Fuzzy Logic

IMDL {By Kevin Harrelson now at Harris Corporation}

Fuzzy Logic: What is it???

- It does not involve putting fake fur on robots.
- It is a different way of looking at the world.
- It is a superset of Boolean logic!
- It deals with "shades of gray!"

A Better Method to Deal With the Real World

- Not just "True" and "False."
- Takes on a range of values
 - True
 - Mostly True
 - Half True
 - Kind of True
 - False
- Values range from 0 to 1.
 - Including decimal values (0.2, 0.7, etc.)

Why?

Without Fuzzy Logic

```
#include <confusing.h>

void bladder();
{
   if ( read_sensor(3.14159) > sqrt(42) )
   {
      do_something_confusing( make_noise(12) );
   }
   junk[max(my_IQ,my_shoe_size)]= peek(0x0f00);
   four_score[7] = "years ago";
}
```

With Fuzzy Logic

Left	Right	Right
Left	Straight	Straight
Left	Straight	Straight

Now, Let's see how this works...

The First Step...

Fuzzification

How tall is Kevin?

- Very Tall?
- Tall?
- Average?
- Short?
- Very Short?

How tall is Kevin?

- Very Tall (7 feet)?
- Tall (6 feet)?
- Average (5 feet)?
- Short (4 feet)?
- Very Short (3 feet)?

Some Examples:

If you are <u>5</u> feet:

- Very tall 0%
- Tall 0%
- Average 100%
- Short 0%
- Very Short 0%

Same as Boolean logic (so far...)

- Very Tall (7 feet)?
- Tall (6 feet)?
- Average (5 feet)?
- Short (4 feet)?
- Very Short (3 feet)?

Some Examples:

If you are $5\frac{1}{2}$ feet:

- Very tall 0%
- Tall <u>50%</u>
- Average <u>50%</u>
- Short 0%
- Very Short 0%

NOT Boolean logic (Whoa. Cool!)

- Very Tall (7 feet)?
 - Tall (6 feet)?
 - Average (5 feet)?
 - Short (4 feet)?
 - Very Short (3 feet)?

Kevin is 6' 2"

- Very Tall 16%
- Tall 84%
- Average 0%
- Short 0%
- Very Short 0%

Fuzzy Representation

- All fuzzy variables are <u>theoretically</u> represented as a number between 0 and 1.
- The fuzzy number can be represented on a computer as a number between 0 and 255.

Some Hints

- Fuzzy values are **NOT** probabilities.
- HOWEVER, it might help to think of them as probability values.

The Second Step...

Fuzzy Logic & the FAM

Fuzzy Operators: AND

FAND(A,B) - Fuzzy AND = min(A,B)

FAND(100, 30) = 30

FAND(20, 250) = 20

FAND(1, 0) = 0 -- Just like boolean logic

FAND(1, 1) = 1 -- Geeeee. This too!

Fuzzy Operators: OR

FOR(A,B) - Fuzzy OR = max(A,B)

FOR(100, 30) = 100

FOR(20, 250) = 250

FOR(1, 0) = 1 -- Just like boolean logic

FOR(0,0) = 0 -- Geeeee. This too!

Fuzzy Operators: NOT

FNOT(A) - Fuzzy NOT = 100% - A(100% defined as 255)

FNOT(100) = 155

FNOT(250) = 5

FNOT(255) = 0

FNOT(0) = 255

- See the similarity to Boolean logic?????

Fuzzy Associative Memory (FAM)

The Next Step

Fuzzy Associative Memory

- It is a Fuzzy Truth Table
- Shows all possible outputs for all possible inputs
- Easy to create!

FAM Example

FUZZY-BOT

First, the sensors

Sharp Sensor Mappings:

- Nothing = 80
- Very Far = 100
- Far = 120
- Near = 130 -- *Note: non-linear spacing*
- Very Near = 140

Second, the Motors

Direction Output Mappings:

- Hard Left = -100
- Left = -20
- Straight = 0
- Right = 20
- Hard Right = 100

	Lastly	, the F	AM (rı	ıle table	e)
Left	Right Sensor				
Sensor	VN	N	F	VF	VVF
VN	HL	HR	HR	HR	HR
N	HL	L	HR	R	R
F	HL	HL	L	S	S
VF	HL	L	S	S	S
VVF	HL	L	S	S	S
• V=Very • N=Near		=Far =Near	•H=Har •L=Lef		R=Right S=Straight

FAM Operation

- AND the associated inputs...
- OR the result with the result for that output group.

FUZZ-BOT Example

- Left Sensor
 - Very Near = 80%
 - Near = 20%
- Right Sensor
 - Near = 30%
 - Far = 70%

Left		Rig	ht Sensor		
Sensor	VN	N	F	VF	VVF
	0%	30%	70%	0%	0%
VN	HL	HR	HR	HR	HR
80%	0%			0%	0%
N	HL	L	HR	R	R
20%	0%			0%	0%
F	HL	HL	L	S	S
0%	0%	0%	0%	0%	0%
VF	HL	L	S	S	S
0%	0%	0%	0%	0%	0%
VVF	HL	L	S	S	S
0%	0%	0%	0%	0%	0%

HL = 0%

L = 20%

S = 0%

R = 0%

HR = 30% OR 70% OR 20% = 70%

NOTE:

 $0+20+0+0+70 \neq 100\%$

Can We Simplify This???

Removing the FAM

Simplifying the Table

- 1) Group the common Outputs (similar to K-Maps)
- 2) For each block:(each value OR'd together) AND(each value OR'd together)
- 3) OR the output of each block together

Sensor	VN	N	F	VF	VVF
	0%	30%	70%	0%	0%
VN	HL	HR	HR	HR	HR
80%	/ 0% \	30%	70%	0%	0%
N	HL \	L	HR	R	R
20%	0%	20%	20%	0%	0%
F	HL	HL	L	S	S
0%	0%	0%	0%	0%	0%
VF	HL	/ L	S	S	S
0%	0%	0%	0%	0%	0%
VVF	\ HL /	/ L	S	S	S
0%	0%/	/ 0%	0%	0%	0%

(RVN AND (LVN OR LN OR LF OR LVF OR LVVF))
OR

((LF AND RN))

FUZZ-BOT Example

- HL = (RVN <u>AND</u> (LVN <u>OR</u> LN <u>OR</u> LF <u>OR</u> LVF <u>OR</u> LVVF)) <u>OR</u> (LF <u>AND</u> RN)
- L = (LN <u>AND</u> RN) <u>OR</u> (LF <u>AND</u> RF) <u>OR</u> ((LVF <u>OR</u> LVVF) <u>AND</u> RN)
- S = ((LVF <u>OR</u> LVVF) <u>AND</u> (RF <u>OR</u> RVF <u>OR</u> RVVF)) <u>OR</u> (LF <u>AND</u> (RVF <u>OR</u> RVVF))
- R and HR are left as an exercise to the student.

The Final Chapter...

De-Fuzzification

Defuzzification: Two Methods

- 1) Winner Take All
- 2) Weighted Average

Winner Take All

Direction Output Mappings

•Hard Left = -100

•Hard Right = 100

- •Left = -20
- •Straight = 0
- •Right = 20
- Output "Hard Right" = 70%
- It is the winner!
- Output = **100** (from output mapping)
- Looses some of the smoothness of fuzzy logic.

Output of FAM

HL = 0%

L = 20%

S = 0%

R = 0%

HR = 70%

Weighted Average

- Output "Hard Right" = 70%
- Output "Left" = 20%
- Output = **73.3**

Direction Output

Mappings

- •Hard Left = -100
- •Left = -20
- •Straight = 0
- •Right = 20
- •Hard Right = 100

Output of FAM

HL = 0%

L = 20%

S = 0%

R = 0%

HR = 70%

Any Questions?