1. Collecting Nigerian Government Securities Data:

We will use data from the Debt Management Office Nigeria for FGN Bonds, Treasury Bills, and Open Market Operations (OMO) securities. The maturities range from short-term (6 months) to long-term (20–30 years).

Example Data (from sources → www.dmo.gov.ng)		
Security Type	Maturity (Years)	Yield (%)
Treasury Bill	0.5	5.2
Treasury Bill	1	5.5
OMO Bill	2	6.0
FGN Bond	5	7.2
FGN Bond	10	8.0
FGN Bond	20	9.5
FGN Bond	30	10.0

2. Yield Curve Modeling

Fitting the Nelson-Siegel Model The Nelson-Siegel model is defined as:

3. Fitting a Cubic-Spline Model

A Cubic-Spline model provides a more flexible fit:

```
from scipy.interpolate import CubicSpline
import matplotlib.pyplot as plt

# Fit cubic spline
spline = CubicSpline(maturities, yields)

# Plot results
x_vals = np.linspace(0.5, 30, 100)
plt.plot(maturities, yields, 'o', label="Observed Yields")
plt.plot(x_vals, spline(x_vals), label="Cubic Spline Fit")
plt.legend()
plt.xlabel("Maturity (Years)")
plt.ylabel("Yield (%)")
plt.title("Cubic-Spline Yield Curve Fit")
plt.show()
```


Start coding or $\underline{\text{generate}}$ with AI.