THIS IS A FLAT SCHEMATIC, NOT A HIERARCHICAL ONE. NETS USE "OFFPAGE CONNECTOR" SYMBOLS TO GO FROM PAGE TO PAGE. ON ANY PAGE, THE NUMBER OF THE CONNECTING PAGE(S) IS SHOWN IN A SMALL NUMBER BELOW THE SIGNAL NAME.

THE SCHEMATIC IS DIVIDED INTO SECTIONS OF RELATED FUNCTIONALITY. THE SECTIONS ARE:

- 1: NOTES AND BLOCK DIAGRAMS
 2: OFF-BOARD SIGNALS (SM AND FRONT PANEL), GLOBAL CLOCKING
- 3: POWER SOURCES AND CONTROLS
- 4: I2C CONTROLS
- 5: FPGA#1 POWER AND SIGNAL (NON-MGT) 6: FPGA#2 POWER AND SIGNAL (NON-MGT)
- 7: FPGA#1 GTY TRANSCEIVERS (MOSTLY FIREFLY)
- 8: FPGA#2 GTY TRANSCEIVERS (MOSTLY FIREFLY)
- 9: BETWEEN-FPGA GTY TRANSCEIVERS

These are some general signal naming conventions:

- 1) Signals connected to the FPGAs contain either "F1" or "F2".
- 2) Signals connected to the Service Module contain "SM".
- 3) Signals connected to the Front Panel contain "FP".
- 4) Signal names starting with "PG" are "Power Good" signals from power modules.
- 5) Signal names starting with "EN" are "Enable" signals to turn on power modules.
- 6) GTY reference clock names indicate FPGA followed by side (F1L, F1R, F2L, F2R), then the reference clock (R0 or R1), finishing with the sequence order (1 thru 7).
- 7) Power source names start with "V_", then the voltage with the letter "V" as a decimal point. (V 3V3 is a 3.3 volt source)
- 8) The MCU I/Os are 3.3 volt and the FPGA I/Os are 1.8 volt. Level shifters are used for the conversion. Signal names on the FPGA side are prefaced with "lov" (low voltage) and signals on the MCU side are prefaced with "hiv" (high voltage).

TO DO:

AP(OLLO CM W/ DUAL A2577, N	/K1
Title 1	I.01: NOTES	
Size	Document Number 6089-119	Rev B

1.02: BLOCK DIAGRAM

Cornell Apollo CMv2

- Each FPGA can directly access up to 52 FireFly channels on the left guads (120-134). The 3 12-lane FireFly transmitters can be powered by 3.8V or 3.3V.
- 52 GTY links are provided between the FPGA sites on the right quads (220-234). These are AC-coupled for Dual-FPGA builds. They are DC-coupled for Single-FPGA builds that use a jumper module on the secondary site. This can provide the primary FPGA with up to 104 FireFly links.
- Other I/O:
 - 2 GTY links for chip-to-chip (or PCI) from each FPGA to the Zynq on the SM (Service Module).
 - 1 GTY link for TCDS from each FPGA to the SM
 - 3 GTY links for various TCDS support modes (Zyng endpoint, FPGA#1 endpoint, between FPGAs in same/different TCDS quad)
 - 6 LVDS pairs between the FPGA sites.
 - 5 LVDS pairs plus 2 single-ended wires from each FPGA site to front panel HDMI-style connectors. For diagnostics or unforeseen I/O needs.
 - 4 LVDS pairs plus 2 single-ended wires from each FPGA site to a 20-pin 1-mm pitch header on the bottom side of the board.
- The MCU and the FPGAs have independent JTAG chains. The FPGA JTAG chain can be accessed from the SM or from the front panel. The MCU JTAG only has front panel access. The MCU code can be changed from an SM serial port. Rev 38, 25 Jan 2022

APOLLO CM W/ DUAL A2577, MK1 1.02: BLOCK DIAGRAM Rev B 6089-119

1.07: SIX 10X20 INTERPOSERS

Apollo CM Dual A2577: Six Off-the-shelf Interposer connections

This diagram shows interposer locations and available quads when 6 10x20 interposers are used to connect the jumper board.

Only quads numbered in black will be routed on the initial version. Quads numbered in red, while accessible to the interposers, will not be routed on the jumper board because they are not used for FireFly connections in this design.

The blue arrows show that the jumper board connects FPGA#2 site signals from the quad 126 pins to the quad 226 pins. The signals are routed on the main PCB to connect to the quad 230 pins on FPGA#1.

Rev 38, 25 Jan 2022

APOLLO CM W/ DUAL A2577, MK1

1.07: SIX 10X20 INTERPOSERS

6089-119

7 of 84

1.09: ON-BOARD OSCILLATOR CLOCKS

Apollo CM Dual A2577: Utility Clock / Reference Clock 0 (R0) Distribution

THE OPTIONAL FRONT PANEL CONNECTOR. THE LHC CLOCK WOULD BE USED FOR

SYSTEM-WIDE SYNCHRONOUS COMMUNICATION

Rev 38, 25 Jan 2022

APOLLO CM W/ DUAL A2577, MK1

1.09: ON-BOARD OSCILLATOR CLOCKS

6089-119
Tuesday, January 25, 2022 Sheet 9 of 8

12

Rev B

1.12: MCU I/O AND INTERNALS

Apollo CM Dual A2577: MCU Connections and Internal Resources

THE SIGNALS THAT START WITH "MGT" ARE HIGH SPEED DIFFERENTIAL PAIRS CONNECTED TO GIGABIT TRANSCEIVERS. THEY ARE INTENDED FOR EITHER PCIE OR AXI-C2C. AC COUPLING CAPACITORS ARE ASSUMED

FPGA#1 AND BACKPLANE CLOCK SIGNALS

2.02: SM HIGH SPEED CONNECTORS

FPGA#2 SIGNALS

THE TCDS SIGNALS ON HIGH SPEED CONNECTOR #2 ARE LABELED "MIXED" BECAUSE THEY CAN EITHER BE REGULAR TCDS SIGNALS WHEN THE SM IS THE TCDS ENDPOINT, OR THEY CAN BE REPEATED TCDS SIGNALS WHEN FPGA#1 IS THE TCDS ENDPOINT.

APOLLO CM W/ DUAL A2577, MK1

Title

2.02: SM HIGH SPEED CONNECTORS

Size | Document Number | Rev | B

2.13: C2C_AND_TCDS_QUADS THE CROSS-CONNECT SIGNALS ON GTY CHANNEL 3 ARE USED TO TRANSFER TCDS DATA FROM THE FPGA#1 MASTER TO THE FPGA#2 SLAVE. THEY ARE NOT USED WHEN THE GTY QUAD 120 ac_pF1L_R0_AB ac_nF1R_R0_L ZYNQ ON THE SM IS THE TCDS ENDPOINT. MGTREFCLK0P_120 MGTREFCLK0N_120 ac_nF1L_R0_AB ac pF1R R1 L >> THE CLOCK NETS MUST BE ASSIGNED TO DIFFERENTIAL PAIRS, AND MUST BE PART OF THE "ECS_DIFFCLK" ELECTRICAL CONSTRAINT SET. GTY QUAD 220 MGTREFCLK1P_120 MGTREFCLK1N_120 ac_nF1R_R1_L **>>** ac_nF1L_R1_AB FPGA#1 BD13 BD12 MGTREFCLK0P_220 MGTREFCLK0N_220 pMGT_SM_TO_F1_1 >> BC11 MGTREFCLK1P_220 MGTREFCLK1N_220 THE "AB" QUADS ARE DEDICATED TO TCDS pCON1_TCDS_IN >>> MGTYRXP0_120 MGTYRXN0 120 nMGT_SM_TO_F1_1 BG33 SIGNALS. THE "L" QUADS CONTAIN BOTH nCON1 TCDS IN >> FPGA#1 TCDS AND C2C FUNCTIONS. TCDS AND C2C pCON1_TCDS_OUT >> MGTYTXP0_120 MGTYTXN0_120 pMGT_F1_TO_SM_1 > NETS COME FROM THE SERVICE BOARD HIGH nCON1_TCDS_OUT >>nMGT_F1_TO_SM_1 >> BF35 MGTYRXP1_120 MGTYRXN1_120 BG20 BG19 MGTYRXP0_220 MGTYRXN0_220 SPEED CONNECTORS pMGT_SM_TO_F1_2 >> MGTYTXP1_120 MGTYTXN1_120 BH12 MGTYTXP0_220 MGTYTXN0_220 pTCDS_FROM_ZYNQ_A nTCDS_FROM_ZYNQ_A BF18 MGTYRXP1_220 MGTYRXN1_220 BJ32 BJ33 MGTYRXP2_120 MGTYRXN2_120 pMGT_F1_TO_SM_2 >> pTCDS_TO_ZYNQ_A BF13 BF12 MGTYTXP1_220 MGTYTXN1_220 MGTYTXP2 120 nMGT_F1_TO_SM_2 >> BJ38 BJ20 BJ19 MGTYRXP2_220 MGTYRXN2_220 MGTYRXP3_120 MGTYRXN3 120 BJ15 BJ14 MGTYTXP2_220 MGTYTXN2_220 MGTYTXP3_120 MGTYTXN3_120 pF1_TCDS_CROSS_RECV_B nF1_TCDS_CROSS_RECV_B C237 BH18 BH17 MGTYRXP3_220 MGTYRXN3_220 0.1 UI 0.1 UF 0402 FPGA_VU13P_A2577 pF1_TCDS_CROSS_XMIT_E nF1_TCDS_CROSS_XMIT_E BG15 BG14 MGTYTXP3_220 MGTYTXN3_220 FPGA_VU13P_A2577 0.1 UF 0402 C241 0.1 UF 0402 0.1 UF 0402 0.1 UF 0402 GTY QUAD 120 pCON2_TCDS_MIXED_IN >>-MGTREFCLK0P_120 MGTREFCLK0N 120 ac nF2L R0 AB nCON2_TCDS_MIXED_IN >> FPGA#2 CAP_JUMPER_DP3T ac_pF2R_R1_L GTY QUAD 220 ac_nF2R_R1_L *>>>* MGTREFCLK0P_220 MGTREFCLK0N_220 pCON2_TCDS_OUT nCON2_TCDS_OUT pMGT_SM_TO_F2_1 >> BC11 MGTREFCLK1P_220 MGTREFCLK1N_220 pCON2_TCDS_MIXED_OUT >>-MGTYRXP1_120 MGTYRXN1_120 nCON2_TCDS_MIXED_OUT >> FPGA#2 MGTYTXP1_120 MGTYTXN1_120 pMGT_F2_TO_SM_1 ≫ nMGT_F2_TO_SM_1 >> BJ32 BJ33 MGTYRXP2_120 MGTYRXN2_120 BG19 MGTYRXP0_220 MGTYRXN0_220 CAP_JUMPER_DP3T BH13 MGTYTXP0_220 MGTYTXN0_220 MGTYTXP2_120 MGTYTXN2_120 BF18 MGTYRXP1_220 MGTYRXN1_220 MGTYRXP3_120 MGTYRXN3 120 pMGT_F2_TO_SM_2 >> MGTYTXP3_120 MGTYTXN3 120 nMGT_F2_TO_SM_2 >> BF12 MGTYTXP1_220 MGTYTXN1 220 BJ20 BJ19 MGTYRXP2_220 MGTYRXN2_220 THESE ARE NOT MECHANICAL SWITCHES. THEY ARE A COLLECTION OF PADS THAT ALLOW JUMPERS TO ROUTE SIGNALS IN THE DESIRED DIRECTION. FPGA_VU13P_A2577 BJ15 MGTYTXP2_220 MGTYTXN2_220 THE JUMPERS CAN EITHER BE ZERO-OHM RESISTORS OR 0.1 UF COUPLING CAPACITORS. THE CHOICE DEPENDS ON WHAT IS INSTALLED IN THE PATH ON THE SM. pF2_TCDS_CROSS_RECV_B nF2_TCDS_CROSS_RECV_B BH18 MGTYRXP3_220 MGTYRXN3 220 pF2_TCDS_CROSS_XMIT_B nF2_TCDS_CROSS_XMIT_B BG15 BG14 MGTYTXP3_220 MGTYTXN3_220 THE "SWITCHES" ARE SHOWN IN THE "DOWN" POSITION. IN THE "UP" POSITION, FPGA#1 IS THE TCDS ENDPOINT. THE ATCA BACKPLANE SIGNALS AND THE LOCALLY REPEATED TCDS SIGNALS ARE ALL LOCATED IN THE SAME GTY QUAD (120). "TTC" DATA IS RECEIVED BY FPGA#1 USING THE "CON1_TCDS_IN" CONNECTION ON CHANNEL 0. "TTC-TYPE" DATA IS SENT TO FPGA#2 USING THE "TCDS_CROSS_XMIT_A" CONNECTION ON CHANNEL 3. "TTC-TYPE" DATA IS SENT TO THE ZYNQ ON THE SM USING THE "TCDS_TO_ZYNQ_A" CONNECTION ON CHANNEL 2. FPGA_VU13P_A2577 "TTS-TYPE" RESPONSE DATA FROM FPGA#2 IS RECEIVED ON THE "TCDS_CROSS_RECV_A" CONNECTION ON CHANNEL 3. "TTS-TYPE" RESPONSE DATA FROM THE SM COMES IN ON THE "TCDS_FROM_ZYNQ_A" CONNECTION ON CHANNEL 2 FPGA#1 MERGES THE "TTS" RESPONSE DATA FROM THE SM AND FPGA#2, AND SENDS IT TO THE ATCA BACKPLANE USING THE "CON1_TCDS_OUT" CONNECTION ON CHANNEL 0. IN THE "MIDDLE" POSITION, THE SM IS THE TCDS ENDPOINT. EACH FPGA HAS ITS OWN CONNECTION TO THE SM. NO CROSS CONNECTIONS BETWEEN THE TWO FPGAS ARE USED "TTC-TYPE" DATA IS RECEIVED BY FPGA#1 USING THE "CON1_TCDS_IN" CONNECTION ON CHANNEL 0. "TTC-TYPE" DATA IS RECEIVED BY FPGA#2 USING THE "CON2_TCDS_MIXED_IN / CON2_TCDS_IN" CONNECTION ON CHANNEL 0 "TTS-TYPE" RESPONSE DATA FROM FPGA#1 IS SENT TO THE SM USING THE "CON1_TCDS_OUT" CONNECTION ON CHANNEL 0. "TTS-TYPE" RESPONSE DATA FROM FPGA#2 IS SENT TO THE SM USING THE "CON2_TCDS_OUT" CONN2_TCDS_MIXED_OUT" CONNECTION ON CHANNEL 0. THE SM MERGES THE "TTS" RESPONSE DATA FROM THE TWO FPGAS. IN THE "DOWN" POSITION, FPGA#1 IS THE TCDS ENDPOINT. THE ATCA BACKPLANE SIGNALS ARE CONNECTED TO GTY QUAD 120. RELAYING THE
"TTC-TYPE" DATA TO FPGA#2 AND THE SM IS DONE IN A DIFFERENT GTY QUAD, QUAD 220. THE "TTS-TYPE" RESPONSE DATA FROM FPGA#2 AND THE SM IS RECEIVED IN QUAD 220.
IT IS COMBINED WITH "TTS-TYPE" DATA FROM FPGA#1 AND SENT TO THE ATCA BACKPLANE FROM QUAD 120. APOLLO CM W/ DUAL A2577, MK1 "TTC" DATA IS RECEIVED BY FPGA#1 USING THE "CON1_TCDS_IN" CONNECTION ON CHANNEL 0.
"TTC-TYPE" DATA IS SENT TO FPGA#2 USING THE "TCDS_CROSS_XMIT_B" CONNECTION ON CHANNEL 3 OF QUAD 220.
"TTC-TYPE" DATA IS SENT TO THE ZYNQ ON THE SM USING THE "TCDS_TO_ZYNQ_B" CONNECTION ON CHANNEL 2 OF QUAD 220. 2.13: C2C AND TCDS QUADS "TTS-TYPE" RESPONSE DATA FROM FPGA#2 IS RECEIVED ON THE "TCDS_CROSS_RECV_B" CONNECTION ON CHANNEL 3 OF QUAD 220. "TTS-TYPE" RESPONSE DATA FROM THE SM COMES IN ON THE "TCDS_FROM_ZYNQ_B" CONNECTION ON CHANNEL 2 OF QUAD 220. FPGA#1 MERGES THE "TTS" RESPONSE DATA FROM THE SM AND FPGA#2, AND SENDS IT TO THE ATCA BACKPLANE USING THE "CON1_TCDS_OUT" CONNECTION ON CHANNEL 0 OF QUAD 120. 6089-119 В

GENERAL NOTES:

V M3V3 IS THE "MANAGEMENT" POWER. IT PROVIDES POWER TO THE POWER SOADENCING CIRCUIT. IT IS ALWAYS ON WHEN +12V IS SUPPLIED TO THE BOARD.

UNLESS NOTED, PLACE ALL OF THE CAPACITORS ON THIS SHEET NEAR THE ASSOCIATED REGULATOR

NOTES:

- NOTE 1 THIS DEVICE DOES NOT REQUIRE ANY EXTERNAL INPUT CAPACITORS.
- NOTE 2 THIS DEVICE DOES NOT REQUIRE ANY EXTERNAL OUTPUT CAPACITORS.

NOTE 3 UNDERVOLTAGE LOCKOUT RESISTOR
R = 14.81 * (6.81 / ((6.81*Ven) - 18.16))
A 4.7K RESISTOR GIVES 5.8 VOLTS MINIMUM TURNON VOLTAGE

NOTE 4 OUTPUT SETPOINT RESISTOR

R = 1.182 / (VOUT - 0.591)FOR 3.3 VOLTS, R = 436 OHMS (IF R=432 THEN V=3.327)

NOTE 5 THE CURRENT SENSE RESISTOR IS A 4-WIRE DEVICE. A RESISTANCE OF 5 MILLIOHMS AND A CURRENT OF 5 AMPS WILL PRODUCE A VOLTAGE OF 25 MILLIVOLTS.

THE LD006C REGULATOR IS RATED FOR 6 AMPS. IF MORE THAN 5 AMPS IS REQUIRED, THE SENSE RESISTOR WILL NEED TO BE LESS THAN 5 MILLIOHMS.

APC	APOLLO CM W/ DUAL A2577, MK1							
Title								
3.01: POWER MANAGEMENT M3V3								
Size	Document Number					Rev		
	6089-119					В		
Date:	Wednesday, January 05, 2022	Sheet	26	of	84			

5.06 FPGA#1 I/O SLR0 THESE BANKS ARE NUMBERED THE SAME IN THE VU13P AND VU9P, AND THE PIN NUMBERS ARE THE SAME. THEY ARE IN SLR#0 FOR THE VU13P AND SLR#0 FOR THE VU9P. SITE VU13P BANK BANK 61 61 62 63 Ε 62 63 VCCO_63 AU33 VCCO_63 AW37 VCCO_63 BC35 VCCO_63 BC35 VCCO_63 BC35 VCCO_63 CCCO_63 CCCC_63 CCCC_63 CCC_63 AV30 BA31 BB28 BE29 BF26 BH30 BJ27 BC36 IO_L10N_T1U_N7_QBC_AD4N_63 IO L10N T1U N7 QBC AD4N 61 IO L10N T1U N7 QBC AD4N 62 VCCO_62 VCCO_62 VCCO_62 VCCO_62 VCCO_62 VCCO_62 BE21 BH26 IO_L10P_T1U_N6_QBC_AD4P_62 BB36 IO_L10P_T1U_N6_QBC_AD4P_63 IO L10P T1U N6 QBC AD4P 61 BF22 IO_L11N_T1U_N9_GC_61 BF28 IO_L11N_T1U_N9_GC_62 BB35 IO_L11N_T1U_N9_GC_63 BE22 IO_L11P_T1U_N8_GC_61 BF27 IO_L11P_T1U_N8_GC_62 BA35 IO_L11P_T1U_N8_GC_63 VREF_62 AV28 BB34 IO_L12N_T1U_N11_GC_63 BE23 IO_L12N_T1U_N11_GC_61 AV23 OMIT "VREF" AND "VRP" RESISTORS BE27 IO_L12N_T1U_N11_GC_62 R377 1K 0402 VREF 63 BD23 IO_L12P_T1U_N10_GC_61 BE26 IO L12P_T1U_N10_GC_62 BA34 IO_L12P_T1U_N10_GC_63 OMIT "VRFF" AND "VRP" RESISTORS ON UNUSED I/O BANKS. BD24 IO_L13N_T2L_N1_GC_QBC_61 BD29 IO_L13N_T2L_N1_GC_QBC_62 AW36 IO_L13N_T2L_N1_GC_QBC_63 AW35 IO_L13P_T2L_N0_GC_QBC_63 BD25 IO_L13P_T2L_N0_GC_QBC_61 BC28 IO_L13P_T2L_N0_GC_QBC_62 BC23 IO_L14N_T2L_N3_GC_61 AY36 IO_L14N_T2L_N3_GC_63 BE28 IO_L14N_T2L_N3_GC_62 nF1_TEST_CONN_0 >> BC24 IO_L14P_T2L_N2_GC_61 BD28 IO_L14P_T2L_N2_GC_62 AY35 IO_L14P_T2L_N2_GC_63 pF1_TEST_CONN_0 >> BB25 IO_L15N_T2L_N5_AD11N_61 BE30 IO_L15N_T2L_N5_AD11N_62 AV37 IO_L15N_T2L_N5_AD11N_63 BD30 IO_L15P_T2L_N4_AD11P_62 AV36 IO_L15P_T2L_N4_AD11P_63 BC27 IO_L16N_T2U_N7_QBC_AD3N_62 AV33 IO_L16N_T2U_N7_QBC_AD3N_63 BD26 IO_L16N_T2U_N7_QBC_AD3N_61 BC26 IO L16P_T2U_N6_QBC_AD3P_61 BB27 IO_L16P_T2U_N6_QBC_AD3P_62 AV32 IO_L16P_T2U_N6_QBC_AD3P_63 BA24 IO_L17N_T2U_N9_AD10N_61 BC31 IO_L17N_T2U_N9_AD10N_62 AW34 IO_L17N_T2U_N9_AD10N_63 BA25 IO_L17P_T2U_N8_AD10P_61 BB31 IO_L17P_T2U_N8_AD10P_62 AW33 IO_L17P_T2U_N8_AD10P_63 BC22 BC29 IO_L18N_T2U_N11_AD2N_62 AV34 IO_L18N_T2U_N11_AD2N_63 IO_L18N_T2U_N11_AD2N_61 BB22 IO_L18P_T2U_N10_AD2P_61 BB29 IO_L18P_T2U_N10_AD2P_62 AU34 IO_L18P_T2U_N10_AD2P_63 AW24 IO_L19N_T3L_N1_DBC_AD9N_61 BA29 IO_L19N_T3L_N1_DBC_AD9N_62 AU37 IO_L19N_T3L_N1_DBC_AD9N_63 pF1_TEST_CONN_5 >> AW25 IO_L19P_T3L_N0_DBC_AD9P_61 BA28 IO_L19P_T3L_N0_DBC_AD9P_62 AU36 IO_L19P_T3L_N0_DBC_AD9P_63 nF1_TEST_CONN_6 >> BE32 IO_L1N_T0L_N1_DBC_63 BL23 IO_L1N_T0L_N1_DBC_61 BJ28 IO_L1N_T0L_N1_DBC_62 BH28 IO_L1P_T0L_N0_DBC_62 BE31 IO_L1P_T0L_N0_DBC_63 BL24 IO_L1P_T0L_N0_DBC_61 AW23 IO_L20N_T3L_N3_AD1N_61 AY28 IO_L20N_T3L_N3_AD1N_62 AU32 IO_L20N_T3L_N3_AD1N_63 AV24 IO_L20P_T3L_N2_AD1P_61 AW28 IO_L20P_T3L_N2_AD1P_62 AT32 IO_L20P_T3L_N2_AD1P_63 BA23 IO_L21N_T3L_N5_AD8N_61 AR37 IO_L21N_T3L_N5_AD8N_63 BA30 IO_L21N_T3L_N5_AD8N_62 nF1_TEST_CONN_4 >> AY23 IO_L21P_T3L_N4_AD8P_61 AY30 IO_L21P_T3L_N4_AD8P_62 AR36 IO_L21P_T3L_N4_AD8P_63 F1 TEST CONN 4 >> AV31 IO_L22N_T3U_N7_DBC_AD0N_62 AT34 IO_L22N_T3U_N7_DBC_AD0N_63 BA27 IO_L22N_T3U_N7_DBC_AD0N_61 IO_L22P_T3U_N6_DBC_AD0P_61 AT33 IO_L22P_T3U_N6_DBC_AD0P_63 AU31 IO_L22P_T3U_N6_DBC_AD0P_62 AW29 IO_L23N_T3U_N9_62 AY26 IO_L23N_T3U_N9_61 AT35 IO_L23N_T3U_N9_63 AW26 IO_L23P_T3U_N8_61 AV29 IO_L23P_T3U_N8_62 AR35 IO_L23P_T3U_N8_63 pF1 TEST CONN 2 >> AV26 IO_L24N_T3U_N11_61 AY31 IO_L24N_T3U_N11_62 AR34 IO_L24N_T3U_N11_63 nF1 TEST CONN 1 >> AV27 IO_L24P_T3U_N10_61 AW31 IO_L24P_T3U_N10_62 AR33 IO_L24P_T3U_N10_63 BC32 IO_L2N_T0L_N3_63 BL22 IO_L2N_T0L_N3_61 BL28 IO_L2N_T0L_N3_62 BK22 IO_L2P_T0L_N2_61 BL27 IO_L2P_T0L_N2_62 BB32 IO_L2P_T0L_N2_63 BJ24 IO_L3N_T0L_N5_AD15N_61 BJ30 IO_L3N_T0L_N5_AD15N_62 BA32 IO_L3N_T0L_N5_AD15N_63 BJ25 IO_L3P_T0L_N4_AD15P_61 BJ29 IO_L3P_T0L_N4_AD15P_62 AY32 IO_L3P_T0L_N4_AD15P_63 BK28 IO_L4N_T0U_N7_DBC_AD7N_62 BA33 IO_L4N_T0U_N7_DBC_AD7N_63 BK23 IO_L4N_T0U_N7_DBC_AD7N_61 IO_L4P_T0U_N6_DBC_AD7P_61 BK27 IO_L4P_T0U_N6_DBC_AD7P_62 AY33 IO_L4P_T0U_N6_DBC_AD7P_63 THIS IS THE 40 MHZ RECOVERED TCDS CLOCK, USING BANK 62 KEEPS THIS BD33 IO_L5N_T0U_N9_AD14N_63 BL25 IO_L5N_T0U_N9_AD14N_61 BL30 IO_L5N_T0U_N9_AD14N_62 BK25 IO_L5P_T0U_N8_AD14P_61 BK30 IO_L5P_T0U_N8_AD14P_62 BC33 IO_L5P_T0U_N8_AD14P_63 INTHE SAME SLR AS THE TCDS LOGIC. BH23 IO_L6N_T0U_N11_AD6N_61 BK26 IO_L6N_T0U_N11_AD6N_62 BD34 IO_L6N_T0U_N11_AD6N_63 bc_nF1_TCDS_RECOV_CLK >> BJ26 IO_L6P_T0U_N10_AD6P_62 BH24 IO_L6P_T0U_N10_AD6P_61 bc_pF1_TCDS_RECOV_CLK >>> BC34 IO_L6P_T0U_N10_AD6P_63 BG24 IO_L7N_T1L_N1_QBC_AD13N_61 BG27 IO_L7N_T1L_N1_QBC_AD13N_62 BD36 IO_L7N_T1L_N1_QBC_AD13N_63 nF2F1 SPARE2 >> BG25 IO_L7P_T1L_N0_QBC_AD13P_61 BG26 IO_L7P_T1L_N0_QBC_AD13P_62 BD35 IO_L7P_T1L_N0_QBC_AD13P_63 BD37 IO_L8N_T1L_N3_AD5N_63 BG22 IO_L8N_T1L_N3_AD5N_61 BG30 IO_L8N_T1L_N3_AD5N_62 nF2F1_SPARE1 >> BF23 IO_L8P_T1L_N2_AD5P_61 BF29 IO_L8P_T1L_N2_AD5P_62 BC37 IO_L8P_T1L_N2_AD5P_63 pF2F1 SPARE1 >> BF24 IO_L9N_T1L_N5_AD12N_61 BH29 IO_L9N_T1L_N5_AD12N_62 BB37 IO_L9N_T1L_N5_AD12N_63 F2F1 SPARE0 >> BF25 IO_L9P_T1L_N4_AD12P_61 BG29 IO_L9P_T1L_N4_AD12P_62 BA37 IO_L9P_T1L_N4_AD12P_63 OMIT "VREF" AND
"VRP" RESISTORS ON
UNUSED I/O BANKS.

AY37

| IO_L9P_T1L_N4_AD12
| IO_T0U_N12_VRP_63 OMIT "VREF" AND "VRP" RESISTORSBH22 BL29 IO_T0U_N12_VRP_62 IO T0U N12 VRP 61 ON UNUSED I/O BANKS AY37 IO_T1U_N12_63 BE25 IO_T1U_N12_61 BF30 IO_T1U_N12_62 BB30 IO_T2U_N12_62 AU35 IO_T2U_N12_63 BB24 IO_T2U_N12_61 AW30 IO_T3U_N12_62 AT37 IO_T3U_N12_63 AY25 IO_T3U_N12_61 FPGA_VU13P_A2577 FPGA_VU13P_A2577 FPGA VU13P A2577 APOLLO CM W/ DUAL A2577, MK1 5.06 FPGA#1 I/O SLR0 6089-119

5.08: FPGA#1 I/O SLR2 THESE BANKS ARE NUMBERED DIFFERENTLY IN THE VU13P AND VU9P, BUT THE PIN NUMBERS ARE THE SAME. THEY ARE IN SLR#2 FOR THE VU13P AND SLR#1 FOR THE VU9P. SITE VU13P VU9P BANK BANK THE TRI-COLOR LED IS CONNECTED TO DIFFERENT PINS ON EACH FPGA, IN ORDER TO SIMPLIFY LAYOUT. G H 70 67 71 68 IO_L10N_T1U_N7_QBC_AD4N_70 IO_L10N_T1U_N7_QBC_AD4N_71 VCCO_70 VCCO_70 VCCO_70 VCCO_70 VCCO_70 B30 IO_L10P_T1U_N6_QBC_AD4P_71 IO_L10P_T1U_N6_QBC_AD4P_70 A29 IO_L11N_T1U_N9_GC_71 IO_L11N_T1U_N9_GC_70 ac_nF1L_X12_R0_CLK >> F1 LED GREEN >> P33 IO_L11P_T1U_N8_GC_70 ac_pF1L_X12_R0_CLK >>> R33 IO_L12N_T1U_N11_GC_70 IO_L12P_T1U_N10_GC_70 pF1F2_SPARE2 >> ac nF1L X4 R0 CLK IO_L13N_T2L_N1_GC_QBC_70 K31 IO_L1P_T0L_N0_DBC_71 N32 IO_L13P_T2L_N0_GC_QBC_70 ac_pF1L_X4_R0_CLK >>> H30 IO_L2N_T0L_N3_71 N34 IO_L14N_T2L_N3_GC_70 J29 IO_L2P_T0L_N2_71 N33 IO_L14P_T2L_N2_GC_70 N37 IO_L15N_T2L_N5_AD11N_70 J30 IO_L3N_T0L_N5_AD15N_71 THESE ARE LOGIC-CIRCUIT CLOCKS SOURCED FROM AN ON-BOARD K30 IO_L3P_T0L_N4_AD15P_71 N36 IO_L15P_T2L_N4_AD11P_70 OSCILLATOR, EITHER DIRECTLY OR M35 IO_L16N_T2U_N7_QBC_AD3N_70 G29 IO_L4N_T0U_N7_DBC_AD7N_71 THROUGH A SYNTHESIZER. THEY MUST BE CONNECTED TO A GLOBAL CLOCK M34 IO_L16P_T2U_N6_QBC_AD3P_70 H29 IO_L4P_T0U_N6_DBC_AD7P_71 F30 IO_L5N_T0U_N9_AD14N_71 M37 IO_L17N_T2U_N9_AD10N_70 G30 IO_L5P_T0U_N8_AD14P_71 M36 IO_L17P_T2U_N8_AD10P_70 lovF1_TO_MCU F29 IO_L6N_T0U_N11_AD6N_71 L34 IO_L18N_T2U_N11_AD2N_70 F28 IO_L6P_T0U_N10_AD6P_71 L33 IO_L18P_T2U_N10_AD2P_70 K35 IO_L19N_T3L_N1_DBC_AD9N_70 D29 IO_L7N_T1L_N1_QBC_AD13N_71 nF1F2 SPARE1 >> V37 IO_L1N_T0L_N1_DBC_70 D30 IO_L8N_T1L_N3_AD5N_71 V36 IO_L1P_T0L_N0_DBC_70 E30 IO_L8P_T1L_N2_AD5P_71 I2C_SCL_F1_GENERIC >> pF1F2 SPARE0 J33 IO_L20N_T3L_N3_AD1N_70 B29 IO_L9N_T1L_N5_AD12N_71 J32 IO_L20P_T3L_N2_AD1P_70 C28 IO_L9P_T1L_N4_AD12P_71 K37 IO_L21N_T3L_N5_AD8N_70 H28 IO_T0U_N12_VRP_71 VERIFY THAT A GENERIC I2C BUS CAN BE CONNECTED HERE. PIN B29 IS PULLED HIGH ON FPGA#1 AND L37 IO_L21P_T3L_N4_AD8P_70 IS TIED TO GND ON FPGA#2. IT ALLOWS THE FIRMWARE TO KNOW WHICH FPGA IT IO_T1U_N12_71 K33 IO_L22N_T3U_N7_DBC_AD0N_70 IS RUNNING IN. K32 IO_L22P_T3U_N6_DBC_AD0P_70 FPGA_VU13P_A2577 J36 IO_L23N_T3U_N9_70 THE "F2F1 SPARE" SIGNALS ARE OUTPUTS FROM F2 AND INPUTS TO F1. K36 IO_L23P_T3U_N8_70 THE "F1F2_SPARE" SIGNALS ARE OUTPUTS FROM F1 AND INPUTS TO F2. J35 IO_L24N_T3U_N11_70 THEY ARE INTENDED FOR DEBUGGING OR FOR UNFORSEEN I/O NEEDS BETWEEN THE TWO FPGAS. EACH PAIR IS ROUTED AS A 100 OHM DIFFERENTIAL PAIR. ______IO_L24P_T3U_N10_70 T37 IO_L2N_T0L_N3_70 THE "SPARE2" SIGNALS ARE CONNECTED TO CLOCK INPUT PINS ON THE FPGA U37 IO_L2P_T0L_N2_70 U36 IO_L3N_T0L_N5_AD15N_70 V34 IO_L5N_T0U_N9_AD14N_70 V33 IO_L5P_T0U_N8_AD14P_70 U32 IO_L6N_T0U_N11_AD6N_70 V32 IO_L6P_T0U_N10_AD6P_70 P35 IO_L7N_T1L_N1_QBC_AD13N_70 P31 IO_L8N_T1L_N3_AD5N_70 R31 IO_L8P_T1L_N2_AD5P_70 R37 IO_L9N_T1L_N5_AD12N_70 R36 IO_L9P_T1L_N4_AD12P_70 T35 IO_T0U_N12_VRP_70 T34 IO_T1U_N12_70 P36 IO_T2U_N12_70 L32 IO_T3U_N12_70 FPGA_VU13P_A2577 APOLLO CM W/ DUAL A2577, MK1 5.08: FPGA#1 I/O SLR2 6089-119

5.10: FPGA#1 TEST CONNECTOR

THIS CONNECTOR IS LOCATED ON THE FRONT PANEL. IT IS A RE-PURPOSED 19-PIN HDMI CONNECTOR. IT WAS CHOSEN BECAUSE THE PINS ARE RECESSED AND CANNOT BE TOUCHED, AND BECAUSE THE STANDARD CABLES OFFER 5 HIGH-SPEED SHIELDED PAIRS AND 4 UNCOMMITTED WIRES.

TWO UNCOMMITTED WIRES ARE USED FOR SINGLE-ENDED SIGNALS, ONE FOR 3.3 VOLTS, AND ONE FOR GND.

THE CONNECTOR SITE IS INTENDED FOR DEBUGGING OR FOR UNFORSEEN I/O NEEDS. EACH PAIR IS ROUTED AS A 100 OHM DIFFERENTIAL PAIR.

THE "F1_TEST_CONN_0" SIGNAL IS CONNECTED TO GLOBAL CLOCK CAPABLE INPUT PINS.

PIN ASSIGNMENT

APOLLO CM W/ DUAL A2577, MK1

Title
5.10: FPGA#1 TEST CONNECTOR

Size Document Number Rev
6089-119 B

6.04: FPGA#2 CONFIGURATION QUAD SPI CONFIG FLASH R396 DNP 0402 V_1V8 V 1V8 MUST BE TIED TO "VCCINT" OR "GND". V_F2_INT <**↓** DO NOT CONNECT TO "VCCO_0". CONNECT TO "GND" FOR STANDARD BANK 0 R399 ₀ 0402 C801 AE13 V_1V8 CONFIGURATION BITSTREAM LENGTHS VU9P 641,272,864 VU13P 906,547,008 POR DELAY. GND∢ POR_OVERRIDE VCCO_0 AG13 0805 6.3V R113 R126 R114 VCCO 0 2.2K 0603 4.7K 0603 4.7K 0603 ∇ GND U72 AY14 15 DQ0 R301 0 0402 D00_MOSI_0 DNU 3 P14 THIS PIN MUST BE TIED TO "GND". GND⊲ **RSVDGND** DQ1 D01_DIN_0 DNU_6 CONNECTING THIS PIN TO "GND" ENABLES PULLUPS ON ALL I/O PINS DURING AT14 R303 DNP 0402 DQ2 D02_0 DNU_11 DNU_12 1 DQ3 CONFIGURATION. THE PULLUPS ARE ABOUT D03_0 15K AT 1.8 VOLTS. IF A PULLDOWN IS DNU 14 AM14 7 S# GND∢ **--**⊳V_1V8 REQUIRED, IT MUST BE SMALLER THAN 4K TO PUDC_B_0 RDWR_FCS_B_ DROP THE VOLTAGE BELOW 0.4 VOLTS. THIS AD13 CCLK_0 C909 0.1 UF PIN MUST NOT FLOAT. R300 1K 0402 MT25QU01 V_1V8 **<**─ 0402 V14 AK14 . GND M2_0 PROGRAM_B_0 0603 4.7K R479 R380 DNP 0402 F2_CFG_DONE V_1V8 **<**-DONE 0 0603 4.7K R483 /F2_CFG_DONE R384 0 0402 Y14 GND<₁ 0603 4.7K R401 M1_0 **→**V_3V3 INIT B 0 M[2:0] MODE R387 ₀ 0402 Master serial 001 Master SPI Master BPI R391 DNP 0402 100 Master SelectMAP →GND THIS DESIGN DOES NOT USE ENCRYPTION, SO "VBATT" CAN BE TIED TO "GND" AB14 GND⊲ JTAG only Q12 FET_N_1.8V 110 Slave SelectMAP 111 Slave Serial PULLUPS/PULLDOWNS ON THE FPGA_VU13P_A2577 **BOOT MODE CONFIGURATION** INPUTS MUST BE 1K OR LESS. 0603 4.7K R412 . GND **--**√V_1V8 WHEN "FPGA_CFG_FROM_FLASH" IS ASSERTED (HĪGH), THE FPGA WILL BE ABLE TO BOOT FROM THE FLASH Q17 MEMORY. WHEN IT IS NEGATED (LOW), F2_CFG_START >>-THE FPGA WILL ONLY BE ABLE TO BOOT FROM JTAG. FET_N_1.8V FPGA_CFG_FROM_FLASH >>24.44 R405 4.7K 0603 GND⊲ . GND THE FPGA CAN BE REPROGRAMMED BY PULSING "F2_CFG_START" FROM THE MCU. APOLLO CM W/ DUAL A2577, MK1 6.04: FPGA#2 CONFIGURATION Document Number Rev B 6089-119

6.06 FPGA#2 I/O SLR0 THESE BANKS ARE NUMBERED THE SAME IN THE VU13P AND VU9P, AND THE PIN NUMBERS ARE THE SAME. THEY ARE IN SLR#0 FOR THE VU13P AND SLR#0 FOR THE VU9P. SITE VU13P BANK BANK D E 61 62 63 61 62 63 AT36 AU33 AW37 AY34 BC35 BD32 AV30 BA31 BB28 BE29 BF26 BH30 BJ27 BC36 IO_L10N_T1U_N7_QBC_AD4N_63 IO L10N T1U N7 QBC AD4N 61 IO_L10N_T1U_N7_QBC_AD4N_62 VCCO_62 VCCO_62 VCCO_62 VCCO_62 VCCO_62 VCCO_62 BB36 IO_L10P_T1U_N6_QBC_AD4P_63 BE21 BH26 IO_L10P_T1U_N6_QBC_AD4P_62 IO L10P T1U N6 QBC AD4P 61 BF22 IO_L11N_T1U_N9_GC_61 BF28 IO_L11N_T1U_N9_GC_62 BB35 IO_L11N_T1U_N9_GC_63 BE22 IO_L11P_T1U_N8_GC_61 BF27 IO_L11P_T1U_N8_GC_62 BA35 IO_L11P_T1U_N8_GC_63 VREF_62 AV28 BE23 IO_L12N_T1U_N11_GC_61 OMIT "VREF" AND
"VRP" RESISTORS ON
UNUSED I/O BANKS. BE27 IO_L12N_T1U_N11_GC_62 BB34 IO_L12N_T1U_N11_GC_63 R456 1K 0402 VREF 6 BA34 IO L12P_T1U_N10_GC_63 BD23 IO_L12P_T1U_N10_GC_61 BE26 IO L12P_T1U_N10_GC_62 OMIT "VREF" AND "VRP" RESISTORS ON UNUSED I/O BANKS. BD24 IO_L13N_T2L_N1_GC_QBC_61 BD29 IO_L13N_T2L_N1_GC_QBC_62 AW36 IO_L13N_T2L_N1_GC_QBC_63 BD25 IO_L13P_T2L_N0_GC_QBC_61 BC28 IO_L13P_T2L_N0_GC_QBC_62 AW35 IO_L13P_T2L_N0_GC_QBC_63 BC23 IO_L14N_T2L_N3_GC_61 BE28 IO_L14N_T2L_N3_GC_62 AY36 IO_L14N_T2L_N3_GC_63 nF2_TEST_CONN_0 >> BC24 IO L14P_T2L_N2_GC_61 pF2_TEST_CONN_0 >> BD28 IO_L14P_T2L_N2_GC_62 AY35 IO_L14P_T2L_N2_GC_63 BB25 IO_L15N_T2L_N5_AD11N_61 BE30 IO_L15N_T2L_N5_AD11N_62 AV37 IO_L15N_T2L_N5_AD11N_63 BD30 IO_L15P_T2L_N4_AD11P_62 AV36 IO_L15P_T2L_N4_AD11P_63 BC27 IO_L16N_T2U_N7_QBC_AD3N_62 AV33 IO_L16N_T2U_N7_QBC_AD3N_63 BD26 IO_L16N_T2U_N7_QBC_AD3N_61 BB27 IO L16P_T2U_N6_QBC_AD3P_62 AV32 IO L16P_T2U_N6_QBC_AD3P_63 BC26 IO L16P_T2U_N6_QBC_AD3P_61 BA24 IO_L17N_T2U_N9_AD10N_61 BC31 IO _L17N_T2U_N9_AD10N_62 AW34 IO_L17N_T2U_N9_AD10N_63 BA25 IO_L17P_T2U_N8_AD10P_61 BB31 IO_L17P_T2U_N8_AD10P_62 AW33 IO_L17P_T2U_N8_AD10P_63 AV34 IO_L18N_T2U_N11_AD2N_63 BC22 BC29 IO_L18N_T2U_N11_AD2N_62 IO_L18N_T2U_N11_AD2N_61 BB22 IO_L18P_T2U_N10_AD2P_61 BB29 IO_L18P_T2U_N10_AD2P_62 AU34 IO L18P_T2U_N10_AD2P_63 AW24 IO_L19N_T3L_N1_DBC_AD9N_61 BA29 IO L19N_T3L_N1_DBC_AD9N_62 AU37 IO L19N_T3L_N1_DBC_AD9N_63 F2 TEST CONN 5 >> AW25 IO_L19P_T3L_N0_DBC_AD9P_61 BA28 IO_L19P_T3L_N0_DBC_AD9P_62 AU36 IO_L19P_T3L_N0_DBC_AD9P_63 F2_TEST_CONN_6 >> BE32 IO_L1N_T0L_N1_DBC_63 BL23 IO_L1N_T0L_N1_DBC_61 BJ28 IO_L1N_T0L_N1_DBC_62 BE31 IO L1P_T0L_N0_DBC_63 BL24 IO_L1P_T0L_N0_DBC_61 BH28 IO_L1P_T0L_N0_DBC_62 AW23 IO_L20N_T3L_N3_AD1N_61 AY28 IO_L20N_T3L_N3_AD1N_62 AU32 IO_L20N_T3L_N3_AD1N_63 AW28 IO_L20P_T3L_N2_AD1P_62 AV24 IO_L20P_T3L_N2_AD1P_61 AT32 IO_L20P_T3L_N2_AD1P_63 BA23 IO_L21N_T3L_N5_AD8N_61 BA30 IO_L21N_T3L_N5_AD8N_62 AR37 IO_L21N_T3L_N5_AD8N_63 nF2_TEST_CONN_4 >>> AR36 IO_L21P_T3L_N4_AD8P_63 AY23 IO_L21P_T3L_N4_AD8P_61 AY30 IO L21P_T3L_N4_AD8P_62 pF2_TEST_CONN_4 >> BA27 IO_L22N_T3U_N7_DBC_AD0N_61 AV31 IO_L22N_T3U_N7_DBC_AD0N_62 AT34 IO_L22N_T3U_N7_DBC_AD0N_63 nF2 TEST CONN 3 >> AU31 IO_L22P_T3U_N6_DBC_AD0P_62 AT33 IO_L22P_T3U_N6_DBC_AD0P_63 AY27 IO_L22P_T3U_N6_DBC_AD0P_61 pF2_TEST_CONN_3 >> AY26 IO_L23N_T3U_N9_61 AW29 IO_L23N_T3U_N9_62 AT35 IO_L23N_T3U_N9_63 __AV29 IO_L23P_T3U_N8_62 AR35 IO_L23P_T3U_N8_63 AW26 IO_L23P_T3U_N8_61 pF2 TEST CONN 2 >> AV26 IO_L24N_T3U_N11_61 AY31 IO_L24N_T3U_N11_62 AR34 IO_L24N_T3U_N11_63 nF2_TEST_CONN_1 >> AW31 IO_L24P_T3U_N10_62 AV27 IO_L24P_T3U_N10_61 AR33 IO_L24P_T3U_N10_63 pF2_TEST_CONN_1 >>-BL28 IO_L2N_T0L_N3_62 BC32 IO_L2N_T0L_N3_63 BL22 IO_L2N_T0L_N3_61 THE TRI-COLOR LED IS CONNECTED F2_LED_GREEN >> BK22 IO_L2P_T0L_N2_61 TO DIFFERENT PINS ON EACH FPGA, F2_LED_BLUE >>IN ORDER TO SIMPLIFY LAYOUT. 24 BL27 IO_L2P_T0L_N2_62 BB32 IO_L2P_T0L_N2_63 BJ24 IO_L3N_T0L_N5_AD15N_61 BA32 IO_L3N_T0L_N5_AD15N_63 BJ30 IO_L3N_T0L_N5_AD15N_62 BJ25 IO_L3P_T0L_N4_AD15P_61 BJ29 IO_L3P_T0L_N4_AD15P_62 AY32 IO_L3P_T0L_N4_AD15P_63 BK28 IO_L4N_T0U_N7_DBC_AD7N_62 BA33 IO_L4N_T0U_N7_DBC_AD7N_63 BK23 IO_L4N_T0U_N7_DBC_AD7N_61 BK27 IO_L4P_T0U_N6_DBC_AD7P_62 AY33 IO_L4P_T0U_N6_DBC_AD7P_63 BJ23 IO_L4P_T0U_N6_DBC_AD7P_61 BL25 IO_L5N_T0U_N9_AD14N_61 BL30 IO_L5N_T0U_N9_AD14N_62 BD33 IO_L5N_T0U_N9_AD14N_63 F2_LED_RED >> BK25 IO_L5P_T0U_N8_AD14P_61 BK30 IO_L5P_T0U_N8_AD14P_62 BC33 IO_L5P_T0U_N8_AD14P_63 TH40 MHZ RECOVERED TCDS CLOCK USES PINKS 26
BK26 AND BJ26 ON FPGA#1. THE CLOCK FROM FPGA#2 IS NOT USED ANYWHERE, BUT THE PINKS 26
IO_L6P_T0U_N10_AD6P_62 BD34 IO_L6N_T0U_N11_AD6N_63 BH23 IO_L6N_T0U_N11_AD6N_61 BH24 IO_L6P_T0U_N10_AD6P_61 BC34 IO_L6P_T0U_N10_AD6P_63 ARE RESERVED. BG24 IO_L7N_T1L_N1_QBC_AD13N_61 BG27 IO_L7N_T1L_N1_QBC_AD13N_62 BD36 IO_L7N_T1L_N1_QBC_AD13N_63 BG25 IO_L7P_T1L_N0_QBC_AD13P_61 BG26 IO_L7P_T1L_N0_QBC_AD13P_62 BD35 IO_L7P_T1L_N0_QBC_AD13P_63 BG22 IO_L8N_T1L_N3_AD5N_61 BG30 IO_L8N_T1L_N3_AD5N_62 BD37 IO_L8N_T1L_N3_AD5N_63 nF1F2_SPARE1 >> BF23 IO_L8P_T1L_N2_AD5P_61 BF29 IO_L8P_T1L_N2_AD5P_62 BC37 IO_L8P_T1L_N2_AD5P_63 pF1F2 SPARE1 BF24 IO_L9N_T1L_N5_AD12N_61 BH29 IO_L9N_T1L_N5_AD12N_62 BB37 IO_L9N_T1L_N5_AD12N_63 nF1F2_SPARE0 >> BF25 IO_L9P_T1L_N4_AD12P_61 BG29 IO_L9P_T1L_N4_AD12P_62 BA37 IO_L9P_T1L_N4_AD12P_63 OMIT "VREF" AND "VRP" RESISTORS ON UNUSED I/O BANKS. OMIT "VREF" AND "VRP" RESISTORS ON UNUSED I/O BANKS.

BH22

IO_TOU_N12_VRP_61 BD31 BL29 IO_T0U_N12_VRP_62 IO TOU N12 VRP 63 BE25 IO_T1U_N12_61 AY37 IO_T1U_N12_63 BF30 IO_T1U_N12_62 BB30 IO_T2U_N12_62 AU35 IO_T2U_N12_63 BB24 IO_T2U_N12_61 AW30 IO_T3U_N12_62 AT37 IO_T3U_N12_63 AY25 IO_T3U_N12_61 FPGA_VU13P_A2577 FPGA_VU13P_A2577 FPGA_VU13P_A2577 APOLLO CM W/ DUAL A2577, MK1 6.06 FPGA#2 I/O SLR0 6089-119

6.10 FPGA#2 TEST CONNECTOR

THIS CONNECTOR IS LOCATED ON THE FRONT PANEL. IT IS A RE-PURPOSED 19-PIN HDMI CONNECTOR. IT WAS CHOSEN BECAUSE THE PINS ARE RECESSED AND CANNOT BE TOUCHED, AND BECAUSE THE STANDARD CABLES OFFER 5 HIGH-SPEED SHIELDED PAIRS AND 4 UNCOMMITTED WIRES.

TWO UNCOMMITTED WIRES ARE USED FOR SINGLE-ENDED SIGNALS, ONE FOR 3.3 VOLTS, AND ONE FOR GND.

THE CONNECTOR SITE IS INTENDED FOR DEBUGGING OR FOR UNFORSEEN I/O NEEDS. EACH PAIR IS ROUTED AS A 100 OHM DIFFERENTIAL PAIR.

THE "F2_TEST_CONN_0" SIGNAL IS CONNECTED TO GLOBAL CLOCK CAPABLE INPUT PINS.

PIN ASSIGNMENT

APOLLO CM W/ DUAL A2577, MK1

Title
6.10 FPGA#2 TEST CONNECTOR

Size | Document Number | Rev | B

7.01: FPGA#1 SM C2C ON QUAD L UNUSED CLOCK INPUTS ARE LEFT OPEN.

THE "R0" PAIR IS SOURCED FROM AN ON-BOARD OSCILLATOR.

THE "R1" PAIR IS SOURCED FROM EXTERNAL CLOCKS DERIVED FROM THE LHC CLOCK.

THE UTILITY CLOCK NETS MUST BE ASSIGNED TO DIFFERENTIAL PAIRS, AND MUST BE PART OF THE "ECS_DIFFCLK" ELECTRICAL CONSTRAINT SET.

APOLLO CM W/ DUAL A2577, MK1

7.01: FPGA#1 SM C2C ON QUAD L

Size Document Number 6089-119

Rev B

Wednesday, January 05, 2022 Sheet 61 of 84

8.01: FPGA#2 SM C2C ON QUAD L

THE "R0" PAIR IS SOURCED FROM AN ON-BOARD OSCILLATOR.

THE "R1" PAIR IS SOURCED FROM EXTERNAL CLOCKS DERIVED FROM THE LHC CLOCK.

THE UTILITY CLOCK NETS MUST BE ASSIGNED TO DIFFERENTIAL PAIRS, AND MUST BE PART OF THE "ECS_DIFFCLK" ELECTRICAL CONSTRAINT SET.

UNUSED CLOCK INPUTS ARE LEFT OPEN.

APOLLO CM W/ DUAL A2577, MK1

8.01: FPGA#2 SM C2C ON QUAD L Document Number

6089-119

Wednesday, January 05, 2022 Sheet 70 of

Rev B

9.02: F1 QUADS A, B, C TO F2 QUADS F, E, D UNUSED CLOCK INPUTS ARE LEFT OPEN. FPGA#1 FPGA#2 THE DATA NETS MUST BE ASSIGNED TO DIFFERENTIAL PAIRS, AND MUST BE PART OF THE "ECS_28G" ELECTRICAL CONSTRAINT SET. THE CLOCK NETS MUST BE ASSIGNED TO DIFFERENTIAL PAIRS, AND MUST BE PART OF THE "ECS_DIFFCLK" ELECTRICAL CONSTRAINT SET. U77-49 GTY QUAD 230 U75-44 GTY QUAD 225 REPLACE THE COUPLING CAPACITORS WITH THE "R0" PAIR IS SOURCED FROM AN ON-BOARD OSCILLATOR. ZERO-OHM RESISTORS ON BOARDS WHERE FPGA#2 IS REPLACED BY A JUMPER BOARD. ac_pF2R_R0_F >> MGTREFCLK0P_225 AP12 MGTREFCLK0N_225 MGTREFCLK0P_230 MGTREFCLK0N 230 ac_nF2R_R0_F THE "R1" PAIR IS SOURCED FROM EXTERNAL CLOCKS DERIVED FROM THE LHC CLOCK. MGTREFCLK1P_225 AN11 MGTREFCLK1N_225 XV12 MGTREFCLK1P_230 MGTREFCLK1N_230 MGTYRXP0_225 AU1 pF1_A_RECV0
MGTYRXN0_225 AU1 nF1_A_RECV0 pF1_A_RECV0 pF2_F_XMIT0 pF2_F_RECV3 nF2_F_RECV3 U2 MGTYRXP0_230 MGTYRXN0_230 C218 0.1 UF 0402 MGTYTXP0_225 AU6 pF1_A_XMIT0
MGTYTXN0_225 AU6 nF1_A_XMIT0 pF1_A_XMIT0 C217 0.1 UF 0402 0402 0.1 UF C226 pF1_A_RECV1 nF1_A_RECV1 pF2_F_RECV2 nF2_F_RECV2 MGTYRXP1_225 AT3 pF1_A_RECV1 pF2_F_XMIT1 nF2_F_XMIT1 C216 0.1 UF 040 0402 0.1 UF C225 MGTYTXP1_225 AT9 pF1_A_XMIT1
MGTYTXN1 225 AT8 nF1_A_XMIT1 pF1_A_XMIT1 nF1_A_XMIT1 pF2_F_RECV1 nF2_F_RECV1 C215 0.1 UF 0402 0402 0.1 UF MGTYRXP2 225 AR1 pF1_A_RECV2
MGTYRXN2 225 AR1 nF1_A_RECV2 pF1_A_RECV2 nF1_A_RECV2 pF2_F_XMIT2 nF2_F_XMIT2 C214 0.1 UF 0402 0402 0.1 UF C223 pF2_F_RECV2 nF2_F_RECV2 MGTYTXP2_225 MGTYTXN2_225 MGTYTXP2_230 MGTYTXN2 230 C213 0.1 UF 0402 0402 0.1 UF C222 pF1_A_RECV3 nF1_A_RECV3 MGTYRXP3_230 MGTYRXN3_230 C212 0.1 UF 0402 0402 0.1 UF pF2_F_RECV3 nF2_F_RECV3 pF1_A_XMIT3 nF1_A_XMIT3 P8 MGTYTXP3_230 MGTYTXN3 230 0402 0.1 UF C219 U77-48 GTY QUAD 229 U75-45
GTY QUAD 226 ac_nF2R_R0_E MGTREFCLK0P_226
MGTREFCLK0N_226
AM13
AM12 ac_nF2R_R1_E _____ ac_nF1R_R1_B pF1_B_RECV0 nF1_B_RECV0 MGTYRXP0_229 C202 0.1 UF 0402 pF1_B_XMIT0 nF1_B_XMIT0 pF1_B_XMIT0 nF1_B_XMIT0 pF2_E_RECV0 nF2_E_RECV0 C201 0.1 UF 0402 0402 0.1 UF C210 MGTYRXP1_226 AM4 pF1_B_RECV1
AM3 nF1_B_RECV1 pF1_B_RECV1 nF1_B_RECV1 pF2_E_XMIT1 nF2_E_XMIT1 pF2_E_RECV2 nF2_E_RECV2 C200 0.1 UF 0402 0402 0.1 UF MGTYTXP1_226 AM9 pF1_B_XMIT1 MGTYTXN1_226 PF1_B_XMIT1 pF2_E_RECV1 nF2_E_RECV1 pF2_E_XMIT2 nF2_E_XMIT2 pF1_B_XMIT nF1_B_XMIT C199 0.1 UF 0402 MGTYRXP2_226 AL1 pF1_B_RECV2
MGTYRXN2_226 AL1 nF1_B_RECV2 pF1_B_RECV2 nF1_B_RECV2 pF2_E_XMIT2 nF2_E_XMIT2 pF2_E_RECV1 nF2_E_RECV1 C198 0.1 UF 0402 0402 0.1 UF pF1_B_XMIT2 nF1_B_XMIT2 pF2_E_RECV2 nF2 E RECV2 pF2_E_XMIT1 nF2_E_XMIT1 C197 0.1 UF 0402 0402 0.1 UF C206 MGTYRXP3_226 AK3 pF1_B_RECV3
MGTYRXN3_226 pF1_B_RECV3 nF1_B_RECV3 pF2_E_XMIT3 nF2_E_XMIT3 C196 0.1 UF 0402 0402 0.1 UF pF2_E_RECV3 nF2_E_RECV3 pF2_E_XMIT0 nF2_E_XMIT0 pF1_B_XMIT3 nF1_B_XMIT3 MGTYTXP3_229 MGTYTXN3_229 C195 0.1 UF 0402 0402 0.1 UF C204 0402 0.1 UF C203 FPGA VU13P A2577 FPGA VU13P A2577 U77-47 GTY QUAD 228 U75-46 GTY QUAD 227 AE10 MGTREFCLK0P_228 MGTREFCLK0N_228 MGTREFCLK0P_227 AJ10 MGTREFCLK0N_227 MGTREFCLK1P_227 MGTREFCLK1N_227 AC11 MGTREFCLK1P_228 MGTREFCLK1N_228 pF1_C_RECV0 nF1_C_RECV0 C182 0.1 UF 0402 pF2_D_XMIT3 nF2_D_XMIT3 AJ7 pF1_C_XMIT0 AJ6 nF1_C_XMIT0 pF1_C_XMIT0 nF1_C_XMIT0 pF2_D_RECV0 nF2_D_RECV0 C181 0.1 UF 0402 0402 0.1 UF C190 pF1_C_RECV1 nF1_C_RECV1 pF2_D_RECV2 nF2_D_RECV2 C180 0 1 HF 0402 0402 0 1 HF C189 MGTYTXP1_227 AH9 pF1_C_XMIT1
MGTYTXN1_227 AH8 nF1_C_XMIT1 pF2_D_RECV1 nF2_D_RECV1 pF2_D_XMIT2 nF2_D_XMIT2 pF1_C_XMIT1 nF1_C_XMIT1 C179 0.1 UF 0402 0402 0.1 UF C188 MGTYRXP2_227 C178 0.1 UF 0402 0402 0.1 UF C187 AC7
AC6
MGTYTXP2_228
MGTYTXN2_228 pF2_D_RECV2 nF2_D_RECV2 pF1_C_XMIT2 nF1_C_XMIT2 C177 0.1 UF 0402 0402 0.1 UF C186 pF1_C_RECV3 nF1_C_RECV3 pF2_D_RECV0 nF2_D_RECV0 C176 0.1 UF 0402 0402 0.1 UF pF1_C_XMIT3 nF1_C_XMIT3 pF2_D_RECV3 nF2_D_RECV3 C175 0.1 UF 0402 0402 0.1 UF C184 0402 0.1 UF C183 FPGA_VU13P_A2577 FPGA_VU13P_A2577 APOLLO CM W/ DUAL A2577, MK1 9.02: F1 QUADS A, B, C TO F2 QUADS F, E, D Rev B 6089-119

9.03: F1 QUADS H, I, J TO F2 QUADS O, N, M UNUSED CLOCK INPUTS ARE LEFT OPEN. FPGA#1 FPGA#2 THE DATA NETS MUST BE ASSIGNED TO DIFFERENTIAL PAIRS, AND MUST BE PART OF THE "ECS_28G" ELECTRICAL CONSTRAINT SET. THE CLOCK NETS MUST BE ASSIGNED TO DIFFERENTIAL PAIRS, AND MUST BE PART OF THE "ECS_DIFFCLK" ELECTRICAL CONSTRAINT SET. U77-42 GTY QUAD 223 U75-51 GTY QUAD 232 REPLACE THE COUPLING CAPACITORS WITH THE "R0" PAIR IS SOURCED FROM AN ON-BOARD OSCILLATOR. ZERO-OHM RESISTORS ON BOARDS WHERE FPGA#2 IS REPLACED BY A JUMPER BOARD. MGTREFCLK0P_232 R11 × R10 × R10 AV13 MGTREFCLK0P_223 MGTREFCLK0N_223 THE "R1" PAIR IS SOURCED FROM EXTERNAL CLOCKS DERIVED FROM THE LHC CLOCK. MGTREFCLK1P_232 P13 × P12 × P12 × AU11 AU10 MGTREFCLK1P_223 MGTREFCLK1N_223 pF2_O_RECV3 BE2 nF2_O_RECV3 BE1 MGTYRXP0_223 MGTYRXN0_223 pF1_H_RECV0 pF2_O_XMIT0 pF1_H_RECV0 nF1 H RECV0 C85 0.1 UF 0402 pF1_H_XMIT0 nF1_H_XMIT0 C84 0.1 UF 0402 0402 0.1 UF C93 pF2_O_XMIT1 nF2_O_XMIT1 pF2_O_RECV2 nF2_O_RECV2 pF1_H_RECV1 nF1_H_RECV1 pF1_H_RECV1 nF1_H_RECV1 C83 0.1 UF 0402 0402 0.1 UF C92 pF1_H_XMIT1 nF1_H_XMIT1 pF2_O_RECV1 nF2_O_RECV1 C82 0.1 UF 0402 0402 0.1 UF C91 pF1_H_RECV2 nF1_H_RECV2 pF2_O_XMIT2 nF2_O_XMIT2 C81 0.1 UF 0402 0402 0.1 UF C90 pF2_O_RECV2 nF2_O_RECV2 MGTYTXP2_232 G6 MGTYTXN2 232 C80 0.1 UF 0402 0402 0.1 UF C89 pF1_H_RECV3 nF1_H_RECV3 MGTYRXP3_223 MGTYRXN3 223 C79 0.1 UF 0402 0402 0.1 UF MGTYTXP3_232 F8 MGTYTXN3_232 pF2_O_RECV3 nF2_O_RECV3 pF2_O_XMIT0 nF2_O_XMIT0 pF1_H_XMIT3 nF1_H_XMIT3 pF1_H_XMIT3 nF1_H_XMIT3 BB9 MGTYTXP3_223 MGTYTXN3_223 0402 0.1 UF C86 U75-52 GTY QUAD 233 GTY QUAD 222 ac_nF2R_R1_N >> pF1_I_RECV0 nF1_I_RECV0 BH4 MGTYRXP0_222 MGTYRXN0_222 C65 0.1 UF 0402 pF1_I_XMIT0 nF1_I_XMIT0 pF1_I_XMIT0 nF1_I_XMIT0 pF2_N_RECV0 nF2_N_RECV0 C64 0.1 UF 0402 0402 0.1 UF C73 pF2_N_RECV2 nF2_N_RECV2 pF1_I_RECV1 nF1_I_RECV1 pF2_N_XMIT1 nF2_N_XMIT1 pF1_I_RECV1 nF1_I_RECV1 C63 0.1 UF 0402 0402 0.1 UF pF2_N_RECV1 nF2_N_RECV1 pF2_N_XMIT2 nF2_N_XMIT2 pF1_I_XMIT1 nF1_I_XMIT1 pF1_I_XMIT1 nF1_I_XMIT1 C62 0.1 UF 0402 C71 pF1_I_RECV2 nF1_I_RECV2 pF1_I_RECV2 nF1_I_RECV2 pF2_N_XMIT2 nF2_N_XMIT2 pF2_N_RECV1 nF2_N_RECV1 C58 0.1 UF 0402 0402 0.1 UF pF1_I_XMIT2 nF1_I_XMIT2 pF1_I_XMIT2 pF2_N_RECV2 nF2_N_RECV2 pF2_N_XMIT1 nF2_N_XMIT1 C59 0.1 UF 0402 0402 0.1 UF C68 pF1_I_RECV3 nF1_I_RECV3 pF1_I_RECV3 nF1_I_RECV3 pF2_N_XMIT3 nF2_N_XMIT3 C60 0.1 UF 0402 0402 0.1 UF pF2_N_RECV3 nF2_N_RECV3 pF2_N_XMIT0 nF2_N_XMIT0 pF1_I_XMIT3 nF1_I_XMIT3 MGTYTXP3_222 MGTYTXN3_222 C61 0.1 UF 0402 0402 0.1 UF C66 0402 0.1 UF C67 FPGA VU13P A2577 FPGA VU13P A2577 U77-40 GTY QUAD 221 U75-53 GTY QUAD 234 BB13 MGTREFCLK0P_221 MGTREFCLK0N_221 MGTREFCLK0P_234 L10 × MGTREFCLK0N_234 MGTREFCLK1P_234
MGTREFCLK1N_234

K13
K12

K12 BA11 MGTREFCLK1P_221 MGTREFCLK1N_221 MGTYRXP0_234 A6 pF1_J_RECV0
MGTYRXN0_234 A5 nF1_J_RECV0 pF1_J_RECV0 nF1_J_RECV0 C48 0.1 UF 0402 MGTYTXP0_234 A11 pF1_J_XMIT0
MGTYTXPN0_234 A10 nF1_J_XMIT0 pF1_J_XMIT0 nF1_J_XMIT0 pF2_M_XMIT3 nF2_M_XMIT3 pF2_M_RECV0 nF2_M_RECV0 C49 0.1 UF 0402 0402 0.1 UF C56 MGTYRXP1_234 A20 pF1_J_RECV1
MGTYRXN1_234 A19 nF1_J_RECV1 pF1_J_RECV1 nF1_J_RECV1 pF2_M_XMIT1 nF2_M_XMIT1 pF2_M_RECV2 nF2_M_RECV2 C46 0 1 HF 0402 C57 0402 0 1 HF MGTYTXP1_234 MGTYTXN1_234 B13 pF1_J_XMIT1 pF1_J_XMIT1 nF1_J_XMIT1 pF2_M_XMIT2 nF2_M_XMIT2 pF2_M_RECV1 nF2_M_RECV1 C47 0.1 UF 0402 0402 0.1 UF C54 pF1_J_RECV2 nF1_J_RECV2 C44 0.1 UF 0402 0402 0.1 UF C55 MGTYTXP2_234 A15 pF1_J_XMIT2 MGTYTXN2_234 PF1_J_XMIT2 BL11 MGTYTXP2_221 MGTYTXN2 221 pF1_J_XMIT2 nF1_J_XMIT2 pF2_M_RECV2 nF2_M_RECV2 C45 0.1 UF 0402 0402 0.1 UF C50 MGTYRXP3_234 C19 pF1_J_RECV3 MGTYRXN3_234 pF1_J_RECV3 nF1_J_RECV3 pF2_M_RECV0 nF2_M_RECV0 pF2_M_XMIT3 nF2_M_XMIT3 C42 0.1 UF 0402 0402 0.1 UF C51 pF2_M_XMIT0 nF2_M_XMIT0 pF1_J_XMIT3 pF2_M_RECV3 nF2_M_RECV3 C43 0.1 UF 0402 0402 0.1 UF C52 0402 0.1 UF C53 FPGA_VU13P_A2577 FPGA_VU13P_A2577 APOLLO CM W/ DUAL A2577, MK1 9.03: F1 QUADS H, I, J TO F2 QUADS O, N, M В 6089-119

9.05: F1 QUAD G TO F2 QUAD P

GTY QUAD 231 pF1_G_XMIT2 nF1_G_XMIT2

pF1_G_XMIT3 nF1_G_XMIT3

THE CLOCK NETS MUST BE ASSIGNED TO DIFFERENTIAL PAIRS, AND MUST BE PART OF THE "ECS_DIFFCLK" ELECTRICAL CONSTRAINT SET.

C106 0.1 UF 0402

C105 0.1 UF 0402

C104 0.1 UF 0402

C103 0.1 UF 0402

C102 0.1 UF 0402

C100 0.1 UF 0402

C99 0.1 UF 0402

THE "R0" PAIR IS SOURCED FROM AN ON-BOARD OSCILLATOR.

THE "R1" PAIR IS SOURCED FROM EXTERNAL CLOCKS DERIVED FROM THE LHC CLOCK.

pF1_G_RECV0 nF1_G_RECV0

pF1_G_RECV2 nF1_G_RECV2

pF1_G_RECV3 nF1_G_RECV3

UNUSED CLOCK INPUTS ARE LEFT OPEN.

THE DATA NETS MUST BE ASSIGNED TO DIFFERENTIAL PAIRS, AND MUST BE PART OF THE "ECS_28G" ELECTRICAL CONSTRAINT SET.

REPLACE THE COUPLING CAPACITORS WITH ZERO-OHM RESISTORS ON BOARDS WHERE FPGA#2 IS REPLACED BY A JUMPER BOARD.

FPGA#2

FPGA_VU13P_A2577

FPGA_VU13P_A2577

FPGA#1

APOLLO CM W/ DUAL A2577, MK1 9.05: F1 QUAD G TO F2 QUAD P Rev B 6089-119 Wednesday, Januar

