Progetto di Data Science Lab

Analisi e previsione di serie storiche

Presentazione di Giorgio Bini, Lorenzo Famiglini, Pranav Kasela Università di Milano-Bicocca

Introduzione al problema

- Dati relativi alle richieste di taxi in 18 distretti di Pechino.
- Dati a disposizione: la posizione GPS del taxi (latitudine, longitudine) e l'orario della richiesta.
- Periodo di riferimento:2-8 Febbraio 2008
- Obiettivo: costruire dei modelli per la previsione del numero di richieste.

CONVERSIONE

1 file

Riduzione dei tempi

X Da 30 minuti...

multiprocessing

CONVERSIONE

AGGREGAZIONE

FEATURE ENGINEERING

Latitudine, Longitudine

Nome del distretto

Calcolo della distanza minima tra la latitudine e la longitudine centrale dei distretti.

Created by Roleplay from Noun Project

CONVERSIONE

AGGREGAZIONE

FEATURE ENGINEERING

È ora di mangiare? (Bool)

Numero di richieste

È un giorno lavorativo? (Bool)

Giorno della settimana

I primi 6 ritardi (più il 12-esimo e il 24-esimo)

C'è il sole? (Bool)

Periodo del Giorno (Mattina, pomeriggio, sera, notte)

Frequenze del seno (Le prime 24, aggregazione ogni 10 minuti)

In sintesi...

```
1,2008-02-02 15:36:08,116.51172,39.92123
1,2008-02-02 15:46:08,116.51135,39.93883
1,2008-02-02 15:56:08,116.51627,39.91034
1,2008-02-02 16:06:08,116.47186,39.91248
1,2008-02-02 16:16:08,116.47217,39.92498
1,2008-02-02 16:26:08,116.47179,39.90718
1,2008-02-02 16:36:08,116.45617,39.90531
1,2008-02-02 17:00:24,116.47191,39.90577
```

	taxi_count	working_or_not	is_sun_up	time_to_eat	sin_frequency_1	sin_frequency_2
0	25228				-1 470814e-15	1.000000e+00
1	26383				-1.4708140-15	1.000000e+00
2	24781				-1.470814e-15	1.000000e+00
3	25488				-2.204364e-15	1.102182e-15
4	24913				-2.204364e-15	1.102182e-15
5	24911				-2.204364e-15	1.102182e-15
6	25687				-2.204364e-15	1.102182e-15
7	27271				-2.204364e-15	1.102182e-15
8	24935				-2.204364e-15	1 102182e-15
9	28155				5.879543e-15	-1.000000e+00
10	28155	0		1	5.879543e-15	-1.000000e+00

Numero di file	10357, uno per ogni taxi (0.7 GB)	1
Schema	TaxiID, DateTime, Latitudine, Longitudine	DateTime, Numero di Richieste, E' ora di mangiare?, Periodo del giorno, Giorno della settimana, Frequenze del Seno, Ritardi, C'è il sole? E' un giorno lavorativo?

Il modello ARIMA

Aggregazione: un'osservazione ogni ora. **Previsione:** le ultime 10 ore.

Alla variabile y è stata applicata una trasformazione logaritmica e un differenziale orario per ottenere stazionarità.

Il modello ARIMA

$$AIC = -282$$

$$MAE = 0.07$$

$$AIC = -247$$

$$MAE = 0.06$$

Random Forest Regressor

Holdout

- Train Size: 800 (8000 minuti)
- Test Size overfitting
- Tra
- Train MAE = 0
- Test $R^2 = 0.83$
- Test MAE = 0.17

TS-CV, Test set

Tuning dei parametri

- Features Importance
- CV size: 800
- Test size: 61
- $CV R^2 = 0.91$
- CV MAE = 0.1
- Test $R^2 = 0.92$
- Test MAE = 0.07

Elastic Net

Holdout Holdout

Lambda = 0.1, l_1 ratio = 0.5

- Train Size: 800 (8000 minuti)
- Test Size: 61 (610 minuti)
- Train $R^2 = 0.93$
- Train MAE = 0.08
- Test $R^2 = 0.91$
- Test MAE = 0.09

TS-CV, Test set

Lambda = 0.01, l1_ratio = 1

- CV size: 800
- Test size: 61
- $CV R^2 = 0.93$
- CV MAE = 0.08
- Test $R^2 = 0.97$
- Test MAE = 0.04

Holdout

Alpha = 0.1

- Train Size: 800 (8000 minuti)
- Test Size: 61 (610 minuti)
- Train $R^2 = 0.93$
- Train MAE = 0.09
- Test $R^2 = 0.98$
- Test MAE = 0.03

TS-CV, Test set

- CV size: 800
- Test size: 61
- $CV R^2 = 0.93$
- CV MAE = 0.08
- Test $R^2 = 0.98$
- Test MAE = 0.02

Ridge

Kneighbors-Regressor

Holdout

- Train Size: 800 (8000 minuti)
- Test Size: 61 (610 minuti)
- Train $R^2 = 0.94$
- Train MAE = 0.07
- Test $R^2 = 0.94$
- Test MAE = 0.04

TS-CV, Test set N = 5, metrica = Euclidean

- CV size: 800
- Test size: 61
- $CV R^2 = 0.95$
- CV MAE = 0.04
- Test $R^2 = 0.94$
- Test MAE = 0.03

LSTM - Univariate feature set

Training Set

- Train Size: 800 * 10 minuti (80 rimossi a causa dei ritardi)
- Epochs: 150
- Tempo di allenamento: 15 minuti
- $R^2 = 0.92$
- MAE = 0.09

Number no Taxi Prediction

Actual

Predicted

Test Set

- Test Size: 800*10 minuti
- $R^2 = 0.98$
- MAE = 0.03

26000

24000

Non c'è underfitting a causa dei picchi nel training set.

LSTM - Univariate feature set

Training Set

- Train Size: 800 * 10 minuti (80 rimossi a causa dei ritardi)
- Epochs: 50
- Tempo di allenamento: 22 minuti
- $R^2 = 0.89$
- MAE = 0.11

Test Set

- Test Size: 800*10 minuti
- $R^2 = 0.96$
- MAE = 0.05

Non c'è underfitting per lo stesso motivo di prima.

Number no Taxi Prediction

Grazie per l'attenzione!