Gebze Technical University Computer Engineering

CSE 222 - 2018 Spring

HOMEWORK 7 REPORT

CENGİZ TOPRAK 161044087

Course Assistant: Fatma Nur Esirci

1 Q1

This part about Question1 in HW7

1.1 Problem Solution Approach

Graphs are created with random vertexes and,it is used Dijkstram Algorithm in order to find shortest path between two vertexes. It is just used ListGraph graph.

1.2 Test Cases

Order of vertex adding to directed graph:

```
AbstractGraph graph = new ListGraph(11,true);
graph.insert(new Edge(1,2,10));
graph.insert(new Edge(2,3,15));
graph.insert(new Edge(2,10,20));
graph.insert(new Edge(3,4,5));
graph.insert(new Edge(5,10,45));
graph.insert(new Edge(5,6,80));
graph.insert(new Edge(5,9,56));
graph.insert(new Edge(6,7,3));
graph.insert(new Edge(7,8,60));
graph.insert(new Edge(8,9,55));
graph.insert(new Edge(4,10,1));
graph.insert(new Edge(1,5,57));
graph.insert(new Edge(9,10,100));
graph.insert(new Edge(1,9,81));
graph.insert(new Edge(2,5,43));
graph.insert(new Edge(1,8,19));
```

Graph representation:

Result of plot_graph:

```
Run part

"C:\Program Files\Java\jdk1.8.0_151\bin\java" ...

List representation of graph:

0 -> 1

1 -> 2 -> 10 -> 5 -> 9 -> 8

2 -> 3 -> 10 -> 5

3 -> 4 -> 10

4 -> 5 -> 10

5 -> 10 -> 6 -> 9

6 -> 7 -> 8

7 -> 8

8 -> 9

9 -> 10
```

Result of is_undirected:

```
Run patt

C:\Program Files\Java\jdk1.8.0_151\bin\java" ...
List representation of graph:

0 -> 1
1 -> 2 -> 10 -> 5 -> 9 -> 8
2 -> 3 -> 10 -> 5
3 -> 4 -> 10
4 -> 5 -> 10
5 -> 10 -> 6 -> 9
6 -> 7 -> 8
7 -> 8
8 -> 9
9 -> 10

The graph is directed.
```

Result of is_acyclic_graph:

```
List representation of graph:

0 -> 1

1 -> 2 -> 10 -> 5 -> 9 -> 8

2 -> 3 -> 10 -> 5

3 -> 4 -> 10

4 -> 5 -> 10

5 -> 10 -> 6 -> 9

6 -> 7 -> 8

7 -> 8

8 -> 9

9 -> 10

The graph is directed.
The graph is acyclic.
```

Result Of shortest_path:

2 Q2

This part about Question2 in HW7

2.1 Problem Solution Approach

Graphs are created with random vertexes and,it is used Dijkstram Algorithm in order to find shortest path between two vertexes. It is just used ListGraph graph.

2.2 Test Cases

Order of vertex adding to undirected graph:

```
AbstractGraph graph = new ListGraph(19,false);
graph.insert(new Edge(0,2));
graph.insert(new Edge(1,2));
graph.insert(new Edge(2,3));
graph.insert(new Edge(3,4));
graph.insert(new Edge(14,13));
graph.insert(new Edge(15,13));
graph.insert(new Edge(15,13));
graph.insert(new Edge(13,12));
graph.insert(new Edge(12,11));
graph.insert(new Edge(11,10));
graph.insert(new Edge(5,6));
graph.insert(new Edge(5,9));
graph.insert(new Edge(6,7));
graph.insert(new Edge(6,8));
graph.insert(new Edge(6,8));
```

```
graph.insert(new Edge(8,9));
graph.insert(new Edge(9,12));
graph.insert(new Edge(4,15));
graph.insert(new Edge(15,5));
graph.insert(new Edge(16,17));
graph.insert(new Edge(17,18));
```

Graph representation:

Result of plot_graph:

```
List representation of graph:

0 -> 2

1 -> 2

2 -> 0 -> 1 -> 3

3 -> 2 -> 4

4 -> 3 -> 15

5 -> 6 -> 9 -> 15

6 -> 5 -> 7 -> 8

7 -> 6 -> 8

8 -> 6 -> 7 -> 9

9 -> 5 -> 15 -> 8 -> 12

10 -> 11

11 -> 12 -> 10

12 -> 13 -> 11 -> 9

13 -> 14 -> 15 -> 12

14 -> 13

15 -> 13 -> 9 -> 4 -> 5

16 -> 17

17 -> 16 -> 18

18 -> 17
```

Result of is_undirected:

```
Run = past2

| C:\Program Files\Java\jdk1.8.0_151\bin\java" ...
List representation of graph :
0 -> 2
1 -> 2
2 -> 0 -> 1 -> 3
3 -> 2 -> 4
4 -> 3 -> 15
5 -> 6 -> 9 -> 15
6 -> 5 -> 7 -> 8
7 -> 6 -> 8
8 -> 6 -> 7 -> 9
9 -> 5 -> 15 -> 8 -> 12
10 -> 11
11 -> 12 -> 10
12 -> 13 -> 14 -> 15 -> 12
14 -> 13
15 -> 13 -> 14 -> 15
15 -> 13 -> 9 -> 4 -> 5
16 -> 17
17 -> 16 -> 18
18 -> 17
The graph is undirected.
```

Result of is_acyclic_graph:

```
"C:\Program Files\Java\jdk1.8.0_151\bin\java" ...
List representation of graph :
0 -> 2
1 -> 2
2 -> 0 -> 1 -> 3
3 -> 2 -> 4
4 -> 3 -> 15
5 -> 6 -> 9 -> 15
6 -> 5 -> 7 -> 8
7 -> 6 -> 8
8 -> 6 -> 7 -> 9
9 -> 5 -> 15 -> 8 -> 12
10 -> 11
11 -> 12 -> 10
12 -> 13 -> 11 -> 9
13 -> 14 -> 15 -> 12
14 -> 13
15 -> 13 -> 9 -> 4 -> 5
16 -> 17
17 -> 16 -> 18
18 -> 17
The graph is undirected.
The graph is acyclic.
```

Result of is_connected:

3 Q3

3.1 Problem Solution Approach

Graphs are created with random vertexes and,it is used Dijkstram Algorithm in order to find shortest path between two vertexes. It is just used ListGraph graph.

3.2 Test Cases

Order of vertex adding to undirected graph:

```
AbstractGraph graph = new ListGraph(16,false);
graph.insert(new Edge(0,1));
graph.insert(new Edge(1,2));
graph.insert(new Edge(2,3));
graph.insert(new Edge(3,0));
graph.insert(new Edge(3,4));
graph.insert(new Edge(14,13));
graph.insert(new Edge(15,13));
graph.insert(new Edge(15,13));
graph.insert(new Edge(12,11));
graph.insert(new Edge(12,11));
graph.insert(new Edge(11,10));
graph.insert(new Edge(5,6));
graph.insert(new Edge(5,9));
graph.insert(new Edge(6,7));
graph.insert(new Edge(6,7));
graph.insert(new Edge(6,8));
graph.insert(new Edge(8,9));
graph.insert(new Edge(8,9));
graph.insert(new Edge(8,9));
graph.insert(new Edge(9,12));
graph.insert(new Edge(4,15));
graph.insert(new Edge(4,15));
graph.insert(new Edge(15,5));
```

Graph representation:

Result of plot_graph:

Result of is undirected:

```
Run pats

"C:\Program Files\Java\jdk1.8.0_151\bin\java" ...

List representation of graph :

0 -> 1 -> 3

1 -> 0 -> 2

2 -> 1 -> 3

3 -> 2 -> 0 -> 4

4 -> 3 -> 15

5 -> 6 -> 9 -> 15

6 -> 5 -> 7 -> 8

7 -> 6 -> 8

8 -> 6 -> 7 -> 9

9 -> 5 -> 15 -> 8 -> 12

10 -> 11

11 -> 12 -> 10

12 -> 13 -> 11 -> 9

13 -> 14 -> 15 -> 12

14 -> 13

15 -> 13 -> 9 -> 4 -> 5

The graph is undirected.
```

Result of is_acyclic_graph:

Result of DepthFirstSearch (Show that spanning tree):

parents and childs:

```
Run part3

| "C:\Program Files\Java\jdk1.8.0_151\bin\java" ... |
| childs : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
| parents : -1 0 1 2 3 9 5 6 7 12 11 12 13 15 13 4 |
| Process finished with exit code 0 |
```

Spaninig tree:

Result of BreathFirstSearch (Show that spanning tree):

parents and childs:

```
BFS spanning tree :

childs : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

parents : 3 2 3 4 15 -1 5 6 6 5 11 12 9 15 13 5

Process finished with exit code 0
```

Spaninig tree:

Answer 4:

Differences Between DPS And BFS

BFS

- use greve.
- -is similar to level-order traverse
- BFS is smaller than DFS
- BFs always finds a shortest path the start Nertex to any other for unweighted graphs
- · Finding the shortest path.
- · Testing for bipartiteness.
- . In spanning tree

OFS:	According to
cuse stack.	- Well data structure
- is similar to pre-	- Similarity
order traverse	- March 19
- DFS is more faster	-speed
than BFS	
- Depth fint search	- Alvalage
may not finds a shortest	
Path	
· Topolosical porting.	17
1. Finding bridges of a	2 - Applications
. Mate generation	3 - Mpp 11 ca +1613

graph (2)

. Finding strongly connected

components

b) BFS parent array Vertex: 0 : 2 3 4 5 6 7 parent: [-1-1 : 2 | 6 | 6 | 1 3] DFS Tree:

a) DFS parent array

Vertex: 0 1 2 2 4 5 6 7

Parent: [-1 -1 1 2 5 3 4 5

DFS Tree: