Project title: Full subtractor using nand gate

Objective:

In order to learn how various logic gates can be combined to perform binary subtraction, the goal of this experiment is to design, implement, and verify the operation of a Full Subtractor circuit using a combination of 6 NAND gates, 4 OR gates, 4 NOR gates, and 3 NOT gates. To show how different logic gate combinations can be used to implement arithmetic operations in digital electronics, the primary goal is to design and validate a Full Subtractor circuit using six NAND, four OR, four NOR, and three NOT gates.

Circuit diagram:

Circuit schematic:

Source details:

Add parameters for pulse source v1	
Enter initial value (Volts/Amps):	0
Enter pulsed value (Volts/Amps):	5
Enter delay time (seconds):	20
Enter rise time (seconds):	0
Enter fall time (seconds):	0
Enter pulse width (seconds):	20
Enter period (seconds):	50
Add parameters for pulse source v3	
Enter initial value (Volts/Amps):	0
Enter pulsed value (Volts/Amps):	5
Enter delay time (seconds):	10
Enter rise time (seconds):	0
Enter fall time (seconds):	0
Enter pulse width (seconds):	10
Enter period (seconds):	20
	Conver
	Convers

Add parameters for pulse source v2	
Enter initial value (Volts/Amps):	0
Enter pulsed value (Volts/Amps):	5
Enter delay time (seconds):	5
Enter rise time (seconds):	0
Enter fall time (seconds):	0
Enter pulse width (seconds):	5
Enter period (seconds):	10

Convert

Simulation Result:

Input:

Α

В

Bin

Output:

Difference

Borrow

Python plot :

Input:

Α

Bin

Output:

Difference

Borrow

Conclusion : The waveforms successfully generated and we got the simulation result .