MSBD 5004 Mathematical Methods for Data Analysis Homework 3

Due date: 27 March, 9pm, Wednesday

1. Let V be a Hilbert space. Let S_1 and S_2 be two hyperplanes in V defined by

$$S_1 = \{ \boldsymbol{x} \in V \mid \langle \boldsymbol{a}_1, \boldsymbol{x} \rangle = b_1 \}, \quad S_2 = \{ \boldsymbol{x} \in V \mid \langle \boldsymbol{a}_2, \boldsymbol{x} \rangle = b_2 \}.$$

Let $y \in V$ be given. We consider the projection of y onto $S_1 \cap S_2$, i.e., the solution of

$$\min_{\boldsymbol{x} \in S_1 \cap S_2} \|\boldsymbol{x} - \boldsymbol{y}\|. \tag{1}$$

- (a) Prove that $S_1 \cap S_2$ is a plane, i.e., if $x, z \in S_1 \cap S_2$, then $(1+t)z tx \in S_1 \cap S_2$ for any $t \in \mathbb{R}$.
- (b) Prove that z is a solution of (1) if and only if $z \in S_1 \cap S_2$ and

$$\langle \boldsymbol{z} - \boldsymbol{y}, \boldsymbol{z} - \boldsymbol{x} \rangle = 0, \quad \forall \boldsymbol{x} \in S_1 \cap S_2.$$
 (2)

- (c) Find an explicit solution of (1).
- (d) Prove the solution found in part (c) is unique.
- 2. Let $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^N$ be given with $\boldsymbol{x}_i \in \mathbb{R}^n$ and $y_i \in \mathbb{R}$. Assume N < n, and \boldsymbol{x}_i , i = 1, 2, ..., N, are linearly independent. Consider the ridge regression

$$\min_{oldsymbol{a} \in \mathbb{R}^n} \sum_{i=1}^N \left(\langle oldsymbol{a}, oldsymbol{x}_i
angle - y_i
ight)^2 + \lambda \|oldsymbol{a}\|_2^2,$$

where $\lambda \in \mathbb{R}$ is a regularization parameter, and we set the bias b = 0 for simplicity.

- (a) Prove that the solution must be in the form of $\boldsymbol{a} = \sum_{i=1}^{N} c_i \boldsymbol{x}_i$ for some $\boldsymbol{c} = [c_1, c_2, \dots, c_N]^T \in \mathbb{R}^N$. (Hint: Similar to the proof of the representer theorem.)
- (b) Re-express the minimization in terms of $c \in \mathbb{R}^N$, which has fewer unknowns than the original formulation.
- 3. Find the Frechet derivative of the following functions $f:V\mapsto\mathbb{R}$, where V is a Hilbert space.
 - (a) $f(\mathbf{x}) = ||\mathbf{x} \mathbf{a}||$ for a given $\mathbf{a} \in V$, where $\mathbf{x} \neq \mathbf{a}$.
 - (b) $f(\mathbf{x}) = ||2\mathbf{x} \mathbf{a}||^2$ for a given $\mathbf{a} \in V$.
 - (c) $f(\boldsymbol{x}) = \frac{1}{\|\boldsymbol{x}\|}$, where $\boldsymbol{x} \neq \boldsymbol{0}$.
 - (d) $V = \mathbb{R}^n$ and $f(\boldsymbol{x}) = \sum_{i=1}^n \sqrt{x_i^2 + c}$ for some c > 0.