

Decision Trees & Ensemble Methods

Ing 4 SI, 2022

Course overview

- Week 1: Introduction to Data Science and Machine Learning
- 2. Week 2: Univariate & Multivariate Linear Regression
- Week 3: Logistic Regression (Classification)
- 4. Week 4: Decision Trees (Regression & Classification)
- 5. Week 5: Model evaluation (overfitting, bias-variance, crossfolding, ...)

Course overview

- Classification: recall
- 2. Decision Trees
 - 1. Decision Trees Intuition
 - Decision Trees Learning
 - Decision Trees Prediction
- Multiclass classification with Decision Trees
- 4. Overfitting in Decision Trees
- 5. Ensemble Methods
- 6. Practical work

Reminder of Machine Learning Types

 Machine learning tasks are typically classified into three broad categories.

22 4.1 Classification: Recall

Classification

• Goal: Inputs are divided into two or more classes, and the ML algorithm must produce a model that assigns unseen inputs to one or more of these classes.

An algorithm that implements classification is known as a classifier.

Two-class(Binary) Classification

Loan demand: Output y has 2 categories

Input: x

Client's characteristics (age, Revenue, credit, etc..)

Output: y

Loan safety evaluation

Multi-class Classifier

Weather: Output y has more than 2 categories

Input: x

Altitude, region, date, etc...

Output: y

Weather status

Classification Example

Titanic survival prediction: A Binary classification

>>> 4.2 Decision Trees

>>> 4.2.1 Decision Trees: Intuition

Decision Trees

Decision tree learning is one of the predictive modeling approaches used in statistics, data mining and machine learning.

It uses a **decision tree** (as a predictive model) to go from **observations** about an item (represented in the **branches**) to conclusions about the item's **target value** (represented in the **leaves**).

Decision Trees

A first possibility

Decision Trees

Another possibility

Decision Trees: Intuition

Decision Trees: Model

Using a Decision Tree as a Classifier:

 $T(X_i)$ = Traverse Decision Tree

>>> 4.2.2 Decision Trees: Learning

Decision Trees Learning

Learning a Decision Tree from Input Data:

Decision Trees Learning

Learning a Decision Tree from Input Data:

Decision Trees Learning: Classification Error

Quality metric = Classification Error: measures the fraction of mistakes

Decision Trees Learning

Learning a Decision Tree from Input Data: Find the tree with lowest error !!

How to find the best tree?

- How to find the tree with lowest error ?
 - Exponentially Large Number of possible trees -> making decision tree learning hard

How to find the best tree?

Simple (greedy) algorithm: Finds a «Good» tree

Pclass	Sex	Age	Survival?
3	male	Adult	No survival
1	female	Adult	Survival
3	female	Adult	No survival
1	female	Adult	Survival
3	male	Adult	No survival
1	male	Adult	No Survival
1	male	Child	survival
3	female	Adult	No survival
2	female	Child	survival
3	female	Child	No survival
1	female	Adult	Survival
3	male	Adult	No survival
3	male	Adult	No survival
3	female	Child	No survival
2	female	Adult	No survival
1	male	Child	survival
3	female	Adult	No survival
2	male	Adult	No survival
2	male	Adult	No survival

Greedy Decision Tree Learning

Greedy Decision Tree Learning

Algorithm:

Start with all Data: Root Node

Pclass	Sex	Age	Survival?
3	male	Adult	No survival
1	female	Adult	Survival
3	female	Adult	No survival
1	female	Adult	Survival
3	male	Adult	No survival
1	male	Adult	No Survival
1	male	Child	survival
3	female	Adult	No survival
2	female	Child	survival
3	female	Child	No survival
1	female	Adult	Survival
3	male	Adult	No survival
3	male	Adult	No survival
3	female	Child	No survival
2	female	Adult	No survival
1	male	Child	survival
3	female	Adult	No survival
2	male	Adult	No survival
2	male	Adult	No survival

Assume N = 120 & 3 features

Survival status: Survival or No survival

Selecting best feature to split on

- Selecting best feature to split on: Measuring effectiveness of a split
 - By calculating the classification error of the actual decision stump

Selecting best feature to split on: Measuring effectiveness of a split

Choice 1: Split on Pclass

Tree	Classification error
Root node	0,45
Split on Pclass	0,2

ERROR = 24 / 120 = 0,2

Selecting best feature to split on: Measuring effectiveness of a split

Choice 2: Split on Age

Tree	Classification error	
Root node	0,45	
Split on Pclass	0,2	
Split on Age	0,25	

ERROR = 30 / 120 = 0,25

Selecting best feature to split on

Tree	Classification error	
Root node	0,45	
Split on Pclass	0,2	
Split on Age	0,25	

Greedy DT Learning

Algorithm:

- Recursion & Stopping:
 - We have learned a decision stump: what's next?

Survival status : Survival or No survival

- Recursion & Stopping:
 - We have learned a decision stump: what's next?

Survival status : Survival or No survival

Greedy DT Learning: step 3

Recursion & Stopping: Second Level

Step 1

Select a feature to split

Greedy DT Learning: step 3

Step 1 Recursion & Stopping: Final Decision Tree Select a feature to split Step 2 For each split of the tree When do we Start Nothing Step 3 more? STOP ?? **Make Predictions** Class 3 Class 2 Class 1 27 12 No survival All data in these nodes have Child Adult Male the same class !! → No more splitting → STOP No survival Age? Already split on all other Child Adult features III → No more splitting → STOP Surviva No surviva

Greedy Decision Tree Learning

Algorithm:

Measuring the effectiveness of a split

- So far, we have used the Classification error to choose the best split.
- Two other measures are also possible: Gini index and Entropy.
- These are all measures of node impurity that we want to minimize.

For two classes, if p is the proportion in the second class, these measures are:

```
    ○ Classification error = 1 - max(p, 1 - p)
    ○ Gini Index = 2p(1 - p)
    ○ Entropy = -plog(p) - (1 - p)log(1 - p)
```

Gini index and Entropy are more used in practice (differentiable)

Decision Trees
Learning: Features with
real values

How to deal with real valued features ?

Split on each numeric value ?

Start Split on Age 58 Classes are too specific 2 data points 1 data point (overfitting) for this node for this node → Predictions can't be trusted !!

Survival status :

Survival or No survival

A better strategy: Threshold split

Finding the best splitting threshold?

Finding the best splitting threshold?

Finding the best splitting threshold: Algorithm

>>> 4.2.3 Prediction with Decision Trees

Decision Trees Prediction

Using a Decision Tree as a Classifier:

Decision Trees Prediction

3 4.3 Multiclass Classification

Multiclass Classification

Multiclass Decision stump

Pclass	Sex	Survival?
3	male	No survival
1	female	Survival with severe injuries
3	female	No survival
1	female	Survival
3	male	No survival
1	male	No Survival
1	male	survival
3	female	Survival with severe injuries
2	female	survival
3	female	No survival
1	female	Survival with severe injuries
3	male	No survival
3	female	No survival

For each intermediate node,

set ŷ = majority value

Class 3 Class 2 Class 1 4 16 8 5 10 35

Survival with

severe injuries

No survival

Survival status :

or Survival with severe injuries or No survival

Start

Pclass?

Survival

Survival

33 4.4 Overfitting in decision trees

Overfitting review

What about decision trees ?

Model Complexity in Decision Trees

Which tree is simpler?

Tree depth is an indicator of model complexity

Overfitting in Decision Trees

What happens when we increase depth?

- More depth = More complexity = Risk of overfitting.
- Implement Early Stopping before the tree becomes too complex

Early stopping to prevent overfitting

Control how to grow the tree using the following parameters

sklearn.tree.DecisionTreeClassifier

```
class_sklearn.tree. DecisionTreeClassifier (criterion='gini', splitter='best', max_depth=None, min_samples_split=2 min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_split=1e-07, class_weight=None, presort=False) [source]
```

- Max_depth: The maximum depth of the tree
- min_samples_split: minimum number of samples required to split an internal node
- min_samples_leaf: Minimum number of samples required to be at a leaf node.
- min_weight_fraction_leaf, max_leaf_nodes, min_impurity_split are also helpful but less used in practice.

>>> 4.5 Ensemble Methods

Ensemble Methods

• Goal: Combine the predictions of several base estimators (ex. Decision trees) in order to improve generalizability / robustness over a single estimator.

- Two families of ensemble methods are usually distinguished:
 - Bagging (Averaging methods): the driving principle is to build several estimators on different subsets of the data. Prediction proceeds with majority vote (averaging)
 - Example: Random Forest
 - Boosting methods: base estimators are built sequentially and one tries to reduce the error of the previous one. Prediction proceeds with weighted vote.
 - Example: Adaboost

Bagging

- Each tree in the ensemble is built from a sub-sample drawn with replacement (i.e., a bootstrap sample) from the training set.
 - A bootstrap simple of size s: Draw s points with replacementat random from the training set. (So some of the data is repeated, but it's ok!)
 - Usually, s = 60%
- To predict a new observation x, use the majority vote of the trees on x (averaging)
- Bootstrapping samples + averaging outputs = Bagging
- Bagging works with other classification algorithms, also apply for regression
 - Bagging Classifer
 - Bagging Regressor

Bagging

Random Forest

- Random forest is a special case of bagging where:
 - The sub-sample size is always the same as the original input sample size
 - When splitting, pick the best split among a random subset of the features.

Boosting

Goal: turn a "weak" learning algorithm into a "strong" one.

Boosting = Focus learning on "hard" points.

Boosting in general

Learning from weighted data

Boosting and overfitting

Example: Lending Club dataset.

Boosting tends to be robust to overfitting

But will eventually overfit with large T

Use cross validation to choose the value of T

Practical work

LAB4: Back in 15min!

>>> 4.6 Practical Work

males, above age **11.5** Pclass **2** or **3**: **276** died and **27** survived. Proba of survival = **27/303** = **8.91** %

Thank you for your attention

