การพัฒนาชุดตรวจบอแรกซ์จากแอนโทไซยานินที่สกัดจากผลลูกก้างปลา พรรณรินทร์ กิ่งแสง¹, พิจิตรา กุลสุวรรณ¹, พิชชาภรณ์ จันทร์ถอด¹

สิริการณ์ รุ่งศรี 2 , พรชนก มีสำโรง 2

 1 นักเรียนโรงเรียนสตรีศึกษา, 2 ครูโรงเรียนสตรีศึกษา, E mail str46265@strisuksa.ac.th

บทคัดย่อ

โครงงานนี้มีวัตถุประสงค์เพื่อ 1) ศึกษาตัวทำละลายที่เหมาะสมในการสกัดแอนโทไซยานิน จากผลลูกก้างปลา 2) ศึกษาปริมาณความเข้มข้นแอนโทไซยานินที่เหมาะสมในการติดสีของกระดาษ อินดิเคเตอร์และ 3) ตรวจสอบหาสารบอแรกซ์ที่ความเข้มข้นต่างๆ โดยสังเกตการเปลี่ยนสีของกระดาษ อินดิเคเตอร์ จากการศึกษาพบว่าเมื่อนำสารสกัดแอนโทไซยานินไปหาค่าการดูดกลืนแสงที่ความยาวคลื่น 520 และ700 nm ด้วยเครื่อง UV-Vis Spectrophotometer พบว่า ผลลูกก้างปลาที่ใช้เอทานอลเป็นตัว ทำละลาย มีปริมาณแอนโทไซยานินมากที่สุด เมื่อศึกษาปริมาณความเข้มข้นของแอนโทไซยานินที่เหมาะสม ในการติดสีของกระดาษอินดิเคเตอร์ พบว่าความเข้มข้นต่ำสุดที่สามารถติดสีได้ดีที่สุด คือที่ความเข้มข้น 5×10^3 ppm จากการจุ่ม 6 ครั้ง และนำไปตรวจสอบสารละลายบอแรกซ์ที่ความเข้มข้นต่างๆ ได้แก่ 2×10^{-1} , 1.5×10^{-1} , 1×10^{-1} , 1×10^{-3} , 1×10^{-5} โมล/ลิตร เมื่อเวลาผ่านไป 5 และ 10 นาที พบว่ากระดาษอินดิเคเตอร์ จากสารสกัดผลลูกก้างปลาสามารถตรวจสอบสารละลายบอแรกซ์ได้ที่ความเข้มข้น 2×10^{-1} , 1.5×10^{-1} , 1×10^{-1} โมล/ลิตร หากความเข้มข้นต่ำกว่านั้น จะไม่สามารถตรวจสอบได้ และจากการศึกษาผลของค่า pH พบว่า ค่าpH มีผลต่อการเปลี่ยนสีของกระดาษอินดิเคเตอร์

คำสำคัญ : แอนโทไซยานิน, ผลลูกก้างปลา, บอแรกซ์