

- Topic 1: Statistical Modelling
 - Lecture 1: First-order models with quantitative independent variables
- Topic 2: Statistical Modelling with interactions (Assignment 1)
 - Lecture 2: Interaction effects, quantitative and qualitative variables
 - Lecture 3: Interaction effects and second-order models
- Topic 3: Statistical Model selection (Assignment 2)
 - Lecture 4: Model selection: Stepwise regression, Forward selection and Backward Elimination
 - Lecture 5: Model selection: Evaluate the reliability of the model chosen
- Topic 4: Statistical model diagnostics
 - Lecture 6: Multiple regression diagnostics: verify linearity, independence, and equal variance assumptions.
 - Lecture 7: Multiple regression diagnostics: verify normality assumptions and identify multicollinearity and outliers.
 - Lecture 8: Multiple regression diagnostics: data transformation
- Topic 5: Transfer learning
 - Lecture 9: Transfer-learning (Bonus): standing on the shoulders of giants.

- Topic 1: Statistical Modelling
 - Lecture 1: First-order models with quantitative independent variables
- Topic 2: Statistical Modelling with interactions (Assignment 1)
 - Lecture 2: Interaction effects, quantitative and qualitative variables
 - Lecture 3: Interaction effects and second-order models
- Topic 3: Statistical Model selection (Assignment 2)
 - Lecture 4: Model selection: Stepwise regression, Forward selection and Backward Elimination
 - Lecture 5: Model selection: Evaluate the reliability of the model chosen
- Topic 4: Statistical model diagnostics
 - Lecture 6: Multiple regression diagnostics: verify linearity, independence, and equal variance assumptions.
 - Lecture 7: Multiple regression diagnostics: verify normality assumptions and identify multicollinearity and outliers.
 - Lecture 8: Multiple regression diagnostics: data transformation
- Topic 5: Transfer learning
 - Lecture 9: Transfer-learning (Bonus): standing on the shoulders of giants.

Learning Outcomes: At the end of the course, participants will be able to

- 1. Model the multiple linear relationships between a response variable (Y) and all explanatory variables (both categorical and numerical variables) with interaction terms. Interpret model parameter estimates, construct confidence intervals for regression coefficients, evaluate model fits, and visualize correlations between a response variable (Y) and all explanatory variables (X) by graphs (scatter plot, residual plot) to assess model validity.
- 2. Predict the response variable at a certain level of the explanatory variables once the fit model exists.
- 3. Implement R-software and analyze statistical results for biomedical and other data.

Evaluations

- 1. Assignments will be posted on Slack (our communication tool with students).
- 2. Students must attend 70% (6/9) of the sessions in order to receive the certificate and are encouraged to work on the assignments progressively throughout the course as the relevant material is covered.

- Supportive materials
 - Lectures slides (2023)
 - R code scripts (2023)
 - PDF (dated 2022)
 - Two Assignments (dated 2022)
- Slack channels
 - Recoding videos
 - Exercises
 - Course-documents

Lecture 5: Model Selection, evaluate the reliability of the model chosen

Quick recap of lecture 4

• Statistics:

- Backward elimination
- Forward selection
- Stepwise regression
- All Possible Regressions Selection Criteria (makes your own combos of selection criteria)
 - R square
 - adjusted R²
 - Mallows's Cp Criterion
 - AIC (Akaike's information criterion) or BIC (Bayesian information criterion)
 - RMSE

• Code:

- Im(); anova();
- ols_step_backward_p
- ols_step_forward_p
- ols_step_both_p
- rbind(); cbind(); colnames(); write.csv(); getwd()

Criteria Combos 5	R2 (+)	Adjusted R2 (+)	Cp (k+1)	AIC/BIC (-)	RMSE (-)
Model1					
Model5					

Cp < k +1, sampling errors, no bias between predicted values and actual values

Cp near k +1, the optimal model

k+1

Cp > k +1, substantial bias between predicted values and actual values

In class Practice Problem 13

Use the CREDIT.CSV data.

From the credit card example, using the **All Possible Regressions Selection Criteria** (combo5) to analyze which independent predictors should be used in the model.

Hints: construct criterion combos 5 tables for the best models you get from problem 11, 12 and make a final decision.

Pros:

 The model's performance in relation to all predictors is evident.

Cons:

 Not dynamically displaying how predictors are added or deleted.

In class Practice Problem 13

model	Variables	R2	AdjR2	Ср	AIC	RMSE
forward	Income	0.745848418	0.74521	1800.308	5496.781548	232.0713
forward	Limit	0.875117948	0.874489	685.1965	5214.557085	162.8813
forward	Rating	0.94987878	0.949499	41.13387	4851.386992	103.3189
forward	Cards	0.952187504	0.951703	23.1825	4834.524008	101.0389
forward	Age	0.954160597	0.953579	8.131573	4819.66682	99.05763
forward	Education	0.954687886	0.953996	5.574883	4817.038963	98.61148
forward	factor(Gender)	0.954816662	0.95401	6.462042	4817.90056	98.59677
forward	factor(Ethnicity)	0.745848418	0.74521	1800.308	5496.781548	232.0713
forward	factor(Married)	0.875117948	0.874489	685.1965	5214.557085	162.8813
forward	factor(Student)	0.94987878	0.949499	41.13387	4851.386992	103.3189
stepwise	Income	0.745848418	0.74521	1800.308	5496.781548	232.0713
stepwise	Limit	0.875117948	0.874489	685.1965	5214.557085	162.8813
stepwise	Rating	0.94987878	0.949499	41.13387	4851.386992	103.3189
stepwise	Cards	0.952187504	0.951703	23.1825	4834.524008	101.0389
stepwise	Age	0.954160597	0.953579	8.131573	4819.66682	99.05763
stepwise	Education	0.954687886	0.953996	5.574883	4817.038963	98.61148
stepwise	factor(Gender)	0.745848418	0.74521	1800.308	5496.781548	232.0713
stepwise	factor(Ethnicity)	0.875117948	0.874489	685.1965	5214.557085	162.8813
stepwise	factor(Married)	0.94987878	0.949499	41.13387	4851.386992	103.3189
stepwise	factor(Student)	0.952187504	0.951703	23.1825	4834.524008	101.0389

Combos 5

- Model selection functions, such as ols_step_backward_p, ols_step_forward_p, ols_step_both_p, include or exclude predictor on their coefficients' p-values.
 Additionally, these functions also give values for criteria combos 5.
- Does the optimal model constructed based on p-values (ols_step_backward_p, etc.) matches the one uses criteria combos 5?
- To answer this question: we use the function named "ols_step_best_subset"

Comparison of the optimal models

The optimal model based on criteria combos 5

Predictors	# of Predictors	R2	AdjR2	Ср		AIC	RMSE
Rating	1	0.745848418	0.745209846	1800.308406	1798.308406	5496.781548	21542838
Income Rating	2	0.875117948	0.874488819	685.1965138	682.1965138	5214.557085	10612200
Income Rating factor(Student)	3	0.94987878	0.949499073	41.13386746	37.13386746	4851.386992	4269973
Income Limit Cards factor(Student)	4	0.953580003	0.953109927	11.14890997	6.148909969	4822.701337	3964692
Income Limit Rating Cards factor(Student)	5	0.954160597	0.953578879	8.131573242	2.131573242	4819.66682	3925066
Income Limit Rating Cards Age factor(Student)	6	0.954687886	0.953996098	5.574883125	1.425116875	4817.038963	3889814
Income Limit Rating Cards Age factor(Ethnicity) factor(Student)	7	0.954824445	0.953900137	6.394781129	1.605218871	4819.83165	3888010
Income Limit Rating Cards Age factor(Gender) factor(Ethnicity) factor(Student)	8	0.954959282	0.95391988	7.229560218	1.770439782	4820.635975	3886345
Income Limit Rating Cards Age factor(Gender) factor(Ethnicity) factor(Married) factor(Student	9	0.955046842	0.953891234	8.472883277	1.527116723	4821.857603	3888761
Income Limit Rating Cards Age Education factor(Gender) factor(Ethnicity) factor(Married) fact	10	0.955101563	0.95382867	10	1	4823.370391	3894037

The optimal model using forward selection procedure

> forward_model

Selection Summary

Step	Variable Entered	R-Square	Adj. R-Square	C(p)	AIC	RMSE
1 2	Rating	0.7458	0.7452	1800.3084	5496.7815	232.0713
	Income	0.8751	0.8745	685.1965	5214.5571	162.8813
3	factor(Student)	0.9499	0.9495	41.1339	4851.3870	103.3189
4	Limit	0.9522	0.9517	23.1825	4834.5240	101.0389
5	Cards	0.9542	0.9536	8.1316	4819.6668	99.0576
6	Age	0.9547	0.9540	5.5749	4817.0390	98.6115
7	factor(Gender)	0.9548	0.9540	6.4620	4817.9006	98.5968

These two results do not match with each other. Which one should we choose?

>> Based on your circumstances.

Maybe more information the better.

Evaluate the reliability of the model chosen

After using model selection by automatic methods (ols) or all possible regression methods (combos 5), we might not have the best fit model yet, as we consider only main effects on independent variables. After eliminating some variables that are not important out of the model, we consider interaction terms and/or high order multiple regression model to improve the model.

In class Practice Problem 14

Use the CREDIT.CSV data.

Include interaction terms and higher order terms to improve the optimal first-order model we got.

The Credit data set records balance (average credit card debt for a number of individuals) as well as several quantitative predictors: age, cards (number of credit cards), education (years of education), income (in thousands of dollars), limit (credit limit), and rating (credit rating). In addition to these quantitative variables, we also have four qualitative variables: gender, student (student status), status (marital status), and ethnicity (Caucasian, African American or Asian).

> ols_step_both_p(inter_full_model, pent=0.05, prem=0.05, details = FALSE)

Stepwise Selection Summary

Step	Variable	Added/ Removed	R-Square	Adj. R-Square	C(p)	AIC	RMSE
1	Rating:factor(Student)	addition	0.808	0.807	3686.6670	5386.1303	201.8427
2	Income	addition	0.947	0.946	738.5400	4875.2153	106.4426
3	factor(Student)	addition	0.951	0.951	640.6990	4840.3003	101.7711
4	Age	addition	0.952	0.951	631.4390	4837.9153	101.3432
5	Cards	addition	0.952	0.951	630.4880	4838.7578	101.3253
6	Age	removal	0.952	0.951	640.3350	4841.3837	101.7835
7	Limit:Rating	addition	0.965	0.965	350.7520	4710.3128	86.2957
8	factor(Student)	removal	0.963	0.962	403.5540	4736.9367	89.3257
9	Income:Rating	addition	0.977	0.976	110.0590	4552.6157	70.8566
10	Rating	addition	0.977	0.976	112.0590	4552.6157	70.8566
11	Limit	addition	0.978	0.978	84.2300	4529.9117	68.7896
12	<pre>Income:factor(Student)</pre>	addition	0.980	0.979	52.7520	4502.2385	66.3695
13	Age:factor(Student)	addition	0.981	0.981	24.1550	4477.0478	64.1558
14	Rating:Age	addition	0.981	0.981	21.3440	4474.2571	63.8548

> summary(best_inter_model_stepwise)

```
Call:
```

```
lm(formula = Balance ~ Income + Limit + Rating + Cards + Age +
    factor(Student) + Rating:factor(Student) + Limit:Rating +
    Income:Rating + Income:factor(Student) + Age:factor(Student) +
    Rating:Age, data = credit)
```

Residuals:

```
Min 1Q Median 3Q Max
-207.563 -42.088 7.096 38.556 158.181
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                         -2.425e+02 3.154e+01 -7.689 1.24e-13 ***
                         -1.891e+00 5.276e-01 -3.584 0.000381 ***
Income
                         1.146e-01 2.163e-02 5.300 1.95e-07 ***
Limit
                         -2.636e-01 3.281e-01 -0.803 0.422199
Rating
Cards
                         1.807e+01 2.802e+00 6.449 3.36e-10 ***
                         1.798e-01 4.663e-01
Age
                                               0.386 0.699957
factor(Student)Yes
                         9.240e+01 5.016e+01 1.842 0.066234 .
Rating:factor(Student)Yes 1.136e+00 1.164e-01 9.757 < 2e-16 ***
Limit:Rating
                         3.376e-04 1.720e-05 19.633 < 2e-16 ***
Income:Rating
                         -1.682e-02 1.196e-03 -14.069 < 2e-16 ***
Income:factor(Student)Yes -1.757e+00 4.772e-01 -3.682 0.000264 ***
Age:factor(Student)Yes 5.430e-01 7.400e-01 0.734 0.463498
Rating:Age
                         -2.682e-03 1.160e-03 -2.311 0.021368 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

Residual standard error: 63.66 on 387 degrees of freedom Multiple R-squared: 0.9814, Adjusted R-squared: 0.9808 F-statistic: 1702 on 12 and 387 DF, p-value: < 2.2e-16


```
> best_inter_model_final1 <-lm(Balance ~ Income+Limit+Rating+Cards+Age+factor(Student)</pre>
                              +Rating:factor(Student)+Limit:Rating+Income:Rating+Income:factor(Student)
                              +Rating:Age
                                ,data=credit)
> summary(best_inter_model_final1)
Call:
lm(formula = Balance ~ Income + Limit + Rating + Cards + Age +
    factor(Student) + Rating:factor(Student) + Limit:Rating +
   Income:Rating + Income:factor(Student) + Rating:Age, data = credit)
Residuals:
    Min
-211.690 -42.756
                    7.535
                           38.314 159.449
Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
(Intercept)
                         -2.455e+02 3.126e+01 -7.852 4.03e-14 ***
                         -1.931e+00 5.244e-01 -3.683 0.000263 ***
Income
Limit
                          1.156e-01 2.158e-02 5.357 1.45e-07 ***
                         -2.666e-01 3.279e-01 -0.813 0.416576
Rating
Cards
                          1.795e+01 2.795e+00 6.421 3.96e-10 ***
                          2.406e-01 4.586e-01 0.525 0.600073
factor(Student)Yes
                          1.221e+02 2.965e+01 4.118 4.68e-05 ***
Rating:factor(Student)Yes 1.120e+00 1.143e-01 9.798 < 2e-16 ***
Limit:Rating
                          3.365e-04 1.712e-05 19.658 < 2e-16 ***
                         -1.674e-02 1.189e-03 -14.073 < 2e-16 ***
Income:Rating
Income:factor(Student)Yes -1.643e+00 4.506e-01 -3.645 0.000303 ***
Rating:Age
                         -2.739e-03 1.157e-03 -2.367 0.018416 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 63.62 on 388 degrees of freedom
Multiple R-squared: 0.9814, Adjusted R-squared: 0.9809
F-statistic: 1859 on 11 and 388 DF. p-value: < 2.2e-16
```


It takes too much time to run ols_step_best_subset and construct the Combos 5 table. Let's quit.

Add high order terms [Income, Limit, Rating, Cards, Age].

Stepwise regression is cumbersome

Stepwise Selection Summary

Step	Variable	Added/ Removed	R-Square	Adj. R-Square	C(p)	AIC	RMSE
	vai labie						
1	Rating:factor(Student)	addition	0.808	0.807	4890.2550	5386.1303	201.8427
2	Income	addition	0.947	0.946	1072.4180	4875.2153	106.4426
3	factor(Student)	addition	0.951	0.951	945.1430	4840.3003	101.7711
4	I(Income∧2)	addition	0.952	0.951	935.0100	4838.6543	101.4368
5	factor(Student)	removal	0.947	0.947	1061.2610	4873.6102	106.0980
6	Age	addition	0.948	0.947	1047.8970	4871.3589	105.6696
7	Income	removal	0.912	0.911	2040.1500	5079.5965	137.2558
8	I(Age∧2)	addition	0.912	0.911	2039.7200	5081.1968	137.3612
9	I(Income∧2)	removal	0.816	0.814	4678.5110	5373.4629	198.1808
10	Cards	addition	0.818	0.816	4623.7010	5370.9560	197.3173
11	Rating:factor(Student)	removal	0.008	0.001	26946.2300	6045.4007	459.5913
12	Limit	addition	0.759	0.756	6262.5020	5482.0835	227.0012
13	Age	removal	0.758	0.756	6291.3090	5481.9316	227.2387
14	<pre>Income:factor(Student)</pre>	addition	0.926	0.925	1643.7420	5010.0372	125.6707
15	I(Limit∧2)	addition	0.943	0.942	1188.0880	4910.0645	110.7715
16	I(Cards∧2)	addition	0.943	0.942	1190.0860	4912.0642	110.9127
17	I(Limit∧2)	removal	0.926	0.925	1645.7100	5012.0310	125.8295
18	I(Rating∧2)	addition	0.942	0.941	1220.5580	4919.7239	111.9797
19	<pre>Income:factor(Student)</pre>	removal	0.762	0.759	6184.9390	5479.2707	225.9258
20	Income:Rating	addition	0.891	0.889	2618.6040	5168.1446	152.9437
21	Cards	removal	0.891	0.890	2616.7380	5166.1625	152.7529
22	Rating	addition	0.891	0.890	2607.4040	5166.6507	152.6583
23	I(Cards^2)	removal	0.891	0.889	2625.4030	5167.3142	152.9729

Correlation

- Correlations is an easy way to tell which predictors are mostly likely to have high orders
- Correlation is a statistical measure that indicates the extent to which two or more variables fluctuate in relation to each other. A positive correlation (+) indicates the extent to which those variables increase or decrease in parallel; a negative correlation (-) indicates the extent to which one variable increases as the other decreases.
- A correlation coefficient is a statistical measure, of the degree to which changes to the value of one variable predict change to the value of another.
- Note, correlation does not imply causation.

response, coefficients of correlation, predictors

between the two variables.

Correlation

- Pearson correlation: Pearson correlation evaluates the linear relationship between two quantitative (continuous) variables. It's also known as a parametric correlation test because it depends to the distribution of the data. It can be used only when x and y are from normal distribution.
- Spearman (rank) correlation: Spearman correlation evaluates the monotonic relationship, suitable for both
 quantitative and qualitative variables. The Spearman correlation coefficient is based on the ranked values for each
 variable rather than the raw data.
- Kendall's Tau is a non-parametric measure of relationships between columns of ranked data. The Tau correlation coefficient returns a value of 0 to 1, where: 0 is no relationship, 1 is a perfect relationship.
- A monotonic relationship is a relationship that does one of the following: (1) as the value of one variable increases, so does the value of the other variable; or (2) as the value of one variable increases, the other variable value decreases. Examples of monotonic and non-monotonic relationships are presented in the diagram below

Figure 1 - A monotonically increasing function

Figure 2 - A monotonically decreasing function

Figure 3 - A function that is not monotonic

Pearson correlation

- Pearson correlation evaluates the linear relationship between two quantitative (continuous) variables.
- Requirements:
 - Scale of measurement should be interval or ratio
 - Variables should be approximately normally distributed
 - The association should be linear
 - There should be no outliers in the data

$$r_{xy} = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - ar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i - ar{y})^2}}$$

Spearman (rank) correlation

					Ma	arks				
English	56	75	45	71	62	64	58	80	76	61
Maths	66	70	40	60	65	56	59	77	67	63

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

No tied observations where d = differencebetween ranks and $d^2 = difference$ squared.

Create a table of ranks, example of no tied observations

English (mark)	Maths (mark)	Rank (English)	Rank (maths)	d	d ²
56	66	9	4	5	25
75	70	3	2	1	1
45	40	10	10	0	0
71	60	4	7	3	9
62	65	6	5	1	1
64	56	5	9	4	16
58	59	8	8	0	0
80	77	1	1	0	0
76	67	2	3	1	1
61	63	7	6	1	1

$$\rho(df) = \rho \ coefficient, P = P \ value$$
where $df = N - 2$,
where $N = 0.033$ where $N = 0.033$

H₀: There is no [monotonic] association between the two variables [in the population].

P value of spearman correlation < 0.05 means there is a monotonic association between two variables.

Spearman (rank) correlation

					Ma	ırks				
English	56	75	45	71	61	64	58	80	76	61
Maths	66	70	40	60	65	56	59	77	67	63

Create a table of ranks, example of tied observations

English (mark)	Maths (mark)	Rank (English)	Rank (maths)
56	66	9	4
75	70	3	2
45	40	10	10
71	60	4	7
61	65	6.5	5
64	56	5	9
58	59	8	8
80	77	1	1
76	67	2	3
61	63	6.5	6

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

Tied observation, where *i* = paired score.

It is important to realize that statistical significance does not indicate the strength of Spearman's correlation.

In fact, the statistical significance testing of the Spearman correlation does not provide you with *any* information about the strength of the relationship.

R code: cor(x, y, method="pearson")

Library(GGally)

Correlation matrix

ggpairs(credit,lower = list(continuous = "smooth loess", combo ="facethist", discrete = "facetbar", na = "na"))

In class Practice Problem 15

Clerical staff work hours. In any production process in which one or more workers are engaged in a variety of tasks, the total time spent in production varies as a function of the size of the work pool and the level of output of the various activities.

For example, in a large metropolitan department store, the number of hours worked (Y) per day by the clerical staff may depend on the following variables:

X1 = Number of pieces of mail processed (open, sort, etc.)

X2 = Number of money orders and gift certificates sold,

X3 = Number of window payments (customer charge accounts) transacted,

X4 = Number of change order transactions processed,

X5 = Number of checks cashed,

X6 = Number of pieces of miscellaneous mail processed on an "as available" basis , and

X7 = Number of bus tickets sold

The data are provided in **CLERICAL.csv** file count for these activities on each of 52 working days. Conduct a Stepwise Regression Procedure and All-Possible-Regressions procedure of the data using R software package.

Approach 1: Try to build a "best model" manually

- 1. Fit the model with all terms thought to be important as below in first order model.
- 2. Remove terms that are not significant with individual t-tests, this becomes model.
- 3. Conduct a partial F test using anova() to determine if this was justified.
- 4. The Partial F indicates removal of those terms was justifiable (strictly using $\alpha = 0.05$).
- 5. Interactions don't appear to improve anything, so let's go back to the model with only first-order effects among the variables identified as significant on an individual t-test.
- 5. Now let's check if we can improve the model with higher-order terms.

Approach 2: Use Stepwise regression

- 1. Run a stepwise regression on the additive model with all potential terms.
- 2. Take the output of stepwise regression and see if two-way interaction terms are justifiable.
- 3. Now let's see if it is justifiable to add any second-order terms.

Approach 3: Use all-best-subsets regression

- 1. Run an all-best subsets regression, and then construct combos 5 table.
- 2. So, let's move it forward and see if any two-way interactions are justified.
- 3. And finally, let's see if we can justify any higher-order terms on these.

Optimal models:

optimal_model_approach1=lm(Y ~ X2+X4+X5+I(X2^2), data=workhours)

optimal_model_approach2=Im(Y ~ X2+X4+X5+I(X2^2), data=workhours)

optimal_model_approach3 <-lm(Y~(X1+X2+X3+X4+X5+X6+X1:X6+X2:X6), data=workhours)

Take away messages

• Statistics:

- Model selection based on p-values of predictor's coefficients OR combos 5 criterion
- Correlation measures the extent to which two or more variables fluctuate in relation to each other.
 - Pearson correlation
 - Spearman rank correlation

• Code:

- ols_step_best_subset
- cor(x,y)
- ggpairs(data, lower = list(continuous = "smooth_loess", combo ="facethist", discrete = "facetbar", na = "na")))

Thank you

- Questions OR Comments?
- Slack channel: section2-course-documents
- Email: qing.li2@uclagary.ca

