Simple Modeling of Road Traffic.

Gerbaud Florent Fatima Rharrour MAM4

Supervisor:

Didier Auroux

December 8, 2023

- Introduction:
 - Presentation of the subject
 - Project organization overview
 - Useful definitions
- Study of the discret case:
 - Ordinary Differential Equation
 - Velocity modeling: The linear approach
 - Velocity Modeling: The Newell Approach
 - Simulations
 - Study of Equilibrium and Stability
 - Using linear model:
 - Using the Newell's model
- Study of the continuous model:
- 4 Euler Explicit Method
- 6 Conclusion

- Introduction:
 - Presentation of the subject
 - Project organization overview
 - Useful definitions
- Study of the discret case
 - Ordinary Differential Equation
 - Velocity modeling: The linear approach
 - Velocity Modeling: The Newell Approach
 - Simulations
 - Study of Equilibrium and Stability
 - Using linear model:
 - Using the Newell's model
- 3 Study of the continuous model:
- 4 Euler Explicit Method
- Conclusion

Presentation of the subject:

What is Road Traffic Modelling?

- Representing complex dynamics of vehicles moving along roads.
- Creating mathematical and computer models for:
 - Understanding vehicle flow.
 - Predicting movement patterns.
 - Analyzing interactions on roads and highways.

Fig. 1: Real-life Road Traffic

Presentation of the subject:

Key benefits of Road Traffic Modeling:

- Avoiding traffic jams: Helps find solutions to prevent traffic jams on roads.
- Making Roads Better: Finds ways to improve roads and make them work smoother.
- Understanding how traffic works: Helps figure out how different things affect traffic and predict what might happen.
- Making transportation better: Shows how well transportation works and helps make it even better.
- **Saving time and money:** Aims to reduce time spent waiting in traffic and the money spent on each trip.

Presentation of the subject

Animation à ajouter ??

Project organization overview

Useful definitions:

Microscopic simulation:

Microscopic simulation is a computer-based modeling technique that simulates the behavior of individual entities, such as vehicles or pedestrians, within a system

Macroscopic simulation:

Macroscopic simulation models systems at a higher, aggregated level, considering overall behaviors like traffic flow without detailing individual movements.

Ordinary Differential Equation (ODE):

An ODE is a mathematical equation that relates a function to its derivatives with respect to one or more independent variables.

$$F(x, y, y', \dots, y^{(n-1)}) = y^{(n)}$$

- Introduction
 - Presentation of the subject
 - Project organization overview
 - Useful definitions
- 2 Study of the discret case:
 - Ordinary Differential Equation
 - Velocity modeling: The linear approach
 - Velocity Modeling: The Newell Approach
 - Simulations
 - Study of Equilibrium and Stability
 - Using linear model:
 - Using the Newell's model
- 3 Study of the continuous model:
- 4 Euler Explicit Method
- Conclusion

Ordinary Differential Equation (Theory):

Figure 1: Discret Model.

ODE to solve

$$y'(t) = f(t, y(t))$$

Euler Explicit method to numerically solve the solutions:

- First step of the resolution: $y_0 = y(t_0)$.
- Recursive process to find the n-th solution of the ODE: $y_{n+1} = y_n + hf(t_n, y_n)$

Velocity modeling: The linear approach

Each car's movement is governed by the basic equation

$$\dot{x}_i(t) = V_i = \alpha_i(x_{i-1} - x_i)$$

Where

 $\dot{x}_i(t)$: Instantaneous velocity of the *i*-th car at time t

 V_i : Current velocity of the *i*-th car

 α_i : Coefficient describing the behavior of the *i*-th car

 x_{i-1} : Previous position of the *i*-th car x_i : Current position of the *i*-th car

Introduction:

System of Equations for N cars

$$\begin{cases} \dot{x}_1 &= V_1 \\ \dot{x}_2(t) &= \alpha_2(x_1 - x_2) \\ &\vdots \\ \dot{x}_n(t) &= \alpha_n(x_{n-1} - x_n) \end{cases}$$

Systems for Positions of N cars

$$\begin{cases} x_1(t+\Delta t) &= x_1(t) + \Delta t \cdot V_1 \\ x_2(t+\Delta t) &= x_2(t) + \Delta t \cdot \alpha_2(x_1 - x_2) \\ &\vdots \\ x_n(t+\Delta t) &= x_n(t) + \Delta t \cdot \alpha_n(x_{n-1} - x_n) \end{cases}$$

Velocity Modeling: The Newell Approach

Each car's movement is described by the equation

$$\dot{x_i}(t) = V_i \left(1 - \mathrm{e}^{-rac{\lambda_i}{V_i}(x_{i-1}(t) - x_i(t) - d_i)}
ight)$$

Where

 V_i : the maximum velocity of the *i*th car

 λ_i : the capacity of acceleration/deceleration

 d_i : safe following distance associated with the *i*th car

Velocity Modeling: The Newell Approach

System of Equations for N cars

$$\begin{cases} \dot{x}_1 &= V_1 \\ \dot{x}_2(t) &= V_2(1 - e^{-\frac{\lambda_2}{V_2}(x_1(t) - x_2(t) - d_2}) \\ &\vdots \\ \dot{x}_n(t) &= V_n(1 - e^{-\frac{\lambda_n}{V_n}(x_{n-1}(t) - x_n(t) - d_n}) \end{cases}$$

Systems for Positions of N cars

$$\begin{cases} x_1(t + \Delta t) &= x_1(t) + \Delta t \cdot V_1 \\ x_2(t + \Delta t) &= x_2(t) + \Delta t \cdot V_2(1 - e^{-\frac{\lambda_2}{V_2}(x_1(t) - x_2(t) - d_2}) \\ &\vdots \\ x_n(t + \Delta t) &= x_n(t) + \Delta t \cdot V_n(1 - e^{-\frac{\lambda_n}{V_n}(x_{n-1}(t) - x_n(t) - d_n}) \end{cases}$$

Accordion phenomenon

Figure 2: Modelisation of the accordion phenomenon with The Linear Model

Figure 3: Modelisation of the accordion phenomenon with The Newell's Model

We could see the difference of modelisation and realism between the Linear model (figure 2) and the Newell's model (figure 3)

Drunk drivers

State of France on the Control of France on th

Figure 4: Simulation of Traffic Flow with one drunk driver (Linear Model)

Figure 5: Simulation of Traffic Flow with one drunk driver (Newell's Model)

It is interesting to note that with Newell's Method (Figure 5), the variations are "smoothed and much less significant than in the case of the linear method (4)."

Simulations of both approaches:

Accident phenomenon:

Introduction:

Figure 6: Stability Analysis for Three Cars

Figure 7: Analytical Solution for Three Cars

Equilibrium

Figure 8: Field Of Vector for the Linear Model (Stability)

Figure 9: Combined Figures

- Introduction:
 - Presentation of the subject
 - Project organization overview
 - Useful definitions
- Study of the discret case
 - Ordinary Differential Equation
 - Velocity modeling: The linear approach
 - Velocity Modeling: The Newell Approach
 - Simulations
 - Study of Equilibrium and Stability
 - Using linear model:
 - Using the Newell's model
- 3 Study of the continuous model:
- 4 Euler Explicit Method
- Conclusion

Mathematical Theory

Conservation Law

 $\bullet \ \partial_t \rho + \partial_x \left[\rho \left(1 - \frac{\rho}{\rho_{\mathsf{max}}} \right) \cdot V_{\mathsf{max}} \right] = 0$

Initial and Boundary Conditions

- $\rho(0,t) = \rho(L,t), \quad t \ge 0$
- $\bullet \ \Omega :=]0, L[,$
- $\rho(x,t)$ represents the traffic density at position x and time t,
- \bullet $F(\rho)$ denotes the traffic flux as a function of density,
- $F(\rho)$ is often represented by a function modeling the relationship between traffic density and traffic velocity,
- $F(\rho) = V(\rho) \cdot \rho$, where $V(\rho)$ is the traffic velocity as a function of density.

- Introduction:
 - Presentation of the subject
 - Project organization overview
 - Useful definitions
- Study of the discret case
 - Ordinary Differential Equation
 - Velocity modeling: The linear approach
 - Velocity Modeling: The Newell Approach
 - Simulations
 - Study of Equilibrium and Stability
 - Using linear model:
 - Using the Newell's model
- 3 Study of the continuous model:
- 4 Euler Explicit Method
- Conclusion

Numerical Scheme

$$\bullet \ \rho_i^{n+1} = \rho_i^n - \frac{\Delta t}{\Delta x} \cdot \left(\rho_i^n \cdot v_i^n - \rho_{i-1}^n \cdot v_{i-1}^n \right) = 0$$

•
$$v_i^n = \left(1 - \frac{\rho_i^n}{\rho_{max}}\right) \times V_{max}$$

enrichir la slide. Peut etre ajouter le modèle dans la théorie et dire que quand on l'applique on obtient ca ou alors mettre une iage qui explique le shéma de Euler explicit ?

Figure 10: <u>Traffic Flow Simulation With Euler Explicit</u>: This figure illustrates the solution of the PDE at any time and position. Here is the link to the associated animation showing the movement of the traffic flow: <u>Traffic Flow Simulation</u>

Introduction:

- Introduction
 - Presentation of the subject
 - Project organization overview
 - Useful definitions
- Study of the discret case
 - Ordinary Differential Equation
 - Velocity modeling: The linear approach
 - Velocity Modeling: The Newell Approach
 - Simulations
 - Study of Equilibrium and Stability
 - Using linear model:
 - Using the Newell's model
- 3 Study of the continuous model:
- 4 Euler Explicit Method
- Conclusion

Conclusion