Dr. I. Gleason SS 2024

Dr. J. Anschütz

Algebraic Geometry II

9. Exercise sheet

Exercise 1 (4 points):

Let $f: Y \to X$ be a morphism of ringed spaces. Let \mathcal{M} be an \mathcal{O}_Y -module.

- i) Show that $R^i f_*(\mathcal{M})$ is the sheafification of the presheaf $U \mapsto H^i(f^{-1}(U), \mathcal{M}_{|f^{-1}(U)})$.
- ii) Show that flasque \mathcal{O}_Y -modules are acyclic for f_* . Deduce that if $g\colon Z\to Y$ is a morphism of ringed spaces, then g_* sends injective \mathcal{O}_Z -modules to acyclic objects for f_* .

Hint/Remark: In part i) use that restricting to open subsets preserves injective \mathcal{O} -modules. Part ii) implies the existence of the Leray spectral sequence $E_2^{ij} = R^i f_*(R^i g_*(-)) \Rightarrow R^{i+j}(f \circ g)_*(-)$.

Exercise 2 (4 points):

Use the horseshoe lemma to prove the existence of Cartan–Eilenberg resolutions as defined in class.

Exercise 3 (4 points):

Let k be a field. Using a suitable open affine cover of X, show that $H^1(X, \mathcal{O}_X)$ is an infinite-dimensional k-vector space in the following cases:

- 1) X is the affine line over k with doubled origin.
- 2) $X = \mathbb{A}_k^2 \setminus \{(0,0)\}.$

Exercise 4 (4 points):

Let A be a ring and M, N two A-modules with flat resolutions P^{\bullet} resp. Q^{\bullet} (thus $Q^i = P^i = 0$ for i > 0). Use the spectral sequence associated to the double complex $C^{\bullet, \bullet}$ with $C^{i,j} = P^i \otimes Q^j$ to show that for $i \in \mathbb{Z}$ there are natural isomorphism

$$\operatorname{Tor}_{-i}^{A}(M,N) := H^{i}(P^{\bullet} \otimes N) \cong H^{i}(\operatorname{Tot}(C^{\bullet,\bullet})) \cong H^{i}(M \otimes Q^{\bullet}).$$

In particular, Tor-functors can be computed via flat resolutions in either variable.

To be handed in on: Thursday, 20.06.2024 (during the lecture or via eCampus).