Fraud Detection

AŞAMALAR

- 1. Veri Setini İnceleme
- 2. Veri Setindeki Kategorik/Sayısal Analizi
- 3. Feature Engineering Yöntemlerini Uygulama
- 4. Veriyi Train/Test Olarak Ayırma
- 5. Model Seçimi
- 6. Model Eğitimi
- 7. Verilen Test Verisi ile Olasılıkları Bulma

Fraud Detection Amacı

Bu mücadelenin amacı, dolandırıcılık vakalarını tespit etmek amacıyla perakendeci ortaklarından birinden gelen sepet verilerini işlemenin ve analiz etmenin en iyi yolunu bulmaktır. Bu sepet verilerini kullanarak dolandırıcı müşterilerin tespit edilmesi ve gelecekte reddedilmesi gerekir.

[43] train_df.head(50)												
	ID		item1	item2	item3	item4	item5	item6	item7	item8	item9	Nbr_
	0	79815	COMPUTER PERIPHERALS ACCESSORIES	nan	nan	nan	nan	nan	nan	nan	nan	
	1	22598	BEDROOM FURNITURE	BEDROOM FURNITURE	SERVICE	SERVICE	nan	nan	nan	nan	nan	
	2	63665	LIVING DINING FURNITURE	nan	nan	nan	nan	nan	nan	nan	nan	
	3	31312	COMPUTERS	nan	nan	nan	nan	nan	nan	nan	nan	
	4	30742	COMPUTERS	nan	nan	nan	nan	nan	nan	nan	nan	
	5	29190	COMPUTERS	nan	nan	nan	nan	nan	nan	nan	nan	
	6	19984	LIVING DINING FURNITURE	nan	nan	nan	nan	nan	nan	nan	nan	
	7	93603	COMPUTER PERIPHERALS ACCESSORIES	nan	nan	nan	nan	nan	nan	nan	nan	
	8	40022	LIVING DINING FURNITURE	nan	nan	nan	nan	nan	nan	nan	nan	

0 sn.	C	<pre>data=pd.read_csv("train_dataset.csv") data.head()</pre>											
			ID	item1	item2	item3	item4	item5	item6	item7	item8	item9	
		0	79815	COMPUTER PERIPHERALS ACCESSORIES	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
		1	22598	BEDROOM FURNITURE	BEDROOM FURNITURE	SERVICE	SERVICE	NaN	NaN	NaN	NaN	NaN	
		2	63665	LIVING DINING FURNITURE	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
		3	31312	COMPUTERS	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
		4	30742	COMPUTERS	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
	5 rows × 147 columns												

0 sn.	0	data.dtypes	
311.	→	ID item1 item2 item3 item4	int64 object object object object
		Nbr_of_prod_purchas22 Nbr_of_prod_purchas23 Nbr_of_prod_purchas24 Nb_of_items fraud_flag Length: 147, dtype: obj	float64 float64 float64 float64 float64 float64

data.describe() \square ID cash_price1 cash_price2 cash_price3 cash_price4 cash_price5 cash_price6 cash_price7 cash_price 11235.000000 11235.000000 5460.000000 1545.000000 289.000000 190.000000 131.000000 100.00000 count 591.000000 57339.146862 112.47000 1094.867290 197.044872 205.400647 182.208122 192.660900 156.047368 131.656489 mean 33585.074232 704.817302 405.999025 383.608176 190.39382 std 419.205023 363.381623 279.960188 210.986539 19.000000 3.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 min 25% 27911.500000 649.000000 7.000000 7.000000 10.000000 17.000000 13.000000 21.000000 12.00000 50% 56995.000000 949.000000 40.000000 44.000000 46.000000 59.000000 45.000000 56.000000 46.50000 75% 86498.500000 1349.000000 140.000000 188.000000 169.000000 190.000000 149.000000 125.000000 111.25000 115983.000000 14999.000000 4999.000000 5999.000000 5198.000000 2399.000000 1549.000000 1280.000000 1349.00000 max 8 rows × 53 columns

```
[5] data.isnull().sum()
     ID
     item1
                                         0
     item2
                                     5775
                                     9690
     item3
     item4
                                    10644
     Nbr_of_prod_purchas22
                                    11229
     Nbr_of_prod_purchas23
                                    11230
     Nbr_of_prod_purchas24
                                    11230
     Nb_of_items
     fraud_flag
     Length: 147, dtype: int64
     data.columns
     Index(['ID', 'item1', 'item2', 'item3', 'item4', 'item5', 'item6', 'item7',
              'item8', 'item9',
              'Nbr_of_prod_purchas17', 'Nbr_of_prod_purchas18', 'Nbr_of_prod_purchas19', 'Nbr_of_prod_purchas20', 'Nbr_of_prod_purchas21', 'Nbr_of_prod_purchas22',
              'Nbr_of_prod_purchas23', 'Nbr_of_prod_purchas24', 'Nb_of_items',
              'fraud_flag'],
             dtype='object', length=147)
```

```
[7] train_df = pd.read_csv('train_dataset.csv')
     test_df = pd.read_csv('submission_data_x.csv')
[8] print("Training Dataset Shape:", train_df.shape)
    Training Dataset Shape: (74230, 147)
[9] print("Test Dataset Shape:", test_df.shape)
    Test Dataset Shape: (18558, 146)
[10] print("Train Columns:", train_df.columns)
     Train Columns: Index(['ID', 'item1', 'item2', 'item3', 'item4', 'item5', 'item6', 'item7',
            'item8', 'item9',
            'Nbr_of_prod_purchas17', 'Nbr_of_prod_purchas18',
            'Nbr_of_prod_purchas19', 'Nbr_of_prod_purchas20',
            'Nbr_of_prod_purchas21', 'Nbr_of_prod_purchas22',
            'Nbr_of_prod_purchas23', 'Nbr_of_prod_purchas24', 'Nb_of_items',
            'fraud flag'],
           dtype='object', length=147)
```

Veri Setindeki Kategorik/Sayısal Analizi

 Kategorik değişkenleri stringe dönüştürdük çünkü bu değerler daha sonra kategorik kodlama teknikleri kullanılarak sayısal değerlere dönüştürülebilir.

```
[13] # Tüm kategorik değişkenleri string e dönüştürün categorical_features = train_df.select_dtypes(include=['object']).columns

train_df[categorical_features] = train_df[categorical_features].astype(str)

test_df[categorical_features] = test_df[categorical_features].astype(str)
```

Veri Setindeki Kategorik/Sayısal Analizi

 Pipeline sayesinde, eksik değerleri doldurma ve one-hot encoding gibi işlemleri içeren bir dizi dönüştürücüyü bir araya getirdik. Bu şekilde, bu dönüştürücüleri kullanarak kategorik değişkenlerin işlenmesi otomatikleştirilir ve makine öğrenimi modellerine giriş olarak sağlanabilir.

 XGBoost, gradient boosting algoritmasını kullanarak yüksek performanslı bir sınıflandırma modeli oluşturduk.

MODEL EĞİTİMİ

Tahmin yapma

```
[41] # Test verisi üzerinde tahmin etme
    test_pred_proba = model.predict_proba(test_df)[:, 1]

[34] sample_submission = pd.read_csv('sample_submission.csv')

[35] sample_submission["fraud_flag"]=test_pred_proba

[35] sample_submission.to_csv("sample_submission.csv", index=False)

[36] sample_submission.to_csv("sample_submission.csv", index=False)

[37] sample_submission.to_csv("sample_submission.csv", index=False)
```

SONUÇ ÇIKTISI

sample_submission.csv ×					
ID	fraud_flag				
38100	0.0014317476				
13409	0.0009608214				
56447	0.0026939092				
70271	0.013678441				
11531	0.0066271005				
8721	0.0031703115				
113775	0.053094175				
80530	0.0041563823				
105181	0.0067137484				
13388	0.071035035				
113870	0.0012535434				
101582	0.019269105				
15470	0.018728366				
13608	0.0050902897				
60937	0.008407673				
88154	0.003920259				
112605	0.0032920607				
4227	0.0014409991				
79347	0.00078795914				
7992	0.0024331885				
72041	9.1209404e-05				
6/003	0.00031001678				

Teşekkürler

HAZIRLAYANLAR:

ZEYNEP KICIKOĞLU

YÜSRA KAPLAN