## 1000049 - Mineração de Dados para Negócios

Introdução ao Machine Learning



Pós-Graduação em Big Data e Data Mining

Prof. Dr. Giancarlo D. Salton



**Data Analytics** •000

O que é "Data Analytics"?

Data Analytics

Data Analytics (preditiva) abrange os processos de negócios e de dados e os modelos computacionais que permitem que uma empresa ou pessoa tome decisões orientadas a dados.

Data Analytics ○○●○

Data analytics vai dos dados aos insights para tomada de deciões.

### Exemplos de aplicação:

Previsão de preço

Detecção de fraude

Previsão de dosagem

Avaliação de risco

Modelagem de propensão (comportamento de usuários)

Diagnósticos

Classificação de documentos

**Data Analytics** 0000

O que é *Machine Learning*?

As técnicas (supervisionadas) de aprendizado de máquina aprendem de forma automática um modelo do relacionamento entre um conjunto de variáveis descritivas (descriptive features) e uma variável alvo (target feature) a partir de um conjunto de exemplos históricos (training dataset).



Utilizando  $\it machine\ learning\ para\ induzir\ um\ modelo\ preditivo\ de\ um\ conjunto\ de\ exemplos\ históricos.$ 



Utilizando o modelo aprendido para fazer predições sobre novas instâncias que não possuem a resposta (target) definido.

|    |           |       | Proporção          |        |
|----|-----------|-------|--------------------|--------|
| ID | Profissão | Idade | Salário-Empréstimo | Classe |
| 1  | indústria | 34    | 2.96               | pago   |
| 2  | autônomo  | 41    | 4.64               | atraso |
| 3  | autônomo  | 36    | 3.22               | atraso |
| 4  | autônomo  | 41    | 3.11               | atraso |
| 5  | indústria | 48    | 3.80               | atraso |
| 6  | indústria | 61    | 2.52               | pago   |
| 7  | autônomo  | 37    | 1.50               | pago   |
| 8  | autônomo  | 40    | 1.93               | pago   |
| 9  | indústria | 33    | 5.25               | atraso |
| 10 | indústria | 32    | 4.15               | atraso |

Qual a relação entre as variáveis descritivas Profissão, Idade, Proporção Salário-Empréstimo e a variável alvo Classe no dataset a seguir?

```
if Proporção Salário-Empréstimo > 3 then
  Classe='atraso'
else
  Classe='pago'
end if
```

```
if Proporção Salário-Empréstimo > 3 then
  Classe='atraso'
else
  Classe='pago'
end if
```

- Este é um exemplo de um modelo preditivo
- Este é também um exemplo de um modelo preditivo consistente
- Perceba que este modelo não utiliza todas as variáveis e a variável utilizada é uma "variável derivada" (neste caso, uma proporção): design de features e seleção de features são dois temas importantes e voltaremos a eles várias vezes.

 Qual a relação entre as colunas contendo variáveis descritivas e a coluna Classe (target feature)?

|     |         | Renda  | Razão<br>Renda- |       |           |             |        |
|-----|---------|--------|-----------------|-------|-----------|-------------|--------|
| ID  | Valor   | Anual  | Empr.           | Idade | Profissão | Propriedade | Classe |
| 1   | 245,100 | 66,400 | 3.69            | 44    | indústria | fazenda     | pago   |
| 2   | 90,600  | 75,300 | 1.2             | 41    | indústria | fazenda     | pago   |
| 3   | 195,600 | 52,100 | 3.75            | 37    | indústria | fazenda     | atraso |
| 4   | 157,800 | 67,600 | 2.33            | 44    | indústria | apto.       | pago   |
| 5   | 150,800 | 35,800 | 4.21            | 39    | autônomo  | apto.       | atraso |
| 6   | 133,000 | 45,300 | 2.94            | 29    | indústria | fazenda     | atraso |
| 7   | 193,100 | 73,200 | 2.64            | 38    | autônomo  | casa        | pago   |
| 8   | 215,000 | 77,600 | 2.77            | 17    | autônomo  | fazenda     | pago   |
| 9   | 83,000  | 62,500 | 1.33            | 30    | autônomo  | casa        | pago   |
| 10  | 186,100 | 49,200 | 3.78            | 30    | indústria | casa        | atraso |
| 11  | 161,500 | 53,300 | 3.03            | 28    | autônomo  | apto.       | pago   |
| 12  | 157,400 | 63,900 | 2.46            | 30    | autônomo  | fazenda     | pago   |
| 13  | 210,000 | 54,200 | 3.87            | 43    | autônomo  | apto.       | pago   |
| 14  | 209,700 | 53,000 | 3.96            | 39    | indústria | fazenda     | atraso |
| 15  | 143,200 | 65,300 | 2.19            | 32    | indústria | apto.       | atraso |
| 16  | 203,000 | 64,400 | 3.15            | 44    | indústria | fazenda     | pago   |
| ••• |         | •••    | •••             | •••   |           | •••         | •••    |

```
if Proporção Salário-Empréstimo < 1.5 then
  Classe='pago'
else if Proporção Salário-Empréstimo > 4 then
  Classe='atraso'
else if Idade < 40 and Profissão ='industria' then
  Classe='atraso'
else
  Classe='pago'
end if
```

```
if Proporção Salário-Empréstimo < 1.5 then
   Classe='pago'
else if Proporção Salário-Empréstimo > 4 then
   Classe='atraso'
else if Idade < 40 and Profissão ='industria' then
   Classe='atraso'
else
   Classe='pago'
end if</pre>
```

 O valor real do machine learning se torna aparente em situações como essa quando queremos criar modelos preditivos a partir de grandes conjuntos de dados com muitas features. Como o machine learning funciona?

- Os algoritmos de machine learning funcionam pesquisando dentre um conjunto de possíveis modelos de previsão aquele modelo que melhor captura a relação entre as features e o target.
- Um critério óbvio de pesquisa é procurar modelos que sejam consistente com os dados.
- Contudo, devido ao fato de que um dataset é sempre uma amostra, machine learning é considerado um problema mal-posto.

### Consistência (1)

| ID | Filhos | Álcool | Orgânicos | Grupo |
|----|--------|--------|-----------|-------|
| 1  | não    | não    | não       | ?     |
| 2  | não    | não    | sim       | ?     |
| 3  | não    | sim    | não       | ?     |
| 4  | não    | sim    | sim       | ?     |
| 5  | sim    | não    | não       | ?     |
| 6  | sim    | não    | sim       | ?     |
| 7  | sim    | sim    | não       | ?     |
| 8  | sim    | sim    | sim       | ?     |

grupo = { casal, família, solteiro }

#### Consistência (2)

| Flh | Álc | Org | Grp | $\mathbb{M}_1$ | $\mathbb{M}_2$ | $\mathbb{M}_3$ | $\mathbb{M}_4$ | $\mathbb{M}_5$ | ••• | $\mathbb{M}_{6561}$ |
|-----|-----|-----|-----|----------------|----------------|----------------|----------------|----------------|-----|---------------------|
| não | não | não | ?   | casal          | casal          | solteiro       | casal          | casal          |     | casal               |
| não | não | sim | ?   | solteiro       | casal          | solteiro       | casal          | casal          |     | solteiro            |
| não | sim | não | ?   | família        | família        | solteiro       | solteiro       | solteiro       |     | família             |
| não | sim | sim | ?   | solteiro       | solteiro       | solteiro       | solteiro       | solteiro       |     | casal               |
| sim | não | não | ?   | casal          | casal          | família        | família        | família        | ••• | família             |
| sim | não | sim | ?   | casal          | família        | família        | família        | família        |     | casal               |
| sim | sim | não | ?   | solteiro       | família        | família        | família        | família        |     | solteiro            |
| sim | sim | sim | ?   | solteiro       | solteiro       | família        | família        | casal          |     | família             |

• 6561 soluções possíveis!

# Consistência (3)

| ID | Filhos | Álcool | Orgânicos | Grupo    |
|----|--------|--------|-----------|----------|
| 1  | não    | não    | não       | casal    |
| 2  | sim    | não    | sim       | família  |
| 3  | sim    | sim    | não       | família  |
| 4  | não    | não    | sim       | casal    |
| 5  | não    | sim    | sim       | solteiro |

### Consistência (4)

| Flh | Álc | Org | Grp | $\mathbb{M}_1$ | $\mathbb{M}_2$ | $\mathbb{M}_3$ | $\mathbb{M}_4$ | $\mathbb{M}_5$ | <br>$M_{6561}$ |
|-----|-----|-----|-----|----------------|----------------|----------------|----------------|----------------|----------------|
| não | não | não | ?   | casal          | casal          |                | casal          | casal          |                |
| não | não | sim | ?   | solteiro       | casal          |                | casal          | casal          |                |
| não | sim | não | ?   | família        | família        |                | solteiro       | solteiro       |                |
| não | sim | sim | ?   | solteiro       | solteiro       |                | solteiro       | solteiro       |                |
| sim | não | não | ?   | casal          | casal          |                | família        | família        |                |
| sim | não | sim | ?   | casal          | família        |                | família        | família        |                |
| sim | sim | não | ?   | solteiro       | família        |                | família        | família        |                |
| sim | sim | sim | ?   | solteiro       | solteiro       |                | família        | casal          |                |

Só neste slide, 3 soluções consistentes estão visíveis!

### Consistência (5)

| Flh | Álc | Org | Grp | $\mathbb{M}_1$ | $\mathbb{M}_2$ | $\mathbb{M}_3$ | $\mathbb{M}_4$ | $\mathbb{M}_5$ | <br>$M_{6561}$ |
|-----|-----|-----|-----|----------------|----------------|----------------|----------------|----------------|----------------|
| não | não | não | ?   | casal          | casal          | solteiro       | casal          | casal          | casal          |
| não | não | sim | ?   | solteiro       | casal          |                | casal          | casal          |                |
| não | sim | não | ?   | família        | família        |                | solteiro       | solteiro       |                |
| não | sim | sim | ?   | solteiro       | solteiro       |                | solteiro       | solteiro       |                |
| sim | não | não | ?   | casal          | casal          |                | família        | família        |                |
| sim | não | sim | ?   | casal          | família        |                | família        | família        |                |
| sim | sim | não | ?   | solteiro       | família        |                | família        | família        |                |
| sim | sim | sim | ?   | solteiro       | solteiro       |                | família        | casal          |                |

Só neste slide, 3 soluções consistentes estão visíveis!

- Consistência ≈ memorização
- Consistência não é desejável especialmente quando há erros nos dados
- Objetivo: modelo que seja "genérico" e funcione além do dataset usado para aprender o modelo
- Então, quais critérios devem ser usados para escolher um dentre vários modelos?

- Bias indutivo é o conjunto de suposições que definem os critérios de seleção de modelos de um algoritmo de machine learning.
- São dois os tipos de bias que podem ser usados:
  - 1. bias de restrição
  - 2. bias de preferência
- Bias indutivo é necessário para que se consiga a generalização para além do dataset de treino.

#### Como o Machine Learning funciona (resumo)

- Algoritmo de Machine Learning funcionam procurando por em um conjunto de modelos potenciais.
- Duas fontes de informação guiam a busca:
  - 1. o dataset de treino,
  - 2. o bias indutivo do algoritmo

O que pode dar errado no *Machine Learning*?

- Não existe bala de prata!
- O que acontece quando se escolhe o bias indutivo inadequado:
  - 1. underfitting
  - 2. overfitting

| ID | Age | Income |
|----|-----|--------|
| 1  | 21  | 24.000 |
| 2  | 32  | 48.000 |
| 3  | 62  | 83.000 |
| 4  | 72  | 61.000 |
| 5  | 84  | 52.000 |











Encontrando o equilíbrio entre complexidade e simplicidade do modelo (i.e., entre underfitting e overfitting) ao tentar predizer o *target* income a partir da *feature* age.

- Existem vários tipos de algoritmos de machine learning.
- Nós vamos nos concentrar em quatro famílias de algoritmos:
  - √ baseados em informação
  - √ baseados em similaridade
  - √ baseados em probabilidade
  - √ baseados em erro

# O ciclo de vida do projeto de data analytics: Crisp-DM



Diagrama do CRISP-DM demonstra as seis fases e indica as relações entre elas.

Resumo

- Técnicas de machine learning aprendem automaticamente as relações entre features descritivas e um target a partir de um conjunto de exemplos históricos
- Machine Learning é um problema mal-posto:
  - 1. generalização,
  - 2. bias indutivo,
  - 3. underfitting,
  - 4. overfitting.
- Encontrar o equilíbrio entre complexidade e simplicidade do modelo (i.e., entre underfitting e overfitting) é a parte mais difícil do machine learning.

