

EECS 204002 Data Structures 資料結構 Prof. REN-SONG TSAY 蔡仁松 教授 NTHU

CH. I BASIC CONCEPTS

1.5

What is an Algorithm?

An *algorithm* is a finite set of instructions that accomplishes a particular task (problem) and satisfies the following criteria:

- Input
 - Zero/more quantities are externally supplied.
- Output
 - At least one quantity is produced.
- Definiteness
 - Each instruction is clear and unambiguous.
- Finiteness
 - Terminate after a finite number of steps.
- Effectiveness:
 - Every instruction must be basic and easy to be computed.

Representation of Algorithms

- Natural languages
 - English, ...etc.
- Graphic representation
 - Flowchart.
 - Feasible only if the algorithm is small and simple.
- Programming language
 - · C++
 - Concise and effective!

Example: Binary Search

Problem statement: Assume we have $n \ge 1$ distinct integers that are **sorted** in array A[0] ... A[n-1]. Determine the existence of an integer x. If x = A[j], return index j; otherwise return -1.

Eg. For x=9, return index 4; For x=10, return -1.

BS in Plain English

- Let left and right denote the left and right ends of the list with initial value 0 and n-1.
- Let middle = (left+right) / 2 be the middle position in the list
- 3. Compare A[middle] with x and obtain three results:
 - a. x < A[middle]: x must be somewhere between 0 and middle-1. We set right to middle-1
 - b. x == A[middle]: We return middle
 - c. x > A[middle]: x must be somewhere between middle+1 and n-1.We set left to middle+1.
- 4. If x is not found and there are still integers to check, we recalculate *middle* and repeat the above comparison.

BS in Pseudo C++ Code

```
int BinarySearch(int *A, const int x, const int n)
{ int left=0, right=n-1;
 while (left <= right)</pre>
  { // more integers to check
    int middle = (left+right)/2;
    if (x < A[middle]) right = middle-1;</pre>
    else if (x > A[middle]) left = middle+1;
    else return middle;
  } // end of while
  return -1; // not found
```

Recursive Algorithm

- A powerful mechanism to make your algorithm or code more clear.
- Direct recursion :
 - Function calls itself directly.
 - E.g. funcA funcA.
- Indirect recursion:
 - Function A calls other function B that invoke the function A itself.
 - E.g. funcA funcB funcA.

A Recursively Defined Problem

The binomial coefficient

$$C(n,m) = \frac{n!}{m!(n-m)!}$$

can be computed by the recursive formula:

$$C(n,m) = C(n-1,m) + C(n-1,m-1)$$

where
$$C(0,0) = C(n,n) = 1$$

- Termination conditions:
 - The function should return a value or stop calling itself under certain conditions.
- Decreased Parameters
 - So that each call is one step closer to a termination condition.

There is a "While" statement

- Replace with if-else and recursion
- In Binary Search problem...

```
int BinarySearch(int *A, const int x, const int n)
{ int left=0, right=n-1;
  while (left <= right)
  {
    ...
  }
  return -1;
}</pre>
```

Recursive Binary Search

```
int BinarySearch (int *A, const int x, const int
                    left, const int right )
{ // Search the A[left],..,A[right] for x
  if (left <= right) { // more integers to check
    int middle = (left+right)/2;
    if (x < A[middle])</pre>
       return BinarySearch (A, x, left, middle-1);
    else if (x > A[middle])
       return BinarySearch (A, x, middle+1, right);
    return middle;
  } // end of if
  return -1; // not found
```

Example

• Search for x=9 in array A[0]...[7]:

• Ist call: BinarySearch (A, 9, 0, 7)

2nd call: BinarySearch (A, 9, 4, 7)

3rd call: BinarySearch (A, 9, 4, 4)

return index 4.

Criteria of a "Good" Program

- Does it do what you want to do?
- Does it work correctly?
- Any documentation about how to use it?
- Are functions created logically?
- Is the code readable?
- However, the above questions are HARD to achieve (at least when only DS is taught).
- So, we focus on the "Performance" of the program

1.7

Performance Analysis and Measurement

1.7

Performance Evaluation

- Two aspects:
 - Space Complexity
 - How much memory space is used?
 - Time Complexity
 - How much execution time is needed?
- Two approaches:
 - Performance Analysis
 - machine independent
 - a prior estimate
 - Performance Measurement
 - machine dependent
 - a posterior measure

1.7.1

Uses Of Performance Analysis

- Determine practicality of algorithm
- > Predict run time on large instance
- Compare algorithms with different complexity
 - \triangleright e.g., O(n) v.s. $O(n^2)$

1.7.1

Performance Analysis

- Space complexity : $S(P) = C + S_P(I)$
- C is a **fixed** part:
 - Independent of the size of input and output.
 - Space for instruction and static variables, fixed-size structured variables, constants.
- $S_P(I)$ is a **variable** part:
 - Depends on the specific problem instance.
 - Space of referenced variable and recursion stack space (Instance Characteristics).

Instance Characteristics (I)

- Commonly used characteristics (I) include the size of the input and output of the problem.
- We shall concentrate solely on estimating the 2^{nd} part, $S_P(I)$.
- Ex1. sorting(A[], n)
 Then I= number of integers = n.
- Ex 2. Summation of 1 to n, i.e., 1+2+3+...+nThen I= value of n= n.

Space Complexity: Simple Function

```
float Abc(float a, b, c)
{
   return a+b+b*c+(a+b-c)/(a+b)+4.0;
}
```

- I = a, b, c
- C = space for the program + space for variables a, b, c, Abc = constant
- $\bullet S_{Abc}(I) = 0$
- $S(Abc) = C + S_{Abc}(I) = constant$

Space Complexity: Iterative Summation

```
float Sum(float *A, const int n)
{ float s = 0;
  for(int i=0; i<n; i++)
     s += A[i];
  return s;
}</pre>
```

- I = n (number of elements to be summed)
- C = constant
- $S_{Sum}(I) = 0$ (A stores only the address of array)
- $S(Sum) = C + S_{Sum}(I) = constant$

Space Complexity: Recursive Summation

```
float Rsum(float *A, const int n)
{
  if (n<=0) return A[0];
  else return (Rsum(A, n-1) + A[n-1]);
}</pre>
```

- I = n (number of elements to be summed)
- C = constant
- Each recursive call "Rsum" requires 4(1+1+1) = 12 bytes.
- Number of calls: $Rsum(A, n) \rightarrow Rsum(A, n 1)$ $\rightarrow ... \rightarrow Rsum(A, 0) \Rightarrow n + 1$ calls
- $S(Rsum) = C + S_{Rsum}(n) = const + 12(n + 1)$

1.7.1.2

Time Complexity

$$T(P) = C + T_P(I)$$

- C is a constant:
 - Compile time.
- $T_P(I)$ is variable:
 - Execution time.

Performance Analysis

- How to evaluate $T_P(I)$?
 - Count every Add, Sub, Multiply, ... etc.
 - Practically infeasible because each instruction takes different running time at different machine.
- Use "program step" to estimate $T_P(I)$
 - "program step" = a statement whose execution time is **independent** of instance characteristics(I).

abc=a+b+b*c; → one program step a=2; → one program step

Time Complexity: Iterative Summation

- I = n (number of elements to be summed)
- $T_{Sum}(I) = 1 + n + 1 + n + 1 = 2n + 3$
- $T(Sum) = C + T_{Sum}(n) = const + (2n + 3)$

Time Complexity: Recursive Summation

- I = n (number of elements for summation)
- $T_{Rsum}(n) = ?$

Time Complexity: Recursive Summation

- I = n (number of elements for summation)
- $T_{Rsum}(0) = 2$

•
$$T_{Rsum(n)} = 2 + T_{Rsum(n-1)}$$

= $2 + (2 + T_{Rsum}(n-2))$
= ...
= $2n + T_{Rsum}(0) = 2n + 2$

Time Complexity: Matrix Addition

- I = m(rows), n(columns)
- $T_{Add(I)} = (m+1) + m(n+1) + mn$ = 2mn + 2m + 1
- $T(Add) = C + T_{Add}(I)$ = const + (2mn + 2m + 1)

Observation on Step Counts

• In the previous examples :

$$T_{Sum}(n) = 2n + 3$$
 steps
 $T_{Rsum}(n) = 2n + 2$ steps

- So, Rsum is faster than Sum?
 - No!
 - :The execution time of each step is different.
- "Growth Rate" is more critical
 - "How the execution time changes in the instance characteristics?"

Program Growth Rate

- In the Sum program, $T_{Sum}(n) = 2n + 3$ means when n is tenfold (10X), the execution time $T_{Sum}(n)$ is tenfold (10X).
- We say that Sum program runs in linear time.
- $T_{Rsym}(n) = 2n + 2$ also runs in **linear** time.
- We say $T_{Sum}(n)$ and $T_{Rsum}(n)$ have the same growth rate, and are equal in time complexity!

1.7.1.3

Asymptotic Notation

- To make meaningful (but inexact) statements about the time and space complexities of a program.
 - Predict the growth rate.
- Two programs with time complexity

• PI:
$$c_1 n^2 + c_2 n$$

- P2: *c*₃*n*
- Which one runs faster?

1.7.1.3

Asymptotic Notation

- Scenario I: $c_1 = 1$, $c_2 = 2$, and $c_3 = 100$ • $P1(n^2 + 2n) \le P2(100n)$ for $n \le 98$.
- Scenario 2: $c_1 = 1$, $c_2 = 2$, and $c_3 = 1000$ • $P1(n^2 + 2n) \le P2(1000n)$ for $n \le 998$.
- No matter what values c_1 , c_2 and c_3 are, there will be an n beyond which $c_1n^2+c_2n>c_3n$
- Therefore, we should compare the complexity for a sufficiently large value of n

Notation: Big-O (O)

• Definition:

$$f(n) = O(g(n))$$
 iff there exist c , $n_0 > 0$ such that $f(n) \le cg(n)$ for all $n \ge n_0$.

- Ex I. 3n + 2 = O(n)
 - $3n + 2 \le 4n$ for all $n \ge 2$
- Ex2. 100n + 6 = O(n)
 - $100n + 6 \le 101n$ for all $n \ge 6$
- Ex3. $10n^2 + 4n + 2 = O(n^2)$
 - $10n^2 + 4n + 2 \le 11 n^2$ for all $n \ge 5$

The upper bound or worst-case running time

Notation: Omega (Ω)

- Definition: $f(n) = \Omega(g(n))$ iff there exist $c, n_0 > 0$ such that $f(n) \ge cg(n)$ for all all $n \ge n_0$.
- Ex1. $3n + 2 = \Omega(n)$
 - since $3n + 2 \ge 3n$ for all $n \ge 1$
- Ex2. $100n + 6 = \Omega(n)$
 - since $100n + 6 \ge 100 n$ for all $n \ge 1$
- Ex3. $10n^2 + 4n + 2 = \Omega(n^2)$
 - since $10n^2 + 4n + 2 \ge n^2$ for all $n \ge 1$

The lower bound or best-case running time

Notation: Theta (Θ)

- Definition: $f(n) = \Theta(g(n))$ iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.
- Ex1. $3n + 2 = \Theta(n)$
 - Ex2. $100n + 6 = \Theta(n)$
 - Ex3. $10n^2 + 4n + 2 = \Theta(n^2)$

The tight bound or average-case running time

Theorem 1.2

If $f(n) = a_m n^m + \dots + a_1 n + a_0$, $a_m > 0$, then $f(n) = O(n^m)$.

- $\circ 3n + 2 = O(n)$
- $\circ 100n + 6 = O(n)$
- $0.0n^2 + 4n + 2 = O(n^2)$
- $6n^4 + 1000 n^3 + n^2 = O(n^4)$
- Leading constants and lower-order terms do not matter.

Theorem 1.2 Proof

$$f(n) = a_m n^m + \dots + a_1 n + a_0$$

$$\leq |a_m| n^m + \dots + |a_1| n + |a_0|$$

$$\leq n^m (|a_m| + \dots + |a_1| + |a_0|)$$

$$\leq n^m c \text{ for } n \geq 1$$
So, $f(n) = O(n^m)$

Quiz

- n^2 10n 6 = O(?)
- n + log n = O(?)
- $n + n \log n = O(?)$
- $n^2 + \log n = O(?)$
- $2^n + n^{10000} = O(?)$
- $n^4 + 1000 n^3 + n^2 = O(n^4)$, True or false?
- $n^4 + 1000 n^3 + n^2 = O(n^5)$, True or false?

Naming Common Functions

Complexity	Naming
O(I)	Constant time
O(log n)	Logarithmic time
O(n log n)	$O(\log n) \le . \le O(n^2)$
$O(n^2)$	Quadratic time
O(n ³)	Cubic time
O(n ¹⁰⁰)	Polynomial time
O(<mark>2</mark> n)	Exponential time

When n is large enough, the latter terms take more time than the former ones.

1.7.1 F1.4

Plot of Common Function Values

1.7.1

T1.8

Execution Time Comparison

	f (n)								
n	n	$n\log_2 n$	n^2	n^3	n^4	n^{10}	2^n		
10 20 30 40 50	.01 μs .02 μs .03 μs .04 μs .05 μs	.03 μs .09 μs .15 μs .21 μs .28 μs	.l μs .4 μs .9 μs l.6 μs 2.5 μs	μs 8 μs 27 μs 64 μs 125 μs	10 µs 160 µs 810 µs 2.56ms 6.25ms	10s 2.84h 6.83d 121d 3.1y	μs ms s 8m 13d 4*10 ¹³ v		
103	Ιμs	9.96 µs	l ms	_ls	16.67m	$3.17*10^{13}$ y	$32*10^{283}$ y		
10 ⁵ 10 ⁶	10 μs 100 μs Ims	1.66 ms 1.65 ms 19.92ms	100 ms 10s 16.67m	16.6/m 11.57d 31.71y	3171y 3.17*10 ⁷ y	3.17*10 ²³ y 3.17*10 ³³ y 3.17*10 ⁴³ y			

 μs = microsecond = 10^{-6} second; ms = milliseconds = 10^{-3} seconds s = seconds; m = minutes; h = hours; d = days; y = years;

Compute Execution Time in Big-O

- Two approaches to compute the time complexity of a program in big-O
- Approach I:

Step I: Compute the total step-count.

Step2: Take big-O using theorem 1.2.

Approach 2:

Step I: Take big-O on each step.

Step2: Sum up the big-O of all steps.

Rule of Sum

- If $f_1(n) = O(g_1(n))$, and $f_2(n) = O(g_2(n))$, then $f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n)))$.
 - Ex. $f_1(n) = O(n)$, $f_2(n) = O(n^2)$ Then $f_1(n) + f_2(n) = O(n^2)$.
 - Ex. $f_1(n) = O(n)$, $f_2(n) = O(n)$ Then $f_1(n) + f_2(n) = O(n)$.
- Good for computing the time complexity of a sequential program.

Rule of Product

```
f(n) = O(n \cdot n \cdot 1) = O(n^2).
```

- If $f_1(n) = O(g_1(n))$, and $f_2(n) = O(g_2(n))$, then $f_1(n) \cdot f_2(n) = O(g_1(n) \cdot g_2(n))$.
 - Ex. $f_1(n) = O(n)$, $f_2(n) = O(n)$ Then $f_1(n) \cdot f_2(n) = O(n^2)$.
- Applicable to nested loops.

Complexity of Binary Search

```
int BinarySearch(int *A, const int x, const int n)
{ int left=0, right=n-1;
                                                 \rightarrow O(?)
 while (left <= right) ———</pre>
  { // more integers to check
    int middle = (left+right)/2; \longrightarrow O(1)
    if (x < A[middle]) right = middle-1; \longrightarrow O(1)
    else if (x > A[middle]) left = middle+1 \Rightarrow O(1)
    else return middle;
                                                 \rightarrow O(1)
  } // end of while
  return -1; // not found
```

Complexity of Binary Search

- Analysis of the while loop:
 - Iteration I: n values to be searched
 - Iteration 2: n/2 left for searching
 - Iteration 3: n/4 left for searching
 - • •
 - Iteration k+1: n/(2^k) left for searching When n/(2^k) = 1, searching must finish. i.e. $n = 2^k \implies k = \log_2 n$
- Hence, worst-case exe time of binary search is $O(\log_2 n)$.

1.7.2

Performance Measurement

- Obtain actual space and time requirement when running a program.
- How to do time measurement in code?
 - Method I: Use clock(), measured in clock ticks
 - Method 2: Use time(), measured in seconds
- To time a short program, it is necessary to repeat it many times, and then take the average.

Performance Measurement

Method I: Use clock(), measured in clock ticks

Performance Measurement

Method 2: Use time(), measured in seconds

```
#include <time.h>
void main()
  time t start = time(NULL);
  // main body of program comes here!
  time t stop = time(NULL);
  double duration = (double) difftime(stop,start);
```