Решение задач на тему «Представление чисел в компьютере».

Типы задач.

- 1. Целые числа. Представление чисел в формате с фиксированной запятой.
- 2. Дробные числа. Представление чисел в формате с плавающей запятой.
- 3. Арифметические операции с числами в формате с плавающей запятой.
- 1. Целые числа. Представление чисел в формате с фиксированной запятой.

Методические рекомендации:

В задачах такого типа используются понятия:

- Фиксированная запятая или фиксированная точка.
- Машинное слово
- Прямой код
- Дополнительный код
- Обратный код

Фиксированная запятая.

Целые числа в компьютере хранятся в памяти в формате *с фиксированной запятой или фиксированной точкой*. В этом случае каждому разряду ячейки памяти соответствует всегда один и тот же разряд числа, а запятая находится справа после младшего разряда, т.е. вне разрядной сетки.

Машинное слово.

Множество целых чисел, представимых в памяти ЭВМ ограничено и зависит от размера ячеек памяти (машинного слова), используемых для их хранения. В k-разрядной ячейке может храниться 2^k различных значений целых чисел.

Представление целых положительных чисел.

Алгоритм№1 получения внутреннего представления <u>целого положительного числа</u> N, хранящегося в k разрядном машинном слове:

- 1. Перевести число N в двоичную систему счисления.
- 2. Полученный результат дополнить слева незначащими нулями до k разрядов

Прямой код.

Для хранения целых неотрицательных чисел отводится одна ячейка памяти (8 бит).

Для хранения *целых чисел со знаком* отводится две ячейки памяти (16 бит), причем старший (левый) разряд отводится под знак числа (если число положительное, то в знаковый разряд записывается 0, если число отрицательное записывается 1).

Представление в компьютере положительных чисел с использованием формата «знаквеличина» называется *прямым кодом* числа.

Дополнительный код. Обратный код

Для представления отрицательных чисел используется дополнительный код. Дополнительный код позволяет заменить арифметическую операцию вычитания операцией сложения, что существенно упрощает работу процессора и увеличивает его быстродействие.

Алгоритм №2 получения внутреннего представления целого отрицательного числа N, хранящегося в k разрядном машинном слове :

- 1. Получить внутреннее представление положительного числа N (Перевести число N в двоичную систему счисления, полученный результат дополнить слева незначащими нулями до k разрядов)
- 2. Получить *обратный код* этого числа заменой 0 на 1 и 1 на 0, т.е значения всех бит инвентировать.
- 3. К полученному числу прибавить 1.

Данная форма называется дополнительным кодом

Алгоритм №3 перевода дополнительного кода в десятичное число.

- 1) Инвертировать дополнительный код
- 2) Прибавить к полученному коду 1 и получить модуль отрицательного числа:
- 3) Перевести в десятичное число и приписать знак отрицательного числа.

Уровень «3»

1. Компьютер работает только с целыми положительными числами. Каков диапазон изменения чисел, если для представления числа в памяти компьютера отводится 1 байт? ([1], стр. 135, N2 46)

Решение:

Диапазон значений от 0 до 2^8 -1=255

Ответ: от 0 до 255.

2. Каков диапазон изменения целых чисел (положительных и отрицательных), если в памяти компьютера для представления целого числа отводится 1 байт. ([1], стр. 135, N 47)

Решение:

В диапазоне целых положительных чисел всего 256 чисел, если в памяти компьютера для них отводится 1 байт.

Диапазон значений положительных и отрицательных чисел в равном количестве рассчитаем так: 256:2= 128. Минимальное отрицательное число равно -128. Так как число

0 также входит в этот диапазон, то максимальное положительное число будет равно 127 (от -2 $^{k-1}$ до 2 $^{k-1}$ -1, действительно, так как 2^k :2=2 $^{k-1}$).

Ответ: от -128 до 127.

3. Пусть для представления целых чисел в компьютере используется 16 - разрядная ячейка (2 байта). Определить каков диапазон хранимых чисел, если: а) используются только положительные числа; б) используются как положительные, так и отрицательные числа в равном количестве. ([1], Пример 1, стр. 135)

Решение:

Всего в 16 – разрядной сетке может храниться 2^{16} = 65536 значений. Следовательно: а) диапазон значений только положительных чисел от 0 до 65535 (от 0 до 2^k -1, 1 отняли, так как одно значение пошло на кодировку числа 0);

б) диапазон значений положительных и отрицательных чисел в равном количестве рассчитаем так: 65536:2=32768. Минимальное отрицательное число равно -32768. Так как число 0 также входит в этот диапазон, то максимальное положительное число будет равно 32767 (от -2 $^{k-1}$ до 2 $^{k-1}$ -1, действительно, так как $2^k:2=2$ $^{k-1}$).

Ответ: а) от 0 до 65535; б) от -32768 до 32767.

4. Заполнить таблицу, записав максимальные и минимальные значения чисел в заданном компьютерном представлении:

Компьютерное представление	Максимальное значение	Минимальное значение
целые неотрицательные числа		
целые числа со знаком		
большое целое число со знаком		

([2], cmp.64, N_{2} 2.52)

Решение:

Для хранения *целых неотрицательных чисел* отводится одна ячейка памяти (**8 бит**). Минимальное значение — все разряды заполнены 0, это будет число 0, максимальное значение — восемь единиц, или десятичное число 255.

Для хранения *целых чисел со знаком* отводится две ячейки памяти (16 бит), причем старший (левый) разряд отводится под знак числа (если число положительное, то в знаковый разряд записывается 0, если число отрицательное записывается 1). Следовательно максимальное значение целых чисел со знаком $2^{15} - 1 = 32767$ (один разряд на знак и 1 на кодирование 0), а минимальное $-2^{15} = -32768$.

Для хранения больших целых чисел со знаком отводится 4 ячейки памяти-32 бита. Значит,

максимальное значение большого целого числа со знаком $2^{31} - 1 = 2147483647$, минимальное значение $-2^{31} = -2147483648$

Ответ:

Компьютерное представление	Максимальное	Минимальное значение
	значение	
целые неотрицательные числа	$2^8 - 1 = 255$	0
целые числа со знаком	$2^{15} - 1 = 32767$	$-2^{15} = -32768$
большое целое число со знаком	$2^{31} - 1 = 2147483647$	$-2^{31} = -2147483648$

Примечание, можно предложить учащимся сравнить максимальные значения знаковых и без знаковых представлений чисел:

Знаковое -127 и без знаковое -255 у 8 - разрядных представлений (на число 1 байт) Знаковое - 32767 и без знаковое - 65535 у 16 - разрядных представлений (на число 2 байта).

Максимальное значение знакового числа почти в 2 раза меньше, чем у без знакового числа.

5. Компьютер работает только с целыми положительными числами. Каков диапазон изменения чисел, если для представления числа в памяти компьютера отводится 4 байта? ([1], cmp.135, № 48.)

Решение:

Если компьютер работает только с целыми положительными числами, то разряд на знак выделять не надо. Диапазон чисел лежит от 0 до 2^{32} -1, так как 4 байта – 32 бит.

Ответ: от 0 до 2³² -1 или от 0 до 4 294 967 295

6. Каков диапазон изменения целых чисел (положительных и отрицательных), если в памяти компьютера для представления целого числа отводится 4 байта? ([1], стр.135, № 49.)

Решение:

Для хранения больших целых чисел со знаком отводится 4 ячейки памяти-32 бита. Значит, максимальное значение большого целого числа со знаком $2^{31} - 1 = 2147483647$, минимальное значение $-2^{31} = -2147483648$

Ответ: от -2147483648 до 2147483647

7. Получить внутреннее представление целого числа 1607 в 2-х байтовой ячейке. Записать ответ в 16 - ричной форме. ([1], Пример 2, стр.135.)

Решение:

Воспользуемся алгоритмом №1 1607₁₀=11001000111₂

Внутреннее представление этого числа: 0000 0110 0100 0111 16- ричная форма -0647.

Ответ: 0000 0110 0100 0111 или 0647

8. Записать дополнительный код отрицательного числа −2002 для 16-ти разрядного компьютерного представления с использованием алгоритма. ([2], стр.60, пример №2.38)

Решение:

Воспользуемся алгоритмом №2

Прямой код 0000011111010010_2 $|-2002_{10}|$ Обратный код 11111100000101101_2 инвертирование

прибавление 11111100000101101_2 единицы

 000000000000001_2 111111000001011110_2

Дополнительный

код

Ответ: 111110000010111102

9. Заполнить таблицу, записав десятичные числа в заданном компьютерном представлении:

Десятичные	Компьютерное представление		
числа	целые неотрицательные числа	целые числа со знаком	
255			
-255			
32768			
-32768			

([2], cmp.64, N_{2} 2.52)

Решение:

Так как для хранения *целых неотрицательных чисел* отводится одна ячейка памяти (8 бит), то в компьютерном представлении максимальное целое неотрицательное число это десятичное число 255. а двоичное 11111111. Значит компьютерное представление чисел, больших 255, и отрицательных, как целых неотрицательных отсутствует.

Для хранения *целых чисел со знаком* отводится две ячейки памяти (16 бит), причем старший (левый) разряд отводится под знак числа (если число положительное, то в знаковый разряд записывается 0, если число отрицательное записывается 1). Так как максимальное положительное число, которое может храниться в памяти в формате целое *число со знаком* равно 2^{15} -1 =32767, то представление числа 32768 в таком формате отсутствует. Минимальное отрицательное число, записанное в таком формате десятичное -32768, двоичное 1000 0000 0000 0000. Число -255 представлено в дополнительном коде.

Ответ:

Десятичные	Компьютерное представление		
числа	целые	целые числа со	
	неотрицательные	знаком	
	числа		
255	11111111	00000000111111111	
-255	отсутствует	1111111100000001	
32768	отсутствует	отсутствует	
-32768	отсутствует	10000000000000000	

10. Выполнить арифметические действия 3 – 10 (числа записаны в 10-с.с.) в 16 разрядном компьютерном представлении.

Решение:

Уровень «4»

Решение задач на основе применения определения дополнительного кода. Опр. Дополнительный код отрицательного числа A, хранящегося в n ячейках, равен 2^n - A

11. Записать дополнительный код отрицательного числа -2002 для 16 —разрядного компьютерного представления.([2], стр.58, №2.37)

Решение:

Проведем вычисления в соответствии с определением дополнительного кода, где n=16:

Проведем проверку с использованием десятичной системы счисления. Дополнительный код 63534_{10} в сумме с модулем отрицательного числа 2002_{10} равен 65536_{10} , т.е. дополнительный код дополняет модуль отрицательного числа до 2^{16} .

Ответ: 1111110000010111102

12. Заполнить таблицу, записав отрицательные десятичные числа в прямом, обратном и дополнительном кодах в 16-ти разрядном представлении:

Десятичные	Прямой код	Обратный код	Дополнительный
числа			код
-10			
-100			
-1000			
-10000			

([2], cmp.64, Noolean 2.51)

Решение:

-10

Прямой код:

10 :2=5 (остаток 0):2=2 (остаток 1):2=1 (остаток 0)

 $10_{10} = 1010_2$

Прямой код 000000000001010.

Обратный код 11111111111110101.

Дополнительный код получаем добавлением к обратному числа 1:

11111111111110110

Прямой код:

$$100_{10} = 1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^2 = 64 + 32 + 4 = 1100100_2$$

Прямой, обратный и дополнительный код находим аналогично.

-1000

$$1000_{10} = 2^9 + 2^8 + 2^7 + 2^6 + 2^5 + 2^3 = 512 + 256 + 128 + 64 + 32 + 8 = 1111101000$$

Прямой, обратный и дополнительный код находим аналогично.

-10000

Так как 2^{16} =65536, а 2^{15} =32768, 2^{14} =16384, то в разложении числа 10000 наивысшая степень двойки число 13.

 $10000_{10} = 2^{13} + 2^{10} + 2^9 + 2^8 + 2^4 = 8192 + 1024 + 512 + 256 + 16 = 10011100010000$

Ответ:

Десятичные	Прямой код	Обратный код	Дополнительный
числа			код
-10	0000000000001010	11111111111110101	11111111111110110
-100	0000000001100100	11111111110011011	111111111100111100
-1000	0000001111101000	1111110000010111	1111110000011000
-10000	0010011100010000	1101100011101111	1101100011110000

Примечание: перевод чисел можно проделать в калькуляторе.

13. Записать в двоичной и 16-ричной форме внутреннее представление наибольшего положительного целого и наибольшего по абсолютной величине отрицательного целого числа, представленных в 1-байтовой ячейке памяти. ([1], стр.136, №50)

Решение:

- 1. Так как в компьютере могут быть представлены как положительные, так и отрицательные числа в однобайтовой ячейке памяти, то всего таких чисел будет 256. (2 8). Наибольшее положительное число, представленное в однобайтовой ячейке памяти (с учетом крайнего правого разряда на знак) 2^7 -1=127₁₀=01111111₂=7F₁₆
- 2. Наибольшее по абсолютной величине отрицательное целое число, представленное в 1-байтовой ячейке памяти число $128_{10} = 1000\ 0000_2 = 80\ _{16}$

Ответ: $011111111_2 = 7F_{16}$ и $1000\ 0000_2 = 80_{16}$

14. Записать в двоичной и шестнадцатиричной форме внутреннее представление наибольшего положительного целого и наибольшего по абсолютной величине отрицательного целого числа, представленных в 2-х байтовой ячейке памяти. ([1], стр.137, №51)

Решение:

- 1. Так как в компьютере могут быть представлены как положительные, так и отрицательные числа в **2-х** байтовой ячейке памяти, то всего таких чисел будет 2^{16} . Наибольшее положительное число, представленное в двухбайтовой ячейке памяти (с учетом крайнего правого разряда на знак) 2^{15} -1 = 32767_{10} = 0 1111111111111111112 = 7FFF₁₆
- 2. Наибольшее по абсолютной величине отрицательное целое число, представленное в 2-байтовой ячейке памяти является минимальным отрицательным числом, записанным в таком формате: $-32768_{10} = 1000\ 0000\ 0000\ 0000\ _2 = 8000\ _{16}$

Ответ: 7FFF16, 8000 16

15. Получить десятичное представление числа по его дополнительному коду 10010111₂

Решение:

- 1.) Инвертируем дополнительный код 10010111_2 . Получим 01101000 обратный код
- 2) Прибавим к полученному числу 1. Получим число 01101001
- 3) Переведем полученную запись числа из двоичной в 10-ю форму. Получим число 105.
- 4) Перед полученным числом поставим знак «-»

Ответ: -105

16. Получить дополнительный код десятичного числа – 105.

Решение:

- 1) Модуль числа записать в прямом коде в n двоичных разрядах. 105 = 011010012
- 2) Получить обратный код числа. Получим 10010110
- 3) К полученному обратному коду прибавить 1. Получим 10010111

Ответ: дополнительный код числа –105 равен 10010111

Уровень «5»

Используются алгоритмы №1, 2, 3.

17. Выполнить арифметическое действие 3000_{10} - 5000_{10} в 16-ти разрядном компьютерном представлении. ([2], стр.61, №2.40)

Решение:

Представим положительное число в прямом, а отрицательное число в дополнительном коде:

Десятичное число	Прямой код	Обратный код	Дополнительный код
3000	0000101110111000		
-5000	0001001110001000	1110110001110111	1110110001110111
			+00000000000000001
			1110110001111000

Сложим прямой код положительного числа с дополнительным кодом отрицательного числа. Получим результат в дополнительном коде:

3000-5000			1111100000110000
-----------	--	--	------------------

Переведем полученный дополнительный код в десятичное число, воспользуемся алгоритмом №3:

- 1) Инвертируем дополнительный код: 0000011111001111
- 2) Прибавим к полученному коду 1 и получим модуль отрицательного числа: 0000011111001111
 - $^{+}$ 00000000000001

0000011111010000

3) Переведем в десятичное число и припишем знак отрицательного числа: -2000.

Ответ: 0000011111010000

18. Назовите достоинства и недостатки представления чисел в формате с фиксированной запятой.

Решение:

Достоинства:

- Простота
- Наглядность представления чисел
- Благодаря использованию дополнительного кода вычитание сводится к сложению, что упрощает алгоритм реализации арифметических операций.

Недостатки:

Конечный диапазон представления величин недостаточен для решения математических, физических, экономических и других задач, где используются очень малые и очень большие числа.

19. Выполнить арифметическое действие 20_{10} - 60_{10} в 16-ти разрядном компьютерном представлении. ([2], стр.64, Notorightarrow2.54)

Решение:

1. Представим положительное число в прямом, а отрицательное число в дополнительном коде:

Десятичное число	Прямой код	Обратный код	Дополнительный код
20	000000000010100		
-60	0000000000111100	11111111111000011	1111111111000011
			+00000000000000001
			1111111111000100

2. Сложим прямой код положительного числа с дополнительным кодом отрицательного числа. Получим результат в дополнительном коде:

- 3. Проверка: Переведем полученный дополнительный код в десятичное число:
 - 1) Инвертируем дополнительный код: 000000000100111
 - 2) Прибавим к полученному коду 1 и получим модуль отрицательного числа: 0000000000100111
 - $^{+}$ 000000000000001

000000000101000

3) Переведем в десятичное число $101000_2 = 2^5 + 2^3 = 32 + 8 = 40_{10}$ и припишем знак отрицательного числа: - 40. Действительно: 20-60 = -40

Ответ: 111111111111011000

2. Дробные числа. Представление чисел в формате с плавающей запятой.

Методические рекомендации:

В задачах такого типа используются понятия:

- Плавающая запятая или точка
- Экспоненциальная форма числа
- Мантисса
- Порядок числа
- Нормализованная форма числа
- Обычная точность
- Двойная точность

Плавающей запятой или плавающая точка - положение запятой в записи числа может изменяться. Пример: $555,55 = 55555 \cdot 10^{-2} = 0,55555 \cdot 10^{3}$

Любое число А может быть представлено в экспоненциальной форме:

$$A = m \cdot q^n$$
, где

m — мантисса числа, q — основание системы счисления., n — порядок числа.

Пример: 0,55555•10³

Нормализованная форма числа.

Чтобы привести к какому-то стандарту в представлении чисел с плавающей запятой условились представлять числа в нормализованной форме.

<u>При этом мантисса отвечает условию:</u> она должна быть правильной дробью и иметь после запятой цифру, отличную от нуля.

$$1/n \leq |m| < 1$$

Пример:

555,55 – естественная форма

 $0,55555 \cdot 10^3$ - нормализованная форма

 $0.55555 > 1/3 \approx 0.3333...$

0,55555 < 1

Это касается и отрицательных чисел, т.к. мантисса в условии взята по модулю.

Дробные числа занимают в памяти 4 байта (обычная точность) или 8 байтов (двойная точность).

Для записи таких чисел выделяются разряды для хранения:

- > знака мантиссы,
- > знака порядка,
- > порядка числа
 - ▶ мантиссы.

•в старшем бите 1-го байта хранится знак порядка числа 0- обозначает плюс, 1- минус;

- 7 бит 1 байта содержат порядок;
- в следующих трех байтах, хранятся значащие цифры мантиссы и её знака (24 разряда).

Уровень «3»

20. Для представления вещественного числа отводится 8 байт. Порядок занимает 11 бит. Сколько значащих цифр будет содержать двоичная мантисса? ([1], cmp.140, N = 54)

Решение:

Число занимает 64 разряда, из них 11 разрядов на машинный порядок, значит, на знак числа и мантиссу отводится 64-11 =53 бит, на мантиссу 52 бита

Ответ: 52 бита.

21. Записать следующие числа в форме с плавающей запятой и нормализованной мантиссой: a) 217, 934₁₀; б) 75321₁₀; в) 10,0101₁₀; г) 200450₁₀ ([2], стр.64, №2.55)

Решение:

- а) 217, $934_{10} = 0.217934 \cdot 10^3$, где 0.217934 —нормализованная мантисса, порядок -3
- б) $75321_{10} = 0,75321 \cdot 10^5$, где 0,75321 —нормализованная мантисса, порядок -5
- в) $10,0101_{10} = 0, 100101 \bullet 10^2$, где 0, 100101 —нормализованная мантисса, порядок -2
- г) $200450_{10} = 0.200450 \cdot 10^6$, где 0.200450 —нормализованная мантисса, порядок -6
- 22. Приведенные ниже числа распределите в два столбика: в первый поместите числа в естественной форме представления, во второй в экспоненциальной. ([2], стр.?, №2.68)

$$0,1236, 123,6258; 123628 \times 10^5; -12,365 \times 10^{-9}; 0,110011 \times 2^{100}; 1,000001; -1111111; 11111111 \times 2^{-11}; 9999,9999; -1221 \times 10^{-5}$$

Решение:

Числа в естественной форме	Числа в экспоненциальной форме
0,1236	-1221 ×10 ⁻⁵
123,6258	123628×10^5
1,000001	-12,365 ×10 ⁻⁹
-1111111	$0,110011 \times 2^{100}$
9999,9999	11111111×2^{-11}

23. Запишите число 2001,2001 пятью различными способами в форме с плавающей запятой. ([2], cmp.?, №2.69)

Решение:

Возможны такие варианты записи:

 $2,0012001 \times 10^3;$ $20,012001 \times 10^2;$

 $200,12001 \times 10^{1};$

 $20012,001 \times 10^{-1};$

 $200120,01 \times 10^{-2}$.

24. Запишите следующие числа в естественной форме:

```
a) 0.380456 \times 10^2; b) .1100000E-5; b) 0.2000000 \times 10^{-5}; c) .7892101E+5. ([2], cmp.?, N2.71)
```

Решение:

a) 38,0456; б) 0,000002; в) 0,0000011; г) 78921,01.

Уровень «4»

25. Сравните следующие числа:

- a) $318,4785 \times 10^9$ u $3,184785 \times 10^{11}$;
- 6) $218,4785 \times 10^{-3}$ u $1847,85 \times 10^{-4}$;
- 6) 0.1101×2^{10} u 101×2^{-11} ;
- 2) $11011 \times 2^{-100} u 1,1101 \times 10^{-1}$.
- ([2], cmp.?, №2.72)

Решение:

- a) $318,4785 \times 10^9 = 3,184785 \times 10^{11}$;
- 6) $218,4785 \times 10^{-3} > 1847,85 \times 10^{-4}$;
- B) $0.1101 \times 2^{10} > 101 \times 2^{-11}$; $(11.01 > 0.101, \text{ T.K. } 102 = 2_{10}; -112 = -3_{10})$
- r) $11011 \times 2^{-100} > 1,1101 \times 10^{-1}$. $(1,1011 > 0,11101, \text{ T.K. } -100_2 = -4_{10})$

Уровень «5»

Для решения задач можно использовать инженерный калькулятор. Использовать дополнительный теоретический материал (см. [1], стр.138) Рассматриваются понятия:

• Машинный порядок.

Для примера рассмотрим внутреннее представление вещественного числа в 4-х байтовой ячейке памяти.

В ячейке должна содержаться следующая информация о числе: знак числа, порядок и значащие цифры мантиссы.

\pm маш.порядок	M A	НТИС	C A
1-й байт	2-й байт	3-й байт	4-й байт

В старшем бите 1-го байта хранится знак числа: 0 обозначает плюс, 1 — минус. Оставшиеся 7 бит первого байта содержат машинный порядок. В следующих трех байтах хранятся значащие цифры мантиссы (24 разряда).

В семи двоичных разрядах помещаются двоичные числа в диапазоне от 0000000 до 1111111. Значит, машинный порядок изменяется в диапазоне от 0 до 127 (в десятичной системе счисления). Всего 128 значений. Порядок (в математическом понимании), очевидно, может быть как положительным так и отрицательным. Разумно эти 128 значений разделить поровну между положительными и отрицательными значениями порядка: от -64 до 63.

Машинный порядок смещен относительно математического и имеет только положительные значения. Смещение выбирается так, чтобы минимальному математическому значению порядка соответствовал нуль.

Связь между машинным порядком (**Mp**) и математическим (**p**) в рассматриваемом случае выражается формулой: $\mathbf{Mp} = \mathbf{p} + \mathbf{64}$.

Полученная формула записана в десятичной системе. В двоичной системе формула имеет вид: $\mathbf{Mp_2} = \mathbf{p_2} + \mathbf{100~0000_2}$.

• Внутреннее представление вещественного числа.

Алгоритм записи внутреннего представления вещественного числа:

- 1) перевести модуль данного числа в двоичную систему счисления с 24 значащими цифрами;
- 2) нормализовать двоичное число;
- 3) найти машинный порядок в двоичной системе счисления;
- 4) учитывая знак числа, выписать его представление в 4-х байтовом машинном слове.
 - Формула для вычисления количества вещественных чисел, точно представимых в памяти компьютера: $N = 2^t x (U L + 1) + 1$.

Здесь t — количество двоичных разрядов мантиссы; U — максимальное значение математического порядка; L — минимальное значение порядка.

Для рассмотренного нами варианта (t = 24, U = 63, L = -64). Получается количество вещественных чисел, представимых в памяти компьютера с обычной точностью $N = 2\ 146\ 683\ 548$.

26. Определить максимальное число и его точность для формата чисел обычной точности, если для хранения порядка и его знака отводится 8 разрядов, а для хранения мантиссы и ее знака 24 разряда. ([2], стр.62, Пример 2.42)

Решение:

Для формата чисел обычной точности выделяется 4 байт или 32 бит.

Максимальное значение порядка числа составит $11111111_2 = 127_{10}$, и, следовательно, максимальное значение числа составит:

$$2^{127} = 1,7014118346046923173168730371588 \times 10^{38}$$

Точность вычислений определяется количеством разрядов, отведенных для хранения мантиссы чисел. 32-8=24 бит на знак мантиссы и мантиссу. Максимальное значение положительной мантиссы равно:

$$2^{23} - 1 \approx 2^{23} = 2^{(10 \times 2,3)} \approx 1000^{2,3} = 10^{(3 \times 2,3)} \approx 10^{7}$$

Таким образом, максимальное значение *чисел обычной точности* с учетом возможной точности вычислений составит $1,701411 \times 10^{38}$ (количество значащих цифр десятичного числа в данном случае ограничено 7 разрядами).

Ответ: 1,701411×10³⁸

27. Определите максимальное число и его точность для формата чисел двойной точности, если для хранения порядка и его знака отводится 11 разрядов, а для хранения мантиссы и ее знака 53 разряда. ([2], стр.64, №2.56)

Решение:

Так как на хранение порядка и его знака отводится 11 разрядов, то на один порядок отводится 10 разрядов. Тогда максимальное значение порядка $1111111111_2 = 1023_{10}$

Следовательно, максимальное значение числа составит 2^{1023} = $8,988465674311579538646525953945* <math>10^{307}$

Точность вычислений определяется количеством разрядов, отведенных для хранения мантиссы чисел.

Так как для хранения мантиссы и ее знака отводится 53 разряда, то на саму мантиссу отводится 52 знака и максимальное значение положительной мантиссы равно $2^{52}-1\approx 2^{52}=2^{(10*5.2)}\approx (2^{10})^{5.2}\approx 1000^{5.2}=10^{(3*5.2)}=10^{15.6}$

Максимальное значение числа двойной точности с учетом возможной точности вычислений составит $8,98846567431157*10^{307}$

(количество значащих цифр десятичного числа в данном случае ограничено 15-16 разрядами).

Ответ: 8,98846567431157 * 10³⁰⁷

28. Записать внутреннее представление числа 250,1875 в форме с плавающей точкой. ([1], стр.139, пример №4)

Решение.

- **1.** Переведем его в двоичную систему счисления с 24 значащими цифрами: $250,1875_{10} = 111111010,0011000000000000_2$.

Здесь мантисса, основание системы счисления ($2_{10} = 10_2$) и порядок ($8_{10} = 1000_2$) записаны в двоичной системе.

- **3.** Вычислим машинный порядок в двоичной системе счисления: $\mathbf{Mp_2} = \mathbf{p_2} + \mathbf{100~0000_2}$. $\mathbf{Mp_2} = 1000 + 100~0000 = 100~1000$.
- 4. Запишем представление числа в 4-х байтовой ячейке памяти с учетом знака числа:

0	1001000	11111010	00110000	00000000
31	24	23		0

Шестнадцатеричная форма: 48FA3000.

Ответ: внутреннее представление числа 250,1875 равно 01001000 11111010 00110000 00000000 Шестнадцатеричная форма: 48FA3000.

29. По шестнадцатеричной форме внутреннего представления числа в форме с плавающей точкой С9811000 восстановить само число. ([1], стр.139, пример №5)

Решение.

1. Перейдем к двоичному представлению числа в 4-х байтовой ячейке, заменив каждую шестнадцатеричную цифру 4-мя двоичными цифрами: 1100 1001 1000 0001 0001 0000 0000

1	100 1001	1000 0001	0001 0000	0000 0000
31	Mp ₂	23		0

- **2.** Заметим, что получен код отрицательного числа, поскольку в старшем разряде с номером 31 записана 1. Получим порядок числа из уравнения: $\mathbf{Mp_2} = \mathbf{p_2} + \mathbf{100} \ \mathbf{00002}$; $\mathbf{p_2} = 1001001_2 100 \ 0000_2 = 1001_2 = 9_{10}$.
- **3.** Запишем в форме нормализованного двоичного числа с плавающей точкой с учетом знака числа: $-0,1000\ 0001\ 0001\ 0000\ 0000\ 0000\ x\ 2^{1001}$.

- **4.** Число в двоичной системе счисления имеет вид: -100000010,001₂.
- 5. Переведем число в десятичную систему счисления:

$$-100000010,001_2 = -(1 \times 2^8 + 1 \times 2^1 + 1 \times 2^{-3}) = -258,125_{10}.$$

30. Для представления вещественного числа отводится 2 байта. Порядок занимает 7 бит. Сколько различных вещественных чисел точно представимы в памяти такого компьютера? ([1], стр.140, №53)

Решение:

1. Используем формулу для вычисления количества вещественных чисел, точно представимых в памяти компьютера: $N = 2^t x (U - L + 1) + 1$.

Здесь t — количество двоичных разрядов мантиссы; U — максимальное значение математического порядка; L — минимальное значение порядка.

t=9 (16 разрядов всего, 7-машинный порядок, 16-7=9)

2. Так как машинный порядок 7 бит, 1 разряд на знак порядка, 6 бит на число порядка. Машинный порядок изменяется в диапазоне от 0 до 63 (всего значений 2^6 =64).

Минимальное значение порядка L=-32, максимальное значение порядка U=31.

3. Подставляем найденные значения в формулу:

$$N = 2^t \times (U - L + 1) + 1.$$

$$N = 2^9 \times (31 + 32 + 1) + 1 = 512*64 + 1 = 32769$$

Ответ: 32769

31. Минимальное значение математического порядка в десятичной системе счисления равно (-1024). Чему равно смещение? ([1], стр.140, №55)

Решение:

Машинный порядок смещен относительно математического и имеет только положительные значения. Смещение выбирается так, чтобы минимальному математическому значению порядка соответствовал нуль.

Связь между машинным порядком (**Mp**) и математическим (**p**) в рассматриваемом случае выражается формулой: $\mathbf{Mp} = \mathbf{p} + \mathbf{64}$, где $\mathbf{64}$ - смещение для представления в $\mathbf{64}$ байтовой ячейке памяти.

Если представить это на шкале, то имеем:

В данной задаче Минимальное значение математического порядка в десятичной системе счисления равно (-1024).

На шкале это можно представить так:

Легко видеть, смещение равно 1024.

Ответ: 1024.

32. Получить шестнадцатеричную форму внутреннего представления отрицательного числа -123,125 в формате с плавающей точкой в 4-х байтовой ячейке. ? ([1], стр.140, №55)

Решение:

Используем алгоритм записи внутреннего представления вещественного числа:

1. Переведем модуль числа в двоичную систему счисления с 24 значащими цифрами. $123_{10} = 1111011_2 \quad 0,125_{10} = 0,001_2$

 $123,125_{10} = 1111011,00100000000000000000_2$ (4 байта-32 разряда, 1 байт на знак и порядок, 3 байта или 24 бита на мантиссу)

- 2. Запишем в форме нормализованного двоичного числа с плавающей запятой:
- 3. Вычислим машинный порядок в двоичной системе счисления.

 $Mp_2 = p_2 + 100\ 0000_2 = 111_2 + 100\ 0000_2 = 1000111_2$

4. Запишем представление числа в 4-х байтовой ячейке памяти с учетом знака числа:

1	1000111	1111 0110	0100 0000	0000 0000
31	24	23		0

Шестнадцатеричная форма: - 47F64000.

Ответ: - 47F64000

№ 33. Для представления вещественного числа используется 2-х байтовая ячейка памяти. В 1-ом байте содержится знак числа и порядок, во 2-ом байте — мантисса. Определить минимальное и максимальное по абсолютной величине числа, точно представимые в таком компьютере.

№ 34

В «игрушечном» компьютере для представления вещественных чисел используется однобайтовая ячейка памяти (биты нумеруются от 0 до 7 справа налево). 7-й бит — знак числа; 5 и 6 биты — машинный порядок; 4 — 0 биты — мантисса. Определить: 1) количество точно представимых вещественных чисел; 2) 7 наименьших десятичных чисел, представимых точно в таком компьютере.

№ 35

Говорят, что число, превышающее максимальное значение, представимое в компьютере, вызывает переполнение. Определить для «игрушечного» компьютера (задача № 58), какие из следующих чисел вызовут переполнение: 0,5; 10,0; 4,3; 8,1; 7,8.

№ 36

«Игрушечный» компьютер сохраняет значение числа, не вызывающего переполнение и не представленного точно, в виде ближайшего снизу (по абсолютной величине) точно представимого числа. Какие значения примут следующие числа в таком компьютере: 1,25; 1,6; 1,9?

№ 37

Увидит ли разницу «игрушечный» компьютер между следующими парами чисел: 1) 1,4 и 1,5; 2) 1,6 и 1,62; 3) 1,8 и 1,9?

3. Арифметические операции с числами в формате с плавающей запятой.

Методические рекомендации:

При решении задач учащиеся используют:

- Алгоритм сложения и вычитания чисел в формате с плавающей запятой:
 - 1. Провести выравнивание порядков
 - 2. Сложить или вычесть мантиссы.
 - 3. Привести полученное число к стандартному формату с плавающей запятой путем нормализации.

<u>Процедура выравнивания порядков:</u> порядок меньшего (по модулю) числа увеличивается до величины порядка большего (по модулю) числа. Чтобы величина числа не изменилась, мантисса уменьшается в такое же количество раз (сдвигается в ячейке памяти вправо на количество разрядов, равное разности порядков чисел).

<u>Процедура нормализации:</u> сдвиг мантиссы влево или вправо так, чтобы ее первая значащая цифра попала в первый разряд после запятой.

• Алгоритм умножения чисел в формате с плавающей запятой:

- 1. Сложить порядки
- 2. Перемножить мантиссы
- Алгоритм деления чисел в формате с плавающей запятой:
 - 1. Из порядка делимого вычесть порядок делителя
 - 2. Мантиссу делимого делить на мантиссу делителя.

Уровень «3»

37. Произвести сложение чисел $0,1\times2^3$ и $0,1\times2^5$ в формате с плавающей запятой. ([2], стр.63, №2.43)

Решение:

Произведем выравнивание порядков и сложение мантисс:

$$0.1 \times 2^{3} = X \times 2^{5}$$
, $X = (0.1 \times 2^{3})/2^{5} = 0.1 \times 2^{-2} = 0.001$
 0.001×2^{5}
 $\frac{^{+}0.100 \times 2^{5}}{0.101 \times 2^{5}}$

38. Произвести умножение чисел $0,1\times 2^3$ и $0,1\times 2^5$ в формате с плавающей запятой. ([2], стр.63, №2.44)

Решение:

После умножения будет получено число 0.01×2^8 , которое после нормализации примет вид 0.1×2^7 .

Ответ: $0,1\times2^{7}$.

Ответ: 0,101×2⁵

Уровень «4»

39. Произвести сложение, вычитание, умножение и деление чисел 0.1×2^2 и 0.1×2^{-2} в формате с плавающей запятой. ([2], стр.64, $\mathfrak{N}2.57$)

Решение:

Произведем выравнивание порядков и сложение мантисс:

$$0.1 \times 2^{-2} = X \times 2^{2}$$
, $X = (0.1 \times 2^{-2})/2^{2} = 0.1 \times 2^{-4} = 0.00001$
 0.10000×2^{2}
 $\frac{^{+}0.00001}{0.10001} \times 2^{2}$
 0.10001×2^{5}

Произведем вычитание мантисс и процедуру нормализации:

$$0.10000 \times 2^{2}$$

$$0.00001 \times 2^{2}$$

$$0.01111 \times 2^{2} = 0.1111 \times 2^{1}$$

Используем алгоритм умножения: сложим порядки и перемножим мантиссы.

```
0.10000 \times 2^2 \frac{\times 0.00001}{0.000001} \times 2^2 , нормализуем ответ 0.1 \times 2^{-1}
```

Используем алгоритм деления чисел в формате с плавающей запятой: из порядка делимого вычесть порядок делителя, мантиссу делимого делить на мантиссу делителя.

```
0.10000 \times 2^{2}
0.00001 \times 2^{2}
10.000 \times 2^{0}, нормализуем ответ 0.1 \times 2^{5}
```

Otbet: $0,10001\times2^5$; $0,1111\times2^1$; $0,1\times2^{-1}$; $0,1\times2^5$

Литература:

- [1] Информатика. Задачник-практикум в 2 т. /Под ред. И.Г. Семакина, Е.К. Хеннера: Том 1. Лаборатория Базовых Знаний, 1999 г. 304 с.: ил.
- [2] Практикум по информатике и информационным технологиям. Учебное пособие для общеобразовательных учреждений / Н.Д. Угринович, Л.Л. Босова, Н.И. Михайлова. М.: Бином. Лаборатория Знаний, 2002. 400 с.: ил.