# Core selection for preliminary example

The purpose of this document is to provide details of core selection and B-H data, core loss model considerations for FEA.

The preliminary example aims to design a 1mH inductor. As FEA requires an accurate model of the core material, it was decided to use one material which has BH and loss data provided by the manufacturer. A lot of materials were surveyed, and it was found that the FluxSan® series by Micrometals Inc would be the best one to consider for now.

The FluxSan® series has several materials of which, FS-014 was considered. The different core geometries available are listed at < <a href="https://www.micrometals.com/products/product-finder/?ordering=shapes&units=in&material=FS">https://www.micrometals.com/products/product-finder/?ordering=shapes&units=in&material=FS>.</a>

Five E-cores among these were considered and are listed below. The parameterized geometries are shown in Fig.1



Figure 1: Parameterization of the E-core (a) Per manufacturer website; (b) For optimization.

Table I: Core dimensions [mm]

| Design | A    | В    | C    | D    | E     | F    |
|--------|------|------|------|------|-------|------|
| 1      | 12.7 | 6.4  | 3.56 | 4.42 | 8.89  | 3.56 |
| 2      | 19.3 | 8.1  | 4.77 | 5.55 | 13.89 | 4.77 |
| 3      | 25.4 | 9.5  | 6.50 | 6.19 | 18.97 | 6.19 |
| 4      | 30.0 | 15.0 | 7.06 | 9.70 | 19.50 | 6.95 |
| 5      | 34.5 | 14.1 | 9.39 | 9.60 | 25.30 | 9.30 |

The parameterized geometry can be obtained for each of the cores using the manufacturer supplied dimensions listed in Table I as follows:

$$w_E=B;$$
  $w_C=D;$  depth  $(d)=C;$   $t_C=F;$   $t_{Cu}=\frac{E-F}{2};$   $t_T=\frac{A-E}{2};$ 

The block (rectangular or I) core's dimensions available in the manufacturer website were quite large. Therefore, for this optimization, the I-core dimensions of length and depth are selected to be same as that of the E core. The height  $(w_I)$  is computed as  $w_I = B - D$ ;

Table I is used to construct a lookup table for optimization. The optimization variables will be the dimensions, airgap, number of turns and the wire AWG.

#### **BH Data:**

The following B-H relation for the core is supplied by the manufacturer

$$B = \frac{\mu}{\frac{1}{H + a \cdot H^b} + \frac{1}{c \cdot H^d} + \frac{1}{e}}$$

# Note that B is expressed in Gauss and H in Oersteds.

Where, initial permeability  $\mu = 14$ , and the coefficients a, b,...e are listed below:

| Core   | a                     | b    | c                    | d     | e                    |
|--------|-----------------------|------|----------------------|-------|----------------------|
| FS-014 | $4.22 \times 10^{-3}$ | 1.88 | $3.99 \times 10^{2}$ | 0.345 | $1.09 \times 10^{3}$ |

The saturation flux density is  $B_{sat} = 1.53 T$ 

Using the following curve-fit data, a BH curve is introduced for the material model, in FEMM.

#### **Core Loss:**

The following core loss relation is supplied by the manufacturer

Loss in (mW/cm<sup>3</sup>) = 
$$\frac{f}{\frac{a}{B^3} + \frac{b}{B^{2.3}} + \frac{c}{B^{1.65}}} + d \cdot B^2 \cdot f^2$$

### Note that B is expressed in Gauss and f in Hz.

Where, f is the frequency, B is the flux density. The loss coefficients a, b, c are listed below:

$$a = 1 \times 10^6$$
;  $b = 6.13 \times 10^7$ ;  $c = 2.05 \times 10^6$ ;  $d = 6.1 \times 10^{-14}$ 

The core loss will be computed by extracting the fundamental and harmonic components of B.