WI23_CSBR-NY_1_NC_INT2 HW11 (Q5 & Q6)

Aaron Bengochea

TOTAL POINTS

10 / 28

QUESTION 1

1 Q5 5 / 10

 \checkmark - 5 pts Part b is incorrect or missing. See comments. The idea is if k+1 is prime, it's a product of one prime: itself. If it's not prime, its factors are products of primes by the inductive hypothesis. So k+1 is the product of several numbers, each of which is the product of primes.

QUESTION 2

2 Q6 5 / 18

 $\sqrt{-1 \text{ pts}}$ 7.4.1 F the inductive hypothesis is P(k)

√ - 4 pts 7.4.1 *G*

√ - 4 pts 7.4.3 *C*

 \checkmark - 4 pts 7.5.1 A Did not clearly prove that 4 evenly divides 3^(2k) -1

Question 5:

a) Using mathematical Induction

Base Case:
$$n = 1$$
;
 $n^3 + 2n = 1^3 + 2 * 1 = 3$

Therefore, for n = 1, 3 divides $n^3 + 2n$ is true

Inductive Step: We will show that for any positive int $k \ge 1$, if 3 divides $k^3 + 2k$, then 3 also divides $(k + 1)^3 + 2(k + 1)$.

$$(k + 1)^3 + 2(k + 1) = k^3 + 3k^2 + 3k + 1 + 2k + 2$$

Next,

$$k^3 + 3k^2 + 3k + 1 + 2k + 2 = (k^3 + 2k) + (3k^2 + 3k + 3)$$

By induction, we know that 3 divides $k^3 + 2k$, 3 also divides $(3k^2 + 3k + 3)$. Thus, we prove that 3 divides $(k + 1)^3 + 2(k + 1)$.

b)

1 Q5 5 / 10

 \checkmark - 5 pts Part b is incorrect or missing. See comments. The idea is if k+1 is prime, it's a product of one prime: itself. If it's not prime, its factors are products of primes by the inductive hypothesis. So k+1 is the product of several numbers, each of which is the product of primes.

Question 6:

1) Exercise 7.4.1

- a) P(3) (3(3 + 1)(2*3 + 1)) / 6 = 14 14 = 1^2 + 2^2 + 3^2
- b) Express P(k) (k(k + 1)(2k + 1)) / 6
- c) Express P(k + 1)((k + 1)(k + 2)(2k + 3)) / 6
- d) P(1) must be proven to be true in the base case
- e) For all positive ints k, P(k) implies P(k + 1)
- f) P(k)

2 Q6 5 / 18

- $\sqrt{-1}$ pts 7.4.1 F the inductive hypothesis is P(k)
- **√ 4 pts** 7.4.1 *G*
- **√ 4 pts** 7.4.3 *C*
- \checkmark 4 pts 7.5.1 A Did not clearly prove that 4 evenly divides 3 $^(2k)$ -1