Physik 1 (PH1-B-REE1)

Michael Erhard

Thema heute

4. Atomphysik 1

- 4.1 Aufbau der Atome
- 4.2 Periodensystem der Elemente
- 4.3 Elementarteilchen des Atoms
- 4.4 Elektromagnetische Wellen

5. Atomphysik 2 (Quantenphysik)

- 5.1 Teilchencharakter des Lichtes
- 5.2 Atom-Licht-Wechselwirkung
- 5.3 Wellencharakter von Teilchen

4. Atomphysik 1

4. Einleitung Atomphysik

- Woraus besteht Materie?
- In der Antike ging man von vier Elementen aus:

public domain (USA)

- In China gab es die Fünf-Elemente-Lehre:
 Holz (木), Feuer (火), Erde (土), Metall (金), Wasser (水)
- In der modernen Physik sprechen wir von ca. 100 Elementen
- Eine weitere Aufteilung in andere Elemente ist nicht möglich
- Die kleinste Einheit eines Elements ist das Atom

Quelle: Folien R. Heß

4

4.1 Aufbau der Atome

4.1 Aufbau der Atome

Darstellung Element

A - Massenzahl = Anzahl Nukleonen

Symbol

Z Ordnungszahl

- Anzahl der Protonen (=Elektronen wenn ungeladen)
- bestimmt chemische Eigenschaften

4.1 Isotope

Isotope = Atome mit gleicher <u>Ordnungs</u>zahl

z.B.
$${}^{12}_{6}$$
C 6 Protonen, 6 Neutronen

$$^{14}{
m C}$$
 6 Protonen, 8 Neutronen

Beispiel: Altersbestimmung durch Radiocarbon-Methode

$$^{14}{\rm C}$$
 Zerfall mit
Halbwertszeit 5570a
 $^{12}{\rm C}$

4.1 Ionisation

- Neutrales Atom: Anzahl Protonen = Anzahl Elektronen = Z
- *n*-fach ionisiert: Entfernung von *n* Elektronen aus der Hülle

4.1 Rutherford-Streuung

Experimente durch Rutherford, Geiger, Mardsen (1906-1913)

Bildquelle: en.wikipedia.org

10

4.2 Periodensystem der Elemente

Periodizität der Atomradien

Bildquelle: Folien R. Heß

11

4.2 Periodensystem der Elemente

HAW HAMBURG

4.3 Elementarteilchen des Atoms

	Ladung	Masse
Elektron	$-1,602 \cdot 10^{-19} \mathrm{C}$	$9,11 \cdot 10^{-31} \mathrm{kg}$
Proton	$+1,602 \cdot 10^{-19} \mathrm{C}$	$1,673 \cdot 10^{-27} \mathrm{kg}$
Neutron	0	$1,675 \cdot 10^{-27} \mathrm{kg}$

Elementariadung $e = 1,602176565 \cdot 10^{-19} \, \mathrm{C}$

Atomare Masseneinheit $1\,u=1,660538921\cdot 10^{-27}\,\mathrm{kg}$ $1\,u\,\,\mathrm{ist\,\,definiert\,\,als\,\,} \tfrac{1}{12}\,\,\mathrm{der}\,\,{}^{12}_6\mathrm{C-Masse}$

4.3 Elementarteilchen des Atoms

Definition Mol

1 Mol $^{12}_{\ 6}\mathrm{C}$ wiegt 12g

- Definition der Avogadrokonstante $N_{\rm A} = 6{,}02214129 \cdot 10^{23} rac{1}{
 m mol}$
- 12g Kohlenstoff ($^{12}_{6}\mathrm{C}$) enthält N_{A} Atome

Beispiel Atomgewicht 1,0079(u) für Wasserstoff

- atomares Gewicht: 1,0079u
- 1 mol Wasserstoffatome wiegen 1,0079g

4.3 Elektronenvolt

An Tafel: Elektronenvolt

4.3 Beispiel Kernfusion

Bildquelle: de.wikipedia.org

$$_{1}^{1}H^{+}+_{1}^{1}H^{+}$$

$${}_{1}^{1}H^{+} + {}_{1}^{1}H^{+} \rightarrow {}_{1}^{2}D^{+} + e^{+} + \nu_{e}$$

$${}_{1}^{2}\mathrm{D}^{+} + {}_{1}^{1}\mathrm{H}^{+}$$

$${}_{1}^{2}D^{+} + {}_{1}^{1}H^{+} \rightarrow {}_{2}^{3}He^{2+} + \gamma$$

$${}_{2}^{3}\mathrm{He}^{2+} + {}_{2}^{3}\mathrm{He}^{2+}$$

$${}_{2}^{3}\mathrm{He}^{2+} + {}_{2}^{3}\mathrm{He}^{2+} \rightarrow {}_{2}^{4}\mathrm{He}^{2+} + {}_{1}^{1}\mathrm{H}^{+}$$

$$4\frac{1}{1}H^{+}$$

$$\rightarrow \frac{4}{2} \text{He}^{2+} + 2 e^{+} + 2 \nu_{e} + \Delta E$$
 (Bruttoreaktion)

4.4 Elektromagnetische Wellen

- Breiten sich mit Lichtgeschwindigkeit c aus
- Benötigen kein Medium
- Es gilt:

$$f\lambda = c$$

- f ... Frequenz
- λ ... Wellenlänge
- c ... Lichtgeschwindigkeit

4.4 Sichtbares Licht

Elektromagnetische Wellen, Wellenlängen von 400-800 nm.

Zerlegung in Spektralfarben:

Bildquelle: Folien R. Heß

- In Natur: Regenbogen
- Technisch: mit Prisma oder Gitter

4.4 Interferenz elektromagnetischer Wellen

Wellen (unterschiedlicher Quellen) überlagern sich, die Amplituden werden dabei addiert. Sie können sich verstärken oder auslöschen, man spricht dann von Interferenz.

4.4 Beugung am Gitter

Interferenz am Gitter: bei 1. Ordnung haben die Anteile aus benachbarten Schlitze die Abstandsdifferenz einer Wellenlänge

5. Atomphysik 2 (Quantenphysik)

5.1 Teilchencharakter des Lichts

Äußerer Photoeffekt

Quelle: https://de.wikipedia.org/wiki/Photoelektrischer_Effekt

Ergebnis: die Energie der austretenden Elektronen hängt nur von der Frequenz (Wellenlänge) des Lichts und <u>nicht</u> der Strahlungsintensität ab

→ Licht gibt Energie nur in Portionen, d.h. quantisiert ab.

Nobelpreis 1921, Albert Einstein v.a. auch für Interpretation des Photoeffekts.

5.1 Teilchencharakter des Lichts

Für die Energie des Photons gilt

$$E = h f$$

h ... Plank'sches Wirkungsquantum, $h \approx 6.626 \cdot 10^{-34} \,\mathrm{J\,s}$

f ... Frequenz des Photons

Aufgabe: Welche Wellenlänge haben Photonen der Energie 3eV?

