Индивидуальная работа №2

ИНТЕРПОЛИРОВАНИЕ И ЭКСТРАПОЛИРОВАНИЕ ФУНКЦИЙ

Задание. I) Найти приближенное значение функции у при данном значении аргумента х* с помощью интерполяционного многочлена Лагранжа, если функция задана:

- 1) в неравноотстоящих узлах таблицы;
- 2) в равноотстоящих узлах таблицы.

Варианты к заданию 1)

Таблица 1

Х	у	№ варианта	\mathbf{x}^*
0,43	1,63597	1	0,702
0,48	1,73234	7	0,512
0,55	1,87686	13	0,645
0,62	2,03345	19	0,736
0,70	2,22846	25	0,608
0,75	2,35973		

Таблица 2

X	у	№ варианта	\mathbf{x}^*
0,02	1,02316	2	0,102
0,08	1,09590	8	0,114
0,12	1,14725	14	0,125
0,17	1,21483	20	0,203
0,23	1,30120	26	0,154
0,30	1,40976		

Таблица 3

X	у	№ варианта	X*
0,35	2,73951	3	0,526
0,41	2,30080	9	0,453
0,47 '	1,96864	15	0,482
0,51	1,78776	21	0,552
0,56	1,59502	27	0,436
0,64	1,34310		

Таблица 4

Х	у	№ варианта	X*
0,41	2,57418	4	0,616
0,46	2,32513	10	0,478
0,52	2,09336	16	0,665
0,60	1,86203	22	0,537
0,65	1,74926	28	0,673
0,72	1,62098		

Таблица 5

X	У	№ варианта	\mathbf{x}^*
0,68	0,80866	5	0,896
0,73	0,89492	11	0,812
0,80	1,02964	17	0,774
0,88	1,20966	23	0,955
0,93	1,34087	29	0,715
0,99	1,52368		

Таблица 6

X	У	№ варианта	\mathbf{x}^*
0,11	9,05421	6	0,314
0,15	6,61659	12	0,235
0,21	4,69170	18	0,332
0,29	3,35106	24	0,275
0,35	2,73951	30	0,186
0,40	2,36522		

Варианты к заданию 2)

Таблица 1

Х	у	№ варианта	\mathbf{x}^*
1,375	5,04192	1	1,3832
1,380	5,17744	7	1,3926
1,385	5,32016	13	1,3862
1,390	5,47069	19	1,3934
1,395	5,62968	25	1,3866
1,400	5,79788		

Таблица 2

X	у	№ варианта	X*
0,115	8,65729	2	0,1264
0,120	8,29329	8	0,1315
0,125	7,95829	14	0,1232
0,130	7,64893	20	0,1334
0,135	7,36235	26	0,1285
0,140	7,09613		

X	у	№ варианта	X*
0,150	6,61659	3	0,1521
0,155	6,39989	9	0,1611
0,160	6,19658	15	0,1662
0,165	6,00551	21	0,1542
0,170	5,82558	27	0,1625
0,175	5,65583		

Таблица 4

X	у	№ варианта	\mathbf{X}^*
0,180	5,61543	4	0,1838
0,185	5,46693	10	0,1875
0,190	5,32634	16	0,1944
0,195	5,19304	22	0,1976
0,200	5,06649	28	0,2038
0,205	4,94619		

Таблица 5

X	у	№ варианта	X*
0,210	4,83170	5	0,2121
0,215	4,72261	11	0,2165
0,220	4,61855	17	0,2232
0,225	4,51919	23	0,2263
0,230	4,42422 .	29	0,2244
0,235	4,33337		

Таблица 6

X	у	№ варианта	\mathbf{X}^*
1,415	0,888551	6	1,4179
1,420	0,889599	12	1,4258
1,425	0,890637	18	1,4396
1,430	0,891667	24	1,4236
1,435	0,892687	30	1,4315
1,440	0,893698		

Задание. II) Используя первую или вторую интерполяционную формулу Ньютона, вычислить значения функции при данных значениях аргумента. При составлении таблицы разностей контролировать вычисления.

Таблица 1

таблиц	ца 1					
Х	У	No	Значения аргумента			
		варианта		ı	Г	
1,415	0,888551		X ₁	X2	X 3	X 4
1,420	0,889599	1	1,4161	1,4625	1,4135	1,470
1,425	0,890637	11	1,4179	1,4633	1,4124	1,4655
1,430	0,891667	21	1,4263	1,4575	1,410	1,4662
1,435	0,892687					
1,440	0,893698					
1,445	0,894700					
1,450	0,895693					
1,455	0,896677					
1,460	0,897653					
1,465	0,898619					
	•					

0,136

0,141

1,36773 1,38357

Таблиц	ца 2					
х	у	No				
0.404	1 25122	варианта		1	<u> </u>	
0,101	1,26183		X ₁	X2	X 3	X 4
0,106	1,27644	2	0,1026	0,1440	0,099	0,161
0,111	1,29122	12	0,1035	0,1492	0,096	0,153
0,116	1,30617	22	0,1074	0,1485	0,1006	0,156
0,121	1,32130					
0,126	1,33660					
0,131	1,35207					

0,146	1,39959
0,151	1,41579

х	у	No Papuaitta		Значения	аргумента	
0,15	0,860708	варианта	X ₁	X ₂	X3	X 4
0,20	0,818731	3	0,1511	0,7250	0,1430	0,80
0,25	0,778801	13	0,1535	0,7333	0,100	0,7540
0,30	0,740818	23	0,1525	0,6730	0,1455	0,85
0,35	0,704688					
0,40	0,670320					
0,45	0,637628					
0,50	0,606531					
0,55	0,576950					
0,60	0,548812					
0,65	0,522046					
0,70	0,496585					
0,75	0,4722367					

0,2375 0,2400

0,2450

Таблица 4

X	У	№		Значения	аргумента
0,180	5,61543	варианта	X ₁	X2	Х3
0,185	5,46693	4	0,1817	0,2275	0,1750
0,190	5,32634	14	0,1827	0,2292	0,1776
0,195	5,19304	24	0,1873	0,2326	0,1783
0,200	5,06649				
0,205	4,94619				
0,210	4,83170				
0,215	4,72261				
0,220	4,61855				
0,225	4,51919				
0,230	4,42422				
0,235	4,33337				

Таблица 5

х	У	№ варианта		Значения	аргумента	
3,50	33,1154	Барганга	X ₁	X 2	X 3	X 4
3,55	34,8133	5	3,522	4,176	3,475	4,250

3,60	36,5982	15	3,543	4,184	3,488	4,300
3,65	38,4747	25	3,575	4,142	3,450	4,204
3,70	40,4473					
3,75	42,5211					
3,80	44,7012					
3,85	46.9931					
3,90	49,4024					
3,95	51,9354					
4,00	54,5982					
4,05	57,3975					

ца 6					
у	№ варианта	Значения аргумен			Значения аргумента
8,65729		X ₁	X 2	X 3	X 4
8,29329	6	0,1217	0,1736	0,1141	0,1850
7,95829	16	0,1168	0,1745	0,1100	0,1825
7,64893	26	0,1175	0,1773	0,1134	0,1900
7,36235					
7,09613					
6,84815					
6,61659					
6,39986					
6,19658					
6,00551					
5,82558					
	y 8,65729 8,29329 7,95829 7,64893 7,36235 7,09613 6,84815 6,61659 6,39986 6,19658 6,00551	у 8,65729 8,29329 6 7,95829 16 7,64893 26 7,36235 7,09613 6,84815 6,61659 6,39986 6,19658 6,00551	у № 8,65729 6 8,29329 6 7,95829 16 7,64893 26 7,36235 0,1175 7,09613 6,84815 6,39986 6,19658 6,00551 6,00551	у № варианта Значения 8,65729 6 0,1217 0,1736 7,95829 16 0,1168 0,1745 7,64893 26 0,1175 0,1773 7,36235 7,09613 6,84815 6,61659 6,39986 6,19658 6,00551	у № варианта Значения аргумента 8,65729 к1 к2 к3 8,29329 6 0,1217 0,1736 0,1141 7,95829 16 0,1168 0,1745 0,1100 7,64893 26 0,1175 0,1773 0,1134 7,36235 7,09613 6,84815 6,61659 6,39986 6,19658 6,00551

Таблица 7

1.375

5,04192

таолиц	ца /						
х	y	No	Значения аргумента				
		варианта		1		T	
1,340	4,25562		X ₁	X2	X 3	X 4	
1,345	4,35325	7	1,3617	1,3921	1,3359	1,4000	
1,350	4,45522	17	1,3463	1,3868	1,3350	1,3990	
1,355	4,56184	27	1,3432	1,3936	1,3365	1,3975	
1,360	4,67344						
1,365	4,79038						
1,370	4,91306						

1,380	5,17744
1,385	5,32016
1,390	5,47069
1,395	5,62968

таблиц	ιa δ					
х	У	№ варианта		Значения	аргумента	
0,01	0,991824	Биришти	X ₁	X ₂	X3	X 4
0,06	0,951935	8	0,0270	0,5250	0,0080	0,610
0,11	0,913650	18	0,1243	0,4920	0,0094	0,660
0,16	0,876905	28	0,0830	0,5454	0,0075	0,573
0,21	0.841638					
0,26	0,807789					
0,31	0,775301					
0,36	0,744120					
0,41	0,714193					
0,46	0,685470					
0,51	0,657902					
0,56	0,631442					
						

Таблица 9

х	у	No Papuaitta		Значения	аргумента	
0,15	4,4817	варианта	X ₁	X2	X 3	X 4
0,16	4,9530	9	0,1539	0,2569	0,1400	0,2665
0,17	5,4739	19	0,1732	0,2444	0,1415	0,2700
0,18	6,0496	29	0,1648	0,2550	0,1387	0,2800
0,19	6,6859					
0,20	7,3891					
0,21	8,1662					
0,22	9,0250					
0,23	9,9742					
0,24	11,0232					
0,25	12,1825					
0,26	13,4637					

0,56

х	У	№ варианта		Значения	аргумента	
0,45	20,1946	варнатта	X ₁	X ₂	X 3	X 4
0,46	19,6133	10	0,4550	0,5575	0,4400	0,5674
0,47	18,9425	20	0,4732	0,5568	0,4450	0,5700
0,48	18,1746	30	0,4675	0,5511	0,4423	0,5800
0,49	17,3010					
0,50	16.3123					
0,51	15,1984					
0,52	13,9484					
0,53	12,5508					
0,54	10,9937					
0,55	9,2647					

Задание. III) МНК по эмпирическим данным построить линейную регрессию.

№ 1. В таблице приведены данные численности занятого населения (x, млн.) и валового выпуска продукции (y, y.e.).

Xi	80	82	83	84	85	86	88	89	90	91
y i	32	34	35	36	36	37	38	40	39	40

7,3510

В предположении, что между x и y существует линейная зависимость, определить МНК параметры линейной регрессии y=kx+b. Спрогнозировать валовой выпуск продукции в случае, если занятое население увеличится на 10% по сравнению с последними данными (90 млн.)

№ 2. В таблице приведены данные об уровне безработицы (x) и уровне преступности (y) в некотором населенном пункте.

Xi	0,5	1,2	2	3,1	4	5,2	5,9	6,1	6,2	6,3
y i	4,25	432	4,4	4,51	4,6	4,72	4,79	4,9	5,0	5,2

В предположении, что между x и y существует линейная зависимость, определить МНК параметры линейной регрессии y = kx + b. Спрогнозировать уровень преступности в случае, когда безработица отсутствует.

№ 3. В таблице приведены данные о динамике темпов прироста курса акций (y, в %) за определенный период (t — одна неделя).

t i	1	2	3	4	5	6	7	8	9	10	
y i	10,2	8,3	5,4	4,1	2,2	0	-1,6	-3,9	-5,9	-7,8	

В предположении, что между t и y существует линейная зависимость, определить МНК параметры линейной регрессии y=kt+b. Сделать выводы о возможной динамике темпов прироста на 12 неделе.

№ 4. Торговое предприятие имеет сеть, состоящую из 10 магазинов, информация о деятельности которых: годовой товарооборот (*y*, млн. руб.) и торговая площадь (*x*, тыс. м²) представлена в таблице.

Xi	0,24	0,41	0,55	0,58	0,78	0,94	0,98	1,21	1,28	1,32
y i	19,8	38,1	41,0	43,1	56,3	68,5	75,0	89,1	91,1	91,3

В предположении, что между x и y существует линейная зависимость, определить МНК параметры линейной регрессии y=kx+b. Спрогнозировать годовой товарооборот в случае, если торговая площадь составит ровно 1 тыс. м².

№ 5. Показатели по объему производства (x, y.e.) и затратам (y, тыс. руб.), взятые из отчетной ведомости предприятия за 10 месяцев, приведены в таблице.

Xi	2,32	2,33	2,38	2,41	2,44	2,48	2,51	2,55	2,58	2,60
y i	427	430	440	444	448	455	460	462	465	466

Полагая, что зависимость между x и y задается формулой y = kx + b, где b - 1 постоянные затраты в тыс. руб., k - 1 переменные затраты на 1 условную единицу продукции, МНК определить МНК параметры k и b. Рассчитать возможные затраты на производство в случае, если объем производства достигнет 3 у.е. $\mathbb{N} \cdot \mathbf{0} \cdot \mathbf{0}$. В таблице приведена динамика валового выпуска (y, y.e.) за последние 10 лет (x - 1)

Xi	1	2	3	4	5	6	7	8	9	10
y i	178	182	190	199	200	213	220	231	235	242

Предполагая линейную зависимость валового выпуска от времени, МНК определить МНК параметры линейной регрессии y=kx+b. Получить прогноз валового выпуска на следующий год.

№ 7. Показатели стоимости основных производственных фондов (x, млн. руб.) и среднесуточной производительности (y, тонны) приведены в таблице.

Xi	2,1	2,3	2,4	2,9	4,1	4,7	5,5	7,2	10,2	14,3
y i	27	29	30	35	36	44	47	55	63	73

Предполагая линейную зависимость y от x, определить МНК параметры линейной регрессии y=kx+b. Получить прогноз среднесуточной производительности при стоимости основных производственных фондов 16 млн. руб.

№ 8. В таблице приведены данные о количестве пропусков занятий (x) студентом в течение семестра и результатах (y, %) написания экзаменационного теста.

Xi	1	3	5	6	8	10	12	14	15	16
y i	85	75	70	60	50	40	20	10	10	5

Предполагая наличие линейной зависимости между x и y определить МНК параметры линейной регрессии y=kx+b . Получить прогноз результатов теста при отсутствии пропусков.

№ 9. В таблице приведены данные об объемах производства (*x,* у.е.) некоторой компании в течение 10 месяцев и операционной прибыли (*y*,тыс. руб.).

Xi	500	520	523	30	550	555	560	562	565	570
y i	61	66,8	67	69	74	76,7	78	79	79,3	81

В предположении, что между x и y существует линейная зависимость, определить МНК параметры линейной регрессии y=kx+b. Сделать выводы о возможной месячной прибыли, если объем производства достигнет 600 у.е.

№ 10. В таблице приведены данные об уровне безработицы (x) и уровне преступности (y) в некотором населенном пункте.

1			1	1							
	Xi	0,6	1,3	2,2	3,3	4,2	5,3	6,0	6,3	6,4	6,5
	y _i	4,2	4,27	4,32	4,47	4,53	4,68	4,85	5,01	5,15	5,22

В предположении, что между x и y существует линейная зависимость, определить МНК параметры линейной регрессии y=kx+b. Спрогнозировать уровень преступности в случае, когда безработица отсутствует.

№ 11. В таблице приведены данные численности занятого населения (x, млн.) и валового выпуска продукции (y, y.e.).

Xi	70	73	74	75	76	77	79	80	81	83
y i	219	241	250	264	265	272	281	291	309	320

В предположении, что между x и y существует линейная зависимость, определить МНК параметры линейной регрессии y=kx+b. Спрогнозировать валовой выпуск продукции в случае, если занятое население увеличится на 10% по сравнению с начальными данными (80 млн.)

№ 12. Показатели по объему производства (x, y.e.) и затратам (y, тыс. руб.), взятые из отчетной ведомости предприятия за 10 месяцев, приведены в таблице.

Xi	4,25	4,3	4,4	4,42	4,45	4,5	4,53	4,55	4,6	4,62
y i	530	540	553	554	557	560	565	568	571	572

Полагая, что зависимость между x и y задается формулой y=kx+b, где b- постоянные затраты в тыс. руб., k- переменные затраты на 1 условную единицу продукции, определить МНК параметры k и b. Рассчитать возможные затраты на производство в случае, если объем производства достигнет 3 у.е.

№ 13. В таблице приведена сведения об объеме спроса (y, y.е.) на некоторую продукцию и цены на эту продукцию (x, тыс. руб.).

X	(i	10	10,6	11	12	12,5	12,8	13	13,2	13,3	13,7
J	/i	68	64	59	52	45	42	38	37	35	34

Предполагая линейную зависимость объема спроса от цены на продукцию, определить МНК параметры линейной регрессии y=kx+b. Получить прогноз объема спроса в случае, если цена на продукцию достигнет 14 тыс. руб.

№ 14. Показатели стоимости основных $\Pi\Phi(x, \text{ млн. руб.})$ и среднесуточной производительности (y, тонны) приведены в таблице.

Xi	2,6	2,8	2,9	3,4	4,6	5,2	6,1	7,7	10,6	14,0
y i	19	18	20	23	26	31	37	45	53	68

Предполагая линейную зависимость y от x, определить МНК параметры линейной регрессии y=kx+b. Получить прогноз среднесуточной производительности при стоимости основных ПФ 2 млн. руб.

№ 15. Торговое предприятие имеет сеть, состоящую из 10 магазинов, информация о деятельности которых: годовой товарооборот (*y*, млн. руб.) и торговая площадь (*x*, тыс. м²) представлена в таблице.

Xi	0,25	0,42	0,57	0,59	0,79	0,95	0,99	1,23	1,29	1,33
y i	21,9	40,1	43,2	44,3	58,3	70,6	77,2	91,2	93,2	93,4

В предположении, что между x и y существует линейная зависимость, определить МНК параметры линейной регрессии y=kx+b. Спрогнозировать годовой товарооборот в случае, если торговая площадь составит ровно 1 тыс. m^2 .

№ 16. В таблице приведены данные о расходе топлива (*y*, л на 100 км) автомобиля с двигателем объемом 2 литра с автоматической трансмиссией в зависимости от скорости движения (*x*, км/ч).

Xi	10	30	0	70	90	110	130	140	150	160
y i	4,5	4,8	5,1	6	7,5	8,1	9	9,8	11,3	14

В предположении, что между x и y существует линейная зависимость, определить МНК параметры линейной регрессии y=kx+b. Спрогнозировать расход топлива при скорости 175 км/ч.

№ 17. В таблице приведены данные о сроке службы колеса вагона в годах (x) и износа толщины обода колеса, (y, мм).

Xi	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5
y i	0,4	0,7	1,2	1,7	1,9	2,2	26	3	3,5	3,8

В предположении, что между x и y существует линейная зависимость, определить МНК параметры линейной регрессии y=kx+b . Сделать выводы об износе толщины обода колеса через 5,5 лет.

№ 18. В таблице приведены данные о расходе топлива (*y*, л на 100 км) автомобиля с двигателем объемом 1,5 литра с автоматической трансмиссией в зависимости от скорости движения (*x*, км/ч).

Xi	10	20	40	60	90	110	130	140	150	160
y i	3,8	4	4,2	4,8	5,5	6	7	8,1	10	12

В предположении, что между x и y существует линейная зависимость, определить МНК параметры линейной регрессии y=kx+b. Спрогнозировать расход топлива при скорости 170 км/ч.

№ 19. В таблице приведены данные об остаточной величине глубины протектора передних колес автомобиля в мм (у) и величины пробега (х, тыс. км).

Xi	0	5	10	15	20	30	40	50	60	70
y i	9,0	8,5	79	7,5	7,0	6,1	5,0	4,1	3	2,0

В предположении, что между x и y существует линейная зависимость, определить МНК параметры линейной регрессии y=kx+b . Сделать выводы об износе протектора колеса через 42 тыс. км.

№ 20. В таблице приведены данные о расходе топлива (*y*, л на 100 км) автомобиля с дизельным двигателем объемом 2,2 литра с механической трансмиссией в зависимости от скорости движения (*x*, км/ч).

Xi	10	20	40	60	90	110	120	130	140	150
y i	1,5	1,8	3	3,9	4,8	5,5	5,7	7	8,1	9,4

В предположении, что между x и y существует линейная зависимость, определить МНК параметры линейной регрессии y=kx+b . Спрогнозировать расход топлива при скорости 160 км/ч.

№ 21. В таблице приведены данные об остаточной величине глубины протектора задних колес автомобиля в мм (у) в зависимости от величины пробега (х, тыс. км).

Xi	0	10	20	30	40	50	60	70	80	90
y i	9,0	8,2	7,4	6,6	5,8	4,9	4,1	3,3	2,5	1,8

В предположении, что между x и y существует линейная зависимость, определить МНК параметры линейной регрессии y=kx+b. Сделать выводы о предельно допустимом пробеге колес автомобиля при минимально допустимой глубине протектора 1,6 мм.

№ 22. В таблице приведены данные о зависимости теплопроводности легких бетонов (y, $BT/(M \cdot C^{\circ})$ от плотности (x, $\kappa \Gamma/M^{3}$).

Xi	800	900	1000	1100	1200	1300	100	1500	1600	1700
y i	0,2	0,22	0,24	0,28	0,33	0,38	0,4	0,42	0,44	0,47

Предполагая линейную зависимость y от x, определить МНК параметры линейной регрессии y=kx+b. Получить прогноз теплопроводности при плотности $1800~{\rm kg/m^3}$.

№ 23. В таблице приведены данные о количестве пропусков занятий (x) студентом в течение учебного семестра и результатах (y, %) написания экзаменационного теста.

<i>X</i> _i ,	1	2	4	6	8	10	12	13	15	17
y i	85	75	70	60	50	40	20	15	10	5

Предполагая наличие линейной зависимости между x и y определить МНК параметры линейной регрессии y=kx+b . Получить прогноз результатов теста при пропуске в 18 ч.

№ 24. В таблице приведены данные о зависимости прочности портландцемента $(y, M\Pi a)$ от его удельной поверхности $(x, cm^2/r)$.

$x_i \cdot 10^3$	3	3,5	4	4,5	5	5,5	6	6,5	7	7,5
y i	25	28	30	32	36	39	41	44	46	47

В предположении, что между x и y существует линейная зависимость, определить МНК параметры линейной регрессии y=kx+b. Сделать выводы о прочности при удельной поверхности $6,2\cdot 10^3$.

№ 25. В таблице приведены результаты измерений положения y (м) материальной точки в зависимости от времени t (сек).

t	1	2	3	4	5	6	7	8	9	10
У	5,1	6,9	9,1	10,	13,2	14,9	17,2	18,8	21,2	22,9

В предположении, что между t и y существует линейная зависимость, определить МНК параметры линейной регрессии y=kt+b . Сделать вывод о возможном положении точки через 12 сек.

№ 26. Для исследования износа рабочей части резца в зависимости от времени работы взяли 10 новых резцов и каждый день измеряли толщину рабочей части. Результаты сведены в таблицу, где у (мм) — толщина рабочей части резца, х — продолжительность работы в днях:

Xi	1		3	4	5	6	7	8	9	10
y _i ,	0,1	0,15	0,3	0,4	0,45	0,55	0,65	0,75	0,9	1

В предположении, что между x и y существует линейная зависимость, определить МНК параметры линейной регрессии y=kx+b . Спрогнозировать износ толщины рабочей части резца за 12 дней.

№ 27. В таблице приведены данные о растворимости (*y*) натриевой селитры $NaNO_3$ на 100 г воды в зависимости от температуры (t, 0 C).

ti	0	2	10	16	21	30	35	51	63	67
y _i	66,7	69,2	76,3	81,6	85,7	94,7	99,4	113,6	116,8	123

В предположении, что между t и y существует линейная зависимость, определить МНК параметры линейной регрессии y=kt+b. Вычислить возможную растворимость при температуре 60° C.

№ 28. За изменением реакции разложения аммиака следили по изменению давления (P, мм ртутного столба) в различные моменты времени (t, сек). Результаты наблюдений приведены в таблице.

t	100	200	300	400	500	600	700	800	1000
P	11	22,1	33,2	44	55,2	66,3	77,5	87,9	110

В предположении, что между t и P существует линейная зависимость, определить МНК параметры линейной регрессии P=kt+b . Сделать вывод о возможном давлении при t=900.

№ 29. В таблице приведены результаты измерений сопротивления проводника (R, Oм) в зависимости от температуры (t, 0 C).

t	100	200	300	400	500	600	700	800	900	1000
R	15	19	23	27	31	34	37	39	42	45

В предположении, что между t и R существует линейная зависимость, определить МНК параметры линейной регрессии R=kt+b . Сделать вывод о возможном сопротивлении проводника при температуре 60° C.

№ 30. В таблице приведены результаты измерений положения y (м) материальной точки в зависимости от времени t (сек).

t	1	2	3	4	5	6	7	8	9	10
У	6,3	9,9	14,1	18,2	21,9	26,1	29,8	33,8	37,9	41,9

В предположении, что между t и y существует линейная зависимость, определить МНК параметры линейной регрессии y=kt+b . Сделать вывод о возможном положении точки через 11 сек.

Задание. IV) по эмпирическим данным построить квадратичную регрессию.

№ 1. При моделировании распространения сетей беспроводного доступа были получены следующие данные о стоимости подключения потенциального

абонента (y, y.е.) в зависимости от требуемой пропускной способности (x, Мбит/с.) при плотности населения ho=80 чел./км 2

Xi	0,1	0,2	0,5	0,7	0,8	0,9	1	1,1	1,2	1,8
y i	300	340	401	470	540	602	640	680	731	088

В предположении, что между x и y существует квадратичная зависимость, определить МНК параметры регрессии $y = a_2 x^2 + a_1 x + a_0$. Спрогнозировать стоимость подключения, если желаемая скорость доступа составляет 2 Мбит/с. \mathbb{N} 2. В таблице приведены данные о показателях конкуренции (x) и средневзвешенные по частоте упоминания количества патентов (y)

Xi	0,87	0,88	0,89	0,9	0,91	0,92	0,93	0,94	0,95	0,96
y i	3,35	3,62	4,21	4,5	4,9	5,3	5,8	6,11	6,3	6,1

В предположении, что между x и y существует квадратичная зависимость, определить МНК параметры регрессии $y=a_2x^2+a_1x+a_0$. Спрогнозировать количество патентов, в случае, если показатель конкуренции равен 0,86. $N \ge 3$. С ростом диагонали экрана качество изображения падает по квадратичной зависимости. В таблице приведены данные о длине диагонали экрана (x, d) и

Xi	14	15	17	19	20	21	22	24	27	32
y i	70	69,5	68,5	67,5	66	65	64,5	62,5	60	53,5

качестве изображения (у, %) при фиксированном расстоянии от экрана.

В предположении, что между x и y существует квадратичная зависимость, определить МНК параметры регрессии $y=a_2x^2+a_1x+a_0$. Проанализировать, каким может быть качество изображения при диагонали экрана 42 дюйма.

№ 4. В таблице приведены данные о высоте подброшенного над землей вверх тела (h, M) в зависимости от времени (t, cek) прошедшего с момента броска.

t _i	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
h _i	10,2	10,37	10,5	10,6	10,76	10,8	10,9	11	11,1	11,2

В предположении, что между t и h существует квадратичная зависимость, определить МНК параметры регрессии $h=a_2t^2+a_1t+t_0$. Спрогнозировать высоту тела на 2-ой сек.

№ 5. При моделировании распространения сетей беспроводного доступа были получены следующие данные о стоимости подключения потенциального

абонента (y, y.е.) в зависимости от радиуса обслуживания базовой станции (x, xм.) при плотности населения $\rho = 80$ чел./xм².

Xi	1	1,2	1,4	1,7	2	2,4	2,8	3,2	3,6	4
y i	1100	920	850	830	800	785	770	760	750	745

В предположении, что между x и y существует квадратичная зависимость, определить МНК параметры регрессии $y = a_2 x^2 + a_1 x + a_0$. Спрогнозировать стоимость подключения в случае, если радиус обслуживания составит 5 км. N = 6. В таблице приведены данные о зависимости выделяемой резистором мощности P (усл. ед.) от напряжения U (усл. ед.)

Ui	10	30	60	80	100	120	140	160	180	200
Pi	10	90,2	359	638	999,9	1438	1961	2562	3240	4001

В предположении, что между U и P существует квадратичная зависимость $P=a_2U^2+a_1U+a_0$, определить МНК параметры регрессии. Спрогнозировать мощность при напряжении 170.

 \mathfrak{N} 7. При моделировании распространения сетей беспроводного доступа были получены следующие данные о стоимости подключения потенциального абонента (y, y.e.) в зависимости от плотности населения (x, чел./км².) при возможном коэффициенте пропускания услуги (радиусе обслуживания базовой станции) R=3 км.

Xi	10	20	30	40	50	60	70	80	90	95
y i	1000	602	479	430	416	412	410	406	400	391

В предположении, что между x и y существует квадратичная зависимость, определить МНК параметры регрессии $y=a_2x^2+a_1x+a_0$. Спрогнозировать стоимость подключения потенциального абонента при плотности населения 100 чел./км².

№ 8. В таблице приведены данные о времени работы (τ , мсек.) некоторого алгоритма в зависимости от количества его элементов (x).

Xi	9	12	14	16	18	20	21	23	24	25
$ au_{i}$	150	283	377	503	628	778	861	1024	1130	1228

В предположении, что между x и au существует квадратичная зависимость, определить МНК параметры регрессии $au = a_2 x^2 + a_1 x + a_0$. Спрогнозировать время работы алгоритма, состоящего из 10 элементов.

№ 9. Эмпирическая зависимость температуры T (°K) от времени t (мин) для нагревательного элемента некоторого прибора приведена в таблице

t _i	1	2	3	3,2	3,6	4	5,0	5,9	6	7,3
T_i	550	640	704	719	735	756	810	855	865	924

В предположении, что между T и t существует квадратичная зависимость, определить МНК параметры регрессии $T=a_2t^2+a_1t+a_0$. Известно, что при температурах нагревателя свыше 1500 К прибор может испортиться, поэтому его нужно отключать. Определите (в минутах) через какое наибольшее время после начала работы нужно отключать прибор.

№ 10. С ростом диагонали экрана качество изображения падает по квадратичной зависимости. В таблице приведены данные о длине диагонали экрана (x, дюйм) и качестве изображения (y, %) при нахождении на фиксированном расстоянии от экрана.

Xi	14	15	17	19	20	21	22	24	27	32
y i	70	69	68,5	67	66,5	65,5	65	63	60	53

В предположении, что между x и y существует квадратичная зависимость, определить МНК параметры регрессии $y=a_2x^2+a_1x+a_0$. Проанализировать, каким может быть качество изображения при диагонали экрана 40 дюймов. N 11. В таблице приведены данные о высоте подброшенного над землей вверх

t	i	1,2	2	3	4	5,1	5,9	7	8	9	9,8
h	i	2,3	3,71	4,81	5,9	6,3	6,25	5,87	4,82	3,7	2,29

тела (h, M) в зависимости от времени (t, cek) прошедшего с момента броска.

В предположении, что между t и h существует квадратичная зависимость, определить МНК параметры регрессии $h=a_2t^2+a_1t+t_0$. Спрогнозировать высоту тела на 10 сек.

№ 12. При моделировании распространения сетей беспроводного доступа были получены следующие данные о стоимости подключения потенциального абонента (y, y.е.) в зависимости от радиуса обслуживания базовой станции (x, xм.) при плотности населения $\rho = 10$ чел./xм².

Xi	1	1,5	2	2,5	3	3,5	4	4,5	5	6
y i	8002	3507	2101	1302	1102	901	849	831	820	815

В предположении, что между x и y существует квадратичная зависимость, определить МНК параметры регрессии $y=a_2x^2+a_1x+a_0$. Спрогнозировать стоимость подключения потенциального абонента в случае, если радиус обслуживания базовой станции составит 6,5 км.

№ 13. В таблице приведены данные о времени работы (t, y.e.) некоторого алгоритма в зависимости от количества его элементов (x).

Xi	9	12	14	16	18	20	21	23	24	25
t _i	152	280	380	500	630	780	860	1025	1130	1225

В предположении, что между x и y существует квадратичная зависимость, определить МНК параметры регрессии $t=a_2x^2+a_1+a_0$. Спрогнозировать время работы алгоритма, состоящего из 30 элементов.

№ 14. В боковой стенке высокого цилиндрического бака у самого дна закреплен кран. После его открытия вода начинает вытекать из бака. В таблице приведены данные об изменении высоты (h, m) и времени (t, mин).

t _i	1	2	4	6	8	10	12	15	18	20
h _i	3,6	3,2	2,57	1,95	1,45	1,09	0,9	0,6	0,3	0,1

В предположении, что между t и h существует квадратичная зависимость, определить МНК параметры регрессии $h=a_2t^2+a_1t+t_0$. Спрогнозировать время, когда бак опустеет.

№ 15. В таблице приведены данные о высоте подброшенного над землей вверх тела (h, m) в зависимости от времени (t, сек) прошедшего с момента броска.

t _i	1	2	3	4	5	6	7	8	9	10
h _i	2,3	3,71	4,8	5,9	6,3	6,25	5,87	4,82	3,7	2,2

В предположении, что между t и h существует квадратичная зависимость, определить МНК параметры регрессии $h=a_2t^2+a_1t+t_0$. Спрогнозировать высоту тела на 11 сек.

№ 16. В таблице приведены данные расходах на рекламу (x, тыс. у.е.) и сбыте продукции (y, тыс. ед.)

Xi	1	1,5	2	2,5	3	3,5	4	4,5	5	5,5
y i	1,5	2,4	4,1	5,3	7,3	9,6	12,1	14,9	18,2	20

В предположении, что между x и y существует квадратичная зависимость, определить МНК параметры регрессии $y=a_2x^2+a_1x+a_0$. Спрогнозировать сбыт продукции при отсутствии рекламы.

№ 17. При моделировании распространения сетей беспроводного доступа были получены следующие данные о стоимости подключения потенциального абонента (y, y.e.) в зависимости от плотности населения $(x, \text{чел./km}^2.)$ при возможном коэффициенте пропускания услуги (радиусе обслуживания базовой станции) R=1 км.

Xi	10	15	25	35	45	55	65	75	85	95
y i	2600	2100	1300	1000	820	670	580	510	490	470

В предположении, что между x и y существует квадратичная зависимость, определить МНК параметры регрессии $y=a_2x^2+a_1x+a_0$. Проанализировать, какой может быть плотность населения, чтобы стоимость подключения потенциального абонента составила 450 у.е.?

№ 18. В таблице приведены цены (x, тыс. руб.) на продукцию и месячной выручки предприятия (y, тыс. руб.)

Xi	1,2	2	2,6	3,2	3,6	4,1	5,0	5,9	7,2	7,3
y i	120	250	322	365	430	480	555	605	643	675

ti	0,5	1	1,5	2	3	4	5	6	7	7,5
Zi	13	25	35	45	60	72	79	81	79	76

В предположении, что между t и z существует квадратичная зависимость, определить МНК параметры регрессии $z=a_2t^2+a_1t+t_0$. Спрогнозировать производительность труда рабочего в конце рабочего дня, то есть при t=8.

№ 20. При моделировании распространения сетей беспроводного доступа были получены следующие данные о стоимости подключения потенциального абонента (y, y.e.) в зависимости от радиуса обслуживания базовой станции (x, xм.) при плотности населения $\rho = 80$ чел./xм.

Xi	1	1,2	1,4	1,7	2	2,4	2,8	3,2	3,6	4
y i	1100	920	850	830	800	785	770	760	750	745

В предположении, что между x и y существует квадратичная зависимость, определить МНК параметры регрессии $y=a_2x^2+a_1x+a_0$. Спрогнозировать стоимость подключения потенциального абонента в случае, если радиус обслуживания базовой станции составит 5 км.

№ 21. В таблице приведены данные о продуктивности животных (x, кг/гол.) и себестоимости единицы продукции (y, руб.)

Xi	1100	1200	1300	1500	1700	1800	2000	2400	2700	290
y i	369	357	324	293	245	233	202	162	151	152

В предположении, что между x и y существует квадратичная зависимость, определить МНК параметры регрессии $y = a_2 x^2 + a_1 x + a_0$. Спрогнозировать себестоимость единицы продукции, если продуктивность упадет до 3000 кг/гол. \mathbb{N} 22. При моделировании распространения сетей беспроводного доступа были получены следующие данные о стоимости подключения потенциального абонента (y, y.e.) в зависимости от плотности населения (x, y.e.) при возможном коэффициенте пропускания услуги (радиусе обслуживания базовой станции) R = 3 км.

Xi	10	20	30	40	50	60	70	80	90	95
y _i	1000	600	480	430	415	412	410	405	400	392

В предположении, что между x и y существует квадратичная зависимость, определить МНК параметры регрессии $y=a_2x^2+a_1x+a_0$. Спрогнозировать стоимость подключения потенциального абонента при плотности населения 100 чел./км².

№ 23. В таблице приведены данные о показателях конкуренции (x) и средневзвешенные по частоте упоминания количества патентов (y)

Xi	0,87	0,88	0,89	0,9	0,91	0,92	0,93	0,94	0,95	0,96	
----	------	------	------	-----	------	------	------	------	------	------	--

y _i 3,3 3,6 4,2 4,5 4,8 5,3 5,9 6,1 6,4 6,5
--

В предположении, что между x и y существует квадратичная зависимость, определить МНК параметры регрессии $y = a_2 x^2 + a_1 x + a_0$. Спрогнозировать количество патентов, в случае, если показатель конкуренции равен 0,85. $N \ge 24$. В таблице приведены данные расходах на рекламу (x, тыс. y.e.) и сбыте

Xi	1	1,5	2	2,5	3	3,5	4	4,5	5	5,5
y i	1,6	2,5	4	5,3	7,4	9,7	12	15	18	19,9

продукции (у, тыс. ед.)

В предположении, что между x и y существует квадратичная зависимость, определить МНК параметры регрессии $y=a_2x^2+a_1x+a_0$. Спрогнозировать сбыт продукции при отсутствии рекламы.

№ 25. В таблице приведены данные о росте объема выручки (y, тыс. у.е.) косметической компании в зависимости от числа клиентов (x).

Xi	900	950	1000	1040	1080	1100	1120	1130	1135	1140
y _i ·10	992	1101	1203	1289	1381	1432	1478	1505	1514	1530

В предположении, что между x и y существует квадратичная зависимость, определить МНК параметры регрессии $y=a_2x^2+a_1x+a_0$. Спрогнозировать объем выручки, если число клиентов достигнет 1150 человек.

№ 26. В таблице приведены данные о потреблении электроэнергии (P, кВт) городскими предприятиями некоторого города в зависимости от времени (t, час.)

t _i	0,5	1	2	3	4	5	6	6,5	7	7,5
P _i ·10	1000	1001	1004	1010	1020	1030	1050	1060	1070	1080

В предположении, что между t и P существует квадратичная зависимость, определить МНК параметры регрессии $P=a_2t^2+a_1t+t_0$. Спрогнозировать потребление электроэнергии в конце рабочего дня, то есть при t=8.

№ 27. При моделировании распространения сетей беспроводного доступа были получены следующие данные о стоимости подключения потенциального абонента (y, y.e.) в зависимости от радиуса обслуживания базовой станции (x, xм.) при плотности населения $\rho = 10$ чел./xм².

Xi	1	1,5	2	2,5	3	3,5	4	4,5	5	6
Уi	8000	3500	2100	1300	1100	900	850	830	820	815

В предположении, что между x и y существует квадратичная зависимость, определить МНК параметры регрессии $y=a_2x^2+a_1x+a_0$. Спрогнозировать стоимость подключения потенциального абонента в случае, если радиус обслуживания базовой станции составит 7 км.

№ 28. В таблице приведены данные о показателях конкуренции (x) и средневзвешенные по частоте упоминания количества патентов (y).

Xi	0,9	0,91	0,92	0,93	0,94	0,95	0,96	0,97	0,98
y i	4,5	4,8	5,3	5,9	6,1	6,4	6,1	5,4	4,8

В предположении, что между x и y существует квадратичная зависимость, определить МНК параметры регрессии $y=a_2x^2+a_1x+a_0$. Спрогнозировать количество патентов, в случае, если показатель конкуренции составит 1. $N \ge 29$. В таблице приведены данные о производительности труда (z) рабочего за

№ 29. В таблице приведены данные о производительности труда (z) рабочего за одну смену в зависимости от времени (t, час.)

t _i	1,5	2	2,5	3	4	5	6	6,5	7	7,5
Zi	35	45	53	60	72	79	81	80	79	76

В предположении, что между t и z существует квадратичная зависимость, определить МНК параметры регрессии $z=a_2t^2+a_1t+t_0$. Спрогнозировать производительность труда рабочего в первый час рабочего дня, то есть при t=1.

 \mathfrak{N}_{2} \mathfrak{I}_{30} При моделировании распространения сетей беспроводного доступа были получены следующие данные о стоимости подключения потенциального абонента (y, y.e.) в зависимости от плотности населения $(x, \text{чел./км}^{2}.)$ при возможном коэффициенте пропускания услуги (радиусе обслуживания базовой станции) R=1 к.

Xi	10	20	30	40	50	60	70	80	90	95
y i	2600	1800	1100	900	750	600	530	500	480	470

В предположении, что между x и y существует квадратичная зависимость, определить МНК параметры регрессии $y=a_2x^2+a_1x+a_0$. Спрогнозировать стоимость подключения потенциального абонента при плотности населения 55 чел./км².