Attention and salience in lexically-guided perceptual learning

Michael McAuliffe

530 final presentation

Research Questions

- Listeners are constantly adapting to speech
- How automatic is this process?
- How context-independent or context-dependent is this process?

Outline

- Background
- 2 Experiments
 - Experiment 1
 - Experiment 2
 - Experiment 3
- 3 Discussion

Definitions

Perceptual learning

- Psychophysics: updating of categories to reflect actual stimuli (Gibson, 1953)
- Speech perception: updating sound categories in response to exposure (Norris et al., 2003)

Perceptual learning

Definitions

Attention

- Selective attention to a particular sound category (/s/)
- Feature-based attention (as opposed to singleton-based attention)

Salience

- Linguistic: word-position or semantic predictability
- Signal/linguistic: category typicality (/s/-/ʃ/)

Attentional sets

- Comprehension-oriented attentional set
- Perception-oriented attentional set

Theoretical framework

Predictive coding model of the brain (Clark, 2013)

- Hierarchical
- Expectations propagate to lower levels
- Error signals from unmet expectations propagate to higher levels
- Similar computational models can account for perceptual learning (Kleinschmidt and Jaeger, 2011)

Attention in predictive coding

Clark (2013)

- Gain-based attention mechanism
 - Attention increases weight of error signals
 - Predicts greater updating of expectations when listeners attend to the signal

This dissertation

- Propagation-inhibiting attention mechanism
 - Attention resolves expectations at the attended level, inhibiting further propagation of error signals
 - Predicts that perception-oriented attentional sets will generalize less, showing smaller perceptual learning effects

Outline

- Background
- 2 Experiments
 - Experiment 1
 - Experiment 2
 - Experiment 3
- 3 Discussion

Experiment 1

Standard lexically-guided perceptual learning paradigm

- Exposure
 - Lexical decision task
 - Words with /s/ in them that sound halfway in between /s/ and /ʃ/ (50% /s/ response in a pretest)
 - 2x2 design (100 participants total)
 - Word-initial or word-medial
 - Attention to /s/ or no attention to /s/
- Categorization
 - Four minimal pair continua
 - sin-shin, sack-shack, sock-shock, sigh-shy
 - Middle six steps of each continua (as determined by a pretest)
 - Control group completed just the categorization for comparison to experimental groups

Experiment 1 results

Outline

- Background
- 2 Experiments
 - Experiment 1
 - Experiment 2
 - Experiment 3
- 3 Discussion

Experiment 2

Same structure as Experiment 1

- Exposure
 - Lexical decision task
 - Words with /s/ in them that sound more like /ʃ/ than /s/ (30% /s/ response in a pretest)
 - 2x2 design (100 participants total)
 - Word-initial or word-medial
 - Attention to /s/ or no attention to /s/
- Categorization
 - Four minimal pair continua
 - sin-shin, sack-shack, sock-shock, sigh-shy
 - Middle six steps of each continua (as determined by a pretest)

Experiment 2 results

Influence of endorsement rate on perceptual learning

Outline

- Background
- 2 Experiments
 - Experiment 1
 - Experiment 2
 - Experiment 3
- 3 Discussion

Experiment 3

Novel cross-modal word identification paradigm

- Exposure
 - Auditory sentences
 - Identify the picture that corresponds to the final word in the sentence
 - Sentences can be either predictive of the final word or not
 - Words with /s/ in them that sound halfway in between /s/ and /[/ (as in Experiment 1)
 - 2x2 design
 - Words with /s/ only in predictive sentences or only in unpredictive sentences
 - Attention to /s/ or no attention to /s/
- Categorization
 - Identical to Experiments 1 and 2

Experiment 3 results

Discussion

- Perceptual learning effects were present for all experimental participants
- Comprehension-oriented attentional sets
 - Word-medial, less atypical /s/ productions produced the larger perceptual learning effects
 - Words in isolation and words in unpredictive contexts showed "larger" effects than words in predictive contexts
- Perception-oriented attentional sets
 - Word-initial or more atypical /s/ productions produced smaller perceptual learning effects
 - Predictive sentences are lower cognitive load, allowing for more perception-oriented attention (Samuel, 1981)

Attention switching and individual differences

- Attentional sets are not fixed
- Attention-switching control rather than selective attention and hearing loss affect perceptual learning in older adults (Scharenborg et al., 2014)
 - Listeners with worse attention-switching control show larger perceptual learning effects
 - These listeners would be oriented more towards comprehension
- Certain individuals may be more oriented towards one attentional set or the other
 - Global versus local processing differences

Attention mechanisms

Gain-based mechanism

- Cannot account for the results of these experiments
- Increasing attention to perception always reduced perceptual learning

Propagation-inhibiting mechanism

- Accounts for the variability of perceptual learning effects across paradigms and fields
 - Psychophysics perceptual learning (Gilbert et al., 2001, for review) and visually-guided perceptual learning (e.g. Bertelson et al., 2003) use perception-oriented tasks
 - Lexically-guided perceptual learning use comprehension-oriented tasks (e.g. Norris et al., 2003)

Summary

- Perceptual learning is a largely automatic process
- However, attentional sets determine the magnitude of perceptual learning effects
- These results support a propagation-inhibiting mechanism of attention in predictive coding frameworks, rather than a gain mechanism

Background Experiments Discussion

- Bertelson, P., Vroomen, J., and De Gelder, B. (2003). Visual Recalibration of Auditor Speech Identification: A McGurk Aftereffect. *Psychological Science*, 14(6):592–597.
 Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cogn.
- tive science. *The Behavioral and brain sciences*, 36(3):181–204.

 Gibson, E. J. (1953). Improvement in perceptual judgments as a function of controlled practice.
- tice or training. *Psychological bulletin*, 50(6):401–431.

 Gilbert, C., Sigman, M., and Crist, R. (2001). The neural basis of perceptual learning. *Neu*
- ron, 31:681–697.
 Kleinschmidt, D. and Jaeger, T. F. (2011). A Bayesian belief updating model of phoneti recalibration and selective adaptation. Science, (June):10–19.
- Norris, D., McQueen, J. M., and Cutler, A. (2003). Perceptual learning in speech.
- Samuel, A. G. (1981). Phonemic restoration: insights from a new methodology. *Journal of experimental psychology. General*, 110(4):474–494.
- Scharenborg, O., Weber, A., and Janse, E. (2014). The role of attentional abilities in lexicall guided perceptual learning by older listeners. *Attention, Perception, & Psychophysics* pages 1–15.