ExaMath Groups	Mathematics Exam Class: GS	Prepared by: Hassan Ahmad
Number of questions: 5	Sample 01 – year 2023 Duration: 3 hours	Name: Nº:

- إن هذا النموذج أعد بشكل تطوعي من المؤلف دون أي مقابل بهدف تأمين مادة هدفها تدريبي فقط.
- حقوق التأليف محفوظة للمؤلف ويستطيع الزملاء الأعزاء والأحباء التلامذة الإستفادة منه فنيا وتعليميا بأي طريقة ممكنة مع حفظ الحقوق تقديرا للجهد المبذول في التأليف.
 - و يمنع منعا باتا مقاربة هذا النموذج بشكل مادي بأي طريقة من الطرق فهو نموذج مجانى بالمطلق و هدفه الخدمة العامة فقط.
- لا توجد صفة رسمية لمضمون النموذج فهو اجتهاد شخصي للمؤلف ولا علاقة له بأي شكل من الأشكال بأي لجان رسمية وغيرها، ومستوى النموذج مستقل كليا عن مستوى الإمتحان الرسمي المفترض ، فهدف النموذج تدريبي محض.
- This exam includes five problems on four pages.
- The use of a non-programmable calculator is allowed.
- *Always show the steps of the calculation.*
- Any unjustified answers will not be graded.

I- (2 points)

In the table below, only one of the proposed answers is correct.

Choose the correct answer and justify your choice.

Nº	Question	F	Proposed response	es
1	Question	A	В	C
1)	The value of the limit $\lim_{x \to +\infty} \frac{e^x + 1}{xe^x + 2x}$ is	+∞	1	0
	The imaginary part of the complex	1	2	
2)	number z such that $\left \frac{z-2i}{z+i} \right = 1$ is	$\frac{1}{2}$	$-\frac{3}{2}$	0
3)	The solution set of the inequality]_x · 0[\(\)]0 · 1n 2]	$]-\infty$; $\ln 2$	$[\ln 2; +\infty]$
3)	$\ln(e^{2x} - 2e^x + 1) \le 0$ is $S =$]-∞ , o[⊖]o , m2]] ∞, m2]	[m2, 1∞[
	Let A and B be two events of a sample			
	space Ω and P a probability.			
4)	Given $P(A) = 0.3$, $P(B) = 0.5$ and	0.8	0.3	0.5
	$P(A \cup B) = 0.65.$			
	Then $P(A/B) =$			

II- (3½ points)

The complex plane is referred to an orthonormal system $(O; \vec{u}; \vec{v})$.

Consider the points A and B with respective affixes $z_A = i$ and $z_B = 1$.

For every point M of affix z we associate the point M' of affix z' such that: $z' = \frac{i \overline{z} - 1}{\overline{z} - 1}$ with $z \neq 1$.

- 1) In case where z' = -1 prove that z^{12} is a negative real number.
- 2) a) Show that for every point M distinct from B we have: $|z'| = \frac{AM}{BM}$.
 - **b)** Deduct the set of points M' when M describes the perpendicular bisector of AB.
- 3) a) Show that $\arg(z') = \frac{\pi}{2} + (\overrightarrow{AM}; \overrightarrow{BM})[2\pi].$
 - **b)** Determine the set of points M when z' is a strictly negative real number.
- 4) In this part suppose that $z = 1 + \sqrt{2}e^{i\theta}$ where θ is a real number.
 - a) Show that M describes the circle (\mathscr{C}) of center B and radius $\sqrt{2}$.
 - **b)** Calculate $(z'-i)(\overline{z}-1)$.
 - c) Deduct the set of points M' when M describes the circle (\mathscr{C}) .

III- (3½ points)

Consider two urns:

- The urn U_1 containing three balls carrying the numbers 2, 2, and 3;
- The urn U_2 containing 9 balls of which 4 are green and each carrying the number 3, and 5 balls are red carrying the numbers 1, 2, 2, 3 and 4.

We draw a ball from the urn U_1 and we note n the number carried by this ball:

- If n = 2, two balls are drawn at random and successively without replacement from the urn U_2 ;
- If n = 3, three balls are drawn at random and simultaneously from the urn U_2 .

Consider the events:

E: "The ball drawn from the urn U_1 carries the number 2";

F: "The ball drawn from the urn U_1 carries the number 3";

A: "The balls drawn from the urn U_2 have the same color";

B: "The balls drawn from the urn U_2 carry the same number".

- 1) a) Calculate the probabilities P(E) and P(F).
 - **b)** Calculate P(A/E), and justify that $P(A \cap E) = \frac{8}{27}$.
 - c) Calculate $P(A \cap F)$ and deduce that $P(A) = \frac{19}{54}$.
 - d) The balls drawn from the urn U_2 are of different colors, calculate the probability that the ball drawn from U_1 carries the number 3.
- 2) Calculate P(B).
- 3) Justify that $P(A \cap B) = \frac{55}{378}$. Are the events A and B independent? Justify.
- 4) Calculate the probability of the event C: "Among the balls drawn from the urn U_2 there is exactly one red ball".

IV- (3½ points)

ABC is an isosceles triangle such that AB = AC and

$$(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\pi}{4}(2\pi).$$

I is the point such that the triangle *CAI* is isosceles and right with $(\overrightarrow{CA}; \overrightarrow{CI}) = -\frac{\pi}{2}(2\pi)$.

1) Let R_A be the rotation of center A which transforms B into C and R_C the rotation of center C and angle $-\frac{\pi}{2}$. Let $f = R_C \circ R_A$.

- a) Determine f(A) and f(B).
- **b)** Prove that f is a rotation whose center O and angle to be specified.
- c) What is the nature of the quadrilateral ABOC? Justify.
- 2) Let S be the direct plane similitude of center O which transforms A into B. Let H be the midpoint of [BC], C' = S(C) and H' = S(H).
 - a) Give a measure of the angle of S and show that C' belongs to the straight line (OA).
 - **b)** Give S([OA]) and show that H' is the midpoint of [OB].
 - c) Show that $(C'H') \perp (OB)$. Deduce that C' is the center of the circle circumscribed about the triangle OBC.
- 3) Consider the transformation $S_n = \underbrace{S \circ S \circ ... \circ S}_{n \text{ fois}}$ where *n* is a natural number such that $n \ge 2$.

Determine the set of values of n for which S_n is a negative dilation.

V- (7½ points)

Part A

Let g be the function defined over $]0;+\infty[$ by

 $g(x) = ax^2 + bx + \ln x$, where a and b are two real numbers.

The opposite curve (C_g) is the representative curve of g in an orthonormal system.

The straight line (T) is tangent to (C_g) at the point A(1; 0).

- a) Determine g(1) and g'(1).
- **b)** Determine the sign of g(x) over $]0;+\infty[$.
- 2) Show that a = 1 and b = -1.
- 3) Is the point A an inflection point for the curve (C_g) ? Justify.

Part B

Let f be the function defined over $]0; +\infty[$ by $f(x)=(x-1)^2+(\ln x)^2$.

Denote by (C_f) the representative curve of f in an orthonormal system $(O; \vec{i}; \vec{j})$.

1) Calculate $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to +\infty} f(x)$.

- 2) a) Show that for every $x \in]0$; $+\infty[$, $f'(x) = 2\frac{g(x)}{x}$.
 - **b)** Set up the table of variations of the function f.
- 3) Let u be the function defined over [0; 1] by u(x) = f(x) x.
 - a) Set up the table of variation of u over]0; 1]. Deduce that there exists a unique real number α in]0; 1] such that $f(\alpha) = \alpha$ and that $\frac{1}{2} < \alpha < 1$.
 - **b)** Show that (C_f) admits at $+\infty$ a parabolic branch of direction $(O; \vec{j})$.
- **4)** Draw the straight line (d) of equation y = x and the curve (C_f) .
- 5) Let h be the function defined by $h(x) = e^{f(x)}$.
 - a) Determine the domain of definition of h.
 - **b)** Set up the table of variations of h.
 - c) Solve in the interval [0; 1] the equation $h(x) = e^x$.

QI	Answers	2 pts
1)	$\lim_{x \to +\infty} \frac{e^x + 1}{xe^x + 2x} = \lim_{x \to +\infty} \frac{e^x \left(1 + \frac{1}{e^x}\right)}{e^x \left(x + \frac{2x}{e^x}\right)} = \frac{1 + 0}{+\infty + 0} = 0$ OR we apply the Hospital's rule. The correct answer is C .	1/2
2)	Let $z = x + iy$ $(x \in \mathbb{R}, y \in \mathbb{R})$; $\left \frac{z - 2i}{z + i} \right = 1$; $\frac{ x + i(y - 2) }{ x + i(y + 1) } = 1$ $(x \neq 0 \text{ and } y \neq -1)$; $\frac{\sqrt{x^2 + (y - 2)^2}}{\sqrt{x^2 + (y + 1)^2}} = 1$; $(y - 2)^2 = (y + 1)^2$; $-6y = -3$; $y = \frac{1}{2}$. The correct answer is A .	1/2
3)	Condition of existence: $e^{2x} - 2e^x + 1 > 0$; $(e^x - 1)^2 > 0$, then $x \in]-\infty$; $0[\cup]0$; $+\infty[$; $\ln(e^{2x} - 2e^x + 1) \le 0$ is equivalent to $\ln(e^{2x} - 2e^x + 1) \le \ln 1$, $e^{2x} - 2e^x + 1 \le 1$, $e^{2x} - 2e^x \le 0$ so $x \in]-\infty$; $\ln 2$]. The solution set is therefore: $S = (]-\infty$; $0[\cup]0$; $+\infty[)\cap(]-\infty$; $\ln 2]$. The correct answer is A .	1/2
4)	The correct answer is A: $P(A \cup B) = P(A) + P(B) - P(A \cap B); \ 0.65 = 0.3 + 0.5 - P(A \cap B); \ P(A \cap B) = 0.15;$ $P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{0.15}{0.5} = 0.3.$ The correct answer is B .	1/2

		1
QII	Answers	3½ pts
1)	$z' = -1 \; ; \; \frac{i \; \overline{z} - 1}{\overline{z} - 1} = -1 \text{ and } z \neq 1 \; ; \; i \; \overline{z} - 1 = -\overline{z} + 1 \; ; \; \overline{z} \left(i + 1 \right) = 2 \; ; \; \overline{z} = \frac{2}{1 + i} = 1 - i \text{ then}$ $z = 1 + i \; ;$ $z^{12} = \left(1 + i \right)^{12} = \left(\sqrt{2} e^{i \frac{\pi}{4}} \right)^{12} = \left(\sqrt{2} \right)^{12} e^{3i\pi} = -64 \text{ which is a negative real number.}$	1/2
2) a)	$z' = \frac{i(\overline{z} + i)}{\overline{z} - 1} = \frac{i(\overline{z} - i)}{\overline{z} - 1} \text{ therefore } z' = \frac{ i \overline{z} - i }{ \overline{z} - 1 } = \frac{ z - i }{ z - 1 } = \frac{ z_M - z_A }{ z_M - z_B } = \frac{ z_{\overline{MM}} }{ z_{\overline{BM}} } = \frac{AM}{BM}.$	1/2
2) b)	M describes the perpendicular bisector of the segment AB so $AB = BB$, therefore $ z' = \frac{AM}{BM} = 1$, then $AB = 1$; The set of points $AB = 1$ is the circle of center $AB = 1$ and $AB = 1$.	1/4
3) a)	$z' = \frac{i(\overline{z-i})}{\overline{z-1}} ; \arg(z') = \arg\left[\frac{i(\overline{z-i})}{\overline{z-1}}\right] ; \arg(z') = \arg(i) + \arg(\overline{z-i}) - \arg(\overline{z-1}) ;$ $\arg(z') = \frac{\pi}{2} - \arg(z-i) + \arg(z-1) ; \arg(z') = \frac{\pi}{2} - \arg(z_{\overline{AM}}) + \arg(z_{\overline{BM}}) ;$	1/2

	$\arg(z') = \frac{\pi}{2} - (\vec{u} ; \overrightarrow{AM}) + (\vec{u} ; \overrightarrow{BM}) ; \arg(z') = \frac{\pi}{2} + (\overrightarrow{AM} ; \overrightarrow{BM})[2\pi].$	
	z' is a strictly negative real number so $arg(z') = \pi[2\pi]$, therefore,	
3) b)	$\left \frac{\pi}{2} + \left(\overrightarrow{AM} ; \overrightarrow{BM} \right) = \pi \left[2\pi \right], \left(\overrightarrow{AM} ; \overrightarrow{BM} \right) = \frac{\pi}{2} \left[2\pi \right], \text{ so the set of points } M \text{ is the}$	1/2
	circle of diameter $[AB]$ deprived of A and B .	
4) a)	$ z-1 = \sqrt{2}e^{i\theta}$, $ z-1 = \sqrt{2}e^{i\theta} $, $ z-1 = \sqrt{2}$, $BM = \sqrt{2}$, so M describes the circle (\mathscr{C})	1/4
, ,	of center B and radius $\sqrt{2}$.	
4) b)	$ (z'-i)(\overline{z}-1) = \left(\frac{i\overline{z}-1}{\overline{z}-1}-i\right)(\overline{z}-1) = i\overline{z}-1-i\overline{z}+i=-1+i(z\neq 1) . $	1/2
	$ (z'-i)(\overline{z}-1) = -1+i \; ; \; z'-i \overline{z}-1 = \sqrt{2} \; ; \; z'-i z-1 = \sqrt{2} \; ; \; AM' \times BM = \sqrt{2} \; ;$	
4) c)	M describes the circle (\mathscr{C}) so $BM = \sqrt{2}$, so $AM' = 1$ then the set of points M' is	1/2
	the circle of center A and radius 1.	

QIII	Answers	3½ pts
1) a)	$P(E) = \frac{2}{3}$; $P(F) = \frac{1}{3}$.	1/2
1) b)	$P(A/E) = \frac{A_4^2 + A_5^2}{A_9^2} = \frac{4}{9}; \ P(A \cap E) = P(A/E) \times P(E) = \frac{4}{9} \times \frac{2}{3} = \frac{8}{27}.$	1/2
1) c)	$P(A \cap F) = P(A/F) \times P(F) = \frac{C_4^3 + C_5^3}{C_9^3} \times \frac{1}{3} = \frac{1}{6} \times \frac{1}{3} = \frac{1}{18};$ Using the formula of total probabilities: $P(A) = P(A \cap E) + P(A \cap F) = \frac{8}{27} + \frac{1}{18} = \frac{19}{54}.$	1/2
1) d)	$P(F/\overline{A}) = \frac{P(F \cap \overline{A})}{P(\overline{A})} = \frac{P(\overline{A}/F) \times P(F)}{1 - P(A)} ; P(\overline{A}/F) = 1 - P(A/F) = 1 - \frac{1}{6} = \frac{5}{6};$ $P(F/\overline{A}) = \frac{\frac{5}{6} \times \frac{1}{3}}{1 - \frac{19}{54}} = \frac{3}{7}.$	1/2
2)	$P(B) = P(B \cap E) + P(B \cap F) = P(B/E) \times P(E) + P(B/F) \times P(F) ;$ $P(B) = \frac{A_5^2 + A_2^2}{A_9^2} \times \frac{2}{3} + \frac{C_5^3}{C_9^3} \times \frac{1}{3} = \frac{46}{189}.$	1/2
3)	$P(A \cap B) = P \text{ (the balls drawn from the urn } U_2 \text{ have the same color and carry the}$ $\text{same number)} = \frac{A_4^2 + A_2^2}{A_9^2} \times \frac{2}{3} + \frac{C_4^3}{C_9^3} \times \frac{1}{3} = \frac{55}{378};$ $P(A) \times P(B) = \frac{19}{54} \times \frac{46}{189} = \frac{437}{5103}, \text{ so } P(A \cap B) \neq P(A) \times P(B), \text{ so the events } A \text{ and } B \text{ are not independent.}$	1/2
4)	$P(C) = P(C \cap E) + P(C \cap F) = P(C/E) \times P(E) + P(C/F) \times P(F) ;$	1/2

	$P(C) = \frac{A_5^1 \times A_4^1}{A_0^2} \times \frac{2!}{1! \times 1!} \times \frac{2}{3} + \frac{C_5^1 \times C_4^2}{C_0^3} \times \frac{1}{3} = \frac{185}{378}.$	
QIV	Answers	3½ pts
Q1 V	• $f(A) = R_C \circ R_A(A) = R_C \lceil R_A(A) \rceil = R_C(A) = I$ since:	372 pts
1) a)	$R_A(A) = A$ since A is the center of R_A ;	
	$R_C(A) = I$ since $CA = CI$ and $(\overrightarrow{CA}; \overrightarrow{CI}) = -\frac{\pi}{2}(2\pi)$.	1/2
1) ")	• $f(B) = R_C \circ R_A(B) = R_C [R_A(B)] = R_C(C) = C$ since:	,,,
	$R_A(B) = C$ by the definition of R_A ;	
	$R_C(C) = C$ since C is the center of R_A .	
	Let $\alpha_1 = \frac{\pi}{4}$ and $\alpha_2 = -\frac{\pi}{2}$ be the angles of R_A and R_C respectively;	
1) b)	$f = R_C \circ R_A$ is a rotation of angle $\alpha_1 + \alpha_2 = \frac{\pi}{4} - \frac{\pi}{2} = -\frac{\pi}{4}$ and center O :	1/2
	f(A) = I then $OA = OI$ then O belongs to the perpendicular bisector of $[AI]$;	,,,
	f(B) = C then $OB = OC$ then O belongs to the perpendicular bisector of $[BC]$;	
	So O is the point of intersection of the perpendicular bisectors of $[AI]$ and $[BC]$.	
	$AB = AC$ and $(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\pi}{4}(2\pi)$ (given);	
1) c)	$f(B) = C$ and $f = r\left(O; -\frac{\pi}{4}\right)$ then $OB = OC$ and $\left(\overrightarrow{OB}; \overrightarrow{OC}\right) = -\frac{\pi}{4}(2\pi)$; So, the	1/2
	two isosceles triangles ABC and OBC are congruent so $AB = AC = OB = OC$, then the quadrilateral $ABOC$ is a rhombus.	
	Let α be a measure of the angle of S ; $S(A) = B$ therefore $\alpha = (\overrightarrow{OA}; \overrightarrow{OB}) = \frac{\pi}{8}(2\pi)$.	
2) a)	$S(C) = C'$ so $(\overrightarrow{OC}; \overrightarrow{OC'}) = \alpha = \frac{\pi}{8}(2\pi)$ then C' belongs to the straight line (OA)	1/2
	since $(\overrightarrow{OC}; \overrightarrow{OA}) = \frac{\pi}{8}(2\pi)$.	
	S(O) = O and $S(A) = B$ therefore $S([OA]) = [OB]$;	
2) b)	H is the midpoint of $[OA]$ so $S(H)$ is the midpoint of $S([OA])$ since the similar than $S(I)$	1/2
	preserves the midpoints so H' is the midpoint of $[OB]$.	
	$(CH) \perp (OH)$ so $S((CH)) \perp S((OH))$ since the similitude preserves orthogonality,	
2) c)	but $S((CH)) = (C'H')$ and $S((OH)) = S((OA)) = (OB)$ then $(C'H') \perp (OB)$.	
	In the isosceles triangle OCB , C' belongs to (OA) which is the perpendicular	
	bisector of $[BC]$; $(C'H')$ is perpendicular to the segment $[OB]$ at its midpoint H' so	1/2
	(C'H') is the perpendicular bisector of $[OB]$, so C' is the point of intersection of the	
	perpendicular bisectors of the triangle <i>OCB</i> so <i>C'</i> is the center of the circle circumscribed about this triangle.	

3)	The angle of S_n is $\frac{n\pi}{8}$. S_n is a negative dilation if $\frac{n\pi}{8} = \pi + 2k\pi$ with $k \in \mathbb{N}$; So	1/2
	$n = 8 + 16k$ with $k \in \mathbb{N}$, n is a multiple of 8 which is not a multiple of 16.	

QV	Answers	7½ pts
	By graphical reading:	
A) 1)	• $g(1) = 0$ since the curve (C_g) passes through the point $A(1; 0)$;	17
a)	• $g'(1) = \text{slope of } (T) = \frac{0 - (-2)}{1 - 0} = 2$.	1/2
A)	By graphical reading:	
1) b)	$g(x) < 0 \text{ if } x \in]0; 1[; g(x) = 0 \text{ if } x = 1; g(x) > 0 \text{ if } x \in]1; +\infty[.$	1/2
A) 2)	$g(x) = ax^{2} + bx + \ln x \; ; \; x \in]0 \; ; +\infty[\; ;$ $g(1) = 0, \; a + b = 0 \; ;$ $g'(x) = 2ax + b + \frac{1}{x} \text{ therefore } g'(1) = 2 \text{ gives } 2a + b = 1 \; ;$	3/4
	We obtain the system: $\begin{cases} a+b=0 \\ 2a+b=1 \end{cases}$, so $a=1$ and $b=-1$.	
A) 3)	g is twice differentiable over $]0 ; +\infty[;$ $g'(x) = 2x - 1 + \frac{1}{x} \text{ and } g''(x) = 2 - \frac{1}{x^2} = \frac{2x^2 - 1}{x^2};$ Sign of $g''(x)$: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3/4
B) 1)	$\lim_{x \to 0^+} f(x) = (0-1)^2 + (-\infty)^2 = +\infty; \text{ The straight line of equation } x = 0 \text{ is a vertical}$ asymptote to (C_f) ; $\lim_{x \to +\infty} f(x) = (+\infty)^2 + (+\infty)^2 = +\infty.$	1/2
B) 2) a)	$f'(x) = 2(x-1) + 2\frac{\ln x}{x} = 2\frac{x^2 - x + \ln x}{x} = 2\frac{g(x)}{x}$; $f'(x)$ have same sign as $g(x)$ for every $x \in]0$; $+\infty[$.	1/2
B) 2) b)	Table of variations of: f $ \begin{array}{c cccc} x & 0 & 1 & +\infty \\ \hline f'(x) & - & 0 & + \\ \hline f(x) & +\infty & 0 & +\infty \end{array} $	3/4

B) 3) a)	u is differentiable over $]0$; 1] and $u'(x) = f'(x) - 1 < 0$ for every $x \in]0$; 1] because $f'(x) < 0$ for every $x \in]0$; 1]. Table of variations of u over $]0$; 1]: $ \frac{x}{u'(x)} = \frac{1}{u(x)} $ The function u is continuous and strictly decreasing over $]0$; 1] and changes the sign, so using the intermediate value theorem there exists a unique real number $\alpha \in]0$; 1] such that $u(\alpha) = 0$ then $f(\alpha) = \alpha$. In addition, $u(\frac{1}{2}) \approx 0.2 > 0$ and $u(1) = -1 < 0$ therefore $\frac{1}{2} < \alpha < 1$.	1/2
B) 3) b)	$\lim_{x \to +\infty} f(x) = +\infty \text{ and } \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left[2(x-1) + 2\frac{\ln x}{x} \right] = +\infty + 0 = +\infty; \text{ therefore}$ $(C_f) \text{ admits at } +\infty \text{ a parabolic branch of direction } (O; \vec{j}).$	1/2
B) 4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3/4
B) 5)	h is defined when f is defined so the domain of definition of h is $D_h =]0$; $+\infty[$.	1/2
B) 5) b)	h is differentiable over $]0$; $+\infty[$ and $h'(x) = f'(x)e^{f(x)}$ which has the same sign of $f'(x)$ since $e^{f(x)} > 0$ for every $x \in]0$; $+\infty[$; Table of variations of h : $ \begin{array}{c c} x & 0 & 1 & +\infty \\ \hline h'(x) & - & 0 & + \\ \hline h(x) & +\infty & 1 & +\infty \end{array} $	1/2
B) 5) c)	$h(x) = e^x$; $e^{f(x)} = e^x$; $f(x) = x$ since the function $x \mapsto \exp(x)$ is continuous and strictly increasing over \mathbb{R} , and as $x \in]0$; 1] then $x = \alpha$.	1/2