Università di Trento - Dip. di Ingegneria e Scienza dell'Informazione

CdL in Informatica, Ingegneria dell'informazione e delle comunicazioni e Ingegneria dell'informazione e organizzazione d'impresa

a.a. 2017-2018 - Foglio di esercizi 9 ... "continuità, derivabilità e teoremi fondamentali"

Determinate l'insieme di definizione di ciascuna delle seguenti funzioni ed individuate eventuali asintoti:

$$f(x) = \frac{-2x^2 + \sin|x|}{|x+1|};$$
 $f(x) = e^{-x} + \arctan\frac{1}{x}.$

2) Quali delle seguenti equazioni ammettono soluzioni reali? In caso affermativo, sono uniche?

$$e^{-x} - \arctan x = -1;$$
 $1 - x^4 = 4x^2;$ $2x^4 + |x| = 1;$ $x^{33} + x + 1 = 0.$

- 3) Provate che l'equazione $2x^4=1-x^3$ ammette una ed una sola soluzione nell'intervallo [0,1]. Determinate un intervallo $[\widetilde{a},\widetilde{b}] \subset]0,1[$ con $x_0 \in]\widetilde{a},\widetilde{b}[$ e $\widetilde{b}-\widetilde{a} \leq \frac{1}{4}$.
- Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che

(*)
$$\frac{|x|}{2} \le f(x) \le 2|x| \qquad \forall x \in [-1, 1].$$

Quali delle seguenti affermazioni sono vere per qualsiasi funzione f soddisfacente (*)?

- i) $\exists x_0 \in [-1, 1] : f(x_0) = \frac{3}{4};$ ii) $\exists x_0 \in [-1, 1] : f(x_0) = \frac{1}{2};$ iii) $\exists x_0 \in [-1, 1] : f(x_0) = \frac{3}{2};$ iv) $\exists x_0 \in [-1, 1] : f(x_0) = \frac{3}{2}$

- 5) i) Dite per quali valori di $\alpha \in \mathbf{R}$ risulta finito il seguente limite $\lim_{x\to 0^+} \frac{\log(1+x^{\alpha})}{\sin\sqrt{x}}$.
 - ii) Determinate il valore $\alpha \in \mathbf{R}$ tale che la funzione

$$f(x) = \begin{cases} e^x + x^2 & \text{se } -1 \le x \le 0\\ \frac{\log(1 + x^\alpha)}{\sin\sqrt{x}} & \text{se } 0 < x \le 1 \end{cases}$$

verifica le ipotesi del teorema di Weierstrass nell'intervallo [-1, 1].

Dite se il teorema di Weierstrass è applicabile a ciascuna delle seguenti funzioni negli intervalli indicati:

1

i) $f(x) = \log x$ su $[0, +\infty[$;

ii)
$$f(x) = \begin{cases} \frac{1}{(\arctan x)^2} & \text{se } x \in [-1,1] \setminus \{0\} \\ 0 & \text{se } x = 0; \end{cases}$$
 $f(x) = \begin{cases} \frac{x}{\arctan x} & \text{se } x \in [-1,0[x]] \\ x^2 \sin \frac{1}{x} + 1 & \text{se } x \in [0,1] \\ 1 & \text{se } x = 0. \end{cases}$

- 7) Dite quali delle seguenti funzioni non sono derivabili in x = 0: $|x|\sin x; \quad |e^x 1|; \quad |x|(\cos x 1); \quad \arcsin \sqrt{x}.$
- 8) Calcolate, dove esiste, la derivata prima delle seguenti funzioni: $\arcsin(3x+e^{4x})$; $x \arctan 2x$; $\log(\arccos(5x-1))$; $(\sin^2 x + \sqrt[4]{x})^2$; $\sqrt{1+\sqrt{x^2+1}}$.
- 9) Dite se le seguenti affermazioni sono vere, fornendo eventualmente dei controesempi oppure citando teoremi visti a lezione.
 - a) Se la funzione f è derivabile, allora la funzione |f| è derivabile.
 - b) Se la funzione f è derivabile, allora la funzione |f| è continua.
 - c) Se la funzione f^2 è continua, allora la funzione f è continua.
 - d) Se la funzione |f| è continua, allora la funzione f è continua.
- 10) Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile tale che f'(1) = 0 e $\lim_{x \to -\infty} f(x) = +\infty$ e $\lim_{x \to +\infty} f(x) = -\infty$. Quali delle seguenti affermazioni risulta sempre vera?
 - a) La funzione ha tangente orizzontale al grafico di f nel punto (1, f(1)).
 - b) x = 1 deve essere un punto di massimo locale stretto per f.
 - c) f(1) > 0.
- 11) Siano $f, g: \mathbf{R} \to \mathbf{R}$ due funzioni derivabili tali che $f(0) = \frac{\pi}{2}$, $f'(0) = \frac{1}{2}$ e $g(x) = \cos(f(x^2 1))$. Determinate g'(1).
- 12) Date le funzioni $f(x) = \sqrt{x} x^3$ su $[0, +\infty[$ e $g(x) = \arctan(x+1)$ su \mathbf{R} , determinate $(g \circ f)'(1)$.
- 13) i) Sia $f(x) = x^3 e^{3x-2}$ definita su **R**. Determinate $(f^{-1})'(e)$.
 - ii) Sia $f(x) = x e + \log x$ definita su $]0, +\infty[$. Determinate $(f^{-1})'(1)$.
 - iii) Sia $f(x)=x+\arctan x$ su ${\bf R}$. Scrivete l'equazione della retta tangente al grafico di f^{-1} nel punto $(1+\frac{\pi}{4},1)$.
- 14) Verificate che $f(x) = e^{x(x^2-1)}$ soddisfa le ipotesi del teorema di Rolle su [0,1]. Determinate i punti $c \in]0,1[$ tali che f'(c)=0.
- 15) Sia g una funzione continua su [1,3], derivabile nell'intervallo [1,3] e tale che $g(3) = \frac{1}{2}$. Sia $f: [1,3] \to \mathbf{R}$ la funzione definita da $f(x) = 2x + (g(x) - \sin \frac{\pi}{2x}) \arcsin(\frac{x-1}{2})$. Provate che esiste $x_0 \in]1,3[$ tale che $f'(x_0) = 2$.