ADS 503 Project

Gabriel Duffy

```
suppressMessages({
  library(caret)
  library(pROC)
})
Warning: package 'caret' was built under R version 4.3.3
Warning: package 'lattice' was built under R version 4.3.3
Warning: package 'pROC' was built under R version 4.3.3
options(repos = c(CRAN = "https://cran.rstudio.com"))
#read and clean csv file
met data <- read.csv("C:/Users/gabed/OneDrive/Documents/Metabolic Syndrome.csv")</pre>
# Remove rows with any missing values
met_data_clean <- na.omit(met_data)</pre>
# Convert target variable to factor
met_data_clean$MetabolicSyndrome <- as.factor(met_data_clean$MetabolicSyndrome)</pre>
# Log transform skewed variables
met_data_clean$LogBloodGlucose <- log(met_data_clean$BloodGlucose)</pre>
met_data_clean$LogTriglycerides <- log(met_data_clean$Triglycerides)</pre>
# Split data (80/20)
set.seed(123)
split_index <- createDataPartition(met_data_clean$MetabolicSyndrome, p = 0.8, list = FALSE)</pre>
train_data <- met_data_clean[split_index, ]</pre>
```

```
test_data <- met_data_clean[-split_index, ]</pre>
# Random Forest Model using 6 selected predictors
library(randomForest)
Warning: package 'randomForest' was built under R version 4.3.3
randomForest 4.7-1.2
Type rfNews() to see new features/changes/bug fixes.
Attaching package: 'randomForest'
The following object is masked from 'package:ggplot2':
    margin
rf_model <- randomForest(</pre>
  MetabolicSyndrome ~ BMI + Age + LogBloodGlucose + HDL + WaistCirc + LogTriglycerides,
  data = train_data,
  ntree = 500,
  mtry = 2,
  importance = TRUE
# Print the model summary
print(rf_model)
Call:
 randomForest(formula = MetabolicSyndrome ~ BMI + Age + LogBloodGlucose + HDL + WaistCi
               Type of random forest: classification
                     Number of trees: 500
No. of variables tried at each split: 2
        OOB estimate of error rate: 12.6%
Confusion matrix:
       1 class.error
0 1039 105 0.09178322
```

1 117 501 0.18932039

```
# Plot variable importance
varImpPlot(rf_model)
```

rf_model


```
# Predict on test set
rf_preds <- predict(rf_model, newdata = test_data)

# Confusion Matrix
conf_matrix_rf <- confusionMatrix(
    rf_preds,
    test_data$MetabolicSyndrome,
    positive = "1"
)
print(conf_matrix_rf)</pre>
```

Confusion Matrix and Statistics

Reference
Prediction 0 1
0 249 27
1 36 127

Accuracy : 0.8565

95% CI : (0.8202, 0.8879)

No Information Rate : 0.6492 P-Value [Acc > NIR] : <2e-16

Kappa : 0.6891

Mcnemar's Test P-Value: 0.3135

Sensitivity : 0.8247 Specificity : 0.8737 Pos Pred Value : 0.7791 Neg Pred Value : 0.9022 Prevalence : 0.3508 Detection Rate : 0.2893

Detection Prevalence : 0.3713 Balanced Accuracy : 0.8492

'Positive' Class : 1

```
# ROC Curve and AUC
rf_probs <- predict(rf_model, newdata = test_data, type = "prob")[, 2]
roc_rf <- roc(test_data$MetabolicSyndrome, rf_probs)</pre>
```

Setting levels: control = 0, case = 1

Setting direction: controls < cases

```
# Plot ROC
plot(roc_rf, main = "ROC Curve - Random Forest", col = "blue", lwd = 2)
```



```
# Print AUC
auc(roc_rf)
```

Area under the curve: 0.9434

```
# Convert MetabolicSyndrome to labeled factor in both train and test sets
train_data$MetabolicSyndrome <- factor(
    train_data$MetabolicSyndrome,
    levels = c(0, 1),
    labels = c("No", "Yes")
)

test_data$MetabolicSyndrome <- factor(
    test_data$MetabolicSyndrome,
    levels = c(0, 1),
    labels = c("No", "Yes")
)</pre>
```

```
# Set tuning grid for mtry values
tune_grid <- expand.grid(mtry = c(1, 2, 3, 4, 5, 6))
# Define 5-fold cross-validation strategy with ROC as the metric</pre>
```

```
ctrl <- trainControl(</pre>
  method = "cv",
  number = 5,
  classProbs = TRUE,
  summaryFunction = twoClassSummary,
  savePredictions = TRUE
# Train Random Forest model with tuning
set.seed(123)
rf_tuned <- train(</pre>
  MetabolicSyndrome ~ BMI + Age + LogBloodGlucose + HDL + WaistCirc + LogTriglycerides,
  data = train_data,
  method = "rf",
  trControl = ctrl,
  tuneGrid = tune_grid,
  metric = "ROC"
# Display best model summary and tuning plot
print(rf_tuned)
Random Forest
1762 samples
   6 predictor
   2 classes: 'No', 'Yes'
No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 1410, 1409, 1409, 1411, 1409
Resampling results across tuning parameters:
  mtry ROC
                   Sens
                              Spec
        0.9459872 0.9108098 0.7750590
        0.9464760 0.9029342 0.7912667
        0.9450083 0.9003218 0.8009966
        0.9433262 0.9003218 0.8042355
        0.9418668 0.9003179 0.7993706
  5
  6
        0.9407586 0.8959473 0.7961317
```

ROC was used to select the optimal model using the largest value.

The final value used for the model was mtry = 2.

plot(rf_tuned)


```
# Final Evaluation on test data
rf_preds <- predict(rf_tuned, newdata = test_data)
rf_probs <- predict(rf_tuned, newdata = test_data, type = "prob")

# Confusion matrix and metrics
conf_rf <- confusionMatrix(
    rf_preds,
    test_data$MetabolicSyndrome,
    positive = "Yes"
)
print(conf_rf)</pre>
```

Confusion Matrix and Statistics

```
Reference
Prediction No Yes
No 249 27
Yes 36 127
```

Accuracy: 0.8565

95% CI : (0.8202, 0.8879)

No Information Rate : 0.6492 P-Value [Acc > NIR] : <2e-16

Kappa : 0.6891

Mcnemar's Test P-Value: 0.3135

Sensitivity: 0.8247 Specificity: 0.8737 Pos Pred Value: 0.7791 Neg Pred Value: 0.9022 Prevalence: 0.3508 Detection Rate: 0.2893

Detection Prevalence: 0.3713
Balanced Accuracy: 0.8492

'Positive' Class : Yes

```
# ROC Curve and AUC
library(pROC)

rf_roc <- roc(
  response = test_data$MetabolicSyndrome,
  predictor = rf_probs$Yes
)</pre>
```

Setting levels: control = No, case = Yes

Setting direction: controls < cases

plot(rf_roc, main = "ROC Curve - Random Forest (Tuned)", col = "blue", lwd = 2)


```
auc(rf_roc)
```

Area under the curve: 0.9428

```
#ROC Curve + AUC comparison

# Predicted probabilities for class 1 ("Yes")

rf_probs <- predict(rf_model, newdata = test_data, type = "prob")[, 2]

# Plot ROC curve

rf_roc <- roc(test_data$MetabolicSyndrome, rf_probs)</pre>
```

Setting levels: control = No, case = Yes

Setting direction: controls < cases

```
plot(
  rf_roc,
  col = "#2ca02c", # green color
  lwd = 2,
  main = "ROC Curve - Random Forest"
)
```



```
# Print AUC
auc(rf_roc)
```

Area under the curve: 0.9434

```
#Random Forest Hyperparameter Tuning

#Define training control with 5-fold cross-validation
ctrl <- trainControl(
  method = "cv",
    number = 5
)

# Define tuning grid for mtry (number of predictors at each split)
tune_grid <- expand.grid(
  mtry = c(2, 3, 4)  # Adjust as needed
)

# Run grid search with caret::train
rf_tuned <- train(
MetabolicSyndrome ~ BMI + Age + BloodGlucose + HDL,
data = train_data,
method = "rf",</pre>
```

```
metric = "Accuracy",
trControl = ctrl,
tuneGrid = tune_grid,
ntree = 500
)
print(rf_tuned)
```

Random Forest

```
1762 samples
4 predictor
2 classes: 'No', 'Yes'

No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 1409, 1410, 1410, 1409, 1410
Resampling results across tuning parameters:
```

```
mtry Accuracy Kappa
2 0.8251899 0.6127976
3 0.8246201 0.6120094
4 0.8183766 0.5974250
```

Accuracy was used to select the optimal model using the largest value. The final value used for the model was mtry = 2.

```
plot(rf_tuned)
```



```
#SVM model

# Define cross-validation control
ctrl <- trainControl(
  method = "cv",
  number = 5,
  classProbs = TRUE,
  summaryFunction = twoClassSummary,
  savePredictions = "final"
)

# Define tuning grid for cost (C) and RBF kernel parameter (sigma)
svm_grid <- expand.grid(
  C = 2^(-1:2),
    sigma = 2^(-6:-2)
)</pre>
```

```
#SavingtunedRandomForestmodeltoan.RDatafile
save(rf_tuned,file= "rf_model.RData")
```

```
# Train SVM model using RBF kernel
svm_model <- train(
   MetabolicSyndrome ~ BMI + Age + LogBloodGlucose + HDL + WaistCirc + LogTriglycerides,
   data = train_data,
   method = "svmRadial",
   metric = "ROC",
   tuneGrid = svm_grid,
   trControl = ctrl
)

# Output model summary and performance plot
print(svm_model)</pre>
```

Support Vector Machines with Radial Basis Function Kernel

```
1762 samples
6 predictor
2 classes: 'No', 'Yes'

No pre-processing
Resampling: Cross-Validated (5 fold)

Summary of sample sizes: 1410, 1409, 1410, 1409, 1410
```

Resampling results across tuning parameters:

C	${ t sigma}$	ROC	Sens	Spec
0.5	0.015625	0.9186641	0.9038344	0.7475085
0.5	0.031250	0.9219889	0.9064621	0.7426436
0.5	0.062500	0.9262236	0.9108366	0.7442958
0.5	0.125000	0.9300322	0.9047192	0.7523735
0.5	0.250000	0.9276039	0.9108289	0.7555599
1.0	0.015625	0.9199866	0.9047077	0.7458694
1.0	0.031250	0.9233489	0.9090899	0.7458956
1.0	0.062500	0.9284732	0.9108328	0.7491477
1.0	0.125000	0.9314564	0.9073316	0.7701547
1.0	0.250000	0.9286474	0.9047116	0.7717152
2.0	0.015625	0.9212196	0.9064698	0.7410176
2.0	0.031250	0.9255932	0.9134605	0.7378180
2.0	0.062500	0.9296080	0.9117061	0.7523866
2.0	0.125000	0.9324735	0.9090822	0.7701023
2.0	0.250000	0.9265757	0.9108366	0.7668502
4.0	0.015625	0.9229475	0.9125833	0.7378049
4.0	0.031250	0.9271149	0.9143300	0.7378049

```
4.0 0.062500 0.9308930 0.9143224 0.7588251
4.0 0.125000 0.9310654 0.9073316 0.7668634
4.0 0.250000 0.9245173 0.9108404 0.7587857
```

ROC was used to select the optimal model using the largest value. The final values used for the model were sigma = 0.125 and C = 2.

```
plot(svm_model)
```



```
# Predict on test set
svm_preds <- predict(svm_model, newdata = test_data)
svm_probs <- predict(svm_model, newdata = test_data, type = "prob")

# Confusion matrix
confusionMatrix(
    svm_preds,
    test_data$MetabolicSyndrome,
    positive = "Yes"
)</pre>
```

Confusion Matrix and Statistics

```
Reference
Prediction No Yes
      No 252 31
      Yes 33 123
              Accuracy : 0.8542
                95% CI : (0.8177, 0.8859)
    No Information Rate: 0.6492
    P-Value [Acc > NIR] : <2e-16
                 Kappa : 0.6809
 Mcnemar's Test P-Value: 0.9005
           Sensitivity: 0.7987
           Specificity: 0.8842
         Pos Pred Value: 0.7885
         Neg Pred Value: 0.8905
            Prevalence: 0.3508
        Detection Rate: 0.2802
   Detection Prevalence: 0.3554
     Balanced Accuracy: 0.8415
       'Positive' Class : Yes
```

```
# ROC curve
library(pROC)
svm_roc <- roc(
  response = test_data$MetabolicSyndrome,
  predictor = svm_probs$Yes,
  levels = c("No", "Yes")
)</pre>
```

Setting direction: controls < cases

```
# Plot and display AUC
plot(svm_roc, main = "ROC Curve - SVM", col = "darkgreen", lwd = 2)
```


auc(svm_roc)

Area under the curve: 0.9191