FAO ESS trade processing system

Marco Garieri

Christian A. Mongeau Ospina Food and Agriculture Organization of the United Nations

15 June 2020

Abstract

This document describes the steps carried out by the Economic and Social Development Department for the processing of agricultural trade.

Contents

1	Inti	roduction	2
2	Rav	w data processing	9
	2.1	Data harvesting	;
	2.2	Raw data: SWS datatables vs. RDS files	6
	2.3	"Pre-Processing Report" plugin	6
3	Bila	ateral trade processing	10
	3.1	"Complete Trade Flow CPC" plugin (bilateral transactions)	10
	3.2	Flags management	23
	3.3	Conversion to FAO SWS standards	25
	3.4	Use of validation corrections	26
	3.5	Remove non-existent transactions	26
	3.6	"Total Trade CPC" plugin (totals by reporter)	26
4	Dat	a validation	27
	4.1	Tradeoutliers_most_recent_version plugin	28
	4.2	trade_data_last_check plugin	29
	4.3	top_commodities_selection_routine plugin	30
	4.4	monetary_values_ranked_commodities plugin	31
	4.5	Creating_Tables_Total_Trade plugin	32
	4.6	Interactive tool for data validation (Shiny tool)	32

5	Wo	Workflow								
	5.1	Flow chart	45							
	5.2	Plugin flow	47							
6	Fut	ure work	50							
	6.1	Streamline raw data updates	50							
	6.2	Outlier identification/imputation at the bilateral level	51							
	6.3	CIF/FOB	51							
	6.4	Self trade analysis	51							
	6.5	Mapping from HS to FCL/CPC	54							
	6.6	Mapping from Comtrade M49 and Geonomen clature directly to M49 \ldots	54							
	6.7	Food-aid	54							
	6.8	Other tasks	54							
\mathbf{A}	ppen	dix: Statistical Working System	54							
	6.9	Datasets and datatables	55							
	6.10	R server	74							
	6.11	Specific plugins-related information	74							
$\mathbf{A}_{]}$	ppen	dix: Accessing/updating files in the R shared drive	76							
$\mathbf{A}_{]}$	ppen	dix: Trade plugins log mechanism	77							
D	isclai	mer	77							

1 Introduction

The trade processing system of the Economic and Social Development Department (ESS) of the Food and Agriculture Organization of the United Nations (FAO) involves two main steps: raw data treatment and data validation.

Raw data treatment includes all operations required to save trade data in FAO-specific datasets with predefined structures, from bilateral raw data. These operations can be roughly summarised as: data harvesting, data content assessment, countries and items codes conversions/aggregation, standardisation of units of measurement, calculation of unit values, imputation of reporter's missing or incomplete quantities, imputation of data for missing countries through "mirroring". At the end of these operations, bilateral and total trade data is saved to FAO's Statistical Working System (SWS)¹ datasets.

¹The appendix "Statistical Working System" gives background information on what the SWS is and how trade-related information is organised therein. For now, it is sufficient to say that the "Statistical Working System is a corporate platform used in FAO for the processing and storage of statistical datasets, providing the framework needed to use the same methods, standards, classifications and approaches within statistical processes." http://www.fao.org/economic/ess/ess-home/ess-about/statistical-methods/en/

Two R² routines (called also plugins)³ deal with this first phase: "Complete Trade Flow CPC" and "Total Trade CPC". The former deals with raw bilateral data, applies the operations mentioned before, and saves data to the Bilateral Trade Flow (CPC) SWS dataset; the latter takes as input the data obtained as output from the "Complete Trade Flow CPC" plugin, aggregate all bilateral partner data for each combination of reporter/flow/item, calculates the aggregated unit values, and saves data to the Bilateral Trade Flow (CPC) SWS dataset.

When data have been processed and saved to the datasets, data validation by ESS analysts takes place. This is done by means of complimentary tools that detect outliers or other type of data that deserves verification, and allows analysts to correct flows in an informed way by means of an interactive validation tool.

In this document, an overall narrative of what the various components do is presented. A detailed (and more technical) step-by-step illustration of the modules/tools is given in separate documents.

2 Raw data processing

The sources of bilateral raw data are the United Nations Statistics Division (UNSD) for non-European countries, and Eurostat for European countries. In order for these two data sources to be combined and saved into a single SWS dataset they need to pass trough different processing steps, which will be explained in this section.

2.1 Data harvesting

TODO: HERE A DESCRIPTION OF THE WORKFLOW FOLLOWED BY FRANO WILL BE PRESENT, WITH A DESCRIPTION OF THE SHINY TOOL FRANO SAID IS AVAILABLE FOR DOING THE HARVESTING.

Data of relevance for ESS trade falls under the following "Harmonized System" (HS)⁴ chapters⁵:

²"R is a language and environment for statistical computing and graphics." https://www.r-project.org/

³The computational part of the SWS is composed of a series of "plugins", which are R scripts that are run on the R server available in SWS. These plugins take as input data available as SWS datasets/datatables, carry out statistical procedures based on these data and parameters, then save processed data back to SWS datasets/datatables (though some plugins' scope is not saving data, but computing some analysis that is sent back to the user by email). More information of hwo the SWS works is given in the appendix "Statistical Working System".

^{4&}quot;The Harmonized Commodity Description and Coding System generally referred to as "Harmonized System" or simply "HS" is a multipurpose international product nomenclature developed by the World Customs Organization (WCO). It comprises about 5,000 commodity groups; each identified by a six digit code, arranged in a legal and logical structure and is supported by well-defined rules to achieve uniform classification. The system is used by more than 200 countries and economies as a basis for their Customs tariffs and for the collection of international trade statistics. Over 98 % of the merchandise in international trade is classified in terms of the HS." http://www.wcoomd.org/en/topics/nomenclature/overview/what-is-the-harmonized-system.aspx

^{5&}quot;The HS comprises approximately 5,300 article/product descriptions that appear as headings and subheadings, arranged in 99 chapters, grouped in 21 sections. The six digits can be broken down into three parts. The first two digits (HS-2) identify the chapter the goods are classified in, e.g. 09 = Coffee, Tea, Maté and Spices. The next two digits (HS-4) identify groupings within that chapter, e.g. 09.02 = Tea, whether or not flavoured. The next two digits (HS-6) are even more specific, e.g. 09.02.10 Green tea (not fermented)... Up to the HS-6 digit level, all countries classify products in the same way (a few exceptions exist where some countries apply old versions of the HS)." https://unstats.un.org/unsd/tradekb/Knowledgebase/50018/Harmonized-Commodity-Description-and-Coding-Systems-HS

Meat and edible meat offal Fish and crustaceans, molluscs and other aquatic invertebrates Dairy produce; birds' eggs; natural honey; edible products of animal origin, not elsewhere specified or included Animal originated products; not elsewhere specified or included Trees and other plants, live; bulbs, roots and the like; cut flowers and ornamental foliage Vegetables and certain roots and tubers; edible Fruit and nuts, edible; peel of citrus fruit or melons Coffee, tea, mate and spices Cereals Products of the milling industry; malt, starches, inulin, wheat gluten	chapter	description
Fish and crustaceans, molluscs and other aquatic invertebrates Dairy produce; birds' eggs; natural honey; edible products of animal origin, not elsewhere specified or included Animal originated products; not elsewhere specified or included Trees and other plants, live; bulbs, roots and the like; cut flowers and ornamental foliage Vegetables and certain roots and tubers; edible Fruit and nuts, edible; peel of citrus fruit or melons Coffee, tea, mate and spices Cereals Products of the milling industry; malt, starches, inulin, wheat gluten		Animals; live
Dairy produce; birds' eggs; natural honey; edible products of animal origin, not elsewhere specified or included Animal originated products; not elsewhere specified or included Trees and other plants, live; bulbs, roots and the like; cut flowers and ornamental foliage Vegetables and certain roots and tubers; edible Fruit and nuts, edible; peel of citrus fruit or melons Coffee, tea, mate and spices Cereals Products of the milling industry; malt, starches, inulin, wheat gluten		
Animal originated products; not elsewhere specified or included Trees and other plants, live; bulbs, roots and the like; cut flowers and ornamental foliage Vegetables and certain roots and tubers; edible Fruit and nuts, edible; peel of citrus fruit or melons Coffee, tea, mate and spices Cereals Products of the milling industry; malt, starches, inulin, wheat gluten		
Trees and other plants, live; bulbs, roots and the like; cut flowers and ornamental foliage Vegetables and certain roots and tubers; edible Fruit and nuts, edible; peel of citrus fruit or melons Coffee, tea, mate and spices Cereals Products of the milling industry; malt, starches, inulin, wheat gluten		
Vegetables and certain roots and tubers; edible Rruit and nuts, edible; peel of citrus fruit or melons Coffee, tea, mate and spices Cereals Products of the milling industry; malt, starches, inulin, wheat gluten		
08 Fruit and nuts, edible; peel of citrus fruit or melons 09 Coffee, tea, mate and spices 10 Cereals 11 Products of the milling industry; malt, starches, inulin, wheat gluten		
09 Coffee, tea, mate and spices 10 Cereals 11 Products of the milling industry; malt, starches, inulin, wheat gluten		
10 Cereals 11 Products of the milling industry; malt, starches, inulin, wheat gluten		
Products of the milling industry; malt, starches, inulin, wheat gluten		Coffee, tea, mate and spices
19 Oil code and clearingue fruite: miscellaneous grains seeds and fruit industrial or medicinal plants: straw and		
	12	Oil seeds and oleaginous fruits; miscellaneous grains, seeds and fruit, industrial or medicinal plants; straw and fo
13 Lac; gums, resins and other vegetable saps and extracts		1 0 1
14 Vegetable plaiting materials; vegetable products not elsewhere specified or included		
		Animal or vegetable fats and oils and their cleavage products; prepared animal fats; animal or vegetable waxes
Meat, fish or crustaceans, molluscs or other aquatic invertebrates; preparations thereof		
17 Sugars and sugar confectionery		
18 Cocoa and cocoa preparations		
Preparations of cereals, flour, starch or milk; pastrycooks' products		Preparations of cereals, flour, starch or milk; pastrycooks' products
Preparations of vegetables, fruit, nuts or other parts of plants		Preparations of vegetables, fruit, nuts or other parts of plants
21 Miscellaneous edible preparations		
Beverages, spirits and vinegar		
Food industries, residues and wastes thereof; prepared animal fodder		
Tobacco and manufactured tobacco substitutes		
Essential oils and resinoids; perfumery, cosmetic or toilet preparations		
35 Albuminoidal substances; modified starches; glues; enzymes		, , , ,
38 Chemical products n.e.s.		•
40 Rubber and articles thereof		
Raw hides and skins (other than furskins) and leather		/
43 Furskins and artificial fur; manufactures thereof		
50 Silk		
Wool, fine or coarse animal hair; horsehair yarn and woven fabric		·
52 Cotton		
Vegetable textile fibres; paper yarn and woven fabrics of paper yarn	53	Vegetable textile fibres; paper yarn and woven fabrics of paper yarn

In Table 1, an example of filtered UNSD data is shown (variable names have been modified). It contains information on the reporter, partner, flow (1 = imports; 2 = exports; 3 = re-exports; 4 = re-imports), HS codes (variable length), monetary value (in USD dollars), weight (in kilograms), supplementary quantity, the unit in which the supplementary quantity is given (qunit, e.g., 8 = kilograms, 7 = liters), and the chapter.

In Table 2, an example on filtered Eurostat data is reported (also in this case, the original variable names were modified). The main differences are: reporter and partner codes are "geonomenclature" codes (in UNSD they are "M49"); the HS length is maximum 8-digits; monetary values are in thousands of euros; weight is reported in tonnes; the supplementary quantity is always commodity specific (in Tariff line data it can happen that the same HS code is reported in different units).

Besides filtering by chapters, only some HS codes inside the chapters are considered. These codes are given in the hs6faointerest datatable, of which Table 3 shows a subset of ten codes.

For both UNSD and Eurostat data, codes that contain non-numeric characters are dropped.⁶ An example of this can be seen in the Eurostat table showed before (Table 2), which contains the 10MM000 code. The only information of the transaction reported with that code is that it corresponds to some cereal (chapter 10 is

⁶Alphanumeric codes (i.e., codes that have non-numeric characters) happen mainly because a country does not want to disclose the full information of a given transaction (or set of transactions).

Table 1: Subset of Tariff line data

year	reporter	partner	flow	hs	value	weight	qty	qunit	chapter
2014	12	699	1	38089119	109821.79	7160.22	7160.22	5	38
2014	600	380	2	08140000000	24456.00	15870.00	15870.00	8	08
2014	398	276	1	400259	532.12	0.20	0.20	8	40
2014	703	616	1	05119910	39.83	6.00	6.00	8	05
2014	251	76	1	20081912	1933.60	148.00	148.00	8	20
2014	702	156	1	382311	117527.41	60000.00	60000.00	8	38
2014	203	682	1	100620	143.00	20.00	NA	1	10
2014	344	840	3	16055900	17245.07	907.00	907.00	8	16
2014	48	682	1	19059093	753403.97	368416.00	368416.00	8	19
2014	616	428	1	401693	362.00	20.00	20.00	8	40
2014	384	466	2	19021900	901389.92	1238270.00	1238270.00	8	19
2014	764	152	2	400942	108.10	NA	NA	1	40
2014	414	380	1	38089990	574.72	2.00	2.00	8	38
2014	158	324	2	19059090006	462.59	103.00	103.00	8	19
2014	690	784	1	18069090	1210.97	28.80	15.00	5	18

Table 2: Subset of Eurostat data

			0	1	1	. 1 .	
year	reporter	partner	flow	hs	value	weight	qty
201452	003	0346	2	18069060	6.88	2.2	NA
201452	008	0001	2	40119200	26.65	14.8	1225
201452	068	0005	2	10MMM000	42.17	0.0	NA
201452	005	0006	2	52053400	0.11	0.0	NA
201452	006	0647	2	52085100	1361.25	17.7	180134
201452	017	0004	2	09096100	7.45	1.2	NA
201452	001	0011	2	02042300	4.76	0.6	NA
201452	060	0032	2	19049080	17.55	3.1	NA
201452	008	0032	2	02031955	1947.23	438.4	NA
201452	017	0212	2	33051000	282.50	11.4	NA
201452	001	0690	2	03061410	9.05	0.3	NA
201452	008	0001	1	35030080	1002.17	7.4	NA
201452	018	0006	1	52094300	0.33	0.0	93
201452	017	0604	2	22011019	0.09	0.1	70
201452	006	0091	2	38089110	1.71	1.6	NA

Table 3: HS-6 codes of interest

$hs6_code$	
180520	
020576	
090838	
110243	
150379	
530211	
020892	
210546	
010525	
510425	

"Cereals"). Besides that, it is difficult, or even impossible, to assign it to a specific cereal type (e.g., wheat or barley, which are recorded as 100110 and 100300, respectively). Thus, given the difficulty in assigning codes with non-numeric characters to detailed items, and given that these cases are relatively marginal, the codes are removed from the raw data and no attempt at assigning them is done.

So far, the discussion has evolved by mentioning only the HS system as the standard coding for items, but the raw data obtained by UNSD/Eurostat does not come (usually) in standard HS codes. Indeed, UNSD data comes as Tariffline, i.e., HS codes that may (and usually do) extend to more than 6 digits, usually 8, 10, 12. These codes are not directly comparable across countries, as each country may have a description for such codes that is relatively different from that of other countries. As for Eurostat data, it comes with "Combined Nomenclature" (CN) codes at 8 digits (CN8), which are EU extensions of HS codes⁷.

For Eurostat data, only stat_regime equal to 4 is kept⁸:

In this system ["Statistical regime 4" or "Total trade"], the recorded aggregates include all goods entering or leaving the economic territory of a country with the exception of simple transit trade. In particular, all goods received into customs warehouses are recorded as imports, regardless of whether they subsequently go into free circulation in the Member State of receipt. Similarly, outgoing goods from customs warehouses are included in the general trade aggregates, at the time they leave the Member State.

2.2 Raw data: SWS datatables vs. RDS files

As seen above, raw UNSD and Eurostat data are saved into SWS datatables. All plugins, including then the "Complete Trade Flow CPC" and "Total Trade CPC" plugins, read raw data stored directly in the SWS database. This, however, for large amount of data as the trade raw data (which generally contain more than 15 million rows) turns out to be a time-expensive process. For instance, the process of getting the raw UNSD and Eurostat data takes by itself around 40 minutes. In order to overcome this issue, the "Complete Trade Flow CPC" is designed to use RDS files stored in the SWS "R shared drive" Reading these files takes less than 2 minutes, so the benefits in terms of saving reading (and, thus, overall time employed by the plugin to complete) time is evident.

A more detailed information on how to access the raw data files stored in the R shared drive, and how to updated them, will be given in "Accessing/updating files in the R shared drive" Appendix.

2.3 "Pre-Processing Report" plugin

Data content assessment is carried out by means of different tables (pre-processing tables) compiled from raw data, which give a first idea of the completeness and quality of the data. For instance, if in a given year transactions of a country are 70% less than those reported the previous year, it may indicate that the country file is incomplete¹¹ so that it can be decided to treat the country as a non-reporter (so that mirroring will be used for imputing all its transactions in that year) until its data is more complete.¹²

⁷https://trade.ec.europa.eu/tradehelp/eu-product-classification-system

⁸See pag. 9 in DG Trade Statistical Guide, June 2016, http://trade.ec.europa.eu/doclib/docs/2013/may/tradoc_151348.pdf
⁹RDS is a file format used to read/write serialized data in R.

 $^{^{10}}$ The "R shared drive" is a folder in the SWS server where R plugins can write and read data to/from, and can be accessed also by local PCs in the FAO network by means of a Samba service.

¹¹Given the country reports at the same number of HS digits. Reports also contain this information.

¹²This is the final decision if no other option in available. What happens when analysis on the raw data content is carried out and some country data seems incomplete is that the data providers are contacted by an FAO officer who will require additional details or other useful information that can help understanding what is the source for such incompleteness. For instance, while it can well be that a country has reported a number of transaction in line with previous years, it may happen that for a large amount of them do not contain any information on quantity. In this case the provider is contacted so to understand whether the country actually reported the data like that, or there was some other issue that made the quantity information unavailable.

In order to run this plugin, one of the datatables indicated below (found in the "trade-reports" domain) need to be selected, then the user will need to click on the button shown in the Figure below, select "Run plugin...", and select "Pre-Processing Report" in the popup window that will open.

All tables report the "m49" column, indicating the M49 code assigned to the country as it wilkl be saved in SWS, and a "code" column containing the original code assigned by the country either by UNSD (M49-comtrade) or Eurostat (geonom).

2.3.1 "Reporters by years"

This table reporter whether the country is available in the raw data file as a reporter, and it is indicated with an "X" in the specific country/year combination.

In the Figure above, for instance, Myanmar is among reporter countries in 2001 and 2010, while in the other years it is not a reporter.

2.3.2 "Non-reporting countries"

A country can be non reporter because it did not report any flow, or because it did not report imports or exports. Scope of this table is showing this information. Countries that did not report imports and exports are marked with a "9", while those that did not report imports or exports are marked with a "1" or "2", respectively.

In the example shown in the Figure, Cabo Verde was a complete non-reporter in 2001 and 2002, while it reported only imports in 2008 (a "2" indicated that exports are missing).

2.3.3 "Number records by reporter/year"

This table contains by country/year/flow, the minimum and maximum number of HS digits reported by the country (hs_min and hs_max; the number of different HS digits is shown by the hs_n variable), whether there has been a difference in this two variables with respect to the previous year (hs_min_diff and hs_max_diff), the number of records (records_count) and the percentage variation of record counts with respect to the previous year (records_diff).

In the Figure above, it is possible to see that Barbados reported 1,022 export transactions at the HS 8-digit level in 2001, while it reported 1,029 transactions in 2002 (an increase of 0.685%, as indicated by the records_diff variable), which are either at the 6- and 7-digit level.

2.3.4 "Import and export content check"

This table shows by country/year whether the country reported import/exports (and eventually re-imports and re-exports) and indicates it with an "X".

Except Myanmar, in the previous Figure all countries reported imports and exports (Myanmar reported only imports); Sri Lanka also reported re-exports.

2.3.5 "Check qty and value included"

This reports shows whether information is missing for quantity or value by country/flow. If the information is missing, this is indicated with a "1".

**NOTE: THIS NEED TO BE CHANGED, SO TO DO IT AS IN OTHER TABLES WHERE BINARY INFORMATION IS GIVEN WITH X/BLANK INSTEAD OF 1/0.

2.3.6 "Missing data by report"

This table contains information of missing or zero quantities by reporter and year. This information is encoded as $noqty_F$ and $noqty_prop_F$, where F is the flow (import, export, re-import, re-export). The former indicates how many observations are either missing or zero, and the latter is the proportion of the former to the total number of observations.

In the example below, Sri Lanka had 735 quantity observations which were either missing or zero, and the proportion of these to all of Sri Lanka's exports was 8.72%.

3 Bilateral trade processing

After raw data have been harvested from UNSD/Eurostat, and after a decision on data completeness and quality has been achieved, bilateral raw data can be processed with the "Complete Trade Flow CPC" plugin. When this completes, its output is saved to the "Bilateral Trade Flow (CPC)" dataset, were bilateral transactions are saved by year as unique combinations of reporter and partner M49 codes, CPC item codes, SWS element codes that represent the flow and the type of variable (e.g., 5622 indicates imports in 1,000 US dollar, while 5910 indicates exports in metric tons). Once bilateral transactions are stored on SWS, these are aggregated by summing all partners for each reporter/item/element/year combinations by the "Total Trade CPC" plugin and saved into the "Total Trade (CPC)" SWS dataset.

This Section contains a description of the operations carried out by the "Complete Trade Flow CPC" and "Total Trade CPC" plugins, devoting more space to the former as it is the main plugin (the latter being basically an aggregation plugin).

3.1 "Complete Trade Flow CPC" plugin (bilateral transactions)

The "Complete Trade Flow CPC" plugin (SWS id: 5636) takes as input the raw UNSD and Eurostat data and saves bilateral transactions for reporters and partners expressed in M49 codes, items expressed in CPC codes, and elements in SWS-specific element codes, in the "Bilateral Trade Flow (CPC)" SWS dataset. In between, the plugin carries out several operations. These are explained below.

3.1.1 Aggregation of UNSD Tariff line shipments

The tariffline data from UNSD contains multiple rows with identical reporter/partner/commodity/flow/year/qunit combinations. See, e.g., the data reported in Table 4, where for the same year/reporter/partner/flow/qunit there are 15 recorded transactions involving the the item with code 22071090.

Table 4: Example of multiple transactions by 'reporter' / 'partner' / 'flow' / 'year' / 'hs'

2014 508 710 1 22071090 99570 NA 126000 7 2014 508 710 1 22071090 126530 NA 168000 7 2014 508 710 1 22071090 87950 NA 77141 7 2014 508 710 1 22071090 194740 NA 190719 7 2014 508 710 1 22071090 69580 116332 116261 7 2014 508 710 1 22071090 1050 NA 2871 7 2014 508 710 1 22071090 109770 NA 126000 7 2014 508 710 1 22071090 30050 NA 40000 7 2014 508 710 1 22071090 147840 NA 210000 7 2014 508 710 1 22071090 <th></th>										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	year	reporter	partner	flow	hs	value	weight	qty	qunit	chapter
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2014	508	710	1	22071090	99570	NA	126000	7	22
2014 508 710 1 22071090 194740 NA 190719 7 2014 508 710 1 22071090 69580 116332 116261 7 2014 508 710 1 22071090 1050 NA 2871 7 2014 508 710 1 22071090 109770 NA 126000 7 2014 508 710 1 22071090 30050 NA 40000 7 2014 508 710 1 22071090 147840 NA 210000 7 2014 508 710 1 22071090 252100 NA 230538 7 2014 508 710 1 22071090 300 500 23 7 2014 508 710 1 22071090 28690 NA 40000 7 2014 508 710 1 22071090	2014	508	710	1	22071090	126530	NA	168000	7	22
2014 508 710 1 22071090 69580 116332 116261 7 2014 508 710 1 22071090 1050 NA 2871 7 2014 508 710 1 22071090 109770 NA 126000 7 2014 508 710 1 22071090 30050 NA 40000 7 2014 508 710 1 22071090 147840 NA 210000 7 2014 508 710 1 22071090 252100 NA 230538 7 2014 508 710 1 22071090 300 500 23 7 2014 508 710 1 22071090 28690 NA 40000 7 2014 508 710 1 22071090 36360 37847 42020 7 2014 508 710 1 22071090	2014	508	710	1	22071090	87950	NA	77141	7	22
2014 508 710 1 22071090 1050 NA 2871 7 2014 508 710 1 22071090 109770 NA 126000 7 2014 508 710 1 22071090 30050 NA 40000 7 2014 508 710 1 22071090 147840 NA 210000 7 2014 508 710 1 22071090 252100 NA 230538 7 2014 508 710 1 22071090 300 500 23 7 2014 508 710 1 22071090 28690 NA 40000 7 2014 508 710 1 22071090 36360 37847 42020 7 2014 508 710 1 22071090 2240 3197 2500 7	2014	508	710	1	22071090	194740	NA	190719	7	22
2014 508 710 1 22071090 109770 NA 126000 7 2014 508 710 1 22071090 30050 NA 40000 7 2014 508 710 1 22071090 147840 NA 210000 7 2014 508 710 1 22071090 252100 NA 230538 7 2014 508 710 1 22071090 300 500 23 7 2014 508 710 1 22071090 28690 NA 40000 7 2014 508 710 1 22071090 36360 37847 42020 7 2014 508 710 1 22071090 2240 3197 2500 7	2014	508	710	1	22071090	69580	116332	116261	7	22
2014 508 710 1 22071090 30050 NA 40000 7 2014 508 710 1 22071090 147840 NA 210000 7 2014 508 710 1 22071090 252100 NA 230538 7 2014 508 710 1 22071090 300 500 23 7 2014 508 710 1 22071090 28690 NA 40000 7 2014 508 710 1 22071090 36360 37847 42020 7 2014 508 710 1 22071090 2240 3197 2500 7	2014	508	710	1	22071090	1050	NA	2871	7	22
2014 508 710 1 22071090 147840 NA 210000 7 2014 508 710 1 22071090 252100 NA 230538 7 2014 508 710 1 22071090 300 500 23 7 2014 508 710 1 22071090 28690 NA 40000 7 2014 508 710 1 22071090 36360 37847 42020 7 2014 508 710 1 22071090 2240 3197 2500 7	2014	508	710	1	22071090	109770	NA	126000	7	22
2014 508 710 1 22071090 252100 NA 230538 7 2014 508 710 1 22071090 300 500 23 7 2014 508 710 1 22071090 28690 NA 40000 7 2014 508 710 1 22071090 36360 37847 42020 7 2014 508 710 1 22071090 2240 3197 2500 7	2014	508	710	1	22071090	30050	NA	40000	7	22
2014 508 710 1 22071090 300 500 23 7 2014 508 710 1 22071090 28690 NA 40000 7 2014 508 710 1 22071090 36360 37847 42020 7 2014 508 710 1 22071090 2240 3197 2500 7	2014	508	710	1	22071090	147840	NA	210000	7	22
2014 508 710 1 22071090 28690 NA 40000 7 2014 508 710 1 22071090 36360 37847 42020 7 2014 508 710 1 22071090 2240 3197 2500 7	2014	508	710	1	22071090	252100	NA	230538	7	22
2014 508 710 1 22071090 36360 37847 42020 7 2014 508 710 1 22071090 2240 3197 2500 7	2014	508	710	1	22071090	300	500	23	7	22
2014 508 710 1 22071090 2240 3197 2500 7	2014	508	710	1	22071090	28690	NA	40000	7	22
	2014	508	710	1	22071090	36360	37847	42020	7	22
2014 508 710 1 22071090 75540 101700 126000 7	2014	508	710	1	22071090	2240	3197	2500	7	22
2011 000 110 1 22011000 100100 120000 1	2014	508	710	1	22071090	75540	101700	126000	7	22

Table 5: Results of the aggregation of multiple transactions

year	reporter	partner	flow	hs	qunit	value	weight	qty	nrows
2014	508	710	1	22071090	7	184020	259576	286804	5
2014	508	710	1	22071090	7	1078290	NA	1211269	10

Multiple transactions can be aggregated, taking into account that transactions with missing weight and/or quantity can be aggregated with other transactions that have the same variables missing.

The results of the aggregation of the example reported in Table 4 are shown in the Table 5. In this case, even if there is a unique combination of reporter/partner/flow/year/hs, the rows are two: indeed, one reports the aggregated transactions where the weight variable was available, and the other reports the aggregated cases where it was missing.

3.1.2 Mapping UNSD Tariff line and Eurostat data

At this stage a standardization/mapping step is performed. The details are divided between UNSD Tariff line and Eurostat due to the nature of the differences among the two datasets.

3.1.2.1 UNSD Tariff line

- 1. UNSD Tariff line data reports area code with Tariff line M49 standard codes (which are different from official M49). The area code is converted in FAO country code using a specific conversion table provided by Team ENV. The table is contained in the faoswsTrade package as faoswsTrade:m49faomap. Table 6 contains a subset of it.
- 2. Countries that are not supposed to exist in the year for which the module runs are removed from the data (e.g., Serbia did not exist as a single official country before 2006). The information is retrieved from the geographicAreaM49Reporter SWS codelist. Table 7 contains some examples.
- 3. European countries (as reporters) are removed, as Eurostat, which contains this information, data will be used.

Table 6: Subset of the M49 to FAO codes mapping table

m49	fao
72	20
278	79
270	75
530	151
352	99
50	16
230	62
434	124
175	270
839	252

Table 7: Subset of the tables with countries and their 'start Date' and 'endDate'

			I .		150
code	description	selectionOnly	type	startDate	endDate
272	Serbia, Republic of	FALSE	country	2006-01-01	2999-12-31
183	Romania	FALSE	country	1900-01-01	2999-12-31
178	Eritrea	FALSE	country	1993-01-01	2999-12-31
40	Chile	FALSE	country	1900-01-01	2999-12-31
194	Saudi Arabia	FALSE	country	1900-01-01	2999-12-31
190	Saint Pierre & Miquelon	FALSE	country	1900-01-01	2999-12-31
252	Unspecified	FALSE	country	1900-01-01	2999-12-31
195	Senegal	FALSE	country	1900-01-01	2999-12-31
208	Tajikistan	FALSE	country	1992-01-01	2999-12-31
212	Syrian Arab Republic	FALSE	country	1900-01-01	2999-12-31
64	Faeroe Islands	FALSE	country	1900-01-01	2999-12-31
31	Bouvet Island	FALSE	country	1900-01-01	2999-12-31
211	Switzerland	FALSE	country	1900-01-01	2999-12-31
167	Czechia	FALSE	country	1993-01-01	2999-12-31
157	Nicaragua	FALSE	country	1900-01-01	2999-12-31

Table 8: Example of unmapped countries

m49	fao
270	75
280	79
716	181
634	179
471	252
51	1

- 4. Area codes that do not mapp to any FAO country code are removed and will be mirrored in a later step. All countries mapping to code 252 (which corresponds to undefined areas) are mapped to the 896 M49 code ("Other nei"). Table 8 show some examples.
- 5. The flow codes of re-Import (code 4) are recoded into Import (code 1) and codes of re-Export (code 3) to Export (code 2). This procedure is applied following UNSD standards:

Exports of a country can be distinguished as exports of domestic goods and exports of foreign goods. The second class is generally referred to as re-exports. The exports shown in our database contain both the exports of domestic and foreign goods. Re-exports are exports of foreign goods in the same state as previously imported; they are to be included in the country exports. It is recommended that they be recorded separately for analytical purposes. This may require the use of supplementary sources of information in order to determine the origin of re-exports, i.e., to determine that the goods in question are indeed re-exports rather than the export of goods that have acquired domestic origin through processing. Re-imports are goods imported in the same state as previously exported. They are included in the country imports. It is recommended that they be recorded separately for analytical purposes. This may require the use of supplementary sources of information in order to determine the origin of re-imports, i.e., to determine that the goods in question are indeed re-imports rather than the import of goods that have acquired foreign origin through processing. There are several reasons why an exported good might return to the country of origin. The exported good might be defective, the importer might have defaulted on payments or cancelled the order, the authorities might have imposed an import barrier, or demand or prices in the country of origin might have made it worthwhile to bring the good back.

See: http://unstats.un.org/unsd/tradekb/Knowledgebase/Reexports-and-Reimports

- 6. HS codes are converted in FCL (FAO Commodity List) codes. More information on the HS-FCL-CPC mapping will be given below.
- 7. Information of the FCL units is added, i.e, to each FCL code its final unit of measurement is assigned.
- 8. Data conversion of units of measurements are applied to meet FAO standards, where all weights are reported in tonnes, animals in heads or 1000 heads and, for some commodities, just the value is provided. For example, if the originally-reported quantity is "units" and the FAO unit is "1000 heads", the quantity is divided by 1000. Some of these conversions, as the example just made, are simple mathematical conversions that involve multiplying by a fixed factor known a priori. Other conversions are less trivial and need to be obtained with information derived from within the data. This is handled in the next step
- 9. Non-livestock commodity specific conversions are added. If a quantity is originally expressed in "units", and weight is not available, a conversion factor for converting units into kilograms is required. In order to obtain these conversion factors, all transactions with non-standard quantities that have also the weight available are used to obtain "empirical conversion factors": weight are divided by quantity and the median by measurement of unit of this ratio is obtained:

Table 9: Subset of FCL units

fcl	fclunit
1096	heads
1068	1000 heads
521	mt
1083	1000 heads
1150	heads
44	mt
840	mt
1098	mt
1181	number
1126	heads

$$qw_u = \text{median}(\text{weight/quantity}_u)$$

where u is a given non-standard unit of measurement. This factor (qw_u) is the applied to all correspondent transactions that have no weight but are reported in unit u:

weight = quantity_u
$$\times qw_u$$

To make this clear an example could be useful: suppose that a country does not report the weight of eggs, but reports units, in this case, we compute the median of the weight/quantity/1000 ratio for all countries where both weight and quantity are reported and then apply this median in order to have an idea of how many tonnes the reported quantities of that country weighs.¹³ This procedure is not applied to livestock: in this case, a country/item specific datatable exists where weights of livestock are present (next step).

10. For livestock, the conversion from weight to final units (head/1,000 heads) where the reported unit is either missing or different from the final unit, is made by dividing the reported (or imputed as per previous steps) the weight by an average livestock weight by country and species. The table used has being compiled by both AGA division and by team CLFS, and is available in SWS as Livestock weights in the trade-reference-files domain. By calling these averages as aw, the final unit in heads/1,000 heads will be obtained as:

quantity =
$$\frac{\text{weight}}{aw}$$

3.1.2.2 Eurostat

1. Eurostat classifies areas in their "geonomenclature" coding system. These codes are converted in FAO country codes using a specific conversion table, stored in the SWS in the geonom2fao datatable of the trade-reference-files domain. Table 10 contains the geonomenclature-FAO code correspondence table for some countries.

Area codes not mapping to any FAO country code are reported and the records for these area codes are removed. All countries mapping to code 252 (which corresponds to undefined areas) are mapped to the 896 M49 code ("Other nei").

¹³Probably a weak point of this procedure is that not in all countries eggs weigh the same, thus a more realistic approach would be to compute regional medians (e.g., for Thailand use the Asian median of the weight/quantity ratio). The first-best approach, in any case, would be to have speficic tables derived from external sources. This is currently under investigation.

Table 10: Subset of geonom (Eurostat) to FAO codes mapping

code faostat active name 1 68 68 France 2 15 15 BelgLuxbg 3 150 150 Netherlands 4 79 79 Fr Germany 5 106 106 Italy				
2 15 15 BelgLuxbg 3 150 150 Netherlands 4 79 79 Fr Germany	code	faostat	active	name
3 150 150 Netherlands 4 79 79 Fr Germany	1	68	68	France
4 79 79 Fr Germany	2	15	15	BelgLuxbg
- 10 10 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	3	150	150	Netherlands
5 106 106 Italy	4	79	79	Fr Germany
	5	106	106	Italy
6 229 229 Utd. Kingdom	6	229	229	Utd. Kingdom
7 104 104 Ireland	7	104	104	Ireland
8 54 54 Denmark	8	54	54	Denmark
9 84 84 Greece	9	84	84	Greece
10 174 174 Portugal	10	174	174	Portugal

Table 11: EUR/USD exchange rates

eusd_exchangerate
1.25565
1.37064
1.47171
1.3928
1.32689
1.39141
1.28557
1.32816
1.32884
1.109625

- 2. CN8 codes are converted in FCL (FAO Commodity List) codes. This step is performed using the same HS to FCL mapping table as for UNSD Tariff line. More details will be given below.
- 3. Information of the FCL units is added. This step is straightforward since for Eurostat the units are for the vast majority the same as FAO units.
- 4. Some commodity specific conversions are needed as Eurostat reports the figures in a different unit with respect to FAO. With respect to UNSD data, this is only needed for few commodities, namely (codes are FLC): 1057 ("Chickens"), 1068 ("Ducks"), 1072 ("Geese"), 1079 ("Turkeys"), 1083 ("Pigeons Other Birds"), 1140 ("Rabbits"), 1181 ("Beehives").
- 5. Values are converted from EUR to USD using a table, stored in the SWS, with the official EUR/USD exchange rate for each year provided by the CLFS Team. The table is stored in the EUR/USD conversion SWS datatable of the trade-reference-files domain. Table 11 contains the exchange rates for some years.

3.1.2.3 HS-FCL-CPC code mapping

ESS has built a dataset for the conversion of country-specific HS codes to the FCL. Given that FCL-CPC conversions are, with rare exceptions, 1-to-1, once the HS codes are mapped to FCL they get converted to CPC, given that it is the classification system used in the trade datasets of the SWS.

An example of the HS-FCL is given in Table 12. In the table, area (i.e., reporters) codes are given in FAO area list codes. There are two set of ranges: one is for the HS codes (fromcode and tocode) the other one is for dates (startyear and endyear). To give a concrete example, in the first row of the table, the HS codes

Table 12: Subset of the HS to FCL mapping table

area	flow	fromcode	tocode	fcl	startyear	endyear
109	2	5301210000	5301219999	773	2007	2050
81	2	15159060	15159060	340	2000	2000
58	1	2009790000	2009790000	519	2003	2012
66	2	012355	012355	1069	2000	2001
134	2	0809401000	0809401000	536	2000	2003
17	2	04041004	04041004	900	2007	2008
165	1	11062039	11062039	150	2003	2050
119	2	220410	220410	564	2002	2003
131	1	071350	071350	181	2008	2050
181	2	19019091	19019091	115	2000	2050

between 5301210000 and 5301219999 for any year between 2007 and 2050 for exports (flow = 2) of reporter 109 (Jamaica) will be converted to FCL 773 ("Flax Fibre and Tow"). 14

Said dataset was built starting from the MDB files used in the previous system (known as *Shark/Jellyfish*) and is called "historical dataset" given that it was built during the years ESS received data directly by the countries (contrary to the current system, where data comes from both UNSD and Eurostat). It is available in the "HS to FCL mapping (v5)" datatable of the "trade-reference-files" domain. An example of the actual table is shown below.

The difference between the previous table and the one reported as example in Table 12 is that it contains some correction_X variables, where X is one of fcl, startyear, and endyear, and are used to correct previous mapping entries that were not correct. It also contains an identifier of the row (recordnumb) and some informative variables, as the country name (area_name), and some notes inserted after a correction was done (correction_date, correction_analyst, correction_note).

During trade processing, some HS-codes could not have been mapped because a specific correspondence has not been found in the "HS to FCL mapping (v5)" datatable. For these cases, an additional table was created

¹⁴The ranges do not necessarily need to contain multiple elements. For instance, many entries in the table show that fromcode and tocode, and/or startyear and endyear are the same.

Table 13: Subset of additions to the HS to FCL mapping table

year	reporter_fao	flow	hs	fcl	details
2002	33	1	3301230000	753	GTIS TL description
2014	219	1	7099100	0	NA
2015	107	1	80261	234	Generic HS2012 to FCL unique six-digit match
2015	146	2	80830901	0	NA
2014	299	1	110510	0	NA
2015	230	1	80261	0	NA
2014	68	2	3081100	0	FISHERY CODE: DROP
2014	299	1	190240	0	NA
2015	299	1	100199	0	NA
2014	7	1	2075200	1073	Standard_HS12
2014	230	2	20752	0	NA
2014	299	1	220600	517	Generic HS2012 to FCL (could also be mapped to 26,39)
2014	153	1	10085000	0	NA
2014	180	1	9011200	0	NA
2013	169	1	3083000000	0	FISHERY CODE: DROP

so to extend the main correspondence table for missing connections. This table is available as "HS to FCL mapping (v4)" on the "trade-reference-files" SWS domain. An example of this table is given in Table 13.

The previous two tables ("HS to FCL mapping (v4)" and "HS to FCL mapping (v5)"; the two combined will be called simply "HS to FCL mapping") are used as the basis of the current mapping mechanism, which is now done once new data arrives and is saved into year-specific "trademaps", available on SWS as ESS trademap YEAR datatables of the "trade-reference-files" domain, where YEAR is a specific year. Some entries of the 2014 ESS trademap 2014 datatable are reported below.

The table contains a Source variable that indicates how the correspondence was obtained. There are four cases:

- hsfclmap: this indicates that the mapping procedure found the specific HS code in the "HS to FCL mapping" table; for instance, by considering the examples reported in Table 12, supposing that Jamaica reports an export with HS 5301211020 in 2018, then it will be mapped to FCL 773, given that it falls in the ranges set by fromcode-tocode and startyear-endyear (first row of the table).
- standard: in cases where no direct connection can be established as hsfclmap, the mapping procedure extract the HS at 6-digits (HS6) from the specific HS code reported by the country and checks whether there is a 1-to-1 connection of that HS6 to an FCL in the "HS2012-6 digits Standard" SWS datatable of the "trade-reference-files" domain; if there is one, this get assigned to the specific HS code.
- auto HS6: when the HS code could not be mapped with neither the hsfclmap nor the standard method, then an empirical approach is used, i.e., all HS codes reported are cut at the 6-digits level, then the most common correspondence HS6-FCL is assigned.
- manual: It can happen that none of the previous methods were able to assign an FCL code to some HS codes, and these remain "unmapped"; an email containing these codes is sent to officers (subject is "Trade plugin: unmapped codes, year YEAR") and they will take care of map the codes themselves, or sent these to the country analysts.
- previous: this indicates that the correspondence has been copied from a previous trademap.

Each new trade validation round (involving a completely new year), will copy the previous year trademap and will assign previous to the Source variable. For instance, when year 2019 will be compiled (granted it is the first time it is), the map ESS trademap 2018 will be copied, all Souce codes will be made previous, and will be finally saved as ESS trademap 2019. It is usually the case that countries have new codes, so these

will be initially "unmapped". For those codes for which a conversion with any of the hsfclmap, standard, or auto HS6 is possible, the plugin will save the corresponding correspondencies, otherwise it will keep them unmapped. For this the manual intervention is required.

3.1.3 Unified official trade flows dataset

UNSD Tariff line and Eurostat datasets are ready to be merged together. Thus, the resulting table has all the countries worldwide.

3.1.4 Standardization, editing and outlier detection

3.1.4.1 Unit values computation

For each record having both quantity and value, the unit value (uv) is computed as follows:

$$uv = \frac{value}{quantity}$$

3.1.4.2 Missing quantities imputation

For records where the commodity has to be reported in quantity and the quantity is missing and the value is present, the corresponding quantity is imputed dividing the corresponding value by a median unit value:

$$quantity = \frac{value}{uv_{median}}$$

The median unit value (uv_{median}) is obtained in a specific-to-generic fashion (in all cases, the unit values are calculated separately for imports and exports). A first attempt is done by calculating unit values at the most specific HS level (i.e., the one at which the quantity is expressed). If the number of partners for which this unit value can be calculated is greater than a certain threshold (currently 10) the median unit value across partner is calculated and used for imputation. If the first attempt fails (i.e., it is not possible to calculate a unit value at the most specific HS level), then the same approach is used by taking into account more generic HS levels, in particular at eight and six digits, and the most generic level for which a sufficient number of partners (at least 10) is available is used for calculating the median unit value. Usually a suitable median can be calculated at the 8-digit level or, at least, at the 6-digit level. However, if the previous strategies fail (which implies that there is not a sufficient number of partners in order to calculate the median) two attempts at calculating a non reporter-specific median unit values (i.e., median unit values valid for all reporters) are sequentially undertaken: by HS and by FCL. In most cases it should be possible to calculate the median unit value by HS, thus that the FCL level is used as the strategy of last resort. Actually, for completeness sake, the very last fallback is the median unit value by flow. This is the most generic unit value that can be used for imputation and is calculated just for precaution, as it is very unlikely that an appropriate more specific median unit value can not be calculated.

In short, the first one of the following median unit values that can be calculated is used for imputation (import and export unit values are always calculated separately):

- 1. most specific HS code, across partners;
- 2. 8-digit HS level, across partners;
- 3. 6-digit HS level, across partners;
- 4. most specific HS code, across reporters/partners;
- 5. FCL code of the most specific HS code, across reporters/partners;
- 6. by flow (without taking into account any commodity code; this is very unlikely to be applied).

For how flags are assigned, please refer to Section "Flag management".

3.1.4.3 Re-imputation of flows Given the cross-section nature of the "Complete Trade Flow CPC" plugin, there can be cases where imputations of missing quantities are not of the same order of magnitude with respect to the time series of the country. For instace, if a country reports quantity data for 19 out of 20 partners, but the reported data was biased upwards by a factor of, say, 1,000, then when an imputation is done for the missing quantity partner, it will be also be biased by a factor of 1,000. In order to take this into account, a "re-imputation" is carried out for specific countries where imputations of low quality have been found during the validation process. The countries for which the re-imputation is carried out are listed in the "Reimpute unit values" SWS datatable of the "trade-reference-files" domain. An extract of this table is shown below.

The re-imputation process consists in temporary aggregating the bilateral flows so to obtain what the totals would be, then compute the total unit value and compare it with the previous years average. If the current unit value is greater than 150% of its average, then the current unit value is re-calculated by taking its previous value and applying a variation equal to the variation of the median unit value for all reporters (of the specific item and flow considered), and the quantity is re-calculated with the new unit value. More specifically, if

$$UV/UV_{nrev} > 1.5$$

where UV is the current unit value and UV_{prev} is the average of the unit value of the previous three years, then the plugin calculates

$$UV_{new} = UV_{prev} \times (1 + UVT_{var})$$

where UVT_{var} is the obtained as

$$UVT_{var} = \frac{\text{median}(UVT_t)}{\text{median}(UVT_{t-1})}$$

which represents the variation rate of the total unit value for all reporters for a specific item/flow. It is constrained to be included in the -50% and +50%, so to avoid using an outlying variation.

3.1.4.4 Outlier detection and imputation

In the current version of the module, **no automatic outlier imputation is carried out**. The reason is that by comparing the results of the module by correcting outliers and previous FAOSTAT data, the two different datasets presented remarkable differences. Indeed, it was found that the *uncorrected* data was on average more similar to previous FAOSTAT data. For this reason, **automatic** correction is not currently being used, relying on a semi-automatic (guided) correction workflow that is done through an external validation tool. The steps of the guided validation are the following:

Table 14: Protected flags

flagObservationStatus	flagMethod
Е	c
Е	f
Е	h
I	c
M	-
T	-
T	h
T	р
BLANK	-
BLANK	p
BLANK	q

- 1. a validation plugin for total trade is used that indicates which reporter / commodity / flow / year combination is likely to be an outlier. It computes various outlier detection routines on the data and assigns scores based on how many times a transaction has been found to be an outlier. This information is displayed on SWS by increasing levels of colouring that go from pale yellow to red, the last one being the one that indicates that a particular transaction has been found to be an outlier by all methods.
- 2. analysts select the series with outliers (by going from the most to the least severe cases) and use an interactive validation tool that allows to dig into the composition of total trade flows as it uses bilateral data. The tool displays the outliers, allows to use different methods for correcting them, and stores the correction that the analyst deemed required in a corrections dataset that is integrated into subsequent runs of the "Complete Trade Flow CPC" trade module. In order to have more information on this topic, please see the validation tool documentation.

When no statistical-based imputation seems appropriate, analysts can "force" some values (e.g., obtained by consulting external sources) by overwriting the values saved on SWS and using "protected" flags. When the modules are run, these protected figures will not be overwritten by any figure generated by the module. The list of protected flags is shown in the following table ("BLANK" stands for an empty flag).

The previous set of flags is a subset of the protected flags in faoswsFlag::flagValidTable. The difference is that as trade is concerned, the (BLANK, c), (BLANK, h), and (T, c) are flags actually given by the module, thus they should not be considered protected. See the "Flags management" Section to have more details on flags.

3.1.5 Mirroring

The module generates a list of non-reporting countries, i.e., those present as partners but missing as reporters. For these countries the mirroring routine is applied: the corresponding trade of the non-reporting countries are extracted from the partners, inverting the flows. The quantities are the same while the values are corrected by a factor of 12% due to the CIF/FOB (*Cost, Insurance and Freight / Free on Board*) conversion (i.e., original imports are divided by 1.12, while original exports are multiplied by 1.12).¹⁵

There is also another condition for which mirroring is applied: when a flow is completely missing for a country when it is a reporter. For instance, if in a given year Tanzania did not report any flow as export, but did so for imports, the mirroring procedure will be used for exports. While cases like this are relatively less frequent than those for which a country is a complete non-reporter, they do happen.

¹⁵CIF "rely on importers' declarations, and include all trade costs (except tariffs and domestic taxes after the border)", while FOB rely "on exporters' declarations, and does not include trade costs." http://www.cepii.fr/PDF_PUB/wp/2011/wp2011-10.pdf

The following table shows an example of the mirroring procedure. Country A is a non-reporter in 2018, so country B's exports will be used to impute country A's imports. First, the quantities will be copied as reported by country B (890); values from country B will be increased by the CIF/FOB margin of 12% (1,400 \times 1.12 = 1,568).

Country A			Cou	ntry B
imports			ex	ports
year	value	quantity	value	quantity
2016	1450	800	1250	800
2017	1550	950	1390	925
2018	1568	890	1400	890

Notice in the example, that in the years that both countries are reporter:

- Not necessarily quantities are the same (e.g., in 2017 they are different): quantities may not be the same because of several reasons: countries use Tariff line descriptions that can bring some difference on how items are recorded as they are aggregated into the CPC; timing differences in how transactions are recorded (e.g., a transaction can be exported in December, but arrives at destinatio in January); transaction may have been reported with non-standard units by at least one reporter; net weight was used by one reporter, while gross weight was used by the other; etc.
- Not necessarily the CIF/FOB margin is 12% (e.g., in 2016 it is 16%): our choice of a fixed CIF/FOB markup is simply for convenience, as these margins are neither time- nor distant-constant, i.e., they do evolve on time and they are different depending on geographic proximity of reporters/partners. making use of different CIF/FOB margins will be explored in the future.

3.1.5.1 Forced mirroring Additionally to countries that are completely missing, or those that appear but that only report one of the two flows (either exports or imports), some countries that do appear with both imports and exports are mirrored. This is called "Forced mirroring". This happens for countries that have been commsidered to have incomplete or low quality data (for any reason). This is *not* an automatic process and is decided after having analysed the dataset through the pre-processing reports. When a country is considered to have incomplete data, so that the mirroring process would improve the coverage, it is placed in the "Force mirroring" datatable of the "trade-reference-files" domain.

3.1.5.2 Discarding incompatible mirror data ("TP criterion")

The mirroring procedure is an approximation of the actual flows of a country, as they are inferred from the declarations made by reporting countries. It may happen that these are structurally similar, so that the mirror gives a very good approximation, but it can happen that the mirroring mechanism results in data that is not in line with the time series of the mirrored country. For instance, if a main partner for a given commodity is also a non-reporter for a given year, then the resulting total flow will be much lower than it should be. This is why the mirrored flows are checked for completeness, and if they are considered to be too low, then the mirrored flows get removed so that they are checked, and eventually supplemented with external data or manual imputation by analysts during the validation stage.

The criteria for which a mirrored flow is incomplete is the following:

- $value/value_{mean} < 0.6$
- $quantity/quantity_{mean} < 0.6$
- $quantity_{mean} > 1,000 \text{ tonnes}$

where $value_{mean}$ and $quantity_{mean}$ are the 5-year average of the lagged value of value and quantity, respectively, which are the aggregated monetary value and quantity of a reporter's given item/flow.

The following table contains an example of a country that is non reporter in 2014 and 2018. The upper side of the table contains bilateral flows with its threee partners, as the partners declared; the lower part contains the aggregation of the bilateral flows declared by the country, indicated as "total", and the sum of the flows declared by the other partners (i.e., those in the upper part of the table), indicated as "mirrored". Given that 2018 is missing (orange highlighted part), the sum of flows declared by partners (in the yellow highlighted cell) are considered to fill the gap. However, these represent only around 40% of what is usually declared by the country (making the comparison with its 5-year average). Thus, according to the criteria shown above, such aggregation is not used to impute the missing flows. ¹⁶

		2013	2014	2015	2016	2017	2018	mean	ratio
Partner A									
	value	150	165	182	200	220	242		
	quantity	100	110	121	133	146	161		
Partner B	}								
	value	300	330	363	399	439	483		
	quantity	210	231	254	280	307	338		
Partner C	;								
	value	1,000	1,100	1,210	1,331	1,464			
	quantity	800	880	968	1,065	1,171			
Total									
	value	1706	1500	1903	2017	2200			
	quantity	1220	1101	1330	1421	1548			
Mirrored									
	value	1,450	1,595	1,755	1,930	2,123	725	1,770	0.41
	quantity	1,110	1,221	1,343	1,477	1,625	499	1,355	0.37

When the plugin removes mirrored flows because they did not meet the 60% threshold, then an email is sent to officers informing them that the removal took place. The subject of the email is (e.g., for 2018) "Trade plugin: Excluded Tp, year 2018".

3.2 Flags management

The module assigns two types of flags ("Observation Status" and "Method") once some conditions are met.

The first flags that all data are given are a "BLANK" Observation Status flag and an "h" Method flag. They indicate that data are official and were harvested, respectively. After these, flags are assigned depending on the type of operation is done on the data. The different kind of flags, and the conditions that should be met in order to assign them, are reported in Table 15.

An observation can have multiple Observation Status flags and Method flags associated with it. The final flag is the "weakest" flag: the flagWeightTable table of the faoswsFlag R package contains the weights

¹⁶The example shows the reason why the aggregated mirrored transaction did not meet the threshold: in this case, an important partner (partner c) was missing (probably because it was also a non reporter).

Table 15: Trade flags

01 0	3.5 (1 1	TT71
ObservationStatus	Method	When
BLANK	h	Official data, harvested (No unit or currency conversion
		made) representing only one flow.
BLANK	i	Official data, identity (with unit conversion or
		currency conversion made) e.g. kg/ton; eur/\$; \$/ton (so can be
		only one or multiple flows)
BLANK	s	Official data, sum (where shipments have been
		added/aggregated; and no conversions have been done)
BLANK	р	Official data, publication (collected from official country publication,
		national website, UNCOMTRADE, TRADEMAP)
I	е	Imputation, module (if the quantities have been imputed based on
		median unit values)
I	i	Imputation, identity (for unit value if quantities or values are
		imputed)
I	s	Imputation, sum (if one of the aggregated items into one FCL/CPC
		was imputed). i.e. if one or more flows representing >10% of total
		have been modified.
T	i	Mirror data, identity (only for \$ values due to +/-12% CIF/FOB
		conversion)
T	c	Mirror data, of only one flow (includes "blank/i" flows)
T	s	Mirror data, sum (for quantities/values if they are aggregated)
T	р	Mirror data from TRADEMAP, USDA, publications (for
		quantities/values if they are collected from publications and online
		databases)
Е	f	Manual estimation
X	р	Estimation/imputation from UNCOMTRADE or TRADEMAP

that should be assigned to all flags, and the one with the lowest value prevails over the other flags. For instance, if one shipment if official ("BLANK" Observation Status flag) needs to be aggregated with another shipment that was originally missing the quantity and was thus imputed ("I" observation status flag), the final flag will be "I" as it is the weakest between the two flags involved.

There is an exception in flag aggregation, for which the standard "weakest flag is assigned" rule is not applied: when aggregation is done and some imputed observations are addends, the final flag will be "I" if and only if the imputed data accounts for more than 10% of the final aggregation.

An example of flag aggregation is reported below. It shows two items for the same reporter, both having 4 shipments with the fourth having missing quantity in both cases. After the shipment with missing data is imputed (it gets the "I" Observation Status flag), the total bilateral transaction is computed and the final Observation Status flag will be "BLANK" for Item A because the imputed shipment accounts for less than 10% of the total transaction (specifically, 7.8%), while the flag for Item B is "I" because the imputation is more than 10% of the total (17.5%).

	Item	Α	Item B	
	quantity	flag	quantity flag	_
Shipment 1	200	BLANK	950 BLANK	
Shipment 2	1,250	BLANK	180 BLANK	
Shipment 3	480	BLANK	50 BLANK	
Shipment 4	150	I	250 I	
% imputed	7.2%		17.5%	
Total bilateral transaction	2,080	BLANK	1,430 I	

Flags are a FAO standard endorsed by the IDWG-TTF on Statistics. See the "Observation Status Code, Flags" document of the "Statistical Standard Series" to have a complete description. The document is available at:

http://intranet.fao.org/fileadmin/user_upload/scp/Standards_for_quality_compliance/SSS_Observation_Status_Codes__Flags__endorsed__December_2016_.pdf

3.3 Conversion to FAO SWS standards

At this point data is almost ready to be saved in the SWS. Additional mapping and aggregation are necessary in order to respect the SWS standards:

- Conversion of FCL into CPC codes. This conversion is based on the table of conversion 2.1 expanded. If some FCL codes are not mapped to CPC, the corresponding records are filtered out. Since the mapping between FCL and CPC is one-to-one there is no aggregation at this point. The routine just adds the corresponding CPC code.
- Conversion from FAO country code to M49.
- Each row of the final output must be either quantity- or value-specific, while so far the module keeps this information in one row. The information is therefore split in two separate rows.

The first submodule saves the final output in the completed_tf_cpc_m49 SWS dataset, within the trade domain.

3.4 Use of validation corrections

While details of validation will be given in the next section, here it is necessary to say that if corrections for the year for which the plugin is run exist, they will replace the data generated by the plugin. For instance, if the plugin generated 2 million tonnes for some item in some country, but in the validation process it was found that this figure suffers from an "order of magnitude" problem because it was saved as tonnes while it should have actually be kilograms so that it got replaced by 2 thousand tonnes, 2 millions will be replaced by 2 thousand in the data that is processed. When values are replaced by validated figures, they get the (I, e) flags combination. Moreover, if a mirror flow exists it will be changed accordingly (in this case, the flags combination will be set to (T, e)).

The "corrections" mechanism was designed so that if the original figure that will be replaced is different from what the analyst corrected, the correction will be dropped. This can happen for different reasons, among which: raw data changed and pre-existing errors were corrected; the mapping table of a commodity was modified; etc.

Metadata for corrected figures is generated and will be saved on SWS.

More details on corrections generated during validation will be given in the "Data Validation" section.

3.5 Remove non-existent transactions

The plugin checks whether there are combinations of reporter / partner / item / element stored on SWS that are not generated by the plugin that are unprotected. If there are, said combination(s) will be removed from SWS. Indeed, the plugin should generate all possible combinations of those dimensions, and combinations that are not generated should not exist, except if they have been inserted manually (and thus have a protected flag). These "non-existing" combinations can be present on SWS because they were generated in the past but they should not have been. Also in this case, possible reasons can be multiple: the plugin had a bug that got corrected; the mapping table was modified; etc. Given that the SWS R-API does not have an option to check whether some combinations are not going to be overwritten, this needs to be done code-side by performing a set difference on the combinations available in the plugin and those generated by the plugin. Values and flags of the resulting combinations will be set to NA as there is actually no way to remove the observation. In any case, the result is substantially the same.

3.6 "Total Trade CPC" plugin (totals by reporter)

The "Total Trade CPC" plugin (SWS id: 5662) uses as input the output of the previous submodule. It aggregates total trade flows by reporting country for partners countries to a single total trade for each unique CPC commodity code. As the previous one, this submodule works by year.

The module saves the output into the dataset Total Trade CPC, within the trade domain.

As for the "Complete Trade Flow CPC", non-existent transactions are removed. In this case, the combinations to compare are composed by reporter / item / element.

Flags follow the same aggregation rules as shown for the "Complete Trade Flow CPC" plugin, including the exception for which imputed flows that do not account for more that 10% of the total flow does not make the total flow to be considered as imputed.

4 Data validation

Trade data validation is made with some helper plugins that allow to spot cases that need to be checked, and through an interactive tool for data validation. These plugins and the tool will be described in this section.

The plugins usually reuire that the user opens a session in the "Total Trade (CPC)" dataset, where the country that he/she is validating is selected. In order to open a session the user needs to click on "New query", then select the "Trade" domain, and the "Total Trade (CPC)" dataset. After that, the country for which validation is being carried out needs to be selected in the "Geographic Area M49" dimension (remaining dime4nsions can be set arbitrarily), then ther "Run" button needs to ne selected.

When the session is created the user can run a plugin by clicking on "Run plugin" in the upper right corner of the SWS session.

4.1 Tradeoutliers_most_recent_version plugin

This script calculates the 5-year average value of validated years for each item/flow/quantity (meanOld) and calculates the ratio of the current year to the average:

$$ratio = quantity/meanOld$$

If this ratio is lower than 0.25 or higher than 4, then the correpondent flow/item combination will be marked as outlier:

if
$$ratio < 0.25 \text{ OR } ratio > 4 \implies outlier$$

Also, a check on unit values is carried out and it check whether the unit value decreases by less than 50% or increases more then 100%:

if
$$\widehat{UV} < -0.5 \text{ OR } \widehat{(UV)} > 1 \implies outlier$$

In order to avoid checking small quantities, which proxies relatively unimportant items for the country (at least trade is concerned), quantities below given country-specific thresholds are not checked for outliers. The list of these thresholds is available in the "Trade outlier country thresholds" of the "trade-reference-files" domain.¹⁷

 $^{^{17}}$ When a country-specific threshold is not available, 1,000 is used.

After successful completion, the plugin sends an email with subject "outlierList" with an Excel file like the following:

The email body indicates which quantity threshold has been used to check for outliers.

4.2 trade_data_last_check plugin

TODO: DESCRIBE THIS PLUGIN

When the plugin completes, it sends an email with subject "trade_data_last_check" with an Excel file like the following:

The following cells/fonts are used:

• yellow cells: values minimum 50% less than the 5 year average

red cells: missing valuesboldface: official data

4.3 top_commodities_selection_routine plugin

TODO: DESCRIBE THIS PLUGIN

4.4 monetary_values_ranked_commodities plugin

TODO: DESCRIBE THIS PLUGIN

4.5 Creating_Tables_Total_Trade plugin

TODO: DESCRIBE THIS SCRIPT (THIS IS NOT AN SWS PLUGIN YET).

4.6 Interactive tool for data validation (Shiny tool)

The interactive tool for trade data validation allows to query the total and bilateral trade datasets, and eventually apply corrections to the bilateral flows. Any modification to the bilateral flows is immediately visible in the tool. Once the validation is completed, modified data can be sent back to SWS, where its can be saved to the dataset.

It can be used at the following URL:

http://hqlprsws1.hq.un.fao.org:3838/TRADEvalidation_test/

4.6.1 Authentication

To use the tool, you will need to authenticate to the SWS. The steps for doing so are (all mentioned datasets are in the "Trade" domain):

1. create a session in the "Total Trade (CPC)" dataset

- 1. in the country field, insert the country name/code of the reporter that you will validate
- 2. in the remaining fields you can put whatever you like
- 3. click on "Run"

4. rename the session to something that you remember (here it will be "trade_CO_TOT")

- 2. create a session in the "Completed Trade Flow (CPC)" dataset
- 3. in the first country field, insert the country name/code of the reporter that you will validate
- 4. select the other dimensions
- 5. click on "Run"

6. rename the session to something that you remember (here it will be "trade CO BIL")

7. click on "Run plugin" in the session on the complete trade dataset (in the example above, in trade_CO_BIL)

- 8. select "[FAODOMAIN/mongeau] TRADEvalidation"
- 9. select the session you created in the "Total Trade (CPC)" dataset
- 10. click on "Get debug token"

11. copy the token

- $12. \ open \ http://hqlprsws1.hq.un.fao.org: 3838/TRADE validation_test/\ (well,\ this.)$
- 13. click on the red button on the upper left corner on the page (it says "Token")

14. paste the token you copied before and click "OK"

After you do these steps, if everything goes fine, you will see your username in the button in the upper left corner (and it should become green).

Trade validation tool

The interactive tool for trade data validation allows to query the total and bilateral trade datasets, and eventually apply corrections to the bilateral flows. Any modification to the bilateral flows is immediately visible in the tool. Once the validation is completed, modified data can be sent back to SWS, where its can be saved to the dataset.

Authentication

To use the tool, you will need to authenticate to the SWS. The steps for doing so are (all mentioned datasets are in the "Trade" domain):

1 create a session in the "Total Trade (CPC)" dataset

You are now authenticated, and can start/continue your validation.

Please note that the country you selected in your session (i.e., the country that you will validate), will appear in the "Country" menu. At this point you can start your validation by

- 1. selecting the "Outliers" tab
- 2. selecting the "Main items" tab

If you want to have a look at a specific flow/item you can choose this combination by filling the "Flow" and "Item" menus in the upper side of the page. Also, you can modify the start and end years in the "Years to show" sliders, but once you do so avoid changing them in middle of a validation of a flow/item combination (to see why, read the final notes at the bottom of the page).

Below are described the contents of the tool's tabs.

4.6.2 Tool tabs

4.6.2.1 Welcome

This is the first tab you see when you arrive here. It contains a small reminder on what you find and a "recommended workflow". If you don't feel to read all this help document again, just go there to have a brief reminder of this tool's features.

4.6.2.2 Outliers

When you select this tab, total imports and exports for all items will be downloaded and the outliers routine will be applied to them. A table with the flow/items that display at least one outlier will be displayed. The outlier(s) will be highlighted in red.

When you click on a cell, a popup window will display the value / quantity and utnit value of that flow/item, and the outlier will be shown with a black point. You can select to "Ignore" the item (this will simply close the popup), or "Analyze". If you select the latter, you will be redirected to the "Total" tab (see below).

4.6.2.3 Main items

Here you will see the top-10 items for the country, grouped by flow (imports and exports) and type of item (tons, heads, 1,000 heads).

Not necessarily the flow/items here contain outliers, but given that these flow/items represent the most important ones for the country, you will need to have a look in any case.

As for the "Outliers" tab, when you select a cell, you will be redirected to the "Total" tab (in this case, no popup window will appear, you will be redirected right away).

By default, only the main flow/items by quantity are shown. If you want that also the main items by value appear, you need to click on the box "Also main items by monetary value?".

4.6.2.4 Total

This tab is split into four components. The first one contains options and an "undo last modification" button. The second one is a table with values, quantities and unit values for the selected flow/item at the **total** trade level. The third one shows by default the plot of the series in the tab above (and eventually other information). The fourth one (under the plot), shows by default some bilateral flows of the selected total.

Below the components are shown separately (for spacing issues), but they are in the same page.

First component (plus general header):

Second component:

					show/hic	le					
Partner	measuredElem	plot	2009	2010	2011	2012	2013	2014	2015	2016	2017
TOTAL	5610		3,245,040	3,613,900	3,224,048	3,450,663	3,635,280	3,961,571	4,717,637	4,586,084	4,930,065
TOTAL	5622	_	671,171	805,756	926,947	1,078,229	1,022,378	938,484	955,813	871,449	917,899
TOTAL	5630		207	223	288	312	281	237	203	190	186
4											

Third component:

Fourth component:

show/hide											
Partner	measuredElem	plot	2009	2010	2011	2012	2013	2014	2015	2016	2017
32 - Argentina	5610	~	925,203	2,208,855	1,812,038	2,481,334	2,060,398	101,824	11,036	17,250	12,360
32 - Argentina	5622		191,328	481,774	595,819	757,200	610,044	32,806	5,484	9,425	6,623
32 - Argentina	5630		207	218	329	305	296	322	497	546	536
76 - Brazil	5610		884,055	626,909	380,759	456,100	858,172	1,194	1,534	2,253	2,751
76 - Brazil	5622		178,543	155,428	122,202	148,097	211,273	4,427	8,278	13,407	17,746
76 - Brazil	5630		202	248	321	325	246	3,707	5,395	5,950	6,451
840 - United Stat	5610		1,225,032	703,781	552,011	176,988	645,755	3,856,485	4,703,708	4,565,430	4,914,294
840 - United Stat	5622		249,573	146,862	183,740	70,169	180,333	897,764	933,370	841,327	889,176
840 - United Stat	5630		204	209	333	396	279	233	198	184	181

The options (available in the first component) are:

- "Show flags?" will show flags of the data if TRUE, hide them if FALSE (by default this is FALSE, so that you can focus on the data; if you need to understand if data are official, estimates, etc., set it to TRUE)
- "Show mirror?" will download all bilateral flows of the partners for the selected flow/item, and will aggregate them so that you can see what the sum of other countries say about that item for the selected country. By default this is FALSE, mainly because the data that needs to be downloaded is quite large, so it will slow down the app. Set it to TRUE if you are ready to wait.
- "Show Production?" will show production data taken from the "SUA unbalanced" dataset. This is probably more useful for exports, as countries usually export less than what they produce (actually, you should consider also imports and eventually stocks, so that $X \le P + M$ S (exports are less or equal availability), but in any case having a look also to production data can be useful). By default this is FALSE, if you set it to TRUE the time required to get the data is not that much.
- "Minimum trade share of partner" is a number X between 0% and 50% (by default 20%) that will filter out from the bilateral table countries that never accounted for X% in the total flow for the selected item of the partner. For instance, if you set this to 30%, you will see all partners in the table at the bottom of the page that in at least one year accounted for at least 30%. This is useful so that you have a look either to main partners (those that usually account a lot for the reporter) or countries that because an outlier show a high percentage over the partner's flow. You will notice that even if the default is 20%, sometimes it scales automatically to a lower number: this happens because no partner accounted for 20%, so the maximum share will be selected automatically.

There is an "Undo last modification" button, but what it does will be explained later.

The first table contains data for the total flow for the selected flow/item/years: values, quantities, and unit values. When you do corrections in the "Bilateral" tab, this table will be updated with corrected data.

The plots under the total table, shows the data in that table. It will also show mirror and/or production data if these options are set to TRUE. Moreover, if you click on one cell of the table that contains bilateral flows (under the plots), you will see that partner series appear also in the plots.

In the bottom table, you see bilateral data for the selected flow/item. As explained above, by default you will see only the "main" partners (as per "Minimum trade share of partner" option). If you really need to see all partners you can set the "Minimum trade share of partner" to 0 (zero). Be aware that if you do so, the browser will be slowed down a bit. In any case, if you click on a cell, if it contains data, the series for the partner you selected will also be shown in the plots.

4.6.2.5 Bilateral

In this tab you can see bilateral flows, with some useful information, and can correct them, if required.

Select a partner in the "Partner" menu. Note that: 1) only available partners for the selected flow/item are shown, so you don't need to figure out what countries to choose; 2) the partner should be automatically populated if you select it in the bilaterals that appear in the "Total" tab.

If there are years that can be corrected (corrections can be done just after 2014, included), then available years will be displayed in the "Year to correct" menu.

You can select what variable to correct in the "Variable to correct" menu (it can be either "Quantity" or "Value").

There are different types of corrections that can be applied in the "Type of correction" menu:

• None: This should be used to confirm that an outlier is OK and should not be corrected. It can seem weird to correct by not applying any correction, but this may be thought more as a signal for future analysts (or yourself) that even if the observation seems an outlier, it was confirmed not to be so and who will again find this figure will not lose any time by revalidating it (is they read the metadata).

- Measurement factor: This can be useful if the quantity or value may have been reported with a wrong measurement unit, by a factor of 10. If you choose this option, it will be displayed below if the ratio of the unit value to the median unit value is "near" a factor of 10, and will suggest which factor is the most likely. More technically, the ratio between the unit value and the median unit value is computed; if this ratio is greater than or less than (with a 10% approximation) $10^{(round(log10(ratio)))}$ then it means that the transaction was likely reported with a unit of measurement (of a factor of 10) issue.
- Mirror flow: Use the flow of the partner, if it exists (if it does not, you will get a feedback indicating that).
- Outlier correction: It is possible to use three different types of correction (in all cases, the values of these figures will be printed, if available, so that you can choose the most appropriate):
 - Median partners: median with respect to all partners, that is, the median for the reporter's trade (import or export specific) in the year of interest of the analysed commodity to all its partner is used.
 - Median world: median of the unit value of all reporters to all partners, that is, the median of all the reporters that traded (import or export specific) the analysed commodity in the year of interest is used.
 - Moving average: the three year-moving average (starting from the year previous to the one analysed) of the unit value of the trade flow of the commodity of the analysed reporter.
- Publication/website: when you find data on a publication or website.
- Expert knowledge: literature or otherwise justified figure, in other words, this is a figure that you set based on your own estimate.

When you select one type of correction, appropriate submenus will be shown if required, and there is some information on what would be the effect of applying that correction. For instance, in the example below, the "Outlier correction" was chosen and the unit values and quantities for the various options appear.

When you wan to actually see the effect of a correction both at the bilateral level and at the total level, click on "Apply correction". This will make the corrected data to be sent to the plots in this tab, to the bilateral table in the "Total" tab, and consequently to the table with the totals in the "Total" tab.

If you do not want that correction to be saved, click on the "Undo last modification" button. The button is replicated both in this tab and in the "Total" tab. When you do so, the status of the tables and plots will be brought back to the status they were just after you clicked on "Apply correction".

If you are happy with your correction, you can send it to the list of corrections that will be saved by clicking on "Confirm correction". Note that this will accumulate the correction in a pool of corrections that will be saven in the "TO COMMIT" tab. More on this later.

4.6.2.6 TO COMMIT

This tab contains a list of corrections that are ready to be saved. To do so, you need to click on "Send to SWS datasets". What this action will do is that all corrections will be stored in the "corrections table", which is a dataset of already saved corrections, and will send corrected data to SWS.

You will need to click on "Send to SWS datasets" for each combination of flow/items that you corrected. If you do not do it, and select another flow, item or years, you will lose all your corrections.

4.6.2.7 Corrections saved

This tab contains a list of existing corrections.

You can remove corrections that are **already** saved, by clicking on "Delete selected correction". Again, this wil remove corrections that were saved (those shown in the "Corrections saved" tab), not the corrections that you have not committed yet (those shown in the "TO COMMIT" tab).

4.6.2.8 Raw data / MAP

This was imported from the previous Shiny tool, but probably will require some re-writing because it seems not to have been used much after all (likely it was not made clear how this should be used).

Changes to the trademap need to be cleared by officers, so contact one of them if you need to change a map entry.

4.6.2.9 Other checks

In this tab you find other checks useful for validation:

• Total agriculture/merchandise: comparison of total agricultural trade vs total merchandise trade. You will need to select the years that you want to analyse in the "Years to consider slider"

• Global unit values: contains import and export unit values for all items and countries, along with their world and regional averages, as well as the growth rates.

Global/regional unit values

Region: South America

year 💠	UV_World	UV_regional 	variation_UV_World	variation_UV_regional
2010	250.6	234.3		
2011	339.7	308.2	35.52%	31.54%
2012	330.7	307.0	-2.63%	-0.39%
2013	331.1	328.8	0.10%	7.09%
2014	275.7	294.8	-16.71%	-10.35%
2015	230.9	245.4	-16.27%	-16.75%
2016	216.0	208.5	-6.44%	-15.03%
2017	215.8	212.3	-0.08%	1.80%
2018	225.7	227.3	4.59%	7.05%
Showing 1 to 9	of 9 entries			Previous 1 Next
	_			

4.6.2.10 Help

Contains a copy of this documentation (the part regarding the tool).

4.6.3 Final notes / recommendations

Please consider that the tool was designed so that you can validate one country at a time, and do so by going by flow and item. For instance, let's say you need to validate Colombia, then after you do the authentication steps, you go by flow/item combinations, e.g., you first validate all imports of wheat, then validate all export of bananas, then... you got it. "Validate all" means that, e.g., you check if the total imports of wheat is an outlier, then if it seems so you go and validate all partners that make sense to validate (usually the "main" partners) with the tools available in the tool (e.g., apply a measurement factor, a mirror flow, etc.) and once all your corrections to bilateral flows of imports of whats are done, save corrections and send the data to SWS. When you end with imports of wheat, you do the same for exports of bananas. When you finish with exports of bananas... you got it. When you finish analysis and (eventually) corrections for all flows and all items, you can conclude your validation by finally going to SWS and confirming that data is to be saved in the two sessions you created.

There is a technical reason why you should validate one flow/item at a time: each time you select another flow or item (and for that matter, even if you change the years), the tool will make a new query and you will lose all your corrections.

You can do any query you like within the tool, but for validation purposes, limit yourself to the flow/items that are shown in the "Outliers" tab and in the "Main items" tab, as they will show the flow/items that may be outliers and those that are most important for the country, respectively.

The tool allows you to do "multiple corrections" to correct ALL bilateral flows in one go. Please, use this very cautiously. If you find, e.g., that ALL partners's quantities are to be divided by 1,000, this may be better handled at the source of the data. It could be useful to liase with UNSD so that in a coordinated manner these flows get fixed. All agencies will benefit from this. Also, another reason why this needs to be used conservatively is that it will be difficult to "undo" all corrections (after they are saved) if they were made by mistake (it happens: for instance you selected 100 when indeed you wanted to select 1,000). Finally, it can be that you just spotted that the main partner needed to be fixed by a factor, then assumed also all other partners needed such adjustment, but later find that seen from the partner side all other corrections do not make sense.

4.6.4 Technical information

The tool is a Shiny app¹⁸. Its source code is publicly available at:

https://github.com/SWS-Methodology/TRADEvalidation

When a modification of the app is required, after the modification is done, the developer needs to update the version in the server. The path in the server where the application is stored is:

/srv/shiny-server/TRADEvalidation_test

5 Workflow

5.1 Flow chart

The whole process is displayed is depicted graphically in the next flow chart.

¹⁸https://shiny.rstudio.com/

5.2 Plugin flow

The steps required to complete one full round of the trade process is the following:

1. Open a query in the "Bilateral Trade Flow (CPC)" dataset of the "Trade" domain (dimensions should not be set, as this is a *core* plugin), and click on "Run plugin":

2. Select the "[FAODOMAIN/mongeau] Complete Trade Flow (CPC) (core)" plugin, set the year the plugin needs to process data, and click "Run plugin":

When the module completes, the person that launched the plugin will get an email from SWS with subject "FAO SWS - R plugin execution requested": the body says whether it "has completed" or if it "has failed". Moreover, if the plugin completes successfully, all users in the ess_trade_people_in_charge datatable of the trade-reference-files will receive an email with subject "Bilateral trade plugin (year YEAR) ran successfully" (where YEAR is the year set as parameter).

3. Once the "Complete Trade Flow (CPC)" plugin has completed successfully, open a query in the "Total Trade (CPC)" dataset of the "Trade" domani (as before, no dimensions need to be set given this is a core plugin), and click on "Run plugin":

4. Select the "[FAODOMAIN/mongeau] Complete Trade Flow (CPC) (core)" plugin, set the year the plugin needs to process data, and click "Run plugin":

As for the bilateral plugin, SWS will send an email on the completion status of the plugin ("FAO SWS - R plugin execution requested") and the users in the <code>ess_trade_people_in_charge</code> datatable will receive an email with subject "Total trade plugin (year YEAR) ran successfully" (where YEAR is the year set as parameter) if the plugin completes successfully.

- 5. Steps 1-4 must to be repeated for all years that need to be processed.
- 6. Validation by country analysts start, as described in Section "Data validation".

As of this writing (June 2020), the "Complete Trade Flow (CPC)" plugin and the "Total Trade (CPC)" plugin take around 25 and 7 minutes on average, respectively (the amount of time depends on the SWS server performance, the amount of data, and other technical factors).

6 Future work

6.1 Streamline raw data updates

As of June 2020 the process of checking whether a country that in a previous round had no official data, or any other major data update, is done manually. The person in charge looks at the "Data availability" comtrade page at:

https://comtrade.un.org/data/da

and then decides based on the needs, what data needs to be updated. This process has at least a couple of drawbacks:

- 1. being a manual check, it is time consuming and can be error prone
- 2. it relies on public comtrade data

As for point 1), a routine should be developed so that it queries the comtrade "Data availability" page and compares the status of country/year combinations, in order to obtains insight of the status of the data. This depends on the data made available by comtrade, and this brings to point 2): the ESS trade processing system uses UNSD raw Tariffline data and the date when they are disseminated in comtrade may be different. Probably, UNSD and FAO should agree on having a shared table or communication mechanism that says when Tariffline data are updated.

6.2 Outlier identification/imputation at the bilateral level

Outliers were identified in a previous version of the "Complete Trade Flow CPC" module and imputed automatically by using the median unit value with a specific-to-generic median unit value calculation, i.e., with the method used for estimating mising quantities. Results were found to be unsatisfactory, thus automatic imputation was switched off. Said strategy could be supplemented by using information of neighbour or similar countries (e.g., the median unit value of Asian countries for a detailed HS level can be used for imputing an outlier for an Asian country instead of going up to the HS8 or HS6 level for the country itself as attempted in the specific-to-generic approach).

6.3 CIF/FOB

The CIF/FOB correction for mirroring is, at the time being, set up to 12%. This has been suggested by the CLFS Team. Additional work might be done in order to assess if this estimate is appropriate, but logic suggests that this is a very crude approximation. Indeed, there are different range of percentages for different type of countries and by distance between reporters and partners (e.g., the cost of transportation of a given commodity is definitely different if it is between France and Italy or France and Australia). A study can be conducted on available records on both sides: this means records for which the commodity is reported by the reporter and by the partner.

To have an idea of the different CIF/FOB margins by countries, refer to the following dataset (by OECD):

https://stats.oecd.org/Index.aspx?DataSetCode=CIF FOB ITIC

A working paper¹⁹ describing the methodology used is available at:

 $https://www.oecd-ilibrary.org/economics/estimating-transport-and-insurance-costs-of-international-trade_8267bb0f-en$

6.4 Self trade analysis

• A script within the vignette folder, named selftrade.R, has been used to perform some simple analyses on the self trade. The script filter all records for which the reporter and the partner are the same. The script compute the sum of all value across all commodities per country (Figure 1), or the sum of all the value for each commodity across all countries (Figure 2). In this way we can spot out the countries reporting massive self trade as well as which are the main commodities reported in self trade.

This is an example of the graphical output (still part of the script).

• This might be incorporated in the module and might produce suitable output within the SWS. More documentation is needed.

¹⁹Miao, G., Fortanier, F., (2017), "Estimating Transport and Insurance Costs of International Trade", OECD Statistics Working Papers 2017/04.

Figure 1: Sum of all self trade records by country.

Figure 2: Sum of all self trade records by commodity. Codes in FCL.

6.5 Mapping from HS to FCL/CPC

In the module for commodities we have two different mappings. From HS to FCL, using a mapping table produced by the CLFS Team and then from FCL to CPC 2.1. In the future direct mapping from HS to CPC has been asked from management. A possible solution, where adding the column with the one-to-one CPC codes has been sent to Carola (09.06.2016), but anyway this needs revision (link)

6.6 Mapping from Comtrade M49 and Geonomenclature directly to M49

The country codes, as the commodity ones, have two steps of mapping. This results in higher risk of data loss due to unsolved mapping. A direct map from Comtrade M49 (Tariff line UNSD) to M49 and from Geonomenclature (Eurostat) to M49 would be ideal.

6.7 Food-aid

This has to be incorporated also to understand the trend in a time series analysis. This needs special study to understand if we can get the data just from the exports not reported as imports in the partner.

6.8 Other tasks

The GitHub repo of the faoswsTrade module contains a list of "issues" with different degrees of urgency, so that future developers can improve the module:

https://github.com/SWS-Methodology/faoswsTrade/issues

Some of the issues are feature requests. For instance, the latest issue as of this writing (June 2020) is issue #176: it is suggested to merge the "Complete Trade Flow CPC" and "Total Trade CPC" plugins into a single plugin. The reason is that the two are usually run together in two different scheduled runs, and for the reasons exaplained in the issue, it seems sensible to have a single plugin for the process. As an additional comment, the "Total Trade CPC" may be recreated as a function that can be called as "Complete Trade Flow CPC" ends or from a standalone small plugin that just calls this function to re-calculate total flows if that is seen as a requirement.

Appendix: Statistical Working System

According to the definition given in the ESS website, the "Statistical Working System is a corporate platform used in FAO for the processing and storage of statistical datasets, providing the framework needed to use the same methods, standards, classifications and approaches within statistical processes." ²⁰

In a nutshell (and for what it is useful as far as trade processing in concerned), the SWS is composed of three different elements: a user interface (UI), a datataset backend, an R server.

There are two SWS environments: QA (for $Quality\ Assurance$) and LIVE (known more frequently by CIO and other divisions as production).²¹ The two are conceptually the same, the main difference being that QA is used during the development phase, from both statistical (by ESS and other technical units), and information technology (by CIO) points of view. These are the URL from accessing the two servers, from the web and R-API:

• QA:

 $^{{}^{20}} Source: \ http://www.fao.org/economic/ess/ess-home/ess-about/statistical-methods/en/statistical-methods/$

²¹The CLFS team decided to call the *production* environment as *LIVE* in order to avoid confusion with the *production* domain (i.e., the domain where agricultural production data is stored).

- web: https://hqlqasws1.hq.un.fao.org:8443/sws/
- R-API: https://hqlqasws1.hq.un.fao.org:8181/sws
- LIVE (production):
 - web: https://sws.fao.org/
 - R-API: https://sws.fao.org:8181

Describing the SWS UI is out of the scope of this document. In the following sections, the frontend side of the database backend, which stores datasets and datatables, and the R-server will be reviewed.

6.9 Datasets and datatables

The SWS database server contains two different kind of objects for storing data: datasets and datatables. The two differ in some aspects, the main ones being datasets have a history log for each cell (i.e., when the number was written, by whom, with which plugin, etc.), and cell and block metadata, while datatables do not have any of this two features. Being datatables more simple objects, they are usually used for data that is not meant to be changed often, like reference tables or raw data, as in the case of the raw bilateral trade data used by the trade plugins.

An example of an SWS dataset and its history log is given below. It shows results of a query in the "Total Trade (CPC)" dataset of the "Trade" domain. It shows also the "history" feature: the selected observation (import quantity of grapes by Ghana in 2015) was written twice by two different users. The observation figure/flags can be changed in the "Data" tab. Metadata can be obtained by clicking on the "Metadata" tab. A plot of the selected row(s) is available in the "Live helper" tab.

An example of reference data in an SWS datatable is given below. The table contains livestock weight used by the "Complete Trade Flow CPC" plugin when imputation of heads is required (i.e., when the data contains information only on total weight).

6.9.1 List of datasets used by the trade module

There are two datasets relative to the trade process stored in the "Trade" domain: "Bilateral Trade Flow (CPC)" and "Total Trade (CPC)". As the names suggest, the former contains bilateral transactions, while the latter contains total flows (computed as aggregation of bilateral transactions).

6.9.1.1 Bilateral Trade Flow (CPC)

This dataset (SWS id: completed_tf_cpc_m49) is defined by five dimensions: two "Geographic Area M49 Trade" (one for reporters, the other for partners, shown on the left and right, respectively), "Element", "Item", and "Year". These dimensions correspond to the following SWS codelists: geographicAreaM49Reporter, geographicAreaM49Partner, measuredElementTrade, measuredItemCPC, and timePointYears, respectively.

6.9.1.2 Total Trade (CPC)

This dataset (SWS id: total_trade_cpc_m49) is defined by four dimensions: "Geographic Area M49", "Element", "Item", and "Year". These dimensions correspond to the following SWS codelists: geographicAreaM49, measuredElementTrade, measuredItemCPC, and timePointYears, respectively.

6.9.2 List of datatables used by the trade module

There are three different domains that contain datatables related to the trade process:

- trade-input-data: this domain contains raw bilateral data from UNSD and Eurostat.
- trade-reference-files: reference files used by the trade plugins are stored in this domain.
- trade-reports: the output or the "Pre-Processing Report" plugin are saved here.

6.9.2.1 trade-input-data

6.9.2.1.1 EU Commission - Combined Nomenclature YEAR

These datatables (year specific, e.g., "EU Commission - Combined Nomenclature 2018")²² contain the Eurostat raw trade data.

The variables contained are:

- chapter: the HS chapter (i.e., the first two digits of product_nc)
- declarant: reporting country (geonomenclature code)
- partner: partner country (geonomenclature code)
- product_nc: HS (CN8) code
- flow: flow (1 = imports; 2 = exports)
- stat_regime: statistical regime ²³
- period: year+week combined (e.g., 201852)
- value_1k_euro: monetary value in thousands of euros (FOB for exports, CIF for imports)
- qty_ton: weight in metric tons
- sup_quantity: supplementary quantity

 $[\]overline{)}^{22}$ There is a data table called "EU Commission - Combined Nomenclature All Years" that is supposed to have all "EU Commission - Combined Nomenclature YEAR" tables combined into one, but it is not maintained as it is not practically used (years available are 2000-2016).

 $^{^{23} \}rm See\ http://trade.ec.europa.eu/doclib/docs/2013/may/tradoc_151348.pdf.$

6.9.2.1.2 UNSD Tariffline YEAR

These data tables (year specific, e.g., "UNSD Tariffline 2018")²⁴ contain UNSD trade data. These are also called "legacy format" as UNSD changed the format of how they disseminate Tariff line data (see the "UNSD Tariffline v2 YEAR" tables for "new" format). The legacy format was the one with which the main part of the trade processing system was developed.

The variables contained are:

• chapter: the HS chapter (i.e., the first two digits of comm)

• rep: reporting country (M49 code)

tyear: yearcurr: currencyhsrep: HS version

• flow: flow (1 = imports; 2 = exports; 3 = re-exports; 4 = re-imports)

• repcurr: currency of reporter

• comm: HS code

prt: partner country (M49 code)weight: net weight in kilograms

• qty: quantity

• qunit: unit of measurement of qty (see also discussion on comtradeunits)

• tvalue: monetary value in US dollars (FOB for exports, CIF for imports)

est: ??? (this variable is not used)ht: ??? (this variable is not used)

New (New Query 🖺 Admin 🚅 Harvesters 📱 Datatables 🔄 Plugins 📵 Questionnaires													
Nev	w Quer	y [1]		Datatal	oles 🛎									
Domain	: trade	e-input-d	ata			~	Table: UNSD Tariffline 2015					v 🕕 á	ر 🖪 ا	Add 📮
chapter	rep	tyear	curr	hsrep	flow	repcurr	comm	prt	weight	qty	qunit	tvalue	est	ht
21	170	2015		H4	2		210230	218	4200	4200	8	10794	0	0
21	170	2015		H4	1		210310	76	12559	125	8	12757.46	0	0
21	170	2015		H4	1		210310	76	13056	130	8	13197.35	0	0
21	170	2015		H4	1		210310	76	153	153	8	15081.31	0	0
21	170	2015		H4	1		210310	76	12540	125	8	16066.36	0	0
21	170	2015		H4	1		210310	76	140	140	8	13504.14	0	0
21	170	2015		H4	1		210310	76	12122	121	8	14896.16	0	0
21	170	2015		H4	1		210310	76	3180	3180	8	3497.83	0	0
21	170	2015		H4	1		210310	76	16039	160	8	16069.27	0	0
21	170	2015		H4	1		210310	156	445	445	8	46804.44	0	0
21	170	2015		H4	1		210310	156	857	857	8	13112.47	0	0
21	170	2015		H4	1		210310	156	145	145	8	24831.08	0	0
21	170	2015		H4	1		210310	156	435	435	8	48285.66	0	0
21	170	2015		H4	1		210310	156	334	334	8	27344.12	0	0

6.9.2.1.3 UNSD Tariffline v2 YEAR

These datatables (year specific, e.g., "UNSD Tariffline v2 2018") 25 contain UNSD trade data. These are also called "new format" as UNSD changed the format of how they disseminate Tariff line data (see the "UNSD

²⁴There is a datatable called "UNSD Tariffline All years" that is supposed to have all "UNSD Tariffline YEAR" tables combined into one, but it is not maintained as it is not practically used (years available are 2000-2016).

²⁵There is a datatable called "UNSD Tariffline All years" that is supposed to have all "UNSD Tariffline YEAR" tables combined into one, but it is not maintained as it is not practically used (years available are 2000-2016).

Tariffline YEAR" tables for "legacy" format). Note that given that the legacy format was the one with which the main part of the trade processing system was developed, the new tables are converted to "legacy" by the "Complete Trade Flow CPC" plugin.

The variables contained are:

- chapter: the HS chapter (i.e., the first two digits of comm)
- datasetcode: combination of several keys to identify specific datasetCode
- typecode: product type (goods or services)
- freqcode: the time interval at which observations occur
- refperiodid: the period of time to which the measured observation is intended to refer
- reportercode: the country or geographic area to which the measured statistical phenomenon relates
- flowcategory: simplified trade flow (exports or imports)
- flowcode: trade flow or sub-flow (exports, re-exports, imports, re-imports, etc.)
- partnercode: the primary partner country or geographic area for the respective trade flow
- partner2code: a secondary partner country or geographic area for the respective trade flow
- classificationcode: indicates the product classification used and which version (HS, SITC)
- cmdcode: product code in conjunction with classification code
- customscode: customs or statistical procedure
- motcode: the mode of transport used when goods enter or leave the economic territory of a country
- qtyunitcode: unit of primary quantity
- qty: value of primary quantity
- altqtyunitcode: unit of secondary quantity
- altqty: value of secondary quantity
- netwgt: net weight
- grosswgt: gross weight
- $\bullet\,$ cifvalue: trade value in CIF
- fobvalue: trade value in FOB
- primaryvalue: primary trade values (taken from CIF or FOB values)

6.9.2.1.4 National tariffline COUNTRY

These datatables contain rawdata for COUNTRY, where COUNTRY is a country for which UNSD has no data or, for any reason, the UNSD data cannot be used, and FAO has access to country files. The table is structured as the "UNSD Tariffline YEAR" datatables, except that it may contain data for different years: given that countries do not generally share the files with this format, the original files are converted into the UNSD format. The only country for which such datatable exists, so far, is Venezuela ("National tariffline Venezuela"). In the example below a portion of the table is shown, where it can be seen that 2014 and 2015 are available.

6.9.2.1.5 Total Merchandise Trade

This table contains data on total merchandise imports and exports for all countries, expressed in US dollars.

6.9.2.2 trade-reference-files

6.9.2.2.1 Adjustments

This datatable contains the corrections to raw data that were applied in the previous trade processing system (Shark/Jellyfish), and is kept for reference. The current trade module does not use this table.

6.9.2.2.2 Aggregation TYPE

There are three different datatables, for these *TYPEs*: AreaGroups, AreaYears, ItemGroups. These datatables are used by a plugin that carries out aggregation, not by trade-related plugins.

6.9.2.2.3 commodity_list_for_total_trade_tables

TODO: describe what this table contains

■ Datatables ■		
Domain: trade-reference-files	▼ Tal	ble: commodity_list_for_total_trade_tables
Commodity	Commodity Code	Is Livestock
Sorghum	0114	No
Onions and shallots, dry (excluding dehydrate	01253.02	No
Sunflower seed	01445	No
Groundnuts, shelled	21421	No
Groundnut oil	2162	No
Sunflower-seed oil, crude	21631.01	No
Butter of Cow Milk	22241.01	No
Wheat and meslin flour	23110	No
Flour of Maize	23120.03	No
Rice, Milled (Husked)	23161.01	No
Raw cane or beet sugar (centrifugal only)	2351f	No
Refined sugar	23520	No
Buffalo	02112	Yes

6.9.2.2.4 Comtrade Units

The qunit codes found in UNSD Tariffline data are reported in this table, along with their correspondences to the standard measurement units suggested by the World Customs Organization. See the introduction section of the "Recommendation of the customs co-operation council on the use of standard units of quantity to facilitate the collection, comparison and analysis of international statistics based on the harmonized system" available at UnitsOfQuantity.ashx.

$6.9.2.2.5 \quad continent_country_mapping_for_total_trade_tables$

TODO: describe what this table contains

6.9.2.2.6 ESS trade global UVs

Unit values (unit_value) at the total trade level are calculated and saved in this datatable, along with their variation rates (variation_unit_value). The region the country belongs to is also reported, as this information is useful to summarize unit values by region.

6.9.2.2.7 ESS trademap YEAR

These databases have already been presented in the Section "HS-FCL-CPC code mapping". They contain the correspondences of country HS codes to the FCL and CPC, by YEAR.

$6.9.2.2.8 \quad ess_trade_exclude_outlier_check$

Items with volatile unit values because they are aggregation of heterogeneous items are excluded from the outlier check. The list with these items is contained in this datatable.

6.9.2.2.9 ess_trade_people_in_charge

People in charge of the trade process get email from the trade plugins at various stages, mainly as confirmation of the successful operations carried out. This table contains the list of these users (and their emails).

6.9.2.2.10 ess_trade_use_new_unsd_format

This table contains the country/year combinations for which the new UNSD data format need to be used.

6.9.2.2.11 EUR/USD conversion

The EUR/USD average yearly nominal exchange rate is reported in this table.

6.9.2.2.12 FCL Units

Unit of measurement for items coded with FAO codes are reported in this table. There are five types of possible units: mt (for metric tons), heads, 1000 heads, number, and \$ value only (for transaction for which no quantity is required).

6.9.2.2.13 Force mirroring

This table contains countries for which the mirroring mechanism is applied, even though they appear as reporters in raw data. The main reason for which a country appears in this list is because data has been considered of low quality or incomplete.

6.9.2.2.14 geonom2fao

The correspondences betwee FAO area codes and geonomenclature (Eurostat country codes) are reported in this table.

6.9.2.2.15 HS to FCL mapping (old)

This table can be ignored: it is a previous HS-FCL mapping table, kept for reference. See "HS to FCL mapping (v5)".

6.9.2.2.16 HS to FCL mapping (v3)

This table can be ignored: it is a previous HS-FCL mapping table, kept for reference. See "HS to FCL mapping (v5)".

6.9.2.2.17 HS to FCL mapping (v4)

Additions to the "HS to FCL mapping (v5)" table (see next table and the "HS-FCL-CPC code mapping" Section) are reported in this table.

6.9.2.2.18 HS to FCL mapping (v5)

The contents of this table were already shown in the "HS-FCL-CPC code mapping" Section. It contains the latest version of the "historical" HS to FCL correspondence table. Any correction to this table is done in the "correction_X" column, where X is the variabole that needs to be corrected (e.g., "correction_startdate" will correct the **startdate** variable).

6.9.2.2.19 HS2012-6 digits Standard

This table contains the correspondences of HS codes at 6 digits to FCL codes. Note that these correspondences are not necessary 1-to-1. Indeed, there are 413 (67%) HS codes that map 1-to-1, while 202 (33%) map many-to-1 (i.e., at least two different HS codes assigned to 1 FCL code).

6.9.2.2.20 HS6 interest codes

The list of HS codes at 6 digits that are of interest to the processing of the trade process are reported in this table. After the first filtering by chapters, this table is used to further subset the raw data that need to be kept and processed. See Section "Data harvesting".

6.9.2.2.21 Livestock weights

Average livestock weight in kilos is reported in this table. It is used by the "Complete Trade Flow CPC" plugin, when raw data has no information about heads (or 1,000 heads) but give weight in kilos. Dividing reported kilos by the average weight in this tables gives the number of animals.

6.9.2.2.22 Reimpute unit values

This table contains a list of countries for whith the "re-imputation" of unit values need to be done. For a description of what "re-imputation" is, please see the "Re-imputation of flows" sub-section.

6.9.2.2.23 Trade outlier country thresholds

Outliers routines are applied for commodities that exceed some quantity threshold (so to avoid analysing very small quantities). This depends of the country. This table reports these thresholds (countries with no threshold will be assigned the default threshold of 1,000). Country codes are M49 codes.

6.9.2.2.24 UNSD Partners Block

Tariff line M49 codes (which are different from official M49) are converted in FAO country codes using this conversion table, provided by Team ENV. In a subsequent step these M49 codes are converted to FAO codes.

6.9.2.3 trade-reports

The datatables contained in this domain have already been presented in the "Pre-Processing Report plugin" Section. These are:

- "Check qty and value included"
- "Import and export content check"
- "Missing data by report"
- "Non-reporting countries"

- "Number records by reporter/year"
- "Reporters by years"

There other datatables with the name corresponding to the previous one, but suffixed "OLD": these were used in a first version of the "Pre-Processing Report" plugin, and are stored for reference. Finally, there are a couple of datatables that were used to keep a log of the plugins runs ("Info runs: complete trade" and "Info runs: total trade"), but a filesystem log mechanism was developed, which contains additional information with respect to tsaid datatables.

6.10 R server

TODO: expand

The following output shows the results of sessionInfo() obtained from a plugin that does not explicitly load any package, in the current (as of June 2020) R server in QA:

```
R version 3.1.2 (2014-10-31)
Platform: x86 64-unknown-linux-gnu (64-bit)
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] faosws_0.9.7
loaded via a namespace (and not attached):
[1] bit 1.1-12 bit64 0.9-5 bitops 1.0-6 chron 2.3-45
[5] curl_2.6 data.table_1.9.6 RCurl_1.95-4.8 RJSONIO_1.3-0
```

6.11 Specific plugins-related information

6.11.1 Standard vs. core plugins

The main difference between standard and core plugins is that the former write data to a user's session, who will then need to save manually the modifications to the dataset, while core plugins write directly to the dataset, with no manual intervention required from the user.

TODO: expand

6.11.2 Plugin scheduling

Plugins can be set to run on a specific time in the future. This is called "plugin scheduling". In the context of the trade processing, usually the "Complete Trade Flow CPC" and "Total Trade CPC" plugins are scheduled to run overnight for the years the validation is being carried out.

Below, the steps for scheduling a plugin are explained, by using the case of the "Complete Trade Flow CPC" plugin.

1. Create a new query to the appropriate dataset (i.e., where the plugin runs; in the example it is the "Bilateral Trade Flow (CPC)" dataset of the "Trade" domain) and click on "Run plugin" (notice that no dimension is specified):

2. After selecting the plugin and entering eventual parameters, click on the "Run later option" available in the "Execution mode" section:

- 3. Choose one of the scheduling options available, namely:
 - Once: the plugin will run only once at the selected day/time.
 - Every: the plugin will run each day at the specific time (in the screenshot, it will run each Monday at 4:00 a.m.); if the "Every day" option is selected, the plugin will run each day at the required time (this is how the trade plugins are set to run, every day at a specific time).
 - Custom schedule (advanced): this is a more advanced schedulin specification, that allows to set seconds, minutes, hours, day of week, day of month, year (as this option is selected a help page can be consulted by clicking on the "Help" button).

Note that in order to avoid that for any given circumstance that can make a plugin fail, both the "Complete Trade Flow CPC" and "Total Trade CPC" plugins are scheduled to run **twice** per night.

Appendix: Accessing/updating files in the R shared drive

As mentioned in the "Raw data: SWS data tables vs. RDS files" Section, the "Complete Trade Flow CPC" reads raw data from RDS files stored in the R shared drive, which is a folder in the SWS server where R plugins can write and read data to/from, and can be accessed also by local PCs in the FAO network by means of a Samba service.

It can be accessed by PCs inside the FAO network at the following addresses:

- QA: \\hqlprsws1.hq.un.fao.org\sws_r_share
- LIVE: \hdots 2.hq.un.fao.org \sws_r share

The location in the SWS server, where R can read from and write to, is in both cases /work/SWS_R_Share.

In what follows, the R shared drive folder will be referenced to simply as "SHARE": the user will need to modify that accordingly if he/she is using a local PC or the SWS server itself.

The UNSD and Eurostat raw tables (for years 2014-2018) are stored in the SHARE/trade/datatables folder. For instance, the UNSD raw data file form 2018 is available as:

```
SHARE/trade/datatables/ct_tariffline_unlogged_2018.rds
```

Notice that the name of the file is the same as the corresponding SWS datatable, except the ".rds" extension.

If the "Complete Trade Flow CPC" finds a raw data table in the R shared drive, it will use it, otherwise it will fallback to reading the SWS datatable. For instance, if 2019 data has not been already saved as an RDS file in the shared drive, the plugin will then execute the command:

```
faosws::ReadDatatable("ct_tariffline_unlogged_2019")
```

while if the data was previously saved, it would execute:

```
readRDS("SHARE/trade/datatables/ct_tariffline_unlogged_2019.rds")
```

The latter brings down the time spent to read the data by a factor of 20 times, reducing the time required to load UNSD and Eurostat raw data from 40 minutes less than 2.

The drawback of using the readRDS() method is that the person in charge of the trade-process need to keep the RDS files updated with respect to any modification occurred to the correspondent SWS datatables. However, given that raw data files are not changed frequently, it is suggested to keep using the readRDS() method, as the performance gained with it outweighs the need to do these infrequent synchronisations.

The following R instructions will download the SWS datatable and will save it to the R shared drive (the examples will use the "ct_tariffline_unlogged_2019" datatable and "SHARE" as name for the shared drive, change both accordingly):

```
library(faosws)
```

```
trade_data <- ReadDatatable("ct_tariffline_unlogged_2019")</pre>
```

saveRDS(trade_data, "SHARE/trade/datatables/ct_tariffline_unlogged_2019.rds")

Appendix: Trade plugins log mechanism

TODO: say something about log

Disclaimer

This Working Paper should not be reported as representing the official view of the FAO. The views expressed in this Working Paper are those of the author and do not necessarily represent those of the FAO or FAO policy. Working Papers describe research in progress by the authors and are published to elicit comments and to further discussion.