Lab00-Solution

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2020.

* If there is any problem, please contact TA Yiming Liu.

1. Prove that for any integer n > 2, there is a prime p satisfying n . (Hint: consider a prime factor <math>p of n! - 1 and prove by contradiction)

Proof.

Claim 1: For any integer n > 2, n! - 1 > n.

Since n > 2, n! > 2n = n + (n-1) + > n + 1, which is equivalent to n! - 1 > n.

Claim 2: $\forall n \in \mathbb{N}$ with $n \geq 2$, n has prime factorizations.

The proof for this can be found in Slide01-Prologue.pdf

If n! - 1 is a prime, p = n! - 1 will satisfy n . If <math>n! - 1 is not a prime, assume it's prime factor p satisfies $2 \le p \le n$.

$$\frac{n!-1}{p} = \frac{1 \times 2 \times 3 \times \dots \times (p-1) \times p \times (p+1) \times \dots \times n-1}{p}$$
$$= 1 \times 2 \times 3 \times \dots \times (p-1) \times (p+1) \times \dots \times n-\frac{1}{p}$$

Since $\frac{n!-1}{p}$ is not an integer, p is not a factor of n!-1, which is a contradiction. Therefore, n

2. Use the minimal counterexample principle to prove that for any integer n > 17, there exist integers $i_n \ge 0$ and $j_n \ge 0$, such that $n = i_n \times 4 + j_n \times 7$.

Proof. If $P(n) = n = i_n \times 4 + j_n \times 7$ is not true for every integer n > 17, then there are values of n for which P(n) is false, and there must be a smallest such value, say n = k.

Since $P(18) = 18 = 1 \times 4 + 2 \times 7$, we have $k \ge 18$, and $k - 1 \ge 17$.

Since k is the smallest value for which $P(k) = k = i_k \times 4 + j_k \times 7$ is false, $P(k-1) = k-1 = i_{k-1} \times 4 + j_{k-1} \times 7$ is true.

However, we have

$$k = (k-1) + 1$$

$$= i_{k-1} \times 4 + j_{k-1} \times 7 + 1$$

$$= (i_{k-1} + 2) \times 4 + (j_{k-1} - 1) \times 7$$

$$= (i_{k-1} - 5) \times 4 + (j_{k-1} + 3) \times 7$$

 $\triangle As n > 17,$

if $j_{k-1} \ge 1, k = (i_{k-1} + 2) \times 4 + (j_{k-1} - 1) \times 7;$

if $j_{k-1}=0, k=(i_{k-1}-5)\times 4$, we have $20=5\times 4$ which is the smallest n=20 with $j_n=0$.

Thus, one of these two expressions must be true. We have derived a contradiction, which allows us to conclude that our original assumption is false.

3. Let $P = \{p_1, p_2, \dots\}$ the set of all primes. Suppose that $\{p_i\}$ is monotonically increasing, i.e., $p_1 = 2, p_2 = 3, p_3 = 5, \dots$ Please prove: $p_n < 2^{2^n}$. (Hint: $p_i \nmid (1 + \prod_{j=1}^n p_j), i = 1, 2, \dots, n$.)

Proof. (a) i = 1: It can be easily verified that $p_i = 2 < 2^{2^2}$

(b) Assume that $p_i < 2^{2^t}$ for $\forall i \leq k$, then we have

$$\prod_{i=1}^{k} p_i < 2^{\sum_{i=1}^{k} 2^i} = 2^{2^{k+1}-2}$$

hence

$$\prod_{i=1}^{k} p_i + 1 < 2^{2^{k+1}-2} + 1 < 2^{2^{k+1}}$$

since $p_i \nmid \left(1 + \prod_{j=1}^k p_j\right)$, $i = 1, 2, \dots, k$, we set p^* as the largest prime factor of $\left(1 + \prod_{i=1}^k p_i\right)$ and we have

$$p_{k+1} \le p^* \le 1 + \prod_{i=1}^k p_i < 2^{2^{k+1}}$$

Remark: The hint is obvious since $\forall i \in \{1, 2, \dots, n\}$

$$\frac{1\backslash \prod_{j=1}^{n} p_j}{p_i} = \frac{1}{p_i} + \prod_{j=1}^{i-1} p_j \prod_{k=i+1}^{n} p_k$$

where the result is not an integer since $\frac{1}{p_i} \notin \mathbb{Z}$ but $\left(\prod_{j=1}^{i-1} p_j \prod_{k=i+1}^n p_k\right) \in \mathbb{Z}$.

4. Prove that a plane divided by n lines can be colored with only 2 colors, and the adjacent regions have different colors.

Proof. Define P(n) as the statement that "a plane divided by n lines can be colored with only 2 colors, and the adjacent regions have different colors."

Basis step. When n = 1, obviously the plane could be colored with 2 colors, P(1) is true.

Induction hypothesis. P(k) is true for $k \geq 2$.

Proof of induction step. When n = k + 1, the plane can be divided into 2 parts (lets denote them as A and B) by the $k + 1^{th}$ line. We simply swap colors of regions in A and keep colors of regions in B the same. And P(k + 1) is true.

Remark: You need to include your .pdf and .tex files in your uploaded .rar or .zip file.