$\mathcal{A} \subset \mathcal{C}$	
2) Tree	
2) Trees 3) Sording 4) Backtracking 5) Linked Iret 6) graph	
3) Solding	
4) Backtracking.	
5) Linked lict	
6) graph	

Recursion => Punction calling itself.
F Solve a large problem using 2 and 2 maller instances of the 2 ame problem. Descriptions of 2 maller input
2010 for al 2 maller instances of the
same problem.
Smaller input
Sum (n) = 1 + 2 + 4 004 n
$Sum(n) \neq 1 + 2 + 3 + 4 \dots n-14 n$
Sum (n) => Sum (n-1) + n
How to Code Recursion:
11000 10000 110000
1) Manifretation / Assumption / Leap of Paith.
Sum (n) => Given n redus the sum
of 1ca nactual numbers.
J 7 1 16610 5 11011 1500)
2) Main loss. How are un 128ma smaller inchance to
2) Main logic: (How are you using smaller instance to solve the Engles position)
$S_{bm}(n) = S_{bm}(n-1) + n$
Sowi (II) FIL

a tractorid of n number.

 $\int (n) = 1x^2 \times 2x^4 - \dots + (n-1) \times n$

 $\int (n) \Rightarrow \int (n-i) \times n$

i) Manifestation : f(n) => detuons n).

2) Main logic

$$\binom{n}{n} = \binom{n-1}{n} \times n$$

3) Bose andition.

int ((intn) &

$$\int_{\Omega} \left(N = - \infty \right)$$

defuon 1;

return f(n1) xn

3

Jibonaci

$$f(n) \Rightarrow f(n-1) + f(n-2)$$

$$\frac{2}{2} \quad \text{if } (n=1) \quad \text{if } (n=2)$$

$$\text{return 0} \quad \text{return } \frac{1}{2}$$

$$\text{if } (n = 1) - 1 \\
 \text{defron 0}$$

F Space Complexity T number of Punctions in call estack

+ '
Sc: O(n)

memory taken by the

function

Time Complexity.

1) Method of Sobsidution
$$T(n-1) \neq 1 + T(n-2)$$
 $T(n) \Rightarrow 1 + 1 + T(n-2)$
 $T(n) \Rightarrow 2 + T(n-2)$
 $T(n) \Rightarrow 3 + T(n-3)$
 $T(n) \Rightarrow R + T(n-3)$
 $T(n) \Rightarrow R + T(n-1)$
 $T(n) \Rightarrow R + T(n-1)$

Time taken > (no of function calls) x (time taken by each Inction) # if (time taken is same los eves func call) Sum (n) nod function cells = n Time taken 7 nx 1 n-2 Tc:0(n) 1 Fibonacci

 $T(n) \neq 1 + T(n-i) + T(n-2)$

T(n) => 1 + 2 T(n-1)

int power (lat a, int n, int m) &

If
$$(n=0)$$
 $m = P(0^{q}+7)$

Between 1

If $(n\%2=0)$ &

Felver ((long) power $(a,n|_{2},m) \times power (a,n|_{2},m)$ % m

3 else return ((long) power $(a,n|_{2},m) \times power (a,n|_{2},m)$)% m

2 $\times a) \% m$

3

T(n) $\Rightarrow 1 + 2T(nh)$

T(n) $\Rightarrow 1 + 2f 1 + 2T(nh)$

T(n) $\Rightarrow 3 + 4T(nh)$

T(n) $\Rightarrow 3 + 4T(nh)$
 $\Rightarrow 3 + 4T(nh)$

$$T(n) \Rightarrow 2^{R-1} + 2^{R}T(n/2^{2})$$

$$T(n) \Rightarrow 2^{\log n} + 2^{\log n}T(1)$$

$$T(n) \Rightarrow 1$$

$$1 + 1 \qquad 1 \Rightarrow 1$$

$$1 + 1 \qquad 2^{R}T(n) \Rightarrow 1$$

$$1 + 1 \qquad 1 \Rightarrow 1$$

$$1 \Rightarrow 1 \Rightarrow 1 \Rightarrow 1$$

