LA FONCTION CARRÉ E05

EXERCICE N°1 (Le corrigé)

Résoudre les inéquations suivantes et donner l'ensemble des solutions sous la forme d'un intervalle ou d'une réunion d'intervalle.

1)
$$x^2 \leq 9$$

2)
$$x^2 > 4$$

3)
$$x^2 \ge 16$$

4)
$$x^2 < -2$$

$$\begin{array}{c} 1) \\ x^2 \leqslant 9 \end{array}$$

Cette inéquation admet comme ensemble des solutions $\begin{bmatrix} -3 \\ \end{bmatrix}$.

Ici, on utilise la propriété n°5 et comme 9 > 0 on obtient $\left[-\sqrt{9}; \sqrt{9}\right]$ pour ensemble des solutions. Bien sûr, on simplifie l'écriture car $\sqrt{9} = 3$.

Les crochets sont tournés les solutions car on a une inégalité large (≤ et pas <)

2)

$$x^2 > 4$$

Cette inéquation admet comme ensemble des solutions $]-\infty; -2[\cup]2; +\infty[]$.

Ici, on utilise la propriété n°6 et comme 4 > 0 on obtient $\left| -\infty : -\sqrt{4} \right| \cup \left| \sqrt{4} : +\infty \right|$ pour ensemble des solutions. Bien sûr, on simplifie l'écriture car $\sqrt{4} = 2$.

Les crochets ne sont pas tournés les solutions car on a une inégalité stricte (> et pas ≥) Attention $-\infty$ et $+\infty$ n'étant pas des nombres, ils n'appartiennent pas aux solutions, c'est pour cela que les crochets ne sont jamais tournés vers eux.

3)

$$x^2 \ge 16$$

Cette inéquation admet comme ensemble des solutions $|-\infty; -4| \cup [4; +\infty[]$.

Ici, on utilise la propriété n°6 et comme 16 > 0 on obtient $|-\infty; -\sqrt{16}| \cup |\sqrt{16}; +\infty|$ pour ensemble des solutions. Bien sûr, on simplifie l'écriture car $\sqrt{16} = 4$.

Les crochets sont tournés les solutions car on a une inégalité large (≥ et pas >)

 $-\infty$ et $+\infty$ n'étant pas des nombres, ils n'appartiennent pas aux solutions, c'est pour cela que les crochets ne sont jamais tournés vers eux. (Je sais, je sais, on insiste...)

$$x^2 < -2$$

Cette inéquation n'admet | aucune solution | .

Ici, on utilise la propriété n°5 et comme -2 < 0, il n'y a pas de solution.