School of Computing and Information Systems The University of Melbourne COMP90049 Knowledge Technologies (Semester 1, 2019) Workshop exercises: Week 10

1. For the following dataset:

apple	ibm	lemon	sun	CLASS					
TRAINING INSTANCES									
Y	N	Y	Y	FRUIT					
\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{Y}	FRUIT					
Y	\mathbf{Y}	N	\mathbf{N}	COMPUTER					
Y	Y	Y	Y	COMPUTER					
Test Instances									
Y	N	Y	Y	?					
\mathbf{Y}	\mathbf{N}	Y	${f N}$?					

Use the method of Naive Bayes classification, as shown in lectures, to classify the test instances. Revise some of the assumptions that are built into the model.

2. A confusion matrix is a summary of the performance of a (supervised) classifier over a set of development ("test") data, by counting the various instances:

		Actual				
		a	b	c	d	
	a	10	2	3	1	
Classified	b	2	5	3	1	
Classified	c	1	3	7	1	
	d	3	0	3	5	

- (a) Calculate the classification **accuracy** of the system. Find the **error rate** for the system.
- (b) Calculate the **precision**, **recall**, **F-score** (where $\beta = 1$), **sensitivity**, and **specificity** for class d. (Why can't we do this for the whole system? How can we consider the whole system?)
- 3. How is **holdout** evaluation different to **cross-validation** evaluation?