Notation of Set Theory and Quantifiers

Clarice Poon

Semester 1 (2021)

Notation of Set theory

Quantifiers

Functions

Notation of Set theory

Sets

Definition 1.9

A **set** is a collection of distinct objects. These objects are called **elements** of the set.

Ordering doesn't matter. $\{1, 2, 3\} = \{3, 2, 1\}.$

Example of sets

- ullet the empty set: \emptyset
- \bullet the natural numbers: $\mathbb{N} = \{1, 2, 3, \dots, \}$
- the integers: $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, 3, \ldots, \}$
- the rational numbers: $\mathbb{Q} = \{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N} \}.$
- ullet the real numbers: ${\mathbb R}$
- ullet the complex numbers: ${\mathbb C}$

1

Notation in set theory

- $x \in A$ means x is an element of A. Example $1 \in \mathbb{N}$.
- $x \notin A$ means x is not an element of A. $Example -1 \notin \mathbb{N}$.
- $A \subseteq B$ means every element of A is an element of B. $Examples: \emptyset \subseteq \mathbb{N}, \mathbb{N} \subset \mathbb{Z}.$
- $A \cap B = \{x : x \in A \text{ and } x \in B\}.$ Example: $\mathbb{N} \cap \{-1, -2, 0, 1, 3\} = \{1, 3\}.$
- $A \cup B = \{x : x \in A \text{ or } x \in B\}$ Example: $\mathbb{N} \cup \{-1, -2, 1, 3\} = \{-2, -1, 0, 1, 2, 3, \ldots\}$.
- $A \setminus B = \{x : x \in A \text{ and } x \notin B\}$ $Example \mathbb{Z} \setminus \mathbb{N} = \{\dots, -2, -1, 0\}.$
- $A \times B = \{(x,y) : x \in A \text{ and } y \in B\}.$ $Example \{1,2\} \times \{3,2\} = \{(1,3),(1,2),(2,3),(2,2)\}.$

Quantifiers

Quantifiers

Quantifiers like *for all* or *there exists* tells us how to interpret a variable in a statement.

- for every real number x, $x^2 \ge 0$.
- for every natural number, either n is a perfect square or \sqrt{n} is irrational.
- there exists a real number such that $x^2 1 = 0$.

We use the notation

- ∃ to mean 'there exists'
- ∀ to mean 'for all'.

3

\forall 'means For all' and \exists mean 'there exists'

Examples

- i) $\forall x : x \in \mathbb{R} \Rightarrow x^2 \ge 0$. 'for all x, if x is a real number, then $x^2 \ge 0$.
- ii) $\exists x : x \in \mathbb{R} \land x^2 \ge 0$ 'there exists x such that x is a real number and $x^2 \ge 0$ '.

We write ' $\exists x \in A : P(x)$ ' to mean there exists an element x of A such that P(x) holds.

Examples

- $\forall x \in \mathbb{R} : x^2 \ge 0$.
- $\bullet \ \exists x \in \mathbb{R} : x^2 \ge 0.$

Example

Translate the following statement into English.

$$\exists x \in \mathbb{Z} : \forall y \in \mathbb{N} : x < y.$$

There exists an integer x such that for every natural number y, x < y.

This is true. Take x = -1.

Warning: the ordering matters!

$$\forall m \in \mathbb{N} : \exists n \in \mathbb{N} : n - m = 1.$$

For every natural number m, there exists a natural number n such that n = m + 1.

True.

$$\exists n \in \mathbb{N} : \forall m \in \mathbb{N} : n - m = 1.$$

There exists a natural number n such that for all natural numbers m, n = m + 1.

False.

Using negation with quantifiers

Proposition 1.12

- The statements $\neg(\forall x: P(x))$ and $\exists x: \neg P(x)$ are equivalent.
- The statements $\neg(\exists x: P(x))$ and $\forall x: \neg P(x)$.

These are intuitively clear. We will not prove this.

It is not the case that all men are called Bob.

There exists a man who is not called Bob.

There does not exist an integer that is irrational. Every integer x is not irrational.

Example

What is the negation of $\exists x \in \mathbb{Z}, \forall y \in \mathbb{N} : x < y$?

Functions

Functions

Definition 1.14

Let A and B be sets. A function from A to B is a rule that assigns to each element of A a unique element of B.

- Write $f: A \rightarrow B$.
- given $a \in A$, f(a) is the element from B assigned to a.
- A is called the **domain** of f.
- *B* is called the **codomain** of *f*.

Examples

Two functions

- i) $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = x^2$ for all $x \in \mathbb{R}$.
- ii) $f: \mathbb{R} \to \mathbb{Q}$ defined as

$$f(x) = \begin{cases} \frac{1}{2} & x \in \mathbb{Q}, \\ 0 & \text{otherwise.} \end{cases}$$

Define $f: \mathbb{R} \to \mathbb{R}$ by f(x) = b where $b \in \mathbb{R}$ is such that $b^2 = x$. Is this a function?

No, f can assign 1 to either -1 or 1. But ok if we restrict the domain and codomain to $[0, \infty)$.