Main_7

\mathbf{W}

 1089_{10} or 22_{16}

108910	to baco	,
100910	to base	-

200010 00 0000_2											
	1024	512	256	128	64	32	16	8	4	2	1
	1	0	0	0	1	0	0	0	0	0	1

 $1089_{10} = 10001000001_2 \\$

 22_{16} to base_10

$$22_{16} = (2 imes 16^1) + (2 imes 16^0)$$

 $22_{16} = 34_{10} \\$

34_{10} to base 2

				_	
32	16	8	4	2	1
1	0	0	0	1	0

 $22_{16} = 34_{10} = 100010_2 \\$

$W = 10001000001_2 \ \mathrm{OR} \ 100010_2$

1089_10	1	0	0	0	1	0	0	0	0	0
22_16	0	0	0	0	0	1	0	0	0	1
W = 1089_10 or 22_16	1	0	0	0	1	1	0	0	0	1

W to base_10

 $W=10001100011_2\,$

$$1 \times 2^{10}... + 1 \times 2^6 + 1 \times 2^5... + 1 \times 2^1 + 1 \times 2^0$$

 1123_{10}

\mathbf{X}

 $X = (00110001_2 imes 2A_{16}) - (01010000_2 imes 31_8)$

convert everything to base 10 then do the calulcations.

$$00110001_2 = ...1 \times 2^5 + 1 \times 2^4... + 1 \times 2^0 = 49$$

$$2A_{16} = 2 imes 16^1 + 10 imes 16^0 = 42$$

MINUS

Base 2 to Decimal

 $01010000_2 = ...1 \times 2^6... + 1 \times 2^4 = 80$

Base 8 to base 16

 $31_8 = 011_2 \ 001_2$

 $0001_2 \ 1001_2 = 19_{16}$

Base 16 to decimal now

$$19_{16} = (1\times16^1) + (9\times16^0) = 25$$

 $19_{16} = 25_{10} \\$

$$X = (49 \times 42) - (80 \times 25)$$

$$X = (40 \times 42) + (9 \times 42) - (20 \times 80) + (5 \times 80)$$

X = 1680 + 378 - 160 + 400

X = 2058 - 2000

 $X=58_{10}$

 $Y = 1175_8 \div 31_{16}$

 1175_8 to base 16

 $1175_8 = 001_2 \ 001_2 \ 111_2 \ 101_2$

 $1175_8 = 0010_2 \ 0111_2 \ 1101_2$

 $1175_8 = 27D_{16}$

 $27D_{16}$ to base_10

$$27D_{16} = (2\times16^2) + (7\times16^1) + (13\times16^0)$$

 $27D_{16} = 637_{10} \\$

$$31_{16} = 3 \times 16^1 + 1 \times 16^0 = 49_{10}$$

Main_7

 $Z=189_{10}~\mathrm{AND}~57_{16}$

Base 10 to base 2

128	64	32	16	8	4	2	1
1	0	1	1	1	1	0	1

 $189_{10} = 10111101_2$

 57_{16} to base_10

 $57_{16} = (5\times16^1) + (7\times16^0)$

 $57_{16} = 87_{10} \\$

 87_{10} to base 2

64	32	16	8	4	2	1	
1	0	1	0	1	1	1	

 $22_{16} = 87_{10} = 1010111_2 \\$

 $Z=10111101 \ {
m or} \ 1010111$

189	1	0	1	1	1	1	0	1
57	0	1	0	1	0	1	1	1
W = 189 and 57	0	0	0	1	0	1	0	1

 00010101_2 to base 10

... 1×2^4 ... $+ 1 \times 2^2$... $+ 1 \times 2^0$

 $Z=21_{10}$

Timari's Password issss.....

w = 1123

x = 58

y = 13

z = 21

112358132110