언어 모델

- 입력 값(단어 시퀀스 or 문장 or 문서)을 기반으로 통계적으로 가장 적절한 출력 값을 도출하도록 학습된 모델
- 단어 시퀀스(문장 or 문서)에 확률을 할당
- 가장 자연스러운 단어 시퀀스를 찾는 모델
- 조건부 확률로 표현하면 다음과 같음

$$P(w_1, w_2, w_3) = P(w_1) \times P(w_2 \mid w_1) \times P(w_3 \mid w_1, w_2) \rightarrow P(w_1, w_2, w_3, w_4, ..., w_n) = \prod_{i=1}^n P(w_i \mid w_1, ..., w_{i-1})$$

» 전체 단어 시퀀스가 나타날 확률은 이전 단어들이 주어졌을 때 다음 단어가 등장할 확률의 연쇄와 같음

언어 모델

- 종류
 - » 순방향 언어 모델
 - > 문장 앞부터 뒤로, 사람이 이해하는 순서대로 계산하는 모델
 - › GPT, ELMo 등

```
어제
어제
      카페
            갔었어
어제
      카페
어제
      카페
            갔었어
                   거기
            갔었어
                   거기
                          사람
      카페
                          사람
어제
      카페
            갔었어
                   거기
                                많더라
```

- » 역방향 언어 모델
 - > 문장 뒤부터 앞으로 계산하는 모델
 - › ELMo 등

				사람	많더리
			거기	사람	많더리
		갔었어	거기	사람	많더리
	카페	갔었어	거기	사람	많더리
어제	카페	갔었어	거기	사람	많더리

많더라

언어 모델

- 종류 (계속)
 - » 마스크 언어 모델
 - > 학습 대상 문장에 빈칸을 만들고 해당 빈칸에 적절한 단어를 분류 모델로 학습
 - > BERT 등

어제	카페	갔었어	거기	사람	많더라
어제	카페	갔었어	거기	사람	많더라
어제	카페	갔었어	거기	사람	많더라
어제	카페	갔었어	거기	사람	많더라
어제	카페	갔었어	거기	사람	많더라
어제	카페	갔었어	거기	사람	많더라

- » 스킵-그램 모델
 - > 어떤 단어 앞뒤에 특정 범위를 정해 두고 이 범위 내에 적절한 단어를 분류 모델로 학습
 - > Word2Vec 등

Sequence to Sequence

■ 특정 속성을 지닌 시퀀스를 다른 속성의 시퀀스로 변환하는 작업

어제, 카페, 갔었어, 거기, 사람, 많더라 소스 언어

I, went, to, the, cafe, there, were, many, people, there

- Sequence
 - » 단어 등의 나열 (연속된 데이터, 리스트)
- Transformer
 - » 기계 번역 등 sequence-to-sequence 과제를 수행하는 모델

인코더와 디코더

■ Sequence-to-Sequence 모델은 대개 인코더와 디코더 두 개의 파트로 구성

- » 인코더 > 소스 시퀀스의 정보를 압축해서 디코더로 전달
- » 디코더 > 인코더의 출력 데이터를 기반으로 타깃 시퀀스 생성

트랜스포머

■ 트랜스포머 구조

- 인코더의 입력은 소스 시퀀스
- 디코더의 입력은 타깃 시퀀스 일부
- 트랜스포머 학습은 입력이 주어졌을 때 정답에 해당하는 단어의 확률 값을 높이는 방식으로 수행

- 문맥 정보 학습 문제
 - » 합성곱 신경망은 필터를 사용해 시퀀스의 지역적인 특징 학습은 가능하지만 필터 크기를 넘어서는 문맥 학습 어려움
 - » 순환 신경망은 시퀀스가 길어질수록 오래전에 입력된 단어 정보가 사라지거나 특정 단어 정보를 과도하게 반영하는 문제 발생

■ 어텐션

- » 시퀀스 입력에 수행하는 기계학습 방법의 일종
- » 디코더에서 출력 단어를 예측하는 매 시점마다 인코더에서의 전체 입력 문장을 다시 한 번 참고하면서 학습
- » 이 때 전체 입력 문장을 동일한 비율로 참고하지 않고 해당 시점에 예측해야 할 단어와 연관성이 높은 단어에 더 집중

- 셀프 어텐션
 - » 자신에게 수행하는 어텐션 기법
 - » 입력 시퀀스 가운데 태스크 수행에 의미 있는 요소들 위주로 정보 추출
 - » 입력 시퀀스 각 요소가 다른 요소와 어떻게 상호 작용하는지 모델링

- » 수행 대상은 입력 시퀀스 전체
- » 개별 단어와 전체 입력 시퀀스를 대상으로 어텐션 계산 수행 → 문맥 정보 학습

- 셀프 어텐션 계산
 - » Query, Key, Value 3가지 요소가 서로 영향을 주고 받는 구조
 - » 입력된 각 단어 벡터는 계산 과정을 거쳐 Query, Key, Value 로 변환
 - » Query와 Key의 행렬곱 연산으로 단어 사이의 관계를 합이 1인 확률 값 도출
 - » 위 연산 결과와 Value 벡터를 곱하고 가중합 계산

$$\mathbf{Z}_{\text{카페}} = 0.1 \times \mathbf{V}_{\text{어제}} + 0.1 \times \mathbf{V}_{\text{카페}} + 0.2 \times \mathbf{V}_{\text{갔었어}} + 0.4 \times \mathbf{V}_{\text{거기}} + 0.1 \times \mathbf{V}_{\text{사람}} + 0.1 \times \mathbf{V}_{\text{많더라}}$$

- 입력층
 - » 인코더 입력은 소스 언어 문장의 토큰 인덱스 시퀀스
 - » 소스 시퀀스의 입력 임베딩에 위치 정보 추가

- 인코더 디코더 블록
 - » 최초 인코더/디코더 블록의 입력은
 - > 인코더/디코더 입력층에서 만들어진 벡터 시퀀스
 - » 출력 벡터 시퀀스가 두 번째 인코더/디코더 블록의 입력
 - » 다음 인코더/디코더 블록의 입력은 이전 블록의 출력
 - » N번 반복

- 출력층
 - » 디코더 마지막 블록의 출력 벡터 시퀀스
 - » 출력은 타깃 언어의 어휘 수만큼 차원을 갖는 벡터
 - » 이 벡터는 디코더에 입력된 타깃 시퀀스의 다음 토큰에 대한 확률 분포

- 멀티 헤드 어텐션
 - » 셀프 어텐션을 동시에 여러 번 수행
 - » 여러 헤드가 독자적으로 셀프 어텐션 계산
 - » 개별 헤드의 셀프 어텐션 수행 결과는 입력 단어 수 X Value 차원 수
 - » 멀티 헤드 어텐션의 최종 수행 결과는 입력 단어 수 X 목표 차원 수
 - ① 모든 헤드의 셀프 어텐션 출력 결과를 이어 붙인다.

\mathbf{Z}_{O}		\mathbf{Z}_1		\mathbf{Z}_2		\mathbb{Z}_3		\mathbf{Z}_4			\mathbf{Z}_5			\mathbf{Z}_6		\mathbf{Z}_7						

③ 새롭게 도출된 Z 행렬은 동일한 입력(문서)에 대해 각각의 헤드가 분석한 결과의 총합이다.

② ①의 결과로 도출된 행렬에 W°를 곱한다. 이 행렬은 개별 헤드의 셀프 어텐션 관련다른 행렬(Wo, Wk, Wv)과마찬가지로 태스크(기계 번역)를 가장 잘 수행하는 방향으로 업데이트된다.

BERT와 GPT

GPT

- » 문장 생성
- » 다음 단어가 무엇인지 맞히는 과정
- » 문장 왼쪽부터 오른쪽으로 순차적으로 계산 (단방향)
- » 트랜스포머에서 인코더를 제외하고 디코더만 사용

BERT

- » 문장의 의미 추출
- » 빈칸에 어떤 단어가 적절한지 맞히는 과정
- » 빈칸 앞뒤 문맥을 모두 검토 (양방향)
- » 트랜스포머에서 디코더를 제외하고 인코더만 사용

전차연결&레이어정규화 피드포워드 뉴럴넷

잔차 연결 & 레이어 정규화

입력 임베딩

소스 시퀀스 전체

위치 정보