Integrating Statistical Excellence in Nursing Practice: Empowering Research with JASP

Norberto E. Milla, Jr.

Department of Statistics

2025-05-28

Outline of presentation

- Quick introduction to JASP
- Descriptive statistics
- Comparing two groups
- Comparing more than 2 groups
- Correlation and regression analyses

What is and why JASP?

- Jeffrey's Amazing Statistics Program
- free, multi-platform, and open-source statistics software
- user-friendly: simple drag and drop interface, easy access menus, intuitive analysis with real-time computation and display of all results
- Uses R and C++ in the background

How to get JASP?

https://jasp-stats.org/download

Figure 1: JASP GUI

Figure 2: Sample data set

Can easily read (import) data from other softwares

- Can read data from various sources:
 - text files (.txt)
 - SPSS data files (.sav)
 - SAS data files (.sas7bdat, .sas7bcat)
 - Stata data files (.dta)
 - MS Excel files (.csv)

• JASP data files have .jasp file extension

Provides easy mechanism for data management and manipulation

- Editing data
 - JASP already has a built-in data editor
 - JASP spreadsheet is synced with the source CSV file
 - Edit data in the csv file, save, and sync it in the JASP spreadsheet
- Assigning value labels
 - Sometimes data for categorical variables are number-coded during data entry (say, 1=Female, 2=Male)
- Recoding quantitative data into qualitative form
 - Age in years to age categories/groups
 - Reverse coding (1 to 5, 2 to 4, 4 to 2, 5 to 1)
- Creating new variables from existing ones
 - Computing the logarithm of income
- Filtering observations

- Frequency distribution tables (frequency and percent) for qualitative data
- Data visualization (bar charts, histogram, correlation plots) both qualitative and quantitative data
- Summary statistics (mean, median, sd, std. error of the sample mean) for quantitative data

One-way and two-way (crosstab) frequency tables

Frequencies for Sex

Sex	Frequency	Percent	Valid Percent	Cumulative Percent
F	159	50.64	50.64	50.64
M	155	49.36	49.36	100.00
Missing	0	0.00		
Total	314	100.00		

Contingency Tables

			Overall Satisfaction				
Sex		1	2	3	4	5	Total
F	Count % within row	8.00 5.03 %	22.00 13.84 %	36.00 22.64 %	54.00 33.96 %	39.00 24.53 %	159.00 100.00 %
	70 WILLIII TOW	3.03 %	13.04 %	22.04 %	33.90 %	24.05 %	100.00 %
M	Count	19.00	23.00	37.00	54.00	22.00	155.00
	% within row	12.26 %	14.84 %	23.87 %	34.84 %	14.19 %	100.00 %
Total	Count	27.00	45.00	73.00	108.00	61.00	314.00
	% within row	8.60 %	14.33 %	23.25 %	34.39 %	19.43 %	100.00 %

Summary statistics for numerical data

Descriptive Statistics ▼

	extra			
	Drug A	Drug B		
Valid	10	10		
Missing	0	0		
Median	0.350	1.750		
Mean	0.750	2.330		
Std. Deviation	1.789	2.002		
IQR	1.875	3.275		
Minimum	-1.600	-0.100		
Maximum	3.700	5.500		

Graphical display

Graphical display

Reporting results of descriptive analysis

Demographic variables	No. of Students	Percent
Grade Level		
7	77	24.52
8	88	28.03
9	79	25.16
10	70	22.29
Sex		
Male	155	49.36
Female	159	50.64
Age (mean=14.4, sd=1.6)		
12 - 13	106	33.76
14 - 15	124	39.49
16 - 17	70	22.29
18 - 19	14	4.46
General Point Average (mean=81.9, sd=4.	.9)	
Outstanding (90-100)	34	10.83
Very Satisfactory (85-89)	48	15.29
Satisfactory (80-84)	131	41.72
Fairly Satisfactory (75-79)	99	31.53
Did Not Meet Expectations (Below 75)	2	0.64

Objective: Compare means (or medians) of two *independent* or *dependent* groups

- Research question 1: Is there a significant difference in the number of cigarettes smoked per day between males and females?
- Research question 2: Is there a difference in the pain tolerance of blonde-haired and brunette-haired women?
- Research question 3: Is there a significant reduction in the average blood sugar after 6 months of intermittent fasting?

Independent samples: units in one sample are selected independent of the units in the other sample

- For example, random sample of frontline medical personnel in Samar and another random sample of frontline medical personnel in Leyte
- A random sample of brunette-haired women and a separate random sample of blonde-haired women

Dependent (or related) samples: a unit in one sample is *paired* or *matched* with a unit in the other sample

- Use of pairs of twins: a member of a pair is given the experimental drug and the other a placebo
- A group of diabetic men participated in an experiment on the effect of intermittent fasting on blood sugar level: pre-experiment blood glucose vs post-experiment blood glucose
- One group of participants are given a pre-training evaluation and after the training they are given the (similar/parallel) post-training evaluation

T tests: compare the means of two groups/samples (IV); continuous DV

- Independent samples Student's t test: normal distribution and equal variance
- Independent samples Welch's t test: normal distribution, unequal variance
- Paired/dependent samples t test: normally distributed pairwise differences

Nonparametric alternatives to t tests

- Wilcoxon rank sum/Mann Whitney U test: alternative to Student's t test or Welch t test if normality assumption is not meet
- Wilcoxon signed rank test: alternative to paired samples t test if normality assumption about the pairwise difference is not meet

Checking assumptions of t tests

- Normality assumption: histogram, box plot, Shapiro-Wilk test
- Equal variance assumption: Box plot, Levene's test

RQ: What is the effect of smoking on infant's birth weight?

Test of Normality (Shapiro-Wilk) ▼					
		W	р		
BWT	Nonsmoker	0.987	0.344		
Smoker 0.983 0.410					
Note Signi	ficant regulte guage	et a doviation	from		

Note. Significant results suggest a deviation from normality.

 p > 0.05 indicates that the distributions of birth weights for smokers and nonsmokers are NORMAL

Test of Equality of Variances (Levene's)

	F	df ₁	df ₂	р
BWT	1.508	1	187	0.221

 p > 0.05 indicates that the birth weight distributions for smokers and nonsmokers have EQUAL variances

Independent samples t tests

Group Descriptives

	Group	N	Mean	SD	SE	Coefficient of variation
BWT	Nonsmoker	115	3054.957	752.409	70.163	0.246
	Smoker	74	2773.243	660.075	76.732	0.238

Independent Samples T-Test

	t	df	р	Cohen's d	SE Cohen's d
BWT	2.634	187	0.005	0.392	0.151

Note. For all tests, the alternative hypothesis specifies that group Nonsmoker is greater than group Smoker.

Note. Student's t-test.

• Interpretation: A Student's t test showed that mothers who smoked during pregnancy gave birth to infants who have significantly lower birth weight (M=2773g) than mothers who did not smoke during pregnancy (M=3055g), t(187)=2.63, p=0.005<0.05, Cohen's d=0.39.

Paired-samples t tests

RQ: Is there a significant reduction in body mass after a 4-week diet?

Descri	ptives	•

	N	Mean	SD	SE	Coefficient of variation
Pre diet body mass	78	72.53	8.723	0.988	0.120
Post 4 weeks diet	78	68.74	9.009	1.020	0.131

Test of	Normality	(Shapiro-Wilk)	`▼

			W	р
Pre diet body mass	-	Post 4 weeks diet	0.975	0.124

Note. Significant results suggest a deviation from normality.

• p = 0.124 > 0.05 means that the pairwise differences have normal distribution

Paired-samples t tests

Paired Samples T-Test									
Measure 1		Measure 2	t	df	р	Mean Difference	SE Difference	Cohen's d	SE Cohen's d
Pre diet body mass	-	Post 4 weeks diet	13.04	77	< .001	3.782	0.290	1.476	0.047
Note Student's t-test									

• Interpretation: On average, participants lost 3.78 kg (SE=0.29kg) body mass following a 4-week diet plan. A paired samples t-test showed that this decrease is significant (t(77) = 13.04, p<.001, Cohen's d = 1.48).

- Objective: Compare means (or medians) of three or more independent or dependent populations
- Research question: Is there a significant difference in the average waiting times (in hours) in the emergency room of three hospitals?
- Statistical method: Analysis of Variance (ANOVA)
 - method of partitioning the total variance in the DV into different components which can be attributed to different sources: effect of manipulated factors (Systematic variation), and experimental error (Random variation)
 - Assumptions: Normal distribution, Equal variance, Independence
 - Kruskal-Wallis test: if assumption of normality is not meet, or if DV is in ordinal scale

One-way ANOVA

Descriptive Statistics ▼

	Waiting time				
	Α	В	С		
Valid	20	20	20		
Missing	0	0	0		
Mean	1.150	1.925	1.620		
Std. Deviation	0.495	0.599	0.542		
Shapiro-Wilk	0.952	0.920	0.952		
P-value of Shapiro-Wilk	0.405	0.098	0.394		
Minimum	0.400	0.700	0.300		
Maximum	2.200	2.700	2.400		

Test for Equality of Variances (Levene's)

F	df1	df2	р
0.532	2.000	57.000	0.590

One-way ANOVA

ANOVA - Waiting time

Cases	Sum of Squares	df	Mean Square	F	р	η²
Hospital	6.097	2	3.049	10.198	< .001	0.264
Residuals	17.040	57	0.299			

Note. Type III Sum of Squares

- p<0.001 indicates significant differences in the mean waiting time for the emergency room of three hospitals
- If the ANOVA reports no significant difference you can go no further in the analysis
- If the ANOVA is significant, post hoc testing can now be carried out

Post hoc test

- Researchers might want to answer two additional questions:
 - Which means are different?
 - What is the magnitude of the difference between means?
- ANOVA by itself answers neither of these questions
- There are two approaches to figuring out which means are different and by how much: planned and unplanned comparisons of means
- These procedures are generally referred to as post-hoc tests

Post hoc test

Post Hoc Comparisons - Hospital

		Mean Difference	SE	t	P _{tukey}
Α	В	-0.775	0.173	-4.482	< .001
	С	-0.470	0.173	-2.718	0.023
В	С	0.305	0.173	1.764	0.191

Note. P-value adjusted for comparing a family of 3

- Interpretation: One-way analysis of variance showed that there is a significant difference in the mean waiting times among the three hospitals, F(2,57) = 10.2, p < 0.001, $\eta^2 = 0.26$. Post hoc analysis using Tukey's method indicated that the average waiting time of Hospital A (M = 1.15, SD = 0.49) is significantly lower than Hospital B (M = 1.93, SD = 0.60) and Hospital C (M = 1.62, SD =0.54). Further, there is no significant difference in the mean waiting time between Hospital B and Hospital C.
- Interpretation of η^2 : 0.01 (Small effect size), 0.06 (Medium effect size), 0.14 or higher (Large effect size)

Basic ideas

- Correlation analysis is concerned with the analysis of linear relationship between two or more variables
- It is used to determine the strength and direction, as well as statistical significance, of the correlation between variables
- The correlation between two variables could be positive or negative
- Positive correlation: $X \uparrow$ and $Y \uparrow$ or $X \downarrow$ and $Y \downarrow$
- Negative correlation: $X \uparrow$ and $Y \downarrow$ or $X \downarrow$ and $Y \uparrow$

Scatter plot

- It is a chart of the x-values (X-axis) and y-values (Y-axis)
- It is a visual representation of the relationship of X and Y
- Also known as scatter diagram

Figure 3: Scatter Plot of Weight and BMI

Correlation Coefficient

- The strength or magnitude of the correlation between variables is measured by a correlation coefficient
 - Pearson r: both variables are measured in at least interval scale: bivariate normal distribution
 - Spearman rho: both variables are measured in at ordinal scale
 - Point-biserial: one variable is binary, the other is interval or ratio
 - Rank-biserial: one variable is binary and the other is ordinal
- ullet The value of a correlation coefficient ranges from -1 to +1
- A zero correlation coefficient indicates that the variables are NOT LINEARLY independent

Guide in interpreting correlation coefficients

Test of significance of a correlation coefficient

- H_0 : Correlation coefficient is equal to zero. (There is no linear relationship between the variables.) $\Longrightarrow \rho = 0$
- H_1 : Correlation coefficient is not equal to zero. (There is linear relationship between the variables.) $\Longrightarrow \rho \neq 0$
- Test statistic:

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

• Reject H_0 if p-value associated with t is less than the significance level (α)

Research question: Is there a significant relationship between blood glucose, blood pressure, and BMI?

Correlation analysis

Research question: Is there a significant relationship between blood glucose, blood pressure, and BMI?

Shapiro-Wilk	Test for	Rivariate	Normality	\blacksquare
SHapilo-vviik	lest loi	Divanale	rionnanty	•

			Shapiro-Wilk	р
Glucose	_	ВМІ	0.976	< .001
Glucose	-	BloodPressure	0.976	< .001
BMI	-	BloodPressure	0.981	< .001

Correlation Table

			Pearson		Spe	arman
			r	р	rho	р
Glucose	-	ВМІ	0.230	< .001	0.234	< .001
Glucose	-	BloodPressure	0.215	< .001	0.237	< .001
BMI	-	BloodPressure	0.310	< .001	0.317	< .001

 Glucose, blood pressure, and BMI have weak but significant correlations.

Regression analysis

- Regression analysis is a technique of studying the dependence of one variable (called dependent variable), on one or more independent variables (called explanatory variables)
- Regression analysis is useful for:
 - Estimating the relationship between the dependent variable and the explanatory variable(s)
 - Determining the effect of each of the explanatory variables on the dependent variable, controlling the effects of all other explanatory variables
 - Predicting the value of the dependent variable for a given value of the explanatory variable

Linear regression model

 In regression analysis we wish to express the relationship between the dependent variable and the explanatory variable in a functional form

$$Y = f(X) + \epsilon$$

 Suppose we observe pairs (X,Y) and the scatterplot shows a fairly linear pattern, then we can let

$$f(X) = \beta_0 + \beta_1 X$$

• Thus, the (simple) linear regression model is given by

$$Y = \beta_0 + \beta_1 X + \epsilon$$

where:

- Y is the response variable
- X is the regressor (predictor)
- β_0 y-intercept
- β_1 slope of the regression line; regression coefficient
- \bullet ϵ is the random error term

Linear regression model

Multiple linear regression model

- Oftentimes, a regression model with a single predictor variable is not enough to provide an adequate description of the response variable
- This occurs when several key variables affect the response variable in important and predictive ways
- The multiple linear regression model is

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

where:

- $\beta_0, \beta_1, \cdots, \beta_p$ are the regression coefficients
- ϵ is the random error, $\epsilon \sim N(0, \sigma^2)$

Linear regression model

Assumptions

- Standard assumptions:
 - Y is a continuous random variable
 - $\epsilon_i \sim N(0, \sigma^2), \forall i \Longrightarrow$ normality and homogenous variance assumptions
 - For two different trials, i and j, the error terms ϵ_i and ϵ_j are independent \Longrightarrow independence assumption
- Assumptions on the predictor variables:
 - The predictor variables are assumed fixed or selected in advance.
 - The values of the predictors are assumed to be measured without error.
- Assumption about the observations:
 - Absence of outliers and influential observations

Interpretation of regression parameters

- β₀ is the regression constant or intercept and is the value of Y
 when all X's are equal to zero; must be interpreted with
 caution
- β_1 is the estimated mean response for every 1 unit change in X_1 , holding all other X's constant
- β_2 is the estimated mean response for every 1 unit change in X_2 , holding all other X's constant

:

and so on

Estimation of regression parameters

- The regression parameters β_0 and β_1 are unknown quantities that must be estimated from the data
- The most common and popular method of estimating regression parameters is the Method of Least Squares
- The resulting estimators are called Ordinary Least Squares (OLS) estimators
- The OLS estimators of β_0 , β_1 , β_2 , etc. are $\hat{\beta_0}$, $\hat{\beta_1}$, $\hat{\beta_2}$, etc.

Overall measures of fit

- Coefficient of determination (R^2) :
 - the percentage of variation in Y that can be explained or attributed to its linear relation with X
 - the closer to 1 or 100% the better the fit
 - Use Adjusted R^2 in multiple linear regresssion
- F test of overall effect of all X's: $F = \frac{MSR}{MSE}$
 - A significant F value indicates that Y is significantly with all X's
- Root Mean Square Error (RMSE):
 - standard deviation of the residuals (=difference between the observed Y and the predicted Y based on the equation)
 - the closer to zero the better the fit

Test of the overall significance of the regression

- $H_0: \beta_i = 0, \forall i$
- $H_1: \beta_i \neq 0$, for at least one i
- Test statistic: $F = \frac{MSR}{MSE}$

Test of the significance of each β_i

- $H_0: \beta_i = 0$
- $H_1: \beta_i \neq 0$
- Test statistic: $t = \frac{\beta_i}{\operatorname{se}(\beta_i)}$

Research question: What are the factors that affect blood glucose level in women?

Model	Summary	/ - Glucose
-------	---------	-------------

Model	R	R²	Adjusted R ²	RMSE
Но	0.000	0.000	0.000	32.975
H ₁	0.546	0.298	0.291	27.760

ANOVA

Model	Sum of Squares		df	Mean Square	F	р
H ₁	Regression	173634.150	5	34726.830	45.064	< .001
	Residual	409190.814	531	770.604		
	Total	582824.965	536			

Note. The intercept model is omitted, as no meaningful information can be shown.

- 29.1% of the variance in blood glucose level can be explained by BMI, blood pressure, age, insulin, and diabetespedigreefunction
 - Residual (unexplained) variance = $100 29.1 = 70.9\% \Rightarrow Very$ High!
- RMSE = 27.76 is quite acceptable but not ideal

Research question: What are the factors that affect blood glucose level in women?

							Collinearity :	Statistics
Model		Unstandardized	Standard Error	Standardized	t	р	Tolerance	VIF
Н₀	(Intercept)	119.903	1.423		84.262	< .001		
H ₁	(Intercept)	49.141	8.172		6.014	< .001		
	BloodPressure	0.321	0.110	0.120	2.925	0.004	0.791	1.264
	BMI	0.426	0.189	0.089	2.256	0.025	0.851	1.175
	DiabetesPedigreeFunction	7.168	3.572	0.075	2.007	0.045	0.954	1.048
	Insulin	0.111	0.010	0.415	11.055	< .001	0.940	1.064
	Age	0.556	0.120	0.181	4.635	< .001	0.866	1.155

- Age and diabetespidegreefunction have the largest effects on blood glucose level
 - Blood glucose level increases by 7.168 points for every point change in diabetespedigreefunction, assuming all else are equal
 - Blood glucose level increases by 0.556 point for every year change in age, assuming all else are equal

Other important activities

- Addition of categorical explanatory variables in the model, say sex and marital status
- Residual analysis: Checking if all assumptions are met
- Checking for outliers and influential points
- Remediation, if issues arise

Logistic regression analysis

Logistic regression model (Logit model)

- A form of regression model where the dependent variable is binary, such whether one is diabetic or not, whether an infant has low birth weight or not, whether a lump is cancerous or not
- Research question: What are the risk factors of heart attack?

Model Summary - Heart Attack										
Model	Deviance	AIC	BIC	df	X ²	р	McFadden R ²	Nagelkerke R ²	Tjur R ²	Cox & Snell R ²
H _o	55.452	57.452	59.141	39						
H ₁	34.195	40.195	45.261	37	21.257	< .001	0.383	0.550	0.446	0.412

- This result suggests a significant relationship $(\chi^2(37)=21.257, p<.001)$ between the outcome (heart attack) and the predictor variables (exercise prescription and stress levels)
- McFadden's $R^2 = 0.383$. It is suggested that a range from 0.2 to 0.4 indicates a good model fit

Logistic regression analysis

Coefficients ▼

					Wald Test		
	Estimate	Standard Error	Odds Ratio	z	Wald Statistic	df	р
(Intercept)	-4.368	2.550	0.013	-1.713	2.933	1	0.087
Stress level	0.089	0.041	1.093	2.159	4.662	1	0.031
Exercise (1)	-2.043	0.890	0.130	-2.295	5.268	1	0.022

Note. Heart Attack level '1' coded as class 1.

- Both stress level and exercise prescription are significant predictor variables (p = 0.031 and p = 0.022, respectively)
- For stress level OR = 1.093, p < 0.05 suggests that high-stress levels are significantly related to an increased probability of having a heart attack
- Having an exercise intervention is related to a significantly reduced probability of a heart attack.
 - OR = 0.130 can be interpreted as only having a 13% probability of heart attack if undergoing an exercise intervention