

Markov chain

100A

Markov

Example 5: Random walk over three states

With probability 1/2, stay. With probability 1/4, go to either states.

$$K_{ij} = P(X_{t+1} = j | X_t = i).$$

Markov property: past history before X_t does not matter.

Population migration

100A

Xiaowu Da

Basics Population Region Coin

Markov

Example 5: Random walk over three states

With probability 1/2, stay. With probability 1/4, go to either of the other two states.

$$K_{ij} = P(X_{t+1} = j | X_t = i).$$

Forward conditional probability, from cause to effect.

Imagine 1 million people migrating. At each step, for each state, half of the people stay, 1/4 go to each of the other two states. 1 million trajectories.

Transition matrix

100A

Xiaowu Da

Basics Population Region Coin

Markov

Example 5: Random walk over three states

With probability 1/2, stay. With probability 1/4, go to either of the other two states.

$$K_{ij} = P(X_{t+1} = j | X_t = i).$$

$$\mathbf{K} = \begin{bmatrix} 1/2 & 1/4 & 1/4 \\ 1/4 & 1/2 & 1/4 \\ 1/4 & 1/4 & 1/2 \end{bmatrix}$$

Marginal probability

100A

Xiaowu Da

Basics
Population
Region
Coin

Markov

Example 5: Random walk over three states

With probability 1/2, stay. With probability 1/4, go to either of the other two states.

$$K_{ij} = P(X_{t+1} = j | X_t = i).$$

$$p_i^{(t)} = P(X_t = i).$$

Imagine 1 million people migrating. $p_i^{(t)}$ is the number of people (in million) in state i at time t.

$$\mathbf{p}^{(t)} = (p_1^{(t)}, p_2^{(t)}, p_3^{(t)}).$$

Population migration

100A

Xiaowu Da

Basics
Population
Region
Coin

Markov

Example 5: Random walk over three states

$$p_i^{(t)} = P(X_t = i).$$

Imagine 1 million people migrating. $p_i^{(t)}$ is the number of people (in million) in state i at time t.

$$\mathbf{p}^{(t)} = (p_1^{(t)}, p_2^{(t)}, p_3^{(t)}).$$

Population migration

100A

Markov

Example 5: Random walk over three states

$$K_{ij} = P(X_{t+1} = j | X_t = i).$$

 $p_i^{(t)} = P(X_t = i).$
 $p_j^{(t+1)} = \sum_i p_i^{(t)} K_{ij}.$

Number of people in state j at time t + 1 = sum number ofpeople in state i at time $t \times$ fraction of those in i who go to j.

Stationary distribution

100A

Xiaowu Da

Basics
Population
Region
Coin

Markov

Reasoning

Example 5: Random walk over three states

$$p_j^{(t+1)} = \sum_i p_i^{(t)} K_{ij}.$$
$$p_i^{(t)} \to \pi_i.$$
$$\pi_j = \sum_i \pi_i K_{ij}.$$

Stationary distribution, arrow of time.

Matrix multiplication

100A

Xiaowu Da

Population
Region

Coin

Markov

Reasonin

Example 5: Random walk over three states

$$p_j^{(t+1)} = \sum_i p_i^{(t)} K_{ij}.$$
$$p^{(t+1)} = p^{(t)} K.$$
$$p^{(t)} = p^{(0)} K^t \to \pi.$$

Diagonalization and eigen-analysis

100A

Xiaowu Da

Basics
Population
Region
Coin

Markov

Example 5: Random walk over three states

Diagonalization and eigen-analysis: $K = PDP^{-1}$, D diagonal, eigenvalues.

$$K^{t} = PDP^{-1}PDP^{-1}...PDP^{-1} = PD^{t}P^{-1}.$$

$$p^{(t)} = p^{(0)}K^t \to \pi.$$

Largest eigenvalue = 1, $1^t = 1$. Second largest eigenvalue < 1, e.g., $.99^t \rightarrow 0$.

Google pagerank

100A

Xiaowu Da

Basics
Population
Region
Coin

Markov

Reasonin

Example 5: Random walk

$$p_j^{(t+1)} = \sum_i p_i^{(t)} K_{ij}.$$

$$p_i^{(t)} \to \pi_i$$
.

$$\pi_j = \sum_i \pi_i K_{ij}.$$

 π_i : proportion of people who are in page i.

Popularity of i depends on the popularities of pages linked to i.

Conditional

100A

Xiaowu Da

Populatio

Region

Markov

Reasonir

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

- (1) Counting population: Randomly sample from subpopulation *B* (e.g., males).
- (2) Counting repetitions: When ${\cal B}$ happens, how often ${\cal A}$ happens.

Regular prob is conditional prob: $P(A) = P(A|\Omega)$.

Fixed condition (within the same subpopulation B), conditional prob behaves like regular prob.

e.g.,
$$P(A^c) = 1 - P(A)$$
; $P(A^c|B) = 1 - P(A|B)$.

Chain rule

100A

Xiaowu Da

Basics
Population
Region
Coin

Markov

 $A \qquad B \qquad A \cap B$

$$P(A \cap B) = P(B)P(A|B).$$

- (1) Counting population: Population proportion of tall males = proportion of males \times proportion of tall among males.
- (2) Counting repetitions: B happens 1/2 times. When B happens, A happens 3/4 times. How often A and B happen together?

Generalize to chain of multiple events:

$$P(A \cap B \cap C) = P(A \cap B)P(C|A \cap B) = P(A)P(B|A)P(C|A,B).$$

Chain rule and rule of total probability

100A

Xiaowu Da

Population

Region

Markov

Reasonin

Chain rule:

$$P(X_{t+1} = j \cap X_t = i) = P(X_t = i)P(X_{t+1} = j | X_t = i)$$

= $p_i^{(t)} K_{ij}$.

Rule of total probability:

$$P(X_{t+1} = j) = \sum_{i} P(X_{t+1} = j \cap X_t = i).$$

$$p_j^{(t+1)} = \sum_i p_i^{(t)} K_{ij}.$$

Add up probabilities of alternative chains of events.

Marginal, conditional and joint distributions

100A

Xiaowu Da

Population

Coin

Markov

Reasonii

Marginal:
$$p_t(x) = P(X_t = x)$$
, $p_{t+1}(y) = P(X_{t+1} = y)$.

Conditional: Forward $p(y|x) = P(X_{t+1} = y|X_t = x)$.

x: cause, y: effect. p(y|x): cause \rightarrow effect, given or learned.

Joint: $p(x, y) = P(X_t = x, X_{t+1} = y)$.

Chain rule: $p(x,y) = p_t(x)p(y|x)$.

Rule of total probability:

 $p_{t+1}(y) = \sum_{x} p(x, y) = \sum_{x} p_t(x) p(y|x).$

Add up probabilities of alternative chains of events.

