Modbus-Adresse	.01)	Read holding registers (0x03) Write single coil (0x05)	single register (0x06)	Write multiple registers (0x10) M 000	B Registerliste für Geräte mit KE-Firmware ab V2.29 ENU des Gerätes im Punkt INFO HW, SW abgelesen werden) Bezeichnung	Zugriff	Datentyp	Datenlänge in Bytes	Anzahl Register	. V2.11 (mit GPIB)	Beispiel	Profibus slot / Profinet subslot	Profibus/Profinet Index im Slot	EtherCAT SDO/PDO?
0 1 21 41 61 81 101 121 123		x x x x x x x x x x x x x x x x x x x			Geräteklasse Geräteklyp Hersteller Hersteller Strasse Hersteller PLZ Hersteller PLZ Hersteller Velsein Gerätenennspannung Gerätenennspannung Gerätenennspannung	R R R R R R	strin strin strin floa	g 40 g 40 g 40 g 40 g 40 g 40 g 40 at 4	20 20 20 20 20 20 20 20 20 20 20	Fließkommazahl nach IEEE754	20, 32, 34, 36 = ELRY 9000 39 = EL 9000 B ELR 9080-170		1 2 1 3 1 4 1 5 1 6 1 1 5 1 8	0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x
125 127 129 131 151 171 191 211 231		x x x x x x x x x x x x x x x x x x x			Gerätenennleistung Max. Innenwiderstand Min. Innenwiderstand Artikelnummer Seriennummer Benutzertext Firmwareversion (KE) Firmwareversion (HM) Firmwareversion (DR)	R R R R R RW R	floa floa strin strin strin strin strin	at 4 at 4 g 40 g 40 g 40 g 40 g 40	20 20 20 20 20 20 20 20	FileBkommazahl nach IEEE754 FileBkommazahl nach IEEE754 FileBkommazahl nach IEEE754 ASCII ASCII ASCII ASCII ASCII ASCII ASCII	3500 12 0.005 33230401 100010002		1 10 1 1: 1 1: 1 1: 1 1: 1 1: 1 1: 1 1:	9 x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x
402 405 407 408 409 410 411 416	x x x	x x x x x x x x x x x x x x x x x x x	X X		Fernsteuerungsmodus DC-Eingang Zustand DC-Eingang nach Alarm Power Fall Zustand DC-Eingang nach Einschalten des Gerätes Betriebsart (UIPPUIR) Neustant des Gerätes (Warmstart) Alarme quittleren Analogschnittstelle: Referenzspannung (Pin VREF)	RW RW RW RW W	uint(16 uint(16 uint(16 uint(16 uint(16 uint(16	5) 2 5) 2 5) 2 5) 2 5) 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Coil : Fernsteuerung Coil : Eingang Coil : Auto-On Reg : Power-On Coil : Betriebsart Coil : Neustart Coil : Alarme Coil : VREF	0x0000 = aus; 0xFF00 = ein 0x0000 = aus; 0xFF00 = ein 0x0000 = aus; 0xFF00 = buto-ein 0xFFF1 = aus; 0xFFFE = Wiederherstellen 0xF000 = UIP; 0xFF00 = UIR 0xFF00 = austfuhren 0xFF00 = bestätigen 0xF000 = 0xF00 = 5xF00 = 5xF		3 30 2 6 2 7 2 8 2 8	1 x 4 x 0 x 6 x 7 x 8 x 9 x 4 x
417 418 422 425 432 440	x x x x	x x x x x	1		Analogochnisteller. ReffSB Pogel Analogochnisteller. REffSB Pogel Analogochnisteller. REffSB Pogel Analogochnisteller. REffSB Verhalten Einstellung Spannungsregfergeschwindigkelt DC-Eingang nach Verlassen der Fernsteuerung Gerät auf Werkseinstellungen zurücksetzen Analogschniststeller. Pin 14 Konfiguration	RW RW RW RW RW	uint(16 uint(16 uint(16 uint(16 uint(16	(a) 2 (b) 2 (c) 2 (d) 2 (d) 2 (d) 2	1 1 1	Coll : YREP COL : YREP COLL : REM-SB Pegel Coll : REM-SB Verhalten Coll : Regeleges chwindigkeit Coll : Zustand Coll : Reset Alarme 1	0.0000 = normal 0.FF00 = Directiert 0.0000 = DC aus; 0.FF00 = DC auto 0.0000 = langs.m0.FF00 = schnell 0.0000 = aus; 0.FF00 = unwerändert 0.0000 = 2.uriocksetzen ausiösen 0.0000 = 0.VP (Standard); 0.0001 = 0.CP; 0.0001 = 0.CP; 0.0001 = 0.CP;		2 12 2 13 2 38 2 42	2 x 3 x 8 x 2 x 3 x
441		x	x		Analogschnittstelle: Pin 6 Konfiguration Analogschnittstelle: Pin 15 Konfiguration	RW	l `		! 1	Alarme 2 Status DC	0x003 = OVP + OCP; 0x004 = OVP + OPP; 0x006 = OCP + OPP; 0x006 = OVP + OCP + OPP 0x000 = OVP + OCP + OPP 0x0001 = OVT; 0x0001 = OVT; 0x0002 = PP; 0x0001 = OV; 0x0001 = OV;		2 48	
500 501 502 503		x x x	x x x		Sollwert Spannung Sollwert Estung Sollwert Leistung Sollwert Widerstand	RW RW RW	uint(16 uint(16	5) 2 5) 2 5) 2	1 1 1	0x0000 - 0xD0E5 (0 - 102%) 0x0000 - 0xD0E5 (0 - 102%) 0x0000 - 0xD0E5 (0 - 102%) variabel - 0xCCCC (x - 100%) Der Minimalwert muß für jedes Modell berechnet werden, siehe Programmieranleitung Bit 0-4 : Bedienort	Spannungswert (Umrechnung siehe Programmieranleitung) Stromwert (Umrechnung siehe Programmieranleitung) Leistungswert (Umrechnung siehe Programmieranleitung) Widerstandswert (Umrechnung siehe Programmieranleitung) 0x00 = frei; 0x01 = lokat; 0x03 = USB; 0x04 = analog;			4 x 5 x 6 x
										Bit 5 :- Bit 6 : Master-Slave-Typ Bit 7 : Zustand DC-Eingang Bit 8 :- Bit 10-9 : Reglerzustand	0x05 = Profibus; 0x06 = Ethernet; 0x08 = Masster/Slave; 0x09 = RS232; 0x10 = CANopen; 0x12 = Modbus TCP = IP, 0x15 = TCP = IP, 0x15 = TCP = IP, 0x16 = TCP = IP, 0x16 = TCP = IP, 0x16 = Modbus TCP = IP, 0x17 = Profinet 2P; 0x18 = GPIB; 0x19 = CAN; 0x1A = EtherCAT 0 = Slave; 1 = Masster 0 = aus; 1 = ein 00 = CV; 01 = CR; 10 = CC; 11 = CP			
										10 10 10 10 10 10 10 10	50 - 50 - 10 - 10 - 10 - 10 - 10 - 10 -			
										Bit 19 : OT Bit 20 : OTpre Bit 21 : Power fail 1 Bit 22 : Power fail 2 Bit 22 : Power fail 2 Bit 23 : Power fail 3 Bit 24 : UVD Bit 25 : OVD Bit 25 : OVD	0 = kein; 1 = aktiv			
507 508 509		X X			Istwert Spannung Istwert Strom Istwert Leistung Anzahl von OV-Alammen seit Start des Gerätes	R	uint(16	s) 2 s) 2	1	Bit 27 : OCD Bit 28 : OPD Bit 29 : IMSS Bit 30 : REM-SB 0x0000 - 0xFFFF (0 - 125%) 0x0000 - 0xFFFF (0 - 125%) 0x0000 - 0xFFFF (0 - 125%)	0 = kein; 1 = aktiv 0 = 0 kein; 1 = aktiv 0 = 0K; 1 = Master-Slave in Sicherheitmodus 0 = 0C freigegeben; 1 = REM-SB spert IDC-Ausgang Spannungsistwert (Urrechnung siehe Programmieranleitung) Stromistwert (Urrechnung siehe Programmieranleitung) Leistungsistwert (Urrechnung siehe Programmieranleitung) Anzahl			9 x 0 x
521 522 523 524 550 553		x x x x x x x x x x x x x x x x x x x	x		Anzahl von OC-Alammen seit Start des Gerätes Anzahl von OP-Alammen seit Start des Gerätes Anzahl von DF-Alammen seit Start des Gerätes Anzahl von PF-Alammen seit Start des Gerätes Uberspannungsschutzschweile (OVP) Überstromschutzschweile OCP	R R R RW	uint(16 uint(16 uint(16 uint(16 uint(16 uint(16	(i) 2 (ii) 2 (ii) 2 (iii) 2 (iii) 2	1 1 1	0x0000 - 0xFFFF ELP: 0x0000 - 0xE147 (0 - 110%) ELPS: 0x0000 - 0xE147 (0 - 110%) 0x0000 - 0xE147 (0 - 110%)	Anzahi Anzahi Anzahi Anzahi OVP-Schwelle (Umrechnung siehe Programmieranleitung) OCP-Schwelle (Umrechnung siehe Programmieranleitung)		3 2: 3 2: 3 2: 3 2: 3 2: 3 3 3:	1 x 2 x 3 x 4 x
556 559 560 561 562 563 564 565 566		x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x		Überleistungsschutzschwelle OPP Unterspannungsdetektion UVD Einstellbare UVD Meidung Überspannungsdetektion OVD Einstellbare OVD Meidung Unterstromdetektion UCD Einstellbare UCD Meidung Überstromdetektion UCD Einstellbare UCD Meidung Überstromdetektion CCD Einstellbare OVD Meidung	RW RW RW RW RW RW RW	uint(16 uint(16	(a) 2 (b) 2 (c) 2 (d) 3 (d) 4 (d) 4	1 1	0x0000 - 0xE147 (0 - 110%) 0x0000 - 0xD0E5 (0 - 102%) Einstellibar UVD Meldung 0x0000 - 0xD0E5 (0 - 102%) Einstellibare OVD Meldung 0x0000 - 0xD0E5 (0 - 102%) Einstellibare OVD Meldung 0x0000 - 0xD0E5 (0 - 102%) Einstellibare UCD Meldung 0x0000 - 0xD0E5 (0 - 102%) Einstellibare UCD Meldung 0x0000 - 0xD0E5 (0 - 102%)	OPP-Schwelle (Umrechnung siehe Programmieranleitung) UVD-Schwelle (Umrechnung siehe Programmieranleitung) 0x000 = kein; 0x0001 = Signa; 0x0002 = Warnung; 0x0003 = Alarm 0VD-Schwelle (Umrechnung siehe Programmieranleitung) 0x0000 = kein; 0x0001 = Signa; 0x0002 = Warnung; 0x0003 = Alarm 0x0CD-Schwelle (Umrechnung siehe Programmieranleitung) 0x0000 = kein; 0x0001 = Signa; 0x0002 = Warnung; 0x0003 = Alarm 0x0CD-Schwelle (Umrechnung siehe Programmieranleitung) 0x0000 = kein; 0x0001 = Signa; 0x0002 = Warnung; 0x0003 = Alarm		3 5 3 10 3 11 3 12 3 13 3 14 3 15	6 x 9 x 0 x 1 x 2 x 3 x 4 x 5 x
566 567 568 650 652 653 654 655	x x x	x	X		Einstellbare OCD Meldung Überleistungsdetektion OPD Einstellbare OPD Meldung Master-Slaw: Link-Modus Master-Slaw: Link-Modus Share-Bus Master-Slaw: Aktivieren Master-Slaw: Aktivieren Master-Slaw: Nitialisieren	RW RW RW RW RW RW	uint(16 uint(16 uint(16 uint(16 uint(16 uint(16	(a) 2 (b) 2 (c) 2 (d) 2 (d) 2 (d) 2 (d) 2 (d) 2 (d) 2 (d) 2 (d) 3 (d) 3 (d) 4 (d) 4	1 1 1	Einstellbare OCD Meldung 0x0000 - 0x00E5 (0 - 102%) Einstellbare OPD Meldung Coil : Modus Coil : MS ein/aus Coil : MS init starten Reg : MS Status	OPD-Schwelle (Umrechnung siehe Programmieranleitung) 0x0000 = kein; 0x0001 = Signal; 0x0002 = Warnung; 0x0003 = Alarm 0x0000 = Slave; 0xFF00 = Master 0x0000 = Slave; 0xFF00 = Master 0x0000 = 0xf; 0xFF00 = Master 0x0000 = 0xf; 0xFF00 = on 0xFF00 = Starte Initialisierung 0x0000 = Nicht Initialisierung		3 17 3 18 4 (4 4 4 3 4 4	6 x 7 x 8 x 0 x 2 x 3 x 4 x 5 x
656 658 660 662		x	×		Master-Slave: Gesamtspannung Master-Slave: Gesamtstrom Master-Slave: Gesamtleistung Master-Slave: Anzahi initialisierter Slaves	R R R	floa floa floa uint(16	at 4 at 4 at 4	2 2 1	Fileßkommazahl nach IEEE754 Fileßkommazahl nach IEEE754 Fileßkommazahl nach IEEE754	0x004 = Setze Interface; 0x0005 = Zuordnung; 0xFFFC = gestört; 0xFFFD = Modelle unterschielich, Initialisierung nicht OK; 0xFFFE = Fehler; 0xFFFF = Initialisierung OK 500 450 (5 Geräte à 90 A) 52.5 (5 Geräte à 10.5 kW) 115		4 6 4 7 4 8	6 x 7 x 8 x 9 x
850 851 852 854 855 859 860 861	x x x x	x x x x x x x			Funktionsgenerator Arbiträr: Start/Stop Funktionsgenerator Arbiträr: Wähle U Funktionsgenerator Arbiträr: Wähle I Funktionsgenerator Xrb. Wähle U-HModus Funktionsgenerator Xry: Wähle LH-Modus Funktionsgenerator Xry: Wähle LH-Modus Funktionsgenerator Xry: Wähle LH-Modus Funktionsgenerator Arbiträr: Startsequenz Funktionsgenerator Arbiträr: Roequenz Funktionsgenerator Arbiträr: SequenzzyMen	RW RW RW RW RW RW	uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16	(a) 2 (b) 2 (c) 2 (d) 3 (d) 4 (d) 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Coil : Start/Stop Coil : U Coil : U Coil : U Coil : U-I Coil : U-I Coil : N-U 0x00010x0063 0x00010x0087 Coil : Ournehmen Arbitrár	0x0000 = Slop; 0xFP00 = Slart 0x000 = nicht ausgewähl; 0xFF00 = Zuordnung Funktion zur Spannung 0x000 = nicht ausgewählt; 0xFF00 = Zuordnung Funktion zum Strom 0x000 = nicht ausgewählt; 0xFF00 = Zuordnung zu einer U-l-Kurve 0x000 = nicht ausgewählt; 0xFF00 = Zuordnung zu einer I-U-Kurve 0x000 = nicht ausgewählt; 0xFF00 = Zuordnung zu einer I-U-Kurve 0x0000 = unendlich 0xFF00 = Einstellungen übernehmen		5 4 5 5 5 5 5 10	0 x 1 x 2 x 4 x 5 x 9 x 0 x 1 x
900		×		x	Funktionsgenerator Arbiträr: Einstellungen übernehmen Funktionsgenerator Arbiträr: Setup für Sequenz 1	RW	uint(16		16	Bytes 0-3: Us/fis(AC) in V Bytes 4-7: Us/fis(AC) in V Bytes 4-7: Us/fis(AC) in V Bytes 8-11: fis(1/T) in Hz Bytes 11-1: 5(1/T) in Hz Bytes 10-19: Winkel in Grad Bytes 20-23: Us/fis(DC) in V Bytes 24-27: Us/fis(DC) in V	FileBkommazahl nach IEEE754, Bereich siehe Handbuch des Gerätes, Abschnitt zum Funktionsgenerator		6 () x
↓ 2468	↓ ×	1 1		↓ x	Funktionsgenerator Arbiträr: Setup für Sequenz 99	RW	floa	↓ ↓ at 32	↓ 2 16	Bytes 28-31: Sequenzzeit in µs	FileBkommazahl nach IEEE754 ELR 900: 100 μs36.000.000.000 μs Im Stormnodus: EL 9000 B: 10 μs36.000.000.000 μs I FileBkommazahl nach IEEE754, Bereich siehe Handbuch des Gerätes, Abschnitt zum Funktionsgenerator Ganzzahl ni IEEE754-Format: 010000 Hz Ganzzahl ni IEEE754-Format: 010000 Hz	Ţ	. ↓ 6 94	
2600		x		x	Funktionsgenerator: XIY - Tabelle, Block 0	RW	uint(16	i) 32	16	Bytes 12-15: fe(1/T) in Hz Bytes 16-19: Winklel in Grad Bytes 20-23: Us/ls(DC) in V Bytes 24-27: Us/ls(DC) in V Bytes 24-37: Sequenzzeit in µs UI-Modus: Spannungssollwert	Ganzzahl in IEEE754-Format: 0"359" FileSkommazahl nach IEEE754, Bereich siehe Handbuch des Gerätes, Abschnitt zum Funktionsgenerator FileSkommazahl nach IEEE754 ELR 9000: 100 µs36.000.000.000 µs EL 9000: 100 µs36.000.000.000 µs EU 9000: 100 µs36.000.000.000 µs EU 9000: 100 µs36.000.000.000 µs EU 9000: 100 µs36.000.000.000 µs		7	0 x
9000 9001	1	т х х х	x x		Funktionsgenerator: X/Y - Tabelle, Block 255 Obere Grenze Spannungssollwert (U-max) Untere Grenze Spannungssollwert (U-min)	RW RW RW	uint(16	6) 2		IU-Modus: Stromsollwert (Block aus 16 Werten) UI-Modus: Spannungssollwert IU-Modus: Stromsollwert (Block aus 16 Werten) 0x0000 - 0x00E5 (0 - 102%) 0x0000 - 0x00E5 (0 - 102%)	Wert = Realer Stromsollwert * 0.8 / Inenn * 32768 Wert = Realer Spannungssollwert * 0.8 / Unenn * 32768 oder Wert = Realer Spannungssollwert * 0.8 / Inenn * 32768 Spannungswert (Urrechnung siehe Programmieranleitung) Spannungswert (Urrechnung siehe Programmieranleitung)	1	7 255 2 3 2 3 2	1 ×
10008	x x x	x x x x x x x x x x x x x x x x x x x			Obere Grenze Stronsollwert (I-max) Untere Grenze Stronsollwert (I-min) Obere Grenze Leistungssollwert (P-max) Obere Grenze Leistungssollwert (P-max) Ethernet TCP keep-alive Ethernet TCP keep-alive Ethernet PTorinetModous TCP: DHCP Protokoit SCPI Protokoit SCPI	RW RW RW RW RW RW	uint(16 uint(16 uint(16 uint(16 uint(16	(a) 2 (b) 2 (c) 2 (d) 2 (d) 2 (d) 2 (d) 2 (e) 2 (e) 2 (e) 2 (e) 2 (e) 2 (e) 2 (e) 2 (e) 3 (e) 4 (e) 4	1 1	0x0000 - 0xD0E5 (0 - 102%) 0x1 Keep-alive ein/aus 0x1 Keep-alive ein/aus 0x1 KeDBUS ein/aus	Stornwert (Unrechnung siehe Programmieranieltung) Löstungswert (Unrechnung siehe Programmieranieltung) Löstungswert (Unrechnung siehe Programmieranieltung) Widerstandswert (Unrechnung siehe Programmieranieltung) 0x0000 = aus; 0xFF00 = ein 0x0000 = aus; 0xFF00 = ein			4 x
10012 10013 10020	x	x x	_		Schnittstellenmodul neu starten Einhaltung der Modbus Spezifikation AnyBus-Modul: Typ	W RW R	uint(16 uint(16 uint(16	(a) 2 (b) 2 (c) 2	1 1	Coit: SCPI ein/aus Coit: Neustatt Coit: Modus	0x0000 = aus; 0xFF00 = ein 0xFF00 = Nextstra tauslösen 0x0000 = Prefibrat tauslösen 0x0000 = Prefibrat tauslösen 0x0000 = Prefibrat 0x00001 = CANOpen 0x0010 = CANOpen 0x0010 = CANOpen 0x0011 = DANOpen 0x0011 = Potent IP 0x0011 = Ethernet IP 0x0011 = Ethernet IP 0x0011 = Ethernet IP 0x0011 = Ethernet IP 0x0011 = Profibrat IP 0x0011 = Modbus-TCP 2P 0x0011 = Modbus-TCP 2P 0x0011 = Modbus-TCP 2P 0x0011 = Ethernet IP 0x0011 = CANOPEN 0x0011 = CANO			
10021 10041 10043 10251 10252 10253 10269 10280 10300		x x x x x	x x	x x x	AnyBus-Modul: Bezeichnung AnyBus-Modul: Versionsnummer AnyBus-Modul: Versionsnummer Profibus: Ident number Profibus: Ident number Profibus/Profinet: Slave-Addresse Profibus/Profinet: Benutzerdefinierbarer "Function tag" Profibus/Profinet: Benutzerdefinierbarer "Function tag" Profibus/Profinet: Benutzerdefinierbarer "Location tag" Profibus/Profinet: Benutzerdefinierbares Installation-Datum Profibus/Profinet: Benutzerdefinierbare Beschreibung	R R R RW RW RW RW	uint(8 uint(32 uint(16 uint(16 strin strin strin strin	8) 4 2) 4 3) 2 3) 2 3) 2 9 32 9 22 9 40 9 54	2 1 2 1 2 1 2 1 2 1 3 1 4 1 7	ASCII ASCII ASCII ASCII	"Profibus DPV1" 01020100 ==> 1.2.10 0xA001 Profibus: 0-125; CANopen: 0-127 "Test" "Test" "13.01 2012 09.59.00" \text{vww.webpage.de"}		8 0 8 2 8 3 8 4 8 8	1 2 3 4
10354 10502 10504 10506 10508 10535 10562 10564 10566		x x x x x x x x x x x x x x x x x x x	x	x x x x x	Profinet: Benutzerdefinierbarer "Station name" Ethernet/Profinet/Modbus TCP: Netzverkadresse Ethernet/Profinet/Modbus TCP: Subnetzmaske Ethernet/Profinet/Modbus TCP: Gateway Ethernet/Profinet/Modbus TCP: Hostname Ethernet/Profinet/Modbus TCP: Domâne Ethernet/Profinet/Modbus TCP: DNS 1 Ethernet/Profinet/Modbus TCP: DNS 1 Ethernet/Profinet/Modbus TCP: DNS 1 Ethernet/Profinet/Modbus TCP: DNS 2 ESS232USB: Verbindungs-Timeout in Millisekunden	RW RW RW RW RW RW RW	uint(8 uint(8 uint(8 strin strin uint(8	8) 4 8) 4 8) 4 g 54 g 54 8) 4	27	ASCII Bytes 0-3: 0.255 Bytes 0-3: 0.255 Bytes 0-3: 0.255 ASCII Bytes 0-3: 0.255	"Test" 192.168.0.2 (Standard) 265.265.285.0 (Standard) 192.168.0.1 (Standard) 192.168.0.1 (Standard) *Client" (Standard) *Workgroup" (Standard) 0.0.0.0 (Standard) 0.0.0.0 (Standard) 0.0.0.0 (Standard) Standard: Sms		8 6	
10567 10570 10571 10571 10572		x x	x x x x		Ethernet/Profinet/Modbus TCP: MAC Ethernet/Profinet/Modbus TCP: Übertragungsgeschwindigkeit Ethernet-Port 1 Ethernet/Profinet/Modbus TCP: Übertragungsgeschwindigkeit Ethernet-Port 2 Ethernet/Profinet/Modbus TCP: Portnummer Ethernet/Profinet/Modbus TCP: Portnummer	RW RW RW	uint(16	5) 2 5) 2	1 1	Bytes 0-6: 0.255 0.65535 0.5.65535	00:50:C2:C3:12:34 bzw. 00:50:C2:C3:12:34 00:0000 = Autor, 00:0001 = 10Mbit half duplex; 00:0012 = 10Mbit half duplex; 00:00002 = 10Mbit half duplex; 00:0012 = 10Mbit half duplex; 00:0000 = 100Mbit half duplex; 00:0000 = Autor, 00:0001 = 10Mbit half duplex; 00:0000 = Autor, 00:0001 = 10Mbit half duplex; 00:0000 = 10:00 hit full duplex; 00:0004 = 100Mbit full duplex; 00:0004 = 100Mbit full duplex; 00:0004 = 100Mbit out dupl		‡ +	- - -
10700	x	x	х		RS232/CANopen/CAN: Baudrate CAN: ID-Format	RW	uint(16	s) 2 s) 2	1	Baudrate Coli: Base/Extended	CAN CANopen RS232 0x00: 10kbps 10kbps 2400 Bd 0x01: 20kbps 20kbps 4900 Bd 0x02: 50kbps 50kbps 9800 Bd 0x02: 100kbps 100kbps 1900 Bd 0x04: 125kbps 125kbps 38400 Bd 0x04: 125kbps 125kbps 38400 Bd 0x06: 250kbps 500kbps 38400 Bd 0x06: 500kbps 150kbps 150kbps 1500 Bd 0x06: 500kbps 500kbps 115200 Bd 0x07: 1Mbps 800kbps 1 0x08: - 1Mbps 10x0bps 1 0x000: - 1Mbps 10x0bps 1 0x0000 - Base (11 Bit): 0xFF00 - Extended (29 Bit)			
10702 10704 10706 10709 10710	x	x x x x x x	(x	CAN: Terminierung CAN: Basis-ID CAN: Broadcast-ID CAN: Daterslange CAN: Zyklisch Lesen: Basis-ID CAN: Zyklisch Senden: Basis-ID	RW RW RW RW		2) 4 2) 4 3) 2 4 4	2 1 2	Coli: Busteminierung 0x00000x07FF oder	0x0000 = aus; 0xFF00 = ein 0x0000 = Auto; 0xFF00 = Immer 8 Bytes		† †	 - -
10714 10715 10716 10717 10718 10900		x x x x x x x x x	x x x x x x x x x		CAN: Zykluszeit Lesen (in ms): Status CAN: Zykluszeit Lesen (in ms): Soliverte (U, I, P, R) CAN: Zykluszeit Lesen (in ms): Einstelligenzen 2 (P, R) CAN: Zykluszeit Lesen (in ms): Einstelligenzen 1 (U, I) CAN: Zykluszeit Lesen (in ms): Einstelligenzen 1 (U, I) CAN: Zykluszeit Lesen (in ms): Istvert U, I, P GPIB-Adresse (3W-Option) MPP-Tracking: MPP-Modus (Setup)	RW RW RW RW RW	uint(16 uint(16 uint(16 uint(16 uint(16 uint(16	(a) 2 (b) 2 (c) 2 (d) 2 (d) 2 (d) 2 (e) 2	1 1 1 1 1 1 1	205000; 0 == AUS 205000; 0 == AUS 130	Standard: AUS On MPPT aus; 1 = MPP1; 2 = MPP2; 3 = MPP3; 4 = MPP4		9	0 x
11001 11002 11003 11004 11005 11006 11007 11008		x x x x x x x x x x x x x x x x x x x	x x x x x		MPP-Tracking Uoc (Setup) MPP-Tracking is (Setup) MPP-Tracking: Umpp (Setup) MPP-Tracking: Impp (Setup) MPP-Tracking: Impp (Setup) MPP-Tracking: DettaP (Setup) MPP-Tracking: DettaP (Setup) MPP-Tracking: DettaP (Setup) MPP-Tracking: Umpp (Ergebnis von MPP1/244) MPP-Tracking: Impp (Ergebnis von MPP1/244)	RW RW RW RW RW	uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16	(a) 2 (b) 2 (c) 2 (d) 3 (d) 4 (d) 4	1 1 1 1 1 1 1	0x0000 - 0xCCCC (0 - 100%)	Spannungswert in % von Unern (Umrechnung siehe Programmieranleitung) Stromwert in % von Inern (Umrechnung siehe Programmieranleitung) Spannungswert in % von Unern (Umrechnung siehe Programmieranleitung) Stromwert in % von Inern (Umrechnung siehe Programmieranleitung) Leistungswert in % von Pienn (Umrechnung siehe Programmieranleitung) Leistungswert in % von Pienn (Umrechnung siehe Programmieranleitung) Leistungswert in % von Dienn (Umrechnung siehe Programmieranleitung) Spannungswert in % von Unern (Umrechnung siehe Programmieranleitung) Stromwert in % von Inern (Umrechnung siehe Programmieranleitung)		9 2 9 3 9 4 9 5 9 6 9 7	1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x
11009 11010 11011 11012 11013 11014	x x	x x x x	x x		MPP-Tracking: Pmpp (Ergebnis von MPP1/2/4) MPP-Tracking: Status (von MPP1/2/4) MPP-Tracking: Status (von MPP1/2/4) MPP-Tracking: Intervall (Setup) MPP-Tracking: Intervall (Setup) MPP4: Start MPP4: Ende	RW RW RW	uint(16 uint(16 uint(16	(a) 2 (b) 2 (c) 2 (d) 2 (d) 2 (d) 2 (d) 2 (e) 2 (e) 2 (e) 2 (e) 3 (e) 2 (e) 3 (e) 4 (e) 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0x0000 - 0xCCCC (0 - 100%) Coil: Start/Stop Coil: Start/Stop Coil: Fehler 0x0005 - 0xEA60 0x0001 - 0x0064 0x0001 - 0x0064	Leistungswert in % von Pnenn (Umrechnung siehe Programmieranleitung) 0.0000 = slopper: 0xFF00 = starten 0.0000 = lauft: 0xFF00 = fertig 0.0000 = lein Fehler: 0xFF00 = Fehler Regel- und Meß-Intervall in Millisekunden für das Tracking in Modi 1 und 2 bzw. die Abarbeitung der Benutzerwerte im Modus 4 Anfangsspannungswert aus 1-100 (bezogen auf Register 11100-11199) für MPP- Trackingmodus 4 Endspannungswert aus 1-100 (bezogen auf Register 11100-11199) für MPP-		9 10	4 x
11016 11100 11120 11140 11160 11180 11200		x x x x x x x x x	х	x x x x	MPP4 : Wiederholungen MPP Tracking: Benutzerkurve (MPP4 Modus) Spannungswerte 1-20 MPP Tracking: Benutzerkurve (MPP4 Modus) Spannungswerte 21-40 MPP Tracking: Benutzerkurve (MPP4 Modus) Spannungswerte 41-60 MPP Tracking: Benutzerkurve (MPP4 Modus) Spannungswerte 61-80 MPP Tracking: Benutzerkurve (MPP4 Modus) Spannungswerte 81-100 MPP Tracking: Benutzerkurve (MPP4 Modus) Ergebnisse 1-10 (10x Umon, Imon, Pmon)	RW RW RW RW RW	uint(16 uint(16 uint(16 uint(16 uint(16	6) 2 6) 40 6) 40 6) 40 6) 40 6) 40	20 20 20 20 20 20	0x0000 - 0xFFFF 0x0000 - 0xCCCC (0 - 100%)	Trackingmodus 4 00000 = keine Wiederholungen Spannungswert in % von Unenn (Umrechnung siehe Programmieranleitung) Spannungswert in % von Unenn Stromwert in % von Inenn Stromwert in % von Inenn		9 13 9 18 9 19	
11230		x			MPP Tracking: Benutzerkurve (MPP4 Modus) Ergebnisse 11-20 (10x Umon, Imon, Pmon) MPP Tracking: Benutzerkurve (MPP4 Modus) Ergebnisse 21-30 (10x Umon, Imon, Pmon)	R	uint(16			0x0000 - 0xCCCC (0 - 100%) 0x0000 - 0xCCCC (0 - 100%) 0x0000 - 0xCCCC (0 - 100%) 0x0000 - 0xCCCC (0 - 100%) 0x0000 - 0xCCCC (0 - 100%) 0x0000 - 0xCCCC (0 - 100%) 0x0000 - 0xCCCC (0 - 100%)	Leistungswert in % von Pnenn (Umrechnung siehe Programmieranieltung) Spannungswert in % von Unenn Stromwert in % von Inenn Leistungswert in % von Pnenn (Umrechnung siehe Programmieranieltung) Spannungswert in % von Inenn Stromwert in % von Inenn Leistungswert in % von Pnenn (Umrechnung siehe Programmieranieltung)		9 2	3 x
11290 11320		x			MPP Tracking: Benutzerkurve (MPP4 Modus) Ergebnisse 31-40 (10x Umon, Imon, Pmon) MPP Tracking: Benutzerkurve (MPP4 Modus) Ergebnisse 41-50 (10x Umon, Imon, Pmon) MPP Tracking: Benutzerkurve (MPP4 Modus) Ergebnisse 51-80 (10x Umon, Imon, Pmon)	R	uint(16	6) 60	30	0x0000 - 0xCCCC (0 - 100%) 0x0000 - 0xCCCC (0 - 100%)	Spannungswert in % von Unenn Stornwert in % von Inenn Stornwert in % von Inenn Stornwert in % von Inenn (Unrechnung siehe Programmieranieilung) Spannungswert in % von Inenn Stornwert in % von Inenn Stornwert in % von Inenn Leistungswert in % von Inenn (Unrechnung siehe Programmieranieilung) Spannungswert in % von Penn (Unrechnung siehe Programmieranieilung) Spannungswert in % von Unenn		9 26	6 x
11380		x			MPP Tracking: Benutzerkurve (MPP4 Modus) Ergebnisse 61-70 (10x Umon, Imon, Pmon) MPP Tracking: Benutzerkurve (MPP4 Modus) Ergebnisse 71-80 (10x Umon, Imon, Pmon)	R	uint(16	6) 60	30	0x0000 - 0xCCCC (0 - 100%)	Stromwett in % von Inenn Leistungswert in % von Prenn (Umrechnung siehe Programmieranleitung) Spannungswert in % von Unenn Stromwert in % von Inenn Leistungswert in % von Prenn (Umrechnung siehe Programmieranleitung) Spannungswert in % von Unenn Stromwert in % von Inenn		9 28	8 x
11440		x			MPP Tracking: Benutzerkurve (MPP4 Modus) Ergebnisse 81-90 (10x Umon, Imon, Pmon) MPP Tracking: Benutzerkurve (MPP4 Modus) Ergebnisse 91-100 (10x Umon, Imon, Pmon)	R	uint(16			0x0000 - 0xCCCC (0 - 100%) 0x0000 - 0xCCCC (0 - 100%) 0x0000 - 0xCCCC (0 - 100%) 0x0000 - 0xCCCC (0 - 100%) 0x0000 - 0xCCCC (0 - 100%) 0x0000 - 0xCCCC (0 - 100%) 0x0000 - 0xCCCC (0 - 100%) 0x0000 - 0xCCCC (0 - 100%)	Leistungswert in % von Pnenn (Umrechnung siehe Programmieranteitung) Spannungswert in % von Unenn Stromwert in % von Inenn Leistungswert in % von Pnenn (Umrechnung siehe Programmieranteitung) Spannungswert in % von Unenn Stromwert in % von Inenn Leistungswert in % von Pnenn (Umrechnung siehe Programmieranteitung)		9 3	
11500 11502 11504 11506 11508 11510 11512		x	x	x x x x	Batterietest Entladen (statisch): Max. Strom Batterietest Entladen (statisch): Max. Leistung Batterietest Entladen (statisch): Max. Widerstand Batterietest Entladen (statisch): Entladeschlußspannung Batterietest Entladen (statisch): Max. Zu entnehmende Kapazität Batterietest Entladen (statisch): Max. Entladezeit Batterietest Entladen (statisch): Max. Entladezeit Batterietest Entladen (statisch): Aktion bei Erreichen der max. zu entnehmenden Kapazität Batterietest Entladen (statisch): Aktion bei Erreichen der max. Entladezeit	RW RW RW RW RW RW	floa floa floa floa uint(32 uint(16	at 4 c) 4	2 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Fileßkommazahl nach IEEE754 Fileßkommazahl nach IEEE754 Fileßkommazahl nach IEEE754 Fileßkommazahl nach IEEE754 Fileßkommazahl nach IEEE755 0x00000000 - 0x00000000 (0 - 10 h) Handlung bei Erreichen der max. Entlade- Kapazität 0x0000 - 0x0002	0 - Nennstrom 0 - Nennleistung Min max. Wilderstand, 0 = AUS 0 - Nennspenion 0 - Septiment	1	11 2 11 2 11 3 11 4 11 4	0 x 11 x 22 x 33 x 44 x 55 x 66 x
11514 11516 11518 11520 11522 11524 11526 11528		x x x x x x x x x x x x x x x x x x x		x x x x	Batterietest Entladen (dynamisch): Strompegel 1 Batterietest Entladen (dynamisch): Strompegel 2 Batterietest Entladen (dynamisch): Verweildauer Strompegel 1 Batterietest Entladen (dynamisch): Verweildauer Strompegel 2 Batterietest Entladen (dynamisch): Max Leistung Batterietest Entladen (dynamisch): Max Leistung Batterietest Entladen (dynamisch): Entladeschlußspannung Batterietest Entladen (dynamisch): Max zu enthehmende Kapazität Batterietest Entladen (dynamisch): Max Entladezelt	RW RW RW RW RW RW	floa floa floa floa floa floa	at 4 at 4 at 4 at 4 at 4	2 2 2	File6kommazahi nach IEEE754 0.00000000 - 0.0000A0000 (0 - 10 h)	0x0002 = Test beenden 0 - Nennstrom 1 - 38000 s 1 - 38000 s 1 - 38000 s 0 - Nennstrung 0 - Nennspannung 0 - Nennspannung 0 - 9999 99 0x00010203 = 01:02:03 als HH.MM.SS, entspricht [00][SEK][MN][STD]	1 1 1 1 1	11 9 11 10 11 1: 11 1: 11 1:	2 x 3 x 4 x
11528 11530 11531 11532 11535	х	x x x x x	x		Batterietest Entladen (dynamisch): Max. Entladezeit Batterietest Entladen (dynamisch): Aktion bei Erreichen der max. zu entnehmenden Kapazztät Batterietest Entladen (dynamisch): Aktion bei Erreichen der max. Entladezeit Batterietest: Entladen (dynamisch): Aktion bei Erreichen der max. Entladezeit Batterietest: Start/Stop Batterietest: Start/Stop Batterietest: Moduswahl	RW RW RW RW	uint(16	(i) 2 (ii) 2 (iii) 2	1	0x00000000 - 0x000A0000 (0 - 10 h) 0x0000 - 0x0002 0x0000 - 0x0002 Coll: Start/Stop 0x0000 - 0x0002	0x0000 = Nichts tur; 0x0001 = Melden (sehe Register 11544); 0x0002 = Test beenden 0x00001 = Nichts tur; 0x0001 = Melden (siehe Register 11544); 0x0002 = Test beenden 0x0001 = Melden (siehe Register 11544); 0x0002 = Test beenden 0x0000 = Stop; 0xFF00 = Start 0x0000 = Stop; 0xFF00 = Start 0x0000 = Stop; 0xFF00 = Start	1	11 16 11 17	7 x
11536 11538 11540		x x x x x x			Batterietest: Entrommene Kapazität in Ah Batterietest: Entrommene Energie in Wh Batterietest: Zeit am Ende des Tests Batterietest: Status 2	R	floa	at 4 at 4 5) 8	3 4	x Ah x Wh HH:MM:SS:MS Bit 0: Batterietestmodus aus (Standard)	0x001 - Statischer Modus; 0x0002 - Dynamischer Modus 10.5 Ah 22453.5 Wh Wort 0 - Stunden (0-10) Wort 1 - Minuten (0-59) Wort 2 - Selwanden (0-59) Wort 3 - Millisekunden (0-999) O - kein; 1 - adidy	1	11 23	2 x 3 x 4 x
										Bit 1: Test läuft Bit 2: Test abgeschlossen Bit 3: Felter aufgetreten Bit 4: Initialisiert Bit 5: Maximale Ah erreicht (nur Meldung) Bit 6: Maximale Atte erreicht (nur Meldung) Bit 7: Maximale Ah erreicht (Testende) Bit 8: Maximale Zeit erreicht (Testende)	0 = kein; 1 = aktiv			