Содержание

1	Teo	рия групп 3
	1.1	Простейшие св-ва групп
	1.2	Теорема Лагранжа
	1.3	Циклическая группа
	1.4	Изоморфные группы
	1.5	Теорема о циклических группах
	1.6	Сопряжение элемента
	1.7	О классах смежности
	1.8	Про коммутанты
	1.9	Гомоморфизм
	1.10	Свойства гомоморфизма
	1.11	Основная теорема о гомоморфизме
	1.12	Действие группы на множестве
	1.13	Stab и Orb
	1.14	Лемма Бернсайда
	_	10
2		лидовы и унитарные пр-ва
	2.1	Скалярное умножение
	2.2	Матрица Грама
	2.3	Норма
	2.4	Нер-во Коши - Буняковского 22
	2.5	Ортогональное дополнение
	2.6	Ортогональная проекция
	2.7	Ортогональный базис
	2.8	Ортогональная матрица
	2.9	О линейных функционалах
	2.10	Унитарные пространства
	2.11	Сопряжение?
	2.12	Сопряженная матрица
	2.13	Эрмитов сопряженный оператор
	2.14	Какая-то штука
	2.15	Унитарный оператор
	2.16	Поворот
	2.17	Теорема Эйлера
	2.19	Про композицию поворотов
	2.20	Теорема. Унитарный оператор имеет ОНБ из с.в
	2.21	Теорема про унитарную матрицу
	2.22	Эрмитова матрица и самосопряженный оператор 37
	2.23	Теорема про самосопряженный оператор

СОДЕРЖАНИЕ

2.23	Теорема про эрмитову матрицу							39
2.24	Singular value decomposition							41
2.25	Квадратичные формы над \mathbb{R}							43
2.26	Применение сингулярного разложения							44
2.27	Норма	_			_			46

1 Теория групп

2019-09-17

Опр

G - мн-во,
$$*: G*G \to G, \ (g_1,g_2) \to (g_1*g_2) \ (g_1g_2)$$

- 1. $(g_1g_2)g_3 = g_1(g_2g_3) \quad \forall g_1, g_2, g_3 \in G$
- 2. $\exists e \in G : eg = ge = g \quad \forall g \in G$
- 3. $\forall g \in G \quad \exists \widetilde{g} \in G : g\widetilde{g} = g\widetilde{g} = e$
- 4. $q_1q_2 = q_2q_1 \quad \forall q_1, q_2 \in G$

Примеры

- 1. $(\mathbb{Z}, +)$ группа
- 2. (ℤ, •) не группа
- 3. (R, +) группа кольца
- 4. (R^*, \bullet)
- 5. Группа самосовмещения D_n , например D_4 квадрат, композиция группа, $|D_n| = 2n$
- 6. $GL_n(K) = \{A \in M_n(K) : |A| \neq 0\}$, умножение группа
- 7. $\mathbb{Z}n\mathbb{Z}$ частный случай п.3,4

Теорема (простейшие св-ва групп)

- 1. е единственный, e, e' нейтральные: e = ee' = e'
- 2. \widetilde{g} единственный Пусть $\widetilde{g}, \widehat{g}$ - обратные, тогда $\widetilde{g}g = g\widetilde{g} = e = \widehat{g}g = g\widehat{g}$ $\widehat{q} = e\widehat{q} = (\widetilde{q}g)\widehat{q} = \widetilde{q}(q\widehat{q}) = \widetilde{q}e = \widetilde{q}$
- 3. $(ab)^{-1}=b^{-1}a^{-1}$ Это верно, если $(ab)(b^{-1}a^{-1})=(b^{-1}a^{-1})(ab)=e$, докажем первое: $(ab)(b^{-1}a^{-1})=((ab)b^{-1})a^{-1}=(a(bb^{-1}))a^{-1}=(ae)a^{-1}=aa^{-1}=e$
- 4. $(g^{-1})^{-1} = g$

$$g \in G \quad n \in \mathbb{Z}, \text{ тогда } g = \begin{bmatrix} \overbrace{g...g}^n, & n > 0 \\ e, & n = 0 \\ \underbrace{g^{-1}...g^{-1}}_n, & n < 0 \end{bmatrix}$$

Теорема (св-ва степени)

$$1. \ g^{n+m} = g^n g^m$$

2.
$$(q^n)^m = q^{nm}$$

Опр

$$g \in G, \, n \in N$$
 - порядок g $(ordg = n),$ если:

1.
$$q^n = e$$

2.
$$a^m = e \rightarrow m \geqslant n$$

Примеры

1.
$$D_4$$
 ord(поворот 90°) = 4 D_4 ord(поворот 180°) = 2

2.
$$(\mathbb{Z}/6\mathbb{Z}, +)$$
 $ord(\overline{1}) = 6$ $ord(\overline{2}) = 3$

y_{TB}

$$g^m = e \quad ord(g) = n \rightarrow m : n \text{ (n>0)}$$

Док-во

$$m = nq + r, \ 0 \leqslant r < n \ e = g^m = g^{nq+r} = (g^n)^q g^r = g^r \Rightarrow r = 0$$

Опр

 $H \subset G$ называется подгруппой G (H < G) (и сама является группой), если:

1.
$$g_1, g_2 \in H \to g_1 g_2 \in H$$

$$2. e \in H$$

3.
$$g \in H \to g^{-1} \in H$$

Примеры

1.
$$n\mathbb{Z} < \mathbb{Z}$$

2. D_4

3.
$$SL_n(K) = \{A \in M_n(K) : |A| = 1\}, SL_n(K) < GL_n(K)$$

Мультипликативная запись	Аддитивная запись							
g_1g_2	$g_1 + g_2$							
e	0							
g^{-1}	-g							
g^n	ng							

Опр

 $H < G, g_1, g_2 \in G$, тогда $g_1 \sim g_2$, если:

- 1. $q_1 = q_2 h, h \in H$ (левое)
- 2. $q_2 = hq_1, h \in H$ (правое)

Док-во (эквивалентность)

- 1. (симметричность) $g_1 = g_2 h \stackrel{*h^{-1}}{\to} g_2 = g_1 h^{-1}$
- 2. (рефлексивность) q = qe
- 3. (транзитивнось) $g_1 = g_2 h, g_2 = g_3 h \rightarrow g_1 = g_3 (h_2 h_1),$ где $h_2 h_1 \in H$

Опр

$$[a] = \{b : ab\}$$
 классы эквивалентности

Опр

$$[g]=gH=\{gh,h\in H\}$$
 (левый класс смежности)
$$gh\sim g\to gh\in [g]$$
 $q_1\in [q]\to q_1\sim q\to q_1=gh$

$\underline{\mathbf{y}_{\mathbf{TB}}}$

$$[e] = H$$
 Установим биекцию:
$$[g] = gh \leftarrow H$$
 $gh \leftarrow h$

Очевидно, сюръекция, почему инъекция? $gh_1=gh_2\stackrel{*g^{-1}}{\to}h_1=h$

Теорема (Лагранжа)

$$H < G, |G| < \infty$$
, тогда $|G| : |H|$ (уже доказали!)

2019-09-10

Следствие

G - кон. группа, $a \in G$, ord a = m, $H = \{a^n : n \in \mathbb{Z}\}$, тогда |H| = m

Док-во

 $\{a^0=e,a_1,...,a^{m-1}\}$ - подмножество Н Докажем, что все остальные элементы тоже здесь есть $n\in\mathbb{Z}\Rightarrow n=mq+r,\ 0\leqslant m-1$ $a^n=a^{mq+r}=(a^m)^qa^r=a^r$ $a^k=a^l,\ 0\leqslant k\leqslant l\leqslant m-1,\$ умножим на a^{-k} $e=a^{l-k}\ o\leqslant l-k\leqslant m-1$ m - наименьшее $\mathbb N$ такое что $a^m=e$ $l-k=0\Rightarrow l=k$ Докажем, что |H|=m $\Rightarrow |G|: m={\rm ord}\ a,\$ т.о. в группе порядок эл-та - делитель порядка группы

Напоминание

Следствие (теорема Эйлера)

$$n, a \in \mathbb{N}, (a, n) = 1$$
, тогда $a^{\varphi(n)} \equiv 1 (mod n)$

Док-во

Рассмотрим
$$G=(\mathbb{Z}/n\mathbb{Z})*\ |G|=\varphi(n)$$
 $\overline{a}\in G, \ \mathrm{ord}\ \overline{a}=k$ $\varphi(n)\ \vdots\ k\Rightarrow \varphi(n)=kl$ $\overline{a}=\overline{1}$ $\overline{a}^{\varphi(n)}=\overline{1}$

Опр

G - циклическая группа, если $\exists g \in G : \forall g' \in G : \exists k \in \mathbb{Z} : g' = g^k$ Такой g называется образующим

Опр

ℤ (образующий - единица и минус единица)

Замечание

Любая циклическая группа - коммунитативна

Док-во

$$g'g'' = g''g' = g^kg^l = g^lg^k$$

Пусть G,H - группы, рассмотрим $G \times H = \{(g,h) : g \in G, h \in H\}$

Введем операцию $(g,h)*(g',h') \stackrel{def}{=} (g*_{G}g',h*_{H}h')$

Докажем, что это группа.

Доказательство ассоциативности: $((g,h)(g',h'))(g'',h'')\stackrel{?}{=} (g,h)((g',h')(g'',h'')$ $(gg',hh')(g'',h'')\stackrel{?}{=} (g,h)(g'g'',h'h'')$

 $((gg')g'',(hh')h'')\stackrel{?}{=}(g(g',g''),h(h'h'')$ - очевидно

Нейтральный элемент:

Рассмотрим $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = \{(\overline{0}, \overline{0}), (\overline{0}, \overline{1}), (\overline{1}, \overline{0}), (\overline{1}, \overline{1})\}$

Опр

Конечная группа порядка n является циклической тогда и только тогда, когда она содержит элемент порядка n (|G|=n, G - циклическая $\exists q \in G : ordq = n)$

Рассмотрим $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ - циклическая $((\overline{1},\overline{1}),(\overline{0},\overline{2}),(\overline{1},\overline{0}),(\overline{0},\overline{1}),(\overline{1},\overline{2}))$ Рассмотрим $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ - не циклическая

Опр

 $\varphi:G\to H$ - биекция и $\varphi(g_1,g_2)=\varphi(g_1)\varphi(g_2)$ $\ \, \forall g_1,g_2\in G,$ тогда φ - изоморфизм

Примеры

- 1. $D_3 \rightarrow S_3$
- 2. $U_n = \{z \in \mathbb{C} : z^n = 1\} \leftarrow \mathbb{Z}/n\mathbb{Z}$ $(\frac{2\pi a}{n} + i\sin\frac{2\pi a}{n} = \varphi \overline{a}\overline{a})$ $\overline{a} = \overline{b} \to \varphi(\overline{a}) = \varphi(\overline{b})$ $\varphi(\overline{a} + \overline{b}) \stackrel{?}{=} \varphi(\overline{a})\varphi(\overline{b})$ $\cos\frac{2\pi(a+b)}{n} + i\sin\frac{2\pi(a+b)}{n} = (\cos\frac{2\pi a}{n} + i\sin\frac{2\pi a}{n})$

Опр

Две группы называются изоморфными, если между ними существует изоморфизм

y_{TB}

Изоморфизм - отношение эквивалентности

Док-во

т.к. композиция изоморфизмов - изоморфизм $G \stackrel{e}{\to} H \stackrel{\psi}{\to} H$ $(\psi \circ \varphi)(g_1g_2) = \psi(\varphi(g_1g_2) = \psi(\varphi(g_1)\varphi(g_2)) = \psi(\varphi(g_1))\psi(\varphi(g_2)) = (\psi \circ \psi(g_1g_2)) = \psi(\varphi(g_1g_2)) = \psi(\varphi(g_1g_2))$

$$\varphi$$
) $(g_1) \circ (\psi \circ \varphi)(g_2)$

Рефлексивность - тождественное отображение - изоморфизм

Транзитивность: $G \underset{\varphi}{\rightarrow} H, H \underset{\varphi^{-1}}{\rightarrow} G$

Теорема

G - циклическая группа

- 1) $|G| = n \Rightarrow G \cong \mathbb{Z}/n\mathbb{Z}$
- 2) $|G| = \infty \Rightarrow G \cong \mathbb{Z}$

Док-во

1) g - обр. G, значит $G = \{e, g, g^2, ..., g^{n-1}\}$ (среди них нет одинаковых), построим изоморфизм в $\mathbb{Z}/n\mathbb{Z}$: $\varphi(q^k) = \overline{k}$

Проверим, что $\varphi(g^kg^l) = \varphi(g^k) + \varphi(g^l) = \overline{k} + \overline{l}$ Левая часть: $\varphi(g^{k+l} = \overline{(k+l)} \mod n = \overline{k} + \overline{l}$

2) $G=\{...,g^{-1},e,g,g^2,...\}$ (тоже нет совпадающих элементов, иначе $g^k=g^l$, при k>l, тогда $g^{k-l}=e$, но тогда конечное число элементов, потому что оно зацикливается через каждые k-l элементов), построим отображение в \mathbb{Z} .

 $\varphi(g^n) = n$ -, очевидно, биекция. И нужно доказать, что $\varphi(g^n g^k) =$ $\varphi(q^n) - \varphi(q^k) = n + k$

2019-09-17

$\mathbf{y}_{\mathbf{TB}}$

$$|G|=p,$$
 р - простое $\Rightarrow G\cong \mathbb{Z}/p\mathbb{Z}$

Док-во

$$g \in G, g \neq e, \text{ ord } g = p$$

 $\Rightarrow G = \{e = g^0, g, ..., g^{p-1}\}$

y_{TB}

$$H,G$$
 - группы, $\varphi:G\to H$ - изоморфизм $\Rightarrow n=\operatorname{ord} g=\operatorname{ord} \varphi(g)$

Док-во

Пусть
$$g^n = e$$
, $\varphi(g^n) = \varphi(e) \stackrel{?}{=} e$

$$\varphi(e)^2 = \varphi(e^2) = \varphi(e)$$

Теперь докажем, что меньшего нет

$$\varphi(g)^m = e, \ m \in \mathbb{N} \stackrel{?}{\Rightarrow} m \geqslant n$$

$$\varphi(g^m) = \varphi(g)^m = e = \varphi(e) \quad \Rightarrow g^m = e \Rightarrow m \geqslant n$$

Опр

H < G, тогда H - нормльная подгруппа, если $\forall h \in H, g \in G \Rightarrow g^{-1}hg \in H$ - сопряжение элемента h с помощью элемента g, обозначается: $H \triangleleft G$

Замечание

Элементы подгруппы при сопряжении переходят в элементы подгруппы

Замечание

Подгруппа любой коммунитативной группы нормальна

Пример

 D_3 - 6 элементов, 3 поворота и 3 симметрии

 $\{e, l, r\}$ - нормальная $\{e, s_1\}$ - не нормальная

$\mathbf{y}_{\mathbf{TB}}$

 $H \triangleleft G \Leftrightarrow$ разбиение на Π и Π кдассы смежности по H совпадают

$$\forall g \quad gH = Hg$$

Док-во

Берем произвольный элемент из левого и правого и докажем, что совпадают. Берем слева:

$$h \in H \quad gh \in gH$$
$$gh = \underbrace{(g^{-1})^{-1}hg^{-1}}_{GH}g = h_1g$$

Теперь справа:

$$g \in G$$
, $h \in H$, $g^{-1}hg = h_1$
 $hg \in Hg = gH \Rightarrow gh_1, h_1 \in H$

Опр (умножение классов смежности)

$$H \triangleleft G$$

$$q_1 H * q_2 H \stackrel{\text{def}}{=} q_1 q_2 H$$

Док-во (коррекнтности)

Хотим проверить, что

$$\widetilde{g}_1 H = g_1 H, \quad \widetilde{g}_2 H = g_2 H \stackrel{?}{\Rightarrow} \widetilde{g}_1 \widetilde{g}_2 H = g_1 g_2 H$$

Аналогично прошлому доказательству

$$g_2^{-1}h_1g_2 = h_3 \in H$$
 $\widetilde{g}_1\widetilde{g}_2h = g_1h_1g_2h_2h = g_1g_2(g_2^{-1}h_1g_2)h_2h$
 $\widetilde{g}_1H = g_1H \Rightarrow \widetilde{g}_1 = g_1h_1$
 $\widetilde{g}_2H = g_2H \Rightarrow \widetilde{g}_2 = g_2h_2$

Не использовали условие $g_2^{-1}h_1g_2 = h_3 \in H$

$$\widetilde{g}_1\widetilde{g}_2H = g_1h_1g_2h_2h = g_1g_2(g_2^{-1}h_1g_2)h_2h$$

Осталось доказать, что получается группа

- 1) Нейтральный элемент eH = H, eH * gH = (eg)H = gH
- 2) Ассоциативность $(g_1H + g_2H) * g_3H \stackrel{?}{=} g_1H * (g_2H * g_3H)$ $(g_1g_2)H * g_3H = (g_1g_2)g_3H$
- 3) $gH * g^{-1}H = (gg^{-1})H = eH$

G/H

Была эквивалентность: $a \sim b \Leftrightarrow a - b \stackrel{.}{:} h$

$$G = \mathbb{Z}$$

$$H=h\mathbb{Z},\quad g_1g_2^{-1}\in H$$
 - мульт. запись , $\quad g_1-g_2\in n\mathbb{Z}$ - адд. запись $[a]+[b]=[a+b]$

Аддитивная группа кольца класса вычетов - это то же самое, что фактор группа группы $\mathbb Z$ по подгруппе $n\mathbb Z$

Опр

Как в произвольной группе найти подгруппу?

$$[g,h]=ghg^{-1}h^{-1},\,g,h\in G$$
 - коммутатор элементов $h,g\in G$

Коммутант - множество проззведений всех возможных коммунтаторов

Обозначается $K(G) = \{[g_1, h_1]...[g_n, h_n], g_1, h_1 \in G\}$

Док-во (коммутант - подгруппа)

Нейтральный элемент: [e,e]=e

Обратный элемент? $[g_1, h_1]...[g_n, h_n]$

Как его найти? $[g, h^{-1}]^{-1} = (ghg^{-1}h^{-1})^{-1} = hgh^{-1}g^{-1} = [h, g]$ $([g_1, h_1]...[g_n, h_n])^{-1} = [g_1, h_1]...[g_n, h_n]$

Значит это подгруппа

Нормальная ли? $g^{-1}[g_1, h_1]...[g_n, h_n]g$

$$g^{-1}[g_1, h_1]g(g^{-1}[g_2, h_2]g)...(g^{-1}[g_n, h_n]g)$$

Нужно доказать, что сопряжение коммунтатора лежит в коммутан-

 $T\epsilon$

$$g^{-1}g_1h_1g_1^{-1}h_1^{-1}g = \underbrace{g^{-1}g_1h_1g_1^{-1}h_1^{-1}}_{=[g^{-1}g_1,h_1]}\underbrace{h_1g^{-1}h_1^{-1}g}_{=[h_1,g^{-1}]}$$

$\mathbf{y}_{\mathbf{T}\mathbf{B}}$

Фактор-группа (G/K(G)) по коммутанту - коммунитативна

Док-во

$$g_1, g_2 \in G$$
 $g_1K(G)g_2K(G) \stackrel{?}{=} g_2K(G)g_1K(G)$
 $g_1g_2K(G) = g_1g_2K(G)$ $g_2K(G)g_1K(G) = g_2g_1K(G)$
 $[g_1, g_2] = g_1g_2(g_2g_1)^{-1} \in K(G)$

$\mathbf{y}_{\mathbf{T}\mathbf{B}}$

$$\mathbb{Z}_n \times \mathbb{Z}_m \simeq \mathbb{Z}_{mn}$$
, если $(m,n) = 1$

Док-во

Нужно построить изоморфизм $[a]_{mn} \mapsto ([a]_n, [a]_m)$ $[a]_{mn} = [a']_{mn} \Rightarrow [a]_n = [a']_n, [a]_m = [a']_m$ Теперь нужно проверить биекцию Сюръекция: $\forall b, c \in \mathbb{Z} \ \exists x \in \mathbb{Z} : \begin{cases} [x]_n = [b]_n \\ [x]_m = [c]_m \end{cases}$, по КТО всё хорошо

$$[a]_n = [b]_n$$

 $[a]_m = [b]_m \Rightarrow [a]_{mn} = [b]_{mn}$

На языке сравнений:

Инъективность:

$$\begin{array}{l} a \equiv b(n) \\ a \equiv b(m) \end{array} \Rightarrow a \equiv b(mn)$$

На самом деле достаточно было проверить одно

Опр

$$\varphi:G o H$$
 - гомоморфизм, если $\varphi(g_1g_2)=\varphi(g_1)\varphi(g_2)$ изоморфизм = гомоморфизм + биективность $\varphi\in \mathrm{Hom}(G,H)$ - множество гомоморфизмов

Примеры

1)
$$\mathbb{C}^* \to \mathbb{R}^*$$

$$z \rightarrow |z|$$

2)
$$GL_n(K) \to K^*$$

$$A \to \det A$$

3)
$$S_n \to \{\pm 1\}$$

$$\sigma o egin{cases} +1, & ext{если } \sigma$$
 - четн. $-1, & ext{если } \sigma$ - неч.

4)
$$a \in G \quad G \to G$$

$$g \to a^{-1}ga$$

$$(a^{-1}ga)(a^{-1}g_1a) = a^{-1}g_1ga$$

2019-09-24

Напоминание

$$G/K(G)$$
 - коммпутативна

y_{TB}

$$H \triangleleft G \quad G/_H$$
 - комм
$$\forall g_1,g_2 \in G \quad (g_1H)(g_2H) = (g_2H)(g_1H)$$

$$[g_1,g_2] = g_1^{-1}g_2^{-1}g_1g_2 \in H \Rightarrow K(G) \subset H$$

Свойства (гомоморфизма)

$$f \in \text{Hom}(G, H)$$

1.
$$f(e_G) = e_H$$
 $f(e) = f(e \cdot e) = f(e) \cdot f(e)$

2.
$$f(a^{-1}) = f(a)^{-1}$$

 $f(a) f(a^{-1}) = f(aa^{-1}) = f(e) = e$

3. Композиция гомоморфизмов

Опр

$$f \in \text{Hom}(G, H)$$

$$\text{Ker } f = \{g \in G : f(g) = e\} \subset G$$

$$\text{Im } f = \{f(g) : g \in G\} \subset H$$

$\underline{\mathbf{y}_{\mathbf{TB}}}$

Ker и Im - подгруппы G

Док-во

1.
$$f(g_1) = f(g_2) = e \Rightarrow f(g_1g_2) = f(g_1)f(g_2) = e \cdot e = e$$

2.
$$f(e) = e$$

3.
$$f(g) = e \Rightarrow f(g^{-1}) = f(g)^{-1} = e^{-1} = e$$

1.
$$f(q_1) \cdot f(q_2) = f(q_1 q_2)$$

2.
$$e = f(e)$$

3.
$$f(q)^{-1} = f(q^{-1})$$

y_{TB}

Ker - нормальная подгруппа G

Док-во

$$\operatorname{Ker} f \triangleleft G?$$

$$g \in G \qquad a \in \operatorname{Ker} f$$

$$f(g^{-1}ag) = f(g)^{-1} f(a) f(g) = e$$

Утв (основная теорема о гомоморфизме)

$$G/_{\operatorname{Ker} f} \cong \operatorname{Im} f$$

Док-во

Докажем, что это корректное отображение:

Докажем, что φ - гомоморфизм:

$$f(g_1)f(g_2) = \varphi(g_1K)\varphi(g_2K) \stackrel{?}{=} \varphi(g_1Kg_2K) = \varphi((g_1g_2)K) = f(g_1g_2)$$
$$\varphi(g_1K) = \varphi(g_2K) \stackrel{?}{\Rightarrow} g_1K = g_2K$$

Докажем, что это биекция. Что сюръекция - очевидно

$$f(g_1) = f(g_2) \Rightarrow g_1 g_2^{-1} \in K$$

$$f(g_1) f(g_2)^{-1} = e$$

$$= f(g_1) f(g_2^{-1})$$

Напоминание

$$\mathrm{SL}_N(K)$$
 - квадратные матрицы с $\det = 1$

Опр

$$\det: \operatorname{GL}_n(K) \to K^*$$

Но это отображение - сюръекция, а значит:

$$\operatorname{GL}_n(K)/_{\operatorname{SL}_n(K)} \cong K^*$$

$$SL_n(K) = \{ A \in M_n(K) : |A| = 1 \}$$

Пример (1)

$$S_n \to \{\pm 1\}$$

$$S_n/A_n \cong \{\pm 1\} (\cong \mathbb{Z}/2\mathbb{Z})$$

Пример (2)

$$G \times H \to G$$

$$(g_1h) \rightarrow g$$

$$G \times H/_{e \times H} \cong G$$

1.12 Действие группы на множестве

Опр

$$M$$
 - множество , G - группа

$$G \times M \to M$$

$$(g,m) \to gm$$

1.
$$g_1(g_2m) = (g_1g_2)m \quad \forall g_1g_2 \in G, \quad m \in M$$

2.
$$em = m \quad \forall m \in M$$

Если задано такое отображение, то говорим, что группа G действует на множестве M

Пример (1)

$$A = k^{n} (A, v) \to A_{v}$$

$$G = GL_{n}(K)$$

$$A(B_{v}) = (AB)_{v}$$

$$E_{v} = v$$

Пример (2)

М = {количество раскрасок вершин квадрата в два цвета}

$$G = D_4$$

$$gm = gm$$

Опр

$$m \in M$$

Stab
$$m=\{g\in G:gm=m\}$$
 - стабилизация
 Orb $m=\{gm,\ g\in G\}$ - орбита

$\mathbf{y}_{\mathbf{TB}}$

Stab
$$m < G$$

Док-во

Доказательство того, что стабилизатор - подгруппа:

1.
$$g_1, g_2 \in Stab \ m$$

$$(g_1g_2)m = g_1(g_2m) = g_1m = m$$

2.
$$e \cdot m = m$$

3.
$$gm = m \stackrel{?}{\Rightarrow} g^{-1}m = m$$

 $gm = m$

$$g^{-1}gm = g^{-1}m$$

$$= (g^{-1}g)m = em = m$$

y_{TB}

$$m_1,m_2\in M$$
 $m_1\sim m_2,$ если $\exists g\in G:gm_1=m_2$ $\Rightarrow\sim$ - отношение эквив

Док-во

(рефл.)
$$gm_1 = m_2 \Rightarrow g^{-1}m_2 = m_1 \quad g^{-1} \in G$$

(симм.) $em = m, \quad e \in G$
(тран.) $\begin{array}{c} gm_1 = m_2 \\ g'm_2 = m_2 \end{array} \Rightarrow (g'g)m_1 = g'(gm_1) = g'm_2 = m_3$

y_{TB}

$$|\text{Orb } m| \cdot |\text{Stab } m| = |G|$$

Док-во

Stab
$$m = H$$

 $\{gH, g \in G\} \rightarrow Orb \ m$
 $gH \rightarrow gm$

Хотим доказать, что это корректно

$$gH = g'H \stackrel{?}{\Rightarrow} gm = g'm$$

 $g' = ga, \quad g \in H$
 $g'm = (ga)m = g(am) = gm$

Хотим доказать биективность. Сюръективность - очев. Инъективность:

$$gm = g'm \Rightarrow gH = g'H$$

 $m = em = (g^{-1}g')m = g^{-1}(gm) = g^{-1}(g'm) = (g^{-1}g')m$
 $\Rightarrow g^{-1}g' \in H \Rightarrow gH = g'H$

Лемма (Бернсайда)

Кол-во орбит
$$= \frac{1}{|G|} \sum_{g \in G} |M^g|$$
 $M^g = \{m \in M : qm = m\}$

2019-10-01

Напоминание

Кол-во орбит
$$= \frac{1}{|G|} \sum_{g \in G} |M^g|$$

$$M^g = \{ m \in M : gm = m^2 \}$$

Док-во

$$\sum_{g \in G} |M^g| = |\{(g, m) \in G \times M : gm = m\}| = \prod_{g \in G} |M^g| = \prod_{g \in G} |M^g|$$

$$=\sum_{m\in M}|Stab\ m|=|G|\sum_{m\in M}\frac{1}{|Orb\ m|}=|G|\cdot$$
 Кол-во орбит

2 Евклидовы и унитарные пр-ва

Опр

$$V$$
 - в.п. над $\mathbb R$

Введем отображение

$$V \times V \to \mathbb{R}$$

Свойства этого отображения

1. Симметричность

$$(u, v) = (v, u) \quad \forall u, v \in V$$

2. Линейность

$$(\lambda u, v) = \lambda(u, v) \qquad \lambda \in \mathbb{R} \quad u, v \in V$$
$$(u + u', v) = (u, v) + (u', v) \qquad u, u', v \in V$$

$$3. \ (u,v) \geqslant 0 \qquad \forall u \in V$$

$$(u,u) = 0 \Leftrightarrow u = 0$$

Такое пр-во V с введенным на нем таким отображением мы называем Евклидовым пр-вом, а отображение скалярным.

Напоминание

$$C = \{c_{ij}\}_{i,j=1}^n$$
 - квадр. матрица

$$Tr \ C = \sum_{i=1}^{n} c_{ii}$$
 - след (Trace)

(Сумма элементов главной диагонали)

Примеры

- 1. Школьные вектора
- $2. \mathbb{R}^n$

$$((a_1,...,a_n),(b_1,...,b_n)) = \sum_{i=1}^n a_i b_i$$

3. $V = \mathbb{R}[x]_n$ конечномерное пр-во

$$(f,g) = \int_a^b fg dx$$

4.
$$V = M_n(\mathbb{R})$$

$$(A,B) = Tr AB^T$$

(См. след в напоминании)

Опр

$$e = \{e_1, ..., e_n\}$$
 - базис V

$$a_{ij} = (e_i, e_j)$$

$$\Gamma_e = \{a_{ij_i, i=1}^n\}$$
 - матрица Грама

Свойства (матрицы Грама)

- 1. Матрица невырожд
- $2. \ e, f$ базисы

$$\Gamma_f = M_{e \to f}^T \Gamma_e M_{e \to f}$$

3.
$$\Gamma_e = \{a_i j\}$$

$$u = \sum \lambda_i e_i$$

$$v = \sum \mu_j e_j$$

$$(u, v) = (\sum \lambda_i e_i, \sum \mu_j e_j) = \sum_{i,j} \lambda_i \mu_j (e_i, e_j)$$

$$(u, v) = [u]_e^T \Gamma_e [v]_e$$

Док-во

1.
$$\exists |\Gamma_e| = 0 \Rightarrow \exists \lambda_i \in \mathbb{R} \text{ He BCe } 0$$
:

$$\sum \lambda_i(e_i, e_j) = 0 \quad \forall j$$

$$\left(\sum \lambda_i e_i, \ e_j\right) = 0 \quad \forall j$$

$$\left(\sum_i \lambda_i e_i, \ \sum_j \lambda_j e_j\right) = 0 \Leftrightarrow \sum \lambda_i e_i = 0$$

противоречие

2.
$$\exists M_{e \to f} = \{a_{ik}\} \qquad f_k = \sum a_{ik} e_i$$
$$f_l = \sum a_{jl} e_j$$

$$(f_k, f_l) = \sum_{i,j} a_{ik} a_{jl}(e_i, e_j)$$

$$a_{ik}(e_i, e_j)a_{je}$$

Напоминание:
$$X, Y$$
- матр $X \times Y = Z$ $z_{ij} = \sum x_{is}y_{sj}$

Опр

$$V$$
 - в.п. над $\mathbb R$

$$V \to \mathbb{R}_{\geqslant 0}$$

$$v \to \|v\|$$
 - норма

1.
$$\|\lambda v\| = |\lambda| \|v\| \quad \forall \lambda \in \mathbb{R} \quad v \in V$$

2. Нер-во треугольника

$$||u + v|| \le ||u|| + ||v||$$

3.
$$||u|| = 0 \Leftrightarrow u = 0$$

Если такое отобр. существует, то оно называется нормой

y_{TB}

$$(u,v)$$
 - ск. пр-ве
$$\Rightarrow \|u\| = \sqrt{(u,u)}$$

Пример

$$\mathbb{R}^n$$

$$||x|| = \max |x_i|$$

$$||x|| = \sum_i |x_i|$$

Теорема (Нер-во Коши - Буняковского)

$$|(u,v)| \leqslant ||u|| \cdot ||v||$$

Док-во

$$\varphi(t) = \|u + rv\|^2 = (u + tv, u + tv) = \|u\|^2 + 2(u, v)t + t^2\|v\|^2$$

$$D = 4(u, v)^2 - 4\|u\|^2\|v\|^2 \le 0$$

$$\|u + v\| \le \|u\| + \|v\|$$

$$(u + v, u + v) \le \|u\|^2 + \|v\|^2 + 2\|u\|\|v\|$$

$$(u + v, u + v) = \|u\|^2 + \|v\|^2 + 2(u, v)$$

$$2(u, v) \le 2\|u\|\|v\|$$

Утв (Теорема Пифагора)

Если
$$u \perp v \Rightarrow ||u + v||^2 = ||u||^2 + ||v||^2$$

Док-во

$$||u + v||^2 = ||u||^2 + ||v||^2 + 2(u, v)$$

Опр (Ортогональное дополнение)

$$V$$
 - евкл. пр-во

$$U \subset V \qquad U^{\perp} = \{ v \in V : (v, u) = 0 \quad \forall u \in U \}$$

Множество всех векторов, которые ортогональны всем векторам из U Такое мн-во называется ортогональным дополнением

$\mathbf{y}_{\mathbf{T}\mathbf{B}}$

$$U^{\perp}$$
 - под-пр V

Док-во

$$(v, u) = 0 \quad \forall u$$

 $(v', u) = 0 \quad \forall u \Rightarrow (v + v', u) = 0 \quad \forall u$

$$(v, u) = 0 \quad \forall u$$

$$\lambda \in \mathbb{R}$$

$$(\lambda v, u) = 0 \quad \forall u$$

Тогда U^{\perp} дей-во линейное под-прво V

Свойства

$$V = U \oplus U^{\perp}$$
$$u \in U \cap U^{\perp}$$
$$u \in U \quad u \in U^{\perp}$$
$$(u, u) = 0$$

Док-во

$$e_1,...,e_n$$
 - базис U дополняем до базиса ${\bf V}$

$$e_1,...,e_n,f_1,...,f_n$$
 - базис V
$$v\in U^\perp\quad v=\sum \lambda_i e_i + \sum \mu_j f_j$$

$$v\in U^\perp \Leftrightarrow (v,e_k)=0 \quad \forall 1\leqslant k\leqslant n$$

$$(v,e_k)=\sum \lambda_i (e_i,e_k) + \sum \mu_j (f_j,e_k)=0 \quad \forall 1\leqslant k\leqslant n$$

это матрица

$$\begin{array}{c|c} & n & m \\ \hline n & \Gamma_e & C \\ \hline \end{array} \begin{pmatrix} x \\ y \\ \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \end{pmatrix}$$

$$\Gamma_e x + C_y = 0$$

$$\{(x,y) \in \mathbb{R}^n \times \mathbb{R}^m : \Gamma_e x + C_y = 0\} \text{ - размерность этого } m$$

$$(x,y) \to y$$

$$\Gamma_e x + C_y = 0$$

$$x = -\Gamma_e^{-1} e_y$$

$$\dim U + \dim U^\perp = \dim V$$

2019-10-15

Свойство

$$(U^{\perp})^{\perp} = U$$

Док-во

$$\begin{split} \dim U^\perp + \dim U &= \dim V \\ \dim (U^\perp)^\perp + \dim U^\perp &= \dim V \\ \\ U \subset (U^\perp)^\perp \\ (U^\perp)^\perp &= \{v \in V\} \end{split}$$

Опр

$$\begin{split} &U < V, \quad v \in V \\ &U \oplus U^{\perp} = V \\ &\Rightarrow \exists ! u \in U, \ w \in U^{\perp} : v = u + w \end{split}$$

и называется ортогональной проекцией

Обозначение:
$$\operatorname{pr}_{U} v \stackrel{\text{def}}{=} u$$

$$v = \operatorname{pr}_{U} v + w \Rightarrow (v, u) = (\operatorname{pr}_{U} v, u)$$

Свойства (орт. проекции)

1.
$$\operatorname{pr}_{U}(v + v') = \operatorname{pr}_{U} v + \operatorname{pr}_{U} v'$$

$$v = u + w, \ u \in U, w \in U^{\perp}$$

$$v' = u' + w', \ u \in U, \ w' \in U^{\perp}$$

$$v + v' = (u + u') + (w + w')$$

$$\in U^{\perp}$$

2.
$$||v - \operatorname{pr}_{U} v|| \le ||v - u|| \quad \forall u \in U$$

$$||v - u||^{2} = ||v - \operatorname{pr}_{U} v||^{2} + ||\operatorname{pr}_{U} v - u||^{2}$$

Опр

$$e_1,...,e_n$$
 - базис V

Базис называется ортогональным, если $(e_i,e_j)=0 \quad \forall i \neq j$

$$(e_i, e_j) = \delta_{i,j} = \begin{bmatrix} 0, i \neq j \\ 1, i = j \end{bmatrix}$$

Алгоритм

Процесс ортоганализации Грамма-Шмидта:

$$e_1, ..., e_n$$
 - базис

Хотим ортонормированный $f_1,...,f_n:< f_1,...,f_k>=< e_1,...e_k> \quad \forall 1\leqslant k\leqslant n$:

Строим по индуции:

Б.И. k=1:

$$f_1 = \frac{1}{\|e_1\|} e_1$$

И.П. $k-1 \rightarrow k$:

$$f_k = e_k + \sum_{i=0}^{k-1} \lambda_i f_i$$

$$(f_k, f_j) \stackrel{?}{=} 0 \quad 1 \leqslant j \leqslant k - 1$$

$$(f_k, f_j) = (e_k, f_j) + \sum_{i=1}^{k-1} \lambda_i (f_i, f_j)$$

$$= \lambda_j$$

$$\lambda_j = -(e_k, f_j) \quad \forall 1 \leqslant j \leqslant k - 1$$

Ортонормируем f_k , чтобы $(f_k, f_k) = 1$

y_{TB}

Если $e_1,...,e_n$ - ОНБ U

$$\operatorname{pr}_{U} v = \sum_{i=1}^{n} (v, e_{i}) e_{i}$$

Док-во

Хотим доказать $v-\sum_{i=1}^n(v,e_i)e_i\in U^\perp$ Достаточно доказать, что вектор ортогонален любому

$$(v - \sum_{\substack{i=1\\1 \le j \le n}}^{n} (v, e_i)e_i)e_j = (v, e_i) - \sum_{i=1}^{n} (v, e_i)(e_i, e_j)$$

Пример

 \mathbb{R}^n

$$(x; y) = \sum x_i y_i$$

 $e_i = (0, 0, ..., \frac{1}{2}, ..., 0)$

Пример

$$T_n = \{a_0 + \sum_{k=1}^n a_k \cos kx + \sum_{k=1}^n b_k \sin kx\}$$

$$(f;g) = \int_0^{2\pi} fg dx$$

$$\left\{ \frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}} \cos kx_{k=1,\dots,n}, \frac{1}{\sqrt{\pi}} \sin kx_{k=1,\dots,n} \right\}$$

$$\operatorname{pr}_{T_n} f = \frac{1}{2\pi} \int_0^{2\pi} f(x) dx + \frac{1}{\pi} \sum_{k=1}^n \left(\int_0^{2\pi} f(x) \cos(kx) dx \right) \cdot \cos kx + \frac{1}{\pi} \sum_{k=1}^n \left(\int_0^{2\pi} f(x) \sin(kx) dx \right) \cdot \sin kx$$

Опр

 $A \in M_n(K)$ назыв. ортогональной, если

$$A^T A = E$$

 $O_n(K)$ - множество орт. матриц

$\underline{\mathbf{y}}_{\mathbf{T}\mathbf{B}}$

 $O_n(K)$ - группа по умножению

Док-во

$$\begin{vmatrix} A^T A = E \\ B^T B = E \end{vmatrix} \Rightarrow (AB)^T AB = B^T \underbrace{A^T A}_E B = B^T B = E$$

$$A^T A = E \Rightarrow A^{-1} = A^T$$

$$(A^{-1})^T A^{-1} \stackrel{?}{=} E$$

$$(A^T)^T A^{-1} = AA^{-1} = E$$

y_{TB}

$$L \in \mathcal{L}(V)$$
 (пр-во лин. функционалов)

Следующие утверждения равносильны:

1.
$$(L_v, L_{v'}) = (v, v') \quad \forall v, v' \in V$$

$$2. ||L_v|| = ||v|| \qquad \forall v \in V$$

3.
$$[L]_e \in O_n(\mathbb{R})$$
, если e - отронорм. базис

Док-во

 $2 \rightarrow 1$

$$(v, v') = \frac{1}{2}(\|v + v'\| - \|v\|^2 - \|v'\|^2)$$

$$3 \rightarrow 2$$

$$[L_v]_e = [L]_e[v]_e$$

$$||L_v||^2 = (L_v, L_v) = [L_v]_e^T \Gamma_e[L_v]_e = [L_v]_e^T [L_v]_e =$$

$$= [v]_e^T \underbrace{[L]_e^t [L]_e[v]_e}_{=E} = [v]_e^T [v]_e = [v]_e^T \Gamma_e[v]_e = (v, v) = ||v||^2$$

$$1 \rightarrow 3$$

$$\mathcal{E}_{i}^{T}[L]_{e}^{T}[L]_{e}\mathcal{E}_{j}$$

$$\mathcal{E}_{i} = (0, ..., \frac{1}{i}, ..., 0)$$

$$\mathcal{E}_{i}^{T}A\mathcal{E}_{j} = a_{ij}$$

$$\mathcal{E}_{i} = [e_{i}]_{e}$$

$$\mathcal{E}_{j} = [e_{j}]_{e}$$

$$[e_{i}]^{T}[L]_{e}^{T}[L]_{e}[e_{j}]_{e} = [L_{e_{i}}]_{i}^{T}[L_{e_{i}}]_{e} = [L_{e_{i}}]_{e}^{T}\Gamma_{e}[L_{e_{i}}]_{e} = (L_{e_{i}}, L_{e_{i}}) = (e_{i}, e_{j}) = \delta_{ij}$$

2019-10-22

Опр (унитарного пространства)

$$U$$
 - в.п. над $\mathbb C$

$$U \times U \rightarrow ()$$

1.
$$(u+v, w) = (u, w) + (v, w) \quad \forall u, v, w \in U$$

 $(\lambda v, w) = \lambda(v, w) \quad \forall \lambda \in C, \quad v, w \in U$

$$2. (u, v) = \overline{(v, u)}$$

3.
$$(u, u) \ge 0$$

4.
$$(u, u) = 0 \Rightarrow u = 0$$

Пример

$$\begin{array}{c|c}
R^n & C^n \\
(x,y) = \sum x_i y_i & (x,y) = \sum x_i \overline{y_i}
\end{array}$$

$$e_1, ..., e_n$$
 - базис

$$\Gamma_e = \{(e_i,\ e_j)\}_{i,j}$$
 - матрица грамма

$$(u,v) = [u]_e^T \Gamma_e \overline{[v]}_e$$

$$\Gamma_f = M_{e \to f}^T \Gamma_e \overline{M}_{e \to f}$$

$$|(u,v)| < ||u|| \cdot ||v||, \quad ||u|| = \sqrt{(u, u)}$$

$$||tu + v||^2 = t^2 ||u|| + t((u, v) + (v, u)) + ||v||^2$$

$$Re(u, v) \leq ||u||^2 ||v||^2$$

$$(u, v) = |(u, v)| \cdot z| \Rightarrow |z| = 0$$

$$\operatorname{Re}(\frac{1}{z}u, v) \le \|\frac{1}{z}u\|^2 \|v\|^2 = \|u\| \|v\|$$

Напоминание: $\|\lambda u\| = \sqrt{(\lambda u, \ \lambda u)} = \sqrt{\lambda \overline{\lambda}(u, u)} = |\lambda| \, \|u\|$

$$\operatorname{Re} \frac{1}{z}(u, v) = \operatorname{Re} |(u, v)| = |(u, v)|$$

Доказали КБШ

Опр

$$V^* = \mathcal{L}(V, K)$$

Пример

$$v \in V$$
 - евклидово пр-во (унитарное)

$$\varphi_v(w) = (w, v) \quad \varphi_v : V \to \mathbb{R}(\mathbb{C})$$

Хотим доказать: $\varphi \in V^* \Rightarrow \exists! v \in V : \varphi = \varphi_v$

Док-во

$$e_1,...,e_n$$
 - OHB V

$$v = \sum \lambda_i e_i$$

Нужно
$$\ \forall w \in V \ (w,\ v) = \varphi(w),$$
 т.к. φ - линейный функционал

$$\Leftrightarrow \forall j \quad (e_j, \ v) = \varphi(e_j)$$

$$(e_j, \sum \lambda_i e_i) = \sum_i \overline{\lambda}_i (e_j, e_i)$$

Опр

$$A \in M_n(\mathbb{C})$$

$$A^* = \overline{A}^T$$
 - сопряженная матрица

Свойства

1.
$$A^{**} = A$$

$$2. \ (\lambda A)^* = \overline{\lambda} A *$$

3.
$$(A+B)^* = A^* + B^*$$

4.
$$(AB)^* = B^*A^*$$

5.
$$(A^{-1})^* = (A^*)^{-1}$$

y_{TB}

V - унитарное пр-во,
$$L \in \mathcal{L}(V)$$
, $u \in V$
$$\varphi_n(v) = (Lv, \ u) \in V^*$$

$$\Rightarrow (Lv, \ u) = (v, \ w_u)$$

$$\exists ! w_u \in V : \quad (v, \ u) = (v, \ w_u)$$
 $u \to w_u$

Утверждается, что отображение линейно

Док-во

$$\begin{aligned} &(\mathrm{Lv},\,\mathbf{u}) = (\mathbf{v},\,\mathbf{w}_u) & (\mathrm{Lv},\,\mathbf{u} + \mathbf{u}') = (\mathrm{Lv},\,\mathbf{u}) + (\mathrm{Lv},\,\mathbf{u}') = \\ &(\mathrm{Lv},\,\mathbf{u}') = (\mathbf{v},\,\mathbf{w}_{u'}) & = (\mathbf{u}\,\,\mathbf{w}_u) + (v,\,\,w_{u'}) = (v,\,\,w_u + w_{u'}) = (v,\,\,w_{u+u'}) \\ &(Lv,\,\,\lambda u) = \overline{\lambda}(Lv,\,\,u) = \overline{\lambda}(v,\,\,w_u) = (v,\,\,\lambda w_u) \\ &= w_{\lambda u} \\ &L^*u = w_u \quad (Lv,\,\,u) = (v,\,\,L^*u) \end{aligned}$$

Опр

 L^* - эрмитов сопряженный оператор

Свойства

1.
$$L^{**} = L$$

$$(L^*v, u) = (v, L^{**}u)$$

$$(L^*v, u) = \overline{(u, L * v)} = \overline{(Lu,)} = (v, Lu)$$

$$\Rightarrow L^{**}u = Lu \quad \forall u \in V$$
Почему так? $(v, w) = (v, w') \quad \forall v \Rightarrow w = w'$

$$(v, w - w') = 0$$

$$v = w - w'$$

$$||w - w'||^2 = 0$$

$$\Rightarrow w - w' = 0$$
2. $(\lambda L)^* = \overline{\lambda}L^*$

$$(\lambda L)v, u) = (v, (\lambda L)^*u)$$

$$(\lambda L)v, u) = (\lambda \cdot Lv, u) = \lambda(Lv, u) = \lambda(v, L^*u) = (v, \overline{\lambda}L^*u)$$

3.
$$(L+L')^* = L^* + L'^*$$
 аналогично

4.
$$(LNv,\ u)=(v,\ (LN)^*u)$$

$$(LNv,\ u)=(v,\ N^*L^*u)\ \text{и то же, что делали раньше}$$

5.
$$[L]_e^* = [L^*]_e$$
, если е - ОНБ
$$Le_i = \sum a_{li}e_l \quad [L]_e = \{a_{ij}\}$$

$$Le_j = \sum b_{kj}e_k \quad [L]_e = \{b_{kj}\}$$

$$(Le_i, e_j) = (e_i, L^*e_j)$$

$$= a_{ij} \qquad = \bar{b}_{ij}$$

Опр

$$A\in M_n(\mathbb{C})$$
 A - унитаная, если $A^*A=E$ $U_n=\{A\in M_n(\mathbb{C}): (\text{то что сверху})\}$

Док-во (что это группа по умножению)

$$\begin{vmatrix} A^*A = R \\ B^*B = E \end{vmatrix} \Rightarrow (AB)^*AB = B^*\underbrace{A^*A}_{=E}B = E$$
$$(A^{-1})^*A^{-1} \stackrel{?}{=} E$$
$$\Leftrightarrow (A^{-1})^* = A$$
$$\Leftrightarrow (A^*)^{-1} = (A^{-1})^{-1}$$

Докажем, что любая унитарная матрица обратима и модуль определителя равен единице

$$A^*A = E$$

$$\overline{\det A} \cdot \det A = 1$$

$$|\det A|^2 = 1$$

$\mathbf{y}_{\mathbf{T}\mathbf{B}}$

$$L \in \mathcal{L}(V)$$

Следующие условия равносильны:

1.
$$||Lv|| = ||v|| \quad \forall v$$

2.
$$(Lv, Lu) = (v, u) \quad \forall v, u$$

3.
$$[L]_e \in U_n$$
, *e* - ортонорм.

4.
$$L^*L = \mathrm{id}_V$$

И оператор, удовлетворяющий этим условиям называется "унитарным" (в евклидовом случае называется "ортогональным")

Док-во

$$(4 \Rightarrow 2)$$
:

$$(v, L^*Lu) = (Lv, Lu)$$

$$(2 \Rightarrow 4)$$
:

$$(v, L^*Lu) = (Lv, Lu) = (v, u)$$

По заклинанию $L^*L = \mathrm{id}_V$

$\mathbf{y}_{\mathbf{T}\mathbf{B}}$

1.
$$|\det L| = 1$$

2. Если L - унитарный,
$$Lv = \lambda v \underset{v \neq 0}{\Rightarrow} |\lambda| = 1$$

3.
$$Lv = \lambda v$$
 $Lu = \mu u$ $\lambda \neq \mu \Rightarrow (u, v) = 0$

Док-во

1 и 2:

$$||v|| = ||Lv|| = ||\lambda v|| = |\lambda|||v||$$

3:

$$(u, L^*v) = (u, \overline{\lambda}v) = \lambda(u, v)$$

$$(u, L^*v) = (Lu, v) = (\mu u, v) = \mu(u, v)$$

Хотим доказать: $Lv = \lambda v \Rightarrow L^*v = \overline{\lambda}v$

$$v = L^*Lv = L^*(\lambda v) = \lambda L^*v$$

Делим на λ и туда переносится $\overline{\lambda}$

2019-3-29

Опр

L - орт. оператор на плоскости, $\det L = 1$, тогда L - поворот

е - ортнорм. базис,
$$[L]_e = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{cases} a^2 + c^2 = 1 \\ b^2 + d^2 = 1 \\ ab + cd = 0 \\ ad - bc = 1 \end{cases}$$

$$a = \cos \varphi, \quad c = \sin \varphi$$

$$b = \sin \varphi, \quad d = \cos \psi$$

$$\cos \varphi \sin \psi + \sin \varphi \cos \psi = 0$$

$$= \sin(\varphi + \psi)$$

$$\cos \varphi \cos \psi - \sin \varphi \sin \psi = 0$$

$$= \cos(\varphi + \psi)$$

$$\Rightarrow \varphi + \psi = 0$$

$$\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

Опр

Если е - ортогональный оператор на пл-ти, $\det L = -1$ S - какая-то осевая симметрия Тогда:

1.
$$L = S \circ R_{\psi}$$

2.
$$L = R_{\circ} \circ S$$

Рассмотрим $S^{-1}\circ L$ - ортогональный оператор с определителем 1, значит по предыдущему определению $S^{-1}\circ L=R_{\omega}$

Утв (теорема Эйлера)

В трехмерном пространстве с определителем 1 является поворотом относительно некоторой оси

Следствие: берем две прямые. Поворачиваем сначала относительно одной, потом относительно другой. И их композицией будет поврот

Док-во (теоремы Эйлера)

L - орт. оператор в пр-ве

$$\det L = 1$$

$$\chi_L(t) \in \mathbb{R}[x], \quad \deg \chi_i = 3$$

 $\lambda_1, \lambda_2, \lambda_3$ - корни

$$|\lambda_1| = |\lambda_2| = |\lambda_3| = 1$$

Два варианта:

- 1. $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$
- 2. $\lambda_1 \in \mathbb{R}, \ \lambda_2 = \overline{\lambda_3}$

В 1 случае одно из λ равно 1, пусть λ_1

Во 2 случае
$$\lambda_1=1$$
 т.к. $\lambda_1\lambda_2\lambda_3=\lambda_1\overline{\lambda_2}\lambda_3=\lambda_1|\lambda_3|^2=\lambda_1$

С.в. остается неподвижным при повороте. Ось тоже. Значит собственный вектор при повороте и есть ось

Осталось д-ть, что ортогональное дополнение есть вращение. Тогда докажем, что наш исходный оператор - вращение относительно оси

$$\exists Lv = v$$

$$v^{\perp}$$

Докажем, что эта плоскость - инвариантное подпространство. Нужно доказать:

$$(u,v) = 0 \to (Lu,v) = 0$$

То есть резульат будет тоже из ортогонального дополнения

$$(Lu,v)=(Lu,Lv)=(u,v)=0$$
 ч.т.д.

Так как инвариантное подпространство, можем сузить L. Оно является плоскостью. Т.к. L - орт. оператор, значит он сохраняет расстояние. Т.к. S тоже сохраняет расстояние, значит L является ортоганальным оператором на плоскости. Осталось убедиться, что модуль равен 1. Если исходный оператор сохраняет расстояние, то и его сужение сохраняет

ориентацию. Другой способ: построим матрицу L в базисе: V, {два ортогональных вектора на плоскости}, матрица L будет такой:

$$[L] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & ? & ? \\ 0 & ? & ? \end{pmatrix}$$

Вместо ? будет матрица сужения. Мы должны доказать, что это матрица поворота. Определитель большой матрицы равен определителю маленькой, но т.к. большая 1, то и он 1.

По предыдущим рассуждениям - это поврот. То есть у нас есть пространство с осью, на которую оператор действует тождественно, а на другое он действует как поврот.

y_{TB}

Если L - ортогональный оператор в пре-ве c определитем -1 равен композиции поврота, относительно оси и симметрии, то это поворот.

Док-во

Аналогично

Теорема

Унитарный оператор имеет ортонормированный базис из с.в.

Док-во

Индукция по размерности пр-ва.

Пусть одномерное пр-во (n=1) - очевидно, т.к. оператор-вектор v

$$Lv = u$$
, $||u|| = ||v|| \Rightarrow u = \lambda v$, $|\lambda| = 1$

Значит $Lv=\lambda v$ - подходит, когда ортонормируем v - с.в. L с каким-то λ

$$Lv = \lambda v$$

$$< v >^{\perp}$$

Хотим доказать, что подпространство инвариантно относительно действия L:

$$(v, u) = 0 \Rightarrow (v, Lu) = 0$$

$$(v, Lu) = (L^*v, u) \stackrel{(*)}{=} (\overline{\lambda}v, u) = \overline{\lambda}(v, u) = 0$$

(*) т.к. мы доказывали, что у собственного оператора. Если v - вектор унитарного оператора с с.ч. λ

Раз исходный оператор унитарный, то сужение тоже унитарно. Значит мы можем применить индукционное предположение у сужению. На этом ортогональном дополнении у оператора есть базис ортогональных векторов. Добавим к нему отнонормированный вектор v. Очевидно, получим ортонормированный базис из собственных векторов всего пр-ва

Переформулируем на языке матриц

Теорема

U - унитарная матрица, тогда:

$$U=MDM^{-1},\quad D=egin{pmatrix} \lambda_1&\dots&0\\0&\dots&0\\0&\dots&\lambda_k \end{pmatrix},\quad |\lambda_i|=1,\quad M$$
 - унитарная

Док-во

$$\mathbb{C}^n$$
 $Lz = Uz$ $[L]_e = U$

e - есть базис \mathbb{C}^n

$$[L^*L]_e = [L^*]_e [L]_e = [L]_e^* [L]_e = U^*U = E$$

- (*) Из какого-то рассуждения получается
- \Rightarrow L унитарный оператор

По теореме, которую доказали ранее, f - ортонормированный базис \mathbb{C}^n из с.в. L

$$D = [L]_f = M_{e \to f}^{-1}[L]_e M_{e \to f}$$

(*) У D - на диагонали с.ч., по модулю равные 1

Хотим д-ть: у нас есть два ОНБ, тогда матрица перехода между ними будет унитарна

$$M_{e \to f} = \{a_{ij}\}$$

$$f_j = \sum a_{ij} e_i$$

$$\delta_{jk} = (f_j, f_k) = \left(\sum_i a_{ij} e_{ij}, \sum_l a_{ij} \overline{a}_{lk} e_l\right) = \sum_{i,l} a_{ij} \overline{a}_{lk} (e_i, e_l) \sum_i a_{ij} \overline{a}_{ik}$$

Опр

$$A\in M_n(\mathbb{C})$$
 - эрмитова, если $A^*=A$ $L\in \mathcal{L}(V)$ - самосопряженный, если $L^*=L$

Свойства

1. L - самосопряженный, тогда $[L]_e$ - эрмитова, если е - ортонормированный

$$[L]_e^* = [L^*]_e = [L]_e$$

2. L - самосопряженный, тогда с.ч. $\in \mathbb{R}$

$$\exists Lv = \lambda v, \quad v \neq 0$$

$$\lambda(u, v) = (Lv, v) = (v, Lv) = (v, \lambda v) = \overline{\lambda}(v, v)$$

3.
$$Lv = \lambda v$$
 $Lu = \mu u$ $\lambda \neq \mu \Rightarrow (u, v) = 0$

$$\lambda(v,\ u) = (Lv,\ u) = (v,\ Lu) = (v,\ \mu u) = \mu(v,\ u)$$

2019-10-29

Теорема

$$L$$
 - самосопр. $\Rightarrow \exists e_1,...,e_n$ - ортнорм. базис из с.в. L $Lv = \lambda v$ $(u,v) = 0 \stackrel{?}{\Rightarrow} (Lu,v) = 0$ $(Lu,v) = (u,L^*v) = (u,Lv) = (u,\lambda v) = \lambda(u,v) = 0$

Тут мы должны задать вопрос.

Опр

A - эрмитова матрица

 $\Rightarrow M$ - унитарная

D - диагональная $: A = MDM^{-1}$

Теорема

A - эрмитов матрица

Тогда условия равносильны

1.
$$\forall x \in \mathbb{C}^n \qquad x^*Ax > 0 \qquad (x^*Ax)^* = x^*A^*x = x^*Ax$$

- 2. Все с.ч. A > 0
- 3. Все гл. миноры A>0 (критерий Сильвестра)
- 4. $\exists P$ обратимое: $A = P^*P$

Если хотя бы одно из них выполняется, то матрица A - положительно опред.

Док-во

$$4 \to 1$$
 $A = P^*P$ $x^*Ax = x^*P^*Px = (Px)^*(Px) = < Px, Px >$ $< a,b> = \sum a_i \bar{b}_i$ Стандартное эрмитово скал. произв. в $\mathbb C$

$$2 \to 4$$
 $A = MDM^{-1}$ M - унит D - диаг. $(\in \mathbb{R})$ $D^{\frac{1}{2}} = \begin{pmatrix} \sqrt{d_1} & \dots & 0 \\ & \ddots & \\ 0 & \dots & \sqrt{d_n} \end{pmatrix}$ $A = (D^{\frac{1}{2}}M^*)^*(D^{\frac{1}{2}}M^*)$ M - унитар $\Rightarrow MD^{\frac{1}{2}}D^{\frac{1}{2}}M^* = MDM^{-1} = A$ $1 \to 2$ $Ax = \lambda x$ $x^*Ax = x^*\lambda x = \lambda x^*x = \lambda < x, x > 0$ $x \to 0$

Нужно доказать, что все главные миноры больше 0

$$A = \begin{pmatrix} A' & B \\ C & D \end{pmatrix}$$

$$\begin{pmatrix} x' \\ 0 \end{pmatrix}^* \begin{pmatrix} A' & B \\ C & D \end{pmatrix} \begin{pmatrix} x' \\ 0 \end{pmatrix} = x'^*A'x' > 0 \quad \forall x' \neq 0$$

$$\Rightarrow A' \text{ уд первому условию, a еще 4 условию}$$

$$A' = P * P$$

$$\det A' = \det P^* \cdot \det P = \overline{\det P} \cdot \det P = |\det P|^2 > 0 \quad \text{т.к. P обратим}$$

$$3 \to 2$$

Индукция по размеру A

Когда матрица 1×1 очев.

Инд. переход : $n \to n+1$

Пусть λ - с.ч A , $\lambda < 0 \Rightarrow \exists \mu < 0$

$$Ax = \lambda x$$
 $Ay = \mu y$, $\langle x, y \rangle = 0$

Если λ и μ различные.

Если с.ч. различны, то им соотв. ортогон. с.в \Rightarrow у эрмит. матр. ортогон с.в соотв. различным с.ч .

У эрмитовой матрицы существует онб из с.в - столбцов. В этом базисе будет два вектора, лежащие в одном подпр-ве.

Что такое собственное под-во?

Если λ и μ совпадают, то есть два неколл. с.в., мы можем их ортогонализировать

$$\exists \alpha, \beta \in \mathbb{C} : \alpha x + \beta y = (u', 0)$$

$$A = \begin{pmatrix} A' & * \\ * & * \end{pmatrix}$$

$$u'^*A'u' = u^*Au = |\alpha|^2 x^*Ax + |\beta|^2 y^*Ay =$$
 подставили u которое сверху
$$= |\alpha|^2 \underset{<0}{\lambda} \cdot ||x||^2 + |\beta|^2 \underset{<0}{\mu} ||y||^2 < 0$$

$$u'^*A'u' < 0$$

Если бы для матрицы A' выполнялось 3 условие, то должно было бы выполняться 2 условие, а 1 не выполняется, это значит, что 3 условие не вып. Все главные миноры A' - это в частности главные миноры A. А 3 выполняется для A. Мы получили противоречие.

Замечание

Все то же самое, можно доказать для симм. матрицы. Пусть след. усл равносильны... для симм. матрицы над $\mathbb R$ Только тут будет P над $\mathbb R$

КАЖЕТСЯ, ТУТ ЧТО-ТО НЕ ТАК, ЭТО УЖЕ БЫЛО

Теорема

А - эрмит. матрица

тогда след. условия равносильны

1.
$$\forall x \in \mathbb{C}^n$$
 $x Ax \ge 0$

- 2. Все с.ч. $A \ge 0$
- 3. Все гл. миноры $A \geqslant 0$
- $4. \ \exists P: \qquad A = P^*P$

Такая матрица называется положительно полуопред.

Док-во

Доказать дома

Опр (Singular value decomposition SVD)

$$A \in M_{m,n}(\mathbb{C}) \Rightarrow \exists U_{m \times m}, V_{n \times n}$$
 - унитарные, $S \in M_{m,n}(\mathbb{R})$

S - диаг. насколько это возможно для прямоуг. матрицы, с неотр числами на диаг.

$$A = USV^*$$

Поворот, растяжение, поворот

Док-во

$$m \le n$$

$$A^*A$$
 - эрмитова $(A^*A)^* = A^*A$ - proof $x^*A^*Ax = (Ax)^*(Ax) \geqslant 0$

Значит эта матрица положительно полуопред.

$$\exists V$$
 - унитарная: $V^*A^*AV = D'$ - диаг $V \in \mathrm{GL}_n(\mathbb{C})$

т.к. эта матрица положительно полуопред., то у этой матрицы на диаг будут стоять неотр. с.ч. Переставим с.ч так, что сначала идут положительные, а потом нули

$$D' = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \qquad D \in M_k(\mathbb{R}) \quad m \geqslant n \geqslant k$$

$$V = \begin{pmatrix} V_1 & V_2 \\ k & \text{столб} & n-k & \text{столб}. \end{pmatrix} \quad V_1 \in M_{n,k}(\mathbb{C}) \quad V_2 \in M_{n,n-k}(\mathbb{C})$$

$$D' = \begin{pmatrix} v_1^* \\ v_2^* \end{pmatrix} A^* A \begin{pmatrix} V_1 & V_2 \end{pmatrix} = \begin{pmatrix} V_1^* A^* A V_1 & V_1^* A^* A V_2 \\ V_2^* A^* A V_1 & V_2^* A^* A V_2 \end{pmatrix} = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$$

$$\Rightarrow \frac{V_1^* A^* A V_1 = D}{V_2^* A^* A V_2 = 0} \Rightarrow A V_2 = 0$$

$$\begin{pmatrix} V_1^* \\ V_2^* \end{pmatrix} \begin{pmatrix} V_1 & V_2 \end{pmatrix} = \begin{pmatrix} V_1^* V_1 & V_1^* V_2 \\ V_2^* V_1 & V_2^* V_2 \end{pmatrix} = \begin{pmatrix} E_k & 0 \\ 0 & E_{n-k} \end{pmatrix}$$

$$\Rightarrow \frac{V_1^* V_1 = E_k}{V_2^* V_2 = E_{n-k}} \qquad (V_1 & V_2) \begin{pmatrix} V_1^* \\ V_2^* \end{pmatrix} = V_1 V_1^* + V_2 V_2^* = E_n$$

$$U_1 \stackrel{\text{det}}{=} A V_1 D^{-\frac{1}{2}} \in M_{m,k}(\mathbb{C})$$

$$U_1 D^{\frac{1}{2}} V_1^* = A V_1 D^{-\frac{1}{2}} D^{\frac{1}{2}} V_1^* = A - A V_2 V_2^* = A$$

2019-11-05 Продолжение док-ва:

Док-во

$$U_1^* U_1 \stackrel{\text{def}}{=} D^{-\frac{1}{2}} \underbrace{V_1^* A^* A V_1}_{=D} D^{-\frac{1}{2}} = E_k$$

Осталось из U_1 и $V_1.\Rightarrow U_1$ содержит k ортогональных столбцов. Раз они ортогональны, можно дополнить до ортогонального базиса в \mathbb{C}^n и получаем:

$$U = (U_1 U_2) \in M_n(\mathbb{C})$$

Эта матрица ортонормирована из-за ортог. столбцов.

$$S := \begin{pmatrix} \begin{pmatrix} D^{\frac{1}{2}} & 0 \\ 0 & 0 \end{pmatrix} \end{pmatrix} \in M_{m_1 n}(\mathbb{C})$$

$$(U_1U_2)S(V_1V_2)^* = U_1F^{\frac{1}{2}}V_1^* = A$$

Матрица S нужного размера. Матрица U_1 - квадратная и унитарная. С V_1 тоже все ок

Замечание

Такая же теорема верна в \mathbb{R} . Только если тут унитарные матрицы, то там ортоганальные

2.25 Квадратичные формы над $\mathbb R$

Опр

$$x = (x_1, ..., x_n)$$
, тогда:

$$S(x) = \sum_{i\geqslant j} a_{ij} x_i x_j$$
 - квадратичная форма

Замечание

$$S(x) = \sum_{\substack{a_{ij} x_i x_j \\ b_{ij} = b_{ji}}} a_{ij} x_i x_j$$

$$b_{ij} = \begin{bmatrix} a_{ij}, & i = j \\ \frac{a_{ij}}{2}, & i > j \\ \frac{a_{ji}}{2}, & j > i \end{bmatrix}$$

$$B = (b_{ij})$$
 - матрица ...? $S(x) = x^T B x$ $x = M y$ $S(x) = y^T M^T B M y$

Опр

S - положительно определена, если:

1.
$$\forall x \quad S(x) \geqslant 0$$

2.
$$S(x) = 0 \Rightarrow x = 0$$

Замечание

Эквивалентно тому, что матрица S - положительно определена. В частности это значит, что верен критерий Сильвестра

Опр

$$S(x) = a_1 x^2 + ... + a_n x_n^2$$
 - канонический вид

Теорема

Любую матрицу можно привести к каноническому виду с помощью элементарного преопразования

Док-во

Любая самосопряженная матрица представляется в виде: унитарная матрица * диагональная * унитарная сопряженная к первой. В \mathbb{R} формулируется так: любая симметрическая матрица: ортогональная * симметричная * ортоганальная в минус 1. То есть получили то что нам нужно

2.26 Применение сингулярного разложения

$$Ax = b$$

У А столбцов мало, строк много Хотим решить приближенно, то есть чтобы $\|Ax - b\| \to \min$

Опр

х, который минимизирует разность называется решением методом наименьших квадратов (МНК)

Теорема

$$A \in M_{n,m}(\mathbb{R})$$

- 1. x^* решение МНК $\Leftrightarrow A^TAx^* = A^Tb$
- 2. $A^T A \in \operatorname{GL}_n(\mathbb{R}) \Leftrightarrow \operatorname{rk} A = m$

Док-во

1. x^* - решением МНК $\overset{\mbox{\scriptsize Лада}}{\Leftrightarrow}$

 Ax^* - проекция b на линейную оболочку столбцов A

$$Ax^* = \operatorname{pr}_L v$$
$$b - \operatorname{pr}_L b \perp L \Rightarrow A^T (b - \operatorname{pr}_L b) = 0$$

Почему $v \perp L \Rightarrow A^T v = 0$?

$$\forall e: (Ae, v) = 0$$
$$= (e, A^T v)$$

Какой вектор ортогонален произвольному? Только нулевой. Мы в док-ве воспользовались $(Ax, y) = (x, A^T y)$ (просто расписать)

$$A^Tb=A^TAx^*$$

$$A^TAx^*=A^Tb$$

$$A^T(Ax^*-b)=0 \ \Rightarrow \ Ax^*-b\perp L \ (\text{аналогично})$$

$$\Rightarrow b=Ax^*-(\in\in L^\perp Ax^*-b)$$

2. $Ax = 0 \Leftrightarrow A^T Ax = 0$. В (\Rightarrow) - очевидно. Пусть $A^T Ax = 0 \Rightarrow x^T A^T Ax = 0 \Rightarrow (Ax)^* Ax \Leftrightarrow Ax = 0$ Будем говорить в этом случае (немного некорректно), что х лежит в ядре матрицы А. Теперь к пункту 2.

$$(\Rightarrow)$$
:

$$A^T A \in \mathrm{GL}_n(\mathbb{R}) \Rightarrow \mathrm{Ker}\, A^T A = \{0\} \Rightarrow \mathrm{Ker}\, A = \{0\}$$

Значит Ax - не имеет решения кроме нулевого. Но это ЛК столбцов матрицы. Значит столбцы матрицы A - ЛН. Значит она имеет полный ранг. Ч.т.д.

(⇐):

Ранг равен m \Rightarrow столбцы ЛН \Rightarrow $Ax=0 \Rightarrow x=0$ Но знаем, что ядро у матриц в $Ax=0 \Leftrightarrow A^TAx=0$ равны нулю \Rightarrow A^TA - обратимо

Теорема

$$A = UDV^T$$
 $A \in M_{n,m}(\mathbb{R})$ $D \in M_{n,m}(\mathbb{R})$

Док-во

D - как бы диагональна. А все диагональные элементы вещ. неотриц. числа, приведем её так:

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \vdots & 0 & 0 \\ 0 & 0 & \lambda_k & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$D^{+} = \begin{pmatrix} \lambda_{1}^{-1} & 0 & 0 & 0 \\ 0 & \vdots & 0 & 0 \\ 0 & 0 & \lambda_{k}^{-1} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad D^{+} \in M_{m,n}(\mathbb{R})$$

$$A^+ = VD^+U^T$$

$$x^*$$
 - решение МНК $Ax = b \Leftrightarrow x^* = A^*b$

$$A^{T}Ax^{*} = A^{T}b$$

$$A^{T}AA^{+}b \stackrel{?}{=} A^{+}b$$

$$VD^{T}\mathcal{V}^{\mathcal{T}}UDV^{T}\mathcal{V}D^{+}U^{T}b \stackrel{?}{=} VD^{T}U^{T}b$$

$$V\underbrace{D^{T}DD^{+}}_{=D^{T}}U^{T}b$$

Опр

$$||A|| \stackrel{\text{def}}{=} \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sup_{||y||=1} ||Ay||$$

Свойства

$$1. \|\lambda A\| = |\lambda| \|A\|$$

2.
$$||A + B|| \ge ||A|| + ||B||$$

$$\sup_{\|y\|=1} ||(A + B)y|| \le \sup_{\|z_1\|=1} ||Az_1|| + \sup_{\|z_2\|=1} ||Bz_2||$$

Пусть sup достигается в z_1, z_2

$$||Az_1|| \geqslant ||Ay||$$

$$||Az_2|| \geqslant ||Ay||$$

Подробное док-во: (убидили д-ть)

$$\sup_{\|y\|=1} \|(A+B)y\| = M$$

$$\sup_{\|z_1\|=1} \|Az_1\| = m_1$$

$$\sup_{\|z_2\|=1} \|Az_2\| = m_2$$

$$M \leqslant m_1 + m_2$$

$$\forall z : ||z|| = 1$$
 $||Az|| \le m_1$
 $||Bz|| \le m_2 \Rightarrow ||(A+B)z|| \le ||Az|| + ||Bz|| \le m_1 + m_2$

3.
$$\|UA\|=\|AV\|\|A\|$$
, если U,V - ортогон. матрицы (очевидно)
$$\|UA\|=\sup_{\|y\|=1}\|UAy\|=\sup_{\|y\|=1}\|Ay\|=\|A\|$$

4. $||A|| = \sigma_1(A)$ - наибольшее сингулярное число. Как его получить? Взяли сингулярное разложение $A = UDV^T$. На диагонали D выбираем наибольшее сингулярное число