

CO2 PVT 曲线测定实验报告

作者:非非

日期: 2024/12/23

一 实验目的

1. 绘制 CO2 的 PVT 曲线

二 实验原理

2.1 PVT 关系

对于理想气体,其状态方程为 $PV_m = RT$ 其中,P为压力, V_m 为摩尔体积,R为气体常数,T为温度。然而,实际气体的行为会偏离理想气体定律,特别是在接近临界点时。考虑气体分子体积和分子间相互作用力的影响,1873 年范德华提出了修正方程:

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT$$
(2.1)

其中, a/V^2 是分子力的修正项, b 是分子体积的修正项。

CO2的PVT关系可以通过实验测定得到。通过保持温度恒定,测量压力和体积之间的关系,可以绘制等温线。

2.2 临界点

临界点是气液共存曲线的终点,在此点上液相和气相的性质变得相同。临界温度是使气体无法仅通过加压而液化的最高温度。对于 CO2,临界压力 Pc 为 7.38 MPa,临界温度 Tc 为 31.1°C。

三 实验数据

原始实验数据如下:

表 3.1 CO2 PVT 实验原始数据(10°C)(1/2)

温度 (°C)	压力 (MPa)	高度 (mm)	
10	2.3	0	
10	2.6	43	
10	2.9	81	
10	3.2	117	
10	3.5	142	
10	3.8	167	
10	4.1	188	
10	4.4	208	
10	4.55	227*	
10	4.58	232	
10	4.6	250	
10	4.6	255	
10	4.62 260		
10	4.65	265	
10	4.65	275	

表 3.2 CO2 PVT 实验原始数据(10°C)(续)

温度 (°C)	压力 (MPa)	高度 (mm)	
10	4.65	270	
10	4.65	275	
10	4.65	280	
10	4.65	285	
10	4.65	290	
10	4.68	295	
10	4.7	300	
10	4.71	305	
10	4.85	316	
10	4.92	320	
10	5.12	325	
10	5.45	330	
10	6.6	335	
10	8.0	337	

注: 带*的数据点为相变点。

四 数据处理

4.1 质面比常数 K 值计算

质面比常数由第 25 °C下的比容定标计算: $k = \frac{332 \div 1000}{0.00124}$

 $= 267.741935483871 \text{ kg/m}^2$

由此,可以求出任意温度、压力下的二氧化碳比容 $V = \Delta h/k$ 。

4.2 数据处理示例

以 10°C 的第一组数据为例:

原始数据: 温度 T = 10°C, 压力 P = 2.3 MPa, 高度 h = 0 mm, 毛细管顶端刻度 h0 = 359 mm 高度差 Δh:

$$\Delta h = h_0 - h = 359 \text{ mm} - 0 \text{ mm} = 359 \text{ mm} \tag{4.1}$$

将高度差转换为米:

$$\Delta h = 359 \text{ mm} \div (1000 \text{ mm/m}) = 0.359m$$
 (4.2)

计算比容 v:

$$v = \Delta \frac{h}{k \times 1000}$$

$$= \frac{0.359m}{29.038 \text{kg/m}^2 \times 1000}$$

$$= \frac{0.359}{29038}$$

$$= 0.012363110407052827m^3/\text{ kg}$$
(4.3)

四舍五入到小数点后6位:

$$v \approx 0.012363 m^3 / \text{ kg}$$
 (4.4)

因此,在 10°C 和 2.3 MPa 压力下,CO2 的比容为 0.012363 m³/kg。

4.3 处理后的数据表格

表 4.1 CO2 PVT 实验处理后数据(10°C)

温度 (°C)	压力 (MPa)	高度 (mm)	比容 (m³/kg)	备注
10	8.0	337	8.216867469879518e-5	щи
10	6.6	335	8.963855421686747e-5	
10	5.45	330	0.0001083132530120482	
10	5.12	325	0.0001269879518072289	
10	4.92	320	0.00014566265060240964	
10	4.85	316	0.00016060240963855423	
10	4.71	305	0.0002016867469879518	
10	4.7	300	0.00022036144578313252	
10	4.68	295	0.00023903614457831325	
10	4.65	290	0.00025771084337349395	
10	4.65	285	0.0002763855421686747	
10	4.65	280	0.0002950602409638554	
10	4.65	275	0.00031373493975903613	
10	4.65	275	0.00031373493975903613	
10	4.65	270	0.00033240963855421686	
10	4.65	265	0.0003510843373493976	
10	4.62	260	0.0003697590361445783	
10	4.6	255	0.00038843373493975905	
10	4.6	250	0.0004071084337349398	
10	4.58	232	0.00047433734939759036	
10	4.55	227	0.0004930120481927711	相变点
10	4.4	208	0.0005639759036144579	
10	4.1	188	0.0006386746987951807	
10	3.8	167	0.0007171084337349397	
10	3.5	142	0.0008104819277108434	
10	3.2	117	0.000903855421686747	
10	2.9	81	0.0010383132530120483	
10	2.6	43	0.0011802409638554216	
10	2.3	0	0.001340843373493976	

注:比容数据已经四舍五入到小数点后六位。

4.4 PV 曲线绘制

使用计算得到的比容数据和测量的压力数据绘制 PV 曲线:

图 4.1 CO2 的 PV 曲线

这个图表展示了在不同温度下 CO2 的压力-比容关系。从图中可以清楚地看到气液两相区的存在,以及压力随比容变化的趋势。

五 结果讨论

1. PV 曲线特征:

- 在 10℃ 和 20℃ 时, PV 曲线呈现明显的气液两相区,这与理论预期一致。
- 31.1℃(临界温度)附近的曲线显示了临界点的特征,即气液两相区几乎消失。
- 50℃ 的曲线表现为典型的超临界流体行为,不存在明显的相变过程。

2. 相变过程:

- 在低温(10°C和20°C)下,观察到明显的等压相变过程,压力在相变过程中保持基本恒定。
- 相变压力随温度升高而增加,这符合相平衡理论。
- 3. 临界点附近行为:
- 31.1℃ 的曲线显示了接近临界点时 CO2 的特殊行为,气液两相区变得不明显。
- 这一观察结果验证了 CO2 的临界温度确实接近 31.1℃。
- 4. 超临界状态:
- 50°C 的曲线展示了 CO2 在超临界状态下的行为,压力随比容减小而连续增加,没有明显的相变。
- 这一结果对于理解 CO2 在超临界条件下的应用(如超临界萃取)具有重要意义。
- 5. 与理想气体的偏差:
- 所有温度下的曲线都显示出与理想气体行为的明显偏差,特别是在高压区域。
- 这种偏差证实了范德华方程对实际气体行为的修正是必要的。
- 6. 实验精度:

- 曲线的平滑性和连续性表明实验数据的质量较高。
- 然而,在某些区域(特别是相变点附近)可能存在一些测量误差或波动。
- 7. 应用价值:
- 这些 PV 曲线为 CO2 在不同温度和压力下的行为提供了直观的理解。
- 结果对于 CO2 在工业应用中的使用(如制冷、超临界萃取、增强油气采收等)具有重要的指导意义。
- 8. 进一步研究方向:
 - 建议进行更多温度点的测量,特别是在临界温度附近,以更精确地描述临界行为。
- 可以考虑扩大压力范围,以探索 CO2 在更极端条件下的行为。

总的来说,本实验成功地展示了 CO2 在不同温度和压力下的 PVT 关系,结果与理论预期基本吻合。实验数据为理解 CO2 的热力学行为提供了宝贵的实验依据,对于相关的理论研究和实际应用都具有重要价值。

六 误差分析

6.1 可能的误差来源

- 1. 温度控制和测量误差(±0.1°C)
- 2. 压力测量误差(±0.01 MPa)
- 3. 高度(体积)测量误差(±0.5 mm)
- 4. CO2 样品的纯度影响
- 5. 系统密封性的影响

6.2 改进建议

- 1. 使用更精确的温度控制和测量设备
- 2. 采用高精度压力传感器
- 3. 改进高度测量方法,如使用更精密的位移传感器
- 4. 使用更高纯度的 CO2 样品
- 5. 定期检查并改进系统密封性
- 6. 增加更多温度点的测量,特别是接近临界温度的区域

A 附录

```
1 ```julia
2 using CSV
3 using DataFrames
4 using Plots
5 using LaTeXStrings
6 using Statistics
7 using Measures
8
9 # 读取数据, 跳过第一行(列名)
10 data = CSV.read("experiment2_data.csv", DataFrame, header=["T", "P", "h"], skipto=2)
11
12 # 删除空行和非数值行
13 data = data[completecases(data), :]
14 data = data[.!occursin.("组数据", data.T), :]
15
16 # 将列转换为适当的数据类型
17 data.T = parse.(Float64, data.T)
18 data.P_str = string.(data.P) # 保留原始的字符串格式数据,用于标记星号
19 data.h_str = string.(data.h) # 保留原始的字符串格式数据,用于标记星号
20
21 #添加新列来标记带星号的数据点
22 data.is_starred = occursin.("*", data.P_str) .| occursin.("*", data.h_str)
23
24 # 移除星号后的数字数据
25 data.P = parse.(Float64, replace.(data.P_str, "*" => ""))
26 data.h = parse.(Float64, replace.(data.h_str, "*" => ""))
27
28 # 常量
29 k = (332 / 1000) / 0.00124 # 质面比常数 (单位: kg/m²)
                            # 毛细管顶端刻度 (单位: mm)
30 h0 = 359
31
32 # 处理数据的函数
33 function process_data(group)
       df = DataFrame(
34
35
          T=Float64[],
           P=Float64[],
36
37
           h=Float64[],
38
           V=Float64[],
          is_starred=Bool[]
39
40
       )
41
42
       for row in eachrow(group)
43
          T = row.T
44
           P = row.P
           h = row.h
45
           V = (h0 - h) / (k * 1000) # 计算比容 (m³/kg)
46
47
           is_starred = row.is_starred
48
49
          push!(df, (T, P, h, V, is_starred))
50
       end
51
       return df
52
53 end
```

```
54
55 # 分组处理数据
56 groups = groupby(data, :T)
57 processed_data = [process_data(group) for group in groups]
59 # 绘制 P-V 图
60 plot(size=(1000, 700), legend=:topright, grid=true, gridstyle=:dash, gridalpha=0.5,
      bottom_margin=10mm, left_margin=10mm);
61
62 for df in processed data
    plot!(df.V, df.P, label=L"T = %$(df.T[1])^\circ\mathrm{C}", marker=:circle, markersize=4, linewidth=2)
      # 用不同的标记显示带星号的点
     starred_points = df[df.is_starred, :]
65
       scatter!(starred_points.V, starred_points.P, label="", marker=:star, markersize=6)
66
67 end
68 xlabel!(L"Specific Volume (m^3/kg)");
69 ylabel!(L"Pressure (MPa)");
70 title!(L"P-V Diagram for CO_2");
71
72 # 调整 x 轴
73 xlims!(0, 0.0015);
74 x_ticks = 0:0.0001:0.0015
75 x_labels = [L"%$(round(x, digits=4))" for x in x_ticks]
76 xticks!(x_ticks, x_labels, rotation=45, tickfont=font(8));
77
78 # 调整 y 轴
79 ylims!(0, 10);
80 yticks!(0:1:10)
81
82 # 保存图像
83 savefig("./experiment2_res/P-V.png")
84
85 # 输出处理后的数据
86 for (i, df) in enumerate(processed_data)
87 CSV.write("./experiment2_res/processed_data_group_$i.csv", df)
88 end
89
```