

The Geometry Processing Pipeline

Geometric Computer Vision

GCV v2021.1, Module 1

Alexey Artemov, Spring 2021

Lecture Outline

§1. The geometry processing pipeline [45 min]

- 1.1. Goals of 3D/geometric computer vision systems
- 1.2. Common stages of geometry processing
- 1.3. Scanning [next video]
- 1.4. Registration
- 1.5. Reconstruction and meshing
- 1.6. Postprocessing [next videos]

Lecture Outline

§2. 3D representations in computer vision/graphics [15 min, Friday]

- 2.1. Directly measurable: multiple-view images, range-images, point clouds, volumes
- 2.2. Derived: surface meshes, implicit functions
- 2.3. Higher-level: CAD, shape programs

Range-images [Depth maps]

- Like conventional camera images, with each pixel storing depth rather than a color
- Likely the most common datatype acquired directly
- We commonly need multiple depth images to capture the full scene or object

Point clouds [Point sets]

- A set of data points in space,
 representing a shape of an object
- Commonly:
 - registered depth maps
 - directly acquired (e.g. LIDAR, ToF)
- Permutation invariance (points are unordered!)

Video credit: Iconem, 3D models of Armenian Heritage

Volumetric pixels [Voxels, volumes]

2.1. Volumetric pixels [Voxels, volumes | Skoltech

§2. 3D representations in vision and graphics

Mesh

Voxelized 643

Picture Credit: OctNet: Learning Deep 3D Representations at High Resolutions

PartNet synthetic data

ScanNet

Scan2Part (Ours)

10

- Define a regular grid in 3D
- Store per-cell values of signed distance function (SDF) or a truncated SDF (TSDF)
- Store occupancy grid: OG(x) = 1 if TSDF(x) < T

GCV v2021.1, Module 1

2.1. Volumetric pixels [Voxels, volumes] Skoltech

11

§2. 3D representations in vision and graphics

- Storing raw voxels is inefficient compared to points or meshes
- Low spatial resolution

- Need adaptive data structures
- Need sparsity enabled methods

Picture Credit: OctNet: Learning Deep 3D Representations at High Resolutions

2.1. Volumetric pixels [Voxels, volumes | Skoltech

§2. 3D representations in vision and graphics

Video Credit: Atomontage

 Volumetric rendering and volumetric graphics (old idea but still impressive)

Implicit surface representations

13

2.2. Implicit surface representations

§2. 3D representations in vision and graphics

Assumes the existence of a function

$$f: \mathbb{R}^3 \to \mathbb{R}$$

with value > 0 outside the shape and < 0 inside

Extract zero-level set

$$\{\mathbf{x}: f(\mathbf{x}) = 0\}$$

Surface meshes [Polygonal/Triangular meshes, triangulations]

15

2.2. Polygonal Meshes

Skolkovo Institute of Science and Technology

§2. 3D representations in vision and graphics

Boundary representations of objects

2.2. Polygon

Skolkovo Institute of Science and Technology

- Vertices:
- Edges:
- Closed:
- Planar: all vertices on a plane
- Simple: not self-intersecting

$$v_0, v_1, \dots, v_{n-1}$$

$$\{(v_0, v_1), \dots, (v_{n-2}, v_{n-1})\}$$

2.2. Polygonal Mesh

§2. 3D representations in vision and graphics

ullet A finite set M of closed, simple polygons Q_i is a polygonal mesh

ullet The intersection of two polygons in M is either empty, a vertex, or an

edge

2.2. Triangle Meshes

Skolkovo Institute of Science and Technology

- Connectivity: vertices, edges, triangles
- Geometry: vertex positions

$$V = \{v_1, \dots, v_n\}$$

$$E = \{e_1, \dots, e_k\}, \quad e_i \in V \times V$$

$$F = \{f_1, \dots, f_m\}, \quad f_i \in V \times V \times V$$

$$P = {\mathbf{p}_1, \dots, \mathbf{p}_n}, \quad \mathbf{p}_i \in \mathbb{R}^3$$

2.2. Triangulation

§2. 3D representations in vision and graphics

Polygonal mesh where every face is a triangle

- Simplifies data structures
- Simplifies rendering
- Simplifies algorithms
- Each face planar and convex
- Any polygon can be triangulated

2.2. Data Structures

- What should be stored?
 - Geometry: 3D coordinates
 - Connectivity
 - Adjacency relationships
 - Attributes
 - Normal, color, texture coordinates
 - Per vertex, face, edge

2.2. Data Structures

- What should be supported?
 - Rendering
 - Geometry queries
 - What are the vertices of face #2?
 - Is vertex A adjacent to vertex H?
 - Which faces are adjacent to face #1?
 - Modifications
 - Remove/add a vertex/face
 - Vertex split, edge collapse

2.2. Data Structures

- How good is a data structure?
 - Time to construct
 - Time to answer a query
 - Time to perform an operation
 - Space complexity
 - Redundancy
- Criteria for design
 - Expected number of vertices
 - Available memory
 - Required operations
 - Distribution of operations

2.2. Triangle List

- STL format (used in CAD)
- Storage
 - Face: 3 positions
 - 4 bytes per coordinate
 - 36 bytes per face
 - Euler: f = 2v
 - 72**v* bytes for a mesh with *v* vertices
- No connectivity information

Triangles				
0	x0	уΟ	z 0	
1	x1	x1	z1	
2	x2	у2	z2	
3	хЗ	у3	z3	
4	x4	у4	z 4	
5	x5	у5	z5	
6	х6	у6	z 6	
• • •	• • •	• • •	• • •	

2.2. Indexed Face Set

Skolkovo Institute of Science and Technology

- Used in formatsOBJ, OFF, WRL
- Storage
 - Vertex: position
 - Face: vertex indices
 - 12 bytes per vertex
 - 12 bytes per face
 - 36*v bytes for the mesh

	No	explicit	neighb	orhood	info
--	----	----------	--------	--------	------

Vertices				
v0	хO	λO	z0	
v1	x1	x1	z1	
v2	x2	y2	z2	
v3	хЗ	у3	z3	
v4	x4	у4	z 4	
v5	x5	у5	z5	
v6	х6	у6	z 6	
• • •	• • •	• • •	• • •	

Triangles				
t0	VO	v1	v2	
t1	vO	v1	v3	
t2	v2	v4	v3	
t3	v 5	v2	v6	
• • •	• • •	• • •	• • •	

References

Skolkovo Institute of Science and Technology

1. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., & Lévy, B. (2010). *Polygon mesh processing*. CRC press.

26 GCV v2021.1, Module 1