Project Title: OLA - Ensemble Learning

Problem Statement

- Recruiting and retaining drivers is seen by industry watchers as a tough battle for Ola.
- Churn among drivers is high and it's very easy for drivers to stop working for the service on the fly or jump to Uber depending on the rates.
- As the companies get bigger, the high churn could become a bigger problem. To find new drivers, Ola is casting a wide net, including people who don't have cars for jobs. But this acquisition is really costly.
- Losing drivers frequently impacts the morale of the organization and acquiring new drivers is more expensive than retaining existing ones.
- You are working as a data scientist with the Analytics Department of Ola, focused on driver team attrition.
- You are provided with the monthly information for a segment of drivers for 2019 and 2020 and tasked to predict whether a driver will be leaving the company or not based on their attributes like
- Demographics (city, age, gender etc.)
- Tenure information (joining date, Last Date)
- Historical data regarding the performance of the driver (Quarterly rating, Monthly business acquired, grade, Income)

Column Profiling:

- MMMM-YY : Reporting Date (Monthly)
- Driver_ID: Unique id for drivers
- Age: Age of the driver
- Gender: Gender of the driver Male: 0, Female: 1
- City: City Code of the driver
- Education_Level: Education level 0 for 10+,1 for 12+,2 for graduate
- Income: Monthly average Income of the driver
- Date Of Joining : Joining date for the driver
- LastWorkingDate: Last date of working for the driver
- Joining Designation : Designation of the driver at the time of joining
- Grade: Grade of the driver at the time of reporting
- Total Business Value: The total business value acquired by the driver in a month (negative business indicates -cancellation/refund or car EMI adjustments)
- Quarterly Rating: Quarterly rating of the driver: 1,2,3,4,5 (higher is better)

Concepts Tested:

Ensemble Learning- Bagging
Ensemble Learning- Boosting
KNN Imputation of Missing Values
Working with an imbalanced dataset

```
import pandas as pd
In [1]:
         import numpy as np
         import seaborn as sns
         import matplotlib.pyplot as plt
         %matplotlib inline
         from matplotlib import figure
         import statsmodels.api as sm
         from scipy.stats import norm
         from scipy.stats import t
         import warnings
         warnings.filterwarnings('ignore')
         pd.set_option('display.max_rows', 500)
         pd.set_option('display.max_columns', 500)
         pd.set_option('display.width', 1000)
         ola = pd.read_csv("ola_driver_scaler.csv")
In [2]:
In [3]:
         ola.head(5)
Out[3]:
            Unnamed:
                       MMM-
                               Driver_ID Age Gender City Education_Level Income Dateofjoining La
         0
                   0 01/01/19
                                      1 28.0
                                                  0.0
                                                      C23
                                                                            57387
                                                                                       24/12/18
         1
                   1 02/01/19
                                         28.0
                                                  0.0
                                                      C23
                                                                            57387
                                                                                       24/12/18
         2
                                                                            57387
                   2 03/01/19
                                      1 28.0
                                                      C23
                                                                                       24/12/18
                                                  0.0
                                                                       2
         3
                   3 11/01/20
                                      2 31.0
                                                  0.0
                                                       C7
                                                                            67016
                                                                                       11/06/20
                                                                            67016
                   4 12/01/20
                                      2 31.0
                                                  0.0
                                                       C7
                                                                                       11/06/20
         df = ola.copy()
In [4]:
```

Missing values checK:

```
In [5]: (df.isna().sum()/len(df))*100
```

0.000000

Unnamed: 0

```
Out[5]:
          MMM-YY
                                      0.000000
          Driver_ID
                                      0.000000
                                      0.319305
          Age
          Gender
                                      0.272194
          City
                                      0.000000
                                      0.000000
          Education_Level
          Income
                                      0.000000
          Dateofjoining
                                      0.000000
          LastWorkingDate
                                    91.541039
          Joining Designation
                                      0.000000
          Grade
                                      0.000000
          Total Business Value
                                      0.000000
          Quarterly Rating
                                      0.000000
          dtype: float64
          df.head(10)
In [6]:
Out[6]:
             Unnamed:
                         MMM-
                                 Driver_ID Age Gender City Education_Level Income Dateofjoining La
                             ΥY
          0
                     0 01/01/19
                                           28.0
                                                     0.0
                                                         C23
                                                                               57387
                                                                                           24/12/18
          1
                     1 02/01/19
                                           28.0
                                                     0.0
                                                         C23
                                                                               57387
                                                                                           24/12/18
          2
                     2 03/01/19
                                           28.0
                                                     0.0
                                                         C23
                                                                               57387
                                                                                           24/12/18
          3
                     3 11/01/20
                                        2 31.0
                                                     0.0
                                                          C7
                                                                               67016
                                                                                           11/06/20
                                                          C7
          4
                     4 12/01/20
                                        2 31.0
                                                     0.0
                                                                           2
                                                                               67016
                                                                                           11/06/20
          5
                                        4 43.0
                                                         C13
                                                                               65603
                     5 12/01/19
                                                     0.0
                                                                                           12/07/19
          6
                                                                               65603
                     6 01/01/20
                                        4 43.0
                                                     0.0
                                                         C13
                                                                                           12/07/19
          7
                                        4 43.0
                                                     0.0
                                                         C13
                                                                                           12/07/19
                     7 02/01/20
                                                                               65603
          8
                     8 03/01/20
                                           43.0
                                                     0.0
                                                         C13
                                                                           2
                                                                               65603
                                                                                           12/07/19
          9
                                        4 43.0
                                                                               65603
                                                                                           12/07/19
                     9 04/01/20
                                                     0.0 C13
In [7]:
          df.shape
          (19104, 14)
Out[7]:
          df["Driver_ID"].nunique() # 2381 drivers data.
In [8]:
          2381
Out[8]:
          df.drop(["Unnamed: 0"],axis = 1 , inplace=True)
In [9]:
          df["Gender"].replace({0.0:"Male",1.0:"Female"},inplace=True)
In [10]:
```

Analysing Structure of Data:

```
In [11]: df[df["Driver_ID"]==25]
```

Out[11]:

	MMM- YY	Driver_ID	Age	Gender	City	Education_Level	Income	Dateofjoining	LastWorkinç
114	01/01/19	25	29.0	Male	C24	1	102077	30/10/17	
115	02/01/19	25	29.0	Male	C24	1	102077	30/10/17	
116	03/01/19	25	29.0	Male	C24	1	102077	30/10/17	
117	04/01/19	25	29.0	Male	C24	1	102077	30/10/17	
118	05/01/19	25	29.0	Male	C24	1	102077	30/10/17	
119	06/01/19	25	29.0	Male	C24	1	102077	30/10/17	
120	07/01/19	25	29.0	Male	C24	1	102077	30/10/17	
121	08/01/19	25	29.0	Male	C24	1	102077	30/10/17	
122	09/01/19	25	29.0	Male	C24	1	102077	30/10/17	
123	10/01/19	25	29.0	Male	C24	1	102077	30/10/17	
124	11/01/19	25	30.0	Male	C24	1	102077	30/10/17	
125	12/01/19	25	30.0	Male	C24	1	102077	30/10/17	
126	01/01/20	25	30.0	Male	C24	1	102077	30/10/17	
127	02/01/20	25	30.0	Male	C24	1	102077	30/10/17	
128	03/01/20	25	30.0	Male	C24	1	102077	30/10/17	
129	04/01/20	25	30.0	Male	C24	1	102077	30/10/17	
130	05/01/20	25	30.0	Male	C24	1	102077	30/10/17	
131	06/01/20	25	30.0	Male	C24	1	102077	30/10/17	
132	07/01/20	25	30.0	Male	C24	1	102077	30/10/17	
133	08/01/20	25	30.0	Male	C24	1	102077	30/10/17	
134	09/01/20	25	30.0	Male	C24	1	102077	30/10/17	
135	10/01/20	25	30.0	Male	C24	1	102077	30/10/17	
136	11/01/20	25	31.0	Male	C24	1	102077	30/10/17	
137	12/01/20	25	31.0	Male	C24	1	102077	30/10/17	

Restructuring the data by aggregation:

```
})
          agg_df = agg_df.reset_index()
In [13]:
In [14]: final_data = agg_df.rename(columns={"MMM-YY":"No_of_Records",
                                  "Dateofjoining": "Date_of_joining",
                                  "Joining Designation": "Joining_Designation",
                                  "Total Business Value" : "Total_Business_Value",
                                  "Quarterly Rating":"Quarterly_Rating"})
          final data
In [15]:
Out[15]:
                Driver_ID No_of_Records Age City Education_Level Income Date_of_joining Joining_Desi
             0
                       1
                                     3 28.0 C23
                                                              2 57387.0
                                                                               24/12/18
                                                              2 67016.0
                       2
                                     2 31.0
                                              C7
                                                                               11/06/20
             2
                       4
                                     5 43.0 C13
                                                              2 65603.0
                                                                               12/07/19
                       5
                                     3 29.0
                                              C9
                                                              0 46368.0
                                                                               01/09/19
             4
                       6
                                     5 31.0 C11
                                                              1 78728.0
                                                                               31/07/20
          2376
                    2784
                                                              0 82815.0
                                                                               15/10/15
                                    24 34.0 C24
          2377
                    2785
                                     3 34.0
                                              C9
                                                              0 12105.0
                                                                               28/08/20
          2378
                    2786
                                     9 45.0 C19
                                                              0 35370.0
                                                                               31/07/18
          2379
                    2787
                                     6 28.0
                                             C20
                                                              2 69498.0
                                                                               21/07/18
          2380
                    2788
                                     7 30.0 C27
                                                              2 70254.0
                                                                               06/08/20
         2381 rows × 11 columns
          final_data = pd.merge(left = df.groupby(["Driver_ID"])["LastWorkingDate"].unique().
In [16]:
                  right = final_data,
                   on = "Driver_ID",
                    how="outer"
              )
In [17]:
          final_data = pd.merge(left = df.groupby(["Driver_ID"])["Gender"].unique().apply(lam
                  right = final_data,
                   on = "Driver_ID",
                    how="outer"
              )
          data = final_data.copy()
In [18]:
          data["Gender"].value_counts()
In [19]:
                     1380
          Male
Out[19]:
          Female
                      956
          Name: Gender, dtype: int64
```

Target variable creation:

• Target which tells whether the driver has left the company- driver whose last working day is present will have the value 1

```
pd.Series(np.where(data["LastWorkingDate"].isna(),0,1)).value_counts()
In [20]:
               1616
Out[20]:
                765
          dtype: int64
          data["Churn"] = data["LastWorkingDate"].fillna(0)
In [21]:
          def apply_0_1(y):
In [22]:
              if y == 0:
                  return 0
              if y != 0:
                  return 1
In [23]:
          data["Churn"] = data["Churn"].apply(apply_0_1)
In [24]:
          data["Churn"].value_counts()
               1616
          1
Out[24]:
                765
          Name: Churn, dtype: int64
          data["Churn"].value_counts(normalize=True)*100
In [25]:
               67.870643
Out[25]:
               32.129357
          Name: Churn, dtype: float64

    Class 1 is denoted to the drivers who churned . 68%

    Class 0 is denoted to the drivers who have not churned . 32%

           • Data is imbalanced.
          # data["Total_Business_Value"] = data["Total_Business_Value"].replace({0:np.nan})
In [26]:
```

Converting Date Columns into Datatime format:

```
In [27]: data["Date_of_joining"] = pd.to_datetime(data["Date_of_joining"])
data["LastWorkingDate"] = pd.to_datetime(data["LastWorkingDate"])

In [28]: data["joining_Year"] = data["Date_of_joining"].dt.year

In [29]: # data["joining_month"] = data["Date_of_joining"].dt.month
```

Checking for Missing Values after Restructuring:

```
In [30]: (data.isna().sum()/len(data))*100
```

```
0.000000
         Driver ID
Out[30]:
         Gender
                                  1.889962
         LastWorkingDate
                                 32.129357
         No_of_Records
                                  0.000000
         Age
                                  0.000000
         City
                                  0.000000
         Education_Level
                                  0.000000
         Income
                                  0.000000
         Date_of_joining
                                  0.000000
         Joining_Designation
                                  0.000000
                                  0.000000
         Total_Business_Value
                                  0.000000
         Quarterly_Rating
                                  0.000000
         Churn
                                  0.000000
         joining Year
                                  0.000000
         dtype: float64
         data["Churn"].value_counts(normalize=True)*100
In [31]:
              67.870643
Out[31]:
              32.129357
         Name: Churn, dtype: float64
```

Feature Engineering:

Whether the quarterly rating has increased for driver?

• For those whose quarterly rating has increased, we assign the value 1.

```
In [32]: def app_rating_inc(y):
             if len(y) >= 2:
                  for i in range(len(y)):
                      if y[-1]>y[-2]:
                          return 1
                      else:
                          return 0
              else:
                  return 0
         Quarterly_Rating_increased = df.groupby("Driver_ID")["Quarterly_Rating"].unique().a
In [33]:
In [34]:
         data = pd.merge(left = Quarterly_Rating_increased,
                  right = data,
                   on = "Driver ID",
                   how="outer"
              )
         # df.groupby("Driver_ID")["Quarterly Rating"].unique().apply(app_rating_inc)
In [35]:
In [36]:
         data["Quarterly_Rating_increased"] = data["Quarterly Rating"]
         data.drop(["Quarterly Rating"],axis=1,inplace=True)
In [37]:
```

Whether the monthly income has increased for driver?

• For those whose monthly income has increased, we assign the value 1.

```
In [38]:
            def app_income_inc(y):
                if len(y) >= 2:
                    for i in range(len(y)):
                         if y[-1]>y[-2]:
                             return 1
                         else:
                             return 0
                else:
                    return 0
            # df.groupby("Driver_ID")["Income"].unique().apply(app_income_inc).rename("Increase
 In [39]:
            data = pd.merge(left = df.groupby("Driver_ID")["Income"].unique().apply(app_income_
 In [40]:
                    right = data,
                      on = "Driver_ID",
                      how="outer"
                )
 In [41]:
            data
 Out[41]:
                  Driver ID
                           Increased Income
                                            Gender LastWorkingDate No of Records Age City Educatio
               0
                                         0
                                                          2019-03-11
                                                                                3 28.0 C23
                         1
                                              Male
               1
                         2
                                              Male
                                                                                2 31.0
                                                                                         C7
                                                                NaT
               2
                                                          2020-04-27
                         4
                                         0
                                                                                5 43.0 C13
                                              Male
                                              Male
                                                          2019-03-07
                                                                                3 29.0
                                                                                         C9
               4
                         6
                                         0 Female
                                                               NaT
                                                                                5 31.0 C11
            2376
                      2784
                                                                               24 34.0 C24
                                         0
                                              Male
                                                                NaT
            2377
                      2785
                                            Female
                                                          2020-10-28
                                                                                3 34.0
                                                                                         C9
                      2786
            2378
                                         0
                                                          2019-09-22
                                              Male
                                                                                9 45.0 C19
            2379
                      2787
                                             Female
                                                          2019-06-20
                                                                                6 28.0 C20
            2380
                      2788
                                         0
                                                                                7 30.0 C27
                                              Male
                                                               NaT
           2381 rows × 17 columns
4
            Mdata = data.copy()
 In [42]:
            Mdata["Gender"].replace({"Male":0,
 In [43]:
                                     "Female":1},inplace=True)
 In [44]:
            Mdata.drop(["Driver_ID"],axis = 1, inplace=True)
```

Mdata.isna().sum()

In [45]:

```
Increased_Income
                                           0
Out[45]:
          Gender
                                          45
          LastWorkingDate
                                         765
         No_of_Records
                                           0
                                           0
         Age
         City
                                           0
         Education_Level
                                           0
         Income
                                           0
         Date_of_joining
                                           0
          Joining_Designation
                                           0
                                           0
          Total_Business_Value
                                           0
         Quarterly_Rating
                                           0
         Churn
                                           0
          joining_Year
                                           0
         Quarterly_Rating_increased
         dtype: int64
```

In [46]: Mdata

. .

Out[46]:		Increased_Income	Gender	LastWorkingDate	No_of_Records	Age	City	Education_Level	ln
	0	0	0.0	2019-03-11	3	28.0	C23	2	57
	1	0	0.0	NaT	2	31.0	C 7	2	67
	2	0	0.0	2020-04-27	5	43.0	C13	2	65
	3	0	0.0	2019-03-07	3	29.0	C9	0	46
	4	0	1.0	NaT	5	31.0	C11	1	78
	•••								
	2376	0	0.0	NaT	24	34.0	C24	0	82
	2377	0	1.0	2020-10-28	3	34.0	C9	0	12
	2378	0	0.0	2019-09-22	9	45.0	C19	0	35
	2379	0	1.0	2019-06-20	6	28.0	C20	2	69
	2380	0	0.0	NaT	7	30.0	C27	2	70

2381 rows × 16 columns

```
In [47]: pd.to_datetime("2021-06-01")
Out[47]: Timestamp('2021-06-01 00:00:00')
In [48]: Mdata["LastWorkingDate"] = Mdata["LastWorkingDate"].fillna(pd.to_datetime("2021-06-
In [49]: (Mdata["LastWorkingDate"] - Mdata["Date_of_joining"])
```

```
77 days
 Out[49]:
            1
                    207 days
            2
                    142 days
            3
                     57 days
                    305 days
            2376
                   2056 days
            2377
                     61 days
            2378
                    418 days
            2379
                    334 days
            2380
                    358 days
            Length: 2381, dtype: timedelta64[ns]
            Mdata["Driver_tenure_days"] = (Mdata["LastWorkingDate"] - Mdata["Date_of_joining"])
 In [50]:
 In [51]:
            Mdata["Driver_tenure_days"] = Mdata["Driver_tenure_days"].dt.days
 In [52]:
            Mdata.drop(["LastWorkingDate","Date_of_joining"],inplace=True,axis = 1)
            Mdata.drop(["Driver_tenure_days"],inplace=True,axis = 1)
 In [53]:
 In [54]:
            Mdata
 Out[54]:
                  Increased_Income Gender No_of_Records Age City Education_Level Income Joining_Des
               0
                                       0.0
                                                      3 28.0
                                                              C23
                                                                                2 57387.0
                                                      2 31.0
                                                                                2 67016.0
               1
                                       0.0
                                                               C7
               2
                                      0.0
                                                      5 43.0
                                                             C13
                                                                                2 65603.0
               3
                                       0.0
                                                      3 29.0
                                                               C9
                                                                                0 46368.0
               4
                                0
                                       1.0
                                                      5 31.0
                                                              C11
                                                                                1 78728.0
            2376
                                0
                                       0.0
                                                     24 34.0
                                                              C24
                                                                                0 82815.0
            2377
                                0
                                       1.0
                                                      3 34.0
                                                               C9
                                                                                0 12105.0
            2378
                                0
                                       0.0
                                                      9 45.0
                                                              C19
                                                                                0 35370.0
            2379
                                       1.0
                                                      6 28.0
                                                              C20
                                                                                2 69498.0
            2380
                                      0.0
                                                      7 30.0 C27
                                                                                2 70254.0
           2381 rows × 14 columns
4
```


In [59]: Mdata.isna().sum()

```
Increased_Income
                                           0
Out[59]:
          Gender
                                          45
          No_of_Records
                                           0
          Age
                                           0
          City
                                           0
          Education_Level
                                           0
          Income
                                           0
          Joining_Designation
                                           0
          Grade
                                           0
          Total_Business_Value
                                           0
          Quarterly_Rating
                                           0
          Churn
                                           0
          joining_Year
                                           0
          Quarterly_Rating_increased
                                           0
          dtype: int64
```

SimpleImputer

```
In [60]:
         from sklearn.impute import SimpleImputer
          imputer = SimpleImputer(strategy='most_frequent')
In [61]:
          Mdata["Gender"] = imputer.fit_transform(X=Mdata["Gender"].values.reshape(-1,1),y=Mc
In [62]:
          Mdata["Gender"].value_counts(dropna=False)
In [63]:
                 1425
          0.0
Out[63]:
          1.0
                  956
          Name: Gender, dtype: int64
         Mdata.isna().sum()
In [64]:
                                         0
         Increased_Income
Out[64]:
                                         0
          Gender
          No_of_Records
                                         0
          Age
                                         0
          City
          Education_Level
                                         0
                                         0
          Income
                                         0
          Joining_Designation
                                         0
          Grade
          Total_Business_Value
                                         0
          Quarterly_Rating
                                         0
          Churn
                                         0
                                         0
          joining Year
          Quarterly_Rating_increased
          dtype: int64
```

TargetEncoder

```
In [65]: from category_encoders import TargetEncoder
    TE = TargetEncoder()

In [66]: Mdata["City"] = TE.fit_transform(X = Mdata["City"],y = Mdata["Churn"])

In [67]: Mdata["joining_Year"] = TE.fit_transform(X = Mdata["joining_Year"],y = Mdata["Churr Warning: No categorical columns found. Calling 'transform' will only return input data.
```

In [68]:	Mdata	1							
Out[68]:		Increased_Income	Gender	No_of_Records	Age	City	Education_Level	Income	Joining
	0	0	0.0	3	28.0	0.770270	2	57387.0	
	1	0	0.0	2	31.0	0.684211	2	67016.0	
	2	0	0.0	5	43.0	0.816901	2	65603.0	
	3	0	0.0	3	29.0	0.706667	0	46368.0	
	4	0	1.0	5	31.0	0.703125	1	78728.0	
	•••								
	2376	0	0.0	24	34.0	0.698630	0	82815.0	
	2377	0	1.0	3	34.0	0.706667	0	12105.0	
	2378	0	0.0	9	45.0	0.569444	0	35370.0	
	2379	0	1.0	6	28.0	0.730263	2	69498.0	
	2380	0	0.0	7	30.0	0.674157	2	70254.0	

2381 rows × 14 columns

```
In [69]: # Mdata.drop(["No_of_Records"], axis = 1 , inplace= True)
In [70]: plt.figure(figsize=(15, 15))
    sns.heatmap(Mdata.corr(),annot=True, cmap="RdYlGn", annot_kws={"size":10})
Out[70]: <AxesSubplot:>
```


sns.heatmap(Mdata.corr())

```
In [71]: X = Mdata.drop(["Churn"],axis = 1)
y = Mdata["Churn"]
```

KNNImputer

```
In [72]: import numpy as np
    from sklearn.impute import KNNImputer
    imputer = KNNImputer(n_neighbors=5)

In [73]: X = pd.DataFrame(imputer.fit_transform(X),columns=X.columns)

In [74]: X
```

Out[74]:		Increased_Income	Gender	No_of_Records	Age	City	Education_Level	Income	Joining
	0	0.0	0.0	3.0	28.0	0.770270	2.0	57387.0	
	1	0.0	0.0	2.0	31.0	0.684211	2.0	67016.0	
	2	0.0	0.0	5.0	43.0	0.816901	2.0	65603.0	
	3	0.0	0.0	3.0	29.0	0.706667	0.0	46368.0	
	4	0.0	1.0	5.0	31.0	0.703125	1.0	78728.0	
	•••								
	2376	0.0	0.0	24.0	34.0	0.698630	0.0	82815.0	
	2377	0.0	1.0	3.0	34.0	0.706667	0.0	12105.0	
	2378	0.0	0.0	9.0	45.0	0.569444	0.0	35370.0	
	2379	0.0	1.0	6.0	28.0	0.730263	2.0	69498.0	
	2380	0.0	0.0	7.0	30.0	0.674157	2.0	70254.0	
	2381 r	ows × 13 columns							

2381 rows × 13 columns

							1
n [75]:	X.des	cribe()					
ut[75]:		Increased_Income	Gender	No_of_Records	Age	City	Education_Level
	count	2381.000000	2381.000000	2381.00000	2381.000000	2381.000000	2381.00000
	mean	0.018480	0.401512	8.02352	33.663167	0.678706	1.00756
	std	0.134706	0.490307	6.78359	5.983375	0.065565	0.81629
	min	0.000000	0.000000	1.00000	21.000000	0.531250	0.00000
	25%	0.000000	0.000000	3.00000	29.000000	0.634146	0.00000
	50%	0.000000	0.000000	5.00000	33.000000	0.698630	1.00000
	75%	0.000000	1.000000	10.00000	37.000000	0.719512	2.00000
	max	1.000000	1.000000	24.00000	58.000000	0.816901	2.00000

train_test_split

Out[78]: 2381

StandardScaler

```
In [79]: from sklearn.preprocessing import StandardScaler
In [80]: scaler = StandardScaler()
In [81]: scaler.fit(X_train)
Out[81]: v StandardScaler
StandardScaler()
In [82]: X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
```

RandomForestClassifier

```
from sklearn.ensemble import RandomForestClassifier
In [83]:
         RF = RandomForestClassifier(n_estimators=100,
In [84]:
             criterion='entropy',
             max_depth=10,
             min_samples_split=2,
             min_samples_leaf=1,
             min_weight_fraction_leaf=0.0,
             max_features='sqrt',
             max_leaf_nodes=None,
             min_impurity_decrease=0.0,
             bootstrap=True,
             oob_score=False,
             n_jobs=None,
             random_state=None,
             verbose=0,
             warm_start=False,
              class weight="balanced",
              ccp_alpha=0.0085,
             max samples=None,)
         RF.fit(X_train,y_train)
In [85]:
Out[85]:
                                 RandomForestClassifier
         RandomForestClassifier(ccp_alpha=0.0085, class_weight='balanced',
                                  criterion='entropy', max_depth=10)
         RF.score(X_train,y_train),RF.score(X_test,y_test)
In [86]:
         (0.8697478991596639, 0.8679245283018868)
Out[86]:
In [87]:
         RF.feature importances
```

```
Out[87]: array([0.00590403, 0.00050725, 0.25754642, 0.01764032, 0.0158143, 0.00143737, 0.02139929, 0.02819439, 0.01867883, 0.17940811, 0.07943974, 0.31669506, 0.05733489])
```

In [88]: X.columns

Out[88]: Index(['Increased_Income', 'Gender', 'No_of_Records', 'Age', 'City', 'Education_Le vel', 'Income', 'Joining_Designation', 'Grade', 'Total_Business_Value', 'Quarterly _Rating', 'joining_Year', 'Quarterly_Rating_increased'], dtype='object')

Out[89]: <AxesSubplot:>


```
In [90]:
          from sklearn.metrics import f1_score , precision_score, recall_score,confusion_matr
In [91]:
          confusion_matrix(y_test,RF.predict(X_test) )
          array([[141, 21],
Out[91]:
                 [ 42, 273]], dtype=int64)
          confusion_matrix(y_train,RF.predict(X_train) )
In [92]:
         array([[ 537,
                          66],
Out[92]:
                 [ 182, 1119]], dtype=int64)
In [93]:
          f1_score(y_test,RF.predict(X_test)),f1_score(y_train,RF.predict(X_train))
          (0.896551724137931, 0.9002413515687852)
Out[93]:
In [94]:
          precision_score(y_test,RF.predict(X_test)),precision_score(y_train,RF.predict(X_train))
          (0.9285714285714286, 0.9443037974683545)
Out[94]:
In [95]:
          recall_score(y_test,RF.predict(X_test)),recall_score(y_train,RF.predict(X_train))
          (0.8666666666666667, 0.8601076095311299)
Out[95]:
```

GridSearchCV - on RandomForestClassifier

```
In [96]:
          from sklearn.model selection import GridSearchCV
          from sklearn.ensemble import RandomForestClassifier
          parameters = {"max_depth":[7,10,15],
                        "n_estimators":[100,200,300,400],
                        "max_features":[4,7,10],
                        "ccp_alpha":[0.0005,0.00075,0.001]}
          RFC = RandomForestClassifier()
          grid_search = GridSearchCV(
              estimator = RFC,
              param_grid = parameters,
              scoring = "accuracy",
              n_{jobs} = -1,
              refit=True,
                                            # need not to train again after grid search
              cv=3,
              pre_dispatch='2*n_jobs',
              return_train_score=False)
          grid_search.fit(X_train,y_train.values.ravel())
                        GridSearchCV
Out[97]:
           ▶ estimator: RandomForestClassifier
                 ▶ RandomForestClassifier
          grid_search.best_estimator_
In [98]:
Out[98]:
                                     RandomForestClassifier
          RandomForestClassifier(ccp alpha=0.001, max depth=10, max features=7,
                                   n estimators=300)
In [99]:
          grid_search.best_score_
          0.8881417819617973
Out[99]:
In [100...
          grid_search.best_params_
          {'ccp_alpha': 0.001, 'max_depth': 10, 'max_features': 7, 'n_estimators': 300}
Out[100]:
In [101...
          from sklearn.ensemble import RandomForestClassifier
          RF = RandomForestClassifier(n estimators=100,
              criterion='entropy',
              max depth=7,
              min samples split=2,
              min_samples_leaf=1,
              class weight="balanced",
              ccp_alpha=0.0001,
              max_samples=None)
          RF.fit(X_train , y_train)
In [102...
```

```
Out[102]:
                                   RandomForestClassifier
          RandomForestClassifier(ccp_alpha=0.0001, class_weight='balanced',
                                    criterion='entropy', max_depth=7)
In [103...
           RF.score(X_train,y_train),RF.score(X_test,y_test)
           (0.9028361344537815, 0.8825995807127882)
Out[103]:
In [104...
           y_test_pred = RF.predict(X_test)
           y_train_pred = RF.predict(X_train)
           f1_score(y_test,y_test_pred),f1_score(y_train,y_train_pred)
In [105...
           (0.9093851132686084, 0.9264998013508144)
Out[105]:
In [106...
           precision_score(y_test,y_test_pred),precision_score(y_train,y_train_pred)
           (0.9273927392739274, 0.9588815789473685)
Out[106]:
In [107...
           recall_score(y_test,y_test_pred),recall_score(y_train,y_train_pred)
           (0.8920634920634921, 0.8962336664104535)
Out[107]:
```

BaggingClassifier

```
from sklearn.tree import DecisionTreeClassifier
In [108...
In [109...
           from sklearn.ensemble import BaggingClassifier
           bagging_classifier_model = BaggingClassifier(base_estimator= DecisionTreeClassifi€
In [110...
                                                        n estimators=50,
                                                        max_samples=1.0,
                                                        max_features=1.0,
                                                        bootstrap=True,
                                                        bootstrap_features=False,
                                                        oob_score=False,
                                                        warm_start=False,
                                                        n_jobs=None,
                                                        random state=None,
                                                        verbose=0,)
           bagging_classifier_model.fit(X_train,y_train)
In [111...
                        BaggingClassifier
Out[111]:
           ▶ base estimator: DecisionTreeClassifier
                    ▶ DecisionTreeClassifier
          from sklearn.metrics import f1_score , precision_score, recall_score,confusion_matr
In [112...
          y_test_pred = bagging_classifier_model.predict(X_test)
In [113...
          y_train_pred = bagging_classifier_model.predict(X_train)
```

```
confusion_matrix(y_test,y_test_pred)
In [114...
           array([[144, 18],
Out[114]:
                  [ 39, 276]], dtype=int64)
           confusion_matrix(y_train,y_train_pred)
In [115...
          array([[ 558,
                           45],
Out[115]:
                  [ 116, 1185]], dtype=int64)
In [116...
           f1_score(y_test,y_test_pred),f1_score(y_train,y_train_pred)
           (0.9064039408866995, 0.9363887791386803)
Out[116]:
           precision_score(y_test,y_test_pred),precision_score(y_train,y_train_pred)
In [117...
           (0.9387755102040817, 0.9634146341463414)
Out[117]:
In [118...
           recall_score(y_test,y_test_pred),recall_score(y_train,y_train_pred)
           (0.8761904761904762, 0.9108378170637971)
Out[118]:
In [119...
           bagging_classifier_model.score(X_test,y_test)
           0.8805031446540881
Out[119]:
In [120...
           bagging_classifier_model.score(X_train,y_train)
          0.9154411764705882
Out[120]:
In [121...
           # !pip install xgboost
           from xgboost import XGBClassifier
In [122...
           from sklearn.model selection import GridSearchCV
In [123...
           from sklearn.ensemble import RandomForestClassifier
           parameters = {"max_depth":[2,4,6,10],
                        "n_estimators":[100,200,300,400]
           grid search = GridSearchCV(
               estimator = XGBClassifier(),
               param_grid = parameters,
               scoring = "accuracy",
               n_{jobs} = -1,
               refit=True,
                                              # need not to train again after grid search
               pre_dispatch='2*n_jobs',
               return_train_score=False)
           grid_search.fit(X_train,y_train.values.ravel())
           grid_search.best_estimator_
           grid_search.best_score_
           grid_search.best_params_
```

```
{'max_depth': 2, 'n_estimators': 100}
Out[123]:
          xgb = XGBClassifier(n estimators=100,
In [124...
                             max_depth = 2)
          xgb.fit(X_train, y_train)
Out[124]:
                                            XGBClassifier
          XGBClassifier(base_score=0.5, booster='gbtree', callbacks=None,
                         colsample_bylevel=1, colsample_bynode=1, colsample_bytree
          =1,
                         early_stopping_rounds=None, enable_categorical=False,
                         eval_metric=None, feature_types=None, gamma=0, gpu_id=-1,
                         grow_policy='depthwise', importance_type=None,
                         interaction_constraints='', learning_rate=0.300000012,
                         max_bin=256, max_cat_threshold=64, max_cat_to_onehot=4,
                         max_delta_step=0, max_depth=2, max_leaves=0, min_child we
          ight=1,
                         missing=nan, monotone constraints='()', n estimators=100,
In [125...
          y_test_pred = xgb.predict(X_test)
          y_train_pred = xgb.predict(X_train)
          confusion_matrix(y_test,y_test_pred)
In [126...
          array([[124, 38],
Out[126]:
                 [ 24, 291]], dtype=int64)
In [127...
          confusion_matrix(y_train,y_train_pred)
          array([[ 515,
                          88],
Out[127]:
                 [ 76, 1225]], dtype=int64)
          xgb.score(X_train,y_train),xgb.score(X_test,y_test)
In [128...
          (0.9138655462184874, 0.870020964360587)
Out[128]:
          f1_score(y_test,y_test_pred),f1_score(y_train,y_train_pred)
In [129...
          (0.9037267080745341, 0.9372609028309103)
Out[129]:
In [130...
          recall_score(y_test,y_test_pred),recall_score(y_train,y_train_pred)
          (0.9238095238095239, 0.9415833973866257)
Out[130]:
          precision_score(y_test,y_test_pred),precision_score(y_train,y_train_pred)
In [131...
          (0.8844984802431611, 0.9329779131759329)
Out[131]:
In [132...
          xgb.feature importances
                           , 0.01420613, 0.19747032, 0.01697209, 0.02113413,
Out[132]:
                 0.02173466, 0.01887255, 0.01899261, 0.01514235, 0.04826141,
                 0.22931552, 0.3451485 , 0.05274975], dtype=float32)
          pd.DataFrame(data=xgb.feature importances ,
In [133...
                      index=X.columns).plot(kind="bar")
          <AxesSubplot:>
Out[133]:
```


GradientBoostingClassifier

```
In [134...
           def GradientBoostingClassifier(X, y):
               from sklearn.ensemble import GradientBoostingClassifier
               from sklearn.metrics import f1_score, accuracy_score , roc_auc_score,auc,recall
               X_train, X_test, y_train, y_test = train_test_split(X,
                                                                      test_size=0.2,
                                                                      random_state=1)
               lr = GradientBoostingClassifier()
               scaler = StandardScaler()
               scaler.fit(X train)
               X_train = scaler.transform(X_train)
               X test = scaler.transform(X test)
               lr.fit(X_train, y_train)
               y_pred = lr.predict(X_test)
               prob = lr.predict_proba(X_test)
               cm = confusion_matrix(y_test, y_pred)
               print('Train Score : ', lr.score(X_train, y_train), '\n')
print('Test Score : ', lr.score(X_test, y_test), '\n')
               print('Accuracy Score : ', accuracy_score(y_test, y_pred), '\n')
               print(cm, "---> confusion Matrix ", '\n')
               print("ROC-AUC score test dataset: ", roc_auc_score(y_test, prob[:, 1]),'\n')
               print("precision score test dataset: ", precision_score(y_test, y_pred),'\n')
               print("Recall score test dataset: ", recall_score(y_test, y_pred), '\n')
               print("f1 score test dataset : ", f1_score(y_test, y_pred), '\n')
               return (prob[:,1], y_test)
In [135...
           probs , y test = GradientBoostingClassifier(X,y)
```

```
localhost:8889/lab/tree/Downloads/OLA - Ensemble Learning .ipynb
```

Train Score : 0.914390756302521

Test Score : 0.8909853249475891

Accuracy Score : 0.8909853249475891

[[125 23]
 [29 300]] ---> confusion Matrix

ROC-AUC score test dataset: 0.9447855910621867

precision score test dataset: 0.9287925696594427

Recall score test dataset: 0.9118541033434651

f1 score test dataset: 0.9202453987730062

```
def plot_pre_curve(y_test,probs):
In [136...
              from sklearn.metrics import precision_recall_curve
              precision, recall, thresholds = precision_recall_curve(y_test, probs)
              plt.plot([0, 1], [0.5, 0.5], linestyle='--')
              # plot the precision-recall curve for the model
              plt.plot(recall, precision, marker='.')
              plt.title("Precision Recall curve")
              plt.xlabel('Recall')
              plt.ylabel('Precision')
              # show the plot
              plt.show()
          def plot_roc(y_test,prob):
              from sklearn.metrics import roc_curve
              fpr, tpr, thresholds = roc_curve(y_test, probs)
              # plot no skill
              plt.plot([0, 1], [0, 1], linestyle='--')
              # plot the roc curve for the model
              plt.plot(fpr, tpr, marker='.')
              plt.title("ROC curve")
              plt.xlabel('false positive rate')
              plt.ylabel('true positive rate')
              # show the plot
              plt.show()
```

In [137... plot_roc(y_test , probs)

In [138...

plot_pre_curve(y_test , probs)

Inferences:

from data distribution: Male 1380 Female 956

Churn: distribution: 1 1616 (67.870%) 0 765 (32.12%)

- Probability of Churn is higher in case of education level 0 and 1 than 2.
- in case of joining destination 1, probability of churn is higher.
- in case of quarterly rating is 1, probability of churn is significantly higher.
- also same pattern is observed in case of when driver's quarterly rating has increased through out tenure.
- due to some reason, for drivers who joined in 2018 and 2019, probability of churn is very high compare to 2020 and before 2018.

Random Forest:

- train and test score: (0.8697478991596639, 0.8679245283018868)
- feature importance: highest is: joining year, followed by No of records available in data, and total business value.

recall: 0.866precision: 0.928

• f1-score: 0.89

on Grid Search CV: RF:

- best params: ccp_alpha=0.001, max_depth=10, max_features=7,n_estimators=300
- Gridsearch RF best score: 0.8881417819617973

Bagging Classfier: wwith Decision Tree:

- with 50 DTs. when max_depth=7, class_weight="balanced"
- f1 score: 0.9064039408866995

precision: 0.9387755102040817recall_score: 0.8761904761904762

accuracy: 0.880

XGBoost Classifier: (Grid SEARCH CV:) 'max_depth': 2, 'n_estimators': 100

test Scores:
Accuracy: 0.87
f1 score: 0.90
recall: 0.923
precision: 0.884

• feature importance: highest is: joining year, followed by No of records available in data, and total business value.

GradientBoostingClassifier: GBDC:

Train Score : 0.914390756302521Test Score : 0.8909853249475891

Accuracy Score: 0.8909853249475891

ROC-AUC score test dataset: 0.9447855910621867

• precision score test dataset: 0.9287925696594427

• Recall score test dataset: 0.9118541033434651

• f1 score test dataset: 0.9202453987730062