МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра информационной безопасности

ОТЧЕТ

по лабораторной работе №8
по дисциплине «Криптография и защита информации»
Тема: Изучение цифровой подписи

Студент гр. 8383	Киреев К.А.
Преподаватель	Племянников А.К

Санкт-Петербург 2021

Выводы

- о Изучены механизмы генерации ключевых пар для различных алгоритмов.
 - Алгоритм RSA генерирует пары (e, n) открытый ключ и d закрытый ключ на основе двух больших простых чисел p и q, которые впоследствии должны быть уничтожены.
 - Алгоритм DSA генерирует пары (e_1, e_2, p, q) открытый ключ и d закрытый ключ на основе простого числа p (длина от 512 до 1024 бит), q (такого, что $(p-1)=0 \ mod \ q)$ и d.
 - Алгоритм *ECDSA* генерирует пары (a, b, e_1, e_2, p, q) открытый ключ и d закрытый ключ на основе произвольно выбранной эллиптической кривой $E_p(a, b)$, где p простое число, произвольно выбранной точки на данной кривой, d, простое число q (порядок одной из циклических подгрупп группы точек эллиптической кривой). Наименьшая скорость генерация была у алгоритма EC-239 и составила 0.01 секунд.
- Изучен механизм создания цифровой подписи с различными ключами.

Лучше всего использовать ECDSA для создания и подтверждения подписи. Операция создания занимает 0 секунд, а процесс проверки 0.002 секунд. Вычисление DSA подписи быстрее, чем вычисление подписей RSA, однако DSA требуется больше времени на проверку целостности.

о Изучен алгоритм формирования и проверки подписи ECDSA, основанный на эллиптических кривых.

Открытый ключ представляет собой пару (a,b,q,p,e_1,e_2) , где a,b,p – параметры, задающие определённую эллиптическую кривую, e_1 – произвольная точка на кривой, q – порядок циклической подгруппы группы точек

эллиптической кривой, такой, что для некоторой точки $e_1=(x_1,y_1)$, лежащей на кривой, верно: $q\times(x_1,y_1)=0$; $e_2=d\times e_1$, где d – закрытый ключ.

Изучено создание сертификатов в среде РКІ.

РКІ решает криптозадачи такие как обеспечение конфиденциальности и целостности информации; обеспечение аутентификации пользователей и ресурсов, к которым обращаются пользователи; обеспечение возможности подтверждения совершенных пользователями действий. Сертификат — это электронный документ, который содержит: открытый ключ пользователя, информацию о пользователе, которому принадлежит сертификат, информацию о сроке действия сертификата, информацию об издателе сертификата и другие атрибуты, цифровую подпись удостоверяющего центра, выдавшего сертификат. Сертификат подтверждает электронную цифровую подпись и открытый ключ отправителя.

о Изучено создание подписи и проверка документа на целостность после внесения изменений средствами Adobe Acrobat Reader.