Odpowiedzi i schematy oceniania

Arkusz 17

Zadania zamknięte

Numer	Poprawna	Wakaréndi da namiarania		
zadania	odpowiedź	Wskazówki do rozwiązania		
1.	D.	$3\sqrt{3\sqrt[3]{9\sqrt{9}}} = 3\sqrt{3\sqrt[3]{9 \cdot 3}} = 3\sqrt{3\sqrt[3]{27}} = 3\sqrt{3 \cdot 3} = 3\sqrt{9} = 3 \cdot 3 = 9$		
2.	B.	Kąt a leży naprzeciw boku długości 2, przeciwprostokątna jest równa		
		$\sqrt{2^2 + 1^2} = \sqrt{5} \ .$		
		$tg\alpha - 5\sin\alpha\cos\beta = 2 - 5 \cdot \frac{2}{\sqrt{5}} \cdot \frac{2}{\sqrt{5}} = 2 - 4 = -2$		
3.	В.	$\frac{x}{y} = \frac{\sqrt{2} + 1}{\sqrt{2} - 1} = \frac{(\sqrt{2} + 1)(\sqrt{2} + 1)}{(\sqrt{2} - 1)(\sqrt{2} + 1)} = \frac{3 + 2\sqrt{2}}{1} = 3 + 2\sqrt{2}$		
		$\frac{x}{y} - 3 = 3 + 2\sqrt{2} - 3 = 2\sqrt{2} = z$		
4.	A.	$\sqrt{(x-4)^2} < 7 \iff x-4 < 7 \iff -3 < x < 11$		
		Liczby całkowite ujemne większe od (-3):-2,-1.		
5.	C.	0,5a – połowa liczby a		
		$0.5a + 20\% \cdot 0.5a = 0.5a + 0.2 \cdot 0.5a = 0.5a + 0.1a = 0.6a$		
6.	B.	Do dziedziny funkcji f nie należą liczby, dla których mianownik we		
		wzorze funkcji jest równy zero.		
		$f(x) = \frac{5x}{x(x+1)(x-\sqrt{7})(x^2+7)}$		
		$x(x+1)(x-\sqrt{7})(x^2+7) = 0 \Leftrightarrow x = 0 \cup x + 1 = 0 \cup x - \sqrt{7} = 0 \cup x^2 + 7 = 0$		
		Stąd: $x = 0 \cup x = -1 \cup x = \sqrt{7}$ (wyrażenie $x^2 + 7$ przyjmuje zawsze		
		wartości dodatnie) – do dziedziny funkcji nie należą 3 liczby.		
7.	B.	Wierzchołek paraboli $y = x^2 - 4$ znajduje się w punkcie o		
		współrzędnych (0, –4), ramiona paraboli są skierowane do góry. Aby		
		parabola miała tylko jeden punkt wspólny z prostą $y = 2$, wierzchołek		
		paraboli musi się znaleźć w punkcie, którego druga współrzędna jest		

		równa 2. Wykres trzeba więc przesunąć o $2-(-4)=6$ jednostek do góry.
8.	D.	Wykresem układu równań są dwie proste pokrywające się, zatem jest to
		układ nieoznaczony. Odpowiednie współczynniki liczbowe są w obu
		równaniach równe.
		$\begin{cases} 2x + 6y = 1 \\ (a-3)x + 6y = b-a \end{cases} \Rightarrow a-3 = 2 \text{ i } b-a = 1$
		$\left((a-3)x+6y=b-a\right) = a + b + b + a$
		Stad: $a = 5, b = 6$.
9.	C.	$P(x) = W(x) - K(x) = mx^7 - 6x^5 + 2 - (3x^3 - 6x^5 + (3m - 2)x^7) =$
		$= (-2m+2)x^7 - 3x^3 + 2$
		$-2m+2\neq 0$
		$m \neq 1$
10.	C.	Funkcję liniową f można opisać wzorem: $f(x) = ax + b$.
		$a = -4$ (wykres jest prostopadły do prostej $y = \frac{1}{4}x - 11$)
		b = 2 (wykres przechodzi przez punkt $(0, 2)$)
		$f(x) = -4x + 2 - \text{wz\'or funkcji}$
		$-4x + 2 = 0 \Leftrightarrow x = 0.5$
11.	C.	Kąt środkowy jest dwa razy większy od kąta wpisanego opartego na tym
		samym łuku.
		$\alpha = 2\beta$
		$\beta + 2\beta = 90^{\circ}$
		$\beta = 30^{\circ}, \ \alpha = 60^{\circ}$
		ΔABC jest równoramienny i jeden z kątów ma miarę 60° , zatem jest
		równoboczny.
12.	A.	$6(-x^2+16)(2x-4) = -6(x^2-16)\cdot 2(x-2) = 6(x-4)(x+4)$
		$\frac{6(-x^2+16)(2x-4)}{2(x-4)(2-x)} = \frac{-6(x^2-16)\cdot 2(x-2)}{-2(x-4)(x-2)} = \frac{6(x-4)(x+4)}{x-4} = 6(x+4)$
13.	B.	$a_n = n - \frac{(-1)^n}{n}$
		$a_1 + a_2 + a_3 = 2 + 1.5 + 3\frac{1}{3} = 6\frac{5}{6}$
14.	C.	Liczba ma być większa od 6000 – cyfrą tysięcy musi być 6. Na
		pozostałych trzech miejscach mogą stać cyfry: 2, 3, 5 na $2 \cdot 3 = 6$

		sposobów.
15.	C.	Zbiorem wartości funkcji wykładniczej $f(x) = 3^x$ jest przedział $(0, \infty)$.
		Prosta $y = 4 - 2m$ ma z wykresem tej funkcji jeden punkt wspólny, gdy
		$4-2m>0 \Rightarrow m \in (-\infty,2).$
16.	B.	x – odległość balonu od punktu A
		$\frac{10}{x} = \sin \alpha , \ x = \frac{10}{\sin \alpha}$
17.	В.	Funkcja kwadratowa osiąga wartość największą, gdy ramiona paraboli
		będącej jej wykresem są skierowane do dołu. Zatem współczynnik stojący
		przy x^2 musi być ujemny.
		$2 - \frac{1}{4}k < 0 \Longrightarrow k > 8$
18.	В.	$\sin \alpha - 2\cos \alpha = 0 \Leftrightarrow \sin \alpha = 2\cos \alpha$
		$tg\alpha = \frac{\sin\alpha}{\cos\alpha} = \frac{2\cos\alpha}{\cos\alpha} = 2$
19.	D.	l – tworząca stożka
17.	D.	r – promień stożka
		l = 2r
		$\pi r l = \pi r \cdot 2r = 8\pi \Rightarrow r = 2$
		$\pi r^2 = 4\pi$
20.	A.	$1 \cdot 2 \cdot \dots \cdot n \cdot (1 \cdot 2 \cdot 3) = 12$
		$1 \cdot 2 \cdot \dots \cdot n = 2 \Longrightarrow n = 2$
21.	A.	$P(A) = 1 - \frac{8}{20} = \frac{12}{20}$
		P(B) = 1 - 0.3 = 0.7
		$P(A \cap B) = P(A) + P(B) - P(A \cup B) = \frac{12}{20} + 0.7 - 0.8 = 0.5$
22.	B.	$P = 4 \cdot \frac{\sqrt{3}}{4} a^2 = a^2 \sqrt{3}$
		$P_1 = 4 \cdot \frac{\sqrt{3}}{4} (2a)^2 = 4a^2 \sqrt{3}$
		$\frac{P_1}{P} = 4$

23.	C.	Długość boku kwadratu: $\sqrt{144} = 12$ (cm).
		r – promień podstawy walca
		$2\pi r = 12$
		$12 \approx 2 \cdot 3 \cdot r$
		$r \approx 2 \text{ (cm)}$
24.	D.	a – długość krawędzi sześcianu
		$a^3 = 64$
		a = 4
		d – długość przekątnej ściany (czyli kwadratu o boku a)
		$d = a\sqrt{2} = 4\sqrt{2}$
25.	C.	Równanie prostej $AB: y = -x + 1$.
		Współrzędne środka odcinka $AB: S = (0, 1)$.
		Symetralna – prosta prostopadła do prostej AB i przechodząca przez punkt
		S: y = x + 1.

Zadania otwarte

Numer zadania	Modelowe etapy rozwiązania	Liczba punktów
26.	Zapisanie warunku: $ AC = AB + BC $ lub $ AC = AB - BC $.	1
	Obliczenie $ AC $: 8 lub 4.	1
27.	Znalezienie współrzędnych punktów A i B : $A = (4, 0), B = (0, 4)$ i środka odcinka $S = (2, 2)$.	1
	Znalezienie długości promienia $r=2\sqrt{2}$ i zapisanie równania okręgu: $(x-2)^2+(y-2)^2=8.$	1
28.	Zapisanie odpowiedniego równania: $\frac{n(n-1)}{2} = 10$ (n – liczba znajomych)	1
	Rozwiązanie równania w liczbach naturalnych: $n = 5$.	1
29.	Zapisanie warunku wynikającego z własności ciągu arytmetycznego:	1

	$2^{x+1} - 2 = 2^{x+1} + 6 - 2^{x+1}.$		
	Obliczenie $x: 2^{x+1} = 8, 2 \cdot 2^x = 2^3, 2^x = 2^2, x = 2$.	1	
30.	Obliczenie odpowiednich prawdopodobieństw:	1	
	A – wyciągnięta karta jest dama lub treflem,		
	D – wyciągnięta karta jest damą,		
	T – wyciągnięta karta jest treflem,		
	$P(A) = P(D \cup T) = P(D) + P(T) - P(D \cap T),$		
	$P(D) = \frac{4}{52}, \ P(T) = \frac{13}{52}, \ P(D \cap T) = \frac{1}{52}.$		
	Obliczenie prawdopodobieństwa zdarzenia A:	1	
	$P(A) = \frac{4}{52} + \frac{13}{52} - \frac{1}{52} = \frac{16}{52} = \frac{4}{13}.$		
31.	Zapisanie wyrażenia $-6x^2$ w postaci różnicy i pogrupowanie	1	
	wyrazów:		
	$4x^3 - 6x^2 + 2 = 0,$		
	$4x^3 - 4x^2 - 2x^2 + 2 = 0,$		
	$(4x^3 - 4x^2) - (2x^2 - 2) = 0.$		
	Wyłączenie wspólnego czynnika:	1	
	$4x^{2}(x-1) - 2(x-1)(x+1) = 0,$		
	$(x-1)(4x^2-2x-2)=0,$		
	$2(x-1)(2x^2-x-1)=0.$		
	Obliczenie wyróżnika i pierwiastków trójmianu:	1	
	$\Delta = 1 - 4 \cdot 2 \cdot (-1) = 9 > 0,$		
	$x_1 = \frac{1-3}{4} = -\frac{1}{2} ,$		
	$x_2 = \frac{1+3}{4} = 1.$		
	Określenie pierwiastków: $1, -\frac{1}{2}$.	1	
32.	Zapisanie równości wynikających z treści zadania i własności ciągu	1	
	arytmetycznego oraz wyznaczenie dwóch wyrażeń ciągu		
	arytmetycznego:		
	a – pierwszy wyraz ciągu arytmetycznego,		

b – drugi wyraz ciągu arytmetycznego, c – trzeci wyraz ciągu arytmetycznego,	
a+b+c=15,	
$\frac{a+c}{2}=b,$	
$\frac{a+c}{2} + \frac{b}{2} = \frac{15}{2}$	
$b+\frac{b}{2}=\frac{15}{2},$	
b=5,	
$a+c=2b=2\cdot 5=10,$	
c = 10 - a.	
a+2 – pierwszy wyraz ciągu geometrycznego,	1
5-1=4 – drugi wyraz ciągu geometrycznego,	
$\frac{c}{2}$ – trzeci wyraz ciągu geometrycznego.	
Wykorzystanie własności wyrazów ciągu geometrycznego i obliczenie	
a:	
$4^2 = \frac{c}{2}(a+2),$	
32 = (10 - a)(a + 2),	
$a^2 - 8a + 12 = 0,$	
$\Delta = 64 - 48 = 16,$	
a=2 lub $a=6$.	
Wybranie odpowiedniej liczby a (ciąg geometryczny ma być	1
malejący) i obliczenie wyrazów ciągu arytmetycznego: 6, 5, 4.	
Obliczenie wyrazów ciągu geometrycznego: 8, 4, 2.	1
Znalezienie ilorazu ciągu geometrycznego: $4:8=\frac{1}{2}$.	1
Obliczenie długości boku rombu: $8\sqrt{10}$: $4 = 2\sqrt{10}$ (cm).	1
Zapisanie odpowiedniego równania:	1
2x – długość (w cm) krótszej przekątnej,	

2x + 8 – długość (w cm) dłuższej przekątnej,	
przekątne przecinają się pod kątem prostym i dzielą na połowy,	
$x^2 + (x+4)^2 = (2\sqrt{10})^2$.	
Przekształcenie równania do postaci: $x^2 + 4x - 12 = 0$.	1
Obliczenie wyróżnika: $\Delta = 64 > 0$ i pierwiastków: $x = -6$ lub $x = 2$.	1
Obliczenie długości przekątnych: 4,12.	1
Obliczenie pola rombu: $\frac{1}{2} \cdot 4 \cdot 12 = 24 \text{ (cm}^2\text{)}.$	1