Composição Automática de Músicas utilizando Redes Neurais Recorrentes

Nicolas Mathias Hahn Orientador: Guilherme Pumi

Departamento de Estatística Instituto de Matemática e Estatística Universidade Federal do Rio Grande do Sul (UFRGS)

> Outubro, 2022 Porto Alegre - RS

Contextualização

Introdução

0000

- Composição algorítmica refere-se ao processo de criação de músicas com o mínimo de intervenção humana.
- A obra Musikalisches Wurfelspiel (Dice Music), de Wolfgang Amadeus Mozart (1756-1791), utilizou tal processo.

Figura: Dice Music

Hahn, N. M. IME-UFRGS

Referencial Teórico

Introdução

0000

Recreation of the "Reunion" board by Robert Cruickshank | Photo: World Chess Hall of Fame

Figura: Tabuleiro de Xadrez com Foto Receptor

- A performance Reunion, de John Cage (1912-1992), também utilizou composição automática.
- David Cope (1941-), em 1981, criou o EMI (Experiments in Musical Intelligence), um sistema com descrições de estilos composicionais capaz de criar os próprios.

Hahn, N. M. IMF-UFRGS

Literatura

Introdução

0000

- Via de regra, o problema de composição musical automática é explorado com foco na composição musical em si.
- Detalhes técnicos como os impactos que as modificações nos parâmetros têm na composição final, ainda, são amplamente desconhecidos.
- Exemplos: Agarwala et al. (2017), Kuang and Yang (2021).

Modelagem

Introdução

0000

- Estudar o quão sensível é um modelo de rede neural, baseado em processamento de linguagem natural, construído para composição musical.
- A mensuração será feita com a perplexidade, uma medida oriunda da teoria da informação.
- Avaliar, de forma subjetiva, as peças musicais obtidas em relação à musicalidade e à qualidade.

RNN - Redes Neurais Recorrentes

RNNs são um tipo de redes neurais criadas para processar séries temporais e outros tipos de dados sequenciais (Fan et al., 2021).

Figura: Diagrama de uma RNN *Vanilla* (adaptado de Goodfellow et al., 2016; Kamath et al., 2019)

- ▶ De acordo com Goodfellow et al. (2016), as LSTM fazem parte de uma classe de modelos chamada de RNN fechadas (gated RNN).
- Solution Os portões (gates), que também são camadas da rede neural, controlam o fluxo de informação, mantendo ou descartando o estado oculto h_t a cada passo temporal (Kamath et al., 2019).
- É uma das variantes de RNN desenvolvidas para contornar o problema de dissipação (ou explosão) do gradiente, que ocorre no ajuste da rede.

Figura: Diagrama de uma LSTM. Considere σ como a função de ativação logit (adaptado de Kamath et al., 2019).

Função de Ativação

Sigmóide (logit)

 $f\colon \mathbb{R} \to (0,1)$ dada por

$$f(x):=\frac{1}{1+e^{-x}}$$

Tangente Hiperbólica (tanh)

 $f: \mathbb{R} \to (-1,1)$ dada por

$$f(x) := \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Ajustando uma RNA

- Os pesos da rede são ajustados por meio do método do gradiente descendente estocástico (SGD).
- Utiliza-se uma partição aleatória dos dados de treino, denominada lote.
- ightharpoonup A taxa de aprendizagem ϵ define o tamanho do passo em direção ao gradiente negativo.
- Uma passagem pelo conjunto de dados de treinamento é denominada época.

Hahn, N. M. IMF-UFRGS Composição Automática de Músicas utilizando Redes Neurais Recorrentes

PLN - Processamento de Linguagem Natural

- Aplicação de métodos estatísticos e computacionais para modelar e extrair informações da linguagem humana (Kamath et al., 2019).
- É importante testar os algoritmos em mais de uma linguagem, especialmente em linguagens com diferentes propriedades (Jurafsky and Martin, 2021).
- Um modelo estatístico de linguagem é aquele que atribui probabilidades para uma sequência de tokens.

Modelagem

PLN - Perplexidade

- A perplexidade $\mathcal{P}(W) = e^{H(W)}$ é uma medida para a avaliação intrínseca de um modelo de linguagem.
- Medidas menores de perplexidade são indicativas de uma predição melhor.
- A perplexidade de dois modelos de linguagem apenas podem ser comparadas se ambos utilizam o mesmo vocabulário.

IMF-UFRGS

Notação ABC

Notação ABC é um sistema popular de notação musical baseada em texto para transcrever, publicar e compartilhar músicas, particularmente de forma online.

Figura: Exemplo de notação ABC convertendo em música.

Web Scraping

- ▶ De acordo com Lawson (2015); Patil and Patil (2016), envolve dois programas:
 - crawler: sistematicamente coleta os dados da Internet;
 - scraper: extrai a informação relevante e armazena em uma base de dados.

Figura: Crawler coletando páginas web.

IMF-UFRGS

Bases de Dados - Fontes

Irish

- contém 817 músicas folclóricas irlandesas no formato .abc;
- versão disponibilizada pelo Instituto de Tecnologia de Massachusetts (MIT).

ABC Notation

- coleta, via web scraping, do site abcnotation.com;
- foram coletados 184.900 músicas:
- selecionada uma amostra de 5.000.

Bases de Dados - Tratamentos

- tratamento: via expressões regulares, removeu-se caracteres que não afetam diretamente as músicas (título, letra de música);
- união: todas as músicas foram "coladas", como se fizessem parte de um único texto.
- tokenização: para cada caractere (token) presente, foi criado um único índice.

- Utilizou-se um modelo de RNN-LSTM, que foi ajustado com ambas as bases de dados de forma independente;
- Quatro camadas: entrada, Embedding, LSTM e Dense;

Modelagem

0000000

Foi feita uma divisão dos dados em 80% treino e 20% teste.

Modelo - Parâmetros (inicial)

- 2000 épocas no ajuste do modelo;
- função perda: entropia cruzada;
- métrica de avaliação: perplexidade;
- segmentou-se em duas etapas.

Modelo - Parâmetros (1ª etapa)

- fixou-se a função de ativação tanh na camada LSTM;
- foram alterados os seguintes parâmetros e hiperparâmetros:
 - vocab_size ∈ {64, 125};
 - ► $lstm_units \in \{256, 1024\};$
 - ightharpoonup embedding_dim $\in \{256, 512\}$;
 - learning_rate $\in \{10^{-3}, 10^{-5}\};$
 - seq_length ∈ {50, 200};
 - ▶ $batch_size \in \{4, 16\}.$
- foram ajustados 64 modelos, sendo 32 para cada base de dados.

Hahn, N. M. IME-UFRGS

Modelagem

0000000

Modelo - Parâmetros (2ª etapa)

- selecionou-se os dois melhores e os dois piores modelos da 1ª etapa;
- critério: perplexidade;
- trocou-se função de ativação para logit.

- 1. Construir um modelo com os devidos parâmetros;
- Fixado o modelo, carregam-se os pesos de um modelo similar ajustado previamente;
- Fornecer uma seguência de caracteres inicial, no caso "X:";
- 4. Iterativamente, o modelo estima um novo elemento para compor a sequência até atingir um comprimento definido;
- 5. Extrair da sequência blocos de texto candidatos a músicas e, ao serem convertidos com sucesso, resultam em músicas.

Irish - 1^a Etapa

Figura: Correlação entre parâmetros e métricas para Irish

Referencial Teórico

idx	train_loss		test_perplexity	
	tanh	logit	tanh	logit
5	2.964	3.021	24.709	27.576
7	2.963	3.135	20.401	24.726
11	0.982	1.195	2.835	3.549
25	1.171	1.389	2.752	3.263

ABC Notation - 1^a Etapa

Figura: Correlação entre parâmetros e métricas para ABC Notation

IME-UFRGS

ABC Notation - 2ª Etapa

idx	train_loss		test_perplexity	
	tanh	logit	tanh	logit
8	3.628	3.670	31.707	33.038
6	3.522	3.571	35.991	37.849
20	1.350	1.616	3.971	5.142
28	1.305	1.585	3.940	4.960

Irish: 24 músicas

- \rightarrow idx = 11: 10 músicas
 - logit: 4 músicas
 - tanh: 6 músicas
- \rightarrow idx = 25: 14 músicas
 - logit: 6 músicas
 - tanh: 8 músicas

ABC Notation: 14 músicas

- \rightarrow idx = 20: 8 músicas
 - logit: 4 músicas
 - tanh: 4 músicas
- \rightarrow idx = 28: 6 músicas
 - logit: 1 músicas
 - tanh: 5 músicas

IMF-UFRGS

Percepções sobre as Músicas

Irish

- trechos similares
- voz única
- musicalmente plausível

ABC Notation

- mais variabilidade
- voz múltipla
- musicalmente plausível

Os comentários feitos referente às composições geradas são as percepções do autor com seu limitado conhecimento musical.

Resumo

- Explorou-se o problema de composição automática de músicas.
- Investigou-se a sensibilidade dos modelos via modificação dos parâmetros.
- Mediu-se impactos das mudanças via perplexidade.
- Gerou-se novos arquivos .abc que, quando possível, foram convertidos em músicas.

Modelagem

Extensões

- Modificar a arquitetura contemplando o aumento do número de camadas:
- Explorar outros perfis de redes, como a transformer (Vaswani et al., 2017);
- Analisar detalhadamente características musicais das composições.

Referências I

- Agarwala, N., Inoue, Y., and Sly, A. (2017). Music composition using recurrent neural networks. CS 224n: Natural Language Processing with Deep Learning, Spring, 1:1–10.
- Fan, J., Ma, C., and Zhong, Y. (2021). A selective overview of deep learning. Statistical science: a review journal of the Institute of Mathematical Statistics, 36(2):264.
- Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http://www.deeplearningbook.org.
- Jurafsky, D. and Martin, J. H. (2021). Speech and language processing. US: Prentice Hall, 3.
- Kamath, U., Liu, J., and Whitaker, J. (2019). Deep learning for NLP and speech recognition, volume 84. Springer.

Referências II

- Kuang, J. and Yang, T. (2021). Popular song composition based on deep learning and neural network. *Journal of Mathematics*, 2021.
- Lawson, R. (2015). Web scraping with Python. Packt Publishing Ltd.
- Patil, Y. and Patil, S. (2016). Review of web crawlers with specification and working. *International Journal of Advanced Research in Computer and Communication Engineering*, 5(1):220–223.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. *Advances in neural information processing systems*, 30.

