

AD-A127 355 FINAL TACTICAL DECISION AID (FTDA) FOR INFRARED (8-12
MICROMETERS) SYSTEM. (U) SYSTEMS AND APPLIED SCIENCES
CORP RIVERDALE MD D B HODGES ET AL. 15 SEP 82

1/8

UNCLASSIFIED

SCIENTIFIC-3 AFGL-TR-82-0294(2)

F/G 17/5

NL

END
DATE
EXTEND
5 83
OTIC

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER AFGL-TR-82-0294 (II)	2. GOVT ACCESSION NO. AD-A12-7955	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) FINAL TACTICAL DECISION AID (FTDA) FOR INFRARED (8-12 μm) SYSTEMS - MANUAL VERSION Appendix A - Atmospheric Transmission Tables		5. TYPE OF REPORT & PERIOD COVERED Scientific Report No. 3
7. AUTHOR(s) Donald B. Hodges Scott D. Hamilton		6. PERFORMING ORG. REPORT NUMBER F19628-81-C-0042
9. PERFORMING ORGANIZATION NAME AND ADDRESS Systems and Applied Sciences Corporation (SASC) 6811 Kenilworth Avenue Riverdale, Maryland 20737		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 63707F 268802AB
11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratory Hanscom AFB, Massachusetts 01731 Lt. Col. Kit G. Cottrell, Contract Manager/OPI		12. REPORT DATE September 15, 1982
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 30
		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES Volume II of five volumes		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) TACTICAL DECISION AID (TDA) AEROSOL EXTINCTION COEFFICIENT INFRARED PRECIPITATION EXTINCTION COEFFICIENT LOWTRAN RAIN EXTINCTION COEFFICIENT ATMOSPHERIC TRANSMISSION SNOW EXTINCTION COEFFICIENT MOLECULAR EXTINCTION COEFFICIENT		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The tables required to calculate 8-12 μm atmospheric transmission at 4 km range for use in determining maximum lock-on range (MLOR) and maximum acquisition range (AR) from the Manual Version of the FTDA are presented. Tables adapted from AFGL models for calculating molecular, aerosol, and precipitation extinction coefficients as functions of various meteorological parameters are presented. An aerosol model selection procedure is provided as well as a table which converts total extinction coefficient to atmospheric transmission.		

DTIC
 SELECTED
 APR 27 1983
 S E D

microfilm

TABLE OF CONTENTS

1. A Brief Description of the Aerosol Selection Process.	5
Flowcharts - Figs. A-1A, A-1B, A-1C.	7
Approximate Values of Critical Boundary Layer Wind Speed - Fig. A-1D.	8
2. Table A-1.	9
A. Precipitation Extinction Coefficient (B_p) for Snow Model as a Function of Visibility.	9
B. Precipitation Extinction Coefficient (B_p) for Rain Model as a Function of Visibility.	10
3. Table A-2. Relative Humidity (RH) as a Function of Temperature and Dewpoint.	11
4. Table A-3.	15
A. Aerosol Extinction Coefficient (B_{AER}) for Maritime Model as a Function of Visibility and Relative Humidity.	15
B. Aerosol Extinction Coefficient (B_{AER}) for Urban Model as a Function of Visibility and Relative Humidity.	17
C. Aerosol Extinction Coefficient (B_{AER}) for Rural Model as a Function of Visibility and Relative Humidity.	18
D. Aerosol Extinction Coefficient (B_{AER}) for Fog Model as a Function of Visibility	19
5. Table A-4. Molecular Extinction Coefficient (B_{MOL}) as a Function of Temperature and Dewpoint.	21
6. Table A-5. Atmospheric Transmission (τ_{ATM}) at Reference Range (4 km) as a Function of Total Extinction Coefficient (B_{TOT}).	23

Accession For	
NTIS GRAAI	
DTIC TAB	
Unannounced	
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A	

1. A Brief Description of the Aerosol Selection Process

The methodology is based on the properties of three non-fog aerosol models in LOWTRAN. The Rural Model describes the basic background aerosol contained in all airmasses. The Maritime Model describes the aerosol that exists in airmasses with a maritime history when the marine aerosol (mostly sea salt) is superimposed in significant concentrations on the background aerosol. The Urban Model describes aerosol properties when certain types of urban pollutants are superimposed on the background aerosol. Under certain conditions, a maritime aerosol may also contain the urban component. In this case, since the maritime aerosol produces the strongest 8-12 μm extinction of the above three aerosol conditions, the Maritime Model takes precedence over the Urban Model.

This algorithm quantifies the aerosol model selection on the basis of the history of the airmass expected over the target. The algorithm is based on a large body of published scientific literature on atmospheric aerosols; however, certain selection criteria (e.g., the overwater distance for transformation of the continental aerosol into maritime characteristics) are based on very limited quantities of observational data. Experience by users and publication of additional scientific data will undoubtedly lead to modification of at least some of these criteria.

In using the flow charts in Fig. A-1, the basic rule is to always move downward in each figure. The following are key symbols to aid in interpretation of the charts:

represents the input of data

represents the entry into one of several alternate paths through the diagram

represents a connecting point to some other part of the diagram

represents selection of a particular "dry aerosol" model

Figure A-1A

- a. Separates airmass by origin.
- b. Treats the possible transformation of airmasses with a continental origin so that their aerosol assumes the extinction properties of a maritime aerosol.

Figure A-1B treats mechanisms for removal of the sea-salt aerosol from maritime airmasses, namely, sedimentation and washout. When these processes are effective, the aerosol tends to return to rural-like properties.

Figures A-1C and A-1D treat the problem of determining when the urban model should be used to describe a polluted rural aerosol.

Fig. A-1A

Fig. A-1B

Fig. A-1. The Aerosol Model Selection Process

Fig. A-1C

Fig. A-1D

Stability Condition	Critical Wind Speed (Knots)
Large and Heavily Industrialized Urban Areas (Area $> 2000 \text{ km}^2$)	Small - Medium Urban Areas or Large Areas Without Heavy Industrialization
Unstable	4
Neutral	8
Stable	25
	15

Definitions of Stability:

- 1) Unstable: Lapse rate near dry adiabatic in lowest 1.5-2.0 KM enhances vertical diffusion.
- 2) Neutral: Lapse rate near the pseudo-adiabatic lapse rate or slightly more stable in the lowest 1.5-2.0 KM, with perhaps a weak inversion in the lowest 2 KM.
- 3) Stable: A strong inversion below 2 KM inhibits turbulent vertical diffusion.

Fig. A-1D. Approximate values of critical boundary layer wind speed (knots) for use of the urban aerosol model. Wind speed is tabulated against the size of the urban area and the stability condition. Definitions of stability categories are given above.

Fig. A-1 (Continued)

SNOW INTENSITY	VISIBILITY (KM)	EXTINCTION COEFFICIENT
HEAVY	.2	24.450
	.4	12.225
MODERATE	.6	8.150
	.8	6.113
	1.0	4.890
	1.5	3.260
	2.0	2.445
	2.5	1.956
	3.0	1.630
	4.0	1.223
LIGHT	5.0	.978
	6.0	.815
	7.0	.699
	8.0	.611
	9.0	.543
	10.0	.489
	15.0	.326
	20.0	.245

TABLE A-1A. PRECIPITATION EXTINCTION COEFFICIENT (B_p)
SNOW MODEL

RAIN INTENSITY	RAINFALL RATE (IN/HR)	EXTINCTION COEFFICIENT
LIGHT		
	.01	.154
	.05	.424
	.10	.657
	.15	.848
MODERATE		
	.20	1.016
	.25	1.170
	.30	1.312
	.35	1.446
	.40	1.573
	.45	1.694
	.50	1.810
	.55	1.922
HEAVY		
	.60	2.030
	.65	2.135
	.70	2.237
	.75	2.337
	.80	2.434
	.85	2.529
	.90	2.621
	.95	2.712
	1.00	2.801

RAIN MODEL

TABLE A-1B. PRECIPITATION EXTINCTION COEFFICIENT (B_p)

TABLE A-2. RELATIVE HUMIDITY (RH)

DEW POINT	TEMPERATURE (°)										-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20
	2	2	2	2	2	2	2	2	2	2	
-45	9	8	8	8	8	8	8	8	8	8	2
-44	10	9	9	9	9	9	9	9	9	9	2
-43	11	10	11	11	10	10	10	10	10	10	2
-42	12	11	12	11	12	11	10	11	10	10	2
-41	14	13	12	11	12	11	10	11	10	10	2
-40	15	14	13	12	13	12	11	10	10	10	2
-39	17	15	14	13	14	13	12	11	10	10	2
-38	18	17	16	15	16	15	14	13	12	11	2
-37	20	19	17	16	15	14	13	12	11	10	2
-36	23	21	19	18	16	15	14	13	12	11	2
-35	25	23	21	20	18	17	15	14	13	12	2
-34	28	26	24	22	20	18	17	16	15	14	2
-33	30	28	26	24	22	20	19	17	16	15	2
-32	31	28	26	24	22	20	19	17	16	15	2
-31	34	31	29	26	24	22	21	19	18	17	2
-30	37	34	31	29	27	24	23	21	19	18	2
-29	41	38	34	32	29	27	25	23	21	20	2
-28	45	41	38	35	32	30	27	25	23	21	2
-27	49	45	41	38	35	32	30	28	26	24	2
-26	54	50	46	42	39	35	33	30	28	26	2
-25	64	59	54	50	46	42	39	36	33	31	2
-24	70	65	59	55	50	46	42	39	36	34	2
-23	77	71	65	60	55	50	46	43	39	36	2
-22	84	77	71	65	60	55	51	47	43	40	2
-21	92	84	77	71	66	60	55	51	47	43	2
-20	100	92	84	78	71	66	61	56	52	48	2
-19	100	92	84	78	71	66	61	56	52	48	2
-18	100	92	85	78	72	66	61	56	52	48	2
-17	100	92	85	78	72	66	61	56	52	48	2
-16	100	92	85	78	72	66	61	57	52	49	2
-15	100	92	85	78	72	66	61	57	52	49	2
-14	100	92	85	78	72	66	61	57	52	49	2
-13	100	92	85	78	72	66	61	57	52	49	2
-12	100	92	85	78	72	66	61	57	52	49	2
-11	100	92	85	78	72	66	61	57	52	49	2
-10	100	92	85	78	72	66	61	57	52	49	2
-9	100	92	85	78	72	66	61	57	52	49	2
-8	100	92	85	78	72	66	61	57	52	49	2
-7	100	92	85	78	72	66	61	57	52	49	2
-6	100	92	85	78	72	66	61	57	52	49	2
-5	100	92	85	78	72	66	61	57	52	49	2
-4	100	92	85	78	72	66	61	57	52	49	2
-3	100	92	85	78	72	66	61	57	52	49	2
-2	100	92	85	78	72	66	61	57	52	49	2
-1	100	92	85	78	72	66	61	57	52	49	2

TABLE A-2. RELATIVE HUMIDITY (RH)

DEW POINT	TEMPERATURE (C)										RELATIVE HUMIDITY (RH)									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
-25	13	12	11	10	9	8	7	7	7	7	7	6	6	6	6	6	6	6	6	6
-24	14	13	12	11	10	9	8	8	8	8	8	7	7	7	7	7	7	7	7	7
-23	16	15	14	13	12	11	10	10	10	10	10	9	9	9	9	9	9	9	9	9
-22	17	16	15	14	13	12	11	11	11	11	11	10	10	10	10	10	10	10	10	10
-21	19	17	16	15	14	13	12	12	11	11	11	10	10	10	10	10	10	10	10	10
-20	20	19	18	16	15	14	13	12	12	11	11	10	10	10	10	10	10	10	10	10
-19	22	21	19	18	17	16	15	14	13	12	11	10	10	10	10	10	10	10	10	10
-18	24	23	21	20	18	17	16	15	14	13	12	11	11	11	10	10	10	10	10	10
-17	26	25	23	21	20	18	17	16	15	14	13	12	11	11	10	10	10	10	10	10
-16	29	27	25	23	22	20	19	17	16	15	14	13	12	11	10	10	10	10	10	10
-15	31	29	27	25	23	22	20	19	18	17	16	15	14	13	12	11	11	10	10	10
-14	34	31	29	27	25	24	22	21	19	18	17	16	15	14	13	12	11	11	10	10
-13	37	34	32	30	28	26	24	23	21	20	18	17	16	15	14	13	12	12	11	11
-12	40	37	34	32	30	28	26	24	23	21	20	19	17	16	15	14	13	13	12	12
-11	43	40	37	35	32	30	28	26	24	23	21	20	19	18	17	16	15	15	14	13
-10	47	43	40	38	35	33	30	28	27	25	23	22	20	19	18	17	16	15	15	14
-9	51	47	44	41	38	35	33	31	29	27	25	23	22	21	19	18	17	16	15	15
-8	55	51	47	44	41	38	36	33	31	29	27	25	24	22	21	20	19	18	17	16
-7	59	55	51	48	44	41	39	36	34	31	29	27	26	24	22	21	20	19	17	16
-6	64	59	55	51	48	45	42	39	36	34	32	30	28	26	24	23	21	20	19	17
-5	69	64	60	55	52	48	45	42	39	36	34	32	30	28	26	25	23	22	20	19
-4	74	69	64	60	56	52	48	45	42	39	37	34	32	30	28	27	25	23	22	20
-3	80	74	69	65	60	56	52	49	45	42	40	37	35	33	31	29	27	25	24	22
-2	86	80	75	69	65	60	56	52	49	46	43	40	38	35	33	31	29	27	25	23
-1	93	86	80	75	70	65	61	56	53	49	46	43	40	38	35	33	31	29	27	25
0	100	93	87	81	75	70	65	61	57	53	50	47	44	41	38	36	34	32	30	28
1	100	93	87	81	75	70	65	61	57	53	50	47	44	41	38	36	34	32	30	28
2	100	93	87	81	75	70	65	61	57	53	50	47	44	41	38	36	34	32	30	28
3	100	93	87	81	75	70	65	61	57	53	50	47	44	41	39	36	34	32	30	28
4	100	93	87	81	75	70	65	61	57	53	50	47	44	41	39	36	34	32	30	28
5	100	93	87	81	75	70	65	61	57	53	50	47	44	41	38	35	33	31	29	27
6	100	93	87	81	75	70	65	61	57	53	50	47	44	41	38	35	33	31	29	27
7	100	93	87	81	75	70	65	61	57	53	50	47	44	41	38	35	33	31	29	27
8	100	93	87	81	75	70	65	61	57	53	50	47	44	41	39	36	34	32	30	28
9	100	93	87	81	75	70	65	61	57	53	50	47	44	41	39	36	34	32	30	28
10	100	93	87	81	75	70	65	61	57	53	50	47	44	41	38	35	33	31	29	27
11	100	93	87	81	75	70	65	61	57	53	50	47	44	41	38	35	33	31	29	27
12	100	93	87	81	75	70	65	61	57	53	50	47	44	41	38	35	33	31	29	27
13	100	93	87	81	75	70	65	61	57	53	50	47	44	41	39	36	34	32	30	28
14	100	93	87	81	75	70	65	61	57	53	50	47	44	41	39	36	34	32	30	28
15	100	93	87	81	75	70	65	61	57	53	50	47	44	41	38	35	33	31	29	27
16	100	93	87	81	75	70	65	61	57	53	50	47	44	41	38	35	33	31	29	27
17	100	93	87	81	75	70	65	61	57	53	50	47	44	41	38	35	33	31	29	27
18	100	93	87	81	75	70	65	61	57	53	50	47	44	41	38	35	33	31	29	27
19	100	93	87	81	75	70	65	61	57	53	50	47	44	41	38	35	33	31	29	27

TABLE A-2. RELATIVE HUMIDITY (RH)

DEN POINT	TEMPERATURE (°C)										RELATIVE HUMIDITY (RH)									
	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
-5	11	11	10	10	9	8	8	8	8	7	7	7	7	7	7	7	7	7	7	7
-7	12	12	11	10	10	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
-9	13	13	12	11	10	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
-11	14	14	13	12	11	11	10	10	10	10	10	10	10	10	10	10	10	10	10	10
-13	15	15	14	14	14	13	12	11	11	11	11	11	11	11	11	11	11	11	11	11
-15	16	16	15	15	15	15	14	13	12	12	12	12	12	12	12	12	12	12	12	12
-17	17	17	16	16	15	15	15	14	13	12	12	12	12	12	12	12	12	12	12	12
-19	18	18	17	17	16	16	15	15	14	13	12	12	12	12	12	12	12	12	12	12
-21	19	19	18	18	17	17	16	15	15	14	13	12	12	12	12	12	12	12	12	12
-23	20	20	19	19	18	17	16	15	15	14	13	12	12	12	12	12	12	12	12	12
-25	21	21	20	20	19	18	17	16	15	14	13	12	12	12	12	12	12	12	12	12
-27	22	22	21	21	20	19	18	17	16	15	14	13	12	12	12	12	12	12	12	12
-29	23	23	22	22	20	19	18	17	16	15	14	13	12	12	12	12	12	12	12	12
-31	24	24	23	22	20	19	18	17	16	15	14	13	12	12	12	12	12	12	12	12
-33	25	25	23	22	20	19	18	17	16	15	14	13	12	12	12	12	12	12	12	12
-35	26	26	25	23	22	21	19	18	17	16	15	14	13	12	12	12	12	12	12	12
-37	27	27	25	24	22	21	20	19	18	17	16	15	14	13	12	12	12	12	12	12
-39	28	28	26	25	23	22	21	20	19	18	17	16	15	14	13	12	12	12	12	12
-41	29	29	27	25	23	22	21	20	19	18	17	16	15	14	13	12	12	12	12	12
-43	30	30	28	26	24	22	21	20	19	18	17	16	15	14	13	12	12	12	12	12
-45	31	31	29	27	25	23	22	21	20	19	18	17	16	15	14	13	12	12	12	12
-47	32	32	30	28	26	24	22	21	20	19	18	17	16	15	14	13	12	12	12	12
-49	33	33	31	29	27	25	23	22	21	20	19	18	17	16	15	14	13	12	12	12
-51	34	34	32	30	28	26	24	23	22	21	20	19	18	17	16	15	14	13	12	12
-53	35	35	33	31	29	27	25	24	23	22	21	20	19	18	17	16	15	14	13	12
-55	36	36	34	32	30	28	26	25	24	23	22	21	20	19	18	17	16	15	14	13
-57	37	37	35	33	31	29	27	25	24	23	22	21	20	19	18	17	16	15	14	13
-59	38	38	36	34	32	30	28	26	25	24	23	22	21	20	19	18	17	16	15	14
-61	39	39	37	35	33	31	29	27	25	24	23	22	21	20	19	18	17	16	15	14
-63	40	40	38	36	34	32	30	28	26	25	24	23	22	21	20	19	18	17	16	15
-65	41	41	39	37	35	33	31	29	27	25	24	23	22	21	20	19	18	17	16	15
-67	42	42	40	38	36	34	32	30	28	26	25	24	23	22	21	20	19	18	17	16
-69	43	43	41	39	37	35	33	31	29	27	25	24	23	22	21	20	19	18	17	16
-71	44	44	42	40	38	36	34	32	30	28	26	25	24	23	22	21	20	19	18	17
-73	45	45	43	41	39	37	35	33	31	29	27	25	24	23	22	21	20	19	18	17
-75	46	46	44	42	40	38	36	34	32	30	28	26	25	24	23	22	21	20	19	18
-77	47	47	45	43	41	39	37	35	33	31	29	27	25	24	23	22	21	20	19	18
-79	48	48	46	44	42	40	38	36	34	32	30	28	26	25	24	23	22	21	20	19
-81	49	49	47	45	43	41	39	37	35	33	31	29	27	25	24	23	22	21	20	19
-83	50	50	48	46	44	42	40	38	36	34	32	30	28	26	25	24	23	22	21	20
-85	51	51	49	47	45	43	41	39	37	35	33	31	29	27	25	24	23	22	21	20
-87	52	52	50	48	46	44	42	40	38	36	34	32	30	28	26	25	24	23	22	21
-89	53	53	51	49	47	45	43	41	39	37	35	33	31	29	27	25	24	23	22	21
-91	54	54	52	50	48	46	44	42	40	38	36	34	32	30	28	26	25	24	23	22
-93	55	55	53	51	49	47	45	43	41	39	37	35	33	31	29	27	25	24	23	22
-95	56	56	54	52	50	48	46	44	42	40	38	36	34	32	30	28	26	25	24	23
-97	57	57	55	53	51	49	47	45	43	41	39	37	35	33	31	29	27	25	24	23
-99	58	58	56	54	52	50	48	46	44	42	40	38	36	34	32	30	28	26	25	24
-101	59	59	57	55	53	51	49	47	45	43	41	39	37	35	33	31	29	27	25	24
-103	60	60	58	56	54	52	50	48	46	44	42	40	38	36	34	32	30	28	26	25
-105	61	61	59	57	55	53	51	49	47	45	43	41	39	37	35	33	31	29	27	25
-107	62	62	60	58	56	54	52	50	48	46	44	42	40	38	36	34	32	30	28	26
-109	63	63	61	59	57	55	53	51	49	47	45	43	41	39	37	35	33	31	29	27
-111	64	64	62	60	58	56	54	52	50	48	46	44	42	40	38	36	34	32	30	28
-113	65	65	63	61	59	57	55	53	51	49	47	45	43	41	39	37	35	33	31	29
-115	66	66	64	62	60	58	56	54	52	50	48	46	44	42	40	38	36	34	32	30
-117	67	67	65	63	61	59	57	55	53	51	49	47	45	43	41	39	37	35	33	31
-119	68	68	66	64	62	60	58	56	54	52	50	48	46	44	42	40	38	36	34	32
-121	69	69	67	65	63	61	59	57	55	53	51	49	47	45	43	41	39	37	35	33
-123	70	70	68	66	64	62	60	58	56	54	52	50	48	46	44	42	40	38	36	34
-125	71	71	69	67	65	63	61	59	57	55	53	51	49	47	45	43	41	39	37	35
-127	72	72	70	68	66	64	62	60	58	56	54	52	50	48	46	44	42	40	38	36
-129	73	73	71	69	67	65	63	61	59	57	55	53	51	49	47	45	43	41	39	37
-131	74	74	72	70	68	66	64	62	60	58	56	54	52	50	48	46	44	42	40	38
-133	75	75	73	71	69	67	65	63	61	59	57	55	53	51	49	47	45	43	41	39
-135	76	76	74	72	70	68	66	64	62	60	58	56	54	52	50	48	46	44	42	40
-137	77	77	75	73	71	69	67	65	63	61	59	57	55	53	51	49	47	45	43	41
-139	78	78	76	74	72	70	68	66	64	62	60	58	56	54	52	50	48	46	44	42
-141	79	79	77	75	73	71	69	67	65	63	61	59	57	55	53	51	49	47	45	43
-143	80	80	78	76	74	72	70	68	66	64	62	60	58	56	54					

TABLE A-3A. AEROSOL EXTINCTION COEFFICIENT (B_{AER})
MARITIME MODEL

VSBY (KM)	RELATIVE HUMIDITY										=>99				
	85	86	87	88	89	90	91	92	93	94	95	96	97	98	
1.5	.556	.566	.578	.591	.605	.621	.639	.660	.685	.714	.751	.797	.862	.961	1.159
2.0	.420	.428	.437	.447	.458	.470	.484	.500	.519	.541	.569	.605	.655	.731	.983
2.5	.338	.345	.352	.360	.368	.378	.390	.403	.418	.436	.458	.488	.527	.590	.713
3.0	.282	.288	.294	.301	.308	.316	.326	.336	.349	.364	.383	.408	.442	.494	.598
4.0	.212	.216	.221	.226	.232	.238	.245	.253	.263	.274	.289	.307	.333	.372	.451
5.0	.170	.173	.177	.181	.185	.191	.196	.203	.211	.220	.231	.246	.267	.299	.362
6.0	.141	.144	.147	.151	.154	.159	.163	.169	.175	.183	.193	.205	.222	.249	.302
7.0	.121	.123	.126	.129	.132	.136	.140	.145	.150	.157	.165	.176	.190	.213	.259
8.0	.106	.108	.110	.113	.115	.119	.122	.126	.131	.137	.144	.153	.166	.186	.226
9.0	.094	.096	.098	.100	.102	.105	.108	.112	.116	.121	.128	.136	.148	.165	.201
10.0	.084	.086	.088	.090	.092	.094	.097	.101	.104	.109	.115	.122	.133	.148	.180
15.0	.048	.049	.050	.051	.052	.053	.055	.057	.059	.062	.065	.069	.075	.084	.102
20.0	.029	.030	.031	.031	.032	.033	.034	.035	.036	.038	.040	.043	.046	.052	.063
30.0	.017	.017	.017	.018	.018	.019	.019	.020	.021	.021	.023	.024	.026	.029	.036
40.0	.012	.012	.013	.013	.013	.013	.014	.014	.015	.016	.016	.017	.019	.021	.026
50.0	.009	.009	.010	.010	.010	.010	.011	.011	.011	.012	.013	.013	.015	.016	.020

RELATIVE HUMIDITY		55	60	65	70	72	74	76	78	80	81	82	83	84		
VSBY (km)	<=10	30	50	.314	.320	.326	.333	.359	.368	.423	.464	.513	.520	.528	.537	.546
1.5	.286	.296	.310	.314	.320	.326	.333	.359	.368	.423	.464	.513	.520	.528	.537	.546
2.0	.216	.223	.234	.238	.242	.246	.252	.271	.293	.319	.351	.368	.394	.399	.416	.413
2.5	.173	.179	.188	.191	.194	.198	.202	.217	.235	.257	.282	.312	.316	.321	.326	.332
3.0	.145	.150	.157	.159	.162	.165	.169	.182	.197	.214	.235	.260	.264	.268	.273	.277
4.0	.109	.113	.118	.120	.122	.124	.127	.136	.148	.161	.177	.196	.199	.202	.205	.208
5.0	.087	.090	.094	.096	.097	.099	.101	.109	.118	.129	.141	.157	.159	.161	.164	.167
6.0	.073	.075	.079	.080	.081	.083	.084	.091	.096	.107	.110	.130	.132	.134	.137	.139
7.0	.062	.064	.067	.068	.069	.071	.072	.078	.084	.092	.101	.112	.113	.115	.117	.119
8.0	.054	.056	.059	.059	.060	.062	.063	.068	.073	.080	.088	.097	.099	.100	.102	.104
9.0	.049	.050	.052	.053	.054	.055	.056	.060	.065	.071	.078	.086	.088	.089	.091	.092
10.0	.043	.045	.047	.047	.048	.049	.050	.054	.058	.064	.070	.078	.079	.080	.081	.083
15.0	.024	.025	.026	.027	.027	.028	.028	.031	.033	.036	.040	.044	.045	.046	.047	.048
20.0	.015	.016	.016	.016	.017	.017	.017	.019	.020	.022	.024	.027	.027	.028	.028	.028
30.0	.008	.009	.009	.009	.009	.010	.010	.011	.011	.013	.014	.015	.015	.016	.016	.016
40.0	.006	.006	.007	.007	.007	.007	.007	.008	.008	.009	.010	.011	.011	.011	.012	.012
50.0	.005	.005	.005	.005	.005	.005	.005	.006	.006	.007	.008	.008	.009	.009	.009	.009

TABLE A-3A. AEROSOL EXTINCTION COEFFICIENT (B_{AER})
MARITIME MODEL

VSBV (KM)	RELATIVE HUMIDITY									>99			
	<=50	55	60	65	70	75	80	85	90				
1.5	.260	.260	.260	.260	.251	.240	.243	.247	.249	.253	.257	.264	.272
2.0	.195	.195	.195	.195	.195	.188	.180	.182	.185	.187	.189	.193	.195
2.5	.156	.156	.156	.156	.156	.151	.144	.146	.148	.150	.151	.154	.159
3.0	.130	.130	.130	.130	.130	.125	.120	.121	.123	.125	.126	.128	.132
4.0	.097	.098	.098	.098	.098	.094	.090	.091	.092	.093	.094	.096	.099
5.0	.078	.078	.078	.078	.078	.075	.072	.073	.074	.074	.075	.077	.079
6.0	.065	.065	.065	.065	.065	.062	.060	.060	.061	.062	.063	.064	.066
7.0	.055	.055	.055	.055	.055	.053	.051	.052	.052	.053	.054	.054	.056
8.0	.048	.048	.048	.048	.048	.047	.044	.045	.046	.046	.047	.047	.049
9.0	.043	.043	.043	.043	.043	.041	.039	.040	.041	.041	.041	.042	.043
10.0	.038	.038	.038	.038	.038	.037	.035	.036	.036	.037	.037	.038	.039
15.0	.022	.022	.022	.022	.022	.021	.020	.020	.021	.021	.021	.022	.023
20.0	.013	.013	.013	.013	.013	.013	.013	.012	.013	.013	.013	.013	.014
30.0	.008	.008	.008	.008	.008	.007	.007	.007	.007	.007	.007	.008	.008
40.0	.005	.005	.005	.005	.005	.005	.005	.005	.005	.005	.005	.006	.006
50.0	.004	.004	.004	.004	.004	.004	.004	.004	.004	.004	.004	.004	.004

TABLE A-3B. AEROSOL EXTINCTION COEFFICIENT (B_{AER})
URBAN MODEL

VSBY (km)	RELATIVE HUMIDITY										>99			
	<=50	55	60	65	70	75	80	85	90	92	94	96	98	
1.5	.232	.232	.232	.233	.233	.234	.234	.240	.249	.254	.261	.271	.288	.307
2.0	.175	.175	.176	.176	.176	.176	.176	.177	.181	.188	.191	.196	.203	.216
2.5	.141	.141	.141	.141	.141	.142	.142	.145	.150	.153	.157	.163	.173	.184
3.0	.117	.118	.118	.118	.118	.118	.118	.118	.121	.125	.128	.131	.136	.144
4.0	.088	.088	.088	.089	.089	.089	.089	.091	.094	.096	.098	.102	.106	.115
5.0	.071	.071	.071	.071	.071	.071	.071	.073	.075	.077	.078	.081	.086	.092
6.0	.059	.059	.059	.059	.059	.059	.059	.060	.063	.064	.065	.067	.072	.076
7.0	.050	.050	.050	.050	.051	.051	.051	.052	.053	.054	.056	.058	.061	.065
8.0	.044	.044	.044	.044	.044	.044	.044	.044	.045	.047	.048	.049	.050	.053
9.0	.039	.039	.039	.039	.039	.039	.039	.039	.040	.041	.042	.043	.045	.047
10.0	.035	.035	.035	.035	.035	.035	.035	.036	.036	.037	.038	.039	.040	.042
15.0	.020	.020	.020	.020	.020	.020	.020	.020	.020	.021	.022	.023	.024	.026
20.0	.012	.012	.012	.012	.012	.012	.012	.012	.013	.013	.013	.014	.015	.016
30.0	.007	.007	.007	.007	.007	.007	.007	.007	.007	.007	.007	.008	.008	.009
40.0	.005	.005	.005	.005	.005	.005	.005	.005	.005	.005	.005	.006	.006	.006
50.0	.004	.004	.004	.004	.004	.004	.004	.004	.004	.004	.004	.004	.005	.005

TABLE A-3C. AEROSOL EXTINCTION COEFFICIENT (B_{AER})
RURAL MODEL

<u>VISIBILITY (KM)</u>	<u>EXTINCTION COEFFICIENT</u>
.1	9.999
.2	5.319
.5	2.264
1.0	1.164

TABLE A-3D. AEROSOL EXTINCTION COEFFICIENT (B_{AER})
FOG MODEL

DEN POINT	TEMPERATURE (C)								
	-30.	-15.	0.	5.	10.	15.	20.	22.	24.
-30.	.029	.027	.026	.025	.025	.024	.024	.023	.023
-29.	.028	.028	.026	.026	.025	.025	.024	.024	.023
-28.	.028	.027	.027	.026	.026	.025	.025	.024	.024
-27.	.029	.029	.026	.027	.026	.026	.026	.025	.025
-26.	.029	.029	.028	.027	.027	.027	.026	.026	.026
-25.	.030	.030	.029	.028	.028	.028	.027	.027	.027
-24.	.031	.030	.030	.029	.029	.028	.028	.027	.027
-23.	.032	.032	.030	.030	.030	.029	.029	.028	.028
-22.	.033	.033	.031	.031	.030	.030	.030	.029	.029
-21.	.034	.034	.032	.032	.031	.031	.030	.030	.030
-20.	.035	.033	.032	.032	.032	.031	.031	.031	.031
-19.	.036	.034	.033	.033	.032	.032	.032	.032	.032
-18.	.038	.035	.034	.034	.033	.033	.033	.033	.033
-17.	.039	.036	.036	.035	.035	.034	.034	.034	.034
-16.	.041	.038	.037	.036	.036	.035	.035	.035	.035
-15.	.043	.039	.038	.038	.037	.037	.037	.037	.037
-14.	.041	.040	.039	.038	.038	.037	.037	.037	.037
-13.	.042	.041	.040	.040	.039	.039	.038	.038	.038
-12.	.044	.043	.042	.041	.040	.040	.040	.039	.039
-11.	.047	.045	.044	.043	.042	.042	.041	.041	.040
-10.	.049	.047	.046	.045	.044	.043	.043	.042	.042
-9.	.051	.050	.048	.047	.045	.045	.044	.043	.043
-8.	.054	.052	.050	.049	.048	.047	.046	.046	.044
-7.	.057	.055	.053	.051	.050	.049	.048	.047	.046
-6.	.060	.058	.056	.054	.052	.051	.050	.049	.048
-5.	.064	.061	.059	.057	.055	.054	.053	.052	.050
-4.	.066	.065	.062	.060	.058	.057	.056	.055	.052
-3.	.072	.069	.066	.063	.061	.060	.059	.057	.054
-2.	.077	.073	.070	.067	.065	.064	.063	.062	.058
-1.	.082	.078	.075	.075	.071	.069	.067	.066	.063

TABLE A-4. MOLECULAR EXTINCTION COEFFICIENT (B_{MOL})

TABLE A-4. MOLECULAR EXTINCTION COEFFICIENT (B_{MOL})

DEW POINT	TEMPERATURE (C)									
	-30.	-25.	-20.	-15.	-10.	-5.	0.	5.	10.	20.
0.	.084	.089	.090	.076	.073	.072	.071	.069	.068	.066
1.	.085	.089	.081	.078	.076	.075	.074	.073	.072	.071
2.	.096	.091	.087	.083	.081	.080	.079	.077	.076	.075
3.	.103	.094	.093	.084	.087	.085	.084	.082	.081	.080
4.	.105	.095	.099	.095	.093	.091	.089	.088	.086	.085
5.	.110	.110	.112	.107	.101	.099	.097	.096	.092	.091
6.	.119	.121	.115	.109	.107	.104	.102	.101	.099	.097
7.	.139	.123	.123	.117	.114	.112	.110	.108	.106	.104
8.	.151	.143	.140	.132	.125	.123	.120	.118	.115	.113
9.	.163	.154	.154	.145	.142	.140	.138	.135	.133	.130
10.	.170	.170	.170	.164	.174	.169	.165	.161	.157	.153
11.	.184	.184	.184	.180	.190	.185	.180	.175	.171	.166
12.	.190	.190	.190	.190	.190	.190	.190	.190	.190	.190
13.	.207	.207	.207	.207	.207	.207	.201	.196	.191	.186
14.	.222	.222	.222	.222	.222	.222	.220	.214	.208	.203
15.	.242	.242	.242	.242	.242	.242	.220	.214	.208	.203
16.	.246	.246	.246	.246	.246	.246	.227	.233	.227	.221
17.	.261	.261	.261	.261	.261	.261	.247	.254	.240	.234
18.	.293	.284	.293	.293	.293	.293	.276	.269	.261	.254
19.	.310	.310	.310	.310	.310	.310	.292	.284	.276	.269
20.	.446	.446	.446	.446	.446	.446	.431	.431	.431	.431
21.	.486	.486	.486	.486	.486	.486	.398	.398	.398	.398
22.	.531	.531	.531	.531	.531	.531	.495	.495	.495	.495
23.	.561	.561	.561	.561	.561	.561	.540	.540	.540	.540
24.	.616	.616	.616	.616	.616	.616	.592	.592	.592	.592
25.	.651	.651	.651	.651	.651	.651	.624	.624	.624	.624
26.	.722	.722	.722	.722	.722	.722	.699	.699	.699	.699
27.	.767	.767	.767	.767	.767	.767	.729	.729	.729	.729
28.	.816	.816	.816	.816	.816	.816	.665	.665	.665	.665
29.	.867	.867	.867	.867	.867	.867	.773	.773	.773	.773
30.										
31.										
32.										

		EXT COEF	TRANS								
.01	.96	.23	.40	.45	.17	.67	.07	.89	.03	1.11	.01
.02	.92	.24	.38	.46	.16	.68	.07	.90	.03	1.12	.01
.03	.89	.25	.37	.47	.15	.69	.06	.91	.03	1.13	.01
.04	.85	.26	.35	.48	.15	.70	.06	.92	.03	1.14	.01
.05	.82	.27	.34	.49	.14	.71	.06	.93	.02	1.15	.01
.06	.79	.28	.33	.50	.14	.72	.06	.94	.02	1.16	.01
.07	.76	.29	.31	.51	.13	.73	.05	.95	.02	1.17	.01
.08	.73	.30	.30	.52	.12	.74	.05	.96	.02	1.18	.01
.09	.70	.31	.29	.53	.12	.75	.05	.97	.02	1.19	.01
.10	.67	.32	.28	.54	.12	.76	.05	.98	.02	1.20	.01
.11	.64	.33	.27	.55	.11	.77	.05	.99	.02	1.21	.01
.12	.62	.34	.26	.56	.11	.78	.04	1.00	.02	1.22	.01
.13	.59	.35	.25	.57	.10	.79	.04	1.01	.02	1.23	.01
.14	.57	.36	.24	.58	.10	.80	.04	1.02	.02	1.24	.01
.15	.55	.37	.23	.59	.09	.81	.04	1.03	.02	1.25	.01
.16	.53	.38	.22	.60	.09	.82	.04	1.04	.02	1.26	.01
.17	.51	.39	.21	.61	.09	.83	.04	1.05	.01	1.27	.01
.18	.49	.40	.20	.62	.08	.84	.03	1.06	.01	1.28	.01
.19	.47	.41	.19	.63	.08	.85	.03	1.07	.01	1.29	.01
.20	.45	.42	.18	.64	.08	.86	.03	1.08	.01	1.30	.01
.21	.43	.43	.18	.65	.07	.87	.03	1.09	.01	1.31	.01
.22	.41	.44	.17	.66	.07	.88	.03	1.10	.01	1.32	.01
										>1.33	.00

TABLE A-5. ATMOSPHERIC TRANSMISSION (τ_{ATM}) AT REFERENCE RANGE (4 km)

DISTRIBUTION LIST

Director Advanced Research Projects Agency Attn: Library 1400 Wilson Blvd Arlington, VA 22209	(1 cy)	AFWAL/AAAS-2 Wright-Patterson AFB OH 45433 (1 cy)
AFATL/DLMI Eglin AFB FL 32542	(2 cys)	AFWAL/AARI Wright-Patterson AFB OH 45433 (1 cy)
AFATL/DLMT Eglin AFB FL 32542	(1 cy)	AFWAL/AARI-3 Wright-Patterson AFB OH 45433 (2 cys)
AFGL/OP Hanscom AFB MA 01731	(1 cy)	AFWAL/WEA (Det 1, 2WS) Wright-Patterson AFB OH 45433 (1 cy)
AFGL/OPI Hanscom AFB MA 01731	(20 cys)	AFWL/WE (OL-B, 2WS) Kirtland AFB NM 87117 (1 cy)
AFGL/OPA Hanscom AFB MA 01731	(2 cys)	Director AMSAA Attn: Library Aberdeen Proving Ground, MD 21005 (1 cy)
AFGL/LY Hanscom AFB MA 01731	(1 cy)	Armament Division/YAEW Eglin AFB FL 32542 (1 cy)
AFGL/LYS Hanscom AFB MA 01731	(3 cys)	Armament Division/YG Eglin AFB FL 32542 (1 cy)
AFGL/SULL Hanscom AFB MA 01731	(1 cy)	Armament Division Attn: Tech Library Eglin AFB FL 32542 (1 cy)
AFGWC/DOX Offutt AFB NE 68113	(1 cy)	Armament Division/WE (Det 10, 2WS) Eglin AFB FL 32542 (1 cy)
AFGWC/TSI Offutt AFB NE 68113	(1 cy)	ASD/ENA Wright-Patterson AFB OH 45433 (1 cy)
AF Office of Scientific Research (AFSC) European Office of Aerospace Research and Development (EOARD/LNG) Attn: Lt Col P. Soliz P.O. Box 14 FPO NY 09510	(1 cy)	ASD/SD 65 Wright-Patterson AFB OH 45433 (1 cy)
AFSC/DLS Andrews AFB MD 20331	(1 cy)	ASD/WE (Det 1, 2WS) Wright-Patterson AFB OH 45433 (1 cy)
AFSC/WER Andrews AFB MD 20331	(1 cy)	Hq AWS/DOO Scott AFB IL 62225 (1 cy)
AFTEC/WE Kirtland AFB NM 87117	(1 cy)	Hq AWS/DNX Scott AFB IL 62225 (1 cy)
		Hq AWS/SYR Scott AFB IL 62225 (1 cy)

Battelle Columbus Laboratories
Attn: Michael Kluse
505 King Avenue
Columbus, OH 43201 (1 cy)

Project Manager
CAC
Attn: DRCPM-CAC
Vint Hill Station, VA 22186 (1 cy)

COM NAV OCEAN COM
NSTL Station, N54
Bay St. Louis, MS 39529 (1 cy)

Defense Technical Information
Center
Cameron Station
Alexandria, VA 22314 (2 cys)

Department of the Army
Attn: DAMI-ISPC (Mr. J. Beck)
Pentagon
Washington, DC 20310 (1 cy)

Department of the Army
Office of the Chief of Engineers
DAEN-RDM (Dr. Richard Gomez)
20 Massachusetts Ave, N.W.
Washington, DC 20314 (1 cy)

Commander
DARCOM
Attn: Library
5001 Eisenhower Ave
Alexandria, VA 22333 (1 cy)

Director
Defense Intelligence Agency
Attn: Library
Pentagon
Washington, DC 20310 (1 cy)

Commander
Defense Mapping School
Fort Belvoir, VA 22060 (1 cy)

Commander
Dugway Proving Ground
Attn: Library
Dugway, UT 84022 (1 cy)

ESD/WE
(Det 2, 2WS)
Hanscom AFB MA 01731 (1 cy)

Project Manager
FIREFINDER
Attn: DRCPM-FF
Fort Monmouth, NJ 07703 (1 cy)

FLENUM OCEAN CEN
Attn: Library
Monterey, CA 93940 (1 cy)

FTD/WE
(Det 1, 2WS)
Wright-Patterson AFB OH 45433 (1 cy)

Engineering Experiment Station
Attn: EML (D. Schmieder)
Georgia Institute of Technology
Atlanta, GA 30332 (1 cy)

Project Manager
GLLD/LTD
Redstone Arsenal, AL 35809 (1 cy)

Commander
Harry Diamond Lab
2800 Powder Mill Rd
Adelphi, MD 20783 (1 cy)

Joint AMC/NMC/AFLC/AFSC Commanders
Joint Technical Coordinating
Group for Munitions Effectiveness
Attn: DRXSY-FJ
Aberdeen Proving Ground, MD 21005 (1 cy)

Los Alamos Scientific Lab
Attn: Library
P.O. Box 1663
MS 531
Los Alamos, NM 87545 (1 cy)

Commander
Marine Corps Development Center
Attn: Library
Quantico, VA 22134 (1 cy)

NARADCOM
Attn: Library
Natick, MA 01760 (1 cy)

Naval Air Development Center
Attn: Library
Warminster, PA 18974 (1 cy)

Naval Air Systems Command
Attn: Air 333A (Dr. Twitchell)
Washington, DC 20361 (1 cy)

Naval Air Systems Command
Attn: Library
Washington, DC 20361 (1 cy)

Naval Electronics Lab Center
Attn: Library
San Diego, CA 92152 (1 cy)

Naval Environmental Prediction
Research Facility
Atmospheric Effects Department
Attn: Dr. Andreas Goroch
Monterey, CA 93940 (1 cy)

Naval Environmental Prediction
Research Facility
Attn: Library
Monterey, CA 93940 (1 cy)

Naval Ocean Systems Center
Attn: Code 5322 (H. Hughes)
San Diego, CA 92152 (1 cy)

Naval Ocean Systems Center
Attn: Code 5325
San Diego, CA 92152 (1 cy)

Naval Ocean Systems Center
Attn: Code 532 (Dr. J. Richter)
San Diego, CA 92152 (1 cy)

Naval Ordnance Lab/White Oak
Attn: Technical Library
Silver Spring, MD 20910 (1 cy)

Naval Physics Department
Naval Ordnance Lab (Code 223)
Silver Spring, MD 20910 (1 cy)

Naval Postgraduate School
Department of Physics
Monterey, CA 93940 (1 cy)

Naval Research Laboratory
Attn: Library
4555 Overlook Avenue, SW
Washington, DC 20375 (1 cy)

Naval Research Laboratory
Attn: Code 8320 (Dr. Lothar Ruhnke)
4555 Overlook Avenue, SW
Washington, DC 20375 (1 cy)

Naval Sea Systems Command
Code SEA62R1
Washington, DC 20362 (1 cy)

Naval Surface Weapons Center
Attn: Code R42 (Dr. B. Katz)
White Oak Laboratory
Silver Spring, MD 21401 (1 cy)

Naval Surface Weapons Center
Attn: Library
Dehlgren, VA 22448 (1 cy)

Naval Weapons Center
Code 3151 (Mr. W. Tanaka)
China Lake, CA 93555 (1 cy)

Naval Weapons Center
Code 3918
China Lake, CA 93555 (1 cy)

Naval Weapons Center
Code 39403 (Dr. J. Wunderlich)
China Lake, CA 93555 (1 cy)

Naval Weapons Support Center
Attn: Library
Cran, IN 47522 (1 cy)

Commander
Night Vision & Electro Optics Lab
Attn: DELNV-VI
Fort Belvoir, VA 22060 (1 cy)

Commander
Night Vision & Electro Optics Lab
Attn: DELNV-VI (L. Obert)
Fort Belvoir, VA 22060 (1 cy)

OUSD&E (E&PS)
Attn: Col Paul Try
The Pentagon, Rm 3D129
Washington, DC 20301 (1 cy)

Pacific Missile Test Center
Attn: Library
Code 3252
Point Mugu, CA 93042 (1 cy)

The Rand Corporation
Attn: Library
1700 Main St.
Santa Monica, CA 90406 (1 cy)

The Rand Corporation Attn: Ralph Huschke 1700 Main St. Santa Monica, CA 90406	(1 cy)	Commandant U.S. Army Air Defense School Attn: Library Fort Bliss, TX 79916 (1 cy)
RADC/WE (OL-C, 2WS) Griffiss AFB NY 13440	(1 cy)	Commander/Director U.S. Army Atmospheric Sciences Lab Attn: DELAS-AR White Sands Missile Range, NM 88002 (1 cy)
Project Manager REMBASS Attn: DRCPM-RBS Fort Monmouth, NJ 07703	(1 cy)	Commander/Director U.S. Army Atmospheric Sciences Lab Attn: DELAS-AR-A White Sands Missile Range, NM 88002 (1 cy)
SD/WE (Det 50, 2WS) Los Angeles AFS CA 90009	(1 cy)	Commander/Director U.S. Army Atmospheric Sciences Lab Attn: DELAS-AR-M White Sands Missile Range, NM 88002 (1 cy)
Project Manager SOTAS Attn: DRCPM-STA Fort Monmouth, NJ 07703	(1 cy)	Commander/Director U.S. Army Atmospheric Sciences Lab Attn: DELAS-AE White Sands Missile Range, NM 88002 (2 cys)
6585TG/WE (OL-A, 2WS) Holloman AFB NM 88330	(1 cy)	Commander/Director U.S. Army Atmospheric Sciences Lab Attn: DELAS-AE-E White Sands Missile Range, NM 88002 (1 cy)
Systems and Applied Sciences Corp 109 Massachusetts Avenue Lexington, MA 02173	(25 cys)	Commander/Director U.S. Army Atmospheric Sciences Lab Attn: DELAS-AE-O (Dr. Lou Duncan) White Sands Missile Range, NM 88002 (1 cy)
Hq TAC/XPJC Attn: Maj Riess Langley AFG VA 23665	(1 cy)	Commander/Director U.S. Army Atmospheric Sciences Lab Attn: DELAS-AT (Mr. Pries) White Sands Missile Range, NM 88002 (1 cy)
Project Manager TOW/DRAGON Redstone Arsenal, AL 35809	(1 cy)	Commander U.S. Army Ballistics Research Lab Attn: Library Aberdeen Proving Ground, MD 21005 (1 cy)
USAFTAC/DN Scott AFB IL 62225	(1 cy)	Commander U.S. Army Combined Arms Center Attn: ATZLCA-WE (Lt Col Thomas Taylor) Fort Leavenworth, KS 66027 (1 cy)
USAFTAC/DNE Scott AFB IL 62225	(1 cy)	Commander U.S. Army Combined Arms Center Attn: CACDA-CCA Fort Leavenworth, KS 66027 (1 cy)
USAFTAC/TST Attn: AWS Technical Library Scott AFB IL 62225	(25 cys)	
Hq USAF/PACGP Attn: Lt Col Roger Christensen The Pentagon Washington, DC 20330	(1 cy)	

Commander
U.S. Army Concepts & Analysis Agency
Attn: CSCA-SMC
8120 Woodmont Avenue
Bethesda, MD 20014 (1 cy)

Commandant
U.S. Army Engineer School
Attn: Library
Fort Belvoir, VA 22060 (1 cy)

U.S. Army Engineers Waterways
Experiment Station
Attn: WESEA (Dr. Lewis Link)
P.O. Box 631
Vicksburg, MS 39180 (1 cy)

Commander
U.S. Army Engineers Waterways
Experiment Station
Attn: Library
Vicksburg, MS 39180 (1 cy)

Commander
U.S. Army ERADCOM
Attn: Library
2800 Powder Mill Road
Adelphi, MD 20783 (1 cy)

Commandant
U.S. Army Field Artillery School
Attn: Library
Fort Sill, OK 73503 (1 cy)

Commandant
U.S. Army Infantry Center & School
Attn: Library
Fort Benning, GA 31905 (1 cy)

Commander
U.S. Army Intelligence Center & School
Attn: ATSI-CD-CS
Fort Huachuca, AZ 85613 (1 cy)

Commander
U.S. Army Intelligence Center & School
Attn: ATSI-CD-CS-SWO
Fort Huachuca, AZ 85613 (1 cy)

U.S. Army MICOM
Attn: AMSMI-REI
Redstone Arsenal, AL 35809 (1 cy)

U.S. Army MICOM
Attn: DRSMI-RCT
Redstone Arsenal, AL 35809 (1 cy)

U.S. Army MICOM
Attn: Library
Redstone Arsenal, AL 35809 (1 cy)

Commander
U.S. Army OTEA
5600 Columbia Pike
Falls Church, VA 22041 (1 cy)

U.S. Army Program Manager
Smoke/Obscuration
Attn: DRCPM-SMK-T
Aberdeen Proving Ground, MD 21005 (1 cy)

Commander
U.S. Army Systems Analysis Agency
Attn: Library
Aberdeen Proving Ground, MD 21005 (1 cy)

Commander
U.S. Army TRADOC Combined Arms
Test Activity
Attn: ATCAT-SCI
Fort Hood, TX 76544 (1 cy)

Commander
U.S. Army TRADOC Systems Analysis
Activity
Attn: Library
White Sands Missile Range, NM 88002 (1 cy)

Commander
U.S. Army Training & Evaluation Command
Attn: Library
Aberdeen Proving Ground, MD 21005 (1 cy)

Commander
U.S. Army Training & Doctrine Command
Attn: Library
Fort Monroe, VA 23651 (1 cy)

USAF Academy
Department of Physics (DFP)
Colorado, CO 80840 (1 cy)

USAFTAWC/THL
Attn: Maj J.D. Kittrell
Eglin AFB FL 32542 (1 cy)

Commander U.S. Tank Automotive Research and Development Command Attn: Library Warren, MI 48090 (1 cy)	AFGWC/DO Offutt AFB NE 68113 1 cy
Commander, TARADCOM Project Manager MICV Warren, MI 48090 (1 cy)	USAFETAC/DO Scott AFB IL 62225 1 cy
Commander, TARADCOM Project Manager M60 Tank System Warren, MI 48090 (1 cy)	3350 TCHTG/TTMV CHANUTE AFB IL 61868 1 cy
Commander, TARADCOM Project Manager XM-1 Tank System Warren, MI 48090 (1 cy)	Hq AWS/SYR Scott AFB IL 62225 47 cys
Project Manager VIPER/AHAMS Redstone Arsenal, AL 35809 (1 cy)	
1WW/DN Hickam AFB HI 96853 (1 cy)	
2WW/DN APO 09012 (1 cy)	
3WW/DN Offutt AFB NE 68113 (1 cy)	
5WW/DN Langley AFB VA 23665 (1 cy)	
7WW/DO Scott AFB IL 62225 (1 cy)	
AWS/SY Scott AFB IL 62225 (2 cys)	
1WW/DO APO SF 96853 (1 cy)	
2WW/DO APO NY 09012 (1 cy)	
3WW/DO Offutt AFB NE 68113 (1 cy)	
5WW/DO Langley AFB VA 23665 (1 cy)	

