(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 14. Juli 2005 (14.07.2005)

PCT

(10) Internationale Veröffentlichungsnummer $WO\ 2005/063733\ A1$

- (51) Internationale Patentklassifikation⁷: C07D 323/06
- (21) Internationales Aktenzeichen: PCT/EP2004/014535
- (22) Internationales Anmeldedatum:

21. Dezember 2004 (21.12.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

103 61 516.4 23. Dezember 2003 (23.12.2003) D

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]; ., 67056 Ludwigshafen (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): SIEGERT, Markus [DE/DE]; Brechtelstr. 14, 69126 Heidelberg (DE). LANG, Neven [DE/DE]; Dürerstr. 16, 68163 Mannheim (DE). STROEFER, Eckhard [DE/DE]; Karl-Kuntz-Weg 9, 68163 Mannheim (DE). STAMMER, Achim [DE/DE]; Buttstädter Str. 6, 67251 Freinsheim (DE). FRIESE, Thorsten [DE/DE]; Haardtstr. 20, 68163 Mannheim (DE). HASSE, Hans [DE/DE]; Schlehweg 25a, 67661 Kaiserslautern (DE).
- (74) Anwalt: ISENBRUCK, Günter; Isenbruck, Bösl, Hörschler, Wichmann, Huhn, Theodor-Heuss-Anlage 12, 68165 Mannheim (DE).

[Fortsetzung auf der nächsten Seite]

- (54) Title: METHOD FOR SEPARATING TRIOXANE FROM A TRIOXANE/FORMALDEHYDE/WATER MIXTURE BY MEANS OF PRESSURE CHANGE RECTIFICATION
- (54) Bezeichnung: VERFAHREN ZUR ABTRENNUNG VON TRIOXAN AUS EINEM TRIOXAN/FORMALDEHYD/WASSER-GEMISCH MITTELS DRUCKWECHSEL-REKTIFIKATION
- (57) Abstract: The invention relates to a method for separating trioxane from an inlet flow (I) consisting of formaldehyde, trioxane and water. Said method consists in a) preparing an inlet flow (I), which contains formaldehyde as the main component and trioxane and water as auxiliary components, b) mixing the inlet flow (I) with a return flow (VII) containing trioxane as the main component and formaldehyde and water as auxiliary components. An inlet flow (Ia), which contains formaldehyde as the main component and trioxane and water as the auxiliary components, is obtained. Said method also consists in c) distilling the inlet flow (Ia) in a first distillation step at a pressure of between 0.1 2.5 bars, thus enabling a flow (II), which contains formaldehyde as the main component and water as the auxiliary component, and a flow (III), which contains trioxane as the main component and water and formaldehyde as the auxiliary components, to be obtained, d) distilling the flow (III), optionally after separating materials at a low-boiling point from the flow (III) in a low-boiling separation step and in a second distillation step at a pressure of between 0.2 17.5 bars, whereby the pressure in the second distillation step is 0.1 - 15 bars higher than the pressure in the first distillation step. A flow (IV) is obtained which is essentially made of trioxane, and also a flow V which contains trioxane as the main component and water and formaldehyde as the auxiliary components, e) optionally mixing the flow (V) with a flow (IX), which contains water as the main component, in order to obtain a flow (Va) having a higher water content than flow (V), whereby flow (Va) contains trioxane as the main component and water and formaldehyde as the auxiliary components, f) distilling the flow (V) and/or flow (Va) in a third in distillation step at a pressure of between 1 - 10 bars, whereby a flow (VI), which is essentially made of water, and the return flow (VII), which contains trioxane as the main component and water and formaldehyde as the auxiliary components, are obtained.
- (57) Zusammenfassung: Verfahren zur Abtrennung von Trioxan aus einem Einsatzstrom (I) aus Formaldehyd, Trioxan und Wasser, bei dem a) ein Einsatzstrom (I), der als Hauptkomponente Formaldehyd und als Nebenkomponenten Trioxan und Wasser enthält, bereitgestellt wird, b) der Einsatzstrom (I) mit einem Rückführstrom (VII), der als Hauptkomponente Trioxan und als Nebenkomponenten Formaldehyd und Wasser enthält, gemischt wird, wobei ein Einsatzstrom (Ia), der als Hauptkomponente Formaldehyd und als Nebenkomponenten Trioxan und Wasser enthält, erhalten wird, c) der Einsatzstrom (Ia) in einer ersten Destillationsstufe bei einem Druck von 0,1 bis 2,5 bar destilliert wird, wobei ein Strom (II), der als Hauptkomponente Formaldehyd und als Nebenkomponente Wasser enthält, und ein Strom (III), der als Hauptkomponente Trioxan und als Nebenkomponenten Wasser und Formaldehyd enthält, erhalten werden, d) der Strom (III), gegebenenfalls nach Abtrennung von Leichtsiedern aus dem Strom (III) in einer Leichtsieder-Abtrennstufe, in einer zweiten Destillationsstufe bei einem Druck von 0,2 bis 17,5 bar destilliert wird, wobei der Druck in der zweiten Destillationsstufe um 0,1 bis 15 bar höher als der Druck in der ersten Destillationsstufe ist, wobei ein Strom (IV), der im wesentlichen aus Trioxan besteht, und ein Strom (V), der als Hauptkomponente Trioxan und als Nebenkomponenten Wasser und Formaldehyd enthält, erhalten wird, e) gegebenenfalls der Strom (V) mit einem Strom (IX), der als Hauptkomponente Trioxan und als Nebenkomponenten Trioxan und als Nebenkomponenten Wasser enthält, gemischt wird, wobei ein Strom Va mit höherem Wassergehalt als Strom (V), wobei der Strom (Va) als Hauptkomponenten Trioxan und als Nebenkomponenten Wasser und Formaldehyd enthält, erhalten wird, f) der Strom

WO 2005/063733 A1

- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU,

ZW.

TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der f\u00fcr \u00e4nderungen der Anspr\u00fcche geltenden Frist; Ver\u00f6ffentlichung wird wiederholt, falls \u00e4nderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(V) bzw. (Va) in einer dritten Destillationsstufe bei einem Druck von 1 bis 10 bar destilliert wird, wobei ein Strom (VI), der im wesentlichen aus Wasser besteht, und der Rückführstrom (VII), der als Hauptkomponente Trioxan und als Nebenkomponenten Wasser und Formaldehyd enthält, erhalten werden.

WO 2005/063733 PCT/EP2004/014535

Verfahren zur Abtrennung von Trioxan aus einem Trioxan/Formaldehyd/Wasser-Gemisch mittels Druckwechsel-Rektifikation

Die Erfindung betrifft ein Verfahren zur Abtrennung von Trioxan aus einem Trioxan/Formaldehyd/Wasser-Gemisch sowie ein Verfahren zur Herstellung von Trioxan.

5

)

- Trioxan wird in der Regel durch Destillation von wässriger Formaldehydlösung in Gegenwart saurer Katalysatoren hergestellt. Dem Formaldehyd und Wasser enthaltenden Destillat wird anschließend das Trioxan durch Extraktion mit halogenierten Kohlenwasserstoffen, wie Methylenchlorid oder 1,2-Dichlorethan, oder anderen, mit Wasser nicht mischbaren Lösungsmitteln entzogen.
- DE-A 1 668 867 beschreibt ein Verfahren zur Abtrennung von Trioxan aus Wasser, For-5 maldehyd und Trioxan enthaltenen Gemischen durch Extraktion mit einem organischen Lösungsmittel. Dabei wird eine aus zwei Teilstrecken bestehende Extraktionsstrecke an einem Ende mit einem üblichen organischen, mit Wasser praktisch nicht mischbaren Extraktionsmittel für Trioxan beschickt, am anderen Ende mit Wasser. Zwischen den beiden Teilstrecken wird das zu trennende Destillat der Trioxan-Synthese zuführt. Auf der Seite der) Lösungsmittelzuführung wird dann eine wässrige Formaldehydlösung und auf der Seite der Wasserzuführung eine praktisch formaldehydfreie Lösung von Trioxan in dem Lösungsmittel erhalten. In einem Beispiel wird das bei der Trioxan-Synthese entstandene Destillat aus 40 Gew.-% Wasser, 35 Gew.-% Trioxan und 25 Gew.-% Formaldehyd in den Mittelteil einer Pulsationskolonne eindosiert, am oberen Kolonnenende Methylenchlorid und am unte-5 ren Kolonnenende Wasser zugeführt. Dabei wird am unteren Kolonnenende eine etwa 25 gew.-%ige Lösung von Trioxan in Methylenchlorid und am oberen Kolonnenende eine etwa 30 gew.-%ige wässrige Formaldehydlösung erhalten.
- Nachteil dieser Verfahrensweise ist der Anfall an Extraktionsmittel, welches aufgereinigt werden muss. Bei den verwendeten Extraktionsmitteln handelt es sich zum Teil um Gefahrenstoffe (T oder T⁺-Stoffe im Sinne der deutschen Gefahrenstoffverordnung), deren Handhabung besondere Vorsichtsmaßnahmen erfordert.
- 5 DE-A 197 32 291 beschreibt ein Verfahren zur Abtrennung von Trioxan aus einem wässrigen Gemisch, das im Wesentlichen aus Trioxan, Wasser und Formaldehyd besteht, bei dem man dem Gemisch Trioxan durch Pervaporation entzieht und das an Trioxan angereicherte Permeat durch Rektifikation in Trioxan und ein azeotropes Gemisch aus Trioxan, Wasser

und Formaldehyd trennt. In dem Beispiel wird ein wässriges Gemisch bestehend aus 40 Gew.-% Trioxan, 40 Gew.-% Wasser und 20 Gew.-% Formaldehyd in einer ersten Destillationskolonne unter Normaldruck in ein Wasser/Formaldehyd-Gemisch und in ein azeotropes Trioxan/Wasser/Formaldehyd-Gemisch getrennt. Das azeotrope Gemisch wird in eine Pervaporationseinheit geleitet, welche eine Membran aus Polydimethylsiloxan mit einem hydrophoben Zeolithen enthält. Das mit Trioxan angereicherte Gemisch wird in einer zweiten Destillationskolonne unter Normaldruck in Trioxan und wiederum in ein azeotropes Gemisch aus Trioxan, Wasser und Formaldehyd aufgetrennt. Dieses azeotrope Gemisch wird vor die Pervaporationsstufe zurückgeführt.

5

)

0

Nachteilig an dieser Verfahrensweise sind die sehr hohen Investitionen für die Pervaporationseinheit.

Aufgabe der Erfindung ist es, ein Verfahren zur Abtrennung von Trioxan aus azeotropen 5 Trioxan/Formaldehyd/Wasser-Gemischen bereitzustellen, welches ohne die Extraktionsschritte oder Pervaporationsschritte des Standes der Technik auskommt.

Gelöst wird diese Aufgabe durch ein Verfahren zur Abtrennung von Trioxan aus einem Einsatzstrom I aus Formaldehyd, Trioxan und Wasser, bei dem

- a) ein Einsatzstrom I, der als Hauptkomponente Formaldehyd und als Nebenkomponenten Trioxan und Wasser enthält, bereitgestellt wird,
- b) der Einsatzstrom I mit einem Rückführstrom VII, der als Hauptkomponente Trioxan und als Nebenkomponenten Formaldehyd und Wasser enthält, gemischt wird, wobei ein Einsatzstrom Ia, der als Hauptkomponente Formaldehyd und als Nebenkomponenten Trioxan und Wasser enthält, erhalten wird,
- c) der Einsatzstrom Ia in einer ersten Destillationsstufe bei einem Druck von 0,1 bis 2,5 bar destilliert wird, wobei ein Strom II, der als Hauptkomponente Formaldehyd und als Nebenkomponente Wasser enthält, und ein Strom III, der als Hauptkomponente Trioxan und als Nebenkomponenten Wasser und Formaldehyd enthält, erhalten werden,
- der Strom III, gegebenenfalls nach Abtrennung von Leichtsiedern aus dem Strom III in einer Leichtsieder-Abtrennstufe, in einer zweiten Destillationsstufe bei einem Druck von 0,2 bis 17,5 bar destilliert wird, wobei der Druck in der zweiten Destilla-

WO 2005/063733 PCT/EP2004/014535 - 3 -

tionsstufe um 0,1 bis 15 bar höher als der Druck in der ersten Destillationsstufe ist, wobei ein Strom IV, der im wesentlichen aus Trioxan besteht, und ein Strom V, der als Hauptkomponente Trioxan und als Nebenkomponenten Wasser und Formaldehyd enthält, erhalten wird,

5

e) gegebenenfalls der Strom V mit einem Strom IX, der als Hauptkomponente Wasser enthält, gemischt wird, wobei ein Strom Va mit höherem Wassergehalt als Strom V, wobei der Strom Va als Hauptkomponenten Trioxan und als Nebenkomponenten Wasser und Formaldehyd enthält, erhalten wird,

0

f) der Strom V bzw. Va in einer dritten Destillationsstufe bei einem Druck von 1 bis 10 bar destilliert wird, wobei ein Strom VI, der im wesentlichen aus Wasser besteht, und der Rückführstrom VII, der als Hauptkomponente Trioxan und als Nebenkomponenten Wasser und Formaldehyd enthält, erhalten werden.

5

5

0

5

Die Hauptkomponente ist die Komponente mit dem größeren bzw. größten Massenanteil an dem betreffenden Gemisch. Vorzugsweise beträgt der Massenanteil der Hauptkomponente an dem jeweiligen Gemisch mindestens 50 Gew.-%.

Es ist bekannt, dass Trioxan, Formaldehyd und Wasser ein ternäres Azeotrop bilden, welches bei einem Druck von 1 bar die Zusammensetzung 69,5 Gew.-% Trioxan, 5,4 Gew.-% Formaldehyd und 25,1 Gew.-% Wasser aufweist.

Erfindungsgemäß wird dieses Azeotrop durch Druckwechseldestillation umgangen, bei dem eine erste und eine zweite Destillation bei verschiedenen Drücken durchgeführt werden. In einer ersten Destillationskolonne, welche bei niedrigerem Druck betrieben wird, wird das Ausgangsgemisch Ia in ein Trioxan/Wasser-Gemisch mit geringem Formaldehyd-Gehalt III und ein im Wesentlichen trioxanfreies Formaldehyd/Wasser-Gemisch II aufgetrennt. Das Formaldehyd/Wasser-Gemisch II kann in die Trioxan-Synthese zurückgeführt werden. In einer zweiten, bei höherem Druck betriebenen Destillationskolonne wird das erhaltene Trioein Trioxan/Formaldehyd/Wasser-Gemisch Ш in reines Trioxan und xan/Formaldehyd/Wasser-Gemisch V mit niedrigerem Trioxan-Gehalt aufgetrennt. Erfindungsgemäß wird weiterhin das Trioxan/Formaldehyd/Wasser-Gemisch V (bzw. Va) in einer dritten Destillationskolonne in im Wesentlichen reines Wasser VI und ein Trioxan/Formaldehyd/Wasser-Gemisch mit höherem Trioxan-Gehalt VII aufgetrennt. Dieses wird vor die erste Destillationskolonne zurückgeführt. Vorzugsweise wird der Wassergehalt des Gemischs V vor der Abtrennung von Wasser in der dritten Destillationskolonne durch Zumischung eines wasserhaltigen Stroms IX erhöht.

Als Destillationskolonnen sind beliebige Destillationskolonnen wie Packungs- und Bodenkolonnen geeignet. Diese können beliebige Einbauten, Packungen oder Füllkörperschüttungen enthalten.

Der Druck in der zweiten Destillationsstufe ist um 0,1 bis 15 bar höher als der Druck in der ersten Destillationsstufe. Vorzugsweise beträgt diese Druckdifferenz 1,0 bis 10 bar, besonders bevorzugt 1,5 bis 5 bar.

Alle Druckangaben beziehen sich auf den Druck am Kopf der jeweiligen Kolonne.

Э

5

Die erste Destillationsstufe wird bei einem Druck von 0,1 bis 2,5 bar, vorzugsweise 0,5 bis 2,0 bar durchgeführt. Die erste Destillationsstufe wird im Allgemeinen in einer Destillationskolonne mit mindestens 2, vorzugsweise 2 bis 50, besonders bevorzugt 4 bis 25 theoretischen Stufen durchgeführt. Im Allgemeinen umfasst der Abtriebsteil dieser Kolonne mindestens 25 %, vorzugsweise 50 bis 90 % der theoretischen Stufen dieser Kolonne.

- Der Einspeisungsstrom Ia enthält im Allgemeinen 55 bis 85 Gew.-% Formaldehyd, 15 bis 35 Gew.-% Wasser und 1,0 bis 30 Gew.-% Trioxan. Dieser Strom Ia wird in einen Strom II, der vorzugsweise am Kolonnenkopf abgezogen wird, und ein Strom III, der vorzugsweise am Kolonnensumpf abgezogen wird, aufgetrennt.
- Der Strom II enthält im Allgemeinen weniger als 1 Gew.-%, bevorzugt weniger als 0,1 Gew.-% Trioxan, besonders bevorzugt weniger als 0,01 Gew.-% Trioxan. Beispielsweise setzt sich der Strom II wie folgt zusammen: 65 bis 85 Gew.-% Formaldehyd, 15 bis 35 Gew.-% Wasser und 0 bis 1 Gew.-% Trioxan. Der Strom III enthält im Allgemeinen mehr als 50 Gew.-%, vorzugsweise mehr als 60 Gew.-%, besonders bevorzugt mehr als 70 Gew.-% Trioxan. Beispielsweise setzt sich der Strom III wie folgt zusammen: 3 bis 20 Gew.-% Formaldehyd, 10 bis 30 Gew.-% Wasser und 60 bis 80 Gew.-% Trioxan.

Der Strom II wird vorzugsweise in die Trioxan-Synthese zurückgeführt.

Die Ströme Ia, III, V, Va und VII können noch bis zu 15 Gew.-% Leichtsieder enthalten. Übliche Leichtsieder, die bei der Trioxan-Synthese und der nachfolgenden destillativen Trennung gebildet werden können, sind Methylformiat, Methylal, Dimethoxydimethylether,

WO 2005/063733 PCT/EP2004/014535 - 5 -

Trimethoxydimethylether, Methanol, Ameisensäure sowie weitere Halb- und Vollacetale. Zur Abtrennung dieser Leichtsieder kann optional zwischen der ersten und der zweiten Destillationsstufe eine Leichtsieder-Abtrennstufe durchgeführt werden. Dabei werden die Leichtsieder vorzugsweise über den Kopf einer Leichtsieder-Abtrennkolonne, welche im Allgemeinen bei einem Druck von 0,1 bis 5 bar, vorzugsweise bei einem Druck von 1,0 bis 2.5 bar betrieben wird, abgetrennt. Im Allgemeinen weist die Leichtsieder-Abtrennkolonne mindestens 2 theoretische Stufen, vorzugsweise 15 bis 50 theoretische Stufen auf. Im Allgemeinen umfasst der Abtriebsteil dieser Kolonne 25 bis 90 %, vorzugsweise 50 bis 75 % der theoretischen Stufen dieser Kolonne. Der Gehalt der gegenüber Trioxan leichter siedenden Komponenten im Sumpfaustrag der Leichtsieder-Abtrennkolonne beträgt im Allgemeinen weniger als 5 Gew.-%, bevorzugt weniger als 2,5 Gew.-%, besonders bevorzugt weniger als 1,5 Gew.-%.

Im Allgemeinen wird eine Leichtsieder-Abtrennung durchgeführt.

5

0

5

0

Der Strom III wird in einer zweiten Destillationsstufe bei einem Druck von 0,2 bis 17,5 bar in einen Strom IV aus im Wesentlichen reinem Trioxan und einen Strom V, der als Hauptkomponente Trioxan und daneben Wasser und Formaldehyd enthält, aufgetrennt. Diese zweite Destillationsstufe wird vorzugsweise bei 2,5 bis 10 bar durchgeführt. Im Allgemeinen wird diese zweite Destillationsstufe in einer Destillationskolonne mit mindestens 2 theoretischen Böden, vorzugsweise 10 bis 50 theoretischen Böden, durchgeführt, wobei der Strom IV als Sumpfabzugsstrom oder als Seitenabzugsstrom im Abtriebsteil der Kolonne anfällt und der Strom V als Kopfabzugsstrom anfällt. Im Allgemeinen umfasst der Abtriebsteil dieser Destillationskolonne 25 bis 90 %, vorzugsweise 50 bis 75 % der theoretischen Stufen dieser Kolonne.

5

Im Allgemeinen enthält der Strom IV 95 bis 100 Gew.-%, vorzugsweise 99 bis 100 Gew.-% Trioxan und 0 bis 5 Gew.-%, vorzugsweise 0 bis 1 Gew.-% Wasser und Nebenkomponenten. Nebenkomponenten sind insbesondere die oben genannten Leichtsieder, aber auch höher als Trioxan siedende Komponenten. Besonders bevorzugt ist der Gehalt an Wasser und Nebenkomponenten im Trioxan-Strom IV < 0,1 %. Er kann sogar < 0,01 % sein. Der Strom V enthält beispielsweise 5 bis 20 Gew.-% Formaldehyd, 15 bis 35 Gew.-% Wasser und 50 bis 75 Gew.-% Trioxan.

5

0

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird dem Strom V vor Durchführung des dritten Destillationsschrittes ein wasserhaltiger Strom IX zugemischt, wobei ein Strom Va resultiert, der einen höheren Wassergehalt als der Strom V aufweist. Im Allgemeinen enthält der Strom Va 25 bis 100 Gew.-% Wasser. Beispielsweise enthält der Strom Va 5 bis 20 Gew.-% Formaldehyd, 25 bis 45 Gew.-% Wasser und 40 bis 65 Gew.-% Trioxan.

Der Strom V bzw. Va wird in einer dritten Destillationsstufe bei einem Druck von 1 bis 10 bar in einen Strom VI, der im Wesentlichen aus Wasser besteht, und einen Rückführstrom VII, der als Hauptkomponente Trioxan und daneben Wasser und Formaldehyd enthält, aufgetrennt. Vorzugsweise wird die dritte Destillationsstufe bei einem Druck von 2,5 bis 5 durchgeführt. Im Allgemeinen wird die dritte Destillationsstufe in einer Destillationskolonne mit mindestens 2 theoretischen Böden, vorzugsweise 10 bis 50 theoretischen Böden, durchgeführt, wobei der Wasserstrom VI als Sumpfabzugsstrom oder als Seitenabzugsstrom im Abtriebsteil der Kolonne und der Rückführstrom VII als Kopfabzugsstrom erhalten werden. Der Abtriebsteil dieser Kolonne umfasst im Allgemeinen 25 bis 95 %, vorzugsweise 70 bis 90 % der theoretischen Stufen dieser Kolonne.

Eine bevorzugte Destillationskolonne für die dritte Destillationsstufe ist eine Trennwandkolonne, wie sie beispielsweise in US 2,471,134, US 4,230,533, EP-A 0 122 367, EP-A 0 126 288 und EP-A 0 133 510 beschrieben ist.

5

5

0

5

O Der Wasserstrom VI besteht vorzugsweise zu mehr als 95 Gew.-%, besonders bevorzugt zu mehr als 99 Gew.-% aus Wasser. Beispielsweise enthält der Strom VI 99 bis 100 Gew.-% Wasser und 0 bis 1 Gew.-% Formaldehyd.

Der Strom VII enthält beispielsweise 5 bis 40 Gew.-% Formaldehyd, 5 bis 40 Gew.-% Wasser und 50 bis 80 Gew.-% Trioxan.

Der Strom VII kann teilweise oder vollständig vor die erste Destillationsstufe zurückgeführt werden, vorzugsweise wird er im Wesentlichen vollständig vor die erste Destillationsstufe zurückgeführt. Dabei wird er mit dem Einsatzstrom I gemischt.

Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur Herstellung von Trioxan aus einer wässrigen Formaldehydlösung, bei dem der Formaldehyd, Trioxan und Wasser enthaltende Einsatzstrom I in einer vorgelagerten Trioxan-Synthesestufe aus einer wässrigen Formaldehydlösung hergestellt wird und anschließend aus dem Strom I wie vorstehend beschrieben Trioxan abgetrennt wird.

WO 2005/063733 PCT/EP2004/014535

Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur Herstellung von Trioxan aus einer wässrigen Formaldehydlösung, bei dem der Formaldehyd, Trioxan und Wasser enthaltende Einsatzstrom I in einer vorgelagerten Trioxan-Synthesestufe aus einer wässrigen Formaldehydlösung hergestellt wird und anschließend aus dem Strom I wie vorstehend beschrieben Trioxan abgetrennt wird. Alternativ dazu können die Trioxansynthese und die erste Destillationsstufe in einer Reaktivdestillation vereinigt werden.

In einer Ausführungsform des erfindungsgemäßen Verfahrens wird ein Strom X aus einer wässrigen Formaldehydlösung einer vorgelagerten Trioxan-Synthesestufe zugeführt und in Gegenwart saurer homogen oder heterogen vorliegender Katalysatoren wie Ionenaustauscherharze, Zeolithe, Schwefelsäure und p-Toluolsulfonsäure bei einer Temperatur von im Allgemeinen 70 bis 130 °C umgesetzt. Dabei kann in einer Destillationskolonne oder einem Verdampfer (Reaktivverdampfer) gearbeitet werden. Das Produktgemisch aus Trioxan/Formaldehyd und Wasser fällt dann als dampfförmiger Brüdenabzugsstrom des Verdampfers bzw. als Kopfabzugsstrom am Kopf der Kolonne an. Die Trioxan-Synthesestufe kann auch in einem Festbett- oder Fließbettreaktor an einem heterogenen Katalysator, z. B. einem Ionenaustauscherharz oder Zeolith, durchgeführt werden.

In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens werden die Trioxan-Synthesestufe und die erste Destillationsstufe als Reaktivdestillation in einer Reaktionskolonne durchgeführt. Diese kann im Abtriebsteil ein Katalysator-Festbett aus einem heterogenen sauren Katalysator enthalten. Alternativ kann die Reaktivdestillation auch in Gegenwart eines homogenen Katalysators durchgeführt werden, wobei der saure Katalysator zusammen mit der wässrigen Formaldehyd-Lösung im Kolonnensumpf vorliegt.

:5

5

0

5

:0

Im Allgemeinen enthält die wässrige Formaldehydlösung, die der Trioxan-Synthesestufe zugeführt wird, 60 bis 85 Gew.-% Formaldehyd und 15 bis 40 Gew.-% Wasser. Diese Lösung kann in einem vorgelagerten Aufkonzentrierungsschritt aus einer wässrigen Formaldehydlösung mit niedrigerer Formaldehyd-Konzentration erhalten werden. Der Aufkonzentrierungsschritt kann beispielsweise in einem Verdampfer, vorzugsweise einem Fallfilmverdampfer, durchgeführt werden.

Der vorgelagerte Aufkonzentrierungsschritt kann beispielsweise wie in DE-A 199 25 870 beschrieben durchgeführt werden.

5

10

In einer Ausführungsform des erfindungsgemäßen Verfahrens wird ein Strom XI einer wässrigen Formaldehydlösung in einem Verdampfer, vorzugsweise einem Fallfilmverdamp-

fer, aufkonzentriert, wobei ein Strom X aus einer wässrigen Formaldehydlösung mit höherer Formaldehyd-Konzentration erhalten wird. Der Brüdenabzugsstrom des Verdampfers, welcher stark an Formaldehyd abgereichert ist, wird als wasserhaltiger Strom IX mit dem Strom V gemischt. Strom XI enthält beispielsweise 50 bis 70 Gew.-% Formaldehyd und 30 bis 50 Gew.-% Wasser. Strom X enthält beispielsweise 65 bis 80 Gew.-% Formaldehyd und 20 bis 35 Gew.-% Wasser. Strom IX enthält beispielsweise 10 bis 25 Gew.-% Formaldehyd und 75 bis 90 Gew.-% Wasser.

Das erhaltene Rein-Trioxan, dessen Reinheit > 99 Gew.-%, > 99,9 Gew.-% oder sogar > 99,99 Gew.-% betragen kann, wird vorzugsweise zur Herstellung von Polyoxymethylen (POM), Polyoxymethylenderivaten wie Polyoxymethylendimethylether (POMDME) und Diaminodiphenylmethan (MDA) verwendet.

5 Die Erfindung wird nachfolgend mit Bezugnahme auf die Zeichnung näher erläutert.

Es zeigt:

5

0

0

5

0

5

Figur 1 beispielhaft eine Ausführungsform des erfindungsgemäßen Verfahrens.

Eine wässrige Formaldehydlösung 1 wird dem Verdampfer 2, beispielsweise einem Dünnschichtverdampfer, Fallfilmverdampfer oder Wendelrohrverdampfer zugeführt. Als Brüdenabzugsstrom 3 (Strom IX) des Verdampfers wird eine an Formaldehyd abgereicherte wässrige Lösung, als Sumpfabzugsstrom 4 (Strom X) des Verdampfers eine formaldehydreiche wässrige Lösung erhalten. Diese wird mit dem formaldehydreichen Sumpfabzugsstrom 8 (Strom II) der ersten Destillationskolonne 7 zum Einspeisungsstrom 4a (Strom Xa) vereinigt. Dieser wird dem Trioxan-Synthesereaktor 5, der als Verdampfer, Rührbehälter, Festoder Fließbettreaktor ausgebildet ist, zugeführt. Das den Trioxan-Synthesereaktor verlassende Trioxan/Formaldehyd/Wasser-Gemisch 6 (Strom I) wird mit dem trioxanreichen Kopfabzugsstrom 15 (Strom VII) der dritten Destillationskolonne 13 zum Strom 6a (Strom Ia) vereinigt. Der Strom 6a wird der ersten Destillationskolonne 7 zugeführt und dort in einen Formaldehyd/Wasser-Strom 8 (Strom II) und einen Formaldehyd/Wasser/Trioxan-Strom 9 (Strom III) aufgetrennt. Dabei werden der Strom 8 als Sumpfabzugsstrom und der Strom 9 als Kopfabzugsstrom erhalten. Strom 8 wird mit Strom 4 vereinigt und in den Reaktor 5 zurückgeführt. Der Formaldehyd/Wasser/Trioxan-Strom 9 wird der Destillationskolonne 10 zugeführt und dort in einem Sumpfabzugsstrom 11 (Strom IV) aus im Wesentlichen reinem Trioxan und einen Kopfabzugsstrom 12 (Strom V), der überwiegend Trioxan und daneben Wasser und Formaldehyd enthält, aufgetrennt. Der Strom 12 wird mit dem formaldehydarmen wässrigen Brüdenabzugsstrom 3 (Strom IX) des Verdampfers 2 zum Strom 12a (Strom Va) vereinigt. Dieser wird einer dritten Destillationskolonne 13 zugeführt und dort in einen Strom 14 (Strom VI), der im Wesentlichen aus Wasser besteht und den Rückführstrom 15 (Strom VII), der überwiegend Trioxan und daneben Wasser und Formaldehyd enthält, aufgetrennt.

Beispiel

5

Bei der rechnerischen Simulation des in der Figur dargestellten Verfahrens wurden Stoff-0 ströme 6, 6a, 8, 9, 11, 12, 3, 12a, 14 und 15 der in den Tabellen angegebenen Zusammensetzungen erhalten. Dabei wurden folgende Parameter gewählt: Die erste Destillationsstufe wird bei einem Druck von 0,8 bar in einer Kolonne 7 mit 5 theoretischen Böden durchgeführt. Das Rücklaufverhältnis beträgt 1,25, die Kopftemperatur 85 °C und die Sumpftemperatur 97 °C. Der Zulauf 6a befindet sich auf Höhe des 3. theoretischen Bodens. Die zweite 5 Destillationsstufe wird bei einem Druck von 4,0 bar in einer Kolonne 10 mit 17 theoretischen Böden durchgeführt. Das Rücklaufverhältnis beträgt 0,1, die Kopftemperatur 131 °C und die Sumpftemperatur 167 °C. Der Zulauf 9 befindet sich auf Höhe des 10. theoretischen Bodens. Die dritte Destillationsstufe wird bei einem Druck von 2,5 bar in einer Kolonne 13 mit 25 theoretischen Böden durchgeführt. Das Rücklaufverhältnis beträgt 1,5, die Kopftem-:0 peratur 114 °C und die Sumpftemperatur 127 °C. Der Zulauf 12a befindet sich auf Höhe des 20. theoretischen Bodens.

Strom	6 (I)	6a	8	9	11	12	3	12a	14	15
		(Ia)	(II)	(III)	(IV)	(V)	(IX)	(Va)	(VI)	(VII)
Mengenstrom [kg/h]	75,3	85,8	71,9	14,0	3,0	11,0	2,7	13,6	3,1	10,5
Formaldehyd [Gew%]	70,5	64,1	74,5	10,5	0,0	13,4	15,0	13,7	0,07	17,8
Wasser [Gew]	25,5	24,4	25,5	19,1	0,001	24,3	85,0	36,1	99,92	17,2
Trioxan [Gew%]	4,0	11,5	0,01	70,4	99,999	62,3	0,0	50,2	0,01	65,1

Patentansprüche

 Verfahren zur Abtrennung von Trioxan aus einem Einsatzstrom I aus Formaldehyd, Trioxan und Wasser, bei dem

5

a) ein Einsatzstrom I, der als Hauptkomponente Formaldehyd und als Nebenkomponenten Trioxan und Wasser enthält, bereitgestellt wird,

0

b) der Einsatzstrom I mit einem Rückführstrom VII, der als Hauptkomponente Trioxan und als Nebenkomponenten Formaldehyd und Wasser enthält, gemischt wird, wobei ein Einsatzstrom Ia, der als Hauptkomponente Formaldehyd und als Nebenkomponenten Trioxan und Wasser enthält, erhalten wird,

5

c) der Einsatzstrom Ia in einer ersten Destillationsstufe bei einem Druck von 0,1 bis 2,5 bar destilliert wird, wobei ein Strom II, der als Hauptkomponente Formaldehyd und als Nebenkomponente Wasser enthält, und ein Strom III, der als Hauptkomponente Trioxan und als Nebenkomponenten Wasser und Formaldehyd enthält, erhalten werden,

0

d) der Strom III, gegebenenfalls nach Abtrennung von Leichtsiedern aus dem Strom III in einer Leichtsieder-Abtrennstufe, in einer zweiten Destillationsstufe bei einem Druck von 0,2 bis 17,5 bar destilliert wird, wobei der Druck in der zweiten Destillationsstufe um 0,1 bis 15 bar höher als der Druck in der ersten Destillationsstufe ist, wobei ein Strom IV, der im wesentlichen aus Trioxan besteht, und ein Strom V, der als Hauptkomponente Trioxan und als Nebenkomponenten Wasser und Formaldehyd enthält, erhalten wird,

5

e) gegebenenfalls der Strom V mit einem Strom IX, der als Hauptkomponente Wasser enthält, gemischt wird, wobei ein Strom Va mit höherem Wassergehalt als Strom V, wobei der Strom Va als Hauptkomponenten Trioxan und als Nebenkomponenten Wasser und Formaldehyd enthält, erhalten wird,

0

5

der Strom V bzw. Va in einer dritten Destillationsstufe bei einem Druck von 1 bis 10 bar destilliert wird, wobei ein Strom VI, der im wesentlichen aus Wasser besteht, und der Rückführstrom VII, der als Hauptkomponente Trioxan und als Nebenkomponenten Wasser und Formaldehyd enthält, erhalten werden.

- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Druck in der zweiten Destillationsstufe um 1,0 bis 10 bar höher als der Druck in der ersten Destillationsstufe ist.
- 5 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die erste Destillationsstufe bei einem Druck von 0,75 bis 1,25 bar durchgeführt wird.

0

5

0

- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die dritte Destillationsstufe bei einem Druck von 2,5 bis 5 bar durchgeführt wird.
- 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die erste Destillationsstufe in einer ersten Destillationskolonne mit mindestens 2 theoretischen Böden, die zweite Destillationsstufe in einer zweiten Destillationskolonne mit mindestens 2 theoretischen Böden und die dritte Destillationsstufe in einer dritten Destillationskolonne mit mindestens 2 theoretischen Böden durchgeführt werden.
- 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der Abtriebsteil der ersten Destillationskolonne 60 bis 90 % der Zahl der theoretischen Trennstufen dieser Kolonne aufweist.
- 7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass der Abtriebsteil der zweiten Destillationskolonne 50 bis 75 % der Zahl der theoretischen Trennstufen dieser Kolonne aufweist.
- 5 8. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass der Abtriebsteil der dritten Destillationskolonne 70 bis 90 % der Zahl der theoretischen Trennstufen dieser Kolonne aufweist.
- 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass zwischen der ersten und der zweiten Destillationsstufe eine Leichtsieder-Abtrennstufe durchgeführt wird, in der aus dem Strom III Leichtsieder, ausgewählt aus der Gruppe bestehend aus Methylformiat, Methylal, Dimethoxydimethylether und Methanol, abgetrennt werden.
- Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Leichtsiederabtrennung bei in einem Druck von 0,1 bis 5,0 bar in einer Destillationskolonne mit mindestens 2 theoretischen Stufen durchgeführt wird.

- 12 -

11.	Verfahren nach einem der Ansprüche 1 bis 10, gekennzeichnet durch die nachste-
	hende Zusammensetzung der Ströme I – VII:

Strom I: 60 bis 80 Gew.-% Formaldehyd, 15 bis 35 Gew.-% Wasser, 1 bis 15

5 Gew.-% Trioxan;

Strom Ia: 55 bis 75 Gew.-% Formaldehyd, 15 bis 35 Gew.-% Wasser, 3 bis 20

Gew.-% Trioxan;

O Strom II: 65 bis 85 Gew.-% Formaldehyd, 15 bis 35 Gew.-% Wasser, 0 bis 1

Gew.-% Trioxan;

Strom III: 3 bis 20 Gew.-% Formaldehyd, 10 bis 30 Gew.-% Wasser, 60 bis 80

Gew.-% Trioxan;

Strom IV:

5

0

95 bis 100 Gew.-% Trioxan, 0 bis 5 Gew.-% Wasser und Nebenkom-

ponenten;

Strom V:

5 bis 20 Gew.-% Formaldehyd, 15 bis 35 Gew.-% Wasser, 50 bis 75

Gew.-% Trioxan;

Strom Va: 51

5 bis 20 Gew.-% Formaldehyd, 25 bis 45 Gew.-% Wasser, 40 bis 65

Gew.-% Trioxan;

5 Strom VI:

0 bis 1 Gew.-% Formaldehyd, 99 bis 100 Gew.-% Wasser;

Strom VII:

5 bis 30 Gew.-% Formaldehyd, 5 bis 30 Gew.-% Wasser, 50 bis 80

Gew.-% Trioxan.

wobei die Ströme I, Ia, III, V, Va und VII noch bis zu 15 Gew.-% Leichtsieder, ausgewählt aus der Gruppe bestehend aus Methylformiat, Methylal, Dimethoxydimethylether und Methanol, enthalten können.

12. Verfahren zur Herstellung von Trioxan aus einer wässrigen Formaldehydlösung, bei dem ein Strom X aus einer wässrigen Formaldehydlösung einer Trioxan-Synthesestufe zugeführt und unter sauren Bedingungen umgesetzt wird, wobei der

WO 2005/063733 PCT/EP2004/014535 - 13 -

Strom I erhalten wird, und aus dem Strom I nach dem Verfahren gemäß einem der Ansprüche 1 bis 11 Trioxan abgetrennt wird.

- 13. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der Strom X aus einem Strom VIII aus einer wässrigen Formaldehydlösung niedrigerer Formaldehyd-Konzentration durch Aufkonzentrieren in einem Verdampfer erhalten wird.
 - 14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass der Strom IX der an Formaldehyd abgereicherte Brüdenabzugsstrom des Verdampfers ist.

0

5

15. Verwendung von Trioxan, herstellbar nach dem Verfahren gemäß einem der Ansprüche 12 bis 14, zur Herstellung von Polyoxymethylen (POM), Polyoxymethylenderivaten und Diaminodiphenylmethan (MDA).

WO 2005/063733 PCT/EP2004/014535

1/1

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP2004/014535 a. classification of subject matter IPC 7 C07D323/06 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category 9 Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. 1 - 15US 5 523 419 A (D. ARNOLD) Α 4 June 1996 (1996-06-04) claims 1-4 EP 0 692 481 A (POLYPLASTICS CO. LTD.) 1 - 15Α 17 January 1996 (1996-01-17) claims 1-5 WO 03/097630 A (BASF AG) 1 - 1527 November 2003 (2003-11-27) claims 1-10 EP 0 583 907 A (POLYPLASTICS CO. LTD.) 1 - 15Α 23 February 1994 (1994-02-23) claims 1-9 Χ Further documents are listed in the continuation of box C Patent family members are listed in annex. Special categories of cited documents. "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 23/06/2005 17 June 2005 Name and mailing address of the ISA Authorized officer European Patent Office, P.B 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax (+31–70) 340–3016

Herz, C

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/014535

		PCT/EP2004/014535
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DE 15 43 340 A (BASF AG) 25 September 1969 (1969-09-25) claims 1-4	1-15
Α	DE 36 21 722 A (H. KÜPPENBENDER, H. REIS) 14 January 1988 (1988-01-14) claims 1-10	1-15
A	US 4 332 644 A (H. KATSUHIKO ET AL.) 1 June 1982 (1982-06-01) claims 1-4	1-15
A	US 4 110 298 A (W. J. WELLS, III, A. STAUTZENBERGER) 29 August 1978 (1978-08-29) claims 1-6	1-15
A	US 6 201 136 B1 (A. REICHL ET AL.) 13 March 2001 (2001-03-13) claims 1-5	1-15
4	WO 99/05137 A (BASF AG) 4 February 1999 (1999-02-04) cited in the application claims 1-5	1-15
A	DE 16 68 867 A (BASF AG) 23 December 1971 (1971-12-23) cited in the application claim 1	1-15
į		

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/EP2004/014535

	atent document I in search report		Publication date		Patent family member(s)		Publication date
US	5523419	Α	04-06-1996	DE	59309737	D1	23-09-1999
•	0020 125			ĒΡ	0596381		11-05-1994
				JΡ	6199830		19-07-1994
				SG	49998		15-06-1998
	0602403		17 01 1006				10-10-2000
Er	0692481	Α	17-01-1996	JP JP	3096202 7215962		15-08-199!
				EP	0692481		17-01-199
				MO	9520586		03-08-199
WO	03097630	Α	27-11-2003	DE	10222163	A1	27-11-2003
				ΑU	2003232760		02-12-2003
				WO	03097630		27-11-2003
				EP	1509512		02-03-200
ΕP	0583907	Α	23-02-1994	JP	2869259		10-03-1999
				JP	6073046		15-03-199
				CA	2101808		05-02-199
				CN	1087908		15-06-199
				DE	69309184		30-04-199
				DE	69309184		09-10-199
				EP	0583907		23-02-199
				ES K r	2099912 9701489		01-06-199 06-02-199
				MX	9304740		31-05-199
				RU	2065856		27-08-199
DE	1543340	Α	25-09-1969	BE	696325		02-10-196
				DE	1543340		25-09-196
				FR	1515733		01-03-196
				GB	1172557		03-12-196
				NL 	6704489 		02-10-196
DE	3621722	A	14-01-1988	DE	3621722 	A1 	14-01-198
US	4332644	Α	01-06-1982	NONE			
US	4110298	Α	29-08-1978	NONE			
	6201136	B1	13-03-2001	DE	19851481	 Д1	11-05-200
J	0201130	DI	13 03 2001	DE	59900855		21-03-200
				EP	1000942		17-05-200
				JP	2000143658		26-05-200
			-				
WO	9905137	Α	04-02-1999	DE	19732291		28-01-199
				CN	1264374		23-08-200
				MO	9905137		04-02-199
				EP	1001954		24-05-200
				JP	2001510839		07-08-200
				PL	338381		23-10-200
				US	6200429	R1	13-03-200
	 1668867	Α	23-12-1971		1668867	A 1	23-12-197

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/014535 a. Klassifizierung des anmeldungsgegenstandes IPK 7 C07D323/06 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprufstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 CO7D Recherchierte aber nicht zum Mindestprüfstoff gehorende Veroffentlichungen, soweit diese unter die recherchierten Gebiete fallen Wahrend der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtil verwendete Suchbegriffe) EPO-Internal, WPI Data C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr Anspruch Nr 1 - 15US 5 523 419 A (D. ARNOLD) Α 4. Juni 1996 (1996-06-04) Ansprüche 1-4 1-15 Α EP 0 692 481 A (POLYPLASTICS CO. LTD.) 17. Januar 1996 (1996-01-17) Ansprüche 1-5 WO 03/097630 A (BASF AG) 1 - 15Α 27. November 2003 (2003-11-27) Ansprüche 1-10 EP 0 583 907 A (POLYPLASTICS CO. LTD.) 1 - 15Α 23. Februar 1994 (1994-02-23) Ansprüche 1-9 -/--Siehe Anhang Patentfamilie Weitere Veroffentlichungen sind der Fortsetzung von Feld C zu entnehmen Spätere Veroffentlichung, die nach dem internationalen Anmeldedatum Besondere Kategorien von angegebenen Veröffentlichungen oder dem Priontatsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verstandnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "A" Veroffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" alteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veroffentlicht worden ist Veroffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veroffentlichung nicht als neu oder auf erfinderischer Tatigkeit berühend betrachtet werden "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veroffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden Veroffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit berühend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgefuhrt) "O" Veroffentlichung, die sich auf eine mundliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veroffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritatsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Absendedatum des internationalen Recherchenberichts Datum des Abschlusses der internationalen Recherche 23/06/2005 17. Juni 2005 Bevollmächtigter Bediensteter Name und Postanschrift der Internationalen Recherchenbehorde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Herz, C

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2004/014535

		2004/014535
	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie°	Bezeichnung der Veroffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr
A	DE 15 43 340 A (BASF AG) 25. September 1969 (1969-09-25) Ansprüche 1-4	1–15
A	DE 36 21 722 A (H. KÜPPENBENDER, H. REIS) 14. Januar 1988 (1988-01-14) Ansprüche 1-10	1-15
Α	US 4 332 644 A (H. KATSUHIKO ET AL.) 1. Juni 1982 (1982-06-01) Ansprüche 1-4	1–15
Α	US 4 110 298 A (W. J. WELLS, III, A. STAUTZENBERGER) 29. August 1978 (1978-08-29) Ansprüche 1-6	1-15
A	US 6 201 136 B1 (A. REICHL ET AL.) 13. März 2001 (2001-03-13) Ansprüche 1-5	1-15
Α	WO 99/05137 A (BASF AG) 4. Februar 1999 (1999-02-04) in der Anmeldung erwähnt Ansprüche 1-5	1-15
Α	DE 16 68 867 A (BASF AG) 23. Dezember 1971 (1971-12-23) in der Anmeldung erwähnt Anspruch 1	1-15

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veroffentlichungen, die zur selben Patentfamilie gehoren

Internationales Aktenzeichen
PCT/EP2004/014535

			101/11/2004/014333				
Im Recherche geführtes Pater		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung	
US 55234	19 A	04-06-1996	DE EP JP SG	59309737 0596381 6199830 49998	A1 A	23-09-1999 11-05-1994 19-07-1994 15-06-1998	
EP 06924	 81 A	17-01-1996	JP JP EP WO	3096202 7215962 0692481 9520586	A A1	10-10-2000 15-08-1995 17-01-1996 03-08-1995	
WO 03097	630 A	27-11-2003	DE AU WO EP	10222163 2003232760 03097630 1509512	A1 A1	27-11-2003 02-12-2003 27-11-2003 02-03-2005	
EP 05839	07 A	23-02-1994	JP JP CA CN DE EP ES KR MX RU	2869259 6073046 2101808 1087908 69309184 69309184 0583907 2099912 9701489 9304740 2065856	A A1 A , C D1 T2 A2 T3 B1 A1	10-03-1999 15-03-1994 05-02-1994 15-06-1994 30-04-1997 09-10-1997 23-02-1994 01-06-1997 06-02-1997 31-05-1994 27-08-1996	
DE 15433	40 A	25-09-1969	BE DE FR GB NL	696325 1543340 1515733 1172557 6704489	A1 A A	02-10-1967 25-09-1969 01-03-1968 03-12-1969 02-10-1967	
DE 36217	22 A	14-01-1988	DE	3621722	A1	14-01-1988	
US 43326	44 A	01-06-1982	KEIN	IE	_ _		
US 41102	98 A	29-08-1978	KEIN	IE			
US 62011	36 B1	13-03-2001	DE DE EP JP	19851481 59900855 1000942 2000143658	D1 A1	11-05-2000 21-03-2002 17-05-2000 26-05-2000	
WO 99051	37 A	04-02-1999	DE CN WO EP JP PL US	19732291 1264374 9905137 1001954 2001510839 338381 6200429	A A1 A1 T A1	28-01-1999 23-08-2000 04-02-1999 24-05-2000 07-08-2001 23-10-2000 13-03-2001	
DE 16688	 67 А	23-12-1971	DF	1668867	 Δ1	23-12-1971	