1. Formułę zdaniową $(p \Rightarrow q) \Rightarrow [(p \lor \sim q) \Rightarrow (p \land q)]$ zapisać w możliwie najprostszej postaci równoważnej i tę prostszą postać zapisać za pomocą funktora NAND (czyli za pomocą kreski Sheffera). Przedstawić poszczególne etapy dochodzenia do ostatecznej postaci.

2. Sprawdzić, czy schemat $\frac{p \Rightarrow \sim q, \ r \Rightarrow q, \ r}{\sim p}$ jest regułą wnioskowania.

3. Formalnie udowodnić, że jeśli $A,\,B$ i Csą zbiorami, to $(A\cup C)-B\subseteq (A-B)\cup C.$

4. Dane są zbiory A, B i C. Przez sprzeczność wykazać, że jeśli $A \cap B \subseteq C$ i $x \in B$, to $x \not\in A - C$.

5. Indukcyjnie wykazać, że $\left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdot \ldots \cdot \left(1 - \frac{1}{n^2}\right) = \frac{n+1}{2n}$ dla każdej liczby naturalnej $n \geqslant 2$.

4

6. Dana jest funkcja $f \colon X \to Y$ oraz podzb	iory B_1 i B_2 zbioru Y . Wykazać, że $f^{-1}(B_1\cap B_2)=f^{-1}(B_1)\cap f^{-1}(B_2).$	4
7. Wykazać prawdziwość stwierdzenia $\forall_{m \in \mathbb{N}}$	$\mathbb{N} \exists_{n \in \mathbb{N}} \ m < n.$	4
8. Dany jest zbiór $A = \langle -1; 4 \rangle$ i funkcja f : $f(A)$	$R \to R$, gdzie $f(x) = x^2 - 2x$. Wyznaczyć: $f^{-1}(f(A))$	4
$f^{-1}(A)$ $f(f(A))$	$f(f^{-1}(A))$ $f^{-1}(f^{-1}(A))$ zbiorze $A=\{1,2,3,\ldots,10\}$. Uzasadnij, że wskazana przez ciebie relacja faktycznie	4
10. Podać definicję relacji przechodniej. Nie $R \cup S$, albo wskazać (z uzasadnieniem) przy	ech R i S będą relacjami przechodnimi w zbiorze X . Wykazać przechodniość relacji ykład pokazujący, że tak nie musi być.	4
11. Podać definicję zbiorów równolicznych {2015, 2016, 2017, }. Wskazać odpowiedny	a. Formalnie wykazać, że zbiór $\mathbb{A}=\{1,2,3,\ldots\}$ jest równoliczny ze zbiorem $\mathbb{B}=$ ią funkcję i wykazać, że ma ona żądane własności.	4