Physics Formula Revision (Conditions highlighted in red) [Draft Ver]

Topic	Formula	SI unit	Final unit
2.1: Kinematics	Speed = Distance	Distance (m)	m/s
	Time	Time (sec)	
	$Velocity = \frac{Displacement}{Time}; v = \frac{s}{t}$	Displacement (m)	m/s
	Time, $v = \frac{1}{t}$	Time (sec)	
	$Acceleration = \frac{\text{Diff. in Velocity}}{\text{Time}}$	Velocity (m/s)	m/s ²
	Acceleration = Time	Time (sec)	
	Condition: Used only when acceleration is constant.		
	Resultant Force = Mass × Acceleration	Force (N)	Newton (N)
2.2 Dynamics	F = ma	Mass (kg)	
	147	Acceleration (m/s ²)	Naveton (NI)
0.0 M	W = mg	Mass (kg) g = 10 N/kg	Newton (N)
2.3 Mass Weight Density	111	Mass (g/kg)	g/cm ³ or kg/m ³
Density	$\rho(\text{Density}) = \frac{m}{V};$	Volume (cm ³ /m ³)	
	Moments = Fd	Force (N)	Newton metre
2.4 Turning Effect of Forces		Perpendicular Distance (m)	(Nm)
UI FUICES	Note: Perpendicular Distance is not always t		1 7 -
	Solids: Pressure = $\frac{Force}{A} = \frac{F}{A}$	Force (N) Area (m ²)	N/m² , Pa
	Area A	, ,	,
0.5.5	Liquids: Pressure = $h\rho g$	h (m): Depth of Liquid	N/m² , Pa
2.5 Pressure		ρ (kg/m ³): Density of liquid	
	Gases (when temp. is constant)	g: 10N/kg P (Pa): Pressure	NA NA
	$P_1V_1 = P_2V_2$	V (m ³): Volume	I N/A
	W(Work Done) = Fd	F (N): Force	J
	VV(VVOIR DOILE) = 1 u	d (Perpendicular dist): m	
2.6 Energy, Work, power	KE K: .: E 1 2	m (kg): Mass	J
	K.E. Kinetic Energy $=\frac{1}{2}mv^2$	v (m/s): Velocity	
	P.E. Potential Energy = mgh	m (kg): Mass	J
	0,5	g: 10N/kg	
	IV or Fnormy change	h (m): Height Energy change /Work done(J)	J/s, W (watt)
	$\times P \text{ Power } = \frac{W \text{ or Energy change}}{\text{Times}}$	Time (s)	o, o, w (watt)
	Time	Theta: Unknown temperature	°C
3.1 Principles of	$\theta = \frac{X_{\theta} - X_0}{X_{100} - X_0}$ (For Celsius scale only)	X_0 : "ice point", X_{100} : Steam pt	
Thermometry			
3.2 Thermal Properties of Matter	$Q(\text{heat energy}) = C\theta$	C: Heat capacity	J
	$Q = mc\theta$	m: mass	J
		c: Specific Heat Capacity	
	$Q = ml_f$	l_f : Latent heat of fusion	J
	$Q = ml_v$	l_v : Latent heat of vapourisation	J
4.1: General Wave Properties	1	f: Frequency	Hz
	$f = \frac{1}{T}$ $v = f\lambda$	t (sec): Time	
	$v = f\lambda$	v (m/s): Velocity	m/s
		λ (m): Wavelength	
4.2: Light	On all'a Laur	f(1/t): Frequency n = refractive index (ratio)	NA. Ratio.
	Snell's Law:	i/r (°): angle of	IVA. Natio.
	$\frac{\sin i}{\sin r} = n$	incidence/refraction	
		*Set calculator in degree mode.	
	Condition: The angle of incidence must be in	the less dense medium; angle r m	ust be in the
	denser medium.		

4.2: Light	$\frac{c}{v} = \frac{\text{Real depth}}{\text{Apparent depth}} = \frac{\text{Ht of image}}{\text{Ht of object}} = n$ $c = \sin^{-1} n$	c (m/s): Speed of light in vaccum (3x10 ⁸ m/s) v (m/s): Speed of light in medium. c (°): Critical angle.	NA. Ratio.
5.1: Current Electricity	$I = \frac{Q}{t}$	I: Current (A) Q: Charge (Columb) t: Time (sec)	Coloumb, C
	$\varepsilon = \frac{W}{Q}$	ε : E.m.f. (Volts – V) W: Work done/energy of circuit (J) Q: Charge (Columb)	V, J/C
	$V = \frac{W}{Q}$	V: Potential Diff. (V) W: Work done/energy across circuit component Q: Amount of charge	V, J/C
	Ohm's Law: $V = IR$ Condition: Only for ohmic conductors.	R: Resistance (Ω)	V
	$R = \rho \frac{l}{A}$	$ ho$: Resistivity (Ω m) L: Length A: Cross-sectional Area	Ω
5.2: Practical Electricity	$E = VIt = I^2RT = \frac{V^2t}{R}$		J
	$P = VI = I^2 R = \frac{V^2}{R}$	P = Power R = Resistance	W
5.3: Electromagnetic Induction	$\frac{V_s}{V_p} = \frac{N_s}{N_p} = \frac{I_p}{I_s}$		