1

Assignment

EE23010: Probability and Random Processes Indian Institute of Technology, Hyderabad

Aman Kumar **EE22BTECH11006**

Question: Let X be a random variable with Differentiating to find PDF for Y: probability density function

$$f(x; \lambda) = \begin{cases} \frac{1}{\lambda} e^{-\frac{x}{\lambda}} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$
 (1)

where $\lambda > 0$ is an unknown parameter. Let $Y_1, Y_2, ..., Y_n$ be a random sample of size n from a population having the same distribution as X^2 .If

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \tag{2}$$

then which of the following statements is true?

- 1) $\sqrt{\frac{\bar{y}}{2}}$ is a method of moments estimator of λ
- 2) $\sqrt{\bar{Y}}$ is a method of moments estimator of λ
- 3) $\frac{1}{2}\sqrt{Y}$ is a method of moments estimator of λ
- 4) $2\sqrt{\bar{Y}}$ is a method of moments estimator of λ

$$f_{X^2}(y) = \frac{d(1 - e^{-\frac{\sqrt{y}}{\lambda}})}{dy}$$
 (8)

$$=\frac{1}{2\lambda\sqrt{y}}e^{-\frac{\sqrt{y}}{\lambda}}\tag{9}$$

Now, we want to estimate the parameter λ , for which we can use method of moment estimator $(\hat{\lambda}).$

Defining Population moment

$$\mu_1(\lambda) = E(y) \tag{10}$$

$$= \int_0^\infty y f_{X^2}(y) dy \tag{11}$$

$$= \int_0^\infty \frac{1}{2\lambda} \sqrt{y} e^{-\frac{\sqrt{y}}{\lambda}} dy \tag{12}$$

$$=2\lambda^2\tag{13}$$

Solution:

Given, PDF of X is:

$$f(x; \lambda) = \begin{cases} \frac{1}{\lambda} e^{-\frac{x}{\lambda}} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$
 (3)

Now, let's find the PDF of X^2 , denoted as $f_{X^2}(y)$. For $Y = X^2$, CDF of Y:

$$F_Y(y) = P(X^2 \le y) \tag{4}$$

$$= P(0 \le X \le \sqrt{y}) \tag{5}$$

Now,

$$F_Y(y) = \int_0^{\sqrt{y}} \frac{1}{\lambda} e^{-\frac{x}{\lambda}} dx \tag{6}$$

$$=1-e^{-\frac{\sqrt{y}}{\lambda}}\tag{7}$$

Defining sample moment as:

$$M_1 = \frac{1}{n} \sum_{i=1}^{n} Y_i \tag{14}$$

Now, equating Population and sample moment:

$$M_1 = \mu_1(\lambda) \tag{15}$$

$$\bar{Y} = 2(\lambda^2) \tag{16}$$

$$\hat{\lambda} = \sqrt{\frac{\bar{Y}}{2}} \tag{17}$$

.. Option (1) is correct.