The strongSwan IPsec Solution with TNC Support

TCG Members Meeting June 2011 Munich

Prof. Dr. Andreas Steffen
Institute for Internet Technologies and Applications
HSR University of Applied Sciences Rapperswil
andreas.steffen@hsr.ch

Where the heck is Rapperswil?

HSR - Hochschule für Technik Rapperswil

- University of Applied Sciences with about 1500 students
- Faculty of Information Technology (300-400 students)
- Bachelor Course (3 years), Master Course (+1.5 years)

The strongSwan IPsec Solution with TNC Support

TCG Members Meeting June 2011 Munich

IKEv2 Open Source Implementation

strongSwan Usage Scenarios

 strongSwan is an Internet Key Exchange Daemon responsible for automatically setting up IPsec-based VPN connections.

IKEv2 Interoperability Workshops

FHO Fachhochschule Ostschweiz

Spring 2007 in Orlando, Florida Spring 2008 in San Antonio, Texas

 strongSwan successfully interoperated with IKEv2 products from Alcatel-Lucent, Certicom, CheckPoint, Cisco, Furukawa, IBM, Ixia, Juniper, Microsoft, Nokia, SafeNet, Secure Computing, SonicWall, and the IPv6 TAHI Project.

strongSwan Key Customers

- Alcatel-Lucent, Clavister, Ericsson, Nokia Siemens Networks, Ubiquisys
 - Femtocells/Security Gateways for GSM/UMTS/LTE Mobile Networks
- Astaro
 - Astaro Security Gateway
- Secunet
 - SINA Box for High Security Applications (German Federal Government)
- U.S. Government
 - Open Source IKEv2/IPsec Reference and Test System for Suite B Elliptic Curve Cryptography

strongSwan Business Model

- Paid development of customer-specific add-ons
 - Features of general interest are released back into the main strongSwan distribution under the GPLv2 open source license
- Commercial licensing of the HSR-owned IKEv2 source code
 - Licensee is **not** obliged to disclose any proprietary modifications and add-ons to the IKEv2 **strongSwan** source code.

Supported Platforms

- Operating Systems
 - Linux
 - Android
 - FreeBSD
 - Mac OS X
- Hardware Platforms (32/64 bit)
 - Intel, Via, AMD
 - ARM, MIPS (e.g. Freescale, Marvell, 16-core Cavium Octeon)
 - PowerPC
- Networking Stack
 - IPv4
 - IPv6 (SuSE Linux Enterprise with strongSwan certified by DoD in 2008)
 - Mobile IPv4/IPv6
- Portable Source Code
 - 100% written in C but with an object-oriented modular approach
 - Performance scalability through extensive use of multi-threading

What about Windows?

Windows 7 VPN with Machine Certificates

FHO Fachhochschule Ostschweiz

 Microsoft tested IKEv2 interoperability using strongSwan right up to the final Windows 7 release.

Windows 7 VPN with EAP Authentication

FHO Fachhochschule Ostschweiz

 Using IKEv2 EAP-MSCHAPv2 or FAP-TI S with smartcards

strongSwan Applet for the Linux Desktop

strongSwan in a Mixed VPN Environment

FHO Fachhochschule Ostschweiz

Corporate Network

High-Availability strongSwan VPN Gateway

strong

Internet

Windows 7
Agile VPN Client

IKEv2 Authentication Methods

- Based on Public Keys
 - X.509 certificates with RSA or ECDSA keys
 - PKCS#11 smartcard interface
 - CRLs via HTTP/LDAP, OCSP
- Based on Pre-Shared Keys (PSK)
 - Arbitrary PSK length, beware of weak secrets!
- Based on the Extended Authentication Protocol (EAP)
 - EAP-MD5, EAP-MSCHAPv2, EAP-GTC
 - EAP-SIM, EAP-AKA (GSM/UMTS/CDMA2000)
 - EAP-TLS, EAP-PEAPv0
- Interface to AAA Server
 - EAP-RADIUS
- EAP and TNC Methods implemented as Plugins
 - strongSwan IKEv2 daemon loads plugins at run-time

The strongSwan IPsec Solution with TNC Support

TCG Members Meeting June 2011 Munich

Trusted Network Connect Capabilities

strongSwan as a TNC client and PEP

IF-TNCCS-1.1 Protocol on the TNC Client Side


```
13[TNC] sending TNCCS Batch (633 bytes) for Connection ID 1
13[TNC] <?xml version="1.0"?>
13[TNC] <TNCCS-Batch BatchId="1" Recipient="TNCS"...>
13[TNC] <TNCC-TNCS-Message>
13[TNC] <Type>00000003</Type>
13[TNC] <XML>
13[TNC] <TNCCS-PreferredLanguage>en</TNCCS-PreferredLanguage>
13[TNC] </XML>
13[TNC] </TNCC-TNCS-Message>
13[TNC] <IMC-IMV-Message>
13[TNC] <Type>0080ab31</Type>
13[TNC] <Base64>RHVtbX1JTUMqbWVzc2FnZSAwLCBhY3Rpb24qPSBhbGxvdw==</Base64>
13[TNC] </IMC-IMV-Message>
13[TNC] </TNCCS-Batch>
13[IKE] sending tunneled EAP-TTLS AVP [EAP/RES/TNC]
13[ENC] generating IKE AUTH request 7 [ EAP/RES/TTLS ]
13[NET] sending packet: from 192.168.0.100[4500] to 192.168.0.1[4500]
15[NET] received packet: from 192.168.0.1[4500] to 192.168.0.100[4500]
15[ENC] parsed IKE AUTH response 7 [ EAP/REQ/TTLS ]
15[IKE] received tunneled EAP-TTLS AVP [EAP/REQ/TNC]
15[TNC] received TNCCS Batch (473 bytes) for Connection ID 1
15[TNC] <?xml version="1.0"?>
15[TNC] <TNCCS-Batch BatchId="2" Recipient="TNCC,...>
15[TNC] <IMC-IMV-Message>
15[TNC] <Type>0080ab31</Type>
15[TNC] <Base64>RHVtbXlJTVYqdG8qRHVtbXlJTUMqbWVzc2FnZSAx</Base64>
15[TNC] </IMC-IMV-Message>
15[TNC] </TNCCS-Batch>
```

TNC Policy Enforcement

strongSwan Configuration on the PEP side


```
conn rw-allow
    rightgroups=allow
     leftsubnet=10.1.0.0/16
    also=rw-eap
     auto=add
conn rw-isolate
    rightgroups=isolate
     leftsubnet=10.2.0.0/16
     also=rw-eap
    auto=add
conn rw-eap
    left=192.168.0.1
     leftcert=moonCert.pem
     leftid=@moon.strongswan.org
     leftauth=eap-ttls
     leftfirewall=yes
    rightauth=eap-radius
    rightid=*@strongswan.org
    rightsendcert=never
     right=%any
```

IF-PEP Protocol on the strongSwan PEP


```
05[CFG] received RADIUS Access-Accept from server '10.1.0.10'
05[IKE] received RADIUS attribute Tunnel-Type: tag = 0, value = 9
05[IKE] received RADIUS attribute Filter-Id: 'allow'
05[IKE] RADIUS authentication of 'carol@strongswan.org' successful
05[IKE] EAP method EAP TTLS succeeded, MSK established
05[ENC] generating IKE AUTH response 11 [ EAP/SUCC ]
05[NET] sending packet: from 192.168.0.1[4500] to 192.168.0.100[4500]
04[NET] received packet: from 192.168.0.100[4500] to 192.168.0.1[4500]
04[ENC] parsed IKE AUTH request 12 [ AUTH ]
04[IKE] authentication of 'carol@strongswan.org' with EAP successful
04[IKE] authentication of 'moon.strongswan.org' (myself) with EAP
04[IKE] IKE SA rw-allow[1] established between
       192.168.0.1 [moon.strongswan.org]...192.168.0.100 [carol@strongswan.org]
02[CFG] received RADIUS Access-Accept from server '10.1.0.10'
02[IKE] received RADIUS attribute Tunnel-Type: tag = 0, value = 9
02[IKE] received RADIUS attribute Filter-Id: 'isolate'
02[IKE] RADIUS authentication of 'dave@strongswan.org' successful
02[IKE] EAP method EAP TTLS succeeded, MSK established
02[ENC] generating IKE AUTH response 11 [ EAP/SUCC ]
02[NET] sending packet: from 192.168.0.1[4500] to 192.168.0.200[4500]
01[NET] received packet: from 192.168.0.200[4500] to 192.168.0.1[4500]
01[ENC] parsed IKE AUTH request 12 [ AUTH ]
01[IKE] authentication of 'dave@strongswan.org' with EAP successful
01[CFG] constraint check failed: group membership required
01[CFG] selected peer config 'rw-allow' inacceptable
01[CFG] switching to peer config 'rw-isolate,
01[IKE] authentication of 'moon.strongswan.org' (myself) with EAP
01[IKE] IKE SA rw-isolate[2] established between
        192.168.0.1 [moon.strongswan.org]...192.168.0.200 [dave@strongswan.org]
```

Network Endpoint Assessment (RFC 5209)

strongSwan as a TNC client and TNC server

AR PEP PDP Integrity Collection IF-M Integrity Measurement Integrity Measurement Collectors Verifiers IF-IMC Evaluation Integrity Layer **IF-TNCCS 2.0** TNC TNC **EAP-TNC** in EAP-TTLS IF-T Network Access **Netwo** Policy Enforcement Access Network Requestor **Point** Switch/ Supplicant/ AAA Server Firewall/ VPN Client, etc. VPN Gateway

TNCCS-2.0 Protocol on the TNC Client Side


```
13[TNC] creating PB-PA message type 'ITA-HSR' 0x00902a/0x01
13[TNC] adding PB-PA message
13[TNC] PB-TNC state transition from 'Init' to 'Server Working'
13[TNC] sending PB-TNC CDATA batch (88 bytes) for Connection ID 1
13[TNC] => 88 \text{ bytes } @ 0x8081044
13[TNC] 0: 02 00 00 01 00 00 08 00 00 00 00 00 00 06 .....X......
13[TNC] 16: 00 00 00 1F 41 63 63 65 70 74 2D 4C 61 6E 67 75 ....Accept-Langu
13[TNC] 32: 61 67 65 3A 20 65 6E 80 00 00 00 00 00 01 00 age: en......
13[TNC] 64: 00 00 00 C1 2E D6 2F 80 00 90 2A 00 00 00 01 00 ...../...*....
13[TNC] 80: 00 00 11 61 6C 6C 6F 77 ...allow
13[IKE] sending tunneled EAP-TTLS AVP [EAP/RES/TNC]
13[ENC] generating IKE AUTH request 7 [ EAP/RES/TTLS ]
13[NET] sending packet: from 192.168.0.100[4500] to 192.168.0.1[4500]
14[NET] received packet: from 192.168.0.1[4500] to 192.168.0.100[4500]
14[ENC] parsed IKE AUTH response 7 [ EAP/REQ/TTLS ]
14[IKE] received tunneled EAP-TTLS AVP [EAP/REO/TNC]
14[TNC] received TNCCS batch (58 bytes) for Connection ID 1
14[TNC] => 58 \text{ bytes @ } 0x8080fee
14[TNC] 0: 02 80 00 02 00 00 00 3A 80 00 00 00 00 00 01 ..........
14[TNC] 32: 01 00 00 00 2C 40 A0 6C 00 00 90 2A 00 00 00 01 ....,@.1...*....
14[TNC] 48: 00 00 00 12 72 65 70 65 61 74 ....repeat
14[TNC] PB-TNC state transition from 'Server Working' to 'Client Working'
14[TNC] processing PB-TNC SDATA batch
14[TNC] processing PB-PA message (50 bytes)
14[TNC] handling PB-PA message type 'ITA-HSR' 0x00902a/0x01
```

Current Work

- TCG Certification of IF-IMC, IF-IMV, and IF-PEP Interfaces
 - Participation at the TNC 2011 Spring PlugFest in Chantilly, VA
 - Passed IF-IMC and IF-IMV compliance test suites
 - IF-PEP layer 2 VLAN test suite must first be adapted for layer 3 VPN
- IMC/IMV Test Pair with IF-M (RFC 5792 PA-TNC) Interface
 - Available now as strongSwan developers release

13[TNC] creating PA-TNC message with ID 0xc12ed62f

Stable strongSwan 4.5.3 release expected in July 2011 .

```
13[TNC] creating PA-TNC attribute type 'ITA-HSR' 0x00902a/0x00000001
13[TNC] => 5 bytes @ 0x808123c
13[TNC] 0: 61 6C 6C 6F 77 allow
13[TNC] creating PB-PA message type 'ITA-HSR' 0x00902a/0x01

14[TNC] handling PB-PA message type 'ITA-HSR' 0x00902a/0x01

14[TNC] processing PA-TNC message with ID 0x2c40a06c
14[TNC] processing PA-TNC attribute type 'ITA-HSR' 0x00902a/0x00000001
14[TNC] => 6 bytes @ 0x8080568
14[TNC] 0: 72 65 70 65 61 74 repeat
```

Future Work

- Implementation of PTS protocol binding to IF-M
 - HSR student Sansar Choinyambuu, implementor of the strongSwan IF-TNCCS 2.0 interface who is now working on TPM-based remote attestation is going to tackle the

Platform Trust Service (PTS) protocol binding to IF-M as part of her Master Thesis.

- Ultimate Goal: Full support of PTS attestation
 - Stable strongSwan release with PTS attestation support expected in Q1 2012.

Thank you for your attention!

Questions?

www.strongswan.org/tnc/

