Multiple features (variables)

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••		•••	•••	•••

Notation:

n = number of features

 $x^{(i)}$ = input (features) of i^{th} training example.

 $x_j^{(i)}$ = value of feature j in i^{th} training example.

$$\theta_1 := \theta_1 - \bigcirc \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient Descent Algorithm(contd..)

Gradient Descent Algorithm (contd..)

- If α (learning rate) is too small, gradient descent can be slow.
- If α (learning rate) is too large, gradient descent can overshoot the minimum.
 - ➤ It may fail to converge, or even diverge.
- Gradient descent can converge to a local minimum, even with the learning rate α fixed
 - Figure Very slow convergence if α (learning rate) is too small
- The gradient descent algorithm is prone to local minima problem

Linear Regression with multiple variables-Gradient Descent

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

```
Repeat \{ \theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta_0,\dots,\theta_n) \} (simultaneously update for every j=0,\dots,n)
```

Linear Regression with multiple variables-Gradient Descent

Gradient Descent

```
Previously (n=1):
Repeat {
     \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})
                                                 \frac{\partial}{\partial \theta_0} \overset{\mathsf{Y}}{J}(\theta)
      \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}
                               (simultaneously update \theta_0, \theta_1)
```

```
New algorithm (n \ge 1):
 Repeat {
    \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}
                             (simultaneously update \,	heta_{\,i}\, for
                            j=0,\ldots,n
\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{n} (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}
 \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{\substack{i=1 \\ m}} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}
\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}
```