

2º Teste Teórico de Avaliação Discreta

Física Computacional — 2018/2019

21 de junho de 2019 Duração: 1h30

Justifique as suas respostas às perguntas. O uso de calculadora não é permitido.

 $\mathbf{1}$. Num domínio quadrado, com condições fronteira de Dirichlet, a variável V(x,y) é a solução da equação de Poisson

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = f(x, y).$$

a)^[1.6 v.] Usando a aproximação de diferenças finitas centradas de segunda ordem para a segunda derivada,

$$y''(x) = \frac{y(x+h) - 2y(x) + y(x-h)}{h^2} + \mathcal{O}(h^2),$$

mostre que discretizando o domínio de integração com o mesmo intervalo h segundo as direções x e y se obtém, para os pontos interiores, as seguintes equações algébricas:

$$-4V(i,j) + V(i+1,j) + V(i-1,j) + V(i,j+1) + V(i,j-1) = h^2 f(i,j).$$

Nas alíneas seguintes, considere que f(x,y)=0 e que após a discretização, o problema fica descrito pela seguinte tabela

8.0	8.0	6.0	4.0
8.0	V(2,2)	V(2,3)	4.0
8.0	V(3,2)	V(3,3)	4.0
8.0	8.0	6.0	4.0

Partindo de estimativas iniciais nulas para as 4 incógnitas, calcule os valores intermédios de V(2,2) e V(2,3) após a primeira iteração do

b)[1.8 v.] método de Jacobi;

c) $^{[1.8\ v.]}$ método de Gauss–Seidel;

d)^[1.8 v.] método de sobrerelaxação sucessiva com $\alpha = 3/2$.

- **2.**^[6.0 v.] Considere agora um problema descrito pela mesma tabela do problema anterior, mas com f(2,2) = f(3,2) = 4 e f(2,3) = f(3,3) = 2. Usou-se h = 1.
 - a) $^{[2.2 \text{ v.}]}$ Partindo de estimativas iniciais nulas para as 4 incógnitas, calcule os valores intermédios de V(2,2) e V(2,3) após a primeira iteração do método de Jacobi.
 - b) $^{[2.2 \text{ v.}]}$ Identificando claramente a sequência das quatro incógnitas, escreva a matriz \boldsymbol{A} e o vetor \boldsymbol{b} que permitiriam obter a solução do problema usando $\boldsymbol{A} \setminus \boldsymbol{b}$ no MATLAB.
 - c)^[1.6 v.] Explique porque, ao realizar os trabalhos práticos, usou matrizes esparsas quando resolveu problemas descritos pela equação de Poisson usando o método direto. Ao usar o MATLAB para resolver o sistema de equações da alínea anterior, justificar-se-ia usar matrizes esparsas?
- 3.^[7.0 v.] Considere o integral

$$I = \int_{a_1}^{b_1} dx_1 \int_{a_2}^{b_2} dx_2 \cdots \int_{a_d}^{b_d} dx_d f(x_1, x_2, \dots, x_d).$$

- a)^[2.3 v.] Pretende-se escrever um programa para determinar uma estimativa numérica do integral, usando o método de Monte Carlo. Assuma que os valores de N, de d e dos limites $\{a_i\}$ e $\{b_i\}$ do domínio já foram declarados e que foi definida a função \mathbf{fun} que aceita como entrada d números reais e que tem como saída os valores da função f. Tem disponível uma função $\mathbf{rand}(P,Q)$ cuja saída é uma matriz de P linhas e Q colunas de números reais pseudo-aleatórios uniformemente distribuídos entre Q0 e 1. Usando pseudo-código, escreva o resto do programa.
- b)[1.7 v.] Sabendo que o erro do método é dado

$$V_D \frac{\sigma}{\sqrt{N}}$$
,

e que std é a função do MATLAB para o cálculo do desvio padrão, escreva as linhas de código que lhe permitiriam obter uma estimativa do erro estatístico (incerteza) associado ao resultado.

- c)^[1.5 v.] Em que condições é que o método de Monte Carlo se tornaria mais vantajoso que os métodos tradicionais de quadratura para o cálculo numérico deste integral? Explique porquê.
- d)^[1.5 v.] Explique sucintamente o conceito de amostragem por importância (não tem que usar equações).