# Efficient second-order online kernel learning withadaptiveembedding



Daniele Calandriello, Alessandro Lazaric, Michal Valko

#### Motivation

Non-parametric models are versatile and accurate. Computing solution online is still accurate

second-order methods' achieve logarithmic regret

#### **Current limitations**

- ► Curse of kernelization makes them slow down over time:  $\hookrightarrow \mathcal{O}(t)$  space and time *per-step*.
- Adversary can exploit fixed approximation schemes: → force linear approximation error

We propose PROS-N-KONS, the first fixed-cost approximate online kernel learning algorithm achieving logarithmic regret

- $\vdash$  Nyström + leverage score sampling  $\rightarrow$  embed points in  $\mathbb{R}^j$
- → adapts embedding online: cannot be exploited
- $\rightarrow$  embedding size j scales only with effective dimension
- preserves logarithmic rate

## Online kernel learning

**Online** game between learner and adversary, at each round  $t \in [T]$ 

- 1. the adversary reveals a new point  $\varphi(\mathbf{x}_t) = \phi_t \in \mathcal{H}$
- 2. the learner chooses  $\mathbf{w}_t$  and predicts  $f_{\mathbf{w}_t}(\mathbf{x}_t) = \varphi(\mathbf{x}_t)^\mathsf{T} \mathbf{w}_t$ ,
- 3. the adversary reveals the curved loss  $\ell_t$ ,
- 4. the learner suffers  $\ell_t(\boldsymbol{\phi}_t^\mathsf{T}\mathbf{w}_t)$  and observes gradient  $\mathbf{g}_t$ .

#### Kernel

- ullet  $\varphi(\cdot): \mathcal{X} o \mathcal{H}$  is the high-dimensional (possibly infinite) map
- $oldsymbol{\Phi}_t = [oldsymbol{\phi}_1, \dots, oldsymbol{\phi}_t]$ ,  $oldsymbol{\Phi}_t^{\scriptscriptstyle\mathsf{T}} oldsymbol{\Phi}_t = \mathbf{K}_t$  (kernel trick)
- $ullet \mathbf{g}_t = \ell_t'(oldsymbol{\phi}_t^{\scriptscriptstyle\mathsf{T}}\mathbf{w}_t)oldsymbol{\phi}_t := \dot{g}_toldsymbol{\phi}_t$

#### Minimize **regret**

$$R(\mathbf{w}) = \sum_{t=1}^{T} \ell_t(\boldsymbol{\phi}_t^\mathsf{T} \mathbf{w}_t) - \ell_t(\boldsymbol{\phi}_t^\mathsf{T} \mathbf{w})$$

against the best-in-hindsight  $\mathbf{w}^* := rg \min_{\mathbf{w} \in \mathcal{S}} \sum_{t=1}^T \ell_t(oldsymbol{\phi}_t^{\scriptscriptstyle\mathsf{T}} \mathbf{w})$  in feasible space  $S = \cap_t S_t = \cap_t \{ \mathbf{w} : |\boldsymbol{\phi}_t^\mathsf{T} \mathbf{w}| \leq C \}$ 

#### Curvature and first vs second order



First order (GD) Zinkevich 2003, Kivinen et al. 2004

- $\triangleright$   $\mathcal{O}(d)/\mathcal{O}(t)$  time/space per-step
- ightharpoonup regret  $\sqrt{T}$



First order (GD) Hazan, Rakhlin, et al. 2008

- $\triangleright$   $\mathcal{O}(d)/\mathcal{O}(t)$  time/space per-step
- ightharpoonup regret  $\log(T)$

but often not satisfied in practice  $\vdash$  (e.g.  $(y_t - \boldsymbol{\phi}_t^\mathsf{T} \mathbf{w}_t)^2$ )



Second order (Newton-like)

- Hazan, Kalai, et al. 2006, Zhdanov and Kalnishkan 2010
- ightharpoonup regret  $\log(T)$
- $\mathcal{O}(d^2)/\mathcal{O}(t^2)$  time/space per-step

#### Kernelized Online Newton Step (KONS)

$$\mathbf{A}_0 = \alpha \mathbf{I}, \quad \mathbf{A}_t = \mathbf{A}_{t-1} + \sigma \mathbf{g}_t \mathbf{g}_t^\mathsf{T}, \quad \mathbf{w}_{t+1} = \Pi_{\mathcal{S}_{t+1}}^{\mathbf{A}_t} (\mathbf{w}_t - \mathbf{A}_t^{-1} \mathbf{g}_t).$$



#### **Assumptions**

- 1: the losses  $\ell_t$  are scalar Lipschitz  $|\ell_t'(z)| \leq L$
- 2:  $\ell_t(\boldsymbol{\phi}_t^\mathsf{T}\mathbf{w}) \ge \ell_t(\boldsymbol{\phi}_t^\mathsf{T}\mathbf{u}) + \nabla \ell_t(\boldsymbol{\phi}_t^\mathsf{T}\mathbf{u})^\mathsf{T}(\mathbf{w} \mathbf{u}) + \sigma \left(\nabla \ell_t(\boldsymbol{\phi}_t^\mathsf{T}\mathbf{u})^\mathsf{T}(\mathbf{w} \mathbf{u})\right)^2$

#### Challenge

Reduce computational cost without losing logarithmic regret?

#### References

- Daniele Calandriello et al. "Second-Order Kernel Online Convex Optimization with Adaptive Sketching". In: ICML. 2017.
- Elad Hazan, Adam Kalai, et al. "Logarithmic regret algorithms for online convex optimization". In: COLT. 2006.
- Elad Hazan, Alexander Rakhlin, et al. "Adaptive online gradient descent". In: NIPS. 2008.
- J. Kivinen et al. "Online Learning with Kernels". In: IEEE Transactions on Signal Processing (2004). Haipeng Luo et al. "Efficient second-order online learning via sketch-
- ing". In: NIPS. 2016. Fedor Zhdanov and Yuri Kalnishkan. "An Identity for Kernel Ridge Regression". In: Algorithmic Learning Theory. 2010.
- Martin Zinkevich. "Online Convex Programming and Generalized Infinitesimal Gradient Ascent". In: ICML. 2003.

## Fast rates in online kernel learning

Proposition 1:  $R(\mathbf{w}) \leq \mathcal{O}\left(\sum_{t=1}^{T} \mathbf{g}_{t}^{\mathsf{T}} \mathbf{A}_{t}^{-1} \mathbf{g}_{t}\right) \leq \mathcal{O}\left(\sum_{t=1}^{T} \mathbf{g}_{t}^{\mathsf{T}} \left(\mathbf{G}_{t} \mathbf{G}_{t}^{\mathsf{T}} + \alpha \mathbf{I}\right)^{-1} \mathbf{g}_{t}\right) \leq \mathcal{O}\left(L \sum_{t=1}^{T} \boldsymbol{\phi}_{t}^{\mathsf{T}} \left(\boldsymbol{\Phi}_{t} \boldsymbol{\Phi}_{t}^{\mathsf{T}} + \alpha \mathbf{I}\right)^{-1} \boldsymbol{\phi}_{t}\right).$ 

**Definition 1.** Given a kernel matrix  $\mathbf{K}_T \in \mathbb{R}^{T \times T}$ , define

 $\alpha$ -ridge leverage score:  $\tau_{T,i}(\alpha) = \mathbf{e}_{T,i}\mathbf{K}_T^{\mathsf{T}}(\mathbf{K}_T + \alpha\mathbf{I}_T)^{-1}\mathbf{e}_{T,i} = \boldsymbol{\phi}_i^{\mathsf{T}}(\boldsymbol{\Phi}_T\boldsymbol{\Phi}_T^{\mathsf{T}} + \alpha\mathbf{I})^{-1}\boldsymbol{\phi}_i$ 

Effective dimension:  $\mathbf{d}_{eff}(\alpha)_{\mathbf{T}} = \sum_{i=1}^{T} \tau_{T,i}(\alpha) = \sum_{\mathbf{i}=1}^{\mathbf{T}} \frac{\lambda_{\mathbf{i}}(\mathbf{K}_{\mathbf{T}})}{\lambda_{\mathbf{i}}(\mathbf{K}_{\mathbf{T}}) + \alpha} \leq \operatorname{Rank}(\mathbf{K}_{T}) = r$ 

Proposition 2:  $d_{\text{onl}}^T(\alpha) := \sum_t \phi_t^{\mathsf{T}} \left( \Phi_t \Phi_t^{\mathsf{T}} + \alpha \mathbf{I} \right)^{-1} \phi_t \leq \log \operatorname{Det}(\mathbf{K}_T/\alpha + \mathbf{I}) \leq 2 d_{\text{eff}}^T(\alpha) \frac{\log(T/\alpha)}{\log(T/\alpha)}$ .



# Kernel online row sampling (KORS)

A dictionary  $\mathcal{I} = \{(s_i, \phi_i)\}$  is a (weighted) collection of samples.  $\mathbf{P}_{\mathcal{I}} = \mathbf{\Phi}_{\mathcal{I}}(\mathbf{\Phi}_{\mathcal{I}}^{\mathsf{T}}\mathbf{\Phi}_{\mathcal{I}})^{+}\mathbf{\Phi}_{\mathcal{I}})$  is the projection on the dictionary.

**Proposition 3.** Given parameters  $0 < \varepsilon \le 1$ ,  $0 < \gamma$ ,  $0 < \delta < 1$ ,  $\rho = \frac{1+\varepsilon}{1-\varepsilon}$ , if  $\beta \geq 3\log(T/\delta)/\varepsilon^2$  then the dictionary learned by KORS is such that w.p.  $1 - \delta$  and for all  $t \in [T]$ , we have

(1) 
$$\mathbf{0} \preceq \mathbf{\Phi}_t^{\mathsf{T}} (\mathbf{P}_t - \mathbf{P}_{\mathcal{I}_t}) \mathbf{\Phi}_t \preceq + \frac{\varepsilon}{1 - \varepsilon} \gamma \mathbf{I}_t$$

(2)  $J = \max_{t} |\mathcal{I}_{t}|$  is bounded by  $\mathcal{O}(d_{eff}^{T}(\gamma) \log^{2}(T/\delta))$ .

KORS runs in  $\mathcal{O}(d_{eff}^T(\gamma)^2 \log^4(T))$  space and  $\widetilde{\mathcal{O}}(d_{eff}^T(\gamma)^3)$  per-step time.

$$\widetilde{\tau}_{t,i} = \frac{1+\varepsilon}{\rho\gamma} \left( k_{i,i} - \mathbf{k}_{t,i} \overline{\mathbf{S}} (\overline{\mathbf{S}}^{\mathsf{T}} \mathbf{K}_t \overline{\mathbf{S}} + \gamma \mathbf{I})^{-1} \overline{\mathbf{S}}^{\mathsf{T}} \mathbf{k}_{t,i} \right)$$

**Input:** Regularization  $\gamma$ , accuracy  $\varepsilon$ , budget  $\beta$ 

- 1: Initialize  $\mathcal{I}_0 = \emptyset$ 2: **for**  $t = \{0, \dots, T-1\}$  **do**
- receive  $\phi_{\scriptscriptstyle +}$
- construct temporary dictionary  $\overline{\mathcal{I}}_t := \mathcal{I}_{t-1} \cup (t,1)$
- compute  $\widetilde{p}_t = \min\{\beta \widetilde{\tau}_{t,t}, 1\}$  using  $\overline{\mathcal{I}}_t$ .
- draw  $z_t \sim \mathcal{B}(\widetilde{p}_t)$  and if  $z_t = 1$ , add  $(1/\widetilde{p}_t, \boldsymbol{\phi}_t)$  to  $\mathcal{I}_t$
- 7: end for

## PROS-N-KONS



Approximate updates with exact  $\varphi$  (Luo et al. 2016; Calandriello et al. 2017)



Exact updates with approximate  $\widetilde{\varphi}$  (PROS-N-KONS)

$$\widetilde{m{A}}_t^{-1}\widetilde{m{g}}_t = \left(\begin{array}{c} \overbrace{m{Q}} \times \overbrace{m{Q}} \times \overbrace{m{Q}} \times \overbrace{m{Q}} \times \overbrace{m{Q}} \times \underbrace{m{Q}} \times \underbrace{m{Q}$$

- lacktriangledown near-linear time  $\mathcal{O}(Td_{\mathrm{eff}}^T(\gamma)^2)$ , near-constant space  $\mathcal{O}(d_{\mathrm{eff}}^T(\gamma)^2)$
- ▶ adapt embedding using online RLS sampling
- finite time guarantees, unlike approximate linear dependency
- Adversary influences steps and starting point
- →adaptively reset solution, keep dictionary, not too often!

**Theorem 1.** For any sequence of losses  $\ell_t$  satisfying Asm.1-2, let  $\alpha \leq \sqrt{T}$ ,  $\beta \geq 3\log(T/\delta)/\varepsilon^2$ , then the regret of PROS-N-KONS over T steps is bounded w.p.  $1 - \delta$  as

$$R_T(\mathbf{w}) \leq \mathcal{O}\left( \underbrace{\mathbf{J}}_{restarts} (\alpha \|\mathbf{w}\|^2 + \underbrace{d_{eff}^T(\alpha) \log (T/\alpha)}_{online\text{-offline gap}} + \underbrace{\gamma T}_{\mathcal{H} - \widetilde{\mathcal{H}} \ gap} / \alpha \right),$$

where  $J \leq 3\beta d_{eff}^{T}(\gamma)\log(2T)$  is the number of epochs.  $\gamma = \alpha/T$  the previous bound reduces to

 $R_T(\mathbf{w}) \le \mathcal{O}(d_{eff}^T(\alpha/T)(\alpha \|\mathbf{w}\|^2 \log(T) + d_{eff}^T(\alpha) \log^2(T))).$ 

- ▶ If eigenvalues decay as  $\lambda_t = t^{-q}$ , regret is  $o(d_{\text{eff}}(1/T)) \leq o(T^{1/q})$
- ▶ If eigenvalues decay as  $\lambda_t = e^- t$  (Gaussian  $\mathcal{H}$ ), regret is  $o(\log(T))$
- ▶ If  $\mathcal{H} = \mathbb{R}^d$  regret is  $\mathcal{O}(r \log(T))$ , improve over Luo et al. 2016

cpusmall n = 8, 192, d = 12

 $0.01147 \pm 0.00001$ 

parkinson n = 5,875, d = 20

 $0.00212 \pm 0.00001$ 

**Input:** Feasible parameter C, step-sizes  $\eta_t$ , regularizer  $\alpha$ 1: Initialize j=0,  $\widetilde{\mathbf{w}}_0=\mathbf{0}, \widetilde{\mathbf{g}}_0=\mathbf{0}, \ \mathbf{P}_0=\mathbf{0}, \ \mathbf{A}_0=\alpha\mathbf{I}$ ,

- 2: Start a KORS instance with an empty dictionary  $\mathcal{I}_0$  and parameter  $\gamma$
- 3: for  $t = \{1, \dots, T\}$  do Receive  $\mathbf{x}_t$ , feed it to KORS.
- Receive  $z_t$  (point added to dictionary or not)
- if  $z_{t-1} = 1$  then { Dictionary changed, reset.} j = j + 1
- Build  $\mathbf{K}_j$  from  $\mathcal{I}_j$  and decompose it in  $\mathbf{U}_j \mathbf{\Sigma}_j \mathbf{\Sigma}_i^\mathsf{T} \mathbf{U}_i^\mathsf{T}$
- Set  $\widetilde{\mathbf{A}}_{t-1} = lpha \mathbf{I} \in \mathbb{R}^{j imes j}$ ,  $\widetilde{oldsymbol{\omega}}_t = \mathbf{0} \in \mathbb{R}^j$ else { Execute a gradient-descent step. ]
- Compute map  $\phi_t$  and approximate map  $\phi_t = \mathbf{\Sigma}_i^{-1} \mathbf{U}_i^\mathsf{T} \mathbf{\Phi}_i^\mathsf{T} \phi_t \in \mathbb{R}^j$ 
  - Compute  $\widetilde{\boldsymbol{v}}_t = \widetilde{\boldsymbol{\omega}}_{t-1} \widetilde{\mathbf{A}}_{t-1}^{-1} \widetilde{\mathbf{g}}_{t-1}$ .
  - $\text{Compute } \widetilde{\boldsymbol{\omega}}_t = \widetilde{\boldsymbol{v}}_t \frac{\operatorname{sign}(\widetilde{\boldsymbol{\phi}}_t^\mathsf{T} \widetilde{\boldsymbol{v}}_t) \max\{|\widetilde{\boldsymbol{\phi}}_t^\mathsf{T} \widetilde{\boldsymbol{v}}_t| C, \, 0\}}{\widetilde{\boldsymbol{\phi}}_t^\mathsf{T} \widetilde{\mathbf{A}}_{t-1}^{-1} \widetilde{\boldsymbol{\phi}}_t} \widetilde{\mathbf{A}}_{t-1}^{-1} \widetilde{\boldsymbol{\phi}}_t$
- end if Predict  $\widetilde{y}_t = \widetilde{\phi}_t^\mathsf{T} \widetilde{\omega}_t$ .
- Observe  $\widetilde{\mathbf{g}}_t = \nabla_{\widetilde{\boldsymbol{\omega}}_t} \ell_t(\widetilde{\boldsymbol{\phi}}_t^\mathsf{T} \widetilde{\boldsymbol{\omega}}_t) = \ell_t'(\widetilde{y}_t) \widetilde{\boldsymbol{\phi}}_t.$
- Update  $\widetilde{\mathbf{A}}_t = \widetilde{\mathbf{A}}_{t-1} + \frac{\sigma_t}{2} \widetilde{\mathbf{g}}_t \widetilde{\mathbf{g}}_t^\mathsf{T}$ .
- **18**: **end for**

**Theorem 2.** For any sequence  $\ell_t = (y_t - \widehat{y}_t)^2$  of squared losses, let  $\alpha \leq \sqrt{T}$ ,  $\gamma \leq \alpha$ ,  $\beta \geq 3\log(T/\delta)/\varepsilon^2$ , then the regret of PROS-N-KONS over T steps is bounded w.p.  $1 - \delta$  as

$$R_T(\mathbf{w}) \le \mathcal{O}\left(J\left(d_{eff}^T(\alpha)\log(T) + \alpha \max_j \mathcal{L}_j^* + \alpha \|\mathbf{w}\|_2^2\right)\right)$$

where  $\mathcal{L}_{j}^{*} = \min_{\mathbf{w} \in \mathcal{S}} \left( \sum_{t=t_{j}}^{t_{j+1}-1} \left( \boldsymbol{\phi}_{t}^{\mathsf{T}} \mathbf{w} - y_{t} \right)^{2} + \alpha \|\mathbf{w}\|_{2}^{2} \right)$  is the best regularized cumulative loss in  $\mathcal{H}$  within epoch j.

- First-order regret bound,  $\mathcal{L}^*$  constant if model is correct  $\rightarrow$  constant  $\mathcal{H}$ - $\mathcal{H}$  gap is enough if instantaneous loss goes to 0.
- ▶ near-linear time online Gaussian process optimization →adaptive choice of inducing points.
- ► Analysis can be applied to first-order methods too.

#### Experiments

BATCH

| Algorithm   | parkinson $n = 5,875, d = 20$ |     |       | cpusmall $n = 8, 192, d = 12$ |     |        |
|-------------|-------------------------------|-----|-------|-------------------------------|-----|--------|
|             | avg. squared loss             | #SV | time  | avg. squared loss             | #SV | time   |
| FOGD        | $0.04909 \pm 0.00020$         | 30  | _     | $0.02577 \pm 0.00050$         | 30  | _      |
| NOGD        | $0.04896 \pm 0.00068$         | 30  | _     | $0.02559 \pm 0.00024$         | 30  |        |
| PROS-N-KONS | $0.05798 \pm 0.00136$         | 18  | 5.16  | $0.02494 \pm 0.00141$         | 20  | 7.28   |
| Con-KONS    | $0.05696 \pm 0.00129$         | 18  | 5.21  | $0.02269 \pm 0.00164$         | 20  | 7.40   |
| B-KONS      | $0.05795 \pm 0.00172$         | 18  | 5.35  | $0.02496 \pm 0.00177$         | 20  | 7.37   |
| ВАТСН       | $0.04535 \pm 0.00002$         | _   | _     | $0.01090 \pm 0.00082$         |     |        |
| Algorithm   | cadata $n=20,640$ , $d=8$     |     |       | casp $n = 45,730, d = 9$      |     |        |
|             | avg. squared loss             | #SV | time  | avg. squared loss             | #SV | time   |
| FOGD        | $0.04097 \pm 0.00015$         | 30  | _     | $0.08021 \pm 0.00031$         | 30  | _      |
| NOGD        | $0.03983 \pm 0.00018$         | 30  | -     | $0.07844 \pm 0.00008$         | 30  |        |
| PROS-N-KONS | $0.03095 \pm 0.00110$         | 20  | 18.59 | $0.06773 \pm 0.00105$         | 21  | 40.73  |
| Con-KONS    | $0.02850 \pm 0.00174$         | 19  | 18.45 | $0.06832 \pm 0.00315$         | 20  | 40.91  |
| B-KONS      | $0.03095 \pm 0.00118$         | 19  | 18.65 | $0.06775 \pm 0.00067$         | 21  | 41.13  |
| BATCH       | $0.02202 \pm 0.00002$         |     |       | $0.06100 \pm 0.00003$         |     | _      |
| Algorithm   | slice $n = 53, 500, d = 385$  |     |       | year $n = 463,715, d = 90$    |     |        |
|             | avg. squared loss             | #SV | time  | avg. squared loss             | #SV | time   |
| FOGD        | $0.00726 \pm 0.00019$         | 30  | _     | $0.01427 \pm 0.00004$         | 30  | _      |
| NOGD        | $0.02636 \pm 0.00460$         | 30  | -     | $0.01427 \pm 0.00004$         | 30  | _      |
| Dual-SGD    |                               |     |       | $0.01440 \pm 0.00000$         | 100 |        |
| PROS-N-KONS | did not complete              |     |       | $0.01450 \pm 0.00014$         | 149 | 884.82 |
| Con-KONS    | did not complete              | —   | -     | $0.01444 \pm 0.00017$         | 147 | 889.42 |
| B-KONS      | $0.00913 \pm 0.00045$         | 100 | 60    | $0.01302 \pm 0.00006$         | 100 | 505.36 |

# ← Regression datasets | Binary classification datasets ¬

|                             |                              |     | <i>J</i> |                               |     | ▼      |  |
|-----------------------------|------------------------------|-----|----------|-------------------------------|-----|--------|--|
| $\alpha = 1$ , $\gamma = 1$ |                              |     |          |                               |     |        |  |
| Algorithm                   | ijcnn1 $n = 141,691, d = 22$ |     |          | cod-rna $n = 271, 617, d = 8$ |     |        |  |
|                             | accuracy                     | #SV | time     | accuracy                      | #SV | time   |  |
| FOGD                        | $9.06 \pm 0.05$              | 400 | _        | $10.30 \pm 0.10$              | 400 |        |  |
| NOGD                        | $9.55\pm0.01$                | 100 |          | $13.80 \pm 2.10$              | 100 |        |  |
| DUAL-SGD                    | <b>8.35</b> ± 0.20           | 100 |          | $4.83 \pm 0.21$               | 100 |        |  |
| PROS-N-KONS                 | $9.70 \pm 0.01$              | 100 | 211.91   | $13.95 \pm 1.19$              | 38  | 270.81 |  |
| Con-KONS                    | $9.64 \pm 0.01$              | 101 | 215.71   | $18.99 \pm 9.47$              | 38  | 271.85 |  |
| B-KONS                      | $9.70 \pm 0.01$              | 98  | 206.53   | $13.99 \pm 1.16$              | 38  | 274.94 |  |
| ВАТСН                       | $8.33 \pm 0.03$              |     | _        | $3.781 \pm 0.01$              |     | _      |  |

| $\alpha=0.01,\gamma=0.01$ |                              |     |         |                               |     |        |  |
|---------------------------|------------------------------|-----|---------|-------------------------------|-----|--------|--|
| Algorithm                 | ijcnn1 $n = 141,691, d = 22$ |     |         | cod-rna $n = 271, 617, d = 8$ |     |        |  |
|                           | accuracy                     | #SV | time    | accuracy                      | #SV | time   |  |
| FOGD                      | $9.06 \pm 0.05$              | 400 |         | $10.30 \pm 0.10$              | 400 |        |  |
| NOGD                      | $9.55\pm0.01$                | 100 |         | $13.80 \pm 2.10$              | 100 |        |  |
| Dual-SGD                  | $8.35 \pm 0.20$              | 100 |         | $4.83 \pm 0.21$               | 100 |        |  |
| PROS-N-KONS               | $10.73 \pm 0.12$             | 436 | 1003.82 | $4.91 \pm 0.04$               | 111 | 459.28 |  |
| Con-KONS                  | $6.23 \pm 0.18$              | 432 | 987.33  | $5.81 \pm 1.96$               | 111 | 458.90 |  |
| B-KONS                    | <b>4.85</b> ± 0.08           | 100 | 147.22  | <b>4.57</b> ± 0.05            | 100 | 333.57 |  |
| BATCH                     | $5.61 \pm 0.01$              | _   | _       | $3.61 \pm 0.01$               | _   |        |  |

- effective dimension empirically small  $d_{\text{eff}}(1) \lesssim 4d$
- Restarts sometimes disrupt learning. Are they necessary?