

Francesco Cecere

From Raw Matrices to Differential Expression/Methylation Patterns: A Functional Genomics Approach to Detect Molecular Insights

DNA methylation is an epigenetic mechanism involving the transfer of a methyl group onto the C5 position of the cytosine to form 5-methylcytosine

DOI: https://doi.org/10.1093/eep/dvae012 Advance Access Publication 10 August 2024 Review Article

Epigenetics of violence against women: a systematic review of the literature

Paolo Bailo¹, Andrea Piccinini⁰^{2,3}, Giussy Barbara^{3,4,5}, Palmina Caruso², Valentina Bollati⁰^{5,*}, Simona Gaudi⁰⁶

¹Section of Legal Medicine, School of Law, University of Camerino, Camerino 62032, Italy

²Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20100, Italy

³Service for Sexual and Domestic Violence (SVSeD), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20100, Italy

⁴Gynecology Emergency Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20100, Italy

⁵Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan 20122, Italy

⁶Department of Environment and Health, Italian National Institute of Health, Rome 00161, Italy

^{*}Corresponding author. Department of Clinical Sciences and Community Health, University of Milan, Via S. Barnaba, 8, Milan 20122, Italy. E-mail: valentina.bollati@unimi.it

DNA methylation

Microarray assay

Mext Generation Sequencing

Harrison A, Parle-McDermott A. DNA methylation: a timeline of methods and applications. Front Genet. 2011 Oct 25;2:74. doi: 10.3389/fgene.2011.00074. PMID: 22303369; PMCID: PMC3268627.

A full understanding of the role of DNA methylation in health and disease requires the development of tools that can simultaneously measure DNA methylation across large portions of the genome.

Whole Genome Bisulphite Sequencing (WGBS)

- WGBS has been successfully applied to a range of biological tissues and cell lines.
- Map ~28 million CpG sites
- Due to the high cost and the expertise required, it is not the most feasible method

Methylation array

- User-friendly alternative
- Time-efficient
- Cost-effective
- INITIALLY Not properly considerate as genome-wide analysis

Infinium I

Infinium II

Table 1: Markers of the HumanMethylation27 BeadChip. ³				
Type of target	CpG sites present	Avg # of CpG sites per target		
RefSeq Genes	14,475	1.9 sites		
Well-annotated genes described in the NCBI CCDS database (Genome build 36)	12,833	1.9 sites		
Methylation hotspots in cancer genes	144	7.6 sites		
Cancer-related targets	982	1.9 sites		
miRNA promoters	110	2.3 sites		

Important for investigation of the role of DNA methylation in carcinogenesis and identification of cancer biomarker. EWAS study for the association of ageing and smoking with DNA methylation.

not truly considered "genome-wide"!

Infinium technology I and II Cover ~450000 CpGs

Feature Type	Genes Mapped	Leicelli delles	
NM_TSS200	14895	0.79	2,56
NM TS1500	17820	0.94	3.41
NM_5'UTR	13865	0.78	3.34
NM_1stExon	15127	0.80	1.62
NM_3'UTR	13042	0.72	1.02
NM GeneBody	17071	0.97	8.97
NR TSS200	1967	0.65	1.84
NR_TSS1500	2672	0.88	2.92
NR_GeneBody	2345	0.77	5.34

N Shelf	N Shore	CpG Island	S Shore	S Shelf
99 9			9 9	99

Feature Type	Islands Mapped	Percent Islands Covered	Average Number of Loci on Array
Island	26153	0.94	5.08
N_Shore	25770	0.93	2.74
S_Shore	25614	0.92	2.66
N_Shelf	23896	0.86	1.97
S Shelf	23968	0.86	1.94

The HumanMethylation450 BeadChip offers broad coverage across gene regions, as well as CpG islands/CPG island regions, shelves, and shores for the most comprehensive view of methylation state.

- Differentially methylated sites identified in tumor versus normal (multiple forms of cancer) and across several tissue types
- FANTOM 4 promoters
- DNase hypersensitive sites
- miRNA promoter regions
- ~ 90% of content contained on the Illumina HumanMethylation27 BeadChip

Infinium technology I and II Cover ~850000 CpGs

Feature Type	# Features Mapped	% Features Covered	Avg # Loci/Feature
RefSeq			
NM_TSS200ª	> 20,000	> 88%	3
NM_TSS1500	> 23,000	> 97%	5
NM_5'UTR	> 20,000	> 85%	7
NM_1stExon	> 20,000	> 85%	2
NM_3'UTR	> 14,000	> 70%	1
NM_ExonBoundaries	> 8000	> 35%	0.5
NR_TSS200	> 4000	> 65%	1
NR_TSS1500	> 5000	> 80%	3
NR_ExonBoundaries	> 500	> 15%	0.2
GenCode Basic v12			
TSS200	> 65,000	> 86%	2
TSS1500	> 80,000	> 95%	5
5'UTR	> 50,000	> 75%	7
First Exon	> 45,000	> 60%	2
3'UTR	> 35,000	> 65%	3
Exon Boundaries	> 8000	> 30%	0.5
Enhancers			
ENCODE Open Chromatin ^b Evidence ≥ 4	> 150,000	> 65%	2
ENCODE TFBS in Open Chromatin° Evidence ≥ 3	> 220,000	> 50%	1
ENCODE TFBS in Open Chromatin Evidence ≥ 4	> 150,000	> 75%	3
FANTOM5 Enhancers ^d	> 23,000	> 80%	1

Infinium MethylationEPIC BeadChip Highlights

- Unique Combination of Coding Region and Enhancer-Wide Coverage, High-Throughput, and Low Cost Over 850,000 methylation sites per sample at single-nucleotide resolution
- High Assay Reproducibility
 > 98% reproducibility for technical replicates
- Simple Workflow
 PCR-free protocol with the powerful Infinium HD Assay
- Compatible with FFPE Samples
 Protocol available for methylation studies on FFPE samples

N Shelf	N Shore	CpG Island	S Shore	S Shelf
99 9	99		9 9	" 99

Feature Type	# Covered	% Covered	Avg # Loci/Feature
Island	26,000	> 95%	6
North Shore	25,000	> 90%	3.5
South Shore	25,000	> 90%	3.5
North Shelf	22,000	> 80%	2
South Shelf	22,000	> 80%	2

Infinium technology I and II Cover ~935000 CpGs

Tabella 2: Copertura densa delle isole CpG

Caratteristica	N. coperto	% coperta	N. medio di loci/ caratteristica
Isola	25.381	91%	5,4
Sponda nord	25.115	90%	3,5
Sponda sud	24.870	89%	3,6
Sito nord	21.719	78%	2,1
Sito sud	21.677	78%	2,1

Tabella 1: Informazioni sul prodotto

Caratteristica	Descrizione
Specie	Umana
N. totale di marcatori ^a	> 935.000
N. di campioni per BeadChip	8
Requisito di input di DNA	250 ng
Tipi di campione specializzati	Tessuto FFPE
Chimica del saggio	Infinium HD
Supporto strumento	iScan System, NextSeq 550 System
Siti di metilazione interrogati.	

HumanMethylation450

ChAMP

Chip Analysis Methylation Pipeline for Illumina HumanMethylation450 and EPIC

Bioconductor version: Release (3.16)

The package includes quality control metrics, a selection of normalization methods and novel methods to identify differentially methylated regions and to highlight copy number alterations.

Author: Yuan Tian [cre,aut], Tiffany Morris [ctb], Lee Stirling [ctb], Andrew Feber [ctb], Andrew Teschendorff [ctb], Ankur Chakravarthy [ctb]

Maintainer: Yuan Tian <champ450k at gmail.com>

Citation (from within R, enter citation ("ChAMP")):

Tian Y, Morris TJ, Webster AP, Yang Z, Beck S, Andrew F, Teschendorff AE (2017). "ChAMP: updated methylation analysis pipeline for Illumina BeadChips." *Bioinformatics*, btx513. doi: 10.1093/bioinformatics/btx513.

Morris TJ, Butcher LM, Teschendorff AE, Chakravarthy AR, Wojdacz TK, Beck S (2014). "ChAMP: 450k Chip Analysis Methylation Pipeline." *Bioinformatics*, **30**(3), 428-430. doi: 10.1093/bioinformatics/btt684.

Butcher LM, Beck S (2015). "Probe Lasso: A novel method to rope in differentially methylated regions with 450K DNA methylation data." Methods, 72, 21-28. doi: 10.1016%2F, ymeth.2014.10.036.

Loading data is always the first step. ChAMP provides a loading function to get data from .idat files (with pd file (Sample_Sheet.csv) in it. Illumina idat files: The Illumina Intensity Data (idat) file format is used to summarize the data from the Illumina BeadArray platforms including the 450K and EPIC methylation arrays. For each sample, a "Red" and a "Green" idat file are available representing the intensities.

$$\beta = M / (M + U + \alpha)$$

M = methylated intensity U = unmethylated intensity α = constant offset default as 100

g07881041	0.946525423	0.9082143763
g03513874	0.954758496	0.8649431033
g05451842	0.035386102	0.0214317673
g14797042	0.961342732	0.7921114094
g09838562	0.005279178	0.0095512204
g25458538	0.625504222	0.5601842907
g09261072	0.667497712	0.5738260821
g02404579	0.936233239	0.8968762818
g04118974	0.904251639	0.8500860028
g01236347	0.724598193	0.5695492801
g22585117	0.868421838	0.4644636067
g25552317	0.942922436	0.9302927783
g23875663	0.681850383	0.3108122340
g07659892	0.185790859	0.0990251867
g15995909	0.977874451	0.9722461508
g23728960	0.355524478	0.3445295273
g11993619	0.765112776	0.6192689007
g01925883	0.864812931	0.4767928379
g03452160	0.653043420	0.3292471557
g09430819	0.442579962	0.4100515444
g13871826	0.787152839	0.8245848827

- Fifth, by default setting, ChAMP will
 filter all multi-hit probes. The multi-hit probe list comes from
 Nordlund's Genome Biology Paper in 2013²².
- Sixth, ChAMP will filter out all probes located in chromosome X and Y. This is also a default setting, but user can change it with filterXY parameter.

- First filter is for probes with detection p-value (default > 0.01)
- Second, ChAMP will filter out probes with <3 beads in at least 5% of samples per probe. This default can be changed with the filterBeads parameter or the frequency can be adjusted with the beadCutoff parameter.
- Third, ChAMP will by default filter out all non-CpG probes contained in your dataset.
- Fourth, by default ChAMP will filter all SNP-related probes. The SNP list comes from Zhou's Nucleic Acids Research paper in 2016. Note that if you know which population your data is from, you can choose certain populations to do the filtering. Otherwise ChAMP would use General Recommended Probes provided by Zhou to do filtering. You just need to assign "population" parameter to achieve this.

BMIQ - beta-mixture quantile normalization

SWAN - Subset-quantile Within Array Normalization

PBC - peak-based correction

FunctionalNormalization

Type I probes have a broader range and better-defined distributions.

Type II probes have a compressed range and look different statistically.

- 1) Three-State Beta Mixture Model
- Assign Type II Probes to Methylation States:
- Quantile Normalization for U and M States:
- 4) Dilation Transformation for H-State:

$$p(\beta^*) = \pi_U \cdot B(\beta|\alpha_U, \beta_U) + \pi_H \cdot B(\beta|\alpha_H, \beta_H) + \pi_M \cdot B(\beta|\alpha_M, \beta_M)$$

A = Beta-value matrix

U = Left singular vector (cpg variation)

VT = right singular vector (sample contribution)

 Σ = singular values - PCs components

singular value decomposition

Singular Value Decomposition Analysis (SVD)

$$ext{Beta Value} = rac{M}{M+U+lpha} \qquad \qquad M = \log_2\left(rac{eta}{1-eta}
ight)$$

$$Y_{ij} = \beta_0 + \beta_1 X_j + \epsilon_{ij}$$

Applying Bumphunter, DMRcate or ProbeLasso Algorithms to Estimate regions for which a genomic profile deviates from its baseline value. Originally implemented to detect differentially methylated genomic regions between two populations. By default, we recommend user do champ.DMR on normalized beta value on two populations, like case to control. The function will return detected DMR and estimated p value. The three algorithms specified in this function is different, while Bumphunter and DMRcate calcuated averaged candidate bumps methylation value between case and control.

Sample_Name	ID	Slide	Array	Sample_Group	Treatment
C1	GSM4332034	200863770015	R01C01	Control	Untreated
C2	GSM4332035	200863770015	R02C01	Control	Untreated
C3	GSM4332054	200661940025	R05C01	Control	Untreated
C4	GSM4332055	200661940025	R06C01	Control	Untreated
P1	GSM4332038	200863770015	R05C01	Case	Untreated
P2	GSM4332039	200863770015	R06C01	Case	Untreated
P3	GSM4332050	200661940025	R01C01	Case	Untreated
P4	GSM4332051	200661940025	R02C01	Case	Untreated