ARITHMÉTIQUE (1)

LOPRECTION

a.
$$351 | 3$$
 $-31 | 117$
 $-31 | 117$
 -21
 -21

dome
$$351 = 3 \times 117$$
.

(351 est divisible par 3.)

donc
$$874 = 15 \times 58 + 4$$

 $(874 \text{ n'est pas divisible par 15})$

donc
$$630 = 9 \times 70$$
.
(630 est divisible par 9.1)

Il lui faudra 17 étageires;
- 16 étageires remplies
- 1 étageire avec 8 livres.

e. 12; 30; 444 et 4 238 somt divisibles par 2, car leur chiffre des unités est pain!

6. 12; 30; 27 et 444. Somt divisibles par 3, car la somme des chiffres du mombre est un multiple de 3.

Ex: 444 - 4+4+4=12 or 12=3×4

c. 444 est divisible par 4, car le mombre formé par les chiffres des digaines et des unités est un multiple de 4.

44 = 4 × 11

d. 30 et 325 sont divisibles par 5, car le diffre des unités

e. 27 est divisible par 9, Car la somme des diffres du nombre ut un multiple de 9.

27 - 2+7=9. or 9=9×1

J. 30 est divosible par 10, our le chiffre des unités est 0.

Aven mombre n'est divisible par 11.

(Remarque: il existe un critère de divisibilité pour 11).

Exercice 5	2×16
a les diviscurs de 32:	1,2;4;8,16;32
L	×8 1× 32
b. les diviseurs de 67:	1;67
c. Les divincurs de 81	: 1; 3;9;9;27;81
d. Les diviscers de 144	: 1;2;3;4;6,8,8,24; 36; 48;72; 14l
e des diviscurs de 42;	1; 2;3;6;7;14;21; 42
Exercice 6.	
a. Des multiples de 20	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
b6	$6 \times 5 = 30$ $6 \times 6 = 36$ $6 \times 7 = 42$ $6 \times 8 = 48$
C B	$12 \times 0 = 0$ $12 \times 1 = 12$ $12 \times 2 = 24$ $12 \times 3 = 36$ $12 \times 4 = 48$
d44	: 44 88 132 1 7 6

Exercise 7

a. 9 est un divisour de 81 ar 81:9=9

b. 9 est un divieur de 351 car:

3+5+1=9 = 9x,1

(d'après le crètère de divisibilité par 9)

c. 9 n'est per un divisour de 101 car: 1+0+1=2 gr 2 n'est pas un multiple de 9.

d. 9 est un diviaur de 7 191 7+1+9+1=18 or 18=9×2

· 2530 = 19 × 133 + 3

· 2 622 = 19 × 155

18 redivine par 2:530 ... Hatheureurenment, il restera des poissons en chocolat. si le chocolatier veut faire 19 paqueto, ce n'est par ce qu'il sauhaite!

a.
$$23 \rightarrow \text{premier}$$
 (exactement 2 directures: Net 23)

b. $11 \rightarrow \text{premier}$ (idem)

c. $51 \rightarrow 5+1=6$ or $6=3\times2$, done mon premier. (3 divior 51)

d. $108 \rightarrow 108$ est pain , done mon premier (2 divise 108)

e. $123 \rightarrow 1+2+3=6$ or $6=3\times2$, done mon premier (3 divise 123)

e. $123 \rightarrow 1+2+3=6$ or $6=3\times2$, done mon premier (3 divise 156)

f. $156 \rightarrow 1+5+6=15$ or $15=3\times5$, done mon premier (3 divise 156)

Exercice 11.

Trouver la sortie en ne passant que par les cases contenant un nombre premier. oo of Penacr aux tables de x!

a.
$$36 = 2 \times 48$$

$$= 2 \times 2 \times 24$$

$$= 2 \times 2 \times 2 \times 12$$

$$= 2 \times 2 \times 2 \times 2 \times 6$$

$$= 2 \times 2 \times 2 \times 2 \times 2 \times 3$$

$$= 2 \times 2 \times 2 \times 2 \times 3 \times 3$$

$$= 2 \times 2 \times 2 \times 2 \times 3 \times 3$$

96	2			
48	2	96	2×2×2×	2 × 2 × 3
24		00 =	1.52	
12	2	=	25	× 3
6	2			
3	3			
11				

Observer le tableau des 100 premiers nombres entiers cidessous

X	2	3	*	5	6	7	8	9	700
11	12	13	14	15	16	17	18	-	26
21	22	23	24	25	26	27	28	29	30
31	32	38	34	35	36	37	38	39	400
41	A2	43	44	45	46	47	48	49	50
M	52	53	54	55	56	54	58	59	60
61	62	68	64	65	66	67	68	69	700
71					76			79	80
81					86			89	90
94	92	386	94	95	296	97	98	99	100

- 1. Barrer 1, puis barrer tous les multiples de 2 sauf 2.
- 2. Le premier nombre non barré après 2 est 3. Barrer tous les multiples de 3 sauf 3.
- 3. Le premier nombre non barré après 3 est 5. Barrer tous les multiples de 5 sauf 5.
- 4. Continuer ainsi le procédé.
- 5. Comment s'appelle les nombres non-barrés ?

Vombres premiers

Quelle est leur particularité?

Ils ant exactement I diviscurs: Let le mombre lui-même

POINT D'HISTOIRE

Tous les nombres non barrés sont des nombres PREMIERS inférieurs à 100. Ce procédé est appelé le crible d'Eratosthène du nom du mathématicien grec (IIIe siècle av. J.-C.) qui l'a établi.

C.
$$268$$
 | 2
134 | 2 | domc $268 = 2 \times 2 \times 67$
67 | 67 | = $2^2 \times 67$

d.
$$19.6 \mid 2$$

98 \ 2

49 \ 7

7 \ 7

11

Exercice 14

1.
$$300 \mid 2$$

150 | 2

150 | 3

25 | 5

5 | 5

2. Diviocurs de 300:

1,2;3;4;5;6;10;12;15;20;25;30;50;60;75;100;d50;300

3.
$$12502$$
 6255
 1255
 255
 255
 255
 255
 255
 255
 255
 255
 255
 255
 255
 255
 255

4. Diviscurs de 1250:

5. Les diviseurs communs à 300 et 1 250 sont: 1;2;5;10;25 et 50.

Pour aller + loin (et se préparer au prochain chapitre)

Exercice 15.* Sur ton cahier d'exercices

On donne le programme de calcul suivant :

Entre (x)

- Choisir un nombre entier positif
- F1 = Aiouter 2
- T2= Multiplier le résultat par 8
- Soustraire le triple du nombre de départ
- E4. Soustraire 16

- 1. Tester le programme avec 10, 13 et 24.
- 2. Ce programme donne-t-il toujours un multiple de 5 comme résultat ? Justifier

$$fo \rightarrow 13$$

 $f1 \rightarrow 13 + 2 = 15$.
 $f2 \rightarrow 15 \times 8 = 120$

Si on draisit 13; on obtient 65 arec ce programme

Il semblerait que ce programme donne un multiple de 5 comme reselat. Il faut le prover!

Le le montrer pour x.

1.
$$E0 \rightarrow x$$

 $E1 \rightarrow x + 2$
 $E2 \rightarrow (x+2) \times 8 = 8(x+2)$
 $E3 \rightarrow 8(x+2) - 3x$
 $E4 \rightarrow 8(x+2) - 3x - 16$

2 (Suite)

Osz (en développent et en réduisant):

$$8(x+2) - 3x - 16$$
 $= 8xx + 8x2 - 3x - 16$
 $= 8x + 16 - 3x - 16$
 $= 8x - 3x + 16 - 16$
 $= 5x \cdot (= 5xx)$

Donc oui, ce programme donne bien

Dome oui, ce programme domne bien un multiple de 5 comme résultat!

Exercice 16.* *Sur ton cahier d'exercices* On donne le programme de calcul suivant :

- 1. Tester le programme avec 2.
- 2. Ce programme donne-t-il toujours nombre pair? Justifier

Si on choisit 2, on obtient 4 avec ce programme de catait.

2. Pour montrer que d'est faux, il suffit de trouver un contre-exemple:

Si om choisit 1, om obtient 1 qui m'est pas un nombre pain! Donc non, ce programme me donne pos toutars un nombre pair.