing fullerences dissolved in its oil ingredient, whose color is inconspicuous when applied and which is excellent in sunburn protection reported in the Japanese Patent Laid-open No.9-278825 journal, etc.

Application of fullerence to bioactive materials, food materials or medicines is extremely important as technological development directly related to daily life and the scope of use is expected to expand. In the medical field, research on fullerence as a substance to enhance immunity effects of a living body is being conducted for cancer treatment purpose, etc. For example, if fullerence with fixed molecular weight is given to a leukocyte, production of an immune substance is stimulated. Because fullerence is made of carbon in its entirety, its destruction speed in the body system is remarkably slow, which makes it possible to be absorbed into the intestinal tract in the unit of nm, which is different in size from regular charcoal.

The invention laid open

As described above, expansion of fullerence's application to bioactive materials, food materials or medicines is greatly hoped for. The present invention aims to solve the above-mentioned problem with the object of making the best use of this

apparently unlimited serviceability of fullerence particularly in the fields of bioactive materials, food materials or medicines.

Having come to discover that using water containing fullerences for drinking can improve the condition of health, for example, improving bioactive functions, the inventors of the present invention completed the present invention.

A problem to be solved by the present invention is to provide a method for

efficiently producing water containing fullerences, which contributes to improvement of health conditions, and an apparatus for producing the same. In other words, the present invention aims to contribute to technological development of fullerence and expansion of its applications by solving the abovementioned problem. It has developed a new method for producing water containing fullerences and an apparatus for producing the same, and healthy drinking water utilizing the newly developed water containing fullerences.

In the present invention, water containing fullerences which include water molecules is referred to as "water containing fullerences".

Fundamental characteristics of the present invention are to generate fullerences which include water molecules and drinking water in which fullerences are floating by producing fullerences in high-pressure water. Specifically, the characteristics of the present invention are listed in (1) to (4) below.

(1) A method for producing water containing fullerences, which include water molecules and are floating in water, by burning a mixed gas of oxygen and

- hydrogen in high-pressure water and burning a graphite bar with a combustion gas generated.
- (2) An apparatus for producing water containing fullerences, which include water molecules and are floating in water. The apparatus possesses a tank holding high-pressure water, a jet nozzle for a mixed gas of oxygen and hydrogen, a graphite bar, an ignition system and a combustion chamber.
- (3) The apparatus for producing water containing fullerences described in (2) above, which is characterized in that a mixed gas fuel of oxygen and hydrogen is provided by electrolyzing water.
- (4) Healthy drinking water obtained by purifying water containing fullerences, which include water molecules and are floating in water.

The most important characteristic of the present invention is based on new knowledge that, unlike water containing fullerences in which fullerences simply are floating, the water containing fullerences according to the present invention, in which fullerences including water molecules are floating in water, and these water molecules included correlatively act with a fullerence structure to achieve a new and remarkable bioactive action.

In response to recent social trends in health consciousness, healthy drinking water produced according to the present invention by purifying water containing fullerences, which include water molecules and are floating in water, is expected to become an epoch-making beverage sufficiently addressing requests for improvement of health. Although the reasons why fullerences which include water

molecules are efficacious to health and what kind of bioactive actions they possess are unknown at present, the present invention and others are diligently conducting research to clarify the mechanisms of fullerence' efficacies.

Brief description of the figure

FIG. 1: A flow chart of producing water containing fullerences according to the present invention

FIG 2: A schematic sketch of an apparatus for producing water containing fullerences according to the present invention

FIG 3: A crystal structure sketch of water containing fullerences which include water molecules according to the present invention

FIG 4: Reported physical properties of fullerence

The best mode for carrying out the invention

As described above, methods for producing fullerence itself according to an industrial production scale have been established. Among them, a typical production method is that graphite of an electrode is vaporized by arc discharge or laser beam irradiation to generate carbon vapor, the carbon vapor is cooled down to form soot, and fullerences are generated in soot. Fullerence molecules including metal atoms such as K and La are also produced by vaporizing graphite by arc discharge or laser beam irradiation. The present invention, however, does not relate to a method for producing fullerence itself, but it is characterized in that it relates to production of water containing fullerences which include water molecules.

Water containing fullerences which include water molecules, which is obtained by the present invention, is a new product which has not been produced up to this time. The present invention does not use vaporization techniques using arc discharge or laser beam irradiation, which are conventionally known. It discloses a new method for producing water containing fullerences using a combustion method.

After diligent examination in consideration of producing water containing fullerences efficiently and economically and serving it for drinking, the inventors of the present invention came up with an idea on a method in which hydrogen and oxygen are burned, a pure graphite bar is inserted and heated in a combustion gas generated, and they were able to produce water containing fullerences by burning hydrogen and oxygen in high-pressure water so that no substances other than water and carbon were not produced by burning hydrogen and oxygen in water.

Because the amount of fullerences contained in water containing fullerences, which is obtained by the present invention, is very small and is beyond analysis limits, it cannot be identified easily, but it can be confirmed by precision analysis. Not all carbon constitutes generated in water by the above-mentioned method are fullerences. Unburned carbon is also included. Because there is a limit for the amount of unburned carbon to be taken for drinking, it is necessary to control reaction time and the amount of fuel to be burned. If the reaction time is short, water produced does not have specific effects. If the reaction time is too long, water tastes bitter and is not suitable for drinking.

As described above, the present invention has newly developed a method for producing water containing fullerences, which include water molecules and are floating in water being processed, and an apparatus for producing the same.

Referring to figures, a method and an apparatus according to the present invention are described in detail in the following:

FIG. 1 is a flow chart of producing water containing fullerences according to the present invention. FIG. 2 is a pressure-resistant container for producing water containing fullerences according to the invention. FIG. 3 is a crystal structure of water containing fullerences obtained by the invention. FIG. 4 shows physical properties of fullerence itself.

An apparatus 1 for producing water containing fullerences according to the invention comprises a pressure-resistant container 2 for producing water containing fullerences, a water electrolyzer 3 for generating raw material gases and a filtration device 4 for water containing fullerences.

The basic structure of the pressure-resistant container 2 according to the invention is an apparatus for producing water containing fullerences, which include water molecules and are floating in water, comprising a tank 5 holding high-pressure water, a jet nozzle 14 for a mixed gas of oxygen and hydrogen, a combustion chamber 6 and a graphite bar 10. To this apparatus, a water electrolyzer 3 to supply raw material gasses, hydrogen and oxygen, and a filtration device 4 for water containing fullerences obtained are attached.

The pressure-resistant container 2 according to the invention comprises a metal tank, preferably a steel tank 5 holding high-pressure water. In the tank 5 holding high-pressure water, a mixed gas of oxygen and hydrogen, which are generated by the water electrolyzer 3 and are

supplied from a hydrogen gas supply path 16 and an oxygen supply path 17, are blown out at high pressure from the jet nozzle 14 into the combustion chamber 6. Inside the combustion chamber 4, a graphite bar 10 is gradually pushed out from a supply cylinder 13 according to the combustion amount. A mixed gas of hydrogen and oxygen is ignited by an ignition system 11 and carbon or fullerences containing water molecules are discharged in pressurized water 9. The high-pressure water 9 containing these is taken out from an outlet 8 at the bottom of the tank holding high-pressure water and properly is filtrated by the filtration device 4.

Of the above-mentioned, in place of the water electrolyzer 3 for generating raw material gases, high-pressure hydrogen and oxygen gas cylinders can be used. There is, however, an advantage of using the water electrolyzer as used in the present invention over using high-pressure hydrogen gas and oxygen gas cylinders, i.e., oxygen and hydrogen supplied by water electrolysis are completely pure gases, hence raw material gases used as fuel gases can be supplied efficiently.

In the present invention, in an example of generating hydrogen 16 and oxygen 17 by water electrolysis conducted in the water electrolyzer 3 for generating raw material gases for producing water, 18, 18' and 19 respectively show cathode plates and an anode plate. As described above, it is possible to supply hydrogen and oxygen inside the tank holding high-pressure water directly from each high-pressure hydrogen and oxygen gas cylinder. In this apparatus, a mixed gas is perfectly burned by jetting out hydrogen 16 and oxygen 17 generated by electrolysis into the combustion chamber from the nozzle 14 through the pump, achieving a perfect vapor-gas combustion state at a very high temperature. A pure graphite bar

10 is inserted in this combustion gas, heated and burned. The graphite bar is supplied from inside the cylinder 13 by specific amount according to the amount burned. During the combustion, it is necessary to control a mixing ratio of hydrogen 16 to oxygen 17 to be strictly 2:1. It is also necessary to control a pressure inside the tank holding high-pressure water by providing a pressure control valve.

When carbon 12 heated and burned at a high temperature inside the combustion chamber 6 is discharged from the combustion chamber 4 into the high-pressure water 9, a part of carbon forms a crystal structure. This crystal structure is considered to be a morning-glory-flower-shape like carbon structure consisting of five hexagon structures called "corannulene". Carbon atoms, then, are rearranged, changing to a nearly spherical shape. At this time, one water molecule is taken in and fullerence having a cage structure larger than the water molecule contains the water molecule, changing to a soccer-ball shape, which is energy-wise a stable structure.

Main fullerences generated by combustion of the graphite bar are of the C_{60} structure. As described above, fullerence having a cage structure larger than a water molecule contains a water molecule. As shown in FIG. 3 as a type sketch, this structure is a state in which a water molecule, which is indicated as a circular dotted line, is contained in a soccer-ball-shaped structure.

As the result that a fullerence structure in this state is generated, it is estimated that stable carbon molecules with exceedingly high hydrophobicity are floating in

water, and without using an activating agent, an apparent dissolution state is achieved.

For example, on a production scale of producing one ton of water containing fullerences, jetting a mixed gas in an injection quantity of approximately 5L/sec. for approximately two hours is appropriate. If gas pressure applied is excessive, there is a risk of destroying the structure of the apparatus. If gas pressure applied is not sufficient, gas is blown up from the combustion chamber, carbon heated is emitted on the water as it is being covered by a bubble. This worsens generation of fullerences. A preferable air pressure at this time is approximately 3.5 atmospheres. A pressure of high-pressure water inside the tank holding high-pressure water is set to two atmospheres.

The apparatus is operated in the following manner: High-pressure hydrogen gas 16 and oxygen 17 are jetted from the nozzle 14 through the pump inside the tank holding high-pressure water and are ignited by an ignition system 11, creating a vapor-gas combustion state at a very high temperature. The pure graphite bar 10 is inserted in the combustion gas and is burned.

Further, in this apparatus, not to produce substances other than water and carbon or fullerences, it makes it requisite to burn hydrogen and oxygen in water. At this time, to burn hydrogen and oxygen purely in water without containing impurities, it is necessary to burn them under high pressure. The position to insert a graphite bar should be within a sphere where a mixed gas is burned perfectly and is vaporized at a completely high temperature. Because fullerences containing water

molecules, which are generated, are carbon molecules with exceedingly high hydrophobicity, they float in water in a stable state and an apparent dissolution state is achieved without using an activating agent. New water containing fullerences produced in this way is taken out from the outlet and is fed to the filtration system appropriately.

Another characteristic of the present invention is to produce healthy drinking water by purifying water containing fullerences, which include water molecules and are floating in water, which was produced as described above. Because a large quantity of unburned carbon is floating in the water generated and it is not suitable for drinking as it is, water needs to be purified using a filtration system.

For a filtration method in this case, not to remove carbon or fullerences generated more than necessary, using a filtration system for producing water suitable for drinking is preferable without using methods such as ion exchange and a reverse osmosis film methods, etc. In other words, a hollow fiber film is preferable as a filter. Filtrating high-pressure water drawn off from the tank holding high-pressure water using a hollow fiber film is preferable from points of view of characteristics of water containing fullerences and of filter life. By doing this way, drinking water conforms to the Food Hygiene Act can be produced.

Because fullerences generated are on a scale of nanomicron, it is difficult to be filtrated using a regular filter. A very small quantity of fullerences is contained in high-pressure water obtained according to the present invention.

Modes for carrying out the present invention is specifically described below based on embodiments, modes for carrying out the present invention, however, are not limited to these.

Modes for carrying the invention

FIG. 2 shows a typical embodiment of an apparatus for producing water containing fullerences, which include water molecules and are floating in water, according to the present invention. The apparatus comprises a tank 5 holding high-pressure water, a jet nozzle 14 for a mixed gas of oxygen and hydrogen and a graphite bar 10. The tank 5 holding high-pressure water is a pressure-resistant metal tank which is tolerant to ultrahigh pressure. A mixed gas of oxygen and hydrogen supplied from a hydrogen gas supply path 16 and an oxygen supply path 17 is jetted out into a combustion chamber 6 using a jet nozzle 14. A graphite bar 10 is provided inside the combustion chamber from a cylinder 13. It is necessary to control pressure inside the tank holding high-pressure water by a pressure control valve 7. A mixed gas is ignited by an ignition system 11 and fullerences 12 which include carbon or water molecules are discharged in the high-pressure water. Water containing fullerences, which include water molecules and are floating in water, is taken out from an outlet 8. The water containing fullerences taken out is appropriately filtrated by the filtration device 4 (comprising 21~24) and becomes a finished product. This apparatus is operated in the following manner: As described above, by jetting a mixed gas inside a pressurized tank from the nozzle 14 by supplying hydrogen and oxygen under high pressure, igniting it by an ignition system 11, and perfectly burning it, a vapor-gas combustion state at a very high temperature is achieved. A pure

graphite bar 10 is inserted in the combustion gas and is burned. When carbon heated at a high temperature inside the nozzle is discharged into high-pressure water, a part of the carbon forms a crystal structure. Carbon atoms, then, are rearranged, changing to a nearly spherical shape. At this time, a water molecule is taken in and contained. The shape changes to an energy-wise stable soccer-ball shape. Because fullerence containing a water molecule is a carbon molecule with exceedingly high hydrophobicity, it floats in water in a stable state, and without using an activating agent, an apparent dissolution state is achieved.

Thus produced new water containing fullerences is taken out from an outlet and is fed to a filtration system 4. The filtration system uses hollow fiber films. Passing through hollow fiber films of 50 μ , 25 μ , 3 μ , 0.5 μ , and 0.1 μ in order, water containing fullerences with a very small quantity of fullerences is ultimately obtained.

Conditions for carrying out the invention

Internal pressure of a production tank: 2 atm.

Mixed gas: 5 liters/sec. (3.5 atm.)

Jet time: 2 hrs.

Graphite supplied: 1.5 kg/2 hrs.

Produced water containing fullerences: approx. 1 ton

By filtrating produced water containing fullerences using hollow fiber films of 50 μ , 25 μ , 3 μ , 0.5 μ , and 0.1 μ in order, healthy drinking water containing fullerences, which include water molecules and are floating in water.

Sampling of the healthy drinking water

52 adults consisting of men and women sampled healthy drinking water containing fullerences, which include water molecules and are floating in water, to confirm efficacies and effects toward improving health and bioactive functions.

Sampling conditions and results

Sampling amount per d	lay:	Up to one glass	5 persons
Up to 3		o 3 glasses	22
	4 gla	asses or more	22
Taste:	Tast	ed nice	39
	No ta	aste	13
Smell:	Do not mind		51
	Do n	nind	1
Efficacy examples:	Phys	sical conditions improve	d22
	Appe	etite improved	32
	Supp	olementary effect on me	dicinal action 11
	Cons	stipation relieved	14
	Reco	overing from fatigue	49
	Blood	d sugar level lowered	3
	Diarr	hea improved	3
	Bette	er digestive functions	17
	Roug	h skin recovered	8
	Stiff s	shoulders relieved	18

Eyestrain recovered 1

Gout relieved 1

Blood pressure lowered 5

Renal calculus relieved 1

Progress of lung cancer stopped 1

According to the above-mentioned results, at the sampling stage, the number of people who replied "Tasted nice" was nine times more than the number of people who replied "No taste". As for its smell, nearly all respondents replied "Do not mind". From these results, it can be seen that the water containing fullerences obtained according to the present invention is a beverage which is easy to drink for many people.

Seeing from there were many people who sampled the water containing fullerences obtained according to the present invention listed effects on health-related improvements such as recovering from fatigue, appetite improved, physical conditions improved, better digestive functions, stiff shoulders relieved, constipation relieved, etc., the water containing fullerences obtained according to the present invention is considered to exhibit sufficient effects as a healthy beverage.

Industrial applicability

The present invention provides a method and an apparatus for producing new water containing fullerences, and healthy drinking water utilizing the new water containing fullerences. With the invention, fullerences can be produced in a

simplified and efficient manner. Seeing from the sampling test conducted with many monitors, water containing fullerences, which include water molecules and are floating in water, is remarkably effective as a healthy beverage.

Expectations are also placed on use of water containing fullerences according to the present invention for improving the body's immune system in addition to its health improvement actions.

Claims

- 1.A method for producing water containing fullerences, which include water molecules and are floating in water, by burning a mixed gas of oxygen and hydrogen in high-pressure water and burning a graphite bar using the combustion gas generated.
- 2.An apparatus for producing water containing fullerences, which include water molecules and are floating in water, which comprises a tank holding highpressure water, a jet nozzle for jetting out a mixed gas of oxygen and hydrogen, a graphite bar, an ignition system and a combustion chamber.
- 3. The apparatus for producing water containing fullerences as claimed in Claim 2, which is characterized in that a water electrolyzer for producing a mixed gas of oxygen and hydrogen is attached to.
- 4. The apparatus for producing water containing fullerences as claimed in Claims 2 and 3, which is characterized in that a filtration system for removing carbon residue is attached to.
- 5.A healthy drinking water which is produced by purifying water containing fullerences, which include water molecules and are floating in water.

FIG. 1

A flow chart of producing water containing fullerences

FIG. 3

FIG. 4

	16 R20 1000
	C C C
•	4
450	= = = =
4	<u>a</u>
0	<u> </u>
2	5
hase	5
(prepared	
Š	3
ofC	ĺ
Serries	
ĭ	
various Prop	

Properties (Physical Quantity)		Measured Value at	y, 46, 830, 1990)
·Molecular weight	700 66	Properties (Physical Quantity)	Measured Value, etc.
·No. of molecules:	720.00	·Electron affinity:	2.65±0.02 eV
		'Reduction potential (E ^{1/2} vs Fc/Fc ⁺), acetonitrile/toluene,	-0.98, -1.37, -1.87, -2.35, -2.85, -3.26 (V)
·Molecular structure;	Frustum icosahedron (1 _n), Diameter: ~7.1A		
13C-NMR spectrum (C ₄ D ₆	C-C bond forming a five-membered rings 1,391A C-C bond forming a five-membered ring 1,455A 8 = 143.27ppm	·Crystal structure:	Simple cubic system (249K or less) $P\alpha 3$, $Z=4$, $a=14.041\chi$ (5K)
(KBr pellet)/cm ⁻¹	527.4, 576.4, 1182.4, 1428.5		7 w.ccentered cubic system (249K or more) Fm3, Z=4, a=14.17±0.01y (300K)
·Infrared emission spectrum (vapor-phase, 850±100°C)/cm⁻¹	527.1, 570.3, 1169.1, 1406.9	·Density:	Distance between the center of adjacent molecules: ~10.0%
Raman spectrum (thin film)/cm ⁻¹		·Compressibility (0~20GPa):	1.682 g/cm ⁻⁹ (300K, calculated value) (5.540 5)\dots 0.200-1
	774(m), 1099(w), 1250(w), 1428(m) 1470(vs) 1575(m)		>700°C
·Visible ultraviolet spectrum (hexane solution, log ɛ in parentheses)/nm:	Visible ultraviolet spectrum 211(5.11), 227(sh,4.91), 256(5.24), (hexane solution, log ɛ in parentheses)/nm: 328(4.71), 390(3.52), 403(3.40)	Heat of transition (249K): heat of sublimation:	~4.83kJ/mol 9.58±0.31 kJ/mol
	492(sh, 2, 72), 540(2,85), 568(2,78), 590(2,86), 508(2,85), 608(2,85)	∵Conductivity (at room temp.): <10. ^{.9} Scm ⁻¹ -Molar magnetic susceptibility —(260±20)x10 ⁻⁶ emu/mol	<10. ⁻³ Scm ⁻¹ (260±20)x10 ⁻⁶ emu/mo!
·Fluorescence spectrum (toluene solution, at room temp //nm		Transition temp. of superconducting salt Tc/K;	K ₃ C ₆₀ (18), Rb ₃ C ₆₀ (28,30), Rb ₂ CsC ₆₀ (31), RbCs ₂ C ₆₀ (33), K ₂ CsC ₂₂ (24)
Triplet energy (toluene solution)	(""" """, ZUK), /US./(main), 787.4, 877(sh) 1.56±0.03 eV (8.60±0.14 kJ/mol)		Na ₂ CSC ₆₀ (12), Na ₂ RbC ₆₀ (s.5), Na ₂ KC ₆₀ (2.5), Li ₂ CSC ₆₀ (12), Ca ₂ C ₂₂ (8.4), Sr. C. (42)
	/.o/±0.02 eV	temp, of ferromagnetic	(ZI)090 XID ((T.))0
* Curie temperature: Temperature	* Curie temperature. Temperature at which a paramagnetic substance observed	salt:	TDAE _{0.55} C ₆₀ 16.1K

Francis 3 3 1

Curie temperature: Temperature at which a paramagnetic substance changes to a ferromagnetic substance when it is cooling down. TDAE indicates tetrakis(dimethyllamino)ethylene.

(Source: K. Tanigaki & others, Fullerence, Sangyo-tosho, Oct. 27, 1992, P.16)

Poc'd PCT/PTO 15 OCT 2001

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant	:	Yoshihiro Hirata, et al.	,
App. No.	:	09/868,737)
Filed	:	June 19, 2001)
For	:	WATER CONTAINING FULLERENCES AND METHOD FOR PRODUCING THE SAME)
Examiner	:	Unknown)

ESTABLISHMENT OF RIGHT OF ASSIGNEE TO TAKE ACTION AND REVOCATION AND POWER OF ATTORNEY

Assistant Commissioner for Patents Washington, D.C. 20231

Dear Sir:

The undersigned is empowered to act on behalf of the assignee below (the "Assignee"). A true copy of the original Assignment of the above-captioned application from the inventor(s) to the Assignee is attached hereto. This Assignment represents the entire chain of title of this invention from the Inventor(s) to the Assignee.

I declare that all statements made herein are true, and that all statements made upon information and belief are believed to be true, and further, that these statements were made with the knowledge that willful, false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. § 1001, and that willful, false statements may jeopardize the validity of the application, or any patent issuing thereon.

The undersigned hereby revokes any previous powers of attorney in the subject application, and hereby appoints the registrants of Knobbe, Martens, Olson & Bear, LLP, 620 Newport Center Drive, Sixteenth Floor, Newport Beach, California 92660, Telephone (949) 760-0404, **Customer No. 20,995**, as its attorneys with full power of substitution and

App. No. Filed

09/868,737

.

June 29, 2001

revocation to prosecute this application and to transact all business in the U.S. Patent and Trademark Office connected herewith. This appointment is to be to the exclusion of the inventor(s) and his attorney(s) in accordance with the provisions of 37 C.F.R. § 3.71.

Please use Customer No. 20,995 for all communications.

Phild Co., Ltd.

Dated: 08. 10. 2001

By: Voshihiro Hirata

Title: President

Address: Kawamoto Building, 110-banchi,

Gosyo-Hachimancho,

Kamitachiuri-Sagaru, Karasuma-dori, Kamigyo-ku, Kyoto-shi, Kyoto-fu, Japan

X	Full name of second inventor: Yoshio Ueda Inventor's signature VoShio Veda
	Residence: Kawamoto Bldg., 110-banchi, Gosyo-Hachimancho, Kamitachiuri-Sagaru, Karasuma-dori, Kamigyo-ku, Kyoto-shi, Japan
	Citizenship: Japan
	Post Office Address: Same as above
	Full name of third inventor: Hiroaki Takase Inventor's signature Kiroaki Takase. Date
83	Residence: Kawamoto Bldg., 110-banchi, Gosyo-Hachimancho, Kamitachiuri-Sagaru, Karasuma-dori, Kamigyo-ku, Kyoto-shi, Japan
	Citizenship: Japan
The state of the s	Post Office Address: Same as above

Send Correspondence To: Daniel E. Altman KNOBBE, MARTENS, OLSON & BEAR, LLP Customer No. 20,995

PATENT

Client Code: KOD9B.001APC

Page 1

Application No.: 09/868,737 Filing Date: June 19, 2001

ASSIGNMENT

WHEREAS, We, Yoshihiro Hirata, Japanese citizen, residing at Kawamoto Building, 110-banchi, Gosyo-Hachimancho, Kamitachiuri-Sagaru, Karasuma-dori, Kamigyo-ku, Kyoto-shi, Kyoto-fu, Japan, Yoshio Ueda, Japanese citizen, residing at Kawamoto Building, 110-banchi, Gosyo-Hachimancho, Kamitachiuri-Sagaru, Karasuma-dori, Kamigyo-ku, Kyoto-shi, Kyoto-fu, Japan, and Hiroaki Takase, Japanese citizen, residing at Kawamoto Building, 110-banchi, Gosyo-Hachimancho, Kamitachiuri-Sagaru, Karasuma-dori, Kamigyo-ku, Kyoto-shi, Kyoto-fu, Japan, have invented certain new and useful improvements in a WATER CONTAINING FULLERENCES AND METHOD FOR PRODUCING THE SAME which we have filed an application for Letters Patent in the United States, on June 19, 2001 as Application Serial No. 09/868,737;

AND WHEREAS, Phild Co., Ltd.(hereinafter "ASSIGNEE"), a Japan Corporation, with its principal place of business at Kawamoto Building, 110-banchi, Gosyo-Hachimancho, Kamitachiuri-Sagaru, Karasuma-dori, Kamigyo-ku, Kyoto-shi, Kyoto-fu, Japan desires to acquire the entire right, title, and interest in and to the said improvements and the said Application:

NOW, THEREFORE, in consideration of the sum of One Dollar (\$1.00) to me in hand paid, and other good and valuable consideration, the receipt of which is hereby acknowledged, we, the said inventors, do hereby acknowledge that we have sold, assigned, transferred and set over, and by these presents do hereby sell, assign, transfer and set over, unto the said ASSIGNEE, its successors, legal representatives and assigns, the entire right, title, and interest throughout the world in, to and under the said improvements, and the said application and all divisions, renewals and continuations thereof, and all Letters Patent of the United States which may be granted thereon and all reissues and extensions thereof, and all rights of priority under International Conventions and applications for Letters Patent which may hereafter be filed for said improvements in any country or countries foreign to the United States, and all Letters Patent which may be granted for said improvements in any country or countries foreign to the United States and all extensions, renewals and reissues thereof; and we hereby authorize and request the Commissioner of Patents of the United States, and any Official of any country or countries foreign to the United States, whose duty it is to issue patents on applications as aforesaid, to issue all Letters Patent for said improvements to the said ASSIGNEE, its successors, legal representatives and assigns, in accordance with the terms of this instrument.

AND WE HEREBY covenant and agree that we will communicate to the said ASSIGNEE, successors, legal representatives and assigns, any facts known to us respecting said improvements, and testify in any legal proceeding, sign all lawful papers, execute all divisional, continuing and reissue applications, make all rightful oaths and generally do everything possible to aid the said ASSIGNEE, its successors, legal representatives and assigns, to obtain and enforce proper patent protection for said improvements in all countries.

This 10th day of August, 2001

Yoshihiro Hirata

This 10th day of August, 2001

Yoshio Ueda

Witness

m

SADAYA NAKAYAMA

Witness

PATENT

Client Code: KOD9B.001APC

Page 2

Application No.: 09/868,737

Filing Date: June 19, 2001

This 9th day of August

Takase.

Hiroaki Takase

SADAYA NAKAYAMA

Witness

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name;

I believe I am an original, first and joint inventor of the subject matter which is claimed and for which a patent is sought on the invention entitled WATER CONTAINING FULLERENCES AND METHOD FOR PRODUCING THE SAME; PCT Application No. PCT/JP00/04894, FILED IN THE Japanese Receiving Office on July 21, 2000; the documentation for entry into the U.S. national phase of which was filed on June 19, 2001, as Application Serial No. 09/868,737;

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above;

I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, § 1.56;

I hereby claim foreign priority benefits under Title 35, United States Code, § 119(a)-(d) of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

PRIOR FOREIGN APPLICATION(S)

Priority Claimed

No.: 11-301149

Country: Japan

Date Filed: 10/22/1999

Yes

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful, false statements may jeopardize the validity of the application or any patent issued thereon.

Full name of first inventor: Yoshihiro Hirata

Inventor's signature _

Residence: Kawamoto Bldg., 110-banchi, Gosyo-Hachimancho, Kamitachiuri-Sagaru,

Karasuma-dori, Kamigyo-ku, Kyoto-shi, Japan

Citizenship: Japan

Post Office Address: Same as above