习题课材料(四)

注: 带 ♡ 号的习题有一定的难度、比较耗时, 请量力为之.

记号: 如不加说明,我们只考虑实矩阵。对于矩阵 A, 它的四个基本子空间是列空间 C(A), 零空间 N(A), 行空间 $C(A^T)$ 和 A^T 的零空间 $N(A^T)$ 。

习题 1. 给定 $V, W \subset \mathbb{R}^n$ 。若 $\dim V + \dim W > n$,则存在 $x \neq 0$ 且 $x \in V \cap W$ 。

习题 2. $A \in 10$ 阶方阵, $A^2 = 0$ 。则 $rank(A) \le 5$ 。

习题 3. 设 $(1,0,0,0,0)^T$, $(0,1,1,0,0)^T$ 和 $(0,1,1,1,0)^T$ 构成了 N(A) 的一组基,而 A 为五 阶方阵,求 $\mathrm{rref}(A)$ 。

习题 4. 1. 设 A 是一个 $m \times n$ 的实矩阵, 证明 $N(A^TA) = N(A)$ 。

- 2. A 如上。证明 $C(A^{T}A) = C(A^{T})$ 。
- 3. 证明 A^TA 可逆当且仅当 A 为列满秩矩阵。

习题 5. 设 V 为向量空间, a_1, \ldots, a_n 为 V 中线性无关的向量,证明当且仅当 n 为奇数时, $a_1 + a_2, a_2 + a_3, \ldots, a_{n-1} + a_n, a_n + a_1$ 时线性无关。

习题 6. (Steinitz 替换定理) a_1, \ldots, a_r 线性无关,可用 b_1, \ldots, b_s 线性表示,则

1. $r \leq s$;

2. 可以选择 $b_1, ..., b_s$ 中的 r 个向量换成 $a_1, ..., a_r$, 得到的新的向量组与 $b_1, ..., b_s$ 线性 等价。

习题 7. 设 $A \in n$ 阶方阵且 $f(x) = a_0 + a_1 x + \dots + a_n x^n$ 为 \mathbb{R} 上一多项式,则定义 $f(A) = a_0 I_n + a_1 A + \dots + a_n A^n$ 。已知多项式 f 满足 f(0) = 0,证明对任意方阵 A, $\operatorname{rank} f(A) \leq \operatorname{rank}(A)$ 。

习题 8. 证明: $\operatorname{rank}\begin{bmatrix}A&b\\b^T&0\end{bmatrix}=\operatorname{rank}(A)$ 是 Ax=b 有解的充分不必要条件。

习题 9 (\heartsuit). 设 A 是可逆实反对称矩阵, $b \in \mathbb{R}^n$ 。证明下列等式成立。

1.
$$\operatorname{rank}(A + bb^T) = n$$
.

2. rank
$$\begin{bmatrix} A & b \\ b^T & 0 \end{bmatrix} = n .$$