CS4495/6495 Introduction to Computer Vision

5B-L1 *Lightness*

Last time: Surface appearance

- Image intensity = f (normal, surface reflectance, illumination)
- Surface reflection depends on both the viewing and illumination directions

What do you see?

Simple scene right?

Really?

Really!

Compensating for the "shadow"

Lightness perception is influenced by 3D cues

Lightness perception is influenced by 3D cues

Simultaneous contrast effect

Basic problem of lightness

Is B darker than A because it reflects a smaller proportion of light, or because it's further from the light?

Planar, Lambertian material: where: ρ is reflectance (aka albedo)

$$L = I * \rho * \cos(\theta)$$

 θ is angle between light and n

I is illuminance (strength of light)

Ambiguity of lighting and reflectance

If we combine θ and I at a point into E(x, y), and have a reflectance function R(x, y) then:

$$L(x,y) = R(x,y) * E(x,y)$$

Assumptions

- 1. Light is slowly varying
 - This is reasonable for planar world: nearby image points come from nearby scene points with same surface normal.
- 2. Within an object reflectance is constant
- 3. Between objects, reflectance varies suddenly.

The Mondrian world

Piet Mondrian (1872-1944)

The Mondrian world

Piet Mondrian (1872-1944)

Illumination: slowly varying

$$L(x,y) = R(x,y) * E(x,y)$$

Formally, we assume that illuminance, E, is low frequency

Albedo: constant patches

$$L(x,y) = R(x,y) * E(x,y)$$

Reflectance R, is constant over patches separated by edges.

Lighting the Mondrian world

$$L(x,y) = R(x,y) * E(x,y)$$

Land's Retinex Theory

- Edwin Land (1909-1991) – inventor of Polaroid Land camera
- Early demonstrations that humans perceive different lightness (or color) for same objective brightness

Land's Retinex Theory

- Goal: remove slow variations from the image
- Many approaches to this. One is:

$$L(x,y) = R(x,y) * E(x,y)$$

$$\log(L(x,y)) = \log(R(x,y)) + \log(E(x,y))$$

- Hi-pass filter (say with derivative)
- Threshold to remove small low-frequencies
- Then invert process; take integral, exponentiate

1-D Lightness "Retinex"

Threshold gradient image to find surface (patch) boundaries Figures courtesy D. Forsyth

1-D Lightness "Retinex"

Integration to recover surface lightness (unknown constant)

Color Retinex

These approaches fail on 3D objects, where illuminance can change quickly as well

Human color and lightness constancy

- Color constancy: determine hue and saturation under different colors of lighting
- Lightness constancy: gray-level reflectance under differing intensity of lighting

Other approaches

- Average reflectance across scene is known (often fails) – e.g. measured using a standard gray card
- Brightest patch is white
- Gamut (set of all colors) falls within known range
 - Works quite well for correcting photographs for human observers, but not good enough for recognition
- Known reference color (color chart, skin color, ...)
 Current methods nowhere near adequate lots to do!