

Modelado de Sistemas Computacionales

Grado en Ingeniería de Computadores

Práctica libre: Generador de señal controlado desde un puerto serie RS232

Apartado 3.

Entidad signal_generator.

☐ Entidad *signal_generator*.

Se encarga de decodificar el dato recibido por el puerto serie (*DATO_RX*) y generar los datos a enviar al DAC

Práctica libre: Generador de señal controlado por el puerto serie RS232

Funcionalidad de los bits del dato recibido.

			В	it de D	ATO_F				
VOUT	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	Selección
	0	0	Х	X	Х	1	1	0	Señal sinusoidal
	0	0	X	X	Х	1	0	1	Señal triangular
	0	0	X	X	Х	1	0	0	Diente de sierra
	0	0	Х	X	Х	0	1	1	Señal cuadrada D=50%
	0	0	X	X	Х	0	1	0	Señal cuadrada D=25%
	0	0	Х	X	Х	0	0	1	Señal cuadrada D=75%
	0	1	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀	Frecuencia de la señal
	1	0	Х	X	G ₃	G ₂	G ₁	G_0	Ganancia
	1	1	DC ₅	DC ₄	DC ₃	DC ₂	DC ₁	DC_0	Nivel de continua (DC)

Valores por defecto de la señal generada

Tipo de señal	Sinusoidal
Frecuencia	Un valor distinto de cero
Ganancia	3
Nivel de continua (DC)	0

Modelado de Sistemas Computacionales (GIC)

3

Entidad signal_generator

DOUT debe saturar a 2¹²-1.

Entidad signal_generator

Modelado de Sistemas Computacionales (GIC)

5

Entidad signal_generator

	Bit de DATO_RX								
VOUT	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	Selección
	0	0	Х	Х	Х	1	1	0	Señal sinusoidal
	0	0	X	Х	X	1	0	1	Señal triangular
	0	0	X	X	X	1	0	0	Diente de sierra
	0	0	X	X	X	0	1	1	Señal cuadrada D=50%
	0	0	X	X	X	0	1	0	Señal cuadrada D=25%
	0	0	X	X	X	0	0	1	Señal cuadrada D=75%

Modelado de Sistemas Computacionales (GIC)

7

 $igoplus { extstyle F_OUT}$

D

Entidad signal_generator

Generación de DOUT OK.


```
Test-bench.
entity signal_generator_tb is
end signal_generator_tb;
architecture sim of signal_generator_tb is
begin -- sim
   DUT : entity work.signal_generator
      port map (
RST
CLK
          process (F_OUT_i)
   variable t_aux : time := 1 ns;
begin -- process
   if F_OUT_i'event and F_OUT_i = '1' then
        T <= now - t_aux;
        t_aux := now;
end_if;</pre>
   process
      procedure act_dato_vld is
      begin
          wait until CLK i = '0';
DATO RX OK i <= '1';</pre>
          wait for 1 us;
DATO_RX_OK_i <= '0';
wait for 1 us;</pre>
                                                                                                                        end process;
                                                                                                                        F \le 1.0e-3*real((1 sec)/T) when T > 0 ns else 1.0;
       end act_dato_vld;
                                                                                                                    end sim:
   begin
      agin
   --ganancia inicial
   DATO RX_i(7 downto 6) <= "10";
   DATO RX i (5 downto 0) <= "100111";
   wait for 0.3 us;
   --forma de onda inicial
   DATO RX_i(7 downto 6) <= "00";
   DATO_RX_i (5 downto 0) <= "001110";
   act_dato_vld;
   wait for 3 ms;</pre>
       report "FIN CONTROLADO DE LA SIMULACION" severity failure;
   end process;
```

Modelado de Sistemas Computacionales (GIC)

9

