Répartition des puissances d'un complexe de module 1

On note $\,U\,$ l'ensemble des nombres complexes de module 1.

On note U_n l'ensemble des racines $n^{\text{ème}}$ de l'unité (pour $n \in \mathbb{N}^*$).

On note d(z,z') = |z'-z| la distance entre deux complexes z et z'.

Pour $z \in \mathbb{C}^*$, on note :

- arg(z) l'argument du complexe z défini à 2π près.
- Arg(z) l'unique argument de z qui appartient à $[0,2\pi[$ (appelé argument principal de z).

On se donne $\theta \in [0, 2\pi[$, et on considère l'ensemble $V = \{z_n / n \in \mathbb{Z}\}$ avec $z_n = \mathrm{e}^{\mathrm{i} n \theta}$.

L'objectif de ce problème est l'étude de cet ensemble ${\it V}$.

1. Soit $\alpha, \beta \in \mathbb{R}$. Déterminer $d(\mathbf{e}^{i\alpha}, \mathbf{e}^{i\beta})$.

On exprimera la solution sans radicaux et en fonction de $\frac{\beta - \alpha}{2}$.

- $\text{2.} \qquad \text{On suppose } \theta/\pi \in \mathbb{Q} \text{ et on forme } A = \left\{n \in \mathbb{N}^* \, / \, z_n = 1\right\}.$
- 2.a Montrer que A possède un plus petit élément. Notons m celui-ci.
- 2.b Etablir que les $z_0,...,z_{m-1}$ sont deux à deux distincts.
- 2.c Montrer que $V = U_m$.

Dans toute la suite du problème, on suppose $\theta/\pi \notin \mathbb{Q}$.

- 3. Montrer que les z_n sont deux à deux distincts.
- 4. Soit $Z \in U$ et $\varepsilon > 0$.

On désire établir l'existence d'un $m \in \mathbb{Z}$ tel que $d(z_m, Z) \leq \varepsilon$.

On se donne $n \in \mathbb{N} \setminus \{0,1\}$ de sorte que $\frac{2\pi}{n} \le \varepsilon$.

On introduit, pour tout $k \in \{0,1,\ldots,n-1\}$, $A_k = \left\{z \in U/k \frac{2\pi}{n} \le A \operatorname{rg}(z) < (k+1) \frac{2\pi}{n}\right\}$.

- 4.a Etablir que la famille $(A_k)_{0 \le k \le n-1}$ forme une partition de U.
- 4.b Montrer que parmi les $z_0,...,z_n$ deux éléments au moins se trouvent dans un même A_k .

On note p et q leurs indices respectifs et on pose $\varphi = A \operatorname{rg}(z_p)$ et $\psi = A \operatorname{rg}(z_q)$.

Quitte à échanger p et q on peut supposer $\varphi < \psi$ et on a par construction $\psi - \varphi \in]0,2\pi/n]$.

- 4.c Etablir $A \operatorname{rg}(z_{g-p}) = \psi \varphi$.
- 4.d On note $\alpha=A\operatorname{rg}(Z)$ et on considère k le plus grand entier tel que $k(\psi-\varphi)\leq \alpha$. Montrer que $d(Z,z_{k(q-p)})\leq 2\sin\frac{\psi-\varphi}{2}$.
- 4.e Etablir $\forall x \ge 0, \sin(x) \le x$, et conclure.