# Yukun Duan Computer Vision for HCI AU'22 Homework Assignment #9

## 1.

Here is the camera matrix I solved:

| -0.0021 | -0.0020 | -0.0017 | 0.9123 |
|---------|---------|---------|--------|
| 0.0006  | -0.0001 | -0.0028 | 0.4094 |
| -0.0000 | 0.0000  | -0.0000 | 0.0007 |

## 2.

The calculated SSE is: 18.7461.

### 3.

The calculated H value is:

| 0.3875  | 0.4842 | -21.3951 |
|---------|--------|----------|
| -0.0609 | 0.2709 | 90.4191  |
| 0.0003  | 0.0003 | 0.4072   |

#### 4.

Here is the projected point from image1 and the origin image2. According to the image below, the points are mostly lying on origin points from image2.



### 5.

The calculated SSE is 105.9739.

```
Attached Code:
% Yukun Duan
% CSE5524 - HW9
% 10/29/2022
%% Problem 1
% load 2d and 3d data
data2d = load('2Dpoints.txt');
data3d = load('3Dpoints.txt');
x = data2d(:,1); y = data2d(:,2);
X = data3d(:,1); Y = data3d(:,2); Z = data3d(:,3);
one = ones(size(data2d,1), 1); zero = zeros(size(data2d, 1), 1);
% construct matrix A
A = zeros(2*size(data2d,1), 12);
A(1:2:end, :) = [X,Y,Z,one,zero,zero,zero,-X.*x, -Y.*x, -Z.*x, -x];
A(2:2:end, :) = [zero, zero, zero, x, Y, Z, one, -X.*y, -Y.*y, -Z.*y, -y];
% calculate p value
[V, D] = eig(A'*A);
p = V(:, 1); % eigenvector with smallest egvalue
p = reshape(p, 4, [])';
disp(p)
%% Problem 2
% calculate homogeneous 3d array and 2d array
origin3dArr = [data3d, one]';
result2dArr = p * origin3dArr;
% switch result to inhomogeneous and reshape to same size as input 2d array
result2d = [result2dArr(1,:)./result2dArr(3,:);
result2dArr(2,:)./result2dArr(3,:)];
result2d = reshape(result2d, [], size(data2d,1))';
% calculate sum of squared error
error = sum((result2d - data2d).^2, 'all');
disp(error)
%% Problem 3
% load data for im1x, im1y, im2x, im2y
data = load('homography.txt');
im1x = data(:,1); im1y = data(:,2); im2x = data(:,3); im2y = data(:,4);
one = ones(size(data,1), 1); zero = zeros(size(data, 1), 1);
```

```
% calculate Ta and Tb
sa = sqrt(2)/(mean(sqrt((im1x-mean(im1x)).^2 + (im1y-mean(im1x))).^2 + (im1y-mean(im1x)).^2 + (im1x)(im1x).^2 + (im1x)(im1x)(im1x).^2 + (im1x)(im1x)(im1x)(im1x).^2 + (im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(im1x)(i
mean(im1y)).^2), 'all'));
sb = sqrt(2)/(mean(sqrt((im2x-mean(im2x)).^2 + (im2y-
mean(im2y)).^2), 'all'));
Ta = [sa, 0, -sa*mean(im1x); 0, sa, -sa*mean(im1y); 0, 0, 1];
Tb = [sb,0,-sb*mean(im2x); 0,sb,-sb*mean(im2y); 0,0,1];
% get origin data transformed using calculated s
im1x = sa*(im1x-mean(im1x));
im1y = sa*(im1y-mean(im1y));
im2x = sb*(im2x - mean(im2x));
im2y = sb*(im2y - mean(im2y));
% construct A
A = zeros(2*size(im1x, 1), 9);
A(1:2:end, :) = [im1x, im1y, one, zero, zero, -im1x.*im2x, -
im1y.*im2x, -im2x];
A(2:2:end, :) = [zero, zero, zero, im1x, im1y, one, -im1x.*im2y, -
im1y.*im2y, -im2y];
% calculate homography h
[V, D] = eig(A'*A);
h = V(:, 1); % eigenvector with smallest egvalue
h = reshape(h, 3, [])';
% calculate H
H = inv(Tb)*h*Ta;
disp(H)
%% Problem 4 and 5
% construct projected result
origin2dArr = [data(:,1), data(:,2), one]';
result2dArr = H * origin2dArr;
result2d = [result2dArr(1,:)./result2dArr(3,:);
result2dArr(2,:)./result2dArr(3,:)];
result2d = reshape(result2d, [], size(data,1))';
% plot projected from image1 and origin value of image2
```

```
plot(data(:,3), data(:,4), 'b*', result2d(:,1), result2d(:,2), 'r.',
'MarkerSize', 20)
title('Image2 Points (Blue) vs. Projected Points from Image1
(Red)','FontSize', 14)

% calculate error
error = sum((result2d - data(:, 3:4)).^2, 'all');
disp(error)
```