# Homework 6

11610310 Lu Ning

## **Problem 1**

Parameters:

 $z_{hit}=0.4$ 

 $z_{short}=0.2$ 

 $z_{max}=0.25$ 

 $z_{rand}=0.15\,$ 

Sensor Number K=1



Parameters:

 $z_{hit}=0.6$ 

 $z_{short}=0.1\,$ 

 $z_{max}=0.15$ 

 $z_{rand}=0.15$ 



#### Parameters:

$$z_{hit}=0.2$$

$$z_{short}=0.4$$

$$z_{max}=0.2$$

$$z_{rand}=0.2$$



### Parameters:

$$z_{hit}=0.1$$

$$z_{short} = 0.1$$

$$z_{max}=0.7\,$$

$$z_{rand}=0.1$$



### Parameters:

 $z_{hit}=0.1$ 

 $z_{short} = 0.1$ 

 $z_{max}=0.1$ 

 $z_{rand}=0.7$ 



# **Problem 2**

#### **Parameters:**

 $z_{hit}=0.6$ 

 $z_{max}=0.3\,$ 

 $z_{rand}=0.1$ 

#### **Robot Pose**

 $\begin{bmatrix} 0 & 0 & \frac{\pi}{2} \end{bmatrix}$ 

### **Sensor Pose (in robot coordinates)**

 $[\begin{array}{cccc} 0 & 0 & 0 \end{array}]$ 

#### **Obstacles**

- point1 [ 0.1 1.5 ]
- point2

$$[\phantom{-}0.15\phantom{0}1\phantom{0}]$$

rectangle

$$\left[\begin{array}{cc} -0.5 & 3 \end{array}
ight]$$
 ,  $\left[\begin{array}{cc} -0.5 & 4 \end{array}
ight]$  ,  $\left[\begin{array}{cc} -2.5 & 3 \end{array}
ight]$  ,  $\left[\begin{array}{cc} -2.5 & 4 \end{array}
ight]$ 

### beam measurement probability model



## **Problem 3**

#### Landmarks

- (0, 0)
- (2, 0)
- (2, 2)

#### **Robot Position**

(1, 4)

#### **Noise**

normal distribution with  $\sigma=0.02$ 

### **Sample Times**

1000

# Result

