An algorithmic paradigm that solves problems by combining the solutions to subproblems, like the Divide-and-Conquer method.

• Recall: Divide-and-Conquer algorithms...

 Recall: Divide-and-Conquer algorithms partition the problems into independent subproblems, solve the subproblems recursively and then combine their solutions to solve the original problem.

• **Dynamic programming** is applicable when subproblems are not independent.

• In DP, subproblems **share** subsubproblems.

 In this context, divide-and-conquer algorithm does more work than necessary, repeatedly solving the common subsubproblems. Divide and Conquer **Divide et Conquer**

Dynamic Programming

 A dynamic programming algorithm solves every subsubproblem just once and then saves its answer in a table, thereby avoiding the work of recomputing the answer every time the subsubproblem is encountered.

- Characterize the structure of an optimal solution
- Recursively define the value of an optimal solution
- Compute the value of an optimal solution in a bottom-up fashion
- Construct an optimal solution from computed information (can be omitted if only value of optimal solution is required)

Knapsack Problem

Introduction

- During a robbery, a burglar finds much more loot than he had expected and has to decide what to take.
- His bag (or knapsack) will hold a total weight of at most W kilograms.

Introduction

• There are n items to choose from, of weight w_1 , w_2 ,..., w_n and money value v_1 , v_2 ,..., v_n .

 What is the most valuable combination of items (or the combination of items that maximizes the monetary value) he can fit into his bag?

Knapsack Problem

- Practical applications:
 - W units of CPU time available (CPU scheduling)
 - bandwidth in network

How can we solve the problem?

Question

• What is the naive / brute-force approach in solving the Knapsack problem?

 Answer: We can check every possible combination of items to know what the most valuable combination of items is

Brute-force Approach

 Given n items, how many possible combination of items are there?

Answer: 2ⁿ (Exponential)

Brute-force Approach

 For one combination, how long does it take to check if it is a valid combination?

Answer: O(1) (Constant)

Brute-force Approach

- Total Running time = 2ⁿ * O(1)
- Total Running time = O(2ⁿ) [Exponential Time]
- 2ⁿ possible combinations, that each take O(1) time to check for validity

Can we do better?

Duh!

PROgrammer says....

We can do better with an algorithm based on dynamic programming

We need to carefully identify the subproblems

Let's try this:

- If items are labeled 1..n, then a subproblem would be to find an optimal solution for
- $S_k = \{items \ labeled \ 1, \ 2, \dots k\}$

If items are labeled 1..n, then a subproblem would be to find an optimal solution for $S_k = \{items \ labeled \ 1, 2, ... k\}$

- This is a reasonable subproblem definition.
- The question is: can we describe the final solution (S_n) in terms of subproblems (S_k) ?
- Unfortunately, we can't do that.

- Given a knapsack with maximum capacity W, and a set S consisting of n items
- Each item i has some weight w_i and benefit value b_i (all w_i and W are integer values)
- <u>Problem</u>: How to pack the knapsack to achieve maximum total value of packed items?

• Let's add another parameter: w, which will represent the maximum weight for each subset of items

• The subproblem then will be to compute V[k,w], i.e., to find an optimal solution for $S_k = \{items\ labeled\ 1,\ 2,\ ...\ k\}$ in a knapsack of size w

Recursive Formula for Subproblems

• The subproblem will then be to compute V[k,w], i.e., to find an optimal solution for $S_k = \{items\ labeled\ 1,\ 2,\ ...\ k\}$ in a knapsack of size w

 Assuming knowing V[i, j], where i=0,1, 2, ... k-1, j=0,1,2, ...w, how to derive V[k,w]?

Recursive Formula for subproblems (continued)

$$V[k, w] = \begin{cases} V[k-1, w] & \text{if } w_k > w \\ \max\{V[k-1, w], V[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

Recursive Formula

$$V[k, w] = \begin{cases} V[k-1, w] & \text{if } w_k > w \\ \max\{V[k-1, w], V[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

- The best subset of S_k that has the total weight $\leq w$, either contains item k or not.
- First case: $w_k > w$. Item k can't be part of the solution, since if it was, the total weight would be > w, which is unacceptable.
- Second case: $w_k \le w$. Then the item k can be in the solution, and we choose the case with greater value.

Knapsack Algorithm

```
for w = 0 to W
  V[0,w] = 0
fori = 1 to n
  V[i,0] = 0
fori = 1 to n
  for w = 0 to W
        if w_i \le w // item i can be part of the solution
                 if b_i + V[i-1,w-w_i] > V[i-1,w]
                          V[i,w] = b_i + V[i-1,w-w_i]
                 else
                          V[i,w] = V[i-1,w]
        else V[i,w] = V[i-1,w] // w_i > w
```

Running Time

```
for w = 0 to W
 V[0,w] = 0
for i = 1 to n
 V[i,0] = 0
                      Repeat n times
for i = 1 to n
 for w = 0 to W
      < the rest of the code >
What is the running time of this algorithm?
  O(n*W)
Remember that the brute-force algorithm
                 takes O(2^n)
```

Example

Let's run our algorithm on the following data:

- n = 4 (# of elements)
- W = 5 (max weight)
- Elements (weight, benefit):
- (2,3), (3,4), (4,5), (5,6)

```
for \ i = 1 \ to \ n
for \ w = 0 \ to \ W
if \ w_i <= w
if \ b_i + V[i-1,w-w_i] > V[i-1,w]
V[i,w] = b_i + V[i-1,w-w_i]
else
V[i,w] = V[i-1,w]
else \ V[i,w] = V[i-1,w]
```


for
$$w = 0$$
 to W
 $V[0,w] = 0$

Can the item with weight=2 fit in if knapsack capacity is 1? No!

for
$$i = 1$$
 to n

for $w = 0$ to W
 $if w_i <= w$
 $if b_i + V[i-1, w-w_i] > V[i-1, w]$
 $V[i, w] = b_i + V[i-1, w-w_i]$
 $else$
 $V[i, w] = V[i-1, w]$
 $else V[i, w] = V[i-1, w]$

Can the item with weight=2 fit in if knapsack capacity is 2? Yes!

for
$$i = 1$$
 to n

for $w = 0$ to W
 $if w_i <= w$
 $if b_i + V[i-1, w-w_i] > V[i-1, w]$
 $V[i, w] = b_i + V[i-1, w-w_i]$

else

 $V[i, w] = V[i-1, w]$
 $else V[i, w] = V[i-1, w]$

Benefit of adding the item + the benefit of the first i items added

At capacity =2, and weight of the item =2, the remaining weight that we can add is = 0

At weight capacity = 0, no item may be added so benefit = 0

for
$$i = 1$$
 to n

for $w = 0$ to $w = 2$

if $w_i <= w$
 $v = 2$

if $b_i + V[i-1, w-w_i] > V[i-1, w]$
 $v = b_i + V[i-1, w-w_i]$

else

 $v = 2$
 $v = 2$
 $v = 2$
 $v = 2$
 $v = 3$
 $v = 4$
 $v = 4$

At capacity =2, and weight of the item =2, the remaining weight that we can add is = 0

At weight capacity = 0, no item may be added so benefit = 0

for
$$i = 1$$
 to n

for $w = 0$ to $w = 2$

if $w_i <= w$

$$v[i,w] = b_i + V[i-1,w-w_i] > V[i-1,w]$$

$$V[i,w] = b_i + V[i-1,w-w_i]$$

else
$$V[i,w] = V[i-1,w]$$

$$else V[i,w] = V[i-1,w]$$

At capacity =3, and weight of the item =2, the remaining weight that we can add is = 1

At weight capacity = 1, no item may be added so benefit = 0

for
$$i = 1$$
 to n

for $w = 0$ to $w = 3$

if $w_i <= w$

$$if b_i + V[i-1, w-w_i] > V[i-1, w]$$

$$V[i, w] = b_i + V[i-1, w-w_i]$$

$$else$$

$$V[i, w] = V[i-1, w]$$

$$else V[i, w] = V[i-1, w]$$

At capacity =3, and weight of the item =2, the remaining weight that we can add is = 1

At weight capacity = 1, no item may be added so benefit = 0

for
$$i = 1$$
 to n

for $w = 0$ to $w = 3$

if $w_i <= w$

$$if b_i + V[i-1, w-w_i] > V[i-1, w]$$

$$V[i, w] = b_i + V[i-1, w-w_i]$$

$$else$$

$$V[i, w] = V[i-1, w]$$

$$else V[i, w] = V[i-1, w]$$

At capacity =4, and weight of the item =2, the remaining weight that we can add is = 2

At weight capacity = 2, no item may be added so benefit = 0

for
$$i = 1$$
 to n

for $w = 0$ to W
 $if w_i <= w$
 $if b_i + V[i-1, w-w_i] > V[i-1, w]$
 $V[i, w] = b_i + V[i-1, w-w_i]$
 $else$
 $V[i, w] = V[i-1, w]$
 $else V[i, w] = V[i-1, w]$

At capacity =3, and weight of the item =2, the remaining weight that we can add is = 1

At weight capacity = 1, no item may be added so benefit = 0

for
$$i = 1$$
 to n

for $w = 0$ to $w = 4$

if $w_i <= w$

$$v[i,w] = b_i + V[i-1,w-w_i] > V[i-1,w]$$

$$V[i,w] = b_i + V[i-1,w-w_i]$$

$$else$$

$$V[i,w] = V[i-1,w]$$

$$else V[i,w] = V[i-1,w]$$

At capacity =5, and weight of the item =2, the remaining weight that we can add is = 3

At weight capacity = 3, no item may be added so benefit = 0

for
$$i = 1$$
 to n

for $w = 0$ to $w = 5$

if $w_i <= w$

$$v[i,w] = b_i + V[i-1,w-w_i] > V[i-1,w]$$

$$V[i,w] = b_i + V[i-1,w-w_i]$$

$$else$$

$$V[i,w] = V[i-1,w]$$

$$else V[i,w] = V[i-1,w]$$

At capacity =3, and weight of the item =2, the remaining weight that we can add is = 1

At weight capacity = 1, no item may be added so benefit = 0

for
$$i = 1$$
 to n

for $w = 0$ to $w = 5$

if $w_i <= w$

$$v[i,w] = b_i + V[i-1,w-w_i] > V[i-1,w]$$

$$V[i,w] = b_i + V[i-1,w-w_i]$$

else
$$V[i,w] = V[i-1,w]$$

$$else V[i,w] = V[i-1,w]$$

for
$$i = 1$$
 to n

for $w = 0$ to W
 $if w_i <= w$
 $if b_i + V[i-1, w-w_i] > V[i-1, w]$
 $V[i, w] = b_i + V[i-1, w-w_i]$
 $else$
 $V[i, w] = V[i-1, w]$
 $else V[i, w] = V[i-1, w]$

for
$$i = 1$$
 to n

for $w = 0$ to $w = 5$

if $w_i <= w$
 $if b_i + V[i-1, w-w_i] > V[i-1, w]$
 $V[i, w] = b_i + V[i-1, w-w_i]$

else

 $V[i, w] = V[i-1, w]$

else $V[i, w] = V[i-1, w]$

At capacity =3, and weight of the item =3, the remaining weight that we can add is = 0

At weight capacity = 0, no item may be added so benefit = 0

for
$$i = 1$$
 to n

for $w = 0$ to $w = 3$

if $w_i <= w$
 $if b_i + V[i-1, w-w_i] > V[i-1, w]$
 $V[i, w] = b_i + V[i-1, w-w_i]$

else

 $V[i, w] = V[i-1, w]$

else $V[i, w] = V[i-1, w]$

At capacity =3, and weight of the item =3, the remaining weight that we can add is = 0

At weight capacity = 0, no item may be added so benefit = 0

for
$$i = 1$$
 to n $i = 2$

for $w = 0$ to W
 $if w_i <= w$
 $if b_i + V[i-1, w-w_i] > V[i-1, w]$
 $V[i, w] = b_i + V[i-1, w-w_i]$
 $v[i, w] = V[i-1, w]$
 $v[i, w] = V[i-1, w]$
 $v[i, w] = V[i-1, w]$

At capacity =4, and weight of the item =3, the remaining weight that we can add is = 1

At weight capacity = 1, no item may be added so benefit = 0

for
$$i = 1$$
 to n

for $w = 0$ to $w = 4$

if $w_i <= w$

if $b_i + V[i-1, w-w_i] > V[i-1, w]$

$$V[i, w] = b_i + V[i-1, w-w_i]$$

else

$$V[i, w] = V[i-1, w]$$

else $V[i, w] = V[i-1, w]$

V[2, 3] = 0

V[1, 1] = 0

At capacity =4, and weight of the item =3, the remaining weight that we can add is = 1

At weight capacity = 1, no item may be added so benefit = 0

for
$$i = 1$$
 to n $i = 2$

for $w = 0$ to $w = 4$

if $w_i <= w$
 $if b_i + V[i-1, w-w_i] > V[i-1, w]$
 $V[i, w] = b_i + V[i-1, w-w_i]$
 $v[i, w] = V[i-1, w]$
 $v[i, w] = V[i-1, w]$
 $v[i, w] = V[i-1, w]$

At capacity =5, and weight of the item =3, the remaining weight that we can add is = 2

At weight capacity = 2, item 1 is already added with a benefit = 3, so we add it to benefit of item 4 = 4

for
$$i = 1$$
 to n

for $w = 0$ to $w = 5$

if $w_i <= w$
 $if b_i + V[i-1, w-w_i] > V[i-1, w]$
 $V[i, w] = b_i + V[i-1, w-w_i]$

else

 $V[i, w] = V[i-1, w]$

else $V[i, w] = V[i-1, w]$

At capacity =5, and weight of the item =3, the remaining weight that we can add is = 2

At weight capacity = 2, item 1 is already added with a benefit = 3, so we add it to benefit of item 4 = 4

Total benefit now is 7.

for
$$i = 1$$
 to n $i = 2$

for $w = 0$ to $w = 5$

if $w_i <= w$
 $if b_i + V[i-1, w-w_i] > V[i-1, w]$
 $V[i, w] = b_i + V[i-1, w-w_i]$
 $else$
 $V[i, w] = V[i-1, w]$
 $else V[i, w] = V[i-1, w]$

for
$$i = 1$$
 to n

for $w = 0$ to W
 $if w_i <= w$
 $if b_i + V[i-1, w-w_i] > V[i-1, w]$
 $V[i, w] = b_i + V[i-1, w-w_i]$
 $else$
 $V[i, w] = V[i-1, w]$
 $else V[i, w] = V[i-1, w]$
 $v[i, w] = V[i-1, w]$

for
$$i = 1$$
 to n

for $w = 0$ to W
 $if w_i <= w$
 $if b_i + V[i-1, w-w_i] > V[i-1, w]$
 $V[i, w] = b_i + V[i-1, w-w_i]$
 $else$
 $V[i, w] = V[i-1, w]$
 $else V[i, w] = V[i-1, w]$
 $v[i, w] = V[i-1, w]$

for
$$i = 1$$
 to n

for $w = 0$ to W
 $if w_i <= w$
 $if b_i + V[i-1, w-w_i] > V[i-1, w]$
 $V[i, w] = b_i + V[i-1, w-w_i]$
 $else$
 $V[i, w] = V[i-1, w]$
 $else V[i, w] = V[i-1, w]$
 $v[3,3] = V[2,3]$

0

 b_i w_i

0

0

0

3

At capacity =4, and weight of the item =4, the remaining weight that we can add is = 0

$$3 \quad 2 \quad 1 \quad 0 \quad 0 \quad 3$$

$$4 \quad 3 \quad 2 \quad 0 \quad 0 \quad 3$$

$$5 \quad 4 \quad 3 \quad 0 \quad 0 \quad 3$$

$$5 \quad 4 \quad 3 \quad 0 \quad 0 \quad 3$$

$$6 \quad 5 \quad 4 \quad 0$$

$$7 \quad V[i, w] = w \quad 4 = 4$$

$$7 \quad V[i, w] = b_i + V[i-1, w-w_i] \quad 0$$

$$7 \quad V[i, w] = b_i + V[i-1, w-w_i] \quad 0$$

$$8 \quad V[i, w] = V[i-1, w] \quad 0$$

$$8 \quad V[i, w] = V[i-1, w]$$

$$8 \quad V[i, w] = V[i-1, w]$$

$$9 \quad V[i, w] = V[i-1, w]$$

At capacity =4, and weight of the item =4, the remaining weight that we can add is = 0

for
$$i = 1$$
 to n $i = 3$

for $w = 0$ to $w = 4$

if $w_i <= w$
 $if b_i + V[i-1, w-w_i] > V[i-1, w]$
 $V[i, w] = b_i + V[i-1, w-w_i]$
 $v[i, w] = V[i-1, w]$
 $v[i, w] = V[i-1, w]$
 $v[i, w] = V[i-1, w]$

At capacity =5, and weight of the item =5, the remaining weight that we can add is = 1.

At capacity 1, benefit is 0 as well.

for
$$i = 1$$
 to n

for $w = 0$ to W

if $w_i \le w$
 $v = w$
 v

At capacity =5, and weight of the item =5, the remaining weight that we can add is = 0.

At capacity 0, benefit is 0 as well.

for
$$i = 1$$
 to n

for $w = 0$ to $w = 5$

if $w_i <= w$
 $if b_i + V[i-1, w-w_i] > V[i-1, w]$
 $V[i, w] = b_i + V[i-1, w-w_i]$

else

 $V[i, w] = V[i-1, w]$
 $V[3, 5] = V[2, 5]$
 $v[i, w] = V[i-1, w]$

for
$$i = 1$$
 to n

for $w = 0$ to $w = 1$

if $w_i <= w$
 $if b_i + V[i-1, w-w_i] > V[i-1, w]$
 $V[i, w] = b_i + V[i-1, w-w_i]$

else

 $V[i, w] = V[i-1, w]$
 $v[i, w] = V[i-1, w]$

for
$$i = 1$$
 to n

for $w = 0$ to $w = 2$

if $w_i <= w$
 $if b_i + V[i-1, w-w_i] > V[i-1, w]$
 $V[i, w] = b_i + V[i-1, w-w_i]$

else

 $V[i, w] = V[i-1, w]$

else $V[i, w] = V[i-1, w]$

 b_i w_i

for
$$i = 1$$
 to n

for $w = 0$ to $w = 4$

if $w_i <= w$
 $if b_i + V[i-1, w-w_i] > V[i-1, w]$
 $V[i, w] = b_i + V[i-1, w-w_i]$

else

 $V[i, w] = V[i-1, w]$

else $V[i, w] = V[i-1, w]$

At capacity =5, and weight of the item =5, the remaining weight that we can add is = 0

for
$$i = 1$$
 to n

for $w = 0$ to W
 $if w_i <= w$
 $if b_i + V[i-1, w-w_i] > V[i-1, w]$
 $V[i, w] = b_i + V[i-1, w-w_i]$
 $else$
 $V[i, w] = V[i-1, w]$
 $else V[i, w] = V[i-1, w]$

$$\begin{array}{c|c} 6 & & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & \\ \hline$$

At capacity =5, and weight of the item =5, the remaining weight that we can add is = 0

for
$$i = 1$$
 to n

for $w = 0$ to W
 $if w_i <= w$
 $if b_i + V[i-1, w-w_i] > V[i-1, w]$
 $V[i, w] = b_i + V[i-1, w-w_i]$
 $else$
 $V[i, w] = V[i-1, w]$
 $v[4,5] = v[3,5]$
 $else V[i, w] = V[i-1, w]$

7 is the maximum benefit that we can have given the included items.

Now, how to find the actual items?

for
$$i = 1$$
 to n
for $w = 0$ to W
if $w_i <= w$
if $b_i + V[i-1,w-w_i] > V[i-1,w]$

$$V[i,w] = b_i + V[i-1,w-w_i]$$
else

$$V[i,w] = V[i-1,w]$$

$$else V[i,w] = V[i-1,w]$$

Let i=n and k=Wif $V[i,k] \neq V[i-1,k]$ then

mark the i^{th} item as in the knapsack $i=i-1, k=k-w_i$ else i=i-1 // Assume the i^{th} item is not in the knapsack

			0	1	2	3	4	5
b_i	W_i	0	0	0	0	0	0	0
3	2	1	0	0	3	3	3	3
4	3	2	0	0	3	4	4	7
5	4	3	0	0	3	4	5	7
6	5	4	0	0	3	4	5	7

Let i=n and k=Wif $V[i,k] \neq V[i-1,k]$ then V[2, 5] != V[1, 5]mark the i^{th} item as in the knapsack $i = i-1, k = k-w_i$ else i = i-1


```
Let i=n and k=W

if V[i,k] \neq V[i-1,k] then V[2,5] := V[1,5]

mark the i^{th} item as in the knapsack

i=i-1, k=k-w_i i=1 k=5-3=2

else

i=i-1
```



```
Let i=n and k=W

if V[i,k] \neq V[i-1,k] then

mark the i^{th} item as in the knapsack

i=i-1, k=k-w_i i=0 k=2-2=0

else

i=i-1
```


Example 2

	ltem1	Item2	item3	item4
Value	5	3	4	7
Weight	3	2	1	4

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0													
2	0													
3	0													
4	0													

References

- Dasgupta, C.H. et al, Algorithms, 2006
- MITOpenCourseware
- Slides adapted from Arup Guha's Computer Science II Lecture notes: http://www.cs.ucf.edu/~dmarino/ucf/cop3503/lectures/