

Recurrent Neural Networks (RNN)

- Feedforward networks don't consider temporal states
- RNN has a loop to "memorize" information

Unroll the RNN Loop

• Effective for speech recognition, language modeling, translation

Pseudo RNN

```
# Pseudo RNN
                                                     y_t = \sigma_h(Wx_t + Uy_{t-1} + b)
state t = 0
for input_t in input_sequence:
    output_t = f(input_t, state_t)
    state_t = output t
# Pseudo RMN with activation function
# y_t = W*x_t + U*S_t + b
state_t = 0
for input_t in input_sequence:
    output_t = activation(dot(W, input_t) + dot(U, state_t) + b)
    state_t = output_t
```


RNN using Numpy

the current output

```
Number of timesteps in
                                       Dimensionality of the
 the input sequence
                                       input feature space
     import numpy as np
                                                                           Input data: random
                                                                           noise for the sake of
                                          Dimensionality of the
    timesteps = 100
                                                                           the example
                                          output feature space
     input_features = 32
    output_features = 64
                                                                              Initial state: an
     inputs = np.random.random((timesteps, input_features)) <-
                                                                              all-zero vector
     state_t = np.zeros((output_features,))
    W = np.random.random((output_features, input_features))
                                                                             Creates random
    U = np.random.random((output_features, output_features))
                                                                             weight matrices
    b = np.random.random((output_features,))
                                                       input t is a vector of
     successive_outputs = []
                                                       shape (input features,).
     for input_t in inputs:
         output_t = np.tanh(np.dot(W, input_t) + np.dot(U, state_t) + b)
         successive_outputs.append(output_t)
         state_t = output_t
     final_output_sequence = np.concatenate(successive_outputs, axis=0) <---
                                                            The final output is a 2D tensor of
  Stores this output in a list
                                                          shape (timesteps, output_features).
Combines the input with the current
state (the previous output) to obtain
                                                                       Updates the state of the
                                                                  network for the next timestep
```

Unroll RNN

Recurrent Layer in Keras

• Simple RNN

```
from keras.models import Sequential
from keras.layers import Embedding, SimpleRNN

model = Sequential()
model.add(Embedding(10000, 32))
model.add(SimpleRNN(32, return_sequences=True))
model.add(SimpleRNN(32, return_sequences=True))
model.add(SimpleRNN(32, return_sequences=True))
model.add(SimpleRNN(32), return_sequences=True))
model.add(SimpleRNN(32))
model.summary()
```

Layer (type)	Output Shape	Param #
embedding_24 (Embedding)	(None, None, 32)	320000
simplernn_12 (SimpleRNN)	(None, None, 32)	2080
simplernn_13 (SimpleRNN)	(None, None, 32)	2080
simplernn_14 (SimpleRNN)	(None, None, 32)	2080
simplernn_15 (SimpleRNN)	(None, 32)	2080
Total params: 328,320 Trainable params: 328,320 Non-trainable params: 0	W U 32×(7) + 32	// -t/)

Vanishing and Exploding Gradient Problems

• Hochreiter (1991) [German] and Bengio, et al. (1994)

Long Short-Term Memory (LSTM)

- Input gate: control when to let new input in
- Forget gate: delete the trivial information
- Output gate: let the info impact the output at the current time step

Long Short-Term Memory (LSTM)

Core Idea of LSTM

• Cell State C_t : allow information flow unchanged

LSTM Step-by-Step (4-1)

• Decide if to throw away old cell state information C_{t-1}

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

LSTM Step-by-Step (4-2)

• Decide what information to be stored in current cell state C_t

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

LSTM Step-by-Step (4-3)

• Update old cell state C_{t-1} into current C_t

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

LSTM Step-by-Step (4-4)

Decide what to output

https://www.researchgate.net/profile/Junxi-Feng

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Variants of LSTM

Couple forget gate and input gate

$$C_t = f_t * C_{t-1} + (1 - f_t) * \tilde{C}_t$$

Gated Recurrent Unit (GRU)

- Combine the forget and input gate into a single "update gate."
- Merge the hidden state and cell state

Using LSTM in Keras

```
from keras.layers import LSTM
model = Sequential()
model.add(Embedding(max_words, 32))
model.add(LSTM(32))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop',
                loss='binary_crossentropy',
                metrics=['acc'])
history = model.fit(x_train, y_train,
                epochs=10,
                batch_size=128,
                validation split=0.2)
```

Advanced Use of RNN

Recurrent dropout

Use dropout to fight overfitting in recurrent layers

Stacking recurrent layers

 This increases the representational power of the network (at the cost of higher computational loads)

Bidirectional recurrent layers

 These present the same information to a recurrent network in different ways, increasing accuracy and mitigating forgetting issues

Temperature-forecasting Problem

• Measure 14 features every 10 minutes from 2009 – 2016 in Jena, Germany

```
["Date Time",
"p (mbar)",
"T (degC)",
"Tpot (K)",
                                     All Time
"Tdew (degC)",
                                  (2009 - 2016)
"rh (%)",
"VPmax (mbar)",
                                                         -20
"VPact (mbar)",
                                                                                              10 mins
"VPdef (mbar)",
"sh (g/kg)",
"H2OC (mmol/mol)",
"rho (g/m**3)",
"wv (m/s)",
                                   First 10 days
"max. wv (m/s)",
"wd (deg)"]
                                                         -20
                                                                                              10 mins
```

1000

1200

1400 1600

Download Jena Weather Dataset

AWS

– wget https://s3.amazonaws.com/keras-datasets/jena_climate_2009_2016.csv.zip

Normalize the Data

Remember to normalize your data!

```
mean = float_data[:200000].mean(axis=0)
float_data -= mean
std = float_data[:200000].std(axis=0)
float_data /= std
```

Learning Parameters

- lookback = 720
 - Observations will go back 5 days.
- steps = 6
 - Observations will be sampled at one data point per hour.
- delay = 144
 - Targets will be 24 hours in the future.

Design a Data Generator

- data— The normalized data
- lookback—How many timesteps back the input data should go.
- delay—How many timesteps in the future the target should be.
- min_index and max_index—Indices in the data array that delimit which timesteps to draw from. This is useful for keeping a segment of the data for validation and another for testing.
- shuffle—Whether to shuffle the samples or draw them in chronological order.
- batch_size—The number of samples per batch.
- step—The period, in timesteps, at which you sample data. You'll set it to 6 in order to draw one data point every hour.

Timeseries Data Generator

```
def generator(data, lookback, delay, min_index, max_index, shuffle=False,
       batch size=128, step=6):
    if max index is None:
       \max index = len(data) - delay - 1
    i = min index + lookback
   while 1:
       if shuffle:
            rows = np.random.randint(min index + lookback, max index, size=batch size)
       else:
            if i + batch size >= max index:
                i = min index + lookback
            rows = np.arange(i, min(i + batch size, max index))
            i += len(rows)
        samples = np.zeros((len(rows), lookback // step, data.shape[-1]))
       targets = np.zeros((len(rows),))
        for j, row in enumerate(rows):
            indices = range(rows[j] - lookback, rows[j], step)
            samples[j] = data[indices]
            targets[j] = data[rows[j] + delay][1]
       yield samples, targets
```

Create Baselines

- 1. Common sense Simply use last temperature as prediction
 - Mean absolute error 0.29 (2.57°C)
- 2. Using densely connected network

```
from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop
model = Sequential()
model.add(layers.Flatten(input_shape=(lookback // step,
              float_data.shape[-1])))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(1))
model.compile(optimizer=RMSprop(), loss='mae')
history = model.fit_generator(train_gen,
steps_per_epoch=500, epochs=20, validation_data=val_gen,
validation_steps=val_steps)
```


Using Gated Recurrent Unit (GRU)

```
from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop
model = Sequential()
model.add(layers.GRU(32, input_shape=(None, float_data.shape[-1])))
model.add(layers.Dense(1))
                                                                 Training and validation loss
model.compile(optimizer=RMSprop(), loss='mae')
                                                                                     Training loss
history = model.fit generator(train gen,
                                                                                     Validation loss
                                                   0.34
                steps per epoch=500,
                epochs=20,
                                                   0.32
                validation data=val gen,
                validation_steps=val_steps)
                                                   0.30
                                                   0.28
                                                   0.26
```

Stacking Recurrent Layers

• To stack recurrent layers, all intermediate layers should return their full sequence of outputs (a 3D tensor) (return_sequences=True.)

```
model = Sequential()
                                                                           Training and validation loss
model.add(layers.GRU(32,
                                                                                           Training loss
                                                               0.33
         dropout=0.1,
                                                               0.32
         recurrent_dropout=0.5,
                                                               0.31
         return sequences=True,
                                                               0.30
         input_shape=(None, float_data.shape[-1])))
                                                               0.29
model.add(layers.GRU(64, activation='relu',
                                                               0.28
         dropout=0.1,
                                                               0.27
         recurrent dropout=0.5))
                                                               0.26
         model.add(layers.Dense(1))
                                                               0.25
         model.compile(optimizer=RMSprop(), loss='mae')
history = model.fit_generator(train_gen,
         steps_per_epoch=500,
         epochs=40,
         validation data=val gen,
         validation_steps=val_steps)
```

Bidirectional RNN

- A bidirectional RNN exploits the order sensitivity of RNNs
- Commonly used for Natural Language Processing (NLP)

Using Reversed Data for Training

• Perform even worse than the common-sense baseline

Bi-directional GRU for Temperature Prediction

Get similar performance with regular GRU

```
from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop
model = Sequential()
model.add(layers.Bidirectional(
layers.GRU(32), input_shape=(None, float_data.shape[-1])))
model.add(layers.Dense(1))
model.compile(optimizer=RMSprop(), loss='mae')
history = model.fit_generator(train_gen,
                    steps per epoch=500,
                    epochs=40,
                    validation_data=val_gen,
                    validation_steps=val_steps)
```

Going Further

- Adjust the number of units in each recurrent layer in the stacked setup
- Adjust the learning rate used by the RMSprop optimizer
- Try LSTM layers
- Try using a bigger densely connected regressor on top of the recurrent layers
- Don't forget to eventually run the best-performing models (in terms of validation) on the test set!

Sequence Processing with ConvNets

• 1-D convolution for sequence data

Building a 1D ConvNet Model for IMDB Dataset

```
from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop
model = Sequential()
model.add(layers.Embedding(max_features, 128,
input_length=max_len))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.MaxPooling1D(5))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.GlobalMaxPooling1D())
model.add(layers.Dense(1, activation='sigmoid'))
model.summary()
model.compile(optimizer=RMSprop(lr=1e-4),
            loss='binary crossentropy',
            metrics=['acc'])
history = model.fit(x_train, y_train,
            epochs=10,
            batch size=128,
            validation split=0.2)
```


Combining CNN & RNN for Long Sequences

 Prepare a high-resolution data and use 1D CNN to shorten the sequence

```
from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop
model = Sequential()
model.add(layers.Conv1D(32, 5, activation='relu',
input_shape=(None, float_data.shape[-1])))
model.add(layers.MaxPooling1D(3))
model.add(layers.Conv1D(32, 5, activation='relu'))
model.add(layers.GRU(32, dropout=0.1,
recurrent dropout=0.5))
model.add(layers.Dense(1))
model.summary()
model.compile(optimizer=RMSprop(), loss='mae')
```


Higher-resolution data generators for Jena Data

```
step = 3
lookback = 720
delay = 144
train_gen = generator(float_data, lookback=lookback,
                    delay=delay, min index=0,
                    max index=200000, shuffle=True,
                    step=step)
val_gen = generator(float_data, lookback=lookback,
                    delay=delay, min_index=200001,
                    max index=300000, step=step)
test gen = generator(float data, lookback=lookback,
                    delay=delay, min index=300001,
                    max index=None, step=step)
val steps = (300000 - 200001 - lookback) // 128
test steps = (len(float data) - 300001 - lookback) // 129
```

Results of 1D ConvNet + RNN on Jena Dataset

An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling

• Shaojie Bai, J. Zico Kolter, Vladlen Koltun (CMU & Intel Labs), April, 2018

- The models are evaluated on many RNN benchmarks
- A simple temporal CNN model outperforms RNN / LSTMs across a diverse range of tasks and datasets!

Temporal Convolutional Network (TCN)

Dilated causal convolution

Experimental Results

Sequence Modeling Task	Model Size (≈)	Models			
		LSTM	GRU	RNN	TCN
Seq. MNIST (accuracy ^h)	70 K	87.2	96.2	21.5	99.0
Permuted MNIST (accuracy)	70 K	85.7	87.3	25.3	97.2
Adding problem T =600 (loss $^{\ell}$)	70 K	0.164	5.3e-5	0.177	5.8e-5
Copy memory $T=1000 \text{ (loss)}$	16 K	0.0204	0.0197	0.0202	3.5e-5
Music JSB Chorales (loss)	300K	8.45	8.43	8.91	8.10
Music Nottingham (loss)	1 M	3.29	3.46	4.05	3.07
Word-level PTB (perplexity ^ℓ)	13M	78.93	92.48	114.50	88.68
Word-level Wiki-103 (perplexity)	-	48.4	-	-	45.19
Word-level LAMBADA (perplexity)	_	4186	-	14725	1279
Char-level PTB (bpc ^ℓ)	3M	1.36	1.37	1.48	1.31
Char-level text8 (bpc)	5M	1.50	1.53	1.69	1.45

Hierarchical Neural Attention Encoder

References

- http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- Francois Chollet, "Deep Learning with Python," Chapter 6
- https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0