All You Need Is A Good Init

HAI 소성민 2020.08.08

Why?

- initialize all the weight to 0?
 - symmetry problem
- initialize big random values?
 - exploding gradient problem
- initialize small random values?
 - vanishing gradient problem

Notes: https://towardsdatascience.com/why-better-weight-initialization-is-important-in-neural-networks-ff9acf01026d

First, pre-initialize weights of each convolution or inner-product layer with orthonormal matrices.

Second, proceed from the first to the final layer, normalizing the variance of the output of each layer to be equal to one.

Independently, Saxe et al. (2014) showed that orthonormal matrix initialization works much better for linear networks than Gaussian noise, which is only approximate orthogonal.

It also work for networks with non-linearities.

Algorithm 1 Layer-sequential unit-variance orthogonal initialization. L – convolution or full-connected layer, W_L - its weights, B_L - its output blob., Tol_{var} - variance tolerance, T_i – current trial, T_{max} – max number of trials.

```
Pre-initialize network with orthonormal matrices as in Saxe et al. (2014) for each layer L do while |Var(B_L) - 1.0| \ge Tol_{var} and (T_i < T_{max}) do do Forward pass with a mini-batch calculate Var(B_L) W_L = W_L / \sqrt{Var(B_L)} end while end for
```

while
$$|Var(B_L) - 1.0| \ge Tol_{var}$$

while
$$|Var(B_L) - 1.0| \ge Tol_{var}$$

$$|Var(B_L) - 1.0| < Tol_{var}$$

Algorithm 1 Layer-sequential unit-variance orthogonal initialization. L – convolution or full-connected layer, W_L - its weights, B_L - its output blob., Tol_{var} - variance tolerance, T_i – current trial, T_{max} – max number of trials.

```
Pre-initialize network with orthonormal matrices as in Saxe et al. (2014) for each layer L do while |Var(B_L) - 1.0| \ge Tol_{var} and (T_i < T_{max}) do do Forward pass with a mini-batch calculate Var(B_L) W_L = W_L / \sqrt{Var(B_L)} end while end for
```

$$W_L = W_L / \sqrt{Var(B_L)}$$

$$W_l * X_i = B_i$$

$$\operatorname{Var}\left(\frac{W_{l}}{\sqrt{\operatorname{Var}\left(B_{i}\right)}}X_{i+1}\right)$$

$$\left(\frac{1}{\sqrt{\operatorname{Var}(B_i)}}\right)^2 \operatorname{Var}(W_l \ X_{i+1})$$

$$\frac{1}{\operatorname{Var}(B_i)}\operatorname{Var}(W_lX_{i+1}) = \operatorname{Var}(B_{i+1}^{scale})$$

Experimental Validation

Network	CIFAR-10, [%]	CIFAR-100,[%]	Network	layers	params	Error, %
Fitnet4-LSUV	93.94	70.04 (72.34†)	FitNet-like networks			
Fitnet4-OrthoInit	93.78	70.44 (72.30†)	HighWay-16	10	39K	0.57
Fitnet4-Hints	91.61	64.96	FitNet-Hints	6	30K	0.51
Fitnet4-Highway	92.46	68.09	FitNet-Ortho	6	30K	0.48
ALL-CNN	92.75	66.29	FitNet-LSUV	6	30K	0.48
DSN	92.03	65.43	FitNet-Ortho-SVM	6	30K	0.43
NiN	91.19	64.32	FitNet-LSUV-SVM	6	30K	0.38
maxout	90.62	65.46	State-of-art-networks			
MIN	93.25	71.14	DSN-Softmax	3	350K	0.51
Extreme data augmentation			DSN-SVM	3	350K	0.39
Large ALL-CNN	95.59	n/a	HighWay-32	10	151K	0.45
Fractional MP (1 test)	95.50	68.55	maxout	3	420K	0.45
Fractional MP (12 tests)	96.53	73.61	MIN ²	9	447K	0.24

Experimental Validation

Init method	maxout	ReLU	VLReLU	tanh	Sigmoid
LSUV	94.16	92.82	93.36	89.17	n/c
OrthoNorm	n/c	91.42	n/c	89.31	n/c
Xavier	n/c	92.48	93.34	89.62	n/c
MSRA	n/c	n/c	n/c	88.59	n/c

Compare with Batch Normalization

- LSUV Algorithm -> weight values
- Batch Normalization -> input data

Paper: https://arxiv.org/pdf/1502.03167.pdf

Notes: https://www.facebook.com/groups/TensorFlowKR/permalink/1022513991422992/

Compare with Batch Normalization

Pros and Cons

Table 6: Time needed for network initialization on top of random Gaussian (seconds).

Network	Init			
	OrthoNorm	LSUV		
FitNet4	1	.4		
CaffeNet	188	210		
GoogLeNet	24	60		