Causality

Actions, Confounders and Interventions

Christos Dimitrakakis

October 30, 2019

1 / 22

Introduction

Decision diagrams
Common structural assumptions

Interventions

Policy evaluation and optimisation

Individual effects and counterfactuals

C. Dimitrakakis Causality October 30, 2019 2 / 22

Headaches and aspirins

Example 1 (Population effects)

(b) Response distribution

Figure: Investigation the response of the population to various doses of the drug.

- Is aspirin an effective cure for headaches?
- Does having a headache lead to aspirin-taking? C. Dimitrakakis Causality October 30, 2019 3 / 22

Example 2 (Individual effects)

- ► Effects of Causes: Will my headache pass if I take an aspirin?
- ► Causes of Effects: Would my headache have passed if I had not taken an aspirin?

Overview

Inferring causal models

We can distinguish different models from observational or experimental data.

Inferring individual effects

The effect of possible intervention on an individual is not generally determinable. We usually require strong assumptions.

Decision-theoretic view

There are many competing approaches to causality. We will remain within the decision-theoretic framework, which allows us to crisply define both our knowledge and assumptions.

What causes what?

Example 3

(b) Independence of x_t .

Suppose we have data x_t, a_t where

► x_t: lung cancer

 \triangleright a_t : smoking

Does smoking cause lung cancer or does lung cancer make people smoke? Can we compare the two models above to determine it?

What causes what?

Example 3

Suppose we have data x_t , a_t where

- \triangleright x_t : lung cancer
- ► a_t: smoking

Does smoking cause lung cancer or does lung cancer make people smoke? Can we compare the two models above to determine it?

$$P_{\theta}(D) = \prod_{\text{C. Dimit}} P_{\theta}(x_t, a_t) = \prod_{t} P_{\theta'}(x_t \mid a_t) P_{\theta'}(a_t) = \prod_{t} P_{\theta''}(a_t \mid x_t) P_{\theta''}(x_t).$$
Causality October 30, 2019 6 / 22

C. Dimitrakakis Causality October 30, 2019 7 / 22

C. Dimitrakakis Causality October 30, 2019 7 / 22

Example 4 (Taking an aspirin)

- Individual t
- ► Individual information *x*_t
- $ightharpoonup a_t = 1$ if t takes an aspirin, and 0 otherwise.
- $y_t = 1$ if the headache is cured in 30 minutes, 0 otherwise.
- $\blacktriangleright \pi$: intervention policy.

October 30, 2019 7 / 22

C. Dimitrakakis Causality October 30, 2019

Example 4 (A recommendation system)

- \triangleright x_t : User information (random variable)
- $ightharpoonup a_t$: System action (random variable)
- \triangleright y_t : Click (random varaible)
- \blacktriangleright π : recommendation policy (decision variable).

Conditional distributions and decision variables.

$$P(A \mid B) \triangleq \frac{P(A \cap B)}{P(B)}.$$

The conditional distribution of decisions

$$\pi(a) \equiv \mathbb{P}^{\pi}(a) \equiv \mathbb{P}(a \mid \pi).$$

$$\mathbb{P}^{\pi}_{\theta}(a) \equiv \mathbb{P}(a \mid \theta, \pi).$$

(□ ▶ ◀♬ ▶ ◀불 ▶ ◀불 ▶ · 불 · 쒸Q♡

C. Dimitrakakis Causality October 30, 2019 8 / 22

Basic causal structures

Non-cause

Figure: π does not cause y

No confounding

Figure: No confounding: π causes y_t

9 / 22

C. Dimitrakakis

Basic causal structures

Non-cause

Figure: π does not cause y

No confounding

Figure: No confounding: π causes y_t

9 / 22

Covariates

Sufficient covariate

Figure: Sufficient covariate x_t

Instrumental variables and confounders

Figure: Instrumental variable z_t

C. Dimitrakakis Causality October 30, 2019 10 / 22

Covariates

Sufficient covariate

Figure: Sufficient covariate x_t

Instrumental variables and confounders

Figure: Instrumental variable z_t

C. Dimitrakakis Causality October 30, 2019 10 / 22

Modelling interventions

- Observational data D.
- ▶ Policy space II.

Default policy

The space of policies Π includes a default policy π_0 , under which the data was collected.

Intervention policies

Except π_0 , policies $\pi \in \Pi$ represent different interventions specifying a distribution $\pi(a_t \mid x_t)$.

- Direct interventions.
- ▶ Indirect interventions and non-compliance.

C. Dimitrakakis Causality October 30, 2019

Example 5 (Weight loss)

C. Dimitrakakis Causality October 30, 2019 12 / 22

Example 5 (Weight loss)

Figure: Model of non-compliance as a confounder.

C. Dimitrakakis Causality October 30, 2019 12 / 22

The value of an observed policy

Figure: Basic decision diagram

$$\hat{a}_D^* \in \arg\max_{a} \hat{\mathbb{E}}_D(U \mid a),$$

C. Dimitrakakis Causality October 30, 2019 13 / 22

The value of an observed policy

Figure: Basic decision diagram

$$\hat{\mathbb{E}}_{D}(U \mid a) \triangleq \frac{1}{|\{t \mid a_{t} = a\}|} \sum_{t: a_{t} = a} U(a_{t}, y_{t}) \qquad (3.1)$$

$$\approx \mathbb{E}_{\theta}^{\pi_{0}}(U \mid a) \qquad (a_{t}, y_{t}) \sim \mathbb{P}_{\theta}^{\pi_{0}}. \qquad (3.2)$$

$$\hat{a}_D^* \in \operatorname*{arg\,max}_{a} \hat{\mathbb{E}}_D(U \mid a),$$

4□ > 4□ > 4 = > 4 = > = 900

C. Dimitrakakis Causality October 30, 2019 13 / 22

$$x_t \mid \theta \sim P_{\theta}(x)$$

$$y_t \mid \theta, x_t, a_t \sim P_{\theta}(y \mid x_t, a_t)$$

$$a_t \mid x_t, \pi \sim \pi(a \mid x_t).$$

The value of a policy

$$\mathbb{E}_{\theta}^{\pi}(U) = \int_{\mathcal{X}} dP_{\theta}(x) \sum_{y \in \mathcal{Y}} P_{\theta}(y \mid x, a) U(a, y) \sum_{a \in \mathcal{A}} \pi(a \mid x).$$

The optimal policy under a known parameter θ is given simply by

$$\max_{\pi \in \Pi} \mathbb{E}^{\pi}_{\theta}(U),$$

where Π is the set of allowed policies.

4□ > 4□ > 4 = > 4 = > = 900

C. Dimitrakakis Causality October 30, 2019 14 / 22

Monte-Carlo estimation

Importance sampling¹

We can obtain an unbiased estimate of the utility in a model-free manner through importance sampling:

$$\mathbb{E}_{\theta}^{\pi}(U) = \int_{\mathcal{X}} dP_{\theta}(x) \sum_{a} \mathbb{E}_{\theta}(U \mid a, x) \pi(a \mid x)$$
$$\approx \frac{1}{T} \sum_{t=1}^{T} U_{t} \frac{\pi(a_{t} \mid x_{t})}{\pi_{0}(a_{t} \mid x_{t})}.$$

Bayesian estimation

If we π_0 is given, we can calculate the utility of any policy to whatever degree of accuracy we wish.

$$\begin{split} \xi(\theta \mid D, \pi_0) &\propto \prod_t \mathbb{P}_{\theta}^{\pi_0}(x_t, y_t, a_t) \\ \mathbb{E}_{\xi}^{\pi}(U \mid D) &= \int_{\Theta} \mathbb{E}_{\theta}^{\pi}(U) \, \mathrm{d}\xi(\theta \mid D) \\ &= \int_{\Theta} \int_{\mathcal{X}} \, \mathrm{d}P_{\theta}(x) \sum_{t=1}^{T} \sum_{a} \mathbb{E}_{\theta}(U \mid a, x) \pi(a \mid x) \, \mathrm{d}\xi(\theta \mid D). \end{split}$$

C. Dimitrakakis Causality October 30, 2019 16 / 22

Causal inference and policy optimisation

Example 6

Figure: Simple decision problem.

Let
$$a_t, y_t \in \{0, 1\}, \ \theta \in [0, 1]^2$$
 and

$$y_t \mid a_t = a \sim \mathcal{B}ernoulli(\theta_a)$$

Then, by estimating θ , we can predict the effect of any action.

October 30, 2019

17 / 22

Causal inference and policy optimisation

Example 6

Figure: Decision problem with covariates.

Let
$$a_t, x_t = \{0, 1\}$$
, $y_t \in \mathbb{R}$, $\theta \in \mathbb{R}^4$ and

$$y_t \mid a_t = a, x_t = x \sim \textit{Bernoulli}(\theta_{a,x})$$

Then, by estimating θ , we can predict the effect of any action.

C. Dimitrakakis Causality October 30, 2019 17 / 22

Figure: Decision diagram with exogenous disturbances ω .

Example 7 (Structural equation model for Figure 12)

$$\begin{split} \theta &\sim \mathcal{N}(\mathbf{0_4}, \mathbf{I_4}), \\ x_t &= \theta_0 \omega_{t,x}, \\ y_t &= \theta_1 y_t + \theta_2 x_t + \theta_3 a_t + \omega_{t,y}, \\ a_t &= \pi(x_t) + \omega_{t,a} \mod |\mathcal{A}| \end{split} \qquad \begin{aligned} \omega_{t,x} &\sim \textit{Bernoulli}(0.5) \\ \omega_{t,y} &\sim \mathcal{N}(0,1) \\ \omega_{t,a} &\sim 0.1 \, \mathcal{D}(0) + 0.9 \, \textit{Unif}(\mathcal{A}), \end{aligned}$$

C. Dimitrakakis

Treatment-unit additivity

Figure: Decision diagram for treatment-unit additivity

Assumption 1 (TUA)

For any given treatment $a \in A$, the response variable satisfies

$$y_t = g(a_t) + \omega_{t,y}$$

C. Dimitrakakis Causality October 30, 2019 19 / 22

Example 8 (Pricing model)

Figure: Graph of structural equation model for airport pricing policy π : a_t is the actual price, z_t are fuel costs, x_t is the customer type, y_t is the amount of sales, ω_t is whether there is a conference. The dependency on θ is omitted for clarity.

Assumption 2 (Relevance)

 a_t depends on z_t .

Assumption 3 (Exclusion)

 $z_t \perp \!\!\!\perp v_t \mid x_t, a_t, \omega_t$.

Assumption 4 (Unconfounded instrument)

$$z_t \perp \omega_t \mid x_t$$
.

Prediction tasks

$$y_t = g_{\theta}(a_t, x_t) + \omega_t, \qquad \mathbb{E}_{\theta} \omega_t = 0, \qquad \forall \theta \in \Theta$$
 (4.1)

Standard prediction

$$\mathbb{P}^{\pi}_{\theta}(y_t \mid x_t, a_t), \qquad \mathbb{E}^{\pi}_{\theta}(y_t \mid x_t, a_t) = g_{\theta}(x_t, a_t) + \mathbb{E}^{\pi}_{\theta}(\omega_t \mid x_t, a_t).$$

Counterfactual prediction

$$\mathbb{E}_{\theta}^{\pi}(y_t \mid x_t, z_t) = \int_{\mathcal{A}} \underbrace{\left[g(a_t \mid x_t, z_t) + \mathbb{E}_{\theta}(\omega \mid x_t)\right]}_{h(a_t, x_t)} d\pi(a_t \mid x_t)$$

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · 釣९♂

C. Dimitrakakis Causality October 30, 2019 21/22

Further reading

- ▶ Pearl, Causality.
- •

In the following exercises, we are taking actions a_t and obtaining outcomes y_t . Our utility function is simply $U = y_t$.

ㅁㅏㆍ4 @ ㅏ ㆍ 돌 ㅏ ㆍ 돌 ㆍ 쒸익♡