

Université de Montpellier - Faculté des Sciences

Année Universitaire 2023-2024

HA8401H: Calcul Différentiel et Intégral en Plusieurs Variables Chapitre 4 : Calcul différentiel sur \mathbb{R}^n .

Philippe Castillon (1)

Dérivées partielles, différentielle

Exercice 1. Justifier que les fonctions suivantes sont différentiables et calculer leurs gradients (si elles sont à valeurs dans \mathbb{R}) ou leur matrice jacobienne (si elles sont à valeurs dans \mathbb{R}^2 ou \mathbb{R}^3).

1.
$$f(x, y, z) = z e^{\sin(2x) + xy}$$

3.
$$f(x, y, z) = (x^2 - z^2, \sin x \sin y)$$

2.
$$f(x,y) = (y^3 \ln x, x^y)$$

4.
$$f(x,y) = (xy, \frac{1}{2}x^2 + y, \ln(1+x^2))$$

Exercice 2. Les fonctions suivantes sont-elles continues en (0,0)? Admettent-elles des dérivées partielles en 0? Des dérivées directionnelles? Sont-elles différentiables? Sont-elles \mathscr{C}^1 ?

1.
$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

1.
$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$
2.
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$
3.
$$f(x,y) = \begin{cases} (x^2 + y^2)^{xy} & \text{si } (x,y) \neq (0,0) \\ 1 & \text{si } (x,y) = (0,0) \end{cases}$$

3.
$$f(x,y) = \begin{cases} (x^2 + y^2)^{xy} & \text{si } (x,y) \neq (0,0) \\ 1 & \text{si } (x,y) = (0,0) \end{cases}$$

Exercice 3. On considère les fonctions $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ et $g: \mathbb{R}^3 \longrightarrow \mathbb{R}$ définies par

$$f(x,y) = (\cos(xy), y, x \exp(y^2)), \quad g(u, v, w) = uvw.$$

- 1. Calculer explicitement $g \circ f$.
- 2. En utilisant l'expression trouvée en (1), calculer les dérivées partielles de $g \circ f$.
- 3. Déterminer les matrices jacobiennes $J_f(x,y)$ et $J_g(u,v,w)$ de f et de g.
- 4. Retrouver le résultat de la question 2. en utilisant un produit approprié de matrices jacobiennes.

Exercice 4. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f(x,y) = \frac{x+y}{1+x^2+y^2}$.

- 1. Déterminer et représenter ses courbes de niveau.
- 2. Calculer les dérivées partielles premières.
- 3. Écrire l'équation du plan tangent à f en (0,0)

Exercice 5. On considère l'équation $xe^y + ye^x = 0$:

- 1. Vérifier qu'elle définie une et une seule fonction $y = \varphi(x)$ au voisinage de (0,0).
- 1. Département de Mathématiques, CC 051, Université Montpellier II, Pl. Eugène Bataillon, 34095 Montpellier cedex 5. Mèl: philippe.castillon@umontpellier.fr

2. Calculer le développement de Taylor de φ à l'ordre 2 centré en x=0.

Exercice 6. Déterminer toutes les fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ solutions du système suivant : $\begin{cases} \frac{\partial f}{\partial x}(x,y) = e^x y \\ \frac{\partial f}{\partial y}(x,y) = e^x + 2y \end{cases}$

Exercice 7. (Fonctions invariantes par translation) On cherche à déterminer les fonctions $\mathbb{R}^2 \to \mathbb{R}$ de classe \mathscr{C}^1 vérifiant f(x+t,y+t) = f(x,y) pour tout $x,y,t \in \mathbb{R}$.

- 1. Démontrer que, pour tout $(x,y) \in \mathbb{R}^2$, on a $\frac{\partial f}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y) = 0$.
- 2. On pose u=x+y et v=x-y et F(u,v)=f(x,y). Exprimer x et y en fonction de u et v et montrer que $\frac{\partial F}{\partial u}(u,v)=0$.
- 3. Conclure.

Exercice 8. Soit $U \subset \mathbb{R}^n$ un ouvert. La divergence d'un champ de vecteurs $X = (X_1, \dots, X_n) : U \to \mathbb{R}^n$ (de classe \mathscr{C}^1) est la fonction $\operatorname{div}(X) : U \to \mathbb{R}$ définie par

$$\operatorname{div}(X)(x) = \frac{\partial X_1}{\partial x_1}(x) + \dots + \frac{\partial X_n}{\partial x_n}(x).$$

- 1. Soit $V \in \mathbb{R}^n$ et $f: U \to \mathbb{R}$ de classe \mathscr{C}^1 . On note $X: U \to \mathbb{R}^n$ le champ de vecteurs défini par X(x) = f(x)V. Calculer $\operatorname{div}(X)$ en fonction de V et ∇f .
- 2. Soit $X:U\to\mathbb{R}^n$ un champ de vecteur de classe \mathscr{C}^1 sur U, et $g:U\to\mathbb{R}$ de classe \mathscr{C}^1 . Calculer $\mathrm{div}(gX)$.

Ordres supérieurs

Exercice 9. Calculer un développement limité en l'origine et à l'ordre 2 des fonctions suivantes :

1.
$$f(x,y) = x^2(x+y)$$
.

2.
$$f(x, y, z) = ze^{xy}$$
.

Exercice 10. On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = xy\frac{x^2-y^2}{x^2+y^2}$ si $(x,y) \neq (0,0)$, et f(0,0) = 0.

- 1. Montrer que f est de classe \mathscr{C}^1 et calculer ses dérivées partielles sur \mathbb{R}^2 .
- 2. Calculer $\frac{\partial^2 f}{\partial x \partial u}(0,0)$ et $\frac{\partial^2 f}{\partial u \partial x}(0,0)$. Un commentaire?

Exercice 11. Voici les courbes de niveau de la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = 3x - x^3 - 2y^2 + y^4$.

- 1. À partir de la figure : identifier les points critiques de f et préciser leur nature.
- 2. Retrouver les résultats de la question 1. par le calcul.

Exercice 12. Étudier les points critiques des fonctions suivantes :

- 1. $f(x,y) = x^3 + y^3 + 3xy$.
- 2. $f(x,y) = x ((\ln x)^2 + y^2)$ définie sur $\mathbb{R}_+^* \times \mathbb{R}$.
- 3. $f(x,y) = (x-y)e^{xy}$

Exercice 13. (Fonctions harmoniques) Soit $U \subset \mathbb{R}^2$ un ouvert. Le laplacien d'une fonction $f: U \to \mathbb{R}$ de classe \mathscr{C}^2 est la fonction $\Delta f: U \to \mathbb{R}$ définie par

$$\Delta f(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y)$$

La fonction f est harmonique sur U si $\Delta f = 0$.

- 1. Montrer que $\Delta f = \operatorname{div}(\nabla f)$ et en déduire $\Delta(fg)$ pour deux fonctions $f, g: U \to \mathbb{R}^2$.
- 2. On suppose que $f:U\to\mathbb{R}$ est harmonique et de classe \mathscr{C}^3 . Montrer que $\frac{\partial f}{\partial x},\,\frac{\partial f}{\partial y}$ et $g:(x,y)\mapsto$ $x\frac{\partial f}{\partial x}(x,y)+y\frac{\partial f}{\partial y}(x,y)$ sont harmoniques.
- 3. On suppose désormais que $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ est radiale, c'est-à-dire qu'il existe $\varphi: \mathbb{R}^* \to \mathbb{R}$ de classe \mathscr{C}^2 telle que $f(x,y) = \varphi(x^2 + y^2)$.
 - (a) On suppose que f est harmonique, montrer que φ' est solution d'une équation différentielle linéaire du premier ordre.
 - (b) En déduire toutes les fonctions harmoniques radiales sur $\mathbb{R}^2 \setminus \{(0,0)\}$ et sur \mathbb{R}^2 .

Pour s'entrainer

Exercice 14. Justifier que les fonctions suivantes sont différentiables et calculer leurs gradients (si elles sont à valeurs dans \mathbb{R}) ou leur matrice jacobienne (si elles sont à valeurs dans \mathbb{R}^2 ou \mathbb{R}^3).

1.
$$f(x, y, z) = (x^2 + y^2) e^{-xz}$$

3.
$$f(x, y, z) = (\ln(x^2 + z^2), x\cos(yz))$$

2.
$$f(x,y) = (y^5 - 3xy, x\cos(e^{xy}))$$

4.
$$f(x,y) = (xy, e^x \cos y, x \cos(x - y))$$

Exercice 15. Les fonctions suivantes sont-elles continues en (0,0)? Admettent-elles des dérivées partielles en 0? Des dérivées directionnelles? Sont-elles différentiables? Sont-elles \mathscr{C}^1 ?

1.
$$f(x,y) = \begin{cases} \frac{xy^2 + x^2y^2 + x^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$
2. $f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ & \text{si } (x,y) = (0,0) \end{cases}$
3. $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ & \text{si } (x,y) = (0,0) \end{cases}$

2.
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & \text{si } (x,y) \neq (0,0) \\ & \text{si } (x,y) = (0,0) \end{cases}$$

3.
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

Exercice 16. On considère l'application $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$ définie par

$$\varphi(x, y, z) = (x^2 - y^2, y^2 - z^2, z^2 - x^2)$$

et une application $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ de classe \mathscr{C}^1 .

- 1. Écrire les matrices jacobiennes de φ et de l'application $g=f\circ\varphi:\mathbb{R}^3\longrightarrow\mathbb{R}.$
- 2. Calculer $\frac{\partial g}{\partial x}(t,t,t) + \frac{\partial g}{\partial y}(t,t,t) + \frac{\partial g}{\partial z}(t,t,t)$ pour tout réel t.

Exercice 17. Soit $f:(u,v)\mapsto f(u,v)$ une fonction différentiable sur \mathbb{R}^2 . On définit des fonctions $g: \mathbb{R}^2 \to \mathbb{R}$ et $h: \mathbb{R} \to \mathbb{R}$ par g(x,y) = f(y,x) et h(x) = f(x,-x).

Montrer que g et f sont différentiables et exprimer leur différentielles en fonction des dérivées partielles $\mathrm{de}\ f.$

3

Exercice 18. On considère la fonction définie par $f(x,y) = x^2y + \ln(1+y^2)$ dont voici le graphe :

- 1. Vérifier que le théorème des fonctions implicites ne s'applique pas à l'origine.
- 2. Montrer que, au voisinage de l'origine, l'ensemble $L_0 = \{(x,y) \in \mathbb{R}^2 | f(x,y) = 0\}$ est constitué de l'axe des abscisses et d'une courbe dont on déterminera une expression.
- 3. Déterminer des fonctions $x \mapsto \varphi(x)$ de classe \mathscr{C}^1 ou \mathscr{C}^2 sur un intervalle I contenant 0 et telles que $f(x, \varphi(x)) = 0$ pour tout $x \in I$.

Exercice 19. Déterminer toutes les fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ solutions des systèmes suivants :

- 1. $\begin{cases} \frac{\partial f}{\partial x}(x,y) = xy^2\\ \frac{\partial f}{\partial y}(x,y) = yx^2 \end{cases}$
- 2. $\frac{\partial f}{\partial x}(x,y) = xy^2$

Exercice 20. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une application de classe \mathscr{C}^1 .

- 1. Pour $(x,y) \in \mathbb{R}^2$ fixé, on définit $g : \mathbb{R} \to \mathbb{R}$ par g(t) = f(tx,ty). Montrer que g est dérivable sur \mathbb{R} et calculer sa dérivée.
- 2. On suppose maintenant que f(tx, ty) = tf(x, y) pour tout x, y et t.
 - (a) Montrer que pour tout $x, y, t \in \mathbb{R}$ on a

$$f(x,y) = \frac{\partial f}{\partial x}(tx,ty)x + \frac{\partial f}{\partial y}(tx,ty)y.$$

(b) En déduire qu'il existe deux réel a et b tels que f(x,y) = ax + by.

Exercice 21. Trouver toutes les applications f de \mathbb{R}^2 dans \mathbb{R} vérifiant $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = \sqrt{x^2 + y^2}$ sur $D = \{(x,y) \in \mathbb{R}^2 \mid x > 0\}.$

Exercice 22. (Équation de transport) Trouver toutes les fonctions $f: \mathbb{R}^2 \to \mathbb{R}$, \mathscr{C}^1 sur \mathbb{R}^2 et telles que $\frac{\partial f}{\partial x} + 2x \frac{\partial f}{\partial u} = 0$

Exercice 23. Calculer un développement limité en l'origine et à l'ordre 2 des fonctions suivantes :

1.
$$f(x,y) = e^{xy}$$
.

2.
$$f(x, y, z) = x^2(y - z)$$
.

Exercice 24. Étudier les points critiques des fonctions suivantes :

- 1. $f(x,y) = x^4 + y^4 2(x-y)^2$
- 2. $f(x,y) = x^4 + y^4 4xy + 1$
- 3. $f(x,y) = xy e^{x-y}$

Exercice 25. (Équation des cordes vibrantes) Soit c un réel non nul. On cherche à caractériser les solutions de classe \mathscr{C}^2 de l'équation aux dérivées partielles suivante

$$\forall (x,t) \in \mathbb{R}^2$$
 $c^2 \frac{\partial^2 f}{\partial x^2}(x,t) = \frac{\partial^2 f}{\partial t^2}(x,t)$ (\star)

- 1. Soient $A,B:\mathbb{R}\to\mathbb{R}$ de classe \mathscr{C}^2 . On pose f(x,t)=A(x-ct)+B(x+ct). Montrer que w est solution de l'équation (\star)
- 2. On suppose que f est solution de (\star) , et on pose F(u,v)=f(x,y) avec u=x-ct et v=x+ct. Exprimer x et y en fonction de u et v, calculer $\frac{\partial^2 F}{\partial u \partial v}$ et montrer que qu'il existe deux fonctions $A, B: \mathbb{R} \to \mathbb{R}$ de classe \mathscr{C}^2 telles que f(x,y)=A(x-ct)+B(x+ct).

4