Lab #4: Variable Selection and Regularization

CS 109A, STAT 121A, AC 209A: Data Science

Fall 2016

Harvard

Today's lab: Problem 1

- a) Visualize correlation in data
- b) Select minimal subset of predictors
 - Exhaustive search
 - Step-wise forward search

Correlation Matrix

- Pearson correlation coefficient:
 - Measure of linear dependence between the predictors i and j Covariance(X_i , X_i)

$$\rho_{ij} = \frac{\mathbf{E}[(X_i - \mu_i)(X_j - \mu_j)]}{\sqrt{\mathbf{E}[(X_i - \mu_i)^2]}\sqrt{\mathbf{E}[(X_j - \mu_j)^2]}}$$

where
$$\mu_i = \mathbf{E} \big[X_i \big]$$
 , $\mu_j = \mathbf{E} \big[X_j \big]$

Correlation Matrix

- Pearson correlation coefficient:
 - Measure of linear dependence between the predictors i and j Covariance(X_i , X_i)

$$\rho_{ij} = \frac{\mathbf{E}[(X_i - \mu_i)(X_j - \mu_j)]}{\sqrt{\mathbf{E}[(X_i - \mu_i)^2]}\sqrt{\mathbf{E}[(X_j - \mu_j)^2]}}$$

where
$$\mu_i = \mathbf{E} \big[X_i \big]$$
 , $\mu_j = \mathbf{E} \big[X_j \big]$

What is the dimension of the correlation matrix?

Solve Part 1(a)

- Compute correlation matrix
 - np.corrcoef(...)
- Visualize correlation matrix:
 - ax.pcolor(...)

Variable Selection

Exhaustive Search

- For each size 'k':
 - Enumerate all subsets of size 'k'
 - Fit regression model for each subset
 - Pick subset with maximum R²
- Use BIC to choose best size, and output optimal subset for that size

- Enumerate all subsets of predictors {0, 1, 2, 3}
 - Subsets of size 1: {0}, {1}, {2}, {3}
 - Subsets of size 2: {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}
 - Subsets of size 3: {0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3}
 - Subsets of size 4: {0, 1, 2, 3}

Best R² within each group

- Enumerate all subsets of predictors {0, 1, 2, 3}
 - Subsets of size 1: {0}, {1}, {2}, {3}
 Best 1-subset
 - Subsets of size 2: {0, 1}, {0, 2}, {0, 3},
 {1, 2}, {1, 3}, {2, 3}
 Best 2-subset
 - Subsets of size 3: $\{0, 1, 2\}, \{0, 1, 3\}, \longrightarrow Best 3-subset \{0, 2, 3\}, \{1, 2, 3\}$
 - Subsets of size 4: $\{0, 1, 2, 3\}$ Best 4-subset

Enumerate all subsets of predictors {0, 1, 2, 3}

Choose subset with lowest BIC

Generate all subsets of set of size k

```
subsets_k = itertools.combinations(set, k)
```

- Output is a list-like object
- Iterating through the generated subsets

```
for subset in subsets_k:
```

• • •

```
# Outer loop: iterate over sizes 1 .... d
for k in range(d):
    # Enumerate subsets of size 'k'
    subsets_k = itertools.combinations(predictors, k)
```

```
# Outer loop: iterate over sizes 1 .... d
for k in range(d):
   # Enumerate subsets of size 'k'
   subsets_k = itertools.combinations(predictors, k)
   # Inner loop: iterate through subsets k
   for subset in subsets_k:
       # Fit regression model using 'subset' and calculate R^2
       # Keep track of subset with highest R^2
```

```
# Outer loop: iterate over sizes 1 .... d
for k in range(d):
   # Enumerate subsets of size 'k'
    subsets_k = itertools.combinations(predictors, k)
                                                           Finds
   # Inner loop: iterate through subsets k
                                                        k-sized subset
                                                        with best R<sup>2</sup>
   for subset in subsets_k:
       # Fit regression model using 'subset' and calculate R^2
       # Keep track of subset with highest R^2
```

```
# Outer loop: iterate over sizes 1 .... d
for k in range(d):
   # Enumerate subsets of size 'k'
   subsets_k = itertools.combinations(predictors, k)
                                                           Finds
   # Inner loop: iterate through subsets k
                                                        k-sized subset
                                                        with best R<sup>2</sup>
   for subset in subsets k:
       # Fit regression model using 'subset' and calculate R^2
       # Keep track of subset with highest R^2
```

Compute BIC of the subset you get from the inner loop # Compare with lowest BIC so far

Solve Part 1(b)

- Implement exhaustive search
- Implement step-wise forward selection

Step-wise Forward Selection

- Start with empty set
- Repeat for every subset size 1, ..., d:
 - For each predictor not chosen so far: add the predictor and fit a regression model
 - Find predictor that improves the R² the most
- Use BIC to choose best subset size

Current & Remaining Lists

Outer loop: iterate over 1, ..., d

current_predictors

(initially: empty)

remaining_predictors

(initially: all predictors)

Current & Remaining Lists

Outer loop: iterate over 1, ..., d

Current & Remaining Lists

Outer loop: iterate over 1, ..., d


```
current_predictors = []
remaining_predictors = range(d)
# Outer loop: iterate over sizes 1 .... d
for size in range(d):
```

```
current_predictors = []
remaining_predictors = range(d)
# Outer loop: iterate over sizes 1 .... d
for size in range(d):
   # Inner loop: iterate over remaining predictors
   for i in remaining_predictors:
       # Make a copy of current_predictors, add 'i' to the copied list
       # Fit regression model to the copied list, evaluate R^2
```

```
current_predictors = []
remaining_predictors = range(d)
# Outer loop: iterate over sizes 1 .... d
for size in range(d):
```

Finds predictor that maximizes R² the most

```
# Inner loop: iterate over remaining_predictors

for i in remaining_predictors:
```

Make a copy of current_predictors, add 'i' to the copied list # Fit regression model to the copied list, evaluate R^2

```
current_predictors = []
remaining_predictors = range(d)

# Outer loop: iterate over sizes 1 .... d

for size in range(d):

# Inner loop: iterate over remaining_predictors
```

Finds predictor that maximizes R² the most

```
for i in remaining_predictors:

# Make a copy of current_predictors, add 'i' to the copied list

# Fit regression model to the copied list, evaluate R^2
```

```
# Add predictor you get to current_predictors
# Remove the predictor from remaining_predictors
# Compute BIC of current_predictors, and compare with best BIC so far
```

Solve Part 1(b)

- Implement exhaustive search
- Implement step-wise forward selection

Dealing with Categorical Predictors

- One-hot encoding: Binary encoding of categorical predictors
- If predictor Z takes K categories $\{c_1, ..., c_K\}$, replace it with K binary predictors $Z_1, ..., Z_K$:
 - $-Z_i = 1$ when Z takes value c_i and is 0 otherwise

One-hot Encoding in pandas

- How do you identify categorical attributes?
 - Look for data type (string or object)
 - Look for number of unique values (< 8?)

One-hot Encoding in pandas

- How do you identify categorical attributes?
 - Look for data type (string or object)
 - Look for number of unique values (< 8?)
- Transforming single predictor:
 - pandas.get_dummies(predictor)
 - Input is a single column as a df
 - Output is a df of multiple binary predictors

One-hot Encoding in pandas

- How do you identify categorical attributes?
 - Look for data type (string or object)
 - Look for number of unique values (< 8?)
- Transforming single predictor:
 - pandas.get_dummies(predictor)
 - Input is a single column as a df
 - Output is a df of multiple binary predictors
- Append new predictors to data frame: pandas.concat(...)

ВР	Blood type	Height
	0	
	В	
	AB	
	А	

ВР	Blood type	Height
	0	
	В	
	AB	
	А	

0	А	В	AB
1	0	0	0
0	0	1	0
0	0	0	1
0	1	0	0
	•••	•••	

	ВР	Blood type	Height	
		0		
Start	varith \	В		
empt	/	AB		
appen	d one 🔪	А		
by c	one			

0	Α	В	AB
1	0	0	0
0	0	1	0
0	0	0	1
0	1	0	0
	•••	•••	

BP

	ВР	Blood type	Height	
		0		
Start	with	В		
empt	/	AB		
appen	\	А		
by c	one			

0	Α	В	AB
1	0	0	0
0	0	1	0
0	0	0	1
0	1	0	0
	•••	•••	•••

DD.		Blood type			
ВР	0	Α	В	AB	
	1	0	0	0	
	0	0	1	0	
	0	0	0	1	
	0	1	0	0	

	ВР	Blood type	Height
		0	
Start	va ith	В	
empt	J	АВ	
appen	d one	А	
by c	one		

0	Α	В	AB
1	0	0	0
0	0	1	0
0	0	0	1
0	1	0	0
	•••	•••	•••

D.D.	Blood type				
ВР	0	Α	В	AB	Height
	1	0	0	0	
	0	0	1	0	
	0	0	0	1	
	0	1	0	0	

```
# Record start index of attribute in expanded feature vector
start index = np.zeros(d + 1) # last entry would contain the len of vector +1
# Create a new data frame to store one-hot encoding of attributes
x df expanded = pd.DataFrame({})
# Iterate over all attributes
for column in x df.columns:
    # Check if attribute is categorical: has less than 8 unique values,
    # or is string values (column has type 'object')
    if len(x df[column].unique()) < 8 or x df[column].dtype == np.dtype('object'):</pre>
        # use one-hot encoding for this column
        encoding = pd.get dummies(x df[column])
        # append expanded attribute to data frame
        x df expanded = pd.concat([x df expanded, encoding], axis=1)
    else:
        x df expanded = pd.concat([x df expanded, x df[[column]]], axis=1)
```