Grundkurs für Excel – Part III

Nico Ludwig

Themen

- Einführung linearer Gleichungssysteme mit zwei Unbekannten
- Rechnerische und grafische Lösung linearer Gleichungssysteme
- Wertetabellen mit Excel erstellen
- Koordinatensysteme und lineare Graphen mit Excels Liniendiagrammen erstellen und Gleichungen damit grafisch lösen

Zur Einführung eine Problemstellung

- Leider sind solche Problemstellungen in der Schulmathematik oft ziemlich "konstruiert":
 - 12 Äpfel und 6 Birnen kosten 30 Euro
 - 3 Äpfel und 3 Birnen kosten 9 Euro
 - Gesucht: was kostet jeweils ein Apfel und eine Birne
- In der Realität gibt es aber schon relevante Problemstellungen:
 - In der Technik
 - Beim Angebotsvergleich in der BWL
- Aber wir werden uns erst mal das konstruierte "Obstbeispiel" anschauen!

Problemstellungen mathematisch formulieren

- Wir müssen unser Problem zunächst mathematisch "erklären":
 - Da sind unbekannte Größen x (Preis eines Apfels) und y (Preis einer Birne), für die gilt:

$$12x + 6y = 30$$
$$3x + 3y = 9$$

- Wir kennen die <u>Gesamtbeträge</u> 30€ und 9€ für versch. Apfel- und Birnenmengen.
 - Daraus können wir zwei Gleichungen "hinschreiben".
 - In den Gleichungen verbleiben zwei unbekannte Größen x und y ("Unbekannte").
 - Da wir mehr als eine gültige Gleichung für die selben Unbekannten angeben können, sprechen wir von einem Gleichungssystem (GS).
 - Genauer gesagt ist das ein <u>lineares Gleichungssystem (LGS)</u> mit <u>zwei Unbekannten</u>.

Gleichungssysteme lösen – Part I

- Wir können das Gleichungssystem <u>algorithmisch lösen</u>.
 - Lösen heißt x und y bestimmen, für die die Gleichungen I und II gleichzeitig zutreffen:

- Es gibt einige <u>mathematische Verfahren</u>, um so etwas auszurechnen:
 - Einsetzungsverfahren
 - Gleichsetzungsverfahren
 - (Additionsverfahren)
 - (Gaußsches-Eliminationsverfahren)

Gleichungssysteme lösen – Part II

- Wir verwenden hier das "Einsetzungsverfahren".
 - Es wird nach einer Unbekannten, z.B. y, mit Äquivalenzumformung aufgelöst.
 - D.h. wir wollen die Unbekannte auf einer Seite des Gleichheitszeichens alleine darstellen.
 - Äquivalenzumformung bedeutet, dass wir die Gleichung stets auf beiden Seiten umformen müssen.
 - Wir formen die Gleichung I nach y um,

setzen dieses Ergebnis in II ein und machen die neue Gleichung etwas "kompakter":

$$3x + 3y = 9 \mid y = 5 - 2x$$

$$3x + 3(5 - 2x) = 9$$

$$3x + 15 - 6x = 9$$

$$-3x + 15 = 9$$

Gleichungssysteme lösen – Part III

Die Gleichung, die wir nach Einsetzung erhielten wird jetzt nach x umgeformt:

$$-3x + 15 = 9$$
 | -15
 $-3x = -6$ | : -3
 $x = 2$

x ist bekannt und kann in die nach y umgeformte Gleichung I eingefügt werden:

$$y = 5 - 2x | x = 2$$

 $y = 5 - 2 \cdot 2$
 $y = 1$

• Daraus ergibt sich die Antwort "eine Birne kostet 1€, ein Apfel 2€":

$$12x + 6y = 30$$
 | $y = 1$; $x = 2$
 $3x + 3y = 9$ | $y = 1$; $x = 2$

Gleichungssysteme grafisch lösen – Part I

- Wir können dieses Gleichungssystem auch grafisch lösen.
- Hierzu formen wir <u>beide Gleichungen nach der Unbekannten y um</u>:
 - Für I haben wir das schon:

$$y = -2x + 5$$

Dann formen wir II noch nach y um:

$$y = -x + 3$$

- Achtung: wir müssen die <u>Übersichtlichkeit</u> waren!
 - Daher benennen wir y für die Gleichungen in $\underline{y_1}$ um:

$$y_1 = -2x + 5$$

$$y_2 = -x + 3$$

Gleichungssysteme grafisch lösen – Part II

- Wie lösen wir das Gleichungssystem also grafisch?
 - Wir tragen beide Gleichungen in ein <u>Koordinatensystem</u>
 (KS) ein und erhalten zwei <u>Graphen</u>.
 - Der <u>Graph jeder Gleichung</u> zeigt <u>grafisch</u> welchem x welches y zugeordnet wird.
 - Der <u>Koordinatenpunkt</u>, an dem sich die <u>Graphen</u>
 <u>schneiden</u>, ist dann der Punkt, an dem in <u>beiden</u>
 <u>Gleichungen</u> <u>dem gleichen x das gleiche y zugeordnet</u>
 <u>wird</u>.
 - => Der <u>Schnittpunkt der Graphen</u> P(2, 1) stellt die grafische <u>Lösung des Gleichungssystems</u> dar.

Gut zu wissen:

Mittlerweile wird im deutschen Schulunterricht für Koordinaten die Notation P(x|y) verwendet, wir halten uns aber an die international gebräuchliche Notation P(x,y).

Gleichungssysteme grafisch lösen – Part III

- Ein weitere Möglichkeit Gleichungssysteme zu lösen ist die Nullstellensuche.
 - Eine <u>Nullstelle</u> ist ein <u>x-Wert einer Gleichung, deren zugehöriger y-Wert 0 ist.
 </u>
 - Grafisch gedeutet, schneidet der Graph einer Gleichung an einer Nullstelle die x-Achse.
 - Hierzu fassen wir <u>beide nach y umgeformte Gleichungen in eine zusammen</u>.
 - Wir suchen die Stelle x, an denen y_1 gleich y_2 ist.
 - Die neue Gleichung wird vereinfacht und dieses mal nach 0 aufgelöst: $y_1 = -2x + 5$

$$y_2 = -x + 3$$
 $| y_1 = y_2$
 $-x + 3 = -2x + 5$ $| +x, -3$
 $0 = -x + 2$
 $x = 2$

x = 2- Sowohl die grafische als auch die rechnerische Lösung lautet x = 2, das ist die Stelle, aber wir sind noch nicht fertig! Wie ist denn der Wert von y?

Gleichungssysteme grafisch lösen – Part IV

- Wir haben zwar x gefunden, aber das ist <u>nur die Stelle</u>, <u>an der die zusammengefasste Gleichung den Wert 0 hat</u>.
 - Um auch noch y zu erhalten, müssen wir \underline{x} in \underline{y}_1 oder \underline{y}_2 einsetzen und auflösen:

$$y_2 = -x + 3 \mid x = 2$$

$$\underline{y = 1}$$

- Aber warum dieses kompliziertere Verfahren?
 - Die Nullstellensuche kann leicht auf andere Gleichungssysteme angewendet werden!
 - Insbesondere auf nicht-lineare Gleichungssysteme!

Gleichungssysteme grafisch lösen – Part V

- Zunächst nochmal zum Hintergrund der Nullstellensuche:
 - Wir wissen, das wir die Stelle suchen an der $y_1 = y_2$ ist, <u>deshalb können wir gleichsetzen</u>:

$$y_2 = y_1 \\ -x + 3 = -2x + 5$$

- In der M. ist es üblich, dann <u>alles auf eine Seite des = zusammenzufassen</u>, so dass auf der <u>anderen Seite nur noch 0 steht und eine neue Gleichung, unabhängig von y_1 und y_2 entsteht:</u>

$$-x + 3 = -2x + 5$$
 | $+x, -3$
0 = $-x + 2$

- Auflösen nach x ergibt die gesuchte Stelle, aber <u>nur für y = 0 in der zusammengefassten Gleichung</u>: $\underline{x=2}$
- Aber <u>das zugehörige y müssen wir wieder in einer der Ursprungsgleichungen (y_1 oder y_2) suchen: $y_2 = -x + 3 \mid x = 2$ </u>

$$y_2 = -x + 3 \mid x = 2$$

 $y = 1$

Gleichungssysteme grafisch lösen – Begriffe

- Stelle
 - Einfache Erklärung: Eine Stelle ist eine spezifische Position auf der x-Achse des KS.
 - Eine <u>Nullstelle</u> einer Gleichung, ist ein x-Wert, dessen zugehöriger y-Wert 0 ist.
- Wert
 - Einfache Erklärung: Ein Wert ist eine spezifische Position auf der y-Achse des KS.
- Punkt
 - Eine spezifische Position im KS, die einer Stelle (x) einen Wert (y) zuordnet.
- Graph (Diagramm)
 - Die Menge aller <u>Punkte einer Gleichung</u>, bzw. <u>deren grafische Darstellung im KS</u>.

Gleichungssysteme grafisch lösen – Vorgehensweise

- Das Einzeichnen der Graphen <u>linearer Gleichungen</u> in ein KS ist recht einfach.
 - Eigentlich braucht man nur ein Lineal, um die Punkte zu verbinden.
- Man kann auch eine Wertetabelle (WT) anfertigen und die Punkte in das KS abtragen.

	Y7 = + 2 X + F
11411	15
	3 1
2	
1 2 1	- V
4	-3
	1 -5
	1 7
13	9

• Jetzt kommt Excel ins Spiel! Warum machen wir uns die Mühe die WT selbst zu erstellen?

Gleichungssysteme grafisch lösen – Wertetabellen

- Wenn wir die WT in Excel erstellen, lassen wir einfach Excel die Werte ausrechnen!
 - Wir müssen die Gleichung ja nur als Excel-Formel in die Wertespalte eintragen!

- Es wurde ein <u>"sinnvoller" Zahlenbereich [0, 7] für die Stellen</u> gewählt und in B3:B10 eingetragen.
 - Das machen wir selbstverständlich mit Excels <u>automatischer Erzeugung aufsteigender Werte</u>.
- Die Wertespalte enthält also die Formel der Gleichung in der "Excel-Schreibweise".
 - Die Variable x (es ist jetzt keine Unbekannte mehr) ist in der Excel-Schreibweise ein relativer Zellbezug auf die Stellen in der B-Spalte.
 - Die automatische Werteerzeugung der C-Spalte berechnet dann die Werte aus den Zeilen der B-Spalte mit den relativen Zellbezügen.

Gleichungssysteme grafisch lösen – Diagramme als Graphen

- Aber wir sind noch nicht "am Ende", Excel kann uns noch weiter helfen.
 - Wir können aus der WT ein <u>Diagramm</u> erzeugen und uns <u>den Graphen durch Excel zeichnen lassen</u>.

Schritte:

- Erst selektieren wir den Bereich der Daten, den wir visualisieren wollen, d.h. die x-und y-Werte in B2:C10.
- Nun aktivieren wir das "EINFÜGEN"-Ribbon:

Und weiter gehts...

Gleichungssysteme grafisch lösen – Diagramme

In der Gruppe "Diagramm" selektieren wir "Punkt (XY)"/"Punkte mit interpolierten Linien":

• Als Resultat erhalten wir ein <u>Liniendiagramm</u>, <u>also eigentlich einen Graphen</u>, <u>in Rohform</u>.

Gleichungssysteme grafisch lösen – Diagramme

• Das klappt auch mit mehreren Gleichungen in einer WT. Hier z.B. mit y_1 und y_2 :

- Wir sehen hier die grafische Lösung unseres Gleichungssystems!
 - => Ja, die Lösung (Schnittpunkt) stimmt!
- Die Graphen werden den Gleichungen farblich in der Legende zugeordnet.

Liniendiagramme formatieren – Part I

• Wir wollen den Graphen unseres Gleichungssystems noch etwas formatieren.

- Wir sollten mindestens diese Punkte anpassen:
 - Die <u>y-Werte sind nicht "dicht"</u>: Sie stehen in Zweierschritten, <u>besser sind Einserschritte</u>.
 - Es sind <u>nicht alle Quadranten des KS sichtbar</u>.
 - Die <u>Überschrift/Diagrammtitel</u> sollte besser lauten.

Liniendiagramme formatieren – Part II

• Ein <u>Doppelklick</u> auf den Diagrammtitel macht ihn editierbar.

Wir können den Text <u>direkt bearbeiten</u> und auch über die <u>Seitenleiste</u> <u>formatieren</u>.

Liniendiagramme formatieren – Part III

- Für die Anpassung der x-Achse ändern wir den Wertebereich in der WT auf [-4, 4].
 - Dann dehnt sich das KS nämlich auf den II. Quadranten aus!

- Nun selektieren wir die x-Achse und ändern die Grenzen/Intervalle in der Seitenleiste.
 - Der Graph "schiebt" sich nun <u>über drei Quadranten</u> in x ∈ [-4, 4].

Liniendiagramme formatieren – Part IV

- Nach dem <u>selben Schema</u> passen wir die y-Achse an:
 - Wir selektieren die y-Achse und ändern die Grenzen/Intervalle in der Seitenleiste.
 - Zuletzt skalieren wir die Größe des Diagramms, so dass das KS quadratisch kariert wird.

Fertig! 22