

PDAT615G: Machine Learning

Module 5 – Convolutional Neural Networks

Convolutional Neural Networks recognize images by first identifying pieces, then how the pieces are put together.

We'll look at...

- convolution,
- convolutional neural networks,
- construction of training sets, and
- practical concerns in training and application.

Convolution overlays a smaller matrix (the *filter*) on a larger matrix (the *image*).

- Corresponding elements are multiplied.
- The results are summed.
- The filter scans over the entire image.

Convolution: Vertical Elements

Convolution: Smile Detection

Other *non-linear* convolution-like operations include gradient filters and standard deviation filters.

The gradient filter combines horizontal and vertical filters to detect edges.

Color images have multiple channels (usually Red/Green/Blue)

Convolution filters can also have more than one layer.

Convolutional Neural Networks