

PENGKODEAN DATA Komunikasi Data

Muhammad Zen Samsono Hadi, ST. MSc. Lab. Telefoni Gedung D4 Lt. 1

Teknik Pengkodean

Data digital, sinyal digital

- Merupakan bentuk paling sederhana dari pengkodean digital
- Data digital ditetapkan satu level tegangan untuk biner satu dan lainnya untuk biner nol
- Digunakan untuk meningkatkan kinerja dng cara mengubah spektrum sinyal dan menyediakan kemampuan sinkronisasi

• Data digital, sinyal analog

- Sebuah modem mengubah data digital menjadi sinyal analog sehingga dpt ditransmisikan sepanjang saluran analog
- Teknik dasar adalah ASK, FSK dan PSK
- Ketiganya mengubah satu karakter atau lebih menjadi suatu frekuensi pembawa yang mewakili data biner

Teknik Pengkodean

∀ Data analog, sinyal digital

- Data analog, misalnya suara dan video diubah ke bentuk digital agar mampu menggunakan fasilitas-fasilitas transmisi digital
- Teknik paling sederhana adalah PCM yang melibatkan pengambilan sampel data analog secara periodik dan mengkuantisasi

∀ Data analog, sinyal analog

- Data analog memodulasi suatu frekuensi pembawa agar menghasilkan sinyal analog dlm bentuk band frekuensi yg berlainan yang digunakan pada sistem transmisi analog
- Teknik dasar adalah AM, FM dan PM

Contoh Pengkodean

Contoh Pengkodean

Data digital, sinyal-sinyal digital

∀ Sinyal digital

- Merupakan deretan pulsa tegangan yang terputus-putus yang berlainan dan masing-masing mempunyai ciri-ciri tersendiri
- Setiap pulsa merupakan sebuah elemen sinyal
- Data biner ditransmisikan melalui pengkodean setiap bit data ke dalam elemen-elemen sinyal

Data digital, sinyal-sinyal digital

Data digital, sinyal-sinyal digital

Istilah-istilah kunci komunikasi data

- Unipolar
 - Elemen-elemen sinyal memiliki tanda yang sama (yaitu semua positif atau negatif)
- Polar
 - Satu pernyataan logika ditampilkan melalui level tegangan positif dan lainnya melalui level tegangan negatif
- Rate data
 - Rate dimana data ditransmisikan
 - Ditunjukkan dalam bit per detik
- Durasi atau panjang bit
 - Jumlah waktu yang diambil transmitter untuk memancarkan bit
 - Untuk rate R durasi bit adalah 1/R

Istilah-istilah kunci komunikasi data

∀ Rate modulasi

- Rate dimana level sinyal berubah
- Tergantung pada sifat pengkodean digital
- Dinyatakan dalam baud, berarti elemen-elemen sinyal per detik

∀ Mark dan Space

- Menampilkan binary 1 dan 0

Mengartikan sinyal-sinyal digital

- Yang perlu diketahui receiver
 - harus mengetahui pewaktuan setiap bit
 - harus mengetahui dengan tepat saat suatu bit awal dan akhir
 - harus dapat menentukan level sinyal untuk masingmasing posisi bit (1 atau 0)
- Faktor-faktor yang menentukan kesuksessan receiver
 - Signal to noise ratio (meningkat berarti mengurangi BER)
 - Rate data (meningkat berarti meningkatkan BER)
 - o Bandwidth (meningkat berarti membuat rate data meningkat

Faktor lain yang menentukan kinerja receiver (Skema pengkodean)

- Pendeteksi kesalahan
 - Dapat dimasukkan didalam skema pengkodean
- Kekebalan terhadap noise dan interferensi
 - Beberapa kode tertentu menunjukkan kinerja yang sangat baik dalam mengatasi noise
- Biaya dan kelengkapan
 - Semakin tinggi rate pensinyalan dalam mendapatkan rate data tertentu, biayanya semakin mahal
 - Beberapa kode memerlukan rate pensinyalan yang lebih besar dibanding rate data

Beberapa Teknik Pengkodean

- Nonreturn to Zero-Level (NRZ-L)
- Nonreturn to Zero Inverted (NRZI)
- Bipolar –AMI (Alternate Mark Invertion)
- Pseudoternary
- Manchester
- Differential Manchester
- B8ZS
- HDB3

Nonreturn to Zero-Level (NRZ-L)

- Menampilkan dua perbedaan tegangan untuk bit o dan 1
- Tegangan tetap konstan sepanjang interval bit
 - tidak terdapat transisi (tidak kembali ke level tegangan nol)
- Sebagai contoh tidak ada level tegangan untuk menampilkan biner o
- Lebih umum lagi tegangan negatif digunakan untuk menampilkan biner 1 dan tegangan positif untuk menampilkan yang lainnya.
- Kode ini sering dipergunakan untuk membangkitkan atau mengartikan data digital melalui terminal atau lainnya

Nonreturn to Zero Inverted

- Nonreturn to zero inverted on ones
- Mempertahankan pulsa tegangan konstan untuk durasi waktu bit
- Data itu sendiri ditandai saat kehadiran atau ketidak hadiran transisi
- Adanya transisi (rendah ke tinggi atau tinggi ke rendah) pada permulaan waktu bit menunjukkan biner 1, tanpa transisi menunjukkan biner o
- Sebagai contoh pengkodean differential

Keuntungan dan kerugian NRZ

- Keuntungan
 - Mudah dalam mengefisiensikan penggunaan bandwidth
 - Lebih kebal noise
- Kelemahan
 - Keberadaan komponen dc
 - Kurangnya kemampuan sinkronisasi
- Aplikasi
 - Umumnya digunakan untuk perekaman magnetik digital
 - Tidak banyak digunakan untuk transmisi sinyal

Multilevel Binary

- Menggunakan lebih dari dua level sinyal
- Dua contoh yaitu Bipolar-AMI dan Pseudoternary
- Bipolar-AMI
 - O Biner o ditampilkan melalui nonsinyal pada jalur
 - Biner 1 ditampilkan melalui pulsa positif atau negatif
 - O Pulsa biner 1 harus berganti-ganti polaritasnya
 - Kehilangan sinkronisasi tidak akan terjadi bila muncul string panjang 1 s
 - Tidak terdapat komponen dc murni
 - Bandwidth lebih sempit dibanding bandwidth NRZ
 - o Banyak digunakan sebagai alat bantu untuk mendeteksi kesalahan

Pseudoternary

- Biner 1 ditampilkan melalui nonsinyal pada jalur
- Biner o ditampilkan melalui pulsa positif atau negatif
- Tidak ada kelebihan khusus dari pengkodean bipolar-AMI dan masing-masing menjadi dasar untuk diterapkan pada aplikasi yang sesuai

Bipolar-AMI and Pseudoternary

Kesimpulan untuk Multilevel Binary

Tidak seefisien pengkodean NRZ

- O Setiap elemen sinyal hanya ditampilkan dalam bit 1
- Jalur sinyal menerima satu dari tiga level, namun masing-masing elemen sinyal dapat menampilkan log₂3 = 1.58 bit informasi, hanya memuat satu bit informasi
- Receiver harus membedakan diantara ketiga level (+A, -A, o) dari pada hanya dua level dalam format pensinyalan yang sebelumnya
- Karena hal tsb, maka diperlukan daya sinyal kira-kira 3dB untuk mencapai probabilitas kesalahan bit yang sama
- Multilevel banyak digunakan untuk Digital Subscriber Line (DSL) dan Gigabit Ethernet

Biphase

Manchester

- Mempunyai transisi ditengah-tengah setiap periode bit
- Transisi pertengahan bit bermanfaat sebagai mekanisme clock dan sekaligus sebagai data transisi
- Transisi rendah ke tinggi menggambarkan 1
- o Transisi tinggi ke rendah menggambarkan o
- Ditetapkan untuk standar IEEE 802.3

Differential Manchester

- Transisi pertengahan bit hanya digunakan untuk menyediakan clock
- o Transisi pada awal periode bit digambarkan dengan pengkodean o
- Terdapat inversi sinyal pada saat bit berikut adalah bit o.
 Apabila bit berikut adalah bit 1, maka tidak ada inversi sinyal.
- Ditetapkan untuk token ring IEEE 802.5 LAN menggunakan shielded twisted pair

Manchester Encoding

Manchester Encoding

Differential Manchester Encoding

Differential Manchester Encoding

Biphase

• Ciri-ciri

- Hanya memerlukan satu transisi per bit waktu dan mungkin mempunyai dua transisi
- Modulation rate maximum adalah dua kali NRZ
- Memerlukan bandwidth yang besar
- Terdapat transisi yang dapat diprediksikan sebelumnya sepanjang setiap satuan waktu bit, receiver menjadi sinkron pada transisi tersebut
- Tidak memiliki komponen dc
- Tidak adanya transisi yg diharapkan dapat digunakan untuk mendeteksi kesalahan

Modulation Rate

Teknik-teknik Scrambling

- Digunakan untuk menembatkan deretan data yang akan menghasilkan level tegangan konstan yang telah diganti-kan oleh deretan data pengganti
- Deretan data pengganti
 - Harus menghasilkan transisi yang cukup untuk sinkronisasi
 - Harus dikenal oleh receiver dan akan digantikan dengan deretan data asli
 - Deretan data pengganti harus sama panjangnya dengan deretan data asli
- Tanpa komponen dc
- Tanpa deretan yang panjang dari jalur sinyal yang mempunyai level o
- Tidak mengurangi rate data
- Mempunyai kemampuan mendetaksi kesalahan

B8ZS

- Bipolar dengan 8 Zeros Substitution
- Berdasarkan bipolar-AMI
- Apabila terdapat 8 level tegangan nol berurutan, maka kedelapan level tegangan tersebut disubstitusi oleh level tegangan 000VBoVB

HDB3

- High Density Bipolar 3 Zeros
- Berdasarkan bipolar-AMI
- Jika jumlah sinyal tidak nol setelah substitusi terakhir adalah ganjil, maka substitusi dilakukan dengan menggunakan level tegangan oooV.
- Jika jumlah sinyal tidak nol setelah substitusi terakhir adalah genap, maka substitusi dilakukan dengan menggunakan level tegangan BooV.

Digital Data, Analog Signal

- Public telephone system
 - o 300Hz to 3400Hz
 - Contoh: modem (modulator-demodulator)
- Amplitude shift keying (ASK)
- Frequency shift keying (FSK)
- Phase shift keying (PSK)

Amplitude Shift Keying

- Nilai diwakili oleh amplitudo carrier yg berbeda
- Rentan terhadap perubahan gain yg tiba-tiba
- Inefficient
- Sampai 1200 bps pada voice grade lines
- Digunakan pada optical fiber

Binary Frequency Shift Keying

- Bentuk yg paling umum adalah binary FSK (BFSK)
- Dua nilai biner diwakili oleh 2 frekuensi yg berbeda (carrier yg berdekatan)
- Lebih tahan terhadap error daripada ASK
- Sampai 1200 bps pada voice grade lines
- High frequency radio
- Contoh: LAN yang menggunakan co-ax

Phase Shift Keying

- Fase dari sinyal carrier digeser untuk menyatakan data
- Binary PSK
 - O Dua fase mewakili 2 digit biner
- Differential PSK

Differential PSK

Performance of Digital to Analog Modulation Schemes

38

- Bandwidth
 - O Bandwidth ASK dan PSK berhubungan dengan bit rate
 - Bandwidth FSK berhubungan dengan data rate utk frekuensi rendah, tetapi offset dari frekuensi carrier pada frek. tinggi
- Noise, bit error rate PSK dan QPSK 3dB lebih bagus daripada ASK dan FSK.

Analog Data, Digital Signal

Digitization

- Konversi analaog data ke digital data
- o Digital data dapat ditransmisikan menggunakan NRZ-L
- O Perubahan analaog ke digital menggunakan codec
- Pulse code modulation
- Delta modulation

Digitizing Analog Data

Pulse Code Modulation(PCM) (1)

- Jika sebuah sinyal disampel dengan interval yg tetap pada laju lebih tinggi dua kali sinyal frekuensi, maka sampel tersebut berisi semua informasi dari sinyal asli.
- Voice data dibatasi dibawah 4000Hz
- Memerlukan 8000 sample per second
- Analog samples (Pulse Amplitude Modulation, PAM)
- Masing-masing sampel diberi nilai digital

Pulse Code Modulation(PCM) (2)

- 4 bit system memberikan 16 level
- 8 bit sample memberikan 256 level
- Kualitasnya dibandingkan dengan sinyal analog
- 8000 samples per second dari 8 bit menghasilkan 64kbps

Pulse Code Modulation(PCM) (2)

43

Pengkodean PCM

Pembalik kode PCM

PCM Example

Effect of Non-Linear Coding

Delta Modulation

- Input analog diperkirakan dengan sebuah fungsi
- Naik turunkan 1 level (δ) pada masing-masing interval sampel.

Delta Modulation - example

Delta Modulation - Performance

- Baik untuk reproduksi voice
 - o PCM 128 levels (7 bit)
 - Voice bandwidth 4khz
 - 8000 x 7 = 56kbps untuk PCM
- Kompresi data dapat ditingkatkan dengan ini
 - Misal: Interframe coding techniques for video

Analog Data, Analog Signals

- Mengapa memodulasi analog signals?
 - Frekuensi yg lebih tinggi dapat memberikan transmisi yg lebih efisien.
 - Mengijinkan frequency division multiplexing
- Types of modulation
 - Amplitude
 - Frequency
 - Phase

Analog Modulation

Modulating sine-wave signal

Amplitude Modulation (AM)

Phase Modulation (PM)
Frequency Modulation (FM)

Frequency-modulated wave