PHY2303P

Optique ondulatoire

(Delphine Delbarre)

28h de cours, 12h de TD, 18h de TP

Thermodynamique et cinétique chimiques

18h de cours, 6h de TD, 4h de TP (Vincent Canel)

- 1 devoir surveillé (DS) sur les 2 parties
- Colles
- Examen final sur les 2 parties
- Evaluation :

30% examen final, 50% contrôle continu, 20% assiduité

De l'optique géométrique à l'optique ondulatoire

Optique géométrique ?

- Oubli des caractères ondulatoire et photonique de la lumière.
- Comportement de la lumière à une échelle à laquelle les longueurs d'ondes sont très petites par rapport aux dimensions de l'appareillage dont on dispose pour les étudier.

Rayons lumineux

Indice de réfraction d'un milieu transparent

• Un milieu transparent est caractérisé par son **indice de réfraction**, défini comme :

$$n = \frac{c}{v} \ge 1$$

où c est la célérité de la lumière dans le vide et v celle dans le milieu. $c \approx 3 \times 10^8 \text{ ms}^{-1}$

Milieu	Air	Eau	Verre	Diamant
Indice	≈1	≈ 1,33	≈ 1,5-1, 7	2,42

Hypothèse fondamentale de l'optique géométrique

 La lumière se propage rectilignement dans un milieu homogène transparent et isotrope (MHTI)

Lois de Snell-Descartes

Dispersion de la lumière

Loi de Cauchy $n(\lambda) = A + B/\lambda^2$

Réflexion totale

Fibre optique

Mirage

Arc en ciel

Systèmes optiques centrés

Un système
optique est centré
lorsqu'il présente
un axe de symétrie
de révolution Δ
définissant l'axe
optique du système

Objet et image – réel et virtuel

Stigmatisme rigoureux

 Tout système optique, qui à un point objet A associe une image conjuguée A' <u>unique</u>, est dit stigmatique pour le couple (A,A').

Astigmatisme

Aplanétisme

 l'image d'un objet perpendiculaire à l'axe optique est perpendiculaire à l'axe optique.

Approximation de Gauss

- si les rayons sont peu inclinés et peu écartés de l'axe optique (rayons paraxiaux), on se trouve alors dans le cadre des conditions de Gauss.
- Dans ces conditions, on peut souvent faire l'approximation d'un <u>stigmatisme</u> <u>approché.</u>

1795 - 1798

Lentilles

Plans focaux - Foyers secondaires

Construction de rayons quelconques

Instruments d'optique

Compétences expérimentales

- Mesure de distances focales
- Distance minimale 4f'
- Réglage lunette collimateur
- Réglage et utilisation Goniomètre

Newton Vs Huygens

1642 - 1727 aspect corpusculaire de la lumière

1629 - 1696 aspect ondulatoire de la lumière

Principe de Huyghens-Fresnel

Contribution de Huyghens (1678)

Lorsqu'une source ponctuelle S émet une onde, tout se passe comme si chaque point de la surface se comportait comme une source ponctuelle secondaire émettant des ondes sphériques. Ces ondes secondaires interfèrent entre elles et la nouvelle surface d'onde est l'enveloppe des surfaces d'onde secondaires.

Huygens' Principle for Reflection: Correct Way

Réfraction

Diffraction

Trous d'Young

1773 - 1829

Diffraction et interférences

Tache d'Airy

Contribution de Fresnel (1820)

1788 - 1827

Tout point P de la surface d'onde d'une source primaire peut être considérée comme une source secondaire émettant une onde sphérique. L'amplitude de cette source secondaire est proportionnelle à celle de l'onde incidente en P et à la surface élémentaire dS entourant le point P. Les vibrations issues des différentes sources secondaires interfèrent entre elles. En un point M, l'amplitude est donnée par:

$$A(M) = \iint_{S} A(P) \frac{\exp(-i\vec{k}\vec{r})}{r} K(P) dS$$

Le cours d'optique ondulatoire est une base pour les cours suivants :

Electromagnétisme (équations de Maxwell)

et mécanique quantique

Spectre électromagnétique

Conclusion

- Optique géométrique :
- Rayon lumineux
- Indice de réfraction

- Optique ondulatoire :
- Idem +
- Phase
- Energie transportée.

Applications

Recherche, industrie, médecine, vie quotidienne...

