TECHNICAL REPORT FOR "GENERATION OF PERSONAL SOUND ZONES WITH INTERFRAME CORRELATION" SUBMITTED TO ICASSP2022

Liming Shi, 1 Guoli Ping, 2 Xiaoxiang Shen, 2 Mads Græsbøll Christensen 1

¹Audio Analysis Lab, CREATE, Aalborg University, {ls, mgc}@create.aau.dk
²Acoustic Engineering Lab, Huawei Technologies Co., Ltd, {pingguoli, shenxiaoxiang3}@huawei.com

1. SIMULATIONS

1.1. Simulation setup

In the second simulation, we test the performance of the proposed algorithm for different α for subspace construction and different ER settings, and the results are shown in Fig. 1. As can be seen, when ER is fixed and α get larger, the AC increases, but the NSD also increases while the NAE is below 0 dB. On the other hand, when α is fixed, increasing ER leads to a larger AC and a lower NSD, for the frequencice between 100 to 300 Hz. The averaged subspace dimensions V for $\alpha=0$, $\alpha=0.2$ and $\alpha=0.4$ are LP, $0.54\times LP$ and $0.44\times LP$, respectively. Therefore, setting $\alpha=0.2$ can obtain a good trade-off between AC, NSD and computational complexity.

Fig. 1. The AC, NSD and NAE performance of the proposed algorithm with different α and ER.