实验:OSPF 双栈

HCIE 综合实验 - OSPF 双栈

臧家林制作

OSPF 双栈 1: OSPF 基本配置 OSPF 双栈 2: OSPFv3 基础

OSPF 双栈 3: OSPFv3 引入 过滤

= = = = = = =

OSPF 双栈 1: OSPF 基本配置

OSPF 协议是为 IP 协议提供路由功能的路由协议。OSPFv2 (OSPF 版本 2) 是支持 IPv4 的路由协议

基本 IP 地址配置 R1: undo terminal monitor sys sysname R1 int loop 0 ip add 1.1.1.1 24 int g0/0/1 ip add 192.168.12.1 24 int g0/0/2 ip add 192.168.13.1 24 q

R2: undo terminal monitor sys sysname R2 int loop 0 ip add 2.2.2.2 24 int g0/0/0 ip add 192.168.12.2 24 int s0/0/2 ip add 192.168.23.2 24 int e0/0/1 ip add 192.168.24.2 24 quit

R3: undo terminal monitor sys sysname R3 int loop 0 ip add 3.3.3.3 24 int g0/0/0 ip add 192.168.13.3 24 int s0/0/2 ip add 192.168.23.3 24 quit

R4:

undo terminal monitor sys sysname R4 int loop 0 ip add 4.4.4.4 24 int e0/0/1 ip add 192.168.24.4 24 quit

配置 OSPF 协议

使用 network 来指定运行 OSPF 协议的接口和接口所在的区域。配置中需要注意,尽量精确匹配。

R1:

ospf router-id 1.1.1.1 area 0 network 192.168.12.1 0.0.0.0 network 192.168.13.1 0.0.0.0 network 1.1.1.1 0.0.0.0

R2:

ospf router-id 2.2.2.2 area 0 network 2.2.2.2 0.0.0.0 network 192.168.12.2 0.0.0.0 network 192.168.23.2 0.0.0.0

```
area 1
network 192.168.24.2 0.0.0.0
q
R3:
ospf router-id 3.3.3.3
area 0
network 3.3.3.3 0.0.0.0
network 192.168.13.3 0.0.0.0
network 192.168.23.3 0.0.0.0
q
R4:
ospf router-id 4.4.4.4
area 1
network 4.4.4.4 0.0.0.0
network 192.168.24.4 0.0.0.0
q
查看 OSPF 的 3 张表
dis ospf peer brief
dis ospf lsdb
dis ip routing-table protocol ospf
[R1]dis ospf peer brief
     OSPF Process 1 with Router ID 1.1.1.1
            Peer Statistic Information
                               Interface
Area Id
```

Neighbor id 0.0.0.0	State	
GigabitEthernet0/0/1 2.2.2.2	Full	
<pre>0.0.0.0 GigabitEthernet0/0/2 3.3.3.3</pre>	Full	
[R1]		
[R1]dis ospf lsdb		

OSPF Process 1 with Router ID 1.1.1.1 Link State Database

	Area: 0.0.0.0			
Туре	LinkState ID			
AdvRouter		Age	L	en
Sequence	Metric			
Router	2.2.2.2			
2.2.2.2		[-	53	72
80000007	0			
Router	1.1.1.1			
1.1.1.1		4	46	60
80000008	0			
Router	3.3.3.3			
3.3.3.3		4	45	72
8000006	0			

Net	work	192.168.13.3	3.3	.3.3
45	32	8000002		0
Net	work	192.168.12.2	2.2	.2.2
53	32	8000002		0
Sum-	-Net	192.168.24.0	2.2	.2.2
93	28	80000001		1
Sum-	-Net	4.4.4.4		
2.2.2	2.2		37	28
2000	2001			

[R1]dis ip routing-table protocol ospf

Desti	nation,	/Mask		Proto	Pre	<u>)</u>
Cost		Flags	NextHo	р		
Inter	face					
2.2.2	.2/32	OSPI	=	10	1	
D	192.3	168.12	. 2			
Gigab	itEthe	net0/0	9/1			
3.3.3	.3/32	OSPI	=	10	1	
D	192.3	168.13	. 3			
Gigab	itEthe	net0/0	9/2			
4.4.4	.4/32	OSPI	=	10	2	
D	192.3	168.12	. 2			
Gigab	itEthe	net0/0	9/1			
192.1	68.23.6	ð/24	OSPF		10	1563
D	192.168	3.12.2	G	igabit	thernet OSPF	
10	1563	3 D	192	.168.13	3.3	

GigabitEthernet0/0/2 192.168.24.0/24 OSPF 10 2 D 192.168.12.2 GigabitEthernet0/0/1

========

OSPF 双栈 2: OSPFv3 基础

OSPFv3 设计时基于 OSPFv2 ,但又区别于 OSPFv2 , 其改进了 OSPFv2 协议的缺点,增强了协议的扩展性及灵活性。

基本 IP 地址配置

R1: undo ter mo sy

sys R1 ipv6 int g0/0/0 ipv6 enable ipv6 add 2001::1/64 int g0/0/1ipv6 enable ipv6 add 2002::1/64 q R2: undo ter mo Sy sys R2 ipv6 int g0/0/0 ipv6 enable ipv6 add 2001::2/64 int g0/0/1ipv6 enable ipv6 add 2003::2/64 q R3: undo ter mo Sy sys R3 ipv6 int g0/0/0 ipv6 enable ipv6 add 3001::3/64 int g0/0/1ipv6 enable ipv6 add 2002::3/64

```
R4:
undo ter mo
sy
sys R4
ipv6
int g0/0/0
ipv6 enable
ipv6 add 3002::4/64
int g0/0/1
ipv6 enable
ipv6 add 2003::4/64
q
配置 OSPFv3 协议
,
之后在接口下配置
R1:
ospfv3 1
```

配置 OSPFv3 协议 ,先全局起 OSPFv3 协议的 router id ,之后在接口下配置 R1: ospfv3 1 router-id 1.1.1.1 int g0/0/0 ospfv3 1 area 0 int g0/0/1 ospfv3 1 area 1 q

R2:
ospfv3 1
router-id 2.2.2.2
int g0/0/0
ospfv3 1 area 0
int g0/0/1
ospfv3 1 area 2
q

R3:
ospfv3 1
router-id 3.3.3.3
int g0/0/0
ospfv3 1 area 1
int g0/0/1
ospfv3 1 area 1
q

R4:
ospfv3 1
router-id 4.4.4.4
int g0/0/0
ospfv3 1 area 2
int g0/0/1
ospfv3 1 area 2
q

配置完成后,查看 DR,是邻居为DR dis ospfv3 peer dis ospfv3 lsdb dis ospfv3 routing dis ospfv3 topology dis ospfv3 int g0/0/0

R1:

dis ospfv3 peer dis ospfv3 peer verbose

[R1]dis ospfv3 peer
OSPFv3 Process (1)
OSPFv3 Area (0.0.0.0)

Neighbor ID	Pri	State	Dead
Time Interface		instance ID	
2.2.2.2	1	Full/DR	
00:00:37 GE0/0/0			0
OSPFv3 Area (0.0.0.	•	_	_
Neighbor ID	Pri	State	Dead
Time Interface		Instance :	ID
3.3.3.3	1	Full/DR	
00:00:39 GE0/0/1			0
alla a a se 6 (2) la alla			
dis ospfv3 lsdb	OCDE,	·2 Davitan	: + b + T D
/1 1 1 1) (Dungang		3 Router w	עד TU
(1.1.1.1) (Process	Ι)	ا خماد ۱۵	٨
/Totanian Cicabiti	+ la a la la a + C	Link-LS/	4
(Interface GigabitE	thernete	1/0/0)	
Link State ID	Origin R	Pouton	۸۵٥
	kSum		Age
0.0.0.3		1.1.1	
0248 0x80000001			1
0.0.0.3		2.2.2	L
0220 0x80000001			1
0220 0X00000001 (oxuuco	•	L
		Intra-A	22-
Prefix-LSA (Area 0.	a a 1)	IIICI a-Ai	l Ca-
TICITA-LDA (AICA O.	0.0.1)		
Link State ID	Origin R	outer	Age
	•	Prefix	Agc
Reference	K.J.GIII	11011	
0.0.0.1	3	3.3.3	
0.0.0.1	J.	J • J • J	

```
0166
     0x80000004 0xc7b0
                            1
                                    Router-
LSA
0.0.0.2
                         3.3.3.3
0170 0x80000001 0xc2c2
Network-LSA
dis ospfv3 routing
[R1]dis ospfv3 routing
Codes: E2 - Type 2 External, E1 - Type 1
External, IA - Inter-Area,
                N - NSSA, U - Uninstalled
OSPFv3 Process (1)
          Destination
Metric
              Next-hop
          2001::/64
1
              directly connected,
GigabitEthernet0/0/0
          2002::/64
1
              directly connected,
GigabitEthernet0/0/1
    IA 2003::/64
2
              via FE80::2E0:FCFF:FE81:47EE,
GigabitEthernet0/0/0
          3001::/64
```

```
2
              via FE80::2E0:FCFF:FEE2:3D24,
GigabitEthernet0/0/1
    IA 3002::/64
3
              via FE80::2E0:FCFF:FE81:47EE,
GigabitEthernet0/0/0
dis ospfv3 topology
[R1]dis ospfv3 topology
OSPFv3 Process (1)
OSPFv3 Area (0.0.0.0) topology
        ID(If-Index)
Type
Bits
            Metric
                      Next-Hop
Interface
         1.1.1.1
Rtr
В
         2.2.2.2
Rtr
                        2.2.2.2
В
         1
GE0/0/0
         2.2.2.2(3)
Net
               0.0.0.0
1
GE0/0/0
OSPFv3 Area (0.0.0.1) topology
        ID(If-Index)
Type
                      Next-Hop
Bits
            Metric
Interface
         1.1.1.1
Rtr
```

```
В
Rtr 3.3.3.3
               3.3.3.3
1
GE0/0/1
Net 3.3.3.3(4)
               0.0.0.0
1
GE0/0/1
dis ospfv3 int g0/0/0
[R1]dis ospfv3 int g0/0/0
GigabitEthernet0/0/0 is up, line protocol
is up
  Interface ID 0x3
    Interface MTU 1500
    IPv6 Prefixes
        FE80::2E0:FCFF:FEB5:6770 (Link-
Local Address)
        2001::1/64
    OSPFv3 Process (1), Area 0.0.0.0,
Instance ID 0
        Router ID 1.1.1.1, Network Type
BROADCAST, Cost: 1
        Transmit Delay is 1 sec, State
Backup, Priority 1
两台 PC 可以相互通信
PC>ping 3002::1
Ping 3002::1: 32 data bytes, Press Ctrl_C to break
Request timeout!
```

From 3002::1: bytes=32 seq=2 hop limit=251

time=125 ms

From 3002::1: bytes=32 seq=3 hop limit=251

time=94 ms

From 3002::1: bytes=32 seq=4 hop limit=251

time=78 ms

OSPFv3 多进程

OSPF 支持多进程,在同一台路由器上可以运行多个不同的 O SPF 进程,它们之间互不影响,彼此独立。不同 OSPF 进程之间的路由交互相当于不同路由协议之间的路由交互。路由器的一个接口只能属于某一个 OSPF 进程。R2 上运行两个进程 , 1 和 2 ,把 g0/0/1 放在进程 2 中,进程 1 与进程 2 进行相互引入

int g0/0/1 und ospfv3 1 area 2

ospfv3 2 router-id 21.21.21.21 int g0/0/1 ospfv3 2 area 2

在 R2 的把 OSPFv3 的 2 个进程相互引入 R2:

ospfv3 1 import-route ospfv3 2

ospfv3 2 import-route ospfv3 1

查看 R1 上学习到的路由 ,宣告的路由为 IA ,引入的路由

```
默认为 E2 类型的
<R1>dis ospfv3 routing
Codes: E2 - Type 2 External, E1 - Type 1
External, IA - Inter-Area,
                N - NSSA, U - Uninstalled
OSPFv3 Process (1)
          Destination
Metric
              Next-hop
          2001::/64
1
              directly connected,
GigabitEthernet0/0/0
          2002::/64
1
              directly connected,
GigabitEthernet0/0/1
    E2 2003::/64
1
              via FE80::2E0:FCFF:FE81:47EE,
GigabitEthernet0/0/0
          3001::/64
2
              via FE80::2E0:FCFF:FEE2:3D24,
GigabitEthernet0/0/1
    E2 3002::/64
1
              via FE80::2E0:FCFF:FE81:47EE,
```

GigabitEthernet0/0/0

两个进程相互引入后,两台 PC 还是可以相互通信的 PC>ping 3002::1

Ping 3002::1: 32 data bytes, Press Ctrl C to break

From 3002::1: bytes=32 seq=2 hop limit=251

time=125 ms

========

OSPF 双栈 3: OSPFv3 引入 过滤

在大型园区网络中,往往使用不同的路由协议进行组网,实现 全网的网络互通。不同的协议间通信,除了路由协议本身,还 需要引入外部路由及路由信息过滤等技术。

基本 IP 地址配置

R1: undo ter mo sy sys R1 ipv6 int g0/0/0 ipv6 enable ipv6 add 2012::1/64 int g0/0/1 ipv6 enable ipv6 add 2015::1/64 int g0/0/2 ipv6 enable ipv6 add 2013::1/64 q

R2: undo ter mo sy sys R2 ipv6 int g0/0/0 ipv6 enable ipv6 add 2012::2/64 int g0/0/1 ipv6 enable ipv6 add 2024::2/64 q

R3: undo ter mo sy sys R3 ipv6 int g0/0/1 ipv6 enable ipv6 add 2001::3/64 int g0/0/2

ipv6 enable ipv6 add 2013::3/64 q R4: undo ter mo Sy sys R4 ipv6 int g0/0/1 ipv6 enable ipv6 add 2024::4/64 int g0/0/2 ipv6 enable ipv6 add 2002::4/64 int g4/0/0 ipv6 enable ipv6 add 2003::4/64 q R5: undo ter mo Sy sys R5 ipv6 int g0/0/0 ipv6 enable ipv6 add 2056::5/64 int g0/0/1 ipv6 enable ipv6 add 2015::5/64 q

R6:

```
undo ter mo
SV
sys R6
ipv6
int g0/0/0
ipv6 enable
ipv6 add 2056::6/64
int g0/0/1
ipv6 enable
ipv6 add 2067::6/64
q
R7:
undo ter mo
Sy
sys R7
ipv6
int g0/0/0
ipv6 enable
ipv6 add 2004::7/64
int g0/0/1
ipv6 enable
ipv6 add 2067::7/64
int g0/0/2
ipv6 enable
ipv6 add 2005::7/64
q
配置 OSPFv3 和 ISISv6
PC 接口引入直连的方式,进入 OSPFv3
R1:
ospfv3 1
router-id 1.1.1.1
```

int g0/0/0 ospfv3 1 area 0 int g0/0/1 ospfv3 1 area 1 int g0/0/2 ospfv3 1 area 2 q

R2: ospfv3 1 router-id 2.2.2.2 int g0/0/0 ospfv3 1 area 0 int g0/0/1 ospfv3 1 area 3 q

R3: ospfv3 1 router-id 3.3.3.3 int g0/0/2 ospfv3 1 area 2 q

R4: ospfv3 1 router-id 4.4.4.4 int g0/0/1 ospfv3 1 area 3 q

R5: ospfv3 1 router-id 5.5.5.5

```
int g0/0/1
ospfv3 1 area 1
q
```

R3 R4 引入直连接口

R3:
ospfv3 1
import-route direct

R4: ospfv3 1 import-route direct q

配置 ISISv6 协议

R5:
isis 1
ipv6 enable
is-level level-1-2
network-entity 10.0000.0000.0005.00
is-name R5
int g0/0/0
isis ipv6 enable

R6:
isis 1
ipv6 enable
is-level level-1-2
network-entity 10.0000.0000.0006.00
is-name R6
int g0/0/0
isis ipv6 enable

```
int g0/0/1
isis ipv6 enable
q
R7:
isis 1
ipv6 enable
is-level level-1
network-entity 10.0000.0000.0007.00
is-name R7
int g0/0/1
isis ipv6 enable
q
引入 ISIS 直连接口
R7:
isis
ipv6 import-route direct level-1
q
R6 查看 ISIS 邻居关系的建立
R6: dis isis peer
Peer information for ISIS(1)
                     Interface
System Id
Circuit Id
                   State HoldTime Type
PRI
R5
                                 GE0/0/0
R5.01
                              Up
                                       8s
```

L1(L1L2) 64
R5 GE0/0/0
R5.01 Up 8s
L2(L1L2) 64
R7 GE0/0/1
R7.02 Up 7s

L1 64

路由重分发

在 R5 上配置 ISISv6 路由与 OSPFv3 路由的相互引入 R5:

ospfv3

import-route isis 1

q

isis 1

ipv6 import-route ospfv3 1

q

在 R6 上配置默认路由下发,使 R7 能正常访问外部网络。

R6:

ipv6 default-route-advertise level-1

q

现在 5 台 PC 是可以相互 ping 通的

PC>ping 2001::2

Ping 2001::2: 32 data bytes, Press Ctrl_C to break

From 2001::2: bytes=32 seq=1 hop limit=250

time=31 ms

配置 OSPFv3 路由过滤

让 PC1 无法访问 PC2 R3: acl ipv6 2000 rule deny source 2002:: 64 rule permit q

ospfv3 filter-policy 2000 import q 验证效果两台 PC 无法通信

配置让 PC2 PC3 无法访问 PC4 通信 R4: acl ipv6 2000 rule deny source 2004:: 64 rule permit q

ospfv3 filter-policy 2000 import q 验证效果