Addition polymers				
Name	Monomer	Product		
Polyalkene	x c=c y w	$\begin{bmatrix} x & y \\ 1 & 1 \\ C & C \\ 1 & 1 \\ z & w \end{bmatrix}_n$		
Poly(vinyl chloride) (PVC)	H C=CI			
Poly(vinyl acetate)		H ₃ C O		
Polystyrene (PS)		CH—CH ₂ —		
Poly(methyl methacrylate) (Acrylic)	H C=C CH ₃ CH ₃	H CH ₃ C O CH ₃		
Polytetrafluoroethylene (Teflon)	FC=CF	$$ $$ $$ $$ $$ $$ $$		

Condensation polymers				
Name	Monomer (1)	Monomer (2)	Product	
6,6-Nylon	$HO_2C - (CH_2)_4 - CO_2H$	$H_2N - CH_2 - NH_2$	$ \begin{array}{c c} & \leftarrow & $	
Poly(ethylene terephthalate) (PET)	но	HO-(CH ₂) ₂ -OH	H_O CH ₂) ₂ OH	

Thermosetting Plastics

-Phenol formaldehyde resin (Bakelite)

-Urea-formaldehyde resin

-Melamine resin

Note: All syntheses of thermosetting resin require formaldehyde.

Functional Polymers

-Electrical conducting polymer: $\{CH = CH\}_n + Bromine/Iodine\}$

$$CH=CH_2$$
 $CH=CH_2$ \cdots $-CH-CH_2-CH-CH_2-CH-CH_2-\cdots$ $+ 重合$ \cdots $-CH-CH_2-CH-CH_2-CH-CH_2-\cdots$ $-SECONDO DE SECONDO DE S$

-lon exchange resins:

Cation exchange: Introduce a -SO₃ group:

Anion exchange: Introduce an alkylammonium (- $N^+R_3OH^-$) group:

Poly(glycolic acid)

Fibres

-Cellulose:

-Rayon fibres (Regenerating fibre):

-Acetate fibre (Semi-synthetic fibre):

-Acrylic fibre (Synthetic fibre): Acrylonitrile

-6-Nylon (Polyamide fibre): ε-Caprolactam

-Aramid fibre (Polyamide fibre): Terephthaloyl Dichloride + p-phenyldiamine

-Vinylon fibre (Synthetic fibre): Acetylation of poly(vinyl alcohol)

Step 1: Produce vinyl acetate

Step 2: Produce poly(vinyl acetate)

$$n$$
 $C=C$ 付加重合 $C=C$ $C=C$

Step 3: Obtain poly(vinyl alcohol) by hydrolysis

$$\begin{bmatrix}
H & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
h & H \\
C & C
\end{bmatrix}$$

Step 4: Obtain Vinylon by acetylation

Rubbers

-Gum Rubber: Isoprene

Heat with S to increase its elasticity (the gum obtained is called Ebonite).

-Butadiene Rubber (BR): 1,3-butadiene

-Chloroprene Rubber (CR): Chloroprene

-Styrene-Butadiene Rubber (SBR): Styrene + Butadiene

-Nitrile Rubber (acrylonitrile butadiene rubber) (NBR): Acrylonitrile + Butadiene

$$x CH_2 = CH - CH = CH_2 + y CH_2 = CH \xrightarrow{\# \oplus G} CH_2 - CH = CH - CH_2 \xrightarrow{\text{CH}_2 - CH} CN_y$$

$$1.3 - 795512 \qquad P7501 = F010 = F010$$

Note: All rubbers synthesised by copolymerisation require butadiene as a monomer.