KOSHA GUIDE P - 91 - 2023

화학물질폭로영향지수(CEI) 산정에 관한 기술지침

2023. 8.

한국산업안전보건공단

안전보건기술지침은 산업안전보건기준에 관한 규칙 등 산업안전보건법령의 요구사항을 이행하는데 참고하거나 사업장 안전·보건 수준향상에 필요한 기술적 권고 지침임

안전보건기술지침의 개요

- 개정자 : 이 정 석 한국산업안전보건공단 전문기술실 오상규
- 제·개정 경과
 - 1998년 10월 화학안전분야 기준제정위원회 심의
 - 1998년 11월 총괄기준제정위원회 심의
 - 2012년 7월 총괄 제정위원회 심의(개정, 법규개정조항 반영)
 - 2023년 7월 화학안전분야 표준제정위원회 심의(개정, 법규개정조항 반영)
- 관련규격 및 자료
 - 미국 화학공학회(AIChE) 기술지침
- 관련법규·규칙·고시 등
 - 산업안전보건법 시행규칙 제50조(공정안전보고서의 세부내용 등)
- 안전보건기술지침의 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관 분야별 문의처 안내를 참고 하시기 바랍니다.
 - 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2023년 8월 24일

제 정 자 : 한국산업안전보건공단 이사장

<u>목 차</u>

1. 목적1
2. 적용범위1
3. 용어의 정의1
4. 계산절차2
5. 누출시나리오별 누출량 산출방법4
6. 비상대응계획 수립지침(ERPG) 농도4
7. 대기 확산량 계산8
8. 화학물질폭로영향지수12
9. 위험거리13
10. 화학물질폭로영향지수 요약서13
<부록 1> 화학물질폭로영향지수 검토절차19
<부록 2> 제한 및 최소화 점검표23

화학물질폭로영향지수(CEI) 산정에 관한 기술지침

1. 목적

이 지침은 위험성평가기법의 하나인 상대위험순위결정기법 중 독성화학물질의 누출사고로 인하여 사업장 및 주변 사업장의 근로자와 지역사회의 주민에 대한 건강상의 위험을 상대적으로 등급화 하는 화학물질폭로영향지수(Chemical exposure index, CEI)를 산정하는데 필요한 사항을 제시하는데 그 목적이 있다.

2. 적용범위

이 지침은 독성물질을 취급·저장하는 설비에서 독성물질의 누출로 인하여 인 체에 미칠 수 있는 영향을 위험거리로 평가하여 대책을 수립하는데 적용한다.

3. 용어의 정의

- (1) "비상대응계획수립지침" (Emergency response planning guideline, ERPG) 은 관심의 우선순위, 취급·저장평가, 누출시 확산지역의 파악 및 지역사회의 비상대응계획을 수립하는데 사용되는 지침을 말하며 이 지침에서 사용되는 농도는 공기중의 농도에 따라 ERPG-1, ERPG-2 및 ERPG-3 등으로 구분하며 다음과 같이 정의한다.
- (가) ERPG-1 : 거의 모든 사람이 한시간 동안 노출되어도 오염물질의 냄새를 인지 하지 못하거나 건강상 영향이 나타나지 않는 공기중 최대 농도
- (나) ERPG-2: 거의 모든 사람이 한시간까지 노출되어도 보호조치 불능의 증 상을 유발하거나 회복불가능 또는 심각한 건강상 영향이 나타 나지 않는 공기중 최대 농도
- (다) ERPG-3 : 거의 모든 사람이 한시간까지 노출되어도 생명의 위험을 느끼지 않는 공기중 최대 농도

(2) 그 밖에 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 산업 안전보건기준에 관한 규칙에서 정하는 바에 따른다.

4. 계산절차

4.1 준비자료

화학물질폭로영향지수 산정에는 다음과 같은 자료가 준비되어야 한다.

- (1) 설비와 주변의 정확한 배치도
- (2) 주요배관, 독성물질 취급용기 및 화학물질 저장량을 알 수 있는 개략적인 공정흐름도
- (3) 평가하고자 하는 물질의 물리 · 화학적 성질

4.2 계산절차

- 4.2.1 <그림 1>의 화학물질폭로영향지수 계산 흐름도에 따라 공정흐름도를 참조하여 중대한 누출을 야기할 수 있는 배관이나 설비를 정한다.
- 4.2.2 ERPG-2를 정한다.
- 4.2.3 누출시나리오별 누출량을 계산한다.
- 4.2.4 최대 누출량을 정한다.
- 4.2.5 화학물질폭로영향지수를 계산한다.
- 4.2.6 위험거리를 계산한다.
- 4.2.7 화학물질폭로영향지수 요약서를 <별지서식>에 따라 작성한다.

<그림 1> 화학물질폭로영향지수 계산 흐름도

5. 누출시나리오별 누출량 산출방법

- 5.1 공정배관에서의 누출단면적은 다음과 같이 가정한다.
 - (1) 배관의 호칭경이 50 A미만인 경우 : 배관의 단면적
 - (2) 배관의 호칭경이 50 A이상 100 A이하 : 50 A 배관의 단면적
 - (3) 배관의 호칭경이 100 A 초과하는 경우 : 배관 단면적의 20 %
- 5.2 호스에서의 누출단면적은 호스 단면적으로 한다.
- 5.3 압력방출장치에서 대기중으로 누출되는 양은 설정압력에서 계산하며 누출된 전량이 공기에 의해 운반되는 것으로 간주한다.
- 5.4 용기에서 누출되는 량은 용기에 연결된 가장 큰 공정배관이 파열된 것으로 간주하여 5.1에 따라 결정한다.
- 5.5 탱크에서 누출되는 량은 흘러넘치는 양으로 가정한다.
- 5.6 누출되는 시간은 최소 10분간으로 하고, 누출속도는 시스템내의 모든 량이 10분 동안에 모두 누출되는 것으로 간주한다.

6. 비상대응계획 수립지침(ERPG) 농도

6.1 ERPG 농도는 <표 1>에서 구한다. PPM 단위를 mg/m³ 단위로 바꾸기 위해 서는 다음 식에 따른다.

$$ERPG(mg/m^3) = ERPG(ppm) \times MW/22.4 \times \frac{T+273}{273}$$

여기서, M.W는 분자량, T는 온도(℃)를 뜻한다.

<표1> ERPG 데이터

(기준온도 : 25℃)

П -2)	H =1 =1	비점	ERP	G-1	ERP	G-2	ERP	G-3
물 질	분자량	\mathbb{C}	mg/m³	PPM	mg/m³	PPM	mg/m³	PPM
아세톤시아노히드린	85.11	95			35	10		
(Acetone cyanohydrin)	00.11	30			00	10		
아크로레인	56.06	52.5		0.1	1	0.5	7	3
(Acrolein) 아크릴산								
(Acrylic acid)	72.06	141.4	6	2	147	50	2210	750
아크릴로니트릴	F2 0C	77.0			40	00		
(Acrylonitrile)	53.06	77.2			43	20		
염화알릴	76.53	44.8	9	3	125	40	939	300
(Allyl chloride)	10.00	11.0	<i>J</i>	0	120	10	300	000
암모니아	17.03	-33.3	17	25	139	200	696	1000
(Ammonia) 브롬								
(Bromine)	159.81	58.7	1	0.2	7	1	33	5
부타디엔	5400	4 44	22	10	111	F 0	11000	5000
(Butadiene)	54.09	-4.41	22	10	111	50	11060	5000
노말부틸아크릴레이트	128.17	147.5	0.26	0.05	131	25	1310	250
(n-butyl acrylate)	120.17	147.0	0.20	0.00	101		1010	200
노말부틸이소시안네이트	99.13	115.13	0.04	0.01	0.2	0.05	4	1
(n-butylisocyanate) 이황화탄소								
(Carbon disulfide)	76.14	46.3	3	1	156	50	1557	500
사염화탄소								
(Carbon tetrachloride)	153.82	76.8	126	20	629	100	4718	750
염소	70.91	-34.05	3	1	9	3	58	20
(Chlorine)	70.91	34.03	J	1	9	J	30	20
삼불화염소	92.50	11.8	0.38	0.1	4	1	38	10
(Chlorine trifluoride) 염화크로로아세틸								
(Chloroacetyl chloride)	112.94	106	0.5	0.1	5	1	46	10
클로로포름								
(Chloroform)	119.38	61.7			488	100		
클로로피크린	16420	115 1		NΙΛ	1	0.0	20	3
(Chloropicrin)	164.38	115.1		NA	1	0.2	20	<u>ئ</u>
염화설폰산	116.52	152	2	0.4	10	2.1	30	6.3
(Chlorosulfonic acid)	110.02	100		0.1				0.0
염화살불화에틸렌	116.47	-28.22	95	20	476	100	1429	300
(Chlorotrifluoroethylene)								

П -д)	버리카	비점	ERF	ERPG-1		PG-2	ERPG-3	
물 질	분자량	${\mathbb C}$	mg/m³	PPM	mg/m³	PPM	mg/m³	PPM
크로톤알데히드 (Crotonaldehyde)	70.09	102.4	6	2	29	10	143	50
다이크텐 (Diketene)	82.08	127.4	3	1	17	5	168	50
디메틸에틸아민 (Dimethylamine)	45.08	6.88	2	1	184	100	922	500
에피크로로히드린 (Epichlorohydrin)	92.52	116.4	8	2	76	20	378	100
역화에틸 (Ethyl chloride)	64.51	12.27			13192	5000		
이염화에틸렌 (Ethylene dichloride)	98.96	83.51			405	100		
산화에틸렌 (Ethylene oxide)	44.05	10.5		NA	90	50	901	500
포름알데히드 (Formaldehyde)	30.03	-19.3	1	1	12	10	31	25
육염화부타디엔 (Hexachlorobutadiene)	260.79	214.2	32	3	107	10	320	30
육불화아세톤 (Hexafluoroacetone)	166.02			NA	7	1	339	50
브롬화수소 (Hydrogen bromide)	80.91	-66.7			17	5		
염화수소 (Hydrogen chloride)	36.46	-85.03	4	3	30	20	149	100
시안화수소 (Hydrogen cyanide)	27.03	25.7		NA	11	10	28	25
불화수소 (Hydrogen fluoride)	20.01	19.9	4	5	16	20	41	50
황화수소 (Hydrogen sulfide)	34.08	-60.4	0.14	0.1	42	30	139	100
이소시안네이트에틸메타아크릴레이트 (2-isocyanatoethyl methacrylate)	155.20	211.2		NA	1	0.1	6	1
이소부틸니트릴 (Isobutyronitrile)	69.11	103.6	28	10	141	50	565	200
메타아크릴로니트릴 (Methacrylonitrile)	67.09	90.31			27	10		
메타놀 ((Methanol)	32.04	64.5	262	200	1310	1000	6551	5000
메틸아민 (Methylamine)	31.06	-6.32	13	10	127	100	635	500

D -)	ㅂ-)ㅋ)	비점	ERP	G-1	ERP	PG-2	ERF	PG-3
물 질	분자량	\mathbb{C}	mg/m³	PPM	mg/m³	PPM	mg/m³	PPM
염화메틸 (Methyl chloride)	50.49	-24.2		NA	826	400	2065	1000
요오드화메틸 (Methyl iodide)	141.94	-66.5	145	25	290	50	726	125
메틸이소시안네이트 (Methyl isocyanate)	57.05	38.4	0.058	0.025	1	0.5	12	5
메틸머캅탄 (Methyl mercaptan)	48.11	5.95	0.01	0.005	49	25	197	100
과불화이소부틸렌 (Perfluoroisobutylene)	218.11			NA	1	0.1	3	0.3
페놀 (Phenol)	94.11	181.9	38	10	192	50	770	200
포스겐 (Phosgene)	98.92	7.9		NA	1	0.2	4	1
인산화물 (Phosphorous pentoxide)	141.94		5	1	25	4	100	17
산화프로필렌 (Propylene oxide)	58.08	34.2			1188	500		
스틸렌 (Styrene)	104.15	145.2	213	50	1065	250	4259	1000
이산화황 (Sulfur dioxide)	64.06	-10	1	0.3	8	3	39	15
황산(삼산화황) (Sulfuric acid)(Sulfur trioxide)	98.08		2	0.5	10	2.5	30	7.5
황화불화물 (Sulfuryl fluoride)	102.06	-55.2			626	150		
사불화에틸렌 (Tetrafluoroethylene)	100.02	-75.6	818	200	4090	1000	40902	10000
사염화티탄 (Titanium tetrachloride)	189.69	217.45	5	1	20	3	100	13
톨루엔디아소시안네이트 (Toluene diisocyanate)	174.16	252.8			1	0.2		
트리메틸아민 (Trimethylamine)	59.11	2.87		0.1	242	100	1209	500
비닐아세테이트 (Vinyl acetate)	86.09	72.76	18	5	264	75	1760	500
염화비닐 (Vinyl chloride)	62.50	-13.8			2556	1000		
염화비닐리디엔 (Vinylidene chloride)	96.94	31.7			198	50		

※ NA = 적용하지 않음

6.2 ERPG 농도가 없는 경우에는 다음과 같이 산정한다.

6.2.1 ERPG-1 농도가정

ERPG-1 농도는 다음중 하나를 이용한다.

- (1) 취기 전단 농도
- (2) ERPG-2를 10으로 나눈 값

6.2.2 ERPG-2 농도 가정

ERPG-2 농도는 다음중 하나를 이용한다.

- (1) STEL 또는 CEILING 값
- (2) TWA 농도의 3배 값

6.2.3 ERPG-3 농도 가정

ERPG-3 농도는 다음중 하나를 이용한다.

- (1) LC50을 30으로 나눈 값
- (2) ERPG-2의 5배 값

7. 대기 확산량 계산

7.1 대기 확산량을 결정하는 순서는 <그림 2>와 같다.

7.2 가스나 증기방출

$$AQ = 4.751 \times 10^{-6} D^2 Pa \sqrt{\frac{MW}{T + 273}}$$
 (1)

여기서, AQ : 대기확산량(kg/초)

D : 구멍의 직경(mm)

Pa : 절대압력(Pg+101.35)

MW : 분자량 T : 온도(℃)

<그림 2> 대기 확산량(AIRBORNE QUANTITY)량 결정 흐름도

7.3 액체방출

7.3.1 방출속도 결정

액방출속도(
$$L$$
) = $9.44 \times 10^{-7} D^2 \rho_1 \sqrt{\frac{1000 Pg}{\rho_\ell} + 9.8 \triangle h}$ ····· (2)

여기서, ρℓ : 운전온도에서 액체의 밀도(kg/m³)

△h : 방출구멍 윗부분의 액높이(m)

Pg : 게이지압력(kPa)

7.3.2 방출 총량은 탱크내의 물질이 10분 이내에 방출되는 것으로 가정하거나 다음의 식으로 계산하여 작은쪽을 택한다.

여기서, W_T : 총방출량(kg)

L : 액체방출속도(kg/초)

7.3.3 운전온도가 끓는점미만인 경우에는 액체가 후래쉬되는 양이 없으므로 식(6)에 따라 풀의 크기를 결정하고 운전온도가 끓는점이상인 경우에는 다음의 식(4)에 따라 계산한다.

$$F_{V} = \frac{C_{P}}{H_{V}} (T_{s} - T_{b})$$
(4)

여기서, F_V : 후래쉬되는 액체의 양

T_b : 액체의 비점(℃)

T_s : 액체의 운전온도(℃)

C_P : 액체의 정압 열용량(J/kg, ℃)

H_V : 액체의 증발열(J/kg)

 $\frac{C_P}{H_V}$ 의 값은 <표 2>에서 구할 수 있다. 다만 표에 없는 경우에는 0.0044를 취하여 계산한다.

(2)	호래쉬에	의하	대기확산량,	$A \cap =$	신(5)에	따라	계사하다
(4)	中切刊到	의 인	네시작건당,	AQ_{f}	f = f(0)	44	계간인다.

$$AQ_f = 5F_V \times L$$
(5)

여기에서, AQ_f = 후래쉬에 의한 대기확산량 [kg/초]

 F_{V} 가 0.2이상이면 $AQ_{f} = L$ 이 되어 풀이 형성되지 않는다.

7.3.4 풀(POOL)의 크기 결정

(1) 풀을 형성하는 액체의 양은 다음의 식(6)에 따라 계산한다.

$$W_P = W_T (1 - 5F_V) \cdots (6)$$

여기서, W_P : 풀을 형성하는 액체량(kg)

W_T : 총액체 방출량(kg)

- * 후래쉬가 일어나지 않는 물질은 $W_P = W_T$ 가 된다.
- (2) 풀의 크기는 풀의 깊이를 1 cm로 가정하여 다음의 식(7)에 따라 계산한다. 다만, 다이크의 용량이 누출된 량보다 충분히 큰 경우에는 풀의 크기는 다 이크 크기와 같다.

$$A_P = 100 \frac{W_P}{\rho_{\ell}} \qquad (7)$$

여기서, A_P : 풀의 면적(m²)

ρℓ : 밀도(kg/m³)

7.3.5 풀 표면에서 증발되는 대기확산량 결정

(1) 풀의 표면에서 증발되는 대기확산량은 식(8)에 따라 계산한다.

$$AQ_P = 9.0 \times 10^{-4} (A_P^{0.95}) \frac{MW \times P_V}{T_P + 273}$$
(8)

여기서, AQ_P = 풀에서 증발되는 대기확산량(kg/초) P_V = 풀의 특성 온도에서 액체의 증기압(kPa) T_P = 조건 1 및 2에 따른 풀의 특성 온도(℃)

- (2) 풀의 특성 온도를 정하는 조건 1 및 2는 아래와 같다.
- (가) 조건 1

액체의 온도가 대기온도이상 비점미만에 있는 경우 풀의 특성 온도는 운전은도로 한다.

(나) 조건 2

액체의 온도가 비점이상인 경우 풀의 특성 온도는 대기압하에서의 액체의 비점으로 한다.

- 7.3.6 최대 대기확산량의 결정
 - (1) 최대 대기확산량은 식(9)에 따라 계산한다.

$$AQ = AQ_f + AQ_p \quad \cdots \qquad (9)$$

(2) 대기확산량(AQ)이 액체방출속도(L) 보다 큰 경우에는 액체방출속도로 한다.

- 8. 화학물질폭로영향지수
- 8.1 화학물질 폭로영향지수(CEI)는 <그림 3>을 이용하거나 대기안정도를 중립, 풍속을 5 m/초를 가정하여 다음 식(10)에 따라 계산한다.

$$CEI = 655.1\sqrt{\frac{AQ}{ERPG-2}} \quad \dots \tag{10}$$

여기서, ERPG-2의 단위는 mg/m³이다.

8.2 계산된 CEI가 1000을 초과하는 경우에는 CEI를 1000으로 한다.

9. 위험거리

9.1 ERPG-1, 2 또는 3 농도에 따른 위험거리(HD)는 식(11)에 따라 계산한다.

$$HD = 6551\sqrt{\frac{AQ}{ERPG}} \qquad (11)$$

여기서 위험거리(HD)의 단위는 m이다.

9.2 위험거리가 10,000 m를 초과하는 경우에는 위험거리를 10,000 m로 한다.

10. 화학물질폭로영향지수 요약서

10.1 화학물질폭로영향지수 요약서를 <별지서식>에 따라 작성한다.

<표 2> 화학물질폭로영향지수를 위한 물리적 성질

		וון בן	スコム	액체	밀도	기체밀도	C /II
화학물질	분자량	비점	증기압	@25℃	@ BP	@25°C	C_P/H_V
		${\mathbb C}$	kPa	kg/m³	kg/m³	kg/m³	1/℃
아크로레인	FC 0C	F0 F	25.000				
(Acrolein)	56.06	52.5	35.866	834.4			
아크릴산	70.00	1 /1 /	0.500	10400			
(Acrylic acid)	72.06	141.4	0.539	1046.0			
아크릴로니트릴	50.00	77.0	10.000	001.0			
(Acrylonitrile)	53.06	77.2	13.900	801.0			
염화알릴	70.50	44.0	40,400	001.4			
(Allyl chloride)	76.53	44.8	48.480	931.4			
암모니아	17.00	00.4	1000 000	200.0	CO 4 O	7.70	4.015.00
(Ammonia)	17.03	-33.4	1002.800	602.3	684.0	7.79	4.01E-03
벤젠	F0.11	00.1	10.000	0.00 0			
(Benzene)	78.11	80.1	12.690	869.8			
브롬	150.01	50.5	00.055	0105.0			
(Bromine)	159.81	58.7	28.375	3105.0			
부타디엔	7 400		224 222	21.10	251.0	2.20	5 00 D 00
(Butadiene)	54.09	-4.4	281.090	614.9	651.0	6.69	5.92E-03
이황화탄소	50.4.4	12.0	10.100	1050.0			
(Carbon disulfide)	76.14	46.3	48.120	1256.0			
일산화탄소	20.04	404 =	2225 222				
(Carbon monoxide)	29.01	-191.5	2807.000				
사염화탄소	150.00	5 2.0	15.100	1505.0			
(Carbon tetrachloride)	153.82	76.8	15.162	1585.0			
염소	5 0.04	0.4.0	55 0.040	1000 0	1500.0	25.05	0.0572.00
(Chlorine)	70.91	-34.0	778.340	1399.0	1562.0	25.07	3.87E-03
염화크로로아세틸	11004	1000	0.000	14100			
(Chloroacetyl chloride)	112.94	106.0	3.330	1412.0			
클로로포름	110.00	24 =	00.155	1.400.0			
(Chloroform)	119.38	61.7	26.175	1480.0			
크로로피크린	10:00	4.0.5	0.075	10100			
(Chloropicrin)	164.38	112.0	3.356	1648.0			
염화삼불화에틸렌				4055			
(Chlorotrifluoroethylene)	116.47	-28.2	641.260	1290.0	1472.0	35.13	7.98E-03
(Sinor our madrocury rene)			I			1	

		.ul =l	7 =1 61	액체	밀도	기체밀도	0 /11
화학물질	분자량	비점	증기압	@25°C	@ BP	@25°C	C_P/H_V
		${\mathbb C}$	kPa	kg/m³	kg/m³	kg/m³	1/℃
크로톤알데히드	70.09	102.4	4.787	848.9			
(Crotonaldehyde)	70.09	102.4	4.707	040.9			
디메틸아민	45.08	6.9	205.460	649.7	671.0	3.96	4.89E-03
(Dimethylamine)	45.00	0.9	200,400	043.7	071.0	3.30	4.03E 03
에피크로로히드린	92.52	116.4	2.279	1175.0			
(Epichlorohydrin)	34.04	110.4	2,213	1175.0			
염화에틸	64.51	12.3	159.950	892.1	910.0	4.40	4.31E-03
(Ethyl chloride)	04.01	12.0	100.000	032.1	310.0	4.40	4.0112 00
이염화에틸렌	98.96	83.5	10.590	1246.0			
(Ethylene dichloride)	30.30	00.0	10.000	1240.0			
산화에틸렌	44.05	10.5	174.010	866.8	887.0	3.25	3.65E-03
(Ethylene oxide)	11.00	10.0	174.010	000,0		0.20	0.00L 00
브롬화수소	80.91	-66.7	2358.800	1762.0	2199.0	95.46	5.66E-03
(Hydrogen bromide)	00.01		2000.000	1102.0	2100.0	30.10	0.001 00
염화수소	36.46	-85.0	4773.100	805.2	1188.0	113.0	9.81E-03
(Hydrogen chloride)	00.10		1110.100	000.2	1100.0	110.0	0.012 00
시안화수소	27.03	25.7	98.780	679.6	679.0	1.14	2.83E-03
(Hydrogen cyanide)							
불화수소	20.01	19.6	122.740	981.5	991.0	1.15	4.24E-03
(Hydrogen fluoride)							
황화수소	34.08	-60.3	2020.800	767.3	929.0	34.30	5.26E-03
(Hydrogen sulfide)							
메틸아크릴로니트릴	67.09	90.3	9.477	794.9			
(Methacrylonitrile)							
메타놀	32.04	64.5	16.950	786.0			
(Methanol)							
메틸아민	31.06	-6.3	348.440	655.2	694.0	4.66	3.92E-03
(Methylamine) 염화메틸							
	50.49	-24.1	576.540	915.7	1014.0	13.12	4.19E-03
(Methyl chloride) 메틸머캅탄							
	48.11	6.0	201.820	858.6	884.0	4.12	3.87E-03
(Methyl mercaptan) 페놀							
	94.11	181.9	0.055	1070.0			
(Phenol)							

		비점	증기압	액체	밀도	기체밀도	C /II
화학물질	분자량			@25℃	@ BP	@25°C	C_P/H_V
		${\mathbb C}$	kPa	kg/m³	kg/m³	kg/m³	1/℃
포스겐	98.92	7.5	189.900	1360.0	1403.0	7.96	4.32E-03
(Phosgene)	30.34	1.0	109.300	1300.0	1403.0	1.30	4.02E 00
산화프로필렌	58.08	34.2	71.670	823.2			
(Propylene oxide)	50,00	04.4	71.070	020.2			
스틸렌	104.15	145.2	0.841	901.6			
(Styrene)	104.15	140.2	0.041	901.0			
황화불화물	102.06	-55.2	1747.100	1318.0	1702.0	97.38	9.57E-03
(Sulfuryl fluoride)	102.00	30.4	1747.100	1310.0	1702.0	31.30	9.57E 05
이산화황	64.06	-10.0	392.850	1353.0	1444.0	10.86	3.91E-03
(Sulfur dioxide)	04.00	10.0	332,000	1000.0	1444.0	10.00	0.0112 00
삼산화황	80.06	44.4	35.688	1904.0			
(Sulfur trioxide)	00.00	77.7	30.000	1304.0			
톨루엔디이소시안네이트	174.16	252.9	0.002	1211.0			
(Toluene diisocyanate)	174.10	404.0	0.002	1211.0			
트리메틸아민	59.11	2.9	221.160	624.8	653.0	5.68	6.15E-03
(Trimethylamine)	00.11	2.5	221.100	024.0	000.0	0.00	0.1012 00
비닐아세테이트	86.09	72.8	15.280	924.7			
(Vinyl acetate)	00.03	12.0	10.200	34.1			
염화비닐	62.50	-13.8	395.140	902.1	972.0	10.90	3.88E-03
(Vinyl chloride)	02.00	10.0	000.140	504.1	314.0	10.50	0.0015 00
염화비닐리디엔	96.94	31.7	79.517	1203.0			
(Vinylidene chloride)	50.54	01.7	10.011	1200.0			

<그림 3> 대기확산량 대 화학물질폭로영향지수

<별지서식>

화학물질 폭로영향지수 요약서

사업장명 :	단위공장명 :	주소 :	
화학물질명 :		공장내 총보유량 :	(톤)
최대 보유설비 :	압력 :	(kPa) 온도	: (°C)
1. 평가된 시나리오 :			
2. 대기확산량(AQ) :			(kg/초
3. 화학물질폭로영향>	지수(CEI) :		
4. 위험거리			
		농도(mg/m³)	위험거리(m)
]	ERPG-1		
]	ERPG-2		
]	ERPG-3		
5. 주변 환경에 대한	거리(m)		
	공공		
	공장내 다른설비		
	다른회사 공장		
6. CEI와 HD에 대한	회사의 기준 설정		
		최소화 대책을 강구하고 검토 7 공공의 관심과 요구사항에	
작성자 :	부 직위 	성명 	서명
검토자 :	부 직위 	성명	서명
공장장: 성명	서명		

<부록 1>

화학물질폭로영향지수 검토절차

- 1. 공장이나 설비에 대해 보다 상세한 검토가 필요한 경우에는 현장을 접촉하여 재검토 일정을 수립한다.
- 2. 재검토 단계에는 다음 3가지 요소가 포함되어야 한다.
 - (1) 예비검토 작업단계
 - (2) 화학물질폭로영향지수 재검토 제안서 작성
 - (3) 공식적인 재검토
- 3. 예비 검토작업 단계
 - (1) 이 단계는 잠재적인 누출을 제거, 감소 또는 영향을 완화하기 위하여 무엇을 할것인가와 실제로 초점을 어떻게 맞출 것인가를 설정하기 위해 실시한다.
 - (2) 공식적인 재검토일 2주 이전에 1~2시간 정도 실시한다.
 - (3) 이 단계에서 검토할 수 있는 주제들은 다음과 같다.
 - (가) 각각의 시나리오, 방어선, 완화조치 및 재검토 팀이 개선을 위한 계획
 - (나) 과거 누출사고에 대한 토의
 - (다) 공장 운전원들과의 면담 시나리오에 대한 운전원들의 인지상태, 비상조치 절차의 사용여부 등에 대하여 면담한다.
 - (라) 가상누출시나리오에 대한 훈련 및 평가
 - (마) 가장 큰 CEI를 갖는 설비 및 배관 검사
 - (바) 각 CEI 시나리오에 관한 서류검토
 - ① 과거 가상훈련 기록
 - ② 지역감시 시스템의 기록
 - ③ 유지관리 점검표
 - ④ 운전교육훈련

- (4) 보고서에는 면담, 가상훈련, 검사 및 서류검토 내용을 포함하여 작성하여야 한다.
- 4. 화학물질폭로 검토 제안서
- 4.1 제안서는 적어도 1주일전에 검토팀원 각각에 전달되어야 한다.
- 4.2 제안서에는 다음의 내용이 포함되어야 한다.
 - (1) 모든 화학물질 및 시나리오에 대한 화학물질폭로영향지수 요약서
 - (2) 가장 큰 화학물질폭로영향지수를 갖는 시나리오에 대한 다음이 포함된 공정도
 - (가) 설명, 기기번호, 크기 및 내용물 등을 포함한 모든 용기
 - (나) 직경, 기기사이의 배관길이, 자동밸브 등
 - (3) 가장 큰 화학물질폭로영향지수를 갖는 다음 사항이 포함된 각각의 화학물 질 누출사고 시나리오 설명서
 - (가) 최근 감사이후 변경내용 설명서
 - (나) 시나리오가 발생될 경우 방어선 또는 취해져야 할 조치에 대한 설명서
 - (다) 스필 또는 다이크의 크기를 포함한 완화방법에 대한 설명서
 - (4) ERPG-1, 2, 및 3 농도에 대한 위험거리를 원으로 표시한 배치도 또는 지도
 - (5) 누출을 감지하기 위한 가스검지기, 누출검지기 등이 표시된 배치도
 - (6) 완료된 제한 및 상응 점검표
 - (7) 지난 검토시 권고된 내용의 목록 및 실행 현황
 - (8) CEI 시나리오에 기초한 가상훈련 보고서
 - (9) 근로자 면담 결과 보고서
 - (10) 각 CEI 시나리오 발생원에 대한 공장내 검사보고서

- 4.3 예비검토 작업 단계를 거치지 않은 경우 4.2 (9) (10)은 공식적인 검토시에 실시한다.
- 5. 공식적인 검토
- 5.1 예비작업 단계를 거치지 않은 경우 공식적인 발표전에 다음 4가지 활동이 선행되어야 한다.
 - (1) 가상훈련
 - (2) 근로자 면담
 - (3) 각 시나리오에 대한 현장검사
 - (4) 서류검토
- 6. 검토 주제제안
- 6.1 지난번 검토시 권고사항에 대한 현황 요약한다.
- 6.2 누출배경, 사고조사보고서 및 후속조치 보고서 등을 포함한 검토되는 화학물 질이 관련된 사고에 대해 토의한다.
- 6.3 ERPG-1, 2, 3에 대한 위험거리를 포함한 CEI 계산 결과 요약한다.
- 6.4 가장 큰 CEI 시나리오에 대해 검토한다.
 - (1) 최근 감사이후 변경내용 설명서
 - (2) 시나리오가 발생될 경우 방어선 또는 취해져야 할 조치에 대한 설명서
 - (3) 스필 또는 다이크의 크기를 포함한 완화방법에 대한 설명서
- 6.5 감사전에 실시한 가상훈련 결과에 대해 토의한다.
- 6.6 감사전에 실시한 근로자 면담결과에 대해 토의한다.
- 6.7 각각의 CEI에 대한 현장검사 결과를 검토한다.
- 6.8 서류검토 결과에 대하여 토의한다.

- 6.9 감사결과로부터 작성된 CEI에 대해 토의한다.
- 6.10 운전 개선계획에 대하여 토의한다.
- 6.11 CEI 검토에서 파악되지 못한 것들이 있는 지를 확인한다.
- 7. 보고서를 작성하여 경영자에게 제출한다.

<부록 2>

제한 및 최소화 점검표

이 점검표는 독성물질의 누출, 검지 및 제어를 하기 위한 설비의 최소화 조치를 평가하기 위한 공정위험성평가를 위한 도구이다.

완료되었거나, 운전상 또는 회사의 규정, 지침, 요구사항에 맞는 지를 체크하시오. 필요한 경우 완료율을 %로 기재할 수 있으며, 완료되지 않은 항목들에 대한 토론계획을 수립하시오.

완료	위 험 감 소 인 자
	1. 모든 압력용기와 안전장치들이 등록되고 적절한 시기에 검사되고 있으며 문서화되었는지 여부(열팽창이음과 유리기구들이 없음)
	2. 정기적인 모든 호스들의 검사 및 시험 여부
	3. 모든 운전제어 시스템이 "FAIL SAFE"로 설계 및 시험 여부
	4. 보완적인 액위 및 온도가 높은 경우 보조적 경보, 운전정지 등 주요 계기에 관리계획의 갱신 여부
	5. 운전원의 숙련여부 및 최근 자료의 숙련 여부
	6. 가스검지기가 적절히 배치되어 있고 정기적으로 시험하는 지 여부
	7. 치사물질, 용접 등에 적절한 엔지니어링 사양의 적용 여부
	8. 독성물질을 취급하는 용기에 설치된 안전밸브의 토출이 대기방출을 최소화 하도록 설계되었는지 여부. 어떻게? (순환), 스크라바, 후레아 또는 기타
	9. 필요한 곳에 X-RAY시험, 진동분석 또는 감시, 음향탐상, 배관의 유연성 등 고장 분석과 비파괴 시험을 실시하고 있는 지의 여부
	10. 차량이나 크레인 등이 충돌하지 않도록 하기 위한 방호설비 설치 여부
	11. 배관, 탱크카 및 트럭 등 필요한 곳에 과압에 대비한 설계 여부
	12. 모든 근로자가 위험성과 비상대응을 이해하도록 훈련하였는 지의 여부
	13. 화학물질 폭로에 대한 비상조치절차가 되어 있고 매년 훈련하고 있는 지의 여부

완료		위 험 감 소 인 ㅈ	}							
	14. 안전규정과 표준을 정기적으로 재검토하여 시행하고 있는 지의 여부									
	15. 손실방지 원칙과 최소한의 요구사항들이 적절하게 적용되고 있는 지의 여부									
	16. 반응성 화학물질에 대한 검토가 완료되고 갱신되는 지의 여부									
	17. 손실방지에 대한 감사가 완료되고 갱신되는 지의 여부									
	18. 제3자에 의한 감사가 실시되는 지의 여부									
	19. 모든 신규설비나 변경설비를 운전전에 시운전전 감사를 실시하고 있는 지의 여부									
20. 변경관리 절차가 마런되고 있고 시행하고 있는지 여부										
점검자 : 소	·속 성명	서명	일자							
검토자: 소	성명	 서명	일자							

안전보건기술지침 개정 이력

□ 개정일 : 2023. 8. 24.

○ 개정자 : 안전보건공단 전문기술실 오상규

○ 개정사유 : 산업안전보건법 관련 법령조항 삭제

○ 주요 개정내용

- (1. 목적) 산업안전보건법 제 49조의2, 같은 법 시행규칙 제130조의 2 규 정에서 정하고 있는"법령 내용 삭제