Using RDKit to build analytical assays for diagnosis of metabolic disorders

Marek Noga Translational Metabolic Laboratory

Using stable isotope labeling and mass spectrometry to diagnose PDH deficiency

How to measure the mass of a molecule?

UDP-glucose C₁₅H₂₄N₂O₁₇P₂

MW = 566.302 g/mol

Triple Quadrupole MS (QQQ)

565 -> 323 transition allows for selective detection of UDP-glucose

¹³C₆-UDP-glucose requires different transition!

Fragmentation of UDP-glucose

This looks like a lot of fragments...

- Nucleotide sugar assay
 - 24 compounds
 - 113 transitions

Adding labels:

Sugar moiety

Ribose in nucleotide

Acetyl (UDP-HexNAc, etc)

Pyruvate (CMP-Neu5Ac)

Nucleobase

After adding labels:

¹³C₆-glucose: 375

¹⁵N-glutamine: 296

¹³C₆-galactose + ¹³C₃-glucose double labeling: 655

And there are 107 additional compounds waiting on the shortlist

Fragmentation can be modeled

[C,\$(P(0)(=0)0)]0[\$(P(0)(=0)(0)0):2][\$(0(P(0)(=0))CC1CCC(n)01):3]>>[0-][P:2][0:3] 323.0286

RDKit for the rescue!

- Input:
 - Molecule list with structures SMILES
- All fragmentation reactions encoded by reaction SMARTS:
 - All transitions in nucleotide sugar assay generated using just 9 reactions
 - (written manually, thank you Greg for the recursive SMARTS tutorial)
- Algorithmic merge of degenrate transitions
 - Isomeric compounds
 - Undistiguishable labels
 - For ${}^{13}C_6$ -galactose + ${}^{13}C_3$ -glucose double labeling: 1099 -> 655
- Output:
 - Instrument method in vendor format
 - Agilent, Waters, Sciex
 - Data processing method
 - Skyline from MacCoss Lab, open source (<u>https://skyline.ms/</u>)

Unforseen advantages

 Method generator works as expected when fed with stuctures synthetic analogs, like 2-fluoro-fucose

Figure 3. Nucleotide sugar analysis. THP1 cells were incubated for indicated time points with DMSO control, 50 μ M A2FF1P, 50 μ M B2FF1P or 100 μ M 2FF. (a) Relative retention times of α - and β -GDP-L-Fuc2F by incubation with A2FF1P and B2FF1P for 4 hours. (b–d) After sample preparation, the β -GDP-L-Fuc2F (b), α -GDP-L-Fuc2F (c), β -GDP-L-Fucose (d) and other nucleotide levels (Figure S4) were analyzed using reverse-phase ion pairing chromatography coupled to a triple quadrupole mass spectrometer operating in negative ion mode and presented as their abundance in the nucleotide sugar pool (n = 3).

Pijnenborg, J. F. A. *et al.* Cellular Fucosylation Inhibitors Based on Fluorinated Fucose-1-phosphates**. *Chem European J* **27**, 4022–4027 (2021).

Dealing with complexity

Biosynthesis of UDP-GlcNAc

Disentangling UDP-GlcNAc synthesis

Disentangling UDP-GlcNAc synthesis

Precursor Ion

Neutral Loss

Fragment Ion

Using SMARTS for labeling selectivity

Let's say we want to generate UMP labeled with ¹⁵N originating from ¹⁵N-glutamine

Using SMART for labeling selectivity

```
[12]: ms.label_by_substructure_match(
    ump,
    "[#7]1@[$([#6]=0)]@[#7]@[$([#6]=0)]@[#6]@[#6]1",
    element="N",
    isotope=15,
    atom_indexes=(3,),
)
[12]:
```

- It is convenient to use IUPAC atom numbering to define label positions
- RDKit-provided atom indexes use different system
- Solution: write specific SMARTS with match order equivant to IUPAC atom numbering
- Is there a SMARTS extension for match named match reference, equivalent
 of (?P<name>...) in regular expressions?

Furute prospects

Interation with genome-scale metabolic models

- Curently labeling is only semi-automated, SMARTS-based
- Structures, reactions, stoichometry is already available in pathway and model databases
- Atom mappings available, but likely it would be better to re-write whole metabolism in reaction SMARTS
- Some unexpected limitations by stereochemistry handling in reactions in RDKit:
 - Aconitase (TCA cycle):
 - Citrate --> (D-threo-)Isocitrate
 - Citrate is pro-chiral, becomes chiral with certain labels
 - Only one isotopomer of isocitrate should be generated

Furute prospects (long term)

Build a general, structure-based MS fragmentation spectra predictor

- It would greatly support identification of unknown molecules
- Reaction SMARTS build manually, based guided by experience and experimental data
 - One transformation = one stable, detectable ion
- Often product ions results from multiple elementary reactions, including re-arrangements
- Likely it is possible define a set of elementary reactions (as reaction SMARTS) and rules connecting them to predict MS spectrum of an arbitrary structure
- Some systems exist:
 - Proteins and peptides, using sequence input
 - Lipids or glycans, using dedicated notations
 - Current systems for metabolites are based on bond-breaking models and machnie learning, likely not chemistry-aware enough

Acknowledgments

- Nucleotide biosynthesis (MUMC+)
 - Marit v/d Wiel
 - Sandra Coenen
 - Jörgen Bureau
 - Laura Steinbusch
- Glycosylation disorders (Radboudumc)
 - Raisa Veizaj
 - Hanneke Kwast
 - Federica Conte
 - Dirk Lefeber

- Mitochondrial disorders (Radboudumc)
 - Nick Zomer
 - Liesbeth Wintjes
 - Arno van Rooij
 - Frans v/d Brandt
 - Richard Rodenburg
- Radboudumc
 - Alain van Gool
- Inspiration and prior work
 - Greg Bokinsky (TU Delft)
 - Luc Patiny (EPFL)

