AFRL-HE-WP-TR-2003-0077

UNITED STATES AIR FORCE RESEARCH LABORATORY

IN VITRO RAT HEPATOCYTE TOXICITY AND BACTERIA GENOTOXICITY EVALUATION OF HIGH ENERGY CHEMICALS FOR REPLACEMENT OF HYDRAZINE

S. Husain

MANTECH ENVIRONMENTAL TECHNOLOGY, INC.
PO BOX 31009

DAYTON, OH 45437-0009

S. Sharma
P. Gao
MANTECH ENVIRONMENTAL TECHNOLOGY, INC.
RESEARCH TRIANGLE PARK. NC

D. Mattie
J. Frazier
OPERATIONAL TOXICOLOGY BRANCH
HUMAN EFFECTIVENESS DIRECTORATE
AIR FORCE RESEARCH LABORATORY
WRIGHT-PATTERSON AFB, OH 45433-7400

December 2002 Final Report - December 1999 - December 2001

Human Effectiveness Directorate Deployment and Sustainment Division Operational Toxicology Branch 2856 G Street Wright-Patterson AFB OH 45433-7400

Approved for public release; distribution is unlimited.

NOTICES

When US Government drawings, specifications or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Please do not request copies of this report from the Air Force Research Laboratory. Additional copies may be purchased from:

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Federal Government agencies and their contractors registered with the Defense Technical Information Center should direct requests for copies of this report to:

Defense Technical Information Service 8725 John J. Kingman Rd., Ste 0944 Ft. Belvoir, Virginia 22060-6218

DISCLAIMER

This Technical Report is published as received and has not been edited by the Technical Editing Staff of the Air Force Research Laboratory.

TECHNICAL REVIEW AND APPROVAL

AFRL-HE-WP-TR-2003 - 0077

The animal use described in this study was conducted in accordance with the principles stated in the "Guide for the Care and Use of Laboratory Animals", National Research Council, 1996, and the Animal Welfare Act of 1966, as amended.

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE DIRECTOR

MARK M. HOFFMAN

Deputy Chief, Deployment and Sustainment Division

Air Force Research Laboratory

Mark M. Hoffman

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highland, Value 1204, Arignoro, VA 22202-4302, and to the Office of Management and Budget, Paperwork, Reduction Project (0704-0188), Washington, DC 2050-0.

Davis Highway, Sulte 1204, Arlington, VA 22					
1. AGENCY USE ONLY (Leave bla	ank)	2. REPORT DATE	3. REPORT TYPE AN		
		December 2002	Final Report -		ber 1999 - December 2001
4. TITLE AND SUBTITLE	 - -	D	-bti of High Farmer		NDING NUMBERS
In Vitro Rat Hepatocyte Toxicit	-		anuation of High Energy		act F33615-00-C-6060
Chemicals for Replacement of I	iyora	zine		1	61102F
C AUTHORIES				-	2312
6, AUTHOR(S) Hussain, S., Sharma, S., Gao,		ettia D. Ernziar I		TA	2312A2
Hussani, S., Sharma, S., Gao,	F., IVI	attie, D., Mazier, J.		WU	2312A205
				1	
7. PERFORMING ORGANIZATION	INAN	E(S) AND ADDRESS(ES)		8 DE	REFORMING ORGANIZATION
Human Effectiveness Directorat					PORT NUMBER
Air Force Research Laboratory				1	
Wright-Patterson AFB, OH 454		100		1	
Wilght-Fatterson Al-B, OH 434	.55-14	100		l	
9. SPONSORING/MONITORING A	GENC	Y NAME(S) AND ADDRESS(ES)	10. SP	ONSORING/MONITORING
ManTech Environmental Techno	ology	, Inc. *		AC	SENCY REPORT NUMBER
PO Box 31009	0,	•			
Dayton, OH 45437-0009				AF	FRL-HE-WP-TR-2003-0077
24,102, 011 to 10 to 0005					
	,				
11. SUPPLEMENTARY NOTES					
12a. DISTRIBUTION AVAILABILITY	/ STA	TEMENT		12b. D	ISTRIBUTION CODE
				ĺ	
Approved for public release; dis	tribut	ion is unlimited.		i	
				i	
13. ABSTRACT (Maximum 200 wo	rdel				
In an effort to develop methods		dict the toxicological resp	onse of newly synthesize	ed chem	icals that are of interest to the
US Air Force, in vitro rat hepate	-				
high-energy chemicals (HEC) th	•	•		•	-
derivatives (hydrazinium nitrate,			-		1 ,
1,4-dihydrazine nitrate, DHTN;					
		• •			•
nitrate, DMTN; nitroaminoguan					
dinitrate, HDN; methoxylamine					
4-amino-1,2,4-triazole nitrate, A					•
(MTT), increase in lactate dehyc	_		_	_	•
reference values for ranking the					-
toxic (HZN > DEHN > DHTN >			•	-	
(HDN > EAN > MAN) and triaze					
genotoxicity (Ames assay) on 10				were n	nutagenic. DHTN was a direct
mutagen causing AT and GC bas	se-pai	r substitutions and framesh	nift mutations.		
14. SUBJECT TERMS					15. NUMBER OF PAGES
hydrazinium nitrate, HZN					83
2-hydroxyethylhydrazine nitrate,		IN			16. PRICE CODE
diethyl hydrazine nitrate, DEHN		FOLIDITY OF ACCIDIOATION	40 OFOURITY OF ACCUSE	OATIO:	OO LIMITATION OF A DOCUMENT
17. SECURITY CLASSIFICATION OF REPORT		ECURITY CLASSIFICATION F THIS PAGE	19. SECURITY CLASSIFIC OF ABSTRACT	CATION	20. LIMITATION OF ABSTRACT
UNCLASSIFIED		UNCLASSIFIED	UNCLASSIFIE	D	UL

Standard Form 298 (Rev. 2-89) (EG) Prescribed by ANSI Std. 239.18 Designed using Perform Pro, WHS/DIOR, Oct 94

TABLE OF CONTENTS

SECTION I. TOXICOLOGICAL ASSESSMENT OF HIGH ENERGY COM	POUNDS: IN
VITRO HEPATOCYTE TOXICITY	
SUMMARY	
INTRODUCTION	••••••
METHODS	
RESULTS	
DISCUSSION	
REFERENCES	
	3 7
SECTION II. GENOTOXICITY ASSAYS FOR ELEVEN HIGH ENERGY COMPOUNDS: SALMONELLA / MICROSOME MUTAGENESIS ASSA	
COMPOUNDS: SALMONELLA / MICROSOME MUTAGENESIS ASSASUMMARY	18
COMPOUNDS: SALMONELLA / MICROSOME MUTAGENESIS ASSA SUMMARY	20
COMPOUNDS: SALMONELLA / MICROSOME MUTAGENESIS ASSA SUMMARY	20
COMPOUNDS: SALMONELLA / MICROSOME MUTAGENESIS ASSA SUMMARY	
COMPOUNDS: SALMONELLA / MICROSOME MUTAGENESIS ASSA SUMMARY	

LIST OF FIGURES

Figure I-1: Schedule for Culturing and Dosing of Primary Hepatocytes	5
Figure I-2. Effect of HEC on Mitochondrial Function of Hepatocytes	7
Figure I-3. Effect of HEC on LDH Leakage of Rat Hepatocytes	
Figure I-4. Effect of HEC on GSH Levels in Hepatocytes	
Figure I-5. Effect of HEC on ROS Generation in Hepatocytes	
Figure II-1: Mutant Revertants Induced by HZN in TA1535 with and without S9 Activation System	40
Figure II-2: Mutant Revertants Induced by HZN in TA102 with S9 Activation System	41
Figure II-3: Mutant Revertants Induced by DHTN in TA102 with and without S9 Activation	43
Figure II-4: Mutant Revertants Induced by DHTN in TA1535 with and without S9 Activation	.44
SystemFigure II-5: Mutant Revertants Induced by MAN in TA100 with and without S9 Activation	
System	.47

LIST OF TABLES

TABLE I-1: PROPOSED HIGH-ENERGY CHEMICALS (HEC)	
TABLE I-2: CALCULATED EC75, LOWEST EFFECTIVE CONCENTRATION (LEC), E	$3C_{25}$
AND EC50 VALUES OF HEC	
TABLE II-1: GENOTYPE CONFIRMATION OF TESTER STRAINS	24
TABLE II-2: CONVERSION OF mg/PLATE TO mM CONCENTRATION FOR EACH	
CHEMICAL IN THE DOSE SELECTION ASSAY	24
TABLE II-3: RESULTS OF DOSE SELECTION ASSAYS FOR HZN	25
TABLE II-4. RESULTS OF DOSE SELECTION ASSAYS FOR DEHN	26
TABLE II-5: RESULTS OF DOSE SELECTION ASSAYS FOR DHTN	27
TABLE II-6: RESULTS OF DOSE SELECTION ASSAYS FOR DAGN	28
TABLE II-7. RESULTS OF DOSE SELECTION ASSAYS FOR NAGN	29
TABLE II-8. RESULTS OF DOSE SELECTION ASSAYS FOR EAN	
TABLE II-9: RESULTS OF DOSE SELECTION ASSAYS FOR HDN	
TABLE II-10: RESULTS OF DOSE SELECTION ASSAYS FOR MAN	
TABLE II-11: RESULTS OF DOSE SELECTION ASSAYS FOR TN	
TABLE II-12. RESULTS OF DOSE SELECTION ASSAYS FOR ATN	
TABLE II-13. RESULTS OF DOSE SELECTION ASSAYS FOR DMTN	
TABLE II-14: MUTAGENICITY ASSAY RESULTS OF HZN	
TABLE II-15: MUTAGENICITY ASSAY RESULTS OF DHTN	42
TABLE II-16: MUTAGENICITY ASSAY RESULTS OF HDN	
TABLE II-17: MUTAGENICITY ASSAY RESULTS OF MAN	
TABLE II-18: MUTAGENICITY ASSAY RESULTS OF DMTN	
TABLE II-19: MUTAGENICITY ASSAY RESULTS OF DAGN	
TABLE II-20: MUTAGENICITY ASSAY RESULTS OF NAGN	
TABLE II-21: MUTAGENICITY ASSAY RESULTS OF EAN	
TABLE II-22: MUTAGENICITY ASSAY RESULTS OF TN	
TABLE II-23: MUTAGENICITY ASSAY RESULTS OF ATN	
TABLE II-24: EXPERIMENTAL SUMMARY OF 11 HIGH ENERGY CHEMICALS	54
TABLE II-A1: MUTAGENICITY ASSAY RESULTS OF HZN	
TABLE II-A2: MUTAGENICITY ASSAY RESULTS OF DHTN	
TABLE II-A3: MUTAGENICITY ASSAY RESULTS OF HDN	
TABLE II-A4: MUTAGENICITY ASSAY RESULTS OF MAN	
TABLE II-A5: MUTAGENICITY ASSAY RESULTS OF DMTN	
TABLE II-A6: MUTAGENICITY ASSAY RESULTS OF DAGN	
TABLE II-A7: MUTAGENICITY ASSAY RESULTS OF NAGN	
TABLE II-A8: MUTAGENICITY ASSAY RESULTS OF EAN	
TABLE II-A9: MUTAGENICITY ASSAY RESULTS OF TN	
TABLE II-A10: MUTAGENICITY ASSAY RESULTS OF ATN	76

PREFACE

This document is part of the final reporting process for the Air Force Research Laboratory/Operational Toxicology Branch (AFRL/HEST) project "Toxicity of High Energy Chemicals" (JON# 2312A205). This preliminary toxicology report is divided into two sections. Section I provides information on *in vitro* hepatocyte toxicity evaluations. These investigations were performed at AFRL/HEST, Wright Patterson Air Force Base, Ohio. Section II provides information on genotoxicity evaluations. These studies were performed by the Cellular and Molecular Toxicology Program, ManTech Environmental Technology, Inc., Research Triangle Park, North Carolina. The Toxicity of High Energy Chemicals research project was funded by the Air Force Office of Scientific Research (AFOSR) and was initiated in April 1999, under Department of the Air Force Contract No. F41624-96-C-9010 and completed under Contract No. F33615-00-C-6060. Dr. Richard R. Stotts served as the Contracting Officer's Representative for the U.S. Air Force. Darol E. Dodd, Ph.D., served as Program Manager for ManTech Geo-Centers Joint Venture. Authors would like to acknowledge TSgt Gerri Miller, TSgt Michelle Curran and Darin Minnick for their excellent technical support.

IN VITRO RAT HEPATOCYTE TOXICITY AND BACTERIA GENOTOXICITY EVALUATION OF HIGH ENERGY CHEMICALS FOR REPLACEMENT OF HYDRAZINE

SECTION I. TOXICOLOGICAL ASSESSMENT OF HIGH ENERGY COMPOUNDS: IN VITRO HEPATOCYTE TOXICITY

Prepared by Saber Hussain, PhD (Operational Toxicology Research, ManTech Environmental Technology, Inc., Dayton, OH), David R. Mattie, PhD, and John M. Frazier, PhD (AFRL/HEST, Wright-Patterson AFB, OH).

SUMMARY

In an effort to develop methods to predict the toxicological response of newly synthesized chemicals that are of interest to the U.S. Air Force, we have evaluated the in vitro toxicity for thirteen high-energy chemicals (HEC) in rat hepatocytes. Hydrazine is an aircraft fuel and propellant used by the US Air Force. Due to its toxicity the Propulsion Directorate of the Air Force Research Laboratory (AFRL/PR) has synthesized a series of high-energy chemicals (HECs) as potential hydrazine replacements. The HECs are comprised primarily of hydrazine derivatives (hydrazinium nitrate, HZN; 2-hydroxyethylhydrazine nitrate, HEHN; diethyl hydrazine nitrate, DEHN; 1,4-dihydrazine nitrate, DHTN; methylhydrazine nitrate, MHN; diaminoguanidine nitrate, DAGN; 2, 2-dimethyltriazanium nitrate, DMTN; nitroaminoguanidine nitrate, NAGN), amino containing compounds (ethanolamine nitrate, EAN; histamine dinitrate, HDN; methoxylamine nitrate, MAN), and triazole containing compounds (1,2,4-triazole nitrate, TN; 4-amino-1,2,4-triazole nitrate, ATN). The current study was undertaken to examine the toxicity of HECs in rat (male Fischer 344) primary hepatocytes in vitro. The effects of short-term exposure (4 hours) of hepatocytes to HECs were investigated with reference to viability, mitochondrial function, reactive oxygen species generation, reduced and oxidized glutathione (GSH and GSSG). The results showed a dose dependent decrease in mitochondrial activity (MTT), increase in lactate dehydrogenase (LDH) leakage, and depletion of GSH levels. Responses to hydrazine were used as reference values for ranking the other HECs. According to the MTT assay, the hydrazine-containing compounds are the most toxic (HZN > DEHN > DHTN > MHN > HEHN > DAGN > NAGN), amino-containing compounds displayed medium toxicity (HDN > EAN> MAN) and triazole-containing compounds exhibited low toxicity (DMTN>ATN>TN). In conclusion, based on these biochemical data, the chemicals were classified into three categories: higher toxicity (hydrazine containing compounds), medium toxicity (amino containing compounds), and lower toxicity (triazole containing compounds).

INTRODUCTION

Hydrazine is a highly reactive chemical that has been used as a propellant by the US Air Force. Besides it's application as a propellant and fuel in aircraft, hydrazine has a wide range of uses, including corrosion inhibitors, photographic materials and drugs. Several hydrazine derivatives occur naturally in tobacco and mushrooms, some are herbicides, and others have been shown to be pharmacologically active. Hydrazine and its derivatives enter the environment primarily from aerospace emissions and from manufacturing facilities although exposure also occurs as a metabolite of the drugs isoniazid (an antitubercular agent) and hydralazine (an antihypertensive agent) (Delaney and Timbrell, 1995). Toxic effects due to exposure to hydrazines include liver damage (Kleineke et al., 1979), hypoglycemia, disorders of the central nervous system (Lightcap et al., 1995), interference with intermediary metabolism (Moloney and Prough, 1983) and carcinogenicity (Bosan et al., 1987; Wald et al., 1984).

Several investigators have reported on the toxicity of hydrazine in vivo and in vitro. Hydrazine exposure leads to ATP depletion and megamitochondria formation in vivo (Kerai and Timbrell 1997; Preece et al., 1990; Wakabayashi et al., 2000). Hydrazine inhibits the mitochondrial enzyme succinate dehydrogenase (Ghatineh et al., 1992), which subsequently reduces mitochondrial function. Hydrazine also produces toxicity by interfering with a number of metabolic processes such as gluconeogenesis (Kleineke et al., 1979) and glutamine synthetase (Willis 1966; Sendo et al., 1984; Kaneo et al., 1984).

The disappearance of hydrazine from hepatic microsomes suggested that hydrazine was oxidized by the cytochromes P450, although the product was not identified (Jenner and Timbrell, 1994). A study aimed to ascertain the role of P450 isozymes in the toxicity of hydrazine using rat hepatocytes in vitro suggested that metabolism by all three P450 isozymes leads to detoxification and that the cytotoxicity of hydrazine could be due to the parent compound (Delaney and Trimbel, 1995).

The US Air Force continues to evaluate alternative aerospace propellants. In view of hydrazine's toxicity, a series of thirteen high-energy chemicals (HEC) was synthesized by the Propulsion Directorate of the Air Force Research Laboratory, CA (Table I-1). In order to maintain a safe working environment, it is necessary to develop reliable, rapid and inexpensive methods for predicting health risks of newly developed chemicals. The aim of this study was to examine the toxicity of these HEC in primary hepatocytes in vitro with reference to viability, mitochondrial function, and redox status of the cells. The toxicological profiles of these chemicals will assist in the design and optimization of chemicals for new propellants.

TABLE I-1: PROPOSED HIGH-ENERGY CHEMICALS (HEC)

Chemical Name	Abbreviation	Neutral Species	Category
Hydrazinium nitrate	HZN	NH ₂ NH ₂	hydrazine
2-Hydroxyethylhydrazinium nitrate	HEHN	NH₂NHCH₂CH₂OH	hydrazine
1,2-Diethylhydrazinium nitrate	DEHN	CH₃CH₂NHNHCH₂CH₃	hydrazine
Methylhydrazinium nitrate	MHN	CH₃NHNH₂	hydrazine
Diaminoguanidine nitrate	DAGN	NHC(NHNH ₂) ₂	hydrazine
Ethanolamine nitrate	EAN	NH ₂ CH ₂ CH ₂ OH	amine
Histamine dinitrate	HDN	N—————————————————————————————————————	amine
Methoxylamine nitrate	MAN	NH ₂ OCH ₃	amine
1,2,4-Triazole nitrate	TN		triazole
4-Amino-1,2,4-Triazole nitrate	ATN	N—NH ₂	triazole
2,2-Dimethyltriazanium nitrate	DMTN	$[(NH_2)_2N(CH_3)_2]^{+}$	quaternary ammonium salt
1,4-Dihydrazinotetrazine nitrate	DHTN	$H_2NHN \longrightarrow N \longrightarrow NHNH_2$	hydrazine
Nitroaminoguanidine nitrate	NAGN	NH2NHC(NH)NHNO2	hydrazine

METHODS

Chemicals

Collagenase was obtained from Boehringer-Mannheim Biochemicals (Indianpolis, IN). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), β-nicotinamide-adenine dinucleotide-reduced (NADH), 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA), reduced glutathione (GSH), insulin/transferrin/sodium selenite (ITS) additive, gentamicin, and dexamethasone were purchased from Sigma Chemical Company (St. Louis, MO). Chee media was obtained from Gibco (Grand Island, NY). All HEC were supplied from the Propulsion Directorate of the Air Force Research Laboratory, Edwards Air Force Base, CA. These compounds may be categorized as hydrazine-based, amine-based, triazole-based, and a quaternary ammonium salt as shown in Table I-1.

Animals

Male Fischer 344 rats (225-300 g) were obtained from Charles River Laboratories (Wilmington, MA). Rats were anesthetized with 1 mL/kg of a mixture of ketamine (70 mg/L; Parke-Davis, Moris Plains, NJ) and xylazine (6 mg/L; Mobay Corp., Shawnee, KS) prior to undergoing liver perfusion. All animals used in this study were handled in accordance with the principles stated in Guide for the Care and Use of Laboratory Animals, Institute of Laboratory Animal Resources, National Research Council, National Academy Press, 1996, and the Animal Welfare Act of 1966, as amended.

Liver Perfusion, Hepatocytes Enrichment and Culture

Fischer 344 rat livers were perfused, and hepatocytes were isolated and enriched by the two-step Seglen procedure (Seglen, 1976) with minor modifications as previously described (DelRaso and Frazier 1999). Chee media for perfusion (pH 7.2) were supplemented with 15 mM HEPES, washout medium was supplemented with heparin (2.0 U/mL) and EGTA (0.5 mM), and digestion medium was supplemented with 500 mg/L collagenase. Viable primary rat hepatocytes were enriched by low speed centrifugation (500 x g) for 3 min. Typically the yield of isolated hepatocytes was from 300 to 400 million cells with viability ranging from 85 to 95% as determined by trypan blue dye exclusion. For cell culture studies, suspensions of primary hepatocytes were adjusted to a cell density of 1.0 x 10⁶ cell/mL in Chee culture medium (pH 7.2) supplemented with HEPES (10 mM), insulin/transferrin/sodium selenite solution (5 mg/L, 5 mg/L, 5 µg/L), gentamicin (50 mg/L), and dexamethasone (0.4 mg/mL). Cells were seeded in either 96-well (4 x 10⁴ cells/well) or 6-well (1.0 x 10⁶ cells/well) culture plates previously coated with rat tail collagen, 1.0 µg/well or 25 µg/well, respectively. After 4 h of incubation in a 5% CO2 incubator at 37°C to allow for attachment, hepatocytes were re-fed with Chee culture medium lacking dexamethasone. Hepatocytes were cultured for an additional 21 h before treatment as indicated in the experimental schedule (see Figure I-1).

Figure I-1: Schedule for Culturing and Dosing of Primary Hepatocytes.

Fischer 344 rat livers were perfused, and hepatocytes were isolated and enriched as described in Material and Methods. After 4 h of incubation to allow for attachment, hepatocytes were re-fed with Chee culture medium and incubated for a further 20 h prior to HEC exposure. Hepatocytes were exposed to hydrazine for 4 h and biochemical evaluations were conducted immediately at the end of the exposure.

Treatment

Primary rat hepatocytes were treated with various concentrations of HEC dissolved in Chee culture media. The cells were exposed to HEC for 4 h (Figure I-1). A number of toxicity end points were evaluated at the end of the 4 h incubation period.

Mitochondrial Function

Mitochondrial function was determined spectrophotometrically by measuring the degree of mitochondrial reduction of the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to formazan by succinic dehydrogenase (Carmichael et al., 1987). Following treatment, cells were washed and incubated at 37°C in Chee media containing 0.05% MTT for 30 min. At this time the media containing MTT was removed and the colored product (formazan) extracted from the cells in acidified isopropanol and assayed with a spectraMAX plus microplate reader (Molecular Devices, Sunnyvale, CA.).

LDH Leakage

LDH leakage indicates loss of cellular viability because membrane damage that results in LDH leakage is generally considered irreversible. LDH leakage was assessed by measuring the activity of LDH in the cells and released into the media (Moldeus et al., 1978). After treatment, the media was removed from the culture plate and placed on ice. The plates were washed with

cold PBS followed by addition of 1 ml of a 0.5% solution of Triton X-100. The cells were placed on ice for 30 min at which time the solution and cellular debris were carefully removed and vortexed in 2 ml sample vials. Aliquots (10 µl) of the media or detergent solution were then assayed in phosphate buffer containing 0.2 mM NADH and 1.36 mM pyruvate by monitoring the loss rate of NADH absorption at 340 nm with a spectraMAX Plus microplate reader (Molecular Devices, Sunnyvale, CA). The percent of activity in the media was then calculated by dividing the amount of activity in the media by the total activity.

Reduced Glutathione

Glutathione (GSH) is a ubiquitous sulfhydryl-containing molecule in cells that is responsible for maintaining cellular oxidation-reduction homeostasis. Monitored changes in GSH homeostasis are an indication of cell damage. Reduced glutathione (GSH) were measured according to the Glutathione Assay Kit from Cayman Chemical Company, Ann Arbor, MI. The assay is based on enzymatic recycling method, using glutathione reductase and DTNB (5,5'-dithiobis-2-nitrobenzoic acid, Ellman's reagent) as described by Tietze (1969).

ROS Generation

ROS generation was determined by the method described by Wang and Joseph (1999). Cells were incubated with 100 μ M of 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA), in Chee media under standard culture conditions for 30 min prior to chemical treatment. The DCFH-DA is cell permeable and can be oxidized into fluorescent product 2,7-dichlorofluorecein. After the media containing DCFH-DA was removed, the cells were washed and treated with test chemicals in Chee media for 4 hours. At the end of the exposure, the cells were washed with PBS and fluorescence of the cells from each well was measured in a spectraMAX (Molecular Devices, Sunnyvale, CA.) multi-well fluorescence plate reader at excitation 485 nm and emission at 530 nm.

RESULTS

In vitro toxicity of HEC

The MTT assay was used to assess the effects of HEC on mitochondrial function of rat hepatocytes. Figure I-2 shows that mitochondrial function of hepatocytes decreases in a dose-dependent manner with increasing HEC concentration. Hydrazine-containing compounds (HZN, HEHN, DEHN, MHN, DHTN, DAGN, and NAGN) reduced mitochondrial function in a concentration-dependent manner. Amino-containing compounds (EAN, HDN, and MAN) displayed toxicity at higher doses except for HDN, which showed toxicity at 50 mM. Triazole containing compounds (TN, ATN, and DMTN) did not exhibit significant toxicity even at the highest dose (150 mM). According to the MTT assay, the hydrazine-containing compounds are

the most toxic, the amino-containing compounds displayed medium toxicity, and the triazole-containing compounds exhibited low toxicity.

Figure I-2. Effect of HEC on Mitochondrial Function of Hepatocytes.

MTT reduction is plotted as a function of HEC dose for hydrazine-based HEC in (A), for amine-based HEC in (B) and for triazole-based HEC (C). Primary hepatocytes were treated with different concentrations of HEC for 4 h. At the end of the incubation period, mitochondrial function was determined by the MTT assay as described in the Materials and Methods section. The data are expressed as means \pm SD of three independent experiments from three different rats. (*) indicates a statistically significant difference compared to controls (p < 0.05).

The viability of rat hepatocytes was evaluated by measuring the leakage of LDH into the media. Figure I-3 indicates that 4-h exposure to HEC produced a dose-dependent increase in LDH leakage into the media. HZN appears to be more toxic as it induced 80-90% LDH leakage at 150 mM HZN. The EC₅₀ value for HZN is 62 mM. The trend of toxicity as assessed by LDH leakage follows the same trend seen in the MTT assay except that EAN produced higher toxicity compared to HDN and MAN. LDH leakage showed that the order of toxicity as follows: hydrazine-containing compounds > amino-containing compounds > triazole-containing compounds.

Figure I-3. Effect of HEC on LDH Leakage of Rat Hepatocytes.

LDH leakage into media is plotted as a function of HEC dose for hydrazine-based HEC in (A), for amine-based HEC in (B) and for triazole-based HEC (C). Primary hepatocytes were treated with different concentrations of HEC for 4 h. At the end of the incubation period, LDH leakage was determined by the LDH assay as described in the Materials and Methods section. The data are expressed as means \pm SD of three independent experiments from three different rats. (*) indicates a statistically significant difference compared to controls (p < 0.05).

In cells, glutathione (GSH) is a ubiquitous sulfhydryl-containing molecule that is responsible for maintaining cellular oxidation-reduction homeostasis. GSH protects cells against damage by scavenging highly reactive free radicals that can interact with critical cellular components. Monitored changes in GSH homeostasis are therefore an indication of cell damage. A dose-dependent decrease in GSH was found in HEC-treated hepatocytes as seen in Figure I-4. GSH levels were measured in control and HEC-exposed cells after 4 hours of exposure. DHTN was found to reduce considerably GSH levels to 4% at 25 mM. A large depletion (70%) of GSH resulted from low dose (25 mM) of HZN followed by subsequent decreases at 50, 100 and 150 mM. The order of toxicity of hydrazine-containing compounds in reducing GSH levels are DHTN> HZN> DEHN> MHN > HEHN > DAGN > NAGN. Based on GSH assay, the most toxic chemical is DHTN.

Concentration (mM)

Figure I-4. Effect of HEC on GSH Levels in Hepatocytes.

GSH content is plotted as a function of HEC dose for hydrazine-based HEC in (A), for amine-based HEC in (B) and for triazole-based HEC (C). Primary hepatocytes were treated with different concentrations of HEC for 4 h. At the end of the exposure, cells were washed with PBS, and GSH levels were measured as described in the Materials and Methods section. The data are expressed as means \pm SD of three independent experiments with hepatocytes from three different rats. (*) indicates a statistically significant difference compared to controls (p < 0.05).

Dichlorofluorescein diacetate (DCFH-DA) is widely used to measure reactive oxygen species (ROS) generation in cells. The ROS generation following exposure to HEC is shown in Figure I-5. Even a low dose of HZN (25 mM) produced a significant increase in ROS generation at the end of the 4-h exposure. The HZN treatment at 100 and 150 mM resulted in an approximately eight-fold increase in ROS. HZN is the most toxic followed by DAGN and MHN. Other hydrazine-containing compounds (HEHN, DEHN, NAGN, and DHTN) did not show significant increase in ROS. Among amino-containing compounds, HDN caused the greatest increase in ROS. An increase in ROS was observed in EAN-treated cells at higher dose (150 mM), although there was no significant effect observed in MAN-exposed cells. No appreciable increase in ROS generation was observed for cells treated with triazole-containing compounds (TN, ATN, and DMTN). Using ROS generation as a measure of toxicity, HZN was the most toxic of the HEC.

Figure I-5. Effect of HEC on ROS Generation in Hepatocytes.

The increase in ROS generation (fold of increase in fluorescence intensity) is plotted as a function of HEC dose for hydrazine-based HEC in (A), for amine-based HEC in (B) and for triazole-based HEC (C). Primary hepatocytes were incubated with DCFH-DA for 30 min. After DCFH-DA containing medium was removed, the cells were washed and treated with HEC in Chee media for 4 h. At the end of exposure, fluorescence was measured as described in Materials and Methods section and the intensity of fluorescence expressed in fold increase in treated cells with respect to control. The data are expressed as means \pm SD of three independent experiments with hepatocytes from three different rats. (*) indicates a statistically significant difference compared to controls (p < 0.05).

Toxicity Comparison

In order to compare the results of the assays using values representative of a dose-response curve, the following parameters were determined: The lowest effective concentration (LEC) was determined for ROS and effective concentrations (EC) were determined for MTT, LDH, and GSH. The EC₇₅ was determined in order to maximize the number of data points for MTT. Similarly, the EC₂₅ was determined for LDH and the median effective concentration (EC₅₀) was determined for GSH. Many of these endpoints, displayed in Table I-2, can only be expressed as lower limits from the dose-response curves (greater than 150 mM).

TABLE I-2: CALCULATED EC₇₅, LOWEST EFFECTIVE CONCENTRATION (LEC), EC₂₅ AND EC₅₀ VALUES OF HEC

Propellants	MTT EC ₇₅	ROS LEC	LDH EC ₂₅	GSH EC ₅₀
	(mM)	(mM)	(mM)	(mM)
HZN	35	5	20	20
HEHN	68	>150	75	116
DEHN	50	>150	65	32
MHN	18	7	>150	58
DAGN	110	30	>150	145
EAN	115	105	30	144
HDN	58	25	>150	80
MAN	150	>150	>150	>150
TN	>150	>150	>150	>150
ATN	>150	>150	>150	>150
DMTN	>150	>150	>150	>150
DHTN	32	>150	30	4
NAGN	>150	>150	>150	>150

DISCUSSION

ROS are by-products of biological redox reactions and are involved in various pathological conditions (Farber et al., 1990). A large increase in ROS results from a low dose of HZN among all HEC compounds. Increased generation of ROS by HEC is likely to contribute to oxidative stress that may ultimately manifest cytotoxicity. Increase in intracellular ROS, often referred to as oxidative stress, represents a potentially toxic insult, which, if not counteracted, will lead to membranous dysfunction, as well as protein and DNA damage (Preece and Timbrell 1989; Loft and, Poulsen 1999). The toxicity of HEC, revealed by LDH release and MTT reduction, is strongly correlated to ROS generation and indicates induction of massive oxidative stress in vitro in primary cultures of rat hepatocytes.

Glutathione is the principal intracellular non-protein thiol that is the major source of reducing power in the cell (Sies, 1999). It provides a primary defense against oxidative stress by its ability to scavenge free radicals. The results reported here show a dose-dependent depletion of GSH by HEC. It is interesting to note that low dose (25 mM) of HZN greatly depleted GSH compared to other HEC, which did not occur to any notable extent for either MTT reduction or LDH leakage. GSH depletion in primary culture of rat hepatocytes exposed to HEC is strongly correlated to the increased ROS generation. It is possible that GSH depletion makes cells produce reactive oxygen species. Previously, it has been shown the loss of GSH, an important cellular antioxidant, increased endogeneous ROS to toxic levels in hepatocytes (Anundi et al., 1979). It has been postulated that the loss of GSH and catalase may compromise cellular antioxidant defenses and lead to the accumulation of ROS that are generated as by-products of normal cellular function (Hussain and Frazier 2001; Hussain et al., 1999).

The major events in HEC cytotoxicity of primary rat hepatocytes are the reduction of mitochondrial function, generation of ROS and GSH depletion. It is not known the exact mechanism of action of these chemicals, but the depletion of GSH and generation of ROS strongly suggest that toxicity of HEC may be mediated through oxidative stress. This infers that the mechanism of biological response for MTT involves loss of an electron. But it must be remembered that the actual species used in the assays are the nitrate salts, which in solution, consist of the protonated form of the HEC and [NO₃]. Therefore, it is assumed that the biological mechanism of toxic response first involves loss of a proton to form the neutral HEC.

One of the aims of this study was to classify HEC based on mechanism of toxicity using an in vitro model. This would allow for the toxicity prediction of additional HEC proposed as new propellants or other applications and perhaps also provide insight into the biophysical mechanisms involved. The experimental results added to the hydrazine literature by demonstrating reduced mitochondrial function, increased LDH leakage, elevated ROS generation, and decreased GSH content at the end of 4-h exposures. There are number of reports available on hydrazine toxicity, however, there are no reports on toxicity of the HEC examined in this study. Hydrazine is known to deplete ATP, generate ROS and destabilize mitochondrial function (Kerai and Timbrell 1997). The results demonstrated that hydrazine-based compounds in general are more toxic than amine and triazole containing compounds. However, some chemicals displayed different toxicity; for example NAGN, although it belongs to hydrazinebased HEC, is a less toxic chemical. Similarly MAN which is an amine-based chemical and triazole-containing chemicals were relatively less toxic than other HEC based on the four toxicity end points tested. Based on these biochemical data, the chemicals were classified into three categories: higher toxicity (hydrazine containing compounds), medium toxicity (amino containing compounds), and lower toxicity (triazole containing compounds).

REFERENCES

- Anundi, I., Hogberg, J., and Stead, A.H. (1979). Glutathione depletion in isolated hepatocytes: Its relation to lipid peroxidation and cell damage. *Acta Pharmacol Toxicol (Copenh)*. 45 (1): 45-51.
- Bosan, W.S., Shank, R.C., MacEwen, J.D., Gaworski, C.L., and Newberne, P.M. (1987). Methylation of DNA guanine during the course of induction of liver cancer in hamsters by hydrazine or dimethylnitrosamine. *Carcinogenesis* 8 (3): 439-444.
- Carmichael, J., DeGraff, W.G., Gazdar, A.F., Minna, J.D., and Mitchell, J.B. (1987). Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of chemosensitivity testing. *Cancer Res.* 47: 936-942.
- Delaney J and Timbrell JA. (1995) Role of cytochrome P450 in hydrazine toxicity in isolated hepatocytes in vitro. Xenobiotica. 25:1399-410.
- DelRaso, N.J., and Frazier, J.M. (1999). Effect of culture conditions prior to exposure on cadmium cytotoxicity in primary rat hepatocytes. *Toxicol. Meth.* 9: 97-114.
- Farber, J.L., Kyle, M.E., and Coleman, J.B. (1990). Mechanisms of cell injury by activated oxygen species. Lab Invest. 62: 670-679.
- Ghatineh, S., Morgan, W., Preece, N.E., and Timbrell, J.A. (1992). A biochemical and NMR spectroscopic study of hydrazine in the isolated rat hepatocyte. *Arch. Toxicol.* 66: 660-668.

- Hussain, S., and Frazier, J. (2001). *In vitro* methods for toxicity assessment of high energy compounds. *Sci. Total Environ*. 274: 151-160.
- Hussain, S., Hass, B.S., Slikker, W., Jr, and Ali, S.F. (1999). Reduced levels of catalase activity potentiate MPP⁺-induced toxicity: comparison between MN9D cells and CHO cells. *Toxicol. Lett.* 104: 49-56.
- Jenner, A.M., and Timbrell, J.A. (1994). Influence of inducers and inhibitors of cytochrome P450 on the hepatotoxicity of hydrazine in vivo. *Arch. Toxicol.* 68(6): 349-357.
- Kaneo, Y., Iguchi, S., Kubo, H., Iwagiri, N., and Matsuyama, K. (1984). Tissue distribution of hydrazine and its metabolites in rats. J. Pharmacobiodynamics 7: 556-562.
- Kerai, M.D., and Timbrell, J.A. (1997). Effect of fructose on the biochemical toxicity of hydrazine in isolated rat hepatocytes. *Toxicol*. 120: 221-30.
- Kleineke, J., Peters, H., and Soling, H.D. (1979). Inhibition of hepatic gluconeogenesis by phenethylhydrazine (phenelzine). *Biochem. Pharmacol.* 28(8):1379-1389.
- Lightcap, E.S., Hopkins, M.H., Olson, G.T., Silverman, R.B., (1995). Time-dependent inhibition of gamma-aminobutyric acid aminotransferase, by 3-hydroxybenzylhydrazine. *Bioorg Med Chem.* 3: 579-85
- Loft, S., and Poulsen, H.E. (1999). Markers of oxidative damage to DNA: antioxidants and molecular damage. *Meth. Enzymol.* 300: 166-184.
- Moldeus, P., Hogberg, J. and Orrenius, S. (1978). Isolation and use of liver cells. *Meth. Enzymol.* 52: 60-72.
- Moloney, S.J., and Prough, R.A. (1983). Studies on the pathway of methane formation from procarbazine, a 2-methylbenzylhydrazine derivative, by rat liver microsomes. *Arch. Biochem. Biophys.* 221: 577-584.
- Preece, N.E., and Timbrell, J.A. (1989). Investigation of lipid peroxidation induced by hydrazine compounds in vivo in the rat. *Pharmacol. Toxicol.* 64: 282-285.
- Preece, N.E., Ghatineh, S., and Timbrell, J.A. (1990). Course of ATP depletion in hydrazine hepatotoxicity. *Arch. Toxicol.* 64: 49-53.
- Seglen, P.O. (1976). Preparation of isolated rat liver cells. Meth. Cell Bio. 3: 29-83.
- Sendo, T., Noda, A., Ohno, K., Goto, S., and Noda, H. (1984). Hepatotoxicity of hydrazine in isolated rat hepatocytes. *Chem. Pharm. Bull. (Tokyo)* 32: 795-796.
- Sies, H. (1999). Glutathione and its role in cellular functions. Free Radical Biol. Med. 27: 916-921
- Tietze, F. (1969). Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. *Anal. Biochem.* 27(3): 502-522.
- Wakabayashi, T., Teranishi, M.A., Karbowski, M., Nishizawa, Y., Usukura, J., Kurono, C., and Soji, T. (2000). Functional aspects of megamitochondria isolated from hydrazine- and ethanol-treated rat livers. *Pathol. Int.* 50: 20-33.
- Wald, N., Boreham, J., Doll, R., and Bonsall, J. (1984). Occupational exposure to hydrazine and subsequent risk of cancer. *Br. J. Int. Med.* 41: 31-34.
- Wang, H., and Joseph, J.A. (1999). Quantitating cellular oxidative stress by dicholorofluorescein assay using microplate reader. *Free Radical Biol. Med.* 27: 612-616.
- Willis, J.E. (1966). The substitution of 1-methylhydrazine for ammonia in the glutamine synthetase system. *Biochem.* 11: 3557-3563.

IN VITRO RAT HEPATOCYTE TOXICITY AND BACTERIA GENOTOXICITY EVALUATION OF HIGH ENERGY CHEMICALS FOR REPLACEMENT OF HYDRAZINE

SECTION II. GENOTOXICITY ASSAYS FOR ELEVEN HIGH ENERGY COMPOUNDS: SALMONELLA/MICROSOME MUTAGENESIS ASSAY

Prepared by Sheela Sharma, Ph.D. and Pu Gao, M.D. (Cellular and Molecular Toxicology Program, Life Sciences and Toxicology Division, ManTech Environmental Technology, Inc., Research Triangle Park, NC), excerpted from Study No. 140-1126.

SUMMARY

The potential genotoxic effects of eleven high energy chemicals, HZN, DEHN, DHTN, DAGN, NAGN, EAN, HDN, MAN, TN, ATN and DMTN in Salmonella/Microsome mutagenicity assay (Ames Test) were investigated. In this assay, five bacterial strains (TA98, TA100, TA102, TA1535 and TA1537) were tested with and without the addition of activation system (S9). A modification of the standard plate incorporation method, the pre-incubation method was used to increase the sensitivity of the assay. The data from the range finding (dose selection) assay indicated that the concentrations used in the mutagenicity assay varied between chemicals for different strains. For example, 0.03-3.0 mg/plate were used for HZN (0.32-30 mM), DHTN (0.15-15 mM), NAGN (0.16-16 mM), MAN (0.27-27 mM) and DMTN (0.22-22mM); and 0.1-5.0 mg/plate were used for EAN (0.8-40 mM), HDN (0.42-21 mM), TN (0.75-38 mM) and ATN (0.67-34 mM), for all five strains. The concentrations for DAGN ranged from 0.03-3.0 mg/plate (0.2-2 mM) for tester strains TA100, TA102 and TA1535; and 0.1-5.0 mg/plate (0.54-32 mM) for strains TA98 and TA1537. Only range finding assay was performed for DEHN using tester strains TA98, TA100 and TA102, as there was a limited amount of chemical.

Results from the mutagenicity assay showed that, compared to the solvent control, HZN increased the revertants in TA102 and TA1535 in a dose-dependent manner at all concentrations tested (1.2-1.4 fold and 2.0-5.0 fold, respectively) in the presence of S9 activation system (p<0.05). DHTN increased the revertants in three tester strains (TA98, TA100 and TA102) with and without S9 activation system at concentrations of 0.03-0.3 mg/plate (0.15-15 mM) (p<0.05). Toxicity was observed at the highest concentrations (1 and 3 mg/plate or 5 and 15 mM) in all strains with significant increase in toxicity without S9. Unlike the effect in strains TA98 and TA102, DHTN showed a significant dose-dependent increase of revertants in TA100 in the presence of S9 (~2.0-4.0 fold). Similarly, in TA1535, DHTN also induced the mutant revertants in a dose-dependent manner at concentrations of 0.03-0.3 mg/plate (0.15-1.5 mM) with S9 (2.0-5.0 fold) and 0.03 and 0.1 mg/plate (0.15 and 0.5 mM) without S9 (~2 fold). MAN significantly increased (~5 fold) the revertants (non dose-dependent) in one tester strain (TA100) at all concentrations tested from 0.03-3.0 mg/plate (0.15-1.5 mM) with and without S9 activation system (p<0.01). HDN and DMTN showed a moderate but statistically significant increase in the

revertants only in tester strain TA102 at all concentrations with and without S9 (p<0.05). The concentrations of HDN that induced mutant revertants were 3.0-5.0 mg/plate with S9 and only 5.0 mg/plate (21 mM) without S9. The inducing concentrations for DMTN were 0.03-3.0 mg/plate (0.22-2.2 mM) with and without S9 activation system (p<0.05). The rest of the compounds (DAGN, NAGN, EAN, TN and ATN) were negative in this assay.

The data from this study indicated that HZN, DHTN and MAN are mutagens in the bacterial system by causing both base pair substitutions (GC for TA100, AT for TA102) and frameshift (TA98) mutations. DHTN is a direct mutagen as there was no statistically significant increase in the number of histidine revertants in the activated (+S9) group compared to the non-activated (-S9) group in all three strains (p>0.05). However, HZN and MAN can be considered as indirect mutagens, as there is a statistical difference in the number of histidine revertants between activated (+S9) group and non-activated (-S9) group (p<0.05). Both HDN and DMTN appear to be weak mutagens in the bacterial system, although it showed statistically significant induction of revertants, however, the increase in revertant numbers did not reach the standard criteria of 2 fold increase.

INTRODUCTION

The overall objective of the study is to determine the potential genotoxicity associated with the exposure to eleven high energy chemicals (HZN, DEHN, DHTN, DAGN, NAGN EAN, HDN. MAN, TN, ATN and DMTN), a new series of primarily hydrazine derivatives and aminocontaining compounds with potential application as aircraft fuel and propellant to replace hydrazine, in Salmonella/Microsome mutagenicity assay (Ames Test). In a previous report, hydroxyethylhydrazinium nitrate (HEHN) elicited a positive mutagenic response in Salmonella strains TA102 and TA1535, but was negative in strains TA98, TA100, and TA1537 (Sharma and Gao. 1999). The Salmonella/mammalian microsome revertant mutation system is a well-defined short-term assay for the detection of carcinogens/mutagens. It measures the reversion from his-(histidine dependent) to his (histidine independent) induced by chemicals that cause base changes or frameshift mutations in the genome of the organism. In this assay, bacteria are exposed to the test agent with and without a metabolic activation system (Aroclor 1254 induced rat liver S9 with co-factors) and plated onto minimal agar medium that is deficient in histidine. After incubation for 48 hours, revertant colonies are counted and compared with the number of spontaneous revertants in vehicle control culture. The mutagenicity of test agents is evident by the increase of revertants. All assays were conducted in accordance with the provision of the United States Environmental Protection Agency/Toxic Substances Control Acts (EPA/TSCA) Good Laboratory Practice (GLP) standards as defined in the Federal Register (40 CFR Part 792. 2002), the EPA/TSCA Health Effect Testing Guideline (40 CFR 798.5265, 2001-2002) and EPA Health Effects Test Guideline (OPPTS 870. 5100, 1998). All the procedures were performed in accordance with the Standard Operating Procedures (SOPs) of the Cellular and Molecular Toxicology Program at ManTech Environmental.

METHODS

Materials

Salmonella typhimurium strains

Five tester strains (TA98, TA100, TA102, TA1535 and TA1537) were obtained from Dr. Bruce N. Ames, Deptartment of Molecular and Cell Biology, University of California at Berkeley (Ames et al., 1975; Maron and Ames, 1983), stored at -80°C and used in this assay.

Metabolic activation system

Aroclor 1254-induced rat (Sprague-Dawley adult male) liver S9 homogenate (Cat # 11-101, Lot #1253 and 1289) was purchased from Moltox (Boone, N.C.), and stored at -80°C. It was diluted with cofactors to make the standard S9 activation mixture. The S9 mixture contains 33 mM KCl, 8 mM MgCl₂, 5 mM glucose-6-phosphate, 4 mM NADP and 100 mM phosphate buffer (pH 7.4) and S9 (0.04 mL/mL mixture). The concentration (volume) of S9 is based on the historical data from the laboratory and the revised methods for the Salmonella mutagenicity test by Maron and Ames (1983). The S9 mixture was made fresh prior to use and kept on ice.

Growth medium

Bacto nutrient broth (Difco Laboratories, Cat # 0003-17-8, Lot # 116525JD) was prepared by dissolving 8 g powder and 5 g NaCl in 1 L of distilled water, which was sterilized and used for growing tester strains. The growth medium was routinely stored at 4°C.

Top agar

Top agar contains 0.6% Bacto agar (Difco Laboratory, Cat # 0140-05, Control # 653470,781733 and 1274000) and 0.5 % NaCl in distilled water, which was autoclaved and stored at room temperature. Before plating, 10 mL of sterile 0.5 mM histidine/0.5 mM biotin solution was added to 100 mL of melted top agar, kept at 45°C and used as an overlay on the minimal agar plate.

Minimal agar plate

The minimal agar was prepared by dissolving 1.5% Bacto agar (Difco Laboratory, Cat # 0140-05, Control # 715860) and 2% glucose in Vogel-Bonner medium E. Minimal agar plates were made by adding 30 mL of the minimal glucose agar medium onto a 100-mm x 15-mm bacterial plate. Vogel-Bonner medium E was prepared by dissolving 0.04 M MgSO₄, 0.52 M citric acid, 2.87 M K₂HPO₄, and 0.87 M NaHNH₄ in distilled water and sterilized. It was stored at 4°C.

Chemicals for genotypes confirmation

Crystal violet (Fisher, Cat # C581, Lot # 870757): 0.1% dissolved in distilled water.

Histidine (Sigma, Cat # H-8125, Lot # 63H0202): 0.1 M dissolved in distilled water and sterilized.

Biotin (Sigma, Cat # B-4501, Lot # 34H0932): 0.5 M dissolved in distilled water and sterilized.

Ampicillin (Sigma, Cat # A-9518, Lot # 85H0372): 8 mg/mL dissolved in 0.02N NaOH.

Tetracycline (Sigma, Cat # T3383, Lot # 43H1092): 8 mg/mL dissolved in 0.02N HCl.

Positive control chemicals

2-Anthramine (Sigma, Cat # A1381, CAS # 613-13-8, Lot 3 77H1867): dissolved in DMSO, further diluted with DDH₂O to 25 μ g/mL and 2.5 μ g/plate was used for all five tester strains with S9 metabolic activation system.

9-Aminoacridine (Sigma, Cat # A-7295, CAS # 90-45-9, Lot # 106FO6681): dissolved in DMSO and further diluted with DDH₂O to 500 μ g/mL and 50 μ g/plate was used for tester strain TA1537 without S9 metabolic activation system.

Mitomycin C (Sigma, Cat # M0503, CAS # 50-07-7, Lot # 71F-0634): dissolved in DMSO, further diluted with DDH₂O to 5 μ g/mL and 0.5 μ g/plate was used for tester strain TA102 without S9 metabolic activation system.

2- Nitrofluorene (Aldrich, Cat # N 1,675-4, CAS # 607-57-8, Lot # ES02408LR): dissolved in DMSO and further diluted with DDH₂O to 100 μ g/mL, and 10 μ g/plate was used for tester strain TA98 without S9 metabolic activation system.

Sodium azide (Sigma, Cat # S-2002, CAS # 26628-22-8, Lot # 113H0265): dissolved in DMSO and further diluted with DDH₂O to 20 μ g/mL, and 2 μ g/plate was used for tester strains TA100 and TA1535 without S9 metabolic activation system.

Test agents

Test chemicals were directly obtained from Air Force Research Lab, Edwards Air Force Base, CA. HZN appeared as white solid particulate, DEHN, DAGN, NAGN, HDN, MAN, TA, ATN and DMTN appeared as white crystalline solid; DHTN appeared as amber-red crystalline solid and EAN appeared as colorless to white crystalline solid. The chemicals were kept at -80°C, preweighed in a glove-box for safety and dissolved in DMSO prior to use.

Procedures

Culturing of tester strains

The tester strains, frozen at -80°C were thawed, inoculated in nutrient broth and incubated in an environmental shaker incubator at 37°C for 12~15 hours to give the bacterial density of 1-2 x 10⁹/mL. The bacteria were kept in a refrigerator prior to use.

Genotype confirmation

Genotypes of each strain were confirmed prior to the mutagenesis study, which included the requirement of histidine (His—), the sensitivity to crystal violet (rfa mutation) and U.V. light (uvrB mutation), the resistance to ampicillin and tetracycline (R factor), ampicillin plus tetracycline for TA102 and ampicillin alone for the rest of four tester strains and the occurrence of spontaneous revertants.

Range-Finding Assay (Dose Selection)

A preliminary range-finding assay was performed using TA98, TA100 and TA102 or TA100 and TA102 to determine the optimal test concentrations for the mutagenesis assay. Five log concentrations (0.0005-5.0 mg/plate) of five chemicals (HZN, DEHN, DHTN, DAGN and EAN) were tested in TA98, TA100 and TA102; six (NAGN, HDN, MAN, TN, ATN and DMTN) were tested using TA100 and TA102 with modified standard plate incorporation, the pre-incubation method. All chemicals were dissolved in DMSO followed by four-log dilutions in DDH₂O, and no precipitation was observed in any of the chemical dilutions.

Mutagenesis Assay

Modified Standard Plate incorporation (pre-incubation method): In the mutagenesis assay, all chemicals were freshly dissolved in DMSO followed by four half log dilutions with DDH₂O prior to use, and no precipitation was observed.

For HZN, DHTN, NAGN, MAN and DMTN, 0.03-3.0 mg/plate were used in all five tester strains. For EAN, HDN, TN and ATN, 0.1-5.0 mg/plate were used in all five tester strains. For DAGN, the concentrations ranged from 0.03-3.0 mg/plate for tester strains TA100, TA102 and TA1535 and 0.1-5.0 mg/plate for tester strains TA98 and TA1537. Due to the limited amount of chemical, DEHN was tested only in the range-finding assay using tester strains TA98, TA100 and TA102.

One-tenth mL bacteria, 0.1 mL test agent and 0.5 mL S9 mixture (+S9 group) or 0.2 M phosphate buffer (-S9 group) were pre-incubated at 37°C for 20 min with shaking before 2 mL of top agar was added to this mixture. The contents were mixed, then poured onto the surface of a minimal glucose agar plate and spread out evenly. After the top agar was solidified, the plates were inverted and incubated at 37°C for 48 hours. The number of revertants per dish was counted by an automatic colony counter (AccuCount 1000, Biologics). The appearance of background lawn of bacterial growth was checked. Cultures were set up in triplicate; negative controls (spontaneous and solvent (DMSO) control) and positive controls were also included.

RESULTS

The raw data for the Ames Test are attached as Appendix A and the salient results are summarized as follows.

Genotype Identification

Different genotypes of the tester strains were verified by the standard procedure of B.N. Ames prior to the study. Results (see Table II-1) indicated that all the tester strains were qualified for the study.

TABLE II-1: GENOTYPE CONFIRMATION OF TESTER STRAINS

Genotypes	TA98	TA100	TA102	TA1535	TA1537
Histidine requirement	+	+	+	+	+
rfa mutation	+	+	+	+	+
uvrB mutation	+	+ ·	_	. +	+
R factor	+	+	+	-	-
Spontaneous Revertants	60 ± 3.8	150 ± 3.2	391 ± 11.7	17 ± 4.5	13 ± 4.7

Dose Selection for High Energy Chemicals

The conversion of mg/plate to mM concentration for each chemical in the dose selection assay is shown in Table II-2. The results from dose selection studies are listed in Tables II-3 through II-12. Based on the reduction compared to DMSO control revertants, toxicity was observed at 5 mg/plate for HZN, DHTN and DAGN in TA98, TA100 and TA102 and for NAGN in TA100 and TA102. Toxicity was noticed for MAN in TA100 at 5 mg/plate and slight toxicity in TA102 from 0.0005 to 0.5 mg/plate. TN showed a different toxicity pattern; 5 mg/plate was toxic only in S9-system in both TA100 and TA102. Similar toxicity pattern was noticed with DMTN in tester strain TA100 (toxicity only in the absence of S9 system). EAN and ATN were less toxic than the rest of the chemicals; either there was no toxicity or slight toxicity at all concentrations tested in all the tester strains. However, even when there was slight toxicity, no clearing of background lawn (indicating toxicity) was observed.

TABLE II-2: CONVERSION OF mg/PLATE TO mM CONCENTRATION FOR EACH CHEMICAL IN THE DOSE SELECTION ASSAY

Chemical	MW	Dose selection (log dose)				
		mg/plate	mM			
HZN	95.05	0.0005-5	0.0050-50			
DEHN	151.16	0.0005-5	0.0030-30			
DHTN	205.13	0.0005-5	0.0024-24			
DAGN	152.11	0.0005-5	0.0032-32			
NAGN	182.09	0.0005-5	0.0027-27			
EAN	124.09	0.0005-5	0.0040-40			
HDN	237.17	0.0005-5	0.0021-21			
MAN	110.07	0.0005-5	0.0045-45			
TN	132.08	0.0005-5	0.0037-37			
ATN	147.09	0.0005-5	0.0033-33			
DMTN	138.12	0.0005-5	0.0036-36			

TABLE II-3: RESULTS OF DOSE SELECTION ASSAYS FOR HZN

Treatment	Treatment TA98					TA1	TA	102	
1 reatment	S9-	+	5	59-	S	9+	S9-	S9+	S9-
Spontaneous	37.89 ±	6.47	27.11	± 6.54	141.22	± 3.29	138.33 ± 8.50	350.78 ± 42.47	340.22 ± 23.31
DMSO	34.56 ±	6.27	27.89	± 6.47	140.44	± 15.07	137.78 ± 7.41	328.78 ± 31.65	358.22 ± 49.30
Anthramine	832.89 ±	160.84			1285.33	± 103.94		518.78 ± 41.10	
Mitomycin C								} 	1592.78 ± 25.47
2-Nitrofluorene			151.22	± 21.00					
Sodium azide							501.33 ± 31.97		
HZN (mg / plate)									
0.0005	40.78 ±	7.03	26.33	± 6.17	157.22	± 23.80	145.00 ± 11.79	417.22 ± 30.97	322.78 ± 23.05
0.005	39.22 ±	4.54	43.56	± 11.03	133.67	± 30.56	134.89 ± 8.01	539.44 ± 30.20	313.89 ± 15.94
0.05	29.89 ±	8.83	24.22	± 5.50	141.78	± 21.19	123.22 ± 13.93	401.22 ± 28.66	349.78 ± 26.65
0.5	30.67 ±	4.33	37.22	± 5.36	158.33	± 18.68	150.67 ± 10.59	545.78 ± 5.68	333.22 ± 11.01
5	2.00 ±	0.33	0.00	± 0.00	30.44	± 18.21	0.00 ± 0.00	83.67 ± 41.76	0.00 ± 0.00

TABLE II-4. RESULTS OF DOSE SELECTION ASSAYS FOR DEHN

T	TA98			TA100					TA102								
Treatment	S9+			S9-			S9+			S9-			S9+		9	59-	
Spontaneous	28.67	± 2	2.65	21.44	±	0.69	89.33	±	20.27	138.6	57 ±	21.84	252.00±	32.62	270.67	± 3	34.04
DMSO	28.56	± 2	2.01	18.11	±	4.00	63.33	±	14.77	120.3	33 ±	27.84	201.56±	14.63	244.22	±	9.58
Anthramine	1476.44	± 5	6.40				1362.56	±	46.34				496.44±	45.73			
Mitomycin C															1342.67	' ± 2	38.23
2-Nitrofluorene				482.11	± 3	37.83											
Sodium azide										477.4	14 ±	77.30					
DEHN (mg / plate)																	
0.0005	21.33	± 4	.67	26.78	± :	1.68	128.56	±	29.41	135.3	3 ±	4.73	137.89±	46.74	163.33	± 6	59.57
0.005	26.67	± 2	.52	27.11	± 8	8.80	135.33	±	39.70	103.0	0 ±	34.18	131.11±	8.37	221.67	± 10	05.94
0.05	23.00	± 2	.91	23.22	± 5	5.85	138.22	±	33.01	119.3	3 ±	9.70	235.44±	64.95	229.00	± 5	5.76
0.5	23.22	± 3	.10	17.89	± 6	5.11	55.11	±	15.83	84.5	6 ±	20.04	220.78±	82.10	300.89	± 1	8.07
5	15.67	± 3.	.21	24.11	± 1	1.39	67.22	±	19.17	105.6	7 ±	15.19	250.11±	31.67	271.67	± 1	3.67

TABLE II-5: RESULTS OF DOSE SELECTION ASSAYS FOR DHTN

Tourstmant	TA9	8	TA	100	TA102		
Treatment	S9+	S9-	S9+	S9-	S9+	S9-	
Spontaneous	43.67 ± 5.77	24.33 ± 1.45	178.89 ± 16.10	196.44 ± 25.70	314.78 ± 30.52	273.67 ± 17.69	
DMSO	48.67 ± 16.84	28.11 ± 3.02	142.00 ± 15.76	175.56 ± 6.62	284.11 ± 12.95	246.44 ± 14.79	
Anthramine	1980.89 ± 191.10	:	2202.44 ±258.22		344.00 ± 29.81		
Mitomycin C						952.78 ± 96.27	
2- Nitrofluorene		963.56 ± 60.75					
Sodium azide				597.56 ± 170.09			
DHTN (mg / plate)							
0.0005	27.78 ± 5.55	19.56 ± 4.30	106.11 ± 11.48	88.33 ± 9.68	318.78 ± 13.61	288.11 ± 66.55	
0.005	16.44 ± 14.34	15.00 ± 12.99	115.33 ± 28.20	115.44 ± 20.57	408.89 ± 19.02	293.78 ± 25.82	
0.05	44.44 ± 5.52	29.44 ± 4.35	157.11 ± 33.49	101.00 ± 50.02	434.78 ± 11.71	356.78 ± 7.24	
0.5	18.67 ± 4.00	14.67 ± 3.48	0.00 ± 0.00	52.44 ± 90.84	509.89 ± 34.85	256.44 ± 14.38	
5	0.00 ± 0.00	0.00 ± 0.00					

TABLE II-6: RESULTS OF DOSE SELECTION ASSAYS FOR DAGN

	TA	98	TAI	100	TA102			
Treatment	S9+	S9-	S9+	S9-	S9+	S9-		
Spontaneous	43.67 ± 5.77	24.33 ± 1.45	178.89 ± 16.10	196.44± 25.70	314.78 ± 30.52	273.67 ± 17.69		
DMSO	48.67 ± 16.84	28.11 ± 3.02	142.00 ± 15.76	175.56± 6.62	284.11 ± 12.95	246.44 ± 14.79		
Anthramine	1980.89± 191.10		2202.44±258.22		344.00 ± 29.81			
Mitomycin C						952.78 ± 96.27		
2-Nitrofluorene		963.56± 60.75	•					
Sodium azide				597.56±170.09				
DAGN (mg/plate)								
0.0005	20.89 ± 0.69	21.78 ± 0.84	128.89 ± 15.94	117.22± 11.72	310.56 ± 16.98	245.44 ± 51.09		
0.005	29.33 ± 5.20	18.56 ± 6.26	128.33 ± 12.50	118.89± 8.23	291.33 ± 45.20	249.00 ± 4.67		
0.05	39.00 ± 4.71	20.67 ± 3.84	87.78 ± 17.71	112.00± 7.33	286.44 ± 41.35	254.33 ± 27.65		
0.5	16.67 ± 5.24	24.78 ± 8.70	131.22 ± 28.44	108.56± 1.95	296.89 ± 16.98	257.00 ± 19.86		
5	9.00 ± 12.73	53.50 ± 39.36	0.00 ± 0.00	5.33 ± 9.24	197.44 ± 25.93	138.22 ± 12.06		

TABLE II-7. RESULTS OF DOSE SELECTION ASSAYS FOR NAGN

Treatment	TA	1100	TA	1102
1 reatment	S9+	S9-	S9+	S9-
Spontaneous	202.78 ± 12.33	184.33 ± 5.00	314.78 ± 30.52	273.67 ± 17.69
DMSO	162.44 ± 18.09	161.67 ± 24.67	284.11 ± 12.95	246.44 ± 14.79
Anthramine	898.22 ± 73.24		344.00 ± 29.81	
Mitomycin C				952.78 ± 96.27
Sodium azide		525.33 ± 64.89		
NAGN (mg / plate)				
0.0005	177.56 ± 22.37	141.44 ± 17.02	320.56 ± 44.98	307.11 ± 8.57
0.005	179.22 ± 12.67	187.89 ± 7.83	365.78 ± 72.68	294.22 ± 8.49
0.05	205.11 ± 52.24	157.67 ± 8.54	311.33 ± 38.42	281.33 ± 13.04
0.5	147.11 ± 38.09	125.33 ± 15.07	295.22 ± 18.81	261.33 ± 16.19
5	61.56 ± 3.98	61.78 ± 42.47	110.67 ± 56.20	218.56 ± 326.87

TABLE II-8. RESULTS OF DOSE SELECTION ASSAYS FOR EAN

Treatment		TA9	8			TA	100			TA	102	
1 reatment	S	9+		S9-		S9+ ·		S9-	5	S9+		S9-
Spontaneous	28.67	± 2.65	21.44	±0.69	145.56	±31.89	125.00	±5.78	308.56	± 16.27	311.00	±16.52
DMSO	28.56	± 2.01	18.11	± 4.00	113.89	±24.84	107.00	±24.06	325.89	±20.55	273.00	±9.24
Anthramine	1476.44	± 56.40			310.44	± 58.22			471.33	± 68.31		
Mitomycin C											797.22	±55.06
2-Nitrofluorene			482.1	1 ± 37.83								
Sodium azide							576.44	±81.08				
EAN (mg/plate)												
0.0005	28.44	± 10.36	17.44	± 7.40	107.78	±38.74	104.67	±9.71	261.56	±17.23	170.44	± 13.00
0.005	31.11	± 14.55	22.00	± 4.10	309.44	±25.67	211.33	±11.02	95.22	±22.07	112:33	±4.93
0.05	76.89	± 12.19	18.56	± 2.36	352.44	±33.61	227.33	± 10.17	104.33	±8.14	112.67	±14.11
0.5	47.56	± 5.87	22.78	± 7.65	325.67	± 5.93	212.11	± 14.34	93.78	±26.88	101.56	±4.34
5	74.56	± 8.07	19.67	±3.38	349.89	± 16.55	252.11	±34.58	85.89	±32.24	94.11	± 15.64

TABLE II-9: RESULTS OF DOSE SELECTION ASSAYS FOR HDN

Treatment	TA	100	TA	102
1 reatment	S9+	S9-	S9+	S9-
Spontaneous	118.89 ± 37.54	116.56 ± 13.80	319.33 ± 33.53	251.33 ± 45.21
DMSO	159.11 ± 26.46	89.78 ± 20.46	298.44 ± 19.47	207.89 ± 22.31
Anthramine	539.33 ± 51.52		562.00 ± 21.50	
Mitomycin C				1095.67 ± 22.98
Sodium azide		364.67 ± 19.70		
HDN (mg/plate)				
0.0005	78.78 ± 6.94	91.22 ± 24.44	304.78 ± 52.86	237.78 ± 13.83
0.005	84.78 ± 36.85	85.33 ± 13.12	237.00 ± 53.70	232.78 ± 23.17
0.05	57.11 ± 20.77	134.33 ± 23.09	280.00 ± 26.10	276.67 ± 32.22
0.5	65.67 ± 13.62	77.44 ± 31.45	272.89 ± 16.69	237.78 ± 19.03
5	78.22 ± 17.72	83.22 ± 22.61	280.89 ± 64.36	270.56 ± 13.67

TABLE II-10: RESULTS OF DOSE SELECTION ASSAYS FOR MAN

	TA	100	TA	102
Treatment	S9+	S9-	S9+	S9-
Spontaneous	120.89 ± 39.90	116.56 ± 13.80	319.33 ± 33.53	240.22 ± 41.00
DMSO	159.11 ± 26.46	89.78 ± 20.46	298.44 ± 19.47	207.89 ± 22.31
Anthramine	539.33 ± 51.52		562.00 ± 21.50	
Mitomycin C				1095.67 ± 22.98
Sodium azide		364.67 ± 19.70		
MAN (mg / plate)				
0.0005	50.56 ± 12.40	116.33 ± 18.41	233.00 ± 19.20	198.78 ± 11.03
0.005	97.78 ± 20.00	120.78 ± 21.49	237.00 ± 26.03	176.56 ± 11.13
0.05	91.78 ± 24.76	96.67 ± 30.55	226.78 ± 28.17	194.78 ± 30.16
0.5	127.67 ± 42.85	78.56 ± 8.49	217.11 ± 24.07	166.89 ± 24.05
5	7.89 ± 13.66	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00

TABLE II-11: RESULTS OF DOSE SELECTION ASSAYS FOR TN

Treatment	TA	100	TA	102
reatment	S9+	S9-	S9+	S9-
Spontaneous	174.56 ± 28.25	160.33 ± 22.88	348.00 ± 11.50	287.78 ± 37.45
DMSO	150.89 ± 16.98	140.89 ± 8.57	254.22 ± 46.50	316.33 ± 38.48
Anthramine	1148.33 ± 201.68		430.67 ± 26.26	
Mitomycin C				985.22 ± 35.79
Sodium azide		670.00 ± 124.38		
TN (mg / plate)	·			
0.0005	125.67 ± 4.26	155.78 ± 30.68	409.00 ± 11.85	343.33 ± 38.68
0.005	166.89 ± 2.80	172.33 ± 10.26	381.33 ± 42.61	379.67 ± 34.40
0.05	175.56 ± 16.20	159.78 ± 3.47	379.22 ± 40.82	313.00 ± 12.90
0.5	140.22 ± 24.09	158.89 ± 13.38	416.56 ± 9.71	341.22 ± 27.68
5	93.44 ± 9.31	15.22 ± 20.35	283.67 ± 54.62	64.00 ± 17.94

TABLE II-12. RESULTS OF DOSE SELECTION ASSAYS FOR ATN

Transferrent	TA	100	TA	102
Treatment	S9+	S9-	S9+	S9-
Spontaneous	174.56 ± 28.25	160.33 ± 22.88	348.00 ± 11.50	287.78 ± 37.45
DMSO	150.89 ± 16.98	140.89 ± 8.57	254.22 ± 46.50	316.33 ± 38.48
Anthramine	1148.33 ± 201.68		430.67 ± 26.26	
Mitomycin C				985.22 ± 35.79
Sodium azide		670.00 ± 124.38		
ATN (mg / plate)				
0.0005	149.00 ± 15.53	172.67 ± 10.17	342.00 ± 27.02	344.22 ± 35.30
0.005	141.67 ± 24.29	173.67 ± 15.41	387.89 ± 39.17	348.33 ± 9.33
0.05	176.89 ± 14.72	150.44 ± 8.92	377.33 ± 26.41	337.00 ± 15.31
0.5	143.56 ± 13.59	158.89 ± 17.83	392.56 ± 22.62	324.22 ± 33.97
5	95.00 ± 22.21	116.78 ± 143.52	373.89 ± 35.19	252.33 ± 73.96

TABLE II-13. RESULTS OF DOSE SELECTION ASSAYS FOR DMTN

TD	TA	100	TA	102
Treatment	S9+	S9-	S9+	S9-
Spontaneous	145.56 ± 31.89	125.00 ± 5.78	308.56 ± 16.27	311.00 ± 16.52
DMSO	113.89 ± 24.84	107.00 ± 24.06	325.89 ± 20.55	273.00 ± 9.24
Anthramine	310.44 ± 58.22		471.33 ± 68.31	
Mitomycin C				797.22 ± 55.06
Sodium azide	(576.44 ± 81.08		
DMTN (mg / plate)				
0.0005	136.11 ± 87.81	92.33 ± 30.66	321.56 ± 18.63	206.00 ± 16.17
0.005	76.67 ± 2.03	108.44 ± 16.51	275.89 ± 28.57	232.44 ± 23.26
0.05	98.78 ± 12.36	112.89 ± 0.84	247.44 ± 24.65	222.56 ± 16.82
0.5	119.22 ± 50.80	88.00 ± 18.28	316.22 ± 11.33	243.00 ± 31.18
5	97.22 ± 25.38	0.00 ± 0.00	407.56 ± 8.85	307.44 ± 23.00

Mutagenicity Assay

The results of mutagenicity assay with five tester strains (TA98, TA100, TA102, TA1535, and TA1537) are summarized in Tables II-14 through II-23. The data are expressed as the average revertant number per plate from the triplicates. The results indicate that compared to the solvent control, HZN, DHTN, HDN, MAN, and DMTN increased revertant mutant numbers either at three, four or five concentrations.

HZN

HZN was tested from 0.03-3.0 mg/plate. At 3 mg/plate, toxicity was observed in TA98, TA100 and TA1537 with and without S9 system and in the case of TA102 and TA1535 without S9 activation system. Surprisingly, 1 mg/plate was toxic to all five strains without S9 activation system. HZN increased the mutant revertants in TA1535 in a dose-dependent manner with 2.0-5.0 fold induction in the presence of S9 activation system when compared to the DMSO control (p<0.01). HZN also increased the revertants in TA102 at concentrations of 0.1-1.0 mg/plate with S9 activation system (p<0.05). At 3 mg/plate, a slight decrease in revertant numbers was observed, probably because HZN was slightly toxic at this concentration. In addition, HZN revealed a toxic-related dose response in TA1535 in the absence of S9 activation system (Table II-14 and Figures II-1 and II-2).

DHTN

DHTN was tested at 0.03-3.0 mg/plate, and toxicity was observed at 1 and 3 mg/plate for all tester strains except TA102 with S9 system. DHTN increased the mutant revertants in four tester strains (TA98, TA100, TA102 and TA1535) with and without S9 activation system at concentrations of 0.03-0.3 mg/plate by 2.0-4.0 fold and 1.5-2.0 fold, respectively (p<0.05) (Table II-15 and Figures II-3 and II-4).

HDN

HDN was tested at 0.1-5.0 mg/plate in all five strains; there was no toxicity in any of the concentrations tested. HDN showed a moderate but statistically significant increase of mutant revertants in tester strain TA102 at 3 and 5 mg/plate in the presence of S9 and 5 mg/plate in the absence of S9 (p<0.05). However, the increase in revertant numbers did not reach the two fold induction criteria for this assay and is rated as a weak mutagen (Table II-16).

MAN

MAN was tested at 0.03-3.0 mg/plate, toxicity was observed at 3 mg/plate for tester strains TA98, TA102, TA1535 and TA1537 and there was no demonstrated induction of mutation. For tester strain TA100, there was toxicity in the absence of S9 system but not in the presence of S9 system at a concentration of 3 mg/plate. In the presence and absence of S9 system, there was a

highly significant increase of the mutant revertant numbers (non dose-dependent) at 0.03-3.0 mg/plate and 0.03-1.0 mg/plate by 4.4-4.6 fold and 3.3-4.5 fold, respectively (p<0.01) (Table II-17 and Figure II-5).

DMTN

DMTN was tested at 0.03-3.0 mg/plate; there was no toxicity at all concentrations tested. DMTN increased the mutant revertants at 0.03-3.0 mg/plate in TA102 in both with and without S9 system. The increase in revertant numbers compared to solvent control was 1.3-1.4 and 1.4-1.6 fold, respectively. Although the increase did not reach the criteria for this assay (see above for HDN), it was still statistically significant (p<0.05) and therefore DMTN can also be considered as a weak mutagen (Table II-18).

DAGN

DAGN was tested at 0.03-3.0 mg/plate for tester strains TA100, TA102 and TA1535, 0.1-5.0 mg/plate for TA98 and TA1537. There was toxicity at 3 mg/plate in TA100 and TA1535 without S9 system. Similarly, at 5 mg/plate, DAGN was toxic for TA98 without S9 system. There was no increase in mutant revertant numbers at any of the tested concentrations in all five strains (Table II-19).

NAGN

NAGN was tested at 0.03-3.0 mg/plate. Toxicity was seen at 3 mg/plate in TA100, TA102 and TA1535 without S9 system. The mutant revertant numbers were increased at 3 mg/plate in TA98 without S9 system. Since only one dose induced the mutation frequency, NAGN is classified as non mutagenic (Table II-20).

EAN

EAN was tested at 0.1-5.0 mg/plate. There was slight toxicity at 5 mg/plate for TA98 and TA100 with and without S9 system, and no mutagenicity observed at all tested concentrations in all five tester strains (Table II-21).

TN

TN was tested at 0.1-5.0 mg/plate. TN demonstrated toxicity at concentrations of 5 mg/plate for all tester strains in both with and without S9 system. At a concentration of 3 mg/plate, TN was toxic to all five strains without S9 system, and there was no increase in revertant numbers (Table II-22).

ATN

ATN was tested at concentrations of 0.1-5.0 mg/plate. At 5 mg/plate, toxicity was found in TA98 and TA1537 without S9 system; however, an increased number of revertants were observed with S9 system. In TA100, TA102, TA1535, and TA1537, ATN demonstrated toxicity in both systems at 5 mg/plate. At a concentration of 3 mg/plate, ATN was toxic to TA102 with S9 system and TA1535 without S9 system. A slight increase in the number of revertants was noticed in TA98 and TA1535 with S9 system and TA102 without S9 system. However, the induction of revertants did not show any dose response pattern or statistical significance (p>0.05) (Table II-23).

DEHN

Due to the limited amount of chemical, only dose selection assay was performed for DEHN using three tester strains, TA98, TA100 and TA102. The data showed that DEHN was slightly toxic in TA100 at a dose of 0.5 and 5 mg/plate (Table II-3).

The experimental summary of 11 high energy chemicals is presented in Table II-24 (please note that there is no mutagenicity data for DEHN).

TABLE II-14: MUTAGENICITY ASSAY RESULTS OF HZN

Treetment	T	TA98	TA	TA100	TA	TA102	TA1535	515	T	TA 1827
	+6S	-6S	+6S	-68	+6S	-6%	+68	89-	+65	20
Spontaneous	21.89 ± 3.15	17.56 ± 0.51	113.67 ± 19	90.78 ± 10.94	.34 90.78 ± 10.94 188.33 ± 24.58	165.8	8.00 ± 2.03	16.67 ± 2.33	10.89 ± 2.17	6.78 ± 1.71
DMSO	21.11 ± 1.39	19.78 ± 5.19	19.78 ± 5.19 102.33 ± 9.94 114.00 ± 5.33 262.22 ± 8.03	114.00± 5.33	262.22 ± 8.03	233.67 ± 7.21	13.22 ± 2.27	12.00 ± 1.73	11.78 ± 1.26	8.89 ± 0.96
Anthramine	819.33 ± 31.15		1160.89±122.88		650.89 ± 105.51		182.11 ± 11.74		206.44 ± 3.20	
Aminoacridine										128.89 ± 13.93
Mitomycin C						1313.11 ± 5.80				
2-Nitrofluorene	-	380.00 ± 29.02								5
Sodium azide	:			497.33±121.10				475.11 ± 24.05		
HZN (mg) (mM)										
0.03 0.32	27.33 ± 6.84		125.33 ± 17.93	102.67± 8.35	20.33 ± 5.77 125.33 ± 17.93 102.67± 8.35 255.44± 15.54 210.00 ± 14.15 28.78 ± 2.69	210.00 ± 14.15	28.78 ± 2.69	16.89 ± 3.67	8.67 ± 1.76	8.89 ± 1.26
0.1	26.00 ± 6.43		15.56 ± 3.36 124.22 ± 12.20 104.33 ± 5.21		289.89 ± 17.26 210.67 ± 11.55 45.11 ± 4.11	210.67 ± 11.55	45.11 ± 4.11	16.11 ± 3.34	9.56 ± 2.78	7.89 ± 3.02
0.3 3	27.67 ± 1.53	8.33 ± 2.33	8.33 ± 2.33 132.56 ± 8.77 118.78 ± 12.21 323.89 ± 1.84	118.78± 12.21	323.89± 1.84	248.78 ±24.41 60.22 ± 5.55	60.22 ± 5.55	12.00 ± 2.65	8.44 ± 2.22	6.89 ± 0.84
01	20.67 ± 4.33	0.00 ± 0.00	136.56 ± 4.67	0.00 ± 0.00	0.00 347.11 ± 28.97	0.00 ± 0.00	± 0.00 76.67 ± 19.35	2.67 ± 1.15	11.56 ± 2.22	0.00 ± 0.00
3 30	8.78 ± 1.07	0.00 ± 0.00	46.78 ± 3.56	0.00 ± 0.00	0.00 ± 0.00 206.67 \pm 26.35	0.00 ± 0.00 40.33 ± 8.45		0.00 ± 0.00	6.11 ± 1.84	0.00 ± 0.00

Figure II-1: Mutant Revertants Induced by HZN in TA1535 with and without S9 Activation System

Figure II-2: Mutant Revertants Induced by HZN in TA102 with S9 Activation System

TABLE 11-15: MUTAGENICITY ASSAY RESULTS OF DHTN

Treatment	TA98	86	TA100	00	TA102	102	TAIST	535	TAI	TA1627
	+6S	S9-	+6S	-6S	±6S	-6S	+65	95	103	00
Spontaneous	27.67 ± 13.17	33.44 ± 11.41	147.22	\pm 19.79 154.11 \pm 9.65 343.78 \pm 18.96 252.56 \pm 53.53	343.78 ± 18.96	252.56 ± 53.53	12.3	11.56 ± 7.90	= 3	12.22
DMSO	31.78 ± 10.46	31.78 ± 10.46 25.33 ± 4.04	132.11 ± 7.50	7.50 116.11 ± 17.48 277.22 ± 53.93 236.78 ± 21.99	277.22 ± 53.93	236.78 ± 21.99	8.89 ± 1.50		10.78 ± 3.86 16.00 ± 4.26	3.36 ± 3.36
Anthramine	1090.56 ± 155.50		1780.00 ± 229.90		619.78 ± 69.65		193.22 ± 25.60		325.78 ± 17.83	
Amiŋoacridine										164.33 ± 53.26
Mitomycin C						905.89 ± 69.28				;
2-Nitrofluorene		484.67 ± 21.30								2
Sodium azide	:			702.67 ± 38.28				530.22 ± 7.89		
DHTN (mg) (mM)										
0.03 0.15	66.56 ± 7.90	52.44 ± 11.18 251.11 ±		252.33 ± 20.58	425.44 ± 54.72	425.22 ± 26.10	41.96 252.33 ± 20.58 425.44 ± 54.72 425.22 ± 26.10 18.56 ± 5.82	17.67 ± 3.93	17.67 ± 3.93 13.78 ± 1.71	12.00 ± 3.84
0.1 0.5	52.89 ± 5.52	69.33 ± 3.84 447.33 ±		401.89 ± 84.96	517.56 ± 35.83	436.56 ± 22.04	82.67 401.89 ± 84.96 517.56 ± 35.83 436.56 ± 22.04 28.78 ± 11.46	21.78 ± 6.52	21.78 ± 6.52 13.67 ± 0.67	13.11 ± 4.17
0.3 1.5	51.78 ± 15.87	46.78 ± 4.34	488.78 ± 78.53	212.11 ± 39.12	495.22 ± 21.55	421.67 ± 41.06	78.53 212.11 ± 39.12 495.22 ± 21.55 421.67 ± 41.06 43.56 ± 4.95	8.33 ± 3.48	±3.48 13.67 ± 4.81	8.11 ± 1.64
1 5	15.56 ± 13.73	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	± 0.00 427.67 ± 12.86	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	± 0.00 15.22 ± 4.48	0.00 ± 0.00
3 15	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00

Figure II-3: Mutant Revertants Induced by DHTN in TA102 with and without S9 Activation System

Figure II-4: Mutant Revertants Induced by DHTN in TA1535 with and without S9 Activation System

TABLE II-16: MUTAGENICITY ASSAY RESULTS OF HDN

Treatment	TA98	88	TA100	00	TA102	102	TAI	TA1535	TA	TA1537
	+6S	-6S	+6S	-6S	+6S	S9-	\$65	S9-	+6S	-6S
Spontaneous	58.56 ± 9.89	43.78 ± 2.14	43.78 ± 2.14 153.00 ± 18.48 162.22 ± 10.08 356.78 ± 47.00	162.22 ± 10.08	356.78 ± 47.00	273.22 ± 24.62	13.22 ± 1.02	16.33 ± 1.67	10.33 ± 1.15	13.78 ± 4.17
DMSO (54.89 ± 8.04	54.89 ± 8.04 38.33 ± 3.76 140.44 ± 34	140.44 ± 34.00	156.89 ± 13.81	301.11 ± 24.69	$1.00 156.89 \pm 13.81 301.11 \pm 24.69 260.33 \pm 24.95 14.00 \pm 1.20 16.11 \pm 3.79$	14.00 ± 1.20	16.11 ± 3.79	12.56 ± 5.05	13.33 ± 2.08
Anthramine	1293.89 ± 299.46		1414.00 ± 169.75		550.11 ± 83.05		126.44 ± 8.13		104.67 ± 3.48	
Aminoacridine										109.00 ± 45.71
Mitomycin C						1112.11 ± 28.47				.5
2-Nitrofluorene	:	473.89 ± 23.82		·					_	ı
Sodium azide				654.33 ± 27.50				595.44 ± 32.36		
HDN (mg)										
0.1 0.42	0.42 50.56 ± 3.67	39.44 ± 6.19 155.33 ±	3.28	143.33 ± 10.48	340.78 ± 11.80	143.33 ± 10.48 340.78 ± 11.80 269.00 ± 43.18	17.89 ± 3.40	17.89 ± 3.40 15.67 ± 4.91	14.78 ± 6.19	10.89 ± 0.69
0.3 1.2	1.2 50.78 ± 8.32		35.33 ± 4.93 152.56 ± 19.25 151.78 ± 10.87 330.44 ± 63.84 290.56 ± 16.55 16.11 ± 6.54	151.78 ± 10.87	330.44 ± 63.84	290.56 ± 16.55	16.11 ± 6.54	14.22 ± 1.07	13.11 ± 5.17	11.89 ± 3.42
1 4.2	39.44 ± 5.17	34.33 ± 2.60	34.33 ± 2.60 151.22 ± 12.51 150.89 ± 11.67 321.44 ± 49.38 258.56 ± 16.84	150.89 ± 11.67	321.44 ± 49.38	258.56 ± 16.84	15.33 ± 0.33	12.78 ± 6.19	14.67 ± 4.51	10.44 ± 1.26
3 12.6	41.67 ± 4.16	45.11 ± 7.62	41.67 ± 4.16 45.11 ± 7.62 162.44 ± 15.33 162.22 ± 7.46 384.44 ± 16.58 267.33 ± 4.16	162.22 ± 7.46	384.44 ± 16.58	267.33 ± 4.16	9.22 ± 1.02	14.22 ± 1.84	14.33 ± 0.33	12.78 ± 4.53
5 21		36.33 ± 2.40	42.56 ± 6.50 36.33 ± 2.40 170.56 ± 14.38 161.00 ± 8.51 501.33 ± 12.55 398.00 ± 19.94 15.44 ± 4.35	161.00 ± 8.51	501.33 ± 12.55	398.00 ± 19.94	15.44 ± 4.35	12.67 ± 3.71	17.56 ± 2.41	9.00 ≠ 0.88

TABLE II-17: MUTAGENICITY ASSAY RESULTS OF MAN

Treetment		TA98	TA100	100	TA102	10.2	TA 1525	515	T. 1. 1. 2. 7. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	537
	+6S	-6S	+6S	-6S	+6S	-6%	- to	.00	+63	537
Spontaneous	18 38.11 ± 1.84	84 31.11 ± 2.99		107.11 ±12.76 159.78 ±38.72 323.44 ± 21.18	323.44 ± 21.18	318.89 ± 10.99	15.33 ± 6.17	11.67	14.2	14.22 ± 3.24
DMSO ,	38.22 ± 10	38.22 ± 10.69 31.44 ± 8.44 275.56 ± 33.76 241.78 ± 39.08 285.44 ± 29.25 246.67 ± 19.64	275.56 ± 33.76	241.78 ± 39.08	285.44 ± 29.25	246.67 ± 19.64	9.44 ± 1.17	11.00 ± 4.26	14.67 ± 5.29	10.56 ± 2.67
Anthramine	98.44 ± 140.99	66.0	1260.00 ± 90.99		389.22 ± 19.62		105.00 ± 23.41		147.67 ± 18.50	
Aminoacridine	line									136.67 ± 43.92
Mitomycin C	v					926.11 ± 61.48				
2-Nitrofluorene	rene	347.33 ± 20.22							-	2
Sodium azide	de			944.33 ± 54.25				579.78 ± 47.89		
MAN (mg) (m	(Mm)									
0.03 0.2	0.27 35.11 ± 7.76		32.00 ± 4.04 1279.89 ± 43.66 1047.78 ± 89.30 294.00 ± 91.00 269.00 ± 42.15 14.56 ± 2.12	1047.78 ± 89.30	294.00 ± 91.00	269.00 ± 42.15	14.56 ± 2.12	9.56 ± 1.92	11.56 ± 4.07	8.89 ± 2.67
0.1 0	0.9 50.22 ± 12.22		42.78 ± 5.23 1226.22 ± 54.18 1047.56 ± 93.08 341.89 ± 3.56 249.00 ± 17.44 10.22 ± 2.71	1047.56 ± 93.08	341.89 ± 3.56	249.00 ± 17.44	10.22 ± 2.71	7.33 ± 2.19	12.00 ± 1.00	10.56 ± 5.50
0.3 2	2.7 26.67 ± 5.	5.49 29.78 ± 2.27	29.78 ± 2.27 1249.44 ± 23.57 1087.67 ± 33.71 314.00 ± 21.11 286.33 ± 15.18 13.44 ± 7.49	1087.67 ± 33.71	314.00 ± 21.11	286.33 ± 15.18	13.44 ± 7.49	13.56 ± 4.35	10.33 ± 2.85	10.44 ± 3.56
_	9 28.33 ± 3.79		24.22 ± 3.24 1278.78 ± 23.87 797.44 ± 32.15 268.89 ± 12.54 204.89 ± 26.70 22.78 ± 11.67	797.44 ± 32.15	268.89 ± 12.54	204.89 ± 26.70	22.78 ± 11.67	20.00 ± 6.23	6.33 ± 3.06	5.00 ± 4.84
3	27 2.67 ± 2.67		$0.00 \pm 0.00 1213.33 \pm 15.70 32.67 \pm 29.42 0.00 \pm 0.00$	32.67 ± 29.42	0.00 ± 0.00	0.00 ± 0.00	6.00 ± 3.76	0.00 ± 0.00	1.56 ± 1.39	2.11 ± 3.66

Figure II-5: Mutant Revertants Induced by MAN in TA100 with and without S9 Activation System

TABLE II-18: MUTAGENICITY ASSAY RESULTS OF DMTN

Treatment	TA	TA98	TA100	00	TA102	102	TA1535	535	TA	TA1537
	+6S	-6S	+6S	-6S	±6S	-6S	+6S	-88	+68	-65
Spontaneous	31.56 ± 0.96	32.00 ± 2.08	153.00 ± 18.48	162.22 ± 10.08	162.22 ± 10.08 220.67 ± 16.38 189.33 ± 15.68	24	7.24	14.22 ± 1.07	8.33	10.33 ± 1.86
DMSO ,	16.78 ± 1.71	22.11 ± 0.84	36.78 ± 1.71 22.11 ± 0.84 140.44 ± 34.00 156.89 ± 13.81 268.78 ± 30.93 197.11 ± 36.72 16.67 ± 4.62	156.89 ± 13.81	268.78 ± 30.93	197.11 ± 36.72	16.67 ± 4.62	11.33 ± 2.33	11.89 ± 1.58	8.67 ± 2.33
Anthramine	88.00 ± 77.66		1414.00 ± 169.75		273.89 ± 20.60		104.56 ± 28.59		76.78 ± 25.71	
Aminoacridine	e)									107.33 ± 32.52
Mitomycin C						895.00 ± 58.86				0
2-Nitrofluorene	: 2	586.67 ± 66.73							<u>-</u>	5
Sodium azide				654.33 ± 27.50				188.67 ± 20.33		
DMTN (mg) (mM)										
0.03 0.22		10.00 ± 9.26 37.44 ± 6.84	149.11 ±	164.00 ± 9.50	3.15 164.00 ± 9.50 348.56 ± 60.63 308.00 ± 6.33	308.00 ± 6.33	20.56 ± 8.00	15.44 ± 3.56 15.67 ±	15.67 ± 8.33	11.44 ± 3.34
0.1 0.7	15.67 ± 7.69	46.78 ± 4.67	171.44 ± 10.03 151.33 ± 15.28 356.33 ± 24.67 284.78 ± 25.93 14.33 ± 3.93	151.33 ± 15.28	356.33 ± 24.67	284.78 ± 25.93	14.33 ± 3.93	13.00 ± 1.76	13.00 ± 1.76 11.67 ± 5.33	10.33 ± 1.53
0.3 2.2	11.22 ± 2.67	43.00 ± 5.78	$168.44 \pm 13.50 155.22 \pm 9.70 354.11 \pm 24.35 291.56 \pm 4.03$	155.22 ± 9.70	354.11 ± 24.35	291.56 ± 4.03	11.44 ± 3.98	13.11 ± 3.37	± 3.37 10.00 ± 1.20	11.44 ± 3.36
1 7	13.67 ± 5.20	50.22 ± 6.08	152.56 ± 7	157.22 ± 15.72	349.78 ± 57.58	.24 157.22 ± 15.72 349.78 ± 57.58 294.33 ± 24.44 16.22 ± 4.74	16.22 ± 4.74	11.11 ± 1.26	8.22 ± 0.96	10.22 ± 0.38
3 22	11.44 ± 4.67	11.44 ± 4.67 39.67 ± 5.24 193.44 ± 1	193.44 ± 10.51	109.00 ± 4.91	381.33 ± 52.85	0.51 $ 109.00 \pm 4.91 $ $ 381.33 \pm 52.85 $ $ 332.33 \pm 19.34 $ $ 11.00 \pm 3.93 $	11.00 ± 3.93	9.67 ± 3.53	8.44 ± 2.22	8.89 ± 1.39

TABLE II-19: MUTAGENICITY ASSAY RESULTS OF DAGN

Spontaneous			1.A98	æ	4	TA100	001	TA102	02	TA1535	135	TA1537	537
Spontaneou		¥68		-6S		+6S	-6S	+6S	-6S	+6S	-6S	+6S	-68
		54.33 ±	3.84	48.89 ± 4.55		200.33 ± 28.00	155.56 ± 8.77	220.78 ± 25.48	255.11 ± 28.01	22.11 ± 10.36	24.44 ± 5.42	18.33	11.22 ± 4.25
DMSO ,	53	∓ 00:	10.04	53.00 ± 10.04 38.89 ± 2.78 162.78 ±	162		11.65 146.89 ± 25.50 322.56 ± 44.89 239.22 ± 16.23 16.78 ± 1.84 20.33 ± 4.63 17.67 ±	322.56 ± 44.89	239.22 ± 16.23	16.78 ± 1.84	20.33 ± 4.63	17.67 ± 5.51	15.44 ± 3.53
Anthramine		7.00 ±	1547.00 ± 197.56		1832	1832.22 ± 153.61		414.33 ± 47.71		178.44 ± 18.47		196.33 ± 45.00	
Aminoacridine	fine												210.67 ± 16.09
Mitomycin C	ပ		:						716.56 ± 99.55				7
2-Nitrofluorene	rene			782.44 ± 43.87	87							-	2
Sodium azide	de						639.78 ± 55.23				493.78 ± 9.35		
DAGN (mg) (m	(mM)							•					
0.03 0	0.2				179	179.33 ± 35.18	35.18 191.89 ± 33.13 168.33 ± 72.28 236.78 ± 47.23 11.22 ± 0.96 15.22 ± 1.84	168.33 ± 72.28	236.78 ± 47.23	11.22 ± 0.96	15.22 ± 1.84		
0.1 0.	0.54 58	58.33 ±	10.99	± 10.99 37.67 ± 9.71	71 118.22	#	31.48 163.78 ± 19.68 305.67 ± 105.69 285.33 ± 29.14 16.89 ± 4.48 14.11 ± 4.44 13.67 ±	305.67 ± 105.69	285.33 ± 29.14	16.89 ± 4.48	14.11 ± 4.44	13.67 ± 4.04	12.00 ± 4.58
0.3 2	2.0 61	61.11 ±	5.75	32.00 ± 6.57	57 116.33	#	26.69 179.56 ± 30.65 333.89 ± 27.36 235.22 ± 63.27 14.56 ± 1.95 15.00 ± 0.00 12.00 ±	333.89 ± 27.36	235.22 ± 63.27	14.56 ± 1.95	15.00 ± 0.00	12.00 ± 4.33	8.11 ± 2.50
1 5	5.4 44	≠ 19.	14.44	44.67 ± 14.44 46.56 ± 12.69 94.33	69 94.	± 5.61	148.89 ± 29.19	148.89 ± 29.19 312.22 ± 32.27 296.00 ± 13.68 16.22 ± 4.55 17.00 ± 0.67	296.00 ± 13.68	16.22 ± 4.55	17.00 ± 0.67	8.44 ± 0.84	8.67 ± 2.33
£ .	20 35	# =	35.11 ± 4.00	31.00 ± 4.36 125.11 ±	125	.11 ± 23.06	85.00 ± 102.50 267.56 ±	8.69	197.11 ± 28.77 20.89 ± 6.77	20.89 ± 6.77	1.22 ± 2.12	±2.12 15.78 ± 6.83	8.22 ± 2.27
5 3	32 28	28.11 ±	± 3.75	25.67 ± 0.58	80							5.44 ± 0.51	0.00 ± 0.00

TABLE II-20: MUTAGENICITY ASSAY RESULTS OF NAGN

Treatment	T/	TA98	TA100	00	TA	TA102	TA1535	515	TA1627	537
	+6S	-6S	+6S	-68	+6S	-6S	±68	80.	+0%	-02
Spontaneous	10.78 ± 2.83	32.67 ± 2.91	133.00 ± 14.88	140.67 ± 8.97	23.43	19.15	15.00 ± 3.53	12.67 ± 2.19	13.0	8.67 ± 1.20
DMSO '	10.44 ± 10.34	10.44 ± 10.34 24.00 ± 5.24	136.56 ± 10.82	133.22 ± 3.67	316.22 ± 29.76	133.22 ± 3.67 316.22 ± 29.76 267.67 ± 32.26 12.56 ± 4.44		14.44 ± 1.35	9.11 ± 2.04	12.44 ± 1.54
Anthramine	1)21.33 ± 96.74		1751.67 ± 194.01		324.22 ± 39.17		126.00 ± 17.64		133.44 ± 25.93	
Aminoacridine	0									151.11 ± 42.59
Mitomycin C						1052.67 ± 52.34				
2-Nitrofluorene	: -	593.56±103.26							-	5
Sodium azide				786.44 ± 31.64				746.67 ± 11.33		
NAGN (mg) (mM)										
0.03 0.16		38.00 ± 4.58 24.00 ± 5.77	147.67 ± 6.56	142.33 ± 11.15	312.78 ± 22.79	6.56 142.33 ± 11.15 312.78 ± 22.79 277.00 ± 10.97 11.78 ± 2.67	11.78 ± 2.67	12.11 ± 5.19	7.56 ± 2.69	12.67 ± 1.33
0.1 0.5		32.89 ± 5.74 20.11 ± 4.79	140.56 ± 8.39	141.56 ± 1.26	315.33 ± 15.18	141.56 ± 1.26 315.33 ± 15.18 269.22 ± 14.73	13.00 ± 3.18	9.44 ± 2.50	10.89 ± 0.51	11.22 ± 2.91
0.3 1.6		33.67 ± 6.39 30.33 ± 8.02	137.89 ± 6.91	147.00 ± 18.67	317.33 ± 23.95	147.00 ± 18.67 317.33 ± 23.95 275.56 ± 20.38	12.67 ± 5.81	16.67 ± 6.98	16.44 ± 7.86	12.78 ± 3.17
1 5.4		32.00 ± 5.36 25.67 ± 3.53	127.11 ± 10.36 108.11 ± 9.64 319.11 ± 5.74	108.11 ± 9.64	319.11 ± 5.74	250.33 ± 29.02 12.44 ± 5.40	12.44 ± 5.40	11.67 ± 4.63	11.56 ± 4.43	10.67 ± 1.20
3 16		29.22 ± 9.45 175.33 ± 97.06 126.11 ± 17	126.11 ± 17.99	35.44 ± 40.54	.99 35.44 ±40.54 299.78 ± 15.49 94.22	94.22 ± 20.67	± 20.67 14.89 ± 8.47	0.00 ± 0.00	7.67 ± 4.33	6.33 ± 1.53

TABLE II-21: MUTAGENICITY ASSAY RESULTS OF EAN

	17	TA98	TA100	100	TA102	102	TA1525	535	TA 1527	537
1 Lext ment	+6S	-88-	+6S	-68	±6S	-6S	+6S	-6S	+6S	-68
Spontaneous	22.78 ± 3.66	21.33 ± 6.03	121.22 ± 20.24 127.22 ± 4.72			19.55	18.78 ± 5.98	21.78 ± 7.38	12.89 ± 1.26	8.89 ± 2.83
DMSO °	25.44 ± 2.99	25.56 ± 4.44 106.89 ± 7.32	106.89 ± 7.32	105.22 ± 13.57	231.11 ± 36.22	105.22 ± 13.57 231.11 ± 36.22 250.67 ± 32.36 15.67 ± 2.91	15.67 ± 2.91	14.33 ± 4.18	9.00 ± 0.33	8.67 ± 3.28
Anthramine	135.33 ± 77.95		836.00 ± 47.76		492.78 ± 19.35		166.22 ± 26.27		180.33 ± 34.18	
Aminoacridine	Đ									183.22 ± 40.47
Mitomycin C						918.22 ± 23.35				
2-Nitrofluorene	:	502.33 ± 37.47			·				-	ş
Sodium azide				470.11 ± 53.50				463.33 ± 13.74		
EAN (mg) (mM)										
0.1 0.8	26.33 ± 2.60	26.33 ± 2.60 16.00 ± 4.04 124.89 ± 19.27 121.56 ± 10.65 272.56 ± 20.06 235.22 ± 39.58 23.44 ± 5.21	124.89 ± 19.27	121.56 ± 10.65	272.56 ± 20.06	235.22 ± 39.58	23.44 ± 5.21	17.33 ± 5.84	13.00 ± 2.91	10.33 ± 2.33
0.3 2.4	32.00 ± 7.51	21.44 ± 1.84	123.78 ± 12.19	115.11 ± 12.62	264.00 ± 8.89	123.78 ± 12.19 115.11 ± 12.62 264.00 ± 8.89 228.33 ± 40.78	24.44 ± 3.98	14.78 ± 3.02	9.22 ± 2.14	11.67 ± 7.02
* -	32.11 ± 1.17	24.78 ± 4.74 115.89 ± 7.3	115.89 ± 7.38	120.67 ± 6.81	286.00 ± 9.24	88 120.67 ± 6.81 286.00 ± 9.24 220.89 ± 23.57 16.22 ± 3.34	16.22 ± 3.34	12.11 ± 2.55	9.00 ± 2.60	10.89 ± 0.77
3 24	27.11 ± 7.60	18.33 ± 3.06	117.67 ± 14.26 100.44 ± 8.34	100.44 ± 8.34	215.00 ± 9.77	215.00 ± 9.77 187.89 ± 17.39 22.22 ± 8.28		17.56 ± 4.29	9.67 ± 1.86	6.78 ± 0.51
5 40	22.22 ± 5.58	16.56 ± 0.77 105.56 ± 6.0	105.56 ± 6.62	91.89 ± 11.48	278.67 ± 53.13	52 91.89 ± 11.48 278.67 ± 53.13 233.22 ± 33.10 23.56 ± 10.49 17.00 ± 7.94 12.89 ± 1.84	23.56 ± 10.49	17.00 ± 7.94	12.89 ± 1.84	8.78 ± 2.50

TABLE II-22: MUTAGENICITY ASSAY RESULTS OF TN

Treatment	TA98	86	TA100	20	TA	TA102	TAI	TA1535	TA1537	537
	+6S	-6S	+6S	-68	+6S	-6S	+6S	.65	+65	-68
Spontaneous	44.67 ± 3.06	32.56 ± 4.02	156.44 ± 10.73	164.11 ± 5.68	73 164.11 ± 5.68 348.11 ± 63.19		275.78 ± 20.66 11.11 ± 1.17	12.89	4-1-1	9.33 ± 3.48
DMSO '	44.56 ± 4.30	44.56 ± 4.30 25.22 ± 2.14 143.11 ± 20.	143.11 ± 20.64	.64 150.22 ± 17.26 335.33 ± 5.51	335.33 ± 5.51		276.44 ± 17.72 13.11 ± 4.88	13.56 ± 5.17	12.00 ± 0.88	8.00 ± 2.19
Anthramine	1149.56 ± 86.81		1518.78 ± 194.51		604.33 ± 15.31		199.00 ± 20.88		195.89 ± 20.44	
Aminoacridine										182.00 ± 29.45
Mitomycin C						1014.89 ± 10.51			-	
2-Nitrofluorene	:	575.44 ± 22.97							-	.5
Sodium azide				756.78 ± 83.11				642.22 ± 34.00		
TN (mg) (mM)										
0.1 0.75	33.00 ± 3.18	21.78 ± 1.84 162.67 ± 16.	162.67 ± 16.95	161.67 ± 6.00	341.33 ± 44.38	.95 161.67 ± 6.00 341.33 ± 44.38 268.44 ± 6.74	8.56 ± 0.38	15.44 ± 3.15	9.78 ± 3.83	5.56 ± 1.64
0.3 2.2	41.11 ± 8.04	23.22 ± 7.12	169.44 ± 18	148.78 ± 4.40	325.00 ± 12.22	$34 148.78 \pm 4.40 325.00 \pm 12.22 276.44 \pm 19.02 13.11 \pm 7.50$	13.11 ± 7.50	15.44 ± 6.35	8.11 ± 2.67	8.00 ± 4.48
1.5	44.11 ± 6.48	19.56 ± 7.50	$44.11 \pm 6.48 \mid 19.56 \pm 7.50 \mid 165.00 \pm 10.97 \mid 99.44 \pm 14.85 \mid 321.78 \pm 13.68 \mid 168.00 \pm 10.48$	99.44 ± 14.85	321.78 ± 13.68	168.00 ± 10.48	8.56 ± 0.51	9.33 ± 4.26	10.78 ± 2.83	7.22 ± 0.84
3 22	34.56 ± 8.67	0.00 ± 0.00	132.67 ± 15.30		0.00 ± 0.00 284.56 ± 20.39	38.67 ± 2.73	7.44 ± 1.71	0.00 ± 0.00	12.89 ± 0.51	0.00 ± 0.00
5 38	5.44 ± 1.50	0.00 ± 0.00	± 1.50 0.00 ± 0.00 61.11 ± 3.69		0.00 ± 0.00 39.00 ± 2.33	71.67 ± 7.64	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00

TABLE II-23: MUTAGENICITY ASSAY RESULTS OF ATN

Treatment	T	TA98	TA100	00	TA	TA102	TA1535	535	TA1537	537
	+6S	-6S	+6S	-6S	+6S	.es	+6S	-6S	+6S	S9-
Spontaneous	7.67 ± 11.89	29.56 ± 6.19	153.00 ± 18.48	162.22 ± 10.08	248.11 ± 41.64	.48 162.22 ± 10.08 248.11 ± 41.64 304.56 ± 38.79	8.56 ± 1.54	12.11 ± 3.66	8.00 ± 3.38	9.44 ± 3.75
DMSO .	40.44 ± 3.01	40.44 ± 3.01 27.11 ± 4.02	140.44 ± 34.00 156.89 ± 13.81 263.78 ± 22.71 261.67 ± 30.87	156.89 ± 13.81	263.78 ± 22.71		10.89 ± 2.59	12.00 ± 5.00	9.89 ± 4.48	6.67 ± 1.20
Anthramine	1(15.67±108.38	8	1414.00 ± 169.75		456.89 ± 13.61		229.11 ± 8.76		223.44 ± 9.48	
Aminoacridine	4)									136.44 ± 18.86
Mitomycin C						791.33 ± 68.06				
2-Nitrofluorene	:	817.89±102.42								5
Sodium azide				654.33 ± 27.50				655.33 ± 52.20		
ATN (mg) (mM)										
0.1 0.67	29.00 ± 1.33	24.44 ± 4.68	$151.22 \pm 27.27 138.67 \pm 19.73 293.78 \pm 15.70 259.89 \pm 2.67$	138.67 ± 19.73	293.78 ± 15.70	259.89 ± 2.67	9.33 ± 1.33	16.56 ± 2.67	12.00 ± 0.88	10.89 ± 2.17
0.3 2.0	.7.67 ± 4.18	7.67 ± 4.18 33.11 ± 7.82	168.89 ± 23.12 155.67 ± 8.41 255.00 ± 13.50 256.89 ± 15.03	155.67 ± 8.41	255.00 ± 13.50	256.89 ± 15.03	7.78 ± 0.51	11.33 ± 2.52	11.44 ± 0.84	11.56 ± 2.22
1 6.7	.6.56 ± 0.69	30.89 ± 1.39	30.89 ± 1.39 165.56 ± 13.50 135.67 ± 3.84 265.89 ± 6.59 223.33 ± 2.00	135.67 ± 3.84	265.89 ± 6.59	223.33 ± 2.00	7.00 ± 1.45	4.78 ± 4.17	11.44 ± 2.50	8.89 ± 2.01
3 20	.8.00 ± 19.9;	2 32.89 ± 25.24	32.89 ± 25.24 116.78 ± 39.50	91.44 ± 18.31	184.67 ± 7.00	91.44 ± 18.31 184.67 ± 7.00 230.22 ± 25.24	55.56 ± 25.13	0.00 ± 0.00	10.56 ± 3.72	6.44 ± 3.29
5 34	:8.22 ± 23.2	:8.22 ± 23.25 0.00 ± 0.00	2.56 ± 4.43	0.00 ± 0.00	172.33 ± 33.39	$0.00 \pm 0.00 \mid 172.33 \pm 33.39 \mid 85.22 \pm 15.49$	1.67 ± 1.53	0.00 ± 0.00	3.33 ± 0.58	0.00 ± 0.00

TABLE II:24: EXPERIMENTAL SUMMARY OF 11 HIGH ENERGY CHEMICALS

	Ames Test				Type of
Chemicals	Toxicity	Mutagenicity	Site of Mutation	Strain #	Mutation*
HZN	Moderate toxicity	Positive	AT and GC base- pair substitution	TA102 and TA1535	Indirect
DEHN	Moderate toxicity	NA**	•		
DHTN	Severe toxicity	Positive	AT and GC base- pair substitution TA98, TA102 and TA1535	TA98, TA102 and TA1535	Direct
			frameshift mutation		
DAGN	Minimal toxicity	Negative			
NAGN	Minimal toxicity	Negative			
EAN	Minimal toxicity	Negative			
HDN	Minimal toxicity	Weak	AT base - pair substitution	TA102	Direct
MAN	Moderate toxicity	Moderateb	GC base - pair substitution	TA100	Indirect
Z.	Moderate toxicity	Negative	•		
ATN	Minimal toxicity	Negative			
DMTN	Minimal toxicity	Weak	AT base - pair substitution	TA102	Direct

^{*} Indirect required S9 mixture for metabolic activation

^{**} Only cose selection assay was performed

^{1.} Good dose response relationship *Positive:

^{2.} More than one strain showed dose response relationship

^{3.} More than 2-fold induction

^bModerat: 1. Good dose response relationship

^{2.} Only one strain showed dose response relationship

^{3.} More than 2-fold induction

^{1.} No dose response relationship; at least two concentrations showed induction ^cWeak:

^{2.} Only one strain showed a response

^{3.} Less than 2-fold induction

² DISCUSSION

In this study, we tested ten hydrazine derivatives and amino-containing high energy compounds for their mutagenicity in bacterial system using the pre-incubation method recommended for nitro compounds, a selective and sensitive method.

In the dose selection assay, we used 5 mg/plate as top dose which is the maximum dose recommended by EPA's Office of Pollution Prevention and Toxics (OPPTs) health effects guideline. The dose selection data showed that HZN, DHTN, NAGN, MAN and DMTN were more toxic to the tester strains compared with DEHN, DAGN, EAN HDN and ATN. Therefore, the doses selected for the mutagenesis assay were 0.03-3.0 mg/plate for HZN, NAGN, DHTN, MAN, DMTN and 0.1-5.0 mg/plate for EAN, HDN, TN and ATN. In the case of DAGN, the test range was 0.03-3.0 mg/plate for TA100, TA102 and TA1535, 0.1-5.0 mg/plate for TA98 and TA1537. However, by using the above doses, HZN showed toxicity at 3 mg/plate, DHTN showed toxicity at 1 and 3 mg/plate, MAN and TN showed toxicity at 3.0 mg/plate. The other chemicals did not show any toxicity or slight toxicity in the mutagenesis assay. Combining the toxicity data from the two types of experiments (dose selection and mutagenicity), it was observed that the top dose (5 mg/plate, the maximum dose required for this assay) was extremely toxic. The ranking of agents based on toxicity is as follows: DHTN>HZN>MAN>TN>DEHN, DAGN, NAGN, EAN, HDN, ATN and DMTN.

The results from the mutagenesis assay indicated that HZN increased the revertants in TA102 and TA1535 with very good dose-dependent response in the presence of S9 system. The increase in the number of revertants was 1.2-1.4 fold and 2.0-5.0 fold, respectively, that of DMSO control. DHTN increased the revertants in TA98, TA100 and TA102 either in both with and without S9 activation system or without S9 system only (TA98). The increase in revertant numbers ranged from 1.5-3.7 fold compared with DMSO control. MAN significantly increased the revertants in TA100 with and without S9 activation system by 3.4-4.6 fold. HDN and DMTN slightly increased the numbers of revertants in TA102 at different concentrations. Among the five positive chemicals, four chemicals induced the mutant revertants in tester strain TA102, a strain that has AT base pair at the primary reversion site and has selected sensitivity to hydrazine compounds (Wilcox, 1990). In our previous study, hydroxyethylhydrazinium nitrate (HEHN, another hydrazine derivative) induced the revertants in TA102 and TA1535 with a very good dose response manner, and also increased the size of colonies in the TA1535 induced revertants (Sharma & Gao, 1999).

Interestingly, less toxicity was noticed in several chemicals at the high doses in the presence of S9 activation system compared with S9 negative system. It is possible that there is an increased detoxification of these compounds due to the presence of phase II enzymes that are present in the S9 fraction.

The above results under the experimental condition indicate that HZN, DHTN and MAN are mutagenic to bacteria, as it has caused an increase in the number of revertants in tester strains over three or more concentrations. Further, DHTN is a direct mutagen causing AT and GC basepair substitutions and frameshift mutations as there was no difference in the numbers of revertants between the activated (S9+) and non-activated (S9-) group (p>0.05). Furthermore, HZN and DHTN increased the revertants in multiple strains including the sensitive TA102 strain

with induction up to 4 fold. On the other hand, MAN, one of the amino compounds, induced the mutant revertants in TA100 only (and not in the sensitive strain, TA102). HZN and MAN are indirect mutagens, as there is a difference between S9+ and S9- group (p<0.05). Finally, HDN and DMTN are considered weak mutagens, since the increased number of revertants did not reach the standard criteria of 2 fold increase over the solvent control, however, the induction of revertants is still considered statistically significant. An experimental summary of all tested chemicals is included in Table II-24.

REFERENCES

- Ames, B. N., J. Mccann, and E. Yamasaki (1975). Method for detecting carcinogens and mutagens with the *Salmonella*/mammalian-microsome mutagenicity test. *Mutation Res.* 31, 347-364.
- Brusick, D. (1994). In: *Principles and Methods of Toxicology, Third Edition*, A.W. Hayes Ed., Raven Press, NY, p545.
- Claxton, D. L., J. Allen, A. Auletta, K. Mortelmans, E. Nestmann and E. Zeiger (1987). Guide for the *Salmonella Typhimurium*/Mammalian Microsomal Test for bacterial mutagenicity.

 Mutation Res. 189, 83-91.
- Gatehouse, D., S. Haworth, T. Cebula, E. Gocke, L. Kier, T. Matsushima, C. Melcion, T. Nohmi, T. Ohta, S. Venitt and E. Zeiger (1994). Recommendations for the performance of bacterial mutation assays. *Mutation Res.* 312, 217-33.
- Maron, D. M, J. Katzenellenbogen and B. N. Ames (1981). Compatibility of organ solvents with the Salmonella /microsome test. Mutation Res. 88, 343-350.
- Maron, D. M. and B. N. Ames (1983). Revised methods for the Salmonella mutagenicity test. Mutation Res. 113, 173-215.
- Prival, M., S. J. Bell, V. D. Mitchell, M. D. Peiperl and V. L. Vaughan (1984). Mutagenicity of benzidine and benzidine-congener dyes and selected monoazo dyes in modified Salmonella assay. *Mutation Res.* 136, 33-47.
- Sharma, S. and Gao, P. (1999) Genotoxicity assays for hydroxyethylhydrazinium nitrate. Salmonella/Microsome Mutagenesis Assay. A report for Toxic Hazard Research Unit, Study No. 1096-35F, Wright-Patterson Air Force Base, Dayton, OH. [AFRL/HEST Work Unit Number 7757A118 (currently 1710D413)]
- Wilcox, P., A. Naidoo, D. J. Wedd and D. J. Gatehouse (1990). Comparison of Salmonella Typhimurium TA102 with Escherichia Coli WP2 tester strains. Mutagenesis 5, 285-91.

:

Yahagi, T., M. Degawa, Y. Seino, T. Matsushima, M. Nagao, T. Sugimura and Y. Hashimoto (1975). Mutagenicity of carcinigenic azo dyes and their derivatives. *Cancer Letter* 1, 91-96.

APPENDIX II-A

Raw Data of Salmonella / Microsome Mutagenesis Assay

TABLE II-A1: MUTAGENICITY ASSAY RESULTS OF HZN

			967								
Treatment	Plate		LAYS	<u> </u>	LA100	TA	TA102	TA	TA1535	TA	TA1537
		+6S	-6S	+6S	-6S	+6S	-6S	+6S	-6S	+6S	-6S
Spontaneous	#2	23	81	131	83	191	191	10	14	=	5
	#5	24	18	93	98	208	181	7	81	13	6
	#3	81	17	117	103	161	149	7	18	6	9
	Mean	21.89	17.56	113.67	90.78	188.33	165.89	8.00	16.67	10.89	6.78
	SD	3.15	0.51	19.34	10.94	24.58	15.88	2.03	2.33	2.17	1.71
DMSO	#5	21	20	92	119	266	228	15	10	13	10
	#2	20	25	Ξ	109	892	232	=	13	12	œ
	#3	23	14	104	114	253	242	14	13	01	00
	Mean	21.11	19.78	102.33	114.00	262.22	233.67	13.22	12.00	11.78	8.89
	SD	1.39	5.19	9.94	5.33	8.03	7.21	2.27	1.73	1.26	96.0
Positive		Anthramine	2-Nitrofluorene	Anthramine	Sodium azide	Anthramine	Mitomycin C	Anthramine	Sodium azide	Anthramine	Anthramine Aminoacridine
Control	#2	830	410	1232	358	756	1311	170	449	209	114
	#5	844	352	1019	280	652	1320	184	481	207	141
	#3	784	379	1232	554	545	1309	193	496	203	132
	Mean	819.33	380	1160.89	497.33	68.059	1313.11	182.11	475.11	206.44	128.89
	SD	31.15	29.02	122.88	121.1	105.51	5.8	11.74	24.05	3.2	13 93
HZN (mg / plate)											
0.03	#2	21	27	114	=	569	194	28	61	01	∞
	#2	34	17	116	103	259	218	56	19	7	∞
	#3	27	17	146	94	238	218	32	13	6	10
	Mean	27.33	20.33	125.33	102.67	255.44	210.00	28.78	16.89	8.67	8.89
	S	6.84	5.77	17.93	8.35	15.54	14.15	5.69	3.67	1.76	1.26
0.1	#2	33	12	Ξ	102	303	197	20	12	7	=
	#2	21	61	134	101	296	218	45	19	13	•
	#3		91	128	110	270	217	44	17	6	5
	Mean		15.56	124.22	104.33	289.89	210.67	45.11	16.11	9:26	7.89
	SD	6.43	3.36	12.20	5.21	17.26	11.55	4.11	3.34	2.78	3.02
0.3	#2	27	=	125	901	324	265	65	=	01	9
	#2	56	7	131	130	326	221	62	10	6	7
	#3		7	142 ·	120	322	192	25	15	9	80
	Mean	27.67	8.33	132.56	118.78	323.89	248.78	60.22	12.00	8.44	68.9

Treatment Plats	Plets		TA98	TA	TA100	TA	TA102	TA	TA1535	TA	TA1537
		+6S	-6S	+6S	S9-	+6S	-6S	+6S	S9-	+6S	-6S
	SD	1.53	2.33	8.77	12.21	1.84	24.41	5:55	2.65	2.22	0.84
	#2	81	0	141	0	317	0	66	4	6	0
	#2	8	0	132	0	350	0	65	2	13	0
	#3	56	0	136	0	374	•	99	2	13	0
	Mean	20.67	0.00	136.56	0.00	347.11	0.00	16.67	2.67	11.56	0.00
	SD	4.33	0.00	4.67	0.00	28.97	0.00	19.35	1.15	2.22	0.00
3	#5	•	0	51	0	111	0	37	0	9	0
	7#	10	0	46	0	227	0	34	0	∞	0
	#3	∞	0	4	0	216	0	20	0	4	0
	Mean	8.78	0.00	46.78	0.00	206.67	0.00	40.33	0.00	6.11	0.00
	SD	1.07	0.00	3.56	0.00	26.35	0.00	8.45	0.00	1.84	00'0

TABLE II-A2: MUTAGENICITY ASSAY RESULTS OF DHTN

Spintaneous M	Plate	-	A70	IAIM	3	TA	TA102	TAI	TA1535	TA	TA1537
	_	-	-								
		÷68	-6S	+68	-6S	+6S	.6S	+6S	-6S	+6S	-68
	#	15	35	155	160	366	214	12	4	=	13
	#2	14	44	125	143	332	314	15	10	13	=
2	#3	27	21	162	159	333	230	10	20	91	13
	Mean	27.67	33.44	147.22	154.11	343.78	252.56	12.33	11.56	11.33	12.22
	SD	13.17	11.41	19.79	9.65	18.96	53.53	2.40	7.90	1.45	0.77
DNSO	#	50	30	125	136	242	722	10	7	20	S
	7#	35	25	132	=	250	262	7	14	11	œ
	#3	9	22	140	102	339	222	6	=	=	12
2	Megan	31.78	25.33	132.11	116.11	277.22	236.78	8.89	10.78	16.00	8.11
	gs	10.46	4.04	7.50	17.48	53.93	21.99	1.50	3.86	4.26	3.36
Paitive		Anthramine	2-Nitrofluorene	Anthramine	Sodium azide	Ā	Mitomycin C	Anthramine	Sodium azide	Anthramine	Aminoacridine
Cartrol	#	1089	501	1768	743	635	985	222	526	344	107
	#2	1247	492	1556	269	089	858	173	539	308	175
	#3	936	461	2016	199	544	874	185	526	326	212
2	Mean	1090.56	484.67	1780	702.67	619.78	68:506	193.22	530.22	325.78	164.33
	SD	155.5	21.3	229.9	38.28	69.65	69.28	25.6	7.89	17.83	53.26
DifTN (mg / plate)											
0.03	#	62	45	283	276	428	411	17	21	12	15
	#2	92	47	266	242	479	455	14	61	13	13
	#3	62	65	204	239	369	409	25	13	16	∞
_	Mean	99.99	52.44	251.11	252.33	425.44	425.22	18.56	17.67	13.78	12.00
	as	7.90	11.18	41.96	20.58	54.72	26.10	5.82	3.93	1.71	3.84
0.1	#	48	73	418	332	553	424	23	15	14	17
	#2	20	69	541	378	518	462	42	22	14	13
;	#3	25	99	383	496	482	424	22	28	13	6
	Mean	52.89	69.33	447.33	401.89	517.56	436.56	28.78	21.78	13.67	13.11
	S	5.52	3.84	82.67	84.96	35.83	22.04	11.46	6.52	0.67	4.17
0.3	#	92	47	578	227	492	400	39	4	12	7
	#2	4	42	456	168	476	469	49	=	19	7
	#3	14	51	432	241	518	396	42	10	10	01
_	Mean	51.78	46.78	488.78	212.11	495.22	421.67	43.56	8.33	13.67	8.11

Testment Plate	Plate	T	TA98	TA	TA100	TA	TA102	TAI	TA1535	TA	TA1537
		+6S	-6S	+6S	-6S	+6S	-6S	+6S	-6S	+6S	-6S
	SD	15.87	4.34	78.53	39.12	21.55	41.06	4.95	3.48	4.81	1.64
-	#	0	0	0	0	440	0	0	0	20	0
	#5	26	0	0	0	414	0	0	0	12	0
	#3	21	0	0	0	429	0	0	0	13	0
	Mean	15.56	0.00	0.00	0.00	427.67	00:0	0.00	0.00	15.22	0.00
	SD	13.73	0.00	0.00	0.00	12.86	0.00	0.00	0.00	4.48	0.00
	#	0	0	0	0	0	0	0	0	0	0
	#2	0	0	0	0	0	0	0	0	0	0
	#3		0	0	0	0	0	0	0	0	0
	Mean	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	SD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

TABLE II-A3: MUTAGENICITY ASSAY RESULTS OF HDN

Freatment Plate S9+ Sportaneous #1 47 47 47 47 42 66 #3 62 66 #3 62 68 68 68 68 68 68 68	2-Nitr	163 164 132 153.00 18.48 174	S9- 174 155	+6S	S9-	+68	.es		S9-
eous #1 47 #2 66 #3 62 Mean \$8.56 SD 9.89 #1 62 #2 46 #3 57 Mean \$4.89 SD 8.04 #1 1613 #2 1250 #3 1019 Mean \$50.56 SD 3.67 #1 41 #1 41 #1 41 #2 57 Mean \$0.56 SD 3.67 #1 41 #1 41 #1 41		163 164 132 153.00 18.48 174	S9- 174 155	303	S9-	S9+	-6S	+6S	S9-
#1 47 #2 66 #3 62 Wean 58.56 SD 9.89 #1 62 #1 62 #2 46 #3 57 Mean 54.89 SD 8.04 SD 8.04 SD 8.04 SD 8.04 #2 1250 #3 1019 Mean 1293.89 SD 299.46 #1 54 #2 47 #1 41 #1 41 #1 41 #1 41 #1 41 #1 41 #1 41 #1 41 #1 50.78		163 164 132 153.00 18.48 174	174	303	787	77			
#3 66 #3 62 Mean 58.56 SD 9.89 #1 62 #2 46 #3 57 Mean 54.89 SD 8.04 SD 8.04 Anthramine 7 #3 1019 Mean 1293.89 SD 299.46 #3 50 Mean 50.56 SD 3.67 #1 41		164 132 153.00 18.48 174	155)	107	<u>+</u>	91	=	81
#3 62 Mean 58.56 SD 9.89 #1 62 #2 46 #3 57 Mean 54.89 SD 8.04 Anthramine 7 #1 1613 #2 1250 #3 1019 Mean 1293.89 SD 299.46 ate) #1 54 #2 47 #1 54 #1 54 #1 41 #1 41 #1 41 #1 41 #1 41 #1 41 #1 41 #1 41 #1 41 #1 41 #1 41 #1 41 #1 41 #1 41 #1 41 #1 41		132 153.00 18.48 174		392	290	12	15	6	10
#1 62 #2 46 #3 57 #3 57 Mean 54.89 SD 8.04 ** 1019 Mean 1293.89 SD 299.46 #1 54 #2 47 #3 50 Mean 50.56 SD 3.67 #1 41 #1 41 #2 47 #3 50 #4 50.56 SD 3.67	1,1	153.00 18.48 174 106	158	375	245	13	81	=	14
#1 62 #2 46 #3 57 Mean 54.89 SD 8.04 SD 8.04 B1 1613 #2 1250 #3 1019 Mean 1293.89 SD 299.46 #1 54 #2 47 #3 50 Mean 50.56 SD 3.67 #1 41 #1 41	1 , ,	18.48	162.22	356.78	273.22	13.22	16.33	10.33	13.78
#1 62 #2 46 #3 57 Wean 54.89 SD 8.04 Anthramine 3 #2 1250 #3 1019 Mean 1293.89 SD 299.46 #2 47 #3 50 Mean 50.56 SD 3.67 #1 41 #1 41	1	174	10.08	47.00	24.62	1.02	1.67	1.15	4.17
#2 46 #3 57 Mean 54.89 SD 8.04 Anthramine 3 #2 1250 #3 1019 Mean 1293.89 SD 299.46 SD 299.46 #2 47 #3 50 Mean 50.56 SD 3.67 #1 41 #3 57 Mean 50.78	1 1 1	901	147	314	242	15	15	18	14
#3 57 Mean 54.89 SD 8.04 Anthramine 3 #1 1613 #2 1250 #3 1019 Mean 1293.89 SD 299.46 #1 54 #2 47 #1 54 #2 47 #1 50.56 SD 3.67 Mean 50.56 SD 3.67 #1 41 #1 41 #2 47			173	317	251	13	20	01.	=
Mean 54.89 SD 8.04 Anthramine 3 #1 1613 #2 1250 #3 1019 Mean 1293.89 SD 299.46 #1 54 #2 47 #3 50 Mean 50.56 SD 3.67 #1 41 #1 41 #2 367 Mean 50.56 Mean 50.56 SD 3.67 #1 41 #1 41		141	151	273	289	14	13	6.	15
#1 Anthramine #1 1613 #2 1250 #3 1019 Mean 1293.89 #3 50 Mean 50.56 #3 50 Mean 50.56 #3 50 Mean 50.78 #3 50.78 Mean 50.78		140.44	156.89	301.11	260.33	14.00	16.11	12.56	13.33
#1 1613 #2 1250 #3 1019 Mean 1293.89 SD 299.46 #1 54 #2 47 #3 50 Mean 50.56 SD 3.67 #1 41 #1 41 #2 54 #3 57 Mean 50.78	• •	34.00	13.81	24.69	24.95	1.20	3.79	5.05	2.08
#1 #2 #3 Wean SD #3 Wean SD #	496	Anthramine	Sodium azide	Anthramine	Mitomycin C	Anthramine	Sodium azide	Anthramine	Aminoacridine
#3 Mean SD #3		1220	648	646	1088	123	630	102	132
#3 Mean SD #3	449	1537	684	201	104	136	165	103	98
Mean SD #1 SD #2 #3 #1 #1 #2 #3 #3 #3 #3 #3 #3 #3 #3 #3 #3 #3 #3 #3	477	1485	630	503	1144	120	595	601	138
SD #1 #1 SD Wean SD #1 #2 #2 #3 #3 Wean Wean Wean Wean Wean Wean Wean Wean	473.89	1414	654.33	550.11	1112.11	126.44	595.44	104.67	109
#1 #3 Wean SD #1 #2 #1 #2 #1 #2 #3 #3 Wean Mean SD #2 #3 #3 #3 #3 #3 #3 #3 #3 #3 #3 #3 #3 #3	23.82	169.75	27.5	83.05	28.47	8.13	32.36	3.48	45.71
#1 #2 #3 Wean SD #1 #1 #2 #3 Wean Mean									
#3 Mean SD 8D #1 #2 #3	34	152	134	337	275	4	13	22	10
#3 Mean SD #1 #2 #3	46	158	155	354	309	20	13	13	12
Mean SD #11 #2 #3	38	156	141	331	223	61	21	10	=
SD #1 #2 #3 Mean	39.44	155.33	143.33	340.78	269.00	17.89	15.67	14.78	10.89
#1 #2 #3 Mean	6.19	3.28	10.48	11.80	43.18	3.40	4.91	6.19	69.0
. #2	32	155	142	77.2	305	12	15	13	6
#3 Mean	33	171	149	314	294	24	15	<u>∞</u>	91
	4	132	164	401	273	12	13	∞	=
	35.33	152.56	151.78	330.44	290.56	16.11	14.22	13.11	11.89
SD 8.32	4.93	19.25	10.87	63.84	16.55	6.54	1.07	5.17	3.42
	37	138	139	345	255	15	9	61	_
	33	154	163	265	277	91	17	4	=
	33	162	151	354	244	15	16	10	6
Mean 39.44	34.33	151.22	150.89	321.44	258.56	15.33	12.78	14.67	10.44

Treatment	Plate	L	TA98	TA	TA100	TA	TA102	TAI	TA1535	TA	TA1537
		+6S	-6S	±8S	.6S	+68	-6S	+68	.89-	+6S	-S9-
	SD	5.17	2.60	12.51	11.67	49.38	16.84	0.33	61.9	4.51	1.26
3	#	43	49	146	156	386	263	01	14	15	10
	#2	45	36	176	191	400	269	6	16	14	81
	#3		50	165	170	367	172	∞	12	4	01
	Mean	41.67	45.11	162.44	162.22	384.44	267.33	9.22	14.22	14.33	12.78
	SD	4.16	7.62	15.33	7.46	16.58	4.16	1.02	1.84	0.33	4.53
5	#	20	34	164	159	492	377	14	12	20	01
	#2		38	992	170	496	417	12	6	91	œ
	#3		37	187	154	916	400	20	11	16	6
	Mean		36.33	170.56	161.00	501.33	398.00	15.44	12.67	17.56	00.6
	SD	6.50	2.40	14.38	8.51	12.55	19.94	4.35	3.71	2.41	0.88

TABLE II-A4: MUTAGENICITY ASSAY RESULTS OF MAN

Transference	1		TA98	TA100	100	TA	TA102	TA	TA1535	TA	TA1537
		+6S	-6S	+68	-88-	+6S	-6S	+68	-68	\$68	-6%
Spontanious	#	38	33	121	141	323	321	21	91	91	17
	#2	36	28	6	134	303	329	6	6	∞	15
	#3	40	33	103	204	345	307	91	10	81	=======================================
	Mean	38.11	31.11	107.11	159.78	323.44	318.89	15.33	11.67	14.22	14.22
	SD	1.84	2.99	12.76	38.72	21.18	10.99	6.17	4.06	5.23	3.24
DMSO	#	28	25	273	215	303	268	∞	12	П	∞
	#2	37	28	311	287	302	243	=	15	13	10
	#3	49	14	243	223	252	229	6	9	21	13
	Mean	., 38.22	31.44	275.56	241.78	285.44	246.67	9.44	11.00	14.67	10.56
	SD	10.69	8.44	33.76	39.08	29.25	19.64	1.17	4.26	5.29	2.67
Positive		Anthramine	2-Nitrofluorene	Anthramine	Sodium azide	Anthramine	Mitomycin C	Anthramine	Sodium azide	Anthramine	Aminoacridine
Control	#	439	368	1292	950	402	875	06	603	148	98
	#	920	346	1331	887	367	994	93	525	166	18
	#3	707	328	1157	995	399	606	132	611	129	160
	Mean	598.44	347.33	1260	944.33	389.22	926.11	105	87.678	147.67	136.67
	SD	140.99	20.22	66.06	54.25	19.62	61.48	23.41	47.89	18.5	43.92
MAN (mg / plite)						,					
0.03	#	30	31	1315	1106	294	238	13		=	12
	#2	32	36	1294	1092	203	252	13	7	∞	6
	#3	4	28	1231	945	385	317	11		91	9
	Mean	35.11	32.00	1279.89	1047.78	294.00	269.00	14.56	9.56	11.56	8.89
	S	7.76	4.04	43.66	89.30	91.00	42.15	2.12	1.92	4.07	2.67
0.1	#	2	49	1178	1095	346	257	13	7	11	11
	¥	43	41	1285	1108	340	229	6	5	12	6
æ,	#3		39	1216	940	340	261	00	01	13	9
	Mean		42.78	1226.22	1047.56	341.89	249.00	10.22	7.33	12.00	10.56
	S	12.22	5.23	54.18	93.08	3.56	17.44	1.71	2.19	1.00	5.50
0.3	#	23	32	1241	1126	301	270	7	17	13	13
	#2	33	29	1276	1074	303	289	22	6	01	9
	#3	24	28	1231	1063	338	300	12	15	000	12
	Mean	79.92	29.78	1249.44	1087.67	314.00	286.33	13.44	13.56	10.33	10.44

Treatment	Plete		TA98	TA100	100	T,T	TA102	TA	TA1535	TA	TA1537
		+6S	-6S	+6S	-88-	+6S	-8S	+68	-68	+6S	-68
	SD	5.49	2.27	23.57	33.71	21.11	15.18	7.49	4.35	2.85	3.56
_	#	31	27	1265	764	283	188	35	14	6	0
	4	24	25	1306	828	259	161	=	61	3	10
	#3	30	21	1265	108	265	236	22	27	7	5
	Mean	28.33	24.22	1278.78	797.44	268.89	204.89	22.78	20.00	6.33	5.00
	SD	3.79	3.24	23.87	32.15	12.54	26.70	11.67	6.23	3.06	4.84
3	#	5	0	1208	63	0	0	4	0	3	0
	#5	0	0	1201	5	0	0	10	0	2	9
	#3	6	0	1231	30	0	0	4	0	0	0
	Mean	2.67	0.00	1213.33	32.67	0.00	0.00	90.9	0.00	1.56	2.11
	SD	2.67	0.00	15.70	29.42	0.00	0.00	3.76	0.00	1.39	3.66

TABLE II-A5: MUTAGENICITY ASSAY RESULTS OF DMTN

		L	.A98	TA	TAIM	TA	TA102	TAT	TA1636	T	TA1627
I ratification	71816	+6S	65	† 6 %		1		1			
					33	160	-22-	200	-22-	746	-60
Sportaneous	#	31	33	163	174	239	173	24	15	10	01
	#2	31	34	28	155	500	205	77	13	01	12
	#3	33	30	132	158	214	130	=	15	5	6
	Mean	31.56	32.00	153.00	162.22	220.67	189.33	18.89	14.22	8.33	10.33
	SD	96.0	2.08	18.48	10.08	16.38	15.68	7.24	1.07	3.18	1.86
DM:0	#	25	23	174	147	234	156	14	6	=	∞
	#2	56	22	901	173	292	209	22	4	4	_
	#3	29	21	141	151	281	227	14	=	=	7
	Меар	26.78	22.11	140.44	156.89	268.78	117.11	16.67	11.33	11.89	8.67
	SD	1.71	0.84	34.00	13.81	30.93	36.72	4.62	2.33	1.58	2.33
Posiive		Anthramine	2-Nitrofluorene	Anthramine	Sodium azide	Anthramine	Mitomycin C	Anthramine	Sodium azide	Anthramine	Aminoacridine
Conrol	#	843	511	1220	848	298	827	77	192	25	136
	#5	908	019	1537	684	263	934	102	207	103	114
	#3	955	638	1485	630	791	923	134	167	75	72
	Mean	898	286.67	1414	654.33	273.89	895	104.56	188.67	76.78	107.33
	SD	77.66	66.73	169.75	27.5	20.6	58.86	28.59	20.33	25.71	32.52
DM'N (mg/ plate)											
0.03	#	45	32	147	164	402	303	59	13	9	12
	#2	46	36	153	173	361	306	61	19	81	00
	#3		45	148	154	283	315	14	15	22	15
	Mean	,	37.44	149.11	164.00	348.56	308.00	20.56	15.44	15.67	11.44
	SD	9.26	6.84	3.15	9.50	60.63	6.33	8.00	3.56	8.33	3.34
0.1	#	30	47	181	155	361	289	=	14	9	10
	#2	33	42	191	135	330	257	13	=	17	12
±	#3	4	51	172	165	378	308	19	14	12	6
	Mean	` .	46.78	171.44	151.33	356.33	284.78	14.33	13.00	11.67	10.33
	SD	7.69	4.67	10.03	15.28	24.67	25.93	3.93	1.76	5.33	1.53
0.3	#	54	47	173	154	326	295	10	11	10	8
	#2	51	36	179	165	368	293	6	=	6	15
	#3		46	153	146	368	287	91	=	=	Ξ
	Mean	51.22	43.00	168.44	155.22	354.11	291.56	47:11	13.11	10.00	11.44

Trestment Plate	Plete	-	TA98	T/	TA100	TA	TA102	TA	TA1535	TA	TA1537
		S9+	.6S	+6S	-68	+6S	-68	+6S	-68	+6S	-65
	SD	2.67	5.78	13.50	9.70	24.35	4.03	3.98	3.37	1.20	3.36
_	#	47	4	146	142	393	300	13	12	6	10
	#2	38	51	991	174	284	268	22	12	•	
	#3	47	56	151	156	372	316	14	01	•	10
	Mean	43.67	50.22	152.56	157.22	349.78	294.33	16.22	11.11	8.22	10.22
	SD	5.20	80.9	7.24	15.72	57.58	24.44	4.74	1.26	96.0	0.38
3	#	38	14	961	901	424	353	10	7	6	6
	#2	40	44	182	901	397	315	15	∞	9	7
	#3	47	34	203	115	322	329	00	14	01	10
	Mean	41.44	39.67	193.44	109.00	381.33	332.33	11.00	19.6	8.44	8.89
	SD	4.67	5.24	10.51	4.91	52.85	19.34	3.93	3.53	2.22	1.39

TABLE II-A6: MUTAGENICITY ASSAY RESULTS OF DAGN

Transment	Diete		A76	V	DAIN		A 102	4	-		
regument	786	. 00	1	1	1	1			CCCITY		1661937
		182	-6S	-t6S	-6S	+6S	-6S	+6S	-6S	+6S	-6S
Sponaneous	#	54	50	28	165	239	227	19	20	81	13
	#2	28	53	233	148	232	256	34	23	22	14
	#3	51	4	184	154	192	283	4	30	15	9
	Mean	54.33	48.89	200.33	155.56	220.78	255.11	22.11	24.44	18.33	11.22
	SD	3.84	4.55	28.00	8.77	25.48	28.01	10.36	5.42	3.38	4.25
DMS	#	51	38	176	172	329	254	81	11	14	12
	#2	4	37	99	147	275	222	15	<u>8</u>	15	91
	#3	3	42	153	121	364	242	<u>∞</u>	26	24	61
	Mean	53.00	38.89	162.78	146.89	322.56	239.22	16.78	20.33	17.67	15.44
	SD	10.04	2.78	11.65	25.50	44.89	16.23	1.84	4.63	5.51	3.53
Positive		Anthramine	2-Nitrofluorene	Anthramine	Sodium azide	Anthramine	Mitomycin C	Anthramine	Sodium azide	Anthramine	Aminoacridine
Contol	#	1533	812	1662	588	455	602	185	492	210 1	216
	#2	1357	804	1960	634	362	177	193	486	233	193
	#3	1751	732	1875	869	427	777	158	504	146	224
	Mean	1547	782.44	1832.22	639.78	414.33	716.56	178.44	493.78	196.33	210.67
	SD	197.56	43.87	153.61	55.23	47.71	99.55	18.47	9.35	45	16.09
DACA (mg /plate)											
0.03	#			189	156	123	285		13		
	#2			500	221	252	234	12	15		
	#3			140	199	131	161	=	17		
	Mean			179.33	191.89	168.33	236.78	11.22	15.22		
	SD			35.18	33.13	72.28	47.23	96.0	1.84		
0.1	#	53	48	153	181	184	255	22	91	1	13
	#2	51	35	011	142	369	313	14	17	14	7
	#3	17	29	92	891	364	289	15	6	6	91
	Mean	58.33	37.67	118.22	163.78	305.67	285.33	16.89	14.11	13.67	12.00
	SD	10.99	9.71	31.48	19.68	105.69	29.14	4.48	4.44	4.04	4.58
0.3	#	26	27	142	207	339	162	15	15	6	11
76	#2	99	39	118	147	304	276	12	15	01	7
	#3		30	86	185	358	. 267	91	15	17	7
	Mean		32.00	116.33	179.56	333.89	235.22	14.56	15.00	12.00	8.11
	SD	5.75	6.57	56.69	30.65	27.36	63.27	1.95	0.00	4.33	2.50
_	#	19	9	101	148	277	310	17	81	8	11
	#2	36	35	8	179	340	283	20	16	•	7
	#3	37	4	35	120	320	295	=	17	6	00
	Mean	44.67									

Transfer	100		TA98	TA	TA100	TA	TA102	TAI	TA1535	TA	TA1537
, cathight		+6S	-6S	+6S	-6S			+6S	-6S	+6S	-6S
	SD	14.44	12.69	5.61	29.19	32.27	13.68	4.55	19.0	0.84	2.33
3	#1		28	141	47	258	166	16	4	6	9
	#2		36	136	7	27.1	202	29	0	16	01
	#3		29	66	201	274	223	81	0	23	6
	Mean		31.00	125.11	85.00	267.56	197.11	20.89	1.22	15.78	8.22
	SD		4.36	23.06	102.50	69.8	28.77	6.77	2.12	6.83	2.27
5	#	29	26							5	0
	#2		25							5	0
	#3		26							9	0
	Mean		25.67							5.44	0.00
	SD	3.75	0.58							0.51	00.00

TABLE II-A7: MUTAGENICITY ASSAY RESULTS OF NAGN

		-	TA08	T 4100	9	F	100				
Tratment	Plate			VI	8	_	1A102	TA1535	535	T	TA1537
		+6S	S9-	+6S	S9-	+6S	-6S	+6S	-6S	-6S	-6S
Spontaeous	#	34	29	139	151	328	264	19	10	14	01
	#2	30	34	116	138	308	263	14	13	15	6
	#3	53	35	144	133	281	297	12	15	01	7
	Mean	30.78	32.67	133.00	140.67	305.56	274.56	15.00	12.67	13.00	8.67
	SD	2.83	2.91	14.88	8.97	23.43	19.15	3.53	2.19	2.33	1.20
DMSC	#	31	29	149	133	282	292	8	15	6	=
	#2	4	25	129	137	336	231	14	91	=	13
	#3	20	81	131	130	331	280	91	13	7	13
	Mean	30.44	24.00	136.56	133.22	316.22	267.67	12.56	14.44	9.11	12.44
	SD	10.34	5.24	10.82	3.67	29.76	32.26	4.44	1.35	2.04	1.54
Positiv		Anthramine	2-Nitrofluorene	Anthramine	Sodium azide	Anthramine	Mitomycin C	Anthramine	Sodium azide	Anthramine	Aminoacridine
Contro	#	910	602	1912	820	365	1052	133	747	155	103
	#2	1080	692	1807	757	287	1105	901	758	141	991
	#3	1075	486	1536	783	320	1001	139	735	105	184
	Mean	1021.33	593.56	1751.67	786.44	324.22	1052.67	126	746.67	133.44	151.11
	SD	96.74	103.26	194.01	31.64	39.17	52.34	17.64	11.33	25.93	42.59
NAGN (mg / pate)											
0.03	#	34	31	155	130	294	289	12	17	∞	=
	#2	43	21	142	151	338	273	14	13	٧.	14
	#3	37	21	147	147	307	268	6	7	01	13
	Mean	38.00	24.00	147.67	142.33	312.78	277.00	11.78	12.11	7.56	12.67
	SD	4.58	5.77	6.56	11.15	22.79	10.97	2.67	5.19	5.69	1.33
0.1	#	31	15	148	143	332	255	=	12	11	14
	#2	39	24	132	141	302	285	=	∞	=	12
s.	#3	28	22	142	141	313	268	17	∞	01	œ
	Mean	32.89	20.11	140.56	141.56	315.33	269.22	13.00	9.44	10.89	11.22
	SD	5.74	4.79	8.39	1.26	15.18	14.73	3.18	2.50	0.51	2.91
0.3	#	31	38	145	155	310	256	16	23	25	10
	#2	4	22	132	991	298	297	01	8	91	16
	#3	59	31	137	126	344	274	6	6	6	13
	Mean	33.67	30.33	137.89	147.00	317.33	275.56	12.67	16.67	16.44	12.78

Tratment	Plate		TA98	TA100	100	TA	TA102	TA	TA1535	TA	TA1537
		+6S	.89 .	+6S	S9-	+6S	-6S	+68	-6S	+6S	-6S
	СS	6:36	8.02	16.9	18.67	23.95	20.38	5.81	86.9	7.86	3.17
-	#	31	24	124	110	324	225	6	6	17	12
	#2	27	30	139	117	313	282	61	17	6	10
	#3	38	23	611	86	321	244	91	6	6	01
	Mean	32.00	25.67	127.11	108.11	319.11	250.33	12.44	11.67	11.56	10.67
	SD	5.36	3.53	10.36	9.64	5.74	29.02	5.40	4.63	4.43	1.20
3	#	18	135	132	18	310	73	22	0	8	9.
	#2	35	105	106	3	307	115	9	0	9	S
	#3	34	286	141	22	282	95	17	0	12	00
	Mean	29.22	175.33	126.11	35.44	299.78	94.22	14.89	0.00	7.67	6.33
	SD	9.45	97.06	17.99	40.54	15.49	20.67	8.47	0.00	4.33	1.53

TABLE II-A8: MUTAGENICITY ASSAY RESULTS OF EAN

		-	7406	F	100		-01				
Teatment	Plate		020	Y.	IAIW	I A 102	102	IAI	TA1535	TA	TA1537
		+6S	-6S	+6S	S9-	+6S	-68	+6S	-6S	S9+	-8S
Sportaneous	#	61	22	113	133	270	267	26	13	12	
	#2	24	27	<u> </u>	124	314	234	91	25	14	9
	#3	56	15	107	125	282	569	15	27	12	10
	Mean	22.78	21.33	121.22	127.22	288.56	256.56	18.78	21.78	12.89	8.89
	gs	3.66	6.03	20.24	4.72	22.79	19.55	5.98	7.38	1.26	2.83
DMSO	#	27	31	103	93	270	215	61	14	6	10
	#2	22	23	102	102	225	260	14	01	6	S
,	#3	27	23	115	120	861	277	14	16	6	=
	Mean	25.44	25.56	106.89	105.22	231.11	250.67	15.67	14.33	9.00	8.67
	SD	2.99	4.44	7.32	13.57	36.22	32.36	2.91	4.18	0.33	3.28
Posiive		Anthramine	2-Nitrofluorene	Anthramine	Sodium azide	Ā	Mitomycin C	Anthramine	Sodium azide	Anthramine	Aminoacridine
Contol	#	830	472	782	471	472	168	148	448	148	140
	#2	760	490	855	416	510	930	154	473	216	190
	#3	916	544	871	523	497	933	961	469	176	220
	Mean	835.33	502.33	836	470.11	492.78	918.22	166.22	463.33	180.33	183.22
	SD	77.95	37.47	47.76	53.5	19.35	23.35	26.27	13.74	34.18	40.47
EAN (mg/ plate)											
0.1	#	23	12	103	1117	262	249	61	=	91	13
	#5	28	20	137	134	274	500	29	23	=	6
	#3	28	15	135	114	252	161	23	<u>s</u>	12	6
	Mean	26.33	16.00	124.89	121.56	272.56	235.22	23.44	17.33	13.00	10.33
	SD	2.60	4.04	19.27	10.65	20.06	39.58	5.21	5.84	2.91	2.33
0.3	#	36	23	112	112	257	249	56	91	∞	81
	#2	23	20	123	129	261	181	50	11	50	12
	#3	36	21	136	104	274	254	28	=	12	4
	Mean	32.00	21.44	123.78	115.11	264.00	228.33	24.44	14.78	9.22	11.67
	SD	7.51	1.84	12.19	12.62	8.89	40.78	3.98	3.02	2.14	7.02
	#	33	28	124	123	262	229	20	6	12	
	#2	32	61	Ξ	113	291	161	13	13	∞	Ξ
	£	31	27	113	126	275	239	91	4	7	10
	Mean	32.11	. 24.78	115.89	120.67	286.00	220.89	16.22	12.11	00.6	10.89

Testment	Plate		TA98	TA	TA100	TA	TA102	TA	TA1535	TA	TA1537
		¥68	-6S	+6S	S9-	+6S	-6S	+6S	-68	+6S	.6S
	SD	1.17	4.74	7.38	6.81	9.24	23.57	3.34	2.55	2.60	0.77
3	#	31	15	134	92	207	581	72	61	6	9
	#2	32	21	Ξ	001	226	172	13	21	∞	7
	#3	82	61	801	109	212	207	27	13	12	7
	Mean	27.11	18.33	117.67	100.44	215.00	187.89	22.22	17.56	29.67	87.9
	SD	7.60	3.06	14.26	8.34	6.77	17.39	8.28	4.29	1.86	0.51
S	#	61	17	86	86	217	172	17	=	13	9
	#2	61	17	108	66	310	219	36	26	=	=
	#3	53	91	011	6/	308	500	81	14	15	6
	Mean	22.22	16.56	105.56	68.16	278.67	233.22	23.56	17.00	12.89	8.78
	SD	5.58	0.77	6.62	11.48	53.13	33.10	10.49	7.94	1.84	2.50

TABLE II-A9: MUTAGENICITY ASSAY RESULTS OF TN

		T	TA98	TA	TAIDO	TA	TA102	TA1626	363	F	10000
Latment		+6S	-6%	±68	-68	±6%	-6%	†6%	.65	105	. CO.
Sponaneous	1#	48	33	166	159	412	252	=	14	12	13
	#2	4	28	145	170	286	284	12	13	91	
	#3	42	36	159	16	346	162	10	13	4	œ
	Mean	44.67	32.56	156.44	164.11	.348.11	. 275.78	H.H	12.89	14.11	9.33
	S	3.06	4.02	10.73	5.68	63.19	20.66	1.17	69:0	1.84	3.48
DMSD	#	14	24	156	991	341	256	12	∞	12	∞
	#5	43	28	611	132	330	287	6	17	=	01
	#3	49	24	154	152	336	286	81	91	13	9
	Меар	44.56	25.22	143.11	150.22	335.33	276.44	13.11	13.56	12.00	8.00
	S	4.30	2.14	20.64	17.26	5.51	17.72	4.88	5.17	0.88	2.19
Positve		Anthramine	2-Nitrofluorene	Anthramine	Sodium azide	Anthramine	Mitomycin C	Anthramine	Sodium azide	Anthramine	Aminoacridine
Contol	#	1087	550	1597	693	593	1006	201	9/9	178	216
	#2	1249	582	1297	786	266	1026	177	642	161	164
	#3	1113	595	1662	821	622	1013	219	809	218	166
	Mean	1149.56	575.44	1518.78	756.78	604.33	1014.89	661	642.22	195.89	182
	SD	86.81	22.97	194.51	83.11	15.31	10.51	20.88	34	20.44	29.45
TN (mg plate)											
0.1	1#	35	23	181	162	388	261	6	13	0.	4
	#2	59	20	92	891	336	272	∞	61	4	9
	#3	35	23	147	156	300	272	∞	14	9	7
	Mean		21.78	162.67	161.67	341.33	268.44	8.56	15.44	9.78	5.56
	SD	3.18	1.84	16.95	90.9	44.38	6.74	0.38	3.15	3.83	1.64
0.3	#	39	81	162	14	338	258	13	22	8	4
	#2	20	31	8	153	314	596	21	6	=	13
3 -	#3	34	20	156	150	322	275	9	15	ς.	7
	Mean	41.11	23.22	169.44	148.78	325.00	276.44	13.11	15.44	8.11	8.00
	SD	8.04	7.12	18.34	4.40	12.22	19.02	7.50	6.35	2.67	4.48
-	#	37	14	159	82	329	156	6	10	∞	9
	#2	20	17	178	115	330	173	6	13	=	7
	#3	46	28	159	66	306	175	•	S	4	∞
	Mean	44.11	19.56	165.00	99.44	321.78	168.00	8.56	9.33	10.78	7.22

Tratment Plate	Plate		IA98	Ĺ	TA100	TA	TA102	TA	TA1535	T/	TA1537
		+6S	.es	\$ 6 \$	-6S	+6S	-6S	+6S	-6S	+6S	-6S
	SD	6.48	7.50	10.97	14.85	13.68	10.48	0.51	4.26	2.83	0.84
3	#	26	0	150	0	304	36	9	0	13	0
	#2		0	124	0	286	14	6	0	12	0
	#3		0	124	0	263	39	7	0	:1	0
	Mean		0.00	132.67	00.0	284.56	38.67	7.44	0.00	12.89	0.00
	SD	8.67	0.00	15.30	00.0	20.39	2.73	1.71	0.00	0.51	0.00
5	#	7	0	\$9	0	38	78	0	0	0	0
	#2	S	0	19	0	42	73	0	0	0	0
	#3	4	0	28	0	37	63	0	0	0	0
	Mean	5.44	0.00	61.11	0.00	39.00	71.67	00:0	0.00	0.00	0.00
	SD	1.50	0.00	3.69	0.00	2.33	7.64	00:0	0.00	00.0	0.00

TABLE II-A10: MUTAGENICITY ASSAY RESULTS OF ATN

		-	T. 4 0 0	T4100		F					
Freatment	Plate		020	IVI	2	IAIV	70	Z.	IAISSS	VI.	IA1537
		£68	S9-	S\$	-SS	+6S	-6S	+6S	-6S	+6S	-6S
Spintaneous	#	51	36	163	174	217	272	80	œ	12	s
	#2	30	24	20	155	295	347	∞	15	5	13
	#3	32	29	132	158	232	295	01	13	7	10
	Mean	37.67	29.56	153.00	162.22	248.11	304.56	8.56	12.11	8.00	9.44
	SD	11.89	61.9	18.48	10.08	41.64	38.79	1.54	3.66	3.38	3.75
DRSO	#	43	23	174	147	238	263	80	7	15	5
	#2	37	27	106	173	271	230	13	17	7	∞
	#3	14	31	141	151	282	262	12	12	∞	7
•	Mean	40.44	27.11	140.44	156.89	263.78	261.67	10.89	12.00	68.6	6.67
	SD	3.01	4.02	34.00	13.81	22.71	30.87	2.59	5.00	4.48	1.20
Paitive		Anthrami ne	2-Nitrofluorene	Anthramine	Sodium azide	Anthramine	Mitomycin C	Anthramine	Sodium azide	Anthramine	Aminoacridine
Catrol	#	1740	743	1220	648	447	736	222	620	234	157
	#2	1568	935	1537	684	472	867	239	630	122	121
	#3	1539	776	1485	630	452	177	226	715	216	131
	Mean	1615.67	817.89	1414	654.33	456.89	791.33	229.11	655.33	223.44	136.44
	SD	108.38	102.42	169.75	27.5	13.61	90.89	8.76	52.2	9.48	18.86
A'N (mg / plate)											
0	#	28	29	159	152	310	260	∞	14	13	6
	#2	29	20	121	911	279	257	6	61	12	=
	#3		24	174	148	293	263	=	91	=	13
	Mean	29.00	24.44	151.22	138.67	293.78	259.89	9.33	16.56	12.00	10.89
	S	1.33	4.68	27.27	19.73	15.70	2.67	1.33	2.67	0.88	2.17
0":	#	24	56	151	150	268	264	80	14	=	14
	#2	32	42	195	152	241	240	7	6	Ξ	10
2-	#3	27	31	191	591	255	267	•	=	12	11
	Mean		33.11	168.89	155.67	255.00	256.89	7.78	11.33	11.44	11.56
	SD	4.18	7.82	23.12	8.41	13.50	15.03	0.51	2.52	0.84	2.22
-	#	36	29	178	133	260	223	5	œ	14	7
	#2	37	32	151	140	592	221	∞	0	6	
	#3		31	168	134	273	225	∞	7	=	6
	Mean	36.56	30.89	165.56	135.67	265.89	223.33	7.00	4.78	11.44	8.89

Treatment	P.		TA98	TA100	2	TA102	102	TA	TA1535	TA	TA1537
		S9+	-6S	+6S	-6S	+6S	-6S	+6S	-68	+6S	-6S
	SD	69'0	1.39	13.50	3.84	65.9	2.00	1.45	4.17	2.50	2.01
3	#	8	28	85	9/	178	225	83	0	9	3
	7#		=	104	112	185	258	. 20	0	12	6
	#3		8	191	87	192	208	34	0	13	∞
	Mean	28.00	32.89	116.78	91.44	184.78	230.22	55.56	0.00	10.56	6.44
	SD	19.92	25.24	39.50	18.31	6.83	25.24	25.13	00:00	3.72	3.29
5	#	82	0	8	0	134	89	2	0	3	0
	#2	41	0	0	0	186	06	3	0	3	0
	#3	49	0	0	0	197	86	3	0	4	0
	Mean	58.22	0.00	2.56	0.00	172.33	85.22	1.67	0.00	3.33	0.00
	SD	23.25	0.00	4.43	0.00	33.39	15.49	1.53	00:0	0.58	0.00