

6. Deterministic Design with

Course > Unit 6 Linear Regression > Lecture 20: Linear Regression 2 > Gaussian Noise

6. Deterministic Design with Gaussian Noise

Review of Multi-Dimensional Gaussians

1/1 point (graded)

The *n*-dimensional Gaussian $\mathcal{N}_n(\mu, \Sigma)$ with mean μ and covariance matrix Σ has density

$$f(\mathbf{x}) = rac{\exp\left(-rac{1}{2}(\mathbf{x}-\mu)^T\Sigma^{-1}\left(\mathbf{x}-\mu
ight)
ight)}{\sqrt{\left(2\pi
ight)^n\mathrm{det}\Sigma}}$$

for all $\mathbf{x} \in \mathbb{R}^n$.

Let $\mathbf{X}\sim\mathcal{N}_n\left(0,\Sigma
ight)$, so that it is centered at the origin. If we have $\mathbf{Y}=M\mathbf{X}$ for some matrix M , it turns out that \mathbf{Y} is also an n-dimensional Gaussian, $\mathcal{N}_n(0, \Sigma_{\mathbf{Y}})$. Which of the following provides a correct formula for the Covariance $\Sigma_{\mathbf{Y}}$ of \mathbf{Y} ?

(Hint: Recall the formula $\Sigma_{\mathbf{Y}} = \mathbb{E}\left[(\mathbf{Y} - \mathbb{E}\left[\mathbf{Y}
ight]) (\mathbf{Y} - \mathbb{E}\left[\mathbf{Y}
ight])^T
ight]$.)

- $M\Sigma M^{-1}$
- $\bigcirc M^{-1}\Sigma M$

Solution:

This can be directly computed as hinted.

$$egin{aligned} \Sigma_{\mathbf{Y}} &= \mathbb{E}\left[\left(\mathbf{Y} - \mathbb{E}\left[\mathbf{Y}
ight]
ight) \left(\mathbf{Y} - \mathbb{E}\left[\mathbf{Y}
ight]
ight)^T
ight] \ &= \mathbb{E}\left[\left(M\mathbf{X} - \mathbb{E}\left[M\mathbf{X}
ight]
ight) \left(M\mathbf{X} - \mathbb{E}\left[M\mathbf{X}
ight]
ight)^T
ight] \ &= \mathbb{E}\left[M\left(\mathbf{X} - \mathbb{E}\left[\mathbf{X}
ight]
ight) \left(\mathbf{X} - \mathbb{E}\left[\mathbf{X}
ight]
ight)^T
ightM^T
ight] \ &= M\mathbb{E}\left[\left(\mathbf{X} - \mathbb{E}\left[\mathbf{X}
ight]
ight) \left(\mathbf{X} - \mathbb{E}\left[\mathbf{X}
ight]
ight)^T
ight] M^T \ &= M\Sigma M^T. \end{aligned}$$

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

The Least Square Estimator is the MLE in Deterministic Design

© All Rights Reserved