Recitation 1.2: Linear Transformations

TA: Nate Clause

Definition

Let V and W be vector spaces over the same field \mathbb{F} . A *linear transformation*, sometimes called a *linear map* is a function $f:V\to W$ such that:

Definition

Let V and W be vector spaces over the same field \mathbb{F} . A *linear transformation*, sometimes called a *linear map* is a function $f:V\to W$ such that:

(i) For all $u, v \in V$: f(u + v) = f(u) + f(v).

Definition

Let V and W be vector spaces over the same field \mathbb{F} . A *linear transformation*, sometimes called a *linear map* is a function $f:V\to W$ such that:

- (i) For all $u, v \in V$: f(u + v) = f(u) + f(v).
- (ii) For all $c \in \mathbb{F}$ and $v \in V$: $f(c \cdot v) = c \cdot f(v)$.

Definition

Let V and W be vector spaces over the same field \mathbb{F} . A *linear transformation*, sometimes called a *linear map* is a function $f:V\to W$ such that:

- (i) For all $u, v \in V$: f(u + v) = f(u) + f(v).
- (ii) For all $c \in \mathbb{F}$ and $v \in V$: $f(c \cdot v) = c \cdot f(v)$.
 - If $V = \mathbb{F}^n$ and $W = \mathbb{F}^m$ for some $m, n \ge 1$, then we can represent a linear transformation $f: V \to W$ by an $m \times n$ matrix T, with entries in \mathbb{F} , such that for all $v \in V$, f(v) = Tv.

Linear Transformation Examples

• Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be given by $f(v) = c \cdot v$ for some fixed $c \in \mathbb{R}$. Then T is given by the diagonal matrix with entries c along the diagonal.

Linear Transformation Examples

- Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be given by $f(v) = c \cdot v$ for some fixed $c \in \mathbb{R}$. Then T is given by the diagonal matrix with entries c along the diagonal.
- Let $f: \mathbb{R}^2 \to \mathbb{R}^1$ be given by f((x,y)) = x + y. Then T is given by $T = \begin{bmatrix} 1 & 1 \end{bmatrix}$.

Linear Transformation Examples

- Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be given by $f(v) = c \cdot v$ for some fixed $c \in \mathbb{R}$. Then T is given by the diagonal matrix with entries c along the diagonal.
- Let $f: \mathbb{R}^2 \to \mathbb{R}^1$ be given by f((x,y)) = x + y. Then T is given by $T = \begin{bmatrix} 1 & 1 \end{bmatrix}$.
- Let $f: \mathbb{R} \to \mathbb{R}$ be given by f(v) = v + 1. Then f is not a linear transformation, as f(0) = 1, but f(0) = f(0 + 0) = f(0) + f(0) = 2, and $1 \neq 2$.

Injective Linear Transformations

Definition

A linear transformation $f: V \to W$ is called *injective*, or also *one to one*, if for all $v_1, v_2 \in V$, $f(v_1) = f(v_2)$ implies $v_1 = v_2$.

Injective Linear Transformations

Definition

A linear transformation $f: V \to W$ is called *injective*, or also *one to one*, if for all $v_1, v_2 \in V$, $f(v_1) = f(v_2)$ implies $v_1 = v_2$.

Examples:

• $f: \mathbb{R}^n \to \mathbb{R}^n$ given by $f(v) = c \cdot v$, for any $c \in \mathbb{R}$ with $c \neq 0$.

Injective Linear Transformations

Definition

A linear transformation $f: V \to W$ is called *injective*, or also *one to one*, if for all $v_1, v_2 \in V$, $f(v_1) = f(v_2)$ implies $v_1 = v_2$.

Examples:

- $f: \mathbb{R}^n \to \mathbb{R}^n$ given by $f(v) = c \cdot v$, for any $c \in \mathbb{R}$ with $c \neq 0$.
- $f: \mathbb{R}^n \to \mathbb{R}^m$ when $n \leq m$, with f(x) = (x, 0).

Surjective Linear Transformations

Definition

A linear transformation $f:V\to W$ is called *surjective*, or also *onto*, if for all $w\in W$, there exists a $v\in V$ such that f(v)=w.

Surjective Linear Transformations

Definition

A linear transformation $f:V\to W$ is called *surjective*, or also *onto*, if for all $w\in W$, there exists a $v\in V$ such that f(v)=w.

Examples:

• $f: \mathbb{R}^n \to \mathbb{R}^n$ given by $f(v) = c \cdot v$, for any $c \in \mathbb{R}$ with $c \neq 0$.

Surjective Linear Transformations

Definition

A linear transformation $f:V\to W$ is called *surjective*, or also *onto*, if for all $w\in W$, there exists a $v\in V$ such that f(v)=w.

Examples:

- $f: \mathbb{R}^n \to \mathbb{R}^n$ given by $f(v) = c \cdot v$, for any $c \in \mathbb{R}$ with $c \neq 0$.
- $f: \mathbb{R}^n \to \mathbb{R}^m$ when $n \ge m$, with $f((x_1, x_2, ..., x_n)) = (x_1, x_2, ..., x_m)).$

Isomorphism of Vector spaces

Definition

If $f: V \to W$ is injective and surjective, we say it is an *isomorphism* of vector spaces.

Isomorphism of Vector spaces

Definition

If $f:V\to W$ is injective and surjective, we say it is an *isomorphism* of vector spaces. If V and W are vector spaces and there exists an isomorphism $f:V\to W$, we say V and W are *isomorphic*, which we denote by $V\cong W$.

• $f: \mathbb{R}^n \to \mathbb{R}^n$ given by $f(v) = c \cdot v$, for any $c \in \mathbb{R}$ with $c \neq 0$ is an isomorphism.

Isomorphism of Vector spaces

Definition

If $f:V\to W$ is injective and surjective, we say it is an *isomorphism* of vector spaces. If V and W are vector spaces and there exists an isomorphism $f:V\to W$, we say V and W are *isomorphic*, which we denote by $V\cong W$.

- $f: \mathbb{R}^n \to \mathbb{R}^n$ given by $f(v) = c \cdot v$, for any $c \in \mathbb{R}$ with $c \neq 0$ is an isomorphism.
- Exercise: if n and m are finite, then $\mathbb{F}^n \cong \mathbb{F}^m$ if and only if n = m.
- ullet Exercise: if V is an n-dimensional vector space over $\mathbb F$, then $V\cong \mathbb F^n$.

Kernel of a Linear Transformation

Definition

Let $f:V\to W$ be a linear transformation. The *kernel* of f, denoted $\ker(f)$ is given by:

$$\ker(f) := \{ v \in V \mid f(v) = 0 \}$$

Kernel of a Linear Transformation

Definition

Let $f: V \to W$ be a linear transformation. The *kernel* of f, denoted ker(f) is given by:

$$\ker(f) := \{ v \in V \mid f(v) = 0 \}$$

Kernel Examples

• Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ is given by f((x,y)) = x + y. $\ker(f)$ is the one-dimensional subspace consisting of all elements $(x,y) \in \mathbb{R}^2$ with x = -y. This subspace has basis $\{(1,-1)\}$.

Kernel Examples

- Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ is given by f((x,y)) = x + y. $\ker(f)$ is the one-dimensional subspace consisting of all elements $(x,y) \in \mathbb{R}^2$ with x = -y. This subspace has basis $\{(1,-1)\}$.
- Suppose n > m and $f: \mathbb{F}^n \to \mathbb{F}^m$ is projection onto the first m coordinates. Then the basis for $\ker(f)$ is $\{e_i\}_{m+1 \le i \le n}$, where e_i is the standard i-th basis element for \mathbb{F}^n .

- Computing kernel of a linear transformation:
 - Step 1: put linear transformation into matrix form.

- Computing kernel of a linear transformation:
 - Step 1: put linear transformation into matrix form.
 - Step 2: put the matrix in reduced row-echelon form (rref).

- Computing kernel of a linear transformation:
 - Step 1: put linear transformation into matrix form.
 - Step 2: put the matrix in reduced row-echelon form (rref).
 - Step 3: convert rref matrix to system of equations.

- Computing kernel of a linear transformation:
 - Step 1: put linear transformation into matrix form.
 - Step 2: put the matrix in reduced row-echelon form (rref).
 - Step 3: convert rref matrix to system of equations.
 - Step 4: find solution to system of equations.

- Computing kernel of a linear transformation:
 - Step 1: put linear transformation into matrix form.
 - Step 2: put the matrix in reduced row-echelon form (rref).
 - Step 3: convert rref matrix to system of equations.
 - Step 4: find solution to system of equations.
 - Step 5: parameterize the solution to form a basis for the kernel.

Kernel Calculation Example

Suppose
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 is given by $T = \begin{bmatrix} 3 & 5 & 1 \\ 4 & 1 & 7 \\ 2 & 3 & 1 \end{bmatrix}$.

Kernel Calculation Example

Suppose
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 is given by $T = \begin{bmatrix} 3 & 5 & 1 \\ 4 & 1 & 7 \\ 2 & 3 & 1 \end{bmatrix}$.

Step 2: We convert T to rref(T):

$$\begin{bmatrix} 3 & 5 & 1 \\ 4 & 1 & 7 \\ 2 & 3 & 1 \end{bmatrix} \xrightarrow{r1 \to r1 - r3} \begin{bmatrix} 1 & 2 & 0 \\ 4 & 1 & 7 \\ 2 & 3 & 1 \end{bmatrix} \xrightarrow{r2 \mapsto r2 - 4r1} \begin{bmatrix} 1 & 2 & 0 \\ 0 & -7 & 7 \\ 0 & -1 & 1 \end{bmatrix}$$
$$\xrightarrow{r2 \mapsto r2 - 8r3} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{r3 \mapsto r3 + r2} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Kernel Calculation Example

Step 3: This rref matrix gives the following system of equations:

$$1x + 0y + 2z = 0$$
$$0x + 1y - 1z = 0$$

Step 4: We can solve, yielding y = z and x = -2z.

Step 5: We can let z be the free variable. Setting z=1, we get a basis for ker(T), hence ker(f), is given by $\{(-2,1,1)\}$.

Image of a Linear Transformation

Definition

Let $f: V \to W$ be a linear transformation. The *image* of f, denoted im(f), is given by:

$$im(f) := \{ w \in W \mid \exists v \in V \text{ with } f(v) = w \}$$

Image of a Linear Transformation

Definition

Let $f: V \to W$ be a linear transformation. The *image* of f, denoted im(f), is given by:

$$im(f) := \{ w \in W \mid \exists v \in V \text{ with } f(v) = w \}$$

Image Examples

• Suppose $f: \mathbb{R} \to \mathbb{R}$ is given by f(x) = cx for some constant $c \neq 0$. Then $im(f) = \mathbb{R}$ as f(0) = 0 and for any $y \in \mathbb{R} \setminus \{0\}$, $f(\frac{y}{c}) = y$.

Image Examples

- Suppose $f: \mathbb{R} \to \mathbb{R}$ is given by f(x) = cx for some constant $c \neq 0$. Then $im(f) = \mathbb{R}$ as f(0) = 0 and for any $y \in \mathbb{R} \setminus \{0\}$, $f(\frac{y}{c}) = y$.
- Suppose $f: \mathbb{R} \to \mathbb{R}^2$ given by f(x) = (x, 2x). Then the image of f is the subspace of \mathbb{R}^2 spanned by $\{(1,2)\}$.

Image Examples

- Suppose $f: \mathbb{R} \to \mathbb{R}$ is given by f(x) = cx for some constant $c \neq 0$. Then $im(f) = \mathbb{R}$ as f(0) = 0 and for any $y \in \mathbb{R} \setminus \{0\}$, $f(\frac{y}{c}) = y$.
- Suppose $f: \mathbb{R} \to \mathbb{R}^2$ given by f(x) = (x, 2x). Then the image of f is the subspace of \mathbb{R}^2 spanned by $\{(1,2)\}$.
- Suppose m < n and $f : \mathbb{F}^m \to \mathbb{F}^n$ is the inclusion into the first m coordinates. Then the basis for $\operatorname{im}(f)$ is $\{e_i\}_{1 \leq i \leq m}$, where e_i is the i-th standard basis element in \mathbb{F}^n .

Computing the Image of a Linear Transformation

- Computing image of a linear transformation:
 - Step 1: put linear transformation in matrix form.
 - Step 2: put matrix in rref.

Computing the Image of a Linear Transformation

- Computing image of a linear transformation:
 - Step 1: put linear transformation in matrix form.
 - Step 2: put matrix in rref.
 - Step 3: use pivot columns to extract basis vectors from columns of the original matrix.

Image Calculation Example

Suppose
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 is given by $T = \begin{bmatrix} 3 & 5 & 1 \\ 4 & 1 & 7 \\ 2 & 3 & 1 \end{bmatrix}$. The column vectors

always span the image, but may not form a basis, as they are not necessarily linearly independent.

Image Calculation Example

Suppose
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 is given by $T = \begin{bmatrix} 3 & 5 & 1 \\ 4 & 1 & 7 \\ 2 & 3 & 1 \end{bmatrix}$. The column vectors

always span the image, but may not form a basis, as they are not necessarily linearly independent.

Step 1,2: From before, we computed the rref for T as:

$$rref(T) = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Image Calculation Example

Suppose
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 is given by $T = \begin{bmatrix} 3 & 5 & 1 \\ 4 & 1 & 7 \\ 2 & 3 & 1 \end{bmatrix}$. The column vectors

always span the image, but may not form a basis, as they are not necessarily linearly independent.

Step 1,2: From before, we computed the rref for T as:

$$rref(T) = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Step 3: The pivot columns are columns 1 and 2. These columns in the original matrix give a basis for T. Hence, a basis for $\operatorname{im}(f)$ is given by $\{(3,4,2),(5,1,3)\}$.