DICOM

Benoît Deville - Analyste en informatique

Hôpitaux Universitaires de Genève

3 mai 2017

Plan

- 1 Notions préliminaires et historique
- 2 Objets et Services
- 3 DICOM en pratique
- 4 Exercices

Rappel du plan

- 1 Notions préliminaires et historique
- Objets et Services
- Olicom en pratique
- 4 Exercices

Digital Imaging and Communications in Medicine

4 / 35

Digital Imaging and Communications in Medicine

- Digital = Numérique
- Imaging = Imagerie

Digital Imaging and Communications in Medicine

- Digital = Numérique
- Imaging = Imagerie
- Communications

Digital Imaging and Communications in Medicine

- Digital = Numérique
- Imaging = Imagerie
- Communications
- Medicine

Digital Imaging and Communications in Medicine

- Digital = Numérique
- Imaging = Imagerie
- Communications
- Medicine

Vocabulaire

Digital Imaging and Communications in Medicine

- Digital = Numérique
- Imaging = Imagerie
- Communications
- Medicine

Vocabulaire

Modalité

3 mai 2017 4 / 35

Digital Imaging and Communications in Medicine

- Digital = Numérique
- Imaging = Imagerie
- Communications
- Medicine

Vocabulaire

- Modalité
- Instance

3 mai 2017 4 / 35

Digital Imaging and Communications in Medicine

- Digital = Numérique
- Imaging = Imagerie
- Communications
- Medicine

Vocabulaire

- Modalité
- Instance
- UID = Unique Identifier

3 mai 2017 4 / 35

 Trouver un langage commun pour l'échange (images et données pertinentes) entre équipements d'imagerie : mettre en place un standard.

- Trouver un langage commun pour l'échange (images et données pertinentes) entre équipements d'imagerie : mettre en place un standard.
- Pousser les vendeurs à parler et comprendre ce langage commun.

- Trouver un langage commun pour l'échange (images et données pertinentes) entre équipements d'imagerie : mettre en place un standard.
- Pousser les vendeurs à parler et comprendre ce langage commun.
- Standardiser :

- Trouver un langage commun pour l'échange (images et données pertinentes) entre équipements d'imagerie : mettre en place un standard.
- Pousser les vendeurs à parler et comprendre ce langage commun.
- Standardiser :
 - le stockage (i.e. format de fichier);

- Trouver un langage commun pour l'échange (images et données pertinentes) entre équipements d'imagerie : mettre en place un standard.
- Pousser les vendeurs à parler et comprendre ce langage commun.
- Standardiser :
 - le stockage (i.e. format de fichier);
 - et la communication des donnés (i.e. protocoles de communication).

3 mai 2017 5 / 35

Il faut que lors de l'installation d'une nouvelle modalité, le DICOM permette, sans changement d'un quelconque composant logiciel (*i.e. Plug & Play*) :

l'interrogation du PACS;

Il faut que lors de l'installation d'une nouvelle modalité, le DICOM permette, sans changement d'un quelconque composant logiciel (*i.e. Plug & Play*) :

- l'interrogation du PACS;
- la récupération des images créées par d'autres systèmes ;

Il faut que lors de l'installation d'une nouvelle modalité, le DICOM permette, sans changement d'un quelconque composant logiciel (*i.e. Plug & Play*) :

- l'interrogation du PACS;
- la récupération des images créées par d'autres systèmes;
- l'affichage des images;

Il faut que lors de l'installation d'une nouvelle modalité, le DICOM permette, sans changement d'un quelconque composant logiciel (*i.e. Plug & Play*) :

- l'interrogation du PACS;
- la récupération des images créées par d'autres systèmes;
- l'affichage des images;
- et la production d'images lisibles par les systèmes d'autres constructeurs.

• 1ère version ACR/NEMA 300 en 1985 : peu accepté car vague et contenant des incohérences.

B. Deville (HUG) DICOM 3 mai 2017 7 / 35

- 1ère version ACR/NEMA 300 en 1985 : peu accepté car vague et contenant des incohérences.
- 2^{ème} version en 1988 : transmission des images par le connecteur matériel EIA-485, adopté par quelques constructeurs.

- 1^{ère} version ACR/NEMA 300 en 1985 : peu accepté car vague et contenant des incohérences.
- 2^{ème} version en 1988 : transmission des images par le connecteur matériel EIA-485, adopté par quelques constructeurs.
- 3ème version en 1993 : indépendance du connecteur, donc support TCP.

B. Deville (HUG) 3 mai 2017 7 / 35

- 1ère version ACR/NEMA 300 en 1985 : peu accepté car vague et contenant des incohérences.
- 2^{ème} version en 1988 : transmission des images par le connecteur matériel EIA-485, adopté par quelques constructeurs.
- 3ème version en 1993 : indépendance du connecteur, donc support TCP.

Le standard en détails

Plus de 5300 pages de documentation réparties en 18 chapitres. http://dicom.nema.org/standard.html

- DICOM Part 1 : Introduction and Overview (34 pages)
- Part 2 : Conformance (322 pages)
- Part 3 : Information Object Definitions (1338 pages)
- Part 4 : Service Class Specifications (404 pages)
- Part 5 : Data Structures and Encoding (138 pages)
- Part 6 : Data Dictionary (204 pages)
- Part 7 : Message Exchange (128 pages)
- Part 8: Network Communication Support for Message Exchange (72 pages)
- DICOM Part 10 : Media Storage and File Format for Media Interchange (48 pages)

- Part 11 : Media Storage Application Profiles (96 pages)
- Part 12 : Media Formats and Physical Media for Media Interchange (92 pages)
- Part 14 : Grayscale Standard Display Function (66 pages)
- Part 15 : Security and System Management Profiles (142 pages)
- Part 16 : Content Mapping Resource (1150 pages)
- Part 17 : Explanatory Information (692 pages)
- Part 18 : Web Services (138 pages)
- Part 19 : Application Hosting (96 pages)
- Part 20: Imaging Reports using HL7 Clinical Document Architecture (152 pages)

Un fichier DICOM est l'agrégation des éléments suivants :

• Pré-entête :

- Pré-entête :
 - ▶ Préambule : 128 octets de données "application".

- Pré-entête :
 - Préambule : 128 octets de données "application".
 - Préfixe : 0x4449434D=DICM (4 octets).

- Pré-entête :
 - Préambule : 128 octets de données "application".
 - Préfixe : 0x4449434D=DICM (4 octets).
- Suite de Data Elements. En général :

- Pré-entête :
 - Préambule : 128 octets de données "application".
 - Préfixe : 0x4449434D=DICM (4 octets).
- Suite de Data Elements. En général :
 - ► Tag;

- Pré-entête :
 - Préambule : 128 octets de données "application".
 - Préfixe : 0x4449434D=DICM (4 octets).
- Suite de Data Elements. En général :
 - ► Tag;
 - VR:

- Pré-entête :
 - Préambule : 128 octets de données "application".
 - Préfixe : 0x4449434D=DICM (4 octets).
- Suite de Data Elements. En général :
 - ► Tag;
 - VR;
 - ► Taille;

- Pré-entête :
 - Préambule : 128 octets de données "application".
 - Préfixe : 0x4449434D=DICM (4 octets).
- Suite de Data Elements. En général :
 - ► Tag;
 - VR;
 - Taille;
 - et Valeur.

Little ou Big Endian

• Origines chaotiques de l'informatique.

- Origines chaotiques de l'informatique.
- Différents ordres de stockage pour les valeurs encodées sur plusieurs octets (1 octet = 8 bits = 2⁸ possibilités = 256 valeurs).

- Origines chaotiques de l'informatique.
- Différents ordres de stockage pour les valeurs encodées sur plusieurs octets (1 octet = 8 bits = 2⁸ possibilités = 256 valeurs).
 - Little Endian : moins importants en dernier.

- Origines chaotiques de l'informatique.
- Différents ordres de stockage pour les valeurs encodées sur plusieurs octets (1 octet = 8 bits = 2⁸ possibilités = 256 valeurs).
 - Little Endian : moins importants en dernier.
 - Big Endian : plus importants en dernier.

- Origines chaotiques de l'informatique.
- Différents ordres de stockage pour les valeurs encodées sur plusieurs octets (1 octet = 8 bits = 2⁸ possibilités = 256 valeurs).
 - Little Endian : moins importants en dernier.
 - Big Endian : plus importants en dernier.
- Exemple avec l'entier 2015 :

B. Deville (HUG) DICOM 3 mai 2017 10 / 35

- Origines chaotiques de l'informatique.
- Différents ordres de stockage pour les valeurs encodées sur plusieurs octets (1 octet = 8 bits = 2⁸ possibilités = 256 valeurs).
 - Little Endian: moins importants en dernier.
 - Big Endian : plus importants en dernier.
- Exemple avec l'entier 2015 :
 - ► Sur 2 octets

- Origines chaotiques de l'informatique.
- Différents ordres de stockage pour les valeurs encodées sur plusieurs octets (1 octet = 8 bits = 2⁸ possibilités = 256 valeurs).
 - Little Endian : moins importants en dernier.
 - Big Endian : plus importants en dernier.
- Exemple avec l'entier 2015 :
 - Sur 2 octets
 - ★ Little Endian: 0x07DF

- Origines chaotiques de l'informatique.
- Différents ordres de stockage pour les valeurs encodées sur plusieurs octets (1 octet = 8 bits = 2⁸ possibilités = 256 valeurs).
 - Little Endian : moins importants en dernier.
 - Big Endian : plus importants en dernier.
- Exemple avec l'entier 2015 :
 - Sur 2 octets

★ Little Endian: 0x07DF

★ Big Endian: 0×DF07

- Origines chaotiques de l'informatique.
- Différents ordres de stockage pour les valeurs encodées sur plusieurs octets (1 octet = 8 bits = 2⁸ possibilités = 256 valeurs).
 - ▶ Little Endian : moins importants en dernier.
 - Big Endian : plus importants en dernier.
- Exemple avec l'entier 2015 :
 - Sur 2 octets
 - ★ Little Endian: 0×07DF
 - ★ Big Endian: 0×DF07
 - Sur 4 octets

- Origines chaotiques de l'informatique.
- Différents ordres de stockage pour les valeurs encodées sur plusieurs octets (1 octet = 8 bits = 2⁸ possibilités = 256 valeurs).
 - Little Endian : moins importants en dernier.
 - Big Endian : plus importants en dernier.
- Exemple avec l'entier 2015 :
 - Sur 2 octets
 - ★ Little Endian: 0x07DF
 - ★ Big Endian: 0xDF07
 - Sur 4 octets
 - ★ Little Endian: 0x000007DF

B. Deville (HUG) 3 mai 2017 10 / 35

- Origines chaotiques de l'informatique.
- Différents ordres de stockage pour les valeurs encodées sur plusieurs octets (1 octet = 8 bits = 2⁸ possibilités = 256 valeurs).
 - Little Endian : moins importants en dernier.
 - ▶ Big Endian : plus importants en dernier.
- Exemple avec l'entier 2015 :
 - Sur 2 octets
 - ★ Little Endian: 0×07DF
 - ★ Big Endian: 0xDF07
 - Sur 4 octets
 - ★ Little Endian: 0x000007DF
 - ★ Big Endian: 0×DF070000

B. Deville (HUG) 3 mai 2017 10 / 35

• Un Data Element contient 4 champs (Tag, Value Representation, Size, Value) dont :

• Un Data Element contient 4 champs (Tag, Value Representation, Size, Value) dont :

Tag En héxadécimal.

 Un Data Element contient 4 champs (Tag, Value Representation, Size, Value) dont :

Tag En héxadécimal.

VR Le type d'encodage de la valeur.

 Un Data Element contient 4 champs (Tag, Value Representation, Size, Value) dont :

Tag En héxadécimal.

VR Le type d'encodage de la valeur.

 Un Data Element contient 4 champs (Tag, Value Representation, Size, Value) dont :

Tag En héxadécimal.

VR Le type d'encodage de la valeur.

• Certains DICOM codés en Little Endian, d'autre en Big Endian.

L'ensemble des VR existants est défini dans la table 6.2-1 *DICOM Value Representation* du standard. http://dicom.nema.org/dicom/2013/output/chtml/part05/sect_6.2.html
Quelques exemples:

AS Age String (e.g. 023Y, 005M, 012D).

L'ensemble des VR existants est défini dans la table 6.2-1 *DICOM Value Representation* du standard. http://dicom.nema.org/dicom/2013/output/chtml/part05/sect_6.2.html
Quelques exemples:

AS Age String (e.g. 023Y, 005M, 012D).

DA Date, au format YYYYMMDD.

- AS Age String (e.g. 023Y, 005M, 012D).
- DA Date, au format YYYYMMDD.
- DT Date Time, YYYYMMDDHHMMSS.FFFFFF&ZZXX.

- AS Age String (e.g. 023Y, 005M, 012D).
- DA Date, au format YYYYMMDD.
- DT Date Time, YYYYMMDDHHMMSS.FFFFFF&ZZXX.
- OD Other Double String (suite de 2³² octets maximum).

- AS Age String (e.g. 023Y, 005M, 012D).
- DA Date, au format YYYYMMDD.
- DT Date Time, YYYYMMDDHHMMSS.FFFFFF&ZZXX.
- OD Other Double String (suite de 2³² octets maximum).
- PN Person Name (e.g. Doe[^]John).

L'ensemble des VR existants est défini dans la table 6.2-1 DICOM Value Representation du standard. http://dicom.nema.org/dicom/2013/ output/chtml/part05/sect_6.2.html Quelques exemples:

- AS Age String (e.g. 023Y, 005M, 012D).
- DA Date, au format YYYYMMDD.
- DT Date Time, YYYYMMDDHHMMSS.FFFFFF&ZZXX.
- OD Other Double String (suite de 2³² octets maximum).
- PN Person Name (e.g. Doe⁻John).
- UI Unique Identifier (UID), 64 caractères maximum ({0-9,.}).

3 mai 2017 12 / 35

• Single Frame

- Single Frame
 - Une image : stockée dans un fichier.

- Single Frame
 - Une image : stockée dans un fichier.
 - ▶ Une coupe = une image
 - \Rightarrow série de 100 coupes = 100 fichiers.

- Single Frame
 - Une image : stockée dans un fichier.
 - ▶ Une coupe = une image⇒ série de 100 coupes = 100 fichiers.
- Multiframe

B. Deville (HUG) DICOM 3 mai 2017 13 / 35

- Single Frame
 - Une image : stockée dans un fichier.
 - ▶ Une coupe = une image⇒ série de 100 coupes = 100 fichiers.
- Multiframe
 - Aussi appelé Enhanced DICOM.

B. Deville (HUG) 3 mai 2017 13 / 35

- Single Frame
 - Une image : stockée dans un fichier.
 - ▶ Une coupe = une image⇒ série de 100 coupes = 100 fichiers.
- Multiframe
 - Aussi appelé Enhanced DICOM.
 - Plusieurs images dans la même séquence.
 E.g. séquence vidéo d'échographie.

B. Deville (HUG) DICOM 3 mai 2017 13 / 35

- Single Frame
 - Une image : stockée dans un fichier.
 - ▶ Une coupe = une image⇒ série de 100 coupes = 100 fichiers.
- Multiframe
 - Aussi appelé Enhanced DICOM.
 - Plusieurs images dans la même séquence.
 E.g. séquence vidéo d'échographie.
- Arborescence des répertoires/fichiers

- Single Frame
 - Une image : stockée dans un fichier.
 - ▶ Une coupe = une image⇒ série de 100 coupes = 100 fichiers.
- Multiframe
 - Aussi appelé Enhanced DICOM.
 - ► Plusieurs images dans la même séquence. E.g. séquence vidéo d'échographie.
- Arborescence des répertoires/fichiers

Rappel du plan

- Notions préliminaires et historique
- 2 Objets et Services
- Olicom en pratique
- 4 Exercices

• Un objet DICOM combine :

- Un objet DICOM combine :
 - des données, ou informations (e.g. nom du patient, données de l'image,...);

B. Deville (HUG) 3 mai 2017 15 / 35

- Un objet DICOM combine :
 - des données, ou informations (e.g. nom du patient, données de l'image,...);
 - et services, ou fonctions (e.g. sauvegarder, imprimer,...).

- Un objet DICOM combine :
 - des données, ou informations (e.g. nom du patient, données de l'image,...);
 - et services, ou fonctions (e.g. sauvegarder, imprimer,...).
- Le traitement DICOM d'une information consiste alors à regrouper :

B. Deville (HUG) 3 mai 2017 15 / 35

Traduire le réel en numérique

- Un objet DICOM combine :
 - des données, ou informations (e.g. nom du patient, données de l'image,...);
 - et services, ou fonctions (e.g. sauvegarder, imprimer,...).
- Le traitement DICOM d'une information consiste alors à regrouper :
 - ▶ les données, contenues dans un *Information Objet*, que le standard définit grâce à une *Information Object Definition* (ou *IOD*);

Traduire le réel en numérique

- Un objet DICOM combine :
 - des données, ou informations (e.g. nom du patient, données de l'image,...);
 - et services, ou fonctions (e.g. sauvegarder, imprimer,...).
- Le traitement DICOM d'une information consiste alors à regrouper :
 - les données, contenues dans un Information Objet, que le standard définit grâce à une Information Object Definition (ou IOD);
 - ▶ et une fonction spécifique, ou *Service*, définie par un *DICOM Message Service Element* (ou *DIMSE*).

B. Deville (HUG) DICOM 3 mai 2017 15 / 35

• La combinaison Information Objet + Service est :

- La combinaison Information Objet + Service est :
 - ▶ appelée Service/Object Pair (ou SOP);

- La combinaison Information Objet + Service est :
 - appelée Service/Object Pair (ou SOP);
 - un élément important pour déterminer la conformité au standard ;

B. Deville (HUG) 3 mai 2017 16 / 35

- La combinaison Information Objet + Service est :
 - appelée Service/Object Pair (ou SOP);
 - un élément important pour déterminer la conformité au standard ;
 - identifiée par un identifiant unique nommé SOP Class UID.

B. Deville (HUG) 3 mai 2017 16 / 35

- La combinaison Information Objet + Service est :
 - appelée Service/Object Pair (ou SOP);
 - un élément important pour déterminer la conformité au standard;
 - ▶ identifiée par un identifiant unique nommé SOP Class UID.
- Standard DICOM = annuaire de SOP.
 SOP Class UID = numéro unique pour trouver à quelle paire Service/Objet correspond un objet DICOM.

B. Deville (HUG) 3 mai 2017 16 / 35

- La combinaison Information Objet + Service est :
 - appelée Service/Object Pair (ou SOP);
 - un élément important pour déterminer la conformité au standard;
 - identifiée par un identifiant unique nommé SOP Class UID.
- Standard DICOM = annuaire de SOP.
 SOP Class UID = numéro unique pour trouver à quelle paire Service/Objet correspond un objet DICOM.
- Analogie : annuaire
 Une entrée = paire {téléphone + adresse}.

B. Deville (HUG) DICOM 3 mai 2017 16 / 35

- La combinaison Information Objet + Service est :
 - appelée Service/Object Pair (ou SOP);
 - un élément important pour déterminer la conformité au standard ;
 - identifiée par un identifiant unique nommé SOP Class UID.
- Standard DICOM = annuaire de SOP.
 SOP Class UID = numéro unique pour trouver à quelle paire Service/Objet correspond un objet DICOM.
- Analogie : annuaire
 Une entrée = paire {téléphone + adresse}.
- Exemples de SOP Class UID :

- La combinaison Information Objet + Service est :
 - appelée Service/Object Pair (ou SOP);
 - un élément important pour déterminer la conformité au standard ;
 - identifiée par un identifiant unique nommé SOP Class UID.
- Standard DICOM = annuaire de SOP.
 SOP Class UID = numéro unique pour trouver à quelle paire Service/Objet correspond un objet DICOM.
- Analogie : annuaire
 Une entrée = paire {téléphone + adresse}.
- Exemples de SOP Class UID :
 1.2.840.10008.5.1.4.1.1.1 CR Image Store (enregistrer un CR);

B. Deville (HUG) DICOM 3 mai 2017 16 / 35

- La combinaison Information Objet + Service est :
 - appelée Service/Object Pair (ou SOP);
 - un élément important pour déterminer la conformité au standard;
 - identifiée par un identifiant unique nommé SOP Class UID.
- Standard DICOM = annuaire de SOP.
 SOP Class UID = numéro unique pour trouver à quelle paire Service/Objet correspond un objet DICOM.
- Analogie : annuaire
 Une entrée = paire {téléphone + adresse}.
- Exemples de SOP Class UID :
 1.2.840.10008.5.1.4.1.1.1 CR Image Store (enregistrer un CR);
 1.2.840.10008.5.1.4.1.1.2 CT Image Store (enregistrer un CT).

Schéma de construction du SOP

Schéma de l'IOD image CR

L'IOD définit, pour un IO spécifique, quels sont les attributs qu'on doit/peut trouver dans l'objet.

L'IOD définit, pour un IO spécifique, quels sont les attributs qu'on doit/peut trouver dans l'objet.

Normalized IOD

Représente une entité unique du monde réel (e.g. patient, visite, examen, résultat, interprétation,...).

L'IOD définit, pour un IO spécifique, quels sont les attributs qu'on doit/peut trouver dans l'objet.

Normalized IOD

Représente une entité unique du monde réel (e.g. patient, visite, examen, résultat, interprétation,...).

Information Entities

Ensemble de modules liés à une entité de l'objet (e.g. patient, examen,...).

L'IOD définit, pour un IO spécifique, quels sont les attributs qu'on doit/peut trouver dans l'objet.

Normalized IOD

Représente une entité unique du monde réel (e.g. patient, visite, examen, résultat, interprétation,...).

Information Entities

Ensemble de modules liés à une entité de l'objet (e.g. patient, examen,...).

Modules

Ensemble d'attributs définissant une caractéristique particulière d'une IE (e.g. sujet d'étude clinique, contraste/bolus,...)

L'IOD définit, pour un IO spécifique, quels sont les attributs qu'on doit/peut trouver dans l'objet.

Normalized IOD

Représente une entité unique du monde réel (e.g. patient, visite, examen, résultat, interprétation,...).

Information Entities

Ensemble de modules liés à une entité de l'objet (e.g. patient, examen,...).

Modules

Ensemble d'attributs définissant une caractéristique particulière d'une IE (e.g. sujet d'étude clinique, contraste/bolus,...)

Attributes

Propriétés d'un élément du monde réel.

• IOD : agrégat d'Information Entities ou IE.

- IOD : agrégat d'Information Entities ou IE.
- Une IE contient un ou plusieurs *Modules*.

- IOD : agrégat d'Information Entities ou IE.
- Une IE contient un ou plusieurs Modules.
 Mandatory Module obligatoire.

- IOD : agrégat d'Information Entities ou IE.
- Une IE contient un ou plusieurs *Modules*.

Mandatory Module obligatoire.

Conditional Module conditionnel (obligatoire selon certaines conditions).

Mandatory module 2

- IOD : agrégat d'Information Entities ou IE.
- Une IE contient un ou plusieurs *Modules*.

Mandatory Module obligatoire.

Conditional Module conditionnel (obligatoire selon certaines conditions).

User Option Module optionnel.

module 2

- IOD : agrégat d'Information Entities ou IE.
- Une IE contient un ou plusieurs *Modules*.

Mandatory Module obligatoire.

Conditional Module conditionnel (obligatoire selon certaines conditions).

User Option Module optionnel.

• Les modules sont composés d'Attributs (= valeurs).

- IOD : agrégat d'Information Entities ou IE.
- Une IE contient un ou plusieurs Modules.
 - Mandatory Module obligatoire.
 - Conditional Module conditionnel (obligatoire selon certaines conditions).
 - User Option Module optionnel.
- Les modules sont composés d'Attributs (= valeurs).
 - 1 Obligatoire.

- IOD : agrégat d'Information Entities ou IE.
- Une IE contient un ou plusieurs Modules.
 - Mandatory Module obligatoire.
 - Conditional Module conditionnel (obligatoire selon certaines conditions).

User Option Module optionnel.

- Les modules sont composés d'Attributs (= valeurs).
 - 1 Obligatoire.
 - 2 Obligatoire peut être vide.

B. Deville (HUG) DICOM 3 mai 2017 20 / 35

- IOD : agrégat d'Information Entities ou IE.
- Une IE contient un ou plusieurs Modules.
 - Mandatory Module obligatoire.
 - Conditional Module conditionnel (obligatoire selon certaines conditions).

User Option Module optionnel.

- Les modules sont composés d'Attributs (= valeurs).
 - 1 Obligatoire.
 - 2 Obligatoire peut être vide.
 - 3 Optionnel.

IOD composite

- IOD : agrégat d'Information Entities ou IE.
- Une IE contient un ou plusieurs Modules.
 - Mandatory Module obligatoire.
 - Conditional Module conditionnel (obligatoire selon certaines conditions).

User Option Module optionnel.

- Les modules sont composés d'Attributs (= valeurs).
 - 1 Obligatoire.
 - 2 Obligatoire peut être vide.
 - 3 Optionnel.
 - <1/2>C Conditionnel.

Exemple d'IOD : image CR

http://dicom.nema.org/medical/dicom/current/output/html/part03.html#sect_A.2

IE	Module	Reference	Usage
Patient	Patient	<u>C.7.1.1</u>	М
	Clinical Trial Subject	C.7.1.3	U
Study	General Study	<u>C.7.2.1</u>	М
	Patient Study	<u>C.7.2.2</u>	U
	Clinical Trial Study	C.7.2.3	U
Series	General Series	C.7.3.1	М
	CR Series	<u>C.8.1.1</u>	М
	Clinical Trial Series	C.7.3.2	U
Equipment	General Equipment	<u>C.7.5.1</u>	М
Image	General Image	<u>C.7.6.1</u>	М
	Image Pixel	<u>C.7.6.3</u>	М
	Contrast/bolus	C.7.6.4	C - Required if contrast media was used in this image
	Display Shutter	C.7.6.11	U
	Device	C.7.6.12	U
	Specimen	C.7.6.22	U
	CR Image	C.8.1.2	М
	Overlay Plane	C.9.2	U
	Modality LUT	<u>C.11.1</u>	U
	VOILUT	C.11.2	U
	SOP Common	C.12.1	М

B. Deville (HUG)

Exemples d'objets

Méta-données dans OsiriX:

- Patient
- Study
- Series
- Image

 Équivalent des IOD pour les services : DIMSE (DICOM Message Service Element).

B. Deville (HUG) DICOM 3 mai 2017 23 / 35

- Équivalent des IOD pour les services : DIMSE (DICOM Message Service Element).
- Définir les opérations possibles selon les objets.

B. Deville (HUG) DICOM 3 mai 2017 23 / 35

- Équivalent des IOD pour les services : DIMSE (DICOM Message Service Element).
- Définir les opérations possibles selon les objets.
- Deux catégories d'éléments :

B. Deville (HUG) 3 mai 2017 23 / 35

- Équivalent des IOD pour les services : DIMSE (DICOM Message Service Element).
- Définir les opérations possibles selon les objets.
- Deux catégories d'éléments :
 - opérations (par exemple store);

B. Deville (HUG) DICOM 3 mai 2017 23 / 35

- Équivalent des IOD pour les services : DIMSE (DICOM Message Service Element).
- Définir les opérations possibles selon les objets.
- Deux catégories d'éléments :
 - opérations (par exemple store);
 - notifications (e.g. event report).

B. Deville (HUG) DICOM 3 mai 2017 23 / 35

- Équivalent des IOD pour les services : DIMSE (DICOM Message Service Element).
- Définir les opérations possibles selon les objets.
- Deux catégories d'éléments :
 - opérations (par exemple store);
 - notifications (e.g. event report).
- Services différents sur les objets composites ou normalisés :

DICOM 3 mai 2017 23 / 35

- Équivalent des IOD pour les services : DIMSE (DICOM Message Service Element).
- Définir les opérations possibles selon les objets.
- Deux catégories d'éléments :
 - opérations (par exemple store);
 - notifications (e.g. event report).
- Services différents sur les objets composites ou normalisés :
 - 5 composites C-STORE 1, C-FIND1, C-MOVE1, C-GET1, C-ECHO1.

1. Opération

- Équivalent des IOD pour les services : DIMSE (DICOM Message Service Element).
- Définir les opérations possibles selon les objets.
- Deux catégories d'éléments :
 - opérations (par exemple store);
 - notifications (e.g. event report).
- Services différents sur les objets composites ou normalisés :
 - 5 composites C-STORE 1, C-FIND1, C-MOVE1, C-GET1, C-ECHO1.
 - 6 normalisés N-GET¹. N-ACTION¹. N-SET¹. N-CREATE¹. N-DELETE¹. N-EVENT-REPORT ².

- 1. Opération
- 2. Notification

• Chaque équipement joue un rôle dépendant du service :

Chaque équipement joue un rôle dépendant du service :
 SCU Service Class User (le client).

B. Deville (HUG) 3 mai 2017 24 / 35

• Chaque équipement joue un rôle dépendant du service :

SCU Service Class User (le client).

SCP Service Class Provider (le serveur).

• Chaque équipement joue un rôle dépendant du service :

SCU Service Class User (le client).

SCP Service Class Provider (le serveur).

• Le SCU initie une demande, le SCP, qui fournit le service, répond.

- Chaque équipement joue un rôle dépendant du service :
 - SCU Service Class User (le client).
 - SCP Service Class Provider (le serveur).
- Le SCU initie une demande, le SCP, qui fournit le service, répond.

Un équipement peut changer de rôle.

Un équipement peut changer de rôle.

Par exemple, une station d'interprétation A peut être :

• SCU dans un premier temps :

Un équipement peut changer de rôle.

- SCU dans un premier temps :
 - A sollicite un examen au PACS;

Un équipement peut changer de rôle.

- SCU dans un premier temps :
 - A sollicite un examen au PACS;
 - 2 Le PACS accepte et envoie l'examen à A.

Un équipement peut changer de rôle.

- SCU dans un premier temps :
 - A sollicite un examen au PACS;
 - 2 Le PACS accepte et envoie l'examen à A.
- puis SCP dans un second temps :

Un équipement peut changer de rôle.

- SCU dans un premier temps :
 - A sollicite un examen au PACS;
 - 2 Le PACS accepte et envoie l'examen à A.
- puis SCP dans un second temps :
 - 3 B demande l'examen à A :

Un équipement peut changer de rôle.

Par exemple, une station d'interprétation A peut être :

- SCU dans un premier temps :
 - A sollicite un examen au PACS;
 - 2 Le PACS accepte et envoie l'examen à A.
- puis SCP dans un second temps :
 - B demande l'examen à A;
 - A transmet l'examen à B.

B. Deville (HUG) 3 mai 2017 25 / 35

Rappel du plan

- Notions préliminaires et historique
- Objets et Services
- 3 DICOM en pratique
- 4 Exercices

Prescription d'un examen radiologique

• Schématisation de la procédure :

Prescription d'un examen radiologique

• Schématisation de la procédure :

• DICOM décrit ces données et ces relations.

Prescription d'un examen radiologique

• Schématisation de la procédure :

- DICOM décrit ces données et ces relations.
- La précision du contenu et des liens dépend des outils et des utilisateurs (e.g. RIS, PACS).

B. Deville (HUG) 3 mai 2017 27 / 35

 Le standard prévoit un document "DICOM Conformance Statement" dont le plan et la structure sont prédéfinis.

B. Deville (HUG) 3 mai 2017 28 / 35

- Le standard prévoit un document "DICOM Conformance Statement" dont le plan et la structure sont prédéfinis.
- Par ce document, le fournisseur précise le niveau de conformité de son équipement au standard DICOM.

- Le standard prévoit un document "DICOM Conformance Statement" dont le plan et la structure sont prédéfinis.
- Par ce document, le fournisseur précise le niveau de conformité de son équipement au standard DICOM.
 - Applicable sur chaque modèle, chaque version.

- Le standard prévoit un document "DICOM Conformance Statement" dont le plan et la structure sont prédéfinis.
- Par ce document, le fournisseur précise le niveau de conformité de son équipement au standard DICOM.
 - Applicable sur chaque modèle, chaque version.
 - Le document suit un plan prévu dans le standard.

- Le standard prévoit un document "DICOM Conformance Statement" dont le plan et la structure sont prédéfinis.
- Par ce document, le fournisseur précise le niveau de conformité de son équipement au standard DICOM.
 - Applicable sur chaque modèle, chaque version.
 - Le document suit un plan prévu dans le standard.
 - ▶ Liste des SOP Class supportées et des rôles assurés (SCU, SCP).

3 mai 2017 28 / 35

Services principaux

Services principaux

Store

Envoi/stockage d'objets DICOM.

Services principaux

Store

Envoi/stockage d'objets DICOM.

Query/Retrieve

Store

Envoi/stockage d'objets DICOM.

Query/Retrieve

• Un équipement interroge un autre équipement.

Store

Envoi/stockage d'objets DICOM.

Query/Retrieve

- Un équipement interroge un autre équipement.
- Interrogation par critères à différents niveaux (e.g. patient, examen, série, image) :

Store

Envoi/stockage d'objets DICOM.

Query/Retrieve

- Un équipement interroge un autre équipement.
- Interrogation par critères à différents niveaux (e.g. patient, examen, série, image) :
 - Exemple : Lister les examens de modalités CT produits depuis 24h.

Store

Envoi/stockage d'objets DICOM.

Query/Retrieve

- Un équipement interroge un autre équipement.
- Interrogation par critères à différents niveaux (e.g. patient, examen, série, image) :
 - Exemple : Lister les examens de modalités CT produits depuis 24h.
- Récupération d'images/séries/examens selon ces mêmes critères.

Store

Envoi/stockage d'objets DICOM.

Query/Retrieve

- Un équipement interroge un autre équipement.
- Interrogation par critères à différents niveaux (e.g. patient, examen, série, image) :
 - Exemple : Lister les examens de modalités CT produits depuis 24h.
- Récupération d'images/séries/examens selon ces mêmes critères.

Modality worklist

Store

Envoi/stockage d'objets DICOM.

Query/Retrieve

- Un équipement interroge un autre équipement.
- Interrogation par critères à différents niveaux (e.g. patient, examen, série, image) :
 - Exemple : Lister les examens de modalités CT produits depuis 24h.
- Récupération d'images/séries/examens selon ces mêmes critères.

Modality worklist

 Interrogation par une modalité du système de planification.

Store

Envoi/stockage d'objets DICOM.

Query/Retrieve

- Un équipement interroge un autre équipement.
- Interrogation par critères à différents niveaux (e.g. patient, examen, série, image) :
 - Exemple : Lister les examens de modalités CT produits depuis 24h.
- Récupération d'images/séries/examens selon ces mêmes critères.

Modality worklist

- Interrogation par une modalité du système de planification.
- Récupération de la liste des examens prévus.

Store

Envoi/stockage d'objets DICOM.

Query/Retrieve

- Un équipement interroge un autre équipement.
- Interrogation par critères à différents niveaux (e.g. patient, examen, série, image) :
 - Exemple : Lister les examens de modalités CT produits depuis 24h.
- Récupération d'images/séries/examens selon ces mêmes critères.

Modality worklist

- Interrogation par une modalité du système de planification.
- Récupération de la liste des examens prévus.
- Examens documentés : identification du patient, procédure, prescripteur.

Anonymisation

- Utilisation d'images cliniques pour la recherche ou l'enseignement.
- Fichiers mis à disposition du public.
- Nécessité d'anonymat : suppression des informations personnelles permettant d'identifier le patient.
 - PatientsName (0010,0010)
 - PatientID (0010,0020)
 - ► PatientBirthDate (0010,0030)
 - \rightarrow de type 1 : à remplacer, pas supprimer!
 - ► ReferringPhysicianName (0008,0090)
 - etc.
 - ▶ Potentiellement plus de 250 champs à supprimer ou à vider!

B. Deville (HUG) DICOM 3 mai 2017 30 / 35

Rappel du plan

- 1 Notions préliminaires et historique
- Objets et Services
- Olicom en pratique
- 4 Exercices

Exercices (1/2)

Exercice 1

Trouver l'ensemble des attributs obligatoires pour une IRM.

Il faudra regarder le chapitre 3 du standard :

http://dicom.nema.org/standard.html

Exercices (1/2)

Exercice 1

Trouver l'ensemble des attributs obligatoires pour une IRM.

Il faudra regarder le chapitre 3 du standard :

http://dicom.nema.org/standard.html

Exercice 2

Compléter le schéma de la page 18 :

- entités;
- modules;
- et attributs.

Respectez le code couleur ou précisez le type de module/attribut. Aidez-vous de la même ressource que pour l'exercice précédent.

Exercices (2/2)

Trouver les erreurs dans les métadonnées suivantes, en fonction du tableau fourni. En déduire les cas qui seront rejetés par votre PACS.

Tag	Attribut	Туре	Description				
(0010,0010)	Patient's Name	2	Nom du patient.				
(0010,0020)	Patient ID	2	Numéro d'identification du patient.				
(0010,0030)	Patient's Birth Date	2	Date de naissance du patient.				
(0010,0040)	Patient's Sex	2	Sexe du patient. Valeurs possibles : M = homme F = femme O = autre				
(0008,1120)	Referenced Patient Sequence	3	Une séquence faisant référence à une paire Patient SOP Class/Instance. Un seul élément autorisé dans cette séquence.	Tag	Cas A	Cas B	Cas C
				(0010,0010)	ANONYME	BERTON*ALAIN	SCHNEIDER*JEANNE,MARIE,ANNA
(0008,1150)	Referenced SOP	1C	Référence unique identifiant la SOP Class.	(0010,0020)	86458745		fYET5.0
(0006,1150)	Class UID	10	Requis si le tag (0008,1120) est défini.	(0010,0030)	null	19431119	19650403
(0008,1155)	Referenced SOP Instance UID	<u>1C</u>	Référence unique identifiant la SOP Instance. Requis si le tag (0008,1120) est défini.	(0010,0040)	null	Н	F
				(0008,1120)			1.2.840.10008.3.1.2.3.1\1.2.840.113745.10100
(0010,0032)	Patient's Birth Time	3	Heure de naissance du patient.				0.1008000.38048.4626.5933732
				(0008,1150)			
(0010,1000)	Other Patient IDs		Autres codes ou numéros d'identification utilisés pour identifier le patient.	(0008,1155)			
				(0010,0032)			122600.98
(0010,1001)	Other Patient Names	<u>3</u>	Autres noms utilisés pour identifier le patient.	(0010,1000)			ANONYMIZE
(0010,4000)	Patient Comments	3	Informations additionnelles concernant le patient, définies par l'utilisateur.	(0010,1001)			ANONYMIZE
				(0010,4000)			Test patient pour communications

Les cases grisées indiquent un champ absent, null un champs vide.

Pourquoi pas simplement du JPG?

...ou tout autre format d'images. Exemple concret avec JPG vs DICOM dans OsiriX.

Objet

- Terminologie : objet = Data Set (e.g. ensemble de données).
- Un Data Set contient des Data Elements.
- Chaque Data Element donne une valeur à un et un seul attribut de l'IOD.
- Contenu d'un Data Element :
 - Étiquette d'identification (Tag) contenant deux numéros.
 - ▶ Type ($VR = Value\ Representation$).
 - ► Taille en mémoire de la valeur.
 - Valeur.