晨沐公的内卷习题集

Johnny Tang's Collection of Exam-oriented Problems in Mathmatics

© 晨沐公†

† 成都市锦江区嘉祥外国语高级中学

晨沐公的内卷习题集

bilibili: 晨沐公 Johnny github:MATHhahetaDEATH

2024年3月10日

请:相信时间的力量,敬畏概率的准则。

JOHNNY TANG

前言

愿大家爱上数学!

目录

Ι	高等代数	1
1	行列式	2
2	矩阵的运算	3
3	矩阵的相抵与相似	4
4	二次型,矩阵的合同	5
5	向量空间与线性映射	6
6	具有度量的向量空间	7
7	多重线性代数	8
II	数学分析	9
1	数列极限与实数系基本定理	10
2	一元函数极限 2.1 综合题目	11
3	函数的连续性与点集拓扑初步 3.1 一致连续	12 12 13
	一元函数微分学 4.1 中值定理与 Taylor 展开	14 14 15
5	一元函数积分学	17
6	级数	18

目录		iv
7	多元函数微分学	19
8	多元函数积分学	20

Part I

高等代数

行列式

矩阵的运算

矩阵的相抵与相似

二次型,矩阵的合同

向量空间与线性映射

具有度量的向量空间

多重线性代数

Part II

数学分析

数列极限与实数系基本定理

一元函数极限

2.1 综合题目

题 2.1.1 证明, 任给函数 $f:[a,+\infty)\to\mathbb{R}$, 若 f 在任意闭子区间 [a,b] 有上界 M_b , 则下方式子在等号右 侧极限存在时成立:

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} (f(x+1) - f(x)).$$

进一步, 若 f 的下确界存在且为正, 则

$$\lim_{x \to +\infty} (f(x))^{1/x} = \lim_{x \to +\infty} \frac{f(x+1)}{f(x)}.$$

解. 只证明第一个式子,然后取对数可得第二个式子. 记右侧极限为 ℓ ,则对任意 $\varepsilon>0$ 都存在整数 N>0 使得

$$\forall x > N, \ \ell - \varepsilon < f(x+1) - f(x) < \ell + \varepsilon.$$

于是

$$\frac{f(y)}{y} = \frac{f(N+\{y\}) + \sum_{i=N+1}^{\lfloor y \rfloor} \left(f(i+\{y\}) - f(i-1+\{y\})\right)}{y} \rightarrow \ell, \quad y \rightarrow +\infty.$$

函数的连续性与点集拓扑初步

3.1 一致连续

题 3.1.1 设 f 在 \mathbb{R} 上一致连续. 证明, 存在 $a,b \in \mathbb{R}_{>0}$, 使得对任意 $x \in \mathbb{R}$ 有

$$|f(x)| \le a|x| + b.$$

解. 对任意 $\varepsilon > 0$, 考虑 $\delta > 0$ 与之对应. 容易证明 $|f(n\delta + r)| \le f(0) + |n+1|\varepsilon$. 于是取 $a = 1/\delta, b = f(0)$, 再令 $\varepsilon = 1/2$, 即得

$$|f(x)| = |f(n\delta + r)| \le f(0) + \frac{1}{2}|n+1| \le f(0) + \frac{1}{\delta}|x| = a|x| + b.$$

题 3.1.2 设 f 在 $[0, +\infty)$ 上一致连续且对任意 $x \in [0, 1]$ 有 $\lim_{n\to\infty} f(x+n) = 0$ (这里 n 为自然数). 证明:

$$\lim_{x \to +\infty} f(x) = 0.$$

将条件减弱为 f 在 $[0,+\infty)$ 上连续, 证明或给出反例.

解. (1) 考虑 $\varepsilon > 0$ 及其对应的 $\delta > 0$. 对某个 $x \in [0,1]$, 由题, 存在整数 N > 0 使得对任意 n > N 有 $|f(x+n)| < \varepsilon$. 将 [n,n+1] 平均分为 I_n^1,\cdots,I_n^m 使得 $m = \lfloor 1/\delta \rfloor + 1$, 那么对于 $x \in [n,n+1]$, $|f(x)| \leq (m+1)\varepsilon$. 由此可得 $|f(x)| < (m+1)\varepsilon$ 对任意 n > N 成立, 于是证毕.

(2) 取
$$f(x) = \frac{x \sin \pi x}{1 + (x \sin \pi x)^2}$$
, 则当 $x = 0, 1$ 时 $f(x) = 0$. 令 $x \in (0, 1)$, 计算可知

$$f(x+n) = \frac{(-1)^n (x+n) \sin \pi x}{1 + ((x+n) \sin \pi x)^2} \to 0, \quad m \to \infty.$$

3.2 点集拓扑初步

题 3.2.3 证明, $\mathbf{M}_n(\mathbb{R})$ 上的可逆矩阵的全体 $\mathbf{GL}_n(\mathbb{R})$ 是 $\mathbf{M}_n(\mathbb{R})$ 中的开集.

解. 考虑行列式函数 $\det: \mathbf{M}_n(\mathbb{R}) \to \mathbb{R}$. 由于行列式函数连续, 可知开集 $\mathbb{R} - \{0\}$ 的原像 $\mathbf{GL}_n(\mathbb{R})$ 是开集.

题 3.2.4 证明, 取逆映射 $\operatorname{Inv}: \operatorname{GL}_n(\mathbb{R}) \to \operatorname{GL}_n(\mathbb{R}), A \mapsto A^{-1}$ 是连续映射.

解. 利用 Cramer 法则可知, 逆矩阵的元素均为原来的矩阵元素的有理函数, 于是取逆映射连续.

一元函数微分学

4.1 中值定理与 Taylor 展开

题 **4.1.1** f 在 (-1,1) 上二阶可导, f(0) = f'(0) = 0. 若对任意 $x \in (-1,1)$ 都有 $|f''(x)| \le |f(x)| + |f'(x)|$, 求证 $f(x) \equiv 0$.

解. 设 $\sup_{x \in [-a,a]} |f'(x)| = M_a > 0$,由 Lagrange 中值定理可得

$$|f(x)| = |f(x) - f(0)| = |xf'(\xi)| \le aM_a, \qquad |f'(x)| = |f'(x) - f'(0)| = |xf''(\xi)| \le a(a+1)M_a.$$

从而 $M_a \leq a(a+1)M_a$,化简得 $(a^2+a-1)M_a \geq 0$,但是当 a=1/2 时 $a^2+a-1<0$,故 $M_{1/2}=0$. 于是 $f(\pm 1/2)=f'(\pm 1/2)=0$,将 f 平移 $\pm 1/2$ 并重复上方的证明,即得 $f(x)\equiv 0$.

题 **4.1.2** 设正整数 n, f 在 \mathbb{R} 上 n 阶可导, $f(0) = \cdots = f^{(n-1)}(0) = 0$. 若存在 C > 0 和整数 $\ell > 0$ 使得对任意 $x \in \mathbb{R}$ 都有 $|f^{(n)}(x)| \le C|f^{(\ell)}(x)|$, 求证 $f(x) \equiv 0$.

解. 设 $\sup_{x \in [-a,a]} |f^{\ell}(x)| = M_a > 0$, 同1可知

$$|f^{(n)}(x)| \le CM_a, |f^{(n-1)}| \le a|f^{(n)}(\xi)| \le aCM_a, \dots, |f^{(\ell)}| \le a^{n-\ell}CM_a.$$

于是 $M_a \leq a^{n-\ell}CM_a$. 令 a = 1/2 可得 $M_{1/2} = 0$, 类似地可以完成证明.

题 **4.1.3** 设 $f \in C([0,1])$, g 在 [0,1] 上可导且 g(0) = 0. 若存在 $\lambda \neq 0$ 使得对任意 $x \in [0,1]$ 都有 $|g(x)f(x) + \lambda g'(x)| \leq |g(x)|$, 求证 $g(x) \equiv 0$.

解. 由题, $|g(x)| \geq |\lambda| |g'(x)| - |f(x)| |g(x)|$, 即 $|g'(x)| \leq \frac{|f(x)+1|}{|\lambda|} |g(x)|$. 由 2和 f 有界可知 $g(x) \equiv 0$.

题 **4.1.4** 设 $f \in C^{\infty}(\mathbb{R})$, 存在 C > 0 使得对任意自然数 n 和任意 x 都有 $|f^{(n)}(x)| \leq C$. E 是有界的无穷集合, 若 f 在 E 上的取值都为 0, 证明 $f(x) \equiv 0$.

解. 显然 f 在任意点处有 Taylor 级数. 选取 E 的一个聚点 x, 并令 $\{x_n\} \subseteq E$ 的极限为 x. 考虑 $\xi_n \in (x_n, x_{n+1})$ 使得 $f'(\xi_n) = 0$, 又 $\xi_n \to x$, 由连续性可知 f'(x) = 0. 同理可得 x 处的任意阶导数均为 0, 利用该点处的 Taylor 展开即可得证.

题 **4.1.5** 设 $f \in C^2((0,1))$, $\lim_{x\to 1^-} f(x) = 0$. 若存在 C > 0 使得对任意 $x \in (0,1)$ 都有 $(1-x)^2 |f''(x)| \le C$, 求证 $\lim_{x\to 1^-} (1-x)f'(x) = 0$.

解. 待定 $x < x_0 < 1$ 并记 $x = 1 - \delta, x_0 = 1 - \lambda, \lambda = \theta \delta$. 于是存在 $\xi \in (x, x_0)$ 使得

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(\xi)}{2}(x - x_0)^2.$$

稍作变形可得

$$f'(x_0)(1-x_0) = \frac{\lambda}{\lambda - \delta}(f(x) - f(x_0)) - \frac{(1-\xi)^2 f''(\xi)}{2} \cdot \frac{\lambda(\lambda - \delta)}{(1-\xi)^2}.$$

于是

$$|f'(x_0)(1-x_0)| \le \frac{\delta}{\delta-\lambda}|f(x)-f(x_0)| + \frac{\delta-\lambda}{\lambda} \cdot \frac{C}{2} \le \frac{1}{1-\theta}(|f(1-\delta)|+|f(1-\theta\delta)|) + \frac{1-\theta}{\theta} \cdot \frac{C}{2}.$$

先固定 θ (即在一开始选取 x, x_0 时就保持一定的比例关系), 令 $\delta \to 0^+$ 可得

$$\limsup_{x_0 \to 1^-} |f'(x_0)(1 - x_0)| \le \frac{1 - \theta}{\theta} \cdot \frac{C}{2}.$$

再令 $\theta \to 1^-$ 即证毕.

4.2 综合题目

题 **4.2.6** 设 $\{f_k\} \subseteq C^1(I)$, 若 $\sum_{k=0}^{\infty} f_k$ 逐点收敛, $\sum_{k=0}^{\infty} f'_k(x)$ 绝对收敛, 令 $f(x) := \sum_{k=0}^{\infty} f_k(x)$, 则 f 可导且

$$f'(x) = \sum_{k=0}^{\infty} f'_k(x).$$

将 $\sum_{k=0}^{\infty} f'_k(x)$ 绝对收敛改为 $\sum_{k=0}^{\infty} f'_k$ 一致收敛, 证明或举出反例.

解. (1) 对任意 $\varepsilon > 0$, 存在 N > 0 使得 $\sum_{k=N}^{\infty} \|f_k'\|_{\infty} < \varepsilon$; 固定 x_0 , 对任意 $\varepsilon_1 > 0$, 存在 $\delta > 0$ 使得

只要 $|x-x_0| < \delta$ 就有 $\left| \frac{f_k(x) - f_k(x_0)}{x-x_0} - f'_k(x_0) \right| < \varepsilon_1$, 于是

$$\left| \sum_{k=0}^{N-1} \frac{f_k(x) - f_k(x_0)}{x - x_0} - f'_k(x_0) \right| \le N\varepsilon_1.$$

由 Lagrange 中值定理, 对 $k \geq N$, 存在 $\xi_k \in (x_0,x)$ 使得 $\frac{f_k(x)-f_k(x_0)}{x-x_0}$, 于是

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - \sum_{k=0}^{\infty} f_k'(x_0) \right| = \left| \sum_{k=0}^{N-1} \frac{f_k(x) - f_k(x_0)}{x - x_0} + \sum_{k=N}^{\infty} f_k'(\xi_k) - \sum_{k=0}^{N-1} f_k'(x_0) - \sum_{k=N}^{\infty} f_k'(x_0) \right| \le N\varepsilon_1 + 2\varepsilon.$$

注意到 N 为定值, 由 $\varepsilon, \varepsilon_1$ 的任意性可知原命题成立.

(2) 考虑构造连续函数序列 $\{S_n\}$ 使得 $S_n \rightrightarrows S$, 而 S 连续等价于原命题成立. 我们令

$$S_n = \begin{cases} \sum_{k=0}^n \frac{f_k(x) - f_k(x_0)}{x - x_0} & x \neq x_0 \\ \sum_{k=0}^n f'_k(x_0) & x = x_0 \end{cases} \quad \text{iff } S = \begin{cases} \sum_{k=0}^\infty \frac{f_k(x) - f_k(x_0)}{x - x_0} & x \neq x_0 \\ \sum_{k=0}^\infty f'_k(x_0) & x = x_0 \end{cases}.$$

显然 S_n 连续. 下面证明 $S_n \to S$: 待定 N>0, 设 m,n>N. 由 Lagrange 中值定理可知存在 $\xi_k\in (x_0,x)$ 使得 $\frac{f_k(x)-f_k(x_0)}{x-x_0}$. 于是

$$S_m - S_n = \begin{cases} \sum_{k=n+1}^m \frac{f_k(x) - f_k(x_0)}{x - x_0} & x \neq x_0 \\ \sum_{k=n+1}^m f'_k(x_0) & x = x_0 \end{cases} = \begin{cases} \sum_{k=n+1}^m f'_k(\xi_k) & x \neq x_0 \\ \sum_{k=n+1}^m f'_k(x_0) & x = x_0 \end{cases}.$$

由 $\sum_{k=0}^{\infty} f'_k$ 一致收敛, 立得 S_n 一致收敛.

注. 该命题比真正的逐项求导定理弱.

一元函数积分学

级数

多元函数微分学

多元函数积分学