

HALF-BRIDGE DRIVER

Features

- Floating channel designed for bootstrap operation
- Fully operational to +600 V
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout for both channels
- 3.3 V and 5 V input logic compatible
- Matched propagation delay for both channels
- Logic and power ground +/- 5 V offset
- Lower di/dt gate driver for better noise immunity
- Output source/sink current capability 1.4 A/1.8 A
- RoHS compliant

14-Lead PDIP IRS21844 14-Lead SOIC IRS21844S 8-Lead SOIC IRS21844S

Description

The IRS2184/IRS21844 are high voltage, high speed power MOSFET and IGBT drivers with dependent high- and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse cur-

Feature Comparison

Packages

Part	Input logic	Cross- conduction prevention logic	Deadtime (ns)	Ground Pins	t _{on} /t _{off} (ns)
2181	HIN/LIN	no	none	COM	180/220
21814	T III V/LII V	110	Hone	Vss/COM	100/220
2183	HIN/LIN	VOC	Internal 400	COM	180/220
21834	HIIN/LIIN	yes	Program 400-5000	Vss/COM	100/220
2184	IN/SD	ves	Internal 400	COM	680/270
21844	114/30	yes	Program 400-5000	Vss/COM	000/270

8-Lead PDIP

rent buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
V _B	High-side floating absolute voltage	-0.3	620 (Note 1)		
Vs	High-side floating supply offset voltage		V _B - 20	V _B + 0.3	
V _{HO}	High-side floating output voltage		V _S - 0.3	V _B + 0.3	
V _{CC}	Low-side and logic fixed supply voltage		-0.3	20 (Note 1)	M
V _{LO}	Low-side output voltage		-0.3	V _{CC} + 0.3	V
DT	Programmable dead-time pin voltage (IRS:	21844 only)	V _{SS} - 0.3	V _{CC} + 0.3	
V _{IN}	Logic input voltage (IN & SD)		V _{SS} - 0.3	V _{CC} + 0.3	
V _{SS}	Logic ground (IRS21844 only)	V _{CC} - 20	V _{CC} + 0.3		
dVs/dt	Allowable offset supply voltage transient		_	50	V/ns
		(8-lead PDIP)	_	1.0	
_{D-}	Package power dissipation @ T _A ≤ +25 °C	(8-lead SOIC)	_	0.625	
P _D	Fackage power dissipation @ 1 A ≤ +25 C	(14-lead PDIP)	_	1.6	W
		(14-lead SOIC)	_	1.0	
		(8-lead PDIP)	_	125	
Dth L	Thermal registeres innetion to embient	(8-lead SOIC)	_	200	
RthJ _A	Thermal resistance, junction to ambient	(14-lead PDIP)	_	75	°C/W
	(14-lead SOIC)		_	120	•
TJ	Junction temperature		_	150	
T _S	Storage temperature		-50	150	°C
TL	Lead temperature (soldering, 10 seconds)		_	300	

Note 1: All supplies are fully tested at 25 V and an internal 20 V clamp exists for each supply.

Recommended Operating Conditions

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_S and V_{SS} offset rating are tested with all supplies biased at a 15 V differential.

Symbol	Definition	Min.	Max.	Units
V _B	High-side floating supply absolute voltage	V _S + 10	V _S + 20	
Vs	High-side floating supply offset voltage	COM -8 (Note 2)	600	
V _{St}	Transient high-side floating supply offset voltage	-50 (Note 3)	600	
VHO	High-side floating output voltage	Vs	V _B	
V _{CC}	Low-side and logic fixed supply voltage	10	20	V
V _{LO}	Low-side output voltage	0	V _{CC}	
V _{IN}	Logic input voltage (IN & SD)	V _{SS}	V _{CC}	
DT	Programmable deadtime pin voltage (IRS21844 only)	V _{SS}	Vcc	
V _{SS}	Logic ground (IRS21844 only)	-5	5	
TA	Ambient temperature	-40	125	°C

Note 2: Logic operational for V_S of -5 V to +600 V. Logic state held for V_S of -5 V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Note 3: Operational for transient negative VS of COM - 50 V with a 50 ns pulse width. Guaranteed by design. Refer to the Application Information section of this datasheet for more details.

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 15 V, V_{SS} = COM, C_L = 1000 pF, T_A = 25° C, DT = V_{SS} unless otherwise specified.

Symbol	Definition		Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	_	680	900		V _S = 0 V
toff	Turn-off propagation delay	_	270	400		V _S = 0 V or 600 V
t _{sd}	Shut-down propagation delay	_	180	270		
MTon	Delay matching, HS & LS turn-on		0	90	ns	
MToff	Delay matching, HS & LS turn-off		0	40		
t _r	Turn-on rise time		40	60		V 0 V
tf	Turn-off fall time	_	20	35		V _S = 0 V
DT	Deadtime: LO turn-off to HO turn-on(DTLO-HO) &	280	400	520		R _{DT} = 0 Ω
01	HO turn-off to LO turn-on (DTHO-LO)	4	5	6	μS	R_{DT} = 200 k Ω
MDT	Deadtime matching = DTLO - HO - DTHO-LO	_	0	50	ns	R _{DT} =0 Ω
וטואו		_	0	600		R _{DT} = 200 kΩ

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V, V_{SS} = COM, DT= V_{SS} and T_A = 25 °C unless otherwise specified. The V_{IL} , V_{IH} , and I_{IN} parameters are referenced to V_{SS} /COM and are applicable to the respective input leads: IN and \overline{SD} . The V_O , I_O , and R_{OD} parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
VIH	Logic "1" input voltage for HO & logic "0" for LO	2.5	_	_		
V _{IL}	Logic "0" input voltage for HO & logic "1" for LO	_	_	0.8		V _{CC} = 10 V to 20 V
V _{SD,TH+}	SD input positive going threshold	2.5	_	_	V	
V _{SD,TH} -	SD input negative going threshold	_	_	0.8	V	
V _{OH}	High level output voltage, V _{BIAS} - V _O	_	_	1.4		I _O = 0 A
V _{OL}	Low level output voltage, VO	_	_	0.2		I _O = 20 mA
I _{LK}	Offset supply leakage current	_	_	50		V _B = V _S = 600 V
I _{QBS}	Quiescent V _{BS} supply current	20	60	150	μA	.,
lacc	Quiescent V _{CC} supply current	0.4	1.0	1.6	mA	V _{IN} = 0 V or 5 V
I _{IN+}	Logic "1" input bias current	_	25	60		IN = 5 V, SD = 0 V
I _{IN-}	Logic "0" input bias current	_	_	5.0	μA	IN = 0 V, SD = 5 V
V _{CCUV+} V _{BSUV+}	V_{CC} and V_{BS} supply undervoltage positive going threshold	8.0	8.9	9.8		
V _{CCUV} -	V_{CC} and V_{BS} supply undervoltage negative going threshold	7.4	8.2	9.0	V	
Vccuvh	Hysteresis	0.3	0.7	_	V	
V _{BSUVH}	Tyotorodo	0.0	0.7			
I _{O+}	Output high short circuit pulsed current	1.4	1.9	_		$V_O = 0 V$, PW $\leq 10 \mu s$
10-	Output low short circuit pulsed current	1.8	2.3	_	А	V _O = 15 V, PW ≤ 10 μs

IRS2184/IRS21844(S)PbF

Functional Block Diagrams

<u>www.irf.com</u> 5

Lead Definitions

Symbol	Description
IN	Logic input for high-side and low-side gate driver outputs (HO and LO), in phase with HO
IIN	(referenced to COM for IRS2184 and VSS for IRS21844)
SD	Logic input for shutdown (referenced to COM for IRS2184 and VSS for IRS21844)
DT	Programmable deadtime lead, referenced to VSS. (IRS21844 only)
VSS	Logic ground (IRS21844 only)
V _B	High-side floating supply
НО	High-side gate drive output
Vs	High-side floating supply return
V _C C	Low-side and logic fixed supply
LO	Low-side gate drive output
COM	Low-side return

Lead Assignments

<u>www.irf.com</u> 6

Figure 1. Input/Output Timing Diagram

Figure 3. Shutdown Waveform Definitions

Figure 2. Switching Time Waveform Definitions

Figure 4. Deadtime Waveform Definitions

Figure 5. Delay Matching Waveform Definitions

Tolerant to Negative V_S Transients

A common problem in today's high-power switching converters is the transient response of the switch node's voltage as the power switches transition on and off quickly while carrying a large current. A typical half bridge circuit is shown in Figure 6; here we define the power switches and diodes of the inverter.

If the high-side switch (e.g., Q1 in Figures 7 and 8) switches off, while the phase current is flowing to a load, a current commutation occurs from high-side switch (Q1) to the diode (D2) in parallel with the low-side switch of the same inverter leg. At the same instance, the voltage node V_{S1}, swings from the positive DC bus voltage to the negative DC bus voltage.

Figure 6: Half Bridge Circuit

Figure 8: D2 conducting

Also when the phase current flows from the load back to the inverter (see Figures 9 and 10), and Q4 switches on, the current commutation occurs from D3 to Q4. At the same instance, the voltage node, V_{S2} , swings from the positive DC bus voltage to the negative DC bus voltage.

<u>www.irf.com</u>

IRS2184/IRS21844(S)PbF

The circuit shown in Figure 11 depicts a half bridge circuit with parasitic elements shown; Figures 12 and 13 show a simplified illustration of the commutation of the current between Q1 and D2. The parasitic inductances in the power circuit from the die bonding to the PCB tracks are lumped together in L_C and L_E for each switch. When the high-side switch is on, V_{S1} is below the DC+ voltage by the voltage drops associated with the power switch and the parasitic elements of the circuit. When the high-side power switch turns off, the load current can momentarily flow in the low-side freewheeling diode due to the inductive load connected to V_{S1} , for instance (the load is not shown in these figures). This current flows from the DC- bus (which is connected to the COM pin of the HVIC) to the load and a negative voltage between V_{S1} and the DC- Bus is induced (i.e., the COM pin of the HVIC is at a higher potential than the V_S pin).

Figure 9: Parasitic Elements

Figure 10: V_s positive

Figure 11: V_s negative

In a typical power circuit, dV/dt is typically designed to be in the range of 1-5 V/ns. The negative V_S transient voltage can exceed this range during some events such as short circuit and over-current shutdown, when di/dt is greater than in normal operation.

International Rectifier's HVICs have been designed for the robustness required in many of today's demanding applications. An indication of the IRS2184(4)'s robustness can be seen in Figure 14, where there is represented the IRS2184(4) Safe Operating Area at V_{BS}=15V based on repetitive negative Vs spikes. A negative Vs transient voltage falling in the grey area (outside SOA) may lead to IC permanent damage; viceversa unwanted functional anomalies or permanent damage to the IC do not appear if negative Vs transients fall inside SOA.

Figure 12: Negative V_S transient SOA for IRS2184 @ VBS=15V

Even though the IRS2184(4) has been shown able to handle these large negative V_S transient conditions, it is highly recommended that the circuit designer always limit the negative V_S transients as much as possible by careful PCB layout and component use.

IRS2184/IRS21844(S)PbF

Figure 13A. Turn-On Propagation Delay Time vs. Temperature

Figure 14A. Turn-Off Propagation Delay Time vs. Temperature

Figure 13B. Turn-On Propagation Delay Time vs. Supply Voltage

Figure 14B. Turn-Off Propagation Delay Time vs. Supply Voltage

Figure 15A. SD Propagation Delay vs. Temperature

Figure 15B. SD Propagation Delay vs. Supply Voltage

Figure 16A. Turn on Rise Time vs. Temperature

Figure 16B. Turn on Rise Time vs. Supply Voltage

IRS2184/IRS21844(S)PbF

Figure 17A. Turn-Off Fall Time vs. Temperature

Figure 17B. Turn-Off Fall Time vs. Supply Voltage

Figure 18A. Deadtime vs. Temperature

Figure 18B. Deadtime vs. Supply Voltage

IRS2184/IRS21844(S)PbF

Figure 18C. Deadtime vs. $R_{\rm DT}$

Figure 19A. Logic "1" Input Voltage vs. Temperature

Figure 19B. Logic "1" Input Voltage vs. Supply Voltage

Figure 20A. Logic "0" Input Voltage vs. Temperature

Figure 20B. Logic "0" Input Voltage vs. Supply Voltage

Figure 21A. SD Input Positive Going Threshold (+) vs. Temperature

Figure 21B. SD Input Positive Going Threshold (+) vs. Supply Voltage

Figure 22A. SD Input Negative Going Threshold vs. Temperature

IRS2184/IRS21844(S)PbF

Figure 22B. SD Input Negative Going Threshold vs. Supply Voltage

Figure 23A. High Level Output Voltage vs. Temperature (I_O = 0 mA)

Figure 23B. High Level Output Voltage vs. Supply Voltage (I_O = 0 mA)

Figure 24A. Low Level Output vs. Temperature

IRS2184/IRS21844(S)PbF

Figure 24B. Low Level Output vs. Supply Voltage

Figure 25A. Offset Supply Leakage Current vs. Temperature

Figure 25B. Offset Supply Leakage Current vs. $V_{\rm B}$ Boost Voltage

Figure 26A. V_{BS} Supply Current vs. Temperature

IRS2184/IRS21844(S)PbF

Figure 26B. V_{BS} Supply Current vs. V_{BS} Supply Voltage

Figure 27B. V_{CC} Supply Current vs. V_{CC} Supply Voltage

Figure 27A. V_{CC} Supply Current vs. Temperature

Figure 28A. Logic "1" Input Bias Current vs. Temperature

IRS2184/IRS21844(S)PbF

Figure 28B. Logic "1" Input Bias Current vs. Supply Voltage

Figure 29B. Logic "0" Input Bias Current vs. Supply Voltage

Figure 29A. Logic "0" Input Bias Current vs. Temperature

Figure 30. $\rm V_{CC}$ and $\rm V_{BS}$ Undervoltage Threshold (+) vs. Temperature

5 Output Source Current (A) 4 3 2 Mi n. 0 -50 -25 0 25 50 75 125 100 Temperature (°C)

Figure 31. V_{CC} and V_{BS} Undervoltage Threshold (-) vs. Temperature

Figure 32A. Output Source Current vs. Temperature

Figure 32B. Output Source Current vs. Supply Voltage

Figure 33A. Output Sink Current vs. Temperature

www.irf.com 20

5.0

IRS2184/IRS21844(S)PbF

Figure 33B. Output Sink Current vs. Supply Voltage

Figure 35. IRS2184 vs. Frequency (IRFBC30), $\rm R_{gate}$ = 22 $\Omega,~\rm V_{cc}$ = 15V

Figure 34. IRS2184 vs. Frequency (IRFBC20), $\rm R_{gate}$ = 33 $\Omega,~V_{cc}$ = 15V

Figure 36. IRS2184 vs. Frequency (IRFBC40), $\rm R_{gate}$ = 15 $\Omega,~V_{cc}$ = 15V

IRS2184/IRS21844(S)PbF

Figure 37. IRS2184 vs. Frequency (IRFBC50), $\rm R_{gate}$ = 10 $\Omega,~V_{cc}$ = 15V

Figure 38. IRS21844 vs. Frequency (IRFBC20), R_{gate} = 33 $\Omega,\ V_{cc}$ = 15V

Figure 39. IRS21844 vs. Frequency (IRFBC30), $R_{gate} = 22\Omega, \ V_{cc} = 15V$

Figure 40. IRS21844 vs. Frequency (IRFBC40), $\rm R_{gate}$ = 15 $\Omega,~\rm V_{cc}$ = 15 V

IRS2184/IRS21844(S)PbF

Figure 41. IRS21844 vs. Frequency (IRFBC50), $\rm R_{gate}$ = 10 $\Omega,~V_{cc}$ = 15 V

Figure 42. IRS2184s vs. Frequency (IRFBC20), R_{gate} = 33 $\Omega,\ V_{cc}$ = 15V

Figure 43. IRS2184s vs. Frequency (IRFBC30), $R_{gate} = 22\Omega, \ V_{cc} = 15V$

Figure 44. IRS2184s vs. Frequency (IRFBC40), $\rm R_{gate}$ = 15 $\Omega,~\rm V_{cc}$ = 15 V

IRS2184/IRS21844(S)PbF

Figure 45. IRS2184s vs. Frequency (IRFBC50), $R_{gate} = 10\Omega, \ V_{cc} = 15V$

Figure 46. IRS21844s vs. Frequency (IRFBC20), R_{gate} = 33 $\Omega,\ V_{cc}$ = 15V

Figure 47. IRS21844s vs. Frequency (IRFBC30), R_{gate} = 22 $\Omega,\ V_{cc}$ = 15V

Figure 48. IRS21844s vs. Frequency (IRFBC40), R_{gate} = 15 $\Omega,\ V_{cc}$ = 15V

Figure 49. IRS21844s vs. Frequency (IRFBC50), $\rm R_{gate}$ = 10 $\Omega,~\rm V_{cc}$ = 15 $\rm V$

Cast Outlines

IRS2184/IRS21844(S)PbF

IRS2184/IRS21844(S)PbF

Tape & Reel 8-lead SOIC

CARRIER TAPE DIMENSION FOR 8SOICN

	Metric		Im p	erial
Code	Min	Max	Min	Max
Α	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	11.70	12.30	0.46	0.484
D	5.45	5.55	0.214	0.218
E	6.30	6.50	0.248	0.255
F	5.10	5.30	0.200	0.208
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062

REEL DIMENSIONS FOR 8SOICN

REEL BIMENOTONOTOR GOOTON						
	Metric		lm p erial			
Code	Min	Max	Min	Max		
Α	329.60	330.25	12.976	13.001		
A B	20.95	21.45	0.824	0.844		
С	12.80	13.20	0.503	0.519		
C D E F G H	1.95	2.45	0.767	0.096		
E	98.00	102.00	3.858	4.015		
F	n/a	18.40	n/a	0.724		
G	14.50	17.10	0.570	0.673		
H	12.40	14.40	0.488	0.566		

IRS2184/IRS21844(S)PbF

Tape & Reel 14-lead SOIC

CARRIER TAPE DIMENSION FOR 14SOICN

	M etric		Im p erial	
Code	Min	Max	Min	Max
Α	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	15.70	16.30	0.618	0.641
D	7.40	7.60	0.291	0.299
E	6.40	6.60	0.252	0.260
F	9.40	9.60	0.370	0.378
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062

REEL DIMENSIONS FOR 14SOICN

	M etric		lm p erial	
Code	Min	Max	Min	Max
A	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	22.40	n/a	0.881
G	18.50	21.10	0.728	0.830
H	16.40	18.40	0.645	0.724

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

8-Lead PDIP IRS2184PbF 8-Lead SOIC IRS2184SPbF 8-Lead SOIC Tape & Reel IRS2184STRPbF 14-Lead PDIP IR2S1844PbF 14-Lead SOIC IRS21844SPbF 14-Lead SOIC Tape & Reel IRS21844STRPbF

International

TOR Rectifier

SOIC8 &14 are MSL2 qualified.

This product has been designed and qualified for the industrial level.

Qualification standards can be found at www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 12/1/2006