WORK IN PROGRESS

Are researchers better at reasoning than the general public?

Peter M. Dahlgren 🍏 @peterdalle

Sebastian Lundmark

Elina Lindgren

WORK IN PROGRESS

Are researchers better at reasoning than the general public?

Peter M. Dahlgren 🍏 @peterdalle

Sebastian Lundmark

Elina Lindgren

Background

Open science has focused on:

- Understanding of statitistics p-values, confidence intervals
- Philosophy of statistics Bayes vs. Neyman/Pearson vs. Fisher
- Questionable research practices drop hypotheses, hide data etc.

Reasoning

So, what about...

Researchers reasoning ability <u>during controversy</u>?

Rules

• Assume everything is true

Check if the argument is valid

If the conclusion necessarily follows from the claims

Raise/lower your Zoom hand

- 1. All things that are made of plants are good for the health
- 2. Cigarettes are things that are made of plants
- 3. Cigarettes are good for the health

- 1. All things that are made of plants are good for the health
- 2. Cigarettes are things that are made of plants
- 3. Cigarettes are good for the health

- 1. If the null hypothesis is true, then you're not likely to get p < .05
- 2. You did get p < .05
- 3. Therefore, the null hypothesis is not likely to be true

- 1. If the null hypothesis is true, then you're not likely to get p < .05
- 2. You did get p < .05
- 3. Therefore, the null hypothesis is not likely to be true

- 1. If women are equally intelligent as men, there should be as many women as men who are presidents
- 2. There are less women who are presidents
- 3. Therefore, women are not as intelligent as men

- 1. If women are equally intelligent as men, there should be as many women as men who are presidents
- 2. There are less women who are presidents
- 3. Therefore, women are not as intelligent as men

Agree with conclusion

"Logic is valid!"

Argument

Disagree with conclusion

"Logic is invalid!"

Agree with conclusion

"Logic is valid!"

Argument

Disagree with conclusion

"Logic is invalid!"

Agree with conclusion

"Logic is valid!"

Argument

Disagree with conclusion

"Logic is invalid!"

Belief bias

Belief bias

tendency to accept or reject an argument on the basis of whether you agree with its conclusions

Evans (2020, p. 20)

- Abductive conclusion very uncertain, based on inference to best explanation
- Inductive conclusion uncertain, based on probability
- Deductive conclusion certain, based on logical necessity

 Abductive conclusion very uncertain, based of

- Inductive conclusion uncertain, based on pro
- Deductive conclusion certain, based on logical

- Abductive conclusion very uncertain, based on inference to best explanation
- Inductive conclusion uncertain, based on probability
- Deductive conclusion certain, based on logical necessity

• Abductive conclusion very uncertain based on information to best evaluation

 Inductive conclusion uncertai

• **Deductive** conclusion certain, based on logical necessity

- Abductive conclusion very uncertain, based on inference to best explanation
- Inductive conclusion uncertain, based on probability
- Deductive conclusion certain, based on logical necessity

- Abductive conclusion very uncertain, based on inference to best explanation
- Inductive conclusion uncertain, based on probability
- Deductive conclusion certain, based on logic

- Abductive conclusion very uncertain, based on inference to best explanation
- Inductive conclusion uncertain, based on probability
- Deductive conclusion certain, based on logic

- Abductive conclusion very uncertain, based on inference to best explanation
- Inductive conclusion uncertain, based on probability
- Deductive conclusion certain, based on logic

- Abductive conclusion very uncertain, based on inference to best explanation
- Inductive conclusion uncertain, based on probability
- Deductive conclusion certain, based on logic

Syllogism

- 1. If the null hypothesis is true, then you're not likely to get p < .05
- 2. You did get p < .05
- 3. Therefore, the null hypothesis is not likely to be true

Counterargument (reductio ad absurdum)

- 1. If a person is Swedish, then that person is not very likely to be prime minister
- 2. Stefan Löfven is a prime minister
- 3. Therefore, Stefan Löfven is not very likely to be Swedish

Argument acceptance

From three experiments in Evans (1983)

Our questions

To what extent do researchers exhibit belief bias compared to the general public?

Can a checklist help them reach the correct conclusion?

Two likely outcomes

(1) Researchers know how to avoid bias.

Therefore, researchers may have less belief bias than the general public.

Since researchers are experts with domain knowledge

(2) Researchers have higher ability to reach desired conclusion. Therefore, researchers may have <u>more</u> belief bias than the general public.

Two likely outcomes

(1) Researchers know how to avoid bias.

Therefore, researchers may have less belief bias than the general public.

(2) Researchers have higher ability to reach desired conclusion. Therefore, researchers may have <u>more</u> belief bias than the general public.

Based on motivated reasoning

Method

Web survey experiment: evaluate a series of arguments

2 x 2 mixed design (within + between subjects)

Controversy
Controversial or
neutral conclusion

Checklist or no checklist

Sample

Researchers

Representative of all Swedish universities

n = 1,400

Random sample from total population by web scraping emails

General public

Representative of all Swedes (18+ years)

n = 1,400

Random sample from Laboratory of Opinion Research (LORE)

Sample

Researchers

Representative of all Swedish universities

n = 1,400

Random sample from total population by web scraping emails

General public

Representative of all Swedes (18+ years)

n = 1,400

Random sample from Laboratory of Opinion Research (LORE)

Measures

Dependent

- Persuasiveness of argument
- Valid/invalid argument

7-point Likert

Also

- Political ideology (left—right)
- Logic experience

Demography

- Education
- Age
- Sex

Only scientists

- Area natural science, social science, humanities
- Subject e.g. economy, anthropology

Our questions

To what extent do researchers exhibit belief bias compared to the general public?

Can a checklist help them reach the correct conclusion?

Our questions

To what extent do researchers exhibit belief bias

compared to the g

This experiment is designed to find out how people solve logical problems. You will be tested on four logical reasoning problems, which are contained within the booklet which you have been given. Your task is to decide whether or not a given conclusion follows logically from the information given—and this information only. You must assume that all the statements within the problem are true—this is very important. If, and only if, you judge that the given conclusion logically follows from the statements given you should answer by writing "YES" below the conclusion, otherwise write "NO".

Please take your time and be certain that you have the logically correct answer before stating it.

If you have any questions, please ask them now, as the experimenter cannot answer any after you have started. Please keep these instructions in front of you in case you need to refer to them later on.

REMEMBER, IF AND ONLY IF YOU JUDGE THAT THE GIVEN CONCLUSION LOGICALLY FOLLOWS FROM THE STATEMENTS GIVEN YOU SHOULD ANSWER "YES", OTHERWISE "NO".

Please do not turn back and forth from one problem to another once you have started. You must not make notes or draw diagrams of any kind to aid

RQ2 Can a checklist h

onclusion?

Results

What do you think will happen?

Help us predict! Answer 6 questions:

Timeline

We are here

Are researchers better at reasoning than the general public?

Peter M. Dahlgren

peter.dahlgren@gu.se

peterdahlgren.com @peterdalle

Sebastian Lundmark sebastian.lundmark@gu.se

Elina Lindgren elina.lindgren@gu.se

Time for questions "actually, it's more of a comment"

What do you think will happen?

tiny.cc/beliefbias