Stat 4202: Mathematical Statistics II

Homework 1

Spring 2025

Question 1. Use the result of Example 8.4 on page 253 to show that for random samples of size n = 3, the median is a biased estimator of the parameter θ of an exponential population.

Question 2. Show that $\frac{X+1}{n+2}$ is a biased estimator of the binomial parameter θ . Is this estimator asymptotically unbiased?

Question 3. Show that the sample proportion $\frac{X}{n}$ is a minimum variance unbiased estimator of the binomial parameter θ . (Hint: Treat $\frac{X}{n}$ as the mean of a random sample of size n from a Bernoulli population with the parameter θ .)

Question 4. If $\hat{\theta}_1$ and $\hat{\theta}_2$ are independent unbiased estimators of a given parameter θ and $var(\hat{\theta}_1) = 3 \cdot var(\hat{\theta}_2)$, find the constants a_1 and a_2 such that $a_1\hat{\theta}_1 + a_2\hat{\theta}_2$ is an unbiased estimator with minimum variance for such a linear combination.

Question 5. Show that the mean of a random sample of size n from an exponential population is a minimum variance unbiased estimator of the parameter θ .

Question 6. The information about θ in a random sample of size n is also given by

$$-n \cdot E\left[\frac{\partial^2 \ln f(X)}{\partial \theta^2}\right]$$

where f(x) is the value of the population density at x, provided that the extremes of the region for which $f(x) \neq 0$ do not depend on θ . The derivation of this formula takes the following steps:

(a) Differentiating the expressions on both sides of

$$\int f(x) \, dx = 1$$

with respect to θ , show that

$$\int \frac{\partial \ln f(x)}{\partial \theta} \cdot f(x) \, dx = 0$$

by interchanging the order of integration and differentiation.

(b) Differentiating again with respect to θ , show that

$$E\left[\left(\frac{\partial \ln f(X)}{\partial \theta}\right)^{2}\right] = -E\left[\frac{\partial^{2} \ln f(X)}{\partial \theta^{2}}\right].$$

Question 7. If \bar{X}_1 is the mean of a random sample of size n from a normal population with the mean μ and the variance σ_1^2 , \bar{X}_2 is the mean of a random sample of size n from a normal population with the mean μ and the variance σ_2^2 , and the two samples are independent, show that

- (a) $\omega \cdot \bar{X}_1 + (1 \omega) \cdot \bar{X}_2$, where $0 \le \omega \le 1$, is an unbiased estimator of μ ;
- (b) the variance of this estimator is a minimum when $\omega = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$.

Question 8. With reference to Exercise 21, find the efficiency of the estimator of part (a) with $\omega = \frac{1}{2}$ relative to this estimator with $\omega = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$.