Unsupervised Learning with Clustering Paul Rodriguez

Clustering Idea

Given a set of data can we find a natural grouping?

Why Clustering

A good grouping implies some structure

Why Clustering

- A good grouping implies some structure
- In other words, given a good grouping, we can then:
 - Interpret and label clusters
 - Identify important features
 - Characterize new points by the closest cluster
 - Use the cluster assignments as a summary of the data

Objective: find subsets that are similar within cluster and dissimilar between clusters

- Objective: find subsets that are similar within cluster and dissimilar between clusters
- Similarity defined by distance measures

- Objective: find subsets that are similar within cluster and dissimilar between clusters
- Similarity defined by distance measures
 - Euclidean distance
 - Manhattan distance

- Objective: find subsets that are similar within cluster and dissimilar between clusters
- Similarity defined by distance measures
 - Euclidean distance = $sqrt[(a1 b1)^2 + (a2 b2)^2 + ...)]$
 - Manhattan distance

$$[|a1 - b1| + |a2 - b2| + ...)]$$

Kmeans Clustering

A simple, effective, and standard method

Start with K initial cluster centers

Loop:

Assign each data point to nearest cluster center Calculate mean of cluster for new center

Stop when assignments don't change

Issues:

How to choose K?

How to choose initial centers?

Will it always stop?

 For K=1, using Euclidean distance, where will the cluster center be?

For K=1, the overall mean minimizes Sum Squared Error (SSE), aka Euclidean dist. squared

Essential R commands: Kresult = kmeans(X,1,10,1)

#choose 1 data point as initial K centers #10 is max loop iterations #1 is number of initial sets to try

#Kresult is an R object with subfields Kresult\$cluster #cluster assignments Kresults\$tot.withinss # tot within SSE

Essential R commands: inds=which(Kresult\$cluster==K)

plot(X[inds,],col2use="red");

. . .

. . .

As K increases individual points get a cluster

Choosing K for Kmeans

- Not much improvement after K=2 ("elbow")

Kmeans Example – more points

How many clusters should there be?

Choosing K for Kmeans

- Smooth decrease at K ≥ 2, harder to choose
- In general, smoother decrease => less structure

Kmeans Example: uniform dist.

n Diego

Choosing K - uniform

- Smooth decrease across K => less structure

- Sum Squared Error Within Clusters
 - Take the "elbow" in the decrease as K=1...N
- "Silhouette": mean distances within a cluster vs distances to next best cluster
 - Take the maximum value overall mean as K=1...N
- "Gap" value of SSE-within-cluster of data vs uniform distribution
 - Take maximum value as K=1...N

Example, 4 clusters normal distribution, small sample

SSE within cluster (elbow)

Silhouette intra vs next best

Gap SSE within cluster vs uniform data baseline

 Example, random uniform data, small, med, larger samples

SSE within cluster (elbow)

Silhouette intra vs next best

Gap SSE within cluster vs uniform data baseline

small to large data sample size >

Kmeans Guidelines

Initial starting points and convergence:

Kmeans++ algorithm selects good initial clusters that also helps convergence

10 iterations often good

Can also run several times and choose best result

Kmeans Clustering Issues

Scale:

 Dimensions with large numbers may dominate distance metrics (so can be good to normalize or scale data)

Outliers:

 Outliers can pull cluster mean (K-mediods uses median instead of mean)

Soft Clustering Methods

Fuzzy Clustering

- Kmeans with weighted assignments to all clusters
- Weights depend on relative distance
- Find min weighted SSE

Expectation-Maximization:

- Initialize a mixture of multivariate Gaussian distributions
- Find means, variances, and mixture weights that maximize probability of data

Kmeans with unequal cluster variance and/or size

Can you guess K?

Kmeans – unequal cluster variance

Choosing K – unequal distributions

 Smooth decrease across K => less structure (try Silhouette or Gap?)

EM clustering

Classification

- Selects K=2
 - (either by Information Criterion= min of SSE+ K*logN, Or by cross-validation)
- Handles unequal variance and/or size

R: library('mclust') em_fit=Mclust(x); plot(em_fit);

Kmeans computations

- Distance of each point to each cluster center
 - For N points, D dimensions: each loop requires N*D*K operations
- Update Cluster centers
 - only track points that change, get change in cluster center
- But for EM errors to each cluster center update a probability function

Kmeans vs EM performance

1 Gordon compute node, normal random matrices R: system.time(Mclust())

Number of Dimensions (i.e. columns in data matrix)

Other distance measures

Cosine: take angle difference (good for sparse vectors)

- Mahalanobis: dimensions rescaled by variance
- Jaccard (over sets A,B): 1- (|A∩B| / |AUB|)
 (e.g. sets of words in documents)

Other distance measures

 Hamming distance: count 1 if values different e.g. appropriate for binary strings

Kmeans big data example

45,000 NYTimes articles, 102,000 unique words

(UCI Machine Learning repository)

Full Data Matrix: 45Kx102K ~ 40Gb

article 1
article 2
article 3
...

article 45K

Cell i,j is count of ith-word in jth-article

Kmeans results

7 viable clusters found

Kmeans for image segmentation

R snippet

get packages read 1024X718X3 RGB image convert to matrix 1024*718 X 3 Choose K by trial and error run Kmeans and display

install.packages('ripa')
library('ripa')

source("http://bioconductor.org/biocLite.R")
biocLite()
biocLite("EBImage")

library('EBImage') im=readImage('1a34086v.jpg')

library('ripa') img=rgb2grey(im, coefs=c(0.30, 0.59, 0.11))

imgx1 =as.vector(img)
numk=8
km_imx1=kmeans(imgx1,numk,50,1);
img_km_mat =matrix(km_imx1\$cluster,dim(im)[1],dim(im)[2])

display(img_km_mat/numk)

Other Clustering Methods

Hierarchical Clustering

hclust with "Ward" distance gives spherical clusters

Cluster Dendrogram

Hierarchical Clustering

Where height change looks big, cut off tree

groups <- cutree(fit, k=7) rect.hclust(fit, k=7, border="red")

Cluster Dendrogram

Other Clustering

Density based clustering

build neighborhoods around seed points

link neighborhoods

Results in arbitrary cluster shapes, good for image and

spatial clustering

Other Clustering

Neural Network Based (e.g.)

initialize weights to coordinate values for a seed point set input nodes to data points get best match to seed for each data point and adjust weights toward the data point

Target node(s), starts as a seed point and ends up as a cluster mean

Pause

Imagine these 2 dimensional input spaces: Which of these is easy or hard to cluster? (no class labels)

Now imaging there are two classes

Pause

Exercise, Kmeans and visualization in 2-D using SVD

- Using same data from SVD exercise, and SVD reduced matrix
- Run Kmeans
- Project data points onto first 2 SVD factors and plot them colored by cluster

```
(Which 2 factors? Keep in mind that:
```

Wsvd\$U is N rows x P cols

Wsvd\$V is PxP,

Data point is Px1 in original space and 2x1 in reduced space)

See clustering_exercise Rmd file Rerun the SVD exercise if you need to, to get the W_mncntr and Wsvd matrices Run Kmeans

Run Kmeans with k=4
Plot data points onto 2-D space, use colors determined by Kmeans
Plot cluster centers

Are points well separated in 2-D projection? Should they be?

Plot using colors determined by class (raintomorrow)

Are classes well separated?

Principle Components vs Clustering

- PCA, SVD reduces dimensions, Clustering reduces to categorical groups
- In some cases, k PCs $\Leftrightarrow k$ clusters
- It is also useful to visualize clusters in PC space

Summary

 Having no label doesn't stop you from finding structure in data

Unsupervised methods are somewhat related

