Maximum Likelihood Estimation

Lecture 7

Please, sign in on iClicker

Outline

- 1. Independence for continuous random variable
- 2. Random samples
- 3. Estimating true parameters
- 4. Maximum likelihood estimation (MLE)
 - MLE using a range of potential values
 - Analytical method for MLE
 - Numerical methods for MLE

1. Independence for Continuous Random Variable

In the discrete case, we have that:

$$P(X = x \cap Y = y) = P(X = x) \cdot P(Y = y).$$

Equivalently,

$$P(Y = y \mid X = x) = P(Y = y).$$

Definition in the Continuous Case

- Probabilities become densities!
- The definition becomes

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y).$$

Equivalently,

$$f_{Y|X}(y|x) = rac{f_{X,Y}(x,y)}{f_{X}(x)} = rac{f_{X}(x) \cdot f_{Y}(y)}{f_{X}(x)} = f_{Y}(y).$$

Recall that we can represent a bivariate density function in 3D

The previous 3D plot also has a contour version

Contour Plot of a Joint PDF

Are X and Y independent?

Independence Visualized

 We can tell whether two random variables are independent, by looking at "slices" in a contour plot of a bivariate density function.

Viewing the Slices

Slices from Contour Plot Horizontal Slices

Vertical Slices

What is going on with the slices?

- Every slice has the same shape.
- They are all the same as the marginal density after normalization.
- Recall conditional density

$$f_{Y|X}(y|x) = f_Y(y).$$

So they are independent!!

• In fact, X and Y are two independent random variables:

$$X \sim ext{Exponential}(\lambda = 1) \ Y \sim \mathcal{N}\left(\mu = 0, \sigma^2 = 1
ight).$$

with the joint PDF:

$$egin{aligned} f_{X,Y}\left(x,y
ight) &= \left[\lambda \exp(-\lambda x)
ight] imes \left\{rac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-rac{(y-\mu)^2}{2\sigma^2}
ight]
ight\} \ &= \exp(-x) imes \left[rac{1}{\sqrt{2\pi}} \exp\left(-rac{y^2}{2}
ight)
ight]. \end{aligned}$$

Another Example

They are also independent!!

• X and Y are two independent Standard Normal distributions:

$$X \sim \mathcal{N}(0,1) \ Y \sim \mathcal{N}(0,1).$$

with the joint PDF:

$$f_{X,Y}\left(x,y
ight) = \left[rac{1}{\sqrt{2\pi}}\mathrm{exp}\left(-rac{x^2}{2}
ight)
ight] imes \left[rac{1}{\sqrt{2\pi}}\mathrm{exp}\left(-rac{y^2}{2}
ight)
ight].$$

Another example

They are NOT independent

• If X and Y are not independent, then these contours would appear in a diagonal pattern.

2. Random Samples

- A random sample is a collection of random variables.
 - For example, X_1, X_2, \ldots, X_n .
- We think of data as being a random sample.

Independent and identically distributed

- We often assume a random sample is independent and identically distributed (or iid):
 - Each pair of random variables are independent.
 - Each random variable follows the same distribution.

3. Estimating true parameters

- We can model real-world data with specific distributions.
 - Wait time can be modeled by a Exponential distribution.
- We can calculate probabilistic quantities from a distribution.
 - The mean of a Exponential RV is β .
- However, in practice, we will never know these true parameters. We need to estimate them.

How can we estimate the true parameter?

- Using data: a random sample of n observations
- Given the random sample Y_1, \ldots, Y_n , calculate the sample mean:

$$ar{Y} = \sum_{i=1}^n rac{Y_i}{n}$$

ullet We hope $ar{Y}$ is a good estimator for the mean eta.

Finding good estimators can be a difficult task

• For example, β_0 and β_1 from a linear regression model:

$$Y = \beta_0 + \beta_1 X_1 + \varepsilon$$
.

where
$$arepsilon \sim \mathcal{N}(0,\sigma^2)$$
 .

How can we estimate these parameters?

Overview of Estimation Methods

- Point estimation
 - Maximum likelihood estimation
 - Method of moments
 - Bayesian estimation (Inference II)
 - Least squares estimation (Regression I)
 - EM algorithm (Unsupervised Learning)
- Interval estimation (Inference I)

A note on the scope of the course

• In this course (including lab4 and quiz2), we will only focus on estimation in univariate cases.

4. Maximum likelihood estimation

• Given observed data and distributional assumptions, we want to find the values of the parameters that would make the observed data most likely to have occurred.

Which orange line (PDF) fits the histogram (observed data) better?

Likelihood Function

- The likelihood function represents the probability of the observed data as a function of the parameter(s).
- A likelihood function is constructed from the joint PDF/PMF:

$$\mathcal{L}(eta) = f_{Y_1,\ldots,Y_n}(y_1,\ldots,y_n;eta)$$

Overview of MLE

- Collect data
- Make a distributional assumption for the data
- Use the likelihood function to find the parameters that best fits the data

Example

- Suppose you own many ice cream carts.
- You want to estimate the average wait time from one customer to the next one in a given cart.

How can we estimate the mean wait time β ?

- Step 1: Collect data!
- You implemented a simple random sampling and got a sample of size n=30 wait times (in minutes)

The histogram shows the empirical distribution:

Step 2: Choose the right distribution

What distribution would you choose to model the distribution?

Discussion

- Besides the Exponential distribution, what other suitable distribution can we used?
 - A. Poisson
 - B. Log-Normal
 - C. Binomial
 - D. Weibull
- We aim to model continuous and non-negative data.
- Log-Normal and Weibull have been used to model wait times for something to happen.

Mathematical formulation

ullet We have a random sample of n=30 iid random variables:

$$Y_1, Y_2, Y_3, \ldots, Y_{28}, Y_{29}, Y_{30}$$

We make the distributional assumption:

$$Y_i \sim \text{Exponential}(\beta) \quad \text{for } i = 1, 2, \dots 30$$

• We want to estimate β .

Step 3: Compute likelihood function from the data

Compute Likelihood using R

• Let us try to choose some values for β , and then calculate the likelihood.

```
1 likelihood_20 <- prod(dexp(sample_n30$values, rate = 1 / 20))
2 likelihood_20

[1] 1.880207e-46

1 likelihood_8 <- prod(dexp(sample_n30$values, rate = 1 / 8))
2 likelihood_8

[1] 1.479327e-44

1 likelihood_2 <- prod(dexp(sample_n30$values, rate = 1 / 2))
2 likelihood_2

[1] 1.047504e-76</pre>
```


Compare Exponential (β) to the empirical distribution

• $\beta=8$ minutes has the LARGEST likelihood and fits the observed data.

Issues with likelihood

```
1 likelihood_20 # beta = 20
[1] 1.880207e-46

1 likelihood_8 # beta = 8
[1] 1.479327e-44

1 likelihood_2 # beta = 2
[1] 1.047504e-76
```


The values are very small!

$$\mathcal{L}(eta) = \prod_{i=1}^n rac{1}{eta} ext{exp}(-y_i/eta)
ightarrow 0.$$

$$\mathcal{L}(eta) = \prod_{i=1}^n rac{1}{eta} ext{exp}(-y_i/eta)
ightarrow \infty.$$

We often use the log-likelihood (with base e): $\log \mathcal{L}(\beta)$

```
1 round(log(likelihood_20), 4)
[1] -105.2875
1 round(log(likelihood_8), 4)
[1] -100.9222
1 round(log(likelihood_2), 4)
[1] -174.9501
```

 The use of the log-likelihood function is common for numerical stability.

Now, how can we find the parameters with the maximum log-likelihood?

- Finding the maximum log-likelihood from a set of values
- Analytical solution (closed-form solution)
- Numerical methods

4.1 MLE from a set of potential values

• We can calculate the log-likelihood for a range of β from 5 to 50 by 0.5.

```
exp values <- tibble(</pre>
      possible betas = seq(5, 50, 0.5),
     likelihood = map dbl(1 / possible betas, ~ prod(dexp(sample n30$values, .
      log likelihood = map dbl(1 / possible betas, ~ log(prod(dexp(sample n30$v
 5
    head(exp values)
# A tibble: 6 \times 3
  possible betas likelihood log likelihood
                      <dbl>
           <dbl>
                                    <dbl>
                   1.78e-48
                                    -110.
             5
             5.5 2.78e-47
                                    -107.
             6 2.18e-46
                            -105.
4
             6.5 1.03e-45
                                  -104.
                   3.30e-45
                                    -102.
             7.5
                   7.85e-45
                                    -102.
```


The MLE estimator of the mean wait time is 10.5 minutes

The log-likelihood plot and MLE

• We plot all possible β 's with the corresponding log-likelihood, and blue line indicates the MLE estimator.

Log-likelihood Values

4.2 Analytical solution for MLE

- Even though we try a wide range of β values, this does not guarantee an optimal solution.
- In some cases, we can find the closed-form solution.

MLE as an optimization problem

• MLE is an optimization problem:

$$\max_{\beta} \log \mathcal{L}(\beta).$$

• We take the first derivative, set the derivative equal to zero, and solve for β (critical points):

$$rac{\partial}{\partialeta}{
m log}\, \mathcal{L}(eta) = 0.$$

Analytical solution for Exponential distribution

• The likelihood for β in the Exponential distribution:

$$\mathcal{L}(eta) = \prod_{i=1}^n rac{1}{eta} \exp(-y_i/eta) = rac{1}{eta^n} \expigg(-rac{1}{eta} \sum_{i=1}^n y_iigg).$$

Log-likelihood function:

$$\log \mathcal{L}(eta) = -n \log(eta) - rac{1}{eta} \sum_{i=1}^n y_i.$$

From

$$\log \mathcal{L}(eta) = -n \log(eta) - rac{1}{eta} \sum_{i=1}^n y_i.$$

We take the first partial derivative with respect to β :

$$egin{align} rac{\partial}{\partialeta}\log\mathcal{L}(eta) &= -rac{n}{eta} + rac{1}{eta^2}\sum_{i=1}^n y_i \ &= rac{1}{eta}igg(-n + rac{1}{eta}\sum_{i=1}^n y_iigg). \end{align}$$

Set this derivative equal to zero and solve for β

$$\frac{1}{\beta} \left(-n + \frac{1}{\beta} \sum_{i=1}^{n} y_i \right) = 0$$

$$egin{aligned} &
ightarrow -n + rac{1}{eta} \sum_{i=1}^n y_i = 0 \end{aligned}$$

$$eta
ightarrow rac{1}{eta} \sum_{i=1}^n y_i = n
ightarrow eta = \sum_{i=1}^n y_i/n = ar{y}_i$$

Second derivative test (optional)

• If the second derivative is less than zero evaluated at the MLE estimate, then the estimate is a local maximum.

$$egin{aligned} rac{\partial^2}{\partialeta} \log \mathcal{L}(eta) &= rac{n}{eta^2} - rac{2}{eta^3} \sum_{i=1}^n y_i \ &= rac{n}{\left(rac{\sum_{i=1}^n y_i}{n}
ight)^2} - rac{2}{\left(rac{\sum_{i=1}^n y_i}{n}
ight)^3} \sum_{i=1}^n y_i \ &= rac{n^3}{\left(\sum_{i=1}^n y_i
ight)^2} - rac{2n^3}{\left(\sum_{i=1}^n y_i
ight)^2} = -rac{n^3}{\left(\sum_{i=1}^n y_i
ight)^2} < 0 \end{aligned}$$

Sample mean is the MLE for β !

For the Exponential distribution, we have shown that

$$\hat{eta} = ar{Y} = \sum_{i=1}^n rac{Y_i}{n},$$

is the MLE estimator for β .

 We often use the hat symbol to denotes estimators, and estimators are random variables.

Compute and plot the analytical solution

```
1 analytical_MLE <- mean(sample_n30$values) # We use the sample mean() functi
2 round(analytical_MLE, 4)</pre>
```

[1] 10.277

Log-likelihood Values

Conclusion for the ice cream example

• Our pilot study with n=30 sampled wait times indicates that the **estimated wait time** between each ice cream customer is **10.277 minutes**.

4.3 Numerical methods for MLE (optional)

- Some likelihood functions do not have a closed-form solution.
- We need to use numerical optimization methods:
 - Gradient descent (Supervised Learning I)
 - Newton's method
 - more

optimize() in R

```
optimize(f, interval, maximum = TRUE, ...)
```

- f is the function to be optimized
- interval is a range of values
- maximum indicates minimum or the maximum

```
1 LL <- function(beta) log(prod(dexp(sample_n30$values, rate = 1 / beta)))
2 optimize(LL, c(5, 50), maximum = TRUE)

$maximum
[1] 10.27704

$objective
[1] -99.89738</pre>
```


Summary of MLE

- MLE is a very useful method to estimate population parameters from a random sample.
- These estimators are
 - lacksquare Consistent: $\hat{eta}
 ightarrow eta$ as $n
 ightarrow \infty$
 - Asymptotically optimal under certain conditions
- However, MLE relies on strong assumptions:
 - Distributional assumptions
 - iid assumption

Steps for MLE from a set of values

- Collect data
- Choose the right distribution
- Obtain the likelihood function (joint PDF/PMF)
- Obtain the log-likelihood function
- Compute log-likelihood for a set of parameter values
- Choose the parameter value that achieve the maximum loglikelihood

Steps for Analytical MLE

- From the log-likelihood function, calculate the partial derivative with respect to the parameter
- Set the partial derivative equal to zero and solve for the optimal value
- Check the second partial derivative

Today's Learning Goals

By the end of this lecture, we will be able to...

- Identify the graphical and mathematical relationship between two independent continuous random variables.
- Explain the concept of maximum likelihood estimation.
- Apply maximum likelihood estimation for univariate cases.

