

Amendments to the Claims:

Please amend the claims as follows. This listing of claims will replace all prior versions of the claims in the application.

1 1. (Currently Amended) A machine-accessible medium that provides instructions, which

2 when executed by a computing platform, cause said computing platform to perform operations

3 comprising a method of:

4 obtaining a first circuit layout design;

5 obtaining a second circuit layout design;

6 generating a first topology graph for said first circuit layout design;

7 generating a second topology graph for said second circuit layout design;

8 comparing said first topology graph and said second topology graph to obtain a

9 comparison result, wherein said comparison result comprises at least a first matched topology

10 graph node pair and a second matched topology graph node pair connected via a topology graph

11 line pair, said topology graph line pair having a pair of lengths and a pair of widths, wherein said

12 method further comprises:

13 comparing said pair of lengths to a length sensitivity parameter; and

14 comparing said pair of widths to a width sensitivity parameter; and

15 reporting said comparison result.

1 2. (Original) A machine-accessible medium as in claim 1, wherein said first topology

2 graph comprises a plurality of first topology graph nodes and a plurality of first topology graph

3 lines, and wherein said second topology graph comprises a plurality of second topology graph

4 nodes and a plurality of second topology graph lines.

1 3. (Original) A machine-accessible medium as in claim 2, wherein each first topology
2 graph node comprises a data structure identifying at least one selected from the group consisting
3 of: a node type for the first topology graph node, a node function for the first topology graph
4 node, a node location for the first topology graph node, first topology graph lines connected to
5 the first topology graph node, and at least one layer for the first topology graph,

6 wherein each first topology graph line comprises a data structure identifying at least one
7 selected from the group consisting of: a line type for the first topology graph line, a line location
8 for the first topology graph line, a head node for the first topology graph line, a tail node for the
9 first topology graph line, a layer for the first topology graph line, a line length for the first
10 topology graph line, and a line width for the first topology graph line,

11 wherein each second topology graph node comprises a data structure identifying at least
12 one selected from the group consisting of: a node type for the second topology graph node, a
13 node function for the second topology graph node, a node location for the second topology graph
14 node, second topology graph lines connected to the second topology graph node, and at least one
15 layer for the second topology graph, and

16 wherein each second topology graph line comprises a data structure identifying at least
17 one selected from the group consisting of: a line type for the second topology graph line, a line
18 location for the second topology graph line, a head node for the second topology graph line, a tail
19 node for the second topology graph line, a layer for the second topology graph line, a line length
20 for the second topology graph line, and a line width for the second topology graph line.

1 4. (Original) A machine-accessible medium as in claim 1, wherein said comparing
2 comprises determining a best matching topology graph node pair from said first topology graph
3 and said second topology graph.

1 5. (Original) A machine-accessible medium as in claim 4, wherein said determining said
2 best matching topology graph node pair comprises:

3 selecting a first topology graph node from said first topology graph and a second topology
4 graph node from said second topology graph to obtain a topology graph node pair;

5 comparing at least one attribute for said first topology graph node to at least one attribute
6 of said second topology graph node to obtain a confidence level for said topology graph node
7 pair;

8 comparing said confidence level for said topology graph node pair to a confidence
9 threshold;

10 if said confidence level for said topology graph node pair exceeds said confidence
11 threshold, identifying said topology graph node pair as a matching topology graph node pair and
12 comparing said confidence level for said topology graph node pair to a best confidence level; and

13 if said confidence level for said topology graph node pair exceeds said best confidence
14 level, setting a best matching topology graph node pair to said matching topology graph node pair
15 and setting said best confidence level to said confidence level.

1 6. (Original) A machine-accessible medium as in claim 4, wherein said comparing
2 further comprises determining an additional matching topology graph node pair from said first
3 topology graph and said second topology graph based on traversing said first and second

4 topology graphs from said best matching topology graph node pair.

1 7. (Original) A machine-accessible medium as in claim 6, wherein said determining said
2 additional matching topology graph node pair comprises:

3 selecting a first topology graph node from said first topology graph connected to a first
4 topology graph node of said best matching topology graph node pair to obtain a selected first
5 topology graph node;

6 selecting a second topology graph node from said second topology graph connected to a
7 second topology graph node of said best matching topology graph node pair to obtain a selected
8 second topology graph node;

9 comparing at least one attribute for said selected first topology graph node to at least one
10 attribute of said selected second topology graph node to obtain a confidence level;

11 comparing said confidence level to a confidence threshold;

12 if said confidence level said topology graph node pair exceeds said confidence threshold,
13 identifying said selected first topology graph node and said selected second topology graph node
14 as said additional matching topology graph node pair.

1 8. (Cancelled)

1 9. (Original) A machine-accessible medium as in claim 1, wherein said comparison
2 result comprises unmatched topology graph nodes, unmatched line lengths, and unmatched line
3 widths from said first topology graph, and unmatched topology graph nodes, unmatched line
4 lengths, and unmatched line widths from said second topology graph.

1 10. (Currently Amended) A method comprising:
2 obtaining a first circuit layout design;
3 obtaining a second circuit layout design;
4 generating a first topology graph for said first circuit layout design;
5 generating a second topology graph for said second circuit layout design;
6 comparing said first topology graph and said second topology graph to obtain a
7 comparison result, wherein said comparison result comprises at least a first matched topology
8 graph node pair and a second matched topology graph node pair connected via a topology graph
9 line pair, said topology graph line pair having a pair of lengths and a pair of widths, wherein said
10 method further comprises:
11 comparing said pair of lengths to a length sensitivity parameter; and
12 comparing said pair of widths to a width sensitivity parameter; and
13 reporting said comparison result.

1 11. (Original) A method as in claim 10, wherein said first topology graph comprises a
2 plurality of first topology graph nodes and a plurality of first topology graph lines, and wherein
3 said second topology graph comprises a plurality of second topology graph nodes and a plurality
4 of second topology graph lines.

1 12. (Original) A method as in claim 11, wherein each first topology graph node
2 comprises a data structure identifying at least one selected from the group consisting of: a node
3 type for the first topology graph node, a node function for the first topology graph node, a node

4 location for the first topology graph node, first topology graph lines connected to the first
5 topology graph node, and at least one layer for the first topology graph,
6 wherein each first topology graph line comprises a data structure identifying at least one
7 selected from the group consisting of: a line type for the first topology graph line, a line location
8 for the first topology graph line, a head node for the first topology graph line, a tail node for the
9 first topology graph line, a layer for the first topology graph line, a line length for the first
10 topology graph line, and a line width for the first topology graph line,
11 wherein each second topology graph node comprises a data structure identifying at least
12 one selected from the group consisting of: a node type for the second topology graph node, a
13 node function for the second topology graph node, a node location for the second topology graph
14 node, second topology graph lines connected to the second topology graph node, and at least one
15 layer for the second topology graph, and
16 wherein each second topology graph line comprises a data structure identifying at least
17 one selected from the group consisting of: a line type for the second topology graph line, a line
18 location for the second topology graph line, a head node for the second topology graph line, a tail
19 node for the second topology graph line, a layer for the second topology graph line, a line length
20 for the second topology graph line, and a line width for the second topology graph line.

1 13. (Original) A method as in claim 10, wherein said comparing comprises determining
2 a best matching topology graph node pair from said first topology graph and said second
3 topology graph.

1 14. (Original) A method as in claim 13, wherein said determining said best matching

2 topology graph node pair comprises:

3 selecting a first topology graph node from said first topology graph and a second topology

4 graph node from said second topology graph to obtain a topology graph node pair;

5 comparing at least one attribute for said first topology graph node to at least one attribute

6 of said second topology graph node to obtain a confidence level for said topology graph node

7 pair;

8 comparing said confidence level for said topology graph node pair to a confidence

9 threshold;

10 if said confidence level for said topology graph node pair exceeds said confidence

11 threshold, identifying said topology graph node pair as a matching topology graph node pair and

12 comparing said confidence level for said topology graph node pair to a best confidence level; and

13 if said confidence level for said topology graph node pair exceeds said best confidence

14 level, setting a best matching topology graph node pair to said matching topology graph node pair

15 and setting said best confidence level to said confidence level.

1 15. (Original) A method as in claim 13, wherein said comparing further comprises

2 determining an additional matching topology graph node pair from said first topology graph and

3 said second topology graph based on traversing said first and second topology graphs from said

4 best matching topology graph node pair.

1 16. (Original) A method as in claim 15, wherein said determining said additional

2 matching topology graph node pair comprises:

3 selecting a first topology graph node from said first topology graph connected to a first

4 topology graph node of said best matching topology graph node pair to obtain a selected first
5 topology graph node;
6 selecting a second topology graph node from said second topology graph connected to a
7 second topology graph node of said best matching topology graph node pair to obtain a selected
8 topology graph node;
9 comparing at least one attribute for said selected first topology graph node to at least one
10 attribute of said selected second topology graph node to obtain a confidence level;
11 comparing said confidence level to a confidence threshold;
12 if said confidence level said topology graph node pair exceeds said confidence threshold,
13 identifying said selected first topology graph node and said selected second topology graph node
14 as said additional matching topology graph node pair.

1 17. (Cancelled)

1 18. (Original) A method as in claim 10, wherein said comparison result comprises
2 unmatched topology graph nodes, unmatched line lengths, and unmatched line widths from said
3 first topology graph, and unmatched topology graph nodes, unmatched line lengths, and
4 unmatched line widths from said second topology graph.

1 19. (Currently Amended) An apparatus comprising at least one processor and at least
2 one machine-accessible medium coupled to said at least one processor, said at least one processor
3 adapted to perform operations comprising a method of:
4 obtaining a first circuit layout design;

5 obtaining a second circuit layout design;

6 generating a first topology graph for said first circuit layout design;

7 generating a second topology graph for said second circuit layout design;

8 comparing said first topology graph and said second topology graph to obtain a

9 comparison result, wherein said comparison result comprises at least a first matched topology

10 graph node pair and a second matched topology graph node pair connected via a topology graph

11 line pair, said topology graph line pair having a pair of lengths and a pair of widths, wherein said

12 method further comprises:

13 comparing said pair of lengths to a length sensitivity parameter; and

14 comparing said pair of widths to a width sensitivity parameter; and

15 reporting said comparison result.

1 20. (Original) An apparatus as in claim 19, wherein said first topology graph comprises

2 a plurality of first topology graph nodes and a plurality of first topology graph lines, and wherein

3 said second topology graph comprises a plurality of second topology graph nodes and a plurality

4 of second topology graph lines.

1 21. (Original) An apparatus as in claim 20, wherein each first topology graph node

2 comprises a data structure identifying at least one selected from the group consisting of: a node

3 type for the first topology graph node, a node function for the first topology graph node, a node

4 location for the first topology graph node, first topology graph lines connected to the first

5 topology graph node, and at least one layer for the first topology graph,

6 wherein each first topology graph line comprises a data structure identifying at least one

7 selected from the group consisting of: a line type for the first topology graph line, a line location
8 for the first topology graph line, a head node for the first topology graph line, a tail node for the
9 first topology graph line, a layer for the first topology graph line, a line length for the first
10 topology graph line, and a line width for the first topology graph line,

11 wherein each second topology graph node comprises a data structure identifying at least
12 one selected from the group consisting of: a node type for the second topology graph node, a
13 node function for the second topology graph node, a node location for the second topology graph
14 node, second topology graph lines connected to the second topology graph node, and at least one
15 layer for the second topology graph, and

16 wherein each second topology graph line comprises a data structure identifying at least
17 one selected from the group consisting of: a line type for the second topology graph line, a line
18 location for the second topology graph line, a head node for the second topology graph line, a tail
19 node for the second topology graph line, a layer for the second topology graph line, a line length
20 for the second topology graph line, and a line width for the second topology graph line.

1 22. (Original) An apparatus as in claim 19, wherein said comparing comprises
2 determining a best matching topology graph node pair from said first topology graph and said
3 second topology graph.

1 23. (Original) An apparatus as in claim 22, wherein said determining said best matching
2 topology graph node pair comprises:
3 selecting a first topology graph node from said first topology graph and a second topology
4 graph node from said second topology graph to obtain a topology graph node pair;

5 comparing at least one attribute for said first topology graph node to at least one attribute
6 of said second topology graph node to obtain a confidence level for said topology graph node
7 pair;

8 comparing said confidence level for said topology graph node pair to a confidence
9 threshold;

10 if said confidence level for said topology graph node pair exceeds said confidence
11 threshold, identifying said topology graph node pair as a matching topology graph node pair and
12 comparing said confidence level for said topology graph node pair to a best confidence level; and
13 if said confidence level for said topology graph node pair exceeds said best confidence
14 level, setting a best matching topology graph node pair to said matching topology graph node pair
15 and setting said best confidence level to said confidence level.

1 24. (Original) An apparatus as in claim 22, wherein said comparing further comprises
2 determining an additional matching topology graph node pair from said first topology graph and
3 said second topology graph based on traversing said first and second topology graphs from said
4 best matching topology graph node pair.

1 25. (Original) An apparatus as in claim 24, wherein said determining said additional
2 matching topology graph node pair comprises:

3 selecting a first topology graph node from said first topology graph connected to a first
4 topology graph node of said best matching topology graph node pair to obtain a selected first
5 topology graph node;

6 selecting a second topology graph node from said second topology graph connected to a

7 second topology graph node of said best matching topology graph node pair to obtain a selected
8 second topology graph node;
9 comparing at least one attribute for said selected first topology graph node to at least one
10 attribute of said selected second topology graph node to obtain a confidence level;
11 comparing said confidence level to a confidence threshold;
12 if said confidence level said topology graph node pair exceeds said confidence threshold,
13 identifying said selected first topology graph node and said selected second topology graph node
14 as said additional matching topology graph node pair.

1 26. (Cancelled)

1 27. (Original) An apparatus as in claim 19, wherein said comparison result comprises
2 unmatched topology graph nodes, unmatched line lengths, and unmatched line widths from said
3 first topology graph, and unmatched topology graph nodes, unmatched line lengths, and
4 unmatched line widths from said second topology graph.

1 28. (Currently Amended) An apparatus comprising:
2 a topology graph generator to produce a first topology graph from a first circuit layout
3 design and to produce a second topology graph from a second circuit layout design; and
4 a comparator coupled to said topology graph generator, said comparator to receive said
5 first topology graph and said second topology graph from said topology graph generator, said
6 comparator to compare said first topology graph and said second topology graph to obtain a
7 comparison result, wherein said comparison result comprises at least a first matched topology

8 graph node pair and a second matched topology graph node pair connected via a topology graph
9 line pair, said topology graph line pair having a pair of lengths and a pair of widths, wherein said
10 comparator further:

11 compares said pair of lengths to a length sensitivity parameter; and
12 compares said pair of widths to a width sensitivity parameter.

1 29. (Original) An apparatus as in claim 28, wherein said first topology graph comprises
2 a plurality of first topology graph nodes and a plurality of first topology graph lines, and wherein
3 said second topology graph comprises a plurality of second topology graph nodes and a plurality
4 of second topology graph lines.

1 30. (Original) An apparatus as in claim 29, wherein each first topology graph node
2 comprises a data structure identifying at least one selected from the group consisting of: a node
3 type for the first topology graph node, a node function for the first topology graph node, a node
4 location for the first topology graph node, first topology graph lines connected to the first
5 topology graph node, and at least one layer for the first topology graph,

6 wherein each first topology graph line comprises a data structure identifying at least one
7 selected from the group consisting of: a line type for the first topology graph line, a line location
8 for the first topology graph line, a head node for the first topology graph line, a tail node for the
9 first topology graph line, a layer for the first topology graph line, a line length for the first
10 topology graph line, and a line width for the first topology graph line,

11 wherein each second topology graph node comprises a data structure identifying at least
12 one selected from the group consisting of: a node type for the second topology graph node, a

13 node function for the second topology graph node, a node location for the second topology graph
14 node, second topology graph lines connected to the second topology graph node, and at least one
15 layer for the second topology graph, and
16 wherein each second topology graph line comprises a data structure identifying at least
17 one selected from the group consisting of: a line type for the second topology graph line, a line
18 location for the second topology graph line, a head node for the second topology graph line, a tail
19 node for the second topology graph line, a layer for the second topology graph line, a line length
20 for the second topology graph line, and a line width for the second topology graph line.

1 31. (Original) An apparatus as in claim 28, wherein said comparator determines a best
2 matching topology graph node pair from said first topology graph and said second topology
3 graph.

1 32. (Original) An apparatus as in claim 31, wherein to determine said best matching
2 topology graph node pair, said comparator:
3 selects a first topology graph node from said first topology graph and a second topology
4 graph node from said second topology graph to obtain a topology graph node pair;
5 compares at least one attribute for said first topology graph node to at least one attribute
6 of said second topology graph node to obtain a confidence level for said topology graph node
7 pair;
8 compares said confidence level for said topology graph node pair to a confidence
9 threshold;
10 if said confidence level for said topology graph node pair exceeds said confidence

11 threshold, identifies said topology graph node pair as a matching topology graph node pair and
12 comparing said confidence level for said topology graph node pair to a best confidence level; and
13 if said confidence level for said topology graph node pair exceeds said best confidence
14 level, sets a best matching topology graph node pair to said matching topology graph node pair
15 and setting said best confidence level to said confidence level.

1 33. (Original) An apparatus as in claim 31, wherein said comparator further determines
2 an additional matching topology graph node pair from said first topology graph and said second
3 topology graph based on traversing said first and second topology graphs from said best matching
4 topology graph node pair.

1 34. (Original) An apparatus as in claim 33, wherein to determine said additional
2 matching topology graph node pair, said comparator:
3 selects a first topology graph node from said first topology graph connected to a first
4 topology graph node of said best matching topology graph node pair to obtain a selected first
5 topology graph node;
6 selects a second topology graph node from said second topology graph connected to a
7 second topology graph node of said best matching topology graph node pair to obtain a selected
8 second topology graph node;
9 compares at least one attribute for said selected first topology graph node to at least one
10 attribute of said selected second topology graph node to obtain a confidence level;
11 compares said confidence level to a confidence threshold;
12 if said confidence level said topology graph node pair exceeds said confidence threshold,

13 identifies said selected first topology graph node and said selected second topology graph node as
14 said additional matching topology graph node pair.

1 35. (Cancelled)

1 36. (Original) An apparatus as in claim 28, wherein said comparison result comprises
2 unmatched topology graph nodes, unmatched line lengths, and unmatched line widths from said
3 first topology graph, and unmatched topology graph nodes, unmatched line lengths, and
4 unmatched line widths from said second topology graph.