1. Jednaděbe statičkog strujnog polja i uvjeti na granici dvajú vodiča.

$$\begin{array}{c|c}
\hline
\text{Div } \vec{J} = \nabla \vec{J} = -\frac{\partial P}{\partial t} \\
\hline
\vec{J} = \mathcal{R} \vec{E} \\
\hline
\nabla \vec{J} = \mathcal{R} \nabla \vec{E} = -\frac{\partial P}{\partial t}
\end{array}$$

$$\nabla \vec{b} = \vec{\beta}_s \rightarrow \nabla \vec{\epsilon} = \frac{\vec{\beta}}{\epsilon}$$

$$\frac{s}{\varepsilon} = -\frac{1}{x} \frac{\partial s}{\partial t} - \frac{\partial s}{\partial t} + \frac{x}{\varepsilon} s = 0 - p(t) = s \cdot e^{-\frac{(x)}{\varepsilon}t} = s \cdot e^{-\frac{t}{\varepsilon}r}$$

ako je
$$\sigma_{3} = 0$$
 ili $\frac{\partial \sigma_{5}}{\partial t} = 0 \Rightarrow \tilde{N}_{12}(\tilde{J}_{2} - J_{1}) = 0 \Rightarrow \tilde{J}_{1n} = \tilde{J}_{2n} \Rightarrow \mathcal{X}_{1} = \tilde{J}_{2n} = \tilde{J}_{2n}$

$$\frac{J_{1t}}{\chi_{1}} = \frac{J_{2t}}{\chi_{2}} = > \frac{J_{1t}}{J_{2t}} = \frac{\chi_{1}}{\chi_{2}} \quad (\times \times)$$

$$\vec{N}_{12}(\vec{J}_2 - \vec{J}_1) = -\frac{\partial 6s}{\partial E} = 0$$

 $\vec{N}_{12} \times (\vec{E}_2 - \vec{E}_1) = 0$

$$t_g \propto_1 = \frac{E_{1t}}{E_{1n}}$$
; $t_g \propto_2 = \frac{E_{2t}}{E_{2n}}$

D. Analogija statičkog strujnog polja i statičkog električnog polja i odslikavanje u statičkom strujnom polju.

Homogeni dielektrik bez nabrja (Ps=0)	Vodljivi materijal, stac. strujanje PS/2t=0
Gauss: $\nabla \overline{D}^2 = 0$	Kontinuitet: $\nabla \vec{J} = 0$
D=EE	J=XE
DP=0	$\Delta P = 0$
Električni tok: Pe=5 Brds	Strujni tok: I=SJRdS
$C = \frac{Q}{V_{ab}} = \frac{\int V_{ab}}{\int \frac{d}{d}}$	$G = \frac{1}{V_{ab}} = \frac{\{\vec{J}\vec{m}\}\vec{s}}{\{\vec{F}\}\vec{c}}$

5	J ²
E 2	E'
3	De
4	9
Фe	1
C	G

$$J_{1n} = J_{2n} = 7$$
 $J_{1n} = 0$, $J_{2n} = 0 = 7$ $E_{1n} = E_{2n} = 0$, $\frac{\partial f_1}{\partial n} = \frac{\partial f_2}{\partial n} = 0$
 $i_1 = i_2$

3.) Gubici snage u vodiču u statičkom strujnom polju

Jednoliki presjek: R= 1/8 = 9 5

la = Jadsdt

dw = dg [fa-f8]=] rdsdt Eds = jEdvdt

$$P = \frac{\partial W}{\partial t} = \iiint \vec{J} \vec{E} dV = -\iiint \nabla \cdot (\vec{p} \vec{J}) dV = - \oiint \vec{p} \vec{J} \vec{n} dS \quad (\nabla \vec{p} \vec{J} = \vec{p} \vec{V} \vec{J} + (\nabla \vec{p}) \vec{J} = \vec{e} \vec{J})$$

(a) Biot-Savartov zakon i magnetska indukcija kratke ravne strujnice.
$$d\vec{B} = \frac{Mol}{4\pi} \frac{d\ell \times \vec{R}}{R^3} \qquad \vec{R} = \vec{r} \cdot \vec{r}, \qquad \vec{r} - položaj dijela strujnice$$

ri-polozaj dijela strujnice r - točka u kojoj računamo B

$$\vec{r} = \vec{r} \vec{a}_r + \vec{z} \vec{a}_z$$

$$\vec{r}' = \vec{z}' \vec{a}_z$$

$$\vec{R} = \vec{r} \vec{a}_r + (z - z') \vec{a}_z$$

$$d\vec{c} = dz' \vec{a}_z$$

$$\vec{r} = \vec{r} \vec{a}_r + \vec{z} \vec{a}_z$$

$$\vec{r}' = \vec{z} \cdot \vec{a}_z$$

$$\vec{r}' = \vec{z} \cdot \vec{a}_z$$

$$\vec{R} = \vec{r} \vec{a}_r + (z - z') \vec{a}_z$$

$$\vec{d} \vec{B} = \frac{M_0 I}{4\pi} \frac{d(z\vec{R})}{2^3} = \frac{M_0 I}{4\pi} \frac{r dz' \vec{a}_x}{\left[r^2 + (z - z')^2\right]^{\frac{1}{2}}}$$

$$\vec{B} = \frac{M_0 I \vec{a}_x r}{4\pi r} \int_{-\frac{L}{2}}^{\frac{L}{2}} \frac{dz'}{\left[r^2 + (z - z')^2\right]^{\frac{1}{2}}} = \vec{a}_x \frac{M_0 I}{4\pi r} \left[\frac{L_z + z}{\sqrt{(z + z)^2 + r^2}} + \frac{L_z - z}{\sqrt{(z + z)^2 + r^2}}\right] = \vec{a}_x \frac{M_0 I}{4\pi r} \left(\sin f + \sin \phi\right)$$

$$\vec{B} = \vec{a}_x \frac{M_0 I}{2\pi r}$$

$$\vec{B} = \frac{101}{4\pi} \int \frac{d\vec{e} \times \vec{k}}{R^3}$$

Ostaje samo komponenta u sujevu $\vec{\alpha}_z$ jer se ostale poništavaju. $\vec{\beta} = \frac{\mu_0 I}{4\pi} \int_0^1 \frac{v_0 \vec{\alpha}_z}{(v_0^2 + z^2)^{\frac{3}{2}}} \cdot V_0 dx = \frac{\mu_0 I}{4\pi} \frac{v_0^2 \vec{\alpha}_z}{(v_0^2 + z^2)^{\frac{3}{2}}} \int_0^1 dx =$

6) Sila na strujni element u magnetskom polju

D Jednadžbe statičkog magnetskog polja u diferencijalnom i integralnom oblika:

Ampereor zakon

$$\vec{B} = \vec{a}_{\alpha} \frac{M_0 I}{2\pi r} = konst.$$

$$d\hat{\ell}_{a-b} = \hat{\alpha}_r \delta r$$

$$d\hat{\ell}_{b-c} = \hat{\alpha}_x R_z \delta x$$

$$d\hat{\ell}_{c-d} = -\hat{\alpha}_r dr$$

$$d\hat{\ell}_{b-a} = -\hat{\alpha}_x R_1 \delta x$$

$$\frac{\partial^2}{\partial \ell} = \frac{\partial^2}{\partial x} \times \frac{\partial^2}{\partial x} = \frac{\partial^2}{\partial x} = \frac{\partial^2}{\partial x} \times \frac{\partial^2}{\partial x} =$$

Gaussov zakon