第4章 向量组的线性相关性

1. 向量和向量组

1.1. 线性方程组 Ax = b 的向量组合形式

$$\begin{cases} x_1 - 2x_2 + 3x_3 = 0, \\ 3x_1 - x_2 + 5x_3 = 4, \\ 2x_1 + x_2 + 3x_3 = 3. \end{cases}$$
$$x_1 \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} + x_2 \begin{pmatrix} -2 \\ -1 \\ 1 \end{pmatrix} + x_3 \begin{pmatrix} 3 \\ 5 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ 3 \end{pmatrix}$$

解上述方程组 === 寻找三个向量的线性组合,使之等于某个向量.

一般地,设
$$A=(a_1,a_2,\cdots,a_n),\ x=\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix}$$
,则方程 $Ax=b$ 可写为
$$x_1a_1+x_2a_2+\cdots+x_na_n=b.$$

1.2. n 维向量: n 元有序数组

两类

- (i) 行向量
- (ii) 列向量

(Ax = b 的解 x 也称为 解向量)

- 1.3. 向量组: 若干个同型 (同维同类) 向量组成的集合.
 - (a) 矩阵 $A_{m \times n}$ 可以看成 m 个行向量构成的向量组, 也可以看成 n 个列向量构成的向量组.
 - (b) Ax = b 的所有解向量构成一个向量组,可能有无限个.
 - (c) 所有的 n 维 (实) 向量构成一个向量组,记为 \mathbb{R}^n .
- 1.4. 向量的(线性)运算:就是矩阵的加法和数乘.
- 1.5. 本章目的:
 - (i) 将线性方程组的矩阵理论翻译成向量理论;
 - (ii) 发展向量理论;
 - (iii) 利用向量语言来表达线性方程组的解.

2. 向量的线性组合

2.1. 向量组 $A = \{a_1, a_2, \dots, a_k\}$ 的一个 **线性组合**: 是一个向量,一般形式为

 $x_1a_1 + x_2a_2 + \dots + x_ka_k, \quad x_i \in \mathbb{R}.$

- (i) x_1, x_2, \dots, x_k 称为这个线性组合的系数;
- (ii) $0a_1 + 0a_2 + \cdots + 0a_k$ 称为平凡线性组合;
- (iii) 系数不同的线性组合可能是同一个向量.
- 2.2. 设矩阵 $A_{m \times n} = (a_1, a_2, \dots, a_n)$, 则 Ax = b 有解
 - \iff 存在 x_1, x_2, \cdots, x_n 使得 $x_1a_1 + x_2a_2 + \cdots + x_na_n = b$
 - \iff 向量 b 可以表示为 $A = \{a_1, a_2, \dots, a_n\}$ 的一个线性组合

 \rightleftharpoons 向量 b 能由 $A = \{a_1, a_2, \cdots, a_n\}$ 线性表示(线性表出). $(b \hookrightarrow A)$

2.3. **定理**. 向量 b 能由 $A = \{a_1, a_2, \dots, a_k\}$ 线性表示

 $\iff R(a_1, a_2, \cdots, a_k) = R(a_1, a_2, \cdots, a_k, b).$

2.4. **例**. 设 $\alpha_1 = (0, 1, 2, 3)^T, \alpha_2 = (2, 2, 3, 1)^T,$

 $\alpha_3 = (-1, 2, 1, 2)^T, \beta = (2, 1, -1, x)^T.$

问 x 取何值时, β 能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示?

解.

 β 能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示 \iff $R(\alpha_1, \alpha_2, \alpha_3) = R(\alpha_1, \alpha_2, \alpha_3, \beta)$

$$\begin{pmatrix} 0 & 2 & -1 & 2 \\ 1 & 2 & 2 & 1 \\ 2 & 3 & 1 & -1 \\ 3 & 1 & 2 & x \end{pmatrix} \xrightarrow{row} \begin{pmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & 3 & 3 \\ 0 & 0 & 7 & 4 \\ 0 & 0 & 0 & 7x + 40 \end{pmatrix}$$

 $\triangleq 7x + 40 = 0 \ \text{Fr}, \quad R(\alpha_1, \alpha_2, \alpha_3) = R(\alpha_1, \alpha_2, \alpha_3, \beta) = 3.$

2.5. 组组关系

- (i) 向量组 \mathcal{B} 可由向量组 \mathcal{A} 线性表示: 记为 $\mathcal{B} \hookrightarrow \mathcal{A}$;
- (ii) 向量组 \mathcal{B} 与向量组 \mathcal{A} 等价: 记为 $\mathcal{B} \leftrightarrow \mathcal{A}$
- 2.6. 定理. 设矩阵 $A_{m \times n} = (a_1, a_2, \dots, a_n), B_{m \times s} = (b_1, b_2, \dots, b_s),$ 则 R(A) = R(A, B)

 \iff 矩阵方程 AX = B 有解

 \iff 存在 $X = (x_{ij})$

使得 $x_{1j}a_1 + x_{2j}a_2 + \cdots + x_{nj}a_n = b_j$, $j = \overline{1, s}$.

- \iff 任意向量 b_j 能由 $\{a_1, a_2, \cdots, a_n\}$ 线性表示.
- $\iff \{b_1, b_2, \cdots, b_s\} \hookrightarrow \{a_1, a_2, \cdots, a_n\}.$
- 2.7. 推论.
 - (i) $\mathcal{B} \hookrightarrow \mathcal{A} \Longrightarrow R(B) \leq R(A)$;
 - (ii) $\mathcal{B} \leftrightarrow \mathcal{A} \iff R(A) = R(A, B) = R(B)$.
- 2.8. 线性表示的各种说法

向量组 $\mathcal{B} = \{b_1, b_2, \cdots, b_s\}$ 能由 $\mathcal{A} = \{a_1, a_2, \cdots, a_n\}$ 线性表示

- \iff 存在矩阵 K, 使得 B = AK
- $\iff AX = B \text{ } ff$
- $\iff R(A) = R(A, B)$
- 2.9 **例**: 判断 $\mathcal{B} \hookrightarrow \mathcal{A}, \mathcal{B} \leftrightarrow \mathcal{A}$

(Step 1) 对 (A, B) 进行初等行变换,同时得到 R(A), R(A, B) 若 R(A) = R(A, B), 则 $\mathcal{B} \hookrightarrow \mathcal{A}$;

(Step 2) 再算 R(B), 若 R(B) = R(A) = R(A, B), 则 $\mathcal{B} \leftrightarrow \mathcal{A}$.

- 3. 向量组的线性相关性
- 3.1. 线性表示不一定唯一.

若

$$x_1a_1 + x_2a_2 + \cdots + x_ma_m = b$$

$$\bar{x}_1 a_1 + \bar{x}_2 a_2 + \dots + \bar{x}_m a_m = b$$

川

$$(x_1 - \bar{x}_1)a_1 + (x_2 - \bar{x}_2)a_2 + \dots + (x_m - \bar{x}_m)a_m = \theta.$$

线性表示是否唯一,关键在于向量组有几种组合能表示零向量.

3.2. **线性相关**: 设向量组 $A = \{a_1, \dots, a_m\}$,

若存在 不全为零 的实数 k_1, k_2, \cdots, k_m , 使得

$$k_1a_1 + k_2a_2 + \dots + k_ma_m = \theta,$$

则称向量组 A 线性相关.

3.3. **线性无关**: 向量组 A 不是线性相关的,即不存在 θ 的非平凡表示.

换言之,任意 θ 的线性表示必为平凡的,即

$$k_1 a_1 + k_2 a_2 + \dots + k_m a_m = \theta \implies k_1 = k_2 = \dots = k_m = 0.$$

- 3.4. 性质.
 - (1) 若 $b \hookrightarrow A$, 且 A 线性无关,则 b 的表示方式唯一.
 - (2) 若 A 线性相关,则其中必有一个向量可以用其余向量来线性表示.
 - (3) 若向量组中含 θ, 则必然线性相关.
 - (4) 若向量组中含两个相同的向量, 则必然线性相关.
- 3.5. 按定义证明线性相关: 找不全为零的系数. 按定义证明线性无关:

假设 $k_1a_1 + k_2a_2 + \cdots + k_ma_m = \theta$, 想尽办法去证明 $k_1 = k_2 = \cdots = k_m = 0$.

例. 设 {a₁, a₂, a₃} 线性无关, 证明: $b_1 = a_1 + a_2, b_2 = a_2 + a_3, b_3 = a_3 + a_1$ 线性无关. 证明:

设 $k_1b_1 + k_2b_2 + k_3b_3 = 0$, 则 $(k_1 + k_3)a_1 + (k_1 + k_2)a_2 + (k_2 + k_3)a_3 = 0.$ 因为 $\{a_1, a_2, a_3\}$ 线性无关, 所以 $k_1 + k_3 = k_1 + k_2 = k_2 + k_3 = 0$, 于是 $k_1 = k_2 = k_3 = 0$. 因此 b_1, b_2, b_3 线性无关.

- 3.6. 线性相关性判定定理:

(i) 向量组
$$\mathcal{A} = \{a_1, \dots, a_n\}$$
线性相关 $\iff (a_1, \dots, a_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0$ 有非零解.

 $\iff R(a_1, a_2, \cdots, a_n) < n$ (秩 < 向量个数)

(ii) 向量组 $\mathcal{A} = \{a_1, \cdots, a_n\}$ 线性无关

$$\iff$$
 $(a_1, \cdots, a_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0 \ \text{只有零解}.$

 $\iff R(a_1, a_2, \dots, a_n) = n$ (秩 = 向量个数, 列满秩)

前例.
$$(b_1,b_2,b_3)=(a_1,a_2,a_3)\left(egin{array}{ccc} 1&0&1\\1&1&0\\0&1&1 \end{array}
ight),\quad B=AK$$

 a_1, a_2, a_3 线性无关 $\Longrightarrow R(A) = 3$ $|K| \neq 0 \Longrightarrow K$ 可逆 $\Longrightarrow R(A) = R(AK) = R(B) = 3$ 因此 b_1, b_2, b_3 线性无关.

3.7. **推论**: 若 A 中 向量个数 > 向量维数 , 则 A 必然 线性相关. (个数越多, 越可能相关; 维数越高, 越可能无关.) **证明**:

 $R(A) \le A$ 的行数 = 向量维数 < 向量个数 = A 的列数.

- 3.8. **定理**: **(向量个数 = 向量维数**, 相关性的判定) 设 $A = (a_1, a_2, \cdots, a_n)$ 是方阵,则 $\{a_1, a_2, \cdots, a_n\}$ 线性无关 $\iff R(A) = n \iff |A| \neq 0$.
- 3.9. 定理: (个数的增减与相关性)
 - (i) 线性相关组的扩充还是线性相关组

 $\{a_1, a_2, \dots, a_m\}$ 相关 $\Longrightarrow \{a_1, a_2, \dots, a_m, a_{m+1}, \dots, a_{m+p}\}$ 相关;

(ii) 线性无关组的一部分还是线性无关组

 $\{a_1, a_2, \cdots, a_m, a_{m+1}, \cdots, a_{m+p}\}$ 无关 $\Longrightarrow \{a_1, a_2, \cdots, a_m\}$ 无关. 证明:

 $R(a_1, a_2, \cdots, a_m, a_{m+1}, \cdots, a_{m+p})$

 $\leq R(a_1, a_2, \cdots, a_m) + R(a_{m+1}, \cdots, a_{m+p})$

 $\leq R(a_1, a_2, \cdots, a_m) + p$

3.10. **定理**: 若 $\mathcal{A} = \{a_1, a_2, \cdots, a_m\}$ 线性无关, $\mathcal{B} = \{a_1, a_2, \cdots, a_m, b\}$ 线性相关,则 $b \hookrightarrow \mathcal{A}$ (且表示唯一). 证明:

- 3.11. 判定线性无关的方法总结.
 - (1) 定义
 - (2) 齐次方程组 Ax = 0 只有零解
 - (3) 秩 = 个数
 - (4) 行列式 ≠ 0
- 3.12. **例**. 设 $B_{m\times r}=A_{m\times s}K_{s\times r}$,其中 A 的列向量组线性无关. 求证: B 的列向量组线性无关 $\Longleftrightarrow R(K)=r$.

证明:

B 的列向量组线性无关 \iff Bx = 0 只有零解 \iff (AK)x = A(Kx) = 0 只有零解.

A 的列向量组线性无关 \Longrightarrow A 列满秩,

因此

A(Kx) = 0 只有零解 $\iff Kx = 0$ 只有零解 $\iff K$ 的列向量组线性无关 $\iff R(K) = r$.

- 3.13. **例**. 设向量组 a_1, a_2, a_3 线性相关,向量组 a_2, a_3, a_4 线性无关,证明:
 - $(1) a_1 \hookrightarrow \{a_2, a_3\};$
 - $(2) \ a_4 \not\hookrightarrow \{a_1, a_2, a_3\}.$

证明:

- (1) $R(a_1, a_2, a_3) < 3$, $R(a_2, a_3, a_4) = 3$. $R(a_2, a_3) = 2$, $R(a_1, a_2, a_3) \ge R(a_2, a_3) = 2$.
- (2) $R(a_1, a_2, a_3) = 2$, $R(a_1, a_2, a_3, a_4) \ge R(a_2, a_3, a_4) = 3$.

4. 向量组的秩

- 4.1. 有限时可用矩阵来定义, 无限时怎么办?
- 4.2. 最大 (线性) 无关组: 若 A 的一个子组 $A_0 = \{a_1, a_2, \dots, a_r\}$ 满足
 - (i) A₀ 线性无关,
 - (ii) $\forall a \in \mathcal{A}$, $\{a_1, a_2, \dots, a_r, a\}$ 线性相关,则称 \mathcal{A}_0 是 \mathcal{A} 的一个最大无关组.

4.3. 定理: (等价描述)

设

- (ii)' $\forall a \in A, a \hookrightarrow A_0$; (与 A 等价的无关子组)
- (ii)" A 中任意 (r+1) 个向量必线性相关. (个数最大的无关子组)则有
- $(i)+(ii)\Longleftrightarrow(i)+(ii)'\Longleftrightarrow(i)+(ii)''.$

证明:

显然有 (i)+(ii) ⇔(i)+(ii)' ←(i)+(ii)".

下证 (i)+(ii)' ⇒(i)+(ii)".

设 $\mathcal{B} = \{b_1, b_2, \cdots, b_{r+1}\},$ 则

$$b_i \hookrightarrow \mathcal{A}_0 \Longrightarrow \mathcal{B} \hookrightarrow \mathcal{A}_0 \Longrightarrow R(B) \leq R(A_0) = r < r + 1$$

所以, B线性相关.

- 4.4. 最大无关组的存在性. (有限维情形)
 - (i) 任一线性无关子组可扩充为一个最大无关组.
 - (ii) 含有非零向量的向量组必有最大无关组.
- 4.5. **命题**. A 的任意两个最大无关组一定等价, 并且它们所含向量个数一样.
- 4.6. **向量组的秩**. $R_A = A$ 的最大无关组里向量的个数.
- 4.7. **定理**. 矩阵列向量组的秩 (列秩)= 矩阵的秩 = 矩阵行向量组的秩 (行秩). **证明**:

只证第一个,另一个转置即可.

设 R(A) = r, 要证 $R_A = r$.

A 中可以找到一个 r 阶非零子式, 该非零子式所在的 r 个列构成矩阵 A_0 . 下证 A_0 的列向量组是 A 的一个最大无关组.

(i) A_0 有一个 r 阶非零子式,

$$r \le R(A_0) \le R(A) = r$$
.

线性无关判定定理 \Longrightarrow A_0 的列向量组线性无关.

(ii)" A 的任意 (r+1) 列构成的矩阵 B,

$$R(B) \le R(A) = r < r + 1$$

线性相关判定定理 \Longrightarrow B 的列向量组线性相关.

4.8. 推论. A 的一个无关组 A₀ 是最大无关组的充要条件是

$$R_{A} = R_{A_0} = R(A_0).$$

4.9. 利用最大无关组, 化无限为有限, 可以将有限向量组的秩定理推广到无限向量组.

定理:

(a) $\mathcal{B} \hookrightarrow \mathcal{A} \iff R_{\mathcal{A}} = R_{\mathcal{A} \cup \mathcal{B}}$.

(b)
$$\mathcal{B} \leftrightarrow \mathcal{A} \iff R_{\mathcal{A}} = R_{\mathcal{A} \cup \mathcal{B}} = R_{\mathcal{B}}$$
.

(c) 若 $\mathcal{B} \hookrightarrow \mathcal{A}$, 则 $R_{\mathcal{B}} \leq R_{\mathcal{A}}$.

证明:

(a) 设 β 的一个最大无关组为 β_0 , A的一个最大无关组为 β_0 , 则

$$\mathcal{B} \leftrightarrow \mathcal{B}_0, \quad \mathcal{A} \leftrightarrow \mathcal{A}_0, \quad \mathcal{A} \cup \mathcal{B} \leftrightarrow \mathcal{A}_0 \cup \mathcal{B}_0.$$

$$\mathcal{B} \hookrightarrow \mathcal{A} \iff \mathcal{B}_0 \hookrightarrow \mathcal{A}_0 \iff R_{\mathcal{A}_0} = R_{\mathcal{A}_0 \cup \mathcal{B}_0} \iff R_{\mathcal{A}} = R_{\mathcal{A} \cup \mathcal{B}}.$$

(b)

(c)

4.10. 向量组的秩与最大无关组的求法。

设
$$A = \begin{pmatrix} 2 & -1 & -1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4 \\ 4 & -6 & 2 & -2 & 4 \\ 3 & 6 & -9 & 7 & 9 \end{pmatrix}$$
, 求 A 的 列向量组 的秩,及一个最大

无关组.

解:

(Step 1) 进行初等 行变换, 化 A 为行阶梯.

$$A \longrightarrow \begin{pmatrix} 1 & 1 & -2 & 1 & 4 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

得到 R(A) = 3.

(Step 2) 找到首元列 1,2,4; 在原矩阵 A 中找到相应的列 1,2,4. 则

$$(a_1, a_2, a_4) \stackrel{r}{\sim} \left(egin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}
ight),$$

所以 $R(a_1, a_2, a_4) = 3$, 进而 $\{a_1, a_2, a_4\}$ 是一个最大无关组.

5. 向量空间

- 5.1. 向量空间 V: 关于向量加法和数乘封闭的向量组.
 - (一种特殊的向量组)(对任意线性组合封闭)
- 5.2. 验证 V 是向量空间只要验证两条:
 - (i) 对于任意 $a,b \in V$, 证明 $a+b \in V$;
 - (ii) 对于任意 $a \in V, \lambda \in \mathbb{R}$, 证明 $\lambda a \in V$.
- 5.3. 向量空间举例.
 - (i) $V = \{0_{n \times 1}\};$
 - (ii) $V = \mathbb{R}^n$;
 - (iii) $V = \operatorname{span}\{a_1, \dots, a_m\} = \{\lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_m a_m : \lambda_i \in \mathbb{R}\}.$
- 5.4. 基 (basis), 维数 (dimension)
 - (i) 基= 最大无关组; 不唯一
 - (ii) **维数**= 秩. 记为 dim V
 - (iii) 零空间没有基, 维数 =0.
- 5.5. 定理: (向量空间结构定理)

若 a_1, a_2, \cdots, a_m 是向量空间 V 的一组基,则

$$V = \{a = \lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_m a_m : \lambda_i \in \mathbb{R}\}\$$

即 V 由基的全体线性组合构成.

称 $\lambda_1, \dots, \lambda_m$ 为向量 a 在基 a_1, a_2, \dots, a_m 的 坐标.

- 5.6. 基变换, 坐标变换, 过渡矩阵.
- 6. 齐次线性方程组 Ax = 0 解的结构
- 6.1. **性质**: Ax = 0 的解集 S 是一个向量空间.

证明: 两条. A(x+y) = Ax + Ay = 0, $A(\lambda x) = \lambda(Ax) = 0$.

- 6.2. Ax = 0 的一个 基础解系 = 解空间 S 的一组 基
 - (i) 知道基就知道全部;
 - (ii) 知道基础解系, 所有解就是基础解系的线性组合.

6.3. 齐次方程解的结构定理:

设 $\xi_1, \xi_2, \dots, \xi_k$ 是 Ax = 0 的一个基础解系,则齐次方程 Ax = 0 的通解为

$$x = c_1 \xi_1 + c_2 \xi_2 + \dots + c_k \xi_k, \ c_1, \dots, c_k \in \mathbb{R}.$$

6.4. 基础解系的正统求法: 解一遍方程.....

设 R(A) = r, 为方便起见, 不妨假设 A 是如下形式的行最简形

$$A = \begin{pmatrix} 1 & \cdots & 0 & b_{11} & \cdots & b_{1,n-r} \\ \vdots & \ddots & \vdots & \vdots & & \vdots \\ 0 & \cdots & 1 & b_{r1} & \cdots & b_{r,n-r} \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix}$$

通解为

$$\begin{pmatrix} x_1 \\ \vdots \\ x_r \\ x_{r+1} \\ \vdots \\ x_n \end{pmatrix} = c_1 \begin{pmatrix} -b_{11} \\ \vdots \\ -b_{r1} \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \dots + c_{n-r} \begin{pmatrix} -b_{1,n-r} \\ \vdots \\ -b_{r,n-r} \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

 $:= c_1 \xi_1 + c_2 \xi_2 + \dots + c_{n-r} \xi_{n-r}.$

于是, $\xi_1, \xi_2, \dots, \xi_{n-r}$ 就是 Ax = 0 的一个基础解系.

三步验证:

- (i)**子组:** $\xi_1, \xi_2, \dots, \xi_{n-r}$ 都是解; (取特殊的 c_1, c_2, \dots, c_{n-r})
- (ii) **无关组**: $\xi_1, \xi_2, \dots, \xi_{n-r}$ 线性无关; (看它们的下半截)
- (iii) **最大组**: $\xi_1, \xi_2, \dots, \xi_{n-r}$ 可以表示任意其他解. (看通解表达式)

6.5. 定理: (齐次方程解空间的维数)

n 元齐次线性方程组 Ax = 0 的解空间 S 的维数

$$\dim S = R_S = n - r = n - R(A).$$

(常用该定理反过来求矩阵的秩)

6.6. **例 (第三章秩性质 8)**: 若 $A_{m \times n} B_{n \times l} = O_{m \times l}$, 则 $R(A) + R(B) \le n$. 证明: 设 $B = (b_1, b_2, \dots, b_l)$, 则每个 b_i 都是方程 Ax = 0 的解.

记 Ax = 0 的解空间为 S, 有 $\mathcal{B} \subset S$

$$R(B) = R_{\mathcal{B}} \le R_S = \dim S = n - R(A).$$

6.7. **例**. 设 $A \neq n$ 阶方阵,求证 $R(A^n) = R(A^{n+1})$. 证明:

设 $A^nx=0$ 和 $A^{n+1}x=0$ 的解空间分别为 S_n 和 S_{n+1} . 要证 $\dim S_n=\dim S_{n+1}$. 可证 $S_n=S_{n+1}$,即两方程组同解.

显然有 $S_n \subset S_{n+1}$.

要证 $S_{n+1} \subset S_n$, 即证 $A^{n+1}x = 0 \Longrightarrow A^nx = 0$. 反证法.

假设 $A^n x \neq 0$, 下证 $x, Ax, A^2 x, \dots, A^n x$ 线性无关.

设 $k_0x + k_1Ax + k_2A^2x + \dots + k_nA^nx = 0$

两边乘上 A^n , 得 $k_0A^nx=0 \Longrightarrow k_0=0$

两边乘上 A^{n-1} , 得 $k_1A^nx=0 \Longrightarrow k_1=0$

依次得到 $k_0 = k_1 = \cdots = k_n = 0$,

 $x, Ax, A^2x, \cdots, A^nx$ 线性无关.

但这是n+1个n维向量,必然线性相关,矛盾.

因此必有 $S_{n+1} \subset S_n$.

6.8. 基础解系求法二:

设 4 元线性方程组 Ax = b 的系数矩阵的秩 R(A) = 3. 已知有三个解向量 η_1, η_2, η_3 满足

$$\eta_1 = (2, 3, 4, 5)^T, \ \eta_2 + \eta_3 = (1, 2, 3, 4)^T.$$

求方程 Ax = 0 的一个基础解系.

解:

(Step 1) 判定 Ax = 0 解空间 S 的维数, dim S = n - r = 4 - 3 = 1. 因此基础解系只含一个向量,找一个便可.

(Step 2) 凑一个解 ξ 出来.

$$A\eta_1 = A\eta_2 = A\eta_3 = b$$
, 要得到 $A\xi = 0$
可取 $\xi = 2\eta_1 - \eta_2 - \eta_3$.

7. 非齐次线性方程组 $Ax = b \neq 0$ 解的结构

- 7.1. Ax = b 的解集 S不再是解空间,无基础解系.
- 7.2. **性质**: 设 η_1, η_2 都是 Ax = b 的解,则 $\eta_1 \eta_2$ 是 Ax = 0 的解.
- 7.3. **性质**: 设 η^* 是 Ax = b 的解, ξ 是 Ax = 0 的解, 则 $\eta^* + \xi$ 是 Ax = b 的解.
- 7.4. 非齐次方程解的结构定理:

设 $\xi_1, \xi_2, \dots, \xi_k$ 是 Ax = 0 的一个基础解系, η^* 是 Ax = b 的一个解. 则非齐次方程 Ax = b 的通解为

$$x = \eta^* + c_1 \xi_1 + c_2 \xi_2 + \dots + c_k \xi_k, \ c_1, \dots, c_k \in \mathbb{R}.$$

其中 k = n - R(A).

即 非齐次通解 = 非齐次特解 + 齐次通解.

7.5. **例续**. 设 4 元线性方程组 Ax = b 的系数矩阵的秩 R(A) = 3. 已知有三个解向量 η_1, η_2, η_3 满足

$$\eta_1 = (2, 3, 4, 5)^T$$
, $\eta_2 + \eta_3 = (1, 2, 3, 4)^T$.

求方程 Ax = b 的通解.

解:

(Step 1) 求 Ax = 0 的基础解系,参见 6.8.

(Step 2) 求 Ax = b 的一个特解. 此例为已知条件, η_1 便是一个特解.

(Step 3) 写通解, 非齐次通解 = 非齐次特解 + 齐次通解.

$$x = \eta_1 + c_1 \xi = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix} + c_1 \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}, \quad c_1 \in \mathbb{R}.$$

7.6. **定理**: 若 n 元非齐次线性方程 Ax = b 有解, 则其解集 S 的秩

$$R_S = n - R(A) + 1 = n - r + 1.$$

注: 这里不是维数,是秩.

证明:

因为有解,设其中一个解为 η^* . 再设Ax=0的一个基础解系为 ξ_1,\cdots,ξ_{n-r} . 根据解的结构定理,知

$$S \hookrightarrow \{\eta^*, \xi_1, \xi_2, \cdots, \xi_{n-r}\}.$$

可惜 $\xi_i \notin S$, 改造一下

$$S \hookrightarrow \{\eta^*, \ \eta^* + \xi_1, \ \eta^* + \xi_2, \cdots, \ \eta^* + \xi_{n-r}\} \subset S.$$

如果又能证明 $\{\eta^*,\ \eta^*+\xi_1,\ \eta^*+\xi_2,\cdots,\ \eta^*+\xi_{n-r}\}$ 线性无关,则 $R_S=n-r+1.$

若

$$k_0 \eta^* + k_1 (\eta^* + \xi_1) + \dots + k_{n-r} (\eta^* + \xi_{n-r}) = \theta$$

即

$$(k_0 + k_1 + \dots + k_{n-r})\eta^* + k_1\xi_1 + \dots + k_{n-r}\xi_{n-r} = \theta$$

两边作用上 A, 得

$$(k_0 + k_1 + \dots + k_{n-r})A\eta^* + k_1A\xi_1 + \dots + k_{n-r}A\xi_{n-r} = \theta$$

$$(k_0 + k_1 + \dots + k_{n-r})b = \theta$$

因 $b \neq \theta$, 故 $k_0 + k_1 + \cdots + k_{n-r} = 0$. 于是,有

$$k_1\xi_1 + \dots + k_{n-r}\xi_{n-r} = 0.$$

由于 $\{\xi_1, \xi_2, \dots, \xi_{n-r}\}$ 线性无关,因此 $k_1 = k_2 = \dots = k_{n-r} = 0$,进而 $k_0 = 0$. 所以 $\{\eta^*, \eta^* + \xi_1, \eta^* + \xi_2, \dots, \eta^* + \xi_{n-r}\}$ 线性无关.

8. 第四章习题课

- 8.3. 已知 $R(a_1, a_2, a_3) = 2, R(a_2, a_3, a_4) = 3$, 证明
 - (1) a_1 能由 a_2, a_3 线性表示;
 - (2) a_4 不能由 a_1, a_2, a_3 线性表示.

证明:

(1)

$$R(a_1, a_2, a_3) = 2 \Longrightarrow a_1, a_2, a_3$$
线性相关

 $R(a_2,a_3,a_4)=3\Longrightarrow a_2,a_3,a_4$ 线性无关 $\Longrightarrow a_2,a_3$ 线性无关

因此 a_1 能由 a_2, a_3 线性表示.

(2)

$$R(a_1, a_2, a_3, a_4) \ge R(a_2, a_3, a_4) = 3>2 = R(a_1, a_2, a_3),$$

 a_4 不能由 a_1, a_2, a_3 线性表示.

8.5. 参数 a 取何值时, 向量组线性相关?

$$a_1 = (a, 1, 1)^T, a_2 = (1, a, -1)^T, a_3 = (1, -1, a)^T$$

解:

线性相关 \iff $R(a_1, a_2, a_3) < 3$

- (a) 用初等行变换, 讨论含参数矩阵的秩.
- (b) 本题是低阶方阵, 可以求行列式

$$R(a_1, a_2, a_3) < 3 \iff |a_1, a_2, a_3| = 0 \iff a = 2, -1$$

8.6. 设 a_1, a_2 线性无关, $a_1 + b, a_2 + b$ 线性相关, 求向量 b 用 a_1, a_2 线性表达的表达式.

解:

$$a_1 + b, a_2 + b$$
 线性相关,

$$\Longrightarrow \lambda_1(a_1+b) + \lambda_2(a_2+b) = 0$$

$$\implies (\lambda_1 + \lambda_2)b = -\lambda_1 a_1 - \lambda_2 a_2$$

$$a_1, a_2$$
 线性无关 $\Longrightarrow (\lambda_1 + \lambda_2) \neq 0$

因此
$$b = -\frac{\lambda_1}{\lambda_1 + \lambda_2} a_1 - \frac{\lambda_2}{\lambda_1 + \lambda_2} a_2$$

即

$$b = \lambda a_1 - (\lambda + 1)a_2, \lambda \in \mathbb{R}.$$

8.9. 没 $b_1=a_1+a_2, b_2=a_2+a_3, b_3=a_3+a_4, b_4=a_4+a_1,$ 证明: b_1,b_2,b_3,b_4 线性相关.

证明:

(a)
$$b_1 + b_3 = b_2 + b_4$$
.

(b)
$$(b_1, b_2, b_3, b_4) = (a_1, a_2, a_3, a_4) \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

 $|K| = 1 + (-1)^{n+1} = 0$ (按第一行展开) $R(B) = R(AK) < R(K) < 4 \Longrightarrow b_1, b_2, b_3, b_4$ 线性相关.

- (*) 当 n 是奇数时, K 满秩, R(B) = R(A), b_1, b_2, \dots, b_n 相关性与 a_1, a_2, \dots, a_n 一致.
- 8.10. 设 a_1, a_2, \dots, a_r 线性无关,令

$$b_1 = a_1$$

$$b_2 = a_1 + a_2$$

:

$$b_r = a_1 + a_2 + \dots + a_r.$$

证明: b_1, b_2, \cdots, b_r 线性无关.

证明:

(a) 用定义

设
$$k_1b_1 + k_2b_2 + \cdots + k_rb_r = 0$$
,

$$\iiint (k_1 + \dots + k_r)a_1 + (k_2 + \dots + k_r)a_2 + \dots + k_ra_r = 0$$

因此
$$(k_1 + \cdots + k_r) = (k_2 + \cdots + k_r) = \cdots = k_r = 0$$

$$\mathbb{R} k_1 = k_r = \dots = k_r = 0.$$

(b) 用秩

$$(b_1, b_2, \cdots, b_r) = (a_1, a_2, \cdots, a_r) \begin{pmatrix} 1 & 1 & \cdots & 1 & 1 \\ 0 & 1 & \cdots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 1 \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix}$$

|K| = 1, K 可逆, 因此

$$R(B) = R(A) = r \Longrightarrow b_1, b_2, \cdots, b_r$$
 线性无关.

8.13. 设向量组
$$\begin{pmatrix} a \\ 3 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 2 \\ b \\ 3 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ 的秩是 2,

求 a, b.

解:

(a) 初等变换求秩法. 如果还要求最大无关组,强烈建议只用行变换. 本题只求秩,可以行列都用,方便. 但是,最后还是要化成行阶梯形.

$$\begin{pmatrix} a & 2 & 1 & 2 \\ 3 & b & 2 & 3 \\ 1 & 3 & 1 & 1 \end{pmatrix} \xrightarrow{row} \begin{pmatrix} 1 & 3 & 1 & 1 \\ a & 2 & 1 & 2 \\ 3 & b & 2 & 3 \end{pmatrix} \xrightarrow{column} \begin{pmatrix} 1 & 1 & 1 & 3 \\ 1 & 2 & a & 2 \\ 2 & 3 & 3 & b \end{pmatrix}$$

$$\xrightarrow{r} \left(\begin{array}{cccc}
1 & 1 & 1 & 3 \\
0 & 1 & a-1 & -1 \\
0 & 1 & 1 & b-6
\end{array} \right) \xrightarrow{r} \left(\begin{array}{ccccc}
1 & 1 & 1 & 3 \\
0 & 1 & a-1 & -1 \\
0 & 0 & 2-a & b-5
\end{array} \right)$$

所以 a = 2, b = 5.

(b) 最大无关组法.

 $R_A = 2$, 因此任意 3 个向量是线性相关的. $R(a_1, a_3, a_4) < 3, R(a_2, a_3, a_4) < 3$ $|a_1, a_3, a_4| = 0, |a_2, a_3, a_4| = 0.$

(c) 最高阶非零子式法.

R(A) = 2, 因此 A 的任意 3 阶子式均为零. $|a_1, a_3, a_4| = 0, |a_2, a_3, a_4| = 0.$

8.14. 设 a_1, a_2, \dots, a_n 是一组 n 维向量,

已知 n 维单位坐标向量 e_1, e_2, \dots, e_n 能由它们线性表示,证明 a_1, a_2, \dots, a_n 线性无关.

证明:

 $n \geq R(a_1,a_2,\cdots,a_n) \geq R(e_1,e_2,\cdots,e_n) = R(E_n) = n$ 由线性无关判定定理知 a_1,a_2,\cdots,a_n 线性无关.

8.15. 设 a_1, a_2, \dots, a_n 是一组 n 维向量,

证明: a_1, a_2, \cdots, a_n 线性无关

⇔ 任一 n 维向量都可以用它们来线性表示.

证明:

"⇐" 见 8.14.

"⇒"

(a) 线性方程法.

A 无关 \Longrightarrow A 可逆

 \implies 对任一向量 a, 方程 Ax = a 有唯一解,即任一 n 维向量都可以用它们来线性表示.

(b) 无关相关法.

n+1 个 n 维向量必然线性相关,因此 $\{a_1, a_2, \cdots, a_n, a\}$ 相关. 又 $\{a_1, a_2, \cdots, a_n\}$ 无关,

所以 a 可以用 $\{a_1, a_2, \cdots, a_n\}$ 来线性表示.

- 8.16. 向量组 a_1, a_2, \dots, a_m 线性相关, $a_1 \neq 0$, 证明: 存在 k ,使得 $a_k \hookrightarrow \{a_1, a_2, \dots, a_{k-1}\}$. 证明:
 - (a) 构造法. 相关性定义.

$$k_1 a_1 + k_2 a_2 + \dots + k_m a_m = 0$$

若 $k_m \neq 0$, 取 k=m

若
$$k_m = 0, k_{m-1} \neq 0,$$
 取 $k = m - 1$

.

若
$$k_m = k_{m-1} = \cdots = k_3 = 0, k_2 \neq 0$$
, 取 $k = 2$

若
$$k_m = k_{m-1} = \cdots = k_2 = 0$$
, 则 $k_1 a_1 = 0$, $k_1 = 0$.(不会落魄至此)

(b) 反证法.

若每个 k, 都有 $a_k \leftrightarrow \{a_1, a_2, \cdots, a_{k-1}\}$.

$$1 = R(a_1)$$

$$< R(a_1, a_2)$$

$$< R(a_1, a_2, a_3)$$

.

$$< R(a_1, a_2, \cdots a_m) \le m - 1,$$

1 到 m-1 之间存在 m 个不同的整数,完蛋.

证明 $\{\alpha_1, \alpha_2, \cdots, \alpha_n\} \leftrightarrow \{\beta_1, \beta_2, \cdots, \beta_n\}$.

证明:

已经知道 $\{\beta_1, \beta_2, \cdots, \beta_n\} \hookrightarrow \{\alpha_1, \alpha_2, \cdots, \alpha_n\},\$

再解出另一半即可.

- (a) 硬解. 不难.
- (b) B = AK, 证明 K 可逆即可.

即证行列式 $|K| \neq 0$.

K 很面善, 第一章 5.2 或者第一章课后习题 8(2).

8.19. 已知 3 阶矩阵 A = 3 维列向量 x 满足 $A^3x = 3Ax - A^2x$,

且向量组 x, Ax, A2x 线性无关:

(1) 记 $P = (x, Ax, A^2x)$, 求 X 使得 AP = PX;

(2) 求 |A|.

解:

(1) x, Ax, A^2x 线性无关 $\Longrightarrow P$ 可逆,若存在必唯一.

$$AP = (Ax, A^{2}x, A^{3}x) = (Ax, A^{2}x, 3Ax - A^{2}x)$$
$$= (x, Ax, A^{2}x) \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 3 \\ 0 & 1 & -1 \end{pmatrix}$$

(2)
$$|P| \neq 0 \Longrightarrow |A| = |X| = 0$$
.

8.21. 设
$$A = \begin{pmatrix} 2 & -2 & 1 & 3 \\ 9 & -5 & 2 & 8 \end{pmatrix}$$
, 求一个 4×2 矩阵 B , 使得 $AB = O$, $R(B) = 2$.

解:

设 $B = (b_1, b_2), b_1, b_2 \in \mathbb{R}^4.$

 $(1)AB = O \iff Ab_1 = Ab_2 = 0.$

即 b_1, b_2 是方程 Ax = 0 的解.

 $(2)R(B)=2 \iff b_1,b_2$ 线性无关.

因此,要找 B 就是在 Ax = 0 的解空间中找 2 个线性无关的解向量,把它们拼成 B 即可.

(*) 一般地,如果不要求 R(B) = 2,只要求解 AB = O,先 用基础解系表示 Ax = 0 的通解 $x = c_1\xi_1 + c_2\xi_2 + \cdots + c_k\xi_k$. 则矩阵方程的通解为

$$B = \left(c_{11}\xi_1 + \dots + c_{1k}\xi_k, \ c_{21}\xi_1 + \dots + c_{2k}\xi_k\right), \ c_{ij} \in \mathbb{R}.$$

更一般地, $A_{s\times n}B_{n\times m}=O$ 的通解为

$$B = (\xi_1, \xi_2, \cdots, \xi_{n-r}) \begin{pmatrix} c_{11} & c_{21} & \cdots & c_{m1} \\ c_{12} & c_{22} & \cdots & c_{m2} \\ \vdots & \vdots & & \vdots \\ c_{1,n-r} & c_{2,n-r} & \cdots & c_{m,n-r} \end{pmatrix}, c_{ij} \in \mathbb{R}.$$

即 $B_{n\times m} = (\xi_1, \xi_2, \dots, \xi_{n-r})C$, 其中 $C \in \mathcal{M}_{n-r,m}$. 注意, R(B) = R(C).

8.24. 设
$$A^2 = A$$
, 证明 $R(A) + R(A - E) = n$. 证明:

(1)
$$R(A) + R(A - E) = R(A) + R(E - A)$$

 $\geq R(A + E - A) = R(E) = n$
(2) $A(A - E) = O \Longrightarrow R(A) + R(A + E) \leq n$.

8.25. R(A) = n - 1, 求证 $R(A^*) = 1$.

证明:

$$R(A) = n - 1 \Longrightarrow |A| = 0$$

 $AA^* = |A|E = O \Longrightarrow R(A) + R(A^*) \le n$
 $R(A^*) \le 1$
又 A 的一个 $n - 1$ 阶子式非零,
即存在一个代数余子式非零,
因此 $A^* \ne O, R(A^*) \ge 1$.
从而 $R(A^*) = 1$.

- 8.28. 设向量组 $a_1 = (\alpha, 2, 10)^T, a_2 = (-2, 1, 5)^T,$ $a_3 = (-1, 1, 4)^T, b = (1, \beta, -1)^T.$ 问 α, β 为何值时
 - (1) $b \not\hookrightarrow \{a_1, a_2, a_3\};$
 - (2) $b \hookrightarrow \{a_1, a_2, a_3\}$ 且表示唯一;
 - (3) $b \hookrightarrow \{a_1, a_2, a_3\}$ 且表示不唯一.

解:

本质上是带参数方程组解的判定.

- $(1) \iff Ax = b \; \mathcal{H} \bowtie R(A) < R(A, b)$
- (2) \iff Ax = b 有唯一解 \iff R(A) = R(A, b) = 3
- (3) \iff Ax = b 有无限解 \iff R(A) = R(A, b) < 3
- 8.29. 设 $a = (a_1, a_2, a_3)^T, b = (b_1, b_2, b_3)^T, c = (c_1, c_2, c_3)^T$ 证明三直线 $\begin{cases} l_1: & a_1x + b_1y + c_1 = 0 \\ l_2: & a_2x + b_2y + c_2 = 0, \ (a_i^2 + b_i^2 \neq 0, i = 1, 2, 3) \\ l_3: & a_3x + b_3y + c_3 = 0 \end{cases}$

相交于一点的充要条件为: $\{a,b\}$ 线性无关, $\{a,b,c\}$ 线性相关. 证明:

关于 x, y 的方程有且仅有一个解 $\iff R(a, b) = R(a, b, -c) = 2$

 $\iff \{a,b\}$ 线性无关, $\{a,b,c\}$ 线性相关.

8.30. 设矩阵 $A = (a_1, a_2, a_3, a_4)$, 其中 $\{a_2, a_3, a_4\}$ 线性无关, $a_1 = 2a_2 - a_3$. 令 $b = a_1 + a_2 + a_3 + a_4$, 求 Ax = b 的通解. **解**:

(1)
$$\{a_2, a_3, a_4\}$$
 线性无关 $\Longrightarrow R(a_2, a_3, a_4) = 3$.

$$a_1 = 2a_2 - a_3 \Longrightarrow a_1 \hookrightarrow \{a_2, a_3, a_4\}$$

$$\implies R(a_1, a_2, a_3, a_4) = R(a_2, a_3, a_4) = 3$$

$$\implies Ax = 0$$
 的解空间维数 是 $n - R(A) = 1$.

(2)
$$a_1 = 2a_2 - a_3 \Longrightarrow \xi = (1, -2, 1, 0)^T$$
 $\not\in Ax = 0$ 的基础解系.

(3)
$$b = a_1 + a_2 + a_3 + a_4 \Longrightarrow \eta^* = (1, 1, 1, 1)^T \not\equiv Ax = b$$
 的一个特解.

(3)
$$b = a_1 + a_2 + a_3 + a_4 \Longrightarrow \eta^* = (1, 1, 1, 1)^T$$
 是 $Ax = b$ 的一个特解.

(4) 所以 $Ax = b$ 的通解 是 $x = \eta^* + c\xi = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + c \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix}, \quad c \in \mathbb{R}.$

8.33. 设
$$R(A) = r$$
, 且 $\eta_1, \dots, \eta_{n-r+1}$ 是非齐次方程 $Ax = b$

的
$$(n-r+1)$$
 个线性无关的解, 求证 $Ax = b$ 的通解为

$$x = c_1 \eta_1 + \dots + c_{n-r+1} \eta_{n-r+1}, \, \sharp r c_1 + \dots + c_{n-r+1} = 1.$$

证明:

由 7.6 知 Ax = b 的解集 S 的秩 $R_S = n - r + 1$,

因此 $\eta_1, \dots, \eta_{n-r+1}$ 是 S 的一个最大无关组.

于是任意解均可用它们表示, 即

$$x = c_1 \eta_1 + \dots + c_{n-r+1} \eta_{n-r+1}.$$

两边乘上A,得

$$b = (c_1 + \dots + c_{n-r+1})b$$

$$b \neq 0 \Longrightarrow c_1 + \dots + c_{n-r+1} = 1.$$

证明:
$$V_a = V_b \iff \mathcal{A} \leftrightarrow \mathcal{B}$$
.

证明:

$$V_a = \{x_1 a_1 + \dots + x_k a_k : x_i \in \mathbb{R}\}$$

$$V_b = \{y_1b_1 + \dots + y_mb_m : y_i \in \mathbb{R}\}$$

$$V_a \subset V_b \iff a_i \hookrightarrow \mathcal{B}$$

$$V_b \subset V_a \iff b_i \hookrightarrow \mathcal{A}$$

8.41. 设 $\{\xi_1, \xi_2, \dots, \xi_s\}$ 是 Ax = 0 的一组基础解系. 设

$$\left(\xi_1', \xi_2', \cdots, \xi_s'\right) = \left(\xi_1, \xi_2, \cdots, \xi_s\right) K,$$

证明: $\{\xi'_1, \xi'_2, \dots, \xi'_s\}$ 是 Ax = 0 的基础解系 $\iff K$ 可逆.

证明: "⇐="

$$K$$
 可逆 $\Longrightarrow \{\xi_1, \xi_2, \cdots, \xi_s\} \leftrightarrow \{\xi_1', \xi_2', \cdots, \xi_s'\}$

"______"

- 8.42. 设 α 为 n 维列向量,且 $\alpha^T \alpha = 1$,令 $A = E \alpha \alpha^T$. 若 R(A) = n 1,求 Ax = 0 的通解. **解**: $x = c_1 \alpha$, $c_1 \in \mathbb{R}$.
- 8.43. 设 n 阶矩阵 A 的秩为 n-1, 求 Ax = 0 的通解.

 $\dim S = 1 \Longrightarrow$ 基础解系只含一个向量 因此,只要找到一个非零解,就能写出通解.

在哪里? $AA^* = |A|E = O$. 因为 $R(A^*) = 1, A^* \neq O$, 所以 A^* 有非零列向量, 如 $\alpha_j^* = (A_{j1}, A_{j2}, \cdots, A_{jn})^T$. 则 $A\alpha_j^* = 0$, 通解为 $x = c_1\alpha_j^*$, $c_1 \in \mathbb{R}$.

8.44. 设 n 阶矩阵 A 满足 $R(A^*) \ge 1$, n 维列向量 $b \ne 0$. 求证: Ax = b 有无限解 $\iff A^*b = 0$. 证明:

"⇒"

$$R(A) = R(A,b) < n \Longrightarrow |A| = 0$$
 $\Longrightarrow A^*b = A^*Ax = |A|Ex = 0.$
" \longleftarrow "
 $A^*b = 0 \Longrightarrow A^*x = 0$ 有非零解
 $\Longrightarrow R(A^*) < n \Longrightarrow R(A^*) = 1$
 $\Longrightarrow \begin{cases} R(A) = n - 1 \\ A^*x = 0 \text{ 的解空间维数} = n - 1 \end{cases}$

 \implies A 的列向量组的最大无关组是 $A^*x=0$ 的基础解系. $(A^*A=O)$ \implies $b\hookrightarrow \mathcal{A}$ (b 是解) \implies R(A)=R(A,b)=n-1

8.45. 设A为 $n \times m$ 矩阵,作集合

$$V = \{b : Ax = b \neq a\}$$

证明 V 是向量空间,并求其维数. 证明:

(a) 定义

 $b_1, b_2 \in V \Longrightarrow Ax_1 = b_1, Ax_2 = b_2$ $A(x_1 + x_2) = (b_1 + b_2), \quad A(\lambda x_1) = \lambda b_1$ 即 $Ax = b_1 + b_2$ 和 $Ax = \lambda b_1$ 都有解, $b_1 + b_2 \in V, \lambda b_1 \in V.$

(b) 基

 $V = \{b: b \hookrightarrow A\} = \{\text{所有}A$ 的线性组合} = $\mathrm{span}\{a_1, a_2, \cdots, a_m\}$. 因此 V 是线性空间,且 $\{a_1, a_2, \cdots, a_m\}$ 的最大无关组是 V 的一组基.

因此 $\dim V = R(A)$.