Amendments to the Claims

1. (Currently Amended) A compound of Formula (WHH)

wherein

R¹ is H, C₁₋₆alkyl, C₁₋₆haloalkyl, C₁₋₆alkoxy, C₁₋₆thioalkyl, cyano, halo,
C₃₋₇cycloalkyl, -C₁₋₆alkylene-C₃₋₇cycloalkyl, C₂₋₆alkenyl or C₃₋₆alkynyl;

R⁸ is O-C₁₋₄alkyl, -N(CH₃)(OCH₃) or other suitable leaving group;

X is C;

Y is C:

 X^1 is N:

Y1 is N;

Y2 is CH2:

J is CH2 or a bond;

Z1 is CH2 or C(O); and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substitutents substituents selected from the group consisting of C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₆thioalkyl, C₁₋₄haloalkyl, halogen, N(C₁-C₄alkyl)₂ and CN.

2. (Currently Amended) A process for preparing a compound of Formula (WHH)

$$0 = \begin{bmatrix} R^{8} & Y^{2} - J \\ Y^{1} & Z^{1} \\ X & X^{1} \end{bmatrix}$$
 (WHIH)

wherein

R¹ is H, C₁₋₆alkyl, C₁₋₆haloalkyl, C₁₋₆alkoxy, C₁₋₆thioalkyl, cyano, halo,
C₃₋₇cycloalkyl, -C₁₋₆alkylene-C₃₋₇cycloalkyl, C₂₋₆alkenyl or C₃₋₆alkynyl;

R⁸ is O-C₁₋₄alkyl, -N(CH₃)(OCH₃) or other suitable leaving group;

X is C;

Y is C;

 X^1 is N;

Y¹ is N:

Y² is CH₂;

J is CH2 or a bond;

 Z^1 is CH_2 or C(O); and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substitutents substitutents selected from the group consisting of C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₆thioalkyl, C₁₋₄haloalkyl, halogen, N(C₁-C₄alkyl)₂ and CN;

comprising reacting a compound of Formula (UFF)

$$HZ$$
 Z^1 Y^2 R_r (UFF)

wherein

 Z, Z^1 , J and Y^2 are defined as for Formula (WHH);

with a compound of Formula (UFF')

wherein

R1, R8, X, Y, X1 and Y1 are defined as for Formula (WHH);

in the presence of a suitable base and polar aprotic solvent to yield a compound of Formula (VGG)

$$Z^{1}$$
 Z^{1} Z^{1

wherein

 R^1 , R^8 , X, Y, X^1 , Y^1 , Y^2 , Y, Z^1 and Z are defined as for Formula (WHH),

and reacting said compound of Formula (VGG) with a high-boiling point polar aprotic solvent and a suitable silver salt under suitably high temperature.

3. (Currently Amended) A compound of Formula (Z')

$$0 = \begin{cases} R^8 \\ Y^2 \\ Z^1 \end{cases}$$

$$Z = (Z')$$

wherein

 $R^1 \text{ is H, C}_{1\text{-6}alkyl}, C_{1\text{-6}alkoxy}, C_{1\text{-6}alkoxy}, C_{1\text{-6}thioalkyl}, \text{cyano, halo,} \\ C_{3\text{-7}cycloalkyl}, -C_{1\text{-6}alkylene-}C_{3\text{-7}cycloalkyl}, C_{2\text{-6}alkenyl} \text{ or } C_{3\text{-6}alkynyl};$

 R^8 is O-C₁₋₄alkyl, -N(CH₃)(OCH₃) or other suitable leaving group;

X is C;

Y is C;

 X^1 is N;

Y1 is N:

Y² is CH or CR⁵;

R⁵ is selected from the group consisting of -CN, -C₁₋₄alk(en)ylene-CN, halo, C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆alkynyl, C₁₋₆haloalkyl, aryl, -C₁₋₄. alk(en)ylene-aryl, -C₁₋₄alk(en)ylene-heterocyclo, heterocyclo, -C₁₋₄alk(en)ylene- amino, -C₁₋₄alkylene-amino-C₁₋₄alkyl, arylamino, -amino-(C₁₋₆alk(en)yl)₁₋₂, -amino-aryl, -amino-heterocyclo, C₁₋₆alkoxy, -O-aryl and -O-heterocyclo;

 Z^1 is C(O); and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substitutents substituents selected from the group consisting of C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₆thioalkyl, C₁₋₄haloalkyl, halogen, N(C₁-C₄alkyl)₂ and CN.

4. (Currently Amended) A process for preparing a compound of Formula (Z')

$$0 = \begin{bmatrix} R^{R} & Y^{2} & Z^{1} \\ Y^{1} & Z & (Z') \end{bmatrix}$$

wherein

 R^1 is H, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy, C_{1-6} thioalkyl, cyano, halo, $C_{3-7} cycloalkyl, -C_{1-6} alkylene-C_{3-7} cycloalkyl, C_{2-6} alkenyl or C_{3-6} alkynyl;$

R⁸ is O-C₁₋₄alkyl, -N(CH₃)(OCH₃) or other-suitable leaving group;

X is C;

Y is C;

 X^1 is N:

Y1 is N;

Y² is CH or CR⁵;

R⁵ is selected from the group consisting of -CN, -C₁₋₄alk(en)ylene-CN, halo, C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆alkynyl, C₁₋₆haloalkyl, aryl, -C₁₋₄alk(en)ylene-aryl, -C₁₋₄alk(en)ylene-heterocyclo, heterocyclo, -C₁₋₄alk(en)ylene- amino, -C₁₋₄alkylene-amino-C₁₋₄alkyl, arylamino, -amino-(C₁₋₆alk(en)yl)₁₋₂, -amino-aryl, -amino-heterocyclo, C₁₋₆alkoxy, -O-aryl and -O-heterocyclo;

 Z^1 is C(O); and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substitutents substituents selected from the group consisting of C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₆thioalkyl, C₁₋₄haloalkyl, halogen, N(C₁-C₄alkyl)₂ and CN;

comprising reacting a compound of Formula (X')

$$HZ$$
 Y^2 (X')

wherein

Z, Z^1 and Y^2 are defined as for Formula (Z^2);

with a compound of Formula (UFF')

wherein

R¹, R⁸, X, Y, X¹ and Y¹ are defined as for Formula (Z');

in the presence of a suitable base and polar aprotic solvent to yield a compound of Formula

$$Q^{R^8}$$
 Y^2
 ZH
 Y^2
 ZH
 Y^1
 Y^2
 Y^2
 Y^1
 Y^2
 $Y^$

wherein

$$R^1$$
, R^8 , X , Y , X^1 , Y^1 , Y^2 , Z^1 and Z are defined as for Formula (Z^1);

and reacting said compound of Formula (Y') with a high-boiling point polar aprotic solvent and a suitable silver salt under suitably high temperature.

5. (Currently Amended) A compound of Formula (AA')

$$0 = \begin{bmatrix} R^8 & V^2 \\ Y^1 & Z^1 \\ X & X^1 \end{bmatrix}$$
 (AA')

wherein

R¹ is H, C₁₋₆alkyl, C₁₋₆haloalkyl, C₁₋₆alkoxy, C₁₋₆thioalkyl, cyano, halo,

C₃₋₇cycloalkyl, -C₁₋₆alkylene-C₃₋₇cycloalkyl, C₂₋₆alkenyl or C₃₋₆alkynyl;

R⁸ is O-C₁₋₄alkyl, -N(CH₃)(OCH₃) er-other-suitable leaving group;

X is C;

Y is C;

X1 is N:

Y1 is N;

Y² is CH or CR⁵;

R⁵ is selected from the group consisting of -CN, -C₁₋₄alk(en)ylene-CN, halo, C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆alkynyl, C₁₋₆haloalkyl, aryl, -C₁₋₄.

alk(en)ylene-aryl, -C₁₋₄alk(en)ylene-heterocyclo, heterocyclo, -C₁₋₄alk(en)ylene- amino, -C₁₋₄alkylene-amino-C₁₋₄alkyl, arylamino, -amino-(C₁₋₆alk(en)yl)₁₋₂, -amino-aryl, -amino-heterocyclo, C₁₋₆alkoxy, -O-aryl and -O-heterocyclo;

 Z^1 is CR^7 ;

wherein R⁷ is chloro or bromo; and

- Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substituents selected from the group consisting of C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₆thioalkyl, C₁₋₄haloalkyl, halogen, N(C₁-C₄alkyl)₂ and CN.
- 6. (Currently Amended) A process for preparing a compound of Formula (AA')

$$0 = \begin{bmatrix} R^8 & Y^2 & Z^1 \\ Y & Y & Z \end{bmatrix}$$

$$R^1 = X - X^1$$
(AA')

wherein

R¹ is H, C₁₋₆alkyl, C₁₋₆haloalkyl, C₁₋₆alkoxy, C₁₋₆thioalkyl, cyano, halo, C₃₋₇cycloalkyl, -C₁₋₆alkylene-C₃₋₇cycloalkyl, C₂₋₆alkenyl or C₃₋₆alkynyl;

R⁸ is O-C₁₋₄alkyl, -N(CH₃)(OCH₃) or other suitable leaving group;

X is C;

Y is C:

 X^1 is N:

Y1 is N:

Y² is CH or CR⁵;

R⁵ is selected from the group consisting of -CN, -C₁₋₄alk(en)ylene-CN, halo, C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆alkynyl, C₁₋₆haloalkyl, aryl, -C₁₋₄alk(en)ylene-aryl, -C₁₋₄alk(en)ylene-heterocyclo, heterocyclo,

-C₁₋₄alk(en)ylene- amino, -C₁₋₄alkylene-amino-C₁₋₄alkyl, arylamino, -amino-(C₁₋₆alk(en)yl)₁₋₂, -amino-aryl, -amino-heterocyclo, C₁₋₆alkoxy, -O-aryl and -O-heterocyclo;

 Z^1 is CR^7 ;

wherein R7 is chloro or bromo; and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substitutents substituents selected from the group consisting of C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₆thioalkyl, C₁₋₄haloalkyl, halogen, N(C₁-C₄alkyl)₂ and CN;

comprising reacting a compound of Formula (Z')

wherein

$$R^1$$
, R^8 , X , Y , X^1 , Y^2 , and Z are defined as for Formula (AA'); and Z^1 is $C(O)$;

with phosphoryl trichloride or phosphoryl tribromide, neat or with a suitable solvent and without a base or with a suitable base.