

ECM305 Sistemas Eletrônicos

Amplificador Operacional

Sergio Ribeiro Augusto

Objetivo

- Introdução aos Amplificadores Operacionais
- Principais configurações
- Comparadores

Amplificador Operacional Ideal

- O amplificador operacional (AMPOP)é um dispositivo eletrônico contendo duas entradas, v_2 (V_{in+}) e v_1 (V_{in-}) e uma saída v_3 (V_{out}) cujo valor é proporcional à diferença de tensão das duas entradas. É portanto um amplificar diferencial, sendo que possui um ganho muito elevado.
- Suas principais aplicações, como o próprio nome diz, são realizar operações matemáticas (integração, diferenciação, soma, multiplicação/amplificação, etc.)
- Normalmente necessitam de alimentação simétrica para operarem, por exemplo +12V e -12V, mas existem também alguns, desde que não se necessite de tensão negativa na saída, que permitem só alimentação positiva (chamados AMPOP *Unipolar*)

Circuito Equivalente AMPOP Ideal

- Características de um Amplificador Operacional ideal:
 - Ganho de malha aberta, ou diferencial, A infinito;
 - Impedância de entrada infinita ($i_1 = 0$ e $i_2 = 0$);
 - Impedância de saída nula;
 - Rejeição de modo comum infinita.

$$v3 = A(v2 - v1)$$

Tensão Diferencial e de Modo Comum

• Tensão diferencial v_{ld} é a diferença entre a tensão de dois sinais de entrada, v_1 e v_2 :

$$v_{Id} = v_2 - v_1$$

• Tensão de modo comum v_{lcm} é a tensão média de dois sinais de entrada, v_1 e v_2 :

$$v_{Icm} = (v_1 + v_2)/2$$

- O Amplificador Operacional responde somente à tensões diferenciais, diferença entre v_2 e v_1 : $v_3 = A(v_2 v_1)$
 - Se $v_1 = v_2 = 1$ V, teremos: v3 = A(1 1) = 0V

Amplificador Operacional Real

- Embora um AMPOP real não possa satisfazer plenamente as características teóricas do AMPOP ideal, para a maioria das aplicações práticas, podemos considerar tais características (ganho, impedâncias e rejeição de modo comum) válidas.
- A saída do AMPOP real satura tipicamente 1,5V antes do valor da alimentação→ Existem AMPOPs chamados *rail to rail*, cujo a saída praticamente atinge o valor de tensão da fonte de alimentação.
- Tipicamente, a corrente de saída de um AMPOP é da ordem de 20mA.

	o +Vcc(+12V)
-/-	
*A (→ ▼ B	-Vcc (-12V) Vs
-	♦

Ideal (teórico)	Real (exemplo LM741)
$Ri \rightarrow \infty$	$Ri \rightarrow 2M\Omega$
$A \rightarrow \infty$	$A \rightarrow 10^5$
$Ro \rightarrow 0$	$Ro \rightarrow 75\Omega$

Terra Virtual

 Assumindo um AMPOP devidamente conectado, "funcionando", e produzindo uma saída de tensão finita, temos:

$$v_2 - v_1 = \frac{v_3}{A}$$

• Com o ganho de malha aberta *A* muito elevado (tendendo a infinito), podemos escrever:

$$v_2 - v_1 = \frac{v_3}{A} = 0 \Longrightarrow v_2 = v_1$$

- Assim sendo, a tensão no terminal 1 é igual à do terminal 2, ou seja, temos um *curto-circuito virtual* entre os dois terminais.
- Se um deles estiver ligado no terra o outro estará *virtualmente* aterrado, ou seja, sua tensão é nula, mas, devido à alta impedância (infinita) nos terminais 1 e 2 (- e +), a corrente que passa por esse *terra virtual* é nula.
- Temos portanto tensão nula mas o pino não está fisicamente conectado ao terra.

Configurações mais Utilizadas

Configuração Inversora

Utilizando realimentação negativa:

1,2 - Para A
$$\rightarrow \infty \rightarrow v_2 - v_1 = \frac{v_3}{A} = 0 => v_2 = v_1 = 0$$
V (terra virtual)

3 - $i_1 = \frac{v_I - 0}{R_1} = \frac{v_I}{R_1}$

4 - $i_2 = i_+ = 0$ (impedância de entrada infinita)

$$v_0 = v_1 - R_2 i_1 = 0 - R_2 i_1 = -R_2 \frac{v_1}{R_2}$$
Então: $v_0 = -\frac{R_2}{R_4} v_I$

Configuração Inversora (cont.)

- Ganho de malha fechada $G = \frac{v_0}{v_I} = -\frac{R_2}{R_1}$ (com realimentação):
- O sinal negativo indica que v_0 é invertido em ralação à v_{I} .
- Então, para 1 V de entrada (v_I) e $R_2/R_1 = 5$, teríamos $v_o = -5V$ na saída.

Configuração Inversora: Impedâncias de Entrada e Saída

$$R_i = \frac{v_I}{i_1} = \frac{v_I}{v_I/R_1} = R_1$$

(a)

• Resistência da saída $R_{\text{out}} = 0$, pois a tensão de saída v_0 é tomada nos terminais do gerador de tensão vinculado $A(v_2-v_1)$, o qual não possui resistência de saída.

Amplificador Somador

Somador Ponderado

$$i_1 = \frac{v_1}{R_1}$$
, $i_2 = \frac{v_2}{R_2}$... $i_n = \frac{v_n}{R_n}$

$$i = i_1 + i_2 + \dots + i_n$$

$$v_0 = -R_f \left(\frac{v_1}{R_1} + \frac{v_2}{R_2} + \dots + \frac{v_n}{R_n} \right)$$

Somador

Se $R_1 = R_2 = ... = R_n = R$, temos um somador de tensão:

$$v_o = -\frac{R_f}{R}(v_1 + v_2 + \dots + v_n)$$

Configuração Não Inversora

1-
$$v_{Id} = 0V$$
 ("terra virtual")

2-
$$v_{-} = v$$

$$3 - i_{R1} = v_I / R_1$$

 $4-i_{-}=i_{+}=0$ (impedância infinita nos terminais de entrada)

5-
$$i_{R2} = i_{R1} = v_I/R_1$$

6-
$$v_o = v_I + 0 + R_2 * i_{R2}$$

 $v_o = v_I + R_2 * v_I / R_1$

Logo:
$$v_0 = \left(1 + \frac{R_2}{R_1}\right) v_I$$

Configuração Não Inversora (cont.)

- Ganho de *malha fechada*: $G = \frac{v_0}{v_I} = 1 + \frac{R_2}{R_1}$
- O sinal de saída v_0 está em fase com o de entrada v_I (não há inversão).
- Então, para 1 V de entrada (v_I) e $R_2/R_1 = 5$, teríamos $v_o = 6V$ na saída.
- Resistência de entrada $R_i = \infty$ (nenhuma corrente flui para o terminal '+' do AMPOP.
- Resistência da saída $R_{\text{out}} = 0$, pois a tensão de saída v_0 é tomada nos terminais do gerador de tensão vinculado $A(v_2-v_1) = A(v_+-v_-)$, o qual não possui resistência de saída.

Configuração Seguidor de Tensão ("Buffer")

- A saída "segue" a entrada.
- Permite que uma fonte de alta impedância seja conectada a uma fonte de baixa impedância (funciona com um "isolador").

$$v_o = v_I \rightarrow$$
 tensão de saída igual à de entrada
$$R_i = \infty \rightarrow resistência de entrada infinita
$$R_{\rm out} = 0\Omega \rightarrow resistência de saída nula$$$$

Amplificador de Diferenças (Amplificador Subtrator)

Muito usado em instrumentação

Para achar vo em função de v_{I1} e v_{I2} podemos aplicar o princípio da superposição.

Fazendo v_{I2} =0 , obtemos a configuração inversora. Logo: $v_{o1} = -\frac{R_2}{R_1}v_{I1}$

Logo:
$$v_{o1} = -\frac{R_2}{R_1} v_{I1}$$

Amplificador Subtrator (cont.)

Fazendo v_{I1} =0 , obtemos a configuração não inversora. Logo:

$$v_{02} = \left(1 + \frac{R_2}{R_1}\right) V_{in}$$

$$V_{in} = \frac{R_2}{R_1 + R_2} v_{I2}$$

$$v_{02} = \left(1 + \frac{R_2}{R_1}\right) V_{in}$$

$$v_{02} = \left(\frac{R_1 + R_2}{R_1}\right) \left(\frac{R_2}{R_1 + R_2}\right) v_{I2}$$

$$v_{02} = \frac{R_2}{R_1} v_{I2}$$

Amplificador Subtrator (cont.)

Então, como: vo= vo1 +vo2

$$v_{o1} = -\frac{R_2}{R_1} v_{I1}$$
 $v_{o2} = \frac{R_2}{R_1} v_{I2}$

$$v_o = -\frac{R_2}{R_1} v_{I1} + \frac{R_2}{R_1} v_{I2}$$

$$v_o = \frac{R_2}{R_1} (v_{I2} - v_{I1})$$

ou

$$v_o = -\frac{R_2}{R_1}(v_{I1} - v_{I2})$$

Amplificador Subtrator- Ex. Aplicação

Amplificador Subtrator- Impedância de Entrada Diferencial

$$v_{Id} = v_{I2} - v_{I1}$$
 $R_{id} = \frac{v_{Id}}{i_1}$
 $v_{Id} = R_1 i_1 - 0 + R_1 i_1 = 2R_1 i_1$

Logo: $R_{id} = 2R_1$

- A resistência R_{id} deve ser alta para não "carregar" (consumir corrente) do circuito representado por v_{id} (por exemplo uma ponte de Wheatstone).
- Uma melhor solução para obter uma alta resistência de entrada seria utilizar seguidores de tensão precedendo o amplificador diferencial → Amplificador de Instrumentação

Amplificador de Instrumentação

- Formado por dois estágios de amplificação
 - Primeiro Estágio: dois AMPOP na Configuração Não Inversora (ou dois Seguidores de Tensão se desejarmos apenas ganho unitário nesse primeiro estágio).
 - Segundo Estágio: AMPOP na configuração Amplificador de Diferenças
- Fornece alta resistência de entrada (teoricamente infinita)
- O resistor $2R_1$ pode ser um resistor ajustável para controlar o ganho.
- Existem AMPOPs comerciais já vendidos nessa configuração, onde o resistor 2R1 é externo e permite ajustar o ganho.

Saturação da Tensão de Saída

• Exemplo com entrada V_p com valor de pico de 1,5 V, ganho 10V/V e operacional ideal alimentado por fonte simétrica +13V e -13V.

Comparador de Tensão

- Se utilizarmos o AMPOP em malha aberta, ou seja, sem realimentação negativa, obtemos um comparador entres as tensões entre os terminais V+ e V-.
- Como o ganho de malha aberta A é muito elevado, e o operacional não está realimentado negativamente, uma pequena diferença entre as tensões dos pinos V+ e V- leva a saída do AMPOP à saturação (positiva ou negativa), dependendo qual tensão é maior ($V_{out} = A(V_+ V_-)$).

Exemplo Comparadores Comerciais

• Existem Comparadores comerciais otimizados para essa função

Apêndice - Configuração Inversora com Ganho em Malha Aberta Finito

Ganho real (considerando ganho de malha aberta A finito)

$$i_{1} = \frac{v_{I} - (-v_{0}/A)}{R_{1}} = \frac{v_{I} + v_{0}/A}{R_{1}}$$
$$-\frac{v_{0}}{A} - v_{0} = i_{2}R_{2}$$
$$v_{0} = -\frac{v_{0}}{A} - \left(\frac{v_{I} + v_{0}/A}{R_{1}}\right)R_{2}$$

$$G = \frac{v_0}{v_I} = \frac{-R_2/R_1}{1 + (1 + R_2/R_1)/A}$$

Apêndice - Configuração Inversora com Ganho em Malha Aberta Finito (cont.)

Ganho real (considerando ganho de malha aberta A finito)

$$G = \frac{v_0}{v_I} = \frac{-R_2/R_1}{1 + (1 + R_2/R_1)/A}$$

Se:
$$\frac{\left(1+R_2/R_1\right)}{A} << 1 \quad (A \rightarrow \infty)$$

ou seja:

$$1 + R_2 / R_1 << A$$

então:

$$G = \frac{v_0}{v_I} \approx \frac{-R_2}{R_1}$$

Apêndice - Off Set em Amplificadores Operacionais Reais

- Idealmente, por exemplo, com entrada nula, o sinal de saída do amplificador operacional devidamente realimentado deve ser também nula. No entanto, o sinal de saída poderá ter um pequeno deslocamento (da ordem de mV) devido a uma componente contínua adicionada ao "sinal ideal de entrada". Este deslocamento é denominado *off set*.
- Para anular o *off set*, ou seja, eliminar o erro CC do circuito podemos utilizar dois terminais apropriados do amplificador operacional (quando existirem) denominados *OFF SET NULL* ou *BALANC*E.