1/28: Introduction to Eigenvalues and Eigenvectors

- $Ax = b = \lambda x$
- $Ax = \lambda x, \ \lambda \in \mathbb{F}, \ x \in \mathbb{R}^n$
- λ is an eigenvalue. λx is an eigenvector.

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

- $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of A with corresponding eigenvalue of 4.
- $\bullet \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$Ax = \lambda x$$
$$Ax - \lambda x = 0$$
$$Ax - \lambda Ix = 0$$
$$(A - \lambda I)x = 0$$

•
$$(A - \lambda I)x = 0 \Rightarrow x \in N(A - \lambda I)^{[1]} \Rightarrow |A - \lambda I| = 0$$

$$\bullet \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{bmatrix}$$

$$\bullet \ \begin{vmatrix} 3-\lambda & 1\\ 1 & 3-\lambda \end{vmatrix} = 0$$

$$0 = (3 - \lambda)^2 - 1^2$$
$$= 3^2 - 6\lambda + \lambda^2 - 1$$
$$= \lambda^2 - 6\lambda + 8$$
$$= (\lambda - 4)(\lambda - 2)$$

- $\lambda = 4, 2$.
- $\lambda^2 6\lambda + 8$ is the **characteristic polynomial** of A.
- $A-2I = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}, \ x = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \in N(A-2I).$
- $A-4I = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}, \ x = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \in N(A-4I).$

 $^{^1\}mathrm{To}$ have a null space, $A-\lambda I$ has free columns.

• "Eigenspace" is not \mathbb{R}^2 , but two lines in \mathbb{R}^2 , specifically $y = \pm x$.

$$-y = \pm x$$
 comes from $c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $c_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

1/29:

$$A = \begin{bmatrix} 2 & -2 & 3 \\ 0 & 3 & -2 \\ 0 & -1 & 2 \end{bmatrix}$$

$$P(\lambda) = |A - \lambda I|$$

$$= \begin{vmatrix} 2 - \lambda & -2 & 3 \\ 0 & 3 - \lambda & -2 \\ 0 & -1 & 2 - \lambda \end{vmatrix}$$

$$= -1 \begin{vmatrix} 2 - \lambda & 3 \\ 0 & -2 \end{vmatrix} (-1)^{3+2} + (2 - \lambda) \begin{vmatrix} 2 - \lambda & -2 \\ 0 & 3 - \lambda \end{vmatrix} (-1)^{3+3}$$

$$= ((2 - \lambda)(-2)) + (2 - \lambda)((2 - \lambda)(3 - \lambda))$$

$$= -4 + 2\lambda + (2 - \lambda)^2(3 - \lambda)$$

$$= -4 + 2\lambda + (4 - 4\lambda + \lambda^2)(3 - \lambda)$$

$$= -4 + 2\lambda + (4 - 4\lambda + \lambda^2)(3 - \lambda)$$

$$= -4 + 2\lambda + 12 - 4\lambda - 12\lambda + 4\lambda^2 + 3\lambda^2 - \lambda^3$$

$$= -\lambda^3 + 7\lambda^2 - 14\lambda + 8$$

$$= -(\lambda - 1)(\lambda - 2)(\lambda - 4)$$

$$A - I = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 2 & -2 \\ 0 & -1 & 1 \end{bmatrix} \qquad A - 2I = \begin{bmatrix} 0 & -2 & 3 \\ 0 & 1 & -2 \\ 0 & -1 & 0 \end{bmatrix} \qquad A - 4I = \begin{bmatrix} -2 & -2 & 3 \\ 0 & -1 & -2 \\ 0 & -1 & -2 \end{bmatrix}$$

- $P(\lambda)$ is positive when $n \in 2\mathbb{N}$, negative otherwise.
 - Signs flip term to term (think about binomial expansion).
- Coefficients of the n-1 degree term is the sum of the diagonal entries.
- Coefficient of the 0^{th} degree term is |A|.

$$- P_{\lambda}(0) = |A - 0 \cdot I| = |A|.$$

- Product of the eigenvalues is |A|.
 - Think about expanding the factorization.
- \bullet Eigenvalues of U are the diagonal values.
 - $-\lambda_1\lambda_2\cdots\lambda_n=|A|$, which is the product of the diagonal entries.
 - $-\lambda_1 + \cdots + \lambda_n = \operatorname{trace}(A)$, which is the sum of the diagonal entries.
- $Ax = \lambda x$
 - $-A^2x = AAx = A\lambda x = \lambda Ax = \lambda \lambda x = \lambda^2 x$

Similarity

1/30:

- $A \sim B^{[2]}$ iff $\exists S : A = SBS^{-1}, B = S^{-1}AS$.
 - 1. If $A \sim B$, then |A| = |B|.

$$B = S^{-1}AS$$

$$|B| = |S^{-1}AS|$$

$$|B| = |S^{-1}||A||S|$$

$$|B| = \frac{1}{|S|}|A||S|$$

$$|B| = |A|$$

2. If $A \sim B$, then they share the same characteristic polynomial.

$$B = S^{-1}AS$$

$$|B - \lambda I| = |S^{-1}AS - \lambda I|$$

$$= |S^{-1}AS - \lambda S^{-1}IS|$$

$$= |S^{-1}S(A - \lambda I)|$$

$$= |I(A - \lambda I)|$$

$$|B - \lambda I| = |A - \lambda I|$$

- If they have the same characteristic polynomial, $\therefore A$ and B have the same eigenvalues.
- What is the best possible B if $A \sim B$?
 - Sparse.
 - Diagonal.

$$-\ A = [\text{ugly}] \quad \to \quad B = \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix} = \Lambda$$

• Diagonalization:

$$A = S\Lambda S^{-1}$$
$$AS = S\Lambda$$
$$\Lambda = S^{-1}AS$$

$$\bullet \quad A = S\Lambda S^{-1}$$

$$- \quad A^2 = AA = S\Lambda S^{-1}S\Lambda S^{-1} = S\Lambda\Lambda S^{-1} = S\Lambda^2 S^{-1}$$

$$- \quad A^k = S\Lambda^k S^{-1}$$

$$- \quad A^k = S\begin{bmatrix} \lambda_1^k & 0 \\ & \ddots & \\ 0 & & \lambda_n^k \end{bmatrix} S^{-1}$$

• Diagonalize the following matrix A.

$$A = \begin{bmatrix} -1 & 0 & 1\\ 3 & 0 & -3\\ 1 & 0 & -1 \end{bmatrix}$$

 $^{^2}A$ "is similar to" $\,B\,$

- Find the characteristic polynomial.

$$|A - \lambda I| = \begin{vmatrix} -1 - \lambda & 0 & 1\\ 3 & 0 - \lambda & -3\\ 1 & 0 & -1 - \lambda \end{vmatrix}$$
$$= (-1 - \lambda)((-\lambda)(-1 - \lambda)) + (-1)(-\lambda)$$
$$= -\lambda(-1 - \lambda)^2 + \lambda$$
$$= -\lambda(1 + 2\lambda + \lambda^2) + \lambda$$
$$= -\lambda^3 - 2\lambda^2$$
$$= -\lambda^2(\lambda + 2)$$

- Find the eigenvalues: $\lambda_1 = \lambda_2 = 0, \lambda_3 = -2$
- Algebraic multiplicity of λ_1, λ_2 is 2.
- A.M. of λ_3 is 1.

$$-A - 0I = \begin{bmatrix} -1 & 0 & 1\\ 3 & 0 & -3\\ 1 & 0 & -1 \end{bmatrix}$$

- $\operatorname{rank}(A 0I) = 1 \Rightarrow \dim(N(A 0I)) = 2$
- The 2 directly above is the **geometric multiplicity**.
- A is diagonalizable iff A.M. of $\lambda_i = G.M.$

– Eigenvectors are
$$x_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 and $x_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

$$-A + 2I = \begin{bmatrix} 1 & 0 & 1 \\ 3 & 2 & -3 \\ 1 & 0 & 1 \end{bmatrix}$$

- Eigenvector is
$$x_3 = \begin{bmatrix} 1 \\ -3 \\ -1 \end{bmatrix}$$

- Use an S matrix of eigenvectors.

$$-A = S\Lambda S^{-1} = \frac{1}{2} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & -3 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & & & \\ & 0 & \\ & & -2 \end{bmatrix} \begin{bmatrix} 3 & 2 & -3 \\ 1 & 0 & 1 \\ 1 & 0 & -1 \end{bmatrix}$$

- Note that
$$A^{9752} = \frac{1}{2} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & -3 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & & & \\ & 0 & & \\ & & (-2)^{9752} \end{bmatrix} \begin{bmatrix} 3 & 2 & -3 \\ 1 & 0 & 1 \\ 1 & 0 & -1 \end{bmatrix}$$

- Algebraic multiplicity: The number of repeated roots to a polynomial. For all of the roots, it adds up to n (n-square matrix). Also known as A.M.
- Geometric multiplicity: The number of eigenvectors produced from each root. For all of the roots, it may not add up to n (n-square matrix). dim($N(A \lambda I)$). Also known as **G.M.**
- A nondiagonalizable example:

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$

$$-\lambda_1 = \lambda_2 = 1$$
 and $\lambda_3 = 4$.

$$-\lambda_1$$
 and λ_2 have A.M. $= 2$.

$$-\lambda_{3} \text{ has A.M.} = 1.$$

$$-A - I = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$

$$- \operatorname{rank}(A - I) = 2 \Rightarrow \dim(N(A - I)) = 1 \Rightarrow G.M. = 1.$$

$$-x_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$-A - 4I = \begin{bmatrix} -3 & 1 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$-x_{2} = \begin{bmatrix} 1 \\ 3 \\ 9 \end{bmatrix}$$

- S would be 3×2 and, thus, not square, so $\nexists S^{-1[3]}$.
- Canonical (form): An accepted way of expressing something.

Markov Chains

2/3:

- $u_0 = \begin{bmatrix} 500,000 \\ 500,000 \end{bmatrix}$
- $Au_0 = u_1$.
- $Au_1 = u_2$, $A(Au_0) = u_2$, $A^2u_0 = u_2$, $A^ku_0 = u_k$, $(S\Lambda S^{-1})^ku_0 = u_k$, $S\Lambda^k S^{-1}u_0 = u_k$.

$$A = \begin{bmatrix} 0.95 & 0.20 \\ 0.05 & 0.80 \end{bmatrix} \qquad \qquad u_k = \begin{bmatrix} \text{PGH} \\ \text{CLE} \end{bmatrix}$$

- A is a Markov matrix, where all columns and rows add to 1.
- $Au_0 = \begin{bmatrix} 0.95 & 0.20 \\ 0.05 & 0.80 \end{bmatrix} \begin{bmatrix} 500,000 \\ 500,000 \end{bmatrix} = u_1$

$$|A - \lambda I| = \begin{vmatrix} 0.95 - \lambda & 0.20 \\ 0.05 & 0.80 - \lambda \end{vmatrix}$$
$$= (0.95 - \lambda)(0.8 - \lambda) - (0.2)(0.05)$$
$$= (\lambda - 1)(\lambda - 0.75)$$

• $\lambda_1 = 1, \ \lambda_2 = 0.75.$

³At a later date, we will look at an analogy of projections to diagonalization that finds the "best possible" diagonalization (which may not be perfectly diagonal).

•
$$A - I = \begin{bmatrix} -0.05 & 0.2 \\ 0.05 & -0.2 \end{bmatrix} \Rightarrow x = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

•
$$A - 0.75I = \begin{bmatrix} 0.2 & 0.2 \\ 0.05 & 0.05 \end{bmatrix} \Rightarrow x = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$A^{k}u_{0} = \frac{1}{5} \begin{bmatrix} 4 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0.75 \end{bmatrix}^{k} \begin{bmatrix} 1 & 1 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 500,000 \\ 500,000 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0.75^{k} \end{bmatrix} \begin{bmatrix} 200,000 \\ 300,000 \end{bmatrix}$$
$$= \begin{bmatrix} 4 \\ 1 \end{bmatrix} (200,000) + \begin{bmatrix} -1 \\ 1 \end{bmatrix} (0.75)^{k} (300,000)$$

- $\begin{bmatrix} 800,000\\ 200,000 \end{bmatrix}$ is the steady-state vector.
- \bullet $\begin{bmatrix} -(0.75)^k(300,000)\\ (0.75)^k(300,000) \end{bmatrix}$ is the dynamically changing vector.
- $\lim_{k\to\infty} A^k u_0 = \begin{bmatrix} 800,000\\200,000 \end{bmatrix} = \begin{bmatrix} PGH\\CLE \end{bmatrix}$

Explicit Formula for the Fibonacci Sequence

2/4: • 1, 1, 2, 3, 5, 8, ...

• Recursively defined formula: $F_n^{[4]} = F_{n-1} + F_{n-2}$.

$$\begin{aligned} F_n &= F_{n-1} + F_{n-2} \\ F_{n-1} &= F_{n-1} \\ \begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix} &= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_{n-1} \\ F_{n-2} \end{bmatrix} \end{aligned}$$

 $\bullet \ u_n = A^n u_0 = S\Lambda^n S^{-1} u_0.$

$$0 = |A - \lambda I|$$

$$= \begin{vmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{vmatrix}$$

$$= -\lambda(1 - \lambda) - 1$$

$$= \lambda^2 - \lambda - 1$$

- $\bullet \ \lambda = \frac{1 \pm \sqrt{5}}{2} [5].$
- $\bullet \ \lambda_1 = \frac{1+\sqrt{5}}{2}.$

$$N(A - \lambda_1 I) = N \left(\begin{bmatrix} 1 - \frac{1+\sqrt{5}}{2} & 1\\ 1 & -\frac{1+\sqrt{5}}{2} \end{bmatrix} \right)$$
$$= N \left(\begin{bmatrix} \frac{1-\sqrt{5}}{2} & 1\\ 1 & \frac{-1-\sqrt{5}}{2} \end{bmatrix} \right)$$

 $^{^4}$ The n-th Fibonacci number.

 $^{^5{}m This}$ is the Golden ratio!

$$\bullet \begin{bmatrix} \frac{1-\sqrt{5}}{2} & 1\\ 1 & \frac{-1-\sqrt{5}}{2} \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

• Let $x_2 = 1$.

$$\frac{1 - \sqrt{5}}{2}x_1 + 1 = 0$$

$$\frac{1 - \sqrt{5}}{2}x_1 = -\frac{2}{2}$$

$$x_1 = \frac{-2}{1 - \sqrt{5}} \times \frac{1 + \sqrt{5}}{1 + \sqrt{5}}$$

$$= \frac{-2 - 2\sqrt{5}}{-4}$$

$$= \frac{1 + \sqrt{5}}{2}$$

•
$$s_1 = \begin{bmatrix} \frac{1+\sqrt{5}}{2} \\ 1 \end{bmatrix}$$
, $s_2 = \begin{bmatrix} \frac{1-\sqrt{5}}{2} \\ 1 \end{bmatrix}$.

$$\bullet \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{1+\sqrt{5}}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2} \end{bmatrix} S^{-1}$$

•
$$S^{-1} = \frac{1}{|S|} C_S^{\mathrm{T}} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & \frac{-1+\sqrt{5}}{2} \\ -1 & \frac{1+\sqrt{5}}{2} \end{bmatrix}$$

 $\bullet \ u_k = A^k u_0 = S\Lambda^k S^{-1} u_0.$

$$S^{-1}u_0 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & \frac{-1+\sqrt{5}}{2} \\ -1 & \frac{1+\sqrt{5}}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$= \frac{1}{\sqrt{5}} \begin{bmatrix} \frac{1+\sqrt{5}}{2} \\ \frac{-1+\sqrt{5}}{2} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1+\sqrt{5}}{2\sqrt{5}} \\ \frac{-1+\sqrt{5}}{2\sqrt{5}} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{5+\sqrt{5}}{10} \\ \frac{5-\sqrt{5}}{10} \end{bmatrix}$$

•
$$u_k = \begin{bmatrix} \frac{1+\sqrt{5}}{2} \\ 1 \end{bmatrix} \left(\frac{1+\sqrt{5}}{2} \right)^k \left(\frac{5+\sqrt{5}}{10} \right) + \begin{bmatrix} \frac{1-\sqrt{5}}{2} \\ 1 \end{bmatrix} \left(\frac{1-\sqrt{5}}{2} \right)^k \left(\frac{5-\sqrt{5}}{10} \right)$$

Systems of First-Order Ordinary Differential Equations

2/11: • Let f(x) = y and $a, c, K \in \mathbb{F}$.

$$\frac{dy}{dx} = ay$$

$$\frac{1}{y}\frac{dy}{dx} = a$$

$$\frac{1}{y}\frac{dy}{dx} dx = a dx$$

$$\frac{1}{y}dy = a dx$$

$$\int \frac{1}{y}dy = \int a dx$$

$$\ln y = ax + c$$

$$y = e^{ax+c}$$

$$= e^{ax}e^{c}$$

$$= Ke^{ax}$$

- Let $\frac{dy}{dx} = y'$. - $y'_1 = a_{11}y_1 + a_{12}y_2 + \dots + a_{1n}y_n$. - $y'_2 = a_{21}y_1 + a_{22}y_2 + \dots + a_{2n}y_n$. - \vdots - $y'_n = a_{n1}y_1 + a_{n2}y_2 + \dots + a_{nn}y_n$.
- This is a **square system** of equations.
- Rewrite as y' = Ay.

$$\begin{bmatrix} y_1' \\ y_2' \\ \vdots \\ y_n' \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

• Solve the following system of differential equations.

$$y'_1 = 3y_1$$
$$y'_2 = -2y_2$$
$$y'_3 = 5y_3$$

$$\begin{bmatrix} y_1' \\ y_2' \\ y_3' \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

- General Solution:

$$y_1 = k_1 e^{3x}$$
$$y_2 = k_2 e^{-2x}$$
$$y_3 = k_3 e^{5x}$$

- Particular Solution (where $y_1(0) = 2$, $y_2(0) = -1$, and $y_3(0) = 7$ are the initial conditions):

$$y_1 = 2e^{3x}$$
$$y_2 = -e^{-2x}$$
$$y_3 = 7e^{5x}$$

 \bullet Consider a different system. Remember throughout that we are solving for y.

$$y_1' = y_1 + y_2$$

$$y_2' = 4y_1 - 2y_2$$

The previous system was so easy to solve because the matrix was diagonal. This one (as follows) will not be. Therefore, we should diagonalize it.

$$\begin{bmatrix} y_1' \\ y_2' \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

- Start with y' = Ay.
- Substitute y = Su.
 - Note that $y = Su \Rightarrow y' = Su'^{[6]}$.
 - If we can find u' in terms of a diagonal matrix and u, we can solve for y.

- We seek to find a new basis S such that the matrix scaling u will be diagonal.

$$Su' = Ay$$

$$Su' = ASu$$

$$u' = S^{-1}ASu$$

$$u' = \Lambda u$$

– The last substitution above is legal because if $A = S\Lambda S^{-1}$, then $\Lambda = S^{-1}AS$.

$$0 = \begin{vmatrix} 1 - \lambda & 1 \\ 4 & -2 - \lambda \end{vmatrix}$$
$$= (1 - \lambda)(-2 - \lambda) - 4$$
$$= -2 - \lambda + 2\lambda + \lambda^2 - 4$$
$$= \lambda^2 + \lambda - 6$$
$$= (\lambda - 2)(\lambda + 3)$$

$$\lambda_1 = 2 \qquad \qquad \lambda_2 = -3$$

⁶Think about differentiating both sides: $y \to y'$ is obvious, S will be unchanged because it's just coefficients, and the functions of u will be differentiated.

$$-A - 2I = \begin{bmatrix} -1 & 1 \\ 4 & -4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$-A + 3I = \begin{bmatrix} 4 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$u' = \Lambda u$$

$$\begin{bmatrix} u'_1 \\ u'_2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$u_1 = k_1 e^{2x}$$
$$u_2 = k_2 e^{-3x}$$

$$y = Su$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} k_1 e^{2x} \\ k_2 e^{-3x} \end{bmatrix}$$

$$y_1 = k_1 e^{2x} - k_2 e^{-3x}$$

 $y_2 = k_1 e^{2x} + 4k_2 e^{-3x}$

- 2/12: Initial conditions: $y_1(0) = 1$ and $y_2(0) = 6$.
 - Use augmented matrices to solve a system of equations.

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & 4 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix}$$

• Particular solution:

$$y_1 = 2e^{2x} - e^{-3x}$$

 $y_2 = 2e^{2x} + 4e^{-3x}$

Matrix Exponentiation

- \bullet e^A is a matrix defined as the infinite sum of a power series.
- $f(t) = e^t$.

Differential Equations	Power Series
f'(t) = f(t)	$f(t) = 1 + t + \frac{t^2}{2} + \frac{t^3}{3!} + \cdots$
f(0) = 1	$\frac{\mathrm{d}}{\mathrm{d}t}(t) = 1, \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{t^2}{2}\right) = t, \dots$
	$f(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!}$

• $f(t) = e^{at}$.

Differential Equations	Power Series
f'(t) = af(t)	$f(t) = \sum_{n=0}^{\infty} \frac{a^n t^n}{n!}$
f(0) = 1	

•
$$F(t) = e^{At}$$
.

- A matrix-valued function.

- Ex.
$$F(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

 $-F(\theta)A$ rotates points (arrows) of A by θ .

Differential Equations	Power Series
$F'(t) = Ae^{At}$	$F(t) = I + At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \cdots$
F(0) = I	$F(t) = \sum_{n=0}^{\infty} \frac{A^n t^n}{n!}$

Diagonalization of e^{At}

• Find an alternate form for e^{At} by manipulating its power series definition:

$$\begin{split} \mathrm{e}^{At} &= \sum_{n=0}^{\infty} \frac{A^n t^n}{n!} \\ &= \sum_{n=0}^{\infty} \frac{S\Lambda^n S^{-1} t^n}{n!} \\ &= \sum_{n=0}^{\infty} S\left(\frac{\Lambda^n t^n}{n!}\right) S^{-1} \\ &= S\left(\sum_{n=0}^{\infty} \frac{t^n}{n!} \Lambda^n\right) S^{-1} \\ &= S\left(\sum_{n=0}^{\infty} \frac{t^n}{n!} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_k \end{bmatrix} \right) S^{-1} \\ &= S\left(\sum_{n=0}^{\infty} \left[\frac{t^n}{n!} \lambda_1^n & & \\ & \ddots & \\ & & & \frac{t^n}{n!} \lambda_k^n \end{bmatrix} \right) S^{-1} \\ &= S\left(\sum_{n=0}^{\infty} \left[\frac{\lambda_1^n t^n}{n!} & & \\ & \ddots & \\ & & \frac{\lambda_k^n t^n}{n!} \right] \right) S^{-1} \\ &= S\left[\sum_{n=0}^{\infty} \frac{\lambda_1^n t^n}{n!} & & \\ & & \ddots & \\ & & \sum_{n=0}^{\infty} \frac{\lambda_k^n t^n}{n!} \right] S^{-1} \\ &= S\left[e^{\lambda_1 t} & & \\ & & \ddots & \\ & & & e^{\lambda_k t} \right] S^{-1} \\ &= Se^{\Lambda t} S^{-1} \\ &= F(t) \end{split}$$

2/13:

• Prove, using the above result, that F'(t) can be defined in terms of F(t):

$$F(t) = e^{At}$$

$$= S \begin{bmatrix} e^{\lambda_1 t} & & \\ & \ddots & \\ & e^{\lambda_k t} \end{bmatrix} S^{-1}$$

$$F'(t) = \frac{d}{dt} \left(S \begin{bmatrix} e^{\lambda_1 t} & & \\ & \ddots & \\ & e^{\lambda_k t} \end{bmatrix} S^{-1} \right)$$

$$= S \frac{d}{dt} \left(\begin{bmatrix} e^{\lambda_1 t} & & \\ & \ddots & \\ & e^{\lambda_k t} \end{bmatrix} \right) S^{-1}$$

$$= S \begin{bmatrix} \frac{d}{dt} e^{\lambda_1 t} & & \\ & \ddots & \\ & \frac{d}{dt} e^{\lambda_k t} \end{bmatrix} S^{-1}$$

$$= S \begin{bmatrix} \lambda_1 e^{\lambda_1 t} & & \\ & \ddots & \\ & \lambda_k \end{bmatrix} \begin{bmatrix} e^{\lambda_1 t} & & \\ & \ddots & \\ & e^{\lambda_k t} \end{bmatrix} S^{-1}$$

$$= S \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & \lambda_k \end{bmatrix} I_k \begin{bmatrix} e^{\lambda_1 t} & & \\ & \ddots & \\ & e^{\lambda_k t} \end{bmatrix} S^{-1}$$

$$= S \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & \lambda_k \end{bmatrix} S^{-1} S \begin{bmatrix} e^{\lambda_1 t} & & \\ & \ddots & \\ & e^{\lambda_k t} \end{bmatrix} S^{-1}$$

$$= AF(t)$$

$$= Ae^{At}$$

- In other words, y'(t) = Ay(t) and $y(0) = y_0$. The solution is $y = e^{At}y_0$.
- Example:

$$y'_{1} = 5y_{1} + y_{2} y_{1}(0) = -3$$

$$y'_{2} = -2y_{1} + 2y_{2} y_{2}(0) = 8$$

$$y(t) = e^{At}y(0)$$

$$= Se^{\Lambda t}S^{-1}y(0)$$

$$0 = |A - \lambda I|$$

$$= \begin{vmatrix} 5 - \lambda & 1 \\ -2 & 2 - \lambda \end{vmatrix}$$

$$= (\lambda - 3)(\lambda - 4)$$

$$-A - 3I = \begin{bmatrix} 2 & 1 \\ -2 & -1 \end{bmatrix}$$
$$-N(A - 3I) = \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix} \right\}$$
$$-A - 4I = \begin{bmatrix} 1 & 1 \\ -2 & -2 \end{bmatrix}$$
$$-N(A - 4I) = \left\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$$

$$\begin{split} y(t) &= S \mathrm{e}^{\Lambda t} S^{-1} y(0) \\ &= \begin{bmatrix} 1 & -1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} \mathrm{e}^{3t} & 0 \\ 0 & \mathrm{e}^{4t} \end{bmatrix} \begin{bmatrix} -1 & -1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} -3 \\ 8 \end{bmatrix} \\ &= \begin{bmatrix} \mathrm{e}^{3t} & -\mathrm{e}^{4t} \\ -2\mathrm{e}^{3t} & \mathrm{e}^{4t} \end{bmatrix} \begin{bmatrix} -1 & -1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} -3 \\ 8 \end{bmatrix} \\ &= \begin{bmatrix} -\mathrm{e}^{3t} + 2\mathrm{e}^{4t} & -\mathrm{e}^{3t} + \mathrm{e}^{4t} \\ 2\mathrm{e}^{3t} - 2\mathrm{e}^{4t} & 2\mathrm{e}^{3t} - \mathrm{e}^{4t} \end{bmatrix} \begin{bmatrix} -3 \\ 8 \end{bmatrix} \\ &= \begin{bmatrix} 3\mathrm{e}^{3t} - 6\mathrm{e}^{4t} - 8\mathrm{e}^{3t} + 8\mathrm{e}^{4t} \\ -6\mathrm{e}^{3t} + 6\mathrm{e}^{4t} + 16\mathrm{e}^{3t} - 8\mathrm{e}^{4t} \end{bmatrix} \\ &= \begin{bmatrix} -5\mathrm{e}^{3t} + 2\mathrm{e}^{4t} \\ 10\mathrm{e}^{3t} - 2\mathrm{e}^{4t} \end{bmatrix} \\ &= \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} \end{split}$$