Network & System Defense

PROGETTO #2

Matteo Chiacchia 0300177

matteoch99@gmail.com

Introduzione

IIIII OUUZIOIIC

Topics

MPLS/BGP VPN MACSec **Firewall OpenVPN** AVs

Introduzione

Software

Introduzione

4

Topologia

Topologia

Topologia

Network

MOLWOIN

Configuration

LAN-A3: 10.23.1.0/24

```
interface Loopback0
ip address 1.1.1.1 255.255.255.255
!
interface GigabitEthernet1/0
ip address 160.80.1.2 255.255.252
no shutdown
!
interface GigabitEthernet2/0
ip address 172.16.100.1 255.255.252
mpls ip
no shutdown
!
interface GigabitEthernet3/0
ip vrf forwarding vpnA
ip address 160.80.5.1 255.255.252
no shutdown
!
ip route 1.0.0.0 255.0.0.0 Null0
```

Network

interface Loopback0 ip address 1.1.1.2 255.255.255.255 interface GigabitEthernet1/0 LAN-A1: 10.23.0.0/24 ip address 172.16.150.2 255.255.255.252 site 1 mpls ip no shutdown Switch1 LAN-F interface GigabitEthernet2/0 ip vrf forwarding vpnA ip address 160.80.10.1 255.255.255.252 CE-A1 no shutdown ip route 1.0.0.0 255.0.0.0 Null0 HUB 160.80.10.0/30 interface Loopback0 ip address 1.1.1.4 255.255.255.255 lo0: 1.1.1.2/32 interface g1/0 ip address 172.16.100.2 255.255.255.252 AS100 172.16.150.0/30 mpls ip 1.0.0.0/8 no shutdown 172.16.100.0/30 172.16.200.0/30 PE3 interface g2/0 ip address 172.16.150.1 255.255.255.252 lo0: 1.1.1.4/32 mpls ip lo0: 1.1.1.1/32 no shutdown 100: 1.1.1.3/32 interface g3/0 ip address 172.16.200.1 255.255.255.252 hostB2 mpls ip no shutdown ip route 1.0.0.0 255.0.0.0 Null0 LAN-B2: 192.168.16.0/24

LAN-A3: 10.23.1.0/24

central-node

Network

Configuration

```
interface Loopback0
  ip address 1.1.1.3 255.255.255.255
!
interface GigabitEthernet1/0
  ip address 172.16.200.2 255.255.252
mpls ip
  no shutdown
!
interface GigabitEthernet2/0
  ip vrf forwarding vpnA
  ip address 160.80.15.1 255.255.252
  no shutdown
!
interface GigabitEthernet3/0
  ip address 192.168.16.1 255.255.255.0
  no shutdown
!
```

MPLS/BGP VPN

Routing

- ☐ Protocolli di routing:
 - * OSPF
 - **❖** BGP
 - eBGP
 - *iBGP*
 - * MPLS

OSPF

☐ OSPF: Open Shortest Path First

- Algoritmo di *routing* basato su *Link-State* per conoscere la topologia della rete e calcolare i percorsi migliori.
- ❖ Utilizza il *flooding* di informazioni.
- ❖ Algoritmo di Dijkstra per la determinazione del percorso a costo minimo INTRA-AS.
- Utilizzo specifico
 - Apprendimento delle rotte dell'AS100 da parte dei PEs.
 - Configurato con interfacce di *Loopback*.

Link state è un tipo di protocollo di routing in cui la topologia dell'intera rete e tutti i *costi* dei collegamenti sono noti ai router di un certo AS.

central-node

LAN-A3: 10.23.1.0/24

MPLS/BGP

BGP

☐ BGP: Border Gateway Protocol

- ❖ Connette diversi *AS*.
- Scambio informazioni su rotte per raggiungibilità.
- ❖ iBGP per la conoscenza all'interno dell'AS delle rotte esterne.
- Utilizzo specifico
 - Apprendimento delle rotte tra *AS100* e *AS200*.
 - *iBGP* configurato con interfacce di *Loopback*.
 - Rete *Full Mesh*: ogni router *iBGP* collegato (logicamente) a ogni altro router *iBGP* all'interno dell'AS100.

BGP

central-node

LAN-A3: 10.23.1.0/24

MPLS/BGP

15

MPLS

☐ MPLS: Multi-Protocol Label Switching

- ❖ Utilizzo di *Label* per il *forwarding*
- ❖ Insieme a BGP si crea una VPN Intra-AS
- ❖ Invio messaggi *MP-iBGP* per sincronizzazione tabelle *VRF*
- Utilizzo specifico
 - Creazione di una VPN intra-AS per LAN-A1, LAN-A2 e LAN-A3
 - Topologia *Hub e Spokes*
- ❖ Comandi per configurazione delle interfacce dei *router 7200*.
 - mpls ip: utilizzato per abilitare il forwarding MPLS (slide 8)
 - ip vrf forwarding vpnA: permette il forwarding del traffico della VPN verso i vari CEs (slide 8)

MPLS rd:rt

LAN-A3: 10.23.1.0/24

MPLS address family

MacSec

MacSec & MKA

- ☐ MACsec: Media Access Control Security
 - ❖ Siurezza a livello MAC nelle reti LAN
 - * Encryption, frame integrity ...
- ☐ MKA: MACsec Key Agreement
 - **SAK**: MACsec Secure Association Keys
 - * CAK: Connectivity Association Key
 - Utilizzo specifico
 - Sicurezza nei collegamenti Ethernet nella LAN-A1
 - Static CAK mode

export MKA_CAK=00112233445566778899aabbccddeeff export MKA_CKN=000011112222333344445555666677...

MKA

```
nmcli connection add type macsec \
  con-name macsec-conf \
  ifname macsec0 \
  connection.autoconnect no \
  macsec.parent ens33 \
  macsec.mode psk \
  macsec.mka-cak $MKA_CKA \
  macsec.mka-cak-flags 0 \
  macsec.mka-ckn $MKA_CKN \
  ipv4.method manual ipv4.addresses 10.23.0.101/24

nmcli connection up macsec-conf
```

```
nmcli connection add type macsec \
  con-name macsec-conf \
  ifname macsec0 \
  connection.autoconnect no \
  macsec.parent ens33 \
  macsec.mode psk \
  macsec.mka-cak $MKA_CKA \
  macsec.mka-cak-flags 0 \
  macsec.mka-ckn $MKA_CKN \
  ipv4.method manual ipv4.addresses 10.23.0.102/24

nmcli connection up macsec-conf
```

```
nmcli connection add type macsec \
  con-name macsec-conf \
  ifname macsec0 \
  connection.autoconnect no \
  macsec.parent ens37 \
  macsec.mode psk \
  macsec.mka-cak $MKA_CKA \
  macsec.mka-cak-flags 0 \
  macsec.mka-ckn $MKA_CKN \
  ipv4.method manual ipv4.addresses 10.23.0.1/24
```

macsecO: interfaccia virtuale sopra interfaccia fisica (ens33 o ens37)

Firewalls

Firewall & iptables

☐ Firewall

- * Regolazione del traffico in ingresso/uscita
- ❖ Definizione delle regole di ACCEPT/DROP

☐ iptables

- Configurazione di NetFilter
- Gestione dei pacchetti in ingresso/uscita in base a:
 - Interfacce ingresso/uscita
 - Porte sorgente/destinazione
 - Protocolli
 - Indirizzi Ipv4 sorgente/destinazione

Firewalls richiesti

□ CE-A1

- ❖ Permettere il traffico tra la LAN e la rete esterna solo se iniziato dalla LAN, con SNAT
- ❖ Negare tutto il traffico verso il *GW*, tranne *SSH* e *ICMP*, solo se iniziato dalla *LAN*.
- ❖ Permettere il traffico dal *GW* verso qualsiasi destinazione (e pacchetti di risposta correlati).
- ❖ Permettere il forwarding con *DNAT* verso *hostA1* e *hostA2* sono per l'HTTP service.

☐ CE-2

❖ Permettere la comunicazione bidirezionale end-to-end tra il *central-node* e gli *AVs* e negare tutto il resto.

MPLS/BGP

central-node

LAN-A3: 10.23.1.0/24

CE-A1 Firewall export LANmeth1 LAN-A1: 10.23.0.0/24 export EXT=eth0 site 1 LAN-B1: 192.168.17.0/24 SPOKE LAN-A2: 10.123.0.0/16 HUB site 2 tables -P FORWARD DROP 0.10.0/30 # data to/from central node iptables -A FORWARD -i \$EXT -o \$LAN -s 10.23.1.100 -j ACCEPT iptables -A FORWARD -i \$LAN -o \$EXT -d 10.23.1.100 -j ACCEPT #forward to the spokes iptables -A FORWARD -i \$EXT -d 10.23.1.0/24 -s 10.23.0.0/24 -j ACCEPT 172.16.200.0/30 iptables -A FORWARD -i \$EXT -d 10.23.0.0/24 -s 10.23.1.0/24 -j ACCEPT lo0: 1.1.1.1/32 lo0: 1.1.1.3/32 **SPOKE** LAN-B2: 192.168.16.0/24

central-node

LAN-A3: 10.23.1.0/24

MPLS/BGP

27

OPENVPN

OPENVPN

☐ OPENVPN

- ❖ Software open-source per la creazione di reti private virtuali (VPN).
- ❖ Fornisce un tunnel crittografato tra client e server, consentendo la trasmissione sicura dei dati su reti non sicure.

OPENVPN

☐ Configurazione

- Configurazione della Certificate Authority (CA):
 - > Creazione di una CA con OpenSSL.
- ❖ Generazione e firma delle chiavi:
 - ✓ Generazione delle coppie di chiavi pubbliche/ private per il server OpenVPN e per gli host client.
 - ✓ Firma delle chiavi client utilizzando la CA per autenticazione e verifica.
- ❖ Configurazione della connessione *OPENVPN*
 - √ openvpn server.ovpn
 - ✓ openvpn hostB2.ovpn

central-node

LAN-A3: 10.23.1.0/24

OPENVPN

Lan-B2 Network

LAN-A3: 10.23.1.0/24

CA & Keys

Creazione del certificato e delle chiavi pubbliche e private

- openSSL, easyRSA
- 1. Creazione del certificato e della chiave privata della CA
- 2. Creazione del certificato e della chiave privata del Server
- 3. Creazione dei parametri Diffie-Hellman
- 4. Creazione del certificato e della chiave privata del client

ca and key build

cd /usr/share/easy-rsa
cp openssl-1.0.0.cnf openssl.cnf
. ./vars
./clean-all
./build-ca
./build-key-server server
./build-dh
./build-key hostB2

/gns3volumes/share_openvpn/keys/server.ovpn

port 1194
proto udp
dev tun
ca ca.crt
cert server.crt
key server.key
dh dh2048.pem
server 192.168.100.0 255.255.255.0
push "route 192.168.17.0 255.255.255.0"
route 192.168.16.0 255.255.255.0
client-config-dir ccd
keepalive 10 120
cipher AES-256-CBC

/gns3volumes/share_openvpn/hostB2.ovpn

```
client
dev tun
proto udp
remote 2.0.0.2 1194
resolv-retry infinite
ca ca.crt
cert hostB2.crt
key hostB2.key
remote-cert-tls server
cipher AES-256-CBC
```

Antivirus

Antivirus

☐ Antivirus

- ❖ Software per rilevare, prevenire e rimuovere *malware*
- ❖ Come?
 - > Scansione dei file (e.g .elf, .exe)
 - ➤ Monitoraggio in tempo reale
 - > Rilevazione delle *signatures*
 - **>** ...
- * Antivirus utilizzati
 - > ClamAV
 - > Loki
 - > RKHunter

ClamAV

☐ ClamAV

- https://docs.clamav.net
- Toolkit antivirus open source (GPLv2) progettato specificamente per la scansione delle email sui gateway di posta.
 - Adattabile per ogni tipo di file
- Fornisce diverse utility: un demone *multithreaded* flessibile e scalabile, uno scanner a riga di comando e uno strumento avanzato per gli aggiornamenti automatici del database delle *signature*
- Altamente flessibile e scalabile, adatto per l'implementazione su larga scala.

Loki

☐ Loki

- https://github.com/Neo23x0/Loki
- open-source IOC and YARA scanner
- Scritto in Python
- * YARA
 - multi-piattaforma che può essere eseguita su Windows,
 Linux e Mac OS X. Utilizzato attraverso CLI o tramite
 API Python utilizzando l'estensione yara-python.
 - Strumento per l'identificazione e la classificazione di campioni di malware
 - Permette di creare descrizioni di famiglie di malware basate su pattern testuali o binari

RKHunter

□ *RKHunter*

- https://rkhunter.sourceforge.net
- Esegue una scansione dei file di sistema alla ricerca di anomalie o firme associate ai *rootkit* noti. Questo controllo può rilevare modifiche non autorizzate o indicatori di compromissione nel sistema.

❖ Rootkit

- Forme di *malware* sofisticate che mirano ad ottenere accesso non autorizzato a un sistema informatico
- Sfruttano le vulnerabilità di sicurezza per nascondersi e operare in modo invisibile agli utenti e agli strumenti di sicurezza.

Codice

```
echo "Clamav, Waiting for a new file to analyze!"

python3 receive.py malware 1234

clamscan malware > log1.log

nc -q 10 10.23.1.100 1111 < log1.log

rm malware
```


Clamav è in grado di eseguire la scansione direttamente sul file.

Loki esegue la scansione sulle directory, di conseguenze il file viene spostato nel directory *target* della scansione.


```
echo "Loki, Waiting for a new file to analyze!"

python3 receive.py malware 1234

mv malware /mw_to_scan

python3 loki.py -p /mw_to_scan > log2.log

python3 send.py log2.log 10.23.1.100 2222

rm /mw_to_scan/malware
```

```
echo "RKHunter, Waiting for a new file to analyze!"
python3 receive.py malware 1234

sudo chmod +x malware
./malware &
sleep 5

sudo rkhunter -c --rwo --sk --summary > log3.log
python3 send.py log3.log 10.23.1.100 3333
```


RKHunter controlla i processi in esecuzione nel sistema, di conseguenza, prima della scansione, il *file* sospetto viene eseguito.

Risultati

Clamav è in grado di effettuare un confronto con il suo database di 8669572 virus conosciuto e riesce facilmente a classificare un file come "infected". Questo AV è, infatti, il più consigliato dagli esperti di Cybersecurity per via sia della sua natura OpenSource che per la sua forte flessibilità

Risultati

Loki, a differenza di Clamav, non è in grado di classificare lo stesso file come malevolo. probabilmente perché ľAV Questo questione è obsoleto. Esiste una sua nuova versione: *Thor*

(https://www.nextron-systems.com/thor-lite/)

[INFO] Initialized 918 Yara rules [INFO] Current user is root - very good [INFO] Scanning Path /mw_to_scan ...

[RESULT] SYSTEM SEEMS TO BE CLEAN.

[NOTICE] Results: 0 alerts, 0 warnings, 1 notices

[INFO] Please report false positives via https://github.com/Neo23x0/signature-ba

[NOTICE] Finished LOKI Scan SYSTEM: AV2 TIME: 20230628T15:56:27Z

Risultati

RKHunter viene eseguito all'interno di una sandbox in modo tale da evitare (o quantomeno limitare) il fatto che eventuali rootkit possano estendersi nel sistema. Si è utilizzato come ambiente di esecuzione Linux Lite. Dai vari output si nota che l'AV tende a sovrastimare le possibili minacce.

Considerazioni

- ❖ I *malware* sono stati scaricati da librerie *Open Source*
 - https://github.com/Pyran1/MalwareDatabase/
 - https://github.com/MalwareSamples/Linux-Malware-Samples
 - https://www.vx-underground.org
 - https://bazaar.abuse.ch/browse/
- Sulla GNS3 VM non c'è possibilità di effettuare snapshot
 - Motivo per la scelta di *Linux Lite* su *VMWare* per l'esecuzione e l'analisi dei *rootkit*
- Altro motivo per l'utilizzo di *Linux Lite* su *VMWare*, piuttosto che un *container Docker*, per l'esecuzione di *RKHunter*, è dato dal fatto che i *rootkit* sono progettati per operare a livello di sistema e manipolare il *kernel* o i componenti dell'OS.

Considerazioni

- Sono stati testati anche altri *Antivirus*, in particolare:
 - Maldetect (https://github.com/waja/maldetect)
 - Multiscanner (https://github.com/mitre/multiscanner)
 - Kicomav (https://www.kicomav.com)
 - Chkrootkit (https://www.chkrootkit.org)
- Non utilizzati a causa della presenza di alcuni problemi di configurazione e compatibilità oppure di analogia nel funzionamento.
 - ❖ Maldetect utilizza Clamav.
 - . ChkRootkit ha lo stesso objettivo di RKHunter.

Test

Test effettuati

- Funzionamento corretto della configurazione Hub & Spoke della VPN MPLS/BGP
 - 1. Label switching
 - 2. Spoke to Spoke communication
- Funzionamento corretto della configurazione di MacSec Key Agreement
 - 1. Scambio chiavi
 - 2. Verifica di incapsulamento all'interno di *frame MacSec*

Test effettuati

- Funzionamento corretto della configurazione dei Firewall
 - 1. Ping hostA1 dall'esterno.
 - 2. Ping CE-A3 da LAN-A1
 - 3. Verifica che unica porta *TCP* aperta in hostA1 è 80.
 - 4. LAB-B2 raggiungibile solo da central-node.
- Funzionamento corretto della configurazione di OpenVPN
 - 1. TLS handshake.
 - 2. LAN-B1 raggiungibile, tramite OpenVpn, da LAN-B2.

Test Vpn Mpls/Bgp

LAN-A3: 10.23.1.0/24

Test MKA

35 16.535811	VMware_58:95:21	Nearest-non-TPMR-bridge	EAPOL-MKA	210 Key Server, Live Pee	r List, MACsec	SAK Use, Distributed SA	K
36 16.541344	VMware_a1:a9:e6	Nearest-non-TPMR-bridge	EAPOL-MKA	178 Live Peer List, MACs	ec SAK Use		
37 16.551916	VMware_a1:a9:e6	Nearest-non-TPMR-bridge	EAPOL-MKA	178 Live Peer List, MACs	ec SAK Use		
38 16.588288	VMware c4:7f:0a	Nearest-non-TPMR-bridge	FAPOL-MKA	178 Live Peer List MACs	er SAK IIse		
Frame 35: 210 byte	es on wire (1680 bits), 210 bytes captured (1680 bits) on interface -, id 0	0000 01 80 c2 00	00 03 00 0c 2	9 58 95 21 88 8e 03 05	
Ethernet II, Src:	VMware 58:95:21 (00:	Oc:29:58:95:21), Dst: Nearest-no	n-TPMR-bridge (01:80:c2	00:00:03) 0010 00 c0 01 ff	e0 3c 00 0c 2	9 58 95 21 00 01 f2 6d	
802.1X Authenticat				0020 5a e6 9c 12	6f dd 91 e5 2	1 34 00 00 04 f2 00 80	Z · · · o ·
					11 11 22 22 3	3 33 44 44 55 55 66 66	
MACsec Key Agreement				0040 77 77 88 88	99 99 00 00 1	.1 11 22 22 33 33 44 44	WW
> Basic Parameter set				0050 55 55 01 00	00 20 42 b0 6	5 82 03 9c 34 81 a2 ab	UU · · · E
> Live Peer List Parameter set				0060 ea e7 00 00	04 ee 90 5e 4	e 32 de e1 d6 01 0e ac	
> MACsec SAK Use parameter set					00 02 03 03 0	0 28 00 00 00 00 00 00	
v Distributed SAK parameter set					00 00 00 00 0	00 00 00 00 00 01 f2 6d	
					6f dd 91 e5 2	1 34 00 00 00 01 00 00	Z · · · o · ·
Parameter set type: Distributed SAK (4)					00 1c 00 00 0	0 02 08 73 17 0e 35 c4	· j · P · · ·
01 = Distributed AN: 1					0e a6 24 59 a	0 0e df a7 f7 c9 db 3b	\$
<pre>01 = Confidentiality Offset: No confidentiality offset (1)</pre>				00c0 06 ac c1 63	4f 87 4f c4 1	.3 6f 0a 37 0c 2b cc ef	· · · c0 · 0
0000 0001 1100 = Parameter set body length: 28							· q
Key Number: 6	00000002						
AES Key Wrap	of SAK: 0873170e35c4	a82e2e880ea62459a00edfa7f7c9db3b	06ac				
Integrity Check	Value: c1634f874fc41	136f0a370c2hcceffd71					

- •MACsec SAK Use parameter set: Set di parametri che specifica l'uso della SAK.
- •Distributed SAK parameter set: Set di parametri che indica l'uso di una SAK distribuita.
- •AES Key Wrap of SAK: Chiave di crittografia AES utilizzata per il wrapping della SAK.
- •Integrity Check Value: Valore utilizzato per il controllo di integrità dei dati.

N.B: AES Key Wrap è un algoritmo di crittografia che viene utilizzato per proteggere una chiave di crittografia simmetrica.

Test Firewall

LAN-A3: 10.23.1.0/24

Test

53

Test Firewall

LAN-A3: 10.23.1.0/24

Test

Test OpenVpn

central-node

LAN-A3: 10.23.1.0/24

Test

Il ping verso hostB1 ha successo e il routing della richiesta ICMP avviene nel seguente modo:

- hostB2 effettua un lookup delle tabelle di routing e scopre che per contattare 192.168.17.10 deve inviare il pacchetto a tunO
- La *tunO* incapsula il pacchetto in un normale pacchetto IP (con dest IP = interfaccia pubblica del server)e lo inoltra a ethO.
- ethO invia il pacchetto tramite routing IP classico

LAN-A3: 10.23.1.0/24

LAN-B1: 192.168.17.0/2

central-node

Test OpenVpn

Test

Use Iface

0 eth0

0 eth0

0 tun0

0 tun0

0 tun0

Conclusioni

Conclusioni

Problemi riscontrati

- ❖ I file di grandi dimensioni non riuscivano ad essere inviati tramite *netcat*. Venivano infatti effettuate numerose *TCP retrasmissions* dovute a congestioni della rete che hanno portato quindi alla chiusura della connessione.
 - ❖ Da prove effettuate un MTU da 512 bytes risulta essere ottimale nell'ottenimento di una percentuale di packet loss prossima allo 0.

VMs & Containers utilizzati

- Docker: chiacchius/openvpn, chiacchius/cust_edge, chiacchius/av1_clamav, chiacchius/av2_loki
- Lubuntu: hostA1, hostA2, CE-A1, central-node
- Linux-Lite: av3