קווים כלליים לפתרון תרגיל בית 9

22: 00 עד שעה 24/6/2014, יום שלישי, שעה 24/6/2014

<u>שאלה 1:</u>

הראו כי אם P(x) פולינום לא קבוע אז מספר הפתרונות של $|f(x)| = \lim_{x \to \infty} |f(x)|$ הראו כי אם P(x) פולינום, מתקיים: $P(x) = \lim_{x \to \infty} |f(x)| = \lim_{x \to \infty} |f(x)|$ ולכן קיים $P(x) = \lim_{x \to \infty} |f(x)|$ חייבים להתקיים בתוך הקטע P(x). |f(x)| > 1 מתקיים P(x) מתקיים בתוך הקטע P(x) ולכן כל הפתרונות של P(x) מתקיים ש- P(x) חייבים להתקיים בתוך הקטע P(x) וגם: P(x) את מעלת P(x) ונסמן ב- P(x) את מעלת P(x) את מעלת P(x) את משפט ב- P(x) ולכל היותר P(x) פעמים). P(x) ממשפט רול (המופעל בדרך השלילה P(x) פעמים) נקבל כי ל- P(x) ישרונות בקטע וה, ולכן זה מספר הפתרונות המירבי האפשרי, ובפרט למשוואה יש מספר סופי של פתרונות.

: 2 שאלה

הוכיחו את הגרסה המוכללת של אי-שוויוו ברנולי:

$$\alpha<0$$
 או $\alpha<0$ או $\alpha<0$ או $\alpha<0$ או $\alpha<0$ או $\alpha<0$ או פור 1

$$f(0)=0$$
 נגדיר $f(0)=0$ גזירה, מקיימת $f(x)=(1+x)^{lpha}-lpha x-1$ נגדיר

$$.\,f'(x)=\alpha(1+x)^{\alpha-1}-\alpha=\alpha[(1+x)^{\alpha-1}-1]$$

נטפל תחילה במקרה $\alpha>1$ במקרה זה נקבל עבור $\alpha>0$ כי $\alpha>0$ (כי $\alpha>1$ (כי $\alpha>1$) , ועבור $\alpha>1$ במקרה במקרה $\alpha>1$ במקרה זה נקבל עבור $\alpha>1$ היא נקודת מינימום גלובלי של $\alpha>1$, ולכן $\alpha>1$ לכל $\alpha>1$ וסיימנו. במקרה $\alpha>1$ במקרה $\alpha>1$ ($\alpha>1$) לכך $\alpha>1$ לכל $\alpha>1$ ($\alpha>1$) לכן כי $\alpha>1$ במקרה במקרה לכי $\alpha>1$ לכן שוב $\alpha>1$ לכן שוב $\alpha>1$ לכן שוב $\alpha>1$ לכן לכי $\alpha>1$ לכן לכי $\alpha>1$ לכי $\alpha>1$ לכי $\alpha>1$ לכי מקודם נסיים.

$$.(1+x)^{\alpha} \leq 1+\alpha x$$
: מתקיים מתקיים, ולכל $0<\alpha<1$. ב. עבור פ

יו- $\alpha x>-1$ וו $\alpha x>-1$ וו $\alpha x>-1$ ווניתן לחשב בצורה מפורשת כמו בסעיף א, וניתן גם לשים לב כי אם או וניתן לחשב בצורה מפורשת כמו בסעיף א

. נקבל את הדרוש. $(1+\alpha x)^{\frac{1}{\alpha}} \geq 1 + \frac{1}{\alpha} \cdot (\alpha x) = 1 + x$ נקבל אי נקבל מסעיף אי נקבל כי $(1+\alpha x)^{\frac{1}{\alpha}} \geq 1 + \frac{1}{\alpha}$

: 3 שאלה

.
$$\sin x > x - \frac{x^3}{6}$$
 : מתקיים $x > 0$ א. הוכיחו כי לכל

נגדיר
$$f'(x)$$
 עבור . $f'(x) = \cos x - 1 + \frac{3x^2}{6}$ ו-, $f(0) = 0$ גיירה, מקיימת . $f(x) = \sin x - x + \frac{x^3}{6}$ נשים

 $f'(0,\infty)$, ולכן $f'(0,\infty)$ ל- f''(x)>0 ל- f''(x)>0, ולכן $f''(x)=-\sin x+x$, ולכן $f'(x)=-\sin x+x$ לב כי f'(x)>0, ולכן f'(x)>0 נקבל כי f'(x)>0 לכל f'(x)>0 לכל f'(x)>0, ולכן f'(x)>0 נקבל כי f'(x)>0

.
$$\frac{\sin x}{x} \ge \frac{2}{\pi}$$
 מתקיים: $x \in \left(0, \frac{\pi}{2}\right)$ ב. הוכיחו כי לכל

נגדיר $f'(x)=rac{x\cos x-\sin x}{x^2}$ - ו, $f\left(rac{\pi}{2}
ight)=0$ ומקיימת ומקיימת $f'(x)=rac{\sin x}{x}-rac{2}{\pi}$ כדי לקבוע את נגדיר $f'(x)=rac{\sin x}{x^2}$ - אז $f'(x)=rac{\sin x}{x}$ מספיק להסתכל על המונה : נסמן $f'(x)=x\cos x-\sin x$ סימן $f'(x)=x\cos x$

:4 שאלה

 $.x_0 \in (0,\!1)$ יכי חיד יחיד מיתרון כי
ה $\cos x = x$ למשוואה הוכיחו א. הוכיחו

נגדיר $f(x)=x-\cos x$, לכן מרציפות $f(x)=x-\cos x$ נגדיר המשפט ערהייב נקבל כי קיים לפחות שורש אחד $f(x)=x-\cos x$ בנוסף, $f(x)=x-\cos x$ ולמעשה ומשפט ערהייב נקבל כי קיים לפחות שורש אחד f(x)=x-a ל- f(x)=x-a בנוסף, f(x)=x-a (כי הנקודות בהן f(x)=x-a פרט לנקודות מהצורה f(x)=x-a (כי הנקודות הנגזרת חיובית ממש), ולכן חחייע, ולכן קיים לה לכל היותר שורש אחד, ולכן השורש שמצאנו בחלק הראשון הוא היחיד של f(x)=x-a

ב. יהי $a_{n+1}=\cos a_n$ נגדיר: $a_1=\cos lpha$ נגדיר מlpha=0, ולכל $a_1=\cos lpha$ נגדיר מlpha=0. $\lim_{n \to \infty} a_n=x_0$

. $|a_n - x_0|$ את להעריך כדי גזירות במשפטי במשפטי הדרכה השתמשו במשפטי הדרכה

נובע כי $[-1,1]\subset\left(-\frac{\pi}{2}\,,\frac{\pi}{2}\right)$ - עובע מכיוון ש- $a_n\in[-1,1]$, תובע כי לכל מתקיים לב כי מהגדרת הסדרה מתקיים כי לכל $a_n\in(0,1)$ מתקיים מתקיים $a_n\in(0,1)$ ולכן לכל $a_n\in(0,1)$

אם קיים $a_n=x_0$, אז מכיוון ש- $a_n=x_0$ מקיים כי לכל $n=x_0$ מתקיים כי לכל $n=x_0$ אם קיים אז מכיוון ש- $n=x_0$ אז מכיוון ש- $n=x_0$ אם קיים כי לכל $n=x_0$ אז מכיוון ש- $n=x_0$ אז מכיון ש- $n=x_0$ אז מכיוון ש- n=

רציפה וגזירה בכל x_0 , ובפרט בכל קטע סגור, ולכן ממשפט לגרנזי, לכל n קיים n הנמצא בין x_0 ל- x_0 כך $\cos x$ -ט בכל a_n וגם a_n וגם a_n וגם a_n וגם a_n שר בכל a_n וגם a_n (כאשר a_n), כאשר a_n כאשר a_n ביוון שגם a_n וגם a_n וגם a_n (ל-

 $\sin c_n \leq \sin 1 < 1$ נמצאים ב- $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ נמצאים ב- $\left($

מקיימת b_n כנדרש (שימו לב כי לא הנחנו ש- $\frac{b_{n+1}}{b_n}$ מתכנסת, עצם העובדה כי הסדרה , $a_n \to x_0$ מקיימת , כלומר כי הסדרה .

. ($b_n o 0$ - מספיקה מינבע שי מספיקה $0 \leq \frac{b_{n+1}}{b_n} < q < 1$

: 5 שאלה

תהי את המקיימת התכונות $f:[-1,1] \to \mathbb{R}$ גזירה ברציפות וגזירה פעמיים ב- $f:[-1,1] \to \mathbb{R}$ הבאות:

- $. f(1) = 1 \bullet$
- $f(x) \le 2x^2 1 \quad \bullet$
- (-1,0) לפונקציה יש נקודת קיצון בקטע •

 $f''(c) \geq 1$ המקיימת $c \in (-1,1)$ הראו כי קיימת נקודה

.0 הדרכה על קטעים משני אידי f(0) והפעילו משפטי הדרכה קבלו הערכה על f(0)

-ש כך $c_1 \in (0,1)$ נקבל שקיימת נקודה ($f(0) \leq -1$ כך ש-

, $f'(c_2)=0$ כך ש- $c_2\in (-1,0)$ כך שימת (ובע כי קיימת משפט פרמה השלישית השלישית מהתכונה השלישית השלישית ומשפט פרמה $f'(c_1)=\frac{f(1)-f(0)}{1-0}\geq 2$ ממשפט לגרנזי עבור f' והקטע $[c_2,c_1]$ נקבל שקיימת $[c_2,c_1]$ נקבל ביימת אבור $[c_2,c_1]$ נקבל ביימת אבור $[c_2,c_1]$ נקבל שקיימת משפט לגרנזי עבור $[c_2,c_1]$

$$f''(c) = \frac{f'(c_1) - f'(c_2)}{c_1 - c_2} \ge \frac{2 - 0}{1 - (-1)} = \frac{2}{2} = 1$$

: 6 שאלה

חשבו את הגבולות הבאים:

.
$$\lim_{x\to 0}(\cos x)^{\frac{1}{x^2}}$$
 .א

תוקה בלופיטל עבור החזקה ($\cos x$) בסביבה של 0, לכן נוכל לרשום: $e^{\ln \cos x}$ בסביבה של 0, לכן נוכל לרשום: e^{t} נוכל לרשום: e^{t} נותן כי החזקה שואפת ל- $\frac{1}{2}$ ב $\frac{\sin x}{x}$ כי $\frac{-\frac{\sin x}{\cos x}}{2x}$ = $-\frac{1}{2\cos x}\cdot\frac{\sin x}{x}$ כי $\frac{\sin x}{x}$ לכן מרציפות e^{t} נותן כי החזקה שואפת ל- e^{t} נותן כי החזקה שואפת ל- e^{t} בול המקורי הוא e^{t} מקבל כי e^{t}

$$. \lim_{x \to 0^+} (\ln x + \cot x) \quad .$$

נותן ה- הגבול שבתוך ה- וות פרוב וו $\ln x + \cot x = \ln x + \ln e^{\cot x} = \ln x e^{\cot x} = \ln \frac{e^{\cot x}}{\frac{1}{x}}$

$$(x o 0^+$$
 נהביטוי האחרון שואף ל- ∞ כי כי $(x o 0^+ - \frac{1}{\sin^2(x)})$ והביטוי האחרון שואף ל- $(x o 0^+ - \frac{1}{\sin^2(x)})$ והביטוי האחרון שואף ל- $(x o 0^+ - \frac{1}{\sin^2(x)})$

ln נקבל כי גם הביטוי כולו שואף ל- כאשר וקבל כי גם מרציפות מרציפות

a>0 עבור $\lim_{x \to \infty} x \left(\sqrt[x]{a} - 1 \right)$ עבור ...

$$\lim_{x o\infty}rac{a^{rac{1}{x}}-a^0}{rac{1}{x}}=$$
 מתקיים: $x o\infty\Leftrightarrow t o0^+$ נציב. $x\left(\sqrt[x]{a}-1
ight)=rac{a^{rac{1}{x}}-a^0}{rac{1}{x}}$. נציב ואז

. $\ln a \cdot a^0 = \ln a$ הגבול הוא הגדרת הנגזרת של ב- a^x ב- תהבול האחרון הוא הגבול האחרון. . $\lim_{t \to 0} \frac{a^t - a^0}{t}$

.
$$\lim_{x\to 0} \left(\frac{\cos x}{xe^x} - \frac{1}{x}\right)$$
 : ד. חשבו ללא לופיטל

-ב
$$f(x)=rac{\cos x-e^x}{e^x}$$
 מתקיים: $rac{\cos x}{x}=rac{1}{x}=rac{\cos x-e^x}{xe^x}=rac{\cos x-e^x}{x}=rac{\cos x-e^x}{e^x}=rac{\cos x-e^x}{x}=rac{\cos x}{x}=rac$

-ב בפרט, ב-
$$f'(x) = \frac{(-\sin x - e^x)e^x - (\cos x - e^x)e^x}{e^{2x}} = \frac{-\sin x - \cos x}{e^x}$$
 בפרט, ב- בפרט, ב- גווו פונקציה גזירה בכל $\mathbb R$

. נקבל
$$x = 0$$
, ולכן זהו הגבול המבוקש $x = 0$