

Contents

1	Sym	ulacja l	omputerowa zaniku sygnału luminescencyjnego w skaleniach	1
2	Clas	s Index		3
	2.1	Class I	ist	3
3	Clas	s Docu	mentation	5
	3.1	Crysta	Class Reference	5
		3.1.1	Detailed Description	6
		3.1.2	Constructor & Destructor Documentation	6
			3.1.2.1 Crystal()	6
		3.1.3	Member Function Documentation	6
			3.1.3.1 calculateDistance()	6
			3.1.3.2 calculateTau()	6
			3.1.3.3 changeTime()	7
			3.1.3.4 countElectrons()	7
			3.1.3.5 saveToFile()	7
			3.1.3.6 startSimulation()	8
			3.1.3.7 tunnelEffect()	8
			3.1.3.8 tunnelEffectProbability()	8
	3.2	Electro	n Class Reference	9
		3.2.1	Detailed Description	9
		3.2.2	Constructor & Destructor Documentation	9
			3.2.2.1 Electron()	9
		3.2.3	Member Function Documentation	10

ii CONTENTS

		3.2.3.1	setX()	10
		3.2.3.2	setY()	10
		3.2.3.3	setZ()	10
3.3	Electro	onHole Cla	ass Reference	10
	3.3.1	Detailed	Description	11
	3.3.2	Construc	ctor & Destructor Documentation	11
		3.3.2.1	ElectronHole()	11
	3.3.3	Member	Function Documentation	12
		3.3.3.1	getEnergy()	12
		3.3.3.2	getTrap()	12
		3.3.3.3	getX()	12
		3.3.3.4	getY()	12
		3.3.3.5	getZ()	12
3.4	Trap C	lass Refer	rence	13
	3.4.1	Detailed	Description	13
	3.4.2	Construc	ctor & Destructor Documentation	13
		3.4.2.1	Trap()	13
	3.4.3	Member	Function Documentation	14
		3.4.3.1	getElectron()	14
		3.4.3.2	getEnergy()	14
		3.4.3.3	getX()	14
		3.4.3.4	getY()	14
		3.4.3.5	getZ()	14
		3.4.3.6	isOccupied()	14
		3.4.3.7	removeElectron()	14
		3.4.3.8	setElectron()	15

Index

17

Chapter 1

Symulacja komputerowa zaniku sygnału luminescencyjnego w skaleniach

2	Symulacja komputerowa zaniku sygnału luminescencyjnego w skaleniach
	Congreted by Doyugan

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Crystal	 						 			 											,	
Electron	 						 			 												٥
ElectronHole	 						 			 											10	
Trap	 						 			 					 						13	

4 Class Index

Chapter 3

Class Documentation

3.1 Crystal Class Reference

```
#include <Crystal.h>
```

Public Member Functions

- Crystal (long long int n_el, long long n_holes, double min, double max)
- double changeTime (unsigned long time) const
- void startSimulation (int time)
- void tunnelEffect (Trap &trap, int time)
- unsigned long countElectrons () const

funkcja zliczająca ilość elektronów w pułapkach

void saveToFile (std::string)

zapis wyniku do plików

Static Public Member Functions

• static double tunnelEffectProbability (double time, double tau)

Private Member Functions

- double calculateTau (double distance, ElectronHole *el_hole, const Trap &trap) const
- double calculateDistance (const Trap &trap, const ElectronHole *hole) const

Private Attributes

```
 const double S = 3e15
```

wartość stałej 'attempt-to-escape frequency'

std::map< unsigned long, unsigned long > amount_electrons

mapa klucz - czas, wartosc - ilosc elektronow w stanie wzbudzonym

std::vector < Trap > el_traps

wektor przechowujący wszystkie pułapki

• std::vector< Electron * > electrons

wektor przechowujący wskaźniki do elektronów

std::vector< ElectronHole * > electron_holes

wektor przechowujący wskaźniki do dziur elektronowych

3.1.1 Detailed Description

Klasa reprezentująca kryształ

3.1.2 Constructor & Destructor Documentation

3.1.2.1 Crystal()

Konstruktor

Parameters

n⊷	ilosc obiektów elektronu do stworzenia
_el	
n⊷	ilosc obiektów dziury elektronowej do stworzenia
_el	
min	dolna granica którą mogą przyjmować współrzędne cząstek
max	górna granica którą mogą przyjmować współrzędne cząstek

3.1.3 Member Function Documentation

3.1.3.1 calculateDistance()

Funkcja do obliczania odległości między pułapką a dziurą

Parameters

trap	referencja do pułapki
hole	wskaznik na dziurę elektronową

Returns

odległość między parametrami

3.1.3.2 calculateTau()

```
ElectronHole * el_hole,
const Trap & trap ) const [private]
```

Funkcja do obliczania wartosci tau

See also

calculateDistance()

Parameters

distance	dystans do przetunelowania
el_hole	wskaznik na dziurę elektronową
trap	referencja do pułapki

Returns

wartość tau

3.1.3.3 changeTime()

```
double Crystal::changeTime (
          unsigned long time ) const
```

Funkcja zmieniajaca jednostę czasu

Parameters

time czas do zamiany

Returns

czas podany w jednostce log10(t/2dni)

3.1.3.4 countElectrons()

```
unsigned long Crystal::countElectrons ( ) const
```

funkcja zliczająca ilość elektronów w pułapkach

Returns

ilość elektronów w pułapkach

3.1.3.5 saveToFile()

zapis wyniku do plików

Parameters

name	nazwa pliku wyjściowego
------	-------------------------

3.1.3.6 startSimulation()

Funkcja rozpoczynająca symulacje

Parameters

time	symulowany czas działania
------	---------------------------

3.1.3.7 tunnelEffect()

Funkcja wykonująca efekt tunelowania

Parameters

trap	referencja do pułapki
time	czas

3.1.3.8 tunnelEffectProbability()

Funkcja do obliczania prawdopodobienstwa NIEZAJŚCIA tunelowania

Parameters

time	czas
tau	wartość tau

See also

calculateTau()

Returns

wartość prawdopodobieństwa

The documentation for this class was generated from the following files:

- C:/Users/olav/ClionProjects/Dissertation/Crystal.h
- C:/Users/olav/ClionProjects/Dissertation/Crystal.cpp

3.2 Electron Class Reference

```
#include <Electron.h>
```

Public Member Functions

```
• Electron (std::vector< double > pos)
```

- void setX (double x)
- void setY (double y)
- void setZ (double z)

Private Attributes

std::vector< double > position
 wektor współrzędnych elektronu

Friends

std::ostream & operator<< (std::ostream &s, const Electron &v)

3.2.1 Detailed Description

Klasa reprezentująca elektron

3.2.2 Constructor & Destructor Documentation

3.2.2.1 Electron()

```
Electron::Electron ( {\tt std::vector} < {\tt double} \ > \ pos \ )
```

Konstruktor tworzy obiekt o podanych wspolrzednych

Parameters

pos wektor współrzędnych

3.2.3 Member Function Documentation

3.2.3.1 setX()

```
void Electron::setX ( double x )
```

Zmianna x-owej wartości współrzędnej

Parameters

x nowa wartość współrzędnej

3.2.3.2 setY()

```
void Electron::setY ( double y )
```

Zmianna y-owej wartości współrzędnej

Parameters

```
y nowa wartość współrzędnej
```

3.2.3.3 setZ()

```
void Electron::setZ ( double z )
```

Zmianna z-owej wartości współrzędnej

Parameters

```
z nowa wartość współrzędnej
```

The documentation for this class was generated from the following files:

- · C:/Users/olav/ClionProjects/Dissertation/Electron.h
- C:/Users/olav/ClionProjects/Dissertation/Electron.cpp

3.3 ElectronHole Class Reference

#include <ElectronHole.h>

Public Member Functions

```
ElectronHole (std::vector< double > pos, Trap &trap)
double getEnergy () const
double getX () const
double getY () const
double getZ () const
```

```
Trap * getTrap ()
```

• void nullTrap ()

usuwa dziurę z pułapki, ustawia wskaznik trap na NULL

~ElectronHole ()
 destruktor

Private Attributes

```
    std::vector< double > position
        wektor współrzędnych dziury
    Trap * trap = NULL
        wskaźnika na obiekt typu Trap (informacja czy obiekt znajduje się w pułapce)
    double energy = 1.
        energia dziury [w eV]
```

Friends

• std::ostream & operator << (std::ostream &s, const ElectronHole &v)

3.3.1 Detailed Description

Klasa reprezentująca dziurę elektronową

3.3.2 Constructor & Destructor Documentation

3.3.2.1 ElectronHole()

```
ElectronHole::ElectronHole (
          std::vector< double > pos,
          Trap & trap )
```

Konstruktor tworzy obiekt o podanych wspolrzednych i łączy go z pułapką

Parameters

pos	wektor współrzędnych
trap	referencja do pułapku

3.3.3 Member Function Documentation

```
3.3.3.1 getEnergy()
double ElectronHole::getEnergy ( ) const
Returns
     zwraca energię dziury
3.3.3.2 getTrap()
Trap* ElectronHole::getTrap ( )
Returns
     zwraca adres do pułapki w której się obecne znajduje
3.3.3.3 getX()
double ElectronHole::getX ( ) const
Returns
     zwraca x-ową współrzędną
3.3.3.4 getY()
double ElectronHole::getY ( ) const
Returns
     zwraca y-ową współrzędną
3.3.3.5 getZ()
double ElectronHole::getZ ( ) const
Returns
```

The documentation for this class was generated from the following files:

 $\bullet \ \ C:/Users/olav/ClionProjects/Dissertation/ElectronHole.h$

zwraca z-ową współrzędną

• C:/Users/olav/ClionProjects/Dissertation/ElectronHole.cpp

3.4 Trap Class Reference

```
#include <Trap.h>
```

Public Member Functions

- Trap (std::vector< double > position)
- double getEnergy () const
- double getX () const
- · double getY () const
- double getZ () const
- void setElectron (Electron *electron1)
- Electron * getElectron () const
- void removeElectron (std::vector< double > position)
- bool isOccupied () const

Private Attributes

```
    std::vector< double > position
    wektor współrzędnych pułapki
```

• Electron * electron = NULL

wskaznik na uwięziony elektron

• double energy = 2.

energia pułapku [w eV]

Friends

std::ostream & operator<< (std::ostream &s, const Trap &v)

3.4.1 Detailed Description

Klasa reprezentująca pułapkę

3.4.2 Constructor & Destructor Documentation

3.4.2.1 Trap()

Konstruktor tworzy obiekt o podanych wspolrzednych

Parameters

ı		
ı	nocition	wektor współrzednych
ı	DUSILIULI	WEKIDI WSDUIIZEULIVULI

```
3.4.3 Member Function Documentation
3.4.3.1 getElectron()
Electron * Trap::getElectron ( ) const
Returns
     wskaźnik na elektron znajdujący się w pułapce
3.4.3.2 getEnergy()
double Trap::getEnergy ( ) const
Returns
     zwraca energię pułapku
3.4.3.3 getX()
double Trap::getX ( ) const
Returns
     zwraca x-ową współrzędną
3.4.3.4 getY()
double Trap::getY ( ) const
Returns
     zwraca y-ową współrzędną
3.4.3.5 getZ()
double Trap::getZ ( ) const
Returns
     zwraca z-ową współrzędną
3.4.3.6 isOccupied()
bool Trap::isOccupied ( ) const
sprawdza czy w pułapce znajduje się elektron
Returns
     TRUE jesli elektron jest spułapkowany
```

3.4.3.7 removeElectron()

Usuwa elektorn z pułapki

void Trap::removeElectron (

std::vector< double > position)

Generated by Doxygen

Parameters

position	nowa pozycja elektronu
----------	------------------------

3.4.3.8 setElectron()

pułapkuje elektron, ustawia wskaźnik na niego

Parameters

electron1 elektron do spułapkowania

The documentation for this class was generated from the following files:

- C:/Users/olav/ClionProjects/Dissertation/Trap.h
- C:/Users/olav/ClionProjects/Dissertation/Trap.cpp

Index

removeElectron

calculateDistance	Trap, 14
Crystal, 6	
calculateTau	setElectron
Crystal, 7	Trap, 14
changeTime	setX
Crystal, 7	Electron, 9
Crystal, 5	setY
calculateDistance, 6	Electron, 10
calculateTau, 7	setZ
changeTime, 7	Electron, 10
Crystal, 6	startSimulation
startSimulation, 7	Crystal, 7
tunnelEffect, 8	
tunnelEffectProbability, 8	Trap, 12
	getEnergy, 13
Electron, 9	getX, 13
Electron, 9	getY, 13
setX, 9	getZ, 14
setY, 10	isOccupied, 14
setZ, 10	removeElectron, 14
ElectronHole, 10	setElectron, 14
ElectronHole, 11	Trap, 13
getEnergy, 11	tunnelEffect
getTrap, 11	Crystal, 8
getX, 11	tunnelEffectProbability
getY, 12	Crystal, 8
getZ, 12	
nullTrap, 12	
17	
getEnergy	
ElectronHole, 11	
Trap, 13	
getTrap	
ElectronHole, 11	
getX	
ElectronHole, 11	
Trap, 13	
getY	
ElectronHole, 12	
Trap, 13	
getZ	
ElectronHole, 12	
Trap, 14	
·	
isOccupied	
Trap, 14	
UT.	
nullTrap	
ElectronHole, 12	