Rotation around an arbitrary axis

Euler's theorem: Any rotation or sequence of rotations around a point is equivalent to a single rotation around an axis that passes through the point.

What does the matrix look like?

Rotation around an arbitrary axis through the origin

Axis: L(t) = (0,0,0) + tu, t in R, u in R³

Point: P

Angle: β

Approach (one of many):

1. Two rotations to align **u** with x-axis (arbitrary choice)

- 2. Do x-roll by β
- 3. Undo the alignment

Derivation

- 1. $R_z(-\phi)R_y(\theta)$
- 2. $R_x(\beta)$
- 3. $R_y(-\theta)R_z(\phi)$

Altogether:

 $R_y(-\theta)R_z(\phi) R_x(\beta) R_z(-\phi)R_y(\theta)$

Derivation

- 1. $R_z(-\phi)R_v(\theta)$
- 2. $R_x(\beta)$
- 3. $R_{v}(-\theta)R_{z}(\phi)$

Altogether:

 $R_y(-\theta)R_z(\phi) R_x(\beta) R_z(-\phi)R_y(\theta)$

Parameters:

$$cos(\theta) = u_x / \sqrt{u_x^2 + u_z^2}$$
$$sin(\theta) = u_z / \sqrt{u_x^2 + u_z^2}$$
$$sin(\phi) = u_y / |\mathbf{u}|$$
$$cos(\phi) = \sqrt{u_x^2 + u_z^2} / |\mathbf{u}|$$

Derivation

1.
$$R_z(-\phi)R_y(\theta)$$

2.
$$R_x(\beta)$$

3.
$$R_y(-\theta)R_z(\phi)$$

$$cos(\theta) = u_x / \sqrt{u_x^2 + u_z^2}$$
$$sin(\theta) = u_z / \sqrt{u_x^2 + u_z^2}$$
$$sin(\theta) = u_z / \sqrt{u_x^2 + u_z^2}$$

$$sin(\phi) = u_y/|\mathbf{u}|$$

$$\cos(\phi) = \sqrt{u_x^2 + u_z^2}/|\mathbf{u}|$$

Altogether:

$$R_y(-\theta)R_z(\phi) R_x(\beta) R_z(-\phi)R_y(\theta)$$

Exercise:

Derive the matrix for rotation around an axis that does not pass through the origin

Properties of affine transformations

- 1. Preservation of affine combinations of points.
- 2. Preservation of lines and planes.
- 3. Preservation of parallelism of lines and planes.
- 4. Relative ratios on a line are preserved.
- 5. Affine transformations are composed of elementary ones.

Affine Combinations of Points

$$W = a_1 P_1 + a_2 P_2$$

$$T(W) = T(a_1 P_1 + a_2 P_2) = a_1 T(P_1) + a_2 T(P_2)$$

Proof: from linearity of matrix multiplication

$$MW = M(a_1P_1 + a_2P_2) = a_1MP_1 + a_2MP_2$$

Preservations of Lines and Planes

Line:

$$L(t) = (1 - t)P_1 + tP_2$$
$$T(L(t)) = (1 - t)T(P_1) + tT(P_2)$$

Plane

$$Pl(s,t) = (1 - s - t)P_1 + tP_2 + sP_3$$
$$T(Pl(s,t)) = (1 - s - t)T(P_1) + tT(P_2) + sT(P_3)$$

Proof: Direct consequence of previous property

Preservation of Parallelism for Lines and Planes

$$L(t) = P + t\mathbf{u}$$

$$ML = M(P + t\mathbf{u}) = MP + M(t\mathbf{u}) \rightarrow$$

 $ML = MP + t(M\mathbf{u})$

 $M\mathbf{u}$ independent of P.

Similarly for planes.

Rigid body transformation

Combination of a translation and a rotation

- Preserve lines, angles and distances
- 6 Degrees of freedom in 3D

General form of 3D affine transformations

Transforming Points and Vectors

Points

$$\begin{pmatrix} Q_x \\ Q_y \\ Q_z \\ 1 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ P_z \\ 1 \end{pmatrix}$$

Vectors

$$\begin{pmatrix} w_x \\ w_y \\ w_z \\ 0 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_x \\ v_y \\ v_z \\ 0 \end{pmatrix}$$

Advanced concepts

Generalized shears

Decomposition of 2D AT:

2D: M = T Sh S R

3D: $M = T S R Sh_1 Sh_2$

Rotations in 3D

Gimbal lock

Quaternions

Exponential maps

Transformations of Coordinate systems

Coordinate systems consist of vectors and an origin (point), therefore we can transform them just like any other group of points and vectors

Alternative way to think of transformations:

Transformations as a change of basis

Reminder: Coordinate systems

Coordinate system: (a,b,c,θ)

$$v = (v_1, v_2, v_3) \rightarrow v = v_1 a + v_2 b + v_3 c$$

$$P = (p_1, p_2, p_3) \rightarrow P - \theta = p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c}$$

 $P = \theta + p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c}$

Reminder: The homogeneous representation of points and vectors

$$\mathbf{v} = v_1 \mathbf{a} + v_2 \mathbf{b} + v_3 \mathbf{c} \rightarrow \mathbf{v} = (\mathbf{a}, \mathbf{b}, \mathbf{c}, \theta) \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ 0 \end{pmatrix}$$

$$P = \theta + p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c} \to P = (\mathbf{a}, \mathbf{b}, \mathbf{c}, \theta) \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ 1 \end{pmatrix}$$

Transformation as a change of CS (with a focus on Rigid Body Transf.)

Assume a coordinate system A and a point P

$$P_A = (a, b, c, 1)_A \to$$

$$P = a\mathbf{x} + b\mathbf{y} + c\mathbf{z} + O$$

$$P_A = (a, b, c, 1)_A \rightarrow$$
$$P = a\mathbf{x} + b\mathbf{y} + c\mathbf{z} + O$$

Transform with M

$$Q_A = \mathbf{M}P_A \rightarrow Q_A = (d, e, f, 1)_A$$

Using the full form of P_A

$$Q_A = \mathbf{M}P_A = \mathbf{M}\left(a\mathbf{x}_A + b\mathbf{y}_A + c\mathbf{z}_A + O_A\right) \to$$

$$Q = a(\mathbf{M}\mathbf{x}) + b(\mathbf{M}\mathbf{y}) + c(\mathbf{M}\mathbf{z}) + \mathbf{M}O$$

$$P_A = (a, b, c, 1)_A \rightarrow$$

$$P = a\mathbf{x} + b\mathbf{y} + c\mathbf{z} + O$$

Transform with **M**

$$Q_A = \mathbf{M}P_A \to Q_A = (d, e, f, 1)_A$$

Using the full form of P_A

$$Q_A = \mathbf{M}P_A = \mathbf{M}\left(a\mathbf{x}_A + b\mathbf{y}_A + c\mathbf{z}_A + O_A\right) \rightarrow$$

$$Q = a(\mathbf{M}\mathbf{x}) + b(\mathbf{M}\mathbf{y}) + c(\mathbf{M}\mathbf{z}) + \mathbf{M}O$$

We define coordinate system B:

$$\mathbf{u} = \mathbf{M}\mathbf{x}, \ \mathbf{v} = \mathbf{M}\mathbf{y}, \ \mathbf{w} = \mathbf{M}\mathbf{z}, \ G = \mathbf{M}O$$

Which means:

$$Q = a\mathbf{u} + b\mathbf{v} + c\mathbf{w} + G$$

Notice that by definition:

$$Q_B = (a, b, c, 1)_B$$

So interpretation one:

$$P_A = (a, b, c, 1)_A \rightarrow$$

$$P = a\mathbf{x} + b\mathbf{y} + c\mathbf{z} + O$$
Transform with **M**

$$Q_A = \mathbf{M}P_A \rightarrow Q_A = (d, e, f, 1)_A$$

So interpretation two:

$$P_A = (a, b, c, 1)_A \rightarrow$$

 $P = a\mathbf{x} + b\mathbf{y} + c\mathbf{z} + O$

Transform CS A with M into CS B

$$\mathbf{u} = \mathbf{M}\mathbf{x}, \ \mathbf{v} = \mathbf{M}\mathbf{y}, \ \mathbf{w} = \mathbf{M}\mathbf{z}, \ G = \mathbf{M}O$$

The point maintains its coordinates but with respect to the new CS B $Q_B = (a, b, c, 1)_B$

In other words the point is fixed with respect to the moving CS

So we have:

$$P_A = (a, b, c, 1), \quad Q_A = (d, e, f, 1),$$

 $Q_B = (a, b, c, 1), \quad Q_A = \mathbf{M} P_A$

Which means

$$Q_A = \mathbf{M}P_A \to Q_A = \mathbf{M}Q_B$$

Remember, the same matrix transforms CS A into CS B, e.g.

$$\mathbf{u}_A = {}_A \mathbf{M}_B \mathbf{x}_A$$

Fixed point: Q = (a, b, c, 1)

We can repeat the process for system B and C ignoring A

$$CS_C = T(CS_B)$$
: $\mathbf{i}_B = {}_B \mathbf{M}_C \mathbf{u}_B$, $\mathbf{j}_B = {}_B \mathbf{M}_C \mathbf{u}_j$ etc

and

$$Q_B = {}_B \mathbf{M}_C Q_C$$

Then chain them all together:

$$Q_A = {}_{A}\mathbf{M}_{BB}\mathbf{M}_{C}Q_{C}$$

Chain of CS

Chain or hierarchy of CS (frames): $A \to B \to C$

Represented by the matrix relationships:

$$Q_B = {}_B \mathbf{M}_C Q_C, \quad Q_A = {}_A \mathbf{M}_B Q_B, \quad Q_A = {}_A \mathbf{M}_{BB} \mathbf{M}_C Q_C$$

Chain can be reformulated

Chain or hierarchy of CS (frames): $A \to B \to C$

Represented by the matrix relationships:

$$Q_B = {}_B \mathbf{M}_C Q_C, \quad Q_A = {}_A \mathbf{M}_B Q_B, \quad Q_A = {}_A \mathbf{M}_{BB} \mathbf{M}_C Q_C$$

Reformulate chain $B \to A \to C$

Represented by the matrix relationships:...?

Chain can be reformulated

Chain or hierarchy of CS (frames): $A \to B \to C$ $Q_B = {}_B \mathbf{M}_C Q_C, \ Q_A = {}_A \mathbf{M}_B Q_B, \ Q_A = {}_A \mathbf{M}_{BB} \mathbf{M}_C Q_C$

Reformulate chain $B \to A \to C$ $Q_B = {}_B\mathbf{M}_A Q_A, \ Q_A = {}_A\mathbf{M}_C Q_C, \ Q_B = {}_B\mathbf{M}_{AA}\mathbf{M}_C Q_C$ remember: Non-trivial affine transformations can be inverted ${}_B\mathbf{M}_A = ({}_A\mathbf{M}_B)^{-1}, {}_A\mathbf{M}_C = {}_A\mathbf{M}_{BB}\mathbf{M}_C$

Exercise

Chain:
$$A \to B \to C$$

 $Q_B = {}_B \mathbf{M}_C Q_C, \ Q_A = {}_A \mathbf{M}_B Q_B, \ Q_A = {}_A \mathbf{M}_{BB} \mathbf{M}_C Q_C$

Chain
$$B \to A \to C$$

 $Q_B = {}_B \mathbf{M}_A Q_A, \ Q_A = {}_A \mathbf{M}_C Q_C, \ Q_B = {}_B \mathbf{M}_{AA} \mathbf{M}_C Q_C$
 ${}_B \mathbf{M}_A = ({}_A \mathbf{M}_B)^{-1}, {}_A \mathbf{M}_C = {}_A \mathbf{M}_{BB} \mathbf{M}_C$

What is ${}_{C}\mathbf{M}_{A}$?

Transformations as a change of basis

Another way of approaching the issue of relating two coordinate systems

Similar to the previous one but from a slightly different point of view

basis

We know the basis of CS2 with respect to CS1 i.e.:

$$\mathbf{i}'_{CS1} = (i'_x, i'_y, i'_z)$$

$$\mathbf{j}'_{CS1} = (j'_x, j'_y, j'_z)$$

$$\mathbf{k}'_{CS1} = (k'_x, k'_y, k'_z)$$

$$\mathbf{O}'_{CS1} = (O'_x, O'_y, O'_z)$$

Can we find the matrix *M* that transforms points from CS2 to CS1?

$$P_{CS1} = MP_{CS2}$$

basis

We know the basis vectors and we know that

$$P_{CS1} = MP_{CS2}$$

What is M with respect to the basis vectors?

$$P_{CS2} = a\mathbf{i}'_{CS2} + b\mathbf{j}'_{CS2} + c\mathbf{k}'_{CS2} + O'_{CS2} = a \begin{bmatrix} 1\\0\\0 \end{bmatrix} + b \begin{bmatrix} 0\\1\\0 \end{bmatrix} + c \begin{bmatrix} 0\\0\\1 \end{bmatrix} + \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

$$P_{CS1} = a\mathbf{i}'_{CS1} + b\mathbf{j}'_{CS1} + c\mathbf{k}'_{CS1} + O'_{CS1} = a \begin{bmatrix} i'_x\\i'_y\\i'_z \end{bmatrix} + b \begin{bmatrix} j'_x\\j'_y\\j'_z \end{bmatrix} + c \begin{bmatrix} k'_x\\k'_y\\k'_z \end{bmatrix} + \begin{bmatrix} O'_x\\O'_y\\O'_z \end{bmatrix}$$

$$P_{CS1} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} i'_x & j'_x & k'_x & O'_x \\ i'_y & j'_y & k'_y & O'_y \\ i'_z & j'_z & k'_z & O'_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix} = MP_{CS2}$$

Transformations as a change of basis

Note that this is actually the matrix that transforms
 CS1 into CS2 with respect to CS1

Sanity check:

$$M\mathbf{x}_{CS1} = \begin{bmatrix} i'_x & j'_x & k'_x & O'_x \\ i'_y & j'_y & k'_y & O'_y \\ i'_z & j'_z & k'_z & O'_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} i'_x \\ i'_y \\ i'_z \\ 0 \end{bmatrix} = \mathbf{i}'_{CS1}$$

Similarly

$$M\mathbf{y}_{CS1} = \mathbf{j}'_{CS1}, \ M\mathbf{z}_{CS1} = \mathbf{k}'_{CS1}, \ MO_{CS1} = O'_{CS1}$$

basis

$$P_{CS1} = MP_{CS2}$$

$$P_{CS1} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} i'_x & j'_x & k'_x & O'_x \\ i'_y & j'_y & k'_y & O'_y \\ i'_z & j'_z & k'_z & O'_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix} = MP_{CS2}$$

That is:

We can view transformations as a change of coordinate system

So really this matrix operation has two interpretations

Mathematically equivalent but conceptually different

$$P_{CS1} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} i'_x & j'_x & k'_x & O'_x \\ i'_y & j'_y & k'_y & O'_y \\ i'_z & j'_z & k'_z & O'_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix} = MP_{CS2}$$

A. Transformation in a single coordinate system

Ignore CS2:

 Point (a,b,c,1) in CS1 is transformed to point P'=(x,y,z,1) in CS1 by a transformation represented by M

$$P'_{CS1} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} i'_x & j'_x & k'_x & O'_x \\ i'_y & j'_y & k'_y & O'_y \\ i'_z & j'_z & k'_z & O'_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix} = MP_{CS1}$$

A. Transformation in a single coordinate system

Ignore CS2:

- Point (a,b,b,1) in CS1 is transformed to point P=(x,y,z,1) in CS1 by a transformation represented by M
- The transformation happens wrt to CS1

$$P'_{CS1} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} i'_x & j'_x & k'_x & O'_x \\ i'_y & j'_y & k'_y & O'_y \\ i'_z & j'_z & k'_z & O'_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix} = MP_{CS1}$$

Interpretation two:

CS1 is transformed to CS2 through a transformation and the point remains fixed with respect to CS2

$$P_{CS1} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} i'_x & j'_x & k'_x & O'_x \\ i'_y & j'_y & k'_y & O'_y \\ i'_z & j'_z & k'_z & O'_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix} = MP_{CS2}$$

Interpretation two:

 CS1 is transformed to CS2 through a transformation and the point remains fixed with respect to CS2

$$P_{CS1} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} i'_x & j'_x & k'_x & O'_x \\ i'_y & j'_y & k'_y & O'_y \\ i'_z & j'_z & k'_z & O'_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix} = MP_{CS2}$$

Interpretation two:

CS1 is transformed to CS2 through a transformation and the point remains fixed with respect to CS2

$$P_{CS1} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} i'_x & j'_x & k'_x & O'_x \\ i'_y & j'_y & k'_y & O'_y \\ i'_z & j'_z & k'_z & O'_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix} = MP_{CS2}$$

We can also separate it into two transformations

$$M = \begin{bmatrix} 1 & 0 & 0 & O'_x \\ 0 & 1 & 0 & O'_y \\ 0 & 0 & 1 & O'_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} i'_x & j'_x & k'_x & 0 \\ i'_y & j'_y & k'_y & 0 \\ i'_z & j'_z & k'_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P_{CS1} = MP_{CS2}$$

We can also separate it into two transformations

$$M = \left[egin{array}{ccccc} 1 & 0 & 0 & O_x' \ 0 & 1 & 0 & O_y' \ 0 & 0 & 1 & O_z' \ 0 & 0 & 0 & 1 \end{array}
ight] \left[egin{array}{ccccc} i_x' & j_x' & k_x' & 0 \ i_y' & j_y' & k_y' & 0 \ i_z' & j_z' & k_z' & 0 \ 0 & 0 & 0 & 1 \end{array}
ight]$$

$$P_{CS1} = MP_{CS2}$$

Transforming a point through transforming coordinate systems

Transforming a point through transforming coordinate systems

Transforming a point through transforming coordinate systems

In 2D homogeneous coordinates

$$P = [1,1,1]^T$$

Transformation T(1,0): M

$$P' = M[1,1,1]^T = MP = [2,1,1]^T$$

Equivalently

Transformation T(1,0): M on CSA

$$P_A = {}_AM_BP_B$$

$$P_B = [1,1,1]^T$$

Conceptual difference: the local coordinates of P stay the same, the local system changes and becomes CSB.

In other words we transformed system A and P along with it.

However the fixed coordinates of P are now in CSB

Transformation T(1,0): M on CSA

 $P_A = {}_AM_BP_B$

Next transformation?

Two choices!

After the last matrix T(1,0): BMC This transformation now happens in CSB $P_A = AM_B M_C P_C$ CS A CS B CS C

Hierarchy of systems

We now have 3 systems we can work in

$$P_A = {}_AM_{BB}M_CP_C$$

Hierarchy of systems

Let's rotate in CSB by R(z,45):

After the matrix R(z,45) is inserted

Hierarchy of systems

Hierarchy of systems

Main point

Interpreting a transformation matrix

- $P_A = AM_B P_B$ transforms a point within system A, from its current location to a new one
- P_A = _AM_B P_B
 transforms system A into B. Right of matrix M we talk in B coordinates. Left of matrix M we talk in A coordinates

Rule of thumb

Transforming a point P:

Transformations: T1,T2,T3

Matrix: $M = M3 \times M2 \times M1$

Point transformed by: MP

Successive transformations happen with respect to the same CS

Transforming a CS

Transformations: T1, T2, T3

Matrix: $M = M1 \times M2 \times M3$

A point has original coordinates MP

Each transformations happens with respect to the new CS

The **last** coordinate system (right most) represents the **first** transformation applied to the point

Rule of thumb

To find the transformation matrix that transforms P from CSB coordinates to CSA coordinates, we find the sequence of transformations that align CSA to CSB accumulating matrices from left to right.