Corrigés des exercices

Exercice 1

1. On a $f_n(0) = 0$ et pour $x \in]0,1[, f_n(x) \xrightarrow[n \to +\infty]{} 0$.

D'autre part $f_n(1) = \frac{1}{2}$ et pour $x \in]1,2], f_n(x) \xrightarrow[n \to +\infty]{} 1.$

En effet pour tout $x \in]1,2], \frac{x^n}{1+x^n} = \frac{1}{\frac{1}{x^n}+1} \xrightarrow[n \to +\infty]{} 1.$

 $\operatorname{Donc} (f_n)_{n \in \mathbb{N}^*} \text{ converge simplement sur } [0,2] \text{ vers } f: \left\{ \begin{array}{c} [0,2] & \longrightarrow & \mathbb{R} \\ \\ x & \longmapsto & \begin{cases} 0 & \text{si } x \in [0,1[\\ \frac{1}{2} & \text{si } x = 1 \\ 1 & \text{si } x \in [1,2] \end{cases} \right.$

2. Pour tout $n \in \mathbb{N}^*$, les fonctions f_n sont continues sur [0,2] mais f est discontinue sur [0,2].

Exercice 2

1.
$$f_n(0) = 0$$
 et si $x \in]0, 1[, f_n(x) = n^2 x^n \xrightarrow[n \to +\infty]{} 0.$

Donc (f_n) converge simplement vers la fonction nulle sur [0,1[.

2.
$$\int_0^1 f_n(x) dx = \int_0^1 n^2 x^n dx = n^2 \left[\frac{x^{n+1}}{n+1} \right]_0^1 = \frac{n^2}{n+1} \xrightarrow[n \to +\infty]{} +\infty.$$

Ainsi
$$\lim_{n \to +\infty} \int_0^1 f_n(x) dx \neq \int_0^1 \lim_{n \to +\infty} f_n(x) dx.$$

Exercice 3

1. Soit $x \in \mathbb{R}$.

$$f_n(0) = \frac{1}{n} \xrightarrow[n \to +\infty]{} 0.$$

Si
$$x \in \mathbb{R}_{-}^{*}$$
, $f_n(x) = \frac{e^{-x\sqrt{n}}}{n} \xrightarrow[n \to +\infty]{} +\infty$.

Si
$$x \in \mathbb{R}_+^*$$
, $f_n(x) = \frac{e^{-x\sqrt{n}}}{n} \xrightarrow[n \to +\infty]{} 0$.

Ainsi $(f_n)_{n\in\mathbb{N}^*}$ converge simplement vers la fonction nulle sur \mathbb{R}^+ .

2. L'intégrale impropre $\int_0^{+\infty} \frac{e^{-x\sqrt{n}}}{n} dx$ ne présente aucun problème en 0.

Au voisinage de
$$+\infty$$
, $\frac{e^{-x\sqrt{n}}}{n} = o\left(\frac{1}{x^2}\right)$.

Or
$$\int_1^{+\infty} \frac{\mathrm{d}x}{x^2}$$
 converge donc $\int_1^{+\infty} \frac{e^{-x\sqrt{n}}}{n} \, \mathrm{d}x$ converge également d'où $\int_0^{+\infty} \frac{e^{-x\sqrt{n}}}{n} \, \mathrm{d}x$ converge.

3. On a
$$\int_0^{+\infty} \frac{e^{-x\sqrt{n}}}{n} dx = -\frac{1}{n\sqrt{n}} \left[e^{-x\sqrt{n}} \right]_0^{+\infty} = \frac{1}{n\sqrt{n}}$$
.

Donc
$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{e^{-x\sqrt{n}}}{n} dx = 0.$$

Or
$$\int_0^{+\infty} \lim_{n \to +\infty} f_n(x) dx = \int_0^{+\infty} 0 dx = 0.$$

Donc
$$\lim_{n \to +\infty} \int_0^{+\infty} f_n(x) dx = \int_0^{+\infty} \lim_{n \to +\infty} f_n(x) dx$$
.