Лекция 1: Математический анализ

Математический анализ - изучение через размышление

Объект математического анализа - функция

В математическом анализе используются символы из математической логики и теории множеств.

1 Математическая логика

Объект изучения математической логики - высказывание.

Определение 1. Высказывание - повествовательное предложение, относительно которого можно сказать, истинно оно или ложно. Обозначаются заглавными буквами латинского алфавита.

Пример. 2+3=5 - истинно, 3<0 - ложно

1.1 Логические символы

```
∧ - конъюнкция (логическое "И")
```

∨ - дизъюнкция (логическое "ИЛИ")

 \Rightarrow - импликация ("если A то B")

⇔ - эквивалетность или равносильность ("тогда и только тогда")

Кванторы - общее название для логических операций

∃ - существует

∄ - не существует

!∃ - существует единствуенный элемент

∀ - для каждого

2 Теория множеств

Определение 2. Множество - совокупность объектов, связанных одним и тем же свойством. Обозначаются заглавными латинскими буквами. Элементы множества обозначаются строчными латинскими буквами.

2.1 Символы теории множеств

- ∈ принадлежит
- ∉ не принадлежит

- С включает
- ullet \subseteq включает, возможно равенство
- ullet = тожденственное равенство (для любого значения переменной
- Ø пустое множество

2.2 Операции со множествами

- U объединение множеств
- \cap пересечение множеств

Замечание.

$$A \cup B = \{x : x \in A \land x \in B\} \\ A \cap B = \{x : x \in A \lor x \in B\}.$$

Определение 3. Подмножество - множество A называется подмножеством B, если каждый элемент множества A является элементом множества B.

Определение 4. Универсальное множество - такое множество, подномножествами которого являются все рассматриваемые множества.

2.3 Способы задания множества

1. Перечислить все элементы:

$$A = \{1, 2, 3, 4 \dots\}.$$

2. Указание свойства, которым обладают все элементы множества:

$$B = \{x : Q(x)\}.$$

2.4 Числовые множества

- $\mathbb{N} = \{1, 2, 3, 4\}$ множество натуральных чисел
- $\mathbb{Z} = \{\ldots -2, -1, 0, 1, 2, \ldots\}$ множество целых чисел
- $\mathbb{Q}=\{x: x=\frac{m}{n}, m\in \mathbb{Z}n\in \mathbb{N}\}$ множество рациональных чисел
- \bullet $I = \{\pi, \sqrt{2} \ldots \}$ множество иррациональных чисел

ullet $\mathbb{R}=\mathbb{Q}\cup I$ - множество действительных чисел

Замечание. Порядок вложенности:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$
.

2.5 Промежутки

Определение 5. Промежуток - подножество X множества \mathbb{Q} , где $\forall x_1, x_2 \in X$ этому множеству принадлежат все x, где $x_1 < x < x_2$.

2.5.1 Виды промежутков

- 1. Отрезок $[a; b] = \{x \in \mathbb{R} : a \le x \le b\}$
- 2. Интервал $(a; b) = \{x \in \mathbb{R} : a < x < b\}$
- 3. Полуинтервал $[a; b) = \{x \in \mathbb{R} : a < x < b\}$

2.6 Конечные и бесконечные окрестности

Пусть $x_0 \in \mathbb{R}$, δ и ε - малые положительные величины

Определение 6. Окрестностью точки x_0 называется любой интервал, содержащий эту точку

Определение 7. δ - окрестностью $(S(x_0, \delta))$ точки x_0 называется интервал с центром в точке x_0 и длиной 2δ .

$$S(x_0; \delta) = (x_0 - \delta; x_0 + \delta)$$

Определение 8. ε - окрестностью $(S(x_0,\varepsilon))$ точки x_0 называется интервал с центром в точке x_0 и длиной 2ε .

$$S(x_0; \delta) = (x_0 - \delta; x_0 + \delta)$$

Определение 9. Окрестностью $+\infty$ называется любой интервал вида:

$$S(+\infty) = (a; +\infty), a \in \mathbb{R}, a > 0.$$

Определение 10. Окрестностью $-\infty$ называется любой интеграл вида:

$$S(-\infty)=(-\infty;-a), a\in\mathbb{R}, a>0.$$

Определение 11. Окрестностью ∞ называется любой интервал вида

$$S(\infty) = (-\infty; -a) \cup (a; +\infty), a \in \mathbb{R}, a > 0.$$

Лекция 2: Математический анализ

3 Числовая последовательность

Определение 12. Числовая последовательность - это <u>бесконечное</u> множество числовых значений, которое можно упорядочить (перенумеровать).

Задать последовательность - указать формулу или правило, по которой $\forall n \in \mathbb{N}$ можно записать соответствующий элемент последовательности.

Замечание. Множество значений последовательности может быть конечным или бесконечным, но число число элементов последовательности всегда бесконечно.

Пример. $1, -1, 1, -1, 1 \dots$

- Число элементов бесконечно
- Значенией последовательности два

$$x_n = (-1)^{n+1}$$
.

 $2, 2, 2, 2, 2 \dots$

- Число элементов бесконечно
- Значенией последовательности одно

$$x_n = 2 * 1^n$$
.

 $1, 2, 3, 4, 5 \dots$

- Число элементов бесконечно
- Значений последовательности бесконечно

$$x_n = n, \forall n \in \mathbb{N}.$$

Определение 13. Последовательность чисел $\{x_n\}$ называется неубывающей, если каждый последующий член $x_{n+1} \ge x_n, \forall n \in \mathbb{N}$.

Пример. 1, 2, 3, 4, 4, 5, 5...

Определение 14. Последовательность чисел $\{x_n\}$ называется возрастающей, если каждый последующий член $x_{n+1} > x_n, \forall n \in \mathbb{N}$.

Пример. 1, 2, 3, 4, 5, 6, 7...

Определение 15. Последовательность чисел $\{x_n\}$ называется невозрастающей, если каждый последующий член $x_{n+1} \leq x_n, \forall n \in \mathbb{N}$.

Пример. $\frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{4} \dots$

Определение 16. Последовательность чисел $\{x_n\}$ называется убывающей, если каждый последующий член $x_{n+1} < x_n, \forall n \in \mathbb{N}$.

Пример. $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5} \dots$

Определение 17. Возрастающая, убывающая последовательности называются строго монотонными.

Определение 18. Неубывающая, возрастающая, невозрастающая, убывающая последовательности называются монотонными.

Немонотонная последовательность:

$$1, 2, 3, 2, 1 \dots$$

Постоянная последовательность

$$1, 1, 1, 1, 1, \dots$$

4 Предел последовательности

Определение 19. Число a называется пределом последовательности $\{x_n\}$, если для любого положительного числа ε найдется натуральное число $N\left(\varepsilon\right)$, зависящее от ε такое что если порядковый номер n члена последовательности станет больше $N(\varepsilon)$, то имеет место неравенство $|x_n-a|<\varepsilon$.

$$\lim_{x \to \infty} x_n = a \quad \Leftrightarrow \quad (\forall \varepsilon > 0)(\exists N(\varepsilon) \in \mathbb{N}) : (\forall n > N(\varepsilon)) \Rightarrow |x_n - a| < \varepsilon.$$

Замечание. Т.е. начиная с номера $N(\varepsilon)+1$ все элементы последовательности $\{x_n\}$ попадают в ε -окрестность точки a.

4.1 Геометрический смысл

$$\begin{aligned} |x_n - a| &< \varepsilon \\ -\varepsilon &< x_n - a < \varepsilon \\ a - \varepsilon &< x_n < a + \varepsilon \end{aligned}$$

$$\forall n > N(\varepsilon)$$

Какой бы малый ε мы не взяли, все элементы последовательности $\{x_n\}$ попадают в ε -окрестность точки a, причем чем меньше $\varepsilon\downarrow$, тем $N(\varepsilon)\uparrow$.

Пример. Рассмотрим последовательность $x_n=\frac{1}{n+1}=\{\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},\frac{1}{6}\ldots\}=\{x_1,x_2,x_3,x_4,x_5,x_6\ldots\}$ $\lim_{n\to\infty}x_n=a.$ $\lim_{n\to\infty}\frac{1}{n+1}=0.$

Пример. Пусть $\varepsilon=0.3,\,x_n\in(a-\varepsilon;a+\varepsilon),$ т.е. (-0.3;0.3) Получается два элемента $x_1,x_2\not\in(-0.3,0.3)\Rightarrow N(\varepsilon)=2$ $N(\varepsilon)+1=3$ $x_3.,x_4,x_5\ldots\in(-0.3,0.3)$

Определение 20. Последовательность, имеющая предел, назыается сходящейся.

Определение 21. Последовательность $\{x_n\}$ называется ограниченной снизу (сверху), если $\exists m \in \mathbb{R}(M \in \mathbb{R})$, что для всех $\forall n \in \mathbb{N}$ выполнено неравенство $x_n \geq m \ (x_n \leq M)$

Определение 22. Последовательность x_n называется ограниченной, если она ограничена и сверху, и снизу, т.е. $\forall n \in \mathbb{N}, m \leq x_n \leq M$ или $|x_n| \leq M$.

Определение 23. Последовательность $\{x_n\}$ называется фундаментальной, если для любого $\varepsilon>0$ \exists свой порядковый номер $N(\varepsilon)$ такой, что при всех $n\geq N(\varepsilon)$ и $m\geq N(\varepsilon)$ выполнено неравенство $|x_n-x_m|<\varepsilon$.

$$\forall \varepsilon > 0 \exists N(\varepsilon) \forall n \geq N(\varepsilon), \forall m \geq N(\varepsilon) \Rightarrow |x_n - x_m| < \varepsilon$$

Теорема 1. Теорема (критерий Коши существования предела последовательности)

Для того, чтобы последовательность была сходящейся, необходимо и

достаточно она была фундаментальной.

$$\{x_n\}$$
 -сходится \Leftrightarrow $\{x_n\}$ - фундаментальная.

4.2 Свойства сходящихся последовательность

Теорема 2. О существовании единственности предела последователь-

Любая сходящаяся последовательность имеет единственный предел.

Доказательство. Пусть $\{x_n\}$ - сходящаяся последовательность. Метод от противного. Пусть последовательность $\{x_n\}$ имеет 2 различных предела.

$$\lim_{n \to \infty} = a \tag{1}$$

$$\lim_{n \to \infty} = b$$

$$a \neq b$$
(2)

$$a \neq b$$