Dynamic Programming Chapter 7: Valuation

Thomas J. Sargent and John Stachurski

2024

Topics

- The Knaster-Tarski fixed point theorem
- Du's theorem
- Risk-sensitive preferences
- Epstein-Zin preferences
- Koopmans operators

Nonlinear valuation

In DP, the objective to be optimized is always lifetime value Lifetime value is an aggregation of a flow of rewards $(R_t)_{t \ge 0}$

Key issue: how to combine $(R_t)_{t\geqslant 0}$ into lifetime value?

What we have seen so far:

- Standard approach: $\mathbb{E} \sum_{t \geqslant 0} \beta^t R_t$
- State-dependent discounting: $\mathbb{E} \sum_{t \geqslant 0} \left[\prod_{i=0}^t \beta_i \right] R_t$

Now we go further

In particular, we drop the linearity assumption

- lifetime value computed from a (nonlinear) recursion
- closely related to "recursive preferences"

To solve these problems we need more fixed point theory

We focus on fixed point results for order-preserving maps

- existence results
- global stability results

Knaster-Tarski Fixed Point Theorem

We start with a simple version of the famous KT theorem, where

- X is a finite set
- $I = [v_1, v_2]$ is a nonempty order interval in $(\mathbb{R}^X, \leqslant)$
- ullet T is a self-map on I
- fix(T) =the set of fixed points of T in I

Theorem (Knaster–Tarski). If T is order-preserving on I, then $\mathrm{fix}(T)$ is nonempty and contains least and greatest elements $a\leqslant b$ Moreover,

$$T^k v_1 \leqslant a \leqslant b \leqslant T^k v_2$$
 for all $k \geqslant 0$

Ex. Sketch the one-dimensional case $I=\left[0,1\right]$ and convince yourself that a fixed point must exist

The KT fixed point theorem has a huge range of applications

However, it only yields existence

Uniqueness and stability can fail

Ex. Continuing your sketch, provide a counterexample to uniqueness when $I=\left[0,1\right]$

Next we seek additional conditions that guarantee uniqueness and stability

Concavity, Convexity and Stability

A self-map T on a convex subset D of \mathbb{R}^n is called **convex** if

$$T(\lambda u + (1 - \lambda)v) \le \lambda Tu + (1 - \lambda)Tv$$

whenever $u,v\in D$ and $\lambda\in[0,1]$

T is called **concave** if

$$\lambda Tu + (1 - \lambda)Tv \leqslant T(\lambda u + (1 - \lambda)v)$$

whenever $u,v\in D$ and $\lambda\in [0,1]$

- Note that the definitions look identical to the scalar case

Du's Theorem

Theorem. Let

- X be a finite set
- $I := [v_1, v_2]$ be a nonempty order interval in $(\mathbb{R}^X, \leqslant)$
- ullet T be a self-map on I

If T is order-preserving, then T is globally stable on I under any one of

- 1. T is concave and $Tv_1 \gg v_1$
- 2. T is concave and \exists a $\delta > 0$ such that $Tv_1 \geqslant v_1 + \delta(v_2 v_1)$
- 3. T is convex and $Tv_2 \ll v_2$
- 4. T is convex and \exists a $\delta > 0$ such that $Tv_2 \leqslant v_2 \delta(v_2 v_1)$

Figure: Concave case (one-dimensional)

Figure: Convex case (one-dimensional)

Power-transformed affine equations

Now let's add more structure

- extends global stability to unbounded domains
- necessary and sufficient conditions

To begin, let X be finite and consider the vector equation

$$v = [h + (Av)^{1/\theta}]^{\theta} \qquad (v \in V)$$

where

- ullet heta is a nonzero parameter
- $A \in \mathcal{L}(\mathbb{R}^{\mathsf{X}})$
- $V = (0, \infty)^{\mathsf{X}}$ and $h \in V$

To analyze the equation we introduce the self-map

$$Gv = [h + (Av)^{1/\theta}]^{\theta} \qquad (v \in V)$$

By extending Du's theorem, we can obtain

Theorem. If A is irreducible, then the following statements are equivalent

- 1. $\rho(A)^{1/\theta} < 1$
- 2. G is globally stable on V

In the case $\rho(A)^{1/\theta} \geqslant 1$, the map G has no fixed point in V

The one-dimensional case (so $\rho(A) = A$)

• globally stable iff $A^{1/\theta} < 1$

Figure: Shape properties of $Gv = [h + (Av)^{1/\theta}]^{\theta}$ on $(0, \infty)$

Example. Kleinman et al. (ECMA 2023) study a model of migration with capital accumulation

Optimal consumption for landlords is $c_t = \sigma_t R_t k_t$ where

- ullet k_t is capital and R_t is the gross rate of return
- ullet σ_t is a state-dependent process obeying

$$\sigma_t^{-1} = 1 + \beta^{\psi} \left[\mathbb{E}_t R_{t+1}^{(\psi-1)/\psi} \sigma_{t+1}^{-1/\psi} \right]^{\psi}$$
 (1)

Assume $R_t = f(X_t)$ where

- X is finite
- (X_t) is P-Markov

Setting $v_t = \sigma_t^{-1/\psi}$, we can write (1) as

$$v_{t} = \left\{ 1 + \beta^{\psi} \left[\mathbb{E}_{t} R_{t+1}^{(\psi-1)/\psi} v_{t+1} \right]^{\psi} \right\}^{1/\psi}$$
 (2)

Define $A \in \mathcal{L}(\mathbb{R}^X)$ by

$$(Av)(x) = \beta \sum_{x'} f(x')^{(\psi-1)/\psi} v(x') P(x, x')$$

Ex. Show the following are equivalent

- 1. \exists a unique $v \in V := (0, \infty)^X$ s.t. $v_t = v(X_t)$ solves (2)
- 2. $\rho(A)^{\psi} < 1$

<u>Proof</u>: Consider a $v \in V$ such that $v_t = v(X_t)$ solves (2)

This v must satisfy

$$v(x) = \left\{ 1 + \beta^{\psi} \left[\sum_{x'} f(x')^{(\psi-1)/\psi} v(x') P(x, x') \right]^{\psi} \right\}^{1/\psi}$$

Equivalently,

$$v = [1 + (Av)^{\psi}]^{1/\psi}$$

By the result on slide 12,

a unique solution exists in $V \iff \rho(A)^{\psi} < 1$

Motivation: Limitations of time additive preferences

Why go beyond standard specifications such as

$$v(x) = \mathbb{E}_x \sum_{t \ge 0} \beta^t u(C_t) ?$$

Well documented problems

- failure of discounted expected utility model in experiments
- β constant and < 1 fails in surveys / experiments
- does not accommodate ambiguity
- cannot separate risk aversion and elasticity of intertemporal substitution

Motivation: Limitations of time additive preferences

Why go beyond standard specifications such as

$$v(x) = \mathbb{E}_x \sum_{t \ge 0} \beta^t u(C_t) ?$$

Well documented problems

- failure of discounted expected utility model in experiments
- β constant and < 1 fails in surveys / experiments
- does not accommodate ambiguity
- cannot separate risk aversion and elasticity of intertemporal substitution

Another issue: agent is indifferent to variations in the joint distribution of rewards that leaves marginal distributions unchanged

Example. Suppose you accept a new job

- duration is for life
- daily consumption = daily wage

Your boss offers you two options:

(A) Your boss will flip a coin on day 1 only and set

daily wage
$$= \mathbb{1}\{\text{heads}\} \times 10000 + \mathbb{1}\{\text{tails}\} \times 1$$

(B) Your boss will flip a coin every day and set

daily wage
$$= \mathbb{1}\{\text{heads}\} \times 10000 + \mathbb{1}\{\text{tails}\} \times 1$$

Strict preference between A and B implies choice cannot be rationalized with time additive preferences

To see why, let
$$\varphi(10000)=\varphi(1)=1/2$$

- Option A $\implies C_1 \sim \varphi$ and $C_t = C_1$ for $t \geqslant 2$
- Option B \Longrightarrow $(C_t)_{t\geqslant 1} \stackrel{\text{IID}}{\sim} \varphi$

Either way,

$$\mathbb{E}\sum_{t\geqslant 1}\beta^t u(C_t) = \sum_{t\geqslant 1}\beta^t \mathbb{E}u(C_t) = \frac{\beta}{1-\beta} \left[\frac{u(1) + u(10000)}{2} \right]$$

A recursive view of time additive preferences

Warm up 1: Study standard preferences from a recursive point of view

Consider the recursion

$$V_t = u(C_t) + \beta \, \mathbb{E}_t V_{t+1}$$

where

- $(V_t)_{t\geqslant 0}$ is to be determined
- \mathbb{E}_t is expectation conditional on X_0,\ldots,X_t
- (X_t) is P-Markov on X
- $C_t = c(X_t)$ is a consumption path and $u \in \mathbb{R}^X$

How to solve

$$V_t = u(C_t) + \beta \, \mathbb{E}_t V_{t+1} \tag{3}$$

Since

- consumption is a function of $(X_t)_{t\geqslant 0}$
- knowledge of X_t is sufficient to forecast $(C_{t+j})_{j \ge 1}$

we guess that $V_t = v(X_t)$ for some $v \in \mathbb{R}^X$

• Called a stationary Markov solution to (3)

Under this conjecture, (3) can be rewritten as

$$v(X_t) = u(c(X_t)) + \beta \mathbb{E}_t v(X_{t+1})$$

Conditioning on $X_t = x$ and setting $r := u \circ c$, this becomes

$$v(x) = r(x) + \beta \mathbb{E}_x v(X_{t+1})$$
$$= r(x) + \beta \sum_{x'} v(x') P(x, x')$$

In vector form, $v = r + \beta Pv$

From the NSL, the unique solution is

$$v^* = (I - \beta P)^{-1}r = \sum_{t \geqslant 0} \beta^t P^t r$$

As proved earlier, the r.h.s. is equal to

$$v^*(x) = \mathbb{E}_x \sum_{t \geq 0} \beta^t r(X_t)$$
 when (X_t) is $P ext{-Markov}$

In summary:

the recursive representation

$$V_t = u(C_t) + \beta \, \mathbb{E}_t V_{t+1}$$

and the sequential representation

$$V_0 = \mathbb{E}_0 \sum_{t \geqslant 0} \beta^t r(X_t)$$

specify the same lifetime value

So is the recursive formulation redundant?

No because it gives us a formula to build on!

In summary:

the recursive representation

$$V_t = u(C_t) + \beta \, \mathbb{E}_t V_{t+1}$$

and the sequential representation

$$V_0 = \mathbb{E}_0 \sum_{t \geqslant 0} \beta^t r(X_t)$$

specify the same lifetime value

So is the recursive formulation redundant?

No because it gives us a formula to build on!

Pursuing this idea leads to lifetime valuations without any sequential representations

- ullet Occurs when V_t is nonlinear in current rewards and continuation values
- Such specifications are called recursive preferences

Remark.

The term "recursive preferences" is confusing, since traditional time additive preferences also admit a recursive specification

Economists use the term "recursive preferences" when lifetime utility can only be expressed recursively

We follow this convention

Warm up 1: Nonlinear "expectations"

Suppose

- ullet Y is a random variable taking values in interval $I\subset \mathbb{R}$
- $\varphi \colon I \to I$ is strictly increasing and $\mathbb{E}|\varphi(Y)| < \infty$

Ex. Prove:

1. If φ is convex, then

$$\mathbb{E}Y \leqslant \varphi^{-1}(\mathbb{E}\varphi(Y))$$

2. If φ is concave, then

$$\varphi^{-1}(\mathbb{E}\varphi(Y)) \leqslant \mathbb{E}Y$$

<u>Proof</u>: We prove case 1, where φ is convex

By Jensen's inequality, we have

$$\varphi(\mathbb{E}Y) \leqslant \mathbb{E}\varphi(Y)$$

Since φ is strictly increasing on ${\mathbb R}$

- ullet $arphi^{-1}$ exists on ${\mathbb R}$ and
- $ullet \varphi^{-1}$ is increasing on ${\mathbb R}$

$$\therefore \quad \mathbb{E}Y \leqslant \varphi^{-1}(\mathbb{E}\varphi(Y))$$

Risk-Sensitive Preferences

Our first nonlinear example of recursive preferences

We replace the time additive recusion

$$v(x) = r(x) + \beta \sum_{x'} v(x')P(x, x')$$

with

$$v(x) = r(x) + \beta \frac{1}{\theta} \ln \left\{ \sum_{x'} \exp(\theta v(x')) P(x, x') \right\}$$

ullet θ is a nonzero constant in ${\mathbb R}$

We understand

$$v(x) = r(x) + \beta \frac{1}{\theta} \ln \left\{ \sum_{x'} \exp(\theta v(x')) P(x, x') \right\}$$

as "defining" lifetime utility under risk-sensitive preferences

• solution $v \in \mathbb{R}^{\mathsf{X}}$ gives lifetime value from any state

But we can't be sure we have a definition at this point

- What if there is no v that solves this recursion?
- What if there are many?

Key task: find conditions under which a unique solution exists

As a preliminary step, let's try to understand the nonlinear expectation term

In general, the entropic risk-adjusted expectation of random variable ξ is

$$\mathcal{E}_{\theta}[\xi] = \frac{1}{\theta} \ln \mathbb{E}[\exp(\theta \xi)]$$

ullet θ is a nonzero parameter

Ex. Prove that, if ξ is normally distributed, then

$$\mathcal{E}_{\theta}[\xi] = \mathbb{E}[\xi] + \theta \frac{\mathrm{Var}[\xi]}{2}$$

Notice that $\theta \downarrow$ lowers appetite for risk and $\theta \uparrow$ does the opposite

More generally,

For any random variable ξ taking values in X,

- 1. $\mathcal{E}_{\theta}[\xi] \leqslant \mathbb{E}[\xi]$ for all $\theta < 0$
- 2. $\mathcal{E}_{\theta}[\xi] \geqslant \mathbb{E}[\xi]$ for all $\theta > 0$

Moreover, these inequalities are strict if and only if $Var[\xi] > 0$

Proof: Apply Jensen's inequality

(Strict case uses a strict version of Jensen's inequality)

Existence and uniqueness

Consider the risk-sensitive Koopmans operator $K_{\theta} \colon \mathbb{R}^{\mathsf{X}} \to \mathbb{R}^{\mathsf{X}}$

$$(K_{\theta} v)(x) = r(x) + \beta \frac{1}{\theta} \ln \left\{ \sum_{x' \in \mathsf{X}} \exp(\theta v(x')) P(x, x') \right\}$$

Equivalent:

- 1. $v \in \mathbb{R}^{\mathsf{X}}$ solves the risk-sensitive preference specification
- 2. v is a fixed point of K_{θ}

We continue to assume that

- $P \in \mathcal{M}(\mathbb{R}^{\mathsf{X}})$ and $r \in \mathbb{R}^{\mathsf{X}}$
- θ is nonzero and $\beta \geqslant 0$

Proposition. If $\beta < 1$, then K_{θ} is globally stable on \mathbb{R}^{X}

We prove a more general result below

Implications

- 1. For all nonzero θ , lifetime utility is uniquely defined
- 2. The unique solution v^* can be computed by successive approximation using K_{θ}

We continue to assume that

- $P \in \mathcal{M}(\mathbb{R}^{\mathsf{X}})$ and $r \in \mathbb{R}^{\mathsf{X}}$
- θ is nonzero and $\beta \geqslant 0$

Proposition. If $\beta < 1$, then K_{θ} is globally stable on \mathbb{R}^{X}

We prove a more general result below

Implications

- 1. For all nonzero θ , lifetime utility is uniquely defined
- 2. The unique solution v^* can be computed by successive approximation using K_{θ}

Example. Suppose r(x) = x and $X_{t+1} = \rho X_t + \sigma W_{t+1}$ where

- $(W_t) \stackrel{\text{IID}}{\sim} N(0,1)$
- $|\rho| < 1$

In this setting, we need to solve for v satisfying

$$v(x) = x + \beta \mathcal{E}_{\theta}[v(\rho x + \sigma W_1)] \tag{4}$$

Ex. Verify that v(x) = ax + b solves (4) when

$$a:=rac{1}{1-
hoeta} \quad ext{and} \quad b:= hetarac{eta}{1-eta}rac{(a\sigma)^2}{2}$$

We can also compute an approximation to v by discretizing the state process via Tauchen's method and iterating on K_θ

using LinearAlgebra, QuantEcon

Listing 1: Risk sensitive utility model parameters (rs_utility.jl)

Figure: Approximate and true solutions in the Gaussian case

Ex. Replicate the figure

Epstein–Zin preferences

One of the most popular recursion preferences specifications

Has been used to study

- asset pricing
- business cycles
- monetary policy
- fiscal policy
- optimal taxation
- climate policy, etc., etc.

With Epstein–Zin preferences, lifetime value obeys

$$V_t = \left\{ (1 - \beta)C_t^{\alpha} + \beta [\mathbb{E}_t V_{t+1}^{\gamma}]^{\alpha/\gamma} \right\}^{1/\alpha}$$

where

- γ , α are nonzero parameters
- $\beta \in (0,1)$

Assume

- $C_t = c(X_t)$ where $c \in \mathbb{R}_+^{\mathsf{X}}$
- $(X_t)_{t\geq 0}$ is P-Markov on finite set X

We conjecture a solution of the form $V_t = v(X_t)$

Now condition on x to get

$$v(x) = \left\{ (1 - \beta)c(x)^{\alpha} + \beta \left[\sum_{x'} v(x')^{\gamma} P(x, x') \right]^{\alpha/\gamma} \right\}^{1/\alpha}$$

Equivalently, \boldsymbol{v} is a fixed point of the **Epstein–Zin Koopmans** operator

$$(Kv)(x) = \left\{ (1 - \beta)c(x)^{\alpha} + \beta \left[\sum_{x'} v(x')^{\gamma} P(x, x') \right]^{\alpha/\gamma} \right\}^{1/\alpha}$$

Let's rewrite more generally as

$$(Kv)(x) = \left\{ h(x) + \beta \left[\sum_{x'} v(x')^{\gamma} P(x, x') \right]^{\alpha/\gamma} \right\}^{1/\alpha}$$

Pointwise on X this is

$$Kv = \left\{ h + \beta [Pv^{\gamma}]^{\alpha/\gamma} \right\}^{1/\alpha}$$

- all operations are pointwise on vectors/functions
- we assume $h \gg 0$ to make sure Kv is real-valued

Ex. Prove that K is a self-map on $V:=(0,\infty)^X$

Epstein–Zin stability

Proposition. If P is irreducible and $h\gg 0$, then K is globally stable on V

A proof is provided below

Ex. Compute the fixed point of K in V starting with this code

```
include("s approx.jl")
using LinearAlgebra, QuantEcon
function create ez utility model(;
        n=200, # size of state space
        \rho=0.96, # correlation coef in AR(1)
        \sigma=0.1, # volatility
        \beta=0.99, # time discount factor
        \alpha=0.75, # EIS parameter
        v=-2.0) # risk aversion parameter
    mc = tauchen(n, \rho, \sigma, \theta, 5)
    x vals, P = mc.state values, mc.p
    c = \exp(x \text{ vals})
    return (; \beta, \rho, \sigma, \alpha, \gamma, c, x vals, P)
end
```

The figure plots every 10th iterate, repeated 100 times.

Figure: Convergence of Koopmans iterates for Epstein-Zin utility

Proof of global stability

K is difficult to work with because

- linear and nonlinear transformations are intertwined
- there are several cases for the parameters that we need to handle

To tackle these issues we

- 1. introduce an operator \hat{K} obtained from K via a smooth transformation
- 2. prove that (\hat{V},\hat{K}) and (V,K) are topologically conjugate
- 3. obtain conditions under which \hat{K} is globally stable on V

We define \hat{K} via

$$\hat{K}v = \left\{h + \beta (Pv)^{1/\theta}\right\}^{\theta} \qquad \text{where} \quad \theta := \frac{\gamma}{\alpha}$$

The operator \hat{K} is simpler than K because

- one parameter θ rather than α, γ
- separates linear and nonlinear parts of the mapping

We continue to assume that P is irreducible and $h \gg 0$

Ex. Prove that \hat{K} is a self-map on $V := (0, \infty)^{\mathsf{X}}$

Let Φ be defined by $\Phi v = v^{\gamma}$

Ex. Show that

- 1. Φ is a homeomorphism from V to itself and
- 2. (V,K) and (V,\hat{K}) are topologically conjugate under Φ

Proof: Evidently $\boldsymbol{\Phi}$ is a homeomorphism from V to itself

In addition, for $v \in V$,

$$\hat{K}\Phi v = \left\{h + \beta (P\Phi v)^{1/\theta}\right\}^{\theta} = \left\{h + \beta (Pv^{\gamma})^{\alpha/\gamma}\right\}^{\gamma/\alpha} = \Phi K v$$

Hence (V,K) and (V,\hat{K}) are topologically conjugate, as claimed

Now set $A = \beta^{\theta} P$, so that

$$\hat{K}v = [h + (Av)^{1/\theta}]^{\theta}$$

By the result on slide 12,

$$\hat{K}$$
 is globally stable on $V\iff \rho(A)^{1/\theta}<1$

In our case

$$\rho(A)^{1/\theta} = \rho(\beta^{\theta} P)^{1/\theta} = \beta$$

It follows that \hat{K} is globally stable on V whenever $\beta < 1$

Since (V,K) and (V,\hat{K}) are topologically conjugate, K has the same properties on V

A general representations

We have discussed two examples of recursive preferences

Now let's build a general representation

While various constructions can be found in the decision theory literature, many are challenging for applied researchers hoping to do quantitative work

Here we give a relatively parsimonious definition based

- a Markov environment
- fixed point theory

We will build our theory from two components

- 1. an "aggregation function" and
- 2. a "certainty equivalent operator"

Below we define these objects and give examples

Then we put them together to get recursive preferences

Certainty equivalent operators

Given $V \subset \mathbb{R}^X$, a certainty equivalent operator on V is a self-map R on V such that

- 1. R is order-preserving on V and
- 2. $R(\lambda \mathbb{1}) = \lambda \mathbb{1}$ for all $\lambda \in \mathbb{R}$ with $\lambda \mathbb{1} \in V$

Example. Conditional expectations is a certainty equivalent operator

To see this, set $V = \mathbb{R}^X$, fix $P \in \mathcal{M}(\mathbb{R}^X)$

- $u \leqslant v$ implies $Pu \leqslant Pv$, so P preserves order on V and
- $P(\lambda 1) = \lambda P 1 = \lambda 1$

Certainty equivalent operators

Given $V \subset \mathbb{R}^X$, a certainty equivalent operator on V is a self-map R on V such that

- 1. R is order-preserving on V and
- 2. $R(\lambda \mathbb{1}) = \lambda \mathbb{1}$ for all $\lambda \in \mathbb{R}$ with $\lambda \mathbb{1} \in V$

Example. Conditional expectations is a certainty equivalent operator

To see this, set $V = \mathbb{R}^X$, fix $P \in \mathcal{M}(\mathbb{R}^X)$

- $u \leqslant v$ implies $Pu \leqslant Pv$, so P preserves order on V and
- $P(\lambda \mathbb{1}) = \lambda P \mathbb{1} = \lambda \mathbb{1}$

Example. Let $V = \mathbb{R}^{X}$ and fix

- ullet $P\in\mathcal{M}(\mathbb{R}^{\mathsf{X}})$ and
- nonzero θ

The operator

$$(R_{\theta} v)(x) = \frac{1}{\theta} \ln \left\{ \sum_{x'} \exp(\theta v(x')) P(x, x') \right\}$$

is called the entropic certainty equivalent operator

Ex. Prove that R_{θ} is a certainty equivalent operator on V

Example. Let $V = (0, \infty)^X$ and fix

- ullet $P\in\mathcal{M}(\mathbb{R}^{\mathsf{X}})$ and
- nonzero γ

The operator

$$(R_{\gamma} v)(x) = \left\{ \sum_{x'} v(x')^{\gamma} P(x, x') \right\}^{1/\gamma}$$

is called the Kreps-Porteus certainty equivalent operator

Ex. Confirm that R_{γ} is a certainty equivalent operator on V

Let $V = \mathbb{R}^{\mathsf{X}}$ and fix $P \in \mathcal{M}(\mathbb{R}^{\mathsf{X}})$ and $\tau \in [0,1]$

Let R_{τ} be defined by $(R_{\tau} v)(x) = Q_{\tau} v(X)$ where

- $X \sim P(x,\cdot)$
- ullet $Q_{ au}$ is the quantile functional

More specifically,

$$(R_{\tau} v)(x) = \min \left\{ y \in \mathbb{R} \mid \sum_{x'} \mathbb{1}\{v(x') \leqslant y\} P(x, x') \geqslant \tau \right\}$$

 R_{τ} is called the quantile certainty equivalent

Confirm that R_{τ} defines a certainty equivalent operator on V

A certainty equivalent operator R on V is called

ullet positive homogeneous on V if

$$R(\lambda v) = \lambda R v$$
 for all $v \in V$ and $\lambda \geqslant 0$ with $\lambda v \in V$

ullet superadditive on V if

$$R(v+w)\geqslant Rv+Rw$$
 for all $v,w\in V$ with $v+w\in V$

ullet subadditive on V if

$$R(v+w) \leqslant Rv + Rw$$
 for all $v,w \in V$ with $v+w \in V$

ullet constant-subadditive on V if

$$R(v + \lambda \mathbb{1}) \leqslant Rv + \lambda \mathbb{1}$$
 for all $v \in V$, $\lambda \geqslant 0$ with $v + \lambda \mathbb{1} \in V$

Example. Let
$$V = (0, \infty)^X$$
 and fix $P \in \mathcal{M}(\mathbb{R}^X)$

In this setting, the Kreps-Porteus certainty equivalent operator

$$(R_{\gamma} v)(x) = \left\{ \sum_{x'} v(x')^{\gamma} P(x, x') \right\}^{1/\gamma}$$

is

- 1. subadditive on V when $\gamma \geqslant 1$
- 2. superadditive on V when $\gamma \leqslant 1$

Proof: See the book

Ex. Prove that the quantile certainty equivalent operator R_{τ} is constant-subadditive

Ex. Show that the entropic certainty equivalent operator R_{θ} is constant-subadditive

Proof: Fix $v \in V$, $P \in \mathcal{M}(\mathbb{R}^X)$ and $\lambda \in \mathbb{R}_+$

Let X be a draw from $P(x, \cdot)$

We have

$$(R_{\theta}(v+\lambda))(x) = \frac{1}{\theta} \ln \{ \mathbb{E} \exp[\theta(v(X)+\lambda)] \}$$
$$= \frac{1}{\theta} \ln \{ \mathbb{E} \exp[\theta v(X)] \cdot \exp(\theta \lambda) \}$$
$$= \frac{1}{\theta} \ln \{ \mathbb{E} \exp[\theta v(X)] \} + \lambda$$

Hence constant-subadditivity holds

Let V be convex and let R be a positive homogeneous certainty equivalent operator on V

Lemma

- 1. R is subadditive on $V \implies R$ is convex on V
- 2. R is superadditive on $V \implies R$ is concave on V

Proof: Regarding (i), fix $\lambda \in [0,1]$ and $v,w \in V$

Using subadditivity and positive homogeneity, we have

$$R(\lambda v + (1 - \lambda)w) \le R(\lambda v) + R((1 - \lambda)w) = \lambda Rv + (1 - \lambda)Rw$$

This proves that R is convex on V. The proof of (ii) is similar.

Lemma The Kreps–Porteus certainty equivalent operator R_{γ} is

- 1. convex on V when $\gamma \geqslant 1$ and
- 2. concave on V when $\gamma \leqslant 1$

Ex. Check it

This result will be useful later, when we introduce ambiguity

Convexity / concavity connect to Du's theorem

Monotonicity

Let X be partially ordered and let $i\mathbb{R}^X$ be the set of increasing functions in \mathbb{R}^X

Let V be such that $i\mathbb{R}^{\mathbf{X}}\subset V\subset\mathbb{R}^{\mathbf{X}}$ and let R be a certainty equivalent on V

We call R monotone increasing if R is invariant on $i\mathbb{R}^X$

Ex. Prove: If $P \in \mathcal{M}(\mathbb{R}^X)$ is monotone increasing, then

- 1. the entropic certainty equivalent operator $R_{ heta}$ is monotone increasing on $V=\mathbb{R}^{\mathsf{X}}$
- 2. the Kreps–Porteus certainty equivalent operator R_{γ} is monotone increasing on $V=(0,\infty)^{\mathsf{X}}$

Aggregation

Koopmans operators are typically constructed by combining

- 1. a certainty equivalent operator and
- 2. an aggregation function

Given $V \subset \mathbb{R}^X$, an **aggregator** on V is a map $A \colon X \times \mathbb{R} \to \mathbb{R}$ such that

- 1. w(x) = A(x, v(x)) is in V whenever $v \in V$ and
- 2. $y \mapsto A(x,y)$ is increasing for all $x \in X$

Intuitively, an aggregator combines current state and continuation values to measure lifetime value

Common types of aggregators include the

Leontief aggregator

$$A_{\min}(x,y) = \min\{r(x), \beta y\}$$
 with $r \in \mathbb{R}^{X}$ and $\beta \geqslant 0$

Uzawa aggregator

$$A_{\rm UZAWA}(x,y) = r(x) + b(x)y$$
 with $r \in \mathbb{R}^{\rm X}$ and $b \in \mathbb{R}_+^{\rm X}$

CES aggregator

$$A_{\text{CES}}(x,y) = \{r(x)^{\alpha} + \beta y^{\alpha}\}^{1/\alpha} \text{ with } r \in \mathbb{R}_{+}^{X}, \beta \geqslant 0, \alpha \neq 0$$

An important special case of the CES & Uzawa aggregators is the

• additive aggregator

$$A_{\text{ADD}}(x,y) = r(x) + \beta y \text{ with } r \in \mathbb{R}^{X} \text{ and } \beta \geqslant 0$$

Given $V \subset \mathbb{R}^{\mathsf{X}}$, we call K a Koopmans operator on V if

$$(Kv)(x) = A(x, (Rv)(x))$$
(5)

for

- 1. some aggregator A on V and
- 2. a certainty equivalent operator R on V

 $\mbox{\bf Ex.}$ Show that every Koopmans operator on V is an order-preserving self-map on V

In what follows we write (5) as

$$K = A \circ R$$

We have already met the following special cases

1. The risk-sensitive Koopmans operator

$$K_{\theta} = A_{\text{ADD}} \circ R_{\theta}$$

where $R_{ heta}$ is the entropic certainty equivalent operator

2. The Epstein–Zin Koopmans operator

$$K = A_{\text{CES}} \circ R_{\gamma}$$

where R_{γ} is the Kreps–Porteus expectations operator

Another special case is

$$K = A_{ADD} \circ P$$

where $P \in \mathcal{M}(\mathbb{R}^{\mathsf{X}})$ is ordinary conditional expectations

In this case

- K is called time additive
- corresponds to traditional discounted expectations model

The **lifetime value** generated by Koopmans operator K on $V \subset \mathbb{R}^X$ is the unique fixed point v of K in V, whenever it exists

• v(x) =lifetime value given initial state x

Example. In the case of time additive preferences

- $Kv = r + \beta Pv$ with $\beta \in (0,1)$
- unique fixed point is $v^* = (I \beta P)^{-1}r$

We know that

$$v^*(x) = \mathbb{E} \sum_{t \geq 0} \beta^t r(X_t)$$
 when (X_t) is P -Markov and $X_0 = x$

= lifetime value

Example. Let K_{θ} be the risk sensitive Koopmans operator

 K_{θ} is globally stable on $V = \mathbb{R}^{X}$ when $\beta \in (0,1)$

• see the result on slide 32

The unique fixed point of K in V is interpreted as lifetime value under risk-sensitive preferences

• for one instance, see the fig on slide 35

Finite horizons

Given arbitrary Koopmans operator K, we identify $K^m w$ with total m-period utility given terminal condition w

Example. For $Kv = r + \beta Pv$, we have

$$K^m w = \sum_{t=0}^{m-1} (\beta P)^t r + (\beta P)^m w$$

If (X_t) is P-Markov, we can write this as

$$(K^m w)(x) = \mathbb{E}_x \left[\sum_{t=0}^{m-1} \beta^t r(X_t) + \beta^m w(X_m) \right]$$

= lifetime utility up to date m

Let

- $X = (X, \preceq)$ be partially ordered
- $i\mathbb{R}^{X}$ be the set of increasing functions in \mathbb{R}^{X}
- V be such that $i\mathbb{R}^X \subset V \subset \mathbb{R}^X$

Let $K = A \circ R$ be a globally stable Koopmans operator on V

Ex. Show that the unique fixed point v^{*} is increasing on X whenever

- 1. $A(x,v) \leqslant A(x',v)$ whenever $v \in V$ and $x \preceq x'$, and
- 2. R is monotone increasing on V

We call aggregator A on V a Blackwell aggregator if \exists a $\beta \in (0,1)$ such that

$$A(x,y+\lambda)\leqslant A(x,y)+\beta\lambda \text{ for all } x\in \mathsf{X}\text{, } y\in \mathbb{R} \text{ and } \lambda\in \mathbb{R}_+$$

Ex. Show that $A_{\text{MIN}}(x,y) = \min\{r(x), \beta y\}$ is a Blackwell aggregator when $\beta < 1$

<u>Proof</u>: Fixing $x \in X$, $y \in \mathbb{R}$ and $\lambda \in \mathbb{R}_+$, we have

$$\min\{r(x), \beta y + \beta \lambda\} \leq \min\{r(x) + \beta \lambda, \beta y + \beta \lambda\}$$
$$= \min\{r(x), \beta y\} + \beta \lambda$$

That is, $A(x, y + \lambda) \leq A(x, y) + \beta \lambda$

We call aggregator A on V a Blackwell aggregator if \exists a $\beta \in (0,1)$ such that

$$A(x,y+\lambda)\leqslant A(x,y)+\beta\lambda$$
 for all $x\in X$, $y\in \mathbb{R}$ and $\lambda\in \mathbb{R}_+$

Ex. Show that $A_{\text{MIN}}(x,y) = \min\{r(x), \beta y\}$ is a Blackwell aggregator when $\beta < 1$

<u>Proof</u>: Fixing $x \in X$, $y \in \mathbb{R}$ and $\lambda \in \mathbb{R}_+$, we have

$$\min\{r(x), \beta y + \beta \lambda\} \leqslant \min\{r(x) + \beta \lambda, \beta y + \beta \lambda\}$$
$$= \min\{r(x), \beta y\} + \beta \lambda$$

That is, $A(x, y + \lambda) \leq A(x, y) + \beta \lambda$

Proposition. If

- 1. A is a Blackwell aggregator and
- 2. R is constant-subadditive

then $K = A \circ R$ is a contraction on V with respect to $\|\cdot\|_{\infty}$

Proof: Fixing $v \in V$ and $\lambda \in \mathbb{R}_+$, we have

$$K(v + \lambda) = A(\cdot, R(v + \lambda)) \leqslant A(\cdot, Rv + \lambda)$$

Since A is a Blackwell aggregator, the last bound yields

$$K(v + \lambda) \leq A(\cdot, Rv) + \beta\lambda = Kv + \beta\lambda$$

Hence K satisfies Blackwell's condition for a contraction

Let's now return to the global stability claim for the risk-sensitive Koopmans operator K_{θ} on slide 32

Pick any nonzero θ

Recall that $K_{\theta} = A_{\text{ADD}} \circ R_{\theta}$ when

- ullet $A_{
 m ADD}$ is the additive aggregator and
- $R_{ heta}$ is the entropic certainty equivalent

Note that

- 1. $A_{
 m ADD}$ is a Blackwell aggregator and
- 2. R_{θ} is constant-subadditive

Hence K_{θ} is globally stable on \mathbb{R}^{X}

Suppose $V = \mathbb{R}^{X}$ and

$$(K_{\tau}v)(x) = r(x) + \beta(R_{\tau}v)(x) \qquad (x \in \mathsf{X})$$
 (6)

for $\beta \in (0,1)$, $r \in \mathbb{R}^{X}$ and quantile certainty equivalent R_{τ}

- represents quantile preferences (de Castro and Galvao 2019)
- ullet au parameterizes attitude to risk

Since R_{τ} is constant-subadditive and $A_{\rm ADD}$ is Blackwell, K_{τ} is globally stable

Ex. Suppose K_{τ} in (6) is replaced by with $K = A_{\min} \circ R_{\tau}$. Under analogous assumptions, prove that K is globally stable.

Uzawa aggregation and stability

Consider the Koopmans operator $K = A_{\text{UZAWA}} \circ R$

- ullet V is some subset of \mathbb{R}^{X} and
- ullet R is a certainty equivalent operator on V

Example. Suppose
$$V = \mathbb{R}^{X}$$
 and $R = P \in \mathcal{M}(\mathbb{R}^{X})$

Then

$$Kv = r + Lv$$
 where $L(x, x') = b(x)P(x, x')$

Ex. Show that K is globally stable on V whenever $\rho(L) < 1$

Example. In Krussell and Smith 1998, Toda 2019, Cao 2020, etc.,

$$v(x) = \mathbb{E}_x \sum_{t=0}^{\infty} \left[\prod_{i=0}^{t} \beta_i \right] u(C_t) \quad \text{with} \quad \beta_0 := 1$$
 (7)

Suppose $C_t = c(X_t)$ and $\beta_t = b(X_t)$ where

- $b \geqslant 0$ and
- (X_t) is P-Markov for some $P \in \mathcal{M}(\mathbb{R}^X)$

Set
$$L(x, x') := b(x)P(x, x')$$
 and suppose $\rho(L) < 1$

Then v in (7) is the unique f.p. of

$$Kv = u \circ c + bPv = A_{UZAWA}Pv$$

Stability via concavity

Now consider Kv = r + bRv when R is not in $\mathcal{M}(\mathbb{R}^X)$

When does global stability hold (allowing b > 1 in some states)?

Suppose

- (a) $bRv\leqslant c+Lv$ for $c\in\mathbb{R}^{\mathsf{X}}$ and $L\in\mathcal{L}(\mathbb{R}^{\mathsf{X}})$ with $\rho(L)<1$
- (b) $r \gg 0$ and R is concave on $\mathbb{R}_+^{\mathsf{X}}$

Let $V=[0,\bar{v}]$ where $\bar{v}:=(I-L)^{-1}(r+c)$

Proposition. If (a)–(b) hold, then K is globally stable on V

<u>Proof</u>: Under (a)–(b), K is a self-map on V

Indeed, we have

$$0 \ll r = r + 0 = r + bR0 = K0$$

and

$$K\bar{v}=r+bR\bar{v}\leqslant r+c+L\bar{v}=r+c-(I-L)\bar{v}+\bar{v}=\bar{v}$$

In addition, K is concave and order-preserving on V

The claim now follows from Du's theorem

EZ preferences with state-dependent discounting

CES-Uzawa aggregator + Kreps-Porteus certainty equivalent operator leads to

$$Kv = \left\{ h + b \left[Pv^{\gamma} \right]^{\alpha/\gamma} \right\}^{1/\alpha}$$

In what follows we

- take $V = (0, \infty)^X$
- assume $h,b\in V$ and $P\in\mathcal{M}(\mathbb{R}^{\mathsf{X}})$ is irreducible

Ex. Show that K is self-map on V

To discuss stability of K we introduce the operator $A \in \mathcal{L}(\mathbb{R}^{\mathsf{X}})$ defined by

$$(Av)(x) := b(x)^{\theta} \sum_{x'} v(x') P(x, x')$$
 where $\theta := \frac{\gamma}{\alpha}$

Note that we can now write K as follows

$$Kv = \left\{ h + [Av^{\gamma}]^{\alpha/\gamma} \right\}^{1/\alpha}$$

Proposition. K is globally stable on V if and only if $\rho(A)^{\alpha/\gamma} < 1$

Proof: Let

$$\hat{K}v = \left\{h + (Av)^{1/\theta}\right\}^{\theta}$$

Let Φ be defined by $\Phi v = v^{\gamma}$

Ex. Show that \hat{K} is globally stable on V if and only if $\rho(A)^{\alpha/\gamma} < 1$

• Hint: See the result on slide 12

Ex. Show that (V,K) and (V,\hat{K}) are topologically conjugate under Φ

The claim in the proposition follows