Algoritmos e Estruturas de Dados II Grafos – tipo abstrato de dados

Thiago A. S. Pardo Profa. M. Cristina Material de aula da Profa. Josiane M. Bueno

Grafos Tipo Abstrato de Dados

• Última aula: TAD grafo?

Grafos Tipo Abstrato de Dados

- Última aula: TAD grafo?
 - Dados/informação (encapsulados)
 - Estruturas de dados adequadas
 - Operações

Grafos Estruturas de Dados

- A escolha da estrutura de dados certa para a representação de grafos tem um enorme impacto no desempenho de um algoritmo.
- Há duas representações usuais:
 - Matriz de Adjacências
 - Listas de Adjacências

 Dado um grafo G = (V, E), a matriz de adjacências M é uma matriz de ordem |V|x|V|, tal que:

```
|V| = número de vérticesM[i,j] = 1, se existir aresta de i a jM[i,j] = 0, se NÃO existir aresta de i a j
```

 Qual a matriz de adjacências do grafo a seguir?

• Resposta:

5

	1	2	3	4	
	0	1	0	0	1
	1	0	1	1	1
M =	0	1	0	1	0
	0	1	1	0	1
	1	1	0	1	0

<table-cell-rows> vértices

2
 3
 → Matriz simétrica

- Se o grafo for direcionado
 - M[i,j] deve indicar ou não a presença de uma aresta divergente de i e convergente em j, ou seja i → j

 Qual a matriz de adjacências do dígrafo a seguir?

Possível resposta:

Matriz assimétrica

- Se o grafo for valorado
 - M[i,j] deve conter o peso associado com a aresta
 - Se não existir uma aresta entre i e j, então é necessário utilizar um valor que não possa ser usado como peso (como o valor 0 ou negativo, por exemplo)

 Qual a matriz de adjacências do grafo direcionado e valorado a seguir? Suponha que o grafo represente a distância em km entre cidades

Possível resposta:

	1	2	3	4	5
1	-1	10	-1	-1	-1
2	-1	-1	-1	8	12
3	50	-1	-1	-1	-1
4	-1	-1	0	-1	-1
5	-1	-1	-1	10	-1

Grafo simétrico ou assimétrico?

Forma mais simples de representação

- Propriedades
 - armazenamento: ?
 - teste se aresta (i,j) está no grafo: ?

Forma mais simples de representação

- Propriedades
 - armazenamento: O(|V|²)
 - teste se aresta (i,j) está no grafo: O(1)

- Representação útil para grafos densos
- Boa para quando desejamos buscar arestas rapidamente
- Ruim quando se necessita examinar a matriz toda:
 O(|V|²)
- Inserção e remoção de vértices e arestas: representação boa ou ruim?

Atenção

- Não é incomum encontrar representações de dígrafos em matrizes de adjacências em que a coluna "aponta" para a linha
 - Representação ao gosto do cliente!

Grafos Exercício de Fixação

 Represente os grafos acima utilizando matrizes de adjacências

- Implementação de algumas das operações mais comuns
 - Criar grafo vazio
 - Inserir aresta
 - Retirar aresta
 - Existe aresta?
 - Obter lista de vértices adjacentes a um determinado vértice
 - Lista está vazia?
 - Retornar primeiro vértice da lista
 - Retornar próximo vértice adjacente da lista
 - Imprimir grafo

Exercício

 Implementar sub-rotina que encontre a aresta de menor peso em um grafo valorado

Questão

 Cada grafo associa-se a uma única matriz de adjacência. O inverso é verdade?