

Churn Prediction For HSBC Holdings Bank

By ONE TEAM from McKidney&Company

One Team - Member

• Ismail Raji

Muhammad BianSuryoprakoso

Sulthan AuliaMuhammad

Latar Belakang: Apa itu Churn Rate dan mengapa Churn Rate itu penting?

Deskripsi

- Churn = Customer yang berhenti menggunakan produk (**Tutup akun**)
- Churn Rate = Rasio customer yang berhenti menggunakan produk dari keseluruhan customer aktif

Latar Belakang General

- Krisis finansial 2008
- Akuisisi sebanyak-banyaknya customer → akuisisi customer baru memiliki biaya **7 kali lebih tinggi** dibanding untuk menjaga customer aktif

Latar Belakang HSBC

- Dataset: 2020, Customer churn HSBC sebanyak 2,000 dari 10,000 (20%)
- Menurut SopraBanking, CAC (Customer Acquisition Cost) Retail Bank sekitar \$300
- Hidden loss Customer Churn 2020 = 2,000 x \$300 = \$600,000

Masalah yang ada dan bagaimana kita menghadapinya

Dataset

Feature Name	Description		
CustomerId	Customer ID		
Surname			
CreditScore	Customer's credit score		
Geography	France, Germany, Spain		
Gender	Female, Male		
Age			
Tenure	Time from join (Month)		
Balance			
NumOfProducts	Number of products that customer use		
HasCrCard	Does the customer have a credit card through the bank? (Yes=1, No=0)		
IsActiveMember	Is the customer an active member? (Yes=1, No=0)		
EstimatedSalary	Estimated salary of the customer		
Exited	Did the customer leave the bank within the last 12 month? (Yes=1, No=0)		

Keseluruhan Data

- Total data memiliki 13 kolom/feature dengan jumlah 10,000 row
- 2. Tidak ada feature yang memiliki data null
- 3. Terdapat 3 feature categorical dan 10 feature numerical
- 4. Exited adalah target

Dominansi

- Geography terdapat 3 negara, dengan mayoritas France
- 2. Gender didominasi Male dengan 54,5%

Exploratory Data Analysis: Korelasi

Age, Balance, dan IsActiveMember merupakan feature dengan korelasi yang cukup tinggi terhadap target dibanding feature lainnya.

Tidak ada pasangan fitur yang memiliki korelasi di atas 0.70.

Exploratory Data Analysis: Hubungan Fitur (dengan korelasi) terhadap Target

Age

Balance

IsActiveMember

- 1. Churn Rate tertinggi pada Age berkisar dari usia 40-70
- 2. Untuk Balance, Churn Rate cukup beragam, tetapi naik drastis untuk balance > 200k
- 3. Non-Aktif member memiliki Churn Rate lebih tinggi dibanding yang aktif

Cleansing

- Data Duplication and Null Checking Mengecek data duplicate dan null hasil yang didapat adalah tidak ada data duplicate dan null
- Handling Outliers
 Filtering outliers menggunakan IQR untuk fitur yang berdistribusi skewed dan z-score yang berdistribusi normal, data customer yang terhapus 367
- Standardization
 Melakukan standardisasi untuk fitur numerik
- One hot encoding
 Melakukan one hot encoding untuk fitur Categorical karena fitur tidak punya urutan
- Pengurangan Fitur
 Hapus fitur original yang belum di standarisasi dan one hot encoding agar tidak redundant
- Class Imbalance
 Menggunakan SMOTE untuk mengatasi Class Imbalance tetapi hanya dilakukan pada data train setelah split data, agar data test tidak menjadi bias

Modelling

- Metric yang diperhatikan
 Recall -> Memaksimalkan Jumlah prediksi Churn (memperkecil nasabah yang actualnya churn namun di prediksi tidak churn)
- Supporting Metric:
 Accuracy -> Persen target yang berhasil diprediksi model
 AUC -> Seberapa yakin model memprediksi target
- Dataset di test dengan Algorithma:
 - Logistic Regression
 - K Nearest Neighbour
 - Decision Tree
 - Random Forest

Hasil test sebelum Hyperparameter Tuning

Metric	LR	KNN	DT	RF
Recall	0.65	0.64	0.55	0.57
Accuracy	0.77	0.77	0.78	0.84
AUC	0.85	0.79	0.69	0.84

Hasil test setelah Hyperparameter Tuning

Metric	LR	KNN	DT	RF
Recall	0.70	0.64	0.82	0.66
Accuracy	0.76	0.62	0.67	0.83
AUC	0.80	0.78	0.67	0.85

Modeling - Pemilihan Algoritma

Alasan terpilih random forest

 Recallnya naik secara signifikan setelah di tuning dan Fitur supporting yaitu Accurracy dan AUC stabil

Feature Importance

Hasil Modelling

- 1. Recall 0.66
- 2. If Marketing Effort success 75%
- 3. Churn Rate
- 4. Reduce Hidden Loss

- -> True Predict 66% from 20%
- -> 75% from 13,2%
- -> 20% 10%
- -> 1,000 x \$300

- = True Predict 13,2%
- = Keep 10%
- = 10%
- = \$300k

Business Insight #1

Probabilitas Churn yang lebih tinggi pada Age, kemungkinan disebabkan juga karena kombinasi dari fitur Age dan CreditScore Age vs Churn Rate

Credit Score (Based on FICO's Rating) vs Churn Rate

Age vs Credit Score

Business Insight #2

- 1. Wanita lebih berpotensi Churn
- 2. Wanita memiliki Save Rate (Balance/Salary) lebih rendah dibanding Pria -> Lebih suka membelanjakan uangnya

Gender vs Churn Rate

Gender vs Save Rate

Rekomendasi

Modelling

- 1. Untuk pengembangan model, menambahkan keterangan terkait jenis produk yang digunakan
- 2. Melakukan Clustering model dalam melakukan Marketing Effort agar konversi pencegahan Churn meningkat

Business Insight

- 1. Melakukan survey "Alasan Tutup Akun" untuk seluruh customer yang menutup akun agar mendapatkan alasan yang lebih valid sehingga hal tersebut dapat diperbaiki kedepannya
- 2. Mengutamakan Customer Service dan Real-Life Interaction untuk dapat menjaga hubungan dengan customer di rentang usia 40-60 dan customer Wanita
- 3. Membuat Loyalty Program untuk Customer, tetapi hanya untuk yang worth untuk diselamatkan. Usia terlalu tua (>60) dan Credit Score terlalu rendah (<475) akan berdampak pada Lifetime Customer Value yang kecil.
- 4. Membuat program Wanita-oriented, seperti Reward Point jika melakukan pembelanjaan.

