SPOJ Problem Set (trudne)

582. Układ równań

Problem code: MN_2

Zadanie polega na rozwiązaniu układu równań liniowych podanego w postaci macierzowej. Dla zadanej macierzy $\mathbf{A}_{n \times n}$ oraz wektora $\mathbf{b}_{n \times 1}$ należy wyznaczyć wektor $\mathbf{x}_{n \times 1}$, taki że $\mathbf{A}\mathbf{x} = \mathbf{b}$, wykorzystując metodę elementów podstawowych.

Wejście

Pierwszy wiersz wejścia zawiera liczbę zestawów danych t (t=10).

Każdy zestaw danych rozpoczyna się od wiersza z pojedynczą liczbę całkowitą n określającą wymiar rozwiązywanego układu równań (1<=n<=10). W kolejnych n wierszach podane są współczynniki układu, w postaci:

```
a_{11} \ a_{12} \dots a_{1n} \ b_1

a_{21} \ a_{22} \dots a_{2n} \ b_2

...

a_{n1} \ a_{n2} \dots a_{nn} \ b_n
```

Należy przyjąć, że wszystkie współczynniki układu są wartościami całkowitymi z przedziału [-1000, 1000]. Każdy układ równań ma dokładnie jedno rozwiązanie. Zestawy danych oddzielone są pustym wierszem.

Wyjście

Dla każdego zestawu danych należy wypisać pojedynczy wiersz zawierający słowo tak lub nie, określający, czy podjęto próbę rozwiązania układu. W tym pierwszym przypadku należy w kolejnych n wierszach wypisać współczynniki wektora rozwiązania x_1 x_2 ... x_n . Dopuszcza się bezwzględną niedokładność numeryczną wyniku nie przekraczającą 0.001.

Punktacja

Za poprawne rozwiązanie każdego zestawu danych otrzymuje się 1 punkt, z wyjątkiem pierwszego zestawu, którego rozwiązanie jest warte 3 punkty. Łącznie można uzyskać maksymalnie **12 punktów**. Zastosowanie niezmodyfikowanej metody eliminacji Gaussa wystarcza do uzyskania 6 punktów.

Program podający błędne rozwiązanie dla któregokolwiek układu równań nie zostanie zaakceptowany.

Przykład

Wejście: 221 0 01 1 031 0 0 11 1 0 21 1 1 3Wyjście: nietak1.0001.0001.000Punktacja: 0pkt + 1pkt = 1pkt

Added by: Adrian Kosowski Date: 2005-10-14

Time limit: 2s Source limit:8192B

Languages: All except: ERL TECS JS