Class 08: Breast Cancer Mini Project

Siyu Xie (PID: A16438448)

Table of contents

Sı	ummary	14
	Prediction	13
	Combining methods	
	PCA	
	Clustering	
	Initial Analysis	
	Data Import	1
	About	1

About

In today's lab we will work with fine needle aspiration (FNA) of a breast mass data from the University of Wisconsin.

Data Import

```
wisc.df <- read.csv("WisconsinCancer.csv", row.names = 1)
head(wisc.df)</pre>
```

		diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean
84230)2	M	17.99	10.38	122.80	1001.0
84251	۱7	M	20.57	17.77	132.90	1326.0
84300	903	M	19.69	21.25	130.00	1203.0
84348	3301	M	11.42	20.38	77.58	386.1
84358	3402	M	20.29	14.34	135.10	1297.0
84378	36	M	12.45	15.70	82.57	477.1

	smoothness_mean	compactness m	ean cond	cavity mean	concave no	ints mean
842302	0.11840	_		0.3001	_	0.14710
842517	0.08474			0.0869		0.07017
84300903	0.10960			0.1974		0.12790
84348301	0.14250			0.2414		0.10520
84358402	0.10030			0.1980		0.10430
843786	0.12780			0.1578		0.08089
010100	symmetry_mean f					
842302	0.2419		0.07871		0.9053	8.589
842517	0.1812		0.05667	0.5435	0.7339	3.398
84300903	0.2069		0.05999	0.7456	0.7869	4.585
84348301	0.2597		0.09744		1.1560	3.445
84358402	0.1809		0.05883	0.7572	0.7813	5.438
843786	0.2087		0.07613	0.3345	0.8902	2.217
0.101.00	area_se smoothn					
842302		-	0.04904	•	_	0.01587
842517			0.01308	0.018		0.01340
84300903			0.04006	0.038		0.02058
84348301			0.07458	0.056		0.01867
84358402			0.02461	0.056		0.01885
843786			0.03345	0.036		0.01137
	symmetry_se fra					
842302	0.03003	0.006		- 25.38	17.3	
842517	0.01389	0.003		24.99	23.4	1
84300903	0.02250	0.004		23.57	25.5	3
84348301	0.05963	0.009	208	14.91	26.50	0
84358402	0.01756	0.005	115	22.54	16.6	7
843786	0.02165	0.005		15.47	23.7	5
	perimeter_worst	area_worst sm	oothness	s_worst com	pactness_wor	rst
842302	184.60	2019.0		0.1622	0.66	656
842517	158.80	1956.0		0.1238	0.18	366
84300903	152.50	1709.0		0.1444	0.43	245
84348301	98.87	567.7		0.2098	0.8	663
84358402	152.20	1575.0		0.1374	0.20	050
843786	103.40	741.6		0.1791	0.5	249
	concavity_worst	concave.point	s_worst	symmetry_w	orst	
842302	0.7119		0.2654	0.	4601	
842517	0.2416		0.1860	0.	2750	
84300903	0.4504		0.2430	0.	3613	
84348301	0.6869		0.2575	0.	6638	
84358402	0.4000		0.1625	0.	2364	
843786	0.5355		0.1741	0.	3985	
	fractal_dimensi	on_worst				

```
842517
                          0.08902
84300903
                          0.08758
84348301
                          0.17300
84358402
                          0.07678
843786
                          0.12440
    Q1. How many patients/individuals/samples are in this dataset?
  nrow(wisc.df)
[1] 569
     Q2. How many observations have a malignant diagnosis?
  sum(wisc.df$diagnosis == "M")
[1] 212
  table(wisc.df$diagnosis)
 В
      Μ
357 212
    Q3. How many variables/features in the data are suffixed with _mean?
  ncol(wisc.df)
[1] 31
  colnames(wisc.df)
 [1] "diagnosis"
                                 "radius_mean"
                                 "perimeter_mean"
 [3] "texture_mean"
 [5] "area_mean"
                                 "smoothness_mean"
 [7] "compactness_mean"
                                 "concavity_mean"
 [9] "concave.points_mean"
                                 "symmetry_mean"
                                 "radius_se"
[11] "fractal_dimension_mean"
```

0.11890

842302

```
[13] "texture_se"
                                "perimeter_se"
[15] "area_se"
                                "smoothness_se"
[17] "compactness_se"
                                "concavity_se"
[19] "concave.points_se"
                                "symmetry_se"
[21] "fractal_dimension_se"
                                "radius_worst"
[23] "texture_worst"
                                "perimeter_worst"
[25] "area_worst"
                                "smoothness_worst"
                                "concavity_worst"
[27] "compactness_worst"
[29] "concave.points_worst"
                                "symmetry_worst"
[31] "fractal_dimension_worst"
  inds <- grep("_mean", colnames(wisc.df))</pre>
  length(inds)
[1] 10
  grep("_mean", colnames(wisc.df), value=T)
 [1] "radius_mean"
                               "texture_mean"
                                                          "perimeter_mean"
 [4] "area_mean"
                                                          "compactness_mean"
                               "smoothness_mean"
 [7] "concavity_mean"
                               "concave.points_mean"
                                                          "symmetry_mean"
[10] "fractal_dimension_mean"
```

Initial Analysis

Before analysis, I want to take out the expert diagnosis column (aka the answer) from our dataset.

```
diagnosis <- as.factor(wisc.df$diagnosis)
head(diagnosis)

[1] M M M M M M
Levels: B M

wisc.data <- wisc.df[,-1]</pre>
```

Clustering

We can try a kmeans() clustering first..

```
km <- kmeans(wisc.data, centers=2)
km$cluster</pre>
```

84458202	844359		84358402	84348301	84300903	842517	842302
_		_		_	1	1	1
84799002	84667401	846381	846226	84610002	845636	84501001	844981
2	2	2	1	1	2	2	2
851509	8511133	8510824	8510653	8510426	849014	84862001	848406
1	2	2	2	2	1	1	2
853612	853401	853201	852973	852781	852763	852631	852552
2	1	1	1	1	2	1	1
855138	855133	854941	854268	854253	854039	854002	85382601
2	2	2			1	1	1
85715	85713702	857010	85638502	856106	855625	855563	855167
2	2	1	2	2	1	2	2
85759902	857438	857392	857374	857373	857343	857156	857155
2	2	1	2	2	2	2	2
859196	858986	858981	858970	858477	857810	857793	857637
2	2	2	2	2	2	2	1
859711	859575	859487	859471	859465	859464	859283	85922302
2	1	2	2	2	2	2	2
8610908	8610862	8610637	8610629	8610404	8610175	859983	859717
2	1	1	2	1	2	2	1
86135502	86135501	8612399	8612080	8611792	8611555	8611161	861103
1	2	1	2	1	1	2	2
86208	862028	862009	861853	861799	861648	861598	861597
1	2	2	2	2	2	2	2
862980	862965	862722	862717	862548	862485	862261	86211
2	2	2	2	2	2	2	2
86408	864033	864018	86355	863270	863031	863030	862989
2	2	2	1	2	2	2	2
865128	864877	864729	864726	864685	864496	864292	86409
1	1	2	2	2	2	2	2
866203	866083	86561	865468	865432	865423	86517	865137
1	2	2	2	2	1	1	2
868202	867739	867387	86730502	8670	866714	866674	866458
2	1	2	2	2	2	1	2
869224	869218	869104	868999	868871	868826	868682	868223

2	2	2	2	2	1	2	2
869254	869476	869691	86973701	86973702	869931	871001501	871001502
2	2	2	2	2	2	2	2
8710441	87106	8711002	8711003	8711202	8711216	871122	871149
2	2	2	2	1	2	2	2
8711561	8711803	871201	8712064	8712289	8712291	87127	8712729
2	1	1		1	_	_	_
8712766	8712853	87139402		87164	871641	871642	872113
1	2		2	2			2
872608	87281702	873357	873586	873592	873593	873701	873843
2	2		2	1			_
873885	874158	874217	874373	874662	874839	874858	875093
2	2		2	2			2
875099	875263	87556202				877486	877500
2	2	_	2	2	_		-
877501	877989	878796		87930	879523		879830
2	1	1		2			1
8810158	8810436	881046502				8810955	8810987
2	2			1			
8811523	8811779	8811842	88119002				8812877
2	2	_	1	_			_
8813129		88147101					88199202
2	2	2	2	2			2
88203002	88206102	882488					88330202
2	1	2	2	1	1	_	1
88350402	883539				884437		
2	2	_	2	1		_	_
88466802	884689		88518501				
2	2	_	_	1	_	_	_
88649001		887181					
1	2	-	2	1	_	_	2
889719		8910251					
1	1		2				2
		8911163					
1	2						-
8912049		89122					
1		1		2			2
		89143602					
2	2			2			
		892214					
2	2		2			1	-
		89344					
2	2	2	2	2	2	2	2

89382602	893988	894047	894089	894090	894326	894329	894335
2	2	2	2	2	1	2	2
894604	894618	894855	895100	89511501	89511502	89524	895299
2	1	2	1	2	2	2	2
8953902	895633	896839	896864	897132	897137	897374	89742801
2	2	2	2	2	2	2	1
897604	897630	897880	89812	89813	898143	89827	898431
2	1	2	1	2	2	2	1
89864002	898677	898678	89869	898690	899147	899187	899667
2	2	2	2	2	2	2	2
899987	9010018	901011	9010258	9010259	901028	9010333	901034301
1	2	2	2	2	2	2	2
901034302	901041	9010598	9010872	9010877	901088	9011494	9011495
2	2	2	2	2	1	1	2
9011971	9012000	9012315	9012568	9012795	901288	9013005	901303
1	1	2	2			2	_
901315	9013579	9013594	9013838	901549	901836	90250	90251
2	2	2	2	2	2	2	2
902727	90291	902975	902976	903011	90312	90317302	903483
2	2	2	2	2	1	2	2
903507	903516	903554	903811	90401601	90401602	904302	904357
1	1	2	2	2	2	2	2
90439701	904647	904689	9047	904969	904971	905189	905190
1	2	2	2	2	2	2	2
90524101	905501	905502	905520	905539	905557	905680	905686
1	2	2	2	2	2	2	2
905978	90602302	906024	906290	906539	906564	906616	906878
2	1	2	2	2	2	2	2
907145	907367	907409	90745	90769601	90769602	907914	907915
2	2	2	2	2	2	2	2
908194	908445		908489	908916	909220	909231	909410
1	1	2	2			2	2
909411	909445	90944601	909777	9110127	9110720	9110732	9110944
2	1	2	2	1	2	1	2
911150	911157302	9111596	9111805	9111843	911201	911202	9112085
2	1	2	1	2	2	2	2
9112366	9112367	9112594	9112712	911296201	911296202	9113156	911320501
2	2	2	2	1	1	2	2
911320502	9113239	9113455	9113514	9113538	911366	9113778	9113816
2		2			2		
911384	9113846	911391	911408	911654	911673	911685	911916
2	2	2	2	2	2	2	2
912193	91227	912519	912558	912600	913063	913102	913505

_	_	_	_	_	_	_	_
2	2	2	2	2	2	2	1
913512	913535	91376701	91376702	914062	914101	914102	914333
2	2	2	1	1	2	2	2
914366	914580	914769	91485	914862	91504	91505	915143
2	2	1	1	2	2	2	1
915186	915276	91544001	91544002	915452	915460	91550	915664
2	2	2	2	2	2	2	2
915691	915940	91594602	916221	916799	916838	917062	917080
2	2	2	2	1	1	2	2
917092	91762702	91789	917896	917897	91805	91813701	91813702
2	1	2	2	2	2	2	2
918192	918465	91858	91903901	91903902	91930402	919537	919555
2	2	2	2	2	1	2	1
91979701	919812	921092	921362	921385	921386	921644	922296
2	2	2	2	2	2	2	2
922297	922576	922577	922840	923169	923465	923748	923780
2	2	2	2	2	2	2	2
924084	924342	924632	924934	924964	925236	925277	925291
2	2	2	2	2	2	2	2
925292	925311	925622	926125	926424	926682	926954	927241
2	2	2	1	1	1	2	1
92751							
2							

table(km\$cluster)

1 2 131 438

table(diagnosis)

diagnosis B M 357 212

 ${\bf Cross\text{-}table}$

table(km\$cluster, diagnosis)

```
diagnosis

B M
1 1 130
2 356 82
```

Let's try 'hclust()' the key input required for 'hclust()' is a distance matrix as produced by the 'dist()' function.

```
hc <- hclust(dist(wisc.data))</pre>
```

I can make a tree-like figure

plot(hc)

Cluster Dendrogram

dist(wisc.data)
hclust (*, "complete")

PCA

Do we need to scale the data? We can look at the sd of each column (original variable)

```
round(apply(wisc.data, 2, sd))
```

radius_mean

texture_mean

perimeter_mean

```
24
              area_mean
                                 smoothness_mean
                                                          compactness_mean
                    352
                             concave.points_mean
        concavity_mean
                                                             symmetry_mean
                      0
                                                0
                                                                          0
fractal_dimension_mean
                                       radius se
                                                                texture se
                                                0
                                                                          1
                                          area_se
                                                             smoothness_se
          perimeter_se
                      2
                                               45
                                                                          0
        compactness_se
                                    concavity_se
                                                         concave.points_se
                      0
                                                                          0
                                                0
            symmetry_se
                            fractal_dimension_se
                                                              radius_worst
                      0
                                                                          5
         texture_worst
                                 perimeter_worst
                                                                area_worst
                                               34
                                                                        569
                               compactness_worst
      smoothness_worst
                                                           concavity_worst
  concave.points_worst
                                  symmetry_worst fractal_dimension_worst
                                                0
                      0
```

Yes we need to scale. We will run 'prcomp()' with 'scale=TRUE'.

```
wisc.pr <- prcomp(wisc.data, scale=TRUE)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                  PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Standard deviation
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                 PC11
                                                         PC12
                                                                 PC13
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                   PC18
                                                           PC19
                                                                   PC20
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                                         PC24
                                                 PC25
                                                          PC26
                          PC22
                                  PC23
                                                                  PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
```

```
PC29 PC30
Standard deviation 0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Generate our main PCA plot (score plot, PC1 vs PC2 plot)...

```
library(ggplot2)

res <- as.data.frame(wisc.pr$x)

ggplot(res) +
   aes(x=PC1, y=PC2, col=diagnosis) +
   geom_point()</pre>
```


Combining methods

Clustering on PCA results

Using the minimum number of principal components required to describe at least 90% of the variability in the data, create a hierarchical clustering model with the linkage

method="ward.D2". We use Ward's criterion here because it is based on multidimensional variance like principal components analysis. Assign the results to wisc.pr.hclust.

```
d <- dist(wisc.pr$x[, 1:3])
hc <- hclust(d, method="ward.D2")
plot(hc)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

To get my clustering result/membership vector I need to "cut" the tree with the 'cutree()' function.

```
grps <- cutree(hc, k=2)</pre>
```

Q. How many patients are in each cluster group?

```
table(grps)
```

grps 1 2 203 366

Prediction

We can use our PCA results (model) to do predictions, that is take new unseen data and project it onto our new PC variables.

```
url <- "https://tinyurl.com/new-samples-CSV"
new <- read.csv(url)
npc <- predict(wisc.pr, newdata=new)
npc</pre>
```

```
PC1
                     PC2
                                PC3
                                           PC4
                                                      PC5
                                                                 PC6
                                                                            PC7
     2.576616 -3.135913
                          1.3990492 -0.7631950
[1,]
                                                2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945
                                                                      0.8193031
            PC8
                      PC9
                                PC10
                                          PC11
                                                     PC12
                                                               PC13
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
                     PC16
                                 PC17
                                             PC18
                                                          PC19
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
```

```
[2,] 0.1299153
               0.1448061 -0.40509706
                                       0.06565549
                                                   0.25591230 -0.4289500
           PC21
                      PC22
                                 PC23
                                            PC24
                                                        PC25
                                                                      PC26
[1,]
     0.1228233 0.09358453 0.08347651
                                       0.1223396
                                                  0.02124121
                                                              0.078884581
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238
             PC27
                         PC28
                                      PC29
                                                   PC30
     0.220199544 -0.02946023 -0.015620933
                                            0.005269029
[2,] -0.001134152  0.09638361  0.002795349 -0.019015820
  plot(res$PC1, res$PC2, col=grps)
  points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
  text(npc[,1], npc[,2], labels=c(1,2), col="white")
```


Summary

Principal Component Analysis (PCA) is a super useful method for analyzing large datasets. It works by finding new variables (PCs) that capture the most variance from the original variable in your dataset.