Bilateral Laplace Transform Properties

Property	Time Domain	Laplace Domain	ROC
Linearity	$a_1x_1(t) + a_2x_2(t)$	$a_1X_1(s) + a_2X_2(s)$	At least $R_1 \cap R_2$
Time-Domain Shifting	$x(t-t_0)$	$e^{-st_0}X(s)$	R
Laplace-Domain Shifting	$e^{s_0t}x(t)$	$X(s-s_0)$	$R + \operatorname{Re}\{s_0\}$
Time/Laplace-Domain Scaling	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	aR
Conjugation	$x^*(t)$	$X^*(s^*)$	R
Time-Domain Convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$
Time-Domain Differentiation	$\frac{d}{dt}x(t)$	sX(s)	At least R
Laplace-Domain Differentiation	-tx(t)	$\frac{d}{ds}X(s)$	R
Time-Domain Integration	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{s}X(s)$	At least $R \cap \{\operatorname{Re}\{s\} > 0\}$

Property	
Initial Value Theorem	$x(0^+) = \lim_{s \to \infty} sX(s)$
Final Value Theorem	$\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$

Unilateral Laplace Transform Properties

Property	Time Domain	Laplace Domain
Linearity	$a_1x_1(t) + a_2x_2(t)$	$a_1X_1(s) + a_2X_2(s)$
Laplace-Domain Shifting	$e^{s_0t}x(t)$	$X(s-s_0)$
Time/Laplace-Domain Scaling	x(at), a > 0	$\frac{1}{a}X\left(\frac{s}{a}\right)$
Conjugation	$x^*(t)$	$X^*(s^*)$
Time-Domain Convolution	$x_1(t) * x_2(t)$, $x_1(t)$ and $x_2(t)$ are causal	$X_1(s)X_2(s)$
Time-Domain Differentiation	$\frac{d}{dt}x(t)$	$sX(s) - x(0^-)$
Laplace-Domain Differentiation	-tx(t)	$\frac{d}{ds}X(s)$
Time-Domain Integration	$\int_{0-}^{t} x(\tau) d\tau$	$\frac{1}{s}X(s)$

Property	
Initial Value Theorem	$x(0^+) = \lim_{s \to \infty} sX(s)$
Final Value Theorem	$\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$

Bilateral Laplace Transform Pairs

Pair	x(t)	X(s)	ROC
1	$\delta(t)$	1	All s
2	u(t)	$\frac{1}{s}$	$Re{s} > 0$
3	-u(-t)	$\frac{1}{s}$	$Re{s} < 0$
4	$t^n u(t)$	$\frac{n!}{s^{n+1}}$	$Re{s} > 0$
5	$-t^n u(-t)$	$\frac{n!}{s^{n+1}}$	$Re{s} < 0$
6	$e^{-at}u(t)$	$\frac{1}{s+a}$	$Re{s} > -a$
7	$-e^{-at}u(-t)$	$\frac{1}{s+a}$	$Re{s} < -a$
8	$t^n e^{-at} u(t)$	$\frac{n!}{(s+a)^{n+1}}$	$Re{s} > -a$
9	$-t^n e^{-at} u(-t)$	$\frac{n!}{(s+a)^{n+1}}$	$Re{s} < -a$
10	$[\cos \omega_0 t] u(t)$	$\frac{s}{s^2+\omega_0^2}$	$Re{s} > 0$
11	$[\sin \omega_0 t] u(t)$	$\frac{\omega_0}{s^2+\omega_0^2}$	$Re{s} > 0$
12	$[e^{-at}\cos\omega_0 t]u(t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}$	$Re\{s\} > -a$
13	$[e^{-at}\sin\omega_0t]u(t)$	$\frac{\omega_0}{(s+a)^2+\omega_0^2}$	$\operatorname{Re}\{s\} > -a$

Unilateral Laplace Transform Pairs

Pair	x(t)	X(s)
1	$\delta(t)$	1
2	1	$\frac{1}{s}$
3	t^n	$\frac{n!}{s^{n+1}}$
4	e^{-at}	$\frac{1}{s+a}$
5	$t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$
6	$\cos \omega_0 t$	$\frac{s}{s^2+\omega_0^2}$
7	$\sin \omega_0 t$	$\frac{\frac{s}{s^2 + \omega_0^2}}{\frac{\omega_0}{s^2 + \omega_0^2}}$
8	$e^{-at}\cos\omega_0 t$	$\frac{s+a^0}{(s+a)^2+\omega_0^2}$
9	$e^{-at}\sin\omega_0 t$	$\frac{\omega_0}{(s+a)^2+\omega_0^2}$

Unit: Complex Analysis **Example A.10.** Determine for what values of z the function $f(z) = z^2$ is analytic.

Solution. First, we observe that f is a polynomial function. Then, we recall that polynomial functions are analytic everywhere. Therefore, f is analytic everywhere.

Example A.11. Determine for what values of z the function f(z) = 1/z is analytic.

Solution. We can deduce the analyticity properties of f as follows. First, we observe that f is a rational function. Then, we recall that a rational function is analytic everywhere except at points where its denominator polynomial becomes zero. Since the denominator polynomial of f only becomes zero at 0, f is analytic everywhere except at 0.