Multiagent Reinforcement Learning in Stochastic Games

Lucas LUGAO GUIMARAES < @lucaslugao > Victor VIANNA < @victorvianna >

Summary

- Motivation
- Background
 - Reinforcement Learning
 - Markov decision process
 - Policy and value function
 - Single-agent Q-learning

- Stochastic games
 - Definition
 - Nash equilibrium
 - Multi-agent Q-learning
 - Proof of convergence
- Demo!

Motivation

- Goal: Get to \$ cell ASAP
- A and B can't occupy the same cell (except for \$)
- Game ends when someone reaches \$

0,0	\$	2,0
-,-		
0,1	1,1	2,1
A		В
0,2	1,2	2,2

Motivation

 Red barrier with 50% probability of crossing

	\$	
0,0	1,0	2,0
0,1	1,1	2,1
A		В
0,2	1,2	2,2

Background - Reinforcement Learning

- Agent(s) interacting with environment via actions (e.g. game)
- Only access to very local information
 - Observe current state
 - Perform specific action and observe reward
- May stop when some terminal state s₊ is reached (e.g. win, lose)
- Aim to maximize "expected total reward"

Background - Markov decision process

- Space S (e.g. positions in the grid, pixel configurations in videogame)
- Actions A (e.g. {Up, Down, Left, Right})
- Stochastic transition s'(s, a) and reward r(s, s', a)

Background - Policy and value function

- Policy ⊓, can be:
 - \circ Stationary Π = (π , π , π ,...)
 - Deterministic π: S -> A
 - Stochastic π : S -> $\sigma(A)$
 - Non-stationary $\Pi = (\pi_0, \pi_1, \pi_2, ...)$
- Value function: Expected discounted sum of rewards (0<β<1)

$$v(s,\pi) = \sum_{t=0}^{\infty} \beta^t E(r_t | \pi, s_0 = s)$$

- Wish to find optimal policy π^* , i.e. $v(s_0, \pi^*) ≥ v(s_0, \pi)$
- Theorem (Bellman): There is a stationary policy which is optimal for every state s

Background - Single-agent Q-learning

- Keep map Q(s, a) (arbitrary initialization)
- Starting at an arbitrary s, at each step t:
 - Choose random action a to perform
 - Observe reward r and new state s'
 - Update Q table for (s, a):

$$Q(s,a) \leftarrow (1-\alpha_t) \cdot \underbrace{Q(s,a)}_{\text{old value}} + \underbrace{\alpha_t}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r}_{\text{reward}} + \underbrace{\beta}_{\text{discount factor}} \cdot \underbrace{\max_{b} Q(s',b)}_{\text{estimate of optimal future value following policy learned so far}}\right)$$

Background - Single-agent Q-learning

- Reset s if s_t reached
- Assumptions
 - o Random actions s.t. all (s,a) visited ∞ times
 - $\sum \alpha_{t} = \infty$, $\sum \alpha_{t}^{2} < \infty$ (locally in every (s,a))
- Optimal policy greedily recovered by :

$$\pi(s) = rg \max_a Q(s,a)$$

Stochastic games - Definition

- S now encodes 2 players (e.g. $S = \{((0,0),(0,1)),((0,0),(0,2)),...\}$)
- Deterministic r^1 , $r^2 : S \times A^1 \times A^2 \rightarrow \mathbb{R}$
 - Depend only on source state
 - Unknown in advance ("incomplete information game")
- Bimatrix game at each fixed s
 - UE19 course framework
- Info available: observed rewards of everyone + new state
 - o "perfect information game"

Stochastic games - Nash equilibrium

Definition 3 In stochastic game Γ , a Nash equilibrium point is a pair of strategies (π^1_*, π^2_*) such that for all $s \in S$

$$v^{1}(s, \pi_{\star}^{1}, \pi_{\star}^{2}) \geq v^{1}(s, \pi^{1}, \pi_{\star}^{2}) \quad \forall \pi^{1} \in \Pi^{1}$$

and

$$v^2(s, \pi_*^1, \pi_*^2) \ge v^2(s, \pi_*^1, \pi^2) \quad \forall \pi^2 \in \Pi^2$$

Stochastic games - Nash equilibrium

Theorem 2 (Filar and Vrieze [4], Theorem 4.6.4) Every general-sum discounted stochastic game possesses at least one equilibrium point in stationary strategies.

- Can we adapt Q-learning to find an equilibrium point in stationary strategies?
 - Yes! But we must give up on determinism.
 - (Intuition: There isn't always an eq. in simple strategies, but in mixed ones, yes.)

Stochastic games - Multi-agent Q-learning

• Before ...

$$Q(s,a) \leftarrow (1-lpha_{_{ ext{t}}}) \cdot \underbrace{Q(s,a)}_{ ext{old value}} + \underbrace{lpha_{_{ ext{t}}}}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{r}_{ ext{reward}} + \underbrace{eta}_{ ext{discount factor}} \cdot \underbrace{\max_{a} Q(s',a)}_{ ext{estimate of optimal future value}}
ight)}_{ ext{estimate of optimal future value}}$$

Stochastic games - Multi-agent Q-learning

Now...

$$Q_{t+1}^{1}(s, a^{1}, a^{2}) = (1 - \alpha_{t})Q_{t}^{1}(s, a^{1}, a^{2}) + \alpha_{t}[r_{t}^{1} + \beta \pi^{1}(s')Q_{t}^{1}(s')\pi^{2}(s')]$$

$$Q_{t+1}^{2}(s, a^{1}, a^{2}) = (1 - \alpha_{t})Q_{t}^{2}(s, a^{1}, a^{2}) + \alpha_{t}[r_{t}^{2} + \beta \pi^{1}(s')Q_{t}^{2}(s')\pi^{2}(s')]$$

Estimate of future value following equilibria learned so far

- Assumptions:
 - All (s, a) visited ∞ times
 - \circ Same condition on summability of α 's
 - \circ For all (s, a^1 , a^2), \exists local Nash equilibrium that either
 - Maximizes payoff for each player
 - Is a saddle point (deviating favours adversary)
- Three main ingredients for proof

1. Local equilibrium => Global equilibrium

Theorem 3 (Filar and Vrieze [4]) The following assertions are equivalent:

1. For each $s \in S$, the pair $(\pi^1(s), \pi^2(s))$ constitutes an equilibrium point in the static bimatrix game $(Q^1(s), Q^2(s))$ with equilibrium payoffs $(v^1(s, \pi^1, \pi^2), v^2(s, \pi^1, \pi^2))$, and for k=1,2 the entry (a^1, a^2) in $Q^k(s)$ equals

$$Q^{k}(s, a^{1}, a^{2}) =$$

$$r^{k}(s, a^{1}, a^{2}) + \beta \sum_{s'=1}^{N} p(s'|s, a^{1}, a^{2}) v^{k}(s', \pi^{1}, \pi^{2}).$$

2. (π^1, π^2) is an equilibrium point in the discounted stochastic game, with equilibrium payoff $(\mathbf{v}^1(\pi^1, \pi^2), \mathbf{v}^2(\pi^1, \pi^2))$, where $\mathbf{v}^k(\pi^1, \pi^2) = (v^k(s^1, \pi^1, \pi^2), \cdots, v^k(s^m, \pi^1, \pi^2))$, k = 1, 2.

2. Understand averaged learning in terms of learned term

Lemma 1 (Conditional Average Lemma) Under Assumptions 1-2, the process $Q_{t+1} = (1 - \alpha_t)Q_t + \alpha_t w_t$ converges to $E(w_t|h_t,\alpha_t)$, where h_t is the history at time t.

Lemma 2 Under Assumptions 1-2, If the process defined by $U_{t+1}(x) = (1 - \alpha_t(x))U_t(x) + \alpha_t(x)[P_tv^*](x)$ converges to v^* and P_t satisfies $||P_tV - P_tv^*|| \le \gamma$ $||V - v^*|| + \lambda_t$ for all V, where $0 < \gamma < 1$ and $\lambda_t \ge 0$ converges to 0, then the iteration defined by

$$V_{t+1}(x) = (1 - \alpha_t(x))V_t(x) + \alpha_t(x)[P_tV_t](x)$$

converges to v^* .

3. Contraction mappings

Lemma 3 Let $P_t^k Q^k(s) = r_t^k + \beta \pi^1(s) Q^k(s) \pi^2(s)$, k = 1, 2, where $(\pi^1(s), \pi^2(s))$ is a pair of mixed Nash equilibrium strategies for the bimatrix game $(Q^1(s), Q^2(s))$. Then $P_t = (P_t^1, P_t^2)$ is a contraction mapping.

Demo!

"Never do a live demo."

Anyone

Thank you!

Lucas LUGAO GUIMARAES < @lucaslugao > Victor VIANNA < @victorvianna >