

Or au bout d'assez longtemps dans l'équation $\alpha a + \beta b + \gamma c + \dots + \lambda l = n$ il se présente une chose du genre $\frac{1}{(x-1)^{\alpha}} + \frac{1}{(x-2)^{\beta}} + \dots + \frac{1}{(x-l)^{\lambda}} = \frac{1}{x^n}$. Il suffit alors de développer cette équation pour obtenir la valeur de x .

42.

GÉNÉRALISATION D'UN THÉORÈME DE M. CAUCHY*.

[*Comptes Rendus de l'Académie des Sciences*, LIII. (1861), pp. 644, 645.]

DANS son Mémoire sur les *arrangements*, 1844, M. Cauchy a établi le théorème suivant :

Soit n un nombre entier donné,

$$\alpha a + \beta b + \gamma c + \dots + \lambda l = n;$$

en supposant a, b, c, \dots, l des nombres entiers et inégaux, $\alpha, \beta, \gamma, \dots, \lambda$ des nombres entiers, et en faisant varier de toutes les manières possibles les valeurs du système a, b, c, \dots, l , on aura

$$\sum \frac{1}{\pi^\alpha \cdot \pi^\beta \dots \pi^\lambda a^\alpha b^\beta \dots l^\lambda} = 1,$$

où πx signifie le produit $1 \cdot 2 \cdot 3 \dots x$.

Je vais démontrer qu'on peut exprimer d'une manière très-simple la valeur générale de $\sum \frac{\omega^{\alpha+\beta+\dots+\lambda}}{\pi^\alpha \cdot \pi^\beta \dots \pi^\lambda a^\alpha b^\beta \dots l^\lambda}$ pour une valeur quelconque d'une constante ω .

En effet, il est très-facile de voir qu'en posant l'équation en nombres positifs et entiers

$$x_1 + x_2 + x_3 + \dots + x_r = n,$$

et en attribuant à x_1, x_2, \dots, x_r toutes les valeurs possibles qui satisfont à cette équation (en regardant comme distinctes les solutions qui diffèrent dans les valeurs de x , quoique contenant le même système de valeurs), on peut représenter la série (nommée fonction de n et ω) sous la forme

$$\sum_{r=1}^{r=1} \sum_{x_1 x_2 \dots x_r} \frac{1}{\pi(r)} \frac{\omega^r}{\pi(r)},$$

c'est-à-dire

$$\sum_{r=1}^{r=1} F(r, n) \frac{\omega^r}{\pi(r)}.$$

[* See below, p. 290.]

Or on voit immédiatement que $F(r, n)$ n'est autre chose que le coefficient de t^n dans le développement de la fonction génératrice $\left(t + \frac{t^2}{2} + \frac{t^3}{3} + \dots\right)^r$, c'est-à-dire dans le développement de $[\log(1-t)^{-1}]^r$. Donc évidemment la série totale sera le coefficient de t^n dans le développement de $e^{\omega \log((1-t)^{-1})}$, c'est-à-dire de t^n dans $\left(\frac{1}{1-t}\right)^\omega$.

En prenant $\omega = 1$, on voit que la valeur est toujours l'unité pour toute valeur de n , ce qui est le théorème de Cauchy. En prenant $\omega = -i$, i étant un nombre entier quelconque plus petit que n , on trouve la valeur zéro. Pour le cas de $\omega = -1$, cette remarque avait déjà été faite par M. Cayley, dans le *Philosophical Magazine* (mars 1861). En prenant $\omega = \frac{1}{2}$, on trouve pour la valeur de la série $\frac{1 \cdot 3 \cdot 5 \dots 2n-1}{2 \cdot 4 \cdot 6 \dots 2n}$, ce qui peut se déduire aussi par la méthode des arrangements, en se servant du théorème que le nombre des substitutions de $2n$ lettres qui peuvent être représentées par des égales d'un rang exclusivement pair est $[1 \cdot 3 \cdot 5 \dots (2n-1)]^2$, théorème que je crois être nouveau, mais qui est intimement lié au théorème célèbre de M. Cayley sur la valeur des déterminants dits *gauches*.

Voici une dernière observation que je fais sur le théorème général. On remarquera que l'exposant de $\omega^{\alpha+\beta+\dots+\lambda}$ est le nombre des parties dans la partition de n , représentée par α répétitions de a , β de b , ..., λ de l : je nommerai donc $\alpha + \beta + \gamma + \dots + \lambda$ l'*indice* de cette partition, et je dis qu'étant donné le *nombre* de ces indices, disons ν (nombre qu'on peut trouver pour une valeur quelconque de n par le théorème très-bien connu d'Euler sur les partitions indéfinies), on peut faire dépendre les valeurs de ces ν indices de la solution d'un système de 2μ équations algébriques à 2μ inconnues. Car pour une valeur quelconque de ω on connaîtra par le théorème du texte la valeur de $\frac{\omega^{i_1}}{q_1} + \frac{\omega^{i_2}}{q_2} + \dots + \frac{\omega^{i_\mu}}{q_\mu}$, où i_1, i_2, \dots, i_μ seront les indices cherchés, et q_1, q_2, \dots, q_μ des quantités inconnues, mais indépendantes de ω . En substituant pour ω successivement $\omega, \omega^2, \omega^3, \dots, \omega^{2\mu}$ et en écrivant $\omega^{i_r} = I_r$, on aura 2μ équations de la forme

$$\frac{I_1^k}{q_1} + \frac{I_2^k}{q_2} + \dots + \frac{I_\mu^k}{q_\mu} = C,$$

k prenant toutes les valeurs de 1 jusqu'à 2μ . On peut donc former une équation dont dépendra la valeur de chacune des quantités I_1, I_2, \dots, I_μ , et conséquemment de leurs logarithmes i_1, i_2, \dots, i_μ , les μ indices de la partition indéfinie de n .