YOLO

You Only Look Once: Unified, Real-Time Object Detection

Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi YOLO9000: Better, Faster, Stronger

Joseph Redmon, Ali Farhadi

Reporter: Jian.Yin

448x448x3

448x448x3

448x448x3

Input image GoogLeNet modification (20 layers) 14x14x1024 C,R C,R 14x14x1024 14x14x1024

448x448x3

Input image GoogLeNet modification (20 layers) 14x14x1024 C,R C,R Tx7x1024

448x448x3

Inference GoogleNet modification (20 layers) C,R C,R C,R Tx7x1024 Tx7x1024 Tx7x1024

448x448x3

Input image GoogleNet modification (20 layers) 14x14x1024 C,R C,R Tx7x1024 Tx7x1024 FC,R Tx7x1024 Tx7x1024 4096x1

448x448x3

Input image | C,R | C,R | FC,R | FC,R | FC,R | FC,R | Tx7x1024 | T

448x448x3

448x448x3

Tensor values interpretation

Tensor values interpretation

Tensor values interpretation

Loss function

$$\lambda_{\mathbf{coord}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_{i} - \hat{x}_{i})^{2} + (y_{i} - \hat{y}_{i})^{2} \right]$$

$$+ \lambda_{\mathbf{coord}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_{i}} - \sqrt{\hat{w}_{i}} \right)^{2} + \left(\sqrt{h_{i}} - \sqrt{\hat{h}_{i}} \right)^{2} \right]$$

$$+ \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_{i} - \hat{C}_{i} \right)^{2}$$

$$+ \lambda_{\text{noobj}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_{i} - \hat{C}_{i} \right)^{2}$$

$$+ \sum_{i=0}^{S^{2}} \mathbb{1}_{i}^{\text{obj}} \sum_{j=0}^{S^{2}} (p_{i}(c) - \hat{p}_{i}(c))^{2}$$

Look at detection procedure

Class scores for each bbox

Get first class scores for each bbox

	class (dog) scores for each bbox									
					$\overline{}$					
	bb47 bb20 bb15 bb7	b1	bb4	bb8	bb98					
class: dog	0.5 0.3 0.2 0.1	0	0	0	0	1x98				

Go to next bbox with big score. Let's denote it "bbox_max"

1x98

After this procedure - a lot of zeros

Select bboxes to draw by class score values

Ten Tricks

	YOLO	is .							YOLOv2
batch norm?		√	√	√	√	√	√	√	√
hi-res classifier?			1	1	\checkmark	\checkmark	√	\checkmark	✓
convolutional?				1	\checkmark	√	✓	\checkmark	✓
anchor boxes?				√	\checkmark				
new network?					\	\checkmark	\checkmark	√	✓
dimension priors?						\checkmark	\checkmark	\checkmark	✓
location prediction?						\checkmark	\checkmark	\checkmark	✓
passthrough?							\	\	✓
multi-scale?								\checkmark	✓
hi-res detector?									✓
VOC2007 mAP	63.4	65.8	69.5	69.2	69.6	74.4	75.4	76.8	78.6

Thank you!