WL-TR-95-2111

DEVELOPMENT OF A BIPOLAR LEAD/ACID BATTERY FOR THE MORE ELECTRIC AIRCRAFT

JENNIFER L. ROSE

JOHNSON CONTROLS BATTERY GROUP, INC. 5757 NORTH GREEN BAY AVENUE MILWAUKEE WI 53201-0591

SEPTEMBER 1995

FINAL REPORT FOR 09/01/91-09/30/95

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

19960703 024

AERO PROPULSION AND POWER DIRECTORATE WRIGHT LABORATORY AIR FORCE MATERIEL COMMAND WRIGHT PATTERSON AFB OH 45433-7650

DITC QUALLEY LEDYECTED 1

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, of sell any patented invention that may in any way be related thereto.

This report is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

R.A. MARSH

Project Engineer

R.A. MARSH, Chief

Battery Electrochemistry Section

Power Technology Branch

MICHAEL D. BRAYDICH, L'E Col, USAF Chief, Aerospace Power Division

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify WL/POOS-2, WPAFB, OH 45433-7251 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

	<u> </u>		
1. AGENCY USE ONLY (Leave blank		3. REPORT TYPE AND	1
	SEPTEMBER 1995	FINAL REPORT	FOR SEP 91 to SEP 95
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
DEVELOPMENT OF A BIPO			CONTR: F33615-91-C-2142
MORE ELECTRIC AIRCRAF	T		P.E. 62203F
6. AUTHOR(S)			PROJ #: 3145 TASK #: 29
G. AUTHORIS			WORK UNIT #: L5
JENNIFER L. ROSE			HOLE II AD
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
JOHNSON CONTROLS BATTE	RY GROUP, INC.		REFURI HUMBER
5757 N. GREEN BAY AVEN	UE		
MILWAUKEE, WI 53201-0	591		
9. SPONSORING/MONITORING AGE	NCY NAME(S) AND ADDRESSIES)		10. SPONSORING / MONITORING
			AGENCY REPORT NUMBER
AERO PROPULSION AND PO	WER DIRECTURATE		
WRIGHT LABORATORY AIR FORCE MATERIEL COM	M A NTD		III - TD - 05 2111
WRIGHT PATTERSON AFB,			WL-TR-95-2111
HRIGHT INTIBESON APD,			
11. SUPPLEMENTARY NOTES			
	7.77.146.07		12b. DISTRIBUTION CODE
12a. DISTRIBUTION / AVAILABILITY S	IAIEMENI		125. DISTRIBUTION CODE
ADDROVED DOD DOOLES	፲፱ <i>ዩሮ</i> ሮ ከተ <i>ር</i> ሞይ፣ይ፤የሞፕ ር ኤ፣ ፲፱	T TMTTEN	
APPROVED FOR PUBLIC RE	TEWOF, DISTRIBUTION OF	APTLITIEN.	
13. ABSTRACT (Maximum 200 words	;)		
	es the development wor		
			September 1995. Initial
_		• •	site substrate for use in
			on metallic substrate
	33, and concluded with	the delivery o	i battery systems
to Wright Laboratory.	•		
14. SUBJECT TERMS			15. NUMBER OF PAGES
BIPOLAR BATTERY			87
DUPLEX ELECTRODE			16. PRICE CODE
ELECTRODE SUBSTRATE	O CECUDITY OF ACCIDICATION I	10 CECUDITY CLACCIE	CATION 20. LIMITATION OF ABSTRACT
17. SECURITY CLASSIFICATION 1 OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIF	
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	SAR

TABLE OF CONTENTS

1.0	SUMMARY	1
2.0	WORK BREAKDOWN STRUCTURE	.2
3.0	COMPOSITE SUBSTRATE DEVELOPMENT	
	3.1 WBS 1.0 Program Management	
	3.1.1 Subtask 1.1 Managing Strategy	.4
	3.2 WBS 2.0 Battery Design	
	3.2.1 Subtask 2.1 Battery System Design Analysis	.4
	3.3 WBS 3.0 Bipolar Plate	
	3.3.1 Subtask 3.1 Conductive Fillers	.4
	3.3.2 Subtask 3.2 Substrate Fabrication Processes	19
	3.3.3 Subtask 3.3 Stability Testing	21
	3.3.4 Subtask 3.4 Proof of Concept Testing	21
	3.4 WBS 5.0 Battery Fabrication	
	3.4.1 Subtask 5.1 Sealing Methods	23
	4.0 METALLIC SUBSTRATE DEVELOPMENT	
	4.1 WBS 1.0 Program Management	
	4.1.1 Subtask 1.1 Managing Strategy	26
	4.2 WBS 2.0 Battery Design	
	4.2.1 Subtask 2.1 Battery System Design Analysis	26
	4.3 WBS 3.0 Bipolar Plate	
	4.3.1 Subtask 3.1 Multialloy Substrate Development	26
	4.3.2 Subtask 3.2 Rolling/Embossing Work	30
	4.3.3 Subtask 3.3 Substrate Corrosion Testing	.31
	4.3.4 Subtask 3.4 Small Scale Characterization	.31
	4.4 WBS 4.0 Battery Components	22
	4.4.1 Subtask 4.2 Active Material Development	.33
	4.5 WBS 5.0 Battery Fabrication	22
	4.5.1 Subtask 5.1 Sealing Methods	.22 27
	4.5.2 Subtask 5.2 Formation	.51
	4.6 WBS 6.0 BMET Demonstration	20
	4.6.1 Subtask 6.1 Deliverables	.20
	4.6.1.1 24-Volt Injection Molded Containment Trials	.30 11
	4.6.1.2 Gasketed Containment	.+1
	APPENDICES	4.
	A. Resistivity Testing	.44
	R Deliverable Data	/ ଧ

LIST OF FIGURES

Figure 1	BMET Work Breakdown Schedule	3
Figure 2	Composite Development: Gantt Chart with Milestones	5
Figure 3	Near- and Far-Term BMET Bipolar Battery Projections	6
Figure 4	Near-Term System Performance and Specifications	7
Figure 5	Far-Term System Performance and Specifications	8
Figure 6	Main Engine Starting: Chemset vs F2 Active Materials	9
Figure 7	Main Engine Starting: Performance as a Function of Temperature	10
Figure 8	Ground Power: Chemset vs F2 Active Materials	11
Figure 9	Ground Power: Performance as a Function of Temperature	12
Figure 10	Ground Power: Capacity as a Function of Temperature	13
Figure 11	APU Starting: Chemset vs F2 Active Materials	14
Figure 12	APU Starting: Performance as a Function of Temperature	15
Figure 13	Emergency Power: Chemset vs F2 Active Materials	16
Figure 14	Emergency Power: Performance as a Function of Temperature	17
	Stability Test Fixture	
	Composite Battery Builds	
Figure 17	No-Cost Time Extension Gantt Chart	27
Figure 18	No-Cost Time Extension Deliverable Gantt Chart	28
	Constant Power Performance Projections: Metallic Substrate Bipolar	
Figure 20	Constant Power Performance Normalized to Mass and Volume	32
	Small Scale Characterization: Capacity Development	
	Small Scale Characterization: Peukert	
	Small Scale Characterization: Ragone	
Figure 24	Small Scale Characterization: Discharge Time vs Power	36
Figure 25	Voltage Drop Across Intermodule Connector Candidate Materials	42

1.0 SUMMARY

A 36-month contract was undertaken by Johnson Controls Battery Group, Inc. to develop a highly conductive, non-porous, and lightweight bipolar substrate and deliver a 56-volt prototype module for evaluation for the More Electric Aircraft. Eighteen months into Contract #F33615-91-C-2142, significant accomplishments were reported in the identification of suitable composite materials and in optimizing the compounding parameters of same. Laminated, 8 cm (L) x 8 cm (H) x 0.102 cm (TH) substrates with an overall resistivity of 4-6 Ω -cm were routinely manufactured in-house and used in battery builds. Over 150 cycles were demonstrated to 100% DOD at 0.16 A/cm² in a 4-volt battery configuration. Mass production oriented container molding was also demonstrated, however, process reliability was a major concern. Critical evaluation of the project in Month 33 recognized the difficulties in addressing recurrent substrate and paste adhesion delamination, as well as those to be solved in achieving high power (0.48+ A/cm²) capability from a 400+ cm² electrode. High power capability from a composite substrate was not deemed likely in the remaining contract period. Therefore, given its success in a parallel internally funded bipolar program, JCBGI requested a no-cost time extension to evaluate a new approach in metallic bipolar substrate technology. Five attempts were made at cladding strips of various corrosion resistant alloys, however, resultant materials were never suited to pasting or battery builds. Concurrent efforts to redesign the injection molded container succeeded in eliminating internal distortion of the metallic electrodes, but failed to resolve cell-to-cell leakage around the fill ports. At contract's end, deliverables utilizing a binary lead alloy and an alternative containment design were assembled, formed and delivered to WPAFB for test and evaluation.

Future composite bipolar substrate investigations based upon this body of work should focus on fostering positive paste adhesion. Continued metallic substrate work would benefit most from efforts to increase the substrate strength and corrosion resistance. Both designs require additional development of the injection molded containment concept to eliminate the catastrophic cell-to-cell leakage exhibited at the close of this contract.

2.0. WORK BREAKDOWN SCHEDULE

As with other contract work performed at JCBGI, a Work Breakdown Schedule (WBS) was implemented to plan, execute, and monitor technical progress, costs, and scheduling. Tasks were identified as unitary efforts necessary to complete individual aspects of battery development, and subtasks further delineated each task. Composite plans, shown in Figure 1, were easily translated in August 1994 to more closely describe the efforts necessary to assemble a 24-volt bipolar battery utilizing metallic based substrates. These interpretations are shown in parentheses next to the composite substrate counterparts within Figure 1.

FIGURE 1: BMET WORK BREAKDOWN SCHEDULE

WRS 1.0 PROGRAM MANAGEMEN								
	TTTDO	1 ^	$DD \cap CD$	A 3 4	N # A '	A T &	CEL	
	WHN	1 (1	PRUITE	$\Delta V $	IVI A	IN A	1 TH 1	// -

- Subtask 1.1 Managing Strategy
- Subtask 1.2 Liaison/Meetings
- Subtask 1.3 Documentation
- Subtask 1.4 Contract Administration
- Subtask 1.5 Operating Supplies

WBS 2.0 BATTERY DESIGN

- Subtask 2.1 Battery System Design Analysis
- Subtask 2.2 Performance Modeling

WBS 3.0 BIPOLAR PLATE

- Subtask 3.1 Conductive Fillers (Multi-Alloy Substrate Development)
- Subtask 3.2 Substrate Fabrication Processes (Rolling/Embossing Work)
- Subtask 3.3 Stability Testing (Corrosion Testing)
- Subtask 3.4 Proof of Concept Testing (Small Scale Characterization)

WBS 4.0 BATTERY COMPONENTS

- Subtask 4.1 Separator Material
- Subtask 4.2 Active Material Development (Freeze/Thaw Work)

WBS 5.0 BATTERY FABRICATION

- Subtask 5.1 Sealing Methods (Lead to Plastic Interface Seal)
- Subtask 5.2 Formation

WBS 6.0 BMET DEMONSTRATION

- Subtask 6.1 Battery Fabrication (Deliverables)
- Subtask 6.2 Testing (Group 34 Cycling)

3.0 COMPOSITE SUBSTRATE DEVELOPMENT

3.1 WBS 1.0 PROGRAM MANAGEMENT

3.1.1 Subtask 1.1 Managing Strategy

Five review meetings were scheduled and attended by WPAFB and JCBGI personnel. These dates, as well as milestones achieved during the composite development phase of the contract, are shown in Gantt chart form in Figure 2.

3.2 WBS 2.0 BATTERY DESIGN

3.2.1 Subtask 2.1 Battery System Design Analysis

Preliminary performance requirements for the More Electric Aircraft (MEA) energy source were given to JCBGI by Richard Flake of WPAFB during the program kickoff meeting on December 12, 1991. The following energy sources were required:

Main Engine Starting:

150 kW, 30 sec

Ground Power:

25-75 kW, 30-45 min

Emergency Power:

75 kW, 10 min

APU Starting:

5-10 kW, 15 sec

Hybrid Emergency:

50-75 kW, 60 sec

Temperature Range:

-65°F to 120°F

Voltage Window:

270 volts (min), 330 volts (max)

Given this, JCBGI proceeded to use its proprietary lead/acid battery mathematical model to design near- and far-term bipolar systems having 5- and 10- year development time frames. Near-term modeling assumed that substrate program goals were reached and conventional active materials were used. The 10-year battery systems were projected assuming a thinner, more conductive substrate and improved active materials. The results, shown in Figures 3 through 14, dramatically illustrate the system configuration's dependence on application. Designs required as little as 0.18 ft³ with a system mass of 33 pounds to as much as 8.13 ft³ and 1349 pounds.

3.3 WBS 3.0 BIPOLAR PLATE

3.3.1 Subtask 3.1 Conductive Fillers

Initial work was focused on identifying an electronically conductive, filled polymeric composite having negligible ionic conduction which could short adjacent cells. The substrate was likewise required to be chemically inert to the electrode reactions, to have high oxygen and hydgrogen overpotentials in H₂SO₂, and to be readily manufactured.

FIGURE 2: Composite Development Gantt Chart with Milestones

WBS 1.0 PROGRAM MANAGEMENT 1.2 Liaison/Meetings WBS 2.0 BATTERY DESIGN 2.1 Battery System Design 2.2 Performance Modeling WBS 3.0 BIPOLAR PLATE DEVELOPMENT 3.1 Conductive Fillers 3.2 Substrate Fabrication Processes 3.3 Stability Testing WBS 4.0 BATTERY COMPONENT DEVELOPMENT 4.1 Separator Development 4.2 Active Material Development 4.2 Active Material Development WBS 5.0 BATTERY FABRICATION DEVELOPMENT 5.1 Sealing Methods 5.2 Formation Processes WBS 6.0 BMET POWER SOURCE DEMONSTRATION 6.2 Testing 6.2 Testing 6.3 Stability of doped oxide 6.3 Stability of doped oxide 6.4 Stability of doped oxide 6.5 Testing 6.5 Testing 6.7 Connectative development 6.8 Stability of doped oxide	4 4 B E E E E E E E E E E E E E E E E E
EMENT gn ng eVELOPMENT evelopment elopment ATION DEVELOPMENT S S JRCE DEMONSTRATION [A] [B]	4 5 6 7 8 9 10 11 12 13 14 1
gn ng eVELOPMENT EVELOPMENT ent elopment ATION DEVELOPMENT S S JRCE DEMONSTRATION [B] [B]	
gn ng EVELOPMENT n Processes sting vENT DEVELOPMENT ent elopment ATION DEVELOPMENT S S JRCE DEMONSTRATION [A] [B]	
gn ng EVELOPMENT n Processes sting VENT DEVELOPMENT ent ent ATION DEVELOPMENT ATION DEVELOPMENT ATION DEVELOPMENT (A) (B) (B)	
gn ng EVELOPMENT n Processes wtent bevelopment ATION DEVELOPMENT ATION DEVELOPMENT ATION DEVELOPMENT ATION DEVELOPMENT ATION DEVELOPMENT ATION DEVELOPMENT BS S S S S S S S S S S S S S S S S S S	
PMENT PMENT STRATION [A] [B]	
PMENT OPMENT STRATION (A) (B)	
DEVELOPMENT DEVELOPMENT I DEVELOPMENT DEMONSTRATION [A] [B]	
DEVELOPMENT OEVELOPMENT DEMONSTRATION [A] [B]	
ent IDEVELOPMENT DEMONSTRATION [B]	
DEVELOPMENT OBVELOPMENT DEMONSTRATION [B]	
DEVELOPMENT I DEVELOPMENT DEMONSTRATION [A] [B]	X X
ent IDEVELOPMENT DEMONSTRATION [A] [A] [B]	X
N N N N N N N N N N N N N N N N N N N	X
A (A) (B) (B) (C)	
(A)	
10N (A) (B) (B)	
10N (A) (B) (C)	
(A) (B) (C)	
Testing [A]	
•	
	Qualified doped oxide supplier
_	Stability of doped oxide proven. Single filler to be pursued.
	Cooperative development and supply agreement with oxide vehical discussed.
	Consistently stable 0.025-0.030 thick parts produced.
Conductive	Conductive filler work completed.
	Segin LDPE substrate tablication development.
(G) Consistently stable of the consistent of the consistency of the co	Consistently stable 0.080° tilick parts produced.
	Composite hinder hatteries achieve 2 A/in2 for 30 sec and 32 cycles.
[J] Begin substance [J] Begin substance for the part of the part o	Begin substrate to paste interface adhesion studies.
[K] Injection molded con	Injection molded container trial proven feasible with composite substrate.
was and the control of the control o	Technical direction refocussed on metallic substrate development.

FIGURE 3

NEAR AND FAR TERM BMET BIPOLAR BATTERY SPECIFICATIONS

BATTERY TYPE	NEAR TERM	FAR TERM
Main Engine Starting		
Mass Volume	450 lbs. 2.45 ft ³	389 lbs. 2.00 ft ³
Ground Power		
Lower Capacity Unit Mass Volume	1000 lbs. 6.15 ft ³	865 lbs. 4.85 ft ³
Higher Capacity Unit Mass Volume	1349 lbs. 8.13 ft ³	1235 lbs 6.72 ft ³
APU Starting		
Mass Volume Volume	33.4 lbs. 0.18 ft ³	30.6 lbs 0.16 ft ³
Assumptions:		
Substrate Thickness Substrate Weight Substrate Resistivity	0.025" 150 mg/cm ² 2.0 Ω-cm	0.010" 80 mg/cm ² ~0 Ω-cm

BMET PERFORMANCE REQUIREMENTS BIPOLAR BATTERY SPECIFICATIONS Near Term Projections (within 5 years) 330 Volt Battery Systems

REQUIREMENTS MET	BATTERY DIMENSIONS	BATTERY VOLUME	BATTERY WEIGHT	W/kg	W/cm3	W-hr/kg	W- hr/cm3
Main Engine Starting APV Starting Hybrid Emergency	17.6"x15.5"x15.5"	2.45 ft3	450 lbs	747.9	2.2	12.25	0.036
Main Engine Starting Ground Power Emergency Power APU Starting Hybrid Emergency							
Scenario 1 30 minute ground power capacity	27.4"x19.7"x19.7"	6.15 #3	1000 lbs	62.2	0.16	31.08	0.081
Scenario 2 45 minute ground power capacity	36.2"x19.7"x19.7"	8.13 ft3	1349 lbs	46.1	0.12	34.56	0.092
APU Starting	16.5"x4.33"x4.33"	0.18 ft3	33 lbs	705.0	2.1	11.75	0.036

BMET PERFORMANCE REQUIREMENTS BIPOLAR BATTERY SPECIFICATIONS Far Term Projections (10 years) 330 Volt Battery Systems

REQUIREMENTS MET	BATTERY DIMENSIONS	BATTERY VOLUME	BATTERY WEIGHT	W/kg	W/cm3	W-hr/kg	W- hr/cm3
Main Engine Starting APV Starting Hybrid Emergency	14.4"x15.5"x15.5"	2.00 ft3	389 lbs	895.3	2.8	14.17	0.044
Main Engine Starting Ground Power Emergency Power APU Starting Hybrid Emergency							
Scenario 1 30 minute ground power capacity	21.6"x19.7"x19.7"	4.85 ft3	864 lbs	72.0	0.21	35.97	0.103
Scenario 2 45 minute ground power capacity	29.9"x19.7"x19.7"	6.72 ft3	1235 lbs	50.6	0.15	37.77	0.111
APU Starting	15.2"x4.33"x4.33"	0.16 ft3	31 lbs	772.0	2.3	12.87	0.041

Comparison of Chemset and F2 Plates for Main Engine Starting Battery F2 Discharge Time/Seconds -08 FIGURE 6 Chemset 180a 230 g e 220 270-260 240-220-210-200 190 330+ 250-320 310 300 290 280 K rette B د ۱۰۰ ×

FIGURE 7
Effect of Temperature on Performance of Main Engine Starting Battery

FIGURE 9

Effect of Temperature on Power Output of the Ground Units

FIGURE 10

Effect of Temperature on Capacity of the Ground Units

FIGURE 12
Effect of Temperature on Performance of APU Starting Battery

Chemset Comparison of Chemset and F2 Plates for Emergency Power Unit Discharge Time/Minutes 245 250-V 285-0 1 280-t 275-9 270-e 270-255 330+ 325-320-315 310 300 295-290-285 265 260 305 K r e t t a B

FIGURE 14 Effect of Temperature on Performance of the Emergency Power Unit

Recognizing the recommendations from previous WPAFB work performed at JCBGI, conductive filler development resumed with further investigation of doped oxide. Coated glass fibers were also studied.

Initial work with Photon Energy Systems (PES) focused on coating doped oxide onto glass fibers. Four separate attempts were made with poor results. The first lot did not withstand the acid environment, and the second lacked uniformity and conductivity. Coated fibers from the third trial possessed no adhesion between the oxide and glass, hence were impossible to handle or compound into plastic. PES ultimately did coat 2-6" long fibers during a fourth trial, but was unable to supply the shorter lengths required for this application. Activity in this area was subsequently discontinued.

Efforts by Materials and Electrochemical Research, Inc. (MER) to produce a dense plaque of doped oxide met with similar difficulties. Prototype samples lost all conductivity and dissolved when put in contact with H₂SO₄. A carbide compound was also provided, but found too resistive. No further attempts were made.

Two companies were next contacted for samples of doped oxide in powder form. Provided materials were extremely similar in particle size and appearance, and remained stable throughout acid leach testing. Replicate samples of 85% and 90% loaded plastic were then prepared. Measurements showed the oxide from Magnesium Elektron, Inc. (MEI) to be seven to fifteen times more conductive than that obtained from Crystal Research, Inc. (CRI). Throughout ensuing months, MEI recognized the product potential, entered into a joint development (JD) effort with JCBGI, and supplied over \$110,000 worth of oxide to JCBGI at no cost. Leftover material was returned per the appropriate clause in the JD. Additional oxides doped with other elements were prepared by MEI late in the contract, but shown highly resistive and unstable during JCBGI testing. MEI was also instrumental in providing compounding expertise that greatly expedited the development effort.

Particle size optimization was one such area in which MEI provided invaluable help. JCBGI initially believed that a smaller particle size (1 micron) would reduce porosity due to its being more easily wetted by the surrounding plastic resin. Trials using fines screened from the supplied material proved the contrary with regard to both conductivity and porosity. Resistivity readings increased twenty-fold. Discussions with MEI's compounding experts revealed that the use of uniformly shaped, ultrafine particles made it more difficult to achieve the needed particle-to-particle chain of contact through the thickness of the material, i.e. increased resistance. The smaller particle size also increased the available surface area at which pores could and did develop. All contract work was performed using particles roughly 3-5 microns in diameter. Use

of the estimated 10-20 micron optimum particle would have required an entirely different production method. Time and associated costs of the changeover were far beyond the scope of this program.

Subsequent electrical testing of the MEI material showed the doped oxide to lack stability at negative electrode potentials. This finding required doped oxide be used as a laminate in conjunction with a material better able to withstand the environment at the negative plate. Carbon black was immediately proposed as the ideal partner, having been previously identified as highly conductive, lightweight, readily available and stable at negative potentials during the first WPAFB contract. Compounding trials optimized the loading, resulting in highly conductive parts that were also very flexible.

Compounding descriptions and the corresponding conductivity measurements are provided as figures in the text.

3.3.2 Subtask 3.2 Substrate Fabrication Techniques

Given the limited batch size and trial-to-trial variability in hand compounding plastic and filler, resins were carefully chosen for study. These included low-density polyethylene (LDPE), fluoropolymer formulations (Kynar), polytetrafluoroethylene (PTFE), and high-density polyethylene (HDPE).

Given its use in prior WPAFB-sponsored work, initial efforts focused on LDPE and MicrotheneTM from Quantum Chemical Corporation was purchased. A powdered form was requested and received to facilitate uniform filler dispersion with minimum porosity. Dry mixing of the filler and resin was accomplished by hand using a mortar-and-pestle early on in the contract. This was later replaced by V-blending. The mixture was then melt blended in a twin screw extruder to produce pellets that were compression molded into sheet form. Early samples were thick (0.070") and used exclusively for proving the stability of the filler. After several successful resistivity tests, work was redirected on thinning the part and making it more conductive.

Another resin, PTFE, was investigated concurrently. Loadings from 70-75% produced highly conductive parts, however, these were also very porous. Investigations were undertaken with Imprex, Inc. to impregnate the porous parts under vacuum with a polycarbonate-based liquid resin to reduce the porosity without hindering the conductivity. PTFE development was stopped when samples were shown to have remained porous and become even more resistive following treatment.

Kynar was also explored for use as a base resin. The material showed initial promise, during producing conductive and nonporous material during hand compounding trials. However, the 375°C temperature needed to soften and melt the resin degraded the doped oxide. LDPE and Kynar blends resulted in conductive but highly porous material. Development in this area was discontinued given the successes with LDPE.

Additives were next employed to improve the physical properties of the substrate. Coupling agents, oils, acids, acetates and silicon compounds were each investigated in an attempt to improve part conductivity, reduce porosity, and/or improve manufacturing. Coupling agents, designed to bond the filler and surrounding base resin, offered the only quantifiable advantage. Of particular note was a coupling agent available through Kenrich Chemical, Incorporated. Additions substantially improved the resultant substrate's physical properties. Order of addition was also found critical to the end product. Greatest effectiveness was had in dry mixing with doped oxide prior to adding LDPE powdered resin.

Lastly, JCBGI investigated HDPE resin in an effort to widen the operating temperature range of the battery. Initial stability tests showed high porosity levels. Increasing the melt blend temperature produced stable parts. Development was halted in June 1994 when the program's technical direction was changed (see Section 4.0 - Metallic Substrate Development).

Alternative methods of producing sheet stock were also investigated. Molded Rubber and Plastics (MRP) and JCBGI teamed to design a vacuum compression mold to remove trapped gases and produce pore free parts. Unfortunately, samples exhibited physical properties no better than parts made in the conventional manner. Work was discontinued due to the prohibitive \$75/part cost and the large volume of material needed per trial (10+ pounds).

Skiving was no more successful. Thin rolls of doped oxide in Microthene[™] were received from DeWal Industries in May 1993 for laminating and resistivity testing. Resultant laminates were 0.029-0.031" thick with resistivities in the range of 1.7-2.0 Ω-cm. Given the promise of the materials produced by DeWal's skiving process, JCBGI twice supplied additional compounded materials for processing into sheet. Doped oxide samples exhibited low initial porosities that increased as a result of the laminating process; the porosity of the carbon black material was never acceptable. Work with DeWal was subsequently discontinued.

Carbon-black development proceeded more quickly with the aid of JCBGI's zinc-bromine battery development program. Several different types of carbon-black were screened and a Ketjenblack material from Azko Chemical was chosen. Compounding trials identified an optimum carbon-black loading level that afforded parts with a conductivity of 1-1.6 ½-cm and enough flexibility to be used as a bipolar substrate.

Laminating the filled LDPE substrates was next addressed. Early laminates exhibited a resistivity higher than the sum of the constituent pieces due to the "skin" formed on the surface of each sheet when molded. Two methods of removing the "skin" were tried. The addition of carbon black at the interface prior to laminating proved effective, but difficult to perform in a uniform manner. The second and adopted method required gentle sanding of the skinned surfaces with sandpaper. Sanding prior to lamination resulted in a 50-75% reduction in part resistivity and no effect on part stability.

3.3.3 Subtask 3.3 Stability Testing

The procedure and fixture for quantifying a bipolar substrate's stability in acid and under potential were developed at JCBGI over many years. Both three- and four-point tests were required to evaluate a sample's viability.

As shown in Figure 15, a substrate sample was clamped between two hollowed polycarbonate endblocks, exposed to electrolyte, and wired as the working electrode. A potential of 1.5 volts was applied and the current collected at the top of the substrate in the three-point system. After 24 hours on test to establish a baseline current, the leads were rearranged to collect current after passing through the substrate, i.e., the four-point test. The test continued for a minimum of 3 additional days. No change in the current acceptance established the sample to be nonporous. A rising current suggested porosity or filler instability. Detailed stability results are provided in Appendix B.

Conductivity before and after the three- and four-point regimen was also monitored. An increase of 20% or more signalled porosity or filler instability. Since doped oxide had been successfully tested, an increase in resistivity was interpreted as increasing porosity, i.e., carbon-black was exposed to the positive potential as a result of the porosity causing the carbon-black to oxidize and become nonconductive.

3.3.4 Subtask 3.4 Proof of Concept Testing

Over 60 batteries of various voltages were assembled and tested. Dry, unformed electrodes with 10 in² active areas were alternately stacked with elastomeric spacers and compressed to dimension between 0.5" thick polycarbonate end plates. Insulated bolts positioned around the perimeter of the fixture were easily tightened to compress the gaskets to affect hermetic cell seals. Absorptive glass mat separator was placed between opposing electrodes and filled with electrolyte through channels machined across the upper portion of each

Stability Test Fixture

- Bipolar Substrate
- E D C B A
 - Resistance Sensor
- Reference Electrode Socket Counter Electrode Current Collector
- Lexan Block
- Spacer with Sensor Socket
- Counter Electrode Bushing Clamping Hardware

gasket. Discharge performance routinely surpassed 5 minutes at 1 A/in², but with limited cycle life.

Laminate and positive paste adhesion were the ultimate issues and numerous approaches were investigated in attempts to foster them. Techniques included roughening the pasted surface with various grit sandpaper, embedding fibers, sintering lead dust or oxide powder onto the active areas, flame spraying lead, pretreating the plastic to increase its wettability. A review of the battery build sequence, documented in Figure 16, quickly shows that any battery formed without the use of lead sheet could not be tested due to high internal resistances caused by poor paste adhesion.

The major breakthrough occurred upon recognizing the special needs of polyolefins. Involved surface pretreatments are recognized as necessary to achieve bonds with wax-like surfaces that are difficult to wet if left alone. Surface treating LDPE prior to attaching a layer of thin lead foil decreased the part resistivity by 50-75%. Over 150 cycles were demonstrated with shorting as the cause of failure. Subsequent builds neared this benchmark, however, lead foil delamination became a recurring problem. Substrate conductivities checked prior to pasting and after cycling showing no change added to the confusion. Treatment parameters were reviewed and found incorrect, resulting in delamination within the plastic part. Optimization trials were initiated, along with investigations of HDPE resin. HDPE was proven to bond more strongly to lead sheet, but the resulting cycle life was still unacceptable. Efforts were halted with the change in the program's technical direction.

3.4 WBS 5.0 BATTERY FABRICATION

3.4.1 Subtask 5.1 Sealing Methods

Two 10-volt batteries were produced using an injection molded containment method in October 1993. Electrodes, separators and spacer frames were arranged to form a stack that was inserted into a cavity for molding. Plastic injected into the mold formed a frame around the entire stack to provide the necessary sealing and spacing requirements, as well as provisions for acid fill.

Electrode quality within each 10-volt stack was poor due to the required part size. Length and width exceeded the working area of the press. Pieces were 0.080" thick and highly resistive (10 Ω -cm). Cross sectioning of one dry, unformed (DUF) stack showed complete plastic fill and no electrode distortion. Confirmation of hermetic cell-to-cell sealing was never

FIGURE 16 Composite Battery Builds

<u>ID</u>	Volts	Adhesion Method	Cycles	Cause of Failure
159	4	Lead dust	32	Lack of paste adhesion
159-B	4	Lead dust	15	Lack of paste adhesion
160	4	Lead dust	15	Lack of paste adhesion
182-1	4	Lead dust	5	PbSO, at surface
182-2	4	Sanded surface	5	Lack of paste adhesion
182-3	4	Lead dust	5	PbSO, at surface
182-4	4	Sanded surface	5	Lack of paste adhesion
194-3A	4	Embedded 0.003" glass mat	0	PbSO, at surface
194-4A	4	Embedded 0.003" glass mat	0	PbSO, at surface
194-3A	4	Finely sanded surface	0	PbSO, at surface
194-4A	4	Finely sanded surface	0	PbSO, at surface
205-1	4	0.001" perforated lead foil	18	Lack of paste adhesion
205-2	4	0.001" perforated lead foil	18	Lack of paste adhesion
205-3	4	0.001" lead foil	19	Lack of paste adhesion
205-4	4	0.001" lead foil	14	Lack of paste adhesion
214-1	4	0.010" lead foil over treated surface	18	Leak, cracked substrate
214-4	4	0.010" lead foil	21	Lead foil delamination
214-5	4	0.010" lead foil	45	One very dry cell
214-6V	6	0.010" lead foil over treated surface	47	Lead foil delamination
218-1	4	Carbide fibers	2	Too resistive to cycle
218-2	4	Carbide fibers	2	Too resistive to cycle
224-4	4	0.010" lead foil over treated surface	151	Shed PAM, shorting
224-5	4	0.010" lead foil over treated surface	104	Lead foil delamination
241-2	4	Flame sprayed lead	0	High IR, no AM adhesion
242	12	0.005" lead foil over treated surface	15	Lead foil delamination
242-4	4	Paste over treated surface	0	High IR, no AM adhesion
243-6V	6	0.005" lead foil over treated surface	12	Lead foil delamination
257	12	0.005" lead foil over treated surface	8	Lead foil delamination
259	12	0.005" lead foil over treated surface	0	Lead foil delamination
260-2	4	0.005" lead foil over treated surface	19	Lead foil delamination
263	6	0.005" lead foil over treated surface	9	Lead foil delamination
265	6	0.005" lead foil over treated surface	4	Crack, leak, delamination
267-1C	4	0.005" lead foil over treated surface	15	Lead foil delamination
267-4P	4	0.005" lead foil over treated surface	135	Local lead foil delamination
267-5P		0.005" lead foil over treated surface	13	Local lead foil delamination
267-6VP	6	0.005" lead foil over treated surface	33	Local lead foil delamination
267-6P		0.005" lead foil over treated surface	18	Local lead foil delamination
267-8C	4	0.005" lead foil over treated surface	20	Local lead foil delamination
267-9P	4	0.005" lead foil over treated surface	20	Local lead foil delamination
267-11C	6	0.005" lead foil over treated surface	11	Local lead foil delamination
268-6VC	6	0.005" lead foil over treated surface	11	Local lead foil delamination
268-8C	4	0.005" lead foil over treated surface	9	Local lead foil delamination
268-10C	4	0.005" lead foil over treated surface	68	Local lead foil delamination
268-11C	4	0.005" lead foil over treated surface	135	Local lead foil delamination
268-12C	12	0.005" lead foil over treated surface	15	Lead foil delamination
277-1C	4	0.005" lead, treated surface, acid dip	2	Local lead foil delamination
277-2C	4	0.005" lead, treated surface, acid dip	4	Local lead foil delamination
277-6VC	6	0.005" lead, treated surface, acid dip	3	Local lead foil delamination
278-1C	4	0.005" lead, treated surface, acid dip	8	Local lead foil delamination
281-1	4	0.005" lead on HDPE, treated surface	6	Local lead foil delamination
282-1	4	0.005" lead on HDPE, sanded, treated surface	23	Lead foil delamination
282-2	4	0.005" lead on HDPE, sanded, treated surface	5	Lead foil delamination
282-6V	6	0.005" lead on HDPE, sanded, treated surface	5	Lead foil delamination
285-1	4	0.005" lead, washed oxide, treated surface	11	Lead foil delamination
286-2	4	0.005" lead, unwashed oxide	0	Short
286-3	4	0.005" lead, unwashed oxide	11	Lead foil delamination
287-2	4	0.005" lead on HDPE, washed, treated surface	1	Cracked substrate
287-3	4	0.005" lead on HDPE, treated surface	10	Lead foil delamination
<u> 287-4</u>	4	0 005" lead on HDPE, treated surface	6	Cracked substrate

obtained due to difficulties porting the cells for pressurization tests. The trial did, however, prove that injection molded containment was a viable manufacturing technique.

4.0. METALLIC SUBSTRATE DEVELOPMENT

4.1 WBS 1.0 PROGRAM MANAGEMENT

4.1.1 Subtask 1.1 Managing Strategy

Effective July 28, 1994, Ms. Jennifer Rose assumed the responsibilities of the contract's previous project engineer, Mr. Doug Pierce, due to his departure from JCBGI.

Shortly thereafter, a proposal requesting a no-cost time extension was submitted to the contract negotiator on July 13, 1994. Gantt charts detailing this effort are shown in Figures 17 and 18. This followed a discussion with Mr. Richard Marsh during which it was mutually agreed that, despite significant advances in composite bipolar substrate development, remaining WPAFB contract work should be focussed on the use of a lead substrate with improved corrosion resistance. Through a parallel bipolar program, JCBGI had repeatedly demonstrated 2000+cycles in a 12-volt configuration utilizing lead substrates, and over 5700 cycles using a 6-volt unit. Laminated metallic substrate work had also been underway for nearly 12 months in an effort to increase corrosion resistance, and hence, cycle life.

4.2 WBS 2.0 BATTERY DESIGN

4.2.1 Subtask 2.1 Battery System Design Analysis

The existing small metallic bipolar battery design was scaled up and modeled to investigate high power performance. Results suggested the use of a thinner cell design to be critical to achieving rates of 500 W/kg and higher. Per these findings, work was redirected to designing a 24-volt module within the volume previously allotted for 12-volts. This effectively aligned the contract deliverable voltage with WPAFB's ultimate application and JCBGI's commercial product target. Constant power performance projections are shown in Figure 19.

4.3 WBS 3.0 BIPOLAR PLATE

4.3.1 Subtask 3.1 Multialloy Substrate Development

Under separate contract, JCBGI began investigations into laminated metal substrates in November 1993. Corrosion testing of three, four and five layer samples and constituent alloys was performed in a bipolar configuration to assess time to breakthrough. Unpasted samples were mounted in the previously described stability test fixtures (Composite Substrate Work, Subtask 3.3) for three-point testing. Only the positive surface was exposed to electrolyte. Working and reference electrodes were also introduced. Initial testing of a new material was

7 142128 4 11 1825 Sep August 3 10172431 7 142128 5 121926 2 9 162330 6 132027 6 132027 3 101724 1 8 152229 5 121926 3 10172431 July Chatter encountered during TI rolling trial. Starting materials too thick. Lead on copper terminals ordered from another vendor. 0.032" thick, 4-layer laminate produced by TI. Too thick. Vacco examining electrowinning to reduce \$58/pc etching cost. June Rolling work discontinued due to inconsistent rib height. Texas Instruments and Vacco Industries brought on board. Pressure sensitive adhesive reprocessed and applied to surface treated frames. Stacks successfully pressurized. 24-volt stacks of frames and electrodes short in formation. Work to deliver 24-volt injection molded batteries discontinued in favor of backup gasketed container design. May 1995 Not feasible with 0.012" April Stud solder joint strength exceeds SLI specification. January February March Chatter eliminated, but necking now a problem. 48-volt batteries delivered to WPAFB. Terminal laminate received on time. November December 9 FIGURE 17: No-Cost Time Extension Gantt Chart with Milestones October **}**/ 444 5.2 Formation Processes (Current, Vacuum, Compression) DPI DOD Electrode-Bused Projections for W/kg, W/I 2.1 Battery System Design (48 and 270V Paper Design) 5.1 Sealing Methods (Lead to Plastic Interface Seal) 2.2 Performance Modelling (Update previous work) 3.2 Substrate Fabrication Processes (Embossing) Engineering Drawings (48 & 270 V designs) 3.1 Conductive Fillers (Multi-Alloy Substrate) WBS 6.0 BMET POWER SOURCE DEMONSTRATION WBS 5.0 BATTERY FABRICATION DEVELOPMENT VBS 4.0 BATTERY COMPONENT DEVELOPMENT 3.4 Proof of Concept Testing (Small Scale) 4.1 Separator Development (No Activity) 3.3 Stability Tosting (Corrosion Testing) Funds & Manhour Expenditure Report DPt: Substrate Pressing Operation 6.1 Battery Fabrication (Deliverables) WBS 3.0 BIPOLAR PLATE DEVELOPMENT DPt: Sealing/Injection Molding Contract Funds Status Report 4.2 Active Material Development Safety Assessment Report WBS 1.0 PROGRAM MANAGEMENT 6.2 Testing (Group 34 size) Test Plans/Procedures Project Planning Chart Mlg: Contract Review R & D Status Report **VBS 2.0 BATTERY DESIGN** 1.1 Managing Strategy 1.2 Liaison/Meetings 1.3 Documentation DPt: Venting Final Report

FIGURE 18: WPAFB Bipolar Deliverable Schedule

Initial mold tooling Container mold tooling Machine copper terminal studs Container mold tooling Achieve seal between lead and frame Clad terminal electrodes delivered Investigate porous copper connectors Prep electrodes Container mold trials Container mold trials Contractly process adhesive Thermally fuse stack perimeter Commit to backup gasketed design Paste additional electrodes for 48V Machine parts for gasketed container Construct ABS containers Form and cycle Attach covers with vents	April Ma	ay June 1926 2 9 162330 7	July A 142128 4	August 11 18 25	September 1 8 15 22 29
3 10 17 24 31 7 1 1	131 7 142128 5 12	26 2 9 16 23 30	2128	0	8 15 22 2
Clad terminal electrodes delivered Investigate porous copper connectors Prep electrodes Container mold trials Cate changes to equalize pressure Strengthen frames with glass Correctly process adhesive Thermally fuse stack perimeter Commit to backup gasketed design Paste additional electrodes for 48V Machine parts for gasketed container Construct ABS containers Assemble 48V stack in container Form and cycle Attach covers with vents				-	
Investigate porous copper connectors Prep electrodes Paste, cure, dry and QC electrodes Container mold trials Gate changes to equalize pressure Strengthen frames with glass Correctly process adhesive Thermally fuse stack perimeter Commit to backup gasketed design Paste additional electrodes for 48V Machine parts for gasketed container Construct ABS containers Assemble 48V stack in container Form and cycle Attach covers with vents				_	
Prep electrodes Paste, cure, dry and QC electrodes Container mold trials Gate changes to equalize pressure Strengthen frames with glass Correctly process adhesive Thermally fuse stack perimeter Commit to backup gasketed design Paste additional electrodes for 48V Machine parts for gasketed container Construct ABS containers Assemble 48V stack in container Form and cycle					
Paste, cure, dry and QC electrodes Container mold trials Gate changes to equalize pressure Strengthen frames with glass Correctly process adhesive Thermally fuse stack perimeter Commit to backup gasketed design Paste additional electrodes for 48V Machine parts for gasketed container Construct ABS containers Assemble 48V stack in container Form and cycle Attach covers with vents					
Container mold trials Gate changes to equalize pressure Strengthen frames with glass Correctly process adhesive Thermally fuse stack perimeter Commit to backup gasketed design Paste additional electrodes for 48V Machine parts for gasketed container Construct ABS containers Assemble 48V stack in container Form and cycle Attach covers with vents					
Gate changes to equalize pressure Strengthen frames with glass Correctly process adhesive Thermally fuse stack perimeter Commit to backup gasketed design Paste additional electrodes for 48V Machine parts for gasketed container Construct ABS containers Assemble 48V stack in container Form and cycle Attach covers with vents					
Strengthen frames with glass Correctly process adhesive Thermally fuse stack perimeter Commit to backup gasketed design Paste additional electrodes for 48V Machine parts for gasketed container Construct ABS containers Assemble 48V stack in container Form and cycle Attach covers with vents					
Correctly process adhesive Thermally fuse stack perimeter Commit to backup gasketed design Paste additional electrodes for 48V Machine parts for gasketed container Construct ABS containers Assemble 48V stack in container Form and cycle Attach covers with vents	Comment of the second contract of the second comment of the second contract of the second c		CONTRACTOR OF THE PARTY OF THE		
Thermally fuse stack perimeter Commit to backup gasketed design Paste additional electrodes for 48V Machine parts for gasketed container Construct ABS containers Assemble 48V stack in container Form and cycle Attach covers with vents					
Commit to backup gasketed design Paste additional electrodes for 48V Machine parts for gasketed container Construct ABS containers Assemble 48V stack in container Form and cycle Attach covers with vents	Company Compan	to the second se			
Paste additional electrodes for 48V Machine parts for gasketed container Construct ABS containers Assemble 48V stack in container Form and cycle Attach covers with vents	COMMENT OF	THE CONTRACTOR OF THE CONTRACT	4		
Machine parts for gasketed container Construct ABS containers Assemble 48V stack in container Form and cycle Attach covers with vents	**************************************			4	
Construct ABS containers Assemble 48V stack in container Form and cycle Attach covers with vents	And the second of the second o	and interest to the second		4	
Assemble 48V stack in container Form and cycle Attach covers with vents	And the second s	and the second of the second o	SO STATEMENT OF THE PROPERTY O		
Form and cycle Attach covers with vents					
Attach covers with vents	A CONTRACTOR OF THE CONTRACTOR	And the second s	A STATE OF THE STA		
	arrama umana muma uma mila ancienta a ra esta de esta d	and community and an action of a contract of a contract of an action of an action of an action of a contract of a	COMMON CONTRACTOR CONT		
Deliver (2) 48V systems					4
	, and a management of the state		***************************************		WALLES CONTRACTOR OF THE STATE
and the second s		AND DESCRIPTION OF THE PROPERTY OF THE PROPERT		***************************************	And the second s

FIGURE 19
Constant Power Performance Projections
Metallic Bipolar Substrate

performed at 70°C and a constant potential of 1.50 V until evidence of pinholes was noted, i.e., liquid in the back chamber or spikes on the current acceptance curve. Replicate samples were then run, pulled at points prior to breakthrough, and submitted for cross sectional photomicrographs to quantify the corrosion rate.

Comparing rates of all samples tested showed the corrosion resistance of laminates to be second only to that of a high silver content alloy. Batteries utilizing the clad material were assembled and tested, but performance was poor. Teardowns showed improper cleaning of the starting materials to have prevented bonding of the dissimilar metals at the molecular level. Delamination resulted in high internal resistance that impeded high rate performance.

In October 1994, assistance was sought from Texas Instruments' Cladding Division (TICD), a leader in the laminating industry. Partnership activities were slow to materialize due to reorganization within TICD, however, two- and three-layer trials cladding lead to a stainless steel core were successful in December 1994. In March 1995, lead clad copper material was received and forwarded to Vacco Industries (see Metallic Substrate Work, Subtask 3.2) for surface etching trials. TI had planned bonding and rolling to facilitate a 65% reduction of the 0.054" thick constituent layers, however, a maximum of 51% was achieved before "chattering" (rippling) was observed. Secondary rolling ruined the bonds achieved in the first pass. New starting materials were requested for the production of 0.013" thick material, but the May delivery date made it unlikely that the laminated material would be available for use as the bipolar substrate in the required deliverables. Four layered, 0.032" thick sample material was received in June, and required reducing the copper core thickness by 50%. The likelihood of having the concept ready for deliverable use then dismissed.

4.3.2 Subtask 3.2 Rolling/Embossing Work

Fostering paste adhesion to metal sheet requires the surface to be roughened in some manner. Small-scale metallic substrates possessed exemplary adhesion when hot pressed in a mold to create ribs protruding from each face. The raised pattern successfully broke up the "single paste pellet" that would otherwise sheet off the lead substrate during handling, and increased the surface area biting into the active material.

Substrate production times were slow and scale up required the use of more tonnage than available on any in-house press. It also lacked promise as a high speed, manufacturing process. A roller die was ordered and five hundred pounds of 0.020", 0.025" and 0.030" thick lead were delivered to MP Metal Products for rolling trials. Without authorization, MP turned to blanking the electrodes from a compression die when the first rolling trial was unsuccessful. Rolled

samples were never provided to JCBGI for evaluation. When informed of the new production direction, JCBGI reiterated their interest in the rolled concept, but conceded to whatever parts could be produced. Time was short. MP continued their effort to produce parts, but quickly found their press tonnage insufficient. Hence, a new vendor was located. Walking 300 tons force across the die produced acceptable parts from 0.020" thick starting material. Efforts to reduce the substrate thickness to the required 0.012" thickness were unsuccessful and the embossing effort abandoned.

Photochemical etching was investigated in conjunction with laminating activities (Metallic Development Work: Subtask 3.3.1). Early trials produced copper pieces that were electroplated with lead, pasted and shown to possess good adhesion. Solid lead sheet was not etched as easily, requiring strong chemicals that made the technique cost prohibitive (\$58/piece).

As backup, plastic screen was used. Pieces were cut to the size of the active material area, pressed to eliminate elevated nodes that could cause shorting through the separator, and were tacked to the lead substrate. This alternative eliminated roughly 240 grams of lead rib mass per battery, but required significantly more labor input than the embossing concept. Despite its facilitating acceptable results, the use of plastic screen is not recommended for manufacturing.

4.3.3 Subtask 3.3 Substrate Corrosion Testing

Laminates received from Texas Instruments were never corrosion tested due to their being too thick.

4.3.4 Subtask 3.4 Small Scale Characterization

Bipolar batteries having 0.012" thick substrates and 0.030" thick pasted layers were assembled, formed and tested in January 1995. Constant power discharge performance plots normalized to battery mass and volume are shown in Figure 20. Performance by WP2 and WP6 represented the best of the lot and greatly exceeded that reported for batteries delivered under the parallel metallic bipolar development contract. This was attributed to the use of 1.265 sg fill/form electrolyte. Reproducibility was an issue and investigated. Teardowns showed sulfated positives and dull negatives. Cured paste analyses reported consistently high levels of free lead that could cause initially poor or rapidly declining performance. A review of pasting procedures showed the starting PbO to be within specification and the paste code to be adequately sulfated

Constant Power Performance Normalized to Mass and Volume FIGURE 20

and consistent from mix to mix. The dry bulb within the curing chamber was found cracked and was repaired prior to further assembly operations.

Testing of four newly-formed 12-volt units showed 10-15 cycles at 100 W/kg to be necessary to reach full capacity. Discharge times were tightly grouped after formation (Figure 21). WP-12 lagged due to oxygen ingress at cycle 3. A cursory investigation of constant current rates (Figure 22) was performed to give insight into the constant power rates required per the test plan. Constant power performance was plotted along with the modeling prediction in Figure 23, then translated into the time versus power curve shown in Figure 24.

4.4 WBS 4.0 BATTERY COMPONENTS

4.4.1 Subtask 4.2 Active Material Development

Procedures and equipment were reviewed when the free lead content in positive and negative cured plates was reported at 5.5 and 10%, respectively - far above the 4% maximum. Increasing the curing residence time from 16 to 40 hours had little effect. Moisture content was found low (6-7%) as referenced to industry and company standards and, subsequently, paste code and plate handling techniques were reviewed. Efforts to keep plates moist while awaiting transport to the curing chamber only slowed the cure reactions and actually increased the cured free lead content. Lastly, the ABR humidity chamber was diagnosed with a cracked dry bulb, repaired and reset. Cured positive and negative plates from eight subsequent pasting runs displayed acceptable free lead content following a 24 hour residence time in the environmental chamber.

A limited investigation into the effects of freezing and thawing a small 12-volt battery was performed. One unit was tested at room temperature to establish a baseline capacity and then chilled to -60°C. A 5-hour thaw was allowed and the discharge test repeated. Evidence of cell reversal and a 13% capacity loss was documented. Confirmatory work was placed on hold to allow pasting, stacking and debugging of the formation techniques proposed for full-size, 24-volt units.

4.5 WBS 5.0 BATTERY FABRICATION

4.5.1 Subtask 5.1 Sealing Methods

A variety of compounds was evaluated for use in achieving a hermetic cell-to-cell seal. In the end, an engineering sample of hot melt adhesive was pressed between release paper into

FIGURE 21
Small Scale Characterization
Capacity Development, 24 deg C

1000 2000 D Model

∇ Ragone Relationship, 24 deg C 40 Small Scale Characterization ₿ FIGURE 23 W/kg ♦ WP-12 <**K** 10-40 **△** WP-11 Mh/kg 100 Small Scale Characterization Peukert Relationship, 24 deg C O WP-10 Current (Amps) FIGURE 22 WP-9 10-100 Time (Seconds)

FIGURE 24
Small Scale Characterization
Discharge Time vs Power, 24 deg C

sheet, chilled, slit into ribbon, chilled again, and finally laid onto treated plastic spacer frames. Dummy stacks were leak-free to 4 psig, and successfully completed 4 hours of intermittent vacuum pulsing to simulate the fill and form procedure. Cells in 12- and 24-volt stacks were also leak-free when similarly tested.

Sufficient quantities of the engineering sample material resided in-house, but efforts to find a replacement adhesive were initiated when additional material could no longer be obtained. Chemical analyses and physical testing of the original material was requested of H.B. Fuller and resulted in their furnishing two candidate replacement materials. Stack assembly showed one sample to be tackier and both materials able to withstand the level of vacuum required for filling. No further work with these substitutes was carried out since sufficient adhesive existed to complete the contract.

4.5.2 Subtask 5.2 Formation

Two 24-volt batteries were stacked for formation studies. Each was comprised of 13 electrodes, 12 spacer frames, and two copper termination plates bolted between polycarbonate endwalls and outfitted with polycarbonate filling manifolds across each set of top slots.

Air pressurization of the first stack prior to filling showed one of the two fill ports to be leaking. The manifold was removed and the slots closed off after repeated attempts to seal the manifold were unsuccessful. Seventy-five minutes were required to input 300 cc of chilled electrolyte through the remaining manifold. This represented roughly 72% of the available void volume in the stack. Complete (100%) saturation had been targeted, however, small leaks developed around the base of the manifold, decreasing the fill efficiency. Current was applied for 120 minutes when evidence of shorting was apparent. Disassembly showed the majority of cells to have dendritic shorting through the center area of the separator. Failure was attributed to the long fill time (10-15 minutes was targeted to minimize the dissolution and diffusion of lead into the separator) and out-of-spec plate thicknesses. On average, plates were 0.007" over the 0.025" target, resulting in a compressed separator allowance of 0.016". Roughly 0.020" was considered the minimum separator thickness. Paste weights were reduced for the subsequent build.

The second 24-volt battery was assembled into a bolted polycarbonate fixture, filled to 84% saturation with chilled electrolyte, and placed on formation. Further filling risked lead dissolution and dendrite formation in the separator due to the excessive time required. Five cells shorted during formation as a result of a common electrolyte path along the lead exposed within the fill channel. Further formation attempts were placed on hold pending receipt of a molded stack which, by design, better guarded against common electrolyte paths in the fill port area.

4.6 WBS 6.0 BMET DEMONSTRATION

4.6.1 Subtask 6.1 Deliverables

Injection molded containment about metallic substrates was aggressively pursued for the majority of the No-Cost Time Extension. Repeated trials ultimately succeeded in correcting recurrent frame and electrode distortion, however, hermetic cell-to-cell seals were not obtained. Stacks were never available for formation or for trials to attach covers via induction welding. As a result, a backup battery design was implemented to complete the contract's deliverable requirements.

The following section describes the injection molded containment work in more detail, along with the proposed venting and intermodule connector concepts. The subtask is then concluded with a description of the batteries delivered to WPAFB.

4.6.1.2 24-Volt Injection Molded Containment

The use of the injection molded containment concept previously tested with composite electrodes required one design modification to facilitate use with metallic substrates. To prevent distortion of the 0.012" thick metal electrode, the outer edge of the spacer frame was reshaped to wrap around the lead sheet and afford protection against the injection pressure. Glass filler was also added to the spacer resin to promote a melt bond with the outer endwalls. Molded spacers showed that shrinkage of the 0.082" thick parts was less than anticipated (0.003 in/in vs. 0.007 in/in). This was due to the ASTM shrinkage rate reporting basis (0.125"x0.5"x6" sample). As a result, spacers were slightly larger than specified, however, down-the-line assembly problems were not encountered.

The endwall material was also reevaluated and three candidates tested for use in maintaining the compressed stack dimension. Single layers of honeycombed aluminum sheet stock failed deflection testing. Bulk molding compound manufactured by Luvdahl provided the needed strength against a 6 psig load but was incompatible with battery acid. Glass-filled polypropylene was ultimately used after measuring a deflection of 0.013" at 5 psig.

Severely warped endwalls were produced during the first mold trial. Mold gate changes reduced the distortion, but a subsequent heat soak was still necessary to produce a flat part. Limited success was had in adding a blowing agent. Topical sinks located around the outer perimeter and the center termination port were greatly reduced but not eliminated. Slight part warpage also remained. Cross sectioning showed the internal pore size (caused by the blowing agent) to be very small. It also showed a 4-hour heat treatment to cure the warpage with no sign

of reactivating the blowing agent, but at the expense of the recessed terminal electrode cavity dimension. Heat treating was abandoned when measurements showed shrinkage along the length and width centerlines to be so great as to make it impossible to insert the terminal electrode in the recessed cavity.

Endwalls and spacers were then assembled with lead sheet to create dummy stacks for mold trials. Early attempts showed the plastic to distort the 10% glass frames inward toward the pasted portion of the stack, leaving insufficient material to fill the outer frame. Gate modifications were implemented in an effort to equalize the injection pressures at various points within the container mold. Center/side gating achieved complete mold fill and eliminated much of the frame distortion, however, cross-sectioning still showed buckled lead and uneven plastic distribution. The mold clamp location was then widened and additional glass added to the spacer resin for strength.

Strengthened plastic battery components were received and set up parts prepared for a trial in mid-July, 1995. Glass loading in the frame was increased to 30% in order to prevent blowing in and lead distortion, and to reduce part compression when clamped within the mold. The molding trial was nearly successful. Complete mold fill was achieved with slight crowning of the frames. A "clamp only" trial showed the crowning to be a result of the mold closing. Still closer examination revealed the stacks loaded into the mold to be ~0.100" too thick as a result of out-of-spec adhesive. The remaining thick stacks were preheated and easily compressed to the correct 1.454" thick dimension. Disassembly showed no electrode distortion. Laboratory measurements of stacks assembled using 0.003" thick adhesive (a 50% reduction) were similarly flat.

The subsequent molding trial with correctly processed adhesive produced four dummy stacks and one DUF battery for analysis. Electrodes in all four dummy stacks were distorted along the inner frame perimeter. Heat sensitive indicators inserted at two points in each stack recorded the temperature history and showed no indication of having reached the temperature at which the inlaid adhesive would begin to flow.

The distortion was subsequently eliminated in late July by thermally fusing the outer edges of the stack to better resist the high molding pressure. Pressure testing to confirm cell-to-cell seals identified leakage that was traced to the area surrounding the fill channels. Close examination showed a lack of melt bond between the prefused frame and injected containment plastic. Given the cost and time associated with the mold change proposed to eliminate the leakage, the concept was abandoned for use with WPAFB deliverables.

Venting considerations were evaluated concurrently to stack molding. Implementation of a totally sealed design was initially considered, but dismissed. Utilizing a fail-safe panel along

the face representing the endwall would have reduced its functionality as a means of maintaining adequate battery compression. User safety in the event of an abusive overcharge was an even greater concern.

A review of available off-the-shelf vents quickly showed that no battery vent supplier had ever addressed the main issue facing bipolar technology: cell width. Vent designs just 0.060" to 0.080" in width did not exist. Staggering the vents was proposed, but eliminated from further consideration when it became apparent that multiple frame molds would be required.

Having limited data showing success in cycling a small bipolar battery utilizing single point venting, the deliverable venting configuration was drawn. In its final form, a 24-volt battery was to be fitted with a vent over each of the fill slot locations. This duplicity provided a backup venting location to any cell that might incur blockage in one of its ports. Oil applied topically aided in achieving and maintaining the hermetic seal required for recombinant, maintenance-free operation.

Two methods were suggested for attaching the vent/cover to the injection molded battery housing: heat sealing and induction welding.

Heat sealing is used throughout the battery industry. Generally, this involves heating the edges to be joined, bringing them into contact, and allowing them to cool under pressure. Concern was raised over being able to hold the 0.080" thick cover while preheating it with a heat lamp. That and the estimated \$30,000 to build a suitable machine to try the concept made heat sealing a last choice technique.

Induction welding was then investigated. This process was reportedly fast and versatile. Heat induced by a high frequency electrodynamic field in a metallic insert placed at the joint brings the surrounding material to the melt temperature. Pressure maintained as the field is turned off maintains the joint as it solidifies. Welding occurs only in the area immediately adjacent to the metallic insert. As a result, weld strength depends on the size and geometry of the metal insert.

The process was also feasible economically. Purchasing a new laboratory unit required \$10,000. Leasing was also possible at \$750 per month.

Initial induction welded samples prepared by Pillar Industries indicated that a hermetic bond could be easily achieved around the periphery of the vent/cover. A semicircular cavity rimming the upper edge of the battery and the two cross bars spanning the center portion of the upper surface was included in the mold design. Later testing proved that a hermetic bond along the cross bars would not be achieved. Mold changes were ordered to reduce the cross bar height to make them serve only as structural supports. Hermetic seals at these points were not necessary given the remainder of the cover weld met specification. Test welds with stacks and covers were never attempted given the difficulties previously described.

Lastly, NCTE work was performed to efficiently connect two 24-volt units in series to form a higher voltage subassembly. Various porous copper samples were obtained and tested under load. Results showed the porous copper to be less resistive than solid copper sheet wrapped around a foam pad (Figure 25). Twenty pieces of 60 pores per inch (ppi) material were ordered and received on time, but never used in deliverables. The batteries delivered utilized a backup containment design that facilitated direct assembly of higher voltage stacks.

4.6.1.3 Gasketed Containment

Given the difficulties encountered in achieving hermetic cell-to-cell seals with the injection molded containment concept, WPAFB accepted deliverable batteries assembled using neoprene spacers and machined ABS container components (Appendix B).

Bipolar electrode substrates were die cut from 0.012" thick tin-lead sheet and pasted following the attachment of plastic screen (see Metallic Substrate Development, Subtask 3.3.2). Three paste runs succeeded in pinpointing the wet paste weight needed to achieve the targeted 0.062" electrode thickness. After curing and drying, plates were individually cleaned, weighed, and checked for high spots (thickness). Paste mass and thicknesses of bipolar electrodes used in the deliverable candidates were put at 105.7 ± 2.5 grams and 0.059 ± 0.001 ", respectively.

Terminal electrodes were die cut from laminated sheet stock comprised of 0.008" thick lead and 0.014" thick copper. This design permitted copper terminations to be soldered to the copper face of the electrode with minimal risk of burning a pinhole through the lead face. Each 0.75" long x 0.75" OD stud with a tapped thread was correctly located by first soldering it to an oversized electrode that was then die-cut to achieve the required dead-center location. (This procedure had been critical to injection mold trials since the stack position in the mold was based on the stud location.) Stud welds were shown to withstand an average of 285 in-lb of torque before failing at the solder-to-laminate joint. This compared favorably to the 180 in-lb SLI specification.

Container components were machined from 0.125" and 0.250" (nominal) thick ABS. Solvent bonding was implemented to join the pieces. Endwalls were provided the necessary strength by encapsulating multiple sheets of honeycombed aluminum within a protective ABS cavity. Electrodes were sequentially placed onto neoprene gaskets and absorptive glass mat positioned over the active area to prevent shorting. Separator material was sized to overlap the active area slightly. Starting thickness facilitated the 25% compression deemed critical to supporting high rates of discharge. Fittings were located in channels milled into each gasket to create ports for filling and venting.

Voltage Drop Across Intermodule Connector Candidate Materials FIGURE 25

Pad wrapped w/oiled copper

4

O 60 PPI, 0.31" copper w/oil

▲ Pad wrapped w/copper

☐ 30 PPI, 0.25" copper w/oil

60 PPI, 0.31" copper

30 PPI, 0.25" copper

Fill and formation were attempted only after confirming each and every cell in a stack to be leak free. Filling was accomplished by evacuating the cells through a column of chilled electrolyte. Returning the system above the electrolyte to atmospheric pressure forced the predetermined volume of acid into each cell quickly and efficiently. Internal stack temperature was monitored constantly and used in controlling the formation current. Current was applied as soon as the fill was completed to minimize the risk of dendritic shorting due to lead dissolution.

Fittings were removed and the cover/vent assembly solvent bonded into place after limited qualification cycling was performed to fully develop the capacity. Details regarding the assembly, formation, and qualification testing of each deliverable are included in Appendix B.

To assist WPAFB in preparing for receipt of these units, three bound copies of safety instructions and operating recommendations were mailed February 29, 1996. One 24-volt and two 12-volt nominal batteries were hand delivered to Wright Laboratory on March 6, 1996 with an additional two copies of the instructions and recommendations. Identification and safety labels were attached to each battery to warn of the potential for explosion, acid burns and electrical shock.

APPENDIX A

RESISTIVITY TESTING

RESISTIVITY TESTING

ובכו
COMPOSITION
LAMINATED 85% GC23N
W/O CA
15% MICHOTHENE 4.5 M.I.
C-PLASIIC
LAMINATED 85% GC23IV
15% MICHOTHENE
4.5 M.L.
I AMINATED 84% GC23N
& 16%PTFE TO
C-PLASTIC & Pb FOIL
SINGLE APPLICATION
LAMINATED 84% GC23N
& 16%PTFE TO
C-PLASTIC & Pb FOIL
DOUBLE APPLICATION
I AMINBATED 85% GC23N-1
15% MICROTHENE
4.5 M.L.
WITH Pb FOIL
LAMINATED 85% GC23N-2
15% MICROTHENE
4.5 M.I.
W/O pb FOIL
LAMINATED
THICK/THICK
GC23N-1 /C-PLASTIC
LAMINATED
NIHL/NIHL
GC23N-2 /C-PLASTIC
LAMINATED
I HICKI I HICKI I HILV
GUZSIN-3/0-PLASTIO

PERCENT CHANGE	(%)				1079.12921		-		15.9055035				780.246688							***************************************	66.666667	3035.13514	203.061224		611.538462	556.716418	3976.65505	2921.77858
RESISTIVITY (OHM-CM)	AFTER	52.904	60.845	67.667	60.472	1.839	1.664	1.024	1.509	7.402	8.192	7.362	7.652								4.987	76.115	9.280		31.667	19.685	201.652	139.867
THICKNESS (INCH)	AFTER	0.032	0.033	0.032		0.122	0.123	0.123		0.125	0.124	0.123									0.03	0.03	0.028		0.046	0.044	0.041	0.038
RESISTANCE (OHM)	AFTER	4.300	5.100	5.500		0.570	0.520	0.320		2.350	2.580	2.300									0.38	5.8	99.0		3.7	2.2	21	13.5
RESISTIVITY (OHM-CM)	BEFORE	4.675	5.249	5.461	5.129	1.139	1.872	0.896	1.302	0.905	0.859	0.844	0.869		5.451		3.331		9.624		2.992	2.428	3.062		4.451	2.997	4.946	4.629
THICKNESS	BEFORE	0.032	0.033	0.031		0.121	0.122	0.123		0.124	0.126	0.126			0.026		0.026		0.027		0.03	0.03	0.027		0.046	0.044	0.039	0.037
RESISTANCE	BEFORE	0.380	0.440	0.430		0.350	0.580	0.280		0.285	0.275	0.270			0.36		0.22		99 0		0.228	0.185	0.21		0.52	0.335	0.49	0.435
MATERIAL	NOILISOMWOO	LAMINATED	NHLVHIL	GC23N-4 /C-PLASTIC		LAMINATED	THICK/THIN	GC23N-5 /C-PLASTIC		LAMINATED	THIN/THICK	GC23N-6 /C-PLASTIC		LAMINATED GC23N-A-3/92 Pb-FOIL	C-PLASTIC	LAMINATED GC23N-B-3/92 Pb-FOIL	C-PLASTIC	LAMINATED GC23N.B.3492	PD-FOIL	LAMINATED GC23N,MICHOTHENE &	C-PLASTIC 1B	2R	33.		LAMINATE GC23N-1-85%	MICHOTHENE/CA GC23N-2-85%	MICPOTHENE GC23N-3-80.3%	KY GC23N-4-80.3%
TEET	DATE	4/24/92				4/24/92				4/24/92				5/12/92						6/5/92					5/20/92			
а	NUMBER	74A				75A				76A				77A						78A					79A			

PERCENT CHANGE (%)		23.6111111		8.85167464	13.4529148		17.5529788					•			•			6031.57895						1447.05882	38171.6049		130,121225	870.588235								1	22243.75	11776.2887	15570.8408	_
RESISTIVITY (OHM-CM) AFTER		4.380		5.439	2.264		3.361											93,604						334 011	2624 672	1	22 225	78 740) -								1125.984	188.976	1105.391	
THICKNESS (INCH) AFTER		0.04		0.038	0.044	· ·	0.041											860 0	9					0.031	0.03	9	0.031	0.00	9								0.025	0.025	0.026	
RESISTANCE (OHM) AFTER		0.445		0.525	0.253	0.53.0	0.35	0										23.3	0.03					6 90	200	0 7 7	1 75		* .0								71.5	12	73	
RESISTIVITY (OHM-CM) BEFOPE		2 543	2	4.997	1 005	0.66	0 0 0	6.033										1 697	1.56.1						21.590	0.000	500.0	9.000	8.1.3	2.032				66.213	10.737	38.475	5.039	1.591	7.054	19.685
11		70	50.0	0.039	7	0.044	6	0.042										0	0.098						0.031	0.031	0.039	0.032	0.033	0.005				0.022	0.022	0.022	0.025	0.024	0.024	0.025
RESISTANCE THICKNESS (OHM) (INCH) BEFORE BEFORE		000	0.30	0.495	0	0.223	0	0.305										ó	0.38					1	1.7	0.54	0.45	0.785	0.68	0.32				3.7	9.0	2.15	0.32	0.097	0.43	1.25
MATERIAL COMPOSITION	KY/CA	LAMINATE	GCZ3N-1-85% MICROTHENE/CA	GC23N-2-85%	MICHOTHENE	GC23N-3-80.3%	KY	GC23N-4-80.3%	KY/CA	LAMINATED	GC23N,MICROTHENE &	C-PLASTIC	5/92-1R	5/92-2R	5/92-3R	5/92-4R	LAMINATED	DOPED OXIDE/SCW	AND C-PLASTIC	LAMINATED	DOPED OXIDE-5/92	KY 7201 & 711	C-PLASTIC	CA	70%-7201	75%-7201	85%-/11	70%-7201 & CA	75%-7201 & CA	85%-711 & CA	LAMINATES	DOPED OXIDE, CA	C-PLASTIC, FU FOIL	70%-W/CA-FOIL	70%-W/CA-DUST	70%-W/O CA-FOIL	70%-W/O CA-DUST	75%-W/CA-FOIL	75%-W/CA-DUST	75%-W/O CA-FOIL
TEST DATE		5/27/92	PG 139/141							6/9/92							6/10/92			6/26/92											6/30/92									
SAMPLE		80A								81A							82A			 84A	•										85A						•			

PERCENT	CHANGE	(o/.)	21566.6667			13.2575758		234.782609	-24.0591398	1 81818182								,			1	57.3770492	5.26315789	48	763.636364					1	13.1147541	35.5932203	325.925926	1547.05882				3.22580645	-4.34782609
RESISTIVITY	(OHM-CM)	AFIER	984.252			3.773		36.089	9.268	12.248											1	2.779	2.582	5.713	8.976						2.058	2.582	8.707	38.454	SHOW			3.549	2.750
THICKNESS	(INCH)	AFIEH	0.028			0.012		0.042	0.048	0.054												0.068	0.061	0.051	0.025						0.066	0.061	0.052	0.043	5			0.071	0.063
RESISTANCE	(OHW)	A-IEH	7.0			0.115		3.85	1.13	1.68												0.48	0.4	0.74	0.57						0.345	0.4	1.15	4.2	SAMPLE			0.64	0.44
ш	(OHM-CM)		4.543			3.331	7.755	10.780	12.205	12.030	0.605											1.766	2.453	3.860	1.039						1.819	1.904	2.044	2.335	2.036			3.438	2.875
THICKNESS	(INCH)	BEFORE	0.026			0.013	0.033	0.042	0.05	0.054	0.028											0.068	0.061	0.051	0.025						990'0	0.061	0.052	0.043	0.047			0.071	0.063
RESISTANCE THICKNESS	(OHM)	BEFORE	0.3			0.11	0.65	1.15	1.55	1.65	0.043											0.305	0.38	0.5	0.066						0.305	0.295	0.27	0.255	0.243			0.62	0.46
	MATERIAL	COMPOSITION	75%-W/O CA-DUST	5/92-DOPED OXIDE KY-711	C-PLASTIC	013-C-PLASTIC	.020-DOPED OXIDE	030 DOPED OXIDE	040-DOPED OXIDE	050-DOPED OXIDE	LEAD DUST &	POLYSULFONE	PREMIXED W/1.1.1	DHIED PRESSED AT	599F 30 TONS 55% BY WT.	LAMINATE	DOPED OXIDE(5/92)	KY-711	భ	KET WITH	KY-711	14%-KET/KYN050	14%-KET/KYN040	14%-KET/KYN030	PWPOLYSULFONE	LAMINATE DOPED OXIDE(5/92)	KY-7201	ళ	KET WITH	KY-7201	14%-KET/KYN050	14%-KET/KYN040	14%-KET/KYN030	14%-KET/KYN020	14%-KET/KYN026	LAMINATES DOPED OXIDE WMICROTHENE	KET & MICROTHENE	80%-DOPED OXIDE-96A-1	80%-DOPED OXIDE-96A-2
	TEST	DATE		7/13/92							7/22/92		PG.167			7/28/92										7/30/92										8/10/92			
	SAMPLE	NUMBER		88A							92A					94A					714					95A										96A			

:	, in the second	INICULATION .	RESISTANCE	THICKNESS	RESISTIVITY	RESISTANCE	THICKNESS	RESISTIVITY (OHM-CM)	PERCENT
SAMPLE	IES! DATE	COMPOSITION	BEFORE	BEFORE	BEFORE	AFTER	AFTER	AFTER	(%)
97.A	8/18/92	LAMINATES							
		DOPED OXIDE/KY(8/92)							
		KET/KY(8/92)							
		75%-DOPED OXIDE-97A-1	0.21	0.052	1.590	1.65	0.052	12.492	685.714286
		75%-DOPED OXIDE-97A-2	0.23	0.063	1.437	0.43	0.063	2.687	86.9565217
		75%-DOPED OXIDE-97A-3	0.218	0.067	1.281	0.29	0.067	1.704	33.0275229
V66	8/21/92	LAMINATES							
		DOPED OXIDE/KY							
		KET/KY							
		75%-DOPED OXIDE-99A-1	0.25	0.074	1.330	0.31	0.074	1.649	24
		75%-DOPED OXIDE-99A-2	0.22	0.076	1.140	0.32	0.076	1.658	45.4545455
		75%-DOPED OXIDE-99A-3	0.225	90.0	1.476	0.51	90.0	3.346	126.666667
		75%-DOPED OXIDE-99A-4	0.185	90.0	1.214	0.33	90.0	2.165	78.3783784
102A	9/16/92	LAMINATES							
		DOPED OXIDE/MICROTHENE							
		KETMICROTHENE							
		80%-DOPED OXIDE-102A-1	1.55	0.061	10.004	2.4	0.062	15.240	52.3413111
		80%-DOPED OXIDE-102A-2	1.15	0.073	6.202	1.63	0.077	8.334	34.3760587
		80%-DOPED OXIDE-102A-3	1.75	0.049	14.061	3.4	0.049	27.318	94.2857143
		80%-DOPED OXIDE-102A-4	1.13	0.046	9.671	1.83	0.048	15.010	55.199115
103A	9/23/92	LAMINATES				-			-
		WASHED DOPED OXIDE							
		PRECOMPOUNDED							
		C-PLASTIC					;	1	0000
		103A-1	0.58	0.08	2.854	1.5	0.08	7.382	158.6209
· · · ·		103A-2	0.595	0.063	3.718	9	0.063	37.495	908.403361
		103A-3	0.375	0.05	2.953	2.8	0.05	22.047	646.666667
		103A-4	0.355	0.04	3.494	12.5	0.04	123.031	3421.12676
104A	9/29/92	LAMINATES							
		WASHED DOPED OXIDE							
-									
		PHECOMPOUNDED C.P. ASTIC							
		1044-1	0 33	0.047	2.764	80 70	0.047	71.201	2475.75758
		1044-0	0.00	0.058	2.987	8	0.058	21.721	627.272727
		1044-3	0.31	0.064	1.907	5.2	0.064	31.988	1577.41935
		1048-4	0.355	0.073	1,915	2.9	0.073	15.640	716.901408
		104A-5	0.72	0.048	5.906	10.3	0.048	84.482	1330.55556
		104A-6	0.7	0.062	4.445	5.5	0.062	34.925	685.714286
		104A-7	0.455	0.066	2.714	5.5	0.066	32.808	1108.79121
		104A-8	0.54	0.066	3.221	4.3	0.066	25.650	696.296296
105A	10/9/92	KY (7/92) &							
		MICROTHENE (5/92)							

			RESISTANCE	THICKNESS	RESISTIVITY	RESISTANCE	THICKNESS	RESISTIVITY	PERCENT
SAMPLE	TEST	MATERIAL		(INCH)	(OHM-CM)	(OHM)	(INCH)	(OHM-CM)	CHANGE
NUMBER	DATE	NOMPOSITION	ELCE.			ATIEN	AFIEN	Z Z	10/
		80%-LOADING							
		DOPED OXIDE (5/92)					6		0000000
		10%KY/90%MIC105A-1	0.17	0.056	1.195	0.45	0.056	3.104	104.703662
		20%KY/80%MIC105A-2	0.185	0.053	1.374	0.78	0.053	5.794	321.021022
		30%KY/70%MIC105A-3	0.173	0.053	1.285	1.85	0.053	13.742	969.364162
		40%KY/60%MIC -105A-4	0.165	0.05	1.299	2.8	0.05	22.047	1596.9697
109A		KY (7/92) &							
		MICROTHENE (5/92)							-
		80% I DADING							
		UOPED OXIDE (5/92)	0		300				
		109A-1	0.29	0.041	2.785			0	144 66667
		109A-2	0.36	0.04	3.543	0.87	0.04	6.503	141.000007
		109A-3	0.33	0.041	3.169	44	0.042	412.448	12915.873
		109A-4	0.44	0.039	4.442	0.85	0.041	8.162	83.7583149
110A	10-26-92	LAMINATES							
		80% DOPED OXIDE(5/92)							
		MICHO.(5/92) &							
		KY(7/92)							
	400F/3 TONS	110A-1	0.225	0.038	2.331	4.9	0.038	50.767	2077.7778
	400F/3 TONS	110A:2	0.35	0.039	3.533	4.8	0.039	48.455	1271.42857
	400E/3 TONS	110A-3	0 22	0.042	2.062	1.75	0.042	16.404	695.454545
	ONOT DIRECT	7		0.044	2 160	0.57	0.041	5 473	72.72727
	400F/3 TONS	110A-4	0.33	0.041	3.109	0.07	0.04	0.1.0	121111111111111111111111111111111111111
111A	10/29/92	LAMINATES							
	5MIN.SOAK/3MIN.CYC.	PRECOMPOUNDED							
		MICRO/DOPED OXIDE							
	350F/3 TONS	85%-LOADING							
		111A-1	_	0.042	9.374	1.95	0.042	18.279	92
	350F/3 TONS	80%-LOADING							
		111A-2	2.1	0.043	19.227	က	0.043	27.467	42.8571429
		KY/DOPED OXIDE							
	400F/3 TONS	75%-LOADING							
		111A-3	8.0	0.053	5.943	1.2	0.053	8.914	20
		MICRO/DOPED OXIDE							
	350F/3 TONS	80%-LOADING							
		111A-4	1.8	0.036	19.685	2	0.036	21.872	11.111111
112A	11/5/92	LAMINATES							
		75% LOADING							
		DOPED OXIDE(7/92)							
		KY(7/92)							
		14%RE1(9/92) KY(7/92)							
	400F/3 TONS	112A-1	0.15	0.089	0.664		0.089	0.000	-100
	400F/3 TONS	112A-2	0.165	0.088	0.738		0.088	0.000	-100
_	200	1							

SAMPLE	TEST DATE	MATERIAL COMPOSITION	RESISTANCE (OHM) BEFORE	RESISTANCE THICKNESS (OHM) (INCH) BEFORE BEFORE	RESISTIVITY (OHM-CM) BEFORE	RESISTANCE (OHM) AFTER	THICKNESS (INCH) AFTER	RESISTIVITY (OHM-CM) AFTER	PERCENT CHANGE (%)
		LAMINATES 90%, LOADING							
		DOPED OXIDE(7/92)							
		MICHOTHENE(5/92)							
		C-PLASTIC							
	325F/3 TONS	112A-3	0.46	0.069	2.625		690.0	0.000	-100
	325F/3 TONS	112A-4	0.58	0.075	3.045		0.075	0.000	-100
113A	11/10/92	LAMINATES							
		BOW DOBED OXIDE(2/93)							
		MICROTHENE(5/92)							-
		CA							
		PRECOMPOUNDED							
		C-PLASTIC							
	325F/3 TONS	113A-1	0.49	0.064	3.014	4.7	0.064	28.912	859.183673
	325F/3 TONS	113A-2	0.37	990'0	2.207	4.6	0.066	27.440	1143.24324
	325F/3 TONS	113A-3	0.36	0.074	1.915	0.85	0.074	4.522	136.111111
	325F/3 TONS	113A-4	0.41	0.068	2.374	0.71	0.068	4.111	73.1707317
114A	11/10/92	LAMINATES							
		80% DOPED OXIDE(7/92)							
		MICHOLHENE(5/92)							
		CA							
		FHECOMPOUNDED 0 2: 1000							
		C-PLASHIC	,	0	1	1	090	11 110	308 076744
	325F/3 LONS	114A-1	0.43	0.062	2.731	67.1	0.002	1 - 1	2000.000
	325F/3 TONS	114A-2	0.42	0.069	2.396	1.36	60.0	7.760 E 616	110 869565
	325F/3 TONS	114A-3	0.46	0.008	2.003	0.97	0.000	0.0.0	64 0625
	325F/3 TONS	114A-4	0.04	0.070	3.313	00.7	0.070	20.0	04:00
115A	11/24/92	LAMINATES							
		80% LOADING DOPED OXIDE							
		20% MICROTHENE							-
		WASHING TECH.							
		PRECOMPOUNDED							
		2%/.07GMS CA							
	ONOT STATE	325F/3 TONS	000	0.00	070	0.59	0.079	2 843	38.7426901
	325F/3 LONS	1.5A-1 COARSE-A	0.30	0.00	F. C 4 0	3	;	; ;	

L C	+00+	14177744	RESISTANCE	THICKNESS	RESISTIVITY	RESISTANCE	THICKNESS	RESISTIVITY (OHM-CM)	PERCENT
NUMBER	DATE	COMPOSITION	BEFORE	BEFORE	BEFORE	AFTER	AFTER	AFTER	(%)
	325E/3 TONS	115A-2 COARSE-X	0.35	0.072	1.914	0.52	0.072	2.843	48.5714286
	325F/3 TONS	115A-3 MEDIUM-X	0.46	0.062	2.921	0.96	0.062	960.9	108.695652
	325F/3 TONS	115A-4 MEDIUM-X	0.58	0.067	3.408	1.18	0.067	6.934	103.448276
116A	11/25/92	LAMINATES							
		20% MICROTHENE							
									-
		PRECOMPOUNDED C.PI ASTIC							
		2%/.07GMS CA							
		325F/3 TONS							
	325F/3 TONS	116A-1 COARSE	0.37	0.077	1.892				
	325F/3 TONS	116A-2 COARSE	0.3	0.071	1.664				
	325F/3 TONS	116A-3 MEDIUM	0.88	0.067	5.171				
	325F/3 TONS	116A-4 MEDIUM	0.61	0.066	3.639				
117A	12/03/92	LAMINATES							
		80% LOADING DOPED OXIDE							
		30% MICBOTHENE							
		PRECOMPOUNDED							
		C-PLASTIC							
		.15% TO .45% CA							
		325F/3 TONS							
		117-1A (.15%)	0.38	0.071	2.107	96.0	0.071	5.434	157.894737
		117-2A (.20%)	0.51	0.071	2.828	1.15	0.071	6.377	125.490196
		117-3A (.25%)	0.42	0.068	2.432	0.7	990.0	4.176	71.7171717
		117-4A (.30%)	0.56	0.068	3.242	0.98	0.068	5.674	7.5
		117-5A (.35%)	0.42	0.071	2.329				
		117-6A (.40%)	0.46	0.065	2.786				
		117-7A (.45%)	0.64	0.064	3.937				
118A	12/07/92	LAMINAIES							
		80% LOADING DOPED OXIDE							
		20% MICROTHENE							
		PRECOMPOUNDED							
	118	C-PLASTIC							
		325F/3 TONS 118-14 (15%)	0.4	0.068	2.316				
		/ »							

PERCENT	CHANGE	(%)			19.4554238	35.3233831	15	25											*					30.8421033	21.27273		1	50	43.902439	_	-													
RESISTIVITY	(OHM-CM)	AFTER			2.282	2.350	2.625	2.605																3.470	3.556			13.709	20.024															
THICKNESS	(INCH)	AFTER			690'0	0.067	0.069	0.068																0.059	0.062			0.056	0.058															
RESISTANCE	(OHM)	AFTER			0.4	0.4	0.46	0.45																0.52	0.56			1.95	2.95															
RESISTIVITY	٣	BEFORE	2.218	2.200	1.911	1.737	2.282	2.084								5.180	3,523	2.684	5.512			2.919	3.292	2.536	2.794			9.139	13.915								2.257	2.418						
RESISTANCE THICKNESS	(INCH)	BEFORE	0.071	0.068	0.068	0.068	0.069	0.068								0.038	0.038	0.033	0.03			0.058	0.061	0.059	0.062			0.056	0.058								0.075	0.07						
RESISTANCE	(OHM)	BEFORE	0.4	0.38	0.33	0.3	4.0	0.36								0.5	0.34	0.225	0.42			0.43	0.51	0.38	0.44			1.3	2.05								0.43	0.43				·		
	MATERIAL	COMPOSITION	118-2A (.20%)	118-3A (.25%)	118-4A (.30%)		_	118-7A (45%)		80% LOADING DOPED OXIDE	20% MICHOTHENE	PRECOMPOUNDED	C-PI ASTIC	25% CA	30 E/3	119.14	119-54	119-3A	119-4A	HAND COMPOUNDED	CARBON PLASTIC	120-1A 350F	120-2A 350F	120-3A 375F	120-4A 375F	PRECOMPOUNDED	CARBON PLASTIC	120.5A	120-6A		LAMINATES	80% LOADING DOPED OXIDE	MICROTHENE (5/92)	.25% CA	HANDCOMPOUNDED	CARBON PLASTIC	121-1A	121-2A		LAMINATES	2.60G KETBLACK	10.37G MICHO (5/92)	325F/15 TONS	0.060" SHIM
	TEST	DATE							12/04/92	10001										12/16/92										121A	12/17/92								122A	12/17/92				
	SAMPLE	NUMBER							1194											120A											121									122A				

			RESISTANCE	THICKNESS	RESISTIVITY	RESISTANCE	THICKNESS	RESISTIVITY	PERCENT
SAMPLE	TEST	MATERIAL	(WHO)	(INCH)	(OHM-CM)	(MHO)	(INCH)	(OHM-CM)	CHANGE
NUMBER	DATE	NOLLIS	BEFORE	BEFORE	BEFORE	AFTER	AFTER	AFTER	(%)
		122-1A	0.46	0.051	3.551	1.4	0.051	10.807	204.347826
		122-2A	0.43	0.05	3.386	5.4	0.051	41.686	1131.19015
		100.34	64	50.0	3 228	1.45	0.051	11.193	246.724055
		122-4A	0.43	0.052	3.256	0.82	0.052	6.208	90.6976744
	123A								
123A	01/04/93	LAMINATES							
		80% LOADING DOPED OXIDE							
		20% MICHOI HENE							
		C-PI ASTIC							
		30% TO 1.00% CA							
		OINOT WHEEL							
		325F/3 TONS	07.0	80	2 411	0.58	80.0	2.854	18.3673469
			98.0	0.00	1.750	0.37	0.081	1.798	2.7777778
			0.00	90.0	2 854	0.24	0.081	3,597	26.0110685
		_	0.00	0.00	2 090	0.51	0.08	2.510	20.0872093
		_	24.0	0.028	2 221				
			0.44	0.070	2 2 2 2 1				
		_	0.65	0.070	3.201				
		-	0.62	0.076	3.212				
		-	9.0	9.000	3.108				
		$\overline{}$	99.0	0.078	3.331				
			9.0	0.076	3,108				
		_	6.0	0.08	4.429				
		_	0.68	0.08	3.346				
			9.0	0.072	3.281				
		123-14A (.95%)	0.52	0.075	2.730				
707	4707	123-15A (1.00%)	0.54	0.075	2.033				
124	747	LAWIIIVATES							
	07-JAN-93	80% LOADING DOPED OXIDE							
		30% MICBOTHENE							
		HANIOCOMPONIALE HANIOCOMPONIALI HANIOCOMPONIALE HANIOCOMPONIALE HANIOCOMPONIALE HANIOCOMPONIAL							
		C-PLASTIC							
_		1.5% TO 3.0% CA							
		325F/3 TONS							
		124-1A (1.5%)	0.62	0.075	3.255				
		124-2A (2.0%)	0.98	0.077	5.011				_
		124-3A (2.5%)	0.83	0.076	4.300				-

																																											_	_
PERCENT CHANGE	(%)																													30	600000000	77.777777	0 57140867	3.37142637	1.92307032									
RESISTIVITY (OHM-CM)	AFTER																													•	1.909	1.709	1	7.820	3.366									
THICKNESS (INCH)	AFTER																													4	80.0	0.076	0	0.0/3	0.062									
RESISTANCE (OHM)	AFTER																													,	0.4	0.33	:	1.45	0.53									
RESISTIVITY (OHM-CM)	BEFORE	3.375						2.832	5.042	3.307	4.555	3.474	3.331	3.011	3.011	4.006	2.625												9.358	18.394	1.575	1.399		7.550	3.302						4.252	5.249	4.419	4.499
RESISTANCE THICKNESS (OHM)	BEFORE	0.077						0.057	0.057	0.05	0.051	0.051	0.052	0.051	0.051	0.057	0.057												0.061	0.061	0.08	0.076		0.073	0.062						0.05	0.048	0.049	0.049
RESISTANCE (OHM)	BEFORE	0.66						0.41	0.73	0.42	0.59	0.45	0.44	0.39	0.39	0.58	0.38												1.45	2.85	0.32	0.27		1.4	0.52						0.54	0.64	0.55	0.56
MATFRIAL	NOLLING	124-4A (3.0%)	LAMINATES	TEMP 230F TO 400F	85% DOPED OXIDE PELLETS	HANDCOMPOUNDED	C-PLASTIC	125-1A (300F)	125-2A (300F)	125-3A (350F)	125-4A (350F)	125-5A (375F)	125-6A (375F)	125.7A (400F)	125-8A (400F)	125-11A (275F)	125-12A (275F)	LAMINATES	80% TO 90% LOADING	DOPED OXIDE(7/92)	.35% CA	SAMPLES 182	.30% CA	SAMPLES 3-7	HANDCOMPOUNDED	C-PLASTIC	MICROTHENE (5/92)	325F/3 TONS		126-2A (80%)	126-3A (85%)	126-4A (85%)	275F/3 TONS	126-6A (82.5%)	126-7A (82.5%)	LAMINATES	A5% DOPED OXIDE PELLETS	14% TO 22%	KET (0/02)	325E/3 TONS	129-1A (15%)	129-2A (15%)	129-3A (16%)	129-4A (16%)
1661	DATE		125A	01/12/93														126A	01/14/93																	01/15/03								
U OVANIO	SAWIFTE N. MBFB		125A)														126																		4004	V621							

PERCENT CHANGE	70/1			•			54.3478261	61.5458937	23.255814	27.6437848																		0 21052632	7 6354679B	15 2041176	0 79694911	-0.7 3064211		-9.28205128	-5	-8.92857143	16,1290323	
RESISTIVITY (OHM-CM)	7						5.705	6.649	4.742	5.727																		634	709.7	4.004 5.785	00.0	9.334		8.005	009.9	6.924	9.775	
THICKNESS (INCH)	נייו						0.049	0.045	0.044	0.044					٠													990.0	0.000	0.030	0.0	60.0		0.03	0.034	0.029	0.029	
RESISTANCE (OHM)	Z						0.71	92.0	0.53	0.64																		000	50.0	0.00	27.0	0.08		0.61	0.57	0.51	0.72	
RESISTIVITY (OHM-CM)		5.906	5.303	4.863	2.992		3.696	4.116	3.848	4.486		3.743	5.297	3.861	4.041		0 0 0	6.979	12.303	7.559	660'9		2.054	1.938	3.397	3.786		0 3 7 3	0.108	- 600	0.030	798.6		8.824	6.948	7.602	8.417	4.516
THICKNESS (INCH)		0.05	0.049	0.051	0.05		0.049	0.044	0.044	0.043		0.061	0.055	0.052	9.000		0.067	0.057	0.048	0.05	0.051		690.0	0.065	0.051	0.052		010	0.030	0.037	0.043	0.051		0.029	0.034	0.029	0.029	0.034
RESISTANCE (OHM)		0.75	99.0	0.63	0.38		0.46	0.46	0.43	0.49		0.58	0.74	0.51	0.78		•	n .	5.	96.0	0.79		98.0	0.32	0.44	0.5		1	0.70	0.00	0.00	0.76		0.65	9.0	0.56	0.62	0.39
MATERIAL	NOILION	129-5A (16%)	129-6A (18%)	129.7A (22%)	129-8A (22%)	LAMINATE 325F/3 TONS	130-1A (18%)	130-2A (18%)	130-3A (16%)	130-4A (16%)	LAMINATE 325F/3 TONS	131-1A(3 TONS)	131-3A(15 TONS)	131-4A(15 TONS)	131-5A(3 TONS)	CHOL CITYON THEIR	400 4 400 TONO!	132-1A(3 TONS)	132-2A(3 TONS)	132-3A(15 TONS)	132-4A(15 TONS)	LAMINATE 325F/3 TONS	133-1A(3 TONS)	133-2A(3 TONS)	133-3A(15 TONS)	133-4A(15 TONS)	AMINIATE 22EE/2 TONE	404 4 4 60 TOHO!	134-1A(3 10N3)	134-EA(3 10NO)	134-38(13 10183)	134-4A(15 10NS)	LAMINATE 325F/3 TONS	135-1A(.010")	135-2A(.010")	135-3A(.006")	135-4A(.006")	LAMINATE 325F/3 TONS 136-1A(22%)
TEST	DAIE					130A	01/19/93				131A	01/27/93				• 007	132A	01/28/93				133A	01/28/93				4244	C450	01/20/93				01/28/93					02/01/93
SAMPLE	NUMBER					130A					131A					V (())	132A					133A					4344						135A					136A

PERCENT	CHANGE	(%)	_									22.9166667	19.0243902	81.6326531	9.30232558																						
RESISTIVITY	(OHM-CM)	AFIEH										4.148	3.150	6.489	3.190																						
THICKNESS	(INCH)	AFTER										0.056	90.0	0.054	0.058																						
RESISTANCE	(OHM)	AFTER										0.59	0.48	0.89	0.47																						,
-	(OHM-CM)	BEFORE	6.800	3.825	4.516	,	2.305	2.152	2.859	1.969		3.375	2.646	3.572	2.919		4.462	7.382	4.703	3.937		6.979	5.669	4.997	4.997		7.672	8.581	4.406	4.098							0,000
THICKNESS	(INCH)	BEFORE	0.033	0.035	0.034		0.041	0.043	0.042	0.043		0.056	0.061	0.054	0.058		0.03	0.032	0.036	0.035		0.022	0.025	0.026	0.027		0.039	0.039	0.042	0.049	2		÷	z			
RESISTANCE	(OHM)	BEFORE	0.57	0.34	0.39		0.24	0.235	0.305	0.215		0.48	0.41	0.49	0.43		0.34	9.0	0.43	0.35		0.39	0.36	0.33	0.4		92.0	0.85	0.47	0.51	1.2		IR TOO HIGH.	LAMINATION	STOPPED.		
	MATERIAL	COMPOSITION	136-2A(22%)	136-3A(24%)	136-4A(24%)	LAMINATE 325F/3 TONS	137-1A	137-2A	137-3A	137-4A	LAMINATE 325F/3 TONS	MRP-1	MRP-2	MRP-3	MRP-4	I AMINATE 325F/3 TONS	138-1A	138-2A	138-3A	138-4A	LAMINATE 325F/3 TONS	139-1A(18%)	139-2A(18%)	139-3A(22%)	139-4A(22%)	LAMINATE 325/3 TONS	BR-1	BR-2	R3-1	R3-2	168-1A	100/115/120/125	168-2A	100/110/120/125	168-3A	LAMINATE 325F/3 TONS	
	TEST	DATE				02/03/93					02/03/93					02/04/93					02/05/93					02/02/93										03/25/93	
	SAMPLE	NIMBER				137A					WB-D	•				A 90 t	V 05 -				139A					BR AND R3					EXTENIDED	3/24/93	1			169A	

SAMPLE	TEST DATE	MATERIAL COMPOSITION	RESISTANCE (OHM) BEFORE	THICKNESS (INCH) BEFORE	RESISTIVITY (OHM-CM) BEFORE	RESISTANCE (OHM) AFTER	THICKNESS (INCH) AFTER	RESISTIVITY (OHM-CM) AFTER	PERCENT CHANGE (%)
		169-2A	0.52	0.041	4.9932783	>100			
170A	03/26/93	LAMINATE 325F/3 TONS			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0		100000000	2 04117647
		170-1A 170-2A	89:0 6:0	0.041	8.6422124	0.00	0.041	8.258114077	4.4444444
171A	03/30/93	LAMINATE 325F/3 TONS							
		171-1A	0.35	0.035	3.9370079	0.74	0.035	8.323959505	111.428571
		171.2A	0.68	0.035	7.6490439	1.05	0.036	11.48293963	50.122549
		171-4A	0.55	0.038	5.6983009				
173A	04/2/93	LAMINATE 325F/3 TONS							
		173-1A	0.34	0.039	3.4322633	0.36	0.04	3.543307087	3.23529412
		173-2A	0.41	0.039	4.1389057	0.48	0.041	4.60917995	11.3622844
175A	04/05/93	LAMINATE 325F/3 TONS							
		175-1A(160) 175-2A(160)	0.55 0.39	0.041	5.281352 3.655793	0.79 0.53	0.041	7.585942001 4.968128984	43.6363636 35.8974359
		175-3A(180) 175-4A(180)	0.47	0.043	4.3032412	0.68 0.58	0.043	6.22596594 5.310382714	44.6808511 28.7526427
176A	04/06/93	LAMINATE 325F/3 TONS							
		176-1A(160) 176-2A(160)	0.42	0.04	4.1338583 4.8228346	0.43	0.04	4.232283465 4.705204532	2.38095238
		176-3A(180) 176-4A(180)	0.38	0.039	3.836059 3.6261915	0.39 0.36	0.039 0.04	3.937007874 3.543307087	2.63157895
		176-1A 176-3A 176-4A	0.42 0.38 0.35	0.04 0.039 0.038	4.1338583 3.836059 3.6261915	0.67 0.59 0.5	0.04	6.59448B189 6.8070B6614 4.921259843	59.5238095 51.3815789 35.7142857

			DECICTANCE	THICKNESS	PESISTIVITY	RESISTANCE	THICKNESS	RESISTIVITY	PERCENT
	i c	IAICETAN	HESIST MACE		(CHW-CM)	(OHW)	(INCH)	(OHM-CM)	CHANGE
SAMPLE	DATE	NOLLIGIE		BEFORE	BEFORE	AFTER	AFTER	AFTER	(%)
NUMBEH	DAIL	.176-3A	0.38	0.039	4.134	6.0	0.04	8.858267717	114.278368
		SAMPLE TESTED FOR 30 DAYS		•		č		6 46073087	56 282798
		176-3A	0.38	0.039	4.134	0.04	60.0		
		READING TAKEN AFIEH 1 DAY 176-3A	0.38	0.039	4.134	0.833	0.04	8.198818898	98.3265336
_		READING TAKEN AFTER 2 DAYS							
177A	04/12/93	LAMINATE 325F/3 TONS							
4,,,		100174 - 114	6.1	0.041	5 8574995	0.53	0.041	5.089302862	-13.1147541
		177-2A(160)	0.81	0.044	7.2476736	0.74	0.042	6.936632921	-4.29159318
		1001110 5.53	30	0.043	9 6136239	0.77	0.042	7.217847769	-24.9206349
		177-4A(180)	0.84	0.044	7.5161059	0.65	0.043	5.951290972	-20.8194906
178A	04/14/93	LAMINATE 325F/3 TONS							
		178.14(160)	0.54	0.046	4.6217049	0.58	0.046	4.964053406	7,40740741
		178-2A(160)	0.64	0.047	5.361032	0.68	0.045	5.949256343	10.9722222
			0	9,00	A 626000A	0.48	0.045	4.199475066	-9.43396226
		178-3A(180)	0.45	0.041	4.3211062	0.48	0.041	4.60917995	6.66666667
1704	04/15/93	LAMINATE 325F/3 TONS							
	•					;		000000	47 0407170
		179-1A(160)	0.39	0.045	3.4120735	0.46	0.045	3.570774583	25.8064516
		179-2A(160)	0.0	0.043	7.0000	5	<u>}</u>		
		179-3A(180)	0.28	0.043	2.563633	0.34	0.043	3.11298297	21.4285714
		179-4A(180)	0.31	0.043	2.838308	0.38	0.043	3.479215251	22.3000432
181A	04/28/93	LAMINATE 325F/3 TONS							
		181-1A(200) 181-2A(200)	0.47	0.063	2.9371329 2.6691579	0.58	0.062	3.683007366 3.86793756	25.3946465 44.9122807
		181-3A(180)	0.54	0.064	3.3218504	0.61	0.064	3.75246063	12.962963

PERCENT CHANGE (%)	5.45454545				,			38 8755981	29.6600877	44.7368421	47.4576271		34.4827586	56.5957447	28.4651792	52.6315789	35.7241379		51.3095238	51.1627907	-	6674.19355
RESISTIVITY (OHM·CM) AFTER	3.567913386							1 821782301	4.511154856	3.670092086	3.870278927		6.67579596	6.701289998	5.866913695	4.151753758	3.228346457		14.52943382	11.90258194		137.7952756
THICKNESS (INCH) AFTER	0.064							7	0.048	0.059	0.059		0.046	0.047	0.051	0.055	0.05		0.042	0.043		0.03
RESISTANCE (OHM) AFTER	0.58								0.55	0.55	0.58		0.78	8.0	92.0	0.58	0.41		1.55	1.3		10.5
RESISTIVITY (OHM-CM) BEFORE	3.3833661		3.6673498	4.5931759	3.7706554	4.0727668			3.4792163	2.5357	2.6246719		4.9640534	4.2793564	4.5669291	2.7201145	2.3786089		9.6024582	7.8740157		2.0341207
THICKNESS (INCH)	0.064		0.073	90 0	0.071	0.058			0.043	0.059	0.057		0.046	0.046	0.05	0.055	0.048		0.041	0.041		0.03
RESISTANCE (OHM) PEFORE	0.55		0.68	7.0	0.68	9.0	IR at corner.		0.38	0.38	0.38		0.58	0.5	0.58	0.38	0.29		-	0.82		0.155
MATERIAL	181-4A(180)	LAMINATE 325F/3 TONS	182-1A(200) SANDED	182-2A(200) 05 THEN SANDED	FUTHEN SANDED 182-3A(180) SANDED	182-4A(180) Ph THEN SANDED		LAMINATE 325F/3 TONS	183-1A	183-2A 183-3A	183-4A	LAMINATE 325F/3 TONS	184-1A	184-2A	184-3A	LAMINATE 325F/3 TONS 185-1A	185-2A THICK SUBSTRATE	LAMINATE 325F/3 TONS	186-1A	186-2A		LAMINATE 330F/2 TONS 187-1A
TEST		04/28/93						04/29/93				05/04/93				05/05/93		05/05/93				
SAMPLE	1.771071	182A	FOR PASTE					183A				184A				185A		186A				187A

			RESISTANCE	THICKNESS	RESISTIVITY	RESISTANCE	THICKNESS	RESISTIVITY	PERCENT
SAMPIE	TEST	MATERIAL	(OHW)	(INCH)	(OHM-CM)	(OHM)	(INCH)	(OHM-CM)	CHANGE
NUMBER	DATE	COMPOSITION	BEFORE	BEFORE	BEFORE	AFTER	AFTER	AFTER	(%)
		187-2A	0.135	0.029	1.832745	20	0.029	271.5177844	14714.8148
		187-3A	0.135	0.029	1.832745	6.2	0.029	84.17051317	4492.59259
		187-4A	0.155	0.03	2.0341207	8.1	0.03	106.2992126	5125.80645
V 00 1		LAMINATE 330E/2 TONS							
Y001		188-1A	0.14	0.028	1.9685039	9	0.03	78.74015748	3900
		188-2A	0.14	0.031	1,7780036	6	0.03	118.1102362	6542.85714
		188-3A	0.135	0.031	1.7145034	8.1	0.031	102.8702057	2900
		188-4A	0.155	0.031	1.9685039	9.6	0.031	121.9202438	6093.54839
189A	06/14/93	LAMINATE 295F/3 TONS							
		189-1A	0.97	0.045	8.486				
06/14/93	IR OF SAMPLE WAS	IR OF SAMPLE WAS TOO HIGH. NEW SAMPLES WILL BE MADE AND TESTED	BE MADE AND	TESTED					
		189-3A(SANDED) 189-4A(SANDED)	0.47	0.051	3.6282229	0.7 0.83	0.051	5.403736298	48.9361702 53.7037037
190A	06/16/93	LAMINATE 295F/3 TONS	71.0	900	0.0076670				
		190-17	0.74	0.000	3 337898				
		42:06:	0.73	0.035	3.3418788				
		190-4A	0.66	0.086	3.0214246				
191A	06/18/93	LAMINATE 295F/3 TONS							
		191-1A(006)SANDED	0.25	0.044	2.2369363	1.6	0.044	14.31639227	540
		191-2A(006)	0.255	0.045	2.2309711	0.97	0.044	8.679312813	289.037433
		191-2A	0.255	0.045	2.2309711	0.38	0.044	3.400143164	52.4064171
	READING	READING TAKEN AFTER BEING STORED FOR 2.5 MONTHS	R 2.5 MONTHS						
									0 0 0
		191-3A(007)SANDED	0.23	0.043	2.1058414	0.48	0.044	4.294917681 E 190602108	103.932309
192A	06/18/93	LAMINATE 295F/3 TONS	0.69	0.0	6.034040	000			
		192-1A	1.3	0.051	10.03551	3.5	0.049	28.12148481	180.21978
		192-2A	1.9	0.049	15.265949	4.4	0.05	34.64566929	126.947368
193A	06/18/93	LAMINATE 295F/3 TONS							
		193-1A(SANDED)	0.19	0.062	1.2065024	0.82	0.062	5.207010414	331.578947
		193-2A	0.26	0.058	1.7648656	2.2	0.059	14.68036834	731.812256

PERCENT CHANGE (%)	3007.31132			14093.5484		41.3043478	24.137931		•	-2.222222	23.8095238		185,185185	136.363636	224.44444	125	50.7407407	25	23.4042553	39.5348837	34.1463415	40.5555556		100	204.878049	177.966102	68.75	553.409091	1718.18182	848.757764	84.3171296	411.091393
RESISTIVITY (OHM-CM) AFTER	104 5767717			509.4951366		5.5631633	6.162273194			10.06124234	11.3735783		6.124234471	5.686789151	6.386701662	6.252894859	3.237095363	2.405949256	2.537182852	2.624671916	2.405949256	2.405949256		6.909850554	9.842519685	6.868822248	4.088431254	15.65855404	35.79098067	16.6894899	5.331364829	10.27045532
THICKNESS (INCH) AFTER	0.032	0.043	0.04	0.034		0.046	0.046			0.045	0.045		0.045	0.045	0.045	0.051	0.045	0.045	0.045	0.045	0.045	0.045		0.049	0.05	0.047	0.052	0.044	0.044	0.046	0.048	0.046
RESISTANCE (OHM) AFTER	α ب	>100	> 100	44		0.65	0.72			1.15	1.3		0.7	0.65	0.73	0.81	0.37	0.275	0.29	0.3	0.275	0.275		0.86	1.25	0.82	0.54	1.75	4.	1.95	0.65	1.2
RESISTIVITY (OHM-CM) BEFORE	9 9665067	2 999625	2.8543307	3.5896248		3.9370079	4.9640534			10.289907	9.1863517		2.1474588	2.4059493	1.9685039	2.7790644	2.1474588	1.9247594	2.055993	1.8810149	1.7935258	1.7117426		3.4549253	3.2283465	2.4711007	2.4227741	2.3964396	1.9685039	1.7590886	2.8924956	2.0095144
THICKNESS (INCH) BEFORE	• 60	0.03	0.04	0.034		0.046	0.046			0.044	0.045		0.044	0.045	0.045	0.051	0.044	0.045	0.045	0.045	0.045	0.046		0.049	0.05	0.047	0.052	0.046	0.046	0.047	0.049	0.048
RESISTANCE (OHM) BEFORE		0.32	0.29	0.31		0.46	0.58			1.15	1.05		0.24	0.275	0.225	0.36	0.24	0.22	0.235	0.215	0.205	0.2		0.43	0.41	0.295	0.32	0.28	0.23	0.21	0.36	0.245
MATERIAL	LAMINATE 295F/3 TONS	194-18(,008.)	194-3A(.010")	194-4A(.010")	LAMINATE 295F/3 TONS	195-1A	195.2A		LAMINATE 295F/3 TONS	196-1A	196-2A	LAMINATE 295F/3 TONS	197-14/315F)	197-2A(315F)	197-3A(335F)	197-4A(335F)	197-5A(355F)	197-6A(355F)	197-7A(375F)	197-8A(375F)	197-9A(400F)	197-10A(400F)	LAMINATE 295F/3TONS	198-1A(315F)	198-2A(315F)	198-3A(335F)	198-4A(335F)	198-5A(355F)	198-6A(355F)	198-7A(375F)	198-8A(375F)	198-9A(400F)
TEST	06/24/93				06/28/93				06/28/93			06/29/93											06/29/93									
SAMPLE	194A				195A				196A			 197A											198A									

SAMPLE NUMBER	TEST	MATERIAL	RESISTANCE (OHM)	THICKNESS (INCH)	RESISTIVITY (OHM-CM) BECOSE	RESISTANCE (OHM)	THICKNESS (INCH)	RESISTIVITY (OHM-CM)	PERCENT CHANGE
		198-10A(400F)	0.24	0.045	2 0007375	7	2 0 0	A4 9795709	144 666667
		STABILITY TESTING WAS SHORTENED BY ONE DAY ON SAMPI FS 1-4	SHORTENED BY	ONE DAY OF	SAMPLES 1-4		0.0	60/66/67	441.000001
		PROBLEM WITH POWER SUPPLY ON SAMPLES 5A.8A	OWER SUPPLY (N SAMPLES	5A-8A				
199A	07/21/93	LAMINATE 295F/3 TONS							
		199-1A(NOT SANDED)	0.66	0.044	5.9055118				
		199-2A(NOT SANDED)	0.62	0.043	5.676616				
		199-3A(SANDED)	0.31	0.044	2.773801	0.5	0.045	4 374453103	67 7060932
		199-4A(SANDED)	0.37	0.043	3.3876579	0.54	0.044	4,831782391	42.6289926
200A	07/23/93	LAMINATE 295F/3 TONS							
		200·1(SANDED)	0.45	0.043	4.1201245	0.58	0.044	5.189692198	25 959596
		200-2(SANDED)	0.47	0.045	4.111986	99.0	0.044	5.905511811	43.6170213
201A	07/23/93	LAMINATE 295F/3 TONS							
	•	201-1(325)	0.32	0.046	2.7387881	0.4	0.043	3.662332906	33,7209302
		201-2(350)	0.295	0.043	2.7009705	0.4	0.043	3.662332906	35.5932203
		201-3(375)	0.34	0.044	3.0422334	0.45	0.045	3.937007874	29.4117647
		201-4(400)	0.31	0.044	2.773801	0.58	0.044	5.189692198	87.0967742
		201-5(425)	0.31	0.044	2.773801	1.4	0.044	12.52684324	351.612903
202A	07/23/93	LAMINATE 295F/3 TONS							
		202-1(325)	0.41	0.043	3.7538912	0.71	0.043	6.500640908	73.1707317
		202-2(350)	0.31	0.043	2.838308	0.48	0.043	4.394799487	54.8387097
		202-3(375)	0.35	0.044	3.1317108	0.54	0.044	4.831782391	54.2857143
		202-4(400)	0.38	0.043	3.4792163	0.54	0.044	4.831782391	38.8755981
		202-5(425)	0.295	0.044	2.6395848	0.98	0.044	8.768790265	232.20339
203A	07/23/93	LAMINATE 295F/3 TONS							
		203-1(325)	0.34	0.044	3.0422334	3.1	0.042	29.05886764	855 182073
		203-2(350)	0.42	0.044	3.758053	2.2	0.044	19.68503937	423.809524
		203-3(375)	0.36	0.044	3.2211883	2	0.042	46.86914136	1355.02646
		203-4(400)	0.5	0.044	4.4738726	က	0.043	27.4674968	513.953488
204A	07/27/93	LAMINATE 300F/3 TONS							
		204-1A(250)	0.62	0.046	5.3064019	1.6	0.046	13.69394043	158.064516
		204-2A(275)	0.45	0.044	4.0264853	0.83	0.044	7.42662849	84.444444
		204-3A(300)	0.51	0.045	4.4619423	0.68	0.045	5.949256343	33.333333
		204-4A(325)	0.51	0.045	4.4619423	0.98	0.045	8.573928259	92.1568627
		204-5A(350)	0.47	0.044	4.2054402	2.9	0.044	25.94846099	517.021277
		204-6A(375)	0.46	0.044	4.1159628	2.35	0.045	20.55993001	399.516908

SAMPLE	TEST	MATERIAL COMPOSITION	RESISTANCE THICKNESS (OHM) (INCH) BETOPE BEFOPE	THICKNESS (INCH) BEFORE	RESISTIVITY (OHM-CM) BEFORE	RESISTANCE (OHM) AFTER	THICKNESS (INCH) AFTER	RESISTIVITY (OHM-CM) AFTER	PERCENT CHANGE (%)
205A SEE BATTERY									
206A	8/10/93	LAMINATE 300F/3 TONS 206-1A(SP006) 206-2A(SP006)	0.275	0.053	2.0427871	0.34	0.053	2.525627693 2.30277819	23.6363636 21.6603774
		206-3A(SP007) 206-4A(SP007)	0.36 0.23	0.052	2.7256208	0.48	0.052	3.634161114	50.6688963
207A	8/10/93	LAMINATE 300F/3 TONS 207-14(SP006) 207-24(SP006)	0.83	0.043	7.5993408	1.65	0.042	15.46681665	103.528399 30.1587302
		207-3A(SP007) 207-4A(SP007)	0.96	0.043	8.789599 8.3427072	1 0.86	0.044	8.947745168	1.79924242
208A	8/11/93	LAMINATE 300F/3 TONS 208-1A 208-2A 208-3A 208-4A	0.4 0.5 0.3 0.32	0.037 0.038 0.036 0.038	4.2562247 5.1802735 3.2808399 3.3153751	0.6 0.7 0.54 0.73	0.039 0.038 0.037 0.039	6.056935191 7.252382926 5.745903384 7.369271149	42.3076923 40 75.1351351 122.275641
209A	8/16/93	LAMINATE 300F/3 TONS 209-1A(SANDED) 209-2A	0.96	0.051	7.4108384	8. 4.8 8.	0.051	31.941762	254.166667
210A RIBBON FROM DE WAL	8/24/93	LAMINATE 300F/3 TONS 210-1A 210-2A 210-3A 210-4A	0.28 0.23 0.41 0.56	0.033 0.033 0.041 0.042	3.3404915 2.7439752 3.9370079 5.2493438	13.75 11 2.4 3 24	0.033 0.034 0.043 0.043	164.0419948 127.3737842 21.97399744 219.7399744	4810.71429 4541.94373 458.139535 4086.04651
211A	9/2/93	LAMINATE 300F/3 TONS							

PERCENT CHANGE (%)	31.4285714	2216612.10	00000	132.323232		0100010	45.3466372	344.44444	228.375	163.888889																	1744.44444	2095.45455	2694.11765	4344 44444				006	524.895572	170.588235	413.513514
RESISTIVITY (OHM-CM) AFTER	9.05511811	0.07401040	9.100331700	13.12335958		07707	11.18458145	39.3/00/8/4	21.05841421	17.3960813																	148.5325698	123.4788833	170.0071582	286.3278454				60.69553806	31.8/101612	17.24784402	37.4015748
THICKNESS (INCH) AFTER	0.03	0.031	0.024	0.024			0.044	0.044	0.043	0.043																	0.022	0.022	0.022	0.022				0.024	0.021	0.021	0.02
RESISTANCE (OHM) AFTER	69.0	0.62	0.56	0.8			1.25	4.4	2.3	1.9																	8.3	6.9	3.6	16				3.7	1.7	0.92	1.9
RESISTIVITY (OHM-CM) BEFORE	6.8897638	5.20/0104	5.2493438	5.6487504			7.6950608	8.8582677	5.8597326	6.5921992		29.246344	37.182852	42.744657	30.621172	24.606299	32.808399		2 9380656	2 8807375	4 00000	4.002023	3.9630129	4.1800331			8.0529707	5.624297	6.0844667	6 4423765				6.0695538	5.1002147	6.3742032	7.2834646
THICKNESS (INCH) BEFORE	0.032	0.031	0.024	0.023			0.044	0.044	0.043	0.043		0.035	0.036	0.035	0.036	0.04	0.036		0.067	0.082	700.0	0.00	0.081	0.081			0.022	0.021	0 0 0 0	0.00	1			0.024	0.022	0.021	0.02
RESISTANCE (OHM) BEFORE	0.56	0.41	0.32	0.33			0.86	0.99	0.64	0.72		2.6	3.4	3.8	2.8	2.5	ო		5	9 6	2 2	0.04	0.82	0.86	ED		0.45	0.3	0.34	0.36	8			0.37	0.285	0.34	0.37
MATERIAL COMPOSITION	211·1A	211-2A	211-3A	211-4A		LAMINATE 300F/3 TONS	212-1A	212-2A	212-3A	212-4A	LAMINATE 350F/3 TONS	213-1A	213-2A	213-3A	213-4A	213-5A	213-6A	I AMINIATE 350E/3 TONS	214-14	214-12	M3-412	Z14-3A	-214-4A	.214-5A	SAMPLES NOT SURFACE TREATED	AMINATE 350F/3 TONS	215-1A	215.2A	215.34	215.00	C 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	LAMINATE 350F/3 TONS	LAMINATE 350F/30 TONS	216-1A	216-2A	216-3A	216-4A
TEST DATE						6/8/6					9/16/93							60/06/0	8/50/83							9/22/93						9/27/93					
SAMPLE NUMBER						212A					213A							4	Z14A			-				215.0	7				-	216A					

			RESISTANCE	THICKNESS	RESISTIVITY	RESISTANCE	THICKNESS	RESISTIVITY	PERCENT
SAMPLE	TEST	MATERIAL	(OHM)	(INCH)	(OHM-CM)	(OHM)	(INCH)	(OHM-CM) AFTER	CHANGE (%)
NUMBER	DAIE	NOTING LITTER							
217A	9/29/93	LAMINATE 300F/3 TONS		1		(0	00000	27 6
		217-1A	0.48	0.052	3.6341611	0.66	0.052	4.99097 1052	0000000
-		217-2A	0.43	0.05	3.3858268	0.5	0.05	3.93/00/8/4	10.2790698
		217-3A	0.47	0.052	3.5584494	0.51	0.052	3.861296184	8.5106383
		217.4A	0.46	0.05	3.6220472	9.0	0.05	4.724409449	30.4347826
A 0 4 0	0010010	SHOT CLEOR STAINING							
718A	9/29/93	LAMINATE 300F/3 LONS	ć		0				
		218-1A	6.0	0.051	6.947661				
		218·2A	_	0.051	7.7196233				
		218-3A	0.7	0.051	5.4037363				
		218-4A	0.73	0.051	5.635325				
219A	10/4/93	LAMINATE 350F/3 TONS							
		LAMINATE 350F/30 TONS							
		219-1A(30 TONS)	0.46	0.038	4.7658516	0.73	0.038	7.563199337	58.6956522
		219-2A(30 TONS)	0.4	0.038	4.1442188	0.74	0.038	7.666804807	85
		219-3A(3 TONS)	0.37	0.039	3,73511	0.8	0.04	7.874015748	110.810811
		219-4A(3 TONS)	0.43	0.04	4.2322835	0.77	0.04	7.578740157	79.0697674
220A	10/6/93	LAMINATE 300F/3 TONS							
		220-1A	0.34	0.021	6.3742032	0.88	0.022	15.7480315	147.058824
		220-2A	0.3	0.019	6.2163282	69.0	0.019	14.29755491	130
		220-3A	0.28	0.02	5.511811	0.54	0.02	10.62992126	92.8571429
		220 37	0.34	0.019	7 045172	0.7	0.019	14,50476585	105.882353
-		C+-033	; ;	2		;) - - - -		
4 700	00777707	CINCT O'TOOC TTAINING							
4122 7214	10/11/93	LAMINALE 300F/3 LONS	6	0	10000	4	777	10 06194934	38 5542169
		ZZ1-1A	0.03	0.043	6266102.7	2 •	0.0	0.0011110000	36 9024691
		221-2A	0.81	0.044	7.2476736	<u>-</u>	0.044	9.642319063	33.0024031
		221-3A	0.85	0.045	7.4365704	- '	0.045	6.746900367	17.0470360
		221-4A	0.92	0.044	8.2319256	F	0.044	11.63206872	41.3043478
222A	10/15/93	LAMINATE 300F/3 TONS							
		222-1A	8.0	0.026	12.11387	1.15	0.026	17.41368867	43.75
		222-2A	1.2	0.025	18.897638		0.025	17.32283465	-8.3333333
-		222-3A	0.78	0.025	12.283465	1.15	0.025	18.11023622	47.4358974
		222-4A	0.91	0.025	14.330709	0.82	0.025	12.91338583	-9.89010989
223A	10/18/93	LAMINATE 300F/3 TONS							
		223-1A	0.54	0.044	4.8317824	0.55	0.045	4.811898513	-0.41152263
		223-2A	0.49	0.044	4.3843951	0.7	0.044	6.263421618	42.8571429
		223-34(WI)	470/620	0.044	5.54	1.15	0.045	10.06124234	81.6108726
-		223-4A(WI)	440/.450	0.045	3.93	-	0.044	8.947745168	127.677994
		()							
		FIRST WITHOUT SCW, SECOND WITH	HH H						
224A	10/19/93	LAMINATE 350F/3 TONS 224-1A	1.7	0.08	8.3661417				
_									

			HESISTANCE	THICKNESS	RESISTIMITY	RESISTANCE	THICKNESS	RESISTIVITY	PERCENT
SAMPLE	TEST	MATERIAL	(OHM)	(INCH)	(OHM-CM)	(OHM)	(INCH)	(OHM-CM)	CHANGE
NUMBER	DATE	COMPOSITION	BEFORE	BEFORE	BEFORE	AFTER	AFTER	AFTER	(%)
		224-2A	1.65	0.08	8.1200787				
		224·3A	1.7	0.08	8.3661417				
		.224.4A	1.65	0.08	8.1200787				
		.224-5A	1.6	0.081	7,7768057				
		224-6A	1.75	0.08	8.6122047				
		224-7A	1.85	0.08	9.1043307				
		224-8A	1.8	0.08	8.8582677				
		224-9A	2	0.081	9.7210071				
		224-10A	1.8	0 081	8.7489064				
		SAMPLES SURFACE TREATED							
225A	10/20/93	LAMINATE 300F/3 TONS							
		(TTS)225-1A	0.175	0.046	1.4977747	96.0	0.045	3.149606299	110.285714
		(TTS)225-2A	0.195	0.045	1,7060367	0.46	0.044	4.115962777	141.258741
		(138S)225-3A	0.235	0.046	2.0112975	0.285	0.045	2.49343832	23.9716312
		(138S)225-4A	0.21	0.045	1.8372703	0.245	0.046	2.096884629	14.1304348
226A	10/21/93	LAMINATE 300F/3 TONS	3	800	1.0605030	100	0.038	1406 074241	71328.5714
		(113)226-1A	4 .	0.020	0.000000.1	2 .	9000	1406 074241	62400
		(TTS)226-2A	0.16	0.028	2.2497188	001	0.020	1424/0:0041	200
		(138S)226-3A	0.23	0.028	3.2339708	0.23	0.028	3.2339/0/54	0 1
		(138S)226-4A	0.28	0.027	4.082823	0.34	0.029	4.615802335	13.0541872
		(30 DAYS)226-3A	0.23	0.028	3.2339708	0.28	0.028	3.937007874	21.7391304
227A	10/22/93	LAMINATE 300F/3 LONS	20	0.00	7 5161059	6	0.044	8.052970651	7.14285714
		AC-750	+ 0.0 0 0	0.043	8.789599	1.15	0.043	10.5292071	19.7916667
		227:3A	0.94	0.044	8.4108805	1.1	0.044	9.842519685	17.0212766
		227-4A	0.94	0.043	8.6064823	-	0.045	8.748906387	1.65484634
228A	10/25/93	LAMINATE 300F/3 TONS	1		10411100	7	0.046	6 047860300	108 571429
		228-1A(11S)	0.35	0.046	2.9955495	0.73	0.040	5 861767279	123.333333
		228-1A(115)	0.3	0.043	4 111986	0.62	0.045	5.42432196	31.9148936
		220-30(1303) 228-4A(138S)	0.44	0.045	3.8495188	0.54	0.045	4.724409449	22.7272727
229A	10/26/93	LAMINATE 300F/3 TONS	0.47	0.045	4 111986	0 68	0.044	6.084466714	47.9690522
		223-17(113)	7.4.0	0.045	4 9868766	0.74	0.045	6.474190726	29.8245614
		229-14(119)	0.37	0.043	6.6213314	0.92	0.044	8.231925555	24.3243243
		223-37(1383) 229-4A(138S)	0.6	0.044	5.3686471	0.75	0.044	6.710808876	25
		(0)	•						

RESISTIVITY PERCENT (OHM-CM) CHANGE	714 134. 549 85.9 187 12.9 371 23.5	11.63206872 217.073171 19.24759405 572.222222 6.084466714 38.7755102 5.816034359 25	6.352899069 24.5614035 5.547602004 6.89655172	20.13242663 703.571429 10.7372942 250.649351	9.395132427 110 12.36037356 115.843023	5.905511811 -13.1578947 6.263421618 2.94117647	
THICKNESS RI (INCH) (0.044 11 0.045 19 0.044 6.0	0.044 5.1	0.044 20	0.044 9.0	0.044 5.	
RESISTANCE (OHM)	0.68 0.59 0.52 0.42	1.3 2.2 0.68 0.65	0.71	2.25	1.05	0.66	
RESISTIVITY (OHM-CM)	2.5948461 2.838308 4.1201245 3.0422334	3.6685755 2.8632785 4.3843951 4.6528275	3.0422334 3.2211883 5.1002147 5.1896922	1.9247594 2.0579814 2.5053686 3.0621172	4.0264853 4.1159628 4.4738726 5.7265569	4.1159628 3.9370079 6.8002863 6.0844667	
THICKNESS (INCH)	0.044 0.043 0.043	0.044 0.044 0.044 0.044	0.044 0.044 0.044 0.044	0.045 0.044 0.044 0.045	0.044 0.044 0.044 0.044	0.044 0.044 0.044 0.044	
RESISTANCE (OHM)	0.29 0.31 0.45	0.41 0.32 0.49 0.52	0.34 0.36 0.57 0.58	0.22 0.23 0.28 0.35	0.45 0.46 0.5 0.64	0.46 0.44 0.76 0.68	
MATERIAL	LAMINATE 300F-3 TONS 230-1A(TTS) 230-1A(TTS) 230-3A(138S) 230-4A(138S)	LAMINATE 300F/3 TONS 231-1A(TTS) 231-1A(TTS) 231-3A(138S) 231-4A(138S)	LAMINATE 300F/3 TONS 232-1A(TTS) 232-1A(TTS) 232-3A(138S) 232-4A(138S)	LAMINATE 300F/3 TONS 233-1A(TTS) 233-1A(TTS) 233-3A(138S) 233-4A(138S)	LAMINATE 300F/3 TONS 234-1A(TTS) 234-1A(TTS) 234-3A(138S) 234-4A(138S)	LAMINATE 300F/3 TONS 235-1A(TTS) 235-1A(TTS) 235-3A(138S) 235-4A(138S)	CINCT OUTCOOL TEXABLES
TEST	10/29/93	10/29/93	10/29/93	10/29/93	11/7/93	11/7/93	0014177
SAMPLE	230A	138S 231A	232A	233A	234A	235A	* 000

			RESISTANCE	THICKNESS	RESISTIVITY	PESISTANCE	THICKNESS	RESISTIVITY	PERCENT
S ANAPI E	TEST	MATERIAL	(MHO)	(INCH)	(OHM-CM)	(MHO)	(INCH)	(OHM-CM)	CHANGE
NI MPER	DATE	COMPOSITION	BEFORE	BEFORE	BETORE	AFTER	AFTER	AFTER	(%)
		236-1A(TTS)	0.8	0.031	10.16002				
		236-3A(138S)	1.05	0.043	9.6136239	1.3	0.043	11.90258194	23.8095238
		236-4A(138S)	0.95	0.042	8.9051369	1.2	0.044	10.7372942	20.5741627
237A	11/7/93	LAMINATE 300F/3 TONS							
		237-1A(TTS)	0.67	0.043	6.1344076				7
		237-1A(TTS)	8.0	0.044	7.1581961				1
		237-3A(138S)	0.67	0.043	6.1344076	96.0	0.044	8.589835361	40.027137
		237-4A(13BS)	0.49	0.044	4.3843951	1.2	0.044	10.7372942	144.897959
238A	11/7/93	LAMINATE 300F/3 TONS							
		238-1A	0.42	0.044	3.758053	0.55	0.044	4.921259843	30.952381
		238-2A	0.38	0.045	3.3245844	0.4	0.045	3.499562555	5.26315789
		238-3A	0.36	0.044	3.2211883	0.48	0.044	4.294917681	33.333333
		238-4A	0.34	0.045	2.9746282	0.5	0.045	4.374453193	47.0588235
239A	11/10/93	LAMINATE 300F/3 TONS	0.460	370	4 045748	0 64	0.045	5.599300087	39,4335512
		239-1A	0.459	0.045	4.013748 2.413073E	0.0	0.045	3 937007874	15.3846154
		239-2A	0.39	0.045	3.4120733	0.40	0.00	6 011636045	75 555556
		239-3A	0.45	0.045	3.9370079	0.79	0.045	6.911030045	73.3333330
		239-4A	0.44	0.044	3.9370079	0.58	0.044	5.189692198	31.81818.18
									1
240A	11/16/93	LAMINATE 300F/3 TONS							
i i		240-1A	0.54	0.045	4.7244094	0.64	0.045	5.599300087	18.5185185
		240-2A	99'0	0.044	5.9055118		,		00000
		240-3A	9.0	0.045	5.2493438	0.84	0.044	7.516105941	43.1618182
		240-4A	0.77	0.044	6.8897638				
241A	11/15/93	LAMINATE 300F/3 TONS							
		241-1A	0.72	0.077	3.681358				
		241-2A	0.78	0.077	3.9881378	3.9881378 FOR BATTERY BUILD	Y BUILD		
		241-3A	0.79	0.076	4.0924161				
242A	11/18/93	LAMINATE 300F/3 TONS							
		242-1A	0.59	990.0	3.5194464				
		242-2A	0.64	990.0	3.8177046	3.8177046 FOR BATTERY BUILD	Y BUILD		
		242-3A	0.67	0.067	3.9370079				
		242-4A(NO PB)	0.72	0.066	4.2949177				
A840	11/18/93	LAMINATE 300F/3 TONS							
C) ;		243-1A	0.38	0.066	2.2667621				

TEST	MATERIAL		(INCH)	(OHM-CM)	(MHO)	(INCH)	(OHM-CM)	CHANGE
DATE	COMPOSITION	BEFORE	BEFORE	BEFORE	AFTER	AFTER	AFIEH	[%]
	243-2A	0.42	0.067	2.4679751	2.4679751 FOR BATTERY BUILD	3UILD		
	243-3A	0.41	990.0	2.445717				
	242-4A(NO PB)	0.41	0.067	2.4092138				
11/18/93	LAMINATE 300F/3 TONS							
	244-1A	0.56	990.0	3.3404915	3.3404915 FOR BATTERY BUILD	BUILD		
	244-2A	0.49	990.0	2.9229301	2.9229301 ITIVE SIDE WITH NEG PASTE	INEG PASTE		
	244.3A	0.5	990'0	2.9825817				
	244-4A(NO PB)	0.49	990.0	2.9229301				
12/1/93	LAMINATE 300F/3 TONS							
	245-1A	0.59	0.041	5.6654504	0.62	0.041	5.953524102	5.08474576
	245-2A	0.55	0.042	5.1556055	0.71	0.041	6.817745343	32.2394678
	245-3A	0.66	0.041	6.3376224	0.77	0.041	7.393892837	16.6666667
	245-4A	0.7	0.041	6.7217208	-	0.04	9.842519685	46.4285714
12/13/93	LAMINATE 300F/3 TONS					72.00		
	246-1A	9.0	0.019		SAMPLE BROKE			
	246-2A	0.42	0.018	9.1863517	0.5	0.018	10.93613298	19.047619
	246-3A	0.54	0.019	11.189391	0.52	0.019	10.77496892	-3.7037037
	246-4A	0.42	0.019	8.7028595	0.52	0.019	10.77496892	23.8095238
12/13/93	I AMINATE 300F/3 TONS							
	247-1A	0.285	0.02	5.6102362	0.39	0.02	7.677165354	36.8421053
	247-2A	0.34	0.02	6.6929134	0.38	0.021	7.124109486	6.44257703
	247-3A	0.36	0.05	7.0866142	0.52	0.02	10.23622047	44.444444
	247-4A	0.31	0.02	6.1023622	0.45	0.02	8.858267717	45.1612903
12/27/93	LAMINATE 300F/3 TONS				•	0	20 70109407	62 3076923
	248-1A	0.52	0.018	10.774909	- :	0.0	7 3 4 5 4 5 4 7 7 7	P. F.
	248-2A	0.4	0.018	8.7489064	99.0	0.018	14.43569554	60
	248-3A	0.48	0.05	9.4488189	_	0.02	19.68503937	100.333333
	248-4A	0.46	0.018	10.061242	99.0	0.019	13.67592209	35.9267/35
1/5/94	LAMINATE 300F/3 TONS							
	*249-1A	0.88	0.05	17.322835	8.0	0.02	15.7480315	-9.0909090
	249-2A	0.38	0.019	7.8740157	0.34	0.019	7.045171985	-10.5263158
	249-3A	0.38	0.019	7.8740157	0.42	0.019	8.702859511	10.5263158
•	249-4A	0.4	0.02	7.8740157	0.44	0.05	8.661417323	10
	SAMPLE NOT SANDED PRIOR TO LAMINATION	NATION						
1/5/94	LAMINATE 300F/3 TONS 250-1A	0.88	0.041	8.4501632	0.84	0.041	8.066064913	-4.54545455
	4 0 0 0			,000,00	•		1000	•

lī			~	 <u> </u>			 			1	37		8	丁			29	98	<u> </u>	<u>5</u>		45	19	24	T						
PERCENT CHANGE (%)		26.3157895	2.222222		0.0	4	EE 166667	23. 1000001			-15.7894737	20	39.1304348	20			-11.6666667	-3.44827586	14.285/143	25.5319149		79.5454545	109.677419	90.2439024	100						
RESISTIVITY (OHM-CM) AFTER		2.304589975	2.208565393		1.872479355	1.687289089	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.0625034040	1,330		5.999250094	8.998875141	12.5984252	11.24859393			6.520669291	5.801906341	11.45311382	10.5583393		17.27909011	26.9374223	16.16245338	18.64898467						
THICKNESS (INCH) AFTER		0.041	0.041		0.041	0.042		0.02	0.0		0.021	0.021	0.05	0.021			0.016	0.019	0.011	0.011		0.018	0.019	0.019	0.019				0,000	7 #25/ (12V)	_
RESISTANCE (OHM) AFTER		0.24	0.23		0.195	0.18		0.245	- - -		0.32	0.48	0.64	9.0			0.265	0.28	0.32	0.295		0.79	1.3	0.78	6.0						
RESISTIVITY (OHM-CM)		1.8244671	2.1605531		1.4403687	1,1717285		3.1081641	5.547602		7.1241095	7.4990626	9.0551181	9.3738283			7.3818898	6.0091173	10.021475	8.4108805		9.623797	12.847078	8.4956486	9.3244923			7.480315	7.2834646		8 6422124
THICKNESS (INCH) BEFORE		0.041	0.041		0 041	0.042		0.019	0.011		0.021	0.021	0.02	0.021			0.016	0.019	0.011	0.011		0.018	0.019	0.019	0.019			0.04	0.04	0.04	0.041
RESISTANCE (OHM) BEFORE		0 19	0.225		0.15	0.125		0.15	0.155		0.38	0.5	0.46	0.5			0.3	0.29	0.28	0.235		0 44	0.62	0.41	0.45			97.0	0.74	0.8	0
MATERIAL		LAMINATE 300F/3 TONS	251-2A	LAMINATE 300F/3 TONS	252-1A	252.2A	LAMINATE 300F/3 TONS	253-1A	253-2A(30 TONS)	NOT SAMPLE SOUR TONS	254-14	254-12 054-0	254.24	254-4A	I AMINATE 300F	3 TONS/30 TONS	255-1A(3 TONS)	255-2A(3 TONS)	255-3A(30 TONS)	255-4A(30 TONS)	LAMINATE 300F/3 TONS	NO SHIM	2.302 AC.3830	256-3A	256-4A	LAMINATE 300F/3 TONS	.045",.031" SHIM	257-1A	257-2A	257-3A	47 410
TEST		1/5/94		1/7/94			1/7/94			* 67.07.7	1/12/94				1,00,00	46/07/1					1/20/94					1/24/94					
SAMPLE	NOVIDER	251A		252A			253A				254A				A 1.1.0	Z55A					256A					257A					

SAMPLE	TEST	MATERIAL	щ	THICKNESS (INCH)	RESISTIVITY (OHM-CM)	RESISTANCE (OHM)	THICKNESS (INCH)	RESISTIVITY (OHM-CM)	PERCENT CHANGE
NUMBER	DATE	COMPOSITION	BEFORE	BETORE	BEFORE	AFTER	AFTER	A-IEH	(%)
		STABILITY TESTING					,	1	
		257-6A	0.73	0.028	10.264342	0.91	0.028	12.79527559	24.65/5342
		257-7A	0.79	0.028	11.107987	1.2	0.029	16.29106706	46.6608468
258A	1/25/94	LAMINATE 300F/3 TONS							
		.045",.031" SHIM							
		258·1A	0.36	0.041	3.456885	OR BATTERY #258 4V	1258 4V		
***		258-2A	0.4	0.042	3.7495313	3.7495313 CRACKED DURIND DURING ASSEMBLY	DURING ASSE	EMBLY	
		258-3A	0.34	0.034	3.9370079	3 9370079 :OR BATTERY #258 4V	#258 4V		
		STABILITY TESTING							
		258·4A	0.295	0.029	4.0048873	96.0	0.029	4.887320119	22.0338983
		258-5A	0.33	0.029	4.4800434	0.4	0.029	5.430355688	21.2121212
259A	1/26/94	LAMINATE 300F/3 TONS							
		.045".031" SFIIM	i						
		259-1A	0.71	0.041	6.8177453				
		259.2A	0.78	0.043	7.1415492			i i	
		259-3A	9.0	0.041	5.7614749	5.7614749 IN UPON PRESSING IN THE PB SHEET	SING IN THE PB	SHEET	
		259-4A	69.0	0.04	6.7913386				
		259-5A	0.7	0.042	6.5616798				
		259-6A	0.7	0.029	9.5031225				
		STABILITY TESTING							
		259-7A	0.51	0.026	7.7225924	0.48	0.026	7.268322229	-5.88235294
		259-8A	0.51	0.027	7.4365704	0.54	0.027	7.874015748	5.88235294
260A	2/4/94	LAMINATE 300F/3 TONS							
		.045",.031" SHIM							
		260-1A	99.0	0.041	5.3773766	DONG.			
		260-2A	0.49	0.042	4.5931759	4.5931759 TO MAKE 4V BATTERY	ITTERY	-FULL PB SHEET	
		260-3A	0.35	0.03	4.5931759	4.5931759 AMINATE BROKE	Щ		
		STABILITY TESTING							
		260-4A	0.46	0.028	6.4679415		0.027	7.874015748	21.7391304
		260-5A	0.34	0.026	5.1483949	0.49	0.026	7.419745609	44.11/64/1
261A	2/4/94	LAMINATE 300F/3 TONS							
,,		.045",.031" SHIM							
		261-1A	0.41	0.042	3.8432696	ž	4 TO LAMINA I		
		261-2A	0.42	0.042	3.9370079	=	_		
		261-3A	0.42	0.03	5.511811	=			
		STABILITY TESTING							
		261-4A	0.43	0.026	6.5112053	0.38	0.026	5.754088431	-11,627907
		261-5A	0.44	0.026	6.6626287	0.46	0.025	7.244094488	8.7272723
262A	2/4/94	LAMINATE 375F/3 TONS							
		MIHS ON							
		262-1A	0.52	0.017	12.042612	0.74	0.016	18.20866142	51.2019231
-		262-2A	9.0	0.017	13.895322	0.72	0.016	17.71653543	27.5
		262-3A	0.53	0.017	12.274201	69.0	0.016	16.97834646	38.3254717
		262-4A	0.51	0.017	11.811024	0.63	0.016	15.5019685	31.25

SAMPLE	TEST	MATERIAL	RESISTANCE (OHM) BEFORE	THICKNESS (INCH) BEFORE	RESISTIVITY (OHM-CM) BEFORE	RESISTANCE (OHM) AFTER	THICKNESS (INCH) AFTER	RESISTIVITY (OHM-CM) AFTER	PERCENT CHANGE (%)
263A	2/1/94	LAMINATE 300F/3 TONS 0.045" SHIM 263-1A	0.5	0.043	4.5779161 A	(1TERY #263 6\	4.5779161 ATTERY #263 6V-FULL PB SHEET	ET	
		263.2A	0.49	0.043	4.4863578				
264A	2/4/94	LAMINATE 300F/3 TONS							
		264-1A	0.46	0.034	5.3265401	5.3265401 MAKE BATTERY #2644V	Y #264 4V		
		264-2A	0.41	0.034	4.7475683 3	4.7475683 3STRATE CRACKED	ŒD		
265A	2/4/94	LAMINATE 300F/3 TONS							
		0.031" SHIM		•			Va 390# V		
		265-1A	0.3	0.033		MAKE BATTEHY #205-0V	الم #420-co2 "		
		265-2A	0.28	0.033		BINGCO IN CHINING THE	GENGOLTA		
		265-3A	0.33	0.032		JELAMINATED	AI CORINER		
		265-4A	0.33	0.032	4.0600394	MAKE BALLEHY #265-4V	(Y #Z65-4V		
		265-5A	0.33	0.032	4.0600394	4.0600394 MINATE CRACKED	ŒD		
266A	2/18/94	LAMINATE 300F/3 TONS							
		266-1A	0.36	0.046	3.0811366	0.37	0.045	3.237095363	5.0617284
		266-29A	0.38	0.045	3.3245844	0.48	0.044	4.294917681	29.1866029
		266-3A	0.41	0.046	3.5090722	0.84	0.045	7.349081365	109.430894
		266-4A	0.4	0.045	3.4995626	0.46	0.045	4.024496938	15
267A	3-3-94	LAMINATE 300F/3 TONS							*
•		267-1A(C)	0.52	0.039	5.2493438	0.73	0.044	6.531853973	W/ PB SHEET
		267-2A(P)	0.61	0.037	6.4907427	9.0	0.041	5.761474938	:
		267-3A(P)	0.63	0.038	6.5271446	0.55	0.041	5.281352026	
		267-4A(P)	0.45	0.036	4.9212598	0.56	0.041	5.377376608	: :
		267-5A(P)	0.43	0.036	4.7025372	0.56	0.039	5.653139511	I
		267-6A(P)				0.54	0.04	3.31490003	;;;
		267-7A(P)				0.5	0.0	4.921239643	=
		267-8A(C)				4.0 1.0	0.04	3.93/00/014	:
		267-9A(C)				0.37	0.04	3.641/32263 F 080302862	=
		267-10A(C)				0.53	0.041	5.0693026606	=
		267-11A(C)				0.56	0.041	5.37737303	4 86486486
		267-12A	0.45	0.036	4.9212598	0.44	0.037	4.00104/202	6 97674419
		267-13A	0.43	0.036	4.7025372	0.46	0.036	5.030021172	0.3707415
268A	3-3-94	LAMINATE 300F/3 TONS							
		268-1A	0.57	0.042	5.3430821	99.0	0.045	5.774278215	W/PB SHEET
_									

PERCENT	CHANGE	(%)	2	=	:	-	IINATED, PB SHE	:	=		:	=	1.48601399	14.0151515		25	36.3636364	23.6363636	66.6666667		-62,7659574	18 9320388		10	31,3962873		5.40540541	-8.82352941	66.7346939	-7.77338603		100.493827	269696.96	19.444444	13.8888889		141.335045	111.764706	66.6666667	43.9683586		209.52381	227.683516
RESISTIVITY	(OHM-CM)	W-IEH	5.5631633	4.964053406	4.878466279	5.193499749	4.019028871	3.772965879	4.017354973		3.772965879	8.223972003	4.831782391	5.010737294		11.81102362	8.436445444	9.561304837	11.24859393		7.655293088	17 53758053		9 623797025	13.87326584		7,677165354	6.102362205	8.464566929	6.263421618		8.457276174	9.139482565	6.046119235	5.764904387		9.026310736	7.086614173	6.241597849	4.993278279	01010	6/6/glg.cg	66.72894702
THICKNESS	(INCH)	Arleh	0.046	0.046	0.046	0.047	0.048	0.048	0.049		0.048	0.045	0.044	0.044		0.027	0.028	0.028	0.021		0.018	0.000		0.018	0.021		0.02	0.02	0.05	0.022		0.027	0.028	0.028	0.028		0.041	0.04	0.041	0.041		0.054	0.059
RESISTANCE	(OHM)	ATIEH 6	0.65	0.58	0.57	0.62	0.49	0.46	0.5		0.46	0.94	0.54	0.56		0.81	9.0	0.68	9.0		0.35	98 0	PLASTIC CHACKED	0.44	0.74		0.39	0.31	0.43	0.35		0.58	0.65	0.43	0.41		0.94	0.72	0.65	0.52		ກ ່	10
~	(OHM-CM)		5.2493438	4.7423049	4.3843951	5.3149606				ISTERING			4.7610328	4.3947995		9.4488189	6.1867267	7.7334083	6.7491564		20 55993	14 745884		8 7489064	10.558339		7 2834646	6.6929134	5.076668	6.7913386		4.2182227	4.640045	5.0618673	5.0618673		3.7401575	3.3464567	3.7449587	3.4683165		21.199273	20.363834
Ė	(INCH)		0.045	0.044	0.044	0.04				MOVED FOR Q.C. DUE TO BLISTERING			0.043	0.043		0.025	0.028	0.028	0.021		0.018	0.000	0.02	8100	0.018		0 0	20:0	0.019	0.02		0.028	0.028	0.028	0.028		0.04	0.04	0.041	0.042		0.052	0.058
RESISTANCE	(MHO)		9.0	0.53	0.49	0.54				MOVED FOR			0.52	0.48		9.0	0.44	0.55	0.36		0 94	10:00 10:00	0.024		5.0		0.37	0.34	0.245	0.345		0.3	0.33	0.36	0.36		0.38	0.34	0.39	0.37		89.	က
	MATERIAL	COMPOSITION	268-2A	268-3A	268-4A	268-5A	268-6A	268·7A	268-8A	268·9A	268-10A	268 11A	268·12A	268-13A	LAMINATE 300F/3 TONS	269-1A	269-2A	269·3A	269-4A	I AMINATE 300E/3 TONS	270-1A	27.0.72	270-2A	220.44	270-7A	I AMINIATE 300E/3 TONS	271-1A	271.2A	271-3A	271-4A	LAMINATE 300F/3 TONS	272-1A	272-2A	272-3A	272-4A	LAMINATE 300F/3 TONS	273-1A	273-2A	273-3A	273-4A	LAMINATE 300F/3 TONS	274-1A	274-2A
	TEST	DAIE													3/3/94					3/4/04						3/10/04					3/17/94					3/17/94					4/28/94		
	SAMPLE	NUMBEH													269A					970A						971A	-				272A					273A					274A		

LAMINATE 300F/3 TONS 2.65 0.044 2.75-1A 2.65 0.042 18.278965 50 0.044 447.387284 245.2044 447.387284 247.58245 276-1A 277-2A 277-2A 277-3A 278-2A 278-3A 288-3A 28	TEST DATE	RE MATERIAL COMPOSITION	RESISTANCE (OHM) BEFOPE	RESISTANCE THICKNESS (OHM) (INCH) BEFORE BEFORE	RESISTIVITY (OHM-CM) BEFORE	RESISTANCE (OHM) AFTER	THICKNESS (INCH) AFTER	RESISTIVITY (OHM-CM) AFTER	PERCENT CHANGE (%)
2.65 0.044 23.711525 24.5 0.044 447.397566 8 1.95 0.042 18.278965 50 0.044 447.3872584 2 3.2 0.06 24.934383 5 0.064 41.83070866 3.8 0.047 4.8584362 DR4V BATTERY 277-1C NA 0.041 NA DRAV BATTERY 277-2C NA 0.042 NA Hav BATTERY 277-1C NA 0.039 NA Hav BATTERY 279-1C NA 0.039 NA DRAV BATTERY 279-1C NA 0.039 NA DRAV BATTERY 279-1C NA 0.039 NA DRAV BATTERY 279-2C NA 0.039 NA DRAV BATTERY 279-3C NA 0.039 S.1294165 8.1 0.047 79.72440945 0.31 0.039 3.1294165 8.1 0.037 29.28154501 0.28 0.035 3.3745782 2.3 0.037 24.47329219	1								
1.95 0.042 18.278965 50 0.044 447.3872584 2 3.2 0.06 20.997375 6 8 0.064 41.83070866 3.8 0.047 4.8584352 DR 4V BATTERY 277-1 C NA 0.042 NA DR 4V BATTERY 277-2 C NA 0.042 NA DR 4V BATTERY 277-6 C NA 0.042 NA DR 4V BATTERY 278-6 C NA 0.042 NA DR 4V BATTERY 278-6 C NA 0.042 NA DR 4V BATTERY 278-6 C NA 0.042 NA DR 4V BATTERY 279-1 C NA 0.042 NA DR 4V BATTERY 279-6 C NA 0.042 NA DR 4V BATTERY 279-6 C NA 0.039 NA DR 4V BATTERY 279-1 C NA 0.039 NA DR 4V BATTERY 279-6 C		LAMINATE 300F/3 TONS 275-1A	2.65	0.044	23.711525	24.5	0.044	219.2197566	824.528302
3 2 0.06 20.997375 6 8 0.064 41.83070866 3 8 0.062 31.7500635 2 3.0 6 6 2 4.934383 5 0.062 31.7500635 2 3 6 8 0.047 4.8584352 DR4V BATTERY 277-1 C NA 0.042 NA HGV BATTERY 277-2 C NA 0.042 NA HGV BATTERY 277-2 C NA 0.039 NA HGV BATTERY 278-1 C NA 0.042 NA DR4V BATTERY 278-1 C NA 0.042 NA HGV BATTERY 279-2 C NA 0.039 3.1294165 8.1 0.044 79.72440945 0.31 0.039 3.1294165 8.1 0.037 24.47329219		275-2A	1.95	0.042	18.278965	50	0.044	447.3872584	2347.55245
3 2 0 0 0 6 20.997375 6 8 0 0 0 6 4 11.83070866 3 8 0 0 6 24.934383 5 0 0 6 2 31.7500635 2 NA 0.041 NA 14.8584352 18 4V BATTERY 277-1 C NA 0.042 NA 18.6V BATTERY 277-2 C NA 0.042 NA 18.6V BATTERY 277-6V C NA 0.039 NA 18.6V BATTERY 278-1 C NA 0.039 NA 18.6V BATTERY 279-2 C NA 0.039 NA 18.6V BATTERY 279-2 C NA 0.039 NA 18.6V BATTERY 279-6V C NA 19.7244657 2.75 0.037 29.7440945 0.31 0.039 3.1294165 8.1 0.037 24.47329219								1	
0.58 0.047 4.8584352 DR 4V BATTERY 277-1C NA 0.041 NA DR 4V BATTERY 277-2C NA 0.042 NA R6V BATTERY 278-1C NA 0.039 NA R6V BATTERY 278-1C NA 0.039 NA BRAV BATTERY 279-1C NA 0.039 NA DR 4V BATTERY 279-1C NA		LAMINATE 300F/3 TONS	c	90	376700 00	æ	0.064	41 83070866	99.21875
0.58 0.047 4.8584352 DR 4V BATTERY 277-1C NA 0.042 NA HR 6V BATTERY 277-2C NA 0.042 NA HR 6V BATTERY 277-6V C NA 0.042 NA HR 6V BATTERY 278-1C NA 0.039 NA HR 6V BATTERY 278-6V C NA 0.042 NA JR 4V BATTERY 279-6V C NA 0.039 NA JR 4V BATTERY 279-1C NA 0.039 NA JR 4V BATTERY 279-6V C NA 0.039 NA JR 4V BATTERY 279-6V C NA 10.039 NA JR 4V BATTERY 279-6V C NA 10.037 29.26154501 0.38 0.035 4.2744657 2.75 0.037 29.28154501 0.28 0.035 3.1294165 8.1 0.04 79.72440945 0.28 0.035 3.1496063 3 0.037 24.47329219 0.3 3.3745782 2.3 0.037 24.47329219		276.2A	3 8 3 8	90 0	24.934383	ည်	0 062	31.7500635	27.3344652
NA 0.047 4.8584352									
0.58 0.047 4.8584352 DR 4V BATTERY 277-1C NA 0.041 NA PR 6V BATTERY 277-6V C NA 0.042 NA PR 6V BATTERY 278-1C NA 0.039 NA PR 6V BATTERY 278-1C NA 0.039 NA PR 6V BATTERY 278-1C NA 0.039 NA PR 6V BATTERY 279-1C NA 0.039 NA DR 4V BATTERY 279		LAMINATE 300F/3 TONS							
NA 0.041 NA) H 4V BATTERY 277-2 C NA 0.042 NA H 6V BATTERY 277-6V C NA 0.039 NA H 6V BATTERY 278-1 C NA 0.039 NA J 7 4V BATTERY 279-1 C NA 0.039 NA J 7 4V BATTERY 279-2 C NA 0.039 NA J 7 4V BATTERY 279-2 C NA 0.039 NA J 7 4V BATTERY 279-2 C NA 0.039 NA J 7 4V BATTERY 279-2 C NA 0.039 NA J 7 4V BATTERY 279-2 C NA 0.039 NA J 7 4V BATTERY 279-2 C NA 0.039 NA J 7 4V BATTERY 279-2 C NA 0.039 NA J 7 4V BATTERY 279-2 C NA 0.039 NA J 7 4V BATTERY 279-2 C NA 0.039 NA J 7 4V BATTERY 279-2 C NA 0.039 NA J 7 4V BATTERY 279-2 C NA 0.039 NA J 7 4V BATTERY 279-2 C NA 0.039 NA J 7 4V BATTERY 279-2 C NA 0.039 NA J 7 4V BATTERY 279-2 C NA 0.039 NA J 7 4V BATTERY 279-2 C NA 0.039 NA J 7 4V BATTERY 279-2 C NA 0.039 NA J 7 4V BATTERY 279-2 C NA 0.039 NA J 7 4V BATTERY 279-2 C NA 0.039 NA J 7 4V BATTERY 279-1 C NA 0.039 NA J 7 4V BATTERY 279-1 C NA 0.039 NA J 7 4V BATTERY 279-1 C NA 0.039 NA J 7 4V BATTERY 279-1 C NA 0.039 NA J 7 4V BATTERY 279-1 C NA 0.039 NA J 7 4V BATTERY 279-1 C NA 0.039 NA J 7 4V BATTERY 279-1 C NA 0.039 NA J 7 4V BATTERY 279-1 C NA 0.039 NA J 7 4V BATTERY 279-1 C NA 0.039 NA J 7 4V BATTERY 279-1 C NA 0.039 NA J 7 4V BATTERY 279-1 C NA 0.039 NA J 7 4V BATTERY 279-1 C NA 0.039 NA J 7 4V BATTERY 279-1 C NA 0.039 NA J 7 4V BATTERY 279-1 C NA 0.039 NA J 7 4V BATTERY 279-1 C NA 0.039 NA J 7 4V 7		277-1A	0.58	0.047	4.8584352	JR 4V BATTER	Y 277-1 C		
NA 0.042 NA 'R 6V BATTERY 277-6V C NA 0.042 NA 'R 6V BATTERY 278-1 C NA 0.039 NA 'R 6V BATTERY 278-1 C NA 0.039 NA OR 4V BATTERY 279-1 C NA 0.039 NA OR 4V BATTERY 279-2 C NA 0.039 OR 4V BATTERY 279-2 C NA 0.035 A.1294165 8.1 0.037 29.26154501 0.3 0.035 3.1496063 3 0.037 24.47329219		277-2A	Ϋ́	0.041	A A	JR 4V BATTER	Y 277-2 C		
NA 0.042 NA " " " NA 0.039 NA 'P 6V BATTERY 278-1 C NA 0.039 NA 'P 6V BATTERY 278-6V C NA 0.039 NA DR 4V BATTERY 279-1 C NA 0.039 NA DR 4V BATTERY 279-2 C NA 0.039 NA DR 4V BATTERY 279-2 C NA 0.039 NA DR 4V BATTERY 279-6V C NA 0.039 NA BATTERY 279-6V C NA 0.039 NA BATTERY 279-6V C NA 0.039 NA BATTERY 279-1 C NA 0.039 NA DR 4V BATTERY 279-1 C N		277-3A	Υ V	0.042	Y Y	IR 6V BATTERY	7 277-6V C		
NA 0.04 NA JR 4V BATTERY 278-1 C NA 0.039 NA 'H 6V BATTERY 278-6V C NA 0.042 NA JR 4V BATTERY 279-1 C NA 0.039 NA JR 4V BATTERY 279-2 C NA 0.039 NA JR 4V BATTERY 279-2 C NA 0.039 NA JR 4V BATTERY 279-6V C NA 0.039 NA JR 4V BATTERY 279-6V C NA 0.039 NA JR 4V BATTERY 279-6V C NA 0.039 NA 'H 6V BATTERY 279-8C C		277-4A	ΑN	0.042	A A	=			
NA 0.039 NA 'R 6V BATTERY 278-6V C NA 0.039 NA 'R 6V BATTERY 278-6V C NA 0.042 NA 3R 4V BATTERY 279-1 C NA 0.039 NA 3R 4V BATTERY 279-2 C NA 0.039 NA 'R 6V BATTERY 279-2 C NA 0.039 NA 'R 6V BATTERY 279-6V C NA 0.039 NA 3R 4V BATTERY 279-6V C NA 0.039 NA 3R 4V BATTERY 279-2 C NA 0.039 NA 'R 6V BATTERY 279-6V C NA 0.039 NA 'R 79.72440945 0.38 0.035 4.2744657 2.75 0.037 29.26154501 0.39 0.035 3.1496063 3 0.037 24.47329219 0.3 0.035 3.3745782 2.3 0.037 24.47329219									
NA 0.039 NA 'REVBATTERY 278-6V C NA 0.042 NA DRAV BATTERY 279-1 C NA 0.039 NA DRAV BATTERY 279-2 C NA 0.039 NA CRAVE BATTERY 279-6 C NA 0.039 NA CRAVE BATTERY 279-6 C NA 0.039 NA CRAVE BATTERY 279-6 C NA 0.039 NA CRAVE BATTERY 279-2 C NA 0.039 NA CRAVE BATTERY 279-1 C NA 0.039 NA 0.039 NA 0.039 NA 0.037	□	AMINATE 300F/3 TONS	4	5	ΔIA	AV BATTER	Y 278-1 C		
NA 0.04 NA " " NA 0.042 NA DR 4V BATTERY 279-1 C NA 0.039 NA DR 4V BATTERY 279-2 C NA 0.039 NA BATTERY 279-6 C NA 0.039 NA ROWN BATTERY 279-6 C NA 0.039 NA 1149606 8 1 0.037 29.26154501 0.3 0.035 3.149606 3 3.0037 24.47329219		278-12	Z Z	0.03	Z Z	IR 6V BATTER)	7 278-6V C		
NA 0.042 NA DR 4V BATTERY 279-1 C NA 0.039 NA DR 4V BATTERY 279-2 C NA 0.039 NA HeV BATTERY 279-6 C NA 0.039 NA HeV BATTERY 279-6 C NA 0.035 4.2744657 2.75 0.037 29.26154501 0.38 0.035 3.1294165 8.1 0.04 79.72440945 0.39 0.035 3.3745782 2.3 0.037 24.47329219		278-3A	¥ ¥	0.04	Y Y	:	_		
NA 0.042 NA)R 4V BATTERY 279-1 C NA 0.039 NA R 4V BATTERY 279-2 C NA 0.039 NA R 6V BATTERY 279-6 V C NA 0.039 NA R 6V BATTERY 279-6 V C NA 0.039 NA R 6V BATTERY 279-6 V C NA 0.035 4.2744657 2.75 0.037 29.26154501 0.31 0.039 3.1294165 8.1 0.04 79.72440945 0.28 0.035 3.1496063 3 0.037 24.47329219									-
NA 0.042 NA 3H4VBAILEHY 279-1 C NA 0.039 NA 19R4VBATTEHY 279-2 C NA 0.039 NA H6VBATTEHY 279-6 C NA 0.039 NA H6VBATTEHY 279-6 C NA 0.035 4.2744657 2.75 0.037 29.26154501 0.31 0.039 3.1294165 8.1 0.04 79.72440945 0.28 0.035 3.3745782 2.3 0.037 24.47329219		AMINATE 300F/3 TONS							
NA 0.039 NA 7H4V BATTERY 279-6 V C NA 0.039 NA HeV BATTERY 279-6 V C NA 0.039 NA " " " 29.26154501 0.38 0.035 4.2744657 2.75 0.037 29.26154501 0.31 0.039 3.1294165 8.1 0.04 79.72440945 0.28 0.035 3.3745782 2.3 0.037 24.47329219		279-1A	Y :	0.042	ď :	OH 4V BALLEH	17 279-1 C		
0.38 0.035 4.2744657 2.75 0.037 29.26154501 0.31 0.039 3.1294165 8.1 0.04 79.72440945 0.28 0.035 3.3745782 2.3 0.037 24.47329219		2/9-2A	¥	0.038	ζ Φ	IB 6V BATTER	Y 279-6V C		
0.38 0.035 4.2744657 2.75 0.037 29.26154501 0.31 0.039 3.1294165 8.1 0.04 79.72440945 0.28 0.035 3.1496063 3 0.037 31.92168546 0.3 0.035 3.3745782 2.3 0.037 24.47329219		279-4A	Y Z	0.039	N V	:	2		
0.38 0.035 4.2744657 2.75 0.037 29.26154501 0.31 0.039 3.1294165 8.1 0.04 79.72440945 0.28 0.035 3.1496063 3 0.037 31.92168546 0.3 0.035 3.3745782 2.3 0.037 24.47329219									
0.38 0.033 4.2/4405/ 2.75 0.037 2.7240945 0.31 0.039 3.1294165 8.1 0.04 79.7240945 0.28 0.035 3.1496063 3 0.037 31.92168546 0.3 0.035 3.3745782 2.3 0.037 24.47329219		AMINATE 300F/3 TONS	o c	300	A 9744657	9 75	0.037	29 26154501	584.566145
0.28 0.035 3.1496063 3 0.037 31.92168546 0.3 0.035 3.3745782 2.3 0.037 24.47329219		A1-082	0.30	0000	4.5744037) + ; a	700	79 72440945	2447 58065
0.3 0.035 3.3745782 2.3 0.037 24.47329219		280-2A	0.0	0.039	3.1294103		0.037	31.92168546	913,513514
0.3 0.035 0.3745702 2.3 0.000		280-38	0.20	0.000	0.1430000		0.037	24 47329219	625,22525
		280-4A	6.0	0.035	3.3/45/82	, y	0.037	24.47.02.92.19	020.22.020
		281-1A	0.43	0.033	5.1300406	OR 4V BATTEF	1Y 281-1 C 1Y 281-2 C		
0.43		VC. 100	-)	7.01.01	i	1 1		

TEST	MATERIAL	RESISTANCE (OHM)	THICKNESS (INCH)	RESISTIVITY (OHM-CM)	RESISTANCE (OHM)	THICKNESS (INCH)	RESISTIVITY (OHM-CM)	PERCENT CHANGE (%)
	COMPOSITION	ALC.		9 4738305 P	2 4738306 ID 6V BATTERY 281.6V C	AF1EN 281.6V C	5	7,8/
	281-3A 281-4A	0.36	0.034	4.1685966	יייייייייייייייייייייייייייייייייייייי	0 00-107		
	LAMINATE 300F/3 TONS							
	282-1A	0.4	0.035	4.4994376	4.4994376 JR 4V BATTERY 282-1 C	/ 282-1 C		
	282-2A	0.42	0.037	4.469036	4.469036 JR 4V BATTERY 282-2 C	/ 282-2 C		
	282-3A	0.38	0.036	4.1557305	4.1557305 4R 6V BATTERY 282-6V C	282-6V C		
	282-4A	0.4	0.036	4.3744532	=			
	LAMINATE 300F/3 TONS							1
	283-1A	0.52	0.025	8.1889764	2.85	0.025	44.88188976	448.076923
	283-2A	0.5	0.025	7.8740157	2.35	0.025	37.00787402	370
	283-3A	0.45	0.025	7.0866142	3.3	0.025	51.96850394	633.33333
	283-4A	0.36	0.024	5.9055118	2.5	0.024	41.01049869	594.44444
	LAMINATE 300F/3 TONS						1	9
	284-1A	9.0	0.041	4.8012291	-	0.041	10.56270405	021
	284-2A	0.54	0.041	5.1853274	4.	0.041	13.44344152	159.259259
	284-3A	0.55	0.041	5.281352	1.6	0.041	15.36393317	190.909091
	284-4A	0.7	0.04	6.8897638	1.6	0.041	15.36393317	122.9965.16
	LAMINATE 300F/3 TONS							
	285-1A	0.89	0.045	7.7865267	7.7865267 OR 4V BATTERY 285-1	٦Y 285-1		
	285-2A	1.15	0.046	9.8425197				
	285-3A	1.25	0.048	10.252625				
	285-4A	1.35	0.047	11.308427				
	LAMINATE 300F/3 TONS							
	286-1A	-	0.047	9.2142737	DON'T USE			
	286-2A	1.25	0.049	10.043387	10.043387 OR 4V BATTERY 286-2	۲۲ 286-2		
	286-3A	1.05	0.05	8.2677165				
	286-4A	1.25	0.051	9.6495291	DON'T USE			
	LAMINATE 300F/3 TONS							
	287-1A	0.9	0.047	7.5389512	DONT USE			
	287-2A	9.0	0.043	5.4934994	OR 4V BATTERY 287-2	RY 287-2		
	287-3A	0.595	0.044	5.3239084	OR 4V BATTERY 287-3	RY 287-3		
	287-4A	0.53	0.043	4.8525911				
	LAMINATE 300F/3 TONS			1000000	T A CITOCOLIO	CDACKED		
	288-1A	0.66	0.041	6.33/6224	6.3376224 E, SUBSTHATE CHACKED	CHACKED		

							- 1												
1Y 288-2		1, 289-1						RY 290-1	۲۲ 290-6V	=									
OR 4V BATTEF		OR 4V BATTER						OR 4V BATTE	OR 4V BATTEF	=						_			
7.4990626 5.1853274	8.623922	5.511811	5.1181102	5.0893029	5.4133858			14.873141	14.504766	12.847078	12.992126	10.23622	9.6456693	9.1172814	10.360547	9.3738283	9.3738283	9.7487814	10.123735
0.042	0.042	0.04	0.04	0.041	0.04			0.018	0.019	0.019	0.05	0.05	0.02	0.019	0.019	0.021	0.021	0.021	0.021
0.8	0.92	0.56	0.52	0.53	0.55			0.68	0.7	0.62	99.0	0.52	0.49	0.44	0.5	0.5	0.5	0.52	0.54
288-2A 288-3A	288-4A	LAMINATE 300F/3 TONS	289-2A	289-3A	289-4A		LAMINATE 300F/3 TONS	290-1A	290-2A	290-3A	290-4A	290-5A	290-6A	290-7A	290-8A	290-9A	290-10A	290-11A	290-12A
		6/16/94					6/23/94	•											
		289A					A 000							_					
	288-2A 0.8 0.042 288-3A 0.54 0.041	288-2A 0.8 0.042 288-3A 0.54 0.041 288-4A 0.92 0.042	288-2A 0.8 0.042 288-3A 0.54 0.041 288-4A 0.92 0.042 6/16/94 LAMINATE 300F/3 TONS 0.56 0.04	288-2A 0.8 0.042 288-3A 0.54 0.041 288-4A 0.92 0.042 6/16/94 LAMINATE 300F/3 TONS 0.56 0.04 289-1A 0.55 0.04	288-2A 0.8 0.042 288-3A 0.54 0.041 288-4A 0.92 0.042 6/16/94 LAMINATE 300F/3 TONS 289-1A 0.56 0.04 289-2A 0.55 0.04 289-3A 0.53 0.041	288-2A 0.8 0.042 288-3A 0.54 0.041 288-4A 0.92 0.042 289-1A 0.92 0.042 289-1A 0.56 0.04 289-1A 0.56 0.04 289-3A 0.55 0.041 289-3A 0.55 0.04	288-2A 0.8 0.042 288-3A 0.54 0.041 288-4A 0.92 0.042 289-4A 0.92 0.042 289-1A 0.56 0.04 289-2A 0.52 0.04 289-3A 0.53 0.041 289-4A 0.55 0.04	288-2A 0.8 0.042 7 288-3A 0.54 0.041 5 288-4A 0.92 0.042 5 288-4A 0.92 0.042 5 289-4A 0.55 0.04 6 289-3A 0.55 0.04 6 289-4A 0.55 0.04 6	288-2A 0.8 0.042 7 288-3A 0.54 0.041 5 288-4A 0.92 0.042 6 288-4A 0.92 0.042 6 289-1A 0.55 0.04 5 289-3A 0.55 0.04 5 289-3A 0.55 0.04 5 289-3A 0.55 0.04 5	288-2A 0.8 0.042 7 288-3A 0.54 0.041 5 288-4A 0.92 0.042 288-4A 0.92 0.042 289-1A 0.56 0.04 289-3A 0.55 0.04 8 289-1A 0.55 0.04 8	288-2A 0.8 0.042 7 288-3A 0.54 0.041 5 288-4A 0.92 0.042 6 288-4A 0.92 0.042 6 289-1A 0.55 0.04 5 289-3A 0.55 0.04 5 289-3A 0.55 0.04 5 289-3A 0.55 0.04 5 290-1A LAMINATE 300F/3 TONS 0.68 0.018 1 290-2A 0.62 0.019 1	288-2A 0.8 0.042 7 288-3A 0.54 0.041 5 288-4A 0.92 0.042 6 288-4A 0.92 0.042 6 289-1A 0.55 0.04 5 289-3A 0.55 0.04 5 289-3A 0.55 0.04 5 290-2A 0.55 0.04 5 290-3A 0.55 0.019 1 290-3A 0.66 0.02 1	288-2A 0.8 0.042 7 288-3A 0.54 0.041 5 288-4A 0.92 0.042 6 288-4A 0.92 0.042 6 289-1A 0.56 0.04 5 289-3A 0.53 0.041 5 289-3A 0.55 0.04 5 289-4A 0.55 0.04 5 290-2A 0.55 0.04 5 290-3A 0.55 0.019 1 290-3A 0.66 0.02 1 290-3A 0.66 0.02 1	288-2A 0.8 0.042 7 288-3A 0.54 0.041 5 288-4A 0.92 0.042 6 288-4A 0.92 0.042 6 289-1A 0.56 0.04 5 289-3A 0.55 0.04 5 289-4A 0.55 0.04 5 290-2A 0.55 0.019 1 290-3A 0.62 0.019 1 290-3A 0.62 0.019 1 290-5A 0.52 0.02 1 290-5A 0.65 0.02 1	288-2A 0.8 0.042 7 288-3A 0.54 0.041 5 288-4A 0.92 0.042 6 288-4A 0.92 0.042 6 289-1A 0.56 0.04 5 289-3A 0.55 0.04 5 289-3A 0.55 0.04 5 290-3A 0.68 0.019 1 290-3A 0.66 0.02 1 290-5A 0.44 0.019 6	288-2A 0.8 0.042 7 288-3A 0.54 0.041 5 288-4A 0.92 0.042 6 288-4A 0.92 0.042 6 289-1A 0.56 0.04 5 289-3A 0.55 0.04 5 289-3A 0.55 0.04 5 290-3A 0.55 0.019 1 290-3A 0.62 0.019 1 290-3A 0.65 0.019 1 290-5A 0.52 0.02 1 290-5A 0.44 0.019 6	288-2A 0.8 0.042 7 288-3A 0.54 0.041 5 288-4A 0.92 0.042 6 288-4A 0.92 0.042 6 289-1A 0.56 0.04 5 289-3A 0.55 0.04 5 289-3A 0.55 0.04 5 289-4A 0.55 0.04 5 290-2A 0.55 0.019 1 290-2A 0.66 0.02 1 290-5A 0.65 0.019 1 290-6A 0.49 0.002 8 290-8A 0.5 0.019 1 290-8A 0.5 0.019 1	288-2A 0.8 0.042 7 288-3A 0.54 0.041 5 288-4A 0.92 0.042 6 288-4A 0.92 0.042 6 289-1A 0.56 0.04 5 289-3A 0.55 0.04 5 289-3A 0.55 0.04 5 289-3A 0.55 0.04 5 290-2A 0.55 0.019 1 290-2A 0.66 0.02 1 290-6A 0.44 0.019 6 290-8A 0.5 0.05 1 290-8A 0.5 0.05 1	288-2A 0.8 0.042 7 288-3A 0.54 0.041 5 288-4A 0.92 0.042 8 288-4A 0.92 0.042 8 289-1A 0.55 0.04 5 289-2A 0.53 0.041 5 289-3A 0.53 0.041 5 289-3A 0.55 0.04 5 290-3A 0.55 0.04 5 290-3A 0.66 0.02 1 290-3A 0.66 0.02 1 290-5A 0.65 0.019 1 290-8A 0.5 0.019 2 290-8A 0.5 0.019 2 290-9A 0.5 0.019 2 290-9A 0.5 0.019 2 290-10A 0.52 0.021 8

APPENDIX B

DELIVERABLE DATA

BUILD ID

WPG-6

Description 12 V Bipolar Battery

ASSEMBLY

Substrate Type	5.9375" X 9.1875" X 0.012" tin-lead alloy sheet
Grid Type	0.016" thick metallic screen soldered to the substrate
Separator Type, Dimensions	5.125" X 8.562" X 0.029"
Positive Paste Density	3.35 g/cc
Negative Paste Density	3.75 g/cc

Plate ID	PTE D2		D5		D7		D8		D9		010	NTE D4
Pb Mass (g.)	260.90	158.80		160.20		162.60		158.10		161.60		261.90
AM Mass (g.)	51.70	10	104.30		104.20		106.00		103.50		104.80	
Dry AM (g.)	51.70	52.19	52.11	52.52	51.68	52.92	53.08	52.26	51.24	51.94	52.86	53.40
Sep. Mass (g.)	Cell 1	3.54	Cell 2	3.52	Cell 3	3.53	Cell 4	3.53	Cell 5	3.52	Cell 6	3.51

Termination	Copper stud soldered to terminal electrode	
Containment Type	Solvent bonded ABS. Container core thickness = 0.668"	_
Completed Mass	3.5121 kg	_

FORMATION

Acid Gravity	Chilled 1.265	
% Sodium Sulfate	1.5	
Method of Fill	Vacuum	
Time	27H:55M:04S	
Amps	1.0	
Voltage Limit	16.32	
Amp Hours	20.62	
Watt Hours	311.8	
Internal Resistance	13.5 mΩ	

CYCLING HISTORY

				150	Disc	harge		Recharge					
Cycle	Date	IR (mW)	OCV	Amps	EODV	Ah	Wh	Amps	Vlimit	Ah	Wh	% Rchg	
1	11/15/95	13.5	12.966	21	9.6	0.85	9.6	0.5	15.30	0.935	12.92	110	
2	11/16/95	16.5	NA	21	9.6	0.57	6.4	0.1	14.40	NA	NA	NA	
3	11/20/95	10.5	13.158	21	9.6	2.01	22.8	0.5	14.40	2.211	29.48	110	
4	11/21/95	8.2	13.019	124	7.2	1.44	14.1	0.5	14.40	1.584	21.22	110	
5	11/22/95	8.6	13.05	124	7.2	1.51	14.7	0.5	14.40	1.661	22.24	110	
6	11/30/95	10.0	12.922	21	9.6	1.58	17.9	0.5	14.40	1.738	23.20	110	
7	12/1/95	9.8	13.017	124	7.2	1.23	11.7	0.5	14.40	1.353	18.12	110	
8	12/11/95	8.8	12.84	124	7.2	1.61	15.6	0.5	14.40	1.771	23.42	110	

BUILD ID

WPG-8

Description

24 V Bipolar Battery

ASSEMBLY

Substrate Type	5.9375" X 9.1875" X 0.012" tin-lead alloy sheet
Grid Type	0.016° thick metallic screen soldered to the substrate
Separator Type, Dimensions	5.125" X 8.562" X 0.029"
Positive Paste Density	3.51 g/cc
Negative Paste Density	3.83 g/cc

Plate tO	PTE D54	D14	1	D1	5	D1	7	Dti	3	D2)	D2	1
Pb Mass	258.70	162.90		162.20		161.90		162.80		163.10		162.00	
AM Mass	52.10	10	106.00		105.30		104.70		104.80		105.40		3.60
Dry AM	52.10	52.71	53.29	52.41	52.89	52.65	52.05	52.33	52.47	52.37	53.03	51.85	51.75
Sep. Mass	Cell 1	3.52	Cell 2	3.53	Cell 3	3.48	Cell 4	3.52	Cell 5	3.48	Cell 6	3.47	Cell 7

Plate ID	D2:	2	D23	3	D2	5	D2	5 [DZ	7	NTE D57
Pb Mass	160.40		163.10		160.90		161.90		16	258.50	
AM Mass	103.20		102.00		106.00		101.70		103.30		54.00
Dry AM	52.05	51.15	51.24	50.76	51.22	54.78	50.75	50.95	51.51	51.79	54.00
Sep. Mass	3.49	Cell 8	3.46	Cell 9	3.49	Cell 10	3.50	Cell 11	3.51	Cell 12	3.50

Termination	Copper stud soldered to terminal electrodes
Containment Type	Solvent bonded ABS. Container core thickness = 1.153*.
Containment Mass	5.5360 kg

EORMATION

Acid Gravity	Chilled 1.265	
% Sodium Sulfate	1.5	
Method of Fill	Vacuum	
Time	20H:37M:03S	
Amps	1.0	table to the second sec
Voltage Limit	32.64	
Amp Hours	20.62	
Watt Hours	594.0	
Internal Resistance	14.0 mΩ	

CYCLING HISTORY

				Argii	Disc	narge				Recharge		
Cycle	Date	IR (mW)	OCV	Amps	EODV	Ah	Wh	Amps	Vlimit	Ah	Wh	% Rong
1	1/16/96	14.5	25.80	21	19.2	1.50	31	0.5	30.60	1.65	44	110
	1/16/96	Two shorter	d bipolar el	ectrodes re	moved. Co	ntinue cycli	ng as 20-vo	olt nominal t	attery.		·	
2	1/18/96	17.5	21.60	21	16.0	1.20	20	1.0	25.50	1.32	29	110
3	1/18/96	12.5	21.90	21	16.0	2.29	41	0.1	25.50	2.51	50	110
4	1/19/96	12.5	22.00	124	12.0	1.48	23	0.1	25.50	1.62	32	110
	1/23/96	Two good t	ipolar elec	trodes adde	ed to stack t	o achieve 2	4-volt modu	ile.	1		··········	-
5	1/24/96	17.0	26.10	124	14.4	1.27	23	0.1	30.60	1.39	28	110
6	1/26/96	16.0	26.00	124	14.4	1.24	23	0.1	30.60	1.36	27	110

BUILD ID

WPG-11

Description

12 V Bipolar Battery

ASSEMBLY

Substrate Type	5.9375" X 9.1875" X 0.012" tin-lead alloy sheet
Grid Type	0.016" thick metallic screen soldered to the substrate
Separator Type, Dimensions	5.125" X 8.562" X 0.029"
Positive Paste Density	3.40 g/cc
Negative Paste Density	3.75 g/cc

Plate ID I	PTE D72)66	Ε)67		069	C)64	C)65	NTE D74
Pb Mass (g.)	261.03	160.07		160.71		163.42		163.13		164.39		258.98
AM Mass (q.)	50.97	10	102.23		102.49		102.98		101.27		101.91	
Dry AM (g.)	50.97	51.03	51.20	50.97	51.52	51.23	51.75	50.40	50.87	50.57	51.34	54.32
Sep. Mass (g.) C	ell 1	3.53	Cell 2	3.45	Cell 3	3.48	Cell 4	3.52	Cell 5	3.50	Cell 6	3.48

Termination	Copper stud soldered to terminal electrode							
Containment Type	Solvent bonded ABS. Container core thickness = 0.671".							
Containment Mass	3.4908 kg							

FORMATION

Acid Gravity	Chilled 1.265	
% Sodium Sulfate	1.5	
Method of Fill	Vacuum	
Time		
Amps	1	
Voltage Limit	16.32	
Amp Hours	20.62	
Watt Hours	NA	
Internal Resistance	12 mΩ	

CYCLING HISTORY

					Disc	harge				Recharge	9	
Cycle	Date	IR (mW)	OCV	Amps	EODV	Ah	Wh	Amps	Vlimit	Ah	Wh	% Rchg
1	2/16/96	10.5	13.009	21	9.6	1.1	12.7	0.5	15.30	1.21	16.4	110
2	2/16/96	11.0	13.137	124	7.2	0.72	6.6	0.5	15.30	0.79	10.8	110
3	2/19/96	12.0	12.866	21	9.6	0.71	7.9	0.5	15.30	0.78	10.5	110
	2/26/96	Replaced to	wo shorted	bipolar ele	ctrodes.							
4	2/27/96	11.5	13.200	21	9.6	1.33	12.0	0.5	14.40	1.46	17.0	110
5	2/28/96	11.0	13.005	124	7.2	0.82	7.0	0.5	14.40	0.90	10.0	110

