

RESEARCH REPORTS DIVISION
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93943

LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93940

NPS 68-84-005

NAVAL POSTGRADUATE SCHOOL, Monterey, California

HYDROGRAPHIC DATA FROM THE OPTOMA PROGRAM
OPTOMA1
8 to 13 MARCH, 1982

by

Michele M. Rienecker
Christopher N.K. Mooers
Marie C. Colton
Paul A. Wittmann

April 1984

Approved for public release; distribution unlimited.

Prepared for:
Office of Naval Research
Environmental Sciences Directorate (Code 420)
Arlington, VA 22217

FEDDOCS
D 208.14/2
NPS-68-84-005

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY 93943-5101

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943

Commodore R.H. Shumaker
Superintendent

David A. Schrady
Provost

This report is for the research project "Ocean Prediction Through Observations, Modeling and Analysis" sponsored by the Physical Oceanography Program of the Office of Naval Research under Program Element 61153N. Reproduction of all or part of this report is authorized.

This report was prepared by:

[Handwritten signature]

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER NPS68-84-005	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) HYDROGRAPHIC DATA FROM THE OPTOMA PROGRAM. OPTOMAL, 8-13 MARCH, 1982		5. TYPE OF REPORT & PERIOD COVERED Report for October 1982 to April 1984. 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) Michele M. Rienecker, Christopher N.K. Mooers Marie C. Colton, Paul A. Wittmann		8. CONTRACT OR GRANT NUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, CA 93943.		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61153N N000148WR24051
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research (Code 420) Arlington, VA 22217		12. REPORT DATE April 1984. 13. NUMBER OF PAGES 31
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		15. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) California Current System Physical oceanography Dynamic Oceanography		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The cruise OPTOMAL was undertaken in March, 1982 to sample a subdomain of the California Current System. This report presents the hydrographic data, acquired by XBT casts, from the cruise.		

Hydrographic Data from the OPTOMA Program:
OPTOMA1
March 8 - 13, 1982

by

*Michele M. Rienecker
Christopher N. K. Mooers
Marie C. Colton
Paul A. Wittmann*

Chief Scientists: C. N. K. Mooers and A. R. Robinson

The **OPTOMA** Program is a joint program of
Department of Oceanography Center for Earth and Planetary Physics
Naval Postgraduate School Harvard University
Monterey, CA 93943. Cambridge, MA 02138.

TABLE OF CONTENTS

	<u>PAGE</u>
LIST OF FIGURES	ii
INTRODUCTION	2
DATA ACQUISITION	2
DATA PROCESSING	3
DATA PRESENTATION	3
OPTOMA1	5
ACKNOWLEDGEMENTS	29
INITIAL DISTRIBUTION LIST	30

LIST OF FIGURES

<u>Figure No.</u>	<u>Caption</u>	<u>Page</u>
1.	The NOCAL and CENCAL subdomains of the OPTOMA Program. Isobaths are shown in meters.	1
2.	Cruise track for OPTOMA1 with transect extremes identified by letter.	6
3.	XBT locations for OPTOMA1.	7
4.	Station numbers for OPTOMA1.	8
5 (a)-(k).	Staggered temperature profiles from the XBT's. Profiles are staggered by a multiple of 5C.	13
6 (a)-(d).	Isotherms from XBT's and CTD's. Tick marks along the horizontal axis show station positions. Some station numbers are shown. Arrows indicate the positions where the cruise track changed direction.	24
7.	Profiles of $\bar{T}(z)$ with + and - the standard deviation.	28

Figure 1:

The NOCAL and CENCAL subdomains of the OPTOMA Program. Isobaths are shown in meters.

INTRODUCTION

The OPTOMA (Ocean Prediction Through Observations, Modeling and Analysis) Program, a joint NPS/Harvard program sponsored by ONR, seeks to understand the mesoscale (fronts, eddies, and jets) variability and dynamics of the California Current System and to determine the scientific limits to practical mesoscale ocean forecasting. To help carry out the aims of this project, a series of cruises has been planned in two subdomains, NOCAL and CENCAL, shown in Figure 1.

The cruise OPTOMA1 was undertaken, on the R/V ACANIA, in March, 1982 and covered part of the NOCAL domain which is roughly 200 km square centered 150 km off the California coast.

From March 8 to 13, hydrographic data were acquired along the tracks shown in Figure 2. In the rectangular domain, roughly 90 km across-shore by 120 km alongshore, the series of parallel transects directed alongshore were separated by about 18 km. Along-track station spacing was about 8.8 km. In addition, there were tracks to and from the domain.

DATA ACQUISITION

During OPTOMA1 XBT profiles, bucket surface temperature and water samples for salinity were taken at every station. Continuous 2 m thermalsalinograph measurements and meteorological data such as atmospheric pressure at a height of 2 m and wind speed and direction at a height of 20 m were also recorded. The XBT profiles were recorded as analogue traces. The continuous "underway" data were digitized using an HP 5328 frequency counter and a 40 channel digital voltmeter, averaged over one-minute intervals and recorded, using an HP 9835 computer, on data cassettes.

Station positions were determined by Loran C fixes and are claimed to be accurate to within about 0.1 km. The probe on the Sippican Expendable Bathymeterograph (XBT) has an accuracy of $\pm 0.2^{\circ}\text{C}$ in temperature and $\pm 2\%$ or 4.6 m (whichever is greater) in depth. The 2 m underway sensors are from SEA-BIRD Electronics. The temperature sensor, a glass-coated thermistor bead, has an accuracy of $\pm 0.003^{\circ}\text{C}$; the conductivity sensor, a two-terminal flow-through electrode cell, has an accuracy of $\pm 0.003 \text{ mmho/cm}$.

The surface salinity from the bottom samples were determined ashore by a Guildline Model 8400 "Autosal" salinometer with an accuracy of ± 0.003 ppt. The Table on page 4 summarizes the various sensors available on the R/V ACANIA and their accuracy.

DATA PROCESSING

The XBT traces were digitized at the surface and points of inflection to an accuracy of 0.01°C by Fleet Numerical Oceanography Center (FNOC). These data were then transferred to the IBM 3033 mainframe at the Naval Postgraduate School and edited by removing obvious cast failures that were not identified during the cruise or digitization procedure. Approximately 96% of casts were retained in the data set.

The data have been transferred on digital tape to the National Oceanographic Data Center in Washington, DC.

DATA PRESENTATION

The cruise track, station locations and station numbers are shown in the first three figures of the next section. These figures are followed by a listing of the stations, with their coordinates, the date and time at which the station was occupied, and the surface information obtained at the station.

Vertical profiles of temperature from the XBT casts are shown in staggered fashion. The location of these profiles may be found by reference to the various maps of the cruise track. Transect extremes are identified as nearly as possible. The first profile on each plot is shown with its temperature unchanged; to each subsequent profile an appropriate multiple of 5°C has been added.

Isotherms for each transect are shown in the Figure 6. Based on instrument accuracy and the vertical temperature gradient, it is estimated that the depths of isotherms in the main thermocline are uncertain to $\pm 20\text{m}$. The tick marks identify station positions and, again, the transect extremes are shown on these plots. The data presentation concludes with a plot of mean and \pm standard deviation profiles of temperature from XBT's.

SCIENTIFIC INSTRUMENTS ABOARD THE R/V ACANIA

Instrument	Variable	Sensor	Accuracy	Resolution
*Neil Brown CTD	pressure temperature	strain gage thermistor	1.6 db 0.005 C	0.025 db 0.0005 C
Mark IIIb	conductivity	electrode cell	0.005 mmho	0.001 mmho
Sippican BT	temperature depth	thermistor descent speed	0.2 C max. of 4.6 m and 2% of depth	
Guildline Autosal	conductivity	electrode cell	0.003 ppt	0.0002 ppt
* Amatek Straza ADVP	velocity profiles to 100m	4 beam sonar	3 cm/sec relative to ship speed	3 cm/sec
* Rosemount Sensor	sea surface temperature	platinum thermometer	0.05 C	0.005 C
Sea-Bird Sensors	temperature conductivity at 2 meters	thermistor electrode cell	0.003 C 0.003 mmho	0.0005 C 0.0005 mmho
Rosemount Sensor	air temperature	thermometer	0.01 C	
Kavolico Barometer	atmospheric pressure	pressure transducer	1.5 mb	0.1 mb
1200 EPS Hygrometer	dew point	condensation temp. sensor	0.2 C	0.02 C
Meteorology Res. Inc.	wind speed	anemometer	0.15 mph or 1%	
Meteorology Res. Inc.	wind direction	vane	2.5 degrees	
Internav LC408 LORAN C	position	two chain LORAN receiver	100 meters	10 meters
Motorola Miniranger	position	microwave transponders	4 meters	2 meters

* Not operating on OPTOMA1 cruise.

OPTOMA1

8 TO 13 MARCH, 1982

Figure 2:

Cruise track for OPTOMA1 with transect extremes identified by letter.

Figure 3:

XBT locations for OPTOMA1.

Figure 4:
Station numbers for OPTOMA1.

XBT STATION LISTING

STN	TYPE	YR/DAY	GMT	LAT (NORTH)	LONG (WEST)	SURFACE TEMP (DEG C)	BUCKET TEMP (DEG C)	BOTTLE SALINITY (PPT)
1	XBT	82067	1504	37.00	124.00	12.3	12.2	-----
2	XBT	82067	1606	37.07	124.07	12.0	12.0	-----
3	XBT	82067	1708	37.15	124.14	12.3	12.4	-----
4	XBT	82067	1818	37.24	124.21	12.2	12.3	-----
5	XBT	82067	1919	37.32	124.27	12.6	12.8	-----
6	XBT	82067	2020	37.41	124.35	13.0	13.2	32.73
7	XBT	82067	2122	37.48	124.42	12.5	13.0	-----
8	XBT	82067	2153	37.52	124.45	12.6	12.8	-----
9	XBT	82067	2219	37.55	124.48	12.5	12.6	-----
10	XBT	82067	2322	38.04	124.56	11.3	11.7	-----
11	XBT	82067	2352	38.08	124.59	11.6	11.7	-----
12	XBT	82067	23	38.12	125.02	12.0	11.9	-----
15	XBT	82067	158	38.24	125.13	11.5	11.4	-----
16	XBT	82067	229	38.28	125.17	11.4	11.5	-----
17	XBT	82067	254	38.31	125.19	11.4	11.6	-----
18	XBT	82067	329	38.34	125.22	11.5	11.5	-----
19	XBT	82067	406	38.39	125.24	11.5	11.4	-----
20	XBT	82067	431	38.43	125.27	11.2	11.3	-----
21	XBT	82067	506	38.48	125.29	11.2	11.2	-----
22	XBT	82067	532	38.52	125.32	11.2	11.2	-----
23	XBT	82067	600	38.57	125.33	11.2	11.2	-----
24	XBT	82067	631	39.01	125.35	11.0	11.2	32.75
25	XBT	82067	703	39.06	125.37	11.2	11.1	32.72
26	XBT	82067	730	39.10	125.39	11.1	11.1	32.75
27	XBT	82068	801	39.14	125.42	11.0	11.1	32.75
28	XBT	82068	829	39.18	125.45	11.2	11.2	32.78
29	XBT	82068	856	39.22	125.47	11.1	11.1	32.77
30	XBT	82068	925	39.27	125.49	10.9	11.1	32.75
31	XBT	82068	955	39.31	125.51	11.1	11.1	32.78
32	XBT	82068	1026	39.35	125.53	11.1	11.1	-----
33	XBT	82068	1056	39.34	125.59	11.1	11.1	32.78
34	XBT	82068	1127	39.32	126.05	11.2	11.2	32.81
35	XBT	82068	1209	39.28	126.02	11.0	11.0	32.73
36	XBT	82068	1244	39.23	126.00	11.1	11.0	32.73
37	XBT	82068	1315	39.19	125.57	11.1	11.0	32.71
38	XBT	82068	1349	39.15	125.56	11.0	11.1	32.67
39	XBT	82068	1416	39.11	125.54	11.2	11.4	32.69
40	XBT	82068	1452	39.06	125.51	11.5	11.4	32.69
41	XBT	82068	1521	39.02	125.48	11.5	11.4	32.70
44	XBT	82068	1702	38.49	125.42	11.6	11.5	32.72
45	XBT	82068	1732	38.43	125.40	11.6	11.5	32.71
46	XBT	82068	1806	38.40	125.38	11.6	11.5	32.71
47	XBT	82068	1859	38.33	125.34	11.5	11.5	32.70
48	XBT	82068	1924	38.30	125.32	11.6	11.5	32.71

STN	TYPE	YR/DAY	GMT	LAT (NORTH)	LONG (WEST)	SURFACE TEMP (DEG C)	BUCKET TEMP (DEG C)	BOTTLE SALINITY (PPT)
49	XBT	82068	2006	38.29	125.38	11.5	11.5	32.71
50	XBT	82068	2045	38.28	125.45	11.6	11.5	32.71
51	XBT	82068	2115	38.32	125.46	11.5	11.5	32.72
52	XBT	82068	2146	38.37	125.49	11.6	11.5	32.73
53	XBT	82068	2216	38.41	125.51	11.6	11.6	32.76
54	XBT	82068	2248	38.46	125.53	11.9	11.6	32.75
55	XBT	82068	2319	38.50	125.55	11.9	11.6	32.74
56	XBT	82068	2354	38.55	125.57	11.8	11.5	32.74
57	XBT	82068	19	38.58	125.59	11.6	11.5	32.74
58	XBT	82068	51	39.03	126.02	11.6	11.4	32.72
59	XBT	82068	122	39.07	126.04	11.7	11.4	32.76
61	XBT	82068	235	39.16	126.09	11.5	11.3	32.70
62	XBT	82068	302	39.20	126.11	11.5	11.3	32.70
63	XBT	82068	330	39.24	126.12	11.2	11.0	32.65
64	XBT	82068	403	39.29	126.15	11.1	10.9	32.64
65	XBT	82068	439	39.32	126.11	11.0	10.9	32.69
66	XBT	82068	509	39.36	126.06	11.0	11.0	32.94
67	XBT	82068	550	39.39	126.02	11.0	10.9	32.64
68	XBT	82068	626	39.43	125.57	11.0	10.9	32.66
69	XBT	82068	658	39.47	125.53	11.0	10.8	32.63
70	XBT	82068	732	39.50	125.48	11.4	11.0	32.70
71	XBT	82069	801	39.54	125.44	11.1	11.0	32.72
72	XBT	82069	835	39.58	125.39	11.2	11.0	32.73
73	XBT	82069	907	40.01	125.35	11.2	11.0	32.76
74	XBT	82069	942	40.05	125.30	11.3	11.1	32.73
75	XBT	82069	1015	40.09	125.26	11.4	11.1	32.72
76	XBT	82069	1051	40.13	125.20	11.1	11.0	32.74
77	XBT	82069	1115	40.15	125.17	10.9	11.0	32.70
78	XBT	82069	1146	40.20	125.12	10.9	11.0	32.70
79	XBT	82069	1217	40.22	125.06	11.2	11.1	32.71
80	XBT	82069	1248	40.25	125.01	11.2	11.1	32.74
81	XBT	82069	1317	40.27	124.55	11.0	11.1	32.73
82	XBT	82069	1354	40.31	124.50	11.4	11.1	32.73
83	XBT	82069	1421	40.32	124.45	11.2	11.3	32.82
84	XBT	82069	1450	40.35	124.39	11.0	11.1	32.71
85	XBT	82069	2023	40.42	124.41	10.9	11.2	32.74
86	XBT	82069	2059	40.40	124.47	11.1	11.1	32.72
87	XBT	82069	2130	40.38	124.52	11.2	11.1	32.74
88	XBT	82069	2204	40.35	124.58	11.6	11.2	32.74
89	XBT	82069	2236	40.32	125.03	11.4	11.3	32.74
90	XBT	82069	2306	40.30	125.08	11.9	11.4	32.76
91	XBT	82069	2338	40.28	125.14	11.5	11.5	32.69
92	XBT	82069	13	40.25	125.19	11.7	11.7	32.72
93	XBT	82069	48	40.21	125.24	12.0	11.8	32.71
94	XBT	82069	117	40.18	125.29	12.0	11.8	32.70
95	XBT	82069	151	40.14	125.33	12.3	11.7	32.70
96	XBT	82069	223	40.10	125.38	11.9	11.7	32.72
97	XBT	82069	256	40.07	125.43	11.0	11.2	32.71

STN	TYPE	YR/DAY	GMT	LAT (NORTH)	LONG (WEST)	SURFACE TEMP (DEG C)	BUCKET TEMP (DEG C)	BOTTLE SALINITY (PPT)
98	XBT	82069	328	40.03	125.47	11.6	11.3	32.73
99	XBT	82069	400	39.59	125.52	11.5	11.4	32.68
100	XBT	82069	429	39.56	125.56	11.5	11.4	32.66
101	XBT	82069	504	39.52	126.01	11.5	11.4	32.65
102	XBT	82069	529	39.49	126.05	11.5	11.3	32.66
103	XBT	82069	603	39.45	126.10	11.4	11.2	32.66
104	XBT	82069	630	39.42	126.14	11.5	11.3	32.68
105	XBT	82069	704	39.38	126.18	11.2	11.2	32.65
106	XBT	82069	748	39.34	126.22	11.7	11.4	32.66
107	XBT	82070	816	39.30	126.24	11.6	11.4	32.66
108	XBT	82070	850	39.25	126.27	11.6	11.4	32.66
109	XBT	82070	919	39.20	126.24	11.7	11.5	32.67
110	XBT	82070	947	39.17	126.23	11.7	11.6	32.67
111	XBT	82070	1023	39.12	126.19	11.5	11.6	32.67
112	XBT	82070	1050	39.08	126.17	11.8	11.6	32.68
114	XBT	82070	1151	38.59	126.13	11.7	11.5	32.66
115	XBT	82070	1218	38.55	126.11	11.6	11.5	32.66
116	XBT	82070	1340	38.50	126.09	12.0	11.7	32.73
117	XBT	82070	1418	38.45	126.07	12.3	11.9	32.74
118	XBT	82070	1443	38.42	126.05	11.8	11.7	32.69
119	XBT	82070	1514	38.37	126.02	11.9	11.7	32.69
120	XBT	82070	1542	38.33	126.00	12.0	11.9	32.73
121	XBT	82070	1612	38.29	125.58	11.9	11.9	32.74
122	XBT	82070	1649	38.23	125.55	12.0	11.9	32.71
123	XBT	82070	1724	38.22	126.01	11.9	11.8	32.72
124	XBT	82070	1753	38.20	126.07	12.0	12.0	32.77
125	XBT	82070	1827	38.25	126.09	12.1	12.0	32.75
126	XBT	82070	1858	38.30	126.12	11.9	11.9	32.74
127	XBT	82070	1925	38.34	126.14	11.9	11.9	32.72
128	XBT	82070	1955	38.38	126.16	11.9	11.7	32.71
129	XBT	82070	2029	38.43	126.18	11.3	11.4	-----
130	XBT	82070	2159	38.47	126.20	11.5	11.2	32.67
131	XBT	82070	45	38.52	126.22	11.6	11.2	32.73
132	XBT	82070	252	38.56	126.24	11.7	11.3	32.74
133	XBT	82070	454	39.00	126.26	11.5	11.7	32.73
134	XBT	82070	651	39.04	126.29	11.2	11.1	32.71
135	XBT	82071	840	39.09	126.31	11.1	10.4	32.65
136	XBT	82071	1029	39.13	126.33	10.9	10.6	32.67
137	XBT	82071	1231	39.17	126.36	11.1	10.6	32.67
138	XBT	82071	1427	39.22	126.38	11.2	10.9	32.68
139	XBT	82071	1521	39.20	126.44	11.1	10.8	32.67
140	XBT	82071	1601	39.18	126.49	11.2	11.0	32.72
141	XBT	82071	1629	39.14	126.47	11.3	11.0	32.71
142	XBT	82071	1655	39.11	126.44	11.2	11.0	32.72
143	XBT	82071	1723	39.06	126.42	11.2	11.1	32.57
144	XBT	82071	1754	39.01	126.40	11.0	10.8	32.65
145	XBT	82071	1823	38.57	126.38	11.3	----	32.76
146	XBT	82071	1849	38.53	126.36	11.6	11.4	32.75

STN	TYPE	YR/DAY	GMT	LAT	LONG	SURFACE	BUCKET	BOTTLE
				(NORTH)	(WEST)	TEMP (DEG C)	TEMP (DEG C)	SALINITY (PPT)
147	XBT	82071	1916	38.48	126.34	11.9	11.5	32.78
149	XBT	82071	2020	38.39	126.29	11.4	11.2	32.71
151	XBT	82071	2121	38.30	126.24	11.5	11.3	32.71
152	XBT	82071	2142	38.26	126.22	11.5	11.3	32.74
153	XBT	82071	2215	38.28	126.17	11.6	11.4	32.76
154	XBT	82071	2250	38.30	126.11	11.6	11.5	32.74
155	XBT	82071	2322	38.32	126.06	11.6	11.4	32.72
157	XBT	82071	35	38.35	125.54	11.7	11.5	32.74
158	XBT	82071	100	38.37	125.48	11.7	11.3	32.74
159	XBT	82071	137	38.38	125.43	11.5	11.3	32.76
160	XBT	82071	208	38.40	125.37	11.4	11.3	32.73
161	XBT	82071	247	38.41	125.31	11.4	11.2	32.70
162	XBT	82071	315	38.43	125.26	11.2	11.0	32.68
163	XBT	82071	335	38.39	125.25	11.5	11.0	32.69
164	XBT	82071	419	38.34	125.22	11.5	11.2	32.72
165	XBT	82071	441	38.32	125.18	11.3	11.1	32.71
166	XBT	82071	513	38.27	125.16	11.5	11.4	32.78
167	XBT	82071	541	38.24	125.12	11.9	11.6	32.83
168	XBT	82071	610	38.20	125.09	12.0	11.7	32.85
169	XBT	82071	644	38.16	125.05	12.0	11.4	32.85
170	XBT	82072	858	38.12	125.02	11.7	11.3	32.76
171	XBT	82072	927	38.09	124.58	12.0	11.5	32.82
172	XBT	82072	1002	38.04	124.56	12.1	11.7	32.85
173	XBT	82072	1036	38.00	124.52	12.5	11.8	32.84
174	XBT	82072	1106	37.56	124.49	12.4	12.0	32.89
175	XBT	82072	1134	37.52	124.46	12.9	12.5	32.96
176	XBT	82072	1205	37.48	124.42	13.0	12.5	32.99
177	XBT	82072	1238	37.44	124.37	13.0	-----	-----
178	XBT	82072	1308	37.40	124.34	12.8	12.3	32.94
179	XBT	82072	1337	37.36	124.31	12.7	12.3	32.92
180	XBT	82072	1404	37.32	124.28	12.5	12.2	32.91
181	XBT	82072	1433	37.28	124.24	12.7	12.5	32.95
182	XBT	82072	1515	37.24	124.21	12.7	12.4	32.89
183	XBT	82072	1547	37.20	124.17	12.1	11.8	32.63
184	XBT	82072	1613	37.16	124.14	12.0	11.7	-----
185	XBT	82072	1657	37.11	124.10	11.8	11.6	-----
186	XBT	82072	1717	37.08	124.07	11.8	11.7	32.70
187	XBT	82072	1749	37.04	124.04	12.0	11.8	32.89
188	XBT	82072	1816	37.00	124.00	11.9	11.7	32.84

Figure 5(a):

Staggered temperature profiles from the XBTs. Profiles are staggered by a multiple of 5C.

Figure 5(b).

Figure 5(c).

Figure 5(d).

Figure 5(e).

Figure 5(F).

Figure 5(g).

Figure 5(h).

Figure 5(i).

Figure 5(j).

Figure 5(k).

Figure 6(a):

Isotherms from XBTs. Tick marks along horizontal axis show station positions. Some station numbers are shown. Arrows indicate the positions where the cruise track changed direction.

Figure 6(b).

Figure 6(c).

Figure 6(d).

Figure 7:
Profiles of $\bar{T}(z)$ with + and - the standard deviation.

ACKNOWLEDGEMENTS

This research was sponsored by the ONR Physical Oceanography Program. The success of the fieldwork was strongly dependent on the competent, willing support of CAPT Woodrow Reynolds, Chief Engineer Bobby Winton, and other crew members of the R/V ACANIA. Members of the scientific cruise party were:

Prof. Christopher N.K. Mooers, NPS, Co-Chief Scientist
Prof. Allan R. Robinson, Harvard, Co-Chief Scientist
Dr. Jerome A. Smith, NPS, Deputy Chief Scientist
Mr. Kim McCoy, NPS, Party Chief
Dr. Michele M. Rienecker, NPS
Ens. Kerry Daly, USN, FNOC
DP2 Theresa Perez, USN, FNOC
AG3 Jeff Murray, USN, FNOC

INITIAL DISTRIBUTION LIST

- | | |
|---|----------------------------|
| 1. Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 | 2 |
| 2. Dudley Knox Library
Code 0142
Naval Postgraduate School
Monterey, CA 93943 | 2 |
| 3. Prof. C.N.K. Mooers, Code 68Mr
Naval Postgraduate School
Monterey, CA 93943 | 30 |
| 4. Prof. Allan R. Robinson
Division of Applied Sciences
Pierce Hall, Room 100D
Harvard University
Cambridge, MA 02139 | 8 |
| 5. Dr. Thomas W. Spence
Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217 | 1 |
| 6. Naval Postgraduate School
Department of Oceanography, Code 68
ATTN: Dr. Michele M. Rienecker, Code 68Rr
ATTN: Dr. Jerome A. Smith, Code 68So
ATTN: Dr. Laurence C. Breaker
ATTN: Ms. Marie C. Colton
ATTN: Mr. Paul A. Wittmann
ATTN: LCDR Brian J. Brady, RN | 1
1
1
1
1
1 |
| 7. Prof. R.L. Smith
College of Oceanography
Oregon State University
Corvallis, OR 97331 | 1 |
| 8. Dr. Denise E. Hagan
Jet Propulsion Laboratory, Code 183-501
4800 Oak Grove Road
Pasadena, CA 91109 | 1 |
| 9. Commanding Officer
ATTN: CDR John F. Pfeiffer, USN
ATTN: LCDR Michael R. Frost, RN
ATTN: Mr. R. Michael Clancy
ATTN: Mr. Ken Pollack
ATTN: Ms. Evelyn Hesse
Fleet Numerical Oceanography Center
Monterey, CA 93943 | 1
1
1
1
1 |

- | | |
|---|------------------|
| 10. SANDIA National Laboratories
ATTN: Dr. Mel Marietta
ATTN: Dr. Eugene S. Hertel
Div. 6334
Albuquerque, NM 87185 | 1
1
1 |
| 11. LCDR Craig S. Nelson, NOAA Corps
Marine Products Branch, W/NMC21
National Meteorological Center
National Weather Service, NOAA
Washington, DC 20233 | 1 |
| 12. Commanding Officer
ATTN: Dr. Steve A. Piacsek
ATTN: Dr. Dana A. Thompson
ATTN: Dr. Harley C. Hurlburt
ATTN: Dr. Alexander Warn-Varnas
Naval Ocean Research and Development Activity
NSTL Station, Bay St. Louis, MS 39525 | 1
1
1
1 |
| 13. Dr. Dale B. Haidvogel
National Center for Atmospheric Research
P.O. Box 3000
Boulder, CO 80307 | 1 |
| 14. Scripps Institution of Oceanography
ATTN: Ms. C. Paden
ATTN: Prof. R.E. Davis
University of California, San Diego
La Jolla, CA 92093 | 1
1 |
| 15. Prof. George L. Mellor
Geophysical Fluid Dynamics Program
Princeton University
P.O. Box 308
Princeton, NJ 08540 | 1 |
| 16. Dr. Robert N. Miller
Department of Mathematics
Tulane University
6823 St. Charles
New Orleans, LA 70118 | 1 |
| 17. Mr. Phillip Bodgen
Woods Hole Oceanographic Institution
Dept. of Physical Oceanography
Woods Hole, MA 02543 | 1 |
| 18. LTJG Diane C. Durban, USN
NAVOCEANCOMFAC Keflavik Iceland
FPO NY 09571 | 1 |

DUDLEY KNOX LIBRARY

3 2768 00396473 5