

Konvolucij signala

Frekvencijska analiza vremenski kontinuiranih signala

Signali i sustavi

Profesor Branko Jeren

05. ožujak 2008.

Profesor Branko Jeren

Konvolucija signala

analiza vremenski kontinuiranih signala

Konvolucija vremenski kontinuiranih signala

- neka su $x, y \in [Realni \rightarrow Realni]$ dva vremenski kontinuirana signala,
- konvolucija, označimo je funkcijom Konvolucija, pridružuje im novi vremenski kontinuirani signal z, dakle,

Konvolucija : [Realni
$$\rightarrow$$
 Realni] \times [Realni \rightarrow Realni] \rightarrow [Realni \rightarrow Realni] $z = \text{Konvolucija}(x, y) = x * y$

konvoluciju definiramo s konvolucijskim integralom

$$\forall t \in Realni, \quad z(t) = (x * y)(t) = \int_{-\infty}^{\infty} x(\tau)y(t-\tau) \ d\tau$$

2007/2008

Konvolucija signala

Frekvencijska analiza vremenski kontinuiranih signala

Konvolucija vremenski kontinuiranih signala – komutativnost

vrijedi svojstvo komutativnosti konvolucije

$$(x*y)(t) = (y*x)(t)$$

što proizlazi iz konvolucijskog integrala, zamjenom varijabli $t-\vartheta= au$

$$\forall t \in Realni, \quad (x*y)(t) = \int_{-\infty}^{\infty} x(\tau)y(t-\tau) \ d\tau =$$

$$= \int_{-\infty}^{\infty} x(t-\vartheta)y(\vartheta) \ d\vartheta = (y*x)(t)$$

 vrijedi i svojstvo linearnosti konvolucije, dakle, uz a₁, a₂ ∈ Realni

$$x*(a_1y_1+a_2y_2)=a_1(x*y_1)+a_2(x*y_2)$$

Konvolucija signala

analiza vremenski kontinuiranih signala

Konvolucija vremenski kontinuiranih signala – primjer

- ullet određuje se konvolucija signala $p_{ au}$ i $p_{ au}$ zadanih slikom
- na istoj slici dan je i rezultat konvolucije 1 $v=p_ au*p_ au$

¹Studente se upućuje da samostalno pokušaju odrediti konvoluciju korištenjem konvolucijskog integrala. Detaljna diskusija biti će provedena kasnije, tijekom semestra.

Konvolucija signala

analiza vremenski kontinuiranih signala

Konvolucija vremenski diskretnih signala

- neka su x, y ∈ [Cjelobrojni → Realni] dva vremenski diskretna signala,
- konvolucija diskretnih signala x i y je diskretni signal, označen kao x * y, definiran konvolucijskom sumacijom

$$\forall n \in C$$
jelobrojni, $(x * y)(n) = \sum_{m=-\infty}^{\infty} x(m)y(n-m)$

Konvolucija signala

Frekvencijska analiza vremenski kontinuiranih signala

Konvolucija vremenski diskretnih signala – komutativnost

vrijedi svojstvo komutativnosti konvolucije

$$(x*y)(n) = (y*x)(n)$$

što proizlazi iz konvolucijske sumacije, zamjenom varijabli n-m=j

$$\forall n \in Cjelobrojni, \quad (x * y)(n) = \sum_{m=-\infty}^{\infty} x(m)y(n-m) =$$

$$= \sum_{j=-\infty}^{\infty} x(n-j)y(j) = (y * x)(n)$$

 vrijedi i svojstvo linearnosti konvolucije, dakle, uz a₁, a₂ ∈ Realni

$$x * (a_1y_1 + a_2y_2) = a_1(x * y_1) + a_2(x * y_2)$$

Konvolucija signala

analiza vremenski kontinuiranih signala

Konvolucija vremenski diskretnih signala – primjer

- određuje se konvolucija signala zadanih slikom
- na istoj slici dan je i rezultat konvolucije²

²Studente se upućuje da samostalno pokušaju odrediti konvoluciju korištenjem konvolucijske sumacije. Detaljna diskusija biti će provedena kasnije, tijekom semestra.

Profesor Branko Jeren

Konvolucij signala

analiza vremenski kontinuiranih

Fourierov red

Frekvencijska analiza vremenski kontinuiranih signala

• linearna kombinacija sinusoidnih signala, čije su frekvencije cjelobrojni višekratnici osnovne frekvencije $2\pi/T_0$, generira periodični signal periode T_0

Konvoluci signala

analiza vremenski kontinuiranih signala

Fourierov red

Frekvencijska analiza vremenski kontinuiranih signala

na slici je prikazan zbroj sinusoida

$$\forall t \in Realni,$$

 $x(t) = 0.8\cos(t) + \cos(4t + \frac{\pi}{3}) + 0.7\cos(8t + \frac{\pi}{2})$

- signal x je zadan u vremenskoj domeni (funkcija vremena)
- signal x je periodičan, i nastao je linearnom kombinacijom vremenski kontinuiranih sinusoida $A_k \cos(\Omega_k t + \Theta_k)$, $\forall t \in Realni$
- ovo sugerira kako svaki periodični signal možemo razložiti (dekomponirati) na sinusoidne komponente $A_k\cos(\Omega_k t + \Theta_k), \ \forall t \in Realni, \ i \ A_k \in Realni_+,$ koje ga sačinjavaju
- zaključujemo kako periodični signal može biti potpuno definiran frekvencijama Ω_k , amplitudama A_k , i fazama Θ_k sinusoidnih komponenti koje ga sačinjavaju

Konvolucij signala

analiza vremenski kontinuiranih

Fourierov red

Frekvencijska analiza vremenski kontinuiranih signala

• periodičan signal x razlažemo na sinusoide frekvencija $\Omega_1=1,~\Omega_2=4,~\Omega_3=8,$ čije su amplitude $A_1=0.8,$ $A_2=1,~A_3=0.7,$ i faze $\Theta_1=0,~\Theta_2=\frac{\pi}{3},~\Theta_3=\frac{\pi}{2}$

Slika 1: Amplitudni i fazni spektar

Konvolucij signala

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red

Frekvencijska analiza vremenski kontinuiranih signala

- na prethodnoj slici prikazani su amplitudni i fazni spektar
- \bullet amplitudni spektar prikazuje amplitude sinusoidnih komponenti signala kao funkciju frekvencije Ω
- fazni spektar predstavlja prikaz faze Θ_k , u radijanima, kao funkciju frekvencije Ω
- spektar signala potpuno opisuje signal i govorimo o prikazu signala u frekvencijskoj domeni ili u frekvencijskom području

2007/2008

Konvolucij signala

analiza vremenski kontinuiranih signala

Fourierov red

Frekvencijska analiza vremenski kontinuiranih signala

• linearna kombinacija harmonijski vezanih, $\Omega_k=k\Omega_0$, vremenski kontinuiranih kompleksnih eksponencijala također generira periodičan kontinuirani signal x

$$\forall t \in \textit{Realni}, \quad x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\Omega_0 t}$$

koji je periodičan s periodom

$$T_0 = \frac{2\pi}{\Omega_0}$$

pri čemu se signal $e^{jk\Omega_0t}$ naziva k—tom harmonijskom komponentom ili k-tim harmonikom signala x

 to upućuje kako linearna kombinacija kompleksnih eksponencijala može poslužiti u prikazu realnih i kompleksnih periodičnih kontinuiranih signala i dalje razmatramo upravo taj prikaz

Profesor Branko Jeren

Konvolucij signala

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red

Frekvencijska analiza vremenski kontinuiranih signala

• prikaz periodičnog signala³, $x \in KontPeriod_{T_0}$, linearnom kombinacijom harmonijski vezanih kompleksnih eksponencijala

$$\forall t \in Realni, \quad x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\Omega_0 t}$$

naziva se Fourierov red

- $T_0 = \frac{2\pi}{\Omega_0}$ određuje osnovnu periodu, a koeficijenti reda, X_k , valni oblik periodičnog signala x
- dva člana reda, za $k=\pm 1$, zajednički se nazivaju osnovne komponente, ili prve harmonijske komponente
- članovi sa $k = \pm 2$ druge harmonijske komponente, itd.

³realnog ili kompleksnog

2007/2008

Fourierov red

Koeficijenti Fourierovog reda

- da bi neki periodični vremenski kontinuirani signal prikazali uz pomoć Fourierovog reda potrebno je odrediti koeficijente reda X_k
- izračunavanje koeficijenata $\{X_k\}$ započinje množenjem, s obje strane,

$$\forall t \in Realni, \quad x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\Omega_0 t}$$

s $e^{-jm\Omega_0 t}$, za $m \in Cielobrojni$

• slijedi integriranje s obje strane, preko jednog perioda, dakle, 0 do T_0 , ili općenitije od t_0 do $t_0 + T_0$

$$\int_{t_0}^{t_0+T_0} x(t) e^{-j\Omega_0 mt} dt = \int_{t_0}^{t_0+T_0} e^{-jm\Omega_0 t} \left(\sum_{k=-\infty}^{\infty} X_k e^{jk\Omega_0 t} \right) dt$$
(1)

• desnu stranu transformiramo u

Fourierov red

Koeficijenti Fourierovog reda

$$\sum_{k=-\infty}^{\infty} X_k \underbrace{\int_{t_0}^{t_0+T_0} e^{j(k-m)\Omega_0 t} dt}_{\text{int}} = \sum_{k=-\infty}^{\infty} X_k \left[\frac{e^{j(k-m)\Omega_0 t}}{j(k-m)\Omega_0} \right]_{t_0}^{t_0+T_0}$$

- brojnik izraza u pravokutnim zagradama jednak je na obje granice, pa je za regularni nazivnik $(k \neq m)$ integral jednak nuli
- s druge strane, za k = m, integral Int iznosi

$$\int_{t_0}^{t_0+T_0} e^{j(k-m)\Omega_0 t} dt = \int_{t_0}^{t_0+T_0} dt = t \Big|_{t_0}^{t_0+T_0} = T_0$$

pa se (1) reducira u

$$\int_{t_0}^{t_0+t_0} x(t)e^{-jm\Omega_0 t} dt = X_m T_0 \Rightarrow 15$$

Konvoluci signala

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red

Koeficijenti Fourierovog reda

• slijedi izraz za koeficijente Fourierovog reda

$$\forall m \in \textit{Cjelobrojni}, \quad X_m = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} x(t) e^{-jm\Omega_0 t} dt$$

• budući je t_0 proizvoljan, integral može biti izračunat preko bilo kojeg intervala duljine T_0 pa je konačno, uz zamjenu k=m, izraz za izračun koeficijenata Fourierovog reda

$$\forall k \in \textit{Cjelobrojni}, \quad X_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\Omega_0 t} dt$$

- koeficijenti Fourierovog reda, X_k , nazivaju se i spektralni koeficijenti signala x
- koeficijenti Fourierovog reda su kompleksni 4 dakle, $X_k \in Kompleksni$

⁴Kasnije se pokazuje da su za parne, vremenski kontinuirane, periodične signale koeficijenti Fourierovog reda realni

Konvolucij signala

analiza vremenski kontinuiranih signala

Fourierov red

Konvergencija Fourierovog reda

- postoje dvije klase periodičnih signala za koje postoji konvergentan Fourierov red
 - 1 periodični signali, $\forall x \in KontPeriod_{\mathcal{T}_0}$, konačne energije u jednom periodu (konačne ukupne srednje snage) za koje vrijedi

$$\int_{T_0} |x(t)|^2 dt < \infty$$

- 2 periodični signali, $\forall x \in KontPeriod_{T_0}$, koji zadovoljavaju Dirichletove uvjete
 - (a) signal x je apsolutno integrabilan u bilo kojem periodu

$$\int_{T_0} |x(t)| dt < \infty$$

- (b) signal x ima konačni broj maksimuma i minimuma u bilo kojem periodu
- (c) ima konačni broj diskontinuiteta u bilo kojem periodu
- svi periodični signali od praktičnog interesa zadovoljavaju gornje uvjete

Profesor Branko Jeren

Konvolucija signala

analiza vremenski kontinuiranih signala

Fourierov red

Fourierov red

• za periodični signal $x \in KontPeriod_{T_0}$, koji zadovoljava uvjete konvergencije, vrijedi par jednadžbi

$$\forall k \in C$$
jelobrojni, $X_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\Omega_0 t} dt$ (2)

$$\forall t \in Realni, \quad x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\Omega_0 t}$$
 (3)

- jednadžba (2) naziva se jednadžba Fourierove analize (često i harmonijska analiza periodičnog signala)
- jednadžba (3) naziva se jednadžba Fourierove sinteze (često i harmonijska sinteza periodičnog signala)

Profesor Branko Jeren

Konvolucij signala

analiza vremenski kontinuiranih signala

Fourierov red

Fourierov red vremenski kontinuiranih signala

- niz vrijednosti X_k , $\forall k \in C$ jelobrojni, možemo interpretirati kao diskretni signal 5 čija je nezavisna varijabla frekvencija
- diskretni signal X_k predstavlja prikaz, u frekvencijskoj domeni, periodičnog vremenski kontinuiranog signala x
- kažemo da smo, jednadžbom Fourierove sinteze, signal iz vremenske domene transformirali u signal u frekvencijskoj domeni
- transformacije ovog tipa nazivamo Fourierovim transformacijama
- Fourierovu transformaciju vremenski periodičnog signala provodimo, kako je pokazano, pomoću Fourierovog reda vremenski kontinuiranih signala
- ovu transformaciju označujemo, prema engleskom, kao CTFS (Continuous–Time Fourier Series)

 $^{^5}$ Razmak između uzoraka $\Omega_0=rac{2\pi}{T_0}$

Profesor Branko Jeren

Konvoluci signala

analiza vremenski kontinuiranih signala

Fourierov red

Fourierova transformacija periodičnih vremenski kontinuiranih signala Fourierovim redom

- jednadžba Fourierove analize definira kako periodičnom signalu u vremenskoj domeni pridružiti signal u frekvencijskoj domeni (spektar)
- to pridruživanje možemo definirati na slijedeći način

$$CTFS: KontPeriod_{\mathcal{T}_0} o DisktSignali$$
 $\forall k \in Cjelobrojni, \quad X_k = rac{1}{\mathcal{T}_0} \int_{\mathcal{T}_0} x(t) e^{-jk\Omega_0 t} \ dt$

za $\forall x \in KontPeriod_{T_0}$ i $\forall X \in DisktSignali$

Konvolucij signala

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red

Fourierova transformacija periodičnih vremenski kontinuiranih signala Fourierovim redom

- jednadžba Fourierove sinteze definira kako diskretnom signalu u frekvencijskoj domeni (spektru) pridružiti signal u vremenskoj domeni
- to pridruživanje možemo interpretirati kao inverziju Fourierove transformacije, označimo je ICTFS, i definirajmo kao

$$ICTFS: DisktSignali \rightarrow KontPeriod_{T_0}$$

$$\forall t \in Realni, \quad x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\Omega_0 t}$$

za $\forall x \in KontPeriod_{T_0}$ i $\forall X \in DisktSignali$

Profesor Branko Jeren

Konvolucij signala

analiza vremenski kontinuiranih signala

Fourierov red

Fourierov red – primjer

 određuje se Fourierova transformacija periodičnog signala danog na slici, dakle, određuju se njegovi koeficijenti Fourierovog reda

- signal je periodičan s osnovnim periodom T_0
- signal je paran i vrijedi $x(t) = x(-t), \ \forall t \in Realni$
- signal možemo interpretirati kao periodično ponavljanje pravokutnog impulsa amplitude 1 i širine au

Fourierov red

Fourierov red – primier

 određuju se koeficijenti Fourierovog reda za k=0, X_0 inače predstavlja srednju vrijednost (istosmjernu komponentu) signala x(t)

$$X_0 = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) dt = \frac{1}{T_0} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} dt = \frac{\tau}{T_0}$$

za $k \neq 0$

$$\begin{split} X_k &= \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) e^{-jk\Omega_0 t} dt = \frac{1}{T_0} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} e^{-jk\Omega_0 t} dt = \\ &= \frac{1}{T_0} \frac{e^{-jk\Omega_0 t}}{(-jk\Omega_0)} \bigg|_{-\frac{\tau}{2}}^{\frac{\tau}{2}} = \frac{1}{k\Omega_0 T_0} \frac{e^{\frac{jk\Omega_0 \tau}{2}} - e^{\frac{-jk\Omega_0 \tau}{2}}}{j} = \\ &= \frac{2\tau}{T_0 k\Omega_0 \tau} \frac{e^{\frac{jk\Omega_0 \tau}{2}} - e^{\frac{-jk\Omega_0 \tau}{2}}}{2j} = \frac{\tau}{T_0} \frac{\sin\frac{k\Omega_0 \tau}{2}}{\frac{k\Omega_0 \tau}{2}} \quad \text{za } k = \pm 1, \pm 2, \dots \end{split}$$

2007/2008

Konvolucij signala

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red

Linijski spektar

- općenito, koeficijenti Fourierovog reda poprimaju kompleksne vrijednosti i skup $\{X_k\}_{k=-\infty}^\infty$ može biti grafički prikazan odvojenim grafovima njihove amplitude i faze
- kombinacija oba grafa $X_k = |X_k| e^{j \angle X_k}$ naziva se linijski spektar signala x(t)
- $|X_k|$ predstavlja amplitudni spektar,
- $\angle X_k$ je fazni spektar periodičnog signala

2007/2008

Konvolucij signala

analiza vremenski kontinuiranih signala

Fourierov red

Linijski spektar

- za parnu funkciju x(t), koeficijenti Fourierovog reda su realni 6
- u tom slučaju obično se crta samo jedan graf, $\{X_k\}$, s pozitivnim i negativnim vrijednostima X_k
- izračunati su koeficijenti Fourierovog reda pravokutnog periodičnog signala

$$X_k = \frac{\tau}{T_0} \frac{\sin \frac{k\Omega_0 \tau}{2}}{\frac{k\Omega_0 \tau}{2}}$$

• za primijetiti je kako je njihova dodirnica oblika⁷

$$sinc(w) = \frac{sin(w)}{w}$$

koeficijenti su realni i prikazujemo ih jednim grafom

⁶pokazuje se kasnije

 $^{^{7}}$ sinc(0)=1

sustavi školska godina 2007/2008 Cjelina 5.

Profesor Branko Jeren

Konvolucij signala

Frekvencijska analiza vremenski kontinuiranih

Fourierov red

Linijski spektar – primjer

sustavi školska godina 2007/2008 Cjelina 5.

Profesor Branko Jeren

Konvolucij signala

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red

Parsevalova relacija

ullet periodični kontinuirani signal x(t) ima beskonačnu energiju ali konačnu srednju snagu koja je dana s

$$P_{\mathsf{x}} = \frac{1}{T_0} \int_{T_0} |x(t)|^2 dt$$

• uz $|x(t)|^2 = x(t)x^*(t)$ možemo pisati⁸

$$P_{x} = \frac{1}{T_{0}} \int_{T_{0}} x(t) \left(\sum_{k=-\infty}^{\infty} X_{k}^{*} e^{-jk\Omega_{0}t} \right) dt =$$

$$= \sum_{k=-\infty}^{\infty} X_{k}^{*} \left(\frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-jk\Omega_{0}t} dt \right) = \sum_{k=-\infty}^{\infty} |X_{k}|^{2}$$

• ova se jednakost naziva Parsevalova relacija

 $^{^8}x^*(t)$ označava konjugirano kompleksnu vrijednost odx(t)

Profesor Branko Jeren

Konvoluci signala

analiza vremenski kontinuiranih signala

Fourierov red

Parsevalova relacija

• ilustrirajmo fizikalno značenje Parsevalove relacije

$$P_{x} = \frac{1}{T_{0}} \int_{T_{0}} |x(t)|^{2} dt = \sum_{k=-\infty}^{\infty} |X_{k}|^{2}$$

• neka se x(t) sastoji samo od jedne kompleksne eksponencijale

$$x(t) = X_k e^{jk\Omega_0 t}$$

• u tom slučaju svi su koeficijenti Fourierovog reda, osim X_k , jednaki nuli, i sukladno tomu srednja snaga signala je

$$P_x = \frac{1}{T_0} \int_{T_0} |X_k e^{jk\Omega_0 t}|^2 dt = \frac{1}{T_0} \int_{T_0} |X_k|^2 dt = |X_k|^2$$

- očigledno je kako $|X_k|^2$ predstavlja srednju snagu k—te harmoničke komponente signala
- ukupna srednja snaga periodičnog signala je, prema tome, suma srednjih snaga svih harmonika

Konvolucij signala

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red

Fourierov red – primjer

određuju se koeficijenti Fourierovog reda periodičnog signala na slici

koeficijenti Fourierovog reda su

$$X_0 = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) dt = \frac{1}{2} \int_{-1}^{1} t^2 dt = \frac{1}{3}$$

$$X_k = rac{1}{T_0} \int_{-rac{T_0}{2}}^{rac{T_0}{2}} x(t) e^{-jk\Omega_0 t} dt = rac{1}{2} \int_{-1}^1 t^2 e^{-jk\pi t} dt = rac{2(-1)^k}{\pi^2 k^2}$$

$$k=\pm 1,\pm 2,\dots$$

Profesor Branko Jeren

Konvolucij signala

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red

Fourierov red – primjer

• spektar signala dan je na slici

- inverznom transformacijom možemo, iz spektra, odrediti izvorni signal x u vremenskoj domeni
- postupak sinteze ilustriramo izračunom Fourierovog reda za konačni broj harmonika čime se aproksimira izvorni signal

Konvolucij signala

Frekvencijska analiza vremenski kontinuiranih

Fourierov red

Fourierov red – primjer

• razmatra se Fourierov red za konačni broj harmonika, N=2,3,10,35

$$x_N(t) = \sum_{k=-N}^{N} X_k e^{jk\Omega_0 t} = \frac{1}{3} + \sum_{\substack{k=-N \ k \neq 0}}^{N} \frac{2(-1)^k}{\pi^2 k^2} e^{jk\Omega_0 t}$$

sustavi školska godina 2007/2008 Cjelina 5.

Profesor Branko Jeren

Konvolucij signala

analiza vremenski kontinuiranih signala

Fourierov red

Fourierov red – primjer

pokazano je kako za dani primjer vremenski neprekinutog signala vrijedi

$$\forall t \in Realni, \quad x(t) \approx x_N(t) = \sum_{k=-N}^{N} X_k e^{jk\Omega_0 t}$$

- iz primjera je evidentno kako za $N \to \infty$, ili dovoljno velik N, možemo postići perfektnu aproksimaciju signala x
- razmotrimo aproksimaciju, po odsječcima neprekinutog, signala koji ima konačni broj diskontinuiteta u periodi
- razmatra se periodični pravokutni signal i pokazuje kako se pri Fourierovoj sintezi dobiva signal s valovitostima na mjestu prekida
- ta pojava se naziva Gibbsova pojava

sustavi školska godina 2007/2008 Cjelina 5.

Profesor Branko Jeren

Konvolucij signala

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red

Gibbsova pojava

- razmatra se graf Fourirovog reda periodičnog pravokutnog signala za konačni broj harmonika
- prije su izračunati koeficijenti Fourierovog reda

$$X_0 = \frac{\tau}{T_0}, \quad X_k = \frac{\tau}{T_0} \frac{\sin \frac{k\Omega_0 \tau}{2}}{\frac{k\Omega_0 \tau}{2}} \quad \text{za } k = \pm 1, \pm 2, \dots$$

pa je Fourierov red za konačni broj harmonika

$$x_N(t) = \frac{\tau}{T_0} + \sum_{\substack{k=-N\\k\neq 0}}^{N} \frac{\tau}{T_0} \frac{\sin\frac{k\Omega_0\tau}{2}}{\frac{k\Omega_0\tau}{2}} e^{jk\Omega_0t}$$

• na narednoj prikaznici su prikazani grafovi Fourierovog reda za N=2,3,10,35 uz $T_0=2$ i $\tau=1$

Konvolucij

Frekvencijska analiza vremenski kontinuiranih signala

Fourierov red

Gibbsova pojava

Slika 2: Gibbsova pojava

Profesor Branko Jeren

Konvolucij signala

analiza vremenski kontinuiranih signala

Fourierov red

Gibbsova pojava

- primjer pokazuje kako u blizini diskontinuiteta postoji nadvišenje odnosno valovitost čiji se iznos, s povećanjem N, ne smanjuje
- ova se pojava naziva Gibbsova pojava
- vidljivo je kako je, za $N \to \infty$, *iznos* prvog nadvišenja konstantan, 9 % veličine diskontinuiteta, ali se *širina* valovitosti približava prema nuli
- za $\forall t$, osim na mjestu diskontinuiteta, vrijednost signala prikazanog Fourierovim redom, za $N \to \infty$, približava se vrijednosti originalnog signala
- na mjestu diskontinuiteta, $(x(t_d^+) \neq x(t_d^-))$,

$$x_{N}(t_{d})$$
 za, $N
ightarrow \infty$, konvergira prema $\dfrac{(x(t_{d}^{+}) + x(t_{d}^{-}))}{2}$

Konvolucij signala

analiza vremenski kontinuiranih

Fourierov red

Gibbsova pojava

definiramo grešku aproksimacije kao

$$orall t \in \textit{Realni}, \quad e_{N}(t) = x(t) - \sum_{k=-N}^{N} X_{k} e^{jk\Omega_{0}t}$$

sustavi školska godina 2007/2008 Cjelina 5.

Profesor Branko Jeren

Konvolucij signala

analiza vremenski kontinuiranih signala

Fourierov red

Gibbsova pojava

- ako promotrimo energiju signala greške $\int_{\mathcal{T}_0} |e_N(t)|^2 dt$, unutar jedne periode, zaključujemo sa slike da za $N \to \infty$ ona postaje nula
- ovaj zaključak proizlazi iz činjenice da su iznosi valovitiosti konstantne a njihove širine teže k nuli
- dakle, razlika između x(t), $\forall t$, i njegova prikaza Fourierovim redom ima energiju nula
- zaključujemo kako izvorni signal i njegov prikaz
 Fourierovim redom imaju potpuno jednaku energiju signala u bilo kojem periodu, pa stoga imaju jednako djelovanje na bilo koji realni sustav