Monte Carlo Simulations for Inference and Power analyses

October 9th 2014

Readings.

- There are three PDF's on the ANGEL site in the simulation/monte carlo folder (resources sub-folder).
- These provide some very deep insight into thinking about power.
- For deeper insight into Monte Carlo methods, link to book in the same folder.

Goals

- Develop a monte carlo approach for making inferences, such as P-values and confidence intervals.
- Learn how to write R scripts to perform these actions.
- Begin discussing the concept of power.

Groups

A Andrew
Colleen
Alejandro
Eleanor

B-Emily Sahar Carina Zachary Thomas

C-Maria Natalia Klara Patric Jie

D-Prateek Sam Danielle Alita David

E-Kileigh Carina Jay Kevin

Group Roles

- Role 1- Makes sure everyone participates/speaks up (point if you have to).
- Role 2- Synthesis and scribe
- Role 3- News Anchor
- Role 4 critic

Relationship between Estimation/inference methods

What is monte Carlo simulation?

Why might we want to do simulations for statistics?

What sorts of applications might it have?

Sampling distributions

Repeated sampling

Population parameters (True, fixed) Sample statistics

Sampling distribution

1)What are we trying to simulate?

- 2)What do we know (what information do we have)?
- 3)What do we need to assume?

1)What are we trying to find?

What do we know:

What do we need to assume for the simulation?

Sampling distributions

Repeated sampling

Population parameters (True, fixed)
/// | \\

Sample statistics

Sampling distribution

Going in reverse

 Essentially we are working through the same sampling idea as on the previous slide, just in reverse.

Using Monte Carlo simulation to generate values for a linear regression.

 Start with an imaginary sample (n=100 observations, with a set of x values that are known (or simulated):

$$y_1 \sim \beta_0 + \beta_1 x_1 + \varepsilon_1$$

$$Y \sim N(\beta_0 + \beta_1 X, \sigma^2) = N(X\beta, \sigma^2)$$

Using Monte Carlo simulation to generate values for a linear regression.

$$y_1 \sim \beta_0 + \beta_1 x_1 + \varepsilon_1$$

$$Y \sim N(\beta_0 + \beta_1 X, \sigma^2) = N(X\beta, \sigma^2)$$

- How might you use simulations to generate data from such a model?
- What do you need? What do you know?

Need:

type of distribution of expected outcomes/biologically realistic outcomes

Using Monte Carlo simulation to generate values for a linear regression.

$$y_1 \sim \beta_0 + \beta_1 x_1 + \varepsilon_1$$

$$Y \sim N(\beta_0 + \beta_1 X, \sigma^2) = N(X\beta, \sigma^2)$$

- How might you use simulations to generate data from such a model?
- What do you need? What do you know?
- Make a step-by-step list of what you need to do to simulate the data.

Using Monte Carlo simulation to generate values from a simple linear model. STEPS:

```
Step 1) Build a linear model (Y \sim X)
Sub-step 1) Assess distributions of Y and X
-to simulate distributions of new Y and X (Y^*X^*)
Sub-step 2) vcov(model) we need residual squared error!
```

Step 2) distribution of Y^* ; distribution of $X^* \sim N(Xbar, variance X^*)$

Step 3) use observed X to simulate Y*; or simulate x using β 's calculated from known data; Y* \sim N(β 0 + β 1x, variance of residual square error)

Step 4) fit $lm(Y^* \sim X^*)$; simulated $\beta 0^*$ and $\beta 1^*$

Using Monte Carlo simulation to generate values from a simple linear model. STEPS:

• Start with an imaginary simple (n=100 observations) example: $Y \sim N(\beta_0 + \beta_1 X, \sigma^2)$

Using Monte Carlo simulation to generate values from a simple linear model.

• (n=100) example:

$$y_1 \sim \beta_0 + \beta_1 x_1 + \varepsilon_1$$

Y ~ N(X\beta,\sigma^2)

- Now that we have the step-by-step approach, implement this in R, so that you generate 100 observations from this model, and then plot Y~X (scatterplot is fine).
- Make your x <-1:100, intercept =2, slope=4, sd=2

Generating simulated samples from linear model in R.

For each known value of X (x1, x2,...,x100) we are simulating one value from Y (y1, y2,...., y100)

Using Monte Carlo simulation to generate values for a linear regression with observed values of response (y) and predictors (x):

 How is this example different from when you need to simulate everything?

What do you know?

What are you trying simulate?

What do you need to assume?

Using Monte Carlo simulation to generate values from a simple linear model.

- What would you do if you want to repeat this process many times?
- Can you think of any issues with this approach?

Using Monte Carlo simulation to generate values from a simple linear model.

What would you do if you want to repeat this process many times?

use a for loop

or use **replicate()** in R.

Repeat this process 1000 times

 Generate a distribution for the simulated slopes and the simulated intercepts.

Using Monte Carlo simulation to generate values from a simple linear model.

Can you think of any issues with this approach?

Using Monte Carlo simulation to construct confidence intervals.

simple (n=100) example:

$$y_1 \sim \beta_0 + \beta_1 x_1 + \varepsilon_1$$

Y ~ N(X β , σ ²)

- How might you use simulations to construct confidence intervals BASED ON AN INITIAL FIT OF A MODEL TO DATA.
- Make a step-by-step list of what you need to simulate, and how you can use this to construct confidence intervals.

Using Monte Carlo simulation to construct confidence intervals. STEPS

Using Monte Carlo simulation to construct confidence intervals.

How might you implement this in R?

Step-by-step approach to constructing CI's using monte carlo simulation

Step-by-step approach to constructing CI's using monte carlo simulation

- This approach is approximate. What is missing?
- Can you think of other sources of variation we have not accounted for?
- How do we specify the width of the interval?

Using Monte Carlo simulation to approximate p-values.

Start with an imaginary simple (n=100 observations) example:

$$y_1 \sim \beta_0 + \beta_1 x_1 + \varepsilon_1$$

Y ~ N(X β , σ ²)

- How might you use simulations to find a pvalue? Start with reminding yourself of the definition of a p-value.
- Make a step-by-step list of what you need to simulate, and how you can use this to approximate a p-value.

Step-by-Step method to approximating p-values using Monte Carlo simulation

 How do we specify the precision of the pvalue?

Please implement this in R.

What are the kinds of assumptions we are making when using simulation for inference?

- Sample is representative of larger population.
- Assumptions about the distribution of the population
- Deterministic component of model is correct.
- Assumption of no unmodeled co-variation. How do we correct for this?
- Larger population. How large is the real population?
- Assuming the correct form for the null model (for p-value).
- Distribution of residual errors should follow known distribution.

Gelman and Hill utilize a better approach to account for variation in RSE.

- Page 143. (also see sim() in arm library)
- Step 1: Using classical regression to estimate model parameters. $\hat{\beta}$, V_{β} , $\hat{\sigma}^2$
- Step 2: generate a number (N) simulations of β and σ . For Each simulation draw:
 - A) Simulate $\sigma = \hat{\sigma}\sqrt{(n-k)/X}$ where X is $\sim \chi^2(df = n k)$
 - B) Given the random draw of sigma, simulate beta from a multivariate normal distribution with mean $\hat{\beta}$ and covariance matrix $\hat{\sigma}^2 V_{\beta}$.