

6. Übung

In dieser Übung soll ein modellprädiktiver Regler für den in Abbildung 1 dargestellten 3D-Laborkran entworfen werden. Die Zustände

$$\mathbf{x} = \begin{bmatrix} x_T & \dot{x}_T & y_T & \dot{y}_T & I & \dot{I} & \theta_X & \dot{\theta}_X & \theta_Y & \dot{\theta}_Y \end{bmatrix}^\mathsf{T} \tag{1}$$

bezeichnen die Position der Laufkatze, die Länge des Seils und die Auslenkwinkel des Seils, sowie deren Ableitungen. Als Stellgrößen

$$\boldsymbol{u} = \begin{bmatrix} a_X & a_Y & a_I \end{bmatrix}^\mathsf{T} \tag{2}$$

werden die Beschleunigungen der Laufkatze in X- und Y-Richtung sowie die Beschleunigung des Seils verwendet. Durch den Einsatz von unterlagerten Geschwindigkeitsreglern für die Motoren kann das vereinfachte

Abbildung 1: Schematische Darstellung des Laborkrans [1].

Modell der Krandynamik [1]

$$\ddot{x}_T = a_X$$
, $\ddot{y}_T = a_Y$, $\ddot{l} = a_I$ (3a)

$$\ddot{\theta}_X = -\frac{1}{l\cos\theta_Y} \left(g\sin\theta_X + a_X\cos\theta_X + 2\dot{\theta}_X \left(\dot{l}\cos\theta_Y - l\dot{\theta}_Y\sin\theta_Y \right) \right) \tag{3b}$$

$$\ddot{\theta}_Y = -\frac{1}{l} \left(2i\dot{\theta}_Y + \sin\theta_Y \left(g\cos\theta_X - a_X\sin\theta_X \right) - a_Y\cos\theta_Y + l\dot{\theta}_X^2\sin\theta_Y\cos\theta_Y \right) \tag{3c}$$

hergeleitet werden. Die Stellgrößen unterliegen dabei den Beschränkungen

$$a_X \in \left[-2\frac{m}{s^2}, 2\frac{m}{s^2}\right], \quad a_Y \in \left[-2\frac{m}{s^2}, 2\frac{m}{s^2}\right], \quad a_I \in \left[-2\frac{m}{s^2}, 2\frac{m}{s^2}\right].$$
 (4)

Aufgabe 6.1

Formulieren Sie ein geeignetes quadratisches Kostenfunktional für einen Positionswechsel der Last. Stellen Sie die zugehörigen Optimalitätsbedingungen auf und berechnen Sie die dafür benötigten Jacobi-Matrizen $\frac{\partial f(x,u)}{\partial x}$ und $\frac{\partial f(x,u)}{\partial u}$. Skizzieren Sie den Ablauf der numerischen Lösung mit dem Gradientenverfahren.

Aufgabe 6.2

Implementieren Sie einen modellprädiktiven Regler für den Laborkran in MATLAB unter Verwendung des vorgefertigten Templates für das Gradientenverfahren. Wählen Sie für den Zeithorizont $T=1.5\,\mathrm{s}$, 40 Stützstellen für die Integration, eine Abtastzeit von $\Delta t=2\,\mathrm{ms}$ und 2 Iterationen pro Zeitschritt. Testen Sie den Regler für verschiedene Positionswechsel der Last.

Aufgabe 6.3

Installieren Sie die MPC-Toolbox GRAMPC und machen Sie sich anhand der Dokumentation [2] sowie den Artikeln [3] und [4] mit der Benutzung vertraut. Implementieren Sie die modellprädiktive Regelung des Laborkrans unter GRAMPC und vergleichen Sie die Rechenzeit sowie die Trajektorien mit der MATLAB-Implementierung. Untersuchen Sie außerdem den Einfluss verschiedener Parameter wie beispielsweise des Zeithorizonts T oder der Anzahl der Iterationen pro Zeitschritt.

Aufgabe 6.4

Für die Anwendung der unterlagerten Geschwindigkeitsregler sollen die Maximalgeschwindigkeiten des Wagens und des Seils begrenzt werden. Solche Beschränkungen können in GRAMPC mit äußeren Straffunktionen oder der erweiterten Lagrange-Methode berücksichtigt werden, wobei in beiden Varianten der Strafparameter durch eine Heuristik angepasst werden kann. Skizzieren Sie den Ablauf der numerischen Lösung mit der erweiterten Lagrange-Methode. Implementieren Sie die Beschränkungen unter GRAMPC und vergleichen Sie die Ergebnisse mit dem unbeschränkten Fall.

Aufgabe 6.5 Zusatzaufgabe

Untersuchen Sie den Einfluss von normalverteiltem Messrauschen auf die modellprädiktive Regelung. Modifizieren Sie dazu den Anfangswert x_0 in jedem Abtastschritt des Reglers, wobei die Simulation des realen Systems jedoch mit dem tatsächlichen Wert erfolgen soll.

Literatur

- [1] B. Käpernick. Gradient-based nonlinear model predictive control with constraint transformation for fast dynamical systems. Shaker Verlag, Aachen, 2016.
- [2] T. Englert, A. Völz, F. Mesmer, S. Rhein, K. Graichen. GRAMPC documentation. sourceforge.net/projects/grampc, 2018.
- [3] B. Käpernick, K. Graichen. The gradient based nonlinear model predictive control software GRAMPC. In *Proc. European Control Conference (ECC)*, Seiten 1170-1175, Straßburg, Frankreich, 2014.
- [4] T. Englert, A. Völz, F. Mesmer, S. Rhein, K. Graichen. A software framework for embedded nonlinear model predictive control using a gradient-based augmented Lagrangian approach. *Optimization and Engineering*, doi.org/10.1007/s11081-018-9417-2, 2019.