

criterion for constructibility of regular polygon

 ${\bf Canonical\ name} \quad {\bf Criterion For Constructibility Of Regular Polygon}$

Date of creation 2013-03-22 17:18:40 Last modified on 2013-03-22 17:18:40 Owner Wkbj79 (1863) Last modified by Wkbj79 (1863)

Numerical id 6

Author Wkbj79 (1863)

Entry type Theorem
Classification msc 51M15
Classification msc 12D15
Related topic RegularPolygon
Related topic RootOfUnity

Related topic TheoremOnConstructibleAngles

Theorem 1. Let n be an integer with $n \geq 3$. Then a http://planetmath.org/RegularPolygonre n-gon is http://planetmath.org/Constructible2constructible if and only if a http://planetmath.org/PrimitiveRootOfUnityprimitive nth root of unity is a constructible number.

Proof. First of all, note that a is a constructible number if and only if $\cos\left(\frac{2\pi}{n}\right)+i\sin\left(\frac{2\pi}{n}\right)$ is a constructible number. See the entry on roots of unity for more details. Therefore, without loss of generality, only the constructibility of the number $\cos\left(\frac{2\pi}{n}\right)+i\sin\left(\frac{2\pi}{n}\right)$ will be considered.

Sufficiency: If a regular *n*-gon is constructible, then so is the angle whose http://planetmath.org/Vertex5vertex is the http://planetmath.org/Center9center of the polygon and whose rays pass through adjacent vertices of the polygon.

The http://planetmath.org/AngleMeasuremeasure of this angle is $\frac{2\pi}{n}$.

By the theorem on constructible angles, $\sin\left(\frac{2\pi}{n}\right)$ and $\cos\left(\frac{2\pi}{n}\right)$ are constructible numbers. Note that i is also a constructible number. Thus, $\cos\left(\frac{2\pi}{n}\right) + i\sin\left(\frac{2\pi}{n}\right)$ is a constructible number.

Necessity: If $\omega = \cos\left(\frac{2\pi}{n}\right) + i\sin\left(\frac{2\pi}{n}\right)$ is a constructible number, then so is ω^m for any integer m.

On the complex plane, for every integer m with $0 \le m < n$, construct the point corresponding to ω^m . Use line segments to connect the points corresponding to ω^m and ω^{m+1} for every integer m with $0 \le m < n$. (Note that $\omega^0 = 1 = \omega^n$.) This forms a regular n-gon.