89 Human Secreted Proteins

This application is a continuation-in-part of International Application No. PCT/US02/25107, filed Aug 8, 2002, which claims benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 60/311,085, filed Aug 10, 2001 and of U.S. Provisional Application No. 60/325,209, filed Sept 28, 2001; this application is also a continuation-in-part of International Application No. PCT/US02/33985, filed Oct 24, 2002, which claims benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 60/330,629, filed Oct 26, 2001; this application is also a continuation-in-part of International Application No. PCT/US02/35606, filed Nov 6, 2002, which claims benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No.60/331,046, filed Nov 7, 2001; this application is also a continuation-in-part of International Application No. PCT/US03/04819, filed Feb 20, 2003, which claims benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 60/358,554, filed Feb 22, 2002; this application is also a continuation-in-part of International Application No. PCT/US03/04818, filed Feb 20, 2003, which claims benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. PCT/US03/04818, filed Feb 20, 2003, which claims benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 60/358,714, filed Feb 25, 2002, each of the above-identified applications are herein incorporated by reference in their entireties.

Field of the Invention

The present invention relates to human secreted proteins/polypeptides, and isolated nucleic acid molecules encoding said proteins/polypeptides, useful for detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating diseases and disorders related to said proteins/polypeptides (relatedness may be by direct or indirect association, by cause, by consequence, or by effect on said diseases and disorders). Antibodies that bind these polypeptides are also encompassed by the present invention. Also encompassed by the invention are vectors, host cells, and recombinant and synthetic methods for producing said polynucleotides, polypeptides, and/or antibodies. The invention further encompasses screening methods for identifying agonists and antagonists of polynucleotides and polypeptides of the invention. The present invention further encompasses methods and compositions for inhibiting or enhancing the production and function of the polypeptides of the present invention.

Background of the Invention

5

10

15

20

25

30

Unlike bacteria, which exist as a single compartment surrounded by a membrane, human cells and other eukaryotes are subdivided by membranes into many functionally distinct compartments. Each membrane-bounded compartment, or organelle, contains different proteins essential for the function of the organelle. The cell uses "sorting signals," which are amino acid motifs located within the protein, to target proteins to particular cellular organelles.

One type of sorting signal, called a signal sequence, a signal peptide, or a leader sequence, directs a class of proteins to an organelle called the endoplasmic reticulum (ER). The ER separates the membrane-bounded proteins from all other types of proteins. Once localized to the ER, both groups of proteins can be further directed to another organelle called the Golgi apparatus. Here, the Golgi distributes the proteins to vesicles, including secretory vesicles, the cell membrane, lysosomes, and the other organelles.

j

Proteins targeted to the ER by a signal sequence can be released into the extracellular space as a secreted protein. For example, vesicles containing secreted proteins can fuse with the cell membrane and release their contents into the extracellular space - a process called exocytosis. Exocytosis can occur constitutively or after receipt of a triggering signal. In the latter case, the proteins are stored in secretory vesicles (or secretory granules) until exocytosis is triggered. Similarly, proteins residing on the cell membrane can also be secreted into the extracellular space by proteolytic cleavage of a "linker" holding the protein to the membrane.

Thus there exists a clear need for identifying and using novel secreted polynucleotides and polypeptides. Identification and sequencing of human genes is a major goal of modern scientific research. For example, by identifying genes and determining their sequences, scientists have been able to make large quantities of valuable human "gene products." These include human insulin, interferon, Factor VIII, tumor necrosis factor, human growth hormone, tissue plasminogen activator, and numerous other compounds. Additionally, knowledge of gene sequences can provide the key to treatment or cure of genetic diseases (such as muscular dystrophy and cystic fibrosis).

Over the past few decades, an increasing percentage of the population has become diabetic. Diabetes mellitus is categorized into two types: Type I, known as Insulin-Dependent Diabetes Mellitus (IDDM), or Type II, known as Non-Insulin-Dependent Diabetes

Mellitus (NIDDM). IDDM is an autoimmune disorder in which the insulin-secreting pancreatic beta cells of the islets of Langerhans are destroyed. In these individuals, recombinant insulin therapy is employed to maintain glucose homeostasis and normal energy metabolism. NIDDM, on the other hand, is a polygenic disorder with no one gene responsible for the progression of the disease.

5

10

15

20

25

30

In NIDDM, insulin resistance eventually leads to the abolishment of insulin secretion resulting in insulin deficiency. Insulin resistance, at least in part, ensues from a block at the level of glucose uptake and phosphorylation in humans. Diabetics demonstrate a decrease in expression in adipose tissue of insulin-receptor substrate 1 ("IRS1") (Carvalho *et al.*, FASEB J 13(15):2173-8 (1999)), glucose transporter 4 ("GLUT4") (Garvey *et al.*, Diabetes 41(4):465-75 (1992)), and the novel abundant protein M gene transcript 1 ("apM1") (Statnick *et al.*, Int J Exp Diabetes 1(2): 81-8 (2000)), as well as other as of yet unidentified factors. Insulin deficiency in NIDDM leads to failure of normal pancreatic beta-cell function and eventually to pancreatic-beta cell death.

Insulin affects fat, muscle, and liver. Insulin is the major regulator of energy metabolism. Malfunctioning of any step(s) in insulin secretion and/or action can lead to many disorders, including for example the dysregulation of oxygen utilization, adipogenesis, glycogenesis, lipogenesis, glucose uptake, protein synthesis, thermogenesis, and maintenance of the basal metabolic rate. This malfunctioning results in diseases and/or disorders that include, but are not limited to, hyperinsulinemia, insulin resistance, insulin deficiency, hyperglycemia, hyperlipidemia, hyperketonemia, and diabetes.

Numerous debilitating diabetes-related secondary effects include, but are not limited to, obesity, forms of blindness (cataracts and diabetic retinopathy), limb amputations, kidney failure, fatty liver, coronary artery disease, and neuropathy.

Some of the current drugs used to treat insulin resistance and/or diabetes (e.g., insulin secretagogues – sulfonylurea, insulin sensitizers – thiazolidenediones and metformin, and alpha-glucosidase and lipase inhibitors) are inadequate due to the dosage amounts and frequency with which they have to be administered as a result of poor pharmacokinetic properties, the lack of effective control over blood sugar levels, and potential side effects, among other reasons. Diabetes Therapeutic proteins in their native state or when recombinantly produced exhibit a rapid in vivo clearance. Typically, significant amounts of therapeutics are required to be effective during therapy. In addition, small molecules smaller than the 20 kDa range can be readily filtered through the renal tubules (glomerulus) leading

to dose-dependent nephrotoxicity. Therefore, there is a need for improvement in treatment (e.g., a need for prolonging the effects of therapeutics of diabetes and/or diabetes related conditions).

5

10

15

25

30

Summary of the Invention

The present invention relates to human secreted proteins/polypeptides, and isolated nucleic acid molecules encoding said proteins/polypeptides, useful for detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating diseases and disorders related to said proteins/polypeptides (relatedness may be by direct or indirect association, or by cause, consequence, or effect on said diseases and disorders). Antibodies that bind these polypeptides are also encompassed by the present invention. Also encompassed by the invention are vectors, host cells, and recombinant and synthetic methods for producing said polynucleotides, polypeptides, and/or antibodies. The invention further encompasses screening methods for identifying agonists and antagonists of polynucleotides and polypeptides of the invention. The present invention further encompasses methods and compositions for inhibiting or enhancing the production and function of the polypeptides of the present invention.

20 Detailed Description:

Polynucleotides and Polypeptides of the Invention

FEATURES OF PROTEIN ENCODED BY GENE NO: 1

This gene is expressed primarily in placenta and to a lesser extent in skeletal muscle, pancreas, brain, and liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes (for example, type II diabetes). Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded

tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of diabetes (for example, type II diabetes), liver cancer, muscular dystrophy, and pancreatic cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 2

This gene is expressed primarily in the liver.

5

10

15

20

25

30

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes (for example, type II diabetes) and liver cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of diabetes (for example, type II diabetes) and liver disorders (for, example hepatic cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 3

This gene is expressed primarily in skelatal muscle and kidney.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes (for example, type II diabetes), muscular dystrophy and kidney cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes

for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of diabetes (for example, type II diabetes), muscular dystrophy, and kidney cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 4

5

10

15

20

25

30

The translation product of this gene shares sequence homology with Tex261, a gene related but distinct from steroidogenic acute regulatory (StAR) gene, which is regulated during the development of germ cells.

This gene is expressed primarily in brain, adipocytes, reproductive and immune tissues and to a lesser extent in gastrointestinal tissue.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: disorders of the immune system, cancer, neurological, and gastrointestinal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to Tex261, a gene regulated during the development of germ cells, indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of disorders such as diabetes and disorders of the immune and reproductive system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 5

This gene is expressed primarily in diabetic skeletal muscle.

5

10

15

20

25

30

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: digestive, endocrine, and metabolic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine and muscular systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

1

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of diabetes (for example, types I and II diabetes), obesity, eating disorders including bulimia and anorexia, and muscular disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 6

The translation product of this gene shares sequence homology with AX083426.

This gene is expressed primarily in digestive system tissues and to a lesser extent in reproductive system, immune/hematopoietic system white adipose tissue and adipose tissue.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: digestive disorders including colon cancer, immune diseases, diabetes, reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive, immune, musculoskeletal, adipose, reproductive, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid)

or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of diabetes, digestive disorders, immune disases including autoimmune disorders, inflammatory diseases, and cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 7

5

10

15

20

25

30

This gene is expressed primarily in diabetic Skeletal Muscle.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to diabetes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the muscle, adipose tissues, and liver, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution primarily in diabetic skeletal muscles indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of type I and type II diabetes and diabetic-induced illness.

FEATURES OF PROTEIN ENCODED BY GENE NO: 8

This gene is expressed primarily in the pineal gland and the brain and to a lesser extent in skeletal muscle.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes (for example, type II diabetes). Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells,

particularly of the central nervous system and the muscular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of type II diabetes, muscular dystrophy, brain tumor, and circadian rythms.

FEATURES OF PROTEIN ENCODED BY GENE NO: 9

5

10

15

20

25

This gene is expressed primarily in Osteoblasts and bone tissues of normal and cancer samples and to a lesser extent in endometrial stromal cells, Hodgkin's Lymphoma, and Pre-Differentiated Adipocytes.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: bone cancers, Hodgkin's Lymphoma, and diabetes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the bone, immune and adipose tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of bone cancer and related disorders including osteosarcoma, osteoclastoma, chondrosarcoma, and Hodgekins's lymphoma, and diabetes (such as type I and type II diabetes).

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 10

The translation product of this gene shares sequence homology with human calmitine, a mitochondrial calcium binding protein.

This gene is expressed primarily in skeletal muscles and to a lesser extent in the heart.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: type II diabetes and muscle dystrophy. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the muscular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to human calmitine, a mitochondrial calcium binding protein, indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of type II diabetes and muscular dystrophy.

FEATURES OF PROTEIN ENCODED BY GENE NO: 11

5

10

15

20

25

30

This gene is expressed primarily in muscle, diabetic liver, adipose and immune cell types and to a lesser extent in most cell types.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: obesity and diabetes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of obesity, diabetes, and immune

disorders.

5

10

15

25

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 12

This gene is expressed primarily in diabetic skeletal muscle and in dendritic cells.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes, obesity and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive and immune systems expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of types I and II diabetes, obesity, and immune disorders such as arthritis, allergy, asthma, lupus, immunodeficiencies and leukemia.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 13

The translation product of this gene shares sequence homology with murine C-type lectin which is thought to be important in pathogen recognition and cell-cell interaction in innate immune modulation.

This gene is expressed primarily in Diabetic Liver.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes, sepsis syndrome and other bacterial, fungi, or viral infections, immune diseases, and liver diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the liver, diabetic tissues including adipose and muscle, and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g.,

cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to C-type lectin indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of diabetes (for example, type I and type II diabetes) and related conditions, diseases related to pathogen recognition including microbial infection and sepsis, immune disases including autoimmune disorders, inflammatory diseases, and cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 14

10

15

20

25

30

In a specific embodiment, polypeptides of the invention, comprise or alternatively consist of, the following amino acid sequence: MKLWVSALLMAWFGVLSCVQAEFFTSIGHMTDLIYAEKELVQSLKEYILVEEAKLS KIKSWANKMEALTSKSAADAEGYLAHPVNAYKLVKRLNTDWPALEDLVLQDSAAG FIANLSVOROFFPTDEDEIGAAKALMRLODTYRLDPGTISRGELPGTKYOAMLSVDD CFGMGRSAYNEGDYYHTVLWMEQVLKQLDAGEEATTTKSQVLDYLSYAVFQLGD LHRALELTRRLLSLDPSHERAGGNLRYFEQLLEEEREKTLTNQTEAELATPEGIYERP VDYLPERDVYESLCRGEGVKLTPRRQKRLFCRYHHGNRAPQLLIAPFKEEDEWDSPH IVRYYDVMSDEEIERIKEIAKPKLARATVRDPKTGVLTVASYRVSKSSWLEEDDDPV VARVNRRMQHITGLTVKTAELLQVANYGVGGQYEPHFDFSRNDERDTFKHLGTGN RVATFLNYMSDVEAGGATVFPDLGAAIWPKKGTAVFWYNLLRSGEGDYRTRHAAC PVLVGCKWVSNKWFHERGQEFLRPCGSTEVD (SEQ ID NO:). Polynucleotides encoding these polypeptides are also encompassed by the invention as are antibodies that bind one or more of these polypeptides. Moreover, fragments and variants of these polypeptides (such as, for example, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to these polypeptides and polypeptides encoded by the polynucleotide which hybridizes, under stringent conditions, to the polynucleotide encoding these polypeptides, or the complement there of are encompassed by the invention. Antibodies that bind polypeptides of the invention are also encompassed by the invention. Polynucleotides encoding these polypeptides are also encompassed by the invention.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for

diagnosis of diseases and conditions which include but are not limited to: disorders in digestive, reproductive, immune/hematopoietic, neural/sensory, musculoskeletal, excretory, endocrine, cardiovascular, connective/epithelial, and respiratory systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells and/or those tissues indicated in Table 1B and Table 4 corresponding to this gene, particularly of the digestive, reproductive, immune/hematopoietic, neural/sensory systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of diabetes (for example, types I and II diabetes), obesity, eating disorders including bulimia and anorexia, and muscular disorders. Elevated levels of expression in the prostate indicate a role in modulation of tumor progression.

FEATURES OF PROTEIN ENCODED BY GENE NO: 15

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: disorders in digestive, reproductive, immune/hematopoietic, neural/sensory, musculoskeletal, excretory, endocrine, cardiovascular, connective/epithelial, and respiratory systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells and/or those tissues indicated in Table 1B and Table 4 corresponding to this gene, particularly of the digestive, reproductive, immune/hematopoietic, neural/sensory systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder,

relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of diabetes (for example, types I and II diabetes), obesity, eating disorders including bulimia and anorexia, and muscular disorders. Elevated levels of expression in the prostate indicate a role in modulation of tumor progression.

FEATURES OF PROTEIN ENCODED BY GENE NO: 16

5

10

15

20

25

30

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: disorders in digestive, reproductive, immune/hematopoietic, neural/sensory, musculoskeletal, excretory, endocrine, cardiovascular, connective/epithelial, and respiratory systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells and/or those tissues indicated in Table 1B and Table 4 corresponding to this gene, particularly of the digestive, reproductive, immune/hematopoietic, neural/sensory systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of diabetes (for example, types I and II diabetes), obesity, eating disorders including bulimia and anorexia, and muscular disorders. Elevated levels of expression in the prostate indicate a role in modulation of tumor progression.

FEATURES OF PROTEIN ENCODED BY GENE NO: 17

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: disorders in digestive, reproductive, immune/hematopoietic, neural/sensory, musculoskeletal, excretory,

endocrine, cardiovascular, connective/epithelial, and respiratory systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells and/or those tissues indicated in Table 1B and Table 4 corresponding to this gene, particularly of the digestive, reproductive, immune/hematopoietic, neural/sensory systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of diabetes (for example, types I and II diabetes), obesity, eating disorders including bulimia and anorexia, and muscular disorders. Elevated levels of expression in the prostate indicate a role in modulation of tumor progression.

FEATURES OF PROTEIN ENCODED BY GENE NO: 18

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: disorders in digestive, reproductive, immune/hematopoietic, neural/sensory, musculoskeletal, excretory, endocrine, cardiovascular, connective/epithelial, and respiratory systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells and/or those tissues indicated in Table 1B and Table 4 corresponding to this gene, particularly of the digestive, reproductive, immune/hematopoietic, neural/sensory systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of diabetes (for example, types I and II diabetes), obesity, eating disorders including bulimia and anorexia, and muscular disorders. Elevated levels of expression in the prostate indicate a role in modulation of tumor progression.

FEATURES OF PROTEIN ENCODED BY GENE NO: 19

5

10

15

20

25

30

This gene is expressed primarily in immune/hematopoietic, reproductive, excretory tissues, and to a lesser extent in digestive, neural/sensory, musculoskeletal, and respiratory tissues.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: disorders in immune/hematopoietic, reproductive, excretory, digestive, neural/sensory, musculoskeletal, and respiratory systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells and/or those tissues indicated in Table 1B and Table 4 corresponding to this gene, particularly of the immune/hematopoietic, reproductive, excretory systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of diabetes (for example, types I and II diabetes), obesity, eating disorders including bulimia and anorexia, and muscular disorders. Elevated levels of expression in the prostate indicate a role in modulation of tumor progression.

In addition, the protein product of this clone is useful for the diagnosis and treatment of a variety of immune system disorders. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product indicates a role in regulating the proliferation; survival; differentiation; and/or activation of hematopoietic cell

lineages, including blood stem cells. This gene product is involved in the regulation of cytokine production, antigen presentation, or other processes suggesting a usefulness in the treatment of cancer (e.g. by boosting immune responses). Since the gene is expressed in cells of lymphoid origin, the natural gene product is involved in immune functions. Therefore it is also useful as an agent for immunological disorders including arthritis, asthma, immunodeficiency diseases such as AIDS, leukemia, rheumatoid arthritis, granulomatous disease, inflammatory bowel disease, sepsis, acne, neutropenia, neutrophilia, psoriasis, hypersensitivities, such as T-cell mediated cytotoxicity; immune reactions to transplanted organs and tissues, such as host-versus-graft and graft-versus-host diseases, or autoimmunity disorders, such as autoimmune infertility, lense tissue injury, demyelination, systemic lupus erythematosis, drug induced hemolytic anemia, rheumatoid arthritis, Sjogren's disease, and scleroderma. Moreover, the protein may represent a secreted factor that influences the differentiation or behavior of other blood cells, or that recruits hematopoietic cells to sites of injury. Thus, this gene product is thought to be useful in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types.

FEATURES OF PROTEIN ENCODED BY GENE NO: 20

5

10

15

20

25

30

In specific embodiments, polypeptides of the invention comprise, or alternatively consists of, an amino acid sequence selected from the group:

MQYLYFQGAALSACSPCLGLFFPSCFPFRVPSLISLVSAAHRPAHQSVQILS VWFLASSVEGALSRILTLWGGGLGTGGNLMIQRFPQEECLEGSVPGQWQNLSSVLLV LISSVSIKFRSLF (SEQ ID NO: 59). Moreover, fragments and variants of these polypeptides (such as, for example, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to these polypeptides and polypeptides encoded by nucleic acids which hybridize, under stringent conditions, to the polynucleotide encoding these polypeptides, or the complement thereof are encompassed by the invention. Polynucleotides encoding these polypeptides are also encompassed by the inventions.

This gene is expressed primarily in skeletal muscle tissue.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a

number of disorders of the above tissues or cells and/or those tissues indicated in Table 1B and Table 4 corresponding to this gene, particularly of the musculoskeletal and endocrine, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

5

10

15

20

25

30

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of diabetes (for example, types I and II diabetes), obesity, eating disorders including bulimia and anorexia, and muscular disorders. Elevated levels of expression in the prostate indicate a role in modulation of tumor progression.

In addition, the protein product of this clone is useful for the diagnosis and treatment of a variety of immune system disorders. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections below, in Example 11, 13, 14, 16, 18, 19, 20, and 27, and elsewhere herein. Briefly, the expression of this gene product indicates a role in regulating the proliferation; survival; differentiation; and/or activation of hematopoietic cell lineages, including blood stem cells. This gene product is involved in the regulation of cytokine production, antigen presentation, or other processes suggesting a usefulness in the treatment of cancer (e.g. by boosting immune responses). Since the gene is expressed in cells of lymphoid origin, the natural gene product is involved in immune functions. Therefore it is also useful as an agent for immunological disorders including arthritis, asthma, immunodeficiency diseases such as AIDS, leukemia, rheumatoid arthritis, granulomatous disease, inflammatory bowel disease, sepsis, acne, neutropenia, neutrophilia, psoriasis, hypersensitivities, such as T-cell mediated cytotoxicity; immune reactions to transplanted organs and tissues, such as host-versus-graft and graft-versus-host diseases, or autoimmunity disorders, such as autoimmune infertility, lense tissue injury, demyelination, systemic lupus erythematosis, drug induced hemolytic anemia, rheumatoid arthritis, Sjogren's disease, and scleroderma. Moreover, the protein may represent a secreted factor that influences the differentiation or behavior of other blood cells, or that recruits hematopoietic cells to sites of injury. Thus, this gene product is thought to be useful in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types.

FEATURES OF PROTEIN ENCODED BY GENE NO: 21

5

10

15

20

25

30

In specific embodiments, polypeptides of the invention comprise, or alternatively consists of, the following amino acid sequence:

MPGIVSDRRGQRKXRSPXALPLWSWRSSTGDKTRCFQGGSRAHQVIRIIAQEETWQP DGDATWGLRGXAFQAEGTAAAKILLVPVLGVQRWQGVLGPYMLLVGTMLSGLVS NSWPQAILLPQPPKVLGL (SEQ ID NO:60). Moreover, fragments and variants of these polypeptides (such as, for example, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to these polypeptides and polypeptides encoded by nucleic acids which hybridize, under stringent conditions, to the polynucleotide encoding these polypeptides, or the complement thereof are encompassed by the invention. Polynucleotides encoding these polypeptides are also encompassed by the inventions.

This gene is expressed primarily in diabetic skeletal muscle.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells and/or those tissues indicated in Table 1B and Table 4 corresponding to this gene, particularly of the metabolic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of diabetes (for example, types I and II diabetes), obesity, eating disorders including bulimia and anorexia, and muscular disorders. Elevated levels of expression in the prostate indicate a role in modulation of tumor progression.

FEATURES OF PROTEIN ENCODED BY GENE NO: 22

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: disorders in

digestive, reproductive, immune/hematopoietic, neural/sensory, musculoskeletal, excretory, endocrine, cardiovascular, connective/epithelial, and respiratory systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells and/or those tissues indicated in Table 1B and Table 4 corresponding to this gene, particularly of the digestive, reproductive, immune/hematopoietic, neural/sensory systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of diabetes (for example, types I and II diabetes), obesity, eating disorders including bulimia and anorexia, and muscular disorders. Elevated levels of expression in the prostate indicate a role in modulation of tumor progression.

FEATURES OF PROTEIN ENCODED BY GENE NO: 23

5

10

15

20

25

30

This gene is expressed primarily in skeletal muscle from normal and type II diabetic patients and to a lesser extent in prostate.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells and/or those tissues indicated in Table 1B and Table 4 corresponding to this gene, particularly of the metabolic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection, prevention, and/or treatment of diabetes (for example, types I and II diabetes), obesity, eating disorders including bulimia and anorexia, and muscular disorders. Elevated levels of expression in the prostate indicate a role in modulation of tumor progression.

FEATURES OF PROTEIN ENCODED BY GENE NO: 64

5

10

15

20

25

30

This gene is expressed primarily in Soares fetal liver/spleen 1NFLS and Soares Infant Brain 1NIB and to a lesser extent in NCI CGAP Co8;NCI CGAP Brn23;Soares melanocyte 2NbHM;NCI CGAP GCB1;NCI CGAP Ut4;Human Colon Cancer;reexcision; NCI CGAP Ut2; Ovary, Cancer: (4004332 A2); Stratagene pancreas (#937208); Human Heart; NCI CGAP Pan1; Smooth muscle, serum treated; NCI CGAP Kid5; Human Microvascular Endothelial Cells, fract. A; Bone Marrow Cell Line (RS4;11); Hodgkin's Lymphoma II; Mo7e Cell Line GM-CSF treated (1ng/ml); Soares placenta Nb2HP; Primary Dendritic Cells, lib 1; Barstead aorta HPLRB3;b4HB3MA Cot8-HAP-Ft;Normal Ovary, #9710G208;NCI CGAP GCB0;Human cell line from hepatocellular carinoma; liver; NCI CGAP Pr23; NCI CGAP Pr6; Human colon carcinoma (HCC) cell line, remake; Human Skin Tumor; Stromal cells 3.88; Lung Carcinoma A549 TNFalpha activated; Human adult (K.Okubo); NCI_CGAP_Co9; H Female Bladder, Adult; Synovial hypoxia-RSF subtracted; NCI CGAP Co10; Human Colon; reexcision; NCI_CGAP_Lym12; HEL cell line; Pancreatic cancer #14677A1L; Human Bone Marrow, re-excision; NCI_CGAP_Pr22; Adipose tissue (diabetic type II) #41661; Diabetic Liver 99-09-A281a; human ovarian cancer; Human Prostate Cancer, Stage B2; reexcision; Diabetic Skeletal Muscle #42483; NCI CGAP Br2; Spinal cord; Human Adipose; NCI CGAP Co3; Palate normal; Epithelial-TNFa and INF induced; Ovary, Cancer (9809C332): Poorly differentiated adenocarcinoma; Ovary, Cancer (4004650 A3): Well-Differentiated Micropapillary Serous Carcinoma; Bone marrow; 12 Week Early Stage Human II; Reexcision; Anergic T-cell; Human Osteoclastoma; Human Amygdala; Monocyte activated; Prostate Adenocarcinoma; Soares placenta 8to9weeks 2NbHP8to9W; HUMAN B CELL LYMPHOMA; Human Thymus Stromal Cells; Liver Tumour Met 5 Tu; Human Bone Marrow, treated; normalized infant brain cDNA; NTERA2 teratocarcinoma cell line+retinoic acid (14 days); T cell helper II; Soares fetal heart NbHH19W; Soares testis NHT; HTB; HTC; NCI CGAP Skn3; NCI C GAP Kid13.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes, obesity, and cancer and other hyperproliferative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the glucose regulatory pathway, liver, spleen and brain, and fetal tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution (significant expression in fetal tissue and gene discovery in diabetes related tissue) indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diabetes and other disorders related to glucose control, and cancer and other hyperproliferative disorders.

This gene is expressed primarily in human pituitary, subt IX, Soares Infant Brain

FEATURES OF PROTEIN ENCODED BY GENE NO: 65

5

10

15

20

25

30

1NIB, and Soares fetal liver spleen 1NFLS, and Diabetic skeletal muscle. and to a lesser extent in NCI_CGAP_Kid11;NCI_CGAP_GC6;Soares_NhHMPu_S1;Fetal Heart, reexcision;Human normal ovary(#9610G215);Human Colon; re-excision;NCI_CGAP_Ut1;H. Epididiymus, cauda;NCI_CGAP_Pr28;Spinal cord;Soares breast 3NbHBst;Human endometrial stromal cells-treated with progesterone;NCI_CGAP_Brn25;normalized infant brain cDNA;Soares melanocyte 2NbHM;Activated T-cell(12h)/Thiouridine-reexcision;Soares_testis_NHT;Primary Dendritic Cells, lib 1;NCI_CGAP_Sub3;Human Cerebellum;Human Pituitary, subtracted VI;Human Pituitary, subtracted VII;Prostate;Prostate Adenocarcinoma cell line cultured in vivo in mice;Human Pituitary, subtracted;Adenocarcinoma of Ovary, Human Cell Line, # OVCAR-3;Human Neutrophils, Activated, re-excision;Human Thyroid;Human Normal Breast;NCI_CGAP_AA1;Apoptotic T-cell, re-excision;Human Epididymus;Human Soleus;Human adult (K.Okubo);Salivary Gland, Lib 2;wilm's tumor;Diabetic Skeletal Muscle #42352-L;NCI_CGAP_Pr22;Human Prostate Cancer, Stage C; re-excission;Human Umbilical Vein Endothelial Cells, uninduced;Macrophage-oxLDL;Stratagene endothelial cell

937223;Soares_NSF_F8_9W_OT_PA_P_S1;Soares breast 2NbHBst;Epithelial-TNFa and INF induced;Human Gall Bladder;Smooth muscle, serum treated;Epithelial-TNFa and INF induced;B-cells (unstimulated);NTERA2, control;Human Fetal Heart;Activated T-Cell (12hs)/Thiouridine labelledEco;B-cells (stimulated);Human

Amygdala;NCI_CGAP_Kid3;Pancreas Islet Cell Tumor;NCI_CGAP_Lu5;Human Cerebellum;Soares_pregnant_uterus_NbHPU;Soares_fetal_liver_spleen_1NFLS_S1;NCI_C GAP_HN6;NCI_CGAP_Skn4;NCI_CGAP_Sub4;NCI_CGAP_Brn50.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: Diabetes and other diseases related to glucose control. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and skeletal muscle, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in diabetic skeletal muscle and the endocrine system (pituitary) indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diabetes and other diseases related to the control of glucose.

FEATURES OF PROTEIN ENCODED BY GENE NO: 66

10

15

20

25

30

This gene is expressed primarily in breast, diabetic adipose and muscle tissues and to a lesser extent in ovarian tumors and pancreatic tissues.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly metabolic disorders, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma,

urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Embodiments of the invention encompass using polynucleotides and polypeptides (including fragments and variants thereof, and also antibodies, agonists and antagonists thereof) to prevent, diagnose, treat, or ameliorate a disease or disorder. In preferred embodiments, the present invention encompasses a method of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient in which such prevention, diagnosis, treatment, or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table 1A and Table 1C (in the same row as the disease or disorder to be treated is listed in the "Preferred Indications" column of Table 1C) in an amount effective to prevent, diagnose, treat, or ameliorate the disease or disorder. In another embodiment, the present invention also encompasses methods of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient diagonistic or therapeutic molecules in combination with proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof) as represented by Table 1A and Table 1C. Polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of metabolic disorders in particular obescity and diabetes. In addition the elevated levels of this gene in ovarian cancer indicate a role in for this protein in modulating tumor

FEATURES OF PROTEIN ENCODED BY GENE NO: 67

progression in ovarian and other solid tumors

5

10

15

20

25

30

This gene is expressed primarily in diabetic adipose tissue and to a lesser extent in smooth muscle and synovial tissues.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing

immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly metabolic disorders, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Embodiments of the invention encompass using polynucleotides and polypeptides (including fragments and variants thereof, and also antibodies, agonists and antagonists thereof) to prevent, diagnose, treat, or ameliorate a disease or disorder. In preferred embodiments, the present invention encompasses a method of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient in which such prevention, diagnosis, treatment, or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table 1A and Table 1C (in the same row as the disease or disorder to be treated is listed in the "Preferred Indications" column of Table 1C) in an amount effective to prevent, diagnose, treat, or ameliorate the disease or disorder. In another embodiment, the present invention also encompasses methods of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient diagonistic or therapeutic molecules in combination with proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof) as represented by Table 1A and Table 1C. The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of diabetes, obesity or metabolic disorders. In addition the elevated levels of expression in smooth muscle and synovial tissue indicates

FEATURES OF PROTEIN ENCODED BY GENE NO: 68

roles in hypertension, atherosclerosis and tissue inflammation respectively.

5

10

15

20

25

30

This gene is expressed primarily in pancreatic cancer and to a lesser extent in testis.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes, pancreatic cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Embodiments of the invention encompass using polynucleotides and polypeptides (including fragments and variants thereof, and also antibodies, agonists and antagonists thereof) to prevent, diagnose, treat, or ameliorate a disease or disorder. In preferred embodiments, the present invention encompasses a method of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient in which such prevention, diagnosis, treatment, or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table 1A and Table 1C (in the same row as the disease or disorder to be treated is listed in the "Preferred Indications" column of Table 1C) in an amount effective to prevent, diagnose, treat, or ameliorate the disease or disorder. In another embodiment, the present invention also encompasses methods of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient diagonistic or therapeutic molecules in combination with proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof) as represented by Table 1A and Table 1C.

5

10

15

20

25

30

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of tumor progression, in particular adenocarcinomas of the pancreas and other solid tumors.

FEATURES OF PROTEIN ENCODED BY GENE NO: 69

This gene is expressed primarily in pancreas.

5

10

15

20

25

30

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to pancreatic disorders (for example: diabetes, pancreatitis, pancreatic cancer). Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the pancreatic, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Embodiments of the invention encompass using polynucleotides and polypeptides (including fragments and variants thereof, and also antibodies, agonists and antagonists thereof) to prevent, diagnose, treat, or ameliorate a disease or disorder. In preferred embodiments, the present invention encompasses a method of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient in which such prevention, diagnosis, treatment, or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table 1A and Table 1C (in the same row as the disease or disorder to be treated is listed in the "Preferred Indications" column of Table 1C) in an amount effective to prevent, diagnose, treat, or ameliorate the disease or disorder. In another embodiment, the present invention also encompasses methods of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient diagonistic or therapeutic molecules in combination with proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof) as represented by Table 1A and Table 1C.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis in pancreatic disorders

FEATURES OF PROTEIN ENCODED BY GENE NO: 70

5

10

15

20

25

30

The translation product of this gene shares sequence homology with a human smooth muscle cell associated protein-1(SMAP-1) which is thought to be important in stimulating stroma-supported erythropoiesis.

This gene is expressed primarily in cardiovascular, musculoskeletal, mixed fetal tissues and to a lesser extent in digestive tissue(s).

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes, disorders in cardiovascular, musculoskeletal and immune/hematopoietic systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular, musculoskeletal and immune/hematopoietic, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Embodiments of the invention encompass using polynucleotides and polypeptides (including fragments and variants thereof, and also antibodies, agonists and antagonists thereof) to prevent, diagnose, treat, or ameliorate a disease or disorder. In preferred embodiments, the present invention encompasses a method of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient in which such prevention, diagnosis, treatment, or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table 1A and Table 1C (in the same row as the disease or disorder to be treated is listed in the "Preferred Indications" column of Table 1C) in an amount effective to prevent, diagnose, treat, or ameliorate the disease or disorder. In another embodiment, the present invention also

encompasses methods of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient diagonistic or therapeutic molecules in combination with proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof) as represented by Table 1A and Table 1C.

The tissue distribution and homology to a human smooth muscle cell associated protein-1(SMAP-1) indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of disorders in cardiovascular, musculoskeletal and immune/hematopoietic systems.

FEATURES OF PROTEIN ENCODED BY GENE NO: 71

5

10

15

20

25

30

The translation product of this gene shares sequence homology with a human lysosomal membrane sialoglycoprotein (hLGP85) from a human pancreatic islet tumor cell with a high metastatic activity.

This gene is expressed primarily in reproductive, immune/hematopoietic, digestive, musculoskeletal, and neural/sensory tissues and to a lesser extent in respiratory, excretory, mixed fetal, and endocrine tissue(s).

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes, disorders in reproductive, immune/hematopoietic, digestive, musculoskeletal, and neural/sensory systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive, immune/hematopoietic, digestive, musculoskeletal, and neural/sensory, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Embodiments of the invention encompass using polynucleotides and polypeptides (including fragments and variants thereof, and also antibodies, agonists and antagonists thereof) to prevent, diagnose,

treat, or ameliorate a disease or disorder. In preferred embodiments, the present invention encompasses a method of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient in which such prevention, diagnosis, treatment, or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table 1A and Table 1C (in the same row as the disease or disorder to be treated is listed in the "Preferred Indications" column of Table 1C) in an amount effective to prevent, diagnose, treat, or ameliorate the disease or disorder. In another embodiment, the present invention also encompasses methods of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient diagonistic or therapeutic molecules in combination with proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof) as represented by Table 1A and Table 1C.

The tissue distribution and homology to a human lysosomal membrane sialoglycoprotein (hLGP85) indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of disorders in reproductive, immune/hematopoietic, digestive, musculoskeletal, and neural/sensory systems.

FEATURES OF PROTEIN ENCODED BY GENE NO: 72

5

10

15

20

25

30

This gene is expressed primarily in neural, reproductive and haemopoietic tissues and to a lesser extent in several other tissues and cell types including cancer.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes, diseases of the neural, reproductive and haemopoietic systems including cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly diseases of the neural, reproductive and haemopoietic systems including cancers, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types

(e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Embodiments of the invention encompass using polynucleotides and polypeptides (including fragments and variants thereof, and also antibodies, agonists and antagonists thereof) to prevent, diagnose, treat, or ameliorate a disease or disorder. In preferred embodiments, the present invention encompasses a method of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient in which such prevention, diagnosis, treatment, or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table 1A and Table 1C (in the same row as the disease or disorder to be treated is listed in the "Preferred Indications" column of Table 1C) in an amount effective to prevent, diagnose, treat, or ameliorate the disease or disorder. In another embodiment, the present invention also encompasses methods of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient diagonistic or therapeutic molecules in combination with proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof) as represented by Table 1A and Table 1C.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of disorders of the neural, reproductive and haemopoietic systems including cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 73

5

10

15

20

25

30

This gene is expressed primarily in pancreatic tissue.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: metabolic disease including diabetes and endocrine disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential

identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the metabolic and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Embodiments of the invention encompass using polynucleotides and polypeptides (including fragments and variants thereof, and also antibodies, agonists and antagonists thereof) to prevent, diagnose, treat, or ameliorate a disease or disorder. In preferred embodiments, the present invention encompasses a method of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient in which such prevention, diagnosis, treatment, or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table 1A and Table 1C (in the same row as the disease or disorder to be treated is listed in the "Preferred Indications" column of Table 1C) in an amount effective to prevent, diagnose, treat, or ameliorate the disease or disorder. In another embodiment, the present invention also encompasses methods of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient diagonistic or therapeutic molecules in combination with proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof) as represented by Table 1A and Table 1C.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of disorders of the endocrine and metabolic systems including diabetes.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 74

5

10

15

20

25

This gene is expressed primarily in pancreatic tissues.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for

diagnosis of diseases and conditions which include but are not limited to: diabetes and other metabolic or endocrine disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine and metabolic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Embodiments of the invention encompass using polynucleotides and polypeptides (including fragments and variants thereof, and also antibodies, agonists and antagonists thereof) to prevent, diagnose, treat, or ameliorate a disease or disorder. In preferred embodiments, the present invention encompasses a method of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient in which such prevention, diagnosis, treatment, or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table 1A and Table 1C (in the same row as the disease or disorder to be treated is listed in the "Preferred Indications" column of Table 1C) in an amount effective to prevent, diagnose, treat, or ameliorate the disease or disorder. In another embodiment, the present invention also encompasses methods of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient diagonistic or therapeutic molecules in combination with proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof) as represented by Table 1A and Table 1C.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of diseases of the metabolic and endocrine systems including diabetes.

FEATURES OF PROTEIN ENCODED BY GENE NO: 75

5

10

15

20

25

The translation product of this gene shares sequence homology with a human putative lymphocyte G0/G1 switch gene which is thought to be important in switch of lymphocytes from the G0 to the G1 phases of the cell cycle. It is also speculated as a potential oncogene and regulator of latent HIV.

This gene is expressed primarily in immune/hematopoietic, musculoskeletal, digestive, and reproductive tissues and to a lesser extent in respiratory, mixed fetal, neural/sensory, excretory, connective/epithelial, and endocrine tissue(s).

5

10

15

20

25

30

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes, disorders in immune/hematopoietic, musculoskeletal, digestive, and reproductive systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune/hematopoietic, musculoskeletal, digestive, and reproductive, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Embodiments of the invention encompass using polynucleotides and polypeptides (including fragments and variants thereof, and also antibodies, agonists and antagonists thereof) to prevent, diagnose, treat, or ameliorate a disease or disorder. In preferred embodiments, the present invention encompasses a method of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient in which such prevention, diagnosis, treatment, or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table 1A and Table 1C (in the same row as the disease or disorder to be treated is listed in the "Preferred Indications" column of Table 1C) in an amount effective to prevent, diagnose, treat, or ameliorate the disease or disorder. In another embodiment, the present invention also encompasses methods of preventing, diagnosing, treating, or ameliorating a disease or

disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient diagonistic or therapeutic molecules in combination with proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof) as represented by Table 1A and Table 1C.

The tissue distribution and homology to a human putative lymphocyte G0/G1 switch gene indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of disorders in immune/hematopoietic, musculoskeletal, digestive, and reproductive tissues systems.

FEATURES OF PROTEIN ENCODED BY GENE NO: 76

5

10

15

20

25

30

This gene is expressed primarily in Pancreas normal PCA4 No;Pancreas Tumor PCA4 Tu;Pancreatic Cancer #0009A186;normal pancreas- sample number 42218.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes, Pancreatic Cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and gigestive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Embodiments of the invention encompass using polynucleotides and polypeptides (including fragments and variants thereof, and also antibodies, agonists and antagonists thereof) to prevent, diagnose, treat, or ameliorate a disease or disorder. In preferred embodiments, the present invention encompasses a method of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient in which such prevention, diagnosis, treatment, or amelioration is desired a protein, nucleic acid, or antibody of the

invention (or fragment or variant thereof) represented by Table 1A and Table 1C (in the same row as the disease or disorder to be treated is listed in the "Preferred Indications" column of Table 1C) in an amount effective to prevent, diagnose, treat, or ameliorate the disease or disorder. In another embodiment, the present invention also encompasses methods of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient diagonistic or therapeutic molecules in combination with proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof) as represented by Table 1A and Table 1C.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for Pancreatic Cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 77

5

10

15

20

25

30

The translation product of this gene shares sequence homology with SDF-1 (stromal cell-derived factor 1 precursor, also called pre-B-cell-stimulating factor) which may be implicated in the aggressiveness of the autoimmune process leading to type 1 diabetes. Also, overexpression of SDF-1 and aberrant HIV-1 expression in circulating lymphocytes appear to be linked to the development of AIDS-lymphoma.

This gene is expressed primarily in reproductive, neural/sensory, musculoskeletal, immune/hematopoietic, and digestive tissues and to a lesser extent in connective/epithelial, endocrine, cardiovascular, mixed fetal, and excretory tissues.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes, disorders in reproductive, neural/sensory, musculoskeletal, immune/hematopoietic, digestive, connective/epithelial, endocrine, cardiovascular, mixed fetal, and excretory systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive, neural/sensory, musculoskeletal, immune/hematopoietic, digestive, connective/epithelial, endocrine, cardiovascular, mixed fetal, and excretory systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial

fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Embodiments of the invention encompass using polynucleotides and polypeptides (including fragments and variants thereof, and also antibodies, agonists and antagonists thereof) to prevent, diagnose, treat, or ameliorate a disease or disorder. In preferred embodiments, the present invention encompasses a method of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient in which such prevention, diagnosis, treatment, or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table 1A and Table 1C (in the same row as the disease or disorder to be treated is listed in the "Preferred Indications" column of Table 1C) in an amount effective to prevent, diagnose, treat, or ameliorate the disease or disorder. In another embodiment, the present invention also encompasses methods of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient diagonistic or therapeutic molecules in combination with proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof) as represented by Table 1A and Table 1C.

The tissue distribution and homology to SDF-1 indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and/or diagnosis of disorders in reproductive, neural/sensory, musculoskeletal, immune/hematopoietic, digestive, connective/epithelial, endocrine, cardiovascular, mixed fetal, and excretory systems.

FEATURES OF PROTEIN ENCODED BY GENE NO: 78

5

10

15

20

25

30

The translation product of this gene shares sequence homology with Transmembrane 9 superfamily protein member 2, an integral membrane protein (with 9 spanning domains) of unknown function, although it is speculated to be a channel or transporter.

This gene is expressed primarily in Cancer Pancreas #14677A1L and Human umbilical vein endothelial cells, IL-4 induced. The closest match to this gene is known to be highly abudant and pancreas and kidney.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes, and other disorders related to improper glucose regulation, and pancreatic cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the pancreas and umbilical vein, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diabetes and other disorders related to improper glucose control, and diagnosis and treatment of cancer and other hyperproliferative disorders, particularly pancreatic cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 79

5

10

15

25

30

The translation product of this gene shares sequence homology with ribonuclease K6 precurson (EC 3.1.27.) which is thought to be important in host defense.

This gene is expressed primarily in primary dendritic cells and osteoclastoma and to a lesser extent in NCI_CGAP_Brn23;Soares placenta Nb2HP;Soares_NhHMPu_S1;Primary Dendritic cells,frac 2;Soares_fetal_liver_spleen_1NFLS_S1;NCI_CGAP_GCB1;Soares fetal liver spleen 1NFLS;Human Osteoclastoma, re-excision;H Macrophage (GM-CSF treated), re-excision;Human Pancreas Tumor; Reexcision;Normal

colon;NCI_CGAP_GC6;Soares_multiple_sclerosis_2NbHMSP;Osteoclastoma;NCI_CGAP_Ov35;Human aorta polyA+ (TFujiwara);Patient #6 Acute Myeloid Leukemia/SGAH;Brain Frontal Cortex, re-excision;Pancreatic cancer #14677A1L;NCI_CGAP_Ut1;human ovarian cancer;CD40 activated monocyte dendridic cells;Ulcerative Colitis;Macrophage (GM-CSF treated);Human Liver, normal;Fetal Liver, subtraction II;Human T-Cell

Lymphoma; NCI_CGAP_GC4; Colon Carcinoma; B-cells (unstimulated); Human Placenta; Soares_placenta_8to9weeks_2NbHP8to9W; Spleen, Chronic lymphocytic leukemia; Soares ovary tumor NbHOT; Human Bone Marrow, treated; Dendritic cells,

pooled;Colon Tumor II;Soares_total_fetus_Nb2HF8_9w;Colon Normal III;Soares NFL T GBC S1;NCI CGAP Sub3

5

10

15

20

25

30

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes, infectious disease, and cancer and other proliferative disorders, particularly of immune/hematapoetic cells and bone. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the glucose control system, immune and hematopoetic cells, and bone tissue, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Embodiments of the invention encompass using polynucleotides and polypeptides (including fragments and variants thereof, and also antibodies, agonists and antagonists thereof) to prevent, diagnose, treat, or ameliorate a disease or disorder. In preferred embodiments, the present invention encompasses a method of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient in which such prevention, diagnosis, treatment, or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table 1A and Table 1C (in the same row as the disease or disorder to be treated is listed in the "Preferred Indications" column of Table 1C) in an amount effective to prevent, diagnose, treat, or ameliorate the disease or disorder. In another embodiment, the present invention also encompasses methods of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient diagonistic or therapeutic molecules in combination

with proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof) as represented by Table 1A and Table 1C.

The tissue distribution and homology to Ribonuclease K6 indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diabetes, and disorders related to diabetes. In addition, the probable association of ribonuclease K6 with infectious disease defense suggests a role for this gene in that process.

FEATURES OF PROTEIN ENCODED BY GENE NO: 80

5

10

20

The translation product of this gene shares sequence homology with ephrin-A1, one of three genes that encode the eph-related tyrosine kinase ligands which is thought to be important in apoptosis, as the expression of this gene is known to be induced by TNF alpha. This protein is known to be anchored to the cell membrane.

This gene is expressed primarily in human endometrial tumor and Soares HhHMPu S1 (pooled melanocyte, fetal heart, and pregnant uterus), rectal tumor, pancreatic adenocarcinoma, and Soares fetal liver/spleen, and to a lesser extent in

- Soares_fetal_heart_NbHH19W;Liver Tumour Met 5 Tu;Colon Normal;NCI_CGAP_Ut1;NCI_CGAP_Pr28;Soares breast 3NbHBst;Colon, normal;NCI_CGAP_Ut3;Human
 - Prostate; NCI_CGAP_Pr1; NCI_CGAP_Kid3; NCI_CGAP_Kid5; Human Adult Heart; re-excision; Soares_placenta_8to9weeks_2NbHP8to9W; Soares_fetal_lung_NbHL19W; HBGB's differential consolidation; Aorta endothelial cells + TNF-a; NCI_CGAP_Co12; Lung, Cancer (4005163 B7): Invasive, Poorly Diff. Adenocarcinoma, Metastatic; NCI_CGAP_Ut4; Human Fetal Epithelium (Skin); Breast, Cancer: (4004943 A5); NCI_CGAP_Gas4; Stratagene endothelial cell 937223; Human Pancreas Tumor; Liver, Hepatoma; Stratagene liver (#937224); Stratagene colon (#937204); CHME Cell Line; treated 5 hrs; Human Pancreas
- 25 Tumor; Reexcision; Epithelial-TNFa and INF induced; Human Placenta; NCI_CGAP_GC6; Endothelial-induced; NCI_CGAP_Brn25; human tonsils; Stratagene lung (#937210); Human Primary Breast Cancer Reexcision; Human fetal heart, Lambda ZAP Express; Colon Tumor; Stomach Normal; Stomach Tumour; Soares melanocyte
- 2NbHM;Soares_total_fetus_Nb2HF8_9w;Soares_pregnant_uterus_NbHPU;Soares_NFL_T_GBC_S1;Soares placenta Nb2HP;NCI_CGAP_Sub3;HeLa cell line;NCI_CGAP_Ov35;Human Greater Omentum, fract II remake,;Human Pancreatic Langerhans;Human Fetal Liver, subtracted, neg clone;Ea.hy.926 cell line;HPAS (human

pancreas, subtracted);NCI CGAP Lu19;NCI CGAP HN4;NCI CGAP Co16;H. Normalized Fetal Liver, II; Human Adult Pulmonary; Human Pancreatic Carcinoma; Hodgkin's Lymphoma I;Healing Abdomen wound;70&90 min post incision;Human Thyroid;Lung Carcinoma A549 TNFalpha activated; Stomach cancer (human); re-excision; Smooth muscle, 5 IL1b induced; NCI_CGAP_Co10; Salivary Gland, Lib 2; NCI_CGAP_Pr12; Diabetic Liver #1042; Human Adult Small Intestine; Breast, Normal: (4005522B2); Gessler Wilms tumor; Pancreatic cancer #14677A1L; Human Thymus; Human Umbilical Vein; Reexcision; Adipose tissue (diabetic type II) #41661; Stratagene fetal spleen (#937205); Healing groin wound - zero hr post-incision (control); Stratagene HeLa cell s3 10 937216; Human Uterine Cancer; Soares_NSF_F8_9W_OT_PA_P_S1; Epithelial-TNFa and INF induced; Human Adipose; Human Whole Six Week Old Embryo; Olfactory epithelium; nasalcavity; NCI CGAP Co3; Hepatocellular Tumor; re-excision; Fetal Liver, subtraction II; breast lymph node CDNA library; NCI CGAP Co8; Colon Carcinoma; Human Testes Tumor; Colon Normal II; Ovary, Cancer (9809C332): Poorly differentiated 15 adenocarcinoma; Ovary, Cancer (4004650 A3): Well-Differentiated Micropapillary Serous Carcinoma; Normal colon; Human Fetal Lung III; Human Testes, Reexcision; Endothelial cellscontrol; Human Adult Pulmonary; re-excision; Human Placenta; Prostate Adenocarcinoma; Liver Normal Met5No; NCI CGAP Lu5; H. Frontal cortex, epileptic; reexcision; NTERA2 teratocarcinoma cell line+retinoic acid (14 20 days);Soares_parathyroid_tumor_NbHPA;Soares_testis_NHT;Soares_infant_brain 1NIB;HEMBA1;NCI_CGAP_Co19;NCI_CGAP_Lu27;NCI_CGAP_Skn3;NCI_CGAP_Skn 4;NCI CGAP Brn53;NCI CGAP Brn66;NCI CGAP Brn70;NCI CGAP Kid13;NIH MG C 69

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: cancer and other hyperproliferative disorders, as well as diabetes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive and glucose control systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a

25

30

disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ephrin-A1 a protein known to be induced by TNF alpha, indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancer and other hyperproliferative disorders. In addition, the discovery of this gene in diabetes related tissues (pancreas) suggests a role in diabetes and diseases such as obesity that are related to glucose control.

FEATURES OF PROTEIN ENCODED BY GENE NO: 81

5

10

15

20

25

Osteoclastoma; Stratagene lung

The translation product of this gene shares sequence homology with Human IgE Fc receptor gamma chain which is a major component of the high affinity IgE receptor; 2 gamma chains are paired with an alpha and beta chain in the mature protein. This protein apparently arose from a gene duplication event with the T-cell receptor zeta chain. This receptor is known to be a mediator of allergy (See, e,g., Kunster et al. J Biol Chem 1990 Apr 15;265(11):6448-52).

This gene is expressed primarily in Human activated monocytes and to a lesser extent in other immune cels (macrophages, dendritic cells, neutrophils, etc) as well as other cell types. A complete list of known expression is: Human Activated Monocytes; Soares placenta Nb2HP; CD40 activated monocyte dendridic cells; NCI_CGAP_Kid5; Soares fetal liver spleen 1NFLS; Macrophage (GM-CSF treated); H Macrophage (GM-CSF treated), re-

- excision; Primary Dendritic cells, frac 2; DCB; Breast, Cancer: (4005522 A2); Macrophage-oxLDL; Spleen, Chronic lymphocytic leukemia; Human Bone Marrow, treated; Primary Dendritic Cells, lib 1; Stratagene placenta (#937225); Human Activated T-Cells; Human Activated T-Cells, re-excision; mononucleocytes from patient; Macrophage-oxLDL; re-excision; breast lymph node CDNA library; Neutrophils control; re-excision; Human
- (#937210);NCI_CGAP_Brn23;Soares_multiple_sclerosis_2NbHMSP;
 Soares_total_fetus_Nb2HF8_9w;Soares_fetal_liver_spleen_1NFLS_S1;Soares_NFL_T_GB
 C_S1;Soares_NhHMPu_S1;NN0047;Human Membrane Bound Polysomes;Human
- Macrophage, subtracted;Larynx carcinoma IV;PCR, pBMC I/C treated;Human Fetal Brain, normalized AC5002;Activated T-Cells, 8 hrs, subtracted;NCI_CGAP_Lu19;Lung, Normal: (4005313 B1);Untreated Monocytes;prostate-edited;Human promyelocyte;NCI_CGAP_Br1.1;Human Fetal Bone;SGAH patient #9;NCI_CGAP_Ut3;Human Normal Breast;Ovarian cancer, Serous Papillary

Adenocarcinoma; Apoptotic T-cell, re-excision; Patient #6 Acute Myeloid
Leukemia/SGAH; pBMC stimulated w/ poly I/C; H. Meningioma, M1; Ovarian Cancer; Human
Neutrophil; pancreatic cancer sample # 4004959A1; Diabetic Skeletal Muscle #42352L; Human Prostate Cancer, Stage C; re-excission; NCI_CGAP_Gas4; Eosinophils from John
Hopkins University; NCI_CGAP_Br2; Epithelial-TNFa and INF
induced; NCI_CGAP_Pan1; Ovary, Cancer: (4004576 A8); 12 Week Old Early Stage
Human; NCI_CGAP_GC4; CD34 depleted Buffy Coat (Cord Blood), re-excision; Human
Neutrophil,

Activated; NCI_CGAP_Brn25; NCI_CGAP_Kid3; Soares_placenta_8to9weeks_2NbHP8to9W; Liver Tumour Met 5 Tu; Neutrophils IL-1 and LPS induced; NCI_CGAP_Lu5; Dendritic cells, pooled; neutrophils control; Colon Tumor II; Colon Normal III; Soares fetal heart NbHH19W; Human blood platelets; ADB; BM; EN0013; cdA

10

15

20

25

30

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes, allergy and infectious diseases as well as autoimmune disorders such as lupus. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and disorders related to aberrant activity of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., immune, cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Embodiments of the invention encompass using polynucleotides and polypeptides (including fragments and variants thereof, and also antibodies, agonists and antagonists thereof) to prevent, diagnose, treat, or ameliorate a disease or disorder. In preferred embodiments, the present invention encompasses a method of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient in which such prevention, diagnosis, treatment, or amelioration is

desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table 1A and Table 1C (in the same row as the disease or disorder to be treated is listed in the "Preferred Indications" column of Table 1C) in an amount effective to prevent, diagnose, treat, or ameliorate the disease or disorder. In another embodiment, the present invention also encompasses methods of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient diagonistic or therapeutic molecules in combination with proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof) as represented by Table 1A and Table 1C.

The tissue distribution and homology to IgE receptor Fc gamma chain, part of a receptor that has a major role in the allergic response, indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of allergies, infectious diseases, and autoimmune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 82

5

10

15

20

25

30

The translation product of this gene shares sequence homology with Complement subcomponent C1q chain C precursor which is known to be important in mediating the cellular immune response.

This gene is expressed primarily in Primary dendritic cells and to a lesser extent in a variety immune/hematopoetic cell types and to a lesser extent in a variety of normal and diseased tissues. The complete list of known tissues is: Primary Dendritic Cells, lib 1;Primary Dendritic cells,frac 2;Spleen, Chronic lymphocytic leukemia;Soares fetal liver spleen 1NFLS;NCI_CGAP_Co8;Colon Tumor II;Human Placenta;Human Adult Pulmonary;reexcision;Stomach Normal;Soares placenta Nb2HP;Soares_fetal_heart_NbHH19W;CD40 activated monocyte dendridic cells;Soares breast 2NbHBst;NCI_CGAP_Pan1;Human T-Cell Lymphoma;Soares_placenta_8to9weeks_2NbHP8to9W;Liver Normal Met5No;Stomach Tumour;Colon Normal III;Human Chronic Synovitis;Hemangiopericytoma;Human Adipose;Stratagene liver (#937224);Ovary, Cancer: (4004576 A8);Human Placenta (reexcision);Colon Tumor;Rejected Kidney, lib 4;Colon Normal II;Ovary, Cancer (9809C332): Poorly differentiated adenocarcinoma;NCI_CGAP_Brn25;Colon, normal;Soares_pregnant_uterus_NbHPU;Soares_NFL_T_GBC_S1;Soares infant brain 1NIB;b4HB3MA-Cot109+10-Bio;Human Resting Macrophage;Human Thymus;Human

Adult Lymph Node, subtracted; Human Spleen; Prostate BPH, Lib 2, subtracted; Human Gastrocnemius; NCI_CGAP_Co4; Human fetal lung; Lung, Normal: (4005313 B1); Normal skeletal muscle #96-08-A171; NCI_CGAP_Eso2; Normalized infant brain, Bento Soares; stomach cancer (human); Barstead spleen

- HPLRB2;NCI_CGAP_Lu24;SKIN;NCI_CGAP_Lu1;Human Pituitary, subtracted;NCI_CGAP_Ut3;Human Synovium;Stomach cancer (human);re-excision;NCI_CGAP_Co9;Breast, Cancer: (4005522 A2);Patient #6 Acute Myeloid Leukemia/SGAH;Ovarian cancer, Serous Papillary Adenocarcinoma;NCI_CGAP_Co14;B Cell lymphoma;Human Osteosarcoma;Human Colon; re-excision;Human Adipose Tissue, re-excision;wilm's tumor;Spleen metastic melanoma;Breast, Cancer: (4004943 A5);Adipose tissue (diabetic type I, obese) #41706;Breast, Normal: (4005522B2);Brain Frontal Cortex, re-excision;Pancreatic cancer #14677A1L;NCI_CGAP_Ut1;NCI_CGAP_Kid6;Clontech human aorta polyA+ mRNA (#6572);Ovary, Cancer: (4004332 A2);Human Pancreas Tumor;Human Fetal Brain;Ulcerative Colitis;Human Gall Bladder;Human Liver, normal;Palate normal;Fetal
 Heart; reexcision;Soares breast 3NbHBst;NCI_CGAP_GC4;Human Pancreas Tumor;
 - Heart; reexcision; Soares breast 3NbHBst; NCI_CGAP_GC4; Human Pancreas Tumor; Reexcision; Human Fetal Kidney; Reexcision; Normal colon; Pancreas normal PCA4 No; Human Placenta; human tonsils; NCI_CGAP_Kid5; Liver Tumour Met 5 Tu; Rectum tumour; Soares ovary tumor NbHOT; Human Bone Marrow, treated; Colon Normal; NCI_CGAP_Lu5; Hodgkin's Lymphoma
- 20 II;Soares_fetal_lung_NbHL19W;Soares_total_fetus_Nb2HF8_9w;Soares_fetal_liver_spleen _1NFLS_S1;Soares_testis_NHT;GKC;NCI_CGAP_Ov39;NCI_CGAP_Sub3;NCI_CGAP_B rn65

25

30

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes, cancer and other proliferative disorders, infectious diseases, allergy, and autoimmune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the

expression level in healthy tissue or bodily fluid from an individual not having the disorder. Embodiments of the invention encompass using polynucleotides and polypeptides (including fragments and variants thereof, and also antibodies, agonists and antagonists thereof) to prevent, diagnose, treat, or ameliorate a disease or disorder. In preferred embodiments, the present invention encompasses a method of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient in which such prevention, diagnosis, treatment, or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table 1A and Table 1C (in the same row as the disease or disorder to be treated is listed in the "Preferred Indications" column of Table 1C) in an amount effective to prevent, diagnose, treat, or ameliorate the disease or disorder. In another embodiment, the present invention also encompasses methods of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient diagonistic or therapeutic molecules in combination with proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof) as represented by Table 1A and Table 1C.

The tissue distribution and homology to C1q chain C precursor indicates that polynucleotides and polypeptides corresponding to this gene are useful for immunomodulation, particularly in the treatment of cancer and other proliferative disorders, infectious diseases, allergy, and autoimmune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 83

5

10

15

20

25

30

The translation product of this gene shares sequence homology with pancreatic colipase which is thought to be important in digestion of fats. In the absence of colipase, the activity of pancreatic lipase is inhibited by bile salts, preventing efficient triglyceride metabolism. (see, e.g., Biochemistry 1990 Jan 23;29(3):823-8)

This gene is expressed exclusively in pancreas.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diabetes (Type-I

and Type II, obesity, endocrine disorders, and pancreatic cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the pancreas, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., endocrine, cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Embodiments of the invention encompass using polynucleotides and polypeptides (including fragments and variants thereof, and also antibodies, agonists and antagonists thereof) to prevent, diagnose, treat, or ameliorate a disease or disorder. In preferred embodiments, the present invention encompasses a method of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient in which such prevention, diagnosis, treatment, or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table 1A and Table 1C (in the same row as the disease or disorder to be treated is listed in the "Preferred Indications" column of Table 1C) in an amount effective to prevent, diagnose, treat, or ameliorate the disease or disorder. In another embodiment, the present invention also encompasses methods of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient diagonistic or therapeutic molecules in combination with proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof) as represented by Table 1A and Table 1C.

The tissue distribution (in pancreas) and homology to colipase indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diabetes, diabetes related obesity, and non-diabetes related obesity.

FEATURES OF PROTEIN ENCODED BY GENE NO: 84

5

10

15

20

25

30

This gene is expressed primarily in eosinophils and to a lesser extent in lung cancer, brain, and bone marrow.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: allergy and asthma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Embodiments of the invention encompass using polynucleotides and polypeptides (including fragments and variants thereof, and also antibodies, agonists and antagonists thereof) to prevent, diagnose, treat, or ameliorate a disease or disorderr (such as, for example, allergies and asthma). In preferred embodiments, the present invention encompasses a method of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient in which such prevention, diagnosis, treatment, or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table 1A and Table 1C (in the same row as the disease or disorder to be treated is listed in the "Preferred Indications" column of Table 1C) in an amount effective to prevent, diagnose, treat, or ameliorate the disease or disorder.

In another embodiment, the present invention also encompasses methods of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient diagnostic or therapeutic molecules in combination with proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof) as represented by Table 1A and Table 1C.

Expression of this gene in eosinophils, brain, bone marrow, and lung cancer indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and/or detection of immune disorders including allergy, asthma, eosinophilia, eosinopenia, eosinophilic granuloma, arthritis, immunodeficiencies, lupus and leukemia, hematopoietic disorders, neurological disorders, and lung cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 85

5

10

15

20

25

30

This gene is expressed primarily in malignant tissues, such as lung cancer, prostate cell line and to a lesser extent in Wilm's tumor and leukemia.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: cancers (such as lung and prostate cancer, and leukemia/lymphoma). Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of lung, prostate, and hematopoietic cells, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Embodiments of the invention encompass using polynucleotides and polypeptides (including fragments and variants thereof, and also antibodies, agonists and antagonists thereof) to prevent, diagnose, treat, or ameliorate a disease or disorder (such as, for example, leukemia and lymphoma). In preferred embodiments, the present invention encompasses a method of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient in which such prevention, diagnosis, treatment, or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table 1A and Table 1C (in the same row as the disease or disorder to be treated is listed in the "Preferred Indications" column of Table 1C) in an amount effective to prevent, diagnose, treat, or ameliorate the disease or disorder.

In another embodiment, the present invention also encompasses methods of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient diagnostic or therapeutic molecules in combination with proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof) as represented by Table 1A and Table 1C. The tissue distribution/expression indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of various cancer/malignancy including but not limited to lung cancer, prostate cancer, Wilms tumor, leukemia and lymphoma.

FEATURES OF PROTEIN ENCODED BY GENE NO: 86

5

10

15

20

25

30

This gene is expressed primarily in eosinophils.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: allergy and asthma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Embodiments of the invention encompass using polynucleotides and polypeptides (including fragments and variants thereof, and also antibodies, agonists and antagonists thereof) to prevent, diagnose, treat, or ameliorate a disease or disorderr (such as, for example, allergies and asthma). In preferred embodiments, the present invention encompasses a method of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient in which such prevention, diagnosis, treatment, or amelioration is desired a protein, nucleic

acid, or antibody of the invention (or fragment or variant thereof) represented by Table 1A and Table 1C (in the same row as the disease or disorder to be treated is listed in the "Preferred Indications" column of Table 1C) in an amount effective to prevent, diagnose, treat, or ameliorate the disease or disorder.

In another embodiment, the present invention also encompasses methods of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient diagnostic or therapeutic molecules in combination with proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof) as represented by Table 1A and Table 1C. Expression of this gene in eosinophils indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and/or detection of immune disorders including allergy, asthma, eosinophilia, eosinopenia, eosinophilic granuloma, arthritis, immunodeficiencies, lupus and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 87

5

10

15

20

25

30

This gene is expressed primarily in eosinophils.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: allergy, asthma, and autoimmune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Embodiments of the invention encompass using polynucleotides and polypeptides (including fragments and variants thereof, and also antibodies, agonists and antagonists thereof) to prevent, diagnose, treat, or ameliorate a disease or disorderr (such as, for example, allergies and asthma). In preferred embodiments, the present invention encompasses a

method of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient in which such prevention, diagnosis, treatment, or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table 1A and Table 1C (in the same row as the disease or disorder to be treated is listed in the "Preferred Indications" column of Table 1C) in an amount effective to prevent, diagnose, treat, or ameliorate the disease or disorder.

In another embodiment, the present invention also encompasses methods of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient diagnostic or therapeutic molecules in combination with proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof) as represented by Table 1A and Table 1C. The tissue distribution of this gene in eosinophils indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and/or detection of immune disorders including allergy, asthma, eosinophilia, eosinopenia, eosinophilic granuloma, arthritis, immunodeficiencies, lupus and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 88

5

10

15

20

25

30

This gene is expressed primarily in eosinophils and dendritic cells.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: asthma, allergies, inflammation, autoimmune disorders, and other disorders of the immune system including cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from

an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

5

10

15

20

25

30

Embodiments of the invention encompass using polynucleotides and polypeptides (including fragments and variants thereof, and also antibodies, agonists and antagonists thereof) to prevent, diagnose, treat, or ameliorate a disease or disorder (such as, for example, allergies and asthma). In preferred embodiments, the present invention encompasses a method of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient in which such prevention, diagnosis, treatment, or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table 1A and Table 1C (in the same row as the disease or disorder to be treated is listed in the "Preferred Indications" column of Table 1C) in an amount effective to prevent, diagnose, treat, or ameliorate the disease or disorder.

In another embodiment, the present invention also encompasses methods of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient diagnostic or therapeutic molecules in combination with proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof) as represented by Table 1A and Table 1C. Expression of this gene and its encoded polypeptides in immune cells particularly eosinophils and dendritic cells indicates that this gene may be useful for the treatment and diagnosis of disorders of the immune system such as asthma, autoimmune syndromes such as systemic lupus erythematosus and rheumatoid arthritis as well as immune deficiency syndromes and allergies. Furthermore, since these immune cells function as antigen presenting cells, the gene and its protein may be useful for the treatment of cancer and other diseases where priming of immune system with specific disease antigens may prove useful.

FEATURES OF PROTEIN ENCODED BY GENE NO: 89

This gene is expressed primarily in eosinophils.

Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for

diagnosis of diseases and conditions which include but are not limited to: allergy and asthma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Embodiments of the invention encompass using polynucleotides and polypeptides (including fragments and variants thereof, and also antibodies, agonists and antagonists thereof) to prevent, diagnose, treat, or ameliorate a disease or disorder (such as, for example, allergies and asthma). Preferred embodiments, the present invention encompasses a method of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient in which such prevention, diagnosis, treatment, or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table 1A and Table 1C (in the same row as the disease or disorder to be treated is listed in the "Preferred Indications" column of Table 1C) in an amount effective to prevent, diagnose, treat, or ameliorate the disease or disorder.

In another embodiment, the present invention also encompasses methods of preventing, diagnosing, treating, or ameliorating a disease or disorder related to one, two, three, or more, of the cells, tissues, and organs where the polynucleotide and/or polypeptide is expressed (for example, as indicated in Column 8 of Table 1B) or as indicated in the "Preferred Indications" column of Table 1C; comprising administering to a patient diagnostic or therapeutic molecules in combination with proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof) as represented by Table 1A and Table 1C. Expression of this gene in eosinophils indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and/or detection of immune disorders including allergy, asthma, eosinophilia, eosinopenia, eosinophilic granuloma, arthritis, immunodeficiencies, lupus and leukemia.

Definitions

5

10

15

20

25

30

The following definitions are provided to facilitate understanding of certain terms used throughout this specification.

In the present invention, "isolated" refers to material removed from its original environment (e.g., the natural environment if it is naturally occurring), and thus is altered "by the hand of man" from its natural state. For example, an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be "isolated" because that vector, composition of matter, or particular cell is not the original environment of the polynucleotide. The term "isolated" does not refer to genomic or cDNA libraries, whole cell total or mRNA preparations, genomic DNA preparations (including those separated by electrophoresis and transferred onto blots), sheared whole cell genomic DNA preparations or other compositions where the art demonstrates no distinguishing features of the polynucleotide/sequences of the present invention.

In the present invention, a "secreted" protein refers to those proteins capable of being directed to the ER, secretory vesicles, or the extracellular space as a result of a signal sequence, as well as those proteins released into the extracellular space without necessarily containing a signal sequence. If the secreted protein is released into the extracellular space, the secreted protein can undergo extracellular processing to produce a "mature" protein. Release into the extracellular space can occur by many mechanisms, including exocytosis and proteolytic cleavage.

As used herein, a "polynucleotide" refers to a molecule having a nucleic acid sequence encoding SEQ ID NO:Y or a fragment or variant thereof (e.g., the polypeptide delinated in columns fourteen and fifteen of Table 1A); a nucleic acid sequence contained in SEQ ID NO:X (as described in column 5 of Table 1A and/or column 4 of Table 1B) or the complement thereof; a cDNA sequence contained in Clone ID: (as described in column 2 of Table 1A and/or 1B and contained within a library deposited with the ATCC). For example, the polynucleotide can contain the nucleotide sequence of the full length cDNA sequence, including the 5' and 3' untranslated sequences, the coding region, as well as fragments, epitopes, domains, and variants of the nucleic acid sequence. Moreover, as used herein, a "polypeptide" refers to a molecule having an amino acid sequence encoded by a polynucleotide of the invention as broadly defined (obviously excluding poly-Phenylalanine or poly-Lysine peptide sequences which result from translation of a polyA tail of a sequence corresponding to a cDNA).

In the present invention, "SEQ ID NO:X" was often generated by overlapping sequences contained in multiple clones (contig analysis). A representative clone containing all or most of the sequence for SEQ ID NO:X is deposited at Human Genome Sciences, Inc. (HGS) in a catalogued and archived library. As shown, for example, in column 2 of Table 1B, each clone is identified by a cDNA Clone ID (identifier generally referred to herein as Clone ID:). Each Clone ID is unique to an individual clone and the Clone ID is all the information needed to retrieve a given clone from the HGS library. Table 4 provides a list of the deposited cDNA libraries. One can use the Clone ID: to determine the library source by reference to Table 4. Table 4 lists the deposited cDNA libraries by name and links each library to an ATCC Deposit. Library names contain four characters, for example, "HTWE." The name of a cDNA clone (Clone ID) isolated from that library begins with the same four characters, for example "HTWEP07". As mentioned below, Table 1A and/or 1B correlates the Clone ID names with SEQ ID NO:X. Thus, starting with an SEQ ID NO:X, one can use Tables 1A, 1B, and 4 to determine the corresponding Clone ID, which library it came from and which ATCC deposit the library is contained in. Furthermore, it is possible to retrieve a given cDNA clone from the source library by techniques known in the art and described elsewhere herein. The ATCC is located at 10801 University Boulevard, Manassas, Virginia 20110-2209, USA. The ATCC deposits were made pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for the purposes of patent procedure.

5

10

15

20

25

30

In specific embodiments, the polynucleotides of the invention are at least 15, at least 30, at least 50, at least 100, at least 125, at least 500, or at least 1000 continuous nucleotides but are less than or equal to 300 kb, 200 kb, 100 kb, 50 kb, 15 kb, 10 kb, 7.5kb, 5 kb, 2.5 kb, 2.0 kb, or 1 kb, in length. In a further embodiment, polynucleotides of the invention comprise a portion of the coding sequences, as disclosed herein, but do not comprise all or a portion of any intron. In another embodiment, the polynucleotides comprising coding sequences do not contain coding sequences of a genomic flanking gene (*i.e.*, 5' or 3' to the gene of interest in the genome). In other embodiments, the polynucleotides of the invention do not contain the coding sequence of more than 1000, 500, 250, 100, 50, 25, 20, 15, 10, 5, 4, 3, 2, or 1 genomic flanking gene(s).

A "polynucleotide" of the present invention also includes those polynucleotides capable of hybridizing, under stringent hybridization conditions, to sequences contained in SEQ ID NO:X, or the complement thereof (e.g., the complement of any one, two, three, four,

or more of the polynucleotide fragments described herein), the polynucleotide sequence delineated in columns 7 and 8 of Table 1A or the complement thereof, the polynucleotide sequence delineated in columns 8 and 9 of Table 2 or the complement thereof, and/or cDNA sequences contained in Clone ID: (e.g., the complement of any one, two, three, four, or more of the polynucleotide fragments, or the cDNA clone within the pool of cDNA clones deposited with the ATCC, described herein)."Stringent hybridization conditions" refers to an overnight incubation at 42 degree C in a solution comprising 50% formamide, 5x SSC (750 mM NaCl, 75 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 µg/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65 degree C.

5

10

15

20

25

30

Also contemplated are nucleic acid molecules that hybridize to the polynucleotides of the present invention at lower stringency hybridization conditions. Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature. For example, lower stringency conditions include an overnight incubation at 37 degree C in a solution comprising 6X SSPE (20X SSPE = 3M NaCl; 0.2M NaH₂PO₄; 0.02M EDTA, pH 7.4), 0.5% SDS, 30% formamide, 100 ug/ml salmon sperm blocking DNA; followed by washes at 50 degree C with 1XSSPE, 0.1% SDS. In addition, to achieve even lower stringency, washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC).

Note that variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility.

Of course, a polynucleotide which hybridizes only to polyA+ sequences (such as any 3' terminal polyA+ tract of a cDNA shown in the sequence listing), or to a complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide," since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (*e.g.*, practically any double-stranded cDNA clone generated using oligo dT as a primer).

The polynucleotide of the present invention can be composed of any

polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. For example, polynucleotides can be composed of single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, the polynucleotide can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. A polynucleotide may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications can be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically, or metabolically modified forms.

In specific embodiments, the polynucleotides of the invention are at least 15, at least 30, at least 50, at least 100, at least 125, at least 500, or at least 1000 continuous nucleotides but are less than or equal to 300 kb, 200 kb, 100 kb, 50 kb, 15 kb, 10 kb, 7.5kb, 5 kb, 2.5 kb, 2.0 kb, or 1 kb, in length. In a further embodiment, polynucleotides of the invention comprise a portion of the coding sequences, as disclosed herein, but do not comprise all or a portion of any intron. In another embodiment, the polynucleotides comprising coding sequences do not contain coding sequences of a genomic flanking gene (*i.e.*, 5' or 3' to the gene of interest in the genome). In other embodiments, the polynucleotides of the invention do not contain the coding sequence of more than 1000, 500, 250, 100, 50, 25, 20, 15, 10, 5, 4, 3, 2, or 1 genomic flanking gene(s).

"SEQ ID NO:X" refers to a polynucleotide sequence described in column 5 of Table 1A, while "SEQ ID NO:Y" refers to a polypeptide sequence described in column 11 of Table 1A. SEQ ID NO:X is identified by an integer specified in column 6 of Table 1A. The polypeptide sequence SEQ ID NO:Y is a translated open reading frame (ORF) encoded by polynucleotide SEQ ID NO:X. The polynucleotide sequences are shown in the sequence listing immediately followed by all of the polypeptide sequences. Thus, a polypeptide sequence corresponding to polynucleotide sequence SEQ ID NO:2 is the first polypeptide sequence shown in the sequence listing. The second polypeptide sequence corresponds to the polynucleotide sequence shown as SEQ ID NO:3, and so on.

The polypeptide of the present invention can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may

contain amino acids other than the 20 gene-encoded amino acids. The polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic Modifications include acetylation, acylation, ADP-ribosylation, amidation, methods. covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. (See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. H. Freeman and Company, New York (1993); Creighton, W. POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al., Meth. Enzymol. 182:626-646 (1990); Rattan et al., Ann. N.Y. Acad. Sci. 663:48-62 (1992)).

5

10

15

20

25

30

"SEQ ID NO:X" refers to a polynucleotide sequence described, for example, in Tables 1A, 1B or 2, while "SEQ ID NO:Y" refers to a polypeptide sequence described in column 11 of Table 1A and or column 6 of Table 1B. SEQ ID NO:X is identified by an integer specified in column 3 of Table 1B. The polypeptide sequence SEQ ID NO:Y is a translated open reading frame (ORF) encoded by polynucleotide SEQ ID NO:X. "Clone ID:" refers to a cDNA clone described in column 2 of Table 1A and/or 1B.

"A polypeptide having functional activity" refers to a polypeptide capable of displaying one or more known functional activities associated with a full-length (complete) protein. Such functional activities include, but are not limited to, biological activity, antigenicity [ability to bind (or compete with a polypeptide for binding) to an antipolypeptide antibody], immunogenicity (ability to generate antibody which binds to a specific polypeptide of the invention), ability to form multimers with polypeptides of the invention, and ability to bind to a receptor or ligand for a polypeptide.

The polypeptides of the invention can be assayed for functional activity (e.g. biological activity) using or routinely modifying assays known in the art, as well as assays described herein. Specifically, one of skill in the art may routinely assay secreted polypeptides (including fragments and variants) of the invention for activity using assays as described in the examples section below.

"A polypeptide having biological activity" refers to a polypeptide exhibiting activity similar to, but not necessarily identical to, an activity of a polypeptide of the present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. In the case where dose dependency does exist, it need not be identical to that of the polypeptide, but rather substantially similar to the dose-dependence in a given activity as compared to the polypeptide of the present invention (*i.e.*, the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity, and most preferably, not more than about three-fold less activity relative to the polypeptide of the present invention).

Description of the Tables

Description of Table 1A

5

10

15

20

25

30

Table 1A summarizes information concerning certain polynucleotides and polypeptides of the invention.

The first column provides the gene number in the application for each clone identifier.

The second column provides a unique clone identifier, "Clone ID:", for a cDNA clone related to each contig sequence disclosed in Table 1A.

In the third column, the cDNA Clones identified in the second column were deposited as indicated (*i.e.*, by ATCC Deposit Nr. and deposit date). Some of the deposits contain multiple different clones corresponding to the same gene.

In the fourth column, "Vector" refers to the type of vector contained in the corresponding cDNA Clone identified in the second column.

In the fifth column, the nucleotide sequence identified as "NT SEQ ID NO:X" was assembled from partially homologous ("overlapping") sequences obtained from the corresponding cDNA clone identified in the second column and, in some cases, from additional related cDNA clones. The overlapping sequences were assembled into a single contiguous sequence of high redundancy (usually three to five overlapping sequences at each nucleotide position), resulting in a final sequence identified as SEQ ID NO:X.

The sixth column, "Total NT Seq.", refers to the total number of nucleotides in the contig sequence identified as SEQ ID NO:X."

The deposited clone may contain all or most of these sequences, reflected by the nucleotide position indicated as "5' NT of Clone Seq." (seventh column) and the "3' NT of Clone Seq." (eighth column) of SEQ ID NO:X.

In the ninth column, the nucleotide position of SEQ ID NO:X of the putative start codon (methionine) is identified as "5' NT of Start Codon."

Similarly, in column ten, the nucleotide position of SEQ ID NO:X of the predicted signal sequence is identified as "5' NT of First AA of Signal Pep."

In the eleventh column, the translated amino acid sequence, beginning with the methionine, is identified as "AA SEQ ID NO:Y," although other reading frames can also be routinely translated using known molecular biology techniques. The polypeptides produced by these alternative open reading frames are specifically contemplated by the present invention.

In the twelfth and thirteenth columns of Table 1A, the first and last amino acid

position of SEQ ID NO:Y of the predicted signal peptide is identified as "First AA of Sig Pep" and "Last AA of Sig Pep."

In the fourteenth column, the predicted first amino acid position of SEQ ID NO:Y of the secreted portion is identified as "First AA of Secreted Portion".

The amino acid position of SEQ ID NO:Y of the last amino acid encoded by the open reading frame is identified in the fifteenth column as "Last AA of ORF".

5

10

15

20

25

30

SEQ ID NO:X (where X may be any of the polynucleotide sequences disclosed in the sequence listing) and the translated SEQ ID NO:Y (where Y may be any of the polypeptide sequences disclosed in the sequence listing) are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below. For instance, SEQ ID NO:X is useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling a variety of forensic and diagnostic methods of the invention. Similarly, polypeptides identified from SEQ ID NO:Y may be used, for example, to generate antibodies which bind specifically to proteins containing the polypeptides and the secreted proteins encoded by the cDNA clones identified in Table 1A and/or elsewhere herein

Nevertheless, DNA sequences generated by sequencing reactions can contain sequencing errors. The errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence. The erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence. In these cases, the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).

Accordingly, for those applications requiring precision in the nucleotide sequence or the amino acid sequence, the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X, and the predicted translated amino acid sequence identified as SEQ ID NO:Y, but also a sample of plasmid DNA containing a human cDNA of the invention deposited with the ATCC, as set forth in Table 1A. The nucleotide sequence of each deposited plasmid can readily be determined by sequencing the deposited plasmid in accordance with known methods

The predicted amino acid sequence can then be verified from such deposits.

Moreover, the amino acid sequence of the protein encoded by a particular plasmid can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence. Also provided in Table 1A, is the name of the vector which contains the cDNA plasmid (fourth column). Each vector is routinely used in the art. The following additional information is provided for convenience.

5

10

15

20

25

30

Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S. Patent Nos. 5,128, 256 and 5,286,636), Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 16:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res. 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Phagemid pBS may be excised from the Lambda Zap and Uni-Zap XR vectors, and phagemid pBK may be excised from the Zap Express vector. Both phagemids may be transformed into E. coli strain XL-1 Blue, also available from Stratagene

Vectors pSport1, pCMVSport 1.0, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into *E. coli* strain DH10B, also available from Life Technologies. See, for instance, Gruber, C. E., *et al.*, *Focus 15:*59 (1993). Vector lafmid BA (Bento Soares, Columbia University, New York, NY) contains an ampicillin resistance gene and can be transformed into *E. coli* strain XL-1 Blue. Vector pCR[®]2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into *E. coli* strain DH10B, available from Life Technologies. See, for instance, Clark, J. M., *Nuc. Acids Res.* 16:9677-9686 (1988) and Mead, D. *et al.*, *Bio/Technology 9:* (1991).

The present invention also relates to the genes corresponding to SEQ ID NO:X, SEQ ID NO:Y, and/or a deposited cDNA (cDNA Clone ID). The corresponding gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include, but are not limited to, preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.

Also provided in the present invention are allelic variants, orthologs, and/or species

homologs. Procedures known in the art can be used to obtain full-length genes, allelic variants, splice variants, full-length coding portions, orthologs, and/or species homologs of genes corresponding to SEQ ID NO:X and SEQ ID NO:Y using information from the sequences disclosed herein or the clones deposited with the ATCC. For example, allelic variants and/or species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for allelic variants and/or the desired homologue.

The present invention provides a polynucleotide comprising, or alternatively consisting of, the nucleic acid sequence of SEQ ID NO:X and/or a cDNA contained in ATCC Deposit No.Z. The present invention also provides a polypeptide comprising, or alternatively, consisting of, the polypeptide sequence of SEQ ID NO:Y, a polypeptide encoded by SEQ ID NO:X, and/or a polypeptide encoded by a cDNA contained in ATCC deposit No.Z. Polynucleotides encoding a polypeptide comprising, or alternatively consisting of the polypeptide sequence of SEQ ID NO:Y, a polypeptide encoded by SEQ ID NO:X and/or a polypeptide encoded by the cDNA contained in ATCC Deposit No.Z, are also encompassed by the invention. The present invention further encompasses a polynucleotide comprising, or alternatively consisting of the complement of the nucleic acid sequence of SEQ ID NO:X, and/or the complement of the coding strand of the cDNA contained in ATCC Deposit No.Z.

Last AA of ORF	88	88	210	210	191	365	66	961	961	961	84	84
First AA of Secreted Portion	41	41	36	36	61	61	7	25	25	25	30	30
Last AA of Sig Pep	40	40	35	35	18	18	_	24	24	24	29	29
First AA of Sig Pep	-	-	-	-	-	_	-	-	_	-	-	-
AA SEQ ID NO:	204	293	205	294	206	295	296	207	297	298	208	299
5' NT of First AA of Signal Pep	104	119	276	305	143	156	155	85	97	478	16	91
5' NT of Start Codon	104	119	276	305	143	156		85	16	478	91	91
3' NT of Clone Seq.	1893	2382	993	1021	643	1552	599	1205	1216	3759	537	485
of of Clone Seq.	-	_	_	_	_	_	_		_	394	_	_
Total NT Seq.	1893	2382	993	1021	643	1552	899	1205	1216	3759	537	485
SEQ NO.	Ξ	100	12	101	13	102	103	14	104	105	15	901
Vector	pCMVSport 3.0	pCMVSport 3.0	pSportl	pSportl	pCMVSport 3.0							
ATCC Deposit Nr and Date	PTA-3680 08/30/2001											
cDNA Clone ID	HSMPG12	HSMPG12	HNLJKII	HNLJK11	HSMPJ30	HSMPJ30	HSMPJ30	HTAOK88	HTAOK88	HTAOK88	96XISQH	96XISGH
Gene No.	_	_	2	7	3	3	3	4	4	4	5	5

Last AA of ORF	84	84	47	400	400	400	125	125	125	65	294	294	283	283	396
First AA of Secreted Portion	30	30	2	33	33	33	33	33	33	22	28	28	26	26	35
Last AA of Sig Pep	29	56	-	32	32	32	32	32	32	21	27	27	25	25	34
First AA of Sig Pep	1	1	_	1	1	-	-	-	-	1	-	1	_	-	
AA SEQ ID NO: Y	300	301	302	209	303	304	210	305	306	307	211	308	212	309	213
5' NT of First AA of Signal Pep	. 103	103	39	104	16	104	129	130	119	85	176	149	88	9/	465
5' NT of Start Codon	103	103		104	91	104	129	130	611		176	149	88	9/	465
3' NT of Clone Seq.	499	466	180	2014	2015	2030	1508	1509	1497	886	1631	1605	1881	1849	2220
5' NT of Clone Seq.	1	1	1	26	1	26	_	_	_	1	-	_	_	_	325
Total NT Seq.	499	664	180	2826	2015	2044	1508	1509	1497	886	1631	1605	1881	1881	2220
NT SEQ ID NO:	107	108	109	91	110	111	17	112	113	114	18	115	61	116	20
Vector	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0	Uni-ZAP XR	Uni-ZAP XR	pCMVSport 3.0					
ATCC Deposit Nr and Date	PTA-3680 08/30/2001	PTA-3680 08/30/2001	PTA-3680 08/30/2001	PTA-3680 08/30/2001	PTA-3680 08/30/2001	PTA-3680. 08/30/2001	PTA-3680 08/30/2001								
cDNA Clone ID	96XISQH	HDSIX96	96XISQH	HATYJ68	HATYJ68	HATYJ68	HDSJH26	НDSJH26	нDSJH26	нDSJH26	HNMIG09	HNMIG09	HLCMJ69	HLCMJ69	HNMIB80
Gene No.	5	5	5	9	9	9	7	7	7	<i>L</i>	8	8	6	6	01

Last AA of ORF	672	672	10	160	091	091	215	215	215	215	535	138	99	314	230
First AA of Secreted Portion	28	28	10	30	30	30	40	40	40	40	22	22	2	23	23
Last AA of Sig Pep	27	27	6	59	29	29	39	39	39	39	21	21	-	22	22
First AA of Sig Pep	1	ı	I	1	1	1	1	1	1	I	ı	_	-	1	1
AA SEQ ID NO: Y	214	310	311	215	312	313	216	314	315	316	217	317	318	218	319
5' NT of First AA of Signal Pep	117	268	1142	33	22	33	160	171	091	881	208	208	2	801	92
5' NT of Start Codon	117	268		33	22	33	160	171	091	881	802	208		801	92
3' NT of Clone Seq.	2559	2460	1818	1994	1984	1994	923	948	923	596	2244	623	169	2138	832
5' NT of Clone Seq.	1	352	I	-	_	_	-	-	_	1	8	∞	_	1	1
Total NT Seq.	2559	2717	8181	1994	1984	1994	2208	948	923	596	2244	623	691	2138	832
NT SEQ ID NO:	21	117	118	22	119	120	23	121	122	123	24	124	125	25	126
Vector	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0									
ATCC Deposit Nr and Date	PTA-3680 08/30/2001	PTA-3705 09/17/01	PTA-3705 09/17/01	PTA-3705 09/17/01	PTA-3705 09/17/01	PTA-3705 09/17/01									
cDNA Clone ID	HDLLA60	HDLLA60	HDLLA60	HDSIX56	HDSIX56	HDSIX56	HFLEZ28	HFLEZ28	HFLEZ28	HFLEZ28	HDMSA74	HDMSA74	HDMSA74	60ОЅМОН	HDMSQ09
Gene No.	=	11	11	12	12	12	13	13	13	13	14	4	14	15	15

Last AA of ORF	145	97	97	218	218	83	83	672	672	34.	109	109	96	83	331
First AA of Secreted Portion	2	44	44	39	39	17	17	28	28	13	20	20	24	2	17
Last AA of Sig Pep	1	43	43	38	38	91	91	27	27	12	19	19	23	-	16
First AA of Sig Pep	1	1	1	1	1	1	1	1	1	_	1	1	1	1	1
AA SEQ NO:	320	219	321	220	322	221	323	222	324	325	223	326	224	327	225
5' NT of First AA of Signal Pep	113	46	93	88	100	213	161	108	268	25	27	93	129	137	121
5' NT of Start Codon		46	93	88	100	213	197	108	268	25	27	93	129		121
3' NT of Clone Seq.	1316	466	543	865	928	629	640	2529	2717	413	385	451	611	579	1224
5' NT of Clone Seq.	642	_	64	_			-	-	352		-	83	1	_	1
Total NT Seq.	1334	466	543	885	928	629	640	2529	2717	413	385	451	611	579	1224
SEQ NÖ:	127	26	128	27	129	28	130	29	131	132	30	133	31	134	32
Vector	pCMVSport 3.0														
ATCC Deposit Nr and Date	PTA-3705 09/17/01														
cDNA Clone ID	HDMSQ09	HDMTG72	HDMTG72	HTAOQ18	HTAOQ18	HLAPM62	HLAPM62	HDLWY45	HDLWY45	HDLWY45	HDMKF05	HDMKF05	HDMRQ63	HDMRQ63	HDMKE89
Gene No.	15	91	91	11	41	81	81	61	61	61	20	70	21	21	22

Last AA of ORF	331	105	105	68	68	49	202	205	556	173	269	127	346	710	146
First AA of Secreted Portion	17	23	23	31	31	2	22	22	7	22	17	17	17	7	27
Last AA of Sig Pep	16	22	22	30	30	-	21	21	-	21	91	91	91	-	26
First AA of Sig Pep	-	-	-	-	-	_	1	_	_	1	-	-	1	1	-
AA SEQ ID NO:	328	226	329	227	330	331	228	332	333	334	525	335	336	337	230
5' NT of First AA of Signal Pep	134	95	78	197	736	2	62	62	2	109	89	52	115	3	193
5' NT of Start Codon	134	95	78	161	736		62	62		109	89	52	115		193
3, NT of Clone Seq.	1234	1233	1213	162	1022	228	1800	932	1709	627	3289	1344	1644	3264	923
S' NT of Clone Seq.	32	-	_	-	551	-	202	202	1064	51	1	6	59	1	121
Total NT Seq.	2069	1233	1227	791	1022	228	1834	932	1745	627	3289	1344	1644	3264	923
SEQ NO:	135	33	136	34	137	138	35	139	140	141	36	142	143	144	37
Vector	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 2.0	pCMVSport 2.0	pCMVSport 2.0	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0	pSport1	pSport1	pSport1	pSport1	pCMVSport 3.0
ATCC Deposit Nr and Date	PTA-3705 09/17/01														
cDNA Clone ID	HDMKE89	HNMIK76	HNMIK76	НДНМА62	НДНМА62	НДНМА62	нрорт24	НDQDT24	НDQDT24	нрорт24	11000A1	HE00V77	HE00V77	HE00V77	HERHG93
Gene No.	22	23	23	24	24	24	25	25	25	25	26	26	26	26	27

Last	AA of ORF		146	110	110	168	891	186	227	57	121	146	93	93	93	48	491
∀		Portion	27	32	32	28	28	30	30	30	2	19	25	25	25	2	26
Last	of Sig	Pep	26	31	31	27	27	29	29	29	-	18	24	24	24	1	25
First	of Sig	Pep	1	-	1	-	-	_	_	-	-	-	_	-	-	-	-
AA SEQ	ΘÖ	>	338	231	339	232	340	233	341	342	343	234	235	344	345	346	236
5' NT of First AA of	Signal Pep		193	26	108	49	179	31	45	24	ω	79	100	100	62	129	23
5° NT	of Start Codon		193	26	108	49	179	31	45	24		79	100	100	62		23
3, NT of	Clone Seq.		922	929	599	975	1142	1778	1148	1691	682	516	722	722	1281	317	1556
5° NT of	Clone Seq.		121				129	-	25	62	-	-	68	68	95	94	-
	Total NT	Seq.	922	655	999	975	1142	1778	1148	1691	1719	516	1319	722	1281	356	1556
NT SEQ	ΩÖ	×	145	38	146	39	147	40	148	149	150	41	42	151	152	153	43
		Vector	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0	Uni-ZAP XR	pSportl	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pCMVSport 3.0					
ATCC	Deposit Nr and Date		PTA-3705 09/17/01														
	cDNA	Clone ID	некнG93	HESXG41	HESXG41	HFKFO58	HFKFO58	HFPKB52	HFPKB52	HFPKB52	HFPKB52	HGARX38	HMAGO59	HMAGO59	HMAGO59	HMAGO59	HMTSX03
	Gene	Š.	27	28	28	29	29	30	30	30	30	31	32	32	32	32	33

Last AA of ORF	206	114	88	95	498	310	66	205	205	197	167	167	88	88	30
First AA of Secreted Portion	26	32	91	91	21	21	7	41	41	2	61	61	37	37	∞
Last AA of Sig Pep	25	31	15	15	20	20	-	40	40	-	81	81	36	36	7
First AA of Sig Pep	ı	I	_	-	1	_	_	1	1	1	_	-	-	_	_
AA SEQ ID NO: Y	347	237	238	348	239	349	350	240	351	241	242	352	243	353	244
5' NT of First AA of Signal Pep	9	45	143	163	18	109	236	126	142	710	172	99	98	102	45
5' NT of Start	9	45	143	163	81	109		126	142		172	65	98	102	
3' NT of Clone Seq.	624	995	408	447	2097	1050	878	946	959	2139	789	681	705	720	451
5' NT of Clone Seq.	-	_	_	_		99	216	-	_	1580	124	_	-	_	58
Total NT Seq.	624	995	408	447	2097	1050	879	1002	959	2139	940	681	705	720	1018
NT SEQ ID NO:	154	44	45	155	46	156	157	47	158	48	49	159	20	160	51
Vector	pCMVSport 3.0	pCMVSport 3.0	Uni-ZAP XR	Uni-ZAP XR	pSport1	pSport1	pSport1	pSport1	pSportl	pSport1	pSport1	pSportl	pSport1	pSport1	pBluescript SK-
ATCC Deposit Nr and Date	PTA-3705 09/17/01														
cDNA Clone ID	HMTSX03	HMTUZ60	HNFKC14	HNFKC14	HNSQN50	HNSQN50	HNSQN50	HNSUM63	HNSUM63	89AMSNH	HOC2T95	HOC2T95	HODNV05	HODNV05	HPDSA48
Gene No.	33	34	35	35	36	36	36	37	37	38	39	39	40	40	41

Last AA of ORF	117	117	533	961	457	97	245	180	112	245	245	307	137	307	42
First AA of Secreted Portion	21	21	22	22	22	2	29	29	29	29	29	44	44	44	18
Last AA of Sig Pep	20	20	21	21	21	_	28	28	28	28	28	43	43	43	17
First AA of Sig Pep	-	1	-	-	1	_	-	1	-	1	_	-		1	-
AA SEQ ID NO:	354	355	245	356	357	358	246	359	360	361	362	247	363	364	248
5' NT of First AA of Signal Pep	78	78	30	20	06	107	102	94	119	119	118	31	14	14	109
5' NT of Start Codon	78	78	30	20	06		. 102	94	119	119	118	31	14	14	
3' NT of Clone Seq.	821	843	2046	609	1461	797	1183	635	1195	1055	1188	1042	425	1187	2798
5' NT of Clone Seq.	1	-	_	-	69	122	-	-	25	25	85	_	-	1	82
Total NT Seq.	878	843	2046	609	1461	829	1183	635	1195	1055	1188	1042	425	1187	2894
SEQ NO:	161	162	52	163	164	165	53	166	167	168	169	54	170	171	55
Vector	pBluescript SK-	pBluescript SK-	pBluescript	pBluescript	pBluescript	pBluescript	Uni-ZAP XR	pSportl	pSportl	pSportl	Uni-ZAP XR				
ATCC Deposit Nr and Date	PTA-3705 09/17/01														
cDNA Clone ID	HPDSA48	HPDSA48	HSKIT24	HSKIT24	HSKIT24	HSKIT24	HSVAA83	HSVAA83	HSVAA83	HSVAA83	HSVAA83	нитлт76	HUTJT76	HUTJT76	HUVHZ75
Gene No.	41	41	42	42	42	42	43	43	43	43	43	44	44	44	45

Last AA of ORF	57	227	54	85	85	334	334	96	88	82	82	217	136	78	107
First AA of Secreted Portion	2	41	40	23	23	81	18	28	2	20	20	21	21	2	34
Last AA of Sig Pep	1	40	39	22	22	17	11	27	1	61	61	20	20	1	33
First AA of Sig Pep	ı	1	1	1	1	1	-	1	1	1	1	-	_	-	-
AA SEQ ID NO: Y	365	249	998	250	367	251	368	252	369	253	370	254	371	372	255
s, NT of First AA of Signal Pep	199	<i>L</i> 9	96	56	20	0/	65	188	1	212	611	174	158	2161	92
5' NT of Start Codon		<i>L</i> 9	96	26	20	70	59	188		217	611	174	158		92
3' NT of Clone Seq.	562	749	822	425	355	1307	1377	476	406	597	498	1594	631	092	1202
of Ol Clone Seq.		-	107	-	9	_	_	_	_	110	ı —	-	_	182	_
Total NT Seq.	562	749	822	425	398	1307	1377	476	482	597	498	1594	631	2914	1202
SEQ NÖ:	172	56	173	57	174	58	175	59	176	09	177	19	178	179	62
Vector	Uni-ZAP XR	pSport1	pSportl	pCMVSport 3.0	pSportl	pSport1	pSport1	pSport1							
ATCC Deposit Nr and Date	PTA-3705 09/17/01														
cDNA Clone ID	HUVHZ75	HVAQ059	HVAQ059	HWHPA16	HWHPA16	HYCAD48	HYCAD48	HHFZF42	HHFZF42	нна0у41	нна0у41	HNSRC60	HNSRC60	HNSRC60	HFDUT84
Gene No.	45	46	46	47	47	48	48	46	49	20	20	51	15	51	52

Last AA of ORF	107	146	146	205	205	153	125	66	66	171	135	82	82	103	370
First AA of Secreted Portion	34	20	20	44	44	33	33	27	27	24	24	34	34	48	2
Last AA of Sig Pep	33	49	49	43	43	32	32	26	26	23	23	33	33	47	-
First AA of Sig Pep	1	1		1	_	-	I	-	_	_	_	-	_	-	_
AA SEQ ID NO:	373	256	374	257	375	258	376	259	377	260	378	261	379	797	380
5' NT of First AA of Signal Pep	331	111	94	139	538	52	52	40	33	124	124	135	152	271	152
5' NT of Start Codon	331	111	94	139	538	52	52	40	33	124	124	135	152	271	
3' NT of Clone Seq.	1003	894	604	972	1361	726	426	1753	627	1079	528	507	522	280	1472
5' NT of Clone Seq.	251	1	_	-	412	_	-	-	_	-	_	-	_	_	877
Total NT Seq.	1003	894	604	972	1361	726	426	1753	627	1079	528	507	522	580	1491
NT SEQ ID NO:	180	63	181	64	182	65	183	99	184	29	185	89	186	69	187
Vector	pSport1	pCMVSport 3.0	pCMVSport 3.0	pSport	pSport1	pSport1	pSport1	Uni-ZAP XR	Uni-ZAP XR	pSport	pSportl	pSport1	pSport1	pSport	pSport1
ATCC Deposit Nr and Date	PTA-3705 09/17/01														
cDNA Clone ID	HFDUT84	HHA1S21	HHA1S21	ннмог78	ннмог78	HNSMZ53	HNSMZ53	HNGMJ63	HNGMJ63	HNSIT44	HNSIT44	HHMSF21	HHMSF21	HNSES94	HNSES94
Gene No.	52	53	53	54	54	55	25	99	99	57	57	28	58	59	59

Last AA of ORF	100	100	59	151	151	151	142	142	142	450	134	450	125	266	146
First AA of Secreted Portion	22	22	7	21	21	21	21	21	21	61	61	61	7	31	2
Last AA of Sig Pep	21	21	-	20	20	20	20	20	20	18	18	18	_	30	_
First AA of Sig Pep	1	1	-	-	1	-	_	-	1	1	1	-	_	_	_
AA SEQ ID NO:	263	18£	382	264	383	384	265	385	386	566	387	388	389	267	268
5' NT of First AA of Signal Pep	30	12	439	233	70	233	112	17	9	148	140	176	_	401	591
5' NT of Start Codon	30	12		233	70	233	112	17	9	148	140	176		401	
3, NT of Clone Seq.	1386	725	919	793	219	835	699	713	541	1734	543	1859	594	1743	1361
of Of Clone Seq.	1	1	-	176	-	176	107	-		-		290		132	702
Total NT Seq.	1386	725	919	813	119	835	757	713	541	1734	543	1859	594	1743	1404
SEQ ID NO:	70	188	681	71	190	161	72	192	193	73	194	195	961	74	75
Vector	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0	pSport1	pSport1	pSportl	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pCMVSport 3.0	pCMVSport 3.0
ATCC Deposit Nr and Date	PTA-3705 09/17/01	PTA-3705 09/17/01.	PTA-3705 09/17/01	PTA-3705 09/17/01	PTA-3845 11/08/01	PTA-3845 11/08/01									
cDNA Clone ID	HHIMU43	HH1MU43	HH1MU43	L9ANWHH	L9ANWHH	L9ANWHH	69NSTMH	69NSTMH	HMTSU69	HMWCU24	HMWCU24	HMWCU24	HMWCU24	HCPC191	HDMSA08
Gene No.	09	09	09	19	19	19	62	62	62	63	63	63	63	64	65

Last AA of ORF	263	950	127	75	94	312	237	321	104	449	82	181	06	217	68
First AA of Secreted Portion	29	24	22	2	20	22	27	2	33	2	35	81	29	21	22
Last AA of Sig Pep	28	23	21	1	61	21	56	1	32	1	34	17	28	20	21
First AA of Sig Pep	1	1	1	1	I	1	1	1	1	1	1	_	-	1	
AA SEQ ID NO: Y	569	270	271	390	272	273	274	391	275	392	922	277	278	279	280
5' NT of First AA of Signal Pep	134	25	144	7	29	316	338	30	278	60\$	596	33	244	71	06
5' NT of Start Codon	134	52	144		29	316	338	30	278		967	33	244	7.1	06
3, NT of Clone Seq.	1803	3065	603	159	208	2415	1230	1292	623	2878	638	653	928	1141	1874
5' NT of Clone Seq.	146	2437	_	1	_	-	71	819	-	2189		-	26	-	4
Total NT Seq.	1803	4165	603	651	708	2415	1230	1292	623	4476	638	653	928	1141	1874
NT SEQ NO:	9/	77	78	197	79	80	81	861	82	199	83	84	85	98	87
Vector	pCMVSport 3.0														
ATCC Deposit Nr and Date	PTA-3845 11/08/01														
cDNA Clone ID	HCPBA16	HCPBM77	HCPBR37	HCPBR37	HIEAG70	HDMTL77	HDMTP20	HDMTP20	HIEAP38	HIEAP38	HIEBT86	HIGAN47	HDMSW74	HIGBG18	HDMTE62
Gene No.	99	<i>L</i> 9	89	89	69	70	11	71	72	72	73	74	75	92	77

Last AA of ORF	62	233	42	150	205	98	245	193	112	106	63	114	123	185	186
First AA of Secreted Portion	2	43	2	24	61	61	29	2	81	21	26	27	61	28	2
Last AA of Sig Pep	-	42	-	23	18	18	28	_	17	20	25	26	81	27	-
First AA of Sig Pep	1	1	I	1	1	1	I	1	1	I	1	-		1	-
AA SEQ ID NO:	393	281	394	282	283	284	285	395	286	287	288	289	290	291	396
5' NT of First AA of Signal Pep	187	52	132	279	103	96	611	142	30	417	276	86	115	08	196
5' NT of Start Codon		52		279	103	96	119		30	417	276	86	115	80	
3' NT of Clone Seq.	550	751	199	1080	1587	989	1216	1025	542	1199	516	614	628	634	838
S' NT of Clone Seq.	260	_	_	21	25	87	23	963	_	_		-	_	-	197
Total NT Seq.	682	751	671	1080	1587	716	1216	1088	542	1199	844	614	628	634	838
SEQ NO:	200	88	201	68	06	91	92	202	93	94	95	96	97	86	203
Vector	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0	pSport1	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0	pCMVSport 3.0					
ATCC Deposit Nr and Date	PTA-3845 11/08/01	PTA-3845 11/08/01	PTA-3845 11/08/01	PTA-3845 11/08/01	PTA-3845 11/08/01	PTA-3845 11/08/2001									
cDNA Clone ID	HDMTE62	HCPRA 19	HCPRA19	HCPCB26	HCPCN28	HABCP53	HCPBO66	HCPBO66	HIGAT14	HESYT64	HALJC43	HESZO72	HESZV10	HESYL64	HESYL64
Gene No.	11	78	78	79	08	81	82	82	83	84	85	98	87	88	88

Last A of ORF	81
First AA Last of AA of Secreted ORF Portion	41
Last AA of Sig Pep	40
First Last AA AA F of of Sig Sig S Pep Pep 1	1
AA SEQ ID NO: Y	292
S' NT of First AA 1 AA of SEQ Signal 1D Pep NO: Y	232
Seq. Seq. Codon	232
3' NT of Clone Seq.	730
5' NT of Clone Seq.	-
Total NT Seq.	730
NT SEQ ID NO:	66
Vector	PTA-3845 pCMVSport 3.0 99 730 1/08/2001
ATCC Deposit Nr and Date	PTA-3845 11/08/2001
cDNA Clone ID	HESYN37
Gene No.	68

Description of Table 1B

5

10

15

20

25

30

Table 1B summarizes some of the polynucleotides encompassed by the invention (including cDNA clones related to the sequences (Clone ID:), contig sequences (contig identifier (Contig ID:) and contig nucleotide sequence identifiers (SEQ ID NO:X)) and further summarizes certain characteristics of these polynucleotides and the polypeptides encoded thereby.

The first column of Table 1B provide the gene numbers in the application for each clone identifier.

The second column of Table 1B provide unique clone identifiers, "Clone ID:", for cDNA clones related to each contig sequence disclosed in Table 1A and/or Table 1B. This Clone ID references the cDNA clone which contains at least the 5' most sequence of the assembled contig and at least a portion of SEQ ID NO:X as determined by directly sequencing the referenced clone. The referenced clone may have more sequence than described in the sequence listing or the clone may have less. In the vast majority of cases, however, the clone is believed to encode a full-length polypeptide. In the case where a clone is not full-length, a full-length cDNA can be obtained by methods described elsewhere herein.

The third column of Table 1B provide unique contig identifiers, "Contig ID:" for each of the contig sequences disclosed in these tables.

The fourth column of Table 1B provides the sequence identifiers, "SEQ ID NO:X", for each of the contig sequences disclosed in Table 1A and/or 1B.

The fifth column of Table 1B, "ORF (From-To)", provides the location (*i.e.*, nucleotide position numbers) within the polynucleotide sequence of SEQ ID NO:X that delineates the preferred open reading frame (ORF) that encodes the amino acid sequence shown in the sequence listing and referenced in Table 1B as SEQ ID NO:Y (column 6). Where the nucleotide position number "To" is lower than the nucleotide position number "From", the preferred ORF is the reverse complement of the referenced polynucleotide sequence.

The sixth column in Table 1B provides the corresponding SEQ ID NO:Y for the polypeptide sequence encoded by the preferred ORF delineated in column 5. In one embodiment, the invention provides an amino acid sequence comprising, or alternatively consisting of, a polypeptide encoded by the portion of SEQ ID NO:X delineated by "ORF (From-To)". Also provided are polynucleotides encoding such amino acid sequences and the

complementary strand thereto.

5

10

15

20

25

30

Column 7 of Table 1B lists residues comprising predicted epitopes contained in the polypeptides encoded by each of the preferred ORFs (SEQ ID NO:Y). Identification of potential immunogenic regions was performed according to the method of Jameson and Wolf (CABIOS, 4; 181-186 (1988)); specifically, the Genetics Computer Group (GCG) implementation of this algorithm, embodied in the program PEPTIDESTRUCTURE (Wisconsin Package v10.0, Genetics Computer Group (GCG), Madison, Wisc.) The Jameson-Wolf antigenic analysis was performed using the computer program PROTEAN (Version 3.11 for the Power MacIntosh, DNASTAR, Inc., 1228 South Park Street Madison, WI). This method returns a measure of the probability that a given residue is found on the surface of the protein. Regions where the antigenic index score is greater than 0.9 over at least 6 amino acids are indicated in Table 1B as "Predicted Epitopes". In particular embodiments, polypeptides of the invention comprise, or alternatively consist of, one, two, three, four, five or more of the predicted epitopes described in Table 1B. It will be appreciated that, depending on the analytical criteria used to predict antigenic determinants, the exact address of the determinant may vary slightly.

Column 8 of Table 1B provides an expression profile and library code:count for each of the contig sequences (SEQ ID NO:X) disclosed in Table 1B, which can routinely be combined with the information provided in Table 4 and used to determine the tissues, cells, and/or cell line libraries which predominantly express the polynucleotides of the invention. The first code number shown in Table 1B column 8 (preceding the colon), represents the tissue/cell source identifier code corresponding to the key provided in Table 4. Expression of these polynucleotides was not observed in the other tissues and/or cell libraries tested. The second number in column 8 (following the colon), represents the number of times a sequence corresponding to the reference polynucleotide sequence (e.g., SEQ ID NO:X) was identified in the corresponding tissue/cell source. Utilizing this technology, cDNAs were amplified by PCR and then transferred, in duplicate, onto the array. Gene expression was assayed through hybridization of first strand cDNA probes to the DNA array. cDNA probes were generated from total RNA extracted from a variety of different tissues and cell lines. Probe synthesis was performed in the presence of ³³P dCTP, using oligo(dT) to prime reverse transcription. After hybridization, high stringency washing conditions were employed to remove nonspecific hybrids from the array. The remaining signal, emanating from each gene target, was measured using a Phosphorimager. Gene expression was reported as Phosphor Stimulating

Luminescence (PSL) which reflects the level of phosphor signal generated from the probe hybridized to each of the gene targets represented on the array. A local background signal subtraction was performed before the total signal generated from each array was used to normalize gene expression between the different hybridizations. The value presented after "[array code]:" represents the mean of the duplicate values, following background subtraction and probe normalization. One of skill in the art could routinely use this information to identify normal and/or diseased tissue(s), which show a predominant expression pattern of the corresponding polynucleotide of the invention or to identify polynucleotides which show predominant and/or specific tissue and/or cell expression.

5

10

15

20

25

30

Column 9 of Table 1B ("Cytologic Band") provides a chromosomal location for certain polynucleotides corresponding to SEQ ID NO:X. Chromosomal location was determined by finding exact matches to EST and cDNA sequences contained in the NCBI (National Center for Biotechnology Information) UniGene database. Each sequence in the UniGene database is assigned to a "cluster"; all of the ESTs, cDNAs, and STSs in a cluster are believed to be derived from a single gene. Chromosomal mapping data is often available for one or more sequence(s) in a UniGene cluster; this data (if consistent) is then applied to the cluster as a whole. Thus, it is possible to infer the chromosomal location of a new polynucleotide sequence by determining its identity with a mapped UniGene cluster. A modified version of the computer program BLASTN (Altshul, et al., J. Mol. Biol. 215:403-410 (1990), and Gish and States, Nat. Genet. 3:266-272) (1993) was used to search the UniGene database for EST or cDNA sequences that contain exact or near-exact matches to a polynucleotide sequence of the invention (the 'Query'). A sequence from the UniGene database (the 'Subject') was said to be an exact match if it contained a segment of 50 nucleotides in length such that 48 of those nucleotides were in the same order as found in the Query sequence. If all of the matches that met this criteria were in the same UniGene cluster, and mapping data was available for this cluster, it is indicated in Table 1B under the heading "Cytologic Band". Where a cluster had been further localized to a distinct cytologic band, that band is disclosed; where no banding information was available, but the gene had been localized to a single chromosome, the chromosome is disclosed.

Given a presumptive chromosomal location, disease locus association was determined by comparison with the Morbid Map, derived from Online Mendelian Inheritance in Man (Online Mendelian Inheritance in Man, OMIMTM. McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology

Information, National Library of Medicine (Bethesda, MD) 2000. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/). If the putative chromosomal location of the Query overlaps with the chromosomal location of a Morbid Map entry, an OMIM identification number is disclosed in Table 1B, column 10, labeled "OMIM Disease Reference(s)". A key to the OMIM reference identification numbers, as well as a description of the associated disease, are provided in Table 5.

Table 1B

cDNA Clone ID Contig SEQ ID ORF	SEQ ID		ORF		ΑA	Predicted Epitopes	Tissue Distribution	Cytologic	OMIM
ID: NO: X (From-To) SEQ	NO: X (From-To)	(From-To)	-	SEC	_,		Library code: count	Band	Deference(c):
NO: Y	CON	NO.	NO:	NO:	>		(see rabie 17 10) Library		weierenee(s).
HSMPG12 1292274 11 104 - 370 204	11 104 - 370			204		Ser-66 to Pro-84.	H0644: 2, H0575: 1, H0510: 1, L0769: 1, L0659: 1, H0726: 1 and 1,0777: 1		
HSMPG12 1292610 100 119 - 385 293	100 119 - 385	119 - 385	-	293		Ser-66 to Pro-84.			
HNLJK11 1289619 12 276 - 908 205	12 276 - 908	276 - 908		205		Ser-12 to Arg-17, Arg-202 to Ala-210.	S0438: 1		
HNLJK11 1290053 101 305 - 937 294	101 305 - 937	305 - 937		294		Ser-12 to Arg-17, Arg-202 to Ala-210.			
HSMPJ30 1289642 13 143 - 643 206	13 143 - 643	143 - 643		206	l	Ser-16 to Lys-24, Thr-31 to Glu-49.	L0804: 1 and H0726: 1.		
HSMPJ30 1292609 102 156 - 1253 295	102 156 - 1253	156 - 1253		295		Ser-16 to Lys-24, Thr-31 to Glu-49, Pro-253 to Asp-262,			
HSMPJ30 1289183 103 155 - 451 296	103 155 - 451	155 - 451	 	296		Arg-546 to OIN-558. His-6 to Gln-15, Pro-22 to Gln-30, Lvs-58 to Val-81.			
HTAOK88 1312306 14 85 - 675 207	14 85 - 675	85 - 675	-675	207			L0777: 8, L0766: 7, L0741: 7, L0439: 7, L0748: 5,		
							L0754: 5, L0744: 4, L0757: 4, S0192: 4, H0677: 4,		
							H0556: 3, S0360: 3, S0410:		
							3, H0013: 3, H0052: 3,		
							L0769: 3, L0775: 3, L0776:		
							3, L0756: 3, L0752: 3,		
		_	-				20004: 3, A0203: 2, 30040:		
							H0266: 2, H0030: 2, H0617:		

OMIM	Disease	Reference(s):																												
Cytologic	Band																											•		
Tissue Distribution	Library code: count	(see Table IV for Library Codes)	2, H0135: 2, L0771: 2, L0662: 2, L0806: 2, L0805:	2, L0659: 2, L0666: 2,	L0665: 2, H0520: 2, H0547:	2, H0519; 2, H0659; 2, \$0404· 2 1,0743· 2 1,0758·	2, L0596; 2, L0605; 2,	L0485: 2, H0739: 1, H0171:	1, H0713: 1, S0134: 1,	S0218: 1, H0657: 1, H0656:	1, S0212: 1, H0663: 1,	S0420: 1, S0408: 1, H0742:	1, S0132: 1, S0476: 1,	H0393: 1, H0587: 1, T0040:	1, T0060: 1, H0575: 1,	H0309: 1, H0009: 1, L0471:	1, H0620: 1, H0510: 1,	H0290: 1, S0250: 1, S0022:	1, T0023: 1, L0055: 1,	H0634: 1, H0488: 1, H0268:	1, T0041: 1, T0042: 1,	H0538: 1, S0210: 1, L0763:	1, L0639: 1, L0764: 1,	L0794: 1, L0649: 1, L0804:	1, L0650: 1, L0774: 1,	L0809: 1, L5622: 1, L5623:	1, L0793: 1, L0664: 1,	H0144: 1, H0593: 1, S0122:	1, H0435: 1, H0521: 1,	S0406: 1, H0555: 1, L0740: 1, L0747: 1, L0749: 1,
Predicted Epitopes																														
AA	SEQ	NO: Y																				_					•	•••		
ORF	(From-To)																													
SEQ ID	NO: X																													
Contig	Ë	}											•																	
cDNA Clone ID																														
	Š																													

OMIM	Disease Reference(s):			, and								
Cytologic	Band											
Tissue Distribution	Library code: count (see Table IV for Library Codes)	L0779: 1, L0731: 1, L0759: 1, S0031: 1, S0434: 1, S0436: 1, L0601: 1, S0106: 1, H0665: 1, H0667: 1 and S0276: 1.	L0777: 8, L0766: 7, L0741: 7, L0439: 7, L0748: 5, L0754: 5, L0744: 4, L0757: 4, S0192: 4, H0677: 4,	H0556: 3, S0360: 3, S0410: 3, H0013: 3, H0052: 3, L0769: 3, L0775: 3, L0776:	3, L0756; 3, L0752; 3, L0604; 3, H0265; 2, S0040;	2, H0599; 2, H0545; 2, H0266; 2, H0030; 2, H0617; 2, H0135; 2, 1,0771; 2	2, L0659; 2, L0666; 2, L0805; 2, L0659; 2, L0666; 2,	L0665: 2, H0520: 2, H0547: 2, H0519: 2, H0659: 2, S0404: 2, L0743: 2, L0758:	2, L0596: 2, L0605: 2, L0485: 2, H0739: 1, H0171: 1 H0713: 1, S0134: 1	S0218: 1, H0657: 1, H0656: 1, S0212: 1, H0663: 1,	S0420: 1, S0408: 1, H0742: 1, S0132: 1, S0476: 1,	H0393: 1, H0587: 1, T0040:
Predicted Epitopes		·	Phe-166 to Arg-174, Ser-191 to Tyr-196.									
AA	SEQ ID NO: Y		297									
ORF	(From-To)		289 - 16		_	-						
SEQ ID	X :0X		104									
Contig	D;		1293280									
cDNA Clone ID			HTAOK88									
Gene	ë Z											

OMIM	Disease Reference(s):														•														
Cytologic	Band																												
Tissue Distribution	Library code: count (see Table IV for Library	Codes)	H0309: 1, H0009: 1, L0471:	1, H0620: 1, H0310: 1, H0290: 1, S0250: 1, S0022:	1, T0023: 1, L0055: 1,	H0634: 1, H0488: 1, H0268:	1, T0041: 1, T0042: 1,	H0538: 1, S0210: 1, L0763:	1, L0639: 1, L0764: 1,	L0794: 1, L0649: 1, L0804:	1, L0650: 1, L0774: 1,	L0809: 1, L5622: 1, L5623:	1, L0793: 1, L0664: 1,	H0144: 1, H0593: 1, S0122:	1, H0435: 1, H0521: 1,	S0406: 1, H0555: 1, L0740:	1, L0747: 1, L0749: 1,	L0779: 1, L0731: 1, L0759:	1, S0031: 1, S0434: 1, S0436:	1, L0601: 1, S0106: 1,	H0665: 1, H0667: 1 and		H0728: 1	H0728: 1				S0410: 13, L0777: 12,	L0748: 9, T0060: 6, H0553: 4, H0672: 3, L0439: 3,
Predicted Epitopes																						Phe-166 to Arg-174, Ser-191 to Tvr-196.							
AA	SEC E	NO: Y																				298	208	299	300	301	302	209	
ORF	(From-To)																					478 - 1068	91 - 345	91 - 345	103 - 357	103 - 357	39 - 179	104 - 1306	
SEQ ID	XO:X				_		•															105	15	901	107	801	109	16	
Contig	ä																					1297164	1303148	1289651	1290008	1290003	1289164	1332728	
cDNA Clone ID																						HTAOK88	96XISQH	96XISQH	96XISQH	96XISQH	96XISQH	HATYJ68	
Gene	; Z																		_				5					9	

OMIM	Disease	Reference(s):		-		_					-																					
Cytologic		Re																		_												
Tissue Distribution	Library code: count	(see Table IV for Library	Coues) L0749: 3, S0436: 3, S0134: 2,	H0661: 2, S0376: 2, S0278:	2, H0575: 2, S0003: 2,	S0022: 2, H0674: 2, S0440:	2, L0646: 2, L0662: 2,	L0809: 2, L0740: 2, L0754:	2, L0755: 2, L0758: 2,	S0434: 2, H0506: 2, H0716:	1, T0049: 1, H0657: 1,	H0656: 1, S0358: 1, S0468:	1, H0437: 1, S6022: 1,	H0574: 1, H0632: 1, H0250:	1, H0427: 1, S0280: 1,	H0156: 1, L0021: 1, H0620:	1, H0594: 1, S0214: 1,	H0622: 1, H0169: 1, H0135:	1, H0038: 1, H0634: 1,	H0268: 1, H0623: 1, S0015:	1, S0438: 1, H0641: 1,	H0646: 1, S0142: 1, S0344:	1, H0695: 1, L0598: 1,	L0763: 1, L0769: 1, L0637:	1, L0667: 1, L0641: 1,	L0764: 1, L0768: 1, L0806:	1, L0653: 1, L0655: 1,	L0657: 1, L5623: 1, L0663:	1, L0665: 1, H0144: 1,	H0702: 1, H0703: 1, H0519:	1, H0593: 1, S0330: 1,	H0518: 1, H0521: 1, H0555: 1, L0779: 1, H0445: 1,
Predicted Epitopes					- CA_	<u> </u>	Q		X	<u> </u>		_ 11			<u> </u>	-11		<u> </u>		<u>, , , , , , , , , , , , , , , , , , , </u>		1		1				1		<u>, 144 </u>		<u> </u>
AA	SEO		I :ON																													
ORF	(From-To)																															
SEQ ID	NO: X																															
Contig	Ė	ä																														
cDNA Clone ID																																
	So.								-																							

OMIM	Disease Reference(s):																															
Cytologic	Band																															
Tissue Distribution	Library code: count (see Table IV for Library	Codes)	H0543: 1 and H0423: 1.	S0410: 13, L0777: 12,	L0748: 9, T0060: 6, H0553:	4, H0672: 3, L0439: 3,	L0749: 3, S0436: 3, S0134: 2,	H0661: 2, S0376: 2, S0278:	2, H0575: 2, S0003: 2,	S0022: 2, H0674: 2, S0440:	2, L0646: 2, L0662: 2,	L0809: 2, L0740: 2, L0754:	2, L0755: 2, L0758: 2,	S0434: 2, H0506: 2, H0716:	1, T0049: 1, H0657: 1,	H0656: 1, S0358: 1, S0468:	1, H0437: 1, S6022: 1,	H0574: 1, H0632: 1, H0250:	1, H0427: 1, S0280: 1,	H0156: 1, L0021: 1, H0620:	1, H0594: 1, S0214: 1,	H0622: 1, H0169: 1, H0135:	1, H0038: 1, H0634: 1,	H0268: 1, H0623: 1, S0015:	1, S0438: 1, H0641: 1,	H0646: 1, S0142: 1, S0344:	1, H0695: 1, L0598: 1,	L0763: 1, L0769: 1, L0637:	1, L0667: 1, L0641: 1,	L0764: 1, L0768: 1, L0806:	1, L0653: 1, L0655: 1,	L0657: 1, L5623: 1, L0663:
Predicted Epitopes				Ala-2 to Glu-7,	Glu-60 to Gly-72,	Asn-139 to Gly-144,	Gln-237 to Lys-244,	Pro-330 to Pro-340,	Pro-349 to Ser-361,	Ser-363 to Cys-371,	Pro-373 to Glu-381,	Gly-389 to Gly-397.							·	*										•		
ΑA	SEQ ID	NO: Y		303																												
ORF	(From-To)			91 - 1293																												
SEQ ID	NO: X			110									_				_	_	_					_		_	_				_	
Contig	Ë			1296680															•			-										
cDNA Clone ID				HATYJ68																												
	Š						-																									

OMIM	Disease Reference(s):																					
Cytologic	Band																					
Tissue Distribution	Library code: count (see Table IV for Library Codes)	H0702: 1, H0703: 1, H0519: 1, H0593: 1, S0330: 1, H0518: 1, H0521: 1, H0555: 1, L0779: 1, H0445: 1, H0543: 1 and H0423: 1.								H0728: 1	H0728: 1			H0599: 1, H0052: 1,	T0006: 1, S0366: 1, H0732:	1, L0753: 1 and L0757: 1.					L0794: 6, H0545: 4, L0777: 4, L0659: 3, S0126: 3.	H0662: 2, L0717: 2, H0150:
Predicted Epitopes			Ala-2 to Glu-7,	Glu-60 to Gly-72, Asn-139 to Gly-144,	Gln-237 to Lys-244,	Pro-330 to Pro-340,	Pro-349 to Ser-361,	Ser-363 to Cys-371,	Pro-373 to Glu-381,	Uly-309 to Uly-397.	Ser-39 to Asn-44.	Ser-39 to Asn-44.		Thr-35 to Gly-46,	Asn-66 to Glu-73,	Glu-203 to Gly-211,	Cys-279 to Asp-294.	Thr-35 to Gly-46,	Asil-90 to Glu-73, Glu-203 to Glv-211.	Cys-279 to Asp-294.		
ΑA	SEQ ID		304							210	305	306	307	211				308			212	
ORF	(From-To)		104 - 1306							129 - 506	130 - 507	119 - 496	85 - 282	176 - 1060		•		149 - 1033			686 - 88	
SEQ ID	X :ON		Ξ							17	112	113	114	18				115		•	61	
Contig	Ä		1296903							1326515	1291039	1291041	1291040	1299005				1299037			1299006	
cDNA Clone ID			HATYJ68							HDSJH26	HDSJH26	HDSJH26	HDSJH26	HNMIG09				HNMIG09			HLCMJ69	
Gene	No:									7				8							6	

Gene	cDNA Clone ID	Contig	SEQ ID		ΨV	Predicted Epitopes	Tissue Distribution	Cytologic	OMIM
ö		ë	X :ON	(From-To)	SEQ II		Library code: count	Band	Disease Reference(s):
					NO: Y		Codes)		verei elle e(s):
							H0252: 2, H0628: 2, L0803:		
							z, L0803: 2, L0/4/: 2, L0750: 2, H0381: 1, S0358:		
							1, H0586: 1, H0485: 1,		
							H0486: 1, L0021: 1, H0251:		
				-			1, H0544: 1, H0284: 1,		
							L0770: 1, L0769: 1, L0772:		
							1, L0641: 1, L0787: 1,		
							L0751: 1, L0749: 1, L0779:		
							1, L0759: 1, S0011: 1 and		
							50192: 1.		
	HLCMJ69	1299048	116	76 - 927	309				
10	HNMIB80	1299275	20	465 - 1655	213	Ala-3 to Gly-8,	H0706: 8, H0708: 7, H0735:		
						Pro-41 to Val-46,	6, S0366: 5, S0364: 4, L0485:		
						Pro-74 to Gln-84,	4, L0604: 4, H0733: 3,		
						Lys-187 to His-193,	L0777: 3, H0734: 2, L0623:		
						Pro-243 to Glu-249,	2, S0362: 2, H0373: 2,		
						Glu-258 to Ser-271,	H0743: 2, L0520: 2, H0725:		
						Glu-291 to Gly-296,	2, L0747: 2, H0624: 1,		
						Asp-309 to Asp-315,	H0729: 1, H0728: 1, H0619:		٠
						Asp-362 to Ser-369,	1, H0550: 1, H0196: 1,		
						Ile-385 to Asp-396.	L0646: 1, L0809: 1, H0693:		
							1, S0328: 1, H0214: 1 and		
							H0732: 1.		
=	HDLLA60	1294672	21	117 - 2135	214	Glu-34 to Gly-48,	H0724: 5, H0722: 3, L0665:		
						Pro-51 to Gly-59,	3, H0741: 2, S0132: 2,		
						Pro-91 to Val-96,	L0439: 2, L0596: 2, H0542:		
						Arg-119 to Arg-134,	2, H0543: 2, S0114: 1,		
						His-236 to His-245,	S0116: 1, S0420: 1, H0614:		
						Thr-282 to Ser-290,	1, H0587: 1, S0280: 1,		
_						Gly-351 to Ser-358,	JH0253: 1, H0581: 1, H0457:		

	CDINA CIONE ID	Contig	SEQ ID	ORF	Ψ¥	Predicted Epitopes	Tissue Distribution	Cytologic	OMIM	
 Z		ë	NO: X	(From-To)	SEQ ID		Library code: count (see Table IV for Library	Band	Disease Reference(s):	
					NO: Y		Codes)			
						Thr-485 to Gly-490,	1, H0012: 1, H0083: 1,			
						Gln-550 to Ala-563,	H0687: 1, H0622: 1, H0135:			
						Arg-568 to Pro-575	1, L0796: 1, L5565: 1,			
							L0646: 1, L0643: 1, L0764:			
							1, L0773: 1, L0649: 1,			
							L0659: 1, L0809: 1, L0663:			
							1, L0438: 1, H0555: 1,			
							H0478: 1, L0752: 1, L0599: 1			
	HDLLA60	1299173	117	268 - 2286	310	Glu-34 to Gly-48,				
						Pro-51 to Gly-59,				
						Pro-91 to Val-96,				
						Arg-119 to Arg-134,				
						His-236 to His-245,				
						Thr-282 to Ser-290,				
						Gly-351 to Ser-358,				
						Thr-485 to Gly-490,				
						Gln-550 to Ala-563,				
	HDLLA60	1299172	811	1142 - 1174	311	Glu-34 to Gly-48,				
						Pro-51 to Gly-59,				
						Pro-91 to Val-96,				
						Arg-119 to Arg-134,				
						His-236 to His-245,				
						Thr-282 to Ser-290,				
						Gly-351 to Ser-358,				
						Thr-485 to Gly-490,				
						Gln-550 to Ala-563,				
						Arg-568 to Pro-575.				_
12	HDSIX56	1320236	22	33 - 515	215	Glu-54 to Lys-59,	H0637: 1 and H0728: 1.			
						Arg-74 to Lys-81.				
	HDSIX56	1291032	119	22 - 504	312	Glu-54 to Lys-59,				_

OMIM	Disease Reference(s):																				-								
Cytologic	Band																												
Tissue Distribution	Library code: count (see Table IV for Library	Codes)			H0040: 4, H0730: 1, H0421: 1, L0645: 1 and H0727: 1.	H0040: 4, H0730: 1, H0421: 1, L0645: 1 and H0727: 1.			-									1							- 30	· ·			
Predicted Epitopes			Arg-74 to Lys-81.	Glu-54 to Lys-59, Arg-74 to Lys-81.		Glu-4 to Lys-9, His-44 to Gly-54,	Glu-69 to Lys-74,	Ala-76 to Asn-82,	Ala-90 to Cys-95,	Leu-99 to Ser-113,	Arg-146 to Trp-156,	Thr-160 to Phe-168,	Lys-171 to Glu-180,	Asn-188 to Asn-195.	Glu-4 to Lys-9,	His-44 to Gly-54,	Glu-69 to Lys-74,	Ala-76 to Asn-82,	Ala-90 to Cys-95,	Leu-99 to Ser-113,	Arg-146 to Trp-156,	Thr-160 to Phe-168,	Lys-171 to Glu-180,	Asn-188 to Asn-195.	Glu-4 to Lys-9,	His-44 to Gly-54,	Glu-69 to Lys-74,	Ala-76 to Asn-82,	Ala-90 to Cys-95, Leu-99 to Ser-113,
AA	E E	NO: Y		313	216	314									315										316				
ORF	(From-To)			33 - 515	160 - 807	171 - 818									160 - 807								•		188 - 835			- 1	
SEQ ID	X :OX			120	23	121									122										123				
Contig	ä			1291035	1326771	1290037									1290307										1290045				
cDNA Clone ID				HDSIX56	HFLEZ28	HFLEZ28									HFLEZ28										HFLEZ28				
Gene	;; Z				13																								

Contig ID:	1	SEQ ID NO: X	ORF (From-To)	AA SEQ	Predicted Epitopes	Tissue Distribution Library code: count	Cytologic Band	OMIM Disease
				D NO: Y		(see Table IV for Library Codes)		Reference(s):
					Arg-146 to Trp-156, Thr-160 to Phe-168, Lys-171 to Glu-180, Asn-188 to Asn-195			
1336632 24		l	208 - 1815	217		S0250: 3, S0418: 1, H0734: 1, T0040: 1, H0413: 1 and H0756: 1.		
1306175 124			208 - 621	317		S0250: 3, S0418: 1, H0734: 1, T0040: 1, H0413: 1 and H0756: 1.		
1306392 125	125		2 - 169	318				
25				218		H0734: 5, S0360: 2, H0052: 2, S0366: 2, L0502: 2, S0400: 1, H0729: 1, H0733: 1, L0623: 1, H0156: 1, H0122: 1, H0706: 1, H0424: 1, H0617: 1, S0036: 1, H0396: 1, H0547: 1, H0660: 1 and		
1305924 126 99		6	92 - 784	319	Ala-25 to Thr-30.	H0666: 1. H0734: 5, S0360: 2, H0052: 2, S0366: 2, L0502: 2, S0400: 1, H0729: 1, H0733: 1, L0623: 1, H0156: 1, H0122: 1, H0706: 1, H0424: 1, H0617: 1, S0036: 1, H0396: 1, H0547: 1, H0660: 1 and H0666: 1		
1306396 127 11		=	113 - 547	320	Gly-1 to Pro-14, Pro-70 to Pro-75, Gln-122 to Arg-129.			
1322802 26 4		4	46 - 339	219		L0622: 25, H0708: 19,		

OMIM	Disease Reference(s):	<u>`</u>																													
Cytologic	Band													16p																	
Tissue Distribution	Library code: count (see Table IV for Library	Codes)	L0163: 14, H0733: 12, L0604: 10, H0735: 8, H0729:	7, L0623: 6, H0732: 5,	H0728: 4, H0743: 4, L0777:	4, S0366: 3, H0734: 2,	H0725: 2, H0101: 1, H0097:	I, H0599: 1, H0706: 1,	H0196: 1, H0251: 1, H0200:	1, H0373: 1, H0424: 1,	S0364: 1, L0783: 1, L0809:	1, S0392: 1, L0747: 1 and	L0779: 1.	L0622: 25, H0708: 19,		L0604: 10, H0735: 8, H0729:	7, L0623: 6, H0732: 5,	H0728: 4, H0743: 4, L0777:	4, S0366: 3, H0734: 2,	H0725: 2, H0101: 1, H0097:	1, H0599: 1, H0706: 1,	H0196: 1, H0251: 1, H0200:	1, H0373: 1, H0424: 1,	S0364: 1, L0783: 1, L0809:	1, S0392: 1, L0747: 1 and	L0779: 1.	H0739: 187, H0743: 14,	S0410: 4, L0803: 4, L0809:	4, L0794: 3, L0775: 3,	H0341: 1, S0444: 1, H0617:	1, H0606: 1, L0773: 1,
Predicted Epitopes														Ser-47 to Gln-63,	Leu-65 to Asn-78,	Pro-91 to Pro-97.											Pro-59 to Gly-65,	Arg-83 to Asp-89,	Ala-142 to Tyr-151,	Leu-191 to Asp-198.	
ΑA	SEQ ID	NO: Y												321													220				
ORF	(From-To)													93 - 386													88 - 744				
SEQ ID	NO: X													128													27				
Contig	ë					-								1305913					•								1306268				
cDNA Clone ID														HDMTG72													HTAOQ18				
Gene	.ë																										- 17				

Gene	cDNA Clone ID	Contig	SEQ ID	ORF	AA	Predicted Epitopes	Tissue Distribution	Cytologic	OMIM
 No:		ë	X:ON	(From-To)	SEQ ID		Library code: count (see Table IV for Library	Band	Disease Reference(s):
					NO: Y		Codes)		,
							1, L0657: 1, L0783: 1, H0696: 1, H0627: 1, S0028: 1 and L0596: 1.		
	HTAOQ18	1306691	129	100 - 756	322	Pro-59 to Gly-65,			
						Arg-83 to Asp-89,			
-	_					Ala-142 to Tyr-151, Leu-191 to Asp-198.			
<u>8</u> -	HLAPM62	1322803	28	213 - 464	221		H0740: 2		
	HLAPM62	1306348		197 - 448	323				
61	HDLWY45	1336616	29	108 - 2126	222		H0724: 5, H0722: 4, L0665:		
							3, H0741: 2, S0132: 2,		
							L0438: 2, L0439: 2, L0596:		
							2, H0542: 2, H0543: 2,		
							S0114: 1, S0116: 1, H0614:		
							1, H0587: 1, S0280: 1,		
	-						H0253: 1, H0581: 1, H0457:		
							1, H0012: 1, H0083: 1,		
							H0687: 1, H0622: 1, H0135:		
							1, L0796: 1, L5565: 1,		
							L0646: 1, L0643: 1, L0764:		
						-	1, L0773: 1, L0649: 1,		
							L0659: 1, L0809: 1, L5622:		
							1, L0663: 1, H0555: 1,		
							H0478: 1, L0752: 1, L0599: 1		
							and H0506: 1.		
	HDLWY45	1307490	131	268 - 2286	324	Glu-34 to Gly-48,	H0724: 5, H0722: 4, L0665:		
						Pro-51 to Gly-59,	3, H0741: 2, S0132: 2,		
						Pro-91 to Val-96,	L0438: 2, L0439: 2, L0596:		
						Arg-119 to Arg-134,	2, H0542: 2, H0543: 2,		
						His-236 to His-245,	S0114: 1, S0116: 1, H0614:		
_	_					I hr-282 to Ser-290,	Ji, H0587: I, S0280: I,		_

OMIM	Deference(s):	were enec(s).																													
Cytologic	Band																														
Tissue Distribution	Library code: count	Codes)	H0253: 1, H0581: 1, H0457:	1, H0012: 1, H0083: 1,	H0687: 1, H0622: 1, H0135:	1, L0796: 1, L5565: 1,	L0646: 1, L0643: 1, L0764:	1, L0773: 1, L0649: 1,	L0659: 1, L0809: 1, L5622:	1, L0663: 1, H0555: 1,	H0478: 1, L0752: 1, L0599: 1	and H0506: 1.		L0623: 2, L0805: 2, L0759:	2, H0733: 1, L0622: 1,	H0018: 1, S0364: 1, L0809: 1	and L0779: 1.	L0623: 2, L0759: 2, H0733:	1, L0622: 1, H0018: 1,	S0364: 1, L0805: 1, L0809: 1	and L0779: 1.	H0734: 1			L0754: 10, L0747: 6,	L0766: 5, L0755: 5, L0761:	4, L0803; 4, L0731; 4,	H0556: 3, L0769: 3, L0783:	3, S0152: 3, L0744: 3,	H0609: 2, H0586: 2, H0617:	2, T0042: 2, L0369: 2,
Predicted Epitopes			Gly-351 to Ser-358,	Thr-485 to Gly-490,	Gln-550 to Ala-563,	Arg-568 to Pro-575.	-											Arg-47 to Ser-57,	Asn-64 to Asn-69,	Pro-71 to Val-78.		Pro-3 to Met-10,	Arg-43 to Arg-59, Pro-64 to Ser-77.								
AA	SEQ ID	NO: Y											325	223				326				224		327	225						
ORF	(From-To)												25 - 129	27 - 356				93 - 422				129 - 401		137 - 385	121 - 1116						
SEQ ID	X:ON												132	30				133				31		134	32						
Contig	Ð												1307489	1322800				1306388				1305906		1306389	1335778						
cDNA Clone ID										-		1	HDLWY45	HDMKF05				HDMKF05				HDMRQ63		HDMRQ63	HDMKE89						
Cene	 2													20								71			22						

OMIM	Disease Reference(s):	<u> </u>					- 11									-															
Cytologic	Band																														
Tissue Distribution	Library code: count (see Table IV for Library	, Codes)	2, L0807: 2, L0789: 2,	2, H0265: 1, H0484: 1,	H0254: 1, H0733: 1, H0619:	1, H0592: 1, H0318: 1,	H0050: 1, H0012: 1, H0551:	1, S0038: 1, S0372: 1, S0150:	1, L0763: 1, L0770: 1,	L4747: 1, L0637: 1, L0772:	1, L0662: 1, L0794: 1,	L0804: 1, L0774: 1, L0776:	1, L0659: 1, L0809: 1,	L0790: 1, H0672: 1, L0750:	1, L0779: 1, L0780: 1,	L0752: 1, L0753: 1, L0758:	1, L0759: 1, S0436: 1 and	S0424: 1.	L0754: 10, L0747: 6,	L0766: 5, L0755: 5, L0761:	4, L0803: 4, L0731: 4,	H0556: 3, L0769: 3, L0783:	3, S0152: 3, L0744: 3,	H0609: 2, H0586: 2, H0617:	2, T0042: 2, L0369: 2,	L0800: 2, L0775: 2, L0806:	2, L0807: 2, L0789: 2,	L0743: 2, L0596: 2, L0603:	2, H0265: 1, H0484: 1,	H0254: 1, H0733: 1, H0619:	1, H0592: 1, H0318: 1, H0050: 1, H0012: 1, H0551:
Predicted Epitopes		:																	Phe-184 to Lys-197,	Glu-213 to Gly-220,	Asp-289 to Pro-296,	Pro-298 to Glu-304,	Ser-323 to Arg-331.								
AA	SEQ U	NO: Y										-		_			-		328												
ORF	(From-To)																		134 - 1129									·			
SEQ ID	X :ON																		135												
Contig	ä																		1306400												
cDNA Clone ID																			HDMKE89		-										
Cene	 Zo:																														

OMIM	Disease Reference(s):							-																					
Cytologic	Band									•																			
Tissue Distribution	Library code: count (see Table IV for Library	Codes)	1, S0038: 1, S0372: 1, S0150:	L4747: 1, L0637: 1, L0772:	1, L0662: 1, L0794: 1,	L0804: 1, L0774: 1, L0776:	1, L0659: 1, L0809: 1,	L0790: 1, H0672: 1, L0750:	1, L0779: 1, L0780: 1,	L0752: 1, L0753: 1, L0758:	1, L0759: 1, S0436: 1 and S0434: 1	H0732: 3, L0518: 2, H0735:	1 and H0196: 1.	H0732: 3, L0518: 2, H0735:	1 and H0196: 1.		,	L3905: 2, S0030: 1, H0572:	1, T0010: 1, L0435: 1 and	L0439: 1.	L3905: 2, S0030: 1, H0572:	1, T0010: 1, L0435: 1 and 1.0439: 1		H0521: 7, L0665: 4, H0638:	3, H0658: 3, H0255: 2,	H0250: 2, H0618: 2, L0804:	2, L0779: 2, H0542: 2,	H0663: 1, S0046: 1, H0617:	1, H0560: 1, H0641: 1, S0422: 1, S0426: 1, H0695:
Predicted Epitopes														Asp-23 to Cys-30,	Pro-48 to Arg-53,	Gln-64 to Lys-71,	Phe-87 to Arg-94.				Gln-43 to Phe-49.		-						
AA	SEQ El	NO: Y										226		329				227			330		331	228					
ORF	(From-To)											95 - 412		78 - 395				197 - 466			736 - 1005		2 - 148	62 - 679					
SEQ ID	X X											33		136		-		34			137		138	35					:
Contig	Ä											1335784		1306246				1322683			1305882	7	1306218	1333991					
cDNA Clone ID												HNMIK76		HNMIK76				HDHMA62			HDHMA62		HDHMA62	HDQDT24					
Gene	ë Ž											23						24						25					

Contig SEQ ID ORF AA Predicted Epitopes ID: SEQ ID SEQ
1306219
Gly-147 to Glu-152,
Leu-182 to Gly-197, Gln-199 to Val-205.
1306221 140 2 - 1669 333 Asp-1 to Arg-10, Gln-48 to Gln-70, Ala-79 to Glv-84.
1306220 141 109 - 627 334 Gln-22 to Gln-44,
Ala-90 to Gly-95, Lys-137 to Trp-146.
1318709 36 68-2161 229
812736 142 52 - 435 335 Pro-46 to Gly-52,
Asn-76 to Arg-89.

OMIM	Disease	Reference(s):								 																
Cytologic	Band			•															-				_			
Tissue Distribution	Library code: count	(see Table IV for Library Codes)	10, AR310:		AR269: 8, AR183: 8, AR269: 8, AR039: 8	8, AR299:	8, AR270:		AR161: 7, AR033: 7,	AR184: 7, AR162: 7,	AR173: 7, AR264: 7,	-	٦,		6, AR240:	6, AR285:	AR246: 6, AR296: 6,	6, AR298:	6, AR180:	6, AR218:	6, AR253:	AR053: 6, AR195: 6,	AR268: 6, AR238: 6,	5, AR251:	5, AR164:	AR166: 5, AR212: 5,
Predicted Epitopes				٠																						
AA	SEQ	UO: Y						٠																		
ORF	(From-To)		:																							
SEQ ID	NO: X																									
Contig	Ë	i																								
cDNA Clone ID																										
Gene	So.																									

OMIM	Disease Reference(s):												-									
Cytologic	Band																					
Tissue Distribution	Library code: count (see Table IV for Library	Codes)	5, AR205:	AK196: 5, AK289: 5,	5, AR223:	5, AR197:	AR234: 5, AR288: 5,	AR174: 4, AR286: 4,	4, AR204:	AR297: 4, AR221: 4,	AR309: 4, AR262: 4,				4, AR210:	3, AR168:		AR233: 3, AR232: 3,	AR191: 3, AR260: 3,	AR227: 3, AR272: 3,		AR201: 3, AR211: 3, AR230: 3, AR214: 3,
Predicted Epitopes																						
ΑA	SEQ ID	NO: Y												•								
ORF	(From-To)																					
SEQ ID	X:0X																					
Contig	Ä										 											
cDNA Clone ID																						
Gene	ë Z																	_				

OMIM	Disease	Reference(s):														-														-	
Cytologic	Band															_			-												
Tissue Distribution	Library code: count	(see Table IV for Library Codes)	AR055: 3, AR217: 3, AR172: 2, AR256: 2,	AR061: 2, AR225: 2,	AR228: 2, AR239: 2,	AR169: 1, AR188: 1	H0747: 5, H0749: 5, H0521:	5, H0457: 2, T0071: 1,	H0264: 1, L0794: 1, L0804:	1, L0659: 1, H0522: 1 and S0404: 1.																				-	
Predicted Epitopes		:									Pro-46 to Gly-52,	Asn-76 to Val-82,	Ser-85 to Phe-90,	Gly-94 to Asn-100,	Gln-111 to Tyr-116,	Cys-173 to Ser-179,	Gln-188 to Ser-195,	Pro-204 to Leu-213,	Ser-246 to Pro-251.	Pro-59 to Gly-65,	Asn-89 to Val-95,	Ser-98 to Phe-103,	Gly-107 to Asn-113,	Gln-124 to Tyr-129,	Cys-186 to Ser-192,	Gln-201 to Ser-208,	Pro-217 to Leu-226,	Ser-259 to Asn-273,	Ser-311 to Arg-317,	Gly-329 to Tyr-334,	Ald-330 to Arg-34/,
AA	SEQ	ID NO: Y									336									337											
ORF	(From-To)										115 - 1155		ı							3 - 2132											
SEQ ID	NO: X										143									144											
Contig	iD:										1306137									993277											
cDNA Clone ID											HE00V77									HE00V77											
Gene																															

Gene cDNA Clone ID	D Contig	SEQ ID	ORF	ΑA	Predicted Epitopes	Tissue Distribution	Cytologic	OMIM
	ID:	NO: X	(From-To)	SEQ ID		Library code: count (see Table IV for Library	Band	Disease Reference(s):
				NO: Y		Codes)		
					Ser-397 to Arg-402, Ser-404 to Gln-410.			
					Pro-414 to Asp-419,			•
					Glu-497 to Asp-503,			
					Pro-588 to His-604,			
					Ala-621 to Pro-636,			
					Gly-640 to Gln-653,			
					Pro-660 to Glu-677,			
		<u>-</u>			Gly-68 / 10 Ala-694, Met-696 to Ala-702.			
HERHG93	1332320	37	193 - 633	230		L0731: 4, L0759: 4, L0809:		
						3, L0777: 3, S0212: 2,		
						L3649: 2, H0748: 2, L0803:		
						2, L0789: 2, H0519: 2,		
						H0624: 1, S0040: 1, S0180:		
						1, H0580: 1, L3387: 1,		
						H0586: 1, H0497: 1, T0040:		
		`				1, L3653: 1, H0599: 1,		
						T0082: 1, S0312: 1, S0314: 1,		
						H0598: 1, H0551: 1, S0386:		
						1, H0494: 1, S0150: 1,		
						L0761: 1, L0764: 1, L0794:		
						1, L0804: 1, L0783: 1,		
						L3824: 1, H0547: 1, S0380:		
						1, S0152: 1, L0754: 1,		
						L0749: 1 and L0755: 1.		
HERHG93	1306990	145	193 - 633	338	Ala-24 to Pro-29,	L0731: 4, L0759: 4, L0809:		
					Asp-42 to Glu-50,	3, L0777: 3, S0212: 2,		
					Asp-81 to Asn-86,	L3649: 2, H0748: 2, L0803:		
					Lys-102 to Gln-108,	2, L0789: 2, H0519: 2,		
					AIB-120 to 131-133.	1,0024. 1, 50040. 1, 50160.		

	Predicted Epi	-	o) SEQ	ORF AA om-To) SEQ
		ID NO: Y	ID NO: Y	ID NO: Y
lu-42, 0-103	Arg-37 to Glu-42, Gln-94 to Pro-103	231 Arg-37 to G		- 429 231
lu-42; ro-103	Arg-37 to Glu-42; Gln-94 to Pro-103	339 Arg-37 to G Gln-94 to Pi		339
g-7,	Met-1 to Arg-7,	232 Met-1 to Ar		- 555 232
ily-68,	Glu-61 to Gly-68,	Glu-61 to G	Glu-61 to G	Glu-61 to G
lu-102	Ala-92 to Glu-102,	Ala-92 to G	Ala-92 to G	Ala-92 to G
Asn-1, Ser-14	Glu-123 to Asn-129, Asp-138 to Ser-149	GIU-123 to Asp-138 to	Olu-123 to Asp-138 to	O10-123 to Asp-138 to
	•	-		

OMIM	Disease	Reference(s):																														
Cytologic	Band																															
Tissue Distribution	Library code: count	(see Table IV for Library	Codes) H0445: 3, S0434: 3, 1,0581:	3, L0361: 3, H0585: 2,	H0717: 2, T0049: 2, H0730:	2, S0476: 2, S0278: 2,	H0550: 2, H0586: 2, H0559:	2, H0486: 2, H0575: 2,	H0253: 2, H0581: 2, H0622:	2, H0606: 2, H0625: 2,	H0649: 2, L0667: 2, L0523:	2, L0382: 2, L3811: 2,	L3826: 2, H0684: 2, L0743:	2, L0751: 2, L0599: 2,	S0026: 2, H0543: 2, S0424:	2, H0171: 1, H0556: 1,	L3643: 1, S0040: 1, H0650:	1, H0254: 1, H0255: 1,	H0661: 1, H0663: 1, H0664:	1, H0761: 1, H0125: 1,	S0356: 1, S0442: 1, S0354: 1,	S0358: 1, S0408: 1, H0722:	1, H0747: 1, S0132: 1,	S6026: 1, H0587: 1, L0623:	1, H0250: 1, L0021: 1,	H0599: 1, T0082: 1, H0318:	1, S0474: 1, H0327: 1,	H0530: 1, H0150: 1, L0471:	1, H0012: 1, H0023: 1,	H0024: 1, H0014: 1, S0388:	1, H0071: 1, H0107: 1,	H0275: 1, H0354: 1, H0510: 1, H0247: 1, H0271: 1,
Predicted Epitopes																																
AA	SEO	e de	I :DI			-							-																			
ORF	(From-To)	,																														
SEQ ID	NO: X																															
Contig	Ė	ä																														
cDNA Clone ID																																
(a)	So:																															

OMIM	Disease	Reference(s):			
Cytologic	Band				
Tissue Distribution	Library code: count	(see Table IV for Library Codes)	H0286: 1, H0615: 1, H0688: 1, H0553: 1, H0181: 1, H0124: 1, H0316: 1, H0477: 1, H0100: 1, H0561: 1, S0450: 1, S0438: 1, H0529: 1, L0371: 1, L0769: 1, L056: 1, L0774: 1, L0375: 1, L065: 1, L0774: 1, L0375: 1, L065: 1, L0774: 1, L0375: 1, L065: 1, L0774: 1, H0726: 1, H0698: 1, H0765: 1, H0766: 1, H0698: 1, H0683: 1, H0660: 1, S0330: 1, H0754: 1, S0454: 1, H0696: 1, S046: 1, H0576: 1, H0727: 1, H0732: 1, S0027: 1, S0031: 1, L0596: 1, H0542: 1, H0422: 1, S0456: 1 and	H0352: 1.	S0196: 4, L0766: 3, S0380: 3, L0757: 3, S0358: 2, S0222: 2, S0474: 2, S0422: 2, H0658: 2, H0436: 2, L0362: 2, S0242: 2, H0556: 1,
Predicted Epitopes				Met-1 to Arg-7, Glu-61 to Gly-68, Ala-92 to Glu-102, Glu-123 to Asn-129, Asp-138 to Ser-149.	
AA	SEQ	NO: Y		340	233
ORF	(From-To)			179 - 685	31 - 591
SEQ ID	NO: X			147	40
Contig	Ė	i		1313088	1323767
cDNA Clone ID				HFKFO58	HFPKB52
Gene	S				30

_	Disease Reference(s):	(6):																			-										
Cytologic	Band																														
Tissue Distribution	Library code: count	Codes)	H0717: 1, S6024: 1, H0484:	11, S0420: 1, L0005: 1, H0393: 1-1,0717: 1-H0549:	1, L0623: 1, H0635: 1,	H0052: 1, H0596: 1, S0025:	1, H0328: 1, H0622: 1,	T0006: 1, H0272: 1, S0344:	1, S0426: 1, L0771: 1,	L0774: 1, L0382: 1, L0809:	1, H0689: 1, H0684: 1,	H0659: 1, H0648: 1, H0672:	1, H0518: 1, H0521: 1,	S0027: 1, L0744: 1, L0754:	1, L0745: 1, L0747: 1,	L0780: 1, L0753: 1, L0758:	1, L0759: 1, S0436: 1,	L0592: 1, L0608: 1, S0026:	1, H0543: 1, H0423: 1 and	H0422: 1.	S0196: 4, L0766: 3, S0380:	3, L0757: 3, S0358: 2, S0222:	2, S0474: 2, S0422: 2,	H0658: 2, H0436: 2, L0362:	2, S0242: 2, H0556: 1,	H0717: 1, S6024: 1, H0484:	1, S0420: 1, L0005: 1,	H0393: 1, L0717: 1, H0549:	1, L0623: 1, H0635: 1,	H0052: 1, H0596: 1, S0025:	1, H0328: 1, H0622: 1,
Predicted Epitopes														•							Tyr-56 to Lys-65,	Gln-93 to Phe-100,	Ser-104 to His-110,	Glu-168 to Arg-194.							
AA	SEQ	NO: Y																			341										
ORF	(From-To)																				45 - 728										
SEQ ID	NO: X																				148										
Contig	ID:																				1307137										
cDNA Clone ID															-						HFPKB52				·						
Gene	No:																														

ОМІМ	Disease Reference(s):					
Cytologic	Band					
Tissue Distribution	Library code: count (see Table IV for Library	1, S0426: 1, L0771: 1, L0774: 1, L0382: 1, L0809: 1, H0689: 1, H0648: 1, H0659: 1, H0648: 1, H0672: 1, H0518: 1, H0521: 1, S0027: 1, L0744: 1, L0754: 1, L0745: 1, L0747: 1, L0780: 1, L0753: 1, L0758: 1, L0759: 1, S0436: 1, L0592: 1, L0608: 1, S0026: 1, H0543: 1, H0423: 1 and H0422: 1.			S0408: 1	H0521: 71, S0002: 23, H0522: 20, H0638: 9, H0641: 9, S0278: 7, L0659: 7, S0360: 5, S0426: 5, L0766: 4, L0748: 4, H0716: 3, S0344: 3, L0775: 3, L0666: 3, L0665: 3, H0662: 2, H0581: 2, S0144: 2, S0142: 2, L0770: 2, L0372: 2, L0764: 2, L0655: 2, L0663: 2, H0710: 2, S0406: 2, H0556: 1, L0785: 1, H0663: 1, S0442: 1, S0376: 1, S0408: 1, S0410:
Predicted Epitopes					Arg-22 to Arg-37, Tyr-75 to Asp-82, Ser-98 to Trp-103, Gly-121 to Thr-126.	
AA	SEQ ED		342	343	234	235
ORF	(From-To)			3 - 365	915 - 61	100 - 381
SEQ ID	X :ON		149	150	41	42
Contig	Ä		1307138	1306234	1306709	1336115
cDNA Clone ID			HFPKB52	HFPKB52	HGARX38	HMAGO59
Gene	ö Z				31	32

t Cytologic OMIM t Band Disease ary Reference(s):
Tissue Distribution Library code: count See Table IV for Library Codes)
Predicted Epitopes
AA SEQ ID NO: Y
ORF (From-To)
SEQ ID NO: X
Contig ID:
cDNA Clone ID
Gene No:

Gene	cDNA Clone ID	Contig	SEO ID	ORF	AA	Predicted Epitopes	Tissue Distribution	Cytologic	OMIM
No:		ä	NO: X	(From-To)	SEQ		Library code: count	Band	Disease
					NO: Y		(see table iv for Library		weierence(s):
	HMAGO59	1307454	751	62 - 343	345	Tyr-54 to Pro-61, Arg-71 to Ala-77.			
	HMAGO59	1307450	153	129 - 272	346		٠		
33	HMTSX03	1335783	43	23 - 1498	236		H0742: 2		
	HMTSX03	1305931	154	6 - 623	347	Arg-21 to Asn-28,	H0742: 2		
						Tyr-90 to Gly-98,			
						Thr-143 to Glu-148,			
						Glu-155 to Cys-164, Asn-185 to Asp-193.			
34	HMTUZ60	1306331	44	45 - 389	237		H0742: 1		
35	HNFKC14	1306655	45	143 - 406	238	Leu-80 to Ser-88.	H0719: 1		
	HNFKC14	1306713	155	163 - 447	348	Leu-80 to Lys-95.		:	
36	HNSQN50	1322736	46	81 - 1577	239		S0408: 6, S0442: 3, L0748:		
							3, S0354: 2, S0444: 2,		
							H0730: 1, H0036: 1, H0246:		•
							1, H0059: 1, H0144: 1,		-
							S0374: 1, L0749: 1 and		
							S0436: 1.		
	HNSQN50	1306007	156	109 - 1041	349	Ala-32 to Asn-37,	S0408: 6, S0442: 3, L0748:		
				•		Ala-89 to Glu-101,	3, S0354: 2, S0444: 2,		
				-		Gly-116 to Pro-126.	H0730: 1, H0036: 1, H0246:		
							1, H0059: 1, H0144: 1,		
							S0374: 1, L0749: 1 and c0436: 1		
	HNSON50	1306650	157	236 - 532	350	Glu-3 to Glv-17.			
	,					Arg-37 to Pro-45.			
						Pro-59 to Pro-64.			
37	HNSUM63	1306687	47	126 - 743	240	Gly-90 to Tyr-97,	L0774: 6, H0033: 1, H0424:		
						Ser-110 to Arg-117,	1, H0213: 1, H0401: 1,		
	_					r10-137 to Leu-131,	JUN 223. 1, EVOUT. 1, EVIII.		_

OMIM Disease Reference(s):						ē																						
Cytologic Band						20pter-cen																						
Tissue Distribution Library code: count (see Table IV for Library Codes)	1, L0776: 1, L0659: 1, L0519: 1, L0663: 1 and S0436: 1.					L0770: 11, L0751: 9,	L0769: 5, L0439: 5, H0144:	4, L0758: 4, S0436: 4,	L0764: 3, L0766: 3, L0806:	3, L0740: 3, S0222: 2, S0010:	2, H0012: 2, H0031: 2,	H0413: 2, L0662: 2, L0659:	2, L0665: 2, S0216: 2,	L0438: 2, H0435: 2, S0206:	2, L0748: 2, L0747: 2,	L0749: 2, L0757: 2, L0599:	2, H0556: 1, S0040: 1,	S0418: 1, S0420: 1, S0442: 1,	S0354: 1, H0730: 1, H0735:	1, H0747: 1, S0132: 1,	L0717: 1, H0586: 1, H0632:	1, T0114: 1, H0250: 1,	S0280: 1, H0744: 1, L0157:	1, H0014: 1, S0051: 1,	S0003: 1, H0644: 1, H0038:	1, H0646: 1, S0002: 1,	H0529: 1, L0369: 1, L0763:	1, L5565: 1, L0642: 1,
Predicted Epitopes	Pro-165 to Glu-173, Thr-186 to Cys-194.	Gly-90 to Tyr-97,	Ser-110 to Arg-117,	Pro-139 to Leu-151,	Thr-186 to Cys-194.	Ala-25 to Ser-35,	Cys-58 to Phe-63,	Lys-83 to Trp-90,	Pro-92 to Asn-99,	Pro-101 to Phe-108,	Pro-111 to Cys-119,	Glu-186 to Ile-192.																
AA SEQ ID NO: Y		351				241																						
ORF (From-To)		142 - 759				710 - 1300																						
SEQ ID NO: X		158				48																						
Contig ID:		1306714				1306700																						
cDNA Clone ID		HNSUM63				89AMSNH																						
Gene No:						38																						

Cytologic OMIM Band Disease Y Reference(s):		54: 	8: 8: 8:	88 88 8. 88 8	
Tissue Distribution Library code: count (see Table IV for Library Codes)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L0645: 1, L0768: 1, L0774: 1, L0807: 1, L0365: 1, L0647: 1, L5623: 1, L0666: 1, S0052: 1, L0565: 1, H0682: 1, H0658: 1, H0478: 1, S0037: 1, S3014: 1, L0754: 1, L0750: 1, L0759: 1, S0011: 1, S0192: 1 and H0352: 1,	L0645: 1, L0768: 1, L0774: 1, L0807: 1, L0365: 1, L0647: 1, L5623: 1, L0666: 1, S0052: 1, L0565: 1, H0682: 1, H0658: 1, H0478: 1, S0037: 1, S3014: 1, L0754: 1, L0750: 1, L0759: 1, S0011: 1, S0192: 1 and H0352: 1. S0408: 7, S0444: 6, S0358: 3, H0597: 2, S0442: 1, S0374: 1 and S0434: 1.	L0645: 1, L0768: 1, L0774: 1, L0807: 1, L0365: 1, L0647: 1, L5623: 1, L0666: 1, S0052: 1, L0565: 1, H0682: 1, H0658: 1, H0478: 1, S0037: 1, S3014: 1, L0754: 1, L0750: 1, L0759: 1, S0011: 1, S0192: 1 and H0352: 1. S0408: 7, S0444: 6, S0358: 3, H0597: 2, S0442: 1, S0374: 1 and S0434: 1, S0408: 7, S0444: 6, S0358: 3, H0597: 2, S0442: 1, S0374: 1 and S0434: 1.	L0645: 1, L0768: 1, L0774: 1, L0807: 1, L0365: 1, L0647: 1, L5623: 1, L0666: 1, S0052: 1, L0565: 1, H0682: 1, H0658: 1, H0478: 1, S0037: 1, S3014: 1, L0754: 1, L0750: 1, L0759: 1, S0011: 1, S0192: 1 and H0352: 1. S0408: 7, S0444: 6, S0358: 3, H0597: 2, S0442: 1, S0374: 1 and S0434: 1. S0408: 7, S0444: 6, S0358: 3, H0597: 2, S0442: 1, S0374: 1 and S0434: 1.
Predicted Epitopes				Arg-22 to Arg-37, Val-76 to Asp-82, Ser-98 to Trp-103, Gly-121 to Thr-126.	Arg-22 to Arg-37, Val-76 to Asp-82, Ser-98 to Trp-103, Gly-121 to Thr-126. Cys-49 to Phe-60, Leu-73 to Ser-79. Cys-49 to Phe-60, Leu-73 to Ser-79.
AA SEQ ID NO: Y			. 242		
ORF (From-To)			172 - 675	172 - 675	65 - 568 65 - 568 86 - 352 102 - 368
SEQ ID NO: X			7 49		
Contig ID:			1324137	1324137	1324137
cDNA Clone ID			HOC2T95	HOC2T95	HOC2T95 HODNV05
Gene No:			39	39	39

ا م	cDNA Clone 1D	Contig	SEQ ID	ORF	ΑA	Predicted Epitopes	Tissue Distribution	Cytologic	OMIM
No:		Ė	NO: X	(From-To)	SEQ		Library code: count	Band	Disease
		i			ID NO: Y		(see Table IV for Library Codes)		Reference(s):
							1, H0316: 1, T0041: 1, L0764: 1, L0662: 1, L0768:		
							1, L0794: 1, L0803: 1,		
							L0650: 1, L0805: 1, L0776: 1, L0629: 1, L0647: 1		
							L0790: 1, L0791: 1, L0666:		
				-			1, L0664: 1, S0330: 1,		
							L0/40: 1, L0/51: 1, L0/50: 1, L0777: 1, L0753: 1.		
	-						L0755: 1, L0731: 1 and		
							H0352: 1.		
	HPDSA48	1306302	191	78 - 431	354	Asp-31 to Phe-42,	L0809: 7, H0581: 3, L0658:		
						Ser-52 to Cys-58.	3, H0402: 2, L0769: 2,		
							L0375: 2, L0783: 2, L0665:		
							2, S0052: 2, H0689: 2,		
							H0648: 2, S0328: 2, H0696:		
							2, L0747: 2, H0657: 1,		
							H0255: 1, H0741: 1, H0747:		
							1, L0717: 1, H0632: 1,		
							H0486: 1, H0748: 1, H0231:		
							1, H0327: 1, H0545: 1,		
							T0023: 1, T0086: 1, H0674:		
							I, H0316: 1, T0041: 1,		
							L0764: 1, L0662: 1, L0768:		
							1, L0794: 1, L0803: 1,		
							L0650: 1, L0805: 1, L0776:		
							1, L0629: 1, L0647: 1,		
							L0790: 1, L0791: 1, L0666:		
							1, L0664: 1, S0330: 1,		
							L0740: 1, L0751: 1, L0750:		
	_], בפוטם (1. 1, ביווסם (1	_	

OMIM	Disease Reference(s):																							
Cytologic	Band																							
Tissue Distribution	Library code: count (see Table IV for Library Codes)	L0755: 1, L0731: 1 and H0352: 1.		L0747: 11, S0360: 5, H0551: 4, L0764: 4, L0783:	4, f10013. 3, E0770. 3, L0775: 3, L0438: 3, S0037:	3, L0779: 3, L0757: 3,	2, H0628: 2, L0369: 2,	L0763: 2, L0772: 2, L0378:	2, L0509: 2, L0776: 2,	L0666; 2, H0521; 2, S3014; 2, 1,0439; 2, 1,0755; 2	L0731: 2, S0436: 2, L0588:	2, L0601: 2, T0049: 1,	H0656: 1, S0212: 1, H0638:	1, S0420: 1, S0408: 1, S0046:	11, S0476: 1, H0497: 1,	L3816: 1, L381/: 1, H0486:	H0545: 1, H0024: 1, S0250:	1, H0644: 1, H0617: 1,	H0038: 1, H0040: 1, S0294:	1, L0065: 1, H0633: 1,	H0646: 1, S0144: 1, L0372:	1, L0648: 1, L0768: 1,	L0649: 1, L0805: 1, L0654:	1, L0657: 1, L0513: 1,
Predicted Epitopes			Asp-31 to Phe-42, Ser-52 to Cys-58.																				•	
AA.	SEQ ID NO: Y		355	245																				
ORF	(From-To)		78 - 431	30 - 1631										_										
SEQ ID	NO: X		162	52																				
Contig	D:		1306617	1320220														-						
cDNA Clone ID			HPDSA48	HSKIT24																				
Gene	No:	,		42														-						

Gene cDNA Clone ID		Contig	SEQ ID	ORF	AA	Predicted Epitopes	Tissue Distribution	Cytologic	OMIM
		Ë	NO: X	(From-To)	SEQ		Library code: count	Band	Disease
					NO: Y		(see Table IV for Library Codes)		Reference(s):
							1, L5623: 1, L4501: 1,		
							1. S0126: 1. H0690: 1.		
							H0683: 1, H0658: 1, H0672:		
							1, H0539: 1, S0380: 1,		
							H0528: 1, H0478: 1, H0631:		
							1, S3012: 1, L0749: 1,		
							L0752: 1, L0758: 1, S0434:		
							1, H0665: 1, S0192: 1 and		
							S0424: 1.		
HSKIT24		1308800	163	20 - 607	356		L0747: 11, S0360: 5,		121050, 131400,
							H0551: 4, L0764: 4, L0783:		138040, 153455,
							4, H0013: 3, L0770: 3,		159000, 179095,
							L0775: 3, L0438: 3, S0037:		181460, 192974,
							3, L0779: 3, L0757: 3,		192974, 600807,
			-				L0599: 3, H0295: 2, S0003:		601596, 601692,
							2, H0628: 2, L0369: 2,		601692, 601692,
							L0763: 2, L0772: 2, L0378:		601692, 602089,
							2, L0509: 2, L0776: 2,		602121, 602460
							L0666: 2, H0521: 2, S3014:		
							2, L0439: 2, L0755: 2,		
							L0731: 2, S0436: 2, L0588:		
							2, L0601: 2, T0049: 1,		
							H0656: 1, S0212: 1, H0638:		
							1, S0420: 1, S0408: 1, S0046:		•
							1, S0476: 1, H0497: 1,		
							L3816: 1, L3817: 1, H0486:		
	_						1, H0309: 1, H0544: 1,		
							H0545: 1, H0024: 1, S0250:		
							1, H0644: 1, H0617: 1,		
							H0038: 1, H0040: 1, S0294:		

OMIM	Disease Reference(s):	ì				
Cytologic	Band					
Tissue Distribution	Library code: count (see Table IV for Library	Codes)	1, L0065: 1, H0633: 1, H0646: 1, S0144: 1, L0372: 1, L0648: 1, L0768: 1, L0649: 1, L0805: 1, L0654: 1, L0657: 1, L0513: 1, L0656: 1, L0659: 1, L0517: 1, L5623: 1, L4501: 1, L2261: 1, H0144: 1, L0352: 1, S0126: 1, H0690: 1, H0683: 1, H0658: 1, H0672: 1, H0539: 1, S0380: 1, H0528: 1, H0478: 1, H0631: 1, S3012: 1, L0749: 1, L0752: 1, L0758: 1, s0434: 1, H0665: 1, S0192: 1 and S0424: 1.			H0521: 100, H0522: 33, H0445: 16, L0748: 15, S0360: 11, H0553: 7, H0575:
Predicted Epitopes				Asp-141 to Pro-147, Arg-174 to Tyr-183, Gly-199 to Lys-206, Pro-238 to Gly-245, Leu-254 to Glu-267, Pro-285 to Tyr-290, Thr-302 to Arg-308, Tyr-313 to Ala-319, Lys-328 to Asp-334, Ser-385 to Asp-391.	Gly-55 to Ala-64, Glu-82 to Phe-87.	
ΑA	SEQ D	NO: Y		357	358	246
ORF	(From-To)			90 - 1460	107 - 397	102 - 839
SEQ ID	X :0X			164	165	53
Contig	ä			1308801	1308799	1320217
cDNA Clone ID				HSKIT24	HSKIT24	HSVAA83
Gene	; Z					43

SEQ ID NO: X (F																															
CDNA Clone ID Contig SEQ ID Predicted Epitopes Library Code: count (see Table IV for Library DD: NO: Y Prom-To) ID Codes) NO: Y (From-To) ID Codes) Holds: J. 10039: 3, 140622. Holds: J. 10039: 3, 140623. Lords: J. 10039: 3, 140623. Lords: J. 10039: 3, 140623. Lords: J. 10039: 1, 140633. Holds: J. 10038: 1, 140631. Holds: J. 10038: 1, 140631. Holds: J. 10048: 1, 10063. 1, 140642. Holds: J. 10063: 1, 140642. Holds: J.	OMIM	Disease	Neiereilce(s):																												
CDNA Clone ID Contig SEQ ID ORF AA Predicted Epitopes ID: NO: X (From-To) SEQ ID NO: Y NO: Y (From-To) To	Cytologic	Band																													
CDNA Clone ID Contig SEQ ID ORF AA DD: NO: X (From-To) SEQ ID DD: NO: Y DD: NO: Y	Tissue Distribution	Library code: count	(see Table IV 101 Library	6, L0754: 6, S0434: 6, S0354: 4. H0638: 3, S0358: 3.	H0427: 3, H0039: 3, H0622:	3, H0644: 3, H0090: 3,	H0264: 3, S0438: 3, S0374:	3, L0743: 3, L0744: 3,	L0747: 3, L0755: 3, S0436:	3, S0376: 2, S0408: 2,	H0309: 2, H0009: 2, H0620:	2, H0376: 2, H0063: 2,	L0769: 2, L0659: 2, H0658:	2, H0672: 2, H0555: 2,	L0581: 2, H0713: 1, H0583:	1, L0418: 1, L0785: 1,	S0212: 1, S0282: 1, H0661:	.::	 1, S0280: 1, H0108: 1,.	H0122: 1, H0581: 1, H0597:	1, H0570: 1, H0123: 1,	H0023: 1, H0014: 1, S0362:	I, H0510: I, H0375: I,	H0252: 1, H0213: 1, H0031:	1, H0189: 1, H0163: 1,	L0435: 1, S0440: 1, L0646:	1, L0765: 1, L0648: 1,	L0768: 1, L0378: 1, L0805:	1, L0559: 1, L0789: 1,	Н0726: 1, L0352: 1, H0682:	1, H0666: 1, S0330: 1, S0378: 1, H0754: 1, H0710:
cDNA Clone ID Contig SEQ ID ORF D: NO: X (From-To)	Predicted Epitopes																														
cDNA Clone ID Contig SEQ ID NO: X DE CONTIGUE ID: NO: X DE CONTIGU	AA	SEQ	NO: Y																												
cDNA Clone ID Contig	ORF	(From-To)																													
cDNA Clone ID	SEQ ID	NO: X																													
Gene CDNA Clone ID No:	Contig	ä																													
Gene No:	cDNA Clone ID																														
	Gene	So.																							-						

OMIM	Disease Reference(s):				
Cytologic	Band				
Tissue Distribution	Library code: count (see Table IV for Library	H0023: 1, H0014: 1, S0362: 1, H0510: 1, H0375: 1, H0252: 1, H0213: 1, H0031: 1, H0189: 1, H0189: 1, H0189: 1, H0189: 1, L0768: 1, H0668: 1, H0766: 1, S0378: 1, H0710: 1, S0190: 1, S0406: 1, H0345: 1, L0731: 1, L0759: 1, L0779: 1, L0731: 1, L0759: 1, H0444: 1, H0343: 1, H0668: 1, S0384: 1, H0506: 1 and H0595: 1, S0186: 1, H0506: 1 and H0595: 1, H0506: 1 and H0552: 1, H0506: 1 and H0562: 1 An		,	,
Predicted Epitopes			Arg-25 to Gly-31, Pro-45 to Gly-52, Pro-71 to Gly-76, Pro-81 to Gly-91, Glu-107 to Phe-118.	Arg-25 to Gly-31, Pro-45 to Gly-52, Pro-71 to Gly-76, Pro-81 to Gly-91, Glu-107 to Phe-118.	Arg-25 to Gly-31, Pro-45 to Gly-52,
AA	SEQ ED		360	361	362
ORF	(From-To)		119 - 457	119 - 856	118 - 855
SEQ ID	X ON		167	891	691
Contig	ä		1313494	1313491	1313490
cDNA Clone ID			HSVAA83	HSVAA83	HSVAA83
Gene	ö				

_		0777:	.0777:	.0777. .0439:	.0777: 0439:	.0777: 0439: 0685:	.0777: 0439: 0685:	.0777: 0439: 0012:	.0777: 0439: 0012:	.0777: 1439: 1685: 0012:	0012: 0766:	.0777: 0439: 0012: 0731:	0012: 0731:	0012: 0731: 0556:	0012: 0556:	0012: 0556: 0356: 0356:	0012: 0739: 0012: 0766: 0556:	0012: 00556: 0728:	0012: 0012: 0756: 0756: 0756: 0758:	0012: 0012: 0731: 0556: 0728:	0439: 0685: 0777: 0731: 0556: 0728:	0439: 0685: 0685: 0771: 0731: 0556: 0728: 0738:	0439: 0685: 0012: 0731: 0556: 0728: 0738:	0012: 0756: 0756: 0756: 0731: 0731: 0738: 0738: 0738:	0012: 0012: 07731: 0731: 0728: 0728: 0738: 0135:	0012: 07777: 0685: 0766: 0756: 0756: 0728: 0738: 0135:	0012: 0012: 0731: 0756: 0736: 0738: 0738: 0738: 0738: 0738: 0738: 0738:	0439: 0685: 0612: 0731: 0731: 0738: 0728: 0738: 0135: 1422: 1,
		S0358: 8, H0457: 6, L0777:	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5,	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439:	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3,	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685:	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685: 2, S0420: 2, S0046: 2,	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685: 2, S0420: 2, S0046: 2, H0370: 2, H0545: 2, H0012:	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685: 2, S0420: 2, S045: 2, H0370: 2, H0545: 2, H0617: 2, H0264: 2, L0617: 2, L0617: 2, H0264: 2, L0617: 2, L0617: 2, H0264: 2, L0617:	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685: 2, S0420: 2, S0046: 2, H0370: 2, H0545: 2, H0012: 2, H0617: 2, H0264: 2, H0494: 2, L0769: 2, L0766:	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685: 2, S0420: 2, S046: 2, H0370: 2, H0545: 2, H0012: 2, H0617: 2, H0264: 2, H0494: 2, L0769: 2, L0766: 2, L0775: 2, H0660: 2,	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685: 2, S0420: 2, S0426: 2, H0617: 2, H0264: 2, H0494: 2, L0769: 2, L0775: 2, H0660: 2, H0539: 2, L0777:	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685: 2, S0420: 2, S0046: 2, H0370: 2, H0545: 2, H0012: 2, H0617: 2, H0264: 2, H0494: 2, L0769: 2, L0775: 2, H0660: 2, H0539: 2, L0747: 2, L0731: 2, L0596: 2, H0422: 2, L0596: 2, H0422: 2, L0596: 2, L05775: 2, H0422: 2, L0596: 2, L05775: 2, L0747: 2, L0731: 2, L0596: 2, H0422: 2, L05775: 2, H0422: 2, L05775: 2, L0572: 2, L05775: 2, L0572: 2, L05775: 2, L0572: 2, L05775: 2, L0572: 2, L05777: 2, L0572: 2, L05775: 2, L0572: 2, L05775: 2, L0572: 2, L0572: 2, L05777: 2, L0572: L0572: 2, L0572:	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685: 2, S0420: 2, S0046: 2, H0370: 2, H0545: 2, H0617: 2, H0660: 2, L0775: 2, H0660: 2, L0775: 2, H0422: 2, L0596: 2, H0520: 2, L0596: 2, H0520: 2, L0596: 2, H0550: 1, H0556: 3, H0566: 3, H0556: 3, H0566:	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685: 2, S0420: 2, S0046: 2, H0370: 2, H0545: 2, H0660: 2, L0775: 2, H0660: 2, L0775: 2, H0660: 2, L0756: 2, L0775: 2, H0422: 2, L0596: 2, H0556: 1, H0506: 2, H0566: 1, H0506: 2, H0566: 1, H0506: 2, H0566: 1, H0506: 2, H0566: 1, H0566: 1, H0666: 1,	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685: 2, S0420: 2, S0046: 2, H0370: 2, H0545: 2, H0617: 2, H0264: 2, L0775: 2, H0660: 2, L0775: 2, H0660: 2, L0775: 2, H0422: 2, L0596: 2, H0565: 1, H0556: 1, H0661: 1, H0140: 1, H0661: 1, H0662: 1, H0663: 1, S0356: H0662: 1, H0638: 1, S0356: H0662: 1, H0663: 1, S0356: H0662: 1, H0638: 1, S0356: H0662: 1, H06638: 1, S0356: H0662: 1, H06638: 1, S0356: H0662: 1, H06	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685: 2, S0420: 2, S0046: 2, H0370: 2, H0545: 2, H0012: 2, L0775: 2, H0660: 2, H0539: 2, L0777: 2, H0422: 2, L0596: 2, H0506: 2, H0506: 2, H0506: 2, H0506: 1, H0661: 1, H0140: 1, H0661: 1, H0556: 1, S0444: 1, S0410: 1,	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685: 2, S0420: 2, S0046: 2, H0370: 2, H0545: 2, H0012: 2, L0775: 2, H0660: 2, H0594: 2, L0775: 2, H0660: 2, L0775: 2, H0660: 2, H0596: 1, H0566: 1, H0566: 1, H0662: 1, H0662: 1, H0661: 1, H0662: 1, H0729: 1, H0729: 1, H0728:	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685: 2, S0420: 2, S0046: 2, H0617: 2, H0264: 2, H0494: 2, L0769: 2, L0775: 2, H0660: 2, L0775: 2, H0660: 2, L0775: 2, H0660: 2, H0539: 2, L0747: 2, L0731: 2, L0596: 2, H0661: 1, H0140: 1, H0661: 1, H0662: 1, H0638: 1, S0356: 1, S0444: 1, S0410: 1, H0729: 1, H0729: 1, H0729: 1, H0728: 1, H0729: 1, H0720:	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685: 2, S0420: 2, S0046: 2, H0617: 2, H0549: 2, L0775: 2, H0560: 2, L0775: 2, H0660: 2, L0775: 2, H0660: 2, L0795: 2, L0795: 2, L0795: 2, L0796: 2, L0596: 2, H0650: 1, H0539: 2, L0596: 1, H0660: 1, H0660: 1, H0660: 1, H0660: 1, H0670: 1, H0729: 1, H0739: 1, L0738:	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685: 2, S0420: 2, S0046: 2, H0370: 2, H0545: 2, H0664: 2, H0494: 2, L0775: 2, H0660: 2, L0775: 2, H0660: 2, L0775: 2, H0660: 2, L0799: 2, L0799: 2, L0799: 2, L0596: 2, H0556: 1, H040: 1, H0661: 1, H0140: 1, H0661: 1, H0729: 1, H0722: 1, H0728: 1, H0729:	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685: 2, S0420: 2, S0046: 2, H0370: 2, H0545: 2, H0617: 2, H0264: 2, H0494: 2, L0769: 2, L0766: 2, L0775: 2, H0660: 2, H0539: 2, L0775: 2, H0660: 2, H0539: 2, L0781: 1, H0140: 1, H0661: 1, H0662: 1, H0638: 1, S0356: 1, R0393: 1, S044: 1, S0410: 1, H0729: 1, H0722: 1, H0728: 1, H0393: 1, S0278: 1, H0393: 1, L0471: 1, H0081: 1, L0471: 1, H0081: 1, L0471: 1, H0083: 1, S0051: 1, H0083: 1, L0471: 1, H0083:	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685: 2, S0420: 2, S0046: 2, H0370: 2, H0545: 2, H0617: 2, H0546: 2, L0775: 2, H0660: 2, H0539: 2, L0747: 2, L0766: 2, L0775: 2, H0660: 2, H0539: 2, L0747: 2, L0731: 2, L0596: 2, H0422: 2, H0566: 1, H0662: 1, H0662: 1, H0661: 1, H0441: 1, S0444: 1, S0410: 1, H0729: 1, H0722: 1, H0728: 1, H0393: 1, S0278: 1, H0393: 1, S0278: 1, H0549: 1, H0620: 1, S0051: 1, H0083: 1, L0471: 1, H0650: 1, S0051: 1, H0083: 1, R0650: 1, H0083:	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685: 2, S0420: 2, S0046: 2, H0370: 2, H0545: 2, H0012: 2, L0775: 2, H0264: 2, H0494: 2, L0769: 2, L0766: 2, L0775: 2, H0660: 2, H0506: 2, H0422: 2, H0506: 2, H0422: 2, L0796: 2, H0506: 1, H0661: 1, H0140: 1, H0661: 1, H0729: 1, H0722: 1, H0728: 1, H0393: 1, S0278: 1, H0393: 1, S0278: 1, H0549: 1, H0231: 1, L0738: 1, H0549: 1, H0620: 1, S0051: 1, H0083:	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685: 2, S0420: 2, S0046: 2, H0370: 2, H0545: 2, H0617: 2, H0546: 2, L0775: 2, H0660: 2, L0775: 2, H0660: 2, L0775: 2, H0660: 2, L0775: 2, H0660: 2, H0506: 2, H0422: 2, L0796: 1, H0661: 1, H0662: 1, H0658: 1, S0356: 1, S0344: 1, S0410: 1, H0649: 1, H0722: 1, H0728: 1, H0729: 1, H0721: 1, H0739: 1, L0731: 1, H0649: 1, H0671: 1, H0640: 1, H0673: 1, H0739: 1, H0731: 1, H0650: 1, H0673: 1, H0633: 1, H0673: 1,	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685: 2, S0420: 2, S046: 2, H0370: 2, H0545: 2, H0617: 2, H0546: 2, H0617: 2, H0546: 2, L0775: 2, H0660: 2, H0539: 2, L0747: 2, L0731: 2, L0596: 2, H0566: 2, H0566: 1, H0661: 1, H0140: 1, H0661: 1, H0662: 1, H0653: 1, S0356: 1, S0444: 1, S0410: 1, H0729: 1, H0722: 1, H0728: 1, H0393: 1, S0278: 1, H0620: 1, S0051: 1, H0083: 1, L0731: 1, H0620: 1, S0051: 1, H0083: 1, H0653: 1, S0440: 1, S0150: 1, S0422: 1, S0422: 1, S0440: 1, S0150: 1, S0422: 1, S0440: 1, S0422: 1, S0440: 1, S0440: 1, S0422: 1, S0440:	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685: 2, S0420: 2, S0046: 2, H0370: 2, H0545: 2, H0617: 2, H0544: 2, H0644: 2, H0649: 2, L0775: 2, H0660: 2, L0775: 2, H0660: 2, L0775: 2, H0660: 2, L0775: 2, H0660: 2, H0539: 2, L0775: 2, H0660: 1, H0539: 2, L0775: 2, H0661: 1, H0140: 1, H0661: 1, H0729: 1, H0638: 1, S0278: 1, H0729: 1, H0721: 1, H0729: 1, H0721: 1, H0739: 1, L0731: 1, H0599: 1, H0631: 1, H0680: 1, S0051: 1, H0135: 1, H0181: 1, H0673: 1, H0135: 1, H0038: 1, H0551: 1, S0440: 1, S0150: 1, S0422: 1, L0763: 1, L0731: 1, H0038: 1, H0551: 1, S0440: 1, S0150: 1, S0422: 1, L0800: L0763: 1, L0372: 1, L0800: L0763: 1, L0872: 1, L0800: L0763: L07	S0358: 8, H0457: 6, L0777: 6, S0436: 6, L0748: 5, H0156: 4, L0776: 4, L0439: 4, H0341: 3, S0418: 3, S0142: 3, L0758: 3, H0685: 2, S0420: 2, S0046: 2, H0370: 2, H0545: 2, H0644: 2, H0549: 2, L0775: 2, H0660: 2, H0539: 2, L0775: 2, H0660: 2, H0539: 2, L0775: 2, H0660: 2, H0539: 2, L0775: 2, H0660: 1, H040: 1, H0661: 1, H0140: 1, H0661: 1, H0729: 1, H0728: 1, H0729: 1, H0721: 1, H0739: 1, L0738: 1, H0891: 1, L0471: 1, H0891: 1, H0673: 1, L0773:
) Gly-76,) Gly-91, to Phe-118.		9	91	0 1 4	9 1 4 S	01482	0 1 4 8 6 1	0148214	9 T 4 S G T G T	9 1 4 8 G 1 G 1 G	0 T 4 & Q T Q T Q T	014801010	0 T 4 8 9 T 9 T 9 T 9 T	0 1 4 8 9 T 9 T 9 T 9 T -	9 T 4 S U T U T U T U T - T	0 + 4 8 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4	0 T 4 8 0 T 0 T 0 T 0 T - T - T	0 T 4 8 9 T 9 T 9 T 9 T - T - T -	0 1 4 8 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	9 T 4 S O T O T O T O T - T - T - T -	9 T 4 S G T G T G T - T - T - T - T	6 T 4 2 U T U T U T U T T T T T T T T T T T T	6 T 4 8 G T G T G T - T - T - T - T - T	0 1 4 8 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	0 T 4 & Q T Q T Q T Q T - T - T - T - T - S	0 1 4 8 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	0 1 4 8 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
	Pro-/1 to Gly-/6, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro-/1 to Gly-/6, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro-/1 to Gly-/6, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro- / I to Gly- / 6, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro- / I to Gly- / 6, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro- / I to Gly- / 6, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro- / I to Gly- / 6, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro-/1 to Gly-/b, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro-/1 to Gly-/6, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro-/1 to Gly-/6, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro-/1 to Gly-/6, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro- / I to Gly- / 6, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro-/1 to Gly-/6, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro-/1 to Gly-/b, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro-/1 to Gly-/b, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro-/1 to Gly-/6, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro-/1 to Gly-/6, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro-/1 to Gly-/6, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro-/1 to Gly-/6, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro-/1 to Gly-/6, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro-/1 to Gly-/6, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro-/1 to Gly-/b, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro-/1 to Gly-/b, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro-/1 to Gly-/b, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro-/1 to Gly-/6, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro-/1 to Gly-/6, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro-/1 to Gly-/6, Pro-81 to Gly-91, Glu-107 to Phe-118.	Pro-/1 to Gly-/6, Pro-81 to Gly-91, Glu-107 to Phe-118.
100.1	Pro-/1 Pro-81 Glu-1(Pro-71 Pro-81 Glu-10																										
711		31 - 954 2	- 954	- 954	- 954	- 954	- 954	- 954	- 954	- 954	- 954	- 954	- 954	- 954	- 954	- 954	- 954	- 954	- 954	- 954	- 954	- 954	- 954	- 954	- 954	- 954	- 954	- 954
		54																										
+		1322752	1322752	1322752	1322752	1322752	1322752	1322752	1322752	1322752	1322752	1322752	1322752	1322752	1322752	1322752	1322752	1322752	1322752	1322752	1322752	1322752	1322752	1322752	1322752	1322752	1322752	1322752
		HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76	HUTJT76
1				1		I																						

OMIM	Disease Reference(s):	,																													
Cytologic	Band																														
Tissue Distribution	Library code: count (see Table IV for Library	Codes)	1, L0655: 1, L0518: 1, L0783: 1, L0809: 1, L0519:	1, L2260: 1, S0374: 1,	H0593: 1, H0690: 1, H0666:	1, S0392: 1, L0750: 1,	L0759: 1, S0434: 1 and	H0543: 1.	S0358: 8, H0457: 6, L0777:	6, S0436: 6, L0748: 5,	H0156: 4, L0776: 4, L0439:	4, H0341: 3, S0418: 3,	S0142: 3, L0758: 3, H0685:	2, S0420: 2, S0046: 2,	H0370: 2, H0545: 2, H0012:	2, H0617: 2, H0264: 2,	H0494: 2, L0769: 2, L0766:	2, L0775: 2, H0660: 2,	H0539: 2, L0747: 2, L0731:	2, L0596: 2, H0422: 2,	H0506: 2, H0265: 1, H0556:	1, H0140: 1, H0661: 1,	H0662: 1, H0638: 1, S0356:	1, S0444: 1, S0410: 1,	H0729: 1, H0722: 1, H0728:	1, H0393: 1, S0278: 1,	H0549: 1, H0231: 1, L0738:	1, H0081: 1, L0471: 1,	H0620: 1, S0051: 1, H0083:	1, H0594: 1, H0031: 1,	H0181: 1, H0673: 1, H0135:
Predicted Epitopes									Gly-56 to Asp-67,	Tyr-118 to Pro-127.				-																	
ΑA	SEQ ID	NO: Y							363																						
ORF	(From-To)								14 - 424																						
SEQ ID	NO: X								170																						
Contig	ä								1307189																						
cDNA Clone ID									HUTJT76																						
Gene	So.																														

OMIM	Disease Reference(s):				
Cytologic	Band				
Tissue Distribution	Library code: count (see Table IV for Library Codes)	S0440: 1, S0150: 1, S0422: 1, L0763: 1, L0372: 1, L0800: 1, L0553: 1, L0773: 1, L0768: 1, L0774: 1, L0805: 1, L0655: 1, L0774: 1, L0578: 1, L0783: 1, L0809: 1, L0519: 1, L2260: 1, S0374: 1, H0593: 1, H0690: 1, H0666: 1, S0392: 1, L0750: 1, L0759: 1, S0434: 1 and H0543: 1.		H0623: 1 H0623: 1	H0478: 16, S0330: 14, S0392: 9, S0328: 8, H0032: 4, S0044: 3, H0402: 2, H0479: 2, H0263: 1, H0011: 1, H0096: 1, H0708: 1, S0464: 1, S0150: 1, H0517: 1, H0593: 1, H0670: 1, S0380: 1, H0448: 1, S0434: 1 and H0542: 1.
Predicted Epitopes			Gly-56 to Asp-67, Tyr-118 to Pro-127, Pro-136 to Asp-142, Pro-162 to Pro-168, Gly-213 to Pro-218, Ala-262 to Ala-267, Phe-270 to Gly-278, Pro-296 to Glu-301	Ser-36 to Arg-44, Ile-46 to Pro-52.	
AA.	SEQ ID NO: Y		364	248 365	249
ORF	(From-To)		14 - 937	109 - 237 199 - 369	
SEQ ID	X :ON		171	55 172	56
Contig	ä		1313865	1336588 1307428	1318530
cDNA Clone ID			HUTJT76	HUVHZ75 HUVHZ75	HVAQO59
Gene	 Z			45	46

Gene	cDNA Clone ID	Contig	SEQ ID	ORF	AA	Predicted Epitopes	Tissue Distribution	Cytologic	OMIM
 Ç		Ė	NO: X	(From-To)	SEQ		Library code: count	Band	Disease
		i			ID NO: Y		(see Table IV for Library Codes)		Reference(s):
	HVAQ059	1293499	173	96 - 260	366	Pro-5 to Val-12,	H0478: 16, S0330: 14,		
						Pro-33 to Val-43.	S0392: 9, S0328: 8, H0032:		
							4, S0044; 3, H0402; 2, H0470: 2, H0263: 1, H0011:		
							110417. 2, 110203. 1, 1100111.		
							1, m0090. 1, m0/00. 1,		
							S0464: 1, S0150: 1, H0517:		
							1, H0593: 1, H06/0: 1,		
							S0380: 1, H0448: 1, S0434: 11 and H0542: 1		
47	HWHPA16	1306589	57	26 - 283	250	Pro-28 to Glu-35,	H0587: 3, L0747: 2, L0376:		
						Ala-80 to Gln-85.	1 and S0330: 1.		
	HWHPA16	1307291	174	20 - 277	367	Pro-28 to Glu-35,			
48	HYCAD48	1334177	58	70 - 1074	251	Ala-00 to Oill-0.5.	H0704: 2 and L0362: 2.		
	HYCAD48	1305993	175	59-1063	368	Gln-31 to Trn-47	H0704: 2 and 1.0362: 2		
						His-62 to Gln-70,			
			-			Met-83 to Phe-88,			
						Asn-93 to Arg-104,			
						Val-118 to Gly-124,			
						Val-129 to Gly-136,			
						Ser-170 to Asn-179,			
						Pro-203 to Lys-212,			
						Pro-267 to Asn-273,			
						Tyr-285 to Lys-294,			
49	HHFZF42	1305981	59	188 - 475	252	Lys-316 to Cys-322.	S0140: 11. H0549: 3.		141750 141800
			1				S0474: 3, L0493: 3, S0436: 3,		141800, 141800,
							H0624: 2, H0662: 2, S0418:		141800, 141850,
							2, S0278; 2, H0427; 2,		141850, 141850,
							H0050: 2, L0471: 2, H0622:		141850, 141850,
							J, LU / /U: 2, LU002: 2,		1,56850, 186580, 1

OMIM	Disease Reference(s):		191092, 600140, 600273, 601313, 601785				
Cytologic	Band						
Tissue Distribution	Library code: count (see Table IV for Library	Codes)	L0794: 2, L0809: 2, L0748: 2, L0779: 2, L0731: 2, H0170: 1, H0717: 1, H0650: 1, H0656: 1, S0001: 1, S0360: 1, H0580: 1, L0717: 1, H0586: 1, L0623: 1, T0039: 1, H0599: 1, H0575: 1, H0706: 1, H0597: 1, H0546: 1, H0123: 1, H0620: 1, H0179: 1, H0271: 1, H0687: 1, H0286: 1, H0252: 1, H0649: 1, H0652: 1, L0773: 1, L0659: 1, L0526: 1, L0659: 1, L0526: 1, L0659: 1, L0526: 1, L0659: 1, H0689: 1, H0670: 1, H0521: 1, S0406: 1, H0555: 1, S0406: 1, H0555: 1, S0406: 1, H0555: 1, S0406: 1, H0555: 1, L0599: 1, L0599: 1, L0747: 1, L0599: 1, L0599: 1, H0542: 1 L0599: 1, L0599: 1, H0542: 1, L0590: 1, L0590: 1, H0542: 1, L0500: 1, L0500: 1, H0542:		S0422: 2		L0740: 4, H0624: 2, S0212: 2, H0046: 2, H0615: 2,
Predicted Epitopes					Glu-31 to Gln-41, Gly-47 to Leu-56.	Glu-31 to Gln-41, Gly-47 to Leu-56.	
AA	SEQ ID	NO: Y		369	253	370	254
ORF	(From-To)			1 - 264	217 - 465	119 - 367	174 - 827
SEQ ID	NO: X			176	09	177	61
Contig	ä			1309154	1306357	9999081	1323801
cDNA Clone ID				HHFZF42	ННАQУ41	ННАQУ41	HNSRC60
Gene	 				20		51

ОМІМ	Disease Reference(s):	`						,								·									* 1.	
Cytologic	Band																									
Tissue Distribution	Library code: count (see Table IV for Library	Codes)	H0538: 2, L0794: 2, L3388: 1, H0586: 1, H0486: 1,	H0013: 1, H0156: 1, H0024: 1. S6028: 1. H0271: 1.	L0456: 1, H0488: 1, T0041:	1, T0042: 1, S0422: 1, S0426:	1, H0529: 1, L0369: 1,	LU649: 1, L3623: 1, HU32U:	L0748: 1, L0777: 1, L0752:	1, L0759: 1, S0436: 1, S0196:	I and S0424: 1.	L0740: 4, H0624: 2, S0212:	2, H0046: 2, H0615: 2,	H0538: 2, L0/94: 2, L3388:	1, HU380: 1, HU480: 1,	HUUIS: 1, HUISO: 1, HUUZ4:	1, 36026: 1, F102/1: 1, 1.0456: 1. H0488: 1. T0041:	1. T0042: 1. S0422: 1. S0426:	1, H0529: 1, L0369: 1.	L0649: 1, L5623: 1, H0520:	1, H0696: 1, H0436: 1,	L0748: 1, L0777: 1, L0752:	1, L0759: 1, S0436: 1, S0196:	1 and S0424: 1.		H0294: 1, S0110: 1, H0733: 1, S0132: 1, T0040: 1,
Predicted Epitopes																									Pro-8 to Pro-14, Pro-19 to Leu-29, Arg-52 to Ala-60.	
ΑA	SEQ El	NO: Y										371												C	372	255
ORF	(From-To)						-					158 - 568													2161 - 2394	92 - 415
SEQ ID	XO: X										į	178												00.7	6/1	62
Contig	Ë						,					1306009						-							13006/2	1315930
cDNA Clone ID												HNSRC60												00000141	HNSKC60	HFDUT84
Gene	: 2																									52

Gene	cDNA Clone ID	Contig	SEO ID	ORF	AA	Predicted Epitopes	Tissue Distribution	Cytologic	OMIM
No:			NO: X	(From-To)	SEQ		Library code: count	Band	Disease
					UO: Y		(see Table IV for Library Codes)		Reference(s):
							H0183: 1, H0050: 1, H0030:		
							L0657: 1, L3811: 1, S0152:		
							1, S0406: 1 and L0747: 1.		
	HFDUT84	1302969	180	331 - 654	373	Pro-52 to Gln-59,	H0294: 1, S0110: 1, H0733:	10cen-q26.11	
						Pro-61 to Ala-68,	1, S0132: 1, T0040: 1,	,	
						Thr-84 to Ala-106.	H0183: 1, H0050: 1, H0030:		
							1, L0065: 1, L0807: 1,		
							L0657: 1, L3811: 1, S0152:		
							1, S0406: 1 and L0747: 1.		
53	HHA1821	1335782	63	111 - 551	256		L0777: 2 and S0422: 1.		
	HHA1S21	1305929	181	94 - 534	374				
54	HHMQL78	1315932	64	139 - 756	257		S0410: 2, H0556: 1, H0024:		
	,						1, L0803: 1, L0806: 1,		
							L5622: 1 and L0790: 1.		
	ннмог78	1305936	182	538 - 1155	375	Pro-71 to Asp-82,	S0410: 2, H0556: 1, H0024:		
						Thr-164 to Arg-172.	1, L0803: 1, L0806: 1,		
							L5622: 1 and L0790: 1.		
55	HNSMZ53	1315502	65	52 - 513	258		S0436: 1		
	HNSMZ53	1306010	183	52 - 426	376	Pro-3 to Arg-8.	S0436: 1		
26	HNGMJ63	1323768	99	40 - 339	259		S0428: 1 and H0543: 1.		
	HNGMJ63	1306153	184	33 - 332	377		S0428: 1 and H0543: 1.		
57	HNSIT44	1315491	29	124 - 639	260		S0434: 1		
	HNSIT44	1306002	185	124 - 528	378	Pro-50 to Arg-56,	S0434: 1		_
		-				Gly-64 to Gly-72,			
	•					Pro-110 to Arg-118,			
						Pro-126 to Gly-133.			
58	HHMSF21	1306648	89	135 - 383	261	Gln-40 to Glu-48,	S0410: 1		
						Glu-66 to Cys-71.	· T		
	HHMSF21	1306711	186	152 - 400	379	Gln-40 to Glu-48,			

OMIM	Disease Deference(e):	Merci ence(s).			•								,-								•	•								
Cytologic	Band																													
Tissue Distribution	Library code: count	(see rable iv 101 Eibrary Codes)		L0764: 5, L0771: 5, L0374:	3, S0434: 3, H0506: 3,	S0356: 1, S0410: 1, H0264:	1, L03/2: 1, L0/83: 1, L0532: 1 and L0663: 1.			S0422: 2, L0646: 2 and	H0156: 1.	S0422: 2, L0646: 2 and	H0156: 1.			S0410: 1	S0410: 26, S0444: 6, S0358:	4, S0440: 4, L0748: 4,	H0661: 3, S0442: 3, S0408:	3, H0393: 3, H0574: 3,	S0438: 3, S0406: 3, S0360: 2,	H0510: 2, H0509: 2, L0764:	2, S0374: 2, H0742: 1,	H0730: 1, H0722: 1, H0331:	1, H0204: 1, H0150: 1,	H0615: 1, H0059: 1, L0772:	1, L0648: 1, L0803: 1,	L0774: 1 and L0791: 1.		
Predicted Epitopes			Glu-66 to Cys-71.	His-48 to His-53,	Pro-65 to Gly-71,	Pro-91 to Arg-103.		Gln-10 to Thr-18,	Asn-132 to Tyr-137.			Val-24 to Asp-40,	Asn-62 to Leu-73,	Tyr-87 to Ser-93.			Trp-35 to Trp-45,	Pro-52 to Asp-57,	Thr-73 to Arg-82,	Pro-105 to Leu-112,	Pro-115 to Arg-127,	Pro-140 to Ile-147.							Trp-35 to Trp-45,	Pro-52 to Asp-57, Thr-73 to Arg-82,
AA	SEQ	NO: Y		262				380		263		381			382	264	383												384	
ORF	(From-To)			271 - 579				152 - 1261		30 - 332		12 - 314			439 - 615	233 - 685	70 - 525				-				-				233 - 688	
SEQ ID	X :ON			69				187		70		188			189	71	190												161	
Contig	ä			1306632				1306633		1335781		1305889			1306229	1335553	1306594												1309728	
cDNA Clone ID				HNSES94				HNSES94		HH1MU43		HH1MU43			HH1MU43	L9ANWHH	HHMNV67											•	L9NNWHH	
۱.,	No:			59						09						19														

Cytologic OMIM Band Disease Reference(s):																		-						
Tissue Distribution Library code: count (see Table IV for Library Codes)		742: 1	742: 1								617-6 1.0771-5-1.0740-	H0617: 6, L0771: 5, L0740: L0747: 3, H0265: 2.	H0617: 6, L0771: 5, L0740: 4, L0747: 3, H0265: 2, S0358: 2, S0476: 2, H0620:	H0617: 6, L0771: 5, L0740: 4, L0747: 3, H0265: 2, S0358: 2, S0476: 2, H0620: 2, H0040: 2, L0659: 2,	H0617: 6, L0771: 5, L0740: 4, L0747: 3, H0265: 2, 50358: 2, S0476: 2, H0620: 9, H0040: 2, L0659: 2, L0809: 2, H0547: 2, L0748:	H0617: 6, L0771: 5, L0740: 4, L0747: 3, H0265: 2, 50358: 2, S0476: 2, H0620: 2, H0040: 2, L0659: 2, L0809: 2, H0547: 2, L0748: 2, L0751: 2, L0754: 2,	H0617: 6, L0771: 5, L0740: 4, L0747: 3, H0265: 2, 80358: 2, S0476: 2, H0620: 2, H0040: 2, L0659: 2, L0809: 2, H0547: 2, L0748: 2, L0751: 2, L0754: 2, L0589: 2, H0295: 1, T0049:	H0617: 6, L0771: 5, L0740: 4, L0747: 3, H0265: 2, 50358: 2, S0476: 2, H0620: 2, H0040: 2, L0659: 2, L0809: 2, H0547: 2, L0748: 2, L0751: 2, L0754: 2, L0589: 2, H0295: 1, T0049: 1, H0657: 1, H0341: 1,	H0617: 6, L0771: 5, L0740: 4, L0747: 3, H0265: 2, 50358: 2, S0476: 2, H0620: 9, H0040: 2, L0659: 2, L0809: 2, H0547: 2, L0748: 2, L0751: 2, L0754: 2, L0589: 2, H0295: 1, T0049: 1, H0657: 1, H0341: 1, H0661: 1, S0442: 1, S0360:	H0617: 6, L0771: 5, L0740: 4, L0747: 3, H0265: 2, S0358: 2, S0476: 2, H0620: 2, H0040: 2, L0659: 2, L0809: 2, H0547: 2, L0748: 2, L0751: 2, L0754: 2, L0589: 2, H0295: 1, T0049: 1, H0657: 1, H0341: 1, H0661: 1, S0442: 1, S0360: 1, S0045: 1, S0132: 1, T0103:	H0617: 6, L0771: 5, L0740: 4, L0747: 3, H0265: 2, 50358: 2, S0476: 2, H0620: 2, H0040: 2, L0659: 2, L0809: 2, H0547: 2, L0748: 2, L0751: 2, L0754: 2, L0589: 2, H0295: 1, T0049: 1, H0657: 1, H0341: 1, H0661: 1, S0442: 1, S0360: 1, S0045: 1, R0132: 1, T0103: 1, S0045: 1, H0594: 1,	H0617: 6, L0771: 5, L0740: 1, L0747: 3, H0265: 2, 80358: 2, S0476: 2, H0620: 2, H0040: 2, L0659: 2, L0809: 2, H0547: 2, L0748: 2, L0751: 2, L0754: 2, 1, L0751: 2, L0754: 1, 1, H0657: 1, H0341: 1, 1, H0657: 1, R0360: 1, S0045: 1, S0132: 1, T0103: 1, S0050: 1, H0594: 1, 1, 2066: 1, H0290: 1, L0455:	H0617: 6, L0771: 5, L0740: 4, L0747: 3, H0265: 2, S0358: 2, S0476: 2, H0620: 2, H0040: 2, L0659: 2, L0809: 2, H0547: 2, L0748: 2, L0751: 2, L0754: 2, L0589: 2, H0295: 1, T0049: 1, H0657: 1, H0341: 1, H0661: 1, S0442: 1, S0360: 1, S0050: 1, H0594: 1, H0266: 1, H0290: 1, L0455: 1, H0038: 1, H0280: 1,	H0617: 6, L0771: 5, L0740: 4, L0747: 3, H0265: 2, S0358: 2, S0476: 2, H0620: 2, H0040: 2, L0659: 2, L0809: 2, H0547: 2, L0748: 2, L0751: 2, L0754: 2, L0589: 2, H0295: 1, T0049: 1, H0657: 1, H0341: 1, H0661: 1, S0442: 1, S0360: 1, S0045: 1, S0132: 1, T0103: 1, S0050: 1, H0594: 1, H0266: 1, H0290: 1, L0455: 1, H0038: 1, H0280: 1,
	112, 127, 151	H0742:	S, H0742: 1),].	 03,	03, 118, 142.	03, 118, 142.	03, 1118, 5, 7,	5, 7, 7, 0,	03, 00, 03, 118,	13, 12, 13, 12, 13, 14, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16	13, 12, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18	42.8° 4.8° 4.8° 4.8° 4.8° 4.8° 4.8° 4.8° 4	42, % 42, % 42, %	12, % 12, % 12, % 12, %	13, 12, 18, 12, 13, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	42,8,3,7,42,8,8,7,42,8,8,7,42,8,8,7,42,8,8,7,42,8,8,7,42,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,	42,8,3,7,4,8,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4	48.23 48.33 48.33 48.33 48.33 48.33 48.33	£ 8 2	£ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	£ & £ £ £ & £	£, 8, 7; £, 8, 8, 7; £, 8, 8, 7; £, 8, 7; £, 8, 7; £, 8, 7; £, 8, 7; £, 8, 7; £, 8, 7; £, 8, 7; £, 8, 7; £, 8, 7; £, 8, 7; £, 8, 7; £, 8, 7; £, 8, 7; £, 8,	£, \$\$, £, £, \$\$, £, \$\$, £, \$\$, \$\$, \$\$, \$
Predicted Epitopes	Pro-105 to Leu-112, Pro-115 to Arg-127, Pro-140 to Gln-151		Trp-35 to Trp-45,	Thr-73 to Thr-80,	Pro-96 to Leu-103	Pro-96 to Leu-103, Pro-106 to Arg-118, Pro-131 to Gln-142.	Pro-96 to Leu-107 Pro-106 to Arg-1 Pro-131 to Gln-14 Trp-35 to Trp-45,	Pro-96 to Leu-103 Pro-106 to Arg-11 Pro-131 to Gln-14 Trp-35 to Trp-45, Pro-52 to Asp-57, Try-73 to Try-80	Pro-96 to Leu-10? Pro-106 to Arg-1. Pro-131 to Gln-1/Trp-35 to Trp-45. Pro-52 to Asp-57, Thr-73 to Thr-80, Pro-96 to Leu-10?	Pro-96 to Leu-103 Pro-106 to Arg-11 Pro-131 to Gln-14. Trp-35 to Trp-45, Pro-52 to Asp-57, Thr-73 to Thr-80, Pro-96 to Leu-103 Pro-106 to Arg-11	Pro-96 to Leu-103, Pro-106 to Arg-118, Pro-131 to Gln-142. Trp-35 to Trp-45, Pro-52 to Asp-57, Thr-73 to Thr-80, Pro-96 to Leu-103, Pro-106 to Arg-118, Pro-131 to Gln-142.	Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1 Trp-35 to Trp-45 Pro-52 to Asp-57 Thr-73 to Thr-80 Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1	Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1 Trp-35 to Trp-45 Pro-52 to Asp-57 Thr-73 to Thr-80 Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1	Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1 Trp-35 to Trp-45 Pro-52 to Asp-57 Thr-73 to Thr-80 Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1	Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1 Trp-35 to Trp-45 Pro-52 to Asp-57 Thr-73 to Thr-80 Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1	Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1 Trp-35 to Trp-45 Pro-52 to Asp-57 Thr-73 to Thr-80 Pro-96 to Leu-10 Pro-131 to Gln-1	Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1 Trp-35 to Trp-45 Pro-52 to Asp-57 Thr-73 to Thr-80 Pro-96 to Leu-10 Pro-131 to Gln-1	Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1 Trp-35 to Trp-45 Pro-52 to Asp-57 Thr-73 to Thr-80 Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1	Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1 Trp-35 to Trp-45 Pro-52 to Asp-57 Thr-73 to Thr-80 Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1	Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1 Trp-35 to Trp-45 Pro-52 to Asp-57 Thr-73 to Thr-80 Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1	Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1 Trp-35 to Trp-45 Pro-52 to Asp-57 Thr-73 to Thr-80 Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1	Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1 Trp-35 to Trp-45 Pro-52 to Asp-57 Thr-73 to Thr-80 Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1	Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1 Trp-35 to Trp-45 Pro-52 to Asp-57 Thr-73 to Thr-80 Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1	Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1 Trp-35 to Trp-45 Pro-52 to Asp-57 Thr-73 to Thr-80 Pro-96 to Leu-10 Pro-106 to Arg-1 Pro-131 to Gln-1
AA SEQ ID NO: Y		265	385				386	386	386	386	386	386	386	386	386	386	386	386	386	386	386	386	386	386
ORF (From-To)		112 - 540	17 - 445				6 - 434	6 - 434	6 - 434	6 - 434		6 - 434												
SEQ ID NO: X		72	192				193	193	193	193	193	193	193	193	193	193	193	193	193	193	73	193	193	193
Contig ID:		1335548	1306694		_		1307250	1307250	1307250	1307250	1307250	1307250	1307250	1307250	1307250	1307250	1307250	1307250	1307250	1307250	1307250	1307250	1307250	1307250
cDNA Clone ID		HMTSU69	HMTSU69				HMTSU69	HMTSU69	HMTSU69	HMTSU69	HMTSU69	HMTSU69	HMTSU69 HMWCU24	HMTSU69 HMWCU24	HMTSU69 HMWCU24	HMTSU69	HMTSU69 HMWCU24	HMTSU69	HMTSU69	HMTSU69	HMTSU69	HMTSU69	HMTSU69	HMTSU69
Gene No:		62									8	63	63	63	63	63	63	63	63	63	63	63	63	63

OMIM	Disease	Keierence(s):						•																						
Cytologic	Band																							. ,			`			
Tissue Distribution	Library code: count	(see Table IV for Library Codes)	L0766: 1, L0774: 1, L0805: 1, L0542: 1, L0783: 1,	L0665: 1, H0520: 1, S0126:	1, H0684: 1, H0435: 1,	S0380: 1, H0521: 1, H0436:	1, S0028: 1, L0742: 1,	H0445: 1, L0590: 1, S0192:	1, H0542: 1, H0543: 1 and	H0423: 1.	HU01/: 6, LU//1: 3, LU/4U:	\$6358: 2. \$0476: 2. H0620:	2, H0040; 2, L0659; 2,	L0809: 2, H0547: 2, L0748:	2, L0751: 2, L0754: 2,	L0589: 2, H0295: 1, T0049:	1, H0657: 1, H0341: 1,	H0661: 1, S0442: 1, S0360:	1, S0045: 1, S0132: 1, T0103:	1, S0050: 1, H0594: 1,	H0266: 1, H0290: 1, L0455:	1, H0038: 1, H0280: 1,	H0641: 1, S0002: 1, L0763:	1, L0371: 1, L0764: 1,	L0766: 1, L0774: 1, L0805:	1, L0542: 1, L0783: 1,	L0665: 1, H0520: 1, S0126:	1, H0684: 1, H0435: 1,	S0380: 1, H0521: 1, H0436:	1, S0028: 1, L0742: 1, H0445: 1, L0590: 1, S0192:
Predicted Epitopes										A A 4- C A	Arg-23 to Ser-34.																			
AA	SEQ	NO: Y								100	38/								,											
ORF	(From-To)	-		•							140 - 241									***										
SEQ ID	X :ON									104	194						-													
Contig	ä									1200040	1308840					-										•				
cDNA Clone ID											HIM WCU24																			
-	No.																													

cDNA Clone ID Contig SEQ ID ORF AA Predicted Epitopes NO: X (From-To) SEO	SEQ ID ORF AA NO: X (From-To) SEO	(From-To) SEO	ORF AA SEO SEO		Predicted I	Spitopes	Tissue Distribution Library code: count	Cytologic Band	OMIM
		(22	<u> </u>	D NO: Y			(see Table IV for Library Codes)		Reference(s):
							1, H0542: 1, H0543: 1 and H0423: 1.		
HMWCU24 1308844 195 176 - 1528 388 Arg-23 to Ser-34, Asn-221 to Phe-232,	195 176 - 1528 388	176 - 1528 388	- 1528 388		Arg-23 to Ser Asn-221 to Pł	-34, ne-232,			
Thr-303 to His-308,	Thr-303 to Hi	Thr-303 to H)	Thr-303 to Hi	Thr-303 to H	Thr-303 to Hi	is-308,			
Ser-334 to Pro-340, Asp-398 to Asp-407.	Ser-334 to Pr	Ser-334 to Pr	Ser-334 to Pr Asp-398 to A	Ser-334 to Pr Asp-398 to A	Ser-334 to Pr Asp-398 to A	o-340, sn-407.			
Pro-439 to Ala-447	Pro-439 to A	Pro-439 to A	Pro-439 to A	Pro-439 to A	Pro-439 to A	la-447.			
HMWCU24 1308839 196 1 - 375 389 Ser-9 to Pro-15,	196 1 - 375 389	1 - 375 389	389		Ser-9 to Pro-	15,			
Asp-73 to Asn-82,	Asp-73 to As	Asp-73 to As	Asp-73 to As	Asp-73 to As	Asp-73 to As	in-82,			
					Pro-114 to A	la-122.			
HCPCI91 1323889 74 401 - 1201 267 Thr-187 to Lys-192, Asn-255 to Leu-262.	74 401 - 1201 267	401 - 1201 267	- 1201 267		Thr-187 to Asn-255 to	Lys-192, .eu-262.			
HDMSA08 1322805 75 591 - 1028 268 His-46 to Gly-52,	75 591 - 1028 268	591 - 1028 268	- 1028 268		His-46 to GI	y-52,	H0424: 5, L0748: 4, L0439:		
Arg-88 to Gln-100	Arg-88 to G	Arg-88 to G	Arg-88 to G	Arg-88 to G	Arg-88 to G	ln-100.	4, H0733: 3, H0734: 3,		
							L0794: 3, L0803: 3, L0777:		
							3, H0556: 2, H0645: 2,		
							H0550: 2, H0597: 2, H0545:		-
							2, H0687: 2, L0769: 2,		
							L0809: 2, L0789: 2, L0666:		
							2, L0438: 2, H0521: 2,		
							L0744: 2, L0740: 2, L0758:		
							2, S0031: 2, H0265: 1,		
							H0685: 1, S0218: 1, H0657:		
							1, H0656: 1, H0728: 1,		
							S0132: 1, S0476: 1, L0021: 1,		
							S0010: 1, H0007: 1, H0052:		
							1, H0150: 1, H0050: 1,		
							H0014: 1, H0416: 1, H0188:		
							1, H0213: 1, H0405: 1,		
							HU418: 1, HU0/4: 1, SU300:		

(See Table 14 Codes) 1, T0067: 1, H0413: 1, S0142: 1, L0369: 1, L0796:	1, £0388: 1, £0774: 1, £0776: 1, £0783: 1, £5623: 1, £0790: 1, H0519: 1, H0539: 1, \$0013: 1, H0704: 1, H0478: 1, \$0027: 1, £0743: 1, £0749: 1, £0780: 1, £0731: 1, £0588: 1 and	1, L0388: 1, L0774: 1, L0776: 1, L0783: 1, L5623: 1, L0790: 1, H0519: 1, H0539: 1, S0013: 1, H0704: 1, H0478: 1, S0027: 1, L0743: 1, L0749: 1, L0780: 1, L0731: 1, L0588: 1 and H0352: 1. L0744: 7, H0575: 4, H0081: 4, S0028: 3, H0717: 2, H0013: 2, H0309: 2, L0521: 2, L0662: 2, L0375: 2, L5622: 2, H0144: 2, S0374: 2, H0689: 2, S0378: 2, L0743: 2, L0777: 2, L0731: 2, H0689: 1, H0645: 1, H0555: 1, H0448: 1, H0427: 1, H0253: 1, H0085: 1, H0592: 1, H0553: 1, H0592: 1, H0553: 1, H0038: 1, L0768: 1, L0659: 1, L0647: 1, L0789: 1, L0790: 1, L0666: 1, S0330: 1, H0754: 1, L0740: 1, L0750: 1, S0434: 1 and
1, T S01	L07 1, L H05 1, H 1, H	L07 1, L
Y SON		269 Gln-5 Arg-1 Tyr-11 Lys-2
		134 - 922
		. 76
		1319147
		HCPBA16
		99

Gene	cDNA Clone ID	Contig	SEQ ID	ORF	Ψ¥	Predicted Epitopes	Tissue Distribution	Cytologic	OMIM
No:		Ä	X :ON	(From-To)	SEQ ID NO: Y		Library code: count (see Table IV for Library Codes)	Band	Disease Reference(s):
						Thr-55 to Glu-62, Ser-64 to Ser-79, Arg-87 to Asp-96.			
						Arg-103 to Ala-109, Asp-120 to Arg-126.			
89	HCPBR37	1319172	78	144 - 527	271	Gln-76 to Glu-85, Pro-103 to Gln-113.	L0758: 2 and H0754: 1.		
	HCPBR37	1319221	161	2 - 226	390	Val-2 to Val-7, Pro-10 to Thr-16			
						Asn-18 to Gly-27, Glu-35 to Glu-44.			
69	HIEAG70	1319141	62	29 - 313	272		H0757: 1		
70	HDMTL77	1319253	80	316 - 1254	273		H0734: 4, L0471: 3, H0624: 17q21.	17q21.1	109270, 109270,
						_	2, H0728: 1, H0735: 1,		109270, 109270,
							H0733: 1, L0622: 1, H0599:		109270, 109270,
							1, H0196: 1, L0662: 1,		1092/0, 148065,
						Lys-281 to Ala-289.	L0747: 1, L0759: 1 and 1 0604: 1		148080, 148080, 148080, 154275
							1:		157140 157140
									157140, 157140,
									157140, 157140,
									168860, 171190,
									221820, 600119,
									600119, 600119,
									601550, 601551,
7.1	HDMTP20	1322795	81	338 - 1051	274	Ala-49 to Pro-57,	H0056: 7, L0748: 6, L0754:		
						Arg-77 to Val-83.	6. L0731: 6. L0769: 5.		
						Tyr-91 to Ala-98,	L0776: 4, S0436: 4, L0596:		
						Arg-121 to Gly-126,	4, T0049: 3, S0344: 3,		
						Glu-204 to Asp-212,	L0805: 3, L0659: 3, S0126:		

OMIM	Disease Reference(s):							-		-																					
Cytologic	Band																														
Tissue Distribution	Library code: count (see Table IV for Library	(Sopon Codes)	3, S0328: 3, S0442: 2,	HU/34: 2, SU045: 2, HU344:	H0553: 2, H0551: 2, H0494:	2, L0768; 2, L0794; 2,	H0521: 2, L0743: 2, L0439:	2, L0750: 2, L0756: 2,	S0031: 2, S0192: 2, L0615: 1,	S0040: 1, H0341: 1, S0212:	1, S0001: 1, H0484: 1,	H0661: 1, S0360: 1, S0132:	1, H0619: 1, H0393: 1,	L2255: 1, S0278: 1, L3817:	1, H0643: 1, T0039: 1,	T0109: 1, H0013: 1, H0244:	1, L0021: 1, H0097: 1,	H0599: 1, S0010: 1, H0318:	1, H0050: 1, L0471: 1,	H0024: 1, S0050: 1, H0375:	1, S0003: 1, L0483: 1,	H0644: 1, H0628: 1, H0032:	1, L0455: 1, H0124: 1,	H0316: 1, H0163: 1, H0090:	1, H0560: 1, H0647: 1,	H0646: 1, S0142: 1, L0770:	1, L0773: 1, L0648: 1,	L0662: 1, L0766: 1, L0649:	1, L0803: 1, L0775: 1,	L0806: 1, L0653: 1, L5623:	1, L0787: 1, L0665: 1,
Predicted Epitopes			Glu-230 to Thr-237.																												
AA	SEQ ID	NO: Y													•				-												
ORF	(From-To)																														
SEQ ID	X :ON																														
Contig	ID:														-										··						
cDNA Clone ID																															
Gene	 Š																														

OMIM	Disease Reference(s):					-				. •																	
Cytologic	Band					-					-									•							
Tissue Distribution	Library code: count (see Table IV for Library	Codes)	1, S0037: 1, S3014: 1, S0027: 1, S0206: 1, L0779: 1, L0752: 1, L0755: 1, L0757:	1, L0758: 1, L0759: 1,	H0595: 1, 50454: 1, 50011: 1, S0194: 1, H0423: 1 and H0506: 1				L0742: 18, L0744: 15,	L0751: 8, L0743: 6, L0766:	5, L0745: 5, L0750: 5,	H0585: 4, H0052: 4, L0770:	4, L0806: 4, L0731: 4,	S0358: 3, H0580: 3, S0007:	3, H0581: 3, H0194: 3,	H0620: 3, T0010: 3, L0769:	3, L3905: 3, L0761: 3,	H0521: 3, L0747: 3, L0749:	3, H0141: 2, S0040: 2,	L0717: 2, H0550: 2, H0036:	2, H0024: 2, S0438: 2,	H0132: 2, L0772: 2, L0764:	2, L0775: 2, L0783: 2,	L0790: 2, L0666: 2, L0665:	2, L3827: 2, L0439: 2,	L0777: 2, L0752: 2, L0757:	2, H0484: 1, H0662: 1, H0125: 1, L0617: 1, S0360:
Predicted Epitopes						Glu-47 to Asp-55,	His-200 to His-206,	Asp-261 to Arg-267, Asp-308 to Arg-315.																			
ΨΨ	SEQ ID	NO: Y				391			275																		
ORF	(From-To)			_		30 - 992			278 - 592												•						
SEQ ID	NO: X					198			82																		
Contig	ä					1322798			1319194								-										
cDNA Clone ID						HDMTP20			HIEAP38																		
Gene	No:								72																		

ORF
a E
NO: Y
-

OMIM	Disease Reference(s):																												
Cytologic	Band																												
Tissue Distribution	Library code: count (see Table IV for Library	Codes)	H0632: 2, H0309: 2, H0038: 2, H0646: 2, L0643: 2,	L0649: 2, S0428: 2, S0053: 2, S3014: 2, L0601: 2, H0668:	2, S0242: 2, S0196: 2,	H0171: 1, L3643: 1, L3644:	1, H0657: 1, S0116: 1,	S0001: 1, S0408: 1, H0/42:	S0278: 1, H0549: 1, H0550:	1, S0222: 1, H0431: 1,	H0592: 1, H0331: 1, L3653:	1, T0060: 1, S0280: 1,	H0081: 1, H0024: 1, H0355:	1, H0375: 1, H0719: 1,	H0687: 1, H0428: 1, H0039:	1, H0604: 1, H0644: 1,	H0383: 1, H0063: 1, H0494:	1, H0649: 1, S0426: 1,	L0763: 1, L0667: 1, L0774:	1, L0629: 1, H0659: 1,	H0672: 1, H0727: 1, S3012:	1, S0436: 1, L0604: 1,	L0361: 1, H0653: 1 and	H0775: 1.	S0378: 3, S0380: 3, H0764:	2, HU/00: 2 and L4336: 1.	L0748: 8, S0126: 7, L0471: 6 H0619: 4 H0486: 4	S0192: 4, H0717: 3, S0116:]3, S0358: 3, H0369: 3,
Predicted Epitopes																											Leu-63 to Arg-68.		
AA	SEQ ID	NO: Y																							279		280		
ORF	(From-To)																								71 - 724		90 - 359		
SEQ ID	X :ON																								98		87		
Contig	:Di																								1324325		1319302		
cDNA Clone ID																									HIGBG18	1	HDMTE62		
Gene	ë Ž																								9/		77		_

7; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	5: 1, 1, H0575: 9: 1, 1, H0032: (6: 1, 1, H0561: 6: 1, S0052: 23: 1, 1, H0651: 2: 1, 1, L0749: 1: 1, 1, S0196: 1,	5: 1, 1, H0575: 9: 1, 1, H0032: 16: 1, 11, H0561: 6: 1, S0052: 23: 1, 1, L0749: 11: 1, 11: 1, 12: 1, 13: 1, 14: 1, 15: 1, 16: 1, 16: 1, 17: 1, 18: 1,
2, H0645: 2, H0574: 2, H0590: 2, H0328: 2, L0794: 2, L5622: 2, L0747: 2, L0759: 2, H0624: 1, H0170: 1, H0716: 1, H0583: 1, S0442: 1, S0360: 1, S0408: 1 H0733: 1, H0734: 1, H0411:	1, H0549: 1, L3653: 1, H0244: 1, H0427: 1, H0575: 1, T0071: 1, H0309: 1, H0544: 1, H0024: 1, H0032: 1, H0038: 1, H0616: 1, H0748: 1, L0776: 1, S0352: 1, H0723: 1, H0725: 1, H0725: 1, H0752: 1, H0752: 1, H0752: 1, L0749: 1, S0330: 1, H0752: 1, S0432: 1, L0749: 1, L0756: 1, L0731: 1, S0436: 1, S0196: 1, S0458: 1 and S0384: 1.	1, H0349: 1, L3635: 1, H0244: 1, H0427: 1, H0244: 1, H0427: 1, H0544: 1, H0624: 1, H0624: 1, H0616: 1, H0488: 1, T0004: 1, H1, S0352: 1, L0776: 1, 1, H0519: 1, H0689: 1, H1, S0330: 1, H0752: 1, S0432: 1, L0439: 1, L0756: 1, L0756: 1, L0756: 1, S0436: 1, S0446: 1, S0
		Ser-1 to Gln-14.
		393 Sv
		187 - 372
		1319303
		HDMTE62

3, H0539: 3, S0406: 3, H0782: 2, H0583: 2, L2995: 2, L2282: 2, S0418: 2, S0420:	3, H0539: 3, S0406: 3, H0782: 2, H0583: 2, L2995: 2, L2282: 2, S0418: 2, S0420: 2, S0442: 2, S0408: 2, S0007: 2, H0747: 2, L2788: 2, L2789: 2, H0351: 2, H0441: 2, L3816: 2, H0486: 2, H0156: 2, H0098: 2, H0590: 2, H0004: 2, L0471: 2,	3, H0539: 3, S0406: 3, H0782: 2, H0583: 2, L2995: 2, L2282: 2, S0418: 2, S0420: 2, S0442: 2, S0408: 2, S0007: 2, H0747: 2, L2788: 2, L2789: 2, H0351: 2, H0441: 2, L3816: 2, H0486: 2, H0156: 2, H0098: 2, H0590: 2, H0004: 2, L0471: 2, H0328: 2, H0030: 2, H0494: 2, L3181: 2, L5152: 2, L046: 2, L0771: 2, L0649: 2, L0774: 2, L0657: 2, L0565: 2, L3827: 2, H0547: 2, H0648: 2, S0330: 2, S0380: 2, S0152: 2, H0522: 2, H0555: 2, H0478: 2, L0750: 2, L0777: 2,
H078	H073 2, S.C. 2, H.C.Z. H01. H01.	H07, C C C C C C C C C C C C C C C C C C C
		·