Motivation and Introduction

Main purpose of this course is to study Galois theory — a field that arose in trying to study roots of polynomials.

Consider $f(x) = ax^2 + bx + c$. If we want to find a general, closed-form expression for the roots of the function, we complete the square.

$$roots = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

We found these roots by by the coefficients, \mathbb{Q} , addition, subtraction, multiplication, division, and square root (raising to the 1/2 power: see Math 310 notes, Page 104). Naturally, this leads us to ask whether we can do this for cubic polynomials with the same operations. Obviously, we have to change from 1/2 power to the 1/3 power, but Cardano showed that it was possible to solve a cubic and quartic equation using these traditional operations and radicals.

Évariste Galois invented his theory to prove there is no such closed formula by radicals for any polynomial of degree 5 or above.

For example, $x^5 - x + 1$ does not have roots given by radicals.

Example: A Solvable Polynomial

Consider the polynomial $f(x) = x^2 - 2$. We know that the roots of this polynomial are $\pm \sqrt{2}$. From this, we want to create a set K(f) that satisfies the following rules:

- $\mathbb{Q} \subseteq K(f)$.
- K(f) must contain the roots of f.
- K(f) must be closed under the traditional operations: $+, -, \times, /$
- K(f) must be the smallest field that satisfies the above three requirements.

Claim: $K(f) = \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$

- $\mathbb{Q} \subseteq K(f)$, because we can set b = 0.
- $\sqrt{2} = 0 + (1)(\sqrt{2}), -\sqrt{2} = 0 + (-1)(\sqrt{2})$
- Let $a + b\sqrt{2}$ and $c + d\sqrt{2}$ be elements of K(f). Then,

$$-(a+b\sqrt{2})\pm(c+d\sqrt{2})=(a\pm c)+(b\pm d)\sqrt{2}$$

$$-(a+b\sqrt{2})(c+d\sqrt{2}) = (ac+2bd) + (ad+bc)\sqrt{2}$$

- Set
$$c + d\sqrt{2} \neq 0$$

$$\frac{a+b\sqrt{2}}{c+d\sqrt{2}} = \frac{(a+b\sqrt{2})(c-d\sqrt{2})}{c^2-2d^2}$$
$$= \frac{1}{c^2-2d^2} \left((ac-2bd) + (bc-ad)\sqrt{2} \right)$$
$$= \frac{ac-2bd}{c^2-2d^2} + \frac{bc-ad}{c^2-2d^2}\sqrt{2}$$

- K(f) is indeed the smallest set.
 - Note that K(f) is a \mathbb{Q} -vector space, with basis $\{1, \sqrt{2}\}$. Therefore, $\dim_{\mathbb{Q}} K(f) = 2$. K(f) is known as the "splitting field" of f.

We want to consider a bijective function $\varphi: K(f) \to K(f)$ with the following properties:

- $\varphi(r) = r$ for every $r \in \mathbb{Q}$
- $\varphi(x + y) = \varphi(x) + \varphi(y)$
- $\varphi(xy) = \varphi(x)\varphi(y)$

We denote the collection of all such φ as $\operatorname{Aut}(K(f)/\mathbb{Q})$. This is a group under the operation \circ (composition). Specifically, we have

$$\varphi(a+b\sqrt{2}) = \varphi(a) + \varphi(b)\varphi(\sqrt{2})$$
$$= a + b\varphi(\sqrt{2}).$$

Notice

$$\left(\varphi(\sqrt{2})\right)^2 - 2 = \varphi\left(\left(\sqrt{2}\right)^2 - 2\right)$$
$$= \varphi(0)$$
$$= 0$$

Therefore, $\varphi(\sqrt{2}) = \pm \sqrt{2}$. Therefore, we have that the elements of Aut $(K(f)/\mathbb{Q})$ as the following:

$$\varphi_0: a + b\sqrt{2} \mapsto a + b\sqrt{2}$$

$$\varphi_1: a + b\sqrt{2} \mapsto a - b\sqrt{2}$$

$$\varphi_1 \circ \varphi_1 = \varphi_0$$

Thus,

$$Aut(K(f)/\mathbb{Q}) = \{\varphi_0, \varphi_1\}$$
$$\cong \mathbb{Z}/2\mathbb{Z}$$

Example: A Harder Polynomial

Let $f(x) = (x^2 - 2)(x^2 - 3)$. Our roots are $\{\pm\sqrt{2}, \pm\sqrt{3}\}$. We want to form K(f) with the same properties. Let

$$K(f) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$$
$$= \{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \mid a, b, c, d \in \mathbb{Q}\}.$$

Just as with our previous example, K(f) is a vector space over \mathbb{Q} , with basis $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$, so $\dim_{\mathbb{Q}} K(f) = 4$.

Now, we want $\operatorname{Aut}(K(f)/\mathbb{Q})$. If $\varphi \in \operatorname{Aut}(K(f)/\mathbb{Q})$, then

$$\varphi(a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6}) = a+b\varphi(\sqrt{2})+c\varphi(\sqrt{3})+d\varphi(\sqrt{6})$$
$$= a+b\varphi(\sqrt{2})+c\varphi(\sqrt{3})+d\varphi(\sqrt{2})\varphi(\sqrt{3}).$$

Thus, we need to know $\varphi(\sqrt{2})$ and $\varphi(\sqrt{3})$. So,

$$f(\varphi(\sqrt{2})) = \left(\left(\varphi(\sqrt{2})\right)^2 - 2\right) \left(\left(\varphi(\sqrt{2})\right)^2 - 3\right)$$

and the same is the case with $\varphi(\sqrt{3})$. So,

$$\varphi(\sqrt{2}) \in \{\pm\sqrt{2}, \pm\sqrt{3}\}$$

$$\varphi(\sqrt{3}) \in \{\pm\sqrt{2}, \pm\sqrt{3}\}.$$

Suppose $\varphi(\sqrt{2}) = \sqrt{3}$. Then,

$$\left(\left(\varphi(\sqrt{2})\right)^2\right) = (\sqrt{3}^2 - 1)$$

$$= 0$$

$$= (\varphi(2) - 3)$$

$$= -1. \perp$$

Thus,

$$\varphi(\sqrt{2}) \in \{\pm\sqrt{2}\}\$$

 $\varphi(\sqrt{3}) \in \{\pm\sqrt{3}\},$

and we have the maps as:

$$\begin{aligned} & \varphi_0 : \sqrt{2} \mapsto \sqrt{2}, \sqrt{3} \mapsto \sqrt{3} \\ & \varphi_1 : \sqrt{2} \mapsto -\sqrt{2}, \sqrt{3} \mapsto \sqrt{3} \\ & \varphi_2 : \sqrt{2} \mapsto \sqrt{2}, \sqrt{3} \mapsto -\sqrt{3} \\ & \varphi_3 : \sqrt{2} \mapsto -\sqrt{2}, \sqrt{3} \mapsto -\sqrt{3} \end{aligned}$$

Example: A Cubic Polynomial

Consider the function $f(x) = x^3 - 2$. The function has one real root, $r_1 = \sqrt[3]{2}$, and two complex roots. Let's examine $\mathbb{Q}(\sqrt[3]{2}) = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\}$; r_2 and r_3 are not in $Q(\sqrt[3]{2})$. We could instead consider $\mathbb{Q}(\sqrt[3]{2}, r_1, r_2)$.

$$x^{3} - 2 = (x - r_{1})(x^{2} + r_{1}x + r_{1}^{2})$$

$$r_{2} = \frac{-r_{1} + \sqrt{r_{1}^{2} - 4r_{1}^{2}}}{2}$$

$$= r_{1} \frac{-1 + \sqrt{-3}}{2}$$

$$= r_{1}\zeta_{3}$$

$$r_{3} = r_{1} \frac{-1 - \sqrt{-3}}{2}$$

$$= r_{1}\zeta_{3}^{2}$$

However, including r_2 and r_3 is excessive — all we need is $\mathbb{Q}(\sqrt[3]{2},\zeta_3)$. Therefore, the basis of this vector space is $\{1,r_1,r_1^2,\zeta_3,\zeta_3r_1,\zeta_3r_1^2\}$ (note that $\zeta_3^2=-1-\zeta_3$). Therefore, $\dim_{\mathbb{Q}}\mathbb{Q}(\sqrt[3]{2},\zeta_3)=6$, and $\mathbb{Q}(\sqrt[3]{2},\zeta_3)=K(f)$. Additionally, we have $\mathrm{Aut}(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})=\{\varphi_0\}$, but $\dim_{\mathbb{Q}}\mathbb{Q}(\sqrt[3]{2})=3$. For the full field extension, we need to find $\varphi(\sqrt[3]{2})$ and $\varphi(\zeta_3)$.

$$\varphi(\sqrt[3]{2}) \in \{r_1, \zeta_3 r_1, \zeta_3^2 r_1\}
\varphi(\zeta) \in \{\zeta_3, \zeta_3^2\}
\varphi_0 : r_1 \mapsto r_1, \zeta_3 \mapsto \zeta_3
\varphi_1 : r_1 \mapsto \zeta_3 r_1, \zeta_3 \mapsto \zeta_3
\varphi_2 : r_1 \mapsto r_1, \zeta_3 \mapsto \zeta_3^2
\varphi_3 : r_1 \mapsto \zeta_3^2 r_1, \zeta_3 \mapsto \zeta_3^2
\varphi_4 : r_1 \mapsto \zeta_3 r_1, \zeta_3 \mapsto \zeta_3^2
\varphi_5 : r_1 \mapsto \zeta_3^2 r_1, \zeta_3 \mapsto \zeta_3^2$$

Therefore.

$$\begin{aligned} \mathsf{Aut}(\mathbb{Q}(\sqrt[3]{2},\zeta_3)/\mathbb{Q}) &= 6 \\ &= \dim_{\mathbb{Q}} \mathbb{Q}(\sqrt[3]{3},\sqrt[3]{2}) \end{aligned}$$

Rings

Consider the integers under the normal operations, $(\mathbb{Z}, +, \cdot)$; this will serve as the motivation for rings in the future.

Definition of a Ring

Let R be a nonempty set with operations $(+,\cdot)$, with the following properties:

- (1) (R, +) is an abelian group:
 - Closed: $r_1 + r_2 \in R$, $\forall r_1, r_2 \in R$
 - Identity: $\exists 0_R$, $r + 0_R = 0_R + r = r$
 - Associativity: $r_1 + (r_2 + r_3) = (r_1 + r_2) + r_3$
 - Inverse: $\forall r \in R, \exists -r \in R, r + (-r) = 0_R$
 - Commutativity: $r_1 + r_2 = r_2 + r_1$
- (2) Closure under Multiplication: $r_1 \cdot r_2 \in R$, $\forall r_1, r_2 \in R$
- (3) Associativity under Multiplication: $r_1 \cdot (r_2 \cdot r_3) = (r_1 \cdot r_2) \cdot r_3$
- (4) Distributivity: $r_1 \cdot (r_2 + r_3) = r_1 \cdot r_2 + r_2 \cdot r_3$, $(r_1 + r_2) \cdot r_3 = r_1 \cdot r_3 + r_2 \cdot r_3$

We say $(R, +, \cdot)$ is a ring if it satisfies all these properties.

If $\exists 1_R \in R$ such that $r \cdot 1_R = 1_R \cdot r = r$, then we say R is a ring with identity, and 1_R is the multiplicative identity. If multiplication is commutative, then R is known as a commutative ring.

Examples

- (1) $(\mathbb{Z}, +, \cdot), (\mathbb{Q}, +, \cdot), (\mathbb{R}, +, \cdot), (\mathbb{C}, +, \cdot)$ are commutative rings with identity value of 1.
- (2) $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ is a commutative ring with identity $1_R = [1]_n$.
- (3) $(\mathbb{R}[x], +, \cdot)$, where $\mathbb{R}[x] = \left\{ \sum_{i=0}^{n} a_i x^i \mid a_i \in \mathbb{R} \right\}$, is a commutative ring with identity.
- (4) $(2\mathbb{Z}, +, \cdot)$ is a commutative ring *without* identity.
- (5) $(\operatorname{Mat}_n(\mathbb{R}), +, \cdot)$, where $\operatorname{Mat}_n(\mathbb{R})$ refers to $n \times n$ matrices with real entries, is a *non*commutative ring with identity.

Division Rings and Fields

Let R be a ring with identity. We say R is a division ring if $\forall r \in R \setminus \{0_R\}$, $\exists r^{-1} \in R$ with $r \cdot r^{-1} = 1_R = r^{-1} \cdot r$. If R is also commutative, then R is a field.

Examples

- (1) $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$, and $(\mathbb{C}, +, \cdot)$ are all fields.
- (2) Let p be prime, and set $F = \mathbb{Z}/p\mathbb{Z}$. Then, F is a field; we denote this \mathbb{F}_p .
- (3) Define

$$\mathbb{H} = \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}, i^2 = j^2 = k^2 = -1, ij = k = -ji, jk = i = -kj, ki = j = -ik\}.$$

Then, $\mathbb H$ is a division ring, known as the Hamiltonian quaternions. Note that $\mathbb C\subset\mathbb H$.

Properties of Rings

Proposition 4.1: Let *R* be a ring.

- (1) $0_R a = a0_r = 0 \ \forall a \in R$
- (2) $(-a)b = a(-b) = -(ab) \ \forall a, b \in R$
- (3) $(-a)(-b) = ab \ \forall a, b \in R$
- (4) If $\exists 1_R \in R$, then 1_R is unique, and $-a = (-1_R)a$.

Proof of (1): Let $a \in R$. Then,

$$0_R a = (0_R + 0_R)a$$
 Additive Inverse $0_R a = 0_R a + 0_R a$ Distributivity $0_R a + (-0_R a) = 0_R a + 0_R a(-0_R a)$ Additive Inverse $0_R a = 0_R a$.

Proof of (2): Let $a, b \in R$. Note that -(ab) is the unique inverse such that $ab + (-(ab)) = 0_R$ via group theory. We have

$$ab + (-a)b = (a + (-a))b$$
 Distributivity
= $(0_R)b$ Additive Inverse
= 0_R . By Property (1)

Thus, (-a)b = -(ab).

Zero Divisor and Units in Rings

Let $a \in R$, $a \neq 0_R$. If $\exists b \in R$ with $b \neq 0_R$ such that $ab = 0_R = ba$, then we say a is a zero divisor.

If $1_R \in R$, we say $u \in R$ is a unit if $\exists v \in R$ (can be equal to u) with $uv = 1_R = vu$. The collection of units in R is denoted R^{\times} .

Exercise: Show that R^{\times} is a group under multiplication.

Examples

- (1) Let $R = \mathbb{Z}/6\mathbb{Z}$. Note that $[2]_6[3]_6 = [6]_6 = [0]_6$, so both $[2]_6$ and $[3]_6$ are both zero divisors. Additionally, $[4]_6[3]_6 = [6]_6 = [0]_6$. Meanwhile, since $(\mathbb{Z}/6\mathbb{Z})^{\times} = \{[1]_6, [5]_6\}$, those are the two units of $\mathbb{Z}/6\mathbb{Z}$.
- (2) \mathbb{Z} has no zero divisors. $\mathbb{Z}^{\times} = \{\pm 1\}$.
- (3) \mathbb{Q} has no zero divisors. $\mathbb{Q}^{\times} = \mathbb{Q} \setminus \{0\}$.
- (4) $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}, i^2 = -1\}$ has no zero divisors (as \mathbb{C} is a field). $\mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}$.

Subrings

Let $(R, +, \times)$. If $S \subseteq R$ is a nonempty subset, and $(S, +, \cdot)$ is a ring, then S is a subring of R. To see S is a subring, it is enough to show:

- S ≠ ∅.
- *S* is closed under subtraction.
- S is closed under multiplication of elements in S.

Examples

(1)

$$\underbrace{\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}}_{\text{subrings}}$$

- (2) $\mathbb{R} \subseteq \mathbb{R}[x]$ is a subring.
- (3) $S = \{[0]_4, [2]_4\} \subseteq \mathbb{Z}/4\mathbb{Z} \text{ is a subring.}$

Integral Domains

Let R be a commutative ring with identity. We say R is an integral domain if R has no zero divisors.

Examples

- (1) \mathbb{Z} , the integers, is an integral domain, that is not a field.
- (2) All fields are integral domains.
- (3) $\mathbb{Z}/6\mathbb{Z}$ is *not* an integral domain, as it has zero divisors.
- (4) $\mathbb{Z}/n\mathbb{Z}$ is not an integral domain if n is composite.

Integral domains are nice due to allowance of cancellations. For example, if 2m = 2n in \mathbb{Z} , then we find 2(m-n) = 0, and since \mathbb{Z} has no zero divisors, it must be the case that m = n.

However, in a ring that is not an integral domain, such as $\mathbb{Z}/6\mathbb{Z}$, we cannot use the same technique to find the solution to a similar equation. For example, $3 \cdot 2 = 0 = 3 \cdot 4$, but $2 \neq 4$.

Proposition: Equations in Integral Domains

Let R be an integral domain. If $a, b, c \in R$ with $a \neq 0_R$, and ab = ac, then b = c.

Proof:

Since $a \neq 0$,

$$ab = ac$$

$$a(b - c) = 0_R$$

$$b - c = 0_R$$

b = c.

Theorem: Finite Integral Domains and Fields

If R is an integral domain, and $card(R) < \infty$, then R is a field.

Proof: Let $a \in R$, $a \neq 0_R$. Note $ab \neq 0_R$ for all $b \in R$, $b \neq 0_R$.

Define $\varphi_a: R \setminus \{0_R\} \to R \setminus \{0_R\}$, $b \mapsto ab$. If $\varphi_a(b) = \varphi_a(c)$, then ab = ac, and by our previous result, b = c — therefore, φ_a is injective.

Since $R \setminus \{0_R\}$ is finite, and φ_a is injective, then φ_a is surjective. In particular, this means $\exists b \in R \setminus \{0_R\}$ with $\varphi_a(b) = 1_R$; therefore, $ab = 1_R$. Since R is commutative, $ba = 1_R$, so $b = a^{-1}$.

Examples of Abstract Rings

Ring of Integers in a Field

Let $d \in \mathbb{Z}$, d is square-free (there is no square that divides d). Set $\mathbb{Q}(\sqrt{d}) = \{a + b\sqrt{d} \mid a, b \in \mathbb{Q}\} \subseteq \mathbb{C}$. This is a field (can be verified as a subfield of \mathbb{C}).

We can define

$$\mathcal{O}_{\mathbb{Q}\left(\sqrt{d}\right)} = \begin{cases} \mathbb{Z}\left[\sqrt{d}\right] = \left\{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\right\} & d \equiv 2, 3 \mod 4 \\ \mathbb{Z}\left[\frac{1 + \sqrt{d}}{2}\right] = \left\{a + b\left(\frac{1 + \sqrt{d}}{2}\right) \mid a, b \in \mathbb{Z}\right\} & d \equiv 1 \mod 4 \end{cases}.$$

Then, $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ is a subring of $\mathbb{Q}(\sqrt{d})$. This is known as the ring of integers of $\mathbb{Q}(\sqrt{d})$. This set behaves in $\mathbb{Q}(\sqrt{d})$ the same say that \mathbb{Z} does inside \mathbb{Q} . The set $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ is the collection of all roots in $\mathbb{Q}(\sqrt{d})$ of monic (coefficient of highest degree is 1) polynomials with coefficients in \mathbb{Z} .

For example, if d = -1, defining $\mathbb{Q}(i)$, then we can verify that $\mathbb{Z}[i]$ is a root of a monic polynomial with coefficients in \mathbb{Z} .

Ring of Matrices

Let R be a ring. Then,

$$Mat_n(R) = \{n \times n \text{ matrices with entries in } R\}$$

is a ring under matrix addition and multiplication.

Ring of Functions

Let $L^1(\mathbb{R})$ be all functions $f: \mathbb{R} \to \mathbb{R}$ such that

$$\int_{\mathbb{R}} |f(x)| dx$$

exists. The set $L^1(\mathbb{R})$ is a ring under pointwise addition and convolution, where convolution is defined as

$$(f * g)(x) = \int_{\mathbb{R}} f(x - y)g(y)dy.$$

This is a commutative ring without identity.

Group Ring

Let K be a field and G a group. Set K[G] to be all formal linear combinations of the form

$$\alpha = \sum_{x \in G} a_x x,$$

with $a_x \in K$, $x \in G$, with $a_x = 0$ for all but finitely many x.

Given

$$\alpha = \sum_{x \in G} a_x x$$
$$\alpha = \sum_{y \in G} b_y y,$$

define

$$\alpha + \beta = \sum_{x \in G} (a_x + b_x)x$$

$$\alpha \beta = \sum_{x \in G} \sum_{y \in G} a_x b_y xy$$

$$= \sum_{x \in G} \left(\sum_{xy = z} a_x b_y \right) z.$$

This is a ring under these operations, known as the group ring. It is commutative if and only if G is abelian.

Polynomials under a Ring

Let R be a ring. Set

$$R[x] = \left\{ \sum_{i=1}^{n} a_i x^i \mid a_i \in R, n \in \mathbb{Z}_{\geq 0} \right\}$$

to be the all polynomials with coefficients in R. This is a ring under polynomial addition and multiplication. If R is commutative, then R[x] is commutative.

Proposition: Polynomial Properties

Let R be an integral domain, with p(x), $q(x) \in R[x] \setminus \{0\}$. Then:

- $(1) \deg(p(x)q(x)) = \deg(p(x)) + \deg(q(x))$
- (2) $R[x]^{\times} = R^{\times}$
- (3) R[x] is an integral domain.

Proof of (1): Let

$$p(x) = a_m x^m + \dots + a_1 x + a_0$$

 $q(x) = b_n x^n + \dots + b_1 x + b_0$

with $a_m, b_n \neq 0$ — $\deg(p) = m$ and $\deg(q) = n$. Then,

$$p(x)q(x) = a_m b_n x^{m+n} + \text{lower degree terms},$$

and since $a_m b_n \neq 0$ as R is an integral domain with $a_m, b_n \neq 0$, $\deg(pq) = m + n$.

Ring Homomorphism

Let R and S be rings. A ring homomorphism between R and S is a map $\varphi: R \to S$ that satisfies the following properties for all $r_1, r_2 \in R$:

(1)
$$\varphi(r_1 +_R r_2) = \varphi(r_1) +_S \varphi(r_2)$$

(2)
$$\varphi(r_1 \cdot_R r_2) = \varphi(r_1) \cdot_S \varphi(r_2)$$

The kernel of a ring homomorphism φ is given by

$$ker(\varphi): \{r \in R \mid \varphi(r) = 0_S\}$$

A bijective ring homomorphism is called an isomorphism. If there exists such a bijection between R and S, we say R and S are isomorphic.

If φ is an isomorphism, we write

$$\varphi: R \xrightarrow{\simeq} S$$

Examples: Ring Homomorphisms

Not a Ring Homomorphism

Let $R = \mathbb{Z}$ and $S = 2\mathbb{Z}$. Define

$$\varphi: \mathbb{Z} \to 2\mathbb{Z}$$
$$n \mapsto 2n.$$

Let $m, n \in \mathbb{Z}$. We have

$$\varphi(m+n) = 2(m+n)$$

$$= 2m + 2n$$

$$= \varphi(m) + \varphi(n).$$

However,

$$\varphi(mn) = 2(mn)$$
$$\varphi(m)\varphi(n) = 4(mn).$$

Homomorphism between Integers and Integers Modulo $\it n$

Consider $R = \mathbb{Z}$ and $S = \mathbb{Z}/n\mathbb{Z}$. Define

$$\varphi: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$$
$$a \mapsto [a]_n.$$

Let $a, b \in \mathbb{Z}$. We have

$$\varphi(a+b) = [a+b]_n$$

$$= [a]_n + [b]_n$$

$$= \varphi(a) + \varphi(b).$$

Additionally, we have

$$\varphi(ab) = [ab]_n$$

$$= [a]_n[b]_n$$

$$= \varphi(a)\varphi(b).$$

So, φ is a ring homomorphism. Note that

$$\ker(\varphi) = \{ a \in \mathbb{Z} \mid \varphi(a) = [0]_n \}$$
$$= \{ a \in \mathbb{Z} \mid [a]_n = [0]_n \}$$
$$= \{ a \in \mathbb{Z} \mid n | a \}$$
$$= n\mathbb{Z}.$$

Homomorphism Between the Polynomials and Reals

Let $S = \mathbb{R}[x]$ and $T = \mathbb{R}$. Define

$$\varphi_a: \mathbb{R}[x] \to \mathbb{R}$$

$$f \mapsto f(a)$$

Let f(x), $g(x) = \mathbb{R}[x]$. Then,

$$\varphi_{a}(f(x) + \varphi(g)(x)) = \varphi_{a}((a_{0} + b_{0}) + \dots + (a_{m} + b_{m})x^{m} + b_{m+1}x^{m+1} + \dots + b_{n}x^{n})$$

$$= (a_{0} + b_{0}) + \dots + (a_{m} + b_{m})a^{m} + b_{m+1}a^{m+1} + \dots + b_{n}a^{n}$$

$$= \varphi_{a}(f(x)) + \varphi_{a}(g(x)).$$

Similarly, we can verify that $\varphi_a(f(x)g(x)) = \varphi_a(f(x))\varphi_a(g(x))$. So, φ_a is a ring homomorphism. Note that

$$\ker(\varphi_a) = \{ f(x) \in \mathbb{R}[x] \mid f(a) = 0 \}$$
$$= \{ f(x) \in \mathbb{R}[x] \mid (x - a) \mid f(x) \}$$
$$= (x - a) \mathbb{R}[x]$$

Homomorphism between Matrices

Define

$$R = \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \in \mathsf{Mat}_2(\mathbb{R}) \right\}$$
$$S = \mathbb{R}.$$

and

$$\varphi: R \to S$$

$$\begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \mapsto a.$$

Then,

$$\begin{split} \varphi\left(\begin{bmatrix} a_1 & b_1 \\ 0 & d_1 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 \\ 0 & d_2 \end{bmatrix}\right) &= \varphi\left(\begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ 0 & d_1 + d_2 \end{bmatrix}\right) \\ &= a_1 + a_2 \\ &= \varphi\left(\begin{bmatrix} a_1 & b_1 \\ 0 & d_1 \end{bmatrix}\right) + \varphi\left(\begin{bmatrix} a_2 & b_2 \\ 0 & d_2 \end{bmatrix}\right), \end{split}$$

and

$$\varphi\left(\begin{bmatrix} a_1 & b_1 \\ 0 & d_1 \end{bmatrix} \begin{bmatrix} a_2 & b_2 \\ 0 & d_2 \end{bmatrix}\right) = \varphi\left(\begin{bmatrix} a_1 a_2 & a_1 b_2 + b_1 d_2 \\ 0 & d_1 d_2 \end{bmatrix}\right)$$

$$= a_1 a_2$$

$$= \varphi\left(\begin{bmatrix} a_1 & b_1 \\ 0 & d_1 \end{bmatrix}\right) \varphi\left(\begin{bmatrix} a_2 & b_2 \\ 0 & d_2 \end{bmatrix}\right).$$

So φ is a ring homomorphism that is surjective but not injective. Note

$$\ker(\varphi) = \left\{ \begin{bmatrix} 0 & b \\ 0 & d \end{bmatrix} \mid b, d \in \mathbb{R} \right\}.$$

Proposition: Fundamental Theorem of Ring Homomorphisms

Let $\varphi: R \to S$ be a ring homomorphism.

- (1) The image of φ , $\varphi(R) = \{s \in S \mid s = \varphi(r) \text{ for some } r \in R\}$, is a subring of S.
- (2) The kernel, $ker(\varphi)$, is a subring of R.

Additionally, for any $r \in R$, and $a \in \ker(\varphi)$, $ar \in \ker(\varphi)$ and $ra \in \ker(\varphi)$.

Proof of (2): To show $\ker(\varphi)$ is a subring, we must show that $\ker(\varphi)$ is non-empty, closed under subtraction, and closed under multiplication.

First, since $\varphi(0_R) = 0_S$ (verify this), $\ker(\varphi)$ is non-empty.

Let $a, b \in \ker(\varphi)$. We have

$$\varphi(a-b) = \varphi(a+(-b))$$

$$= \varphi(a) + \varphi(-b)$$

$$= \varphi(a) - \varphi(b)$$

$$= 0_S - 0_S$$

$$= 0_S.$$
check $\varphi(-b) = -\varphi(b)$

Thus, $a - b \in \ker(\varphi)$, and $\ker(\varphi)$ is closed under subtraction.

To show $\ker(\varphi)$ is closed under multiplication, we will prove the general case. Let $a \in \ker(\varphi)$ and $r \in R$. We have

$$\varphi(ra) = \varphi(r)\varphi(a)$$
$$= \varphi(r)0_S$$
$$= 0_S.$$

Similarly, $\varphi(ar) = 0_S$. So, $ar, ra \in \ker(\varphi)$.

The stronger condition that we found for $ker(\varphi)$ (closed under multiplication of all elements of the ring, not merely those from the subring) forms what we call an ideal.

Quotient Rings

Defining an Equivalence Relation on a Ring

Set $K = \ker(\varphi)$. We will define a relation on R, \sim , where $r_1 \sim r_2$ if $r_1 - r_2 \in K$. We want to see if \sim is an equivalence relation:

- Reflexive: $r \sim r$ since $r r = 0_R \in K$.
- Symmetric: $r_1 \sim r_2$ implies $r_1 r_2 = k$ for some $k \in K$. Since k is a subring, $-k \in K$, so $r_2 r_1 \in K$.

• Transitive: suppose $r_1 \sim r_2$ and $r_2 \sim r_3$. This means there are elements $k_1, k_2 \in K$ with $r_1 - r_2 = k_1$ and $r_2 - r_3 = k_2$. Since K is a subring, $(r_1 - r_2) + (r_2 - r_3) = r_1 - r_3 = k_1 + k_2 \in K$. Thus, $r_1 \sim r_3$.

Since \sim is reflexive, symmetric, and transitive, \sim is an equivalence relation on R.

Since \sim is an equivalence relation on R, we will want to examine equivalence classes of R under \sim . Specifically, for $r \in R$, we have

$$[r]_{K} = \{ \tilde{r} \in R \mid r - \tilde{r} \in K \}$$

$$= \{ \tilde{r} \in R \mid r - \tilde{r} = k \text{ for some } k \in K \}$$

$$= \{ r + k \mid k \in K \}$$

$$= r + K.$$

We will define the set

$$R/K = \{r + K \mid r \in R\}$$

to be the set of all equivalence classes.

Example: Let $\varphi : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, $a \mapsto [a]_n$. Then, $\ker(\varphi) = n\mathbb{Z}$. Then, $R/K = \mathbb{Z}/n\mathbb{Z}$.

Let $r_1 + K$, $r_2 + K \in R/K$. The new question is whether or not we can define addition and multiplication on R/K. Suppose that the following are the definition of multiplication and addition on R/K.

$$(r_1 + K) + (r_2 + K) = (r_1 + r_2) + K$$

 $(r_1 + K)(r_2 + K) = (r_1r_2) + K.$

Suppose $r_1 + K = \tilde{r_1} + K$ and $r_2 + K = \tilde{r_2} + K$. This means there are $k_1, k_2 \in K$ with $r_1 - \tilde{r_1} = k_1, r_2 - \tilde{r_2} = k_2$, or that $r_1 = \tilde{r_1} + k_1, r_2 = \tilde{r_2} + k_2$.

To see if the map is well-defined, we have

$$(r_1 + K) + (r_2 + K) = (r_1 + r_2) + K$$

= $(\tilde{r_1} + k_1 + \tilde{r_2} + k_2) + K$
= $(\tilde{r_1} + k_1) + K + (\tilde{r_2} + k_2) + K$
= $(\tilde{r_1} + K) + (\tilde{r_2} + K)$

since $\tilde{r}_1 + k_1 - \tilde{r}_1 = k \in K$.

Thus, our addition is well-defined.

Examining multiplication, we see that

$$(r_{1} + K)(r_{2} + K) = r_{1}r_{2} + K$$

$$= (\tilde{r}_{1} + k_{1})(\tilde{r}_{2} + k_{2}) + K$$

$$= \tilde{r}_{1}\tilde{r}_{2} + \underbrace{k_{1}\tilde{r}_{2} + \tilde{r}_{1}k_{2} + k_{1}k_{2} + K}_{\in K \text{ since } K = \ker(\varphi)}$$

$$= \tilde{r}_{1}\tilde{r}_{2} + K.$$

Therefore, our multiplication is well-defined.

We can show that R/K is a ring (verify for yourself).

Note: This construction would not have worked if K was merely a subring, as multiplication would not be well-defined.

Ideals

Let $I \subseteq R$ be a subring.

- (1) If $ra \in I$ for every $r \in R$, we say I is a left-ideal of R.
- (2) If $ar \in I$ for every $r \in R$, then we say I is a right-ideal of R.
- (3) If I is a left-ideal and a right-ideal of R, then we say I is an ideal of R.

If $I \subseteq R$ is an ideal, we define $r_1 \sim_I r_2$ if $r_1 - r_2 \in I$, and $R/I = \{r + I \mid r \in I\}$. Addition and multiplication in R/I are defined as

$$(r_1 + I) + (r_2 + I) = (r_1 + r_2) + I$$

 $(r_1 + I)(r_2 + I) = r_1r_2 + I$.

Examples of Ideals

- (1) $n\mathbb{Z} \subseteq \mathbb{Z}$ is an ideal; if $nk \in n\mathbb{Z}$, and $m \in \mathbb{Z}$, then $m(nk) = n(mk) \in n\mathbb{Z}$.
- (2) Let $R = \mathbb{Z}[x]$. Set $\langle x^2 \rangle = \{ f(x)x^2 \mid f(x) \in \mathbb{Z}[x] \}$. This is an ideal.
- (3) Let *R* be a ring. If $r \in R$, we define $\langle r \rangle = \{ar \mid a \in R\}$.
- (4) Set $I = \{(2n,0) \mid n \in \mathbb{Z}\}$ in $\mathbb{Z} \times \mathbb{Z}$. Let $(a,b) \in \mathbb{Z} \times \mathbb{Z}$. Then, $(a,b)(2n,0) = (2an,0) \in I$, meaning I is an ideal
- (5) Define $R = \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \in \operatorname{Mat}_2(\mathbb{R}) \right\}$. Consider $I = \left\{ \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} \mid a, b \in \mathbb{R} \right\}$. Then,

$$\begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \begin{bmatrix} s & 0 \\ 0 & t \end{bmatrix} = \begin{bmatrix} as & bt \\ 0 & dt \end{bmatrix}$$
$$\begin{bmatrix} s & 0 \\ 0 & t \end{bmatrix} \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} = \begin{bmatrix} sa & sb \\ 0 & td \end{bmatrix}.$$

Therefore, I is a subring but not an ideal.

(6) Let $R = \mathbb{Z}[x]$. Consider $I = \langle 2, x \rangle = \{2f(x) + g(x) \mid f(x), g(x) \in \mathbb{Z}[x]\}$. Then,

$$(2f_1(x) + xg(x))(2f_2(x) + xg_2(x)) = 2(f_1(x)(2f_2(x) + xg_2(x))) + x(g_1(x)(2f_2(x) + xg_2(x)))$$
$$h(x)(2f(x) + xg(x)) = 2(f(x)h(x)) + x(g(x)h(x)),$$

meaning I is an ideal.

Examples of Quotient Rings

- (1) Let $R = \mathbb{Z}$, $I = n\mathbb{Z}$. Then, $R/I = \mathbb{Z}/n\mathbb{Z}$.
- (2) Let $R = \mathbb{R}[x]$, $I = \langle x^2 \rangle$ as defined earlier. Then,

$$R/I = \mathbb{R}[x]/\langle x^2 \rangle$$
$$= f(x) + \langle x^2 \rangle.$$

Other examples include

$$f(x) = a_n x^n + \dots + a_1 x + a_0 \in \mathbb{R}[x]$$

$$f(x) + \langle x^2 \rangle = a_1 x + a_0 + \langle x^2 \rangle \in \mathbb{R}[x] / \langle x^2 \rangle$$

$$\mathbb{R}[x] / \langle x^2 \rangle = \{ a + bx + \langle x^2 \rangle \mid a, b \in \mathbb{R} \}.$$

$$(a + bx + \langle x^2 \rangle)(c + dx \langle x^2 \rangle) = ac + adx + bcx + bdx^2 + \langle x^2 \rangle$$

$$= (ac) + (ad + bc)x + \langle x^2 \rangle$$

$$(x + \langle x^2 \rangle)^2 = x^2 + \langle x^2 \rangle$$

$$= \langle x^2 \rangle.$$

(3) Let $R = \mathbb{Z} \times \mathbb{Z}$, $I = \{(2n, 0) \mid n \in \mathbb{Z}\}$. Then,

$$R/I = \{(a, b) + I \mid a, b \in \mathbb{Z}\}.$$

 $(a, b) + I = ([a]_2, b) + I$ where $[a]_2$ is a modulo 2.

We would expect that $\varphi: \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z} \to R/I$, ([a]₂, b) \to (a, b) + I is an isomorphism (verify for yourself).

Isomorphisms to Quotient Rings

Let
$$R = \mathbb{Z}[x]$$
, $I = \langle 2, x \rangle$, $J = \langle 2 \rangle = \{2f(x) \mid f(x) \in \mathbb{Z}[x]\}$.

$$R/J = \{ f(x) + \langle 2 \rangle \mid f(x) \in \mathbb{Z}[x] \}$$
$$f(x) + \langle 2 \rangle = g(x) + \langle 2 \rangle$$

if 2|(f(x)-g(x)), meaning all coefficients of f(x)-g(x) are divisible by 2. Therefore,

$$f(x) + \langle 2 \rangle = 5 + 4x + 7x^{2} - 5x^{3} \langle 2 \rangle$$

$$= (1 + (2)(2)) + 2(2x) + x^{2} + 2(3x^{2}) - x^{3} - 2(2x^{3}) + \langle 2 \rangle$$

$$= 1 + x^{2} - x^{3} + \langle 2 \rangle$$

$$= 1 + x^{2} - 2(x^{3}) + x^{3} + \langle 2 \rangle$$

$$= 1 + x^{2} + x^{3} + \langle 2 \rangle$$

$$= 1 + x^{2} + x^{3} + \langle 2 \rangle$$

$$(1 + x + x^{2} + \langle 2 \rangle) + (x + \langle 2 \rangle) = 1 + 2x + x^{2} + \langle 2 \rangle$$

$$= 1 + x^{2} + \langle 2 \rangle$$

Therefore, we can consider

$$\mathbb{Z}[x]/\langle 2 \rangle = \mathbb{Z}[x]/2\mathbb{Z}[x]$$

 $\cong \mathbb{Z}/2\mathbb{Z}.$

$$R/I = \mathbb{Z}[x]/\langle 2, x \rangle$$

$$f(x) + \langle 2, x \rangle = a_n x^n + \dots + a_1 x + a_0 + \langle 2, x \rangle$$

$$= a_0 + \langle 2, x \rangle$$

$$= \begin{cases} 0 & 2|a_0 \\ 1 & 2 \not|a_0 \end{cases},$$

So, we can consider

$$\mathbb{Z}[x]/\langle 2, x \rangle \cong \mathbb{Z}/2\mathbb{Z}.$$

Isomorphism Example: Complex Numbers to Matrices

Consider the set

$$R = \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \in \mathsf{Mat}_2(\mathbb{R}) \right\}.$$

We can verify that R is a ring.

Define

$$\varphi: \mathbb{C} \to R$$

$$a + bi \mapsto \begin{bmatrix} a & b \\ -b & a \end{bmatrix}.$$

We can verify that φ is a bijective map.

Let a + bi, $c + di \in \mathbb{C}$. Then,

$$\varphi((a+bi)+(c+di)) = \varphi((a+c)+(b+d)i)| = \begin{bmatrix} a+c & b+d \\ -(b+d) & a+c \end{bmatrix}$$

$$= \begin{bmatrix} a & b \\ -b & a \end{bmatrix} + \begin{bmatrix} c & d \\ -d & c \end{bmatrix}$$

$$= \varphi(a+bi) + \varphi(c+di),$$

and

$$\varphi((a+bi)(c+di)) = \varphi((ac-bd) + (ad+bc)i)$$

$$= \begin{bmatrix} ac-bd & ad+bc \\ -(ad+bc) & ac-bd \end{bmatrix}$$

$$\varphi(a+bi)\varphi(c+di) = \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \begin{bmatrix} c & d \\ -d & c \end{bmatrix}$$

$$= \begin{bmatrix} ac-bd & ad+bc \\ -(ad+bc) & ac-bd \end{bmatrix}.$$

Therefore, $\mathbb{C} \cong R$.