实验十九 分光计的调节和掠入射法测量折射率

实验人: 钟易轩 指导教师: 马文君

组号: 九组七号 学号: 2000012706

实验时间: 2021 年 12 月 3 日 实验地点: 物理楼南楼 333

【实验目的】

(1) 了解分光计的结构、作用和工作原理;

(2) 掌握分光计的调节要求、方法和使用规范;

(3) 用分光计测定三棱镜的顶角;

(4) 用掠入射法测定三棱镜的折射率;

(5) 用最小偏向角方法测定物质折射率.

【仪器用具】

分光计,玻璃三棱镜,钠灯,汞灯,平面镜,毛玻璃,放大镜等.

【数据处理】

1. 测定玻璃三棱镜顶角

转动望远镜, 先使望远镜光轴与棱镜 AB 面垂直, 记录下此时左右游标的读数 θ_1 , θ_1'' . 然后转动望远镜, 使其光轴与 AC 面垂直, 记下两边游标读数 θ_2 , θ_2'' , 重复测量三次. 数据如表 1 所示.

表 1: 测定玻璃三棱镜顶角数据表

i	$ heta_1'$	$ heta_1''$	$ heta_2'$	$ heta_2^{\prime\prime}$	ψ_i
1	333°52′	$153^{\circ}45'$	$213^{\circ}46'$	$33^{\circ}50'$	120°30″
2	35°8′	215°3′	275°4′	95°4′	120°1′30″
3	351°26′	171°20′	232°22′	51°23′	119°30′30″

利用上述数据就可以求出 A 的大小.

$$\bar{\psi} = \frac{1}{3}(120^{\circ}30'' + 120^{\circ}1'30'' + 119^{\circ}30'30'') = 119^{\circ}50'50''$$

$$A = 180^{\circ} - 119^{\circ}50'50'' = 60^{\circ}9'10'' = 60.15^{\circ} = 1.05$$
rad

接下来再求 A 的不确定度 σ_A . 由于 $\sigma_A = \sqrt{\sigma_{\bar{A}}^2 + e^2/3}$, 且有允差 $e = 0^{\circ}1'$, $\sigma_{\bar{A}} = \sigma_{\bar{\psi}}$, 则有

$$\sigma_{\bar{\psi}} = \sqrt{\frac{\sum_{i=1}^{3} (\psi_i - \bar{\psi})^2}{(3-1) \times 3}}$$

$$= 0^{\circ} 10' 10''$$

$$\sigma_A = \sqrt{\sigma_{\bar{\psi}}^2 + e^2/3}$$

$$= 0^{\circ} 10' 11''$$

则最后 $A = 60^{\circ}9'10'' \pm 0^{\circ}10''11''$

2. 用掠入射法测定三棱镜的折射率

移动望远镜找到明暗分界线,用 PP' 线对准明暗分界线,记下左右游标读数 θ'_3 、 θ_3 ". 再将望远镜转动至 AC 面的法线位置,记下左右游标读数 θ'_4 、 θ''_4 ,重复测量三次. 数据如表 2 所示.

其中折射率的计算有公式如下,

$$n = \sqrt{1 + (\frac{\cos A + \sin \phi}{\sin A})^2} \tag{19.1}$$

表 2: 掠入法测定玻璃三棱镜折射率数据表

i	θ_3'	θ_3''	$ heta_4'$	$ heta_4''$	ϕ_i	n_i
1	201°57′	$22^{\circ}4'$	$243^{\circ}20'$	$63^{\circ}22'$	41°20′30″	1.668
2	269°24′	89°22′	310°49′	130°45′	41°24′	1.669
3	299°31′	119°29′	340°58′	160°52′	41°25′	1.669

利用上述数据可以计算 \bar{n} , 得出 $\bar{n}=1.669$. 接下来计算折射率的不确定度. 根据 (19.1) 式与方和根合成可得

$$\sigma_n = \sqrt{\left(\frac{(\cos A + \sin \phi)(1 + \cos A \sin \phi)}{n \sin^3 A}\sigma_A\right)^2 + \left(\frac{\cos \phi(\cos A + \sin \phi)}{n \sin^2 A}\sigma_\phi\right)^2}$$
(19.2)

其中 σ_{ϕ} 的计算方式与 σ_{ψ} 相同,得出 $\sigma_{\phi} = 0^{\circ}1'29''$. 再将这些数据代入 (19.2) 式中得到 $\sigma_n = 0.004$, 则 $n = (1.669 \pm 0.004)$.

3. 用最小偏向角法测定三棱镜折射率

由于时间有限,因此我只测了三条谱线的最小偏向角,分别是绿光 (546.07nm)、钠黄光 (579.07nm) 和紫光 (435.84nm).

其中计算折射率的公式为

$$n = \frac{\sin\frac{A+\delta}{2}}{\sin\frac{A}{2}} \tag{19.3}$$

由式 (19.3) 以及方和根合成公式可得 σ_n 的表达式为

$$\sigma_n = \sqrt{\left(\frac{\sin\frac{\delta}{2}}{2\sin^2\frac{A}{2}}\sigma_A\right)^2 + \left(\frac{\cos\frac{A+\delta}{2}}{2\sin\frac{A}{2}}\sigma_\delta\right)^2}$$
 (19.4)

①先测绿光,数据如表 3 所示.

表 3: 最小偏向角法测折射率数据表——绿光

i	θ_5'	$ heta_5''$	θ_6'	$ heta_6''$	δ_i	n_i
1	$282^{\circ}37'$	$102^{\circ}35'$	$336^{\circ}47'$	$156^{\circ}41'$	$54^{\circ}8'$	1.676
2	326°34′	146°30′	20°38′	200°32′	54°3′	1.675
3	7°55′	187°48′	61°58′	241°54′	54°4′30″	1.676

其中 $\bar{\delta}=54^\circ5'10''$, $\bar{n}=1.676$, $\sigma_{\delta}=0^\circ1'35''$,再将数据代入式 (19.4) 中,得到 $\sigma_n=0.003$. 因此 $n=(1.676\pm0.003)$.

②再测钠黄光,数据如表 4 所示.

表 4: 最小偏向角法测折射率数据表——黄光

i	θ_7'	$ heta_7^{\prime\prime}$	θ_8'	θ_8''	δ_i	n_i
1	$4^{\circ}55'$	184°49′	$58^{\circ}36'$	238°32′	53°42′	1.672
2	51°59′	231°56′	105°35′	285°36′	53°38′	1.671
3	96°31′	276°31′	150°9′	330°15′	53°41′	1.672

其中 $\bar{\delta}=53^{\circ}40'20''$, $\bar{n}=1.672$, $\sigma_{\delta}=0^{\circ}1'20''$,再将数据代入式 (19.4) 中,得到 $\sigma_n=0.003$. 因此 $n=(1.672\pm0.003)$.

③最后测紫光,数据如表 5 所示.

 θ_9' θ_9'' θ_{10}' $\theta_{10}^{\prime\prime}$ δ_i n_i 95°30′ 332°1′ 56°28′ 275°31′ 151°56′ 1.698 $135^{\circ}20'$ $315^{\circ}25'$ $191^{\circ}50'$ 11°55′ $56^{\circ}30'$ 1.698 3 171°35′ 351°39′ 228°3′ 48°6′ 56°27′30″ 1.698

表 5: 最小偏向角法测折射率数据表——紫光

其中 $\bar{\delta}=56^{\circ}28'30''$, $\bar{n}=1.698$, $\sigma_{\delta}=0^{\circ}0'57''$,再将数据代入式 (19.4) 中,得到 $\sigma_n=0.003$. 因此 $n=(1.698\pm0.003)$.

【分析与讨论】

实验中的误差主要来源于最初调节分光计时是否调得精准,以及在读游标盘时的主观性,还有在实验过程中不小心的磕碰可能也会导致实验数据的偏差.