1 Категория \mathcal{O} для \mathfrak{sl}_2 и явное описание неразложимых представлений

Определение 1. Kame ropus C — это

- Класс объектов $Ob_{\mathcal{C}}$;
- Для каждой пары объектов A, B задано множество (возможно, пустое) морфизмов (или стрелок) $Hom_{\mathcal{C}}(A,B)$, причём каждому морфизму соответствуют единствиные A и B;
- Для пары морфизмов $f \in Hom_{\mathcal{C}}(A,B)$ и $g \in Hom_{\mathcal{C}}(B,C)$ определена композиция $g \circ f \in Hom_{\mathcal{C}}(A,C)$;
- Для каждого объекта A задан тождественный морфизм $id_A \in Hom_{\mathcal{C}}(A,A)$;

и выполняются аксиомы

- Операция композиции ассоциативна: $h \circ (g \circ f) = (h \circ g) \circ f$;
- Тождественный морфизм действует тривиально: $f \circ id_A = id_B \circ f$ для всех $f \in Hom_{\mathcal{C}}(A, B)$.

Определение 2. $\mathfrak{sl}_2(\mathbb{C})$ — это алгебра Ли матриц 2×2 с нулевым следом.

Алгебру Ли $\mathfrak{sl}_2(\mathbb{C})$ можно задать стандартными образующими e, f, h со следующими коммутационными соотношениями:

- 1. [e, f] = h;
- 2. [h, e] = 2e;
- 3. [h, f] = -2f.

Полезно разобраться с тем, как устроены конечномерные неприводимые представления $\mathfrak{sl}_2(\mathbb{C})$. Пусть (V,ρ) — конечномерное представление алгебры Ли $\mathfrak{sl}_2(\mathbb{C})$, то есть V — конечномерное векторное пространство, а $\rho(g)$ — линейные операторы, действующие на нём, $g \in \mathfrak{sl}_2(\mathbb{C})$.

Теорема 1. Пусть $v \in V$ — собственный вектор оператора $\rho(h)$ с собственным значением μ . Тогда вектор $\rho(e)v$ — собственный для $\rho(h)$ с собственным значением $\mu + 2$, а вектор $\rho(f)v$ — собственный для $\rho(h)$ с собственным значением $\mu - 2$.

Доказательство. Имеем $\rho(h)\rho(e)v = \rho(e)\rho(h)v + \rho([h,e])v = \mu\rho(e)v + 2\rho(e)v$, что и требовалось. Аналогично получается и для f.

Теорема 2. Существует собственный для $\rho(h)$ вектор $v \in V$ такой, что $\rho(e)v = 0$. Такие вектора называются особыми.

Доказательство. Пусть λ — собственное значение оператора $\rho(h)$ с максимальной действительной частью (такое существует в силу конечномерности), v_{λ} — соответствующий собственный вектор. Тогда $\rho(e)v_{\lambda}$ — собственный вектор с собственным значением $\lambda+2$, либо нулевой вектор. Так как действительная часть $\lambda+2$ больше действительной части λ , такое возможно только если $\rho(e)v_{\lambda}=0$.

Пусть v_{λ} — особый вектор. Можно построить цепочку собственных векторов для $\rho(h)$, последовательно действуя на v_{λ} оператором $\rho(f)$, а точнее рассмотреть подпространство V_{λ} , натянутое на вектора вида $\rho(f)^k v_{\lambda}$.

Теорема 3. V_{λ} является подпредставлением в V.

Доказательство. Достаточно проверить, что $\rho(e)V_{\lambda} \subset V_{\lambda}$, $\rho(f)V_{\lambda} \subset V_{\lambda}$, $\rho(h)V_{\lambda} \subset V_{\lambda}$. Последнее очевидно, так как подпространство V_{λ} натянуто на собственные вектора оператора $\rho(h)$. Предпоследнее также очевидно, так как оператор $\rho(f)$, действуя на базисный вектор из V_{λ} , то есть на элемент цепочки $\rho(f)^k v_{\lambda}$, совершает переход к следующему элементу цепочки. Осталось доказать для $\rho(e)$, что мы сделаем по индукции. А именно, докажем, что $\rho(e)\rho(f)^k v_{\lambda} = (k\lambda - k(k-1))\rho(f)^{k-1}v_{\lambda} \in V_{lambda}$. База индукции: k=0, $\rho(e)v_{\lambda}=0$. Пусть верно для всех k < K. Имеем

$$\rho(e)\rho(f)^{K}v_{\lambda} = (\rho(e)\rho(f))\rho(f)^{K-1}v_{\lambda} = (\rho(f)\rho(e) + \rho(h))\rho(f)^{K-1}v_{\lambda} =$$

$$= ((K-1)\lambda - (K-1)(K-2) + \lambda - 2(K-1))\rho(f)^{K-1}v_{\lambda} = (K\lambda - K(K-1))\rho(f)^{K-1}v_{\lambda}.$$

Теорема 4. Подпространство V_{λ} конечномерно тогда и только тогда, когда $\lambda \in \mathbb{Z}_{>0}$.

Доказательство. Если V_{λ} конечномерно, то найдётся такое k, что $\rho(f)^k v_{\lambda}=0$. Пусть n таково, что $\rho(f)^n v_{\lambda} \neq 0$, $\rho(f)^{n+1} v_{\lambda}=0$. Тогда

$$0 = \rho(e)\rho(f)^{n+1}v_{\lambda} = ((n+1)\lambda - n(n+1))\rho(f)^{n}v_{\lambda},$$

откуда
$$\lambda = n$$
.

Таким образом, всякое неприводимое представление изоморфно V_n для некоторого $n \in \mathbb{Z}_{\geq 0}$. Так как $dimV_n = n+1$, то неприводимое представление данной размерности единственно с точностью до изоморфизма.

Представления алгебры Ли $\mathfrak{sl}_2(\mathbb{C})$ также называют $\mathfrak{sl}_2(\mathbb{C})$ -модулями. Модуль в данном случае понимается в том смысле, что пространство представления инвариантно относительно действия алгебры $\mathfrak{sl}_2(\mathbb{C})$.

Мы доказали, что все конечномерные неприводимые представления $\mathfrak{sl}_2(\mathbb{C})$ обладают следующими свойствами:

- 1. Оператор $\rho(h)$ действует *полупростю*, то есть существует базис из собственных векторов $\rho(h)$ в пространстве представления;
- 2. Оператор $\rho(e)$ действует локально нильпотентно, то есть для любого вектора v существует такое натуральное число k, что $\rho(e)^k v = 0$.

Конечнопорождённые $\mathfrak{sl}_2(\mathbb{C})$ -модули, то есть представления, пространства которых представляются в виде линейной (относительно поля \mathbb{C}) оболочки элементов орбит (относительно действия алгебры $\mathfrak{sl}_2(\mathbb{C})$) нескольких векторов, образуют категорию \mathcal{O} .

- Объектами данной категории являются $\mathfrak{sl}_2(\mathbb{C})$ -модули.
- Морфизмами являются линейные отображения между модулями, коммутирующие с действием алгебры, то есть если (V, ρ_V) и (U, ρ_U) два представления $\mathfrak{sl}_2(\mathbb{C})$, то линейное отображение $\varphi: V \to U$ между ними будет морфизмом категории \mathcal{O} , если $\varphi \rho_V(g) = \rho_U(g) \varphi$ для любого $g \in \mathfrak{sl}_2(\mathbb{C})$.

Примером бесконечномерного, но конечнопорождённого объекта этой категории является модуль Верма со старшим весом λ : это векторное пространство с базисом $v_{\lambda}^{(k)}$, $k \in \mathbb{Z}_+$, а элементы алгебры Ли действуют следующим образом:

$$\rho(e)v_{\lambda}^{(k)} = (k\lambda - k(k-1))v_{\lambda}^{(k-1)},$$
$$\rho(f)v_{\lambda}^{(k)} = v_{\lambda}^{(k+1)},$$
$$\rho(h)v_{\lambda}^{(k)} = (\lambda - 2k)v_{\lambda}^{(k)}.$$

Это такая же весовая конструкция, только без конечномерности.

В терминах категории \mathcal{O} , утверждение про неприводимые представления переформулируется следующим образом:

Предложение 5. Всякое неприводимое конечномерное представление алгебры $\mathcal{J}u \,\mathfrak{sl}_2(\mathbb{C})$ лежит в категории \mathcal{O} . Всякий неприводимый объект категории \mathcal{O} является фактором какого-нибудь модуля Верма. Модуль Верма приводим тогда и только тогда, когда $\lambda \in \mathbb{Z}_{\geq 0}$, и в этом случае имеет единственный неприводимый фактор V_n .

2 Центр универсальной обёртывающей алгебры. Явное описание для случая $\mathfrak{g}=\mathfrak{sl}_n(\mathbb{C})$

Определение 3. Пусть A – векторное пространство над полем K, снабжённое билинейной операцией $\cdot: A \times A \to A$ (умножением), т.е. $\forall x, y, z \in A, a, b \in K$

1.
$$(x+y) \cdot z = x \cdot z + y \cdot z$$

$$2. \ x \cdot (y+z) = x \cdot y + x \cdot z$$

3.
$$(ax) \cdot (by) = ab(x \cdot y)$$

Тогда A называется алгеброй над K.

Определение 4. Алгебра называется *ассоциативной*, если операция умножения в ней ассоциативна.

Определение 5. Алгеброй $\mathcal{J}u$ называется векторное пространство с билинейной операцией (коммутатором) $[\cdot,\cdot]$, удовлетворяющей следующим аксиомам:

- 1. (кососимметричность или антикоммутативность) [x, y] = -[y, x].
- 2. (тождество Якоби) [x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0.

Примеры:

- 1. Ассоциативная алгебра A над полем K обладает естественной структурой алгебры Ли над K со следующей скобкой Ли: [a,b]=ab-ba, т.е. из ассоциативного произведения можно построить скобку Ли с помощью простого взятия коммутатора. Обозначим эту алгебру Ли A_L .
- 2. Пространство \mathbb{R}^3 с операцией векторного произведения алгебра Ли над \mathbb{R} .
- 3. Произвольное векторное пространство с тождественно нулевой операцией коммутатора. Такая алгебра Ли называется aбелевой.

Рис. 1: Универсальное свойство

Более общий пример:

Определение 6. Дифференцированием алгебры A называется линейный оператор $D:A\to A$, для которого выполнено тождество Лейбница:

$$D(a \cdot b) = D(a) \cdot b + a \cdot D(b) \tag{1}$$

Все дифференцирования алгебры А образуют векторное пространство.

Определение 7. Векторное подпространство I в алгебре Ли L называется udeanom, если $\forall x \in I, y \in L \hookrightarrow [x, y] \in I$.

Построение универсальной обёртывающей алгебры пытается процесс построения A_L из A: для данной алгебры Ли $\mathfrak g$ над K находят «наиболее общую» ассоциативную K-алгебру $U(\mathfrak g)$: алгебра Ли $U_L(\mathfrak g)$ содержит $\mathfrak g$. Важное ограничение — сохранение теории представлений: представления $\mathfrak g$ соотносятся точь-в-точь так же как и модули над $U(\mathfrak g)$. В типичном контексте, где $\mathfrak g$ задаётся инфинитезимальными преобразованиями, элементы $U(\mathfrak g)$ действуют как дифференциальные операторы всех порядков.

Определение 8. Универсальной обертывающей алгеброй алгебры Ли \mathfrak{g} называется пара $(U(\mathfrak{g}),\varepsilon)$, где $U(\mathfrak{g})$ – ассоциативная алгебра с единицей, $\varepsilon:\mathfrak{g}\to U_L(\mathfrak{g})$ – гомоморфизм алгебр Ли (т.е. $\varepsilon([x,y])=[\varepsilon(x),\varepsilon(y)])$, обладающий следующим универсальным свойством: \forall ассоциативной алгебры A и гомоморфизма алгебр Ли $\varphi:\mathfrak{g}\to A_L$ (т.е. $\varphi([x,y])=[\varphi(x),\varphi(y)])$ \exists ! гомоморфизм ассоциативных алгебр $\Phi:U(\mathfrak{g})\to A:\varphi=\Phi\circ\varepsilon$ (рис. 1).

Из универсального свойства, в частности, следует, что любое представление алгебры Ли \mathfrak{g} $\varphi:\mathfrak{g}\to \mathrm{End}(V)$ несет структуру представления ассоциативной алгебры $U(\mathfrak{g})$, причем любой гомоморфизм представлений алгебры Ли \mathfrak{g} есть также и гомоморфизм представлений $U(\mathfrak{g})$. Для этого нужно в качестве ассоциативной алгебры взять $A=\mathrm{End}(V)$.

Предложение 6. Универсальная обёртывающая алгебра единственна с точностью до изоморфизма.

Доказательство. От противного, пусть \exists две универсальные обёртывающие алгебры $(U_1(\mathfrak{g}), \varepsilon_1)$ и $(U_2(\mathfrak{g}), \varepsilon_2)$. Тогда из универсального свойства (рис. 2) следует единственность.

Рис. 2: Единственность универсальной обёртывающей

Предложение 7. Универсальная обёртывающая алгебра $\exists \ \forall \$ алгебры $\varPi u \ \mathfrak{g}.$

Доказательство. Зададим алгебру $U(\mathfrak{g})$ явно образующими и соотношениями. Пусть $T(\mathfrak{g})=\mathbb{C}\oplus\mathfrak{g}\oplus\mathfrak{g}\otimes\mathfrak{g}\oplus\ldots$ — тензорная алгебра пространства \mathfrak{g} (т.е. свободная ассоциативная алгебра, порождённая пространством \mathfrak{g}) и пусть $J\subset T(\mathfrak{g})$ — двусторонний идеал, порождённый элементами $x\otimes y-y\otimes x-[x,y]$ $\forall x,y\in\mathfrak{g}$. Тогда ассоциативная алгебра $U(\mathfrak{g}):=T(\mathfrak{g})/J$ с тождественным отображением $\epsilon:\mathfrak{g}\to\mathfrak{g}\subset T(\mathfrak{g})$ обладает требуемым универсальным свойством. Иначе говоря, пусть $x_1,...,x_n$ — базис в алгебре Ли \mathfrak{g} и пусть $[x_i,x_j]=\sum\limits_{k=1}^n c_{ij}^k x_k$. Тогда $U(\mathfrak{g})$ — ассоциативная алгебра с образующими $x_1,...,x_n$ и определяющими соотношениями $x_ix_j-x_jx_i=\sum\limits_{k=1}^n c_{ij}^k x_k$, причём $\epsilon(x_i)=x_i$: $U(\mathfrak{g})=\mathbb{C}\langle x_1,...,x_n\rangle/(x_ix_j-x_jx_i-\sum\limits_k c_{ij}^k x_k)$.

Пример. Для абелевой группы Ли L с базисом $x_1, ..., x_n$ универсальная обёртывающая алгебра U(L) – симметрическая алгебра $S(L) := T(L)/(x_ix_j - x_jx_i)$, т.е. алгебра многочленов $\mathbb{C}[x_1, ..., x_n]$.

Предложение 8. Пусть $x_1, ..., x_n$ – базис алгебры Ли \mathfrak{g} . Элементы вида $x_1^{k_1} x_2^{k_2} ... x_n^{k_n}$ образуют полную систему в универсальной обёртывающей алгебре $U(\mathfrak{g})$ (любой элемент $U(\mathfrak{g})$ может быть линейно выражен через такие упорядоченные мономы).

Доказательство. Мономы вида $x_{i_1}x_{i_2}...x_{i_N}$ образуют полную систему в универсальной обёртывающей алгебре $U(\mathfrak{g})$. Пусть $\sum\limits_{i=1}^n k_i = N$ – степень упорядоченного монома. Докажем утверждение по индукции.

- База индукции: N = 1, верно.
- Пусть верно для всех $\sum_{i=1}^{n} k_i < N$.
- Докажем, что верно для $\sum_{i=1}^{n} k_i = N$. Если в какой-то части монома $x_{i_1}x_{i_2}...x_{i_N}$ индексы расположены не по возрастанию, то их можно переставить, используя коммутационное соотношение $x_{i_1}x_{i_2} = x_{i_2}x_{i_1} + [x_{i_1}, x_{i_2}]$. При этом получится упорядоченный моном и мономы меньшего размера, для которых утверждение доказано.

Теорема 9 (Пуанкаре-Биркгофа-Витта). Если $x_1, ..., x_n$ – базис в алгебре Ли \mathfrak{g} , то мономы $x_1^{k_1} x_2^{k_2} ... x_n^{k_n}$ образуют базис в пространстве $U(\mathfrak{g})$.

Эквивалентная формулировка. Пусть $i: S(\mathfrak{g}) \to T(\mathfrak{g})$ – вложение (симметризация):

$$i(v_1 \cdot v_2 \cdot \dots \cdot v_n) = \frac{1}{n!} \sum_{\sigma \in S_n} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \dots \otimes v_{\sigma(n)}$$
 (2)

Пусть $\tau: T(\mathfrak{g}) \to U(\mathfrak{g})$ – отображение факторизации. Тогда $\sigma = \tau \circ i$ – отображение симметризации – является изоморфизмом векторных пространств и представлений алгебры Ли \mathfrak{g} (см. рис. 3). На самом деле это изоморфизм \mathfrak{g} -модулей относительно присоединённого действия.

Определение 9. Центром алгебры A называется подпространство $Z(A) \subset A$, состоящее из элементов $x \in A : [x,y] = 0 \ \forall y \in A$.

Центр алгебры Ли $\mathfrak{Z}(L) \subset L$ является идеалом в L.

Определение 10. *Инварианты относительно действия группы Ли G – элементы алгебры, которые переходят в себя при действии алгебры Ли G сопряжениями.*

Определение 11. *Инварианты относительно действия алгебры* $\mathcal{J}u\ \mathfrak{g}$ – элементы алгебры, которые переходят в 0 при действии алгебры $\mathcal{J}u\ \mathfrak{g}$.

Если элемент является инвариантом относительно действия группы Π и G, то он является инвариантом относительно действия соответствующей алгебры Π и \mathfrak{g} , и наоборот. Перейдём к рассмотрению центра универсальной обёртывающей алгебры:

$$ZU(\mathfrak{g}) = \{ a \in U(\mathfrak{g}) | \forall x \in \mathfrak{g} \hookrightarrow [x, a] = \mathrm{ad}_x(a) = 0 \}$$
(3)

 $ZU(\mathfrak{g})=U(\mathfrak{g})^{\mathfrak{g}}$ – элементы алгебры $U(\mathfrak{g})$, инвариантные оносительно действия алгебры Ли \mathfrak{g} . По теореме Пуанкаре-Биркгофа-Витта (ПБВ) отображение симметризации $\sigma:S(\mathfrak{g})\to U(\mathfrak{g})$ – изоморфизм векторных пространств. σ – композиция 2 отображений, уважающих действие алгебры Ли дифференцированиями. Т.е. σ – гомоморфизм относительно действия $\mathrm{ad}_x, x \in \mathfrak{g}$. Значит, $\sigma:S(\mathfrak{g})^{\mathfrak{g}}\to U(\mathfrak{g})^{\mathfrak{g}}$ – изоморфизм векторных пространств (но не гомоморфизм алгебр!) и, как векторное пространство, $ZU(\mathfrak{g})$ – пространство \mathfrak{g} -инвариантов в $S(\mathfrak{g})$.

 Π ример. $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$. Найдём её центр универсальной обёртывающей $U(\mathfrak{sl}_2(\mathbb{C}))$.

$$S(\mathfrak{sl}_2(\mathbb{C}))^{\mathfrak{sl}_2(\mathbb{C})} = \mathbb{C}[e, f, h]^{\mathfrak{sl}_2(\mathbb{C})} = \mathbb{C}[e, f, h]^{SL_2(\mathbb{C})}$$
(4)

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 (5)

Многочлены от e,f,h – функции на $\mathfrak{sl}_2(\mathbb{C}),$ т.е. элементы $\mathfrak{sl}_2^*(\mathbb{C}).$

$$\mathfrak{sl}_2^*(\mathbb{C}) \simeq \mathfrak{sl}_2(\mathbb{C}), \quad x \to \operatorname{Tr}(x \cdot)$$
 (6)

Т.е. нужно найти $\mathbb{C}[\mathfrak{sl}_2(\mathbb{C})]^{SL_2(\mathbb{C})}$ – инвариантные многочлены от $A \in \mathfrak{sl}_2(\mathbb{C})$ относительно сопряжений матрицами из $SL_2(\mathbb{C})$. Такие многочлены определяются своими значениями на диагональных матрицах, поскольку пространство диагонализуемых матриц плотно в $\mathfrak{sl}_2(\mathbb{C})$. Т.е. любой инвариантный многочлен – симметрический многочлен от собственных значений матрицы. По основной теореме о симметрических многочленах любой симмметрический многочлен – многочлен от элементарных симметрических – коэффициентов характеристического

многочлена. В нашем случае единственным нетривиальным коэффициентом характеристического многочлена является определитель.

$$\det \begin{pmatrix} a & b \\ c & -a \end{pmatrix} = -a^2 - bc \tag{7}$$

Определитель записан через элементы $\mathfrak{sl}_2^*(\mathbb{C})$. Выразим его через элементы $\mathfrak{sl}_2^*(\mathbb{C})$.

$$\operatorname{Tr}e\begin{pmatrix} a & b \\ c & -a \end{pmatrix} = c, \quad \operatorname{Tr}f\begin{pmatrix} a & b \\ c & -a \end{pmatrix} = b, \quad \operatorname{Tr}h\begin{pmatrix} a & b \\ c & -a \end{pmatrix} = 2a \tag{8}$$

$$e \to c, \quad f \to b, \quad h \to 2a$$
 (9)

$$\det = \frac{h^2}{4} - fe \tag{10}$$

$$\sigma(\det) = \tau \circ i \left(-\frac{h^2}{4} - fe \right) = \tau \left(-\frac{h \otimes h}{4} - \frac{f \otimes e}{2} - \frac{e \otimes f}{2} \right) = -\frac{h^2}{4} - \frac{1}{2} (fe + ef) \tag{11}$$

Квадратичный оператор Казимира:

$$C = \frac{h^2}{2} + fe + ef = \frac{h^2}{2} + h + 2fe = \frac{h^2}{2} - h + 2ef$$
(12)

Предложение 10. Центр универсальной обёртывающей $ZU(\mathfrak{sl}_2(\mathbb{C}))$ порождается квадратичным Казимиром $C: ZU(\mathfrak{sl}_2(\mathbb{C})) = \mathbb{C}[C]$.

Доказательство. Размеры центра универсальной обёртывающей и инвариантов симметрической алгебры имеют одинаковый размер, а инварианты симметрической алгебры — многочлены от Казимира. \Box

Аналогично, для $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$ будет n-1 Казимиров (квадратичный, кубический, ...). Для примера посчитаем кубический Казимир $\mathfrak{sl}_3(\mathbb{C})$.

Предложение 11 (лемма Шура). Пусть $\varphi: V_1 \to V_2$ – гомоморфизм неприводимых представлений алгебры Ли L. Тогда или $\varphi=0$, или φ – изоморфизм.

Доказательство. Кег φ — подпредставление в V_1 , а $\text{Im}\varphi$ — подпредставление в V_2 . Поскольку представления неприводимы, имеем либо Кег $\varphi = V_1$ (и тогда $\varphi = 0$), либо Кег $\varphi = 0$ (и тогда $\text{Im} \varphi = V_2$, следовательно φ — изоморфизм).

Согласно лемме Шура, центральный элемент универсальной обертывающей алгебры в каждом неприводимом представлении действует скалярным оператором.

Предложение 12. В неприводимом представлении V_n имеем $\rho(C) = \frac{n^2}{2} + n$.

Доказательство. Проверим это на старшем векторе $v_n \in V_n$.

$$\rho(C)v_n = \rho\left(\frac{1}{2}h^2 + ef + fe\right)v_n = \rho\left(\frac{1}{2}h^2 + h\right)v_n = \left(\frac{n^2}{2} + n\right)v_n$$
 (13)

Этот скаляр инвариантен относительно отражений $n \to -n-2$.

Таким образом, в различных неприводимых представлениях оператор Казимира действует различными скалярами.

В общем случае $\mathfrak{g}=\mathfrak{sl}_n$ скаляр будет инвариантен относительно сдвинутого действия группы Вейля:

$$\lambda \to w(\lambda + \rho) - \rho \tag{14}$$