Brain Tumor detection and localization

What is brain tumor?

A brain tumor occurs when abnormal cells form within the brain. There are two main types of tumors: cancerous (malignant) tumors and benign tumors. Cancerous tumors can be divided into primary tumors, which start within the brain, and secondary tumors, which have spread from elsewhere, known as brain metastasis tumors. headaches, seizures, problems with vision, vomiting and mental changes.

Dataset description

The image data that was used for this problem is Brain MRI Images for Brain Tumor Detection. It consists of MRI scans of two classes:

- NO no tumor, encoded as 0
- YES tumor, encoded as 1

Overall there are 98 images of non-tumor and 155 images with tumor

Data import and preprocessing

- Train 193 images
- Validation 50 images
- Test 10 images

Samples without tumor

Tumor: NO

Samples with tumor

Tumor: YES

Normalization

As you can see, images have different width and height and different size of "black corners". Since the image size for e.g. VGG-16 input layer is (224, 224) some wide images may look weird after resizing.

The first step of "normalization" would be to crop the brain out of the images. I used technique which was perfectly described in pyimagesearch blog

https://www.pyimagesearch.com/2016/04/11/finding-extreme-points-in-contours-with-opency/

Normalization - crop algorithm

Step 1. Get the original image

Step 2. Find the biggest contour

Samples without tumor - cropped

Tumor: NO

Samples with tumor - cropped

Tumor: YES

Augmentation

Original Image

Augemented Images

VGG16 model transfer learning

Layer (type)	Output Shape	Param #
vgg16 (Model)	(None, 7, 7, 512)	14714688
flatten_1 (Flatten)	(None, 25088)	0
dropout_1 (Dropout)	(None, 25088)	0
dense_1 (Dense)	(None, 1)	25089

Total params: 14,739,777 Trainable params: 25,089

Non-trainable params: 14,714,688

VGG16 model transfer learning

- Loss binary cross-entropy
- Optimizer RMSProp
- Learning rate 1e-4
- Metrics accuracy
- Epochs 16

VGG16 model transfer learning

- Validation accuracy 0.86 best, test accuracy 0.9
- Validation loss 1.2926, test loss 0.5571

VGG19 model transfer learning

- Loss binary cross-entropy
- Optimizer Adam
- Learning rate 1e-4
- Metrics accuracy
- Epochs 30

- Validation accuracy 0.8576
- Test accuracy 0.9436
- Validation loss 1.1591
- Test loss 0.3835

ResNet-50 model transfer learning

- Loss binary cross-entropy
- Optimizer Adam
- Learning rate 1e-4
- Metrics accuracy
- Epochs 11

- Validation accuracy 0.5981
- Test accuracy 0.9390
- Validation loss 2.4702
- Test loss 0.1750

ResNet-50 model transfer learning

- Loss binary cross-entropy
- Optimizer RMSProp
- Learning rate 1e-4
- Metrics accuracy
- Epochs 7

- Validation accuracy 0.7595
- Test accuracy 0.9542
- Validation loss 1.1659
- Test loss 0.1377

ResNet-101V2 model transfer learning

- Loss binary cross-entropy
- Optimizer RMSProp
- Learning rate 1e-4
- Metrics accuracy
- Epochs 12

- Validation accuracy 0.8013
- Test accuracy 0.9402
- Validation loss 0.8676 best
- Test loss 0.1797

MobileNet-V2 model transfer learning

- Loss binary cross-entropy
- Optimizer RMSProp
- Learning rate 1e-3
- Metrics accuracy
- Epochs 17

- Validation accuracy 0.7437
- Test accuracy 0.9118
- Validation loss 2.6682
- Test loss 0.9332

Localization

Now we want to build a detector which will point out on the location of the tumor on the scan.

But wait, we need annotations for image localization.

Used the following <u>github</u> repo (data-cleaned) folder, where on each folder (train, test, val) there is also corresponding annotations file.

Also in the new data deleted some duplicated scans.

And used matterplot Mask-RCNN method for localization.

Loss metrics of Mask-RCNN

- rpn_class_loss: How well the Region Proposal Network separates background with objetcs
- rpn_bbox_loss: How well the RPN localize objects
- mrcnn_bbox_loss: How well the Mask RCNN localize objects
- mrcnn_class_loss: How well the Mask RCNN recognize each class of object
- mrcnn_mask_loss: How well the Mask RCNN segment objects
- loss: A combination (surely an addition) of all the smaller losses.

All of those losses are calculated on the training dataset. The losses for the validation dataset are those starting with 'val'

IOU - Intersection Over Union

Calculated also mean IOU score for validation and test sets.

$$IOU = \frac{\text{area of overlap}}{\text{area of union}} = \frac{}{}$$

MRCNN - MS COCO pretrained model

- Pretrained model MS COCO
- Learning rate 1e-3
- Epochs 25

Results:

- loss: 0.1754
- rpn_class_loss: 0.0028
- rpn_bbox_loss: 0.0423
- mrcnn_class_loss: 0.0118
- mrcnn_bbox_loss: 0.0352
- mrcnn_mask_loss: 0.0832

Val mean jou score - 0.42223

- val loss: 1.5171
- val_rpn_class_loss: 0.0427
- val_rpn_bbox_loss: 0.5718
- val_mrcnn_class_loss: 0.0908
- val_mrcnn_bbox_loss: 0.3488
- val_mrcnn_mask_loss: 0.4631

MRCNN - Nucleus pretrained model

- Pretrained model Nucleus
- Learning rate 1e-3
- Epochs 25

Results:

- loss: 0.2739
- rpn_class_loss: 0.0044
- rpn_bbox_loss: 0.1092
- mrcnn_class_loss: 0.0141
- mrcnn_bbox_loss: 0.0515
- mrcnn_mask_loss: 0.0947

Val mean iou score - 0.4571

- val loss: 1.6718
- val_rpn_class_loss: 0.0425
- val_rpn_bbox_loss: 0.8242
- val_mrcnn_class_loss: 0.0703
- val_mrcnn_bbox_loss: 0.3212
- val_mrcnn_mask_loss: 0.4135

MRCNN - Balloon pretrained model

- Pretrained model Balloon
- Learning rate 1e-3
- Epochs 25

Results:

- loss: 0.1508
- rpn_class_loss: 0.0021
- rpn_bbox_loss: 0.0298
- mrcnn_class_loss: 0.0119
- mrcnn_bbox_loss: 0.0300
- mrcnn_mask_loss: 0.0770

Val mean iou score - 0.4366

- val loss: 1.4284 best
- val_rpn_class_loss: 0.0335
- val_rpn_bbox_loss: 0.4494
- val_mrcnn_class_loss: 0.1022
- val_mrcnn_bbox_loss: 0.3291
- val_mrcnn_mask_loss: 0.5141

MRCNN - Shapes pretrained model

- Pretrained model Shapes
- Learning rate 1e-3
- Epochs 25

Results:

- loss: 0.2144
- rpn_class_loss: 0.0032
- rpn_bbox_loss: 0.0770
- mrcnn_class_loss: 0.0118
- mrcnn_bbox_loss: 0.0401
- mrcnn_mask_loss: 0.0823

Val mean iou score - 0.47776

- val_loss: 1.5864
- val_rpn_class_loss: 0.0472
- val_rpn_bbox_loss: 0.7531
- val_mrcnn_class_loss: 0.0572
- val_mrcnn_bbox_loss: 0.3073
- val_mrcnn_mask_loss: 0.4217

MRCNN results example

Original Image

Ground Truth and Detections GT=green, pred=red, captions: score/IoU

Accuracy metrics for Mask-RCNN - MAP

$$ext{MAP} = rac{\sum_{q=1}^{Q} ext{AveP(q)}}{Q}$$

Mean average precision formula given provided by Wikipedia

where Q is the number of queries in the set and AveP(q) is the average precision (AP) for a given query, q.

MAP - Mean Average Precision

- True Positive IoU > 0.5
- False Positive IoU <= 0.5 or Duplicated BB
- False Negative IoU > 0.5 but has the wrong classification
- Precision/Recall Curve (PR Curve)
- Interpolated precision

$$p_{interp}(r) = \max_{\tilde{r}: \tilde{r} \ge r} p(\tilde{r})$$

Interpolated Precision for a given Recall Value (r)

MAP - Mean Average Precision

- The AP is then calculated by taking the area under the PR curve.
- The mAP for object detection is the average of the AP calculated for all the classes.

https://towardsdatascience.com/breaking-down-mean-average-precision-map-ae462f623a52

AP - drawbacks

- not confidence-score sensitive
- does not suggest a confidence score threshold for the best setting of the object detector
- uses interpolation between neighboring recall values

Localization Recall Precision (LRP)

- X the set of ground truth boxes
- Y the set of boxes returned by an object detector
- S score threshold
- Tau IoU threshold
- Y_s only the detections that pass the threshold s
- N_{TP} the number of true positives
- N_{FP} the number of false positives
- N_{FN} the number of false negatives

LRP error

$$LRP(X, Y_s) := \frac{1}{Z} \left(w_{IoU} LRP_{IoU}(X, Y_s) + w_{FP} LRP_{FP}(X, Y_s) + w_{FN} LRP_{FN}(X, Y_s) \right),$$
(1)

Where $Z = (N_{TP} + N_{FP} + N_{FN})$ is the normalization constant. and the weights $w_{lou} = N_{TP} / (1 - tau)$, $w_{FP} = |Y_s|$, $w_{FN} = |X|$ control the contributions of the terms.

$$LRP_{IoU}(X, Y_s) := \frac{1}{N_{TP}} \sum_{i=1}^{N_{TP}} (1 - IoU(x_i, y_{x_i})), \tag{2}$$

Mean bounding box Localization Error.

Another interpretation is that 1 - LRP_{IOLI} is the average IoU of the valid detections.

LRP errors

$$LRP_{FP}(X, Y_s) := 1 - Precision = 1 - \frac{N_{TP}}{|Y_s|} = \frac{N_{FP}}{|Y_s|},$$
 (3)

$$LRP_{FN}(X, Y_s) := 1 - Recall = 1 - \frac{N_{TP}}{|X|} = \frac{N_{FN}}{|X|}.$$
 (4)

$$LRP(X, Y_s) := \left(\sum_{i=1}^{N_{TP}} \frac{1 - IoU(x_i, y_{x_i})}{1 - \tau} + N_{FP} + N_{FN}\right) / (N_{TP} + N_{FP} + N_{FN}).$$

(5)

Optimal LRP

$$oLRP := \min_{s} LRP(X, Y_s). \tag{6}$$

Mean optimal LRP:

$$moLRP := \frac{1}{|C|} \sum_{c \in C} oLRP_c.$$
 (7)

References

- https://www.kaggle.com/ruslankl/brain-tumor-detection-v1-0-cnn-vg
 g-16
- https://www.kaggle.com/ruslankl/brain-tumor-detection-v2-0-mask-r -cnn
- https://www.pyimagesearch.com/2016/04/11/finding-extreme-points
 -in-contours-with-opency/
- https://www.pyimagesearch.com/2019/07/08/keras-imagedatagener ator-and-data-augmentation/
- https://towardsdatascience.com/breaking-down-mean-average-precision-map-ae462f623a52
- https://arxiv.org/pdf/1807.01696.pdf

