

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2022/0385271 A1 **DAIMON**

Dec. 1, 2022 (43) **Pub. Date:**

(54) ACOUSTIC WAVE DEVICE

(71) Applicant: Murata Manufacturing Co., Ltd., Nagaokakyo-shi (JP)

> Inventor: Katsuya DAIMON, Nagaokakyo-shi

Appl. No.: 17/880,848

(22) Filed: Aug. 4, 2022

Related U.S. Application Data

Continuation of application No. PCT/JP2021/005611, filed on Feb. 16, 2021.

(30)Foreign Application Priority Data

Feb. 17, 2020 (JP) 2020-024257

Publication Classification

(51) Int. Cl. H03H 9/25 (2006.01)H03H 9/02 (2006.01)(2006.01)H03H 9/145

(52) U.S. Cl.

CPC H03H 9/25 (2013.01); H03H 9/02559 (2013.01); H03H 9/14541 (2013.01); H03H **9/02574** (2013.01); *H03H 9/02992* (2013.01)

ABSTRACT (57)

An acoustic wave device includes a support substrate, a piezoelectric film, and an IDT electrode. When a wavelength defined by an electrode finger pitch of the IDT electrode is λ , a thickness of the piezoelectric film is about 1λ or less. The piezoelectric film has crystal axes. The support substrate includes first and second silicon layers. A plane orientation of the first and second silicon layers is (100), (110), or (111). When angles $\alpha 1$ and $\beta 2$ are defined between the plane orientations of the first and second silicon layers and the crystal axes, each of the angles $\alpha 1$ and $\alpha 2$ is one of three types of angles of an angle $\alpha_{100},$ an angle $\alpha_{110},$ and an angle α_{111} . A type of the angle $\alpha 1$ is different from a type of the angle $\alpha 2$ and/or a value of the angle $\alpha 1$ is different from a value of the angle $\alpha 2$.

