Stochastik für Informatiker

Dr. rer. nat. Johannes Riesterer

Gleichverteilung

Die Gleichverteilung U(a,b) auf einem Intervall $(a,b)\subset\mathbb{R}$ ist definiert durch

Dichte:
$$f(x) := \frac{1_{(a,b)}}{|a-b|}$$

$$\Rightarrow \text{Verteilung: } F(x) = P_f((-\infty,x)) = \int_{-\infty}^x \frac{1_{(a,b)}}{|b-a|} dt$$

$$= \begin{cases} 0 \text{ für } x \le a \\ \frac{x-a}{|b-a|} \text{ für } a \le x \le b \\ 1 \text{ für } x \ge b \end{cases}$$

Figure: Quelle: Wikipedia

Gleichverteilung

Sei $X \sim U(a,b)$.

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f(x) \, dx = \frac{1}{b-a} \int_{a}^{b} x \cdot 1 \, dx = \frac{1}{2} \frac{b^2 - a^2}{b-a} = \frac{a+b}{2}$$

$$\mathbb{V}(X) = \mathsf{E}(X^2) - (\mathsf{E}(X))^2 = \frac{1}{b-a} \int_a^b x^2 \cdot 1 \, dx - \left(\frac{a+b}{2}\right)^2$$
$$= \frac{1}{3} \frac{b^3 - a^3}{b-a} - \left(\frac{a+b}{2}\right)^2$$
$$= \frac{1}{12} \left(4b^2 + 4ab + 4a^2 - 3a^2 - 6ab - 3b^2\right) = \frac{1}{12} (b-a)^2$$

Normalverteilung

Die Normalverteilung $N(\mu, \sigma^2)$ auf $\mathbb R$ ist definiert durch

Dichte:
$$f(x) := \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

$$\Rightarrow$$
 Verteilung: $F(x) = N(\mu, \sigma^2)(-\infty, x) = \int_{-\infty}^{x} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{t-\mu}{\sigma})^2} dt$

Figure: Quelle: Wikipedia

Normalverteilung

Sei $X \sim N(\mu, \sigma)$.

$$\mathbb{E}(X) = \mu$$

$$\mathbb{E}(X) = \mu$$
$$\mathbb{V}(X) = \sigma^2$$

Poissonverteilung

Die Poissonverteilung $Pois(\lambda)$ auf $\mathbb{N}_{\geq 0}$ ist definiert durch

$$P_{\lambda}(k) = \frac{\lambda^{k}}{k!} e^{-\lambda}$$

$$\Rightarrow F_{\lambda}(n) = \sum_{k=0}^{n} P_{\lambda}(k) = e^{-\lambda} \sum_{k=0}^{n} \frac{\lambda^{k}}{k!}$$

Poisson Verteilung

Die Poisson Verteilung beschreibt das Auftreten von seltenen Ereignissen und spielt bei Zählprozessen eine wichtige Rolle.

Poisson Verteilung

$$X \sim Pois(\lambda)$$

$$\mathbb{E}(X) = \lambda$$

$$\mathbb{V}(X) = \lambda$$

Bernoulliverteilung

Die Bernoulliverteilung Für $\Omega = \{0,1\}$ und $p \in [0,1]$ ist definiert durch

$$P(\omega) = p^{\omega} (1 - p)^{1 - \omega}$$

- Werfen einer Münze: Kopf (Erfolg), p = 1/2, und Zahl (Misserfolg), q = 1/2.
- Werfen eines Würfels, wobei nur eine 6 als Erfolg gewertet wird: p = 1/6, q = 5/6.
- Qualitätsprüfung (einwandfrei, nicht einwandfrei).
- Betrachte sehr kleines Raum/Zeit-Intervall: Ereignis tritt ein $(p \geq 0)$, tritt nicht ein $(q \leq 1)$.

Binomialverteilung

$$B(k, p, n) = \binom{n}{k} p^k (1-p)^{n-k}$$

Binomialverteilung

$$X_1,\cdots,X_n\sim B\Rightarrow \sum X_i\sim B$$

Motivation

Welche Verteilung hat das arithmetische Mittel $S_n := \frac{1}{n} \sum_{i=1}^n X_i$ für $n \to \infty$?

Motivation

Wie und gegen was konvergiert P_{S_n} für $n \to \infty$?

Konvergenz von W-Maßen

Was bedeutet Konvergenz einer Folge von Wahrscheinlichkeitsmaßen?

Inspiration: Gleichmässige Konvergenz von Funktionen

Eine Folge von Funktionen $f_n: A \subset \mathbb{R}^n \to \mathbb{R}$ konvergiert gleichmässig gegen eine Funktion f, falls

$$\lim_{n\to\infty}||f_n(x)-f(x)||=0$$

für alle $x \in A$.

Allgemeine Wahrscheinlichketisräume/Nachtrag

Konvergenz von W-Maßen

Sei (Ω, \mathcal{A}) ein Wahrscheinlichkeitsraum und $P_n: \Omega \to [0,1]$ eine folge von Wahrscheinlichkeits-Maßen. Die Folge konvergiert gegen das Wahrscheinlichkeits-Maß $P: \Omega \to [0,1]$, falls

$$\lim_{n\to\infty}\int_{\Omega}fdP_n=\int_{\Omega}fdP$$

für alle messbaren Funktionen $f: \Omega \to \mathbb{R}$.

Highlight

Zentraler Grenzwertsatz

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $X_n : \Omega \to \mathbb{R}$ eine folge stochastisch unabhängiger, identisch verteilter, reeller Zufallsvariablen mit $E(X_n) = \mu$ und $V(X_n) = \sigma^2$. Dann gilt für das arithmetische Mittel $S_n := \frac{1}{n} \sum_{i=1}^n X_i$

$$P_{rac{\sqrt{n}}{\sigma}(S_n-\mu)} o P_{N(0,1)}$$

wobei $P_{N(0,1)}$ das Wahrscheinlichkeits-Maß mit der Dichte $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$ ist.

Erzeugende Funktion

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $X : \Omega \to \mathbb{R}$ eine reelle Zufallsvariable. Dann heißt die Funktion

$$\psi_X(t) := \mathbb{E}(e^{tX}), \ t \in I \subset \mathbb{R}$$

erzeugende Funktion zu X bzw. P_X .

Stetigkeitssatz von Lévy

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum so wie X und $X_n: \Omega \to \mathbb{R}$ reelle Zufallsvariablen mit erzeugenden Funktionen ψ und ψ_n . Dann gilt:

$$\psi_n \to \psi \Rightarrow P_{X_n} \to P_X$$

Stetigkeitssatz von Levy

Mit $\varphi_X := \mathbb{E}(e^{itx})$ ist $\varphi_X(-it) = \psi_X(t)$ und der Stetigkeitssatz von Levy folgt aus dem Umkehrsatz.

Eigenschaften erzeugender Funktionen

- $\psi_X(t) = \sum_{k=0}^n \frac{\mathbb{E}(X^k)}{k!} t^k$ für $|t| \leq \delta$ (Taylor).
- $e^{\frac{t^2}{2}}$ ist die erzeugende Funktion von $P_{N(0,1)}$.
- $\bullet \ \psi_{X+Y} = \psi_X \cdot \psi_Y$

Beweis Zentraler Grenzwertsatz

- $|t| \leq \delta$
- $\psi(t)$ erzeugende Funktion von X_n .
- $Y_n := \frac{X_n \mu}{\sigma}$. Dann ist $\mathbb{E}(Y_n) = 0$ und $\mathbb{V}(Y_n) = 1$.
- $\psi^*(t)$ erzeugende Funktion von Y_n .
- $\psi_n(t)$ erzeugende Funktion von $\frac{Y_n}{\sqrt{n}}$. Dann ist $\psi_n(t) = \psi^*(\frac{t}{\sqrt{n}})$

$$\psi_n(t) = \psi^*(\frac{t}{\sqrt{n}}) = \sum_{k=0}^n \frac{t^k}{k! \sqrt{n^k}} \mathbb{E}(Y_i^k)$$
$$= 1 + \frac{t^2}{2n} + \sum_{k=3}^n \frac{t^k}{k! \sqrt{n^k}} \mathbb{E}(Y_i^k)$$

Beweis Zentraler Grenzwertsatz

$$R_n \leq \frac{1}{n\sqrt{n}}(\psi^*(\delta) + \psi^*(-\delta)) \to 0 \text{ für } n \to \infty$$

Für $T_n := \frac{\sqrt{n}}{\sigma}(S_n - \mu)$ erhält man damit

$$\psi_{T_n}(t) = (\psi_n)(t))^n = \left(1 + \frac{t^2}{2n} + R_n(t)\right)^n \to e^{\frac{t^2}{2}} \text{ für } n \to \infty$$

Mit dem Stetigkeitssatz von Levy folgt der zentrale Grentzwertsatz.

Umkehrsatz

Ist $f: \mathbb{R}^n \to \mathbb{R}$ und \hat{f} integrierbar, gilt

$$f(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \hat{f}(y) e^{i \langle x, y \rangle} dy,$$

fast überall.

Highlight

Sensorrauschen

Wir können annehmen, dass das Rauschen eines Sensor N_S aus vielen kleinen, stochastisch unabhängigen Effekten $N_1, \cdots N_k$ Beruht, die sich aufsummieren, also $N_S = N_1 + \cdots + N_k$. Wenn wir annehmen, dass jeder Effekt Gleichverteilt ist, ist diese Summe nach dem zentralen Grenzwertsatz näherungsweise Normalverteilt.

Erraten des Bereichs von Zufallsvariablen

Angenommen man findet einen Apparat (Fluxkompensator?), der zufällig Zahlen in einem Intervall $[0,\rho]$ ausgibt. Anhand von Beobachtungen der Zahlen möchte man ρ schätzen.

Figure: Quelle: forevergeek

Erraten des Bereichs von Zufallsvariablen - Modell

Wir machen die Annahme, dass alle Zahlen in dem Intervall gleich wahrscheinlich auftreten und nehmen n Stichproben X_1, \dots, X_n . Einen Schätzer für ρ bezeichnen wir mit T_n .

Erraten des Bereichs von Zufallsvariablen - Schätzer 1

Eine einfache und einleuchtende Idee ist es, ρ durch die größte beobachtete Zahl zu schätzen, also $T_n^{max} := \max(X_1, \dots, X_n)$.

Erraten des Bereichs von Zufallsvariablen - Schätzer 2

Da das Auftreten der Zahlen gleich wahrscheinlich ist, ist der Erwartungswert des Zufallsexperiments $\rho/2$. Unter Berufung auf das schwache Gesetz der Großen Zahlen erscheint der Schätzer $T_n^E:=2\cdot\left(\frac{1}{n}\sum_{i=1}^n X_i\right)$ sehr plausibel.

Erraten des Bereichs von Zufallsvariablen - Vergleich

Welcher Schätzer ist besser und in welchem Sinn?

Erraten des Bereichs von Zufallsvariablen - Vergleich Konvergenz

$$P(|T_n^{max} - \rho| \ge \epsilon) = P(T_n^{max} \le \rho - \epsilon)$$

$$= P(X_1 \le \rho - \epsilon, \dots, X_n \le \rho - \epsilon) = (\frac{\rho - \epsilon}{\rho})^n \xrightarrow[n \to \infty]{} 0$$

Erraten des Bereichs von Zufallsvariablen - Vergleich Konvergenz

$$P(|T_n^E - \rho| \ge \epsilon) = P(|\frac{1}{n} \sum_i X_i - \frac{\rho}{2}| \ge \frac{\epsilon}{2}) \xrightarrow[n \to \infty]{} 0$$
(Gesetz der Großen Zahlen)

Erraten des Bereichs von Zufallsvariablen - Vergleich Erwartungswert

Da
$$P(T_n^{max} \le c) = (\frac{c}{\rho})^n$$
 und $\frac{d}{dx}(\frac{c}{\rho})^n = \frac{n}{\rho^n}x^{n-1}$ und damit

$$\mathbb{E}(T_n^{max}) = \int_0^\rho x \frac{n}{\rho^n} x^{n-1} dx = \frac{n}{\rho^n} \int_0^\rho x^n dx = \frac{n}{n+1} \rho \underset{n \to \infty}{\longrightarrow} \rho$$

Erraten des Bereichs von Zufallsvariablen - Vergleich Erwartungswert

$$\mathbb{E}(T_n^E) = \frac{2}{n} \sum \mathbb{E}(X_i) = \rho$$

Erraten des Bereichs von Zufallsvariablen - Vergleich Varianz

$$\mathbb{V}(T_n^{max}) = \frac{4}{n} \mathbb{V}(X_1) = \frac{4}{n\rho} \int_0^{\rho} (x - \frac{\rho}{2})^2 dx = \frac{\rho^2}{3n}$$

Erraten des Bereichs von Zufallsvariablen - Vergleich Varianz

$$V(T_n^E) = \mathbb{E}((T_n^E)^2) - (\mathbb{E}(T_n^E))^2$$

$$= \int_0^\rho x^2 \frac{n}{\rho^n} x^{n-1} dx - (\frac{n\rho}{n+1})^2 = \frac{n\rho^2}{(n+1)^2(n+2)}$$