Machine Learning HW 3

B04705003 資工三 林子雋

1. 請比較你實作的 generative model、logistic regression 的準確率,何者較佳? A:結果發現,logistic regression 的表現比較好,不論是在 feature 怎麼選取的情況下,推測是因為 logistic regression 可以 fit 上不是 gaussian distribution 的資料上,而且其實這次的 feature 有許多是 binary encoding 的,其實很明顯的,不適合被 model 成 gaussian distribution,因此可能因為這樣 generative 表現比較差。

Figure 1. 為 Regularization = 0,跑過 5000 epochs 的情形,有 Normalize			
Model/Feature 選取	所有的 所有的		
	feature(106 維)	feature+index=[0,1,3,4,5]平方項	
Logistic Regression	0.852158	0.856028	
Generative Model	0.843682	0.843682	

2. 請說明你實作的 best model,其訓練方式和準確率為何?

A:最好的 model 是使用 Xgboost classifier,裡面實際運作方式是使用 gradient boosting 的方法。準確率為 0.87617。

3. 請實作輸入特徵標準化(feature normalization),並討論其對於你的模型準確率的影響。

A:下圖為沒有做 feature normalization 的情形,發現沒有做 normalization 的效果對於 logistic regression 的結果是變差的。對於 logistic normalization,推測是因為 epoch 不夠久以至於還未走到最佳解便結束;而 generative model 則是相對穩定, 甚至加上平方項的還超過沒有 normalization 的實驗,猜測是因為 generative model 在 normalize 之後,distribution 變形反而比較容易失去原來機率分布的樣子(可能原本的分布比較像 normal distribution,經過 normalization 之後機率分布就會稍稍變形)

Figure 2.為 Regularization = 0,跑過 5000 epochs 的情形,但沒有				
Normalize				
Model/Feature 選取	所有 feature(106 維)	所有的		

		feature+index=[0,1,3,4,5]平
		方項
Logistic Regression	0.78551	0.79245
Generative Model	0.84411	0.85375

4. 請實作 logistic regression 的正規化(regularization),並討論其對於你的模型準確率的影響。

A:從下面數據中可以發現,regularization 大致落在 0.0001 和 0.001 中的效果會 比較好,而 regularization 太小或太大都會造成表現下降,尤其是太大時,會使 model performance 劇烈下降。

Figure 3. 下圖為各種 λ 對 testing set accuracy 的影響,皆使用 106 維的					
feature					
Model\λ	0	0.0001	0.001	0.01	0.1
Logistic	0.85215	0.85234	0.85191	0.84884	0.83176
Regression					

Figure 4. 下圖為各種 λ 對 testing set accuracy 的影響,皆使用 106 維					
+index=[0,1,3,4,5]平方項的 feature					
Model\λ	0	0.0001	0.001	0.01	0.1
Logistic	0.856028	0.85639	0.8555	0.84914	0.83072
Regression					

5. 請討論你認為哪個 attribute 對結果影響最大?

A:根據前面幾項數據推測,我認為是 normalization 的影響最大,從上面可以看出,有無 normalization 會影響到準確率收斂的速度,而好的 normalization 可以讓收斂的狀況更為準確。