Lecture 03 Intelligent Agents

Artificial Intelligence

Dr. Ahmed Mateen

Today's Agenda

- Agents and environments
- Rationality
- Software Agents
- Task Environments
- PEAS (Performance measure, Environment, Actuators, Sensors)

Agents

• An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators

Agents (Cont.)

- Human agent
 - —Sensors: eyes, ears, and other organs
 - —Actuators: hands, legs, mouth, and other body parts
- Robotic agent
 - —Sensors: cameras and infrared range finders
 - —**Actuators:** various motors

Agents and environments

Agent Function:

The agent function maps from percept histories to actions:

$$[f: \mathcal{P}^* \rightarrow \mathcal{A}]$$

- Percept- Agent's input (the basis for its actions)
- Percept History/Sequence Complete history of what has been perceived

Agents and environments (Cont.)

- Agent Program:
 - The **agent program** runs on the physical **architecture** to produce *f*

 Actual implementation of agent function (by using some programming language)

Vacuum-cleaner world

Environment:

Square A & B

Percepts:

Location and contents, e.g., [A,Dirty]

Actions:

Left, Right, Suck, NoOp

Example vacuum agent program

Function-vacuum-agent ([location, status]) returns an action

- *if* status = Dirty *then* return Suck
- else if location = A then return Right
- else if location = B then return Left

A vacuum-cleaner agent

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
:	:
[A, Clean], [A, Clean], [A, Clean]	Right
[A, Clean], [A, Clean], [A, Dirty]	Suck
:	:

Figure 2.3 Partial tabulation of a simple agent function for the vacuum-cleaner world shown in Figure 2.2.

Rational Agent

- An agent is an entity that perceives and act
- A rational agent selects actions that maximizes its (expected) utility
- Characteristics of the percepts, environment, and action space dictate techniques for selecting rational agents
- This course is about:
 - General AI techniques for a variety of problem types
 - Learning to recognize when and how a new problem can be solved with an existing technique

Rational agents

- An agent should strive to "do the right thing", based on what it can perceive and the actions it can perform.
- Performance measure: An objective criterion for success of an agent's behavior (rationality)

■ E.g., performance measure of a vacuum-cleaner agent could be amount of dirt cleaned up, amount of time taken, amount of electricity consumed, amount of noise generated, etc.

Rational agents

 Rational Agent: For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has.

Omniscience

Rationality is distinct from omniscience (all-knowing with infinite knowledge)

 An omniscient agent knows the actual outcome of its actions and can act accordingly;

But omniscience is impossible in reality.

Learning

- Agents can perform actions in order to modify future percepts so as to obtain useful information (information gathering, exploration)
- It requires rational agent not only to gather information but also to learn as much as possible from what it perceives.
- The agent's initial configuration could reflect some prior knowledge of the environment, but as the agent gains experience this may be modified and augmented.

Autonomy

 An agent relying on prior knowledge of its designer rather than on its own percepts, we say that this agent lacks autonomy

 A rational agent should be autonomous-An agent is autonomous if its behavior is determined by its own experience (with ability to learn and adapt)

Software Agents

- Sometimes, the environment may not be the real world
 - E.g., flight simulator, video games, Internet
 - They are all artificial but very complex environments
 - Those agents working in these environments are called
 - Software agent (software robots or softbots)
 - Because all parts of the agent are software

PEAS

- Task Environment
 - Problems to which rational agents are solution
- To specify task environment we need:
- P Performance measure
- E Environment
- A Actuators
- S Sensors
- In designing an agent, the first step must always be to specify the task environment as fully as possible.

Task Environment Automated Taxi Driver Agent

Performance Measures:

- -Getting to correct Destination
- -less cost
- -high safety
- Environment:
- -variety of roads
- -Traffic
- -different types of passenger

Actuators:

Accelerators

-Steering & brakes

SENSORS:

- -Camera
- -GPS
- IR sensors

Task Environment Medical Diagnoses System

Performance measures

- -Healthy patients
- -minimize cost

Environment

- -patients
- -hospital
- -staff

Actuators:

-Screen Display (Questions test, Treatment)

SENSORS

-Keyboard (Entry of symptoms)

Part Picking Robot

Task Environment Part Picking Robot

- Performance Measures
 - Percentage of parts in correct bins
- Environment
 - —Conveyer belt with parts
 - —bins

Actuators

- —Joined arm
- —Hand
- Sensors
 - —Camera
 - —Joint angle sensors

Homework for Lecture 03 (Individual Assignment)

- Perform PEAS analysis for following agents:
 - —KFUEIT Biometric Attendance System
 - —Automatic Car Park System
 - —Automated Door Security System
 - —Weather Station
 - —Automatic Plant Watering System
- Must include title page
- Must include table of contents
- Must include page numbers
- Cited works should be properly referenced.

How to submit the work

- Make a .pdf file of your work
- Name the file with your reg no. eg. CS1811109
- Upload the file as per LMS date and time.
- For future homework, please do in a similar way.
- Copied material will be marked 0.