目录

第1載	型 Riemann 流形	1
1.1	Riemann 流形的对称性	1
1.2	欧式空间	3
1.3	球面	4
	1.3.1 球极投影	4

第1章 模型 Riemann 流形

1.1 Riemann 流形的对称性

定义 1.1 (齐次性)

设 (M,g) 是 Riemann 流形, $\mathrm{Iso}\,(M,g)$ 表示全体 M 的自等距同构 $^{\mathrm{a}}$. 成 (M,g) 是齐次的 Riemann 流形, 若 $\mathrm{Iso}\,(M,g)$ 传递地作用在 M 上. 即对于任意一对 $p,q\in M$, 存在等距同构 $\varphi:M\to M$, 使得 $\varphi(p)=q$.

^a在复合下构成群

Idea 齐次的流形在每一点处看起来都是一样的.

Remark

1. 对于每个 $\varphi \in \text{Iso}(M,g)$, 全微分 $d\varphi$ 映 TM 到自身, 且在每一个点 $p \in M$ 上的限制是一个线性同构 $d\varphi_p: T_pM \to T_{\varphi(p)}M$.

定义 1.2 (迷向)

- 1. 给定 $p \in M$, 令 $\mathrm{Iso}_p(M,g)$ 表示 p 处的迷向子群, 即 $\mathrm{Iso}(M,g)$ 中由固定了 p 的等距同构组成的子群. $^{\mathbf{a}}$
- 2. 对于每个 $\varphi \in \mathrm{Iso}_p(M,g)$, 线性映射 $\mathrm{d}\varphi_p$ 将 T_pM 映到它自己, 映射 $I_p: \mathrm{Iso}_p(M,g) \to \mathrm{GL}(T_pM)$, $I_p(\varphi) = \mathrm{d}\varphi_p$ 是 $\mathrm{Iso}_p(M,g)$ 的一个表示, 称为迷向表示. b
- 3. 称 M 是在 p 处迷向的, 若 $\mathrm{Iso}_p(M,g)$ 的迷向表示传递地作用在 T_pM 的单位向量场. $^{\circ}$
- 4. 若 M 在每一点处都是迷向的, 则称 M 是迷向的.

定义 1.3

领 O(M) 表示 M 的切空间上的全体正交基:

$$\mathrm{O}\left(M
ight):=\coprod_{p\in M}\left\{T_{p}M$$
的正交基 $brace$

[°]以 p 为中心的旋转和反射

 $^{^{}m b}$ 等距同构在局部上的等效替代. 视 I_p 为拓扑范畴到模范畴的函子

[°]在 p 点处看, 每个方向看起来都是一样的.

存在 ${\rm Iso}\,(M,g)$ 在 ${\rm O}\,(M)$ 上诱导的群作用, 通过用等距同构 φ 的微分, 将 p 处的正交基指出到 ${\varphi}\,(p)$ 处的正交基:

$$\varphi \cdot (b_1, \cdots, b_n) = (d\varphi_p(b_1), \cdots, d\varphi_p(b_n))$$

m (M,g) 是标架齐次的,若此诱导作用在 O(M) 上是传递的. 换言之,对于任意的 $p,q\in M$,以及 p,q 处选定的正交基,存在等距同构,将 p 映到 q,将选定的 p 处的正交基映到选定的 q 处的正交基.

命题 1.1

设 (M,g) 是 Riemann 流形.

- 2. 若 M 是标架齐次的,则是齐次且迷向的.

Proof 在 M 处一点 p 迷向,是说 $\mathrm{Iso}_p\left(M,g\right)$ 传递地作用在 T_pM 的单位向量场上.

齐次的, 是说对于任意的 q, 存在等距同构 $\varphi \in \text{Iso}(M,g)$, 使得 $\varphi(p) = q$.

考虑 $\operatorname{Iso}_{p}(M,g)$ 和 $\operatorname{Iso}_{q}(M,g)$ 的关系.

 $d\varphi_p:T_pM\to T_qM$ 是等距同构.

任取 T_qM 处的单位向量 v,w, $\mathrm{d}\varphi_p^{-1}(v):=\tilde{v},\,\mathrm{d}\varphi_p^{-1}(w):=\tilde{w}$ 是 T_pM 上的单位向量,存在 $\psi\in\mathrm{Iso}_p(M,g)$,使得 $\mathrm{d}\psi_p(\tilde{v})=\tilde{w}$,于是

$$d\varphi_p \circ d\psi_p \circ d\varphi_p^{-1}(v) = w$$

是 $\operatorname{Iso}_q(M,g)$ 中映 v 为 w 的等距同构. 故 M 在 q 处迷向. 由于 q 任取, M 处处迷向.

显然标架齐次蕴含齐次性. 任取 $p\in M$, 以及 T_pM 上的两个单位向量 v,w, 他们可以分别扩充为 T_pM 的一个正交基. 由于标架齐次性, 存在这两个正交基的一个等距同构 $\mathrm{d}\phi_p$, $\mathrm{d}\varphi_p$ 将 v 映到 w.

Idea 一个齐次的 Riemann 流形在任意点上看起来都是一样的, 而一个迷向的 Riemann 流形在每个方向上看起来都是一样的. 从而一个迷向的 Riemann 流形自动是齐次的. 然而, 存在一点处迷向但不是处处迷向的 Riemann 流形, 也存在齐次但是处处不迷向的 Riemann 流形, 还存在齐次且迷向, 但不是标架齐次的 Riemann 流形. 这些断言的证明将在学习测地线和曲率后的理论后得到证明.

Myers-Steenrod 定理给出, $\operatorname{Iso}\left(M,g\right)$ 总是光滑作用在 M 上的一个李群.

1.2 欧式空间

命题 1.2 (欧式空间)

n-维欧式空间在配备了欧式度量 \bar{g} 下构成一个 Riemann 流形 (\mathbb{R}^n, \bar{g}) .

命题 1.3 (实內积空间)

任取 n-维实内积空间 V. 对于每个 $p \in V$ 和 $v, w \in T_pV \simeq V$, 定义 $g(v,w) = \langle v,w \rangle$. 选取 V 的一组正交基 (b_1,\cdots,b_n) , 它给出 \mathbb{R}^n 到 V 的一个基同构 $(x^1,\cdots,x^n) \mapsto x^ib_i$. 显然是 (V,g) 和 (\mathbb{R}^n,\bar{g}) 间的一个等距同构. 故每个 n-维内积空间作为 Riemann 流形都彼此同构.

每个正交变换 $A:\mathbb{R}^n\to\mathbb{R}^n$, 平移变换 $x\mapsto b+x$, 以及形如 $x\mapsto b+Ax$ 的变换都是等距同构.

我们可以将这些等距同构实现为 \mathbb{R}^n 上的光滑李群作用.

定义 1.4

视 \mathbb{R}^n 为加法下的李群, $\theta: \mathrm{O}(n) \times \mathbb{R}^n \to \mathbb{R}^n$ 为 $\mathrm{O}(n)$ 在 \mathbb{R}^n 上自然的作用. 定义 欧式群 $\mathrm{E}(n)$ 为积流形 $\mathbb{R}^n \times \mathrm{O}(n)$ 在乘法 (b,A)(b',A') := (b+Ab',AA') 下的半直积李群 $\mathbb{R}^n \rtimes_{\theta} \mathrm{O}(n)$. 通过映射 $\rho: E(n) \to \mathrm{GL}(n+1,\mathbb{R})$,

$$\rho\left(b,A\right) = \begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix}$$

它有忠实的表示.

欧式群在 \mathbb{R}^n 上的作用表示为

$$(b, A) \cdot x = b + Ax$$

Remark

- 1. 半直积的构造使得此作用满足结合律.
- 2. 当 \mathbb{R}^n 配备了欧式度量时,此作用是一个等距同构,且他在 $O(\mathbb{R}^n)$ 上的诱导作用是传递的。因此每个欧式空间都是标架齐次的。

1.3 球面

定义 1.5

给定 R>0, 令 $\mathbb{S}^n(R)$ 表示 \mathbb{R}^{n+1} 中以原点为中心, R 为半径的球面, 且配备了欧式度量诱导的度量 \mathring{g}_R , 称为半径为 R 的圆度量.

命题 1.4

正交群 O(n+1) 传递地作用在 $O(\mathbb{S}^n(R))$ 上, 从而每个球面都是标架齐次的.

•

Proof 只需要证明对于任意的 $p \in \mathbb{S}^n(R)$, 以及任意 $T_p\mathbb{S}^n(R)$ 的正交基 (b_i) , 都存在正交变换, 将北极点 $N=(0,\cdots,0,R)$ 映到 p, 将 $T_N\mathbb{S}^n(R)$ 的基 $(\partial_1,\cdots,\partial_n)$ 映到 (b_i) .

视 p 为长度为 R 的 \mathbb{R}^{n+1} 上的向量,令 $\hat{p}=\frac{p}{R}$. 由于 (b_i) 相切与球面,故 (b_i) 与 \hat{p} 正交,故 (b_1,\cdots,b_n,\hat{p}) 构成 \mathbb{R}^{n+1} 的一个标准正交基. 令 α 表示列向量为这一组正交基的矩阵,则 $\alpha\in O(n+1)$,他将 \mathbb{R}^n 的标准正交基 $(\partial_1,\cdots,\partial_{n+1})$ 映到 \mathbb{R}^{n+1} 的正交基 (b_1,\cdots,b_n,\hat{p}) 1. 立即得到 $\alpha(N)=p$. 又 α 在 \mathbb{R}^{n+1} 上线性地作用,他的微分 $\mathrm{d}\alpha_N:T_N\mathbb{R}^{n+1}\to T_p\mathbb{R}^{n+1}$ 的表示矩阵与 α 的坐标表示相同,故 $\mathrm{d}\alpha_N(\partial_i)=b_i, \forall i=1,\cdots,n$.

定义 1.6 (共形)

- 1. 设 g_1,g_2 是 M 上的两个度量,称它们是彼此共形相关的,若存在正的函数 $f\in C^\infty(M)$,使得 $g_2=fg_1$.
- 2. 给定两个 Riemann 流形 (M,g) 和 (\tilde{M},\tilde{g}) , 称微分同胚 $\varphi:M\to \tilde{M}$ 是一个共 形微分同胚 (或共形变換), 若它将 \tilde{g} 拉回到一个与 g 共形的度量:

$$\varphi^*\tilde{q}=fq$$
对于某个正函数 $f\in C^\infty\left(M\right)$ 成立

- 3. 称两个 Riemann 流形是共形等价的, 若存在他们之间的共形微分同胚.
- 4. 称 Riemann 流形 (M,g) 是局部共形平摊的,若 M 上的每一个点都有共形等 价于 (\mathbb{R}^n,\bar{g}) 上一开集的邻域.

1.3.1 球极投影

考虑 \mathbb{R}^n 和 \mathbb{S}^n $(R)\setminus\{N\}$, 其中 N 是 \mathbb{S}^n (R) 的北极点, 以及映射 $\sigma:\mathbb{S}^n$ $(R)\setminus\{N\}\to\mathbb{R}^n$, 它将球面上除北极点以外的点 $P=(\xi^1,\cdots,\xi^n,\tau)$, 送到 P 与 $N=(0,\cdots,0,R)$ 的

¹这里滥用了一下记号

连线在 $\mathbb{R}^n \times \{0\} \subseteq \mathbb{R}^{n+1}$ 上的交点 $U=(u^1,\cdots,u^n,0)$ 的自然投影 $u=(u^1,\cdots,u^n)$ 上. 存在 λ , 使得

$$(N - U) = \lambda (N - P)$$

从而有方程组

$$R = \lambda (R - \tau)$$
$$u = \lambda \xi$$

给定 ξ, τ , 解出 τ 带入方程, 可得 σ 的坐标表示

$$\sigma\left(\xi,\tau\right) = u = \frac{R\xi}{R - \tau}$$

反过来, 给定 u, 解得

$$\xi = \frac{u}{\lambda}$$
$$\tau = R \frac{\lambda - 1}{\lambda}$$

P 点由这两个方程以及他在球面上刻画, 带入 $|\xi|^2 + |\tau|^2 = \mathbb{R}^2$, 得到

$$\frac{|u|^2}{\lambda^2} + R^2 \frac{(\lambda - 1)^2}{\lambda^2} = R^2$$

解得

$$\lambda = \frac{\left|u\right|^2 + R^2}{2R^2}$$

带入方程, 得到

$$\sigma^{-1}(u) = \left(\frac{2uR^2}{|u|^2 + R^2}, R\frac{|u|^2 - R^2}{|u|^2 + R^2}\right)$$

为 σ 的逆映射. 从而给出了 \mathbb{R}^n 到 $\mathbb{S}^n(R)\setminus\{N\}$ 的微分同胚.

定义 1.7 (球极投影)

上面构造的映射 $\sigma:\mathbb{S}^n\left(R\right)\setminus\{N\} o\mathbb{R}^n$ 被称为是球极投影.

.

命题 1.5

球极投影是 $\mathbb{S}^n\left(R\right)\setminus\{N\}$ 和 \mathbb{R}^n 之间的共形微分同胚.

Proof σ^{-1} 本身是 $\mathbb{S}^n(R)\setminus\{N\}$ 的一个光滑参数化, 我们可以直接用它来计算拉回度量.

$$(\sigma^{-1})^* \mathring{g}_R = (\sigma^{-1})^* \bar{g} = \sum_i \left(d \left(\frac{2u^j R^2}{|u|^2 + R^2} \right)^2 \right) + d \left(R \frac{|u|^2 - R^2}{|u|^2 + R^2} \right)^2$$

其中

$$d\frac{2u^{j}R^{2}}{|u|^{2} + R^{2}} = 2R^{2} d\frac{u^{j}}{|u|^{2} + R^{2}}$$

$$\frac{\partial}{\partial u^{j}} \left(\frac{u^{j}}{|u|^{2} + R^{2}}\right) = \frac{\left(|u|^{2} + R^{2}\right) - u^{j}\left(2u^{j}\right)}{\left(|u|^{2} + R^{2}\right)^{2}}$$

$$\frac{\partial}{\partial u^{k}} \left(\frac{u^{j}}{|u|^{2} + R^{2}}\right) = \frac{-2u^{j}u^{k}}{\left(|u|^{2} + R^{2}\right)^{2}}, \quad k \neq j$$

故

$$d\frac{2u^{j}R^{2}}{|u|^{2}+R^{2}} = \frac{2R^{2}}{|u|^{2}+R^{2}} du^{j} - 4R^{2}u^{j} \frac{u^{k}}{(|u|^{2}+R^{2})^{2}} du^{k}$$

此外

$$d\left(R\frac{|u|^{2}-R^{2}}{|u|^{2}+R^{2}}\right) = -2R^{3} d\left(\frac{1}{|u|^{2}+R^{2}}\right)$$
$$\frac{\partial}{\partial u^{j}}\left(\frac{1}{|u|^{2}+R^{2}}\right) = -\frac{2u^{j}}{\left(|u|^{2}+R^{2}\right)^{2}}$$

故

$$d\left(R\frac{|u|^{2}-R^{2}}{|u|^{2}+R^{2}}\right) = 4R^{3}\frac{u^{k}}{\left(|u|^{2}+R^{2}\right)^{2}}du^{k}$$

于是

$$(\sigma^{-1})^* \bar{g} = \sum_{j} \frac{4R^4}{(|u|^2 + R^2)^2} (du^j)^2 - \sum_{j} 16R^4 \frac{u^j u^k}{(|u|^2 + R^2)^3} du^k du^j + \sum_{j} 16R^4 \frac{(u^j)^2 (u^k du^k)^2}{(|u|^2 + R^2)^4}$$

$$+ 16R^6 \frac{(u^k du^k)^2}{(|u|^2 + R^2)^4}$$

$$= \sum_{j} \frac{4R^4}{(|u|^2 + R^2)^2} (du^j)^2 - 16R^4 \frac{(\sum_{j} u^j du^j)^2}{(|u|^2 + R^2)^3} + 16R^4 \frac{|u|^2 (u^k du^k)^2}{(|u|^2 + R^2)^4}$$

$$+ 16R^6 \frac{(u^k du^k)^2}{(|u|^2 + R^2)^4}$$

$$= \sum_{j} \frac{4R^4}{(|u|^2 + R^2)^2} (du^j)^2$$

$$= \frac{4R^4}{(|u|^2 + R^2)^2} \bar{g}$$

推论 1.1

每个带圆度量的前面都是局部共形平坦的.

 \Diamond

Proof 球极投影给出去北极点球面与欧式空间的一个共形微分同胚,类似的给出南极点的球极投影,可以得到去南极点球面与欧式空间的共形微分同胚.