Análise de Algoritmos - Guia de Estudo (Tópico 3)

Prof. Dr Juliano Henrique Foleis

Instruções

O resumo disponibilizado no Moodle é um resumo do referencial bibliográfico, indicado a seguir. O resumo não deve ser usado como única fonte de estudo. Recomendo fortemente que leiam o referencial bibliográfico para explicações mais aprofundadas e com detalhes que podem ajudar ainda mais a compreender o conteúdo.

Depois de estudar o material, recomendo que refaça os exemplos do material, sem olhar nas resoluções.

Referencial Bibliográfico

As referências de cada parte do material estão no final nas seções correspondentes no PDF do resumo.

Exercícios

- 1) [3.1-3 CLRS] Explique por que a afirmação "O tempo de execução de um algoritmo A é pelo menos $O(n^2)$)" é isenta de significado.
- **2)** (*) [3.1-4 CLRS] Verifique se $2^{n+1} = O(2^n)$.
- 3) [3.1-1 CLRS] Sejam f(n) e g(n) funções não-negativas. Usando a definição básica da notação Θ , prove que $\max(f(n),g(n))=\Theta(f(n)+g(n))$.
- 4) (*) [3-2 CLRS] Indique, para cada par de expressões (A,B) da tabela a seguir, se A é O, Ω ou Θ de B. Assuma que $k \geq 1$, $\epsilon > 0$ e c > 1 são constantes. Sua resposta deve estar na tabela e deve ser "sim" ou "não". **DICA:** neste exercício use o teste do limite. Pode usar o wolfram alpha (ou aplicativos similares) para computar os limites.

A	В	O	Ω	Θ
$lg^k n$	n^{ϵ}			
n^k	c^n			
\sqrt{n}	n^2			
2^n	$2^{n/2}$			
$n^{\lg c}$	$c^{\lg n}$			
$\lg n!$	$\lg n^n$			

5) (*) Substitua os "?" a seguir pelo símbolo da notação assíntótica adequada (O, Ω, Θ) , ou seja, que satisfaça as afirmações. Mostre e faça os cálculos apropriados.

- a) $100n^3 = ?(n^2)$
- **b)** $\frac{1}{2}n^2 3n = ?(n^2)$
- c) $3n^2 + 20 = ?(n^2)$
- **d)** $6n = ?(n^2)$
- **e)** $20n + 2 = ?(\lg(n))$
- **f)** 100 = ?(1)
- 6) Prove (ou desprove) por definição os limites assintóticos a seguir.
- a) (*) $n^2 + 2n + 5 = O(n^2)$
- **b)** (*) $n = O(\lg n)$
- **c)** $\lg n = O(n^3)$
- **d)** (*) $n^2 = O(n \lg n)$
- e) $3n^2 + 2n + 2 = \Theta(n^2)$
- f) (*) $\lg (2n) = \Theta(\lg n)$
- **g)** $\log_{10} n = \Theta(\lg n)$
- **h)** $n^3 + 3n \lg n = O(n^3)$
- i) $3n + 1 = \Omega(n)$

Exercícios para Entregar

Os exercícios marcados com (*) acima devem ser entregues via Moodle. Faça manualmente no papel almaço, folha de caderno ou similares.

Envie o PDF com as resoluções pela tarefa aberta no Moodle. No caso do exercício ser feito no papel, tire fotos e organize-as em um PDF, na sequencia adequada. Recomendo o uso de algum app que escaneie, corrija e junte as fotos em um só PDF, como o Microsoft Lens. Links para Download grátis: (Android) (iOS).

Prazo para entrega: 4/4/2021 até as 23:55.

Bons Estudos!