Zwischenpräsentation «DeepXRay»

Bachelorarbeit (Frühlingssemester 2020)

Patrick Bucher 21.04.2020

Arbeit

Titel: «DeepXRay»

Auftraggeber: Dr. Tobias Reinhard (seantis GmbH)

Betreuer: Daniel Pfäffli (HSLU – Informatik)

Experte: Jeremy Callner (APG|SGA)

Student: Patrick Bucher

• Student der Informatik im 8. Semester

• seit Februar 2020 als Full Stack Python Developer bei seantis GmbH

2

Ablauf

Domäne: Worum geht es?

Zielsetzung: Was soll erreicht werden?

Modelle: Was war gegeben?

Architektur: Wie lässt sich das kombinieren?

Prototyp: Kann das überhaupt funktionieren?

Evaluation: Wie kann das geprüft werden?

Diskussion, Fragen & Antworten

Domäne (I): Rheumatoide Arthritis

Die rheumatoide Arthritis ist eine Autoimmunerkrankung.

Chronische Entzündungen schädigen das Gelenkgewebe irreparabel.

- unheilbar, jedoch therapierbar
- Zweck der Untersuchung: Krankheitsverläufe mitverfolgen
- Überprüfung von Therapiemassnahmen, Medikamenten

Domäne (2): Untersuchte Gelenke

Abbildung 1: Gelenke der linken Hand (Quelle: Wikimedia Commons, CC BY 4.0)

Domäne (3): Beispiele für Rheumatoide Arthritis (1)

Abbildung 2: linke Hand, gesund (Quelle: SCQM)

Domäne (4): Beispiele für Rheumatoide Arthritis (2)

Abbildung 3: linke Hand, geschädigt (Quelle: SCQM)

Domäne (5): Beispiele für Rheumatoide Arthritis (3)

Abbildung 4: linke Hand, geschädigt (Quelle: SCQM)

Domäne (6): Scoring

Manuelles Scoring durch medizinisches Fachpersonal:

- Ratingen-Score (pro Gelenk), Skala von 0-100% Schädigung
 - · Thema der Arbeit
- Rau-Score (betrachtet verschiedene Körperteile und Gelenke)
 - für vorliegende Arbeit nicht weiter relevant

Zielsetzung

Industrialisierung: bestehende Modelle zu funktionierender Software kombinieren

- Lauffähiger Prototyp basierend auf bestehenden Modellen
 - Anbieten einer API
 - Load Balancing, Parallelisierung, Messaging
 - Evaluation der Performance
 - · Austauschbarkeit von Modellen
- Ausblick
 - Einheitliche Implementierung in aktueller Version
 - · Einheitliche Modellformate
 - Integration in Produktivumgebung

Machine Learning? Software Engineering! ...und etwas Machine Learning.

Modelle

body_part

Erkennt Körperteil auf dem Röntgenbild mit Wahrscheinlichkeit.

joint_detection

Zehn Modelle, jedes Modell extrahiert ein Gelenk aus dem Bild (MCP 1-5, PIP 1-5).

ratingen_score

Stellt Schädigung des Gelenks fest, sechs Kategorien (0-5).

Architektur (1): Integrationsarten

Anforderung

API (Web-Service) zur Verfügung stellen

Integrationsarten (Enterprise Integration Patterns)

- File Transfer
- · Shared Database
- · Remote Procedure Call
- Messaging
- (HTTP, REST)

Architektur (2): Variante 1, HTTP (synchron)

Abbildung 5: Variante 1, HTTP (synchron)

Architektur (3): Datenfluss Variante 1

Abbildung 6: Datenfluss Variante 1

Architektur (4): Variante 2, HTTP (synchron/asynchron)

Abbildung 7: Variante 2, HTTP (synchron/asynchron)

Architektur (5): Datenfluss Variante 2

Abbildung 8: Datenfluss Variante 2

Architektur (6): Variante 3, Messaging

Abbildung 9: Variante 3, Messaging

Architektur (7): Datenfluss Variante 3

Abbildung 10: Datenfluss Variante 3

Architektur (8): Variante 4, Hybrid

Abbildung II: Variante 4, Hybrid

Architektur (9): Datenfluss Variante 4

Abbildung 12: Datenfluss Variante 4

Prototyp (1): Idee

Ziel: Architekturvorschlag evaluieren

Mittel: Text-Repräsentation von Bildern

Prototyp (2): Demo

[Live-Demo]

Prototyp (3): Bewertung

Der Prototyp funktioniert.

Der Client wird bedient – auch bei fehlenden Gelenken.

Die Modelle können parallel ausgeführt werden.

Herausforderungen

- Integrationscode (orchestrator) modular aufbauen.
- Integration der verschiedenen Komponenten durchführen.

Evaluation

Output

Klassifikation? Ranking? Intervall? Mischung!

Metriken

- Anteil korrekter Predictions (global)
- Anteil korrekter Predictions (pro Klasse)
- Almost Correct (±1 Klasse ist «korrekt»)
- Cohen's Kappa: Übereinstimmung Mensch/Maschine
- Cohen's Squared Kappa: berücksichtigt Ungleichverteilung
- Inter Class Correlation: Mensch/Maschine vs. Mensch/Mensch

Diskussion, Fragen & Antworten

 $[{\it diese Folie wurde absichtlich leer gelassen}]$