

Data Mining: Data (Chapter 2)

郑子彬 副教授 中山大学数据科学与计算机学院 zhzibin@mail.sysu.edu.cn

Project: Crime Classification

- 组队要求: 3个小组成员,如有特殊情况(如不够人)可向TA申请
- 组队信息3月12日前发送到邮箱: <u>dm2016sysu@sina.com</u>
- TA统计好组队信息后将邮件通知各小组组号,Kaggle注册账号请使用DM_组号(如DM_001),评分将根据leaderboard上指定的账号名的分数排名

You receive an email from a medical researcher concerning a project that you are eager to work on.

Hi,

I've attached the data file.

Each line contains the information for a single patient and consists of five fields.

We want to predict the last field using the other fields.

Thanks and see you in a couple of days.

The first few rows of the file are as follows:

Nothing looks strange. You put your doubts aside and start the analysis.

Two days later you arrive for the meeting, and before the meeting, you strike up a conversation with a statistician who is working on the project.

Statistician: So, you got the data for all the patients?

Data Miner: Yes. I haven't had much time for analysis, but I do have a few interesting results.

Statistician: Amazing. There were so many data issues with this set of patients that I couldn't do much.

Data Miner: Oh? I didn't hear about any possible problems.

Statistician: But surely you heard about what happened to field 4? It's supposed to be measured on a scale from 1 to 10, with 0 indicating a missing value, but because of a data entry error, all 10's were changed into 0's.

Data Miner: Interesting. Were there any other problems?

Statistician: Yes, fields 2 and 3 are basically the same, but I assume that you probably noticed that.

Data Miner: Yes, but these fields were only weak predictors of field 5.

012 232 33.5 0 10.7 020 121 16.9 2 210.1 027 165 24.0 0 427.6

Statistician: Anyway, given all those problems, I'm surprised you were able to accomplish anything.

Data Miner: True, but my results are really quite good. Field 1 is a very strong predictor of field 5. I'm surprised that this wasn't noticed before.

Statistician: What? Field 1 is just an identification number.

Data Miner: Nonetheless, my results speak for themselves.

Statistician: Oh, no! I just remembered. We assigned ID numbers after we sorted the records based on field 5. There is a strong connection, but it's meaningless. Sorry.

Lesson: Get to know your data!

012 232 33.5 0 10.7 020 121 16.9 2 210.1 027 165 24.0 0 427.6

6

What is Data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic, or feature

Objects

- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, or instance

Attributes

				1
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Attribute Values

- Attribute values are numbers or symbols assigned to an attribute
- Distinction between attributes and attribute values
 - Same attribute can be mapped to different attribute values
 - Example: height can be measured in feet or meters
 - Different attributes can be mapped to the same set of values
 - Example: Attribute values for ID and age are integers
 - But properties of attribute values can be different
 - ID has no limit but age has a maximum and minimum value

Measurement of Length

 The way you measure an attribute is somewhat may not match the attributes properties.

Types of Attributes

There are different types of attributes

Nominal

Examples: ID numbers, eye color, zip codes

Ordinal

 Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in {tall, medium, short}

Interval

 Examples: calendar dates, temperatures in Celsius or Fahrenheit.

Ratio

Examples: temperature in Kelvin, length, time, counts

Properties of Attribute Values

 The type of an attribute depends on which of the following properties it possesses:

Distinctness: = ≠

- Order: < >

– Addition: + -

Multiplication: * /

- Nominal attribute: distinctness
- Ordinal attribute: distinctness & order
- Interval attribute: distinctness, order & addition
- Ratio attribute: all 4 properties

Attribute Type	Description	Examples	Operations
Nominal	The values of a nominal attribute are just different names, i.e., nominal attributes provide only enough information to distinguish one object from another. $(=, \neq)$	zip codes, employee ID numbers, eye color, sex: {male, female}	mode, entropy, contingency correlation, χ^2 test
Ordinal	The values of an ordinal attribute provide enough information to order objects. (<, >)	hardness of minerals, {good, better, best}, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests
Interval	For interval attributes, the differences between values are meaningful, i.e., a unit of measurement exists. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, <i>t</i> and <i>F</i> tests
Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length, electrical current	geometric mean, harmonic mean, percent variation

Attribute Level	Transformation	Comments
Nominal	Any one-to-one mapping	If all employee ID numbers were reassigned, would it make any difference?
Ordinal	An order preserving change of values, i.e., $new_value = f(old_value)$ where f is a monotonic function.	An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}.
Interval	new_value = a * old_value + b where a and b are constants	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
Ratio	new_value = a * old_value	Length can be measured in meters or feet.

Discrete and Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

Important Characteristics of Structured Data

- Dimensionality
 - Curse of Dimensionality
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale

Types of data sets

Record

- Data Matrix
- Document Data
- Transaction Data

Graph

- World Wide Web
- Molecular Structures

Ordered

- Spatial Data
- Temporal Data
- Sequential Data
- Genetic Sequence Data

Record Data

 Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Data Matrix

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Document Data

- Each document becomes a `term' vector,
 - each term is a component (attribute) of the vector,
 - the value of each component is the number of times the corresponding term occurs in the document.

	team	coach	pla y	ball	score	game	n Wi	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Transaction Data

- A special type of record data, where
 - each record (transaction) involves a set of items.
 - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Graph Data

Examples: Generic graph and HTML Links


```
<a href="papers/papers.html#bbbb">
Data Mining </a>
<a href="papers/papers.html#aaaa">
Graph Partitioning </a>
<a href="papers/papers.html#aaaa">
Parallel Solution of Sparse Linear System of Equations </a>
<a href="papers/papers.html#ffff">
N-Body Computation and Dense Linear System Solvers</a>
```

Chemical Data

● Benzene Molecule (苯分子): C₆H₆

Ordered Data: Sequential Data

Sequential Data

Time	Customer	Items Purchased
t1	C1	A, B
t2	C3	A, C
t2	C1	C, D
t3	C2	A, D
t4	C2	E
t5	C1	A, E

Customer	Time and Items Purchased
C1	(t1: A,B) (t2:C,D) (t5:A,E)
C2	(t3: A, D) (t4: E)
C3	(t2: A, C)

Ordered Data: Sequence Data

Genomic sequence data

Ordered Data: Time Series Data

- Special type of sequential data
- Temporal autocorrelation

Ordered Data: Spatio-Temporal Data

Average Monthly Temperature of land and ocean

Data Quality

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?

- Examples of data quality problems:
 - Noise and outliers
 - missing values
 - duplicate data

Noise

- Noise refers to modification of original values
 - Examples: distortion of a person's voice when talking on a poor phone and "snow" on television screen

Two Sine Waves

Two Sine Waves + Noise

Outliers

 Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set

Missing Values

- Reasons for missing values
 - Information is not collected (e.g., people decline to give their age and weight)
 - Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)
- Handling missing values
 - Eliminate Data Objects
 - Estimate Missing Values
 - Ignore the Missing Value During Analysis
 - Replace with all possible values (weighted by their probabilities)

Duplicate Data

- Data set may include data objects that are duplicates, or almost duplicates of one another
 - Major issue when merging data from heterogeous sources

• Examples:

- Same person with multiple email addresses
- Data cleaning
 - Process of dealing with duplicate data issues

Data Preprocessing

- Aggregation
- Sampling
- Dimensionality Reduction
- Feature subset selection
- Feature creation
- Discretization and Binarization
- Attribute Transformation

Aggregation

 Combining two or more attributes (or objects) into a single attribute (or object)

Purpose

- Data reduction
 - Reduce the number of attributes or objects
- Change of scale
 - Cities aggregated into regions, states, countries, etc
- More "stable" data
 - Aggregated data tends to have less variability

Aggregation

Variation of Precipitation in Australia

Standard Deviation of Average Monthly Precipitation

Standard Deviation of Average Yearly Precipitation

Sampling

- Sampling is the main technique employed for data selection.
 - It is often used for both the preliminary investigation of the data and the final data analysis.
- Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming.
- Sampling is used in data mining because processing the entire set of data of interest is too expensive or time consuming.

Sampling ...

- The key principle for effective sampling is the following:
 - using a sample will work almost as well as using the entire data sets, if the sample is representative
 - A sample is representative if it has approximately the same property (of interest) as the original set of data

Types of Sampling

- Simple Random Sampling
 - There is an equal probability of selecting any particular item
- Sampling without replacement
 - As each item is selected, it is removed from the population
- Sampling with replacement
 - Objects are not removed from the population as they are selected for the sample.
 - In sampling with replacement, the same object can be picked up more than once
- Stratified sampling
 - Split the data into several partitions; then draw random samples from each partition

Sample Size

38

Sample Size

 What sample size is necessary to get at least one object from each of 10 groups.

Progressive Sampling

- Start with a small sample
- Increase the sample size
- Need to evaluate the sample to judge if it is large enough
- Marginal effect (边际效应)

Curse of Dimensionality

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful

- Randomly generate 500 points
- Compute difference between max and min distance between any pair of points

Dimensionality Reduction

• Purpose:

- Avoid curse of dimensionality
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

Techniques

- Principle Component Analysis
- Singular Value Decomposition
- Others: supervised and non-linear techniques

Dimensionality Reduction: PCA

- 变量之间是有一定的相关关系的
- 当两个变量之间有一定相关关系时,可以解释为这两个变量的信息有一定的重叠
- 主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的
- 这些新变量在反映信息方面尽可能保持原有的信息

Feature Subset Selection

Another way to reduce dimensionality of data

Redundant features

- duplicate much or all of the information contained in one or more other attributes
- Example: purchase price of a product and the amount of sales tax paid

Irrelevant features

- contain no information that is useful for the data mining task at hand
- Example: students' ID is often irrelevant to the task of predicting students' GPA

Feature Subset Selection

• Techniques:

- Brute-force approch:
 - Try all possible feature subsets as input to data mining algorithm
- Embedded approaches:
 - Feature selection occurs naturally as part of the data mining algorithm
- Filter approaches:
 - Features are selected before data mining algorithm is run
- Wrapper approaches:
 - Use the data mining algorithm as a black box to find best subset of attributes

Feature Creation

- Create new attributes that can capture the important information in a data set much more efficiently than the original attributes
- Three general methodologies:
 - Feature Extraction
 - domain-specific
 - Mapping Data to New Space
 - Feature Construction
 - combining features

Mapping Data to a New Space

- Fourier transform
- Wavelet transform

Two Sine Waves

Two Sine Waves + Noise

Frequency

Discretization and Binarization

- Discretization: Transform a continuous attribute to categorical attribute
- Binarization: Transform continuous (or discrete) attributes into one or more binary attributes

表 2-5 一个分类属性到三个二元属性的变换

分类值	整数值	x ₁	<i>x</i> ₂	<i>x</i> ₃
awful	0	0	0	0
poor	1 .	0	0	1
ОК	2	0	1	0
good	3	0	1	1
great	4	1	0	0

Discretization and Binarization

表 2-6 一个分类属性到五个非对称二元属性的转换

分类值	整数值	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅
awful	0	1	0	0	0	0
poor	1	0	1	0	0	0
OK	2	0	0	1	0	0
good	3	0	0	0	1	0
great	4	0	0	0	0	1_1_

Discretization

- The best discretization depends on the algorithm being used
- How many categories?
- How to map the values of continuous attributes to these categories?
- How many split points to choose and where to place them?
- Solutions
 - Unsupervised discretization
 - Supervised discretization

Discretization Without Using Class Labels

Supervised Discretization

- 基于熵的离散化方法
 - 最大化区间的纯度

$$e_i = -\sum_{j=1}^k p_{ij} \log_2 p_{ij}$$

首先,需要定义熵(entropy)。设 k 是不同的类标号数, m_i 是某划分的第 i 个区间中值的个数,而 m_{ii} 是区间 i 中类 j 的值的个数。第 i 个区间的熵 e_i 由如下等式给出

 $p_{ij} = m_{ij}/m_i$ 是第 i 个区间中类 j 的概率(值的比例)。

Supervised Discretization: Entropy (熵)

Entropy (熵)

- 熵的概念是由德国物理学家克劳修斯于1865年所提出。熵最初是被用在热力学方面的
- 香农1948年的一篇论文<u>《A Mathematical Theory of</u> <u>Communication》</u>提出了**信息熵**的概念,解决了对信息的量化度 量问题,并且以后信息论也被作为一门单独的学科
- 要搞清楚一件非常非常不确定的事,就需要了解大量的信息。相反,如果我们对某件事已经有了较多的了解,我们不需要太多的信息就能把它搞清楚。
- 对于任意一个随机变量 X, 熵定义如下: "变量的不确定性越大, 熵也就越大, 把它搞清楚所需要的信息量也就越大。"

Entropy (熵)

- 世界杯谁是冠军?
- 世界杯赛后问一个知道结果的观众"哪支球队是冠军"?他不愿意直接告诉我,而要让我猜,并且我每猜一次,他要收一元钱才肯告诉我是否猜对了,那么我需要付给他多少钱才能知道谁是冠军呢?
- 我可以把球队编上号,从 1 到 32, 然后提问: "冠军的球队在 1-16 号中吗?"假如他告诉我猜对了, 我会接着问: "冠军在 1-8 号中吗?"假如他告诉我猜错了, 我自然知道冠军队在 9-16 中。这样最多只需要五次, 我就能知道哪支球队是冠军
- 谁是世界杯冠军这条消息的信息量值五块钱

Entropy (熵)

- 不需要猜五次就能猜出谁是冠军,巴西、德国、意大利这样的球队得冠军的可能性比美国、韩国等队大的多。
- 第一次猜测时不需要把 32 个球队等分成两个组,而可以把 少数几个最可能的球队分成一组,把其它队分成另一组。
 然后我们猜冠军球队是否在那几只热门队中。
- 重复这样的过程,根据夺冠概率对剩下的候选球队分组, 直到找到冠军队。也许三次或四次就猜出结果。
- 当每个球队夺冠的可能性(概率)不等时,"谁世界杯冠军"的信息量的信息量比五比特少。
 - "谁是世界杯冠军"的信息量:
 - = (p1*log p1 + p2 * log p2 + . . . +p32 *log p32),
 - P1,...p32是32个球队各自夺冠的概率
- 课外阅读:《数学之美》第六章"信息的度量与作用"

Supervised Discretization

- 基于熵的离散化方法
 - 最大化区间的纯度

$$e_i = -\sum_{j=1}^k p_{ij} \log_2 p_{ij}$$

首先,需要定义熵(entropy)。设 k 是不同的类标号数, m_i 是某划分的第 i 个区间中值的个数,而 m_{ii} 是区间 i 中类 j 的值的个数。第 i 个区间的熵 e_i 由如下等式给出

 $p_{ij} = m_{ij}/m_i$ 是第 i 个区间中类 j 的概率(值的比例)。

Supervised Discretization

- 熵:区间纯度的度量
 - 只包含一个类: 熵为0
 - 包含所有类,并且每类出现的概率相等: 熵最大

Attribute Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value can be identified with one of the new values
 - Simple functions: x^k, log(x), e^x, |x|
 - Standardization and Normalization

Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range [0,1]

Dissimilarity

- Numerical measure of how different are two data objects
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies

Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \begin{cases} 0 & \text{if } p = q \\ 1 & \text{if } p \neq q \end{cases}$	$s = \begin{cases} 1 & \text{if } p = q \\ 0 & \text{if } p \neq q \end{cases}$
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$
Interval or Ratio	d = p - q	$s = -d, \ s = \frac{1}{1+d}$ or
		$s = -d, s = \frac{1}{1+d}$ or $s = 1 - \frac{d-min_d}{max_d-min_d}$

Table 5.1. Similarity and dissimilarity for simple attributes

Euclidean Distance

Euclidean Distance

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Where n is the number of dimensions (attributes) and p_k and q_k are, respectively, the k^{th} attributes (components) or data objects p and q.

Standardization is necessary, if scales differ.

Euclidean Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Minkowski Distance

 Minkowski Distance is a generalization of Euclidean Distance

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

Where r is a parameter, n is the number of dimensions (attributes) and p_k and q_k are, respectively, the kth attributes (components) or data objects p and q.

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Minkowski Distance: Examples

- r = 1. City block (Manhattan, taxicab, L₁ norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- $r \to \infty$. "supremum" (L_{max} norm, L_{\infty} norm) distance.
 - This is the maximum difference between any component of the vectors
- Do not confuse r with n, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

L1	p1	p2	p3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

L_{∞}	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

Distance Matrix

Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well known properties.
 - 1. $d(p, q) \ge 0$ for all p and q and d(p, q) = 0 only if p = q. (Positive definiteness,非负性)
 - 2. d(p, q) = d(q, p) for all p and q. (Symmetry, 对称性)
 - 3. $d(p, r) \le d(p, q) + d(q, r)$ for all points p, q, and r. (Triangle Inequality,三角不等式)

where d(p, q) is the distance (dissimilarity) between points (data objects), p and q.

A distance that satisfies these properties is a metric (度量)

Example: Non-metric dissimilarities

- A={1,2,3,4} B={2,3,4}
- $A-B = \{1\}$ $B-A=\emptyset$
- dis(A,B) = size(A B) = 1
- dis(B,A) = size(B A) = 0
- dis(A,B) = size(A-B) + size (B-A)

Example: Non-metric dissimilarities

- Distance between time of the day:
- d(t1,t2)=t2-t1 if t1 <= t2
- d(t1,t2)=24+(t2-t1) if t1>=t2
- d(1PM,2PM) = 1 d(2PM, 1PM) = 23

Common Properties of a Similarity

- Similarities, also have some well known properties.
 - 1. s(p, q) = 1 (or maximum similarity) only if p = q.
 - 2. s(p, q) = s(q, p) for all p and q. (Symmetry)

where s(p, q) is the similarity between points (data objects), p and q.

Similarity Between Binary Vectors

- Common situation is that objects, p and q, have only binary attributes
- Compute similarities using the following quantities

 M_{01} = the number of attributes where p was 0 and q was 1

 M_{10} = the number of attributes where p was 1 and q was 0

 M_{00} = the number of attributes where p was 0 and q was 0

 M_{11} = the number of attributes where p was 1 and q was 1

Simple Matching and Jaccard Coefficients

```
SMC = number of matches / number of attributes
= (M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})
```

J = number of 11 matches / number of not-both-zero attributes values = $(M_{11}) / (M_{01} + M_{10} + M_{11})$

SMC versus Jaccard: Example

$$p = 1000000000$$

$$q = 0000001001$$

 $M_{01} = 2$ (the number of attributes where p was 0 and q was 1)

 $M_{10} = 1$ (the number of attributes where p was 1 and q was 0)

 $M_{00} = 7$ (the number of attributes where p was 0 and q was 0)

 $M_{11} = 0$ (the number of attributes where p was 1 and q was 1)

SMC =
$$(M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7) / (2+1+0+7) = 0.7$$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$$

Extended Jaccard Coefficient (Tanimoto)

- Variation of Jaccard for continuous or count attributes
 - Reduces to Jaccard for binary attributes

$$T(p,q) = \frac{p \bullet q}{\|p\|^2 + \|q\|^2 - p \bullet q}$$

两个向量的交集

两个向量的并集

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11})$$

Cosine Similarity

• If d_1 and d_2 are two document vectors, then

$$\cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||,$$

where • indicates vector dot product and || d || is the length of vector d.

• Example:

$$d_1 = 3205000200$$

 $d_2 = 100000102$

$$d_1 \bullet d_2 = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$||d_1|| = (3*3 + 2*2 + 0*0 + 5*5 + 0*0 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{0.5} = (42)^{0.5} = 6.481$$

$$||d_2|| = (1*1 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 0*0 + 2*2)^{0.5} = (6)^{0.5} = 2.245$$

$$\cos(d_1, d_2) = .3150$$

Correlation (PCC皮尔森相关性)

- Correlation measures the linear relationship between objects
- To compute correlation, we standardize data objects, p and q, and then take their dot product

$$p'_k = (p_k - mean(p)) / std(p)$$

$$q'_k = (q_k - mean(q)) / std(q)$$

$$correlation(p,q) = p' \bullet q'$$

Visually Evaluating Correlation

Scatter plots showing the similarity from -1 to 1.

General Approach for Combining Similarities

- Sometimes attributes are of many different types, but an overall similarity is needed.
- 1. For the k^{th} attribute, compute a similarity, s_k , in the range [0,1].
- 2. Define an indicator variable, δ_k , for the k_{th} attribute as follows:

$$\delta_k = \begin{cases} 0 & \text{if the } k^{th} \text{ attribute is a binary asymmetric attribute and both objects have} \\ & \text{a value of 0, or if one of the objects has a missing values for the } k^{th} \text{ attribute} \\ & 1 & \text{otherwise} \end{cases}$$

3. Compute the overall similarity between the two objects using the following formula:

$$similarity(p,q) = rac{\sum_{k=1}^{n} \delta_k s_k}{\sum_{k=1}^{n} \delta_k}$$

Using Weights to Combine Similarities

- May not want to treat all attributes the same.
 - Use weights w_k which are between 0 and 1 and sum to 1.

$$similarity(p,q) = \frac{\sum_{k=1}^{n} w_k \delta_k s_k}{\sum_{k=1}^{n} \delta_k}$$

$$distance(p,q) = \left(\sum_{k=1}^n w_k |p_k - q_k|^r
ight)^{1/r}.$$

Density

Density-based clustering require a notion of density

- Examples:
 - Euclidean density
 - Euclidean density = number of points per unit volume
 - Probability density
 - Graph-based density

Euclidean Density — Cell-based

 Simplest approach is to divide region into a number of rectangular cells of equal volume and define density as # of points the cell contains

Figure 7.13. Cell-based density.

0	0	0	0	0	0	0
0	0	0	0	0	0	0
4	17	18	6	0	0	0
14	14	13	13	0	18	27
11	18	10	21	0	24	31
3	20	14	4	0	0	0
0	0	0	0	0	0	0

Table 7.6. Point counts for each grid cell.

Euclidean Density – Center-based

SIN YATESEN UNIVERSE

 Euclidean density is the number of points within a specified radius of the point

Figure 7.14. Illustration of center-based density.

Data Preprocessing

- Aggregation
- Sampling
- Dimensionality Reduction
- Feature subset selection
- Feature creation
- Discretization and Binarization
- Attribute Transformation