Number Theory Basics

19CSE311 Computer Security

Jevitha KP

Department of CSE

Basic Terminology

- plaintext the original message
- ciphertext the coded message or encrypted message
- cipher algorithm for transforming plaintext to ciphertext
- key info used in cipher known only to sender/receiver
- encipher (encrypt) converting plaintext to ciphertext
- decipher (decrypt) recovering ciphertext from plaintext
- cryptography study of encryption principles/methods
- cryptanalysis (codebreaking) the study of principles/ methods of deciphering ciphertext without knowing key
- cryptology the field of both cryptography and cryptanalysis

Basic Terminology

- algorithm Series of steps / mathematical formula / function which takes plain text as input and returns encrypted text / vice-versa.
- cryptosystem Implementation of cryptographic techniques and accompanying infrastructure
- Components of crypto system
 - Plaintext
 - Encryption algorithm
 - Decryption algorithm
 - Cipher text
 - Keys single (symmetric) or multiple (asymmetric)

Basic Terminology

- Cryptography process
 - Sender selects the algorithm, message and key
 - Key is shared with the receiver
 - Key and message are fed to the encryption algorithm
 - Ciphertext is sent over the public network to the receiver
 - Receiver uses the key and cipher text as input to the decryption algorithm and receives the plain text
 - Attacker Since the cipher text is shared in public, the attackers will try to get the key

Math behind cryptography

- Number Theory
- Linear Algebra
- Algebraic structures

Integer Arithmetic

- » In integer arithmetic, we use a set and a few operations.
- » Set of Integers The set of integers, denoted by Z, contains all integral numbers (with no fraction) from negative infinity to positive infinity

$$Z = \{ \ldots, -2, -1, 0, 1, 2, \ldots \}$$

Binary Operations

- » In cryptography, we are interested in three binary operations applied to the set of integers.
- » A binary operation takes two inputs and creates one output.
- » Three common binary operations defined for integers are addition, subtraction, and multiplication.
- » Each of these operations takes two inputs (a and b) and creates one output (c)

Binary Operations

Add:
$$5 + 9 = 14$$
 $(-5) + 9 = 4$ $5 + (-9) = -4$ $(-5) + (-9) = -14$

Subtract:
$$5-9=-4$$
 $(-5)-9=-14$ $5-(-9)=14$ $(-5)-(-9)=+4$

Multiply:
$$5 \times 9 = 45$$
 $(-5) \times 9 = -45$ $5 \times (-9) = -45$ $(-5) \times (-9) = 45$

Integer Division

- » In integer arithmetic, if we divide a by n, we can get q and r.
- » The relationship between these four integers can be shown as
- $a = q \times n + r$
- » In this relation,
- » a is called the dividend;
- » q, the quotient;
- » n, the divisor; and
- » r, the
- » remainder.
- » Note that this is not an operation, because the result of dividing a by n is two integers, q and r.
- » We call it division relation

Two Restrictions

- » First, we require that the divisor be a positive integer (n > 0).
- » Second, we require that the remainder be a nonnegative integer (r ≥ 0)

Divisors

- say a non-zero number b divides a if for some m have a=mb (a,b,m all integers)
- that is b divides into a with no remainder
- denote this b|a
- and say that b is a divisor of a
- eg. all of 1,2,3,4,6,8,12,24 divide 24

Properties of Divisibility

```
Property 1: if a \mid 1, then a = \pm 1.
```

Property 2: if a|b and b|a, then $a = \pm b$.

Property 3: if a|b and b|c, then a|c.

Property 4: if a|b and a|c, then $a|(m \times b + n \times c)$, where m and n are arbitrary integers.

Greatest Common Divisor (GCD)

- a common problem in number theory
- GCD (a,b) of a and b is the largest number that divides evenly into both a and b
 - $\operatorname{eg} \mathsf{GCD}(60,24) = 12$
- often want no common factors (except 1) and hence numbers are relatively prime
 - eg GCD(8,15) = 1
 - hence 8 & 15 are relatively prime

Euclid's GCD Algorithm

- an efficient way to find the GCD(a,b)
- uses theorem that:

```
-GCD(a,b) = GCD(b, a mod b)
```

Euclid's Algorithm to compute GCD(a,b):

```
-A=a, B=b
```

-while B>0

$$\bullet$$
 R = A mod B

$$\bullet A = B, B = R$$

-return A

GCD(80808, 31863)

Q	N1	N2	R
2	80808	31863	17082
1	31863	17082	14781
1	17082	14781	2301
6	14781	2301	975
2	2301	975	351
2	975	351	273
1	351	273	78
3	273	78	39
2	78	39	0

GCD(42823, 6409)

Q	N1	N2	R
6	42823	6409	4369
1	6409	4369	2040
2	4369	2040	289
7	2040	289	17
17	289	17	0
	GCD = 17		

GCD(1160718174, 316258250)

Q	N1	N2	R
3	1160718174	316258250	211943424
1	316258250	211943424	104314826
2	211943424	104314826	3313772
31	104314826	3313772	1587894
2	3313772	1587894	137984
11	1587894	137984	70070
1	137984	70070	67914
1	70070	67914	2156
31	67914	2156	1078
2	2156	1078	0
	GCD = 1078		

Example GCD(1970,1066)

```
1970 = 1 \times 1066 + 904
                              gcd(1066, 904)
1066 = 1 \times 904 + 162
                              gcd(904, 162)
904 = 5 \times 162 + 94
                              gcd(162, 94)
                              gcd(94, 68)
162 = 1 \times 94 + 68
94 = 1 \times 68 + 26
                              gcd(68, 26)
68 = 2 \times 26 + 16
                              gcd(26, 16)
26 = 1 \times 16 + 10
                              gcd(16, 10)
16 = 1 \times 10 + 6
                              gcd(10, 6)
10 = 1 \times 6 + 4
                                 gcd(6, 4)
6 = 1 \times 4 + 2
                              gcd(4, 2)
4 = 2 \times 2 + 0
                              gcd(2, 0)
```