

Topic: Accelerate virtio/vhost using

DPDK in NFV/Cloud Environment

Company: Intel

Title: Software Engineer

Name: Xie, huawei; Tan, Jianfeng

Agenda

- virtio/vhost background
- virtio in NFV/Cloud (challenges, solutions)
 - 1. virtio PMD optimization
 - 2. vhost TSO
 - 3. vhost reconnect
 - 4. VM2VM fastpath
- virtio in container

virtio/vhost background

<u>Virtio</u> is the defacto para-virtualization standard for communicating with Virtual Machines (VM) efficiently.

<u>Vhost</u> is the KVM backend for Virtio, supplying packets to a Virtio Frontend.

Packet Flow

A bridge/virtual switch, switches packets to the backend (vhost) and these are forwarded to the frontend (virtio) in the Guest.

virtio in NFV/Cloud

VIRTIO PORT

VHOST PORT

PHYSICAL PORT

DPDK accelerated vNFs

North2South Perf

virtio PMD optimization

vhost AVX, delayed copy

vhost TSO

East2West Perf :VM2VM

Stability

vhost reconnect

DPDK virtio development journey

virtio in NFV/Cloud

normal virtio process

RX ring layout optmization

TX ring layout optmization

ring layout opt. and vectorization

new ring layout?

virtio in NFV/Cloud

VHOST TSO

VHOST TSO To NIC

vhost TSO in VM2VM

vhost TSO performance

virtio in NFV/Cloud

vhost reconnect

virtio in NFV/Cloud

http://www.linux-kvm.org/images/8/87/02x09-Aspen-Jun Nakajima-KVM as the NFV Hypervisor.pdf http://schd.ws/hosted files/ons2016/36/Nakajima and Ergin PreSwitch final.pdf

Future work

- new ISA
- vhost delayed copy
- vhost AVX
- vhost FPGA

virtio for container - Motivations

- Requirements for Container-based NFV
 - high throughput
 - low latency

virtio for container - Status quo

virtio for container - Architecture

- A new IPC in essence
 - Kernel-bypass
 - Well defined msg format
 - Cache friendly
- Virtio in Container vs VM
 - Device emulation
 - Address translation

Virtio for container – Addr trans

Virtio/Container - Performance

CPU: Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz with HT disabled

Disclaimer: prototyping result, subject to change with different system configurations

virtio/vhost background

• Virtio is the KVM standard for communicating with Virtual Machines (VM) efficiently

Vhost is the KVM backend for Virtio, supplying packets to a Virtio Frontend.

Packet Flow

A virtual switch, switches packets to the backend (vhost) and these are forwarded to the frontend (virtio) in the Guest.

Existing kernel space components.

DPDK virtio development journey

virtio optimization: ring layout and vectorization

virtio optimization: ring layout and vectorization

