Лабораторная работа № 4

Оформление документов с помощью стилей и шаблонов. Редактор формул Microsoft Equation 3.0

<u>Цель:</u> Научиться оформлять документы с помощью стилей, автоматически создавать оглавление. Освоить работу в редакторе формул Microsoft Equation 3.0

Для выполнения работы запустите текстовый редактор WORD, создайте новый документ и установите для всего документа следующие параметры страницы: левое поле — 2см, верхнее и нижнее — 2см, правое — 0,5 см, формат бумаги - A4, книжная ориентация, для этого воспользуйтесь командами группы «Параметры страницы» на вкладке «Макет».

Для вставки символов выполнить команду Вставка→Символ, выбрать необходимый символ и добавить его в документ.

Чтобы вызвать редактор формул используйте команду Вставка \rightarrow Объект \rightarrow Microsoft Equation 3.0 либо вытяните кнопку Объект на Главную вкладку, для этого выполните команду Файл \rightarrow Параметры \rightarrow Настроить ленту.

Для написания показателей степеней и нижних индексов (без вызова редактора формул!): Главная→Шрифт→кнопки Подстрочный знак и Надстрочный знак.

Результат работы сохранить в папке для лабораторных работ по курсу. В названии файла указать группу, фамилию и номер лабораторной работы (202-2-Иванов_лр4.docx).

ЗАДАНИЯ К ВЫПОЛНЕНИЮ ЛАБОРАТОРНОЙ РАБОТЫ

<u>Задание 1.</u>

Наберите текст по образцу 1. Форматирование:

Заголовок: шрифт – Arial, 16пт; выравнивание по центру;

<u>Основной текст:</u> шрифт -Courier New, 14пт; выравнивание по ширине.

Установите нумерацию страниц. Вставьте номера страниц в документ: «Вверху, справа» без нумерации на первой странице. Вставка→команды группы Колонтитулы.

ОБРАЗЕЦ 1

1.Виды сил в природе 1.1 Силовые поля

По современным представлениям во вселенной существует 4 вида фундаментальных взаимодействий или 4 вида фундаментальных сил:

- 1. ядерные силы;
- 2. электромагнитные силы;
- 3. слабые силы:
- 4. гравитационные силы.

Виды взаимодействия	const взаимодействия	Радиус действия	Время взаимодействия
Ядерное(сильное)	1	10^{-15} км	10 ^{−23} c
Электромагнитное	10-2	$\rightarrow \infty$	10 ⁻²¹ e
Слабое	10^{-14}	10^{-17} km	10 ^{−9} c
Гравитационное	10-30	$\rightarrow \infty$	10 ⁹ лет

<u>Поле</u> – часть пространства, в котором действуют силы, закономерно изменяющиеся от точки к точке

Поля бывают:

- равномерные;
- неравномерные.

1.2 Вычисление моментов инерции

Если тело однородное и правильной геометрической формы, то при определении моментов инерции можно от суммы перейти к интегралам.

S - площадь сечения стержня.

$$dv = Sdx,$$

$$I = \rho \int_{0}^{l} x^{2} Sdx = \frac{\rho x^{3}}{3} S \Big|_{0}^{l} = \frac{\rho S l^{3}}{3}, I = \frac{m l^{3}}{3}$$

2, Второй закон Ньютона.

Рассмотрим систему взаимодействующих тел. Интенсивность взаимодействия получила название сила взаимодействия. Очевидно, что взаимодействие тем больше, чем больше сила взаимодействия и продолжительность взаимодействия.

$$\Delta \vec{P} = \vec{F} \Delta t$$
, $\Delta (m\vec{v}) = \vec{F} \Delta t$, $m\Delta \vec{v} = F\Delta t$, $\vec{F} = m\frac{\Delta \vec{v}}{\Delta t}$, $\vec{F} = m\vec{a}$

Второй закон Ньютона: сила, сообщающая телу ускорение, равна произведению массы тела на приобретенное им ускорение.

Рассмотрим изолированную систему тел. Согласно закону сохранения импульса, суммарный импульс этой системы во времени постоянен:

$$\begin{split} \sum_{i=1}^{i=n} \vec{P}_i &= const \;, \\ m_1 \vec{v}_1 + m_2 \vec{v}_2 + \dots + m_n \vec{v}_n &= const \;, \\ m_1 \frac{d\vec{v}_1}{dt} + m_2 \frac{d\vec{v}_2}{dt} + \dots + m_n \frac{d\vec{v}_n}{dt} &= 0 \;, \\ m_1 \vec{a}_1 + m_2 \vec{a}_2 + \dots + m_n \vec{a}_n &= 0 \;, \\ \vec{f}_1 + \vec{f}_2 + \dots + \vec{f}_n &= 0 \; \Rightarrow \; \sum_{i=1}^{i=n} f_i &= 0 \;. \end{split}$$

3. Теорема о кинетической энергии

Кинетическая энергия - энергия, которой обладает тело вследствие движения.

$$F = ma = m\frac{dv}{dt}$$
, $A = \int Fds$, $ds = vdt$, $A = \int_{v_1}^{v_2} mvdv$, $A = \frac{mv_2^2}{2} - \frac{mv_1^2}{2}$,

Задание 2.

Автоматическое создание оглавления.

Для заголовков «Виды сил в природе», «Второй закон Ньютона» и «Теорема о кинетической энергии» установить стиль «Заголовок первого уровня». Для заголовков «Силовые поля» и «Вычисление моментов инерции» установить стиль «Заголовок второго уровня».

Перейти в начало документа, набрать слово «Содержание», расположить его по центру, размер шрифта 16 пт, Arial, полужирный. Создайте автоматическое оглавление: вкладка Ссылки \rightarrow Оглавление. Настройте вид оглавления.

Задание 3.

Создайте свое резюме по одному из шаблонов из коллекции MS Word (в отдельном файле).

Файл — Создать — выбираем шаблон резюме и заполняем своими сведениями. Выполненное задание вставить в файл отчета по лабораторной работе на отдельной странице (отделите от остального документа разрывом раздела!).

Контрольные вопросы

- 1. Как добавить панели инструментов или отдельные команды на ленту?
- 2. Как вставить в текст символы, которых нет на клавиатуре? Например, длинное тире —, параграф §, знак авторского права©.
- 3. Что такое «неразрывный пробел»? как поставить, для чего используют?
- 4. Как пронумеровать страницы начиная со второй? (т.е. первая страница без номера)
- 5. Что такое «параметры страницы»? (перечислить) На какой вкладке они находятся?
- 6. Как изменить стандартный стиль? Например, сделать стиль «Заголовок1» зеленого цвета, начертание курсив.

Требования к оформлению отчета

Отчет предоставляется в электронном виде.

Отчет должен содержать:

- титульный лист
- название и цель работы
- выполненные задания;
- ответы на контрольные вопросы (письменно, кратко!).