### Tema 11. Detección de colisiones



11.1 Introducción al problema

11.2 Modelos de entorno

11.3 Planificación de rutas

# Introducción al problema



- Necesidad de anticipar los posibles choques
- Problema de detección de colisiones

 Si dos objetos chocan: pueden rebotar, romperse en varios trozos o deformarse

 Aplicaciones a: planificación de rutas, simulación de movimiento de objetos, robótica, realidad virtual, simuladores quirúrgicos, etc.

# Introducción al problema



Planificación de caminos. Diseño de algoritmos que permita obtener trayectorias libres de obstáculos. Por lo general, van a optimizar alguna función.

**Detección de colisiones**. Se trata de prever si dos objetos pueden colisionar. Se realiza mediante sensores de proximidad. Se crean mapas de entorno y determinar las posibles colisiones. Pueden definirse distintos tipos de mapas, que se elegirán en función de los sensores, el tiempo de procesado, etc.

**Evitación de colisiones**. Evitan las colisiones que se hayan detectado. Estas acciones pueden ser detención del móvil, cambio en la velocidad o planificación de rutas alternativas. Estas acciones tienen niveles de complejidad distintos.



#### Ocupación de celdas

Se hace un mallado y se asigna a cada celda el valor 0 o 1

#### Ventajas:

Es posible modelar cualquier tipo de terreno Su implementación es muy sencilla Realiza una descripción del entorno muy sencilla

#### Desventajas:

Se requiere un mallado sea fino Consume muchos recursos Es poco eficiente

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |   | G |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 |   | 0 | 0 | 0 | 0 |   | 0 |
| S | 0 |   | 0 | 0 | 0 | 0 |   | 0 |
| 0 | 0 |   | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |   | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Fuente: http://tai.czasopisma.pan.pl/



#### Estructuras jerárquicas

Las celdas de distinto tamaño. Algoritmo de descomposición de celdas:

- Cada celda debe pertenecer por completo o bien al espacio libre o bien a un obstáculo
- Se subdivide hasta alcanzar un nivel de resolución establecido



Fuente: https://cs.stanford.edu

Ventajas: descripción sencilla y eficiente

Desventaja: cálculo de rutas más complicado



#### Primitivas de sólidos

Se modelan los obstáculos a partir de objetos geométricos sencillos (primitivas).

Objetos más complejos: formados por varias primitivas. Se definen las operación de unión, intersección, etc. como operaciones booleanas

Ojo: hay que definir las operaciones con sentido real



Fuente: ftp://ftp.inf.ethz.ch/



#### Ventajas:

- Descripción eficiente y sencilla
- Descripción ocupa poca memoria

#### Desventajas:

- A veces no se ajusta bien a un modelo de primitivas: descripción conservadora
- Distintos entornos pueden modelarse con las mismas primitivas
- Es difícil modelar con primitivas a partir de datos obtenidos de sensores



Fuente: http://www.esi2.us.es/



#### Modelado topológico

Descripción cualitativa del entorno: tiene en cuenta la relación entre los distintos obstáculos

Ejemplo: plano de metro

Un mapa topológico es un grafo en el que los obstáculos son los nodos y las relaciones entre ellos son los arcos





Fuente: http://www.ini.uzh.ch/



#### Modelado topológico

Descripción cualitativa del entorno: tiene en cuenta la relación entre los distintos obstáculos

Ejemplo: plano de metro

Un mapa topológico es un grafo en el que los obstáculos son los nodos y las relaciones entre ellos son los arcos





Fuente: http://www.ini.uzh.ch/



#### Expansión de obstáculos

Se representan en un mapa los obstáculos sobredimensionados.

El espacio libre resultante está libre de obstáculo.

Es muy habitual aproximar el móvil por una circunferencia y tratarlo como un objeto puntual.



Fuente: http://www.esi2.us.es/



Paso 1: se expanden los obstáculos y se contrae el polígono límite



Fuente: http://webpersonal.uma.es/



#### Paso 2: calcular el polígono límite resultante



Fuente: http://webpersonal.uma.es/



Paso 3: calcular el nuevo conjunto de obstáculos



Fuente: http://webpersonal.uma.es/



Ventajas: es muy sencilla computacionalmente

**Inconvenientes**: modelo excesivamente conservador



Fuente: http://www.esi2.us.es/



#### Grafos de visibilidad

- Se dice que un punto es visible desde otro si el segmento que une ambos puntos no atraviesa ningún obstáculo.
- Que sea tangente a él no se considera atravesarlo.
- Se construye un grafo, en el que todas sus aristas se corresponden con tramos que se recorren en el espacio libre de obstáculos.
- El problema de encontrar una ruta libre de obstáculos queda reducido a un problema de optimización sobre el grafo.



Se consideran todos los segmentos entre el punto de origen y todos los vértices de los objetos que sean visibles desde él



Fuente: http://slideplayer.com/



A continuación, se van considerando todos los segmentos entre todos los vértices de los obstáculos, siempre que sean visibles entre sí



Fuente: http://slideplayer.com/



#### Hasta que terminar



Fuente: http://slideplayer.com/

Ventaja: bajo coste computacional

Inconveniente: deben hacerse cálculos adicionales para alejar al móvil de los

obstáculos

Ruta semilibre de obstáculos



#### Diagramas de Voronoi

Buscan la ruta que maximice la distancia a todos los obstáculos.

Se realiza una teselación del plano de forma que las líneas sean equidistantes a los obstáculos más próximos a ellas.



Fuente: http://utuconstruccion.blogspot.com.es/



En función de la geometría de los obstáculos, estos pueden aproximarse por un punto o una poligonal.



Fuente: http://utuconstruccion.blogspot.com.es/

Fuente: http://geometriaparabolaepoem97.blogspot.com.es/



Los diagramas de Voronoi generalmente están compuestos por segmentos de recta y de parábola



Fuente: https://ayorho.wordpress.com/



También se pueden calcular diagramas de Voronoi para obstáculos curvos. En este caso el cálculo será más costoso y no se sabe a priori cuál será el lugar geométrico resultante.

Observación: aproximación de móvil por un punto.

Ventajas: rutas muy adecuadas en entornos con pasos estrechos.

**Inconvenientes**: Si, por el contrario, hubiera mucho espacio libre, puede dar lugar a rutas muy poco eficientes que den grandes rodeos.



#### Descomposición trapezoidal

- Se aproximan los obstáculos por poligonales.
- Se consideran las líneas verticales desde los vértices de los obstáculos.
- Se definen segmentos verticales desde cada vértice que darán lugar a unas celdas que tendrán forma trapezoidal o triangular. Cada celda está contenida en el espacio libre.
- Por último, se determina un camino libre de obstáculos.
- Este método pertenece a la familia de los métodos de descomposición exacta, ya que la unión de las celdas es igual al espacio libre de obstáculos.



Paso 1: Aproximación de los obstáculos por poligonales





Paso 2: Determinación de los vértices de los obstáculos





Paso 3: Creación de las celdas





Paso 4: Determinación del camino (método 1). Centroide.





Paso 5: Elaboración del grafo y búsqueda de un camino óptimo



Fuente: http://user.ceng.metu.edu.tr/

**Problema**: la ruta puede no estar libre de obstáculos





Paso 6: Determinación del camino (método 2). Punto medio.





Paso 7: Elaboración del grafo y búsqueda de un camino óptimo



Fuente: http://user.ceng.metu.edu.tr/

Este método elimina las colisiones

