Equivalence of NFA and DFA

- NFA is equivalent to DFA
- Both NFA and DFA accepts regular language
- Language accepting power / computation power of NFA and DFA is same
- How?
- 1. DFA is NFA we know
- Convert NFA to DFA

NFA to DFA Conversion

- Theorem
- If L is a set accepted by an NFA M then L can be accepted by a DFA M'.
- Proof by construction Subset Construction Method
- Given NFA M= $(Q, \Sigma, \delta, q_o, F)$ Construct DFA M'= $(Q', \Sigma, \delta', q_o', F')$
 - $0' = 2^{Q}$
- $[^{o}b]=, ^{o}b$
- F' corresponds to all subsets of Q having at least one final state of M
- $\delta': \delta'([q_1, q_2, ... qk], a) = [\delta(q_1, a) \cup \delta(q_2, a) ... \delta(qk, a)]$

NFA to DFA Conversion

State Transition Diagram

 δ : δ '([q₁,q₂,...qk],a)=[δ (q₁,a)U δ (q₂,a)... δ (qk,a)]

8	a	p
¥	{A.B}	Ф
B	Ф	{B,C}
0	Ф	Ф

8'	a	b
[A]	[A.B]	Ф
[A,B]	[A,B]	[B,C]
)	ФФ	[B,C] Ф

NFA to DFA Conversion

