

Équations différentielles

1. D'après le cours, cette équation différentielle linéaire du premier ordre à coefficients constants et condition initiale possède une unique solution donnée par :

$$\forall t \in \mathbf{R} \quad v_{\star}(t) = \frac{b}{a} + \left(v_0 - \frac{b}{a}\right)e^{-at}$$

- **2. a)** D'après le cours encore, la tangente au point d'abscisse t existe et a pour équation : y = f'(t)(x t) + f(t).
 - **b)** On applique la formule de la question précédente avec f = v, et v'(t) = b av(t) puisque v vérifie (1), si bien que :

$$T_{v}: y = [b - av(t)](x - t) + v(t).$$

3. a) On applique la formule de la question précédente avec t=0, et $v(t)=v(0)=v_0$. Ce qui donne :

$$T_0: y = [b - av_0](x - t_0) + v_0$$

Le point de T_0 d'abscisse $t_1 = \frac{t}{n}$ est donc $A_1(t_1, u_1)$ où

$$u_1 = (b - av_0)(t_1 - t_0) + v_0 = (b - av_0)t_1 + u_0 = (1 - at_1)u_0 + bt_1.$$

b) Soit k < n. On reprend l'équation de T_{ν} calculée en **2b).** puisqu'elle est valable en tout point t, et on y fait $t = t_k$, ce qui donne :

$$T_k: y = [b - au_k](x - t_k) + u_k.$$

Le point $A_{k+1}(t_{k+1},u_{k+1})$ est alors de point de T_k d'abscisse t_{k+1} . Ce qui veut dire, en prenant $x=t_{k+1}$, que $u_{k+1}=\left[b-au_k\right](t_{k+1}-t_k)+u_k$. Puisque $t_{k+1}-t_k=\frac{t}{n}$, on obtient bien :

$$u_{k+1} = \left(1 - \frac{at}{n}\right)u_k + \frac{bt}{n} \quad (i)$$

c) Les termes u_0, \ldots, u_n sont donc ceux d'une suite arithmético-géométrique d'après la relation obtenue à la question précédente.

Soit *C* la constante vérifiant :

$$C = \left(1 - \frac{at}{n}\right)C + \frac{bt}{n} \quad (ii)$$

On voit que $C = \frac{b}{a}$ convient puisque $a \neq 0$. En soustrayant les deux relations (i) et (ii) on voit que la suite de terme général $u_k - C$ est géométrique de premier terme $u_0 - C = v_0 - \frac{b}{a}$ et de raison $\left(1 - \frac{at}{n}\right)$, ce qui donne :

$$\forall k \le n \quad u_k = \frac{b}{a} + \left(1 - \frac{at}{n}\right)^k \left(v_0 - \frac{b}{a}\right).$$

En particulier:

$$u_n = \frac{b}{a} + \left(1 - \frac{at}{n}\right)^n \left(v_0 - \frac{b}{a}\right)$$

Équations différentielles

- **d)** On applique la formule donnée à laquelle on fait $x = n \to +\infty$ et a = -at, ce qui nous donne que u_n a une limite en $+\infty$ qui est $\frac{b}{a} + e^{-at}(v_0 \frac{b}{a}) = v_*(t)$.
- **4.** On en conclut que si on prend n assez grand, c'est-à-dire en découpant l'intervalle [0,t] en intervalles assez petits, la ligne brisée nous donne bien une bonne approximation de la valeur de la solution au point d'abscisse t.