$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

(11) Angle between two Planes

Vector Form

The acute angle θ between the planes $\vec{r}.\vec{n_1} = q_1$ and $\vec{r}.\vec{n_2} = q_2$ is given by

$$\cos \theta = \frac{|\overrightarrow{n_1}.\overrightarrow{n_2}|}{|\overrightarrow{n_1}||\overrightarrow{n_2}|}.$$

- (i) Two planes $\vec{r} \cdot \overrightarrow{n_1} = q_1$ and $\vec{r} \cdot \overrightarrow{n_2} = q_2$ are perpendicular to each other $\iff \overrightarrow{n_1} \cdot \overrightarrow{n_2} = 0$.
- (ii) Two planes $\vec{r} \cdot \overrightarrow{n_1} = q_1$ and $\vec{r} \cdot \overrightarrow{n_2} = q_2$ are parallel to each other $\iff \overrightarrow{n_1} = \lambda \overrightarrow{n_2}$ for some scalar λ .
- (iii) Any plane parallel to $\vec{r} \cdot \vec{n} = q$ and passing through a point with $p \cdot v \cdot \vec{a}$ is $(\vec{r} \vec{a}) \cdot \vec{n} = 0$.

Cartesian Form

The acute angle θ between the planes $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$ is given by

$$\cos\theta = \frac{|a_1a_2 + b_1b_2 + c_1c_2|}{\left(\sqrt{a_1^2 + b_1^2 + c_1^2}\right)\left(\sqrt{a_2^2 + b_2^2 + c_2^2}\right)}$$

- (i) Two planes $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$ are perpendicular to each other $\Leftrightarrow a_1a_2 + b_1b_2 + c_1c_2 = 0$.
- (ii) Two planes $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$ are parallel to each other $\Leftrightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$.
- (iii) The equation of a plane passing through the point (x_1, y_1, z_1) and parallel to the plane ax + by + cz + d = 0 is given by

$$a(x-x_1) + b(y-y_1) + c(z-z_1) = 0.$$

(iv) Any plane parallel to the yz – plane is $x = \lambda$. Any plane parallel to the xz – plane is $y = \lambda$. Any plane parallel to the xy – plane is $z = \lambda$.

(12) Angle between a line and a plane

Vector Form

- (i) If Φ is the angle between the line $\vec{r} = \vec{a} + \lambda \vec{b}$ and the plane $\vec{r} \cdot \vec{n} = q$ then, $\sin \Phi = \frac{|\vec{b} \cdot \vec{n}|}{|\vec{b}||\vec{n}|}$.
- (ii) The line $\vec{r} = \vec{a} + \lambda \vec{b}$ is perpendicular to the plane $\vec{r} \cdot \vec{n} = q$ only when $\vec{b} = t\vec{n}$ for some scalar t.
- (iii) (a) The line $\vec{r} = \vec{a} + \lambda \vec{b}$ is parallel to the plane $\vec{r} \cdot \vec{n} = q$ only when $\vec{b} \cdot \vec{n} = 0$. (b) If the line $\vec{r} = \vec{a} + \lambda \vec{b}$ is parallel to the plane $\vec{r} \cdot \vec{n} = q$ then the distance between them is $\frac{|\vec{a} \cdot \vec{n} - q|}{|\vec{n}|}$.