CP533:Clean Combustion Technologies

Lecture 2 Premixed flame

Dr Jun Li

Room: JW403g

Email: jun.li@strath.ac.uk

What is a flame

Definition

A **flame** is a self-sustaining propagation of a localised combustion zone at subsonic velocities.

Prerequisites

- Fuel
- Oxidant
- Mixing
- Heat

Deflagration

combustion travels subsonically

Detonation

combustion waves propagate at supersonic velocities

Classification of flames

	Laminar	Turbulent
Premixed	Bunsen, jet flames	Gasoline engine, gas turbines
Non-premixed (or Diffusion)	wood fire, candle	Aircraft or rocket engines, pulverised coal

Candle flame

gas turbine flame

Pulverised coal flame

3

Premixed flame

Premixed combustion used in combustion devices when high heat release rates are desired

- Small devices
- Low residence times

Advantage:

- Lean combustion possible
- Smoke-free combustion
- Low NOx

- Disadvantage: Danger of Explosions
 - Combustion instabilities

Large-scale industrial furnaces and aircraft engines are typically non-premixed

Flame Structure of Premixed Laminar Flames

adiabatic flame temperature T_h Preheat zone T_b $\mathcal{O}(1)$ The area around the $Y_{P,b}$ flame front is divided in $Y_{\mathcal{O}_2}$ $Y_{F,u}$ three zones by Zeldovich Reaction zone and Frank-Kamenetzki: $O(\varepsilon)$ Preheat zone $Y_{\mathcal{O}_2,b}$ T_u Reaction zone

Temperature and concentration profiles, lean mixture

 x_i

Key steps of making a premixed laminar flame (see above figure from left to right)

- 1) Fuel and oxidizer are convected from upstream with the burning velocity
- 2) Fuel and air diffuse into the reaction zone
- 3) Mixture heated up by heat conduction from the burnt gases
- 4) Fuel consumption, radical production, and oxidation when inner layer temperature is reached
- 5) Increase temperature and gradients
- 6) Fuel is entirely depleted

Equilibrium zone

7) Remaining oxygen is convected downstream

Laminar premixed flame

--simple thermal theory

Steady state energy equation of a control volume in Preheat Zone

$$\rho c_P u \frac{\partial T}{\partial x} = k \frac{\partial^2 T}{\partial x^2}$$

$$\rho_r c_P S_L (T_{ig} - T_r) \approx k \frac{T_P - T_{ig}}{\delta}$$

convective energy conductive energy

Preheat

zone

Reaction

zone

Burned gases

(products)

Unburned

mixture

(Eq.2)

Steady state energy equation of a control volume in both Preheat and Reaction Zones

$$\rho c_P u \frac{\partial T}{\partial x} = k \frac{\partial^2 T}{\partial x^2} + \hat{r}_{fuel} \hat{Q}_c$$

$$\rho_r c_P S_L(T_P - T_r) = 0 + \delta \hat{r}_{fuel,ave} \hat{Q}_c$$

convective energy energy from combustion

Flame speed S_L equal to the velocity that reactants enter the flame

Two unknowns S_L

Laminar premixed flame

-- simple thermal theory

$$S_{L} = \left\{ \frac{k(T_{P} - T_{ig})\hat{r}_{fuel,ave}/[Fuel]_{r}}{\rho_{r}c_{P}(T_{ig} - T_{r})} \right\}^{1/2} = \left\{ \frac{\alpha(T_{P} - T_{ig})}{\tau_{chem}(T_{ig} - T_{r})} \right\}^{1/2}$$
(Eq.3)

See details in derivation notes

Thermal diffusivity
$$\alpha = \frac{k}{\rho_r c_P}$$

Time scale of chemical kinetics $\tau_{chem} = [Fuel]_r/\hat{r}_{fuel.ave}$

the heat of combustion is approximately related to the flame temperature by

$$\hat{Q}_c[Fuel]_r = \rho_r c_P (T_P - T_r)$$

$$S_L = \frac{\delta}{\tau_{chem}}$$

$$\delta = \frac{\delta}{\tau_{chem}} \qquad \delta = \left\{ \alpha \cdot \tau_{chem} \frac{\left(T_P - T_{ig}\right)}{\left(T_{ig} - T_r\right)} \right\}^{1/2} \qquad Eq.2$$

$$S_L \cdot \delta = \alpha \frac{(T_P - T_{ig})}{(T_{ig} - T_r)}$$

Flame speed (S_L) vs. equivalence ratio (Φ)

Peak flame temperature vs. ER ratio

Measured flame speeds of CH₄-air mixture

Flame speed peaks at equivalence ratio near 1

Flame speed vs. Temperature/pressure

Flame speed of propane air at 1 atm vs. initial temperature

Flame speed of methane-air vs. pressure

Flame speed vs. fuel type, temp., pressure

$$S_L(\Phi, T, P) = S_{L,ref}(\Phi) \left(\frac{T_r}{T_{r,ref}}\right)^{\gamma} \left(\frac{P}{P_{ref}}\right)^{\beta} (1 - 2.1Y_{dil}) \quad for T_r \ge 350 K$$

$$T_{r,ref} = 298K$$
 $P_{ref} = 1 atm$ $S_{L,ref} = B_M + B_2(\Phi - \Phi_M)^2$ $\gamma = 2.18 - 0.8(\Phi - 1)$ $\beta = -0.16 + 0.22(\Phi - 1)$

 Y_{dil} is the mass fraction of diluent present in the air-fuel mixture.

Φ_M	B_M (cm/s)	B_2 (cm/s)	
1.11	36.92	-140.51	
1.08	34.22	-138.65	
1.13	26.32	-84.72	
1.13	27.58	-78.34	
	1.11 1.08 1.13	1.11 36.92 1.08 34.22 1.13 26.32	

Flammability limits

LFL- lean flammability limit

RFL- rich flammability limit

Flammability limits of different fuels

	Flammability Limits			
Fuel	Φ _{min} (Lean or Lower Limit)	Φ _{max} (Rich or Upper Limit)	Stoichiometric Mass Air-Fuel Ratio	
Acetylene, C ₂ H ₂	0.19 ^b	∞ ^b	13.3	
Carbon monoxide, CO	0.34	6.76	2.46	
n-Decane, C ₁₀ H ₂₂	0.36	3.92	15.0	
Ethane, C ₂ H ₆	0.50	2.72	16.0	
Ethylene, C ₂ H ₄	0.41	> 6.1	14.8	
Hydrogen, H ₂	0.14 ^b	2.54 ^b	34.5	
Methane, CH ₄	0.46	1.64	17.2	
Methanol, CH ₃ OH	0.48	4.08	6.46	
n-Octane, C ₈ H ₁₈	0.51	4.25	15.1	
Propane, C ₃ H ₈	0.51	2.83	15.6	

Flammability at standard conditions (% of fuel by volume in mixture)

Fuel vapor	Lean limit	Rich limit	Fuel vapor	Lean limit	Rich limit
Hydrogen (H ₂)	4	75	Isopropyl	2	12
Methane (CH ₄)	5	15	Ethanol (C ₂ H ₅ OH)	3.3	19
Gasoline	1.4	7.6	n-Heptane (C ₇ H ₁₆)	1.2	6.7
Diesel	0.3	10	Iso-octane (C_8H_{18})	1	6.0
Ethane (C_2H_6)	3.0	12.4	Propane (C ₃ H ₈)	2.1	9.5
n-Butane (C_4H_{10})	1.8	8.4	n-Pentane (C_5H_{12})	1.4	7.8
n-Hexane (C ₆ H ₁₄)	1.2	7.4	Dimethylether (C ₂ H ₆ O)	3.4	27

Flame stabilization

Turbulent Premixed Flames

Mass transfer
$$m_{total}^{\prime\prime} = -\rho(D + \varepsilon_m) \frac{\partial \overline{Y}}{\partial x}$$

Heat transfer
$$q_{total}^{\prime\prime} = -\rho c_p (\alpha + \varepsilon_H) \frac{\partial \overline{T}}{\partial x}$$

eddy diffusivities are not properties of fluid, depend on the turbulence flow itself.

Momentum transfer
$$\tau_{total} = \rho(v + \varepsilon_M) \frac{\partial \bar{u}}{\partial x}$$

Two interaction regimes proposed for the enhancement of **flame speeds** in turbulent flows:

- ☐ Increased transport processes of heat and mass by small scale turbulence;
- ☐ Increased surface area due to wrinkling of the flame by large turbulence eddies.

Overview

- 1. How fast will the flame consume the unburned mixtures?
- 2. How will flame propagation change with operating conditions, i.e. equivalence ratio, temperature, and pressure?
- 3. How can flame propagation be stopped?

Nomenclature

 B_M, B_2 **Parameters** Specific heat (J/kg-K) c_{p} HRR Heat release rate k Thermal conductivity (W/m-K) m" Mass flux (kg/s-m²) Pressure (Pa) Heat transfer rate per unit area (W/m²) Heat of combustion (J/kmol) Reaction rate (rate of production or destruction of a chemical species per unit volume) Average fuel consumption (kmol/m³-s) $\hat{r}_{fuel,ave}$ S_L Laminar flame speed (m/s) Τ Temperature (K) Flame propagation speed into the unburned mixture (m/s) и x Distance (m)

Greek Symbols

Thermal diffusivity (m²/s) Pressure exponent β **Eddy diffusivity** ε Laminar flame thickness (m) δ Density (kg/m³) Characteristic time (s) τ Chemistry time (s) τ_{chem} Equivalence ratio ф Φ_M Parameter Specific volume ν Temperature exponent γ

Subscripts

 $\begin{array}{ll} b & \quad \text{Burned gas} \\ dil & \quad \text{Diluent} \\ f & \quad \text{Flame} \\ F & \quad \text{Fuel} \end{array}$

Nomenclature

Subscripts

H Heat

i, ig Ignition

m Mass

M Momentum

max Maximum

min Minimum

P Product

r Reactant

ref Reference

u Unburned gas

Other Notation

[X] Molar concentration of X (kmol/m 3)