

AVALIAÇÃO DO SISTEMA DE MEDIÇÃO - TIMON 2.5

Laboratório de Robótica e Sistemas Autônomos - RoSA

Autores:

Jéssica Lima Motta Leonardo Mendes de Souza Lima Miguel Felipe Nery Vieira Vinícius José Gomes de Araujo Felismino

Salvador Bahia, Brasil

Setembro de 2020

RESUMO

SUMÁRIO

1	INTRODUÇÃO	3
2	ESTUDO	5
3	EXPERIMENTO	7
4	INTERPRETAÇÃO DOS RESULTADOS OBTIDOS	9
5	CONCLUSÃO	11
\mathbf{R}	EFERÊNCIAS	13

1 INTRODUÇÃO

Este documento tem como objetivo analisar um experimento estatístico sobre um modelo de helicóptero de papel. Durante o processo, foi medido o seu tempo de queda em duas alturas diferentes, 1,30 m e 2,10 m, além disto, para alterar o seu desempenho, pedaços de fita foram colados em seu corpo e hélices e um clipe foi adicionado em sua parte inferior a fim de verificar a influência da variação destes parâmetros no resultado final. Para variar o valor. O procedimento resultou em trinta e duas combinações distintas conforme vistas na tabela 1 .

Para realizar o estudo estatístico dos dados foi utilizada a ferramenta R, uma linguagem de programação voltada à manipulação, análise e visualização de dados.

Tabela 1: Dados do experimento.

Clipe	Altura	Ad_top	Ad_left	${ m Ad_right}$	Score
+	-	-	-	-	1,57
-	-	-	-	-	1,27
+	+	-	-	-	1,70
-	+	-	-	-	1,10
+	+	+	=	-	1,75
_	+	+	-	-	1,30
+	-	+	-	-	1,82
-	-	+	-	-	1,31
+	+	+	-	+	1,68
-	+	+	-	+	1,35
+	-	+	-	+	2,04
-	-	+	-	+	1,42
+	-	+	+	+	1,86
-	-	+	+	+	1,32
+	+	+	+	+	1,63
_	+	+	+	+	1,17
+	-	=	+	+	1,58
-	-	-	+	+	1,44
+	+	-	+	+	1,73
-	+	-	+	+	1,25
+	+	-	-	+	1,55
-	+	-	-	+	1,23
+	-	=	-	+	1,91
_	-	-	-	+	1,50
+	-	=	+	-	1,92
-	-	-	+	-	1,36
+	+	-	+	-	1,71
-	+	-	+	-	1,52
+	+	+	+	-	1,74
-	+	+	+	-	1,32
+	-	+	+ +	-	1,83
-	-	+	+	-	1,40

2 ESTUDO

3 EXPERIMENTO

Para aplicar os conceitos visto na seção 2, foi proposto um desafio em que consiste medir o tempo de voo de um helicóptero de papel. Para a concepção do helicóptero foi utilizado o modelo proposto pela metodologia SixSigma, conforme visto na Figura 1.

Figura 1: Modelo do helicóptero de papel.

Após as dobras e cortes recomendados pelo *template*, o protótipo obtido como configuração inicial para análise do estudo pode ser visto na Figura 2.

Figura 2: Helicóptero de papel.

Fonte: Autoria própria.

Para obter-se o melhor helicóptero, ou seja, aquele que apresente o maior tempo de voo, foi considerado alguns fatores para alterar sua configuração inicial como pode ser visto na tabela 2. Por fim, foi realizado os testes, medição do tempo de voo, para cada possível combinação dos fatores.

Tabela 2: Fatores considerados para alterar a estrutura.

Fatores	Configuração atual	Alteração permitida
Clipe	Não	Sim
Altura (m)	1,30	2,10
Adesivo (Asa)	Não	Sim
Fita (Corpo/Esquerdo)	Não	Sim
Fita (Corpo/Direito)	Não	Sim

Autoria própria.

4 INTERPRETAÇÃO DOS RESULTADOS OBTI-DOS

O modelo linear encontrado, considerando a interação entre dois elementos, é disposto a seguir.

```
## Call:
## lm(formula = score ~ (altura + clipe + ad top + ad left + ad right) +
##
      altura * clipe + altura * ad_top + altura * ad_left + altura *
##
      ad_right + clipe * ad_top + clipe * ad_left + clipe * ad_right +
      ad top * ad left + ad top * ad right + ad left * ad right,
##
      data = helicoptero)
##
##
## Residuals:
                   1Q
                         Median
                                      30
                                               Max
## -0.180625 -0.055313 -0.009375 0.059687 0.120625
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     1.60813
                                0.07069 22.750 1.30e-13 ***
## altura-
                     0.18625
                               0.07903 2.357 0.03151 *
                               0.07903 -5.362 6.36e-05 ***
## clipe-
                     -0.42375
## ad top-
                     0.00375
                               0.07903 0.047 0.96274
## ad left-
                               0.07903 1.787 0.09284 .
                     0.14125
## ad right-
                               0.07903 2.357 0.03151 *
                     0.18625
## altura-:clipe-
                               0.07069 -0.460 0.65186
                     -0.03250
                                0.07069 -0.531 0.60304
## altura-:ad top-
                    -0.03750
                                0.07069 0.955 0.35382
## altura-:ad_left-
                     0.06750
## altura-:ad_right- -0.14250
                                0.07069 -2.016 0.06092 .
## clipe-:ad top-
                                0.07069 1.344 0.19771
                     0.09500
## clipe-:ad_left-
                                0.07069 -0.566 0.57932
                     -0.04000
## clipe-:ad right-
                                0.07069 -0.283 0.78085
                     -0.02000
## ad top-:ad left-
                                0.07069 -1.910 0.07425 .
                     -0.13500
## ad top-:ad right- -0.00500
                                0.07069 -0.071 0.94448
## ad left-:ad right- -0.21000
                                0.07069 -2.971 0.00901 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.09996 on 16 degrees of freedom
```

```
## Multiple R-squared: 0.9161,Adjusted R-squared: 0.8375
## F-statistic: 11.65 on 15 and 16 DF, p-value: 6.57e-06
```

Pode-se observar que para este modelo os elementos que possuem importância estatística, ou seja Pr < 0.05 são: altura (Pr = 0.03151), clipe (Pr = 6.36e-05), ad_right (Pr = 0.03151) e ad_left:ad_right (Pr = 0.00901).

Considerando os elementos de importância estatística, a equação que representa o modelo é descrita da seguinte forma:

$$score = mean(scores) + \frac{coef(altura)}{2}altura + \frac{coef(clipe)}{2}clipe + \\ \frac{coef(ad_right)}{2}ad_right + \frac{ad_left:ad_right}{2}ad_left:ad_right$$

Desta forma, fazendo as devidas substituições, temos que:

$$score = 1.54 + \frac{0.18625}{2} altura + \frac{-0.42375}{2} clipe + \frac{0.18625}{2} ad_right + \frac{-0.21}{2} ad_left :$$

$$score = 1.54 + 0.0931 \\ altura - 0.2119 \\ clipe + 0.0931 \\ ad_right - 0.105 \\ ad_left : ad_right \\ score_max = 1.54 + 0.0931 \\ * (1) - 0.2119 \\ * (-1) + 0.0931 \\ * (1) - 0.105 \\ * (-1) = 2.04 \\ score_min = 1.54 + 0.0931 \\ * (-1) - 0.2119 \\ * (1) + 0.0931 \\ * (-1) - 0.105 \\ * (1) = 1.04 \\ core_min = 1.54 + 0.0931 \\ * (-1) - 0.2119 \\ * (1) + 0.0931 \\ * (-1) - 0.105 \\ * (1) = 1.04 \\ core_min = 1.54 + 0.0931 \\ * (-1) - 0.2119 \\ * (-1) + 0.0931 \\ * (-1) - 0.105 \\ * (-1) = 1.04 \\ core_min = 1.54 + 0.0931 \\ * (-1) - 0.2119 \\ * (-1) + 0.0931 \\ * (-1) - 0.105 \\ * (-1) = 1.04 \\ core_min = 1.54 + 0.0931 \\ * (-1) - 0.2119 \\ * (-1) + 0.0931 \\ * (-1) - 0.105 \\ * (-1) = 1.04 \\ core_min = 1.54 + 0.0931 \\ * (-1) - 0.2119 \\ * (-1) + 0.0931 \\ * (-1) - 0.105 \\ * (-1) + 0.0931 \\ * (-1) - 0.105 \\ * (-1) + 0.0931$$

5 CONCLUSÃO

REFERÊNCIAS