

Metodi di analisi del segnale di variabilità cardiaca

Maria Gabriella Signorini

Dipartimento di Bioingegneria, Politecnico di Milano

mariagabriella.signorini@polimi.it

Corso di Elaborazione di Segnali Biomedici LS

Principi di elaborazione del segnale di variabilità cardiaca

Indice

- Estrazione del segnale di variabilità cardiaca
 - Misura di un evento sul segnale ECG
- Costruzione della serie temporale discreta di variabilità
- Estrazione di caratteristiche
 - Nel dominio del tempo
 - •Nel dominio della frequenza
 - Analisi spettrale
- Significato fisiologico dei parametri nel dominio della frequenza
- Metodi di analisi nel breve periodo/nel lungo periodo
- Esempi di applicazione
 - Soggetti normali
 - Patologie cardiovascolari
 - •Variabilità cardiaca del feto

Corso di Elaborazione di Segnali Biomedici LS

o studio del segnale ECG permette o conoscere meglio il sistema che l'ha generato (il CUORE)

Corso di Elaborazione di Segnali Biomedici LS

Bradicardia

Tachicardia sinusale

Corso di Elaborazione di Segnali Biomedici LS

Segnale ECG di un battito cardiaco

ECG, Pressione, Respiro

Meccanismi di regolazione del segnale HRV

Corso di Elaborazione di Segnali Biomedici LS

Dall' ECG alla serie di variabilità

- Esempio di segnale ECG
- L'intervallo tra due battiti successivi misurato dal picco dell'onda R al successivo(R-R) varia fisiologicamente nel tempo
- La serie dei valori degli intervalli R-R in funzione del numero dei battiti costituisce la serie temporale di variabilità (HRV)

Corso di Elaborazione di Segnali Biomedici LS

Riconoscimento del QRS - derivata/soglia

un derivatore con frequenza di taglio a 20-30 Hz amplifica il QRS rispetto ad altre componenti e permette di avere un riconoscimento mediante una semplice soglia

- la soglia deve essere positiva e negativa (non conosciamo a priori la polarità del QRS)
- conviene prendere una frazione della massima pendenza y'_M (e.g., 70%)
- se le ampiezza o la morfologia varia, occorre rendere adattativo il valore di soglia variando lentamente y'_M in base agli ultimi y'_{M,k} trovati

Costruzione della serie temporale di variabilità

• Il segnale HRV si può ottenere in modi diversi dalla serie di eventi dell'onda R riconosciuta sull'ECG.

I più utilizzati sono:

- La **funzione intervalli.** Si ottiene rappresentando in ascissa e in ordinata la durata temporale dell'intervallo R-R e interpolando la sequenza che sarà poi ricampionata (di solito a 4 Hz).
- Il **tacogramma degli intervalli** e' costituito dalla serie della durata (in sec.) di intervalli R-R successivi in funzione del numero dei battiti riconosciuti sull'ECG. In questo caso il battito è l'unità di tempo fondamentale e la frequenza è rappresentata in cicli per evento (battito) e cioè c/b.
 - •Si torna nell'usuale dominio del tempo definendo un'unità "Hz-equivalente" [Hz.eq.]=[c/b]·1/(R-R)_{med} dove (R-R)_{med} è la durata del battito cardiaco nell'intervallo di osservazione

Corso di Elaborazione di Segnali Biomedici LS

Costruzione della serie temporale di variabilità

- ECG
- Funzione intervalli

• Tacogramma

Dai segnali alla serie di variabilità

Corso di Elaborazione di Segnali Biomedici LS

Misura di punti fiduciari

Dai segnali alle serie di variabilità

Corso di Elaborazione di Segnali Biomedici LS

- Il segnale di variabilità cardiaca (HRV heart rate variability) contiene informazioni che quantificano l'attività dei meccanismi neurali di controllo cardiovascolare
- Sono sistemi che agiscono a diverse scale di tempo
 - Nel breve periodo → misura della bilancia simpato-vagale
 - Nel lungo periodo → contributi lenti (endocrino metabolici e altro) con caratteristiche non lineari
- La loro misura permette di:
 - quantificare meccanismi responsabili dell'insorgenza di patologie in modo non invasivo

Time domain parameters

Selected Time Domain Measures of HRV

Variable	Units	Description
Statistical Measur	es	
SDNN	ms	Standard deviation of all NN intervals
SDANN	ms	Standard deviation of the averages of NN intervals in all 5-minute segments of the entire recording
RMSSD	ms	The square root of the mean of the sum of the squares of differences between adjacent NN intervals
SDNN index	ms	Mean of the standard deviations of all NN intervals for all 5-minute segments of the entire recording
SDSD	ms	Standard deviation of differences between adjacent NN intervals
NN50 count		Number of pairs of adjacent NN intervals differing by more than 50 ms in the entire recording; three variants are possible counting all such NN intervals pairs or only pairs in which the first or the second interval is longer
pNN50	%	NN50 count divided by the total number of all NN intervals
Geometric Measur	es	
HRV triangular index		Total number of all NN intervals divided by the height of the histogram of all NN intervals measured on a discrete scale with bins of 7.8125 ms (1/128 seconds) (details in Fig 2)
TINN	ms	Baseline width of the minimum square difference triangular interpolation of the highest peak of the histogram of all NN intervals (details in Fig 2)
Differential index	ms	Difference between the widths of the histogram of differences between adjacent NN intervals measured at selected heights (eg, at the levels of 1000 and 10 000 samples) ²⁰
Logarithmic index		Coefficient ϕ of the negative exponential curve $k \cdot e^{-\phi t}$, which is the best approximation of the histogram of absolute differences between adjacent NN intervals

Corso di Elaborazione di Segnali Biomedici LS

- To perform geometric measures on NN interval histogram, the sample density distribution D is constructed, which assigns the number of equally long NN intervals to each value of their lengths.
- The most frequent NN interval length X is established, that is, Y=D(X) is the maximum of the sample density distribution D.
- The HRV triangular index is obtained by dividing the area integral of D by the maximum Y.
 - When the distribution D with a discrete scale is constructed on the horizontal axis, the value is obtained according to the formula HRV index=(total number of all NN intervals)/ Y.

Elaborazioni nel dominio del tempo

La serie degli intervalli R-R può essere considerata come un processo pseudo-stocastico.

Uso di metodi classici di analisi di segnali e di identificazione delle serie temporali.

- Prima elaborazione: calcolo dell'istogramma degli intervalli. Si misura la frequenza relativa di diverse classi di durata dell'intervallo R-R in un dato campione.
 - •In tal modo si stima la distribuzione in frequenza nel caso si possa considerare il processo stazionario.
- Seconda elaborazione: scattergram (o scatter plot).
 Rappresenta il valore dell'intervallo R-R(i+1) in funzione
 dell'intervallo R-R(i). E' un metodo per individuare
 eventi anomali che generano brusche variazioni del
 ritmo cardiaco;
 - •e.g. la presenza di cluster di punti distanti dalla bisettrice, è utilizzata per individuare extrasistolie ricorrenti

Corso di Elaborazione di Segnali Biomedici LS

<u>Istogrammi e Scatter plot</u>

HRV normale - 24 ore

Corso di Elaborazione di Segnali Biomedici LS

HRV trapiantato - 24 ore

Mappe di Poincarè (mappe di primo ritorno, delay maps)

- → Tecnica di analisi molto efficace, che permette di visualizzare la correlazione locale fra due campioni adiacenti.
- → Si ottengono rappresentando in un grafico LA SERIE DI VALORI R-R ponendo R-R[i] in funzione dell' R-R[i+1].
- → Mancanza di correlazione: grafico che assomiglia ad una nuvola di forma circolare.
- → Se è presente correlazione fra i dati R-R[i] e R-R[i+1], la nuvola si addensa lungo la bisettrice

Analisi di serie temporali nel dominio del tempo

- 4 serie temporali (molto diverse)
 MA
- stesso valor medio e stessa varianza
- Occorrono altri metodi per misurare le differenze

ANALISI delle FREQUENZE contenute nel SEGNALE

CALCOLO dello SPETTRO

4 synthesized time series with **identical means**, **standard deviations**, **and ranges**. Series (c) and (d) also have identical autocorrelation functions and therefore identical power spectra.

Lo spettro

- → Un segnale nel *tempo* (ad esempio l'HRV) puo' essere visto come composto dalla somma di un certo numero (anche molto grande) di sinusoidi. Ciascuna di esse è caratterizzata da un certo valore di frequenza, ampiezza e fase.
- → La rappresentazione in *frequenza*, definita spettro del segnale, descrive il segnale per mezzo delle ampiezze e delle fasi delle sinusoidi componenti.
- → La trasformazione tra le due rappresentazioni è data dalla Trasformata di Fourier
- → L'andamento di ciascuna sinusoide nella finestra temporale considerata è rappresentato nello spettro da una "campana" la cui frequenza centrale è quella media della sinusoide e la cui area è la sua varianza. La varianza dell'intero segnale è data dalla somma delle varianze delle sinusoidi componenti.
- → Nell'applicazione dell'analisi spettrale noi supponiamo che il segnale sia generato da un sistema lineare e tempo-invariante, e che sia stazionario nella finestra di osservazione

Analisi spettrale

- La descrizione del segnale HRV nel dominio delle frequenze suppone che il segnale sia generato da un **sistema lineare e tempo-invariante**, e che sia **stazionario** nella finestra di osservazione.
- La fdT del sistema sia H(z)=1/A(z) a tutti poli e l'ingresso sia costituito da un rumore bianco n(i) (n(i)~WN(0,λ2) (modello autoregressivo - AR)

$$y(i) = \overline{y}(i) + n(i) = -a_1y(i-1) + \Lambda - a_py(i-p) + n(i)$$

Appunto: un modello ARp (auto-regressivo di ordine p) descrive un campione di segnale y(i) come combinazione lineare di p campioni passati più un errore casuale n(i); ad ogni coppia di poli complessi coniugati della fdT corrisponde nello spettro una "campana" la cui frequenza centrale è determinata dalla posizione dei poli nel cerchio unitario.

Analisi Spettrale del segnale HRV

Frequenze di interesse

 VLF: 0-0.04 Hz componenti lente, ritmi

circadiani, contributi non lineari

• LF: 0.04-0.15 Hz

attività del SNA simpatico, tono vasomotorio.

HF: 0.15-0.4 Hz

attività respiratoria, controllo vagale.

Parametri spettrali

- Componenti spettrali (frequenza e potenza)
- Rapporto LF/HF: misura della bilancia simpato-vagale

HRV measures

Table 2. Selected Frequency Domain Measures of HRV

	Variable		Units	Description	Frequency Range
Analysis of She	ort-Term Recordi	ngs (5 min)			
5-min total		0	ms ²	The variance of NN intervals over the	≈≤0.4 Hz
		1		temporal segment	
VLF	-		ms ²	Power in the VLF range	≤0.04 Hz
LF			ms ²	Power in the LF range	0.04-0.15 Hz
LF norm			nu	LF power in normalized units	
				LF/(total power-VLF)×100	
HF			ms ²	Power in the HF range	0.15-0.4 Hz
HF norm	. •		,nu	HF power in normalized units	
				HF/(total power-VLF)×100	
LF/HF				Ratio LF [ms ²]/HF [ms ²]	
Analysis of En	tire 24 Hours				
Total power			ms ²	Variance of all NN intervals	≈≤0.4 Hz
ULF			ms ²	Power in the ULF range	≤0.003 Hz
VLF			ms ²	Power in the VLF range	0.003-0.04 Hz
LF			ms ²	Power in the LF range	0.04-0.15 Hz
HF			ms ²	Power in the HF range	0.15-0.4 Hz
α			-	Slope of the linear interpolation of	≈≤0.04 Hz
				the spectrum in a log-log scale	

VLF indicates very-low frequency; ULF, ultra-low frequency.

Reprinted with permission from Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 1996;93:1043-65.

Corso di Elaborazione di Segnali Biomedici LS

Analisi Spettrale AutoRegressiva

- Stima di un modello parametrico AR di ordine [8-20]
- Calcolo della frequenza associata a ciascun polo, $f_{nk} = fase(p_k)/(2 \pi \Delta)$;
- Allocazione del contributo del polo alla potenza totale (il suo residuo), alla banda che lo contiene.
 - Importante! Il contributo di un polo o di una coppia di poli complessi coniugati è un numero reale, non è necessariamente un valore positivo; questo spiega perché è possibile che il contributo di potenza fornito da una certa banda sia negativo.
- Scelta dell'ordine ottimo
 - Test di bianchezza del residuo (test di Anderson)
 - Minimo della cifra di merito di **Akaike**

Corso di Elaborazione di Segnali Biomedici LS

Analisi Spettrale AutoRegressiva

- VLF: 0-0.04 Hz :
 componenti lente, ritmi
 circadiani, contributi non
 lineari
- LF: 0.04-0.15 Hz: attività del SNA simpatico, tono vasomotorio.
- HF: 0.15-0.4 Hz: attività respiratoria, controllo vagale.
- Rapporto LF/HF: misura della bilancia simpatovagale

(d) PERIC	DOGRAM
-----------	--------

	$egin{aligned} \mathbf{power} \ [\mathbf{ms^2}] \end{aligned}$	$f_{\mathbb{C}}$	power [nu]	pow [ms
VLF	5174.7	0	-	5972
\mathbf{LF}	6047.4	0.096	73.5%	564:
\mathbf{HF}	1866.7	0.243	22.7%	1320

AR MODEL

[ms ²]	10	[nu]
5972.9	0	-
5641.1	0.109	75.9%
1220 /	0.040	15 80%

La bilancia simpato-vagale

Dal segnale HRV è possibile estrarre informazione quantitativa sull'attività del SNA che controlla il ritmo cardiaco con un'azione sinergica e antagonista delle branca simpatica e di quella vagale

Analisi spettrale del segnale HRV

REST

sistema simpatico (LF) e vagale (HF) bilanciati

TILT

Incremento delle LF dovuto alla stimolazione simpatica