

COMPUERTAS CUÁNTICAS

TIPOS Y REPRESENTACIÓN

¿QUÉ ES UNA COMPUERTA CUÁNTICA?

Es una operación que puede realizarse sobre un estado cuántico, de forma de que el mismo evolucione a través del tiempo.

REPRESENTACIÓN MATRICIAL

Compuerta Z

Una forma de representar compuertas cuánticas y qubits, es con el uso de matrices unitarias y vectores respectivamente.

compuerta
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Qubit con =
$$|\mathbf{0}\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$$
 valor 0

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Compuerta X

APLICAR UNA COMPUERTA

Para aplicar una compuerta sobre un qubit, se multiplica el vector que representa al qubit con la matriz que representa a la compuerta.

REPRESENTACIÓN EN 3D

La esfera de Bloch nos permite visualizar de una mejor manera un estado cuántico.
Cada compuerta puede interpretarse como una rotación alrededor de alguno

de los ejes.

COMPUERTAS DE UN QUBIT

COMPUERTA I

Esta compuerta no tiene ningún efecto sobre al qubit al que se aplica.

COMPUERTA X

Esta compuerta aplica una rotación $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ de 180.° sobre el eje X de la esfera de Bloch.

COMPUERTA Z

Esta compuerta aplica una rotación de 180.° $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ sobre el eje Z de la esfera de Bloch.

COMPUERTA Y

Esta compuerta aplica una rotación de 180.° 0 - i sobre el eje Y. i - i

Esta compuerta equivale a aplicar la secuencia iXZ.

COMPUERTA H

Aplica una rotación de 90.° sobre el eje Y, seguido de una rotación de 180.° $\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix}$ sobre el eje X.

Se usa principalmente para lograr un qubit con superposición.

COMPUERTA S

Esta compuerta aplica una rotación de 90.° sobre el eje Z.

COMPUERTA T

Esta compuerta aplica una rotación de 45.° $\begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi 4} \end{pmatrix}$ sobre el eje Z.

COMPUERTAS DE DOS QUBITS

COMPUERTAS CONTROLADAS DE DOS QUBITS

Todas las compuertas de un qubit tienen su versión controlada de dos qubits.

QUBIT DE CONTROL Y QUBIT OBJETIVO

En esta versión, a uno de los qubits se le aplica el efecto de la compuerta unicamente cuando el otro qubit tiene el valor 1.

Compuerta X controlada

> Compuerta controlada Z

$$swap = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

COMPUERTA SWAP

Esta compuerta, como lo indica su nombre en ingles, intercambia los valores de dos qubits.