Latent Geometry with MNIST Torus VAE

One-Page Summary

Key Questions Addressed

Theme	Question
Latent Geometry	Can a 2D toroidal latent space improve interpretability and class sepa-
	ration in variational autoencoders?
Shock Detection	Can toroidal VAEs identify and rank structured shocks using latent ge-
	ometry and reconstruction loss?
Cross-Domain Potential	Can this approach extend to domains like healthcare or finance, where
	cyclicity and structured anomalies are key?

Conceptual Ideas Proposed

- A **2D toroidal latent space** is implemented via sine–cosine embeddings of two angular latent variables, enabling structured clustering and interpretable geometry in VAEs.
- KL annealing with a cosine schedule balances exploration and regularization, preventing posterior collapse and ensuring effective use of the toroidal latent space.
- Latent shock modeling is performed using EMNIST letters as structured out-of-distribution inputs, with latent displacement and reconstruction loss acting as interpretable anomaly scores.
- The method is designed as a **minimal modification** to standard VAE pipelines, retaining Gaussian priors and reparameterization while introducing angular structure.

Key Results

- Digit classes form distinct clusters in 2D toroidal latent space, with proximity reflecting visual similarity (e.g., "3", "8", and "5" cluster together).
- Visually dissimilar letters (K, W, X, Z) embed in low-density regions with high reconstruction losses, acting as clear out-of-distribution shocks.
- Structurally similar letters (B, D, P, I) fall near digit clusters with moderate reconstruction loss, enabling nuanced anomaly ranking.
- Reconstruction loss histogram shows clear separation: digits peak at 150–300, similar letters have a broader spread, and dissimilar letters peak higher, validating latent-space-driven anomaly scoring.

Illustrative Figures

Figure 1: Digit class separation in 2-angle latent torus. MNIST digits form structured clusters, with proximity reflecting visual similarity.

Figure 2: Distribution of reconstruction losses across input categories. Digit samples concentrate at lower loss values; structured shocks (B/D/P/I) and dissimilar shocks (K/W/X/Z) show progressively higher loss distributions.