

DSA Data Structures Array String Linked List Stack Queue Tree Binary Tree Binary Search Tree Heap Hashing Graph Tr

Graph and its representations

Last Updated: 02 Jan, 2024

What is Graph Data Structure?

A <u>Graph</u> is a non-linear data structure consisting of vertices and edges. The vertices are sometimes also referred to as nodes and the edges are lines or arcs that connect any two nodes in the graph. More formally a Graph is composed of a set of vertices (\mathbf{V}) and a set of edges (\mathbf{E}). The graph is denoted by $\mathbf{G}(\mathbf{V}, \mathbf{E})$.

Representations of Graph

Here are the two most common ways to represent a graph:

- 1. Adjacency Matrix
- 2. Adjacency List

<u>Adjacency Matrix</u>

An adjacency matrix is a way of representing a graph as a matrix of boolean (0's and 1's).

Let's assume there are **n** vertices in the graph So, create a 2D matrix **adjMat[n][n]** having dimension n x n.

- If there is an edge from vertex i to j, mark adjMat[i][j] as 1.
- If there is no edge from vertex i to j, mark adjMat[i][j] as 0.

Representation of Undirected Graph to Adjacency Matrix:

The below figure shows an undirected graph. Initially, the entire Matrix is initialized to **0**. If there is an edge from source to destination, we insert **1** to both cases (adjMat[destination] and adjMat[destination]) because we can go either way.

Graph Representation of Undirected graph to Adjacency Matrix

Undirected Graph to Adjacency Matrix

Representation of Directed Graph to Adjacency Matrix:

The below figure shows a directed graph. Initially, the entire Matrix is initialized to **0**. If there is an edge from source to destination, we insert **1** for that particular **adjMat[destination]**.

Graph Representation of Directed graph to Adjacency Matrix

Directed Graph to Adjacency Matrix

Adjacency List

An array of Lists is used to store edges between two vertices. The size of array is equal to the number of **vertices** (i.e, n). Each index in this array represents a specific vertex in the graph. The entry at the index i of the array contains a linked list containing the vertices that are adjacent to vertex i.

Let's assume there are **n** vertices in the graph So, create an **array of list** of size **n** as **adjList[n]**.

- adjList[0] will have all the nodes which are connected (neighbour) to vertex 0.
- adjList[1] will have all the nodes which are connected (neighbour) to vertex **1** and so on.

Representation of Undirected Graph to Adjacency list:

The below undirected graph has 3 vertices. So, an array of list will be created of size 3, where each indices represent the vertices. Now, vertex 0 has two neighbours (i.e, 1 and 2). So, insert vertex 1 and 2 at indices 0 of array. Similarly, For vertex 1, it has two neighbour (i.e, 2 and 0) So, insert vertices 2 and 0 at indices 1 of array. Similarly, for vertex 2, insert its neighbours in array of list.

Graph Representation of Undirected graph to Adjacency List

Undirected Graph to Adjacency list

Representation of Directed Graph to Adjacency list:

The below directed graph has 3 vertices. So, an array of list will be created of size 3, where each indices represent the vertices. Now, vertex 0 has no neighbours. For vertex 1, it has two neighbour

(i.e, 0 and 2) So, insert vertices 0 and 2 at indices 1 of array. Similarly, for vertex 2, insert its neighbours in array of list.

Graph Representation of Directed graph to Adjacency List

Directed Graph to Adjacency list

"The DSA course helped me a lot in clearing the interview rounds. It was really very helpful in setting a strong foundation for my problem-solving skills. Really a great investment, the passion Sandeep sir has towards DSA/teaching is what made the huge difference." - **Gaurav | Placed at Amazon**

Before you move on to the world of development, **master the fundamentals of DSA** on which every advanced algorithm is built upon. Choose your preferred language and start learning today:

DSA In JAVA/C++
DSA In Python

DSA In JavaScript

Trusted by Millions, Taught by One- Join the best DSA Course Today!

Recommended Problems

Frequently asked DSA Problems

Solve Problems

851

Suggest improvement

Previous

Next

Introduction to Graphs - Data Structure and Algorithm Tutorials

Types of Graphs with Examples

Share your thoughts in the comments

Add Your Comment

Similar Reads

Sparse Matrix and its representations | Set 1 (Using Arrays and Linked Lists)

Sparse Matrix and its representations | Set 2 (Using List of Lists and Dictionary of keys)

Graph representations using set and hash

Maximize difference between odd and even indexed array elements by swapping unequal adjacent bits in their binary representations

Maximize difference between odd and even-indexed array elements by rotating their binary representations

XOR of two numbers after making length of their binary representations equal

Digits whose alphabetic representations are jumbled in a given string

Check if binary representations of 0 to N are present as substrings in given binary string

Find the number obtained by concatenating binary representations of all numbers up to N

Rearrange array to make decimal equivalents of reversed binary representations of array elements sorted

GeeksforGeeks

Article Tags: graph-basics, DSA, Graph

Practice Tags: Graph

GeeksforGeeks
A-143, 9th Floor, Sovereign Corporate
Tower, Sector-136, Noida, Uttar Pradesh 201305

Company	Explore	Languages	DSA	Data Science &	Web
About Us	Job-A-Thon Hiring	Python	Data Structures	ML	Technologies
Legal	Challenge	Java	Algorithms	Data Science With	HTML
Careers	Hack-A-Thon	C++	DSA for Beginners	Python	CSS
In Media	GfG Weekly Contest	PHP	Basic DSA Problems	Data Science For	JavaScript
Contact Us	Offline Classes	GoLang	DSA Roadmap	Beginner	TypeScript
Advertise with us	(Delhi/NCR)	SQL	DSA Interview	Machine Learning	ReactJS
	DSA in JAVA/C++		Questions	Tutorial	

24, 4:05 PM Graph and its representations - GeeksforGeeks							
GFG Corporate	Master System	R Language	Competitive	ML Maths	NextJS		
Solution	Design	Android Tutorial	Programming	Data Visualisation	NodeJs		
Placement Training	Master CP			Tutorial	Bootstrap		
Program	GeeksforGeeks			Pandas Tutorial	Tailwind CSS		
	Videos			NumPy Tutorial			
	Geeks Community			NLP Tutorial			
				Deep Learning			
				Tutorial			
Python Tutorial	Computer	DevOps	System Design	School Subjects	Commerce		
Python Programming	Science	Git	High Level Design	Mathematics	Accountancy		
Examples	GATE CS Notes	AWS	Low Level Design	Physics	Business Studies		
Django Tutorial	Operating Systems	Docker	UML Diagrams	Chemistry	Economics		
Python Projects	Computer Network	Kubernetes	Interview Guide	Biology	Management		
Python Tkinter	Database	Azure	Design Patterns	Social Science	HR Management		
Web Scraping	Management System	GCP	OOAD	English Grammar	Finance		
OpenCV Tutorial	Software Engineering	DevOps Roadmap	System Design		Income Tax		
Python Interview	Digital Logic Design		Bootcamp				
Question	Engineering Maths		Interview Questions				
UPSC Study	Preparation	Competitive	More Tutorials	Free Online Tools	Write & Earn		
Material	Corner	Exams	Software	Typing Test	Write an Article		
Polity Notes	Company-Wise	JEE Advanced	Development	Image Editor	Improve an Article		
Geography Notes	Recruitment Process	UGC NET	Software Testing	Code Formatters	Pick Topics to Write		
History Notes	Resume Templates	SSC CGL	Product Management	Code Converters			

Graph and its representations - GeeksforGeeks

Science and	Aptitude Preparation	SBI PO	Project Management	Currency Converter	Share your
Technology Notes	Puzzles	SBI Clerk	Linux	Random Number	Experiences
Economy Notes	Company-Wise	IBPS PO	Excel	Generator	Internships
Ethics Notes	Preparation	IBPS Clerk	All Cheat Sheets	Random Password	
Previous Year Papers	Companies			Generator	
	Colleges				

@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved