

Lecture
Organic Computing II
Summer term 2020

Chapter 2: Self-organised Order

Lecturer: Jörg Hähner

Content

- A first example: water temples in Bali
- A second example: ants
- Emergence
- Term definition
- Quantification of emergence
- A refined approach to emergence quantification
- Conclusion and further readings

Goals

Students should be able to:

- Explain the relation between self-organisation and emergence.
- Briefly summarise the term emergence.
- Give examples for emergent phenomena, e.g. in nature.
- Quantify emergence in technical systems based on discrete attributes.
- Outline how emergence detection is done for systems with continuous attributes.

Agenda

- A first example: water temples in Bali
- A second example: ants
- Emergence
- Term definition
- Quantification of emergence
- A refined approach to emergence quantification
- Conclusion and further readings

A journey to Bali

Water temples in Bali

Indon

Water temples in Bali (3)

Watering system for the cultivation of rice

- Main factors:
 - Water circulation
 - Alternation between dry and wet periods
- Objectives
 - PH-values
 - Activity of micro-organisms
 - Distribution of mineral nutrient
 - Herbicide
 - Pest control (for large areas)
 - Stabilisation of temperature
- Problem: Synchronous watering leads to peak demand of water!

Water temples in Bali (4)

Problem for each farmer:

Determine cultivation sequence

Goal:

Maximise crop

Attributes of cultivation sequence:

- Phases of cropping (date)
- Cultivar (kind of plant)
- Watering
- Drying

The Oos and Petanu rivers in south-central Bali (not to scale).16

Water temples in Bali (5)

How to determine the optimal sequence?

- Trial and error vs. planning
- Coordination: global or local?
- Is the solution suitable for the local problem?
- Is the solution adaptable?

Hypothesis:

- Coordination algorithm
- Synchronous, local, like the best neighbour
- Co-adaptation

Verification of hypothesis: simulation

- Crop is modelled as a function of cultivation sequence and environment.
- Start: randomised initialisation

Water temples in Bali (6)

Randomised distribution at start-up 4.9 tons/ha

Simulated pattern after co-adaptation cycles

8.6 tons/ha

Cultivation sequences

Traditional system of cave temples at Bali

Water temples in Bali (7)

Conclusions to be drawn from the water temple networks:

- Contains locally behaving and self-motivated farmers (nodes, agents).
- Cooperation leads to globally optimal (or "good enough") patterns.
 → An emergent effect.
- Bottom-up evolved problem-solving networks are adaptive: react to changing environmental conditions (e.g. reduced rainfall).
- Success of the networks depends on: (1) ability of local nodes to collect local information and (2) react to it locally.
- There is no central authority needed, the system is decentralised.
- There is no external authority needed, the system is self-organised.
- Co-adaptation requires large populations of interacting agents.
- Agents decide on their own but in close and regular coordination with their neighbours. They are semi-autonomous.
- The system learns and adapts in evolutionary cycles.
- Evolutionary steps are subject to random variations.

Self-organised order

Insight: self-organised order

- A global pattern emerges
- System is structured
- Nobody is in charge
- Nobody has a global view
- Nothing is planned
- Distinguish between micro- and macro-level
 - → actions at micro-level, effects at macro-level
 - → "good enough" solutions at macro-level

Macro-level:

- Global view
- Pattern
- Structure

Micro-level:

- Interaction
- Local view

Agenda

- A first example: water temples in Bali
- A second example: ants
- Emergence
- Term definition
- Quantification of emergence
- A refined approach to emergence quantification
- Conclusion and further readings

Ants

- Related to wasps and bees
- About 100 million years old
- Extremely successful:
 - About 30% of bio mass in the Amazonas are (with termites)
 - About 9% of bio mass world-wide
 - Comparable to bio mass of humans
- No or only limited vision
- Distribution of labour:
 - soldiers,
 - construction workers,
 - gardeners,
 - reproduction
 - **–** ...

Source: Ants at Work (1999) by Deborah Gordon

Ants (2)

Abilities of ants

- Find shortest paths
- Build bridges
- Sort
- Efficient logistics
- Farming / food production
- Construction of complex structures
- Caring about brood and offspring
- Caring about useful entities
- Distribution of labour
- ...

Ants (3)

Building bridges

- Chains of ants clamping together
- To bridges gaps in path
- Other ants use these chains as path
- E.g. to better reach food
- Chains of ants to pull leaves down
- Alternative: use silk from larvae as materia

Ants (4)

Food production

- Ant species that cultivates fungi
- Ground and substrate is processed for fungi.
- "Gardens" are laid out and cultivated.
- Fungal spores are planted.
- Competing fungi (i.e. light or water) is eliminated.
 - → Like weeding the garden!
- Fertilisation of chewed larval cases.

Ants (5)

Distribution of labour

- Different types of ants in a colony:
 - Worker
 - Medium-sized ants
 - Small ants
 - Queen
 - Male ants
- Workers search for food (leaves) in the surroundings (up to hundreds of meters from nest).
- Workers organise ant trails for transport of food.
- Medium-sized ants carry leaves.

Ants (6)

Symbiosis

- Ants cannot digest cellulose.
- But fungus can!→ Eat hyphal tips
- Ants provide leaves as breeding ground for fungus.

Gardens

- Sculptured with many furrows ("Furche") and cavities ("Höhle") for brood.
- System of lower passages to drain wet chambers.
- Other tunnels for temporary control
- Ants swab floor clean.
- If foreign fungus develops, it is removed.
- Garden lasts 3-4 weeks / in various stages
- Founding queen brings fungal spores from old colony.
- Up to 500,000 per colony.

Alternative: Some ant species (e.g. Lasius niger, common black ant in Britain) herd aphids ("ant cattle"), protecting and even constructing them shelters.

Ants (7)

Protection

- Problem: large ants are victims of parasites.
- I.e. small flies try to deposit their eggs at head or neck of ants.
- Causes illness.
- Solution: small ants "ride" piggy-back and chase attackers.

Ants (8)

Finding shortest paths:

- Prioritisation of food sources based on distance and reachability
- Dynamic adaption of participating ants, e.g. depending on:
 - Size of colony (in number of ants)
 - Amount of stored food
 - Available food sources in vicinity
 - Other colonies and their location

Adaptive path optimisation

Ants (11)

Behaviour of ants

[Deneubourg et al., Dorigo, around 1990]

Ants (12)

- Ants deposit pheromones on their path.
- Ants prefer paths having higher pheromone concentration.
- Pheromones evaporate.

→ Ants do not care about shortest paths, only about not getting

Question: What governs here?

→ Centralised control is impossible!

Characteristics

- Colony size ~ [(8*10)]^6
- Without central authority: no one is "in charge"!
- Colony lifetime ~ 15 years (about the lifetime of one queen)
- Colonies have a "life cycle"
- Older ants behave differently from younger:
 - Older are more fixed in ways.
 - Younger are more responsive to environmental conditions.
 - Younger, though smaller, are more persistent & aggressive.
- But ants live no longer than one year!
 - Males live one day (fight & mate).
 - Colonies in an area (which may be as large as Southern England) coordinate their Nuptial Flight to one single evening.

Emergence

Insight: Emergence

- Something just appears:
 - A shortest path
 - Protection
 - Role assignment
 - Gardens
- Not predictable from individual entities
- Ingredients
 - Self-organisation
 - Autonomous decisions
 - Interaction

Agenda

- A first example: water temples in Bali
- A second example: ants
- Emergence
- Term definition
- Quantification of emergence
- A refined approach to emergence quantification
- Conclusion and further readings

Emergence

- Emergence is a phenomenon that can be observed in various systems (especially in nature).
- In principle, it can be found if the following "ingredients" exist:
 - A set of multiple (homogeneous) individuals
 - Individuals are self-motivated and self-organised
 - Individuals interact with each other
 - No centralised authority controls the process
- "The whole is more than the sum of its parts!"
- Let's have a look at some examples:
 - 1. From nature
 - 2. From technical systems
 - 3. From social systems

Examples from nature: swarms

ORGANIC

Swarms

- Flock of birds
- School of fish
- Behave as a unified organism
- No leader, no control
- Very simple rules

Advantageous for participants:

- Avoid attackers (appear as huge fish)
- Highly resource efficient (wind for birds)

- 1. Separation: Boid maintains a given distance from other boids
- 2. Cohesion: Boid moves towards center of mass of neighboring boids
- 3. Alignment: Boid aligns its angle along those of neighboring boids

Examples from nature: termites

Termite colonies

- Are able to build large "cathedral" structures.
- Structures consist of cone-shaped outer walls and ventilation ducts ("Kanäle").
- Brood chambers are situated in central hive.
- Spiral cooling vents ("Öffnung"), support pillars.

Examples from nature: termites (2)

Characteristics

- No central plan!
- No intelligence required from the individual termites, just simple individual behaviours.
- Local and global interaction between termites achieve emergence.
- To ensure that the "cathedral" adapts to local conditions, a randomness to the individual's behaviour is necessary.
- Central, top-down control would actually suppress the positive effect of emergence in termite cathedrals.

Examples from nature: the human brain

The human brain:

- Micro-level: the neuron
 - exhibits very simple behaviour
 - equals single-bit memory
 - has some stochastic characteristics
- Macro-level: the brain
 - About 1.5 kg, volume of around 1130 (f) / 1260 (m) cm³
 - Consists of billions of neurons
 - Displays an infinitely sophisticated and complicated behaviour
 - I.e. language, visual, aural, and tactile I/O, the arts, culture, emotions, as well as logical thought and processing
 - Is robust, adaptive, innovative
- An examination of individual neurons cannot predict the behaviour of billions of them working together!

Technical examples: the candle mover

"Candle Mover"

- 1 sensor (pressure)
- 1 actuator (direction)
- In case of 2 candles: move backward, turn, continue to move forward

Technical examples: the candle mover (2)

What happens?

Technical examples: London Millennium Bridge

London Millennium Foot Bridge

- Built according to classical engineering.
- Analysis showed that the bridge was sufficiently strong and rigid.
- Immediately after opening, it had to be closed due to strong lateral swinging caused by a number of walking pedestrians.

Technical examples: London Millennium Bridge (2)

- Analysis of the emergent swinging effect
 - Natural lateral frequency of the bridge was close to the normal walking frequency of pedestrians.
 - Pedestrians were becoming synchronised in phase and frequency to each other.
 - → Humans on a swaying surface tend to subconsciously synchronise their footsteps to the sway.
 - The bridge designers did not anticipate this phenomenon.
- Individual behaviour responded to the common network (the swaying bridge), thereby resulting in an unexpected top-level system behaviour.
 - → This is communication, not control!

Technical examples: welding robots

Automotive Welding Robots ("Schweißroboter")

- The weld's quality depends upon the line voltage.
- Set of robots were installed in a factory.
- Random irregularities/defects were observed.
- Quality management techniques did not work.

Technical examples: welding robots (2)

Failures

- Caused by line voltage drops.
- Due to simultaneous welds from several robots.
- Design assumed random (non-synchronised) operation.
- All robots share the same networked voltage line.

Approach to alleviate the problem:

- Robot monitors the line voltage and waits until it is high enough.
 - → Problem became worse: increased synchronisation.
- Result: No synchronisation due to random delays.
 - → Note the importance of stochastic behaviour.

Technical examples: hard drives

"Enterprise" Server Disk Drives

- Sensitive to vibration
- Especially in case of synchronised seek activity
- Set of disk drives mounted together
 → Data faults were experienced.
- I.e. computer system database searches caused several disk drives to seek simultaneously, thereby building up synchronised vibration that disturbed each other's operation.

Technical examples: hard drives (2)

Emergent behaviour

- Simultaneous disk drive seek operations are inherent to large enterprise servers – inducing emergent behaviour among multiple disk drives.
- The disk drives have to be especially designed for such applications.
 - → Much more expensive than "ordinary" disk drives.

Technical examples: traffic jams

Freeway Traffic Jams

- Drivers act egoistically (avoid traffic jams).
- Observation: Minor perturbation in high traffic periods cause traffic jams.
 - Areas of light and areas of jammed traffic appear periodically.
 - Especially at fast lanes.
 - Total effective flow rate of cars is significantly reduced.

v=const 85km/h
-> full stop

v=const 85km/h
-> break hard

v=const 85km/h
-> break

v=const 85km/h
-> slow down

v=const 80km/h

Technical examples: traffic jams (2)

- Result of emergent behaviour!
 - Individual drivers attempt to respond to minor perturbations, but with delay.
 - Drivers in the fast lane have more "gain" in their behaviour.
 - Combination of non-linear delays and high gain leads to oscillations.
 - → Result: congestion and reduced flow rate.
- Solution: relax, go with the flow (i.e., reduce your driving "gain").
 - → Leads to variability in separation distances.
 - → Net flow rate is only slightly decreased.

Technical examples: Cellular Automata

- Field of Finite State Machines (FSM)
- Automaton changes its state depending on the states of its neighbours
- Example: Game of Life (John Conway) http://www.bitstorm.org/gameoflife/

Example rule set:

≤ 1	neighbour	dead
2	neighbours	const
3	neighbours	alive
≥ 4	neighbours	dead

Technical examples: Cellular Automata (2)

The "Game of Life"

Static

Oscillating

Moving

- Generalisation based on: form, position, colour, communication, etc.
 - → Used to simulate united cell structures.

Social examples: sidewalk structures

O R G A N I C

- Optimised sidewalk structure
 - University of Michigan built a new campus.
 - Concrete sidewalks were to be placed in the Quad between buildings, but how to design?
 - Once installed they are difficult to change.
 - Previous approaches turned out to be not useful.

Concept:

- Plant grass and allow students to walk as they want.
- Concrete sidewalks were installed according to emerging patterns.
- Students and faculty are cognitive and adaptive elements in a larger system.
- At a system level, their patterns of walking could not be accurately predicted.
- Later analysis showed that as a group, an optimum sidewalk structure was derived.

Social examples: social networks

Social network:

- Nodes = people
- Edges = relations between people
 → E.g.: friends, relatives, colleagues
- Paths:
 - Chain of people
 - E.g.: friend of my friend of my friend

Interesting properties:

- Decentralised, self-organising, robust, scalable network
 → E.g.: people are born, die, get to know new people
- Efficient (short) communication paths & decentralised routing
 - See Milgram's Experiment

Social examples: Milgram's experiment

- Analysis of paths in social networks
 - Conducted in the 1960s by Stanley Milgram
 - Stanley Milgram (1933 –1984) was an American social psychologist.
- Milgram sends a letter to 160 randomly selected persons from Omaha and Nebraska (USA).

- Letter contains task: Deliver letter to a certain stock broker in Boston, Massachusetts, USA.
- Constraints: Persons must only send letter to someone they know at a "first name basis" (i.e.: friends, colleagues).
- Results:
 - 44 letters reached the target
 - Average number of "hops": 6
 I.e., short paths in network of 200 million US citizens!

Emergent property: This is a small world!

Further examples for small world networks:

- Network derived from movie database
 - Nodes: actors
 - Edge between two actors if they have acted in same movie
- Bacon number of actor:
 Shortest path between an actor and Kevin Bacon
 - Average bacon number: 2.9
 - Via Kevin Bacon, any actor can be linked to any other in 6 "hops"
- 6 is a typical distance between pairs of nodes in such networks.
 - → 6 degrees of separation

Further social examples

- "Die Zeit" linked a Turkish Kebab-shop owner in Frankfurt, Germany, to his favorite actor Marlon Brando in 6 hops:
 - Shop owner has a friend in California who works together with the boyfriend of a woman who is in the same student's union of the daughter of the producer of the movie "Don Juan" starring Marlon Brando.
- Erdös number: distance in graph of paper (co-) authors
 - Paul Erdös: famous mathematician(> 1500 papers with > 500 co-authors)
 - Average Erdös number: 4.7
 - Average distance between authors: 7.3

Paul Erdös

Brendan D. McKay

Peter Eades

Jürgen Branke

Sven Tomforde

Agenda

- A first example: water temples in Bali
- A second example: ants
- Emergence
- Term definition
- Quantification of emergence
- A refined approach to emergence quantification
- Conclusion and further readings

Emergence

Term definition: "emergence"

- How macroscopic behaviour arises from microscopic behaviour.
- Emergent entities (properties or substances) 'arise' out of more fundamental entities and yet are 'novel' or 'irreducible' with respect to them.

 [Stanford Encyclopedia of Philosophy: http://plato.stanford.edu/entries/properties-emergent/]
- "It is unlikely that a topic as complicated as emergence will submit meekly ("widerspruchslos") to a concise definition, and I have no such definition to offer."

[John Holland: "Emergence: From Chaos to Order"]

Emergence (2)

ORGANIC

Emergence

- Comes from "to emerge" (in German: "auftauchen")
- Verbal description:
 - "A system is more than the sum of its parts."
 - From Aristotle (384 BC 322 BC); Greek philosopher and polymath.
- Is a characteristic of the whole system, not part of the subsystems.

Definition:

- "An emergent system characteristic is a property, which is not only defined by the elements contained in the system, but by the interaction between these elements."
- Emergent system characteristics are not computable by *summarising* the characteristics of the contained parts.
- Emergent behaviour is the result of interactions between processes.

Emergence (3)

Sources of Emergent Behaviour

- Unwanted/unintended synchronisation, or oscillation
- Local or global networks allowing wanted/unwanted communication (often unintentional networks)
- Non-linear interaction between simple elements
- Thrashing: competition over a scarce resource
- Chaotic (even if deterministic) behaviour
 - → Emergence is nature's way of dealing with chaos.
- Intentional, or unintentional, feedback loops with poor gain margins.
- Intelligent, adaptive elements in the system.
 - → This means that the behaviour of the elements as well as the system architecture varies with time, depending upon conditions.

Emergence (4)

Management of emergent behaviour

- Prevent or mitigate the sources of emergence.
- Design limits into systems to lessen the negative effects of emergence.
- Add extra stability and robustness to the system.
- Use simulations to detect and design for emergence (caution, very sophisticated simulations required; beware of chaos theory).
- Reduce non-linearity.
- Increase scarce resources to minimise thrashing.
- Use the evolutionary (also called incremental or spiral) development life cycle to discover emergent behaviour.
- Goal: Promote its positive effects and suppress its negative effects!

Agenda

- A first example: water temples in Bali
- A second example: ants
- Emergence
- Term definition
- Quantification of emergence
- A refined approach to emergence quantification
- Conclusion and further readings

Emergence in Organic Computing systems

Emergence in Organic Computing / intelligent systems

- Why do we have to consider emergence in OC systems?
- Do we want do explicitly design emergent effects?
 - → This is hardly impossible...
- Emergence is **not** something we want to design, but something that will appear automatically!
 - Emergence is the result of interactions between a set of self-organised entities.
 - OC systems consist of a set of self-organised interacting entities.
 - → We have to be aware of emergence: positive and negative!
 - In technical systems: How to be aware of something?
 - → We need to measure it!

Emergence in Organic Computing systems (2)

- Structural emergence in the sense of collective self-organisation shows as:
 - patterns in time and/or space
 - patterns (order) at the system level.
- Patterns at system level are realised by:
 - interaction
 - of (a large number of) similar individuals.
- These patterns have properties not existent in the individuals.
- How can we measure emergence?
 - Emergence measures the result (in terms of "order") of some unknown process.
 - Order per se says nothing about self-organisation.
 - Entropy is a measure of order. How is emergence related to entropy?

Quantification of emergence

Goal:

- Assign a high emergence value to a system, which is perceived as emergent!
- Quantification of emergence in OC systems.

Approach:

- Basis: verbal definitions
- Emergence is always associated with patterns (symmetry breaks).
- This corresponds to structural emergence.
- Patterns represent order.
- Order can be measured in terms of entropy.
- Therefore, we must: 1) define entropy and 2) relate it to emergence!

What is order?

Dissipative structures (Prigogine)

Where is more order? Left or right?

Right: Higher entropy

Left: More structure

Gas molecules: distribution with low probability

Gas molecules: thermodynamic equilibrium

higher entropy

What is order? (2)

Order is subjective!

- The perception of order depends on the view of the observer.
- The purpose and the sensory equipment of the observer determine the view.
- A system can be rated as orderly or disorderly dependent on the utility.

Views and order

- "Order" or "disorder" depends on
 - the purpose and
 - the view (aspect).
- A view is determined by the selection of certain attributes (or a group of attributes) of an object.
- Example:

View	x position	colour	
y t	higher order	same order	
	lower order	same order	

The view is influenced by the pre-processing of sensory data.

Order and entropy

- Entropy is a thermodynamic state variable.
 - High entropy ⇔ high probability.
 - Clausius: Entropy of a closed system will always increase.
- Entropy: measure of (dis)order (high entropy = low order).
- Statistical definition of entropy (S): $S = k_B \cdot \ln(\Omega)$
 - $k_B = 1.38 * 10^{23} \frac{J}{K}$ (the *Boltzmann* constant)
 - k_B = average kinetic energy of an ideal gas particle at a temperature of 1 Kelvin.
 - Ω = probability of a macroscopic state (= the number of possible states of the particles in a system / total number of possible states)
- Example: irreversible diffusion $\log \Omega$, lower entropy
 - Higher Ω, higher entropy

Shannon's entropy

- Definition from information theory (Shannon):
 - Entropy is a measure of information.
 - Message source M, alphabet Z:

$$EntropyH(M) = -K \cdot \sum_{j=1}^{|Z|} p_j \cdot ld p_j$$

- p_j = probability for occurrence
 of symbol z_i ∈ Z in message source M
- Entropy H is a measure for random information in a system (or a message source M).
- K is a constant (can be neglected).
- High content of random information
 - \Rightarrow low predictability \Rightarrow low probability
 - ⇒ high information content.

Shannon's entropy (2)

Example:

- 2 symbols (0 and 1)
- with probabilities p₀ and p₁
- $H = p_0 Id p_0 p_1 Id p_1$

Shannon's entropy (3)

- H = H_{max} is desirable, if a channel must transport the maximal "newness" value per (physical) step.
- In case of: $H < H_{max}$: $R = H_{max}$ H
 - The channel transports useless information (redundancy R).
 - Known information burdens the channel but does not increase the knowledge of the receiver.
- A Shannon channel is "good", if it transports the maximum amount of information:

$$\rightarrow R = 0 !$$

Measuring entropy

Approach: Use the statistical definition of entropy!

- Procedure:
 - Select an attribute A of the system (discrete, enumerable) with values a_i.
 - Observe all elements e_i and assign a value a_i to each e_i.
 - Transform into a probability distribution over the attribute values a_i.
 - Determine:

entropy
$$H_A = -\sum_{j} p_j ld p_j$$

- Each attribute X has its entropy H_x.
- System entropy:

$$H_S = \sum_X H_X$$

- Characterisation of a system by:
 - a) System entropy (low specificity)
 - b) Vector of attribute entropies ("fingerprint"): (HA, HB, Hc...)

Example for the quantification of emergence

Discrete values of x coordinate: 0, 1, 2, 3

, ,	Position:	0	1	2	3
	Frequency:	3	2	6	5
N = 16	р	3/16	2/16	6/16	5/16

$$H_{xcoordinate} = -\left(\frac{3}{16}ld\frac{3}{16} + \frac{2}{16}ld\frac{2}{16} + \frac{6}{16}ld\frac{6}{16} + \frac{5}{16}ld\frac{5}{16}\right)$$
=1,72bit / element

Uniform distribution:

$$H_{xcoordinate} = -\left(\frac{4}{16}ld\frac{4}{16} + \frac{4}{16}ld\frac{4}{16} + \frac{4}{16}ld\frac{4}{16} + \frac{4}{16}ld\frac{4}{16}\right)$$
= 2 bit / element

Emergence: definition

- Entropy ≠ Emergence!
- First try of a definition: Emergence M is the decrease of entropy H from a start state to an end state:

$$M = \Delta H = H_{Start} - H_{End}$$

 This is a necessary, not a sufficient condition for a process to be called emergent. Emergence manifests itself by an increase of order,

i.e.
$$H_{End} < H_{Start}$$
 and $\Delta H > 0$.

- In addition, the process that leads to the increase of order must be self-organised (not e.g. human-induced).
- Problem:

The observation of emergent phenomena frequently involves a change of abstraction level.

Emergence: definition (2)

- A change of view to a higher abstraction level leads to a positive ΔH , which is **not** due to an emergent process.
- $\Delta H = \Delta H_{view} + \Delta H_{emergence}$
- Emergence $M = \Delta H_{emergence} = \Delta H \Delta H_{view}$
- If the two observations (start, end) are made on different abstraction levels, the increase of order due to the change of view (∆H_{view}) must not be counted as entropy stemming from emergence.
- Or: the entropies H_{Start} and H_{End} are only comparable if they are observed at the same abstraction level ($\Delta H_{view} = 0$).

Emergence: abstraction level

Example:

Observation 1 of x coordinate: 32-bit floating point

Observation 2 of x coordinate: quantisation to 256 values (8 bit integer)

Quantisation:

$$-\Delta H = 24 \frac{bit}{element}$$

$$-\Delta H = \Delta H_{view}$$

-
$$Emergence M = \Delta H_{emergence} = 0$$

Quantification of abstraction change

Consider a system S at time t = 0

attribute value	frequency
0	1
0,5	2
1	3
1,5	2
2	2

Quantification of abstraction change (2)

Something happened from t = 0 to t = 1

Different state due to self-organised process!

attribute value	frequency
0	2
0,5	2
1	2
1,5	1
2	3

Quantification of abstraction change (3)

Numerical precision changed from double to int

attribute value	frequency
0	4
0,5	
1	3
1,5	
2	3

 $H_x^1 = 1,57095059445$

5				
4				
3				
2				
1				
0				
	0		1	2
■ Number of system elements				

Quantification of abstraction change (4)

What happened? Do we have a higher degree of order?

Let's calculate the emergence *M*:

$$M = H_{\mathcal{X}}^0 - H_{\mathcal{X}}^1$$

$$M = 2,24643934467 - 1,57095059445$$

$$M = 0,67548875022$$

Result: increase in terms of order (decrease of entropy)!

But: Subtract influence of ΔH_{view} (i.e. abstraction change)!

Quantification of abstraction change (5)

First step: adjust the abstraction at time t = 0:

attribute value	frequency
0	3
0,5	
1	5
1,5	
2	2

■ Number of system elements

Quantification of ΔH_{view}

Now, ΔH_{view} calculates:

- $\bullet \quad \Delta H_{view} = H_x^0 H_x^{\prime 0}$
- $\Delta H_{view} = 2,24643934467 1,48547529723$
- $\Delta H_{view} = 0.76096404744$
- Thus, we have an *increase* in terms of *order*, caused by the abstraction level change (less uniformly distributed)!

Quantification of ΔH_{view} (2)

• If we compare the states at t = 0 and t = 1 on the same level of abstraction, we see a *decrease of order*, due to a *higher degree* of *uniform distribution*!

Quantification of ΔH_{view} (3)

Final step: subtract ΔH_{view} from the emergence M calculated before:

$$\bullet \quad M = H_{\chi}^0 - H_{\chi}^1 - \Delta H_{view}$$

•
$$M = 2,24643934467 - 1,57095059445 - 0,76096404744$$

•
$$M = -0.08547529722$$

- And `Ta-da'!
- Now, we get a negative emergence value M which indicates an *increase* in terms of *entropy* from time t=0 to t=1, given the change in the level of abstraction.

Emergence and order

- Emergence $M = \Delta H_{emergence}$ is a measure of the (self-organised) increase of order from start to end of a process.
- Is there an absolute indicator of order?
- We can define order as the difference between the entropy at maximum disorder (H_{max}) and at a certain system state (H):

$$M = \Delta H = H_{max} - H = \Delta H_{emergence} - \Delta H_{view}$$
 with $\Delta H_{view} = 0$:
$$Emergence \ M = \Delta H_{emergence} = H_{max} - H$$

 H_{max} is the system or attribute entropy for the case of a uniform probability distribution.

Emergence definition

Term definition

- Emergence is the increase of order due to self-organised processes between the elements of a system.
- Higher order is measured in terms of a lower description complexity, i.e. in terms of lower information content.
- The more structure a system displays, the less explicit information is necessary to describe it: Kolmogoroff complexity.
- Any entropy decrease due to a change to a higher abstraction level (∆H_{view})
 must be subtracted.
- Emergence $M = \Delta H_{emergence} = H_{max} H \Delta H_{view}$
- Relative Emergence m (for $\Delta H_{\text{view}} = 0$) $m = \frac{H_{\text{max}} H}{H_{\text{max}}}$

Redundancy

Information theory:

- Redundancy R = H_{max} H
- Relative redundancy: $r = \frac{H_{max} H}{H_{max}}$
- Why is M = R (or $\Delta H_{\text{emergence}} = R$)?
- Answer: Different notions of utility
 - Information theory: A channel should be used only for the transmission of relevant (= new) information.
 - Max. information content if $H = H_{max}$ → R = 0
 - Newness or unpredictability of messages increase their value (information content).
 - The physical steps (light pulses, current levels, voltage levels) should be used economically only to transport relevant information.
 - Living (self-organising) systems are "better" if they display higher order, lower newness, higher predictability.

Redundancy (2)

Redundancy conclusions:

- Communication engineer:
 Redundant information should not be transmitted over a channel.
 - → Redundancy is "bad".
- Nature, living systems:
 - The existence of predictable information about a system means that no (or little) new information has to be sent via the channel.
 - → High predictability (= emergence = redundancy) is "good".

How to utilise emergence information?

- Emergence can be calculated for a given system for different attributes.
- It can be used as an early indicator of (emergent) ordering processes.
- System emergence (the total of all attribute emergence values) is not selective enough.
- More interesting: Emergence fingerprint for all relevant attributes.
- Open questions:
 - Which attributes are relevant?
 - What is positive (wanted) and negative (unwanted) emergence?
 - How can we identify results of self-organised processes?

Example: cannibalistic behaviour of chicken

Problem

- TiHo Hannover
- Chicken stock in large farms
- Thousands of chicken in one shed
- Injured chicken:
 - Other chicken start to hurt injured chicken.
 - Do not stop until chicken is dead.
 - Even a small scratch causes dead!
 - Bad for chicken (→ dead) and owner (→ cost)
- What to do?
 - Noise disturbs chicken, they let up from injured chicken.
 - But: noise is bad (stress level)

Yellow: food source

White: chicken with heading

Red: injured chicken

Emergence fingerprint

- Emergence fingerprint = visualisation of all (relevant) attribute emergence values of a system.
 - Visualisation as *n*-dimensional Kiviat graph
- Example
 - x-position, y-position, colour, state, direction, intention

Emergence fingerprint (2)

Pattern 1: $M_x = 0.181$, $M_y = 0.177$, $M_{direction} = 0.091$

Emergence fingerprint (3)

Pattern 2: $M_x = 0.226$, $M_y = 0.237$, $M_{direction} = 0.046$

Emergence fingerprint (4)

Pattern 3: $M_x = 0.359$, $M_y = 0.328$, $M_{direction} = 0.041$

Emergence fingerprint (5)

Emergence fingerprint (6)

$$v = \frac{x}{\Delta t}$$
$$y = v \times \tau$$

Δt Observation period τ Prediction period

Cluster formation

Summary: quantification of emergence

Process

- 1. Quantify entropy for each attribute.
- 2. Calculate emergence (M) for each attribute: $M = \Delta H = H_{Start} H_{end} \Delta H_{view}$
- 3. Δ H_{view} is the (possible) change of abstraction when observing H_{Start} and H_{end}, e.g. converting *float* to *int* values.
- 4. a) Determine the system emergence as sum over all attributes.
 - b) Illustrate as "fingerprint".
- 5. Is this due to self-organisation?

Agenda

- A first example: water temples in Bali
- A second example: ants
- Emergence
- Term definition
- Quantification of emergence
- A refined approach to emergence quantification
- Conclusion and further readings

Until now:

- Regarded emergence as the difference between an entropy at the beginning of some process and at the end.
- Discrete entropy difference (DED):

$$DED[x] = H_{start}[x] - H_{end}[x]$$

- A process is called emergent if DED[x] > 0 and the process is selforganised.
- What if we do not know if self-organisation is in place?
- Entropy values are computed for different attributes which leads to a so-called emergence fingerprint – and this fingerprint serves as basis for certain decisions, e.g., concerning interactions with the system S.

Basic model

Approach:

- We want to measure the amount of information we gain when we know that a categorical variable x has value i'.
- In a probabilistic framework: probability p(x = i').
- Another unrelated, categorical attribute y and a value j': p(y = j').
- This information measure has to be additive: If we knew the values of both attributes, the two information values are added.
- Hence: use $-\ln p(x=i')$ and $-\ln p(y=j')$ (which are always non-negative)
- If we observe both values, the amount of information for this observation of statistically independent variables gets:

$$-\ln(p(x = i', y = j')) = -\ln p(x = i') - \ln p(y = j')$$

From probabilities to entropy

- We are not interested in specific values of an attribute.
- Instead: We are interested in expected values.
- Hence: determine the expectation of the information with respect to the corresponding distribution.
- This is exactly the entropy, i.e., for a variable x with a corresponding distribution p(x) we get:

$$H[x] = -\sum_{x} p(x) \ln p(x)$$

- Then: sum up over all possible values of x again.
- Entropy describes the expected amount of information which we gain when we observe x.

Limitations of the previous approach

Measure may be unsatisfying in some applications due to:

- 1. There are many attributes with continuous values in practical applications.
- 2. Many applications are multi-variate, i.e., based on several (categorical and continuous) attributes.
- The former problem (1) is solved by categorisation of continuous attributes.
 - → Could be problematic as entropy measurements depend on size and position of the chosen "bins".
- The latter (2) is solved by analysing the fingerprints.
 - → If this analysis is conducted automatically, the different entropy values must be combined at some time.

An extended model

Approach:

- Multivariate entropy measure for continuous variables.
- Combine all attributes into a vector x.
 Then: continuous entropy (also known as differential entropy) is:

$$H[x] = -\int p(x) \ln p(x) \, dx$$

- where p is the joint density of x.
- p combines all attributes, i.e. several continuous random variables.
- For simplicity: assume that we only have continuous variables.
 →Hybrid (categorical/continuous) approaches are possible.
- Please note: a continuous entropy (in contrast to a categorical one) may have negative values.

Density

- Approach relies on estimating the density of a continuous variable.
- Neglect (by now) the functional form of the density function (e.g. to assume that it is Gaussian).
- Then: a non-parametric density estimation approach can be used.
- Assume: given a set X of N observations of x (i.e., samples): x_0, \dots, x_{N-1} .
- Goal: estimate p(x') for arbitrary x' (not necessarily $x \in X$).
- Idea: count all samples in a certain environment around x' and divide this number by the size of the environment.

Alternative (smoother):

 Use Parzen window approach, i.e. a kernel density estimator based on a Gaussian kernel:

$$p(x') \approx \frac{1}{N} \sum_{x_n \in X} \frac{1}{(2\pi h^2)^{\frac{D}{2}}} \exp(-\frac{1}{2} \frac{||x' - x_n||^2}{h^2})$$

- where D is the dimensionality of x and h is a user-defined parameter.
- h depends on the data set X there are a number of heuristics to estimate h
 (e.g. h is set to the average distance of the ten nearest neighbours from
 each sample, averaged over the entire data set).

Evaluation of the integral

- Continuous entropy model contains integral.
 - → How to evaluate this?
- Remember: data set X contains samples x_n distributed according to p (i.e., $x_n \sim p$).
- Hence: Entropy can be approximated

$$\widehat{H}[x] \approx -\frac{1}{N} \sum_{x_n \in X} \ln p(x_n)$$

- where the $p(x_n)$ are estimated using the Parzen approach.
- Note: this discrete approximation of the entropy does not sum up over discrete points in the input space situated on a regular grid.
- Hence: take their non-uniform distribution into account by a correcting factor $\frac{1}{P(x_n)}$.
 - → Corresponds to the concept of importance sampling.

From entropy to emergence

- The static approach defines emergence using a difference of entropy values.
 → Emergence is considered as a change of order within a system.
- Here, we define emergence as an unexpected or unpredictable change of the distribution underlying the observed samples.
- Then: use divergence measure to compare two density functions,
 i.e. p(x) at t₀ and q(x) at t₁.
- Possible measure is Kullback-Leibler (KL) divergence KL(p||q).
- Also known as relative entropy.
- Compares two probability density functions.

$$KL(p||q) = -\int p(x) \ln \frac{q(x)}{p(x)} dx$$

Limitations of Kulback-Leibler

- KL divergence is not a true metric since it is not symmetric.
- However:
 - $KL(p||q) \ge 0$ and
 - KL(p||q) = 0 only if q(x) = p(x).
- We measure the expected amount of information contained in a new distribution with respect to the original distribution of samples and not with respect to the new distribution:

$$KL(p||q) = -\int p(x) \ln q(x) \ dx + \int p(x) \ln p(x) \ dx$$

There are concepts for symmetric variants (neglected here).

Application of the measures

Measures are applicable to emergence quantification:

- Abstraction from the technical system.
- Consider only distributions of samples in the attribute space.
- Assumption: observation of a number of processes "generating" samples.
- Goal: comparison of the distributions underlying the observed samples.
- Concept: estimation of the distributions at two different points in time, an earlier one (p) and a later one (q).
- Instead of assuming that we get a set of observations at each (discrete)
 point in time: one single observation at each point in time (these points are
 considered as equidistant in time).

Application of the measures (2)

Sliding window:

- Estimate p and q in sliding data windows.
- Windows have fixed length, must be:
 - long enough to estimate p and q with sufficient reliability.
 - short enough to allow for the assumption that the observed processes are nearly timeinvariant in these windows.

Distinguish:

- First (earlier) time interval is fixed at a certain point in time, whereas the second interval moves along the time axis with the current point in time.
 - → Online application.
- Both windows move along the time axis in a fixed temporal distance.
 - → Distance *d* is important parameter of the measurement technique.

Application of the measures (3)

- Estimation of densities *p* and *q*: non-parametric or model-based approaches.
 - → Depending on application.
- Hybrid approaches are possible as well.
- If both densities are estimated in a non-parametric approach:
 - \rightarrow Either using the sampling points in the first set of observations $(x_n \sim p)$ or those given in the second $(x_n \sim q)$.
- Suggestion: Evaluate both intervals and average measures.
 - → Get more robust estimates.
- Comparison leads to 'degree' of emergence. In addition:
 - Detection of processes that disappear (i.e., components become obsolete).
 - Detection of newly emerging processes (i.e., new components are required).
 → Novelty detection.
 - Detection of components that change their characteristics (i.e., components change their parameters such as centre or mixing coefficients).
 - → Concept drift.

Summary

Emergence detection

- Based on probabilistic (or information-theoretic) considerations.
- May be used to determine 'degree' of emergence.
- Contrast to previous approach:
 - Applicable in cases with continuous attributes,
 - Applicable if several attributes have to be combined,
 - Applicable if application allows for model-based density estimates.
- Measures can assess emergence gradually.
- Can further be used to detect novel situations or phenomena such as concept drift.
- In organic systems:
 - Monitor the overall distribution by combining measures for different components.
 - Supervise components individually.

Agenda

- A first example: water temples in Bali
- A second example: ants
- Emergence
- Term definition
- Quantification of emergence
- A refined approach to emergence quantification
- Conclusion and further readings

From self-organised order to emergence

- Nature as inspiration: Complexity is handled by self-organised order.
- Order is observer- and goal-dependent!
- Self-organised order consists of purposeful self-organisation processes and additional emergent phenomena.
- Same ingredients in organic systems → same processes expected!
- Consequence: We have to measure and master emergence.
- Approach:
 - Observe behaviour of system
 - Measure order (i.e. based on entropy)
 - Compare measures at different points.

Conclusion (2)

This chapter:

- Demonstrated how self-organised order appears in natural, technical and social systems.
- Highlighted the control of complexity by self-organisation and emergence.
- Defined the term 'emergence' and its relation to self-organisation.
- Explained how emergence is quantification for systems with discrete attributes.
- Refined this quantification concept to be applicable to continuous attributes and their combinations.

By now, students should be able to:

- Explain the relation between selforganisation and emergence.
- Briefly summarise the term emergence.
- Give examples for emergent phenomena, e.g. in nature.
- Quantify emergence in technical systems based on discrete attributes.
- Outline how emergence detection is done for systems with continuous attributes.

Further readings

- Steven Johnson: "Emergence The connected lives of ants, brains, cities, and software", Scribner publishers, New York, 2001.
- Nelson Fernandez, Carlos Maldonado, Carlos Gershenson: "Information Measures of Complexity, Emergence, Self-organisation, Homeostasis, and Autopoiesis", online available at: http://arxiv.org/pdf/1304.1842v1.
- Moez Mnif and Christian Müller-Schloer: "Quantitative Emergence", in: "Organic Computing A Paradigm Shift for Complex Systems, pages 39 52, 2011, Birkhäuser Verlag, Basel, CH. DOI: 10.1007/978-3-0348-0130-0_2
- Dominik Fisch, Martin Jänicke, Bernhard Sick and Christian Müller-Schloer, "Quantitative Emergence - A Refined Approach Based on Divergence Measures," 2010 Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems, Budapest, 2010, pp. 94-103. DOI: 10.1109/SASO.2010.31
- Deborah Johnson: "Ants At Work: How An Insect Society Is Organised". Free Press 2011, New York (USA) and London (UK), ISBN: 978-1451665703.

Questions ...?