Algebra Qualifying Exam January 27, 1998

Instructions: You are given 10 problems from which you are to do 8. Please indicate those 8 problems which you would like to be graded by circling the problem numbers on the problem sheet. **Note:** All rings in this exam are associative and with 1 and all integral domains are commutative.

- 1. Let G be a finite group of even order. Prove G contains an odd number of involutions. (An *involution* is an element of order 2.)
- 2. Let G be a group and assume that for all $1 \neq x \in G$, $C_G(x)$ is abelian. Define a relation \sim on G by $x \sim y$ if and only if xy = yx.
 - (a) Prove that \sim is an equivalence relation on the nonidentity elements G^{\sharp} of G.
 - (b) If \mathcal{C} is an equivalence class in G^{\sharp} , prove that $\{1\} \cup \mathcal{C}$ is a subgroup of G.
- 3. Let G be a finite group acting transitively on the set X. Fix $x \in X$, set $G_x = \operatorname{Stab}_G(x)$ and let $P \in \operatorname{Syl}_p(G_x)$, where p is prime. Prove that $N_G(P)$ acts transitively on $\operatorname{Fix}(P)$.
- 4. Let \mathbb{F} be a field and form the quotient ring

$$R = \mathbb{F}[x, y]/(x^2 + y^2)\mathbb{F}[x, y]$$

where x and y are indeterminate over \mathbb{F} . Prove that R is an integral domain if and only if -1 is not a square in \mathbb{F} .

5. Let R be a ring and let M be an irreducible R-module. Prove that if $0 \neq m \in M$, then the set

$$\operatorname{Ann}_{R}(m) = \{ r \in R | rm = 0 \}$$

is a maximal left ideal in R.

6. Suppose that V is a vector space over the field \mathbb{F} and that $T:V\to V$ is a linear transformation having invariant factors

$$x-2, x(x-2), x^{2}(x-2)^{2}, x^{2}(x-2)^{2}(x^{3}-1).$$

- (a) What is the nullity of T if char $\mathbb{F} \neq 2$?
- (b) What is the nullity of T if char $\mathbb{F} = 2$?
- (c) What is the dimension of the set of vectors fixed by T if char $\mathbb{F} \neq 3$?
- (d) What is the dimension of the set of vectors fixed by T if char $\mathbb{F} = 3$?
- 7. Let M be a Noetherian R-module and let $\phi: M \to M$ be a surjective R-module homomorphism. Prove that ϕ is injective. (Hint: consider the increasing sequence of submodules $0 \subseteq \ker \phi \subseteq \ker \phi \subseteq \ker \phi^2 \subseteq \cdots$.)
- 8. Let *R* be a unique factorization domain in which every prime ideal is maximal. Prove that every prime ideal is a principal ideal. (In fact, it turns out that *every* ideal is principal, but you don't need to show this.)
- 9. Let \mathbb{F} be a field and let $f(x), g(x) \in \mathbb{F}[x]$. Suppose that f(x) and g(x) share a common root in some extension field $\mathbb{K} \supseteq \mathbb{F}$. Show that the greatest common divisor of f(x) and g(x) in $\mathbb{F}[x]$ cannot be a unit.
- 10. Let p be prime and let $\zeta = e^{2\pi i/p}$. Compute the degree of $m_{\zeta+\zeta^{-1}}(x)$.