Association Rule Mining

Association Rule Mining

- Consider shopping cart filled with several items
- Market basket analysis tries to answer the following questions:
 - Who makes purchases?
 - What do customers buy together?
 - In what order do customers purchase items?

Market Basket Analysis

- INPUT: list of purchases by purchaser
 - do not have names
- identify purchase patterns
 - what items tend to be purchased together
 - obvious: steak-potatoes; beer-pretzels
 - what items are purchased sequentially
 - obvious: house-furniture; car-tires
 - what items tend to be purchased by season

Association Rules

- Categorize customer purchase behavior
- identify actionable information
 - purchase profiles
 - profitability of each purchase profile
 - use for marketing
 - layout or catalogs
 - select products for promotion
 - space allocation, product placement

Association Rules

Benefits

- selection of promotions, merchandising strategy
 - sensitive to price: Italian entrees, pizza, pies, Oriental entrees, orange juice
- uncover consumer spending patterns
 - correlations: orange juice & waffles
- joint promotional opportunities

Applications

- Retail outlets
- Telecommunications
- Banks
- Insurance
 - link analysis for fraud
- Medical
 - symptom analysis

Purchase Profiles

Each profile has an average profit per basket

Kids' fashion\$15.24push these

– Men's fashion \$13.41

—

Smoker \$2.88 don't push

Student/home office \$2.55 these

Market Basket Analysis

- Affinity Positioning
 - coffee, coffee makers in close proximity

- Cross-Selling
 - cold medicines, kleenex, orange juice

Association Rules

- Wal-Mart customers who purchase Barbie dolls have a 60% likelihood of also purchasing one of three types of candy bars [Forbes, Sept 8, 1997]
- Customers who purchase maintenance agreements are very likely to purchase large appliances (Linoff and Berry experience)
- When a new hardware store opens, one of the most commonly sold items is toilet bowl cleaners (Linoff and Berry experience)

How can Association Rules be used?

Let the rule discovered be

 $\{Bagels,...\} \rightarrow \{Potato Chips\}$

- Potato chips as consequent => Can be used to determine what should be done to boost its sales
- Bagels in the antecedent => Can be used to see which products would be affected if the store discontinues selling bagels
- Bagels in antecedent and Potato chips in the consequent => Can be used to see what products should be sold with Bagels to promote sale of Potato Chips

What Is Association Rule Mining

Rule form

Antecedent → Consequent

Examples

- buys(x, "computer") → buys(x, "financial management software")
- age(x, "30..39") $^{\land}$ income(x, "42..48K") \rightarrow buys(x, "car")

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. $s(\{Milk, Bread, Diaper\}) = 2/5$

Frequent Itemset

 An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Association Rule

- An implication expression of the form
 X → Y, where X and Y are itemsets
- Example:{Milk, Diaper} → {Beer}

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

Example:

 $\{Milk, Diaper\} \Rightarrow Beer$

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk,Diaper,Beer})}{\sigma(\text{Milk,Diaper})} = \frac{2}{3} = 0.67$$

Association Rule

Association rules are rules presenting association or correlation between itemsets.

$$support(A \Rightarrow B) = P(A \cup B)$$

$$confidence(A \Rightarrow B) = P(B|A)$$

$$= \frac{P(A \cup B)}{P(A)}$$

$$lift(A \Rightarrow B) = \frac{confidence(A \Rightarrow B)}{P(B)}$$

$$= \frac{P(A \cup B)}{P(A)P(B)}$$

where P(A) is the percentage (or probability) of cases containing A.

Frequent Itemsets Mining

TID	Transactions
100	{ A, B, E }
200	{ B, D }
300	{ A, B, E }
400	{ A, C }
500	{ B, C }
600	{ A, C }
700	{ A, B }
800	{ A, B, C, E }
900	{ A, B, C }
1000	{ A, C, E }

- Minimum support level
 50%
 - $\{A\},\{B\},\{C\},\{A,B\},\{A,C\}$

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Longrightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori Principle

Illustrating Apriori Principle

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

If every subset is considered,
${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$
With support-based pruning,
6 + 6 + 1 = 13

Itemset	Count
{Bread,Milk,Diaper}	3

Challenges of Frequent Itemset Mining

Challenges

- Multiple scans of transaction database
- Huge number of candidates
- Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Alternative Methods for Frequent Itemset Generation

- Representation of Database
 - horizontal vs vertical data layout

Horizontal Data Layout

TID	Items
1	A,B,E
2	B,C,D
3	C,E
4	A,C,D
5	A,B,C,D
6	A,E
7	A,B
8	A,B,C
9	A,C,D
10	В

Vertical Data Layout

Α	В	O	D	Е
1	1	2	2	1
4	2	2 3 4 8 9	2 4 5 9	3 6
4 5 6 7	2 5 7	4	5	6
6		8	9	
7	8	9		
8 9	10			
9				

ECLAT

 For each item, store a list of transaction ids (tids)

Horizontal Data Layout

TID	Items
1	A,B,E
2	B,C,D
3	C,E
4	A,C,D
5	A,B,C,D
6	A,E
7	A,B
8	A,B,C
9	A,C,D
10	В

Vertical Data Layout

Α	В	С	D	Е
1	1	2	2	1
4	2	2	4	3 6
5	2 5	4	2 4 5 9	6
6	7	4 8 9	9	
7	8	9		
4 5 6 7 8 9	10			
9				

ECLAT

• Determine support of any k-itemset by intersecting tid-lists of two of its (k-1) subsets.

Α		В		AB
1		1		1
4		2		5
5	^	5	\rightarrow	7
6		7		8
7		8		
8		10		
9				

- 3 traversal approaches:
 - top-down, bottom-up and hybrid
- Advantage: very fast support counting
- Disadvantage: intermediate tid-lists may become too large for memory

Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets

Closed Itemset

 An itemset is closed if none of its immediate supersets has the same support as the itemset

TID	Items	
1	{A,B}	
2	{B,C,D}	
3	$\{A,B,C,D\}$	
4	{A,B,D}	
5	5 {A,B,C,D}	

Itemset	Support
{ A }	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
$\{A,D\}$	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support
$\{A,B,C\}$	2
$\{A,B,D\}$	3
$\{A,C,D\}$	2
$\{B,C,D\}$	3
$\{A,B,C,D\}$	2

Maximal vs Closed Itemsets

Maximal vs Closed Frequent Itemsets

Maximal vs Closed Itemsets

