Weak PRF Protocol: Pseudocode

Vivek Sharma

Jan 11, 2020

1 Fully Distributive Evaluation Protocol

The key is structured as a vector in \mathbb{Z}_2

The protocol is divided into three phases:

1.1 Phase 1: NonInteractive computation of Additive share by each Server

Each server S_i holds replicated additive shares of key $k_i \in \mathbb{Z}_n^2$ and $x_i \in \mathbb{Z}_n^2$ and computes $h_i \in \mathbb{Z}_2^m$, which is the multiplication of key and input over \mathbb{Z}_2 . This computation is performed locally.

1.2 Phase 2: Interactive computation of π_{23} protocol

- 1. Each server, at this point have locally computed their shares, which was the multiplication of two vectors.
- 2. Server 1 randomly chooses a value $c \in \mathbb{Z}_3^m$ and each bit of value is converted to it's 2-bit representation to form c_0 and c_1 respectively.
- 3. Meanwhile, Server 1, 2 and 3 runs sub-protocol for m instances(m is the length of additive share and also the value of c, which is with server 1.

For
$$1 \le j \le m$$
:

Each server s_i , $i \in 1, 2, 3$ share their input $h_{i,j}$ [Note: $h_{i,j}$ is the input of server s_i in j^{th} iteration]

Compute combined XOR of their input: $comb := h_1 \oplus h_2 \oplus h_{13}$

Multiply one part of c, (c_0) , with comb and other part (c_1) with $\neg comb$ and XOR both the result, this forms d_0 .

To compute d_1 , XOR the c_0 and $\neg c_1$, and multiply the result with the XOR of secret share of the servers.

The final result $d = d_0, d_1 \in \{0, 1\}^2$ is converted back into \mathbb{Z}_3

At the end of this phase, Server 1 has $c \in \{0,1\}^m$ and Server 2 has received the output $d \in \mathbb{Z}_3$. The combination of values with Server one and two (i.e. c and d) yields the additive mod 3 of the secret share of the inputs by the Servers. Mathematically $c+d=h_1+h_2+h_3 \pmod{3}$

1.3 Phase 3: Non Interactive evaluation of function map by Server 1 and Server 2

The Servers in possession of random value c and the interactively computed value d, apply map_G function on their input and compute their share in \mathbb{Z}_3

2 Pseudocode

piprotocol

- 1. Server $S_i: h_i := k.x \pmod{2} \in \mathbb{Z}_2^m$.
- 2. S_1 : Selects $\mathbf{c} \stackrel{\mathbf{R}}{\leftarrow} \mathbb{Z}_3^m$.
- 3. for $1 \le j \le m$:
- 4. Server $S_i: \pi_{2,3}()$ //All servers run parallel instances of the protocol
- 5. S_1 : $\sum_{1 \le n \le m} c_n \pmod{G}$ and S_2 : $\sum_{1 \le n \le m} d_n \pmod{G}$

3 Explanation:

The protocol consists of three phases. The middle phase is an interactive phase running a sub protocol $\pi_{2,3}$ which takes input from three servers, which is their additive secret share mod 2 and outputs two additive share mod 3 shared by two servers. The first and last phase are non-interactive, meaning, they can be computed locally.

4 Example:

- Say at j^{th} instance, $h_1=1, h_2=0, h_3=1$ and server randomly chooses c=2, so $c_0=1, c_1=0$
- $comb = 0, and d_0 = 0, d_1 = 0$ as computed by formula given above.
- This satisfies the formula $c + d = h_1 + h_2 + h_3 \pmod{3}$, is true in this case.
- Server one and two apply map_G function on their value $candd \in \mathbb{Z}_3$