

Causal Aspects of Deep Reinforcement Learning

Causal Inference & Deep Learning
MIT IAP 2018

Fredrik D. Johansson

Deep reinforcement learning

Reinforcement learning in general

▶ Often illustrated as a loop over time t = 0, 1, 2, ...

- Continuously, the agent updates its belief of the world based on the feedback from the environment
- Learning through trial and error

Maximizing reward

- The goal of most RL algorithms is to maximize the value, or expected return
- ▶ **Return**: $R = \sum_{t=1}^{T} r_t$ (sometimes infinite, discounted sum)
- ▶ **Value:** $V_{\pi} = \mathbb{E}[R]$ (sometimes conditioned on starting state)
- The expectation is taken with respect to scenarios acted out according to **policy** π

Great! Now let's treat patients

- \triangleright Patient **state** at time S_t is like the game board
- \blacktriangleright Medical **treatments** A_t are like the actions
- \triangleright Outcomes/progression R_t are the rewards in the game

1. Decision processes

2. Learning from batch (off-policy) data

3. Reinforcement learning paradigms

4. Applications

Decision processes

- The environment-agent system is called a decision process
- The process specifies how states S_t , actions A_t , and rewards R_t are **distributed**: $p(S_0, ..., S_T, A_0, ..., A_T, R_0, ..., R_T)$
- The agent interacts with the environment according to a policy $p(A_t \mid \cdots)$. (The ... depends on the type of agent)

Markov decision processes

- Markov decision processes (MDPs) are a special case
- (Unknown) Markov transitions:

$$p(S_t \mid S_0, ..., S_{t-1}, A_0, ..., A_{t-1}) = p(S_t \mid S_{t-1}, A_{t-1})$$

- (Unknown) Markov **reward** function: $p(R_t \mid S_t, A_t)$
- ▶ Markov **action** policy $p(A_t | S_t)$, (often denoted π or μ)

Markov assumption & MDPs

- State transitions depend only on most recent state-action
- Most common model in deep RL

Contextual bandits

- States are independent: $p(S_t \mid S_{t-1}, A_{t-1}) = p(S_t)$
- Equivalent to single-step case, but focus often on exploration

Goals:

- What is a policy that maximizes expected reward?
- ▶ What is the expected reward of a fixed policy π

Settings:

- ▶ On-policy: If I can try out my new policy π in practice, how do I find the best one quickly?
- ▶ **Off-policy:** If I can't try out a policy π , how do I find a good one and evaluate it using observational (off-policy) data?

Goals:

- What is a policy that maximizes expected reward?
- ▶ What is the expected reward of a fixed policy π

Settings:

▶ On-policy: If I can try out my new policy π in practice, how do I find the best one quickly?

Focus today

▶ **Off-policy:** If I can't try out a policy π , how do I find a good one and evaluate it using observational (off-policy) data?

observation

On-policy:

We are the rat.

Off-policy

We are learning from a video of the rat in the maze.

1. Decision processes

2. Learning from batch (off-policy) data

3. Reinforcement learning paradigms

4. Applications

- Remember our diabetic patient
- We had observed hers and other patient's electronic health records over time
- Based on this information, without experimenting further, what would be the best treatment for Anna?

We assumed a simple causal graph. This let us identify the causal effect of treatment on outcome from observational data

Equivalent to a single time step MDP!

► Let's add a time point:

Let's add a time point:

Anna's health status depends on how we treated her

It is likely that if Anna is diabetic, she will remain so

Let's add a time point:

The outcome at a later time point may depend on earlier choices

The outcome at a later time may depend on an earlier state

Let's add a time point:

If the last treatment was unsuccessful, it may change our next choice

Our next action and outcome may depend on the whole history

Not only is this a complicated causal graph, it is not a Markov decision process either!

How can we find the effect of our policy on the expected reward¹?

¹The picture is slightly misleading: which arrows we care about depend on which effect we care about

Notation

A little necessary notation

Action history up to $t: \bar{A}_t$

State history up to t: \bar{S}_t S_1 S_2 R_1 R_2

Potential rewards under all sequences: \mathcal{R}

¹The picture is slightly misleading: which arrows we care about depend on which effect we care about

Assumptions:

Conditions for identifiability of potential reward:

Single-step case

Strong ignorability:

$$Y(0), Y(1) \perp \!\!\! \perp T \mid X$$

"No *hidden* confounders"

Overlap:

$$\forall x, t: p(T = t \mid X = x) > 0$$
 "All actions possible"

Sequential case

Sequential randomization:

$$\mathcal{R} \perp \!\!\! \perp A_t \mid \overline{S}_t, \overline{A}_{t-1}$$

"Reward indep. of policy given history"

Positivity:

$$\forall a,t \colon p(A_t = a \mid \overline{S}_t, \overline{A}_{t-1}) > 0$$

"All actions possible at all times"

Summarizing history

- Conditioning on history of states and actions is algorithmically challenging: different length of history, high dimensionality etc
- Instead, we may attempt to summarize history in a variable Z

Summarizing history

- We can use sequence models such as recurrent neural networks and LSTMs to summarize state-action history
- For causal reasoning, we need assumptions to hold w.r.t. Z

Partially observable MDPs (POMDPs)

A related concept are POMDPs, in which what we observe is a partial/noisy version of a latent Markov system

1. Decision processes

2. Learning from batch (off-policy) data

3. Reinforcement learning paradigms

4. Applications

Reinforcement learning

Model-based RL

- ▶ Explicitly model state transitions: $p(S_{t+1} \mid A_t, S_t)$
- Can be used for planning to discover optimal policy
- Predicts future states, and acts according to learned policy

Policy search

- Directly optimizes over the (possibly stochastic) **policy** $\pi(s_t)$, (not using a value function)
- Can be used both to learn an observed policy (e.g. man-made)
 and to search for optimal policies
- An example: Try an action out. If it had a good result, increase the probability of that happening again.
- Typically on-policy (need exploration)

Model-free RL: Q-learning

- Off-policy, value-based reinforcement learning method
- A Q-function Q(s, a) assigns a value to each state-action pair (s, a) to represent the long-term reward of that action
- The best value function equals the expected future reward of taking an action in a state

$$Q^*(s, a) = \max_{\pi} \mathbb{E}_{\pi}[R_t \mid S_t = s, A_t = a]$$

Model-free RL

Bellman equation

The Bellman equations states that the optimal Q-function has the property (where s' is the state after taking action a in s)

$$Q(s,a) = r + \gamma \max_{a'} Q(s',a')$$

- Q-iteration repeatedly uses this rule to update current estimate
- ► If the state space is finite, Q can be represented by a table, and the optimum can be found through dynamic programming

Q-learning with function approximation

- ▶ When the state space is continuous, we have to rely on function approximation of Q (as opposed to a table)
- We can still use the Bellman equation, but are no longer guaranteed to find the optimum

$$R(Q) = \mathbb{E}_{\pi} \left[\left(\begin{matrix} r + \gamma \max \hat{Q}(s', a') - Q(s, a) \end{matrix} \right)^2 \right]$$
 Target, prediction typically an old estimate of Q

Q-learning with function approximation

- Typically proceeds iteratively:
- 1. Initialize target \hat{Q}
- 2. Repeat:
 - 1. Minimize Q-loss R(Q) w.r.t. prediction/policy network Q
 - 2. After some time, update target \widehat{Q} with recent Q

$$R(Q) = \mathbb{E}_{\pi} \left[\left(r + \gamma \max_{a'} \widehat{Q}(s', a') - Q(s, a) \right)^{2} \right]$$

Deep Q-learning

Function approximation with deep neural networks

Same architecture, different weights

Q-learning with function approximation

- Optimization dynamics:
 - ▶ The goal post \hat{Q} (target) keeps changing as we update Q
 - ▶ No guarantee to converge to optimal *Q* in general case

- ► To be causally sound in non-Markov case, we should predict *Q* from whole history. This is not typically done!
- Distributional shift (like in single-step case):
 - We don't have samples from the policy we are evaluating!
 - Our loss function is an expectation under a distribution from which we have no samples!

Counterfactuals are very different!

Single-step case:

Counterfactuals are changes to a single action (control->treated and vice versa)

Sequential case:

Counterfactuals are changes to whole sequences of actions!

Coping with distributional shift Pt. II

Last time we discussed importance sampling estimators

$$\mathbb{E}_{\boldsymbol{q}(\boldsymbol{x})}[f(\boldsymbol{x})] = \mathbb{E}_{\boldsymbol{p}(\boldsymbol{x})}\left[f(\boldsymbol{x})\frac{\boldsymbol{q}(\boldsymbol{x})}{p(\boldsymbol{x})}\right] \approx \frac{1}{n}\sum_{i=1}^{n}\frac{\boldsymbol{q}(\boldsymbol{x}_{i})}{p(\boldsymbol{x}_{i})}f(\boldsymbol{x}_{i})$$

- Where $x_1, ..., x_n \sim p(x)$
- \blacktriangleright What happens when x is a sequence?

Importance sampling for RL

- First of all, we don't observe i.i.d. samples of state-action transitions, but whole sequences
- We let the loss be the expected total loss over a sequence

$$R(Q) = \mathbb{E}_{\pi} \left[\sum_{t=1}^{T} \left(r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}, a') - Q(s_t, a_t) \right)^2 \right]$$

$$L_t = L(s_t, a_t, s_{t+1})$$

Importance sampling for RL

Product of importance weights over time

$$\mathbb{E}_{\boldsymbol{q}}\left[\sum_{t=1}^{T} L_{t}\right] = \mathbb{E}_{\boldsymbol{p}}\left[\sum_{t=1}^{T} L_{t} \prod_{t'=0}^{t} \frac{\boldsymbol{q}(a_{t'} \mid s_{t'})}{\boldsymbol{p}(a_{t'} \mid s_{t'})}\right]$$

- Could have extremely high variance if product of large factors (if p and q are very different)
- ► Effective sample size $ESS = \frac{(\sum w_i)^2}{\sum w_i^2}$, where w_i weight of sequence

Trading off bias for variance

Even if importance sampling yields an unbiased estimator of the policy value, a biased version with smaller variance might be preferred

Think of bias-variance decomposition:

$$MSE = Bias + Variance + Noise$$

Can get smaller prediction error by trading off bias and variance

MAGIC¹

Combining model-based and model-free RL with IS

¹Thomas and Brunskill, ICML, 2016

- 1. Decision processes
- 2. Learning from batch (off-policy) data
- 3. Reinforcement learning paradigms

4. Applications

What made success possible/easier?

Full observability
Everything important to optimal action is observed

Markov dynamics
History is unimportant given recent state(s)

- Limitless exploration & self-play through simulation We can test "any" policy and observe the outcome
- Noise-less state/outcome (for games, specifically)

Many concerns

Can we summarize history well?

If we measured everything we are theoretically OK. But did we keep everything we need in our summary?

Is overlap/positivity enough?

Even if it gives us unbiased estimators, what is the sample complexity? Is it reasonable?

Do we have the right reward function?

Many concerns

Hidden confounding

Did we measure all the necessary variables?

Expectation vs risk

What can we tolerate in terms of outlier behavior?

Evaluation

Can we trust our models estimates?

Sepsis treatment¹

- Work on using Q-learning to discover the right treatment for sepsis
- Dosage of a) fluids, and b) vasopressors
- Compare found policy to physician's in terms of mortality

Difference between optimal and physician vasopressor dose

Conclusions

- Off-policy reinforcement learning is strictly harder than counterfactual estimation
- The causal problems with standard regression are even greater
- Both conceptual/theoretical and practical challenges remain
- We need to take care that we are trying to solve a problem that is actually interesting