Stochastic Financial Models

January 18, 2018

CONTENTS	2
Contents	
0 Motivation	3
1 Utility and mean variance	4

0 MOTIVATION 3

0 Motivation

An investor needs a certain quantity of a share (or currency, good, etc), however, not right now (t=0) but at a later time (t=1). The price of the share S(w) at time t=1 is random, but already today one has to make calculation with it so there is risk. For example, $500\text{USD} \approx 370\text{ GBP}$ today. What about in one year?

Possible solution: purchase a financial derivative such as:

- forward contract: right and obligation to buy a share at time t = 1 for a strike price K specified at time t = 0. Its value at time t = 1 should be H(w) = S(w) K is positive if S(w) > K, and negative if S(w) < K;
- call-option: the right, but no obligation, to do the same thing as above. Its value at t = 1 should be $H(w) = (S(w) K)^+$, i.e. S(w) K if that is positive, and 0 otherwise (no obligation to exercise the option).

One question: what is the fair price for such a derivative?

- 1) Classical approach: Regard payoff H(w) as lottery, modelled by a random variable on (Ω, F, \mathbb{P}) , where \mathbb{P} is the 'objective probability measure'.
- a) very classical: fair price = expected discounted payoff = $\mathbb{E}\left[\frac{H}{1+r}\right]$, where r is the interest rate for funds/loans from t = 0 to t = 1.

Assumption: both interest rates are the same for large investors.

- b) classical: subjective assessment of the risk (by the seller of H) by utility functions.
- 2) More modern approach: suppose the primary risk (share) can only be traded in t=0 and t=1.

Hedging strategy: θ^1 = number of shares held between t = 0 and t = 1; θ^0 = balance on bank account with interest rate r.

Here we allow θ^1 to be either positive or negative (i.e. allow short-selling).

Price at t = 0: $\theta^0 + \theta^1 \pi^1 = V_0$, where π^1 is the price of one share at t = 0. The value of this portfolio at t = 1: $\theta^0(1+r) + \theta^1 S(w) = V(w)$.

Requirement: value of derivative = value of strategy, H(w) = V(w) for all $w \in \Omega$.

For example, for forward contract: $S(w) - K = V(w) = \theta^0(1+r) + \theta^1 S(w)$, we should choose $\theta^1 = 1$, $\theta^0 = \frac{-K}{1+r}$, so $V_0 = \pi^1 - \frac{K}{1+r}$. The seller of H has no risk if he uses this strategy(?).

Even more, $\pi(H) = V_0$ is the unique fair price for the forward contract. Any other price $\tilde{\pi} \neq V_0$ would lead to *arbitrage*: a riskless opportunity to make profit, which should be excluded). For example, if $\tilde{\pi} > V_0$, at t = 0 sell forward for $\tilde{\pi}$ and buy the strategy for V_0 . Then in t = 1 deliver share and repay the loan. We gain a pure profit at t = 1: $(\tilde{\pi} - V_0)(1 + r) > 0$, i.e. arbitrage.

Questions: how to characterize arbitrage-free market? How to determine fair prices of options and derivatives?

1 Utility and mean variance

The market is interaction of agents trading goods. Individual agents have preferences over different contingent(?) claims (=specified random payment). Agents' preferences are expressed by an expected utility representation. Y is preferred to X means $\mathbb{E}[U(X)] \leq \mathbb{E}[U(Y)]$ with utility function $U: \mathbb{R} \to [-\infty, \infty)$ which is non-decreasing. We assume U to be concave, in the sense that we expect agents to dislike risks.

Definition. (1.1) A function $U: \mathbb{R} \to [-\infty, \infty)$ is concave if $\forall p \in [0, 1]$, $pU(x) + (1-p)U(y) \leq U(px + (1-p)y)$. Let $P(U) = \{x: U(x) > -\infty\}$.