Problem A. Saka loves keyboards

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

Saka is a keyboard lover. Even if he has a gamer laptop with an incredible RGB high quality keyboard, he want to buy more keyboards.

Saka went to a shop and found N keyboards, every keyboard has a cost c_i and quality q_i . To buy keyboards, Saka follows a certain principle as he choose the keyboards: the total cost to the total quality ratio of the chosen fruits must equal k. In other words, $\frac{\sum_{j=1}^{m}(c_j)}{\sum_{j=1}^{m}(q_j)}=k$, where c_j is the cost of the j-th chosen keyboard and q_j is its quality.

Saka hasn't chosen the keyboards yet, he is thinking: what is the maximum cost of the chosen keyboards if he strictly follows his principle?

Input

The first line contains T the number of test cases.

Each test case has lines:

- First line of the test case contains two integers N, K ($1 \le N \le 100, 1 \le K \ leq 10$).
- The second line contains N integers $c_1, c_2, c_3, ..., c_N (1 \le c_i \le 100)$ the keyboard's costs.
- The thirst line contains N integers $q_1, q_2, q_3, ..., q_N (1 \le q_i \le 100)$ the keyboard's qualities.

Output

For each test case: If there is no keyboard Saka can buy, print in the single line number -1. Otherwise, print a single integer – the maximum possible sum of the cost values of the chosen keyboards.

Example

standard input	standard output
2	18
3 2	-1
10 8 1	
2 7 1	
5 3	
4 4 4 4 4	
2 2 2 2 2	