KHAI PHÁ DỮ LIỆU

Trường Đại học Nha Trang Khoa Công nghệ thông tin Bộ môn Hệ thống thông tin Giáo viên: TS.Nguyễn Khắc Cường

CHỦ ĐỀ 4

PHÂN LỚP
(Một số lý thuyết hỗ trợ)

- Population
 - Tập hợp các đối tượng cần phân tích thống kê
 - Số lượng
 - Hữu hạn hoặc vô hạn
 - Lớn hoặc vô cùng lớn
 - → Dù là hữu hạn, nhưng số lượng lớn, nên vẫn được xem là vô hạn
 - VD: một nhóm người, một nhóm đối tượng, một nhóm sự kiện, ...
- Dataset
 - Tập con (chọn ngẫu nhiên) của population
 - Xây dựng mô hình thống kê để phân tích, suy luận trên dataset → để hiểu population (vì số lượng của population là vô hạn)

- Suy luận thống kê
 - Là một trong các phương pháp phổ biến dùng để thực hiện phân tích dữ liệu
 - Có thể chia ra làm 2 nhóm chính
 - Estimation
 - Test of hypotheses
- Estimation
 - Xét dataset $T = \{(x_{11},...,x_{1n}),(x_{21},...,x_{2n}),...,(x_{m1},...,x_{mn})\}$ gồm một bộ có thứ tự của các dữ liệu $X = \{X_1,X_2,...,X_n\}$ (lấy từ population)
 - Mục đích của estimation là ước lượng một hoặc nhiều tham số w thuộc model của bài toán thực tế f(X, w).

- Estimation
 - Tác dụng
 - Dùng w ước lượng được để tạo các dự đoán cho dữ liệu mới (thuộc cùng phân bố với X)
 - Prediction error
 - Nhãn thực tế của data là Y
 - Mà model đoán nhãn của Y là $f(X^*, w)$
 - → thì một trong các phương pháp để đánh giá mức độ sai số là expected mean squared error đối với các data của toàn bộ dataset T

$$E_{\mathrm{T}}\Big[(Y-f(X^*,w))^2\Big]$$

- Testing
 - Hypotheses được đánh giá để chấp nhận hay loại bỏ hypotheses đó

- Một số công cụ thống kê thường dùng trong các model
 - Mean: $mean = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - Weighted mean:

$$mean = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

Mode

- Một số công cụ thống kê thường dùng trong các model
 - Variance

$$\sigma^2 = \left(\frac{1}{(n-1)}\right) \sum_{i=1}^n (x_i - \text{mean})^2$$

- Standard deviation
 - Là căn bậc 2 của variance

Suy luận Bayesian

- Prior distribution
 - Phân bố của dữ liệu trong dataset trước khi phân tích
- Posterior distribution
 - Ngoài dataset ra, còn có thông tin khác cũng được dùng
 - Lý thuyết Bayesian cung cấp những idea để kết hợp các thông tin bên ngoài này với dataset
 - Phân bố của dataset sau khi đã tích hợp các thông tin bên ngoài = posterior distribution
- Bayesian classifier
 - Dùng lý thuyết Bayesian để giải thích quá trình phân lớp

Suy luận Bayesian

- Lý thuyết Bayesian
 - H : hypothesis được sử dụng để xây dựng model
 - X : data thuộc class C nào đó
 - P(H|X):
 - Là xác suất mà hypothesis H thỏa dựa trên data X quan sát được
 - Là xác xuất hậu nghiệm biểu diễn độ tin cậy của hypothesis H xảy ra khi data X xảy ra
 - P(H): là xác suất tiên nghiệm của hypothesis H đối với bất kỳ data nào trong dataset xảy ra
 - Lý thuyết Bayesian cung cấp idea để tính P(H|X)

$$P(H/X) = [P(X/H) \times P(H)]/P(X)$$

Suy luận Bayesian

- Naïve Bayesian classifier:
 - Giả sử có training data $S = \{S_1, S_2, ..., S_m\}$
 - Các training data thuộc k class C₁, C₂,...,C_k
 - X : là new data (chưa biết thuộc class nào)
 - Đoán class của new data X như sau:

$$P(C_i/X) = [P(X/C_i) \times P(C_i)]/P(X)$$

Hồi qui dự đoán

- Hồi qui:
 - Là kỹ thuật dùng lý thuyết thống kê để dự đoán cho các giá trị liên tục
 - Mục đích của phân tích hồi qui là là xác định model tốt nhất để biểu diễn sự liên hệ giữa một biến đầu ra Y với một hoặc nhiều biến đầu vào x₁,x₂,...,x_n
- Công thức hồi qui dự đoán:

$$y_j = \alpha + \beta_1 \cdot x_{1j} + \beta_2 \cdot x_{2j} + \beta_3 \cdot x_{3j} + \dots + \beta_n \cdot x_{nj} + \varepsilon_j \quad j = 1, \dots, m$$

- α, β là các hệ số hồi qui
- \mathcal{E}_j : sai số hồi qui

Phân tích phương sai

- ANOVA
 - ANOVA = ANalysis-Of-Variance
 - Là phương pháp phân tích độ tốt của đường hồi qui tìm được
 - Là một công cụ rất hiệu quả
 - Được sử dụng trong nhiều ứng dụng data-mining
- Phân tích phương sai
 - Nhãn thật sự của training data là y_i
 - Nhãn đoán được bởi đường hồi qui là f(x_i)
 - Sai số được đánh giá

$$R_i = y_i - f(x_i)$$

Phân tích phương sai

Phân tích phương sai

 Mức độ sai số của một tập m sample trong dataset có tổng cộng n samples có thể đánh giá bằng variance như sau:

 $S^{2} = \frac{\left[\sum_{i=1}^{m} (y_{i} - f(x_{i}))^{2}\right]}{(m - (n-1))}$

Hồi qui Logistic

- Hồi qui tuyến tính:
 - Được dùng để model những continuous-value functions
- Hồi qui Logistic:
 - Là một trong các phương pháp dùng để model những non-continuous-value functions

Q/A