Homework 3

Mark Schulist

1)

Show that $61 \in (\mathbb{Z}/159\mathbb{Z})^{\times}$. Same as showing (61, 159) = 1.

$$159 = 2 \cdot 61 + 37$$

$$61 = 37 + 24$$

$$24 = 13 + 11$$

$$11 = 2 \cdot 5 + 1$$

$$5 = 5 \cdot 1 + 0$$
(1)

So (61, 159) = 1.

Now find the inverse of 61 in mod 159.

$$61 \cdot z \equiv 1 \mod 159$$

$$61 \cdot z + 159k = 1$$

$$(2)$$

Use extended Euclidean to find k and z.

$$1 = 11 - 2 \cdot 5$$

$$= 11 - 5(13 - 11)$$

$$= 11 - 5 \cdot 13 + 5 \cdot 11$$

$$= 6 \cdot 11 - 5 \cdot 13$$

$$= 6(24 - 13) - 5 \cdot 13$$

$$= 6 \cdot 24 - 13 \cdot 6 - 5 \cdot 13$$

$$= 6 \cdot 24 - 11 \cdot 13$$

$$= 6 \cdot 24 - 11(37 - 24)$$

$$= 6 \cdot 24 - 11 \cdot 37 + 11 \cdot 24$$

$$= 17 \cdot 24 - 11 \cdot 37$$

$$= 17(61 - 37) - 11 \cdot 37$$

$$= 17 \cdot 61 - 17 \cdot 37 - 11 \cdot 37$$

$$= 17 \cdot 61 - 28 \cdot 37$$

$$= 17 \cdot 61 \cdot 28(159 - 2 \cdot 61)$$

$$= 17 \cdot 61 - 28 \cdot 159 + 56 \cdot 61$$

$$= 73 \cdot 61 - 28 \cdot 159$$

So $61^{-1} = 73$ in $\mathbb{Z}/159\mathbb{Z}$.

2)

p is prime. Show that $\phi(p^n) = p^{n-1}(p-1)$.

Proof. Because p is prime, we know that $\phi(p) = p - 1$. In the number system $\mathbb{Z}/p^n\mathbb{Z}$, there are $\frac{p^n}{p} = p^{n-1}$ numbers that share a factor with p^n (the multiples of p). So we need to subtract those from the total quantity of numbers in this number system, which gives us $p^n - p^{n-1}$ numbers that are coprime to p^n . Hence, $\phi(p^n) = p^n - p^{n-1} = p^{n-1}(p-1)$.

3)

3.a)

We need to create a bijection between $(\mathbb{Z}/m\mathbb{Z})_e$ and $(\mathbb{Z}/d\mathbb{Z})^{\times}$. We know $d \mid m, m = de$.

$$\begin{split} f: (\mathbb{Z}/m\mathbb{Z})_e &\to (\mathbb{Z}/d\mathbb{Z})^\times \\ f(x) &= ex \end{split} \tag{4}$$

We can show that f is injective. Suppose $f(x_1) = f(x_2)$. Then

$$ex_1 = ex_2$$

$$dex_1 = dex_2$$

$$mx_1 = mx_2$$

$$x_1 \equiv x_2 \mod m$$
(5)

Now we show that f is surjective. We need to show that given any $y \in (\mathbb{Z}/d\mathbb{Z})^{\times}$, we can find an $x \in (\mathbb{Z}/m\mathbb{Z})_e$ such that f(x) = y.

We know that for any $y \in (\mathbb{Z}/m\mathbb{Z})_e$, (y,m) = e. Hence (y,de) = e and (y,d) = 1 as all common factors must come from e. This means that $y \in (\mathbb{Z}/d\mathbb{Z})^{\times}$, and because $e \mid y$ and m = de, we know that $ye^{-1} \in (\mathbb{Z}/d\mathbb{Z})^{\times}$.

So the (two-sided) inverse of f is $f^{-1}(y) = ye^{-1} \in (\mathbb{Z}/d\mathbb{Z})^{\times}$.

3.b)

We want to show that $m = \sum_{d \perp m} \phi(d)$.

Proof. Given an $a \in (\mathbb{Z}/m\mathbb{Z})_e$, then we know that a is only in this particular set, and no other. If e changes value, then a will no longer be in the set. This is because (m, a) is fixed and will only equal one e.

Hence all of the $(\mathbb{Z}/m\mathbb{Z})_e$ sets (for all possible e) will be pairwise disjoint.

Because they are all pairwise disjoint (they partition the set of all values in $\mathbb{Z}/m\mathbb{Z}$), the union of all $(\mathbb{Z}/m\mathbb{Z})_e = \mathbb{Z}/m\mathbb{Z}$. We can show this is true by showing containment in both directions.

First show that $\mathbb{Z}/m\mathbb{Z} \subset \coprod (\mathbb{Z}/m\mathbb{Z})_e$. Suppose we have an $\alpha \in \mathbb{Z}/m\mathbb{Z}$. Then $\alpha \in (\mathbb{Z}/m\mathbb{Z})_e$ for the value of e that makes $(\alpha, m) = e$. We know that there exists an e where this is true because we are taking the union over all possible values of e (the factors of m).

Now we show that $\coprod (\mathbb{Z}/m\mathbb{Z})_e \subset (\mathbb{Z}/m\mathbb{Z})$. For any $\beta \in (\mathbb{Z}/m\mathbb{Z})_e$, we know that $\beta \in \mathbb{Z}/m\mathbb{Z}$ as β must be in the set $\{0, 1, ..., m-1\}$ which is the same as $\mathbb{Z}/m\mathbb{Z}$.

Hence:

$$\bigsqcup_{e} (\mathbb{Z}/m\mathbb{Z})_{e} = \mathbb{Z}/m\mathbb{Z}$$

$$\implies \sum_{e} |(\mathbb{Z}/m\mathbb{Z})_{e}| = m$$
(6)

We know that $(\mathbb{Z}/d\mathbb{Z})^{\times} \hookrightarrow (\mathbb{Z}/m\mathbb{Z})_e$ and that $\phi(d) = |(\mathbb{Z}/d\mathbb{Z})^{\times}|$. Therefore, if we add $\phi(d)$ for all d that divide m, we will get the same value as adding $|(\mathbb{Z}/m\mathbb{Z})_e|$ for all e, which is the same as m.

Hence:

$$m = \sum_{d \mid m} \phi(d) \tag{7}$$

4)

Given p is an odd prime, show that

$$1^{2} \cdot 3^{2} \cdot \dots \cdot (p-2)^{2} \equiv (-1)^{\frac{p+1}{2}} \mod p$$

$$2^{2} \cdot 4^{2} \cdot \dots \cdot (p-1)^{2} \equiv (-1)^{\frac{p+1}{2}} \mod p$$
(8)

Proof. We can start with the odd case. By the definition of squaring numbers, we can rewrite the LHS as:

$$(1 \cdot 3 \cdot 5 \cdot \ldots \cdot (p-2))(1 \cdot 3 \cdot 5 \cdot \ldots \cdot (p-2)) \tag{9}$$

And then further rearrange as shown below, using the fact that $-p(-a) \equiv a \mod p$.

$$(1 \cdot 3 \cdot 5 \cdot \dots \cdot (p-2))((-1)(p-1) \cdot (-1)(p-3) \cdot \dots \cdot (-1)4 \cdot (-1)2) \tag{10}$$

We can group the terms together to get in a form where we can apply Wilson's Theorem.

$$\underbrace{(1 \cdot 2 \cdot 3 \cdot \dots \cdot (p-2)(p-1))}_{-1})(-1)^{\frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{2}}(-1) \operatorname{mod} p$$

$$\equiv (-1)^{\frac{p+1}{2}} \operatorname{mod} p$$
(11)

The even case is nearly identical:

$$(2 \cdot 4 \cdot 6 \cdot \dots \cdot (p-3)(p-1))((-1)(p-2) \cdot (-1)(p-4) \cdot \dots \cdot (-1)3 \cdot (-1)1) \equiv (-1)^{\frac{p-1}{2}}(-1) = (-1)^{\frac{p+1}{2}}$$

5)

p is an odd prime.

5.a)

Show that $x^2 = 0$ has one solution in $\mathbb{Z}/p\mathbb{Z}$.

Proof. We know that a^2 has an inverse if and only if $a^2 \neq 0$ in $\mathbb{Z}/p\mathbb{Z}$. We are given that $a^2 \equiv 0 \mod p$, so a does not have an inverse. Because a^2 does not have an inverse, the only way to get $a^2 = 0$ is if a = 0, which is the single solution.

5.b)

 $a \in (\mathbb{Z}/p\mathbb{Z}), a \in \{1, ..., p-1\}$. We want to show that if $x^2 = a$ has a solution mod p, then it has exactly 2 solutions

Proof. We can first show that x has at least 2 solutions.

If x is a solution to $x^2 \equiv a$, then p - x is also a solution.

$$(p-x)^2 = p^2 - 2px + x^2 \equiv x^2 \mod p = a \tag{13}$$

Now we show that if there is a solution, there are only 2 solutions.

Assume that $y \neq x$ and $x^2 = y^2$. Then

$$x^{2} - y^{2} = 0$$

$$(x + y)(x - y) = 0$$

$$y \neq x \Longrightarrow x + y = 0$$

$$y = p - x$$

$$(14)$$

Which is the other solution. This means that if we are given one solution, the only possible other solution is the one we showed above in Equation 13. \Box

5.c)

 $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ is square if $\exists b \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ such that $b^2 = a$.

Show that half of the elements in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ are squares.

$$f: (\mathbb{Z}/p\mathbb{Z})^{\times} \to (\mathbb{Z}/p\mathbb{Z})^{\times}$$

$$f(x) = x^{2}$$
(15)

For all $x \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, $x^2 = (p-x)^2$. Therefore, there are two elements in the domain that get mapped to each element in the codomain.

Because the domain and codomain have the same size $\phi(p) = p - 1$, we can only *hit* half of the elements in the codomain (both the domain and codomain are finite), meaning that the size of the image $f = \frac{p-1}{2}$.

5.d)

$$(\mathbb{Z}/7\mathbb{Z})^{\times} = \{1, 2, 3, 4, 5, 6\} \tag{16}$$

The squares are $\{1, 2, 4\}$ (by squaring each element in the above set and seeing where it lands).

5.e)

$$(\mathbb{Z}/15\mathbb{Z})^{\times} = \{1, 2, 4, 7, 8, 11, 13, 14\} \tag{17}$$

The squares are $\frac{2}{8}$ of the original elements, less than the 0.5 if we were working in a prime modulo.

6)

6.a)

$$A = \begin{bmatrix} 5 & 5 \\ 2 & 7 \end{bmatrix} \tag{18}$$

$$ad - bc = 25 (19)$$

Now find the inverse of 25 in mod 9.

$$25x \equiv 1 \mod 9$$

$$4 \cdot 25x \equiv 4 \mod 9$$

$$x \equiv 4 \mod 9$$
(20)

$$A^{-1} = 4 \begin{bmatrix} 7 & -5 \\ -2 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 28 & -20 \\ -8 & 20 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 7 \\ 1 & 2 \end{bmatrix}$$

$$(21)$$

6.b)

$$\begin{bmatrix} 5 & 5 \\ 2 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 7 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 8 \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 57 \\ 17 \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 8 \end{bmatrix}$$
(22)

6.c)

m = 26, n = 3

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 3 \\ 3 & 5 & 3 \end{bmatrix} \tag{23}$$

$$b = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \tag{24}$$

I wrote the following code to compute the Hill Cipher. It finds the numeric value of the characters and goes 3 characters at a time, multiplying A by the vector of characters and adding b.

```
def encrypt_word(word: str, func: callable):
    res = ""
```

```
for i in range(len(word) // 3):
    chars = word[i * 3 : i * 3 + 3]
    numeric_chars = np.array([ord(c) - 97 for c in chars])
    encrypted_numeric = func(numeric_chars)
    encrypted_chars = [chr(num_char + 97) for num_char in encrypted_numeric]
    for c in encrypted_chars:
        res += c

return res

def f(x: np.ndarray):
    A = np.array(
    [
        [1, 2, 3],
        [0, 4, 3],
        [3, 5, 3],
    ]
    )
    b = np.array([1, 2, 3])
    return (A @ x + b) % 26

encrypt_word("banana", f)
```

This returns pptbcq.

6.d)

I computed A^{-1} and here is the result.

$$A^{-1} = \begin{bmatrix} 15 & 7 & 4 \\ 7 & 4 & 15 \\ 8 & 21 & 6 \end{bmatrix}$$
 (25)

6.e)

This returns orange 🍎

We want to show that if A is invertible mod m, then det $A \in (\mathbb{Z}/m\mathbb{Z})^{\times}$.

Proof. Suppose A is invertible mod m. Then $\exists B$ such that $AB = BA = \mathrm{Id}$. From determinant rules:

$$\det(AB) = \det(A)\det(B) = 1$$

$$\implies (\det A)^{-1} = \det(B)$$
(26)

Hence
$$\det A$$
 has an inverse mod $m\Longrightarrow (\det A,m)=1\Longrightarrow \det A\in (\mathbb{Z}/m\mathbb{Z})^{\times}.$