

- Métodos computacionales: Alejandro Segura
- Introduction to Probability
  - a) Incluir el código Notebook (.ipynb).
  - b) Guardar la información en una carpeta llamada Semana10\_Nombre1\_Nombre2
  - c) Hacer una sola entrega por grupo.

## Contents

| 1 | Pro | bability                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 3 |
|---|-----|-----------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|
|   | 1.1 | Introduction to probability |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 4 |

| $\mathbf{List}$ | of | <b>Figures</b> |
|-----------------|----|----------------|
|                 |    |                |

## 1 Probability

## 1.1 Introduction to probability

- 1. Sean  $\mathbb{P}_1$  y  $\mathbb{P}_2$  dos medidas de probabilidad. Definamos  $\mathbb{P} = a_1\mathbb{P}_1 + a_2\mathbb{P}_2$ , donde  $a_1 + a_2 = 1$  y  $a_1, a_2 \in \mathbb{R}^+$ . ¿Es  $\mathbb{P}$  una medida de probabilidad? *Hint:* Verifique los axiomas de Kolmogorov para  $\mathbb{P}$ .
- 2. Sea  $\Omega = \{1, 2\}, \mathfrak{F} = \sigma(\Omega)$  y  $\mathbb{P}$  una aplicación definida sobre  $\mathfrak{F}$  dada por:

$$\mathbb{P}(A) = \begin{cases}
0 & \text{si } A = \{\emptyset\} \\
1/3 & \text{si } A = \{1\} \\
2/3 & \text{si } A = \{2\} \\
1 & \text{si } A = \{1, 2\}
\end{cases}$$
(1)

Muestre detalladamente que  $\mathbb{P}$  es una medida de probabilidad. <sup>1</sup>

- 3. Sea  $(\Omega, \mathfrak{F}, \mathbb{P})$  un espacio de probabilidad. Demuestre las siguientes propiedades básicas de esta medida usando los axiomas de Kolmogorov y diagramas de Venn:
  - a)  $\mathbb{P}(\emptyset) = 0$ .
  - b)  $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$ .
  - c) Si dos eventos A y B son tales que  $A \subset B$ , entonces  $\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B A)$ .
  - d) Dado un evento  $A, \mathbb{P}(A) \leq 1, \forall A \in \mathfrak{F}$ . Use el teorema anterior.
  - e)  $A \subseteq B$ , entonces  $\mathbb{P}(A) \leq \mathbb{P}(B)$ .
  - f)  $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$ .
  - g)  $\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) \mathbb{P}(A \cap B) \mathbb{P}(A \cap C) \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C)$ .
  - h) Probabilidad de la diferencia: Use  $A B = A \cap B^c$ , para mostrar:  $\mathbb{P}(A B) = \mathbb{P}(A) \mathbb{P}(A \cap B)$ .
  - i) Probabilidad de la diferencia simétrica: Use  $(A-B) \cup (B-A)$ , para mostrar:  $\mathbb{P}((A \cap B^c) \cup (B \cap A^c)) = \mathbb{P}(A) + \mathbb{P}(B) 2\mathbb{P}(A \cap B)$ . Esto significa la probabilidad que ocurra A o B pero no ambos eventos al tiempo.
- 4. Se lanza un dado equi-probable dos veces. Dados los siguientes eventos:
  - a) La suma de los resultados es menor o igual a 3.
  - b) El resultado del primer lanzamiento es impar.

Calcular 
$$\mathbb{P}(A) = 1/12$$
,  $\mathbb{P}(B) = 1/2$ ,  $\mathbb{P}(A \cup B) = 19/36$  y  $\mathbb{P}(A^c) = 11/12$ 

- 5. Se prueban 5 celulares de un lote de 50 equipos donde existen 2 defectuosos. Si el muestreo se realiza sin reposición. Hallar la probabilidad que al menos un celular sea defectuoso.  $\mathbb{P}(A) = 47/245$ . Piense en  $A^c$  y en el principio multiplicativo o en una estrategia combinatoria.
- 6. En una cierta ciudad el 60% de los propietarios están suscritos al diario y el 80% al cable. Adicionalmente, el 50% están suscritos a ambos. Si un propietario es elegido al azar:
  - (a) ¿Cuál es la probabilidad que esté suscrito a uno de los dos servicios?  $\mathbb{P}(A) = 0.9$ .
  - (b) ¿Cuál es la probabilidad que esté suscrito al diario o al cable, pero no a ambos servicios?  $\mathbb{P}(B) = 0.4$ .
- 7. Calcular la probabilidad que n personas ( $n \le 365$ ) tengan fechas diferentes de cumpleaños, i.e, escribir la formula general de cálculo. Grafique dicha probabilidad como función de  $n \le 80$ . Los números son demasiado grandes, pero Python puede manejar dichas cantidades.

https://www.youtube.com/watch?v=7uzx6D\_0V7M&ab\_channel=Derivando

<sup>&</sup>lt;sup>1</sup>Tomado de Probabilidad, Liliana Blanco Castañeda UNAL.



Figure 1: Probabilidad que  $n \leq 80$  personas tengan una edad diferente.

- 8. Se lanzan dos dados equi-probabales y se observan los siguientes eventos:
  - a) La suma es 8.
  - b) El segundo dado es impar.

Calcule  $\mathbb{P}(A \cap B)$  y  $\mathbb{P}(A)\mathbb{P}(B)$ 

¿ Qué podría concluir ?