SISTEM PENELUSURAN RUTE DAN KONTROL TERPUSAT UNTUK TUGAS PEMETAAN MENGGUNAKAN DRONE JAMAK

TUGAS AKHIR

Oleh

Shania Argiliana NIM: 13320053

PROGRAM STUDI TEKNIK FISIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI BANDUNG 2024

ABSTRAK

SISTEM PENELUSURAN RUTE DAN KONTROL TERPUSAT UNTUK TUGAS PEMETAAN MENGGUNAKAN DRONE JAMAK

Oleh
Shania Argiliana NIM: 13320053

(Program Studi Teknik Fisika)

Drone jamak dapat digunakan untuk melakukan tugas pemetaan, sehingga diperlukan akurasi yang baik dalam penelusuran rute pemetaan. Selain akurasi, drone harus melaksanakan tugas dengan waktu tempuh sesingkat-singkatnya. Untuk mencapai tersebut, drone akan dikontrol dengan menggunakan kontrol terpusat yang terhubung pada access point. Kontrol tersebut menyebabkan drone dianggap sebagai individu yang berbeda, sehingga *drone* akan bersifat independen. Meningkatkan akurasi penelusuran posisi dilakukan dengan dengan mendeteksi beberapa marka fidusial persegi (MFP) dalam proses penentuan posisi. Posisi dari drone diasumsikan dengan titik pusat kamera, sehingga perhitungan posisi drone lebih akurat. Selain itu, algoritma pemisahan diterapkan juga pada drone untuk menghindari tabrakan saat menjalankan tugas pemetaan. Algoritma tersebut akan memisahkan drone sesuai dengan jarak aman yang telah ditetapkan, yaitu 200 cm. Pada penelitian ini, jumlah drone yang digunakan berjumlah 2 drone. Dari hasil penelitian, drone melakukan sebuah pengujian penelusuran rute searah sumbu x dan sumbu y. Berdasarkan pengujian tersebut, nilai RMSE yang dihasilkan mengalami penurunan. Saat drone bergerak searah sumbu x positif, nilai RMSE yang diperoleh adalah 5,2 cm. Nilai tersebut lebih rendah dari hasil penelitian sebelumnya yang bernilai 19,3 cm. Dalam menjalankan tugas pemetaan, drone akan melakukan penelusuran rute dan didapat nilai RMSE untuk drone A sebesar 12,3 cm dan drone B sebesar 22,5 cm dengan waktu tempuh 51 detik. Dengan demikian, Teknik pendeteksian beberapa marka meningkatkan kemampuan penelusuran rute dan drone dapat melakukan tugas pemetaan dengan baik, meskipun drone bekerja pada area yang terbatas, yaitu 5m x 4m.

Kata kunci: *drone*, kontrol terpusat, penelusuran rute, marka fidusial persegi

ABSTRACT

POINT-TRACING AND CENTRALIZED CONTROL SYSTEMS FOR MAPPING TASKS USING MULTIPLE DRONES

By
Shania Argiliana NIM: 13320053

(Engineering Physics Study Program)

Multiple drones can be used for mapping tasks, so high accuracy is needed in trajectory-tracing for mapping. In addition to accuracy, drones must complete their tasks in the shortest possible time. To achieve this, the drones will be controlled using a centralized control system connected to an access point. This control system treats each drone as a distinct individual, thus making the drones independent. Enhancing the accuracy of position tracing is done by detecting several square fiducial markers (SFM) in the positioning process. The position of the drone is assumed to be at the center of the camera, leading to more precise position calculations. Furthermore, a separation algorithm is also applied to the drones to avoid collisions while performing mapping tasks. This algorithm will separate the drones according to a predetermined safe distance, which is 200 cm. In this research, the number of drones used amounted to 2 drones. According to the research findings, the drones underwent a trajectory-tracing test along the x-axis and y-axis. Based on this test, the resulting RMSE value decreased. When the drones moved along the positive x-axis, the RMSE value obtained was 5,2 cm, lower than the previous research result of 19,3 cm. While performing mapping tasks, the drones traced the route and obtained RMSE values of 12,3 cm for drone A and 22,5 cm for drone B, with a travel time of 51 seconds. Thus, the technique of detecting multiple markers enhances the trajectory-tracing capability, and the drones can perform mapping tasks well even though they operate in a confined area of 5 m x 4 m.

Keywords: drone, centralized control, trajectory-tracing, square fiducial marker.

SISTEM PENELUSURAN RUTE DAN KONTROL TERPUSAT UNTUK TUGAS PEMETAAN MENGGUNAKAN *DRONE* JAMAK

HALAMAN PENGESAHAN

Oleh

Shania Argiliana NIM: 13320053 (Program Studi Teknik Fisika)

Institut Teknologi Bandung

Menyetujui Tim Pembimbing

Rabu, 26 Juni 2024

Pembimbing 1

Pembimbing 2

(Ir. Estiyanti Ekawati, M.T., Ph.D.)

NIP. 196908052008012020

(Faqihza Mukhlish, S.T., M.T., Ph.D.)

NOPEG. 121110001

KATA PENGANTAR

Puji dan syukur penulis panjatkan kepada Tuhan Yang Maha Esa yang telah memberikan rahmat beserta karunia-Nya, serta diberi-Nya kemudahan dalam menyelesaikan penulisan Laporan Tugas Akhir yang berjudul "Sistem Penelusuran Rute dan Kontrol Terpusat untuk Tugas Pemetaan Menggunakan *Drone* Jamak". Penulisan Laporan Tugas Akhir ini merupakan salah satu syarat untuk menyelesaikan pendidikan tahap sarjana pada Program Studi Sarjana Teknik Fisika, Fakultas Teknologi Industri, Institut Teknologi Bandung.

Laporan Tugas Akhir ini dapat terselesaikan dengan baik, tidak lepas dari bimbingan dan dukungan dari banyak pihak, sehingga dalam kesempatan ini penulis dengan segala hormat mengucapkan terima kasih kepada:

- 1. Ir. Estiyanti Ekawati, M.T., Ph.D., selaku dosen pembimbing pertama yang telah meluangkan waktu dan pikirannya untuk membimbing penulis dalam menyelesaikan penelitian dan penyusunan Laporan Tugas Akhir ini,
- 2. Faqihza Mukhlish, S.T., M.T., Ph.D selaku dosen pembimbing kedua yang telah meluangkan waktu dan pikirannya untuk membimbing penulis dalam menyelesaikan penelitian dan penyusunan Laporan Tugas Akhir ini,
- Ir. R. Sugeng Joko Sarwono, MT., Ph.D., selaku dosen wali yang telah membimbing penulis selama menempuh pendidikan di Program Studi Sarjana Teknik Fisika, Fakultas Teknologi Industri, Institut Teknologi Bandung,
- 4. Kedua orang tua yang selalu memberikan doa dan dukungan kepada penulis,
- Seluruh Dosen dan Staf di Program Studi Sarjana Teknik Fisika yang telah membekali banyak ilmu pengetahuan yang bermanfaat selama penulis menjalani studi di Program Studi Sarjana Teknik Fisika,
- 6. Rekan-rekan di laboratorium CITA atas kebersamaan selama penelitian ini dilaksanakan,
- 7. Teman-teman S1 Teknik Fisika Angkatan 2020 yang memberikan dukungan dan semangat kepada penulis, dan

8. Semua pihak yang telah membantu hingga terselesaikannya Laporan Tugas Akhir ini yang tidak dapat penulis sebutkan satu per satu.

Semoga Allah SWT senantiasa memberikan limpahan rahmat dan karunia-Nya kepada semua pihak yang terlibat dalam proses penulisan Laporan Tugas Akhir ini.

Akhir kata penulis memohon maaf apabila terdapat banyak kekurangan dalam penulisan Laporan Tugas Akhir ini. Oleh karena itu, saran dan kritik yang membangun sangat diharapkan guna penyempurnaan dan pengembangan Tugas Akhir ini ke arah yang lebih baik. Semoga segala yang tertuang dalam Laporan Tugas akhir ini memberikan manfaat bagi kita semua baik sekarang maupun dimasa yang akan datang.

Bandung, Mei 2024

Penulis

DAFTAR ISI

ABSTRAK	i
ABSTRACT	ii
HALAMAN PENGESAHAN	iii
KATA PENGANTAR	iv
DAFTAR ISI	vi
DAFTAR GAMBAR	ix
DAFTAR TABEL	xi
DAFTAR SINGKATAN DAN LAMBANG	xii
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Permasalahan	2
1.3 Tujuan Penelitian	3
1.4 Ruang Lingkup Permasalahan	3
1.4.1 Batasan	3
1.4.2 Asumsi	4
1.5 Alur Penelitian	4
1.6 Sistematika Penulisan	5
BAB II TEORI	7
2.1 Model Sistem Drone	7
2.1.1 Persamaan Dinamika Drone	7
2.1.2 Persamaan Dinamika Drone Menggunakan FOPTD	10
2.2 Pengontrol PD	11
2.3 Marka Fidusial Persegi	12
2.4 Moving Average	13
2.5 Jaringan Nirkabel	13
2.5.1 TCP/IP	14
2.5.2 UDP	14
2.6 Algoritma Pemisahan	15
2.7 Jenis-Jenis Jalur Pemetaan pada <i>Drone</i>	15
BAB III METODE	17
3.1 Arsitektur Komunikasi dan Pengaturan Pengujian	17

	3.1.1	Komunikasi <i>Done</i>	17
	3.1.2	Pengaturan Pengujian	18
3.2	Karpet	MAT	19
3.3	Sistem	Pemosisian	19
	3.3.1	Pendeteksian Marka ArUco	20
	3.3.2	Konversi Marka ArUco Menjadi Titik Koordinat	20
	3.3.3	Penentuan Posisi Drone	21
3.4	Peranc	angan Algoritma Pemisahan pada Drone Jamak	25
3.5	Peranc	angan Penelusuran Titik pada Tugas Pemetaan	27
3.6	Penguj	ian Penelusuran <i>Drone</i>	27
BAB IV H	IASIL I	DAN ANALISIS	31
4.1	Sistem	Pemosisian	31
4.2	Identif	ikasi Karakteristik <i>Drone</i>	33
	4.2.1	Hasil Identifikasi Karakteristik Drone	33
	4.2.2	Hasil Penalaan Parameter Pengontrol PD	35
4.3	Penguj	ian Individu	36
	4.3.1	Penelusuran Rute Searah Sumbu X	36
	4.3.2	Penelusuran Rute Searah Sumbu Y	40
4.4	Penguj	ian Berkelompok	41
	4.4.1	Pengujian Algoritma Pemisahan untuk Menghindari Tal	brakan
			41
	4.4.2	Pengujian untuk Tugas Pemetaan	43
BAB V PI	ENUTU	P	48
5.1	Kesim	pulan	48
5.2	Saran.		48
DAFTAR	PUSTA	AKA	49
LAMPIR	AN A. S	SPESIFIKASI <i>DRONE</i> PARROT ARDRONE 2.0	51
LAMPIR	AN B. S	PESIFIKASI ROUTER WI-FI	52
LAMPIR	AN C. I	HASIL IDENTIFIKASI KARAKTERISTIK KECEPA	ATAN
	1	ORONE	53
C.1	Grafik	Karakteristik Kecepatan Drone A	53
C.2	2 Grafik	Karakteristik Kecepatan Drone B	55

	C.3 Grafik Pengontrol PD untuk <i>Drone</i> A	. 57
	C.4 Grafik Pengontrol PD untuk Drone A	. 59
LAM	IPIRAN D. PENELUSURAN POSISI DRONE	. 60
	D.1 Penelusuran Posisi <i>Drone</i> A	. 60
	D.2 Penelusuran Posisi <i>Drone</i> B	. 63

DAFTAR GAMBAR

Gambar 1.1 Diagram tulang ikan rumusan permasalahan3
Gambar 1.2. Diagram alir penelitian5
Gambar 2.1 Skema gaya yang ada pada drone dalam kerangka sistem drone7
Gambar 2.2. Diagram blok pengontrol PD pada drone
Gambar 2.3. Ilustrasi marka ArUco
Gambar 2.4. Proses pengolahan citra marka (a) penangkapan marka, (c)
Pengambangan citra, (c) pembagian sel citra, dan (d) informasi bit
hitam putih [6]12
Gambar 2.5. Ilustrasi algoritma pemisahan dua individu
Gambar 2.6. Ilustrasi jalur pada tugas pemetaan dengan pola (a) berliku-liku, (b)
pilin, dan (c) S16
Gambar 3.1. Arsitektur komunikasi17
Gambar 3.2. Pengaturan pengujian (a) sudut hadap drone pada karpet dan (b)
ketinggian drone saat terbang18
Gambar 3.3. Desain karpet MAT19
Gambar 3.4. Diagram alir pendeteksian MFP ArUco20
Gambar 3.5. Diagram alir konversi kode unik MFP menjadi koordinat pada karpet
MAT20
Gambar 3.6. Ilustrasi jumlah baris dan kolom dari marka ArUco21
Gambar 3.7. Hasil deteksi MFP pada ketinggian 80 cm22
Gambar 3.8. Hasil pendeteksian empat marka MFP pada drone22
Gambar 3.9. Diagram alir pendeteksian beberapa MFP saat drone bergerak23
Gambar 3.10. Hasil deteksi dua marka MFP saat <i>drone</i> bergerak searah sumbu x
23
Gambar 3.11. Diagram alir perancangan algoritma pemisahan26
Gambar 3.12. Diagram alir perancangan algoritma kohesi
Gambar 3.13. Diagram alir perancangan penelusuran titik pada tugas pemetaan. 27
Gambar 3.14. Jalur pengujian individu (a) lurus terhadap sumbu x dan (b) lurus
terhadap sumbu y28
Gambar 3.15. Jalur pengujian algoritma pemisahan
Gambar 3.16. Jalur pengujian secara berkelompok untuk tugas pemetaan30
Gambar 4.1. Marka MFP yang terdeteksi oleh drone (a) saat diam dan (b) saat drone
bergerak dengan kecepatan 50 cm/s31
Gambar 4.2. Ilustrasi deteksi beberapa MFP (a) MFP yang terdeteksi dan
menunjukan posisi riil drone dan (b) posisi drone dari hasil
pengolahan pada UI32
Gambar 4.3. Hasil identifikasi pergerakan ke kiri dari drone A33
Gambar 4.4. Respons sistem input step untuk <i>drone</i> A arah maju35
Gambar 4.5. Grafik respons sistem drone A arah maju dengan pengontrol PD36
Gambar 4.6. Ilustrasi pengujian individu36

Gambar 4.7. Penelusuran posisi dengan arah maju pada sumbu x (a) rekaman posisi
drone saat bergerak maju, (b) profil posisi pada sumbu x dan (c) profil
posisi sumbu y38
Gambar 4.8. Penelusuran posisi pada penelitian Giga dengan arah maju pada sumbu
x (a) posisi pada sumbu x dan (b) posisi sumbu y40
Gambar 4.9. Ilustrasi pengujian berkelompok41
Gambar 4.10. Rekaman posisi drone pada pengujian algoritma pemisahan (a) pada
t = 3 detik, (b) pada $t = 5 detik$, dan (c) pada $t = 11 detik$ 43
Gambar 4.11. Penelusuran posisi drone A dan drone B selama 20 detik44
Gambar 4.12. Hasil pengujian tugas pemetaan (a) posisi drone pada koordinat
cartesius46

DAFTAR TABEL

Tabel 4.1. Hasil identifikasi kecepatan drone A dan drone B	34
Tabel 4.2. Parameter pengontrol PD untuk drone A dan drone B	35
Tabel 4.3. Perbandingan nilai RMSE pada penelitian 2022 dan penelitian 2024	39
Tabel 4.4. Waktu tempuh pengujian penelusuran posisi tiap drone (detik)	41
Tabel 4.5. Data hasil tugas pemetaan	47

DAFTAR SINGKATAN DAN LAMBANG

SINGKATAN	Nama	Pemakaian pertama kali pada halaman
MFP	Marka Fidusial Persegi	2
CITA	Center for Instrumentation Technology and	4
	Automation	
FOPTD	First Order Process with Time Delay	9
SMA	Simple Moving Average	12
TCP/IP	Transmission Control Protocol/Internet Protocol	12
WiFi	Wireless Fidelity	12
UDP	User Datagram Protocol	13
LAMBANG		
ϕ	Sudut guling	6
θ	Sudut angguk	6
ψ	Sudut belok	6
m	Massa drone	6
I	Matriks identitas	6
V	Vektor linear	6
F	Gaya resultan	6
τ	Momen resultan	6
Ω	Kecepatan sudut	6
R	Matriks inersia	7
J	Momen inersia dari drone	7
$ar{u}$	Gaya mekanik yang memberikan gerak	7
k_i	rotasi pada <i>drone</i> Faktor yang menghubungkan kecepatan	8
κ_l	sudut dengan motor	O
K	Penguatan	9
τ	Konstanta waktu	9
t_d	Waktu tunda	9
K_p	Penguatan proporsional	10
e(t)	Error	10
u(t)	Masukan	10
T_d	Waktu derivatif	10
π	Rangkaian aksi setiap agen	15
$\bar{\chi}$	Nilai rata-rata koordinat x	20
$ar{y}$	Nilai rata-rata koordinat y	20
r_{pixel}	Radius dua titik dalam satuan piksel	22
$\alpha_{_{\mathcal{X}}}$	Faktor konversi satuan piksel ke cm untuk koordinat x	22

α_{y}	Faktor konversi satuan piksel ke cm untuk	22
-	koordinat y	
(x_1, y_1)	Koordinat dari pendeteksian beberapa MFP	22
(x_2, y_2)	Koordinat titik pusat kamera drone pada	22
	bingkai kamera	
x^+	Pergerakan <i>drone</i> arah sumbu x positif	23
<i>x</i> ⁻	Pergerakan <i>drone</i> arah sumbu x negatif	23
y^+	Pergerakan <i>drone</i> arah sumbu y positif	23
v^-	Pergerakan <i>drone</i> arah sumbu y negatif	23