TD M2102 - Architecture des réseaux Configuration de tables de routage IP

1 Exemple de réseau simple

Ci-dessous la représentation d'un réseau simple. La machine P est un routeur vers le reste du réseau.

Voici la table de routage de la machine A, dont l'adresse IP associée à l'interface réseau $eth\theta$ est 147.210.94.1:

Destination	Masque	Passerelle	Interface
147.210.94.0	255.255.255.0	-	eth0
default	0.0.0.0	147.210.94.254	eth0

Cette table permet de déterminer l'adresse Ethernet (ou autre) à employer pour une adresse IP donnée.

La première ligne indique qu'une *livraison directe* doit être effectuée pour les adresses 147.210.94.0 à 147.210.94.255. L'adresse de destination de la trame *Ethernet* sera celle du destinataire (obtenue par ARP) 1 .

La seconde ligne (*route par défaut*) signale que, faute d'autre route, les datagrammes IP sortants doivent être transmis au routeur P. C'est l'adresse du routeur qui figurera dans le champ destination de la trame Ethernet.

Remarques : pour une adresse 147.210.94.xxx les deux règles sont applicables ; c'est la première qui est choisie car elle est *plus spécifique* : le masque a plus de bits significatifs.

Sous Unix, voici les commandes nécessaires pour configurer cette machine

/sbin/ifconfig eth0 147.210.94.1 netmask 255.255.255.0 up /sbin/route add -net 147.210.94.0 netmask 255.255.255.0 dev eth0 /sbin/route add default gw 147.210.94.254

^{1.} ou de son mandataire si on emploie un Proxy ARP

2 Adjonction d'un réseau privé

On ajoute un sous-réseau privé (172.16.94), derrière la machine X=147.210.94.200 qui se transforme en routeur.

- 1. Donnez la table de routage de la machine Z
- 2. Donnez la table de routage de X
- 3. Comment modifier la table de routage de A pour qu'elle puisse communiquer avec le sous-réseau privé?

3 Sous-réseaux départementaux

Soit une entreprise avec 3 services possédant chacun un sous-réseau relié au réseau commun par un routeur (P1, P2, P3). Le réseau qui lui a été attribué (1.2.3.0/24) est découpé en 4 plages :

- de 0 à 63, machines communes (M, etc.)
- de 64 à 127, machines du service 1
- de 128 à 191, machines du service 2
- de 192 à 255, machines du service 3

Question 0. Expliquez pourquoi le masque de sous-réseau utilisé est 255.255.255.192, et donnez les numéros de sous-réseaux associés.

Voici la suite des commandes sous linux permettant de configurer l'interface réseau et la table de routage de la machine A:

```
ifconfig eth0 1.2.3.66 netmask 255.255.255.192 up route add -net 1.2.3.64 netmask 255.255.255.192 dev eth0 route add default gw 1.2.3.65
```

Ce qui produit la table de routage suivante :

Destination	Masque	Passerelle	Interface
1.2.3.64	255.255.255.192	-	eth0
default	0.0.0.0	1.2.3.65	eth0

Question 1. Donnez la suite des commandes sous linux permettant de configurer l'interface réseau et la table de routage de la machine M, ainsi que la table de routage produite.

Question 2. Même question pour la machine P.

On considère que la machine P1 a la table de routage suivante (celles de P2 et P3 sont semblables) :

Destination	Masque	Passerelle	Interface
1.2.3.0	255.255.255.192	-	eth0
1.2.3.64	255.255.255.192	-	eth1
default	0.0.0.0	1.2.3.1	eth0

Question 3. Le réseau semble fonctionner, avec cependant une charge plus élevée que la normale. On décide d'espionner les datagrammes IP qui circulent entre les machines A $(1.2.3.66, du \ service \ 1)$ et B $(1.2.3.195, du \ service \ 3)$. On s'aperçoit alors que sur le réseau commun, certaines de ces trames Ethernet transportant ces datagrammes sont émises par le routeur P.

Expliquez le cheminement d'un datagramme IP allant de 1.2.3.66 à 1.2.3.195. Décrivez les différentes trames Ethernet émises en indiquant pour chacune d'elles l'émetteur et le destinataire aux niveaux physique et IP. On notera $\phi(m)$ l'adresse physique de la machine m.

Question 4. Proposez une correction pour la table de routage de P1 (seulement la table, pas les commandes sous linux).

Question 5. Si on corrige la table de routage de P1 mais pas celle de P3, que se passe-t-il? Est-il raisonnable de penser que le système d'exploitation de P3 peut corriger "de lui-même" ce problème? Sur quelles observations peut-il se baser pour modifier sa table de routage?