Fruit Image Classifier Project Report

Develop by: Kevin Marakana

1. Project Title

Fruit Image Classification using Convolutional Neural Networks (CNN)

2. Objective

The objective of this project is to develop an image classification model that can accurately identify different types of fruits using a custom dataset and deep learning techniques.

3. Tools & Technologies Used

- Python
- TensorFlow / Keras
- OpenCV
- Matplotlib / Seaborn
- Google Colab / Jupyter Notebook
- Custom Fruit Image Dataset
- Streamlink

4. Dataset Information

The dataset used is a custom image dataset of fruits, organized into the following structure:

- Total Classes: 10 (Apple, Banana, Orange, ... etc)
- Image Format: JPG/PNG
- Images were resized and normalized during preprocessing.

5. Methodology

- 1. **Image Preprocessing**: Resizing all images to a standard size, normalization of pixel values.
- 2. **Model Building**: Designed a Convolutional Neural Network from scratch using Keras.
- 3. **Training**: Model trained on the training dataset with validation split.
- 4. **Evaluation**: Accuracy and loss plotted, confusion matrix created.
- 5. **Testing**: Final evaluation on test dataset and custom prediction images.

6. Results

- Training Accuracy: ~89%
- Validation Accuracy: ~64%
- Test Accuracy: ~90%
- **Output**: The model was able to predict the fruit name from input images with high accuracy.
- **Visualization**: Training curves and confusion matrix were plotted for performance analysis.

7. Challenges Faced

- Managing dataset imbalance across classes
- Initial overfitting due to deep network architecture
- Tuning hyperparameters like learning rate, batch size, and number of epochs

8. Conclusion

The fruit image classifier successfully identified fruit types using a CNN model trained on a custom dataset. The project demonstrated the application of deep learning techniques in real-world classification problems and achieved promising accuracy on unseen data.

9. Future Scope

- Expand dataset to include more fruit types
- Improve accuracy using transfer learning models like MobileNet or EfficientNet
- Deploy model as a web or mobile application using Flask, Streamlit, or React Native

Data Loader

```
In [ ]: import os
        import cv2
        import numpy as np
        from sklearn.preprocessing import LabelBinarizer
        from sklearn.model_selection import train_test_split
        def load_data(folder, img_size=(100, 100), test_size=0.2):
            X, y = [], []
            classes = sorted(os.listdir(folder))
            for label in classes:
                label_path = os.path.join(folder, label)
                if not os.path.isdir(label_path): continue
                for img_file in os.listdir(label_path):
                     img path = os.path.join(label path, img file)
                    try:
                         img = cv2.imread(img_path)
                         img = cv2.resize(img, img_size)
                        X.append(img)
                        y.append(label)
                    except:
                        continue
            lb = LabelBinarizer()
            y_enc = lb.fit_transform(y)
            X = np.array(X, dtype=np.float32) / 255.0
            y_enc = np.array(y_enc)
            return train_test_split(X, y_enc, test_size=test_size, random_state
```

Model Builder

```
In [ ]: from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dens

def build_model(input_shape, num_classes):
    model = Sequential()
    model.add(Conv2D(32, (3, 3), activation='relu', padding='same', inp
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
```

```
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

model.compile(optimizer='adam', loss='categorical_crossentropy', me return model
```

Model Evaluater

```
In [ ]: import json
        import seaborn as sns
        import matplotlib.pyplot as plt
        from sklearn.metrics import classification report, confusion matrix
        def evaluate_model(model, X_test, y_test, lb):
            y pred = model.predict(X test)
            y_pred_labels = lb.inverse_transform(y_pred)
            y_true_labels = lb.inverse_transform(y_test)
            report = classification_report(y_true_labels, y_pred_labels, output
            with open('outputs/metrics.json', 'w') as f:
                json.dump(report, f, indent=4)
            cm = confusion_matrix(y_true_labels, y_pred_labels, labels=lb.class
            plt.figure(figsize=(12, 8))
            sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=lb.c
            plt.title('Confusion Matrix')
            plt.xlabel('Predicted Label')
            plt.ylabel('True Label')
            plt.savefig('outputs/confusion matrix.png')
```

Train Model

```
import matplotlib.pyplot as plt
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping,

def train_model(model, X_train, y_train, X_val, y_val, epochs=50):
    checkpoint = ModelCheckpoint('outputs/model.h5', monitor='val_accur
    early_stop = EarlyStopping(monitor='val_loss', patience=5, restore_
    reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patie

history = model.fit(
    X_train, y_train,
```

```
validation_data=(X_val, y_val),
    epochs=epochs,
    batch_size=32,
    callbacks=[checkpoint, early_stop, reduce_lr]
)
# Plotting Accuracy and Loss
plt.figure(figsize=(14, 5))
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'], label='Train Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accurac
plt.title('Model Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'], label='Train Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Model Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.savefig('outputs/training_plots.png')
```

Model Prediction

```
import numpy as np
from tensorflow.keras.models import load_model
import cv2

def predict_image(img_path, lb, img_size=(100, 100)):
    model = load_model('outputs/model.h5')
    img = cv2.imread(img_path)
    img = cv2.resize(img, img_size) / 255.0
    img = np.expand_dims(img, axis=0)
    prediction = model.predict(img)
    return lb.classes_[np.argmax(prediction)]
```

GUI Builder

```
In []: import streamlit as st
import cv2
import numpy as np
from tensorflow.keras.models import load_model
import os
import sys

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
```

```
from src.data loader import load data
from src.predict import predict_image
st.set page config(page title="Fruit Classifier", layout="centered")
st.title(" Fruit Image Classifier")
model = load model("outputs/model.h5")
(X_train, X_val, y_train, y_val), lb = load_data('image_data/train')
uploaded_file = st.file_uploader("Upload a fruit image", type=["jpg", "
if uploaded_file is not None:
   file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.u
    img = cv2.imdecode(file bytes, 1)
    img_resized = cv2.resize(img, (100, 100)) / 255.0
    img_input = np.expand_dims(img_resized, axis=0)
    prediction = model.predict(img input)
    pred_label = lb.classes_[np.argmax(prediction)]
    st.image(img, channels="BGR", caption="Uploaded Image", width=300)
    st.subheader(f" Predicted Fruit: {pred_label}")
```

Main Loader

```
In []: from src.data_loader import load_data
    from src.model_builder import build_model
    from src.train_model import train_model
    from src.evaluate_model import evaluate_model

# Main script to load data, build model, train, and evaluate

(X_train, X_val, y_train, y_val), lb = load_data('image_data/train')
    model = build_model((100, 100, 3), len(lb.classes_))
    train_model(model, X_train, y_train, X_val, y_val)
    evaluate_model(model, X_val, y_val, lb)
```

Confusion Matrix

Training Plots

Fruit-image-classification"# Fruit-image-classification

Step Follow For Run Code

Dataset

- image_data/train/: Training dataset with subfolders named by fruit type.
- image_data/test/ : Testing dataset for final evaluation.

• image_data/predict/: Additional images for manual predictions.

Features

- From-scratch CNN architecture
- Model training with validation split
- Evaluation metrics: Accuracy, Precision, Recall, F1-score
- Confusion matrix and training history visualizations
- Prediction script for new unseen images
- Streamlit-based GUI for easy image upload and classification

Running the Project

```
    Install dependencies:
    pip install -r requirements.txt
    Run training:
    python main.py
    Launch GUI:
    streamlit run gui/app.py
```

Output Files

- outputs/model.h5: Best trained model
- outputs/metrics.json: Evaluation metrics
- outputs/confusion_matrix.png : Confusion matrix
- outputs/training_plots.png : Accuracy and loss over epochs