

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

2,6-Dimethyl-*N*-(2-methylphenyl)-1,3-dioxan-4-amine

Zeenat Fatima,^a Gottimukkala Rambabu,^b Bandapalli Palakshi Reddy,^b Vijayaparthasarathi Vijayakumar^c and Devadasan Velmurugan^a*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ^bChemistry Department, GEBH, Sree Vidyanikethan Engineering College, A. Rangampet, Tirupati 517102, India, and ^cCentre for Organic and Medicinal Chemistry, VIT University, Vellore 632 014, India Correspondence e-mail: shirai2011@gmail.com

Received 6 September 2013; accepted 11 September 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(C-C) = 0.002$ Å; R factor = 0.040; wR factor = 0.119; data-to-parameter ratio = 20.9.

In the title compound, $C_{13}H_{19}NO_2$, the dioxane ring adopts a chair conformation and its mean plane makes a dihedral angle of 45.36 (8)° with the phenyl ring. In the crystal, molecules are linked by pairs of $N-H\cdots O$ hydrogen bonds, forming inversion dimers with $R_2^2(12)$ ring motifs. These dimers are consolidated by pairs of $C-H\cdots O$ hydrogen bonds with $R_2^2(8)$ ring motifs.

Related literature

For applications of 1,3-dioxane derivatives, see: Wang *et al.* (1996*a,b*); Yuan *et al.* (2005). Dioxane rings are frequently encountered in many bioactive molecules, some of which are cytotoxic agents (Aubele *et al.*, 2005) and antimuscarinic agents (Marucci *et al.*, 2005). For related crystal structures, see: Chuprunov *et al.* (1981); Thevenet *et al.* (2010); Fatima *et al.* (2013). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data

 $C_{13}H_{19}NO_2$ $M_r = 221.29$ Monoclinic, $P2_1/c$ a = 8.0209 (2) Å b = 7.8762 (2) Å c = 20.4293 (5) Å $\beta = 99.066$ (2)° V = 1274.48 (6) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K $0.30 \times 0.25 \times 0.20 \text{ mm}$

Data collection

Bruker SMART APEXII areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.692$, $T_{\max} = 0.746$ 12359 measured reflections 3177 independent reflections 2481 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.019$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.119$ S = 1.033177 reflections 152 parameters

H atoms treated by a mixture of independent and constrained refinement

 $\Delta \rho_{\text{max}} = 0.18 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.12 \text{ e Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$ \begin{array}{c} N1 - H1 \cdots O2^{i} \\ C3 - H3A \cdots O1^{i} \end{array} $	0.843 (15)	2.559 (15)	3.3688 (13)	161.3 (13)
	0.97	2.54	3.4950 (13)	167

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. ZF and DV acknowledge the UGC (SAPCAS) for the departmental facilities. ZF also thanks the UGC for a meritorious fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2643).

References

Aubele, D. L., Wan, S. & Floreancig, P. E. (2005). Angew. Chem. Int. Ed. 44, 3485–3488.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.

Chuprunov, E. V., Tarkhova, T. N., Korallova, T. Y., Simonov, M. A. & Belov, W. V. (1981). Zh. Strukt. Khim. 22, 191–192.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Fatima, Z., Rambabu, G., Reddy, B. P., Vijayakumar, V. & Velmurugan, D. (2013). *Acta Cryst.* E**69**, o1524.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Marucci, G., Piero, A., Brasili, L., Buccioni, M., Giardinà, D., Gulini, U., Piergentili, A. & Sagratini, G. (2005). *Med. Chem. Res.* 14, 274–296.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Thevenet, D., Neier, R. & Stoeckli-Evans, H. (2010). *Acta Cryst.* E**66**, o473–o474.

Wang, G. W., Yuan, X. Y., Lei, X. G. & Liu, Y. C. (1996a). Chin. J. Appl. Chem.

Wang, G. W., Yuan, X. Y., Liu, Y. C., Guo, Q. X. & Lei, X. G. (1996b). Indian J. Chem. Sect. B 35, 583–585.

Yuan, X. Y., Yang, N. F., Luo, H. A. & Liu, Y. J. (2005). Chin. J. Org. Chem. 25, 1049–1052

Acta Cryst. (2013). E69, o1561 [doi:10.1107/S1600536813025294]

2,6-Dimethyl-N-(2-methylphenyl)-1,3-dioxan-4-amine

Zeenat Fatima, Gottimukkala Rambabu, Bandapalli Palakshi Reddy, Vijayaparthasarathi Vijayakumar and Devadasan Velmurugan

1. Comment

1,3-dioxane derivatives have applications in the pharmaceutical (Wang et al., 1996b) and cosmetics industry (Wang et al., 1996a; Yuan et al., 2005). Dioxane rings are frequently encountered in many bioactive molecules, some of which are cytotoxic agents (Aubele et al., 2005) and antimuscarinic agents (Marucci et al., 2005). In view of the excellent biological and pharmacological applications of this class of compounds, we have undertaken the synthesis of the title compound and report herein on its crystal structure.

In the title molecule, Fig. 1, the dioxane ring (O1/O2/C2—C5) adopts a *chair* conformation and its mean plane makes a dihedral angle of 45.36 (8)° with the phenyl ring (C7—C12).

In the crystal, molecules are linked by a pair of N-H···O hydrogen bonds forming inversion dimers with an $R^2_2(12)$ ring motif (Bernstein *et al.*, 1995). These dimers are consolidated by a pair of C-H···O hydrogen bonds with an $R^2_2(8)$ ring motif (Table 1 and Fig. 2).

2. Experimental

To 2-toulidine (1 mmol), acetaldehyde (3 mmol) was added drop wise and the mixture was stirred for ca. 4 h at 273 K. The progress of the reaction was monitored through TLC. On completion the reaction the mixture was washed with petroleum ether. The resultant mixture was dissolved in diethylether and the solvent allowed to evaporate. The solid product obtained was recrystallized with diethylether to yield block-like colourless crystals, suitable for X-ray diffraction analysis.

3. Refinement

The NH H atom was located in a difference Fourier map and freely refined. The C bound H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.93 - 0.98 Å with $U_{iso}(H) = 1.5 U_{eq}(C)$ for other H atoms.

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Acta Cryst. (2013). E69, o1561 Sup-1

Figure 1The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2A view along the *b* axis of the crystal packing of the title compound. The N-H···O and C-H···O hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

Acta Cryst. (2013). E**69**, o1561 sup-2

2,6-Dimethyl-N-(2-methylphenyl)-1,3-dioxan-4-amine

Crystal data

 $C_{13}H_{19}NO_2$ $M_r = 221.29$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.0209 (2) Å b = 7.8762 (2) Å c = 20.4293 (5) Å $\beta = 99.066$ (2)° V = 1274.48 (6) Å³ Z = 4

Data collection

Bruker SMART APEXII area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{min} = 0.692$, $T_{max} = 0.746$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.119$ S = 1.033177 reflections 152 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

шир

F(000) = 480 $D_x = 1.153 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 3177 reflections

Cell parameters from 3 $\theta = 2.0-28.4^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.30 \times 0.25 \times 0.20 \text{ mm}$

12359 measured reflections 3177 independent reflections 2481 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.019$

 $\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$ $h = -10 \rightarrow 10$

 $k = -10 \rightarrow 10$ $l = -26 \rightarrow 27$

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent

and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0553P)^2 + 0.1687P]$

where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$

 $\Delta \rho_{\text{max}} = 0.18 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.12 \text{ e Å}^{-3}$

Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc² λ^3 /sin(2 θ)]^{-1/4}

Extinction coefficient: 0.077 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	z	$U_{ m iso}$ */ $U_{ m eq}$	
H1	0.3087 (18)	0.4830 (19)	0.5783 (7)	0.067 (4)*	
C1	0.31391 (18)	0.68745 (18)	0.35171 (7)	0.0682 (4)	
H1A	0.3217	0.6610	0.3064	0.102*	

Acta Cryst. (2013). E69, o1561 Sup-3

H1B	0.4212	0.7278	0.3737	0.102*
H1C	0.2300	0.7738	0.3531	0.102*
C2	0.26506 (14)	0.53043 (15)	0.38614 (6)	0.0509(3)
H2	0.1570	0.4884	0.3627	0.061*
C3	0.24940 (13)	0.56014 (14)	0.45810 (5)	0.0474 (3)
H3A	0.3511	0.6147	0.4804	0.057*
H3B	0.1550	0.6354	0.4607	0.057*
C4	0.22287 (12)	0.39494 (14)	0.49256 (5)	0.0457 (3)
H4	0.1121	0.3489	0.4739	0.055*
C5	0.35637 (15)	0.25112 (14)	0.41290 (6)	0.0511 (3)
H5	0.2477	0.2066	0.3910	0.061*
C6	0.4939 (2)	0.12583 (18)	0.40646 (8)	0.0727 (4)
H6A	0.4992	0.1072	0.3604	0.109*
H6B	0.4703	0.0204	0.4267	0.109*
H6C	0.6000	0.1697	0.4281	0.109*
C7	0.19069 (13)	0.28783 (15)	0.60341 (5)	0.0475 (3)
C8	0.13383 (15)	0.12993 (17)	0.57909 (7)	0.0570(3)
H8	0.1240	0.1079	0.5339	0.068*
C9	0.09169 (17)	0.00538 (19)	0.62110 (8)	0.0684 (4)
H9	0.0524	-0.0991	0.6040	0.082*
C10	0.10746 (19)	0.0348 (2)	0.68794 (8)	0.0773 (4)
H10	0.0799	-0.0494	0.7163	0.093*
C11	0.16463 (19)	0.1905 (2)	0.71237 (7)	0.0739 (4)
H11	0.1760	0.2096	0.7578	0.089*
C12	0.20590 (14)	0.31981 (18)	0.67183 (6)	0.0573 (3)
C13	0.2628 (2)	0.4902(2)	0.69976 (7)	0.0778 (4)
H13A	0.2537	0.4935	0.7460	0.117*
H13B	0.1929	0.5772	0.6768	0.117*
H13C	0.3781	0.5088	0.6943	0.117*
N1	0.22865 (13)	0.41904 (13)	0.56182 (5)	0.0508 (2)
O1	0.35151 (9)	0.27540 (10)	0.48107 (4)	0.0477 (2)
O2	0.39299 (10)	0.40450 (10)	0.38245 (4)	0.0509 (2)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0724 (8)	0.0649 (8)	0.0671 (8)	0.0025 (7)	0.0106 (6)	0.0160(6)
C2	0.0435 (5)	0.0577 (7)	0.0495 (6)	-0.0018(5)	0.0009(4)	0.0032 (5)
C3	0.0407 (5)	0.0495 (6)	0.0513 (6)	0.0054 (4)	0.0047 (4)	-0.0003(5)
C4	0.0375 (5)	0.0529 (6)	0.0461 (6)	-0.0011(4)	0.0045 (4)	-0.0026 (4)
C5	0.0567 (6)	0.0469 (6)	0.0500(6)	-0.0108(5)	0.0095 (5)	-0.0089(5)
C6	0.0930 (10)	0.0516 (7)	0.0778 (9)	0.0049 (7)	0.0270(8)	-0.0136 (6)
C7	0.0377 (5)	0.0567 (7)	0.0486 (6)	0.0031 (4)	0.0085 (4)	0.0021 (5)
C8	0.0502(6)	0.0623 (7)	0.0587 (7)	-0.0030(5)	0.0096 (5)	0.0005 (6)
C9	0.0576 (7)	0.0630(8)	0.0861 (10)	-0.0058(6)	0.0158 (6)	0.0088 (7)
C10	0.0706 (9)	0.0835 (11)	0.0808 (10)	-0.0003(8)	0.0211 (7)	0.0279 (8)
C11	0.0714 (8)	0.0987 (12)	0.0537 (7)	0.0022(8)	0.0161 (6)	0.0137 (7)
C12	0.0497 (6)	0.0738 (8)	0.0497 (6)	0.0029 (6)	0.0122 (5)	-0.0002 (6)
C13	0.0895 (10)	0.0930 (11)	0.0544 (8)	-0.0102 (9)	0.0217 (7)	-0.0172 (7)
N1	0.0514(5)	0.0556 (6)	0.0455 (5)	-0.0050(4)	0.0079 (4)	-0.0035(4)

Acta Cryst. (2013). E69, o1561 sup-4

O1 O2	0.0496 (4) 0.0523 (4)	0.0458 (4) 0.0504 (5)	0.0475 (4) 0.0517 (4)	0.0004 (3) -0.0042 (3)	0.0073 (3) 0.0136 (3)	-0.0025 (3) -0.0022 (3)	
	ric parameters (Å		(15)	G(H/D		0.000	
C1—C2		1.5048	(17)	C6—H6B		.9600	
C1—H1		0.9600				.9600	
C1—H1		0.9600		C7—C8		.3893 (17)	
C1—H1		0.9600	(1.4)	C7—N1		.4014 (15)	
C2—O2		1.4376	` '	C7—C12	1.4065 (16)		
C2—C3		1.5133	(16)	C8—C9	1.3800 (18)		
C2—H2		0.9800	(1.6)	C8—H8		.9300	
C3—C4		1.5103	(16)	C9—C10		.371 (2)	
C3—H3		0.9700		C9—H9		.9300	
C3—H3	В	0.9700	<i>(</i> 4.0)	C10—C11		.375 (2)	
C4—N1		1.4212	` '	C10—H10		.9300	
C4—O1		1.4431	(13)	C11—C12		.386 (2)	
C4—H4		0.9800		C11—H11		.9300	
C5—O2		1.4108	` '	C12—C13		.501 (2)	
C5—O1		1.4122		C13—H13A		.9600	
C5—C6		1.5010	(18)	C13—H13B		.9600	
C5—H5		0.9800		C13—H13C		.9600	
С6—Н6	A	0.9600		N1—H1	0	.843 (15)	
C2—C1	—Н1А	109.5		C5—C6—H6C	1	09.5	
C2—C1	—Н1В	109.5		I6A—C6—H6C 109.5			
11A—C	C1—H1B	109.5		H6B—C6—H6C		109.5	
C2—C1	—Н1С	109.5		C8—C7—N1	122.26 (10)		
11A—C	C1—H1C	109.5		C8—C7—C12	1	19.20 (11)	
H1B—C	C1—H1C	109.5		N1—C7—C12	1	18.51 (11)	
D2—C2	—С1	107.58	(9)	C9—C8—C7	1	20.85 (12)	
)2—C2	—С3	109.08	(8)	C9—C8—H8	1	19.6	
C1—C2	—С3	113.24	(10)	C7—C8—H8	1	19.6	
D2—C2	—H2	109.0		C10—C9—C8	1	20.41 (14)	
C1—C2	—Н2	109.0		C10—C9—H9		19.8	
C3—C2	—Н2	109.0		C8—C9—H9	1	19.8	
C4—C3		111.04	(9)	C9—C10—C11		19.03 (14)	
C4—C3	—Н3А	109.4	` ,	C9—C10—H10		20.5	
C2—C3		109.4		C11—C10—H10		20.5	
C4—C3	—Н3В	109.4		C10—C11—C12	1	22.41 (14)	
C2—C3		109.4		C10—C11—H11		18.8	
	C3—H3B	108.0		C12—C11—H11		18.8	
N1—C4		109.70	(8)	C11—C12—C7		18.09 (13)	
V1—C4		111.35	` '	C11—C12—C13		21.14 (12)	
)1—C4		109.23		C7—C12—C13		20.76 (12)	
V1—C4		108.8	(-)	C12—C13—H13A		09.5	
)1—C4		108.8		C12—C13—H13B		09.5	
C3—C4		108.8		H13A—C13—H13B		09.5	
D2—C5		111.04	(9)	C12—C13—H13C		09.5	
	—C6	108.50		H13A—C13—H13C		09.5	

Acta Cryst. (2013). E**69**, o1561 **sup-5**

O1—C5—C6	108.08 (10)	H13B—C13—H13C	109.5
O2—C5—H5	109.7	C7—N1—C4	121.93 (10)
O1—C5—H5	109.7	C7—N1—H1	115.0 (10)
C6—C5—H5	109.7	C4—N1—H1	112.4 (10)
C5—C6—H6A	109.5	C5—O1—C4	112.35 (8)
C5—C6—H6B	109.5	C5—O2—C2	111.57 (8)
H6A—C6—H6B	109.5		
O2—C2—C3—C4	-52.82 (11)	N1—C7—C12—C13	-0.45(17)
C1—C2—C3—C4	-172.57 (9)	C8—C7—N1—C4	-4.57 (16)
C2—C3—C4—N1	172.86 (8)	C12—C7—N1—C4	177.47 (10)
C2—C3—C4—O1	51.55 (11)	O1—C4—N1—C7	-65.48(12)
N1—C7—C8—C9	-177.63 (11)	C3—C4—N1—C7	173.48 (9)
C12—C7—C8—C9	0.31 (17)	O2—C5—O1—C4	60.92 (11)
C7—C8—C9—C10	-0.9(2)	C6—C5—O1—C4	179.82 (9)
C8—C9—C10—C11	0.5 (2)	N1—C4—O1—C5	-177.70(9)
C9—C10—C11—C12	0.5 (2)	C3—C4—O1—C5	-55.39(11)
C10—C11—C12—C7	-1.0(2)	O1—C5—O2—C2	-61.96 (11)
C10—C11—C12—C13	178.05 (14)	C6—C5—O2—C2	179.40 (9)
C8—C7—C12—C11	0.63 (17)	C1—C2—O2—C5	-179.23(9)
N1—C7—C12—C11	178.65 (11)	C3—C2—O2—C5	57.58 (11)
C8—C7—C12—C13	-178.47 (12)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
N1—H1···O2 ⁱ	0.843 (15)	2.559 (15)	3.3688 (13)	161.3 (13)
C3—H3 <i>A</i> ···O1 ⁱ	0.97	2.54	3.4950 (13)	167

Symmetry code: (i) -x+1, -y+1, -z+1.

Acta Cryst. (2013). E69, o1561 Sup-6