Proof: If S is LI, then S is basis of \mathbb{V} .

Proof: If S is LI, then S is basis of \mathbb{V} .

If S is LD, then there exists $\alpha_i \in S$ such that α_i is linear combination of rest of the vectors of S.

Proof: If S is LI, then S is basis of \mathbb{V} .

If S is LD, then there exists $\alpha_i \in S$ such that α_i is linear combination of rest of the vectors of S.

That is
$$\alpha_i = b_1 \alpha_1 + \cdots + b_{i-1} \alpha_{i-1} + b_{i+1} \alpha_{i+1} + \cdots + b_k \alpha_k$$

where $b_p \in \mathbb{F}$ for $p = 1, \ldots, i - 1, i + 1, \ldots, k$ and not all zero.

Proof: If S is LI, then S is basis of \mathbb{V} .

If S is LD, then there exists $\alpha_i \in S$ such that α_i is linear combination of rest of the vectors of S.

That is
$$\alpha_i = b_1 \alpha_1 + \dots + b_{i-1} \alpha_{i-1} + b_{i+1} \alpha_{i+1} + \dots + b_k \alpha_k$$

where $b_p \in \mathbb{F}$ for $p=1,\ldots,i-1,i+1,\ldots,k$ and not all zero.

We assume that $b_t \neq 0$.

Proof: If S is LI, then S is basis of \mathbb{V} .

If S is LD, then there exists $\alpha_i \in S$ such that α_i is linear combination of rest of the vectors of S.

That is
$$\alpha_i = b_1\alpha_1 + \cdots + b_{i-1}\alpha_{i-1} + b_{i+1}\alpha_{i+1} + \cdots + b_k\alpha_k$$

where $b_p \in \mathbb{F}$ for $p = 1, \dots, i-1, i+1, \dots, k$ and not all zero.

We assume that $b_t \neq 0$.

Take
$$S_1 = S - \{\alpha_t\}$$
.

Proof: If S is LI, then S is basis of \mathbb{V} .

If S is LD, then there exists $\alpha_i \in S$ such that α_i is linear combination of rest of the vectors of S.

That is
$$\alpha_i = b_1\alpha_1 + \cdots + b_{i-1}\alpha_{i-1} + b_{i+1}\alpha_{i+1} + \cdots + b_k\alpha_k$$

where $b_p \in \mathbb{F}$ for $p = 1, \dots, i-1, i+1, \dots, k$ and not all zero.

We assume that $b_t \neq 0$.

Take
$$S_1 = S - \{\alpha_t\}$$
.

$$\mathsf{ls}(S_1) = \mathsf{ls}(S)$$

Continuing this process we get a linearly independent subset consisting of k-p vectors.

Continuing this process we get a linearly independent subset consisting of k-p vectors.

Example: Let $S = \{(1,1), (1,2), (2,3)\}$. Notice that $ls(S) = \mathbb{R}^2$.

It is clear that S is LD as (2,3) = 1(1,1) + 1(1,2). So you can delete either (1,1) or (1,2).

Then $S_1 = \{(1,2),(2,3)\}$. It is clear that $ls(S_1) = \mathbb{R}^2$. Since S_1 is LI, then S_1 is basis of \mathbb{R}^2 .

Continuing this process we get a linearly independent subset consisting of k-p vectors.

Example: Let $S = \{(1,1), (1,2), (2,3)\}$. Notice that $ls(S) = \mathbb{R}^2$.

It is clear that S is LD as (2,3)=1(1,1)+1(1,2). So you can delete either (1,1) or (1,2).

Then $S_1 = \{(1,2),(2,3)\}$. It is clear that $ls(S_1) = \mathbb{R}^2$. Since S_1 is LI, then S_1 is basis of \mathbb{R}^2 .

Let $\mathbb{V}(\mathbb{F})$ and $|\mathbb{F}| = 2$. Let $S = \{x_1, x_2\} \subseteq \mathbb{V}$.

Continuing this process we get a linearly independent subset consisting of k-p vectors.

Example: Let $S = \{(1,1), (1,2), (2,3)\}$. Notice that $ls(S) = \mathbb{R}^2$.

It is clear that S is LD as (2,3)=1(1,1)+1(1,2). So you can delete either (1,1) or (1,2).

Then $S_1 = \{(1,2),(2,3)\}$. It is clear that $ls(S_1) = \mathbb{R}^2$. Since S_1 is LI, then S_1 is basis of \mathbb{R}^2 .

Let $\mathbb{V}(\mathbb{F})$ and $|\mathbb{F}| = 2$. Let $S = \{x_1, x_2\} \subseteq \mathbb{V}$.

 $|\operatorname{Is}(S) = ?|.$

• Let $\mathbb{V}(\mathbb{F})$ be a VS and let dim $\mathbb{V} = n$. Let $S = \{\alpha_1, \dots, \alpha_n\} \subseteq \mathbb{V}$ such that $ls(S) = \mathbb{V}$. Then S is a basis for \mathbb{V} .

• Let $\mathbb{V}(\mathbb{F})$ be a VS and let dim $\mathbb{V} = n$. Let $S = \{\alpha_1, \dots, \alpha_n\} \subseteq \mathbb{V}$ such that $\mathsf{ls}(S) = \mathbb{V}$. Then S is a basis for \mathbb{V} .

Proof: If S is LI, then we are done.

• Let $\mathbb{V}(\mathbb{F})$ be a VS and let dim $\mathbb{V} = n$. Let $S = \{\alpha_1, \dots, \alpha_n\} \subseteq \mathbb{V}$ such that $\mathsf{ls}(S) = \mathbb{V}$. Then S is a basis for \mathbb{V} .

Proof: If *S* is LI, then we are done.

If S is LD, then by Deletion theorem, we can reduce S to a basis for \mathbb{V} which contains less than n elements.

• Let $\mathbb{V}(\mathbb{F})$ be a VS and let dim $\mathbb{V}=n$. Let $S=\{\alpha_1,\ldots,\alpha_n\}\subseteq\mathbb{V}$ such that $\mathsf{ls}(S)=\mathbb{V}$. Then S is a basis for \mathbb{V} .

Proof: If *S* is LI, then we are done.

If S is LD, then by Deletion theorem, we can reduce S to a basis for \mathbb{V} which contains less than n elements.

A contradiction that $\dim(\mathbb{V}) = n$. Hence S is basis of \mathbb{V} .

Proof: Let $\dim(\mathbb{V}) = n$.

Proof: Let dim(V) = n.

Let $S = \{\alpha_1, \dots, \alpha_k\}$ be a linearly independent set.

Proof: Let dim(V) = n.

Let $S = \{\alpha_1, \dots, \alpha_k\}$ be a linearly independent set.

If ls(S) = V, then S is basis of V.

Proof: Let dim(V) = n.

Let $S = \{\alpha_1, \dots, \alpha_k\}$ be a linearly independent set.

If $ls(S) = \mathbb{V}$, then S is basis of \mathbb{V} .

If $ls(S) \neq V$, then there exists a vector $\beta_1 \in V$ but not in ls(S).

Proof: Let $dim(\mathbb{V}) = n$.

Let $S = \{\alpha_1, \dots, \alpha_k\}$ be a linearly independent set.

If ls(S) = V, then S is basis of V.

If $ls(S) \neq V$, then there exists a vector $\beta_1 \in V$ but not in ls(S).

Take $S_1 = S \cup \{\beta_1\}$. Then the set S_1 is linearly independent.

Proof: Let $dim(\mathbb{V}) = n$.

Let $S = \{\alpha_1, \dots, \alpha_k\}$ be a linearly independent set.

If ls(S) = V, then S is basis of V.

If $ls(S) \neq \mathbb{V}$, then there exists a vector $\beta_1 \in \mathbb{V}$ but not in ls(S).

Take $S_1 = S \cup \{\beta_1\}$. Then the set S_1 is linearly independent.

If $ls(S_1) = \mathbb{V}$, then S_1 is basis for \mathbb{V} .

Proof: Let $dim(\mathbb{V}) = n$.

Let $S = {\alpha_1, \dots, \alpha_k}$ be a linearly independent set.

If ls(S) = V, then S is basis of V.

If $ls(S) \neq V$, then there exists a vector $\beta_1 \in V$ but not in ls(S).

Take $S_1 = S \cup \{\beta_1\}$. Then the set S_1 is linearly independent.

If $ls(S_1) = \mathbb{V}$, then S_1 is basis for \mathbb{V} .

If $ls(S_1) \neq \mathbb{V}$, then there exists a vector $\beta_2 \in \mathbb{V}$ but not in $ls S_1$. Take $S_2 = S_1 \cup \{\beta_2\}$. Then the set S_2 is linearly independent.

Proof: Let $dim(\mathbb{V}) = n$.

Let $S = {\alpha_1, \dots, \alpha_k}$ be a linearly independent set.

If ls(S) = V, then S is basis of V.

If $ls(S) \neq V$, then there exists a vector $\beta_1 \in V$ but not in ls(S).

Take $S_1 = S \cup \{\beta_1\}$. Then the set S_1 is linearly independent.

If $ls(S_1) = \mathbb{V}$, then S_1 is basis for \mathbb{V} .

If $ls(S_1) \neq \mathbb{V}$, then there exists a vector $\beta_2 \in \mathbb{V}$ but not in $ls S_1$. Take $S_2 = S_1 \cup \{\beta_2\}$. Then the set S_2 is linearly independent.

Proof: Let $dim(\mathbb{V}) = n$.

Let $S = {\alpha_1, \dots, \alpha_k}$ be a linearly independent set.

If ls(S) = V, then S is basis of V.

If $ls(S) \neq V$, then there exists a vector $\beta_1 \in V$ but not in ls(S).

Take $S_1 = S \cup \{\beta_1\}$. Then the set S_1 is linearly independent.

If $ls(S_1) = \mathbb{V}$, then S_1 is basis for \mathbb{V} .

If $ls(S_1) \neq \mathbb{V}$, then there exists a vector $\beta_2 \in \mathbb{V}$ but not in $ls S_1$. Take $S_2 = S_1 \cup \{\beta_2\}$. Then the set S_2 is linearly independent.

If $ls(S_2) = \mathbb{V}$, then S_2 is basis for \mathbb{V} . If $ls(S_2) \neq \mathbb{V}$, then there exists a vector $\beta_3 \in \mathbb{V}$ but not in $ls S_2$. Take $S_3 = S_1 \cup \{\beta_3\}$.

is linearly independent. Then S is a basis of \mathbb{V} .

 $\beta_3 \in \mathbb{V}$ but not in ls S_2 . Take $S_3 = S_1 \cup \{\beta_3\}$.

Basis Extension Theorem

Continuing this process we get a linearly independent subset S_p such that $ls(S_p) = \mathbb{V}$. As \mathbb{V} is finite dimensional.

• Let $\mathbb V$ be a VS and let dim $\mathbb V=n$. Let $S=\{\alpha_1,\ldots,\alpha_n\}\subseteq \mathbb V$ such that S

is linearly independent. Then S is a basis of \mathbb{V} .

If we show that ls(S) = V, then we are done.

 $\beta_3 \in \mathbb{V}$ but not in ls S_2 . Take $S_3 = S_1 \cup \{\beta_3\}$.

Basis Extension Theorem

Continuing this process we get a linearly independent subset S_p such that $ls(S_p) = \mathbb{V}$. As \mathbb{V} is finite dimensional.

• Let \mathbb{V} be a VS and let dim $\mathbb{V} = n$. Let $S = \{\alpha_1, \dots, \alpha_n\} \subseteq \mathbb{V}$ such that S

If $ls(S_2) = \mathbb{V}$, then S_2 is basis for \mathbb{V} . If $ls(S_2) \neq \mathbb{V}$, then there exists a vector $\beta_3 \in \mathbb{V}$ but not in $ls S_2$. Take $S_3 = S_1 \cup \{\beta_3\}$.

Continuing this process we get a linearly independent subset S_p such that $ls(S_p) = \mathbb{V}$. As \mathbb{V} is finite dimensional.

• Let \mathbb{V} be a VS and let dim $\mathbb{V} = n$. Let $S = \{\alpha_1, \dots, \alpha_n\} \subseteq \mathbb{V}$ such that S is linearly independent. Then S is a basis of \mathbb{V} .

If we show that ls(S) = V, then we are done.

If $ls(S) \neq V$, then by using Extension theorem, we can extend S to be a basis for V and which contains at least n+1 elements.

If $ls(S_2) = \mathbb{V}$, then S_2 is basis for \mathbb{V} . If $ls(S_2) \neq \mathbb{V}$, then there exists a vector $\beta_3 \in \mathbb{V}$ but not in $ls S_2$. Take $S_3 = S_1 \cup \{\beta_3\}$.

Continuing this process we get a linearly independent subset S_p such that $ls(S_p) = \mathbb{V}$. As \mathbb{V} is finite dimensional.

• Let \mathbb{V} be a VS and let dim $\mathbb{V} = n$. Let $S = \{\alpha_1, \dots, \alpha_n\} \subseteq \mathbb{V}$ such that S is linearly independent. Then S is a basis of \mathbb{V} .

If we show that ls(S) = V, then we are done.

If $ls(S) \neq V$, then by using Extension theorem, we can extend S to be a basis for V and which contains at least n+1 elements.

A contradiction that $\dim(\mathbb{V}) = n$. Hence S is a basis of \mathbb{V} .

• Let $\mathbb{V}(\mathbb{F})$ and $W \subseteq \mathbb{V}$. Then W is subspace of \mathbb{V} if and only if $\alpha x + \beta y \in W$ for all $x, y \in \mathbb{V}$ and for all $\alpha, \beta \in \mathbb{F}$.

• Let $\mathbb{V}(\mathbb{F})$ and $W \subseteq \mathbb{V}$. Then W is subspace of \mathbb{V} if and only if $\alpha x + \beta y \in W$ for all $x, y \in \mathbb{V}$ and for all $\alpha, \beta \in \mathbb{F}$.

 Union of two subspaces of a vector space need not be a subspace of that vector space.

• Let $\mathbb{V}(\mathbb{F})$ and $W \subseteq \mathbb{V}$. Then W is subspace of \mathbb{V} if and only if $\alpha x + \beta y \in W$ for all $x, y \in \mathbb{V}$ and for all $\alpha, \beta \in \mathbb{F}$.

 Union of two subspaces of a vector space need not be a subspace of that vector space.

Let $\mathbb{R}^2(\mathbb{R})$. Let $\mathbb{U} = \{x \in \mathbb{R}^2 \mid x_2 = 0\}$ and let $\mathbb{V} = \{x \in \mathbb{R}^2 \mid x_1 = 0\}$.

• Let $\mathbb{V}(\mathbb{F})$ and $W \subseteq \mathbb{V}$. Then W is subspace of \mathbb{V} if and only if $\alpha x + \beta y \in W$ for all $x, y \in \mathbb{V}$ and for all $\alpha, \beta \in \mathbb{F}$.

• Union of two subspaces of a vector space need not be a subspace of that vector space.

Let
$$\mathbb{R}^2(\mathbb{R})$$
. Let $\mathbb{U} = \{x \in \mathbb{R}^2 \mid x_2 = 0\}$ and let $\mathbb{V} = \{x \in \mathbb{R}^2 \mid x_1 = 0\}$.

We can easily check that both are subspaces \mathbb{R}^2 .

- Let $\mathbb{V}(\mathbb{F})$ and $W\subseteq\mathbb{V}$. Then W is said to be subspace of \mathbb{V} if W is a vector space over the filed \mathbb{F} with respect to the same addition and scalar multiplication.
- Let $\mathbb{V}(\mathbb{F})$ and $W \subseteq \mathbb{V}$. Then W is subspace of \mathbb{V} if and only if $\alpha x + \beta y \in W$ for all $x, y \in \mathbb{V}$ and for all $\alpha, \beta \in \mathbb{F}$.

 Union of two subspaces of a vector space need not be a subspace of that vector space.

Let
$$\mathbb{R}^2(\mathbb{R})$$
. Let $\mathbb{U} = \{x \in \mathbb{R}^2 \mid x_2 = 0\}$ and let $\mathbb{V} = \{x \in \mathbb{R}^2 \mid x_1 = 0\}$.

We can easily check that both are subspaces \mathbb{R}^2 .

Take $\mathbb{U} \cup \mathbb{V} = \{x \in \mathbb{R}^2 \mid x_1 x_2 = 0\}$ which is not a subspace.

- Let $\mathbb{V}(\mathbb{F})$ and $W\subseteq \mathbb{V}$. Then W is said to be subspace of \mathbb{V} if W is a vector space over the filed \mathbb{F} with respect to the same addition and scalar multiplication.
- Let $\mathbb{V}(\mathbb{F})$ and $W \subseteq \mathbb{V}$. Then W is subspace of \mathbb{V} if and only if $\alpha x + \beta y \in W$ for all $x, y \in \mathbb{V}$ and for all $\alpha, \beta \in \mathbb{F}$.

 Union of two subspaces of a vector space need not be a subspace of that vector space.

Let $\mathbb{R}^2(\mathbb{R})$. Let $\mathbb{U} = \{x \in \mathbb{R}^2 \mid x_2 = 0\}$ and let $\mathbb{V} = \{x \in \mathbb{R}^2 \mid x_1 = 0\}$.

We can easily check that both are subspaces \mathbb{R}^2 .

Take $\mathbb{U} \cup \mathbb{V} = \{x \in \mathbb{R}^2 \mid x_1 x_2 = 0\}$ which is not a subspace.

Proof: First we assume that $\mathbb{U} \cup \mathbb{W}$ is subspace of \mathbb{V} .

Proof: First we assume that $\mathbb{U} \cup \mathbb{W}$ is subspace of \mathbb{V} .

To show either $\mathbb{U} \subset \mathbb{W}$ or $\mathbb{W} \subset \mathbb{U}$.

Proof: First we assume that $\mathbb{U} \cup \mathbb{W}$ is subspace of \mathbb{V} .

To show either $\mathbb{U} \subset \mathbb{W}$ or $\mathbb{W} \subset \mathbb{U}$.

Suppose that $\mathbb{U}\not\subset\mathbb{W}$ and $\mathbb{W}\not\subset\mathbb{U}.$

Subspace 14

• Let \mathbb{U}, \mathbb{W} be two subspaces of \mathbb{V} . Then $\mathbb{U} \cup \mathbb{W}$ is a subspace of \mathbb{V} if and only if either $\mathbb{U} \subset \mathbb{W}$ or $\mathbb{W} \subset \mathbb{U}$.

Proof: First we assume that $\mathbb{U} \cup \mathbb{W}$ is subspace of \mathbb{V} .

To show either $\mathbb{U} \subset \mathbb{W}$ or $\mathbb{W} \subset \mathbb{U}$.

Suppose that $\mathbb{U} \not\subset \mathbb{W}$ and $\mathbb{W} \not\subset \mathbb{U}$.

Then there exist two vectors x and y in \mathbb{V} such that $x \in \mathbb{U}$ but not in \mathbb{W} and $y \in \mathbb{W}$ but not in \mathbb{U} .

Proof: First we assume that $\mathbb{U} \cup \mathbb{W}$ is subspace of \mathbb{V} .

To show either $\mathbb{U} \subset \mathbb{W}$ or $\mathbb{W} \subset \mathbb{U}$.

Suppose that $\mathbb{U} \not\subset \mathbb{W}$ and $\mathbb{W} \not\subset \mathbb{U}$.

Then there exist two vectors x and y in \mathbb{V} such that $x \in \mathbb{U}$ but not in \mathbb{W} and $y \in \mathbb{W}$ but not in \mathbb{U} .

Therefore $x, y \in \mathbb{U} \cup \mathbb{W}$. Then $x + y \in \mathbb{U} \cup \mathbb{W}$.

Proof: First we assume that $\mathbb{U} \cup \mathbb{W}$ is subspace of \mathbb{V} .

To show either $\mathbb{U} \subset \mathbb{W}$ or $\mathbb{W} \subset \mathbb{U}$.

Suppose that $\mathbb{U} \not\subset \mathbb{W}$ and $\mathbb{W} \not\subset \mathbb{U}$.

Then there exist two vectors x and y in \mathbb{V} such that $x \in \mathbb{U}$ but not in \mathbb{W} and $y \in \mathbb{W}$ but not in \mathbb{U} .

Therefore $x, y \in \mathbb{U} \cup \mathbb{W}$. Then $x + y \in \mathbb{U} \cup \mathbb{W}$.

This implies that either $x+y\in\mathbb{U}$ or \mathbb{W} . If $x+y\in\mathbb{U}$, then $(x+y)-x=y\in\mathbb{U}$ which is not possible.

Proof: First we assume that $\mathbb{U} \cup \mathbb{W}$ is subspace of \mathbb{V} .

To show either $\mathbb{U} \subset \mathbb{W}$ or $\mathbb{W} \subset \mathbb{U}$.

Suppose that $\mathbb{U} \not\subset \mathbb{W}$ and $\mathbb{W} \not\subset \mathbb{U}$.

Then there exist two vectors x and y in \mathbb{V} such that $x \in \mathbb{U}$ but not in \mathbb{W} and $y \in \mathbb{W}$ but not in \mathbb{U} .

Therefore $x, y \in \mathbb{U} \cup \mathbb{W}$. Then $x + y \in \mathbb{U} \cup \mathbb{W}$.

This implies that either $x+y\in\mathbb{U}$ or \mathbb{W} . If $x+y\in\mathbb{U}$, then $(x+y)-x=y\in\mathbb{U}$ which is not possible.

If $x+y\in \mathbb{W}$, then $(x+y)-y=x\in \mathbb{W}$ which is not possible. Therefore either $\mathbb{U}\subset \mathbb{W}$ or $\mathbb{W}\subset \mathbb{U}$.

 \bullet If $\mathbb U$ is a subspace of $\mathbb W$ and $\mathbb W$ is a subspace of $\mathbb V,$ then $\mathbb U$ is a subspace of $\mathbb V.$

- \bullet If $\mathbb U$ is a subspace of $\mathbb W$ and $\mathbb W$ is a subspace of $\mathbb V,$ then $\mathbb U$ is a subspace of $\mathbb V.$
- If \mathbb{U} , \mathbb{W} are subspaces of \mathbb{V} , then $\mathbb{U} + \mathbb{W} := \{u + w \mid u \in \mathbb{U}, w \in \mathbb{W}\}$ and this is called the **sum** of \mathbb{U} and \mathbb{W} .

- \bullet If $\mathbb U$ is a subspace of $\mathbb W$ and $\mathbb W$ is a subspace of $\mathbb V,$ then $\mathbb U$ is a subspace of $\mathbb V.$
- If \mathbb{U}, \mathbb{W} are subspaces of \mathbb{V} , then $\mathbb{U} + \mathbb{W} := \{u + w \mid u \in \mathbb{U}, w \in \mathbb{W}\}$ and this is called the **sum** of \mathbb{U} and \mathbb{W} .
- ullet If \mathbb{U}, \mathbb{W} are subspaces of \mathbb{V} . Then $\mathbb{U} + \mathbb{W}$ is the smallest subspace of \mathbb{V} which contains both \mathbb{U} and \mathbb{W} .

- \bullet If $\mathbb U$ is a subspace of $\mathbb W$ and $\mathbb W$ is a subspace of $\mathbb V,$ then $\mathbb U$ is a subspace of $\mathbb V.$
- If \mathbb{U}, \mathbb{W} are subspaces of \mathbb{V} , then $\mathbb{U} + \mathbb{W} := \{u + w \mid u \in \mathbb{U}, w \in \mathbb{W}\}$ and this is called the **sum** of \mathbb{U} and \mathbb{W} .
- If \mathbb{U}, \mathbb{W} are subspaces of \mathbb{V} . Then $\mathbb{U} + \mathbb{W}$ is the smallest subspace of \mathbb{V} which contains both \mathbb{U} and \mathbb{W} .

- \bullet If $\mathbb U$ is a subspace of $\mathbb W$ and $\mathbb W$ is a subspace of $\mathbb V,$ then $\mathbb U$ is a subspace of $\mathbb V.$
- If \mathbb{U}, \mathbb{W} are subspaces of \mathbb{V} , then $\mathbb{U} + \mathbb{W} := \{u + w \mid u \in \mathbb{U}, w \in \mathbb{W}\}$ and this is called the sum of \mathbb{U} and \mathbb{W} .
- If \mathbb{U}, \mathbb{W} are subspaces of \mathbb{V} . Then $\mathbb{U} + \mathbb{W}$ is the smallest subspace of \mathbb{V} which contains both \mathbb{U} and \mathbb{W} .

Let $x, y \in \mathbb{U} + \mathbb{W}$. Then $x = x_1 + x_2$ for some $x_1 \in \mathbb{U}$ and $x_2 \in \mathbb{W}$ and $y = y_1 + y_2$ for some $y_1 \in \mathbb{U}$ and $y_2 \in \mathbb{W}$.

- \bullet If $\mathbb U$ is a subspace of $\mathbb W$ and $\mathbb W$ is a subspace of $\mathbb V,$ then $\mathbb U$ is a subspace of $\mathbb V.$
- If \mathbb{U}, \mathbb{W} are subspaces of \mathbb{V} , then $\mathbb{U} + \mathbb{W} := \{u + w \mid u \in \mathbb{U}, w \in \mathbb{W}\}$ and this is called the **sum** of \mathbb{U} and \mathbb{W} .
- If \mathbb{U}, \mathbb{W} are subspaces of \mathbb{V} . Then $\mathbb{U} + \mathbb{W}$ is the smallest subspace of \mathbb{V} which contains both \mathbb{U} and \mathbb{W} .

Let $x, y \in \mathbb{U} + \mathbb{W}$. Then $x = x_1 + x_2$ for some $x_1 \in \mathbb{U}$ and $x_2 \in \mathbb{W}$ and $y = y_1 + y_2$ for some $y_1 \in \mathbb{U}$ and $y_2 \in \mathbb{W}$.

Take $\alpha x + \beta y = \alpha(x_1 + x_2) + \beta(y_1 + y_2) = (\alpha x_1 + \beta y_1) + (\alpha x_2 + \beta y_2).$

- \bullet If $\mathbb U$ is a subspace of $\mathbb W$ and $\mathbb W$ is a subspace of $\mathbb V,$ then $\mathbb U$ is a subspace of $\mathbb V.$
- If \mathbb{U} , \mathbb{W} are subspaces of \mathbb{V} , then $\mathbb{U} + \mathbb{W} := \{u + w \mid u \in \mathbb{U}, w \in \mathbb{W}\}$ and this is called the **sum** of \mathbb{U} and \mathbb{W} .
- If \mathbb{U}, \mathbb{W} are subspaces of \mathbb{V} . Then $\mathbb{U} + \mathbb{W}$ is the smallest subspace of \mathbb{V} which contains both \mathbb{U} and \mathbb{W} .

Let $x,y\in \mathbb{U}+\mathbb{W}$. Then $x=x_1+x_2$ for some $x_1\in \mathbb{U}$ and $x_2\in \mathbb{W}$ and $y=y_1+y_2$ for some $y_1\in \mathbb{U}$ and $y_2\in \mathbb{W}$.

Take
$$\alpha x + \beta y = \alpha(x_1 + x_2) + \beta(y_1 + y_2) = (\alpha x_1 + \beta y_1) + (\alpha x_2 + \beta y_2)$$
.

Since $\mathbb U$ and $\mathbb W$ are subspaces of $\mathbb V$. Then $\alpha x_1 + \beta y_1 \in \mathbb U$ and $\alpha x_2 + \beta y_2 \in \mathbb W$.

- \bullet If $\mathbb U$ is a subspace of $\mathbb W$ and $\mathbb W$ is a subspace of $\mathbb V,$ then $\mathbb U$ is a subspace of $\mathbb V.$
- If \mathbb{U} , \mathbb{W} are subspaces of \mathbb{V} , then $\mathbb{U} + \mathbb{W} := \{u + w \mid u \in \mathbb{U}, w \in \mathbb{W}\}$ and this is called the **sum** of \mathbb{U} and \mathbb{W} .
- If \mathbb{U}, \mathbb{W} are subspaces of \mathbb{V} . Then $\mathbb{U} + \mathbb{W}$ is the smallest subspace of \mathbb{V} which contains both \mathbb{U} and \mathbb{W} .

Let $x, y \in \mathbb{U} + \mathbb{W}$. Then $x = x_1 + x_2$ for some $x_1 \in \mathbb{U}$ and $x_2 \in \mathbb{W}$ and $y = y_1 + y_2$ for some $y_1 \in \mathbb{U}$ and $y_2 \in \mathbb{W}$.

Take $\alpha x + \beta y = \alpha(x_1 + x_2) + \beta(y_1 + y_2) = (\alpha x_1 + \beta y_1) + (\alpha x_2 + \beta y_2).$

Since \mathbb{U} and \mathbb{W} are subspaces of \mathbb{V} . Then $\alpha x_1 + \beta y_1 \in \mathbb{U}$ and $\alpha x_2 + \beta y_2 \in \mathbb{W}$.

Therefore $\alpha x + \beta y \in \mathbb{U} + \mathbb{W}$. Hence $\mathbb{U} + \mathbb{W}$ is subspace of \mathbb{V} .

Let $x\in\mathbb{U}.$ Then x=x+0. It is clear that $x\in\mathbb{U}+\mathbb{W}.$ Hence $\mathbb{U}\subset\mathbb{V}.$

Let $x\in\mathbb{U}.$ Then x=x+0. It is clear that $x\in\mathbb{U}+\mathbb{W}.$ Hence $\mathbb{U}\subset\mathbb{V}.$

Similarly we can show that $\mathbb{W} \subset \mathbb{V}$.

Let $x \in \mathbb{U}$. Then x = x + 0. It is clear that $x \in \mathbb{U} + \mathbb{W}$. Hence $\mathbb{U} \subset \mathbb{V}$.

Similarly we can show that $\mathbb{W} \subset \mathbb{V}$.

Now we show that $\mathbb{U}+\mathbb{W}$ is the smallest subspace of \mathbb{V} which contains both \mathbb{U} and $\mathbb{W}.$

Let $x \in \mathbb{U}$. Then x = x + 0. It is clear that $x \in \mathbb{U} + \mathbb{W}$. Hence $\mathbb{U} \subset \mathbb{V}$.

Similarly we can show that $\mathbb{W} \subset \mathbb{V}$.

 $\mathbb{U} + \mathbb{W}$.

Now we show that $\mathbb{U}+\mathbb{W}$ is the smallest subspace of \mathbb{V} which contains both \mathbb{U} and $\mathbb{W}.$

 $\mathbb U$ and $\mathbb W$. Suppose that there is a subspace $\mathbb Z$ containing $\mathbb U$ and $\mathbb W$ such that $\mathbb Z \subsetneq$

Let $x \in \mathbb{U}$. Then x = x + 0. It is clear that $x \in \mathbb{U} + \mathbb{W}$. Hence $\mathbb{U} \subset \mathbb{V}$.

Similarly we can show that $\mathbb{W} \subset \mathbb{V}$.

Now we show that $\mathbb{U}+\mathbb{W}$ is the smallest subspace of \mathbb{V} which contains both \mathbb{U} and $\mathbb{W}.$

Suppose that there is a subspace $\mathbb Z$ containing $\mathbb U$ and $\mathbb W$ such that $\mathbb Z\subsetneq \mathbb U+\mathbb W.$

Then there exist a vector $x \in \mathbb{U} + \mathbb{W} \subset \mathbb{V}$ but not in \mathbb{Z} .

Let $x \in \mathbb{U}$. Then x = x + 0. It is clear that $x \in \mathbb{U} + \mathbb{W}$. Hence $\mathbb{U} \subset \mathbb{V}$.

Similarly we can show that $\mathbb{W} \subset \mathbb{V}$.

Now we show that $\mathbb{U}+\mathbb{W}$ is the smallest subspace of \mathbb{V} which contains both \mathbb{U} and $\mathbb{W}.$

Suppose that there is a subspace $\mathbb Z$ containing $\mathbb U$ and $\mathbb W$ such that $\mathbb Z \subsetneq \mathbb U + \mathbb W.$

Then there exist a vector $x \in \mathbb{U} + \mathbb{W} \subset \mathbb{V}$ but not in \mathbb{Z} .

Since $x \in \mathbb{U} + mW \subset \mathbb{V}$, $x = x_1 + x_2$ where $x_1 \in \mathbb{U}$ and $x_2 \in \mathbb{W}$.

Let $x \in \mathbb{U}$. Then x = x + 0. It is clear that $x \in \mathbb{U} + \mathbb{W}$. Hence $\mathbb{U} \subset \mathbb{V}$.

Similarly we can show that $\mathbb{W} \subset \mathbb{V}$.

Now we show that $\mathbb{U}+\mathbb{W}$ is the smallest subspace of \mathbb{V} which contains both \mathbb{U} and $\mathbb{W}.$

Suppose that there is a subspace $\mathbb Z$ containing $\mathbb U$ and $\mathbb W$ such that $\mathbb Z \subsetneq \mathbb U + \mathbb W.$

Then there exist a vector $x \in \mathbb{U} + \mathbb{W} \subset \mathbb{V}$ but not in \mathbb{Z} .

Since $x \in \mathbb{U} + mW \subset \mathbb{V}$, $x = x_1 + x_2$ where $x_1 \in \mathbb{U}$ and $x_2 \in \mathbb{W}$.

Notice that $x_1,x_2\in\mathbb{Z}$. Therefore $x=x_1+x_2\in\mathbb{Z}$. This is a contradiction.

Let $x \in \mathbb{U}$. Then x = x + 0. It is clear that $x \in \mathbb{U} + \mathbb{W}$. Hence $\mathbb{U} \subset \mathbb{V}$.

Similarly we can show that $\mathbb{W} \subset \mathbb{V}$.

Now we show that $\mathbb{U}+\mathbb{W}$ is the smallest subspace of \mathbb{V} which contains both \mathbb{U} and $\mathbb{W}.$

Suppose that there is a subspace $\mathbb Z$ containing $\mathbb U$ and $\mathbb W$ such that $\mathbb Z\subsetneq \mathbb U+\mathbb W.$

Then there exist a vector $x \in \mathbb{U} + \mathbb{W} \subset \mathbb{V}$ but not in \mathbb{Z} .

Since $x \in \mathbb{U} + mW \subset \mathbb{V}$, $x = x_1 + x_2$ where $x_1 \in \mathbb{U}$ and $x_2 \in \mathbb{W}$.

Notice that $x_1, x_2 \in \mathbb{Z}$. Therefore $x = x_1 + x_2 \in \mathbb{Z}$. This is a contradiction.

Hence $\mathbb{U}+\mathbb{W}$ is the smallest subspace of \mathbb{V} which contains both \mathbb{U} and $\mathbb{W}.$

Proof: Since $\mathbb V$ is finite dimensional, $\mathbb U$ and $\mathbb W$ both are finite dimensional.

Proof: Since $\mathbb V$ is finite dimensional, $\mathbb U$ and $\mathbb W$ both are finite dimensional.

Let $B = \{v_1, \dots, v_k\}$ be a basis of $\mathbb{U} \cap \mathbb{W}$.

Subspace 14

• If \mathbb{U} , \mathbb{W} are subspaces of a finite-dimensional vector space \mathbb{V} , then $\dim(\mathbb{U} + \mathbb{W}) = \dim(\mathbb{U}) + \dim(\mathbb{W}) - \dim(\mathbb{U} \cap \mathbb{W})$.

 $\textbf{Proof: Since } \mathbb{V} \text{ is finite dimensional, } \mathbb{U} \text{ and } \mathbb{W} \text{ both are finite dimensional.}$

Let $B = \{v_1, \dots, v_k\}$ be a basis of $\mathbb{U} \cap \mathbb{W}$.

By using Extension theorem we extend B_1 to a basis for \mathbb{U} which is $\{v_1, \ldots, v_k, u_1, \ldots, u_m\}$ and basis for \mathbb{W} which is $\{v_1, \ldots, v_k, w_1, \ldots, w_p, \}$.

Proof: Since $\mathbb V$ is finite dimensional, $\mathbb U$ and $\mathbb W$ both are finite dimensional.

Let $B = \{v_1, \dots, v_k\}$ be a basis of $\mathbb{U} \cap \mathbb{W}$.

By using Extension theorem we extend B_1 to a basis for \mathbb{U} which is $\{v_1, \ldots, v_k, u_1, \ldots, u_m\}$ and basis for \mathbb{W} which is $\{v_1, \ldots, v_k, w_1, \ldots, w_p, \}$.

Let $x \in \mathbb{U} + \mathbb{W}$. Then $x = x_1 + x_2$ for some $x_1 \in \mathbb{U}$ and $x_2 \in \mathbb{W}$.

 $\textbf{Proof: Since } \mathbb{V} \text{ is finite dimensional, } \mathbb{U} \text{ and } \mathbb{W} \text{ both are finite dimensional.}$

Let $B = \{v_1, \dots, v_k\}$ be a basis of $\mathbb{U} \cap \mathbb{W}$.

By using Extension theorem we extend B_1 to a basis for \mathbb{U} which is $\{v_1, \ldots, v_k, u_1, \ldots, u_m\}$ and basis for \mathbb{W} which is $\{v_1, \ldots, v_k, w_1, \ldots, w_p, \}$.

Let $x \in \mathbb{U} + \mathbb{W}$. Then $x = x_1 + x_2$ for some $x_1 \in \mathbb{U}$ and $x_2 \in \mathbb{W}$.

$$x_1 = \sum_{i=1}^k a_i v_i + \sum_{j=1}^m b_j u_j$$

$$x_2 = \sum_{i=1}^k c_i v_i + \sum_{i=1}^p d_i w_i.$$

Proof: Since $\mathbb V$ is finite dimensional, $\mathbb U$ and $\mathbb W$ both are finite dimensional.

Let $B = \{v_1, \dots, v_k\}$ be a basis of $\mathbb{U} \cap \mathbb{W}$.

By using Extension theorem we extend B_1 to a basis for \mathbb{U} which is $\{v_1, \ldots, v_k, u_1, \ldots, u_m\}$ and basis for \mathbb{W} which is $\{v_1, \ldots, v_k, w_1, \ldots, w_p, \}$.

Let $x \in \mathbb{U} + \mathbb{W}$. Then $x = x_1 + x_2$ for some $x_1 \in \mathbb{U}$ and $x_2 \in \mathbb{W}$.

$$x_1 = \sum_{i=1}^k a_i v_i + \sum_{j=1}^m b_j u_j$$

 $x_2 = \sum_{i=1}^k c_i v_i + \sum_{j=1}^p d_j w_j.$

Then
$$x = \sum_{i=1}^{k} a_i v_i + \sum_{i=1}^{m} b_i u_i + \sum_{i=1}^{k} c_i v_i + \sum_{i=1}^{p} d_i w_i.$$

This implies $x \in ls(\{v_1, \ldots, v_k, u_1, \ldots, u_m, v_1, \ldots, v_k, w_1, \ldots, w_p, \})$

We now show that $\{v_1, \dots, v_k, u_1, \dots, u_m, w_1, \dots, w_p, \}$ is linearly indepen-

dent.

We now show that $\{v_1, \dots, v_k, u_1, \dots, u_m, w_1, \dots, w_p, \}$ is linearly independent.

 $\sum_{i=1}^{K} f_i v_i + \sum_{i=1}^{m} g_j u_j + \sum_{l=1}^{p} h_j w_j = 0$

(1)

(1)

This implies $x \in ls(\{v_1, ..., v_k, u_1, ..., u_m, v_1, ..., v_k, w_1, ..., w_p, \})$ We now show that $\{v_1, \dots, v_k, u_1, \dots, u_m, w_1, \dots, w_p, \}$ is linearly indepen-

Subspace

dent.

To show that we take.

To show that we take,
$$\sum_{i=1}^k f_i v_i + \sum_{j=1}^m g_j u_j + \sum_{l=1}^p h_j w_j = 0$$

 $\sum_{i=1}^{k} f_{i}v_{i} + \sum_{i=1}^{m} g_{j}u_{j} = -\sum_{i=1}^{p} h_{j}w_{j}$

(1)

This implies $x \in ls(\{v_1, \dots, v_k, u_1, \dots, u_m, v_1, \dots, v_k, w_1, \dots, w_p, \})$

We now show that $\{v_1, \ldots, v_k, u_1, \ldots, u_m, w_1, \ldots, w_p, \}$ is linearly independent.

To show that we take.

$$\sum_{i=1}^{k} f_i v_i + \sum_{j=1}^{m} g_j u_j + \sum_{l=1}^{p} h_j w_j = 0$$

$$\sum_{i=1}^k f_i v_i + \sum_{i=1}^m g_i u_i \in \mathbb{U} \cap \mathbb{W}.$$

 $\sum_{i=1}^{K} f_{i} v_{i} + \sum_{i=1}^{m} g_{j} u_{j} = -\sum_{i=1}^{p} h_{j} w_{j}$

We now show that $\{v_1, \ldots, v_k, u_1, \ldots, u_m, w_1, \ldots, w_p, \}$ is linearly indepen-

dent.

To show that we take,
$$\sum_{j=1}^k f_i v_i + \sum_{j=1}^m g_j u_j + \sum_{l=1}^p h_j w_j = 0 \tag{1}$$

$$\sum_{i=1}^{k} f_i v_i + \sum_{i=1}^{m} g_j u_j \in \mathbb{U} \cap \mathbb{W}.$$

 $\sum_{i=1}^{K} f_i v_i + \sum_{j=1}^{m} g_j u_j = -\sum_{j=1}^{p} h_j w_j$

 $\sum_{i=1}^k f_i v_i + \sum_{j=1}^m g_j u_j \in \mathbb{U} \cap \mathbb{W} = \sum_{i=1}^k \alpha_i v_i$

$$\sum_{i=1}^k (f_i - \alpha_i) v_i + \sum_{j=1}^m g_j u_j = 0.$$

$$\sum_{i=1}^k (f_i - \alpha_i) v_i + \sum_{j=1}^m g_j u_j = 0.$$

$$f_i - \alpha_i = 0$$
 for $i = 1, ..., k$ and $g_j = 0$ for $j = 1, ..., m$ as $\{v_1, ..., v_k, u_1, ..., u_m\}$ is linearly independent.

$$\sum_{i=1}^k (f_i - \alpha_i) v_i + \sum_{j=1}^m g_j u_j = 0.$$

$$f_i - \alpha_i = 0$$
 for $i = 1, ..., k$ and $g_j = 0$ for $j = 1, ..., m$ as $\{v_1, ..., v_k, u_1, ..., u_m\}$ is linearly independent.

Put the values of g_i in Equation (1), then

$$\sum_{i=1}^{\kappa} f_i v_i + \sum_{l=1}^{\rho} h_l w_l = 0$$

•

$$\sum_{i=1}^k (f_i - \alpha_i) v_i + \sum_{j=1}^m g_j u_j = 0.$$

 $f_i - \alpha_i = 0$ for i = 1, ..., m as $\{v_1,\ldots,v_k,u_1,\ldots,u_m\}$ is linearly independent.

Put the values of g_i in Equation (1), then

$$\sum_{i=1}^{k} f_i v_i + \sum_{l=1}^{p} h_l w_l = 0$$

$$f_i = 0$$
 for $i = 1,...,k$ and $h_j = 0$ for $j = 1,...,p$ as $\{v_1,...,v_k,w_1,...,w_p,\}$.

$$\sum_{i=1}^k (f_i - \alpha_i) v_i + \sum_{j=1}^m g_j u_j = 0.$$

 $f_i-\alpha_i=0$ for $i=1,\ldots k$ and $g_j=0$ for $j=1,\ldots,m$ as $\{v_1,\ldots,v_k,u_1,\ldots,u_m\}$ is linearly independent.

Put the values of g_i in Equation (1), then

$$\sum_{i=1}^{k} f_i v_i + \sum_{l=1}^{p} h_l w_l = 0$$

.

$$f_i=0$$
 for $i=1,\ldots,k$ and $h_j=0$ for $j=1,\ldots,p$ as $\{v_1,\ldots,v_k,w_1,\ldots,w_p,\}$.

Hence $\{v_1, \ldots, v_k, u_1, \ldots, u_m, w_1, \ldots, w_p, \}$ is linearly independent.

$$\sum_{i=1}^k (f_i - \alpha_i) v_i + \sum_{j=1}^m g_j u_j = 0.$$

 $f_i-\alpha_i=0$ for $i=1,\ldots k$ and $g_j=0$ for $j=1,\ldots,m$ as $\{v_1,\ldots,v_k,u_1,\ldots,u_m\}$ is linearly independent.

Put the values of g_i in Equation (1), then

$$\sum_{i=1}^{k} f_i v_i + \sum_{l=1}^{p} h_l w_l = 0$$

.

$$f_i=0$$
 for $i=1,\ldots,k$ and $h_j=0$ for $j=1,\ldots,p$ as $\{v_1,\ldots,v_k,w_1,\ldots,w_p,\}$.

Hence $\{v_1, \ldots, v_k, u_1, \ldots, u_m, w_1, \ldots, w_p, \}$ is linearly independent.

Then $\{v_1, \ldots, v_k, u_1, \ldots, u_m, w_1, \ldots, w_p, \}$ is basis of $\mathbb{U} + \mathbb{W}$. Therefore $\dim(\mathbb{U} + \mathbb{W}) = k + m + P + k - k = \dim(\mathbb{U}) + \dim(\mathbb{W}) - \dim(\mathbb{U} \cap \mathbb{W})$.

• When $\mathbb{U}\cap\mathbb{W}=\{0\}$, it is called the **internal direct sum** of \mathbb{U} and \mathbb{W} . Notation: $\mathbb{U}\oplus\mathbb{W}$.

ullet When $\mathbb{U}\cap\mathbb{W}=\{0\}$, it is called the **internal direct sum** of \mathbb{U} and \mathbb{W} . Notation: $\mathbb{U}\oplus\mathbb{W}$.

ullet If $\mathbb{V}=\mathbb{U}\oplus\mathbb{W}$, then \mathbb{W} is called **complement** of $\mathbb{U}.$

• When $\mathbb{U}\cap\mathbb{W}=\{0\}$, it is called the **internal direct sum** of \mathbb{U} and \mathbb{W} . Notation: $\mathbb{U}\oplus\mathbb{W}$.

- If $\mathbb{V} = \mathbb{U} \oplus \mathbb{W}$, then \mathbb{W} is called **complement** of \mathbb{U} .
- Let \mathbb{U}, \mathbb{W} be two subpaces of \mathbb{V} . Then $\mathbb{V} = \mathbb{U} \oplus \mathbb{W}$ iff for each $v \in \mathbb{V}$, there exists unique $u \in \mathbb{U}$ and there exists unique $w \in \mathbb{W}$ such that v = u + w.

 \bullet When $\mathbb{U}\cap\mathbb{W}=\{0\},$ it is called the internal direct sum of \mathbb{U} and $\mathbb{W}.$ Notation: $\mathbb{U}\oplus\mathbb{W}.$

- \bullet If $\mathbb{V}=\mathbb{U}\oplus\mathbb{W},$ then \mathbb{W} is called **complement** of $\mathbb{U}.$
- Let \mathbb{U}, \mathbb{W} be two subpaces of \mathbb{V} . Then $\mathbb{V} = \mathbb{U} \oplus \mathbb{W}$ iff for each $v \in \mathbb{V}$, there exists unique $u \in \mathbb{U}$ and there exists unique $w \in \mathbb{W}$ such that v = u + w.

Proof: First we assume that $\mathbb{V} = \mathbb{U} \oplus \mathbb{W}$, that means, $\mathbb{U} \cap \mathbb{W} = \{0\}$.

ullet When $\mathbb{U}\cap\mathbb{W}=\{0\}$, it is called the **internal direct sum** of \mathbb{U} and \mathbb{W} . Notation: $\mathbb{U}\oplus\mathbb{W}$.

- \bullet If $\mathbb{V}=\mathbb{U}\oplus\mathbb{W},$ then \mathbb{W} is called complement of $\mathbb{U}.$
- Let \mathbb{U}, \mathbb{W} be two subpaces of \mathbb{V} . Then $\mathbb{V} = \mathbb{U} \oplus \mathbb{W}$ iff for each $v \in \mathbb{V}$, there exists unique $u \in \mathbb{U}$ and there exists unique $w \in \mathbb{W}$ such that v = u + w.

Proof: First we assume that $\mathbb{V}=\mathbb{U}\oplus\mathbb{W}$, that means, $\mathbb{U}\cap\mathbb{W}=\{0\}.$

Let $x \in \mathbb{V}$. Then there exist $x_1 \in \mathbb{U}$ and $x_2 \in \mathbb{W}$ such that $x = x_1 + x_2$.

• When $\mathbb{U}\cap\mathbb{W}=\{0\}$, it is called the **internal direct sum** of \mathbb{U} and \mathbb{W} . Notation: $\mathbb{U}\oplus\mathbb{W}$.

- \bullet If $\mathbb{V}=\mathbb{U}\oplus\mathbb{W},$ then \mathbb{W} is called **complement** of $\mathbb{U}.$
- Let \mathbb{U}, \mathbb{W} be two subpaces of \mathbb{V} . Then $\mathbb{V} = \mathbb{U} \oplus \mathbb{W}$ iff for each $v \in \mathbb{V}$, there exists unique $u \in \mathbb{U}$ and there exists unique $w \in \mathbb{W}$ such that v = u + w.

Proof: First we assume that $\mathbb{V}=\mathbb{U}\oplus\mathbb{W}$, that means, $\mathbb{U}\cap\mathbb{W}=\{0\}.$

Let $x \in \mathbb{V}$. Then there exist $x_1 \in \mathbb{U}$ and $x_2 \in \mathbb{W}$ such that $x = x_1 + x_2$.

Now we show that x_1 and x_2 are unique.

• When $\mathbb{U}\cap\mathbb{W}=\{0\}$, it is called the **internal direct sum** of \mathbb{U} and \mathbb{W} . Notation: $\mathbb{U}\oplus\mathbb{W}$.

- \bullet If $\mathbb{V}=\mathbb{U}\oplus\mathbb{W},$ then \mathbb{W} is called complement of $\mathbb{U}.$
- Let \mathbb{U}, \mathbb{W} be two subpaces of \mathbb{V} . Then $\mathbb{V} = \mathbb{U} \oplus \mathbb{W}$ iff for each $v \in \mathbb{V}$, there exists unique $u \in \mathbb{U}$ and there exists unique $w \in \mathbb{W}$ such that v = u + w.

Proof: First we assume that $\mathbb{V}=\mathbb{U}\oplus\mathbb{W}$, that means, $\mathbb{U}\cap\mathbb{W}=\{0\}.$

Let $x \in \mathbb{V}$. Then there exist $x_1 \in \mathbb{U}$ and $x_2 \in \mathbb{W}$ such that $x = x_1 + x_2$.

Now we show that x_1 and x_2 are unique.

Suppose there two vectors $y_1(\neq x_1) \in \mathbb{U}$ and $y_2(\neq y_1) \in \mathbb{W}$ such that $x = y_1 + y_1$.

- When $\mathbb{U}\cap\mathbb{W}=\{0\}$, it is called the **internal direct sum** of \mathbb{U} and \mathbb{W} . Notation: $\mathbb{U}\oplus\mathbb{W}$.
- ullet If $\mathbb{V}=\mathbb{U}\oplus\mathbb{W}$, then \mathbb{W} is called **complement** of $\mathbb{U}.$
- Let \mathbb{U}, \mathbb{W} be two subpaces of \mathbb{V} . Then $\mathbb{V} = \mathbb{U} \oplus \mathbb{W}$ iff for each $v \in \mathbb{V}$, there exists unique $u \in \mathbb{U}$ and there exists unique $w \in \mathbb{W}$ such that v = u + w.

 $\textbf{Proof: First we assume that } \mathbb{V} = \mathbb{U} \oplus \mathbb{W} \text{, that means, } \mathbb{U} \cap \mathbb{W} = \{0\}.$

Let $x \in \mathbb{V}$. Then there exist $x_1 \in \mathbb{U}$ and $x_2 \in \mathbb{W}$ such that $x = x_1 + x_2$.

Now we show that x_1 and x_2 are unique.

Suppose there two vectors $y_1(\neq x_1) \in \mathbb{U}$ and $y_2(\neq y_1) \in \mathbb{W}$ such that $x = y_1 + y_1$.

Then $x_1 + x_2 = y_1 + y_2$ this implies $x_1 - y_1 = y_2 - x_2$.

Therefore $x_1 - y_1, y_2 - x_2 \in \mathbb{U} \cap \mathbb{W}$.

Therefore $x_1 - y_1, y_2 - x_2 \in \mathbb{U} \cap \mathbb{W}$.

This is only possible when $x_1 - y_1 = y_2 - x_2 = 0$. Then $x_1 = y_1$ and $x_2 = y_2$.

This is only possible when $x_1 - y_1 = y_2 - x_2 = 0$. Then $x_1 = y_1$ and $x_2 = y_2$.

Conversely, $v \in \mathbb{V}$, there exists unique $u \in \mathbb{U}$ and there exists unique $w \in \mathbb{W}$ such that v = u + w.

Therefore $x_1 - y_1, y_2 - x_2 \in \mathbb{U} \cap \mathbb{W}$.

This is only possible when $x_1 - y_1 = y_2 - x_2 = 0$. Then $x_1 = y_1$ and $x_2 = y_2$.

Conversely, $v \in \mathbb{V}$, there exists unique $u \in \mathbb{U}$ and there exists unique $w \in \mathbb{W}$ such that v = u + w.

If we show that $\mathbb{U} \cap \mathbb{W} = \{0\}$, then we are done.

This is only possible when $x_1 - y_1 = y_2 - x_2 = 0$. Then $x_1 = y_1$ and $x_2 = y_2$.

Conversely, $v \in \mathbb{V}$, there exists unique $u \in \mathbb{U}$ and there exists unique $w \in \mathbb{W}$ such that v = u + w.

If we show that $\mathbb{U} \cap \mathbb{W} = \{0\}$, then we are done.

Let $x \in \mathbb{U} \cap \mathbb{W}$. Then x = x + 0 where $x \in \mathbb{U}$ and $0 \in \mathbb{W}$, and x = 0 + xwhere $0 \in \mathbb{U}$ and $x \in \mathbb{W}$.

Therefore $x_1 - y_1, y_2 - x_2 \in \mathbb{U} \cap \mathbb{W}$.

This is only possible when $x_1 - y_1 = y_2 - x_2 = 0$. Then $x_1 = y_1$ and $x_2 = y_2$.

Conversely, $v \in \mathbb{V}$, there exists unique $u \in \mathbb{U}$ and there exists unique $w \in \mathbb{W}$ such that v = u + w.

If we show that $\mathbb{U}\cap\mathbb{W}=\{0\},$ then we are done.

Let $x \in \mathbb{U} \cap \mathbb{W}$. Then x = x + 0 where $x \in \mathbb{U}$ and $0 \in \mathbb{W}$, and x = 0 + x where $0 \in \mathbb{U}$ and $x \in \mathbb{W}$.

This is possible only when x=0 otherwise the hypothesis is wrong. Then $\mathbb{U}\cap\mathbb{W}=\{0\}.$ Hence $\mathbb{V}=\mathbb{U}\oplus\mathbb{W}.$