Exercício 1

a)

Na Figura 1 está representado o número de prisioneiros que escolhem cooperar em função do tempo para 4, 8 e 16 vizinhos respectivamente. Note que há uma rápida convergência para o valor de equilíbrio, sendo necessárias apenas 2 iterações em alguns casos.

Figura 1: Número de prisioneiros cooperando em função do tempo para 4, 8 e 16 vizinhos respectivamente.

É interessante notar também como a mudança do número de vizinhos z faz com que o comportamento mude bruscamente de uma convergência em $N \approx 225$ (z = 4), $N \approx 1000$ (z = 8) e $N \approx 0$ (z = 16).

b)

Nas Figuras 2 - 4 à seguir foi marcado de preto ao longo do eixo x a posição espacial de cada prisioneiro cooperador e o eixo y representa a passagem de tempo. Como visto acima, o caso z=8 possui uma alta densidade de indíviduos cooperadores, então foi escolhido plotar para este caso os indivíduos delatores para facilitar a visualização.

Figura 2: Posição dos prisioneiros cooperando em função do tempo para z=4.

É interessante notar como os três casos são fundamentalmente diferentes. O caso z=4 possui uma dinâmica que que atinge um estado estacionário; o caso z=8 mostra uma dinâmica ue não parece atingir nenhum estado estacionário, pois os prisioneiros delatores parecem se propagar para a direita com velocidade constante; o caso z=16 mostra uma dinâmica que rapidamente atinge um dos estados absorvetes.

Figura 3: Posição dos prisioneiros cooperadores (esquerda) e posição dos prisioneiros delatores (direita) em função do tempo para z=8.

Figura 4: Posição dos prisioneiros cooperando em função do tempo para z = 16.

c)

O resultado da simulação está na Figura 5. Foi escolhido as mesmas cores e símbolos do artigo original para que a comparação seja imediata.

Figura 5: ρ_{∞} em função de ρ_0 para z = 4. Linha preta: T = 2.0; Estrela roxa: T = 1.8; Diamante azul claro: T = 1.6; Quadrado vermelho: T = 1.4; Triangulo verde: T = 1.2; Círculo azul: T = 1.0.

Exercício 2

O programa está na pasta 2. Na Figura 6 foi feito uma imagem de um cristal de tamanho n=200, para termos ideia do tipo de estrutura formada.

Como os sítios com maior número de vizinhos são mais difíceis de serem removidos é esperado que o cristal formado se aproxime de uma circunferência, evitando ao máximo regiões com pontas. Como pode ser visto na Figura 6 isto é de fato o que se encontra.

Figura 6: Exemplo de cristal de tamanho n=200 formado.

a)

Os gráficos foram feitos com $N_0 = 7 \times 10^5$ para s < 0.5, visto que a estatística era ruim para $N_0 = 1000$. Para s > 0.5 foi usado $N_0 = 1 \times 10^5$. Plotar todos os 26 gráficos ocuparia muito espaço ou faria uma imagem excessivamente poluída, então foi escolhido plotar apenas alguns valores de s mais relevantes, o que pode ser visto na Figura 7. Os gráficos P(n) para cada valor de s podem ser vistos na pasta Lista 14/2/Data.

Figura 7: P(n) em função de n para diferentes valores de saturação.

b)

Utilizando os gráficos de P(n) (como o que pode ser visto na Figura 7) é possível obter para qual N temos P(N) = 0.5, ou seja, o n crítico tal que a probabilidade do cristal crescer para um tamanho macroscópico é igual à probabilidade de dissolução do agregado. O resultado pode ser visto na Figura 8. É interessante notar como para s = 0.4 e s = 1.2 há um salto de aproximadamente uma ordem de grandeza.

Figura 8: Numero crítico n_c em função da saturação.

c)

A probabilidade de um cristal atingir o tamanho n_{max} pode ser obtida através da expressão $P_2 = \frac{N(n_{max})}{N_0}$, onde N_0 é o número total de simulações realizadas. Na Figura 9 foi feito o gráfico de P_2 em função de s. O comportamento qualitativo é bem similar ao da referência [3].

Figura 9: Probabilidade $P_2 = \frac{N(n_{max})}{N_0}$ em função da saturação s.