Lecture 2 : Counting Techniques

2.3 The Three Basic Rules

1. The Product Rule for Ordered Pairs and Ordered *k*-tuples

Our first counting rule applies to any situation in which a set consists of *ordered* pairs of objects (a, b) where a comes from a set B.

In terms of pure mathematics the *Cartesian product* $A \times B$ is the set of such pairs

$$A \times B = \{(a,b) : a \in A, b \in B\}$$

Proposition (text pg. 60)

If the first element of the ordered pair can be selected in n_1 ways and if for each of these n_1 ways the second element can be selected in n_2 ways then the number of pairs is n_1n_2 .

Mathematically - If $\sharp(A) = n_1$ and $\sharp(B) = n_2$ then $\sharp(A \times B) = n_1 n_2$. There are analogous results for ordered triples etc.

$$\sharp (A \times B \times C) = n_1 n_2 n_3$$

Example

How many "words" of two letters can we make from the alphabet of five letters $\{a, b, c, d, e\}$.

Solution

Note that order counts ab \neq ba.

There are two ways to think about the problem pictorially.

Filling in two slots _ _

We have a choice of 5 ways to fill in the first slot and for each of these we have 5 more ways to fill in the second slot so we have 25 ways.

$$\underline{5}\ \underline{5} = 25$$

Solution (Cont.)

2. Draw a tree where each edge is a choice

The number of pairs is the number paths from the root to a "leaf" (i.e., a node at the far right).

In this case there are 25 paths.

Problem 1

How many words of length 3?

2. Permutations (pg. 62)

In the previous problem the word aa was allowed. What if we required the letters in the word to be distinct. Then we would get 2-permutations from the 5-element set $\{a,b,c,d\}$ according to the following definition.

Definition

An ordered sequence of k distinct objects taken from a set of n elements is called a k-permutation of the n objects. The number of k-permutations of the n objects will be denoted $P_{k,n}$.

So order counts

Let us return to our 5 element set $\{a, b, c, d, e\}$ and count the number of 2-permutations.

It is best to think in terms of slots

$$\underline{5}\ \underline{4} = 20$$

There are 5 choices for the first slot but only 4 for the second because whatever we put in the first slot cannot be put in the second slot so $P_{2.5} = 20$.

What is $P_{3,5}$?

Proposition (pg. 68)

$$P_{k,n} = \underbrace{n(n-1)(n-2)\dots(n-k+1)}_{k \text{ terms}}$$

Proof.

Fill in k slots with no repetitions

Note that if we allowed repetitions we would get n^k

$$\underbrace{\underline{n}\,\underline{n}\,\underline{n}}_{k}$$

There is a very important spacial case

$$P_{n,n} = n! = n(n-1)(n-2)...3.2.1$$

There are n! ways to take n distinct objects and arrange them in order.

Example

$$n = 3, \{a, b, c\}$$

$$egin{array}{c} abc \\ acb \\ bac \\ bca \\ cab \\ cba \end{array}
ight\} = (3)(2)(1) = 6$$

When you list objects it is helpful to list them in dictionary order.

A Better Formula for $P_{k,n}$

Here is a better formula for $P_{k,n}$.

Proposition

$$P_{k,n} = \frac{n!}{(n-k)!}$$

Proof.

This is an algebraic trick

$$\frac{n!}{(n-k)!} = \frac{n(n-1)\dots(n-k+1)\overline{(n-k)(n-k-1)\dots3.2.1}}{(n-k)!}$$

So cancel the second part of the numerator with the denominator

$$\frac{n!}{n-k+1} = n(n-1)...(n-k+1) = P_{k,n}$$

The Birthday Problem

Suppose there are n people in a room. What is the probability B_n that at least two people have the same birthday (eg., March 11)? Let s be the set of all possible birthdays for then n people so

$$\sharp(s) = (365)^n$$

$$\underbrace{-----}_{n \text{ people}}$$

(we ignore leap-years so this isn't quite right)

Now let $A \subset s$ be the event that at least two people have the same birthday. So A' =all the people in the room have different birthdays.

So

$$B_n = 1 - P(A')$$

Now what is A'? Order the people

$$\frac{365}{1}$$
 $\frac{364}{2}$ $\frac{3}{3}$ $\frac{365-n+1}{n}$

$$\sharp(A') = P_n, 365.$$

So

$$B_n = 1 - \frac{P_{n,365}}{(365)^n}$$

Combinations

There are many counting problems in which one is given a set of n objects and one wants to count the number of *unordered* subsets with k elements.

An unordered subset with k elements taken from a set of n elements is called a k-combination of that set. The number of k-combinations is denoted $C_{k,n}$.

Which is bigger $C_{k,n}$ or $P_{k,n}$?

What is $C_{n,n}$?

Example

$$P_{2,3} = 6, C_{2,3} = 3$$

 $S = \{a, b, c\}$

2 permutations of S	2 combinations of S
ab ba	{a,b}
bc cb	{b, c}
ac ca	{a, c}

Each two combination gives rise to 2. 2-permutations. So

$$P_{2,3} = 2C_{2,3} = (2)(3) = 6$$

A Formula for $C_{k,n}$

Proposition (pg. 64)

$$P_{k,n} = C_{k,n} \cdot k!$$
 So
$$C_{k,n} = \frac{P_{k,n}}{k!} = \frac{n!}{k!(n-k)!}$$

Proof.

To make a k-permutation first make an unordered choose of the k-elements i.e., choose a k-combination, then, for each such choice arrange the elements in order (there are $P_{k,k} = k!$ ways to do this). So we here

$$\sharp(k\text{-permutations}) = \sharp(k\text{-combinations}) - k!$$

More notation

The binomial coefficient $\binom{n}{k}$ is defined by

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

This is because

$$\underbrace{(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}}_{}$$

The binomial theorem.

So

$$C_{k,n} = \binom{n}{k}$$

We will use $\binom{n}{k}$ instead of $C_{k,n}$.

The toast problem

When my wife and I were on a trip to Spain with our church we had 20 people at dinner. We all clinked (is this a genuine English word) our classes. I dazzled my friends by telling how many clinks there were.

Now you can answer this question - how many?

More Problems

- 1 How many 5 card poker hands are there?
- 2 How many 13 card bridge hands are there?

Lastly

Proposition

$$\binom{n}{k} = \binom{n}{n-k}$$

Proof.

Challenge.

Find two proofs, one "combinatorial" and one algebraic.