Rappels de statistiques

Moyenne, variance et écart-type

On considère une série statistique comme celle donnée ci-dessous que l'on appellera S dans la suite :

Valeur	x_1	x_2	 x_p
Effectif	n_1	n_2	 n_p

L'effectif total est $N=n_1+n_2+\ldots+n_p$. **Remarque** : dans certains contextes, les effectifs sont appelés les .

Moyenne

Définition 1 *On appelle moyenne de la série S le nombre réel* \overline{x} :

$$\overline{x} = \frac{n_1 x_1 + n_2 x_2 + \ldots + n_p x_p}{N}.$$

Remarque : La variance et l'écart-type donnent une idée de la répartition des valeurs de la série statistique autour de la moyenne. On parle d'un paramètre de .

Exemples: La variance de la série 1; 2; 3; 4; 5 est

La variance de la série dans le tableau ci-dessous est L'écart-type de la série dans le tableau ci-dessous est

Valeur	8	6	23	44
Effectif	4	7	8	2

Variance et écart type

Définition 2 On appelle variance de la série S le nombre réel V défini par :

$$V = \frac{n_1(x_1 - \overline{x})^2 + n_2(x_2 - \overline{x})^2 + \ldots + n_p(x_p - \overline{x})^2}{N}.$$

On appelle **écart-type** de la série S le nombre réel σ :

$$\sigma = \sqrt{V}$$
.

Remarque : La moyenne offre un résumé de la série statistique. On parle d'un paramètre de

Exemples: La variance de la série 1; 2; 3; 4; 5 est

Son écart-type est

La moyenne de la série dans le tableau ci-dessous est

Son écart-type est

Valeur	8	6	23	44
Effectif	4	7	8	2