Comprehensive Review #9

Topics:

- Lesson 72 Law of sines
- Lesson 87 Sum and differene identities
- Lesson 90 Double-angle identities
- Lesson 96 Tirangle area formula
- 1. Solve triangle ABC given that $A = 52^{\circ}$, $B = 51^{\circ}$, and b = 61.

- 2. Solve triangle ABC given that $A = 44^{\circ}$, $B = 52^{\circ}$, and b = 74.
- 3. Solve $\triangle ABC$ given that $\angle A = 58^{\circ}$, $\angle B = 52^{\circ}$, and b = 62.

[A]
$$\angle$$
C = 70°, a = 66.72, c = 73.93 [B] \angle C = 70°, a = 57.61, c = 68.7

[B]
$$\angle$$
C = 70°, a = 57.61, c = 68.7

[C]
$$\angle$$
C = 250°, a = 57.61, c = 68.7 [D] \angle C = 250°, a = 66.72, c = 73.93

[D]
$$\angle$$
C = 250°, a = 66.72, c = 73.93

4. Solve $\triangle ABC$ given that $\angle A = 42^{\circ}$, $\angle B = 59^{\circ}$, and b = 77.

[A]
$$\angle C = 79^{\circ}$$
, $a = 98.64$, $c = 112.96$ [B] $\angle C = 79^{\circ}$, $a = 60.11$, $c = 88.18$

[B]
$$\angle$$
C = 79°, a = 60.11, c = 88.18

[C]
$$\angle$$
C = 259°, a = 60.11, c = 88.18 [D] \angle C = 259°, a = 98.64, c = 112.96

[D]
$$\angle$$
C = 259°, a = 98.64, c = 112.96

- 5. Establish the identity $\sin(\theta 2\pi) = \sin \theta$.
- 6. Develop the identity for $\cos 2A$ using the identity for $\cos(A + B)$.
- 7. Simplify $\sin\left(\theta \frac{\pi}{2}\right)$ by using the sum and difference identity. Use exact values.
- 8. $cos(\theta + \pi)$ forms an identity with which of the following?

[A]
$$-\sin \theta$$

[B]
$$-\cos\theta$$

[C]
$$\sin \theta$$

[D]
$$\cos \theta$$

9. $\cos\left(\theta - \frac{\pi}{2}\right)$ forms an identity with which of the following?

[A]
$$\sin \theta$$

[B]
$$-\sin\theta$$

[C]
$$\cos \theta$$

[D]
$$-\cos\theta$$

- 10. Solve $\sin 2x = \cos x$ given that $0 \le x < 2\pi$.
- 11. Solve $\tan^2 x = 3$ given that $0 \le x < 2\pi$.

12. Show:
$$(\cos x + \sin x)^2 - 1 = \sin 2x$$

13. Solve $2\cos^2 x = 13\sin x - 5$ given that $0 \le x < 2\pi$.

[A]
$$\frac{\pi}{6}$$
, $\frac{5\pi}{6}$

[A]
$$\frac{\pi}{6}$$
, $\frac{5\pi}{6}$ [B] 0, $\frac{\pi}{3}$, π , $\frac{5\pi}{3}$ [C] $\frac{7\pi}{6}$, $\frac{11\pi}{6}$ [D] $\frac{3\pi}{4}$, $\frac{7\pi}{4}$

[C]
$$\frac{7\pi}{6}$$
, $\frac{11\pi}{6}$

[D]
$$\frac{3\pi}{4}$$
, $\frac{7\pi}{4}$

14. Solve $\sin 2x = \sin x$ given that $0 \le x < 2\pi$.

[A]
$$0, \frac{\pi}{3}, \pi, \frac{5\pi}{3}$$

[B]
$$\frac{\pi}{3}$$
, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$, $\frac{5\pi}{3}$

[C]
$$\frac{\pi}{4}$$
, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$

[D]
$$0, \frac{3\pi}{4}, \pi, \frac{7\pi}{4}$$

15. Solve this triangle for angle A and find the area.

[A]
$$A = 28.76^{\circ}$$
, Area = 92.65 in.²

[B]
$$A = 28.76^{\circ}$$
, Area = 89.98 in.²

[C]
$$A = 30^{\circ}$$
, Area = 89.98 in.²

[D]
$$A = 30^{\circ}$$
, Area = 92.65 in.²

16. Solve this triangle for angle A and find the area.

[A]
$$A = 32^{\circ}$$
, Area = 86.42 in.²

[C]
$$A = 26.68^{\circ}$$
, Area = 86.42 in.²

[B]
$$A = 26.68^{\circ}$$
, Area = 76.17 in.²

[D]
$$A = 32^{\circ}$$
, Area = 76.17 in.²