Julian Burgoff

10/25/2022

Analysis of Environmental Data

Lab 5

```
1. exp_fun = function(x, a, b)
{
    return(a *exp(-b * x))
}
```


2.

- 3. Parameter a is the height of the curve at the start.
- 4. Parameter b is the rate of decay. The higher the number, the steeper the initial slope of the curve.

- 6. Parameter a changes the initial slope of the curve where higher values cause steeper slope.
- 7. Parameter b dictates the height of the peak of the curve, where smaller b values cause the curve to peak at higher y values given the same value for parameter a.
- 8. curve(line_point_slope(x, 750, 0.3, -0.0005), add = TRUE)

I chose a negative slope and tried to use a point value that split the points of the plot fairly evenly.

Marbled Salamander - first time breeders linear model

9.

10. curve(exp_fun(x, 2, 1/200), add = TRUE, from = 0, to = 1500, ann = FALSE, axes = TRUE, ylab = "f(x)"); box()

I chose 2 and 1/200 just by trial and error to try and get the curve to split the data points as best as possible.

Marbled Salamander - first time breeders exponential model

12. curve(ricker_fun(x, 1/210, 1/275), from = 0, to = 1500, add = TRUE, ylab = "f(x)", xlab = "x")

I chose 1/210 and 1/275 by trial and error

Marbled Salamander - first time breeders ricker model

13.

14. observed= dispersal\$disp.rate.ftb

ricker_predicted= ricker_fun(dispersal\$dist.class, 1/210, 1/275) resids_ricker= c(observed - ricker_predicted)

exp_predicted= exp_fun(dispersal\$dist.class, 1/200, 1/200) resids_exp= c(observed- exp_predicted)

linear_predicted= line_point_slope(dispersal\$dist.class, 750, 0.3, -0.0005) resids_linear= c(observed - linear_predicted)

dat_resids= data.frame(dispersal\$disp.rate.ftb,resids_linear, resids_exp, resids_ricker)

