

Fig. 4 – Bos & Wallinga (2012)

u

Fig. 4 – Bos & Wallinga (2012)

Fig. 4 – Bos & Wallinga (2012)

Histogram

Histogram

Χ

LxTxData\$Dose

RLum.Data.Image

OSL (UVVIS)

RLum.Data.Spectrum

IR-RF

Growth curve

 $D_e = 1677.16 \pm 46.11$ | fit: EXP

Growth curve

 $D_e = 406.28 \pm 42.81$ | fit: LIN

TL pseudoIRSL1 pseudoIRSL2

D_e from MC simulation

Test dose response

Pseudo pIRIR data set based on quartz OSL

 $D_e = 1677.16 \pm 48.13$ | fit: EXP

$\ensuremath{D_{e}}$ from MC simulation

Summarised growth curves

Sensitivity change

Rejection criteria

Monte Carlo Simulation

Dbar (Gy)

help("calc_IEU")

3-parameter Minimum Age Model

Standardised estimate

D_{e} distribution

gSGC and resulting De

Default

Background

Default

D_e distribution

Standardised estimate

D_{e} distribution

Profile log likelinood for σ_{OD}

TL (UVVIS)

TL (UVVIS)

TL (UVVIS)

Profile log likelihood for σ_{OD}

Profile log likelihood for σ_{OD}

De distribution

D_e distribution

D_e distribution

De distribution

Standardised estimate

100

D_{e} distribution

De distribution

De distribution

D_e distribution

D_e distribution

D_e distribution

D_{e} distribution

Standardised estimate

D_{e} distribution

De distribution

Standardised estimate

D_e distribution

De distribution

n = 15 | in confidence interval = 73.3 %

Standardised estimate

De distribution

n = 15 | in confidence interval = 73.3 %

Standardised estimate

D_{e} distribution

Example data

| n = 5 | weighted mean = 1.01 | | n = 5 | weighted mean = 1 |

Example data

Growth curve

 $D_e = 1746.54 \pm 57.45$ | fit: EXP

Growth curve

 $D_e = 1746.54 \pm 59.97$ | fit: EXP

Growth curve

 $D_e = 1746.54 \pm 61.2$ | fit: EXP

n = 100, valid fits = 100

Histogram

Histogram of De-values

Example data set

Dose distribution

D_{e} distribution

NR(t) Plot

help("plot_NRt")

NR(t) Plot help("plot_NRt")

Time [s]

Time [s]

TnTx(t) Plot

TL combined

unkown curve type

RLum.Data.Image

RLum.Data.Spectrum

help("plot_RLum.Data.Spectrum")

RLum.Data.Spectrum

unkown curve type

D_e distribution n = 25 | in confidence interval = 76 % Standardised estimate 180 2 0 160 ∞ 0 140 120 100 Relative standard error (%) 20 10 6.7 0 5 10 15 Precision D_e distribution Standardised estimate n = 25 | in confidence interval = 76 % Relative standard error (%) 20 6.7 10 15 0 5 Precision

D_e distribution n = 25 | in confidence interval = 76 % 180 Standardised estimate 160 0 ∞ 2 140 0 120 100 Relative standard error (%) 20 10 6.7 0 5 10 15 Precision D_e distribution Standardised estimate weighted mean = 128.12 | median = 126.34 Relative standard error (%) 20 6.7 10 15 0 5 Precision

