

Prefere assistir ou ler primeiro?

Para a teoria completa pode-se consultar os livros Cálculo em Quadrinhos ou a apostila do prof. Sacha anexada no SIGA.

Caso queira ler antes é só seguir para o próximo slide e depois assistir o link da opção abaixo. Boa leitura e bom vídeo em seguida!!!!

"Ah não, eu prefiro assistir uns vídeos antes e depois ler a teoria."

Sem problemas só assistir os vídeos abaixo e depois seguir para o próximo slide.

- Derivadas (de tudo um pouco):
 https://www.youtube.com/watch?v=camsop4v4n0&list=PLE6qFDd4x9w-9ERy0SF7Uflt7I6Vnwj49
- Derivadas Parciais: https://www.youtube.com/watch?v=j9jjZHFasYE

Bom vídeo e boa leitura depois!!!

Músicaaaaaa!!!!!!!!!

Não consegue concentrar?

Olha essa playlist que ajuda a concentrar mais rápido

Spotify:

https://open.spotify.com/user/spotify/pl aylist/37i9dQZF1DWZIOAPKUdaKS?si=TA nU1xfLThKa0-oaLs MqA

Youtube:

https://www.youtube.com/playlist ?list=PLf2E9B7xP6hbHFSVjEsN7fN 8bOO7Vlkpr

Vamos calcular?!?!?!

Números, por favor? Nada de letras hein?

Mas...pensando bem se estamos estudando funções... Vai ser cheio de letras então?!?!

Deve ter uma hora que vai números, não é possível???

Exemplo

Até que enfim o professor vai fazer algo com números. Agora vou entender!!!

Acho que me precipitei....

Encontre a Derivada

$$f'(x) = 2x^4 + 5$$

Pela Regra da Suma, a derivada de $2x^4 + 5$ com respeito a $x
in
darkon de <math>\frac{d}{dx}[2x^4] + \frac{d}{dx}[5]$.

$$\frac{d}{dx} \left[2x^4 \right] + \frac{d}{dx} [5]$$

Avalie
$$\frac{d}{dx}[2x^4]$$
.

Toque para menos passos...

Dado que 2 é constante com respeito a x, a derivada de $2x^4$ com respeito a x é $2\frac{d}{dx}[x^4]$.

$$2\frac{d}{dx}\left[x^4\right] + \frac{d}{dx}[5]$$

Diferencie usando a Regra da Potência, a qual afirma que $\dfrac{d}{dx}[x^n]$ é nx^{n-1} onde n=4.

$$2\left(4x^3\right) + \frac{d}{dx}[5]$$

Multiplique 4 por 2.

$$8x^3 + \frac{d}{dx}[5]$$

Dado que 5 é constante com respeito a x, a derivada de 5 com respeito a x é 0.

$$8x^3 + 0$$

$$f'(x) = 5x^3 + 7x$$

Pela Regra da Suma, a derivada de $5x^3 + 7x$ com respeito a $x \in \frac{d}{dx}[5x^3] + \frac{d}{dx}[7x]$.

$$\frac{d}{dx}[5x^3] + \frac{d}{dx}[7x]$$

Avalie $\frac{d}{dx}[5x^3]$.

Toque para menos passos...

Dado que 5 é constante com respeito a x, a derivada de $5x^3$ com respeito a x é $5\frac{d}{dx}[x^3]$.

$$5\frac{d}{dx}[x^3] + \frac{d}{dx}[7x]$$

Diferencie usando a Regra da Potência, a qual afirma que $\frac{d}{dx}[x^n]$ é nx^{n-1} onde n=3.

$$5\left(3x^2\right) + \frac{d}{dx}[7x]$$

Multiplique 3 por 5.

$$15x^2 + \frac{d}{dx}[7x]$$

Avalie $\frac{d}{dx}[7x]$.

Toque para mais passos...

 $15x^2 + 7$

O que acha de mais um exercício?!

Lembrando que este exercício e o anterior foram feitos no Mathway. Só clicar abaixo que você irá para o site e pode

Notação:
$$f'(x) = \frac{d}{dx}f(x)$$

Regras de Derivação

- $\bullet (cf(x))' = cf'(x)$
- Derivada da Soma

$$(f(x) + g(x))' = f'(x) + g'(x)$$

Derivada do Produto

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

• Derivada do Quociente

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

• Regra da Cadeia

$$(f(g(x))' = (f'(g(x))g'(x)$$

Funções Simples

- $\frac{d}{dx}c = 0$
- $\frac{d}{dx}x = 1$
- $\frac{d}{dx}cx = c$
- $\frac{d}{dx}x^c = cx^{c-1}$
- $\frac{d}{dx}\left(\frac{1}{x}\right) = \frac{d}{dx}\left(x^{-1}\right) = -x^{-2} = -\frac{1}{x^2}$
- $\frac{d}{dx}\left(\frac{1}{x^c}\right) = \frac{d}{dx}\left(x^{-c}\right) = -\frac{c}{x^{c+1}}$
- $\frac{d}{dx}\sqrt{x} = \frac{d}{dx}x^{\frac{1}{2}} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$,

Funções Exponenciais e Logarítmicas

- $\frac{d}{dx}e^x = e^x$
- $\frac{d}{dx} \ln(x) = \frac{1}{x}$
- $\frac{d}{dx}a^x = a^x \ln(a)$

Funções Trigonométricas

- $\frac{d}{dx} \operatorname{sen} x = \cos x$
- $\frac{d}{dx}\cos x = -\sin x$,
- $\frac{d}{dx} \operatorname{tg} x = \sec^2 x$
- $\frac{d}{dx} \sec x = \operatorname{tg} x \sec x$
- $\frac{d}{dx} \cot x = -\csc^2 x$
- $\frac{d}{dx}$ cossec x = -cossec x cotg x

Funções Trigonométricas Inversas

- $\frac{d}{dx}$ arcsen $x = \frac{1}{\sqrt{1-x^2}}$
- $\frac{d}{dx} \arccos x = \frac{-1}{\sqrt{1-x^2}}$
- $\frac{d}{dx}$ arctg $x = \frac{1}{1+x^2}$

TABELA DE DE DERIVADAS IMPORTANTES

Agora sim!!!!!

Derivadas Importantes - Exercícios

$$f(x) = x^3 \Rightarrow f'(x) = 3x^2$$

$$f(x) = x^8 \Rightarrow f'(x) = 8x^7$$

$$f(x) = \frac{1}{x^3} = x^{-3} \Rightarrow f'(x) = -3 \cdot x^{-4} = \frac{-3}{x^4}$$

$$f(x) = \sqrt{x} = x^{\frac{1}{2}} \Rightarrow f'(x) = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$$

$$f(x) = \cos x = f'(x) = - \sin x$$

$$f(x) = \cos 2x = f'(x) = -2 \sin x$$

$$f(x) = \cos x^2 = f'(x) = -2x \cdot \sin x$$

$$f(x) = 5 \ln x \Rightarrow f'(x) = 5.\frac{1}{x}$$

$$f(x) = x^2 + \ln x \Rightarrow f'(x) = 2x + \frac{1}{x}$$

$$f(x) = x^2 \cdot \ln x \Rightarrow f'(x) = x^2 \cdot \frac{1}{x} + 2x \cdot \ln x = x + 2x \ln x$$

$$f(x) = \frac{x^3}{\ln x} \Rightarrow f'(x) = \frac{(\ln x) \cdot 3x^2 - (\frac{1}{x}) \cdot x^3}{(\ln x)^2} = \frac{3x^2 \ln x - x^2}{(\ln x)^2}$$

$$f'(x) = 3^x \Rightarrow f'(x) = 3^x$$
. In 3;

$$f'(x) = e^x \implies f'(x) = e^x$$
. $\ln e = e^x$, pois $\ln e = 1$

Derivadas de Ordem Superior

Se f for uma função diferenciável, então sua derivada f' também é uma função, de modo que f' pode ter sua própria derivada, denotada por (f')' = f''. Esta nova função f'' é chamada de **segunda derivada** ou derivada de ordem dois de f. Usando a notação de Leibniz, escrevemos a segunda derivada de y = f(x) como

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2}$$

Se $f(x) = x^3 - x$, encontre e interprete f''(x).

SOLUÇÃO No Exemplo 2, encontramos que a primeira derivada é $f'(x) = 3x^2 - 1$. Assim, a segunda derivada é

$$f''(x) = (f')'(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h}$$

$$= \lim_{h \to 0} \frac{[3(x+h)^2 - 1] - [3x^2 - 1]}{h}$$

$$= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 1 - 3x^2 + 1}{h}$$

$$= \lim_{h \to 0} (6x + 3h) = 6x$$

onde será??

Pelo menos não tem mais limite?

Quer ver a teoria inteira? Basta clicar!!! http://ecalculo.if.usp.br/ferramentas/limites/regras lhospital/regras lhospital.htm

Nesses exemplos usamos algum tipo de artifício a fim de "sair da indeterminação" do tipo $\frac{0}{0}$ ou $\frac{\infty}{\infty}$. Entretanto, por exemplo, em $\lim_{x\to\infty}\frac{x^n}{e^x}$ nenhum dos <u>artifícios</u> vistos no cálculo de limites resolve o problema.

Coube a <u>Bernoulli</u> - embora a publicação tenha sido de <u>L'Hospital</u>, que emprestou seu nome ao feito - descobrir uma propriedade que nos permite calcular rapidamente limites desse tipo. A engenhosa descoberta consistiu em perceber que, na vizinhança de um ponto podemos comparar o quociente de duas funções com o quociente de suas derivadas, desde que determinadas hipóteses estejam satisfeitas. De maneira precisa, temos:

teorema 🌈 Primeira Regra de L'Hospital.

Sejam f e g duas funções contínuas num intervalo I, deriváveis no interior de I, tais que $g'(x) \neq 0$ para todo \mathbf{x} no interior de I. Seja $a \in I$ e suponhamos que f(a) = g(a) = 0 e que existe $\lim_{x \to a} \frac{f'(x)}{g'(x)}$, finito ou infinito. Então existe $\lim_{x \to a} \frac{f(x)}{g(x)}$ e mais ainda $\lim_{x \to a} \frac{f'(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.

teorema 🖊 Segunda Regra de L'Hospital.

Sejam f e g duas funções deriváveis em todo ponto x distinto de a, x pertencente a uma vizinhança V de a, V = a - r, a + r, r > 0. Suponhamos que $g'(x) \ne 0$ para todo $x \in V$ e que $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty$. Se existe $\lim_{x \to a} \frac{f'(x)}{g'(x)}$, finito ou infinito, então existe $\lim_{x \to a} \frac{f(x)}{g(x)}$ e, mais ainda, $\lim_{x \to a} \frac{f'(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.

Com as Regras de L'Hospital muitos limites complicados são facilmente calculados. Entretanto, é preciso ter sempre o cuidado de verificar se as hipóteses estão satisfeitas.

Exemplo de Limite utilizando a Regra de L'Hospital

Exemplo 1

$$\lim_{x \to \infty} \frac{x^2 - 9x + 4}{3x^2 + 7x + 8} = \lim_{x \to \infty} \frac{\frac{d}{dx}(x^2 - 9x + 4)}{\frac{d}{dx}(3x^2 + 7x + 8)}$$

$$= \lim_{x \to \infty} \frac{\frac{2x - 9}{6x + 7}}{\frac{d}{6x} + 7}$$

$$= \lim_{x \to \infty} \frac{\frac{d}{dx}(3x^2 + 7x + 8)}{\frac{d}{dx}(3x^2 + 7x + 8)}$$

$$= \lim_{x \to \infty} \frac{\frac{d}{dx}(3x^2 + 7x + 8)}{\frac{d}{dx}(3x^2 + 7x + 8)}$$

$$= \lim_{x \to \infty} \frac{\frac{d}{dx}(3x^2 + 7x + 8)}{\frac{d}{dx}(3x^2 + 7x + 8)}$$

$$= \lim_{x \to \infty} \frac{\frac{d}{dx}(3x^2 + 7x + 8)}{\frac{d}{dx}(3x^2 + 7x + 8)}$$

$$= \lim_{x \to \infty} \frac{\frac{d}{dx}(3x^2 + 7x + 8)}{\frac{d}{dx}(3x^2 + 7x + 8)}$$

$$= \lim_{x \to \infty} \frac{\frac{d}{dx}(3x^2 + 7x + 8)}{\frac{d}{dx}(3x^2 + 7x + 8)}$$

$$= \lim_{x \to \infty} \frac{\frac{d}{dx}(3x^2 + 7x + 8)}{\frac{d}{dx}(3x^2 + 7x + 8)}$$

$$= \lim_{x \to \infty} \frac{\frac{d}{dx}(3x^2 + 7x + 8)}{\frac{d}{dx}(3x^2 + 7x + 8)}$$

$$= \lim_{x \to \infty} \frac{\frac{d}{dx}(3x^2 + 7x + 8)}{\frac{d}{dx}(3x^2 + 7x + 8)}$$

Exemplo 2

Exemplo 2
$$\lim_{x\to\infty} \frac{\ln x}{x^2} = \lim_{x\to\infty} \frac{\frac{d}{dx} \ln x}{\frac{d}{dx} x^2}$$

$$= \lim_{x\to\infty} \frac{\frac{1}{2x} \ln x}{\frac{1}{2x}}$$

$$= \lim_{x\to\infty} \frac{\frac{1}{2x} \ln x}{\frac{1}{2x}}$$

$$= \lim_{x\to\infty} \frac{1}{2x^2}$$

$$= 0$$
Exemplo 3
$$\lim_{x\to 2} \frac{\frac{d}{dx} [x^2 - 4]}{\frac{d}{dx} [x - 2]} = \lim_{x\to 2} \frac{2x}{1} = 4$$

Exemplo 3

$$\lim_{x \to 2} \frac{\frac{d}{dx} [x^2 - 4]}{\frac{d}{dx} [x - 2]} = \lim_{x \to 2} \frac{2x}{1} = 4$$

Derivadas Parciais

Se calcularmos f_x e f_y em um ponto genérico (x,y), obteremos duas funções de x e y; a função $f_x(x,y)$ é chamada função derivada parcial de f em relação a x (ou simplesmente, derivada parcial de f em relação a x). A função $f_y(x,y)$ é chamada função derivada parcial de f em relação a y (ou simplesmente, derivada parcial de f em relação a y). As derivadas parciais também podem ser indicadas por

$$f_x$$
 ou $\frac{\partial f}{\partial x}$ e f_y ou $\frac{\partial f}{\partial y}$

Para o cálculo de f_x e f_y , podemos aplicar as regras de derivação estudadas em funções de uma variável (Capítulo 4), desde que:

- a) no cálculo de f_x consideremos y como constante;
- b) no cálculo de f_v consideremos x como constante.

Suponhamos que $f(x, y) = x^3 + y^2 + 2xy$. As derivada parciais são: $f_x = 3x^2 + 2y$ (pois y é considerada uma constante),

 $f_y = 2y + 2x$ (pois x é considerada uma constante).

As derivadas parciais no ponto (1,1), por exemplo, são obtidas substituindo x e y por 1; isto é:

$$f_x(1, 1) = 3 + 2 = 5$$
 e $f_y(1, 1) = 2 + 2 = 4$

- http://engenhariaexercicios.com.br/calculo-a/derivada/regra-de-lhospital/
- http://blogengenhariarodrigo.blogspot.com/2014/09/regra-de-lhopital-formas-indeterminadas.html
- https://edisciplinas.usp.br/mod/page/view.php?id=688982
- STEWART, J. Cálculo v.1, 6.ed. Pioneira Thompson Learning, 2009.
- HAZZAN, S; MORETTIN, P; BUSSAB, W. Introdução ao Cálculo para Administração, Economia. Saraiva, 2009.
- http://www.mat.ufmg.br/~sacha/textos/Calculo/Apostila 2015 02 26.pdf
- http://matemabio.blogspot.com/p/regras-de-derivacao-e-derivadas.html

