

28/02 '01 KE 09:59 FAX 358 2741556

TURUN PAT.TSTO

+++ US LYDON

018

DECLARATION

I, the undersigned, hereby certify that to the best of my knowledge and belief the following is a true translation of the Finnish patent application No. 973427.

Declared at Turku, February 28, 2001.

Kaisa Suominen
M.Sc. (Mater. Eng.)

Best Available Copy

FI000103051B

(12) PATENTTIJULKAIKU
PATENTSKRIFT

(10) FI 103051 B

(45) Patentti myönnetty - Patent beviljats 15.04.1999

(51) Kv.1k.6 - Int.kl.6

C 08G 77/46

(21) Patentihakemus - Patentansökaning 973427

(22) Hakemispäivä - Ansökningadag 22.08.1997

(24) Alkupäivä - Löpdag 22.08.1997

(41) Tullut julkisaksi - Blivit offentlig 23.02.1999

SUOMI-FINLAND

(FI)

Patentti- ja rekisterihallitus
Patent- och registerstyrelsen

(73) Haltija - Innehavare

1. Lairas Oy, PL 415, 20101 Turku, (FI)

(72) Keksijä - Uppfinnare

1. Jukarainen, Harri, Läntinen Pitkäkatu 24 A 14, 20100 Turku, (FI)
2. Ruohonen, Jarkko, Vanha Härkätie 10, 21410 Vanhalinna, (FI)
3. Lehtinen, Matti, Kirjosieponkatu 2, 20760 Piispanristi, (FI)
4. Ala-Sorvari, Juba, Ruonalankatu 12 as. 3, 20900 Turku, (FI)
5. Seppälä, Jukka, Mäkipallontie 18 C, 00320 Helsinki, (FI)

(74) Asiamies - Ombud: Turun Patenttitoinisto Oy, PL 99, 20521 Turku

(54) Keksinnön nimitys - Uppfinningens benämning

Uusia blokkikopolymererejä ja niiden valmistus
Nya block-kopolymerer och deras framställning

(56) Viitejulkaisut - Anfördta publikationer

Makromol. Chem. 185 (1984), p. 2625-2645,
Makromol. Chem. 186 (1985), p. 357-366

(57) Tilvistelma - Sammandrag

Keksinnön kohteena on uusi polysilok-
saanipohjainen blokkikopolymeri, jonka
kaava on

T(AB)_nAT (I)

jossa

A = -(SiR'R''O)_mSiR'R'''-, jossa R' ja R''
ovat samoja tai erilaisia ja ovat alempi
alkyyliiryhmä tai fenyyliryhmä, jolloin mai-
nitut alkyyli- tai fenyyliryhmä voi olla
substituoitu tai substituoimaton,
B on polyalkyleenioksidi, jonka kaava on

jossa R on vety, alempi alkyyli tai fenyyl-
li; R₁ on vety tai alempi alkyyli; y on
2...6; m on 3...30; n on 5...3000; ja x on
0...100.

R
-(CH₂)_yO(CHCH₂O)_x(CH₂)_z-, tai

R₁ R R₁
-CH₂CHCOO(CHCH₂O)_xCOCHCH₂-

ja T on

R
CH₂=CH(CH₂)_y-O(CHCH₂O)_x(CH₂)_z-, tai

R₁ R R₁
CH₂=CCOO(CHCH₂O)_xCOCHCH₂-

28/02 '01 KE 09:56 FAX 358

358 2 2741556

TURUN PAT.TSTO

-> US LYDON

005

10305

Uppfinningen gäller en ny
polysiloxanbaserad block-kopolymer, vars
formel är

 $T(AB)_xAT \quad (I)$

där

$A = -(SiR'R''O)_nSiR'R'''$, där R' och R''' är
samma eller olika och är en lägre alkyl-
eller fenygrupp, varvid nämnda alkyl-
eller fenygrupp kan vara substituerad
eller osubstituerad,

B är en polyalkylenoxid, vars formel är

och T är

där R är väte, lägre alkyl eller feny; R_1
är väte eller lägre alkyl; y är 2...6; m är
3...30; n är 5...3000; och x är 0...100.

NEW BLOCK COPOLYMERS AND PREPARATION THEREOF

The invention relates to new polysiloxane based block copolymers and to the preparation thereof.

Silicones, or polyorganosiloxanes, represent a broad spectrum of synthetic silicon based polymers of formula 5 $(R'R''SiO)_n$, where R' and R'' represent alkyl groups, usually methyl, ethyl, propyl, or phenyl groups. In the literature, various methods for the preparation of siloxanes are known, for example, Walter Noll, Chemistry and Technology of Silicones, Academic Press, Orlando, 1968, 10 190-245, and John C Saam, in John M Zeigler and F W Gordon Fearon, ed., Silicon-Based Polymer Science, A Comprehensive Resource, Advances in Chemistry Series, American Chemical Society, Washington, D.C., 1990, 71-90.

Polysiloxanes, particularly poly(dimethyl siloxanes), are 15 used extensively as such in technical applications.

Copolymers of polysiloxane and poly(alkylene oxide) are known. Known copolymers of this type are useful as emulsifiers and stabilizers. The preparation of such copolymers by hydrosilylation has been reported in the 20 literature (Polysiloxane Copolymers/Anionic Polymerization, Springer-Verlag Berlin Heidelberg 1988, pp. 46-47; H W Haesslin & H F Eicke, Makromol Chem 185, 2625-2645, (1984); H W Haesslin, Makromol Chem 186, 357-366 (1985), and M Galin & A Mathis, Macromolecules 1981, 14, 677-683. The 25 preparation of block copolymers AB, ABA and $(AB)_n$, where A represents poly(ethylene oxide) (PEO) and B is poly(dimethyl siloxane), by hydrosilylation of mono- or diallyl-terminated PEO-oligomers and Si-H-terminated PDMS oligomers with hexachloroplatinic acid as a catalyst, was 30 reported by Haesslin. The molecular weight of PDMS-oligomer was 1000 g/mol and the molecular weight of ternary block copolymers (ABA) was between 1550 g/mol and 1800 g/mol.

Haesslin & Eike describe ternary block copolymers PEO-PDMS-PEO, where the molecular weight of PDMS is 1000 g/mol and the molecular weight of PEO-block is between 100 g/mol and 750 g/mol.

5 Galin & Mathis describe the preparation of ternary PDMS-PEO-PDMS block copolymers. The molecular weight of PDMS was between 1000 g/mol and 4700 g/mol and the molecular weight of PEO was between 6200 g/mol and 10,700 g/mol.

European Patent Publication EP 545,002 describes grafted
10 polysiloxanes prepared by hydrosilylation of polysiloxanes with polyalkylene oxides of formula
 $\text{CH}_2=\text{CHCH}_2\text{O}(\text{CHRCH}_2\text{O})_n\text{CH}_2\text{CH}=\text{CH}_2$. In these polymers, the polyether moieties are linked to the alkyl substituent of silicon instead of being linked to the stem.

15 OBJECT OF THE INVENTION

This invention is directed to providing new alkylene terminated polysiloxane-poly(alkylene oxide)-based block copolymers of controlled polarity for the preparation of elastomers, either as such or as a component in the
20 elastomeric structure or as a component in the mixture of an elastomeric composition. The new copolymers must satisfy the following criteria:

1. In the preparation of elastomers, the copolymer should be capable of crosslinking, for example by hydrosilylation.
25 Thus the copolymer should include an alkyl-terminated polyalkylene oxide block at both of its ends to allow crosslinking by hydrosilylation. The copolymers described in Galin & Mathis do not satisfy this condition.
2. The molecular weight should be at least 20,000 g/mol, preferably from about 40,000 g/mol to about 300,000 g/mol.
30 The ternary block copolymers described in Haesslin & Eicke are markedly smaller. Moreover, it is of importance that

3

polysiloxane and polyalkylene oxide blocks are linked to each other by silicon-carbon bonds.

3. The copolymer must exist in one phase. If the molecular weight of the polyalkylene block is too high in relation to
5 the molecular weight of the polysiloxane unit, phase separation will occur.

SUMMARY OF THE INVENTION

Thus, the invention is directed to a new polysiloxane-based block copolymer of formula

wherein

A = $-(SiR'R''O)_nSiR'R''-$, wherein R' and R'' are the same or different and represent a lower alkyl group or a phenyl group, where said alkyl or phenyl group may be substituted
15 or unsubstituted;

B is polyalkylene oxide of formula

and T is

wherein

R is hydrogen, lower alkyl, or phenyl,
5 R₁ is hydrogen or lower alkyl,
y is 2 - 6,
m is 3 - 30,
n is 5 - 3000, and
x is 0 - 100.

10 The term "lower alkyl" represents C₁-C₆ alkyl groups.

The substituents R' and R'' of formula (I) are preferably both methyl groups.

The number y is preferably 2.

R is preferably hydrogen, methyl, or phenyl.

15 According to a preferred embodiment, the B in the formula (I) is

and T is

20

The invention is also directed to a method for the preparation of new compounds of formula (I). The method is
25 characterized in that the polysiloxane of formula (II)

wherein R' and R'' are the same, or different, lower alkyl or phenyl groups, where said alkyl or phenyl group may be substituted or unsubstituted, is reacted, in the presence of a catalyst, with a polyalkylene oxide of formula (IIIa)

5 or (IIIb)

10 where R, R₁, n, and m are the same as above.

Preferred compounds of the group IIIa include vinyl or allyl terminated polyethylene glycol. A preferred compound of the group IIIb is, for example, methacryl terminated polyethylene glycol.

15 A preferred catalyst is a noble metal catalyst, most generally a platinum complex in alcohol, xylene, divinyl siloxane, or cyclic divinyl siloxane. An especially preferred catalyst is Pt(0)divinyl tetramethyl siloxane complex.

20 In order to prepare the α,ω -alkylene terminated PEO(PDMS-PEO)_n copolymer, the compound of formula (IIIa) or (IIIb) must be used in excess in relation to the compound of formula (II). Preferably, the molar ratio

25 $\frac{\text{compound of formula (IIIa) or (IIIb)}}{\text{compound of formula (II)}}$

is between 1.05 and 2.0.

The invention is disclosed below in greater detail with reference to the examples.

EXAMPLE 1

Procedure for an α,ω -vinyl terminated PEO-(PDMS-PEO)_n polymer, where the hydride terminated PDMS has a molecular weight of 5000 g/mol and the vinyl terminated PEO has a molecular weight of 240 g/mol.

0.528 g of anhydrous vinyl-terminated polyethylene glycol (PEOVI, α,ω -vinyl-terminated) with a molecular weight of 10 240 g/mol is weighed to a dried three-necked flask with a capacity of 50-100 ml. In addition, to the same vessel is added 10 g of polydimethyl siloxane (PDMS, α,ω -hydride-terminated, $M_n = 5000$ g/mol). The content of hydride groups in PDMS is 0.04 % by weight resulting in 4 mmol of hydride 15 groups per 10 grams with the amount of previously weighed PEOVI-vinyl groups being 4.4 mmol (= 2 x 0.528/240 mol). The excess of the vinyl groups in the reaction results in vinyl groups in both ends of the final product, which is a prerequisite for the subsequent crosslinking. In addition, 20 toluene, dried by distillation, is added to the reaction such that its content is 30 % (4.5 g) by weight, in order to facilitate mixing and to keep the reaction from occurring too vigorously. The reaction solution is stirred over a magnetic stirring plate at 400 rpm and dry oxygen is 25 bubbled through the solution (about three bubbles per second), which prevents the conversion of the catalyst to a metallic state, thus preventing the deactivation of the catalyst. After addition of the catalyst (Pt(0)divinyl tetramethyl siloxane complex) through the septum, the 30 reaction solution is warmed to 50 °C. The amount of the catalyst is 50 ppm based on the total amount of reactants participating in the reaction. The catalyst is added dropwise thus preventing the formation of hot spots in the reactor. Upon addition of the catalyst the polymerization 35 is allowed to proceed for 2 hours. The completion of the

reaction is then confirmed by IR (the loss of Si-H-peak at 2130 cm⁻¹). Upon the cessation of the polymerization the reaction is warmed to 65 °C and toluene removed under vacuum (4 mm Hg) for 30 minutes. The absence of toluene is
5 detected most preferably by using NMR.

EXAMPLE 2

Procedure for α,ω -allyl-terminated PEO-(PDMS-PEO)_n polymer where PDMS has a molecular weight of 5000 g/mol and the allyl terminated PEO has a molecular weight of 520 g/mol:

- 10 To a dried three-necked flask with a capacity of 50-100 ml is weighed anhydrous allyl-terminated polyethylene glycol (PEOA, α,ω -allyl-terminated) having a molecular weight of 520 g/mol, and hydride-terminated polydimethyl siloxane (PDMS, α,ω -hydride terminated $M_n = 5000$ g/mol). The mass of
- 15 PEOA is 1.38 g (5.28 mmol of allyl groups) and the mass of PDMS is 12 g (4.8 mmol of hydride groups), and thus the amount of allyl groups exceeds the amount of the hydride groups by 10 per cent. This secures an allyl terminated end product. In addition, toluene is weighed to the reaction
- 20 vessel such that it represents 45 % (7.2 g) by weight. The reaction mixture is stirred on a magnetic stirring plate at 400 rpm and dry oxygen is bubbled through the mixture (about three bubbles per second). The reaction mixture is brought to a temperature of 60 °C. The catalyst
- 25 (Pt(0)divinyl tetramethyl siloxane complex) is then cautiously added to the mixture through the septum one drop at a time. The amount of the catalyst is 50 ppm based on the added reactants. The polymerization is allowed to proceed for 6 hours and the completion of the
- 30 polymerization is then confirmed by IR (the loss of the Si-H-peak at 2130 cm⁻¹). For the removal of toluene the reaction is brought to 65 °C and toluene removed under vacuum (4 mm Hg) for 30 minutes. The absence of toluene is detected by NMR.

EXAMPLE 3

Procedure for monophasic α,ω -methacryl terminated PEO-(PDMS-PEO)_n polymer, where the hydride-terminated PDMS has a molecular weight of 5000 g/mol and the methacrylated PEO 5 has a molecular weight of 538 g/mol

To a dried three-necked flask with a capacity of 50-100 ml is weighed anhydrous methacryl-terminated polyethylene glycol (PEOMA, α,ω -methacryl-terminated) with a molecular weight of 538 g/mol, and hydride-terminated polydimethyl siloxane (PDMS, α,ω -hydride terminated $M_n = 5000$ g/mol). The mass of PEOMA is 1.184 g (4.4 mmol of methacryl groups) and the mass of PDMS is 10 g (4.0 mmol of hydride groups), and thus the amount of methacryl groups exceeds the amount of the hydride groups by 10 per cent. This secures a methacryl 10 terminated end product. In addition, toluene is weighed to the reaction vessel such that it represents 45 % (9.2 g) by weight. The reaction mixture is stirred on a magnetic stirring plate at 400 rpm and dry oxygen is bubbled through the mixture (about three bubbles per second). The reaction 15 mixture is brought to a temperature of 60 °C. The catalyst (Pt(0)divinyltetramethyl siloxane complex) is then added to the mixture through the septum one drop at a time. The amount of the catalyst is 50 ppm based on the added reactants. The polymerization is allowed to proceed for 20 hr and the completion of the polymerization is then confirmed by IR (the loss of the Si-H-peak at 2130 cm⁻¹). For the removal of toluene the reaction is brought to 65 °C and toluene removed under vacuum (4 mm Hg) for 30 minutes. The absence of toluene is detected by using NMR.

25 For an expert in the art it is clear that the different embodiments of the invention may vary within the scope of the claims presented below.

CLAIMS

1. A new polysiloxane-based block copolymer characterized by the formula

T(AB)_xAT (I)

wherein

5 A = -(SiR'R''O)_nSiR'R''-, wherein R' and R'' are the same or different and represent a lower alkyl group or a phenyl group, where said alkyl or phenyl group may be substituted or unsubstituted;

B is polyalkylene oxide of formula

10 $\begin{array}{c} R \\ | \\ -(\text{CH}_2)_y\text{O}(\text{CHCH}_2\text{O})_m(\text{CH}_2)_y-, \text{ or} \end{array}$

and T is

15 $\begin{array}{c} R \\ | \\ \text{CH}_2=\text{CH}(\text{CH}_2)_{y-2}\text{O}(\text{CHCH}_2\text{O})_m(\text{CH}_2)_y-, \text{ or} \end{array}$

wherein

20 R is hydrogen, lower alkyl, or phenyl; R₁ is hydrogen or lower alkyl; y is 2 - 6; m is 3 - 30; n is 5 - 3000; and x is 0 - 100.

2. The block copolymer according to claim 1, characterized

10

in that R' and R'' in the formula (I) are each methyl groups; y is 2; and R is hydrogen, methyl, or phenyl.

3. The block copolymer according to claim 1 or 2, characterized in that B in the formula (I) is

5

and T is

10

4. A method for the preparation of a polysiloxane-based block copolymer (I) of claim 1, characterized in that a polysiloxane of formula (II)

15

wherein R' and R'' are the same or different and represent a lower alkyl group or a phenyl group, where said alkyl or phenyl group may be substituted or unsubstituted;

20

is reacted in the presence of a catalyst with a polyalkylene oxide of formula (IIIa) or (IIIb)

25

wherein R, R₁, n, and m are the same as defined in claim 1.

11

5. The method according to claim 4, characterized in that the catalyst is a noble metal catalyst, such as a platinum complex in alcohol, xylene, divinyl siloxane, or cyclic vinyl siloxane.
- 5 6. The method according to claim 5, characterized in that the catalyst is a Pt(0)divinyl tetramethyl siloxane complex.

ABSTRACT

The invention relates to a new polysiloxane-based block copolymer having a formula

wherein

A = $-(SiR'R''O)_nSiR'R''-$, wherein R' and R'' are the same or different and represent a lower alkyl group or a phenyl group, wherein said alkyl or phenyl group may be substituted or unsubstituted;

B is polyalkylene oxide of formula

and T is

wherein

R is hydrogen, lower alkyl, or phenyl; R₁ is hydrogen or lower alkyl; y is 2 - 6; m is 3 - 30; n is 5 - 3000; and x is 0 - 100.

PATENTTI- JA REKISTERIHALLITUS
Patentti- ja innovaatiolinja

TUTKIMUSRAPORTTI

PATENTTIHAKEMUS NRO	LUOKITUS
981506	C08G 77/46, A61K 9/58, 31/56

TUTKITTU AINEISTO**Patentijulkaisukokoelma (FI, SE, NO, DK) tutkitut luokat**

C08G 77/46, A61K 9/52-/58, 31/56-/585

Tiedohaut ja muu aineisto

Chemical Abstracts. American Chemical Society. 1967- [online] STN International

EPO documentation, EPO, World Patents Index, Derwent, Patent Abstracts of Japan, JPO. 1970- [online] EPOQUE

VIITEJULKAISUT

Kategoria*)	Julkaisun tunnistetiedot	Koskee vaatimuksia
X	EP A1 545002, C08G 77/46	1-22
Ks. välipäätös	EP A1 882753, C08G 77/38	1-22
Ks. välipäätös	FI-A0 973427, C08G 77/46	1-22
X	J. Of Controlled Release, 10 (1989), Katherine L. Ulman & al. "Drug permeability of modified silicone polymers. I. Silicone- organic block copolymers", s. 251-260	1-22
X	Chemical Abstracts [CD-ROM]. American Chemical Society. Tüvistelma 126:200090 Synthesis and drug release property of polysiloxane containing pendant long alkyl ether group. Hu, Yunhua; Zhuo, Renxi (Department Chemistry, Wuhan University, Wuhan 430072, Peop. Rep. China). Gaofenzi Xuebao, (1), 62-67 (Chinese) 1997 Kexue	1-22

- *) X Patentoitavuuden kannalta merkittävä julkaisu yksinään tarkasteltuna
- Y Patentoitavuuden kannalta merkittävä julkaisu, kun otetaan huomioon tämä ja yksi tai useampi samaan kategoriaan kuuluva julkaisu
- A Yleistä tekniikan tasoa edustava julkaisu, ei kuitenkaan patentoitavuuden este

Päiväys
8.2.1999Tutkija
Liisa Hellc

Translation of the Search Report of the patent application FI 981506

Board of Patents and Registrations
Section of patents and innovations

Search Report

Patent application no.
981506

International Classification
C08G 77/46, A61K 9/58, 31/56

Documentation searched
Patent publication (FI, SE, NO, DK), classes searched
C08G 77/46, A61K 9/52-58, 31/56-585

Databases and other searches
Chemical Abstracts, American Chemical Society. 1967-[online] STN International
EPO documentation, EPO, World Patents Index, Derwent, Patent Abstracts of Japan, JPO. 1970-[online] EPOQUE

References

Category*)	Bibliographical data	Refers to claims
X	EP A1 545002, C08G 77/46	1-22
See the Office Action	EP A1 882753, C08G 77/38	1-22
See the Office Action	FI A0 973427, C08G 77/46	1-22
X	J. of Controlled Release, 10 (1989), Katharine L. Ulman & al. "Drug permeability of modified silicone polymers. I. Silicone-organic block copolymers", p. 251-260	1-22
X	Chemical Abstracts [CD-ROM] American Chemical Society. Abstract 126:2000090, "Synthesis and drug release property of polysiloxane containing pendant long alkyl ether group". Hu, Yunhua; Zhuo, Renxi (Department Chemistry, Wuhan University, Wuhan 430072, Peop. Rep. China). Gaofenzi Xuebao, (1), 62-67 (Chinese) 1997 Kexue	1-22

*)

X a relevant document concerning the patentability when taken alone

Y a relevant document concerning the patentability when taken together with one or more of the documents in the same category

A a document representing the general state of the art, not a bar to patentability

Date 8.2.1999

Examiner Liisa Helle