Lecture 27 - A Brief Discussion of Non-Relational Databases

DSE 511

Drew Schmidt 2022-12-01

Announcements

- Schedule:
 - Dec 1 more databases
 - ∘ Dec 6 course wrapup
- New homework (last one)
 - Assigned now
 - Due Mon Dec 5
 - No homework on last modeule (databases)
- Questions?

What Is a Database?

- "A database is an organized collection of structured information, or data, typically stored electronically in a computer system" Oracle
- Usually referring to a DBMS + its stored data
- Data is usually "tabular", but can form complicated hierarchies

Types of Databases

Relational (tables - SQL)

- MySQL
- PostgreSQL
- SQLite
- Oracle

Non-Relational ("NoSQL")

- MongoDB (document-oriented)
- Redis (key/value)
- Apache Cassandra (columnar)

Relational Databases

- We've seen one example (SQLite)
- They're all very similar

Pros

- Ubiquity
- Data integrity
- SQL is a quasi-standard
- Your favorite language has an interface

Cons

- No table flexibility
 - Can't change columns
 - Can't change types
 - o ...
- Scalability
 - Usually no parallelism
 - Table complexity

A Question

Observation: Relational DB's can maintain complex data relationships ("complexity")

Question: If we just want to "store dataframes", could we use something else?

- Yes
- But you lose SQL (or may as well)
- And you *must* run a server

MongoDB

- The poster-child of NoSQL
- A document DB
 - Data is json-like
 - Fields can change
 - Types can vary
 - Data can change over time!
- Items in the DB are just key/value stores
- "Scales" (in the web sense more next semester)
- Well-supported language bindings

A Note on Terminology

"Shards"

Questions?