Machine Learning Practical -1 Support Vector Machine (SVM)

Lecturer:

Dr Hamid Khayyam (Australia) Email: hamid.khayyam@rmit.edu.au

Recap

Recap

Traditional modeling:

Data

Model

Comparison of analytical and machine learning models

Computer

Result

General steps in machine learning

Define the Problem

Identify business goals
Identify data mining
goals

Identify Required Data

Assess needed data Collect and understand data

Prepare and Pre-process

Select required data Cleanse/format data as

necessary

Model the Data

Select algorithms Build predictive models

Train and Test

Train the model with sample data sets Test and iterate

Verify and Deploy

Verify final model Prepare visualizations and deploy

Recap

- Access and load the data
- load filename.mat or load('filename.mat')
- Read Microsoft Excel spreadsheet file
- Read comma-separated value (CSV) file or text files
- Data pre-processing
- Find Missing data (NaN,missing)
 - Replace or and Ignore missing Data

Recap

- Find and replacing outliers
 - Replace or and Ignore outliers
- Data standardization
- Data normalization
- Feature extraction and reduction
- Removing redundant or irrelevant features(inputs)
- Combining features
- Creating new features

Steps of An Application of SVM

- 1. Data pre-processing (check for missing data ,standardization)
- 2. Model development and training
- 3. Mdl = fitcsvm(X, Y) (Classification) % Mdl is the developed model

Mdl = fitrsvm(X, Y) (Regression)

Known Data

Model

Known Responses

3. Simulation (prediction)

label= predict(Mdl,X) (classification)

% label : predicted labels

Y_predicted= predict(Mdl,X) (Regression) %Y_predicted is the predicted responses

- 4. Post-processing
 - MSE,RMSE,R (Regression)

Support vector Machine (SVM)

- Support vector machine (SVM) analysis is a popular machine learning tool for classification and regression.
- SVM is useful specially when the dataset is small.
- SVM builds a hyperplane in between datasets to indicate which class it belongs to. The best hyperplane for an SVM means the one with the largest margin between the two classes.
- SVM is less prone to overfitting when compared to ANN.
- ANNs can suffer from multiple local minima, the solution to an SVM is global and unique.
- The version of SVM for regression is support vector regression (SVR).

Separable data (Hard margin)

The equation of a hyperplane:

$$W^{\mathrm{T}}X + b = 0$$

X: variables in the decision space.

W and b are the parameters of the classifier.

The Equation of marginal lines:

$$W^{\mathrm{T}}X + b = 1$$

$$W^{\mathrm{T}}X + b = -1$$

10

Training (solving) hard-margin problem in Matlab:

Minimize
$$L = \frac{1}{2}W^{T}W$$

Subject to

$$y(W^{T}X + b) - 1 \ge 0$$
 if $y = 1$ then $W^{T}X + b \ge 1$
if $y = -1$ then $W^{T}X + b \le -1$

Non separable data (soft-margin)

•

Error

• Training(solving) Soft-margin problem in Matlab:

$$\begin{split} \text{Minimize} \quad & \frac{1}{2}W^{\text{T}}W + C\sum_{i=1}^{n}\xi_{i} \quad i = 1, \dots, n \\ \text{Subject to}: \quad & y_{i}\big(W^{\text{T}}X + b\big) \geq 1 - \xi_{i}, \quad \forall i {\in} \{1, \dots, n\} \\ & \xi_{i} \geq 0, \qquad \qquad \forall i {\in} \{1, \dots, n\} \end{split}$$

Solution (Lagrangian multiplier):

Minimize
$$L = \frac{1}{2}W^{\mathrm{T}}W - \sum_{i} \alpha_{i} [y(W^{\mathrm{T}}X + b) - 1]$$
 $i = 1, \ldots, n$

 α : the multiplier of the constraint.

Primal problem of SVM method

$$\begin{cases} \frac{dL}{dW} = 0 \Rightarrow W - \sum_{i} \alpha_{i} y_{i} x_{i} \Rightarrow W = \sum_{i} \alpha_{i} y_{i} x_{i} \\ \frac{dL}{db} = 0 \Rightarrow \sum_{i} \alpha_{i} y_{i} = 0 \end{cases}$$

Dual problem of SVM method

Maximize
$$L_D = -\frac{1}{2} \sum_i \sum_j \alpha_i \alpha_j y_i y_j x_i^{\mathrm{T}} x_j + \sum_i \alpha_i \quad i = 1, \dots, n$$

Subject to $\sum_i \alpha_i y_i = 0 \quad \alpha_i \ge 0$

Kernel Trick Nonlinear SVM)

Training (solving) problem with Kernel function in Matlab:

Maximize
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j . k(x_i, x_j)$$
Subject to:
$$\alpha_i \ge 0, \quad \forall i \in \{1, \dots, n\}$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

Kernel functions

Linear

$$k(x_i x_j) = x_i^{\mathrm{T}} x_j$$

Polynomial

$$k(x_ix_j) = (\gamma \ x_i^{\mathrm{T}}x_j + r)^d, \quad \gamma > 0$$

• RBF(Radial basis function)

$$k(x_ix_j) = \exp(-\gamma||x_i - x_j||^2), \quad \gamma > 0$$

where, γ , r, and d are kernel parameters.

• Support Vector Machine - Regression (SVR)

· Solution:

$$\min \frac{1}{2} \|w\|^2$$

Hard-margin solution

· Constraints:

$$y_i - wx_i - b \le \varepsilon$$

$$wx_i + b - y_i \le \varepsilon$$

E: Margin of tolerance

Soft-margin solution

Linear SVR: $y = \sum_{i=1}^{N} (\alpha_i - \alpha_i^*) \cdot \langle x_i, x \rangle + b$

Minimize:

$$\frac{1}{2}\left\|w\right\|^2+C\sum_{i=1}^N\left(\xi_i+\xi_i^*\right)$$

Constraints:

$$y_i - wx_i - b \le \varepsilon + \xi_i$$

$$wx_i + b - y_i \le \varepsilon + \xi_i^*$$

$$\xi_i, \xi_i^* \ge 0$$

Nonlinear SVR

$$y = \sum_{i=1}^{N} (\alpha_i - \alpha_i^*) \cdot K(x_i, x) + b$$

Support Vector Machine model: fitcsvm

fitcsym

Trains a two-class (binary) classification on a low-through moderatedimensional predictor data set.

■ Use Sequential minimal optimization(SMO), Iterative Single Data Algorithms(ISDA), or L1 minimization algorithm for training of the model (Quadratic programming to minimize objective function)

Syntax

```
Mdl = fitcsvm(x, t)
```

Description

x :matrix of predicators(Input)

t :vector of class labels (Output)

Example:

```
Mdl = fitcsvm(x,t);
```

Support Vector Machine model: fitcsvm (cont.)

fitcsvm additional options:

- 'Standardize': false | true (Default: false) % Standardize data
- 'Solver': 'ISDA' | 'L1QP' | 'SMO' (Default: SMO) % Solver for objective functions
- KernelFunction

```
'gaussian' or 'rbf': Gaussian or Radial Basis Function (RBF) kernel
'linear': Linear kernel (default)
'polynomial': Polynomial kernel % Use 'PolynomialOrder', q, to specify a polynomial kernel of order q.
```

- 'PolynomialOrder': positive integer (Default:3)
- 'KernelScale': 1 (default) | 'auto' | positive scalar % gamma in RBF kernel
- 'BoxConstraint': positive scalar (Default:1) % C ,the cost of misclassification
- 'OptimizeHyperparameters': 'none' (default) | 'auto' | 'all'

Support Vector Machine model: fitcsvm (cont.)

```
'HyperparameterOptimizationOptions' % To optimize the parameters (e.g. box constraint , epsilon )
```

- 'optimizer' % The optimizer used to optimize the parameters
 - 'bayesopt' :Use Bayesian optimization.
 - 'gridsearch' :use grid search
 - 'randomsearch' Search at random
- ShowPlots: true or false (Default :true)

Example:

```
mdl=fitcsvm(x,t,'Standardize',true,'solver','ISDA',...
'OptimizeHyperparameters','all','HyperparameterOptimizati
onOptions',struct('optimizer','gridsearch','ShowPlots',fa
lse)); % x is input ,t is output
```

Support vector machine model: predict

Predict

Predict labels using trained model (Mdl)

Syntax:

```
ylabel= predict(Mdl,x) (classification )
```

% ylabel is predicted labels

Description:

x:Input Matrix

Mdl= developed and trained SVM model

ylabel: a vector of predicted class labels for matrix x, based on the trained SVM model Mdl.

Example:

```
y_predicted=predict(mdl,X);
```

Example of classication-1: fitcsvm

```
This dataset is consist of:
Input (x) - a 351x34 matrix
Output (t) - categorical response "b", "g"
clear; clc;
load ionosphere.mat % An example of a built-in data set in
Matlab
rng(1); % random number generation to reproduce results
mdl = fitcsvm(X,Y); %Train the model; X is the input; Y is
the output
y expected=predict(mdl,X); %y expected is the predicted
output
table (Y(10:20), y expected (10:20), 'VariableNames', ...
    {' TrueLabel',' PredictedLabel'})
```

11×2 table

TrueLabel	PredictedLabel
'b'	'b'
'g'	'g'
'b'	'b'
'g'	'g'
'b'	'g'
'g'	'g'
'b'	'b'
'g'	'g'
'b'	'b'
'g'	'g'
'b'	'b'

Support vector machine model: fitcecoc

fitcecoc

Fit multiclass models for support vector machines

Syntax:

```
Mdl = fitcecoc(x,t)
```

Description:

x:input

t : class labels

Example:

```
clear; clc;
load fisheriris.mat
x = meas;
t = species;
Mdl = fitcecoc(x,t);
```

Support Vector Regression (SVR): fitrsvm

fitrsym

trains an SVM regression model for low-through moderate-dimensional predictor data sets.

■ Use Sequential minimal optimization(SMO), Iterative Single Data Algorithms(ISDA), or L1 minimization algorithm for training of the model (Quadratic programming to minimize objective function)

Syntax:

```
Mdl = fitrsvm(x,t);
```

Description:

x: Input data

t: output data

Mdl: Developed and trained SVR Model

Support Vector Regression (SVR): fitrsvm (cont.)

fitrsvm additional options:

- 'Standardize': false | true (Default:false)
- 'Solver': 'ISDA' | 'L1QP' | 'SMO' (Default: SMO)
- KernelFunction:
 - 'gaussian' or 'rbf': Gaussian or Radial Basis Function (RBF) kernel
 - 'linear': Linear kernel (default)
- BoxConstraint': positive scalar (Default:1) % C the cost of wrong prediction
- 'KernelScale': 1 (default) | 'auto' | positive scalar % gamma in RBF kernel
- 'OptimizeHyperparameters': 'none' (default) | 'auto' | 'all'

Support Vector Regression (SVR): fitrsym (cont.)

'Epsilon': Half the width of epsilon-insensitive band 'HyperparameterOptimizationOptions' % To optimize the parameters (e.g. box constraint , epsilon)

- 'Optimizer' % The optimizer used to optimize the parameters
 - 'bayesopt' :Use Bayesian optimization.
 - 'gridsearch' :use grid search
 - 'randomsearch' Search at random
- ShowPlots: true or false (Default :true)

Example:

```
mdl=fitrsvm(x,t,'Standardize',true,'solver','ISDA',...
'OptimizeHyperparameters','all','HyperparameterOptimizat
ionOptions',struct('optimizer','gridsearch','ShowPlots',
false)); % x is input ,t is output
```

Support Vector Regression: predict

Predict

Predict output using trained model (Mdl)

Syntax:

```
y= predict(Mdl,x) (Regression)
```

Description:

X:Input Matrix

Mdl= trained SVM model

y: predicted output based on the trained SVM model Mdl and matrix x.

Example:

```
y=predict(mdl,x);
```

Example of Support Vector Regression-1: fitrsym

```
clear; clc;
rng(1); % random number generation to reproduce results
Filename='SVR1.xlsx';
Sheetread='x';
Input1='A1:M252';
Sheetread1='t';
output1='A1:A252';
Input=xlsread(Filename, Sheetread, Input1); %Read Microsoft
Excel
Target=xlsread(Filename, Sheetread1, output1);
x=Input;
t=Target;
mdl=fitrsvm(x,t,'Standardize',true); %standardize the data
yfit=predict(mdl,x); % prediction based on the developed
SVR model and x as the input
```

Example of Support Vector Regression-1: fitrsym (cont.)

```
table(t(40:50,:),yfit(40:50,:),'VariableNames',{'ObservedV
alue',' PredictedValue'}) % show 40th to 50th data in
output and predicted output
```

RMSE_training=sqrt(sum((yfit-t).^2)/numel(t)); % Calculate RMSE for data

ans =

11×2 table

ObservedValue	PredictedValue	
32.6	31.481	
34.5	37.671	
32.9	34.106	
31.6	33.802	
32	25.864	
7.7	10.269	
13.9	10.729	
10.8	7.9351	
5.6	9.0699	
13.6	16.759	
4	5.9059	

RMSE training: 4.2602

Example of Support Vector Regression-2: fitrsym

```
clear; clc;
rng(1); % random number generation to reproduce results
Filename='SVR2.xlsx';
Sheetread='x';
Input1='A1:A94';
Sheetread1='t':
output1='A1:A94';
Input=xlsread(Filename, Sheetread, Input1); %Read Microsoft
Excel
Target=xlsread(Filename, Sheetread1, output1);
x=Input;
t=Target;
```

mdl=fitrsvm(x,t,'Standardize',true); %standardize the data
and use linear kernel to develope and model the data

yfit=predict(mdl,x); % prediction based on the developed SVR model and x as the input

table(t(20:30,:),yfit(20:30,:),'VariableNames',{'ObservedV alue',' PredictedValue'}) % show 20th to 30th data in output and predicted output

RMSE_training=sqrt(sum((yfit-t).^2)/numel(t)); % Calculate RMSE for data

ans =

11×2 table

ObservedValue	PredictedValue	
9.8589	8.7503	
9.6876	8.6457	
9.4722	8.5412	
9.2283	8.4367	
8.9701	8.3322	
8.7099	8.2277	
8.4579	8.1231	
8.2217	8.0186	
8.0065	7.9141	
7.8153	7.8096	
7.6494	7.7051	

RMSE training:1.9942

Example of Support Vector Regression-3: fitrsym

```
clear; clc;
rnq(1);
• Filename='SVR3.xlsx'; % SVR3.xlsx has been used .
Sheetread='Sheet1';
Input1='A1:B89';
output1='C1:C89';
Input=xlsread(Filename, Sheetread, Input1); %Read
Microsoft Excel
Target=xlsread(Filename, Sheetread, output1);
Sheetread1='Sheet2';
Input2='A1:B11';
```

Example of Support Vector Regression-3: fitrsym (cont.)

```
Target2 = 'C1:C11';
Inputnew=xlsread(Filename, Sheetread1, Input2);
Targetnew=xlsread(Filename, Sheetread1, Target2);
x=Input;
t=Target;
xnew=Inputnew;
tnew=Targetnew;
x=fillmissing(x,'spline'); %fill in the missing input
data
t= fillmissing(t, 'spline'); %fill in the missing
output data
```

Example of Support Vector Regression-3: fitrsym (cont.)

```
mdl=fitrsvm(x,t,'Standardize',true); %standardize
the data and use linear kernel to develope and model
the data
yfit=predict(mdl,x); % prediction based on the
developed SVR model and x as the input
RMSE=sqrt(sum((yfit-t).^2)/numel(t)); % Calculate
RMSE for training data
table(t(60:70,:),yfit(60:70,:),'VariableNames',{'Obs
ervedValue', ' PredictedValue'}) % show 60th to 70th
data in output and predicted output
ynew=predict(mdl,xnew); % prediction based on new
data
RMSE=sqrt(sum((ynew-tnew).^2)/numel(ynew)); %
Calculate RMSE for new data
```

Example of Support Vector Regression-3: fitrsym (cont.)

11×2 table

ObservedValue	PredictedValue	
26.5	26.211	
20	21.763	
13	15.464	
19	21.642	
19	22.758	
16.5	17.312	
16.5	11.827	
13	15.017	
13	16.64	
13	16.498	
28	25.359	

RMSE training: 3.5404

RMSE Testing: 7.7213

Example of Support Vector Regression-4(Without kernel): fitrsvm

```
clear; clc;
rng(1);
Filename='SVR4.xlsx';
Sheetread='Sheet1';
Input1='A1:H72';
output1='I1:I72';
Input=xlsread(Filename, Sheetread, Input1); %Read Microsoft
Excel
Target=xlsread(Filename, Sheetread, output1);
x=Input;
t=Target;
Sheetread1='Sheet2':
Input2='A1:H3';
Target2 = 'I1:I3';
```

Example of Support Vector Regression-4(without kernel): fitrsvm (cont.)

```
Inputnew=xlsread(Filename, Sheetread1, Input2);
Targetnew=xlsread(Filename, Sheetread1, Target2);
xnew=Inputnew;
tnew=Targetnew;
mdl=fitrsvm(x,t,'Standardize',true); %standardize the data
and use linear kernel to develop and model the data
yfit=predict(mdl,x); % prediction based on the developed
SVR model and x as the input
RMSE training=sqrt(sum((yfit-t).^2)/numel(t)); % Calculate
RMSE for data
ynew=predict(mdl, xnew); % prediction based on new data
table(tnew(:), ynew(:), 'VariableNames', { 'ObservedValue Newd
ata',' PredictedValue newdata'}) % show data in output and
predicted output
```

Example of regression-4(without kernel): fitrsym (cont.)

RMSE_testing=sqrt(sum((ynew-tnew).^2)/numel(tnew)); %
Calculate RMSE for new data

Errorpercentage=((ynew-tnew)./tnew)*100; % Calculate error
percentage for tnew and ynew

11×2 table

ObservedValue	PredictedValue	
514	513.96	
518	517	
517	516.09	
517	517.04	
515	514.48	
511	511.61	
511	512.02	
516	512.24	
515	512.21	
514	512.38	
515	515.57	

Example of regression-4(without kernel): fitrsym (cont.)

3×2 table

ObservedValue_Newdata	PredictedValue_newdata	
495	495.46	
498	497.53	
498	497.03	

RMSE_training =1.9569 RMSE_testing =0.6765

=							
	☐ Errorpercentage ※						
3x1 double							
	1	2	3	4			
1	0.0934						
2	-0.0951						
3	-0.1942						
4							
5							
6							

SVM and **SVR** for large data-sets

fitclinear (classification)

trains a linear SVM model for binary classification on a high-dimensional data set.

Syntax:

```
Mdl = fitclinear(x,t);
```

Description:

x:input

t:class labels

fitrlinear (regression)

Fit a linear SVR model to high-dimensional data

Syntax:

```
Mdl = fitrlinear(x,t);
```

Description:

x:input

t:output