Problem 3:

Table 1: Training ANNs with 1 Hidden Layer on MNIST; mini batch = 10, num epochs=50

ETA/HLS	10	20	30	40	50
2	91.06	94.20	94.89	83.79	95.82
1.5	92.34	93.86	94.93	95.34	95.72
1.0	91.42	93.91	85.38	95.11	75.31
0.5	89.47	93.37	94.22	94.61	95.23
0.25	90.80	93.13	93.93	94.48	94.20

Table 2: Training ANNs with 2 Hidden Layers on MNIST; 1st HLS=10; mini batch = 10, num epochs=50

Eta/2nd HLS	10	20	30	40	50
2	91.98	92.15	93.11	92.62	92.61
1.5	92.75	92.57	92.75	92.36	91.62
1.0	92.29	92.51	92.46	93.15	93.29
0.5	91.86	92.26	91.90	92.96	91.70
0.25	91.38	91.49	91.40	91.62	91.93

Table 3: Training ANNs with 2 Hidden Layers on MNIST; 1st HLS=20; mini batch = 10, num epochs=50

ETA/HLS	10	20	30	40	50
2	94.33	94.25	94.03	94.61	94.71
1.5	93.56	93.74	94.72	83.35	94.33
1.0	93.97	93.90	94.09	94.30	94.83
0.5	93.20	93.80	94.06	93.74	93.63
0.25	92.68	93.26	93.57	93.70	93.78

Table 4: Training ANNs with 2 Hidden Layers on MNIST; 1st HLS=30; mini batch = 10, num epochs=50

ETA/HLS	10	20	30	40	50
2	94.45	95.33	94.64	95.17	95.24
1.5	94.53	95.07	95.19	95.12	95.11
1.0	94.21	94.62	94.78	94.76	94.90
0.5	94.15	94.14	94.12	94.69	94.51
0.25	93.51	93.90	93.97	93.67	94.13

Table 5: Training ANNs with 2 Hidden Layers on MNIST; 1st HLS=40; mini batch = 10, num epochs=50

ETA/HLS	10	20	30	40	50
2	94.88	95.14	95.61	95.62	95.65
1.5	94.47	95.11	95.76	95.21	95.49
1.0	94.53	94.58	94.88	95.30	95.54
0.5	94.03	94.85	94.67	94.71	94.73
0.25	92.99	94.18	94.06	94.18	94.68

Table 6: Training ANNs with 2 Hidden Layers on MNIST; 1st HLS=50; mini batch = 10, num epochs=50

ETA/HLS	10	20	30	40	50
2	94.85	95.45	95.43	86.26	95.90
1.5	94.96	95.33	95.72	95.36	95.64
1.0	94.38	94.89	95.21	95.52	95.55
0.5	93.88	94.69	94.59	94.87	95.24
0.25	93.99	94.37	94.35	94.67	94.20

An optimum learning rate is important as it decides whether your network converges to the global minima or not. Selecting a small learning rate can help a neural network converge to the global minima but it takes a huge amount of time. Therefore, you must train the network for a longer period. From the tables above, 1.0 - 2.0 yield higher accuracy. The number of layers also play an important role and increasing the number of layers increases the accuracy.

Problem 4:

Network Name/various parameters	Architecture	Learni ng rate	mini - batc h size	numb er of epoch s	classificati on performan ce
net_784_20_30_50_40_20_30_10_1 0_10.pck	784X20X30X50X40X20_ 30X10	0.1	10	300	92.30%
net_784_20_40_10_10_15.pck	784X20X40X10	0.1	15	300	90.92%
net_784_20_50_40_10_10_15.pck	784X20X50X40X10	0.1	15	300	91.43%
net_784_20_50_40_30_20_10_50_2 0.pck	784X20X50X40X30X20X 10	0.5	20	300	93.43%
net_784_30_10_30_5.pck	784X30X10	0.3	5	300	94.70%

The architecture of each individual network in the ensemble, its learning rate, its mini-batch size, and the number of epochs is compared above in the table.

Theoretically, we should train a bunch of different models (i.e., an ensemble) and use all of them to classify test data. Each model in the ensemble may be better than the rest on some data features. Therefore, when put together, an ensemble of models is more robust to noise and more accurate.

The accuracy of ensembled network of all above networks is 94.83%.

Or Ensemble of networks defined by nets classified 9483 images correctly out of 10000 validation images.

This justifies the thought of ANN researchers that the ensembles perform better than individual networks.