Análisis y Visualización de Datos

<u>Diplomatura Diplodatos</u>
2025

¿Más herramientas para describir el "comportamiento" de los datos de la columna del sueldo?

Estadística Descriptiva

Estadística Descriptiva

Representa la información de una manera distinta para facilitar su interpretación, pero no permite realizar predicciones o inferencias

Análisis de frecuencias

¿Cuánto ocurre cada uno de los valores (o en intervalos) de un conj de datos?

Medidas de tendencia central

¿Cuál es el valor más representativo del conj. de datos?

Medidas de dispersión

¿Qué tan alejados están los datos de la tendencia central?

2000000 4000000 6000000 800000010000 salary_monthly_NETO

Medidas de tendencia central

una muestra de datos numéricos

(de una columna

en un DataFrame)

##		datos
##	1	40
##	2	60
##	3	50
##	4	45
##	5	65
##	6	70
##	7	95
##	8	90
##	9	45
##	10	60
##	11	43
##	12	56
##	13	65
##	14	80
##	15	45
##	16	70
##	17	45
##	18	75
##	19	45
##	20	54
##	21	35
##	22	46
##	23	47
##	24	50
##	25	50
##	26	60
##	27	50
##	28	50

La **media muestral** (aritmética) o promedio se calcula como:

$$ar{x} = rac{1}{N} \sum_{i}^{N} x_{i}$$

Medidas de tendencia central

La **mediana** se calcula como:

- 1. Ordenar las realizaciones de menor a mayor
- 2. Si N es impar, la mediana es el valor central:

 Si N es par, la mediana es el promedio de los dos valor centrales:

mediana=
$$(X_{N/2} + X_{N/2+1})/2$$

La **moda** es el dato con mayor frecuencia, para

numéricas intervalo modal depende del histograma

Medidas de tendencia central

si ahora

$$X_{1}, X_{2}, ...X_{N}$$

categóricos

$$p/ x_i = X_i(\omega) \in \{c_1,...,c_k\}$$

La **moda** es el dato con mayor frecuencia, el que más se repite

Sólo hay más de una moda cuando el conteo de dos valores es igual.

Medidas de posición

El **percentil-k** es el valor x_i tal que el k% de los valores de la muestra son menores a x_i .

No hay una única fórmula para calcular los percentiles, pero en general:

- 1. Ordenar las realizaciones tal que $x_j \le x_{j+1}$
- Seleccionar el elemento de la serie en la posición: menor entero mayor o igual a k*N/100.

percentil 25 es el primer **cuartil** Q1 percentil 50 el segundo **cuartil** Q2 (mediana) percentil 75 el tercer **cuartil** Q3

Medidas de dispersión

x₁, x₂, ..x_N numéricos

La **varianza muestral** mide la variación de los datos a través de la distancia cuadrada a la media muestral.

$$v = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$

La **desviación estándar** es la raíz cuadrada de la varianza. Está en la misma unidad que los datos.

El **coeficiente de variación** es la desviación estándar dividida la media muestral. Es comparable entre distintas v.a.

Medidas de dispersión

Histograma de los estatura

El rango y el rango intercuartílico miden en qué intervalo se encuentran un cierto porcentaje de los datos.

Rango:

percentil-100 - percentil-0

Rango intercuartílico:

percentil-75 - percentil-25

Q3 - Q1

Usos de los percentiles y rangos

- En el caso de la mediana (percentil-50), medir la tendencia central
- Contextualizar el valor de un dato con respecto a otros
 - Una persona de sexo femenino de 6 años mide 95cm
 - Está en el 10% de personas con menor estatura del mismo grupo. [Curvas], se visualiza, para cada edad, los percentiles de la distribución condicional al grupo.
- Identificación y eliminación de valores extremos

boxplot

Demo con Notebook O2 Datos y Modelos.ipynb

Teoría, datos, experimentos, simulación... ¿Que es todo esto y cómo se combinan?

Variable Aleatoria (discreta numérica)

X= cantidad de caras en 3 tiradas de moneda.

Variable Aleatoria (repetición del experimento)

X= cantidad de caras en 3 tiradas de moneda.

Proporción de resultados tal que X=k :

```
result = numpy.unique(sampled_values, return_counts=True)
[(label, count/1000.0) for label, count in zip(*result)]
[(0, 0.132), (1, 0.379), (2, 0.383), (3, 0.106)]
```

Variable Aleatoria (repetición del experimento)

```
result = numpy.unique(sampled_values, return_counts=True)
[(label, count/1000.0) for label, count in zip(*result)]
[(0, 0.132), (1, 0.379), (2, 0.383), (3, 0.106)]
```

la Proporción de la muestra tal que X=k, estima la probabilidad P(X=k), p/k=0,1,2,3

Variable Aleatoria (modelo matemático)

X= cantidad de caras en 3 tiradas de moneda. p(k)=P(X=k)?

Variable binomial

Sea X la v. a. discreta modela: cantidad de "éxitos" en una n-upla

 $P(X=k)= n!/(n-k)! k! p^k (1-p)^{(n-k)}$

k=0,1,...,n

p=probabilidad de "éxito".

X~B(n,p), ejemplos?

Función de Distribución Acumulada

La Función de Distribución Acumulada de la v.a. X, es la función F: R →[0,1] definida por

$$F(t)=P(X \le t) = P(\{\varpi \mid X(\varpi) \le t\})$$

X continua

Función de densidad

Propiedades de función de densidad

- 1) f(t)≥0 para todo t
- 2) $\int f(t) dt = 1$ para variables continuas y (entre $-\infty$ y $+\infty$)
- 2) $\sum f(t)=1$ para variables discretas (para todos los valores)

cualquier función que cumple con 1 y 2 es una función de densidad de alguna v. a.

Distribución Uniforme

X v.a. tiene distribución uniforme si su función densidad es

f(t)=1/(b-a) si $a \le t \le b$, 0 c.c.

Notación X~U(a,b), a<b parámetros

Distribución Normal o Gaussiana

X v.a. continua tiene distribución normal (Gaussiana) si su función de densidad es la

siguiente:

Con $\mu \in \mathbb{R}$ y $\sigma^2 \in (0, \infty)$

parámetros

Notación $X^{\sim}N(\mu,\sigma^2)$

Distribución Normal o Gaussiana

 $X^{\sim}N(0,\sigma^2)$

si además $\sigma^2=1$

 $X^{\sim}N(0,1)$, se dice

Normal Estándar

Distribución Exponencial (caso especial de Gamma)

X v.a. tiene distribución

exponencial si su densidad es:

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & si \quad x \ge 0 \\ 0 & si \quad x < 0 \end{cases}$$

Notación X~Exp(λ), λ>0 parámetro suele utilizarse para modelar tiempo de espera

Distribución Chi Cuadrado

Diremos la v.a. X tiene <u>distribució</u>n <u>Chi</u>- cuadrado con k grados de libertad.

Notación $X^{\sim} \chi_k^{-2}$ si su función de densidad está dada por:

Medidas estadísticas de una v.a. o de una densidad

X v.a. numérica con densidad f

• Media o Esperanza de X (Medida de posición):

$$\mu=E(X)=\int t f(t) dt \circ \mu=E(X)=\sum t f(t)$$
, promedio ponderado por la densidad ($\mu\in R$)

• Varianza (Medidas de dispersión):

$$\sigma^2 = Var(X) = E((X-\mu)^2) = \int (t-\mu)^2 f(t) dt$$
 $\delta = \sigma^2 = E((X-\mu)^2) = \sum (t-\mu)^2 f(t)$ ($\sigma^2 \in R^+$)

En una va con densidad normal coinciden con los parámetros $\mu y \sigma^2$ respectivamente

Media

Media Muestral $\sum_{i=1}^{n} x_i / n$, (promedio) vs

Media o Esperanza de una v.a. X, $\mu=E(X)=\int t\ f(t)\ dt\ \delta\ \mu=E(X)=\sum t\ f(t)$

Mediana

Se ordena la muestra de menor a mayor: $x_{(1)},...x_{(n)}$ y se calcula...

Mediana Muestral VS

Mediana de una v.a. X, o de su densidad es x_e tal que $P(X \le x_e) = P(X \ge x_e)$

Moda

Resultado (o intervalo) con mayor frecuencia en la muestra. vs

Valor con **mayor probabilidad** o **densidad** x_o tal que $f(x_o) \ge f(x)$, p/ todo x

Comparación de Medidas

Moda:

Mediana:

Media:

Otras Medidas, del <u>modelo</u> (de una v.a.)

Dada una **función de densidad f** (de una v.a. X) se define:

Desvío: $\sigma = (\sigma^2)^{\frac{1}{2}} = (Var(X))^{\frac{1}{2}}$ -Kurtosis: $E((X-\mu)^4)/\sigma^4$ -Sesgo/Asimetría: $E(X-\mu)^3/\sigma^3$

Media

> Media

Percentiles

El percentil es una medida de posición. El p-ésimo percentil o percentil px100%, es el x tal que P(X≤x)=p

Algunas propiedades de v.a. (modelo) y su distribución

• Si X \sim N(μ , σ^2) y Z=(X- μ)/ σ , entonces Z \sim N(0,1)

• Si Z~N(0,1), entonces $Z^2 \sim \chi_1^2$ Chi cuadrado con 1 gl

Datos vs modelos

Medidas a partir de datos Medidas muestrales

Sean los n datos de una muestra: $x_1,...x_n$ (observaciones de la v.a.)

Media muestral (promedio):
$$x_M = \sum_{i=1}^n x_i / n = \overline{X}$$

Varianza muestral: $\sum_{i=1}^{n} (x_i - x_M)^2/n$

Asimetría muestral

$$CA_F = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^3}{N \cdot S_\pi^3}$$

Curtosis muestral

$$Curtosis = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^4}{N \cdot S_x^4} - 3$$

siendo \overline{x} la media y S_x la desviación típica

Tendencia

La tendencia habitual, si los datos están descritos en los términos de \overline{X} y S_X (desvío), es hacer aquellas típicas inferencias que <u>sólo son ciertas si la distribución de los datos se ajusta bien a la distribución normal</u>:

- $\bullet \overline{\chi} \pm s_{x}$ supone el 68.5% aproximadamente de la población,
- $\bullet \overline{\chi}$ ±2s $_{\times}$ supone el 95% aproximadamente de la población
- $\bullet \overline{\chi} \pm 3s_{\times}$ supone el 99.5% aproximadamente de la población

Bondad de ajuste

Resume la discrepancia entre los valores observados y los valores esperados en el modelo de estudio.

Gráficos QQ (Quantil muestral vs Quantil modelo)

Dentro de los test más usados para normalidad:

Test de Kolmogorov-Smirnov (Test KS)

(En próxima semana veremos Test de Hipótesis)

En una frase: ¿Cuánto cobran los programadores en Argentina?

¿Respuestas? ¿Qué pregunta respondimos en realidad?

¿Cuánto cobran l@s programadores experimentados en Argentina?

¿Afecta el nivel de estudios en el salario de l@s programador@s en Argentina? ¿Cómo?

Ejercicio

Seguir el proceso de análisis propuesto:

- 1. Hipótesis
- 2. Análisis de v.a.
- 3. Experimento