CHIMIE NIVEAU MOYEN ÉPREUVE 1

Lundi 20 mai 2002 (après-midi)

45 minutes

INSTRUCTIONS DESTINÉES AUX CANDIDATS

- N'ouvrez pas cette épreuve avant d'y être autorisé.
- Répondez à toutes les questions.
- Choisissez pour chaque question la réponse que vous estimez la meilleure et indiquez votre choix sur la feuille de réponses qui vous est fournie.

222-164 11 pages

Tableau Périodique

2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)	
	9 F 19,00	17 CI 35,45	35 Br 79,90	53 I 126,90	85 At (210)	
	8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)	
	7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98	
	6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19	
	5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37	
			30 Zn 65,37	48 Cd 112,40	80 Hg 200,59	
			29 Cu 63,55	47 Ag 107,87	79 Au 196,97	
			28 Ni 58,71	46 Pd 106,42	78 Pt 195,09	
			27 Co 58,93	45 Rh 102,91	77 Ir 192,22	109 Mt
			26 Fe 55,85	44 Ru 101,07	76 Os 190,21	108 Hs
			25 Mn 54,94	43 Tc 98,91	75 Re 186,21	107 Bh (262)
Nombre Atomique	Masse Atomique		24 Cr 52,00	42 Mo 95,94	74 W 183,85	106 Sg (263)
Nor	Masse A		23 V 50,94	41 Nb 92,91	73 Ta 180,95	105 Db (262)
			22 Ti 47,90	40 Zr 91,22	72 Hf 178,49	104 Rf (261)
			21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)
	4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)
1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)

71 Lu 174,97	103 Lr (260)
70	102
Yb	No
173,04	(259)
69	101
Tm	Md
168,93	(258)
68 Er 167,26	100 Fm (257)
67 Ho 164,93	99 Es
66	98
Dy	Cf
162,50	(251)
65	97
Tb	Bk
158,92	(247)
64	96
Gd	Cm
157,25	(247)
63 Eu 151,96	95 Am (243)
62	94
Sm	Pu
150,35	(242)
61	93
Pm	Np
146,92	(237)
60	92
Nd	U
144,24	238,03
59	91
Pr	Pa
140,91	231,04
58	90
Ce	Th
140,12	232,04
l l	

1. Un composé exclusivement constitué de carbone, d'hydrogène et d'oxygène présente les pourcentages massiques suivants :

carbone 60 %, hydrogène 8 %, oxygène 32 %.

Quelle est sa formule moléculaire ?

- A. $C_5H_8O_2$
- B. C_5H_4O
- C_6 C_6 HO_3
- D. C_7HO_4
- 2. Parmi les échantillons suivants, quel est celui qui renferme la plus petite quantité d'oxygène ?
 - A. 0.3 mole de H_2SO_4
 - B. 0.6 mole de O_3
 - C. 0,7 mole de HCOOH
 - D. 0.8 mole de H_2O
- 3. Lorsque l'équation $C_4H_{10} + O_2 \rightarrow CO_2 + H_2O$ est correctement équilibrée (pondérée), quel est le coefficient affecté à O_2 ?
 - A. 9
 - B. 13
 - C. 18
 - D. 24
- **4.** On introduit un fil de cuivre de masse 6,4 g dans 0,10 dm³ d'une solution de AgNO₃ 1,0 mol dm⁻³. Il se forme de l'argent métallique et du nitrate de cuivre(II) en solution. Lorsque la réaction est terminée,
 - A. il subsiste un excès de cuivre.
 - B. le fil de cuivre s'est dissous complètement et quelques ions d'argent subsistent en solution.
 - C. le fil de cuivre s'est dissous complètement et il ne subsiste pas d'ions d'argent en solution.
 - D. la masse d'argent métallique formé est égale à la masse de cuivre qui a réagi.

5.	On dissout 2,02 g de KNO_3 ($M_r = 101$) dans une quantité d'eau suffisante pour préparer 0,500 dm ³ de
	solution. Quelle est, en mol dm ⁻³ , la concentration de cette solution?

- A. 0,02
- B. 0,04
- C. 0,10
- D. 0,20
- **6.** Le cuivre existe sous la forme de deux isotopes, ⁶³Cu et ⁶⁵Cu. La masse atomique relative du cuivre vaut 63,55. Quelle est sa composition isotopique la plus probable ?

⁶³ Cu	⁶⁵ Cu
------------------	------------------

- A. 30 % 70 %
- B. 50 % 50 %
- C. 55 % 45 %
- D. 70 % 30 %
- 7. Quelle est la répartition électronique de l'ion ${}^{16}_{8}$ O²⁻?
 - A. 2,6
 - B. 2,8
 - C. 2,8,6
 - D. 2,8,8
- **8.** Un élément est situé dans le groupe 3 et dans la 2ème période. Combien d'électrons l'atome de cet élément possède-t-il dans sa couche périphérique ?
 - A. 2
 - B. 3
 - C. 5
 - D. 6

- **9.** Quelle propriété augmente lorsque le nombre atomique augmente, tant pour les métaux alcalins que pour les halogènes ?
 - A. Le rayon atomique
 - B. L'électronégativité
 - C. L'énergie d'ionisation
 - D. La température de fusion
- 10. Parmi les réactions suivantes, quelle(s) est (sont) celle(s) qui est (sont) spontanée(s)?

I.
$$Cl_2 + 2Br^- \rightarrow Br_2 + 2Cl^-$$

II.
$$Br_2 + 2I^- \rightarrow I_2 + 2Br^-$$

- A. I seulement
- B. II seulement
- C. I et II
- D. Ni I, ni II
- **11.** Quelle serait la formule du composé résultant de la combinaison de l'élément *A* (groupe 2) et de l'élément *B* (groupe 7) ?
 - A. AB
 - B. AB_2
 - C. A_2B_7
 - D. A_7B_2

12. Lorsqu'on représente la structure de Lewis de HCOOCH₃, combien dénombre-t-on de paires électroniques liantes et de paires électroniques non liantes ?

-6-

	paires liantes	paires non liante
A.	8	4
B.	7	5
C.	7	4
D.	5	5

- 13. L'angle entre les liaisons carbone-carbone dans CH₃CHCH₂ est proche de
 - A. 180°.
 - B. 120°.
 - C. 109°.
 - D. 90°.
- 14. Les composés A, B et C ont approximativement la même masse molaire.

Lorsque ces composés sont classés dans l'ordre croissant de leur température d'ébullition (température d'ébullition la plus basse en premier lieu), l'ordre correct est

- A. **A**, **C**, **B**.
- B. **A**, **B**, **C**.
- C. **B**, **C**, **A**.
- D. **C**, **B**, **A**.

- 15. Que se produit-il lorsqu'un liquide passe à l'état solide à une température déterminée ?
 - A. Les particules deviennent plus petites et il y a un dégagement de chaleur.
 - B. Les particules se rapprochent les unes des autres et il y une absorption de chaleur.
 - C. Les particules deviennent plus ordonnées et il y a un dégagement de chaleur.
 - D. Les forces d'attraction entre les particules deviennent plus fortes et il y a une absorption de chaleur.
- **16.** Lorsqu'on mélange les deux solides Ba(OH)₂·8H₂O et NH₄SCN, il se forme une solution et on observe un abaissement de température. Quelle proposition concernant cette réaction est correcte ?
 - A. La réaction est exothermique et ΔH est négatif
 - B. La réaction est exothermique et ΔH est positif
 - C. La réaction est endothermique et ΔH est négatif
 - D. La réaction est endothermique et ΔH est positif
- 17. Sur la base des informations suivantes :

$$H_2(g) + O_2(g) \rightarrow H_2O_2(l)$$
 $\Delta H = -187.6 \text{ kJ}$
 $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$ $\Delta H = -571.6 \text{ kJ}$

déterminer la valeur de ΔH (en kJ) pour la réaction

$$2H_2O_2(1) \rightarrow 2H_2O(1) + O_2(g)$$

- A. -196,4
- B. -384,0
- C. -759,2
- D. -946,8

18. Quelle est la valeur de ΔH (en kJ mol⁻¹) pour la réaction suivante ?

Énergies de liaisons	Н—Н	С—С	C = C	С—Н	
/ kJ mol ⁻¹	436	348	612	412	

- A. 124
- B. 101
- C. -101
- D. -124

19. Soit la réaction

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

Quelle modification aura pour effet d'augmenter la vitesse de la réaction lorsque 50 cm³ d'une solution de HCl 1,0 mol dm⁻³ sont ajoutés à 1,0 g de CaCO₃ solide ?

- A. Une augmentation du volume de HCl
- B. Une diminution de la concentration de HCl
- C. Une réduction de la taille des particules de CaCO₃ solide
- D. Une augmentation de la pression de CO₂

20. On considère la réaction suivante se déroulant à 100°C :

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

Quelle(s) est (sont) la (les) proposition(s) correcte(s) à propos de cette réaction ?

- I. Chaque collision entre des molécules de N₂ et de H₂ conduit à la formation de NH₃.
- II. Cette réaction implique une collision entre une molécule N₂ et trois molécules H₂.
- A. I seulement
- B. II seulement
- C. I et II
- D. Ni I, ni II

21. La constante d'équilibre d'une réaction en phase gazeuse s'exprime sous la forme

$$K_{\rm c} = \frac{[{\rm O}_2]^5 [{\rm NH}_3]^4}{[{\rm NO}]^4 [{\rm H}_2 {\rm O}]^6}$$

À quelle équation ci-dessous correspond cette expression de la constante d'équilibre ?

- A. $4NH_3 + 5O_2 \rightleftharpoons 4NO + 6H_2O$
- B. $4NO + 6H_2O \rightleftharpoons 4NH_3 + 5O_2$
- C. $8NH_3 + 10O_2 \rightleftharpoons 8NO + 12H_2O$
- D. $2NO + 3H_2O \rightleftharpoons 2NH_3 + \frac{5}{2}O_2$

22. La réaction suivante est exothermique :

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

Quelle modification permettrait de déplacer l'équilibre vers la droite ?

- I. Augmenter la pression
- II. Augmenter la température
- A. I seulement
- B. II seulement
- C. I et II
- D. Ni I, ni II

23. Des solutions P, Q, R et S ont les propriétés suivantes :

- P: pH = 8
- **Q**: $[H^+] = 1 \times 10^{-3} \text{ mol dm}^{-3}$
- **R**: pH = 5
- S: $[H^+] = 2 \times 10^{-7} \text{ mol dm}^{-3}$

Lorsque ces solutions sont classées dans l'ordre croissant d'acidité (solution la moins acide en premier lieu), l'ordre correct est

- A. **P**, **S**, **R**, **Q**.
- B. **Q**, **R**, **S**, **P**.
- C. S, R, P, Q.
- D. **R**, **P**, **Q**, **S**.

24. La dissociation ionique de l'acide sulfurique est représentée par les équations suivantes :

$$H_2SO_4(aq) + H_2O(l) \rightarrow H_3O^+(aq) + HSO_4^-(aq)$$

 $HSO_4^-(aq) + H_2O(l) \rightarrow H_3O^+(aq) + SO_4^{2-}(aq)$

Quelle est la base conjuguée de HSO₄ (aq)?

- A. $H_2O(1)$
- B. $H_3O^+(aq)$
- C. $H_2SO_4(aq)$
- D. $SO_4^{2-}(aq)$

25. Laquelle des transformations suivantes correspond à une réaction de réduction ?

- A. $\operatorname{Mn}^{2+}(\operatorname{aq}) \to \operatorname{MnO}_{4}^{-}(\operatorname{aq})$
- B. $2CrO_4^{2-}(aq) \rightarrow Cr_2O_7^{2-}(aq)$
- C. $SO_4^{2-}(aq) \rightarrow SO_3^{2-}(aq)$
- D. $Zn(s) \rightarrow Zn^{2+}(aq)$

26. Au cours de l'électrolyse d'un sel fondu, le cation se déplace vers ...I... et subit ...II....

I

II

- A. l'électrode négative une réduction
- B. l'électrode négative une oxydation
- C. l'électrode positive une oxydation
- D. l'électrode positive une réduction

27	T	,	1 12	7.41 3	, .,		1	. 1	1	1.	•	
27.	Lorsqu	Tune mo	ole d'o	ethene	reagit	avec	deux	moles	ae	ดเดxง	gene	gazeux
				• • • • • • • • • • • • • • • • • • • •								

- A. ΔH est positif.
- B. le nombre d'oxydation du carbone ne varie pas.
- C. il se forme un alcool.
- D. du monoxyde de carbone est produit.

28. Quel est le nom du composé CH₃CH₂CH₂COOCH₃ ?

- A. Méthanoate de butyle
- B. Butanoate de méthyle
- C. Propanoate de méthyle
- D. Pentanone

29. Parmi les molécules suivantes, quelle est celle qui présente un centre chiral ?

- A. NH₂CH₂COOH
- B. CH₃CH(NH₂)COOH
- C. $CH_3C(NH_2)_2COOH$
- D. $(CH_3)_2C(NH_2)COOH$

30. Quel est le produit de la réaction entre le brome et l'éthène ?

- A. $CH_2 = CHBr$
- B. CHBr = CHBr
- C. CH_3CH_2Br
- D. CH₂BrCH₂Br