Equations for Calculating Tm

SYSTEM	EQUATION ^a	REFERENCE
DNA-DNA hybrid ^{a,b}	Tm= 81.5°C + 16.6(logM) + 0.41(%GC) -0.61(%form) - 500/L	1
DNA-RNA hybrida.b	Tm= 79.8°C + 18.5(logM) + 0.58(%GC) + 11.8(%GC) ² -0.50(%form) -820/L	2
RNA-RNA hybrida.b	Tm= 79.8°C + 18.5(logM) + 0.58(%GC) + 11.8(%GC) ² -0.35(%form) -820/L	3
Oligonucleotide probes	Tm= 2(# AT bp) + 4(# GC bp)	4

- a. M: molarity of monovalent cations (Na⁺ concentration); % GC: % G and C nucleotides in the DNA; % form: percentage of formamide in the hybridization solution; L: length of the duplex in base pairs; N: chain length.
- b. These equations hold for Na^+ concentrations between 0.01 and 0.40 M and % GC values of 30-75%.

REFERENCES

- 1. Maniatis, T., et al (1982) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press: New York.
- 2. Casey, J. and Davidson, N. (1977) Nucleic Acids Res., 4: 1539.
- 3. Bodkin, D.K. and Knudson, D.L. (1985) J. Virol. Methods, 10: 45.
- 4. Wallace, R.B., et al. (1979) Nucleic Acids Res. 6: 3545.

Determination of Nucleic Acid Concentration

- 1. Measure DNA or RNA concentration using the ${\rm A}_{260}$ value. Please note that this measurement does not discriminate between RNA and DNA.
- Water is recommended as the solvent for measuring DNA or RNA concentration.
- 3. Use the same solvent to zero the spectrophometer before measuring the sample.
- 4. Ensure that the cuvettes are RNase-free for measuring RNA samples.
- 5. Use the following conversion to determine the concentration of nucleic acid in your sample:

 A_{260} value of 1 = 50 μ g/ml dsDNA A_{260} value of 1 = 37 μ g/ml ssDNA A_{260} value of 1 = 40 μ g/ml ssRNA

Example: Measuring DNA concentration

Volume of DNA = 50μ l

Dilution: 10 μl DNA sample + 490 μl distilled H₂O (1/50 dilution)

 A_{260} of diluted sample (1 cm length) = 0.75

DNA Concentration = $50 \mu g/ml \times A_{260} \times dilution factor$

= $50 \mu g/ml \times 0.75 \times 50$ = $1875 \mu g/ml$

 $= 1875 \,\mu g/ml \times 0.050 \,ml$

Total Amount of DNA = concentration x volume of sample in ml

 $= 93.75 \mu g$

SI Units		
Prefix	Factor	Abbreviation
atto	10-18	a
femto	10 ⁻¹⁵	f
pico	10-12	р
nano	10-9	n
micro	10-6	μ
milli	10-3	m
centi	10-2	С
deci	10-1	d
deca	10¹	da
hecto	10 ²	h
kilo	10³	k
myria	10 ⁴	my
mega	10 ⁶	M
giga	10°	G
tera	1012	T
peta	1015	Р
exa	1018	E

Determination of Nucleic Acid Purity

- 1. Measure the nucleic acid purity using A_{260}/A_{280} ratio.
- Use low salt buffers as they provide a more accurate measurement. Purity is influenced by pH and lower pH solutions lower the A₂₆₀/A₂₈₀ ratio and reduce the sensitivity to protein contamination¹.
- 3. Pure DNA has an A_{260}/A_{280} ratio of 1.8-2.0 in 10 mM Tris, pH 8.5.
- 4. Pure RNA has an A_{260}/A_{280} ratio of 1.9-2.1 in 10 mM Tris, pH 7.5.

Detecting Contamination

- 1. Absorbance at 230 nm and 270 nm indicates the presence of phenol or urea^{2,3}.
- 2. Absorbance at 280 nm (hence, a low A_{260}/A_{280} ratio) indicates the presence of protein.
- Absorbance at 325 nm indicates contamination by particulates and/or dirty cuvettes.

REFERENCES

- 1. Wilfinger, W. W., Mackey, M.A., and Chomczynski, P. (1997) BioTechniques 22: 474
- 2. Current Protocols in Molecular Biology, Ausubel, F. M. et al. Eds
- 3. Stulnig, T.M. and Amberger, A. (1994) BioTechniques 16: 403