

Lecture 5 SVMs with Slack (Not Linearly Separable)

Rishabh Iyer
University of Texas at Dallas

Recap SVMs

$$\min_{w,b} \|w\|^2 \leftarrow \lim_{w,b} (w^w)^{(i)}$$
 such that
$$y^{(i)}(w^Tx^{(i)} + b) \ge 1, \text{ for all } i$$

- This is a standard quadratic programming problem
 - Falls into the class of convex optimization problems
 - Can be solved with many specialized optimization tools (e.g., quadprog() in MATLAB)

Recap SVMs

$$w^{T}x + b = 1 \qquad w^{T}x + b = 0 \qquad w^{T}x + b = -1$$

- Where does the name come from?
 - The set of all data points such that $y^{(i)}(w^Tx^{(i)}+b)=1$ are called support vectors
 - The SVM classifier is completely determined by the support vectors (you could delete the rest of the data and get the same answer)

Dual SVM = Original SVM Formulation

$$\max_{\lambda \ge 0} -\frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} (x^{(i)})^{T} (x^{(j)}) + \sum_{i} \lambda_{i}$$

such that

$$\sum_{i} \lambda_{i} y_{i} = 0 \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad$$

- This is the same as original SVM formulation!
- The dual formulation only depends on inner products between the data points

Dual SVM

$$\max_{\lambda \ge 0} -\frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} \Phi(x^{(i)})^{T} \Phi(x^{(j)}) + \sum_{i} \lambda_{i}$$

such that

$$\sum_{i} \lambda_i y_i = 0$$

- The dual formulation only depends on inner products between the data points
 - Same thing is true if we use feature vectors instead

Projected 4D min f(n) s+ n > n $n < m_2$ χ_{ι}

The Kernel Trick

- For some feature vectors, we can compute the inner products quickly, even if the feature vectors are very large
- This is best illustrated by example

• Let
$$\phi(\underline{x_1, x_2}) = \begin{bmatrix} x_1 x_2 \\ x_2 x_1 \\ x_1^2 \\ x_2^2 \end{bmatrix}$$

•
$$\phi(x_1, x_2)^T \phi(z_1, z_2) = x_1^2 z_1^2 + 2x_1 x_2 z_1 z_2 + x_2^2 z_2^2$$

= $(x_1 z_1 + x_2 z_2)^2$
= $(x_1^T z_1)^2$

The Kernel Trick

- For some feature vectors, we can compute the inner products quickly, even if the feature vectors are very large
- This is best illustrated by example

• Let
$$\phi(x_1, x_2) = \begin{bmatrix} x_1 x_2 \\ x_2 x_1 \\ x_1^2 \\ x_2^2 \end{bmatrix}$$

• $\phi(x_1, x_2)^T \phi(z_1, z_2) = x_1^2 z_1^2 + 2x_1 x_2 z_1 z_2 + x_2^2 z_2^2$
= $(x_1 z_1 + x_2 z_2)^2$
Reduces to a dot product in the original space

The Kernel Trick

- The same idea can be applied for the feature vector ϕ of all polynomials of degree (exactly) d $\chi(\gamma, \gamma) = (\gamma, \gamma)^{-1} \gamma \gamma^{-1} \gamma^{-1}$
 - $\phi(x)^T \phi(z) = (x^T z)^d$
- More generally, a kernel is a function $k(x,z) = \phi(x)^T \phi(z)$ for some feature map ϕ
- Rewrite the dual objective

$$\max_{\lambda \geq 0, \sum_{i} \lambda_{i} y_{i} = 0} -\frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} \underbrace{k(x^{(i)}, x^{(j)})}_{i} + \sum_{i} \lambda_{i}$$

Examples of Kernels

- Polynomial kernel of degree exactly d
 - $k(x,z) = (x^T z)^d$
- General polynomial kernel of degree d for some c
 - $k(x,z) = (x^Tz + c)^d$
- Gaussian kernel for some σ

•
$$k(x,z) = \exp\left(\frac{-\|x-z\|^2}{2\sigma^2}\right)$$

- The corresponding ϕ is infinite dimensional!
- So many more...

Gaussian Kernels

Consider the Gaussian kernel

$$\exp\left(\frac{-\|x-z\|^2}{2\sigma^2}\right) = \exp\left(\frac{-(x-z)^T(x-z)}{2\sigma^2}\right)$$

$$= \exp\left(\frac{-\|x\|^2 + 2x^Tz - \|z\|^2}{2\sigma^2}\right)$$

$$= \exp\left(-\frac{\|x\|^2}{2\sigma^2}\right) \exp\left(-\frac{\|z\|^2}{2\sigma^2}\right) \exp\left(\frac{x^Tz}{\sigma^2}\right)$$

Use the Taylor expansion for exp()

$$\exp\left(\frac{x^T z}{\sigma^2}\right) = \sum_{n=0}^{\infty} \frac{(x^T z)^n}{\sigma^{2n} n!}$$

Gaussian Kernels

Consider the Gaussian kernel

$$\exp\left(\frac{-\|x-z\|^2}{2\sigma^2}\right) = \exp\left(\frac{-(x-z)^T(x-z)}{2\sigma^2}\right)$$

$$= \exp\left(\frac{-\|x\|^2 + 2x^Tz - \|z\|^2}{2\sigma^2}\right)$$

$$= \exp\left(-\frac{\|x\|^2}{2\sigma^2}\right) \exp\left(-\frac{\|z\|^2}{2\sigma^2}\right) \exp\left(\frac{x^Tz}{\sigma^2}\right)$$

Use the Taylor expansion for exp()

$$\exp\left(\frac{x^T z}{\sigma^2}\right) = \sum_{n=0}^{\infty} \frac{(x^T z)^n}{\sigma^{2n} n!}$$

Polynomial kernels of every degree!

Kernels

- Bigger feature space increases the possibility of overfitting
 - Large margin solutions may still generalize reasonably well
- Alternative: add "penalties" to the objective to disincentivize complicated solutions

SVMs with Slack (Remove Linear Separability)

- Allow misclassification
 - Penalize misclassification linearly (just like in the perceptron algorithm)
 - Again, easier to work with than counting misclassifications
 - Objective stays convex
 - Will let us handle data that isn't linearly separable!
 - Idea: Take the constraints into the main objective
 - The objective function then becomes exactly like what we have seen in Perceptron/Linear Regression

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

such that

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i

 $\xi_i \geq 0$, for all i

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

such that

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all t

Potentially allows some points to be misclassified/inside the margin

$$\min_{w,b,\xi} \frac{1}{2} \|w\|^2 + c \sum_{i} \xi_i$$

such that

Constant c determines degree to which slack is penalized

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

such that

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

How does this objective change with c?

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

such that

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

- How does this objective change with c?
 - As $c \to \infty$, requires a perfect classifier
 - As $c \to 0$, allows arbitrary classifiers (i.e., ignores the data)

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

such that

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

• How should we pick c?

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

such that

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

- How should we pick c?
 - Divide the data into three pieces training, testing, and validation
 - Use the validation set to tune the value of the hyperparameter c

Evaluation Methodology

- General learning strategy
 - Build a classifier using the training data

 Model Parameter
 - Select hyperparameters using validation data C
 - Evaluate the chosen model with the selected hyperparameters on the test data

How can we tell if we overfit the training data?

ML in Practice

- Gather Data + Labels
- Select feature vectors
- Randomly split into three groups
 - Training set
 Validation set
 Test set
- Experimentation cycle
 - Select a "good" hypothesis from the hypothesis space
 - Tune hyper-parameters using validation set
 - Compute accuracy on test set (fraction of correctly classified instances)

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

such that

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

• What is the optimal value of ξ for fixed w and b?

$$\min_{w,b,\xi} \frac{1}{2} \|w\|^2 + c \sum_i \xi_i$$

such that

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

- What is the optimal value of ξ for fixed w and b?
 - If $y_i(w^T x^{(i)} + b) \ge 1$, then $\xi_i = 0$
 - If $y_i(w^T x^{(i)} + b) < 1$, then $\xi_i = 1 y_i(w^T x^{(i)} + b)$

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + c \sum_{i} \xi_i$$

such that

$$y_i(w^T x^{(i)} + b) \ge 1 - \xi_i$$
, for all i
 $\xi_i \ge 0$, for all i

- We can formulate this slightly differently
 - $\xi_i = \max\{0, 1 y_i(w^T x^{(i)} + b)\}$
 - Does this look familiar?
 - Hinge loss provides an upper bound on Hamming loss

Hinge Loss Formulation

• Obtain a new objective by substituting in for ξ

$$\min_{w,b} \frac{1}{2} ||w||^2 + c \sum_{i} \max\{0, 1 - y_i(w^T x^{(i)} + b)\}$$

Can minimize with gradient descent!

Hinge Loss Formulation

• Obtain a new objective by substituting in for ξ

$$\min_{w,b} \frac{1}{2} ||w||^2 + c \sum_{i} \max\{0, 1 - y_i(w^T x^{(i)} + b)\}$$
Penalty to prevent overfitting

Hinge loss

Avoids over fitting to the Data 4

REGULARIZATION!

Until now, we have seen the following optimization problems:

$$\min_{w,b} \sum_{i} L(f(x^{(i)}, w, b), y_i) \leftarrow \text{Fit well to the}$$
They a Data.

- In the case of Linear regression, L was the squared loss
- In Perceptron, L was Perceptron Loss
- The regularized version of this is:

$$\min_{w,b} \frac{1}{2} ||w||^2 + c \sum_{i} L(f(x^{(i)}, w, b), y_i)$$

c is a hyper-parameter (again, to be tunes on validation set)

1/w1/2 prevent over fitting? Why |w| >>> |w|

Perceptron vs Hinge vs Square vs Zero-One Loss

Imbalanced Data

 If the data is imbalanced (i.e., more positive examples than negative examples), may want to evenly distribute the error between the two classes

Generalization

We argued, intuitively, that SVMs generalize better than the perceptron algorithm

How can we make this precise?

Morson -> Generalization (Test Sct Performance)

Roadmap

- Where are we headed?
 - Non-Parametric Methods
 - *k* nearest neighbor
 - Decision trees
 - Probabilistic Methods
 - Bayesian Methods
 - Naïve Bayes
 - Logistic Regression
 - Unsupervised Learning
 - Clustering