

Report Number: F690501/RF-RTL003106-1 Page: 1 of 47

TEST REPORT

of

FCC Part 15 Subpart B& C §15.247 FCC ID: XDRUMH800MHW

Equipment Under Test : UTV BONO MP

Model Name : UMH800MHW

Serial No. : N/A

Applicant : Ubicod Co., Ltd.

Manufacturer : Ubicod Co., Ltd.

Date of Test(s) : $2009-03-20 \sim 2009-05-21$

Date of Issue : 2009-06-25

In the configuration tested, the EUT complied with the standards specified above.

Tested By:	Combry	Date	2009-06-25	
	Grant Lee			
Approved By	C. K. Kin	Date	2009-06-25	
_	Charles Kim	_		

Report Number: F690501/RF-RTL003106-1 Page: 2 of 47

INDEX

TABLE OF CONTENTS	Page
1. General Information	3
2. Transmitter AC Power Line Conducted Emission	6
3. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission	11
4. 6 dB Bandwidth	25
5. Maximum Peak Output Power	33
6. Power Spectral Density	39
7. Antenna Requirement	45
8. RF exposure evaluation	46

Report Number: F690501/RF-RTL003106-1 Page: 3 of 47

1. General information

1.1. Testing laboratory

SGS Testing Korea Co., Ltd.

Wireless Div. 2FL, 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea 435-040

www.electrolab.kr.sgs.com

Telephone : +82 +31 428 5700 FAX : +82 +31 427 2371

1.2. Details of applicant

Applicant : Ubicod Co., Ltd.

Address : 12F Daerung Post Tower 1, 212-8 Guro-dong, Guro-gu, Seoul, 152-790, Korea

Contact Person : Jung Min Kim Phone No. : +82 2 2082 3300 Fax No. +82 2 2082 3310

1.3. Description of EUT

Kind of Product	UTV BONO MP
Model Name	UMH800MHW
Serial Number	N/A
Power Supply	AC 110 V
Frequency Range	2412 MHz ~ 2462 MHz (11b/g)
Modulation Technique	11b: DSSS (CCK, BPSK, QPSK), 11g: OFDM (BPSK, QPSK, 16QAM, 64QAM)
Number of Channels	11b(11), 11g(11)
Antenna Type	SMA Plug Reverse
Antenna Gain	2 dBi
Operating Conditions	0 ℃ ~40℃

Report Number: F690501/RF-RTL003106-1 Page: 4 of 47

1.4. Description of test mode

11 b mode:

We found out the test mode with the highest power level after we analyze all the data rates. So we chose 11 Mbps data rate (worst case) as a representative.

11g mode:

We found out the test mode with the highest power level after we analyze all the data rates. So we chose 54 Mbps data rate (worst case) as a representative.

1.5. Test equipment list

Equipment	Manufacturer	Model	Cal Due.
Signal Generator	Agilent	E4438C	Apr. 01, 2010
Spectrum Analyzer	R&S	FSP40	Oct. 01, 2009
High Pass Filter	Wainwright Instrument GmbH	WHK3.0/18G-11SS	Oct. 01, 2009
Directional Coupler	Narda	4226-20	Jan. 06, 2010
AC Power Supply	Daekwang	Slidacs	Oct. 01, 2009
Two-Line V-Network	Rohde & Schwarz	ENV216	Jan. 01, 2010
Preamplifier	H.P	8447F	Jul. 03, 2009
Preamplifier	Agilent	8449B	Apr. 01, 2010
Test Receiver	Rohde & Schwarz	ESVS10	Jul. 17, 2010
Test Receiver	Rohde & Schwarz	ESHS10	Jun. 30, 2009
Ultra-Broadband Antenna	Rohde & Schwarz	HL562	Oct. 09, 2009
Horn Antenna	R&S	HF906	Oct. 09, 2009
Anechoic Chamber SY Corporati		L x W x H (6.5 m x 3.5 m x 3.5 m)	N.C.R.
Anechoic Chamber	SY Corporation	L x W x H (9.6 m x 6.4 m x 6.6 m)	Jan. 31, 2010

1.5.1. Support equipment

Equipment	Manufacturer	Model	S/N	
Notebook	IBM	T41	91P8941	

Report Number: F690501/RF-RTL003106-1 Page: 5 of 47

1.6. Summary of test results

The EUT has been tested according to the following specifications:

APPLIED STANDARD:FCC Part15 Subpart B&C							
Section in FCC 15	lost Itam						
15.207	Transmitter AC Power Line Conducted Emission	Complied					
15.205(a) 15.209 15.247(d)	Transmitter Radiated Spurious Emissions Conducted Spurious Emission	Complied					
15.247(a)(2)	6 dB Bandwidth and 99 % BW	Complied					
15.247(b)(1)	Maximum Peak Output Power	Complied					
15.247(f)	Power Spectral Density	Complied					
15.247(i) 1.1307(b)(1)	RF exposure evaluation	Complied					

1.7. Test report revision

Revision	Report number	Description
0	F690501/RF-RTL003106	Initial
1	F690501/RF-RTL003106-1	Add exposure evaluation Revise the type of antenna

Report Number: F690501/RF-RTL003106-1 Page: 6 of 47

2. Transmitter AC power line conducted emission

2.1. Test Setup

2.2. Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted limit (dBµV)				
Frequency of Emission (Willz)	Quasi-peak	Average			
0.15 – 0.50	66-56*	56-46*			
0.50 - 5.00	56	46			
5.00 – 30.0	60	50			

^{*} Decreases with the logarithm of the frequency.

Report Number: F690501/RF-RTL003106-1 Page: 7 of 47

2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.4:2003

- 1. The test procedure is performed in a $6.5 \text{ m} \times 3.6 \text{ m} \times 3.6 \text{ m} \text{ (L} \times W \times H)$ shielded room. The EUT along with its peripherals were placed on a $1.0 \text{ m}(W) \times 1.5 \text{ m}(L)$ and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

Report Number: F690501/RF-RTL003106-1 Page: 8 of 47

2.4. Test Results (Worst case configuration_11 b mode)

Ambient temperature : 22 $^{\circ}$ C Relative humidity : 46 $^{\circ}$ R.H.

The following table shows the highest levels of conducted emissions on both phase of Hot and Neutral line.

Frequency range : 0.15 MHz - 30 MHz

Measured Bandwidth : 9 kHz

FREQ.	LEVEL	(dBuV)	LINE	LIMIT((dBuV)	MARG	IN(dB)
(MHz)	Q-Peak	Average	LINE	Q-Peak	Average	Q-Peak	Average
0.20	39.30	28.70	Н	63.61	53.61	24.31	24.91
0.56	30.70	12.90	Н	56.00	46.00	25.30	33.10
7.72	38.70	36.20	Н	60.00	50.00	21.30	13.80
10.24	40.50	38.90	Н	60.00	50.00	19.50	11.10
20.41	24.30	19.50	Н	60.00	50.00	35.70	30.50
23.13	46.50	44.30	Н	60.00	50.00	13.50	5.70
0.20	40.00	28.10	N	63.61	53.61	23.61	25.51
0.35	37.60	26.60	N	58.96	48.96	21.36	22.36
0.57	37.10	21.00	N	56.00	46.00	18.90	25.00
10.24	40.40	38.50	N	60.00	50.00	19.60	11.50
17.27	37.20	29.60	N	60.00	50.00	22.80	20.40
23.13	46.50	43.70	N	60.00	50.00	13.50	6.30

Note;

Line (H) : Hot Line (N) : Neutral

Report Number: F690501/RF-RTL003106-1 Page: 9 of 47

Plot of Conducted Power line

Test mode: (Hot)

Report Number: F690501/RF-RTL003106-1 Page: 10 of 47

Test mode: (Neutral)

Report Number: F690501/RF-RTL003106-1 Page: 11 of 47

3. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission

3.1. Test Setup

3.1.1. Transmitter Radiated Spurious Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to 24 GHz Emissions.

Report Number: F690501/RF-RTL003106-1 Page: 12 of 47

3.1.2. Conducted Spurious Emissions

3.2. Limit

According to \$15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section \$15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section \$15.205(a), must also comply the radiated emission limits specified in section \$15.205(c))

According to § 15.109(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Distance (Meters)	Radiated (dBμV/m)	Radiated (μV/m)
30 - 88	3	40.0	100
88 – 216	3	43.5	150
216 – 960	3	46.0	200
Above 960	3	54.0	500

According to §15.109(a), for an unintentional device, except for Class A digital devices, the field strength of radiated emission from unintentional radiators at a distance of 3 meters shall not exceed the above table.

Report Number: F690501/RF-RTL003106-1 Page: 13 of 47

3.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.4:2003

3.3.1. Test Procedures for Radiated Spurious Emissions

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- 3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

■ Note

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Peak detection (PK) or Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz for Peak detection and frequency above 1 GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1 GHz.

3.3.2. Test Procedures for Conducted Spurious Emissions

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW=100 kHz, VBW=100 kHz.

Report Number: F690501/RF-RTL003106-1 Page: 14 of 47

3.4. Test results

Ambient temperature : 22 $^{\circ}$ C Relative humidity : 45 $^{\circ}$ R.H.

3.4.1. Spurious radiated emission for below 1GHz (Worst case configuration 11b mode)

All emissions are not reported much lower than the prescribed limits.

Radiated Emissions			Ant	Correction Factors		Total	Limit	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	Cable (dB)	Actual (dBuV/m)	QP Limit (dBuV/m)	Margin (dB)
500.450	8.43	Q.P.	Н	15.43	2.60	26.46	46.00	19.54
515.000	8.43	Q.P.	Н	15.60	2.60	26.63	46.00	19.37
801.150	16.95	Q.P.	Н	19.62	3.22	39.79	46.00	6.21
806.000	14.45	Q.P.	Н	14.45	3.23	32.13	46.00	13.87
Above 810.000	Not detected							

■ Remark:

- 1. Measuring frequencies from 30 MHz to the 1 GHz.
- 2. All spurious emission at low, middle and high channel are almost the same below 1 GHz, so the spurious emission test result of the high channel was chosen as representative in finial test.
- 3. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made an instrument Using peak/quasi-peak detector mode.
- 4. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.

Report Number: F690501/RF-RTL003106-1 Page: 15 of 47

3.4.2. Spurious radiated emission for above 1 GHz

Test mode: 11b

A. Low Channel (2412 MHz)

Radiated Emissions			Ant	Correction	on Factors	Total	Lim	it
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	Cable (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2390.00*	31.77	Peak	Н	28.05	5.47	65.29	74.00	8.71
2390.00*	18.25	Avg	Н	28.05	5.47	51.77	54.00	2.23
Radi	ated Emissio	ons	Ant	Correction Factors		Total	Total Limit	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	Amp Gain+CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4823.40	38.74	Peak	Н	33.01	-28.47	43.28	74.00	30.72

B. Middle Channel (2437 MHz)

Radiated Emissions		Ant	Correction Factors		Total	Limit		
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	Amp Gain+CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4874.15	38.69	Peak	Н	33.15	-28.42	43.42	74.00	32.58
Above 4900.00	Not detected							

Report Number: F690501/RF-RTL003106-1 Page: 16 of 47

C. High Channel (2462 MHz)

Radi	ated Emissio	ns	Ant	Correction Factors		Total	Lim	it
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	Cable (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2483.50*	30.13	Peak	Н	28.18	5.61	63.92	74.00	10.08
2483.50*	17.30	Avg	Н	28.18	5.61	51.09	54.00	2.91
Radi	ated Emissio	ns	Ant	Correction	on Factors	Total	Lim	it
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	Amp Gain+CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	0		Pol.		Gain+CL			

Remarks

- 1. "*" means the restricted band.
- 2. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental Frequency.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
- 4. Average test would be performed if the peak result were greater than the average limit.

Report Number: F690501/RF-RTL003106-1 Page: 17 of 47

Test mode: 11g

A. Low Channel (2412 MHz)

Radi	ated Emissio	ons	Ant	t Correction Factors		Total	Lim	it
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	Cable (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2390.00*	32.64	Peak	Н	28.05	5.47	66.16	74.00	7.84
2390.00*	17.70	Avg	Н	28.05	5.47	51.22	54.00	2.78
				Correction Factors		Total Limit		
Radi	iated Emissio	ns	Ant	Correction	n Factors	Total	Lim	it
Frequency (MHz)	Reading (dBuV)	Detect Mode	Ant Pol.	AF (dB/m)	Amp Gain+CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
Frequency	Reading	Detect		AF	Amp Gain+CL	Actual	Limit	Margin

B. Middle Channel (2437 MHz)

Radiated Emissions		Ant	Correction	Correction Factors		Lim	it	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	Amp Gain+CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4874.15	38.69	Peak	Н	33.15	-28.42	43.42	74.00	30.58
Above 4900.00	Not detected							

Report Number: F690501/RF-RTL003106-1 Page: 18 of 47

B. High Channel (2462 MHz)

Radi	ated Emissio	ns	Ant	Correction	n Factors	Total	Lim	it
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	Cable (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2483.50*	29.51	Peak	Н	28.18	5.61	63.30	74.00	10.70
2483.50*	16.85	Avg	Н	28.18	5.61	50.64	54.00	3.36
Radi	ated Emissio	ns	Ant	Correctio	n Factors	Total	Limit	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	Amp Gain+CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4924.88	46.89	Peak	Н	33.29	-28.37	51.81	74.00	22.19
4924.88	33.65	Avg	Н	33.29	-28.37	38.57	54.00	15.43
Above 5000.00	Not detected							

Remarks

- 1. "*" means the restricted band.
- 2. Measuring frequencies from 1 GHz to the 10^{th} harmonic of highest fundamental Frequency.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
- 4. Average test would be performed if the peak result were greater than the average limit.

Report Number: F690501/RF-RTL003106-1 Page: 19 of 47

3.4.3. Spurious RF Conducted Emissions: Plot of Spurious RF Conducted Emission

IEEE 802.11b

Low Channel

Report Number: F690501/RF-RTL003106-1 Page: 20 of 47

Middle Channel

Middle Channel

Report Number: F690501/RF-RTL003106-1 Page: 21 of 47

High Channel

High Channel

Report Number: F690501/RF-RTL003106-1 Page: 22 of 47

IEEE 802.11g

Low Channel

Report Number: F690501/RF-RTL003106-1 Page: 23 of 47

Middle Channel

Middle Channel

Report Number: F690501/RF-RTL003106-1 Page: 24 of 47

High Channel

High Channel

Report Number: F690501/RF-RTL003106-1 Page: 25 of 47

4. 6 dB Bandwidth Measurement and 99 % BW

4.1. Test Setup

4.2. Limit

According to \$15.247(a)(2), systems using digital modulation techniques may operate in the 902 ~928 MHz, $2400 \sim 2483.5$ MHz, and $5725 \sim 5825$ MHz bands. The minimum of 6 dB Bandwidth shall be at least 500 kHz

4.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 100 kHz, VBW = RBW, Span = 20 MHz, Sweep = auto.
- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

Report Number: F690501/RF-RTL003106-1 Page: 26 of 47

4.4. Test Results

Ambient temperature : 22 $^{\circ}$ C Relative humidity : 45 $^{\circ}$ R.H.

IEEE 802.11b

Channel	Channel Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2412	11.76	
Middle	2437	11.88	0.5
High	2462	11.88	

Channel	Channel Frequency (MHz)	99% Bandwidth (MHz)	Remake
Low	2412	14.80	
Middle	2437	14.84	-
High	2462	14.80	

IEEE 802.11g

Channel	Channel Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2412	16.52	
Middle	2437	16.52	0.5
High	2462	16.52	

Channel	Channel Frequency (MHz)	99% Bandwidth (MHz)	Remake
Low	2412	16.44	
Middle	2437	16.44	-
High	2462	16.44	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Report Number: F690501/RF-RTL003106-1 Page: 27 of 47

IEEE 802.11b

-6dB Bandwidth and 99 % Bandwidth

Low Channel

Low Channel

Report Number: F690501/RF-RTL003106-1 Page: 28 of 47

Middle Channel

Middle Channel

Report Number: F690501/RF-RTL003106-1 Page: 29 of 47

High Channel

High Channel

Report Number: F690501/RF-RTL003106-1 Page: 30 of 47

IEEE 802.11g

-6dB Bandwidth and 99 % Bandwidth

Low Channel

Low Channel

Report Number: F690501/RF-RTL003106-1 Page: 31 of 47

Middle Channel

Middle Channel

Report Number: F690501/RF-RTL003106-1 Page: 32 of 47

High Channel

High Channel

Report Number: F690501/RF-RTL003106-1 Page: 33 of 47

5. Maximum Peak Output Power Measurement

5.1. Test Setup

5.2. Limit

According to §15.247(b)(3), for systems using digital modulation in the 902 ~ 928 MHz, 2400 ~2483.5 MHz, and 5725 ~ 5850 MHz band: 1 Watt. As an alternative to a peak power measurement, compliance with the one watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antenna elements. The average must not include any intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to §15.247(b)(4), the conducted output power limit specified in paragraph(b) of this section is based on the use of antenna with directional gains that do not exceed 6 dBi. Except as shown in paragraph(c) of this section, if transmitting antenna of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraph (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6dBi.

5.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the Spectrum analyzer as RBW = 1 MHz, VBW = 3 MHz, Span = Auto, Channel BW = 99%.

Report Number: F690501/RF-RTL003106-1 Page: 34 of 47

5.4. Test Results

Ambient temperature : 22 $^{\circ}$ C Relative humidity : 45 $^{\circ}$ R.H.

IEEE 802.11b

Channel	Frequency (MHz)	Output power (dBm)	Limit (dBm)	Margin (dB)
Low	2412	24.38		5.62
Middle	2437	24.52	30	5.48
High	2462	24.62		5.38

IEEE 802.11g

Channel	Frequency (MHz)	Output power (dBm)	Limit (dBm)	Margin (dB)
Low	2412	21.24		8.76
Middle	2437	21.98	30	8.02
High	2462	22.00		8.00

Report Number: F690501/RF-RTL003106-1 Page: 35 of 47

IEEE 802.11b

Low Channel

Middle Channel

Report Number: F690501/RF-RTL003106-1 Page: 36 of 47

High Channel

Report Number: F690501/RF-RTL003106-1 Page: 37 of 47

IEEE 802.11g

Low Channel

Middle Channel

Report Number: F690501/RF-RTL003106-1 Page: 38 of 47

High Channel

Report Number: F690501/RF-RTL003106-1 Page: 39 of 47

6. Power Spectral Density Measurement

6.1. Test Setup

6.2. Limit

According to §15.247(e), For digitally modulated system, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph(b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density

6.3. Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode

 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3 kHz, VBW = 10 kHz, Span = 300 kHz, Sweep = 100 s
- 3. Record the max reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

Report Number: F690501/RF-RTL003106-1 Page: 40 of 47

6.4. Test Results

Ambient temperature : 22 $^{\circ}$ C Relative humidity : 45 $^{\circ}$ R.H.

IEEE 802.11b

Channel	Channel Frequency (MHz)	Final RF Power Level in 3 kHz BW (dBm)	Maximum Limit (dBm)	Margin (dB)
Low	2412	-6.00		14.00
Middle	2437	-5.46	8	13.46
High	2462	-5.58		13.58

IEEE 802.11g

Channel	Channel Frequency (MHz)	Final RF Power Level in 3 kHz BW (dBm)	Maximum Limit (dBm)	Margin (dB)
Low	2412	-11.10		19.10
Middle	2437	-10.94	8	18.94
High	2462	-10.77		18.77

Report Number: F690501/RF-RTL003106-1 Page: 41 of 47

IEEE 802.11b

Low Channel

Middle Channel

Report Number: F690501/RF-RTL003106-1 Page: 42 of 47

High Channel

Report Number: F690501/RF-RTL003106-1 Page: 43 of 47

IEEE 802.11g

Low Channel

Middle Channel

Report Number: F690501/RF-RTL003106-1 Page: 44 of 47

High Channel

Report Number: F690501/RF-RTL003106-1 Page: 45 of 47

7. Antenna Requirement

7.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section § 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the gain of the antenna exceeds 6 dBi.

7.2. Antenna Connected Construction

The antenna type used of this product is <u>SMA Plug Reverse</u>. The peak max gain of this antenna is <u>2 dBi</u>

Report Number: F690501/RF-RTL003106-1 Page: 46 of 47

8. RF exposure evaluation

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in § 1.1307(b)

Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength(V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Average time				
(A) Limits for Occupational /Control Exposures								
300 – 1500			F/300	6				
1500 - 100000			5	6				
(B) Limits for General Population/Uncontrol Exposures								
300 – 1500			F/1500	6				
<u> 1500 - 100000</u>			1	<u>30</u>				

8.1 Friis transmission formula : $Pd = (Pout*G)/(4*pi*R^2)$

Where

 $Pd = power density in mW/cm^2$

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

Report Number: F690501/RF-RTL003106-1 Page: 47 of 47

8.2 Test result of RF exposure evaluation

Test Item : RF Exposure evaluation data

Test Mode : Normal operation

8.2.1 Output power into antenna & RF exposure evaluation distance

Operating mode	Channel	Frequency (MHz)	Peak output power (dBm)	Antenna gain (dBi)	Power density at 20cm (mW/cm²)	Limit (mW/cm²)
11b	Low	2412	24.38	2	0.086	
	Middle	2437	24.52	2	0.089	1
	High	2462	24.62	2	0.091	
11g	Low	2412	21.24	2	0.042	
	Middle	2437	21.98	2	0.050	1
	High	2462	22.00	2	0.050	

■Note

The power density Pd (4th column) at a distance of 20cm calculated from the friis transmission formula is far below the limit of 1 mW/cm^2 .

+