Отказоустойчивые ВС

Майданов Юрий Сергеевичк.т.н., доцент Кафедры ВС

Коллективные проверки

Количество машин, участвующих в проверке: r

Количество эквивалентных проверок: r * (r -1)

Планирование отказоустойчивых вычислений

- 1. P1 минимизация времени решения, исходные данные: количество машин, граф информационных связей
- 2. P2 преобразование P1 согласно определенным критериям, исходные данные: P1, допустимое время решения
- 3. P3 итоговый план, учитывающий диагностические операции, исходные данные: P2, диагностический граф

Алгоритм построения Р2 для коллективных проверок

- 1. Присвоить $P_2 = P_1$.
- 2. Если длина P_2 равна или превышает $T_{\text{цртах}}$, то выполнить переход к п. 8.
- 3. Выбрать в P_2 такой такт работы τ , на котором решается множество фрагментов прикладных задач $W_{\tau} = \left| w_q^{\tau} \right|$.
- 4. Добавить в P_2 новый такт решения ($\tau+1$), причем, $W_{j+1}=W_j$ для всех $j>\tau$, $|W_{\tau+1}|=0$.
- 5. Из множества W_{τ} выбрать подмножество $W_{1\tau}$.
- 6. Присвоить $W_{\tau} = W_{\tau} \setminus W_{1\tau}$; $W_{\tau+1} = W_{1\tau}$.
- 7. Выполнить переход к п. 2.
- 8. Конец алгоритма.

Критерии выбора такта работы и количества переносимых фрагментов

$$F(\tau) = |W_{\tau} \setminus W_{1\tau}| = |W_{\tau}| - |W_{1\tau}|, F(\tau + 1) = |W_{\tau + 1}| = |W_{1\tau}|.$$

При этом $N_{_{9KB}} = N_{_{9KB}}(\tau) + N_{_{9KB}}(\tau + 1);$

$$N_{\text{9KB}} = (n - (|W_{\tau}| - |W_{1\tau}|) + 1) * (n - (|W_{\tau}| - |W_{1\tau}|)) / 2 + (n - |W_{1\tau}| + 1) * (n - |W_{1\tau}|) / 2.$$

Упростим это выражение:

$$N_{\text{9KB}} = (n-|W_{\tau}|+|W_{1\tau}|+1)*(n-|W_{\tau}|+|W_{1\tau}|) / 2+(n-|W_{1\tau}|+1)*(n-|W_{1\tau}|) / 2.$$

$$N_{\text{9KB}} = (n^2 - n|W_{\tau}| + n|W_{1\tau}| - n|W_{\tau}| + |W_{\tau}|^2 - |W_{\tau}| + |W_{1\tau}| + n|W_{1\tau}| - |W_{1\tau}||W_{\tau}| + |W_{1\tau}|^2 + n - |W_{\tau}| + |W_{1\tau}| + n^2 - n|W_{1\tau}| - n|W_{1\tau}| + |W_{1\tau}|^2 + n - |W_{1\tau}|) / 2.$$

В итоге получаем:

$$N_{\text{9KB}} = n^2 - n|W_{\tau}| + n - |W_{\tau}| * |W_{1\tau}| + |W_{1\tau}|^2 + (|W_{\tau}|^2 - |W_{\tau}|) / 2.$$

Критерии выбора такта работы и количества переносимых фрагментов

Значение $N_{\text{экв}}$ следует максимизировать при следующих ограничениях:

$$|W_{\tau}| > 0$$
; $|W_{1\tau}| > 0$; $|W_{1\tau}| < |W_{\tau}|$

Функция $N_{\text{экв}}$ зависит от двух величин : $|W_{\tau}|$ и $|W_{1\tau}|$, где n- постоянно

$$F(\tau) > 1, F(\tau) = \min_{j} |F(j)|$$

Критерии выбора такта работы и количества переносимых фрагментов

$$\frac{\partial N_{_{9KB}}}{\partial |W_{1\tau}|} = 2|W_{1\tau}| - |W_{\tau}|$$

 $W_{\tau}|$ / 2 число элементарных прооверок, проводимых в системе не максимально.

$$|W_{1\tau}|=1$$

Итоговый алгоритм

- 1. Назначить $P_2 = P_1$.
- 2. Если $T_{\text{цр}}(P_2) \geq T_{\text{црмах}}$, то выполнить переход к п. 8.
- 3. Выбрать в P_2 такой такт работы τ , что $F(\tau) = \min |F(j)|, F(j) > 1$.
- 4. Добавить в диаграмму P_2 новый такт решения (τ +1), причем $W_{j+1} = W_j$ для всех $j > \tau$; $W_{\tau+1} = \emptyset$.
- 5. Выбрать из множества W_{τ} один фрагмент задач w_1 и присвоить $W_{1\tau} = \mid w_1 \mid$.
- 6. Назначить $W_{\tau} = W_{\tau} \setminus W_{1\tau}; \ W_{\tau+1} = [w_1]$.
- 7. Выполнить переход к п. 2.
- 8. Конец алгоритма.

Спасибо за внимание!