B5A1 Zeigen Sie, dass eine Folge $(X_n)_{n\in\mathbb{N}}$ genau dann gleichgradig integrierbar ist, wenn

$$\lim_{k \to \infty} \limsup_{n \to \infty} E[|X_n| \mathbb{1}_{\{|X_n| > k\}}] = 0.$$
 (1)

Sei zunächst (X_n) gleichgradig integrierbar. Dann gilt nach Definition von gleichgradiger Integrierbarkeit, dass

$$0 = \lim_{k \to \infty} \sup_{n \in \mathbb{N}} E[|X_n| \mathbb{1}_{\{|X_n| > k\}}].$$

Insbesondere heißt dass, dass für ein gegebenes $n \in \mathbb{N}$ gilt, dass

$$0 = \lim_{k \to \infty} \sup_{m \geq n} E[|X_m| \mathbbm{1}_{\{|X_m| > k\}}].$$

Damit gilt auch für das Infimum über diese $n \in \mathbb{N}$, dass

$$0 = \lim_{k \to \infty} \inf_{n \in \mathbb{N}} \sup_{m \geq n} E[|X_m| \mathbbm{1}_{\{|X_m| > k\}}] \,,$$

was nach der Definition des lim sup Gleichung (1) liefert. Hier sollte man sich überlegen, ob man den Limes über k ebenfalls, wie in der Argumentation unten, mittels eines ε umschreiben sollte.

Genüge nun (X_n) Gleichung (1). Wir wollen zeigen, dass (X_n) gleichgradig integrierbar ist. Sei hierfür ein $\varepsilon > 0$ gegeben. Da Gleichung (1) gilt, gibt es ein $k_0 \in \mathbb{N}$, sodass für alle $k > k_0$

$$\limsup_{n\to\infty} E[|X_n|\mathbb{1}_{\{|X_n|>k\}}] < \varepsilon.$$

Damit ist die Teilfolge $(\sup_{m\geq n} E[|X_m]\mathbb{1}_{\{|X_m|>k\}})_n$ für alle $n\in\mathbb{N}$ beschränkt. Hier könnte man eventuell noch direkt ein Argument bringen, warum schon Beschränktheit durch ε folgt. Also gibt es auch ein n_0 , sodass für alle $n\geq n_0$ gilt

$$E[|X_n|\mathbb{1}_{\{|X_n|>k\}}]<\varepsilon.$$

Nach Lemma 24 gilt, dass alle X_n integrierbar sind. Also gibt es für alle X_1,\ldots,X_{n_0-1} jeweils Schranken $k_1,\ldots,k_{n_0-1}\in\mathbb{N},$ sodass für die $n=1,\ldots,n_0-1$ gilt

$$E[|X_n|\mathbb{1}_{\{|X_n|>k_n\}}]<\varepsilon.$$

Setze nun $K=k_0\vee\cdots\vee k_{n_0-1}$, dann gilt für alle $k\geq K$ und alle $n\in\mathbb{N},$ dass

$$E[|X_n|\mathbb{1}_{\{|X_n|>k\}}]<\varepsilon\,,$$

also insbesondere, dass

$$\lim_{k\to\infty}\sup_{n\in\mathbb{N}}E[|X_n|\mathbbm{1}_{\{|X_n|>k\}}]<\varepsilon\,.$$

Hier fehlt noch die Folgerung von Korollar 27.

B5A2 Sei (Ω, \mathcal{F}, P) ein Wahrscheinlichkeitsraum und $(A_n)_{n\geq 1}$ eine Folge in \mathcal{F} . Es sei

$$\limsup_{n \to \infty} A_n := \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k, \qquad \liminf_{n \to \infty} A_n := \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k.$$

Zeigen Sie, dass gilt

$$\liminf_{n \to \infty} A_n \subseteq \limsup_{n \to \infty} A_n \,,$$

$$P \Big(\liminf_{n \to \infty} A_n \Big) \le \liminf_{n \to \infty} P(A_n) \le \limsup_{n \to \infty} P(A_n) \le P \Big(\limsup_{n \to \infty} A_n \Big) \,.$$

Wir möchten zunächst zeigen, dass $\liminf_{n\to\infty}A_n\subseteq \limsup_{n\to\infty}A_n$. Sei hierfür $\omega\in \liminf_{n\to\infty}A_n$. Wie wir in der Übung besprochen haben, heißt das, dass ein $n_0\in\mathbb{N}$ existiert, sodass für alle $n\geq n_0$ gilt, dass $\omega\in A_n$. Um zu zeigen, dass $\omega\in \limsup_{n\to\infty}A_n$, sei ein $m_0\in\mathbb{N}$ beliebig vorgegeben. Da für $n\geq n_0$ gilt, dass $\omega\in A_n$, ist $\omega\in A_{m_0\vee n_0}$. Damit gilt auch für alle $m_0\in\mathbb{N}$, dass ein $m\geq m_0$ existiert, sodass $\omega\in A_m$, nämlich $m=m_0\vee n_0$. Somit ist $\omega\in \limsup_{n\to\infty}A_n$.

Nun überlegen wir uns, warum die Ungleichungen gelten. $\mathbbm{1}_{A_n}$ hat $\mathbbm{1}_{\Omega}$ als integrierbare Majorante. Damit gelten die erste und dritte Ungleichung gelten jeweils nach dem Lemma von Fatou, beziehungsweise die dritte nach majorisierter Konvergenz.

Hier fehlt noch eine Rechnung für die mittlere Ungleichung.

B5A3 Sei $\lambda>0$ und für jedes $n\in\mathbb{N}_0$ sei X_n eine Poisson-verteilte Zufallsvariable zum Parameter λ . Zeigen Sie mit Hilfe des Lemmas von Borel–Cantelli, dass

$$P(\{\text{F\"{u}r unendlich viele } n \text{ gilt } X_n > n\}) = 0.$$

Die Poissonverteilung ist gegeben durch $P(X_n=k)=\mathrm{e}^{-\lambda}\frac{\lambda^k}{k!}.$ Damit ist

$$\sum_{n=1}^{\infty} P(X_n > n) = \sum_{n=1}^{\infty} \sum_{k=n+1}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!}$$

Nach dem Lemma von Borel–Cantelli folgt die Behauptung aus $\sum_{n=1}^{\infty} P(X_n > n) < \infty$. Also müsste der obige Ausdruck endlich sein.

B5A4 Nennen Sie jeweils ein Beispiel und ein Gegenbeispiel von reellwertigen Zufallsvariablen $(X_n)_{n\in\mathbb{N}}$ und einer Menge $A\in\mathcal{B}(\mathbb{R})$ für die folgenden Identitäten

1.
$$P\left(\left\{\limsup_{n\to\infty} X_n \in A\right\}\right) = P\left(\limsup_{n\to\infty} \left\{X_n \in A\right\}\right)$$

2.
$$P\left(\limsup_{n\to\infty} \{X_n \in A\}\right) = \limsup_{n\to\infty} P(\{X_n \in A\})$$

3.
$$\limsup_{n \to \infty} P(\{X_n \in A\}) = P\left(\left\{\limsup_{n \to \infty} X_n \in A\right\}\right)$$

Es ist

$$P\Big(\Big\{\limsup_{n\to\infty}X_n\in A\Big\}\Big) = P(\{\omega\in\Omega\mid \inf_{n\geq 1}\sup_{m\geq n}X_m(\omega)\in A\}),$$
$$P\Big(\limsup_{n\to\infty}\{X_n\in A\}\Big) = P(\omega\in\Omega\mid \forall n\in\mathbb{N}\exists m\geq n\ X_m(\omega)\in A)$$

B5A5 Sei X_1, X_2, \ldots eine Folge von reellwertigen Zufallsvariablen auf einem Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, P), \mathcal{F}_n := \sigma(X_n)$ für alle n und $S_n := \sum_{k=1}^n X_k$. Zeigen Sie oder widerlegen Sie durch ein Gegenbeispiel, dass die folgenden Ereignisse terminale Ereignisse sind, also in der terminalen σ -Algebra liegen.

1.
$$\{\omega \in \Omega | X_n(\omega) = 0\}$$
 für ein $n \in \mathbb{N}$,

2.
$$\{\omega \in \Omega | X_n(\omega) = 0 \text{ für ein } n \in \mathbb{N}, \}$$