

SpaRTaN Sparse Representations and Compressed Sensing Training Network

Regularized Nonlinear Acceleration

Damien Scieur (damien.scieur@inria.fr), Alexandre d'Aspremont and Francis Bach SIERRA Team - École Normale Supérieure / INRIA, Paris

Problem formulation

We want to minimize a (convex) function f:

$$\min_{x \in \mathbb{R}^d} f(x)$$
 , Solution: x^*

If we use gradient method with step size 1/L (the constant of smoothness), we get the sequence

$$\{x_0, x_1, \ldots, x_N\}$$
 where $x_{i+1} = x_i - \frac{1}{L}f'(x_i)$

Linearizing the equation around x^* gives

$$x_{i+1} = x_i - \frac{1}{L} (f''(x^*)(x_i - x^*) + \mathcal{O}(||x_i - x^*||^2))$$

We have the perturbed vector auto-regressive (VAR) process

$$x_{i+1} - x^* = A(x_i - x^*) + \mathcal{O}(\|x_i - x^*\|^2)$$

where $A = I - \frac{1}{L}f''(x^*)$.

Two main questions

- How can we accelerate convergence of VAR processes?
- What is the impact of perturbations?

Structure of VAR processes

Assume we have the sequence $\{x_0, x_1, \ldots, x_{N+1}\}$ produced by

$$x_{i+1} - x^* = A(x_i - x^*) = A^{i+1}(x_0 - x^*)$$

Averaging with coefficients c_i (with unitary sum) gives

$$\sum_{i=0}^{N} c_i x_i = x^* + \sum_{i=0}^{N} c_i A^i (x_0 - x^*) = x^* + \underbrace{p(A)(x_0 - x^*)}_{= \text{Error term}}$$

We need to find c which minimizes the norm of the matrix polynomial (i.e. the error term).

Chebyshev acceleration ———

Idea: Similar to Nesterov's method. It uses coefficients c which minimize the worst case of $||p(A)(x_0 - x^*)||$, i.e.

$$c_{\mathsf{Cheby}} = \arg\min_{c: \mathbf{1}^T c = 1} \left\{ \max_{A: 0 \leq A \leq \sigma I} \left\| \sum_{i=0}^{N} c_i A^i \right\| \right\}$$

where $\sigma = (1 - \mu/L) < 1$ (in the case of gradient method).

Advantage: Coefficients known in advance.

Drawbacks: Not adaptive, requires the knowledge of μ and L. Rate of convergence: Optimal if applied on gradient method for minimizing quadratics, not generalizable for non-linear objective.

Acceleration of VAR processes

The mean of VAR processes follows

$$\sum_{i=0}^{N} c_i x_i = x^* + p(A)(x_0 - x^*)$$

We need to minimize $p(A)(x_0 - x^*)$ using only x_i .

Main trick: The differences follow

$$x_{i+1} - x_i = (x_{i+1} - x^*) - (x_i - x^*) = (A - I)(x_i - x^*)$$

So their mean is

$$\sum_{i=0}^{N} c_i(x_{i+1} - x_i) = (A - I)p(A)(x_0 - x^*)$$

We can minimize (over c) the combination of differences:

$$\left\| \sum_{i=0}^{N} c_i(x_{i+1} - x_i) \right\| \approx 0 \quad \Rightarrow \quad \|p(A)(x_0 - x^*)\| \approx 0$$

Problem: We do not observe A!

Minimal Polynomial Extrapolation —

minimizing $||p(A)(x_0 - x^*)||$, MPE solves

$$\min_{c:\mathbf{1}^Tc=1} \left\| \sum_{i=0}^N c_i(x_{i+1} - x_i) \right\| = \min_{c:\mathbf{1}^Tc=1} \|Uc\|, \text{ Solution: } c = \frac{(U^TU)^{-1}\mathbf{1}}{\mathbf{1}^T(U^TU)^{-1}\mathbf{1}} \right\|$$

Advantages: No parameter, adaptive, complexity O(d).

Drawback: Extremely unstable, and works rarely when applied

Rate of convergence: Similar to Chebyshev's rate (with multiplicative constant).

Idea: Similar to conjugate gradient without knowing A. Instead of

on non-linear functions because U is a Krylov matrix.

Regularized MPE (main contribution) -

Idea: Solves the regularized version of MPE:

$$\min_{c:\mathbf{1}^T c=1} \|Uc\| + \lambda \|c\|^2 \quad \Rightarrow \quad c = \frac{(U^T U + \lambda I)^{-1} \mathbf{1}}{\mathbf{1}^T (U^T U + \lambda I)^{-1} \mathbf{1}}$$

If U^TU is perturbed by matrix P, then $\lambda = O(\|P\|)$.

Advantages: Adaptive, stable, complexity O(d).

Drawback: Parameter λ (can be found by line-search).

Rate of convergence: Asymptotically optimal:

when
$$||x_0-x^*|| \to 0$$
, then $||\sum_{i=0}^N c_i x_i - x^*|| = O(1-\sqrt{\mu/L})^N ||x_0-x^*||$

The **global bound** depends of "Regularized Chebyshev Polynomials".

Numerical experiments

Logistic regression

$$\min_{w} \sum_{i=1}^{m} \log \left(1 + \exp(-y_i X_i^T w) \right) + \frac{\tau}{2} ||w||^2$$

Max Cut (Dual)

$\min \lambda_{\max}ig(\mathsf{Lap}(G) + \mathbf{diag}(z)ig) - \mathbf{1}^Tzig)$

0000000 Subgradient method --- RMPE15 on Subgradient >> Dual averaging RMPE15 on Dual Averaging

CPU Time (sec.)

SVM (Dual)

Acknowledgements

We received fundings from the European Union's Seventh Framework Programme (FP7-PEOPLE-2013-ITN) under grant agreement n o 607290 SpaRTaN, as well as support from ERC SIPA and the chaire Économie des nouvelles données with the data science joint research initiative with the fonds AXA pour la recherche.

Main References

- Cabay S. and Jackson LW. A polynomial extrapolation method for finding limits and antilimits of vector sequences.
- Mešina M. Convergence acceleration for the iterative solution of the equations x=ax+f.
- Smith D., Ford W. and Sidi A. Extrapolation methods for vector sequences.
- Tyrtyshnikov E. How bad are Hankel matrices?