CHAPITRE 1

Quelques rappels sur les fonctions

1. Fonctions

Dans ce cours, on s'intéressera à des fonctions $f:D\to\mathbb{R}$ où D est une partie de $\mathbb{R}.$

Une telle fonction peut être définie à l'aide d'une formule, par exemple

$$f: \mathbb{R} \setminus \{1\} \to \mathbb{R}, \ x \mapsto \frac{\sin x}{(x-1)^2}.$$

Ou bien en indiquant, à l'aide d'une accolade, une formule différente selon la valeur de x, par exemple

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto \left\{ \begin{array}{ll} x+1 & \text{si } x < 0, \\ 2 & \text{si } x = 0, \\ 2+\cos x & \text{si } x > 0. \end{array} \right.$$

Ou bien en décrivant, par une phrase, la procédure qui donne l'image d'un élément ; comme par exemple pour la fonction $partie\ entière$:

$$E: \mathbb{R} \to \mathbb{R}, \ x \mapsto \text{le plus grand entier} \le x.$$

Ayant fixé un repère, la **courbe représentative** ou **graphe** d'une fonction est l'ensemble des points de coordonnées (x, f(x)), lorsque x varie dans l'ensemble de définition de la fonction.

Exemple : dans la figure suivante, on a représenté le graphe de sept fonctions bien connues.

2. Fonctions paires, impaires, périodiques

On rappelle les notions suivantes :

- Une function $f: \mathbb{R} \to \mathbb{R}$ est paire si on a f(-x) = f(x) pour tout $x \in \mathbb{R}$. Cela se traduit par le fait que la courbe représentative de f est symétrique par rapport à l'axe des ordonnées.
- Une function $f: \mathbb{R} \to \mathbb{R}$ est impaire si on a f(-x) = -f(x) pour tout $x \in \mathbb{R}$. Cela se traduit par le fait que la courbe représentative de f est symétrique par rapport à l'origine du repère.
- Une fonction $f: \mathbb{R} \to \mathbb{R}$ est T-périodique si on a f(x+T) = f(x) pour tout $x \in \mathbb{R}$. Lorsqu'une fonction est paire ou impaire, et T-périodique, alors la donnée de son graphe sur l'intervalle $[0,\frac{T}{2}]$ permet de reconstituer tout le

EXEMPLES 2.1. (a) La fonction carrée $\mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$ est paire. La fonction

- (b) La fonction sin est impaire. La fonction identité $\mathbb{R} \to \mathbb{R}$, $x \mapsto x$ est impaire.
- (c) Les fonctions cos et sin sont 2π -périodiques.
- (d) La fonction exp n'est ni paire, ni impaire, ni périodique.

3. Notion de limite

On rappelle la notion de limite.

DÉFINITION 3.1. Soit $f:D\to\mathbb{R}$ une fonction définie au voisinage d'un point a de \mathbb{R} (on dira : "près de a"), c'est-à-dire que D contient un intervalle de la forme |a-r,a| ou |a,a+r| pour un certain r>0.

(1) On dit que f admet $+\infty$ (respectivement $-\infty$) pour limite en a si et seulement si

$$\forall A \in \mathbb{R}, \quad \exists \alpha > 0, \quad \forall x \in D, \qquad (0 < |x - a| < \alpha \Longrightarrow f(x) \geqslant A)$$
 (respectivement

$$\forall A \in \mathbb{R}, \quad \exists \alpha > 0, \quad \forall x \in D, \qquad (0 < |x - a| < \alpha \Longrightarrow f(x) \leqslant A)).$$

(2) Soit $\ell \in \mathbb{R}$. On dit que f admet ℓ pour limite en a si et seulement si $\forall \varepsilon > 0, \quad \exists \alpha > 0, \quad \forall x \in D, \qquad 0 < |x - a| < \alpha \Longrightarrow |f(x) - \ell| < \varepsilon.$

Lorsque l'ensemble de définition D contient un intervalle de la forme $A; +\infty$ (respectivement $]-\infty; B[)$ alors on peut aussi définir (de façon similaire) la notion de limite de f en $+\infty$ (respectivement, $-\infty$).

Exemples 3.2. Les limites suivantes peuvent être établies à l'aide de la définition:

$$\lim_{x\to 1^-}\frac{1}{1-x}=+\infty \qquad \qquad \text{et} \qquad \qquad \lim_{x\to 0}x\sin x=0.$$

On note $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$.

Propriétés 3.3 (Opérations sur les limites). Soient $a \in \mathbb{R}$ et $\lambda \in \mathbb{R}^*$.

- (a) Soient $f_1, f_2: D \to \mathbb{R}$ deux fonctions définies près de a, admettant en a des limites ℓ_1 et ℓ_2 respectivement $(\ell_1, \ell_2 \in \overline{\mathbb{R}})$. Alors, lorsque les opérations sur les limites ont un sens, on a
 - $\lim_{x \to a} (f_1 + f_2)(x) = \lim_{x \to a} f_1(x) + \lim_{x \to a} f_2(x) = \ell_1 + \ell_2;$ $\lim_{x \to a} (\lambda f)(x) = \lambda \lim_{x \to a} f(x) = \lambda \ell;$

•
$$\lim_{x \to a} (f_1 f_2)(x) = \lim_{x \to a} f_1(x) \times \lim_{x \to a} f_2(x) = \ell_1 \ell_2;$$

• $\lim_{x \to a} (f_1 / f_2)(x) = \frac{\lim_{x \to a} f_1(x)}{\lim_{x \to a} f_2(x)} = \frac{\ell_1}{\ell_2}.$

(b) Soient $\ell, L \in \overline{\mathbb{R}}$, $f: D \to \mathbb{R}$, $g: \Delta \to \mathbb{R}$. On suppose que f est définie près de a, g est définie près de ℓ , et que Δ contient f(D). On suppose que f admet une limite ℓ en a et g admet une limite L en ℓ . On a alors

$$\lim_{x \to a} (g \circ f)(x) = \lim_{y \to \ell} g(y) = L.$$

4. Continuité et dérivabilité

On considère ici une fonction $f: I \to \mathbb{R}$ définie sur un intervalle (non vide, non réduit à un point) de R. On rappelle les notions de continuité et dérivabilité.

DÉFINITION 4.1. Soit a un point de I. La fonction f est dite **continue** en a si et seulement si

$$\forall \varepsilon > 0, \quad \exists \alpha > 0, \quad \forall x \in I, \qquad (|x - a| < \alpha \Longrightarrow |f(x) - f(a)| < \varepsilon).$$

Cela revient à dire :

$$\lim_{x \to a} f(x) = f(a).$$

On dit que f est continue sur l'intervalle I si f est continue en tout point $a \in I$. Graphiquement cela se traduit par le fait que le graphe de f est un trait continu.

Définition 4.2. Soit a un point de I. La fonction f est dite **dérivable** en asi la fonction φ_a définie sur $I \setminus \{a\}$ par

$$\varphi_a(x) = \frac{f(x) - f(a)}{x - a}$$

admet une limite finie en a. Cette limite est alors appelée **nombre dérivé** de f en a et est notée f'(a).

La quantité

$$\frac{f(x) - f(a)}{x - a}$$

est appelée taux de variation de f entre a et x. C'est le coefficient directeur de la droite qui passe par les points de coordonnées (a, f(a)) et (x, f(x)). Graphiquement, le fait que f soit dérivable en a se traduit par le fait que le graphe de f admet une droite tangente au point de coordonnées (a, f(a)), de coefficient directeur f'(a), et dont l'équation sera donc

$$y = f(a) + f'(a)(x - a).$$

5. Comparaison des fonctions

DÉFINITION 5.1. Soit $a \in \mathbb{R}$. Soient $f, g: D \to \mathbb{R}$ deux fonctions définies près

- (a) On dira que f est négligeable devant g au voisinage de a et on écrira $f = o_a(g)$ (on lit "f est un petit o de g") si on peut écrire $f(x) = \varepsilon(x)g(x)$ où ε est une fonction définie au voisinage de a et telle que $\lim_{x\to a} \varepsilon(x) = 0$.
- (b) On dira que f est équivalente à g au voisinage de a et on écrira $f \sim_a g$ si on peut écrire $f(x) = \eta(x)g(x)$ où η est une fonction définie au voisinage de a et telle que $\lim_{x\to a} \eta(x) = 1$.

En pratique, si g ne s'annule pas au voisinage de a (sauf éventuellement en a), alors

- $f = o_a(g)$ si et seulement si $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$, $f \sim_a g$ si et seulement si $\lim_{x \to a} \frac{f(x)}{g(x)} = 1$.

Remarque 5.2. La relation "être négligeable devant au voisinage de a" est une relation transitive (si $f = o_a(g)$ et $g = o_a(h)$, alors $f = o_a(h)$), la relation être "équivalent à au voisinage de a" est une relation d'équivalence (réflexive, transitive et symétrique).

Ces définitions s'étendent au cas $a = +\infty$ ou $a = -\infty$ ou au cas où on regarde une limite à droite ou à gauche seulement.

EXEMPLES 5.3. (1) $x^4 = o_0(x^2)$, plus généralement si n > p alors $x^n = o_0(x^p)$. (2) $\sin(x) \sim_0 x$.

DÉFINITION 5.4 (Cas des suites). Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites.

- (1) On dira que $(u_n)_{n\in\mathbb{N}}$ est **négligeable devant** $(v_n)_{n\in\mathbb{N}}$ si on peut écrire $u_n = \varepsilon_n v_n$ où $(\varepsilon_n)_{n \in \mathbb{N}}$ est une suite telle que $\lim_{n \to +\infty} \varepsilon_n = 0$.
- (2) On dira que $(u_n)_{n\in\mathbb{N}}$ est **équivalente** à $(v_n)_{n\in\mathbb{N}}$ si on peut écrire $u_n=\eta_n v_n$ où $(\eta_n)_{n\in\mathbb{N}}$ est une suite telle que $\lim_{n\to+\infty}\eta_n=1$.

Comme avant pour les fonctions, si la suite $(v_n)_{n\in\mathbb{N}}$ ne s'annule pas (au moins à partir d'un certain rang) alors

- $(u_n)_{n\in\mathbb{N}}$ est négligeable devant $(v_n)_{n\in\mathbb{N}}$ ssi $\lim_{n\to+\infty}\frac{u_n}{v_n}=0$, $(u_n)_{n\in\mathbb{N}}$ est équivalente à $(v_n)_{n\in\mathbb{N}}$ ssi $\lim_{n\to+\infty}\frac{u_n}{v_n}=1$.

6. Développement limité à l'ordre 1

Soit $f:I\to\mathbb{R}$ une fonction définie sur un intervalle de \mathbb{R} . Soit $a\in I$. On suppose f dérivable en a. On a donc la formule

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$$

que l'on peut écrire encore sous la form

$$\lim_{x \to a} \frac{f(x) - f(a) - f'(a)(x - a)}{x - a} = 0.$$

Si on pose h(x) = f(x) - f(a) - f'(a)(x - a) alors on a l'égalité

$$f(x) = f(a) + f'(a)(x - a) + h(x)$$
 pour tout $x \in I$

et d'autre part la limite précédente donne

$$h(x) = o_a(x-a).$$

En combinant ces égalités on déduit la formule

$$f(x) = f(a) + f'(a)(x - a) + o_a(x - a)$$

qui traduit le fait que, au voisinage de a, la fonction $x \mapsto f(a) + f'(a)(x-a)$ fournit une approximation de la fonction f.

La formule encadrée est appelée développement limité à l'ordre 1.

EXEMPLES 6.1. Au voisinage de 0, on a

$$\begin{split} \exp(x) &= 1 + x + o(x), \quad \sin(x) = x + o(x), \quad \cos(x) = 1 + o(x), \quad \ln(1+x) = x + o(x) \\ \text{et pour } \alpha \in \mathbb{R}, \ (1+x)^\alpha = 1 + \alpha x + o(x). \end{split}$$