

### ASCII e OPERAÇÃO DE SOMA e SUBTRAÇÃO COM SISTEMA COMPUTACIONAL

1 1 0 1 1 1 0 - 1 0 1 1 1 = 1 0 1 0 1 1 1

Como visto anteriormente o cálculo de conversão de bases está para responder às questões pertinentes à execução das especificações nas configurações de sistemas, comunicação remota e linguagem de máquina.

# O que é o código ASCII e para que serve?

O ASCII é um código que foi proposto por Robert W. Bemer como uma solução para unificar a representação de caracteres alfanuméricos em computadores.

Antes de 1960 cada computador utilizava uma regra diferente para representar estes caracteres e o código ASCII nasceu para se tornar comum entre todas as máquinas.



### De onde vem?

O nome ASCII vem do inglês American Standard Code for Information Interchange ou "Código Padrão Americano para o Intercâmbio de Informação". Ele é baseado no alfabeto romano e sua função é padronizar a forma como os computadores representam letras, números, acentos, sinais diversos e alguns códigos de controle.

No ASCII existem apenas 95 caracteres que podem ser impressos, eles são numerados de 32 a 126 sendo os caracteres de 0 a 31 reservados para funções de controle. Ou seja, funções de computador.

Alguns caracteres acabaram caindo em desuso pois eram funções específicas para computadores da época como o Teletype (máquinas de escrever eletromecânicas), fitas de papel perfurado e impressoras de cilindro.

### A tabela...

| Decimal | Hex | Char                  | Decimal | Hex | Char    | Decimal | Hex | Char | Decimal | Hex | Char  |
|---------|-----|-----------------------|---------|-----|---------|---------|-----|------|---------|-----|-------|
| 0       | 0   | [NULL]                | 32      | 20  | [SPACE] | 64      | 40  | @    | 96      | 60  | ,     |
| 1       | 1   | [START OF HEADING]    | 33      | 21  | 1       | 65      | 41  | A    | 97      | 61  | a     |
| 2       | 2   | [START OF TEXT]       | 34      | 22  |         | 66      | 42  | В    | 98      | 62  | b     |
| 3       | 3   | [END OF TEXT]         | 35      | 23  | #       | 67      | 43  | C    | 99      | 63  | C     |
| 4       | 4   | [END OF TRANSMISSION] | 36      | 24  | \$      | 68      | 44  | D    | 100     | 64  | d     |
| 5       | 5   | [ENQUIRY]             | 37      | 25  | %       | 69      | 45  | E    | 101     | 65  | e     |
| 6       | 6   | [ACKNOWLEDGE]         | 38      | 26  | δı      | 70      | 46  | F    | 102     | 66  | f     |
| 7       | 7   | [BELL]                | 39      | 27  | 1       | 71      | 47  | G    | 103     | 67  | q     |
| 8       | 8   | [BACKSPACE]           | 40      | 28  | (       | 72      | 48  | H    | 104     | 68  | h     |
| 9       | 9   | [HORIZONTAL TAB]      | 41      | 29  | )       | 73      | 49  | 1    | 105     | 69  | 1     |
| 10      | A   | [LINE FEED]           | 42      | 2A  |         | 74      | 4A  | 1    | 106     | 6A  | 1     |
| 11      | В   | [VERTICAL TAB]        | 43      | 28  | +       | 75      | 4B  | K    | 107     | 6B  | k     |
| 12      | C   | [FORM FEED]           | 44      | 2C  |         | 76      | 4C  | L    | 108     | 6C  | 1     |
| 13      | D   | [CARRIAGE RETURN]     | 45      | 2D  |         | 77      | 4D  | M    | 109     | 6D  | m     |
| 14      | E   | [SHIFT OUT]           | 46      | 2E  |         | 78      | 4E  | N    | 110     | 6E  | n     |
| 15      | F   | [SHIFT IN]            | 47      | 2F  | 1       | 79      | 4F  | 0    | 111     | 6F  | 0     |
| 16      | 10  | [DATA LINK ESCAPE]    | 48      | 30  | 0       | 80      | 50  | P    | 112     | 70  | P     |
| 17      | 11  | IDEVICE CONTROL 11    | 49      | 31  | 1       | 81      | 51  | Q    | 113     | 71  | q     |
| 18      | 12  | [DEVICE CONTROL 2]    | 50      | 32  | 2       | 82      | 52  | R    | 114     | 72  | r     |
| 19      | 13  | [DEVICE CONTROL 3]    | 51      | 33  | 3       | 83      | 53  | S    | 115     | 73  | S     |
| 20      | 14  | [DEVICE CONTROL 4]    | 52      | 34  | 4       | 84      | 54  | Т    | 116     | 74  | t     |
| 21      | 15  | INEGATIVE ACKNOWLEDGE | 53      | 35  | 5       | 85      | 55  | U    | 117     | 75  | u     |
| 22      | 16  | [SYNCHRONOUS IDLE]    | 54      | 36  | 6       | 86      | 56  | V    | 118     | 76  | v     |
| 23      | 17  | [ENG OF TRANS. BLOCK] | 55      | 37  | 7       | 87      | 57  | W    | 119     | 77  | w     |
| 24      | 18  | [CANCEL]              | 56      | 38  | 8       | 88      | 58  | X    | 120     | 78  | x     |
| 25      | 19  | [END OF MEDIUM]       | 57      | 39  | 9       | 89      | 59  | Y    | 121     | 79  | v     |
| 26      | 1A  | [SUBSTITUTE]          | 58      | 3A  | :       | 90      | 5A  | Z    | 122     | 7A  | z     |
| 27      | 18  | [ESCAPE]              | 59      | 3B  | :       | 91      | 5B  | 1    | 123     | 7B  |       |
| 28      | 10  | [FILE SEPARATOR]      | 60      | 3C  | <       | 92      | 5C  | Ĭ    | 124     | 7C  | i     |
| 29      | 1D  | [GROUP SEPARATOR]     | 61      | 3D  | =       | 93      | 5D  | i    | 125     | 7D  | 1     |
| 30      | 16  | [RECORD SEPARATOR]    | 62      | 3E  | >       | 94      | 5E  | ^    | 126     | 7E  | ~     |
| 31      | 1F  | [UNIT SEPARATOR]      | 63      | 3F  | ?       | 95      | 5F  |      | 127     | 7F  | [DEL] |

Alguns exemplos de funções de controle seriam o LINE FEED que fazia com que a impressora avançasse se seu papel, a função cancel e a função escape que até hoje é representada pela tecla ESC.

Tabela de códigos ASCII (Foto: Reprodução/André Sugai)

Caso você queira ver uma lista mais extensa dos caracteres ASCII visite o site Asciitable (asciitable com).

### E os desenhos?

Outro uso bem interessante dos códigos ASCII é para a criação de desenhos. Os códigos podem ser utilizados para representar qualquer tipo de imagem, coloridas ou não. Quem utilizava o mIRC talvez se lembre disso. Caso você queira experimentar algumas possibilidades em código ASCII hoje existem soluções online como o conversor de textos para ASCII como o Text to ASCII Art Generator ou o conversor de imagens Picascii.

No site Asciiart (<u>asciiarte.com</u>) é possível conferir uma galeria de imagens criadas utilizando o código ASCII, apesar de ser um código antigo ele ainda é muito útil e divertido.



Exemplo de ASCII Art com Mestre Yoda, de Start Wars (Foto: Reprodução/André Sugai)

## O PROCESSAMENTO COM BINÁRIO

Os computadores têm suas características de processamento expressas em número de bits (8, 16, 32 ou 64).

Cada instrução enviada para o microprocessador pode ser formada por 1byte, 2 bytes, 3 bytes e 4 bytes. Assim, dependendo da instrução, são necessárias de 1 a 4 linhas de memória para armazená-la.

O espaço em disco ou memórias define-se como múltiplos de 1kbyte, em que 1kbyte é igual a 1024 bytes (2<sup>10</sup>).

A tabela a seguir mostra os múltiplos do byte.

# Múltiplos do Byte

| Múltiplos do Byte | Abreviação | Valor                                   |
|-------------------|------------|-----------------------------------------|
| Quilobyte         | KB         | 10 <sup>3</sup> do byte (ou 1024 bytes) |
| Megabyte          | MB         | 10 <sup>6</sup> do byte (ou 1024 KB)    |
| Gigabyte          | GB         | 10 <sup>9</sup> do byte (ou 1024 MB)    |
| Terabyte          | ТВ         | 10 <sup>12</sup> do byte (ou 1024 GB)   |
| Petabyte          | РВ         | 10 <sup>15</sup> do byte (ou 1024 TB)   |

# Álgebra booleana (de George Boole)

O sistema binário é base para a Álgebra booleana (de George Boole - matemático inglês), que permite fazer operações lógicas e aritméticas usando-se apenas dois dígitos ou dois estados (sim ou não, falso ou verdadeiro, tudo ou nada, 1 ou 0, ligado ou desligado).

A eletrônica digital e a computação estão baseadas no sistema binário e na lógica de Boole, o que permite representar por circuitos eletrônicos digitais (portas lógicas) os números, os caracteres e realizar operações lógicas e aritméticas.

Os programas de computadores são codificados sob forma binária e armazenados nas mídias (memórias, discos, etc.).

Um sistema numérico pode ser usado para realizar duas operações básicas: adição e subtração.

Pelo uso de adição e subtração, você pode então realizar multiplicações, divisões e qualquer outra operação numérica.

A figura a seguir resume as regras de adição com números binários.

| Regra 1: | 0 + 0 = 0     |                     |
|----------|---------------|---------------------|
| Regra 2: | 0 + 1 = 1     |                     |
| Regra 3: | 1 + 0 = 1     |                     |
| Regra 4: | 1 + 1 = 0     | com transporte de 1 |
| Regra 5: | 1 + 1 + 1 = 1 | com transporte de 1 |

Para ilustrar o processo de adição binária, vamos somar 1101 a 1101:

| Transpor | te 1101 |
|----------|---------|
| Parcela  | 1101    |
|          | + 1101  |
| Soma     | 11010   |

#### Operação com Binários

#### Soma de Binários

Para somar dois números binários, o procedimento é o seguinte:

#### Exemplo 1:

\* \*

1 1 0 0<sub>2</sub>

+ 1 1 1<sub>2</sub>

----= 1 0 0 1 1<sub>2</sub>

Os números binários são base 2, ou seja, há apenas dois algarismos: 0 (zero) ou 1 (um). Na soma de 0 com 1, o resultado é 1.

Quando se soma 1 com 1, o resultado é 2, mas como 2 em binário é 10, o resultado é 0 (zero) e passa-se o outro 1 para a "frente", ou seja, para ser somado com o próximo elemento, conforme assinalado pelo asterisco.

### Exercício...

#### Aula 05: Exercício

- 1. Realize as seguintes somas:
  - **a.**  $1001_2 + 110_2$
  - **b.**  $101011_2 + 101010_2$
  - **c.**  $111111_2 + 1_2$
  - **d.**  $1111_2 + 11_2$

### Gabarito

**1.** Realize as seguintes somas:

**a.** 
$$1001_2 + 110_2 \rightarrow 1111_2$$

**b.** 
$$101011_2 + 101010_2 \rightarrow 1010101_2$$

c. 
$$11111_2 + 1_2 \rightarrow 100000_2$$

d. 
$$1111_2 + 11_2 \rightarrow 10010_2$$

# Operação com binários Subtração de Binários

```
0 2 0 0 0 2

1 1 0 1 1 1 0

- 1 0 1 1 1

= 1 0 1 0 1 1 1
```

Quando temos 0 menos 1, precisamos "emprestar" do elemento vizinho. Esse empréstimo vem valendo 2 (dois), pelo fato de ser um número binário. Então, no caso da coluna 0 - 1 = 1, porque na verdade a operação feita foi 2 - 1 = 1. Esse processo se repete e o elemento que cedeu o "empréstimo" e valia 1 passa a valer 0. Os 1 marcam os elementos que "emprestaram" para seus vizinhos. Perceba que, logicamente, quando o valor for zero, ele não pode "emprestar" para ninguém, então o "pedido" passa para o próximo elemento e esse zero recebe o valor de 1.

### Operação com binários Subtração de Octais

Quando temos 0 menos 1 do octal, precisamos "emprestar" do elemento vizinho. Esse empréstimo vem valendo 8 (oito), pelo fato de ser um número octal. Então, no caso da coluna 0 - 1 = 7, porque na verdade a operação feita foi 8 - 1 = 7. Esse processo se repete e o elemento que cedeu o "empréstimo" e valia 1 passa a valer 0 do octal. Os 1 marcam os elementos que "emprestaram" para seus vizinhos. Perceba que, logicamente, quando o valor for zero, ele não pode "emprestar" para ninguém, então o "pedido" passa para o próximo elemento e esse zero recebe o valor de 1.

#### Operação com binários

#### Subtração de Hexadecimais



Quando temos 0 menos 1 do hexadecimal, precisamos "emprestar" do elemento vizinho. Esse empréstimo vem valendo 16 (dezesseis), pelo fato de ser um número hexadecimal. Então, no caso da coluna 0 - 16 = F, porque na verdade a operação feita foi 16 - 1 = 15. Esse processo se repete e o elemento que cedeu o "empréstimo" e valia 1 passa a valer 0 do hexadecimal. Os 1 marcam os elementos que "emprestaram" para seus vizinhos. Perceba que, logicamente, quando o valor for zero, ele não pode "emprestar" para ninguém, então o "pedido" passa para o próximo elemento e esse zero recebe o valor de 1.

### Referências

- STALLINGS, Willian. Arquitetura e organização de computadores. 5. ed. Prentice Hall. São Paulo, 2006.
- TANENBAUM. Andrew S. Organização estruturada de computadores. 5. ed. Rio de Janeiro: LTC, 2007.
- MACHADO, Francis B.; MAIA, Luiz P. Arquitetura de sistemas operacionais. 4. ed. Rio de Janeiro: LTC, 2007.
- WEBER, Raul Fernando. Arquitetura de computadores pessoais. 2. ed. Porto Alegre:
   Sagra Luzzatto, 2003.
- \_\_\_\_\_. Fundamentos de arquitetura de computadores. 3. ed. Porto Alegre: Sagra Luzzatto, 2004.
- https://www.techtudo.com.br/noticias/noticia/2015/02/o-que-e-o-codigo-ascii-e-para-queserve-descubra.html – acesso em 06/05/2020