

Universidade Tecnológica Federal do Paraná Campus Campo Mourão

Curso: Bacharelado em Ciência da Computação Disciplina: Arquitetura e Organização de Computadores

Prof. Dr. João Fabrício Filho

Os exercícios foram adaptados do livro

Patterson, David A. Hennessy, John L. Organização e Projeto de Computadores. Disponível em: Minha Biblioteca, (5a. edição). Grupo GEN, 2017.

- 1. <§1.6> Suponha que saibamos que uma aplicação que usa dispositivos pessoais móveis e a nuvem seja limitada pelo desempenho da rede. Suponha as situações a seguir e assinale as alternativas verdadeiras:
 - a. Um canal de rede extra é acrescentado entre o dispositivo e a nuvem.
 - b. O software de rede é melhorado, reduzindo assim o atraso na comunicação da rede.
 - c. Mais memória é acrescentada ao computador.

	Assinale as alternativas verdadeiras:		
		O throughput é aumentado somente em a.	
		O tempo de resposta é diminuído somente em b.	
		O tempo de resposta é diminuído somente em a e b.	
		O tempo de resposta é diminuído em a, b e c.	
		O throughput é aumentado em a e c.	
2.		Qual é a principal diferença entre linguagens de alto nível e linguagem de gem(Assembly)?	
3.	<§1.2	- 1.6 > Assinale V(verdadeiro) ou F(falso):	
		Núcleos de processamento adicionais melhoram o throughput da máquina.	
		Segundo a lei de Moore, o número de transistores em circuitos integrados dobraria a cada 2 anos.	
		A lei de Moore acabou quando encontramos uma barreira para escalar a potência dos componentes, por volta do ano de 2005.	
		Alternativas para ganhar desempenho após a barreira da potência incluem a utilização de mais de um núcleo de processamento.	
		A frequência dos processadores continua escalando na mesma proporção que o número de transistores desde que a lei de Moore foi postulada.	
		Quando a frequência de um processador aumenta, o tempo de resposta diminui e o throughput aumenta.	
		Servidores são computadores com alta capacidade e desempenho que oferecem serviços baseados em rede.	
		A cada dois anos, o desempenho dos processadores dobraria, segundo a lei de Moore.	

- 4. <§1.6> Como a escolha do conjunto de instruções (ISA) pode afetar o desempenho do processador, considerando os aspectos físicos dos circuitos e a eficiência das operações definidas no algoritmo?
- 5. <§1.6> Considere uma máquina que executa uma aplicação de transmissão de vídeo com 100 bilhões de instruções em 100 segundos com CPI médio de 2,5. Qual a frequência do processador dessa máquina?
- 6. <§1.6> Considere um programa que possui 70 bilhões de instruções a serem executadas em uma máquina que possui um processador de 2,8 GHz e, na qual, o CPI médio é 2. Em quantos segundos o programa executou nesta máquina?
- <§1.6> Considere duas implementações diferentes da mesma arquitetura do conjunto de instruções. Existem quatro classes de instruções, de acordo com o CPI (classes A, B, C e D).
 - P1 possui frequência de clock de 2,5 GHz e CPIs de 1, 2, 3 e 3 para A,B, C e D, respectivamente.
 - P2 possui frequência de clock de 3 GHz e CPIs de 2, 2, 2 e 2 para A,B, C e D, respectivamente.

Dado um programa com uma contagem de instruções dinâmicas de 1,06E6 divididas em classes das seguintes formas: 10% classe A, 20% classe B, 50% classe C e 20% classe D, responda:

- a. Qual é o CPI global para cada implementação?
- Que implementação é mais rápida? Encontre os ciclos de clock exigidos nos dois casos.
- 8. <§1.6> Um programa com instruções aritméticas (ALU), de acesso à memória (Mem), e de controle (Ctrl) foi executado em um processador. Cada tipo de instrução leva um certo número de ciclos de clock do processador para completar. O número (em milhões) de instruções executadas para o programa, bem como o número de ciclos para as instruções do tipo ALU e Ctrl é apresentado na tabela abaixo.

Classe	Instruções (Em milhões)	Ciclos por instrução
ALU	1900	1
Mem	900	?
Ctrl	600	2

Se o processador tem frequência de clock de 166 MHz, e o programa é executado em 100 segundos, quantos ciclos de clock cada instrução do tipo Mem leva para completar?

9. <§1.6> Um programa com instruções aritméticas (ALU), de acesso à memória (Mem), e de controle (Ctrl) foi executado em um processador. Cada tipo de instrução leva um certo número de ciclos de clock do processador para completar. O número (em milhões) de instruções executadas para o programa, bem como o número de ciclos para as instruções do tipo ALU e Ctrl é apresentado na tabela abaixo.

Classe	Instruções (Em milhões)	Ciclos por instrução
ALU	1900	1
Mem	900	10
Ctrl	600	5

Se o processador possui frequência de clock de 3,5 GHz, em quantos segundos o programa executou?

10. <§1.6> Suponha que o mesmo programa foi executado em duas máquinas diferentes, A e B, que possuem a mesma ISA. Esse programa executa 200 milhões de instruções aritméticas (ALU), 15 milhões de acesso à memória (Mem) e 18 milhões de controle (Ctrl). A frequência da máquina A é 2,5 GHz e da máquina B é de 3 GHz. Considere o CPI dessas instruções em cada máquina como abaixo:

Classe	Α	В
ALU	1	2
Mem	30	15
Ctrl	3	5

- a. Em qual máquina o programa executou mais rápido e quanto mais rápido?
- b. Qual o CPI médio de cada máquina para esse programa?