

Politecnico di Milano

A primer on radio frequency identifaction

Agenda

A bit of context

Building blocks and hardware

Singulation arbitration protocols

RFID in Nutshell

To Enhance the concept of "bar-codes" for faster identification of assets (goods, people, animals)

Ingredients:

- Transition to electronic bar codes with wireless communication capabilities
- Transition form optical to wireless "readers"

RFID History

WW2 -

First passive RFID system: "roll plane" by Lufwaffe

First active RFID system: "Friend or Foe" systems by RAF

Theremin Bug (1945)

H. Stockman Paper (1948) – Communication by means of reflected power

RFID History

60s/70s: commercial deployment starts, Electronic Article Surveillance (EAS) in retail, LF identification of animals

First RFID Patent - 1973

80s: mass deployment starts, first read/write active systems with processors

90s: first passive systems with EEPROM, automatic toll systems

Auto-ID center founded at MIT – 1999: Standardization effort taken over by EPC Global (Electronic Product Code)

2000: conductive inks, low-power processors

2004: Walmart use case

RFID Building Blocks

Reader

Memory
Processing Unit
Control Logic/Collision Arbitration
Mechanism
Battery or Power Supply
Other Interfaces (Ethernet, WiFi)

Battery Scavenging circuitry (active or passive)
(E2PROM to store ID)
(Control Logic/Collision
Arbitration Mechanism)
(sensors)
(processing unit)
(RF antennas)

Types of Tags (by power supply)

Passive

Operational power scavenged from reader radiated power

Short range (<1m), Low cost Self sustaining

Semi-passive

Operational power provided by battery

Medium range (tens of meters), need battery, avarage cost, long life

Active

Operational power provided by battery - transmitter built into tag

high range (hundreds of meteres), need battery, Limited lifetime

Types of Tags (by storage)

1-bit tags: used in EAS systems

realized with magnetic material

when tag gets close to reader, current variation is

perceived at the reader

multple detection impossible

Tags with storage space

- Read only
- Read/write

RX/TX/modulation/demodulation circuitry Unique Identifier

Tag classification

Class 0	UHFI read-only, preprogrammed passive tag	
Class 1	UHF or HF; write once, read many (WORM)	
Class 2	Passive read-write tags that can be written to at any point in the supply chain	
Class 3	Read-write with onboard sensors capable of recording parameters like temperature, pressure, and motion; can be semipassive or active	
Class 4	Read-write active tags with integrated transmitters; can communicate with other tags and readers	
Class 5	Similar to Class 4 tags but with additional functionality; can provide power to other tags and communicate with devices other than readers	

The Tags

Tags can be attached to anything:

- pallets or cases of product
- Vehicles
- company assets or personnel
- People or animals
- Electronic appliances

Implementation challenges

Effective Energy Scavenging Miniaturization/customization Cost

Reader Radiography

Reader running examples

	A STATE OF THE STA	
radio frequencies		
operating frequency	865 868 MHz	
transmit power	3 400 mW	
effective radiated power	ATTER	
 for each 	1 100 mW	
external		
antenna		
maximum		
• minimum	10 mW	
 maximum 	200 mW	
equivalent isotropically radiated power		
 for each 		
external		
antenna		
maximum		
• minimum		
 maximum 		
range maximum	4 m; With the internal antenna 1.6 m, extended ranges possible, see RF600 System Manual, range table: http://support.automation.siemens.com/WW/view/en/67384964	
protocol with radio transmission	EPCglobal Class 1 Gen 2 V2 / ISO/IEC 18000-62/-63	
transfer rate with radio transmission maximum	400 kbit/s	
product feature multitag-capable	Yes	1

interfaces		
number of external antennas	1	
standard for interfaces for communication	Ethernet, PROFINET, OPC UA, EtherNet/IP, RS422	
type of electrical connection		
	DD THO	

polarization

circular

RFID		
Туре	Handheld RFID Scanner	
75 50 March	UHF(Ultra High Frequency) 860MHz~960MHz	
Operating Frequency	HF(High Frequency) 13.56MHz	
	LF(Low Frequency) 125KHz	
Protocol	UHF: ISO18000-6C, EPC Class 1 Ger 2, ISO18000-6B	
	HF: ISO14443A/B, ISO15693	
	UHF: 400 ~ 1300cm (Depend on tags and environment)	
Reading Range	HF: 5 ~ 20cm	
	LF: 4 ~ 10cm	
RSSI	Received signal strength indication	
Anti-collision	Read up to 400 piece of tags simultaneously	
Antenna Polarization	Circular Polarized	
SDK	Free SDK provided attached to the Reader	
System features		
Operating system	Microsoft® Windows CE® 6.0 or Android OS v2.2	
Processor SAMSUNG Cortex-A8(1GHz)		

Communication features				
WiFi	802.11b/g			
GPRS (GSM)	GSM/GPRS/EDGE: 850/900/1800/1900MHz			
3G	WCDMA / CDMA2000			
Bluetooth	Bluetooth 2.1 + EDR class 2			
GPS	Integrated			

Reader Implementation Challenges

Reader must deliver enough power from RF field to power the tag

Reader must discriminate backscatter modulation in presence of carrier at same frequency

High magnitude difference between transmitted and received signals

Integration with enterprise solutions

RFID Backend

Middleware solutions to:

- manage high data volume produced by readers
- filter the data produced by the readers (remove redundancy, eliminate unwanted data, etc.)
- Store the data in a way that is meaningful for the specific application
- Let different readers be interoperable

Usage Models

Forklift

Printers

Point of Sale

Performance measures

Reading range

«how far we can read»

Throughput

«how fast we can read»

Robustness

«how robust the reading process»

Performance depends on:

- Carrier frequency
- Emitted power
- Environment (propagation conditions)
- Concurrency (# of tags to be read simultaneously)

RFID: Spectrum Snapshot

RFID Standards

Different standards available in the flields of:

- animal identification
- cards and personal identification
- containers ID

Standards dedicated to item management application developed by ISO/IEC

RFID Standards

GS1 – EPCGlobal initiative, *UHF C1 Gen 2 (900MHz)* ref standards (ISO 18000-6c)

RFID Standards

GS1 – EPCGlobal initiative, UHF C1 Gen 2 (900MHz) ref standards (ISO 18000-6) www.gsI.org

EPC Data Standard-96 bit

Header - Tag version number

EPC Manager - Manufacturer ID

Object class - Manufacturer's product ID

Serial Number - Unit ID

With 96 bit code, 268 million companies can each categorize 16 million different products where each product category contains up to 687 billion individual units

RFID: Physical Communication

Near Field Model (HF)

Far Field Model (UHF)

125 kHz - 13.56 MHz

125 kHz	0.05 m
13.56 MHz	0.5 m

400 MHz - 2450 MHz

860 - 930 MHz	4-10 m
2450 MHz	1 m

RFID HF - Inductive coupling

Inductive Coupling between two circuits (reader and tag)

Frequency Range 125kHz o 13,56 MHz

Reading range comparable to coil diameter Functioning modes:

Duplex (concurrent charging and transmission) sequential (charging and transmission decoupled)

RFID HF - Drill into inductive coupling (Reader to tag TX)

Same principle of transformers Faraday's law of induction

RFID HF - Drill into inductive coupling (Tag to reader TX)

Tag modulates its resistive load with the info to be sent

Voltage changes (modulated by the tag information) are triggered at the reader

RFID HF - Qualitative performance overview

Tag activation voltage (reading range) depends on

- Size of coil antennas (the larger the better)
- Tag/reader orientation
- Tag/reader chip hardware

In LF/HF magnetic field is scarcely affected by dielectric materials

Very sensitive to orientation

Almost immune to the environment

Moderate cost

RFID UHF/SHF – Electromagnetic coupling

Far field operation model

Energy/power is scavanged by the tag through EM waves emitted by reader

Transmission happens via backscattering by modulating the impedence

Tens of meters of read range

Bipolar antennas (few centimeters)

RFID UHF Drill into EM coupling

Transponder Reader 4 m 0.5 W micro-chip 10 µW rectifier Logic & $100 \, \mathrm{pW}$ Memory modulation λ = wave length η = efficiency of rectifier G_T = gain of reader antenna G_R = gain of transponder antenna P_T = power transmitted by a reader $P_{\scriptscriptstyle R}$ = power required by a transponder

What about higher frequencies? 2.45, 5.8 GHz

Mini Antennas but lower read range

RFID UHF Drill into EM coupling

RFID UHF - Qualitative performance overview

High reading range

High bit rate

High impact of the environment

Which Band to Choose?

General Problem: Tag Identification/arbitration/singulation

Interrogation

Conflicts in the Responses

tag reader

Multiple Answers: Arbitration Required

Tag Arbitration Peculiarities

Similar to classical Access Control but:

- Fixed unknown population size
- Tags cannot implement complex protocols (E.g., carrier sense is out)
- Often reader-driven algorithms

Collision Arbitration Mechanisms: A Classification

Vertical Classification

ALOHA-like access mechanism

- Slotted ALOHA
- Dynamic Frame ALOHA

Tree-based access mechanisms

Binary Tree

Horizontal Classification

- Centralized/Distributed
- Type of Channel Feedback (S,C,0)

Tag Arbitration Efficiency

The efficiency is commonly defined as the tag population size, N, over the length of the arbitration period L(N)

Efficiency
$$\eta = \frac{N}{L_N}$$

Slotted ALOHA Protocol (Abramson, 1969)

No channel feedback required, only the ACK

Time is slotted

Protocol:

The first packet in the transmission queue is transmitted in the first available slot If the ACK does not come, the transmission is re-attempted after a random number of slots X

Slotted ALOHA: retransmissions

Slotted ALOHA performances

 S_{in} incoming traffic S_{out} outgoing traffic G traffic on the channel: transmissions + retransmissions S_{out} <=G

Slotted ALOHA performances

Assumptions:

Stationarity: S_{in}=S_{out}

Traffic G distributed according to Poisson process

Packet arrivals is a poisson point process with parameter λ

Transmissions last T

$$G=T \times \lambda$$

Slotted ALOHA performances

The probability P_s for a packet transmission to be successful is the probability that no other packet arrives in the previous slot.

$$P_s = P[N(t-T,t) = 0] = e^{-G}$$

The throughput is:

$$S = Ge^{-G}$$

The Frame ALOHA

Extension of the ALOHA protocol where nodes are allowed to transmit once every frame

Frame composed of *r* slots

Every tag chooses a slot in the frame

If transmission is failed, retry at next frame

Frame ALOHA: Single Frame

The average throughput is:

$$E[S] = n \left(1 - \frac{1}{r}\right)^{n-1}$$

Thus, the efficiency is:

$$\eta = \frac{E[S]}{r} = n \frac{1}{r} \left(1 - \frac{1}{r} \right)^{n-1}$$

Which is maximum for: *r*=*n*

$$\eta_M(n) = \left(1 - \frac{1}{n}\right)^{n-1}$$

Frame Aloha: Multiple frames

The FA efficiency depends on the initial tag population (N), the current backlog (n) and the frame size (r).

Current Frame size *r* is dynamically set to the current backlog *n* -> Dynamic Frame Aloha

Frame ALOHA: Multiple Frames

Efficiency
$$\eta = \frac{N}{L_N}$$

The average tag resolution process can be recursively calculated as:

$$L_n = r + \sum_{i=0}^{n-1} P(S=i) L_{n-i}$$

which leads to:

$$L_n = \frac{r + \sum_{i=1}^{n-1} P(S=i) L_{n-i}}{1 - P(S=0)}$$

Example

Find out the efficiency in case N=2, and r=2.

$$L_2 = 2 + \sum_{i=0}^{1} P(S=i)L_{2-i} = 2 + P(S=0)L_2 + P(S=1)L_1$$

$$L_2 = \frac{2 + P(S=1)}{1 - P(S=0)} = 4$$

$$\eta = 0.5$$

Problem

Initial population N and backlogs n are not known

Tag arbitration is actually composed of two modules:

Backlog Estimation Module: to provide and estimate of the backlog n_{est}

Collision Resolution: run Frame Aloha with $r = n_{est}$

Schoute'Estimate

Assume that any procedure is able to keep the frame size *r* equal to the current backlog *n*

Under this assumption, the number of terminals transmitting in a slot is approximated by a Poisson process with intensity 1 [terminal/slot]

The average number of terminals in a collided slot can be consequently calculated as:

$$H=(1-e^{-1})/(1-2e^{-1})=2.39$$

The backlog is estimated as:

 n_{est} =round(Hc), being c the number of collided slots.

The Binary-Tree

Random Numbers are used to partition the set of colliding tags

The Binary Tree Implementation

Tags have counters set to 1 The reader broadcasts

Trigger command: sent at the beginning and after successful/empty slots tags decrease their counter and transmit if counter is 0

Split commands: sent after collided slots
tags with counter equal to 0 randomly choose a new counter value in [0,1]
Tags with counter greater than 0 increase their counter

The Binary Tree


```
A: 1 1->0 0->0 0->1 1->0 0->1 1->0 Res
B: 1 1->0 0->1 1->0 0->0 Res
C: 1 1->0 0->1 1->2 2->1 1->2 2->1 1->0 Res
```


Binary Tree: Optimizations

More refined feedbacks can be used to steer the splitting
Leverage tag population estimates to steer splitting
In some slots collisions are certain, use *Split* command other than *Trigger* one

EPC Global Standard

Tags have a 96 bit ID and a short 16 bit RN

Arbitration procedure:

- The Reader broadcasts a QueryAdjust notifying parameter Q
- Upon reception of QueryAdjust, tags draw a random number in [0, 2^{Q-1}]. Those drawing "0" respond with their short address (16 bit)
- If multiple tags reply, or no tags reply, the reader issues a *QueryRep* command which decreases the counter of unsilenced tags and silences for the frame the collided ones
- If one tag replies, the tag is resolved by a direct query to the short address (different commands are defined) and the tag is silenced
- The QueryAdjust command can be used before the end of the current frame (frame interruption)

The Q Algorithm

The reader can cancel the running frame at any time slot.

The decision is taken running a slot-by-slot dynamic algorithm to update parameter Q.

Typical used values: initial Q_{fp} =4, C=0.5

Jin et al., Performance Evaluation of RFID EPC Gen2 Anti-collision Algorithm in AWGN Environment, 2007 4

Credits

- www.iso.org
- www.gs1.org
- <u>La tecnologia RFID</u>, Prof. G. Marrocco,
- RFID Systems- Research trends and challenges, M. Bolic, D. Simplot, I. Stojmenovic, Wiley
- EPCglobal Inc. (2008) EPC Radio Frequency Identification protocols class-1 generation-2 UHF RFID protocol for communications at 860 mhz–960 mhz, Standard Specification version 1.2.0.
- [Want, R. (2006) *An introduction to RFID technology*, IEEE Pervasive Computing, 5(9): 25–33.
- Dobkin, D. M. (2007) The RF in RFID: Passive UHF RFID in Practice
- Nikitin, P. and Rao, V. (2006), *Performance limitations of UHF RFID systems*, in IEEE Antennas and Propagation Symposium, pp. 1011–1014.