Generated on 2017-06-02 20:30:31 by gEcon version 1.0.2 (2016-12-05) Model name: home_prod_templ

Index sets

$$IND = \{H, M\}$$

1 CONSUMER

1.1 Optimisation problem

$$\max_{\left(K_{t}^{\langle i\rangle}\right)_{i\in IND}, \left(C_{t}^{\langle i\rangle}\right)_{i\in IND}, \left(N_{t}^{\langle i\rangle}\right)_{i\in IND}, \left(I_{t}^{\langle i\rangle}\right)_{i\in IND}} U_{t} = \beta \operatorname{E}_{t}\left[U_{t+1}\right] + \log\left(1 - \sum_{i\in IND} N_{t}^{\langle i\rangle}\right) (1-b) + be^{-1}\log\left(aC_{t}^{\langle \mathrm{M}\rangle^{e}} + (1-a)C_{t}^{\langle \mathrm{H}\rangle^{e}}\right)$$

$$(1.1)$$

s.t.

$$C_t^{\langle M \rangle} + \sum_{i \in IND} I_t^{\langle i \rangle} = \pi_t + r_t K_{t-1}^{\langle M \rangle} + W_t N_t^{\langle M \rangle} \quad \left(\lambda_t^{\text{CONSUMER}^1} \right)$$
(1.2)

$$i \in \mathit{IND}: \quad K_t^{\langle i \rangle} = I_t^{\langle i \rangle} + K_{t-1}^{\langle i \rangle} (1 - \delta) \quad \left(\lambda^{\mathrm{CONSUMER}^2 \langle i \rangle}_t\right)$$
 (1.3)

$$C_t^{\langle H \rangle} = \Gamma Z_t^{\langle H \rangle} K_{t-1}^{\langle H \rangle} N_t^{\langle H \rangle^{1-\theta}} \quad \left(\lambda_t^{\text{CONSUMER}^3} \right)$$
(1.4)

1.2 Identities

$$K_t = \sum_{i \in IND} K_t^{\langle i \rangle} \tag{1.5}$$

$$I_t = \sum_{i \in IND} I_t^{\langle i \rangle} \tag{1.6}$$

$$N_t = \sum_{i \in IND} N_t^{\langle i \rangle} \tag{1.7}$$

1.3 First order conditions

$$i \in IND: \quad -\lambda^{\text{CONSUMER}^{2\langle i \rangle}} + \beta \left(\delta^{\langle \mathbf{M}, i \rangle} \mathbf{E}_{t} \left[\lambda^{\text{CONSUMER}^{1}}_{t+1} r_{t+1} \right] + (1 - \delta) \mathbf{E}_{t} \left[\lambda^{\text{CONSUMER}^{2\langle i \rangle}}_{t+1} \right] + \delta^{\langle \mathbf{H}, i \rangle} \theta \Gamma K_{t}^{\langle \mathbf{H} \rangle}^{-1 + \theta} \mathbf{E}_{t} \left[\lambda^{\text{CONSUMER}^{3}}_{t+1} Z_{t+1}^{\langle \mathbf{H} \rangle} N_{t+1}^{\langle \mathbf{H} \rangle}^{1 - \theta} \right] \right) = 0 \quad \left(K_{t}^{\langle i \rangle} \right)$$

$$(1.8)$$

$$i \in IND: -\delta^{\langle \mathbf{M}, i \rangle} \lambda_t^{\text{CONSUMER}^1} - \delta^{\langle \mathbf{H}, i \rangle} \lambda_t^{\text{CONSUMER}^3} + be^{-1} \left(aC_t^{\langle \mathbf{M} \rangle^e} + (1-a)C_t^{\langle \mathbf{H} \rangle^e} \right)^{-1} \left(\delta^{\langle \mathbf{M}, i \rangle} aeC_t^{\langle \mathbf{M} \rangle^{-1+e}} + \delta^{\langle \mathbf{H}, i \rangle} e\left(1-a\right)C_t^{\langle \mathbf{H} \rangle^{-1+e}} \right) = 0 \quad \left(C_t^{\langle i \rangle} \right) \quad (1.9)$$

$$i \in IND: -(1-b)\left(1 - \sum_{i \in IND} N_t^{\langle i \rangle}\right)^{-1} + \delta^{\langle \mathbf{M}, i \rangle} \lambda_t^{\text{CONSUMER}^1} W_t + \delta^{\langle \mathbf{H}, i \rangle} \Gamma \lambda_t^{\text{CONSUMER}^3} Z_t^{\langle \mathbf{H} \rangle} \left(1 - \theta\right) K_{t-1}^{\langle \mathbf{H} \rangle} N_t^{\langle \mathbf{H} \rangle} = 0 \quad \left(N_t^{\langle i \rangle}\right)$$

$$(1.10)$$

$$i \in IND: -\lambda_t^{\text{CONSUMER}^1} + \lambda_t^{\text{CONSUMER}^2 \langle i \rangle} = 0 \quad \left(I_t^{\langle i \rangle}\right)$$
 (1.11)

2 FIRM

2

2.1 Optimisation problem

$$\max_{K_t^{\mathrm{md}}, N_t^{\mathrm{md}}, Y_t, \pi_t} \Pi_t = \pi_t \tag{2.1}$$

s.t.

$$\pi_t = Y_t - N_t^{\mathrm{m}^{\mathrm{d}}} W_t - r_t K_t^{\mathrm{m}^{\mathrm{d}}} \quad \left(\lambda_t^{\mathrm{FIRM}^1}\right) \tag{2.2}$$

$$Y_t = \Gamma Z_t^{\langle M \rangle} K_t^{m^d} N_t^{m^d} \left(\lambda_t^{FIRM^2} \right)$$
 (2.3)

2.2 First order conditions

$$-\lambda_t^{\text{FIRM}^1} r_t + \alpha \Gamma \lambda_t^{\text{FIRM}^2} Z_t^{\langle \text{M} \rangle} K_t^{\text{m}^{\text{d}} - 1 + \alpha} N_t^{\text{m}^{\text{d}} 1 - \alpha} = 0 \quad \left(K_t^{\text{m}^{\text{d}}} \right)$$
(2.4)

$$-\lambda_t^{\text{FIRM}^1} W_t + \Gamma \lambda_t^{\text{FIRM}^2} Z_t^{\langle \text{M} \rangle} (1 - \alpha) K_t^{\text{m}^{\text{d}}} N_t^{\text{m}^{\text{d}}} = 0 \quad \left(N_t^{\text{m}^{\text{d}}} \right)$$

$$(2.5)$$

$$\lambda_t^{\text{FIRM}^1} - \lambda_t^{\text{FIRM}^2} = 0 \quad (Y_t) \tag{2.6}$$

$$1 - \lambda_t^{\text{FIRM}^1} = 0 \quad (\pi_t) \tag{2.7}$$

2.3 First order conditions after reduction

$$-r_t + \alpha \Gamma Z_t^{\langle \mathbf{M} \rangle} K_t^{\mathbf{m}^{\mathbf{d}} - 1 + \alpha} N_t^{\mathbf{m}^{\mathbf{d}} 1 - \alpha} = 0 \quad \left(K_t^{\mathbf{m}^{\mathbf{d}}} \right)$$
 (2.8)

$$-W_t + \Gamma Z_t^{\langle M \rangle} (1 - \alpha) K_t^{m^d} N_t^{m^{d-\alpha}} = 0 \quad \left(N_t^{m^d} \right)$$
 (2.9)

3 EQUILIBRIUM

3.1 Identities

$$K_t^{\mathrm{m^d}} = K_{t-1}^{\langle \mathrm{M} \rangle} \tag{3.1}$$

$$N_t^{\rm m^d} = N_t^{\langle \rm M \rangle} \tag{3.2}$$

4 EXOG

4.1 Identities

$$i \in \mathit{IND}: \quad Z_t^{\langle i \rangle} = e^{\epsilon_t^{\langle i \rangle} + \psi^{\langle i \rangle} \log Z_{t-1}^{\langle i \rangle}}$$
 (4.1)

5 Equilibrium relationships (before expansion and reduction)

$$-\pi_t + \Pi_t = 0 \tag{5.1}$$

$$-r_t + \alpha \Gamma Z_t^{\langle M \rangle} K_t^{m^d} N_t^{m^d} = 0$$
(5.2)

$$-I_t + \sum_{i \in IND} I_t^{\langle i \rangle} = 0 \tag{5.3}$$

$$-K_t + \sum_{i \in IND} K_t^{\langle i \rangle} = 0 \tag{5.4}$$

$$-K_t^{\mathrm{m}^{\mathrm{d}}} + K_{t-1}^{\langle \mathrm{M} \rangle} = 0 \tag{5.5}$$

$$-N_t + \sum_{i \in IND} N_t^{\langle i \rangle} = 0 \tag{5.6}$$

$$-N_t^{\mathrm{m^d}} + N_t^{\langle \mathrm{M} \rangle} = 0 \tag{5.7}$$

$$-W_t + \Gamma Z_t^{\langle M \rangle} (1 - \alpha) K_t^{m^d} N_t^{m^d - \alpha} = 0$$

$$(5.8)$$

$$-Y_t + \Gamma Z_t^{\langle \mathcal{M} \rangle} K_t^{\mathbf{m}^{\mathbf{d}}} N_t^{\mathbf{m}^{\mathbf{d}}} = 0$$

$$(5.9)$$

ಬ

$$-C_t^{\langle \mathrm{H} \rangle} + \Gamma Z_t^{\langle \mathrm{H} \rangle} K_{t-1}^{\langle \mathrm{H} \rangle} {}^{\theta} N_t^{\langle \mathrm{H} \rangle} {}^{1-\theta} = 0 \tag{5.10}$$

$$-\pi_t + Y_t - r_t K_t^{m^d} - N_t^{m^d} W_t = 0 (5.11)$$

$$U_{t} - \beta E_{t} [U_{t+1}] - \log \left(1 - \sum_{i \in IND} N_{t}^{\langle i \rangle} \right) (1 - b) - be^{-1} \log \left(a C_{t}^{\langle M \rangle^{e}} + (1 - a) C_{t}^{\langle H \rangle^{e}} \right) = 0$$
 (5.12)

$$\pi_t - C_t^{\langle \mathcal{M} \rangle} + r_t K_{t-1}^{\langle \mathcal{M} \rangle} + W_t N_t^{\langle \mathcal{M} \rangle} - \sum_{i \in IND} I_t^{\langle i \rangle} = 0$$

$$(5.13)$$

$$i \in IND: -\lambda_t^{\text{CONSUMER}^1} + \lambda_t^{\text{CONSUMER}^2 \langle i \rangle} = 0$$
 (5.14)

$$i \in \mathit{IND}: \quad -\lambda^{\mathrm{CONSUMER}^{2} \langle i \rangle}_{t} + \beta \left(\delta^{\langle \mathbf{M}, i \rangle} \mathbf{E}_{t} \left[\lambda^{\mathrm{CONSUMER}^{1}}_{t+1} r_{t+1} \right] + (1 - \delta) \, \mathbf{E}_{t} \left[\lambda^{\mathrm{CONSUMER}^{2} \langle i \rangle}_{t+1} \right] + \delta^{\langle \mathbf{H}, i \rangle} \theta \Gamma K_{t}^{\langle \mathbf{H} \rangle^{-1+\theta}} \mathbf{E}_{t} \left[\lambda^{\mathrm{CONSUMER}^{3}}_{t+1} Z_{t+1}^{\langle \mathbf{H} \rangle} N_{t+1}^{\langle \mathbf{H} \rangle^{1-\theta}} \right] \right) = 0 \quad (5.15)$$

$$i \in IND: \quad -Z_t^{\langle i \rangle} + e^{\epsilon_t^{\langle i \rangle} + \psi^{\langle i \rangle} \log Z_{t-1}^{\langle i \rangle}} = 0$$
 (5.16)

$$i \in IND: \quad I_t^{\langle i \rangle} - K_t^{\langle i \rangle} + K_{t-1}^{\langle i \rangle} (1 - \delta) = 0$$
 (5.17)

$$i \in IND: -\delta^{\langle \mathbf{M}, i \rangle} \lambda_t^{\text{CONSUMER}^1} - \delta^{\langle \mathbf{H}, i \rangle} \lambda_t^{\text{CONSUMER}^3} + be^{-1} \left(aC_t^{\langle \mathbf{M} \rangle^e} + (1-a)C_t^{\langle \mathbf{H} \rangle^e} \right)^{-1} \left(\delta^{\langle \mathbf{M}, i \rangle} aeC_t^{\langle \mathbf{M} \rangle^{-1+e}} + \delta^{\langle \mathbf{H}, i \rangle} e\left(1-a\right)C_t^{\langle \mathbf{H} \rangle^{-1+e}} \right) = 0$$
 (5.18)

$$i \in IND: -(1-b)\left(1 - \sum_{i \in IND} N_t^{\langle i \rangle}\right)^{-1} + \delta^{\langle \mathbf{M}, i \rangle} \lambda_t^{\text{CONSUMER}^1} W_t + \delta^{\langle \mathbf{H}, i \rangle} \Gamma \lambda_t^{\text{CONSUMER}^3} Z_t^{\langle \mathbf{H} \rangle} \left(1 - \theta\right) K_{t-1}^{\langle \mathbf{H} \rangle} N_t^{\langle \mathbf{H} \rangle} = 0$$

$$(5.19)$$

6 Equilibrium relationships (after expansion and reduction)

$$-r_t + \alpha \Gamma Z_t^{\langle M \rangle} K_{t-1}^{\langle M \rangle^{-1+\alpha}} N_t^{\langle M \rangle^{1-\alpha}} = 0$$

$$(6.1)$$

$$-W_t + \Gamma Z_t^{\langle M \rangle} (1 - \alpha) K_{t-1}^{\langle M \rangle} N_t^{\langle M \rangle^{-\alpha}} = 0$$

$$(6.2)$$

$$-Y_t + \Gamma Z_t^{\langle \mathbf{M} \rangle} K_{t-1}^{\langle \mathbf{M} \rangle} N_t^{\langle \mathbf{M} \rangle^{1-\alpha}} = 0 \tag{6.3}$$

$$-C_t^{\langle H \rangle} + \Gamma Z_t^{\langle H \rangle} K_{t-1}^{\langle H \rangle} N_t^{\langle H \rangle}^{1-\theta} = 0 \tag{6.4}$$

$$-Z_t^{\langle H \rangle} + e^{\epsilon_t^{\langle H \rangle} + \psi^{\langle H \rangle} \log Z_{t-1}^{\langle H \rangle}} = 0 \tag{6.5}$$

$$-Z_t^{\langle M \rangle} + e^{\epsilon_t^{\langle M \rangle} + \psi^{\langle M \rangle} \log Z_{t-1}^{\langle M \rangle}} = 0 \tag{6.6}$$

$$\beta \left(ab \mathcal{E}_{t} \left[r_{t+1} \left(a C_{t+1}^{\langle \mathcal{M} \rangle^{e}} + (1-a) C_{t+1}^{\langle \mathcal{H} \rangle^{e}} \right)^{-1} C_{t+1}^{\langle \mathcal{M} \rangle^{-1+e}} \right] + ab \left(1-\delta \right) \mathcal{E}_{t} \left[\left(a C_{t+1}^{\langle \mathcal{M} \rangle^{e}} + (1-a) C_{t+1}^{\langle \mathcal{H} \rangle^{e}} \right)^{-1} C_{t+1}^{\langle \mathcal{M} \rangle^{-1+e}} \right] \right) - ab \left(a C_{t}^{\langle \mathcal{M} \rangle^{e}} + (1-a) C_{t}^{\langle \mathcal{H} \rangle^{e}} \right)^{-1} C_{t}^{\langle \mathcal{M} \rangle^{-1+e}} = 0$$

$$(6.7)$$

$$\beta \left(ab\left(1-\delta\right) \mathcal{E}_{t} \left[\left(aC_{t+1}^{\langle\mathcal{M}\rangle^{e}}+\left(1-a\right) C_{t+1}^{\langle\mathcal{H}\rangle^{e}}\right)^{-1} C_{t+1}^{\langle\mathcal{H}\rangle^{e}}\right] + b\theta \Gamma \left(1-a\right) K_{t}^{\langle\mathcal{H}\rangle^{-1+\theta}} \mathcal{E}_{t} \left[Z_{t+1}^{\langle\mathcal{H}\rangle} \left(aC_{t+1}^{\langle\mathcal{M}\rangle^{e}}+\left(1-a\right) C_{t+1}^{\langle\mathcal{H}\rangle^{e}}\right)^{-1} C_{t+1}^{\langle\mathcal{H}\rangle^{-1+e}} N_{t+1}^{\langle\mathcal{H}\rangle^{1-\theta}}\right]\right) - ab \left(aC_{t}^{\langle\mathcal{M}\rangle^{e}}+\left(1-a\right) C_{t}^{\langle\mathcal{H}\rangle^{e}}\right)^{-1} C_{t}^{\langle\mathcal{M}\rangle^{e}}$$

$$(6.8)$$

$$-(1-b)\left(1-N_t^{\langle \mathrm{H}\rangle}-N_t^{\langle \mathrm{M}\rangle}\right)^{-1}+abW_t\left(aC_t^{\langle \mathrm{M}\rangle^e}+(1-a)C_t^{\langle \mathrm{H}\rangle^e}\right)^{-1}C_t^{\langle \mathrm{M}\rangle^{-1+e}}=0$$
(6.9)

$$-\left(1-b\right)\left(1-N_{t}^{\langle\mathrm{H}\rangle}-N_{t}^{\langle\mathrm{M}\rangle}\right)^{-1}+b\Gamma Z_{t}^{\langle\mathrm{H}\rangle}\left(1-a\right)\left(1-\theta\right)\left(aC_{t}^{\langle\mathrm{M}\rangle^{e}}+\left(1-a\right)C_{t}^{\langle\mathrm{H}\rangle^{e}}\right)^{-1}K_{t-1}^{\langle\mathrm{H}\rangle^{\theta}}C_{t}^{\langle\mathrm{H}\rangle^{-1+e}}N_{t}^{\langle\mathrm{H}\rangle^{-\theta}}=0\tag{6.10}$$

$$-I_t + I_t^{\langle H \rangle} + I_t^{\langle M \rangle} = 0 \tag{6.11}$$

$$-K_t + K_t^{\langle H \rangle} + K_t^{\langle M \rangle} = 0 \tag{6.12}$$

$$-N_t + N_t^{\langle H \rangle} + N_t^{\langle M \rangle} = 0 \tag{6.13}$$

$$I_t^{\langle \mathrm{H} \rangle} - K_t^{\langle \mathrm{H} \rangle} + K_{t-1}^{\langle \mathrm{H} \rangle} (1 - \delta) = 0 \tag{6.14}$$

$$I_t^{\langle \mathcal{M} \rangle} - K_t^{\langle \mathcal{M} \rangle} + K_{t-1}^{\langle \mathcal{M} \rangle} (1 - \delta) = 0 \tag{6.15}$$

$$U_{t} - \beta \operatorname{E}_{t} \left[U_{t+1} \right] - \log \left(1 - N_{t}^{\langle H \rangle} - N_{t}^{\langle M \rangle} \right) (1 - b) - b e^{-1} \log \left(a C_{t}^{\langle M \rangle}^{e} + (1 - a) C_{t}^{\langle H \rangle}^{e} \right) = 0$$

$$(6.16)$$

$$Y_t - C_t^{\langle \mathcal{M} \rangle} - I_t^{\langle \mathcal{H} \rangle} - I_t^{\langle \mathcal{M} \rangle} = 0 \tag{6.17}$$

7 Steady state relationships (before expansion and reduction)

$$-\pi_{\rm ss} + \Pi_{\rm ss} = 0 \tag{7.1}$$

$$-r_{\rm ss} + \alpha \Gamma Z_{\rm ss}^{\langle M \rangle} K_{\rm ss}^{\rm m^d-1+\alpha} N_{\rm ss}^{\rm m^d-1-\alpha} = 0 \tag{7.2}$$

$$-I_{\rm ss} + \sum_{i \in IND} I_{\rm ss}^{\langle i \rangle} = 0 \tag{7.3}$$

$$-K_{\rm ss} + \sum_{i \in IND} K_{\rm ss}^{\langle i \rangle} = 0 \tag{7.4}$$

$$-K_{\rm ss}^{\rm m^d} + K_{\rm ss}^{\rm (M)} = 0 \tag{7.5}$$

$$-N_{\rm ss} + \sum_{i \in IND} N_{\rm ss}^{\langle i \rangle} = 0 \tag{7.6}$$

$$-N_{\rm ss}^{\rm m^d} + N_{\rm ss}^{\langle \rm M \rangle} = 0 \tag{7.7}$$

$$-W_{\rm ss} + \Gamma Z_{\rm ss}^{\langle M \rangle} (1 - \alpha) K_{\rm ss}^{\rm m^d} N_{\rm ss}^{\rm m^d} = 0$$

$$(7.8)$$

$$-Y_{\rm ss} + \Gamma Z_{\rm ss}^{\langle M \rangle} K_{\rm ss}^{\rm m^d} N_{\rm ss}^{\rm m^d}^{1-\alpha} = 0 \tag{7.9}$$

$$-C_{\rm ss}^{\langle {\rm H} \rangle} + \Gamma Z_{\rm ss}^{\langle {\rm H} \rangle} K_{\rm ss}^{\langle {\rm H} \rangle^{\theta}} N_{\rm ss}^{\langle {\rm H} \rangle^{1-\theta}} = 0 \tag{7.10}$$

$$-\pi_{\rm ss} + Y_{\rm ss} - r_{\rm ss}K_{\rm ss}^{\rm m^d} - N_{\rm ss}^{\rm m^d}W_{\rm ss} = 0 \tag{7.11}$$

$$U_{\rm ss} - \beta U_{\rm ss} - \log \left(1 - \sum_{i \in IND} N_{\rm ss}^{\langle i \rangle} \right) (1 - b) - be^{-1} \log \left(a C_{\rm ss}^{\langle M \rangle^e} + (1 - a) C_{\rm ss}^{\langle H \rangle^e} \right) = 0$$
 (7.12)

$$\pi_{\rm ss} - C_{\rm ss}^{\langle \rm M \rangle} + r_{\rm ss} K_{\rm ss}^{\langle \rm M \rangle} + W_{\rm ss} N_{\rm ss}^{\langle \rm M \rangle} - \sum_{i \in IND} I_{\rm ss}^{\langle i \rangle} = 0 \tag{7.13}$$

$$i \in IND: -\lambda_{ss}^{CONSUMER^1} + \lambda^{CONSUMER^2} \frac{\langle i \rangle}{ss} = 0$$
 (7.14)

$$i \in IND: -\lambda^{\text{CONSUMER}^{2\langle i \rangle}}_{\text{ss}} + \beta \left(\lambda^{\text{CONSUMER}^{2\langle i \rangle}}_{\text{ss}} (1 - \delta) + \delta^{\langle \mathbf{M}, i \rangle} \lambda^{\text{CONSUMER}^{1}}_{\text{ss}} r_{\text{ss}} + \delta^{\langle \mathbf{H}, i \rangle} \theta \Gamma \lambda^{\text{CONSUMER}^{3}}_{\text{ss}} Z^{\langle \mathbf{H} \rangle}_{\text{ss}} K^{\langle \mathbf{H} \rangle}_{\text{ss}}^{-1 + \theta} N^{\langle \mathbf{H} \rangle}_{\text{ss}}^{1 - \theta} \right) = 0$$
 (7.15)

6

$$i \in IND: \quad -Z_{ss}^{\langle i \rangle} + e^{\epsilon_{ss}^{\langle i \rangle} + \psi^{\langle i \rangle} \log Z_{ss}^{\langle i \rangle}} = 0$$
 (7.16)

$$i \in IND: \quad I_{ss}^{\langle i \rangle} - K_{ss}^{\langle i \rangle} + K_{ss}^{\langle i \rangle} (1 - \delta) = 0$$
 (7.17)

$$i \in IND: \quad -\delta^{\langle \mathbf{M},i\rangle} \lambda_{\mathrm{ss}}^{\mathrm{CONSUMER}^{1}} - \delta^{\langle \mathbf{H},i\rangle} \lambda_{\mathrm{ss}}^{\mathrm{CONSUMER}^{3}} + be^{-1} \left(aC_{\mathrm{ss}}^{\langle \mathbf{M}\rangle^{e}} + (1-a) C_{\mathrm{ss}}^{\langle \mathbf{H}\rangle^{e}} \right)^{-1} \left(\delta^{\langle \mathbf{M},i\rangle} aeC_{\mathrm{ss}}^{\langle \mathbf{M}\rangle^{-1+e}} + \delta^{\langle \mathbf{H},i\rangle} e \left(1-a \right) C_{\mathrm{ss}}^{\langle \mathbf{H}\rangle^{-1+e}} \right) = 0 \tag{7.18}$$

$$i \in IND: -(1-b)\left(1 - \sum_{i \in IND} N_{ss}^{\langle i \rangle}\right)^{-1} + \delta^{\langle M, i \rangle} \lambda_{ss}^{CONSUMER^{1}} W_{ss} + \delta^{\langle H, i \rangle} \Gamma \lambda_{ss}^{CONSUMER^{3}} Z_{ss}^{\langle H \rangle} \left(1 - \theta\right) K_{ss}^{\langle H \rangle} N_{ss}^{\langle H \rangle - \theta} = 0$$

$$(7.19)$$

8 Steady state relationships (after expansion and reduction)

$$-r_{\rm ss} + \alpha \Gamma Z_{\rm ss}^{\langle M \rangle} K_{\rm ss}^{\langle M \rangle^{-1+\alpha}} N_{\rm ss}^{\langle M \rangle^{1-\alpha}} = 0 \tag{8.1}$$

$$-W_{\rm ss} + \Gamma Z_{\rm ss}^{\langle M \rangle} (1 - \alpha) K_{\rm ss}^{\langle M \rangle^{\alpha}} N_{\rm ss}^{\langle M \rangle^{-\alpha}} = 0$$

$$(8.2)$$

$$-Y_{\rm ss} + \Gamma Z_{\rm ss}^{\langle M \rangle} K_{\rm ss}^{\langle M \rangle^{\alpha}} N_{\rm ss}^{\langle M \rangle^{1-\alpha}} = 0 \tag{8.3}$$

$$-C_{\rm ss}^{\langle {\rm H} \rangle} + \Gamma Z_{\rm ss}^{\langle {\rm H} \rangle} K_{\rm ss}^{\langle {\rm H} \rangle}{}^{\theta} N_{\rm ss}^{\langle {\rm H} \rangle}{}^{1-\theta} = 0 \tag{8.4}$$

$$-Z_{\rm ss}^{\langle \rm H \rangle} + e^{\psi^{\langle \rm H \rangle} \log Z_{\rm ss}^{\langle \rm H \rangle}} = 0 \tag{8.5}$$

$$-Z_{\rm ss}^{\langle {\rm M} \rangle} + e^{\psi^{\langle {\rm M} \rangle} \log Z_{\rm ss}^{\langle {\rm M} \rangle}} = 0 \tag{8.6}$$

$$\beta \left(abr_{\rm ss} \left(aC_{\rm ss}^{\langle {\rm M} \rangle^e} + (1-a)C_{\rm ss}^{\langle {\rm H} \rangle^e} \right)^{-1}C_{\rm ss}^{\langle {\rm M} \rangle^{-1+e}} + ab\left(1-\delta\right) \left(aC_{\rm ss}^{\langle {\rm M} \rangle^e} + (1-a)C_{\rm ss}^{\langle {\rm H} \rangle^e} \right)^{-1}C_{\rm ss}^{\langle {\rm M} \rangle^{-1+e}} \right) - ab\left(aC_{\rm ss}^{\langle {\rm M} \rangle^e} + (1-a)C_{\rm ss}^{\langle {\rm H} \rangle^e} \right)^{-1}C_{\rm ss}^{\langle {\rm M} \rangle^{-1+e}} = 0$$
 (8.7)

$$\beta \left(ab\left(1-\delta\right)\left(aC_{\rm ss}^{\langle {\rm M}\rangle^e}+\left(1-a\right)C_{\rm ss}^{\langle {\rm H}\rangle^e}\right)^{-1}C_{\rm ss}^{\langle {\rm H}\rangle^e}+b\theta\Gamma Z_{\rm ss}^{\langle {\rm H}\rangle}\left(1-a\right)\left(aC_{\rm ss}^{\langle {\rm M}\rangle^e}+\left(1-a\right)C_{\rm ss}^{\langle {\rm H}\rangle^e}\right)^{-1}C_{\rm ss}^{\langle {\rm H}\rangle^e-1+e}K_{\rm ss}^{\langle {\rm H}\rangle^e-1+e}K_{\rm ss}^{\langle {\rm H}\rangle^e-1+e}N_{\rm ss}^{\langle {\rm H}\rangle^e-1+e}\left(aC_{\rm ss}^{\langle {\rm M}\rangle^e}+\left(1-a\right)C_{\rm ss}^{\langle {\rm H}\rangle^e}\right)^{-1}C_{\rm ss}^{\langle {\rm M}\rangle^e-1+e}=0$$

$$(8.8)$$

$$-(1-b)\left(1-N_{\rm ss}^{\langle {\rm H}\rangle}-N_{\rm ss}^{\langle {\rm M}\rangle}\right)^{-1}+abW_{\rm ss}\left(aC_{\rm ss}^{\langle {\rm M}\rangle^e}+(1-a)C_{\rm ss}^{\langle {\rm H}\rangle^e}\right)^{-1}C_{\rm ss}^{\langle {\rm M}\rangle^{-1+e}}=0$$
(8.9)

$$-(1-b)\left(1-N_{\rm ss}^{\langle \rm H\rangle}-N_{\rm ss}^{\langle \rm H\rangle}\right)^{-1}+b\Gamma Z_{\rm ss}^{\langle \rm H\rangle}\left(1-a\right)\left(1-\theta\right)\left(aC_{\rm ss}^{\langle \rm M\rangle}{}^{e}+\left(1-a\right)C_{\rm ss}^{\langle \rm H\rangle}\right)^{-1}C_{\rm ss}^{\langle \rm H\rangle}{}^{-1+e}K_{\rm ss}^{\langle \rm H\rangle}{}^{\theta}N_{\rm ss}^{\langle \rm H\rangle}{}^{-\theta}=0$$

$$(8.10)$$

$$-I_{ss} + I_{ss}^{\langle H \rangle} + I_{ss}^{\langle M \rangle} = 0 \tag{8.11}$$

$$-K_{\rm ss} + K_{\rm ss}^{\langle \rm H \rangle} + K_{\rm ss}^{\langle \rm M \rangle} = 0 \tag{8.12}$$

$$-N_{\rm ss} + N_{\rm ss}^{\langle \rm H \rangle} + N_{\rm ss}^{\langle \rm M \rangle} = 0 \tag{8.13}$$

$$I_{\rm ss}^{\langle \rm H \rangle} - K_{\rm ss}^{\langle \rm H \rangle} + K_{\rm ss}^{\langle \rm H \rangle} (1 - \delta) = 0 \tag{8.14}$$

$$I_{\rm ss}^{\langle \rm M \rangle} - K_{\rm ss}^{\langle \rm M \rangle} + K_{\rm ss}^{\langle \rm M \rangle} (1 - \delta) = 0 \tag{8.15}$$

$$U_{\rm ss} - \beta U_{\rm ss} - \log\left(1 - N_{\rm ss}^{\langle \rm H \rangle} - N_{\rm ss}^{\langle \rm M \rangle}\right) (1 - b) - be^{-1} \log\left(aC_{\rm ss}^{\langle \rm M \rangle^e} + (1 - a)C_{\rm ss}^{\langle \rm H \rangle^e}\right) = 0 \tag{8.16}$$

$$Y_{\rm ss} - C_{\rm ss}^{\langle M \rangle} - I_{\rm ss}^{\langle H \rangle} - I_{\rm ss}^{\langle M \rangle} = 0 \tag{8.17}$$

9 Parameter settings

 ∞

$$a = 0.337 (9.1)$$

$$\alpha = 0.36 \tag{9.2}$$

$$b = 0.63 \tag{9.3}$$

$$\beta = 0.99 \tag{9.4}$$

$$\delta = 0.025 \tag{9.5}$$

$$e = 0.8 \tag{9.6}$$

$$\theta = 0.08 \tag{9.7}$$

$$\Gamma = 1 \tag{9.8}$$

$$\psi^{\langle H \rangle} = 0.95 \tag{9.9}$$

$$\psi^{\langle M \rangle} = 0.95 \tag{9.10}$$

10 Steady-state values

	Steady-state value			
\overline{r}	0.0351			
I	0.3143			
K	12.5726			
N	0.6102			
U	-79.6929			
W	2.3706			
Y	1.0367			
$C^{\langle { m H} angle}$	0.3805			
$C^{\langle \mathrm{M} angle}$	0.7224			
$I^{\langle { m H} angle}$	0.0485			
$I^{\langle \mathrm{M} angle}$	0.2658			
$K^{\langle { m H} angle}$	1.9397			
$K^{\langle { m M} angle}$	10.6329			
$N^{ m \langle H angle}$	0.3303			
$N^{\langle { m M} angle}$	0.2799			
$Z^{\langle { m H} angle}$	1			
$Z^{\langle { m M} angle}$	1			

11 The solution of the 1st order perturbation

Matrix P

$$\begin{pmatrix} K_{t-1}^{\langle \mathrm{H} \rangle} & K_{t-1}^{\langle \mathrm{M} \rangle} & Z_{t-1}^{\langle \mathrm{H} \rangle} & Z_{t-1}^{\langle \mathrm{M} \rangle} \\ K_{t}^{\langle \mathrm{H} \rangle} & 0.0826 & 0.4683 & 2.0323 & -2.6403 \\ K_{t}^{\langle \mathrm{M} \rangle} & 0.1545 & 0.8762 & -0.3729 & 0.6255 \\ Z_{t}^{\langle \mathrm{H} \rangle} & 0 & 0 & 0.95 & 0 \\ Z_{t}^{\langle \mathrm{M} \rangle} & 0 & 0 & 0.95 \end{pmatrix}$$

Matrix Q

$$\begin{array}{ccc} & \epsilon^{\langle \mathrm{H} \rangle} & \epsilon^{\langle \mathrm{M} \rangle} \\ K^{\langle \mathrm{H} \rangle} & K^{\langle \mathrm{M} \rangle} & \begin{pmatrix} 2.1393 & -2.7792 \\ -0.3926 & 0.6584 \\ 2^{\langle \mathrm{H} \rangle} & 1 & 0 \\ 0 & 1 \\ \end{pmatrix}$$

Matrix R

Matrix S

	$\epsilon^{ m \langle H angle}$	$\epsilon^{\langle \mathrm{M} angle}$
r	/ -0.6545	2.0631
I	-0.0785	5.1231
K	-0.002	0.1281
N	0.0452	0.2379
U	0.0719	0.0875
W	0.3682	0.402
Y	-0.6545	2.0631
$C^{\langle \mathrm{H} \rangle}$	1.8741	-0.8908
$C^{\langle \mathrm{M} \rangle}$	-0.9051	0.7318
$I^{ m \langle H angle}$	85.5725	-111.1686
$I^{ m \langle M angle}$	-15.7031	26.3373
$N^{ m \langle H angle}$	0.9501	-0.9683
$N^{ m \langle M angle}$	$\setminus -1.0227$	1.6612

12 Model statistics

12.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
$C^{\langle \mathrm{M} \rangle}$	0.7224	0.9767	0.954	Y
$C^{\langle \mathrm{H} \rangle}$	0.3805	1.52	2.3104	Y
Y	1.0367	1.7868	3.1926	Y
$I^{ m \langle M angle}$	0.2658	12.888	166.0993	Y
$I^{\langle { m H} angle}$	0.0485	57.2629	3279.0405	Y
$K^{\langle \mathrm{M} angle}$	10.6329	0.6337	0.4016	Y
$K^{\langle { m H} angle}$	1.9397	1.9051	3.6295	Y
$N^{ m \langle M angle}$	0.2799	1.3761	1.8936	Y
$N^{ m \langle H angle}$	0.3303	0.9286	0.8623	Y
W	2.3706	0.6601	0.4358	Y

12.2 Correlation matrix

	W	Y	$C^{\langle {\rm H} \rangle}$	$C^{\langle { m M} angle}$	$I^{\langle { m H} angle}$	$I^{ m \langle M angle}$	$K^{\langle { m H} angle}$	$K^{\langle { m M} angle}$	$N^{\langle { m H} angle}$	$N^{ m \langle M angle}$
\overline{W}	1	0.735	0.421	0.056	-0.028	0.409	-0.271	0.511	-0.148	0.475
Y		1	-0.288	0.622	-0.16	0.542	-0.829	0.779	-0.768	0.946
$C^{\langle { m H} angle}$			1	-0.843	0.084	-0.05	0.657	-0.438	0.833	-0.575
$C^{\langle \mathrm{M} \rangle}$				1	0.021	0.114	-0.704	0.842	-0.933	0.781
$I^{\langle { m H} angle}$					1	-0.901	0.409	-0.068	0.135	-0.194
$I^{ m \langle M angle}$						1	-0.634	0.303	-0.332	0.508
$K^{\langle { m H} angle}$							1	-0.592	0.906	-0.946
$K^{\langle \mathrm{M} angle}$								1	-0.76	0.766
$N^{ m \langle H angle}$									1	-0.927
$N^{\langle { m M} angle}$										1

12.3 Cross correlations with the reference variable (Y)

	$\sigma[\cdot]$ rel. to $\sigma[Y]$	Y_{t-5}	Y_{t-4}	Y_{t-3}	Y_{t-2}	Y_{t-1}	Y_t	Y_{t+1}	Y_{t+2}	Y_{t+3}	Y_{t+4}	Y_{t+5}
W_t	0.369	-0.032	0.068	0.197	0.356	0.547	0.735	0.568	0.415	0.281	0.166	0.071
Y_t	1	0.008	0.146	0.32	0.533	0.787	1	0.787	0.533	0.32	0.146	0.008
$C_t^{\langle { m H} angle}$	0.851	0.044	-0.001	-0.06	-0.136	-0.229	-0.288	-0.318	-0.238	-0.168	-0.108	-0.057
$C_t^{\langle \mathrm{M} angle}$	0.547	-0.194	-0.098	0.033	0.204	0.42	0.622	0.68	0.584	0.483	0.383	0.287
$I_t^{ m \langle H angle}$	32.048	-0.124	-0.156	-0.192	-0.23	-0.27	-0.16	0.372	0.307	0.246	0.192	0.144
$I_t^{\langle \mathrm{M} angle}$	7.213	0.145	0.226	0.322	0.433	0.558	0.542	-0.016	-0.08	-0.126	-0.155	-0.172
$K_t^{\langle { m H} angle}$	1.066	-0.12	-0.235	-0.373	-0.537	-0.727	-0.829	-0.528	-0.284	-0.092	0.054	0.161
$K_t^{\langle { m M} angle}$	0.355	-0.27	-0.149	0.019	0.238	0.516	0.779	0.751	0.692	0.61	0.516	0.416
$N_t^{\langle { m H} angle}$	0.52	0.04	-0.07	-0.212	-0.387	-0.6	-0.768	-0.677	-0.484	-0.318	-0.179	-0.065
$N_t^{\langle { m M} angle}$	0.77	0.026	0.157	0.322	0.522	0.76	0.946	0.75	0.493	0.281	0.11	-0.024

12.4 Autocorrelations

	Lag 1	${\rm Lag}\ 2$	Lag 3	${\rm Lag}\ 4$	Lag 5
\overline{W}	0.74	0.511	0.317	0.156	0.026
Y	0.787	0.533	0.32	0.146	0.008
$C^{\langle { m H} angle}$	0.771	0.512	0.298	0.124	-0.011
$C^{\langle \mathrm{M} angle}$	0.852	0.622	0.418	0.241	0.092
$I^{\langle { m H} angle}$	-0.078	-0.074	-0.068	-0.061	-0.054
$I^{ m \langle M angle}$	0.076	0.032	-0.003	-0.029	-0.048
$K^{\langle { m H} angle}$	0.711	0.467	0.266	0.105	-0.021
$K^{\langle \mathrm{M} angle}$	0.868	0.716	0.556	0.398	0.247
$N^{ m \langle H angle}$	0.82	0.555	0.333	0.152	0.008
$N^{ m \langle M angle}$	0.803	0.537	0.316	0.136	-0.005

12.5 Variance decomposition

	$\epsilon^{ m \langle H angle}$	$\epsilon^{\langle \mathrm{M} \rangle}$
W	0.796	0.204
Y	0.136	0.864
$C^{\langle { m H} angle}$	0.616	0.384
$C^{\langle \mathrm{M} angle}$	0.238	0.762
$I^{\langle { m H} angle}$	0.015	0.985
$I^{ m \langle M angle}$	0.053	0.947
$K^{\langle { m H} angle}$	0.023	0.977
$K^{\langle \mathrm{M} angle}$	0.198	0.802
$N^{ m \langle H angle}$	0.106	0.894
$N^{ m \langle M angle}$	0.003	0.997

13 Impulse response functions

Figure 1: Impulse responses $(C^{\langle \mathrm{M} \rangle}, C^{\langle \mathrm{H} \rangle}, Y, I^{\langle \mathrm{M} \rangle}, I^{\langle \mathrm{H} \rangle})$ Figure 2: Impulse responses to $\epsilon^{\langle \mathrm{H} \rangle}$ shock responses

Figure 3: Impulse responses $(C^{\langle \mathrm{M} \rangle}, C^{\langle \mathrm{H} \rangle}, Y, I^{\langle \mathrm{M} \rangle}, I^{\langle \mathrm{H} \rangle})$ Figure 4: Impulse responses to $\epsilon^{\langle \mathrm{M} \rangle}$ shock responses