FONDAMENTAUX POUR ATIAM: Exercices sur le filtrage Roland Badeau

1 Questions courtes

- (a) **Propriétés des filtres.** Soit le filtre de fonction de transfert $H(z) = \frac{z^{-1}}{1 1.2z^{-1}}$.
- 1. Son implémentation stable est-elle causale $(h(n) = 0 \ \forall n < 0)$, anti-causale $(h(n) = 0 \ \forall n \geq 0)$, bilatère (i.e. ni causale, ni anticausale)?
- 2. Calculer sa réponse impulsionnelle (indication : on remarquera que $H(z) = \frac{-1}{1.2} \frac{1}{1-z/1.2}$, puis on développera la fraction rationnelle en série entière, et on identifiera le résultat avec l'expression $H(z) = \sum_{n \in \mathbb{Z}} h(n) z^{-n}$).
- 3. Est-il RIF (de réponse impulsionnelle finie) ou RII (de réponse impulsionnelle infinie)?
- 4. Est-il plutôt passe-bas (i.e. il accentue les basses fréquences), passe-haut (il accentue les hautes fréquences), passe-bande (il accentue les fréquences intermédiaires)?
- 5. Exprimer la relation entré-sortie correspondant à H(z).
- (b) Filtre différentiateur. On considère un filtre de fonction de transfert $H(z) = 2\frac{1-z^{-1}}{1+z^{-1}}$.
- 1. Ce filtre est-il stable? Est-il RIF/RII? Quelle est la relation entrée/sortie correspondante?
- 2. On considère l'implémentation causale de ce filtre. Donner le domaine de définition de H(z) et la réponse impulsionnelle h(n) correspondante.
- (c) **Filtre passe-tout.** Soit $c \in \mathbb{C}$. Soit le filtre causal de fonction de transfert $G(z) = \frac{c^* z^{-1}}{1 cz^{-1}}$.
- 1. Dans quel cas ce filtre est-il stable? Calculer alors sa réponse impulsionnelle.
- 2. Montrer que sa réponse en fréquence vaut 1 en module $\forall \nu \in \mathbb{R}$.
- (d) Filtres à phase minimale. On dit qu'un filtre est à phase minimale s'il est causal stable et d'inverse causal stable. On considère le filtre de fonction de transfert $H(z) = \frac{1 1.8z^{-1} + 0.81z^{-2}}{1 + 0.7z^{-1}}$, dont la réponse impulsionnelle est dans $l_1(\mathbb{Z})$ (sommable).
 - 1. Quels sont les pôles et les zéros du filtre?
 - 2. Ce filtre est-il à réponse impulsionnelle infinie (RII) ou à réponse impulsionnelle finie (RIF)? causal ou non causal? à minimum de phase? (vous justifierez vos réponses).

2 Interprétation géométrique d'une réponse en fréquence

On s'intéresse au filtrage causal de réponse impulsionnelle h(n) définie par la relation entrée-sortie y(n) = ay(n-1) + x(n), avec $a \in \mathbb{C}$ tel que |a| < 1.

- 1. Donner l'expression de la fonction de transfert H(z).
- 2. On pose $z=e^{2i\pi\nu_0}$. Tracer le lieu de M(z) des points d'affixe z dans le plan complexe quand ν_0 varie de 0 à 1. Préciser les points $\nu_0=0, \nu_0=0.25, \nu_0=0.5$ et $\nu_0=1$.
- 3. Montrer que $|H(e^{2i\pi\nu_0})| = OM/AM$, O désignant l'origine du repère et A étant un point du plan que l'on précisera. En déduire l'allure de $|H(e^{2i\pi\nu_0})|$ lorsque a = 0.1, a = 0.9, a = -0.9. Quels sont les types des filtres correspondants? (passe-bas, passe-bande, passe-haut?)