Лабораторная работа 4.3.2 Дифракция света на ультразвуковой волне в жидкости Отчёт о выполнении

Дерека С.А., группа 6422018-02-10

I Цель, оборудование

- Цель работы: изучение дифракции света на синусоидальной акустической решётке и наблюдение фазовой решётки методом тёмного поля.
- В работе используется: оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор ультразвуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

II Схема установки

Рис. 1: Схема установки для наблюдения дифракции на акустической решётке

Рис. 2: Схема установки для наблюдения акустической решётки методом тёмного поля

Обозначения для рис. 1 и 2

- Q ультразвуковой излучатель
- O_2 камерный объектив
- М микроскоп
- В микрометрический винт
- S щель

Параметры установки:

• f = 28 cm

• $\lambda = 6400 \pm 200 \text{ Å}$

III Теоретические сведения

Длина Λ ультразвуковой волны определяется соотношением:

$$\Lambda \sin \Theta_m = m\lambda \tag{1}$$

В силу малости углов Θ_m окончательное соотношение может быть представлено в виде:

$$l_m = mf \frac{\lambda}{\Lambda} \tag{2}$$

где l_m - измеренное на опыте расстояние между m-ым и нулевым максимумами, а f - фокусное расстояние O_2 . Скорость v распространения звука в воде можно рассчитать, если известна частота кварцевого излучателя v:

$$v = \lambda \nu \tag{3}$$

IV Определение скорости ультразвука по дифракционной картине

Таблина 1:

ν , М Γ ц				
1.005	1.132	1.256	1.841	
Ү, дел				
18	16	10		
52	50	51	32	
88	87	90	89	
117	121	126	143	
150	158	161		
	1.005 Y, дел 18 52 88 117	1.005 1.132 Y, дел 18 18 16 52 50 88 87 117 121	1.005 1.132 1.256 Y, дел 18 16 10 52 50 51 88 87 90 117 121 126	

В таблице 1 приведены результаты измерений положений максимумов в зависимости от частоты излучателя. $\sigma_{\nu}=0.005$ Мгц, $\sigma_{Y}=2$ дел. На рисунке 3 представлен график зависимости положения максимума Y от его номера m при разных частотах ν . В таблице 2 представлен результат расчёта длины волны Λ и скорости звука v по угловым коэффициентам k. Вычислим среднюю скорость распространения звука: $\langle v \rangle = 1.48 \text{ м/c}; \ \sigma_{v} = \sqrt{\sigma_{vr}^2 + \sigma_{vm}^2} = 0.07 \text{ м/c}$

V Определение скорости ультразвука методом тёмного поля

В таблице 3 приведены рассчитанные по параметрам решётки значения длин ультразвуковых волн. По графику 4 рассчитываем угловой коэффициент прямой: $\mathbf{k}=(1.5\pm0.2)~10^3~\mathrm{m/c}$ Согласно формуле (3) это и есть искомая скорость.

Таблица 2:

ν , М Γ ц	k, дел	σ_k , дел	$\Lambda, 10^{-3}$ м	$v, 10^3 \; {\rm m/c}$	$\sigma_v, 10^3 \text{ m/c}$
1.006	32.9	0.2	1.33	1.51	0.06
1.132	35.5	0.3	1.29	1.48	0.07
1.256	37.7	0.2	1.18	1.45	0.07

Рис. 3: График зависимости Y(m)

Таблица 3

ν , M Γ II	а, дел	b, дел	с, дел	l_m , дел	$1/\nu$, c	$L, 10^{-3} M$
1.01	0	2	7	0.286	0.990	1.465
1.788	2	3.1	7	0.157	0.559	0.878
1.42	3	5	5	0.400	0.704	1.042
1.525	3.1	5	5	0.380	0.656	0.970

VI Результаты и выводы

В ходе работы удалось наблюдать дифракцию света на акустической решётке (дифракционную картину и саму решётку методом тёмного поля). На основе данных, полученных в ходе измерений, была определена с достаточно высокой точностью скорость распространения звуковых волн в воде. Полученные результаты

Таблица 4:

Метод	$v, 10^3 \mathrm{\ m/c}$	$\sigma_v, 10^3 \; \mathrm{m/c}$	$ v_{tab}, 10^3 \text{ m/c} $
Дифракционная картина	1.48	0.07	1.485
Тёмное поле	1.5	0.2	1.485

приведены в таблице 4.

Рис. 4: График зависимости длины волны Λ от периода