Permutační nerovnost

Jakub Löwit

ABSTRAKT. V matematice máme fůru různých nerovností. Zkušený olympiádník je prostě vidí, na první pohled ale vůbec očividné nejsou. My se v příspěvku budeme zabývat takzvanou permutační nerovností, která je intuitivně úplně zřejmá. Od jednoduchých nerovniček nás permutační nerovnost dovede k silným nerovnostem, se kterými si už budeme moct troufnout na nejeden pořádný příklad.

Co to je?

Ujasněme si pro začátek, co je to permutace a permutační nerovnost. Permutací σ množiny $\{1,2,\ldots,n\}$ myslíme nějaké její přeuspořádání. Permutace jako takové ale (kromě značení) používat vůbec nebudeme. Permutační (také mincovni) nerovností myslíme následující nerovnost, která platí pro libovolné dvě n-tice nezáporných reálných čísel.

Věta. Mějme posloupnosti reálných čísel $x_1 \geq x_2 \geq \cdots \geq x_n$ a $y_1 \geq y_2 \geq \cdots \geq y_n$. Dále ať σ je libovolná permutace množiny $\{1, 2, \ldots, n\}$, která přeuspořádává (y_1, y_2, \ldots, y_n) na $(y'_1, y'_2, \ldots, y'_n)$. Pak

$$x_1y_1 + x_2y_2 + \dots + x_ny_n \ge x_1y_1' + x_2y_2' + \dots + x_ny_n' \ge x_1y_n + x_2y_{n-2} + \dots + x_ny_1.$$

Proč je permutační nerovnost tak zřejmá? Představte si následující situaci: Na stole leží n hromádek bankovek, v každé hromádce jsou bankovky jedné vydávané hodnoty. Všechny tyto hromádky jsou přitom "nekonečné". Každý z následujících n dní si můžete vybrat hromádku, ze které jste zatím nikdy nic nebrali, a vzít si z ní nějaký počet bankovek. Přitom máte ale dopředu určeno, kolik bankovek si který den smíte vzít. Permutační nerovnost pak pouze jinými slovy říká, jak si v této situaci vydělat co nejvíc a jak co nejmíň.

Důkaz. Začneme první nerovností. Nejprve nějak náhodně popárujme dvojičky x a y do součinů. BÚNO $x_1 \geq x_2 \geq \cdots \geq x_n, \ y_1 \geq y_2 \geq \cdots \geq y_n$. Ukážeme, že pokud příslušné n-tice nebyly souhlasně uspořádané, postupným "opravováním" si neuškodíme. Ať se příslušná permutace liší od té identické poprvé na indexu i, tedy

 $y_i'=y_j$ pro $j\neq i$. Protože ale permutace byla doteď identická, leží skutečné y_i ještě dál na nějakém indexu k>i. Ze stejného důvodu je také j>i. Zkusme tedy prohodit čísla y_i a y_j , čímž získáme nějakou novou permutaci posloupnosti y. Tyto dvě permutace se ale liší pouze na indexech i a k, polepšili jsme si proto přesně o

$$(x_iy_i + x_ky_j) - (x_iy_j + x_ky_i) = (x_i - x_k)(y_i - y_j) \ge 0,$$

neboť i>j a zároveň i>k. Postupný prohazováním nakonec dostaneme posloupnosti y ve správném pořadí.

V permutační nerovnosti přitom nastává rovnost pouze tehdy, pokud po dosazení příslušných čísel za proměnné x_i a y_i dostaneme na obou stranách nerovnosti (před provedením násobení a sčítání) stejné výrazy (až na pořadí členů ve sčítání).

Pokud dále řekneme, že nějaké dvě posloupnosti x_1, x_2, \ldots, x_n a y_1, y_2, \ldots, y_n délky n jsou souhlasně uspořádané, myslíme tím fakt, že $x_i \geq x_j$ právě tehdy, když $y_i \geq y_j$. Obdobně definujeme opačně uspořádané posloupnosti. Permutační nerovnost tedy vlastně říká, že největší výsledek výrazu $x_1y_1 + x_2y_2 + \cdots + x_ny_n$ získáme ze dvou souhlasně uspořádaných posloupností, nejmenší z opačně uspořádaných.

Permutační nerovnost přitom typicky homogenní výrazy odhaduje opět homogenními výrazy stejného stupně. Často nám umožní velmi jednoduše odhadovat cyklické výrazy pomocí jiných cyklických výrazů.

Je to zřejmé ...

Pojďme se konečně vrhnout na první úlohy. Začneme úlohami, které často stačí pouze přejet očima. Tyto úlohy jdou typicky řešit i mnohými jinými (skoro všemi) přístupy, zkusíme se na ně ale dívat opravdu přes nerovnost permutační. Při řešení je vhodné si alespoň koutkem oka všimnout i předpokladů na proměnné – typicky je neuvádíme pro pobavení ušáků.

Úloha 1. Pro reálná a, b, c dokažte

$$a^2 + b^2 + c^2 \ge ab + bc + ca.$$

Úloha 2. Pro reálná $x, y, z \ge 0$ ukažte

$$x^{3}y + y^{3}z + z^{3}x \ge x^{2}yz + y^{2}zx + z^{2}xy$$
.

Úloha 3. Pro reálná x, y, z ukažte

$$x^4y^2 + y^4z^2 + z^4x^2 > x^3yz^2 + y^3zx^2 + z^3xy^2$$
.

Úloha 4. Pro reálná a, b, c > 0 dokažte

$$\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} \ge \frac{b}{a} + \frac{c}{b} + \frac{a}{c}.$$

Úloha 5. Af $x_1 \geq x_2 \geq \cdots \geq x_n, y_1 \geq y_2 \geq \cdots \geq y_n$ jsou reálná čísla a $(y_1', y_2', \ldots, y_n')$ je permutace (y_1, y_2, \ldots, y_n) . Potom

$$(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2 \le (x_1 - y_1')^2 + (x_2 - y_2')^2 + \dots + (x_n - y_n')^2.$$

(IMO 1975)

Úloha 6. Pro kladná reálná čísla $(x_1, x_2, ..., x_n)$ a jejich libovolnou permutaci $(x'_1, x'_2, ..., x'_n)$ nahlédněte

$$\frac{x_1}{x_1'} + \frac{x_2}{x_2'} + \dots + \frac{x_n}{x_n'} \ge n.$$

Úloha 7. Pro reálná a, b, c > 0 dokažte

$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \ge \frac{a+b+c}{abc}.$$

Drobná zamyšlení

Protože už jsme si vyzkoušeli úlohy, které permutační nerovnost dělá za nás, pustíme se teď do úloh, kde musíme něco jednoduchého udělat i my.

Úloha 8. Pro $0 < x < \frac{\pi}{2}$ najděte minimum výrazu

$$\frac{\sin^3 x}{\cos x} + \frac{\cos^3 x}{\sin x}$$
.

Úloha 9. Na stole leží n po dvou různých přirozených čísel $a_1, a_2, \dots a_n$. Dokažte

$$\frac{a_1}{1^2} + \frac{a_2}{2^2} + \dots + \frac{a_n}{n^2} \ge 1 + \frac{1}{2} + \dots + \frac{1}{n}.$$

Úloha 10. Pro reálná a, b, c > 0 dokažte

$$\frac{a+1}{b\sqrt{b}} + \frac{b+1}{c\sqrt{c}} + \frac{c+1}{a\sqrt{a}} \geq 2\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right).$$

Úloha 11. Pro reálná a, b, c > 0 dokažte

$$\frac{a^2 + b^2}{c} + \frac{b^2 + c^2}{a} + \frac{c^2 + a^2}{b} \ge 2(a + b + c).$$

Úloha 12. Pro reálná x, y, z > 0 dokažte

$$\frac{x^2 - z^2}{y + z} + \frac{y^2 - x^2}{z + x} + \frac{z^2 - y^2}{x + y} \ge 0.$$

Úloha 13. Jsou dána reálná x, y, z > 0. Ukažte odhad

$$\frac{x^3}{yz} + \frac{y^3}{zx} + \frac{z^3}{xy} \ge x + y + z.$$

Úloha 14. Pro reálná a, b, c > 0 dokažte *Nesbittovu* nerovnost

$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge \frac{3}{2}.$$

Úloha 15. Pro reálná a, b, c > 0 splňující abc = 1 dokažte

$$\frac{1}{a^3(b+c)} + \frac{1}{b^3(c+a)} + \frac{1}{c^3(a+b)} \ge \frac{3}{2}.$$

Úloha 16. Pro reálná a, b, c > 0 a n přirozené ukažte

$$\frac{a^n}{b+c} + \frac{b^n}{c+a} + \frac{c^n}{a+b} \ge \frac{a^{n-1} + b^{n-1} + c^{n-1}}{2}.$$

Úloha 17. Jsou dána reálná $a_1, a_2 \dots, a_n > 0$, pro přehlednost označme s jejich součet. Potom

$$\frac{a_1}{s - a_1} + \frac{a_2}{s - a_2} + \dots + \frac{a_n}{s - a_n} \ge \frac{n}{n - 1}.$$

Úloha 18. Dána jsou reálná a, b, c > 0. Dokažte

$$a^a b^b c^c \ge \sqrt[3]{(abc)^{a+b+c}}$$
.

Dále se z permutační rovnosti dá odvodit třeba *Cauchyho–Schwarzova* nerovnost nebo *průměrové* nerovnosti. My se však nyní přesuneme k nerovnosti *Čebyševově*.

Čebyšev

Začneme úlohou doslova šitou na míru permutační nerovnosti, která má shodou náhod své vlastní jméno.

Věta. (Čebyševova nerovnost) $At'a_1 \ge a_2 \ge \cdots \ge a_n, b_1 \ge b_2 \ge \cdots \ge b_n$ jsou n-tice reálných čísel. Potom

$$n\sum_{i=1}^{n} a_i b_i \ge \left(\sum_{i=1}^{n} a_i\right) \left(\sum_{i=1}^{n} b_i\right) \ge n\sum_{i=1}^{n} a_i b_{n+1-i}.$$

 $D\mathring{u}kaz$. Pro první nerovnost dokola sečteme všech n permutačních nerovností tvaru $\sum a_ib_i \geq \sum a_ib_{i+k}$. Druhá nerovnost se dokáže analogicky.

Tvrzení. V Čebyševově nerovnosti nastává rovnost právě tehdy, když $x_1 = x_2 = \cdots = x_n$ nebo $y_1 = y_2 = \cdots = y_n$.

Na první pohled se zdá, že Čebyševova nerovnost musí být opravdu hloupá, neboť jsme ji získali nasčítáním hromady slabých permutačních nerovností. Překvapivě je ale poměrně silná a užitečná, a to právě kvůli tomu, že se na čísla dívá "z větší výšky". Nyní si v praxi vyzkoušíme, co tato nerovnost umí.

Úloha 19. Pro reálná a, b, c ukažte

$$3(a^8 + b^8 + c^8) \ge (a^5 + b^5 + c^5)(a^3 + b^3 + c^3).$$

Úloha 20. Jsou dána reálná $a_1,a_2,\ldots,a_2>0$, která splňují $a_1+a_2+\cdots+a_n=1$. Potom

$$\frac{a_1}{2-a_1} + \frac{a_2}{2-a_2} + \dots + \frac{a_n}{2-a_n} \ge \frac{n}{2n-1}.$$

Úloha 21. Pro reálná a, b, c, d > 0 dokažte nerovnost

$$\frac{a^3+b^3+c^3}{a+b+c}+\frac{a^3+b^3+d^3}{a+b+d}+\frac{a^3+c^3+d^3}{a+c+d}+\frac{b^3+c^3+d^3}{b+c+d}\geq a^2+b^2+c^2+d^2.$$

Úloha 22. Pro reálná a, b, c > 0 ukažte nerovnost

$$\frac{ab}{a+b} + \frac{bc}{b+c} + \frac{ca}{c+a} \le \frac{3(ab+bc+ca)}{2(a+b+c)}.$$

Úloha 23. Mějme čísla $a_1, a_2, \dots, a_n \in \left<0, \frac{\pi}{2}\right>$. Dokažte nerovnost

$$\left(\sum_{i=1}^{n} \sin a_i\right) \cdot \left(\sum_{i=1}^{n} \cos a_i\right) \le \frac{n^2}{2}.$$

Úloha 24. Ať reálná a, b, c, d > 0 splňují a + b + c + d = 4. Potom ukažte

$$\frac{1}{11+a^2} + \frac{1}{11+b^2} + \frac{1}{11+c^2} + \frac{1}{11+d^2} \le \frac{1}{3}.$$

Úloha 25. Af $0 < x_1 \le x_2 \le \cdots \le x_n$ je *n*-tice reálných čísel, která splňují

$$\frac{1}{1+x_1} + \frac{1}{1+x_2} + \dots + \frac{1}{1+x_n} = 1.$$

Dokažte, že

$$\sqrt{x_1} + \sqrt{x_2} + \dots + \sqrt{x_n} \ge (n-1) \cdot \left(\frac{1}{\sqrt{x_1}} + \frac{1}{\sqrt{x_2}} + \dots + \frac{1}{\sqrt{x_n}}\right).$$

Úloha 26. Pro reálná $a, b, c, d \ge 0$ splňující ab + bc + cd + da = 1 ukažte

$$\frac{a^3}{b+c+d} + \frac{b^3}{a+c+d} + \frac{c^3}{a+b+d} + \frac{d^3}{a+b+c} \ge \frac{1}{3}.$$

(IMO Shortlist 1990)

Úloha 27. Reálná čísla $x, y, z \ge 0$ splňují xyz = 1. Dokažte nerovnost

$$\frac{x^3}{(1+y)(1+z)} + \frac{y^3}{(1+z)(1+x)} + \frac{z^3}{(1+x)(1+y)} \geq \frac{3}{4}.$$

(IMO Shortlist 1998)

Algebry s obrázkem

V běžném trojúhelníku platí různé vztahy mezi délkami různých úseček a různými úhly. Některé z nich přitom přímo vybízí k použití permutační či Čebyševovy nerovnosti. Některé jsou triviální, některé ne. Podívejme se na ně tedy podrobněji.

Úloha 28. Trojúhelník má strany s délkami a, b, c. Dokažte

$$a^{2}(b+c-a) + b^{2}(c+a-b) + c^{2}(a+b-c) \le 3abc.$$

Úloha 29. V rovině je dán $\triangle ABC$ s obsahem S a délkami stran a, b, c. Dále označme délky výšek na tyto strany po řadě v_a, v_b, v_c . Dokažte nerovnost

$$a(v_b + v_c) + b(v_c + v_a) + c(v_a + v_b) \ge 12S.$$

Úloha 30. Délky stran $\triangle ABC$ naproti vrcholům A, B, C označme popořadě a, b, c, velikosti úhlů (v radiánech) příslušné těmto vrcholům popořadě α, β, γ . Dokažte

$$\frac{b+c}{\alpha} + \frac{c+a}{\beta} + \frac{a+b}{\gamma} \ge \frac{6}{\pi} \cdot (a+b+c).$$

Úloha 31. V rovině je dán ostroúhlý $\triangle ABC$ s orthocentrem H. Dokažte, že součet vzdáleností H od stran trojúhelníku je roven nejvýše trojnásobku poloměru kružnice jemu vepsané.

Úloha 32. Délky stran a velikosti úhlů v $\triangle ABC$ označme běžným způsobem jako $a,b,c,\,\alpha,\beta,\gamma$. Jasnovidec nám přitom řekl, že $a+b=\operatorname{tg}\frac{\gamma}{2}(a\operatorname{tg}\alpha+b\operatorname{tg}\beta)$. Dokažte, že $\triangle ABC$ je rovnoramenný. (IMO 1966)

Úloha 33. Je dán $\triangle ABC$ označený běžným způsobem. Dokažte

$$a\cos\frac{\alpha}{2} + b\cos\frac{\beta}{2} + c\cos\frac{\gamma}{2} \le \frac{\sqrt{3}(a+b+c)}{2}.$$

(PraSe 29–S–5)

Poleva na dort

Vratme se na chvilku k permutační nerovnosti a zkusme si ji zobecnit.

Úloha 34. Af $x_1 \geq x_2 \geq \cdots \geq x_n \geq 0$, $y_1 \geq y_2 \geq \cdots \geq y_n \geq 0$, $z_1 \geq z_2 \geq \cdots \geq z_n \geq 0$ jsou posloupnosti reálných čísel, $(y'_1, y'_2, \dots, y'_n)$ a $(z'_1, z'_2, \dots, z'_n)$ jsou permutace posloupností (y_1, y_2, \dots, y_n) a (z_1, z_2, \dots, z_n) . Potom platí

$$\sum_{i=1}^{n} x_i y_i z_i \ge \sum_{i=1}^{n} x_i y_i' z_i'.$$

Podobně můžeme permutační nerovnost zobecnit pro větší počet posloupností. Přitom je ale opravdu potřeba předpokládat nezápornost čísel. Předveďme si ještě duální verzi permutační nerovnosti, kde "zaměníme" násobení se sčítáním.

Úloha 35. Jsou dána reálná čísla $x_1 \ge x_2 \ge \cdots \ge x_n \ge 0, y_1 \ge y_2 \ge \cdots \ge y_n \ge 0,$ dále $(y_1' \ge y_2' \ge \cdots \ge y_n')$ je permutace $(y_1 \ge y_2 \ge \cdots \ge y_n)$. Potom

$$\prod_{i=1}^{n} (x_i + y_i) \le \prod_{i=1}^{n} (x_i + y_i') \le \prod_{i=1}^{n} (x_i + y_{n+1-i}).$$

Stejně jako minule, i tuto nerovnost lze zobecnit pro nezáporná čísla pro libovolný počet posloupností.

Třešnička na dortu

Každá slušná nerovnost, která obsahuje nějaké sumy, má také svoji integrální verzi. Z původní algebraické nerovnosti ji získáme uvážením větších a větších sum, které se blíží k příslušnému integrálu.

Věta. (Integrální Čebyševova nerovnost) Pro $a,b \in \mathbb{R},\ a < b$ mějme dvojici stejným způsobem monotónních funkcí $f,g:\langle a,b \rangle \to \mathbb{R}_0^+$. Potom

$$(b-a)\int_a^b f(x)g(x)dx \ge \int_a^b f(x)dx \cdot \int_a^b g(x)dx.$$

Poznámka. Pokud jsou funkce f,g monotónní opačným způsobem, dostaneme opačnou nerovnost.

Úloha 36. Mějme reálná x,y>0 a libovolná přirozená m,n. Potom dokažte nerovnost

$$(n-1)(m-1)(x^{m+n}+y^{m+n})+(m+n-1)(x^my^n+x^ny^m)\geq mn(x^{m+n-1}y+y^{m+n-1}x).$$

PERMUTAČNÍ NEROVNOST

Úloha 37. Jsou dána reálná čísla $x, y \in (0, \frac{\pi}{2})$. Dokažte, že

$$(y-x)(\cos(2x)-\cos(2y)) \le 4(\cos(x)-\cos(y))(\sin(y)-\sin(x)).$$

Návody

- 1. Vezměte dvakrát stejnou trojici (a, b, c).
- **2.** Opačně uspořádané trojice (x^2, y^2, z^2) a (yz, zx, xy).
- **3.** Dvě stejné (souhlasně uspořádané) trojice (x^2y, y^2z, z^2x) .
- **4.** Vezměte dvakrát trojici $\frac{a}{b}$, $\frac{b}{c}$, $\frac{c}{a}$.
- **5.** Holt roznásobte závorky, zbavte se druhých mocnin a vynásobte (-1).
- **6.** Posloupnosti x_i a $\frac{1}{x_i}$ jsou opačně uspořádané.
- 7. Stačí vzít dvě stejné trojice $(\frac{1}{a}, \frac{1}{b}, \frac{1}{c})$ a upravit pravou stranu. Nebo můžete nerovnost vynásobit abc a uvážit předešlou trojici společně s trojicí bc, ca, ab.
- **8.** Uvažte kladné posloupnosti $\sin^3 x, \cos^3 x$ a $\cos^{-1} x, \sin^{-1} x$. Vyjde tedy $\sin^2 x + \cos^2 x = 1$.
- **9.** Nejprve "setřepejte" čísla a_i dolů na čísla $1, 2, \ldots, n$ a poté očividným způsobem použijte permutační nerovnost.
- 10. Odhadněte jmenovatele jako dvojnásobky odmocnin a pak uvažte trojice $(\sqrt{a}, \sqrt{b}, \sqrt{c}), \left(\frac{1}{a\sqrt{a}}, \frac{1}{b\sqrt{b}}, \frac{1}{c\sqrt{c}}\right)$.
- 11. Zlomky si rozdělte, následně použijte na dvě trojice zlomků permutační nerovnost, která je odhadne jako a+b+c.
- 12. Záporné věci dejte doprava. Posloupnosti (x^2,y^2,z^2) a $(\frac{1}{y+z},\frac{1}{z+x},\frac{1}{y+z})$ jsou souhlasně uspořádané.
- 13. Najednou to jde špatně. Zkuste ale použít permutační nerovnost dvakrát za sebou, vždy tím nejjednodušším možným způsobem.
- **14.** Vynásobte nerovnost dvěma. Pokud BÚNO $a \ge b \ge c$, pak také $\frac{1}{b+c} \ge \frac{1}{c+a} \ge \frac{1}{a+b}$. Posléze sečtěte dvě permutační nerovnosti tak, aby se jmenovatele vykrátily.
- **15.** Substituce $x = \frac{1}{a}$, $y = \frac{1}{b}$, $z = \frac{1}{c}$ situaci vyjasní, přitom stále xyz = 1. Vynásobení dvěma a použití dvou permutačních nerovností nám dá dolní odhad x + y + z, který je zřejmě větší roven třem díky podmínce.
- **16.** Vynásobte dvěma, pak dvakrát použijte trojice a,b,c a $\frac{a^{n-1}}{b+c},\frac{b^{n-1}}{c+a},\frac{c^{n-1}}{a+b}$.
- **17.** Vynásobte n-1, vezměte posloupnosti (a_1, a_2, \ldots, a_n) , $\left(\frac{1}{s-a_1}, \frac{1}{s-a_2}, \ldots, \frac{1}{s-a_n}\right)$ a sečtěte n-1 cyklicky posunutých permutačních nerovností.
- 18. Nerovnost zlogaritmujte, vynásobte třemi a následně vezměte trojice a, b, c a $\log a, \log b, \log c$.
- 19. Čebyšev dvou tříprvkových souhlasně uspořádaných posloupností.

JAKUB LÖWIT

- **20.** Vynásobte jmenovatelem pravé strany, který interpretujte jako součet všech jmenovatelů nalevo, pak přichází na řadu Čebyšev pro opačně uspořádané posloupnosti.
- **21.** Pomocí Čebyševovy nerovnosti odhadněte každý zlomek zvlášť jako $\frac{a^2+b^2+c^2}{3}$.
- **22.** Vynásobte jmenovatelem pravé strany. Posloupnosti $\frac{ab}{a+b}$, $\frac{ac}{a+c}$, $\frac{bc}{b+c}$ a (a+b), (a+c), (b+c) jsou souhlasně uspořádané BÚNO volte $a \geq b \geq c$, což jednoznačně určuje nerovnosti v obou trojicích. Dokazovaná nerovnost je pak odpovídající Čebyšev.
- **23.** Siny a kosiny jsou opačně uspořádané, po zřejmém použití Čebyševovy nerovnosti je potřeba vynásobit vzniklou sumu dvěma a vhodné dvojice členů spojit pomocí součtových vzorců pro sinus.
- **24.** Všechno převeďte nalevo, tedy od každého zlomku odečtěte $\frac{1}{12}$. Využijte faktu, že posloupnosti (a-1,b-1,c-1,d-1), $\left(\frac{a+1}{11+a^2},\frac{b+1}{11+b^2},\frac{c+1}{11+c^2},\frac{d+1}{11+d^2}\right)$ jsou souhlasně uspořádané, po provedení Čebyševa využijte podmínku.
- **25.** Přičtěte k nerovnosti ještě jednu závorku z pravé strany, na levé straně popárujte členy se stejnými neznámými a upravte. Levou stranu pak ještě jen tak pro radost vynásobte podivnou jedničkou ze zadání. Ověřte, že můžete použít Čebyševa tak, jak byste chtěli (pozor, dá to trochu práci).
- **26.** Díky podmínce je nutně $a^2+b^2+c^2+d^2\geq 1$. Jmenovatele označme A,B,C,D. Dvakrát za sebou Čebyševujte poprvé logickým způsobem na zlomky, podruhé pro rozbití sumy třetích mocnin na součin sum prvních a druhých. Druhé mocniny zmizí, dále 3(a+b+c+d)=A+B+C+D, což jde dokončit snadnou permutační nerovností.
- **27.** Z podmínky si pouze odneseme $x+y+z\geq 3$. Nejdřív použijeme jasného Čebyševa (jednu posloupnost tvoří čitatelé). Označte x+y+z=3a, jmenovatele celého vzniklého výrazu odhadněte shora jako $(1+a)^3$, zbývá se vypořádat s odhadem součtu třetích mocnin pomocí a. Až budete mít nějakou racionální funkci v a, použijte $a\geq 1$.
- **28.** Označme o=a+b+c, vezměte opačně uspořádané posloupnosti (a,b,c) a (a(o-a),b(o-b),c(o-c)). Jejich uspořádání přitom vyplývá z trojúhelníkové nerovnosti. Proveďte dvě cyklické záměny a obě příslušné permutační nerovnosti sečtěte.
- **29.** Protože platí $2S = av_a = bv_b = cv_c$, jsou posloupnosti (a, b, c), (v_a, v_b, v_c) opačně uspořádané. Použitím dvou minimalizujících permutačních nerovností společně s rovností $av_a + bv_b + cv_c = 6S$ jsme hotovi.
- **30.** Ze sinové věty leží proti nejdelšími úhlu nejdelší strana, proti nejmenšímu úhlu nejkratší strana. Stačí použít Čebyševa na opačně uspořádané posloupnosti α, β, γ a $\frac{b+c}{\alpha} + \frac{c+a}{\beta} + \frac{a+b}{\gamma}$.
- **31.** Označme S obsah a o obvod trojúhelníku. Nahlédněte, že poloměr vepsané je roven $\frac{2S}{o}$. Nerovnost posléze vynásobte o a použijte Čebyševa. K jeho použití je třeba si uvědomit, že vzdálenosti H od stran jsou souhlasně uspořádané jako strany.

PERMUTAČNÍ NEROVNOST

- **32.** Pokud je nějaký z úhlů α, β tupý, příslušný tangens je záporný, pravá strana je pak moc malá. V opačném případě můžete výraz $(a \operatorname{tg} \alpha + b \operatorname{tg} \beta)$ odhadnout Čebyševovou (resp. dvojitou permutační) nerovností. V odhadu nastává rovnost právě tehdy, když a = b. Součet obou tangensů nakonec odhadněte Jensenovou nerovností, čímž nám zbyde jen a + b.
- **33.** Kosiny a protější strany jsou opačně uspořádané, můžeme je proto zčebyševovat. Zbývá odhadnout součet kosinů pomocí Jensenovy nerovnosti.
- **34.** Je potřeba jít trochu do hloubky, předpoklad na nezápornost opravdu musíte využít.
- **35.** Postavte se k důkaz stejně, jako k důkazu běžné permutační nerovnosti. Jedním prohozením si nepohoršíme třeba díky AG.
- **36.** BÚNO x < y. Na intervalu $\langle x,y \rangle$ vezměte rostoucí funkce $f(t) = t^{n-1}$ a $g(t) = t^{m-1}$. Vypočtěte odpovídající určité integrály.
- 37. Búno $x \leq y$. Použijte spodní integrální Čebyševovu nerovnost na "opačně monotónní" funkce $\sin(t), \cos(t)$ na intervalu $\langle x, y \rangle$.

Literatura a zdroje

Kromě níže uvedeného jsem využil pár úloh z několika internetových zdrojů, které si dovolím vynechat.

- [1] Zdravko Cvetkovski: Inequalities,
- [2] Michal Rolínek, Pavel Šalom Zdolávání nerovností,
- [3] Gabriel Dospinescu, Titu Andreescu: Problems from the Book