PARTIEL DU 24/10/2019

Les notes de cours, calculatrices et téléphones portables ne sont pas autorisés.

Durée de l'épreuve : 2 heures.

Questions de cours (4 pts)

- 1. Énoncer l'inégalité de Bienaymé-Tchebychev, sans la démontrer.
- 2. On suppose que X suit la loi exponentielle de paramètre $\lambda > 0$. En justifiant soigneusement tous vos calculs, déterminer :
 - (a) la fonction de répartition de X;
 - (b) l'espérance de X, si celle-ci existe;
 - (c) la variance de X, si celle-ci existe.

Exercice 1 (5 pts)

Soit $\alpha>0$ un paramètre, et soit X une variable aléatoire réelle admettant pour densité

$$f(x) = \frac{c}{x^{1+\alpha}} \mathbf{1}_{[1,\infty[}(x), \qquad x \in \mathbb{R}.$$

- 1. Retrouver la valeur de la constante c.
- 2. Déterminer la fonction de répartition F_X .
- 3. Calculer $\mathbb{P}(0 < X < 2)$.
- 4. Calculer $\mathbb{P}(X \in \mathbb{N})$.
- 5. Déterminer la loi de la variable aléatoire $Y := \ln X$.

Exercice 2 (5 pts)

Soit X une variable aléatoire de loi géométrique de paramètre de succès $\frac{1}{2}$.

- 1. Calculer $\mathbb{P}(X > n)$ pour tout entier $n \geq 0$.
- 2. Calculer $\mathbb{P}(X \text{ est pair})$.
- 3. Calculer $\mathbb{P}(X \text{ est multiple de d})$, pour tout entier $d \geq 1$.
- 4. Calculer $\mathbb{P}(X \text{ est pair ou multiple de } 3)$.

Exercice 3 (6 pts)

On lance n fois de suite un dé à six faces.

- 1. Proposer un espace probabilisé pour modéliser cette expérience.
- 2. On note X le nombre total de six obtenus. Déterminer soigneusement la loi de X.
- 3. Calculer $\mathbb{P}(X \geq 2)$.
- 4. Calculer $\mathbb{P}(X \text{ est pair})$ et $\mathbb{P}(X \text{ est impair})$, puis les comparer.