20 Memory CSC 230

Department of Computer Science University of Victoria

M&H: 7.1, 7.2, 7.3 (7.4 optional)

Stallings: 4.1, 5.1 (not all details), 5.3 (information only)

maximum sizes (some items from midterm questions)

- □ n-bit address bus → 2ⁿ addressable locations
- byte-addressable versus word-addressable
- little endian (Intel) versus big endian [ARM both]
- implementation is difficult

□ block transfers

review

A lot of definitions (1)

□ read operation: the transfer of information *FROM*

memory - also "fetch" or "get"

write operation: the transfer of information TO

memory -also "put"

memory access time: from the beginning to the end of a

read or write operation

memory cycle time: delay between the start of 2

operations → (can be a bottleneck)

also: a measure of the time required for

a read or write operation plus any time required before the memory is

ready for the next operation

A lot of definitions (2)

volatile memory: loses its contents when power

is turned off

nonvolatile memory: keeps its contents when power

is turned off

capacity: the total amount of information that

can be stored in a storage device (e.g.

memory)

density: measure of information stored per

unit of chip space

A lot of definitions (3)

□ random access memory (RAM): memory chip where the actual location has little effect on how long it takes to access information (RAM)

□ Read-only memory (ROM): contents are fixed (ROM), burned at manufacturing time and read-only

□ ROM Applications: Firmware, Bootstrap memory, Data tables

static memory: semiconductor memory; the contents remain as long as power is applied

□ dynamic memory: semiconductor memory for which the contents have to be periodically refreshed, typically every 8-64 ms

Memory type	Access time	Cost/MB	Typical amount used	Typical cost
Registers	0.5 ns	High	2 KB	_
Cache	5–20 ns	\$80	2 MB	\$160
Main memory	40–80ns	\$0.40	512 MB	\$205
Disk memory	5 ms	\$0.005	40 GB	\$200

Static RAM

MAIN FEATURES:

- Retain state while power is applied charge.
- Bits stored as on/off switches
- Usually about 6 CMQS transitors per bit
- No charges (capacitant) to leak
- No refreshing needed when powered unlike dynamic RAM (DRAM),
- More complex construction
- Larger per bit

FAST

EXPENSIVE > both in area and manufacturin

Complementary metal—oxide—semiconductor (CMOS) is a technology for constructing integrated circuits.

Capacitance is the

ability of a body to

hold an electrical

NOT VERY DENSE

used for Cache and registers

STATIC RAM CELL

Transistor (n): when $+5v \Rightarrow$ current flows between sides when $+0v \Rightarrow$ no current flows

Transistor

STATIC RAM CELL: modes

STATIC RAM CELL (example)

Note: bit is often written as bit' or as ¬bit

STATIC RAM CELL (Standby)

- → As long as ENABLE = 0, state is maintained internally
- → no change inside
- → nothing detected outside by sense output
- → as long as there is power connected

STATIC RAM CELL: reading its contents

- 1. Place 1 on ENABLE to read
- 2. Transistors are closed → flow through
- 3. State is maintained
- 4. bit and bit' are detected through the sense output

STATIC RAM CELL: writing a "0"

- 1. Place 0 on bit
- 2. Place 1 on ENABLE
- 3. Transistors are closed → flow through
- 4. State is changed
- 5. bit and bit' are detected through the sense output

SRAM

Each bit in an SRAM is stored on four transistors that form two cross-coupled inverters.

STATIC RAM: typical chip

Dynamic RAM

MAIN FEATURES:

- Information stored as charge in a capacitor
- Charges leak
- Needs refreshing even when powered
 - → Need refresh circuits
- Retains state for 16 to 64 ms
- Simpler construction

MORE DENSITY

- → Smaller area per bit
- usually 1 transistor + 1 capacitor per bit

LESS EXPENSIVE in manufacturing (as cost per bit)

MUCH SLOWER than SRAM

Used in Main memory

A single-transistor dynamic memory cell

Simplified Read Timing (REVIEW)

Simplified Write Timing (REVIEW)

Functional Behavior of a RAM Cell

Static RAM cell (a) and dynamic RAM cell (b).

Simplified RAM Chip Pinout

Refresh Cycle for Dynamic RAM: an example

assume: 4 clock cycles to

access/refresh each row

→8192 x 4 = 32,768 clock cycles to refresh all

assume: 900 MHz clock cycle

→ then time to refresh all:

$$\frac{32,768}{900 \times 10^6} = 36.4 \times 10^{-6} \text{ sec}$$

- → that is, 0.0364 ms at each refresh interval needed for the refresh itself
- → then 0.0364 / 64 = 0.0005 → 0.5% of memory access time is refresh overhead

0.0364

64 ms refresh interval

what is a Decoder?

given n-bits on input lines, only 1 of 2ⁿ output lines is activated (high or low)

Organization of bit cells in a memory chip

Organization of bit cells in a memory chip

256 words of 16 bits

Block Diagram

Some Address bits select a row

Some Address bits select within row

256 words of 16 bits

Block Diagram

Some Address bits select a row

Some Address bits select within row

Organization of a 1K × 1 memory chip

2-1/2D Organization of a 64-Word by One-Bit RAM

Two Four-Word by Four-Bit RAMs are Used in Creating a Four-Word by Eight-Bit RAM

Two Four-Word by Four-Bit RAMs Make up an Eight-Word by Four-Bit RAM

Single-In-Line Memory Module

 256 MB dual in-line memory module organized for a 64-bit word with 16 16M x 8-bit RAM chips (eight chips on each side of the DIMM).

PIN		PIN		PIN		PIN	
NO.		NO.	NAME	NO.		NO.	NAME
1	$V_{\rm SS}$	43	V_{SS}	85	$V_{\rm SS}$	127	$V_{\mathtt{SS}}$
2	DQ0	44	OE2	86	DQ32	128	NC
3	DQ1	45	RAS2	87	DQ33	129	RAS3
4	DQ2	46	CAS2	88	DQ34	130	CAS6
5	DQ3	47	CAS3	89	DQ35	131	CAS7
6	V_{DD}	48	WE2	90	V_{DD}	132	NC
7	DQ4	49	V _{DD}	91	DQ36	133	V _{DD}
8	DQ5	50	NC	92	DQ37	134	NC
9	DQ6	51	NC	93	DQ38	135	NC
10	DQ7	52	NC	94	DQ39	136	NC
11	DQ8	53	NC	95	DQ40	137	NC
12	V_{SS}	54	V_{SS}	96	V_{SS}	138	V_{SS}
13	DQ9	55	DQ16	97	DQ41	139	DQ48
14	DQ10	56	DQ17	98	DQ42	140	DQ49
15	DQ11	57	DQ18	99	DQ43	141	DQ50
16	DQ12	58	DQ19	100	DQ44	142	DQ51
17	DQ13	59	V _{DD}	101	DQ45	143	V _{DD}
18	V _{DD}	60	DQ20	102	V _{DD}	144	DQ52
19	DQ14	61	NC	103	DQ46	145	NC
20	DQ15	62	NC	104	DQ47	146	NC
21	NC	63	NC	105	NC	147	NC
22	NC	64	V _{SS}	106	NC	148	V _{SS}
23	V_{SS}	65	DQ21	107	V _{SS}	149	DQ53
24	NC	66	DQ22	108	NC	150	DQ54
25	NC	67	DQ23	109	NC	151	DQ55
26	V_{DD}	68	V_{SS}	110	V _{DD}	152	V _{SS}
27	WE0	69	DQ24	111	NC	153	DQ56
28	CASO	70	DQ25	112	CAS4	154	DQ57
29	CAS1	71	DQ26	113	CAS5	155	DQ58
30	RAS0	72	DQ27	114	RAS1	156	DQ59
31	OE0	73	V _{DD}	115	NC	157	V_{DD}
32	V_{SS}	74	DQ28	116	V_{SS}	158	DQ60
33	A0	75	DQ29	117	A1	159	DQ61
34	A2	76	DQ30	118	A3	160	DQ62
35	A4	77	DQ31	119	A5	161	DQ63
36	A6	78	V_{SS}	120	A7	162	$V_{\rm SS}$
37	8A	79	NC	121	А9	163	NC
38	A10	80	NC	122	A11	164	NC
39	A12	81	NC	123	NC	165	SA0
40	V _{DD}	82	SDA	124	V_{DD}	166	SA1
41	NC	83	SCL	125	NC	167	SA2
42	NC	84	V_{DD}	126	NC	168	V _{DD}

Single-In-Line Memory Module

Schematic diagram of 256
 MB dual in-line memory
 module. (Source: adapted
 from http://www s.ti.com/sc/ds/tm4en64kp
 u.pdf.)

Block Diagram of Dual-Read RAM

 A dual-read or dual-port RAM allows any two words to be simultaneously read from the same memory.

REMEMBER
about DMA
and need for
DUAL PORT
Memories?

EXAMPLE: goal is to develop a memory with 2M words of 32 bits each.

1. Structure of large memories: choose the basic chip

512K x 8 memory chip

Start with 1 chip where:

512K rows

1 word of 8 bits per row

$$512K = 2^9 \times 2^{10}$$

2. Structure of large memories: put a few together in a row to get word size

Put 4 together: 512K x 4 chips = 512K words of 32 bits each

3. Structure of large memories: put a few sets together

Addressing? for each row of 4 chips to make 32bit word: 512K rows $= 512 \times 1024$ $= 2^9 \times 2^{10} = 2^{19}$ →need 19-bit address to identify row within each chip 512K x 8 memory chip

4 horizontal sets -> need 2-bit address to choose set

→ total needed = 21-bit address

Organization of a 2M \times 32 memory module with 512K \times 8 SRAM

Processor: does not need to know and issues the same k-bit address

Memory technology	Typical access time	\$ per GB in 2004
SRAM	0.5 – 5 ns	\$4,000 - \$10,000
DRAM	50 – 70 ns	\$100 - \$200
Disk	5,000,000 – 20,000,000 ns	\$0.50 - \$2

The Intel 4 Pentium Memory System

Flash Memory

(a) (b)

• (a) External view of flash memory module and (b) flash module internals. (Source: adapted from HowStuffWorks.com.)

Rambus Memory

• Rambus technology on the Nintendo 64 motherboard (left) enables cost savings over the conventional Sega Saturn motherboard design (right).

