вариант	ф. номер	група	поток	курс	специалност
E.I.1			,	7.1	
Име:				,	

Да няма лист, на който е писано по повече от една задача!

Зад. 1. Нека $\mathcal{L}(p)$ е езикът на предикатното смятане от първи ред без формално равенство с двуместен предикатен символ p. Нека $\mathcal{U} = \langle U, p^{\mathcal{U}} \rangle$ е структурата за $\mathcal{L}(p)$ с универсум множеството U от всички точки и всички затворени кръгове в една фиксирана евклидова равнина π и за произволни a и b от U

 $\langle a,b\rangle \in p^{\mathcal{U}} \longleftrightarrow a$ е точка от π , b е затворен кръг от π и $a \in b$.

Да се докаже, че следните множества са определими в \mathcal{U} :

- 1. $\{\langle b_1, b_2 \rangle \mid b_1 \text{ и } b_2 \text{ са затворени кръгове от } \pi \text{ и } b_1 \subseteq b_2\};$
- 2. $\{\langle b_1, b_2 \rangle \mid b_1 \text{ и } b_2 \text{ са затворени кръгове от } \pi \text{ и контурите им се допират}\};$
- 3. $\{\langle a,b\rangle\mid a$ е точка от контура на затворения кръг $b\};$
- 4. $\{\langle a, a_1, a_2 \rangle \mid a, a_1$ и a_2 са точки от π , $a_1 \neq a_2$ и a лежи на правата $a_1a_2\}$;
- 5. $\{\langle a_1, a_2, b \rangle \mid$ отсечката a_1a_2 е диаметър на затворения кръг $b\}$.

 ${\bf Зад.}\ {\bf 2.}\$ Нека p и r са двуместни предикатни символи. Дадени са следните формули:

```
\varphi_{1} \colon \forall x \neg (p(x,x) \lor r(x,x)),
\varphi_{2} \colon \forall x \forall y \forall z (p(x,y) \& r(y,z) \Rightarrow r(x,z)),
\varphi_{3} \colon \forall x \forall y (x \doteq y \lor p(x,y) \lor r(x,y)),
\varphi_{4} \colon \forall x \exists z_{1} \exists z_{2} (p(x,z_{1}) \& r(x,z_{2})),
\psi_{n} \colon \forall x \forall y_{1} \dots \forall y_{n} (p(x,y_{1}) \& \dots \& p(x,y_{n}) \Rightarrow
\exists z (p(x,z) \& p(z,y_{1}) \& \dots \& p(z,y_{n}))), \ n > 0,
\chi_{n} \colon \forall x \forall y_{1} \dots \forall y_{n} (r(x,y_{1}) \& \dots \& r(x,y_{n}) \Rightarrow
\exists z (r(x,z) \& r(z,y_{1}) \& \dots \& r(z,y_{n}))), \ n > 0.
Heka \Gamma_{0} = \{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}, \psi_{1}, \chi_{1}\}, \ \Gamma_{1} = \Gamma_{0} \cup \{\neg \psi_{2}, \chi_{2}, \neg \chi_{3}\},
\Gamma_{1} = \Gamma_{2} \cup \{\forall y_{2}, \neg y_{3}\} \cup \{\forall y_{n} \mid n > 5\},
```

 $\Gamma_2 = \Gamma_0 \cup \{\psi_2, \neg \psi_3\} \cup \{\chi_n \mid n > 5\},$ $\Gamma_3 = \Gamma_0 \cup \{\psi_n \mid n > 1\} \cup \{\chi_n \mid n > 1\}.$ Да се докаже кои от множествата Γ_0 , Γ_1 , Γ_2 и Γ_3 са изпълними и кои са неизпълними.

Зад. 3. Нека φ_1 , φ_2 , φ_3 и φ_4 са следните четири формули: $\forall x \exists y ((q(x,y) \Rightarrow p(x,y)) \& \forall z (p(z,y) \Rightarrow r(x,z))), \ \forall x (\exists y p(y,x) \Rightarrow \exists y (p(y,x) \& \neg \exists z (p(z,y) \& p(z,x)))), \ \forall z (\exists x \exists y (\neg q(x,y) \& \neg p(x,y)) \Rightarrow \forall x q(x,z)), \ \neg \exists x \exists y \exists z ((p(x,y) \& r(y,z)) \& \neg p(x,z)). \ C$ метода на резолюцията да се докаже, че $\varphi_1, \varphi_2, \varphi_3, \varphi_4 \models \exists y \forall x \exists z ((p(x,x) \lor r(y,z)) \Rightarrow (\neg p(x,x) \& r(y,z))).$

Пожелаваме ви приятна и успешна работа!

вариант	ф. номер	група	поток	курс	специалност
E.I.2					
Име:					

Да няма лист, на който е писано по повече от една задача!

Зад. 1. Нека $\mathcal{L}(r)$ е езикът на предикатното смятане от първи ред без формално равенство с двуместен предикатен символ r. Нека $\mathcal{W} = \langle W, r^{\mathcal{W}} \rangle$ е структурата за $\mathcal{L}(r)$ с универсум множеството W от всички точки и всички отворени кръгове в една фиксирана евклидова равнина π и за произволни a и b от W $\langle a,b \rangle \in r^{\mathcal{W}} \longleftrightarrow a$ е точка от π , b е отворен кръг от π и $a \in b$.

Да се докаже, че следните множества са определими в \mathcal{W} :

- 1. $\{(b_1, b_2) \mid b_1 \text{ и } b_2 \text{ са отворени кръгове от } \pi \text{ и } b_1 = b_2\};$
- 2. $\{\langle b_1, b_2 \rangle \mid b_1 \text{ и } b_2 \text{ са отворени кръгове от } \pi \text{ и контурите им се допират}\};$
- 3. $\{\langle a,b\rangle\mid a$ е точка от контура на отворения кръг $b\}$;
- 4. $\{\langle a, a_1, a_2 \rangle \mid a, a_1 \text{ и } a_2 \text{ са точки от } \pi, a_1 \neq a_2 \text{ и } a \text{ не лежи на правата } a_1 a_2 \};$
- 5. $\{\langle a_1, a_2, b \rangle \mid$ отсечката a_1a_2 е хорда, но не е диаметър на контура на отворения кръг $b\}$.

Зад. 2. Нека p и r са двуместни предикатни символи. Дадени са следните формули:

```
Зад. 3. Нека \varphi_1, \varphi_2, \varphi_3 и \varphi_4 са следните четири формули: \forall x \exists y (q(y,x) \& \forall z (q(y,z) \Rightarrow (r(z,x) \lor p(y,z)))), \forall x (\exists y q(x,y) \Rightarrow \exists y (q(x,y) \& \neg \exists z (q(y,z) \& q(x,z)))), \forall z_1 (\exists z \exists x \exists y (p(x,y) \& q(x,z)) \Rightarrow \forall z_2 \neg p(z_1,z_2)) \neg \exists x \exists y \exists z ((q(y,x) \& r(z,y)) \& \neg q(z,x)). С метода на резолюцията да се докаже, че \varphi_1, \varphi_2, \varphi_3, \varphi_4 \models \exists z \forall x \exists y ((q(x,x) \lor r(y,z)) \Rightarrow (\neg q(x,x) \& r(y,z))).
```

Пожселаваме ви приятна и успешна работа!

вариант	ф. номер	група	поток	курс	специалност
E.II.1	-				
Име:		*1			

Да няма лист, на който е писано по повече от една задача! За всеки дефиниран предикат да се попълни подходящият/те шаблон(и):

- 1. При параметри ..., предикатът ... разпознава дали ...
- 2. При параметри ..., предикатът ... генерира ... в ...
- 3. p(...) е истина тогава и само тогава, когато ... Следното условие е достатъчно, за да няма зацикляне с предиката: ...

Решения на задачи, в които това отсъства, ще бъдат оценявани с 0 точки.

Зад. 1. Казваме, че списък L е nремерен, ако неговите елементи са наредени двойки от списък и естествено число.

Казваме, че премерен списък L е мултипликативен, ако за всеки три негови елемента $(S_1,W_1),\,(S_2,W_2)$ и $(S_3,W_3),\,$ за които S_1 и S_2 нямат общи елементи, а елементите на S_3 са точно наредените двойки от елемент на S_1 и елемент на S_2 , е вярно равенствето $W_1.W_2=W_3.$

Да се дефинира на пролог предикат is $_{\rm multiplicative}(L)$, който проверява дали даден премерен списък L е мултипликативен.

Зад. 2. Казваме, че от различните списъци L_1, L_2, \ldots, L_n може да се състави кръстпословица, ако има матрица, за която множеството от редове и стълбове е точно множеството от списъци $\{L_i \mid 1 \leq i \leq n\}$ и сумата от броя на редовете и от броя на стълбовете и е n.

Да се дефинира на пролог предикат generate_crossword(D, C), който по даден списък от различни списъци от естествени числа D при преудовлетворяване генерира в C всички списъци от редовете на кръстословиците, съставени от D.

Пожселиваме ви приятна и успешна работа!

вариант	ф. номер	група	поток	курс	специалност
E.II.2	> (-			
Име:	1				

Да няма лист, на който е писано по повече от една задача! За всеки дефиниран предикат да се попълни подходящият/те шаблон(и):

- 1. При параметри ..., предикатът ... разпознава дали ...
- 2. При параметри ..., предикатът ... генерира ... в ...
- 3. p(...) е истина тогава и само тогава, когато ... Следното условие е достатъчно, за да няма зацикляне с предиката: ...

Решения на задачи, в които това отсъства, ще бъдат оценявани с 0 точки.

Зад. 1. Казваме, че списък L е *премерен*, ако неговите елементи са наредени двойки от списък и естествено число.

Казваме, че премерен списък L е адитивен, ако за всеки три негови елемента (S_1,W_1) , (S_2,W_2) и (S_3,W_3) , за които S_1 и S_2 нямат общи елементи, а елементите на S_3 са точно тези, които са елементи на S_1 или на S_2 , е вярно равенството $W_1+W_2=W_3$. Да се дефинира на пролог предикат is additive (L), който проверява дали даден премерен списък L е адитивен.

Зад. 2. Магически квадрат е квадратна матрица, за която сумите на елементите във всеки ред, във всеки стълб, в главния и във вторичния диагонал са равни. За един магически квадрат M казваме, че е съставен от числата в даден списък от естествени числа L, ако всяко число се среща в L толкова пъти, колкото и в M.

Да се дефинира на пролог предикат gen_magic_square(L, S), който по даден списък от естествени числа L при преудовлетворяване генерира в S всички списъци от редовете на магическите квадрати, съставени от числата в L.

Пожелаваме ви приятна и успешна работа!