MATHEMATICAL REASONING Chapter 18

3rd SECONDARY

CONTEO DE FIGURAS

¿QUÉ OBSERVAS TÚ?

MÉTODOS DE CONTEO

□ CONTEO DIRECTO

POR SIMPLE INSPECCIÓN

Consiste en asignar números y/o letras a todas las figuras simples, luego se procede al conteo creciente y ordenado de figuras: De 1 letra o número, de 2 letras o números, de 3 letras o números, y así sucesivamente.

Ejemplo1: Calcule el total de cuadriláteros

□s de 3 letras:dab, abc, bcf, ade, def, efc 6

∴ N° de cuadriláteros 12

MÉTODOS DE CONTEO

Ejemplo 2:

Calcula el total de triángulos

Resolución:

$$\triangle$$
s de 1 letra: a,b,c,d, \longrightarrow 4

$$\triangle$$
s de 2 letras: ab,ac,be \longrightarrow 3

$$\triangle$$
s de 3 letras: acd \longrightarrow 1

$$\triangle$$
s de 5 letras: abcde \longrightarrow 1

∴ N° de triángulos: 9

MÉTODOS DE CONTEO

□ CONTEO POR INDUCCIÓN

POR FÓRMULA

Aplica para figuras recurrentes ya sea en líneas y/o vértices.

Segmentos:

Número de segmentos:

$$\frac{n(n+1)}{2}$$

n = número de segmentos simples

Calcule el total de segmentos:

Total segmentos:

$$\frac{4(5)}{2} + \frac{2(3)}{2} + \frac{3(4)}{2}$$

□ CONTEO POR INDUCCIÓN

POR FÓRMULA

Triángulos:

Número de triángulos:

$$\frac{n(n+1)}{2}$$

Número de triángulos:

$$\frac{n(n+1)}{2}$$
x k

Total de triángulos:

$$TOTAL = A + B + C + D$$

Ejemplo 1: Calcule el total de triángulos

 $Total\ triángulos: (820)5 = 4100$

Ejemplo 2: Calcule el total de triángulos

Total triángulos:

$$6+10+10+15=41$$

□ CONTEO POR INDUCCIÓN

POR FÓRMULA

Cuadriláteros:

1 2 3 4 ... n

N° de cuadriláteros:

$$\frac{n(n+1)}{2}$$

Ejemplo 1:

1	2	2	1	т	6	7	0	Q
_	2	3	4	5	O	/	8	9

Total cuadriláteros:

$$\frac{9(10)}{2} = 45$$

Cuadriláteros:

1	2	3	 n
2			
m			

Total cuadriláteros:

verticales: horizontales: $\frac{m(m+1)}{2} \times \frac{n(n+1)}{2}$

Ejemplo 1:

Calcule el total de cuadriláteros

1	2	3	4
2			
3			
4			
5			

Total cuadriláteros:

verticales: horizontales:

$$\frac{5(6)}{2}$$
 x $\frac{4(5)}{2}$

15
$$\times$$
 10 = 150

Cuadrados:

1	2	3	4	 a
2				

b				

Total cuadrados:

$$(a \times b)$$
+ $(a-1)(b-1)$ + $(a-2)(b-2)$ +....+ $()()$

Hasta que aparezca la unidad en uno de ellos.

Ejemplo 2: Calcule el total cuadrados

1	2	3	4	5	6	7	8
2							
3							
4							

Total de cuadrados:

$$8 \times 4 = 32$$
 $7 \times 3 = 21$
 $6 \times 2 = 12$
 $5 \times 1 = 5$

70

Cuadrados: (caso especial)

Ejemplo 2: Calcule el total cuadrados

1	2	3	 20
2			
3			
20			

Total de cuadrados

$$\frac{20(21)(41)}{6} = 2870$$

Total

PROBLEMA 1.

Rosa está postulando a la Universidad Nacional Federico Villarreal y tiene dificultad con este problema:

Halle el número total de cuadriláteros en:

Resolución:

Del enunciado

□s de 7: abcdefg

El número total de cuadriláteros: 21

PROBLEMA 2.

Halle el número total de segmentos en la siguiente figura.

Recordemos:

Número de segmentos:

$$\frac{n(n+1)}{2}$$

Resolución:

Del enunciado

Total de segmentos:

Horizontales: Verticales:

$$3\left(\frac{3(4)}{2}\right) + 2\left(\frac{4(5)}{2}\right)$$

$$3(6) + 2(10)$$

∴ El número total de segmentos: 38

PROBLEMA 3.

Recordemos:

Número de triángulos:

$$\left(\frac{n(n+1)}{2}\right)(pisos)$$

Resolución:

Del enunciado:

Total triángulos:

$$\left(\frac{5(6)}{2}\right)4$$

$$(15)4 = 60$$

: El número total de triángulos: 60

PROBLEMA 4.

Roberto es el profesor de Razonamiento Matemático y propone el siguiente problema a sus alumnos:¿Cuántos triángulos hay en total?

∴ El número total de triángulos: 66+45+28+15+6+1=161

PROBLEMA 5.

Calcule la diferencia entre el número de cuadriláteros y cuadrados.

Recordemos:

Número de cuadriláteros:

$$\left(\frac{n(n+1)}{2}\right)$$

n = número de espacios

Resolución

1	2	3	4	5	6	7	8
2							
3							
4							
5							

Recordemos:

Total, cuadriláteros:

Horizontales: Verticales:

$$\frac{8(9)}{2}$$
 x $\frac{5(6)}{2}$

$$36 \times 15 = 540$$

∴ La diferencia pedida: 540-100= 440

Total, cuadrados:

$$8 \times 5 = 40$$
 $7 \times 4 = 28$
 $6 \times 3 = 18$
 $5 \times 2 = 10$
 $4 \times 1 = 4$

◎1

PROBLEMA 6.

moderno mundo hemos visto construcciones innovadoras e imponentes que llaman poderosamente la atención, ya que sus diseños son únicos y originales, lo que refleja el profesionalismo de los arquitectos, ingenieros y diseñadores. Estos profesionales han tenido como punto de apoyo un sin fín de herramientas y recursos importantes y uno de ellos es la geometría, la cual permite poner en práctica tanto la invención como la proyección, para dar como resultado obras fabulosas e inimaginables en el gráfico mostrado el edificio tiene la forma de un tetraedro. Determine el total de triángulos simples que se cuentan.

Resolución:

Calculamos el número de triángulos en una cara del tetraedro

Número de triángulos

$$5^2 = 25$$

∴ Número total de triángulos: 4(25)= 100

O

PROBLEMA 7.

David está en la playa y dibuja en la arena una figura y se propone contar el número de hexágonos que hay en total. Si el dibujo que hizo en la arena es el siguiente:

...podría usted decir, ¿cuántos hexágonos contó Daniel?

Resolución:

En el gráfico

Total, hexágonos

$$\frac{6(7)}{2} = 21$$

Número total de hexágonos: 21