Exploring the cosmic infinite horizons of modern

ASTONOMY

Today.

By J. Pinkney Ohio Northern University

Goals for this course

- 1) Obtain knowledge about astronomy.
- 2) Obtain understanding of some basic physics concepts.
- 3) Improve science "skills": use math for solving problems, communicating science, observing, critical thinking.
- 4) Learn about science and how it differs from pseudosciences and other belief systems.
- 5) Awareness of science in current events "astro news".
- 6) Expand your personal "theory of everything" your cosmology.

Week 1 of Stellar and Galactic Astronomy

View the film "Powers of 10 A Film About the Relative Sizes of Things 1977 by Charles and Ray Eames Narrated by Phillip Morrison

Pre-Questions

- 1) Note the largest scale achieved.
- 2) Note the smallest scale achieved.
- 3) In which powers of 10 do we find great "voids" where nothing new enters the view?

Also consider ...

4) In every 10 seconds, the view expands by a factor of 10. Could this entire journey be experienced while flying in a rocket ship?

Why do we need powers of 10?

Many quantities have a vast range of values in Astronomy ...

- 1) *Distances*. 10⁻¹⁶ to 10²⁴ meters (actually >10²⁶) for the scale of an atomic nucleus compared to the scale of largest structures in the universe.
- 2) *Time.* 10⁻⁴⁶ second to 10¹⁶ seconds (10⁹ yrs) for the Planck time to the age of the universe.
- 3) *Masses:* 10⁻³¹ kg (electrons) to 10⁴⁵ kg (clusters of galaxies)
- 4) *Energies:* and 10⁻¹⁹ Joules for H-alpha photon to 10⁺³⁹ Joules for Gamma-Ray Bursts.
- 5) Speeds: continental drift (cm/yr) to the speed of light 300,000,000 m/s.

And that's why we use "powers of 10" -- to make them more manageable!

<u>Understanding Powers of 10, orders of magnitude, and Scientific Notation</u>

Scientific Notation: a way of writing a number in which the decimal point Is placed to the right of the most significant digit, and this is multiplied by 10^P where P=an integer (the exponent, or "power of 10") Exponential Notation Format: Coefficient X Base exponent (where Base=10)

Example: $58400 = 5.84X10^4$ Example: $0.01093 = 1.093x10^{-2}$

Example: The average Earth-Sun distance is 93,000,000 miles or 9.3×10^7 miles.

<u>Power of 10</u>: one can approximate a number by giving only the exponent of that number expressed in scientific notation, rounded up or down depending on the coefficient.

Example: $5.84x10^4 = 10^{4.7664} \sim 10^5 = 10x10x10x10x10 = 100,000$. Example of usage: The distance to the Sun from the Earth is about 10^8 miles.

Thus, the Earth-Sun distance is 8 powers of 10 greater than a mile.

Order of magnitude: the "order of magnitude" of a number is the same thing as a number's "power of ten", it is just used differently in sentences.

Example: "The Earth-Sun distance is 8 <u>orders of magnitude</u> larger than a mile.")

Example: "If you thought the US population was 3 million, you were off by 2 orders of magnitude."

<u>Understanding Powers of 10, orders of magnitude, and Scientific Notation</u>

Rounding to the nearest <u>power of 10</u>.

Previous example: $5.84 \times 10^4 = 10^{4.7664} \sim 10^5$. But what if we had ... Example: $4.84 \times 10^4 = 10^{4.6848} \sim 10^5$. Example: $3.84 \times 10^4 = 10^{4.5843} \sim 10^5$. Perhaps if the exponent dropped below 4.5 ...

Example: $2.84 \times 10^4 = 10^{4.4533} \sim 10^4$. Finally, we don't round up!

For which coefficient will the exponent be exactly 4.5? Answer: 3.162278 (= $\sqrt{10}$)

Example: $3.1623 \times 10^4 \sim 10^5$. Example: $3.1622 \times 10^4 \sim 10^4$.

Try these:

Example: $9.99x10^2$ ~ 10^3 Example: $9.9x10^{-2}$ ~ 10^{-1} Example: $5.1x10^{-4}$ ~ 10^{-3} Example: $3.10x10^6$ ~ 10^6 Example: $3.20x10^9$ ~ 10^{10}

Example: 401,000 ~ 10⁶ Example: 301,000 ~ 10⁵ Example: 73,162,055,319 ~ 10¹¹

ALSO: try Ch. 1 Prob. 2.

Why do we need these new ways of expressing numbers?

1) To compress long numbers.

Example: mass of the Sun in kilograms:

1
$$M_{\odot}$$
 = 2.0×10³⁰ kg (sci notation)

$$1 M_{\odot} = 10^{30} \text{ kg (nearest power of 10)}$$

(Now try writing this number as a 1 with 30 zeros!)

2) To simplify multiplication and division.

Example: if the Earth's mass is $6x10^{24}$ kg, how many Earth masses go into the Sun?

(actual 3.35x10⁵)

$$M_{\odot}/M_{\oplus} = 10^{30} \div 10^{25} = 10^{30-25} = 10^{5}$$

Example: if there are 86400 seconds per day, and 365 days in a year,

$$10^5 * 10^2 = 10^{5+2} = 10^7$$
 (actual 3.156x10⁷)

Simplified multiplication and division allows easy rough estimates called "order of magnitude calculations" or "back of the envelope calculations".

Summary:

With powers of 10 math, <u>division becomes subtraction</u> and <u>multiplication becomes</u> addition.

GROUP EXERCISE

I. Check rankings.

	length	Actual
A. Black Hole, 1 solar mass, (Schwarzschild radius)	$3x10^3 \text{m}$	1H
B. Cosmic Microwave Background (distance)	_10 ²⁶ m_	2A
C. Distance between stars in Sun's neighborhood	_10 ¹⁶ m_	3N
D. Earth (diam)	_10 ⁷ m	4K
E. Galaxies, Dwarf Ellipticals (diam)	_10 ¹⁹ m	5D_=_
F. Galaxies, Giant Ellipticals (diam)	_10 ²² m	6T
G. Galaxies, Milky Way (diam)	_10 ²¹ m	7I
H. Human (diam)	_10º m	8L
I. Jupiter (diam)	_10 ⁸ m	9Q
J. Local Group (diam)	_10 ²² m	10R
K. Moon (diam)	_10 ⁶ m	11M
L. Moon (distance)	_10 ⁸ m	12C
M. Neptune (dist from Sun. size of sol sys)	_10¹³ m	13P
N. neutron star (diam)	_10⁴ m	14E
O. Rich clusters of galaxies (diam)	_10 ²³ m	15G
P. Star Clusters, globular (diam)	_10 ¹⁷ m	16J <u>=</u> _
Q. Sun (diam)	_10 ⁹ m	17F
R. Sun (distance)	_10¹¹ m	18O
S. Superclusters of galaxies (length)	_10 ²⁴ m	19S
T. White dwarf	$_{-}10^{7} \mathrm{m}$	20B

Other ways to make large numbers manageable

1) Use prefixes

small: deci, centi, milli, micro, nano, pico, femto 10 to the: -1 -2 -3 -6 -9 -12 -15

large: deca,hecto,kilo, mega, giga, tera, peta, exa 10 to the: 1 2 3 6 9 12 15 18

Example) What is a convenient unit for 10^{-6} seconds? Ans: a microsecond (1 μ s).

2) Invent new units

In astronomy we have ... (red ones are new units)

- a) The "solar mass", 1 M⊙ = 2x10^30 kg
- b) The "astronomical unit", 1 AU = 1.5x10^8 km, 93,000,000 miles. The average distance between the Earth and Sun.
- c) The Light year, 1 LY = 9.5 x 10^12 km

The distance light travels through space in a year.

Good for distances between stars.

d) The parsec, 1 pc = $3.1 \times 10^{13} \, \text{km}$.

The distance one must be from the Solar system so that the Earth-Sun separation appears to be 1 arcsecond.

Good for distances between stars.

- e) The kiloparsec, 1 kpc = 1000 pc Good for distances inside a galaxy
- f) The megaparsec, 1 Mpc = 1000,000 pc Good for distances between galaxies, clusters, superclusters.

Other ways to make large numbers manageable

1) Use prefixes

NUMBER PREFIXES

Multiple	Prefix	Symbol	Common Name	
(10^100)^100	anton	A	antonplex	
(10^10)^10	-	-	googolplex	
10^100	-	-	googol	
10/24	yotta	Υ	heptillion	
10*21	zetta	Z	hexillion	
10^18	exa	E	quintillion	
10^15	peta	P	quadrillion	
10^12	tera	T	trillion	
1049	giga	G	billion	
10/6	mega	M	million	
1043	kilo	k	thousand	
10/2	hecto	h	hundred	
10^1	deca	da	ten	
10^1	deci	d	tenth	
10^2	centi	С	hundreth	
10^3	milli	m	thousandth	
10^6	micro	(Greek mu)	millionth	
1049	nano	n	billionth	
10^12	pico	p	trillionth	
10^15	femto	f	quadrillionth	
10^18	atto	a	quintillionth	
10^21	zepto	z	hexillionth	
10^24	yocto	У	heptillionth	

Side notes on astronomical distances / sizes

1) The magic number, 110.

110 (roughly) comes up many times in distance ratios.

110 = DiamSun/DiamE = distSun/DiamSun = distMoon/DiamMoon

- 2) The AU and Light Year.
 There are 63,000 AU in 1 LY.
 Coincidentally, there are 63,000 inches in a mile!
- 3) The distance to the Moon is 240,000 miles. A good car typically lasts about 240,000 miles. So you *might* be able to drive to the Moon if there were a direct route from Earth!
- 4) The ratio 400.

 400 = DistSun/distMoon = DiamSun/diamMoon

 Because of this coincidence the Sun and Moon subtend about the same angle in the sky (½ degree) and we can observe both total and annular solar eclipses.

The Naked – Eye Universe

Astronomical things that we can see with the naked eye

- 1. Sun
- 2. Moon
- 3. 5 planets (+Uranus, just visible)
- 4. 6500 stars (down to +6.0 mag)
- 5. 3 galaxies (M31,LMC,SMC. Some can see M33)
- 6. Comets
- 7. Supernovae, novae
- 8. Meteors (in our atmosphere)
- 9. Aurora (in our atmosphere)

The Naked – Eye Universe

The Top Ten Brightest Objects in the Sky

- 1. Sun
- 2. Moon
- 3. Venus
- 4. Mars
- 5. Jupiter
- 6. Mercury
- 7. Sirius
- 8. Saturn
- 9. Canopus (in Carina, Southern Hem)
- 10. Arcturus (Bootes)

Rigil Kent (Alpha Cen), Vega, and Capella are almost a tie for 11th!

The Naked – Eye Universe

Constellations and Asterisms

Constellation: a designated region in the sky containing one or more historical star patterns.

Examples) Orion, Taurus, Ursa Major (see next slides)

Asterism: a recognizable pattern of stars.

- Ex) Orion, the hunter
- Ex) Taurus, the bull; the Pleiades; the Hyades
- Ex) Ursa Major (the great bear); the Big Dipper; La Cassarole
- **Ex) The Summer Triangle**
- Ex) The Coathanger (Brocchi's cluster)
- * 88 total constellations
- * More than 88 asterisms
- * Northern constellations named after Greek Mythological characters

Example: Orion.

An easily recognized constellation!

Try a planetarium program like "Stellarium" or "Celestia" to see the sky in motion.