Deuxième partie II

Prévision par lissage exponentiel

Prévision par lissage exponentiel

Introduction aux Séries Chronologiques

Lissage exponentiel simple

Méthode de Holt

Méthode de Holt-Winters

Objectifs

- On observe une série chronologique X_1, X_2, \ldots, X_T
- Peut-on prédire le comportement de la série après T?
 - * Par exemple que vaut X_{T+1} ??
- $\widehat{X}(T, T+1)$: prévision de la valeur de la série à la date T+1 connaissant les valeurs de la série jusqu'à la date T
- Plus généralement $\widehat{X}(t, t+h)$: prévision de la valeur de la série en t+h connaissant les valeurs jusqu'à la date t
- Méthode de lissage avec des poids exponentiels

Toujours le trafic aérien

	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960
Janvier	112	115	145	171	196	204	242	284	315	340	360	417
Février	118	126	150	180	196	188	233	277	301	318	342	391
Mars	132	141	178	193	236	235	267	317	356	362	406	419
Avril	129	135	163	181	235	227	269	313	348	348	396	461
Mai	121	125	172	183	229	234	270	318	355	363	420	472
Juin	135	149	178	218	243	264	315	374	422	435	472	535
Juillet	148	170	199	230	264	302	364	413	465	491	548	622
Août	148	170	199	242	272	293	347	405	467	505	559	606
Septembre	136	158	184	209	237	259	312	355	404	404	463	508
Octobre	119	133	162	191	211	229	274	306	347	359	407	461
Novembre	104	114	146	172	180	203	237	271	305	310	362	390
Décembre	118	140	166	194	201	229	278	306	336	337	405	432

- Combien de passager vont prendre l'avion en janvier 1961 ? $\widehat{X}(144, 145)$
- En mars 1963 ? \hat{X} (144, 159)

SES: Single Exponential Smoothing

- On observe les valeurs X_1, \ldots, X_T
- La prévision $\widehat{X}(T, T+1)$ est une moyenne des valeurs X_T, \ldots, X_1 avec des poids w_1, \ldots, w_T qui décroissent de façon exponentielle

*
$$\widehat{X}(T, T+1) = w_1 X_T + w_2 X_{T-1} + \ldots + w_T X_1$$

- * $W_{t+1} = (1 \alpha) W_t \text{ avec } 0 < \alpha < 1$
- On veut que la somme des poids $w_1 + w_2 + \dots$ fasse 1
- On trouve $w_t = \alpha (1 \alpha)^{t-1}$ avec $0 < \alpha < 1$

Définition

La prévision à l'ordre 1 par lissage exponentiel simple d'ordre $0 < \alpha < 1$ est donnée par

$$\widehat{X}(t,t+1) = \alpha X_t + \alpha (1-\alpha) X_{t-1} + \ldots + \alpha (1-\alpha)^{t-1} X_1$$

La prévision à l'ordre h est celle d'ordre $1:\widehat{X}(t,t+h)=\widehat{X}(t,t+1)$.

Formule récursive

- Le paramètre α donne l'importance du passé
 - * $\alpha = 1$ seul l'instant d'avant compte : $\widehat{X}(t, t+1) = X_t$
 - \star Plus α est petit, plus le début de la série compte pour la prévision : longue mémoire
- On peut calculer par récurrence

$$\widehat{X}(t, t+1) = \alpha X_t + \alpha (1 - \alpha) X_{t-1} + \dots + \alpha (1 - \alpha)^{t-1} X_1$$

$$= \alpha X_t + (1 - \alpha) (\alpha X_{t-1} + \alpha (1 - \alpha) X_{t-2} + \dots + \alpha (1 - \alpha)^{t-1-1} X_1)$$

$$= \alpha X_t + (1 - \alpha) \widehat{X}(t-1, t)$$

- * avec la convention $\widehat{X}(1,2) = \alpha X_1$ pour obtenir la formule
- * ou en pratique $\widehat{X}(1,2) = X_1$.

Choix du paramètre α

- La formule récursive est très simple à programmer
- Pour choisir α , si on s'intéresse aux prévisions d'ordre 1, on minimise les erreurs

$$E(\alpha) = \sum_{t=2}^{T} \left[X_t - \widehat{X}(t-1,t) \right]^2$$

- Voir exemple « Chômage des hommes de plus de 20 ans de janvier 1948 à décembre 1961 » : « andrew.xlsx »
- La méthode SES ne fonctionne pas très bien lorsqu'il y a une tendance ou une composante saisonnière

Méthode de Holt

- Méthode adaptée aux séries ayant une tendance mais pas de saisonnalité
- L'idée est d'estimer la tendance T_t ainsi que la pente de la tendance b_t
- On retient les équations

$$T_t = \alpha X_t + (1 - \alpha) (T_{t-1} + b_{t-1})$$

 $b_t = \beta (T_t - T_{t-1}) + (1 - \beta) b_{t-1}$

avec $0 < \alpha < 1$ et $0 < \beta < 1$.

• On estime alors X_{t+h} par

$$\widehat{X}(t,t+h) = T_t + h b_t$$

Méthode de Holt

On retrouve le lissage exponentiel simple pour

$$\beta = 0, \qquad b_1 = 0$$

En pratique, on initialise les paramètres

$$T_1 = X_1, \qquad b_1 = X_2 - X_1$$

• Pour choisir α et β , on peut minimiser un critère des moindres carrés sur la somme des erreurs de prévision

$$\sum \left(\widehat{X}(t,t+1)-X_{t+1}\right)^2$$

Méthodes de Holt-Winters

- Ce sont les méthodes à privilégier lorsque la série présente à la fois un terme de tendance et un terme de saisonnalité
- Ces méthodes consistent à estimer trois quantité :
 - \star la tendance T_t de la série désaisonnalisée
 - \star la pente de la tendance b_t de la série désaisonnalisée
 - \star la saisonnalité S_t
- Deux types de méthodes : multiplicatives et additives

Holt-Winters multiplicatif

- On note s la période de la série X de départ
- On considère α , β et γ dans]0,1[et

$$T_{t} = \alpha \frac{X_{t}}{S_{t-s}} + (1 - \alpha) (L_{t-1} + b_{t-1})$$
 $b_{t} = \beta (L_{t} - L_{t-1}) + (1 - \beta) b_{t-1}$
 $S_{t} = \gamma \frac{X_{t}}{T_{t}} + (1 - \gamma) S_{t-s}$

• La prévision au temps t + h connaissant X_1, \ldots, X_t est donnée par

$$\widehat{X}(t,t+h) = (T_t + h b_t) S_{t-s+h}$$

Holt-Winters multiplicatif

- Initialisation : on doit donner $T_1, \ldots, T_s, b_1, \ldots, b_s, S_1, \ldots, S_s$
- Pour t = 1, ..., s,

$$T_{t} = \frac{X_{1} + \ldots + X_{s}}{s}$$

$$b_{t} = \frac{1}{s} \left[\frac{X_{1+s} - X_{1}}{s} + \ldots + \frac{X_{s+s} - X_{s}}{s} \right]$$

$$S_{t} = \frac{X_{t}}{L_{t}}$$

• Le choix de α , β , γ est souvent fait en minimisant un critère de moindres carrés

Holt-Winters additif

Pour un modèle additif, les équations sont

$$T_{t} = \alpha (X_{t} - S_{t-s}) + (1 - \alpha) (L_{t-1} + b_{t-1})$$

 $b_{t} = \beta (L_{t} - L_{t-1}) + (1 - \beta) b_{t-1}$
 $S_{t} = \gamma (X_{t} - T_{t}) + (1 - \gamma) S_{t-s}$

La prévision au temps t + h connaissant X_1, \ldots, X_t est donnée par

$$\widehat{X}(t,t+h) = T_t + h b_t + S_{t-s+h}$$

• L'initialisation est similaire : $S_t = X_t - T_t$

Trafic Aérien

- On observe jusqu'en 1959 et on prédit le trafic pour 1960
- Modèle multiplicatif : α = 0.319, β = 0.049, γ = 0.986

