Festkörperphysik, SoSe 2023 Übungsblatt 9

Prof. Dr. Thomas Michely

Dr. Wouter Jolie (wjolie@ph2.uni-koeln.de) II. Physikalisches Institut, Universität zu Köln

Ausgabe: Mittwoch, 14.06.2023

Abgabe: Mittwoch, 21.06.2023, bis 8 Uhr über ILIAS

Aufgabe Nr.:	1	2	3	4	Summe
Points:	5	6	5	4	20
Punkte:					

Bitte Aufgaben zusammen mit Aufgabenblatt als PDF hochladen. Namen, Matrikelnummer und Gruppennummer deutlich lesbar eintragen (sonst Punktabzug). Abgabe in Gruppen zu 2, max. 3 Personen erwünscht. Die Teammitglieder müssen in der gleichen Übungsgruppe sein.

1. [5 Punkte] Kurzfragen

Markieren Sie im folgenden die richtigen Satzenden (Mehrfachauswahl möglich).

• E	in anharmonischer Effekt
	$-$ ist ein Effekt der auftritt, weil die Rückstellkräfte Kräfte bei Auslenkungen der Atome aus ihren Gleichgewichtsposition nicht vollständig linear sind. \Box
	$-$ ist die Volumenausdehnung eines Kristalls mit der Temperatur. \Box
	$-$ ist die Abweichung der Phononendispersion von einem linearen Zusammenhang $\omega=vk.$ \square
	$-$ ist die Abweichung der Wärmekapazität bei tiefen Temperaturen vom Dulong-Petit Gesetz. \Box
	$-$ ist die Abweichung von C_p von C_V . \square
• D	Die Wärmeleitfähigkeit in Isolatoren
	$-$ ist immer niedriger als die Wärmeleitfähigkeit von Metallen. \square
	$-$ beruht auf dem Phononentransport. \square
	$-$ ist nur von endlicher Größe, weil die Normalprozesse zu einem endlichen Wärmewiederstand führen. \Box
	$-$ besitzt eine ausgeprägte Temperaturabhängigkeit mit einem Maximalwert bei (genauer sehr nahe) 0 K, der zu höheren Temperaturen allmählich abnimmt. \Box
	– hängt vom Produkt aus Wärmekapazität und freier Weglänge der Phononen ab. □

• Die Zustandsdichte eines Elektronengases
$-Z(k)$ im k-Raum ist proportional zu k^2 . \square
$-$ ist abhängig von der Dimensionalität des Festkörpers. \square
$ D(E)$ gibt die Anzahl der Elektronen mit Energie zwischen E und $E+$ dE pro Energieintervall d E an. \Box
$ Z(k)$ im k -Raum ist identisch zur Zustandsdichte der Gitterwellenverktoren. \square
$ D(E)$ hängt nicht von der Elektronendichte im Realraum ab. \square
• Das freie Elektronengas bei tiefen Temperaturen
$-$ besetzt alle Zustände bis zur Einstein-Temperatur. \square
$-$ besitzt eine niedrigere Energie kinetische Gesamtenergie als ein klassisches Elektronengas mit gleicher Teilchenzahl bei der Schmelztemperatur des Materials. \Box
$-$ kann im $k\text{-Raum}$ als eine Hohlkugel von besetzten Zuständen visualisiert werden, die die sogenannte Fermifläche bilden. \Box
$-$ besitzt eine Fermitemperatur der Größenordnung 100 K. \square
 besitzt einen Fermigasdruck, der weiße Zwerge vor dem vollständigen Kollaps bewahrt.
• Das freie Elektronengas
$-$ ist eine Näherung für das Verhalten von Valenzelektronen in Metallen. \Box
$-$ berücksichtigt die Wechselwirkung der Elektronen mit allen anderen Elektronen in Form eines effektiven Potentials. \Box
$-$ in einem endlichen Volumen besitzt eine kontinuierliche variierende Energie der Elektronenwellen. \Box
– besetzt bei $T=0$ aufgrund des Pauli-Prinzips jeden durch $k=\frac{2\pi}{L}(n_x,n_y,n_z)$ definierten Zustand mit $k< k_F$ mit genau einem Elektron.
$-$ kann als Näherung auch für die Beschreibung des Elektronenverhaltens in Isolatoren eingesetzt werden. \Box
Punkte] Zustandsdichte für freie Elektronen in verschiedenen Dimensionen

2. **[6**

- (a) Berechnen Sie die Zustandsdichte Z(k) im k-Raum eines freien Elektronengases in 1 und 2 Dimensionen. Vergleichen Sie Ihre Ergebnisse mit dem dreidimensionalen Fall.
- (b) Berechnen Sie die Zustandsdichte D(E) im Energieraum für freien Elektronen in 1 und 2 Dimensionen unter Verwendung der Dispersionsrelation. Vergleichen Sie Ihre Ergebnisse mit dem dreidimensionalen Fall.

3. [5 Punkte] Spezifische Wärme

- (a) Berechnen Sie die spezifische Wärme von 1 g Kupfer bei hohen Temperaturen.
- (b) Betrachten Sie das Tieftemperaturverhalten der spezifischen Wärme von Argon (siehe Abbildung) und schätzen Sie daraus die mittlere Schallgeschwindigkeit ab.

Hinweis: Das molare Volumen von festem Argon beträgt $22.56 \cdot 10^{-6}$ m³/mol.

nach L. Finegold und N. E. Philips, Phys. Rev. 177 1383 (1969)

4. [4 Punkte] Alkalimetall

Berechnen Sie für Na die Fermienergie $E_{\rm F}$, Fermitemperatur $T_{\rm F}$, den Fermiwellenvektor $k_{\rm F}$, die Fermigeschwindigkeit $v_{\rm F}$, die Fermiwellenlänge $\lambda_{\rm F}$ sowie die (elektronische) Kompressibilität κ . Schlagen Sie dazu in der Literatur die Gitterkonstante und die Kristallstruktur von Na nach.

Erreichbare Gesamtpunktzahl: 20