AUTOMATIC POLYPHONIC MUSIC TRANSCRIPTION

by

OLIVER IGNETIK

A THESIS SUBMITTED FOR THE DEGREE OF BACHELOR OF ENGINEERING

in

DIGITAL SIGNAL PROCESSING

in the

UNDERGRADUATE DIVISION

of the

AUSTRALIAN NATIONAL UNIVERSITY

2020

Supervisors:

Associate Professor Parastoo Sadeghi, Main Supervisor Professor Rod Kennedy, Co-Supervisor

Examiners:

Associate Professor Parastoo Sadeghi, ANU Professor Rod Kennedy, ANU

Declaration

I hereby declare that this thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

Ou

Oliver Ignetik

 $July\ 5th\ 2020$

Contents

Abstract						
List of Figures List of Tables						
	1.1	What is Automatic transcription?	1			
	1.2	Key Challenges	1			
	1.3	Commercial Applications	3			
	1.4	Overview	3			
		1.4.1 Research Question	3			
		1.4.2 Project Scope	4			
	1.5	Thesis Synopsis	4			
	1.6	Resources	4			
2	Bac	ekground	6			
	2.1	Musical Concepts	6			
		2.1.1 Pitch and Harmony	6			
		2.1.2 Tempo, Beat and Rhythm	7			
	2.2	Signal Processing Techniques	8			
		2.2.1 Sampling Theorem	8			
		2.2.2 Discrete Fourier Transform	8			
		2.2.3 Short-Time Fourier Transform	9			
	2.3	State of the Art Methods	10			
		2.3.1 Non-negative Matrix Factorization	11			
		2.3.2 Neural Networks	13			

	2.4	Summary	18
3	Sys	em Design	20
	3.1	Preliminaries	20
	3.2	Methodology	22
		3.2.1 NMF	22
		3.2.2 NN	23
	3.3	Evaluation	24
		3.3.1 NMF	24
		3.3.2 NN	24
	3.4	Summary	24
4	Res	lts	25
5	Con	elusion	2 6
	5.1	Future Research Directions	26
		5.1.1 User Informed Transcription	26
		5.1.2 Score Informed Transcription	27
		5.1.3 Context specific transcription	27
		5.1.4 Evaluation Metrics	28
		5.1.5 Music Language Models (MLMs)	29
		5.1.6 Parameters for NNs	29
	5.2	Conclusion	30
Bi	bliog	raphy	31
\mathbf{A}	Sign	al Processing Methods	35
R	Nor	eal Notworks	26

Abstract

Automatic Polyphonic Music Transcription

by

Oliver Ignetik

Bachelor of Engineering in Digital Signal Processing
Australian National University

This research paper explores the concept of Automatic Music Transcription (AMT). A literature review is conducted to provide a concise overview of the subject, including state of the art methods and how they can be used to better improve user satisfaction of current systems.

In particular, this paper explores the method known as Non-Negative Matrix Factorization as applied to time-frequency representations of audio signals. The primary concept that will be reviewed to aid with understanding this technique is the Short Time Fourier Transform.

A secondary avenue of exploration is machine learning algorithms and their application to AMT systems. A preliminary review is provided to readily prepare the reader for the related discussions and insights uncovered in this investigation.

Finally the design and methodology of a monophonic AMT system is presented. Thereafter, a discussion is presented on how higher level musical knowledge such as diatonic harmonies, time signatures and modulations can be incorporated into future models to improve their accuracy.

List of Figures

1.1	AMT process figure taken from NUS ISMIR 2019 tutorial [2]	2
2.1	Excerpt from a piano arrangement for the tune Nearness of You with a	
	common time signature of 4 quarter notes per bar	8
2.2	STFT of a 10s excerpt from Blues in F - Bill Evans Trio recording $$	10
2.3	Example of NMF decomposition taken from Smaragdis 2003 [14]	12
2.4	An example of a feed forward architecture neural network appropriate	
	for classification tasks. [2]	14
2.5	An intuitive graphical understanding of gradient descent optimization .	14
2.6	ReLU activation function and Leaky ReLU used to address the vanishing	
	neuron problem that occurs when neurons stop contributing to the model	
	output	17
2.7	Binary cross entropy function that is useful in classification tasks used in	
	conjuction with a softmax activation function on the output \dots .	18
3.1	Proposed general architecture of a music transcription system. [4]	20
5.1	Middle C (262 Hz) played on a piano and a violin. The top pane shows	
	the waveform, with the spectrogram below. Zoomed-in regions shown	
	above the waveform reveal the 3.8-ms fundamental period of both notes [1]	28
	,	

List of Tables

Chapter 1

Introduction

1.1 What is Automatic transcription?

The nature of music signals, which often contain several sound sources that are highly correlated over both time and frequency, means that Automatic Music Transcription (AMT) is still considered an open problem in the literature. Usually an AMT system takes an audio waveform as input, computes a time-frequency representation and outputs pitches over time or ideally a typeset music score. Most approaches are designed to achieve an intermediate goal in AMT which does not actually resemble musical notation as shown in Figure 1.1.

The capability of transcribing music audio into music notation is a fascinating example of human intelligence. It involves analyzing complex auditory scenes, recognizing musical objects, forming musical structures and checking alternative hypotheses. AMT refers to the design of computational algorithms to convert acoustic music signals into some form of music notation. It is a challenging task and considered an unsolved problem in signal processing and artificial intelligence. This problem is particularly challenging in polyphonic music were even the most advanced systems are far behind meeting the accuracy of trained musicians. [1]

1.2 Key Challenges

Despite significant progress in AMT research, there exists no end-user application that can accurately and realiably transcribe music containing the range of instrument combinations and genres found in recorded music. There are several factors that make AMT particularly challenging:

- 1. Polyphonic mixtures inferring musical attributes from a signal containing multiple simultaneous sources with different pitch, loudness and sound quality is extremely difficult. Even the task of disentangling the harmonics of two coinciding pitches is not trivial. For consonant intervals, which are often seen in diatonic harmonies and form basic harmonic building blocks, the notes share many of the same harmonics making the seperation of voices even more difficult. [2]
- 2. Synchronous sound sources musicians pay close attention to metrical structure and rhythmic synchronicity, which violates statistical independence between sources which is often used in Automatic Speech Recognition to facilitate seperation.

Figure 1.1: AMT process figure taken from NUS ISMIR 2019 tutorial [2]

3. Lack of ground-truth transcriptions - the annotation of polyphonic music is extremely time consuming and requires high expertise especially in symphonic pieces were there are many concurrent sound events. Even when there is sheet music available for a particular piece, they are difficult to align with an audio signal. Sheet music at best is considered as a weak label due to the fact subjective interpretation often plays a role. This is true even in the most prudent genres like classical music were musicians strive to pertain to the score as much as possible. [3]

1.3 Commercial Applications

A successful AMT system would enable a broad range of interactions between people and music, including automatic instrument tutoring, dictating improvised musical ideas and automatic music accompaniment, music content visualization and intelligent content-based editing, indexing and recommendation of music and analyzing jazz improvisations and other nonannotated music. Given the potential applications, the problem has attracted commercial interest and a number of AMT software exists. [4]

Commercially available applications include Melodyne (http://www.celemony.com/en/melodyne), Transcribe!(https://www.seventhstring.com/xscribe/) and AudioScore exist. In context-specific transcription scenarios these applications can reach multipitch detection accuracies of 90% or more. Even some open source academically produced applications can reach similar performance levels. [5] However, given complex ensemble pieces with multiple instruments the performance of such systems is still far behind that of a trained musician.

1.4 Overview

1.4.1 Research Question

Can incorporating higher level musical knowledge into existing AMT systems improve the perceived quality of the output for human listeners?

1.4.2 Project Scope

The scope of the thesis will focused on western music with its associated modes and scales. This paper will be restricted to approaches that analyze music produced by pitched instruments such as pianos and guitars. Outside of the scope of the paper will be methods for transcribing percussive instruments such as drums.

1.5 Thesis Synopsis

Chapter 2 serves as a review of important musical concepts and a literature review in music signal processing. Crucial Digital Signal Processing (DSP) techniques are relations are presented. Finally a number of state of the art methods and their characteristics are explored.

Chapter 3 provides details on the system architecture of the AMT systems used in this research project. Chapter 4 presents the crucial results of this research paper and discusses their implications. Chapter 5 discusses the outcomes of the thesis and explores directions for future research.

1.6 Resources

- 1. Core Python Libraries see github repo for thesis.yaml file for all dependencies
 - a) LibROSA LibROSA is a python package for music and audio analysis. It provides the building blocks necessary to create music information retrieval systems.

https://librosa.github.io/librosa/

b) mir_eval - Python library for computing common heuristic accuracy scores for various music/audio information retrieval/signal processing tasks.

https://pypi.org/project/mir_eval/

c) keras - High level deep learning library for python built on TensorFlow
 2.0

https://keras.io/

CHAPTER 1. INTRODUCTION

d) scikit-learn - Machine learning libraries for python. https://scikit-learn.org/stable/user_guide.html

2. Datasets

- a) MAPS A piano database for multipitch estimation and automatic transcription of music [6]
- b) MusicNet A curated collection of labeled classical music [7]
- c) MAESTRO MIDI and Audio Edited for Synchronous TRacks and Organization [8]

3. Work Environment

- a) Anaconda Package Manager
- b) Jupyter Lab NoteBooks

Chapter 2

Background

2.1 Musical Concepts

2.1.1 Pitch and Harmony

The existence of sequences of sounds with well-defined fundamental periods is a very common feature in music. Most musical instruments such as pianos, guitars, flutes and trumpets are constructed to allow performers to produce sounds with easily controlled fundamental periods and associated harmonics. Such a signal is described as a harmonic series of sinusoids at multiples of the fundamental frequency and results in the perception of a pitch in the mind of the listener.

Although different cultures have developed different musical conventions, a common feature is the musical "scale", a set of discrete pitches that repeats every octave. In contemporary western music an "equal tempered scale" is used, which divides the octave into 12 steps on a logarithmic axis called semitones.[9]

$$P_n = P_a (\sqrt[12]{2})^{n-a} \tag{2.1}$$

Where:

 $P_n = \text{Query pitch}$

 P_a = Reference pitch

In musical theory, the spacing in between these steps are known as semitones and form musical intervals. Different combinations of notes that form intervals result in different harmonic structures or "colours" known as chords. Consonant intervals like a perfect fifth are made up of seven semitones and have a frequency ratio of $(2^{\frac{1}{12}})^7 = \frac{3}{2}$ sounding pleasant to the ear. They share many harmonics and ubiquitous in western music. This is partly the reason why transcription can be so difficult. The tritone is considered dissonant and has a intervallic frequency ratio of $(2^{\frac{1}{12}})^6 = \frac{45}{32}$. This interval sounds jarring to the ear and is associated with musical tension. Tritones provide a harmonic spine for the movement of groups of notes because they are so noticable to the listener.

Musical Instrument Digital Interface (MIDI) is one of the most important tools for musicians. It is a protocal that allows computers, musical instruments and other hardware to communicate. It encodes an audio signal into an multi-dimensional array which contains information about the pitch and onset/offset times of notes. Of particular note is the MIDI pitch which has the formula below:

$$d = 69 + 12\log_2(\frac{f_0}{12}) \tag{2.2}$$

Where:

 $f_0 = \text{fundamental frequency}$

d = MIDI number

On a grand piano the lowest note A0 has a frequency of 27.50 Hz and midi number of 21. The highest note C8 has a frequency of 4186.0 Hz and midi number 108.

2.1.2 Tempo, Beat and Rhythm

The musical aspects of tempo, beat and rhythm play a fundamental role. The beat can be described as a sequence of perceived pulses that are regularly spaced in time and correspond to the pulse a human taps along when listening to the the music. [10]

The strength or stress of the musical pulse and how it varies determines the metrical signature of a piece of music. Notes are grouped in rhythmic units in each bar according to the time signature.

The term *tempo* refers to the rate of this pulse as is often denoted as *beats per minute* or *bpm*. Musical pulses typically coincide with note onsets or percussive

Figure 2.1: Excerpt from a piano arrangement for the tune Nearness of You with a common time signature of 4 quarter notes per bar

events. In the context of AMT this tasks constitutes finding a *novelty curve* known as onset detection.

2.2 Signal Processing Techniques

2.2.1 Sampling Theorem

The sampling theorem is a consequence of digitizing analogue signals. Sampling an analogue signal stores quantized values of the amplitude of a continuous signal at regular intervals determined by the sampling rate.

The sampling theorem says that to avoid higher frequency components aliasing as lower frequencies components the following must be satisfied. Considering a sampling frequency F_s and Nyquist frequency F_N .

$$F_s > 2 \cdot F_N \tag{2.3}$$

Where B is the highest frequency expected in the signal. Frequently a sampling rate of 44.1 kHz is used in audio recording because the range of human hearing is from 20hertz-20kHz.

2.2.2 Discrete Fourier Transform

Consider a finite-length sequence x[n] of length N samples such that x[n] = 0 outside the range $0 \le n \le N - 1$. To each finite-length sequence of length N, it is possible to associate a periodic sequence.

$$\tilde{x}[n] = \sum_{r = -\infty}^{\infty} x[n - rN] \tag{2.4}$$

This is implied in the mathematics of the DTFT, that the signal of interest is periodic in nature even when it has a finite length. The Discrete Time Fourier Transform (DTFT) of such a signal is given by:

$$\tilde{X}[\omega] = \sum_{n=-\infty}^{n=\infty} \tilde{x}[n] \exp^{-j\omega n}$$
(2.5)

This sequence is itself periodic with a period N. The Discrete Fourier Transform (DFT) of the original signal finite length signal x[n] can be found by sampling \tilde{X} at $\omega = \frac{2\pi}{N}$ and only considering the values of k within $0 \le k \le N - 1$:

$$X[k] = \sum_{n=0}^{n=N-1} x[n] \exp^{-j\frac{2\pi}{N}k}$$
 (2.6)

The DFT is often implemented as the Fast Fourier Transform which reduces the order of complexity to $O(N \log N)$ by exploiting symmetries in the transformation. [11] Equation 2.6 will be used frequently throughout this project and extended upon in § 2.2.3.

2.2.3 Short-Time Fourier Transform

As in other audio-related applications, the most popular tool for describing the time-varying energy across different frequency bands is the short-time Fourier Transform (STFT), which, when visualized as its magnitude, is known as the spectrogram.

Formally, let x be a discrete-time signal obtained by uniform sampling a waveform at a sampling rate F_s Hz. Using a N-point tapered window w (eg. Hamming $w[n] = 0.5 - 0.46 \cdot cos(\frac{2\pi n}{N})$ for $n \in [0, N-1]$) and an overlap of half a window length we obtain the STFT.

$$X[m,k] = \sum_{n=0}^{N-1} w[n] \cdot x[n+m \cdot \frac{N}{2}] \cdot exp\{-j\frac{2\pi kn}{N}\}$$
 (2.7)

With $m \in [0, T-1]$ and $k \in [0, K-1]$. Here, T determines the number of frames, $K = \frac{N}{2}$ is the index of the last unique frequency value as dictated by the Sampling Theorem. Thus X[m, k] corresponds:

$$f_{coeff}(k) = \frac{k}{N} \cdot F_s$$
 [Hz] (2.8)

$$f_{coeff}(k) = \frac{k}{N} \cdot F_s$$
 [Hz] (2.8)
 $t_{frame}(m) = t \cdot \frac{N}{2F_s}$ [s]

X[m,k] is complex-valued, with the phase depending on the alignment of each short-time analysis window. Often it is only the amplitude |X[m,k]| that is used. [11]

2.2.3.1Log-Frequency Spectrogram

Note that the Fourier coefficients of X[m,k] are linearly spaced on the frequency axis. Using suitable binning strategies, various approaches switch over to a logarithmically spaced frequency axis, by using mel-frequency bands or pitch bands as seen in Figure 2.2. Keeping the linear frequency axis puts greater emphasis on the high-frequency regions of the signal, thus accentuating the aforementioned noise bursts visible as high-frequency content. One simple yet important step often applied in the processing of music signals, is referred to as logarithmic compression. Such a compression not only accounts for the logarithmic nature that describes how humans perceive sound but also balances out the dynamic range of the signal. [1]

Figure 2.2: STFT of a 10s excerpt from Blues in F - Bill Evans Trio recording

State of the Art Methods 2.3

Many approaches have been developed for AMT applied to polyphonic music. While the end goal of AMT is to convert an acoustic music recording to some form of music notation, most approaches are aimed at achieving an intermediate goal. Some commercial applications provide the capability of converting a piano-roll

representation into typeset music notation. However, the end results are generally musically illogical especially in genres like jazz where notes often fall on the upbeat and rythms are highly syncopated.

AMT approaches can generally be organized into four categories: frame-level, note level, stream level and notation level. Frame level transcription which is also known as *Multipitch estimation* aims at identifying the number and pitch of notes that are present in a frame of music. A frame is generally on the time scale of 10ms depending on the type of analysis window. Note-level transcription not only estimates the pitch in each time frame but also the onset and offset times. Stream level transcription of *instrument tracking* targets the grouping of estimated notes into streams. These groupings typically correspond to different instruments or timbres. Notation level transcription or *audio-to-note transcription* aims to transcribe the music audio into a musical score such as that seen on staff notation. Harmonic and rhythmic structures have to be incorporated into the modelling and as a result the complexity is monumentally higher then MPE approaches. [12]

Readers interested in a comparison of the performance of different approaches are referred to the Multiple Fundamental Frequency Estimation and Tracking task of the annual Music Information Retrieval Evaluation eXchange (MIREX) (http://www.music-ir.org/mirex).

2.3.1 Non-negative Matrix Factorization

A large subset of transcription systems employ methods stemming from spectrogram factorization techniques, which exploit the redundancies found in music spectrograms. Non-negative matrix factorization (NMF) was first proposed by Lee and Seung [13]

Starting with a non-negative M by N matrix \mathbf{X} the goal of NMF is to approximate it as a product of two non-negative matrics $\mathbf{W}_{M\times R}$ and $\mathbf{H}_{R\times N}$, where $R\leq M$ such the cost function is minimized:

$$C = |\mathbf{X} - \mathbf{W} \cdot \mathbf{H}|_F \tag{2.10}$$

where $|\cdot|_F$ is the Frobenius norm. This is actually equivalent to Gradient Descent based minimization of divergence. [14] There are a number of algorithms for finding

the appropriate values of W and H. For example, the generalized Kullback-Leibler divergence between X and $W \cdot H$ is non-increasing under the following updates and guarantees the nonnegativity of both W and H:

$$H \Leftarrow H \odot \frac{W^T \frac{X}{WH}}{W^T J} \text{ and } W \Leftarrow W \odot \frac{\frac{X}{WH} H^T}{JH^T}$$
 (2.11)

where the \odot operator denotes pointwise multiplication, $J \in \mathbb{R}^{M \times N}$ denotes the matrix of ones, and the divison is pointwise. [15]

Figure 2.3: Example of NMF decomposition taken from Smaragdis 2003 [14]

In the context of time-frequency representations and AMT both unknown matrices have an intuitive interpretation. X in the most basic cases in time-frequency analysis is a STFT of the audio signal. W encodes the spectral profiles of the R components and is commonly referred to as the dictionary matrix. H encodes the temporal activity of the each of those components and named the activation matrix. This is more clear by inspecting Figure 2.3 which shows an example decomposition.

There are two classes of NMF approaches that fall into supervised and unsupervised approaches. In supervised approaches the dictionary matrix is prextracted. For explanatory purposes, one can imagine the application of such an NMF AMT system. To compile the dictionary matrix a recording of each note played in isolation is recorded and concatenated. Thus each component can be thought of corresponding to individual pitches with their associated harmonic profiles. The NMF-based

decomposition is then performed by applying the update rules in Equation 2.11 to find **H** to minimize the cost function.

The unsupervised approach involves hyperparameter tuning to discover the optimal value for the number of components. This can be achieved by grid search methods cv-fold testing by splitting up the audio signal into smaller segments. Both approaches are widely used and there have been many studies based on improving performance and accuracy. For a comprehensive overview of a number of these techniques refer to [16–18].

State of the art applications of NMF for polyphonic AMT include work were sparseness constraints were added into the NMF update rules, in an effort to find meaningful transcriptions. [19] Another approach was based on incorporating harmonicity constraints in the NMF model, resulting in two algorithms: harmonic and inharmonic NMF. [20] Additionally the model constrains each basis spectrum to be expressed as a weighted sum of narrowband spectra, in order to preserve a smooth spectral envelope. The inharmonic version of the algorithm is also able to support deviations from perfect harmonicity and standard tuning. Also, another approach proposed a Bayesian framework for NMF, which considers each pitch as a model of Gaussian components in harmonic positions. [21] Spectral smoothness constraints are incorporated into the likelihood function, and for parameter estimation the space alternating generalised EM algorithm (SAGE) is employed.

More recently, one approach proposed an algorithm for multi-pitch detection and beat structure analysis. The NMF objective function is constrained using information from the rhythmic structure of the recording, which helps improve transcription accuracy in highly repetitive recordings. [22]

2.3.2 Neural Networks

Neural Networks (NN) are systems that are vaguely inspired by biological neural networks. They are based on a collection of connected units or nodes called artifical neurons. They are able to learn non-linear functions from input to output via an optimization algorithm. The goal of a network is to learn the weights w_{ij} by minimizing the cost function with respect to the training data. [23]

NNs have a number of advantages over traditional machine learning algorithms.

Figure 2.4: An example of a feed forward architecture neural network appropriate for classification tasks. [2]

One of the main advantages is the removal of the need for feature extraction which is important in unstructured types of data like images or sound. The type of network architecture that will be discussed in this paper is known as a feed forward neural network. Deep networks partially replace the need for feature engineering. The deeper layers in the network, model increasingly more abstract and intricate features. In the context of music transcription, the layers closer to the input might model individual notes, whilst deeper layers, model features such as chords and harmonic progressions depending on the type of network used.

One extremely important concept that is pivotal for understanding the optimization of neural networks is gradient descent and back propagation. Backpropagation

Figure 2.5: An intuitive graphical understanding of gradient descent optimization

Algorithm 1: Gradient descent optimization for one epoch with batch size equal to entire dataset

```
Data: Training dataset X
     Result: Optimal weights that minimize loss function \theta
     Input: query weight \theta_i
     Output: Gradient \nabla
 1: Function Calculate Gradient(\theta_i):
         r_j \leftarrow Slope of the loss function
 2:
         \alpha_i \leftarrow Slope of the activation function
 3:
         \gamma_i \leftarrow Value of the neuron that feeds into our weight
 4:
          \nabla \longleftarrow \gamma_j \ r_j \ \alpha_j
 5:
 6:
         return \nabla
     Input: Initialized weights \theta, training Data X, learning rate L
     Output: Optimized weights \theta
 7: Procedure Gradient Based Optimization(\theta, X, L):
 8:
         for X_i \in X do
 9:
              Perform forward propagation with X_i to make a prediction
              Use this prediction in back propogation to update weights
10:
              \nabla \longleftarrow \mathsf{Calculate} \; \mathsf{Gradient}(\theta_i)
11:
              \theta_j \longleftarrow \theta_j - L \times \nabla
12:
13:
         return \theta
```

is an iterative optimization process used to train models. The goal is to find the lowest point of a multivariate loss function by incrementally updating each weight in the network by the product of the gradient and the learning rate. Algorithm 1 shows the steps that are used in gradient descent optimization in one epoch. An epoch refers to a complete pass through the training data. In other words all the samples have been passed through the model for training Through backpropagation, the loss or difference between the predicted value and the actual value, is transferred from one layer to another and the weights are modified so that the loss is minimized.

One other crucial concept in NNs and machine learning in general is the concept of overfitting. Typically, datasets are seperated into test and train sets. The model is exposed to the training data and is then used to predict on the test data. When the test accuracy of the model starts to decrease and the training accuracy further increases this is known as overfitting. This is because the model is no longer capturing the underlying relationships in the data but is rather overaccommodating to the subtleties in the training data. The end goal of the network should be to predict on any unseen dataset that it has not been exposed to and perform accurately.

There are a number of important parameters which have to be tuned in a neural network through a process known as hyperparameter tuning. This is typically done using a grid-search algorithm to find a set of parameters which optimizes the cost function. [24] Some of these hyperparameters important for tuning network performance are given below:

2.3.2.1 Important Features in NNs

Several aspects of NNs require further explanation as they are not obvious. These parameters play a pivotal role in the performance and accuracy of the network. This section will briefly discuss each of these parameters and certain trade offs that they present.

- 1. learning rate the rate at which the weights are updated in the optimization process. If the learning rate is too high the model may fail to converge in optimization.
- 2. activation functions mathematical equations that determine the output of a node in network. They determine whether it should be activated or not based on the input to the node. A number of common activation functions that are used in different types of problems include: ReLU (Rectified Linear Unit) (Shown in Figure 2.6), hyperbolic tangent, softmax and sigmoid activations. Each activation function is employed depending on the type of problem and corresponding optimizer and loss function used.
- 3. optimizer the type of optimization algorithm employed to train the model and update the weights of the model. One of the most well known optimization algorithms is called gradient descent which has a number of variants such as stochastic and mini-batch gradient descent. Some optimization algorithms are more appropriate for certain types of problems such as regression or classification problems.

- 4. *epoch* when an entire dataset is passed forward and backward through the neural network only once. Typically setting a higher number of epochs will lead to higher accuracy in the training set but their is a risk of overfitting.
- 5. batch size total number of training samples present in a single portion of the dataset that is used to update the weights in backpropagation. There is typically a tradeoff with batchsize, computational efficiency and accuracy. A smaller batch size requires more time for training but is generally more accurate. A common batch size that is used is 32 which is referred to as a mini-batch.
- 6. loss function the loss function is used in backpropagation to update the weights so as to increase the prediction accuracy of the model. They are mathematical functions that measure the difference between the predicted output and the actual output. Some common loss functions include mean squared error, hinge, binary crossentropy (See Figure 2.7) and the kullback leibler divergence.

In recent years NNs have had a considerable impact on the problem of music transcription and on music signal processing in general. However, compared to other fields progress on NNs for music transcription has been slower due to a lack of annotated data with labels which is essential for training the models appropriately. [25]

Figure 2.6: ReLU activation function and Leaky ReLU used to address the vanishing neuron problem that occurs when neurons stop contributing to the model output

The current state of the art method for piano transcription was proposed in research completed by Google Brain [26]. This approach combines two networks, one which detects onsets and one which finds note lengths. The output from the note onset network is used to inform the second network calculating note lengths.

Despite the appeal of NNs and the promises they hold they are often still outperformed by NMF-based methods for a number of reasons:

- 1. Lack of annotated labelled datasets neural networks rely on data to be effective. There are only a small number of annotated datasets which in themselves are restricted to certain types of instruments and genres of music.

 [3]
- 2. Adaptablity to new conditions there are currently no methods to retrain or adapt an NN-based AMT systems on only a few seconds of audio. As such NMF-based systems can perform considerably better with less data and are easier to adapt.

2.4 Summary

In general there are drawbacks and advantages to both types of approaches outlined in this chapter. NNs can be more effective in context dependent environments

Figure 2.7: Binary cross entropy function that is useful in classification tasks used in conjuction with a softmax activation function on the output

CHAPTER 2. BACKGROUND

whilst NMFs show more adaptablity. Currently there are no methods which are favoured in all situations.

Chapter 3 will introduce an AMT system which uses NMF to transcribe single note melodies and discuss the system architecture. Chapter 3 will also discuss how to apply a NN to musical data obtained from 2018 MusicNet database.

Chapter 3

System Design

The AMT problem can be divided into several subtasks, which include: multipitch detection, note onset/offset detection, loudness estimation and quantisation, instrument recognition, extraction of rhythmic information, and time quantisation. The core problem in automatic transcription is the estimation of concurrent pitches in a time frame, also called multiple-F0 or multi-pitch detection. [4]

3.1 Preliminaries

This report will investigate how to use NMF in interpreting an audio recording and extracting music information from this recording. There are two systems and two applications that will be presented in this section.

Figure 3.1: Proposed general architecture of a music transcription system. [4]

CHAPTER 3. SYSTEM DESIGN

- 1. NMF applied to single line melody exploration of parameters used to fine tune model accuracy
 - a) MAPS Dataset chromatic scale played on a Bechstein D 280 in a concert hall [6]
 - b) Type of architecture Supervised NMF
- 2. NN applied to a large music database
 - a) Dataset MusicNet recordings and active frame note labels [7]
 - b) Type of architecture Feed Forward neural network with mutli-label classification

3.2 Methodology

3.2.1 NMF

The experiment for the NMF procedure is outlined in Algorithm 2. This process forms the basis of the investigation and the effect of hyperparameters such as the window size and frequency resolution will be investigated.

Algorithm 2: NMF procedure for single note melody transcription

Data: Excerpt of audio recording x

Result: Array of active notes pitch and onset times y

Input: x audio signal sampled at 44.1 kHz

Output: y predicted pitches

1: **Procedure** NMF Pitch Detection(x):

2: Find corresponding ground truth labels of audio excerpt from database

3: Convert ground truth labels into DataFrame containing OnsetTime and

MidiPitch

4: $number_of_notes \leftarrow length(ground_truths)$

 $X = \sum_{n=0}^{N-1} w[n] \cdot x[n+t+N/2] \cdot e^{-j2\pi \frac{kn}{N}}$

5: Establish frequency resolution corresponding to a semitone

6: Perform harmonic and percussive separation with Librosa function

7: Perform NMF decomposition

8: Make use of Peak picking algorithm on

9: dictionary spectral templates to find f0

10: Convert f0 to MIDI pitch

11: Use peak picking algorithm to find onset time for each activation profile

12: $y \leftarrow$ Merge onset times and midi pitches

3.2.2 NN

The experiment for the NN procedure is outlined in Algorithm 3. This process forms the basis of the investigation and the effect of hyperparameters such as loss function choice and number of layers will be investigated.

Algorithm 3: Procedure for NN investigation

Data: DatasetX

Result: Predicted active notes in each frame y

Input: Dataset of audio excerpts X

Output: Predicted active notes in each frame y 1: Procedure NN transcription procedure(X):

3.3 Evaluation

3.3.1 NMF

MENTION TESTING AND ACCURACY [INSERT TABLE OF PARAMETERS TO BE TESTED]

3.3.2 NN

MENTION TESTING AND ACCURACY [INSERT TABLE OF PARAMETERS TO BE TESTED]

3.4 Summary

Chapter 4

Results

Chapter 5

Conclusion

5.1 Future Research Directions

Despite significant progress in the field of AMT as can be seen by inspecting the MIREX results [27] of recent years. The performance of even the most recent systems falls well below that of a human expert particularly in symphonic music where this is many simultaneous instruments. [28]

5.1.1 User Informed Transcription

The fact that current AMT systems do not reach the same level of precision in extracting information from music audio signals as trained musicians do, suggests that a human in the loop system whereby the user provides input to the system to attain satisfactory results.

Humans are extremely good at instrument identification, note onset detection, and segregation. While computers are capable of performing operations quickly on extremely large datasets. [2] Semi automatic approaches may be able to to obtain results faster then human transcription and more accurate then fully automatic approaches. [2]

The main effort in this research avenue should be to the type of input that users can provide which is most beneficial to the system and how to incorporate high level abstract musical concepts.

One approach which incorporates user feedback requires the indentification of the type of instrument and scale or notes used. [29] The technique used in this approach performed considerably better then a fully automatic approach using the same type of algorithm. Another approach required the user to hum the melody which was used to help extract it from the mixture signal. [30]

5.1.2 Score Informed Transcription

The musical score of a piece can provide invaluable information for AMT systems to exploit. In certain situations, take for example classical performances, a method known as score-to-audio alignment can be used. [31] Automatic music tutoring applications are becoming more popular in recent years with the advent of such programs as Fender Play, Yousician and more taking advantage of this idea. In the use cases correctly played passages need to be identified along with mistakes made by the student. However, these applications are based around correcting local mistakes in pieces and do not correct major changes in performances such as the form of a piece. Finally, the more challenging problem of lead-sheet informed transcription is almost unexplored with no notable published papers at this time. A lead sheet can be thought of as a blueprint to an improvisor indicating only the melody and harmonic progression. These are very weak labels and make incorporating the information they provide extremely difficult. To conclude while this problem has been explored for certain instruments such as the piano there are many other instruments still yet unexplored and the task of lead-sheet informed transcription remains unexplored.

5.1.3 Context specific transcription

The ultimate goal of a complete multi-instrument AMT system without specific knowledge of any contextual parameters such as instrumentation or recording conditions is not yet achievable. However, considerable progress has been made by incorporating contextual parameters into existing pitch detection algorithms. For example multipitch detection accuracy in context-specific piano transcription can now exceed 90%. [5]

Most transcription algorithms that are based on heuristic procedures even deliberately disregard specific timbral characteristics in order to enable independence of instrumentation in pitch detection. Even those transcription methods that are tested on specific datasets are not tailored to that particular instrument.

Transcription systems typically model a wide range of instruments employing a

Figure 5.1: Middle C (262 Hz) played on a piano and a violin. The top pane shows the waveform, with the spectrogram below. Zoomed-in regions shown above the waveform reveal the 3.8-ms fundamental period of both notes [1]

single set of algorithms, assuming that it can be applied equally well to different kinds of instruments and situations. The NMF approach presented in this paper had no information about instrument-specific harmonic profiles incorporated into the model. Depending on the sound production mechanism of instruments, the the characteristics of the harmonics require the introduction of instrument specific parameters in the common models used. For example the spectral characteristics of a note produced on a violin are quite different to those produced on a piano.

5.1.4 Evaluation Metrics

Some notes are more musically important than others and as such some errors are more noticable to human listeners then others. For example, in certain genres like pop music, wrong notes within the scale are less noticable then those from notes outside the scale with alot of tension. Most AMT approaches are evaluated using the set of metrics proposed for the MIREX Mutliple-F0 Estimation and Note Tracking public evaluation tasks. While the metrics do provide insight into building successful AMT systems they do not correspond with human perception of transcription accuracy. Take for example, a repeated missed note compared to a repeating jumping octave or a note in a completely different register. Some ideas that have been proposed include observing how music teachers grade music dictation exams and better understanding the cognitive processes behind processing music in humans. [12]

5.1.5 Music Language Models (MLMs)

AMT systems can model both the acoustic sequences and the underlying notes over time. It provides the main link between music signal processing and symbolic music processing. Some approaches have attempted to incorporate what are known as Music Language Models to better improve the transcription accuracy. These models attempt to encode higher level musical structures such as metric signature, scales and chords and key signature. Key is a high-level musical cue that provides useful information prior to transcription about the combination of potential notes and chords. This can be achieved by giving more wieght to predictions made within the same key. Furthermore, musicological models could be used to describe longer-term relationships in audio recordings such as song structure and modulations between keys. This alludes to the fact that most existing AMT systems are data driven and often the errors they make are not musically meaningful. In the analogous field of Speech Recognition acoustic and language models are applied with great success. However these models can not be directly applied to AMT systems because:

- Music is polyphonic
- Music rhythm involves much longer temporal dependencies
- Music harmony arrangement involves rich music theory

1

Some of the most promising applications of these ideas made use of Recurrent Neural Networks which can better model long term dependencies in time. These approaches were noted to achieved 10% improvements in frame-level transcription accuracy with respect to similar models that did make use of MLS. Further work is needed to better encode high level musical structures into current systems. [32, 33]

5.1.6 Parameters for NNs

There needs to be substantial work in discovering appropriate loss functions to be used in optimization of NN models. The choice of loss function is directly related to the activation function used in the output layer of the NN. This paper showed that despite treating an AMT problem as multi-label problem with a softmax

activation function on the output layer binary crossentropy was not a suitable loss function to be used in optimizing the model. This was shown to be related to the class imbalance between inactive and active notes in each frame. In recent times investigations in to recurrent neural networks have shown the most promise as they are believed to be modelling long term interdependencies in between notes which may be improving model performance by capturing harmonic relations in the deeper layers of the network. [32, 33]

5.2 Conclusion

There are several issues in the AMT problem and if these are not addressed the performance of current systems will never be sufficient for certain applications. This paper has reviewed the current state of AMT research in certain key areas and identified major challenges and outlined promising directions for future work.

A potential way forward in the field is to make use of more information in the form of incorporating high-level musical conventions, instrumental characteristics or explicit user input to resolve ambiguties. In ?? it was discussed how context, whether that be instrumentation or score information, can be used to inform high-level models that are more powerful then generalized models as they can encode important information about key, instrument identities and metrical structure that can inform the pitch detection algorithms.

To potentiate progress in these research avenues, expertise from several disciplines will be needed such as audio engineering, musicology and acoustics. Furthermore there needs to be a greater emphasis on incorporation of end-user applications that provide crucial feedback on how musicians interact with AMT systems and what are the most salient features in music recordings.

The work outlined in this paper illustrates key approaches and techniques that have been developed in the rapidly evolving field of music signal analysis, but as discussed there is much room for improvement and for new inventions and discoveries, leading to more powerful and innovative applications. For the moment, human listeners remain far superior to machines in interpreting information in music signals. However, by addressing the major challenges presented this gap will be greatly reduced by unlocking the full potential of music signal processing techniques.

Bibliography

- M. Müller, D. P. Ellis, A. Klapuri, and G. Richard, "Signal processing for music analysis", *IEEE J. Sel. Topics Signal Process*, vol. 5, no. 6, pp. 1088–110, 2011.
- [2] E. Benetos, "Automatic music transcription", Tutorial presented at National University of Singapore, University of London, January 2019. [Online]. Available: http://c4dm.eecs.qmul.ac.uk/.
- [3] L. Su and Y.-H. Yang, "Escaping from the abyss of manual annotation: New methodology of building polyphonic datasets for automatic music transcription", Proc. Int. Symp. Computer Music Multidisciplinary Research, pp. 309– 321, 2015.
- [4] E. Benetos, S. Dixon, D. Giannoulis, H. Kirchhoff, and A. Klapuri, "Automatic music transcription: Challenges and future directions", J. Intelligent Inform. Syst., vol. 41, no. 3, pp. 407–434, 2013.
- [5] A. C. Z. Duan and B. Wohlberg, "Context-dependent piano music transcription with convolutional sparse coding", IEEE/ACM Trans. Audio, Speech Language Process, vol. 24, no. 12, pp. 2218–2230, 2016.
- [6] V. Emiya, R. Badeau, and B. David, "Multipitch estimation of piano sounds using a new probalistic spectral smoothness principle", *IEEE Transations on Audio, Speech and Language Processin*, To be Published. [Online]. Available: http://www.tsi.telecom-paristech.fr/aao/en/2010/07/08/maps-database-a-piano-database-for-multipitch-estimation-and-automatic-transcription-of-music/.
- [7] J. Thickstun, Z. Harchaoui, D. P. Foster, and S. M. Kakade, "Invariances and data augmentation for supervised music transcription", in *International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, 2018.

- [8] C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C.-Z. A. Huang, S. Dieleman, E. Elsen, J. Engel, and D. Eck, "Enabling factorized piano music modeling and generation with the MAESTRO dataset", 2019. [Online]. Available: https://openreview.net/forum?id=r1lYRjC9F7.
- [9] W. Ye, "Perceptual features in music signal processing", YouTube video of NUS lecture recording, 2019.
- [10] F. Lerdahl and R. Jackendoff, "Generative theory of tonal music", MA: MIT Press, 1983.
- [11] A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing", 3rd ed. Pearson, 2010.
- [12] M. Schedl, E. Gómez, and J. Urbano, "Music information retrieval: Recent developments and applications", Foundations Trends Inform. Retrieval, vol. 8, pp. 127–261, 2014.
- [13] D. Lee and H. Seung, "Leaning the parts of objects by non-negative matrix factorization", *Nature*, vol. 401, pp. 788–791, 1999.
- [14] P. Smaragdis and J. Brown, "Non-negative matrix factorization for polyphonic music transcription", *IEEE Workshop Applications Signal Processing Audio* and Acoustics, pp. 177–180, 2003.
- [15] E. Benetos, S. Dixon, Z. Duan, and S. Ewert, "Automatic music transcription", *IEEE SPS Journal*, vol. 36, no. 1, 2019.
- [16] A. Cheveigne, "Multiple f0 estimation", Computational Auditory Scene Analysis, 2006.
- [17] M. Christensen and A. Jakobsson, "Synthesis lectures on speech audio process", in. San Rafael, CA: Morgan and Claypool, 2009, ch. Multi-pitch estimation.
- [18] A. Klapuri and M. Davy, "Signal Processing Methods for Music Transcription", New York: Springer, 2006.
- [19] A. Cont, "Realtime multiple pitch observation using sparse non-negative constraints", In 7th international conference on music information retrieval, 2006.

- [20] E. Vincent, N. Bertin, and R. Badeau, "Adaptive harmonic spectral decomposition for multiple pitch estimation", *IEEE Trans. Audio, Speech, and Language Processing*, vol. 18, no. 3, pp. 528–537, 2010.
- [21] N. Bertin, R. Badeau, and E. Vincent, "Enforcing harmonicity and smoothness in bayesian nonnegative matrix factorization applied to polyphonic music transcription", *IEEE Trans. Audio, Speech, and Language Processing*, vol. 18, no. 3, pp. 538–549, 2010.
- [22] K. Ochiai, H. Kameoka, and H. Sagayam, "Explicit beat structure modeling for non-negative matrix factorization-based multipitch analysis", *Int. conf. audio, speech, and signal processing*, pp. 133–136, 2012.
- [23] I. Goodfellow, A. Courville, and Y. Bengio, "Deep Learning", Cambridge: MIT Press, 2016.
- [24] L. Li, I. Ni, and L. Yang, "Music transcription using deep learning", 2019.
- [25] R. G. C. Carvalho and P. Smaragdis, "Towards end-to-end polyphonic music transcription: Transforming music audio directly to a score", *IEEE Workshop Applications Signal Processing Audio and Acoustics*, pp. 151–155, 2017.
- [26] E. Elsen, C. Hawthorne, J. Song, A. Roberts, I. Raffel, and J. Engel, "Onsets and frames: Dual-objective piano transcription", Proc. Int. Society Music Information Retrieval Conf., 2018.
- [27] "Music information retrieval evaluation exchange (mirex)", 2011. [Online]. Available: http://www.music-ir.org/mirex.
- [28] X. Serra, M. Magas, E. Benetos, M. Chudy, S. Dixon, A. Flexer, E. Gómez, F. Gouyon, P. Herrera, S. Jorda, O. Paytuvi, G. Peeters, J. Schlüter, H. Vinet, and G. Widmer, "Roadmap for music information research", 2013.
- [29] H. Kirchhoff, S. Dixon, and A. Klapuri, "Shift-variant non-negative matrix deconvolution for music transcription", *Int. conf. audio, speech, and signal processing*, pp. 25–128, 2012.
- [30] P. Smaragdis and G. Mysore, "Separation by humming: User-guided sound extraction from monophonic mixtures", USA: New Paltz, 2009.

- [31] S. Wang, S. Ewert, and S. Dixon, "Identifying missing and extra notes in piano recordings using score-informed dictionary learning", *IEEE/ACM Trans. Audio, Speech, Language Process.*, vol. 25, no. 10, pp. 1877–1889, 2017.
- [32] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, "Modelling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription", Proc. Int. Conf. Machine Learning, pp. 1159– 1166, 2012.
- [33] S. Sigtia, E. Benetos, and S. Dixon, "An end-to-end neural network for polyphonic piano music transcription", *IEEE/ACM Trans. Audio, Speech, Language Process.*, vol. 24, no. 5, pp. 927–939, 2016.

Appendix A Signal Processing Methods

Appendix B

Neural Networks