

Sistema de medição de pH em Arduino

Proposed by Arsakeio High School of Patras

A Trainers Toolkit To Foster STEM Skills Using Microcontroller Applications

Sistema de medição de pH em Arduino

Conteúdos

Objetivo Descrição Objetivos de Aprendizagem Metodologias de Aprendizagem Grupo Alvo Esquema de Aprendizagem Solução Áreas Científicas cobertas Avaliação Bibliografia

Objetivo

Utilizar o sistema de medição de pH do Arduíno para explicar e ajudar os alunos a automatizar a medição dos parâmetros de pH de uma solução de ácido forte ou básico forte

Project No. 2019-1-RO01-KA202-063965

Descrição

- O pH é um indicador da força de ácidos e bases, um dos compostos químicos mais usados num laboratório escolar.
- O pH desempenha um papel crucial na classificação das soluções e na sua proteção durante o manuseamento. Plantas e animais demonstraram escolher o pH certo para crescer. Várias plantas crescem e produzem melhores frutos num ambiente de pH específico, enquanto são incapazes de crescer além de qualquer limite.
- A qualidade da água consumida pelo corpo humano é de particular importância. Especificamente, de acordo com o JMC Y2 / 2600/2001 (Government Gazette 892B / 11-7-2001) "Qualidade da água para consumo humano", de acordo com a Diretiva 98/83 do Conselho da União Europeia de 3 de novembro de 1998, o limite de pH definido da água para consumo humano está entre 6,5 e 9,5. Quando a água possui pH alto (bases fortes) ou pH baixo (ácidos fortes), além dos limites, é perigosa para a saúde humana e deve ser manuseada adequadamente.

Sistema de medição de ph Arduíno

Descrição

- A medição do pH pode ser feita em laboratórios, ou com o uso de dispositivos eletrónicos portáteis, como o medidor de pH ou o medidor de pH Arduíno.
- O sistema de medição de pH Arduíno consiste num microcontrolador, uma relé, um sensor de medição de pH, uma bomba, uma fonte de alimentação e um braço robótico.
- Com estes componentes, podemos facilmente construir um sistema alimentado por Arduíno. Em combinação com o braço robótico, o sistema responde a soluções que possuem valores extremos de ácidos ou bases que podem prejudicar os alunos.
- Desta forma mais simples, os alunos aprenderão como os microcontroladores podem ser usados num laboratório químico quando precisam medir o pH em condições extremas de acidez ou alcalinidade.

Objetivos de aprendizagem

- Os alunos entendem os princípios básicos de eletrónica e química
- Os alunos entendem o papel do pH na qualidade da água
- Os alunos entendem como a eletrónica pode automatizar as atividades quotidianas num laboratório químico.

Metodologias de aprendizagem

- Os alunos descobrem materiais que apresentam propriedades ácidas ou básicas de nossa vida diária (como vinagre, sumo de limão, bicarbonato de sódio, champô).
- O professor designa grupos para medir o pH de diferentes soluções.
- No fim do projeto, os alunos tiram conclusões sobre em que soluções é obrigatória a utilização do sistema de medição Arduíno, devido aos limites de segurança.

Grupo Alvo

Alunos de escolas secundárias

Project No. 2019-1-RO01-KA202-063965

Esquema de aprendizagem

- Os alunos são divididos em grupos. Após os grupos conversarem cerca de 2 minutos, o líder de cada grupo anuncia as suas opiniões acerca de quais são os pressupostos iniciais previsões sobre a necessidade dos valores de pH e a forma de medi-lo.
 - As medições do pH são recolhidas a partir das respetivas soluções ácidas, neutras e básicas.
 - Cada grupo é solicitado a contar o pH das soluções de diferentes maneiras e compará-lo com o valor esperado.
 - Defina o pH como uma quantidade que serve para comparar a acidez ou a alcalinidade.

Solução

Project No. 2019-1-RO01-KA202-063965

Fonte: ethnos.gr

Um elemento particularmente importante deste curso é que ele transforma o laboratório escolar num laboratório de investigação do futuro, despertando assim o interesse do aluno, que pode se tornar o investigador de amanhã.

Também enfatiza a relação ciência e tecnologia, pois a tecnologia é chamada para encontrar soluções aqui formas de fazer medições - sob condições adversas, como a presença de radioatividade numa medição de pH, água de refrigeração num reator, ou num vulcão ou na superfície de outro planeta.

Solução

Os seguintes components são necessários para a preparação:

Microcontroller Applications

- ARDUINO UNO
- Braço Robótico
- Sensor de Ph

A Trainers Toolkit To Foster STEM Skills Using

- Fios de ligação
- fonte de alimentação 12V

Solução

- <- Diagrama de fiação de todos os componentes do circuito.</p>
- Podemos escrever facilmente o software para controlar o circuito, lendo o manual ou procurando um projeto pronto na Internet.

Áreas Científicas Cobertas

Química / Tecnologia / Informática

Project No. 2019-1-RO01-KA202-063965

Avaliação

- A avaliação deve ser alcançada através do envolvimento dos alunos a longo prazo.
- Durante a discussão, os alunos podem ser informados sobre questões básicas.
- O aluno deve ser capaz de identificar as relações básicas.
- Por fim, promove a ideia de interdisciplinaridade, uma vez que durante a implementação e conclusão do mesmo, os alunos lidam em paralelo com mais de um objeto cognitivo.

Fonte: Science lab

Bibliografia

- 1. Alimisis, D., Karatrantou, A., Tachos, N. (2005), Technical school students design and develop robotic gear-based constructions for the transmission of motion, Eurologo 2005,
- 2. Carr, M. (1984). Model confusion in chemistry. Research in Science Education, 14, 97-103. Digital Tools for Lifelong Learning, Proceedings, Warsaw, Poland, 76-86.
- 3. Satratzemi, M., Dagdilelis, V., Kagani, K, (2005). Teaching Porgramming with robots: A case Study on Greek Secondary Education, P. Bozanis, E.N. Houstis, (Eds.), Lecture Notes in Computer Science (LNCS), 3746, 502-512.
- 4. Tinkerkit Braccio Manual
- 5. <u>Arduino UNO Manual</u>

