I- le système décimal

Notre mode de numération est le système décimal, ou système de base 10.

Chaque nombre s'écrit avec les 10 chiffres 0 1 2 3 4 5 6 7 8 9.

Chaque chiffre correspond à un rang, qui est celui d'une puissance de 10.

Prenons par exemple le nombre en écriture décimale 5603_d (le petit d en indice est là pour rappeler que le nombre est écrit en écriture décimale).

Le chiffre 5 est dans le rang des milliers, donc de 10^3 .

On peut donc écrire :

$$5603_d = 5 \times 10^3 + 6 \times 10^2 + 0 \times 10^1 + 3 \times 10^0$$

$syst\`eme~d\'ecimal$								
puissance		10^n		10^{4}	10^{3}	10^2	10^1	10^{0}
chiffre					5	6	0	3

Ce système de base 10 provient (très probablement) du fait que les humains ont dix doigts.

De cette manière, on pourrait imaginer que dans leur univers, les Simpsons compteraient en base 8 car ils n'ont que 4 doigts à chaque main.

Exercice 1

Dans l'univers des Simpsons, que vaut le nombre 63_s ?

II- le système binaire

Les appareils électroniques (ordinateurs, calculatrices, téléphones, etc.) travaillent avec un système de représentation des nombres différent, le système binaire. Dans ce système, appelé aussi système de base 2, chaque nombre s'écrit avec les deux chiffres 0 et 1 (correspondant en fait au passage ou non d'un courant électrique dans un transistor). Chaque chiffre correspond à un rang, qui est celui d'une puissance de 2.

▶ du binaire au décimal :

Prenons par exemple le nombre en écriture binaire 1101_b

Pour connaître la valeur de 1101_b en écriture décimale on peut donc s'aider du tableau :

système binaire								
puissance		2^n		2^4	2^3	2^2	2^1	2^0
chiffre					1	1	0	1

$$1101_b = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$
$$= 1 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1$$
$$= 8 + 4 + 0 + 1$$
$$= 13_d$$

Donc le nombre 1101 écrit en binaire correspond au nombre 13 écrit en décimal.

Exercice 2

- 1. Donner l'écriture décimale du nombre 10111_b.
- 2. Quelle est la valeur (en écriture décimale) du plus grand nombre binaire écrit sur un octet ? (un octet = 8 bits)
- **3.** Expliquer cette blague d'informaticiens :
 - « Dans la vie, il y a 10 sortes de personnes : celles qui connaissent le binaire, et celles qui ne le connaissent pas. »
- 4. Que devient l'écriture binaire d'un nombre lorsqu'on le multiplie par 2?

▶ du décimal au binaire :

Principe : dans chaque nombre décimal, il existe une plus grande puissance de 2 qui est inférieure au nombre. Par exemple, dans 243, il y a 128. Donc

$$243 = 128 + (115)$$

$$= 128 + 64 + (51)$$

$$= 128 + 64 + 32 + (19)$$

$$= 128 + 64 + 32 + 16 + (3)$$

$$= 128 + 64 + 32 + 16 + 2 + 1$$

$$= 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

Donc $243_{10} = 11110011_2$

Astuce: méthode des divisions successives

Exercice 3 Donner l'écriture binaire du nombre 28_d .

Exercice 4

Hex	Bin	Char	Hex	Bin	Char	Hex	Bin	Char	Hex	Bin	Char
0x00	00000000	NUL	0x20	00100000	space	0x40	01000000	@	0x60	01100000	*
0x01	00000001	SOH	0x21	00100001	1.	0x41	01000001	Α	0x61	01100001	а
0x02	00000010	STX	0x22	00100010	-	0x42	01000010	В	0x62	01100010	ь
0x03	00000011	ETX	0x23	00100011	#	0x43	01000011	С	0x63	01100011	c
0x04	00000100	EOT	0x24	00100100	s	0x44	01000100	D	0x64	01100100	d
0x05	00000101	ENQ	0x25	00100101	96	0x45	01000101	Е	0x65	01100101	e
0x06	00000110	ACK	0x26	00100110	&	0x46	01000110	F	0x66	01100110	f
0x07	00000111	BEL	0x27	00100111	100	0x47	01000111	G	0x67	01100111	g
0x08	00001000	BS	0x28	00101000	(0x48	01001000	Н	0x68	01101000	h
0x09	00001001	TAB	0x29	00101001)	0x49	01001001	1	0x69	01101001	i
0x0A	00001010	LF	0x2A	00101010	•	0x4A	01001010	J	0x6A	01101010	j
ОхОВ	00001011	VT	0x2B	00101011	+	0x4B	01001011	K	0x6B	01101011	k
0x0C	00001100	FF	0x2C	00101100		0x4C	01001100	L	0x6C	01101100	- 1
0x0D	00001101	CR	0x2D	00101101	-	0x4D	01001101	M	0x6D	01101101	m
0x0E	00001110	SO	0x2E	00101110		0x4E	01001110	N	0x6E	01101110	n
0x0F	00001111	SI	0x2F	00101111	/	0x4F	01001111	0	0x6F	01101111	0
0x10	00010000	DLE	0x30	00110000	0	0x50	01010000	Р	0x70	01110000	р
0x11	00010001	DC1	0x31	00110001	1	0x51	01010001	Q	0x71	01110001	q
0x12	00010010	DC2	0x32	00110010	2	0x52	01010010	R	0x72	01110010	r
0x13	00010011	DC3	0x33	00110011	3	0x53	01010011	S	0x73	01110011	s
0x14	00010100	DC4	0x34	00110100	4	0x54	01010100	Т	0x74	01110100	t
0x15	00010101	NAK	0x35	00110101	5	0x55	01010101	U	0x75	01110101	u
0x16	00010110	SYN	0x36	00110110	6	0x56	01010110	٧	0x76	01110110	v
0x17	00010111	ETB	0x37	00110111	7	0x57	01010111	W	0x77	01110111	w
0x18	00011000	CAN	0x38	00111000	8	0x58	01011000	Х	0x78	01111000	×
0x19	00011001	EM	0x39	00111001	9	0x59	01011001	Υ	0x79	01111001	у
0x1A	00011010	SUB	ОхЗА	00111010	:	0x5A	01011010	Z	0x7A	01111010	z
0x1B	00011011	ESC	0x3B	00111011	- ;	0x5B	01011011	[0x7B	01111011	{
0x1C	00011100	FS	0x3C	00111100	<	0x5C	01011100	1	0x7C	01111100	
0x1D	00011101	GS	0x3D	00111101	=	0x5D	01011101	1	0x7D	01111101	}
0x1E	00011110	RS	0x3E	00111110	>	0x5E	01011110	٨	0x7E	01111110	~
0x1E	00011111	US	0x3E	00111111	?	0x5F	01011111		0x7F	01111111	DEL

Décoder la phrase ci-dessous :

74, 39, 65, 73, 77, 69, 32, 76, 69, 32, 66, 73, 78, 65, 73, 82, 69