

Classification & Prediction of Dementia

27th August 2022

Our Team

Abdulmalik Adeyemo Project Team Lead Presenter 1

Adewumi Solomon
Presenter 2

Glory Eke Assistant PL

Odedola Solomon Query Analyst

Kalyani Pusadkar Data Science

Oluwatosin Osukoya Data Storytelling

Jesujana Kayode Data Science

Elizabeth Okon Data Storytelling

Justus Ilemobayo DevOps

Godson E. Data science

Joseph Michael Data Science

Teminijesu Jesufemi Data Science

Udeh Sandra Data Science

Onaolapo Sunday Data Science

Chidiebere Nnadiegbulam DevOps

Akinyemi A. A. Data Science

Moses O. Data Science

Oswald Ohiole Ojo Data Science

Emuejevoke E. Data Science

Amao Jacobs Data Science

Existing Solution

Manual Diagnosis System

Doctor checks medical history, symptoms and conduct a physical examination

Doctors would ask someone close to the patient about the symptoms

Our Solution

An Artificial Intelligent Diagnostic System

Automated Diagnosis without Specialist

Accurate Result

Breaks Barrier to diagnosis and care

The Dataset

The data was collected from Kaggle and the description is as follows:

- consists of a longitudinal collection of 150 subjects aged 60 to 96
- Each subject was scanned on two or more visits, for a total of 373 imaging sessions
- 72 of the patients were nondemented and 64 were demented
- 51 patients were diagnosed with mild to moderate Alzheimer's disease
- 14 patients were categorized as converted
- Important features are; "EDUC", "Sex", "CDR", "eTIV", "MMSE", "Age", "nWBV"

The Dataset

The data preparation process is as follows:

Dropped default columns

Feature - Output correlation

Categorical to Numeric Conversion

Outliers Detection & Removal

Impute missing values

Features Normalization

The Dataset

Visualizations

Model

Support Vector Machine

Random Forest

Logistic Regression

Xtreme Gradient Boosting

Model

Logistic Regr	ession				Random Forest				
	precision	recall	f1-score	support		precision	recall	f1-score	support
Θ	0.88	1.00	0.94	37	Θ	0.88	1.00	0.94	37
1	0.88	1.00	0.93	21	1	0.95	1.00	0.98	21
2	0.00	0.00	0.00	8	2	1.00	0.25	0.40	8
accuracy			0.88	66	accuracy			0.91	66
macro avg	0.59	0.67	0.62	66	accuracy	0.05	0.75	0.77	
weighted avg	0.77	0.88	0.82	66	macro avg weighted avg	0.95 0.92	0.75	0.88	66 66
Support vecto					XGradient boos	t			
precision		recall	f1-score	support		precision	recall	f1-score	support
Θ	0.88	1.00	0.94	37	Θ	0.86	1.00	0.92	37
1	0.91	1.00	0.95	21	1	0.95	0.90	0.93	
2	1.00	0.12	0.22	8					21
					2	0.67	0.25	0.36	8
accuracy			0.89	66					
macro avg	0.93	0.71	0.70	66	accuracy			0.88	66
weighted avg	0.91	0.89	0.86	66	macro avg	0.83	0.72	0.74	66
5					weighted avg	0.87	0.88	0.86	66

Random Forest Confusion Matrix

Summary

We can determine the type of dementia by looking at the CDR value

Converted category should be changed to demented or nondemented for real-time application

It was observed that the models performed better without the converted category