Discriminative clustering using regularized subspace learning

Passalis and Tefas, 2019, Pattern Recognition

- ➤ Topic
 - Discriminative clustering (clustering + subspace learning for classification)
- ➤ Problems
 - · No guarantee the discovered clusters correspond to the class of the data
- Motivation
 - · Motivation example: DisCluster overfits the data

- Learning a regularized representation that can increase cluster separability
- Not being overly confident on the given class labels
- Proposed method: SDC (Similarity-based Discriminative Clustering)
 - Given dataset $\mathcal{X} = \{x_1, \cdots, x_N\}$, $x \in \mathbb{R}^d$, learning projection function $f_w \colon \mathbb{R}^d \to \mathbb{R}^m \ (m < d), f_w(x) = W^T x \ (d \times m)^T \times (d \times 1)$
 - $P(N \times N)$: similarity matrix of the projected data $P_{ij} = \exp\left(-\left\|f_w(x_i) f_w(x_j)\right\|_2^2/\sigma\right)$
 - $T(N \times N)$: target matrix

$$T_{ij} = \begin{cases} a_{intra}(<1) & x_i \text{ and } x_j \text{ belong to the same cluster} \\ a_{inter}(>0) & \text{otherwise} \end{cases}$$

• $M(N \times N)$: weight matrix

$$M_{ij} = \begin{cases} 1 & x_i \text{ and } x_j \text{ belong to the same cluster} \\ 1/(C-1) & \text{otherwise} \end{cases}$$

Error function

$$J_S(\mathcal{X}, W) = \frac{1}{2\|M\|_1} \sum_{i=1}^N \sum_{j=1}^N M_{ij} (P_{ij} - T_{ij})^2$$

where $||M||_1 = \sum_{i=1}^{N} \sum_{j=1}^{N} |M_{ij}|$

· Orthogonality regularization term (Passalis and Tefas, 2018)

$$J_P(W) = \frac{1}{2m^2} \|W^T W - I_{m \times m}\|_F^2$$

• Optimization problem (continuous and differentiable)

$$\underset{W}{\operatorname{argmin}}(2-\alpha)J_{S}(\mathcal{X},W) + \alpha_{p}J_{P}(W)$$

Algorithm 1 Similarity-based Discriminative Clustering Algorithm.

Input: A set of points \mathcal{X} , the batch size N_{batch} , the number of optimization steps N_{iters} , gradient descent iterations $N_{sgditers}$, and clusters N_C

Output: The clustering solution S_1

- 1: **procedure** Similarity-based Discriminative Clustering
- Calculate the initial clustering solution S_0 using k-means (i.e., solve the problem defined in (6))
- 3: Set $S = S_0$
- 4: **for** i **from** 1 **to** N_{iters} **do**
- 5: **for** i **from** 1 **to** $N_{sgditers}$ **do**
- Sample a batch of data \mathbf{x}
- 7: Construct the target similarity matrix for the selected samples \mathbf{x} using (8) and the current solution S.
- 8: Perform one optimization iteration using (5)
- 9: Project the data samples into the new low-dimensional space defined by $f_{\mathbf{W}}(\cdot)$
- 10: Calculate the updated clustering solution \mathcal{S}_1 using k-means on the
- 11: low-dimensional representation (i.e., solve the problem defined in (12))
- 12: $S = S_1$ **return** the final clustering solution S

• Gradients (
$$v$$
-th column vector $W_{\cdot v}$ of matrix W)
$$\frac{\partial J_S(\mathcal{X}, W)}{\partial W_{uv}} = \frac{1}{\|M\|_1} \sum_{i=1}^N \sum_{j=1}^N M_{ij} (P_{ij} - T_{ij}) \frac{\partial P_{ij}}{\partial W_{uv}}$$

$$\frac{\partial J_P(W)}{\partial W_{\cdot v}} = \frac{2}{m^2} \sum_{i=1}^N (W_{\cdot v}^T W_{\cdot k} - \delta_{vk}) W_{\cdot k}$$

$$\delta_{vk} = I(v = k)$$

> Experiments

- 4 dataset
- The number of clusters was set to the number of classes
- m = 50
- · Sample results

Table 2 Spectral clustering evaluation.

Method	Dataset	Rand	NMI	Homogeneity	Completeness	FMI
Original	Yale	0.025 ± 0.003	0.247 ± 0.007	0.245 ± 0.008	0.248 ± 0.007	0.051 ± 0.002
PCA	Yale	0.027 ± 0.003	0.251 ± 0.006	0.249 ± 0.006	0.253 ± 0.006	0.053 ± 0.007
DisCluster	Yale	0.039 ± 0.005	0.284 ± 0.009	0.281 ± 0.010	0.288 ± 0.008	0.067 ± 0.016
SDC	Yale	0.108 ± 0.005	0.411 ± 0.006	$\mathbf{0.408 \pm 0.006}$	0.414 ± 0.006	0.133 ± 0.005
Original	15-scene	0.189 ± 0.016	0.353 ± 0.018	0.351 ± 0.018	0.354 ± 0.018	0.244 ± 0.009
PCA	15-scene	0.193 ± 0.014	0.355 ± 0.017	0.354 ± 0.017	0.357 ± 0.017	0.247 ± 0.007
DisCluster	15-scene	0.212 ± 0.013	0.381 ± 0.013	0.380 ± 0.013	0.382 ± 0.013	0.265 ± 0.007
SDC	15-scene	0.241 ± 0.016	0.420 ± 0.017	0.418 ± 0.017	0.422 ± 0.017	0.292 ± 0.001
Original	Corel	0.096 ± 0.005	0.431 ± 0.003	0.435 ± 0.004	0.426 ± 0.003	0.110 ± 0.003
PCA	Corel	0.099 ± 0.004	0.436 ± 0.002	0.441 ± 0.002	0.430 ± 0.003	0.113 ± 0.003
DisCluster	Corel	0.103 ± 0.002	0.439 ± 0.003	0.444 ± 0.003	0.434 ± 0.003	0.117 ± 0.006
SDC	Corel	0.116 \pm 0.005	0.452 ± 0.002	$\mathbf{0.456 \pm 0.003}$	0.448 ± 0.002	0.129 ± 0.002
Original	KTH	0.403 ± 0.000	0.532 ± 0.000	0.524 ± 0.000	0.540 ± 0.000	0.507 ± 0.000
PCA	KTH	0.400 ± 0.002	0.528 ± 0.002	0.521 ± 0.002	0.535 ± 0.002	0.504 ± 0.000
DisCluster	KTH	0.400 ± 0.001	0.541 ± 0.001	0.537 ± 0.001	0.545 ± 0.001	0.502 ± 0.000
SDC	KTH	0.411 ± 0.003	$\mathbf{0.543 \pm 0.003}$	0.536 ± 0.003	0.551 ± 0.003	0.513 ± 0.001

> References

- Passalis and Tefas, 2018, Dimensionality reduction using similarity-induced embeddings (Orthogonality regularization term)
- · To be added more