

Санкт-Петербургский государственный университет Кафедра системного программирования

Экспериментальное исследование алгоритмов для регулярных запросов

Виктория Владимировна Островская, группа 23.Б11-мм

Преподаватель: С.В.Григорьев, доцент кафедры системного программирования

Санкт-Петербург 2025

Постановка задачи

Целью является исследование производительности алгоритмов RPQ при разных типах представления разреженных матриц и размерах стартовых множеств **Задачи**:

- Реализовать экспериментальную установку
- Провести серию замеров на тестовых графах
- Определить оптимальные представления матриц для каждого алгоритма
- Оценить зависимость времени выполнения от размера стартового множества

Исследовательские вопросы

- RQ1. При каком представлении разреженных матриц и векторов алгоритм показывают наилучшее время выполнения?
- RQ2. При каком размере стартового множества становится выгоднее по времени выполнить алгоритм для всех пар вершин с последующим выбором нужных вершин, чем непосредственное вычисление достижимости для заданного множества стартовых вершин?

Методология эксперимента

- Алгоритмы
 - ▶ tensor based rpq
 - ▶ ms bfs based rpq
- Типы матриц
 - csr, csc, coo, lil
- Графы
 - ► travel (131 вершин, 277 рёбер)
 - ▶ wine (733 вершин, 1839 рёбер)
 - ► funding (778 вершин, 1086 рёбер)
- Оборудование
 - MacBook Air M1, 8 ядер, 8 GB RAM, macOS Sequoia 15.5

Выбор графов

- ullet Небольшой размер графов o 25 запусков за разумное время (11 ч)
- travel самый маленький, для отладки
- ullet wine и funding одинаковое число вершин, разная плотность рёбер o проверка на плотных и разреженных данных
- как минимум 4 метки, соответствуют выбранным регулярным выражениям

План эксперимента

- Регулярные выражения:
 - ► (a | b)* c d+
 - ► a (b | c)* d+
 - ► ((a | b)+ c)* d
 - ► ((c+) | a) b d*
- Конфигурация запуска:
 - 5 долей стартового множества (1.0, 0.7, 0.5, 0.3, 0.1)
 - Тип матрицы
 - ▶ Регулярное выражение
 - Алгоритм
 - ▶ 25 запусков для каждой конфигурации

Результаты по RQ1

- tensor based rpq
 - ▶ В 87% сценариев лучшая производительность у соо matrix
 - Максимальный выигрыш 7.84%
- ms_bfs_based_rpq
 - ▶ Всегда лучшая производительность у csc matrix
 - Выигрыш 9–14%

Далее будут представлены графики для графов travel, wine, funding соответственно (по 2 графика на каждый: для алгоритма tensor_based и ms_bfs_based)

Результаты по RQ2

- Время работы растёт с увеличением доли стартовых вершин
- Алгоритмы не выигрывают при переходе на вычисление для всех пар вершин
- Прямая стратегия для подмножеств всегда быстрее

Далее будут представлены графики для графов travel, wine, funding

Угрозы валидности

- Эксперименты запускались только на одной машине
- Реализация для каждого типа матриц потенциально может быть эффективнее, нужны дополнительные эксперименты

