WuS - Cheatsheet

Wahrscheinlichkeitsräume

Grundraum

Terminologie: Die Menge Ω nennen wir Grundraum.

Ereignisse

Ein Element $\omega \in \Omega$ nennen wir Elementarereignis (oder Ausgang des Experiments).

Definition 1.1: Ein Mengensystem $\mathcal{F} \subset \mathcal{P}(\Omega)$ heisst

Sigma-Algebra (σ -Algebra), falls es die folgenden Eigenschaften erfüllt

- 1. $\Omega \in \mathcal{F}$
- 2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
- 3. $A_1, A_2, \ldots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

Dabei nennen wir die Elemente der σ -Algebra Ereignisse.

Wahrscheinlichkeitsmass

Definition 1.2: Sei Ω ein Grundraum und sei \mathcal{F} eine σ -Algebra. Eine Abbildung

$$\mathbb{P}: \mathcal{F} \to [0,1]$$
$$A \mapsto \mathbb{P}[A]$$

heisst Wahrscheinlichkeitsmass auf $(\Omega,\mathcal{F}),$ falls folgende Eigenschaften gelten

- 1. $\mathbb{P}[\Omega] = 1$.
- 2. (σ -Additivität) $\mathbb{P}[A] = \sum_{i=1}^{\infty} \mathbb{P}[A_i]$ if $A = \bigcup_{i=1}^{\infty} A_i$ (disjunkte Vereinigung).

Der Wahrscheinlichkeitsraum

Definition 1.3: Sei Ω ein Grundraum, \mathcal{F} eine σ -Algebra, und \mathbb{P} ein Wahrscheinlichkeitsmass. Wir nennen das Tripel $(\Omega, \mathcal{F}, \mathbb{P})$ Wahrscheinlichkeitsraum.

Bemerkung 1.4: Das Ereignis $A=\varnothing$ tritt niemals ein. Das Ereignis $A=\Omega$ tritt stets ein.

Definition 1.5: Sei Ω eine endlicher Grundraum. Das Laplace Modell auf Ω ist ein Tripel $(\Omega, \mathcal{F}, \mathbb{P})$, sodass

- 1. $\mathcal{F} = \mathcal{P}(\Omega)$,
- 2. $\mathbb{P}: \mathcal{F} \to [0,1]$ ist definiert durch

$$\forall A \in \mathcal{F} \quad \mathbb{P}[A] = \frac{|A|}{|\Omega|}.$$

Eigenschaften von Ereignissen

Satz 1.6 (Abgeschlossenheit der σ -Algebra bzgl. Operationen): Sei $\mathcal F$ eine σ -Algebra auf Ω . Es gilt

- 1. $\emptyset \in \mathcal{F}$,
- 2. $A_1, A_2, \ldots \in \mathcal{F} \Rightarrow \bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$,
- 3. $A, B \in \mathcal{F} \Rightarrow A \cup B \in \mathcal{F}$,
- 4. $A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$.

Ereignis	Grafische Darstellung	Probab. Interpretation
A^c	$\bigcap_{A^c} \bigcap_{A}$	A tritt nicht ein
$A \cap B$	A B	A und B treten ein
$A \cup B$	$\stackrel{A}{\bigcirc}{}^{B}$	A oder B treten ein
$A\Delta B$	A B	Entweder A oder B tritt ein

Beziehung/Interpretationen zwischen Ereignissen

		•
Relation	Grafische Darstellung	Probab. Interpretation
$A \subset B$	(A)	\boldsymbol{B} tritt ein, falls \boldsymbol{A} eintritt
$A\cap B=\varnothing$		A und B können nicht gleichzeitig eintreten
Ω = $A_1 \cup A_2 \cup A_3$ wobe i A_1, A_2, A_3 paarweise disjunkt	$egin{array}{c} \Omega \ A_1 \ A_3 \ A_2 \ \end{array}$	für jedes Elementarereignis ω , höchstens eins der Ereignisse A_1, A_2, A_3 kann eintreten.

Eigenschaften von Wahrscheinlichkeitsmassen

Satz 1.7: Sei \mathbb{P} ein Wahrscheinlichkeitsmass auf (Ω, \mathcal{F}) . Es gilt:

- 1. $\mathbb{P}[\varnothing] = 0$
- 2. (Additivität) Sei $k \ge 1$, seien A_1, \ldots, A_k -viele paarweise disjunkte Ereignisse, dann gilt

$$\mathbb{P}\left[A_1 \cup \cdots \cup A_k\right] = \mathbb{P}\left[A_1\right] + \cdots + \mathbb{P}\left[A_k\right]$$

- 3. Sei A ein Ereignis, dann gilt $\mathbb{P}[A^c] = 1 \mathbb{P}[A]$
- 4. Falls A und B zwei (nicht notwendigerweise disjunkte) Ereignisse, dann gilt

$$\mathbb{P}[A \cup B] = \mathbb{P}[A] + \mathbb{P}[B] - \mathbb{P}[A \cap B]$$

Nützliche Ungleichungen

Satz 1.8 (Monotonie): Seien $A, B \in \mathcal{F}$, dann gilt $A \subset B \Rightarrow \mathbb{P}[A] \leq \mathbb{P}[B]$.

Satz 1.9 (Union Bound): Sei A_1, A_2, \ldots eine Folge von (nicht notwendigerweise disjunkten) Ereignissen, dann gilt die folgende Ungleichung $\mathbb{P}\left[\bigcup_{i=1}^{\infty}A_i\right]\leq\sum_{i=1}^{\infty}\mathbb{P}\left[A_i\right]$.

Bemerkung 1.10: Die obrige Ungleichung gilt ebenfalls für eine Folge von endlich vielen nicht-leeren Ereignissen.

Stetigkeit von Wahrscheinlichkeitsmassen

Satz 1.11: Sei (A_n) eine monoton wachsende Folge von Ereignissen $(\forall n: A_n \subset A_{n+1})$. Dann gilt

$$\lim_{n\to\infty}P\left[A_{n}\right]=\mathbb{P}\left[\bigcup_{n=0}^{\infty}A_{n}\right].\quad\text{monoton wachsender Grenzwert}$$

Sei (B_n) eine monoton fallende Folge von Ereignissen $\forall n:(B_n\supset B_{n+1})$. Dann gilt

$$\lim_{n\to\infty} P\left[B_n\right] = \mathbb{P}\left[\bigcap_{n=1}^{\infty} B_n\right]. \quad \text{monoton fallender Grenzwert}$$

Bemerkung 1.12: Durch Monotonie erhalten wir $\mathbb{P}\left[A_n\right] \leq \mathbb{P}\left[A_{n+1}\right]$ und $\mathbb{P}\left[B_n\right] \geq \mathbb{P}\left[B_{n+1}\right]$ für jedes n. Daher sind die Grenzwerte in den obrigen Gleichungen wohldefiniert.

Bedingte Wahrscheinlichkeit

Definition 1.13 (Bedingte Wahrscheinlichkeit): Sei $(Ω, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Seien A, B zwei Ereignisse mit $\mathbb{P}[B] > 0$. Wir definieren die bedingte Wahrscheinlichkeit von A gegeben B wie folgt

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}.$$

Bemerkung 1.14: $\mathbb{P}[B \mid B] = 1$.

Satz 1.15: Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Sei B ein Ereignis mit positiver Wahrscheinlichkeit. Dann ist $\mathbb{P}[. \mid B]$ ein W-Mass auf Ω .

Satz 1.16 (Gesetz der totalen Wahrscheinlichkeit): Sei B_1, \dots, B_n eine Partition^a des Grundraums Ω , so dass $\mathbb{P}[B_i] > 0$ für jedes 1 < i < n gilt. Dann gilt

$$\forall A \in \mathcal{F} \quad \mathbb{P}[A] = \sum_{i=1}^{n} \mathbb{P}[A \mid B_i] \mathbb{P}[B_i]$$

 $a_{\text{i.e.}}$ $\Omega = B_1 \cup \cdots \cup B_n$ mit paarweise disjunkten Ereignissen. Satz 1.17 (Satz von Bayes): Sei $B_1, \ldots, B_n \in \mathcal{F}$ eine Partition von Ω sodass, $\mathbb{P}\left[B_i\right] > 0$ für jedes i gilt. Für jedes Ereignis A mit $\mathbb{P}[A] > 0$ gilt

$$\forall i = 1, \dots, n \quad \mathbb{P}\left[B_i \mid A\right] = \frac{\mathbb{P}\left[A \mid B_i\right] \mathbb{P}\left[B_i\right]}{\sum_{j=1}^n \mathbb{P}\left[A \mid B_j\right] \mathbb{P}\left[B_j\right]}$$

Unabhängigkeit von Ereignissen

Definition 1.18 (Unabhängigkeit): Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Zwei Ereignisse A und B heissen unabhängig falls $\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$.

Bemerkung 1.19. Falls $\mathbb{P}[A] \in \{0,1\}$, dann ist A unabhängig von jedem Ereignis sodass,

$$\forall B \in \mathcal{F} \quad \mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B].$$

Falls ein Ereignis A unabhängig von sich selbst ist, also $\mathbb{P}[A \cap A] = \mathbb{P}[A]^2$) gilt, dann muss $\mathbb{P}[A] \in \{0,1\}$ gelten. A ist unabhängig von B genau dann wenn A unabhängig von B^c ist. Satz 1.20: Seien A, $B \in \mathcal{F}$ zwei Ereignisse mit $\mathbb{P}[A]$, $\mathbb{P}[B] > 0$. Dann sind folgende Aussagen äquivalent:

- 1. $\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$, A und B sind unabhängig
- 2. $\mathbb{P}[A \mid B] = \mathbb{P}[A]$, Eintreten von B hat keinen Einfluss auf A
- 3. $\mathbb{P}[B \mid A] = \mathbb{P}[B]$. Eintreten von *A* hat keinen Einfluss auf *B*

Definition 1.21: Sei I eine beliebe Indexmenge. Eine Familie von Ereignissen $(A_i)_{i \in I}$ heisst unabhängig falls

$$orall J \subset I ext{ endlich } \mathbb{P}\left[\bigcap_{j \in J} A_j
ight] = \prod_{j \in J} \mathbb{P}\left[A_j
ight].$$

Bemerkung: Drei Ereignisse *A*, *B* und *C* sind unabhängig falls alle 4 folgenden Gleichungen erfüllt sind (nicht nur die Letzte!):

$$\begin{split} \mathbb{P}[A \cap B] &= \mathbb{P}[A]\mathbb{P}[B], \\ \mathbb{P}[A \cap C] &= \mathbb{P}[A]\mathbb{P}[C], \\ \mathbb{P}[B \cap C] &= \mathbb{P}[B]\mathbb{P}[C], \\ \mathbb{P}[A \cap B \cap C] &= \mathbb{P}[A]\mathbb{P}[B]\mathbb{P}[C] \end{split}$$

Zufallsvariablen und Verteilungsfunktionen

Abstrakte Definition

Definition 2.1: Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Eine Zufallsvariable (Z.V.) ist eine Abbildung $X : \Omega \to \mathbb{R}$ sodass, für alle $a \in \mathbb{R}$ gilt,

$$\{\omega \in \Omega : X(\omega) \le a\} \in \mathcal{F}.$$

Indikatorfunktion: Sei $A \in \mathcal{F}$. Wir definieren die Indikatorfunktion $\mathbb{1}_A$ auf A, durch

$$\forall \omega \in \Omega \quad \mathbb{1}_A(\omega) = \begin{cases} 0 & \text{if } \omega \notin A, \\ 1 & \text{if } \omega \in A. \end{cases}$$

Notation: Für Ereignisse im Bezug auf Z.V. werden wir auf darauf verzichten sie mittels Beziehung zu ω darzustellen. Stattdessen schreiben wir für a < b

$$\begin{aligned} & \{X \leq a\} = \{\omega \in \Omega : X(\omega) \leq a\} \\ & \{a < X \leq b\} = \{\omega \in \Omega : a < X(\omega) < b\}, \\ & \{X \in \mathbb{Z}\} = \{\omega \in \Omega : X(\omega) \in \mathbb{Z}\} \end{aligned}$$

Betrachten wir die Wahrscheinlichkeit nach obigen Beispiel. Dann lassen wir gerade die Klammern weg und schreiben einfach

$$\mathbb{P}[X \le a] = \mathbb{P}[\{X \le a\}] = \mathbb{P}[\{\omega \in \Omega : X(\omega) \le a\}].$$

Verteilungsfunktion

Definition 2.2: Sei X eine Zufallsvariable auf einem W-Raum $(\Omega, \mathcal{F}, \mathbb{P})$. Die Verteilungsfunktion von X ist eine Funktion $F_X : \mathbb{R} \to [0,1]$, definiert durch

$$\forall a \in \mathbb{R} \quad F_X(a) = \mathbb{P}[X \le a].$$

Example 2: Indikatorfunktion eines Ereignisses Sei A ein Ereignis. Sei $X=\mathbbm{1}_A$ eine Indikatorfunktion auf einem Ereignis A. Dann gilt

$$F_X(a) = \begin{cases} 0 & \text{falls } a < 0, \\ 1 - \mathbb{P}[A] & \text{falls } 0 \le a < 1 \\ 1 & \text{falls } a \ge 1 \end{cases}$$

Satz 2.3 (Einfache Identität): Seien a < b zwei reelle Zahlen. Dann gilt $\mathbb{P}[a < X \le b] = F(b) - F(a)$.

Theorem 2.4 (Eigenschaften der Verteilungsfunktion): Sei X eine Z.V. auf einem Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$. Die Verteilungsfunktion $F = F_X : \mathbb{R} \to [0,1]$ von X erfüllt folgende Eigenschaften:

- 1. F ist monoton wachsend
- 2. F ist rechtsstetig ^a
- 3. $\lim_{a\to-\infty} F(a) = 0$ und $\lim_{a\to\infty} F(a) = 1$.
- ^a Formal: $F(a) = \lim_{h \to 0} F(a+h)$ für jedes $a \in \mathbb{R}$.

Unabhängigkeit von Zufallsvariablen

Definition 2.5: Seien X_1, \ldots, X_n Zufallsvariablen auf einem W-Raum $(\Omega, \mathcal{F}, \mathbb{P})$. Dann heissen X_1, \ldots, X_n unabhängig falls $\forall x_1, x_2, \ldots, x_n \in \mathbb{R}$ $\mathbb{P}[X_1 \leq x_1, \ldots, X_n \leq x_n] = \mathbb{P}[X_1 \leq x_1] \ldots \mathbb{P}[X_n \leq x_n]$

Bemerkung 2.6: Man kann zeigen, dass X_1, \ldots, X_n genau dann unabhängig sind, wenn folgende Bedingung gilt $\forall I_1 \subset \mathbb{R}, \ldots, I_n \subset$

 \mathbb{R} Intervalle $\{X_1 \in I_1\}, \ldots, \{X_n \in I_n\}$ sind unabhängig.

Gruppierung von Zufallsvariablen

Satz 2.7 (Gruppieren von Zufallsvariablen): Seien $X_1, \ldots, X_n n$ unabhängige Zufallsvariablen. Seien $1 \le i_1 < i_2 < \cdots < i_k \le n$ Indexes und ϕ_1, \ldots, ϕ_k Abbildungen. Dann sind $Y_1 = \phi_1\left(X_1, \ldots, X_{i_1}\right), Y_2 = \phi_2\left(X_{i_1+1}, \ldots, X_{i_2}\right)\ldots, Y_k = \phi_k\left(X_{i_{k-1}+1}, \ldots, X_{i_k}\right)$ unabhängig.

Folgen von u.i.v. Zufallsvariablen

Definition 2.8: Eine Folge von Zufallsvariablen X_1, X_2, \ldots heißt

- 1. unabhängig falls X_1, \ldots, X_n unabhängig sind, für alle $n \in \mathbb{N}$.
- unabhängig und identisch verteilt (uiv) falls sie unabhängig ist und die Zufallsvariablen dieselbe Verteilungsfunktion haben d.h. ∀i, j F_{Xi} = F_{Xj}.

Transformation von Zufallsvariablen

Falls X eine Zufallsvariable ist, und $\phi: \mathbb{R} \to \mathbb{R}$, so schreiben wir $\phi(X) := \phi \circ X$. Somit ist $\phi(X)$ eine neue Abbildung von $\Omega \to \mathbb{R}$, welche in dem nachfolgenden Diagram dargestellt ist:

$$\Omega \xrightarrow{X} \mathbb{R} \xrightarrow{\phi} \mathbb{R}$$

$$\omega \longmapsto X(\omega) \longmapsto \phi(X(\omega)).$$

Konstruktion von Zufallsvariablen

Definition 2.9: Sei p ∈ [0,1]. Eine Zufallsvariable X heißt Bernoulli Zufallsvariable mit Parameter p falls

$$\mathbb{P}[X=0] = 1 - p \quad \text{ und } \quad \mathbb{P}[X=1] = p.$$

Dabei schreiben wir stets $X \sim \text{Ber}(p)$.

Theorem 2.10 (Existenzsatz von Kolmogorov). Es existiert ein W-Raum $(\Omega, \mathcal{F}, \mathbb{P})$ und eine nicht endliche u.i.v. Folge von Bernoulli Zufallsvariablen X_1, X_2, \ldots auf $(\Omega, \mathcal{F}, \mathbb{P})$ mit Parameter $\frac{1}{2}$.

Definition 2.11: Eine Zufallsvariable U heißt gleichverteilt auf [0,1] falls ihre Verteilungsfunktion gegeben ist durch

$$F_{U}(x) = \begin{cases} 0 & x < 0 \\ x & 0 \le x \le 1 \\ 1 & x > 1 \end{cases}$$

Wir schreiben gerade $U \sim \mathcal{U}([0,1])$.

Satz 2.12 Seien X_1, X_2, \ldots eine Folge von unabhängigen Bernoulli-Zufallsvariablen mit Parameter 1/2. Für jedes festes ω haben wir $X_1(\omega), X_2(\omega) \cdots \in \{0,1\}$. Daraus folgt, dass die unendliche Reihe

$$Y(\omega) = \sum_{n=1}^{\infty} 2^{-n} X_n(\omega)$$

absolut konvergiert, wobei $Y(\omega) \in [0,1]$ ist. Die Abbildung $Y:\Omega \to [0,1]$ ist eine gleichverteilte Zufallsvariable auf [0,1]. Definition 2.13 (Pseudoinverse): Die Pseudoinverse von F ist eine Abbildung $F^{-1}:(0,1)\to\mathbb{R}$ definiert durch

$$\forall \alpha \in (0,1) \quad F^{-1}(\alpha) = \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}.$$

Theorem 2.14 (Inversionsmethode): Sei $F: \mathbb{R} \to [0,1]$ eine Abbildung, welche Eigenschaften (i)-(iii) erfüllt. Sei U eine Gleichverteilte Zufallsvariable. Dann besitzt die Zufallsvariable

$$X = F^{-1}(U)$$

gerade die Verteilungsfunktion $F_X = F$.

Bemerkung 2.15: Wir wollen nochmals kurz erläutern, warum die Definition von X nach 2.14 wohldefiniert ist. Sei $U: \Omega \to [0,1]$ und $F^{-1}: (0,1) \to \mathbb{R}$ analog zum obigen Theorem definiert. Dann gilt stets $P[U \in (0,1) = 1]$. Strenggenommen ist X bis jetzt nur auf einer Menge mit Wahrscheinlichkeit 1 aber nicht auf ganz Ω definiert. Wir beheben das Problem mittels folgender Definition

$$X(\omega) = \begin{cases} F^{-1}(U(\omega)) & \text{falls } U(\omega) \in (0,1) \\ 0 & \text{sonst.} \end{cases}$$

Theorem 2.16: Seien $F_1, F_2...$ eine Folge von Funktionen \mathbb{R} auf [0,1], die die Eigenschaften (i)-(iii) am Anfang des Abschnitts erfüllen. Dann existiert ein Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$ und eine Folge von unabhängigen Zufallsvariablen $X_1, X_2,...$ auf diesem Wahrscheinlichkeitsraum, sodass

- 1. für jedes i gilt: X_i hat Verteilungsfunktion F_i (d.h. $\forall x \mathbb{P}[X_i \leq x] = F_i(x)$), und
- 2. X_1, X_2, \ldots sind unabhängig.

Diskrete und stetige Zufallsvariablen

Unstetigkeit/Stetigkeit der Verteilungsfunktion F

Satz 3.1 (Wahrscheinlichkeit eines Punktes): Sei $X : \Omega \to \mathbb{R}$ eine Zufallsvariable mit Verteilungsfunktion F. Für jedes a in \mathbb{R} gilt $\mathbb{P}[X=a]=F(a)-F(a-)$. Sei $a\in\mathbb{R}$ fixiert.

- 1. Wenn F in einem Punkt $a \in \mathbb{R}$ nicht stetig ist, dann ist die "Sprunghöhe" F(a) - F(a-) gleich der Wahrscheinlichkeit, dass X = a.
- 2. Falls *F* stetig in einem Punkt $a \in \mathbb{R}$ ist, dann gilt $\mathbb{P}[X=a]=0.$

Fast sichere Ereignisse

Definition 3.2: Sei $A \in \mathcal{F}$ ein Ereignis. Wir sagen A tritt fast sicher (f.s.) ein, falls $\mathbb{P}[A] = 1$.

Bemerkung 3.3: Wir erweitern gerade diese Notation auf allgemeinere Mengen $A \subset \Omega$ (nicht zwangsweise ein Ereignis): Wir sagen dann, dass A fast sicher eintritt, falls ein Ereignis $A' \in \mathcal{F}$ existiert, sodass $A' \subset A$ und $\mathbb{P}[A'] = 1$.

Diskrete Zufallsvariablen

Definition 3.4 (Diskrete Zufallsvariable): Eine Zufallsvariable $X: \Omega \to \mathbb{R}$ heisst diskret falls eine endliche oder abzählbare Menge $W \subset \mathbb{R}$ existiert, sodass $\mathbb{P}[X \in W] = 1$. "Die Werte von Xliegen in W fast sicher."

Bemerkung 3.5: Wenn der Grundraum Ω endlich oder abzählbar ist, dann ist jede Zu fallsvariable $X:\Omega\to\mathbb{R}$ diskret. In der Tat ist das Bild $X(\Omega) = \{x \in \mathbb{R} : \exists \omega \in \Omega X(\omega) = x\}$ endlich oder abzählbar und wir haben $\mathbb{P}[X \in W] = 1$, mit $W = X(\Omega)$. Definition 3.6: Sei *X* eine diskrete Zufallsvariable mit Werten in

einer endlichen oder abzählbaren Menge $W \subset \mathbb{R}$. Die Zahlenfolge $(p(x))_{x \in W}$ definiert durch

$$\forall x \in W \quad p(x) := \mathbb{P}[X = x]$$

heisst Verteilung von *X*.

Satz 3.7: Die Verteilung $(p(x))_{x \in W}$ einer diskreten Zufallsvariablen erfüllt $\sum_{x \in W} p(x) = 1$.

Bemerkung 3.8: Umgekehrt, wenn wir eine Folge von Zahlen $(p(x))_{x\in W}$ mit Werten in [0,1] gegeben haben, sodass $\sum_{x \in W} p(x) = 1$, dann gibt es einen Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$ und eine Zufallsvariable X mit zugehöriger Verteilung $(p(x))_{x \in W}$. Dies gilt nach dem Existenzsatz 2.16 in Kapitel 2. Diese Beobachtung ist in der Praxis wichtig, denn sie erlaubt uns zu schreiben: "Sei X eine diskrete Zufallsvariable mit Verteilung $(p(x))_{x\in W}$."

Verteilung p vs. Verteilungsfunktion F_X

Satz 3.9: Sei X eine diskrete Zufallsvariable, dessen Werte in einer endlichen oder abzählbaren Menge W liegen, und deren Verteilung p ist. Dann ist die Verteilungsfunktion von X gegeben durch

$$\forall x \in \mathbb{R} \quad F_X(x) = \sum_{\substack{y \le x \\ y \in W}} p(y)$$

Beispiele diskreter Zufallsvariablen Bernoulli Verteilung

Definition 3.10 (Bernoulli Verteilung): Es sei $0 \le p \le 1$. Eine Zufallsvariable X heisst Bernoulli Zufallsvariable mit Parameter p, wenn sie Werte in $W = \{0,1\}$ annimmt und folgendes gilt

$$\mathbb{P}[X=0] = 1 - p \quad \text{und} \quad \mathbb{P}[X=1] = p.$$

In diesem Fall schreiben wir $X \sim Ber(p)$.

Binomialverteilung

Definition 3.11 (Binomial verteilung): Sei $0 \le p \le 1$, sei $n \in \mathbb{N}$. Eine Zufallsvariable X heisst binomiale Zufallsvariable mit Parametern n und p, wenn sie Werte in $W = \{0, ..., n\}$ annimmt und folgendes gilt

$$\forall k \in \{0,\ldots,n\} \quad \mathbb{P}[X=k] = \binom{n}{k} p^k (1-p)^{n-k}.$$

Wir schreiben dann $X \sim \text{Bin}(n,p)$. **Bemerkung 3.12:** Wenn wir $p(k) = \binom{n}{k} p^k (1-p)^{n-k}$

$$\sum_{k=0}^{n} p(k) = \sum_{k=0}^{n} \binom{n}{k} p^{k} (1-p)^{n-k} = (p+1-p)^{n} = 1$$

Symmetrie der Binomialkoeffizienten: $\binom{n}{k} = \binom{n}{n-k}$

Satz 3.13 (Summe von unabhängigen Bernoulli und Binomial Z.V.): Sei $0 \le p \le 1$, sei $n \in \mathbb{N}$. Seien X_1, \ldots, X_n unabhängige Bernoulli Z.V. mit Parameter p. Dann ist

$$S_n := X_1 + \cdots + X_n$$

eine binomialverteilte Z.V. mit Parametern n und p. **Bemerkung 3.14:** Insbesondere ist die Verteilung Bin(1, p) gerade Ber(p) verteilt. Es sei noch folgendes anzumerken: Falls $X \sim \text{Bin}(m, p), Y \sim \text{Bin}(n, p)$ und X, Y unabhängig sind, dann ist $X + Y \sim Bin(m + n, p)$ verteilt.

Geometrische Verteilung

Definition 3.15 (Geometrische Verteilung): Es sei 0 . EineZufallsvariable X heisst geometrische Zufallsvariable mit Parameter p, falls sie Werte in $W = \mathbb{N} \setminus \{0\}$ annimmt und folgendes gilt

$$\forall k \in \mathbb{N} \setminus \{0\} \quad \mathbb{P}[X = k] = (1 - p)^{k-1} \cdot p.$$

Wir schreiben dann $X \sim \text{Geom}(p)$.

Bemerkung 3.16: Für p = 1 und k = 1 erscheint in der obigen Gleichung ein Term 0^0 , wir verwenden die Konvention $0^0 = 1$ und damit gilt $\mathbb{P}[X=1]=p$.

Bemerkung 3.17: Falls wir $p(k) = (1 - p)^{k-1}p$ definieren, haben wir $\sum_{k=1}^{\infty} p(k) = p \sum_{k=1}^{\infty} (1 - p)^{k-1} = p \cdot \frac{1}{p} = 1$.

Satz 3.18: Sei X_1, X_2, \ldots eine Folge von unendlich vielen unabhängigen BernoulliZ.V. mit Parameter p. Dann ist $T := \min \{n \ge 1 : X_n = 1\}$ eine geometrisch verteilte Zufallsvariable mit Parameter *p*.

Bemerkung 3.19: Falls wir sagen, dass *T* eine geometrische Zufallsvariable ist, müssen wir folgendes präzisieren: Tatsächlich kann die Zufallsvariable T den Wert $+\infty$ annehmen, wenn alle Zufallsvariablen X_i gleich 0 sind. Dies ist jedoch kein Problem für den Bewei des Satzes. Man kann leicht überprüfen, dass $\mathbb{P}[T=\infty]=0$ gilt.

Satz 3.20 (Gedächnislosigkeit der Geometrischen Verteilung): Sei $T \sim \text{Geom}(p)$ für 0 . Dann gilt $\forall n \ge 0 \quad \forall k \ge 1 \quad \mathbb{P}[T \ge n + k \mid T > n] = \mathbb{P}[T > k].$

Poisson Verteilung

Definition 3.21: Sei $\lambda > 0$ eine positive reelle Zahl. Eine Zufallsvariable X heisst Poisson-Zufallsvariable mit Parameter λ , wenn sie Werte in $W = \mathbb{N}$ annimmt und folgendes gilt

$$\forall k \in \mathbb{N} \quad \mathbb{P}[X = k] = \frac{\lambda^k}{k!} e^{-\lambda}.$$

Wir schreiben dann $X \sim \text{Poisson}(\lambda)$.

Bemerkung 3.22: Alternativ definieren wir $p(k) = \frac{\lambda^k}{k!} e^{-\lambda}$, haben wir $\sum_{k=0}^{\infty} p(k) = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} \cdot e^{\lambda} = 1$, Satz 3.23 (Poisson-Approximation der Binomialverteilung): Sei $\lambda > 0$. Für jedes $n \ge 1$ seien $X_n \sim \text{Bin}\left(n, \frac{\lambda}{n}\right)$ Zufallsvariablen. Dann gilt

$$\forall k \in \mathbb{N} \quad \lim_{n \to \infty} \mathbb{P}\left[X_n = k\right] = \mathbb{P}[N = k],$$

wobei N eine Poisson Zufallsvariable mit Parameter λ .

Stetige Verteilungen

Definition 3.25 (Stetig verteilte Zufallsvariablen): Eine Zufallsvariable $X : \Omega \to \mathbb{R}$ heisst stetig, wenn ihre Verteilungsfunktion F_X wie folgt geschrieben werden kann

$$F_X(a) = \int_{-\infty}^a f(x) dx$$
 für alle a in \mathbb{R} .

wobei $f : \mathbb{R} \to \mathbb{R}_+$ eine nicht-negative Funktion ist. Wir nennen dann f Dichte von X.

Intuition: f(x)dx ist die Wahrscheinlichkeit, dass X Werte in [x, x + dx] annimmt.

Theorem 3.26: Sei X eine Zufallsvariable. Die Verteilungsfunktion F_X sei stetig und stückweise C^1 , d.h. es gibt

 $x_0 = -\infty < x_1 < \cdots < x_{n-1} < x_n = +\infty$, sodass F_X auf jedem Intervall (x_i, x_{i+1}) Element von C^1 ist. Dann ist X eine stetige Zufallsvariable und die Dichte f kann konstruiert werden, indem man folgendes festlegt $\forall x \in (x_i, x_{i+1})$ $f(x) = F'_{x}(x)$ mit beliebigen Werten in x_1, \ldots, x_{n-1} .

Beispiele stetiger Zufallsvariablen Gleichverteilung

Definition 3.27 (Gleichverteilung auf [a, b], a < b.): Eine stetige Zufallsvariable *X* heisst gleichverteilt auf [*a*, *b*] falls ihre Dichte gegeben ist durch

$$f_{a,b}(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b], \\ 0 & x \notin [a,b] \end{cases}$$

Wir schreiben dann stets $X \sim \mathcal{U}([a,b])$.

Eigenschaften einer gleichverteilten Zufallsvariable X auf [a,b]:

- 1. Die Wahrscheinlichkeit in ein Intervall $[c, c + \ell] \subset [a, b]$ zu fallen ist lediglich abhängig von dessen Länge ℓ : $\mathbb{P}[X \in [c, c+\ell]] = \frac{\ell}{b-a}$.
- 2. Die Verteilungsfunktion X ist gegeben durch

$$F_X(x) = \begin{cases} 0 & x < a, \\ \frac{x - a}{b - a} & a \le x \le b, \\ 1 & x > b. \end{cases}$$

Exponentialverteilung

Definition 3.28 (Exponentialverteilung mit Parameter $\lambda > 0$): Eine stetige Zufallsvariable T heisst exponentialverteilt mit Parameter $\lambda > 0$ falls ihre Dichte gegeben ist durch

$$f_{\lambda}(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

Wir schreiben dann stets $T \sim \exp(\lambda)$.

Eigenschaften einer exponentialverteilten Zufallsvariable T mit Parameter λ :

- 1. Die Wahrscheinlichkeit des Wartens ist exponentiell klein: $\forall t \geq 0 \quad \mathbb{P}[T > t] = e^{-\lambda t}.$
- 2. T besitzt die Eigenschaft der Gedächnislosigkeit $\forall t, s \geq 0 \quad \mathbb{P}[T > t + s \mid T > t] = [T > s].$

Normalverteilung

Definition 3.29: Eine stetige Zufallsvariable X heisst normal verteilt mit Parametern m und $\sigma^2 > 0$ falls ihre Dichte gegeben ist durch

$$f_{m,\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-m)^2}{2\sigma^2}}$$

Wir schreiben dann stets $X \sim \mathcal{N}(m, \sigma^2)$.

Eigenschaften der Normalverteilung:

- 1. Seien X_1, \ldots, X_n unabhängige normalverteilte Zufallsvariablen mit Parametern $(m_1, \sigma_1^2), \ldots, (m_n, \sigma_n^2)$, dann ist $Z = m_0 + \lambda_1 X_1 + \ldots + \lambda_n X_n$ eine normalverteilte Zufallsvariable mit Parametern $m = m_0 + \lambda_1 m_1 + \cdots + \lambda_n m_n$ und $\sigma^2 = \lambda_1^2 \sigma_1^2 + \cdots + \lambda_n^2 \sigma_n^2$
- 2. Wir sprechen im Fall von $X \sim \mathcal{N}(0,1)$, gerade von einer standardnormalverteilten Zufallsvariable. Man merke sich dann folgende Beziehung $Z = m + \sigma \cdot X$ wobei X eine normalverteilte Zufallsvariable mit Parametern m und σ^2 ist.
- 3. Falls X normalverteilt mit Parametern m und σ^2 ist, dann liegt die "meiste" Wahrscheinlichkeitsmasse der Z.V. im Intervall $[m-3\sigma,m+3\sigma]$. Präzise gilt gerade $\mathbb{P}[|X-m|>3\sigma]<0.0027$

Der Erwartungswert

Der allgemeine Erwartungswert

Definition 4.1: Sei $X: \Omega \to \mathbb{R}_+$ eine Zufallsvariable mit nicht-negativen Werten. Dann heisst

$$\mathbb{E}[X] = \int_0^\infty (1 - F_X(x)) \, dx$$

der Erwartungswert von X.

Bemerkung 4.2: Der Erwartungswert kann sowohl endliche also auch nicht endliche Werte annehmen.

Satz 4.3: Sei X eine nicht-negative Zufallsvariable. Dann gilt $\mathbb{E}[X] \geq 0$. Gleichheit gilt genau dann wenn X = 0 fast sicher hält.

Definition 4.4: Sei X eine Zufallsvariable. Falls $\mathbb{E}[|X|] < \infty$, dann heisst

The section of the section
$$X_{+}(\omega) = \begin{cases} X(\omega) & \text{falls } X(\omega) \geq 0, \\ 0 & \text{falls } X(\omega) < 0, \end{cases}$$
 und $X_{-}(\omega) = \begin{cases} -X(\omega) & \text{falls } X(\omega) \leq 0, \\ 0 & \text{falls } X(\omega) > 0. \end{cases}$

 $\mathbb{E}[X] = \mathbb{E}[X_+] - \mathbb{E}[X_-]$. Erwartungswert von X.

Erwartungswert einer diskreten Zufallsvariable

Satz 4.6: Sei $X: \Omega \to \mathbb{R}$ eine diskrete Zufallsvariable dessen Werte in W (endlich oder abzählbar) fast sicher liegen. Sei $\phi: \mathbb{R} \to \mathbb{R}$ eine Abbildung. Dann gilt

$$\mathbb{E}[\phi(X)] = \sum_{x \in W} \phi(x) \cdot \mathbb{P}[X = x],$$

solange der Erwartungswert wohldefiniert ist.

Bernoulli Zufallsvariable

Sei Xeine Bernoulli Zufallsvariable mit Parameter p. Dann gilt $\mathbb{E}[X]=p.$

Binomial Zufallsvariable

Sei $X \sim Bin(n, p)$, dann gilt $\mathbb{E}[X] = np$

Poisson Zufallsvariable

Sei X Poisson-verteilt mit Parameter $\lambda > 0$, dann gilt $\mathbb{E}[X] = \lambda$.

Indikator Zufallsvariable

Sei $A \in \mathcal{F}$ ein Ereignis. Sei $\mathbb{1}_A$ die Indikator Funktion auf A, dann gilt $\mathbb{E}[\mathbb{1}_A] = \mathbb{P}[A]$.

geometrische Zufallsvariable

Sei $X \sim \text{Geom}(p)$, dann gilt $\mathbb{E}[X] = \frac{1}{n}$

Erwartungswert stetiger Zufallsvariablen

Satz 4.8: Sei X eine stetige Zufallsvariable mit Dichte f. Dann gilt

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx,$$

solange das Integral wohldefiniert ist.

Theorem 4.9: Sei X eine stetige Zufallsvariable mit Dichte f. Sei $\phi : \mathbb{R} \to \mathbb{R}$ eine Abbildung, sodass $\phi(X)$ eine Zufallsvariable ist. Dann gilt

$$E[\phi(X)] = \int_{-\infty}^{\infty} \phi(x) f(x) dx$$

solange das Integral wohldefiniert ist.

Exponential Zufallsvariable

Sei $X \sim \exp(\lambda)$. Dann gilt $\mathbb{E}[X] = \frac{1}{\lambda}$.

gleichverteilte Zufallsvariable

Sei $X \sim \mathcal{U}([a,b])$. Dann gilt $\mathbb{E}[X] = \frac{a+b}{2}$.

gleichverteilte Zufallsvariable

Sei $X \sim \mathcal{U}([a,b])$. Dann gilt $\mathbb{E}[X] = \frac{a+b}{2}$.

Normalverteilung

Sei $X \sim \mathcal{N}(\mu, \sigma^2)$. Dann gilt $\mathbb{E}[X] = \mu$.

Rechnen mit Zufallsvariable

Theorem 4.10 (Linearität des Erwartungswert): Seien $X, Y : \Omega \to \mathbb{R}$ Zufallsvariablen, sei $\lambda \in \mathbb{R}$. Falls die Erwartungswerte wohldefiniert sind gilt

- 1. $\mathbb{E}[\lambda \cdot X] = \lambda \cdot \mathbb{E}[X]$
- 2. $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$.

Bemerkung 4.11: Die Zufallsvariablen *X* und *Y* müssen dabei nicht unabhängig sein.

Bemerkung 4.12: Unter Anwendung der Induktion für $n \ge 1$ ergibt sich direkt $\mathbb{E}\left[\lambda_1 X_1 + \lambda_2 X_2 + \cdots + \lambda_n X_n\right] = \lambda_1 \mathbb{E}\left[X_1\right] + \lambda_2 \mathbb{E}\left[X_2\right] + \cdots + \lambda_n \mathbb{E}\left[X_n\right]$ für jede $Z.V.X_1, X_2, \ldots, X_n : \Omega \to E$, und für jedes $\lambda_1, \lambda_2, \cdots, \lambda_n \in \mathbb{R}$, unter der Annahme, dass die Erwartungswerte wohldefiniert sind.

Theorem 4.13: Seien X, Y zwei Zufallsvariablen. Falls X und Y unabhängig sind, dann ist $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.

Extremwert Formel

Satz 4.14 (Tailsum-Formel für nichtnegative Zufallsvariablen): Sei X eine Zufallsvariable, sodass $X \ge 0$ fast sicher gilt. Dann folgt $\mathbb{E}[X] = \int_0^\infty \mathbb{P}[X > x] dx$.

Satz 4.15 (Extremwert Formel): Sei X eine diskrete Zufallsvariable mit Werten in $\mathbb{N} = \{0, 1, 2, \ldots\}$. Dann gilt folgende Identität $\mathbb{E}[X] = \sum_{n=1}^{\infty} \mathbb{P}[X \ge n]$.

Charakterisierung der Eigenschaften von Z.V.

Satz 4.16. Sei X eine Zufallsvariable: Sei $f:\mathbb{R}\to\mathbb{R}_+$ eine Abbildung, sodass $\int_{-\infty}^{+\infty}f(x)dx=1$. Dann sind folgende Aussagen äquivalent

- 1. X ist stetig mit Dichte f,
- 2. Für jede Abbildung stückweise stetige, beschränkte Abbildung $\phi : \mathbb{R} \to \mathbb{R}$ gilt $\mathbb{E}[\phi(X)] = \int_{-\infty}^{\infty} \phi(x) f(x) dx$.

Theorem 4.17: Seien X, Y zwei diskrete Zufallsvariablen. Die folgenden Aussagen sind äquivalent

- 1. X, Y sind unabhängig,
- 2. Für jedes $\phi : \mathbb{R} \to \mathbb{R}, \psi : \mathbb{R} \to \mathbb{R}$ (messbar) beschränkt und stückweise stetig gilt $\mathbb{E}[\phi(X)\psi(Y)] = \mathbb{E}[\phi(X)]\mathbb{E}[\psi(Y)]$.

Theorem 4.18: Seien $X_1, \ldots, X_n n$ Zufallsvariablen. Die folgenden Aussagen sind äquivalent

- 1. X_1, \ldots, X_n sind unabhängig,
- 2. Für jedes $\phi_1 : \mathbb{R} \to \mathbb{R}, \dots, \phi_n : \mathbb{R} \to \mathbb{R}$ (messbar) beschränkt gilt $\mathbb{E} \left[\phi_1 \left(X_1 \right) \cdots \phi_n \left(X_n \right) \right] = \mathbb{E} \left[\phi_1 \left(X_1 \right) \right] \cdots \mathbb{E} \left[\phi_n \left(X_n \right) \right]$

Ungleichungen

Satz 4.19: Seien X, Y zwei Zufallsvariablen, sodass $X \le Y$ f.s. gilt. Falls beide Erwartungswerte wohldefiniert sind, folgt dann $\mathbb{E}[X] \le \mathbb{E}[Y]$ fast sicher.

Markow Ungleichung