

Combination of Higgs to Invisible Direct Measurements

 $\frac{P. \ Dunne}{\text{on behalf of the $H$$\rightarrow invisible analysis groups}}$

Introduction

- ▶ All three currently approved Higgs to invisible results have been combined
- VBF (HIG-13-013), ZH \rightarrow II+inv (HIG-13-018), ZH \rightarrow bb+inv (HIG-13-028)
- Updates to combination since twiki result:
- 7H→bb+inv has been included
- Correlations between uncertainties in the three channels are now properly taken into account
- A combination of the ZH \rightarrow II and VBF channels has been performed up to 300 GeV

Current Indirect Result

- ▶ observed (expected) limit of 64% (67%) at 95% C.L. on BR_{inv} for a 125 GeV Higgs
- Combination between direct and indirect methods is being investigated e.g. talk by M. Zanetti

Datacards

- ightharpoonup ZH \rightarrow II analysis has datacards for 105, 115, 125, 135, 145, 175, 200 & 300 GeV
- ZH→bb analysis has datacards for 105, 115, 125, 135, 145 & 150 GeV
- ▶ VBF analysis has datacards for 110, 125, 150, 200, 300 and 400 GeV
- New VBF datacards were produced for 115,135 and 145 GeV, with the same method as used for the twiki plot

Combination Method

- ▶ The cards for the two approved analyses were combined using the standard Higgs combination tool
- A bug was found in the tool that meant that InN correlated uncertainties were not being properly treated, fixed in latest combine version
- Correlations between analyses were taken into account according to combination group recommendations
- ▶ All other uncertainties were considered fully uncorrelated between analyses

Separate results: Direct

VBF

observed (expected) limit of 67% (52%) at 95% C.L. on BRiny for a 125 GeV Higgs

▶ 7H

observed (expected) limit of 81% (83%) at 95% C.L. on BRiny for a 125 GeV Higgs

Separate results: Cross-Section limits

VBF

observed (expected) limit of 67% (52%) at 95% C.L. on BRiny for a 125 GeV Higgs

▶ 7H

observed (expected) limit of 81% (83%) at 95% C.L. on BR_{inv} for a 125 GeV Higgs

Combined Results

▶ Observed (expected) limit at 125 GeV is 58(46)%

High mass combination

- Z→II+inv and VBF both have datacards up to 300 GeV
- ▶ The same combination method as used above was used to combine these two channels between 115 and 300 GeV

Conclusions

- All three Higgs to invisible channels have been combined using the standard Higgs combination tool
- \blacktriangleright The result is compatible with the SM at between the 1 & 2σ level depending on Higgs mass
- ► The combined result gives strongest direct limit on the invisible branching fraction of the SM Higgs

Backup

Previous Limits

- \blacktriangleright CMS PAS limits on BR_{inv} for a 125 GeV Higgs boson are:
- VBF: observed (expected) limit of 69% (53%) at 95% C.L.
- ZH \rightarrow II+inv: observed (expected) limit of 75% (91%) at 95% C.L.
- ZH \rightarrow bb+inv: ovserved (expected) limit of 182% (199%) at 95% C.L.
- CMS indirect limit, from visible channels: observed (expected) limit of 64% (67%) at 95% C.L.
- ATLAS also produce an indirect limit and a limit in the ZH channel:
- Indirect limit 60% (no expected limit given)
- ZH: observed (expected) 65% (84%)

VBF Cross-sections

Mass/GeV	σ/pb
110	1.809 ± 0.048
115	1.729 ± 0.046
125	1.578 ± 0.042
135	1.448 ± 0.038
145	1.333 ± 0.035
150	1.280 ± 0.033
200	0.869 ± 0.023
300	0.441 ± 0.011
400	0.254 ± 0.007

Signal Yield interpolation

- \triangleright $N_{Signal} = eff. \times acc. \times \mathcal{L}\sigma$
- Luminosity is constant
- Yield over cross-section is thus proportional to efficiency times acceptance
- Signal yields were produced at 115, 125(to cross-check), 135 and 145 GeV for the VBF channel
- Cross-sections from LHC-HXSWG were used

Summary of Uncertainties

Background	Source	Uncertainty		
$Z \rightarrow \nu \nu$				
	Statistics in control region	29%		
	MC statistics	14%		
	Theory uncertainty	20%		
	Jet/MET scale/resolution	5%		
$W \rightarrow \mu \nu$				
	Statistics in control region	5%		
	MC statistics	10%		
	Theory uncertainty	20%		
	Jet/MET scale/resolution	4%		
$W \rightarrow e \nu$				
	Statistics in control region	10%		
	MC statistics	10%		
	Theory uncertainty	20%		
	Jet/MET scale/resolution	+5 %		
$W \rightarrow \tau \nu$				
	Statistics in control region	30%		
	MC statistics	20%		
	Theory uncertainty	20%		
	Jet/MET scale/resolution	+16% -2		
	Tau ID efficiency	8%		
	Electron contamination	5%		

-OCD	1/4 11	
QCD	Statistics in control region	2%
///	MC stats (background)	2%
\ \ \ \	Jet/MET scale/resolution	+45% -75%
		35%
Other backgr	ounds	
	Luminosity	4%
	MC statistics	10%
	Jet/MET scale/resolution	28-81%
	Cross-section uncertainty	8-20%
Signal		
_	MC statistics	10%
	Jet/MET scale/resolution	11%
	PDF uncertainty	5%
	QCD Scale uncertainty	4%