Design of RNA-Seq and Result Interpretation (II)

Sanzhen Liu

Department of Plant Pathology

Kansas State University

@K-State IGF RNA-Seq Workshop (PLPTH885)

6/7/2018

Bioinformatics and Statistics (Illumina data)

STAR pipeline – from reads to counts

Required files:

- 1. Reference genome (fasta file)
- 2. Gene information (gff or gtf gene annotation)
- 3. Reads (fastq files) your own data

Many reference genomes and gff/gtf files are available at: http://ensembl.org/info/data/ftp

Species	DNA (FASTA)	cDNA (FASTA)	CDS (FASTA)	ncRNA (FASTA)	Protein sequence (FASTA)	Annotated sequence (EMBL)	Annotated sequence (GenBank)	Gene sets
Human Homo sapiens	FASTA ₺	FASTA ₺	FASTA ₺	FASTA ₺	FASTA ₽	EMBL ₽	GenBank ஓ	GTF& GFF3&
Mouse Mus musculus	FASTA ₽	FASTA ₺	FASTA ₺	FASTA ₺	FASTA ₽	EMBL ₽	GenBank ₪	GTF₽ GFF3₽
Zebrafish Danio rerio	FASTA ₽	FASTA ₪	FASTA ₪	FASTA ₺	FASTA ₺	EMBL@	GenBank ₪	GTF & GFF3 &

Reads to counts - reference indexing


```
STAR --runMode genomeGenerate \
--genomeDir . \
--genomeFastaFiles reference.fas \
--sjdbGTFfile genes.gtf \
--runThreadN 48
```

Reads to counts – alignment and read counting

```
STAR --genomeDir reference.fas \
  --readFilesIn read1.fq read2.fq \
  --alignIntronMax 100000 \
  --alignMatesGapMax 100000 \
  --outFileNamePrefix output \
  --outSAMattrlHstart 0 \
  --outSAMmultNmax 1 \
  --outSAMstrandField intronMotif \
  --outFilterIntronMotifs RemoveNoncanonicalUnannotated \
  --outSAMtype BAM SortedByCoordinate \
  --quantMode GeneCounts \
  --outFilterMismatchNmax 5 \
  --outFilterMismatchNoverLmax 0.05 \
  --outFilterMatchNmin 50 \
  --outSJfilterReads Unique \
  --outFilterMultimapNmax 1 \
  --outSAMmapqUnique 60 \
  --outFilterMultimapScoreRange 2
```

Count matrix: Read counts (Raw) per gene

Gene	sample 1	sample 2	sample 3
gene 1	6,075	5,934	3,370
gene 2	295	377	169
•••	•••	•••	•••

Overall difference of read counts among samples

Scatter plot

Log RPKM scatter plot

Pair-wise scatter plot

Principal Component Analysis (PCA)

PCA is a mathematical algorithm that reduces the dimensionality of the data while retaining most of the variation in the data set.

Feature/ variable	John	Mike	Jack	Justin
Weight (lb)	150	243	186	128
Height (cm)	171	190	178	175

Nature Biotech, 2008, 26:303-4

Normalized and standardized data

PCA - full gene set

Statistical test for differential expression

 π_G : Proportion of transcript fragments of *gene G* among all transcripts

Sample one read, the distribution of the read from *gene G* is Bernoulli(π_G) Pr(read from G) = π_G

Pr(read not from G) = $1 - \pi_G$

Sample N read, the distribution of the number of reads from *gene G* is:

 $Binomial(N, \pi_G) \approx Poisson(N\pi_G)$

In the Poisson distribution, mean = variance = $N\pi_G$

However, the Poisson distribution can not well explain data variance (overdispersion issue)

That is why a Negative-Binomial (NB)distribution was introduced

Counts of reads from a gene $\sim NB(mean = \mu, variance = \sigma^2)$

$$\sigma^2 = \mu + \varphi \mu^2$$

 φ is a dispersion parameter

- Generalized Linear Model (GLM) to deal with count data
- NB-GLM to incorporate dispersion into the model

Visualization of DE results

Volcano plot

Volcano plot

	DE Result				
GeneID	Log2FC	p-value	-log10(pvalue)		
1	-0.40	0.037	1.43		
2	0.03	0.916	0.04		
3	-0.89	2.42E-05	4.62		
4	0.30	0.130	0.89		
5	-0.36	0.140	0.85		
6	-0.07	0.811	0.09		

MA plot

M (log ratios) and A (mean average)

GeneID	Mean RPKM	log mean	log2FC
1	0.51	-0.29	-0.40
2	1.25	0.10	0.03
3	3.52	0.55	-0.89
4	0.19	-0.72	0.30
5	2.34	0.37	-0.36
6	6.14	0.79	-0.07

Functional interpretation

Gene ontology (GO)

An ontology is a representation of a body of knowledge, within a given domain. Ontologies usually consist of a set of classes or terms with relations that operate between them.

Three domains, three roots

Node: GO term (e.g., cell growth, GO:0016049, biological process)

Edge: term-term connection

Each GO term can be traced back to a root

Category enrichment

All genes

significant gene set

Is **Green GO** enriched in the significant gene set?

GO enrichment test – Fisher's Exact test

<u> </u>	<u> </u>
GRMZM2G001475	GO:0006519
GRMZM2G001475	GO:0016831
GRMZM2G001500	GO:0005524
GRMZM2G001500	GO:0006457
GRMZM2G001500	GO:0051082
GRMZM2G001508	GO:0003993
GRMZM2G001514	GO:0003677
GRMZM2G001514	GO:0004879
GRMZM2G001514	GO:0005634
GRMZM2G001514	GO:0006355

GRMZM2G001475	1
GRMZM2G002652	2
GRMZM2G006480	3
GRMZM5G868038	40

Gene	Significant?
GRMZM2G001475	no
GRMZM2G002652	no
GRMZM2G006480	yes
GRMZM5G868038	no

Question: Are the genes of this GO term enriched in the significant gene set?

Assumption: all genes are independent and equally likely to be selected as DEs.

2x2 Table for GO:0006519

Fisher's Exact Test: p-value = 2.518e-06

	GO:0006519	Others
Significant	5	210
Not significant	35	39416

Name Ontology Definition

cellular amino acid metabolic process

Biological Process

The chemical reactions and pathways involving amino acids, carboxylic acids containing one or more amino groups, as carried out by individual cells.

Not all genes are equally likely to be selected as DEs.

Young MD, et al., (2010). Genome Biology, 11: R14.

GOSeq

- The likelihood of DE as a function of number of reads is quantified through fitting a monotonic function to "proportion of DE" versus "number of reads".
- 2. The function is incorporated into the enrichment statistical test

Gene	Significant?
GRMZM2G001475	no
GRMZM2G002652	no
GRMZM2G006480	yes
	•••
GRMZM5G868038	no

Read counts	Proportion
224	0.16
51	0.05
536	0.38
0	0

3. Weighted sampling to perform enrichment test

GO:0006519	# DE	
Obs (from the DE analysis)	5	
1 st weighted sampling	1	
2 nd weighted sampling	0	→ p-value
3 rd weighted sampling	2	p varac

Summary

- R is an excellent tool for DE analysis and data visualization.
- Many bioinformatics pipelines and statistical methods have been developed. Methods and parameters need to be carefully selected.
- A proper GO enrichment test needs to be used.
- Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15-21.
- Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550.
- Young MD, Wakefield MJ, Smyth GK, Oshlack A. 2010. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14.