Chapitre 16. Intégrales à paramètre

I, *J* intervalles d'intérieur non vide, *E* un evn.

1 Le théorème de convergence dominée

1.1 Le théorème de convergence dominée

Théorème 1.1 (Théorème de convergence monotone). Soit $g_n : I \to [0, +\infty]$ mesurables et $g_n : I \to [0, +\infty]$ On suppose que :

- 1. $(g_n)_{n\in\mathbb{N}}$ converge simplement vers g
- 2. $\forall n \in \mathbb{N} \ 0 \leq g_n \leq g_{n+1}$

Alors dans $[0, +\infty]$

$$\lim_{n\to+\infty}\int_I g_n = \int_I g \in [0,+\infty]$$

Corollaire 1.2. Soit $F_0: I \to \mathbb{R}_+$ intégrable et $F_n: I \to \mathbb{R}_+$ $(n \ge 1)$ mesurable.

On suppose:

- 1. $\forall n \in \mathbb{N} \ 0 \le F_{n+1} \le F_n$
- 2. (F_n) converge simplement vers 0

Alors

$$\int_{I} F_{n} \xrightarrow[n \to +\infty]{} 0$$

1.2 Énoncé du théorème de convergence dominée

Théorème 1.3 (Théorème de convergence dominée). Soit $f_n: I \to \mathbb{K}$ continue par morceaux $(n \in \mathbb{N})$ On suppose :

- 1. $(f_n)_{n\geq 0}$ converge simplement vers $f:I\to \mathbb{K}$ continue par morceaux sur I
- 2. Il existe $\varphi: I \to \mathbb{R}_+$ <u>intégrable</u> telle que $\forall n \in \mathbb{N}, \forall t \in I \mid |f_n(x)| \le \varphi(t)$ (Hypothèse de domination)

Alors les f_n sont intégrables et f aussi et

$$\int_{I} f_{n} \xrightarrow[n \to +\infty]{} \int_{I} f$$

On a même

$$||f_n - f||_1 = \int_I |f_n - f| \xrightarrow[n \to +\infty]{} 0$$

1.3 Premiers exemples d'application

Quelques exercices classiques:

1. Montrer que

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n t dt \xrightarrow[n \to +\infty]{} 0$$

2. Soit $f : [0,1] \to \mathbb{K}$ continue.

Montrer que

$$I_n = \int_0^1 f\left(\frac{x}{n}\right) dx \xrightarrow[n \to +\infty]{} f(0)$$

3. Soit $f:[0,1] \to \mathbb{K}$ continue avec $\lim_{t\to\infty} f=0$. Montrer que

$$I_n = \int_0^1 f(nx)dx \xrightarrow[n \to +\infty]{} f(0)$$

4. Soit $n \ge 1$ et

$$I_n = \int_1^{+\infty} e^{-x^n} dx$$

Montrer que $I_n \xrightarrow[n \to +\infty]{} 0$ et $I_n \underset{+\infty}{\sim} \frac{\alpha}{n}$ avec α à exprimer avec une intégrale.

5. Montrer que

$$I_n = \int_0^n \left(1 - \frac{x^2}{n^2}\right)^{n^2} dx \xrightarrow[n \to +\infty]{} \int_0^{+\infty} e^{-x^2} dx$$

1.4 Théorème de convergence dominée appliquée à l'interversion série / suite

Corollaire 1.4 (Théorème de convergence dominée). Soit $f_n: I \to \mathbb{K}$ continues par morceaux $(n \in \mathbb{N})$ On suppose que :

- 1. $\sum f_n$ converge simplement vers $\sum_{n=0}^{+\infty} f_n C^0$ par morceaux.
- 2. Il existe $\varphi: I \to \mathbb{R}_+$ intégrable telle que $\forall n \in \mathbb{N} \left| \sum_{k=0}^n f_k \right| \leq \varphi$ (Domination)

Alors les f_n sont intégrables, $\sum f_n$ est intégrable et

$$\int_{I} \sum_{n=0}^{+\infty} f_n = \sum_{n=0}^{+\infty} \int_{I} f_n$$

1.5 Le théorème d'intégration terme à terme