ELEC 341 – Graded Assignments

Assignment A1 White-Box Systems

100 Marks

Required Files

Available on Canvas

e341-a1.pdf

• a1DSPlot.p

a1Submit.p

• e341-APE.pdf

Assignment description (this document)

Data-Sheet curve generator

Grading script (LATEST version)

Instructions for submitting graded work (for reference)

Topics

Circuit Analysis

matrix method

2nd Order Response

• envelope & frequency

Approximate Impulse Function

• 1st order & square

When you have a circuit diagram, you can model it exactly. This is a "White Box" system.

Analyze the circuit Figure 1 using standard techniques.

Find the transfer function: $G = V_{out}/V_{in}$

1. 20 mark(s) Voltage Filter

• Q1.G (V/V) LTI

Use the Matrix-Method to analyze the circuit in Figure 2.

Find the transfer function: $G = I_{out}/I_{in}$

2. 20 mark(s) Current Filter

• Q2.G (A/A) LTI

Use **a1DSPlot.p** to plot an experimental step response from a data-sheet.

Estimate the envelope by manually curve-fitting it to the experimental data.

An 2nd order envelope has the form: $y = K_{dc} x (1 \pm e^{\sigma t})$ $\sigma < 0$

3. 20 mark(s) Envelope

Q3.Kdc (V) ScalarQ3.sigma (rad/s) Scalar

COW: Kdc & σ are both integers so you should be able to find them exactly.

The transfer function **G** was used to generate the data-sheet curve.

The equation includes another parameter ω_n :

$$G = K_{dc} \frac{\omega_n^2}{s^2 - 2\sigma s + \omega_n^2}$$

Find ω_n by trial and error. It's also an integer.

Find **G** and identify the poles.

Find an approximate 1^{st} order impulse function with the smallest possible (magnitude) non-dominant pole \mathbf{p} .

Find the approximate impulse response y of G.

Use a time vector with 1ms increments and a maximum value of 100ms.

4. 15 mark(s) LTI Impulse

Q4.p (rad/s) Scalar
 Q4.y (V) 1x101 Vector

COW: Is this a reasonably good approximation of an ideal impulse???

Find the time constant τ (rounded to 1ms) of a 1st order approximate impulse,.

Find the approximate impulse response \mathbf{v} of \mathbf{G} using a square pulse that is τ (sec) long.

Use a time vector with **1ms** increments and a maximum time of **100ms**.

5. 15 mark(s) Square Impulse

Q5.tau (s) Scalar
 Q5.y (V) 1x101 Vector

COW: A pulse is obtained by subtracting a **delayed** step from a step.

Does the pulse response resemble the LTI impulse response ???

In Fig 3, the capacitor voltage from Fig 2 is used as the input voltage in Fig 1, with a voltage buffer inserted so both circuits act independently.

Find the transfer function. $G = V_{out}/I_{in}$

Run minreal() with a tolerance of **0.1** to cancel (nearly) overlapping poles and zeros.

Find the most dominant pole frequency mdp, the vector of dominant pole frequencies dp, and the vector of non-dominant pole frequencies ndp. For vectors including complex conjugate poles, repeat the pole frequency twice.

6. 10 mark(s) Dominant Pole Frequency

 Q6.mdp 	(rad/s)	Scalar
 Q6.dp 	(rad/s)	Vector
 Q6.ndp 	(rad/s)	Vector