Chapter 2. Proofs

증명(proof)이란 논리적 법칙을 이용하여 주어진 가정으로부터 결론을 유도해 내는 추론의 한 방법으로서, 어떠한 명제(proposition)나 논증(argument)이 적절하고 타당한 지를 입증하는 작업이다.

연역법(deduction) vs. 귀납법(induction)

연역법은 주어진 사실(facts)들과 공리(axioms)들을 기초로 하여 추론(inference) 과정을 거쳐 새로운 사실을 도출하는 것이고, 귀납법은 관찰과 실험을 기반한 가설(hypothesis)을 귀납 추론을 통하여 일반적인 규칙을 입증하는 것이다.

2.1 Mathematical systems

Figure 2-1 Structure of mathematical system

Example 2.1 Euclidean geometry as an axiomatic system: We take followings be true.

- (1) Given two distinct points, there is exactly one straight line connecting them.
- (2) Given a line and a point not on the line, there is exactly one line parallel to the line through the point.
 - Terms *point* and *line* are un-defined terms that are implicitly defined by the axioms that describe their properties.

Example 2.2 Axioms for real number system

- (1) $\forall x, y \in R, xy = yx$
- (2) There is a subset P, such that
 - (a) If $x, y \in P$, then so are x + y and xy.
 - (b) If x is a real number, then exactly one of the following statement is true:

$$x \in P$$
, $x = 0$, $-x \in P$

Types of proof

- 1. Direct proof 직접증명: prove $p \rightarrow q$
- 2. Proof by contradiction 모순에 의한 증명: prove $\sim (p \to q) \equiv p \land \sim q$ is always false.
- 3. Proof by contrapositive 대우에 의한 증명: prove $\sim q \rightarrow \sim p$
- 4. Exhaustive proof 전수 증명
- 5. Mathematical induction 수학적 귀납법

Direct proof 직접 증명

Given a general form of a theorem,

(2.1)
$$\forall x_1, x_2, ..., x_n$$
, if $p(x_1, x_2, ..., x_n)$, then $q(x_1, x_2, ..., x_n)$

A direct proof assumes that $p(x_1, x_2, ..., x_n)$ is true, and then using $p(x_1, x_2, ..., x_n)$ together with other axioms, definitions, previously derived theorems, and rules of inference, show directly that $q(x_1, x_2, ..., x_n)$ is true.

- If $p(x_1, x_2, ..., x_n)$ is false, the theorem is true by default.

Definitions An integer n is *even*, if there exists an integer k such that n = 2k. An integer n is *odd*, if there exists an integer k such that n = 2k + 1.

Example 2.3 Prove that, for all integers m and n, if m is odd and n is even, then m+n is odd. $m=2k_1+1,\ n=2k_2$

Example 2.4 Prove that, for all sets X, Y and Z, $X \cap (Y - Z) = (X \cap Y) - (X \cap Z)$.

The proposition we need to prove is bi-conditional: or, equivalently we have to show that two sets $X \cap (Y - Z)$ and $(X \cap Y) - (X \cap Z)$ are the same. Thus, we have to show two conditional propositions;

- (1) If $x \in X \cap (Y Z)$, then $x \in (X \cap Y) (X \cap Z)$, and
- (2) If $x \in (X \cap Y) (X \cap Z)$, then $x \in X \cap (Y Z)$.

Let $x \in X \cap (Y - Z)$, then $x \in X$, $x \in Y$, and $x \notin Z$. $\Rightarrow x \in X \cap Y$ and $x \notin X \cap Z$. For part (2), we let $x \in (X \cap Y) - (Y \cap Z)$, and show that $x \in X \cap (Y - Z)$.

Example 2.5 If a and b are real numbers, we define min(a,b) to be the minimum of a and b: i.e.

$$(2.2) min(a,b) = \begin{cases} a, & a \le b \\ b, & b < a \end{cases}$$

Prove that, for all real numbers d, d_1 , d_2 and x, if $d = min(d_1, d_2)$ and $x \le d$, then $x \le d_1$ and $x \le d_2$.

 \leftarrow At first, we claim that, if $d = min(d_1, d_2)$, then $d \le d_1$ and $d \le d_2$.

If
$$d \le d_1$$
, $min(d_1, d_2) = d_1$. $\Rightarrow d = d_1 \le d_2$.

Example 2.6 Prove that, for all sets X and Y, $X \cup (Y - X) = X \cup Y$.

$$Y - X = Y \cap \overline{X}$$
 and $X \cup (Y - X) = (X \cup Y) \cap (X \cup \overline{X})$

Example 2.7 Prove or disprove that, $\forall n \in \mathbb{N}, (2^n - 1)$ is prime (소수).

- ← The Mersenne primes is a set of prime numbers, $M_n = 2^n 1$, for some positive integers n. Examples are $\{3, 7, 31, 127, 8191, ...\}$.
- \leftarrow In order to disprove $\forall x P(x)$, it suffices to find one member in the domain of discourse that

makes P(x) false. Such a value for x is called a *counter-example* (반례).

- Choose n = 11, then $2^{11} - 1 = 2047 = 23 \times 89$.

Example 2.8 (How to find a counter-example) Prove or disprove the statement: $(A \cap B) \cup C = A \cap (B \cup C)$.

- Bi-directional proposition: $p \leftrightarrow q$
- \leftarrow First, check if the proposition 'if $x \in (A \cap B) \cup C$, then $x \in A \cap (B \cup C)$ ' is true.
 - \Rightarrow If $x \in A \cap B$ or $x \in C$, then $x \in A$ and $x \in B \cup C$.
 - $\Rightarrow \{(A \cap B) \cup C\} \subseteq \{A \cap (B \cup C)\}\$
 - \rightarrow 만약에 반례가 존재한다면, 그 중 하나는, 집합 $(A \cap B) \cup C$ 의 원소이면서, 집합 $A \cap (B \cup C)$ 의 원소가 아닌 경우를 찾으면 된다.
 - \rightarrow Venn diagram 을 이용하면 쉽게 반례를 찾을 수 있다. 예를 들어, 하나의 반례는, $x \notin A \cap B$ and $x \in C$ 의 형태를 띨 것이다.
- Consider $A = \{1, 2, 3\}$, $B = \{2, 3, 4\}$, and $C = \{3, 4, 5\}$. Note that $4 \notin A \cap B$ and $4 \in C$, so that $(A \cap B) \cup C = \{2, 3, 4, 5\}$, $A \cap (B \cup C) = \{3\}$ and, we $\{(A \cap B) \cup C\} \nsubseteq \{A \cap (B \cup C)\}$.

2.2 More methods of proof

2.2-1 Proof by contradiction (모순 증명법, 귀류법)

In order to prove $p \rightarrow q$,

- (1) Assume that the hypothesis p is true and that the conclusion q is false.
- (2) Using p and $\sim q$ as well as other logical tools (such as axioms, definitions, previously derived theorems, and rules of inference), derive a contradiction.

The proof by contradiction is based on the logical equivalence (동치),

$$(2.3) \qquad \sim (p \to q) \equiv p \land \sim q$$

By showing that $p \land \sim q$ is false, it proves $\sim (p \to q)$ is also false. 즉, 명제 $p \land \sim q$ 가 참이라고 가정하고 모순을 유도하면 $p \land \sim q$ 가 거짓, 따라서 $p \to q$ 가 참임을 증명하게 된다.

p	q	r	$p \rightarrow q$	$p \wedge \sim q$	<i>r</i> ∧~ <i>r</i>	$(p \land \sim q) \to (r \land \sim r)$
Т	Т	Т	Т	F	F	Т
Т	Т	F	Т	F	F	T
Т	F	Т	F	Т	F	F
Т	F	F	F	Т	F	F
F	Т	Т	Т	F	F	Т
F	Т	F	Т	F	F	Т
F	F	Т	Т	F	F	Т
F	F	F	Т	F	F	Т

- \leftarrow 명제 $r \land \sim r$ 는 항상 거짓인 contradiction 명제이다.
- \leftarrow 명제 $p \rightarrow q$ 와 $(p \land \sim q) \rightarrow (r \land \sim r)$ 는 동치이다.

Example 2.9 Prove that, $\forall n \in \mathbb{Z}$, if n^2 is even, then n is even.

- ← It is not easy to prove this statement directly.
- \leftarrow For a proof by contradiction, choose $p=(n^2 \text{ even})$ and q=(n even). We assume $p=(n^2 \text{ even})$ and $\sim q=(n \text{ odd})$, then prove that $p \wedge \sim q$ is false.

Example 2.10 Prove that, for all real numbers x and y, if $x + y \ge 2$, then either $x \ge 1$ or $y \ge 1$.

$$\leftarrow p: x + y \ge 2$$
 and $q: x \ge 1$ or $y \ge 1$

$$\sim q: \sim \{(x \ge 1) \lor (y \ge 1)\} \equiv (x < 1) \land (y < 1) \rightarrow x + y < 2$$

Since $p \land \sim q$ is a contradiction, $p \rightarrow q$ is true.

Example 2.11 Prove that $\sqrt{2}$ is irrational (무리수).

$$\sim q$$
: $\sqrt{2} = \frac{a}{b}$, a and b coprime:

$$\frac{a^2}{b^2}=2 \ \Rightarrow \ a^2$$
 even and $\exists k \in \mathbb{N}, \ a^2=2k \ \Rightarrow \ b^2=2k^2$, even. Thus, a and b are not coprime.

Example 2.12 n이 자연수이고 n이 2가 아닌 소수이면, n은 홀수이다.

- If $n \in P$ and $n \neq 2$, n is odd (P is the set of prime numbers).
- $p \land \sim q$: $n \in P$, $n \neq 2$, and n is even.

2.2-2 Proof by contrapositive (대우)

The proof by contrapositive is based on the logical equivalence,

$$(2.4) p \to q \equiv \sim q \to \sim p$$

Example 2.13 Prove that, if $\forall x \in R$, x^2 is irrational, then x is irrational.

- Show that if x is rational, then x^2 is rational.
- ← Let x = a/b, a and b are integers.

2.2-3 Proof by case (exhaustive proof, 전수증명)

This method can be used when the hypothesis naturally divides itself into various cases. Instead of proving the statement

$$(2.5) (p_1 \lor p_2 \lor \dots \lor p_n) \to q$$

directly, we prove

$$(2.6) (p_1 \to q) \land (p_2 \to q) \land \dots (p_n \to q)$$

- \leftarrow Suppose that, for any j, p_j is true. Then $p_1 \lor p_2 \lor ... \lor p_n$ is also true.
 - ① If q is true, then (2.5) is also true. Likewise, $p_i \rightarrow q$ is true for all i and so is (2.6).
 - ② If q is false, (2.5) is false. Since $p_i \rightarrow q$ is false, so is (2.6).

← What if $p_i \rightarrow q$ is false for all i?

Example 2.14 Prove that $2m^2 + 3n^2 = 40$ has no solution in positive integers.

$n \setminus m$	1	2	3	4
1	5	11	21	35
2	14	20	30	44
3	29	35	45	59

2.2-4 Other types of proofs

Example 2.15 (proof of equivalence) Prove that, for every integer n, n is odd, if and only if n-1 is even.

To prove that $p_1, p_2, ..., p_n$ are equivalent, the usual method is to prove

(2.7)
$$(p_1 \to p_2) \land (p_2 \to p_3) \land ... (p_{n-1} \to p_n) \land (p_n \to p_1)$$

Example 2.16 (proof of multiple equivalence) Prove that the followings are equivalent:

(a)
$$A \subseteq B$$
 (b) $A \cap B = A$ (c) $A \cup B = B$

Example 2.17 (existence proof) Prove that there exists a prime p, such that $2^p - 1$ is composite (i.e. not prime).

$$2^{11} - 1 = 2047 = 23 \cdot 89$$

2.3 Mathematical induction 수학적 귀납법

Principle of mathematical induction

Suppose that we have a propositional function S(n) whose domain of discourse is the set of positive integers. Also, suppose that

- (2.8) S(1) is true (Basic step, 기초단계);
- (2.9) $\forall n \geq 1$, if S(n) is true (귀납가정, inductive assumption), then S(n+1) is true (Inductive step, 귀납단계).

Then, S(n) is true for every positive integer n.

즉, (1) S(1)이 참임을 보이고, (2) S(n)이 참이라고 가정한 후, (3) 귀납가정을 기반하여 S(n+1)이 참임을 보이는 단계로 구성된다.

Example 2.18 Let

(2.10)
$$S_n = 1 + 2 + \dots + n$$

Then, $S_n = \frac{1}{2}n(n+1)$

Example 2.19 $\forall n \geq 1, \ n! \geq 2^{n-1}$

$$(n+1)! = (n+1) \cdot n! \ge (n+1) \cdot 2^{n-1} \ge 2 \cdot 2^{n-1}$$

Example 2.20 If $r \neq 1$, then

(2.11)
$$a + ar + ar^2 + \dots + ar^n = \frac{a(r^{n+1}-1)}{r-1}$$
 (geometric sum)
$$a + ar + ar^2 + \dots + ar^{n+1} = a + ar + ar^2 + \dots + ar^n + ar^n = \frac{a(r^{n+1}-1)}{r-1} + ar^n = \frac{a(r^{n+2}-1)}{r-1}.$$

Theorem 4.1 If |X| = n, then $|P(X)| = 2^n$, for all $n \ge 0$.

$$S(0)$$
: If $|X| = 0$, $X = \emptyset$, $P(X) = {\emptyset}$, and $|P(X)| = 1 = 2^0$

Assume S(n) is true. Suppose |X| = n + 1 and choose $x \in X$.

- X의 모든 부분집합들은 x를 포함하는 X의 부분집합들의 집합 X_1 과 그렇지 않은 집합 X_2 로 분류할 수 있다.
- 집합 X_1 과 X_2 는 집합 P(X)의 partition 이며 (즉, $P(X) = X_1 \cup X_2$, $X_1 \cap X_2 = \emptyset$), $|X_1| = |X_2| = 2^n$ 이고, $|P(X)| = |X_1| + |X_2| = 2 \cdot 2^n$ 이다.
- 예를 들어, $X = \{a, b, c\}$ 이고 x = a이면, P(X)는 $X_1(a) = \{\{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$ 와 $X_2(a) = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}$ 로 partition 된다. 그러므로, $|X_1(a)| = |X_2(a)| = 2^2 = 4$ 이고, $|P(X)| = 4 + 4 = 2^3$ 이 된다.
- Example 2.21 (Josephus problem) n명으로 구성된 부대가 패배의 위기에 있어 항복 보다는 집단 자살을 선택하기로 하였다. 자결하는 방법으로 다음과 같은 방법을 선택하였다. 먼저 원을 형성하고 시계방향으로 1,2,...,n까지 번호를 매기고, 두 번째 사람을 차례로 죽이기로 하였다. J(n)을 n 명으로 구성된 집단에서 최후까지 살아남는 사람의 번호를 지칭한다고 할 때,
 - (1) Compute J(10).
 - (2) $J(2^i) = 1$, $i \ge 1$, 임을 증명하시오.
 - (3) For $n \ge 2$, let i be the smallest number such that $2^i \le n$ (e.g., when n = 10, i = 3: when n = 16, i = 4). Also, let $j = n 2^i$. Show that J(n) = 2j + 1.
 - \leftarrow At the first round, $\{2,4,...,2j\}$ are killed and there will be $n-j=2^i$ soldiers alive. 2j+1 에서 시작하여 2^i 명이 남아 있으므로, 첫 번째 사람, 즉 2i+1번째 군인이 살아 남는다.