Preguntas teóricas:

1. ¿Qué diferencias fundamentales existen entre la arquitectura Von Neumann y la arquitectura Harvard?

Menciona al menos dos diferencias relacionadas con la memoria y los buses.

Caracteristica	Von Neumann	Harvard
Memoria	Usa una única memoria para datos y programas.	Tiene memorias separadas: una para datos y otra para instrucciones.
Buses	·	Usa buses separados para datos e instrucciones.
Ejemplo de	Ordenadores personales y la	Microcontroladores y sistemas
uso	mayoría de CPUs modernas.	embebidos.

Conclusión: Harvard mejora el rendimiento evitando el cuello de botella del bus único de Von Neumann.

2. ¿Qué función cumple la Unidad de Control dentro de la CPU y qué componentes la forman? Incluye el papel del decodificador y el reloj.

Función principal: Coordinar y dirigir el funcionamiento de la CPU. **Componentes principales:**

- **Decodificador de instrucciones:** Interpreta la instrucción leída de la memoria y determina qué debe hacerse.
- **Reloj del sistema:** Marca el ritmo de ejecución de las instrucciones mediante pulsos (ciclos de reloj).

Resultado: La UC organiza las operaciones de la ALU, la memoria y los registros según las instrucciones del programa.

3. Clasifica los siguientes dispositivos como unidad de entrada, salida o entrada/salida: teclado, pantalla, tarjeta de red inalámbrica, impresora, plotter, disco duro.

Dispositivo	Clasificación	Explicación
Teclado	Entrada	Envía datos del usuario al sistema.
Pantalla	Salida	Muestra información generada por el sistema.
Tarjeta de red inalámbrica	Entrada/Salida	Envía y recibe datos a través de la red.
Impresora	Salida	Transfiere información digital a papel.
Plotter	Salida	Similar a la impresora, pero para dibujos técnicos.
Disco duro	Entrada/Salida	Lee y escribe datos permanentemente.

4. ¿Qué tipo de memoria se utiliza actualmente para almacenar el firmware UEFI y qué ventajas ofrece frente al BIOS tradicional?

Memoria: Flash ROM (EEPROM o NAND Flash).

Ventajas frente al BIOS:

- Mayor capacidad y velocidad.
- Interfaz gráfica y soporte para ratón.
- Arranque desde discos grandes (GPT).
- Actualizaciones más fáciles sin reemplazar chips físicos.

5. ¿Qué componentes físicos forman parte del hardware de un sistema informático actual? Incluye al menos tres ejemplos y su función.

Componente	Tipo	Función
CPU (procesador)	Unidad de proceso	Ejecuta instrucciones y controla el sistema.
RAM	Memoria principal	Almacena datos e instrucciones temporales.
Disco duro o SSD	Almacenamiento secundario	Guarda la información de forma permanente.
Placa base	Soporte y conexión	Conecta todos los componentes del sistema.
Fuente de alimentación	Energía	Convierte la corriente eléctrica para alimentar el sistema.

6. ¿Qué es la memoria caché y cómo mejora el rendimiento del sistema? Describe su relación con la CPU y la RAM.

Definición: Memoria muy rápida situada entre la CPU y la RAM.

Función: Almacena temporalmente los datos e instrucciones más usados para evitar accesos lentos a la RAM.

Relación:

- La CPU consulta primero la caché.
- Si el dato está allí (acierto de caché), se acelera la ejecución.
- Si no, se busca en la RAM (fallo de caché).
 Resultado: Mejora el rendimiento reduciendo el tiempo de acceso a los datos.

7. ¿Qué papel juega el usuario dentro de un sistema informático y por qué se considera parte del sistema?

Reflexiona sobre la interacción entre humano y máquina.

El usuario es quien interactúa con el hardware y el software para realizar tareas.

- El sistema operativo actúa como intermediario entre usuario y máquina.
- Se considera parte del sistema porque sin él no existiría propósito ni instrucciones para ejecutar.
 - Reflexión: La informática busca precisamente optimizar la comunicación entre humano y máquina.

8. ¿Qué es una palabra de memoria y cómo se organiza dentro de una unidad de memoria? Explica con ejemplos de tamaño y dirección.

Definición: Conjunto de bits que la memoria puede leer o escribir de una sola vez. **Tamaño típico:** 8, 16, 32 o 64 bits.

Ejemplo:

• En una memoria de 1 GB y palabras de 32 bits (4 bytes), hay 1 GB/4 = 268 435 456 direcciones posibles.

Organización: Cada palabra tiene una **dirección única** que permite acceder a ella directamente.

- 9. ¿Por qué se considera que el sistema binario es fundamental en informática? Menciona su relación con los componentes electrónicos.
- Los ordenadores funcionan con **componentes electrónicos** (transistores) que solo tienen dos estados:
 - Encendido (1) y Apagado (0).
- Esto se traduce naturalmente en el **sistema binario**, donde toda la información (números, letras, imágenes) se representa mediante combinaciones de 0 y 1. **Conclusión:** El sistema binario permite que los circuitos electrónicos procesen y almacenen información de forma fiable y sencilla.
- 10. ¿Qué tipo de ordenador sería más adecuado para una empresa pequeña que necesita realizar tareas específicas sin gran carga de usuarios? Justifica tu elección entre minicomputadora, workstation o PC.

Elección: PC (ordenador personal)

Justificación:

- Suficiente para tareas administrativas, contabilidad, navegación, correo y ofimática.
- Más económico y fácil de mantener que una workstation o minicomputadora.
- Las workstations se reservan para diseño, CAD o cálculo científico.
- Las minicomputadoras son más costosas y pensadas para múltiples usuarios simultáneos.

Ejercicios de Sistemas de numeración y cambios de base. Operaciones lógicas

1. Dar una tabla con los números del 0 al 15 en decimal, binario y hexadecimal.

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Binario	00 00	00 01	00 10	00 11	01 00	01 01	01 10	01 11	10 00	10 01	10 10	10 11	11 00	11 01	11 10	11 11
Hexadec imal	0	1	2	3	4	5	6	7	8	9	Α	В	O	D	Е	F

2. Pasar a decimal los siguientes números:

o 3278= 215

Cálculo: $3 \cdot 8^2 + 2 \cdot 8^1 + 7 \cdot 8^0 = 192 + 16 + 7 = 215$.

o 10010110²= 150

Cálculo: $1 \cdot 2^7 + 0 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 128 + 16 + 4 + 2 = 150$.

o FDA216= 64 930

Cálculo (hex \Rightarrow dec): $F(15) \cdot 16^3 + D(13) \cdot 16^2 + A(10) \cdot 16^1 + 2 \cdot 16^0 = 61440 + 3328 + 160 + 2 = 64930$.

o 101100000110²= 2 822

Cálculo: interpretar cada bit con su potencia de 2; suma = 2822

3. Pasar a octal v hexadecimal:

o 110^2 = octal **6**, hexadecimal **6**.

o 11101^2 = octal **35**, hexadecimal **1D**.

o 110011^2 = octal **63**, hexadecimal **33**.

o 11101000²= octal **350**, hexadecimal **E8**.

o 10011010²= octal **232**, hexadecimal **9A**.

4. Dados A=1011 0111, B=0111 1011 y C=0010 0101 resolver:

o A OR B= 11111111

o A AND B= 00110011

o C XOR A= 10010010

o B OR B= 01111011

o A NOT C=

5. El byte es una unidad de información muy pequeña, por lo que se usan sus múltiplos: Kilobyte (KB), Megabyte (MB), Gigabyte (GB), Terabyte (TB).

Completa la información siguiente con lo corresponda:

Kilobyte (KB) = 1.024 bytes = 2^{10} bytes

Megabyte (MB) = **1 048 576 bytes** = 2^{20} bytes.

Gigabyte (GB) = **1 073 741 824 bytes** = 2^{30} bytes

Terabyte (TB) = **1 099 511 627 776 bytes** = 2^{40} bytes.

Petabyte (PB) = **1 125 899 906 842 624 bytes** = 2^{50} bytes.

Exabyte (EB) = **1 152 921 504 606 846 976 bytes** = 2^{60} bytes.

Zettabyte (ZB) = **1 180 591 620 717 411 303 424 bytes** = 2^{70} bytes.

Yottabyte (YB) = **1 208 925 819 614 629 174 706 176 bytes** = 2^{80} bytes.