MT2022161 ADITYA.M

ASSIGNMENT -1 [AI - 511]

DATA PRE-PROCESSING

MODULES REQUIRED

import pandas as pd import numpy as np

import matplotlib.pyplot as plt

LOADING DATA

In [2]: d=pd.read_csv("boston.csv")

DATA OBSERVATION

In [3]: d.head(10)

)ut[3]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
	0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0
	1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
	2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7
	3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4
	4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2
	5	0.02985	0.0	2.18	0	0.458	6.430	58.7	6.0622	3	222.0	18.7	394.12	5.21	28.7
	6	0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311.0	15.2	395.60	12.43	22.9
	7	0.14455	12.5	7.87	0	0.524	6.172	96.1	5.9505	5	311.0	15.2	396.90	19.15	27.1
	8	0.21124	12.5	7.87	0	0.524	5.631	100.0	6.0821	5	311.0	15.2	386.63	29.93	16.5
	9	0.17004	12.5	7.87	0	0.524	6.004	85.9	6.5921	5	311.0	15.2	386.71	17.10	18.9

In [4]: d.drop_duplicates()

Out[4]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
	0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0
	1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
	2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7
	3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4
	4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2
	501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273.0	21.0	391.99	9.67	22.4
	502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273.0	21.0	396.90	9.08	20.6
	503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273.0	21.0	396.90	5.64	23.9
	504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273.0	21.0	393.45	6.48	22.0
	505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273.0	21.0	396.90	7.88	11.9

506 rows × 14 columns

In [5]: d.shape

Out[5]: (506, 14)

we can see that there are 506 unique data points with 13 features and 1 output variable

In [6]: d.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):
     Column
              Non-Null Count Dtype
     CRIM
0
               506 non-null
                                float64
                                float64
 1
               506 non-null
 2
     INDUS
               506 non-null
                                float64
 3
     CHAS
               506 non-null
                               int64
 4
     NOX
               506 non-null
                                float64
 5
     RM
               506 non-null
                                float64
                               float64
 6
     AGE
               506 non-null
 7
     DIS
               506 non-null
                               float64
 8
     RAD
               506 non-null
                                int64
 9
     TAX
               506 non-null
                                float64
 10
     PTRATIO
              506 non-null
                               float64
 11
     В
               506 non-null
                                float64
     LSTAT
 12
               506 non-null
                                float64
     MEDV
              506 non-null
 13
                               float64
dtypes: float64(12), int64(2)
memory usage: 55.5 KB
```

we can observe that all the features are either float or interger valued with no NULL values

<pre>In [7]: d.describe()</pre>												
Out[7]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO
	count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000
	mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.455534
	std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.164946
	min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000
	25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.400000
	50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.050000
	75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.200000
	max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000
I												

UNIVARIENT LINEAR REGRESSION

step 1: selection the feature for univarient linear regression

```
In [8]:
            import seaborn as sns
            cor=d.corr()
            plt.figure(figsize=(16,5))
            dataplot=sns.heatmap(cor,cmap="YlGnBu",annot=True,linewidths=0.5)
                                                                                                                                                                             1.0
                                                                                                                                      -0.39
                                                                                                                                                          -0.39
                CRIM
                                   -0.2
                                                      -0.056
                                                                          -0.22
                                                                                              -0.38
                                                      -0.043
                                                                                              0.66
                                                                                                                            -0.39
                                                                                                                                                -0.41
                  ΖN
                         -0.2
                                            -0.53
                                                                -0.52
                                                                                    -0.57
                                                                                                        -0.31
                                                                                                                  -0.31
                                                                                                                                                                              0.8
                                                      0.063
              INDUS
                                  -0.53
                                                                          -0.39
                                                                                              -0 71
                                                                                                                                      -0.36
                                                                                                                                                          -0 48
                                                                                                                                                                             0.6
                        -0.056
                                  -0.043
                                                                                              -0.099
                                                                                                                            -0.12
                                                                                                                                     0.049
               CHAS
                                            0.063
                                                                                                       -0.0074
                                                                                                                 -0.036
                                                                                                                                               -0.054
                NOX
                                  -0.52
                                                                           -03
                                                                                   0.73
                                                                                              -0.77
                                                                                                                  0.67
                                                                                                                                      -0.38
                                                                                                                                                          -0 43
                                                                                                                                                                             0.4
                                                                                                                            -0.36
                                                                                                                                                          0.7
                 RM
                         -0.22
                                            -0.39
                                                                 -0.3
                                                                                    -0.24
                                                                                                        -0.21
                                                                                                                  -0.29
                                                                                                                                                -0.61
                                                                                                                                                                             0.2
                                            0.64
                 AGE
                                                                                                                                      -0.27
                                  -0.57
                                                                          -0.24
                                                                                              -0.75
                                                                                                        0.46
                                                                                                                                                          -0.38
                 DIS
                         -0.38
                                            -0.71
                                                      -0.099
                                                                -0.77
                                                                                    -0.75
                                                                                                        -0.49
                                                                                                                  -0.53
                                                                                                                            -0.23
                                                                                                                                                -0.5
                                                                                                                                                                              0.0
                RAD
                                                      -0.0074
                                                                          -0.21
                                                                                    0.46
                                                                                                                                      -0.44
                                                                                                                                                0.49
                                                                                                                                                          -0.38
                         0.63
                                  -0.31
                                                                                              -0.49
                                                                                                                            0.46
                         0.58
                                  -0.31
                                                      -0.036
                                                                          -0.29
                                                                                              -0.53
                                                                                                        0.91
                                                                                                                            0.46
                                                                                                                                      -0.44
                                                                                                                                                0.54
                                                                                                                                                          -0.47
                 TAX
                                                                0.67
                                                                                                                                                                             -0.2
                                                                                              -0.23
                                                                                                                                                          -0.51
             PTRATIO
                                  -0.39
                                                      -0.12
                                                                          -0.36
                                                                                                                                      -0.18
                                             0.38
                                                                                                        0.46
                                                                                                                  0.46
                                                                                                                             1
                                                                                                                                                                              -0.4
                   В
                                            -0.36
                                                      0.049
                                                                                    -0.27
                                                                                                        -0.44
                                                                                                                  -0.44
                                                                                                                            -0.18
                         -0.39
                                                                -0.38
                                                                                                                                                -0.37
               LSTAT
                                                      -0.054
                                  -0.41
                                                                           -0.61
                                                                                               -0.5
                                                                                                        0.49
                                                                                                                                      -0.37
                                                                                                                                                          -0.74
                                                                                                                                                                              -0.6
               MEDV
                                            -0.48
                                                                -0.43
                                                                                    -0.38
                                                                                                        -0.38
                                                                                                                  -0.47
                                                                                                                            -0.51
                                                                                                                                                -0.74
                                            INDUS
                                                      CHAS
                                                                                                         RÁD
                                                                                                                           PTRÁTIO
                                                                                                                                               LSTAT
                                                                                                                                                         MEDV
```

the output variable 'MEDV' has high co-relation with features 'RM' and 'LSTAT', so any 1 features can be choosen for univarient linear regression.

```
In [9]: plt.figure(figsize=(8,8))
    plt.scatter(d['LSTAT'],d['MEDV'],s=3)
    plt.xlabel('LSTAT')
    plt.ylabel('MEDV')
    plt.show()
```



```
In [10]: plt.figure(figsize=(8,8))
  plt.scatter(d['RM'],d['MEDV'],s=3)
  plt.xlabel('RM')
  plt.ylabel('MEDV')
  plt.show()
```


We can take 'LSTAT' as the feature for predicting 'MEDV' in univarient linear regression.

MIN MAX normalization for bringing data values between 0 and 1 for easy visualization

```
In [11]: #X=d['RM']
    X=d['LSTAT']
    Y=d['MEDV']
    xmin,xmax=X.min(),X.max()
    ymin,ymax=Y.min(),Y.max()
    X=(X-xmin)/(xmax-xmin)
    #Y=(Y-ymin)/(ymax-ymin)
```

Below code is used to split the data for training and testing in the given ratio

```
In [12]: # splitting the data into train test
import random
def split(X,Y,ratio=0.4): #ratio is the percentage of data used for training
    n=int(ratio*len(Y))
```

```
#train size is 40% by default
    train_index=[]
    test_index=[]
    while len(train_index)!=n:
        k=random.randrange(0,len(X))
        if k not in train index:
            train index.append(k)
        else:
            pass
    train index.sort()
    for i in range(0,len(X)):
        if i not in train index:
            test index.append(i)
    x train=[]
    y train=[]
    for index in train_index:
        x_train.append(X[index])
        y_train.append(Y[index])
    x_test=[]
    y test=[]
    for index in test index:
        x_test.append(X[index])
        y_test.append(Y[index])
    return x_test,x_train,y_test,y_train
x test,x train,y test,y train=split(X,Y,0.7) #70% for training
```

step 2: defining the model class

```
In [13]: class univarientLinearRegression():
             def __init__(self):
                 self.parameter=np.array([[0],[0]])
             def fit(self,x,y): #closed form solution
                 n=len(x)
                 xi=0
                 xi2=0
                 yi=0
                 xiyi=0
                 for i in range(len(x)):
                     xi=xi+x[i]
                      yi=yi+y[i]
                      xi2=xi2+(x[i]*x[i])
                      xiyi=xiyi+(x[i]*y[i])
                 mat1=[[n,xi],[xi,xi2]]
                 mat2=[[yi],[xiyi]]
                 mat1_inv=np.linalg.inv(mat1)
                 self.parameter=np.matmul(mat1_inv,mat2)
             def iterative fit(self,x,y,lr=0.1,iter=1000): #gradient descent solution
                 n=len(x)
                 lis=[]
                 for i in range(n):
                     lis.append((1,x[i]))
                 x=np.array(lis)
                 y=np.array(y)
                 y=y.reshape((n,1))
                 x=x.reshape((n,2))
                 while(iter):
                      iter=iter-1
                      k=np.subtract((np.matmul(x,self.parameter)),y)
                      dL=np.matmul(x.T,k)
                      self.parameter=np.subtract(self.parameter,(lr*dL))
             def predict(self,x):
                 y=[]
                 a=self.parameter[0][0]
                 b=self.parameter[1][0]
                 for i in range(len(x)):
                      k=a+b*x[i]
                      y.append(k)
                 return y
             def mse(self,y_pred,y):
                 error=0
                  for i in range(len(y)):
                      e=(y[i]-y_pred[i])*(y[i]-y_pred[i])
                      error=error+e
                 error=error/len(y)
```

Step 3: Closed form solution

```
In [14]: model=univarientLinearRegression()
    model.fit(x_train,y_train)
    y_pred=model.predict(x_test)
    mse=model.mse(y_pred,y_test)

print("mean squared error is %s"%(mse))
    plt.figure(figsize=(8,8))
    plt.scatter(X,Y,s=3)
    plt.scatter(x_test,y_pred,s=3,color='red')
    plt.xlabel('LSTAT')
    plt.ylabel('MEDV')
    plt.title('MODEL OBTAINED BY CLOSED FROM SOLUTION')
    plt.show()
```

mean squared error is 40.76695434829298

step 4: gradient descent solution

```
In [15]: model2=univarientLinearRegression()
model2.iterative_fit(x_train,y_train,0.01,10000)
y_pred2=model2.predict(x_test)
mse=model2.mse(y_pred2,y_test)

print("mean squared error is %s"%(mse))
plt.figure(figsize=(8,8))
plt.scatter(X,Y,s=3)
plt.scatter(X,Y,s=3)
plt.scatter(x_test,y_pred2,s=3,color='red')
plt.xlabel('LSTAT')
plt.ylabel('MEDV')
plt.title('MODEL OBTAINED BY ITERATIVE SOLUTION WITH LEARNING RATE AS 0.1 AND 1000 ITERATIONS')
plt.show()
```

mean squared error is 41.26587591491594

MODEL OBTAINED BY ITERATIVE SOLUTION WITH LEARNING RATE AS 0.1 AND 1000 ITERATIONS


```
print(model.parameter)# closed form parameters
In [16]:
         print(model2.parameter)# gradient descent parameters
         [[ 32.27769454]
```

[-32.24427883]] [[32.00490538] [-31.39543633]]

We can see that 'LSTAT' has a linear relationship with the 'median price' of the house, but in some cases other parameters are affecting the price of the house, hence we have to explore multivarient linear regression.

MULTIVARIENT LINEAR REGRESSION

step 1: selection of features for multivarient linear regression

```
In [17]: import seaborn as sns
         cor=d.corr()
         plt.figure(figsize=(16,5))
         dataplot=sns.heatmap(cor,cmap="YlGnBu",annot=True,linewidths=0.5)
```


'RAD' is highly co-related with 'TAX', hence we can eleminate it.

```
d=d.drop(['RAD'],axis=1)
In [18]:
         #getting rid of redudant features
         y=d.iloc[:,-1]
In [19]:
         for feature in d.columns[:-1]:
             mean=d[feature].mean()
             std=d[feature].std()
             d[feature]=((d[feature]-mean)/(std))
         x=d.iloc[:,0:-1] #standerdized values
         r, c=x.shape
         cons=[1 for i in range(r)]
         x.insert(0, 'Constant', cons, True) #inserting costants
In [20]:
         X=np.array(x)
         y=np.array(y)
         n=len(y)
         y=y.reshape((n,1))
         x_test,x_train,y_test,y_train=split(X,y,0.6)
```

step 2: defining the model class

```
class multivarientLinearRegression():
    def
         init (self):
        self.parameter=None
    def fit(self,x,y): #closed form solution
        n, k=len(x), len(x[0])
        x=np.array(x)
        y=np.array(y)
        #n number of data points and k features
        a=np.matmul(x.T,x)
        a=np.linalg.inv(a)
        b=np.matmul(x.T,y)
        self.parameter=np.matmul(a,b)
    def iterative fit(self,x,y,lr=0.01,iter=10000): #gradient descent solution
        n, k=len(x), len(x[0])
        x=np.array(x)
        y=np.array(y)
        self.parameter=np.ones(k)
        {\tt self.parameter=self.parameter.reshape(k,1)}
        while(iter):
            iter=iter-1
            t=np.subtract((np.matmul(x,self.parameter)),y)
            dL=np.matmul(x.T,t)
            dL=dL/n
            self.parameter=np.subtract(self.parameter,(lr*dL))
    def predict(self,x):
        x=np.arrav(x)
        y_pred=np.matmul(x,self.parameter)
        return y_pred
    def mse(self,y_pred,y):
        y=np.array(y)
        error=0
        for i in range(len(y)):
            e=(y[i]-y_pred[i])*(y[i]-y_pred[i])
            error=error+e
        error=error/len(y)
        return int(error)
```

step 3: closed form solution

```
mod=multivarientLinearRegression()
mod.fit(x_train,y_train)
y_pred=mod.predict(x_test)
mse=mod.mse(y_pred,y_test)
print("mean squared error is %s"%(mse))
plt.figure(figsize=(8,8))
plt.scatter(y_test,y_pred,s=3)
plt.xlabel('predicted price')
plt.ylabel('actual price')
plt.title('MODEL OBTAINED BY CLOSED FORM SOLUTION')
plt.show()
```

mean squared error is 23

predicted price

step 4: gradient descent solution

```
mod2=multivarientLinearRegression()
mod2.iterative_fit(x_train,y_train)
y_pred2=mod2.predict(x_test)
mse=mod2.mse(y_pred2,y_test)
print("mean squared error is %s"%(mse))
plt.figure(figsize=(8,8))
plt.scatter(y_test,y_pred2,s=3)
plt.xlabel('predicted price')
plt.ylabel('actual price')
plt.title('MODEL OBTAINED BY GRADIENT DESCENT WITH LEARNING RATE AS 0.01 AND 10000 ITERATIONS')
plt.show()
```

mean squared error is 23

0

MODEL OBTAINED BY GRADIENT DESCENT WITH LEARNING RATE AS 0.01 AND 10000 ITERATIONS

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js