Example 7

(1985 AMC) In a circle with center O, AD is a diameter, ABC is a chord, BO = 5 and $\angle ABO = CD = 60^{\circ}$. The length of BC is

- (A) 3
- (B) $3 + \sqrt{3}$ (C) $5 \frac{\sqrt{3}}{2}$ (D) 5
- (E) none of the above

Solution: (D).

Since $CD=60^{\circ}, \angle BAO=30^{\circ}$. Therefore, $\triangle ABO$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ right triangle.

Since
$$BO = 5, AO = 5\sqrt{3}, AB = 10.$$

Connect CD. Since AD is the diameter, $\triangle ADC$ is a $30^\circ-60^\circ-90^\circ$ right triangle. $AD=2AO=10\sqrt{3}$. $AC=\frac{\sqrt{3}}{2}\cdot 10\sqrt{3}=15, BC=AC-AB=15-10=5.$

