Problem Statement

Linear Regression

Import Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

in [2]:
    a=pd.read_csv("nuclear.csv")
    a
```

Out[2]:		WEAPON SOURCE COUNTRY	WEAPON DEPLOYMENT LOCATION	Data.Source	Location.Cordinates.Latitude	Location.Cordinates.Longit
	0	USA	Alamogordo	DOE	32.54	-10!
	1	USA	Hiroshima	DOE	34.23	137
	2	USA	Nagasaki	DOE	32.45	12!
	3	USA	Bikini	DOE	11.35	16!
	4	USA	Bikini	DOE	11.35	16!
	•••					
	2041	CHINA	Lop Nor	HFS	41.69	88
	2042	INDIA	Pokhran	HFS	27.07	7
	2043	INDIA	Pokhran	NRD	27.07	7
	2044	PAKIST	Chagai	HFS	28.90	6.
	2045	PAKIST	Kharan	HFS	28.49	6.
	2046 r	ows × 16 c	olumns			

To display top 10 rows

Alamogordo

Hiroshima

```
In [3]: c=a.head(15)
C

Out[3]: WEAPON WEAPON SOURCE DEPLOYMENT LOCATION Data.Source Location.Cordinates.Latitude Location.Cordinates.Longitud
```

32.54

34.23

DOE

DOE

USA

USA

0

-105.5

132.2

	WEAPON SOURCE COUNTRY	WEAPON DEPLOYMENT LOCATION	Data.Source	Location. Cordinates. Latitude	Location.Cordinates.Longitud
2	USA	Nagasaki	DOE	32.45	129.5
3	USA	Bikini	DOE	11.35	165.2
4	USA	Bikini	DOE	11.35	165.2
5	USA	Enewetak	DOE	11.30	162.1
6	USA	Enewetak	DOE	11.30	162.1
7	USA	Enewetak	DOE	11.30	162.1
8	USSR	Semi Kazakh	DOE	48.00	76.0
9	USA	Nts	DOE	37.00	-116.0
10	USA	Nts	DOE	37.00	-116.0
11	USA	Nts	DOE	37.00	-116.0
12	USA	Nts	DOE	37.00	-116.0
13	USA	Nts	DOE	37.00	-116.0
14	USA	Enewetak	DOE	11.30	162.1

To find Missing values

```
In [4]:
         c.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 15 entries, 0 to 14
        Data columns (total 16 columns):
         #
             Column
                                             Non-Null Count Dtype
             WEAPON SOURCE COUNTRY
         0
                                             15 non-null
                                                             object
             WEAPON DEPLOYMENT LOCATION
                                             15 non-null
                                                             object
             Data.Source
                                             15 non-null
                                                             object
             Location.Cordinates.Latitude
                                            15 non-null
                                                             float64
             Location.Cordinates.Longitude 15 non-null
                                                             float64
         5
             Data.Magnitude.Body
                                            15 non-null
                                                             float64
         6
             Data.Magnitude.Surface
                                            15 non-null
                                                             float64
             Location.Cordinates.Depth
                                            15 non-null
                                                             float64
             Data.Yeild.Lower
                                            15 non-null
                                                             float64
             Data.Yeild.Upper
                                             15 non-null
                                                             float64
         10 Data.Purpose
                                             15 non-null
                                                             object
            Data.Name
                                             15 non-null
                                                             object
             Data.Type
                                             15 non-null
                                                             object
             Date.Day
                                             15 non-null
                                                             int64
         14 Date.Month
                                             15 non-null
                                                             int64
         15 Date. Year
                                             15 non-null
                                                             int64
        dtypes: float64(7), int64(3), object(6)
        memory usage: 2.0+ KB
```

To display summary of statistics

```
In [5]: a.describe()
```

Out[5]:

	Location.Cordinates.Latitude	Location.Cordinates.Longitude	Data.Magnitude.Body	Data.Magni
count	2046.000000	2046.000000	2046.000000	
mean	35.462429	-36.015037	2.145406	
std	23.352702	100.829355	2.625453	
min	-49.500000	-169.320000	0.000000	
25%	37.000000	-116.051500	0.000000	
50%	37.100000	-116.000000	0.000000	
75%	49.870000	78.000000	5.100000	
max	75.100000	179.220000	7.400000	
4				>

To display column heading

Pairplot

```
In [7]: s=a.dropna(axis=1)
s
```

Out[7]:		WEAPON SOURCE COUNTRY	WEAPON DEPLOYMENT LOCATION	Data.Source	Location.Cordinates.Latitude	Location.Cordinates.Longit
	0	USA	Alamogordo	DOE	32.54	-10!
	1	USA	Hiroshima	DOE	34.23	137
	2	USA	Nagasaki	DOE	32.45	12!
	3	USA	Bikini	DOE	11.35	16!
	4	USA	Bikini	DOE	11.35	16!
	•••					
	2041	CHINA	Lop Nor	HFS	41.69	81
	2042	INDIA	Pokhran	HFS	27.07	7
	2043	INDIA	Pokhran	NRD	27.07	7
	2044	PAKIST	Chagai	HFS	28.90	6.
	2045	PAKIST	Kharan	HFS	28.49	6.

2046 rows × 16 columns

To train the Model

```
In [12]:
    g=c[['Date.Day', 'Date.Month']]
    h=c['Date.Year']
```

To split dataset into training end test

```
from sklearn.model_selection import train_test_split
g_train,g_test,h_train,h_test=train_test_split(g,h,test_size=0.6)
```

To run the model

```
In [14]: from sklearn.linear_model import LinearRegression
In [15]: lr=LinearRegression()
lr.fit(g_train,h_train)
Out[15]: LinearRegression()
In [16]: print(lr.intercept_)
1953.17314441559
```

Coeffecient

Best Fit line

```
In [18]: prediction=lr.predict(g_test)
   plt.scatter(h_test,prediction)
```

Out[18]: <matplotlib.collections.PathCollection at 0x20a33e58190>

To find score

```
In [19]: print(lr.score(g_test,h_test))
```

0.15945778074845496

Import Lasso and ridge

```
In [20]: from sklearn.linear_model import Ridge,Lasso
```

Ridge

Out[23]: 0.9844307302728446

In [23]:

Lasso

ri.score(g_train,h_train)

ElasticNet

```
from sklearn.linear_model import ElasticNet
e=ElasticNet()
e.fit(g_train,h_train)
```

Out[27]: ElasticNet()

Coeffecient, intercept

Prediction

Evaluation

```
from sklearn import metrics
print("Mean Absolute error:", metrics.mean_absolute_error(h_test,d))
```

```
Mean Absolute error: 1.0307553048549432

In [33]: print("Mean Squared error:",metrics.mean_squared_error(h_test,d))

Mean Squared error: 3.033195465510931

In [34]: print("Mean Squared error:",np.sqrt(metrics.mean_squared_error(h_test,d)))

Mean Squared error: 1.741607150166458
```

Model Saving

```
In [35]: import pickle
    filename="pre"
    pickle.dump(lr,open(filename,"wb"))

In [36]: filename='pre'
    model = pickle.load(open(filename,'rb'))

In [39]: eral=[[15,10],[19,54]]
    result=model.predict(eral)
    result

Out[39]: array([1942.45313094, 1897.86860148])

In []:
```