Counter-Example for old solution

$$\frac{\dot{j}=1}{}$$
 $H_{n}=C_{7},C_{1}$

$$\frac{1}{1} = 2$$
 $p = C_{+1}$ $q = C_{-1}$

$$C_2$$
 rechts von $p_1q = c_{71} C_1$
 $Vechts$ von $q_1 C_n = C_{11} C_{7}$
 $Vechts$ von beiden

$$H_2 = (7, (3, (2$$

$$j=3$$
 $p=c_1, q=c_2, H_2=c_4, c_4, c_2$

rechts von
$$p_{1}q = c_{1}c_{2}$$

rechts von $q_{1}c_{1} = c_{2}c_{7}$

links von beiden

$$H_{2} = (_{7}, (_{3}, (_{3}$$

$$\frac{1=6}{1=6}$$
 $p=c_{11}$ $q=c_{31}$ $H_{3}=c_{71}c_{11}c_{3}$

Ch	rec hts	V04	1019	=	c,, c3
	rechls	voh	q, Cn	=	(3, (7
	links	VON	beiden		

Cy links von C, C3

 $H_{\eta} = (_{7}, (_{3}, (_{3},)_{4})$

$$\frac{1}{1} = 5$$
 $p = c_{31}$ $q = c_{4}$ $H_{4} = c_{71}c_{11}c_{31}c_{4}$

$$C_s$$
 rechts von $p_1q = C_{31}C_4$

$$rechts von $q_1C_n = C_{41}C_7$

$$links von beiden$$$$

Hs = Hy = (7, Cn, C2, Cn finside the polynom.

Das Problem hier ist, das vir heine Pelynomechen vollen, die die bereits bevechnete konvexe fülle <u>durchsteche</u>n.