Homework

Chapter 1

Week 1

Recall that A system of linear equations is said to be **consistent** if it has either one solution or infinitely many solutions; a system is **inconsistent** if it has no solution.

1. Determine if the following system is consistent:

$$\begin{cases} x_1 - 4x_3 = 8 \\ 2x_1 - 3x_2 + 2x_3 = 1 \\ 4x_1 - 8x_2 + 12x_3 = 1 \end{cases}$$

2. Determine which matrices are in reduced echelon form and which others are only in echelon form.

a.
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad b. \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

c.
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad d. \quad \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 0 & 2 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}$$

3. Reduced the matrices to echelon form. Circle the pivot positions in the final matrix and in the original matrix, and list the pivot columns.

a)
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 5 & 6 & 7 \\ 6 & 7 & 8 & 9 \end{bmatrix}$$

a)
$$\begin{bmatrix} 1 & 3 & 5 & 7 \\ 3 & 5 & 7 & 9 \\ 5 & 7 & 9 & 1 \end{bmatrix}$$

4. Find the general solutions of the systems whose augmented matrices

a)
$$\begin{bmatrix} 1 & 3 & 4 & 7 \\ 3 & 9 & 7 & 6 \end{bmatrix}$$

b)
$$\begin{bmatrix} 3 & -4 & 2 & 0 \\ -9 & 12 & -6 & 0 \\ -6 & 8 & -4 & 0 \end{bmatrix}$$

5 Solve the system

a)
$$\begin{cases} 4x + 2y + z = 18 \\ 4x - 2y - 2z = 28 \\ 2x - 3y + 2z = -8 \end{cases}$$

b)
$$\begin{cases} 2x_1 + x_2 + x_3 + 2x_4 = -1 \\ 5x_1 - 2x_2 + x_3 - 3x_4 = 0 \\ -x_1 + 3x_2 + 2x_3 + 2x_4 = 1 \\ 3x_1 + 2x_2 + 3x_3 - 5x_4 = 12 \end{cases}$$

Applications

6. (*Network Analysis*) The figure shows the flow of traffic (in vehicles per hour) through a network of streets.

- a) Solve this system for x_i , i = 1, 2, 3, 4
- b) Find the traffic flow when $x_4 = 0$.
- c) Find the traffic flow when $x_4 = 100$.