Words and Morphology

Philipp Koehn

20 October 2020

A Naive View of Language

- Language needs to name
 - nouns: objects in the world (*dog*)
 - verbs: actions (jump)
 - adjectives and adverbs: properties of objects and actions (brown, quickly)
- Relationship between these have to specified
 - word order
 - morphology
 - function words

Marking of Relationships: Agreement

- From Catullus, First Book, first verse (Latin):
- Gender (and case) agreement links adjectives to nouns

Cui dono lepidum novum libellum arida modo pumice expolitum? Whom I-present lovely new little-book dry manner pumice polished?

(To whom do I present this lovely new little book now polished with a dry pumice?)

Marking of Relationships to Verb: Case

• German:

Die Frau gibt dem Mann den Apfel
The woman gives the man the apple
subject indirect object object

Case inflection indicates role of noun phrases

Writingwordstogether

- Definition of word boundaries purely an artifact of writing system
- Differences between languages
 - Agglutinative compounding
 Informatikseminar vs. computer science seminar
 - Function word vs. affix
- Border cases
 - *Joe's* one token or two?
 - Morphology of affixes often depends on phonetics / spelling conventions $dog+s \rightarrow dogs$ vs. $pony \rightarrow ponies$
 - ... but note the English function word *a*: *a donkey* vs. *an aardvark*

Changing Part-of-Speech

- Derivational morphology allows changing part of speech of words
- Example:
 - base: *nation*, noun
 - → *national*, adjective
 - \rightarrow *nationally*, adverb
 - \rightarrow *nationalist*, noun
 - \rightarrow *nationalism*, noun
 - \rightarrow *nationalize*, verb
- Sometimes distinctions between POS quite fluid (enabled by morphology)
 - I want to integrate morphology
 - I want the integration of morphology

Meaning Altering Affixes

• English

undo redo hypergraph

• German: zer- implies action causes destruction

Er **zer***redet das Thema* \rightarrow *He talks the topic* **to death**

• Spanish: -ito means object is small

burro → burrito

Adding Subtle Meaning

- Morphology allows adding subtle meaning
 - verb tenses: time action is occurring, if still ongoing, etc.
 - count (singular, plural): how many instances of an object are involved
 - definiteness (the cat vs. a cat): relation to previously mentioned objects
 - grammatical gender: helps with co-reference and other disambiguation

• Sometimes redundant: same information repeated many times

how does morphology impact machine translation?

Unknown Words

• Ratio of unknown words in WMT 2013 test set:

Source language	Ratio unknown
Russian	2.0%
Czech	1.5%
German	1.2%
French	0.5%
English (to French)	0.5%

- Caveats:
 - corpus sizes differ
 - not clear which unknown words have known morphological variants

Differently Encoded Information

• Languages with different sentence structure

- Convert from inflected language into configuration language (and vice versa)
- Ambiguities can be resolved through syntactic analysis
 - the meaning *the* of *das* not possible (not a noun phrase)
 - the meaning *she* of *sie* not possible (subject-verb agreement)

Non-Local Information

• Pronominal anaphora

I saw the movie and it is good.

- How to translate *it* into German (or French)?
 - *it* refers to *movie*
 - movie translates to Film
 - *Film* has masculine gender
 - ergo: it must be translated into masculine pronoun er
- We are not handling pronouns very well

Complex Semantic Inference

• Example

Whenever I visit my uncle and his daughters, I can't decide who is my favorite cousin.

• How to translate *cousin* into German? Male or female?

morphological pre-precessing schemes

German

German sentence with morphological analysis

Er	wohnt	in	einem	großen	Haus
Er	wohnen -en+t	in	ein +em	groß +en	Haus $+\epsilon$
He	lives	in	a	big	house

- Four inflected words in German, but English...
 - **also inflected** both English verb *live* and German verb *wohnen* inflected for tense, person, count
 - **not inflected** corresponding English words not inflected (a and big)
 - \rightarrow easier to translate if inflection is stripped
 - **less inflected** English word *house* inflected for count
 - German word *Haus* inflected for count and case
 - → reduce morphology to singular/plural indicator
- Reduce German morphology to match English

Turkish

- Example
 - − Turkish: Sonuçlarına₁ dayanılarak₂ bir₃ ortakliği₄ oluşturulacaktır₅.
 - English: **a**₃ partnership₄ will be drawn-up₅ on the basis₂ of conclusions₁.
- Turkish morphology → English function words (*will, be, on, the, of*)
- Morphological analysis

Sonuç +lar +sh +na daya +hnhl +yarak bir ortaklık +sh oluş +dhr +hl +yacak +dhr

Alignment with morphemes

```
sonuç | +lar | +sh | +na | | daya+hnhl | +yarak | bir | ortaklık | +sh | oluş | +dhr | +hl | +yacak | +dhr conclusion | +s | of | the | basis | on | a | partnership | draw up | +ed | will | be
```

⇒ Split Turkish into morphemes, drop some

Arabic

• Basic structure of Arabic morphology

```
[CONJ+ [PART+ [al+ BASE +PRON]]]
```

- Examples for clitics (prefixes or suffixes)
 - definite determiner al+ (English the)
 - pronominal morpheme +hm (English their/them)
 - particle *l*+ (English *to/for*)
 - conjunctive pro-clitic w+ (English and)
- Same basic strategies as for German and Turkish
 - morphemes akin to English words → separated out as tokens
 - properties (e.g., tense) also expressed in English → keep attached to word
 - morphemes without equivalence in English \rightarrow drop

Arabic Preprocessing Schemes

- **ST** Simple tokenization (punctuations, numbers, remove diacritics) wsynhYAlr ys jwlth bzyArp AlY trkyA.
- **D1** Decliticization: split off conjunction clitics $w+synhy\ Alr\}ys\ jwlth\ bzyArp < lY\ trkyA$.
- **D2** Decliticization: split off the class of particles $w+s+ynhy\ Alr\}ys\ jwlth\ b+zyArp < lY\ trkyA$.
- **D3** Decliticization: split off definite article (Al+) and pronominal clitics w+s+ynhyAl+r}ys $jwlp+P_{3MS}$ b+zyArp<lYtrkyA.
- **MR** Morphemes: split off any remaining morphemes $w+s+y+nhy\ Al+r\}ys\ jwl+p+h\ b+zyAr+p< lY\ trkyA$.
- **EN** English-like: use lexeme and English-like POS tags, indicates pro-dropped verb subject as a separate token

 $w+s+>nhY_{VBP}+S_{3MS}Al+r\}ys_{NN}jwlp_{NN}+P_{3MS}b+zyArp_{NN}<lYtrky_{NNP}$

Factored Models

• Factored representation of words

• Encode each factor with a one-hot vector

word embeddings

Word Embeddings

- In neural translation models words are mapped into, say, 500-dimensional continuous space
- Contextualized in encoder layers

Latent Semantic Analysis

- Word embeddings not a new idea
- Representing words based on their context has long tradition in natural language processing
- Co-occurrence statistics

word	context				
	cute	fluffy	dangerous	of	
dog	231	76	15	5767	
cat	191	21	3	2463	
lion	5	1	79	796	

• But: large counts of function words misleading

Pointwise Mutual Information

• Pointwise mutual information

$$PMI(x; y) = \log \frac{p(x, y)}{p(x)p(y)}$$

• Intuition: measures how much more frequent than chance

word	context				
	cute	fluffy	dangerous	of	
dog	9.4	6.3	0.2	1.1	
cat	8.3	3.1	0.1	1.0	
lion	0.1	0.0	12.1	1.0	

• Similar words have similar vectors

Singular Value Decomposition

- Raw co-occurence statistics matrxi very sparse
- ⇒ Reduce into lower dimensional matrix
 - Factorize the PMI matrix *P* into
 - two orthogonal matrices U and V (i.e. UU^T and VV^T are an identity matrix)
 - diagonal matrix Σ (i.e., it only has non-zero values on the diagonal)

$$P = U\Sigma V^T$$

Singular Value Decomposition

- Not going into details how to compute this
- Geometric interpretation: rotation U, a stretching Σ , and another rotation V^T
- ullet Matrices U and V^T play similar role as embedding matrices

Continuous Bag of Words (CBOW)

Predict word from context

$$h_t = \frac{1}{2n} \sum_{j \in \{-n, \dots, -1, 1, \dots, n\}} Cw_{t+j}$$

$$y_t = \operatorname{softmax}(Uh_t)$$

• Similar to n-gram language model

Skip Gram

• Predict context from word

$$y_t = \operatorname{softmax}(UCw_t)$$

ullet C input word embedding matrix, U output word embedding matrix

GloVe

• Global Vectors: use co-occurrence statistics

word	context				
	cute	fluffy	dangerous	of	
dog	231	76	15	5767	
cat	191	21	3	2463	
lion	5	1	79	796	

• Predict the values in this matrix X, using target word embeddings v_i and context word embeddings \tilde{v}_j

$$cost = \sum_{i} \sum_{j} \tilde{v}_{j}^{T} |v_{i} - \log X_{ij}|$$

• Training: loop over all words, and their context words

Refinements

• Bias terms b and \tilde{b}

$$cost = \sum_{i} \sum_{j} |b_i + \tilde{b}_j + \tilde{v}_j^T v_i - \log X_{ij}|$$

- Most word pairs (i, j) meaningless, especially for rare words
- Discount them with a scaling function

$$f(x) = \min(1, (x/x_{\text{max}})^{\alpha})$$

hyper parameter values, e.g., $\alpha = \frac{3}{4}$ and $x_{\text{max}} = 200$

Complete refined cost function

$$cost = \sum_{i} \sum_{j} f(X_{ij})(b_i + \tilde{b}_j + \tilde{v}_j^T v_i - \log X_{ij})^2$$

ELMo

- Word embeddings widely used in natural language processing
- But: better refine them in the sentence context
- ⇒ Embeddings from language models (ELMo)
 (we have always done this in the encoder of our neural translation models)

- Several layers, use weighted sum of representations at different layers
 - syntactic information is better represented in early layers
 - semantic information is better represented in deeper layers.

BERT

- Contextualized word embeddings with Transformer model
- Masked training

• Next sentence prediction

Each unhappy family is unhappy in its own way.

All happy families are alike.

GPT-3 (2020)

- Essentially BERT, but bigger
- Model: Transformer
 - 175 billion parameters
 - 96 layers
 - 12288 dimensional representations
 - 96 attention heads
- Training
 - trained on about 500 billion word data set, less than 1 epoch
 - 3640 petaflop/s-days on NVIDIA V100 (each can do 0.1 petaflops)
- There currently seems to be not plateau: bigger is better

multi-lingual word embeddings

Multi-Lingual Word Embeddings

- Word embeddings often viewed as semantic representations of words
- Tempting to view embedding spaces as language-independent cat (English), gato (Spanish) and Katze (German) are mapped to same vector
- Common semantic space for words in all languages?

Language-Specific Word Embeddings

• Train English word embeddings C_E and Spanish word embeddings C_S

Mapping Word Embedding Spaces

• Learn mapping matrix $W_{S\to E}$ to minimize Euclidean distance between each word and its translation

$$cost = \sum_{i} ||W_{S \to E} c_i^S - c_i^E||$$

- Needed: Seed lexicon of word translations (may be based on cognates)
- Hubness problem: some words being the nearest neighbor of many words

Using only Monolingual Data

- Learn transformation matrix $W_{S\to E}$ without seed lexicon?
- Intuition: relationship between *dog*, *cat*, and *lion*, independent of language
- How can we rotate the triangle to match up?

Using only Monolingual Data

ullet One idea: learn transformation matrix $W_{\operatorname{German} \to \operatorname{English}}$ so that words match up

Adversarial Training

- Another idea: adversarial training
 - points in the German and English space do not match up
 - → adversary can classify them as either German and English
- Training objective of adversary to learn classifier *P*

$$cost_D(P|W) = -\frac{1}{n} \sum_{i=1}^n log P(German|Wg_i) - \frac{1}{m} \sum_{j=1}^m log P(English|e_j)$$

• Training objective of unsupervised learner

$$cost_D(W|P) = -\frac{1}{n} \sum_{i=1}^{n} log P(English|Wg_i) - \frac{1}{m} \sum_{j=1}^{m} log P(German|eji)$$

large vocabularies

Large Vocabularies

- Zipf's law tells us that words in a language are very unevenly distributed.
 - large tail of rare words
 (e.g., new words retweeting, website, woke, lit)
 - large inventory of names, e.g., eBay, Yahoo, Microsoft
- Neural methods not well equipped to deal with such large vocabularies
 (ideal representations are continuous space vectors → word embeddings)
- Large vocabulary
 - large embedding matrices for input and output words
 - prediction and softmax over large number of words
- Computationally expensive, both in terms of memory and speed

Special Treatment for Rare Words

- Limit vocabulary to 20,000 to 80,000 words
- First idea
 - map other words to unknown word token (UNK)
 - model learns to map input UNK to output UNK
 - replace with translation from backup dictionary
- Not used anymore, except for numbers and units
 - numbers: English 540,000, Chinese 54 TENTHOUSAND, Indian 5.4 lakh
 - units: map 25cm to 10 inches

Some Causes for Large Vocabularies

Morphology

tweet, tweets, tweeted, tweeting, retweet, ...

- → morphological analysis?
- Compounding

homework, website, ...

- → compound splitting?
- Names

Netanyahu, Jones, Macron, Hoboken, ...

- \rightarrow transliteration?
- ⇒ Breaking up words into **subwords** may be a good idea

Byte Pair Encoding

• Start by breaking up words into characters

```
the _ fat _ cat _ is _ in _ the _ thin _ bag
```

Merge frequent pairs

```
t h\rightarrowth th e _ f a t _ c a t _ i s _ i n _ th e _ th i n _ b a g a t\rightarrowat th e _ f at _ c at _ i s _ i n _ th e _ th i n _ b a g i n\rightarrowin th e _ f at _ c at _ i s _ in _ th e _ th in _ b a g th e\rightarrowthe the _ f at _ c at _ i s _ in _ the _ th in _ b a g
```

- Each merge operation increases the vocabulary size
 - starting with the size of the character set (maybe 100 for Latin script)
 - stopping after, say, 50,000 operations

Byte Pair Encoding

Obama receives Net@@ any@@ ahu

the relationship between Obama and Net@@ any@@ ahu is not exactly friendly. the two wanted to talk about the implementation of the international agreement and about Teheran 's destabil@@ ising activities in the Middle East . the meeting was also planned to cover the conflict with the Palestinians and the disputed two state solution . relations between Obama and Net@@ any@@ ahu have been stra@@ ined for years . Washington critic@@ ises the continuous building of settlements in Israel and acc@@ uses Net@@ any@@ ahu of a lack of initiative in the peace process. the relationship between the two has further deteriorated because of the deal that Obama negotiated on Iran 's atomic programme . in March , at the invitation of the Republic@@ ans , Net@@ any@@ ahu made a controversial speech to the US Congress , which was partly seen as an aff@@ ront to Obama . the speech had not been agreed with Obama , who had rejected a meeting with reference to the election that was at that time im@@ pending in Israel .

Subwords

- Byte pair encoding induces subwords
- But: only accidentally along linguistic concepts of morphology
 - morphological: critic@@ ises, im@@ pending
 - not morphological: aff@@ ront, Net@@ any@@ ahu
- Still: Similar to unsupervised morphology (frequent suffixes, etc.)

Sentence Piece

_Obama _receives _Net any ahu

_the _relationship _between _Obama _and _Net any ahu _is _not _exactly _friendly _. _the _two _wanted _to _talk _about _the _implementation _of _the _international _agreement _and _about _Teheran _'s _destabil ising _activities _in _the _Middle _East _. _the _meeting _was _also _planned _to _cover _the _conflict _with _the _Palestinians _and _the _disputed _two _state _solution _. _relations _between _Obama _and Net _any _ahu _have _been _stra ined _for _years _. _Washington _critic ises _the _continuous _building _of _settlements _in _Israel _and _acc uses _Net any ahu _of _a _lack _of _initiative _in _the _peace _process _. _the _relationship _between _the _two _has _further _deteriorated _because _of _the _deal _that _Obama _negotiated _on _Iran _'s _atomic _programme _. _in _March _, _at _the _invitation _of _the _Republic ans _, _Net any ahu _made _a _controversial _speech _to _the _US _Congress _, _which _was _partly _seen _as _an _aff ront _to _Obama _. _the _speech _had _not _been _agreed _with _Obama _, _who _had _rejected _a _meeting _with _reference _to _the _election _that _was _at _that _time _im pending _in _Israel .

character-based models

Character-Based Models

- Explicit word models that yield word embeddings
- Standard methods for frequent words
 - distribution of beautiful in the data
 - → embedding for beautiful
- Character-based models
 - create sequence embedding for character string b e a u t i f u l
 - training objective: match word embedding for beautiful
- Induce embeddings for unseen morphological variants
 - character string b e a u t i f u l l y
 - → embedding for beautifully
- Hope that this learns morphological principles

Character Sequence Models

- Same model as for words
- Tokens = single characters, incl. special space symbol
- But: generally poor performance
- With some refinements, use in output shown competitive

Character Based Word Models

- Word embeddings as before
- Compute word embeddings based on character sequence
- Typically, interpolated with traditional word embeddings

Recurrent Neural Networks

Convolutional Neural Networks

- Convolutions of diferent size: 2 characters, 3 characters, ..., 7 characters
- May be based on letter n-grams (trigrams shown)