1. 引子

②问题 1.1

设 $\alpha_i = (a_i, b_i, c_i)^{\top} \in \mathbb{R}^3, (i = 1, 2, 3), \beta = (d_1, d_2, d_3)^{\top} \in \mathbb{R}^3,$ 有三个 \mathbb{R}^3 中的平面

$$egin{cases} \pi_1: \ a_1x+b_1y+c_1z+d_1=0,\ \pi_2: \ a_2x+b_2y+c_2z+d_2=0,\ \pi_3: \ a_3x+b_3y+c_3z+d_3=0, \end{cases}$$

两两相交成三条平行直线,则有:

()

- (A). $rank(\alpha_1, \alpha_2, \alpha_3) = 1, rank(\alpha_1, \alpha_2, \alpha_3, \beta) = 2;$
- (B). $\operatorname{rank}(\alpha_1, \alpha_2, \alpha_3) = 2, \operatorname{rank}(\alpha_1, \alpha_2, \alpha_3, \beta) = 3;$
- (C). $\alpha_1, \alpha_2, \alpha_3$ 任意两个均线性无关, 且 β 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示;
- (D). $\alpha_1, \alpha_2, \alpha_3$ 线性相关, 且 β 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示.

分析:

我们先把原方程写为更简洁的形式:

$$\pi_i: \ \alpha_i \cdot \mathbf{x} + d_i = 0 \quad ext{for } i = 1, 2, 3$$

其中 $\mathbf{x} \in \mathbb{R}^3$. 现在我们即有 α_i 即为对应平面的法向量, 要讨论的就是三个平面的法向量和常数项 β 的关系.

回到原题条件上来:

- "平面两两相交": 这个条件意味着任意两个平面都不是平行的. 如果两个平面平行, 它们的法向量也必然平行, 那么其法向量就线性相关了. 因此, 任意两个法向量 α_i 和 α_j $(i \neq j)$ 都是线性无关的.
- "三条交线平行": 这说明 $rank(\alpha_1,\alpha_2,\alpha_3)$ 至少为2, 否则三个法向量共线, 则三个平面平行或重合, 不可能交出三条交线.

对条件的分析做到这里就够了. 现在先让我们看一个错误解答.

⇒ 问题 1.1的错误解答 (两两无关和整体无关).

3个向量两两线性无关则总体线性无关. 若不然, 则 $c_1\alpha_1+c_2\alpha_2+c_3\alpha_3=0$, c_i 不全为0. 现在, 如果 c_1 为 0, 那么 α_2 , α_3 线性相关, 矛盾, 同理 c_i 都不为0. 那么就可以把 α_1 用 α_2 , α_3 表示, α_2 就可以用 α_1 , α_3 表示, 把 α_2 代入 α_1 的表达式就得 α_1 和 α_3 相关, 矛盾. 但是我们这样就得到了一个 $\mathrm{rank}(\alpha_1,\alpha_2,\alpha_3)=3!$ 它错在哪里?

错在我们没有真正计算! 最后一步的代入是有问题的. 按照上述逻辑, 从

$$c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3 = 0$$

可得

$$lpha_1 = -rac{c_2}{c_1}lpha_2 - rac{c_3}{c_1}lpha_3, \quad (1) \ lpha_2 = -rac{c_1}{c_2}lpha_1 - rac{c_3}{c_2}lpha_3. \quad (2)$$

把 (2) 式代入 (1) 后, 可得:

$$\alpha_1 = -\frac{c_2}{c_1} \left[\left(-\frac{c_1}{c_2} \right) \alpha_1 + \left(-\frac{c_3}{c_2} \right) \alpha_3 \right] - \frac{c_3}{c_1} \alpha_3$$

$$= \alpha_1 + \frac{c_3}{c_1} \alpha_3 - \frac{c_3}{c_1} \alpha_3$$

$$= \alpha_1$$

故我们实际上不能证明任何东西. 实际上可以构造一个反例:

$$\mathbf{v}_1 = (1,0,0)^\top, \mathbf{v}_2 = (0,1,0)^\top, \mathbf{v}_3 = (1,1,0)^\top,$$
 有 \mathbf{v}_i 和 $\mathbf{v}_j (i \neq j)$ 两两无关,然而 $\mathbf{v}_3 = \mathbf{v}_1 + \mathbf{v}_2$.

故,我们必须思考这个方程组更本质,更几何的意义: **寻找三个平面的公共交点**. 下面是对题目的解答.

解:

通过分析, 我们已经得到了 $rank(\alpha_1,\alpha_2,\alpha_3) \geq 2$. 并且易知 $rank(\alpha_1,\alpha_2,\alpha_3) \leq 3$, 现在我们只要确定到底是2还是3就行了. 不过对于选择题来说, 尽管不推荐这种思考方式, 我们可以知道答案是2. 现在让我们证明它.

首先, 由几何意义, 我们有平面 π_1 和平面 π_2 的交线方向向量同时垂直于法向量 α_1 和 α_2 . 因此, 其方向向量和 $\alpha_1 \times \alpha_2$ 共线, 其中×是叉乘. 同理, 另外两条交线的方向向量 也和 $\alpha_2 \times \alpha_3$, $\alpha_1 \times \alpha_3$ 共线(不用在意叉乘的顺序). 因为这三个向量平行, 故

 $\alpha_1 \times \alpha_2, \alpha_2 \times \alpha_3, \alpha_1 \times \alpha_3$ 共线. 现在, 由 $\alpha_1 \times \alpha_2, \alpha_2 \times \alpha_3$ 共线, 可以得到存在 $k \in \mathbb{R}$, 使得

$$\alpha_1 \times \alpha_2 = k(\alpha_2 \times \alpha_3).$$

注意 $\alpha_i \times \alpha_j \neq 0 (i \neq j)$. 稍微做下代数变形则得到

$$(\alpha_1 - k\alpha_3) \times \alpha_2 = 0.$$

故 $\alpha_1 - k\alpha_3$ 和 α_2 是相关的, 即存在 $m \in \mathbb{R}$, 使得

$$\alpha_1 - k\alpha_3 = m\alpha_2$$
.

易知 $\alpha_1, \alpha_2, \alpha_3$ 线性相关, 故 $\operatorname{rank}(\alpha_1, \alpha_2, \alpha_3) = 2$.

现在由于三个平面两两相交于三条不同的平行线(形成一个三棱柱的侧面), 它们没有公共的交点. 也就是说, 由这三个方程组成的方程组是**无解**的, 则 β 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示. 由**线性方程组有解判别定理(Rouché–Capelli)**, 我们有

$$\operatorname{rank}(\alpha_1, \alpha_2, \alpha_3, \beta) > \operatorname{rank}(\alpha_1, \alpha_2, \alpha_3).$$

具体来说, 就是 $\operatorname{rank}(\alpha_1, \alpha_2, \alpha_3, \beta) = 3$.

可以发现, 选项B和选项D其实是同一回事, 只是一个从几何角度叙述(线性相关), 一个 从矩阵的秩叙述.

2. 对原问题的一个推广

现在, 如果所有的问题都只有一个特定的情况, 那也太无聊了. 我们考虑一个对问题 1.1 的自然的推广.

② 问题 2.1 (问题 1.1 的n维情况).

设 $\alpha_i=(x_1,x_2,\ldots,x_n)^{\top}\in\mathbb{R}^n,(i=1,2,\ldots,n),eta=(d_1,d_2,\ldots,d_n)^{\top}\in\mathbb{R}^n$,有 n个 \mathbb{R}^n 中的超平面

$$\left\{egin{aligned} \pi_1: & lpha_1 \cdot \mathbf{x} + d_1 = 0, \ \pi_2: & lpha_2 \cdot \mathbf{x} + d_2 = 0, \ & dots \ \pi_n: & lpha_n \cdot \mathbf{x} + d_n = 0, \end{aligned}
ight.$$

其中任意 n-1 个超平面相交, 且得到的 n 条直线都相互平行.

求证: $\operatorname{rank}(\alpha_1, \alpha_2, \ldots, \alpha_n) = n - 1, \operatorname{rank}(\alpha_1, \alpha_2, \ldots, \alpha_n, \beta) = n.$

现在我们想按照解决问题 1.1 的方法来解决这个推广后的问题, 但是很快我们就会发现问题: 任何一个略懂几何的人都应该知道叉积(\times)这个运算是非常特殊的. 具体来说, 我们只能在3维空间和7维空间定义它. 这是一个很有名的结果, 和 Hurwitz 定理有关, 即**所有的赋范可除代数(在相差同构的意义上)仅有4种, 分别为** \mathbb{R} (**实数),** \mathbb{C} (**复数),** \mathbb{H} (**四元数)**, \mathbb{O} (八元数). 其中7维的叉积又和仅有5个的**例外单 Lie 群**中的 G_2 有关. 故, 我们不能直接把上述过程直接照搬到n维空间.

于是我们必须分析叉乘到底扮演了一个什么样的角色, 使得我们可以利用它完成问题 1.1 的证明. 实际上, 它身兼两职:

- 1. **描述子空间**: 给定两个向量 a, b, 叉积的结果 $a \times b$ 的**方向**唯一确定了由 a, b 所张成的那个二维平面. 如 Graph 1, $a \times b$ 即为平面 z = 0 的法向量, 它唯一确定了 z = 0.
- 2. **寻找正交补**: 它返回的结果是一个**向量**, 这个向量恰好位于原始平面的正交补空间 (也就是法线)上. 如 Graph 1, 可见 $\mathbf{a} \times \mathbf{b}$ 和 \mathbf{z} 轴平行.

如上所述,这种既能描述一个子空间,又能直接得到一个向量作为代表的便利性是数学的一个美妙的巧合.在 n 维空间中,一个 k 维子空间的正交补是 (n-k) 维的,它通常不再是一维的直线了,因此,我们无法再用一个单独的向量来代表它.于是,我们就可以放宽条件 2 的限制,而**外代数(Exterior Algebra)** (或称**Grassmann Algebra**,为了纪念数学家 H. Grassmann),正是一个为此而生的工具.

GRAPH 1. A Graph of Cross Product

由于笔者水平和篇幅, 我们在这里无法给出一个完整的外代数的构造, 故对追求严谨的读者表示歉意. 我们直接借用其概念, 而有兴趣的读者可参考聂灵沼、丁石孙所著的代数学引论 (第三版)中的第九章. 为了方便, 下面所有的向量空间都假设配备了内积.

第一职责: 寻找子空间

外代数引入了一种新的运算, 叫做**外积**或**楔积**(Wedge Product), 记作 \land . 它的核心思想就是完成上面提到的第一个职责: **描述一个有向的子空间**. 如Graph 2, 对于两个向量 $a,b \in \mathbb{R}^3$,它们的楔积 $a \land b$ 不再是一个向量. 它是一个新的数学对象, 称为**二重向量** (bivector). 可以直观地将其理解为: $a \land b$ 本身就代表了由 a,b 张成的, 带有特定方向 (由顺序决定)和面积(由向量长度和夹角决定)的那个平行四边形面元.

GRAPH 2. A Graph of Wedge Product

外积不再试图寻找法向量, 而是直接把"平面本身"作为了运算结果. 它有以下关键性质:

- 1. **反对称性**: $\alpha_2 \wedge \alpha_1 = -(\alpha_1 \wedge \alpha_2)$. 这捕捉了"方向"的概念, 交换顺序等于将平面翻了一面.
- 2. **线性相关性**: 如果 α_1, α_2 线性相关(共线), 那么它们张成的平行四边形面积为零, 即 $\alpha_1 \wedge \alpha_2 = 0$.

把这些需要的性质抽象出来, 我们就能定义外积到底是一个什么样的运算了.

⊘ 定义 2.2 (外积).

设 V 是一个在数域 \mathbb{F} 上的 n 维向量空间, $\alpha, \beta, \gamma \in V, c \in \mathbb{F}$, 外积 \wedge 被定义为满足以下核心性质的, 唯一的双线性运算:

- 1. 双线性性 (Bilinearity):
 - $(\alpha + \beta) \wedge \gamma = \alpha \wedge \beta + \beta \wedge \gamma$,
 - $\alpha \wedge (\beta + \gamma) = \alpha \wedge \beta + \alpha \wedge \gamma$,
 - $(c\alpha) \wedge \beta = \alpha \wedge (c\beta) = c(\alpha \wedge \beta).$
- 2. 结合律 (Associativity):

- $(\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma)$.
- 3. 交错性 (Alternating Property):
 - 对于任何向量 $v \in V$, 都有 $v \wedge v = 0$.

实际上, 我们用交错性就能推出反对称性. 考虑 $\alpha_1 + \alpha_2$ 和自身的外积即可.

二重向量的思想可以完美推广. k 个向量的楔积 $\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_k$ 就代表了由这 k 个向量张成的 k 维有向"超平行多面体", 我们称之为一个 k-**向量(multivector)**(或k-**形 式**). 有了这个工具, 我们对"方向"的理解就升维了: 线的方向是**向量**(1-向量), 平面的方向是**二重向量**(2-向量)...那么, 针对这些所有的方向, 可以证明对特定的 k, V 上所有k-向量连同其伴随的向量空间结构可以构成一个向量空间, 记作 $\Lambda^k(V)$.

设 V 是一个在数域 \mathbb{F} 上的 n 维向量空间. 对任意非负整数 k, V 上的 k-**阶外幂** (k-th exterior power of V) 是一个记作 $\Lambda^k(V)$ 的向量空间. 这个空间由所有 k-向量 (k-vectors) 张成.

特别地:

- Λ⁰(V) 就是底域 F (比如 R).
- $\Lambda^1(V)$ 就是向量空间 V 本身.
- 若 $k > \dim(V)$, 那么 $\Lambda^k(V) = \{0\}$.

\equiv 示例 2.4 (\mathbb{R}^3 上的k-向量空间及 \wedge 运算).

让我们以我们熟悉的三维空间 \mathbb{R}^3 为例,看看这些k-向量空间是什么,以及 \wedge 是怎么运算的:

- 1. $\Lambda^0(\mathbb{R}^3)$ **(0-向量空间)**: 这是所有**标量**构成的空间. 维度是 $1 = \binom{3}{0}$. 它代表了"0维"的 度量, 也就是数值本身.
- 2. $\Lambda^1(\mathbb{R}^3)$ (1-**向量空间)**: 这就是 \mathbb{R}^3 **向量空间本身**. 它的基可以是 $\{e_1, e_2, e_3\}$. 维度是 $3 = \binom{3}{1}$, 它代表了所有"1维"的有向线段.
- 3. $\Lambda^2(\mathbb{R}^3)$ **(2-向量空间)**: 这是所有**有向平面元素**构成的空间. 它的基可以由基向量的外积构成: $\{e_1 \wedge e_2, e_2 \wedge e_3, e_3 \wedge e_1\}$. 这三个基元分别代表了xy平面, yz平面和zx平

面的单位有向面积. 任何在 \mathbb{R}^3 中的有向平面, 都可以由这三个基平面线性组合而成. 因此, 这个空间的维度是 $3 = \binom{3}{2}$.

4. $\Lambda^3(\mathbb{R}^3)$ **(3-向量空间)**: 这是所有**有向体积元素**构成的空间. 它只有一个基元**:** $e_1 \wedge e_2 \wedge e_3$,代表了由三个基向量张成的单位立方体的有向体积. \mathbb{R}^3 中任何三个向量张成的平行六面体的体积, 都是这个基元的倍数. 这个空间的维度是 $1 = \binom{3}{3}$.

以上是 \mathbb{R}^3 上的k-向量空间, 下面是具体的一个运算示例: 设 $\mathbf{a} = (a_1, a_2, a_3)$ 且 $\mathbf{b} = (b_1, b_2, b_3)$, 我们计算 $\mathbf{a} \wedge \mathbf{b}$ 看看它长什么样. 设基向量为 $\{e_1, e_2, e_3\}$, 两个向量 \mathbf{a} 和 \mathbf{b} 可以表示为:

$$\mathbf{a} = \sum_{i=1}^3 a_i e_i \quad ext{fl} \quad \mathbf{b} = \sum_{j=1}^3 b_j e_j$$

根据双线性性, 它们的楔积是:

$$\mathbf{a} \wedge \mathbf{b} = \left(\sum_{i=1}^3 a_i e_i
ight) \wedge \left(\sum_{j=1}^3 b_j e_j
ight) = \sum_{i,j=1}^3 a_i b_j (e_i \wedge e_j)$$

这个双重求和共有 9 项. 但根据外积的交错性 $(e_i \wedge e_i = 0)$ 和反对称性 $(e_j \wedge e_i = -e_i \wedge e_j)$, 我们可以极大地简化它:

- 当 i = j 时, 项为零.
- 当 $i \neq j$ 时, 我们可以将 $e_j \wedge e_i$ 替换为 $-e_i \wedge e_j$ 来合并同类项.

故展开并合并后, 我们得到:

$$\mathbf{a} \wedge \mathbf{b} = (a_1b_2 - a_2b_1)(e_1 \wedge e_2) + (a_2b_3 - a_3b_2)(e_2 \wedge e_3) \ + (a_3b_1 - a_1b_3)(e_3 \wedge e_1)$$

整理得:

$$\mathbf{a}\wedge\mathbf{b}=egin{bmatrix} a_1 & a_2 \ b_1 & b_2 \end{bmatrix}\!(e_1\wedge e_2)+egin{bmatrix} a_2 & a_3 \ b_2 & b_3 \end{bmatrix}\!(e_2\wedge e_3)+egin{bmatrix} a_3 & a_1 \ b_3 & b_1 \end{bmatrix}\!(e_3\wedge e_1)$$

最后还可以封装到一个3阶行列式里,得到:

$$\mathbf{a}\wedge\mathbf{b}=egin{bmatrix} \mathbf{e_2}\wedge\mathbf{e_3} & \mathbf{e_3}\wedge\mathbf{e_1} & \mathbf{e_1}\wedge\mathbf{e_2}\ a_1 & a_2 & a_3\ b_1 & b_2 & b_3 \end{bmatrix}$$

这就是叉乘能带给我们的! 但是注意, 这个行列式的表达形式也和叉乘一样, 是非常特殊的. ♣

我们之前提到的外代数, 就是用上面这样的外积和 k-向量空间搭建起来的. 具体来说, 就是一个直和.

⊘ 定义 2.5 (外代数).

设 V 是一个在数域 \mathbb{F} 上的 n 维向量空间, 则V上的外代数 $\Lambda(V)$ 是所有其 k-向量空间的直和:

$$\Lambda(V) = igoplus_{k=0}^n \Lambda^k(V)$$

如前文所说,这里不解释其具体构造.但回到示例 2.4,可见外代数为我们提供一套统一了标量,向量,有向面积和有向体积的语言.

并且, 读者应该可以注意到 $\dim \Lambda^k(V)$ 与 k 和 n 具有一定的关系. 具体来说, 我们有 $\dim \Lambda^k(V) = \binom{n}{k}$. 这个规律并非巧合.

ふ 规律的背后: k-向量空间的维度

要得到 $\Lambda^k(V)$ 的维度, 我们只需为其构造一组基即可. 我们的出发点是 V 的一组基 $\{e_1,\ldots,e_n\}$.

- 1. **构造基元**: $\Lambda^k(V)$ 的基元自然由 V 的基通过楔积构成, 形如 $e_{i_1} \wedge \cdots \wedge e_{i_k}$.
- 2. 性质筛选: 外积的性质极大地约束了索引的选择:
- **交错性** $(v \land v = 0)$ 要求所有索引 $i_1, ..., i_k$ 必须**互不相同**.
- **反对称性** $(e_i \wedge e_j = -e_j \wedge e_i)$ 意味着索引的顺序只会改变符号. 为保证唯一性, 我们约定将索引**按升序排列**: $1 \leq i_1 < \cdots < i_k \leq n$.
- 3. **组合学联系**: 因此, 构造一组基的问题就等价于: 从 n 个索引 $\{1, ..., n\}$ 中选出 k 个的组合数, 故我们有:

$$\dim \Lambda^k(V) = \binom{n}{k}$$

外代数 $\Lambda(V)$ 的总维度是 $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$. 实际上, 外代数可以被看作是张量代数 T(V) 的一个商代数, 它由所有张量模掉一个特定理想(由形如 $v \otimes v$ 的元素生成)而得到. 它代表了张量代数中所有**完全反对称**的部分.

同时, 我们有当n = k 的时候的 k-向量:

$$\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n$$
.

按照定义, 它是一个n-向量. 并且, 有 $\dim \Lambda^n(V) = 1$. 那么它就同构于 V 的基域 \mathbb{F} . 这个n-向量, 其实就是我们特别熟悉的一个概念.

我们取标准正交基 $\{e_1,\ldots,e_n\}$ 构成的单位 n-向量 $e_1\wedge\cdots\wedge e_n$ 作为基准. 那么任何 n 个向量的楔积都可以表示为:

$$\alpha_1 \wedge \cdots \wedge \alpha_n = k \cdot (e_1 \wedge \cdots \wedge e_n)$$

这个标量系数 k 是什么?它正是由向量 $\alpha_1, \ldots, \alpha_n$ 作为列向量构成的矩阵的**行列式** (determinant)!

$$\alpha_1 \wedge \cdots \wedge \alpha_n = \det(\alpha_1, \dots, \alpha_n) \cdot (e_1 \wedge \cdots \wedge e_n)$$

并且, 我们称这个 n-向量为**赝标量(Pseudoscalar)**. 我们只需要用外积的性质就可以证明这个结论, 但是略微有点繁琐, 略过.

这就是行列式的深刻几何本质: **行列式是** n **个向量在** n **维空间中所张成的有向超平行多面体(有符号的)的体积**. 故我们可以定义所谓的体积形式(Volume Form).

⊘ 定义 2.6 (体积形式).

设 V 是一个 n 维实向量空间, V 上的一个 **体积形式**(Volume Form)是 $\Lambda^n(V)$ 空间中任意一个**非零**的元素. 我们通常用 ω 或 μ 来表示.

这个定义是合理的, 因为 $\Lambda^n(V)$ 是一维的, 那么我们可以任选一个非零的 n-向量 ω 作为基准. 故空间中任何 n 个向量 $\{v_1,v_2,\ldots,v_n\}$ 的楔积, 必然等于这个基准体积形式的某个标量倍数:

$$v_1 \wedge v_2 \wedge \cdots \wedge v_n = c \cdot \omega$$

这个标量 c 就被定义为由这 n 个向量张成的**有向体积(signed volume)**.

现在,选择一个特定的体积形式 ω 就等同于为向量空间 V 选择了一个 **定向** (orientation). 一个有序基 $\{v_1,\ldots,v_n\}$ 被认为是**正定向的** (positively oriented), 如果它们张成的有向体积为正, 即 $v_1 \wedge \cdots \wedge v_n = c \cdot \omega$ 且 c > 0. 反之, 如果 c < 0, 则称其为**负定向的**.

特别地, 选择 V的任意一组单位正交基 $\{e_1, e_2, \ldots, e_n\}$, 定义

$$\omega = e_1 \wedge e_2 \wedge \ldots \wedge e_n$$
,

则我们有

$$e_1 \wedge e_2 \wedge \ldots \wedge e_n = \det(e_1, \ldots, e_n) \cdot \omega$$

= $\det(e_1, \ldots, e_n) \cdot (e_1 \wedge \cdots \wedge e_n),$

因此 $\det(e_1,\ldots,e_n)=1$, 并且我们称 ω 为**单位体积形式**.

第二职责: 寻找正交补

至此, 我们已经建立起来了一个"够用"的外代数结构: 我们成功地用外积分解了我们想要的叉积的第一个功能, 即描述子空间. 我们是时候把叉积的第二个职能拾起来了, 也就是寻找正交补空间.

三维空间中, $\alpha_1 \times \alpha_2$ 不仅定义了一个平面, 它还直接给出了这个平面的**法向量**. 这个法向量, 就是该平面的**正交补空间**的基向量. 这个功能我们还未推广. 在 n 维空间中, 一个 k 维子空间 U 的正交补空间 U^{\perp} 是一个 (n-k) 维的空间. 我们能否也定义一个运算, 将代表 U 的 k-向量, 直接映射到代表 U^{\perp} 的 (n-k)-向量上去呢?

答案是肯定的, 而这个运算, 正是 Hodge **星算子** (Hodge Star Operator)(或称Hodge **对偶** (Hodge Dual)),记作 * (或 *).

不过为了定义"正交", 我们的向量空间 V 必须配备**内积**(比如 \mathbb{R}^n 中的标准点积)有了内积, 我们才能谈论长度和角度. Hodge 星算子 \star 就是这么一个在配备了内积和定向的向量空间上定义的映射:

$$\star: \Lambda^k(V) o \Lambda^{n-k}(V).$$

让我们先看几个例子:

謳 示例 2.7 (Hodge星算子).

在 \mathbb{R}^3 中 (n=3):

- 1. * 作用在一个1-向量(代表一条线)上: * : $\Lambda^1 \to \Lambda^2$. 它会返回一个2-向量, 代表与这条线正交的那个平面;
- 2. * 作用在一个2-向量(代表一个平面)上: * : $\Lambda^2 \to \Lambda^1$ 。它会返回一个1-向量, 这个向量就是该平面的法向量.

这正是叉积所做的事情! 我们现在可以精确地写出三维叉积和楔积的关系了:

$$\alpha_1 \times \alpha_2 = \star (\alpha_1 \wedge \alpha_2)$$

这个等式完美地诠释了我们的分析: 先用楔积 / 完成"描述子空间"的任务, 再用 Hodge 星算子 * 完成"寻找正交补"的任务. 两步操作合起来, 就是三维的叉积.

在 \mathbb{R}^n 中:

- 1. * 作用在一个**标量** c 上(0-向量): * $c = c \cdot (e_1 \wedge \cdots \wedge e_n)$. 它返回的是整个空间的体积形式乘以这个标量.
- 2. ★ 作用在整个空间的**单位体积形式**上: $\star(e_1 \wedge \cdots \wedge e_n) = 1$.它返回标量1. ♣

虽然几何直觉已经足够, 但 Hodge 星算子的严格代数定义不仅是必要的, 而且是优美的.

设 $V \in \mathbb{R}$ 维向量空间, $\Lambda^k(V)$ 是它上的 k-阶外幂.

Hodge 星算子被唯一地由以下关系确定: 对于任意两个 k-向量 $A, B \in \Lambda^k(V)$, 它们必须满足:

$$A \wedge (\star B) = \langle A, B \rangle \cdot \omega$$

其中:

- 1. $\langle A, B \rangle$ 是 k-向量 A 和 B 之间的内积(由基向量的内积扩展而来);
- 2. $\omega = e_1 \wedge \cdots \wedge e_n$ 是我们选定的单位体积形式.

这个定义很抽象, 而且是非构造性的. 但它精确地捕捉了"正交补"的本质. 它说的是: "A 和 B 的正交补 *B 的外积是一个n-向量, 其代表了整个空间的有向体积. 并且这个体积的大小正比于 $\langle A, B \rangle$ ".

有关 $\langle A, B \rangle$, 例如, 如果 $A = \mathbf{a}_1 \wedge \cdots \wedge \mathbf{a}_k$ 和 $B = \mathbf{b}_1 \wedge \cdots \wedge \mathbf{b}_k$ 是两个单纯的 k-向量, 那么它们之间的内积可以定义为**Gram 行列式**:

$$\langle A,B
angle := \det(\langle \mathbf{a}_i,\mathbf{b}_j
angle) = \detegin{pmatrix} \langle \mathbf{a}_1,\mathbf{b}_1
angle & \cdots & \langle \mathbf{a}_1,\mathbf{b}_k
angle \ dots & \ddots & dots \ \langle \mathbf{a}_k,\mathbf{b}_1
angle & \cdots & \langle \mathbf{a}_k,\mathbf{b}_k
angle \end{pmatrix}$$

我们还可以用标准正交基给出一个等价的,构造性的 Hodge 星算子,参见<u>霍奇对偶的wiki页面</u>中的*k-向量的霍奇星号的正式定义*.不过在这里我们先来验证它确实能导出我们所期望的正交关系.

设 $B = \beta_1 \wedge \cdots \wedge \beta_k$ 是一个由 k 个线性无关向量构成的**单纯** k-**向量** (simple k-vector), 它代表了 k 维子空间 $U = \operatorname{span}\{\beta_1, \ldots, \beta_k\}$. 那么, 它的Hodge对偶 $\star B$ 就代表了 U 的 (n-k) 维**正交补空间** U^{\perp} .

证:

这个命题的本质是几何的, 它关乎子空间之间的正交关系. 由于内积, 外积和Hodge星算子都是在向量空间上被内在地定义的, 它们的性质不随我们选择的坐标基底而改变. 因此, 为了让证明尽可能清晰, 我们可以选择一组对问题最有利的**标准正交基** $\{e_1, e_2, \ldots, e_n\}$, 而这并不会损失一般性.

1. 选择理想的基底:

我们让所选的基底与子空间 U 对齐. 具体来说, 我们让 U 的一组标准正交基恰好是我们整个空间 V 的前 k 个基向量. 也就是:

$$U = \operatorname{span}\{e_1, e_2, \dots, e_k\}$$

2. **表示** k**-向量** B:

根据这个设定, k-向量 B 所代表的空间是 U. 这意味着 B 必须是 U 的基向量外积的标量倍. 不失一般性, 我们可以设这个标量为1 (任意标量因子会同时出现在 B 和 $\star B$ 中), 则 B 可以被写为:

$$B = e_1 \wedge e_2 \wedge \cdots \wedge e_k$$

3. 计算 Hodge 对偶 ★B:

现在, 我们对这个特定的 B 应用Hodge星算子. 这里的计算依据的是Hodge星算子在标准正交基上的**构造性定义**, 它与抽象的定义 2.8 是等价的: 一个基 k-向量的Hodge对偶是剩下所有 (n-k) 个基向量按顺序的外积. 因此:

$$\star B = \star (e_1 \wedge e_2 \wedge \cdots \wedge e_k) = e_{k+1} \wedge e_{k+2} \wedge \cdots \wedge e_n$$

4. 识别正交补空间:

观察 $\star B$ 的结果. 它是一个 (n-k)-向量, 由基向量 $\{e_{k+1},\ldots,e_n\}$ 张成. 这个由 $\star B$ 所代表的子空间, 我们称之为 W, 即:

$$W = \operatorname{span}\{e_{k+1}, e_{k+2}, \dots, e_n\}$$

根据标准正交基的定义, 前 k 个基向量 e_1, \ldots, e_k 中的任意一个都与后 (n-k) 个基向量 e_{k+1}, \ldots, e_n 中的任意一个正交. 因此, 由它们各自张成的子空间 U 和 W 必然是正交的.

5. 结论:

空间 W 正是 U 的正交补空间 U^{\perp} . 我们就此证明了, $\star B$ 所代表的子空间恰好是 B 所代表的子空间的正交补. 我们的几何直觉在这里得到了坚实的代数支撑. \square

这个结果的意义非凡. 它说明: **任何位于** U **里的** k**-向量, 都与任何位于** U **里的** (n-k)**-向量的Hodge对偶正交**. 故有了 Hodge 星算子, 我们现在可以定义广义叉积了! 它是一个接收 n-1 个向量并返回一个向量的运算:

$$Cross(\alpha_1,\ldots,\alpha_{n-1}):=\star(\alpha_1\wedge\cdots\wedge\alpha_{n-1}).$$

这个运算返回的, 正是在 n 维空间中与输入的 n-1 个向量都正交的那个唯一方向. 这正是我们解决推广问题时所需要的那个"交线方向向量"!

推广的问题的解决

我们现在终于可以回到问题 2.1 了. 下面是对它的正式解答.

证:

任意n-1 个平面 $\pi_i, (i \neq k)$ 相交得到的直线的方向向量 $v_k, (i=1,2,\ldots,n)$ 和我们定义的广义叉积共线. 即

$$egin{aligned} v_k &= c_k \operatorname{Cross}(lpha_1, \ldots, lpha_{k-1}, lpha_{k+1}, \ldots lpha_n) \ &= c_k (\star (lpha_1 \wedge \ldots lpha_{k-1} \wedge lpha_{k+1} \cdots \wedge lpha_n)) \end{aligned}$$

其中 $c_k \in \mathbb{R}$.

根据 v_k 的定义, 我们知道 v_k 与 α_i (当 $i \neq k$) 的点积为零. 即

$$v_k \cdot lpha_i = 0 \quad ext{for all } i
eq k$$

利用我们的核心条件: 所有 v_k 都共线. 这意味着它们都指向同一个方向(或反向). 因此, 我们可以取其中的 v_1 , 并说对于任何 $k \neq 1$, 都存在一个标量 c_k' 使得 $v_k = c_k' v_1$.

接下来, 我们来考察点积 $\alpha_k \cdot v_1$. 虽然我们知道 v_k 和 α_k 之间没有直接的正交关系, 但是我们知道 v_1 和 α_k (对于 $k \neq 1$) 是正交的. 我们马上来证明 v_1 也必须与 α_1 正交: 取 v_2 , 我们知道 $v_2 \cdot \alpha_1 = 0$ (根据 v_2 的定义). 由于 v_1 和 v_2 共线, 存在非零常数 c 使得

 $v_2 = cv_1$. 代入, 可得

$$(cv_1) \cdot \alpha_1 = 0 \implies c(v_1 \cdot \alpha_1) = 0 \implies v_1 \cdot \alpha_1 = 0.$$

现在, 因为 v_1 与 $\alpha_2, \alpha_3, \ldots, \alpha_n$ 正交, 并且我们刚才证明了 v_1 也与 α_1 正交, 故向量 v_1 与**所有**的法向量 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 都正交.

由于一个非零向量($v_1 \neq 0$,因为任意 n-1 个法向量是线性无关的)在 \mathbb{R}^n 中不可能同时正交于 n 个线性无关的向量, 因此向量组 $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ 必须是**线性相关的**. 这就完成了一半. 现在处理关于矩阵的秩的部分:

 $\{\alpha_1,\ldots,\alpha_n\}$ 是线性相关的, 意味着由这些法向量构成的系数矩阵的秩小于 n, 而"任意 n-1 个超平面交于一条直线"意味着任意 n-1 个法向量都是线性无关的. 结合这两点, 我们得到系数矩阵的秩 $r(\alpha_1,\ldots,\alpha_n)=n-1$.

而几何上, 这 n 条不同的平行线意味着这 n 个超平面没有公共交点,形成了一个 n 维的"棱柱". 因此,线性方程组 $\mathbf{A}x = -\beta$ 是**无解**的. 根据 Rouché—Capelli 定理, 无解意味着增广矩阵的秩大于系数矩阵的秩. 所以, 我们有

$$r(\alpha_1,\ldots,\alpha_n,eta)>r(\alpha_1,\ldots,\alpha_n)=n-1.$$

由于增广矩阵最多有 n 个线性无关的行, 其秩最大为 n, 因此增广矩阵的秩 $r(\alpha_1,\ldots,\alpha_n,\beta)=n$. \square

3. 又一次推广与几何本质

我们已经成功地将问题从3维推广到了n维,但我们解决的仍然是一个非常特殊的情况:任意 n-1 个超平面相交于**平行直线**.一个自然的问题是:如果相交的超平面数量不是n-1 而是任意的 m 个,交集也不是直线而是更高维度的子空间,我们建立的理论是否依然有效?

答案是肯定的. Hodge星算子的强大之处就在于它能完美处理任意维度子空间的正交补, 这正是解决这个推广的问题所需要的.

② 问题 3.1 (问题 1.1 的又一次推广).

设 $\alpha_i \in \mathbb{R}^n, (i=1,2,\ldots,n), \beta=(d_1,d_2,\ldots,d_n)^{\top} \in \mathbb{R}^n,$ 有 n 个 \mathbb{R}^n 中的超平面

$$\pi_i: \ \alpha_i \cdot \mathbf{x} + d_i = 0$$

这些超平面满足以下条件:

- 1. 任意 m 个超平面的法向量 $(2 \le m \le n-1)$ 都线性无关, 因此它们相交于一个唯一的 (n-m) 维仿射子空间.
- 2. 所有这些由任意 m 个超平面形成的交集都是**互相平行**的.

求证: $\operatorname{rank}(\alpha_1, \alpha_2, \ldots, \alpha_n) = m, \operatorname{rank}(\alpha_1, \alpha_2, \ldots, \alpha_n, \beta) = m + 1.$

分析:

这个问题的核心在于理解"平行子空间"的代数表示. 一个 (n-m) 维子空间的方向不再是一个向量, 而是由一组 (n-m) 个线性无关的向量张成的**整个空间**. 我们如何用一个单一的数学对象来代表这个"方向"?

这正是外代数和Hodge星算子大显身手的地方.

- 1. **交集的方向**: 考虑任意 m 个超平面 $\pi_{i_1}, \ldots, \pi_{i_m}$. 它们的交集是一个 (n-m) 维子空间. 这个子空间的方向由所有同时与法向量 $\alpha_{i_1}, \ldots, \alpha_{i_m}$ 正交的向量构成. 换句话说, 交集的方向空间是 U^{\perp} , 其中 $U = \mathrm{span}\{\alpha_{i_1}, \ldots, \alpha_{i_m}\}$.
- 2. **用Hodge对偶表示方向**: 我们知道, m 维子空间 U 可以由其基向量的楔积, 即 m-向量 $B = \alpha_{i_1} \wedge \cdots \wedge \alpha_{i_m}$ 来代表. 根据命题 2.9, 它的正交补 U^{\perp} (也就是交集的方向空间) 则由Hodge对偶 $\star B = \star (\alpha_{i_1} \wedge \cdots \wedge \alpha_{i_m})$ 来代表. 这是一个 (n-m)-向量.
- 3. **转译"平行"条件**: "所有交集都相互平行"意味着它们共享同一个方向空间. 在我们的代数语言中, 这意味着所有由任意 m 个法向量构成的楔积, 其Hodge对偶都必须共线. 也就是说, 对于任意两组不同的索引集合 $I = \{i_1, \ldots, i_m\}$ 和 $J = \{j_1, \ldots, j_m\}$, 存在一个非零常数 c, 使得:

$$\star(\alpha_{i_1}\wedge\cdots\wedge\alpha_{i_m})=c\cdot\star(\alpha_{j_1}\wedge\cdots\wedge\alpha_{j_m})$$

对这个等式两边同时作用 * 算子 (利用 *(*A) = $(-1)^{k(n-k)}A$, 其中n是空间维数, k 是k-向量的阶数), 我们可以得到一个等价的条件:

$$lpha_{i_1}\wedge\cdots\wedgelpha_{i_m}=c'\cdot(lpha_{j_1}\wedge\cdots\wedgelpha_{j_m})$$

这个结论至关重要. 它表明: **任意选择** m **个法向量, 它们张成的** m **维子空间都是同一个.**

证:

基于以上分析, 我们可以开始证明.

1. 证明法向量空间的维度:

由"平行"条件的代数转译可知, 任意 m 个法向量 α_i 所张成的子空间是相同的. 我

们取前 m 个向量 $\alpha_1, \ldots, \alpha_m$ 作为基准, 它们张成的子空间为 $U_0 = \operatorname{span}\{\alpha_1, \ldots, \alpha_m\}$. 根据条件1, 这 m 个向量是线性无关的, 因此 $\dim(U_0) = m$.

现在, 考虑任何一个其他的法向量 α_k (其中 k>m). 我们考察由向量组 $\{\alpha_1,\ldots,\alpha_{m-1},\alpha_k\}$ 张成的子空间. 根据"平行"条件, 这个子空间必须与 U_0 是同一个.

$$\operatorname{span}\{\alpha_1,\ldots,\alpha_{m-1},\alpha_k\}=U_0=\operatorname{span}\{\alpha_1,\ldots,\alpha_m\}$$

这意味着向量 α_k 必须可以由基底 $\{\alpha_1,\ldots,\alpha_m\}$ 线性表示. 由于这个结论对所有 k>m 的 α_k 都成立, 因此所有的法向量 α_1,\ldots,α_n 都位于由前 m 个向量张成的 m 维子空间 U_0 中.

结合条件1 (任意 m 个法向量线性无关) 和我们刚刚的推论 (所有法向量都在一个 m 维子空间内), 我们可以断定:

$$\operatorname{rank}(\alpha_1,\ldots,\alpha_n)=m$$

2. 证明增广矩阵的秩:

几何上, 我们有大量 $\binom{n}{m}$ 个) 不同的, 平行的 $\binom{n-m}{m}$ 维交集. 这意味着不存在一个公共点同时满足所有 n 个超平面方程. 因此, 由这 n 个方程组成的线性方程组是**无**解的.

根据**线性方程组有解判别定理 (Rouché-Capelli)**, 方程组无解意味着增广矩阵的 秩大于系数矩阵的秩.

$$\operatorname{rank}(lpha_1,\ldots,lpha_n,eta)>\operatorname{rank}(lpha_1,\ldots,lpha_n)=m$$

由于增广矩阵只增加了一列, 它的秩最多比原系数矩阵的秩大1. 所以, 我们必有:

$$\operatorname{rank}(\alpha_1,\ldots,\alpha_n,\beta)=m+1$$

证明完毕. 🗆

む 结论的统一性

可以发现, 我们最初的问题1.1和问题2.1, 都只是这个再次推广的形式在 m=n-1 时的特例.

当 m = n - 1 时, 交集是 n - (n - 1) = 1 维的, 即直线. 结论是

 $\operatorname{rank}(\alpha_1,\ldots,\alpha_n)=n-1$ 且 $\operatorname{rank}(\alpha_1,\ldots,\alpha_n,\beta)=n$. 这与我们之前的推导完全吻合.

4. To Be Continued...

上面的定理是否还能再次推广? 比如如果我们把问题 3.1 中的基域 \mathbb{R} 换为任意域呢? 因为 Rouché—Capelli 定理不依赖域的性质, 现在我们就可以用它来处理秩的情况. 但是 Hodge 星算子却不行, 因为根据定义 2.8, Hodge 星算子依赖于向量空间上的内积. 一个完全抽象的数域 \mathbb{F} (包括有限域,当然)上的, 没有额外度量结构的向量空间 \mathbb{F}^n 就没办法定义 Hodge 星算子. 但是, 一个好消息是这个**推广是成立的**.

设
$$lpha_i\in\mathbb{F}^n, (i=1,2,\dots,n), eta=(d_1,d_2,\dots,d_n)^{ op}\in\mathbb{F}^n$$
,有 n 个 \mathbb{F}^n 中的超平面 $\pi_i:\ lpha_i\cdot\mathbf{x}+d_i=0$

这些超平面满足以下条件:

- 1. 任意 m 个超平面的法向量 $(2 \le m \le n-1)$ 都线性无关, 因此它们相交于一个唯一的 (n-m) 维仿射子空间.
- 2. 所有这些由任意 m 个超平面形成的交集都是**互相平行**的.

求证: $\operatorname{rank}(\alpha_1, \alpha_2, \ldots, \alpha_n) = m, \operatorname{rank}(\alpha_1, \alpha_2, \ldots, \alpha_n, \beta) = m + 1.$

但是所用到的工具脱离了这篇note的内容. 具体来说, 我们需要更抽象的**对偶空间** (Dual Space)和零化子 (Annihilator).

如果我们把域固定为较熟悉的 \mathbb{R} 或 \mathbb{C} , 转而把命题 3.1 的维数推广呢? 幸运地是, 这个推广也是成立的! 但不幸的是, 依然需要更精细的工具. 具体地来说, 我们需要引入 **Banach 空间**和最终的**Hahn-Banach 定理**. 引入 Banach 空间可以让我们在更抽象的程度上处理向量空间, 而 Hahn-Banach 定理则让我们可以处理对偶. 我们的命题最终 具有这样的形式:

设 X 是一个 (\mathbb{R} 或 \mathbb{C} 上的) Banach 空间, X^* 是其拓扑对偶空间 (由所有从 X 到基域的连续线性泛函构成).

给定 X^* 中一个有限集族的连续线性泛函 $\{\alpha_1, \alpha_2, ..., \alpha_n\} \subset X^*$ 和一组标量 $\{d_1, d_2, ..., d_n\}$. 对每一个 i, 我们定义一个(仿射)**闭超平面**:

$$\pi_i := \{x \in X \mid \alpha_i(x) = d_i\}$$

这些超平面满足以下条件:

- 1. 对于任意 m 个不同索引构成的集合 $I \subset \{1, ..., n\}$ $(2 \le m \le n 1)$, 泛函集 $\{\alpha_i \mid i \in I\}$ 都是**线性无关**的. *(注: 这个条件保证了任意 m 个超平面的交集* $\cap_{i \in I} \pi_i$ 是一个**闭仿射子空间**,且其方向空间的**余维 (codimension)** 为 m)
- 2. 所有这些由任意 m 个超平面形成的交集都是**互相平行**的. (注: 这意味着它们的方向空间是相同的. 一个交集的方向空间是齐次方程组的解集, 即 $\cap_{i\in I}\{x\in X\mid \alpha_i(x)=0\}=\cap_{i\in I}\ker(\alpha_i)$. 因此,该条件可以严谨地表述为: 对于任意两个大小为 m 的索引集 I,J,都有 $\cap_{i\in I}\ker(\alpha_i)=\cap_{j\in J}\ker(\alpha_j)$.

求证:

- 1. 由所有泛函张成的子空间 $W:=\mathrm{span}(\alpha_1,\alpha_2,\ldots,\alpha_n)\subset X^*$ 的**维度**是 m.
- 2. 线性方程组 $\alpha_i(x) = d_i, \forall i \in \{1, ..., n\}$ 是**无解**的,当且仅当向量 $(d_1, ..., d_n)$ 不满足所有由 $\{\alpha_i\}$ 之间的线性相关性所施加的约束. *(注: 这可以更精确地表述为: 该系统无解*,当且仅当存在一组不全为零的标量 $\{c_1, ..., c_n\}$ 使得 $\sum c_i \alpha_i = 0$ (零泛函),但 $\sum c_i d_i \neq 0$. 这就是 Hahn-Banach 定理的一个推论.)

