Systèmes de dialogue homme-machine Une introduction rapide

Sophie Rosset

Groupe Traitement du Langage Parlé
Département Communication Homme-Machine
LIMSI - CNRS

Système de dialogue : en conclusion

Conclusion de la séance du 12 décembre

Le système doit savoir :

- comprendre l'énoncé de l'utilisateur :
 - ...
 - ...
- générer une requête dans la base de données (ou équivalent)
- détecter si il y a une incohérence
- ... complétez

Système de dialogue

Préalable :

- un moteur d'analyse des documents
- un module d'extraction d'information pour constituer la base de connaissances
- la base de connaissances

Dialogue:

- un moteur d'analyse des questions
- un contrôleur de dialogue qui contrôle le flux du dialogue
- un module d'analyse contextuelle qui a en charge l'interprétation contextuelle des informations et la mise à jour de l'état du dialogue
- un module de génération de réponses (et questions etc.)

Analyseur pour les documents

- Entités Nommées : dates, lieux, événements, personne (prénom, nom), etc.
- → Le Paris Saint-Germain Football Club (couramment abrégé en Paris SG ou PSG) est un club de football français basé à Paris, issu de la fusion en 1970 du Stade Saint-Germain, fondé en 1904, et du Paris FC fondé en 1969.
 - bleu = des noms d'équipe qu'il faut repérer
 - vert = des noms de ville
 - rouge = des *dates*
- \rightarrow Définition de la tâche : sur quoi on veut que l'utilisateur puisse poser des questions.
 - des équipes : elles peuvent avoir plusieurs noms
 - des lieux : à quelle ville l'équipe est associée ?
 - des dates : date de constitution, de fusion, etc.

Analyseur pour les questions

- Entités Nommées : dates, lieux, événements, personne (prénom, nom), etc.
- Mais encore?
 - marqueurs de questions
 - focus
 - actes de dialogue
- → quel est le nom complet du PSG?
 - cyan = un marqueur de question (on demande un *nom*
 - bleu = une équipe
- \rightarrow Non pas le PSG
 - pas le PSG = une équipe qu'il faut repérer avec sa négation
 - non = un acte de dialogue de type rejection

Objectif de cette séance

Pour chaque groupe

- choix du domaine
- définition de la tâche
- version de base des analyseurs : documents et questions

Objectifs

Le contrôleur de dialogue gère la prise de décision. Il doit décider quand et quoi dire à l'utilisateur, quand et quoi rechercher comme information :

- quelle information demander
- quand demander une clarification
- quelle information (réponse) donner

Différentes approches

- Les graphes/automates
- Les schémas (frame)
- Les approches statistiques
- Les approches à base de plan (IA)

Les graphes (automate à états finis)

- Les noeuds représentent les questions du système
- Les arcs représentent les réponses
- Le graphe représente toutes les alternatives possibles (légales)

Les graphes (automate à états finis)

- Les noeuds représentent les questions du système
- Les arcs représentent les réponses
- Le graphe représente toutes les alternatives possibles (légales)

Quelques remarques :

- La gestion du dialogue est très simple
- Le dialogue est forcément très simple et tout doit être pré-déterminé : les éléments et leur ordre
- La compréhension littérale peut aussi être extrêmement simple (simplification)
- Ne peut être utilisé que dans des tâches très simples et très structurées (remplissage de formulaire avec peu d'attributs et peu de valeurs possibles)

Les schémas (frame)

Un schéma est une manière plus flexible pour contrôler le dialogue.

- Il représente ce que doit résoudre le système
- Il s'agit d'un ensemble de slots que le système doit remplir au fur et à mesure (peut être représenté sous forme de tables ...)

Exemple

Début du dialogue

destination : nil

...

2ème tour

destination: Avignon

date: nil

• • •

Les schémas (frame)

Quelques remarques :

- Un schéma permet un dialogue plus souple (ordre éléments non contraint)
- Un schéma peut impliquer une analyse non contextuelle plus complexe
- Un schéma permet un dialogue à initiative mixte
- Possibilité d'avoir autant de schéma que de (sous-)tâches ou un schéma complexe

Exemples

Graphe	Schéma
S : Quelle est votre destination?	S : Quelle est votre destination?
U : Avignon le 27 janvier	U : Avignon le 27 janvier
Avignon OK	Avignon et le 27 janvier OK

Les approches statistiques

Essentiellement apprentissage par renforcement (Reinforcement Learning - RL)

- MDP: Markov Decision Process
- POMDP : Partially Observable Markov Decision Process

Apprentissage par renforcement : MDP

- Cadre : prise de décision
- Décisions prises en fonction d'un état
 - S est la suite des états du dialogue
 - A_s ensemble des actions possibles
 - T ensemble des probabilités de transition $P_T = (S_T | S_{T-1}, a_{T-1})$ (probabilité de l'état suivant étant donné l'état précédent et l'action précédente
 - R est la récompense associée à chaque action étant donné un état
- ullet Définir une politique $(\pi:S o A)$ qui doit maximiser la quantité de récompenses

Les approches statistiques

Essentiellement apprentissage par renforcement (Reinforcement Learning - RL)

- MDP: Markov Decision Process
- POMDP : Partially Observable Markov Decision Process

Apprentissage par renforcement : POMDP

MDP = tous les états sont accessibles. Mais à cause de l'historique et des erreurs possibles (ASR, SLU...) \to POMDP

L'input utilisateur ne contient pas la totalité de l'état de l'interaction tel que représenté dans ${\cal S}$

- Extension du modèle avec un état de croyance (system belief state)
 - plutôt qu'avoir une seule hypothèse pour l'état courant du dialogue, on a un ensemble d'hypothèses
 - à un instant t, on a un état s_t et une croyance (belief state) b (un score, une distribution de probabilités)
 - étant donné b, le système décide d'une action a et passe à l'état (non observé) s_{t+1}

Les approches statistiques

Essentiellement apprentissage par renforcement (Reinforcement Learning - RL)

- MDP: Markov Decision Process
- POMDP : Partially Observable Markov Decision Process

Apprentissage par renforcement

Pour apprendre, on simule un utilisateur, on mesure la qualité du dialogue et on optimise le modèle.

- La fonction de reward est difficile à définir (qu'est-ce qu'un bon dialogue, une bonne action?)
- Difficile d'ajouter des fonctionnalités (dépendance corpus etc.)
- Finalement ne traite pas vraiment d'espace et d'états plus importants qu'un système à base de règles (pour le moment...)

Pour aller plus loin

Quelques lectures

- Spoken Dialogue Systems, Kristiina JOKINEN, Michael McTEAR, Morgan & Claypool publishers, 2010, 167 pages
- Parole et dialogue homme-machine, W. Minker, S. Bennacef, Editions d'Organisations, groupe Eyrolles, 2000.
- Speech and Language Processing, Dan Jurafsky and James Martin, 2nd edition, draft chapters: http://www.cs.colorado.edu/martin/slp2.html
- VoiceXml la langage d'accès à Internet par téléphone, J. Rouillard, Ed. Vuibert, 2004.
- Exemples VoiceXml : http ://jose.rouillard.free.fr/VoiceXML/