Applications of Differentiation

-- Contextual Applications

Straight-Line Motion

Considering the straight-line motion where an object moves along a straight line: When is the particle moving to the right? Or moving to the left? Or when it's at rest? When it's speeding up, slowing down?...

Position, velocity, acceleration...

Position Function...

Position function s(t): tells you the location of the particle

(Total) Distance:

Displacement:

Velocity Function...

Average velocity =
$$\frac{Final\ position-initial\ position}{time\ inerval} = \frac{s(t_1)-s(t_0)}{t_1-t_0}$$

Velocity function v(t) =

 \diamond Moving forward (to the right) when v(t) = 0

Moving backward (to the left) when v(t) = 0

object **stopped** when v(t) = 0

Example 1:

For $s(t) = t^2 - 2t - 3$, show its position on the number line for t = 0,1,2,3,4. Find the displacement, distance and average velocity of the particle on the interval [0,4].

Speed and velocity

Speed =

The speed of an object must either be positive or zero (meaning the object has stopped).

Speed up when _____

Slow down when _____

Acceleration

Acceleration a(t) =
$$\lim_{h\to 0} \frac{v(t+h) - v(t)}{h} = v'(t) = s''(t)$$

- \Rightarrow a(t) > 0: object accelerating to the right, v(t) _____
- \Rightarrow a(t) < 0: object accelerating to the left, v(t) _____
- a(t) =0: v(t) ______

Example 2: A particle moves along the *x*-axis with position function $s(t) = t^2 - 4t + 2$.

$$v(t) = \underline{\hspace{1cm}} a(t) = \underline{\hspace{1cm}}$$

1	t	s(t)	v(t)	v(t)	a(t)	what direction the particle is moving	speeding up or slowing down
(0						
2	2						
4	4						
6	6						

- ♦ Speed up when a(t) and v(t) have the _____ sign(s)
- ♦ Slow down when a(t) and v(t) have the _____ sign(s)

Relationship Between Velocity and Acceleration

How are we moving?	a(t) > 0	a(t) < 0	a(t) = 0
v(t) > 0			
v(t) < 0			

Example 3: The graph below models the velocity of a bug on the interval $0 \le t \le 13$.

- a. Find v(3) and v(11).
- b. Find a(1),a(5), and a(9).
- c. At what time does the bug turn around?
- d. On what interval does the bug have a negative acceleration?

A particle starts moving at time t = 0 and moves along the x-axis so that its position at time $t \ge 0$ is given by $x(t) = t^3 - \frac{9}{2}t^2 + 7$.

- (a) Find the velocity of the particle at any time $t \ge 0$.
- (b) For what values of t is the particle moving to the left.
- (c) Find the values of t for which the particle is moving but its acceleration is zero.
- (d) For what values of t is the speed of the particle decreasing?

Example 5: A particle is moving along a horizontal line with position function $s(t) = t^3 - 9t^2 + 24t + 4$ for t > 0. Do an analysis of the particle's direction, acceleration, motion (speeding up or slowing down), and position.

[Hint]

- Direction: v(t)>0 right v(t)<0 left \rightarrow Find the sign of v(t)
- Speeding up/slowing down:
 - \blacksquare Method 1: graph of |v(t)|
 - \blacksquare Method 2: observe the sign of a(t)v(t)

Summary

Statement	Translation
The bug is stopped	v(t) = 0
The bug is moving to the right	v(t) > 0
The bug is moving to the left	v(t) < 0
The bug turns around	v(t) changes signs
The bug is speeding up	v(t) increasing or $v(t)a(t) > 0$
The bug is slowing down	v(t) decreasing or $v(t)a(t) < 0$

Guidelines for Solving Optimization Problems

- 1. Read the problem carefully until you understand it.
- In most problems it is useful to draw a picture. Label it with the quantities given in the problem.
- 3. Assign a variable to the unknown quantity and write an equation for the quantity that is to be maximized (or minimized), since this equation will usually involve two or more variables.
- 4. Use the given information to find relationships between these variables. Use these equations to eliminate all but one variable in the equation.
- 5. Use the first and second derivatives tests to find the critical points.

Let $f(x) = \sqrt{16 - x^2}$. An isosceles triangle, whose base is the line segment from (0,0) to (k,0), where k>0, has its vertex on the graph of f as shown in the figure.

- (a) Find the area of the triangle in terms of k.
- (b) For what values of k does the triangle have a maximum area?

Find the points on the curve $f(x) = \sqrt{x}$ that is nearest to the point

The point on the curve $y = 2 - x^2$ nearest to (3,2) is _____

What is the area of the largest rectangle that has its base on the x-axis and its other two vertices on the parabola $y = 6 - x^2$? Additional Condition: for positive y-values

Example 1: Water runs into a conical tank at a rate of $0.5 \text{ m}^3/min$. The tank stands point down and has a height of 4m and a base radius of 2m. How fast is the water level rising when the water is 2.5m deep?

- **♦** Guideline for solving the related rate problem.
- **Step 1**: Read the problem and make a sketch if possible.
- **Step 2:** Write down the rates that are given.

Write down the rate you are trying to find.

- **Step 3:** Find an equation that ties your variables together.
- **Step 4:** Differentiate your equation with respect to time t.

Remember, you are <u>implicitly</u> differentiating with respect to *t*.

- **Step 5:** Substitute the given numerical information into the resulting equation and solve for the unknown rate.
- **Step 6:** Label your answers in terms of the correct units (very important) and be sure you answered the question asked.

Example 1: Water runs into a conical tank at a rate of $0.5 \text{ m}^3/min$. The tank stands point down and has a height of 4m and a base radius of 2m. How fast is the water level rising when the water is 2.5m deep?

♦ Guideline for solving the related rate problem.

Step 1: Read the problem and make a sketch if possible.

Example 1: Water runs into a conical tank at a rate of $0.5 \text{ m}^3/min$ The tank stands point down and has a height of 4m and a base radius of 2m. How fast is the water level rising when the water is 2.5m deep?

♦ Guideline for solving the related rate problem.

Step 2: Write down the rates that are given.

Write down the rate you are trying to find.

$$\frac{dV}{dt} = 0.5 \, m^3 / min$$

$$\left[\frac{dh}{dt} \right]_{h=2.5m} = ?$$

Example 1: Water runs into a conical tank at a rate of $0.5 \text{ m}^3/min$ The tank stands point down and has a height of 4m and a base radius of 2m. How fast is the water level rising when the water is 2.5m deep?

♦ Guideline for solving the related rate problem.

Step 3: Find an equation that ties your variables together.

$$V = \frac{1}{3}\pi(\frac{1}{2}h)^2h = \frac{1}{12}\pi h^3$$

$$\frac{dV}{dt} = 0.5 \, m^3 / min$$

$$\left[\frac{dh}{dt}\right]_{h=2.5m} = ?$$

$$V = \frac{1}{3}\pi r^2 h$$
$$\frac{r}{h} = \frac{R}{H} = \frac{1}{2}$$

Example 1: Water runs into a conical tank at a rate of $0.5 \text{ m}^3/min$ The tank stands point down and has a height of 4m and a base radius of 2m. How fast is the water level rising when the water is 2.5m deep?

♦ Guideline for solving the related rate problem.

Step 4: Differentiate your equation with respect to time t.

Remember, you are <u>implicitly</u> differentiating with respect to *t*.

$$\frac{dV}{dt} = 0.5 \, m^3 / min$$

$$\left[\frac{dh}{dt}\right]_{h=2.5m} = ?$$

$$V = \frac{1}{12}\pi h^3$$

$$\frac{d}{dt}[V] = \frac{d}{dt} \left[\frac{1}{12} \pi h^3 \right]$$

$$\frac{dV}{dt} = \frac{1}{12}\pi 3h^2 \frac{dh}{dt} = \frac{\pi}{4}h^2 \frac{dh}{dt}$$

Example 1: Water runs into a conical tank at a rate of $0.5 \text{ m}^3/\text{min}$ The tank stands point down and has a height of 4m and a base radius of 2m. How fast is the water level rising when the water is 2.5m deep?

♦ Guideline for solving the related rate problem.

Step 5: Substitute the given numerical information into the resulting equation and solve for the unknown rate.

$$\left[\frac{dV}{dt}\right]_{h=2.5m} = \frac{\pi}{4} 5^2 \left[\frac{dh}{dt}\right]_{h=2.5m}$$

$$H = 4$$
m So, $\left[\frac{dh}{dt}\right]_{h=2.5m} \approx 0.102m/min$

$$\frac{dV}{dt} = 0.5 \, m^3 / min$$

$$\left[\frac{dh}{dt}\right]_{h=2.5m} = ?$$

$$\frac{dV}{dt} = \frac{\pi}{4} h^2 \frac{dh}{dt}$$

Example 1: Water runs into a conical tank at a rate of $0.5 \text{ m}^3/min$. The tank stands point down and has a height of 4m and a base radius of 2m. How fast is the water level rising when the water is 2.5m deep?

♦ Guideline for solving the related rate problem.

Step 6: Label your answers in terms of the correct units (very important) and be sure you answered the question asked.

So,
$$\left[\frac{\mathrm{dh}}{\mathrm{dt}}\right]_{h=2.5m} \approx 0.102 m/min$$

When h=2.5m, the water level is rising at a rate of 0.102 meters per minute.

$$H = 4m$$

Tangent Line Approximation

An equation for the tangent line of f(x) at the point (a, f (a)) is given by :

$$y - f(a) = f'(x)(x - a)$$

$$\Rightarrow y = f(a) + f'(x)(x - a)$$

Linearization of f at x = a: L(x) = f(a) + f'(a)(x - a)

Linear approximation to the function at x = k:

$$f(k) \approx L(\mathbf{k}) = f(a) + f'(a)(\mathbf{k} - a)$$

Tangent Line Approximation

♦ If the curve is concave upward like the graph to the right,
the line tangent to the graph of y=f(x) lies above below
the graph, so the tangent line approximation is
greater smaller than the real value.

♦ If the curve is concave down ~overestimate/underestimate the actual value