Relaciones Binarias EST-1132 / Estructuras Discretas

Juan Zamora O.

Otoño 2023

Introducción

Introducción

Estudiaremos

- relaciones entre pares de individuos de un conjunto
- Propiedades de estas relaciones
 - Ejemplos: Orden Parcial y Equivalencia
- Lo aprendido en esta unidad tiene aplicaciones en la optimización de procesos y bases de datos por mencionar dos áreas.

Relaciones binarias

Relaciones binarias

- Recordemos la idea de pares de elementos de un conjunto
- **Por ejemplo:** Dado $S = \{1, 2, 3\}$,

$$S \times S = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

- ▶ Podemos definir ciertas condiciones entre elementos de S
 - Ej. Elementos iguales, un número menor que el otro, un número divide al otro . . .
- lacktriangle Podemos simbolizar uno de estos criterios mediante la letra ho

- Este criterio o relación puede ser definida en palabras o como una ecuación
- Luego, $x \rho y$ indica que el par ordenado (x, y) satisface la condición impuesta por la relación
- ▶ Aún podemos formalizar de mejor manera esta definición.

Relación Binaria sobre un conjunto S

- **E**s un subconjunto de $S \times S$
- Entonces

$$x \rho y \Leftrightarrow (x, y) \in \rho$$

- ▶ Por ejemplo, dado $S = \{1, 2, 4\}$, y la relación $x \rho y \Leftrightarrow x = \frac{y}{2}$
 - ▶ Entonces, (1,2) y (2,4) satisfacen ρ .

Ejemplo

- 1. Dado $S = \{1, 2\}$ y sea ρ definida sobre S como $x \rho y \Leftrightarrow x + y$ es impar. ¿Cuales pares ordenados satisfacen la relación?
- Consideremos primero $S \times S = \{(1,1), (1,2), (2,1), (2,2), \}$
- ▶ $1\rho 1 = 2 \Rightarrow$ **No** cumple
- ► $1\rho 2 = 3 \Rightarrow$ **Sí** cumple
- \triangleright $2\rho 1 = 3 \Rightarrow \mathbf{Si}$ cumple
- $ightharpoonup 2\rho 2=4\Rightarrow \mathbf{No}$ cumple

Entonces
$$\rho = \{(1,2),(2,1)\}$$

Relaciones binarias sobre conjuntos distintos

- Las relaciones binarias no son exclusivas de conjuntos $S \times S$
- ► También es posible definirlas, por ejemplo sobre $S = \{1, 2, 3\}$ y $T = \{2, 4, 7\}$
 - En este caso, una relación binaria de S a T es un subconjunto de $S \times T$

Generalización Una relación n-aria se define de igual manera sobre n conjuntos. Es decir $S_1 \times S_2 \times \ldots S_n$

Ejercicios

Para cada una de las relaciones binarias ρ sobre \mathbb{N} , indique cuales pares ordenados pertenecen.

- 1. $x \rho y \Leftrightarrow x = y + 1$; (2,2)(2,3)(3,3)(3,2)
- 2. $x \rho y \Leftrightarrow x \text{ divide } y$; (2,4)(2,5)(2,6)
- 3. $x \rho y \Leftrightarrow x \text{ es impar } (2,3)(3,4)(4,5),(5,6)$
- 4. $x \rho y \Leftrightarrow x > y^2$; (1,2)(2,1)(5,2), (6,4), (4,3)

Tipos de relaciones

Tipos de relaciones

- Una relación ρ sobre S consistirá de un conjunto de pares ordenados de la forma (s_1, s_2) .
- Existen varias maneras de parear los elementos de *S* en la relación
- Si cada s₁ y cada s₂ aparecen solo una vez en la relación: Uno a Uno
- Si algun(os) s₁ aparece con más de un s₂ distinto: Uno a Muchos
- Si algun(os) s_2 aparece con más de un s_1 distinto: **Muchos a Uno**
- Si al menos un s₁ es pareado con más de un s₂ distinto y viceversa: Muchos a Muchos

Ejercicios

Identifique el tipo de relación sobre $S = \{2, 5, 7, 9\}$ como uno a uno, uno a muchos . . .

- 1. $\{(5,2),(7,5),(9,2)\}$
- 2. $\{(2,5),(5,7),(7,2)\}$
- 3. $\{(7,9),(2,5),(9,9),(2,7)\}$

Operaciones sobre relaciones

Operaciones sobre relaciones

- Considerar todas las relaciones binarias sobre S
- ▶ Si ρ y σ pertenecen a este conjunto de relaciones entonces son subconjuntos de $S \times S$
- Luego, es posible aplicar operaciones de conjuntos (unión, intersección y complemento) entre estas relaciones y obtener nuevas

$$x(\rho \cup \sigma)y \Leftrightarrow x\rho y \vee x\sigma y x(\rho \cap \sigma)y \Leftrightarrow x\rho y \wedge x\sigma y x(\rho')y \Leftrightarrow \neg x\rho y$$

Ejercicios

Sean ρ y σ dos relaciones binarias sobre $\mathbb N$ definidas como

- \triangleright $x \rho y \Leftrightarrow x = y$
- $\triangleright x \sigma y \Leftrightarrow x < y$

Entregue una descripción verbal para

- 1. $\rho \cup \sigma$
- $2. \rho'$
- 3. σ'

Propiedades de las relaciones

Propiedades de las relaciones

Una relación binaria ρ sobre un conjunto S puede tener ciertas propiedades

- ▶ Reflexibidad $(\forall x)(x \in S \Rightarrow (x,x) \in \rho)$
- ▶ Simetría $(\forall x)(\forall y)(x \in S \land y \in S \land (x,y) \in \rho \Rightarrow (y,x) \in \rho)$
- Transitividad

$$(\forall x)(\forall y)(\forall z)(x \in S \land y \in S \land z \in S \land (x,y) \in \rho \land (y,z) \in \rho \Rightarrow (x,z) \in A$$

Antisimetría

$$(\forall x)(\forall y)(x \in S \land y \in S \land (x,y) \in \rho \land (y,x) \in \rho \Rightarrow x = y)$$

Ejemplos

- ldentifique qué propiedades cumple = sobre $\mathbb N$
- ▶ Identifique qué propiedades cumple \leq sobre $\mathbb N$
- ▶ Identifique qué propiedades cumple \subseteq sobre $\wp(\mathbb{N})$

Ejemplos (respuestas)

- lackbox Identifique qué propiedades cumple = sobre $\mathbb N$
 - $ightharpoonup x
 ho y \Leftrightarrow x = y$ es reflexiva, transitiva y simetrica
- ▶ Identifique qué propiedades cumple \leq sobre $\mathbb N$
 - $ightharpoonup x
 ho y \Leftrightarrow x \leq y$ es reflexiva, transitiva y antisimetrica
- ▶ Identifique qué propiedades cumple \subseteq sobre $\wp(\mathbb{N})$
 - ► $A\rho B \Leftrightarrow A \subseteq B$ es reflexiva, transitiva y antisimetrica

Ejercicios

Sea $S = \{1, 2, 3\}$ una relación ρ sobre S.

- 1. Si ρ es reflexiva, ¿Qué pares ordenados componen ρ ?
- 2. Si ρ es simétrica, ¿Qué pares ordenados componen ρ ?
- 3. Si ρ es simétrica y $(a,b) \in \rho$, ¿Qué otros pares deben estar en ρ ?
- 4. Si ρ es antisimétrica, $(a,b) \in \rho$ y $(b,a) \in \rho$, ¿Qué debe ser cierto?

Ejercicios

Compruebe qué propiedades cumple cada relación sobre el conjunto indicado

- 1. $x \rho y \Leftrightarrow x + y$ es par sobre \mathbb{N}
- 2. $x \rho y \Leftrightarrow x \text{ divide } y \text{ sobre } \mathbb{Z}^+$
- 3. $x \rho y \Leftrightarrow x = y^2 \text{ sobre } \mathbb{N}$
- 4. $x \rho y \Leftrightarrow x = y^2 \text{ sobre } \{0, 1\}$

Clausuras de relaciones

Clausuras de relaciones

- Dado un conjunto S, una relación ρ y una propiedad P (simetría, transiti...)
- ▶ Si ρ sobre S carece de una propiedad P es posible **extender** ρ a una ρ^* sobre S que sí la tenga
- Luego, ρ^* tendrá los pares (x, y) en ρ más otros adicionales para que se cumpla P
- Si ρ^* es el conjunto más pequeño entonces se denomina la clausura de ρ con respecto a P

Definición

- ▶ Una relación ρ^* sobre un conjunto S es la clausura de la relación ρ con respecto a la propiedad P si
 - $ightharpoonup
 ho^*$ sí tiene P
 - $\rho \subseteq \rho^*$
 - ho^* es subconjunto de cualquier otra relación sobre S que incluya ho y tenga la propiedad P

Ejemplo

- ► Sea $S = \{1, 2, 3\}$ y $\rho = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- ho es no reflexiva, no simétrica y no transitiva

La clausura de ρ respecto de la reflexividad es

$$\rho^* = \{(1,1), (1,2), (1,3), (3,1), (2,3), (2,2), (3,3)\}$$

Ejercicio

Encuentre la clausura reflexiva, simetrica y transitiva de la relación

$$\{(a,a),(b,b),(c,c),(a,c),(a,d),(b,d),(c,a),(d,a)\}$$

sobre el conjunto $S = \{a, b, c, d\}$

Ejercicio (resuelto)

- Clausura reflexiva:
 {(a, a), (b, b), (c, c), (a, c), (a, d), (b, d), (c, a), (d, a), (d, d)}
- Clausura simétrica: $\{(a, a), (b, b), (c, c), (a, c), (a, d), (b, d), (c, a), (d, a), (d, b)\}$
- Clausura transitiva: $\{(a, a), (b, b), (c, c), (a, c), (a, d), (b, d), (c, a), (d, a), (d, d), (d, c), (b, a), (b, c), (c, d)\}$

Dos relaciones binarias de interés

Dos relaciones binarias de interés

- 1. Ordenamientos parciales
- 2. Relaciones de equivalencia

Ordenamientos parciales

- ▶ Relación binaria sobre un conjunto *S* que es
 - reflexiva
 - antisimétrica
 - transitiva

POSETS

- ▶ Si \leq es un orden parcial sobre S, el par (S, \leq) se denomina conjunto parcialmente ordenado (POSET)
- Ejemplos de posets:
 - 1. $x \leq y \Leftrightarrow x \leq y \text{ sobre } \mathbb{N}$
 - 2. $A \leq B \Leftrightarrow A \subseteq B$ sobre $\wp(\mathbb{N})$
 - 3. $x \leq y \Leftrightarrow x$ divide y sobre \mathbb{Z}^+
 - 4. $x \prec y \Leftrightarrow x = y^2$ sobre $\{0,1\}$
- ▶ Importante distinguir que $x \prec y$ si $x \leq y$ y $x \neq y$

Restricción en subconjuntos

- ▶ Sea (S, \preceq) un poset y sea $A \subseteq S$.
- ightharpoonup Entonces, algunos pares de elementos en ightharpoonup pueden también ser pares de elementos de A
- Si escogemos a partir de ≤ solamente pares con elementos de A, este nuevo conjunto se denomina restricción de ≤ en A y también es un poset en A
- ▶ Ejemplo: $x \leq y \Leftrightarrow x$ divide y sobre \mathbb{Z}^+ .
 - ▶ Siguiendo def. sabemos que $x \leq y \Leftrightarrow x$ divide y es un orden parcial sobre $\{1, 2, 3, 6, 88\}$ (o cualquier otro subcjto. de \mathbb{Z}^+)

Otros ejemplos familiares de posets

- ▶ Consideremos el poset (S, \leq)
- ▶ Si $x \le y$ entonces se cumple que x = y o que $x \ne y$.
- ► En este último caso, notamos *x* < *y* y decimos que *x* es predecesor de *y*
- Un y cualquiera puede tener muchos predecesores (ser sucesor de muchos x distintos)...
- ▶ ... pero cuando $\nexists z | x < z < y$, entonces x es el predecesor inmediato de y

Ejercicio

Consideremos la relación x|y o x divide a y sobre $\{1,2,3,6,12,18\}$

- a. Escriba los pares ordenados de esta relación
- b. Escriba todos los predecesores de 6
- c. Escriba todos los predecesores inmediatos de 6

Diagramas de Hasse

- ► Cuando S es finito podemos visualizar un poset (S, \preceq) usando un diagrama de Hasse
- Cada elemento en S es representado por un punto denominado nodo o vertice
- Cuando x es un predecesor inmediato de y, el nodo de y se ubica sobre el de x
 - y se conectan ambos nodos por una linea recta

Ejemplo para $(\{1,2,3,4,5,6,7,8,9,10\}, |)$

Considere el conjunto $\wp(\{1,2\})$ junto a la relación de inclusión de conjuntos.

- **E**s una restricción del poset $(\wp(\mathbb{N}), \subseteq)$ es un poset.
- Por lo tanto, también es uno.

Construya el diagrama de Hasse del poset.

Construya el diagrama de Hasse para la relación x divide y sobre $\{1, 2, 3, 6, 12, 18\}$.

Elemento menor y minimal

- ▶ Sea (S, \preceq) un poset
- ▶ Si existe un $y \in S$ con $y \leq x$, $\forall x \in S$, entonces, y es el **elemento menor** del poset. Además **es único** (demostrable por antisimetría).
- ▶ Un elemento $y \in S$ es **minimal** si no existe otro $x \in S$ con $x \prec y$
- ► En el diagrama de Hasse, el menor está debajo de todos los demás, mientras que el minimal simplemente es aquel que no tiene otros debajo.
- Analogamente, pueden definirse el elemento mayor y el maximal

Para el diagrama del poset de la relación x divide y sobre $\{1,2,3,6,12,18\}$ identifique el/los elementos maximales y el elemento mayor (en caso que exista).

Construya el diagrama de Hasse para la relación \leq sobre los $\{1,2,3,4\}$

Solución

Un poset en el cual cada elemento está relacionado a todos los demás se denomina orden total o cadena.

Relaciones de equivalencia

- ▶ Relación binaria sobre un conjunto S que es reflexiva, simétrica y transitiva.
- Algunos ejemplos:
 - 1. Sobre cualquier conjunto S, $x \rho y \Leftrightarrow x = y$
 - 2. Sobre \mathbb{N} , $x \rho y \Leftrightarrow x + y$ es par
 - 3. Sobre $\{0,1\}$, $x \rho y \Leftrightarrow x = y^2$
 - 4. Sobre $\{x|x \text{ es estudiante en la clase}\}$, $x\rho y \Leftrightarrow x$ se sienta en la misma fila que y

Partición inducida

- Una relación de equivalencia induce una partición sobre el conjunto S
- ▶ Una partición de un conjunto S es una colección de subconjuntos disjuntos no vacíos de S
- La unión de estos subconjuntos es igual a S
- Para una relación ρ sobre S y $x \in S$, sea [x] el conjunto de todos los miembros de S relacionados con x
 - Este conjunto se denomina clase de equivalencia de x

$$[x] = \{y | y \in S \land x \rho y\} = \{y | y \in S \land y \rho x\}$$

Considere la relación de equivalencia sobre ${\mathbb N}$ dada por

$$x \rho y \Leftrightarrow x + y \text{ es par}$$

- 1. En cuantas clases de equivalencia particiona a $\mathbb N$
- 2. Entregue 2 nombres de clases de equivalencia

Ejemplo

- Considere la relación congruencia modulo 4 sobre Z simbolizada por ≡₄.
- ▶ Dos números $x, y \in \mathbb{Z}$ cumplen $x \equiv_4 y$ cuando (x y) es un multiplo entero de 4. También simbolizado como $x \equiv y \pmod{4}$
- Esto equivale a decir que $x \rho y \Leftrightarrow (x \mod 4) \equiv (y \mod 4)$
- ▶ Habrán entonces 4 particiones, una para los números x tal que $(x \mod 4) = 0$, $(x \mod 4) = 1$, $(x \mod 4) = 2$ y $(x \mod 4) = 3$

► Entregue 3 números enteros de ejemplo para cada una de las 4 clases de equivalencia del ejemplo anterior.

Ordenamiento Topológico

- Recordemos que al tener un orden parcial \leq sobre un conjunto S, algunos elementos de S son predecesores de otros.
- Consideremos que S es un conjunto de tareas o actividades que deben realizarse
- La idea de predecesor puede interpretarse como dependencia

$$x \leq y \Leftrightarrow x$$
 es prerequisito de y

Explique porque la relación de prerequisito es reflexiva, antisimetrica y transitiva.

Continuando con el poset de actividades y sus relaciones de dependencias. . .

- Puede usarse un diagrama de Hasse para visualizar la malla de actividades
- Podemos también agregar en cada nodo la información del tiempo necesario en cada tarea

Ejemplo

Construya la malla de tareas para la siguiente tabla:

Tarea	Prerequisitos	Semanas duracion
1	Ninguna	3.0
2	1	2.0
3	1	4.0
4	2	3.0
5	3,2 4,5	5.0
6	4,5	0.5

El diagrama para la tabla anterior es:

- ► El proyecto avanza de izquierda a derecha
- ► Tareas 2 y 3 pueden realizarse en paralelo

Por lo tanto, para calcular la duración de cada tarea

- **► T1**. 3.0
- **T2**. 3.0 + 2.0 = 5.0
- **T3**. 3.0 + 4.0 = 7.0
- **T4**. 5.0 + 3.0 = 8.0
- **T5**. max(T2, T3) + 5.0 = T3 + 5.0 = 12.0
- ▶ **T6**. max (T4, T5) + 0.5 =**T5**+ 0.5 = 12.5

Luego el número mínimo de semanas para realizar todo el proceso es de 12.5

La ruta crítica de la planificación es:

► Se genera recorriendo del fin al principio seleccionando el prerequisito con mayor valor

Ejecución del Ordenamiento Topológico

Dado un **orden parcial** ρ sobre un conjunto finito, **siempre existirá** un **orden total** σ tal que si $x\rho y$, entonces también $x\sigma y$.

- ► El ordenamiento topológico es un proceso iterativo en que se encuentra ese orden total
- Siempre habrá un elemento minimal
- Se remueve y anota el elemento minimal hasta que no quedan más elementos

El O.T. de la planificación es (de izquiera a derecha partiendo por la secuencia de más arriba)

