Министерство образования Республики Беларусь Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных систем и сетей Кафедра информатики Дисциплина: Методы численного анализа

ОТЧЁТ

к лабораторной работе на тему

Методы Эйлера и Рунге-Кутта

Выполнил: студент группы 153503

Кончик Денис Сергеевич

Проверил: Анисимов Владимир Яковлевич

Содержание

1.	ЦЕЛЬ РАБОТЫ	3
2.	ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ	3
3.	АЛГОРИТМ РЕШЕНИЯ	8
4.	ПРОГРАММНАЯ РЕАЛИЗАЦИЯ	9
5.	ТЕСТОВЫЕ ПРИМЕРЫ	.12
6.	ЗАДАНИЕ	.14
7.	ВЫВОЛ	. 19

1. ЦЕЛЬ РАБОТЫ

Изучить решение задачи Коши для обыкновенных дифференциальных уравнений методом Эйлера и методом Рунге-Кутта.

2. ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Рассмотрим дифференциальное уравнение y' = f(x, y) с начальным условием $y(x_0) = y_0$. Будем предполагать, что f(x,y) непрерывная и непрерывно дифференцируемая по y функция в окрестности замкнутой области

$$D = \{(x, y) | a \le x \le b, c \le y \le d\},\$$

содержащей внутри себя точку (x_0, y_0) .

Требуется решить задачу Коши: найти непрерывно дифференцируемую функцию y=y(x), такую что y'(x) = f(x, y(x)) при всех $x \in [a,b]$ и $y(x_0) = y_0$.

Разобьем отрезок [a, b] с помощью точек разбиения $a=x_0,x_1,...,x_n=b$ с шагом h=(b-a)/n . Тогда узлы разбиения имеют вид $x_k=x_0+kh,\ k=\overline{0,n}$.

Пусть $y(x_0), y(x_1),..., y(x_n)$ — значения функции в точках разбиения.

9.1. Метод ломаных Эйлера

Пусть y = y(x) искомое решение задачи Коши. В точке (x_0, y_0) построим касательную (см. рис. 9.1) к графику y = y(x).

Запишем уравнение касательной:

$$y = y_0 + y'(x_0)(x - x_0) = y_0 + f(x_0, y_0)(x - x_0).$$

и найдем точку пересечения этой касательной с прямой $x = x_1$: $y_1 = y_0 + hf(x_0, y_0)$.

Запишем уравнение прямой

$$y = y_1 + f(x_1, y_1)(x - x_1)$$

и найдем точку ее пересечения с прямой с $x = x_2$:

$$y_2 = y_1 + hf(x_1, y_1).$$

Продолжая процесс, получим рекуррентную последовательность:

$$y_{k+1} = y_k + hf(x_k, y_k),$$
 $k = 0,1...$ (9.1)

$$y_0 = y(x_0),$$

которую называют последовательностью Эйлера. Соединяя ломаными все точки (x_k, y_k) , полученные из рекуррентной последовательности Эйлера, получим ломаную линию, приближающую график решения y = y(x). Функция, график которой совпадает с ломаной Эйлера, принимается за приближенное решение задачи Коши.

Выясним точность метода Эйлера. Сравним значения точного решения y(x) задачи Коши в узловых точках со значениями, полученными методом Эйлера:

$$y(x_{k+1}) = y(x_k) + y'(x_k)h + O(h^2),$$

$$y_{k+1} = y_k + hf(x_k, y_k) + O(h^2).$$

Поскольку

$$y'(x_k) = f(x_k, y(x_k)),$$

то $y(x_{k+1}) - y_{k+1} = O(h^2)$ при условии, что $y_k = y(x_k)$. То есть, точность метода на отдельном отрезке $[x_k, x_{k+1}]$ совпадает с $O(h^2)$. Тогда, очевидно, точность метода Эйлера на всем отрезке [a, b] будет O(h).

Для повышения точности вычислений иногда используется модифицированный метод Эйлера, в котором рекуррентная последовательность Эйлера вычисляется по формулам

$$y_{k+1} = y_k + hf(x_k + \frac{h}{2}, y_k + \frac{h}{2}f(x_k, y_k)), \qquad k = 0, 1, \dots, n-1.$$
(9.2)

Модифицированный метод Эйлера обычно дает более точное приближение решения.

Пример. Пусть требуется решить задачу Коши:

$$\begin{cases} y' = -y, & x \in [0,1] \\ y(0) = 1. \end{cases}$$

Полагая h = 0.2 и используя метод Эйлера, получим, как легко убедиться, из формулы Эйлера (9.1)

$$y_{k+1} = y_k + 0.2 \cdot (-y_k) = 0.8 \cdot y_k$$
.

С другой стороны, используя модифицированный метод Эйлера, получим в силу формулы (2) рекуррентную последовательность

$$y_{k+1} = y_k + 0.2 \cdot (-y_k) = 0.82 \cdot y_k$$
.

Поскольку точным решением задачи Коши, как легко проверить, является функция $y = e^{-x}$, можно сравнить точность обоих методов.

	0	1	2	3	4	5
x_k	0	0.2	0.4	0.6	0.8	1
\mathcal{Y}_k	1	0.8	0.64	0.572	0.4086	0.3277
$\mathcal{Y}_k^{Mo\partial u\phi}$	1	0.82	0.6724	0.5514	0.4521	0.3708
e^{-x}	1	0.8187	0.6703	0.5488	0.4493	0.3679

Общепризнанным недостатком метода Эйлера является его не достаточно высокая точность. Несомненным достоинством метода Эйлера является его простота.

9.2. Методы Рунге-Кутта

1. <u>Метод Рунге-Кутта второго порядка (или метод типа «предиктор-корректор»).</u>

Метод состоит из двух этапов. Сначала находят по методу Эйлера грубое решение:

$$y_{\kappa+1}^* = y_k + hf(x_k, y_k)$$
.

На следующем шаге это грубое решение сглаживается:

$$y_{k+1} = y_k + h \frac{f(x_k, y_k) + f(x_{k+1}, y_{k+1}^*)}{2},$$
 $k = 0, 1, ..., n-1.$

Выясним точность метода. Преобразуя y_{k+1} , получаем:

$$\begin{aligned} y_{k+1} &= y_k + \frac{h}{2} f(x_k, y_k) + \frac{h}{2} f(x_k + h, y_k + h \cdot f(x_k, y_k)) = \\ &= y_k + \frac{h}{2} f(x_k, y_k) + \frac{h}{2} f(x_k, y_k) + \frac{h}{2} [f'_x(x_k, y_k) + h \cdot f'_y(x_k, y_k) \cdot f(x_k, y_k) + O(h^2)] = \\ &= y_k + h f(x_k, y_k) + \frac{h^2}{2} [f'_x(x_k, y_k) + f'_y(x_k, y_k) \cdot f(x_k, y_k)] + O(h^3). \end{aligned}$$

С другой стороны, разложим точное решение y(x) по формуле Тейлора. Получим

$$y(x_{k+1}) = y(x_k + h) = y(x_k) + y'(x_k)h + y''(x_k)\frac{h^2}{2} + O(h^3) = y(x_k) + hf(x_k, y(x_k)) + \frac{h^2}{2}[f'_x(x_k, y(x_k)) + f'_y(x_k, y(x_k))f(x_k, y(x_k)) + O(h^3).$$

Полагая $y(x_k) = y_k$, получаем погрешность на отдельном шаге равную $O(h^3)$. Тогда на всем отрезке погрешность составит $O(h^2)$.

Достоинство метода: его точность превосходит точность метод Эйлера.

2. Метод Рунге-Кутта четвертого порядка.

На каждом шаге производится вычисление коэффициентов K_1, K_2, K_3, K_4 :

$$K_1 = hf(x_k, y_k);$$

$$K_2 = hf(x_k + \frac{h}{2}, y_k + \frac{K_1}{2});$$

$$K_3 = hf(x_k + \frac{h}{2}, y_k + \frac{K_2}{2});$$

$$K_4 = hf(x_k + h, y_k + K_3).$$

Затем вычисляем

$$y_{k+1} = y_k + \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4).$$

Данный метод имеет точность $O(h^4)$ на [a,b].

Рассмотрим пример, который мы использовали для иллюстрации точности метода Эйлера.

Пример. Требуется решить задачу Коши:

$$\begin{cases} y' = -y \\ y(0) = 1 \end{cases}$$
 на отрезке [0, 1].

Выберем шаг h = 0,2. Результат вычислений поместим в таблицу.

	0	1	2	3	4	5
x_k	0	0.2	0.4	0.6	0.8	1
\mathcal{Y}_k	1	0.8187	0.6703	0.5487	0.4493	0.3678
e^{-x}	1	0.8187	0.6703	0.5488	0.4493	0.3679

Таким образом, метод Рунге-Кутта 4-го порядка отличается очень высокой точностью. К определенным его недостаткам относится большая сложность и трудоемкость (на каждом шаге необходимо четырежды вычислять значения функции *f* вместо одного раза в методе Эйлера).

Отметим, что на практике выбирают начальную длину шага h таким образом, чтобы $h^4 < \varepsilon$, где ε — заданная точность вычисления решения. Затем шаг выбирают вдвое меньшим и останавливают вычисления, если разность полученных значений y_k со значениями, полученными при начальном выборе шага меньше ε . В противном случае шаг еще раз уменьшают вдвое и т.д.

3. АЛГОРИТМ РЕШЕНИЯ

4. ПРОГРАММНАЯ РЕАЛИЗАЦИЯ

```
import numpy as np
import matplotlib.pyplot as plt
import sympy
plot_dots = 10**3
eps = 10**-3
# Задание
m, a = 1.5, 0.5
x0, y0 = 0, 0
L, R = 0, 1
def f(x, y): # y' = f(x,y)
           return (a * (1 - y**2)) / ((1 + m) * x**2 + y**2 + 1)
def fderx(x, y):
          numerator = 2*a*x+2*a*m*x-2*a*x*(y**2)-2*a*m*x*(y**2)
           denominator = ((x^{**2})+m^*(x^{**2})+(y^{**2})+1)^{**2}
          return -numerator/denominator
def fdery(x, y):
          numerator = -2*a*(x**2)*y-2*a*m*(x**2)*y-4*a*y
           denominator = ((x**2)+m*(x**2)+(y**2)+1)**2
          return numerator / denominator
# Метод Эйлера
def EulerMethod(x, n):
          y_list = [y0]
          h = (x - x0) / n
          for k in range(n):
                     x k = x0 + k * h
                     y_k = y_{list[-1]}
                     y_list.append(y_k + h * f(x_k, y_k))
           return y_list
# Модифицированный метод Эйлера
def EulerModifiedMethod(x, n):
          y_list = [y0]
          h = (x - x0) / n
          for k in range(n):
                     x_k = x0 + k * h
                     y_k = y_{ist}[-1]
                     y_{list.append}(y_k + h * f(x_k + (h / 2), y_k + (h / 2) * f(x_k, y_k)))
          return y_list
# Метод Рунге-Кутта 2 порядка
def RungeKuttaMethod2(x, n):
          y_list = [y0]
          h = (x - x0)^{-}/n
          for k in range(n):
                     x_k = x0 + k * h
                     y_k = y_{list}[-1]
                     y_{int} = y_{i
fdery(x_k, y_k) * f(x_k, y_k))
          return y_list
```

```
# Метод Рунге-Кутта 4 порядка
def RungeKuttaMethod4(x, n):
    y_list = [y0]
    h = (x - x0) / n
    for k in range(n):
        x_k = x0 + k * h
        y_k = y_{list[-1]}
        K1 = h * f(x_k, y_k)
        K2 = h * f(x_k + h / 2, y_k + K1 / 2)
        K3 = h * f(x_k + h / 2, y_k + K2 / 2)
        K4 = h * f(x_k + h, y_k + K3)
        y_list.append(y_k + 1/6 * (K1 + 2 * K2 + 2 * K3 + K4))
    return y_list
# Вычислить Y по методу и X
def CalculateY(method, x):
    n = 1 # Количество узлов от x0 до x для точности eps
    while True:
        y_{list} = method(x, n)
        y_list_correctly = method(x, n * 2)
        max_delta = max(abs(y_list_correctly[2 * i] - y_list[i]) for i in range(n + 1))
        if (max_delta < eps):</pre>
            return y_list_correctly[-1], n * 2
        else:
            n *= 2
# Создать список Y по методу и списку X
def CalculateListY(method, x list):
    y_list = [] # Список игреков
    n_list = [] # Список n (числа узлов) для каждой точки
    for x in x_list:
        y, n = CalculateY(method, x)
        y_list.append(y)
        n_list.append(n)
    return y_list, max(n_list), sum(n_list) / len(x_list)
print(f"Количество точек для построения графика: {plot_dots}")
print(f"Точность: {eps}")
#print(f"Функция: {func}")
x_list = []
for i in range(plot_dots + 1):
    x_list.append(L + (R - L) / plot_dots * i)
print("\nN max - максимальное количество узлов для одной из точек, \nнеобходимое для
достижения заданной точности")
print("N_middle - среднее количество узлов по всем точкам при \nдостижении заданной
точности")
y_list, N_max, N_middle = CalculateListY(EulerMethod, x_list)
print("\nMeтод Эйлера O(h):")
print(f"N_max: {N_max}")
print(f"N_middle: {int(N_middle)}")
print("На графике: красный")
plt.plot(x_list, y_list, 'red', linewidth = 4)
```

```
y_list, N_max, N_middle = CalculateListY(EulerModifiedMethod, x_list)
print("\nМетод Эйлера (модифицированный) O(h^2):")
print(f"N_max: {N_max}")
print(f"N_middle: {int(N_middle)}")
print("На графике: голубой")
plt.plot(x_list, y_list, '--b', linewidth = 3)
y_list, N_max, N_middle = CalculateListY(RungeKuttaMethod2, x_list)
print("\nMeтoд Рунге-Кутта 2 порядка O(h^2):") print(f"N_max: {N_max}")
print(f"N_middle: {int(N_middle)}")
print("На графике: желтый")
plt.plot(x_list, y_list, '-.y', linewidth = 3)
y_list, N_max, N_middle = CalculateListY(RungeKuttaMethod4, x_list)
print("\nMeтoд Рунге-Кутта 4 порядка O(h^4):")
print(f"N_max: {N_max}")
print(f"N_middle: {int(N_middle)}")
print("На графике: черный")
plt.plot(x_list, y_list, ':k', linewidth = 3)
plt.show()
```

5. ТЕСТОВЫЕ ПРИМЕРЫ

Тестовый пример 1.1.

С помощью метода Эйлера 1 , модифицированного метода Эйлера 2 , метода Рунге-Кутта 2-го порядка 3 , Рунге-Кутта 4-го порядка 4 найти с заданной точностью решение заданного уравнения на заданном отрезке.

ДУ		чальное словие	Отрезок	Решение	Точно	разоиения		
y' = -y	y	(0) = 0	[0; 2]	$y = e^{-x}$	$\varepsilon = 10$	10^{-2} 10^{2}		
-								
1.0 -	1							
0.8 -								
0.6 -								
0.4 -								
0.2 -								
	0.00	0.25 0	0.50 0.75	1.00 1.25	1.50 1.	75 2.00		
1 — красный, 2 — синий, 3 — желтый, 4 — черный								
Количество точек разбиения в методе								
		Эйлер	мод. Эйле	р Рунге	-Кутт (2)	Рунге-Кутт (4)		
Максимал е	ьно	512	32		32	8		
Средне	e	267	19		19	4		

Тестовый пример 1.2. Для условия предыдущего задания найти значения решения задачи Коши в заданных точках.

Метод Эйлера O(h)					
x 0.3 0.9 1.4					
$y = e^{\wedge}(-x)$	≈ 0.740818	≈ 0.406569	≈ 0.246597		
Метод(х)	≈ 0.740295	≈ 0.405925	≈ 0.246125		
Δ	$\approx 5.23 * 10^{-4}$	$\approx 6.44 * 10^{-4}$	$\approx 4.72 * 10^{-4}$		

Модифицированный метод Эйлера O(h^2)					
x 0.3 0.9 1.4					
$y = e^{\wedge}(-x)$	≈ 0.740818	≈ 0.406569	≈ 0.246597		
Метод(x) ≈ 0.741038 ≈ 0.406771 ≈ 0.246711					
Δ	$\approx 2.20 * 10^{-4}$	$\approx 2.02 * 10^{-4}$	$\approx 1.14 * 10^{-4}$		

Метод Рунге-Кутта 2 порядка O(h^2)					
x 0.3 0.9 1.4					
$y = e^{\wedge}(-x)$	≈ 0.740818	≈ 0.406569	≈ 0.246597		
Метод (х)	≈ 0.741038	≈ 0.406771	≈ 0.246710		
Δ	$\approx 2.20 * 10^{-4}$	$\approx 2.02 * 10^{-4}$	$\approx 1.13 * 10^{-4}$		

Метод Рунге-Кутта 4 порядка O(h^4)					
x 0.3 0.9 1.4					
$y = e^{\wedge}(-x)$	≈ 0.740818	≈ 0.406569	≈ 0.246597		
Метод (х)	≈ 0.740819	≈ 0.406579	≈ 0.246600		
Δ	$\approx 1.0 * 10^{-6}$	$\approx 1.0 * 10^{-5}$	$\approx 3.0 * 10^{-6}$		

Тестовый пример 2.1.

Среднее

С помощью метода Эйлера¹, модифицированного метода Эйлера², метода Рунге-Кутта 2-го порядка³, Рунге-Кутта 4-го порядка⁴ найти с заданной точностью решение заданного уравнения на заданном отрезке.

ДУ	Начальное условие	Отрезок	Решение	Точнос	ть Точек разбиения		
$y' = x^2$	$y(1) = \frac{1}{3}$	[-2; 2]	$y = \frac{x^3}{3}$	$\varepsilon = 10$	-3 10^3		
Г					1		
2 -							
					*		
1-							
0 -							
		3					
-1 -							
-2 -							
	2.0 -1.5 -	1.0 -0.5 0.	0 0.5 1.	0 1.5	2.0		
1 — красный, 2 — синий, 3 — желтый, 4 — черный							
Количество точек разбиения в методе							
) /	Эйлер				Рунге-Кутт (4)		
Максималь	вное 8192	128	25	06	2		

Тестовый пример 2.2. Для условия предыдущего задания найти значения решения задачи Коши в заданных точках.

Метод Эйлера O(h)					
x 0 0.7 1.7					
$y = \frac{1}{3}x^3$	0	≈ 0.114333	≈ 1.637666		
Метод(х)	$\approx 9.77 * 10^{-4}$	≈ 0.113735	≈ 1.637021		
Δ	$\approx 9.77 * 10^{-4}$	$\approx 5.98 * 10^{-4}$	$\approx 6.45 * 10^{-4}$		

Модифицированный метод Эйлера O(h^2)						
X	x 0 0.9 1.4					
$y = \frac{1}{3}x^3$	0	≈ 0.114333	≈ 1.637665			
Метод(х)	$\approx 3.25 * 10^{-4}$	≈ 0.114474	≈ 1.637555			
Δ	$\approx 3.25 * 10^{-4}$	$\approx 1.41 * 10^{-4}$	$\approx 1.11 * 10^{-4}$			

Метод Рунге-Кутта 2 порядка O(h^2)						
X	x 0 0.9 1.4					
$y = \frac{1}{3}x^3$	0	≈ 0.114333	≈ 1.637666			
Метод (х)	$\approx 3.25 * 10^{-4}$	≈ 0.114473	≈ 1.637555			
Δ	Δ $\approx 3.25 * 10^{-4}$ $\approx 1.40 * 10^{-4}$ $\approx 1.111 * 10^{-4}$					

Метод Рунге-Кутта 4 порядка O(h^4)					
X	x 0 0.9 1.4				
$y = \frac{1}{3}x^3$	0	0.114433	1.637666		
Метод (х)	$\approx 2.08 * 10^{-17}$	0.114433	1.637666		
Δ	$\approx 2.08 * 10^{-17}$	$\approx 1.37 * 10^{-17}$	$\approx 2.21 * 10^{-16}$		

Тестовый пример 3.1.

Макс.

Среднее

С помощью метода Эйлера¹, модифицированного метода Эйлера², метода Рунге-Кутта 2-го порядка³, Рунге-Кутта 4-го порядка⁴ найти с заданной точностью решение заданного уравнения на заданном отрезке.

ДУ		чальное словие	Отрезок	Реш	ение	Точност	точ разби	
y' = x + y	у	(0) = 0	[-1; 2]	$ \begin{vmatrix} y \\ = e^x \\ -1 \end{vmatrix} $	$x^2 - x$	$\varepsilon = 10^{-}$	3 10	3
2	1 -							
3	3 -							
2 -								
1	L -				<i>.</i>			
	-1.0 -0.5 0.0 0.5 1.0 1.5 2.0							
	1 — красный, 2 — синий, 3 — желтый, 4 — черный							
	Количество точек разбиения в методе							
Эйлер мод. Эйлер Рунге-Кутт (2) Рунге-Кутт (тт (4)				

Тестовый пример 3.2. Для условия предыдущего задания найти значения решения задачи Коши в заданных точках.

Метод Эйлера O(h)					
x -0.5 0.5 1.5					
$y = e^x - x - 1$	≈ 0.106531	≈ 0.148721	≈ 1.981689		
Метод(х)	≈ 0.105937	≈ 0.147917	≈ 1.981037		
Δ	$\approx 5.94 * 10^{-4}$	$\approx 8.04 * 10^{-4}$	$\approx 6.52 * 10^{-4}$		

Модифицированный метод Эйлера O(h^2)						
X	x -0.5 0.5 1.4					
$y = e^x - x - 1$	≈ 0.106531	≈ 0.148721	≈ 1.981689			
Метод(х)	≈ 0.106738	≈ 0.148590	≈ 1.981537			
Δ	$\approx 2.07 * 10^{-4}$	$\approx 1.31 * 10^{-4}$	$\approx 1.52 * 10^{-4}$			

Метод Рунге-Кутта 2 порядка O(h^2)					
x -0.5 0.5 1.4					
$y = e^x - x - 1$	≈ 0.106531	≈ 0.148721	≈ 1.981689		
Метод (х)	≈ 0.106738	≈ 0.148590	≈ 1.981536		
Δ	$\approx 2.07 * 10^{-4}$	$\approx 1.31 * 10^{-4}$	$\approx 1.53 * 10^{-4}$		

Метод Рунге-Кутта 4 порядка O(h^4)						
X	x -0.5 0.5 1.4					
$y = e^x - x - 1$	≈ 0.106531	≈ 0.148721	≈ 1.981689			
Метод (х)	≈ 0.106542	≈ 0.148694	≈ 1.981630			
Δ	$\approx 1.1*10^{-5}$	$\approx 2.7*10^{-5}$	$\approx 5.9 * 10^{-5}$			

6. ЗАДАНИЕ

Вариант 11

С помощью метода Эйлера¹, модифицированного метода Эйлера², методов Рунге-Кутта^{3, 4} (2 и 4 порядка) найти с точностью до 0.001 решение уравнения на отрезке [0; 1]. Сравнить результаты.

$$y' = \frac{a(1 - y^2)}{(1 + m)x^2 + y^2 + 1} (*)$$
$$y(0) = 0, m = 1.5, a = 0.5$$

7. ВЫВОД

Таким образом, в ходе выполнения лабораторной работы был изучен метод Эйлера, модифицированный метод Эйлера, методы Рунге-Кутта (2 и 4 порядка) для решения задачи Коши ОДУ 1 порядка. Составлен алгоритм и программа, проверена правильность её работы на тестовых примерах, с заданной точностью построены графики решения задачи Коши.

Исходя из тестовых примеров и задания и учитывая количество необходимых точек разбиения отрезка для достижения заданной точности, можно сделать вывод о трудоемкости методов: метод Эйлера самый трудоемкий, для модифицированного метода Эйлера и метода Рунге-Кутта 2 порядка количества точек разбиения — числа одного порядка и меньше, чем у метода Эйлера. Самый эффективным методом оказался метод Рунге-Кутта 4 порядка.