2. tétel

Nagy Dániel 2019. június 9.

Kivonat

Bootstrap módszerek. A maximum likelihood módszer. Hipotézis tesztelés. Extrém statisztikák. Post hoc analízis. Regresszió. Függetlenségvizsgálat. Egzakt tesztek.

1. Bevezetés

1.1. Valószínűségszámítás alapfogalmak

- Eseménytér (ez egy abstrakt fogalom): $\Omega = \{\omega_1, \omega_2, ..., \omega_n\}$ pl. kockadobás esetén $\Omega = \{\omega_1 = \text{"lest dobok"}, \omega_2 = \text{"2est dobok"}, \omega_3 = \text{"párosat dobok"}...\}$
- Valószínűségi változó: $X: \Omega \to \mathbb{R}$ pl. kockadobás esetén $X(\omega_1) = 1, X(\omega_2) = 2, ...$
- Valószínűség: P egy mérték, amely Ω részhalmazaihoz számot rendel:
 - $-P:\mathcal{P}(\Omega)\to\mathbb{R}$
 - $-P(\Omega) = 1$ és $P(\emptyset) = 0$
 - $-0 \le P(A) \le 1 \ \forall A \in \Omega$
 - Ha A_1, A_2, \dots diszjunkt részhalmazai Ω -nak, akkor

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

- Hasznos összefüggések:
 - $-P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - Két esemény független $\Longleftrightarrow P(A\cap B) = P(A)P(B)$
 - $-P(A|B) = \frac{P(A \cap B)}{P(B)}$
 - Teljes valószínűség: Ha A_1,A_2,\dots az Ω egy felosztása, akkor

$$P(B) = \sum_{k} P(B|A_k)P(A_k)$$

– Bayes-tétel: Ha A_1, A_2, \dots az Ω egy felosztása, akkor

$$P(A_k|B) = \frac{P(B|A_k)P(A_k)}{P(B)} = \frac{P(B|A_k)P(A_k)}{\sum_{j} P(B|A_j)P(A_j)}$$

• Eloszlásfüggvény (CDF - cumulative distribution function):

$$F_X(x) = P(X < x) = P(\{\omega \in \Omega | X(\omega) < x\})$$

diszkrét esetben

$$F_X(x) = P(X = x) = P(\{\omega \in \Omega | X(\omega) = x\})$$

2

Ha az X változó F eloszlást követ, akkor így jelöljük: $X \sim F$.

• Sűrűségfüggvény (PDF - Probability density function): Ha az X változó eloszlásfüggvénye $F_X(x)$, akkor a sűrűségfüggvény definíciója

$$F_X(x) = \int_{-\infty}^x \rho_X(\xi) d\xi \iff P(a \le X(\omega) \le b) = \int_a^b \rho_X(x) dx$$

Megjegyzés: sűrűségfüggvénye csak folytonos eloszlású valószínűségi változónak van.

• Várható érték

folytonos eset
$$E(X) = \langle X \rangle = \int_{-\infty}^{\infty} x \rho(x) dx$$

diszkrét eset $E(X) = \langle X \rangle = \sum_{k} x_{k} p_{k} = \sum_{k} x_{k} P(X = x_{k})$

• Várható értékre vonatkozó azonosságok:

– Ha
$$Y=g(X)\Rightarrow E(Y)=E(g(X))=\int\limits_{-\infty}^{\infty}g(x)\rho(x)\mathrm{d}x$$
 – $E\left(\sum_{k}a_{k}X_{k}\right)=\sum_{k}a_{k}E(X_{k})$ – Ha $X_{1},X_{2},...$ független változók, akkor $E\left(\prod_{k}X_{k}\right)=\prod_{k}E(X_{k})$

• Variancia (szórásnégyzet)

Ha $E(X) = \mu$, akkor a szórásnégyzet a változó és a várható értéke közötti különbség négyzetének várható értéke:

$$\sigma^2(X) = V(X) = E((X - \mu)^2) = \langle (X - \mu)^2 \rangle = \langle X^2 \rangle - \mu^2$$

• Ha $X_1, X_2, ...$ függetlenek, akkor

$$\sigma^2 \left(\sum_k (a_k X_k + b_k) \right) = \sum_k a_k^2 \sigma^2(X_k)$$

• Szórás (standard deviation) definíciója:

$$\sigma(X) = \sqrt{\sigma^2(X)} = \sqrt{\langle X^2 \rangle - \langle X \rangle^2}$$

Minta

Matematikailag egy statisztikai minta megfelel N darab azonos eloszlású, független (iid) változónak egy adott F eloszlásból.

• Minta átlaga: $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i \ (p_k$ -t a relatív gyakorisággal közelítjük)

- Minta varianciája: $s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (X_i \overline{X})^2$, standard hibája $SE = \sqrt{s^2}$. A nevezőben az N-1 faktor az ún. Bessel-korrekció [1].
- Megjegyzés: Ha egy teljes populáció esetén $E(X) = \mu$ és $V(X) = \sigma^2$, attól még általában $\overline{X} \neq \mu$ illetve $s^2 \neq \sigma^2$.
- Egy minta esetében \overline{X} , s^2 , SE maguk is valószínűségi változók, hiszen minden mintavételezés esetén más-más értéket vehetnek fel. Ezért van értelme arról beszélni, hogy pl. s^2 értéke milyen eloszlást követ. Ha a minta (mérési pontok) iid változók, és $E(X_i) = \mu$, $V(X_i) = \sigma^2$, akkor

$$E(\overline{X}) = \mu$$

$$V(\overline{X}) = \sigma^2/N$$

$$E(s^2) = \sigma^2$$

1.2. Statisztikai következtetés (inference)

- Az alapprobléma: van egy adathalmaz, ami tartalmazza a méréseket. Ezek $X_1, X_2, ..., X_N \sim F$ független, azonos F eloszlást követő valószínűségi változók.
- A statisztikai következtetés feladata, hogy a minta alapján meghatározzuk az F eloszlásfüggvényt. Ezzel ekvivalens, ha F helyett a ρ sűrűségfüggvényt határozzuk meg.
- \bullet Ehhez használhatunk parametrikus és nem-parametrikus modelleket. A parametrikus modell egy olyan \mathcal{F} halmaz, ami a lehetséges PDF-eket tartalmazza:

$$\mathcal{F} = \{ \rho(x|\theta) : \theta \in \Theta \},\$$

ahol Θ a lehetséges paraméterek halmaza. Pl. ha normális eloszlást feltételezünk, akkor a parametrikus modell

$$\mathcal{F} = \left\{ \rho(x|\mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) : \mu \in \mathbb{R}, \sigma > 0 \right\},\,$$

a feladat pedig μ és σ meghatározása. Nem-parametrikus modellek azok, amelyeket nem lehet véges számú valós paraméterrel definiálni, pl. $\mathcal{F} = \{az \text{ összes létező PDF}\}.$

2. Bootstrap módszerek

2.1. Jackknife módszer

3. Maximum likelihood

A maximum likelihood módszer egy olyan becslési eljárás, amelynek segítségével egy parametrikus modell paramétereinek értékét próbáljuk a minta alapján meghatározni. Ehhez felírjuk

az ún. likelihood-függvényt, ami azt fejezi ki, hogy a mért adatok esetén mekkora a valószínűsége a θ paramétereknek. Ha a változó elposzlása ismert, akkor ezzel megadható a likelihood függvény:

diszkrét változóra:
$$\mathcal{L}(\theta) = P(X = x | \theta)$$
 folytonos változóra: $\mathcal{L}(\theta) = \rho(x | \theta)$

A gyakorlatban sokszor a log-likelihood függvényt vagy az átlagolt log-likelihood függvényt használjuk:

$$\ell(\theta|x) = \ln \mathcal{L}(\theta|x)$$
$$\hat{\ell}(\theta|x) = \frac{1}{N} \ln \mathcal{L}(\theta|x)$$

A maximum likelihood módszer lényege, hogy megkeressük azt a θ paramétert, ami a likelihood függvényt maximalizálja:

$$\hat{\theta}_{MLE} = \operatorname*{argmax}_{\theta \in \Theta} \mathcal{L}(\theta | x_1, x_2, ..., x_N)$$

Példa: normális eloszlás paraméterei

$$\rho(x|\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Ezért egy N elemű minta esetén azt feltételezve, hogy a mintát egy normális eloszlást követő populációból vesszük, az N minta sűrűségfüggvénye:

$$\rho(x_1, x_2, ..., x_N | \mu, \sigma^2) = \prod_{i=1}^N \rho(x_i | \mu, \sigma^2) = \prod_{i=1}^N \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$
$$= \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left(-\frac{\sum_{i=1}^N (x_i - \mu)^2}{2\sigma^2}\right) = \mathcal{L}(\mu, \sigma^2)$$

A log-likelihood függvény pedig

$$\ell(\mu, \sigma^2) = \ln \mathcal{L}(\mu, \sigma^2) = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (x_i - \mu)^2$$

Ahhoz, hogy megkapjuk a $\hat{\mu}_{MLE}$ és $\hat{\sigma}_{MLE}$ becsült paramétereket, az alábbi két egyenletet kell megoldani:

$$\frac{\partial \ell(\mu, \sigma^2)}{\partial \mu} = 0$$
$$\frac{\partial \ell(\mu, \sigma^2)}{\partial \sigma} = 0$$

Ha ezeket megoldjuk, az jön ki, hogy $\hat{\mu}_{MLE} = \overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$ és $\hat{\sigma}_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$.

4. Extrém statisztikák

5. Post-hoc analízis

6. Regresszió

Tegyük fel, hogy a megfigyelt adathalmaz $\{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$. Ekkor az X a független változó (feature variable, predictor, regressor), Y pedig a függő változó (outcome, response variable). Az r(X) regressziós függvény az Y várható értéke X függvényében:

$$r(x) = E(Y|X=x)$$

- Ha r(x) megadható véges számú valós paraméterrel, akkor **parametrikus regresszió**ról beszélünk.
- ullet Ha Y meghatárzása a cél, ismert X esetén, akkor **predikció**ról beszzélünk.
- \bullet HaYdiszkrét (pl. kutya vagy macska látható a képen), akkor **klasszifikáció**ról beszélünk.
- Ha a cél az r(x) görbe meghatározása, akkor **regresszió**ról vagy **görbeillesztés**ről beszélünk.

7. Hipotézistesztelés

A hipotézistesztelés lényege, hogy a rendelkezésre álló adatok alapján egy feltevés (hipotézis) igazságtartalmára akarunk kijelentést tenni. Fontos, hogy a feltevés a teljes populációra vonatkozik, tehát egy hipotézis elfogadásának vagy elutasításának mindig van valamennyi bizonytalansága. Példák: 1. Dobunk egy dobókockával 100-szor, majd feltesszük azt a hipotézist, hogy a dobott számok egyenletes eloszlást követnek. 2. Megnézzük 1000 ember jövedelmét majd feltételezzük, hogy a jövedelem olyan lognormális eloszlást követ, amelyre $\mu=150000 {\rm HUF}$ és $\sigma=50000 {\rm HUF}$.

Formális definíció:

- A Θ paraméter-teret felosztjuk Θ_0 és Θ_1 -re. $(\Theta_0 \cup \Theta_1 = \Theta, \Theta_0 \cap \Theta_1 = \emptyset)$
- A nullhipotézis $H_0: \theta \in \Theta_0$
- Az alternatív hipotézis $H_1: \theta \in \Theta_1$
- Az összegyűjtött $X \in \mathcal{X}$ adatok alapján akarjuk a hipotézist eldönteni.
- Az elvetési régió (rejection region) egy $R \subset \mathcal{X}$ halmaz, amelyre

$$X \in R \Rightarrow H_0$$
-t elvetjük és elfogadjuk H_1 -et $X \notin R \Rightarrow H_0$ -t elfogadjuk

 \bullet Egy tesztfüggvény (test statistic) egy $T:\mathcal{X}\to\mathbb{R}$ függvény, amelyre az elvetési régió így írható:

$$R = \{ x \in \mathcal{X} | T(x) > c \},$$

ahol c a teszt kritikus értéke.

- ullet A hipotézis tesztelés lényege keresni egy olyan T-t és c-t, amivel a legjobb (legkevésbé káros) döntést hozhatjuk.
- 7.1. z-teszt
- 7.2. t-test
- 7.3. Konfidenciaintervallumok
- 8. Függetlenségvizsgálat, χ^2 -próba

Hivatkozások

[1] Bessel's correction https://en.wikipedia.org/wiki/Bessel%27s_correction.