Exercices d'applications et de réflexions : FONCTIONS LOGARITHMIQUES

PROF: ATMANI NAJIB **2BAC BIOF**

TD -FONCTIONS LOGARITHMIQUES

Exercice1 : déterminer le domaine de définition des fonctions suivantes :

1)
$$f: x \to ln(x+1)$$

1)
$$f: x \to ln(x+1)$$
 2) $g: x \to ln(x^2 - 3x + 2)$

$$3) h: x \to \frac{x}{\ln x}$$

3)
$$h: x \to \frac{x}{\ln x}$$
 4) $k: x \to \ln x + \ln(x-1)$

$$5) \quad m: x \to \ln\left(\frac{x-4}{x+1}\right)$$

Exercice2: Résoudre dans R les équations

et inéquations suivantes : 1) ln(x-2) = 0

2)
$$ln(3x-1) = ln(5x-10)$$
 3) $ln(2x-1) - ln(1-x) = 0$

3)
$$ln(2x-1)-ln(1-x)=0$$

4)
$$ln(2x) = ln(x^2 + 1)$$
 5) $ln(2x - 6) \ge 0$

5)
$$ln(2x-6) \ge 0$$

6)
$$ln(x-1)-ln(3x+1)<0$$

Exercice3: On pose $l n(2) \approx 0.7$ et $l n(3) \approx 1.1$

Calculer: l n(6); l n(4); l n(8); l n(72)

$$l \operatorname{n}\left(\frac{1}{2}\right)$$
; $l \operatorname{n}\left(\frac{3}{2}\right)$; $l \operatorname{n}\left(\sqrt{2}\right)$; $l \operatorname{n}\left(\sqrt{6}\right)$; $l \operatorname{n}\left(3\sqrt{2}\right)$

$$ln(12\sqrt[3]{3})$$
; $A = ln\sqrt{2 + \sqrt{2}} + ln\sqrt{2 - \sqrt{2}}$;

$$B = \frac{1}{4} ln81 + ln\sqrt{3} - ln\frac{1}{27} \text{ et } C = ln\left(\sqrt{2} + 1\right)^{2015} + ln\left(\sqrt{2} - 1\right)^{2019} \left| 1 \right| \lim_{x \to +\infty} \frac{2 \ln(x) + 1}{\ln x}$$
 2) $\lim_{x \to +\infty} \left(ln^2(x) - lnx \right)$

Exercice4: On pose $\alpha = ln(a)$ et $\beta = ln(b)$

Calculer en fonction de α et β les réels suivants :

$$\ln(a^2b^5)$$
 et $\frac{1}{\sqrt[6]{a^7b}}$

Exercice5: simplifier et calculer:

$$A = \ln\left(e^2\right) + \ln\left(e^4\right) - \ln\left(\frac{1}{e}\right)$$

$$B = 2\ln\left(\sqrt{e}\right) + \ln\left(e\sqrt{e}\right) - \frac{1}{3}\ln\left(e^{9}\right)$$

Exercice6 : Résoudre dans R les équations et inéquations suivantes :

1)
$$ln(2x-1) = \frac{3}{2}$$

1)
$$ln(2x-1) = \frac{3}{2}$$
 2) $2(\ln x)^2 + \ln x - 6 = 0$

3)
$$3(\ln x)^2 + 2\ln x - 1 = 0$$
 4) $\frac{\ln x + 3}{\ln x - 1} \ge -1$

5)
$$lnx + ln(x-1) - ln2 = ln3$$

6)
$$ln(2x+5)+ln(x+1) \le ln4$$

7)
$$ln(14-x) > ln(10+7x-3x^2)$$

Exercice7: Résoudre dans \mathbb{R}^2 le système

suivant :
$$\begin{cases} 3\ln x + \ln y = 2\\ 2\ln x - \ln y = 3 \end{cases}$$

Exercice8 : déterminer le domaine de définition des fonctions suivantes :

1)
$$f: x \to \frac{\ln(x+1)}{\ln(\ln x)}$$

1)
$$f: x \to \frac{\ln(x+1)}{\ln(\ln x)}$$
 2) $g: x \to \sqrt{1 - \ln(e-x)}$

3)
$$h: x \to \frac{x}{\sqrt{(\ln(2x))^2 - 1}}$$

Exercice9 : Déterminer les limites suivantes :

1)
$$\lim_{x \to +\infty} \frac{2\ln(x) + 1}{\ln x}$$

2)
$$\lim_{x \to +\infty} \left(\ln^2(x) - \ln x \right)$$

3)
$$\lim_{x \to +\infty} x - \ln x$$

4)
$$\lim_{x\to 0^+} \ln^2(x) + \ln x$$

$$5) \lim_{x\to 0^+} \left(\frac{1}{x} + lnx\right)$$

$$6) \lim_{x \to 0^+} x^4 \log x$$

7)
$$\lim_{x \to 0^+} 2x - x^3 \ln x$$

7)
$$\lim_{x \to 0^+} 2x - x^3 \ln x$$
 8) $\lim_{x \to +\infty} x \ln \left(1 + \frac{1}{x} \right)$

9)
$$\lim_{x \to 0^+} x \left(ln(x) \right)^2$$
 on pose : $X = \sqrt{x}$

10)
$$\lim_{x \to +\infty} \frac{\ln(x^2 + 3x)}{x - 1}$$
 11) $\lim_{x \to 0^+} x^2 (\ln x)^5$

Exercice10 : Déterminer le domaine de dérivation | Exercice 16 : simplifier et calculer : et la dérivée de la fonction suivante :

$$f(x) = \ln(3x^2 + 5)$$

Exercice11 : calculer la dérivée des fonctions

définies par :1) $f(x) = x^2 - \ln x$ 2) $f(x) = x \ln x$

3)
$$f(x) = \ln(1+x^2)$$

Exercice12 : calculer la dérivée de la fonction

définie sur
$$I =]-2; +\infty[$$
 par : $f(x) = \frac{\sqrt[4]{x^3 + 8}}{(x^2 + 1)^3}$

Exercice13 : Déterminer le domaine de dérivation et la dérivée des fonctions suivantes :

$$1) f(x) = \ln \left| \ln |x| \right|$$

2)
$$f(x) = \ln \left| \sin^2 x + 3\sin x + 4 \right|$$

Exercice14: Déterminer les fonctions primitives des fonctions suivantes :

1)
$$I = \mathbb{R}$$
; $f(x) = \frac{x^3}{x^4 + 2}$ 2) $I =]0;1[; g(x) = \frac{1}{x \ln x}]$

3)
$$I =]-\infty; 1[; h(x) = \frac{1}{x-1}]$$
 4) $I =]\frac{3\pi}{2}; 2\pi[; k(x) = \frac{\cos x}{\sin x}]$

5)
$$M(x) = \frac{1}{x^2 - 1}$$
 (Essayer d'écrire

$$g(x) = \frac{a}{x-1} + \frac{b}{x+1}$$
 où a et b des réels à déterminer).

6)
$$N(x) = \frac{x^3 + 2x^2 - 3x + 2}{x - 3}$$

7)
$$I =]3; +\infty[; q(x) = \frac{1}{(x-2)\ln(x-2)}$$

Exercice 15 : Considérons la fonction *f* définie

par:
$$f(x) = \frac{5x+1}{x^2+x-2}$$

1) Déterminer l'ensemble de définition de la fonction f et Déterminer les réels a et b tels que :

$$(\forall x \in D); f(x) = \frac{a}{x-1} + \frac{b}{x+2}$$

2) En déduire la fonction primitive de f sur

$$]-\infty;-2[$$
 Tel que $F(-3)=\ln 2$

1)
$$\log_8 4$$
 2) $\log_{\sqrt{2}} \frac{1}{2}$ 3) $\log_{\sqrt{3}} 9$

4)
$$A = \log_2\left(\frac{1}{5}\right) + \log_2\left(10\right) + \log_{\frac{1}{3}}\left(\sqrt[5]{3}\right)$$

Exercice17: On pose $\alpha = \log_{40}(100)$ et

 $\beta = \log_{16}(25)$ Calculer β en fonction α

Exercice18: simplifier et calculer:

1) $\log_{10} 100$ 2) $\log_{10} 0,0001$

3)
$$A = \log(250000) + \log\sqrt{250} - \log(125)$$

Exercice 19 : déterminer le plus petit entier

naturel n tel que :
$$\left(\frac{3}{2}\right)^n \ge 10^{20}$$

Exercice 20 :1) Résoudre dans R l'équation :

1)
$$\log_3(2x) \times (\log_5(x) - 1) = 0$$

2)
$$2(\log x)^2 - 19\log x - 10 = 0$$

3)
$$\log_{\frac{1}{2}} \left(x - \frac{1}{2} \right) \ge 1$$

4)
$$\log_{2x}(4x) + \log_{4x}(16x) = 4$$

Où log est le logarithme décimal

Exercice 21 :1) Résoudre dans \mathbb{R} les inéquations et équations suivantes :

1)
$$\log_3(7x-1)^2 = 0$$
 2) $\log_3(5x+1) = 2$

$$3) \frac{\log_3(5x+1)}{\log_3(7x-1)^2} \le 1$$

Exercice 22:A) soit la fonction g définie

$$par: g(x) = x - lnx$$

1) Déterminer D_g l'ensemble de définition de la

fonction g et déterminer les limites aux bornes

de D_{g}

2) Déterminer la fonction dérivée de la fonction g puis dresser le tableau de variation de g

- 3) en déduire que : $\forall x > 0$ x > lnx
- B) soit la fonction f définie par :

$$\begin{cases} f(x) = \frac{x + lnx}{x - lnx}; si..x > 0 \\ f(0) = -1 \end{cases}$$

- 1) Montrer que $D_f = [0; +\infty]$
- 2)Montrer que f est continue à droite de 0
- 3) calculer : $\lim_{x \to +\infty} f(x)$
- 4) Etudier la dérivabilité de la fonction f à droite de 0
- 5) Montrer que : $\forall x \in]0; +\infty[f'(x) = \frac{2(1-lnx)}{(x-lnx)^2}$
- 6) Dresser le tableau de variation de f
- 7) déterminer les points d'intersections de C_f et la

Droite : (Δ) : y = 1

8) Montrer que : C_f coupe l'axe des abscisses

en un point d'abscisse dans $\frac{1}{2}$; 1

9) Construire la courbe C_f dans un repère

$$\left(O; \vec{i}; \vec{j}\right)$$
 ($ln2 \approx 0,7$, $e \approx 2,7$)

Exercice 23 : Considérons les fonctions f et g définies sur $]-1;+\infty[$ par :

$$f(x) = \ln(1+x) - x + \frac{x^2}{2}$$
 et $g(x) = \ln(1+x) - x + \frac{x^2}{2} - \frac{x^3}{3}$

1)a)calculer les limites suivantes : $\lim_{x \to -1^+} f(x)$

$$\lim_{x \to +\infty} f(x) \; ; \; \lim_{x \to -1^+} g(x)$$

b) montrer que : $\forall x \in]-1;+\infty[$ on a :

$$g(x) = (1+x) \left(\frac{\ln(1+x)}{1+x} - \frac{2x^3 - 3x^2 + 6x}{6(1+x)} \right)$$

et en déduire : $\lim_{x \to +\infty} g(x)$

c) Etudier les variations les fonctions f et g Puis dresser les tableaux de variations de f et g

2) en déduire que $\forall x \in]0; +\infty[$:

$$x - \frac{x^2}{2} < \ln(1+x) < x - \frac{x^2}{2} + \frac{x^3}{3}$$

- 3) calculer : $\lim_{x \to 0^+} \frac{x \ln(1+x)}{x^2}$
- 4)monter que : $\forall x \in [0; +\infty[$:

$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} < \ln(1+x) < x - \frac{x^2}{2} + \frac{x^3}{3}$$

Exercice 24 : Considérons la fonction f définie

par:
$$f(x) = x-3+\frac{3}{2x}+\frac{1}{2}\ln\left|\frac{x+1}{x-1}\right|$$

- 1) Déterminer l'ensemble de définition de la fonction *f*
- 2)montrer que le domaine d'étude de f est :

$$D_{E} = \left]0;1\right[\, \cup \, \right]1;+\infty \left[$$

- 3) Déterminer les limites aux bornes de $D_{\scriptscriptstyle E}$
- 4) Etudier les variations de f sur $D_{\scriptscriptstyle E}$
- 5) Etudier les branches infinies de (C_f)

la courbe de f

6). Construire la courbe $\left(C_{\scriptscriptstyle f}\right)$ dans $D_{\scriptscriptstyle E}$

Exercice 25 :1) Résoudre dans R l'équation :

$$\log_x (x + 1) = \log_{x+1} (x)$$

2) Résoudre dans ℝ l'inéquation :

$$\log_2(x) > \log_x(2)$$

Exercice 26 : Considérons la fonction *f* définie

par:
$$f(x) = \sqrt{1 - \ln x}$$

- 1) Déterminer l'ensemble de définition de la fonction f
- 2) Résoudre l'équation f(x) = 1
- 3) Résoudre l'inéquation $f(x) \le 1$

- 4) Etudier la dérivabilité de la fonction f à gauche de e
- 5) Etudier les variations de f et en déduire que f est une bijection de D_f vers un intervalle J.
- 6) Construire dans le même repère Cf et C_{f-1} **Exercice 27 :** Considérons la fonction g définie

$$par: g(x) = x \ln\left(1 + \frac{1}{x}\right)$$

- 1. Déterminer l'ensemble de définition de la fonction g
- 2. a) Montrer que la fonction g admet un prolongement par continuité en 0 noté g
- b) Etudier la dérivabilité de g en 0 et interpréter géométriquement le résultat obtenu.
- 3. Déterminer les limites de la fonction g en $+\infty$ et en -1 à gauche.
- 4. Déterminer la fonction dérivée de la fonction g puis dresser le tableau de variation de g
- 5. Etudier les branches infinies de la courbe *Cg*.
- 6. Construire la courbe Cg
 - « C'est en forgeant que l'on devient forgeron » Dit un proverbe.
- C'est en s'entraînant régulièrement aux calculs et exercices Que l'on devient un mathématicien

