Very Deep Convolutional Network for Large-Scale Image Recognition

팀 명: 은혜로운 민트나라

발표자: 박혜민

1. Introduction

- 다른 parameter을 같게 하고, convolutional layer의 depth를 늘려가며 ConvNet architecture 를 모델링함
- (3 x 3)의 매우 작은 필터를 이용하여 깊은 모델을 만듦
- ILSVRC2014의 classification과 localisation 분야에서 좋은 성적을 거둠
- 다양한 dataset에 적용 가능

2. ConvNet Configurations

ConvNet Configuration							
Α	A A-LRN B C D						
11 weight	11 weight	13 weight	16 weight	16 weight	E 19 weight		
layers	layers	layers	lavers	layers	layers		
injers.		nput (224 × 2	,		Tay ers		
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
COIIV 3-04	LRN	conv3-64	conv3-64	conv3-64	conv3-64		
	LKN		pool	conv3-04	CONV3-04		
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
				conv3-128	conv3-128		
2.257	2.257		pool	2.256	2.25/		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
			conv1-256	conv3-256	conv3-256		
					conv3-256		
			pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
			pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
		max	pool				
	FC-4096						
		FC-	4096				
		FC-	1000				
		-max					
	SOIT-HUA						

- Depth 만 다른 netA~netE
- $\sim 224 \times 224$ DCD OIDITI

- Normalisation을 하지 않음
- Parameter의 수 크지 않음.

2. ConvNet Configurations

- 3개의 (3 x 3) conv layer의 receptive field
 - = 1개의 (7 x 7) conv layer의 receptive field
- 결정함수의 non-linearity 증가
- parameter + 감소: $3(3^2C^2) = 27C^2 < 49C^2 = 7^2C^2$

3.1. Training

- back-propagation에 기반한 mini-batch gradient descent를 사용하여 다항 logistic regression을 최적화
- Batch size 256, Momentum 0.9
- Weight decay(L2), Drop out
- Learning rate 는 10^{-2} 에서 시작하여, validation set의 정확도 향상이 둔화될 때마다 10^{-1} 을 곱함.
- 74 epochs
- Random initialization을 통해 netA를 먼저 훈련시켜, 다른 net 들에 대해 처음 4개의 conv layer와 모든 FC layer를 A의 훈련 결과로 초기화함.

3.1. Training

- S: 원본 비율을 유지하며 re-scale한 training 이미지의 짧은 변
- Re-scale한 이미지에서 224 x 224 크기의 image를 crop
- Single-scale training
 - \bigcirc S = 256
 - \bigcirc S = 384
- Multi-scale training (scale jittering)
 - ③ $S \in [S_{min}, S_{max}]$ $(S_{min} = 256, S_{max} = 512)$
- Initialization : $S=256 \rightarrow S = 384 \rightarrow S \in [256,512]$

3.2. Testing

• Q: 원본 비율을 유지하며 re-scale한 test 이미지의 짧은 변(S≠Q)

Dense		Multi-crop
fully-convolutional net (3FC layer를 conv layer 로 변환)	Layer	변환 없음
whole(uncropped) image	Image Crop	50 crops per scale
Image의 이웃한 부분	padding	Zeros

- Dense 와 Multi-crop은 상호보완적
- 연산이 간단한 Dense방식으로 모델 검증 후, 성능 좋은 모델에 대해 Multi-crop 방식도 적용

4.0. Dataset

- ILSVRC-2012 dataset
 - 1000 classes
 - training 1.3M, validation 50K, testing 100K
- Measurements
 - top-1 error
 - top-5 error

4.1. Single Scale Evaluation

Table 3: ConvNet performance at a single test scale.

Tuesto D. Committee per los manifes at a single test search							
ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)			
	train(S)	test(Q)					
A	256	256	29.6	10.4			
A-LRN	256	256	29.7	10.5			
В	256	256	28.7	9.9			
	256	256	28.1	9.4			
C	384	384	28.1	9.3			
	[256;512]	384	27.3	8.8			
	256	256	27.0	8.8			
D	384	384	26.8	8.7			
	[256;512]	384	25.6	8.1			
	256	256	27.3	9.0			
E	384	384	26.9	8.7			
	[256;512]	384	25.5	8.0			

- Single-scale training: Q=S
- Multi-scale training: $Q=0.5(S_{min}+S_{max})$
- LRN이 도움 안됨
- ConvNet의 depth가 깊을수 록 에러 감소
- Multi-scale training이 에러 감소

4.2. Multi Scale Evaluation

- Single-scale training: Q={S-32, S, S+32}
- Multi-scale training: $Q = \{S_{min}, 0.5(S_{min} + S_{max}), S_{max}\}$
- Multi scale evaluation 이 더 좋은 성능을 보임

Table 3: ConvNet performance at a single test scale.

Table 5: Convinct performance at a single test scale.						
ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)		
	train(S)	test(Q)				
A	256	256	29.6	10.4		
A-LRN	256	256	29.7	10.5		
В	256	256	28.7	9.9		
	256	256	28.1	9.4		
C	384	384	28.1	9.3		
	[256;512]	384	27.3	8.8		
	256	256	27.0	8.8		
D	384	384	26.8	8.7		
	[256;512]	384	25.6	8.1		
	256	256	27.3	9.0		
E	384	384	26.9	8.7		
	[256;512]	384	25.5	8.0		

Table 4: ConvNet performance at multiple test scales.

ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)
	train(S)	test(Q)		
В	256	224,256,288	28.2	9.6
	256	224,256,288	27.7	9.2
C	384	352,384,416	27.8	9.2
	[256; 512]	256,384,512	26.3	8.2
	256	224,256,288	26.6	8.6
D	384	352,384,416	26.5	8.6
	[256; 512]	256,384,512	24.8	7.5
	256	224,256,288	26.9	8.7
E	384	352,384,416	26.7	8.6
	[256; 512]	256,384,512	24.8	7.5

4.3. Multi Crop Evaluation

- Multi-crop 방식이 Dense방식보다 에러가 약간 작음
- 위의 두 방식을 함께 이용할 때, 에러가 가장 작음.

Table 5: ConvNet evaluation techniques comparison. In all experiments the training scale S was sampled from [256; 512], and three test scales Q were considered: $\{256, 384, 512\}$.

1001 [200,012], and three test search & were completed. [200,001,012].						
ConvNet config. (Table 1)	Evaluation method	top-1 val. error (%)	top-5 val. error (%)			
	dense	24.8	7.5			
D	multi-crop	24.6	7.5			
	multi-crop & dense	24.4	7.2			
	dense	24.8	7.5			
E	multi-crop	24.6	7.4			
	multi-crop & dense	24.4	7.1			

4.4. Convnet Fusion

• 기존의 single model 방식과 달리, 여러 Model들의 결과를 평균 내어, softmax로 분류함.

Table 6: Multiple ConvNet fusion results.

Combined ConvNet models		Error		
Combined Conviver models	top-1 val	top-5 val	top-5 test	
ILSVRC submission				
(D/256/224,256,288), (D/384/352,384,416), (D/[256;512]/256,384,512)				
(C/256/224,256,288), (C/384/352,384,416)	24.7	7.5	7.3	
(E/256/224,256,288), (E/384/352,384,416)				
post-submission				
(D/[256;512]/256,384,512), (E/[256;512]/256,384,512), dense eval.	24.0	7.1	7.0	
(D/[256;512]/256,384,512), (E/[256;512]/256,384,512), multi-crop	23.9	7.2	-	
(D/[256;512]/256,384,512), (E/[256;512]/256,384,512), multi-crop & dense eval.	23.7	6.8	6.8	

4.5. Comparison with the State of the Art

Table 7: Comparison with the state of the art in ILSVRC classification. Our method is denoted as "VGG". Only the results obtained without outside training data are reported.

Method	top-1 val. error (%)	top-5 val. error (%)	top-5 test error (%)
VGG (2 nets, multi-crop & dense eval.)	23.7	6.8	6.8
VGG (1 net, multi-crop & dense eval.)	24.4	7.1	7.0
VGG (ILSVRC submission, 7 nets, dense eval.)	24.7	7.5	7.3
GoogLeNet (Szegedy et al., 2014) (1 net)	-	7.	.9
GoogLeNet (Szegedy et al., 2014) (7 nets)	-	6.	.7
MSRA (He et al., 2014) (11 nets)	-	-	8.1
MSRA (He et al., 2014) (1 net)	27.9	9.1	9.1
Clarifai (Russakovsky et al., 2014) (multiple nets)	-	-	11.7
Clarifai (Russakovsky et al., 2014) (1 net)	-	-	12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets)	36.0	14.7	14.8
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net)	37.5	16.0	16.1
OverFeat (Sermanet et al., 2014) (7 nets)	34.0	13.2	13.6
OverFeat (Sermanet et al., 2014) (1 net)	35.7	14.2	-
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets)	38.1	16.4	16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net)	40.7	18.2	-

5. Conclusions

- Large-scale image 에 대한 very deep convolutional network에 대해 연구함
- Depth 가 분류의 정확도 향상에 큰 역할을 함