

OWL-Axioms

TBox – Knowledge about classes of things ("classes")

RBox – Knowledge about their relations ("object properties")

(ABox – Knowledge about class instances ("individuals")

Box	Assertion Name	Semantic	Example
TBox	SubClass Of	Every C is a D	Every Dog is an Animal
TBox	Equivalent To	Every C is a D and vice-versa	Every Town is a City and vice-versa
ABox	Type	a is a C	OlafScholz is a Chancellor
ABox	Object property	r(a,b)	Donald loves Daisy
RBox	SubPropertyOf (Chain)	r(x,y) and s(y,z), then t(x,z)	<pre>momOf(x,y) & sisterOf(y,z) => auntOf(x,z)</pre>

Let's replace simple classes (C,D) by more complex ones!

Syntax (Protégé)	Semantic	Example
C and D	Objects with both the class C and D	Flower and Red
not(C)	Objects that are not of class C	not(Human)
C or D	Objects with any of the classes C and D	Dog or Cat
r some C	Objects that are related to some object of class C via ${f r}$	loves some Human

Reasoning Example I

- 1. Every Robot is an Agent
- 2.PR2 is a Robot

→PR2 is a Robot

Reasoning Example II

- 1. EuropeanCitizen = human that livesIn a EuropeanCity
- 2. Bremen is a EuropeanCity
- 3. Anna is a human
- 4. Anna lives In Bremen

→ Anna is a EuropeanCitizen

- 1. Every EuropeanCitizen is European or has a Visa
- 2. Every European is a Human
- 3. VisaOwner = has a visa
- 4. Every VisaOwner is a Human

→ Every EuropeanCitizen is a Human

Reasoning Example IV

- 1. Every EuropeanCitizen is European or has a Visa
- 2. Ben is a EuropeanCitizen
- 3. Ben is not European and does not have a visa

Hands-On!

1. Download and install Protégé from protege.stanford.edu

Hands-on:

Modelling with SOMA

Вох	Assertion Name	Semantic
TBox	SubClass Of	Every <u>C</u> is a <u>D</u>
TBox	Equivalent To	Every <u>C</u> is a <u>D</u> & vice-versa
ABox	Type	<u>a</u> is a <u>C</u>
ABox	Object property	<u>r(a,b</u>)
RBox	SubPropertyOf	$\underline{r}(\underline{x},\underline{y})$ and $\underline{s}(\underline{y},\underline{z})$, then $\underline{t}(\underline{x},\underline{z})$

- 1. Every Child loves Chocolate
- 2.CoolChild = loves Chocolate and Spinach
- 3. MomsBlattspinat is a Spinach
- 4. Tim is a child and loves MomsBlattspinat

→Tim is a CoolChild

Syntax (in Protégé)	Example
C and D	Flower and Red
Not(C)	not(Human)
C or D	Dog or Cat
r some C	loves some Human

Вох	Assertion Name	Semantic
TBox	SubClass Of	Every <u>C</u> is a <u>D</u>
TBox	Equivalent To	Every <u>C</u> is a <u>D</u> & vice-versa
ABox	Type	<u>a</u> is a <u>C</u>
ABox	Object property	<u>r(a,b</u>)
RBox	SubPropertyOf	$\underline{r}(\underline{x},\underline{y})$ and $\underline{s}(\underline{y},\underline{z})$, then $\underline{t}(\underline{x},\underline{z})$

- 1. Errol lives in MexicoCity
- 2. MexicoCity is the Capital of Mexico
- 3. Whoever lives in a Country's Capital is a Citizen of that

Hands-on:

Modelling with SOMA

→ Errol is a Citizen of Mexico

Syntax (in Protégé)	Example
C and D	Flower and Red
Not(C)	not(Human)
C or D	Dog or Cat
r some C	loves some Human

Hands-On!

1. Download and install Protégé from protege.stanford.edu

Hands-on:

Modelling with SOMA

2. Recreate Reasoning Examples I – IV in Protégé

Hands-On!

- 1. Download and install Protégé from protege.stanford.edu
- 2. Recreate Reasoning Examples I IV in Protégé
- 3. Go to https://github.com/ease-crc/soma
- 4. Clone the repository, or download it (.zip)
- 5. Open the file owl/SOMA-ALL.owl in Protégé

Hands-on:

Modeling task

Recipe, Popcorn kernels, Popcorn, Robot, Butter, Sugar, Stove, Pan, Heating, Popping, Removing, Adding, Placing, Stirring, Spoon

- Take the words on the top right and sort them into the SOMA taxonomy.
- 2. Create ABox instances for heating popcorn kernels and butter inside a pan on a stove.
- 3. Create ABox instances for popping the popcorn kernels.
- 4. Also include relations, e.g., between actions. Look for causes, precedes, etc.
- 5. Connect the Tasks to the Recipe.
- 6. Bonus: what is Waiting? How would the ABox look like?

