

S GROUP, LLC translate.com

340.Brannan St., 5th Floor San Francisco, CA 94107 Tel: (415) 512-8800 Fax: (415) 512-8982

BEST AVAILABLE COPY

TRANSLATION FROM JAPANESE

- (19) JAPANESE PATENT OFFICE (JP)
- (11) Unexamined Patent Application (Kokai) No. 62-188100
- (12) Unexamined Patent Gazette (A)

 (51)
 Int. Cl.5:
 Classification Symbols:
 Internal Office Registration Nos.:

 G 11 C 17/00
 309
 6549-5B

 29/00
 303
 F-7737-5B

(43) Disclosure Date: August 17, 1987

Request for Examination: Not yet submitted

Number of Inventions: 1

(Total of 9 pages [in original])

(54) Title of the Invention:

WRITING METHOD FOR ULTRAVIOLET-ERASABLE PROGRAMMABLE ROM

- (21) Application No. 61-31125
- (22) Filing Date: February 13, 1986
- (72) Inventor: Toshihiro Koyama
- (72) Inventor: Tsugio Tawara

- (71) Applicant: Mitsubishi Denki K.K.
- (74) Agent: Masuo Oiwa, Patent Attorney (and two others)

SPECIFICATION

1. Title of the Invention

WRITING METHOD FOR ULTRAVIOLET-ERASABLE PROGRAMMABLE ROM

2. Claims

A writing method for an ultraviolet-erasable programmable ROM which writes data at one time for a plurality of bits, wherein

- [a] write data for a plurality of bits is input at one time and written into the aforementioned plurality of bits at one time,
 - [b] the data written into the aforementioned respective bits is read out,
- [c] a judgement is made as to whether or not there is agreement between this readout data and the aforementioned write data that was input at one time, and it is detected whether or not there are bits that have reached a specified threshold voltage among the bits into which the write data "0" was written,
- [d] for bits in which the aforementioned read-out data and the aforementioned write data that was input at one time agree, the aforementioned write data "0" is subsequently updated to "1" and written in, and
- [e] for bits in which the aforementioned read-out data and the aforementioned write data that was input at one time do not agree, the aforementioned write data "0" is written in "as is".

3. Detailed Description of the Invention

(Field of Industrial Utilization)

The present invention relates to a writing method for an ultraviolet-erasable programmable ROM (hereafter referred to as an "EPROM"), and more specifically relates to a writing method which can maintain the threshold voltages of bits into which the write data "0" is to be written at a fixed level that is greater than a [specified] judgement value.

(Prior Art)

Figure 5 shows a flow chart for a conventional EPROM writing method.

In this EPROM, the addresses are constructed from a plurality of bits, and the erased state is 1, while the written state is 0.

To describe this writing method, the initial address is first set in step S1. Next, the loop number N is set at 1 in step 2. Next, in step S3, one pulse of a constant duration is written into each bit of the set initial address so that write data of 0 or 1 is written. Next, in step S4, a judgement is made as to whether or not read-out of the data written for all of the bits of the address is possible. Here, for a given bit, read-out of the data written into the bit is possible in cases where the written data is 0 if the threshold voltage of the bit has reached a fixed level that is greater than a [specified] judgement value, and is possible in cases where the written data is 1 if the threshold voltage of the bit has reached a fixed level that is less than the abovementioned judgement value (these states are referred to as "pass states"). In cases where any address bit cannot be read out, a judgement is made in step S5 as to whether or not the loop number N for the bit that cannot be read out is equal to the loop limit value L. In cases where the loop number N is not equal to the loop limit value L, a result of N=2 is obtained in step S6; accordingly, the processing returns to step S3, and the write data is rewritten. Subsequently, a cycle consisting of step S3, step S4, step S5 and step S6 is repeated while adding 1 to the loop number N each time, until the data written in step S4 can be read out. In cases where the loop number N becomes equal to the loop limit value L in this cycle, a display indicating faulty writing into the EPROM is shown in step S7, and subsequent rewriting is stopped. In cases where all of the bits of the address can be read out, a judgement is made in step S8 as to whether or not the address in question is the final address. In cases where this address is the final address, writing into the EPROM is completed; in cases where this address is not the final address, the next address is set in step S9, and the processing returns to step S2, so that the writing and read-out of the next address are continued.

Thus, for each address, one fixed-time pulse of writing and read-out is repeated until all of the bits of the address are in a pass state, or until the loop number N reaches the loop limit value L, and this cycle is executed until the final address is reached, so that the write data is stored [?] [poor legibility—Tr.] in bits in one-address units.

Figure 6 is a diagram which shows the writing characteristics in a case where write data "0" is written into the bits of an EPROM using a conventional writing method. In the figure, the threshold voltages of the bits into which the write data "0" is written increase in proportion to the writing time. Here, the writing time required for the threshold voltages of the bits to reach the level of the judgement value varies from bit to bit as a result of variation at the time of manufacture of the EPROM.

Figure 7 is a diagram which shows the writing characteristics in a case where write data "1" is written into the bits of an EPROM using a conventional writing method. In the figure, the threshold voltages of the bits into which the write data "1" is written vary according to the writing time.

(Problems to Be Solved by the Invention)

In the case of conventional EPROMs, writing is performed by the method described above. However, since the threshold voltages of the bits into which the aforementioned write data "0" is written are proportional to the writing time as shown in Figure 6, a cycle consisting of step S3, step S4, step S5 and step S6 must be repeated numerous times in cases where bits of the same address include bits into which it is difficult to write the write data "0", so that rewriting is performed for a long period of time. As a result, the threshold voltages of bits into which the write data "0" can easily be written become considerably higher than the threshold voltages of bits into which such writing is difficult.

Figure 8 illustrates this situation. There is a variation in the threshold voltages of bits into which the abovementioned write data "0" is written, and this variation increases with a decrease in the number of bits into which data is written. As a result, in the case of a conventional writing method, there are problems such as a lack of suitability for writing

as pre-processing in tests of memory retention characteristics (high-temperature storage and high-temperature operation, etc.).

The present invention was devised in order to solve the abovementioned problems; the object of the present invention is to provide an EPROM writing method which can maintain the threshold voltages of bits into which write data "0" is written at a fixed level exceeding the judgement value.

(Means Used to Solve the Abovementioned Problems)

The EPROM writing method of the present invention is a writing method in which [a] write data for a plurality of bits is input at one time and written into the aforementioned plurality of bits at one time, [b] the data written into the aforementioned respective bits is read out, [c] a judgement is made as to whether or not there is agreement between this read-out data and the aforementioned write data that was input at one time, and it is detected whether or not there are bits that have reached a specified threshold voltage among the bits into which the write data "0" was written, [d] for bits in which the aforementioned read-out data and the aforementioned write data that was input at one time agree, the aforementioned write data "0" is subsequently updated to "1" and written in, and [e] for bits in which the aforementioned read-out data and the aforementioned write data that was input at one time do not agree, the aforementioned write data "0" is written in "as is".

(Effect)

The present invention utilizes the writing characteristic that the threshold voltage of a bit does not change even if write data "1" is written into said bit: Specifically, the present invention is devised so that in cases where the bits into which write data "0" has been written include a bit that has reached a specified threshold voltage, the write data for this bit is subsequently updated to "1" and written into the bit, while in the case of the other bits of the same address that have not yet reached the specified threshold voltage, write data "0" is written into the bits "as is" all at one time. Accordingly, in the case of

the abovementioned other bits, the threshold voltage rises as a result of the abovementioned rewriting performed all at one time; however, the threshold voltage of the abovementioned bit that has reached the abovementioned specified threshold voltage does not show any change as a result of the abovementioned rewriting performed all at one time.

(Embodiments)

An embodiment of the present invention will be described below with reference to the attached figures. Furthermore, in the description of this embodiment, the description of parts that would duplicate the above description of the prior art will be appropriately omitted.

Figure 1 is a flow chart which illustrates an EPROM writing method that constitutes an embodiment of the present invention. This flow chart differs from the flow chart shown in Figure 5 in the following respects: specifically, a step S51, step S52 and step S53 are inserted between step S5 and step S6, and a step S10 is added following step S9. Here, in cases where the loop number N is not equal to the loop limit value L, a judgement is made in step S51 as to whether or not the bits of the set address include bits that are in a pass state. In cases where there are no bits in a pass state, the loop number N is increased by 1 in step S6; then, the processing returns to step S3, and the writing of write data of "0" or "1" is performed by writing one pulse of a fixed duration into each bit. In cases where bits in a pass state are present [among the bits of the abovementioned set address], the information of the bits in a pass state is stored in step S52; next, in step S53, the subsequent write data is updated from "0" to "1" for the bits into which write data "0" has been written (among the bits in a pass state). Next, in step S6, the loop number N is increased by 1; then, the processing returns to step S3, and the writing of write data "0" or "1" is performed by writing a pulse of a fixed duration into each bit. Subsequently, a cycle consisting of step S3 through step S5, step S51 through step S53 and step 6 is repeated, with the loop number being successively increased by 1 until all of the bits of the address are in a pass state in step S4. Furthermore, in step S9, the next

address is set; at the same time, the bit information stored in a pass state in step S52 is cleared in step S10.

Thus, for each address, the writing and read-out of one pulse of a fixed duration is repeated until all of the bits of the address are in a pass state, or until the loop number N reaches the loop limit value L, and a cycle consisting of step S3 through step S5, step S51 through step S53 and step S6 is performed until the final address is processed. In this way, the write data "1" is written into bits in single-address units.

Figure 2 is a circuit diagram which illustrates an example in which the writing method of Figure 1 is realized by means of an external circuit. To describe this construction, an address signal line 3, a write signal line 4 and a read-out signal line 5 are connected to an EPROM 1. Address signals, write signals and read-out signals are applied to the respective signal lines. Each address of the EPROM 1 is constructed from n bits, and n driver-comparator circuits 31 through 3n are provided for these n bits. The EPROM 1 is connected to the respective driver-comparator circuits 31 through 3n by means of n data signal lines 2, and the respective driver-comparator circuits 31 through 3n are connected to a NAND circuit 13 by means of n bit pass signal lines 12. The NAND circuit 13 is connected to an address pass signal line 14.

To describe the driver-comparator circuit 31 in detail, a write data signal D1 is input into a write data signal line 111. The write data signal line 111 is connected to one input side of an OR circuit 101, and is connected to the data signal line 21 via a gate 41. A control signal line 6 is connected to the gate 41, and a driver enable signal is applied to this control signal line 6. The on-off switching of the gate 41 is controlled by the driver enable signal. The connection point between the output side of the OR circuit 101 and the input side of the gate 41 is connected to one of the input sides of an EOR circuit 51, and the output side of the gate 41 is connected to the other input side of the EOR circuit 51. The EOR circuit 51 judges the agreement between the data signal 101a from the OR circuit 101 and the read-out data signal read out from the EPROM 1. Specifically, the EOR circuit 51 makes a judgement as to whether or not the threshold voltages of the bits into which data has been written are in a pass state so that the data to be written can be

read out. The output side of the EOR circuit 51 is connected to one of the input sides of an OR circuit 61. A control signal line 7 is connected to the other input side of the OR circuit 651, and a strobe signal is applied to this control signal line 7. The strobe signal causes the OR circuit 61 to read in the judgement results from the EOR circuit 51. A NAND circuit 81 and NAND circuit 91 form a flip-flop circuit 71. The output side of the OR circuit 61 is connected to one of the input sides of the NAND circuit 81, and the other input side of the NAND circuit 81 is connected to the output side of the NAND circuit 91. One of the input sides of the NAND circuit 91 is connected to the output side of the NAND circuit 81 and the other input side of the OR circuit 101. A control signal line 8 is connected to the other input side of the NAND circuit 91, and a clear signal is applied to this control signal line. The flip-flop circuit 71 stores those signals among the output of the OR circuit 61 that correspond to a pass state. When the output of the flip-flop circuit 71 corresponds to a pass state, the OR circuit 101 changes the write data D1 from "0" to "1". The signals corresponding to a pass state stored in the flip-flop circuit 71 are cleared by the clear signal. The connection point between the other input side of the OR circuit 101 and the output side of the NAND circuit 81 is connected to the input side of a NAND circuit 13 by a bit pass signal line 121. Furthermore, the other driver-comparator circuits 3n are also constructed in the same manner as the drive-comparator circuit 31. For example, for [a given] driver-comparator circuit 3n, 4n indicates a gate, 10n indicates an OR circuit, and 8n indicates a NAND circuit; furthermore, a write data signal Dn is input into the write data signal line 11n. In cases where the outputs of the respective flip-flop circuits of the driver-comparators 31 through 3n all correspond to a pass state so that the data that is to be written can be read out for all of the bits of the address, the NAND circuit 13 outputs an address pass signal.

Figure 3 is a timing chart which is used to illustrate the operation of the circuit shown in Figure 2.

Next, the writing method using the circuit shown in Figure 2 will be described with reference to Figure 3. Here, it is assumed that write data D1 of "0" is input into the write data signal line 111, and that a data signal 101a of "0" is output from the OR circuit

101. This data signal 101a is applied to the gate 41, so that the driver enable signal is at a low level. Accordingly, the write signal is at a low level, and a data signal 101a of "0" is written by writing one pulse of a fixed duration into [each?] bit of the set address of the EPROM 1. Afterward, the read-out signal is at a low level, and a read-out data signal 11a is output from the EPROM 1. In this case, the threshold voltages of the bits [Translator's note: here and below, the singular/plural distinction with regard to "bits" is unclear in the original.] are still not in a pass state; accordingly the read-out data signal 11a is "1". The EOR circuit 51 judges the agreement of the data signal 101a of "0" and the read-out data signal 11a, and outputs a high-level bit judgment signal 51a. Afterward, the strobe signal is at a low level, so that the OR circuit 61 writes the high-level bit judgement signal 51a, and a high-level bit signal 61a is output from the OR circuit 61. In this case, since the clear signal is at a high level, a low-level bit pass signal is output from the flip-flop circuit 71. Next, since read-out of the write data "0" is still not possible, the output of the OR circuit 101 does not change, and a data signal 101a of "0" is output. This data signal 101a of "0" is rewritten into the same bit. A cycle operation consisting of the rewriting of the data signal 101a of "0" and judgement of the agreement of the data signal 101a and read-out data signal 11a, etc., is repeated until a read-out data signal 11a of "0" is output, i. e., until the threshold voltages of all of the bits are in a pass state. However, in cases where the loop number N reaches the loop limit value L, a display indicating faulty writing into the EPROM 1 is shown, and subsequent rewriting of the data signal 101a is cut off. When the data signal 101a and read-out data signal 11a agree as a result of rewriting so that the threshold voltages of bits into which "0" is to be written are in a pass state (in Figure 3, a pass state [is achieved] at the third pulse), the EOR circuit 51 outputs a low-level bit judgement signal 51a. Afterward, the strobe signal is at a low level so that the OR circuit 61 reads in the low-level bit judgment signal 51a, and a low-level bit signal 61a is output from the OR circuit 61. In this case, since the clear signal is at a high level, the low-level bit signal 61a is stored in the flip-flop circuit 71, and a high-level bit pass signal 81a is output from the flip-flop circuit 71. Next, since read-out of the write data "0" is already possible, the output of the OR circuit 101 changes, and a data signal 101a of "1" is output; this data signal 101a of "1" is rewritten into the same bit.

Afterward, a read-out data signal 11a of "0" is output from the EPROM 1. The bit judgement signal 51a is at a high level, and the bit signal 61a is at a high level; accordingly, the bit pass signal 81a remains at a high level, and the output of the OR circuit 101 does not change. Consequently, a data signal 101a of "1" is rewritten into the same bit. Afterward, a data signal 101a of "1" is output from the OR circuit 101, and "1" continues to be written into the bits. However, even if a data signal of "1" is written into a bit, the threshold voltage of the bit does not rise; accordingly, the threshold voltages of the bits into which a write data signal of "0" is to be written are maintained at a constant level that is more or less equivalent to the initial pass state, so that these threshold voltages do not change.

Furthermore, in cases where a write data signal D1 of "1" is input from the write data signal line 111, as in cases where a write data signal D1 of "0" is input, even when a bit has reached the pass state, a data signal of "1" continues to be written until all of the other bits have reached the pass state. In this case, the threshold voltages of bits into which a data signal of "1" is to be written are of course maintained at a fixed level that is below the judgement value.

Such a writing operation is also performed for the remaining driver-comparator circuits 3n, etc., in parallel with the writing operation of the driver-comparator circuit 31, and write data signals of "0" or "1" are written into each bit of the same address. Then, when the threshold voltages of all of the bits within the same address are in the pass state, all of the bits of the address can be read out, and the bit pass signals 81a through 8n from the respective driver-comparator circuits are all at a high level, so that a low-level address pass signal is output to the address pass signal line 14 from the NAND circuit 13, and the next address is set. In this case, the clear signal is at a low level so that the bit signal 61a in a pass state stored in the flip-flop circuit 71 is cleared. Accordingly, the output of the flip-flop circuit 71 is at a low level, and the processing continues with the writing of the next address.

Figure 4 shows the distribution of the threshold voltages of the bits with respect to the number of bits written in a case where write data of "0" is written using the

abovementioned writing method. It is seen that the threshold voltages of the respective bits are more or less uniformly maintained at the level of the judgement value regardless of the number of bits written, with these voltages showing little variation.

Thus, in the present invention, for bits into which write data of "0" is to be written, the write data is updated from "0" to "1" and written after the bits have reached the pass state; accordingly, even if rewriting is repeated at one time for a plurality of bits in address units, the threshold voltages of bits into which write data of "0" is to be written are maintained at a more or less constant level above the judgement value, and the threshold voltages of bits into which write data of "1" is to be written are maintained at a more or less constant level below the judgement value.

Furthermore, in the above embodiment, a case was described in which the writing method of the present invention was realized using the external circuit shown in Figure 2; however, the writing method of the present invention could also be realized using a similar external circuit, an internal circuit in a device, or software. In such cases as well, an effect similar to that of the abovementioned embodiment can be obtained.

(Merits of the Invention)

In the present invention, as was described above, write data for a plurality of bits is written into the plurality of bits at one time, and the agreement of the read-out data and write data is judged, so that it is detected whether or not the bits into which write data of "0" has been written include bits that have reached a specified threshold voltage. In the case of bits in which the read-out data and write data agree, the write data is subsequently updated from "0" to "1" and written. In the case of bits in which the read-out data and write data do not agree, the write data of "0" is written "as is". Accordingly, it is possible to obtain an EPROM writing method which can maintain the threshold voltages of all of the bits into which write data of "0" is to be written at a constant level above the judgement value. Accordingly, this method is suitable for use as a pre-treatment in tests of memory retention characteristics involving high-temperature storage or high-temperature operation, etc.

4. Brief Description of the Drawings

Figure 1 is a flow chart of an EPROM writing method that constitutes one embodiment of the present invention.

Figure 2 is a circuit diagram which illustrates an example in which the writing method shown in Figure 1 is embodied by means of an external circuit.

Figure 3 is a timing chart which is used to illustrate the operation of the circuit shown in Figure 2.

Figure 4 is a diagram which shows the distribution of the threshold voltages of the bits with respect to the number of bits written in a case where write data of "0" is written using the writing method of the present invention.

Figure 5 is a flow chart which illustrates a conventional EPROM writing method.

Figure 6 is a diagram which illustrates the writing characteristics in a case where write data of "0" is written using a conventional writing method.

Figure 7 is a diagram which illustrates the writing characteristics in a case where write data of "1" is written using a conventional writing method.

Figure 8 is a diagram which shows the distribution of the threshold voltages of the bits with respect to the number of bits written in a case where write data of "0" is written using a conventional writing method.

In the figures, 1 indicates an EPROM, 2 indicates a data signal line, 3 indicates an address signal line, 4 indicates a write signal line, 5 indicates a read-out signal line, 6, 7 and 8 indicate control signal lines, 12 indicates a bit pass signal line, 14 indicates an address pass signal line, 31 and 3n indicates driver-comparator circuits, 41 and 4n indicate gates, 51 indicates an EOR circuit, 61, 101 and 10n indicate OR circuits, 71 indicates a flip-flop circuit, and 81, 8n, 91 and 13 indicate NAND circuits.

Furthermore, in the respective figures, the same symbols indicate the same or corresponding parts.

Figure 1

[Key: [top oval] Start; S1: Setting of initial address; S2: Loop number: N ← 1; S3: One pulse written; S4: Read-out possible?; S51: Pass bit present?; S52: Pass bit information stored; S53: Pass bit write data changed to "1"; S7: Display of faulty operation; S8: Final address?; S9: Setting of next address; S10: Pass bit information cleared; [bottom oval] End.]

Figure 2

[Key:]

A: External writing circuit system; B: EPROM system; C: Address signal; D: Write signal; E: Read-out signal; F: Data D1 ~ Data Dn; G: Write data signal D1; H: Address pass signal; I: Write data signal Dn; J: Clear signal; K: Strobe signal; L: Driver enable signal.

1: EPROM; 31, 3n: Driver-comparator circuits; 41, 4n: Gates; 51: EOR circuit; 61, 101, 10n: OR circuits; 71: Flip-flop circuit; 81, 8n, 91, 13: NAND circuits.

2: Data signal line; 3: Address signal line; 4: Write signal line; 5: Read-out signal line; 6,

7, 8: Control signal lines; 12: Bit pass signal line; 14: Address pass signal line.

Figure 3

[Key:]

A: Address signal; B: Write signal; C: Read-out signal; D: 41 Output, "1" output 11a; E: Write data signal D1; F: 101 Output; G: 51 Output; H: 61 Output; I: 71 Output; J: 4n Output, "1" output 1na; K: 8n Output; L: Driver enable signal; M: Strobe signal; N: Clear signal; O: Address pass signal; P: Next address; Q: One pulse; R: Write at low level; S: "1" output; T: "1" input; U: Read-out at low level; V: "0" input; W: "0" output; X: Write data "0"; Y: Write data "1"; Z: Clearing of pass bit information; A': Pass state at third pulse; B': Pass state at first pulse; C': Pass state at fourth pulse; D': Pass state at second pulse; E': Read-out OK; F': Read-out OK.

Figure 4

[Key: A: High; B: Threshold voltage; C: Low; D: Small; E: Number of bits written; F:

Large; G: Judgement value.]

Figure 5

[Key: [top oval] Start; S1: Setting of initial address; S2: Loop number: N ← 1; S3: One pulse written; S4: Read-out possible?; S7: Display of faulty operation; S8: Final address?; S9: Setting of next address; [bottom oval] End.]

Figure 6

[Key: A; High; B: Threshold voltage; C: Low; D: Short; E: Data "0" writing time; F: Long; G: Judgement value; H: Data "0"; I: Data "1".]

Figure 7

[Key: A: High; B: Threshold voltage; C: Low; D: Short; E: Data "1" writing time; F: Long; G: Judgement value; H: Data "0"; I: Data "1".]

Figure 8

[Key: A: High; B: Threshold voltage; C: Low; D: Small; E: Number of bits written; F: Large; G: Judgement value.]

[Translator's Note: The procedural amendment at the end of the original has been incorporated into the translation.]

⑫公開特許公報(A) 昭62-188100

@Int.Cl.4 17/00 G 11 C

庁内整理番号 證別記号

@公開 昭和62年(1987)8月17日

29/00

3.0 8 303

6549-5B F-7737-5B

未請求 発明の数 1 (全9頁) 塞杳請求

紫外線消去型プログラマブルROMの書込方法 44発明の名称

> 頤 昭61-31125 创特

昭61(1986)2月13日 23出 願

Ш @発 明 小 考

利 弘

伊丹市瑞原4丁目1番地 三菱電機株式会社北伊丹製作所

明 渚 \blacksquare 四発

次 夫 伊丹市瑞原4丁目1番地 三菱電機株式会社北伊丹製作所

三菱電機株式会社 人 印出 願

東京都千代田区丸の内2丁目2番3号

弁理士 大岩 外2名 増進 理 人 分代

1、発明の名称

紫外線消去型プログラマブルROMの8込方法 2. 特許請求の範囲

複数ピットことにデータを一括書込するような 常外線消去型プログラマプルR O M の 書込方法で

複数ピット分の搬込データを一括入力して前記 複数ピットに一括書込し、

前記各ピットに審込まれたデータを読出し、

この読出されたデータと前記一括入力される曲 込データとの一致を判定して、扱込データロを輩 込んだビットのうちに所定しきい値電圧に到達し たピットがあるか否かを検出し、

前記読出されたデータと前記一括入力される留 込データとが一致したピットに対しては、その扱 前記四込データ0を1に変更して選込むようにし、

前記読出されたデータと前記一括入力される田 込データとが一致しないピットに対しては前記目 込データののままで審込むようにする宏外線消去 型プログラマブルROMの裏込方法。

3 . 発明の詳細な説明

[産業上の利用分野]

この発明は紫外観消去型プログラマブルROM (以下EPROMと記す)の書込方法に関し、特 に盡込データ0を勘込むべきピットのしきい値電 圧を判定値以上の一定レベルに扱えることができ る塵込方法に関するものである。

[従来の技術]

第5回は従来のEPROMの歯込方法のフロー チャートである。

このEPROMは、アドレスが複数のピットで 機成されており、消去状態が1、傷込状態が0で

この歯込方法について説明すると、まず、ステ ップS1で初期アドレスの設定を行なう。次に、 ステップS2でループ回数Nを1にする。次に、 ステップS3で設定された初期アドレスの各ピッ トに一定時間の1パルスを描込むことによって〇 または1の書込データの製込を行なう。次に、ス

テップS4でアドレスのすり のヒットについて 自込まれたデータの読出が可能か否かを判定する。 このとき、該当ヒットについて、母込データが〇 ならばそのしきい趙電圧が判定値以上のレベルに 到達した状態のとき、また豊込データが1ならは そのしきい血電圧が判定値以下の一定レベルにな った状態(これらの状態をパス状態という)のと き、ピットに担込まれたデータの設出が可能とな る。アドレスのピットのうちのいずれかのピット が読出不可能な場合は、ステップS5でこのピッ トについてループ回数Nがループ制程値しに等し いか否かが判定される。ループ回放Nがループ割 展位しに等しくない組合には、ステップS6でN - 2となり、ステップ3に戻って母込データの再 国込が行なわれる。以後、ステップS4で母込ま れたデータの読出が可能となるまでループ回数N を順次1ずつ増加させながらステップS3,ステ ップS4, ステップS5, ステップS6のサイク ルを緻返す。このサイクルにおいて、ループ回数 Nがループ制限値しに等しくなった場合にはステ

O M の 製造時のはらつきによってビット ごとに 数なる。

第7回はEPROMのピットに従来の自込方法で自込データ1を登込む担合の召込特性を示す図である。図において、包込データ1をむ込んだピットのしきい値電圧は登込時間に対して変化しない。

[発明が解決しようとする問題点]

第8図はこの様子を示したものであり、目込データ0を固込んだピットのしきい値包圧にはらつ

このように、1アドレスごとに一定時間のイバスの 包込と球出を、アドレスのすべてののピットがパス状態となるかまたはループ回数 N がループ 倒数 L になるかまで 繰返し、このサイクルを 優勝アドレスまで実行することによって、 密込データが1アドレス単位でピットに 担まれる。

第6図はEPROMのピットに従来の哲込方法で国込データ0を哲込む場合の哲込符性を示す図である。図において、ロ込データ0を審込んだでットのしきい個電圧は出込時間に比例してなくなっている。ここで、ピットのしきい個電圧が判定

きが生じており、 借込ビット 数が少ないほどはらつきが大きくなっている。 このため、 従来の世込方法は、 高温保存や高温動作などの記憶保持特性試験における前処理としての 普込には通さないなどの関題点があった。

この発明は上記のような問題点を解消するためになされたもので、四込データのを固込むべきに ットのしきい値電圧を判定値以上の一定レベルに 崩えることができるEPROMのお込方法を得る ことを目的とする。

[四趾点を解決するための手段]

この発明に係るEPROMのの方法はは、、での発明に係るEPROMのの方法とはなった。 おおで、ではないでは、ないのではないでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、その優強込データのを1に変更 して製込むようにし、統正されたデータと一括入力される国込データとが一致しないピットに対しては貫込データののままで割込むようにする方法である。

[作用]

[実施例]

以下、この発明の実施例を図について説明する。なお、この実施例の説明において、従来の技術の

ータを 0 から 1 に 変更 し、、 次 次 に スステテンプ ブン 込い でに に と 以 が ルルス を を で で に に と 以 が ルルス を を で に と は が ルルス を を で に と は が ルルス を を で に と は が ルルス を を で に で に で で は で の の の が な で で で で で で で で で で で が な テップ な か で で で が な テップ な の で で で が な テップ で い か な テップ で い か な テップ ら ら 次 で こ カース ま で で で が な アップ ら ら 次 で こ の の ア で に は い か な で で で で で に は い で で に は い で で れ ね の で で れ ね の で さ れ な の で さ れ な の で さ れ な の で さ れ な の で さ れ な の で さ れ な の で さ れ な の で さ れ な の で さ れ な の で さ れ る ・

このように、1 アドレスごとに一定時間の1 パルスの 選込と 読出を、アドレスのすべてのピットがパス 状態 となるかまた はループ 回数 N がループ 制服値 L になるかまで 繰返し、ステップ S 5 2 ~ ステップ S 5 3 ~ ステップ S 6 からなる サイクルを 異粋 アドレス まで実行する ことによって 勘込データが 1 アドレス 単位でピットに 個込まれる。

説明と重視する については適宜その説明を省略する。

朔1図はこの発明の実施例であるEPROMの 担込方法のフローチャートである。このフローチ ャートが第5図のフローチャートと異なる点は以 下の点である。すなわち、ステップS5とステッ プS6との間にステップS51、ステップS52. ステップS53が、さらにステップS9の後にス テップS10が追加された点である。すなわち、 ループ回数Nがループ制限値しに等しくない場合 には、ステップS51で設定されたアドレスのビ ットの中にパス状態のピットがあるか否かが判定 される。バス状態のピットがない場合には、ステ ップ S. 6 でループ回数 N を 1 増加させ、ステップ S3に戻って各ピットに一定時間の1パルスを習 込むことによってOまだは1の豊込データの銀込 を行なう。パス状態のピットがある場合には、ス テップS52でパス状態のピット情報を記憶し、 次にステップS53でバス状態のビットのうち性 込データのを書込んだピットについて以後書込デ

ドライバ・コンパレータ回路 3 1 について 詳相に 説明すると、データピン 1 1 1 に 選込データ信 月 D 1 が入力される。データピン 1 1 1 は O R 回路 1 0 1 の一方の入力で、 リート 4 1 を介して データ信号線 2 1 に接続されている。ゲート 4 1 に

コントロール健身限6が接続されており、このコ ントロール信号線にドライバ・イネーブル信号が 与えられる。ゲート41は ドライバ・イネーブル 信号によりそのオン・オフが制御される。OR回 . 路 1 0 1 の出力側とゲート 4 1 の入力側との接続 点はEOR回路51の一方の入力側に接続されて おり、ゲート41の出力組はEOR回路51の他 方の入力側に接続されている。EOR回路51は OR回路101からのデータ信号101a とEP ROM1から読出された疎出データ信号11a と の一致を判定する。すなわち、データが自込まれ たピットのしきい値電圧がパス状態になってO込 むべきデータが読出可能であるか否かを判定する。 EOR回路51の出力側はOR回路61の一方の 入力的に接続されている。 〇R回路 6 1 の他方の 入力側にコントロール信号線7が接続されており、 このコントロール 惜月雄に ストロープ 借号が与え られる。OR回路 6 1 はストローブ信号により E OR回路51からの判定結果を取込む。NAND 回路 8 1 とNAND回路 9 1 とはフリップフロッ

る。OR回路61の出力側は プ回路71を構成 NAND回路81の一方の入力網に接続され、N AND回路81の他方の出力側はNAND回路9 1の出力機に接続されている。NAND回路91 の一方の入力側はNAND回路81の出力側およ びOR回路101の他方の入力関に接続されてい る。NAND回路91の他方の入力側にコントロ - ル信号線8が接続されており、このコントロー ル信号級にクリア借号が与えられる。フリップフ ロップ回路71はOR回路61出力のうち、パス 状態に対応する信身を記憶する。OR回路101 は、フリップフロップ回路71出かがパス状態に 対応しているとき 改 ジテータ D1を 0から 1に 変 える。フリップフロップ回路71に記憶されたバ ス状態に対応する信号はクリア信号によりクリア される。OR回路101の他方の入力例とNAN D回路81の出力側との接続点はピットバス信号 韓121によりNAND回路13の入力器に接続 されている。また、他のドライバ・コンパレータ 回路3n などについてもドライバ・コンパレーダ

回路31と同様に 個成されて おり、 たとえば ドラマイバ・コンパレータ 回路3 1 につい NAND回路 であり、 データピン 1 1 n に 超込 データの 3 1 に カカされる。 NAND回路 1 3 は、 ドライバロクロ路31 ~ 3 は は アラフィア ロロカ が すべて いい アドロス パス 信号 聴 1 4 に ローバルの アドレス パス 信号 を出力 する。

第3図は第2図の回路の動作を説明するための タイミングチャートである。

次に、第2回の回路による勘込方法を第3回を 4 照しながら説明する。データピン1111に0の 曲込データ信号D1が入力され、0R回路101 から0のデータ信号101aが出力されていると する。この0のデータ信号101aはゲート41 に与えられ、ドライバ・イネーブル信号がローレベルとなり、 画込信号がローレベルとなってEP ROM1の設定されたアドレスのピットに一定時 間の1パルスを包込むことによって0のデータ信 号101a が書込まれる。この後、||荻出信号が口 - レベルとなって E P R O M 1 から流出データ信 另11a が出力される。このとき、まだピットの しきい値電圧はパス状態になっていないので流出 データ信号118 は1となる。EOR回路51は Oのデータ信号101a と読出データ信号11a との一致を判定してハイレベルのピット判定信号 5 1 a を出力する。この後、ストロープ信号がロ - レペルとなってOR回路61はハイレベルのヒ ット判定信号51aを取込み、OR回路61から ハイレベルのピット信号61a が出力される。こ のとき、クリア信号はハイレベルになっているの で、フリップフロップ回路71からローレベルの ヒットパス信号が出力される。次に、まだ各込デ - タ O の 球出が可能でないので O R 回路 1 O 1 出 力は変化せず0のデータ信用101a が出力され、 この〇のテータ信号101aが同一ピットに再ひ 込される。Oのデータ信号101aの再告込、デ - タ信号 1 O 1 a と 読出データ信号 1 1 a との -

致の判定などからなるサイクル動作は○の読出デ - 夕信月11a が出力されるまで、すなわちビッ トのしきい紅電圧がパス状態になるまで何回も操 返される。但し、ループ回数Nがループ制限値L になった場合にはEPROM1への選込の不良褒 示がなされ、以後〇のデータ信号101a の再書 込が打切られる。再赴込によって、データ借号1 〇1aと決出データ信号11a とが一致して〇を **也込むべきビットのしきい値電圧がバス状態なっ** たとき(第3因において3パルス目でパス状態)、 EOR回路51はローレベルのピット判定信号5 1 』を出力する。この後、ストロープ信号がロー レベルになってOR回路61はローレベルのピッ ·卜判定信号51aを取込み、OR回路61からロ -レベルのビット信号618が出力される。この とき、フリア信用はハイレベルになっているので、 ローレベルのピット信号61a はフリップフロッ プ回路71に記憶され、フリップフロップ回路7 1からハイレベルのピットパス信写81a が出力 される。次に、既に留込データ〇の誘出が可能で

明合はもちろん1の書込データ信号を書込むべき ピットのしきい組織任は判定値以下の一定レベル のままに保持される。

以上のような個込動作は残りのドライバ・コン パレータ回路3n 等についてもドライバ・コンパ レータ回路31の書込動作と並列に行なわれ、両 ーアドレス内の各ピットに0または1の誰込デー 夕僧号が毎込まれる。そして、周一アドレス内の すべてのピットのしきい値駕圧がパス状態となっ たときアドレスのすべてのピットの読出が可能と なり、各ドライバ・コンパレータ回路からのビッ トパス信号81a~8m はすべてハイレベルとな って、NAND回路13からローレベルのアドレ スパス信号がアドレスパス信号線14に出力され 次のアドレスが設定される。このとき、 クリア 信 号がローレベルになってフリップフロップ回路 7 1に記憶されたパス状態のビット信号61a はク リアされ、フリップフロップ回路71出力はロー レベルとなって次のアドレスの盗込へと続いてい ζ.

【01出力は変化して1のデー あるので O R 回 夕信号101a が出力され、この1のデータ信号 101aが同一ピットに再也込される。この後、 EPROM1から0の読出データ信号11a が出 カされ、ピット判定信号 5 1 a はハイレベル、ビ ット信号61a はハイレベルとなり、ピットパス 借月81a がハイレベルのままで〇R回路101 出力は変化せず、1のデータ信号101a が同一 ヒットに再替込される。以後、OR回路101か らは1のデータ信号101a が出力されビットに 1がひ込まれ続けるが、ピットに1のデータ信号 を置込んでもピットのしきい値電圧の上昇は足こ らないので、 Oの費込データ借号を提込むべきビ ットのしきい値電圧はほほ及初のパス状態の一定 レベルに保持され変化しない。

また、データピン 1 1 1 1 から 1 の 2 込データ D 1 が入力される場合についても、 0 の 2 込データ 信号 D 1 を 2 込む場合と回様、 ビット がバスの 状態となった 後も他のピット がすべて バス状態になるまで 1 のデータ 信号が 2 込み続けられる。この

第4 図はこの書込方法で B込データ 0 を 如 込む 場合のピットのしきい値 3 圧の分布を 3 込ピット 数に対して示したもので、各ピットのしきい 値 3 圧は 2 込ピット数の多少にかかわらずほぼ判定値 のレベルに揃っておりばらつきが少ない。

なお、上記実施例では、この危例の異込方法を第2図の外部回路で実現した場合について説明したが、周様な外面回路、またはデバイスの内部回路、またはソフトウェアで実現してもよく、これらの場合にも上記実施例と同様の効果を奏する。 【発明の効果】

4. 図面の簡単な説明

第1図はこの発明の実施例であるEPROMの 審込方法のフローチャートである。

第2因は第1因の書込方法を外部回路で実現した例を示す回路図である。

101.10n はOR回路、71はフリップフロップ回路、81.8n.91.13はNAND回路である。

なお、各図中間一符号は同一または相当部分を 示す。

代理人 大岩 增 雄

第3 图は第2 図の一路の動作を説明するための タイミングチャートである。

第4 図はこの発明の関込方法で書込データ O を 書込む場合のピットのしきい 値電圧の分布を狙込 ピット数に対して示す図である。

第5図は従来のEPROMの書込方法のフローチャートである。

第6図は従来の語込方法で設込データ〇を由込む場合の都込特性を示す図である。

第7 図は従来の世込方法で超込データ1を報込む場合の超込特性を示す図である。

第8回は従来の数込方法で数込データ〇を数込む場合のピットのしきい値配圧の分布を想込ビット数に対して示す図である。

図において、1はEPROM、2はデータ信号 は、3はアドレス信号は、4は登込信号線、5は 欧山信号線、6、7、8はコントロール信号線、 12はピットパス信号線、14はアドレスパス信 号線、31、3nはドライパ・コンパレータ回路、 41、4nはゲート、51はEOR回路、61、

第1図

第 2 図

第 4 図

第5 🛭

手 続 補 正 母(自発)

61 8 4 昭和 年 月 E

特許庁長官殿

通

1. 事件の表示

特願昭 61-31125号

2. 発明の名称

紫外級消去型プログラマブルROMの書込方法

3. 加正をする者

平件との関係 特許出級人 中 所 東京都千代田区丸の内二丁目2番3号

名 称

(601) 三菱電機株式会社 代表者 片二山 仁一八一郎 志 岐 守 茂

4.代 理 人 住 所

東京都千代田区丸の内二丁目2番3号 三**菱電機株式**会社内 パニス

氏 名 (7375) 弁理士 大 岩 增 雄 (連絡先03(213) 3421 特許部)

特許庁 61.8.6 5、福正の対象

明細菌の発明の詳細な説明の鵞

6. 瀬正の内容

(1) 明細書の第10頁第17行。第18行、 第13頁第14行および第16頁第16行の「データピン111」を「實込データ信号線111」 に訂正する。

(2) 明報書第13頁第4行の「データピン 11n」を「書込データ信号線11n」に訂正す

以上