

Engineering Portfolio

2018-2023

Perry Fung

PERRY FUNG

MECHANICAL ENGINEERING AT TORONTO METROPOLITAN UNIVERSITY

perryfung5@gmail.com

in linkedin.com/in/perry-fung

(647)-705-3267

BALL TRANSPORTATION DEVICE- TORONTO METROPOLITAN UNIVERSITY

Design number	Maintainabilit y	Functional ity	Manufactu rability	Durabilit y	Usability	Total	Rank
A2 B2 C3 D2	0	1	0	1	2	4	#1
A3 B1 C4 D2	1	1	-1	0	1	2	#3
A2, B2 ,C2 ,D3	-1	0	1	0	1	1	#5
A2-B2-C1 -D2	0	1	1	1	0	3	#2
A4 B3 C4 D1	1	0	1	1	-2	1	#4

What?

- Designed and built a mechanism capable of transporting three distinct balls into three separate containers.
- Performed a stress analysis to ensure that the system would not fail when using the mechanism.

How?

- To create the construction, just acrylic sheet, rubber band, paper clips, and SolidWorks features were used.
- GD&T was used on all designs, as well as a decision matrix during the review process.

Results

 The design fulfilled its purpose with 90% accuracy and precision.

FUNICULAR VEHICLE - TORONTO METROPOLITAN UNIVERSITY

What?

- Created a miniature vehicle that travel 60 degrees wood stud while carrying a standard 355ml pop can
- The team's supplies are limited to 3 fiberboard and 50 grams of FDM (thermoplastic polymers).

How?

- Designed on SolidWorks
- Joined the components together that make up the can holder via MasterCAM and CNC machine
- Fabricated customs gears for the wheels using a 3D machine and G-Code software

Results

- The car successfully navigated a 30 degree incline.
- The weight was distributed uniformly along the length rather than being concentrated in one spot.

PERRY FUNG

MECHANICAL ENGINEERING AT TORONTO METROPOLITAN UNIVERSITY

perryfung5@gmail.com

in linkedin.com/in/perry-fung

(647)-705-3267

HOMECARE PATIENT DEVICE - TORONTO METROPOLITAN UNIVERSITY

What?

- Designed a device that can transport people with limited abilities.
- The gadgets are intended to protect the patient and other participants before, during, and after the transportation procedure.

How?

- Used SolidWorks to design structure
- Used Microsoft Excel and Google
 Spreadsheet to organize and evaluate concept design
- Implemented Persona and Human Factor principles to simulate real life situations ,reducing errors

Results

 Understand the critical process of product design and educated the team about the demands of users and co-users...

RAMA DESIGN FOOD CHOPPER-TORONTO METROPOLITAN UNIVERSITY

DFMA® - Boothroyd Dewhurst, Inc. Design for Assembly Assembly Totals for Design for Assembly (DFA)

Entries including repeats	Original	
Parts meet minimum part criteria	7	
Parts are candidates for elimination	23	
Analyzed subassemblies	4	
Separate assembly operations	0	
Total entries	34	
Assembly labor time, s		
Parts meet minimum part criteria	28.71	
Parts are candidates for elimination	137	
Insertion of analyzed subassemblies	14.16	
Separate assembly operations	0	
Total assembly labor time	180	
Design efficiency		
DFA Index	13.96	

How?

- Used SolidWorks to design the final concept
- Used Lucas method to reduce the every part during the insertion and handling phases
- Used **DFMA method** to reduce the assembly time and cost of the overall product

Results

- Reduced production costs by 10%
- Reduced assembly part by 50%, while increased the functional efficiency from 70.8 to 80%.

What?

- Reverse engineered a food chopper to make it more efficient and user-friendly
- Reduced any parts that are deemed unnecessary

PERRY FUNG

MECHANICAL ENGINEERING AT TORONTO METROPOLITAN UNIVERSITY

perryfung5@gmail.com

in linkedin.com/in/perry-fung

(647)-705-3267

AUTOMATIC JAR OPENER (CAPSTONE PROJECT)- TORONTO METROPOLITAN UNIVERSITY

What?

- Created a compact, motorized device that can open various jar sizes and shapes
- The device must be userfriendly and accessible to all user
- The design incorporates an adjustable body to create friction, which is powerful enough to open a variety of jar sizes.

How?

- Created initial design based reference design and Situation Use
- Applied Morphological Chart to pick the most optimal design
- Designed initial framework using SolidWork
- Used Arduino for electrical structure
- Implemented **DFA** principles to reduce product assembly cost

Results

- Created a final design consists of a total of 14 CAD parts
- The final product is created using 3d printed filament also known as PLA.

CIRCUIT DESIGN OF TOP COMPONENT /HEIGHT ADJUSTMENT MECHANISM

