8 Designing voting mechanisms

So Fagrees with voter i for a, c.

8.4 Arrow's impossibility theorem

Theorem 17. (Arrow's impossibility theorem) Every social welfare function over a set of at least 3 candidates that satisfies unanimity and IIA is a dictatorship.

Sketch proof so far. Suppose $F: L^n \to L$ satisfies unanimity and IIA. We have found a potential dictator i, F matches the ranking of b with voter i.

Remains to prove. For $a, c \neq b$, F agrees with voter i on the relative ranking of a and c. For $d \neq b$, F agrees with voter i on the relative ranking of b and d.

Sketch proof continues.

Part 3: Let a, C be two candidates other than b. (They exist as there are 23 candidates) WLOG voter i ranks a > C in original P. Greate a new voter preference P^* from P; by moving a to the top of the list for voter i.

Note: relative rankings of a,c are the same for P,P^* , so same for F. In P_{i-1} and P^* , relative rankings of a,b are the same. F ranks b at the bottom in P_{i-1} , so we must have a > b by F in P_{i-1} and P^* ((1A). In P_i and P^* , relative rankings of b, c are the same. F ranks b > c in P_i , so by IIA, F ranks b > c in P^* .

Franks a > b > c in P^* , by transitivity, a > c in P^* . Also in P.

Part 4: Let d 76 be any candidate. Show F agrees with voter i on b,d.

There exists candidate e + b, d (23 can didates).

Run the arguments from parts 2 and 3 on candidate e, and this giver us q voter j such that Fagreer with voter j for any condidates that are not e. We show that j=i-

Suppose otherwise. Say j<i,

Consider Pi-1. Voter j ranks d < b in Pi-1. So Fagrees with voter j on b, d (nor e).

So Franks b>d in agreeing with voterj.

But Franks d>b in agreeing with voteri.

Contradiction. Contradiction,

Suppose j > i. Consider Pi.

Fagres with voter i on b, d, so b>d. Fagrees with utter; on b,d, so asb.

=> F agrees with voter i in all cases. So voter i is a dictator. I

Gibbarth-Satterthwaite theorem

Do things get better with social choice functions $f: L^n \to A$? No.

Good property. Strategy-proof: a voter connot change the society's choice to Someone they like better by changing their preferences.

formally, we say f can be strategically manipulated by voter i if there exist a, b ∈ A, (<,...,<n) ∈ L" and < ; ∈ L such that a<; b (voter i prefers b), $f(\langle 1,...,\langle n \rangle) = a$ (society picks a), and $f(\langle 1,...,\langle i,...,\langle n \rangle) = b$ (cociety picks b when voter i changes their preference). We say fig Strategy-proof it it cannot be strategically manipulated by any voter. Bad property. Dictatorship. There exists a voter i such that f will always choose the candidate at the top of voter is list.

Theorem 18. (Gibbarth-Satterthwaite theorem)

Any strategy-proof social choice function onto a ser of at least 3 candidates is a dictatorship.

Very sketch proof.

Assume f: L" > A is strategy-proof. Construct a social welfare function F: L" -) L as follows: Take any a, b ∈ A. Raise them to the top

of the rankings. Then f will pick a or b as society's choice

(exercise). If f picks a, then

Franks a > b. Otherwise, F ranks b>a.

Need to show F is antisymmetric (easy) and transitive (hard). Then show F satisfies unanimity and IIA (not hard). By Arrow, F is a dictatorship. Since f picks the top choice, f is also a dictatorship. The