Phylodynamic Inference across Micro and Macroevolutionary Scales

Taming the BEAST: August 16th, 2023

Simon Fraser University

Viral Evolution

Phylodynamic Example

HCV in the Americas

-Joy et al. 2016

Did hospital glassware contribute to the spread of Hepatitis C Virus?

Phylodynamic Example

Cancer in Tasmanian Devils

Will facial tumors drive Tasmanian devils extinct?

Historical Phylodynamic Model Developments

A General Birth-Death-Sampling Model

Why develop a general model?

- I. Clarifies assumptions of and connections between existing models
- II. Allows us to explicitly fit an SIR epidemiological model
- III. Enables mathematical analysis of the general model class

Why develop a general model?

Formulate general model

- I. Clarifies assumptions of and connections between existing models
- II. Allows us to explicitly fit an SIR epidemiological model
- III. Enables mathematical analysis of the general model class

Viral Phylogenetic Reconstruction

Viral Phylogenetic Reconstruction

Viral Phylogenetic Reconstruction

Pathogen Centric: BDS Model

Six-Step Framework

Step 1: Specify the Model

time of origin T rates $\lambda(\tau), \mu(\tau), \psi(\tau)$ sampling ρ_i, r mass extinction ν_i conditioning \mathcal{S}

Model Parameters:

$$\Theta = \{\lambda, \mu, \psi, \rho, r, \nu, \mathcal{S}\}\$$

Six-Step Framework

Step 1: Specify the Model

Step 2: Derive IVP for $g_e(\tau)$

 $g_e(\tau)$ is the probability that an edge e alive at time τ gives rise to the observed phylogeny between τ and the present day.

$$\frac{dg_e}{d\tau} = \underbrace{-(\lambda + \mu + \psi)g_e(\tau)}_{\text{nothing happens}} + \underbrace{2\lambda g_e(\tau)E(\tau)}_{\text{birth}}$$

$$g_e(s_e) = \begin{cases} \lambda g_{e1}(s_e)g_{e2}(s_e) & \text{birth} \\ \psi & \text{sample} \end{cases}$$

Six-Step Framework

Step 1: Specify the Model

Step 2: Derive IVP for $g_e(\tau)$

Step 3: Derive IVP for $E(\tau)$

 $E(\tau)$ is the probability that a lineage alive at time τ leaves no sampled descendants between τ and the present day.

$$\frac{dE}{d\tau} = \underbrace{-(\lambda + \mu + \psi)E(\tau)}_{\text{nothing happens}} + \underbrace{\lambda E(\tau)^2}_{\text{birth}} + \underbrace{\mu}_{\text{death}}$$

$$E(0) = 1 - \rho_0$$

Six-Step Framework

Step 1: Specify the Model

Step 2: Derive IVP for $g_e(\tau)$

Step 3: Derive IVP for $E(\tau)$

Step 4: Obtain likelihood $(g_e(T))$

$$g_e(T) = \prod_{i} \lambda \times \rho_0^J \prod_{j} \psi \times \prod_{e} \Psi(s_e, t_e)$$
births sampling edges

Six-Step Framework

Step 1: Specify the Model

Step 2: Derive IVP for $g_e(\tau)$

Step 3: Derive IVP for $E(\tau)$

Step 4: Obtain likelihood $(g_e(T))$

Step 5: Alternative Representation

ODE for $g_e(\tau)$

$$\frac{dg_e(\tau)}{d\tau} = -(\lambda + \mu + \psi)g_e(\tau) + 2\lambda E(\tau)g_e(\tau)$$

Six-Step Framework

Step 1: Specify the Model

Step 2: Derive IVP for $g_e(\tau)$

Step 3: Derive IVP for $E(\tau)$

Step 4: Obtain likelihood $(g_e(T))$

Step 5: Alternative Representation

ODE for $g_e(\tau)$

$$\frac{dg_e(\tau)}{d\tau} = -(\lambda + \mu + \psi)g_e(\tau) + 2\lambda E(\tau)g_e(\tau)$$

General Solution: Probability flow

$$g_e(\tau) = \underbrace{g_e(s_e)}_{\text{initial}} \underbrace{exp \left[\int_{s_e}^{\tau} -(\lambda + \mu + \psi) + 2\lambda E(x) dx \right]}_{\text{Prob. flow } \Psi(s_e, \tau)}$$

Six-Step Framework

Step 1: Specify the Model

Step 2: Derive IVP for $g_e(\tau)$

Step 3: Derive IVP for $E(\tau)$

Step 4: Obtain likelihood $(g_e(T))$

Step 5: Alternative Representation

ODE for $g_e(\tau)$

$$\frac{dg_e(\tau)}{d\tau} = -(\lambda + \mu + \psi)g_e(\tau) + 2\lambda E(\tau)g_e(\tau)$$

General Solution: Probability flow

$$g_e(\tau) = \underbrace{g_e(s_e)}_{\text{initial}} \underbrace{exp \left[\int_{s_e}^{\tau} -(\lambda + \mu + \psi) + 2\lambda E(x) dx \right]}_{\text{Prob. flow } \Psi(s_e, \tau)}$$

Define Φ

$$\Psi(s_e, t_e) = \frac{\Phi(t_e)}{\Phi(s_e)}$$

Six-Step Framework

Step 1: Specify the Model

Step 2: Derive IVP for $g_e(\tau)$

Step 3: Derive IVP for $E(\tau)$

Step 4: Obtain likelihood $(g_e(T))$

Step 5: Alternative Representation

ODE for $g_e(\tau)$

$$\frac{dg_e(\tau)}{d\tau} = -(\lambda + \mu + \psi)g_e(\tau) + 2\lambda E(\tau)g_e(\tau)$$

General Solution: Probability flow

$$g_e(\tau) = \underbrace{g_e(s_e)}_{\text{initial}} \underbrace{exp\left[\int_{s_e}^{\tau} -(\lambda + \mu + \psi) + 2\lambda E(x) dx\right]}_{\text{Prob. flow } \Psi(s_e, \tau)}$$

Define Φ

$$\Psi(s_e, t_e) = \frac{\Phi(t_e)}{\Phi(s_e)}$$

Reparameterize

$$g_e(T) = \underbrace{\Phi(T)}_{\text{origin}} \times \underbrace{\prod_{i} \lambda \Phi(x_i)}_{\text{births}} \times \underbrace{\rho_0^J \prod_{j} \frac{\psi}{\Phi(y_j)}}_{\text{sampling}}$$

Six-Step Framework

Step 1: Specify the Model

Step 2: Derive IVP for $g_e(\tau)$

Step 3: Derive IVP for $E(\tau)$

Step 4: Obtain likelihood $(g_e(T))$

Step 5: Alternative Representation

Step 6: Condition the likelihood

$$\mathcal{L} = \underbrace{\mathcal{S}}_{\text{cond.}} \times \underbrace{\Phi(T)}_{\text{origin}} \times \underbrace{\prod_{i} \lambda \Phi(x_i)}_{\text{births}} \times \rho_0^J \underbrace{\prod_{j} \frac{\psi}{\Phi(y_j)}}_{\text{sampling}}$$

Why develop a general model?

- I. Clarifies assumptions of and connections between existing models
- II. Allows us to explicitly fit an SIR epidemiological model
- III. Enables mathematical analysis of the general model class

Model Connections

Assumptions:

rates

sampling

mass extinction

conditioning

A Note about conditioning

Existing Conditioning Regimes

Condition	Description	Examples
$S_0 = 1$	No conditioning	Eq.3(Stadler, 2010), Eq.1(Stadler et al., 2012) & Thrm. 2.6(Stadler, 2011)
${\cal S}_1=rac{\Phi(x_1)}{\Phi(T)}$	Likelihood given the $t_{ m MRCA}$ rather than on the time of origin.	
$\$_2 = rac{1}{1 - E(T)}$	At least one sampled descendent either at or before the present day (given T).	et al. (2011), Thrm.1Stadler and Bonhoeffer (2013)
$S_3 = \frac{\Phi(x_1)}{\Phi(T)(1 - E(x_1))^2}$	At least one sampled descendent at or before the present day given $ au_{MRCA} = x_1$	(Heath et al., 2014)
$\mathcal{S}_4 = rac{1}{1-\hat{E}(T)}$	At least one <i>extant</i> sampled lineage (given T).	Cor.3.7 (Stadler, 2010) & Thrm.2.7 (Stadler, 2011)
$S_5 = \frac{\Phi(x_1)}{\Phi(T)2(1-\hat{E}(x_1))(1-E(x_1))}$	At least one <i>extant</i> sampled lineage given $\tau_{\text{MRCA}} = x_1$	
$S_5' = \frac{\Phi(x_1)}{\Phi(T)(1-\hat{E}(x_1))^2}$	Both daughters of MRCA have at least one <i>extant</i> sampled lineage	Eq. 5 Stadler (2010)
$\mathcal{S}_6 = rac{1}{\hat{E}_{N_0}(T)}$	Exactly N_0 extant sampled lineages (given T).	Eq.2Stadler (2009), Eq.4(Stadler, 2010) &Cor.3.6 Stadler (2010)
$\delta_7 = \frac{\Phi(x_1)}{\Phi(t_{\text{or}})} \left(\sum_{i=1}^{N_0 - 1} \hat{E}_i(x_1) \hat{E}_{N_0 - i}(x_1) \right)^{-1}$	Exactly N_0 extant sampled lineages given t_{MRCA} .	Eq.6 Stadler (2010)
$S_8 = constant$	Multiply by a constant	Stadler (2009) & Gavryushkina et al. (2014) a & Heath et al. (2014)

There does not exist a natural conditioning for $\geq n_{\min}$ lineages

Historical Developments Revisited

Historical Developments Revisited

Historical Developments Revisited

Historical Developments Revisited

Aim: Develop a general birth-death sampling model that allows rates to vary through time.

Why develop a general model?

- I. Clarifies assumptions of and connections between existing models
- II. Allows us to explicitly fit an SIR epidemiological model
- III. Enables mathematical analysis of the general model class

The SIR Model Revisited

Aim: Develop a general birth-death sampling model that allows rates to vary through time.

Why develop a general model?

- I. Clarifies assumptions of and connections between existing models
- II. Allows us to explicitly fit an SIR epidemiological model
- III. Enables mathematical analysis of the general model class

Parameter Identifiability

Parameter Identifiability in Macroevolution

Original Likelihood:

$$\mathcal{L}\left(\mathcal{T}|\lambda,\mu\right)$$

Reparameterization:

$$\mathcal{L}(\mathcal{T}| ilde{oldsymbol{\lambda}})$$

Time

Macroevolutionary Congruence Class:

Models $\{\lambda(\tau), \mu(\tau)\}$ that have identical likelihoods and hence are indistinguishable given the data.

The Epidemiological Congruence Classes

Original Likelihood:

Reparameterization:

$$\mathcal{L}(\mathcal{T}|\tilde{\lambda}, \tilde{\psi})$$

$$\tilde{\lambda}(t) = \lambda(t)(1 - E(t))$$

$$\tilde{\psi}(t) = \frac{\lambda(t)}{(1 - E(t))}$$

Louca, McLaughlin, MacPherson, Joy, and Pennell (Molecular Biology and Evolution)

Impacts on Inference 1: The effective reproductive number

True DynamicsCongruence Class

Impacts on Inference 1: The effective reproductive number

Effective Reproductive Number $R_e(t)$: The rate of disease spread at time t

Impacts on Inference 3: HIV in Alberta Canada

563 HIV Sequences
Bayesian birth-death skyline (in BEAST)
Constrains functions to be piecewise constant

Inferred Dynamics 12 10 8 6 4 2 0 Time

Impacts on Inference 3: HIV in Alberta Canada

563 HIV Sequences
Bayesian birth-death skyline (in BEAST)
Constrains functions to be piecewise constant

Louca, McLaughlin, MacPherson, Joy, and Pennell (Molecular Biology and Evolution)

Aim: Develop a general birth-death sampling model that allows rates to vary through time. General model derivation with 6-step framework

Why develop a general model?

- I. Clarifies assumptions of and connections between existing models General model identifies for key model assumptions
- II. Allows us to explicitly fit an SIR epidemiological model General model provides straightforward parameterization of the general model
- III. Enables mathematical analysis of the general model class Phylodynamic inference is in general limited by parameter identifiability

Ways forward

Ways Forward

- I. Smoothing
- II. Very strict priors
- III. Concerted Sampling Attempts
- IV. Mechanistic models

Ways Forward

- I. Smoothing
- II. Very strict priors
- III. Concerted Sampling Attempts
- IV. Mechanistic models

What if we constrain the rates to be 'reasonable'?

The subset with a plausible mechanism.

Epidemiological Mechanism

Diversification Model Likelihood

Epidemiological Mechanism

Epidemic with Sampling

Deterministic Dynamics

Posterior Estimation

Diversification Model Likelihood

Future Directions: Fitting complex epidemiological models

-adapted from Day et al. 2020

Conclusions

I. We derived a general phylodynamic model

II. We characterized parameter (un)-identfiability

III. Can epidemiological mechanism resolve unidentifiability?

-adapted from Day et al. 2020

Many Thanks To:

Coauthors: Matt Pennell (USC), Angela Mclaughlin and Jeff Joy (UBC), Stilian Louca (UofO)

Funding: Univ. of Toronto, NSERC, CRC