Chapitre 7: VARIABLES ALEATOIRES

I°) Variables aléatoires

1°) Notion de variable aléatoire

<u>Définition</u>: Soit E l'ensemble des issues d'une expérience aléatoire. On définit une variable aléatoire X sur E quand on associe à chaque issue de E un nombre réel. On dit que l'ensemble de ces réels, noté E ', est l'ensemble des valeurs prises par X.

Exemple : Une urne contient une boule verte notée V, deux boules bleues notées B_1 et B_2 et deux boules rouges notées R_1 et R_2 . Le jeu consiste à tirer une boule au hasard. L'ensemble des issues de cette expérience peut être modélisé par $E = \{V ; B_1 ; B_2 ; R_1 ; R_2\}$.

E E' V B₁ -5 B₂ 1 1 10 R₂

Si l'on tire la boule verte, on gagne $10 \in \mathbb{R}$; si l'on tire une boule bleue, on gagne $1 \in \mathbb{R}$ et si l'on tire une boule rouge, on perd $5 \in \mathbb{R}$.

Cette règle du jeu définit la variable aléatoire X sur E qui, à l'issue « V », associe la valeur 10; aux issues « B_1 » et « B_2 », associe la valeur 1 et, aux issues « R_1 » et « R_2 », associe la valeur -5. L'ensemble des valeurs prises par X est ici $E' = \{-5; 1; 10\}$.

<u>Définition</u>: Une *variable aléatoire est donc* <u>une fonction de E dans IR</u>, puisque l'on associe à chaque issue un nombre réel.

2°) Événement lié à une variable aléatoire

Soit X une variable aléatoire définie sur l'univers E. L'ensemble des valeurs prises par X est E ' = { $x_1; x_2; ...; x_r$ }, où les valeurs sont rangées dans l'ordre croissant. Le nombre x_i correspond à une ou plusieurs valeurs de E.

Définitions:

- L'événement « $X = x_i$ » est l'ensemble des issues de E auquel on associe le réel x_i
- L'événement « $X \ge x_i$ » est l'ensemble des issues de E auquel on associe un réel supérieur ou égal à x_i

Exemple : Dans l'exemple précédent, seules les issues B_1 et B_2 sont associées à la valeur 1. Donc l'événement « X = 1 » est l'événement { B_1 ; B_2 } de E.

3°) Loi de probabilité d'une variable aléatoire

<u>Définition</u>: La probabilité de l'événement « $X = x_i$ » est la probabilité de l'événement composé des issues auxquelles on associe x_i . On note cette probabilité $P(X = x_i)$.

Exemple : Toujours dans le même exemple, la probabilité de l'événement « X = 1 » est celle de l'événement { B_1 ; B_2 } de E.

Par équiprobabilité dans E,
$$P(X = 1) = P(\{ B_1 ; B_2 \}) = \frac{2}{5}$$

<u>Définition</u>: Soit X une variable aléatoire définie sur l'univers fini E et E ' l'ensemble des valeurs prises par X. La loi de probabilité de X est la donnée de toutes les probabilités $P(X = x_i)$, où x_i prend toutes les valeurs de E '.

4°) Remarques

- Une loi de probabilité est donc un tableau qui à chaque issue associe sa probabilité
- Une variable aléatoire est donc un tableau qui à chaque issue associe un nombre (un gain par exemple)
- La loi de probabilité d'une variable aléatoire est donc un tableau qui à chaque valeur prise par la variable aléatoire (chaque gain par exemple) associe la probabilité de l'événement dont toute les issues sont associées à cette valeur

II°) Propriété et paramètres d'une variable aléatoire

1°) Somme des probabilités

Propriété : $P(X=x_1)+P(X=x_2)+...+P(X=x_2)=1$, où les x_i sont toutes les valeurs prises par la variable aléatoire X.

<u>Démonstration</u>: En effet les événements « $X = x_i$ » sont incompatibles deux à deux et leur réunion est l'univers.

2°) Espérance mathématique d'une variable aléatoire

<u>Définition</u>: l'**espérance d'une variable aléatoire X** prenant les valeurs $x_1, x_2, ..., x_k$ est définie par $E(X) = x_1 \times P(X = x_1) + x_2 \times P(X = x_2) + ... + x_k$ times $P(X = x_k)$

Interprétation : L'espérance d'une variable aléatoire X peut s'interpréter comme la valeur moyenne des valeurs prises par X lorsqu'on répète l'expérience un très grand nombre de fois.

Dans un jeu de hasard, c'est le gain moyen du joueur.

Exemple:

Soit X une variable aléatoire dont la loi est donnée par $p_i = P(X = x_i)$, pour $1 \le i \le n$. Autrement dit, la loi de X est :

X	<i>x</i> ₁	<i>x</i> ₂	 x _n	
P	p_1	p_2	 p_n	1

 $\mathbf{L'esp\'{e}rance}$ de X est le nombre réel noté E(X) qui est défini par :

$$E(X) = \sum_{i=1}^{n} x_i p_i = x_1 p_1 + x_2 p_2 + ... + x_n p_n.$$

3°) Variance et écart-type d'une variable aléatoire

<u>Définition</u>: la **variance d'une variable aléatoire X** prenant les valeurs $x_1, x_2, ..., x_k$ est définie par $V(X) = P(X = x_1) \times (x_1 - E(X))^2 + P(X = x_2) \times (x_2 - E(X))^2 + ... + P(X = x_k) \times (x_k - E(X))^2$

<u>**Définition :**</u> l'**écart-type d'une variable aléatoire X** prenant les valeurs $x_1, x_2, ..., x_k$ est définie par $\sigma(X) = \sqrt{V(X)}$

Interprétation : Soit une expérience aléatoire et X une variable aléatoire prenant les valeurs $x_{1,} x_{2,} \dots, x_{k}$. Si l'on répète l'expérience aléatoire un très grand nombre de fois, et que l'on note à chaque fois le résultat, alors la moyenne des résultats est à peu près égale à E(X).

Interprétation : L'écart-type (et donc aussi la variance) est un indicateur de dispersion, plus il est élevé, et plus les valeurs sont dispersées autour de la moyenne E(X).