N与P的等价性

王捍贫 北京大学信息科学技术学院软件研究所

复习

- 命题演算推理形式系统N和P
- 相同之处:
 - 都由四个组成部分
 - 公式的构成方式相同
 - 都是为了推理
 - - ...
- 不同之处:
 - 符号库不同
 - 公理与规则不同
 - 推理形式不同: Γ ⊢ α 与⊢ α
 - **—** . . .

§8 N与P的等价性

$$\Gamma \vdash_{\mathsf{P}} \alpha$$
当且仅当 $\Gamma \vdash_{\mathsf{N}} \alpha$

$$\Gamma \vdash_{\mathsf{P}} \alpha \Rightarrow \Gamma \vdash_{\mathsf{N}} \alpha$$

问题: 当Г为无限公式集时,

 $\Gamma \vdash_{\mathsf{P}} \alpha$ 有可能成立(如当 $\alpha \in \Gamma$ 时).

但 $\Gamma \vdash_{\mathsf{N}} \alpha$ 不可能成立。

定理13

设 Σ , α 分别为 \mathbf{P} 中公式集与公式, 若 $\Sigma \vdash_{\mathbf{P}} \alpha$, 则存在 Σ 的有限子集 $\Sigma_0 \subseteq \Sigma$, 使得 $\Sigma_0 \vdash_{\mathbf{P}} \alpha$.

证明思路: 尽管前提Σ可能有无限多个, 但由于证明 过程是有限的, 故在证明过程中用到的前提必定是 有限的.

证: 设 α_1 , α_2 , ..., α_n (= α) 是在前提 Σ 下推出 α 的一个证明.

$$\diamondsuit \Sigma_0 = \Sigma \cap \{\alpha_1, \alpha_2, \cdots, \alpha_n\},$$

则 α_1 , α_2 , ..., α_n 也是在前提 Σ_0 下 推出 α 的一个证明, 故 $\Sigma_0 \vdash_{\mathbf{P}} \alpha$. 从而 Σ_0 即为所求。

引理1

证:

$$\alpha \vdash_{N} \beta \to \alpha$$
 例13
 $\alpha \to (\beta \to \gamma), \ \alpha \to \beta \vdash_{N} \alpha \to \gamma$ 例13
 $\emptyset \vdash_{N} \alpha \to (\beta \to \alpha)$ $\to +$
 $\emptyset \vdash_{N} (\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$ $\to +$
 $\Sigma \vdash_{N} \alpha \to (\beta \to \alpha)$ +
 $\Sigma \vdash_{N} (\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$ +
 $\neg \alpha \to \neg \beta \vdash_{N} \beta \to \alpha$ 例15
 $\Sigma \vdash_{N} (\neg \alpha \to \neg \beta) \to (\beta \to \alpha)$

定理14

设 Σ , α 分别为 \mathbf{P} 中有限公式集和公式.

若 Σ ⊢ $_{\mathbf{P}}$ α, 则 Σ ⊢ $_{N}$ α.

证: 设

$$\alpha_1, \alpha_2, \cdots, \alpha_n$$

是**P**中在前提**Σ**下推出 α 的一个证明序列, (其中: $\alpha_n = \alpha$).

只要证:

对每个
$$i$$
 (1 $\leq i \leq n$), $\Sigma \vdash_{\mathbf{N}} \alpha_i$

下对i归纳证之.

定理14的归纳证明——奠基步骤

(1) 当i = 1时, α_1 是**P**的一个公理,或 $\alpha_1 \in \Sigma$.

定理14的归纳证明——归纳步骤

- (2) 假设对满足j < i的每个自然数j都有 $\Sigma \vdash_N \alpha_j$,下证 $\Sigma \vdash_N \alpha_i$.
- (2.1) 当 $\alpha_i \in \Sigma$ 或者 α_i 是**P**的公理时,类似(1)可证 $\Sigma \vdash_N \alpha_i$.
- (2.2) 若 α_i 是由 α_k , α_l 经(M)得到的 (1 $\leq k, l < i$), 不妨设 $\alpha_k = \beta$, $\alpha_l = \beta \rightarrow \alpha_i$. 由于k, l < i, 由归纳假设知: $\Sigma \vdash_{\mathbf{N}} \alpha_k$, $\Sigma \vdash_{\mathbf{N}} \alpha_l$, 即: $\Sigma \vdash_{\mathbf{N}} \beta$, $\Sigma \vdash_{\mathbf{N}} \beta \rightarrow \alpha_i$, 应用(\rightarrow –)规则得 $\Sigma \vdash \alpha_i$. 归纳证毕。

$$\Gamma \vdash_{\mathsf{N}} \alpha \Rightarrow \Gamma \vdash_{\mathsf{P}} \alpha$$

问题:

N的公式不一定是P的公式(如带联结词\的公式)。

约定:

$$\alpha \lor \beta$$
 代表 $(\neg \alpha) \to \beta$
 $\alpha \land \beta$ 代表 $\neg (\alpha \to \neg \beta)$
 $\alpha \leftrightarrow \beta$ 代表 $\neg ((\alpha \to \beta) \to \neg (\beta \to \alpha))$

定理15

设 Σ 和 α 分别为N中的有限公式集和公式, 若 Σ $\vdash_{\mathbf{N}} \alpha$, 则 Σ $\vdash_{\mathbf{P}} \alpha$.

证: 只要证:

对N的任何有限公式集 \sum 及公式 α ,若存在N中形式证明序列

$$\Sigma_1 \vdash_{\mathbf{N}} \alpha_1, \ \Sigma_2 \vdash_{\mathbf{N}} \alpha_2, \ \cdots, \ \Sigma_n \vdash_{\mathbf{N}} \alpha_n \quad (*)$$

使得: $\Sigma_n = \Sigma$, $\alpha_n = \alpha$, 则: $\Sigma_n \vdash_{\mathbf{P}} \alpha_n$.

对n用归纳法证之.

定理15的归纳证明(奠基步骤)

- (1) 当n = 1时, $\Sigma_1 \vdash_{\mathbf{N}} \alpha_1$ 必是应用(\in)得到的,从而 $\alpha_1 \in \Sigma_1$. 故 $\Sigma_1 \vdash_{\mathbf{P}} \alpha_1$.
- (2) 设(*)对满足k < n的每个自然数k成立,下证(*)对n也成立.
- (2.1) 若 $\Sigma_n \vdash_{\mathbf{N}} \alpha_n$ 是应用(\in)得到的, 仿(1)可证.

定理15的归纳证明(¬-)

(2.2) 若 $\Sigma_n \vdash_{\mathbf{N}} \alpha_n$ 是应用 $(\neg -)$ 得到的,

即存在 $i, j: 1 \leq i, j < n$, 使得

$$\Sigma_i \vdash \alpha_i$$
, $\Sigma_j \vdash \alpha_j$

分别为

$$\Sigma_n, \neg \alpha_n \vdash \beta, \quad \Sigma_n, \neg \alpha_n \vdash \neg \beta$$

其中: β 为**N**中某公式.

由归纳假设: $\Sigma_n, \neg \alpha_n \vdash_{\mathbf{P}} \beta$, $\Sigma_n, \neg \alpha_n \vdash_{\mathbf{P}} \neg \beta$.

由演绎定理: $\Sigma_n \vdash_{\mathbf{P}} \neg \alpha_n \rightarrow \beta$, $\Sigma_n \vdash_{\mathbf{P}} \neg \alpha_n \rightarrow \neg \beta$.

由例33得: $\neg \alpha_n \rightarrow \beta$, $\neg \alpha_n \rightarrow \neg \beta \vdash_{\mathbf{P}} \alpha_n$,

由定理12得: $\Sigma_n \vdash_{\mathbf{P}} \alpha_n$.

(2.3) 若 $\Sigma_n \vdash_{\mathbf{N}} \alpha_n$ 是应用($\to -$),($\to +$) 得到的, 仿(2.2)可证.

定理15的归纳证明(¬-)

(2.4) 若 $\Sigma_n \vdash_{\mathbf{N}} \alpha_n$ 是应用(\vee -)得到的,

即存在 $i, j: 1 \leq i, j < n$, 使

$$\Sigma_i \vdash \alpha_i, \ \Sigma_j \vdash \alpha_j.$$

分别为

 Σ' , $\beta \vdash \alpha_n$, Σ' , $\gamma \vdash \alpha_n$.

其中: Σ' 为N中有限公式集, β , γ 为N中公式,

 $\Sigma_n = \Sigma' \cup \{\beta \vee \gamma\}.$

注意: $\beta \vee \gamma$ 在**P**中代表 $\neg \beta \rightarrow \gamma$.

由归纳假设: Σ' , $\beta \vdash_{\mathbf{P}} \alpha_n$, Σ' , $\gamma \vdash_{\mathbf{P}} \alpha_n$.

由演绎定理: $\Sigma' \vdash_{\mathbf{P}} \beta \rightarrow \alpha_n$, $\Sigma' \vdash_{\mathbf{P}} \gamma \rightarrow \alpha_n$.

定理15的归纳证明(¬-)(续)

由于 $\Sigma' \subseteq \Sigma_n$, 故 $\Sigma_n \vdash_{\mathbf{P}} \beta \rightarrow \alpha_n$, $\Sigma_n \vdash_{\mathbf{P}} \gamma \rightarrow \alpha_n$.

又由于 $\beta \lor \gamma \in \Sigma_n$,故 $\Sigma_n \vdash_{\mathbf{P}} \neg \beta \rightarrow \gamma$.

由例27: $\{\neg \beta \rightarrow \gamma, \gamma \rightarrow \alpha_n\} \vdash_{\mathbf{P}} (\neg \beta \rightarrow \alpha_n),$

由定理12: $\Sigma_n \vdash_{\mathbf{P}} \neg \beta \rightarrow \alpha_n$.

又由例**31**知: $\{\beta \rightarrow \alpha_n, \neg \beta \rightarrow \alpha_n\} \vdash_{\mathbf{P}} \alpha_n$.

由定理12得: $\Sigma_n \vdash_{\mathbf{P}} \alpha_n$.

定理15的归纳证明(\/+)

(2.5) 若 $\Sigma_n \vdash_{\mathbf{N}} \alpha_n$ 是应用(\vee +)得到的,

则 α_n 为 $\beta \vee \gamma$ (其中: β, γ 为**N**中公式),

即 α_n 代表**P**中公式 $\neg \beta \rightarrow \gamma$.

由归纳假设: $\Sigma_n \vdash_{\mathbf{P}} \beta 和 \Sigma_n \vdash_{\mathbf{P}} \gamma$ 至少有一个成立.

定理15的归纳证明(\/+)

(2.5.1) 假设 $\Sigma_n \vdash_{\mathbf{P}} \beta$ 成立。

由例34知: $\vdash_{\mathbf{P}} \beta \rightarrow (\neg \beta \rightarrow \gamma)$.

由定理**11**得: $\beta \vdash_{\mathbf{P}} \neg \beta \rightarrow \gamma$.

由定理12得: $\Sigma_n \vdash_{\mathbf{P}} \neg \beta \rightarrow \gamma$.

即 $\Sigma_n \vdash_{\mathbf{P}} \alpha_n$.

(2.5.2) 假设 $\Sigma_n \vdash_{\mathbf{P}} \gamma$.

由于 $\vdash_{\mathbf{P}} \gamma \rightarrow (\neg \beta \rightarrow \gamma)$

故 $\Sigma_n \vdash_{\mathbf{P}} \alpha_n$.

定理15的归纳证明(/-)

(2.6) 若 $\Sigma_n \vdash_{\mathbf{N}} \alpha_n$ 是应用(\land -)得到的,

由归纳假设: $\Sigma_n \vdash_{\mathbf{P}} \alpha_n \land \beta$ 或者 $\Sigma_n \vdash \beta \land \alpha_n$.

其中: β 为**N**中某个公式.

注意: $\alpha_n \wedge \beta$ 代表¬ $(\alpha_n \rightarrow \neg \beta)$,

$$\beta \wedge \alpha_n$$
代表 $\neg (\beta \rightarrow \neg \alpha_n)$.

故 $\Sigma_n \vdash_{\mathbf{P}} \neg (\alpha_n \rightarrow \neg \beta)$ 或者 $\Sigma_n \vdash_{\mathbf{P}} \neg (\beta \rightarrow \neg \alpha_n)$

定理**15**的归纳证明(△–)(续**1**)

(2.6.1) 假设
$$\Sigma_n \vdash_{\mathbf{P}} \neg (\alpha_n \rightarrow \neg \beta)$$
.

由例22知: $\vdash_{\mathbf{p}} \neg \alpha_n \rightarrow (\alpha_n \rightarrow \neg \beta)$,

由例28知:

$$\vdash_{\mathbf{p}} (\neg \alpha_n \rightarrow (\alpha_n \rightarrow \neg \beta)) \rightarrow (\neg (\alpha_n \rightarrow \neg \beta) \rightarrow \neg \neg \alpha_n).$$

由定理9知: $\vdash_{\mathbf{p}} \neg (\alpha_n \rightarrow \neg \beta) \rightarrow \neg \neg \alpha_n$.

由例23知: $\vdash_{\mathbf{p}} \neg \neg \alpha \rightarrow \alpha$.

再由定理9知: $\vdash_{\mathbf{p}} \neg (\alpha_n \rightarrow \neg \beta) \rightarrow \alpha_n$.

从而 $\Sigma_n \vdash_{\mathbf{P}} \alpha_n$

定理**15**的归纳证明(△–)(续2)

(2.6.2) 假设
$$\Sigma_n \vdash_{\mathbf{P}} \neg (\beta \rightarrow \neg \alpha_n)$$
.

由于
$$\vdash_{\mathbf{p}} \neg \alpha_n \rightarrow (\beta \rightarrow \neg \alpha_n).$$

类似可得:
$$\vdash_{\mathbf{p}} \neg (\beta \rightarrow \neg \alpha_n) \rightarrow \alpha_n$$
.

从而也有 $\Sigma_n \vdash_{\mathbf{P}} \alpha_n$

(2.7) 若 $\Sigma_n \vdash_{\mathbf{N}} \alpha_n$ 是应用(\wedge +),(\leftrightarrow +)或(\leftrightarrow -) 得到的, 类似可证 $\Sigma_n \vdash_{\mathbf{P}} \alpha_n$.

归纳证毕.

请自行补足其余情形的证明.

推论

对**P**(或**N**)中公式 α , ⊢_{**N**} α 当且仅当 ⊢_{**P**} α .

作业

p.508(p.101). 17(1), (2), (3)

