4.2: The Mean Value Theorem

Rolle's Theorem: If f is function that is continuous on the closed interval [a, b], differentiable on the open interval (a, b), and f(a) = f(b), then there is a number c in (a, b) such that f'(c) = 0

Example 1. Let s = y(t) be the position of an object thrown upwards at time t. If the object is in the same position at two different times, that is, if $f(t_0) = f(t_1)$ for $t_0 \neq t_1$, what can you conclude about the velocity?

Example 2. Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle's Theorem.

(a)
$$f(x) = 5 - 12x + 3x^2$$
, [1, 3]

(b)
$$f(x) = \sqrt{x} - \frac{1}{3}x$$
, $[0, 9]$

Example 3. Prove that $x^3 + x - 1 = 0$ has exactly one real root.

Example 4. Let $f(x) = 1 - x^{2/3}$. Show that f(-1) = f(1) but there is no number c in (-1,1) such that f'(c) = 0. Why does this not contradict Rolle's Theorem?

The Mean Value Theorem: If f is a function that is continuous on [a, b] and differentiable on (a, b), then there is a number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Example 5. Let s = f(t) be the position in miles of car at time t in hours. If the car traveled 120 mi in the first 2 hours, what can you conclude about the instaneous velocity of the car?

Example 6. Verify that the function satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.

(a)
$$f(x) = x^3 - x$$
, $[0, 2]$

(b)
$$f(x) = \ln x$$
, [1, 4]

(c)
$$f(x) = \frac{1}{x}$$
, [1, 3]

Example 7. Let f be a continuous and differentiable function. Suppose that f(0) = -3 and $f'(x) \leq 5$ for all values of x. How large can f(2) possibly be?

Theorem: If f'(x) = 0 for all x in (a, b), then f is constant on (a, b).

Example 8. Prove the identity $\tan^{-1} x + \cot^{-1} x = \pi/2$.