Pleasant Valley Mutual Water Company 1863 Las Posas Road Camarillo, CA 93010 (805) 482-5061

ANNUAL WATER QUALITY REPORT 2018

Este informe contiene información muy importante sobre su agua beber. Tradúzcalo ó hable con alguien que lo entienda bien.

Water quality has always been a priority for Pleasant Valley Mutual Water Co. Our mission has been to provide a reliable supply of quality water. This report provides information about the sources and quality of the water delivered to you in 2018. Included are details about where your water comes from, what it contains and how it compares to state standards.

Last year we conducted multiple tests for over one hundred drinking water contaminants to determine concentrations of mineral, physical, bacteriological, inorganic, organic and radioactive constituents. For more information about your water, please call (805) 482-5061 and ask for Jerry Doran.

Your water comes from three municipal wells sunk about six hundred feet into an underground source of water called the Fox Canyon Aquifer. These wells are located on the east side of our district. The Water Company owns the land around these wells and restricts any activity that could contaminate them. After the water comes out of the wells, we treat it to remove some contaminants and we also add a disinfectant to protect against microbial contaminants. In addition, we use a Filtronics Iron and Manganese Filtration Plant, with a Water Reclaim System to remove iron, manganese and sulfur from the water.

We also use another source of water imported from Calleguas Municipal Water District, which is filtered and disinfected at the Metropolitan Water District of California's Jensen Filtration Facility located in Granada Hills. In December 2002, Metropolitan Water District of Southern California completed its source water assessment of its State Water Project supplies. State Water Project supplies are considered to be most vulnerable to urban/storm water runoff, wildlife, agriculture, recreation and wastewater. A copy of the assessment can be obtained by contacting Metropolitan by phone at (213) 217-6850.In July 2001; Pleasant Valley Mutual Water completed its source water assessment. We are considered most vulnerable to Sewer Collection System. A copy of the assessment can be obtained contacting us by phone at (805) 482-5061.

Our water board meets the third Tuesday of each month at 5:30 p.m. at the Water Company's office, located at 1863 Las Posas Road. All shareholders are welcome to participate in these meetings.

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate

that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. Environmental Protection Agency (USEPA)/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Contaminants that may be present in source water before we treat it include:

- ✓ *Microbial contaminants*, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- ✓ *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- ✓ Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- ✓ Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can, also come from gas stations, urban storm water runoff, agricultural application, and septic systems.
- ✓ Radioactive contaminants that can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Department of Health Services (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

WATER QUALITY DATA

The tables below list all the drinking water contaminants that we detected during the 2018 calendar year. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done January 1 – December 31, 2018. The State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than one year old.

Terms and abbreviations used below:

- Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no know or expected risk to health. PHGs are set by the California Environmental Protection Agency.
- Maximum contaminant Level Goal (MCLG):
- Maximum Contaminant Level (MCL):
- Regulatory Action Level (AL):
- n/a: not applicable
- n/d: not detectable at testing limit
- ppb: parts per billion or micrograms per liter
- ppm: parts per million or milligrams per liter
- pCi/l: picocuries per liter (a measure of radiation)
- mfl: million fibers per liter (longer than 10um)
- ntu: nepthelometric turbidity units

TABLE 1 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER

Lead and Copper	No. of samples collected	90th percentile level detected	No. Sites exceeding AL	AL	MCLG	Typical Source of Contamination
Lead (ppb)	20	ND	0	15	2	Internal corrosion of household water plumbing systems; discharges from manufacturers; erosion of natural deposits.
Copper (ppm)	20	423	0	1.3	0.17	Internal corrosion of household water plumbing systems; erosion of natural deposits; leaching from wood preservatives.

TABLE 2 - SAMPLING RESULTS SHOWING THE DETECTION OF SODIUM AND HARDNESS

	WELL # 9		# 9		WELL#	10	WELL # 11					
Chemical	Sample	Level	Range of	Sample	Level	Range of	Sample	Level	Range of	MCL	PHG	Typical Source
	Date	Detected	Detections	Date	Detected	Detections	Date	Detected	Detections		(MCLG)	of Contamination
												Generally found in ground
Sodium (ppm)				2018	128	60-128	2017	205	140-227	NONE	NONE	and surface water
												Generally found in ground
Hardness (ppm)				2018	651	300-679	2017	962	432-1020	NONE	NONE	and surface water

PRIMARY DRINKING WATER STANDARDS - Mandatory Health-Related Standards

TABLE 3 - CLARITY

		WELL#9		WELL # 10			WELL # 11						
Chemical	Sample	Level	Range of	Sample	Level	Range of	Sample	Level	Range of	MCL	PHG	Typical Source of Contamination	
	Date	Detected	Detections	Date	Detected	Detections	Date	Detected	Detections		(MCLG)		
Turbidity (NTU)				2018	0.5	0.3-1.2	2017	1.1	0.4-34.8	5		Soil run off	

TABLE 4 - INORGANIC CHEMICALS

		WELL#	9		WELL#	10		WELL#	11			
Chemical	Sample	Level	Range of	Sample	Level	Range of	Sample	Level	Range of	MCL	PHG	Typical Source of Contamination
	Date	Detected	Detections	Date	Detected	Detections	Date	Detected	Detections		(MCLG)	100001
Flouride (ppm)				2018	0.2	0-0.3	2017	0.1	0.2-0.3	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
Selenium (ppb)							2017	6	ND-6	50	50	Discharge from petroleum, glass, and metal refineries; erosion of natural deposits;discharge from mines and chemical manufacturers;
Nitrate (ppm)							2017	3.7	ND-3.8	45		Runoff and leaching from fertilizer use;leaching
												from septic tanks and sewage;erosion of natural deposits

TABLE 5 - RADIONUCLIDES

	WELL#9		9	WELL # 10				WELL#1	11				
Chemical	Sample	Level	Range of	Sample	Level	Range of	Sample	Level	Range of	MCL	PHG	Typical Source of Contamination	
	Date	Detected	Detections	Date	Detected	Detections	Date	Detected	Detections		(MCLG)		
Gross Alpha				2017	7.6	1.6-7.6		13.3	1.74-13.3	15	0	Erosion of natural deposits	
Radium								0.543	0-0.543	5	0	Erosion of natural deposits	
Uranium				2017	4	4-Feb		6.07	0-9.02	20	0	Erosion of natural deposits	

(a2) Well #9 Inactive

TABLE 6 - SECONDARY STANDARDS (AESTHETIC STANDARDS)

		WELL#	10		WELL#	11			
Chemical	Sample	Level	Range of	Sample	Level	Range of	MCL	PHG	Typical Source of Contamination
	Date	Detected	Detections	Date	Detected	Detections		(MCLG)	
		186-5-							Runoff/leaching from natural deposits;
Chloride (ppm)	2018	136	65-136	2017	150		500	NS	seawater influence
Total Dissolved Solids (ppm)	2018	1400	600-1400	2017	1890	1170-1890	1000	NS	Runoff/leaching from natural deposits
									Leaching from natural deposits;
Iron (ppb) (a)				2017	170	120-335	300	NS	industrial wastes
Manganese (ppb) (a)	2018	220	130-250	2017	200	170-200	50	NS	Leaching from natural deposits
Sepecific Conductance									Substances that form ions when in water;
(umho/cm)	2018	1910	920-1910	2017	2370	1600-2460	1600	NS	seawater influence
									Runoff/leaching from natural deposits;
Sulfate (ppm)	2018	621	170-621	2017	911	321-911	500	NS	industrial wastes

⁽a) Iron and manganese was found at levels that exceed the secondary MCL of 300 ug/l for Iron and 50 ug/l for Manganese. The MCL was set to protect you against unpleasant aesthetic effects such as color, taste, odor and the staining of plumbing fixtures (e.g. tubs, sinks) and clothing while washing. The high levels are due to leaching natural deposits. Since violating this MCL does not pose a risk to the public health, the state allows the affected community to decide whether or not to treat to remove it. In December of 1999, we conducted a consumer survey to decide whether the consumer wanted to pay to remove it. The majority voted against paying for removal.

TABLE 7 - ADDITIONAL CONSTITUENTS ANALYZED

		WELL#	10		WELL#	11		
Chemical	Sample Date	Level Detected	Range of Detections	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)
PH (units)	2018	7.3	7.7-7.5	2017	7.5	7.3-8.3	6.5-8.5	NS
Aggressive Index (a1)	2018	12.3	12.1-13	2017	12.7	12.7-13.0	3	-
Bicarbonate Alkalinity (ppm)	2018	280	260-300	2017	310	290-450	-	-
Calcium (ppm)	2018	185	89-193	2017	270	107-275	1	
Magnesium (ppm)	2018	46	25-48	2017	70	40-70	1	3
Potassium (ppm)	2018	6	4-100	2017	7	5.0-7.0	Ŧ	(A)
Total Anions (meq/L)	2018	21.4	11.3-21.4	2017	28.3	18.3-29.2	-) =
Total Cations	2018	18.7	11.5-18.7	2017	28.3	0-28.3	-	-
BORON	2018	500	260-500	2017	600	0-600	N/S	N/A
Total Alkalnity(as CACO3)	2018	230	0-240	2017	25	0-270		

⁽a1) Aggressive Index >11.5 suggests non-corrosive water

TABLE 8 - ADDITIONAL CONSTITUENTS ANALYZED

	Mesa Di	./W. Highlan	d Dr.	Mesa Dr	./W. I	Highland	Dr.	Mesa Dr	./W. Hig	hland Dr.	Mesa Di	r./W. High	land Dr.
Chemical	Sample			Sample				Sample			Sample		
	Date	Month		Date		Month		Date	M	onth	Date	Мо	nth
Total Trihalomethanes	2018	March		2018		June		2018	Sep	tember	2018	Dece	ember
MCL 80ppm													
Total		41	64		15		27		23	27		14	19
Haloacetic Acids	2018	March		2018		June		2018	Sep	tember	2018	Dece	mber
MCL 60ppm													
Total		10	12		5		4		10	10		9	5

TABLE 9 - IRON AND MANGANESE FILTRATION PLANT

	INFLU	ENT PLANT	EFFLU	ENT PLANT	
chemical	Sample Date	Range of Detections	Sample Date	Range of Detections	MCL (ppb)
Iron	2018	ND-160	2018	ND-40	300
Manganese	2018	220-260	2018	ND	50

TABLE 10 - TDS &SULFATE

	W	'ELL #10	W	'ELL #11	
	Sample	Range Of	Sample	Range Of	MCL
	Date	Dectections	Date	Dectections	(MG/L)
TDS	2018	1330-1460	2018	2058	500
SULFATE	2018	129-674	2018	988	250