

planetmath.org

Math for the people, by the people.

any divisor is gcd of two principal divisors

 ${\bf Canonical\ name} \quad {\bf Any Divisor Is GcdOfTwo Principal Divisors}$

Date of creation 2013-03-22 17:59:37 Last modified on 2013-03-22 17:59:37

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 5

Author pahio (2872)
Entry type Theorem
Classification msc 13A05
Classification msc 13A18
Classification msc 12J20

Related topic TwoGeneratorProperty

Related topic SumOfIdeals

Using the exponent valuations, one can easily prove the

Theorem. In any divisor theory, each divisor is the greatest common divisor of two principal divisors.

Proof. Let $\mathcal{O}^* \to \mathfrak{D}$ be a divisor theory and \mathfrak{d} an arbitrary divisor in \mathfrak{D} . We may suppose that \mathfrak{d} is not a principal divisor (if \mathfrak{D} contains exclusively principal divisors, then $\mathfrak{d} = \gcd(\mathfrak{d}, \mathfrak{d})$ and the proof is ready). Let

$$\mathfrak{d} = \prod_{i=1}^r \mathfrak{p}_i^{k_i}$$

where the \mathfrak{p}_i 's are pairwise distinct prime divisors and every $k_i > 0$. Then third condition in the theorem concerning divisors and exponents allows to choose an element α of the ring \mathcal{O} such that

$$\nu_{\mathfrak{p}_1}(\alpha) = k_1, \ldots, \nu_{\mathfrak{p}_r}(\alpha) = k_r.$$

Let the principal divisor corresponding to α be

$$(lpha) = \prod_{i=1}^r \mathfrak{p}_i^{k_i} \prod_{j=1}^s \mathfrak{q}_j^{l_j} = \mathfrak{dd}',$$

where the prime divisors \mathfrak{q}_j are pairwise different among themselves and with the divisors \mathfrak{p}_i . We can then choose another element β of \mathcal{O} such that

$$\nu_{\mathfrak{p}_1}(\beta) = k_1, \ldots, \nu_{\mathfrak{p}_r}(\beta) = k_r, \nu_{\mathfrak{q}_1}(\beta) = \ldots = \nu_{\mathfrak{q}_s}(\beta) = 0.$$

Then we have $(\beta) = \mathfrak{d}\mathfrak{d}''$, where $\mathfrak{d}'' \in \mathfrak{D}$ and

$$\gcd(\mathfrak{d}',\,\mathfrak{d}'')=\mathfrak{q}^0\cdots\mathfrak{q}^0=\mathfrak{e}=(1).$$

The gcd of the principal divisors (α) and (β) is apparently \mathfrak{d} , whence the proof is settled.