HW1

September 14, 2018

```
In [1]: MortalityRate <- read.table("MortalityRate.txt", header = T)</pre>
```

In [2]: head(MortalityRate)

State	Lat	Mort	Ocean	Long
Alabama	33.0	219	1	87.0
Arizona	34.5	160	0	112.0
Arkansas	35.0	170	0	92.5
California	37.5	182	1	119.5
Colorado	39.0	149	0	105.5
Connecticut	41.8	159	1	72.8

Mean:

152.8776

Standard Deviation:

33.42818

Median:

147

Variance:

1117.443

In [4]: pairs(MortalityRate[2:5])

The correlation matrix appears to show a strong negative correlation between latitude and mortality rate.

Call: lm(formula = MortalityRate\$Mort ~ MortalityRate\$Lat)

Residuals:

Min 1Q Median 3Q Max -38.972 -13.185 0.972 12.006 43.938

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 389.1894 23.8123 16.34 < 2e-16 *** MortalityRate\$Lat -5.9776 0.5984 -9.99 3.31e-13 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 19.12 on 47 degrees of freedom Multiple R-squared: 0.6798, Adjusted R-squared: 0.673 F-statistic: 99.8 on 1 and 47 DF, p-value: 3.309e-13

Latitude vs Mortality Rate


```
In [6]: plot(x = MortalityRate$Lat, y = resid(linear_lat), col = 'blue', xlab="Latitude", ylab-
abline(h = 0, col = 'red')
```

Risidual plot for Latitude Linear Model

Normal Q-Q Plot

In [26]: hist(resid(linear_lat))

Histogram of resid(linear_lat)

Call:
lm(formula = MortalityRate\$Mort ~ MortalityRate\$Long)

Residuals:

Min 1Q Median 3Q Max

-63.898 -25.995 -5.952 21.856 78.444

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 182.7696 29.8893 6.115 1.8e-07 ***
MortalityRate\$Long -0.3287 0.3245 -1.013 0.316

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 33.42 on 47 degrees of freedom Multiple R-squared: 0.02137, Adjusted R-squared: 0.0005491

F-statistic: 1.026 on 1 and 47 DF, p-value: 0.3162

Longitude vs Mortality Rate


```
In [9]: plot(x = MortalityRate$Long, y = resid(linear_long), col = 'blue', xlab="Longitude", ylabline(h = 0, col = 'red')
```

Risidual plot for Longitude Linear Model

Normal Q-Q Plot

In [27]: hist(resid(linear_long))

Histogram of resid(linear_long)

The residual plot for latitude shows even variance about the mean, while the points for longitude show uneven variance, suggesting latitude is a better candidate for a linear model. The qq plot for latitude closely follows a 45 degree upward sloping line suggesting that the error is approximately normal. The qq plot for longitude is skewed suggesting the error does not follow a normal distribution.