Студент: Перминов Артем

Группа: 2362 Вариант: FF

Дата: 25 февраля 2024 г.

Комбинаторика и теория графов

Индивидуальное домашнее задание №1

Дано множество $M = \{69, 74, 14, 51, 86, 87, 28, 29\}$. М, отсортированное по возрастанию:

$$M = \{14, 28, 29, 51, 69, 74, 86, 87\}$$

Задание 1.

$$F(x,y) = 1 \Leftrightarrow \exists z \in M : (x-z)(y-z) < 0;$$

Решение. Построим матрицу смежности для б.о:

Благодаря построению матрицы смежности можно понять, что данное б.о является **арефлексивным**, т.к. элементы матрицы смежности на главной диагонали равны нулю, и **симметричным**, т.к. эл-ты матрицы зеркальны относительно главной диагонали.

Построим граф для б.о:

Б.о **не транзитивно**, т.к между вершинами (например, 14 и 28), есть путь $14 \to 51 \to 28$, но нет пути $14 \to 28$.

Полученные свойства (**арефлексивность**, **симметричность**, **нетранзитивность**) - не относятся ни к одному отношению (эквивалентности, частичного порядка, линейного порядка, строгого порядка). Используя алгоритм Уоршелла, построим транзитивное замыкание.

Задание 2.

$$F(x,y) = 1 \Leftrightarrow x \geqslant y$$
 поразрядно;

Решение. Построим матрицу смежности для б.о:

Благодаря построению матрицы смежности можно понять, что данное б.о является **рефлексивным**, т.к. элементы матрицы смежности на главной диагонали равны единице, и **антисимметричным**, т.к. выше главное диагонали в матрице находятся только нули.

выше главное диагонали в матрице находятся только нули.
 Транзитивность:
$$\Box \begin{cases} F(x,y) = 1 \Rightarrow x \geq y \\ F(y,z) = 1 \Rightarrow y \geq z \end{cases} \Rightarrow x \geq y \geq z \Rightarrow x \geq z \Leftrightarrow F(x,z) = 1 -$$
 транзитивность выполняется. **Построим граф для б.о:**

Полученные свойства (**рефлексивность**, **антисимметричность**, **транзитивность**) относятся к одному отношению частичного порядка.

Отношение **не является отношением линейного порядка**, т.к, к примеру, между вершинами 29 и 74 нет пути длины 1.

Алгоритм топологической сортировки для получения отношения линейного порядка:

Задание 3.

$$F(x,y) = 1 \Leftrightarrow \left[\frac{x}{4}\right] = \left[\frac{y}{4}\right];$$

Решение. Построим матрицу смежности для б.о:

	14	28	29	51	69	74	86	87
14	/ 1	0	0	0	0	0	0	0 \
28	0	1	1	0	0	0	0	0
29	0	1	1	0	0	0	0	0
51	0	0	0	1	0	0	0	0
69	0	0	0	0	1	0	0	0
74	0	0	0	0	0	1	0	0
86	0	0	0	0	0	0	1	1
87	$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	0	0	0	0	0	1	1 /
	\							/

Благодаря построению матрицы смежности можно понять, что данное б.о является **рефлексивным**, т.к. элементы матрицы смежности на главной диагонали равны единице, и **симметричным**, т.к. эл-ты матрицы зеркальны относительно главной диагонали.

Транзитивность

Построим граф для б.о:

Комбинация полученных свойств (рефлексивность, симметричность, транзитивность) относится к отношению эквивалентности.

Построим классы эквивалентности:

Множество разбивается на классы эквивалентности в зависимости от целой части при делении на 4:

- {14} имеет целую часть 4
- {28, 29} имеет целую часть 7
- {51}имеет целую часть 13
- {69} имеет целую часть 17
- {74} имеет целую часть 19
- {86, 87} имеет целую часть 22

Задание 4.

$$F(x,y) = 1 \Leftrightarrow x^2 - y^3$$
 нечетно;

Решение. Построим матрицу смежности для б.о:

Благодаря построению матрицы смежности можно понять, что данное б.о является **арефлексивным**, т.к. элементы матрицы смежности на главной диагонали равны нулю, и **симметричным**, т.к. эл-ты матрицы зеркальны относительно главной диагонали.

Построим граф для б.о:

Б.о **не транзитивно**, т.к между вершинами (например, 14 и 28), есть путь $14 \rightarrow 69 \rightarrow 28$, но нет пути $14 \rightarrow 28$.

Полученные свойства (арефлексивность, симметричность, нетранзитивность) - не относятся ни к одному отношению (эквивалентности, частичного порядка, линейного порядка, строгого порядка).

Используя алгоритм Уоршелла, построим транзитивное замыкание.

Задание 5.

$$F(x,y) = 1 \Leftrightarrow |x - y| < 5.$$

Решение. Построим матрицу смежности для б.о:

	14	28	29	51	69	74	86	87
14	/ 1	0	0	0	0	0	0	0 \
28	0	1	1	0	0	0	0	0
29	0	1	1	0	0	0	0	0
51	0	0	0	1	0	0	0	0
69	0	0	0	0	1	0	0	0
74	0	0	0	0	0	1	0	0
86	0	0	0	0	0	0	1	1
87	0	0	0	0	0	0	1	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$

Благодаря построению матрицы смежности можно понять, что данное б.о является **рефлексивным**, т.к. элементы матрицы смежности на главной диагонали равны единице, и **симметричным**, т.к.эл-ты матрицы зеркальны относительно главной диагонали.

14 28 29

51 69 74 86 87

Новых единиц не появилось ⇒ отношение транзитивно.

Построим граф для б.о:

Полученные свойства (рефлексивность, симметричность, транзитивность) - относятся к отношению эквивалентности.

Построим классы эквивалентности:

Множество разбивается на классы эквивалентности в зависимости от разности чисел, меньшей 5:

- \bullet {14} разность между эл-ми < 5
- \bullet {28, 29} разность между любыми эл-ми < 5
- \bullet {51} разность между эл-ми < 5
- \bullet {69} разность между эл-ми < 5
- $\{74\}$ разность между эл-ми < 5
- \bullet {86, 87} разность между любыми эл-ми < 5