CLAIMS:

1. A method of noise filtering an image sequence (V1), characterized in that the method comprises:

determining (11) statistics in at least one image of the image sequence (VI); and

calculating (14) at least one filtered pixel value (P_t) from a set of original pixel values (P_t,M_i) obtained from the at least one image, wherein the original pixel values (P_t,M_i) are weighted (13) under control (12, α) of the statistics (11).

A method as claimed in claim 1, wherein the step of calculating comprises:
 weighting (13) the set of original pixel values (P_t,M_t) under control (12,α) of the statistics (11) to obtain a weighted set of pixel values (P_t,N_t); and furnishing the weighted set of pixel values (P_t,N_t) to a static filter, in which static filter the at least one filtered pixel value (P_t') is calculated from the weighted set of pixel values (P_t,N_t).

15

5

- 3. A method as claimed in claim 1, wherein the statistics (11) include a spatial and/ or temporal spread (S) of the set of original pixel values (P_tM_i) .
- 4. A method as claimed in claim 3, wherein the spatial and/ or temporal spread
 20 (S) is a sum of absolute differences, a given absolute difference being obtained by subtracting an average pixel value from a given original pixel value (P_t,M_i).
- A method as claimed in claim 1, wherein the set of original pixel values (P_t,M_t) include a central pixel value (P_t) and spatially and/or temporally surrounding pixel
 values (M_t), wherein as a result of the noise filtering, the central pixel value (P_t) is replaced by the filtered pixel value (P_t').
 - 6. A method as claimed in claim 2, wherein the set of weighted pixel values (P_t,N_i) is obtained by taking for each pixel in the set of original pixels (P_t,M_i) , a combination

25

of a portion α of the original pixel value (P_t, M_i) and a portion $1-\alpha$ of a central pixel value (P_t) .

- 7. A method as claimed in claim 1,
 5 wherein the statistics (11) are furnished to a look-up table (12), from which look-up table (12) a control signal (α) is obtained, which control signal (α) controls the weighting (13).
- 8. A method as claimed in claim 2, wherein the at least one filtered pixel value (P_t) is obtained by calculating (14) a median of the weighted set of pixel values (P_t, N_t) .
- 9. A method as claimed in claim 2,
 wherein the at least one filtered pixel value (P_t') is obtained by calculating
 15 (14) an average of the weighted set of pixel values (P_t,N_t).
 - 10. A method as claimed in claim 9, the method comprising: determining (41) a spatial spread (S_{spat}) calculated from spatially displaced original pixel values (P_{t} , M_{i}) in the set of original pixel values (P_{t} , M_{i} , P_{t1} , P_{t2});
- determining (42) a temporal spread (S_{temp}) calculated from temporally displaced original pixel values (P_t, P_{tl}, P_{t2}) in the set of original pixel values (P_t, M_i, P_{tl}, P_{t2}); and

weighting (46) the spatially displaced original pixel values (P_t, M_i) under control (43) of the spatial spread (S_{spat}) and the temporally displaced original pixel values $(P_t, P_{t,t}, P_{t,t})$ under control (44,45) of the temporal spread (S_{temp}) .

- 11. A method as claimed in claim 10, wherein the weighted temporally displaced original pixel values (WP_1, WP_2) are divided (a) to lessen their weight in the filtering (47).
- 30 12. A method as claimed in claim 10, wherein the temporally displaced original pixel values include two original pixel values (P_{tI}, P_{t2}) from different fields in a same frame (F_0) and at least one original pixel value of a previous frame (F_{-I}) .

- 13. A method as claimed in claim 12, wherein filtered temporally displaced pixel values are used rather than temporally displaced original pixel values.
- 14. A method of encoding (1) an image sequence (VI), wherein the image sequence (VI) is noise filtered according to a method as claimed in claim 1.
 - 15. A device for noise filtering an image sequence, the device comprising: computing means (11) for determining statistics in at least one image of the image sequence (VI); and
- filtering means (14) for calculating at least one filtered pixel value (P_t) from a set of original pixel values (P_t, M_t) obtained from the at least one image, wherein the original pixel values (P_t, M_t) are weighted (13) under control (12, α) of the statistics (11).
- 16. A device for encoding (1) an image sequence (V1), the device comprising a device for noise filtering as claimed in claim 15.