

Industrial applications based on friction

$$\frac{\partial f_{i,j}(\vec{x},\vec{c})}{\partial x^{i}} = \sum_{k \neq i} c_{k,i}$$

The right formula for the steels of the future

Integrated steel production route Primary

- Hot metal is obtained in the blast furnace from the reduction of the iron ore by the coke
- Steel is obtained in the converter where the high carbon level is removed from the cast iron
- 3 Liquid steel is solidified as a slab in the casting machine
- Slab thickness and width are reduced in the hot strip mill while microstructure and surface aspect are controlled, to produce a hot rolled coil.

Hot Strip Mills in ArcelorMittal

In Hot Strip Mill, slabs are transformed into coils

Thickness: 220-260 mm

Length: 5-15 m

1.8-25 mm

400-1500 mm

Width: 800-2200 mm

Weight: 20-35 t (yield: ~97%)

Why do we hot roll?

- What are the main objectives of the Hot Strip Mill process?
 - To reduce the product thickness and width
 - To obtain the surface quality and the mechanical properties required by the customer
- Why hot rolling but not only cold rolling?
 - Easier: hot rolling is done over phase transformation temperature (Curie temperature ~725°C)
 - Recrystallization phenomenon is active → almost no workhardening and enable very high thickness reduction (up to ~100 times)

The 4 main steps of Hot Strip Mill process

- **1. Reheating:** Slab, coming from continuous casting, is heated during 3h up to about 1200°C.
- 2. Rolling: After descaling, slab is rolled in two steps: roughing and finishing mills to achieve desired width and thickness. Its temperature decreases to 800-900°C.

- 3. Cooling: On run-out table, strip is cooled down to 550-750°C through a controlled scheme to achieve the desired microstructure and mechanical properties.
- **4. Coiling:** Strip is finally wound into a coil to be easily delivered to customers.

Width management

Finishing Mill

Finishing Mill

Finishing mill

Example of a finishing mill rolling scheme

Finishing mill

Work-rolls

- Why is it important to cool down the work roll?
- Why is it important to lubricate the bite?
- Work-rolls may be smaller or bigger in diameter: why?

Work-rolls

- Why is it important to cool down the work-roll?
 - To decrease the oxidation of the work-roll surface
 - To decrease the thermo-mechanical fatigue due to the contact with the hot strip
- Why is it important to lubricate the bite?
 - Work-roll surface quality (protection from corrosion)
 - Decrease the roll-bite friction → decrease forces and save energy
- Work-rolls may be smaller or bigger in diameter: why?
 - Threading ability (the bigger the roll the easier) vs. roll forces

Work-rolls surface & strip surface quality

Initial roll roughness

Degraded roll surface

Rolled-in scale

Slight defect

Average defect

Strong defect

Objectives

- To develop, based on online friction coefficient calculation:
 - Work-roll degradation indicator
 - Threading refusal prediction and prevention system
 - lubrication efficiency indicator and recommendation for change in preset of lubrication
 - Preset model for roll force, forward slip and torque

Threading Refusal alarm

Work-roll surface state indicator

Flexible Lubrication

Friction indicator

Arcelor Mittal

Role of friction in rolling

- Why mastering the friction of roll-strip contact?
 - Surface defects

Roll consumption (wear and surface quality)

Rolling capability & energy

- How to master the contact friction?
 - Forward slip measurement
 - Back-calculation model of friction based on forward slip

Rolling model OROWAN

Orowan is a computer implementation of the rolling force model with the same name. It is written in C++ and can generate a library for PC (dll or executable) using the Visual Studio development environment. Model is compatible with other C++ compilers (VMS, Linux).

Model includes the following 2 functions:

Rolling model OROWAN

Limits are fixed on inputs/outputs values (adjustable in function of plants):

Measurement	Unit	Min	Domain			Max	Condition
Entry thickness	mm	1.5	<	<u>h</u> e	٧١	75	h / h
Exit thickness	mm	1.5	<	h _{s.}	٧	75	<u>h</u> ₅< <u>h</u> e
Draft	%	1	<	reduction	٧	60	-
Entry tension	MPa	0	<	Te	٧١	50	-
Exit tension	MPa	0	<	Ts	٧١	50	-
Working roll diameter	mm	500	<	WR	VI	1500	-
Young modulus (WR)	MPa	120000	<	youngW R	V	250000	-
Friction coefficient	-	0.05	<	mu	٧	1	-
Offset yield stress	MPa	0	<	offset	ı	-	rheological law
Rolling force	t/m	150	<	force	٧	5000	-
Forward slip	%	0	<	slip	۷.	20	-

Online friction back-calculation is a robust solution

 Forward slip measurement: incremental encoder on looper => allows a good precision of friction.

Online calculation model (Orowan) based on force and forward slip to obtain

friction application and atrip violal atrace.

