Ejercicio realizado por MARIO ABERTO HERNÁNDEZ

Suponiendo que nuestra máquina-p utiliza un *display* para resolver las llamadas a procedimientos:

- a) Escribe la secuencia de código-p que deberá generar el compilador para el siguiente programa
- b) Haz un esquema de la tabla de símbolos
- c) Haz un esquema de la memoria de la máquina-p cuando se está ejecutando el procedimiento suma.

```
PROGRAM examen;
VAR
n: INTEGER;
    PROCEDURE suma;
    VAR
    m,k: INTEGER;
    BEGIN
    k:= 3;
    m:=n + k * 5;
    END;
BEGIN
    n: = 7;
    CALL suma;
end.
```

a) Codigo-p:

		<u></u>					
0	ir-a(20)	salto al código del programa principal					
1	ir-a(2)	salto al código de la función					
2	incrementa(4)	reserva de memoria para el espacio de control y las variables del					
		procedimiento					
	k: = 3						
3	apila(3)	apilamos la dirección de la variable k					
4	apila(2)	apilamos el nivel de la variable k (nivel de declaración)					
5	apila(3)	apilamos el valor 3					
6	desapila_ind	almacenamos el valor 3 en la variable k					
	m:=n+k*5						
7	apila(2)	apilamos la dirección de la variable m					
8	apila(2)	apilamos el nivel de la variable m					
9	apila(2)	apilamos la dirección de la variable n					
10	apila(1)	apilamos el nivel de la variable n					
11	apila_ind	apilamos el valor de la variable n					
12	apila(3)	apilamos la dirección de la variable k					
13	apila(2)	apilamos el nivel de la variable k					
14	apila_ind	apilamos el valor de la variable k					
15	apila(5)	apilamos el valor 5					
16	multiplica	apilamos el resultado de k*5					
17	suma	apilamos el resultado de n+ (k*5)					
18	desapila_ind	almacenamos el resultado en la variable n					
19	Retorno						

20	incrementa(3)	reserva de memoria para el espacio de control y las variables del			
		programa principal			
	n:=7				
21	apila(2)	apilamos la dirección de la variable n			
22	apila(1)	apilamos el nivel de la variable n			
23	apila(7)	apilamos el valor 7			
24	desapila_ind	almacenamos en n el valor 7			
	CALL suma				
25	llama(1,2)	llamada al procedimiento suma, con etiqueta = 1 y nivel = 1			
26	alto				

b) Tabla de símbolos:

						INT
lexema	token	clase	dir/etiq	nivel	tipo	tam = 1
INTEGER	INT	Tipo-básico	-	-		
examen	ID	cabecera	-	-	null	/ / /
n	ID	VAR	2	1		7 / /
suma	ID	PROC	1(Etiq)	2	_	//
						→ PROCEDURE
					/	numParams = 0
m	ID	VAR	2	2	1	7
k	ID	VAR	3	2		7

c) Evolución de la memoria:

Estado inicial (tras crear la tabla de símbolos).

Después de la instrucción de n:= 7.

Memoria de datos

9	
8	

Después de la instrucción k:=3 (en el procedimiento).

Memoria de datos

Después de la instrucción m:=n+k*5 (en el procedimiento).

Memoria de datos

