Discussion 3 - Ishita Dutta

Problem 1

I. Explore the sample function by typing ?sample. sample takes a sample of the specified size from the elements of <math>x using either with or without replacement.

(a) Create and object named die that contains the numbers 1 through 6. Provide the results.

```
die = 1:6
die
```

[1] 1 2 3 4 5 6

(b) Generate one roll of a die of size 2 with R's samplefunction. Call this objectdice. Display the results.

```
dice = sample(die, 2)
dice
```

[1] 4 6

(c) Repeat part (b) by sampling with replacement. Display the results.

```
dice = sample(die, 20, replace = TRUE)
dice
```

```
## [1] 3 6 4 4 2 3 5 5 3 4 2 5 4 4 2 6 4 1 6 5
```

(d) Find the sum, mean, and standard deviation for part(c).

```
df = data.frame(
   sum = sum(dice),
   mean = mean(dice),
   sd = sd(dice)
)
knitr::kable(df, caption = "Summary of Part C")
```

Table 1: Summary of Part C

sum	mean	sd
78	3.9	1.447321

#Problem 2

Every function in R has 3 basic parts: A name, body of code, and set of arguments. Create a function that provides the sum when you generate 10 outcomes of one roll. Call the function rolland have it run the body of code on the argument die.

Why we use Functions:

-reduces code length -reduces debugging efforts

(a) Display your function.

```
roll = function(die = 1:6, size = 10, replacement = TRUE){
    #input --> die: vector to sample
    # size: integer, sample size

#
    #output--> integer, sum of the roll with length size

#
    #Description: provides the sum when you generate 10 outcomes of one roll
    outcome = sample(die, size, replace = replacement)
    output = sum(outcome)
    return(output)
}
```

(b) Run your function for a 4 sided die and provide the result.

```
value = roll(die = 1:4,size = 10)
value
```

[1] 28

(c) Run your function for an 8 sided die and provide the result.

```
value = roll(die = 1:8, size = 10)
value
```

[1] 46

#Problem 3 Use the lynx dataset to do the following:

(a) Find the range of the lynx data. What did it return?

```
range(lynx)
```

[1] 39 6991

(b) Create a function called my.rangethat will return the maximum - the minimum. Call the argument used in the function MyData. Display the function and the result.

```
my.range = function(x){
  min = min(x)
  max = max(x)
  return(max - min)
}

my.range(lynx)
```

[1] 6952