TOPOLOGY, ALGEBRA, AND CATEGORIES IN LOGIC

Non-Classical Temporal Logic in Topological Dynamics

David Fernández-Duque University of Barcelona

Barcelona, 2024

Day 3

A COMPLETENESS PROOF SKETCH FOR LTL

Fix a formula φ and let Σ be the set of subformulas of φ (possibly with some extra stuff).

- 1. Build the canonical model, C.
- 2. Consider the filtration, \mathfrak{C}/Σ .

In this case, \mathfrak{m} is just a Σ -type and $\chi(\mathfrak{m}) = \bigwedge \mathfrak{m}^+ \land \neg \bigvee \mathfrak{m}^-$.

3. Assign a characteristic formula to each element \mathfrak{m} of \mathfrak{C}/Σ .

- 4. Prove that \mathfrak{C}/Σ is ω -sensible.
- 5. Conclude that any element of \mathfrak{C}/Σ can be included in a realizing path, and hence an LTL model.

A COMPLETENESS PROOF STRATEGY FOR ITL

Fix a formula φ and let Σ be the set of subformulas of φ .

- 1. Build the canonical model, C.
- 2. Replace \mathfrak{C}/Σ by the domain of the **maximal simulation** from \mathbb{I}_{Σ} .
- Assign a characteristic formula to each element m of ^c/Σ.
 In this case, we replace χ(m) by the Jankov-De Jongh formula Sim(φ).
- 4. Prove that \mathfrak{C}/Σ is ω -sensible.
- 5. Conclude that \mathfrak{C}/Σ is a **quasimodel** falsifying every **unprovable** formula.

THE CALCULUS ITL_o

ITAUT Intuitionistic propositional axioms

TEMPORAL AXIOMS:

$$NEXT_{\perp} \neg \circ \bot$$

$$Next_{\wedge}$$
 $(\circ\varphi\wedge\circ\psi)\to\circ(\varphi\wedge\psi)$

$$Next_{\vee} \quad \circ(\varphi \vee \psi) \rightarrow (\circ\varphi \vee \circ\psi)$$

$$NEXT \rightarrow \circ(\varphi \rightarrow \psi) \rightarrow (\circ\varphi \rightarrow \circ\psi)$$

RULES:

MP
$$\frac{\varphi \ \varphi \to \psi}{\psi}$$
 NEC $\frac{\varphi}{\varphi}$

THE CALCULUS ITL $^0_{\diamondsuit}$

ITAUT Intuitionistic propositional axioms

TEMPORAL AXIOMS:

$$NEXT_{\perp}$$
 $\neg \circ \bot$

$$NEXT_{\wedge}$$
 $(\circ\varphi \wedge \circ\psi) \rightarrow \circ(\varphi \wedge \psi)$

$$\mathsf{Next}_{\vee} \quad \circ(\varphi \vee \psi) \to (\circ \varphi \vee \circ \psi)$$

$$Next_{\rightarrow} \circ (\varphi \rightarrow \psi) \rightarrow (\circ \varphi \rightarrow \circ \psi)$$

$$FiX_{\diamondsuit}$$
 $(\varphi \lor \circ \diamondsuit \varphi) \to \diamondsuit \varphi$

RULES:

MP
$$\frac{\varphi \ \varphi \to \psi}{\psi}$$
 NEC $\frac{\varphi}{\circ \varphi}$

MON
$$\frac{\varphi \to \psi}{\diamondsuit \varphi \to \diamondsuit \psi} \qquad \qquad \text{IND} \diamondsuit \qquad \frac{\circ \varphi \to \varphi}{\diamondsuit \varphi \to \varphi}$$

THE CALCULI ITL $_{\forall}^{0}/\text{ITL}_{\Diamond\forall}^{0}$

Add the following to $ITL_{\diamond}^{0}/ITL_{\diamond}^{0}$

A JUNGLE OF LOGICS

 Λ^1 : Replace NEXT \rightarrow by

$$NEXT_{\leftrightarrow} := \circ(\varphi \to \psi) \leftrightarrow (\circ\varphi \to \circ\psi)$$

GDTL_{*}: ITL¹ with the Gödel-Dummet axiom

$$GD := (\varphi \to \psi) \lor (\psi \to \varphi)$$

THEOREM

- 1. ITL $_{\diamond \forall}^0$ is sound for the class of dynamical systems.
- 2. ITL $_{\diamond\forall}^1$ is sound for the class of dynamical systems with an interior map.
- 3. GDTL_{◊∀} is sound for the class of locally linear Alexandroff systems with an interior map ...hence for its real-valued semantics.

PRIME TYPES

DEFINITION

Given sets of formulas Γ and Δ :

- ▶ $\Gamma \vdash \Delta$ if there exist finite $\Gamma' \subseteq \Gamma$ and $\Delta' \subseteq \Delta$ such that $\vdash \bigwedge \Gamma' \to \bigvee \Delta'$.
- $lacktriangledown \Phi = (\Phi^+, \Phi^-)$ is consistent if $\Phi^+ \not\vdash \Phi^-$.
- Φ is **saturated** if every formula belongs to either Φ^+ or Φ^- .

DEFINITION

The **canonical model** is the structure $\mathfrak{C} = (W_{\mathfrak{C}}, \preccurlyeq_{\mathfrak{C}}, S_{\mathfrak{C}}, \llbracket \cdot \rrbracket_{\mathfrak{C}})$, where

 $W_{\mathfrak{C}}$: Set of prime theories

$$\Gamma \preccurlyeq_{\mathfrak{C}} \Delta \colon \Gamma^{+} \subseteq \Delta^{+}$$

$$S_{\mathfrak{C}}(\Gamma)^{\pm} \colon \{ \psi : \circ \psi \in \Gamma^{\pm} \}$$

$$\llbracket p \rrbracket_{\mathfrak{C}} \colon \{ \Gamma \in W_{\mathfrak{C}} : p \in \Gamma^{+} \}$$

Properties of the Canonical Model

 \mathfrak{C} is a Σ -labelled quasimodel if $\ell(\Gamma) = (\Gamma^+ \cap \Sigma, \Gamma^- \cap \Sigma)$.

PROPOSITION (EXERCISE)

et is a weak quasimodel:

- 1. $\preccurlyeq_{\mathfrak{C}}$ is a partial order respecting the semantics of \rightarrow .
- 2. $S_{\mathfrak{C}}$ is a sensible function (monotone and locally respects \circ , \diamond).
- 3. $\llbracket \cdot \rrbracket_{\mathfrak{C}}$ is upward-closed.

PROPOSITION (EXERCISE)

- 1. If $Next_{\leftrightarrow}$ is included then $S_{\mathfrak{C}}$ is an interior map.
- 2. If GD is included then $\preccurlyeq_{\mathfrak{C}}$ is locally linear.

COMPLETENESS OF o-LOGICS

THEOREM

- 1. ITL $_{\circ}^{0}$ is sound and strongly complete for
 - (A) The class of dynamical systems.
 - (B) The class of Alexandroff dynamical systems.
- 2. ITL $_{\circ}^{1}$ is sound and strongly complete for
 - (A) The class of dynamical systems with an interior map.
 - (B) The class of Alexandroff dynamical systems with an interior map.
- 3. GDTL_o is sound and strongly complete for
 - (A) The class of locally linear Alexandroff systems with an interior map.
 - (B) The class of real-valued Gödel-Dummett models.

COMPLETENESS OF ∀-LOGICS

Recall: By convention, all logics include o.

Elements of the canonical model may disagree on \forall -formulas.

$$\Gamma \sim_{\forall} \Delta \text{ if } \forall \psi \in \Gamma^+ \text{ iff } \forall \psi \in \Delta^+.$$

Universal slices: \mathfrak{C} restricted to a single \sim_{\forall} -class.

LEMMA

Every universal slice is honest.

THEOREM

The logics ITL_{\forall}^{0} , ITL_{\forall}^{1} , $GDTL_{\forall}$ are sound and strongly complete for their respective class of relational models.

In the sequel, $\mathfrak C$ will denote a universal slice without explicit mention.

SIMULATIONS REVISITED

A **simulation** between labelled spaces (X, ℓ_X) and (Y, ℓ_Y) is a continuous relation $E \subseteq X \times Y$ which preserves labels:

$$x E y \Rightarrow \ell_X(x) = \ell_Y(y)$$

A simulation between **pointed/rooted** labelled spaces preserves the designated point:

$$(X, \ell_X, x) \rightharpoonup (Y, \ell_Y, y)$$

if there is a simulation $E \subseteq X \times Y$ with $x \in Y$.

Simulations between labelled posets are forward-confluent.

DYNAMIC SIMULATIONS REVISITED

A **dynamic simulation** between **labelled systems** (X, R_X, ℓ_X) and (Y, R_Y, ℓ_Y) is a simulation $E \subseteq X \times Y$ which is backwards-confluent with respect to R.

Example: Simulation between our quasimodel and model falsifying

$$\forall (\neg p \lor \Diamond p) \to (\Diamond p \lor \neg \Diamond p)$$

PROPOSITION

Let E be a surjective, dynamic simulation between weak quasimodels $\mathfrak{X} = (X, R_X, \ell_X)$ and $\mathfrak{Y} = (Y, R_Y, \ell_Y)$ and $\mathfrak{Z} = (Z, R_Z, \ell_Z)$ the restriction of \mathfrak{X} to dom(E).

- 1. 3 is a weak quasimodel.
- 2. If R_Y is ω -sensible, so is R_Z .
- 3. If ℓ_Y is honest, so is ℓ_Z .

Reminder: \mathbb{I}_{Σ}

$$\mathbb{I}_{\Sigma} = (I_{\Sigma}, \preccurlyeq_{\Sigma}, R_{\Sigma}, \ell_{\Sigma})$$

Elements of I_{Σ} are called (irreducible) moments.

Given any dynamic topological model $(X, S, \llbracket \cdot \rrbracket)$, the maximal simulation $E^* \subseteq I_{\Sigma} \times X$ is a surjective dynamic simulation.

THEOREM

If \mathfrak{X} is any dynamic topological model **or weak quasimodel** then there is a surjective, dynamic simulation $E^* \subseteq I_{\Sigma} \times X$.

CANONICAL PSEUDO-QUOTIENTS

In particular, there is a surjective simulation E^* between \mathbb{I}_{Σ} and \mathfrak{C} .

The restriction of \mathbb{I}_{Σ} to dom(E^*) is denoted \mathfrak{C}/Σ .

LEMMA

 \mathfrak{C}/Σ is an honest, weak quasimodel.

THEOREM

 ITL_{\forall}^{0} and $GDTL_{\forall}$ are decidable and have the finite quasimodel property.

Possible Extensions

EXERCISE: ITL_{\forall}^{0} , $GDTL_{\forall}$, and ITL_{\circ}^{1} have the finite **model** property.

OPEN QUESTION: Is ITL^1_{\forall} decidable?

QUESTION: What about logics with \diamond ?

We need ω -sensibility!

JANKOV-DE JONGH FORMULAS

THEOREM

Given a locally finite labelled preorder (W, \leq, ℓ) , there exist formulas

$$(\operatorname{Sim}(w))_{w \in W} \in \mathcal{L}_*$$

such that for any dynamic topological model $\mathcal{M} = (X, S, \llbracket \cdot \rrbracket)$, tfae:

- 1. $(\mathcal{M}, x) \not\models \operatorname{Sim}(w)$
- 2. there are $y \geq x$ and $E \subseteq W \times X$ such that w E y

THEOREM

Given $\mathfrak{m} \in I_{\Sigma}$ and $\Gamma \in W_{\mathfrak{C}}$, tfae:

- 1. there are $\Delta \succcurlyeq \Gamma$ and $E \subseteq I_{\Sigma} \times W_{\mathfrak{C}}$ such that $\mathfrak{m} \ E \ \Delta$
- 2. $Sim(\mathfrak{m}) \in \Gamma^-$

COROLLARY

A moment \mathfrak{m} *belongs to* \mathfrak{C}/Σ *iff* $\not\vdash$ Sim(\mathfrak{m}).

BASIC PROPERTIES OF Sim

Fix finite Σ closed under subformulas and let $\mathbb{I}_{\Sigma} = (I_{\Sigma}, \succcurlyeq, R, \ell)$.

▶ If
$$\psi \in \ell^-(\mathfrak{m})$$
, then $\vdash \psi \to \operatorname{Sim}(\mathfrak{m})$

▶ If
$$\psi \in \ell^+(\mathfrak{m})$$
, then $\vdash (\psi \to \operatorname{Sim}(\mathfrak{m})) \to \operatorname{Sim}(\mathfrak{m})$.

$$\blacktriangleright \ \mid \bigwedge_{\psi \in \ell^{-}(\mathfrak{m})} \operatorname{Sim}(\mathfrak{m}) \to \psi$$

$$\blacktriangleright \ \vdash \circ \bigwedge_{\mathfrak{m}R\mathfrak{n}} Sim(\mathfrak{n}) \to Sim(\mathfrak{m})$$

ω -SENSIBILITY

LEMMA (ANCESTRAL LEMMA)

Let \mathfrak{m} be a moment of \mathfrak{C}/Σ and $\Diamond \psi \in \ell^+(\mathfrak{m})$.

Let $R^*(w)$ be the set of moments reachable from \mathfrak{m} in \mathfrak{C}/Σ . Then, $\psi \in \ell^+(\mathfrak{n})$ for some $\mathfrak{n} \in R^*(\mathfrak{m})$.

PROOF.

By contradiction.

- 1. $\vdash (\diamondsuit \psi \to \operatorname{Sim}(\mathfrak{m})) \to \operatorname{Sim}(\mathfrak{m})$
- 2. $\vdash \psi \rightarrow \bigwedge_{\mathfrak{n} \in R^*(\mathfrak{m})} \operatorname{Sim}(\mathfrak{n})$
- 3. $\vdash \Diamond \psi \rightarrow \Diamond \bigwedge_{\mathfrak{n} \in R^*(\mathfrak{m})} \operatorname{Sim}(\mathfrak{n})$
- 4. $\vdash \circ \bigwedge_{\mathfrak{n} \in R^*(\mathfrak{m})} Sim(\mathfrak{n}) \to \bigwedge_{\mathfrak{n} \in R^*(\mathfrak{m})} Sim(\mathfrak{n})$
- 5. $\vdash \Diamond \bigwedge_{\mathfrak{n} \in R^*(\mathfrak{m})} Sim(\mathfrak{n}) \to \bigwedge_{\mathfrak{n} \in R^*(\mathfrak{m})} Sim(\mathfrak{n})$
- 6. $\vdash \Diamond \psi \to \operatorname{Sim}(\mathfrak{m})$
- 7. \vdash Sim(\mathfrak{m})

COMPLETENESS AND DECIDABILITY OF ITL

Let $* \subseteq \{\diamondsuit, \forall\}$.

THEOREM

For any $\varphi \in \mathcal{L}_*$, tfae.

- 1. ITL $_*^0 \vdash \varphi$
- 2. φ is valid on the class of finite quasimodels
- 3. φ is valid on the class of dynamical systems

COROLLARY ITL $_{\Diamond\forall}^{0}$ is decidable.

COMPLETENESS AND DECIDABILITY OF GDTL

Let $* \subseteq \{\diamondsuit, \forall\}$.

THEOREM

For any $\varphi \in \mathcal{L}_*$, tfae.

- 1. $\vdash \varphi$
- 2. φ is valid on the class of finite, locally linear quasimodels
- 3. φ is valid on the class of locally linear Alexandroff systems with an interior map
- 4. φ is valid with respect to the real-valued semantics.

COROLLARY GDTL_{◊∀} is decidable.

OPEN QUESTIONS

- 1. What is the complexity of ITL_*^0 , for $* \subseteq \{\diamondsuit, \forall\}$?
- 2. Is ITL $_{\Diamond\Box}^0$ decidable? Does it have a natural axiomatisation? †
- 3. Is ITL $_*^1$ decidable, for $* \subseteq \{\diamondsuit, \Box\}$?
- 4. Is GDTL_{◇□} complete?[†]
 - † The answer is **yes** if we include co-implication!

Thank you!

REFERENCES

- ► Afshari, B., Grotenhuis, L., Leigh, G.E., and Zenger, L. Ill-Founded Proof Systems for Intuitionistic Linear-Time Temporal Logic. TABLEAUX 2023: 223-241
- ► Aguilera, J.P., Diéguez, M., F-D, McLean, B.: A Gödel Calculus for Linear Temporal Logic. KR 2022
- ► Boudou, J., Diéguez, M., F-D: Complete intuitionistic Temporal Logics for Topological dynamics. J. Symb. Log. 87(3): 995-1022 (2022)
- ► Chopoghloo, S., Moniri, M.: A strongly complete axiomatization of intuitionistic temporal logic. J. Log. Comput. 31(7): 1640-1659 (2021).