Homework 6 Algebraic Coding Theory Math 525

Stephen Giang RedID: 823184070

Problem 1:

(a) **Exercise 3.3.3:** Find a generator matrix in standard form for a Hamming code of length 15, then encode the message 11111100000.

Notice the code length 15, can be written as $2^r - 1$ with r = 4. So we can write a Parity Check Matrix with dimension 15×4 .

Notice we can write Parity Check Matrix as the binary representation of 1 - 15 and then convert it into standard form:

$$H = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} \implies H = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

From this we get the Generator Matrix is:

Finally to encode the message u = 111111100000, we get that uG = 1111111000000100

(b) **Exercise 3.3.6:** Show that each of the following is a parity check matrix for a Hamming code of length 7, and that the codes are both equivalent to the one in Example 3.3.1.

Notice both of them have codewords of length 3 because $7 = 2^3 - 1$. They share the same codewords so they are both parity check matrices for a Hamming code of length 7.

- (c) **Exercise 3.3.8:** No, because H have 2 identical rows 0110.
- (d) **Exercise 3.3.9:** Show that the Hamming code of length $2^r 1$ for r = 2 is a trivial code.

Notice the length = 3, and r = 2, such that

$$H = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad G = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

From this we get any codeword u = uG, so thus the trivial code.

Problem 2: Exercise 3.3.4: Construct an SDA for a Hamming code of length 7, and use it to decode the following words: 1101011. Note: Do not use the SDA for decoding; instead, use the method presented on slide # 6 of Section 3.3 (the latter is much less effort).

Notice the following:

$$H = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

So we have that $r = 1101011 = c + e_i$. So we get that

$$syn(1101011) = (c + e_i) \cdot H_3 = e_i \cdot H_3 = ith row of H_3$$

Notice that rH = 110 which is the 6th row. Thus we get c = 1101011 + 0000010 = 1101001

Problem 3:

(a) **Exercise 3.4.3:** Find generating and parity check matrices for an extended Hamming code of length 8.

$$H = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \qquad G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

(b) **Exercise 3.4.4:** Construct an SDA for an extended Hamming code of length 8, and use it to decode the following words: 10101010

Notice that we have 2^4 cosets.

Coset Leader u	syn(u)
00000000	0000
10000000	0011
01000000	0101
00100000	0111
00010000	1001
00001000	1011
00000100	1101
00000010	1111
00000001	0001
00000000	
00000000	
00000000	
00000000	
00000000	
00000000	
00000000	

