₩☆ 4.2 <u>빅데이</u>터 적재에 활용하는 기술

🗹 하둡 소개 (1/3)

하둡 소개

하둡은 너무나도 잘 알려진 빅데이터의 핵심 소프트웨어다. 빅데이터의 에코시스템들은 대부분 하 둡을 위해 존재하고 하둡에 의존해서 발전해 가고 있다 해도 과언이 아니다. 하둡은 크게 두 가지 기능이 있는데, 첫 번째가 대용량 데이터를 분산 저장하는 것이고, 두 번째는 분산 저장된 데이터를 가공/분석 처리하는 기능이다. 하둡은 두 번째 기능인 데이터 가공/분석을 위해 분산 병렬 처리 기술을 사용하는데, 분산 컴퓨팅 기술은 하둡이 처음 개발되기 시작한 2005년 이전부터 이미 사용돼 왔

하 하 소개 (2/3)

공식 홈페이지		ووماهما	http://hadoop.apache.org
	DataNode	;	블록(64MB or 128MB 등) 단위로 분할된 대용량 파일들이 DataNode의 디스크에 저장 및 관리
	NameNode		DataNode에 저장된 파일들의 메타 정보를 메모리상에서 로드 해서 관리
	EditsLog		파일들의 변경 이력(수정, 삭제 등) 정보가 저장되는 로그 파일
	FsImage		NameNode의 메모리상에 올라와 있는 메타 정보를 스냅샵 이 미지로 만들어 생성한 파일
주요 구성 요소	Ver. 1,x	SecondaryNameNode	NameNode의 FsImage와 EditsLog 파일을 주기적으로 유지 관리해 주는 체크포인팅 노드
		MapReduce v1	DataNode에 분산 저장된 파일이 스플릿(Map)되어 다양한 연 산(정렬, 그루핑, 집계 등)을 수행한 뒤 그 결과를 다시 병합 (Reduce)하는 분산 프로그래밍 기법
		JobTracker	맵리듀스의 잡을 실행하면서 태스크에 할당하고, 전체 잡에 대 해 리소스 분배 및 스케줄링
		TaskTracker	JobTracker가 요청한 맵리듀스 프로그램이 실행되는 태스크이 며, 이때 맵 태스크와 리듀스 태스크가 생성

【4.2 빅데이터 적재에 활용하는 기술

하 하 소개 (3/3)

		Active/Stand-By NameNode	NameNode를 이중화해서 서비스 중인 Active NameNode와 실패 처리를 대비한 Standby NameNode로 구성	
	Ver. 2,x	MapReduce v2 / YARN	하둡 클러스터 내의 자원을 중앙 관리하고, 그 위에 다양한 애플 리케이션을 실행 및 관리가 가능하도록 확장성과 호환성을 높인 하둡 2,x의 플랫폼	
		ResourceManager	하둡 클러스터 내의 자원을 중앙 관리하면서, 작업 요청 시 스케 줄링 정책에 따라 자원을 분배해서 실행시키고 모니터링	
주요 구성 요소	Ver. 2.x	NodeManager	하둡 클러스터의 DataNode마다 실행되면서 Container를 실행 시키고 라이프 사이클을 관리	
		Container	DataNode의 사용 가능한 리소스(CPU, 메모리, 디스크 등)를 Container 단위로 할당해서 구성	
		ApplicationMaster	애플리케이션 실행되면 ApplicationMaster가 생성되며 ApplicationMaster는 NodeManager에게 애플리케이션이 실 행될 Container를 요청하고, 그 위에서 애플리케이션을 실행 및 관리	
		JournalNode	3개 이상의 노드로 구성되어 EditsLog를 각 노드에 복제 관리 하며 Active NameNode는 EditsLog에 쓰기만을 수행하고	
라이선스	Apache			
유사 프로젝트	GFS(Google File System), Gluster, MogileFS, GridFS, Lustre			

텔 하둡 아키텍처 1.x

₩☆ 4.2 빅데이터 적재에 활용하는 기술

· 하답 활용 방안

그림 4.7 파일럿 프로젝트에서의 하둡 활용 방안

Tip _ 하둡의 맵리듀스

분산 병렬 처리에서의 핵심은 여러 컴퓨터에 분산 저장돼 있는 데이터로부터 어떻게 효율적으로 일을 나눠서(Map) 실행시킬 수 있느냐고, 다음으로 여러 컴퓨터가 나눠서 실행한 결과들을 어떻게 하나로 모으냐(Reduce)는 것이다. 이를 쉽고 편리하게 지원하는 프레임워크가 하둡의 맵리듀스(MapReduce)다. 맵리듀스는 분산 컴퓨팅 기술을 이해하는 중요한 열쇠로서, 기본 개념은 반드시 이해해 두도록 한다.

4.2 빅데이터 적재에 활용하는 기술

선 주키퍼 소개

표 4.2 주키퍼의 기본 요소

공식 홈페이지	Apac Zook	http://zookeeper.apache.org		
주요 구성 요소	Client	주키퍼의 ZNode에 담긴 데이터에 대한 쓰기, 읽기, 삭제 등의 작업을 요청하는 클라이언트		
주요 구성 요소	ZNode	주키퍼 서버에 생성되는 파일시스템의 디렉터리 개념으로, 클라이언트의 요청 정보를 계층 적으로 관리(버전, 접근 권한, 상태, 모니터링 객체 관리 등의 기능 지원)		
	Ensemble	3대 이상의 주키퍼 서버를 하나의 클러스터로 구성한 HA 아키텍처		
	Leader Server	Ensemble 안에는 유일한 리더 서버가 선출되어 존재하며, 클라이언트의 요청을 받은 서버는 해당 요청을 리더 서버에 전달하고, 리더 서버는 모든 팔로워 서버에게 클라이언트 요청이 전달되도록 보장		
	Follower Server	Ensemble 안에서 한 대의 리더 서버를 제외한 나머지 서버로서, 리더 서버와 메시지를 주고받으면서 ZNode의 데이터를 동기화하고 리더 서버에 문제가 발생할 경우 내부적으로 새로운 리더를 선출하는 역할을 수행		
라이선스	Apache			
유사 프로젝트	Chubby, Doozerd, Consul			

<u> 주키퍼 아키텍처</u>

그림 4.8 주키퍼 아키텍처

₩☆ 4.2 빅데이터 적재에 활용하는 기술

선 주키퍼 활용 방안

스마트카 파일럿 프로젝트에서는 주키퍼를 직접적으로 활용하지는 않는다. 하지만 파일럿 프로젝트에서 사용하는 하둡, HBase, 카프카, 스톰의 내부에서 주키퍼에 의존해 클러스터 멤버십 기능 및 환경설정의 동기화 등을 사용하고 있어 없어서는 안 될 중요 소프트웨어다.