Two random variables

- An RV by itself is not that interesting
- ▶ In this course: **relationships** between two or more RVs
- Example: Do college graduates earn more than non-college graduates?
- ► Other examples: see intro slides

Concepts

Tools for describing multiple random variables:

- Joint, marginal distribution
- Conditional distribution/expectation/variance
- Independence, covariance and correlation
- Rules for expectations of multiple RVs

Example (SW, 2.2)

Commute	Rain $(X = 0)$	No rain $(X = 1)$	Total
Long (<i>Y</i> = 20)	0.15	0.07	[0.22]
Short (<i>Y</i> = 40)	0.15	0.63	[0.78]
Total	[0.30]	[0.70]	[1.00]

Table: 2.2 in SW, p. 26

Joint, marginal, conditional

Two random variables, X and Y

- Joint:
 - P(X = x, Y = y),
 - probability that it rains and I have a long commute
- Marginal
 - $P(X = x) = \sum_{i=1}^{k} P(X = x, Y = y_i)$
 - probability that it rains
- Conditional
 - ► $P(Y = y | X = x) = \frac{P(X = x, Y = y)}{P(X = x)}$
 - probability of having a long commute given that it rains

Conditional mean and variance

- Mean and variance for conditional distribution
- ► The conditional expectation of X given Y = y is the expectation of X if you already have the information that Y = y
- Same for the conditional variance

Conditional expectation: example

- ▶ *M* is the number of times your computer crashes
- ▶ A denotes computer is old (A = 0) or new (A = 1)

0	1	М 2	3	4
			0.025 0.005	

Q: If I know the computer is old, how many crashes do I expect?

Conditional expectation: formula

The answer to the question is

$$E[M|A=0] = \sum_{k=1}^{K} M_k P(M_k|A=0)$$

Compare this to the unconditional expectation

$$E[M] = \sum_{k=1}^{K} M_k P(M_k)$$

Replaced marginal by conditional probability distribution

Covariance, correlation

- ► Two more ways to measure the relationship between two r.v.'s are the **covariance** and **correlation**
- ➤ The covariance and correlation measure whether two variables are moving together, with respect to the mean
- Formulas: overhead

Interpretation

- The sign of the covariance is easy to interpret
- The magnitude of the covariance is hard to interpret
- The sign and magnitude of the correlation are easy to interpret
- The correlation is always between -1 and 1
- ► The closer to 1 (-1), the more strongly positively (negatively) correlated the variables are

Mean and variance, multiple RV

- Most important rules to remember from "The Mean and Variance of Sums of Random Variables", pp. 32–35:
 - ► E[X + Y] = E[X] + E[Y]► Var[X + Y] = Var[X] + Var[Y] + 2Cov(X, Y)
- ▶ If the covariance between X and Y is zero ($\sigma_{XY} = 0$),

$$Var[X + Y] = Var[X] + Var[Y]$$