

- Em nosso cotidiano, com frequência lidamos com diversos artefatos, que são produtos artificiais, fruto da inteligência e do trabalho humano, construídos com um determinado propósito em mente:
 - Exemplo: copo, pente, sofá, carro, música e receita de bolo;
- A inserção de um artefato numa determinada situação do cotidiano representa uma intervenção sobre ela, em alguma medida, e a própria situação influencia a forma como o artefato é utilizado;
 - Exemplo, ter ou não uma geladeira em casa:
 - Modifica significativamente a forma como os alimentos são conservados, essa conservação influencia a escolha e a quantidade de produtos comprados e sua frequência de compra.

- A introdução de um artefato pode influenciar positiva ou negativamente para a situação:
 - A compra de uma bicicleta:
 - Positivamente:
 - Mudar o meio de transporte utilizado para várias atividades, como ir ao trabalho, padaria e passeio;
 - Economia de dinheiro gasto com outros meio de transporte;
 - Prática de esporte para uma vida mais saudável;
 - Preservação do meio-ambiente;
 - Negativamente:
 - Ter um local para armazenar;
 - Equipamento de segurança.

- Em termos bem gerais podemos caracterizar a atividade de design como sendo um processo com três atividades básicas:
 - análise da situação atual: estudar e interpretar a situação atual;
 - síntese de uma intervenção: planejar e executar uma intervenção na situação atual;
 - avaliação da nova situação: verificar o efeito da intervenção, comparando a situação analisada anteriormente com a nova situação, atingida após a intervenção.

- Análise da situação atual:
 - Buscamos conhecer os elementos envolvidos e as relações entre eles;
 - Dentre diversos elementos, geralmente s\(\tilde{a}\)o analisados: pessoas, artefatos, processos;
 - Como resultado obtemos uma interpretação da realidade estudada, através de um enquadramento e um recorte particular dela;
- A diferença entre a situação atual e uma situação desejada é a motivação principal para projetarmos e sintetizarmos uma intervenção;
- É denominada de solução, pois responde a pergunta que define um problema a ser resolvido: "Como melhorar esta situação?";
 - Uma intervenção adequada pode ser desde de uma novo sistema interativo ou uma nova verão do sistema existente ou apenas uma mudança em processos.

Análise da situação atual:

Caso 1:

- O usuários gastam muito tempo processando informações que um sistema computacional poderia fazer mais rapidamente;
- Meta de design: Aumentar a eficiência das atividades do usuário, que um dos fatores de usabilidade;

Caso 2

- Vários usuários encontram dificuldades para usar sistemas semelhantes porque não compreendem seu funcionamento;
- Meta de design: Comunicar adequadamente através da interface a visão do designer sobre as operações que o usuário pode realizar, aumentando a comunicabilidade.

- Uma vez definida uma intervenção, preciso avaliar se ela modifica a situação atual da forma desejada;
- A avaliação de uma intervenção pode ocorrer em vários pontos do processo de desenvolvimento:
 - Durante a concepção e o desenvolvimento da intervenção, para prever seus possíveis impactos na situação atual:
 - Exemplo: inspecionando as telas produzidas durante o projeto da interface com usuário;
 - Logo antes da introdução da intervenção, para identificar consequências negativas ou problemas que possam ser evitados:
 - Exemplo: fazendo testes com usuários e produzindo material de treinamento a partir dos seus resultados;
 - Depois da intervenção ter sido aplicada, para verificar os impactos ocorridos:
 - Exemplo: avaliando como os usuários se apropriam do sistema interativo desenvolvido e quais mudanças ocorreram na sua pratica de trabalho;

- São formas de interpretar a atividade de design:
 - Racionalismo técnico (Simon, 1981):
 - Enquadra uma situação num tipo geral de problema;
 - Forma de solução conhecida ou métodos bem definidos e precisos para gerá-la;

Designer enquadra uma situação num tipo geral de problema cuja forma de solução seja conhecida;

- Reflexão em ação (Schön, 1983):
 - Cada caso é diferente do outro;
 - Descoberta gradual para projetar uma intervenção;
 - Métodos e ferramentas para auxiliar o aprendizado do designer sobre o problema e solução únicos;
 - Semelhante ao processo de pesquisa científica.

Designer busca aprender sobre o problema em questão e a solução sendo concebida.

 A representação das várias ideias do designer possui um beneficio importante ele acaba "conversando" com a representação, um fenômeno chamado conversa com materiais é estimulado pela reflexão em ação:

 A representação das várias ideias do designer possui um beneficio importante ele acaba "conversando" com a representação, um fenômeno chamado conversa com materiais é estimulado pela reflexão em ação:

- Reflexão em ação é:
 - Interagir com o modelo, obter resultados surpreendentes, tentar interpretá-los, e então inventar novas estratégias de ação com base nas novas interpretações.

Evolução da barra de tarefas do firefox:

S ☆ + Soogle

http://www.crystalxp.net/galerie/fr.htm

- Conceber uma solução adequada ao problema não é uma tarefa simples, e geralmente exige as seguinte habilidades e conhecimento:
 - Criatividade e capacidade de análise para criar e modelar ideias;
 - Capacidade de crítica e julgamento para decidir;
 - Capacidade de comunicação e negociação para trabalhar com clientes, usuários e desenvolvedores;
 - Conhecimento sobre as tecnologias disponíveis para projetar qualidades estruturais e funcionais;
 - Conhecimento sobre valores e ideias dos envolvidos para projetar qualidades éticas;
 - Capacidade de apreciar e compor coisas agradáveis aos sentidos para projetar qualidades estéticas

- Uma característica básica do processo de design é a execução das atividades de forma iterativa, permitindo refinamento sucessivos da análise da situação atual e da proposta de intervenção;
- Design dirigido pelo problema: despende mais tempo analisando a situação atual, as necessidades e as oportunidade de melhoria, e menos tempo explorando possíveis intervenções:
 - Qualidade não está ligada ao tipo de estratégia adotada;
- Design dirigido pela solução: emprega pouco tempo analisando a situação atual, e mais tempo explorando possíveis intervenções:
 - Menor preocupação com aspectos estéticos, ergonômicos e comerciais;

Resultados mais criativos.

 Os processos de design em IHC buscam atender e servir em primeiro lugar aos usuários, ou seja, é centrada no usuário e seguem os seguintes princípios:

Foco no usuário:

- O designer deve projetar a interação de um sistema interativo para atender às necessidades dos usuários e ajudá-los a alcançarem seus objetivos,
- O designer dever estudar seus usuários para que possa tirar melhor compreensão;

Métricas observáveis:

- O processo de design deve permitir a realização de experimentos em que representantes dos usuários usem simulações ou protótipos do sistema para realizarem suas atividades e alcançarem seus objetivos:
- Durante o experimento, a performance e as reações dos usuários devem ser observadas, registradas e analisadas.

Design interativo:

- Quando os problemas forem encontrados durante os experimentos com os usuários, eles deveram ser corrigidos;
- Isso significa que as atividades do processo de design devem ser iterativas, ou seja, o ciclo de projeto, avaliação com medidas e reprojeto deve ser repetir quantas vezes forem necessárias.
- Agora veremos outras propostas existentes;

Ciclo de vida simples

Ciclo de vida simples

- (re) design: o designer explora diferentes ideias alternativas de design para elaborar uma solução adequada às necessidades e requisitos definidos na atividade de análise;
- Versões interativas: para melhor avaliar o design resultante das propostas de solução que simulem o funcionamento da interface e deixem clara a intenção projetada, facilitando a participação do usuário durante a avaliação de IHC.

Ciclo de vida em estrela

 Desenvolvido por por Hix e Hartson no início da década de 90, foi um dos primeiros ciclos de vida voltados para IHC e amplamente divulgados;

Ciclo de vida em estrela

- Análise de tarefas, usuários e funções: é a atividade responsável pelo aprendizado da situação atual e pelo levantamento das necessidades e oportunidades de melhoria;
- Especificação de requisitos: define os problemas que devem ser resolvido com o projeto de uma solução IHC.
- Projeto conceitual e especificação do design: onde a solução de IHC é concebida;
- Prototipação: as versões interativas das propostas de solução são elaboradas para serem avaliadas;
- Implementação: onde o sistema interativo final é desenvolvido, ela é tema central da eng. de software;
- Avaliação: sempre deve ser executada após outras atividades para análise e se detectada alguma inconsistência volta para a atividade adequada para corrigir.

Conjunto de Atividades propostas:

- 1) Conheça seu usuário;
- 2) Realize uma análise competitiva;
- 3) Defina as metas de usabilidade;
- 4) Faça designs paralelos;
- 5) Adote o design participativo;
- 6) Faça o design coordenado da interface como um todo;
- 7) Aplique diretrizes e análise heurística;
- 8) Faça protótipos;
- 9) Realize testes empíricos;
- 10) Pratique design iterativo.

- Estudar os usuários e os usos: conhecer as características individuais dos usuários e do seu ambiente físico e social de trabalho, suas atividades e formas como lidam com circunstância excepcionais e emergenciais;
- Análise competitiva: consiste em examinar produtos com funcionalidades semelhantes ou complementares;
- Definição da metas de usabilidade: envolve definir os fatores de qualidade de uso que devem ser priorizado no projeto, como serão avaliados ao longo do processo de design.
- Design paralelo: elaborar diferentes alternativas de design, preferencialmente vários design trabalhando de forma independente, para selecionar as que vão ser detalhadas nas atividades seguintes;

- Design participativo: consiste em a equipe de design ter acesso permanente a um conjunto de usuários tidos como representativos da população-alvo de usuários;
- Design coordenado da interface: para evitar inconsistências na interface com o usuário projetada como um todo, é importante haver um responsável;
- Diretrizes: são princípios bem definidos para o design da interface com o usuário;
- Protótipo: para serem avaliados junto aos usuários a usuários e modificados à medida que a equipe de design adquire um melhor entendimento dos problemas visando oferecer uma solução mais adequada;

- Testes empíricos: consiste principalmente na observação dos usuários ao utilizarem os protótipos para realizar certas tarefas;
- Design iterativo: consiste em a cada iteração, problemas que surjam e deve repetir-se ate que as metas de usabilidade tenham sido alcançadas;
- Coletar dados de uso: não serve apenas avaliar o retorno do investimento, mas também para planejar a próxima versão do produto.

Engenharia de Usabilidade de Mayhew

Análise de requisitos:

- São definidas as metas da usabilidade com base no perfil dos usuários, análise de tarefas, possibilidades e limitações da plataforma em que o sistema será executados e princípios gerais de design de IHC;
- As metas de usabilidade costumam ser representados em "guias de estilos" para auxiliar sua verificação durante as demais atividades do processo;

Engenharia de Usabilidade de Mayhew

Design, avaliação e desenvolvimento:

- Tem por objetivo conceber uma solução de IHC que atenda às metas de usabilidade estabelecidas na fase anterior;
- Esse processo propõe projetar a solução de IHC em três níveis conforme figura;

Instalação:

 O designer deve coletar opiniões dos usuários depois de algum tempo de uso, as opiniões ser úteis para melhorar o sistema em versões futura ou necessidade de desenvolver novos sistemas não previstos;

13/12/13

Engenharia de Usabilidade de Mayhew

Design Contextual

- É um processo de design de IHC que orienta o designer a compreender profundamente as necessidades dos usuários através de uma investigação minuciosa do contexto de uso;
- Atividades básicas:
 - investigação contextual :
 - O designer busca conhecer quem são os usuários, suas necessidades, objetivos e a forma de trabalho;
 - Modelagem do trabalho:
 - Cada usuário investigado separado;
 - Tipos: fluxo de trabalho, artefatos utilizados, ambiente físico e cultural de trabalho;

Design Contextual

- Reprojeto do trabalho:
 - A consolidação dos modelos de trabalho fornece insumos para o design reprojetar a forma como os usuários trabalham;
 - O designer utiliza storyboards para explorar ideias sobre melhorar a pratica de trabalho com suporte oferecido pela tecnologia;
- O designer deve construir protótipos do sistema e avaliá-los junto aos usuários, permite revisar e refinar o projeto iterativamente até chegar a uma solução satisfatória.

Design baseado em cenários

- Um processo que utiliza diferentes tipos de cenários como representação básica e fundamental durante todas as atividades envolvidas na concepção de uma solução de IHC;
- Cenários de problemas: com o conhecimento adquirido sobre a situação atual, cobrindo características do usuários, suas atividades, típicas e criticas, os artefatos que eles utilizam e o contexto de uso;
- Cenário de atividade: é uma narrativa sobre as tarefas típicas e críticas que os usuários vão executar com ajuda do sistema;
- Cenário de informação: é uma elaboração de um cenário de atividade que descreve as informações fornecidas pelo sistema ao usuário durante a interação

Design baseado em cenários

 Cenário de interação: especifica em detalhes as ações do usuário e as respectivas respostas (feedback) do sistema necessárias para executar as tarefas apoiadas pelo sistema;

Design dirigido por objetivos

- É um processo sistemático proposto para investigar e atender às necessidades e aos objetivos dos usuários, bem como atender aos requisitos técnicos, do negócio e da organização;
- É divido em seis fases:
 - Pesquisa: o designer esta interessado em conhecer o usuário, o domínio do sistema e o contexto de uso;
 - Modelagem: tem por objetivo organizar e registrar o conhecimento adquirido na fase de pesquisa através da elaboração de modelos do usuário, domínio e contexto de uso;
 - Definição de requisitos: o designer interpreta as informações coletadas e estruturadas nos modelos para definir os requisitos do usuário, do negócio e técnicos;

Design dirigido por objetivos

- Projeto conceitual: o designer concebe uma solução de interação e um esboço de interface pouco detalhado, sua preocupação esta na concepção da estrutura e do comportamento da interface;
- Refinamento: o foco é detalhar a solução de interface, definindo todas as características dos elementos da interface, tais como tamanho, cores e ícones;
- Manter: a coerência da solução proposta enquanto acomoda as limitações técnicas imprevistas;

Design centrado na comunicação

Dúvidas típicas dos usuários: O quê? Como? Quando? Quem? Por quê? Por que não? E se...? Avaliação Projeto de interação e Análise (usuário, domínio, contexto de uso) interface Interpretação pessoal Elaboração da Rupturas na dos designers, usuários metamensagem comunicação e demais envolvidos designer-usuário durante o uso: O quê? Como? Quando? sobre a situação Modelagem da interação corrente Quem? como conversa Por quê? **Entendimento** Por que não? E se...? Engenharia dos sistemas compartilhado da de signos de interface equipe sobre a situação corrente e oportunidades Elaboração do de intervenção sistema de ajuda (metacomunicação Esboço da explícita) metamensagem designer-usuário

 As áreas de IHC e ES possuem diferentes perspectivas sobre o que é importante em um sistema interativo, sobre o que significa utiliza-lo e sobre como desenvolve-lo;

Perspectivas de design centrada no sistema:

- Um sistema interativo é um artefato circunscrito e encapsulado por uma interface que recebe dados de entrada, processa esses dados com algum programa e retorna dados de saída;
- O que mais importa nessa perspectiva é aquilo que ocorre dentro do sistema;
- Tudo que ocorre na fronteira ou fora dele, inclusive a própria interface, acaba recebendo pouca ou nenhuma atenção;
- Objetivo principal seria construir um sistema fidedigno que seja capaz de processar adequadamente os dados de entrada e saída transmitidos através de uma interface bem definida;

- Objetivo principal seria construir um sistema fidedigno que seja capaz de processar adequadamente os dados de entrada e saída transmitidos através de uma interface bem definida;
- Fatores de qualidade mais valorizados na construção de um sistema são: disponibilidade, integridade, robustez, manutenibilidade e recuperabilidade;

- As diferentes perspectivas de IHC e ES sobre o desenvolvimento de sistemas interativos deram origem a métodos, técnicas e processos próprios de cada área;
- Atualmente pesquisadores têm investigado a integração de métodos e técnicas entre IHC e ES;
- As principais abordagens de integração são:
 - Definição de características de um processo de desenvolvimento que se preocupa com a qualidade de uso;
 - Definição do processo de IHC paralelos que devem ser incorporados aos processos propostos pela ES;
 - Indicação de pontos em processos propostos pela ES em que atividades e métodos de IHC podem ser inseridos;

6

Atividades voltadas para usabilidade

Atividades de desenvolvimento relacionadas com usabilidade

Análise de usuário

Especificação de requisitos de usabilidade

Design

Design conceitual

Análise de tarefas

Prototipação

Design de interação

Análise de requisitos

Elicitação de requisitos

Análise de requisitos

Especificação de requisitos

Validação de requisitos

Design

Design de interação e de interface

Elaboração da ajuda on-line

Avaliação

Avaliação de usabilidade

Avaliação

Avaliação de usabilidade

Métodos ágeis em IHC

- Métodos ágeis de desenvolvimento como eXtreme Programing e Scrum, podem ser interessantes em IHC:
 - Porque buscam colaborar com o cliente através de pequenos ciclos de desenvolvimento de forma iterativa e incremental, para obter retorno do cliente e corrigir o rumo do processo de desenvolvimento;
- Ainda precisa-se de cuidado adequado em relação à qualidade de uso:
 - Raramente a comunidade de métodos ágeis mencionam os usuários ou interface com usuário como um todo, com isso:
 - Eles negligenciam a experiencia de uso, ou estão focando projetos com menor necessidades de uma experiencia de uso bem aprofundada.

13/12/13 41

Métodos ágeis em IHC

- Sugestões de Blomkvist (2005) para integrar IHC em métodos ágeis:
 - O designer de IHC deve ser responsável pelas decisões relacionadas com a qualidade de uso;
 - Equilibrar o tempo necessário para entregar um sistema que funcione com a qualidade de uso oferecida;
 - Buscar informações sobre o contexto de uso, e não apenas consultar os usuários e clientes no ambiente de desenvolvimento;
 - Realizar uma análise da situação atual mais abrangente e rica em contexto de uso do que as histórias de uso (user stories) e os casos de uso (use cases) amplamente utilizados em métodos ágeis;
 - O designer de IHC deve auxiliar os usuários na priorização das funcionalidades que serão desenvolvidas;
 - Realizar avaliações de IHC durante diferentes estágios do ciclo de desenvolvimento.