

Aufraha de Dafiniana da a al 1994 de

Arbeitsblatt Nr.

Datum:

Wiederholung: Säuren und Basen

1. Der pH-Wert – Werkzeug des Chemikers (Hilfe: Buch, S. 32+33)

Wie sagst du zu der beliebten Beilage zum Sonntagsbraten (s. Abb.) - Rotkraut oder Blaukraut? → Löst man etwas Haushaltsnatron in Wasser und vermischt diese Lösung mit violettem Rotkohlsaft, färbt sich dieser blaugrün. Gibt man dagegen etwas Essig zum violetten Rotkohlsaft, so wird er rot. Rotkohlsaft ist ein Beispiel für einen natürlichen Indikator.

MERKE: Indikatoren sind Farbstofflösungen, die bei Zugabe von sauren, neutralen oder alkalischen Lösungen ihre Farbe ändern.

Im Chemie-Labor werden jedoch eher synthetisch hergestellte Indikatoren verwendet. Bekannte Beispiele sind der Universalindikator, Thymolphthalein und Thymolblau.

Der Grund für die Änderung der Farbe von Indikatorlösungen ist, dass sich der pH-Wert durch die Zugabe einer sauren bzw. alkalischen Lösung verändert.

Augabe 1. Deliniere den pri-vve	эп.	,		an a 1 1		A 4	11	
MERKE: Dor pH-10	est alt an 2	va laur	order a	lantiuch	omi	Launa	it	lance
of the neutral in	7 - 1					a marrial		~₩ ₩.
Aufgabe 2: Vervollständige das S	Schema mit Hilfe d	es Buchs, S. 3	33.					

Farbskala Universal- indikator	pH- Wert	Beispiel einer wässrigen Lösung mit diesem pH-Wert	pH-Bereich
	pH 14	Matronlauge	
	pH 13	300 10	
	pH 12	Lesching pullmittell	pH > 7 bedeutet es liegt eine
	pH 11	Ammoniah Journa 1 2 24	1 1 11 11 11
	pH 10	Ledentouma	o ashariche
	pH 9		Lösung vor
	pH 8	Darmflittighat	
	pH 7	dart. Warrer Con Just	pH = 7 bedeutet Nutrition Lösung
	pH 6	Snowhol	
	pH 5		1
	pH 4	pH-Wert der Haut (4,1 bis 5,8)	pH < 7 bedeutet es liegt eine
	pH 3	Snotrollarin Porte	laune
	pH2	Litrangment 1	
	pH 1	Magenialt	Lösung vor
	pH 0	Colarouse	

Freiwillig: Auf Duschgels und Cremes ist häufig die Bezeichnung "pH-hautneutral" zu finden. Hat Duschgel tatsächlich den pH-Wert = 7? Recherchiere kurz online.

Schlauberger-Wissen: Rotkohl wächst zu einem runden Kohlkopf, die Blattfarbe ist ein dunkles Lila. Der Rotkohl ändert jedoch seine Farbe je nach pH-Wert des Bodens. In sauren Böden erscheint die Blattfarbe eher rot, in alkalischen Böden dagegen bläulich. So erklären sich auch die unterschiedlichen Bezeichnungen in verschiedenen Regionen. Ob es Blaukraut oder Rotkraut ist, entscheidet hauptsächlich die Zubereitung.

2. Säuren und saure Lösungen (Hilfe: Buch, S. 186-189)

Aufgabe 3: Nenne mind. 4 Beispiele für Säuren, die du aus dem Chemieunterricht oder dem Alltag kennst	
Aufgabe 3: Nenne mind. 4 Beispiele für Säuren, die du aus dem Chemieunterricht oder dem Alltag kennst.	
Complete Com	

Säuren schmecken sauer. Das tun sie aber erst, wenn sie in Wasser gelöst werden. Nehmen wir die Citronensäure als Beispiel: Sie ist, wie der Name sagt, in Zitronen, aber auch in vielen anderen Früchten, enthalten. Reine Citronensäure ist ein weißer, pulverartiger Feststoff. Erst wenn man diesen Feststoff in Wasser löst, schmeckt er sauer. Zitronensaft schmeckt nur deshalb sauer, weil dessen Hauptbestandteil Wasser ist, in dem Citronensäure gelöst vorliegt.

MERKE: Säuren sind Reinstoffe, während saure Lösungen die wässrige Lösung dieser Reinstoffe sind.

Säuren sind aus Molekülen aufgebaut. Was passiert mit den Molekülen auf Teilchenebene, wenn man sie in Wasser löst? Und welche Teilchen sind für die Eigenschaften von sauren Lösungen verantwortlich?

Im Gegensatz zu Säuren leiten saure Lösungen den elektrischen Strom. Die Leitfähigkeit von wässrigen Lösungen beruht darauf, dass freie Ladungsträger wie z.B. Ionen (= elektrisch geladene Atome; sie tragen also eine Ladung) vorhanden sind. Welche Ionen sind in sauren Lösungen vorhanden? Wir beantworten die Fragen anhand des Beispiels von Chlorwasserstoff gelöst in Wasser. Chlorwasserstoff (HCI) ist ein Gas, welches sich sehr gut in Wasser löst und dabei eine saure Lösung bildet.

Aufgabe 4: Lies S. 189 im Chemiebuch und vervollständige folgenden Lückentext sowie das Schema.

	Eine wässrige Lösung von Chlorwasserstoff nennt man
	. Man kennzeichnet dies durch den Index
	HCl(aq), der angibt, dass der Stoff in Wasser gelöst vorliegt. Beim Lösen von
	Chlorwasserstoff-Gas in Wasser reagieren die Chlorwasserstoff-Moleküle mit
H H G	den Wasser-Molekülen. Dabei gibt das Chlorwasserstoff-Molekül ein
	Ion an das Wasser-Molekül ab. Das übertragene Ion ist ein Wasserstoff-Atom
	ohne sein Elektron, also ein Internet. Es lässt sich leicht
HO	abspalten, da es nur leicht an das Chlor-Atom gebunden ist, da das
0 9 9 9 5 0 0	elektronegativere Chlor-Atom die Bindungselektronen an sich zieht. Man
sagt, das H-Atom ist positiv polarisier	t. Das Proton wird an ein NOMT
Elektronenpaar des Wasser-Moleküls ge	
lon genannt wird. Zurück bleibt ein	-lon, das als Säurerest-lon bezeichnet wird. Bei der
Bildung des Oxonium-Ions findet ein <u>Y</u>	
Protolyse oder Säure-Base-Reaktion	genannt. U
Darstellung der Reaktion im Modell:	
	+ + + + + + + + + + + + + + + + + + + +
Reaktionsgleichung in Strukturformeln: [Hilfe: PDF Datei im moodle Ordner]	L fehlt
*	
Reaktionsgleichung in Summenformeln:	
	Salzsäure
Aufgabe 5: Erkläre, wieso saure Lösung	
Da in when Livingen	Tenen enthalten und , clie als freier Ladunguträger
Clibnan.	
Aufgabe 6: Nenne den Namen der Te bestimmen.	ilchen, die charakteristisch für saure Lösungen sind und ihre Eigenschaften
Oxemumimon	

1 Salley

3. Basen und alkalische Lösungen (= Laugen) (Hilfe: Buch, S, 192-195+198-199)

Die Laugenbrezel erhält ihren Namen durch die Behandlung des Teigrohlings mit 3,5%iger Natriumhydroxid-Lösung bevor er gebacken wird. Natriumhydroxid in Wasser gelöst (NaOH_(aq)) ist eine der bekanntesten Laugen die wir kennen. Den Reinstoff Natriumhydroxid (NaOH) nennen wir eine Base.

<u>MERKE:</u> <u>Basen</u> sind Reinstoffe, während <u>Laugen</u> oder <u>alkalische Lösungen</u> die wässrige Lösung dieser Reinstoffe sind.

Erinnerst du dich an den Springbrunnen-Versuch mit Chlorwasserstoff aus Klasse 9? Du kannst ihn dir hier zur Erinnerung nochmals anschauen: https://www.youtube.com/watch?v=yNOOgFBWrtw

→ Denselben Versuch kann man auch mit dem Gas Ammoniak durchführen. Schaue dir den Versuch bis Minute 02:12 an: https://www.youtube.com/watch?v=mCkA-4594xk

Aufgabe 7: Vervollständige den Lückentext sowie das Schema. Lies auf S. 198+199 nach, wenn nötig.

	Eine wässrige	Lösung von		ennt man
3 0 M	Ammoniak Maulin		ösen von Ammoniak-	
0 0 000	reagieren die Ammonial	c-Moleküle mit den	Wasser-Molekülen.)abei gibt das
	Maiser	Molekül ein	Preton	an
	das Ammoniak-Molekül	ab. Das Proton	wird an ein Nich	J
	allumalener		Elektronenpaar	des
HAH	ammontak .	Moleküls	gebunden. Es	entsteht ein
DO PA POO	NH+ loh, das	mmmum	-lon, G	ibt Wasser ein
0 0 0 0 0 0	Proton ab, bleibt ein OH	-lon zurück,	das Hardnoxid	-lon
genannt wird. Es findet eine $2m$	tomen illertreasura	st st	att, also eine Protolys	
Base-Reaktion.				
Denote House des Destates : 44 . 1				
Darstellung der Reaktion im Model				
	+	• •	+ (0)	
D. W. T. L. C. C. C.				
Reaktionsgleichung in Strukturform [Hilfe: PDF Datei im moodle Ordner]	ein:	1		
	1 fehi	C		
4				
	1/11	110	11 + 0.	,-
Reaktionsgleichung in Summenform	meln: ////	HzU→ N	H (aq) + O H	(aq
4. Säure-Base-Theorie nach Brör	sted (Hilfe: Buch, S. 199	<u>)</u>		
Aufgabe 8: Schaue dir folgendes Vi	ideo an und beantworte di	ie Fragen: https://www	w voutube com/watch	λ ₁ =
y5LNJiAlo		is ragon. <u>Intero.irviv</u>	W.youtube.com/water	
a) Definiere den Begriff "Säure" nac	ch Brönsted und nenne ei	n Beispiel	. 0.2	
	adomatinen wie Z	Ben : Phi	minimatel.	
	AM New IAT WATER	13/1. 00	M. MANA WALL	
b) Definiere den Begriff "Base" naci	h Brönsted und nenne ein	Beispiel		
0 1 0 +	1 to 1	00 1	10	
Bonew Much Tuestand	makreplinen Wi	e 2.138p. : 0	mmoniak	r

c) Definiere den Begriff "Ampholyt" und nenne ein Beispiel. Saux alex auch als Pare Harden

MERKE: Säure-Base-Reaktionen verlaufen nach dem Donator-Akzeptor-Prinzip. Ein Proton wird von einem Donator auf einen Akzeptor übertragen.

Gibt eine Säure HA ein Proton ab, so entsteht ein Teilchen, das wieder ein Proton aufnehmen könnte, also eine Base A⁻. Ein solches Paar von Stoffteilchen, das sich nur durch ein Proton unterscheidet, nennt man konjugiertes Säure-Base-Paar. An Säure-Base-Reaktionen sind immer zwei Säure-Base-Paare beteiligt.

Säure-Base-Reaktionen müssen nicht zwingend in Wasser ablaufen. Man kann sie auch beobachten, wenn z.B. Chlorwasserstoff-Gas auf Ammoniak-Gas trifft.

5. Die Neutralisation (Hilfe: Buch, S. 200-201)

Du hast nun gelernt, dass Protolysen Reaktionen von Säuren mit Basen sind. Bisher haben wir als Reaktionspartner nur Wasser betrachtet. Wasser ist eine schwache Säure bzw. Base. Was passiert nun, wenn eine starke Base wie Natriumhydroxid mit einer starken Säure wie Chlorwasserstoff reagiert?

Aufgabe 8: Stelle die Reaktionsgleichung auf. Stelle die Protonenübertragung durch einen Pfeil dar. Protonudonator findet vom Protonnakzeptor stat! H+

MERKE: Bei einer Neutralisationsreaktion reagieren eine starke Säure und eine starke Base zu Wasser und einem Salz.

Alles (wieder) klar? Dann geht's jetzt mit Übungen weiter!

	1) Nenne die lonen, die in folgenden verdünnten Lösungen vorliegen: Salzsäure, Schwefelsäure (H ₂ SO ₄), Natronlauge, Calciumhydroxid (= Ca(OH) ₂ = Kalkwasser) Salure oder Base? Latrumum Latr
Saine.	- Schwefelsäure mit Wasser Base $\rightarrow H_2SO_4 + H_2O \longrightarrow HSO_4 + H_3O^+$
Saure-	- Bromwasserstoff (HBr) mit Wasser Base \Rightarrow HBr + H ₂ δ -> Br + H ₃ δ +
	- Chlorwasserstoff mit Kaliumhydroxid (KOH)
	HCL + KOH -> KCL + HO
	3) Begründe anhand der Strukturformel, weshalb Wasser-Moleküle bei Säure-Base-Reaktionen je nach Reaktionspartner Säure oder Base sein können. Nenne den Fachbegriff für diese Art von Teilchen. Wender Kunn der Jahren den Fachbegriff für diese Art von Teilchen. Wender Kann der Jahren der Bekarong paar, an das 11 binden kann den Donator-Akzeptor-Prinzip, sondern auch Redoxreaktionen. Während bei Säure-Base-Reaktionen Protonen vom einen Reaktionspartner auf den anderen übertragen werden, werden bei Redoxreaktionen Elektronen übertragen. Entscheide, welcher Reaktionstyp bei den beiden Reaktionen vorliegt und demonstriere das jeweilige Donator-Akzeptor-Prinzip anhand der Reaktionsgleichung. (Hilfe: https://www.youtube.com/watch?v=AMzRVVdK0_I)
	- Salpetersäure (HNO3) reagiert mit Wasser H NO3 + H3O - NO3 + H3O - Planting Dimatery ABRITATION
	- Magnesium reagiert mit Salzsäure (HCI(aq)) MgCl + H Amountar Amountar
	- Augenous