Deep Image Prior

Dmitry Ulyanov · Andrea Vedaldi · Victor Lempitsky

 Deep convolutional networks' excellent performance is due to their ability to learn realistic image priors from a large number of example images.

• The **structure** of a neural network is sufficient to capture a great deal of low-level image statistics **prior to any learning**.

 Instead of following the common paradigm of training a ConvNet on a large dataset of example images, they fit a generator network to a single degraded image.

• The weights are **randomly initialized** and fitted to maximize their likelihood given a specific degraded image and a task-dependent observation model.

parametrization

Applications

- Denoising
- Super-resolution
- Inpainting

Denoising

SR

$$x^* = \min_x E(x; x_0) + R(x)$$

(a) HR image

(b) Bicubic upsampling

(c) No prior

(d) TV prior

(e) Deep image prior

Inpainting

(e) ResNet, depth=8

(f) U-net, depth=5

Conclusion

- Revealed the contribution of the prior imposed by the neural network architecture in processing images.
- Showed neural network tend to extract useful information contained in an input image during the initial training phase

Limitation

Time costing