Logic Design

By Ammar Jaber

Numbering System

Numbering System

- 1. Binay: 0,1
- 2. Octal: 0,1,2,3,4,5,6,7,8
- 3. Decimal: 0,1,2,3,4,5,6,7,8,9
- 4. Hexadecimal: 0,1,2,3,4,5,6,7,8,9,A=10,B=11,C=12,D=13,E=14,F=15

Numbering System Conversion

1. Any System → Desimal:

Examples:

A.
$$(011010)_2 \rightarrow ()_{10}$$

Solution:

$$(16) + (8) + (2) = (26)_{10}$$

Other examples for you

A.
$$(35)_8 \rightarrow ($$
)10

B.
$$(A5)_{16} \rightarrow ($$
)10

2. Desimal → Any System :

لرقم/ رقم النظام المراد التحويل اليه = (الناتج - العدد الصحيح) x رقم النظام المراد التحويل اليه

Other examples for you

	220	8	1516	16
A. $(220)_{10} \rightarrow ($)8				
B. (1516)₁0 → ()₁6				
D. (1310)10 -> ()16				

3. Binary → Any System:

Note:

Binary → Octal = 3 digits

Binary → Hexadecimal = 4 digits

110 in binary = 4 + 2 + 0 = 6 in decimal

4. Octal — HexaDecimal:

A.
$$(64)_8 \rightarrow ()_{16}$$

First: $(64)_8 \rightarrow ()_2$
Second: $()_2 \rightarrow ()_{16}$

$$(64)_8 \rightarrow (110100)_2$$

 $00(110100)_2 \rightarrow (34)_{16}$

نزيد اصفار لليسار لإكمال المجموعة

Octal to Binary (3 digits

HexaDecimal to Binary (4 digits)

Oto.	
\cdots	

Binary → Octal = 3 digits

Binary → Hexadecimal = 4 digits

16	8	4	2	

Other examples for you

A.
$$(B21)_{16} \rightarrow ()_{8}$$

B.
$$(D21)_{16} \rightarrow ()_{8}$$

5. Decimal fractions → Binary fractions

5. Decimal → Binary Decimal Code

Each number represented by 4 digits in BDC: 0 =0000 1=0001

6. Binary → Gray

A.
$$(0110110)_2 \rightarrow ($$
)Binary

$$(0110110)_2 \rightarrow (0110110)_{Gray}$$

6. Gray → Binary

A.
$$(110110)$$
Gray \rightarrow ()Binary

$$(110110)$$
Gray $\rightarrow (101011)$ Binary

2's Complement

Logic Gates

Logic Gates

Note:

XOR:

تشابهین =0

مختلفين = 1

NAND: Not and

NOR: Not or

Boolean Algebra

Boolean Algebra

Rules of boolean algebra

•
$$A + 0 = A$$

•
$$A.0 = 0$$

$$\bullet$$
 A + A = A

$$\bullet$$
 A + \overline{A} = 1

$$\bullet$$
 A. $\overline{A} = 0$

$$\bullet$$
 $\overline{A} = A$

$$\bullet$$
 A + AB = A

•
$$A + \overline{A}B = A + B$$

•
$$(A + B)(A + C) = A + BC$$

Karnaugh Map

Karnaugh Map

F after simplification = المتغيرات التي بقيت