Foil (thickness)	Reaction	$\mathrm{T}_{1/2}$	Threshold (@10 mb)	Gamma	$\begin{array}{c} \text{Nat. } (\gamma) \\ \text{Abund.} \end{array}$	# Vault (Cave01) [per src]
Rh (0.1mm)	$^{103}{ m Rh(n,n')}{}^{103m}{ m Rh}$	56.114 min	$39.8~(80)~{ m keV}$	β	100 (-)	TBD
$\ln (1 \mathrm{mm})$	$^{115}{ m In(n,n')}{}^{115m}{ m In}$	$4.486 \; \mathrm{hr}$	336 (597) keV	$335~\mathrm{keV}$	95.71 (45.8)	TBD
	$^{115}{ m In}({ m n,g})^{116m}{ m In}$	$54.29 \min$	Thermal+	1293.56	95.7 (84.8?)	TBD
Ni (1mm)	$^{58}\mathrm{Ni(n,p)^{58}}g\mathrm{Co}$	70.86 days	0 (1.3) MeV	$810.76~\rm keV$	60.08 (99.45)	TBD
	$^{58}{ m Ni(n,2n)^{57}Ni}$	$35.60~\mathrm{hr}$	$12.2 \ (13.3) \ \mathrm{MeV}$	$1.378~{ m MeV}$	60.08 (81.7)	TBD
Ti (0.1mm)	$^{46}\mathrm{Ti}(\mathrm{n},2\mathrm{n})^{47}\mathrm{Sc}$	184.8 min	$13.2 \ (13.9) \ \mathrm{MeV}$	$511.0~{ m keV}$	$8.25\ (169.6)$	TBD
	$^{47}{ m Ti(n,p)^{47}Sc}$	$3.3492~\mathrm{days}$	$0.0~(2.0)~{ m MeV}$	$159.38~\mathrm{keV}$	7.44 (68.3)	TBD
	$^{48}{ m Ti}({ m n,p})^{48}{ m Sc}$	$43.67~\mathrm{hrs}$	$3.21~(7.1)~{ m MeV}$	$1312.12~\mathrm{keV}$	73.72 (100.1)	TBD
	$^{49}{ m Ti(n,p)^{49}Sc}$	$57.18 \min$	$1.22~(8.8)~{ m MeV}$	$1761.9~\mathrm{keV}$	5.41 (0.05)	TBD
	$^{49}\mathrm{Ti}(\mathrm{n,np})^{48}\mathrm{Sc}$	$43.67~\mathrm{hrs}$	$11.35~(15.2)~{ m MeV}$	$1312.12~\mathrm{keV}$	5.41 (100.1)	TBD
Al (1mm)	$^{27}{ m Al(n,p)^{27}Mg}$	$9.458 \min$	$1.83~(4.2)~{ m MeV}$	$843.76~\mathrm{keV}$	100 (71.8)	TBD
	$^{27}\mathrm{Al(n,a)^{24}Na}$	$14.997\;\mathrm{hr}$	$3.13~(6.7)~{ m MeV}$	$1368.63~\mathrm{keV}$	100 (99.99)	TBD
$\mathrm{Au}\;(0.254\;\mathrm{mm})$	$^{197}{ m Au(n,g)^{198}Au}$	$2.694~\mathrm{days}$	Thermal+	$411.8~{\rm keV}$	100 (95.62)	TBD
	$^{197}{ m Au}({ m n},{ m 2n})^{196}{ m Au}$	$6.1167 \; \mathrm{days}$	$8.06~(8.3)~{ m MeV}$	$355.7~{ m keV^1}$	$100 (80.9)^1$	TBD
$\Pr\left(0.1\;\mathrm{mm}\right)$	$^{141}{ m Pr}({ m n,2n})^{140}{ m Pr}$	$3.39 \min$	$9.39~(9.6)~\mathrm{MeV}$	511.0 keV	100 (102)	TBD
Cu (0.1 mm)	$^{63}\mathrm{Cu(n,2n)^{62}Cu}$	$9.67 \min$	$10.85~(11.4)~{ m MeV}$	511.0 keV	$69.17 \ (195.66)$	TBD
	$^{65}\mathrm{Cu(n,2n)^{64}Cu}$	$12.701 \; \mathrm{hr}$	$9.91~(10.2)~{ m MeV}$	$511.0~{ m keV}$	$31.83\ (21.65)$	TBD
Zr (1mm)	$^{90}{ m Zr}({ m n},2{ m n})^{89}{ m Zr}$	$78.41 \; \mathrm{hr}$	$11.97~(12.1)~{ m MeV}$	909.15 keV	$51.45 \ (99.04)$	TBD

Table 1: Activation foil parameters.

 1 A long lived (9.4) hr isomer state exists and may be worth using instead