Porovnanie typov rekurentných neurónových sietí z hľadiska hĺbky pamäte

Diplomová práca

Jaroslav Ištok

Obsah

- 1. Elmanova rekurentná neurónová sieť
- 2. Samoorganizujúca sa mapa
- 3. Rekurentná SOM
- 4. Merge SOM
- 5. Určovanie pamäťovej hĺbky
- 6. Implementácia
- 7. Čo ďalej?

Elmanova rekurentná neurónová

sieť

Elmanova rekurentná neurónová sieť

- Učenie s učiteľom
- Trénovanie pomocou algoritmu spätného šírenia chyby cez čas
- Kontextová vrstva neurónov (kontextové neuróny)

Elmanova rekurentná neurónová sieť

Samoorganizujúca sa mapa

SOM

- samoorganizujúca sa mapa
- biologicky motivovaný model
- učenie so súťažením
- učenie bez učiteľa
- zhlukovanie dát
- zachovanie topologických vlastností dát

Hľadanie víťaza

$$i^* = argmin_i ||x - w_i||$$

Aktualizácia váh

$$w_i(t+1) = w_i(t) + \alpha(t)h(i^*, i)([x(t) - w_i(t)]$$

Л

Rekurentná SOM

Rekurentná SOM

Je to samoorganizujúca sa mapa,

- RecSom kontextom je kópia mapy z predchádzajúceho kroku
- Veľké množstvo atribútov

Aktualizácia váh neurónov

$$w_i(t+1) = w_i(t) + zh_{ik}[s(t) - w_i(t)]$$

 $c_i(t+1) = c_i(t) + zh_{ik}[y(t-1) - c_i(t)]$
 $y_i = exp(-d_i)$

Vzdialenosť

$$d_i(t) = \alpha ||x(t) - w_i||^2 + \beta ||r(t) - c_i||^2$$

Rekurzívny kontext

$$r(t) = [y_i(t-1), ..., y_N(t-1)]$$

Merge SOM

Merge SOM

- V merge SOM kontext nie je kópia celej mapy z predchádzajúceho kroku
- Kontextom je iba stav víťazného neurónu z predchádzajúceho kroku
- Menej parametrov ako pri rekurzívnej SOM
- ullet γ_1 γ_2 parametre rýchlosti učenia
- h_{σ} excitačná funkcia
- d_N susedná funkcia

Aktualizácia váh

$$\Delta w_i = \gamma_1 \cdot h_{\sigma}(d_N(i, l_t)) \cdot (x^t - w^i)$$

$$\Delta c_i = \gamma_2 \cdot h_{\sigma}(d_N(i, l_t)) \cdot (c^t - c^i)$$

Vzdialenosť

$$d_i(t) = (1 - \alpha) \cdot ||x^t - w^i||^2 + \alpha \cdot ||c^t - c^i||^2$$

Rekurzívny kontext

$$c^{t} = (1 - \beta) \cdot w^{I_{t-1}} + \beta \cdot c^{I_{t-1}}$$

Určovanie pamäťovej hĺbky

Určovanie pamäťovej hĺbky

- Vstup sekvencia písmen abecedy
- Každý neurón má množinu, v ktorej si pamätá pre ktoré vstupy bol víťazom.
- Nezapamätá si iba aktuálny vstup ale aj k posledných vstupov
- Na konci každej epochy trénovania zistíme dĺžku najdlhšej spoločnej podpostupnosti.
- Tým získame pamäťovú hĺbku pre jednotlivé neuróny
- Keď spravíme výhovaný priemer pamäťových hĺbok pre všetky neuróny v sieti dostaneme pamäťovú hĺbku pre celú sieť
- Toto číslo budeme používať ako mieru pamäťovej hĺbky pre SOM

Ukážka receptívneho poľa

T. Voegtlin / Neural Networks 15 (2002) 979-991

to																			
	SO	lo	0	ho	ie	me	me	me	ee	ne	ne	ne	it	lit	S	rs	aw	dow	tw
to	ro	co	wo	te	ite	e	e	e	lle	ine	ine	were	there		was	SS	sw	w	х
to	do	no	0	te	te	be	be	we	we	ore	re	re	re	is	was	ls		ew	ex
they	they		fo		se	se	are	see	we	here	re	are		his	es	us	rs	ds	ow
У	у	su		ev	pre	ru	pu	one	pe	pe		t	OS	ins	es	ms	as	its	as
ey	my	pu	she	v	du	cou	nu	fu	ke	put	rat	that	ous	is	S	ts	ins	cons	as
ly	ly	ple	fe	ge	de	hu	ou	u	u	red	fort	ght	ns	res	S	fa	a	a	q
sh		le	е	the	de	mu	tu	bu	ed	red	ed	art	ot	is	ca	na	ba	ha	wa
sh	h	he	he	ce	ye	beg	hu	bu	ild	cond	ed	tt	att	et	t	ma	na	tha	ra
ch	wh	ple	one	whe	the	ng	ug	ag	g	nd	und	ut	rt	at	st	sc	с	ea	sa
th	h	with	е	ge	the	ng	g	ing	g	nk		but	not	at	nt	t	nc	a	ta
th	h	with	е	the	she	od	and	id	ad	k	k	int	ght	wit	et	an	an	n	wn
th	h	er	be	ve	ad	ted	id	ard	hed	el	out	t	it	it	wan	men	an	n	n
wer	er	er	der	rd	ther	had	ld	od	d	d	wl	t	int	on	when	han	then	ten	wen
ber	for	ter	rr	fr	r			tl		cl	cl	bel	all	on	in	fin	len	nn	un
or	her	tr	ar	str	dr	si	i	l	al	bl	sl	11	all	lon	in	en	j	men	un
wer	wer	ur	r	br	z		ni	1	l	el	il	il	ul	om	ven	en	then	kn	con
pr	thr	their	ab	b	b	fi	ati	wi	hi	pi	ci	al	al	him	them	alp	up	sn	ep
ther	for	if		b	i	ri	ti	whi	di	bi	mi	al	sm	em	em		op	sp	ap
dr	af	f	of		hi	i	i	thi	li	li	ili	m	m	com	him	dl	ep	rep	p

Fig. 2. Receptive fields of a two-dimensional recursive SOM trained on English text. A receptive field is defined as the intersection of all the sequences that trigger selection of the corresponding unit. Receptive fields are displayed in natural reading order. Topographic organization is observed, principally based on most recent letters.

Implementácia

Implementácia

- Vlastná implementácia jednotlivých druhov neurónových sietí
- Python + Numpy
- Algoritmus hľadania najdlhšej spoločnej podpostupnosti viacerých podpostupností

Čo ďalej?

Čo ďalej?

- Implementácia algoritmu spätného šírenia chyby v čase
- Vymyslieť spôsob ako merať pamäťovú hĺbku v Elmanovej sieti
- Naprogramovať vizualizáciu výsledkov
- Porovnávať a skúmať vplyvy rôznych parametrov na pamäťovú hĺbku sietí

Otázky

References i

- Jeffrey L.Elman *Finding Structure in Time*. University of California, San Diego, 1990
- H. Ritter and T. Kohonen *Self-Organizing Semantic Maps* Helsinky University of Technology, 1982
- Thomas Voegtlin Recursive self-organizing maps, 2002
- Marc Strickert, Barbara Hammer Merge SOM for temporal data Technical University of Clausthal, 2005