北京大学数学科学学院期中试题

2010 - 2011 学年第二学期

考试科目:	数学分析	考试时间:		2011	年	04	月	21	日
姓 名:		_ 学	号:						
本试题共 _		100	分						

1. $(20\ \mathcal{H})$ 设 f(x) 是 [a,b] 上的有界函数,证明: $f(x)\in R[a,b]$ 的充分必要条件是 $f^+(x), f^-(x)\in R[a,b]$, 其中

$$f^{\pm}(x) = \max_{x \in [a,b]} \{ \pm f(x), 0 \}.$$

2. (20 分) 设 $P_n(x)$ $(n \ge 1)$ 是 n 次多项式,则对任何闭区间 [a,b] 有

$$\int_{a}^{b} |P'_{n}(x)| dx \le 2n \max_{x \in [a,b]} \{|P_{n}(x)|\}.$$

- 3. (15 分) 讨论广义积分 $\int_0^{+\infty} \ln(1+\frac{\sin x}{x}) dx$ 的敛散性.
- 4. (15 分) 讨论无穷级数 $\sum_{n=1}^{+\infty} \frac{\sin n \sin n^2}{n}$ 的敛散性.
- 5. (10 分) 计算定积分 $\int_0^\pi \left(\int_0^x \frac{\sin t}{\pi t} dt \right) dx$ 的值。
- 6. (10 分) 设数列 $\{a_n\}_{n=1}^{+\infty}$ 严格单调下降趋于零, $R_n = a_n a_{n+1} + a_{n+2} \cdots$ 证明:对任意自然数 p, 级数 $\sum_{n=1}^{+\infty} R_n^p$ 与级数 $\sum_{n=1}^{+\infty} a_n^p$ 有完全相同的敛散性.
- 7. (5 分) 计算:

$$\tan(\frac{1}{3}\sum_{n=1}^{\infty}\arctan\frac{2}{n^2}).$$

- 8. (5 分) 设 f(x) 是定义在 [0,1] 上非负连续可微函数,在 [0,1] 上的弧长刚好等于 f(1). 证明下面的等周问题:
 - (i) $\sqrt{1 + f'^2(x)} \sqrt{1 x^2} \ge xf'(x)$.
 - (ii) $\int_0^1 f(x)dx \ge \frac{\pi}{4}$
 - (iii) 当且仅当曲线 y = f(x) 是圆周 $x^2 + (y \frac{\pi}{2})^2 = 1$ 的第一象限内的下半四分之一圆周时,(ii)中的等号成立.