AMENDMENTS

In the Claims

1.(cancel) 2.(cancel) 3.(cancel) 4.(cancel) 5.(cancel) 6.(cancel) 7.(cancel) 8.(cancel) 9.(cancel) 10.(cancel) 11.(cancel) 12.(cancel) 13.(cancel) 14.(cancel) 15.(cancel) 16.(cancel) 17.(cancel) 18.(cancel) 19.(cancel) 20.(cancel) 21.(cancel) 22.(cancel) 23.(cancel) 24.(cancel) 25.(cancel) 26.(cancel) 27.(cancel)

28.(cancel)

29.(cancel)	\cdot	
30.(cancel)		
31.(cancel)		
32.(cancel)		
33.(cancel)		
34.(cancel)	·	
35.(cancel)		
36.(cancel)		
37.(cancel)		
38.(cancel)		
39.(cancel)		
40.(cancel)		
41.(cancel)		
42.(cancel)		
43.(cancel)		
44.(cancel)		
New Claims		
45.(new)	A method for noninvasive analysis of blood comprising the steps of:	
irradi	ating blood in a big vein associated with an underside of a patient's tongue with	h
radiation hav	ring at least one frequency or wavelength;	
detec	ting a response from the blood irradiated in the irradiating step;	
calcu	lating a concentration of a blood component, a value of a blood parameter or a mixtur	е
or combinati	on thereof from the response.	
46.(new)	The method of claim 45, further comprising the step of:	
displa	aying the response, the concentration and/or the value from the calculating step.	
47.(new)	The method of claim 45, wherein the detecting step comprises the step of:	
utiliz	ing one or a combination of techniques selected from the group consisting of reflectanc	e

3	technique, confocal technique, scanning confocal technique, polarization techniques, interferometry,
4	optoacoustics, low coherence interferometry and reflectometry, techniques based on speckle
5	measurements, fluorescence technique, Raman scattering technique, and two or multi-photon
6	techniques.

- 1 48.(new) The method of claim 45, wherein the wavelength of the radiation is from about 200 nanometers to about 20 microns.
- 1 49.(new) The method of claim 45, wherein the radiation has a single wavelength or frequency 2 or a plurality of wavelengths or frequencies.
- The method of claim 45, wherein the response corresponds to a concentration of hemoglobin in the blood and the wavelength of the radiation is selected from the group consisting of 548 nm, 568 nm, 587 nm, and 805 nm, from about 400 nm to about 640 nm and above about 1120 nm.
- The method of claim 45, wherein the blood component is selected from the group consisting of hematocrit, hemoglobin, glycosylated hemoglobin, hemoglobin and glycosylated hemoglobin, glucose, cholesterol, oxy-hemoglobin, deoxy-hemoglobin, and carboxy-hemoglobin, and an exogenous substance.
- 52.(new) The method of claim 51, wherein the exogenous substance is selected from the group consisting of a drug, a dye or other reporter in a molecular state or a particle made of a liquid, a gas, or a solid, a combination of a liquid, a gas, or a solid, and a layered structure.
- 1 53.(new) The method of claim 51, wherein the exogenous substance is selected from the group consisting of indocyanine green and Evans blue.
- 1 54.(new) The method of claim 52, wherein the exogenous substance are particles having a size from about 0.1 nanometer to about 10 microns.

1	55.(new)	The method of claim 45, wherein the radiation is selected from the group consisting
2	of microway	re radiation, radiofrequency radiation, ultrasound radiation, and low-frequency
3	electromagne	tic radiation.
1	56.(new)	The method of claim 45, further comprising:
2	perfor	ming the detecting step in the presence of a static electric or magnetic field.
1	57.(new)	An apparatus for noninvasive blood analysis comprising:
2	a prob	be including a tip having a radiation outlet and a response inlet, where the probe tip is
3	adapted to be	placed in proximity to or in contact with a surface of a tissue over a big vein associated
4	with an under	rside of a patient's tongue;
5	a light	generation/delivery system including a light source capable of generating at least one
6	frequency of	light, and a light conduit interconnecting the light source with the radiation outlet,
7	where the sys	tem is adapted to deliver radiation to blood in the big vein; and
8	a dete	ector/analyzer system including a detector adapted to detect a response from the
9	irradiated blo	od via the response inlet and an analyzer adapted to convert the detected response into
10	a concentration	on of a blood component and/or a value of a parameter of the blood.
1	58.(new)	The apparatus of claim 57, further comprising:
2	a disp	lay adapted to display the response, the concentration, and/or the value.
1	59.(new)	The apparatus of claim 57, wherein the wavelength of the radiation is from about 200
2	nanometers to	about 20 microns.
	59.(new)	The apparatus of claim 57, wherein the radiation has a single wavelength or frequency
	or a plurality	of wavelengths or frequencies.
1	60.(new)	The apparatus of claim 57, wherein the detector is capable of detecting data derived
2	from one or a	combination of techniques selected from the group consisting of reflectance technique,
3	confocal tec	hnique, scanning confocal technique, polarization techniques, interferometry,
4	optoacoustics	, low coherence interferometry and reflectometry, techniques based on speckle

5	measurement	s, fluorescence technique, Raman scattering technique, and two or multi-photon
6	techniques.	
1	61.(new)	The apparatus of claim 57, wherein the response corresponds to hemoglobin and the
2	wavelength is	s selected from the group consisting of 548 nm, 568 nm, 587 nm, 805 nm, from about
3	400 nm to abo	out 640 nm and above about 1120 nm.
1	62.(new)	The apparatus of claim 57, wherein the blood component is selected from the group
2	consisting of	hematocrit, hemoglobin, glycosylated hemoglobin, hemoglobin and glycosylated
3	hemoglobin,	glucose, cholesterol, oxy-hemoglobin, deoxy-hemoglobin, and carboxy-hemoglobin,
4	and an exoge	nous substance.
1	63.(new)	The apparatus of claim 62, wherein the exogenous substance is selected from the
2	group consist	ing of a drug, a dye or other reporter in molecular state or a particle made of liquid, gas,
3	or solid mater	ial including polymer, metal, semiconductor, dielectric, or a combination of liquid, gas,
4	or solid mater	rials, and a layered structure.
1	64.(new)	The apparatus of claim 62, wherein the exogenous substance is selected from the
2	group consist	ing of indocyanine green and Evans blue.
1	65.(new)	The apparatus of claim 63, wherein the exogenous substance are particles having a
2	size from abo	ut 0.1 nanometer to about 10 microns.
1	66.(new)	The apparatus of claim 57, wherein the radiation is selected from the group consisting
2	of microwav	e radiation, radiofrequency radiation, ultrasound radiation, and low-frequency
3	electromagne	tic radiation.
1	67.(new)	The apparatus of claim 57, further comprising:
2	a devi	ce for generating a static electric or magnetic field.

An apparatus for noninvasive blood analysis comprising:

1

68.(new)

2	righ	t side and left side sections adapted to engage one or more teeth on each of a right side	
3	and left side of a patient's jaw,		
4	two transitions section extending downwardly from each of the side sections,		
5	a mi	ddle section interposed between the two transitions sections adapted to be proximate to	
6	or in contac	t with an underside of a patient's tongue, where the middle section includes;	
7		a emitter, and	
8		a receiver,	
9		where the emitter and the receiver are proximate or in contact with a surface of a	
0		tissue over a big vein associated with an underside of the patient's tongue;	
1	a lig	ht generation/delivery system including a light source capable of generating at least one	
2	frequency of	of light, and a light conduit interconnecting the light source with the radiation outlet,	
3	where the s	ystem is adapted to deliver radiation to blood in the big vein; and	
4	a de	etector/analyzer system including a detector adapted to detect a response from the	
5	irradiated b	lood via the response inlet and an analyzer adapted to convert the detected response into	
6	a concentra	tion of a blood component and/or a value of a parameter of the blood.	
1	69.(new)	The apparatus of claim 59, further comprising:	
2	a plı	rality of emitters and receivers, located in pairs on a right hand side and a left side of the	
3	middle sect	ion.	
1	70.(new)	The apparatus of claim 68, further comprising:	
2	a dis	splay adapted to display the response, the concentration, and/or the value.	
1	71.(new)	The apparatus of claim 68, wherein the wavelength of the radiation is from about 200	
2	nanometers	to about 20 microns.	
	71.(new)	The apparatus of claim 68, wherein the radiation has a single wavelength or frequency	
	or a pluralit	y of wavelengths or frequencies.	
1	72.(new)	The apparatus of claim 68, wherein the detector is capable of detecting data derived	
2	from one or a combination of techniques selected from the group consisting of reflectance techniques		

3	confocal technique, scanning confocal technique, polarization techniques, interferometry
4	optoacoustics, low coherence interferometry and reflectometry, techniques based on speck
5	measurements, fluorescence technique, Raman scattering technique, and two or multi-photo
6	techniques.
1	73.(new) The apparatus of claim 68, wherein the response corresponds to hemoglobin and the
2	wavelength is selected from the group consisting of 548 nm, 568 nm, 587 nm, 805 nm, from about
3	400 nm to about 640 nm and above about 1120 nm.
1	74.(new) The apparatus of claim 68, wherein the blood component is selected from the ground
2	consisting of hematocrit, hemoglobin, glycosylated hemoglobin, hemoglobin and glycosylate
3	hemoglobin, glucose, cholesterol, oxy-hemoglobin, deoxy-hemoglobin, and carboxy-hemoglobin
4	and an exogenous substance.
1	75.(new) The apparatus of claim 74, wherein the exogenous substance is selected from the
2	group consisting of a drug, a dye or other reporter in molecular state or a particle made of liquid, ga
3	or solid material including polymer, metal, semiconductor, dielectric, or a combination of liquid, ga
4	or solid materials, and a layered structure.
1	76.(new) The apparatus of claim 74, wherein the exogenous substance is selected from the
2	group consisting of indocyanine green and Evans blue.
l	77.(new) The apparatus of claim 75, wherein the exogenous substance are particles having
2	size from about 0.1 nanometer to about 10 microns.
l	78.(new) The apparatus of claim 68, wherein the radiation is selected from the group consisting
2	of microwave radiation, radiofrequency radiation, ultrasound radiation, and low-frequence
3	electromagnetic radiation.

79.(new) The apparatus of claim 68, further comprising:

a device for generating a static electric or magnetic field.

1

2