Отчет по лабораторной работе №4

Дисциплина: Моделирование сетей передачи данных

Лобанова Полина Иннокентьевна

Содержание

1	Цель работы	6
2	Задание	7
3	Выполнение лабораторной работы	8
4	Выводы	25
Список литературы		26

Список иллюстраций

5.1	исправление права запуска х-соебинения	ŏ
3.2	Создание простейшей топологии	9
3.3	Команда ifconfig на хосте h1	9
3.4		10
3.5	Команда ping	10
3.6	Команда ping	10
3.7		10
3.8		11
3.9		11
3.10		11
3.11	Изменение задержки	12
3.12		12
3.13		12
3.14		13
3.15		13
3.16	Команда ping	13
3.17		13
		14
3.19	Команда ping	14
3.20	Добавление нормального распределения	14
3.21	Команда ping	15
		15
		15
		15
3.25	Создание подкаталога	16
3.26	Создание скрипта lab_netem_i.py	16
3.27		16
3.28	Изменение прав доступа	17
3.29		17
		17
		18
		18
3.33	График 1.2	19
3.34	Скрипт для вычисления данных	19
		20
		20
		20

3.38	График 2	21
3.39	Вычисленные значения	21
3.40	Изменение файла lab_netem_i.py	21
3.41	График 3	22
3.42	Вычисленные значения	22
3.43	Изменение файла lab_netem_i.py	22
3.44	График 4	23
3.45	Вычисленные значения	23
3.46	Изменение файла lab_netem_i.py	23
3.47	График 5	24
3.48	Вычисленные значения	24

Список таблиц

1 Цель работы

Основной целью работы является знакомство с NETEM — инструментом для тестирования производительности приложений в виртуальной сети, а также получение навыков проведения интерактивного и воспроизводимого экспериментов по измерению задержки и её дрожания (jitter) в моделируемой сети в среде Mininet.

2 Задание

- 1. Задайте простейшую топологию, состоящую из двух хостов и коммутатора с назначенной по умолчанию mininet сетью 10.0.0.0/8.
- 2. Проведите интерактивные эксперименты по добавлению/изменению задержки, джиттера, значения корреляции для джиттера и задержки, распределения времени задержки в эмулируемой глобальной сети.
- 3. Реализуйте воспроизводимый эксперимент по заданию значения задержки в эмулируемой глобальной сети. Постройте график.
- 4. Самостоятельно реализуйте воспроизводимые эксперименты по изменению задержки, джиттера, значения корреляции для джиттера и задержки, распределения времени задержки в эмулируемой глобальной сети. Постройте графики.

3 Выполнение лабораторной работы

- 1. Запустила виртуальную среду с mininet и из основной ОС подключилась к виртуальной машине.
- 2. В виртуальной машине mininet исправила права запуска X-соединения. Скопировала значение куки своего пользователя mininet в файл для пользователя root.

```
mininet@mininet-vm:~$ xauth list $DISPLAY
mininet-vm/unix:10 MIT-MAGIC-COOKIE-1 71648ffa79f761f9b729315fc22cc37c
mininet@mininet-vm:~$ sudo -i
root@mininet-vm:~# xauth add mininet-vm/unix:10 MIT-MAGIC-COOKIE-1 71648ffa7
9f761f9b729315fc22cc37c
root@mininet-vm:~# logout
```

Рис. 3.1: Исправление права запуска Х-соединения

3. Задала простейшую топологию, состоящую из двух хостов и коммутатора с назначенной по умолчанию mininet сетью 10.0.0.0/8.

```
mininet@mininet-vm:-$ sudo mn --topo=single,2 -x

*** Creating network

*** Adding controller

*** Adding hosts:

h1 h2

*** Adding switches:

sl

*** Adding links:
(h1, s1) (h2, s1)

*** Configuring hosts
h1 h2

*** Running terms on localhost:10.0

*** Starting controller
c0

*** Starting 1 switches
sl ...

*** Starting CLI:
mininet>
```

Рис. 3.2: Создание простейшей топологии

4. На хостах h1 и h2 ввела команду ifconfig, чтобы отобразить информацию, относящуюся к их сетевым интерфейсам и назначенным им IP-адресам.

```
"host:h1"(Ha mininet-vm) x

root@mininet-vm:/home/mininet# ifconfig
h1-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.0.1 netmask 255.0.0.0 broadcast 10.255.255.255
ether 7e:04:c3:9b:62:9f txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
loop txqueuelen 1000 (Local Loopback)
RX packets 860 bytes 311956 (311.9 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 860 bytes 311956 (311.9 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Рис. 3.3: Команда ifconfig на хосте h1

```
"host:h2" (Ha mininet-vm) 

root@mininet-vm:/home/mininet# ifconfig
h2-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.0.2 netmask 255.0.0.0 broadcast 10.255.255.255
ether de:e7:91:c3:cb:54 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
loop txqueuelen 1000 (Local Loopback)
RX packets 1027 bytes 325680 (325.6 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 1027 bytes 325680 (325.6 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Рис. 3.4: Команда ifconfig на хосте h2

5. Проверила подключение между хостами h1 и h2 с помощью команды ping с параметром -c 6. Минимальное RTT: 0,03; Среднее RTT: 0,548; Максимальное RTT: 1,3; Стандартное отклонение: 0,464.

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2 PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data. 64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=1.30 ms 64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.142 ms 64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.030 ms 64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=0.075 ms 64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=0.072 ms 64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=0.035 ms
```

Рис. 3.5: *Команда ping*

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.1 PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data. 64 bytes from 10.0.0.1: icmp_seq=1 ttl=64 time=0.813 ms 64 bytes from 10.0.0.1: icmp_seq=2 ttl=64 time=0.052 ms 64 bytes from 10.0.0.1: icmp_seq=3 ttl=64 time=0.042 ms 64 bytes from 10.0.0.1: icmp_seq=4 ttl=64 time=0.082 ms
```

Рис. 3.6: *Команда ping*

6. На хосте h1 добавила задержку в 100 мс к выходному интерфейсу.

|root@mininet-vm:/home/mininet# sudo tc qdisc add dev h1-eth0 root netem delay 100ms

Рис. 3.7: Добавление задержки на хосте h1

7. Проверила, что соединение от хоста h1 к хосту h2 имеет задержку 100 мс, используя команду ping с параметром -с 6 с хоста h1. Минимальное RTT: 100; Среднее RTT: 100,8; Максимальное RTT: 101; Стандартное отклонение: 0,374.

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=101 ms
```

Рис. 3.8: *Команда ping*

8. Для эмуляции глобальной сети с двунаправленной задержкой к соответствующему интерфейсу на хосте h2 также добавила задержку в 100 миллисекунд.

```
root@mininet-vm:/home/mininet# sudo tc qdisc add dev h2-eth0 root netem delay 100ms root@mininet-vm:/home/mininet# \square
```

Рис. 3.9: Добавление задержки на хосте h2

9. Проверила, что соединение между хостом h1 и хостом h2 имеет RTT в 200 мс (100 мс от хоста h1 к хосту h2 и 100 мс от хоста h2 к хосту h1), повторив команду ping с параметром -с 6 на терминале хоста h1. Минимальное RTT: 201; Среднее RTT: 201; Максимальное RTT: 201; Стандартное отклонение: 0.

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2 PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data. 64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=201 ms 64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=201 ms 64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=201 ms 64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=201 ms
```

Рис. 3.10: *Команда ping*

10. Изменила задержку со 100 мс до 50 мс для отправителя h1 и для получателя h2.

```
root@mininet-vm:/home/mininet# sudo tc qdisc change dev hl-eth0 root netem delay 50 ms
root@mininet-vm:/home/mininet# 
root@mininet-vm:/home/mininet# sudo tc qdisc change dev h2-eth0 root netem delay 50m s
root@mininet-vm:/home/mininet# |
```

Рис. 3.11: Изменение задержки

11. Проверила, что соединение от хоста h1 к хосту h2 имеет задержку 100 мс, используя команду ping с параметром -с 6 с терминала хоста h1. Минимальное RTT: 100; Среднее RTT: 101; Максимальное RTT: 102; Стандартное отклонение: 1.

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2 PING 10.0.0.2 (10.0.0.2) 55(84) bytes of data. 64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=102 ms 64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=102 ms 64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=100 ms 64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=102 ms 64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=100 ms 64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=100 ms 64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=100 ms
```

Рис. 3.12: *Команда ping*

12. Восстановила конфигурацию по умолчанию, удалив все правила, применённые к сетевому планировщику соответствующего интерфейса. Для отправителя h1 и для получателя h2.

```
root@mininet-vm:/home/mininet# sudo tc qdisc del dev h1-eth0 root netem root@mininet-vm:/home/mininet# 
s 
root@mininet-vm:/home/mininet# sudo tc qdisc del dev h2-eth0 root netem root@mininet-vm:/home/mininet# |
```

Рис. 3.13: Удаление правил

13. Проверила, что соединение между хостом h1 и хостом h2 не имеет явно установленной задержки, используя команду ping с параметром -с 6 с терминала хоста h1. Минимальное RTT: 0,033; Среднее RTT: 0,5118; Максимальное RTT: 1,11; Стандартное отклонение: 0,487.

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=1.11 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.971 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.114 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=0.033 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=0.034 ms
```

Рис. 3.14: *Команда ping*

14. Добавила на узле h1 задержку в 100 мс со случайным отклонением 10 мс.

```
root@mininet-vm:/home/mininet# sudo tc qdisc add dev h1-eth0 root netem delay 100ms 10ms root@mininet-vm:/home/mininet# ■
```

Рис. 3.15: Добавление задержки со случайным отклонением

15. Проверьте, что соединение от хоста h1 к хосту h2 имеет задержку 100 мс со случайным отклонением ±10 мс, используя в терминале хоста h1 команду ping с параметром -с 6. Минимальное RTT: 94; Среднее RTT: 102.46; Максимальное RTT: 111; Стандартное отклонение: 6.6.

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2 PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data. 64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=111 ms 64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=94.0 ms 64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=95.1 ms 64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=106 ms 64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=109 ms 64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=99.7 ms
```

Рис. 3.16: *Команда ping*

16. Восстановила конфигурацию интерфейса по умолчанию на узле h1.

```
root@mininet-vm:/home/mininet# sudo tc qdisc del dev h1-eth0 root netem root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2 PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data. 64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=0.239 ms 64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.035 ms 64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.058 ms
```

Рис. 3.17: Удаление правил

17. Добавила на интерфейсе хоста h1 задержку в 100 мс с вариацией ±10 мс и значением корреляции 25%.

Рис. 3.18: Добавление задержки со случайным отклонением и корреляцией

18. Убедилась, что все пакеты, покидающие устройство h1 на интерфейсе h1-eth0, будут иметь время задержки 100 мс со случайным отклонением ±10 мс, при этом время передачи следующего пакета зависит от предыдущего значения на 25%. Использовала для этого в терминале хоста h1 команду ping с параметром -с 6. Минимальное RTT: 91,5; Среднее RTT: 97,3; Максимальное RTT: 109; Стандартное отклонение: 6,43. Восстановила конфигурацию интерфейса по умолчанию на узле h1.

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2 PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data. 64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=93.5 ms 64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=92.9 ms 64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=91.5 ms 64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=91.3 ms 64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=109 ms 64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=93.9 ms
```

Рис. 3.19: *Команда ping*

19. Задала нормальное распределение задержки на узле h1 в эмулируемой сети.

```
root@mininet-vm:/home/mininet# sudo tc qdisc add dev hl-eth0 root netem delay 100ms 20ms dis tribution normal root@mininet-vm:/home/mininet# ■
```

Рис. 3.20: Добавление нормального распределения

20. Убедилась, что все пакеты, покидающие хост h1 на интерфейсе h1-eth0, будут иметь время задержки, которое распределено в диапазоне 100 мс ±20 мс. Использовала для этого команду ping на терминале хоста h1 с параметром -с 6. Минимальное RTT: 75,8; Среднее RTT: 106,3; Максимальное RTT: 135; Стандартное отклонение: 24,36. Завершила работу mininet в интерактивном режиме.

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2 PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data. 64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=79.7 ms 64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=93.3 ms 64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=135 ms 64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=121 ms 64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=75.8 ms 64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=133 ms
```

Рис. 3.21: *Команда ping*

21. Обновила репозитории программного обеспечения на виртуальной машине.

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ sudo apt-get update
Get:1 http://security.ubuntu.com/ubuntu focal-security InRelease [128 kB]
Hit:2 http://us.archive.ubuntu.com/ubuntu focal InRelease
Get:3 http://us.archive.ubuntu.com/ubuntu focal-updates InRelease [128 kB]
Get:4 http://us.archive.ubuntu.com/ubuntu focal-backports InRelease [128 kB]
Fetched 383 kB in 1s (285 kB/s)
Reading package lists... Done
```

Рис. 3.22: Обновление репозиториев программного обеспечения

22. Установила пакет geeqie — понадобится для просмотра файлов png.

```
mininet@mininet-vm:-$ sudo apt install geeqie
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
    acl apg apport apport-symptoms aptdaemon aptdaemon-data avahi-daemon
    avahi-utils bluez bolt cheese-common colord colord-data cracklib-runtime
    cups-bsd cups-client cups-common cups-pk-helper dbus dbus-x11 dconf-cli
```

Рис. 3.23: Установка пакета деедіе

23. Для каждого воспроизводимого эксперимента expname создала свой каталог, в котором будут размещаться файлы эксперимента.

```
mininet@mininet-vm:-$ mkdir -p ~/work/lab_netem_i/expname
mininet@mininet-vm:-$
```

Рис. 3.24: Создание каталога

24. В виртуальной среде mininet в своём рабочем каталоге с проектами создала каталог simple-delay и перешла в него.

```
mininet@mininet-vm:-$ mkdir -p ~/work/lab_netem_i/simple-delay
mininet@mininet-vm:-$ cd ~/work/lab_netem_i/simple-delay
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$
```

Рис. 3.25: Создание подкаталога

25. Создала скрипт для эксперимента lab_netem_i.py.

```
ONU nano 4.8 //home/mininet/work/lab_netem_i/simple-delay/lab_netem_i

I was a mainter. I was a manual manu
```

Рис. 3.26: Создание скрипта lab_netem_i.py

26. Создала скрипт для визуализации ping plot результатов эксперимента.

```
/home/mininet/work/lab_netem_i/simple-delay/ping_plot
#!/usr/bin/gnuplot --persist

set terminal png crop
set output 'ping.png'
set xlabel "Sequence number"
set ylabel "Delay (ms)"
set grid
plot "ping.dat" with lines
```

Рис. 3.27: Создание скрипта ping plot

27. Задала права доступа к файлу скрипта.

```
mininet@mininet-vm:-/work/lab_netem_i/simple-delay$ chmod +x ping_plot
mininet@mininet-vm:-/work/lab_netem_i/simple-delay$
```

Рис. 3.28: Изменение прав доступа

28. Создала Makefile для управления процессом проведения эксперимента.

Рис. 3.29: Создание Makefile

29. Выполнила эксперимент.

Рис. 3.30: Выполнение эксперемента

30. Продемонстрировала построенный в результате выполнения скриптов график.

Рис. 3.31: График 1.1

31. Из файла ping.dat удалила первую строку и заново постройте график.

```
GNU nano 4.8 /home/mininet/work/lab_netem_i/simple-delay/ping.dat
2 201
3 202
4 200
5 201
6 202
7 201
8 200
9 201
10 201
11 200
12 202
13 201
14 200
15 201
16 201
17 201
18 201
19 201
```

Рис. 3.32: Удаление строки

32. Продемонстрировала построенный в результате график.

Рис. 3.33: График 1.2

33. Разработала скрипт для вычисления на основе данных файла ping.dat минимального, среднего, максимального и стандартного отклонения времени приёма-передачи. Добавила правило запуска скрипта в Makefile. Продемонстрировала работу скрипта с выводом значений на экран. Очистила каталог от результатов проведения экспериментов.

Рис. 3.34: Скрипт для вычисления данных

Рис. 3.35: *Изменение Makefile*

```
mininet@mininet-vm:-/work/lab_netem_i/simple-delay$ make rtt
sudo python rtt.py
min: 200
max: 202
avg: 200.9595959595956
std: 0.5699837433985384
mininet@mininet-vm:-/work/lab_netem_i/simple-delay$ make clean
rm -f *.dat *.png
mininet@mininet-vm:-/work/lab_netem_i/simple-delay$ ls
lab_netem_i.py Makefile ping_plot rtt.py
```

Рис. 3.36: Результат работы скрипта

34. Самостоятельно реализовала воспроизводимые эксперименты по изменению задержки в эмулируемой глобальной сети. Построила графики. Вычислила минимальное, среднее, максимальное и стандартное отклонение времени приёма-передачи для каждого случая.

```
net.start()
info( '*** Set delay\n')
h1.cmdPrint( 'tc qdisc add dev h1-eth0 root netem delay 50ms' )
h2.cmdPrint( 'tc qdisc add dev h2-eth0 root netem delay 50ms' )
```

Рис. 3.37: Изменение файла lab_netem_i.py

Рис. 3.38: График 2

```
mininet@mininet~vm:~/work/lab_netem_i/simple-delay$ make rtt
sudo python rtt.py
min: 100
max: 102
avg: 101.1818181818181819
std: 0.45989431713313733
mininet@mininet~vm:~/work/lab_netem_i/simple-delay$
```

Рис. 3.39: Вычисленные значения

35. Самостоятельно реализовала воспроизводимые эксперименты по изменению джиттера в эмулируемой глобальной сети. Построила графики. Вычислила минимальное, среднее, максимальное и стандартное отклонение времени приёма-передачи для каждого случая.

```
info( '*** Set delay\n')
hl.cmdPrint( 'tc qdisc add dev h1-eth0 root netem delay 50ms 10ms' )
h2.cmdPrint( 'tc qdisc add dev h2-eth0 root netem delay 50ms 10ms)
```

Рис. 3.40: Изменение файла lab netem i.py

Рис. 3.41: График 3

```
mininet@mininet-vm:-/work/lab_netem_i/simple-delay$ make rtt
sudo python rtt.py
min: 83.2
max: 120.0
avg: 100.44343434343432
std: 7.890360453422326
```

Рис. 3.42: Вычисленные значения

36. Самостоятельно реализовала воспроизводимые эксперименты по изменению значения корреляции для джиттера и задержки в эмулируемой глобальной сети. Построила графики. Вычислила минимальное, среднее, максимальное и стандартное отклонение времени приёма-передачи для каждого случая.

```
info( '*** Set delay\n')
h1.cmdPrint( 'tc qdisc add dev h1-eth0 root netem delay 50ms 10ms 25%' )
h2.cmdPrint( 'tc qdisc add dev h2-eth0 root netem delay 50ms' )
```

Рис. 3.43: Изменение файла lab_netem_i.py

Рис. 3.44: График 4

```
mininet@mininet-vm:-/work/lab_netem_i/simple-delay$ make rtt
sudo python rtt.py
min: 90.4
max: 111.0
avg: 100.6707070707078
std: 5.595392647768751
```

Рис. 3.45: Вычисленные значения

37. Самостоятельно реализовала воспроизводимые эксперименты по изменению распределения времени задержки в эмулируемой глобальной сети. Построила графики. Вычислила минимальное, среднее, максимальное и стандартное отклонение времени приёма-передачи для каждого случая.

```
info( '*** Set delay\n')
hl.cmdPrint( 'tc qdisc add dev hl-eth0 root netem delay 50ms 10ms distribution normal )
h2.cmdPrint( 'tc qdisc add dev h2-eth0 root netem delay 50ms' )

time_sleen(10) #_Wait 10_seconds
```

Рис. 3.46: *Изменение файла lab_netem_i.py*

Рис. 3.47: *График 5*

```
mininet@mininet-vm:-/work/lab_netem_i/simple-delay$ make rtt
sudo python rtt.py
min: 77.4
max: 122.0
avg: 101.76060606060605
std: 10.857676849479262
```

Рис. 3.48: Вычисленные значения

4 Выводы

Я ознакомилась с NETEM и получила навыки проведения интерактивного и воспроизводимого экспериментов по измерению задержки и её дрожания в моделируемой сети в среде Mininet.

Список литературы