ELENE4903 HW 3

Problem 1b)

Variance

		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
				1.92342							
				1.90808							
				1.91765							
				1.93885							
	13	1.89585	1.93559	1.9646	1.9855	2.00131	2.01388	2.02431	2.03331	2.04132	2.04864
	15	1.9096	1.95955	1.9908	2.01192	2.02737	2.03947	2.04946	2.0581	2.06585	2.07298

RSME for given b and variance value

Problem 1c)

The RSME value 1.89051 for which b=11 and the variance = 0.1 is the lowest RSME found in the table. The lowest RSME found in Homework 1 was around 2.2 which is considerably higher than the RSME value of 1.89051, and is larger than all of the values in the table as well.

There are a few disadvantages to using the Gaussian process method. First is that the Gaussian process method scales worse with larger data sets than ridge regression with a complexity of $O(N^3)$, meaning that performance is impacted for large datasets. Second it is much more difficult to implement sparse feature selection in a Gaussian process compared to Ridge Regression.

b value

Problem 1d)

Problem 2a)

Problem 2b)

Problem 2c)

Problem 2d)

