KU LEUVEN

Performance of candlestick patterns on intraday market data Thesis defence

Wout Notermans

Faculty of Science
Department of Mathematics
Section of Statistics and Risk

July 27, 2025

Table of contents

Introduction

Methodology

Results

Conclusion and further research

Table of contents

Introduction

Methodology

Results

Conclusion and further research

Introduction

Can you predict what is going to happen on the stock market and make a profit based on these predictions?

Stock price [1]

Berkshire Hathaway stock price

Candlestick construction

Stock price [1]

Berkshire Hathaway stock price

Stock price [1]

Berkshire Hathaway stock price

Candlestick pattern examples

"Rising Three Methods" and "Stick Sandwich"

History

- Developed in the 1700s in Japan.
- Remained exclusive to the East until 1991.
- Has become a well-known technique, used by many traders.

Literature

- Literature split between machine learning and rule based approach.
- Results are very split.
- Very few publications about intraday market data.

Introduction

Research question

Do candlestick patterns possess predictive power on intraday market data?

Methodology

Table of contents

Introduction

Methodology

Results

Conclusion and further research

Overview

- Selection of data sets.
- Preprocessing of the data.
- Trends and technical indicators.
- Pattern detection.
- Pattern evaluation.

Methodology

Data sets

- BND: Bonds.
- · GLD: Gold.
- · QQQ: Stocks.
- SPY: Stocks.
- Geometric Brownian motion: Generated.

Preprocessing

- Filter pre/after-market.
- Aggregation.
- Cross-validation to avoid bias and overfitting.

Preprocessing: calibration

	Doji	Short	Normal	Tall	Extremely tall
Real body	[0 - 10)	[10 - 30)	[30 - 70)	[70 - 100]	
Shadow	[0 - 10)	[10 – 30)	[30 – 70)	[70 – 90)	[90 – 100]

Percentiles of real bodies and shadows [3].

Matching low

Preprocessing: calibration

- Assumes length and color candle independent.
- Has to be checked → Kolmogorov-Smirnov test.

$$H_0: W = B$$
 $H_1: W \neq B$.

Reject at 5% significance.

Methodology

Trend

- Many patterns are only valid when the correct trend is present.
- Multiple ways of defining the trend in the literature.
- Example: count in/decreases in the moving average.

Pattern detection

- Patterns are vaguely defined at best: a rigid classification is necessary.
- The paper "A formal approach to candlestick pattern classification in financial time series" does exactly this [4].
- Define 103 candlestick patterns with strict conditions.
- Multiple comparisons problem addressed through Benjamini-Yekutieli.

Pattern detection: example

"Mat Hold"

Pattern detection: prediction

- Typically classified as buy/sell signal.
- Look at the results themselves instead of the predictions.

Pattern evaluation: stop-loss/take-profit

- Buy after pattern is detected.
- Make use of stop loss/take profit margins.
- These are based on the ATR technical indicator so they scale with market activity.

Pattern evaluation: stop-loss/take-profit

- This gives us a winning rate $\hat{\pi}$.
- Obtain a "null win rate" $\hat{\pi_0}$ through random sampling.
- Test significance with binomial test.

$$H_0: \hat{\pi} = \hat{\pi_0}$$
 $H_1: \hat{\pi} > \hat{\pi_0}$

Pattern evaluation: profitability score

Adjusted z-score =
$$\frac{\frac{z\text{-test}}{\hat{\pi} - \hat{\pi_0}}}{\sqrt{\frac{\hat{\pi_0}(1 - \hat{\pi_0})}{n}}} \cdot \underbrace{\frac{\text{Frequency adjustment}}{\text{In}(\min\{n, 5000\})}}$$

This encapsulates:

- 1. The number of detected patterns.
- 2. The win rate.
- 3. The significance.

Pattern evaluation: excess return

- 1. Also consider the "excess return" $\hat{\pi} \hat{\pi_0}$
- 2. Duvinage et al. estimate that at least 0.05% is required to be economically viable [5].

Results

Table of contents

Introduction

Methodology

Results

Conclusion and further research

Detection results

- Not many "gapping" patterns.
- Some patterns are rare due to stringent conditions.

"Window, Falling" and "Evening Star"

- Significant patterns are found.
- More significant buy than sell signals.
- A lot of variance between data sets/asset types.
- Aggregation decreases significance and z-score, but not excess return.
- Profit margins too small to be economical.

Evaluation results: time of day

- Entire day.
- One hour after open/before close.
- One hour after New York open.
- Limit to maximum 5 minutes.

Evaluation results: time of day

Evaluation results: time of day

Evaluation results: little/no effect

- Trend inclusion.
- Trend defining methods.

Table of contents

Introduction

Methodology

Results

Conclusion and further research

Conclusion and further research

Research question

Do candlestick patterns possess any predictive power on intraday market data?

Conclusion

- Some patterns do appear to possess significant predictive power.
- Typically not consistent.
- This mainly holds true for buy signals.
- There is a lot of variance to these results.
- Not profitable enough to be economically viable.

Further research

- Machine learning-based approach to detection/evaluation.
- Adapting definitions of patterns to market conditions.
- Tick-based candlesticks.
- Many alternative methods to define trends and to evaluate performance.

Bibliography

[1] <u>finance.yahoo.com</u>.

```
https://finance.yahoo.com/quote/BRK-A/. [Accessed 10-05-2025].
```

- [2] Jun-Hao Chen and Yun-Cheng Tsai. "Encoding candlesticks as images for pattern classification using convolutional neural networks". In: Financial Innovation 6.1 (June 4, 2020). DOI: 10.1186/s40854-020-00187-0. URL: http://dx.doi.org/10.1186/s40854-020-00187-0.
- [3] Stefan Etschberger et al. "The classification of candlestick charts: laying the foundation for further empirical research". In:

From Data and Information Analysis to Knowledge Engineering: Springer. 2006, pp. 526–533.

Bibliography

- [4] Weilong Hu et al. "A formal approach to candlestick pattern classification in financial time series". In:

 Applied Soft Computing 84 (Nov. 2019), p. 105700. DOI: 10.1016/j.asoc.2019.105700. URL: http://dx.doi.org/10.1016/j.asoc.2019.105700.
- [5] MATTHIEU DUVINAGE, PAOLO MAZZA, and MIKAEL PETITJEAN. "The intra-day performance of market timing strategies and trading systems based on Japanese candlesticks". eng. In: Quantitative finance 13.7 (2013), pp. 1059–1070. ISSN: 1469-7688.

Questions?