	X	1	What is claimed is:
_	<u> </u>	8	
6	NID	1	1. A spatial light modulator comprising:
7		3/	a multi-pixel display array; and
(り /	3	a multi-pixel memory array having pixel storage cells;
		4	wherein at least some pixels of the multi-pixel memory array are disposed outside
	/	5	the display array.
	•	1	2. The spatial light modulator of claim 1 wherein all of the pixels of the
		2	memory array are disposed outside the display array.
		1	3. The spatial light modulator of claim 1 further comprising:
E	<u>i</u>	2	at least one local pulse width modulation drive circuit coupled to at least one of
]]	3	the pixel storage cells.
100	O	4	a global counter coupled to the local pulse width modulation drive circuit.
	j	1	4. The spatial light modulator of claim 3 wherein:
ii.	∔ 5 c	2	the display pixels of the multi-pixel display array comprise first display pixels of
T)		. 3	a first color, and second display pixels of a second color;
		4	the global counter includes,
1	j	5	a first global counter coupled to the local pulse width modulation drive
	1	6	circuits of the first display pixels, and

		a second global counter coupled to the local pulse width modulation drive
	circuit	s of the second display pixels.
	5.	The apparatus of claim 4 wherein:
	the dis	play pixels of the multi-pixel display array further comprise third pixels of
a third	colør.	
	Ø.	The apparatus of claim 5 wherein:

the global counter further includes,

3	a third global counter coupled to the local pulse width modulation drive circuits of
4	the third display pixels.
1	7. The apparatus of claim 3 wherein:
2	the multi-pixel display array includes display pixels of at least two different
3	colors; and
4	the global counter is adapted to count up to two respective different values and is
5	switcheably coupled to the respective different color display pixels to provide global
6	counter values to their local pulse width modulation drive circuits in a time-slice manner.
1	8. The apparatus of claim 7 wherein:
2	the multi-pixel display array includes display pixels of three different colors.
1	9. The apparatus of claim 8 wherein
2	the three colors are Red, Green, and Blue.
1	10. A spatial light modulator comprising:
2	control logic;
3	a pixel memory array coupled to the control logic and occupying a first area of the
4	spatial light modulator; and
5	a pixel display array coupled to the control logic and the pixel memory array, and
6	occupying a second area of the spatial light modulator, wherein the first and second areas
7	are substantially non-overlapping.
1	11. The spatial light modulator of claim 10 wherein:
2	the pixel display array comprises a plurality of pixel display cells, each having
3	disposed within its area an associated pulse width modulation driver circuit; and
4	the pixel memory array comprises a plurality of pixel memory cells.
1	12. The spatial light modulator of claim 11 wherein:
2	the control logic comprises a counter for providing a count value;

3	the pulse width modulation driver circuit comprises a comparator coupled to
4	compare the count value to a pixel value stored in an associated pixel array cell of the
5	pixel memory array.
1	13. The spatial light modulator of claim 12 further comprising:
2	means for providing non-linearity in the pulse width modulation.
1	14. The spatial light modulator of claim 11 wherein the pixel memory array
2	comprises:
3	more memory cells than the pixel display array has pixel display cells; and
4	means for providing redundancy in the pixel memory array.
1	20. A method of manufacturing a light modulator, the method comprising:
2	constructing, in a first area of the light modulator, a pixel display array including
3	multiple display pixels; and .
4	constructing, in a second area of the light modulator that is substantially
5	non-overlapping with the first area, a pixel memory array including multiple pixel storage
6	cells.
1	The method of claim 20 further comprising:
2	constructing, within each of a plurality of the display pixels, a pulse width
3	modulation driver circuit.
1	22.\\\rightarrow The method of claim 21 further comprising:
2	constructing a counter having an output coupled to each of the plurality of display
3	pixels;
4	constructing, within each of the pulse width modulation driver circuits, a
5	comparator having a first input coupled to the output of the counter and a second input
6	coupled to receive a pixel data value from the pixel memory array.
1	23. \ The method of claim 22 wherein constructing the comparator comprises:

	1
2	configuring the comparator to determine whether the pixel data value is
3	greater-than-or-equal-to the counter output.
1	24. The method of claim 23 further comprising.
2	constructing a lookup table to provide non-linear response in the pulse width
3	modulation.
1	25. The method of claim 24 performed in an order as recited.
1	A method of operating a light modulator, the method comprising, for each
2	respective pixel cell in a plurality of pixel cells in a pixel display array:
3	performing a digital function on a pixel data value and a present counter value to
4	generate one of a first result or a second result; and
5	in response to the first result, activating the pixel cell;
6	in response to the second result, deaptivating the pixel cell.
1	The method of claim 30 wherein:
2	the digital function comprises a comparison.
1	The method of claim 30 further comprising, over time:
2	incrementing the counter value from 0 to N-1, wherein N is a number of bits of
3	color depth represented in the pixel daya value; and then
4	wrapping back to 0.
1	33. The method of claim 30 further comprising:
2	detecting that a pixel memory cell in a pixel memory array is not operating
3	correctly; and, responsively
4	logically replacing that pixel memory cell with a redundant memory cell.
1	34. The method of claim 30 further comprising:
2	performing non-linear pulse width modulation.
1	The method of claim 30 wherein:
2	the digital function is performed outside the pixel cell.

1	36. The method of claim 30 wherein:
2	the digital function comprises using the present counter value to index into a
3	lookup table.
1	A0. A display device comprising:
2	a display including a first plurality of pixel display cells;
3	each of the first plurality of pixel display cells including,
4	(1) an electrode,
5	(2) a phase modulation driver circuit coupled to drive the electrode, and
6	including,
7	(A) a comparator coupled to receive a counter value and a pixel
8	value from outside the pixel display cell, and
9	(B) no multi-bit pixel value storage.
1	The display device of claim 40 wherein the display further includes:
2	a second plurality of pixel display cells, each of which includes,
3	(1) an electrode,
4	(2) a phase modulation drive circuit coupled to drive the electrode, and
5	including,
6	(A) a multi-bit pixel value storage, and
7	(B) a comparator coupled to receive a counter value, and coupled
8	to receive a value stored by the multi-bit pixel value storage.
1	42. The display device of plaim 41 wherein the second plurality of pixel
2	display cells each further includes:
3	(C) a second/multi-bit pixel value storage coupled to provide the
4	pixel value to a comparator in the phase modulation driver circuit of one
5	of the first plurality of pixel display cells.

1	43.3 \ The display device of claim 40 wherein the display device is a silicon ligh
2	modulator.
1	44.32 The display device of claim 40 wherein the display device is a liquid
2	crystal display.
1	The display device of claim 40 wherein the display device is a plasma
2	display panel.
1	50.3 A projection device comprising:
2	a polarization beam splitter; and
3	a first light modulator coupled in optical contact with the polarization beam
4	splitter, the first light modulator including,
5	a first pixel display array in a first region of the first light modulator, and
6	a first pixel memory array in a second region substantially not overlapping
7	the first region of the first light modulator, such that at least a plurality of pixel
8	memory cells of the first pixel memory array lie outside the first region of the firs
9	light modulator.
1	51-36 The projection device of claim 50 further comprising:
2	a second light modulator coupled in optical contact with the polarization beam
3	splitter, the second light modulator including,
4	a second pixel display array in a first region of the second light modulator
5	and
6	a second pixel memory array in a second region substantially not overlapping the first
7	region of the second light modulator, such that at least a plurality of pixel memory cells
8	of the second pixel memory array lie outside the first region of the second light
9	modulator.
1	60.3 A spatial light modulator comprising:
2	a display array having display pixels; and

3	a memory array having pixel value storage cells each associated with a
4	corresponding one of the display pixels, wherein at least some of the storage cells are
5	located outside the display array.
1	The spatial light modulator of claim 60 wherein:
2	all of the storage cells are located outside the display array.
1	62.38 The spatial light modulator of claim 60/further comprising:
2	at least one comparator coupled to compare a counter value against a pixel value
3	from one of the pixel storage cells.
1	63.3 The spatial light modulator of claim 62 wherein:
2	the at least one comparator comprises a plurality of comparators, each uniquely
3	associated with a respective one of the pixel value storage cells.
1	64.40 The spatial light modulator of claim 62 wherein:
2	the at least one comparator comprises a plurality of comparators, each uniquely
3	associated with a respective group of the pixel value storage cells.
1	65. The spatial light modulator of claim 63 wherein:
2	each respective group of the pixel value storage cells comprises one of a row and
3	a column of the pixel value storage cells, and
4	each of the plurality of comparators is configured for time slice multiplexing
5	comparisons of the counter value against respective values stored in the individual ones
6	of its associated row or column of pixel value storage cells.
1	66.4 The spatial light modulator of claim 62 wherein:
2	the at least one comparator comprises exactly one comparator, which is
3	configured for time slice multiplexing comparisons of the counter value against each of
4	the pixel value storage cells.
1	67.4.3 The spatial light modulator of claim 62 wherein:
2	the at least one comparator is disposed outside the display array.

1	70. 44 An article of manufacture comprising:
2	a machine-accessible medium including data that, when accessed by a machine
3	system, cause the machine system to construct the apparatus of claim 10 as a monolithic
4	integrated circuit device.
1	The article of manufacture of claim 70 wherein the machine-accessible
2	medium further includes data that, when accessed by the machine system, cause the
3	machine system to construct the apparatus of claim 13 as a monolithic integrated circuit
4	device.
1	80. An article of manufacture comprising:
2	a machine-accessible medium including data that, when accessed by a machine
3	system, cause the machine system to perform the method of claim 30.
1	8197 The article of manufacture of claim 80 wherein the machine-accessible
2	medium further includes data that, when accessed by the machine system, cause the
3	machine system to perform the method of claim 31.