Feedback — Homework 4

You submitted this quiz on **Fri 11 Mar 2016 1:25 PM CST**. You got a score of **400.00** out of **400.00**. However, you will not get credit for it, since it was submitted past the deadline.

Question 1

Neural Network and Deep Learning

A fully connected Neural Network has L=2; $d^{(0)}=5$, $d^{(1)}=3$, $d^{(2)}=1$. If only products of the form $w_{ij}^{(\ell)}x_i^{(\ell-1)}$, $w_{ij}^{(\ell+1)}\delta_j^{(\ell+1)}$, and $x_i^{(\ell-1)}\delta_j^{(\ell)}$ count as operations (even for $x_0^{(\ell-1)}=1$), without counting anything else, which of the following is the total number of operations required in a single iteration of backpropagation (using SGD on one data point)?

Your Answer	Score	Explanation
O 53		
onone of the other choices		
47	✓ 20.00	
O 43		
O 59		
Total	20.00 / 20.00	

Question 2

Consider a Neural Network without any bias terms $x_0^{(\ell)}$. Assume that the network contains $d^{(0)}=10$ input units, 1 output unit, and 36 hidden units. The hidden units can be arranged in any number of layers $\ell=1,\cdots,L-1$, and each layer is fully connected to the layer above it. What is the minimum possible number of weights that such a network can have?

O 44	
O 43	
46	✓ 20.00
onone of the other choices	
O 45	
Total	20.00 / 20.00

Following Question 2, what is the maximum possible number of weights that such a network can have?

	Explanation
✓ 20.00	
20.00 / 20.00)

Question 4

Autoencoder

Assume an autoencoder with $\tilde{d}=1$. That is, the $d\times\tilde{d}$ weight matrix W becomes a $d\times 1$ weight vector \mathbf{w} , and the linear autoencoder tries to minimize

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^T\mathbf{x}_n\|^2.$$

We can solve this problem with stochastic gradient descent by defining

$$\operatorname{err}_n(\mathbf{w}) = \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^T\mathbf{x}_n\|^2$$

and calculate $\nabla_{\mathbf{w}} \operatorname{err}_n(\mathbf{w})$. What is $\nabla_{\mathbf{w}} \operatorname{err}_n(\mathbf{w})$?

Your Answer	Se	core	Explanation
$\bigcirc 2(\mathbf{x}_n^T \mathbf{w})^2 \mathbf{x}_n + 2(\mathbf{x}_n^T \mathbf{w})(\mathbf{w}^T \mathbf{w}) \mathbf{w} - 4(\mathbf{x}_n^T \mathbf{w}) \mathbf{w}$			
$\bigcirc (4\mathbf{w} - 4)(\mathbf{x}_n^T \mathbf{x}_n)$			
onone of the other choices			
	✓ 20	0.00	
$\bigcirc (4\mathbf{x}_n - 4)(\mathbf{w}^T \mathbf{w})$			
Total	20	0.00 / 20.00	0

Following Question 4, assume that noise vectors $\boldsymbol{\epsilon}_n$ are generated i.i.d. from a zero-mean, unit var iance Gaussian distribution and added to \mathbf{X}_n to make $\widetilde{\mathbf{X}}_n = \mathbf{X}_n + \boldsymbol{\epsilon}_n$, a noisy version of \mathbf{X}_n . Then, the linear denoising autoencoder tries to minimize

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^T(\mathbf{x}_n + \boldsymbol{\epsilon}_n)\|^2.$$

For any fixed \mathbf{w} , what is $\mathcal{E}(E_{in}(\mathbf{w}))$, where the expectation \mathcal{E} is taken over the noise generation process?

Your Answer	Score	Explanation
$\bigcirc \frac{1}{N} \sum_{n=1}^{N} \ \mathbf{x}_n - \mathbf{w}\mathbf{w}^T\mathbf{x}_n\ ^2 + d\mathbf{w}^T\mathbf{w}$		
$\bigcirc \frac{1}{N} \sum_{n=1}^{N} \ \mathbf{x}_n - \mathbf{w}\mathbf{w}^T\mathbf{x}_n\ ^2 + \mathbf{w}^T\mathbf{w}$		
$\bigcirc \ \frac{1}{N} \sum_{n=1}^{N} \ \mathbf{x}_n - \mathbf{w}\mathbf{w}^T\mathbf{x}_n\ ^2 + \frac{1}{d} \mathbf{w}^T\mathbf{w}$		
$ \mathbf{O} $ $ \mathbf{I}_{N} \sum_{n=1}^{N} \mathbf{x}_{n} - \mathbf{w}\mathbf{w}^{T}\mathbf{x}_{n} ^{2} + (\mathbf{w}^{T}\mathbf{x}_{n})^{2} $	✓ 20.00	
onone of the other choices		
Total	20.00 /	
	20.00	

Question 6

Nearest Neighbor and RBF Network

Consider getting the 1 Nearest Neighbor hypothesis from a data set of two examples $(\mathbf{x}_+, +1)$ and $(\mathbf{x}_-, -1)$. Which of the following linear hypothesis $g_{LIN}(\mathbf{x}) = \text{sign}(\mathbf{w}^T\mathbf{x} + b)$ (where \mathbf{w} does not include $b = w_0$) is equivalent to the hypothesis?

Your Answer	Score	Explanation
100171101101		

- $\bigcirc \mathbf{w} = 2(\mathbf{x}_+ \mathbf{x}_-), b = +\mathbf{x}_+^T \mathbf{x}_-$
- $\bigcirc \mathbf{w} = 2(\mathbf{x}_{-} \mathbf{x}_{+}), b = -\mathbf{x}_{+}^{T}\mathbf{x}_{-}$
- onone of the other choices

$$\mathbf{w} = 2(\mathbf{x}_{-} - \mathbf{x}_{+}), b = +\|\mathbf{x}_{+}\|^{2} - \|\mathbf{x}_{-}\|^{2}$$

o w = 2(x₊ − x_−),
$$b = -\|\mathbf{x}_{+}\|^{2} + \|\mathbf{x}_{-}\|^{2}$$
 20.00

Total 20.00 / 20.00

Question 7

Consider an RBF Network hypothesis for binary classification

$$g_{RBFNET}(\mathbf{x}) = \text{sign}(\beta_{+} \exp(-\|\mathbf{x} - \boldsymbol{\mu}_{+}\|^{2}) + \beta_{-} \exp(-\|\mathbf{x} - \boldsymbol{\mu}_{-}\|^{2}))$$

and assume that $\beta_+>0>\beta_-$. Which of the following linear hypothesis

 $g_{LIN}(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T\mathbf{x} + b)$ (where \mathbf{w} does not include $b = w_0$) is equivalent to $g_{RBFNET}(\mathbf{x})$?

Your Answer Score Explanation

•
$$\mathbf{w} = 2(\mu_{+} - \mu_{-}), b = \ln \left| \frac{\beta_{+}}{\beta_{-}} \right| - \|\mu_{+}\|^{2} + \|\mu_{-}\|^{2}$$
 20.00

$$\mathbf{w} = 2(\mu_{-} - \mu_{+}), b = \ln \left| \frac{\beta_{-}}{\beta_{+}} \right| + \|\mu_{+}\|^{2} - \|\mu_{-}\|^{2}$$

$$\mathbf{w} = 2(\beta_{+}\mu_{+} + \beta_{-}\mu_{-}), b = -\beta_{+}\|\mu_{+}\|^{2} + \beta_{-}\|\mu_{-}\|^{2}$$

$$\mathbf{w} = 2(\beta_{+}\mu_{+} + \beta_{-}\mu_{-}), b = +\beta_{+}\|\mu_{+}\|^{2} - \beta_{-}\|\mu_{-}\|^{2}$$

onone of the other choices

Total 20.00 / 20.00

Assume that a full RBF network (page 9 of class 214) using $RBF(\mathbf{x}, \boldsymbol{\mu}) = [[\mathbf{x} = \boldsymbol{\mu}]]$ is solved for squared error regression on a data set where all inputs \mathbf{x}_n are different. What are the optimal coefficients β_n for each $RBF(\mathbf{x}, \mathbf{x}_n)$?

Your Answer	Score	Explanation
$ \mathbf{x}_n y_n$		
y_n^2		
none of the other choices		
y_n	✓ 20.00	
$ \mathbf{x}_n ^2 y_n^2$		
Total	20.00 / 20.0	00

Question 9

Matrix Factorization

Consider matrix factorization of $\widetilde{d}=1$ with alternating least squares. Assume that the $\widetilde{d}\times N$ user factor matrix V is initialized to a constant matrix of 1. After step 2.1 of alternating least squares (page 10 of lecture 215), what is the optimal w_m , the $\widetilde{d}\times 1$ movie `vector' for the m-th movie?

	Score	Explanation
~	20.00	
	20.00 / 20.00	0
	•	✓ 20.00

Assume that for a full rating matrix R, we have obtained a perfect matrix factorization $R = V^T W$. That is, $r_{nm} = \mathbf{v}_n^T \mathbf{w}_m$ for all n, m. Then, a new user (N+1) comes. Because we do not have any information for the type of the movie she likes, we initialize her feature vector \mathbf{v}_{N+1} to $\frac{1}{N} \sum_{n=1}^{N} \mathbf{v}_n$, the average user feature vector. Now, our system decides to recommend her a movie m with the maximum predicted score $\mathbf{v}_{N+1}^T \mathbf{w}_m$. What would the movie be?

✓ 20.00	
20.00 / 20.00	0

Question 11

Experiment with Backprop neural Network

Implement the backpropagation algorithm (page 16 of lecture 212) for d-M-1 neural network with tanh-type neurons, **including the output neuron**. Use the squared error measure between the output $g_{NNET}(\mathbf{x}_n)$ and the desired y_n and backprop to calculate the per-example gradient. Because of the different output neuron, your $\delta_1^{(L)}$ would be different from the course slides! Run the algorithm on the following set for training (each row represents a pair of (\mathbf{x}_n, y_n) ; the first column is $(\mathbf{x}_n)_1$; the second one is $(\mathbf{x}_n)_2$; the third one is y_n):

hw4_nnet_train.dat

and the following set for testing:

hw4 nnet test.dat

Fix T = 50000 and consider the combinations of the following parameters:

- the number of hidden neurons M
- the elements of $w_{ii}^{(\ell)}$ chosen independently and uniformly from the range (-r,r)
- the learning rate η

Fix $\eta=0.1$ and r=0.1. Then, consider $M\in\{1,6,11,16,21\}$ and repeat the experiment for 500 times. Which M results in the lowest average E_{out} over 500 experiments?

Your Answer	Score	Explanation
11		
0 1		
21		
16		
6	✓ 20.00	
Total	20.00 / 20.00	

Question 12

Following Question 11, fix $\eta=0.1$ and M=3. Then, consider $r\in\{0,0.1,10,100,1000\}$ and repeat the experiment for 500 times. Which r results in the lowest average E_{out} over 500 experiments?

Your Answer	Score	Explanation
O 1000		
O 10		
O 100		
0.1	✓ 20.00	
O 0		
Total	20.00 / 20.00	
	20.007, 20.00	

Question 13

Following Question 11, fix r=0.1 and M=3. Then, consider $\eta \in \{0.001,0.01,0.1,1,10\}$ and repeat the experiment for 500 times. Which η results in the lowest average E_{out} over 500

our Answer		Score	Explanation
0.01	~	20.00	
0.001			
0.1			
10			
) 1			
otal		20.00 / 20.00	

Following Question 11, deepen your algorithm by making it capable of training a d-8-3-1 neural network with \tanh -type neurons. Do not use any pre-training. Let r=0.1 and $\eta=0.01$ and repeat the experiment for 500 times. Which of the following is true about E_{out} over 500 experiments?

Your Answer		Score	Explanation
$\bigcirc 0.00 \le E_{out} < 0.02$			
onone of the other choices			
$0.06 \le E_{out} < 0.08$			
$0.02 \le E_{out} < 0.04$	~	20.00	
$0.04 \le E_{out} < 0.06$			
Total		20.00 / 20.00	

Question 15

Experiment with 1 Nearest Neighbor

Implement any algorithm that 'returns' the \$1\$ Nearest Neighbor hypothesis discussed in page 8

of lecture 214. $g_{\rm nbor}({\bf x})=y_m$ such that ${\bf x}$ closest to ${\bf x}_m$ Run the algorithm on the following set for training: hw4_knn_train.dat and the following set for testing: hw4_knn_test.dat

Which of the following is closest to $E_{in}(g_{nbor})$?

Your Answer		Score	Explanation
0.2			
O.1			
• 0.0	~	20.00	
0.3			
0.4			
Total		20.00 / 20.00	

Question 16

Following Question 15, which of the following is closest to $E_{out}(g_{\rm nbor})$?

Your Answer		Score	Explanation
O 0.32			
O.28			
0.30			
O 0.26			
0 .34	~	20.00	
Total		20.00 / 20.00	

Question 17

Now, implement any algorithm for the k Nearest Neighbor with k=5 to get $g_{5\text{-nbor}}(\mathbf{x})$. Run the algorithm on the same sets in Question 15 for training/testing.

Which of the following is closest to $E_{in}(g_{5-nbor})$?

Your Answer	Score	Explanation
0.1		
O.4		
0 .2	✓ 20.00	
0.0		
0.3		
Total	20.00 / 20.00	

Question 18

Following Question 17, Which of the following is closest to $E_{out}(g_{5\text{-nbor}})$

Your Answer		Score	Explanation
0.32	~	20.00	•
0.28			
0.30			
0.34			
0.26			
Total		20.00 / 20.00	

Question 19

Experiment with k-Means

Implement the \$k\$-Means algorithm (page 16 of lecture 214). Randomly select k instances from $\{\mathbf{x}_n\}$ to initialize your $\boldsymbol{\mu}_m$ Run the algorithm on the following set for training: hw4_kmeans_train.dat

and repeat the experiment for 500 times. Calculate the clustering $E_{\it in}$ by

 $\frac{1}{N} \sum_{n=1}^{N} \sum_{m=1}^{M} [[\mathbf{x}_n \in S_m]] \|\mathbf{x}_n - \boldsymbol{\mu}_m\|^2$

as described on page 13 of lecture 214 for M=k.

For k=2, which of the following is closest to the average $E_{\it in}$ of k-Means over 500

experiments?

Your Answer	Score	Explanation
O 2.0		
O 1.0		
0.5		
O 1.5		
2.5	✓ 20.00	
Total	20.00 / 20.00	

Question 20

For k=10, which of the following is closest to the average E_{in} of k-Means over 500 experiments?

	Score	Explanation
~	20.00	
	20.00 / 20.00	
	•	