2주차 1차시 LAN의 개요 및 분류

[학습목표]

- 1. LAN의 정의와 특징, IEEE802 표준에 대해 설명할 수 있다.
- 2. LAN을 토폴로지, 전송매체, 매체접근방식에 따라 각각 분류할 수 있다.

학습내용1: LAN의 정의 및 특징, 표준

1. LAN의 정의

- LAN(Local Area Network)은 1970년대 초 Xerox사의 PARC(Palo Alto Research Center)에서 로버트 맷칼프에 의해 고안된 후, 1985년 IEEE(전기전자 기술자 협회)의 표준화 위원회에서 표준으로 제정된 통신 시스템.

[그림] LAN(Local Area Network)

- * LAN에 대한 여러 정의
- 1) IEEE 표준 위원에서의 정의 : 제한된 거리에 있는 다수의 독립된 컴퓨터 기기들이 상호 간에 통신이 가능하도록 하는 데이터 통신 시스템
- 2) Kenneth J.Thurber & Harvey A.Freeman 의 정의
 - 단일 기관의 소유일 것
 - 수마일 범위 이내에 지역적으로 한정되어 있을 것
 - 어떤 종류의 스위칭 기술을 갖고 있을 것
 - 원거리 네트워크의 경우보다 높은 통신 속도를 가질 것
 - 한정된 거리와 고속통신의 개념을 덧붙임

3) Fred Halsall

- 하나의 건물 혹은 지역적인 빌딩의 그룹 내에 위치하는 컴퓨터 기반의 DTE(데이터 단말 장치)들의 상호 연결된 분산 공동체

4) 기타

- "좁은 지역 내에서 다양한 통신기기의 상호연결을 가능하게 하는 통신 네트워크"
- "사무실/빌딩/공장 등과 같이 제한된 지역에서 정보처리장치들을 연결하기 위하여 최적화되고, 신뢰성 있는 고속의 통신 채널을 제공하는 네트워크"

2. LAN의 특징

- * LAN의 사용 이점:
- 1) Plug-in 연결만으로 네트워크의 확장, 단말 장치의 이동 및 변경이 가능
- 2) 다양한 응용을 수용할 수 있으며, 많은 수의 단말을 연결
- 3) 상대적으로 낮은 비용이 드는 매체로 높은 대역폭을 제공
- 4) 게이트웨이, 브리지, 라우터 등의 네트워킹 장비들을 이용하여 다른 네트워크와 연동이 가능
- 5) 중앙에 집중되어 있는 컴퓨팅 자원을 가장 편리한 장소에 분배하여 위치시킬 수 있음
- 6) 하나의 중앙 지점에서 네트워크에 대한 모니터링이 가능하기 때문에 네트워크의 이용률이나 가용성 등을 보장하기 위한 네트워크 관리가 용이한 편
- 7) 오랜 기간의 사용으로 LAN 기술 자체가 검증되었으며, 숙련된 LAN 기술자가 많기 때문에 구축 및 운영, 유지가 편리
- * LAN의 제한사항:
- 1) LAN은 짧은 거리에서의 통신만을 지원하므로, 거리를 확장하기 위해서는 리피터, 허브 혹은 브리지와 같은 네트워킹 장비를 사용해야 함.
- 2) 매체에 대한 접근제어방식으로 CSMA/CD를 사용할 경우에는 한 매체에 연결되는 스테이션의 수가 한정됨.

3. IEEE 802 표준

- 많은 네트워크 장비 공급 업체들로부터 출시되는 관련 장비들간의 호환성 및 장비간 연동을 위하여 IEEE(전기 전자 전문가 협회)는 802 위원회를 조직하여, LAN에 관한 표준화를 추진

[그림] IEEE 마크

[그림] IEEE 802 표준과 참조모델

* IEEE 802.2 --> LLC(Logical Link Control) 상위 계층인 네트워크 계층과 LAN의 MAC 계층을 연결해 주는 인터페이스

SAP	Assignment
00	Null
04	IBM SNA (station operations)
05	IBM SNA (group operations)
06	Internet Protocol (IP of TCP/IP)
80	Xerox Networking Services (XNS)
EO	Novell NetWare
FO	IBM NetBIOS
F4	LAN management (station)
F5	LAN management (group)
F8	IBM Remote Program Load (RPL)
FE	Open System Interconnect (OSI) network layer
FF	Global

- IEEE 802.1 --> MAC (Medium Access Control)
- 1) 물리 네트워크에 대한 접근 제어를 담당
- 2) MAC 어드레싱(Addressing): 네트워크에 연결된 각 호스트의 그룹 혹은 모든 호스트로 표현가능
- 3) 프레임형태 인식 : 해당 프레임이 어떤 형식의 프레임 인지에 대한 구분을 가능
- 4) 프레임 제어 : 미리 정의된 비트열인 프리엠블을 통하여 각각의 프레임 제어
 - FCS을 통하여 수신한 프레임의 에러 유무를 제어
- 5) 프레임복사 : 이더넷 카드 내의 버퍼 공간으로 프레임을 옮겨 놓는 과정

학습내용2: LAN의 분류

- LAN의 분류 방법에는 토폴로지(Topology)에 의한 분류, 전송매체에 의한 분류, 전송 신호 및 매체 접근 방법에 따른 분류 등으로 분류되어진다.

1. 토폴로지(Topology)

- 네트워크에서 스테이션들을 연결하는 케이블의 구조, 방법 혹은 기하학적인 모양
- 다양한 방식으로 구성되는 네트워크의 구성 방법에 따라 성형(Star Topology), 버스형(Bus Topology), 트리형(Tree Topology), 링형(Ring Topology)으로 구분된다.

[그림] LAN 토폴로지

(1) 버스형 (Bus Topology)

- 하나의 긴 케이블이 네트워크상의 모든 장치를 연결하는 중추 네트워크의 역할을 하는 형태

* 장점

- 1) 설치하기가 용이함
- 2) 케이블에 소요되는 비용이 최소
- 3) 각 스테이션의 고장이 네트워크내의 다른 부분에 아무런 영향을 주지 않음

* 단점

- 1) 재구성이나 결합 분리의 어려움
- 2) 탭에서 일어나는 신호의 반사는 신호의 질을 저하시킴
- 3) 기저대역 전송 방식을 사용할 경우 거리에 민감하여
- 4) 거리가 멀어지면 중계기가 필요함
- 5) 버스 케이블에 결함이 발생하면 전체 스테이션은 모든 전송을 할 수 없음
- 6) 스테이션의 수가 증가하면 처리 능력은 급격히 감소함
- 7) 네트워크에 부하가 많으면 응답시간이 늦어짐

(2) 성형 (Star Topology)

- 각 스테이션(station)이 허브(Hub)라고 불리는 중앙 전송 제어 장치와 점대점(Point-to-Point) 링크에 의해 접속되어 있는 형태

* 장점

- 1) 고장 발견이 쉽고 유지 보수가 용이함
- 2) 한 스테이션의 고장이 전체 네트워크에 영향을 미치지 않음
- 3) 한 링크가 떨어져도 다른 링크는 영향을 받지 않음
- 4) 확장이 용이함

* 단점

- 1) 중앙 전송 제어 장치가 고장이 나면 네트워크는 동작이 불가능
- 2) 설치 시에 케이블링에 많은 노력과 비용이 듦
- 3) 통신량이 많은 경우 전송 지연이 발생함

(3) 트리형 (Tree Topology)

- 성형의 변형으로 트리에 연결된 스테이션은 중앙 전송 제어 장치에 연결되어 있지만 모든 장치가 중앙 전송 제어장치에 연결되어 있지 않은 형태

* 특징

- 1) 스타형과 비슷하며 아래 그림과 같이 2차 허브를 위치시킴으로써 다음과 같은 장점을 얻음
- 하나의 1차 허브에 더 많은 스테이션을 연결함
- 각 스테이션간의 신호의 이동 거리를 증가시킴

(4) 링형 (Star Topology)

- 닫힌 루프 형태로 각 스테이션이 단지 자신의 양쪽 스테이션과 전용으로 점 대점으로 연결된 형태

* 장점

- 1) 단순하며 설치와 재구성이 쉬움
- 2) 장애가 발생한 스테이션을 쉽게 찾음
- 3) 스테이션의 수가 늘어나도 네트워크의 성능에는 별로 영향을 미치지 않음
- 4) 성형보다 케이블링에 드는 비용이 적음

* 단점

- 1) 링을 제어하기 위한 절차가 복잡하여 기본적인 지연이 존재함
- 2) 단 방향 전송이기 때문에 링에 결함이 발생하면 전체 네트워크를 사용할 수 없기 때문에 이를 해결하기 위해 이중링을 사용함
- 3) 새로 스테이션을 추가하기 위해서는 물리적으로 링을 절단하고 스테이션을 추가해야함

2. 전송 매체

(1) 광케이블 (Fiber Optic Cable)

- 데이터 신호의 빛에 의해 전송
- 전자기파의 간섭에 무관하며, 트위스티드 페어나 동축케이블에서 지원할 수 없는 높은 속도를 제공
- 철저한 보안이 요구되는 경우에 사용
- 케이블에 스테이션을 접속하기가 어렵기 때문에 허브, 고속의 링 또는 점 대점 구성에 이용
- LAN에서 현재 FDDI(Fiber Distributed Data Interface)와 DQDB(Distributed-Queue, Dual-bus), 기가 비트 고속 이더넷 등에서 사용

(2) 트위스티드 페어케이블 (Twisted Pair Cable)

Unshielded twisted pair (UTP)

- 두 줄의 도선을 쌍으로 꼬아서 만든 케이블로 어느 정도의 잡음에 대한 내성을 가지고 있는 케이블
- 비 차폐 트위스티드 페어(Unshielded Twisted Pair, UTP)
 - * 기존의 전화 시스템에 사용되는 매체이기 때문에 별도의 설치 비용이 들지 않음
 - * 전송 속도에 제한이 있어 비교적 소규모의 LAN 환경에 쓰임 CATEGORY 3(~16Mbps), CATEGORY 4(~20Mbps), CATEGORY 5(~100Mbps), CATEGORY 6(~200Mbps, ~250Mbps)
- 차폐 트위스티드 페어(Shielded Twisted Pair, STP)
 - * UTP의 간섭과 잡음의 영향을 줄인 것
 - * 비용이 비싸고 작업하기 어려움

(3) 동축케이블 (Coaxial Cable)

- 우수한 주파수 특성을 가지고 있으므로 높은 주파수와 빠른 데이터 전송이 가능
- 기저대역 전송 방식의 동축케이블
 - * 디지털 신호를 그대로 전송하는 경우
 - * 광대역 방식의 동축케이블에 비해 비용이 저렴함
 - * 주파수 분할 다중화 방식을 이용하여 다중 채널을 사용할 수 없음
 - * 주로 버스 토폴로지에서 사용
- 광대역 전송 방식의 동축케이블
 - * 아날로그 신호로 전송하며 해당 대역폭을 할당하여 사용
 - * 주파수 분할 다중화를 통해 독립적인 채널을 가짐
 - * 여러 개의 빌딩간 또는 대규모의 공장 등에서 많이 사용

3. 전송 신호

(1) 기저대역(Baseband) 전송방식

- 디지털 신호를 그대로 전송하는 방식
- 10Mbps 혹은 이 보다 높은 전송률을 가지는 하나의 전송 채널을 사용
- 보통 이진데이터를 맨체스터 혹은 차등(Differential) 맨체스터 부호화 방식을 사용
- 버스 토폴로지에 주로 사용
- 최대 1km로 거리에 제한
- 멀티포인트(Multipoint) 혹은 멀티드롭(Multidrop) 구성상에서 시간 분할 다중화 방식(TDM)을 사용하여 데이터를 전송

(2) 광대역(Broadband) 전송방식

- 아날로그 신호로 변조하여 전송하는 방식
- 디지털 신호에 비해 먼 거리로의 전송이 가능
- 한번에 한 방향으로만 전송이 가능
- 여러 개의 채널을 사용하기 위해 주파수 분할 다중화 방식

4. 매체 접근 제어 방식

- 공유하고 있는 전송매체에 대한 채널의 할당에 대한 문제를 해결하는 방식

- (1) CSMA/CD (반송파 감지 다중 접속 및 충돌탐지, Carrier Sense multiple Access with Collision Detection) : 스테이션이 채널의 상태를 미리 감지해 충돌을 피하는 방식
- (2) 토큰 링 (Token Ring): 토큰이라는 짧은 프레임을 사용하여 데이터를 보낼 권리를 정하여 데이터를 정하는 방식
- (3) 토큰 버스 (Token Bus) : 토큰 링 방식과 이더넷이 결합된 형태로 물리적으로는 버스 형태를 띄지만 논리적으로는 토큰 링 방식을 사용하는 매체 접근 제어 방식

[학습정리]

- 1. LAN은 IEEE에서 802 시리즈로 제정되어 있으며, 제한된 거리에 있는 다수의 독립된 컴퓨터 기기들이 상호 간에 통신이 가능하도록 하는 데이터 통신 시스템으로 정의할 수 있다.
- 2. LAN의 분류 방법에는 토폴로지(Topology)에 의한 분류, 전송매체에 의한 분류, 전송 신호 및 매체 접근 방법에 따른 분류 등으로 분류되어진다.
- 3. 토폴로지(Topology)란 네트워크에서 스테이션들을 연결하는 케이블의 구조, 방법 혹은 기하학적인 모양으로 다양한 방식으로 구성되는 네트워크의 구성 방법에 따라 성형(Star Topology), 버스형(Bus Topology), 트리형(Tree Topology), 링형(Ring Topology)으로 구분된다.