E. 一起走過的路 (Path)

time limit per test: 1 second memory limit per test: 512 megabytes

鄰近畢業之際,Boling 和 Vandrin 決定展開一場充滿冒險與探索精神的海外旅行,希望藉此在踏入人生下一階段之前,親身感受世界各地不同城市的風貌、文化與人文氣息,為高中生活畫下充實又難忘的句點。

在每個國家中,有 n 座城市,編號為 1 到 n。每個國家的交通系統由 n-1 條 單向道路 組成,每條道路的形式為 (u_i,v_i,w_i) ,代表可以從城市 u_i 前往城市 v_i ,花費時間 w_i 。

這些國家的道路具有以下特殊限制:

對所有道路,保證 $u_i < v_i$ 。 保證所有城市都可以從城市 1 出發,經由若干條道路,到達該城市。

Boling 和 Vandrin 將對每個國家進行評分,他們的評分方式如下:

對於數對 (i,j),滿足 $1 \leq i < j \leq n$,

f(i,j) 為 Boling 和 Vandrin 從城市 1 開始同步旅行,分別前往城市i與城市j,直到走到不同的道路所累計的路徑時間總和。

由於Boling不想拿出紙筆算出答案,於是他們請你計算以下評分總和: $\sum_{i=1}^{n-1}\sum_{j=i+1}^nf(i,j)$,也就是

$$\left\{egin{array}{l} f(1,2)+f(1,3)+\cdots+f(1,n) \ +f(2,3)+f(2,4)+\cdots+f(2,n) \ dots \ +f(n-1,n) \end{array}
ight.$$

但是Boling不喜歡看到太大的數字,於是他請你告訴他你算出來的答案除以100000007之餘數

Input

輸入共三行

第一行一個整數 n,表示城市數。

第二行有 n-1 個數 u_i ,對於 $i=1,2,\ldots,n-1$,表示一條從城市 u_i 到 i+1 的單向道路。

第三行有 n-1 個數 w_i ,對於 $i=1,2,\ldots,n-1$,表示從城市 u_i 到 i+1 的單向道路花費時間為 w_i 。

- $\bullet \ 2 \le n \le 10^5$
- $\bullet 1 \leq u_i \leq n$
- ullet $1 \leq w_i \leq 10^9$

所有輸入數字皆為整數

Output

輸出 $(\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} f(i,j))$ mod 1000000007

Examples

input			
5			
1 1 2 4			
1 1 2 4 2 1 3 4			
output			
9			

input	
7 1 1 2 2 4 2 12 3 4 3 2 1	
output	
124	

Note

子任務	分數	額外輸入限制		
1	1	對於 $1 \leq i < n$, $u_i = 1$		
2	10	對於 $1 \leq i < n$, $u_i = i$		
3	15	$n \leq 500$		
4	24	對於 $1 \leq i < n$, $u_i = [rac{i+1}{2}]$, $[rac{i+1}{2}]$ 代表不大於 $rac{i+1}{2}$ 的最大整數		
5	50	無特殊限制		

以範例測資 1 為例,其中黃色代表 Boling 在城市中所走過的路徑,藍色則代表 Vandrin 的路徑。

首先,對於 $i=2,3,\dots,n$,考慮 f(1,i) 的情況。由於 Boling 始終待在城市 1 未曾移動,無論 Vandrin 走到哪裡,兩人都不會有任何共同經過的道路,因此 $f(1,2)=f(1,3)\dots=f(1,n)=0$

此為f(2,3)的示意圖,因為兩人沒有共同路徑,因此f(2,3)=0

此為f(2,4)的示意圖,兩人的共同路徑是花費時間為2的路徑,因此f(2,4)=2

此為f(2,5)的示意圖,兩人的共同路徑是花費時間為2的路徑,因此f(2,5)=2

此為f(3,4)的示意圖,因為兩人沒有共同路徑,因此f(3,4)=0

此為f(3,5)的示意圖,因為兩人沒有共同路徑,因此f(3,5)=0

此為f(4,5)的示意圖,兩人的共同路徑是花費時間為2與3的路徑,因此f(4,5)=2+3=5

所以,答案為

$$f(1,2) + f(1,3) + f(1,4) + f(1,5) + f(2,3) + f(2,4) + f(2,5) + f(3,4) + f(3,5) + f(4,5) = 9$$