Transfer Learning

ULMFiT (Howard & Ruder, 2018)

Learning goals

- Understand the paradigm of fine-tuning for Transfer Learning
- Get the intuition of the subtleties of training ULMFiT

FINE-TUNING APPROACH

Shortcomings of ELMo:

- No adaption of the Embeddings to target domain/task
 - Source & target domain/task might be pretty different
 - No good representations for domain-/task-specific words
- Sequential nature of LSTMs:
 - Not fully parallelizable (compared to Transformers, see next chapter)
 - Fails to capture long-range dependency during contextualization

Alleviations/Alternatives:

- ULMFiT Howard and Ruder, 2013 is a uni-directional LSTM which is fine-tuned as a whole model on data from the target domain/task.
- GPT ► Radford et al., 2018 is a Transformer (decoder) which is fine-tuned as a whole model on data from the target domain/task.

ULMFIT HOWARD AND RUDER, 2018

Source: Carolin Becker

ARCHITECTURAL DETAILS

- AWD-LSTMs ► Merity et al., 2017 as backbone of the architecture

 - Averaged stochastic gradient descent (ASGD) for optimiziation
- Embedding layer
 - E = 400
 - Some word-level tokenization (not entirely clear)
- Three LSTM layers (*H* = 1150) + Softmax Layer

LM PRE-TRAINING DETAILS

- Corpus: Wikitext-103
 - 28.595 Wikipedia articles
 - $\bullet \approx 103 \text{M} \text{ words}$
- Objective: Language Modeling

LM FINE-TUNING DETAILS

- Discriminative fine-tuning
 - Different learning rates for each layer
 - First choose learning rate for the last layer
 - Use this to determine the learning rates for lower layers
- Slanted triangular learning rates

Source: Howard and Ruder (2018)

CLASSIFIER FINE-TUNING

- Concat Pooling
 - Consider not only last hidden state for classification
 - $\mathbf{h}_c = [\mathbf{h}_T, \mathtt{maxpool}(\mathbf{H}), \mathtt{meanpool}(\mathbf{H})]$ with $\mathbf{H} = \{\mathbf{h}_1, \dots, \mathbf{h}_T\}$
- Gradual unfreezing
 - · Minimizing risk of 'catastrophic forgetting'
 - Gradually make layers eligible for gradient updates (from top to bottom)
- BPT3C
 - Divide documents in chunks of pre-defined length (here: 70)
 - Initialize model with the final hidden state of previous chunk
- Bidirectionality
 - Same procedure for a backward model

PERFORMANCE

Model	Test	Model	Test
CoVe (McCann et al., 2017)	8.2	CoVe (McCann et al., 2017)	4.2
合 oh-LSTM (Johnson and Zhang, 2016)	5.9	U TBCNN (Mou et al., 2015)	4.0
∑ Virtual (Miyato et al., 2016)	5.9	LSTM-CNN (Zhou et al., 2016)	3.9
ULMFiT (ours)	4.6	ULMFiT (ours)	3.6

Table 2: Test error rates (%) on two text classification datasets used by McCann et al. (2017).

	AG	DBpedia	Yelp-bi	Yelp-full
Char-level CNN (Zhang et al., 2015)	9.51	1.55	4.88	37.95
CNN (Johnson and Zhang, 2016)	6.57	0.84	2.90	32.39
DPCNN (Johnson and Zhang, 2017)	6.87	0.88	2.64	30.58
ULMFiT (ours)	5.01	0.80	2.16	29.98

Table 3: Test error rates (%) on text classification datasets used by Johnson and Zhang (2017).

Source: Howard and Ruder (2018)