

INNOLUX DISPLAY CORPORATION

Application Notes

Type: FOG

Customer:

P101JEA-3Z1 2015/05/20 **Model Name:**

Date:

Version:

Approved by	Reviewed by	Prepared by
賴春足	管清業	朱育霖
2015/05/20	2015/05/20	2015/05/20

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 01 Ver 02	2014/10/01 2015/05/20	All 15	All 7.3	Initial Release 新增靜電防護建議項目
				Supply & Purchase Cloud Platform

Version 0.2 20 May 2015 2 / 16

Index

1. Module Introduction	
2. Pin Assignment	
· ·	
3. Power Operation Condition	
3.1 Absolute Maximum Ratings	
3.2 Typical Operation Conditions	
3.3 Current Consumption	
olo Garrone Gonoampilori	
4. Power Sequence	60
4. Fower Sequence	
4.1 Power on	
4.2 Power off	
	• 110
5. Timing Characteristics	(100
5g 5	C'
6. Reference Circuit	Se
6. Reference Circuit	11
	C/,
7. Suggestion for housing design	
7.1 LCM corner /edge avoidable cutting	
7.1 LCM corner /edge avoidable cutting	12
7.3 Contain ESD Protection	1

1. Module Introduction

Madalnama	Module photo					
Model name	Top side	Bottom side				
P101JEA-3Z1						

2. Pin Assignment

A 40pin connector is used for the module electronics interface. In this model used "FH33J-40S-0.5SH(10)" manufactured by Vigorconn.

Pin No.	Symbol	Description	Remark
1	VCOM	Common Voltage type:3.69 V	3.32~4.04V
2	VDD	Power supply for interface system except	
3	VDD	MIPI interface pin, VDDIN=3.3V	
4	NC	NC .	
5	Reset	Device reset signal(1.8V)	
6	NC	NC	
7	GND	GROUND CONT	
8	RXIN0-	MIPI Negative data signal (-)	
9	RXIN0+	MIPI Positive data signal (+)	
10	GND	GROUND	
11	RXIN1-	MIPI Negative data signal (-)	
12	RXIN1+	MIPI Positive data signal (+)	
13	GND	GROUND	
14	RXCLKIN-	MIPI Negative clock signal (-)	
15	RXCLKIN+	MIPI Positive clock signal (+)	
16	GND	GROUND	
17	RXIN2-	MIPI Negative data signal (-)	
18	RXIN2+	MIPI Positive data signal (+)	
19	GND	GROUND	
20	RXIN3-	MIPI Negative data signal (-)	

Version 0.2 20 May 2015 4 / 16

<i>u</i> –	
RXIN3+	MIPI Negative data signal (+)
GND	GROUND
NC	No connection
NC	No connection
GND	GROUND
PWMI	PWM input signal
PWMO	PWM output signal
NC	No connection
AVDD	Power supply for analog circuits(9.89V)
GND	GROUND
LED-	LED cathode
LED-	LED cathode
NC	No connection
NC	No connection
VGL	Gate OFF Voltage(-6.8V)
NC	No connection
NC	No connection
VGH	Gate ON Voltage(21.88V)
LED+	I ED anada
LED+	LED anode
	RXIN3+ GND NC NC GND PWMI PWMO NC AVDD GND LED- LED- NC VGL NC VGL VGH LED+

Note: Definition of scanning direction.

Refer to the figure as below:

3. Power Operation Conditions

3.1 Absolute Maximum Ratings

(Note 1)

(.1636-1)								
ltem	Cumbal	Val	ues	Unit	Domostr			
item	Symbol	Min. Max.		Onit	Remark			
	V _{CC}	-0.3	5.0	V				
	AV_DD	6.5	13.5	V	>			
Power voltage	V_{GH}	-0.3	42	V	40(1)			
	V_{GL}	VGH-42	0.3	V				
	V_{GH} - V_{GL}	-	42	V				
Operation Temperature	T_OP	-10	50	°C.				
Storage Temperature	T_{ST}	-20	60	$^{\circ}\mathbb{C}$				

Note 1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

3.2 Typical Operation Conditions

(Note 1)

Item	Symbol	Symbol Value			Unit	Remark
item	Symbol	Min.	Тур.	Max.	Onit	Kelliaik
	V _{CC}	3.0	3.3	3.6	V	Note2
Power voltage	AV_{DD}	9.69	9.89	10.09	V	
Fower voltage	V_{GH}	21.58	21.88	22.18	V	
	V_{GL}	-7.1	-6.8	-6.5	V	
Input signal voltage	V _{COM}	3.32	3.69	4.04	V	Note3
Input logic high voltage	V _{IH}	$0.7V_{DD}$	-	V_{DD}	V	
Input logic low voltage	V _{IL}	0	-	$0.3V_{DD}$	V	

Version 0.2 20 May 2015 6 / 16

- Note 1: Be sure to apply VDD and VGL to the LCD first, and then apply VGH.
- Note 2: VDD setting should match the signals output voltage (refer to Note 3) of customer's system board.
- Note 4: Typical VCOM is only a reference value, it must be optimized according to each LCM. Be sure to use VR.

3.3 Current Consumption

Itam	Symbol	Values			Unit	Remark	
Item	Symbol	Min.	Тур.	Max.	Onit	Remark	
	I_{GH}	-	1.0	-	mA	VGH=21.88 V	
Current for Driver	I_{GL}	ı	3.0	ı	mA	VGL=-6.8 V	
Current for Driver	I _{CC}	-	100	-	mA	VDD=3.3V	
	IAV _{DD}	-	55	-	mA	AVDD=9.89V V	

Version 0.2 20 May 2015 **7 / 16**

4. Power Sequence

請確實依照規範之Power Sequence進行設計,以避免造成<mark>顯示異常或產品損壞</mark>等問題。

4.1 Power on:

4.2 Power off

5. Timing Characteristics

Timing Formula:

DCLK = (Hw + Hbp + Ha + Hfp)*(Vw + Vbp + Va + Vfp)*Fvsync (Unit : Hz) Fhsync = (Vw + Vbp + Va + Vfp)*Fvsync (Unit: Hz)

Remark: 1. Fhsync is Hsync frequency, and Fvsync is Vsync frequency.

2. Parameter Table .

Item	Values Symbol			Unit	Remark	
item	Symbol	Min.	Тур.	Max.	Onit	Remark
Clock Frequency	fclk		150.11		MHz	Frame rate =60
Horizontal display area	thd		1920			
HS period time	th		2044		DCLK	
HS Blanking	thb+thfp		124		DCLK	
Vertical display area	tvd		1200			
VS period time	tv		1224		Н	
VS Blanking	tvb+tvfp		24		Н	

Version 0.2 20 May 2015 9 / 16

Notes 2. EDID code 參考值

Item	Description	EDID
1	Pixel clock	08
2	Pixel clock	39
3	H active	80
4	H blank	2D
5	H active H blank	70
6	V active	B0
7	V blank	2D
8	V active V blank	40
9	H sync offset	14
10	H sync pulse width	05
11	V sync offset V sync pulse width	45
12	H sync offset: H sync pulse width: V sync offset: V sync width	04
13	H image size	D9
14	V image size	87
15	H image size : V image size	00
16	H boarder	00
17	V boarder	00
18	Non-interlaced, Normal, no stereo, Separate sync, H/V pol Negatives	18

,					or
	根據 EDI	D Code 所	設定視音	窗準位參數:	N/
•	100 420	CLK=146			,
	HFI	P= 20	VF	P= 20	
	HBI	P= 20	VB	P= 20	
	HP	W= 5	VF	PW= 5	
	HVD	= 1920	VVD	= 1200	

6. Reference Circuit

7. Suggestion for housing design

7.1 LCM corner /edge avoidable cutting.

If you design a avoidable cutting as the right drawing. LCM will easier to assemble in the housing.

When you use the LCM with TSP, the cutting will avoid damage the edge or corner of TSP during the assembly.

7.2 Housing opening design guide.

7.2.1 Without TSP

If without TSP, the suggestion for housing design as below:

Notes: 1. Housing opening mast bigger than LCMA.A and cover the bezel.

> 2. If you want to provide more protection for LCM, you can add same buffer material on the top or bottom of LCM

Version 0.2 20 May 2015 12/16

7.2.2 4-Wire Resistive Touch Screen Panel

Because touch film is made of flexible PET, any unexpected touch with it would cause malfunction of touch panel. So here a sponge between touch panel and plastic housing is recommended for users. And the drawing will show you how to design the housing and sponge.

Section sketch (with TSP)

Notes: 1. X is the distance from LCM A.A to housing opening

- 2. Y is the distance from TSP V.A to Sponge opening.
- 3. The active force will be bigger when you touch the area near the housing opening.
- 4. If you want to provide more protection for LCM, you can add same buffer material on the bottom of LCM.

7.2.3 Capacitive Touch Screen Panel (OGS)

If customer add the CTP on the LCM, the CTP Ink open window design guide as below:

		Standard Value	Tolerance	Remark
А	CF_POL edge → OCA edge	See remark	-	取 CF_POL edge → LCM OD
В	CF_POL edge → OCA edge	See remark	-	(inneredge) 的中心線定義為 OCA 的外型邊界。因此,
С	CF_POL edge → OCA edge	See remark	-	(A)=(a), (B)=(b), (C)=(c)
D	CF_POL edge → OCA edge	See remark	-	取 CF_POL edge → LCD IC (Topedge) 的中心線定義為 OCA 的外型邊界。因此, (D)=(d)
Е	Ink open area → OCA edge	> 1350um	±350um	避免 OCA 貼覆不佳出現的氣泡出 現在可視區內(Ink open area)。
F	Ink open area → OCA edge	> 1350um	±350um	考量因素, (1) OCA 材切精度:±200um
G	Ink open area → OCA edge	> 1350um	±350um	(2) Ink 印刷精度: OGS type: ±50um (photo
Н	Ink open area → OCA edge	> 1350um	±350um	process) TOD type: ±150um (mask process) (3) 貼覆精度(軟對硬): :±150um (J001)
*	OCA 是否有完全覆蓋觸 控走線區域	See remark		考量, (1)空間允許下請完全覆蓋 (2)若被要求降低成本則需重新討 論

Version 0.2 20 May 2015 14 / 16

7.3 ESD 防護建議

針對 IPS 機種,建議將 CF 靜電導出。

A: CF 與 Bezel(背鐵框) 通過導電膠帶導通; (需注意與 TFT 線路, PCBA 元器件絕緣 處理)

copyright belongs to InnoLux. Any unauthorized use is prohibited.

B: FOG PCBA 接地與背光鐵框接地,增強靜電防護。 (靜電規格與模組(背光)設計強相關 , FOG 單體無法保證 Human Body mode 靜電測試規格。)

導電雙面膠