

Микросхема приемопередатчика по стандарту RS-485/422 5559ИН28У, К5559ИН28У, К5559ИН28УК К5559ИН28Н4

ТП – технологическая перемычка ГГ – год выпуска НН – неделя выпуска

Основные параметры микросхемы:

- Напряжение источника питания от 3,0 до 5,5 В;
- Скорость передачи данных до 30 Мбит/с;
- Синфазное напряжение шины данных от -7 до 12 В;
- Защита от перегрева;
- Защита от короткого замыкания;

• Температурный диапазон:

Обозначение	Диапазон
5559ИН28У	минус 60 – 125 °C
К5559ИН28У	минус 60 – 125 °C
К5559ИН28УК	0 – 70 °C

Тип корпуса:

- 8-ми выводной металлокерамический корпус H02.8-1B;
- микросхемы К5559ИН28Н4 поставляются в бескорпусном исполнении.

Общее описание и области применения

Микросхемы интегральные 5559ИН28У (далее – микросхемы) предназначены для использования в аппаратуре специального назначения, в качестве приемопередатчика по стандарту RS-485/422* со скоростью передачи данных до 30 Мбит/с.

^{*} Использование по стандарту RS-422 возможно в случае, когда применяются две микросхемы 5559ИН28У. При этом одна микросхема должна быть включена только в режиме передачи, а другая – только в режиме приема.

1 Описание выводов

Рисунок 1 – Условно-графическое обозначение

Таблица 1 - Описание выводов микросхемы

Вывод корпуса	Контактная площадка кристалла	Условное обозна- чение	Функциональное назначение выводов
1	1	RO	Выход приемника
2	2	nRE	Разрешение выхода приемника. Активный низкий логический уровень
3	3	DE	Разрешение выхода передатчика. Активный высокий логический уровень
4	4	DI	Вход передатчика
5	5, 6	GND	Общий
6	7	AY	Прямой вход приемника, прямой выход передатчика
7	8	BZ	Инверсный вход приемника, инверсный выход передатчика
8	9, 10	Ucc	Питание

2 Структурная блок-схема микросхемы

Рисунок 2 – Структурная блок-схема микросхемы

Примечание — Все элементы схемы имеют электрическую связь с соответствующими контактными площадками. Общий — 5, Питание — 8.

3 Указания по применению и эксплуатации

При ремонте аппаратуры и измерении параметров микросхем замену микросхем необходимо проводить только при отключенных источниках питания.

Инструмент для пайки (сварки) и монтажа не должен иметь потенциал, превышающий 0,3 В относительно шины "Общий".

Запрещается подведение каких-либо электрических сигналов (в том числе шин «Питание» и «Общий») к выводу 1, если он не используется.

Неиспользуемые логические выводы 2, 3, 4 необходимо подключить к GND или Ucc.

Технологические перемычки ТП1 и ТП2 расположенные между выводами 2–3 и 6–7 необходимо соединить с шиной "Общий" в соответствии с У80.073.450ГЧ.

При монтаже бескорпусных микросхем К5559ИН28Н4 на металлизированную монтажную площадку рекомендуется соединить ее с шиной «Общий».

4 Описание функционирования микросхемы

Микросхема функционирует в четырех режимах, описанных ниже.

4.1 RS-485 передатчик

Выходы передатчика имеют ограничение скорости нарастания/спада выходного сигнала для уменьшения уровня электромагнитных помех, а также отражений при неидеально согласованной шине. Таким образом, обеспечивается стабильная передача информации.

В схеме реализовано два механизма защиты выходов передатчика:

- по максимальному выходному току;
- по рассеиваемой мощности.

Защита активизируется в случаях неправильного использования схемы приемопередатчика, замыкания выходов передатчика на шины питания и «общий», а также при возникновении конфликтных ситуаций – попытки одновременной передачи данных несколькими приемопередатчикам.

Схема термозащиты срабатывает при температуре кристалла более 140 °C и переводит схему передатчика в состояние «Выключено».

Таблица истинности работы передатчика микросхемы приведена ниже (Таблица 2).

Таблица 2 – Таблица истинности работы передатчика

Входы			Вых	оды	
nRE	DE	DI	BZ	AY	
X	1	1	0	1	
X	1	0	1	0	
X	0		Высокое выходное сопротивление на выводах АУ и ВZ		

4.2 RS-485 приемник

Таблица истинности работы приемника микросхемы приведена ниже (Таблица 3).

Таблица 3 – Таблица истинности работы приемника

	Входы		Выходы
nRE	DE	AY-BZ	RO
0	Х	≥ 200 мВ	1
0	X	≤ – 200 мB	0
0	X	Обрыв/замыкание	Неопределенное состояние (0 или 1)
1	1	X	Высокое выходное сопротивление на выходе RO
1	0	Х	Высокое выходное сопротивление на выводах АY, BZ и RO. Режим «Выключено»

При включении микросхем необходимо использование внешних резисторов для того, чтобы в случае обрыва в линии на выходе RO микросхемы жестко определить состояние логической «1» или «0». Типовая схема подключения резисторов для организации напряжения смещения в линии приведена на рисунке 3.

D1 – DN – микросхемы 5559ИН28У;

G1 — источник постоянного напряжения $U_{CC} = (3,0-5,5)$ В;

С1 — конденсатор, емкостью не менее 0,1 мк $\Phi \pm 20$ %;

R1 - R4 — резисторы, сопротивлениями: R1 = 133 Om;

R2 = 120 Om;

R3 = R4 = 549 Om.

Напряжение смещения в линии составляет:

- 180 мВ при напряжении питания 3,3 В;
- 270 мВ при напряжении питания 5 В.

Рисунок 3 – Типовая схема подключения резисторов для организации напряжения смещения в линии

Входной импеданс приемника RS-485 по стандарту не должен быть меньше 12 кОм (одна единица нагрузки), стандартный передатчик способен работать на 32 единицы нагрузки. Входной импеданс данного приемопередатчика составляет 1/8 единицы нагрузки (менее 96 кОм), что позволяет параллельно подключить к шине до 256 эквивалентных приемопередатчиков. Также допустима комбинация на шине приемопередатчиков 5559ИН28У с приемопередатчиками, имеющими другой входной импеданс.

4.3 Микросхема в режиме «Выключено» (Shutdown)

При подаче на входы DE и nRE логических сигналов «0» и «1», соответственно, микросхема переходит в режим "Выключено" с пониженным током потребления. Схема не переходит в этот режим, если период времени присутствия комбинации DE = «0» и nRE = «1» на входах меньше 50 нс. Для гарантированного переключения в режим "Выключено" время удержания комбинации DE = «0» и nRE = «1» на входах должно быть не менее 700 нс.

4.4 Микросхема в режиме «Горячей замены»

В начальный момент времени, когда на контроллер CO схемой приемопередатчика, подключенным к шине, подается питание или. когда питание на микросхемы подается одновременно с подключением к шине, контроллер. управляющий схемой приемопередатчика, переходит в стадию инициализации. В течение этого периода, выходы контроллера находятся в состоянии с высоким выходным сопротивлением и не способны управлять входами приемопередатчика DE и nRE. В тоже время токи утечки выходов контроллера способны перевести управляющие входы приемопередатчика в активное состояние, что может привести к ошибочному включению выхода передатчика и/или выхода приемника. Дополнительно паразитные емкости печатной платы так же могут «подтянуть» напряжение на входах DE и nRE к потенциалам Ucc и GND. Дифференциальные помехи в шине, вызванные подключением, могут привести к ошибкам, а также к полному нарушению передачи информации по шине.

Схема данного приемопередатчика имеет режим «Горячей замены» (hot-swap), который заключается в том, что при подаче напряжения питания на схему, в начальный период времени длительностью не менее 7 мкс, активизируется схема «подтяжки» входов DE и nRE в неактивное состояние с токовой способностью 1,5 мА. По окончанию неактивного состояния схема оставляет входы подтянутыми с токовой способностью 0,5 мА до появления активного состояния на входе. При появлении активного состояния на управляющем входе схема «подтяжки» отключается, обеспечивая «прозрачный» режим управления работой схемы приемопередатчика.

4.5 Максимальная длина шины

Максимальная длина шины по стандарту RS-485 составляет 1 200 м. В случае превышения данной длины следует использовать повторители.

5 Типовая схема включения микросхемы

D – включаемая микросхема, 5559ИН28У;

G1, G2 — источник постоянного напряжения, $U_{CC} = (3,0-5,5)$ В;

C1, C2 — конденсаторы, C1 = C2= не менее 0,1 мк $\Phi \pm 20$ %;

R1, R2 – резисторы, $R1 = R2 = 120 \, Om.$

При использовании линии передачи с типовым волновым сопротивлением 120 Ом, линия должна быть согласована с обоих концов резисторами номиналом 120 Ом

Рисунок 4 – Типовая схема включения микросхем

6 Предельно-допустимые характеристики

Таблица 4 – Предельно-допустимые и предельные режимы эксплуатации микросхем

	0 E		Норма п	араметра	
Наименование параметра, единица измерения	Буквенное обозначение параметра	Предельно- допустимый режим		Предельный режим	
	000	не менее	не более	не менее	не более
Напряжение источника питания, В	Ucc	3,0	5,5	минус 0,3	6,0
Входное напряжение низкого уровня на входах nRE, DE и DI, B	U _{IL}	0	0,8	минус 0,3	_
Входное напряжение высокого уровня на входах nRE, DE и DI, В	U _{IH}	2,2	Ucc	_	U _{CC} +0,3
Входное напряжение приемника, В	U_{I_R}	минус 7	12	минус 8	13
Дифференциальное пороговое напряжение приемника, мВ, при: минус 7 В ≤ U _{LR} ≤ 12 В	U _{TH}	минус 200	200	П	-
Скорость передачи данных, Кбит/с	f _{DR}	_	30 000	_	

Примечание – Не допускается одновременное воздействие нескольких предельных режимов.

Стойкость к воздействию статического электричества – не менее 2 кВ.

7 Электрические параметры

Таблица 5 – Электрические параметры микросхем

Наименование параметра,	ное чение етра	-	ома метра	атура ı, °С
единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	Температура среды, °С
Выходное дифференциальное напряжение передатчика, B, при: Ucc = 4,5 B, R_L = 54 Oм, R_L = 100 Oм	U _{O_D}	1,5	Ucc	25, 125, минус 60
при: Ucc = 3,0 B, R _L = 54 Ом, R _L = 100 Ом		1,3		yo oo
Изменение выходного дифференциального напряжения передатчика, В	ΔU_{O_D}	_	0,2	25, 125, минус 60
Выходное синфазное напряжение передатчика, B, при: R_L = 54 Ом, R_L = 100 Ом	U _{oc}	_	3	25, 125, минус 60
Изменение выходного синфазного напряжения передатчика, B, при: R_L = 54 Ом; R_L = 100 Ом	ΔU _{oc}	_	0,2	25, 125, минус 60
Выходное напряжение высокого уровня приемника, В, при: I _O = минус 1 мА	U _{ОН}	U _{CC} - 0,6	_	25, 125, минус 60
Выходное напряжение низкого уровня приемника, В, при: I _O = 1 мА	U _{OL}	_	0,4	25, 125, минус 60
Ток потребления, мА, при: U_{nRE} = 0 B, U_{DE} = U_{CC} , без нагрузки U_{nRE} = U_{CC} , U_{DE} = U_{CC} , без нагрузки U_{nRE} = 0 B, U_{DE} = 0 B, без нагрузки	Icc	_	7	25, 125, минус 60
Входной ток высокого/ низкого уровня, мкА, на выводах nRE, DE и DI	I _{IH} I _{IL}	минус 1	1	25, 125, минус 60
Ток короткого замыкания выхода передатчика, мА, при: 7 B ≤ U _{AY} (U _{BZ}) ≤ 12 B (3 B ≤ U _{CC} < 4,5 B)		20	250	-
при: минус 7 B \leq U _{AY} (U _{BZ}) \leq U _{CC} (3 B \leq U _{CC} $<$ 4,5 B)	I _{OS_D}	минус 250	минус 20	25, 125, минус 60
при: $7 B \le U_{AY}(U_{BZ}) \le 12 B$ (4,5 B $\le U_{CC} \le 5,5 B$)		35	250	WIFITIYO OO
при: минус 7 B \leq U _{AY} (U _{BZ}) \leq U _{CC} (4,5 B \leq U _{CC} \leq 5,5 B)		минус 250	минус 35	

Наименование параметра,	іное іение этра	_	ома иетра	атура , °С	
единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	Температура среды, °С	
Выходной ток приемника в состоянии «Выключено», мкА	I _{OZ_R}	минус 1	1	25, 125, минус 60	
Ток короткого замыкания выхода приемника, мА, при: 0 B ≤ U _{RO} < U _{CC}	I _{OS_R}	минус 110	110	25, 125, минус 60	
Ток потребления в состоянии «Выключено», мА (приемник и передатчик выключены)	I _{SHDN} 1)	_	2	25, 125, минус 60	
Ток утечки на входе приемника, мкА	I_L_R	минус 100	125	25, 125, минус 60	
Время задержки распространения сигнала приемника при включении/ выключении, нс	t _{PLH_R} t _{PHL_R}	_	200	25, 125, минус 60	
Разность задержек распространения сигнала приемника, нс, t _{PLH_R} - t _{PHL_R}	t _{SKEW_R}	_	30	25, 125, минус 60	
Время задержки распространения сигнала передатчика при переходе из состояния «Выключено» в состояние высокого уровня, мкс, при: U _{nRE} = 0 В (приемник включен)	t _{PZH_D}	-	10	25, 125, минус 60	
Время задержки распространения сигнала передатчика при переходе из состояния «Выключено» в состояние низкого уровня, мкс, при: U _{nRE} = 0 В (приемник включен)	t _{PZL_D}	-	10	25, 125, минус 60	
Время задержки распространения сигнала передатчика при переходе из состояния высокого уровня в состояние «Выключено», нс, при: Unre 0 В (приемник включен)	t _{PHZ_D}	-	100	25, 125, минус 60	
Время задержки распространения сигнала передатчика при переходе из состояния низкого уровня в состояние «Выключено», нс, при: Unre 0 В (приемник включен)	t _{PLZ_D}	_	100	25, 125, минус 60	
Время задержки распространения сигнала передатчика при переходе из состояния «Выключено» в состояние высокого уровня, мкс, при: U _{nRE} = U _{CC} (приемник выключен)	tpzh_d(shdn)	-	10	25, 125, минус 60	
Время задержки распространения сигнала передатчика при переходе из состояния «Выключено» в состояние низкого уровня, мкс, при: U _{nRE} = U _{CC} (приемник выключен)	t _{PZL_D(SHDN)}	_	10	25, 125, минус 60	

Наименование параметра,	енное пачение метра под			атура , °С
единица измерения, режим измерения	Буквенное обозначени параметра	не менее	не более	Температу среды, °
Время задержки распространения сигнала приемника при переходе из состояния «Выключено» в состояние высокого уровня, мкс, при: U _{DE} = U _{CC} (передатчик выключен)	t _{PZH_R(SHDN)}	-	10	25, 125, минус 60
Время задержки распространения сигнала приемника при переходе из состояния «Выключено» в состояние низкого уровня, мкс, при: U _{DE} = U _{CC} (передатчик выключен)	t _{PZL_R(SHDN)}	-	10	25, 125, минус 60
Время задержки распространения сигнала передатчика при включении/ выключении, нс,			25	25,
при: C_L = 50пФ, R_L =54Ом (3B ≤ U_{CC} < 4,5B) при: C_L = 50пФ, R_L =54Ом (4,5B ≤ U_{CC} ≤ 5,5B)	t _{PLH_D} t _{PHL_D}	_	15	25, 125, минус 60

Примечания:

- 1 «Выключено» состояние высокого импеданса выходов приемника и передатчика:
 - для выхода RO приемника при nRE = «1»;
 - для выходов AY и BZ передатчика при DE=«0».
- 2 n в названии вывода обозначает активный низкий уровень сигнала.

8 Справочные данные

Таблица 6 – Справочные параметры микросхем

		Норма параметра		ypa °C
Наименование параметра, единица измерения, режим измерения	Буквенное обозначени параметра	не менее	не более	Температ среды, [°]
Разность задержек распространения сигнала передатчика, нс, t _{PLH_D} - t _{PHL_D}	t _{SKEW_D}	_	4	25, 125, минус 60
Время нарастания/спада дифференциального выходного напряжения передатчика, нс, при: C_L =50 пФ, R_L =54 Ом	t _r t _f	5	20	25, 125, минус 60

9 Типовые зависимости

Рисунок 5 – Зависимость тока потребления, I_{CC}, без нагрузки от температуры при U_{CC} = 5,5 B

Рисунок 6 – Зависимость тока короткого замыкания выхода передатчика, Ios_D, от напряжения источника питания при U_{AY}(U_{BZ}) = минус 7 В

Рисунок 7 – Зависимость тока короткого замыкания выхода передатчика, los_D , от напряжения источника питания при $U_{AY}(U_{BZ})$ = 12 В

Рисунок 8 – Зависимость выходного дифференциального напряжения передатчика, U_{O_D} , от напряжения источника питания при $T = 25 \, ^{\circ}C$

Рисунок 9 – Зависимость выходного дифференциального напряжения передатчика, U_{O_D} , от температуры при U_{CC} = 3,0 В

Рисунок 10 – Зависимость времени задержки распространения сигнала передатчика при включении, t_{PLH_D}, от температуры при U_{CC} = 3,0 B

Рисунок 11 – Зависимость времени задержки распространения сигнала передатчика при выключении, t_{PHL_D}, от температуры при: U_{CC} = 3,0 B

Рисунок 12 – Зависимость времени задержки распространения сигнала приемника при выключении, t_{PLH_R}, от температуры при: U_{CC} = 3,0 B

Рисунок 13 – Зависимость времени задержки распространения сигнала приемника при включении, t_{PHL_R}, от температуры при U_{CC} = 3,0 B

Рисунок 14 – Зависимость выходного напряжения высокого уровня приемника, U_{OH}, от температуры при U_{CC} = 3,0 B

Рисунок 15 – Зависимость выходного напряжения низкого уровня приемника, U_{OL}, от температуры при: U_{CC} = 3,0 B

Рисунок 16 – Зависимость тока короткого замыкания выхода передатчика, los_D , от температуры при $U_{AY}(U_{BZ})$ = 12 В

Рисунок 17 – Зависимость тока короткого замыкания выхода передатчика, los_D , от температуры при $U_{AY}(U_{BZ})$ = минус 7 В

10 Габаритный чертеж микросхемы

Рисунок 18 - Микросхема в корпусе Н02.8-1В

Размеры КП 1-6, 9,10 -
$$85 \times 85 \text{ мкм}^2$$
 7,8 - $123 \times 123 \text{ мкм}^2$

- 1. Номера контактным площадкам (КП), кроме первой, присвоены условно. Расположение КП соответствует топологическому чертежу.
- 2. М Маркировка кристалла MLDR67, показана условно.
- 3. Координаты КП см. таблицу.

Рисунок 19 - Кристалл (бескорпусное исполнение)

Таблица 7 – Координаты КП кристалла

№ КП	Обозначение КП	Коорди	наты КП
IN ANI	Обозначение кт	Х	Y
1	RO	365,450	0,00
2	RE	644,150	0,00
3	DE	1095,450	0,00
4	DI	1385,150	0,00
5	gnd	1720,550	933,30
6	gnd	1720,550	1385,65
7	AY	1365,750	1533,30
8	BZ	354,800	1533,30
9	vdd	0,000	1446,95
10	vdd	0,000	994,15

11 Информация для заказа

Обозначение	Маркировка	Тип корпуса	Температурный диапазон
5559ИН28У	ИН28	H02.8-1B	минус 60 – 125 °C
К5559ИН28У	К ИН28	H02.8-1B	минус 60 – 125 °C
К5559ИН28УК	К ИН28 •	H02.8-1B	0 – 70 °C

Примечание — Микросхемы в бескорпусном исполнении поставляются в виде отдельных кристаллов, получаемых разделением пластины. Микросхемы поставляются в таре (кейсах) без потери ориентации. Маркировка микросхемы — К5559ИН28Н4 — наносится на тару.

Микросхемы с приемкой «ВП» маркируются ромбом.

Микросхемы с приемкой «ОТК» маркируются буквой «К».

12 Лист регистрации изменений

№ п/п	Дата	Версия	Краткое содержание изменения	№№ изменяемых листов
1	17.04.2014	1.0.0	Введена впервые	
2	22.04.2014	1.1.0	Исправлено значение входа АҮ-ВZ в таблице 3. Исправлены значения R _L на рисунках 21, 22. Исправлены значения номиналов резисторов для типовой схемы включения.	3, 5, 10, 11
3	27.05.2014	2.0.0	Добавлен типономинал К5559ИН28УК. Исправлена маркировка.	По тексту
4	08.08.2014	2.1.0	Корректировка в соответствии с ТУ и КД	По тексту
5	21.10.2014	2.2.0	Заменен рисунок 4	12
6	15.10.2015	2.3.0	Введение бескорпусной микросхемы Добавлен раздел Указания по применению и эксплуатации	По тексту 4
7	22.01.2016	2.4.0	Исправлена размерность параметра в таблице 4 Корректировка подраздела «RS-485 приемник» Исправлены типовые зависимости	9 5, 6 13 – 19
8	26.01.2016	2.5.0	Исправления в таблице 3 Внесены исправления в подраздел «Микросхема в режиме «Выключено» (Shutdown)»	5 7
9	16.09.2016	2.6.0	Исправление в таблице 3. Исправление в таблице 5. Добавлена таблица справочных параметров. Добавлена возможность использования по стандарту RS-422 Исправлен рисунок 3 Дополнен раздел Указания по применению и эксплуатации	5 11 13 1 6 4