Quando se deseja comparar duas palavras[Strings] para saber o custo necessário para transformar uma na outra, normalmente é usado o algoritmo de distância de edição, que calcula a melhor forma de resolver o problema utilizando programação dinâmica.

- Dadas duas palavras t e p, definimos a distância de edição D[t, p] entre elas como o custo total mínimo necessário para transformar t em p ou vice-versa.
- Para calcular tal custo, define-se custos de operações de edição de uma palavra, que podem ser:
 - Substituição [Replacement]
 - Inserção [Insertion]
 - Remoção [Deletion]
 - Pareamento [Match]
- A operação de pareamento não é contada na distância de edição[ou seja, custo 0].
- Sendo assim, valores menores indicam menor distância de edição

- Para usar Programação Dinâmica:
 - Um primeiro passo (usualmente) é pensar/fazer uma versão recursiva. Assim, dadas duas Strings S e T:

```
ED(S, T, i, j): int
// S: String inicial, T: String final, i: [1..m], j:[1..n]
       retorna o número mínimo de edições quando comparando
//
       S[i] com T[j]. m é o tamanho de S, n o tamanho de T
Caso Base:
  Quando ficamos sem caracteres para comparer em S ou em T. Se em ambas, o
  resultado é 0. Se uma das duas, retorna o restante dos caracteres da que não
  está vazia;
Casos Recursivos
  Se S[i] == T[i], chame recursivamente ED(S, T, i-1, j-1) (foi match, não
  precisa fazer nada nesta posição, o custo é zero.
  Se não, três chamadas recursivas são necessárias:
  • Substituição: ED(S, T, i-1, j-1) + 1
  • Inserção: ED(S, T, i, j-1) + 1
  • Remoção: ED(S, T, i-1, j) + 1
  • Retorne a que resultar em menor custo
```

USANDO PROGRAMAÇÃO DINÂMICA

Distância de Edição: Programação Dinâmica

O algoritmo funciona da seguinte forma:

dadas duas strings [A e B] e os custos de inserção, remoção e substituição de elementos, é calculado o custo para transformar a string A na string B através do cálculo do custo de transformação de substrings de A em substrings de B e armazenado os resultados em uma tabela.

O tamanho da matriz é M+1 x N+1, onde M e N são os tamanhos da string A e B respectivamente.

Cada linha da tabela representa uma substring de A e cada coluna representa uma substring de B. Então a linha i representa a string com os i primeiros caracteres de A [string vazia para i = 0] e a coluna j representa a string com os j primeiros caracteres de B. A posição [i][j] da tabela representa o custo de transformar a substring com i caracteres de A na substring com j caracteres de B

Tabela					
	P A I				
С					
A					
S					
Ā					

A matriz é iniciada com 0 na posição [0][0], para as demais posições da linha 0 é adicionado o custo de uma inserção ao elemento da esquerda e para as demais posições da coluna 0 é adicionado o custo de remoção ao elemento de cima.

Inicialização					
		Ρ	A	I	
	0	1	2	3	
С	1				
A	2				
S	3				
A	4				

Para as demais posições [i][j], o algoritmo verifica se é melhor:

-Transformar a substring i na j-1 e inserir um elemento;

Exemplo: substring "cas" → "pa": transforma "cas" em "p" e insere 'a' no fim da substring, resultando em "pa"

-Transformar a substring i-1 na j e remover um elemento;

Exemplo: substring "cas" → "pa": transforma "ca" em "pa", ficando "cas" e depois remove o último caractere ['s']

-Transformar a substring i-1 na j-1 e substituir um elemento (caso o elemento A[i] seja diferente do B[j])

Exemplo: substring "cas" → "pa": transforma "ca" em "p", ficando "ps" e depois substitui o último caractere['s'] por 'a'

Exemplo: custo para transformar casa em pai.

ln	I CI	ıa	IZε	căc

		P	A	Ι
	0	1	2	3
С	1			
A	2			
S	3			
A	4			

Substituição

<u></u>					
		Ρ	A	Ι	
	0	1	2	3	
С	1	1			
A	2				
S	3				
A	4				

Substituição

		Ρ	A	Ι
	0	1	2	3
С	1	1	2	
A	2			
A S	3			
A	4			

Substituição

Substituição					
		P	A	Ι	
	0	1	2	3	
С	1	1	2	3	
A	2				
S	3				
A	4				

Substituição

		P	A	Ι
	0	1	2	3
С	1	1	2	3
A	2	2		
S	3			
A	4			

Match

		P	A	Ι
	0	1	2	3
С	1	1	2	3
A	2	2	1	
S	3			
A	4			

		~
1 PT	-	rção
ш	nei	LL CIL

		P	A	Ι
	0	1	2	3
С	1	1	2	3
A	2	2	1	2
S	3			
A	4			

Substituição

		P	A	Ι
	0	1	2	3
С	1	1	2	3
A	2	2	1	2
S	3	3		
A	4			

Remoção

		P	A	Ι			
	0	1	2	3			
С	1	1	2	3			
A	2	2	1	2			
S	3	3	2				
A	4						

Substituição

Cabolitaigas						
		P	A	Ι		
	0	1	2	3		
С	1	1	2	3		
A	2	2	1	2		
A S	3	3	2	2		
A	4					

. .

Substituição

		P	A	Ι
	0	1	2	3
С	1	1	2	3
A	2	2	1	2
S	3	3	2	2
A	4	4	3	3

Pseudo-Código:

```
Custos: Remoção=R, Inserção=I, Substituição=S e Match=M=0;
m = tamanho[A];
n = tamanho[B];
matriz[0][0] = 0;
Para i = 1 até m
   matriz[i][0] = matriz[i-1][0] + 1 // soma uma I;
Para j = 1 até n
  matriz[0][j] = matriz[0][j-1] + 1 // Soma uma R;
Para i = 1 até m
   Para j = 1 até n
      Se A[i] == B[j]
        custoExtra = 0 //Operação M;
      Senão
        custoExtra = 1 //Operação S;
     matriz[i][j] = Minimo(matriz[i-1][j] +1, matriz[i][j-1] +1,
                           matriz[i-1][j-1] + custoExtra];
devolva matriz[m][n];
```