Министерство образования и науки Российской Федерации Федеральное государственное баджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

Факультет «Фундаментальные науки»

Кафедра «Высшая математика»

Отчёт

по технологической практике за 5 семестр 2020-2021 учебного года

Студент	ФН1-51 (Группа)	(Подпись, дата)	В.А. ЯНКИНа (И.О.Фамилия)
	ель практики кафедъы ФН1	(Полнись, дата)	О.В. Кравченко

Текст задачи

Решить сингулярную двуточечную краевую задачу методом конечных разностей

$$\varepsilon y''(x) + p(x)y'(x) + q(x)y(x) + f(x) = 0, \quad x \in [0, 1],$$

со смешанными граничными условиями

$$-\alpha_1 y'(0) + \alpha_2 y(0) = \gamma_1,$$

$$\beta_1 y'(1) + \beta_2 y(1) = \gamma_2,$$

при различных значениях параметра

$$\varepsilon=1,\ 0.1,\ 0.01,\ 0.001.$$

$$p(x) = \sqrt{x - x^2},$$
 $q(x) = \sqrt[3]{\sin^2(x) + \cos(x)},$ $f(x) = x^3 - x^2 + \sqrt{x}.$ $\alpha_1 = 1, \ \alpha_2 = 0, \ \beta_1 = 1, \ \beta_2 = 0, \ \gamma_1 = 4, \ \gamma_2 = 7.$

Метод конечных разностей

Дано дифференциальное уравнение второго порядка

$$\varepsilon \frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y(x) + f(x) = 0, \qquad x \in [a, b]$$
(1)

со смешанными граничными условиями

$$\begin{cases}
-\alpha_1 y'(a) + \alpha_2 y(a) = \gamma_1, \\
\beta_1 y'(b) + \beta_2 y(b) = \gamma_2.
\end{cases}$$
(2)

Введёт равномерную сетку

$$a \leqslant x_0 < x_1 < \dots < x_n \leqslant b$$

с шагом разбиения h: $h=x_i-x_{i-1},\ i=1,2,...,n$ и обозначим $y(x_i)=y_i,\ p(x_i)=p_i,$ $q(x_i)=q_i,\ f(x_i)=f_i.$

Заменим в дифференциальном уравнении (1) первые производные конечными разностями. На концах отрезка

$$y'(x_0) = \frac{y_1 - y_0}{h}, \quad y'(x_n) = \frac{y_n - y_{n-1}}{h},$$

а в промежуточных точках

$$\frac{dy}{dx} \approx \frac{\Delta y}{\Delta x} = \frac{y_{i+1} - y_{i-1}}{x_{i+1} - x_{i-1}} = \frac{y_{i+1} - y_{i-1}}{2h}.$$

Конечные разности для второй производной имеют вид

$$\frac{d^2y}{dx^2} \approx \frac{\Delta(\Delta y)}{\Delta(\Delta x)} = \frac{(y_{i+1} - y_i) - (y_i - y_{i-1})}{h^2} = \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2}.$$

Тогда вместо дифференциального уравнения (1) с граничными условиями (2) имеем систему

$$\begin{cases}
-\alpha_1 \frac{y_1 - y_0}{h} + \alpha_2 y_0 = \gamma_1, \\
\varepsilon \frac{y_{i-1} - 2y_i + y_{i+1}}{h^2} + p_i \frac{y_{i+1} - y_{i-1}}{2h} + q_i y_i = -f_i, & i = 1, ..., n - 1, \\
\beta_1 \frac{y_n - y_{n-1}}{h} + \beta_2 y_n = \gamma_2.
\end{cases}$$

В полученной системе n+1 неизвестных и столько же уравнений.

Умножив первое и последнее уравнения системы на h, а остальные — на h^2 , перепишем в матричной форме $\mathbf{W} \cdot \mathbf{Y} = \mathbf{F}$, гле

$$\boldsymbol{W} = \begin{pmatrix} \alpha_1 + \alpha_2 h & -\alpha_1 & 0 & 0 & 0 & 0 & 0 \\ \varepsilon - \frac{p_1 h}{2} & q_1 h^2 - 2\varepsilon & \varepsilon + \frac{p_1 h}{2} & 0 & 0 & 0 & 0 \\ 0 & \varepsilon - \frac{p_2 h}{2} & q_2 h^2 - 2\varepsilon & \varepsilon + \frac{p_2 h}{2} & 0 & 0 & 0 \\ 0 & 0 & . & . & . & . & . & 0 \\ 0 & 0 & 0 & 0 & \varepsilon - \frac{p_{n-1} h}{2} & q_{n-1} h^2 - 2\varepsilon & \varepsilon + \frac{p_{n-1} h}{2} \\ 0 & 0 & 0 & 0 & 0 & -\beta_1 & \beta_1 + \beta_2 h \end{pmatrix},$$

 $m{Y}$ — вектор переменных размерности n+1, а $m{F}$ — вектор свободных членов $F(1)=\gamma_1 h,$ $F(i)=-f_{i-1}h^2,\ i=2,3,...,n,\ F(n+1)=\gamma_2 h$

Таким образом, решение сингулярной двуточечной краевой задачи (1),(2) сводится к решению СЛАУ, например, методом прогонки.

Листинг программы

```
import numpy as np
import matplotlib.pyplot as plt
def grid(a, b, n):
   x = np.linspace(a, b, n)
    p = x[1:-1] - x[1:-1] ** 2
    q = (np.sin(x[1:-1]) ** 2 + np.cos(x[1:-1])) ** (1 / 3)
    f = x[1:-1] ** 3 - x[1:-1] ** 2 + np.sqrt(x[1:-1])
    return x, p, q, f
def progonka(w, f):
    def direct(a, b, c, f, n):
        p = np.zeros(n)
        q = np.zeros(n)
        p[0] = -b[0] / a[0]
        q[0] = f[0] / a[0]
        for i in range(1, n - 1):
            p[i] = -b[i] / (a[i] + c[i] * p[i - 1])
            q[i] = (f[i] - c[i] * q[i - 1]) / (a[i] + c[i] * p[i - 1])
        q[-1] = (f[-1] - c[-1] * q[n - 2]) / (a[-1] + c[-1] * p[n - 2])
        return p, q
    def reverse(p, q, n):
        x = np.zeros((n, 1))
        x[-1] = q[-1]
        for i in range(n - 2, -1, -1):
            x[i] = p[i] * x[i + 1] + q[i]
    a = np.diag(w)
    b = np.hstack((np.diag(w, 1), 0))
    c = np.hstack((0, np.diag(w, -1)))
    alpha, beta = direct(a, b, c, f, len(w))
   x = reverse(alpha, beta, len(w))
   return x
a = 0
b = 1
n = 15
eps = [1, 0.1, 0.01, 0.001]
a1 = 1
a2 = 0
b1 = 1
b2 = 0
g1 = 4
g2 = 7
for i in range(len(eps)):
   fig, ax = plt.subplots()
    ax.set_xlabel('x')
   ax.set_ylabel('y')
    ax.grid()
   h = (b - a) / n
   x, p, q, f = grid(a, b, n)
   d1 = np.hstack((eps[i] - p * h / 2, -b1))
   d2 = np.hstack((a2 * h +a1, q * (h ** 2) - 2 * eps[i], b2 * h + b1))
    d3 = np.hstack((-a1, eps[i] + p * h / 2))
   W = np.diag(d1, k=-1) + np.diag(d2, k=0) + np.diag(d3, k=1)
```

```
F = np.hstack((g1 * h, -f * (h ** 2), g2 * h))
Y = progonka(W, F)
n *= 2

ax.plot(x, Y, '-o', color='blue', label='$\\epsilon=$' + str(eps[i]))
ax.legend(loc='lower right')
fig.savefig(str(i), dpi=300)
```

Результаты

На рис. 1 представлены решения сингулярной двуточечной краевой задачи, найденные с помощью метода конечных разностей. Заметим, что с изменением параметра ε меняется и поведение функции y(x).

Рис. 1. Решения задачи (1), (2) для разных ε

Список литературы

- [1] Блюмин А.Г., Федотов А.А., Храпов П.В. Численные методы вычисления интегралов и решения задач для обыкновенных дифференциальных уравнений: Методические указания к выполнению лабораторных работ по курсу «Численные методы». М.: МГТУ им. Н.Э.Баумана, 2008. 74 с.
- [2] Самарский А.А. Введение в численные методы. СПб.: Издательство «Лань», 2005. 288 с.
- [3] Костомаров Д.П., Фаворский А.П. Вводные лекции по численным методам. М.: Университетская книга, Логос, 2006. 184 с.