

ミニレポート 3-1

- 1. 以下の正則表現はどのような言語を表すか説明せよ
 - $(0+1)^*00(0+1)^*$
 - $(0+1)^*0(0+1)^*0(0+1)^*$
 - $(0+1)^*001$
- 2. 0が3個続いて現れることがない {0,1} 上の語すべてからなる言語を正則表現で表しなさい

ミニレポート 3-1:解答例(1)

- 1. 以下の正則表現はどのような言語を表すか説明せよ
 - $(0+1)^*00(0+1)^*$
 - 00 を含む {0,1} 上の語すべてからなる言語
 - $(0+1)^*0(0+1)^*0(0+1)^*$
 - 2個以上の 0 を含む {0,1} 上の語すべてからなる言語
 - $(0+1)^*001$
 - 001 で終わる {0,1} 上の語すべてからなる言語

ミニレポート 3-1:解答例(2)

2. 0 が 3 個続いて現れることがない $\{0,1\}$ 上の語すべてからなる言語を正則表現で表しなさい

$$(1+01+001)^*(\epsilon+0+00)$$

または

$$(\epsilon + 0 + 00)(1 + 10 + 100)^*$$

ミニレポート 3-2

次のオートマトンについて、以下の問に答えなさい

- (1) 各 i,j $(1 \le i \le 3, 1 \le j \le 3)$ に対し、 $R_{i,j}^{(0)}$ を求めなさい
- (2) 各 i,j $(1 \le i \le 3, 1 \le j \le 3)$ に対し、 $R_{i,j}^{(1)}$ を求めなさい
- (3) 各 i,j $(1 \le i \le 3, 1 \le j \le 3)$ に対し、 $R_{i,j}^{(2)}$ を求めなさい
- (4) このオートマトンが受理する言語 $R_{1.3}^{(3)}$ を求めなさい

70

71

ミニレポート 3-2 (1):解答例

次のオートマトンについて、以下の問に答えなさい

(1) 各 i,j ($1 \le i \le 3$, $1 \le j \le 3$) に対し、 $R_{i,j}^{(0)}$ を求めなさい

$$R_{1,1}^{(0)}: 1+\epsilon \qquad R_{1,2}^{(0)}: 0 \qquad \qquad R_{1,3}^{(0)}: \emptyset$$

$$R_{1,2}^{(0)}:0$$

$$R_{1.3}^{(0)}:\emptyset$$

$$R_{2,1}^{(0)}: \emptyset$$

$$R_{2,1}^{(0)}: \emptyset$$
 $R_{2,2}^{(0)}: 1+\epsilon$ $R_{2,3}^{(0)}: 0$

$$R_{2,3}^{(0)}:0$$

$$R_{3,1}^{(0)}:\emptyset$$

$$R_{3.2}^{(0)}:0$$

$$R_{3,1}^{(0)}: \emptyset$$
 $R_{3,2}^{(0)}: 0$ $R_{3,3}^{(0)}: 1+\epsilon$

74

ミニレポート 3-2(2):解答例

(2) 各 i,j $(1 \le i \le 3, 1 \le j \le 3)$ に対し、 $R_{i,j}^{(1)}$ を求めなさい

$$R_{1,1}^{(1)}: (1+\epsilon) + (1+\epsilon)(1+\epsilon)^*(1+\epsilon) = (1+\epsilon)(1+\epsilon)^* = 1^*$$

$$R_{12}^{(1)}: 0 + (1+\epsilon)(1+\epsilon)^*0 = 1^*0$$

$$R_{13}^{(1)}: \emptyset + (1+\epsilon)(1+\epsilon)^*\emptyset = \emptyset$$

以下,同様に

$$R_{2,1}^{(1)}:$$

$$R_{2,1}^{(1)}:\emptyset$$
 $R_{2,2}^{(1)}:1+\epsilon$ $R_{2,3}^{(1)}:0$

$$R_{2,2}^{(1)}:0$$

$$R_{3,1}^{(1)}:$$

$$R_{3,2}^{(1)}:0$$

$$R_{3,1}^{(1)}:\emptyset$$
 $R_{3,2}^{(1)}:0$ $R_{3,3}^{(1)}:1+\epsilon$

75

ミニレポート 3-2 (3): 解答例

(3) 各 i,j $(1 \le i \le 3, 1 \le j \le 3)$ に対し、 $R_{i,j}^{(2)}$ を求めなさい

$$R_{1,1}^{(2)}: 1^* + (1^*0)(1+\epsilon)^*\emptyset = 1^*$$

$$R_{1.2}^{(2)}: 1^*0 + (1^*0)(1+\epsilon)^*(1+\epsilon) = 1^*01^*$$

$$R_{13}^{(2)}: \emptyset + (1^*0)(1+\epsilon)^*0 = 1^*01^*0$$

以下,同様に

$$R_{2.1}^{(2)}$$
:

$$R_{2,2}^{(2)}:1^*$$

$$R_{2,1}^{(2)}: \emptyset \qquad \qquad R_{2,2}^{(2)}: 1^* \qquad \qquad R_{2,3}^{(2)}: 1^*0$$

$$R_{3.1}^{(2)}:\emptyset$$

$$R_{3.2}^{(2)}:01^*$$

$$R_{3,1}^{(2)}: \emptyset$$
 $R_{3,2}^{(2)}: 01^*$ $R_{3,3}^{(2)}: 1 + \epsilon + 01^*0$

ミニレポート 3-2 (4):解答例

(4) このオートマトンが受理する言語 $R_{1,3}^{(3)}$ を求めなさい

$$R_{1,3}^{(3)}: 1*01*0 + (1*01*0)(1 + \epsilon + 01*0)*(1 + \epsilon + 01*0)$$

= (1*01*0)(1 + 01*0)*

0 を2個以上の偶数個含むすべての語からなる言語

ミニレポート 3-3

以下のオートマトンについて、正則表現の連立方程式を解いて、受理する言語の正則表現を求めなさい。 導出過程も示すこと

78

___ ミニレポート 3-3 (1):解答例 (1)

	0	1
$\rightarrow p$	q	p
q	r	q
* r	q	r

$$P = 0Q + 1P = 1P + 0Q$$

 $Q = 0R + 1Q = 1Q + 0R$

$$R = 0Q + 1R + \epsilon = 1R + 0Q + \epsilon$$

Q = 1*0R (基本定理 1)

 $R = 1R + 0Q + \epsilon = 1R + 01^*0R + \epsilon = (1 + 01^*0)R + \epsilon$ **49**,

 $R = (1 + 01^*0)^*$ (基本定理1)

P = 1P + 0Q = 1P + 01*0(1 + 01*0)* **49.** P = 1*01*0(1 + 01*0)*

ミニレポート 3-2 と同じ正則表現

ミニレポート 3-3 (1):解答例 (2)

	0	1
$\rightarrow p$	q	p
q	r	q
* r	q	r

$$P = 0Q + 1P = 1P + 0Q$$

$$Q = 0R + 1Q = 1Q + 0R$$

$$R = 0Q + 1R + \epsilon = 1R + 0Q + \epsilon$$

$$R = 1^*(0Q + \epsilon)$$
 (基本定理1)

$$Q = 1Q + 0R = 1Q + 01^*(0Q + \epsilon) = (1 + 01^*0)Q + 01^*$$
 4 9,

$$Q = (1 + 01^*0)^*01^*$$
 (基本定理1)

$$P = 1P + 0Q = 1p + 0(1 + 01^*0)^*01^*$$
 49. $p = 1^*0(1 + 01^*0)^*01^*$

0 を2個以上の偶数個含むすべての語からなる言語

ミニレポート 3-3 (2):解答例

				_
	ϵ	0	1	
$\rightarrow p$	q,s	_	_	$P = \epsilon Q + \epsilon S$
* q	_	r	q	$Q = 0R + 1Q + \epsilon$
r	_	q	r	R = 0Q + 1R
* S	_	s	t	$S = 0S + 1T + \epsilon$
t	_	t	S	T = 0T + 1S

 $R=1^*0Q$ (基本定理1) $Q=0R+1Q+\epsilon=01^*0Q+1Q+\epsilon$ $=(01^*0+1)Q+\epsilon$ より、 $Q=(01^*0+1)^*\epsilon=(01^*0+1)^*$ (基本定理1) $T=0^*1S$ (基本定理1) $S=0S+1T+\epsilon=0S+10^*1S+\epsilon$ $=(10^*1+0)S+\epsilon$ より、 $S=(10^*1+0)^*$ (基本定理1) $P=\epsilon Q+\epsilon S$ $=\epsilon(01^*0+1)^*+\epsilon(10^*1+0)^*$ $=(01^*0+1)^*+(10^*1+0)^*$

0 **を偶数個**, または, 1 **を偶数個** 含むすべての語からなる言語