Lineáris algebra MKMA1143v 2008. március 17.	Név:
A. csoport	
 Legyen x = 2 + t e: y = 3 + 2t:, f: x-1/3 = y/2 = z-5 z = 6 Milyen az e és f egyenesek kölcsönös helyzete Ha metszik egymást, akkor határozza meg a met Milyen az f egyenes és az S sík kölcsönös helyz Ha metszik egymást, akkor határozza meg a met Határozza meg az e egyenes és a P=(3, 3, 8) pon 	e? széspontot! zete? széspontot!
 2. Legyen <u>a</u> = (1, 0, 2, -3), <u>b</u> = (2, 1, 4, 0), <u>c</u> = (0, 1, 0, 0), <u>d</u> = (3, 1, 6, -3), <u>e</u> = (3, 2, 6, 3), H := {<u>a</u>, <u>b</u>, <u>c</u>, <u>d</u>, <u>e</u>}. Bázistranszformációt alkalmazva válaszoljon az alábbi kérdésekre! (Indoklás!) a) Mennyi a H vektorhalmaz rangja? b) Elhagyható-e a H vektorhalmazból egy vektor úgy, hogy a maradék vektorhalmaz rangja kisebb legyen, mint r(H)? c) Előállítható-e a <u>c</u> vektor az <u>a</u> és <u>b</u> vektorok lineáris kombinációjaként? Előállítható-e a <u>d</u> vektor az <u>a</u> és <u>b</u> vektorok lineáris kombinációjaként? (6 pont) 	
 3. Legyen V₁ = { λ₁·(1, 0, 3) + λ₂·(2, 1, 1) λ₁, λ₂ ∈ R }, V₂ = { λ·(0, 1, 4) λ∈ R }, V₃ = { λ·(2, -3, 5) λ∈ R }. a) Hány dimenziósak a fenti alterek? Adjon meg m b) Igaz-e, hogy R³ = V₁⊕ V₂, illetve, hogy R³ = V₂⊕ 	

alkalmazva határozza meg az $\underline{x} = (4, 2, 11)$ vektor megfelelő alterekbe eső összetevőit! (6 pont)

Lineáris algebra MKMA1143v 2008. március 17.

Név:.... Neptun kód:.... Gyakorlat:....

1. Legyen

e:
$$\frac{x-4}{3} = y = \frac{z-1}{2}$$
, $x = 7$
f: $y = 2 - t$, $S: x - y - z = 9$.

- a) Milyen az e és f egyenesek kölcsönös helyzete?
 Ha metszik egymást, akkor határozza meg a metszéspontot!
- b) Milyen az e egyenes és az S sík kölcsönös helyzete? Ha metszik egymást, akkor határozza meg a metszéspontot, ha párhuzamosak, akkor a távolságukat!
- c) Írja fel annak a síknak az egyenletét, amelyik illeszkedik az f egyenesre és a Q=(8, 2, 1) pontra!

(3+6+4 pont)

2. Legyen
$$\underline{a} = (1, 0, 3, -1)$$
, $\underline{b} = (0, 0, 1, 0)$, $\underline{c} = (0, 2, 1, 4)$, $\underline{d} = (2, 2, 7, 2)$, $\underline{e} = (-1, 2, -2, 5)$, $\underline{H} := \{a, b, c, d, e\}$.

Bázistranszformációt alkalmazva válaszoljon az alábbi kérdésekre! (Indoklás!)

- a) Mennyi a H vektorhalmaz rangja?
- b) Elhagyható-e a H vektorhalmazból egy vektor úgy, hogy a maradék vektorhalmaz rangja kisebb legyen, mint r(H)?
- c) Van-e a *H* vektorhalmaznak 1, 2, 3 illetve 4 vektorból álló lineárisan összefüggő részhalmaza?

(6 pont)

3. Legyen

$$V_{1} = \{ \lambda \cdot (1, 0, 2) \mid \lambda \in R \}, V_{2} = \{ \lambda_{1} \cdot (3, 1, 1) + \lambda_{2} \cdot (0, 1, 3) \mid \lambda_{1}, \lambda_{2} \in R \}, V_{3} = \{ \lambda \cdot (-4, 1, 5) \mid \lambda \in R \}.$$

- c) Hány dimenziósak a fenti alterek? Adjon meg mindegyik altérben egy bázist!
- d) Igaz-e, hogy $R^3 = V_1 \oplus V_2$, illetve, hogy $R^3 = V_1 \oplus V_3$? Ha igen, akkor bázistranszformációt alkalmazva határozza meg az $\underline{x} = (7, 3, 7)$ vektor megfelelő alterekbe eső összetevőit!

(6 pont)