```
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
import seaborn as sns
import matplotlib.pyplot as plt
plt.style.use("seaborn-darkgrid")
from collections import Counter
\# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input
import warnings
warnings.filterwarnings("ignore")
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when
# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current se.
/kaggle/input/titanic/train.csv
/kaggle/input/titanic/test.csv
/kaggle/input/titanic/gender submission.csv
```

INTRODUCTION TO TITANIC DATASET

Dataset containing information that died in the titanic accident

Features

0-PassengerId: Even the passenger's number

1-Survived: Survive status (1 - 0) after the accident

2-Pclass: Cabin status (theese status 1 - 2 - 3)

3-Name

4-Sex

5-Age

6-SibSp: Number of siblings

7-Parch: The passenger's childreen number

8-Ticket: The passenger's ticket number

9-Fare: The amount payable for the ticket

10-Cabin

11-Embarked: The passenger boarding port

Content

- The correlation of the features in the dataset,
- The frequencies of the numerical features,
- The outlier values and the survival rates depending on categorical features are examined.
- $\bullet\;$ Feature that has missing value was filled with staticts proccessing ,
- Analyzed relation to survived with other features.

Library that used

- Seaborn matplot is used as visualization library
- Pandas
- Numpy

Load and check data

```
In [122]:
```

```
# read to dataset
data = pd.read_csv('/kaggle/input/titanic/train.csv')
# take a information from data(dtype , 'NaN' values etc..)
data.info()
# try to understand data with first 5 indexs
data.head()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
 # Column
              Non-Null Count Dtype
    PassengerId 891 non-null
                              int64
1
    Survived 891 non-null
               891 non-null
   Pclass
                              int64
               891 non-null object
               891 non-null object
 4
   Sex
   Age
                714 non-null
                               float64
 6
    SibSp
               891 non-null
                               int64
   Parch
               891 non-null
                               int64
               891 non-null
  Ticket
                              object
9
   Fare
               891 non-null
                              float64
                            object
             204 non-null
889 non-null
10 Cabin
11 Embarked
                              object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

	-											Out[122]:
	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

Classification of features

Numerical features: The type of feature that has numbers at certain intervals without a certain categorization.

Categorical features: The type of feature formed by assigning a certain set of features to indexes

```
# numerical features
num_features = ['Age' , 'Fare']
# categorical features
cat_features = ['Survived' , 'Sex' , 'SibSp' , 'Parch' , 'Embarked']
```

Numbers and visualization of categorical variables

In [29]:

In [28]:

```
for i in cat_features:
    sns.countplot(data[i])
    plt.xticks(rotation = 45)
    plt.title('{}'.format(i))
    plt.show()
```


Frequencies of numerical properties

for i in num_features:
 sns.histplot(data[i] , bins = 50)
 plt.title('{}'.format(i))
 plt.xlabel('Features')
 plt.ylabel('Frequencies')
 plt.show()

In [30]:

Density map of numerical variables

Features

300

400

sns.kdeplot(x = 'Age' , y = 'Fare' , data = data , shade = True , color = 'red') plt.title('Density map of numerical variables') plt.show()

500

Comment: High density between the ages of 20 and 40 on the other hand, there was a distribution of 200 and 300 Euros

Detech the missing values

null values counting
data.isnull().sum()

0

100

200

detecth the missing values in embarked features
data[data['Embarked'].isnull()]

In [31]:

•

In [32]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
61	62	1	1	Icard, Miss. Amelie	female	38.0	0	0	113572	80.0	B28	NaN	
829	830	1	1	Stone, Mrs. George Nelson (Martha Evelyn)	female	62.0	0	0	113572	80.0	B28	NaN	

In [33]:

```
\# try to understand missing values in embarked features sns.boxplot(x = 'Fare' , y = 'Embarked' , data = data) plt.show()
```


Comment: With 80 units at the location of the Median, the most purchased type is C so we can fill the missing values with C

In [34]:

```
# filling missing value
data[data['Embarked'].isnull()].fillna('C')
```

Out[34]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
61	62	1	1	Icard, Miss. Amelie	female	38.0	0	0	113572	80.0	B28	С
829	830	1	1	Stone, Mrs. George Nelson (Martha Evelyn)	female	62.0	0	0	113572	80.0	B28	С

Detech the outlier values for numerical categorization

In [35]:

```
# outlier detection with visualization
for i in num_features:
    sns.boxplot(data[i])
    plt.xlabel('{}'.format(i))
    plt.title('Outlier Values for {}'.format(i))
    plt.show()
```


Filling the Age feature

Calculate the NaN values data['Age'].isnull().sum()

177

Detecth the null indexes data[data['Age'].isnull()]

In [49]:

Out[49]:

In [50]:

Out[50]: Passengerld Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked

5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
17	18	1	2	Williams, Mr. Charles Eugene	male	NaN	0	0	244373	13.0000	NaN	S
19	20	1	3	Masselmani, Mrs. Fatima	female	NaN	0	0	2649	7.2250	NaN	С
26	27	0	3	Emir, Mr. Farred Chehab	male	NaN	0	0	2631	7.2250	NaN	С
28	29	1	3	O'Dwyer, Miss. Ellen "Nellie"	female	NaN	0	0	330959	7.8792	NaN	Q
859	860	0	3	Razi, Mr. Raihed	male	NaN	0	0	2629	7.2292	NaN	С
863	864	0	3	Sage, Miss. Dorothy Edith "Dolly"	female	NaN	8	2	CA. 2343	69.5500	NaN	S
868	869	0	3	van Melkebeke, Mr. Philemon	male	NaN	0	0	345777	9.5000	NaN	S
878	879	0	3	Laleff, Mr. Kristo	male	NaN	0	0	349217	7.8958	NaN	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S

177 rows × 12 columns

In [58]:

```
# Convert the Sex type for analyze the correlation with Age feature
# ! data['Sex'] = [1 if i == 'female' else 0 for i in data['Sex']]
data['Sex'].value_counts()
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
    Column
                     Non-Null Count
                                        Dtype
                     _____
 0
     PassengerId 891 non-null
                                        int64
 1
     Survived
                     891 non-null
                                        int64
 2
     Pclass
                     891 non-null
                                       int64
 3
                     891 non-null
                                       object
     Name
 4
                     891 non-null
                                        int64
     Sex
 5
     Age
                     714 non-null
                                        float64
 6
     SibSp
                     891 non-null
                                        int64
 7
                     891 non-null
                                        int64
     Parch
                     891 non-null
     Ticket
                                       object
 9
     Fare
                     891 non-null
                                        float64
 10 Cabin
                     204 non-null
                                       object
                     889 non-null
 11 Embarked
                                       object
dtypes: float64(2), int64(6), object(4)
memory usage: 83.7+ KB
                                                                                                                     In [59]:
# analyze the correlation with Age feature
sns.heatmap(data.corr() , annot = True)
plt.show()
                                                    1.0
               -0.005 -0.035 -0.043 0.037 -0.058-0.0017 0.013
Passengerld 1
                                                    0.8
                    -0.34
                         0.54 -0.077 -0.035 0.082 0.26
   Survived
                                                    0.6
     Pclass -0.035 -0.34
                        -0.13 -0.37 0.083 0.018 -0.55
                                                    0.4
                            -0.093 0.11 0.25 0.18
                         1
                                                    0.2
          0.037 -0.077 -0.37 -0.093
                                  -0.31 -0.19 0.096
                             1
      Age
                                                    0.0
     SibSp -0.058 -0.035 0.083 0.11 -0.31
                                                    -0.2
     Parch 0.0017 0.082 0.018 0.25 -0.19
                                                    -0.4
      Fare 0.013 0.26 -0.55
                        0.18 0.096 0.16
Comment: Due to correlation map, we understood 'Pclass', 'Parch', 'SibSp' feature important in proccesing that filling the missing values for
age feature
                                                                                                                     In [60]:
# Stored the index that has a NaN values in Age feature
indexes null = list(data[data['Age'].isnull()].index)
indexes null
                                                                                                                    Out[60]:
[5,
 17,
 19,
 26,
 28,
 29,
 31,
 32,
 36,
 42,
 45,
 46,
 47,
 48,
 55,
 64,
 65,
 76,
 77,
 82,
```

87, 95, 101, 107, 109, 121, 128, 140, 154, 158, 159, 166, 168, 176, 180, 181, 185, 186, 196, 198, 201, 214, 223, 229, 235, 240, 241, 250, 256, 260, 264, 270, 274, 277, 284, 295, 298, 300, 301, 303, 304, 306, 324, 330, 334, 335, 347, 351, 354, 358, 359, 364, 367, 368, 375, 384, 388, 409, 410,

411, 413, 415, 420, 425, 428, 431, 444, 451, 454, 457, 459, 464, 466, 468, 470, 475, 481, 485, 490, 495, 497, 502, 507.

```
511,
517,
522,
524,
527,
531,
533,
538,
547,
552,
557,
560,
563,
564,
568,
573,
578,
584,
589,
593,
596,
598,
601,
602,
611,
612,
613,
629,
633,
639,
643,
648,
650,
653,
656,
667,
669,
674,
680,
692,
697,
709,
711,
718,
727,
732,
738,
739,
740,
760,
766,
768,
773,
776,
778,
783,
790,
792,
793,
815,
825,
826,
828,
832,
837,
839,
846,
849,
859,
863,
868,
878,
888]
# Analyzed to pclass and age relation
```

In [81]:

```
# Analyzed to Parch and age relation
sns.boxplot(x = 'Parch', y = 'Age', data = data)
plt.show()
# Analyzed to SibSp and age relation
sns.boxplot(x = 'SibSp', y = 'Age', data = data)
plt.show()
  80
  70
  60
  50
Age
  40
  30
  20
  10
   0
                         Pclass
  80
  70
  60
  50
  40
  30
  20
  10
   0
             1
                    2
                         Parch
  80
  70
  60
  50
  40
  30
  10
```

Comment:

else:

plt.show()

- 1st pclass passenger are older than 2nd class and 2nd class older than 3st class
- Parch feature can use for threshold that 0, 1, 2 features's median is almost '25' and the other features's median is almost '35'
- Same think possible for SibSp

SibSp

Proccesing that filling the missing value for Age feature

```
In [131]:
for i in indexes_null:
    age_pred = data["Age"][((data["SibSp"] == data.iloc[i]["SibSp"]) &(data["Parch"] == data.iloc[i]["Par
    age_med = data["Age"].median()

if not np.isnan(age_pred):
    data["Age"].iloc[i] = age_pred
```

Detecth the outlier values from numerical categorization

```
def detect_outliers(df,features):

   for c in features:
      # 1st quartile
      Q1 = np.percentile(data[c],25)
      # 3rd quartile
      Q3 = np.percentile(data[c],75)
      # IQR
      IQR = Q3 - Q1
      # Outlier step
      outlier_step = IQR * 1.5
      # detect outlier and their indeces
```

outlier_list_col = data[(data[c] < Q1 - outlier_step) | (data[c] > Q3 + outlier_step)].index

In [129]:

data.loc[detect_outliers(data , ['Age' , 'Fare'])]

return outlier_list_col

	Passengerld	Cturad	Delese	Name	Sex	A	C:LC-	Danah	Ticket	Fare	Cabia	Out[129]:
	3					_	SibSp					
11	12	1	1	Bonnell, Miss. Elizabeth	female	58.00	0	0	113783	26.5500	C103	S
33	34	0	2	Wheadon, Mr. Edward H	male	66.00	0	0	C.A. 24579	10.5000	NaN	S
54	55	0	1	Ostby, Mr. Engelhart Cornelius	male	65.00	0	1	113509	61.9792	B30	С
78	79	1	2	Caldwell, Master. Alden Gates	male	0.83	0	2	248738	29.0000	NaN	S
94	95	0	3	Coxon, Mr. Daniel	male	59.00	0	0	364500	7.2500	NaN	S
96	97	0	1	Goldschmidt, Mr. George B	male	71.00	0	0	PC 17754	34.6542	A5	С
116	117	0	3	Connors, Mr. Patrick	male	70.50	0	0	370369	7.7500	NaN	Q
170	171	0	1	Van der hoef, Mr. Wyckoff	male	61.00	0	0	111240	33.5000	B19	S
195	196	1	1	Lurette, Miss. Elise	female	58.00	0	0	PC 17569	146.5208	B80	С
232	233	0	2	Sjostedt, Mr. Ernst Adolf	male	59.00	0	0	237442	13.5000	NaN	S
252	253	0	1	Stead, Mr. William Thomas	male	62.00	0	0	113514	26.5500	C87	S
268	269	1	1	Graham, Mrs. William Thompson (Edith Junkins)	female	58.00	0	1	PC 17582	153.4625	C125	S
275	276	1	1	Andrews, Miss. Kornelia Theodosia	female	63.00	1	0	13502	77.9583	D7	S
280	281	0	3	Duane, Mr. Frank	male	65.00	0	0	336439	7.7500	NaN	Q
305	306	1	1	Allison, Master. Hudson Trevor	male	0.92	1	2	113781	151.5500	C22 C26	S
326	327	0	3	Nysveen, Mr. Johan Hansen	male	61.00	0	0	345364	6.2375	NaN	S
366	367	1	1	Warren, Mrs. Frank Manley (Anna Sophia Atkinson)	female	60.00	1	0	110813	75.2500	D37	С
420	420	0	1	Earting Mr Mark	mala	6400	1	Л	10050	263 0000	C23	c

430	439 Passengerld	Survived	Pclass	rortune, Mr. Mark Name	mate Sex	ზ4.∪∪ Age	SibSp	4 Parch	Ticket	203.0000 Fare	C20 Cab<u>i</u>n	S Embarked
456	457	0	1	Millet, Mr. Francis Davis	male	65.00	0	0	13509	26.5500	E38	S
469	470	1	3	Baclini, Miss. Helene Barbara	female	0.75	2	1	2666	19.2583	NaN	С
483	484	1	3	Turkula, Mrs. (Hedwig)	female	63.00	0	0	4134	9.5875	NaN	S
487	488	0	1	Kent, Mr. Edward Austin	male	58.00	0	0	11771	29.7000	B37	С
493	494	0	1	Artagaveytia, Mr. Ramon	male	71.00	0	0	PC 17609	49.5042	NaN	С
545	546	0	1	Nicholson, Mr. Arthur Ernest	male	64.00	0	0	693	26.0000	NaN	S
555	556	0	1	Wright, Mr. George	male	62.00	0	0	113807	26.5500	NaN	S
570	571	1	2	Harris, Mr. George	male	62.00	0	0	S.W./PP 752	10.5000	NaN	S
587	588	1	1	Frolicher-Stehli, Mr. Maxmillian	male	60.00	1	1	13567	79.2000	B41	С
625	626	0	1	Sutton, Mr. Frederick	male	61.00	0	0	36963	32.3208	D50	S
630	631	1	1	Barkworth, Mr. Algernon Henry Wilson	male	80.00	0	0	27042	30.0000	A23	S
644	645	1	3	Baclini, Miss. Eugenie	female	0.75	2	1	2666	19.2583	NaN	С
659	660	0	1	Newell, Mr. Arthur Webster	male	58.00	0	2	35273	113.2750	D48	С
672	673	0	2	Mitchell, Mr. Henry Michael	male	70.00	0	0	C.A. 24580	10.5000	NaN	S
684	685	0	2	Brown, Mr. Thomas William Solomon	male	60.00	1	1	29750	39.0000	NaN	S
694	695	0	1	Weir, Col. John	male	60.00	0	0	113800	26.5500	NaN	S
745	746	0	1	Crosby, Capt. Edward Gifford	male	70.00	1	1	WE/P 5735	71.0000	B22	S
755	756	1	2	Hamalainen, Master. Viljo	male	0.67	1	1	250649	14.5000	NaN	S
803	804	1	3	Thomas, Master. Assad Alexander	male	0.42	0	1	2625	8.5167	NaN	С
829	830	1	1	Stone, Mrs. George Nelson (Martha Evelyn)	female	62.00	0	0	113572	80.0000	B28	NaN
831	832	1	2	Richards, Master. George Sibley	male	0.83	1	1	29106	18.7500	NaN	S
851	852	0	3	Svensson, Mr. Johan	male	74.00	0	0	347060	7.7750	NaN	S

Relationship between categorical variables and survival rate

- 1 -) Sex Survived
- 2 -) SibSp Survived
- 3 -) Parch Survived
- 4 -) Embarked Survived

Sex - Survived

In [38]:

```
# Sex and Survived
male_survived = data.Survived[data['Sex'] == 'male'].mean()
female_survived = data.Survived[data['Sex'] == 'female'].mean()

sex_list = list(data['Sex'].unique())
sex_survived_list = [male_survived , female_survived]

df_sex_survived = pd.DataFrame({'Sex' : sex_list , 'Survived Mean' : sex_survived_list})
df_sex_survived

# visualization

sns.barplot(x = 'Sex' , y = 'Survived Mean' , data = df_sex_survived , alpha = 1)
plt.xticks(rotation = 45)
plt.ylabel('Survived Probability')
```

```
plt.xlabel('Sex')
plt.title('Sex - Survived Probability')
plt.show()
```


SibSp - Survived

```
# Sex and Survived
df_SibSp_Survived = data[['SibSp' , 'Survived']].groupby('SibSp' , as_index = False).mean()
df_SibSp_Survived

# visualization
sns.barplot(x = 'SibSp' , y = 'Survived' , data = df_SibSp_Survived , alpha = 1)
plt.xticks(rotation = 45)
plt.ylabel('Survived Probability')
plt.xlabel('SibSp')
plt.title('SibSp')
plt.title('SibSp - Survived Probability')
plt.show()
```


Comment: The data is not evenly distributed. However, by thresholding for classification, an intermediate level data on education

Parch - Survived

```
# parch - survived
df_parch_survived = data[['Parch' , 'Survived']].groupby('Parch' , as_index = False).mean()
# visualization
sns.barplot(x = 'Parch' , y = 'Survived' , data = df_parch_survived , alpha = 1)
plt.xticks(rotation = 45)
plt.ylabel('Survived Probability')
plt.xlabel('Parch')
plt.title('Parch - Survived Probability')
plt.show()
```

In [39]:

•

In [40]:

Embarked - Survived

```
# embarked survived
df_embarked_survived = data[['Embarked' , 'Survived']].groupby('Embarked' , as_index = False).mean()
# visualization
sns.barplot(x = 'Embarked' , y = 'Survived' , data = df_embarked_survived , alpha = 1)
plt.xticks(rotation = 45)
plt.ylabel('Survived Probability')
plt.xlabel('Embarked')
plt.title('Embarked - Survived Probability')
plt.show()
```


Relationship between categorical variables and survival rate with using factorplot

Sex - Survived

```
In [42]:
sns.factorplot(x = 'Sex' , y = 'Survived' , data = data , kind = 'bar')
plt.ylabel('Survived Probality')
plt.title('Sex - Survived')
plt.show()
```

In [41]:

Comment: Since the rate of having confidence in a learning algorithm is higher, we can directly define women as alive.

SibSp - Survived

```
sns.factorplot(x = 'SibSp' , y = 'Survived' , data = data , kind = 'bar')
plt.ylabel('Survived Probality')
plt.title('SibSp - Survived')
plt.show()
```


Comment: if sibsp == 0 or 1 or 2, passenger has more chance to survive, we can consider a new feature describing these categories.

Parch - Survived

```
In [44]:
sns.factorplot(x = 'Parch' , y = 'Survived' , data = data , kind = 'bar')
plt.ylabel('Survived Probality')
plt.title('Parch - Survived')
plt.show()
```

In [43]:

•

Comment: In this data, the survival rate of small families is more standardized, resulting in the standard deviation of the survival rate of families with 3 or more family members.

Age Survived

g = sns.FacetGrid(data , col = 'Survived')
g.map(sns.distplot , 'Age' , bins = 25)
plt.show()

Comment:

Age <= 10 has a high survival rate,

oldest passengers (80) survived,

large number of 20 years old did not survive,

most passengers are in 15-35 age range,

use age feature in training

use age distribution for missing value of age

Pclass Survived Age Relation with Survived

g = sns.FacetGrid(data , col = 'Pclass' , row = 'Survived')
g.map(sns.histplot , 'Age' , bins = 25)
plt.show()

In [45]:

In [46]:

Comment: If pclass is '3' the survival rate decreases, this can provide a good threshold for learning algorithms.

Embarked - Pclass - Sex Relation with Survived

g = sns.FacetGrid(data , row = 'Embarked')
g.map(sns.pointplot , 'Pclass' , 'Survived' , 'Sex')
g.add_legend()
plt.show()

Comment: Female passengers have much better survival rate than males. Males have better survival rate in pclass 3 in C.

In [47]:

Embarked - Sex - Fare with relation with survived

g = sns.FacetGrid(data , row = 'Survived' , col = 'Embarked') g.map(sns.barplot , 'Sex' , 'Fare')

In [48]:

Comment: Passsengers who pay higher fare have better survival. Fare can be used as categorical for training.