Trigonometric Formulas and Identities for MA106

Kyle Besing April 15, 2013

1 Trigonometric Functions of Acute Angles

Function Name	Abbreviation	Value	Sides
sine of θ	$\sin \theta$	$\frac{b}{c}$	opposite hypontenuse
cosine of θ	$\cos \theta$	$\frac{a}{c}$	$\frac{\text{adjacent}}{\text{hypontenuse}}$
tangent of θ	$\tan \theta$	$\frac{b}{a}$	$\frac{\text{opposite}}{\text{adjacent}}$
cosecant of θ	$\csc \theta$	$\frac{c}{b}$	$\frac{\text{hypontenuse}}{\text{opposite}}$
secant of θ	$\sec \theta$	$\frac{c}{a}$	$\frac{\text{hypontenuse}}{\text{adjacent}}$
cotangent of θ	$\cot \theta$	$\frac{a}{b}$	$\frac{\text{adjacent}}{\text{opposite}}$

2 Reciprocal Identities

$$\csc \theta = \frac{1}{\sin \theta} \qquad \qquad \sec \theta = \frac{1}{\cos \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

3 Quotient Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

4 Pythagorean Identities

The Pythagorean Theorem gives the following relation between the edges of a right triangle. For a right triangle with hypotenuse c and legs a and b,

$$a^2 + b^2 = c^2.$$

The following identities can be shown directly from the Pythagorean Theorem.

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\tan^2 \theta + 1 = \sec^2 \theta$$

$$\frac{\sin^2 \theta}{\cos^2 \theta} + 1 = \frac{1}{\cos^2 \theta}$$

$$\cot^2 \theta + 1 = \csc^2 \theta$$

5 Complementary Angle Theorem

$$\sin \beta = \frac{b}{c} = \cos \alpha \qquad \qquad \cos \beta = \frac{a}{c} = \sin \alpha \qquad \qquad \tan \beta = \frac{b}{a} = \cot \alpha$$

$$\csc \beta = \frac{c}{b} = \sec \alpha \qquad \qquad \sec \beta = \frac{c}{a} = \csc \alpha \qquad \qquad \cot \beta = \frac{a}{b} = \tan \alpha$$

$\theta(\text{Degrees})$	$\theta(\text{Radians})$
$\sin \theta = \cos(90^{\circ} - \theta)$	$\sin\theta = \cos\left(\frac{\pi}{2} - \theta\right)$
$\cos\theta = \sin(90^{\circ} - \theta)$	$\cos\theta = \sin\left(\frac{\pi}{2} - \theta\right)$
$\tan \theta = \cot(90^\circ - \theta)$	$\tan \theta = \cot \left(\frac{\pi}{2} - \theta\right)$
$\csc\theta = \sec(90^\circ - \theta)$	$\csc\theta = \sec\left(\frac{\pi}{2} - \theta\right)$
$\sec\theta = \csc(90^\circ - \theta)$	$\sec\theta = \csc\left(\frac{\pi}{2} - \theta\right)$
$\cot \theta = \tan(90^\circ - \theta)$	$\cot \theta = \tan \left(\frac{\pi}{2} - \theta\right)$

6 Special Angles

$\theta(\text{Degrees})$	$\theta(\text{Radians})$	$\sin \theta$	$\cos \theta$	an heta	$\csc \theta$	$\sec \theta$	$\cot heta$
0	0°	0	1	0	Not defined	1	Not defined
$\frac{\pi}{6}$	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$	$\sqrt{3}$
$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
$\frac{\pi}{3}$	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{2}$	90°	1	0	Not defined	1	Not defined	0
π	180°	0	-1	0	Not defined	-1	Not defined
$\frac{3\pi}{2}$	270°	-1	0	Not defined	-1	Not defined	0

7 Sine and Cosine on a Unit Circle

8 Determining Sign by Quadrant

Quadrant of θ	$\sin \theta$, $\csc \theta$	$\cos \theta$, $\sec \theta$	$\tan \theta$, $\cot \theta$
I	Positive	Positive	Positive
II	Positive	Negative	Negative
III	Negative	Negative	Positive
IV	Negative	Positive	Negative

9 Reference Angles

If θ is an angle that lies in a quadrant and if α is its reference angle, then

$$\sin \theta = \pm \sin \alpha \quad \cos \theta = \pm \cos \alpha \quad \tan \theta = \pm \tan \alpha$$

$$\csc \theta = \pm \csc \alpha \quad \sec \theta = \pm \sec \alpha \quad \cot \theta = \pm \cot \alpha$$

where the + or - sign depends on the quadrant in which θ lies.

10 Trigonometric Functions on a Circle

For an angle θ in standard position, let the point P = (a, b) lie on the terminal side of θ as well as the circle $x^2 + y^2 = r^2$, then

$$\sin \theta = \frac{b}{r}$$
 $\cos \theta = \frac{a}{r}$ $\tan \theta = \frac{b}{a}, a \neq 0$

$$\csc \theta = \frac{r}{b}, \ b \neq 0 \quad \sec \theta = \frac{r}{a}, \ a \neq 0 \quad \cot \theta = \frac{a}{b}, \ b \neq 0$$

11 Periodic Properties of Trigonometric Functions

$$\sin(\theta + 2\pi) = \sin \theta \quad \cos(\theta + 2\pi) = \cos \theta \quad \tan(\theta + 2\pi) = \tan \theta$$

$$\csc(\theta + 2\pi) = \csc\theta \quad \sec(\theta + 2\pi) = \sec\theta \quad \cot(\theta + 2\pi) = \cot\theta$$

12 Even-Odd Properties of Trigonometric Functions

$$\sin(-\theta) = -\sin\theta \quad \cos(-\theta) = \cos\theta \quad \tan(-\theta) = -\tan\theta$$

$$\csc(-\theta) = -\csc\theta \quad \sec(-\theta) = \sec\theta \quad \cot(-\theta) = -\cot\theta$$

13 Properties of the Trigonometric Functions

Properties of the Sine Function $y = \sin x$

- 1. The domain is the set of all real numbers.
- 2. The range consists of all real numbers from -1 to 1, inclusive.
- 3. The sine function is an odd function.
- 4. The sine function is periodic, with period 2π .
- 5. The x-intercepts are $\ldots 2\pi, -\pi, 0, \pi, 2\pi, \ldots$; the y-intercept is 0.

6. The maximum value is 1 and it occurs at $x = \dots, -\frac{3\pi}{2}, \frac{\pi}{2}, \frac{5\pi}{2}, \dots$; the minimum is -1 and it occurs at $x = \dots, -\frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{2}, \dots$

Properties of the Cosine Function $y = \cos x$

- 1. The domain is the set of all real numbers.
- 2. The range consists of all real numbers from -1 to 1, inclusive.
- 3. The cosine function is an even function.
- 4. The cosine function is periodic, with period 2π .
- 5. The x-intercepts are $\ldots, -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \ldots$; the y-intercept is 1.
- 6. The maximum value is 1 and it occurs at $x = \dots, -2\pi, 0, 2\pi, \dots$; the minimum is -1 and it occurs at

Properties of the Tangent Function $y = \tan x$

- 1. The domain is the set of all real numbers, except odd multiples of $\frac{\pi}{2}$.
- 2. The range is the set of all real numbers.
- 3. The tangent function is an odd function.
- 4. The tangent function is periodic, with period π .
- 5. The x-intercepts are $\ldots 2\pi, -\pi, 0, \pi, 2\pi, \ldots$; the y-intercept is 0.
- 6. Vertical asymptotes occur at $x = \dots, -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \dots$

Amplitude and Period 14

If $\omega > 0$, the amplitude, period, and phase shift of $y = A\sin(\omega x - \phi)$ and $y = A\cos(\omega x - \phi)$ are

$$Amplitude = |A|$$

$$\mathrm{Period} = T = \frac{2\pi}{\omega} \qquad \qquad \mathrm{Phase \; Shift} = \frac{\phi}{\omega}.$$

Phase Shift =
$$\frac{\phi}{\omega}$$

The phase shift if to the left if $\phi < 0$ and to the right if $\phi > 0$.

Inverse Trigonometric Functions 15

$$\sin^{-1}(\sin x) = x$$
, where $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$

$$\sin(\sin^{-1} x) = x$$
, where $-1 \le x \le 1$

$$\cos^{-1}(\cos x) = x$$
, where $0 \le x \le \pi$

$$\cos(\cos^{-1} x) = x$$
, where $-1 \le x \le 1$

$$\tan^{-1}(\tan x) = x$$
, where $-\frac{\pi}{2} < x < \frac{\pi}{2}$

$$\tan(\tan^{-1} x) = x$$
, where $-\infty < x < \infty$

16 Finding All Solutions to Trigonometric Equations

n	$\sin x = n$	$\cos x = n$
n < 1	$x = \alpha + 2k\pi$	$x = \pm \alpha + 2k\pi$
	$x = \pi - \alpha + 2k\pi$	$\alpha \in (0,\pi)$
	$\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	
n = -1	$x = -\frac{\pi}{2} + 2k\pi$	$\pi + 2k\pi$
n = 0	$x = k\pi$	$x = \frac{\pi}{2} + k\pi$
n=1	$x = \frac{\pi}{2} + 2k\pi$	$x = 2k\pi$
n > 1	No solution	No solution

n	$\tan x = n$
General	$x = \alpha + k\pi$
Case	$\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
n = -1	$x = -\frac{\pi}{4} + k\pi$
n = 0	$x = k\pi$
n = 1	$x = \frac{\pi}{4} + k\pi$

17 Sum and Difference Formulas

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

18 Double-Angle Formulas

$$\sin(2\theta) = 2\sin\theta\cos\theta$$

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$

$$\cos(2\theta) = 1 - 2\sin^2\theta$$

$$\cos(2\theta) = 2\cos^2\theta - 1$$

$$\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}$$

19 Half-Angle Formulas

$$\sin^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2}$$

$$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$

$$\cos^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2}$$

$$\tan^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{1 + \cos \alpha}$$

$$\tan \frac{\alpha}{2} = \frac{1 - \cos \alpha}{\sin \alpha}$$

$$\tan \frac{\alpha}{2} = \frac{\sin \alpha}{1 + \cos \alpha}$$

20 Product-to-Sum Formulas

$$\sin \alpha \sin \beta = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$$
$$\cos \alpha \cos \beta = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))$$
$$\sin \alpha \cos \beta = \frac{1}{2}(\sin(\alpha + \beta) + \sin(\alpha - \beta))$$

21 Sum-to-Product Formulas

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$
$$\sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2}$$
$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$
$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

22 Law of Sines

Theorem 22.1 (Law of Sines). For a triangle with sides a, b, c and opposite angles A, B, C, respectively,

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}.$$

8

23 Law of Cosines

Theorem 23.1 (Law of Cosines). For a triangle with sides a, b, c and opposite angles A, B, C, respectively,

$$c^2 = a^2 + b^2 - 2ab\cos C$$

$$b^2 = a^2 + c^2 - 2ac\cos B$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

24 Heron's Formula

The area K of a triangle with sides a, b, and c is

$$K = \sqrt{s(s-a)(s-b)(s-c)}$$

where $s = \frac{1}{2}(a + b + c)$.

25 Converting Polar Coordinates to Rectangular Coordinates

If P is a point with polar coordinates (r, θ) , the rectangular coordinates (x, y) of P are given by

$$x = r \cos \theta$$

$$y = r \sin \theta$$
.

26 Converting Rectangular Coordinates to Polar Coordinates

For a > 0, if the point (x, y) lies on one of the rectangular coordinate axes, then

$$(x,y) = (a,0) -$$

$$(r,\theta) = (a,0)$$

$$(x,y) = (0,a)$$

$$\longrightarrow$$

$$(r,\theta) = \left(a, \frac{\pi}{2}\right)$$

$$(x,y) = (-a,0)$$

$$\longrightarrow$$

$$(r,\theta) = (a,\pi)$$

$$(x,y) = (0,-a)$$

$$\longrightarrow$$

$$(r,\theta) = \left(a, \frac{3\pi}{2}\right).$$

If the point (x, y) does not lie on one of the rectangular coordinate axes, then

$$r = \sqrt{x^2 + y^2}.$$

If (x, y) lies in Quadrant I or IV, then

$$\theta = \tan^{-1} \frac{y}{x}.$$

If (x, y) lies in Quadrant II or III, then

$$\theta = \pi + \tan^{-1} \frac{y}{x}.$$

27 Parabolas

27.1 Parabolas with vertex as (0,0)

verself at (0,0), 200as on all alls, a > 0						
Vertex	Focus	Directrix	Equation	Description		
(0,0)	(a,0)	x = -a	$y^2 = 4ax$	Opens right		
(0,0)	(-a, 0)	x = a	$y^2 = -4ax$	Opens left		
(0,0)	(0,a)	y = -a	$x^2 = 4ay$	Opens up		
(0,0)	(0, -a)	y = a	$x^2 = -4ay$	Opens down		

27.2 Parabolas with vertex at (h, k)

Vertex at (h, k); a > 0

	(, , , ,			
Vertex	Focus	Directrix	Equation	Description
(h,k)	(h+a,k)	x = h - a	$(y-k)^2 = 4a(x-h)$	Opens right
(h,k)	(h-a,k)	x = h + a	$(y-k)^2 = -4a(x-h)$	Opens left
(h,k)	(h, k+a)	y = k - a	$(x-h)^2 = 4a(y-k)$	Opens up
(h, k)	(h, k-a)	y = k + a	$(x-h)^2 = -4a(y-k)$	Opens down

28 Ellipses

28.1 Ellipses with center at (0,0)

Center	Major Axis	Foci	Vertices	Equation
(0,0)	x-axis	(-c, 0)	(-a, 0)	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$
		(c,0)	(a,0)	$a > b$ and $b^2 = a^2 - c^2$
(0,0)	y-axis	(0, -c)	(0, -a)	$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1,$
		(0, c)	(0, a)	$a > b$ and $b^2 = a^2 - c^2$

28.2 Ellipses with center at (h, k)

29 Hyperbolas

29.1 Hyperbolas with center at (0,0)

Center	Transverse Axis	Foci	Vertices	Equation	Asymptotes
(0,0)	x-axis	(-c, 0)	(-a, 0)	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1,$	$y = \frac{b}{a}x$
		(c, 0)	(a,0)	$b^2 = c^2 - a^2$	$y = -\frac{b}{a}x$
(0,0)	y-axis	(0, -c)	(0, -a)	$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1,$	$y = \frac{a}{b}x$
		(0, c)	(0, a)	$b^2 = c^2 - a^2$	$y = -\frac{a}{7}x$

29.2 Hyperbolas with center at (h, k)

Center	Transverse Axis	Foci	Vertices	Equation	Asymptotes
(h, k)	Parallel to x-axis	(h-c,k)	(h-a,k)	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1,$	$y - k = \frac{b}{a}(x - h)$
		(h+c,k)	(h+a,k)	$b^2 = c^2 - a^2$	$y - k = -\frac{b}{a}(x - h)$
(h, k)	Parallel to y-axis	(h, k-c)	(h, k-a)	$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1,$	$y - k = \frac{a}{b}(x - h)$
		(h, k+c)	(h, k+a)	$b^2 = c^2 - a^2$	$y - k = -\frac{a}{b}(x - h)$