Evolution of emergence strategies

How organisms combine cues to make decisions

Collin Edwards Louie Yang

December 5, 2016

Table of Contents

- Introduction
- 2 Simulation
- Predictive Framework

Goals

- Provide base-line model for multiple-cue decisions
- Develop predictions for the use of phenological cues

Table of Contents

- Introduction
- 2 Simulation
- Predictive Framework

Basics

Let's start by imagining a very simplified system:

 Organisms decide when to emerge/germinate based on trait values and environmental cues

Basics

Let's start by imagining a very simplified system:

- Organisms decide when to emerge/germinate based on trait values and environmental cues
- Organisms collect resources (∼fitness) based on abiotic conditions for a set duration after emerging (10 days)

Basics

Let's start by imagining a very simplified system:

- Organisms decide when to emerge/germinate based on trait values and environmental cues
- Organisms collect resources (∼fitness) based on abiotic conditions for a set duration after emerging (10 days)
- Lottery model reproduction: parents produce offspring proportional to resouces gathered, each offspring has equal chance of filling one of the N 'slots' for adults in the next generation

Emergence Cues

Emergence Cues

Emergence Cues

Emergence

Every day, organisms combine environmental cues and traits to get an 'E' value:

$$E = \frac{\text{photoperiod cue}}{\text{photoperiod trait}} + \frac{\text{temperature cue}}{\text{temperature trait}} + \dots$$

If E > 1, organism decides to emerge!

Trait interpretation, simple example

Temp trait = 30, other cues not in use.

Trait interpretation, simple example

Temp trait = 30, other cues not in use.

Trait interpretation, simple example

Temp trait = 30, other cues not in use.

- After emergence, collect resources each day (for 10 days)
- Daily resouces based on temp and precip

- After emergence, collect resources each day (for 10 days)
- Daily resouces based on temp and precip

- After emergence, collect resources each day (for 10 days)
- Daily resouces based on temp and precip

Reproduction: Lottery Model

- Fixed population size for all generations
- Assign offspring randomly proportional to fitness
- Offspring traits = parent + mutation (asexual)

Table of Contents

- Introduction
- 2 Simulation
- Predictive Framework

Baseline year

Baseline year

Baseline year

Optimal traits

Optimal traits

Optimal traits

Conclusion

$$E = \frac{\text{photoperiod cue}}{\text{photoperiod trait}} + \frac{\text{temperature cue}}{\text{temperature trait}} + \dots$$

Conclusion

Conclusion

Questions or suggestions?

