

Classification Models

Ajanda

01 Classification Methods 04 KNN

02 Logistic Regression 05 Performance Metrics

03 Decision Trees 06 Practice on Mock Data

01

Classification Methods

Supervised Learning

Training Dataset

Topology, Categories: Unveiling Compexity

Category Theory

Morphological Analysis

Homologic Analysis

02

Logistic Regression

What We Learned? -- Linear Regression

$$y = \beta_0 + \beta_1 x$$

where

y: model estimation

x: the input variable or predictor

 B_0 : intercept (x=0)

 B_1 : slope (coef of feature)

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} [y_i - (\beta_0 + \beta_1 x_i)]^2$$

Logistic Regression with 2 Feature

Decision Boundary

Sigmoid Function

- Binary & Categorical target
- A form of linear regression
- Sigmoid Function

$$y = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

Assumptions & Advantages

Assumptions

- Linear relationship between features and target
- Minimum or no relationship between features
- Relationship between one feature and target is indepented of other feature and target
- No extreme Outliers
- Sample size is large enough

Advantages

- Results interpretability
- Ease of use
- Low computational cost

Overfitting & Regularization

Lasso (L1) Regularization

$$\sum_{i=1}^n (Y_i - \sum_{j=1}^p X_{ij}eta_j)^2 + \lambda \sum_{j=1}^p |eta_j|$$

Cost function

L2: Ridge (L2) Regularization

$$\sum_{i=1}^n (y_i - \sum_{j=1}^p x_{ij}eta_j)^2 + \lambda \sum_{j=1}^p eta_j^2$$

Cost function

Lasso vs Ridge Regularization

Summary

Regression

Classification

03

Decision Trees

Decision Trees

- One of the most widely used and practical methods for inductive inference
- CARTs can be used for classification or regression problems (mostly classification)
- Weaknesses are relatively minor and can be largely avoided.

Structure of a Decision Tree

- A flow-chart-like tree structure
- Decision node denotes a test on an attribute
- Branch represents an outcome of the test
- Leaf nodes represent class labels or class distribution

Divide and Conquer

- Decision trees are built using a heuristic called recursive partitioning
- It splits the data into smaller and smaller subsets of similar classes
- Divide and conquer the nodes until a stopping criterion is reached
 - All (or nearly all) of the examples at the node have the same class
 - There are no remaining features to distinguish among examples
 - The tree has grown to a predefined size limit

Learning the Tree

- Many algorithms: ID3, J48, C4.5, C5.0
- Algorithmic issues:
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting
 - How to classify a leaf node
 - Assign the majority class
 - If leaf is empty, assign the class with the most popular label

Which Feature is Best for Splitting?

Determining the Best Split

Split over whether Balance exceeds 50K

Split over whether applicant is employed

Impurity

We need a measure of impurity for class label distribution on a node

Very impure group

Less impure

Minimum impurity

Common Measures of Impurity

- Entropy
- Gini Index
- Misclassification Error

If the distribution is less uniform, the node is purer.

Information & Entropy

Information: Amount of uncertainty (amount of surprise) in the outcome

Flipping coin

$$I(X) = \log_2 \frac{1}{p(x)} = -\log_2 p(x)$$

Rolling a dice

If the probability of an event is small and it happens, the information is large

• Flipping «head» on a coin $> I = -\log_2 1/2 = 1$

Rolling «6» on a dice

$$> I = -\log_2 1/6 = 2.58$$

Information & Entropy

Entropy: The expected amount of information when observing the output of a random variable X:

Information Gain

Information Gain: Reduction in uncertainty by knowing Y

$$IG(X,Y)=H(Y)-H(Y|X)$$

- Information gain tells us the importance of the given feature
- Determines the most useful one for discriminating between the classes to be learned.

Calculation of Information Gain

Weighted Average Entropy of Children

$$= \left(\frac{10}{18} \times \mathbf{0.881}\right) + \left(\frac{8}{18} \times \mathbf{0.544}\right) = \mathbf{0.731}$$

Information Gain:

$$0.991 - 0.731 = 0.26$$

Other Impurity Measures

Gini:

$$GINI(t) = 1 - \sum_{i} p(i \mid t)^{2}$$
 $p(i \mid t)$ is the relative frequency of class i at node t

Misclassification Error:

Classification error(t) = $1 - \max_{i} p(i \mid t)$

+	2
-	4

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Gini =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

Entropy =
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

Generalization of Decision Trees

Pruning: Replacing a subtree with a leaf with the most common classification in the subtree.

Pre Pruning (Early Stopping Rule): Stop growing the tree before it perfectly classifies the training data.

Post Pruning: Grow full tree, then prune.

Decision Boundaries (Lineer vs Trees)

- Decision boundary is parallel to axes because test condition involves a single feature at a time
- Tree models better reflect nonlinear relationships between feature and target.
- if the relationship is expected to be linear, linear models might be better.

Bagging (Bootstrap Aggregation)

Random Forest

General procedure that can be used to **reduce the variance** for the decision tree algorithm that have high variance.

Boosting

Adaptive Boosting (AdaBoost)

General ensemble method that creates a strong classifier from a number of **weak classifiers**.

Topology, Categories: Unveiling Compexity

Category Theory

Morphological Analysis

> Homologic Analysis

04

K Nearest Neighbors

k Nearest Neighbours

- One of the easy to implement non-probabilistic supervised learning algorithms.
- **KNN** can be used for classification or regression problems (mostly classification)
- Algorithm assumes that similar things exist in close proximity. It categorizes objects based on the classes of their nearest neighbours in the dataset.

Measure of Distance in Data Mining

$$_{\circ}$$
 Euclidean $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$

- $_{\circ}$ Manhattan $|x_1-x_2|+|y_1-y_2|$
- \circ Minkowski $d(p,q) = (\sum_{i=1}^n \left| p_i q_i
 ight|^c)^{rac{1}{c}}$

k Nearest Neighbours

Choosing the k Value : Variance & Bias

Choosing the k Value : Variance & Bias

- Small k values cause high variance and an unstable output
- Large k values lead to high bias by classifying everything as the more probable class

Choosing the k Value : Error Rate

- Rule of thumb is using sqrt(N) as k
- Or, iterate with different k and interpret the error rate

$$\operatorname{err}(f, \mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(f(\mathbf{x}_i) \neq y_i)$$

Choosing the k Value : Ties

A tie can occur when two or more points are equidistant from an unclassified observation

- Choose different k. For binary classification generally odd numbers are used
- Randomly choose
- Allow observations in until natural stop point

Important Notes: Scaling

Important Notes: Outliers

Best Used, Advantages, Disadvantages

Best Used

When you need a simple algorithm to establish benchmark learning rules.

When memory usage of the trained model is a lesser concern.

When prediction speed of the trained model is a lesser concern.

When data set is small.

Advantages

The algorithm is simple and easy to implement.

The algorithm is versatile. It can be used for classification, regression, and search.

There's no need to tune several parameters or make additional assumptions.

Disadvantages

The algorithm gets significantly slower as the number of examples and/or predictors/independent variables increase.

When data set is big.

05

Performance Metrics

Performance Metrics: Error Types Revisited

Probability of making Type I and Type II errors

Performance Metrics: Confusion Matrix

	Predicted Positive	Predicted Negative	
Actual Positive	TP True Positive	FN False Negative Type II Error	Sensitivity $\frac{TP}{(TP + FN)}$
Actual Negative	FP False Positive Type I Error	TN True Negative	Specificity $\frac{TN}{(TN + FP)}$
	$\frac{Precision}{TP}$ $\overline{(TP + FP)}$	Negative Predictive Value TN (TN + FN)	Accuracy $\frac{TP + TN}{(TP + TN + FP + FN)}$

Why accuracy is not enough?

Performance Metrics: Precision, Recall

Which type of error — FPs or FNs — is more undesirable?

	Predicted Positive	Predicted Negative	
Actual Positive	TP True Positive	FN False Negative	Sensitivity TP TP TP TP
Actual Negative	FP False Positive	TN True Negative	Specificity $\frac{TN}{(TN+FP)}$
	Precision $\frac{TP}{(TP + FP)}$	Negative Predictive Value $\frac{TN}{(TN + FN)}$	$\frac{Accuracy}{TP + TN}$ $\frac{TP + TN}{(TP + TN + FP + FN)}$

•	Precision	measures t	the extent of	error caused b	y False Positives (FPs)
---	-----------	------------	---------------	----------------	-------------------------

- Recall measures the extent of error caused by False Negatives (FNs)
- Usually increasing precision will decrease recall, and vice versa.

	Cancer	No Cancer
Cancer	80	80
No Cancer	20	820

Accuracy: 90%, Precision: 20%, Recall: %50

Performance Metrics: F1 Score

What if, the FN and FP errors equally undesirable?

Set 1: (0.5, 0.5)

Set 2: (0.05, 0.95)

Mean Type	Set 1 Result	Set 2 Result
Arithmetic	0.5	0.5
Geometric	0.5	0.21
Harmonic	0.5	0.09

F1 Score =
$$\frac{2}{\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

Performance Metrics: ROC

Performance Metrics: AUC

