Meta-Programming and Hybrid Parallel Strategies for Solving PDEs: An FDM and PINN Comparison ^{1 2}

Seminar Presentation III

LI YIHAI

Student ID: 23345919

Supervision: Michael Peardon

September 18, 2024

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath

full docs: https://livihai.com/html/index.html

²repository: https://github.com/livihai-official/Final-Project

- Introduction
 - Related Work
 - Challenges & Objectives
- 2 Problem Setups
 - General Form
 - Thermal Conduction Systems
- Methodology
 - N-Dimension Matrix
 - Parallelization of N-dimension Arrays

- 4 Implementations
 - PDE Solvers
 - PINN Model
- S Experiments
 - On Single Node
 - On Multi-node
 - On Different Dimensions
 - With PINN on accuracy
- 6 Discussion

- Introduction
 - Related Work
 - Challenges & Objectives
- 2 Problem Setups
 - General Form
 - Thermal Conduction Systems
- Methodology
 - N-Dimension Matrix
 - Parallelization of N-dimension Arrays

- 4 Implementations
 - PDE Solvers
 - PINN Model
- Experiments
 - On Single Node
 - On Multi-node
 - On Different Dimensions
 - With PINN on accuracy
- 6 Discussion

Kolmogorov PDEs

Solving
$$u(x,T)$$
, for $\mathbb{R}^1 \ni T > 0$, $x \in \mathbb{R}^d$, $t \in [0,T]$, $u(t,x) = u \in \mathbb{R}^1$, $\mu(x) \in \mathbb{R}^d$, $\sigma(x) \in \mathbb{R}^{d \times d}$,
$$u_t = \frac{1}{2} \operatorname{Trace}_{\mathbb{R}^d} \left[\sigma(x) \left[\sigma(x) \right]^* \operatorname{Hess}_x u \right] + \langle \mu(x), \nabla_x u \rangle_{\mathbb{R}^d}$$
(1)

Figure: Deep Neural Network (DNN) Methodology of Solving Kolmogorov PDEs [FIRST]

LI Yihai (Mathematics Institute)

An FDM and PINN Comparison

September 18, 2024

4/37

Introduction

Recap - Physics Informed Nerual Network

General Form of PDEs

- -u(t,x) denotes with the target function, $x \in \mathbb{R}^d$.
- $-\Gamma[\cdot;\lambda]$ is a non-linear operator parameterized by λ .

$$u_t(t,x) + \Gamma[u;\lambda] = 0 \tag{2}$$

Define f(t,x) to be given by

$$f(t,x) = u_t(t,x) + \Gamma[u;\lambda]$$
(3)

Figure: PINN, with 3 fully connected hidden layers

Introduction Recap - Conclusion

Comparing With Finite Difference Time Domain Method (FDTD)

- Deep Neural Network [FIRST]
 - Gives lower quality approximations.
 - Takes longer time to train.
 - Possible to solve high dimension PDEs
- Physics Informed Neural Network
 - Gives higher quality approximations.
 - Takes longer time to train.
 - Has more flexible way to get results.
 - Possible to solve high dimension PDEs

Objectives

This project focused on following objectives:

- Implement FDTD and PINN in C++/C.
- Implement FDTD hybrid parallel version using MPI/OpenMP.
- Implement PINN GPU parallel version using Libtorch/CUDA.
- Evaluate the efficiency and accuracy of FDTDs and PINNs.

Challanges

However, there were many obstacles including:

- O Portability.
- Overlapping Communication and Computation.
- Unnecessary intra-node communication
- Communication Overhead.
- Scalability Issues.
- Memory Management.

- Introduction
 - Related Work
 - Challenges & Objectives
- Problem Setups
 - General Form
 - Thermal Conduction Systems
- Methodology
 - N-Dimension Matrix
 - Parallelization of N-dimension Arrays

- 4 Implementations
 - PDE Solvers
 - PINN Model
- Experiments
 - On Single Node
 - On Multi-node
 - On Different Dimensions
 - With PINN on accuracy
- 6 Discussion

General Form of problem

The PDE parametrized by number λ and an operator $\mathcal{N}[\cdot;\lambda]$, and assume the variable x is a 2D or 3D spatio-vector which is written in

$$\begin{cases} \frac{\partial u}{\partial t}(t, \vec{x}) + \mathcal{N}[u; \lambda] = 0\\ u(0, \vec{x}) = \varphi(\vec{x}) \end{cases}$$
(4)

where φ is the initial condition, and $\vec{x} \in \Omega, t \in [0, +\infty)$.

Boundary Conditions

The Dirichlet and Von Neurmann boundary conditions are formed as

$$\begin{cases} u(t,\vec{x}) = g(t,\vec{x}) \\ \frac{\partial u}{\partial \vec{n}} = g(t,\vec{x}) \end{cases}$$
 (5)

10/37

where \vec{n} is the normal vector on $\overline{\Omega}$ the boundary of domain Ω .

Thermal Conduction Systems Heat Equation 2D

The function

$$u(t, x, y) = x + y - xy, \forall \alpha \in \mathbb{R}^{1}$$
(6)

is the solution of 2D Heat Equation 7 below

$$\frac{\partial u}{\partial t} = \alpha \left(\frac{\partial u^2}{\partial^2 x} + \frac{\partial u^2}{\partial^2 y} \right) \qquad (x,y) \in \Omega, t \in [0, +\infty)$$

$$u(0,x,y) = \varphi(x,y) = 0 \qquad (x,y) \in \Omega \qquad (7)$$

$$u(t,x,y) = g(x,y) = \begin{cases} y, x = 0, y \in (0,1) \\ 1, x = 1, y \in (0,1) \\ x, y = 0, x \in (0,1) \\ 1, y = 1, x \in (0,1) \end{cases}$$

$$t \in [0, +\infty)$$

$$\begin{cases} x, \ y = 0, x \in (0, 1) \\ 1, \ y = 1, x \in (0, 1) \end{cases}$$

LI Yihai (Mathematics Institute) An FDM and PINN Comparison September 18, 2024

Thermal Conduction Systems Heat Equation 3D

The function

$$u(t,x,y,z) = x + y + z - 2xy - 2xz - 2yz + 4xyz, \forall \alpha \in \mathbb{R}^1$$
(8)

is the solution of 3D Heat Equation 9 below

$$\frac{\partial u}{\partial t} = \alpha \left(\frac{\partial u^2}{\partial^2 x} + \frac{\partial u^2}{\partial^2 y} + \frac{\partial u^2}{\partial^2 z} \right) \qquad (x, y, z) \in \Omega, t \in [0, +\infty)$$

$$u(0, x, y, z) = \varphi(x, y, z) = 0 \qquad (x, y, z) \in \Omega \qquad (9)$$

$$u(t,x,y,z) = g(x,y,z) = \begin{cases} y+z-2yz, & x=0, \\ 1-y-z+2yz, & x=1, \\ x+z-2xz, & y=0, \\ 1-x-z+2xz, & y=1, \\ x+y-2xy, & z=0, \\ 1-x-y+2xy, & z=1 \end{cases}$$
 $t \in [0,+\infty)$

- Introduction
 - Related Work
 - Challenges & Objectives
- Problem Setups
 - General Form
 - Thermal Conduction Systems
- Methodology
 - N-Dimension Matrix
 - Parallelization of N-dimension Arrays

- 4 Implementations
 - PDE Solvers
 - PINN Model
- Experiments
 - On Single Node
 - On Multi-node
 - On Different Dimensions
 - With PINN on accuracy
- 6 Discussion

N-dimension Matrix Challanges

STL provides containers std::array and std::vector for creating one-dimension array. There are two way for dealing with high-dimension data:

- Nesting the one dimension arrays or vectors.
- Hierarchy approach, designing derived classes of one-dimension array base class.

Figure: Derived Class calling members in Base class, timing is not predictable.

- Nesting multi-dimension array has non-contiguous memory layout.
- Derived class needs more time to access members in base class.
- Poor cache utilization leads to poor performance.
- MPI type create requires contiguous memory layout.

Figure: Using nested std::array<T, N> to store 2D array data.

N-dimension Matrix Solution

- An external small __multi_array_shape object defines the routines for accessing the elements.
- Smart pointer, ensure memory's contiguous layout and safety.
- Separate into two detail and user interface objects adhering RAII rules.

Figure: The solution of N-dimension Matrix, using detail Class, user interface Class and a shape management structure.

Parallelization of N-dimension Arrays MPI Environment

The hybrid PDE solver requires the MPI supports multi-threads on each processes.

- High-level libraries like Boost.MPI
 - have better MPI resource management and other basic communication features.
 - only provide limited useful features for latter PDE solvers.
 - 3 lead to lower performance than low-level OpenMPI.
- I developed an environment class for MPI
 - better resource management than raw MPI.
 - 2 provides basic features exclusively for this project.

Parallelization of N-dimension Arrays MPI Topology - Challanges

Distributed N-dimension arrays are created based on MPI N-dimension Cartesian topology.

- Ghost communication is required in overlapping of MPI communication and local computation.
- 2 Parallel I/O is needed for debugging and storing results.
- **3** Topology information will be frequently used in PDE solver.

Parallelization of N-dimension Arrays MPI Topology - Solution

- An MPI Topology class defines the distribution details of N-dimension array.
- ② Using MPI_Type_create_subarray for creating Ghost MPI datatype for communication.
- Ocartesian array has members Topology class and N-dimension array class, to ensure they are closely located on memory.
- The external functions provide gather-based I/O and MPI I/O for handling different scenarios.
- User interface class unified features for both topology and array classes.
- Separate into two detail and user interface objects adhering RAII rules.

- Introduction
 - Related Work
 - Challenges & Objectives
- Problem Setups
 - General Form
 - Thermal Conduction Systems
- Methodology
 - N-Dimension Matrix
 - Parallelization of N-dimension Arrays

- 4 Implementations
 - PDE Solvers
 - PINN Model
- 6 Experiments
 - On Single Node
 - On Multi-node
 - On Different Dimensions
 - With PINN on accuracy
- 6 Discussion

N-dimension Boundary and Initial Conditions Challanges

- Mathematical function needs be discretized and distributed as well.
- Need to access the data.
- Initial and Dirichlet boundary conditions only applies once.
- Von Neumann boundary condition participates the evolving process in FDM.

N-dimension Boundary and Initial Conditions Solution

- Use lambda function to construct classes.
- Oreating external classes for each conditions as the friend classes of PDE solver classes.
- Set Bool vectors help to determine the status of conditions and type of boundary conditions.

N-dimension PDE solvers Challanges

- PDE solver of Heat Equations in different dimension space have similar parameters and features, type-field solution lead to code redundancy.
- Applying MPI communications between local arrays, avoiding overhead.
- Three type of strategies:
 - Pure MPI parallel
 - Master-only, no overlapping hybrid parallel.
 - 3 Master-only, communication/computation overlapping hybrid parallel.

• Create an abstract Heat base class of Heat Equation, and overriding functions in derived class on every dimension.

MPI communications are implemented in blocking and non-blocking ways using MPI_Sendrecv and MPI_Isend/MPI_Irecv.

- Three type of strategies
 - Pure MPI parallel

- Three type of strategies
 - Master-only, no overlapping hybrid parallel.

- Three type of strategies
 - Master-only, communication/computation overlapping hybrid parallel.

September 18, 2024

- Introduction
 - Related Work
 - Challenges & Objectives
- Problem Setups
 - General Form
 - Thermal Conduction Systems
- Methodology
 - N-Dimension Matrix
 - Parallelization of N-dimension Arrays

- 4 Implementations
 - PDE Solvers
 - PINN Model
- S Experiments
 - On Single Node
 - On Multi-node
 - On Different Dimensions
 - With PINN on accuracy
- 6 Discussion

- Introduction
 - Related Work
 - Challenges & Objectives
- 2 Problem Se
 - General Form
 - Thermal Conduction Systems
- Methodology
 - N-Dimension Matrix
 - Parallelization of N-dimension Arrays

- 4 Implementations
 - PDE Solvers
 - PINN Model
- Second Experiments
 - On Single Node
 - On Multi-node
 - On Different Dimensions
 - With PINN on accuracy
- 6 Discussion

Closing Remarks

Thank you for your attention!

Any questions?