

14 Resilience engineering

Objectives

The objective of this chapter is to introduce the idea of resilience engineering where systems are designed to withstand adverse external events such as operator errors and cyberattacks. When you have read this chapter, you will:

- understand the differences between resilience, reliability, and security and why resilience is important for networked systems;
- be aware of the fundamental issues in building resilient systems, namely, recognition of problems, resistance to failures and attacks, recovery of critical services, and system reinstatement;
- understand why resilience is a sociotechnical rather than a technical issue and the role of system operators and managers in providing resilience;
- have been introduced to a system design method that supports resilience.

Contents

- 14.1 Cybersecurity
- 14.2 Sociotechnical resilience
- 14.3 Resilient systems design

In April 1970, the Apollo 13 manned mission to the moon suffered a catastrophic failure. An oxygen tank exploded in space, resulting in a serious loss of atmospheric oxygen and oxygen for the fuel cells that powered the spacecraft. The situation was life threatening, with no possibility of rescue. There were no contingency plans for this situation. However, by using equipment in unintended ways and by adapting standard procedures, the combined efforts of the spacecraft crew and ground staff worked around the problems. The spacecraft was brought back to earth safely, and all the crew survived. The overall system (people, equipment, and processes) was *resilient*. It adapted to cope with and recover from the failure.

I introduced the idea of resilience in Chapter 10, as one of the fundamental attributes of system dependability. I defined resilience in Chapter 10 as:

The resilience of a system is a judgment of how well that system can maintain the continuity of its critical services in the presence of disruptive events, such as equipment failure and cyberattacks.

This is not a "standard" definition of resilience—different authors such as Laprie (Laprie 2008) and Hollnagel (Hollnagel 2006) propose general definitions based on the ability of a system to withstand change. That is, a resilient system is one that can operate successfully when some of the fundamental assumptions made by the system designers no longer hold.

For example, an initial design assumption may be that users will make mistakes but will not deliberately seek out system vulnerabilities to be exploited. If the system is used in an environment where it may be subject to cyberattacks, this is no longer true. A resilient system can cope with the environmental change and can continue to operate successfully.

While these definitions are more general, my definition of resilience is closer to how the term is now used in practice by governments and industry. It embeds three essential ideas:

- 1. The idea that some of the services offered by a system are critical services whose failure could have serious human, social, or economic effects.
- The idea that some events are disruptive and can affect the ability of a system to deliver its critical services.
- 3. The idea that resilience is a judgment—there are no resilience metrics, and resilience cannot be measured. The resilience of a system can only be assessed by experts, who can examine the system and its operational processes.

Fundamental work on system resilience started in the safety-critical systems community, where the aim was to understand what factors led to accidents being avoided and survived. However, the increasing number of cyberattacks on networked systems has meant that resilience is now often seen as a security issue. It is essential to build systems that can withstand malicious cyberattacks and continue to deliver services to their users.

Obviously, resilience engineering is closely related to reliability and security engineering. The aim of reliability engineering is to ensure that systems do not fail. A system failure is an externally observable event, which is often a consequence of a fault in the system. Therefore, techniques such as fault avoidance and fault tolerance, as discussed in Chapter 11, have been developed to reduce the number of system faults and to trap faults before they lead to system failure.

In spite of our best efforts, faults will always be present in a large, complex system, and they may lead to system failure. Delivery schedules are short, and testing budgets are limited. Development teams are working under pressure, and it is practically impossible to detect all of the faults and security vulnerabilities in a software system. We are building systems that are so complex (see Chapter 19) that we cannot possibly understand all of the interactions between the system components. Some of these interactions may be a trigger for overall system failure.

Resilience engineering does not focus on avoiding failure but rather on accepting the reality that failures will occur. It makes two important assumptions:

- Resilience engineering assumes that it is impossible to avoid system failures and so is concerned with limiting the costs of these failures and recovering from them.
- Resilience engineering assumes that good reliability engineering practices have been used to minimize the number of technical faults in a system. It therefore places more emphasis on limiting the number of system failures that arise from external events such as operator errors or cyberattacks.

In practice, technical system failures are often triggered by events that are external to the system. These events may involve operator actions or user errors that are unexpected. Over the last few years, however, as the number of networked systems has increased, these events have often been cyberattacks. In a cyberattack, a malicious person or group tries to damage the system or to steal confidential information. These are now more significant than user or operator errors as a potential source of system failure.

Because of the assumption that failures will inevitably occur, resilience engineering is concerned with both the immediate recovery from failure to maintain critical services and the longer-term reinstatement of all system services. As I discuss in Section 14.3, this means that system designers have to include system features to maintain the state of the system's software and data. In the event of a failure, essential information may then be restored.

Four related resilience activities are involved in the detection of and recovery from system problems:

- Recognition The system or its operators should be able to recognize the symptoms of a problem that may lead to system failure. Ideally, this recognition should be possible before the failure occurs.
- Resistance If the symptoms of a problem or signs of a cyberattack are detected
 early, then resistance strategies may be invoked that reduce the probability that the
 system will fail. These resistance strategies may focus on isolating critical parts of
 the system so that they are unaffected by problems elsewhere. Resistance includes

Figure 14.1 Resilience activities

proactive resistance where defenses are included in a system to trap problems and reactive resistance where actions are taken when a problem is discovered.

- 3. *Recovery* If a failure occurs, the aim of the recovery activity is to ensure that critical system services are restored quickly so that system users are not seriously affected by the failure.
- 4. *Reinstatement* In this final activity, all of the system services are restored, and normal system operation can continue.

These activities lead to changes to the system state as shown in Figure 14.1, which shows the state changes in the system in the event of a cyberattack. In parallel with normal system operation, the system monitors network traffic for possible cyberattacks. In the event of a cyberattack, the system moves to a resistance state in which normal services may be restricted.

If resistance successfully repels the attack, normal service is resumed. Otherwise, the system moves to a recovery state where only critical services are available. Repairs to the damage caused by the cyberattack are carried out. Finally, when repairs are complete, the system moves to a reinstatement state. In this state, the system's services are incrementally restored. Finally, when all restoration is complete, normal service is resumed.

As the Apollo 13 example illustrates, resilience cannot be "programmed in" to a system. It is impossible to anticipate everything that might go wrong and every context where problems might arise. The key to resilience, therefore, is flexibility and adaptability. As I discuss in Section 14.2, it should be possible for system operators and managers to take actions to protect and repair the system, even if these actions are abnormal or are normally disallowed.

Increasing the resilience of a system of course has significant costs. Software may have to be purchased or modified, and additional investments made in hardware or cloud services to provide backup systems that can be used in the event of a system failure. The benefits from these costs are impossible to calculate because the losses from a failure or attack can only be calculated after the event.

Companies may therefore be reluctant to invest in resilience if they have never suffered a serious attack or associated loss. However, the increasing number of high-profile cyberattacks that have damaged business and government systems have increased awareness of the need for resilience. It is clear that losses can be very significant, and sometimes businesses may not survive a successful cyberattack. Therefore, there is increasing investment in resilience engineering to reduce the business risks associated with system failure.

14.1 Cybersecurity

Maintaining the security of our networked infrastructure and government, business, and personal computer systems is one of the most significant problems facing our society. The ubiquity of the Internet and our dependence on computer systems have created new criminal opportunities for theft and social disruption. It is very difficult to measure the losses due to cybercrime. However, in 2013, it was estimated that losses to the global economy due to cybercrime were between \$100 billion and \$500 billion (InfoSecurity 2013).

As I suggested in Chapter 13, cybersecurity is a broader issue than system security engineering. Software security engineering is a primarily technical activity that focuses on techniques and technologies to ensure that application systems are secure. Cybersecurity is a sociotechnical concern. It covers all aspects of ensuring the protection of citizens, businesses, and critical infrastructures from threats that arise from their use of computers and the Internet. While technical issues are important, technology on its own cannot guarantee security. Factors that contribute to cybersecurity failures include:

- organizational ignorance of the seriousness of the problem,
- poor design and lax application of security procedures,
- human carelessness, and
- inappropriate trade-offs between usability and security.

Cybersecurity is concerned with all of an organization's IT assets from networks through to application systems. The vast majority of these assets are externally procured, and companies do not understand their detailed operation. Systems such as web browsers are large and complex programs, and inevitably they contain bugs that can be a source of vulnerability. The different systems in an organization are related to each other in many different ways. They may be stored on the same disk, share data, rely on common operating systems components, and so on. The organizational "system of systems" is incredibly complex. It is impossible to ensure that it is free of security vulnerabilities.

Consequently, you should generally assume that your systems are vulnerable to cyberattack and that, at some stage, a cyberattack is likely to occur. A successful cyberattack can have very serious financial consequences for businesses, so it is essential that attacks are contained and losses minimized. Effective resilience engineering at the organizational and systems levels can repel attacks and bring systems back into operation quickly and so limit the losses incurred.

In Chapter 13, where I discussed security engineering, I introduced concepts that are fundamental to resilience planning. Some of these concepts are:

- 1. Assets, which are systems and data that have to be protected. Some assets are more valuable than others and so require a higher level of protection.
- 2. Threats, which are circumstances that can cause harm by damaging or stealing organizational IT infrastructure or system assets.
- 3. Attacks, which are manifestations of a threat where an attacker aims to damage or steal IT assets, such as websites or personal data.

Three types of threats have to be considered in resilience planning:

- 1. Threats to the confidentiality of assets In this case, data is not damaged, but it is made available to people who should not have access to it. An example of a threat to confidentiality is when a credit card database held by a company is stolen, with the potential for illegal use of card information.
- 2. Threats to the integrity of assets These are threats where systems or data are damaged in some way by a cyberattack. This may involve introducing a virus or a worm into software or corrupting organizational databases.
- 3. Threats to the availability of assets These are threats that aim to deny use of assets by authorized users. The best-known example is a denial-of-service attack that aims to take down a website and so make it unavailable for external use.

These are not independent threat classes. An attacker may compromise the integrity of a user's system by introducing malware, such as a botnet component. This may then be invoked remotely as part of a distributed denial-of-service attack on another system. Other types of malware may be used to capture personal details and so allow confidential assets to be accessed.

To counter these threats, organizations should put controls in place that make it difficult for attackers to access or damage assets. It is also important to raise awareness of cybersecurity issues so that people know why these controls are important and so are less likely to reveal information to an attacker.

Examples of controls that may be used are:

- 1. Authentication, where users of a system have to show that they are authorized to access the system. The familiar login/password approach to authentication is a universally used but rather weak control.
- 2. Encryption, where data is algorithmically scrambled so that an unauthorized reader cannot access the information. Many companies now require that laptop disks are encrypted. If the computer is lost or stolen, this reduces the likelihood that the confidentiality of the information will be breached.
- 3. Firewalls, where incoming network packets are examined, then accepted or rejected according to a set of organizational rules. Firewalls can be used to

ensure that only traffic from trusted sources is allowed to pass from the external Internet into the local organizational network.

A set of controls in an organization provides a layered protection system. An attacker has to get through all of the protection layers for the attack to succeed. However, there is a trade-off between protection and efficiency. As the number of layers of protection increases, the system slows down. The protection systems consume an increasing amount of memory and processor resources, leaving less available to do useful work. The more security, the more inconvenient it is for users and the more likely that they will adopt insecure practices to increase system usability.

As with other aspects of system dependability, the fundamental means of protecting against cyberattacks depends on redundancy and diversity. Recall that redundancy means having spare capacity and duplicated resources in a system. Diversity means that different types of equipment, software, and procedures are used so that common failures are less likely to occur across a number of systems. Examples of where redundancy and diversity are valuable for cyber-resilience are:

- For each system, copies of data and software should be maintained on separate computer systems. Shared disks should be avoided if possible. This supports recovery after a successful cyberattack (recovery and reinstatement).
- 2. Multi-stage diverse authentication can protect against password attacks. As well as login/password authentication, additional authentication steps may be involved that require users to provide some personal information or a code generated by their mobile device (resistance).
- 3. Critical servers may be overprovisioned; that is, they may be more powerful than is required to handle their expected load. The spare capacity means that attacks may be resisted without necessarily degrading the normal response of the server. Furthermore, if other servers are damaged, spare capacity is available to run their software while they are being repaired (resistance and recovery).

Planning for cybersecurity has to be based on assets and controls and the 4 Rs of resilience engineering—recognition, resistance, recovery, and reinstatement. Figure 14.2 shows a planning process that may be followed. The key stages in this process are:

- 1. Asset classification The organization's hardware, software, and human assets are examined and classified depending on how essential they are to normal operations. They may be classed as critical, important, or useful.
- 2. Threat identification For each of the assets (or at least the critical and important assets), you should identify and classify threats to that asset. In some cases, you may try to estimate the probability that a threat will arise, but such estimates are often inaccurate as you don't have enough information about potential attackers.
- Threat recognition For each threat or, sometimes asset/threat pair, you should identify how an attack based on that threat might be recognized. You may

Figure 14.2 Cyberresilience planning

decide that additional software needs to be bought or written for threat recognition or that regular checking procedures are put in place.

- Threat resistance For each threat or asset/threat pair, you should identify possible resistance strategies. These either may be embedded in the system (technical strategies) or may rely on operational procedures. You may also need to think of threat neutralization strategies so that the threat does not recur.
- 5. Asset recovery For each critical asset or asset/threat pair, you should work out how that asset could be recovered in the event of a successful cyberattack. This may involve making extra hardware available or changing backup procedures to make it easier to access redundant copies of data.
- 6. Asset reinstatement This is a more general process of asset recovery where you define procedures to bring the system back into normal operation. Asset reinstatement should be concerned with all assets and not simply assets that are critical to the organization.

Information about all of these stages should be maintained in a cyber-resilience plan. This plan should be regularly updated, and, wherever possible, the strategies identified should be tested in mock attacks on the system.

Another important part of cyber-resilience planning is to decide how to support a flexible response in the event of a cyberattack. Paradoxically, resilience and security requirements often conflict. The aim of security is usually to limit privilege as far as possible so that users can only do what the security policy of the organization allows. However, to deal with problems, a user or system operator may have to take the initiative and take actions that are normally carried out by someone with a higher level of privilege.

For example, the system manager of a medical system may not normally be allowed to change the access rights of medical staff to records. For security reasons, access permissions have to be formally authorized, and two people need to be involved in making the change. This reduces the chances of system managers colluding with attackers and allowing access to confidential medical information.

Now, imagine that the system manager notices that a logged-in user is accessing a large number of records outside of normal working hours. The manager suspects that an account has been compromised and that the user accessing the records is not actually the authorized user. To limit the damage, the user's access rights should be removed and a check then made with the authorized user to see if the accesses were actually illegal. However, the security procedures limiting the rights of system managers to change users' permissions make this impossible.

Resilience planning should take such situations into account. One way of doing so is to include an "emergency" mode in systems where normal checks are ignored. Rather than forbidding operations, the system logs what has been done and who was responsible. Therefore, the audit trail of emergency actions can be used to check that a system manager's actions were justified. Of course, there is scope for misuse here, and the existence of an emergency mode is itself a potential vulnerability. Therefore, organizations have to trade off possible losses against the benefits of adding more features to a system to support resilience.

14.2 Sociotechnical resilience

Fundamentally, resilience engineering is a sociotechnical rather than a technical activity. As I explained in Chapter 10, a sociotechnical system includes hardware, software, and people and is influenced by the culture, policies, and procedures of the organization that owns and uses the system. To design a resilient system, you have to think about sociotechnical systems design and not exclusively focus on software. Resilience engineering is concerned with adverse external events that can lead to system failure. Dealing with these events is often easier and more effective in the broader sociotechnical system.

For example, the Mentcare system maintains confidential patient data, and a possible external cyberattack may aim to steal that data. Technical safeguards such as authentication and encryption may be used to protect the data, but these are not effective if an attacker has access to the credentials of a genuine system user. You could try to solve this problem at the technical level by using more complex authentication procedures. However, these procedures annoy users and may lead to vulnerabilities as they write down authentication information. A better strategy may be to introduce organizational policies and procedures that emphasize the importance of not sharing login credentials and that tell users about easy ways to create and maintain strong passwords.

Resilient systems are flexible and adaptable so that they can cope with the unexpected. It is very difficult to create software that can adapt to cope with problems that have not been anticipated. However, as we saw from the Apollo 13 accident, people are very good at this. Therefore, to achieve resilience, you should take advantage of the fact that people are an inherent part of sociotechnical systems. Rather than try to anticipate and deal with all problems in software, you should leave some types of problem solving to the people responsible for operating and managing the software system.

To understand why you should leave some types of problem solving to people, you have to consider the hierarchy of sociotechnical systems that includes technical, software-intensive systems. Figure 14.3 shows that technical systems S1 and S2 are

Figure 14.3 Nested technical and sociotechnical systems

part of a broader sociotechnical system ST1. That sociotechnical system includes operators who monitor the condition of S1 and S2 and who can take actions to resolve problems in these systems. If system S1 (say) fails, then the operators in ST1 may detect that failure and take recovery actions before the software failure leads to failure in the broader sociotechnical system. Operators may also invoke recovery and reinstatement procedures to get S1 back to its normal operating state.

Operational and management processes are the interface between the organization and the technical systems that are used. If these processes are well designed, they allow people to discover and to cope with technical system failures, as well as ensuring that operator errors are minimized. As I discuss in Section 14.2.2, rigid processes that are overautomated are not inherently resilient. They do not allow people to use their skills and knowledge to adapt and change processes to cope with the unexpected and deal with unanticipated failures.

The system ST1 is one of a number of sociotechnical systems in the organization. If the system operators cannot contain a technical system failure, then this may lead to a failure in the sociotechnical system ST1. Managers at the organizational level then must detect the problem and take steps to recover from it. Resilience is therefore an organizational as well as a system characteristic.

Hollnagel (Hollnagel 2010), who was an early advocate of resilience engineering, argues that it is important for organizations to study and learn from successes as well as failure. High-profile safety and security failures lead to inquiries and changes in practice and procedures. However, rather than respond to these failures, it is better to avoid them by observing how people deal with problems and maintain resilience. This good practice can then be disseminated throughout the organization. Figure 14.4 shows four characteristics that Hollnagel suggests reflect the resilience of an organization. These characteristics are:

- The ability to respond Organizations have to be able to adapt their processes and
 procedures in response to risks. These risks may be anticipated risks, or they
 may be detected threats to the organization and its systems. For example, if a
 new security threat is detected and publicized, a resilient organization can make
 changes quickly so that this threat does not disrupt its operations.
- The ability to monitor Organizations should monitor both their internal
 operations and their external environment for threats before they arise. For
 example, a company should monitor how its employees follow security policies.

Figure 14.4 Characteristics of resilient organizations

If potentially insecure behavior is detected, the company should respond by taking actions to understand why this has occurred and to change employee behavior.

- 3. The ability to anticipate A resilient organization should not simply focus on its current operations but should anticipate possible future events and changes that may affect its operations and resilience. These events may include technological innovations, changes in regulations or laws, and modifications in customer behavior. For example, wearable technology is starting to become available, and companies should now be thinking about how this might affect their current security policies and procedures.
- 4. The ability to learn Organizational resilience can be improved by learning from experience. It is particularly important to learn from successful responses to adverse events such as the effective resistance of a cyberattack. Learning from success allows good practice to be disseminated throughout the organization.

As Hollnagel says, to become resilient organizations have to address all of these issues to some extent. Some will focus more on one quality than others. For example, a company running a large-scale data center may focus mostly on monitoring and responsiveness. However, a digital library that manages long-term archival information may have to anticipate how future changes may affect its business as well as respond to any immediate security threats.

Human error 14.2.1

Early work on resilience engineering was concerned with accidents in safetycritical systems and with how the behavior of human operators could lead to safetyrelated system failures. This led to an understanding of system defenses that is equally applicable to systems that have to withstand malicious as well as accidental human actions.

We know that people make mistakes, and, unless a system is completely automated, it is inevitable that users and system operators will sometimes do the wrong thing. Unfortunately, these human errors sometimes lead to serious system failures. Reason (Reason, 2000) suggests that the problem of human error can be viewed in two ways:

The person approach Errors are considered to be the responsibility of the individual and "unsafe acts" (such as an operator failing to engage a safety barrier)

- are a consequence of individual carelessness or reckless behavior. People who adopt this approach believe that human errors can be reduced by threats of disciplinary action, more stringent procedures, retraining, and so on. Their view is that the error is the fault of the individual responsible for making the mistake.
- 2. The systems approach The basic assumption is that people are fallible and will make mistakes. People make mistakes because they are under pressure from high workloads, because of poor training, or because of inappropriate system design. Good systems should recognize the possibility of human error and include barriers and safeguards that detect human errors and allow the system to recover before failure occurs. When a failure does occur, the best way to avoid its recurrence is to understand how and why the system defenses did not trap the error. Blaming and punishing the person who triggered the failure does not improve long-term system safety.

I believe that the systems approach is the right one and that systems engineers should assume that human errors will occur during system operation. Therefore, to improve the resilience of a system, designers have to think about the defenses and barriers to human error that could be part of a system. They should also think about whether these barriers should be built into the technical components of the system. If not, they could be part of the processes, procedures, and guidelines for using the system. For example, two operators may be required to check critical system inputs.

The barriers and safeguards that protect against human errors may be technical or sociotechnical. For example, code to validate all inputs is a technical defense; an approval procedure for critical system updates that needs two people to confirm the update is a sociotechnical defense. Using diverse barriers means that shared vulnerabilities are less likely and that a user error is more likely to be trapped before system failure.

In general, you should use redundancy and diversity to create a set of defensive layers (Figure 14.5), where each layer uses a different approach to deter attackers or to trap component failures or human errors. Dark blue barriers are software checks; light blue barriers are checks carried out by people.

As an example of this approach to defense in depth, some of the checks for controller errors that may be part of an air traffic control system include:

- 1. A conflict alert warning as part of an air traffic control system When a controller instructs an aircraft to change its speed or altitude, the system extrapolates its trajectory to see if it intersects with any other aircraft. If so, it sounds an alarm.
- Formalized recording procedures for air traffic management The same ATC
 system may have a clearly defined procedure setting out how to record the control instructions that have been issued to aircraft. These procedures help controllers check if they have issued the instruction correctly and make the information
 visible to others for checking.
- 3. *Collaborative checking* Air traffic control involves a team of controllers who constantly monitor each other's work. When a controller makes a mistake, others usually detect and correct it before an incident occurs.

Figure 14.5 Defensive layers

Reason (Reason 2000) draws on the idea of defensive layers in a theory of how human errors lead to system failures. He introduces the so-called Swiss cheese model, which suggests that defensive layers are not solid barriers but are instead like slices of Swiss cheese. Some types of Swiss cheese, such as Emmenthal, have holes of varying sizes in them. Reason suggests that vulnerabilities, or what he calls latent conditions in the layers, are analogous to these holes.

These latent conditions are not static—they change depending on the state of the system and the people involved in system operation. To continue with the analogy, the holes change size and move around the defensive layers during system operation. For example, if a system relies on operators checking each other's work, a possible vulnerability is that both make the same mistake. This is unlikely under normal conditions so, in the Swiss cheese model, the hole is small. However, when the system is heavily loaded and the workload of both operators is high, then mistakes are more likely. The size of the hole representing this vulnerability increases.

Failure in a system with layered defenses occurs when there is some external trigger event that has the potential to cause damage. This event might be a human error (which Reason calls an active failure) or it could be a cyberattack. If all of the defensive barriers fail, then the system as a whole will fail. Conceptually, this corresponds to the holes in the Swiss cheese slices lining up, as shown in Figure 14.6.

This model suggests that different strategies can be used to increase system resilience to adverse external events:

- Reduce the probability of the occurrence of an external event that might trigger system failures. To reduce human errors, you may introduce improved training for operators or give operators more control over their workload so that they are not overloaded. To reduce cyberattacks, you may reduce the number of people who have privileged system information and so reduce the chances of disclosure to an attacker.
- 2. Increase the number of defensive layers. As a general rule, the more layers that you have in a system, the less likely it is that the holes will line up and a system failure will occur. However, if these layers are not independent, then they may share a common vulnerability. Thus, the barriers are likely to have the same "hole" in the same place, so there is only a limited benefit in adding a new layer.

Figure 14.6 Reason's Swiss cheese model of system failure

- 3. Design a system so that diverse types of barriers are included. This means that the "holes" will probably be in different places, and so there is less chance of the holes lining up and failing to trap an error.
- 4. Minimize the number of latent conditions in a system. Effectively, this means reducing the number and size of system "holes." However, this may significantly increase systems engineering costs. Reducing the number of bugs in the system increases testing and V & V costs. Therefore, this option may not be cost-effective.

In designing a system, you need to consider all of these options and make choices about what might be the most cost-effective ways to improve the system's defenses. If you are building custom software, then using software checking to increase the number and diversity of layers may be the best option. However, if you are using off-the-shelf software, then you may have to consider how sociotechnical defenses may be added. You may decide to change training procedures to reduce the chances of problems occurring and to make it easier to deal with incidents when they arise.

14.2.2 Operational and management processes

All software systems have associated operational processes that reflect the assumptions of the designers about how these systems will be used. Some software systems, particularly those that control or are interfaced to special equipment, have trained operators who are an intrinsic part of the control system. Decisions are made during the design stage about which functions should be part of the technical system and which functions should be the operator's responsibility. For example, in an imaging system in a hospital, the operator may have the responsibility of checking the quality of the images immediately after they have been processed. This check allows the imaging procedure to be repeated if there is a problem.

Operational processes are the processes that are involved in using the system for its defined purpose. For example, operators of an air traffic control system follow specific processes when aircraft enter and leave airspace, when they have to change height or speed, when an emergency occurs, and so on. For new systems, these operational processes have to be defined and documented during the system development process. Operators may have to be trained and other work processes adapted to make effective use of the new system.

Most software systems, however, do not have trained operators but have system users, who use the system as part of their work or to support their personal interests. For personal systems, the designers may describe the expected use of the system but have no control over how users will actually behave. For enterprise IT systems, however, training may be provided for users to teach them how to use the system. Although user behavior cannot be controlled, it is reasonable to expect that they will normally follow the defined process.

Enterprise IT systems will also usually have system administrators or managers who are responsible for maintaining that system. While they are not part of the business process supported by the system, their job is to monitor the software system for errors and problems. If problems arise, system managers take action to resolve them and restore the system to its normal operational state.

In the previous section, I discussed the importance of defense in depth and the use of diverse mechanisms to check for adverse events that could lead to system failure. Operational and management processes are an important defense mechanism, and, in designing a process, you need to find a balance between efficient operation and problem management. These are often in conflict as shown in Figure 14.7 as increasing efficiency removes redundancy and diversity from a system.

Over the past 25 years, businesses have focused on so-called process improvement. To improve the efficiency of operational and management processes, companies study how their processes are enacted and look for particularly efficient and inefficient practice. Efficient practice is codified and documented, and software may be developed to support this "optimum" process. Inefficient practice is replaced by more efficient ways of doing things. Sometimes process control mechanisms are introduced to ensure that system operators and managers follow this "best practice."

The problem with process improvement is that it often makes it harder for people to cope with problems. What seems to be "inefficient" practice often arises because people maintain redundant information or share information because they know this makes it easier to deal with problems when things go wrong. For example, air traffic controllers may print flight details as well as rely on the flight database because they will then have information about flights in the air if the system database becomes unavailable.

People have a unique capability to respond effectively to unexpected situations, even when they have never had direct experience of these situations. Therefore, when things go wrong, operators and system managers can often recover the situation, although they may sometimes have to break rules and "work around" the defined process. You should therefore design operational processes to be flexible and adaptable. The operational processes should not be too constraining; they should not require operations to be done in a particular order; and the system software should not rely on a specific process being followed.

For example, an emergency service control room system is used to manage emergency calls and to initiate a response to these calls. The "normal" process of handling a call is to log the caller's details and then send a message to the appropriate emergency service giving details of the incident and the address. This procedure provides an audit trail of the actions taken. A subsequent investigation can check that the emergency call has been properly handled.

Efficient process operation	Problem management
Process optimization and control	Process flexibility and adaptability
Information hiding and security	Information sharing and visibility
Automation to reduce operator workload with fewer operators and managers	Manual processes and spare operator/manager capacity to deal with problems
Role specialization	Role sharing

Figure 14.7 Efficiency and resilience

Now imagine that this system is subject to a denial-of-service attack, which makes the messaging system unavailable. Rather than simply not responding to calls, the operators may use their personal mobile phones and their knowledge of call responders to call the emergency service units directly so that they can respond to serious incidents.

Management and provision of information are also important for resilient operation. To make a process more efficient, it may make sense to present operators with the information they need, when they need it. From a security perspective, information should not be accessible unless the operator or manager needs that information. However, a more liberal approach to information access can improve system resilience.

If operators are only presented with information that the process designer thinks they "need to know," then they may be unable to detect problems that do not directly affect their immediate tasks. When things go wrong, the system operators do not have a broad picture of what is happening in the system, so it is more difficult for them to formulate strategies for dealing with problems. If they cannot access some information in the system for security reasons, then they may be unable to stop attacks and repair the damage that has been caused.

Automating the system management process means that a single manager may be able to manage a large number of systems. Automated systems can detect common problems and take actions to recover from these problems. Fewer people are needed for system operations and management, and so costs are reduced. However, process automation has two disadvantages:

- Automated management systems may go wrong and take incorrect actions. As
 problems develop, the system may take unexpected actions that make the situation worse and that cannot be understood by the system managers.
- 2. Problem solving is a collaborative process. If fewer managers are available, it is likely to take longer to work out a strategy to recover from a problem or cyberattack.

Therefore, process automation can have both positive and negative effects on system resilience. If the automated system works properly, it can detect problems, invoke cyberattack resistance if necessary, and start automated recovery procedures. However, if the automated system can't handle the problem, fewer people will be available to tackle the problem and the system may have been damaged by the process automation doing the wrong thing.

In an environment where there are different types of system and equipment, it may be impractical to expect all operators and managers to be able to deal with all of

the different systems. Individuals may therefore specialize so that they become expert and knowledgeable about a small number of systems. This leads to more efficient operation but has consequences for the resilience of the system.

The problem with role specialization is that there may not be anyone available at a particular time who understands the interactions between systems. Consequently, it is difficult to cope with problems if the specialist is not available. If people work with several systems, they come to understand the dependencies and relationships between them and so can tackle problems that affect more than one system. With no specialist available, it becomes much more difficult to contain the problem and repair any damage that has been caused.

You may use risk assessment, as discussed in Chapter 13, to help make decisions on the balance between process efficiency and resilience. You consider all of the risks where operator or manager intervention may be required and assess the likelihood of these risks and the extent of the possible losses that might arise. For risks that may lead to serious damage and extensive loss and for risks that are likely to occur, you should favor resilience over process efficiency.

14.3 Resilient systems design

Resilient systems can resist and recover from adverse incidents such as software failures and cyberattacks. They can deliver critical services with minimal interruptions and can quickly return to their normal operating state after an incident has occurred. In designing a resilient system, you have to assume that system failures or penetration by an attacker will occur, and you have to include redundant and diverse features to cope with these adverse events.

Designing systems for resilience involves two closely related streams of work:

- Identifying critical services and assets Critical services and assets are those elements of the system that allow a system to fulfill its primary purpose. For example, the primary purpose of a system that handles ambulance dispatch in response to emergency calls is to get help to people who need it as quickly as possible. The critical services are those concerned with taking calls and dispatching ambulances to the medical emergency. Other services such as call logging and ambulance tracking are less important.
- 2. Designing system components that support problem recognition, resistance, recovery, and reinstatement For example, in an ambulance dispatch system, a watchdog timer (see Chapter 12) may be included to detect if the system is not responding to events. Operators may have to authenticate with a hardware token to resist the possibility of unauthorized access. If the system fails, calls may be diverted to another center so that the essential services are maintained. Copies of the system database and software on alternative hardware may be maintained to allow for reinstatement after an outage.

Figure 14.8 Stages in survivability analysis

The fundamental notions of recognition, resistance, and recovery were the basis of early work in resilience engineering by Ellison et al. (Ellison et al. 1999, 2002). They designed a method of analysis called survivable systems analysis. This method is used to assess vulnerabilities in systems and to support the design of system architectures and features that promote system survivability.

Survivable systems analysis is a four-stage process (Figure 14.8) that analyzes the current or proposed system requirements and architecture, identifies critical services, attack scenarios, and system "softspots," and proposes changes to improve the survivability of a system. The key activities in each of these stages are as follows:

- 1. *System understanding* For an existing or proposed system, review the goals of the system (sometimes called the mission objectives), the system requirements, and the system architecture.
- 2. *Critical service identification* The services that must always be maintained and the components that are required to maintain these services are identified.
- 3. *Attack simulation* Scenarios or use cases for possible attacks are identified, along with the system components that would be affected by these attacks.
- 4. *Survivability analysis* Components that are both essential and compromisable by an attack are identified, and survivability strategies based on resistance, recognition, and recovery are identified.

The fundamental problem with this approach to survivability analysis is that its starting point is the requirements and architecture documentation for a system. This is a reasonable assumption for defense systems (the work was sponsored by the U.S. Department of Defense), but it poses two problems for business systems:

1. It is not explicitly related to the business requirements for resilience. I believe that these are a more appropriate starting point than technical system requirements.

Figure 14.9 Resilience engineering

2. It assumes that there is a detailed requirements statement for a system. In fact, resilience may have to be "retrofitted" to a system where there is no complete or up-to-date requirements document. For new systems, resilience may itself be a requirement, or systems may be developed using an agile approach. The system architecture may be designed to take resilience into account.

A more general resilience engineering method, as shown in Figure 14.9, takes the lack of detailed requirements into account as well as explicitly designing recovery and reinstatement into the system. For the majority of components in a system, you will not have access to their source code and will not be able to make changes to them. Your strategy for resilience has to be designed with this limitation in mind.

There are five interrelated streams of work in this approach to resilience engineering:

- You identify business resilience requirements. These requirements set out how
 the business as a whole must maintain the services that it delivers to customers
 and, from this, resilience requirements for individual systems are developed.
 Providing resilience is expensive, and it is important not to overengineer systems with unnecessary resilience support.
- You plan how to reinstate a system or a set of systems to their normal operating state after an adverse event. This plan has to be integrated with the business's

normal backup and archiving strategy that allows recovery of information after a technical or human error. It should also be part of a wider disaster recovery strategy. You have to take account of the possibility of physical events such as fire and flooding and study how to maintain critical information in separate locations. You may decide to use cloud backups for this plan.

- 3. You identify system failures and cyberattacks that can compromise a system, and you design recognition and resilience strategies to cope with these adverse events.
- 4. You plan how to recover critical services quickly after they have been damaged or taken offline by a failure or cyberattack. This step usually involves providing redundant copies of the critical assets that provide these services and switching to these copies when required.
- Critically, you should test all aspects of your resilience planning. This testing involves identifying failure and attack scenarios and playing these scenarios out against your system.

Maintaining the availability of critical services is the essence of resilience. Accordingly, you have to know:

- the system services that are the most critical for a business,
- the minimal quality of service that must be maintained,
- how these services might be compromised,
- how these services can be protected, and
- how you can recover quickly if the services become unavailable.

As part of the analysis of critical services, you have to identify the system assets that are essential for delivering these services. These assets may be hardware (servers, network, etc.), software, data, and people. To build a resilient system, you have to think about how to use redundancy and diversity to ensure that these assets remain available in the event of a system failure.

For all of these activities, the key to providing a rapid response and recovery plan after an adverse event is to have additional software that supports resistance, recovery, and reinstatement. This may be commercial security software or resilience support that is programmed into application systems. It may also include scripts and specially written programs that are developed for recovery and reinstatement. If you have the right support software, the processes of recovery and reinstatement can be partially automated and quickly invoked and executed after a system failure.

Resilience testing involves simulating possible system failures and cyberattacks to test whether the resilience plans that have been drawn up work as expected. Testing is essential because we know from experience that the assumptions made in resilience planning are often invalid and that planned actions do not always work. Testing for resilience can reveal these problems so that the resilience plan can be refined.

Figure 14.10 The client–server architecture of the Mentcare system

Testing can be very difficult and expensive as, obviously, the testing cannot be carried out on an operational system. The system and its environment may have to be duplicated for testing, and staff may have to be released from their normal responsibilities to work on the test system. To reduce costs, you can use "desk testing." The testing team assumes a problem has occurred and tests their reactions to it; they do not simulate that problem on a real system. While this approach can provide useful information about system resilience, it is less effective than testing in discovering deficiencies in the resilience plan.

As an example of this approach, let us look at resilience engineering for the Mentcare system. To recap, this system is used to support clinicians treating patients in a variety of locations who have mental health problems. It provides patient information and records of consultations with doctors and specialist nurses. It includes a number of checks that can flag patients who may be potentially dangerous or suicidal. Figure 14.10 shows the architecture of this system.

The system is consulted by doctors and nurses before and during a consultation, and patient information is updated after the consultation. To ensure the effectiveness of clinics, the business resilience requirements are that the critical system services are available during normal working hours, that the patient data should not be permanently damaged or lost by a system failure or cyberattack, and that patient information should not be released to unauthorized people.

Two critical services in the system have to be maintained:

- 1. *An information service* that provides information about a patient's current diagnosis and treatment plan.
- A warning service that highlights patients who could pose a danger to others or to themselves.

Notice that the critical service is not the availability of the complete patient record. Doctors and nurses only need to go back to previous treatments occasionally,

so clinical care is not seriously affected if a full record is not available. Therefore, it is possible to deliver effective care using a summary record that only includes information about the patient and recent treatment.

The assets required to deliver these services in normal system operations are:

- The patient record database that maintains all patient information.
- A database server that provides access to the database for local client computers.
- A network for client/server communications.
- 4. Local laptop or desktop computers used by clinicians to access patient information.
- 5. A set of rules that identify patients who are potentially dangerous and that can flag patient records. Client software highlights dangerous patients to system users.

To plan recognition, resistance, and recovery strategies, you need to develop a set of scenarios that anticipate adverse events that might compromise the critical services offered by the system. Examples of these adverse events are:

- The unavailability of the database server either through a system failure, a network failure, or a denial-of-service cyberattack.
- 2. The deliberate or accidental corruption of the patient record database or the rules that define what is meant by a "dangerous patient."
- 3. Infection of client computers with malware.
- Access to client computers by unauthorized people who gain access to patient records.

Figure 14.11 shows possible recognition and resistance strategies for these adverse events. Notice that these are not just technical approaches but also include workshops to inform system users about security issues. We know that many security breaches arise because users inadvertently reveal privileged information to an attacker and these workshops reduce the chances of this happening. I don't have space here to discuss all of the options that I identified in Figure 14.11. Instead, I focus on how the system architecture can be modified to be more resilient.

In Figure 14.11, I suggested that maintaining patient information on client computers was a possible redundancy strategy that could help maintain critical services. This leads to the modified software architecture shown in Figure 14.12. The key features of this architecture are:

- Summary patient records that are maintained on local client computers The local computers can communicate directly with each other and exchange information using either the system network or, if necessary, an ad hoc network created using mobile phones. Therefore, if the database is unavailable, doctors and nurses can still access essential patient information. (resistance and recovery)
- 2. A backup server to allow for main server failure This server is responsible for taking regular snapshots of the database as backups. In the event the main server

Event	Recognition	Resistance
Server unavailability	Watchdog timer on client that times out if no response to client access Text messages from system managers to clinical users	 Design system architecture to maintain local copies of critical information Provide peer-to-peer search across clients for patient data Provide staff with smartphones that can be used to access the network in the event of server failure Provide backup server
Patient database corruption	 Record level cryptographic checksums Regular auto-checking of database integrity Reporting system for incorrect information 	 Replayable transaction log to update database backup with recent transactions Maintenance of local copies of patient information and software to restore database from local copies and backups
Malware infection of client computers	Reporting system so that computer users can report unusual behavior Automated malware checks on startup	 Security awareness workshops for all system users Disabling of USB ports on client computers Automated system setup for new clients Support access to system from mobile devices Installation of security software
Unauthorized access to patient information	Warning text messages from users about possible intruders Log analysis for unusual activity	 Multilevel system authentication process Disabling of USB ports on client computers Access logging and real-time log analysis Security awareness workshops for all system users

Figure 14.11 Recognition and resistance strategies for adverse events

fails, it can also act as the main server for the whole system. This provides continuity of service and recovery after a server failure (resistance and recovery).

3. Database integrity checking and recovery software Integrity checking runs as a background task checking for signs of database corruption. If corruption is discovered, it can automatically initiate the recovery of some or all of the data from backups. The transaction log allows these backups to be updated with details of recent changes (recognition and recovery).

To maintain the key services of patient information access and staff warning, we can make use of the inherent redundancy in a client-server system. By downloading information to the client at the start of a clinic session, the consultation can continue without server access. Only the information about the patients who are scheduled to attend consultations that day needs to be downloaded. If there is a need to access other patient information and the server is unavailable, then other client computers may be contacted using peer-to-peer communication to see if the information is available on them.

The service that provides a warning to staff of patients who may be dangerous can easily be implemented using this approach. The records of patients who may harm themselves or others are identified before the download process. When clinical staff access these records, the software can highlight the records to indicate the patients that require special care.

Figure 14.12 An architecture for Mentcare system resilience

The features in this architecture that support the resistance to adverse events are also useful in supporting recovery from these events. By maintaining multiple copies of information and having backup hardware available, critical system services can be quickly restored to normal operation. Because the system need only be available during normal working hours (say, 8 a.m to 6 p.m), the system can be reinstated overnight so that it is available for the following day after a failure.

As well as maintaining critical services, the other business requirements of maintaining the confidentiality and integrity of patient data must also be supported. The architecture shown in Figure 14.12 includes a backup system and explicit database integrity checking to reduce the chances that patient information is damaged accidentally or in a malicious attack. Information on client computers is also available and can be used to support recovery from data corruption or damage.

While maintaining multiple copies of data is a safeguard against data corruption, it poses a risk to confidentiality as all of these copies have to be secured. In this case, this risk can be controlled by:

- 1. Only downloading the summary records of patients who are scheduled to attend a clinic. This limits the number of records that could be compromised.
- 2. Encrypting the disk on local client computers. Attackers who do not have the encryption key cannot read the disk if they gain access to the computer.
- 3. Securely deleting the downloaded information at the end of a clinic session. This further reduces the chances of an attacker gaining access to confidential information.