Дискретная оптимизация

МФТИ, осень 2015

Александр Дайняк

www.dainiak.com

Рассмотрим задачу:

$$\begin{cases} x_1 + x_2 & \to \max \\ x_1 + 3x_2 & \le 1 & \times 1 \\ 2x_1 + x_2 & \le 1 & \times 2 \end{cases}$$

$$5x_1 + 5x_2 \le 3$$

$$x_1 & \ge 0$$

$$x_2 & \ge 0$$

Есть решение $(x_1, x_2) = (\frac{2}{5}, \frac{1}{5})$, при котором значение целевой функции равно $\frac{3}{5}$.

Как доказать, что лучше нельзя?

— Использовать неравенства из условия.

Рассмотрим задачу:

$$\begin{cases} x_1 + x_2 & \to \max \\ x_1 + 3x_2 & \le 1 & \times 1 \\ 2x_1 + x_2 & \le 1 & \times 2 \end{cases}$$

$$x_1 + 5x_2 \le 3$$

$$x_1 + 5x_2 \le 3$$

$$x_1 + 5x_2 \le 3$$

$$x_2 + 5x_2 \le 3$$

«Сертификатом качества» решения может выступать вектор констант, домножив на которые неравенства из условия и затем сложив, мы получим такую оценку на целевую функцию, которая равна значению в проверяемой точке.

$$\begin{cases} c_1 x_1 + c_2 x_2 + \dots + c_n x_n & \to \max \\ a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n & \le b_1 \\ \vdots & & \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n & \le b_m \\ x_1, \dots, x_n & \ge 0 \end{cases}$$

При любых константах $y_1, ..., y_m \ge 0$ справедливо неравенство:

$$y_1(a_{11}x_1 + \dots + a_{1n}x_n) + \dots + y_m(a_{m1}x_1 + \dots + a_{mn}x_n) \le y_1b_1 + \dots + y_mb_m.$$

Перепишем по-другому:

$$(a_{11}y_1 + \dots + a_{m1}y_m)x_1 + \dots + (a_{1n}y_1 + \dots + a_{mn}y_m)x_n \le y_1b_1 + \dots + y_mb_m$$

$$\begin{cases} c_1 x_1 + c_2 x_2 + \dots + c_n x_n & \to \max \\ a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n & \le b_1 \\ \vdots & & \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n & \le b_m \\ x_1, \dots, x_n & \ge 0 \end{cases}$$

При любых константах $y_1, \dots, y_m \geq 0$ имеем: $(a_{11}y_1 + \dots + a_{m1}y_m)x_1 + \dots + (a_{1n}y_1 + \dots + a_{mn}y_m)x_n \leq y_1b_1 + \dots + y_mb_m$ Если $(a_{1i}y_1 + \dots + a_{mi}y_m) \geq c_i$ для каждого i, то $(a_{11}y_1 + \dots + a_{m1}y_m)x_1 + \dots + (a_{1n}y_1 + \dots + a_{mn}y_m)x_n \geq c_1x_1 + \dots + c_nx_n$

$$\begin{cases} c_1 x_1 + c_2 x_2 + \dots + c_n x_n & \to \max \\ a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n & \le b_1 \\ \vdots & \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n & \le b_m \\ x_1, \dots, x_n & \ge 0 \end{cases}$$

Если величины y_1, \dots, y_m удовлетворяют условиям

$$a_{11}y_1 + a_{21}y_2 + \cdots + a_{m1}y_m \ge c_1$$
 \vdots $a_{1n}y_1 + a_{2n}y_2 + \cdots + a_{mn}y_m \ge c_n$ y_1, \dots, y_n ≥ 0

то при любых допустимых $x_1, ..., x_n$ выполнено $c_1x_1 + \cdots + c_nx_n \le y_1b_1 + \cdots + y_mb_m$.

Слабая теорема двойственности

Утверждение (Weak duality theorem) — только что доказанное.

Если оптимальное значение целевой функции в задаче ЛП

$$\begin{cases} c_1x_1 + c_2x_2 + \dots + c_nx_n & \to \max \\ a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n & \le b_1 \\ \vdots & & \Pi \text{рямая задача} \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n & \le b_m \\ x_1, \dots, x_n & \ge 0 \end{cases}$$

существует, то оно не превосходит оптимального значения целевой функции в задаче ЛП

$$\begin{cases} b_1y_1 + \dots + b_my_m & \to \min \\ a_{11}y_1 + a_{21}y_2 + \dots + a_{m1}y_m & \geq c_1 \\ & \vdots & & \text{Двойственная задача} \\ a_{1n}y_1 + a_{2n}y_2 + \dots + a_{mn}y_m & \geq c_n \\ & y_1, \dots, y_n & \geq 0 \end{cases}$$

Слабая теорема двойственности

Слабая теорема двойственности в векторной записи.

Если оптимальное значение целевой функции в задаче ЛП

$$\begin{cases} c^{T}x & \to \max \\ Ax & \le b \\ x & \ge 0 \end{cases}$$

существует, то оно не превосходит оптимального значения целевой функции в задаче ЛП

$$\begin{cases} \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y} & \to \min \\ \boldsymbol{A}^{\mathrm{T}} \boldsymbol{y} & \geq \boldsymbol{c} \\ \boldsymbol{y} & \geq \boldsymbol{0} \end{cases}$$

Сильная теорема двойственности

Teopema (Strong duality theorem).

Если оптимальное значение целевой функции в прямой задаче ЛП

$$\begin{cases} c^{T}x & \to \max \\ Ax & \le b \\ x & \ge 0 \end{cases}$$

существует, то оно **равно** оптимальному значению целевой функции в двойственной задаче ЛП

$$\begin{cases} \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y} & \to \min \\ \boldsymbol{A}^{\mathrm{T}} \boldsymbol{y} & \ge \boldsymbol{c} \\ \boldsymbol{y} & \ge \boldsymbol{0} \end{cases}$$

Сильная теорема двойственности

Теорема двойственности — неформально.

Если задача ЛП имеет решение, то для такого решения всегда можно подобрать «сертификат качества» — л.к.н.к. (линейную комбинацию с неотрицательными коэффициентами) неравенств исходной задачи, гарантирующую оптимальность решения.

Исключение Фурье—Моцкина (Fourier—Motzkin elimination)

(Аналог метода исключения Гаусса.)

Пусть дана система

$$Ax \leq b$$
.

Умножением неравенств на положительные числа и перенумерацией можно привести систему к виду:

$$\begin{cases} x_1 + (a'_i)^T x' \le b_i & i \in \{1, ..., m'\} \\ -x_1 + (a'_j)^T x' \le b_j & j \in \{m' + 1, ..., m''\} \\ (a'_k)^T x' \le b_k & k \in \{m'' + 1, ..., m\} \end{cases}$$

где a_i' — строка матрицы A с удалённой первой координатой и т.д.

Исключение Фурье—Моцкина

$$\begin{cases} x_1 + (\boldsymbol{a}_i')^{\mathrm{T}} \boldsymbol{x}' \leq b_i, & i \in \{1, ..., m'\}, \\ -x_1 + (\boldsymbol{a}_j')^{\mathrm{T}} \boldsymbol{x}' \leq b_j, & j \in \{m' + 1, ..., m''\}, \\ (\boldsymbol{a}_k')^{\mathrm{T}} \boldsymbol{x}' \leq b_k, & k \in \{m'' + 1, ..., m\}. \end{cases}$$

У этой системы есть решение т. и т.т., когда имеет решение система

$$\begin{cases} \left(a'_{j}\right)^{\mathrm{T}} x' - b_{j} \leq b_{i} - (a'_{i})^{\mathrm{T}} x', & (i,j) \in \{1, ..., m'\} \times \{m' + 1, ..., m''\}, \\ (a'_{k})^{\mathrm{T}} x' \leq b_{k}, & k \in \{m'' + 1, ..., m\}. \end{cases}$$

т.к. при известных
$$m{x}'$$
 можно подобрать x_1 из диапазона $\left[\max_j \left\{\left(m{a}_j'\right)^{\mathrm{T}} m{x}' - b_j\right\}, \min_i \{b_i - (m{a}_i')^{\mathrm{T}} m{x}'\}\right]$

Исключение Фурье — Моцкина

Система

$$\begin{cases} x_1 + (a'_i)^T x' \leq b_i, & i \in \{1, ..., m'\}, \\ -x_1 + (a'_j)^T x' \leq b_j, & j \in \{m' + 1, ..., m''\}, \\ (a'_k)^T x' \leq b_k, & k \in \{m'' + 1, ..., m\}. \end{cases}$$

имеет решение т. и т.т., когда имеет решение система

$$\begin{cases} (a'_i + a'_j)^T x' \le b_i + b_j, & (i,j) \in \{1, ..., m'\} \times \{m' + 1, ..., m''\}, \\ (a'_k)^T x' \le b_k, & k \in \{m'' + 1, ..., m\}. \end{cases}$$

Исключение Фурье—Моцкина

По-русски:

По любой системе вида $Ax \leq b$ можно построить такую систему $A'x' \leq b'$, такую, что

- каждое неравенство в $A'x' \leq b'$ есть л.к.н.к. неравенств $Ax \leq b$,
- в системе $A'x' \leq b'$ на одну переменную меньше, чем в $Ax \leq b$,
- есть решение у 1-й системы т. и т.т., когда есть решение у 2-й.

Теорема (Gy. Farkas). Система $Ax \leq b$ имеет решение т. и т.т., когда не существует вектора y, т.ч.

$$\begin{cases} y \ge 0, \\ y^{T}A = 0, \\ y^{T}b < 0. \end{cases}$$

По-русски:

Система неравенств типа «≤» имеет решение тогда и только тогда, когда нельзя подобрать такую линейную комбинацию (с неотрицательными коэффициентами) этих неравенств, чтобы

- в левой части получался тождественный нуль,
- а в правой части была отрицательная константа.

Теорема (Gy. Farkas). Система $Ax \leq b$ имеет решение т. и т.т., когда не существует вектора y, т.ч.

$$\begin{cases} y \ge 0, \\ y^{T}A = 0, \\ y^{T}b < 0. \end{cases}$$

Доказательство ⇒.

Очевидно.

Теорема (Gy. Farkas). Система $Ax \leq b$ имеет решение т. и т.т., когда не существует вектора y, т.ч.

$$\begin{cases} y \ge 0, \\ y^{T}A = 0, \\ y^{T}b < 0. \end{cases}$$

Доказательство ←.

Индукция по размерности x.

База $x = (x_1)$ — тривиальна.

Теорема (Gy. Farkas). Система $Ax \leq b$ имеет решение т. и т.т., когда не существует вектора y, т.ч.

$$\begin{cases} y \ge 0, \\ y^{T}A = 0, \\ y^{T}b < 0. \end{cases}$$

Пусть у системы $Ax \leq b$ нет решения. Тогда нет решения и у системы $A'x' \leq b'$, полученной из исходной системы исключением Фурье— Моцкина.

По п.и., существует л.к.н.к. неравенств системы $A'x' \leq b'$, в которой в левой части тождественный нуль, а в правой отрицательный скаляр.

Т.к. неравенства системы $A'x' \leq b'$ сами являются л.к.н.к. неравенств системы $Ax \leq b$, сразу получаем требуемое.

Лемма Фаркаша и её следствия

Следствие из леммы Фаркаша.

Система Ax = b имеет решение $x \ge 0$ т. и т.т., когда не существует вектора y, такого, что $y^TA \ge 0$ и $y^Tb < 0$.

Доказательство. ⇒ очевидно; докажем ←.

Положим
$$\widehat{A}\coloneqq \begin{pmatrix}A\\-A\\-I\end{pmatrix}$$
 и $\widehat{b}\coloneqq \begin{pmatrix}b\\-b\\0\end{pmatrix}$.

Система Ax=b имеет решение $x\geq 0$ т. и т.т., когда имеет решение система $\widehat{A}\widehat{x}\leq \widehat{b}$. Если система $\widehat{A}\widehat{x}\leq \widehat{b}$ не имеет решения, то найдётся вектор $\widehat{y}\geq 0$, такой, что $\widehat{y}^T\widehat{A}=0$ и $\widehat{y}^T\widehat{b}<0$. Искомый вектор y легко получается из \widehat{y} .

Лемма Фаркаша и её следствия

Следствие из леммы Фаркаша.

Система Dx = h имеет решение $x \ge 0$ т. и т.т., когда не существует вектора y, такого, что $y^TD \ge 0$ и $y^Th < 0$.

Следствие следствия (по сути эквивалентное теореме двойственности).

Пусть система $Ax \leq b$ имеет решение. Любое решение этой системы удовлетворяет неравенству $c^{\mathrm{T}}x \leq \delta$, т. и т.т., когда существует вектор $y \geq 0$, такой, что $y^{\mathrm{T}}A = c$ и $y^{\mathrm{T}}b \leq \delta$.

Доказательство. \leftarrow тривиально; остаётся обосновать ⇒.

Пусть не существует y, такого, что $y \ge \mathbf{0}$, $y^{\mathrm{T}}A = c$ и $y^{\mathrm{T}}b \le \delta$.

Тогда не существует неотрицательного решения $(y^{\mathrm{T}},\lambda) \geq \mathbf{0}$ у системы

$$(\mathbf{y}^{\mathrm{T}},\lambda)\begin{pmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{0} & 1 \end{pmatrix} = (\mathbf{c}^{\mathrm{T}},\delta).$$

По следствию из л.Ф., найдётся вектор $\binom{\mathbf{z}}{\mu}$, такой, что $\binom{\mathbf{A}}{\mathbf{0}}$ $\binom{\mathbf{z}}{\mu} \geq \mathbf{0}$ и $\binom{\mathbf{c}}{\mu} < 0$.

Лемма Фаркаша и её следствия

Следствие следствия (по сути эквивалентное теореме двойственности).

Пусть система $Ax \leq b$ имеет решение. Любое решение этой системы удовлетворяет неравенству $c^{\mathrm{T}}x \leq \delta$, т. и т.т., когда существует вектор $y \geq 0$, такой, что $y^{\mathrm{T}}A = c$ и $y^{\mathrm{T}}b \leq \delta$.

Доказательство ⇒.

Пусть не существует y, такого, что $y \ge 0$, $y^{\mathrm{T}}A = c$ и $y^{\mathrm{T}}b \le \delta$.

Тогда найдётся вектор
$$\binom{\pmb{z}}{\mu}$$
, такой, что $\binom{\pmb{A}}{\pmb{0}} \quad \binom{\pmb{z}}{\mu} \geq \pmb{0}$ и $\binom{\pmb{c}^{\mathrm{T}}}{\mu} \leq 0$.

Рассмотрим два случая:

- Пусть $\mu=0$. Тогда $Az\geq \mathbf{0}$ и $c^Tz<0$. Тогда $A(-\tau z)\leq \mathbf{0}$ для любого $\tau\geq 0$. Пусть x_0 произвольное фиксированное решение системы $Ax\leq b$. При достаточно больших τ получим $A(x_0-\tau z)\leq b$ и $c^T(x_0-\tau z)>\delta$ противоречие.
- Пусть $\mu>0$. Тогда $\pmb{A}\left(-\frac{1}{\mu}\cdot\pmb{z}\right)\leq \pmb{b}$ и $\pmb{c}^{\mathrm{T}}\left(-\frac{1}{\mu}\cdot\pmb{z}\right)>\delta$ противоречие.

Сильная теорема двойственности

Следствие леммы Фаркаша.

Пусть система $Ax \leq b$ имеет решение. Любое решение этой системы удовлетворяет неравенству $c^{\mathrm{T}}x \leq \delta$, т. и т.т., когда существует вектор $y \geq 0$, такой, что $y^{\mathrm{T}}A = c$ и $y^{\mathrm{T}}b \leq \delta$.

Теорема двойственности — неформально.

Если задача ЛП имеет решение, то для такого решения всегда можно подобрать «сертификат качества» — л.к.н.к. неравенств исходной задачи, гарантирующую оптимальность решения.

Дополняющая нежёсткость (complementary slackness)

Пусть x^* — оптимальное решение в прямой задаче ЛП

$$\begin{cases} c_1 x_1 + c_2 x_2 + \dots + c_n x_n & \to \max \\ a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n & \le b_1 \\ & \vdots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n & \le b_m \\ x_1, \dots, x_n & \ge 0 \end{cases}$$

а $oldsymbol{y}^*$ — оптимальное решение в двойственной задаче ЛП

$$\begin{cases} b_1 y_1 + \dots + b_m y_m & \to \min \\ a_{11} y_1 + a_{21} y_2 + \dots + a_{m1} y_m & \ge c_1 \\ & \vdots \\ a_{1n} y_1 + a_{2n} y_2 + \dots + a_{mn} y_m & \ge c_n \\ & y_1, \dots, y_n & \ge 0 \end{cases}$$

Тогда

$$a_{1j}y_1^* + a_{2j}y_2^* + \dots + a_{mj}y_m^* > c_j \quad \Rightarrow \quad x_j^* = 0 \quad \bullet \quad a_{i1}x_1^* + a_{i2}x_2^* + \dots + a_{in}x_n^* < b_i \quad \Rightarrow \quad y_i^* = 0$$

Обратное тоже верно!