SWITCHMODE™ Schottky Power Rectifier

DPAK Power Surface Mount Package

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State of the art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies, free wheeling diode and polarity protection diodes.

- Highly Stable Oxide Passivated Junction
- Guardring for Stress Protection
- Matched Dual Die Construction –
 May be Paralleled for High Current Output
- High dv/dt Capability
- Short Heat Sink Tap Manufactured Not Sheared
- Very Low Forward Voltage Drop
- Epoxy Meets UL94, VO at 1/8"

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 0.4 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 75 units per plastic tube
- Available in 16 mm Tape and Reel, 2500 units per Reel, Add "T4" to Suffix part #
- Marking: B1035CL

MAXIMUM RATINGS

Please See the Table on the Following Page

ON Semiconductor™

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 10 AMPERES 35 VOLTS

DPAK CASE 369A PLASTIC

MARKING DIAGRAM

B1035CL = Device Code

ORDERING INFORMATION

Device	Package	Shipping	
MBRD1035CTL	DPAK	75 Units/Rail	
MBRD1035CTLT4	DPAK	2500/Tape & Reel	

1

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage		V _{RRM} V _{RWM} V _R	35	Volts
Average Rectified Forward Current (At Rated V_R , $T_C = 115^{\circ}C$)	Per Leg Per Package	lo	5.0 10	Amps
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 20 kHz, T _C = 115°C)	Per Leg	I _{FRM}	10	Amps
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, sing	Per Package gle phase, 60 Hz)	I _{FSM}	50	Amps
Storage / Operating Case Temperature		T _{stg,} T _c	-55 to +125	°C
Operating Junction Temperature		TJ	-55 to +125	°C
Voltage Rate of Change (Rated V _R , T _J = 25°C)		dv/dt	10,000	V/μs
THERMAL CHARACTERISTICS				
Thermal Resistance – Junction to Case	Per Leg	$R_{ heta JC}$	2.43	°C/W
Thermal Resistance – Junction to Ambient (Note 1.)	Per Leg	$R_{\theta JA}$	68	°C/W
ELECTRICAL CHARACTERISTICS		•		
Maximum Instantaneous Forward Voltage (Note 2.) see Figure 2 $I_F = 5 \text{ Amps, } T_J = 25^{\circ}\text{C}$ $I_F = 5 \text{ Amps, } T_J = 100^{\circ}\text{C}$ $I_F = 10 \text{ Amps, } T_J = 25^{\circ}\text{C}$ $I_F = 10 \text{ Amps, } T_J = 100^{\circ}\text{C}$	Per Leg	V _F	0.47 0.41 0.56 0.55	Volts
Maximum Instantaneous Reverse Current (Note 2.) see Figure 4 $(V_R=35\ V,\ T_J=25^\circ C) \\ (V_R=35\ V,\ T_J=100^\circ C) \\ (V_R=17.5\ V,\ T_J=25^\circ C) \\ (V_R=17.5\ V,\ T_J=100^\circ C)$	Per Leg	I _R	2.0 30 0.20 5.0	mA

Rating applies when using minimum pad size, FR4 PC Board
 Pulse Test: Pulse Width ≤ 250 μs, Duty Cycle ≤ 2.0%.

TYPICAL CHARACTERISTICS

Figure 1. Typical Forward Voltage Per Leg

Figure 2. Maximum Forward Voltage Per Leg

Figure 3. Typical Reverse Current Per Leg

Figure 4. Maximum Reverse Current Per Leg

Figure 5. Current Derating Per Leg

Figure 6. Forward Power Dissipation Per Leg

Figure 7. Capacitance Per Leg

Figure 8. Typical Operating Temperature Derating Per Leg*

r(t) = thermal impedance under given conditions,

Pf = forward power dissipation, and

Pr = reverse power dissipation

This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t) Pr$, where r(t) = Rthja. For other power applications further calculations must be performed.

^{*} Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where T_J may be calculated from the equation:

Figure 9. Thermal Response Junction to Case (Per Leg)

Figure 10. Thermal Response Junction to Ambient (Per Leg)

PACKAGE DIMENSIONS

DPAK

PLASTIC CASE 369A-13 **ISSUE AA**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.250	5.97	6.35	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.033	0.040	0.84	1.01	
F	0.037	0.047	0.94	1.19	
G	0.180 BSC		4.58 BSC		
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
K	0.102	0.114	2.60	2.89	
L	0.090 BSC		2.29 BSC		
R	0.175	0.215	4.45	5.46	
S	0.020	0.050	0.51	1.27	
U	0.020		0.51		
٧	0.030	0.050	0.77	1.27	
Z	0.138		3.51		

STYLE 3: PIN 1. ANODE 2. CATHODE 3. ANODE 4. CATHODE

SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–german@hibbertco.com

French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access -

then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 **Email**: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.