Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$r_0^{\#2} = 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta}==0$	1
$\tau_0^{\#1} - 2 i k \sigma_0^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$t_1^{\#2}\alpha + 2ik \ \sigma_1^{\#2}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial_{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$t_{1}^{\#1}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_1^{\#1}\alpha\beta + ik \ \sigma_1^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha} t^{\beta\chi} + \partial_{\chi}\partial^{\beta} t^{\chi\alpha} + \partial_{\chi}\partial^{\chi} t^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha} \iota^{\chi\beta} + \partial_{\chi}\partial^{\beta} \iota^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$t_2^{\#1}\alpha\beta - 2ik \ \sigma_2^{\#1}\alpha\beta == 0$	$t_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta = 0 - i(4 \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}t^{\chi\delta} + 2 \partial_{\delta}\partial^{\delta}\partial^{\alpha}t^{\chi})$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{eta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi eta} -$	
	$3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4\ ^{ec{l}}\ k^{\chi}\ \partial_{\epsilon}\partial_{\chi}\partial^{eta}\partial^{lpha}\sigma^{\delta\epsilon}_{\ \ \delta}$ -	
	$6\ li\ k^{\chi}\ \partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{lpha}\sigma^{eta\deltaarepsilon}$ -	
	$6\ ^{ec{\imath}}\ k^{\chi}\ \partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{eta}\sigma^{lpha\deltaarepsilon}+$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6\ ^{i}\ k^{\chi}\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{lpha\deltaeta} +$	
	6 i k^{χ} $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{eta\deltalpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$ -	
	$4 \bar{l} \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta \epsilon}_{\delta}) == 0$	
Total constraints/gauge generators:	ge generators:	16

	Quadratic (free) action	$S == \iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} +$	$rac{1}{2}t_1$ (2 $\mathcal{A}^{lpha\prime}$, $\mathcal{A}^{}_{$	$2 \partial_i f^{\theta}_{\ \ \theta} \partial^i f^{\alpha}_{\ \ \alpha} - 2 \partial_i f^{\alpha i} \partial_{\theta} f_{\ \alpha}^{\ \ \theta} + 4 \partial^i f^{\alpha}_{\ \ \alpha} \partial_{\theta} f_{\ i}^{\ \ \theta} - 2 \partial_{\alpha} f_{i \theta}$	$\partial^{\theta}f^{\alpha\prime} - \partial_{\alpha}f_{\theta\prime} \partial^{\theta}f^{\alpha\prime} + \partial_{\prime}f_{\alpha\theta} \partial^{\theta}f^{\alpha\prime} + \partial_{\theta}f_{\alpha\prime} \partial^{\theta}f^{\alpha\prime} +$	$\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha\prime} + 2\mathcal{A}_{\alpha\theta\prime}(\mathcal{A}^{\alpha\prime\theta}+2\partial^{\theta}f^{\alpha\prime}))$ -	$rac{2}{3}r_1$ (3 $\partial_eta \mathcal{H}^{ heta}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$3\partial_{lpha}\mathcal{A}^{lphaeta_{\prime}}\partial_{ heta}\mathcal{A}^{eta}_{eta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$3 \partial_{lpha} \mathcal{A}^{lphaeta_{\prime}} \partial_{eta} \mathcal{A}^{eta}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$2\partial_{eta}\mathcal{R}_{lpha^{eta}}\partial^{artheta}\mathcal{R}^{lphaeta_{eta}}$ $-\partial_{eta}\mathcal{R}_{lphaeta_{eta}}\partial^{artheta}\mathcal{R}^{lphaeta_{eta}}$ $+$	$4\partial_eta \mathcal{R}_{eta heta}\partial^ heta \mathcal{R}^{lpha eta \prime} + \partial_ u \mathcal{R}_{lpha eta heta}\partial^ heta \mathcal{R}^{lpha eta \prime} - \partial_ heta \mathcal{R}_{lpha eta \prime}\partial^ heta \mathcal{R}_{lpha eta \prime} -$	$\partial_{ heta} \mathcal{A}_{lpha ert eta} \partial^{ heta} \mathcal{A}^{lpha eta ert}))[t, ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext{$	
--	-------------------------	--	--	---	---	---	---	---	---	--	---	---	--

${\mathfrak r}_1^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$	0	$\frac{2 k^2 (2 k^2 r_1 + t_1)}{(t_1 + 2 k^2 t_1)^2}$	σ_0^{\sharp} τ_0^{\sharp} σ_0^{\sharp}
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	ر) است
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{2 k^2 r_1 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$	0
$\sigma_{1^{\text{-}}}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$	A #2
$\tau_{1}^{\#1}_{+}\alpha_{\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	$\frac{k^2}{(1+k^2)^2 t_1}$	0	0	0	0	A #1
$\sigma_{1}^{\#2}{}_{+}{}_{lphaeta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0	4 #5 +#1
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0	A #1
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1}^{\#2} + \alpha^{eta}$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_{1}} +^{\alpha}$	$\sigma_1^{\#2} +^{lpha}$	$\tau_1^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$	

3%
${\mathscr A}_{2^{\text{-}}}^{\#1}{}_{\alpha\beta\chi}$
$f_{2}^{\#1}$
${\mathcal A}_{2}^{\#1}{}_{lphaeta}$
R2

 $\tau_{2}^{\#1}{}_{lphaeta}$

2 i √2 k

 $-\frac{1}{(1+2k^2)^2t_1}$

 $\frac{-}{(1+2k^2)^2t_1}$

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\sigma_{2^- \alpha \beta \chi}^{\# 1}$

 $\frac{2}{2 k^2 r_1 + t_1}$

 $\tau_{0}^{\#2}$ $\sigma_{0}^{\#1}$

0 0 0

0 0 0

i √2 k

 $\frac{1}{(1+2k^2)^2t_1}$

 $-\frac{2\,k^2}{(1+2\,k^2)^2\,t_1}$

 $\bar{\it i}\,\it k\,\it t_1$

0

0

0

 $\frac{1}{(1+2k^2)^2t_1}$

 $\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$

$\mathcal{N}_2 + \alpha \beta / 2 + \alpha \beta \mathcal{N}_2^{} \alpha \beta \chi$	0	0	$k^2 r_1 + \frac{t_1}{2}$
$^{\prime}$ 2 ⁺ $\alpha\beta$	$-\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\sigma_{2}^{+}\alpha\beta$	$\frac{t_1}{2}$	$\frac{i k t_1}{\sqrt{2}}$	0
•	$\mathcal{A}_{2^+}^{\#1} \dagger^{\alpha eta}$	$f_2^{#1} + \alpha \beta$	$A_{2}^{#1} + \alpha \beta X$

Massive and massless spectra

(No massless particles)

Unitarity conditions