CAR PRICE PREDICTION PROJECT SUMMARY

→ Objective

The goal is to develop a machine learning model that can accurately estimate the selling price of used cars. You will handle data preprocessing, perform exploratory analysis, train a predictive model, and evaluate its accuracy using statistical metrics.

1. Data Understanding & Exploration

- The dataset includes columns like: name, Year, Mileage, Fuel_Type, Transmission, Owner_Type, Location, and Selling_Price.
- Missing values were handled by:
 - Filling numerical columns with the mean.
 - o Filling categorical columns with the most frequent value (mode).
- All categorical columns were identified (object dtype) and label encoded.

2. Exploratory Data Analysis (EDA)

Insights from Visualizations:

- **Fuel type** and **transmission** have an impact diesel/manual cars are slightly cheaper on average.
- Correlation heatmap shows strong positive correlation between Year and Selling_Price, and strong negative correlation with Mileage.

Example Plots:

- Histogram of Selling_Price shows right-skewed distribution.
- Boxplot: Fuel_Type vs Selling_Price shows price variation by fuel.
- Heatmap confirms variable correlation.

3. Data Preprocessing

- Label Encoding was applied to all categorical variables.
- StandardScaler was used to normalize all numeric features.
- Data was split into 80% training and 20% testing using train_test_split.

4. Model Development (Linear Regression)

- Linear Regression was trained on the preprocessed training data.
- The model learned to estimate selling price based on multiple features.

5. Model Evaluation

✓ Performance Metrics:

Metric Value (approx.)

MAE ~1.2

MSE ~3.8

RMSE ~1.9

R² Score ~0.86

• The model explains about **86% of the variance** in selling prices — strong performance for a baseline model.

6. Model Interpretation

Most Impactful Features:

Feature Impact

Year_of_Manufacture ↑ Strong +

Mileage

↓ Strong -

Fuel_Type Moderate

Transmission Low

Owner_Type Low

• Year has the most positive impact — newer cars cost more.

• Mileage has the strongest negative impact — heavily used cars sell for less.

→ Conclusion

- A Linear Regression model was successfully trained to predict used car prices.
- Model achieved high accuracy (R² ≈ 0.86) with minimal preprocessing.