2022-2023 MP2I

à chercher pour lundi 14/11/2022, corrigé

TD 8:

Exercice 1.

3) L'équation homogène est y'+y=0. Les solutions de l'équation homogène sont donc les $y_{\lambda}: x \mapsto \lambda e^{-x}$. On cherche une solution particulière sous la forme $y_p(x) = a\cos(2x) + b\sin(2x)$ avec $a, b \in \mathbb{R}$, et après résolution, on trouve $a = -\frac{2}{5}$ et $b = \frac{1}{5}$. On a donc

$$S_3 = \{x \mapsto \lambda e^{-x} + \frac{1}{5}(\sin(2x) - 2\cos(2x)), \lambda \in \mathbb{R}\}.$$

7) L'équation est homogène donc une solution particulière est $y_p(x)=0$. Cette équation est équivalente à $y'-\frac{x}{1+x^2}y=0$ car pour $x\in\mathbb{R},$ $1+x^2>0$. On a alors $\int^x\frac{t}{1+t^2}dt=\frac{1}{2}\ln(1+t^2)=\ln(\sqrt{1+t^2})$. On a donc :

$$S_7 = \{x \mapsto \lambda e^{-(-\ln(\sqrt{x^2+1}))}, \lambda \in \mathbb{R}\} = \{x \mapsto \lambda \sqrt{x^2+1}, \lambda \in \mathbb{R}\}.$$

Exercice 5. On utilise les méthodes du cours :

1) L'équation caractéristique associée est $X^2-3X+4=0$. On a $\Delta=9-16=-7=(\sqrt{7}i)^2$. On a donc deux racines complexes conjuguées qui sont $r=\frac{3}{2}\pm i\frac{\sqrt{7}}{2}$.

Pour une solution particulière, puisque 2 n'est pas solution de l'équation caractéristique, on la cherche sous la forme $y_p(x)=Ce^{2x}$ avec $C\in\mathbb{R}$. On a $y_p'(x)=2Ce^{2x}$ et $y_p''(x)=4Ce^{2x}$. En injectant dans l'équation, on trouve donc :

$$4Ce^{2x} - 6Ce^{2x} + 4Ce^{2x} = 3e^{2x} \Leftrightarrow 2Ce^{2x} = 3e^{2x}$$

Puisque $e^{2x} \neq 0$, on en déduit que $C = \frac{3}{2}$. L'ensemble des solutions de l'équation est donc :

$$S_1 = \{ y_{\lambda,\mu} : x \mapsto \lambda e^{-\frac{3}{2}x} \cos\left(\frac{\sqrt{7}}{2}x\right) + \mu e^{-\frac{3}{2}x} \sin\left(\frac{\sqrt{7}}{2}x\right) + \frac{3}{2}e^{2x} \}.$$

- 2) L'équation caractéristique associée est $X^2-4X+4=0$, équivalente à $(X-2)^2=0$. On a donc 2 qui est racine double de l'équation caractéristique. Les solutions de l'équation homogène associée sont donc de la forme $y_{\lambda,\mu}(x)=\lambda xe^{2x}+\mu e^x$ avec $\lambda,\mu\in\mathbb{R}$. Pour une solution particulière, on la cherche sous la forme $y_p(x)=Ce^{-x}$ car -1 n'est pas racine de l'équation caractéristique. Après calcul, on trouve $C=\frac{1}{9}$. L'ensemble des solutions est donc : $\mathcal{S}_2=\{x\mapsto (\lambda x+\mu)e^{2x}+\frac{e^{-x}}{9},\ \lambda,\mu\in\mathbb{R}\}$.
- 3) L'équation caractéristique associée est $X^2+X=0$ qui a -1 et 0 comme racines simples distinctes. On a -1 qui est racine simple de l'équation caractéristique donc on cherche $y_p(x)=Cxe^{-x}$ avec $C\in\mathbb{R}$. On a alors $y_p'(x)=C(1-x)e^{-x}$ et $y_p''(x)=C(-2+x)e^{-x}$. En injectant dans l'équation, on trouve que l'on veut $-2Ce^{-x}+Ce^{-x}+0=3e^{-x}$ et donc que C=-3 convient. On en déduit donc que :

$$S_3 = \{x \mapsto \lambda e^{-x} + \mu - 3xe^{-x}, \ \lambda, \mu \in \mathbb{R}\}.$$

TD 7:

Exercice 14. Soit $g: \mathbb{R} \to \mathbb{R}$ continue. Pour x fixé, la fonction $t \mapsto \sin(x-t)g(t)$ est continue comme produit et composée de fonctions continues donc f(x) existe.

On a alors par linéarité de l'intégrale que pour $x \in \mathbb{R}$:

$$f(x) = \int_0^x (\sin(x)\cos(t) - \cos(x)\sin(t))g(t)dt = \sin(x)\int_0^x \cos(t)g(t)dt - \cos(x)\int_0^x \sin(t)g(t)dt.$$

Les fonctions $x \mapsto \int_0^x \cos(t)g(t)$ et $x \mapsto \int_0^x \sin(t)g(t)$ sont dérivables comme primitives de fonctions continues. f est donc dérivable comme produit/sommes de fonctions dérivables et pour $x \in \mathbb{R}$:

$$f'(x) = \cos(x) \int_0^x \cos(t)g(t)dt + \sin(x)\cos(x)g(x) + \sin(x) \int_0^x \sin(t)g(t)dt - \cos(x)\sin(x)g(x)$$

$$= \int_0^x (\cos(x)\cos(t) + \sin(x)\sin(t))g(t)dt$$

$$= \int_0^x \cos(x - t)g(t)dt.$$

Exercice 15. On pose $f(x) = \int_{x^2}^{x^3} \frac{1}{\ln(t)} dt$. La fonction $t \mapsto \frac{1}{\ln(t)}$ est continue sur]0,1[et sur $]1,+\infty[$. Pour que l'intégrale existe, il faut donc que x^2 et x^3 soient tous les deux, soit dans]0,1[, soit dans $]1,+\infty[$. Ceci n'est vérifié que pour $x \in]0,1[\cup]1,+\infty[$, ce qui est le domaine de définition de la fonction.

Si on note F une primitive de $t \mapsto \frac{1}{\ln(t)}$ sur]0,1[par exemple, on a alors pour $x \in]0,1[$, $f(x) = F(x^3) - F(x^2)$ qui est dérivable comme composée et différence de fonctions dérivables. On procède de même sur $]1,+\infty[$. On a enfin pour $x \in D_f$:

$$f'(x) = 3x^{2} \frac{1}{\ln(x^{3})} - 2x \frac{1}{\ln(x^{2})} = \frac{x^{2} - x}{\ln(x)} = \frac{x(x-1)}{\ln(x)}.$$

On en déduit que f est croissante sur [0,1] et également croissante sur $[1,+\infty[$.

La fonction $g: t \mapsto \frac{1}{\ln(t)}$ est dérivable sur D_f et $\forall t \in D_f$, $g'(t) = -\frac{1}{t(\ln(t))^2} < 0$. On en déduit que g est décroissante sur]0,1[et sur $]1,+\infty[$. On en déduit que pour $x \in]0,1[$, puisque $x^2 \geq x^3$ que pour $t \in [x^3,x^2]$:

$$\frac{1}{\ln(x^2)} \le \frac{1}{\ln(t)} \le \frac{1}{\ln(x^3)}$$

$$\Rightarrow \int_{x^3}^{x^2} \frac{1}{\ln(x^2)} dt \le \int_{x^3}^{x^2} \frac{1}{\ln(t)} dt \le \int_{x^3}^{x^2} \frac{1}{\ln(x^3)} dt$$

$$\Leftrightarrow \frac{x^2 - x^3}{2\ln(x)} \le -f(x) \le \frac{x^2 - x^3}{3\ln(x)}.$$

On en déduit par théorème des gendarmes que $\lim_{x\to 0} f(x) = 0$. On procède de la même manière (et en utilisant les croissances comparées) pour montrer que $\lim_{x\to +\infty} f(x) = +\infty$.

Exercice 16. Puisque n > 0, d'après les croissances comparées, on a $\lim_{x \to 0^+} f_n(x) = 0$. On en déduit que l'on peut prolonger f_n par continuité en 0 en posant $f_n(0) = 0$. f_n étant continue sur [0,1] par produit de fonctions continues, elle est donc prolongeable en fonction continue sur [0,1] donc l'intégrale existe.

Posons alors pour $\varepsilon \in [0,1]$, $F(\varepsilon) = \int_{\varepsilon}^{1} f_n(x) dx = -\int_{1}^{\varepsilon} f_n(x) dx$. La fonction F est alors continue sur [0,1] (c'est l'opposée de la primitive de f_n qui s'annule en 1). On a donc $F(0) = \lim_{\varepsilon \to 0^+} F(\varepsilon)$. On va alors calculer $F(\varepsilon)$ pour $\varepsilon > 0$. On a par intégration par parties (tout est \mathcal{C}^1 sur $[\varepsilon,1]$ car $\varepsilon > 0$):

$$\begin{split} \int_{\varepsilon}^{1} x^{n} \ln(x) dx &= \left[\frac{x^{n+1}}{n+1} \times \ln(x) \right]_{\varepsilon}^{1} - \int_{\varepsilon}^{1} \frac{x^{n+1}}{n+1} \times \frac{1}{x} dx \\ &= 0 - \frac{\varepsilon^{n+1} \ln(\varepsilon)}{n+1} - \int_{\varepsilon}^{1} \frac{x^{n}}{n+1} dx \\ &= -\frac{\varepsilon^{n+1} \ln(\varepsilon)}{n+1} - \left[\frac{x^{n+1}}{(n+1)^{2}} \right]_{\varepsilon}^{1} \\ &= -\frac{\varepsilon^{n+1} \ln(\varepsilon)}{n+1} - \frac{1}{(n+1)^{2}} + \frac{\varepsilon^{n+1}}{(n+1)^{2}}. \end{split}$$

D'après les croissances comparées, on a donc $\lim_{\varepsilon \to 0^+} F(\varepsilon) = -0 - \frac{1}{(n+1)^2} + 0$. On en déduit finalement que :

$$\int_0^1 x^n \ln(x) dx = -\frac{1}{(n+1)^2}.$$