

Universidade de Aveiro

DEPARTAMENTO DE ELECTRÓNICA, TELECOMUNICAÇÕES E INFORMÁTICA

47022- ARQUITECTURA DE COMPUTADORES AVANÇADA

Home group assignment 2

Semi-Global Matching stereo processing using CUDA

8240 - MESTRADO INTEGRADO EM ENGENHARIA DE COMPUTADORES E TELEMÁTICA

António Rafael da Costa Ferreira NMec: 67405 Rodrigo Lopes da Cunha NMec: 67800

Docentes: Nuno Lau e José Luís Azevedo

Janeiro de 2016 2015-2016

Conteúdos

1	Introdução	1
2	Exercício 1	j
	2.1 Cuda Kernel da função "determine_costs()" 3	j
3	Exercício 2)
	3.1 Cuda Kernel(s) da função "iterate_direction_dirxpos_dev()	۱ (
	e das funções correspondestes a outras direcções 5)
4	Conclusão)

1 Introdução

O trabalho proposto para a unidade curricular de Arquitetura de Computadores Avançada foi a implementação em CUDA para o processamento de um Semi-Global Matching.

Este programa tem como objetivo determinar a imagem de disparidade entre duas imagens idênticas mas de posições diferentes, como se de dois olhos se tratasse, uma vista com o olho da esquerda e outra com o olho da direita.

O relatório reflete todas as geometrias de kernel implementadas, formas de pensamento, métodos de como foram implementados os algoritmos, resultados, tutorial para correr o código elaborado, e por último a conclusão deste mesmo trabalho.

2 Exercício 1

2.1 Cuda Kernel da função "determine costs()"

Neste primeiro exercício, era pedido que se desenvolvesse um kernel em CUDA que substituísse a função determine costs().

Figura 1: Geometria do Kernel para a função determine costs()

Neste kernel optou-se por uma geometria (Figura 1 constituída por uma grid de tamanho (ceil(nx32) x ceil(ny16)) com blocos de 32 x 16 threads cada. Nesta função, cada thread corresponde a um pixel da imagem, e cada um calcula o valor de custo, sendo este a diferença entre as imagens num determinado pixel.

Este exercicío foi ainda realizado de duas maneira, uma utilizando a *global memory*, e outra onde se coloca as imagens e o valor de COSTS na *texture memory*.

Para a *global memory* utilizou-se o seguinte algoritmo para desenvolver o kernel:

```
__global__ void determine_costs_device(const int *left_image, const int *right_image, int *costs,
const int nx, const int ny, const int disp_range)
{
   int i = blockIdx.x * blockDim.x + threadIdx.x;
   int j = blockIdx.y * blockDim.y + threadIdx.y;

   if (i < nx && j < ny)
   {
```

```
for ( int d = 0; d < disp_range; d++ ) {
    if(i >= d){
        COSTS(i,j,d) = abs( LEFT_IMAGE(i,j) - RIGHT_IMAGE(i-d,j));
    }
}
```

Com esta implementação obtiveram-se os seguintes resultados:

```
aca0203@nikola:~/acomputadoresavancada/Trabalho 2/aca_sgm$ ./sgm
Host processing time: 5160.187500 (ms)
Device processing time: 5048.691406 (ms)
aca0203@nikola:~/acomputadoresavancada/Trabalho 2/aca_sgm$ !./te
./testDiffs h_dbull.pgm d_dbull.pgm
images are identical
aca0203@nikola:~/acomputadoresavancada/Trabalho 2/aca_sgm$ ./sgm -p 64
Host processing time: 19739.484375 (ms)
Device processing time: 19562.093750 (ms)
aca0203@nikola:~/acomputadoresavancada/Trabalho 2/aca_sgm$ !./te
./testDiffs h_dbull.pgm d_dbull.pgm
images are identical
```

Figura 2: Resultados obtidos utilizando global memory

TEXTURE MEMORY CODIGO E RESULTADOS

3 Exercício 2

3.1 Cuda Kernel(s) da função "iterate_direction_dirxpos_dev()" e das funções correspondestes a outras direcções

Para este exercicío foram implementadas duas versões para a utilização de *global memory*, sendo a versão 2 (otimizada) utilizada na utilização da *shared memory*.

Versão 1

Nesta versão, foram criadas duas geometrias apenas, sendo que uma diz respeito às iterações nas direções em x, e outra em y, visto que tanto para o lado positivo como para o negativo a geometria era idêntica.

Figura 3: Geometria do Kernel para as funções iterate_direction_dirxpos() e iterate_direction_dirxneg()

Como podemos ver na figura 3, a grid é composta por ceil(ny/32) blocos, cada bloco composto por 32 threads, sendo cada uma responsável pela linha em x onde está inserida para cálculo dos respetivos paths.

Esta operação tem de ser efetuada sequencialmente pois o pixel seguinte depende sempre do anterior, pelo que se recorreu à seguinte implementação para a função iterate direction dirxpos() e para a função iterate direction dirxneg():

```
__global__ void iterate_direction_dirxpos_dev(const int dirx, const int *left_image,
                           const int * costs , int *accumulated costs ,
                           const int nx, const int ny, const int disp_range ){
       int i = 0;
       int j = blockIdx.y * blockDim.y + threadIdx.y;
       if(j < ny)
         for (i = 1; i < nx; i++){
           evaluate\_path\_dev\left(\ \&ACCUMULATED\_COSTS(\,i-dirx\;,j\;,0\,)\;,\right.
                              &COSTS(i,j,0),
                               abs(LEFT IMAGE(i,j)-LEFT IMAGE(i-dirx,j)),
                              &ACCUMULATED_COSTS(i,j,0), nx, ny, disp_range);
}
const int nx, const int ny, const int disp range )
{
       int i = nx-1;
       int j = blockIdx.y * blockDim.y + threadIdx.y;
       if(j < ny){
         \label{eq:for_def} \mbox{for } (\mbox{ int } d = 0; \mbox{ } d < \mbox{ disp\_range}; \mbox{ } d \!+\!\!+ ) \mbox{ } \{
             ACCUMULATED COSTS(nx-1, j, d) += COSTS(nx-1, j, d);
         \begin{array}{ll} \mbox{for} \, (\, i \, = \, nx - 2; \ i \, > = \, 0; \ i - - ) \{ \\ \mbox{evaluate\_path\_dev( \&ACCUMULATED\_COSTS($i$-dirx $, j $, 0$) }, \end{array}
                              &COSTS(i,j,0),
abs(LEFT_IMAGE(i,j)-LEFT_IMAGE(i-dirx,j)),
                              &ACCUMULATED_COSTS(i,j,0), nx, ny, disp_range);
      }
}
```

No caso da direção ser em y, então seguiu-se o mesmo pensamento que em x, obtendo a seguinte geometria:

Figura 4: Geometria do Kernel para as funções iterate_direction_dirypos() e iterate_direction_diryneg()

Tal como apresentado na figura, neste caso a geometria é composta por uma grid de tamanho ceil(ny/32) blocos, cada um composto por 32 threads, onde cada uma volta a ser responsável pelo cálculo do respetivo caminho de todos os pixeis daquela coluna.

Esta geometria volta a aplicar-se às direções positivas e negativa da mesma maneira tal como em x.

Foi então desenvolvido o seguinte código para as funções $iterate_direction_dirypos()$ e $iterate_direction_dirypos()$:

```
__global__ void iterate_direction_dirypos_dev(const int diry, const int *left_image,
                       const int* costs , int *accumulated costs ,
                       const int nx, const int ny, const int disp_range )
{
   int i = blockIdx.x * blockDim.x + threadIdx.x;
   \quad \textbf{int} \quad j \; = \; 0 \, ; \quad
   if(i < nx){
       for (j = 1; j < ny; j++){
         evaluate\_path\_dev(\&ACCUMULATED\_COSTS(i,j-diry,0),
                       &ACCUMULATED_COSTS(i, j, 0), nx, ny, disp_range);
}
__global__ void iterate_direction_diryneg_dev(const int diry, const int *left_image, const int * costs , int *accumulated_costs ,
                       const int nx, const int ny, const int disp range )
{
     int i = blockIdx.x * blockDim.x + threadIdx.x;
     int j = ny-1;
     if(i < nx){
       for ( int d = 0; d < disp range; d \mapsto ) {
```

```
\label{eq:for_path_dev} \begin{aligned} & \textbf{for}(j = ny-2; \ j >= 0; \ j--) \{ \\ & & \text{evaluate\_path\_dev}(\ \&ACCUMULATED\_COSIS(i\,,j-diry\,,0)\,, \\ & & \&COSTS(i\,,j\,,0)\,, \\ & & \text{abs}(LEFT\_IMAGE(i\,,j)-LEFT\_IMAGE(i\,,j-diry\,))\,, \\ & & & \&ACCUMULATED\_COSIS(i\,,j\,,0)\, \ , \ nx\,, \ ny\,, \ disp\_range\,); \\ & & \} \\ & \} \end{aligned}
```

4 Conclusão

Este trabalho foi útil para assentar todos os conhecimentos que se foi obtendo ao longo destes anos, tanto em Arquitectura de Computadores Avançada como em Arquitetura de Computadores I e II. Ambas as entregas foram primeiro planeadas em papel antes de se avançar para a implementação o que resultou em bons resultados a nível de tempo despendido, para ambos as entregas fez-se uso de dois dias de trabalho.

Na primeira entrega houve uma falha na implementação, esqueceu-se de realizar o shift left 2 do program counter para calcular o endereço para onde é suposto saltar a instrução jump.

Já na segunda entrega teve-se os máximos cuidados para que tudo funcionasse perfeitamente.