

Karimás csőkötés tervezése

Gépelemek mechatronikai mérnököknek

1. Házi feladat

KINDLIK DÁNIEL
AHU27Z

Gépelemek mechatronikai mérnököknek BMEGEGIBMGE

1. Házi fel	adat _{Név:} Kindlik Dániel
	Neptun kód: AHU27Z
	Gyakorlatvezető: Dr. Grőb Péter

1. A feladat bevezetése

A megadott adatokkal tervezzen egy csővéget vakkarimával lezáró csavarkötést és szilárdságilag ellenőrizze az elemeket.

2. A feladat értékelése

Az elérhető maximális pontszám 15 pont.

3. Adatok

A vezeték folyadékot szállít.

4. A feladat részletezése

- a) Vázolja fel méretarányosan a konstrukció előtervét!
- b) Számítsa ki a vakkarima minimálisan szükséges vastagságát, majd válasszon szabványos méretű lemezvastagságot!
- c) Válasszon megfelelő méretű lapos tömítést és számítsa ki a minimálisan szükséges tömítő erőt!
- d) Számítsa ki az üzemi nyomásból a csavarra jutó terhelést!
- e) Egy reális biztonsági tényező felvételével határozza meg a csavar előfeszítését és számítsa ki a szükséges meghúzási nyomatékot!
- f) Határozza meg a csavarban ébredő egyenértékű feszültséget és válassza ki a csavar megfelelő anyagát!
- g) Készítse el a kötés összeállítási rajzát! Jelölje rajta a főbb méreteket!

Beadási határidő: a hallgatói tájékoztatóban leírtaknak megfelelően

A feladat beadásával kijelentem, hogy ezt a feladatot meg nem engedett segítség nélkül, saját magam készítettem, és abban csak a megadott forrásokat használtam fel. Minden olyan részt, amelyet szó szerint idéztem, vagy azonos tartalomban, de átfogalmazva más tartalomból átvettem, egyértelműen, a forrás megadásával jelöltem. Ennek megszegése a TVSZ 135§ értelmében kerül szankcionálásra!

Tartalomjegyzék

1.	Előtervek	3
	1.1. Karima szabvány választása	3
	1.2. Vakkarima szabvány választása	4
	1.3. Tömítés előterve	4
	1.4. Konstrukció előterve	5
2.	Vakkarima minimális vastagságának számítása, megfelelő lemezvastagság választása	6
3.	Megfelelő lapos tömítés választása, minimális tömítési erő számítása	7
4.	Csavarra jutó terhelés számítása	8
5.	Csavar előfeszítésének és szükséges meghúzási nyomaték számítása	9
6.	Csavar anyagának kiválasztása, benne ébredő egyenfeszültség kiválasztása	11
7.	Konstrukció összeállítási rajza	12

Bevezetés

A feladat a megadott adatokkal egy csővéget vakkarimával lezáró csavarkötés tervezése és az elemek szilárdságilag ellenőrzése.

1. Előtervek

1.1. Karima szabvány választása

A megadott adatok alapján ($p_{\ddot{u}}=35[{\rm bar}]~D_N=32[{\rm mm}])$ ISO EN 1092-1 PN40¹ szabványt lett kiválasztva.

1.1. ábra. Karima előterve

Név	Jelölés	Érték
Karima külső átmérője	D	140 mm
Karima magassága	h	42 mm
Falvastagság	s	$2.6~\mathrm{mm}$
Kiugrás mérete	f	$2~\mathrm{mm}$
Kúp feletti rész magassága	c	$6~\mathrm{mm}$
Lekerekítések nagysága	r	$6~\mathrm{mm}$
Cső csatlakozás külső mérete	d_1	43.5 mm
Csavar lyukkör átmérője	d_2	18 mm
Kúp alsó átmérője	d_3	$56 \mathrm{\ mm}$
Tömítő felület külső átmérője	d_4	78 mm
Csavarok száma	N	4 db
Csavarok mérete	M	M16
Csavarok közép átmérője	K	100 mm
Csavarok alapja és tömítési sík távolsága	b	18 mm

 $^{^1 \}texttt{https://globalsupplyline.com.au/wp-content/uploads/2014/10/Flange-Dim-EN1092-1-BS4504.pdf}$

1.2. Vakkarima szabvány választása

A megadott adatok alapján ($p_{\ddot{u}}=35[{\rm bar}]~D_N=32[{\rm mm}])$ DIN EN 1092-1² PN40 szabványt lett kiválasztva.

1.2. ábra. Vakkarima előterve

Név	Jelölés	Érték
Vakkarima külső átmérője	D	140 mm
Vakkarima magassága	b	18 mm
Kiugrás mérete	f	$2~\mathrm{mm}$
Csavar lyukkör átmérője	d_2	18 mm
Tömítő felület külső átmérője	d_4	78 mm
Csavarok száma	N	4 db
Csavarok mérete	M	M16
Csavarok közép átmérője	K	100 mm

1.3. Tömítés előterve

1.3. ábra. Tömítés előterve

Név	Jelölés	Érték
Tömítés külső átmérője	D	78 mm
Tömítés belső átmérője	D_i	$32~\mathrm{mm}$
Tömítés vastagsága	b	$3~\mathrm{mm}$

 $^{^2} https://www.heco.de/en/stainless-steel/flanges/blind-flanges/din-en/more-sealing-surfaces/with-raised-face/pn-40.html$

1.4. Konstrukció előterve

XX

2. Vakkarima minimális vastagságának számítása, megfelelő lemezvastagság választása

A vakkarima minimális vastagságának kiszámításához használhatjuk az alábbi egyenletet:

$$b_{\min} = \sqrt{\frac{3 \cdot p_{ii}}{\sigma_{\text{hajl}}} \cdot \left(1 - \frac{2 \cdot d_t}{3 \cdot k}\right)} \cdot \frac{d_t}{2} \tag{2}$$

Név	Jelölés	M.egys.
Az üzemi nyomás	$p_{ m ü}$	[MPa]
${\bf A}$ karima anyagára megengedhető maximális hajlító feszültség	$\sigma_{ m hajl}$	[MPa]
A csavarok lyukkör átmérője	k	[mm]
A tömítés középátmérője	d_t	[mm]

 $p_{\ddot{\mathrm{u}}}$ t át kell váltanunk MPa-ba: $p_{\ddot{\mathrm{u}}}=35[\mathrm{bar}]=3.5[\mathrm{MPa}]$

 σ_{hajl} megadásához ki kell választatnunk a karima anyagát, ennek az S235 acélt választottam. R_{eH} adott³ és n biztonsági tényezőnek 2-t választottam:

$$\sigma_{\text{hajl}} = \frac{R_{eH}}{n} = \frac{190}{2} = 145[\text{MPa}]$$
 (2.1)

 d_t kiszámolható az első feladatban megadott értékekkel:

$$d_t = \frac{(d_1 - 2 \cdot s) + d_4}{2} = \frac{(43.5 - 2 \cdot 2.6) + 78}{2} = 58.15[\text{mm}]$$
 (2.2)

Már mindent ismerünk b_{min} kiszámolásához:

$$b_{\min} = \sqrt{\frac{3 \cdot 3.5}{145} \cdot \left(1 - \frac{2 \cdot 58.15}{3 \cdot 100}\right)} \cdot \frac{58.15}{2} = 6.122[\text{mm}]$$
 (2)

Így láthatjuk, hogy a szabványban szereplő vastagság megfelelő.

 $^{^3}$ Anyagok.pdf

3. Megfelelő lapos tömítés választása, minimális tömítési erő számítása

A minimális tömítő erő az az erő, amely a tömítőanyag összenyomásával biztosítja az üzemi nyomásnál a szivárgásmentességet. Ennek nagysága több dologtól függ. Meghatározásához az alábbi egyenletet tudjuk felhasználni:

$$F_{\mathrm{T}\ddot{\mathrm{u}}} = n_t \cdot p_{\ddot{\mathrm{u}}} \cdot \pi \cdot d_t \cdot b_t^* \tag{3}$$

Név	Jelölés	M.egys.
Az üzemi nyomás	$p_{ m \ddot{u}}$	[MPa]
A tömítés anyagát figyelembe vevő biztonsági tényező	n_t	[MPa]
A tömítés középátmérője	d_t	[mm]
A tömítés hatásos szélessége	b_t^*	[mm]

A feladat megoldásához ki kell választanunk egy tömítést, ami SBR lágytömítés⁴ lett, mivel ez 40 bar nyomásig használható, így PN40-es karimákhoz jó.

Emiatt n_t értéke segédlet alapján: $n_t = 1.5$

 b_t * kiszámolható az első feladatban megadott értékekkel:

$$b_t^* = 0.5 \cdot b_t = 0.5 \cdot \frac{78 - 32}{2} = 11.5 \text{[mm]}$$
 (3.1)

Már mindent ismerünk $F_{\text{T\"{u}}}$ kiszámolásához (d_t -t már meghatároztuk (2.2)):

$$F_{\text{Tü}} = 1.5 \cdot 3.5 \cdot \pi \cdot 58.15 \cdot 11.5 = 11030[\text{N}]$$
(3.2)

 $^{^4}$ https://www.tomitesgyar.hu/karima-tomites-dn-32-sbr-muszaki-gumi-tomites-32x78x30mm.html

4. Csavarra jutó terhelés számítása

A csavarerővel biztosíthatjuk a tömítés előfeszítését és ellen tudunk tartani az használat közben fellépő erőknek. Meghatározásához az alábbi egyenletet tudjuk felhasználni:

$$F_{\text{csavar szerelési}} = 1.2 \cdot F_{\text{csavar "üzemi}} = 1.2 \cdot (F_{cs} + F_p + F_{\text{T"u}})$$
 (4)

Név	Jelölés	M.egys.
A belső nyomásból származó csőerő	F_{cs}	[N]
A belső nyomásból származó gyűrűfelületi erő	F_p	[N]
Az üzemi tömítő erő	$F_{\mathrm{T} \ddot{\mathrm{u}}}$	[N]

 $F_{cső}$ meghatározása:

$$F_{\text{cso}} = \frac{d^2 \cdot \pi}{4} \cdot p_{\ddot{\text{u}}} = \frac{(d_1 - 2 \cdot s)^2 \cdot \pi}{4} \cdot p_{\ddot{\text{u}}} = \frac{(43.5 - 2 \cdot 2.6)^2 \cdot \pi}{4} \cdot 3.5 = 4032[\text{N}]$$
(4.1)

Név	Jelölés	M.egys.
A cső belső átmérője	d	[mm]
Az üzemi nyomás erő	$p_{ m ilde{u}}$	[MPa]

 F_p meghatározása:

$$F_p = \frac{(d_t^2 - d^2) \cdot \pi}{4} \cdot p_{ii} = \frac{(58.15^2 - 38.3^2) \cdot \pi}{4} \cdot 3.5 = 5263[N]$$
 (4.2)

Név	Jelölés	M.egys.
A tömítés középátmérője	d_t	[mm]
A cső belső átmérője	d	[mm]
Az üzemi nyomás	$p_{ m ilde{u}}$	[MPa]

Mostmár vissza tudunk helyettesíteni:

$$F_{\text{csavar ""uzemi}} = 4032 + 5263 + 11030 = 20325[N]$$
 (4.3)

$$F_{\text{csavar szerelési}} = 1.2 \cdot 20325 = 24390[N]$$
 (4)

5. Csavar előfeszítésének és szükséges meghúzási nyomaték számítása

Először a feladat megoldásához ki kell választatnunk pár hiányzó alkatrészt. A csavar a karima miatt M16-os MSZ EN ISO 4018^5 szabványú tövigmenetes hatlapfejű csavar. Ehhez egy M16-os MSZ EN ISO 4032^6 szabványú csavaranyát választottam. Mindkét alkatrész menete MSZ 205 ISO 7 menet.

A meghúzási nyomaték meghatározásához az alábbi egyenletet tudjuk használni:

$$M_{megh} = M_{csavar} + M_{anva} (5)$$

Név	Jelölés	M.egys.
A csavar menetén ébredő súrlódási nyomaték	M_{csavar}	[Nmm]
Az anya homloklapján fellépő súrlódásból eredő nyomaték	M_{anya}	[Nmm]

 M_{csavar} meghatározásához az alábbi képletet tudjuk felhasználni:

 F_v -t meg tudjuk adni, ha a csavarerőt elosztjuk a csavarok számával:

$$F_v = \frac{F_{\text{csavar szerelési}}}{N} = \frac{24390}{4} = 6098[N]$$
 (5.1.1)

Menetemelkedés szögét az alábbi módon tudjuk megadni:

$$\alpha = \operatorname{atan}\left(\frac{P}{d_2 \cdot \pi}\right) = \operatorname{atan}\left(\frac{2}{14.701 \cdot \pi}\right) = 2.48 [^{\circ}]$$

$$\frac{\mathbf{N\acute{e}v}}{\mathbf{Menetemelked\acute{e}s}} \qquad \mathbf{Jel\ddot{o}l\acute{e}s} \qquad \mathbf{M.egys.}$$

$$\mathbf{A} \text{ menet k\"{o}z\'{e}p\acute{a}tm\'{e}r\'{o}je} \qquad d_2 \qquad [mm]$$

Látszólagos félkúpszög szélsőértékeit az alábbi módon tudjuk meghatározni a súrlódási tényező ismeretében⁸:

$$\rho'_{min} = \operatorname{atan}\left(\frac{\mu_{min}}{\cos(0.5 \cdot \beta)}\right) = \operatorname{atan}\left(\frac{0.1}{\cos(0.5 \cdot 60)}\right) = 6.587[^{\circ}]$$
 (5.1.3)

⁵https://www.k-mechanic.hu/kmchnc17/wp-content/uploads/2021/04/Csavarok.pdf

 $^{{}^6{\}tt http://glink.hu/hallgatoi_segedletek/files/2467bab9d79c9c1c6f7eb43a99cf961c.pdf}\ 90.\ {\tt oldallgatoi_segedletek/files/2467bab9d79c9c1c6f7eb43a99cf961c.pdf}\ 90.\ {\tt oldallgatoi_segedletek/files/2467bab9d7eb43a99cf961c.pdf}\ 90$

⁷http://glink.hu/hallgatoi_segedletek/files/2467bab9d79c9c1c6f7eb43a99cf961c.pdf 99. oldal

 $^{^8 \}texttt{https://www.k-mechanic.hu/kmchnc17/wp-content/uploads/2021/04/Csavarok_meghuzasinyomateka.pdf}$

Így meg tudjuk adni M_{csavar} szélsőértékeit:

$$M_{csavar_{min}} = F_v \cdot \frac{d_2}{2} \cdot \tan(\alpha + \rho'_{min}) = 6098 \cdot \frac{14.701}{2} \cdot \tan(2.48 + 6.587) = 7153[\text{MPa}]$$
 (5.1)

$$M_{csavar_{max}} = F_v \cdot \frac{d_2}{2} \cdot \tan(\alpha + \rho'_{max}) = 6098 \cdot \frac{14.701}{2} \cdot \tan(2.48 + 9.183) = 9252[\text{MPa}]$$
 (5.1)

 ${\cal M}_{anya}$ meghatározásához az alábbi egyenletet tudjuk felhasználni:

$$M_{anya} = F_v \cdot \frac{d_a}{2} \cdot \mu_a \tag{5.2}$$

Név	Jelölés	M.egys.
A menetszárban ébredő előfeszítő erő	F_v	[N]
Az anya felfekvő felületének közepes átmérője	d_a	[mm]
Az anya alatti súrlódási tényező a felfekvő felületnél	μ_a	_

 d_a -t az alábbi képlettel ki tudjuk számolni:

$$d_a = \frac{d+s}{2} = \frac{16+24}{2} = 20[\text{mm}]$$
 (5.2.1)

Név	Jelölés	$\mathbf{M.egys.}$
A csavaranya névleges középátmérője	d	[N]
A csavaranya laptávolsága	s	[mm]

Így meg tudjuk adni M_{anya} szélsőértékeit acél-acél súrlódási tényező ismeretében 9

$$M_{anya_{min}} = F_v \cdot \frac{d_a}{2} \cdot \mu_{a_{min}} = 6098 \cdot \frac{20}{2} \cdot 0.08 = 4878 [\text{MPa}]$$
 (5.2)

$$M_{anya_{max}} = F_v \cdot \frac{d_a}{2} \cdot \mu_{a_{max}} = 6098 \cdot \frac{20}{2} \cdot 0.25 = 15245 [\text{MPa}]$$
 (5.2)

Végül vissza tudunk helyettesíteni M_{megh} képletébe, hogy meghatározzuk szélsőértékeit:

$$M_{megh_{min}} = M_{csavar_{min}} + M_{anya_{min}} = 7153 + 4878 = 12031[MPa]$$
 (5)

$$M_{megh_{max}} = M_{csavar_{max}} + M_{anya_{max}} = 9252 + 15245 = 24497[MPa]$$
 (5)

⁹https://hu.wikipedia.org/wiki/Súrlódás - Súrlódási kúp fejezet

6. Csavar anyagának kiválasztása, benne ébredő egyenfeszültség kiválasztása

A csavarok igénybevételének jellege húzás és csavarás, emiatt a feszültséget az alábbi egyenlettel tudjuk meghatározni:

 $\sigma_{red} = \sqrt{\sigma^2 + 3 \cdot \tau^2} \tag{6}$

Név	Jelölés	M.egys.
A húzásból származó maximális feszültség	σ	[MPa]
A csavarásból származó maximális feszültség	au	[MPa]

 σ az alábbi képlettel meghatározható:

$$\sigma = \frac{F_v}{A_c} \tag{6.1}$$

Név	Jelölés	M.egys.
A menetszárban ébredő előfeszítő erő	F_v	[N]
A csavarszár egyenértékű keresztmetszete	A_e	$[\mathrm{mm}^2]$

 A_e meghatározása:

$$A_e = \frac{d_e^2 \cdot \pi}{4} = \frac{\left(\frac{d_2 + d_3}{2}\right)^2 \cdot \pi}{4} = \frac{\left(\frac{14.701 + 13.546}{2}\right)^2 \cdot \pi}{4} = 157 [\text{mm}]$$

$$\frac{\text{N\'ev}}{\text{A menet k\"oz\'ep\'atm\'er\'o\'je}} \frac{\text{Jel\"ol\'es}}{d_2} \frac{\text{M.egys.}}{[\text{mm}]}$$

$$\text{A menet bels\~o\'atm\'er\'o\'je}} \frac{d_2}{d_3} \frac{[\text{mm}^2]}$$

Így már vissza tudunk helyettesíteni σ meghatározásához (F_v -t már meghatároztuk (5.1.1)):

$$\sigma = \frac{F_v}{A_e} = \frac{6098}{157} = 39[\text{MPa}] \tag{6.1}$$

au az alábbi képlettel meghatározható:

$$\tau = \frac{M_{csavar}}{K_p} \tag{6.2}$$

Név	Jelölés	M.egys.
A csavar menetén ébredő súrlódási nyomaték	M_{csavar}	[MPa]
A csavarszár poláris keresztmetszeti tényezője	K_p	$\left[\mathrm{mm^3}\right]$

 K_p meghatározása:

$$K_p = \frac{d_e^3 \cdot \pi}{16} = \frac{\left(\frac{d_2 + d_3}{2}\right)^3 \cdot \pi}{16} = \frac{\left(\frac{14.701 + 13.546}{2}\right)^3 \cdot \pi}{16} = 553.17 [\text{mm}^3]$$
 (6.2.1)

Így már vissza tudunk helyettesíteni τ meghatározásához ($M_{csavar_{max}}$ -t már meghatároztuk (5.1)):

$$\tau = \frac{M_{csavar_{max}}}{K_p} = \frac{9252}{553.17} = 17[\text{MPa}]$$
 (6.2)

Így már meg tudjuk határozni σ_{red} -t:

$$\sigma_{red} = \sqrt{39^2 + 3 \cdot 17^2} = 49[\text{MPa}]$$
 (6)

A feszültség ismeretében ki tudunk választani egy szilárdsági osztályt, aminek a 3.6-ost választottam. Ez alapján meg tudjuk határozni a folyáshatárt: $R_{eH} = 10 \cdot 3 \cdot 6 = 180 [\text{MPa}]$.

Így el tudjuk végezni az ellenőrzést, aminél n=2 biztonsági tényezőt használunk:

$$\sigma_{meg} = \frac{R_{eH}}{n} = \frac{180}{2} = 90[\text{MPa}]$$

$$\tau_{meg} = \frac{\sigma_{meg}}{\sqrt{3}} = \frac{90}{\sqrt{3}} = 52[\text{MPa}]$$

Láthatjuk, hogy egyik értékünk sem haladja meg a megengedettet, így a szilárdsági osztályunk megfelelő.

7. Konstrukció összeállítási rajza