Grundlagen der Testtheorie WS 2020/21

4. Klassische Testtheorie 23.11.2020

Prof. Dr. Eunike Wetzel

Semesterplan

Sitzung	Termin	Thema
1	02.11.	Grundlagen & Gütekriterien
2	09.11.	Schritte der Testkonstruktion: Übersicht Konstruktdefinition & Itemgenerierung
3	16.11.	Erstellung eines Testentwurfs
4	23.11.	Klassische Testtheorie
5	07.12.	Item Response Theorie
6	14.12.	Exploratorische Faktorenanalyse 1

Was ist Testtheorie?

- Testtheorie beschäftigt sich mit dem Zusammenhang zwischen dem Antwortverhalten im Test und dem zu erfassenden Konstrukt
- Theoretischer Hintergrund zur Konstruktion und Interpretation von Testverfahren

Warum Testtheorie?

- Entspricht das Antwortverhalten direkt dem interessierenden Merkmal, benötigt man keine Testtheorie
- Bsp.: Treiben Sie regelmäßig Sport?
- Bei psychologischen Konstrukten ist eine Testtheorie vonnöten, da von dem Antwortverhalten im Test auf das latente Konstrukt geschlossen wird

Testtheorien

- Eine Testtheorie beschäftigt sich mit dem Zusammenhang zwischen dem Antwortverhalten im Test und dem zu erfassenden Konstrukt
- Wichtige Testtheorien in der Psychologie:
 - 1. Klassische Testtheorie (KTT)
 - Älter, daher "klassisch"
 - Darauf basieren die meisten der auf dem Markt erhältlichen psychologischen Tests
 - 2. Item Response Theorie (IRT)
 - Neuere Ergänzung und Weiterentwicklung der KTT

Klassische Testtheorie

- 1. Theoretische Konzepte der KTT
 - Messfehler
 - 2. Wahrer Wert
- 2. Lokale Unabhängigkeit
- 3. Grundgleichung der KTT
- 4. Folgerungen aus der Grundgleichung
- 5. Messmodelle

Datenmatrix

		Items <i>j</i> =	Items $j = y_i = y_i$				
		1	2	3	4	5	
	1	0	0	0	0	0	0
	2	0	0	0	0	1	1
	3	0	0	0	0	0	0
	4	0	0	0	1	1	2
Personen <i>i</i>	5	0	0	1	1	1	3
=	6	0	1	0	0	1	2
	7	1	1	1	1	1	5
	8	0	1	1	1	1	4
	9	1	1	1	1	1	5
	10	0	0	1	1	1	3

1.1 Messfehler

- Bei mehreren Messungen mit demselben Gerät/Test schwanken die Messwerte
 - Physikalische Messungen: Waage, Thermometer, Radargerät
 - Psychologische Messungen: Testwerte im Intelligenztest,
 Persönlichkeitstest
 - →Es treten Messfehler auf
- Mögliche Ursachen für Messfehler
 - Instruktion falsch verstanden
 - Antwortkästchen verwechselt
 - Elektrode verrutscht
- In der KTT werden unter dem Messfehler nur unsystematische Einflüsse verstanden

1.1 Messfehler

- Systematische Einflüsse werden dagegen nicht berücksichtigt
 - z.B. Antwortstile, sozial erwünschtes Antworten
- Auswirkungen von Messfehlern
 - Unterschätzung der Korrelation zweier Variablen

1.2 Wahrer Wert

- Engl. *true score* (T oder τ)
- Definiert als der Erwartungswert (theoretischer Mittelwert) der intraindividuellen Verteilung der beobachteten Messwerte einer Person

1.2 Wahrer Wert

2. Lokale Unabhängigkeit

- Lokale Unabhängigkeit liegt vor, wenn die Itemantworten unter Kontrolle der Traitausprägung unabhängig voneinander sind
- Bei einem Test, der ein eindimensionales Konstrukt erfasst, müssen die Zusammenhänge zwischen Items bei lokaler Unabhängigkeit allein durch das zugrundeliegende Konstrukt erklärbar sein
- Ist eine Annahme der KTT und IRT
- Ist verletzt bei logischen Abhängigkeiten zwischen Items und systematischen Messfehlereinflüssen wie Antwortstilen und Konsistenzeffekten

2. Lokale Unabhängigkeit

Klassische Testtheorie

- 1. Theoretische Konzepte der KTT
 - Messfehler
 - 2. Wahrer Wert
- 2. Lokale Unabhängigkeit
- 3. Grundgleichung der KTT
- 4. Folgerungen aus der Grundgleichung
- 5. Messmodelle

3. Grundgleichung der KTT

 Der beobachtete Wert einer Person i im Test j setzt sich zusammen aus ihrem wahren Wert und dem Messfehler:

$$y_{ij} = \tau_{ij} + \varepsilon_{ij}$$

Über alle Personen i (i = 1,...,n) hinweg:

$$Y_j = \tau_j + \varepsilon_j$$

4. Folgerungen aus der Grundgleichung

Aus der Grundgleichung der KTT folgen 4 Eigenschaften der Messfehler- und True-Score-Variablen:

- 1. Der Erwartungswert einer Messfehlervariablen ist für jede Ausprägung der True-Score-Variablen gleich 0.
- 2. Der unbedingte Erwartungswert einer Messfehlervariablen ist gleich 0.
- Messfehler- und True-Score-Variablen sind unkorreliert.
- 4. Die Varianz einer beobachteten Messwertvariablen lässt sich additiv zerlegen in die Varianz der True-Score-Variablen und die Varianz der Messfehlervariablen.
- Beachte: Diese Eigenschaften gelten nur für per Zufall aus der Population gezogene Personen.

4.1 Bedingter Erwartungswert von $\varepsilon_j = 0$

- Zwei Personen mit identischem True Score k\u00f6nnen unterschiedliche beobachtete Werte erhalten, aber \u00fcber viele Personen mit identischen True Scores mitteln sich die Messfehler aus
- Der Erwartungswert einer Messfehlervariablen ist für jede Ausprägung der True-Score-Variablen = 0
- Z. B.:

$$E(\varepsilon_{Narzissmus} \mid \tau_{Narzissmus} = 10) = 0$$

4.1 Bedingter Erwartungswert von $\varepsilon_j = 0$

• Gilt für die True-Score-Variable des gleichen Merkmals (τ_j) und für die True-Score-Variable τ_k eines beliebigen anderen Merkmals

$$E(\varepsilon_{Narzissmus} \mid \tau_{Intelligenz} = 115) = 0$$

Daher wird allgemein formuliert:

$$E(\varepsilon_{j} \mid \tau_{k}) = 0$$

4.2 Unbedingter Erwartungswert von $\varepsilon_i = 0$

 Aus Eigenschaft 1 folgt, dass der Erwartungswert der Fehlervariable immer 0 ist, unabhängig vom wahren Wert der getesteten Personen auf Merkmal j, k oder einem anderen Merkmal:

$$E(\varepsilon_j) = 0$$

4.3 Unabhängigkeit von $oldsymbol{arepsilon}_{_{j}}$ und $au_{_{k}}$

 Der wahre Wert und die Fehlervariable bei der Messung eines Merkmals j sind unkorreliert

$$Cov(\varepsilon_j, \tau_j) = 0$$

 Diese Unabhängigkeit gilt auch für den Messfehler einer Variablen j und den wahren Wert einer anderen Variablen k:

$$Cov(\varepsilon_j, \tau_k) = 0$$

4.3 Unabhängigkeit von \mathcal{E}_j und au_k

Zusatzannahme zum Messfehler

- Zu 4.3 kommt eine Zusatzannahme hinzu, diese ist keine direkte Folgerung aus der Grundgleichung der KTT
- Die Messfehler bei der Messung zwei verschiedener Merkmale sind unabhängig:

$$Cov(\varepsilon_i, \varepsilon_k) = 0$$

4.4 Additive Varianzzerlegung

 Die Varianz einer beobachteten Messwertvariablen lässt sich additiv zerlegen in die Varianz der True-Score-Variablen und die Varianz der Messfehlervariablen

$$Var(Y_{j}) = Var(\tau_{j}) + Var(\varepsilon_{j}) + 2 \cdot Cov(\tau_{j}, \varepsilon_{j})$$
$$= Var(\tau_{j}) + Var(\varepsilon_{j})$$

 In den meisten Untersuchungen beeinflussen beide Varianzquellen den beobachteten Wert

Reliabilität

- Die additive Varianzzerlegung ist die Grundlage für die Definition der Reliabilität
- Die Reliabilität wird definiert als Anteil der wahren Varianz an der Gesamtvarianz:

$$Rel(Y_{j}) = \frac{Var(\tau_{j})}{Var(Y_{j})} = \frac{Var(\tau_{j})}{Var(\tau_{j}) + Var(\varepsilon_{j})}$$

 Die Reliabilität ist also ein Maß für die Messfehlerfreiheit einer Messung

Klassische Testtheorie

- 1. Theoretische Konzepte der KTT
 - Messfehler
 - 2. Wahrer Wert
- 2. Lokale Unabhängigkeit
- 3. Grundgleichung der KTT
- 4. Folgerungen aus der Grundgleichung
- 5. Messmodelle

5. Messmodelle

- Erlauben eine Aussage über das Ausmaß der Vergleichbarkeit (Äquivalenz) von Messungen
- Formulieren Annahmen, die zur Bestimmung der Reliabilität erfüllt sein müssen
- Die Annahmen beziehen sich auf
 - die Unkorreliertheit der Messfehler (siehe Zusatzannahme zu 4.3)
 - den Grad der Übereinstimmung der wahren Werte
 - die Fehlervarianzen

5. Messmodelle

- Die Messmodelle machen unterschiedlich strenge Annahmen bezüglich der wahren Werte und der Fehlervarianzen
- Messmodelle
 - 1. Parallel
 - 2. Essenziell parallel
 - 3. Tau-äquivalent
 - 4. Essenziell tau-äquivalent
 - 5. Tau-kongenerisch

5.1 Modell paralleler Messungen

- Annahmen:
 - 1. Unkorreliertheit der Messfehler

$$Cov(\varepsilon_i, \varepsilon_k) = 0$$

2. Identische wahre Werte

$$\tau_{j} = \tau_{k}$$

3. Identische Fehlervarianzen

$$\sigma^2_{\varepsilon j} = \sigma^2_{\varepsilon k}$$

Beispiel: Messung der Körpergröße 2x hintereinander

Legende: τ_{j} = wahre Werte von Personen i (i = 1,...,n) in Test j $\sigma_{\varepsilon j}^{2}$ = Messfehlervarianz von Test j

5.2 Modell essenziell paralleler Messungen

- Essenziell: im Wesentlichen
- Annahmen:
 - 1. Unkorreliertheit der Messfehler

$$Cov(\varepsilon_j, \varepsilon_k) = 0$$

2. Wahre Werte unterscheiden sich um additive Konstante

$$\tau_{j} = \tau_{k} + \alpha$$

Identische Fehlervarianzen

$$\sigma^2_{\varepsilon j} = \sigma^2_{\varepsilon k}$$

 Beispiel: Messung der Körpergröße 2x hintereinander, wobei bei der zweiten Messung ein Maßband verwendet wird, das bei 5 cm anfängt

$$\tau_{j} = \tau_{k} + \alpha$$

5.3 Modell tau-äquivalenter Messungen

- Annahmen:
 - 1. Unkorreliertheit der Messfehler

$$Cov(\varepsilon_j, \varepsilon_k) = 0$$

Identische wahre Werte

$$au_{j} = au_{k}$$

3. Fehlervarianzen unterscheiden sich:

$$\sigma^2_{\varepsilon j} \neq \sigma^2_{\varepsilon k}$$

Beispiel: Messung des Gewichts auf einer Waage mit 3
 Dezimalstellen und auf einer Waage mit 0 Dezimalstellen

5.4 Modell essenziell tau-äquivalenter Messungen

Annahmen:

1. Unkorreliertheit der Messfehler

$$Cov(\varepsilon_j, \varepsilon_k) = 0$$

2. Wahre Werte unterscheiden sich um additive Konstante

$$\tau_{j} = \tau_{k} + \alpha$$

3. Fehlervarianzen unterscheiden sich:

$$\sigma^2_{\varepsilon_j} \neq \sigma^2_{\varepsilon_k}$$

 Beispiel: Messung des Gewichts einer Schokoladentafel bei der ersten Messung ohne Verpackung auf einer Waage mit 3 Dezimalstellen und bei der zweiten Messung mit Verpackung auf einer Waage mit 0 Dezimalstellen

5.5 Modell tau-kongenerischer Messungen

Annahmen:

1. Unkorreliertheit der Messfehler

$$Cov(\varepsilon_j, \varepsilon_k) = 0$$

2. Wahre Werte stehen in einer linearen Beziehung zueinander

$$\tau_{j} = \lambda \cdot \tau_{k} + \alpha$$

Fehlervarianzen unterscheiden sich:

$$\sigma^2_{\varepsilon j} \neq \sigma^2_{\varepsilon k}$$

- Tau-kongenerische Messungen bilden dieselbe Eigenschaft ab, allerdings mit verschiedenen Skalen
- Beispiel: Messung der Körpergröße in cm und m

$$\tau_{j} = \lambda \cdot \tau_{k} + \alpha$$

5. Messmodelle

- Die Messmodelle sind hierarchisch geordnet und ineinander geschachtelt von dem allgemeinsten Modell (kongenerisches Modell) bis zum restriktivsten Modell (paralleles Modell)
- Die empirische Gültigkeit der Modelle kann getestet werden
- Da die Modelle geschachtelt sind, können sie auch direkt gegeneinander getestet werden

Beispiel NARQ

3 Subskalen des NARQ:

- Charmingness (Y₁)
 "Ich verhalte mich im Umgang mit anderen meist überaus gewandt."
- 2) Devaluation (Y₂)"Die meisten Menschen sind ziemliche Versager."
- 3) Supremacy (Y₃) "Es freut mich insgeheim, wenn meine Gegner scheitern."

Mittelwerte, Varianzen, Kovarianzen und Korrelationen (kursiv) der beobachteten Variablen

	<i>Y</i> ₁	<i>y</i> ₂	<i>Y</i> ₃
Mittelwerte	3,18	3,06	3,15
<i>Y</i> ₁	0,47	0,71	0,71
y ₂	0,37	0,56	0,71
y ₃	0,34	0,37	0,49

Wie müssten modellkonforme Mittelwerte und Kovarianzmatrizen für die verschiedenen Messmodelle aussehen?

1. Parallel

Wie müssten modellkonforme Mittelwerte und Kovarianzmatrizen für die verschiedenen Messmodelle aussehen?

1. Parallel

	y ₁	y ₂	y ₃	-2
Mittelwerte	3,13	3,13	3,13	
<i>Y</i> ₁	0,51			
y ₂	0,36	0,51		
y ₃	0,36	0,36	0,51	

Wie müssten modellkonforme Mittelwerte und Kovarianzmatrizen für die verschiedenen Messmodelle aussehen?

2. Essenziell parallel

_	y ₁	y_2	<i>y</i> ₃
Mittelwerte	3,18	3,06	3,15
/ 1	0,51		
2	0,36	0,51	
/ 3	0,36	0,36	0,51

Wie müssten modellkonforme Mittelwerte und Kovarianzmatrizen für die verschiedenen Messmodelle aussehen?

3. Tau-äquivalent

	y ₁	<i>y</i> ₂	Y ₃
Mittelwerte	3,14	3,14	3,14
<i>y</i> ₁	0,49		
y ₂	0,36	0,54	
<i>Y</i> ₃	0,36	0,36	0,49

Wie müssten modellkonforme Mittelwerte und Kovarianzmatrizen für die verschiedenen Messmodelle aussehen?

4. Essenziell tau-äquivalent

	<i>Y</i> ₁	y ₂	y ₃
Mittelwerte	3,18	3,06	3,15
<i>y</i> ₁	0,49		
y ₂	0,36	0,53	
<i>y</i> ₃	0,36	0,36	0,49

Wie müssten modellkonforme Mittelwerte und Kovarianzmatrizen für die verschiedenen Messmodelle aussehen?

5. Tau-kongenerisch

2	<i>Y</i> ₁	y ₂	y ₃
Mittelwerte	3,18	3,06	3,15
<i>y</i> ₁	0,47		
<i>Y</i> ₂	0,37	0,56	
<i>Y</i> ₃	0,34	0,37	0,49

Anwendungen von Messmodellen

Beispiele für Fragestellungen, in denen die Äquivalenz der Messungen sichergestellt werden muss:

- Sind Frauen ängstlicher als Männer?
- Unterscheiden sich Deutsche und Italiener in ihrem Narzissmus?
- Gibt es über die Lebensspanne Veränderungen in der Gewissenhaftigkeit?
- Bleibt die Reduktion der Depressionsscores, die direkt nach einer Therapie gefunden wurde, mit zunehmendem zeitlichen Abstand zur Therapie stabil?
- Haben sich deutschen Schüler*innen zwischen PISA 2000 und PISA 2018 in ihrer Lesekompetenz verbessert?

Verletzung der Äquivalenz von Messungen

Kann auftreten, wenn sich die psychometrischen Eigenschaften der Items verändern, z.B. ihre Schwierigkeit:

Instrument 2000

Frage 5: SPINNEN UNTER DROGEN

Instrument 2009

Frage 11: SPINNEN UNTER DROGEN

Grenzen und Schwächen der KTT

- Die Grundgleichung der KTT ist nicht empirisch überprüfbar
- Die KTT berücksichtigt nur unsystematische Einflüsse, allerdings gibt es eine Erweiterung der KTT, die Generalisierbarkeitstheorie, mit der auch systematische Einflüsse wie Situationseffekte oder Beurteilereffekte berücksichtigt werden können
- Es besteht keine Möglichkeit, die Homogenität der Items bezüglich des Merkmals (Eindimensionalität) zu testen
- Die Kennwerte der KTT (z. B. Reliabilitäten) sind stichprobenabhängig

Literatur zu dieser Sitzung

Eid, Gollwitzer & Schmitt (2010). *Statistik und Forschungsmethoden.* Weinheim: Beltz. Kapitel 22.1 bis 22.3 ohne Modellgeltungstests, Translation, pfadanalytische Darstellung.