Mathematische Methoder der Physik I Übungsserie 6

Dr. Agnes Sambale agnes.sambale@uni-jena.de

Version: 28. Mai 2018 Abgabe: 29. November 2017 Wintersemester 17/18

Aufgabe 1 Die charakteristische Gleichung

Konstruieren Sie für jede der beiden folgenden Differentialgleichungen deren allgemeine Lösung und bestimmen Sie die spezielle Lösung, die den nebenstehenden Anfangsbedingungen genügt. Führen Sie anschließend eine Probe durch.

(i)
$$3y'' - 4y' + y = 0$$
, $y(0) = 1$, $y'(0) = 1$

(ii)
$$y'' - 2y' + y = 0$$
, $y(0) = 3$, $y'(0) = 4$

Aufgabe 2 Die Wronski-Determinante

(a) Drücken Sie die Ableitung W' der Wronski-Determinante

$$W(x) = y_1(x)y_2'(x) - y_2(x)y_1'(x)$$

mithilfe der Differentialgleichung

$$ay'' + by' + cy = 0$$

durch die Wronski-Determinante selbst aus.

(b) Lösen Sie die so entstehende gewöhnliche Differentialgleichung für W. Zeigen Sie anhand dieser Lösung die folgende Aussage.

$$\exists x \in \mathbb{R} \colon W(x) \neq 0 \iff \forall x \in \mathbb{R} \colon W(x) \neq 0$$

(c) Betrachten Sie nun eine lineae Differentialgleichung zweiter Ordnung mit nicht konstanten Koeffizienten.

$$y'' + p(x)y' + q(x)y = 0$$

Geben Sie die zugehörige Wronski-Determinante an.

(d) Bestimmen Sie mit diesem Verfahren die Wronski-Determinante der Differentialgleichung

$$y'' + \frac{1}{x}y' - \frac{m^2}{x^2}y = 0$$

(e) **Zusatz:** Überzeugen Sie sich, dass $y_1(x) = x^m$ eine Lösung der Gleichung ist. Konstruieren Sie eine zweite Lösung aus dem Ansatz $y_2(x) = u(x)y_1(x)$, indem Sie eine Differentialgleichung für u(x) aufstellen und diese durch zweimalige Integration lösen. Überprüfen Sie durch Einsetzen, dass auch y_2 eine Lösung der obigen Differentialgleichung ist.

Aufgabe 3 Die homogene Euler-Gleichung

Die Eulersche Differentialgleichung ist durch die folgende Form gegeben. Dabei stellen die Koeffizienten a, b und c reelle Konstanten dar.

$$ax^2y'' + bxy' + cy = 0$$

- (a) Überführen Sie diese Differentialgleichung mithilfe der Substitution $x = e^{t(x)}$ für $x \in \mathbb{R}^+$ in eine Differentialgleichung mit konstanten Koeffizienten.
- (b) Ein wichtiges Beispiel für die Potentialtheorie stellt die folgende Differentialgleichung dar. Dabei beschreibt n eine nichtnegative reelle Konstante, r eine nichtnegative reelle Variable und R eine Funktion, welche von r abhängt.

$$\frac{\mathrm{d}^2 R}{\mathrm{d}r^2} + \frac{2}{r} \frac{\mathrm{d}R}{\mathrm{d}r} - \frac{n(n+1)}{r^2} R = 0$$

- (1) Behandeln Sie die genannte Differentialgleichung nach der zuvor beschriebenen Methode.
- (2) Konstruieren Sie die allgemeine Lösung R der entstehenden Differentialgleichung mit konstanten Koeffizienten.
- (3) Geben Sie diejenige spezielle Lösung an, welche die folgende Bedingung erfüllt.

$$R \xrightarrow{r \longrightarrow \infty} 0$$