

Mathematics Specialist Test 4 2016

Integration Techniques & Applications of Integral Calculus

NAME:		
TEACH	ER: MLA	

Resource Free Section

30 marks 30 minutes

Determine the following indefinite integrals:

(a)
$$\int 5 \tan^2(5x) dx$$

(b)
$$\int 27 \tan^2(3x) \sec^2(3x) dx$$

(c)
$$\int 8\sin^2(2x)dx$$

${\bf Question} \ 2 \qquad [5 \ {\bf marks}]$

Use the substitution $u=1+\sin\left(x\right)$ to evaluate $\int\limits_{0}^{\frac{\pi}{2}}\frac{4\cos\left(x\right)}{\sqrt{1+\sin\left(x\right)}}$

$Question \ 3 \qquad [3 \ \& \ 3 = 6 \ marks]$

(a) If $f'(x) = \cos(x)\sin(2x)$, determine f(x).

(b) Hence, calculate the area between the curve $y = \cos(x)\sin(2x)$ and the x-axis from $x = \frac{-\pi}{2} \dot{c} x = \pi$.

Question 4 [5 marks]

Calculate the exact volume generated by revolving the area trapped between $y = \frac{1}{x^2 - 1}$, the vertical axis and the lines $y = -e^2$ and y = -1 about the y axis.

Question 5 [2 & 3 = 5 marks]

(a) If $y = \ln(x^{x^2})$, determine $\frac{dy}{dx}$

Hint 1: Apply a suitable log law to $y = \ln(x^{x^2})$ before differentiating

Hint 2: Do not factorise your final answer

(b) Hence, find $\int 2x \ln(x) dx$

Mathematics Specialist Test 4 2016

Integration Techniques & Applications of Integral Calculus

NAME:		
$\mathbf{T}\mathbf{E}$	ACHER: MLA	

Resource Rich Section

 $\begin{array}{c} 20 \text{ marks} \\ 20 \text{ minutes} \end{array}$

One unfolded A4 page of notes, SCSA formulae booklet and ClassPad calculator permitted Question 6 [1 & 1 = 2 marks]

(a) Express
$$\int \frac{x^2 - x + 1}{(x+3)(x^2+4)} dx$$
, in exact terms

(b) Evaluate
$$\int_{0}^{4\pi} \frac{x^2 - x + 1}{(x+3)(x^2+4)} dx$$
, correct $\frac{1}{6}$ 2 decimal places

Question 7 [6 marks]

Use your knowledge of partial fractions to determine

$$\int \frac{7x^2 - 2x + 5}{(x - 1)(x^2 + 1)} dx$$

Show clear working.

Question 8 [3, 2, 2 & 1 = 8 marks]

Consider the functions $f(x) = \frac{\sqrt{x}(x^2 - 5x)}{2} \wedge g(x) = -3\sqrt{x}$

A, B and (0, 0) are the three points of intersection of the aforementioned functions.

(a) Draw a neat sketch of f(x) and g(x) on the axes below. Label points A and B.

(b) State the ordered pairs for points A and B, correct to 2 decimal places.

(c) State the definite integral that defines the area enclosed by f(x) and g(x) between points A and B.

(d) Use your Classpad to determine the area described in (c).

Question 9 [4 marks]

In geometry, a torus is a surface of revolution generated by revolving a circle in 3-dimensional space about an axis co-planar with the circle.

Use calculus to determine the volume of the torus formed by rotating the circle with equation $x^2+(y-2)^2=1$ about the x-axis.