计数

黄洛天

THU, IIIS

April 27, 2025

一些要讲的东西

- 生成函数
- 状压图计数, dag 计数
- 线性代数
- 两类斯特林数、伯努利数、欧拉数

生成函数

最新版大纲仍然把 fft ban 了,所这个东西考察方向会非常有限。

前置知识:

- https://oi-wiki.org/math/poly/intro/
- https://oi-wiki.org/math/poly/ogf/
- https://oi-wiki.org/math/poly/egf/

生成函数

THU, IIIS

生成函数

给定一个数列 a_n ,怎么求它的生成函数封闭形式呢! 任意数列是做不了的,比如一个经典例子

$$a_n = \begin{cases} \frac{1}{n!} & n \le M \\ 0 & n > M \end{cases}$$

斐波那契数列

往往我们能得到一个 a 关于自己的地推式,比如经典例子斐波那契数列。

$$a_n = \begin{cases} n & n \le 1\\ a_{n-1} + a_{n-2} & n > 1 \end{cases}$$

可以直接写出式子 $A(x) = A(x)(x + x^2) + x$ 。 进而得到

$$A(x) = \frac{x}{1 - x - x^2}$$

斐波那契数列

$$A(x) = \frac{x}{1 - x - x^2}$$

$$= \frac{x}{(x - x_0)(x - x_1)}$$

$$= \frac{a}{x - x_0} + \frac{b}{x - x_1}$$

其中 x_0 和 x_1 是 $1-x-x^2$ 的解。显然后面两项可以转化为前面学过的封闭性是,进而得到斐波那契数列的通项公式。

斐波那契数列

用同样的方法,对于所有形如 $a_n = ua_{n-1} + va_{n-2}$ 的地推都可以做了。

递推长度为常数的时候,方法也是类似的。

小练习

求:

$$\sum_{i=0}^{n} \binom{i}{n-i}$$

广义二项式定理

当组合数上指标不为整数时定义组合数:

$$\binom{\alpha}{k} = \frac{\alpha^k}{k!}$$

有广义二项式定理:

$$(a+b)^{\alpha} = \sum_{i=0}^{+\infty} \binom{n}{i} a^i b^{\alpha-i}$$

范德蒙德卷积

$$\binom{n+m}{k} = \sum_{i=0}^{k} \binom{n}{i} \binom{m}{k-i}$$

下降幂二项式定理

$$(x+y)^{\underline{k}} = \sum_{i=0^k} \binom{k}{i} x^i y^{\underline{k-i}}$$

卡特兰数

卡特兰数: 长度为 2n 的合法括号序列个数。 求卡特兰数通项公式。

自然数幂和

找到多项式
$$S_k(n) = \sum_{i=0}^{n-1} i^k$$

第一类斯特林数:

$$S_1(0,0) = 1$$

$$S_1(n,k) = \begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix} + (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix}$$

第二类斯特林数:

$$S_2(0,0) = 1$$

$$S_2(n,k) = \begin{Bmatrix} n \\ k \end{Bmatrix} = \begin{Bmatrix} n-1 \\ k-1 \end{Bmatrix} + k \begin{Bmatrix} n-1 \\ k \end{Bmatrix}$$

- 一些组合意义: 第一类斯特林数:
- 有 k 个置换环的排列个数。
- 有 k 个前缀最大值的排列。第二类斯特林数:
- n 个不同的球放进 k 个相同的盒子,且盒子非空。

一些有用的式子:

$$x^{\overline{n}} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} x^{k}$$

$$x^{n} = \sum_{k} \begin{Bmatrix} n \\ k \end{Bmatrix} (-1)^{n-k} x^{\overline{k}}$$

$$x^{\underline{n}} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^{k}$$

$$x^{n} = \sum_{k} \begin{Bmatrix} n \\ k \end{Bmatrix} x^{\underline{k}}$$

注意到,把最后一个式子里的下降幂堪称组合数,对最后一个式子做二项式反演可以得到:

$${n \brace k} = \sum_{i=0}^{k} \frac{(-1)^{k-i} x^i}{i!(k-i)!}$$

这提供了快速算单项的方法。

uoj 540

https://uoj.ac/problem/540

CF1097G

https://www.luogu.com.cn/problem/CF1097G

P5320

https://www.luogu.com.cn/problem/P5320

有标号 dag 计数

令 f_n 表示有多少个有标号 dag, g_n 要求若联通, 求 f 和 g_o

P10221

https://www.luogu.com.cn/problem/P10221

P6789

https://www.luogu.com.cn/problem/P6789

线性代数

前置知识: 求行列式

矩阵树定理

对于一个无向图 G = (V, E), 令

$$A_{x,y} = egin{cases} deg_u & u = v \ -1 & (u,v) \in E \ 0 & exttt{Otherwise} \end{cases}$$

令 $A^{(i)}$ 表示 A 删掉第 i 行和第 i 列的矩阵,则生成树个数为 $\det(A^{(i)})$ 。

矩阵树定理

对于一个有向图 G = (V, E), 令

$$A_{x,y} = egin{cases} outdeg_u & u = v \ -1 & (u,v) \in E \ 0 & exttt{Otherwise} \end{cases}$$

以 rt 为根的外向生成树个数为 $\det(A^{(rt)})$ 。 内向生成树同理。

P4208

https://www.luogu.com.cn/problem/P4208

P5296

https://www.luogu.com.cn/problem/P5296

小练习

给一个矩阵 A,求 $\{\bigoplus_{i=1}^n A_{i,p_i}|\mathbf{P} \text{ is a permutation}\}$ 。满足 $n\leq 50, A_{i,j}<1024$ 。

谢谢大家!