

Functional Dependencies – Part 3

Finding Keys

A Bunch of Keys

- We will need keys for defining the normal forms later on.
 - A subset of the attributes of a relation schema R is a superkey if it uniquely determines all attributes of R.
 - A superkey K is called a candidate key if no proper subset of K is a superkey.
 - That is, if you take any of the attributes out of K, then there is not enough to uniquely identify tuples.
 - Candidate keys are also called keys, and the primary key is chosen from them.

Finding Keys

• Given a set Σ of FDs on a relation R, the question is:

How can we find all the (candidate) keys of R?

Implied Functional Dependencies

- To design a good database, we need to consider all possible FDs.
- If each student works on one project and each project has one supervisor, does each student have one project supervisor?

- We use the notation $\Sigma \models X \to Y$ to denote that $X \to Y$ is **implied** by the set Σ of FDs.
- We write Σ^* for all possible FDs **implied** by Σ .

Equivalence of Functional Dependencies

• Σ_1 and Σ_2 are **equivalent** if $\Sigma_1^* = \Sigma_2^*$.

- **Example:** Let $\Sigma_1 = \{X \to Y, Y \to Z\}$ and $\Sigma_2 = \{X \to Y, Y \to Z, X \to Z\}$. We have $\Sigma_1 \neq \Sigma_2$ but $\Sigma_1^* = \Sigma_2^* = \{X \to Y, Y \to Z, X \to Z\}$. Hence, Σ_1 and Σ_2 are equivalent.
- Questions:
 - 1 Is it possible that $\Sigma_1^* = \Sigma_2^*$ but $\Sigma_1 \neq \Sigma_2$? **Yes**
 - 2 Is it possible that $\Sigma_1^* \neq \Sigma_2^*$ but $\Sigma_1 = \Sigma_2$? **No**

Implied Functional Dependencies

- Let Σ be a set of FDs. Check whether or not $\Sigma \models X \to W$ holds? We need to
 - Ompute the set of all attributes that are dependent on X, which is called the closure of X under Σ and is denoted by X^+ .
 - 2 $\Sigma \models X \to W$ holds iff $W \subseteq X^+$.
- Algorithm¹
 - $X^+ := X$;
 - repeat until no more change on X⁺
 - for each $Y \to Z \in \Sigma$ with $Y \subseteq X^+$, add all the attributes in Z to X^+ , i.e., replace X^+ by $X^+ \cup Z$.

See Algorithm 15.1 on Page 538 in [Elmasri & Navathe, 7th edition] or Algorithm 1 on Page 555 in [Elmasri & Navathe, 6th edition]

Implied Functional Dependencies – Example

- Consider a relation schema $R = \{A, B, C, D, E, F\}$, a set of FDs $\Sigma = \{AC \rightarrow B, B \rightarrow CD, C \rightarrow E, AF \rightarrow B\}$ on R.
- Decide whether or not $\Sigma \models AC \rightarrow ED$ holds.
 - We first build the closure of AC:

```
(AC)^+ \supseteq AC initialisation \supseteq ACB using AC \to B \supseteq ACBDE using B \to CD \supseteq ACBDE using C \to E
```

- **2** Then we check that $ED \subseteq (AC)^+$. Hence $\Sigma \models AC \rightarrow ED$.
- Can you quickly tell whether or not $\Sigma \models AC \rightarrow EF$ holds?

Finding Keys

Fact: A key K of R always defines a FD K → R.

• Algorithm²:

Input: a set Σ of FDs on R.

Output: the set of all keys of R.

- for every subset X of the relation R, compute its closure X⁺
- if $X^+ = R$, then X is a superkey.
- if no proper subset Y of X with $Y^+ = R$, then X is a key.
- A prime attribute is an attribute occurring in a key, and a non-prime attribute is an attribute that is not a prime attribute.

 $^{^2}$ It extends Algorithm 15.2(a) in [Elmasri & Navathe, 7th edition, pp. 542], or Algorithm 2(a) or in Algorithm 2(a) in [Elmasri & Navathe, 6th edition pp. 558] to finding all keys of R

Exercise – Finding Keys

- Consider a relation schema $R = \{A, B, C, D\}$ and a set of functional dependencies $\Sigma = \{AB \rightarrow C, AC \rightarrow D\}$.
 - List all the keys and superkeys of R.
 - Find all the prime attributes of R.

Solution:

- We compute the closures for all possible combinations of the attributes in R:
 - $(A)^+ = A, (B)^+ = B, (C)^+ = C, (D)^+ = D;$
 - $(AB)^+ = ABCD$, $(AC)^+ = ACD$, $(AD)^+ = AD$, $(BC)^+ = BC$, $(BD)^+ = BD$, $(CD)^+ = CD$
 - $(ABC)^+ = ABCD$, $(ABD)^+ = ABCD$, $(ACD)^+ = ACD$, $(BCD)^+ = BCD$
- 2 Hence, we have
 - AB is the only key of R.
 - AB, ABC, ABD and ABCD are the superkeys of R.
 - A and B are the prime attributes of R.

Exercise – Finding Keys

Checking all possible combinations of the attributes is too tedious!

Example: Still consider a relation schema $R = \{A, B, C, D\}$ and $\Sigma = \{AB \rightarrow C, AC \rightarrow D\}$. List all the keys of B.

Some tricks:

- If an attribute never appears in the dependent of any FD, this attribute must be part of each key.
- If an attribute never appears in the determinant of any FD but appears in the dependent of any FD, this attribute must not be part of each key.
- If a proper subset of X is a key, then X must not be a key.

Finding Keys - Example

- Consider ENROLMENT and the following FDs:
 - {StudentID} → {Name};
 - {StudentID, CourseNo, Semester} → {ConfirmedBy, Office};
 - $\{ConfirmedBy\} \rightarrow \{Office\}.$

ENROLMENT					
Name	StudentID	CourseNo	Semester	ConfirmedBy	Office
Tom	123456	COMP2400	2010 S2	Jane	R301
Mike	123458	COMP2400	2008 S2	Linda	R203
Mike	123458	COMP2600	2008 S2	Linda	R203

- What are the keys, superkeys and prime attributes of ENROLMENT?
 - {StudentID, CourseNo, Semester} is the only key.
 - Every set that has {StudentID, CourseNo, Semester} as its subset is a superkey.
 - StudentID, CourseNo and Semester are the prime attributes.