

KD215GH-2PU

Polykristalline Photovoltaik-Hochleistungsmodule

ANWENDUNGSBEISPIELE

- · Netzgekoppelte Anlagen, für z.B.
- private Wohnhäuser
- Industrie- und Großanlagen
- landwirtschaftliche Betriebe
- Freilandanlagen
- · Solarkraftwerke

SPITZENTECHNOLOGIE

Dank intensiver Forschungsarbeit und stetiger Weiterentwicklung der Produktionsverfahren erreichen die eingebetteten Kyocera Hochleistungs-Solarzellen mit dem Grundmaß 156 mm x 156 mm über 16 % Wirkungsgrad und sind Garantie für einen extrem hohen Jahresenergieertrag der Photovoltaikanlage.

Zum Schutz gegen härteste Klimabedingungen sind die Zellen zwischen einer gehärteten Glasabdeckung und EVA-Folie eingebettet und rückseitig mit PET-Folie versiegelt. Das Laminat ist in einem stabilen Aluminiumrahmen eingefasst, welcher leicht zu montieren ist. Dieses Modul erfüllt die erweiterten Testanforderungen der IEC 61215 ed. 2 für eine mechanische Belastbarkeit von 5.400 N/m².

Die Anschlussdose auf der Rückseite ist mit Bypass-Dioden versehen, die das Überhitzungsrisiko einzelner Solarzellen (Hot-Spot-Effekt) verhindern. Mehrere in Reihe geschaltete PV-Module können einfach über vormontierte Solarkabel und Multi-Contact-Stecker verkabelt werden.

Kyocera fertigt alle Komponenten in eigenen Produktionsstätten – ohne Zukauf von Zwischenprodukten – für eine gleichbleibend hohe Qualität der Produkte.

TUVdotCOM Service: Internetplattform für geprüfte Qualität und Sicherheit TUVdotCOM-ID: 0000023299 IEC 61215 ed. 2, IEC 61730 und Schutzklasse II Kyocera ist ein nach ISO 9001 und ISO 14001 zertifiziertes und registriertes Unternehmen.

KYOCERA SOLAR

We care!

in mm

ELEKTRISCHE EIGENSCHAFTEN

Strom-Spannungs-Kennlinie bei verschiedenen Zelltemperaturen

Strom-Spannungs-Kennlinie bei verschiedener Einstrahlung

·			
	1000 W/m ²		
	800 W/m ²		
-	000 11 / 11		
			\
		_	\
		//	\
		<u> </u>	11
	$-400 W/m^2$		
			///
·			
	200 W/m ²		, \\\\
			\
			//
	10 20	3	0

FI	FKTR	ISCHE	DATEN

ELEKTRISCHE DATEN		
PV-Modultyp KD215GH		
Bei 1000 W/m² (STC)*		
Nennleistung P	[W]	215
Max. Systemspannung	[V]	1000
Spannung bei Nennleistung	[V]	26,6
Strom bei Nennleistung	[A]	8,09
Leerlaufspannung	[V]	33,2
Kurzschlussstrom	[A]	8,78
Bei 800 W/m² (NOCT)**		
Nennleistung P	[W]	152
Spannung bei Nennleistung	[V]	23,6
Strom bei Nennleistung	[A]	6,47
Leerlaufspannung	[V]	30,0
Kurzschlussstrom	[A]	7,12
NOCT	[°C]	47,9
Leistungstoleranz	[%]	+5 / -3
Rückstrombelastbarkeit I _R	[A]	15
Max. Strangabsicherung	[A]	15
Temperaturkoeffizient der Leerlaufspannung	[V/°C]	-1,20x10 ⁻¹
Temperaturkoeffizient des Kurzschlussstroms	[A/°C]	5,27x10 ⁻³
Temperaturkoeffizient der Leistung bei Pmax	[W/°C]	-9,91x10 ⁻¹
Reduktion des Wirkungsgrades (1000 auf 200 W/m²)	[%]	6,0

Länge	[mm]	1500 (±2,5)
Breite	[mm]	990 (±2,5)
Höhe / inkl. Anschlussdose	[mm]	46
Gewicht	[kg]	18
Kabel	[mm]	(+)950 / (-)750
Anschlusstyp		MC PV-KBT3 / MC PV-KST3
Anschlussdose	[mm]	105x108x20
IP Code		IP65

ALLGEMEINE DATEN

Leistungsgarantie	10*** / 20 Jahre****
Produktgarantie	5 Jahre

ZELLEN

Anzahl per Modul		54
Zelltechnologie		polykristallin
Zellgröße (quadratisch)	[mm]	156x156
Zellkontaktierung		3-Busbar

- Elektrische Werte unter Standard-Testhedingungen (STC): Einstrablung von 1000 W/m², Luftmasse AM 1.5 und Zelltemperatur von 25 °C
 Elektrische Werte unter Zellen-Nennbetriebstemperatur (NOCT): Einstrahlung von 800 W/m², Luftmasse AM 1.5,
- Windgsschwindigkeit von 1 m/s und Umgebungstemperatur von 20 °C

 **** 10 Jabre auf 90 % der minimal spezifizierten Leistung P unter Standard-Testbedingungen (STC)

 **** 20 Jabre auf 80 % der minimal spezifizierten Leistung P unter Standard-Testbedingungen (STC)

Ihr lokaler Kyocera Händler:

KYOCERA SOLAR

We care!

KYOCERA Fineceramics GmbH Solar Division

Fritz-Müller-Straße 27 73730 Esslingen/Germany Tel: +49 (0)711-93 93 49 99 Fax: +49 (0)711-93 93 49 50 E-Mail: solar@kyocera.de www.kyocerasolar.de