Modifying interactions to switch steady states

Jean Carlson group

UCSB

October 12, 2018

Project Goal

- Move separatrix to switch steady states
- Changing interaction matrix using SSR as a guide

Bifurcation Analysis

- Separatrix moves with the third steady state
- Originally in upper right region
- going towards upper left

Black dots shows stable steady states, and hollow dots shows unstable steady states

Change in 2-D matrix

Change in K

$$M_{ab} = \vec{y_a}^T K \vec{y_b}$$
$$= \sum_{i=1, j=1}^{11, 11} \alpha_{ij} K_{ij}$$

- ▶ 121 coefficients
- ► Most are 0
- M_{ab} most sensitive to change in k_{ij} with the largest α_{ij} coefficient

Projection of ΔK back to 2-D

- ► Change in K could change M_{ba}
- ► In this case M_{ba} does not change
- Check if SSR coefficients for M_{ba} and M_{ab} are orthogonal

Projection of ΔK back to 2-D

$$M_{ab} = \sum_{i=1,j=1}^{r} \alpha_{ij} K_{ij}$$

$$M_{ba} = \sum_{i=1,j=1}^{11,11} \beta_{ij} K_{ij}$$

$$\gamma_{ij} = \alpha_{ij} \beta_{ij}$$

11.11

- lacktriangle check the value of γ_{ij}
- $ightharpoonup \alpha_{ij}$ and β_{ij} are nearly orthogonal, with one exception

Separatrix in 11-D

- Numerically calculate separatrix by simulation
- Generate a separatrix curve

Change in 11-D separatrix

Half of the plane does not go to either steady states

Change in 11-D separatrix

- the separatrix changes with small changes of K
- ▶ similar to change in M

Change in 11-D separatrix

Future steps

- ▶ Apply the procedure to other pairs of steady states
- ► Make the change in interaction matrix temporary
- ► Other complex systems