Contrôle continu – Corrigé Architecture des ordinateurs

Durée: 45 minutes

Inscrivez vos réponses <u>exclusivement</u> sur le document réponse. Ne pas détailler les calculs sauf si cela est explicitement demandé. Ne pas écrire à l'encre rouge.

Exercice 1 (3 points)

- 1. Soit le mot binaire sur **11 bits** suivant : **10010010110**₂. Donnez sa représentation décimale s'il s'agit d'un entier signé.
- 2. Donnez la représentation binaire sur 10 bits signés du nombre -503₁₀.
- 3. Combien faut-il de bits, au minimum, pour représenter en binaire non signé le nombre 2048 ?
- 4. Combien faut-il de bits, au minimum, pour représenter en binaire signé le nombre -2048 ?
- 5. Donnez, en puissance de deux, le nombre d'octets contenus dans **2 Kib**.
- 6. Donnez, à l'aide des préfixes binaires (Ki, Mi ou Gi), le nombre de bits contenus dans **256 Kio**. Vous choisirez un préfixe qui permet d'obtenir la plus petite valeur numérique entière.

Exercice 2 (5 points)

- 1. Simplifiez au maximum les expressions présentes sur le <u>document réponse</u>. Le résultat ne devra pas contenir de parenthèses.
- 2. Remplissez les diagrammes de Karnaugh présents sur le <u>document réponse</u> et donnez les expressions logiques les plus simplifiées pour chacun d'eux. Aucun point ne sera attribué à une expression si son tableau est faux. La simplification à l'aide de OU EXCLUSIF n'est pas demandée.

Exercice 3 (2 points)

- 1. Que représente la largeur d'une mémoire ?
- 2. Que représente la profondeur d'une mémoire ?
- 3. Quel type d'assemblage permet d'augmenter la largeur d'une mémoire ?
- 4. Quel type d'assemblage permet d'augmenter la profondeur d'une mémoire ?

Exercice 4 (5 points)

Soit le montage ci-dessous. Complétez les chronogrammes sur le <u>document réponse</u> (jusqu'à la dernière ligne verticale pointillée).

DOCUMENT RÉPONSE

Cadre réservé au correcteur.

Exercice 1

1874 ₁₀	3. 12	5. 2 ⁸ octets
2. 10 0000 1001 ₂	4. 12	6. 2 Mib

Exercice 2

Expression non simplifiée	Expression simplifiée (pas de parenthèses)		
$A.B + \overline{A+B} + \overline{A}.B$	$\overline{\mathbf{A}} + \mathbf{B}$		
$(A + \overline{B}).(A + B) + C.(\overline{A} + B)$	A + C		
$A + B.C + \overline{A}.(\overline{B} + \overline{C}).(A.D + C)$	A + C		

CDX 00 01 11 10 00 0 0 1 01 0 1 0 1 AB 11 0 1 1 0 **10** 0 1

 $X = B.D + \overline{B}.\overline{D}$

		CD				
	Y	00	01	11	10	
AB	00	1	1	1	1	
	01	1	0	1	0	
	11	1	0	1	0	
	10	1	1	1	1	

CD

 $Y = \overline{B} + C.D + \overline{C}.\overline{D}$

Exercice 3

- La largeur d'une mémoire représente la taille de ses mots.
- 2. La profondeur d'une mémoire représente son nombre de mots.
- 3. L'assemblage en parallèle permet d'augmenter la largeur d'une mémoire.
- 4. L'assemblage en série permet d'augmenter la profondeur d'une mémoire.

Exercice 4

