14 Asymptotická časová a paměťová složitost algoritmů, řád růstu funkcí. (A4B36ALG)

14.1 Asymptotická časová a paměťová složitost algoritmů

Asymptotická složitost je způsob klasifikace počítačových algoritmů. Určuje operační náročnost algoritmu tak, že zjišťuje jakým způsobem se bude chování algoritmu měnit v závislosti na změně velikosti (počtu) vstupních dat.

14.1.1 Třída složitosti

Funkce vyjadřující počet operací potřebných ke zpracování dat.

$$1 \ll \log(n) \ll n \ll n * \log(n) \ll n^k \ll k^n \ll n! \ll n^n$$

Pokud spadají dva algoritmy do různých tříd asymptotické složitosti, pak vždy existuje takové množství dat, od kterého je asymptoticky lepší algoritmus vždy rychlejší, bez ohledu na to, kolikrát je některý z počítačů výkonnější.

14.2 Řád růstu funkcí

U většiny algoritmů nelze říci, že jejich složitost odpovídá přesně jedné třídě, protože rychlost algoritmu závisí také na povaze dat. Z tohoto důvodu se používáme řád růstu funkcí, který zohledňuje nejhorší i nejlepší možný běh algoritmu.

- O(f(x)) Omicron(f(x)) algoritmus probíhá asymptoticky stejně rychle nebo rychleji než f(x)
- $\Omega(f(x))$ Gamma(f(x)) algoritmus probíhá asymptoticky stejně rychle nebo pomaleji než f(x)
- $\vartheta(f(x))$ Theta(f(x)) algoritmus probíhá asymptoticky stejně rychle jako f(x), zároveň platí O(f(x)) a $\Omega(f(x))$

Funkce f(x) ohraničuje funkci našeho algoritmu g(x), O(f(x)) vyjadřuje ohraničení shora, zatímco $\Omega(f(x))$ zdola. $\vartheta(f(x))$ pak značí ohraničení z obou stran. Zapsáno jinak

$$O(f(x)) \to (\exists c > 0)(\exists n_0)(\forall n > n_0) : g(n) \le c * f(n)$$

$$\Omega(f(x)) \to (\exists c > 0)(\exists n_0)(\forall n > n_0) : c * f(n) \le g(n)$$

$$\vartheta(f(x)) \to (\exists c_1, c_2 > 0)(\exists n_0)(\forall n > n_0) : c_1 * f(n) \le g(n) \le c_2 * f(n)$$

kde $c, c_1, c_2 \in \mathbb{R}^{>0}$ $n_0, n \in \mathbb{N}$ $f, g \in \mathbb{N} \to \mathbb{R}^{\geq 0}$. Vzorce říkají, že existuje taková konstanta c a takové n větší než určité n_0 , od kterého platí odpovídající nerovnost.