PSALTer results panel

$$\mathcal{S} == \iiint (\rho \, \varphi + \, h^{\alpha \beta} \, \, \mathcal{T}_{\alpha \beta} + \, \alpha_{2} \, \partial_{\alpha} \varphi \, \partial^{\alpha} \varphi + \frac{1}{2} \, \alpha_{1} \, (\partial_{\beta} h^{\chi}_{\chi} \, \partial^{\beta} h^{\alpha}_{\ \alpha} + 2 \, \partial_{\alpha} h^{\alpha \beta} \, \partial_{\chi} h_{\beta}^{\ \chi} - 2 \, \partial^{\beta} h^{\alpha}_{\ \alpha} \, \partial_{\chi} h_{\beta}^{\ \chi} - \partial_{\chi} h_{\alpha \beta} \, \partial^{\chi} h^{\alpha \beta}))[$$

$$t, \, x, \, y, \, z] \, dz \, dy \, dx \, dt$$

Wave operator

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities
0^+ $\mathcal{T}^\perp == 0$	$\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} == 0$	1
$\frac{1}{2}\mathcal{T}^{\perp^{\alpha}}=0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}$	3
Total expected gauge generators:		4

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Massless particle

Pole residue: $\left| \frac{1}{\frac{\alpha}{2}} > 0 \right|$ Pole residue: $\left| \frac{p^2}{\frac{\alpha}{1}} > 0 \right|$ Polarisations: $\left| \frac{1}{\frac{p^2}{2}} > 0 \right|$ Polarisations: 2

Unitarity conditions

$$\alpha_{1} < 0 \&\& \alpha_{2} > 0$$