Exploratory Data Analysis (EDA) on Retail Sales Data

In this project, we will work with a dataset containing information about retail sales. The goal is to perform exploratory data analysis (EDA) to uncover patterns, trends, and insights that can help the retail business make informed decisions.

Import Library

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Import Dataset

```
retail=pd.read_csv('/content/drive/MyDrive/kaggle_API/retail_sales_dataset.csv')
```

Will Display the first 10 rows

retail.head(10)

₹		Transaction ID	Date	Customer ID	Gender	Age	Product Category	Quantity	Price per Unit	Total Amount	11.
	0	1	2023- 11-24	CUST001	Male	34	Beauty	3	50	150	
	1	2	2023- 02-27	CUST002	Female	26	Clothing	2	500	1000	
	2	3	2023- 01-13	CUST003	Male	50	Electronics	1	30	30	
	3	4	2023- 05-21	CUST004	Male	37	Clothing	1	500	500	
	4	5	2023- 05-06	CUST005	Male	30	Beauty	2	50	100	
	£	e	2023-	CLISTODE	Fomolo	ΛE	Roouty	1	30	30	

Next steps: Generate code with retail View recommended plots

Checking for missing values if any

```
retail.isnull().sum()
```

```
Transaction ID 0
Date 0
Customer ID 0
Gender 0
Age 0
Product Category 0
Quantity 0
Price per Unit 0
Total Amount 0
dtype: int64
```

For correct data types we'll use:

```
retail['Date']=pd.to_datetime(retail['Date'])
```

Remove any duplicates

```
retail.drop_duplicates(inplace=True)
retail.info()
<pr
     RangeIndex: 1000 entries, 0 to 999
     Data columns (total 9 columns):
                                Non-Null Count Dtype
      # Column
           -----
           Transaction ID 1000 non-null int64
Date 1000 non-null datetime64[ns]
          Date 1000 non-null datetim
Customer ID 1000 non-null object
Gender 1000 non-null object
Age 1000 non-null int64
Product Category 1000 non-null object
Quantity 1000 non-null int64
Price per Unit 1000 non-null int64
Total Amount 1000 non-null int64
      8 Total Amount
     dtypes: datetime64[ns](1), int64(5), object(3)
     memory usage: 70.4+ KB
retail.columns
dtype='object')
retail['Sales']=np.random.randint(low=100,high=1000,size=len(retail))
```

Now Descriptive Statistics

Calculating basic statistics:

retail.describe()

$\overline{\Rightarrow}$		Transaction ID	Date	Age	Quantity	Price per Unit	Total Amount	Sales	
	count	1000.000000	1000	1000.00000	1000.000000	1000.000000	1000.000000	1000.000000	ıl.
	mean	500.500000	2023-07-03 00:25:55.200000256	41.39200	2.514000	179.890000	456.000000	548.120000	
	min	1.000000	2023-01-01 00:00:00	18.00000	1.000000	25.000000	25.000000	100.000000	
	25%	250.750000	2023-04-08 00:00:00	29.00000	1.000000	30.000000	60.000000	329.750000	
	50%	500.500000	2023-06-29 12:00:00	42.00000	3.000000	50.000000	135.000000	542.000000	
	75%	750.250000	2023-10-04 00:00:00	53.00000	4.000000	300.000000	900.000000	769.750000	
	max	1000.000000	2024-01-01 00:00:00	64.00000	4.000000	500.000000	2000.000000	999.000000	
	std	288.819436	NaN	13.68143	1.132734	189.681356	559.997632	259.702963	

Time Series Analysis

```
will set the date column as the index
retail.set_index('Date',inplace=True)
We'll plot the sales over time
plt.figure(figsize=(12,6))
plt.plot(retail.index,retail['Sales'])
plt.xlabel('Date')
plt.ylabel('Sales')
plt.title('sales Over Time')
plt.show()
```


from statsmodels.tsa.seasonal import seasonal_decompose

result=seasonal_decompose(retail['Sales'],model='additive',period=12)

result.plot()
plt.show()

 $\verb|retail['ProductID'] = \verb|np.random.randint(low=0, \verb|high=100|, \verb|size=len(retail)|)||$

Now we'll do Product and Customer Analysis

Customer Demographics

customer_retail=retail[['Customer ID','Gender','Age']].drop_duplicates()

Calculating average purchase value per customer:

```
avg_purchase_value=retail.groupby('Customer ID')['Sales'].mean()
Top selling products
top\_selling\_products=retail.groupby('ProductID')['Sales'].sum().sort\_values(ascending=False).head(10)
print("Top-Selling Products:")
print(top_selling_products)
    Top-Selling Products:
     ProductID
     56
          10731
           10262
     83
            9946
     25
            9680
     81
            9489
            9053
     64
     58
            8380
     69
            8219
     86
            8103
     84
            8097
     Name: Sales, dtype: int64
retail.dtypes
→ Transaction ID
                         int64
     Customer ID
                         object
     Gender
                         object
                         int64
     Age
     Product Category
                        object
     Quantity
                          int64
     Price per Unit
                         int64
     Total Amount
                          int64
     Sales
                          int64
     ProductID
                          int64
     dtype: object
unique_customers = retail['Customer ID'].nunique()
print("Number of unique customers:", unique_customers)
Number of unique customers: 1000
retail['Customer ID'] = retail['Customer ID'].str.replace('CUST', '').astype(int)
retail['Customer ID']=retail['Customer ID'].astype(float)
retail=retail.select_dtypes(include=[np.number])
sns.heatmap(retail.corr(),annot=True,cmap='coolwarm')
plt.show()
```


For Visualization

Creating a barchat for top selling products

Now a heatmap showing correlation matrix

```
plt.figure(figsize=(12,6))
sns.heatmap(retail.corr(),annot=True,cmap='coolwarm')
plt.title('Correlation Matrix')
plt.show()
```


Now Sales Trend Analysis

```
Aggregate sales by date
```

₹

```
daily_sales=retail.groupby('Date').agg({'Sales':'sum'}).reset_index()
```

Plotting Sales trends over time

```
plt.figure(figsize=(12,6))
plt.plot(daily_sales['Date'],daily_sales['Sales'])
plt.xlabel('Date')
plt.ylabel('Sales')
plt.title('Sales Trends Over Time')
plt.show()
```


Now Product Performance

₹

Identifying Top selling products

```
top\_products = retail.groupby('ProductID').agg(\{'Sales': 'sum'\}).sort\_values(by = 'Sales', ascending = False).head(10).reset\_index()
```

Plotting Top selling Products

```
plt.figure(figsize=(12,6))
plt.bar(top_products['ProductID'],top_products['Sales'])
plt.xlabel('Product ID')
plt.ylabel('Total Sales')
plt.title('Top Selling Products')
plt.show()
```


retail['Gender']=np.random.randint(low=0,high=1000,size=len(retail))

Customer segmentation based on demographics

Displaying Customer Segments

print(customer_segments.head())

_		Customer ID	Age	Gender	PurchaseCount
	0	1.0	34	281	1
	1	2.0	26	422	1
	2	3.0	50	444	1
	3	4.0	37	634	1
	4	5.0	30	391	1

retail['Customer_segments']=np.random.randint(low=0,high=1000,size=len(retail))

Marketing Strategies

Analyzing customer segments for targeting marketing

```
young_customers=customer_segments[customer_segments['Age']<30]
male_customers=customer_segments[customer_segments['Gender']=='Male']</pre>
```

Example of Targeted marketing

```
print("Number of young customers:", len(young_customers))
print("Number of male customers:", len(male_customers))
Number of young customers: 251
     Number of male customers: 0
Seasonal Trends-Identifying peak sales periods
peak_sales_periods=daily_sales[daily_sales['Sales']>daily_sales['Sales'].quantile(0.8)]
print("Peak Sales Periods:",peak_sales_periods['Date'].dt.month.value_counts().sort_index())
→ Peak Sales Periods: Date
     3
     5
          8
     6
7
8
     10
     11
     12
     Name: count, dtype: int64
```

Using insights for marketing strategies