Bilinear Regression via Convex Programming without Lifting

Sohail Bahmani Georgia Tech

Bilinear regression

Given $a_1, \ldots, a_n \in \mathbb{R}^{d_1}$ and $a'_1, \ldots, a'_n \in \mathbb{R}^{d_2}$ we observe noisy bilinear measurements of unknown vectors $\mathbf{x}_{\star} \in \mathbb{R}^{d_1}$ and $\mathbf{x}'_{\star} \in \mathbb{R}^{d_2}$ as

$$y_1 = \mathbf{a}_1^{\mathsf{T}} \mathbf{x}_{\star} \mathbf{x}_{\star}^{\prime \mathsf{T}} \mathbf{a}_1^{\prime} + \xi_1$$

$$y_2 = \mathbf{a}_2^{\mathsf{T}} \mathbf{x}_{\star} \mathbf{x}_{\star}^{\prime \mathsf{T}} \mathbf{a}_2^{\prime} + \xi_2$$

$$\vdots \qquad \vdots$$

$$y_n = \mathbf{a}_n^{\mathsf{T}} \mathbf{x}_{\star} \mathbf{x}_{\star}^{\prime \mathsf{T}} \mathbf{a}_n^{\prime} + \underbrace{\xi_n}_{\text{noise}}.$$

Problem

Estimate \mathbf{x}_{\star} and \mathbf{x}'_{\star} accurately, using the observations $(\mathbf{a}_i, \mathbf{a}'_i, y_i)$, $i = 1, \ldots, n$.

A much more general **nonlinear regression** will be addressed towards the end.

Some reminders

Scaling ambiguity:

(x, x') is an accurate solution $\implies (tx, t^{-1}x')$ is an accurate solution $\forall t \neq 0$.

Computation:

There are computationally hard instances. Randomness helps to avoid them.

Examples

In matrix notation,

$$y = Ax_{\star} \circ A'x'_{\star} + \xi$$
,

where $\mathbf{A} = [\mathbf{a}_1 \ \cdots \ \mathbf{a}_n]^{\mathsf{T}}$ and $\mathbf{A}' = [\mathbf{a}_1' \ \cdots \ \mathbf{a}_n']^{\mathsf{T}}$.

Matrix completion:

 $\mathbf{a}_i = \mathbf{e}_{r_i}$ and $\mathbf{a}_i' = \mathbf{e}_{c_i}$ are random coordinate indicator vectors

Examples

In matrix notation,

$$y = Ax_{\star} \circ A'x'_{\star} + \xi$$
,

where $\mathbf{A} = [\mathbf{a}_1 \cdots \mathbf{a}_n]^T$ and $\mathbf{A}' = [\mathbf{a}_1' \cdots \mathbf{a}_n']^T$.

Blind deconvolution:

A and **A'** interpreted as subspaces in the Fourier domain (ignoring \mathbb{R} vs. \mathbb{C})

image: $F^{-1}Ax_{\star}$

PSF: $\mathbf{F}^{-1}\mathbf{A}'\mathbf{x}'_{\star}$

blurred image: $\mathbf{F}^{-1}\mathbf{y}$

SDP-relaxation*,†: The conversion $xx'^{T} \mapsto X$ maps the bilinear regression to a matrix linear regression

$$y_i = \boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{x}_{\star} \, \boldsymbol{x}_{\star}^{\prime \mathsf{T}} \boldsymbol{a}_i^{\prime} + \xi_i = \boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{X}_{\star} \boldsymbol{a}_i^{\prime} + \xi_i$$
.

Estimate the rank one solution through nuclear norm minimization

$$\underset{\boldsymbol{X}}{\operatorname{argmin}} \ \|\boldsymbol{X}\|_*$$
 subject to $\boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{X} \boldsymbol{a}_i' = y_i$, $i = 1, \dots, n$.

Not scalable, due to the prohibitive cost of SDP.

†Cai & Zhang, "ROP: Matrix recovery via rank-one projections," Annals of Statistics, 2015

^{*}Ahmed et al, "Blind deconvolution using convex programming," IEEE Trans. Info. Theory, 2014

SDP-relaxation*,†: The conversion $xx'^{\top} \mapsto X$ maps the bilinear regression to a matrix linear regression

$$y_i = \boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{x}_{\star} \, \boldsymbol{x}_{\star}^{\prime \mathsf{T}} \boldsymbol{a}_i^{\prime} + \xi_i = \boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{X}_{\star} \boldsymbol{a}_i^{\prime} + \xi_i$$
.

Estimate the rank one solution through nuclear norm minimization

$$\underset{\boldsymbol{X}}{\operatorname{argmin}} \ \|\boldsymbol{X}\|_*$$
 subject to $\boldsymbol{a}_i^{\! {\scriptscriptstyle \mathsf{T}}} \! \boldsymbol{X} \boldsymbol{a}_i' = y_i$, $i = 1, \ldots, n$.

Not scalable, due to the prohibitive cost of SDP.

†Cai & Zhang, "ROP: Matrix recovery via rank-one projections," Annals of Statistics, 2015

^{*}Ahmed et al, "Blind deconvolution using convex programming," IEEE Trans. Info. Theory, 2014

Nonconvex gradient descent*,†: Similar to the Wirtinger flow algorithm for phase retrieval, run gradient descent on the residual error

$$f(\mathbf{x}, \mathbf{x}') = \frac{1}{n} \sum_{i=1}^{n} |\mathbf{a}_{i}^{*} \mathbf{x} \mathbf{x}'^{*} \mathbf{a}_{i}' - y_{i}|^{2}.$$

Regularized variants are proposed for blind deconvolution, blind calibration, & matrix completion.

Light-tailed distribution is needed for iteration analysis.

Analyses are often lengthy.

*Cambareri, Jacques, "Through the haze: A non-convex approach to blind gain calibration for linear random sensing models," Information & Inference, 2018.

†Li et al, "Rapid, robust, and reliable blind deconvolution via nonconvex optimization," App. & Comp. Harmonic Analysis, 2018.

Nonconvex gradient descent*,†: Similar to the Wirtinger flow algorithm for phase retrieval, run gradient descent on the residual error

$$f(\mathbf{x}, \mathbf{x}') = \frac{1}{n} \sum_{i=1}^{n} |\mathbf{a}_{i}^{*} \mathbf{x} \mathbf{x}'^{*} \mathbf{a}_{i}' - y_{i}|^{2}.$$

Regularized variants are proposed for blind deconvolution, blind calibration, & matrix completion.

Light-tailed distribution is needed for iteration analysis.

Analyses are often lengthy.

†Li et al, "Rapid, robust, and reliable blind deconvolution via nonconvex optimization," App. & Comp. Harmonic Analysis, 2018.

^{*}Cambareri, Jacques, "Through the haze: A non-convex approach to blind gain calibration for linear random sensing models," Information & Inference, 2018.

Related work

BranchHull*: With $s = \operatorname{sgn}(Ax_*)$ given, solve the **convex program** $\underset{x \in \mathbb{R}^{d_1}, x' \in \mathbb{R}^{d_2}}{\operatorname{argmin}} \|Ax\|_2^2 + \|A'x'\|_2^2$ subject to $s \circ (Ax) \circ (A'x') \ge |y|$ $s \circ (Ax) \ge 0 .$

The sample complexity $n \gtrsim d_1 + d_2$ is shown for Gaussian **A** and **A'**

Knowing s is a restrictive assumption.

The relaxation seem very sensitive to noise

^{*}Aghasi et al, "BranchHull: Convex bilinear inversion from the entrywise product of signals with known signs," arXiv:1702.04342.2017

Related work

BranchHull*: With $s = \operatorname{sgn}(\boldsymbol{A}\boldsymbol{x}_{\star})$ given, solve the **convex program** $\underset{\boldsymbol{x} \in \mathbb{R}^{d_1}, \boldsymbol{x}' \in \mathbb{R}^{d_2}}{\operatorname{argmin}} \|\boldsymbol{A}\boldsymbol{x}\|_2^2 + \|\boldsymbol{A}'\boldsymbol{x}'\|_2^2$ subject to $\boldsymbol{s} \circ (\boldsymbol{A}\boldsymbol{x}) \circ (\boldsymbol{A}'\boldsymbol{x}') \geq |\boldsymbol{y}|$ $\boldsymbol{s} \circ (\boldsymbol{A}\boldsymbol{x}) > 0 \ .$

The sample complexity $n \ge d_1 + d_2$ is shown for Gaussian **A** and **A'**

Knowing s is a restrictive assumption.

The relaxation seem very sensitive to noise.

^{*}Aghasi et al, "BranchHull: Convex bilinear inversion from the entrywise product of signals with known signs," arXiv:1702.04342.2017

Given $\mathbf{x}_0 \approx \mathbf{x}_\star$ and $\mathbf{x}_0' \approx \mathbf{x}_\star'$ such that for a sufficiently small $\epsilon \geq 0$,

$$\left\| \left(\begin{array}{c} \mathbf{x}_0 - \mathbf{x}_{\star} \\ \mathbf{x}_0' - \mathbf{x}_{\star}' \end{array} \right) \right\|_2 \leq \epsilon \left\| \left(\begin{array}{c} \mathbf{x}_{\star} \\ \mathbf{x}_{\star}' \end{array} \right) \right\|_2,$$

we estimate x_* and x' through the convex program:

$$(\widehat{\boldsymbol{x}},\widehat{\boldsymbol{x}}') = \underset{\boldsymbol{x},\boldsymbol{x}'}{\operatorname{argmax}} \, \boldsymbol{x}_0^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{x}_0'^{\mathsf{T}} \boldsymbol{x}' - \frac{2}{n} \sum_{i=1}^{n} \max \left\{ \frac{1}{4} (\boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{a}_i'^{\mathsf{T}} \boldsymbol{x}')^2 - y_i, \frac{1}{4} (\boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{x} - \boldsymbol{a}_i'^{\mathsf{T}} \boldsymbol{x}')^2 \right\}$$

Given $\mathbf{x}_0 \approx \mathbf{x}_\star$ and $\mathbf{x}_0' \approx \mathbf{x}_\star'$ such that for a sufficiently small $\epsilon \geq 0$,

$$\left\| \begin{pmatrix} \mathbf{x}_0 - \mathbf{x}_{\star} \\ \mathbf{x}'_0 - \mathbf{x}'_{\star} \end{pmatrix} \right\|_2 \leq \epsilon \left\| \begin{pmatrix} \mathbf{x}_{\star} \\ \mathbf{x}'_{\star} \end{pmatrix} \right\|_2,$$

we estimate x_{\star} and x'_{\star} through the convex program:

$$(\widehat{\boldsymbol{x}},\widehat{\boldsymbol{x}}') = \underset{\boldsymbol{x},\boldsymbol{x}'}{\operatorname{argmax}} \ \boldsymbol{x}_0^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{x}_0'^{\mathsf{T}} \boldsymbol{x}' - \frac{2}{n} \sum_{i=1}^{n} \max \left\{ \frac{1}{4} (\boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{a}_i'^{\mathsf{T}} \boldsymbol{x}')^2 - y_i, \frac{1}{4} (\boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{x} - \boldsymbol{a}_i'^{\mathsf{T}} \boldsymbol{x}')^2 \right\}$$

Intuition: Using the identities

$$2\max\{u,v\} = |u-v| + u + v, \qquad \frac{(u+v)^2 - (u-v)^2 = 4uv}{(u+v)^2 + (u-v)^2 = 2(u^2 + v^2)},$$

the objective can be written as

$$\mathbf{x}_{0}^{\mathsf{T}}\mathbf{x} + \mathbf{x}_{0}^{\mathsf{T}}\mathbf{x}' - \frac{1}{2n}\sum_{i=1}^{n}(\mathbf{a}_{i}^{\mathsf{T}}\mathbf{x})^{2} + (\mathbf{a}_{i}^{\mathsf{T}}\mathbf{x}')^{2} - \frac{1}{n}\sum_{i=1}^{n}|\mathbf{a}_{i}^{\mathsf{T}}\mathbf{x}|\mathbf{x}'^{\mathsf{T}}\mathbf{a}_{i}' - y_{i}|$$

Given $\mathbf{x}_0 \approx \mathbf{x}_\star$ and $\mathbf{x}_0' \approx \mathbf{x}_\star'$ such that for a sufficiently small $\epsilon \geq 0$,

$$\left\| \begin{pmatrix} oldsymbol{x}_0 - oldsymbol{x}_\star \ oldsymbol{x}_0' - oldsymbol{x}_\star' \end{pmatrix} \right\|_2 \le \epsilon \left\| \begin{pmatrix} oldsymbol{x}_\star \ oldsymbol{x}_\star' \ oldsymbol{x}_\star' \end{pmatrix} \right\|_2$$

we estimate x_{\star} and x'_{\star} through the convex program:

$$(\widehat{\boldsymbol{x}},\widehat{\boldsymbol{x}}') = \underset{\boldsymbol{x},\boldsymbol{x}'}{\operatorname{argmax}} \ \boldsymbol{x}_0^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{x}_0'^{\mathsf{T}} \boldsymbol{x}' - \frac{2}{n} \sum_{i=1}^{n} \max \left\{ \frac{1}{4} (\boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{a}_i'^{\mathsf{T}} \boldsymbol{x}')^2 - y_i, \frac{1}{4} (\boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{x} - \boldsymbol{a}_i'^{\mathsf{T}} \boldsymbol{x}')^2 \right\}$$

Equivalent folmulation: Quadratically Constrained Linear Minimization

Given $x_0 \approx x_{\star}$ and $x_0' \approx x_{\star}'$ such that for a sufficiently small $\epsilon \geq 0$,

$$\left\| \begin{pmatrix} \mathbf{x}_0 - \mathbf{x}_{\star} \\ \mathbf{x}'_0 - \mathbf{x}'_{\star} \end{pmatrix} \right\|_{2} \leq \epsilon \left\| \begin{pmatrix} \mathbf{x}_{\star} \\ \mathbf{x}'_{\star} \end{pmatrix} \right\|_{2},$$

we estimate x_{\star} and x'_{\star} through the convex program:

$$(\widehat{\boldsymbol{x}},\widehat{\boldsymbol{x}}') = \underset{\boldsymbol{x},\boldsymbol{x}'}{\operatorname{argmax}} \ \boldsymbol{x}_0^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{x}_0'^{\mathsf{T}} \boldsymbol{x}' - \frac{2}{n} \sum_{i=1}^{n} \max \left\{ \frac{1}{4} (\boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{a}_i'^{\mathsf{T}} \boldsymbol{x}')^2 - y_i, \frac{1}{4} (\boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{x} - \boldsymbol{a}_i'^{\mathsf{T}} \boldsymbol{x}')^2 \right\}$$

Accelerated first-order methods: We can use a smoothed formulation,

$$\underset{\mathbf{x}, \mathbf{x}'}{\operatorname{argmax}} \ \mathbf{x}_{0}^{\mathsf{T}} \mathbf{x} + \mathbf{x}_{0}^{\mathsf{T}} \mathbf{x}' - \frac{2}{\mu n} \sum_{i=1}^{n} \log \left(e^{\frac{\mu}{4} \left(\mathbf{a}_{i}^{\mathsf{T}} \mathbf{x} + \mathbf{a}_{i}^{\mathsf{T}} \mathbf{x}' \right)^{2} - \mu y_{i}} + e^{\frac{\mu}{4} \left(\mathbf{a}_{i}^{\mathsf{T}} \mathbf{x} - \mathbf{a}_{i}^{\mathsf{T}} \mathbf{x}' \right)^{2}} \right)$$

Theoretical guarantee*

We consider $a_i \overset{\text{i.i.d.}}{\sim} \text{Normal}(\mathbf{0}, \mathbf{I}_{d_1 \times d_1})$ and $a_i' \overset{\text{i.i.d.}}{\sim} \text{Normal}(\mathbf{0}, \mathbf{I}_{d_2 \times d_2})$, and $\boldsymbol{\xi} = \mathbf{0}$.

^{*}Bahmani, "Estimation from non-linear observations via convex programming with application to bilinear regression," arXiv:1806.07307, 2018.

Theoretical guarantee*

We consider $a_i \overset{\text{i.i.d.}}{\sim} \text{Normal}(\mathbf{0}, \mathbf{I}_{d_1 \times d_1}) \text{ and } a_i' \overset{\text{i.i.d.}}{\sim} \text{Normal}(\mathbf{0}, \mathbf{I}_{d_2 \times d_2}), \text{ and } \boldsymbol{\xi} = \mathbf{0}.$

"Spectral" method of choosing x_0 and x'_0 :

Let $S_n = n^{-1} \sum_{i=1}^n y_i a_i a_i^T$ which satisfies $\mathbb{E} S_n = x_* x_*^T$. Then we choose,

$$oldsymbol{x}_0 = \left\| oldsymbol{\mathcal{S}}_n
ight\|^{1/2} oldsymbol{u}_{\mathsf{max}} \left(oldsymbol{\mathcal{S}}_n
ight) \,, \qquad \qquad oldsymbol{x}_0' = \left\| oldsymbol{\mathcal{S}}_n
ight\|^{1/2} oldsymbol{v}_{\mathsf{max}} \left(oldsymbol{\mathcal{S}}_n
ight) \,.$$

that meet the required ϵ relative error if $n \gtrsim (d_1 + d_2) \log (d_1 + d_2)$.

^{*}Bahmani, "Estimation from non-linear observations via convex programming with application to bilinear regression," arXiv:1806.07307, 2018.

Theoretical guarantee*

We consider $a_i \overset{\text{i.i.d.}}{\sim} \text{Normal}(\mathbf{0}, \mathbf{I}_{d_1 \times d_1}) \text{ and } a_i' \overset{\text{i.i.d.}}{\sim} \text{Normal}(\mathbf{0}, \mathbf{I}_{d_2 \times d_2}), \text{ and } \boldsymbol{\xi} = \mathbf{0}.$

Theorem

For a sufficiently large absolute constant C > 0, if

$$n \geq C \max \left\{ d_1 + d_2, \log \left(8/\delta \right) \right\}$$
 ,

then with probability $\geq 1 - \delta$ the estimates are exact up to the scaling ambiguity, i.e., for some $t \neq 0$, we have $\hat{\mathbf{x}} = t\mathbf{x}_+$ and $\hat{\mathbf{x}}' = t^{-1}\mathbf{x}'_+$.

^{*}Bahmani, "Estimation from non-linear observations via convex programming with application to bilinear regression," arXiv:1806.07307, 2018.

Simulation

Setup: $d_1 = d_2 = d$. Measurement vectors $\mathbf{a}_i, \mathbf{a}_i' \overset{\text{i.i.d.}}{\sim} \text{Normal}(\mathbf{0}, \mathbf{I}_{d \times d})$.

Solver: Gurobi for QCLM formulation

Plots show the median of the relative error over 100 trials.

Difference of convex regression:

For a random data point a, the observation function is **given** in the DC form as

$$f_{\mathbf{a}}(\cdot) = f_{\mathbf{a}}^+(\cdot) - f_{\mathbf{a}}^-(\cdot)$$
 ,

where the functions f_a^+ and f_a^- are both convex.

^{*}Bahmani, "Estimation from non-linear observations via convex programming with application to bilinear regression," arXiv: 1806.07307.2018.

Difference of convex regression:

For a random data point a, the observation function is **given** in the DC form as

$$f_{\mathbf{a}}(\cdot) = f_{\mathbf{a}}^+(\cdot) - f_{\mathbf{a}}^-(\cdot)$$
,

where the functions f_a^+ and f_a^- are both convex.

Estimate the parameter x_{\star} , from observations at i.i.d. data points a_1, \ldots, a_n , i.e.,

$$y_i = f_{a_i}^+(\mathbf{x}_{\star}) - f_{a_i}^-(\mathbf{x}_{\star}) + \xi_i$$
, $i = 1, ..., n$.

^{*}Bahmani, "Estimation from non-linear observations via convex programming with application to bilinear regression," arXiv: 1806.07307, 2018.

Difference of convex regression:

For a random data point a, the observation function is **given** in the DC form as

$$f_{\mathbf{a}}(\cdot) = f_{\mathbf{a}}^+(\cdot) - f_{\mathbf{a}}^-(\cdot)$$
,

where the functions f_a^+ and f_a^- are both convex.

Estimate the parameter x_{\star} , from observations at i.i.d. data points a_1, \ldots, a_n , i.e.,

$$y_i = f_{a_i}^+(\mathbf{x}_{\star}) - f_{a_i}^-(\mathbf{x}_{\star}) + \xi_i$$
, $i = 1, ..., n$.

Estimator

Given $\mathbf{x}_0 \approx \frac{1}{2n} \sum_{i=1}^n \nabla f_{\mathbf{a}_i}^+(\mathbf{x}_{\star}) + \nabla f_{\mathbf{a}_i}^-(\mathbf{x}_{\star})$, we formulate the estimator as

$$\widehat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmax}} \ \mathbf{x}_0^{\mathsf{T}} \mathbf{x} - \frac{1}{n} \sum_{i=1}^n \max\{f_{a_i}^+(\mathbf{x}) - y_i, f_{a_i}^-(\mathbf{x})\}$$

^{*}Bahmani, "Estimation from non-linear observations via convex programming with application to bilinear regression," arXiv:1806.07307.2018.

Difference of convex regression:

For a random data point a, the observation function is **given** in the DC form as

$$f_{\mathbf{a}}(\cdot) = f_{\mathbf{a}}^+(\cdot) - f_{\mathbf{a}}^-(\cdot)$$
,

where the functions f_a^+ and f_a^- are both convex.

Theorem (simplified)

Let $\Lambda = \sup_{\boldsymbol{h} \in \mathbb{S}^{d-1}} \mathbb{E} |\boldsymbol{h}^{\mathsf{T}} \nabla f_{\boldsymbol{a}}(\boldsymbol{x}_{\star})|$ and $\lambda = \inf_{\boldsymbol{h} \in \mathbb{S}^{d-1}} \mathbb{E} |\boldsymbol{h}^{\mathsf{T}} \nabla f_{\boldsymbol{a}}(\boldsymbol{x}_{\star})|$. Then, for a sufficiently accurate \boldsymbol{x}_0 , with probability $\geq 1 - \delta$, having

$$n \gtrsim \max \left\{ rac{\Lambda^2}{\lambda^2} \log \left(rac{2}{\delta}
ight), rac{\Lambda^3}{\lambda^3} d
ight\},$$

guarantees

$$\|\widehat{\mathbf{x}} - \mathbf{x}_{\star}\|_{2} \lesssim \frac{\|\mathbf{\xi}\|_{1}}{\lambda n}$$
.

^{*}Bahmani, "Estimation from non-linear observations via convex programming with application to bilinear regression," arXiv:1806.07307.2018.

Simulation: rank > 1

Setup: For d=128, r=3 the signal is $\boldsymbol{X}_{\star}\boldsymbol{X}_{\star}^{\prime \top}$ with \boldsymbol{X}_{\star} , $\boldsymbol{X}_{\star}^{\prime} \in \mathbb{R}^{d \times r}$ and the measurement functions are $f_{\boldsymbol{a}_{i},\boldsymbol{a}_{i}^{\prime}}^{\pm}(\boldsymbol{X},\boldsymbol{X}^{\prime})=\frac{1}{4}\|\boldsymbol{X}^{\top}\boldsymbol{a}_{i}\pm\boldsymbol{X}^{\prime \top}\boldsymbol{a}_{i}^{\prime}\|_{F}^{2}$ for vectors \boldsymbol{a}_{i} , $\boldsymbol{a}_{i}^{\prime}\overset{\text{i.i.d.}}{\sim}$ Normal($\boldsymbol{0},\boldsymbol{I}_{d \times d}$). The observations are then $\boldsymbol{v}_{i}=\boldsymbol{a}_{i}^{\top}\boldsymbol{X}\,\boldsymbol{X}^{\prime \top}\boldsymbol{a}_{i}^{\prime}$

Solver: Nesterov's accelerated gradient method for the smoothed variant

Proof skecth

By convexity of $f_{a_i}^{\pm}$ we have

$$\begin{split} & \max\{f_{\boldsymbol{a}_i}^+\left(\boldsymbol{x}_{\star}+\boldsymbol{h}\right)-y_i, f_{\boldsymbol{a}_i}^-\left(\boldsymbol{x}_{\star}+\boldsymbol{h}\right)\} \\ & \geq \max\{\boldsymbol{h}^{\mathsf{T}}\nabla f_{\boldsymbol{a}_i}^+\left(\boldsymbol{x}_{\star}\right), \boldsymbol{h}^{\mathsf{T}}\nabla f_{\boldsymbol{a}_i}^-\left(\boldsymbol{x}_{\star}\right)\} + f_{\boldsymbol{a}_i}^-\left(\boldsymbol{x}_{\star}\right) - \left(\xi_i\right)_+ \;. \end{split}$$

It suffices to show that

$$\frac{1}{2n}\sum_{i=1}^{n}\left|\left(\nabla f_{a_{i}}^{+}\left(\boldsymbol{x}_{\star}\right)-\nabla f_{a_{i}}^{-}\left(\boldsymbol{x}_{\star}\right)\right)^{\mathsf{T}}\boldsymbol{h}\right|\geq\left\|\boldsymbol{x}_{0}-\frac{1}{2n}\sum_{i=1}^{n}\nabla f_{a_{i}}^{+}\left(\boldsymbol{x}_{\star}\right)+\nabla f_{a_{i}}^{-}\left(\boldsymbol{x}_{\star}\right)\right\|_{2}\|\boldsymbol{h}\|_{2}$$

Using a PAC-Bayesian argument (à la Catoni*), we show

$$\frac{1}{2n}\sum_{i=1}^{n}\left|\left(\nabla f_{a_{i}}^{+}\left(\mathbf{x}_{\star}\right)-\nabla f_{a_{i}}^{-}\left(\mathbf{x}_{\star}\right)\right)^{\mathsf{T}}\mathbf{h}\right|\gtrsim\lambda\|\mathbf{h}\|_{2}$$

with high probability.

^{*}Catoni and Giulini, "Dimension-free PAC-Bayesian bounds for matrices, vectors, and linear least squares regression,"

Proof skecth

By convexity of $f_{a_i}^{\pm}$ we have

$$\begin{split} & \max\{f_{\boldsymbol{a}_i}^+\left(\boldsymbol{x}_{\star}+\boldsymbol{h}\right)-y_i, f_{\boldsymbol{a}_i}^-\left(\boldsymbol{x}_{\star}+\boldsymbol{h}\right)\} \\ & \geq \max\{\boldsymbol{h}^{\mathsf{T}}\nabla f_{\boldsymbol{a}_i}^+\left(\boldsymbol{x}_{\star}\right), \boldsymbol{h}^{\mathsf{T}}\nabla f_{\boldsymbol{a}_i}^-\left(\boldsymbol{x}_{\star}\right)\} + f_{\boldsymbol{a}_i}^-\left(\boldsymbol{x}_{\star}\right) - \left(\xi_i\right)_+ \;. \end{split}$$

It suffices to show that

$$\left|\frac{1}{2n}\sum_{i=1}^{n}\left|\left(\nabla f_{\boldsymbol{a}_{i}}^{+}\left(\boldsymbol{x}_{\star}\right)-\nabla f_{\boldsymbol{a}_{i}}^{-}\left(\boldsymbol{x}_{\star}\right)\right)^{\mathsf{T}}\boldsymbol{h}\right|\geq\left\|\boldsymbol{x}_{0}-\frac{1}{2n}\sum_{i=1}^{n}\nabla f_{\boldsymbol{a}_{i}}^{+}\left(\boldsymbol{x}_{\star}\right)+\nabla f_{\boldsymbol{a}_{i}}^{-}\left(\boldsymbol{x}_{\star}\right)\right\|_{2}\|\boldsymbol{h}\|_{2}.$$

Using a PAC-Bayesian argument (à la Catoni*), we show

$$\frac{1}{2n}\sum_{i=1}^{n}\left|\left(\nabla f_{a_{i}}^{+}(\mathbf{x}_{\star})-\nabla f_{a_{i}}^{-}(\mathbf{x}_{\star})\right)^{\mathsf{T}}\mathbf{h}\right|\gtrsim\lambda\|\mathbf{h}\|_{2}$$

with high probability.

^{*}Catoni and Giulini, "Dimension-free PAC-Bayesian bounds for matrices, vectors, and linear least squares regression,"

Proof skecth

By convexity of f_a^{\pm} we have

$$\max\{f_{\boldsymbol{a}_{i}}^{+}\left(\boldsymbol{x}_{\star}+\boldsymbol{h}\right)-y_{i},f_{\boldsymbol{a}_{i}}^{-}\left(\boldsymbol{x}_{\star}+\boldsymbol{h}\right)\}$$

$$\geq \max\{\boldsymbol{h}^{\mathsf{T}}\nabla f_{\boldsymbol{a}_{i}}^{+}\left(\boldsymbol{x}_{\star}\right),\boldsymbol{h}^{\mathsf{T}}\nabla f_{\boldsymbol{a}_{i}}^{-}\left(\boldsymbol{x}_{\star}\right)\}+f_{\boldsymbol{a}_{i}}^{-}\left(\boldsymbol{x}_{\star}\right)-\left(\xi_{i}\right)_{+}.$$

It suffices to show that

$$\left| \frac{1}{2n} \sum_{i=1}^{n} \left| \left(\nabla f_{a_{i}}^{+} \left(\mathbf{x}_{\star} \right) - \nabla f_{a_{i}}^{-} \left(\mathbf{x}_{\star} \right) \right)^{\mathsf{T}} \mathbf{h} \right| \geq \left\| \mathbf{x}_{0} - \frac{1}{2n} \sum_{i=1}^{n} \left| \nabla f_{a_{i}}^{+} \left(\mathbf{x}_{\star} \right) + \nabla f_{a_{i}}^{-} \left(\mathbf{x}_{\star} \right) \right|_{2} \| \mathbf{h} \|_{2}.$$

Using a PAC-Bayesian argument (à la Catoni*), we show

$$\left\|rac{1}{2n}\sum_{i=1}^{n}\left|\left(
abla f_{oldsymbol{a}_{i}}^{+}\left(oldsymbol{x}_{\star}
ight)-
abla f_{oldsymbol{a}_{i}}^{-}\left(oldsymbol{x}_{\star}
ight)
ight)^{ au}oldsymbol{h}
ight|\gtrsim\lambda\|oldsymbol{h}\|_{2}$$
 ,

with high probability.

*Catoni and Giulini, "Dimension-free PAC-Bayesian bounds for matrices, vectors, and linear least squares regression," arXiv:1712.02747.

Apply the general result in special cases (e.g., matrix completion, blind deconvolution, ...). Adding regularization could be necessary.

Choice of the anchor vector x_0 in special problems

Other applications where the approach applies (e.g, machine learning)

Analyzing the *iterated* method: $\cdots \to x_0^{(t)} \to \widehat{x}^{(t)} \to x_0^{(t+1)} \to \widehat{x}^{(t+1)} \to \cdots$

Apply the general result in special cases (e.g., matrix completion, blind deconvolution, ...). Adding regularization could be necessary.

Choice of the *anchor* vector \mathbf{x}_0 in special problems

Other applications where the approach applies (e.g, machine learning)

Analyzing the iterated method: $\cdots o m{x}_0^{(t)} o \widehat{m{x}}^{(t)} o m{x}_0^{(t+1)} o \widehat{m{x}}^{(t+1)} o \cdots$

Apply the general result in special cases (e.g., matrix completion, blind deconvolution, ...). Adding regularization could be necessary.

Choice of the *anchor* vector \mathbf{x}_0 in special problems

Other applications where the approach applies (e.g, machine learning)

Analyzing the iterated method: $\cdots \to \mathbf{x}_0^{(t)} \to \widehat{\mathbf{x}}^{(t)} \to \mathbf{x}_0^{(t+1)} \to \widehat{\mathbf{x}}^{(t+1)} \to \cdots$

Apply the general result in special cases (e.g., matrix completion, blind deconvolution, ...). Adding regularization could be necessary.

Choice of the *anchor* vector \mathbf{x}_0 in special problems

Other applications where the approach applies (e.g, machine learning)

Analyzing the iterated method: $\cdots \to \mathbf{x}_0^{(t)} \to \widehat{\mathbf{x}}^{(t)} \to \mathbf{x}_0^{(t+1)} \to \widehat{\mathbf{x}}^{(t+1)} \to \cdots$

Apply the general result in special cases (e.g., matrix completion, blind deconvolution, ...). Adding regularization could be necessary.

Choice of the *anchor* vector \mathbf{x}_0 in special problems

Other applications where the approach applies (e.g, machine learning)

Analyzing the iterated method: $\cdots \to \mathbf{x}_0^{(t)} \to \widehat{\mathbf{x}}^{(t)} \to \mathbf{x}_0^{(t+1)} \to \widehat{\mathbf{x}}^{(t+1)} \to \cdots$

Thank you.

preprint @ arXiv:1806.07307