SME0823 - Modelos Lineares Generalizados - Lista 5

Danilo Augusto Ganancin Faria – Nº USP: 9609172

20 de dezembro de 2019

Resposta Positiva

Exercício 3

Os dados deste exercício correspondem a um estudo sobre a atividade das frotas pesqueiras de espinhel de fundo baseadas nas cidades de Santos e Ubatuba no litoral paulista.

O espinhel de fundo é definido como um método de pesca passivo. É um dos métodos que mais satisfazem às premissas da pesca responsável, com alta seletividade de espécies e comprimentos, alta qualidade do pescado, consumo de energia baixo e pouco impacto sobre o fundo do oceano.

A espécie de peixe considerada é o peixe-batata pela sua importância comercial e ampla distribuição espacial.

Uma amostra de n=156 embarcações foi analisada, encontrou-se as seguintes variáves: frota (Santos ou Ubatuba), ano (95 a 99), trimestre (1 ao 4), latitude (de $23,25^{\circ}$ a $28,25^{\circ}$), longitude ($41,25^{\circ}$ a $50,75^{\circ}$), dias de pesca, captura (quantidade de peixes batata capturados, em kg) e cpue (captura por unidade de esforço, Kg/dias de pesca), que é a variável resposta.

Para realizar a leitura dos dados utilizou-se o seguinte código:

```
# Código para ler os dados
dados <- read.table("pesca.txt", header = TRUE)
dados <- data.frame(dados)</pre>
```

Análise de dados preliminar

Inicialmente é apresentada uma análise descritiva dos dados para em seguida propor um modelo MLG a fim de tentar explicar a cpue média pelas variáveis explicativas.

Figura 1: Densidade aproximada da cpue para todas as embarcações

É razoável fazer a suposição de que a distribuição da **cpue** possui assimetria à direita, conforme é ilustrado na Figura 1.

Estatísticas descritivas das variáveis dias pesca, captura e cpue summary(dados)

Tabela 1: Medidas resumo das variáveis diaspesca, captura e cpue

Variável	Min.	Med.	Máx.	Média	DP	Var.
diaspesca	1	9	18	8,397	3,6	12,963
captura	50	1200	6500	1623	1227,99	1507963
cpue	43,75	$166,\!41$	600	$195,\!55$	121,063	$14656,\!17$

Na Tabela 1 encontram-se algumas estatísticas descritivas para as variáveis diaspesca, captura e cpue. Nota-se que as embarcações passaram de 1 a 18 dias pescando porém, em média eles pescaram durante 4 dias. A quantidade média de peixes capturados foi de 1623 Kg. A cpue média foi de 121,03 Kg/dia de pesca.

Figura 2: Gráficos de caixa da cpue pela frota

De acordo com a Figura 2, nota-se que a frota de Santos é superior à frota de Ubatuba.

Figura 3: Gráficos de caixa robusto da cpue pela frota

A mesma superioridade já identificada da frota de Santos em comparação com a frota de Ubatuba é apresentada na Figura 3 conforme mostra os gráficos de caixa robustos.

Figura 4: Gráficos de caixa da cpue pelo ano

Na Figura 4 observa-se que o ano de 1997 apresenta maior mediana em comparação com os demais, neste mesmo ano nota-se a presença de três observações *outliers*.

Figura 5: Gráficos de caixa robusto da cpue pelo ano

Conforme é ilustrado na Figura 5, as observações *outliers* agora encontram-se na parte inferior dos gráficos de caixa robustos. O ano de 1997 ainda possui mediana superior aos demais anos.

Tabela 2: Medidas resumo da variável frota de acordo com o ano

Frota	Estatística	1995	1996	1997	1998	1999
	Média	229,37	193,19	262,67	210,29	197,22
Santos	Des. Padrão	148,07	$132,\!55$	$153,\!60$	122,95	$103,\!45$
	Coef. Variação	$64,\!55\%$	$68,\!61\%$	$58{,}48\%$	$58,\!44\%$	$52,\!48\%$
	n	19	8	17	27	46
	Média	47,08	96,09	$210,\!56$	$174,\!43$	140,85
Ubatuba	Des. Padrão	4,73	59,19	$77,\!51$	99,16	$71,\!59$
	Coef. Variação	$10,\!05\%$	$61,\!60\%$	$36,\!81\%$	$56{,}85\%$	$50,\!83\%$
	n	3	12	6	5	13

Na Tabela 2 é possível conferir que somente no ano de 1996 a frota de Ubatuba possuia mais embarcações do que a frota de Santos, em 1995 e de 1997 a 1999, a frota de Santos contava com mais embarcações. O coeficiente de variação, que é dado pelo quociente do desvio padrão pela média, para a frota de Santos é praticamente constante, por outro lado, na frota de Ubatuba nos anos de 1995 e 1997 seu valor disto dos demais anos.

Figura 6: Gráficos de caixa da latitude e longitude pela frota

Pela Figura 6 nota-se que a frota da cidade de Santos tem preferência por pescar em latitudes e longitudes mais elevadas do que a frota de Ubatuba.

Figura 7: Gráficos de caixa robusto da latitude e longitude pela frota

Assim como foi destacado na Figura 6, os gráficos de caixa robustos da Figura 7 também ilustra a preferência da frota de Santos em pescar nas latitudes e longitudes maiores do que a frota de Ubatuba.

Figura 8: Gráficos de caixa da cpue pelo trimestre

Em relação aos trimestres, o primeiro trimestre apresenta mediana levemente maior do que os demais e o segundo e quarto trimestre possuem três observações *outliers*, conforme ilustra a Figura 8.

Figura 9: Gráficos de caixa robusto da cpue pelo trimestre

Analogamente, os gráficos de caixa robustos também indicam que o primeiro trimestre apresenta mediana levemente maior do que os demais trimestres, veja Figura 9.

Figura 10: Gráficos de dispersão da cpue pela latitude e longitude

O gráfico de dispersão da cpue pela latitude indica indícios de um sutil crescimento da cpue de acordo com o aumento da latitude, por outro lado, não se pode dizer o mesmo da cpue em relação à longitude, há inicialmente uma tendência decrescente e em seguida crescente da cpue com o aumento da longitude.

Os gráficos de caixa robustos são indicados quando os dados são assimétricos. Foi possível observar um aumento no número de observações *outliers* na parte inferior dos gráficos e uma redução na parte superior desses gráficos.

Ajustes dos modelos lineares generalizados

Conforme foi constatado, vide Figura 1, que a distribuição da **cpue** possui assimetria à direita, é plausível propor e ajustar modelos MLG com resposta gama ou normal inversa.

• Modelo gama

Inicialmente realizou-se o ajuste do modelo MLG gama com todas as covariáveis, as estimativas dos parâmetros podem ser conferidas na Tabela 3.

Tabela 3: Estimativas do modelo de regressão gama ajustado

Efeito	Estimativa	Erro padrão	valor-t	$\Pr(> t)$
Intercepto	5,20	2,25	2,31	0,02*
frota Ubatuba	-0,22	$0,\!13$	-1,68	0,09
ano 1996	-0,19	0,18	-1,05	0,30
ano 1997	$0,\!36$	$0,\!17$	2,12	0,04*
ano 1998	$0,\!10$	$0,\!16$	0,63	$0,\!53$
ano 1999	0,04	$0,\!14$	$0,\!30$	0,77
trimestre2	-0,14	$0,\!15$	-0,93	$0,\!35$
trimestre3	-0,29	$0,\!15$	-2,00	0,05*
trimestre4	-0,22	$0,\!15$	-1,48	$0,\!14$
latitude	0,18	0,07	$2,\!56$	0,01*
longitude	-0,10	$0,\!07$	-1,32	$0,\!19$

Na Tabela 3 verifica-se que ao nível de 5% de significância, o intercepto e as covariáveis ano, trimestre e latitude são significativas para o modelo ajustado.

Seleção dos modelos MLG gama

Com o intuito de selecionar o melhor modelo, utilizou-se a técnica de seleção de modelos *stepwise*, as estimativas dos parâmetros podem ser verificadas na Tabela 4.

Tabela 4: Estimativas do modelo de regressão gama ajustado segundo a técnica stepwise

Efeito	Estimativa	Erro padrão	valor-t	$\Pr(> t)$
Intercepto	5,99	2,26	2,66	0,01*
frota Ubatuba	-0,28	$0,\!13$	-2,10	0,04*
ano 1996	-0,15	$0,\!19$	-0,81	$0,\!42$
ano 1997	$0,\!33$	$0,\!17$	1,90	0,06
ano 1998	$0,\!12$	$0,\!16$	0,72	$0,\!47$
ano 1999	$0,\!07$	$0,\!15$	0,48	0,63
latitude	$0,\!17$	0,07	2,30	0,02*
longitude	-0,11	0,08	-1,46	$0,\!15$

Note que a covariável trimestre foi retirada do modelo. De acordo com a Tabela 4, o intercepto e as covariáveis frota, e latitude são significativas para o modelo ao nível de 5% de significância.

Com a intenção de melhorar ainda mais o modelo indicado pelo *stepwise* acrescentamos a interação entre as covariáveis frota * ano.

Efeito	Estimativa	Erro padrão
Intercepto	6,90	2,30
frotaUbatuba	-1,36	$0,\!37$
ano 1996	-0,06	$0,\!24$
ano 1997	0,14	$0,\!19$
ano 1998	-0,04	$0,\!17$
ano 1999	-0,01	$0,\!16$
latitude	0,20	0,07
longitude	-0,15	0,08
frotaUbatuba:ano1996	0,81	$0,\!46$
frotaUbatuba:ano1997	1,45	$0,\!45$
frotaUbatuba:ano1998	1,50	$0,\!45$
frotaUbatuba:ano1999	1,11	0,40

Tabela 5: Estimativas do modelo de regressão gama final

• Modelo normal inversa

Tabela 6: Estimativas do modelo de regressão normal inversa ajustado

Efeito	Estimativa	Erro padrão	valor-t	Pr(> t)
Intercepto	4,86	2,27	2,14	0,03*
frota Ubatuba	-0,25	$0,\!12$	-2,01	0,05*
ano 1996	-0,16	$0,\!17$	-0,95	$0,\!35$
ano 1997	$0,\!47$	$0,\!19$	2,49	0.01*
ano 1998	$0,\!21$	$0,\!16$	$1,\!27$	$0,\!21$
ano 1999	$0,\!12$	$0,\!15$	0,80	$0,\!43$
trimestre2	-0,14	$0,\!16$	-0,89	$0,\!37$
trimestre3	-0,28	$0,\!15$	-1,81	0,07
trimestre4	-0,23	$0,\!16$	-1,47	$0,\!14$
latitude	0,18	0,07	2,41	0.02*
longitude	-0,09	0,08	-1,18	0,24

Verifica-se na Tabela 6 que as covariáveis frota, ano e latitude e o intercepto são significativos para o modelo ao nível de 5% de significância.

Seleção dos modelos MLG normal inversa

Analogamente ao que foi feito com o modelo MLG gama acima, utilizou-se a técnica de seleção de modelos stepwise para selecionar o melhor modelo, as estimativas dos parâmetros podem ser verificadas na Tabela 7.

Tabela 7: Estimativas do modelo de regressão normal inversa ajustado segundo a técnica stepwise

Efeito	Estimativa	Erro padrão	valor-t	$\Pr(> t)$
Intercepto	3,17	1,15	2,75	0,01*
frota Ubatuba	-0,41	$0,\!12$	-3.51	0,00*
ano 1996	-0,08	$0,\!17$	-0,50	0,62
ano 1997	$0,\!45$	$0,\!19$	2,37	0,02*
ano 1998	$0,\!24$	$0,\!16$	1,47	0,14
ano 1999	$0,\!15$	$0,\!14$	1,04	0,30
latitude	0,08	0,04	1,78	0,08

Conforme consta na Tabela 7, o intercepto e as covariáveis frota e ano ao nível de 5% de significância, são significativas para o modelo.

Com a mesma intenção de melhorar ainda mais o modelo indicado pelo *stepwise* acrescentamos a interação entre as covariáveis frota * ano.

Tabela 8: Estimativas do modelo de regressão normal inversa final

Efeito	Estimativa	Erro padrão
Intercepto	3,41	1,1
frota Ubatuba	-1,34	$0,\!24$
ano 1996	-0,06	$0,\!25$
ano 1997	$0,\!16$	0,21
ano 1998	-0,03	0,18
ano 1999	-0,03	$0,\!17$
latitude	0,07	0,04
frotaUbatuba:ano1996	$0,\!66$	0,34
frotaUbatuba:ano1997	1,26	$0,\!37$
frotaUbatuba:ano1998	1,34	$0,\!35$
frotaUbatuba:ano1999	1,01	0,28

Diagnóstico dos modelos ajustados

• AIC

Uma das formas de se avaliar um modelo MLG é calculando seu critério de informação de Akaike (AIC), sabe-se quanto menor é seu valor, melhor é o ajuste do modelo aos dados.

```
# Critério AIC para cada um dos MLG ajustados
xtable(AIC(fit.mod1, fit.mod2, fit.mod3, fit.mod11, fit.mod22, fit.mod33))
```

Tabela 9: Critério AIC dos modelos MLG ajustados

Modelo	AIC
fit.mod1	1874,19
fit.mod2	1872,75
fit.mod3	$1866,\!45$
fit.mod11	1879,14
fit.mod22	$1875,\!68$
fit.mod33	1867,99

Pela Tabela 9, o modelo que melhor se ajustou aos dados do espinhel de fundo segundo o critério AIC é o modelo fit.mod3. Por outro lado, o modelo fit.mod33 também fez um bom ajuste.

```
# Teste da Anova para justificar a inclusão da interação entre os fatores frota e ano
anova(fit.mod1, fit.mod3, test = "Chisq")
xtable(anova(fit.mod1, fit.mod3, test = "Chisq"), digits = 2)
```

Tabela 10: Estimativas do teste da Anova para justificar a inclusão do fator de interação entre frota e ano

Modelo	G.l. Resíduo	Desvio residual	G.l.	Desvio	Pr(>Chi)
fit.mod1	145,00	47,04			
fit.mod3	144,00	$44,\!32$	1,00	2,72	0,00

Conforme mostra a Tabela 10 acima, o modelo fit.mod3 em que foi incluído a interação frota * ano é preferível ao modelo sem a inclusão, segundo o teste da Anova.

Figura 11: Estimativas da c
pue média para as frotas de Santos e Ubatuba segundo o ano fixando-se a latitude em 26° e a longitude em 46° através do modelo gama

Na Figura 10 observou-se, com o aumento da latitude aumenta-se também a cpue, e que em relação à longitude ocorre o contrário. Dessa forma, espera-se maiores valores da cpue para altas latitudes e baixas longitudes. O gráfico da Figura 11 ilustra os valores esperados da cpue fixando latitude e longitude nos valores 26° e 46°, respectivamente. Assim, até 1996 os valores preditos para a frota de Ubatuba nessas latitude e longitude são bem menores do que os valores preditos para a frota de Santos. Entretanto, a partir de 1997 as diferenças entre os valores preditos para as duas frotas diminuem. Os valores preditos para a frota de Santos variam pouco no período de 1995 a 1999, diferentemente dos valores preditos para a frota de Ubatuba.

• Gráfico de envelope

Esta metodologia é utilizada com o intuito de verificar possíveis afastamentos das suposições feitas para o modelo, em especial para o componente aleatório e para a parte sistemática bem como a existência de observações discrepantes com alguma interferência desproporcional ou inferencial nos resultados dos ajustes.

```
# Envelope para o MLG gama final com função de ligação log
fit.model <- fit.mod3
source("http://www.ime.usp.br/~giapaula/envel_gama")
```


Figura 12: Gráfico de envelope para o modelo MLG gama que melhor se ajustou aos dados

Na Figura 12 referente ao envelope simulado, é possível constatar que duas observações estão fora do envelope porém, não apresenta indícios de que a distribuição gama seja inadequada para explicar a cpue, ou seja, o modelo foi ajustado adequadamente.

• Gráficos de diagnóstico

Nas figuras a seguir são apresentados os gráficos de diagnóstico. O gráfico da Medida h versus Valor ajustado permite identificar os pontos de alavanca. Com o gráfico da Distância de Cook versus Índice é possível identificar os pontos influentes. Já o gráfico do Resíduo Componente do Desvio versus Índice, identifica os chamados pontos aberrantes ou outliers. E, por fim, o gráfico do Resíduo Componente do Desvio versus Valor ajustado avalia a função de ligação escolhida.

Figura 13: Gráfico de diagnóstico referente ao modelo MLG gama que melhor se ajustou aos dados

```
# Identificando as observações influentes
xtable(dados[c(8,17),], digits = 2)
```

Tabela 11: Informações das embarcações de números 8 e $17\,$

Embarcação	Frota	Ano	Latitude	Longitude	Diaspesca	Captura	CPUE
8	Ubatuba	1998	24,25°	45,25°	10	3500	350
17	Santos	1999	$24,75^{\circ}$	$46,\!25^{\circ}$	5	2250	450

Os gráficos de diagnósticos não apresentam pontos de alavanca ou *outliers*, nem indicações de que a função de ligação utilizada é inadequada. Porém, no gráfico de pontos influentes duas observações aparecem com destaque, são as embarcações de números 8 e 17.

Pela Tabela 11 pode-se conferir que a embarcação de número 8 é da frota de Ubatuba e obteve uma cpue de 350 numa latitude de 24,25° e longitude de 45,25° no ano de 1998. Já a embarcação número 17 é da frota de Santos, obteve uma cpue de 450 numa latitude de 24,75° e longitude de 46,25° em 1999. As duas embarcações alcançaram cpues bastante altas em latitudes relativamente baixas, confirmando a tendência apresentada pelo modelo MLG gama.

Figura 14: Gráfico de influência para o modelo MLG gama ajustado

Tabela 12: Estimativas das medidas de influência geradas pelo método influencePlot

Embarcação	Resíduo Studentizado	Valor Ajustado	Distância de Cook
5	0,25	0,33	0,00
6	-0,10	$0,\!33$	0,00
8	1,69	0,20	0,08*
17	2,65	0,06	0,07*
83	2,64	0,04	0,05

Para enfatizar a influência das embarcações de números 8 e 17, observe o gráfico da Figura 14 e as estimativas da Tabela 12, com destaque para as estimativas da distância de Cook onde tais embarcações obtiveram maiores valores.

Nota: Sabe-se que outras análises poderiam ser feitas com o objetivo de melhorar o ajuste do modelo, como por exemplo, a retirada dos pontos influentes e realização de um novo ajuste, ajustar o modelo com outras funções de ligação, porém para este contexto o modelo ajustado está muito bem adequado e satisfatório.

Conclusão

Após realizar todas as análises, o modelo que melhor se ajustou aos dados do espinhel de fundo segundo o critério AIC foi o modelo MLG gama com a inclusão da interação entre os fatores frota e ano.

O modelo estimado para explicar a cpue média segundo as covariáveis frota, ano, trimestre, latitude e longitude é dado por:

```
\begin{split} \hat{y}(\mathbf{x}) &= 6,90-1,36 frota U batuba-0,06 ano 1996+0,14 ano 1997-0,04 ano 1998-0,01 ano 1999+0,20 latitude\\ &-0,15 longitude+0,81 frota U batuba* ano 1996+1,45 frota U batuba* ano 1997\\ &+1,50 frota U batuba* ano 1998+1,11 frota U batuba* ano 1999 \end{split}
```

em que $\mathbf{x} = (frota, ano, latitude, longitude, frota * ano)^T$.

Modelo final escolhido:

- Componente aleatório: $\mathbf{y}_{ijk} \overset{ind.}{\sim} Gama(\mu_{ijk}, \phi)$.
- Componente sistemático: $\eta_{ijk} = \log(\mu_{ijk}) = \alpha + \beta_j + \gamma_k + \delta_1 * latitude_{ijk} + \delta_2 * longitude_{ijk} + \theta_{jk}$, em que y_{ijk} denota a cpue observada para a *i*-ésima embarcação da *j*-ésima frota e no *k*-ésimo ano, enquanto θ_{jk} denota a interação entre a frota e o ano, com $i = 1, ..., 156, j \in \{Santos, Ubatuba\}$ e $k \in \{1995, 1996, 1997, 1998, 1999\}$. Como o modelo é casela de referência temos as restrições $\beta_1 = 0$, $\gamma_1 = 0, \theta_{1k} = 0 \ \forall k$, e $\theta_{j1} = 0, \ \forall j$.
- Função de ligação: $g(\mu_{ijk}) = \eta_{ijk} = \log(\mu_{ijk})$.

[&]quot;Essencialmente, todos os modelos estão errados, mas alguns são úteis" - George E. P. Box.