Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

14-513 18-613

Network Programming: Part I

15-213/18-213/14-515/15-513/18-015: Exam Help Introduction to Com 22nd Lecture, Novemhttps://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help https://eduassistpro.github.io/
Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Today

Networks
CSAPP 11.1-11.2

Global IP Internet CSAPP 11.3

 Sockets Interface Assignment Project Exam Help

https://eduassistpro.github.io/

A Client-Server Transaction

- Most network applications are based on the client-server model:
 - A server process and one or more client processes
 - Server manages some resource oject Exam Help
 - Server provides ce for clients
 - Server activated https://eduassistpro.gathathipg/analogy)

Note: clients and servers are processes running on hosts (can be the same or different hosts)

Hardware Organization of a Network Host

Computer Networks

- A *network* is a hierarchical system of boxes and wires organized by geographical proximity
 - BAN (Body Area Network) spans devices carried / worn on body
 - SAN* (System Area Network) spans cluster or machine room
 - Switch et string not a Project, Exam Help
 - LAN (Local Area ampus
 - Ethernet is https://eduassistpro.github.io/

 - WAN (Wide Area Network) spans c
 Typically high-speed work edu_assist_pro
- An internetwork (internet) is an interconnected set of networks
 - The Global IP Internet (uppercase "I") is the most famous example of an internet (lowercase "i")
- Let's see how an internet is built from the ground up

Lowest Level: Ethernet Segment

- Ethernet segme by wires (twiste https://eduassistpro.github.io/
- Spans room or flood on We Gillant edu_assist_pro
- Operation
 - Each Ethernet adapter has a unique 48-bit address (MAC address)
 - E.g., 00:16:ea:e3:54:e6
 - Hosts send bits to any other host in chunks called frames
 - Hub slavishly copies each bit from each port to every other port
 - Every host sees every bit

[Note: Hubs are obsolete. Bridges (switches, routers) became cheap enough to replace them]

Next Level: Bridged Ethernet Segment

- Spans building or campus
- Bridges cleverly learn which hosts are reachable from which ports and then selectively copy frames from port to port

Conceptual View of LANs

For simplicity, hubs, bridges, and wires are often shown as a collection of hosts attached to a single wire:

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Next Level: internets

- Multiple incompatible LANs can be physically connected by specialized computers called *routers*
- The connected networks are called an internet (lower case)

Assignment Project Exam Help

LAN 1 and LAN 2 might be completely different, totally incompatible (e.g., Ethernet, Fibre Channel, 802.11*, T1-links, DSL, ...)

Logical Structure of an internet

Add WeChat edu_assist_pro
Ad hoc interconnection of netwo

- - No particular topology
 - Vastly different router & link capacities
- Send packets from source to destination by hopping through networks
 - Router forms bridge from one network to another
 - Different packets may take different routes

The Notion of an internet Protocol

- How is it possible to send bits across incompatible LANs and WANs?
- Solution: protocol software running on each host and router
 Protocol is a set

 Protocol is a set
 Protocol is a set
 Protocol is a set
 Solution: Protocol is a set

 - Smooths out the differences between the different networks

What Does an internet Protocol Do?

- Provides a naming scheme
 - An internet protocol defines a uniform format for host addresses
 - Each host (and router) is assigned at least one of these internet addresses that uniquely identifies it Exam Help
- Provides a deliv https://eduassistpro.github.io/
 - An internet protocol defines a stan edu_assist protocol defines a stan ed
 - Packet consists of header and payl
 - Header: contains info such as packet size, source and destination addresses
 - Payload: contains data bits sent from source host

Transferring internet Data Via Encapsulation

Other Issues

- We are glossing over a number of important questions:
 - What if different networks have different maximum frame sizes? (segmentation)
 - How do routers know where to forward frames?

 Assignment Project Exam Help

 How are routers informed when the network topology changes?

 - What if packets https://eduassistpro.github.io/
- These (and other) questions are edu_assist_pro systems known as computer networking

Today

- Networks
- Global IP Internet
- Sockets Interface Assignment Project Exam Help

https://eduassistpro.github.io/

A Map of 460 Billion Device Connections to the Internet collected by the Carna Botnet

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Global IP Internet (upper case)

- Most famous example of an internet
- Based on the TCP/IP protocol family
 - IP (Internet Project Exam Help
 - Provides ba ble delivery capability of packets (https://eduassistpro.github.io/
 - UDP (Unreliable
 - Uses IP to provide www.defined edu_assisty formo process-to-process
 - TCP (Transmission Control Protocol)
 - Uses IP to provide reliable byte streams from process-to-process over connections
- Accessed via a mix of Unix file I/O and functions from the sockets interface

Hardware and Software Organization of an Internet Application

A Programmer's View of the Internet

- 1. Hosts are mapped to a set of 32-bit IP addresses
 - 128.2.203.179
 - 127.0.0.1 (always localhost)
 Assignment Project Exam Help
- 2. The set of IP add https://eduassistpro.github.lo/fiers called Internet do
 - 128.2.217.3 is manded twowhat.edu_assist_pro
- 3. A process on one Internet host can communicate with a process on another Internet host over a *connection*

Aside: IPv4 and IPv6

- The original Internet Protocol, with its 32-bit addresses, is known as Internet Protocol Version 4 (IPv4)
- 1996: Internet Engineering Task Force (IETF) introduced Internet Protoco Everson & (Pivo) With 128 Si Paddresses

Intended as the https://eduassistpro.github.io/

Majority of Inte

Add WeChat edu_assist_pro

IPv6 traffic at Google

We will focus on IPv4, but will show you how to write networking code that is protocol-independent.

(1) IP Addresses

- 32-bit IP addresses are stored in an IP address struct
 - IP addresses are always stored in memory in network byte order (big-endian byte order)
 - True in general for any integer transferred in a packet header from one machine to a set the packet header from one
 - E.g., the por https://eduassistpro.github.io/

Dotted Decimal Notation

- By convention, each byte in a 32-bit IP address is represented by its decimal value and separated by a period
 - IP address: 0x8002C2F2 = 128.2.194.242

Assignment Project Exam Help

■ Use getaddri functions (described later) to convert https://eduassistpro.githubtied decimal format.

Add WeChat edu_assist_pro

(2) Internet Domain Names

Assignment Project Exam Help

https://eduassistpro.github.io/

Domain Naming System (DNS)

 The Internet maintains a mapping between IP addresses and domain names in a huge worldwide distributed database called DNS

Assignment Project Exam Help
NS database as a collection of milliohttps://eduassistpro.github.io/

- Each host entry defines the mapping of domain names and IP addresses. Add WeChat edu_assist_pro
- In a mathematical sense, a host entry is an equivalence class of domain names and IP addresses.

Properties of DNS Mappings

- Can explore properties of DNS mappings using nslookup
 - (In our examples, the output is edited for brevity)

Assignment Project Exam Help

Each host has a I me localhost

which always mahttps://eduassistpro.gethle?jo0.0.1

```
linux> nslookup localhost
Address: 127.0.0.4dd WeChat edu_assist_pro
```

Use hostname to determine real domain name of local host:

```
linux> hostname
whaleshark.ics.cs.cmu.edu
```

Properties of DNS Mappings (cont)

Simple case: one-to-one mapping between domain name and IP address:

```
linux> nslookup whaleshark.ics.cs.cmu.edu

Address: 128A3S339nnbent Project Exam Help
```

Multiple domain https://eduassistpro.githeub.address:

```
linux> nslookup Asdri WetChat edu_assist_pro
Address: 18.62.1.6
linux> nslookup eecs.mit.edu
Address: 18.62.1.6
```

Properties of DNS Mappings (cont)

Multiple domain names mapped to multiple IP addresses:

Some valid domain names don't map to any IP address:

```
linux> nslookup ics.cs.cmu.edu
(No Address given)
```

(3) Internet Connections

- Clients and servers communicate by sending streams of bytes over connections. Each connection is:
 - Point-to-point: connects a pair of processes.
 - Full-duplex: data can flow in both directions at the same time,
 - Reliable: stagging the property the same order it was sent.

https://eduassistpro.github.io/

- A socket is an endpoint of a con
 - Socket address is A
- A port is a 16-bit integer that identifies a process:
 - Ephemeral port: Assigned automatically by client kernel when client makes a connection request.
 - Well-known port: Associated with some service provided by a server (e.g., port 80 is associated with Web servers)

Well-known Service Names and Ports

- Popular services have permanently assigned well-known ports and corresponding well-known service names:
 - echo servers: echo 7
 - ftp servers Assignment Project Exam Help
 - ssh servers: s
 - email servers: shttps://eduassistpro.github.io/
 - Web servers: http-80 WeChat edu_assist_pro
- Mappings between well-known ports and service names is contained in the file /etc/services on each Linux machine.

Anatomy of a Connection

- A connection is uniquely identified by the socket addresses of its endpoints (socket pair)
 - (cliaddr:cliport, servaddr:servport)

Assignment Project Exam Help

Client host address

128.2.194.242

Server host address

208.216.181.15

Using Ports to Identify Services

Today

- Networks
- Global IP Internet
- Sockets Interface Assignment Project Exam Help

https://eduassistpro.github.io/

Sockets Interface

- Set of system-level functions used in conjunction with Unix I/O to build network applications.
- Created in the early 80's as part of the original Berkeley distribution of U https://eduassistpro.gly.version of the Internet protoco

- Available on all modern systems
 - Unix variants, Windows, OS X, IOS, Android, ARM

Sockets

- What is a socket?
 - To the kernel, a socket is an endpoint of communication
 - To an application, a socket is a file descriptor that lets the application read/write from/to the network
 ASSIGNMENT Project Exam Help
 Remember: All Unix I/O devices, including networks, are
 - modeled as f https://eduassistpro.github.io/ h other by
- Clients and serve
 h other by reading from and Andiding to Spot edu_assistrspro

The main distinction between regular file I/O and socket I/O is how the application "opens" the socket descriptors Quiz Time! Assignment Project Exam Help

https://eduassistpro.github.io/

Check out: Add WeChat edu_assist_pro

https://canvas.cmu.edu/courses/17808

Socket Programming Example

- Echo server and client
- Server
 - Accepts connection request
 - Repeats back high artifet are typedt Exam Help
- Client https://eduassistpro.github.io/
 - Requests conne
 - Repeatedly: Add WeChat edu_assist_pro
 - Read line from terminal
 - Send to server
 - Read reply from server
 - Print line to terminal

Echo Server/Client Session Example

Client

```
bambooshark: ./echoclient whaleshark.ics.cs.cmu.edu 6616

This line is being echoed

This one is, too Assignment Project Exam Help

This one is, too

Description

This one is a new connection

Add WeChat edu_assist_pro

Add WeChat edu_assist_pro
```

Server

whaleshark: ./echoserveri 6616	
Connected to (BAMBOOSHARK.ICS.CS.CMU.EDU, 33707)	(A)
server received 26 bytes	(B)
server received 17 bytes	(C)
Connected to (BAMBOOSHARK.ICS.CS.CMU.EDU, 33708)	(D)
server received 29 bytes	(E)

Recall: Unbuffered RIO Input/Output

- Same interface as Unix read and write
- Especially useful for transferring data on network sockets

```
#include "csapp.h"

Assignment Project Exam Help

ssize_t rio_readn e_t n);

ssize_t rio_write
https://eduassistpro.github.lo/

Return: num. bytes transferred if OK, 0 dn only), -1 on error

Add WeChat edu_assist_pro
```

- rio readn returns short count only if it encounters EOF
 - Only use it when you know how many bytes to read
- rio_writen never returns a short count
- Calls to rio_readn and rio_writen can be interleaved arbitrarily on the same descriptor

Recall: Buffered RIO Input Functions

 Efficiently read text lines and binary data from a file partially cached in an internal memory buffer

```
#include "csapp.h"

void rio_readinAtssignment, Project; Exam Help

ssize_t rio_readlin https://eduassistpro.github_no/

Add Weechart edu_assistorpeo-1 on error
```

- rio_readlineb reads a text line of up to maxlen bytes from file fd and stores the line in usrbuf
 - Especially useful for reading text lines from network sockets
- Stopping conditions
 - maxlen bytes read
 - EOF encountered
 - Newline ('\n') encountered

Echo Client: Main Routine

```
#include "csapp.h"
int main(int argc, char **argv)
   int clientfd;
   char *host, *port, buf[MAXLINE];
   rio_t rio; Assignment Project Exam Help
   host = argv[1];
   port = argv[2]; https://eduassistpro.github.io/
   clientfd = Open_Alientfd(hottat edu_assist_pro
   Rio readinitb(&rio, clientfd);
   while (Fgets(buf, MAXLINE, stdin) != NULL) {
       Rio writen(clientfd, buf, strlen(buf));
       Rio readlineb(&rio, buf, MAXLINE);
       Fputs(buf, stdout);
   Close (clientfd);
   exit(0);
                                                echoclient.c
```


Iterative Echo Server: Main Routine

```
#include "csapp.h"
void echo(int connfd);
int main(int argc, char **argv)
    int listenfd, connfd;
    struct sockadar storage clientadar; / Enough room for any addr */
                                                AXLINE];
    char client hostna
                      https://eduassistpro.github.io/
    listenfd = Open li
    while (1) {
       clientlen = sizAddtWeChat edu_assist_prqmportant! */
       connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
       Getnameinfo((SA *) &clientaddr, clientlen,
                    client hostname, MAXLINE, client port, MAXLINE, 0);
       printf("Connected to (%s, %s)\n", client hostname, client port);
       echo(connfd);
       Close (connfd);
    exit(0);
                                                              echoserveri.c
```

Echo Server: echo function

- The server uses RIO to read and echo text lines until EOF (end-of-file) condition is encountered.
 - EOF condition caused by client calling close (clientfd)

```
Assignment Project Exam Help

void echo(int connfd)
{

size_t n; https://eduassistpro.github.io/
char buf[MAXLINE];

rio_t rio; Add WeChat edu_assist_pro

Rio_readinitb(&rio, connfd);
while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {

printf("server received %d bytes\n", (int)n);

Rio_writen(connfd, buf, n);
}

echo.c
```

Socket Address Structures

Generic socket address:

- For address arguments to connect, bind, and accept (next lecture)
- Necessary only because C did not have generic (void *) pointers when the sockets interface was designed

 Assignment Project Exam Help

 For casting convenience, we adopt the Stevens convention:

```
typedef str https://eduassistpro.github.io/
```

```
struct sockaddr {
 uint16_t sa_faAidd; WeChatedu_assist*/pro
         sa data[14]; /* Add
 char
```


Family Specific

Socket Address Structures

- Internet (IPv4) specific socket address:
 - Must cast (struct sockaddr_in *) to (struct sockaddr *) for functions that take socket address arguments.

Assignment Project Exam Help

Family Specific

Host and Service Conversion: getaddrinfo

- getaddrinfo is the modern way to convert string representations of hostnames, host addresses, ports, and service names to socket address structures.
 - Replaces obsidiate ments Project Endant Helpoyname funcs.

https://eduassistpro.github.io/

Advantages:

- Reentrant (can be delived by athedu_assistmspro
- Allows us to write portable protocol-independent code
 - Works with both IPv4 and IPv6

Disadvantages

- Somewhat complex
- Fortunately, a small number of usage patterns suffice in most cases.

Host and Service Conversion: getaddrinfo

- Given host and service, ge edu_assist_properties that points to a linked list of addrinfo structs, each of which points to a corresponding socket address struct, and which contains arguments for the sockets interface functions.
- Helper functions:
 - freeadderinfo frees the entire linked list.
 - gai strerror converts error code to an error message.

Linked List Returned by getaddrinfo

addrinfo Struct

```
struct addrinfo {
                   ai flags; /* Hints argument flags */
   int
                   ai family; /* First arg to socket function */
   int
                   ai socktype; /* Second arg to socket function */
   int
                   ai protocol; /* Third arg to socket function */
   int
               Assignment Project Example */
   char
   size t
                                               t address structure */
   struct sockaddr *a
   struct addrinfo *ahttps://eduassistpro.github.id/inked list */
};
```

Add WeChat edu_assist_pro

- Each addrinfo struct returned by getaddrinfo contains arguments that can be passed directly to socket function.
- Also points to a socket address struct that can be passed directly to connect and bind functions.

(socket, connect, bind to be discussed next lecture)

Host and Service Conversion: getnameinfo

- getnameinfo is the inverse of getaddrinfo, converting a socket address to the corresponding host and service.
 - Replaces obsolete gethostbyaddr and getservbyport funcs.
 - Reentrant Ans project Exam Help

https://eduassistpro.github.io/

Conversion Example

```
#include "csapp.h"
int main(int argc, char **argv)
               Assignment Project Exam Help
   struct addrinfo *
   char buf[MAXLINE]
                    https://eduassistpro.github.io/
   int rc, flags;
   /* Get a list of a Action We Chrat edu_assist_pro
   memset(&hints, 0, sizeof(struct a
  // hints.ai_family = AF INET; /* IPv4 only */
   hints.ai socktype = SOCK STREAM; /* Connections only */
   if ((rc = getaddrinfo(argv[1], NULL, &hints, &listp)) != 0) {
       fprintf(stderr, "getaddrinfo error: %s\n", gai strerror(rc));
       exit(1);
                                                            hostinfo.c
```

Conversion Example (cont)

Running hostinfo

```
whaleshark> ./hostinfo localhost
127.0.0.1
whaleshark> ./hostinfo whaleshark.ics.cs.cmu.edu
128.2.210.175 Assignment Project Exam Help
whaleshark> ./hosti
                  https://eduassistpro.github.io/
199.16.156.230
199.16.156.38
                  Add WeChat edu_assist_pro
199.16.156.102
199.16.156.198
whaleshark> ./hostinfo google.com
172.217.15.110
2607:f8b0:4004:802::200e
```

Today

- Networks
- Global IP Internet
- Sockets Interface Assignment Project Exam Help

https://eduassistpro.github.io/

Next time Add WeChat edu_assist_pro

- Using getaddrinfo for host and service conversion
- Writing clients and servers
- Writing Web servers!

Additional slides

Assignment Project Exam Help

https://eduassistpro.github.io/

Basic Internet Components

- Internet backbone:
 - collection of routers (nationwide or worldwide) connected by high-speed point-to-point networks
- Internet Exchangen Paints (PXB) ect Exam Help
 - router that con n referred to as peers)
 - Also called Net https://eduassistpro.github.io/
- Regional networks:

 Smaller backbones that cover smal

 Regional networks:

 Add WeChat edu_assist_pro

 al areas
 - (e.g., cities or states)
- Point of presence (POP):
 - machine that is connected to the Internet
- **Internet Service Providers (ISPs):**
 - provide dial-up or direct access to POPs

Internet Connection Hierarchy

IP Address Structure

IP (V4) Address space divided into classes:

- - n = number of bits in host address
 - E.g., CMU written as 128.2.0.0/16
 - Class B address
- **Unrouted (private) IP addresses:**

10.0.0.0/8 172.16.0.0/12 192.168.0.0/16

Evolution of Internet

Original Idea

- Every node on Internet would have unique IP address
 - Everyone would be able to talk directly to everyone
- No secrecy Assignment Project Exam Help
 - Messages vi

me LÂN

Possible to f https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Shortcomings

- There aren't enough IP addresses available
- Don't want everyone to have access or knowledge of all other hosts
- Security issues mandate secrecy & authentication

Evolution of Internet: Naming

- Dynamic address assignment
 - Most hosts don't need to have known address
 - Only those functioning as servers
 - DHCP (Dynamisity of the property of the property
 - Local ISP ass

https://eduassistpro.github.io/

- Example: Add WeChat edu_assist_pro
 - Laptop at CMU (wired connection)
 - IP address 128.2.213.29 (bryant-tp4.cs.cmu.edu)
 - Assigned statically
 - Laptop at home
 - IP address 192.168.1.5
 - Only valid within home network

Evolution of Internet: Firewalls

Firewalls

- Hides organizations nodes from rest of Internet
- Use local IP addresses within organization
- For external service, provides proxy service
 - 1. Client request: src=10.2.2.2, dest=216.99.99.99
 - 2. Firewall forwards: src=176.3.3.3, dest=216.99.99.99
 - 3. Server responds: src=216.99.99.99, dest=176.3.3.3
 - 4. Firewall forwards response: src=216.99.99.99, dest=10.2.2.2