1 烷

甲烷燃烧: $CH_4(g) + 2O_2(g) \xrightarrow{\text{点燃}} CO_2(g) + 2H_2O$ 甲烷和氯气发生取代反应:

$$CH_4 + Cl_2 \xrightarrow{\mathcal{H} \mathbb{H}} CH_3Cl + HCl$$
 $CH_3Cl + Cl_2 \xrightarrow{\mathcal{H} \mathbb{H}} CH_2Cl_2 + HCl$
 $CH_2Cl_2 + Cl_2 \xrightarrow{\mathcal{H} \mathbb{H}} CHCl_3 + HCl$
 $CHCl_3 + Cl_2 \xrightarrow{\mathcal{H} \mathbb{H}} CCl_4 + HCl$

甲烷受热分解: $CH_4 \xrightarrow{\bar{A}_{ab}} C + 2H_2$ 烷烃燃烧的通式: $C_nH_{2n+2} + \frac{3n+1}{2}O_2 \xrightarrow{\underline{A}_{cb}} nCO_2 + (n+1)H_2O$ 烷烃取代反应的通式: $C_nH_{2n+2} + X_2 \xrightarrow{\underline{A}_{cb}} C_nH_{2n+1}X + HX$ 烷烃高温裂解的例子:

$$C_{16}H_{34} \xrightarrow[\text{mkm}]{\text{det} n} C_8H_{16} + C_8H_{18} \; ; \; C_7H_{16} \xrightarrow[\text{mkm}]{\text{det} n} C_4H_{10} + C_3H_6$$

2 烯

乙烯的燃烧: $C_2H_4+3O_2\xrightarrow{f_2M_2}2CO_2+2H_2O$ 乙烯通入溴水或溴的 CCl_4 溶液: $CH_2=CH_2+Br_2\longrightarrow CH_2Br-CH_2Br$ 乙烯与氢气加成: $CH_2=CH_2+H_2\xrightarrow{d(t,t)}CH_3CH_3$

乙烯与氯化氢加成: $CH_2 = CH_2 + HCl \xrightarrow{\text{催化剂}} CH_3CH_2Cl$

乙烯与水加成: $CH_2 = CH_2 + H_2O \xrightarrow{\text{det} A)} CH_3CH_2OH$

乙烯与氰化氢加成: $CH_2 = CH_2 + HCN \xrightarrow{\text{d}} CH_3CH_2CN$

乙烯发生加聚反应形成聚乙烯: $nCH_2=CH_2 \xrightarrow{\text{d}} + CH_2-CH_2 +_n$ 烯烃的加成反应通式:

$$\mathbf{C}_n\mathbf{H}_{2n} + \mathbf{X}_2 \longrightarrow \mathbf{C}_n\mathbf{H}_{2n}\mathbf{X}_2$$

$$\mathbf{C}_n\mathbf{H}_{2n} + \mathbf{H}_2 \xrightarrow{\mathrm{Ni}} \mathbf{C}_n\mathbf{H}_{2n+2}$$

$$\mathbf{C}_n\mathbf{H}_{2n} + \mathbf{H}\mathbf{X} \xrightarrow{\text{催化剂}} \mathbf{C}_n\mathbf{H}_{2n+1}\mathbf{X}$$

烯烃的燃烧通式: $C_nH_{2n} + \frac{3n}{2}O_2 \xrightarrow{\text{f.m.}} nCO_2 + nH_2O$

3 炔

乙炔的燃烧: $2C_2H_2 + 5O_2 \xrightarrow{\text{f.M.}} 4CO_2 + 2H_2O$ 乙炔与溴的四氯化碳溶液发生加成反应: $CH = CH + 2Br_2 \longrightarrow CHBr_2CHBr_2$ 乙炔和氯化氢发生加成反应: $CH = CH + HCl \xrightarrow{\text{d-h}} CH_2 = CHCl$

4 苯

$$\overline{x}$$
和氢气加成: $+3H_2$ \overline{u} CH_3 CH_3 O_2N NO_2 $+3HO-NO_2$ \overline{w} \overline{u} \overline{u} NO_2 $+$ NO_2 \overline{u} \overline{u}

醇 5

乙醇和钠发生取代反应: 2 CH₃CH₂OH + 2 Na → 2 CH₃CH₂ONa + $H_2 \uparrow$

乙醇和HBr 发生反应: $CH_3CH_2-OH+HBr \xrightarrow{\Delta} CH_3CH_2Br+H_2O$ 乙醇的分子内脱水反应(消去反应): $CH_3CH_2OH \xrightarrow{\&\&@} CH_2=CH_2\uparrow+$

 H_2O

乙醇的分子间脱水反应: $CH_3CH_2O-H+HO-CH_2CH_3$ $\xrightarrow{\text{浓硫酸}}$ $CH_3CH_2-O-CH_2CH_3+$ H_2O

乙醇燃烧氧化: $CH_3CH_2OH + 3O_2 \xrightarrow{\text{Lim}} 2CO_2 + 3H_2O$ 乙醇催化氧化: $2CH_3CH_2OH + O_2 \xrightarrow{Cu \text{ gi Ag}} 2CH_3CHO + 2H_2O$

乙醇和乙酸发生取代反应生成乙酸乙酯: $CH_3COOH + HOC_2H_5$ $CH_3COOC_2H_5 + H_2O$

6 卤代烃

溴乙烷在氢氧化钠的水溶液中发生水解反应: $C_2H_5-Br+NaOH\xrightarrow{\kappa}$ $C_2H_5OH+NaBr$

 $\mathrm{CH_2}\!=\!\mathrm{CH_2}\!\uparrow + \mathrm{NaBr} + \mathrm{H_2O}$

卤代烃的水解反应通式 (制取一元醇): $R-X+NaOH \xrightarrow{x} R-OH+$

NaX

一卤代烃的消去反应: —
$$C - C - C - + NaOH \xrightarrow{\vec{p}} C = C - + H X$$

 $NaX + H_2O$

多卤代烃的消去反应:

$$BrCH_{2}CH_{2}Br + NaOH \xrightarrow{\stackrel{\text{\tiny \vec{P}}}{\Delta}} CH_{2} = CH - Br + NaBr + H_{2}O$$

$$BrCH_{2}CH_{2}Br + 2 NaOH \xrightarrow{\stackrel{\text{\tiny \vec{P}}}{\Delta}} CH = CH \uparrow + 2 NaBr + 2 H_{2}O$$

7 酚

本酚的电离方程式:
$$H^+ + H^- +$$

溴苯和氢氧化钠溶液反应:

$$Br$$
 $+ NaOH$ $\xrightarrow{\text{催化剂}}$ OH $+ NaBr$ ONa $+ H_2O$

8 醛

甲醛和银氨溶液反应: HCHO+4 Ag(NH₃)₂OH $\stackrel{\Delta}{\longrightarrow}$ (NH₄)₂CO₃+6 NH₃+4 Ag \downarrow + 2 H₂O

甲醛和新制Cu(OH)2 悬浊液反应: HCHO+4Cu(OH)2+2NaOH $\stackrel{\Delta}{\longrightarrow}$ 2Cu2O \downarrow + Na2CO3 + 6H2O

乙醛的加成反应: $CH_3CHO + H_2 \xrightarrow{\text{d-d}} CH_3CH_2OH$

乙醛的燃烧: $2 \text{ CH}_3 \text{CHO} + 5 \text{ O}_2 \xrightarrow{\text{点燃}} 4 \text{ CO}_2 + 4 \text{ H}_2 \text{O}$

乙醛的催化氧化: $2 \text{ CH}_3 \text{ CHO} + \text{ O}_2 \xrightarrow{\text{催化剂}} 2 \text{ CH}_3 \text{ COOH}$

乙醛和银氨溶液反应: $\mathrm{CH_3CHO} + 2\,\mathrm{Ag(NH_3)_2OH} + 2\,\mathrm{Ag}\!\downarrow + 3\,\mathrm{NH_3} + \mathrm{H_2O}$

乙醛和新制Cu(OH)₂ 悬浊液反应:

$$\begin{aligned} &CuSO_4 + 2\,NaOH = Cu(OH)_2 \downarrow \\ &+ Na_2SO_4 \end{aligned}$$

$$&CH_3CHO + 2\,Cu(OH)_2 + NaOH \xrightarrow{\Delta} CH_3COONa + Cu_2O \downarrow \\ &+ 3\,H_2O \end{aligned}$$

9 酮

酮与氰化氢加成:
$$CH_3C$$
 $+ CN$ $\xrightarrow{\text{$(EH_3)$}}$ $CH_3 - C$ $- CN$ $- CH_3$ CH_3 $CH_3 - C$ $- CH_3$ CH_3 CH_4 CH_3 CH_5 CH

10 羧酸

乙酸的电离方程式: CH₃COOH ← CH₃COO⁻ + H⁺

乙酸与活泼金属反应: Zn+2CH₃COOH → (CH₃COO)₂Zn+H₂↑

乙酸与碱反应: NaOH + CH₃COOH → CH₃COONa + H₂O

乙酸与碱金属性氧化物反应: $CuO+2CH_3COOH \longrightarrow (CH_3COO)_2Cu+H_2O$

乙醇和乙酸发生取代反应生成乙酸乙酯: $CH_3COOH + HOC_2H_5$ $\stackrel{浓硫酸}{\longleftarrow}$ $CH_3COOC_2H_5 + H_2O$

羧酸的电离方程式: RCOOH \Longrightarrow RCOO $^-$ + H $^+$ 羧酸与碱反应: RCOOH + NaOH \longrightarrow RCOONa + H $_2$ O 羧酸发生酯化反应: R $_1$ COOH + HOR $_2$ $\xrightarrow{\text{浓硫酸}}$ R $_1$ COOR $_2$ + H $_2$ O

11 酯

酯在酸性条件下水解: $R_1COOR_2 + H_2O \xrightarrow{\text{稀硫酸}} R_1COOH + R_2OH$ 酯在碱性条件下水解: $R_1COOR_2 + NaOH \xrightarrow{\Delta} R_1COONa + R_2OH$