Computerpraktikum Algebra

Thema 4 - Graphen und Lie-Algebren

Pascal Bauer, Raphael Millon, Florian Haas Sommersemester 2020

Table of contents

1 Theorie

2 Showcase

3 Ausgesuchte Codebeispiele

Theorie

- Wir betrachten Dynkin-Diagramme und die daraus konstuierbaren Gruppen.
- Dynkin-Diagramm sind spezielle Graphen, mit eventuell mehrfachen gerichteten Kanten.

Theorie

- Zu einem Graphen Γ kann eine Matrix $A(\Gamma) = (a_{ij})_{1 \le i,j \le n}$ wie folgt definiert werden:
- 1. Setze $a_{ii} = 2$ auf der gesamten Diagonalen.
 - 2. Setze $a_{ij} = 0$, falls $i \neq j$ und die Ecken i und j nicht verbunden sind.

 - 3. Setze $a_{ij}^{ij}=a_{ji}=-1$, falls $i\neq j$ und die Ecken i und j einfach verbunden sind. 4. Setze $a_{ij}=-d,\ a_{ji}=-1$, falls $i\neq j$ und die Ecken i und j d-fach in Richtung iverbunden sind
- Für F₄ ergibt sich zum Beispiel

$$A(F_4) = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -2 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix}.$$

• Somit kodieren sich Γ und $A(\Gamma)$ gegenseitig.

Theorie

- Für festes Γ definieren wir nun für $1 \leq i \leq n$ lineare Abbildungen gegeben durch $w_i(e_i) := e_i a_{ii}e_i$ oder äquivalent $M_{\mathbb{Q}}(w_i) = I_n E_{ii}A(\Gamma)$.
- Da $M_{\mathbb{Q}}(w_i)^2 = I_n 2E_{ii}A(\Gamma) + (E_{ii}A(\Gamma))^2 = I_n$ ist die Abbildung $w_i \in GL_n(\mathbb{Q})$ und insbesondere diagonalisierbar mit Eigenwerten $\in \{-1,1\}$.
- Jede Abbildung w_i beschreibt also eine Spiegelung.
- In unserem Projekt betrachteten wir die von allen w_i erzeugte Gruppe $W = \langle w_1, \dots, w_n \rangle \subseteq GL_n(\mathbb{Q}).$
- Zudem wird $\Phi=\{w(e_j)\mid w\in W, 1\leq j\leq n\}$ berechnet. Insbesondere ist Φ genau dann endlich wenn auch W endlich ist.

Showcase

gmat glin gphi

Codebeispiele

GAP GAP GAP