3645. Maximum Total from Optimal Activation Order

Solved •

Medium

Topics 🗉

You are given two integer arrays value and limit, both of length n.

Initially, all elements are inactive. You may activate them in any order.

- To activate an inactive element at index i, the number of **currently** active elements must be **strictly less** than limit[i].
- When you activate the element at index i, it adds value[i] to the **total** activation value (i.e., the sum of value[i] for all elements that have undergone activation operations).
- After each activation, if the number of **currently** active elements becomes x, then **all** elements j with limit[j] <= x become **permanently** inactive, even if they are already active.

Return the maximum total you can obtain by choosing the activation order optimally.

Example 1:

Input: value = [3,5,8], limit = [2,1,3]

Output: 16

Explanation:

One optimal activation order is:

Step	Activated i	value[i]	Active Before i	Active After i	Becomes Inactive j	Inactive Elements	Total
1	1	5	0	1	j = 1 as [limit[1] = 1]	[1]	5
2	0	3	0	1	-	[1]	8
3	2	8	1	2	j = 0 as [limit[0] = 2]	[0, 1]	16

Thus, the maximum possible total is 16.

Example 2:

Input: value = [4,2,6], limit = [1,1,1]

Output: 6

Explanation:

One optimal activation order is:

Step	Activated [i	value[i]	Active Before i	Active After i	Becomes Inactive j	Inactive Elements	Total
1	2	6	0	1	j = 0, 1, 2 as limit[j] = 1	[0, 1, 2]	6

Thus, the maximum possible total is 6.

Example 3:

Input: value = [4,1,5,2], limit = [3,3,2,3]

Output: 12

Explanation:

One optimal activation order is:

Step	Activated i	value[i]	Active Before i	Active After i	Becomes Inactive j	Inactive Elements	Total
1	2	5	0	1	-	[]	5
2	0	4	1	2	j = 2 as [limit[2] = 2	[2]	9
3	1	1	1	2	-	[2]	10
4	3	2	2	3	j = 0, 1, 3 as limit[j] = 3	[0, 1, 2, 3]	12

Thus, the maximum possible total is 12.

Constraints:

- 1 <= n == value.length == limit.length <= 10⁵
- 1 <= value[i] <= 10⁵
- 1 <= limit[i] <= n

Seen this question in a real interview before? 1/5

Yes No

Accepted 10.641/28.4K Acceptance Rate 37.5%

Topics	~
	~
Hint 1	~
Hint 2	~
Hint 3	~
Hint 4	~
Discussion (41)	V

Copyright © 2025 LeetCode. All rights reserved.