写在前面

- 把作业题全部弄懂不一定能拿高分
- •但作业题都没全部弄懂一定拿不了高分

第一章

• 1. 画出编译器的总体结构,简要说明每个模块的功能。

编译器的总体结构如下图:

第一章

• 1. 画出编译器的总体结构,简要说明每个模块的功能。

模块功能:

- (1)词法分析器:从左到右扫描组成源程序的字符串,并将其转化为单词串,将发现的标识符登记到符号表中,检查组词方面的错误并进行处理。
- (2)语法分析器:组词成句,分层给出程序的组成结构,指出语法错误,制导语义翻译。
- (3)语义分析与中间代码生成器:完成由语法分析器识别出来的语法成分的语义的分析,并以中间代码的形式实现对分析结果的表示。
- (4)代码优化器:对中间代码进行优化处理,使程序运行能够尽量节省存储空间,更有效地利用机器资源, 使得程序的运行速度更快,效率更高
- (5)目标代码生成器:将中间代码转换成目标机上的机器指令代码或汇编代码。
- (6)表格管理:按照编译过程中的信息需求,以不同的类型组织符号表,并以合适的方式查、填和维护这些表格,提供信息服务,辅助实现编译任务。
- (7)出错处理器:进行各种错误的检查、报告、纠正,以及相应的续编译处理。

第一章

2. A机器上有一个C语言编译器,现要在B机器上实现一个新语言 NEW的编译器,如何实现?(用T形图表达)

答案不唯一,最终通过合理的流程能得到如图所示的T形图即可

• 17. 设文法G有如下产生式:

G: E
$$\rightarrow$$
 E+T | E-T | T
$$T \rightarrow T^*F | T/F | F$$

$$F \rightarrow F \uparrow P | P$$

 $P \rightarrow c \mid id \mid (E)$

现有句子id+id*(id-id), (c+id)*(id+c), 试完成下列题目。

- (1) 分别给出每个句子的3个不同推导,要求有最左推导和最右推导。
- (2) 给出上面6个不同推导各自对应的归约。
- (3) 试画出相应的语法树。
- (4) 指出每个句子中的短语、简单短语和句柄。

(本题来自课本第二章课后第17题,语法树只需要画最左推导的语法树)

• 17(1) 分别给出每个句子的3个不同推导,要求有最左推导和最右推导。

对于句子 id + id * (id - id) 最左推导 $E \Rightarrow E + T$ \Rightarrow id + id * (E) ⇒T + T \Rightarrow id + id * (E - T) ⇒F + T \Rightarrow id + id * (T - T) ⇒P + T \Rightarrow id + id * (F - T) \Rightarrow id + T \Rightarrow id + id * (P - T) \Rightarrow id + T * F \Rightarrow id + id * (id - T) \Rightarrow id + F * F \Rightarrow id + id * (id - F) \Rightarrow id + P * F \Rightarrow id + id * (id - P) \Rightarrow id + id * F \Rightarrow id + id * (id - id) \Rightarrow id + id * P

G: $E \rightarrow E+T \mid E-T \mid T$ $T \rightarrow T*F \mid T/F \mid F$ $F \rightarrow F \uparrow P \mid P$ $P \rightarrow c \mid id \mid (E)$

• 17(1) 分别给出每个句子的3个不同推导,要求有最左推导和最右推导。

对于句子 id + id * (id - id) 最右推导 \Rightarrow E + T * (F - id) $E \Rightarrow E + T$ \Rightarrow E + T * (P - id) $\Rightarrow E + T * F$ \Rightarrow E + T * (id - id) $\Rightarrow E + T * P$ \Rightarrow E + F * (id - id) $\Rightarrow E + T * (E)$ \Rightarrow E + P * (id - id) $\Rightarrow E + T * (E - T)$ \Rightarrow E + id * (id - id) $\Rightarrow E + T * (E - F)$ \Rightarrow T + id * (id - id) $\Rightarrow E + T * (E - P)$ \Rightarrow F + id * (id - id) \Rightarrow E + T * (E - id) \Rightarrow P + id * (id - id) \Rightarrow E + T * (T - id) \Rightarrow id + id * (id - id)

G: $E \rightarrow E+T \mid E-T \mid T$ $T \rightarrow T^*F \mid T/F \mid F$ $F \rightarrow F \uparrow P \mid P$ $P \rightarrow c \mid id \mid (E)$

非最左最右推导:答案不唯一,合理即可

• 17(1) 分别给出每个句子的3个不同推导,要求有最左推导和最右推导。

对于句子 (c + id) * (id + c) 最左推导

E⇒T

 $\Rightarrow T * F$

 $\Rightarrow F * F$

 $\Rightarrow P * F$

⇒(E) * F

 \Rightarrow (E + T) * F

 \Rightarrow (T + T) * F

 \Rightarrow (F + T) * F

 \Rightarrow (P + T) * F

 \Rightarrow (c + T) * F

 \Rightarrow (c + F) * F

 \Rightarrow (c + P) * F

 \Rightarrow (c + id) * F

 \Rightarrow (c + id) * P

 \Rightarrow (c + id) * (E)

 \Rightarrow (c + id) * (E + T)

 \Rightarrow (c + id) * (T + T)

 \Rightarrow (c + id) * (F + T)

 \Rightarrow (c + id) * (P + T)

 \Rightarrow (c + id) * (id + T)

 \Rightarrow (c + id) * (id + F)

 \Rightarrow (c + id) * (id + P)

 \Rightarrow (c + id) * (id + c)

G: $E \rightarrow E+T \mid E-T \mid T$

 $T \rightarrow T^*F \mid T/F \mid F$

 $\mathsf{F} \to \mathsf{F} \!\!\uparrow \! \mathsf{P} \mid \mathsf{P}$

 $P \rightarrow c \mid id \mid (E)$

• 17(1) 分别给出每个句子的3个不同推导,要求有最左推导和最右推导。

```
\Rightarrow T * (P + c)
对于句子 (c + id) * (id + c)
                                                                                                  \RightarrowT * (id + c)
最右推导
                                                                                                   \RightarrowF * (id + c)
                                                                                                   \Rightarrow P * (id + c)
    E⇒T
                                                                                                  \Rightarrow(E) * (id + c)
       \Rightarrow T * F
                                                                                                  \Rightarrow(E + T) * (id + c)
       \Rightarrow T * P
                                                                                                  \Rightarrow(E + F) * (id + c)
       \Rightarrow T * (E)
                                                                                                  \Rightarrow(E + P) * (id + c)
       \Rightarrow T * (E + T)
                                                                                                  \Rightarrow(E + id) * (id + c)
       \Rightarrow T * (E + F)
                                                                                                  \Rightarrow(T + id) * (id + c)
       \Rightarrow T * (E + P)
                                                                                                  \Rightarrow(F + id) * (id + c)
       \Rightarrow T * (E + c)
                                                                                                  \Rightarrow(P + id) * (id + c)
       \Rightarrow T * (T + c)
                                                                                                  \Rightarrow(c + id) * (id + c)
       \Rightarrow T * (F + c)
```

C) G:
$$E \rightarrow E+T \mid E-T \mid T$$

C) $T \rightarrow T^*F \mid T/F \mid F$

C) $F \rightarrow F \uparrow P \mid P$
 $F \rightarrow G \mid id \mid (E)$

* (id + c)

非最左最右推导:答案不唯一,合理即可

• 17(2) 给出上面6个不同推导各自对应的归约。

对于句子 id + id * (id - id)

最左推导对应最右规约:

$$id + id * (id - id)$$

$$\Rightarrow$$
id + id * (id - P)

$$\Rightarrow$$
id + id * (id - F)

$$\Rightarrow$$
id + id * (id - T)

$$\Rightarrow$$
id + id * (P - T)

$$\Rightarrow$$
id + id * (F - T)

$$\Rightarrow$$
id + id * (T - T)

$$\Rightarrow$$
id + id * (E - T)

$$\Rightarrow$$
id + id * (E)

$$\Rightarrow$$
id + id * P

$$\Rightarrow$$
id + id * F

$$\Rightarrow$$
id + P * F

$$\Rightarrow$$
id + F * F

$$\Rightarrow$$
id + T * F

G:
$$E \rightarrow E+T \mid E-T \mid T$$

$$\mathsf{T} \to \mathsf{T}^*\mathsf{F} \mid \mathsf{T}/\mathsf{F} \mid \mathsf{F}$$

$$F \rightarrow F \uparrow P \mid P$$

$$P \rightarrow c \mid id \mid (E)$$

• 17(2) 给出上面6个不同推导各自对应的归约。

对于句子 id + id * (id - id)

最右推导对应最左规约:

$$id + id * (id - id)$$

$$\Rightarrow$$
P + id * (id - id)

$$\Rightarrow$$
F + id * (id - id)

$$\Rightarrow$$
T + id * (id - id)

$$\Rightarrow$$
E + id * (id - id)

$$\Rightarrow$$
E + P * (id - id)

$$\Rightarrow$$
E + F * (id - id)

$$\Rightarrow$$
E + T * (id - id)

$$\Rightarrow$$
E + T * (P - id)

$$\Rightarrow$$
E + T * (F - id)

$$\Rightarrow$$
E + T * (T - id)

$$\Rightarrow$$
E + T * (E - id)

$$\Rightarrow E + T * (E - P)$$

$$\Rightarrow E + T * (E - F)$$

$$\Rightarrow E + T * (E - T)$$

$$\Rightarrow E + T * (E)$$

$$\Rightarrow E + T * P$$

$$\Rightarrow E + T * F$$

G: $E \rightarrow E+T \mid E-T \mid T$

 $T \rightarrow T^*F \mid T/F \mid F$

 $F \rightarrow F \uparrow P \mid P$

 $P \rightarrow c \mid id \mid (E)$

非最左最右规约:答案不唯一,合理即可

• 17(2) 给出上面6个不同推导各自对应的归约。

对于句子 (c + id) * (id + c) 最左推导对应最右规约: (c + id) * (id + c) \Rightarrow (c + id) * (id + P) \Rightarrow (c + id) * (id + F) \Rightarrow (c + id) * (id + T) \Rightarrow (c + id) * (P + T) \Rightarrow (c + id) * (F + T) \Rightarrow (c + id) * (T + T) \Rightarrow (c + id) * (E + T) \Rightarrow (c + id) * (E) \Rightarrow (c + id) * P

$$\Rightarrow (c + id) * F$$

$$\Rightarrow (c + P) * F$$

$$\Rightarrow (c + F) * F$$

$$\Rightarrow (c + F) * F$$

$$\Rightarrow (c + F) * F$$

$$\Rightarrow (F + T) * F$$

$$\Rightarrow (F + T) * F$$

$$\Rightarrow (E + T) * F$$

$$\Rightarrow (E) * F$$

$$\Rightarrow F * F$$

$$\Rightarrow F * F$$

$$\Rightarrow T * F$$

⇒E

G: $E \rightarrow E+T \mid E-T \mid T$ $T \rightarrow T^*F \mid T/F \mid F$ $F \rightarrow F \uparrow P \mid P$ $P \rightarrow c \mid id \mid (E)$

12

• 17(2) 给出上面6个不同推导各自对应的归约。

对于句子 (c + id) * (id + c)

最右推导对应最左规约:

$$(c + id) * (id + c)$$

$$\Rightarrow$$
(P + id) * (id + c)

$$\Rightarrow$$
(F + id) * (id + c)

$$\Rightarrow$$
(T + id) * (id + c)

$$\Rightarrow$$
(E + id) * (id + c)

$$\Rightarrow$$
(E + P) * (id + c)

$$\Rightarrow$$
(E + F) * (id + c)

$$\Rightarrow$$
(E + T) * (id + c)

$$\Rightarrow$$
(E) * (id + c)

$$\Rightarrow P * (id + c)$$

$$\Rightarrow$$
F * (id + c)

$$\Rightarrow$$
T * (id + c)

$$\Rightarrow T * (P + c)$$

$$\Rightarrow T * (F + c)$$

$$\Rightarrow T * (T + c)$$

$$\Rightarrow T * (E + c)$$

$$\Rightarrow T * (E + P)$$

$$\Rightarrow T * (E + F)$$

$$\Rightarrow T * (E + T)$$

$$\Rightarrow T * (E)$$

$$\Rightarrow T * P$$

$$\Rightarrow T * F$$

$$\Rightarrow T$$

G:
$$E \rightarrow E+T \mid E-T \mid T$$

$$T \rightarrow T^*F \mid T/F \mid F$$

$$F \rightarrow F \uparrow P \mid P$$

$$P \rightarrow c \mid id \mid (E)$$

 $G\colon \qquad E\to E+T\mid E-T\mid T$

 $T \rightarrow T^*F \mid T/F \mid F$

 $F \rightarrow F \uparrow P \mid P$

 $P \rightarrow c \mid id \mid (E)$

• 17(3) 试画出相应的语法树。

对于句子 id + id * (id - id)

• 17(4) 指出每个句子中的短语、简单(直接)短语和句柄。

句子	id + id * (id -id)	(c+id)*(id+c)
短语	id(或4个id), id-id, (id-id), id*(id-id), id+id*(id-id)	c(或2个c), id(或2个id), c+id, (c+id), id+c, (id+c), (c+id)*(id+c)
简单短语	id(或4个id)	id, c (或2个c,2个id)
句柄	id	с

第三章

• 24. 构造表示"标识符"的正则表达式,其中标识符的定义为:以字母开头的字母数字串。

```
letter=(a|b|c...|z|A|B|C|...|Z)
digit=(0|1|2|...|9)
Answer=letter(letter|dight)*
```

第三章

• 25. 构造表示"标识符"的正则表达式,其中标识符的定义为:以字母开头的字母数字串,标识符可以有后缀,其后缀是用"-"或者":"隔开的字母数字串。

```
letter=(a|b|c...|z|A|B|C|...|Z)
digit=(0|1|2|...|9)
```

Answer=letter(letter|dight)*((-|.)(letter|dight) $^+$ | $_{\mathcal{E}}$) (题目有歧义,合理即可)

• 13. 设有如下文法:

$$G_2$$
: $S \rightarrow aABe$ $A \rightarrow b \mid Abc$ $B \rightarrow d$

- (1) 将上述文法改写为等价的LL(1)文法。
- (2) 求上述文法各个语法变量的FIRST集和FOLLOW集。
- (3) 构造上述文法的预测分析表。

• 13. 设有如下文法:

 G_2 : $S \rightarrow aABe$ $A \rightarrow b \mid Abc$

 $B \rightarrow d$

(1) 将上述文法改写为等价的LL(1)文法。

S→aABe

 $A \rightarrow bA'$

A'→bcA'| ε

 $B \rightarrow d$

• 13. 设有如下文法:

 G_2 : $S \rightarrow aABe$ $A \rightarrow b \mid Abc$ $B \rightarrow d$

(2) 求上述文法各个语法变量的FIRST集和FOLLOW集。

FIRST 集 FOLLOW集

 $FIRST(S)={a}$ $FOLLOW(S)={\#}$

 $FIRST(A)=\{b\}$ $FOLLOW(A)=\{d\}$

FIRST(A')= $\{b, \epsilon\}$ FOLLOW(A')= $\{d\}$

 $FIRST(B)=\{d\}$ $FOLLOW(B)=\{e\}$

• 13. 设有如下文法:

$$G_2$$
: $S \rightarrow aABe$ $A \rightarrow b \mid Abc$ $B \rightarrow d$

(3) 构造上述文法的预测分析表。

非终结符	输入符号					
	а	b	С	d	е	#
S	→ aABe					
Α		→ bA'				
A'		→ bcA'		→ε		
В				→d		

• 21. 考虑简化了的C声明的以下文法:

```
<declaration> → <type> <var_list>
<type> → int | float
<var list> → id, <var list> | id
```

- (1) 在该文法中提取左因子。
- (2) 为改造后文法的语法变量构造FIRST集和FOLLOW集。
- (3) 说明改造后的文法是LL(1)文法。
- (4) 为改造后的文法构造LL(1)分析表。
- (5) 给出输入串int x,y,z所对应的LL(1)分析动作。

• 21. 考虑简化了的C声明的以下文法:

(1) 在该文法中提取左因子。

$$\rightarrow$$
 \rightarrow int | float \rightarrow id\\$\rightarrow\\$, | \\$\epsilon\\$

(2) 为改造后文法的语法变量构造FIRST集和FOLLOW集。

FIRST集 FOLLOW集:
FIRST(<declaration>)={ int , float } FOLLOW(<declaration>)={ #}

FIRST($\langle A \rangle$)={ , , ε } FOLLOW($\langle A \rangle$)={ #}

FIRST(<var_list>)={ id } FOLLOW(<var_list>)={ # }

FIRST(<type>) = { int , float } FOLLOW(<type>) = { id}

(1) 在该文法中提取左因子。

```
<declaration> \rightarrow <type> <var_list> <type> \rightarrow int | float <var_list> \rightarrow id<A> <A> \rightarrow , <var_list> | \epsilon
```

(3) 说明改造后的文法是LL(1)文法。

具有相同左部的产生式只有<type>和<A>.

对于<type>: int 和 float 均是终结符,并且它们的 first 集的交集为空,符合要求。

对于 $A>: A> \to \epsilon$ 一定会产生空; a=1 a=1

(1) 在该文法中提取左因子。

$$\rightarrow$$

 \rightarrow int | float
 \rightarrow id\\$\rightarrow\\$, | \\$\epsilon\\$

(4) 为改造后的文法构造LL(1)分析表

非终结符	输入符号						
コトジジロ1寸	int	float	id	,	#		
<declaration></declaration>	→ <type><var_list></var_list></type>	→ <type> <var_list></var_list></type>					
<type></type>	→ int	→ float					
<var_list></var_list>			→ id <a>				
<a>				→ , <var_list></var_list>	$\rightarrow \varepsilon$		

26

21(5) 给出输
 入串int x,y,z所
 对应的LL(1)分析动作。

栈	输入缓冲区	输出
# <declaration></declaration>	int x,y,z#	
# <var_list><type></type></var_list>	int x,y,z	<declaration>→<type> <var_list></var_list></type></declaration>
# <var_list>int</var_list>	int x,y,z#	<type> → int</type>
# <var_list></var_list>	x,y,z#	
# <a>id	x,y,z#	<var_list>→id<a></var_list>
# <a>	,y,z#	
# <var_list>,</var_list>	,y,z#	<a>→, <var_list></var_list>
# <var_list></var_list>	y,z#	
# <a>id	y,z#	<var_list>→id<a></var_list>
# <a>	,z#	
# <var_list>,</var_list>	,z#	<a>→, <var_list></var_list>
# <var_list></var_list>	z#	
# <a>id	z#	<var_list>→id<a></var_list>
# <a>	#	
#	#	<a>→ε

• 1. 设有如下文法G:

$$~~\rightarrow~~$$
 $\rightarrow |\epsilon| \rightarrow a |b|$

- (1)试用识别活前缀的方式给出文法G的LR(1)项目集。
- (2)构造G的LR(1)分析表。
- (3)给出输入符号串w=abab的自底向上语法分析过程。

$$<$$
S $> \rightarrow <$ A $> <$ A $> \rightarrow <$ B $> <$ A $> | ϵ $<$ B $> \rightarrow α $<$ B $> | b$$$

• 1(1) 试用识别活前缀的方式给 出文法G的LR(1)项目集。 (I) First (A) = {a,b, e}.
First (B) = {a,b}.
识别增广文法G'的活前缀的DFA和F;

 $\langle S \rangle \rightarrow \langle A \rangle \langle A \rangle \rightarrow \langle B \rangle \langle A \rangle | \epsilon \langle B \rangle \rightarrow \alpha \langle B \rangle | b$

• 1(2) 构造G的LR(1)分析表。

状态、	Action			Goto		
17/20	а	b	#	S	A	В
0	s4	s 5	٢3	1	2	3
1			асс			
2			r.			
3	s4	s 5	r 3		6	3
4	54	55				7
5	F 5	r 5	r5			
6			12			
7	r4	r4	r4			

产生式编号:

- @ 5'→S
- D 5→A.
- ② A→BA
- 3 A → E
- @ B → aB
- B B→6

$\langle S \rangle \rightarrow \langle A \rangle \langle A \rangle \rightarrow \langle B \rangle \langle A \rangle | \epsilon \langle B \rangle \rightarrow \alpha \langle B \rangle | b$

• 1(3) 给出输入符号串w=abab的 自底向上语法分析过程。

业太	Action			Goto		
17/65	а	Ь	#	S	Ą	В
O	s4	s 5	٢3		2	3
1			асс			
2			<u>۲</u>			
3	s4	s 5	r 3		6	3
4	54	55				7
5	F 5	r 5	r5			
6			+2			
7	r4	r4	r4			

产生式编号: ② S → A . ② A → BA ② B → B ② B → b

序号	状态样	符号将	输入串	动作
1	0	#	abab#	54
2	04	#a	bab#	SS
3	045	#ab	ab#	rJ
4	04	#aB	ab#	
I	047	# a B	ab#	r4
6	0	#B	ab#	
7	03	# B	ab#	s 4
8	034	#Ba	b#	sī
9	0345	#Bab	#	r5
10	034	#BaB	#	
lι	0347	#BaB	#	r4
12	03	# BB	#	
13	033	# BB	#	r3
14	033	# BBA	#	
15	0336	# BBA	#	r2
16	03	# BA	#	
17	อ36	# BA	#	r2
18	0	# A	#	
19	02	# <i>A</i>	#	rl
≥0	0	# S	井	
۱۷	٥١	#S	#	acc

第七章

• 1. 试将下面的语句翻译成四元式序列。

while
$$a < c \land b < d do$$

if $a = 1$ then $c := c + 1$
else while $a <= d do$
 $a := a + 2$;

(00:
$$(j < a, c, lo2)$$

101: $(j < a, c, lo2)$
101: $(j < b, d, lo4)$
102: $(j < b, d, lo4)$
104: $(j = a, l, lo6)$
105: $(j = a, l, lo6)$
106: $(j = t_1, -, c)$
107: $(j = t_1, -, c)$
109: $(j < a, d, lll)$
109: $(j < a, d, lll)$
110: $(j < a, 2, t_2)$
112: $(i = t_2, -, a)$
113: $(j < a, -, -, lo9)$
114:

第九章

• 1. 设有如下的C语言程序:

```
typedef struct_a{
     short i; short j; short k;
   }a;
   typedef struct_b{
     long i; short k;
   }b;
   main()
   {printf("Size of short, long, a and b = \% d, \% d, \% d, \%d\n",
   sizeof(short), sizeof(long), sizeof(a), sizeof(b));}
该程序在x86/Linux机器上的运行结果如下:
Size of short, long, a and b = 2, 4, 6, 8
已知short类型和long类型分别对齐到2的倍数和4的倍数。试问,为什么类型b的长度会等于8?
```

第九章

1. size of (b) 为结构体 b 美型 函数组中元本长度 因为 long 对并到 4 的 倍数,单介结构体 b b 6 介容节,但两个元集之间要写 2 个字节,如下图所录:
b(i) { long i 0~4 | short k 4~6 | b(i) { long i 8~12 | short k 12~14 | short k 12~14

所以可以直接为每个元素 b 历配 8个字节,这样教征元素可以不用考虑对济问题,故 sizeof(b)=8

第十一章

• 1. 试确定下列指令序列的开销。

(1) $MOV y, R_0$

MOV i, R_0 (2)

(3)

MOV p, R_0

(4)

MOV x, R_0

MOV z, R_1

MUL 8, R_0

 $MOV O(R_0), R_1$

MOV y, R_1

ADD R_1, R_0

MOV $a(R_0)$, R_1

 $MOV R_1, x$

SUB R_1 , R_0

 $MOV R_0$, x

 $MOV R_1$, b

 $MOV R_0$, * R_3

(1) 2+2+1+2=7

(2) 2+2+2+2=8

(3) 2+2+2=6

(4) 2+2+1+1=6