Typos in Tables and One of the Fathers of Computing

Logarithmic Tables, The Difference Engine, and Babbage

John Haldeman – Hackforge – April/May 2017

Early 1820s

Early 1820s

Early 1820s

Multiply

18793.26 and 54778.18

Quickly

Useful Fact

$$\log_{x}(AB) = \log_{x}(A) + \log_{x}(B)$$

Useful Resource

g. Tabula Logarithmorum										
N.	Log.	N.	Log.	И.	Log.	N.	Log.	N.	Log.	
=	inf neg.	50	1.698 9700	100	2.000 0000	150		200	2. 301 0300	
1	0.0000000	51	1.707 5702	101	2.004 3214	151	2. 178 9769	201		
3	0. 301 0300	52	1.716 0033	103		153		203	2. 307 4960	
4	0.602 0600	54	1. 732 3938	104	2.017 0333	154	2. 187 5207	204	2. 309 630	
5	0.698 9700	55	1.740 3627	105		155		205	2. 311 753	
6	0.778 1513	56	1.748 1880	106		156		206	2.313 867	
7 8	0. 845 0980	57 58	1. 763 4280	108	2. 033 4238	158	2. 198 6571	208	2.318 063	
9	0. 954 2425	59	1.770 8520	109	-	159	-	209	2. 320 146	
10	1,000 0000	60	1.778 1513	III		161		210	2. 322 219	
11	1.041 3927	61 62		112		162		212		
13	1. 113 9434	63	1.799 3405	113	2.053,0784	163		213	2. 328 379	
14	1.146 1280	64		114	-	164	-	214		
15	1. 176 0913	65	1.8129134	115		165		215		
16	1, 204 1200	67	1. 826 0748	117	2. 068 1859	167	2. 222 7165	217	2. 336 459	
18	1. 255 2725	68		118		168		218		
19	1. 278 7536	69	1.838 8491	119		169	1	219	2. 340 444	
20	1, 301 0300	70	1.845 0980	120		170		220	2- 342 422 2- 344 392	
21 22	1. 342 4227	72	1. 857 3325	122	2.086 3598	172	2. 235 5284	222	2. 346 353	
23	1. 361 7278	73	1. 863 3229	123		173		223		
24	1. 380 2112	74	1. 869 2317	-	-	174		-		
25	1. 397 9400	75 76	1.875 0613	125		175		225		
27	1. 431 3638	77	1.886 4907	127	2. 103 8037	177	2. 247 9733	227	2. 356 025	
28	1. 447 1580	78	1. 892 0946	128		178		228	2. 357 934	
29	1. 462 3980	79	1. 903 0900	130		180		230	- State	
30	1. 477 1213	81	1. 908 4850	131		181		231	2. 363 612	
32	1.,505 1500	82		132		182		232		
33	1. 518 5139	83	1.919 0781	133		183		233	2. 367 355	
35	1. 544 0680	85	1. 929 4189	135		185	-	235		
36	1.556 3025	- 86	1. 934 4985	136	2. 133 5389	186	2. 269 5129	236	2. 372 912	
37	1. 568 2017	87	1. 939 5193	137	2. 136 7206	187		237	2. 374 748	
38	1.579 7836	89	1. 949 3900	139		189		239	2. 378 397	
40	1.602 0600	90	1.954 2425	140	2. 146 1280	190	2. 278 7536	240	2. 380 211	
41	1.612 7839	91	1.959 0414	141	2. 149 2191	191	2. 281 0334	241	2. 382 017	
42 43	1. 623 2493	92	1. 963 7878	142	2. 152 2883	192		242	2. 383 815	
44	1.643 4527	94	1.973 1279	144	2. 158 3625	194		244	2. 387 389	
45	1.653 2125	95	1.977 7236	145	2. 161 3680	195	2. 290 0346	245	2. 389 166	
46	1.662 7578	96	1. 982 2712	146	2. 164 3529	196	2. 292 2561	246	2. 390 935	
47	1.672 0979	97 98	1. 986 7717	148		198	2. 296 6652	248	2. 394 451	
49	1.690 1961	99	1. 995 6352	149	2. 173 1863	199	2. 298 8531	249	2. 396 199	
N.	Log.	N.	Log.	N.	Log.	N.	Log.	N.	Log.	

TO SET ASSESSED			2 50	
vulgarium.				Const.

	N.	Log.	N.	Log.	N.	Log.	N.	Log.	N.	Log.	Townson.
	250	2. 397 9400	300	2. 477 1213 2. 478 5665	350 351	2. 544 0680 2. 545 3071	400	2,602 0600	450	2.653 2105	I
ı	252	2. 401 4005	302	2. 480 0069	352	2. 546 5427	402	2, 604 2261	452	2.655 1384	I
	253 254	2. 403 1205	303	2. 481 4426	353	2. 547 7747	404	2,605 3050	453	2. 656 0982	
i	-	2. 406 5402	305	2. 484 2998	355	2. 550 2284	405	2, 607 4550	455	2.6580114	ı
	256	2. 408 2400	306	2. 485 7214	356	2. 551 4500	406	2. 608 5260	456	2.658 9648	ı
ı	257	2. 409 9331	307	2. 487 1384	357 358	2. 552 6682	407	2. 610 6602	457	2,659 9162	ı
		2. 413 2998	309	2. 489 9585	359	2. 555 0944	409	2, 611 7233	459	2, 661 8127	ı
	260	2. 414 9733	310	2. 491 3617	360	2. 556 3025	410	2.612 7839	460	2. 662 7578	i
ı	261	2. 416 6405	311	2. 492 7604	361 362	2.557 5072	411	2.613 8418	461	2, 663 7009	ı
ı	263	2. 419 9557	313	2. 495 5443	363	2. 559 9066	413	2.615 9501	463	2. 665 5810	ı
	264	2. 421 6039	314	2. 496 9296	364	2. 561 1014	414	2.617 0003	464	2.666 5180	
		2. 423 2459	315	2. 498 3106	365 366	2. 562 2929	415	2,618 0481	465	2. 667 4530	ı
ı	267	2. 426 5113	317	2. 501 0593	367	2. 564 6661	417	2, 620 1361	467	2.669 3169	ŀ
	268	2, 428 1348	318	2.502 4271	368 369	2. 565 8478	418	2.621 1763	468	2.670 2459	ı
۱	270	2. 431 3638	320	2, 505 1500	370	2, 568 2017	420	2. 623 2493	470	2. 672 0979	H
ı	271	2. 432 9693	321	2. 506 5050	371	2. 569 3739	421	2. 624 2821	471	2,673 0209	ı
	272	2. 434 5689	322	2.507 8559	372 373	2. 570 5429	422	2. 625 3125	472	2. 673 9420	ı
8	274	2, 437 7506	324	2, 510 5450	374	2. 572 8716	424	2, 627 3659	474	2. 675 7783	b
	275	2. 439 3327	325	2.511 8834	375	2. 574 0313	425	2.628 3889	475	2, 676 6936	ı
ı	276	2, 440 9091	326	2. 513 2176	376 377	2. 575 1878	426	2,629 4096	476	2. 677 6070	ı
8	278	2, 444 0448	328	2, 515 8738	378	2. 577 4918	428	2. 631 4438	478	2.679 4279	
	279	2, 445 6042	329	2. 517 1959	379	2, 578 6392	429	2.632 4573	479	2.680 3355	ı
ı	280	2. 447 1580	330	2. 518 5139	380	2.579 7836	430 431	2.633 4685	480	2, 681 2412	ı
	282	2. 450 2491	332	2. 521 1381	382	2. 582 0634	432	2.635 4837	482	2. 683 0470	
	283	2. 451 7864	333	2. 522 4442	383	2. 583 1988	433	2.636 4879	483	2. 683 9471	ı
	285	2. 454 8449	335	2. 523 7465	384	2, 584 3312	434	2. 638 4893	485	2. 685 7417	
	286	2. 456 3660	336	2. 526 3393	386	2. 586 5873	436	2. 639 4865	486	2,686 6363	ı
8	287	2. 457 8819	337	2. 527 6299	387	2. 587 7110	437	2.640 4814	487	2. 687 5290	
ı	289	2. 459 3925	339	2, 528 9167	388	2.588 8317	438	2. 642 4645	489	2, 689 3089	
	290	2, 462 3980	340	2. 531 4789	390	2, 591 0646	440	2. 643 4527	490	2.690 1961	P
g	291	2, 463 8930	341	2. 532 7544	391	2, 592 1768	441	2. 644 4386	491	2.691 0815	ı
	293	2, 466 8676	343	2, 534 0261	393	2. 594 3926	443	2. 646 4037	493	2. 692 8469	ŀ
	294	2. 468 3473	344	2. 536 5584	394	2, 595 4962	444	2.647 3830	494	2.693 7269	
	295	2. 469 8220	345	2. 537 8191	395	2. 596 5971	445	2. 648 3600	495	2, 694 6052	
	297	2, 472 7564	347	2, 539 0761	397	2, 598 7905	447	2.650 3075	497	2.696 3564	
	298	2. 474 2163	348	2. 541 5792	398	2. 599 8831	448	2.651 2780	498		1
	-	-4/50/12	=	34~ 0234	==	====	-		=		1
	N.	Log.	N.	Log.	N.	Log.	N.	Log.	N.	Log.	

"Tabula logarithmorum vulgarium" from Logarithmischtrigonometrische Tafeln nebst andern zum gebrauch der Mathematik eingerichteten Tafeln und Formeln, Leipzig: 1797, by Georg, Freiherr von Vega (1754-1802).

"Math 837.97*, Houghton Library, Harvard University"

Multiplication With Log Table Lookups

 $\log_{10}(18793.26) \approx 4.274005$

 $\log_{10}(54778.18) \approx 4.738605$

 $\log_{10}(18793.26 \times 54778.18) \approx 4.274005 + 4.738605 = 9.01261$

 $18793.26 \times 54778.18 \approx 10^{9.01261} = 10^{0.01261} \times 10^9 =$

 1.02946×10^9

Multiplication!

This method takes 3 lookups and 1 addition – super fast

- Quality Problems?
 - Incorrect Addition
 - Human error in looking up the numbers incorrectly in the table
 - Mistakes in the tables themselves

Babbage May Have Been Preoccupied with Lookup Tables..... (studies in human error in lookups)

40. Specimen of Logarithmic Tables, printed with different coloured inks and on variously-coloured papers, in twenty-one volumes 8vo. London. 1831.

The object of this Work, of which one single copy only was printed, is to ascertain by experiment the tints of the paper and colours of the inks least fatiguing to the eye.

One hundred and fifty-one variously-coloured papers were chosen, and the same two pages of my stereotype Table of Logarithms were printed

upon them in inks of the following green, dark green, clive, yellow, ligh

Each of these twenty volumes on numbered in the same order, and each kind of ink.

The twenty-first volume contains r in gold, silver, and copper, upon vell

For the same purpose, about thirt logarithms were printed on thick dr

An account of this work may be (Brewster's,) 1832. Vol. vi. p. 144

38 — Specimen of Logarithmic Tables, printed with different coloured inks on variously coloured papers, in 21 vols., 8vo, half-bound, unique, this being the only copy printed.

["The object of the experiment was to ascertain the colour of the inks and the tints of papers least fatiguing to the eye. For that purpose about 140 differently coloured papers were chosen, and ten different colours of ink were employed." One volume is printed in metallic inks.]

Errors in the Tables Themselves:

"I wish to God these calculations had been executed by steam"

- Charles Babbage (1821) - Pictured

"An undetected error in a logarithmic table is like a sunken rock at sea yet undiscovered, upon which it is impossible to say what wrecks may have taken place."

- Sir John Herschel, 1842

Useful Fact

$$ln(1-x) = -(x + x^2/2 + x^3/3 + x^4/4 + x^5/5 + ...)$$

Important thing – if you can calculate a polynomial you can approximate a logarithm

Similar stuff exists for other common items in lookup tables (trig functions for example)

The Difference Method

For an arbitrary polynomial, you can calculate the values in the series using only subtraction/addition

Pictured: $f(x) = x^2 + 4$

The Difference Engine

A Machine to Calculate Polynomials Using the Difference Method and Print the Results

8 Storage Registers and 7 Adders

Shown: The Sample built in 1820

$x^7 + 4x$: Initialization

X	f(x)	1	2	3	4	5	6	7
1	5	131	1932	10206	25200	31920	20160	5040
2	136	2063	12138	35406	57120	52080	25200	5040
3	2199	14201	47544	92526	109200	77280	30240	5040
4	16400	61745	140070	201726	186480	107520	35280	
5	78145	201815	341796	388206	294000	142800		
6	279960	543611	730002	682206	436800			
7	823571	1273613	1412208	1119006				
8	2097184	2685821	2531214					
9	4783005	5217035						
10	10000040							

x⁷ + 4x: 7 Register Continuous Addition (continuously add adjacent columns)

X	f(x)	1	2	3	4	5	6	7
1	5	131	1932	10206	25200	31920	20160	5040
2	136	2063	12138	35406	57120	52080	25200	5040
3	2199	14201	47544	92526	109200	77280	30240	5040
4	16400	61745	140070	201726	186480	107520	35280	5040
5	78145	201815	341796	388206	294000	142800	40320	5040
6	279960	543611	730002	682206	436800	183120	45360	5040
7	823571	1273613	1412208	1119006	619920	228480	50400	5040
8	2097184	2685821	2531214	1738926	848400	278880	55440	5040
9	4783005	5217035	4270140	2587326	1127280	334320	60480	5040
10	10000040	9487175	6857466	3714606	1461600	394800	65520	5040
11	19487215	16344641	10572072	5176206	1856400	460320	70560	5040
12	35831856	26916713	15748278	7032606	2316720	530880	75600	5040
13	62748569	42664991	22780884	9349326	2847600	606480	80640	5040
14	105413560	65445875	32130210	12196926	3454080	687120	85680	5040
15	170859435	97576085	44327136	15651006	4141200	772800	90720	5040
16	268435520	141903221	59978142	19792206	4914000	863520	95760	5040
17	410338741	201881363	79770348	24706206	5777520	959280	100800	5040

The Difference Engine – Completed Machine (2002)

https://youtu.be/qctHEGKr9Zs?t=53

The Difference Engine's Legacy

Babbage never completed his machine due to:

- Economics
- Politics
- Personalities (Babbage, Joseph Clement, Robert Peel)

Moved on to the Analytical Engine: a general-purpose programmable computing machine

Lessons for Today

- Precomputation Saves Time/Resources
 - A reason caching is popular

 Technology and ingenuity is an important for success, but so is politics/personalities/economics

 The difference method and Babbage's memory efficient computation of it has interesting lessons algorithmically

Selinger Optimizer Algorithm

 algorithm: compute optimal way to generate every sub-join: size 1, size 2, ... n (in that order)

e.g. {A}, {B}, {C}, {AB}, {AC}, {BC}, {ABC}

R ←set of relations to join

For i in {1... | R | }:

for S in {all length i subsets of R}:

optjoin(S) = a join (S-a), where a is the relation that minimizes:

cost(optjoin(S-a))+

Precomputed in previous iteration

min. cost to join (S-a) to a +

min. access cost for a

Lessons for Today

Caching

Selinger Optimizer Algorithm

algorithm: compute optimal way to generate every sub-join:

Memory Efficient
Dynamic Programming
Algorithms

min. access cost for a

Sir Robert Peel

Computers are Old

- Well.... Computation is old
- A great deal of the things you are working on have long histories
- I think every modern developer can relate to Babbage in several ways
- Today:
 - Saying the industry or profession is "immature" is not really true
 - Keeping Up:
 - Obsolescence anxiety might be a little bit of an illusion
 - Problem anxiety is essential

Great Resources

CHARLES BABBAGE and the Difference Engine - Aditi Kar

http://people.maths.ox.ac.uk/kar/Babbage.html

A Practical Use For Logarithms, Part 2 - Santo D'Agostino

https://qedinsight.wordpress.com/2011/04/22/a-practical-use-for-logarithms-part-2-how-we-multiplied-large-numbers-40-years-ago-and-how-integral-transforms-use-the-same-basic-idea/

The Babbage Engine – Computer History Museum

http://www.computerhistory.org/babbage/

Babbage's Difference Engine No. 2, Part 1: The method of finite differences

https://www.youtube.com/watch?v=PFMBU17eo 4