Apellido y Nombrei Conservation de Carreration de Maratro de Carreration de Maratro de Carreration de Maratro de Carreration d

ÁLGEBRA LINEAL y ÁLGEBRA II Examen Final: (16/02/2007)

PARTE PRÁCTICA. Para aprobar hay que sumar por lo menos 5 puntos en esta parte.

- (1) 1.5 pts. Considere los puntos A=(3,2,1) y B=(-1,2,3). Encuentre todos los puntos P que se encuentran sobre la rectal $\{(x,y,z):(x,y,z)=(2,1,2)+t(1,4,5),\ t\in\mathbb{R}\}$ tal que el triângulo ABP ses recto en P.
- (2) 3,5 pts. Sea $T:\mathbb{R}^4 \to \mathbb{R}^4$ la transformación lineal definida por

$$T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_3 + x_4 \\ x_1 + x_2 + 3x_3 + 2x_4 \\ -x_1 - x_2 - 3x_3 - 2x_4 \\ x_1 + x_2 + 2x_3 + x_4 \end{pmatrix}.$$

(a) Dar una base de Nu (T).

(b) Describir implicitamente y dar una base de Im (T).

(c) Dar la matriz $[T]_S^5$ de T con respecto a la base de \mathbb{R}^4

$$\mathcal{B} = \left\{ \left(1,0,0,1\right), \left(0,0,1,1\right), \left(0,1,0,0\right), \left(-1,0,0,1\right) \right\}.$$

- (d) Dar una base de $Nu(T) \cap Im(T)$ y de Nu(T) + Im(T).
- (3) 3 pts.
 - (a) Para que valores de c la siguiente matriz es invertible.

$$\left(\begin{array}{cccc}
0 & c & -c \\
-1 & 2 & -1 \\
c & -c & c
\end{array}\right)$$

(b) Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal dada por

$$T(x_1, x_2, x_3) = (2x_1 + 4x_3, 8x_2, 4x_1 + 2x_3).$$

Encuentre una base B en el cual $[T]_B^S$ sea una matriz diagonal e indicar la matriz que realiza el cambio de base.

(4) 2 pts. Considere P₃ (el espacio de todos los polinomios de grado menor o igual a dos) con el producto interno

$$(p,q) = \int_{-1}^{1} p(x)q(x) dx$$

y encuentre d(p,q) (la distancia entre $p \neq q$) cuando $p=-1 \neq q=x^2$.

CONTROL LEURICA: Para aprobat hay que sumar por lo menos 5 puntos en esta parte. (1) 3 pts. Sea V un espacio vectorial y sean W_1 y W_2 subespacios de V(a) Definir el subespacio W_1+W_2 (b) Demostrar que $\dim(W_1+W_2)=\dim(W_1)+\dim(W_2)+\dim(W_1\cap W_2)$ (2) 4 pts (a) Sea V un espacio vectorial con producto interno (,) sobre $\mathbb C$ y sea $\{\beta_1,\dots,\beta_n\}$ un conjunte linealmente independiente en V. Demostrar que se pueden construir vectores ortogonales α_1,\ldots,α_n en V tales que para todo $k=1,2,\ldots n$ el conjunto $\{\alpha_1,\ldots,\alpha_k\}$ es base de espacio generado por β_1, \dots, β_k . (b) Mostrar que todo espacio con producto interno de dimensión finita tiene una base ortonor-3 pts. Decir si las signientes afirmaciones son verdaderas o falsas, justificando sus respuestas. (a) Sea V un espacio vectorial real y sea $T:V \to V$ una transformación lineal con la propiedad que $T(T(\alpha)) = -\alpha$ para todo $\alpha \in V$. Entonces $\{\alpha, T(\alpha)\}$ es linealmente independiente para todo $\alpha \neq 0$. (b) Sea U un subespacio vectorial de V y suponga que $V=U\oplus W_1$ y $V=U+W_2$. Entonces (c) Sea A una matriz $n \times n$. Entonces $A^2 = A$ si y solo si B = I - 2A es una matriz tal que a " + 02" + ax = 6" Ejercicio para Libres 173K 0 " 1 0 " = Calcule la inversa de $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -2 & -2 & -3 \end{pmatrix}$ n = Jav = dim (U+N) = dim U+din W, - dim (U AW) n = 1 .. . dim (v+n) = dim v + dim v+ - dem (V) N+1) 0 = dim Wi - dim Wa - dim (Un WI) dim W, + dim (UNVI) = dim Wz +dim (UNW) V-R2 = 0 = (1,0) U= (1,0) (U NW2)=1