Coding challenge

HUK-Coburg

26.11.2024

Bontempo, Federico

Die Challenge

Die Modellierung der zu erwartenden Schadenhöhe

Angenommen, ein Datensatz enthält Risikomerkmale und Informationen zu Ansprüchen. Das Ziel besteht darin, die erwartete Schadenhöhe pro Versicherungsnehmer und Jahr auf der Grundlage der Risikomerkmale des Kunden zu modellieren.

Herangehensweise

1. Clean dataset

2. Variablen untersuchen

3. Modell fitten

Variablenanpassung

Korrelationen mit der Zielvariable

Das passendste Modell finden

1. Clean dataset

How to clean

Das "string of a string" Format:

- Area
- VehBrand
- Region

(e.g. " 'A' ")

String to integer:

- "B12" -> 12
- "B" -> 1

Addiere ClaimAmount = 0.0 für alle ClaimNb = 0

Mergen der 2 Datensets (nicht alle keys matchen, nicht alle Daten können verwendet werden)

2. Variablen untersuchen

Variablen plotten

zB

ClaimNb:

- Lineares Verhalten in semi-log
- Exponentieller Abfall

Die Zielvariable

ClaimAmount (+1) / Exposure:

 Ohne ClaimAmount = 0, sieht die Distribution gaußförmig in loglog Skala

Die Zielvariable

ClaimAmount / Exposure:

- Ohne ClaimAmount = 0, sieht die Distribution gaußförmig in loglog Skala
- Gauß fitten

So kann man ClaimAmount / Exposure modellieren

Die Zielvariable

ClaimAmount / Exposure: als Funktion von unabhängigen Variablen:

 gaußförmige Verteilung über alle Variablen und innerhalb der Variablen

Wahrscheinlichkeit des Claims

Untersuchen der Wahrscheinlichkeit das ein Claim auftreten kann als Funktion von allen Variablen:

- Im Vergleich zum Mittelwert: je größer die Fluktuation, desto signifikanter

3. Ein Modell finden und fitten

Das Modell: Generalized Linear Model

Linear

Einfaches lineares
Modell zur Herstellung
einer Beziehung
zwischen den
unabhängigen Variablen
und der Zielvariable
ClaimAmount / Exposure

Poisson

Kann zur Modellierung des diskreten ClaimNb verwendet werden

Tweedie

Die Potenz 1<p<2 kann zur Modellierung des ClaimAmount/Exposure mit einer Funktion zwischen einer Poissonund einer Gammafunktion verwendet werden

Anmerkung: **statsmodels** und **sklearn** wurden für die Analyse in **python** verwendet

Linear

OLS: Ordinary least squares mit DrivAge, BonusMalus als Variablen

Target: ClaimAmount/Exposure

```
OLS Regression Results
Dep. Variable:
                                         R-squared:
                                                                            0.000
Model:
                                         Adj. R-squared:
                                                                            0.000
Method:
                         Least Squares
                                         F-statistic:
                                                                            6.413
                     Mon, 25 Nov 2024
                                         Prob (F-statistic):
Date:
                                                                          0.00164
                                         Log-Likelihood:
Time:
                              11:25:44
                                                                      -6.4388e+06
No. Observations:
                                535116
                                         AIC:
                                                                        1.288e+07
Df Residuals:
                                535113
                                         BIC:
                                                                        1.288e+07
Df Model:
Covariance Type:
                          std err
                                                   P>|z|
                                                               [0.025
                                                                           0.9751
             -553.8950
                          259.505
                                      -2.134
                                                   0.033
                                                           -1062.515
                                                                          -45.275
const
                                                   0.114
DrivAge
              -6.4852
                            4.101
                                      -1.581
                                                             -14.524
                                                                            1.554
BonusMalus
              20.9456
                            5.997
                                       3.493
                                                   0.000
                                                               9.192
                                                                           32.699
Omnibus:
                           3113044.539
                                         Durbin-Watson:
Prob(Omnibus):
                                 0.000
                                         Jarque-Bera (JB):
                                                              586961395734279.500
Skew:
                               376.178
                                         Prob(JB):
                                                                              0.00
Kurtosis:
                            162251.897
                                         Cond. No.
Notes:
[1] Standard Errors are heteroscedasticity robust (HC3)
```

Poisson

Poisson: kann man für diskrete Zahlen verwenden so wie ClaimNb.

Target: ClaimNb

Anschließend könnte man dann den/die ClaimAmount / Exposure schätzen, über die Modulation mittels der Gaußschen

Dep. Varial	ble:	Cla	imNb No	. Observ	vations		5	35116
Model:			GLM D	Df Residuals:			5	35106
Model Fami	lv:	Poi	sson D	Df Model:				9
Link Funct:			Log S	Scale:			1	. 0000
Method:			IRLS L	Log-Likelihood:			-8	8716
Date:	M	Mon, 25 Nov 2024			Deviance:			0e+0!
Time:		11:2	5:43 Pe	earson ch	ni2:		5.8	7e+0
No. Iterat:	ions:		7 P:	seudo R-s	squ. (C	S):	0.0	0627
Covariance	Type:	nonro	bust					
=======			======					====
	coef	std err		z F	P> z	[0.02	25 0	. 975
Intercept	-5.1878	0.051	-101.10	92 (0.000	-5.28	38 -:	5.08
DrivAge	0.0117	0.001	22.4	77 (9.000	0.0	11	0.01
BonusMalus	0.0212	0.000	54.1	14 (9.000	0.02	20	0.02
VehAge	-0.0046	0.001	-3.4	51 (9.001	-0.00	97 -	0.00
fVehBrand	-0.0409	0.002	-23.1	14 (9.000	-0.04	14 -1	0.03
VehPower	0.0338	0.004	9.6	14 (9.000	0.02	27	0.04
fVehGas	-0.1295	0.014	-9.1	70 (9.000	-0.15	57 -	0.10
fArea	0.0703	0.006	10.84	14 (0.000	0.05	58	0.08
Density	-1.571e-06	2.15e-06	-0.73	31 (9.465	-5.78e-0	06 2.6	4e-0
fRegion	0.0006	0.000	2.30	97 6	0.021	8.4e-0	95	0.00

Tweedie

Tweedie: je nach Potenz p kann man verschiedene Funktionen haben. Gauss, Poisson, Gamma. Mit 1<p<2 liegt die Funktion zwischen einer Poisson- und einer Gammafunktion

Target: ClaimAmount / Exposure

Dep. Variabl	e: Cla	ClaimAmount Exposure			No. Observations:		
Model:			GLM	Df Res	535113		
Model Family		Tw		2			
Link Functio	n:	Log Scale: IRLS Log-Likelihood:					
Method:							
Date:		Mon, 25 Nov	2024	ce:		2.7150e+09 9.30e+11	
Time:		11:	25:54	Pearso	n chi2:		
No. Iteratio	ns:		14	Pseudo	R-squ. (CS):	0.0001585
Covariance T	ype:	nonr	obust				
	coef	std err		z	P> z	[0.025	0.975]
Intercept	5.2110	0.566	9.2	 202	0.000	4.101	6.321
DrivAge	-0.0263	0.008	-3.	179	0.001	-0.042	-0.010
BonusMalus	0.0282	0.005	6.3	209	0.000	0.019	0.037

Vergleichsplots: OLS

Vergleichsplots: Tweedie

Zusammenfassung

Zusammenfassung / Outlook

Die Datensätze wurden für die Analyse bereinigt und zusammengeführt

Die Variablen wurden untersucht, um Korrelationen zwischen jeder Variable und dem Zielwert zu erkennen

Für die Analyse wurden verschiedene GLMs untersucht, hauptsächlich in zwei Versuchen:

- Modellierung des/der ClaimAmounts/Exposure über eine Gauß-Verteilung und anschließend Abschätzung der Anzahl der Claims über eine Poisson-Anpassung
- 2. Modellierung des/der ClaimAmounts/Exposure über eine Tweedie-Verteilung.

Hinweis: Weitere Details im Code

Coding challenge

HUK-Coburg

26.11.2024

Bontempo, Federico

Links

https://www.statsmodels.org/stable/index.html

https://scikit-learn.org/stable/index.html

https://www.researchgate.net/publication/273578956_Auto_Insurance_Premium_Calculation_Using_Generalized_Linear_Models

https://www.researchgate.net/publication/369723727_Insurance_Risk_Prediction_ Using_Machine_Learning

https://en.wikipedia.org/wiki/Generalized_linear_model