A.A. 2021-2022

Elementi di Elettronica (INF) Prof. Paolo Crippa

Sistemi di Numerazione

Notazione Numerica Posizionale

Un numero è rappresentato da una sequenza di cifre, all'interno della quale il valore di ogni cifra dipende dalla sua posizione.

Rappresentazione Decimale: utilizza le 10 cifre "0, 1, 2, 3, 4, 5, 6, 7, 8, 9" (numeri arabici)

$$2546.13_{10} = 2 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 6 \times 10^{0} + 1 \times 10^{-1} + 3 \times 10^{-2}$$

Nella rappresentazione decimale, 10 è la base o radice

Notazione Numerica Posizionale

Rappresentazione Binaria (base 2)

cifre: 0, 1

$$10011_2 = 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

Rappresentazione Ottale (base 8)

cifre: 0, 1, 2, 3, 4, 5, 6, 7

$$43912_8 = 4 \times 8^4 + 3 \times 8^3 + 9 \times 8^2 + 1 \times 8^1 + 2 \times 8^0$$

Rappresentazione Esadecimale (base 16)

cifre: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

$$CA0F3_{16} = C \times 16^4 + A \times 16^3 + 0 \times 16^2 + F \times 16^1 + 3 \times 16^0$$

$$10101101110_2 = 010_2 101_2 101_2 101_2 110_2 = 2556_8$$

Binario ⇒ Esadecimale

$$10101101110_2 = \underbrace{0101_2}_{5_{16}} \underbrace{0110_2}_{6_{16}} \underbrace{1110_2}_{E_{16}} = 56E_{16}$$
 Binario \Rightarrow Decimale

 $=1390_{10}$

$$10101101110_{2} = 1 \times 2^{10} + 0 \times 2^{9} + 1 \times 2^{8} + 0 \times 2^{7} + 1 \times 2^{6} + 1 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

$$= 1024_{10} + 256_{10} + 64_{10} + 32_{10} + 8_{10} + 4_{10} + 2_{10}$$

Ottale ⇒ Binario

$$4133_8 = 100_2 \quad 001_2 \quad 011_2 \quad 011_2 = 100001011011_2$$

$$4133_8 = 100001011011_2 = 1000_2 0101_2 1011_2 = 85B_{16}$$

$$4133_8 = 4 \times 8^3 + 1 \times 8^2 + 3 \times 8^1 + 3 \times 8^0$$
$$= 4 \times 512 + 1 \times 64 + 3 \times 8 + 3 \times 1 = 2139_{10}$$

Esadecimale

⇒ Binario

$$C1A0_{16} = 1100\ 0001\ 1010\ 0000_2$$

$$C1A0_{16} = 1100 \ 0001 \ 1010 \ 0000_2$$

= 1 100 000 110 100 000₂ = 140640₈

Esadecimale

⇒ Decimale

$$C1A0_{16} = 12 \cdot 4096 + 1 \cdot 256 + 10 \cdot 16 + 0 \cdot 1$$

= 49568_{10}

Decimale \Rightarrow Binario 218₁₀ = 11011010₂

$$218_{10}$$
: 2 = 109 resto 0 (LSB)

$$: 2 = 54 \text{ resto } 1$$

$$: 2 = 27 \text{ resto } 0$$

$$: 2 = 13 \text{ resto } 1$$

$$: 2 = 6 \text{ resto } 1$$

$$: 2 = 3 \text{ resto } 0$$

$$: 2 = 1 \text{ resto } 1$$

$$: 2 = 0 \text{ resto } 1 \text{ (MSB)}$$

Decimale
$$\Rightarrow$$
 Ottale 218₁₀ = 332₈

$$218_{10}$$
: 8 = 27 resto 2 (LSD)

$$: 8 = 3 \text{ resto } 3$$

$$: 8 = 0 \quad resto 3 \quad (MSD)$$

Decimale ⇒ Esadecimale 218₁₀ = DA₁₆

$$218_{10}$$
: 16 = 13 resto 10 -> A_{16} (LSD)

:
$$16 = 0$$
 resto $13 -> D_{16}$ (MSD)

Addizione di Numeri Binari

	C_in	X	Υ	C_out	S
	0	0	0	0	0
	0	0	1	0	1
	0	1	0	0	1
<	0	1	1	1	0
	1	0	0	0	1
	1	0	1	1	0
	1	1	0	1	0
	1	1	1	1	1
			1 0	1111	1 1 0
		191	1	0 1 1 1	1 1 1
-	 	153	1	0011	001
		344	1 0	1011	0 00

X+Y

Sottrazione di Numeri Binari

	b_{in}	X	Y	b _{out}	d
	0	0	0	0	0
<	0	0	1	(1)	(1)
	0	1	0	0	1
	0	1	1	0	0
	1	0	0	1	1
	1	0	1	1	0
	1	1	0	0	0
	1	1	1	1	1
			0 (0111	1 1 1 0
		224	•	11100	0000
	-	43	(010	1 0 1 1
•		181	•	1011	0 1 0(1)

Rappresentazione di Numeri Negativi

$$0 \mid 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1_2 = + 93_{10}$$

Per sommare (sottrarre) numeri con segno, si deve:

- valutare il segno
- ☐ se il segno è uguale si sommano
- se il segno è diverso si sottrae il più piccolo dal più grande e si dà il segno del più grande.

Rappresentazione in Complemento a Radice

$$\overline{D} = r^n - D$$

$$\overline{D} = \left[(r^n - 1) - D \right] + 1$$

$$\overline{D} = \left[(mm \cdots mm) - D \right] + 1 \quad \text{con} \quad m = r - 1$$

$$\overline{D} = \overline{d}_{n-1} \overline{d}_{n-2} \cdots \overline{d}_1 \overline{d}_0 + 1$$
Complemento della cifra
$$\overline{D} = \overline{d}_{n-1} \overline{d}_{n-2} \cdots \overline{d}_1 \overline{d}_0 + 1$$

Complemento a 10 (r = 10; n = 6)

$$731892 \Rightarrow 1000000 - 731892 = 268108$$

$$(999999 - 731892) + 1 = 268107 + 1 = 268108$$

num. negativo ⇒ MSB = 1 num. positivo ⇒ MSB = 0

con *n* bit: rappresentabili da
$$-(2^{n-1})$$
 a $+(2^{n-1}-1)$

$$-4$$
 $100 = \overline{1} \, \overline{0} \, \overline{0} + 1 = 011 + 1$

$$-3$$
 $101 = \overline{0} \, \overline{1} \, \overline{1} + 1 = 100 + 1$

$$-2$$
 $110 = 0 1 0 + 1 = 101 + 1$

$$-1$$
 $111 = 0 0 1 + 1 = 110 + 1$

 $\widehat{n=3}$

La conversione in decimale di un numero in complemento a 2 si calcola considerando che il peso di MSB è di -2^{n-1} se MSB = 1

$$\frac{n}{0000} = 1111 + 1 = 0000$$
 il riporto è ignorato

Il numero – 2ⁿ⁻¹ non ha un corrispondente positivo

$$-8_{10} = 1000$$
 $1000 = 0111 + 1 = 1000 = -8_{10}$

Complemento a Radice Diminuita

$$D = r^n - 1 - D$$

Complemento a 9
$$(r = 10; n = 6)$$

$$\overline{731892} = 999999 - 731892 = 268107$$

Complemento a 1

num. negativo ⇒ MSB = 1 num. positivo ⇒ MSB = 0

con *n* bit: rappresentabili da
$$-(2^{n-1}-1)$$
 a $+(2^{n-1}-1)$

Complemento a 1

- -3 100
- -2 101
- -1 110
- -0 111
- 0 000
- 1 001
- 2 010
- 3 011

esempio

La conversione in decimale di un numero in complemento a 1 si calcola considerando che il peso di MSB è di $-(2^{n-1}-1)$ se MSB=1

					A.A. 2021-2
D	ecimale	Compl. a	2 Compl. a 1	Modulo e Segno	Eccesso $2^{m-1}=4$
	-4	100			000
	-3	101	100	111	001
	-2	110	101	110	010
	-1	111	110	101	011
	0	000	000 o 111	100 o 000	100
	1	001	001	001	101
	2	010	010	010	110
	3	011	011	011	111

Addizione in Complemento a 2

Segue le stesse regole dell'addizione ordinaria (ignorando il riporto che eccede l'MSB).

Overflow (Addizione Compl. a 2)

Si ha overflow quando la somma eccede il range consentito:

ciò avviene se il segno dei due addendi è lo stesso, e se il segno della somma è differente dal segno degli addendi.

- 7	1001
+- 6	+1010
-13	$+3 = \overline{0011}$

$$\begin{array}{r}
 + 5 & 0101 \\
 + + 6 & +0110 \\
 \hline
 + 11 & -5 = \overline{1011}
 \end{array}$$

Sottrazione in Complemento a 2

Si somma il minuendo con il sottraendo complementato a 2

differenza (resto)

Sottrazione in Complemento a 2

Sottrazione in Complemento a 2

Overflow (Sottrazione Compl. a 2)

L'overflow nella sottrazione si può rilevare esaminando il segno del minuendo e del sottraendo complementato usando la stessa regola dell'addizione.

Elementi di Elettronica (INF) A.A. 2021-22

Moltiplicazione: Shift and Add

11 moltiplicando	1011	1011
x 13 moltiplicatore	x 1101	x 1101
33	1011	1011
11	0000	0000
143 prodotto	1011	01011
143 prodotto		1011
	1011	110111
	10001111	1011
		10001111

Elementi di Elettronica (INF) A.A. 2021-22

Moltiplicazione: Shift and Add

11	1011	1011
x 13	x 1101	x 1101
33	1011	01011
11	0000	00000
143	1011	001011
1 10		101100
	1011	0110111
	10001111	1011000
		10001111

Estensione di Segno di Numeri in Complemento a 2

100,01 = 1111100,01000

010,01 = 0000010,01000

-4	100
-3	101
-2	110
-1	111
0	000
1	001
2	010
3	011

-0	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

-8

1000

Elementi di Elettronica (INF) A.A. 2021-22

Moltiplicazione in Complemento a 2: Estensione di Segno

1←

Elementi di Elettronica (INF) A.A. 2021-22

Moltiplicazione in Complemento a 2: Estensione di Segno

217	11	
- 11	19	
107		
- 99		
8		
Si usano algoritmi specifici per la divisione di numeri in complemento a 2		

217:11=19 resto 8

11011001	1011
1011	10011
0101	
0000	
1010	
0000	
10100	
1011	
10011	
1011	

	Divis	sic
217 : 11 = 19	9 resto 8	
0.47		1
217	11	(

11011001

1011

quoziente

-> 1

-> 0

1011

1011

1011

00101001

00101001

-> 0

00101001

1011

Si usano algoritmi specifici per la divisione di numeri in complemento a 2

00010011

1011 1000 resto

Notazione in Virgola Fissa

0110.011	0110.011
+ 1000.100	x 1000.100
= 1110.111	00110110.001100

Le operazioni si svolgono come se fossero numeri interi

Notazione in virgola mobile

$$N = \pm M \times B^{\pm E}$$

$$M = mantissa$$
 $B = base$ $E = esponente$

Rappresentazione Non Unica

Lo stesso numero ha diverse rappresentazioni: per esempio 16 può essere rappresentato da

$$a = 4 \times 2^2$$
 $b = 8 \times 2^1$ $c = 2 \times 2^3$ $d = 32 \times 2^{-1}$

per una rappresentazione unica si definisce la rappresentazione normalizzata: la mantissa è un numero con il MSB sempre ad 1.

La mantissa è un numero positivo o negativo in virgola fissa.

Standard IEEE: rappresentazione in modulo e segno.

La posizione della virgola deve rimanere costante per tutti i numeri e le operazioni aritmetiche.

Tre possibili soluzioni:

- 1XXXXXXX.0
- 0.1XXXXXXX
- 1.XXXXXXXX (è lo standard IEEE)

<u>s ee</u>e 1m m

esempio con normalizzazione 0.1XXXXX 32 valori rappresentabili fra 0.03125 e 7, distribuzione non uniforme

0.100 0.101

0.110

0.111

	M = 0.5	M = 0.625	M = 0.75	M = 0.875
E = - 4	0.03125	0.0390625	0.046875	0.0546875
E = - 3	0.0625	0.078125	0.09375	0.109375
E = - 2	0.125	0.15625	0.1875	0.21875
E = - 1	0.25	0.3125	0.375	0.4375
E = 0	0.5	0.625	0.75	0.875
E = 1	1	1.25	1.5	1.75
E = 2	2	2.5	3	3.5
E = 3	4	5	6	7

s ee 1 m m m

esempio con normalizzazione 0.1XXXXX

32 valori rappresentabili fra 0.125 e 1.875

	0.1000	0.1001	0.1010	0.1011	0.1100	0.1101	0.1110	0.1111
	M = 0.5	M = 0.5625	M = 0.625	M = 0.6875	M = 0.75	M = 0.8125	M = 0.875	M = 0.9375
E = - 2	0.125	0.140625	0.15625	0.171875	0.1875	0.203125	0.21875	0.234375
E = - 1	0.25	0.28125	0.3125	0.34375	0.375	0.40625	0.4375	0.46875
E = - 0	0.5	0.5625	0.625	0.6875	0.75	0.8125	0.875	0.9375
E = 1	1	1.125	1.25	1.375	1.5	1.625	1.75	1.875

Le Eccezioni

Alcuni valori vengono riservati per indicare situazioni particolari.

- **Overflow** (E = max, M = 0)
- somma di due numeri con E superiore al range ammesso
- divisione per zero
- Not a Number (NaN) $(E = max, M \neq 0)$
- 0/0
- radice di un numero negativo
- Underflow (0, oppure un valore convenzionale)
- numero minore del valore minimo rappresentabile

Esempio

esponente *polarizzato* ottenuto sommando una costante uguale al valore minimo cosicché e ≥ 0

Esempio
$$(5.5)_{10} = (101.1)_2$$

Normalizzazione: $(101.1)_2 = (1.011)_2 \times 2^2$

$$1x2^{2} + 0x2^{1} + 1x2^{0} + 1x2^{-1} = (1x2^{0} + 0x2^{-1} + 1x2^{-2} + 1x2^{-3}) \times 1x2^{2}$$

esempio n = 7, m = 8
bias =
$$64 \Rightarrow e = 0000010 + 1000000$$
 (bias)

segno		Ο	esponente	mantissa	
	0		100 0010	0110 0000	

Standard IEEE 754 - 1985

Lo standard IEEE per il calcolo in virgola mobile "IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985)" noto anche come "IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems" è lo standard più diffuso nel campo del calcolo automatico e adottato dai principali fabbricanti di microprocessori

Successivamente è stato introdotto lo standard "IEEE Standard for Radix-Independent Floating-Point Arithmetic (IEEE 854-1987)" per generalizzare l'IEEE 754-1985 in modo da coprire sia l'aritmetica decimale che binaria

E' stata pubblicata nell'agosto 2008 una revisione dello standard che va sotto il nome "*IEEE Standard for Floating-Point Arithmetic* (**IEEE 754-2008**)" che sostituisce (includendoli) sia lo standard IEEE 754-1985 che il successivo IEEE 854-1987

Standard IEEE 754 – 1985

Precisione
Precisione

	Singola	Singola Estesa	Doppia	Doppia Estesa
bit mantissa	23	≥ 31	52	≥ 63
e _{max}	127	≥ 1023	1023	≥ 16383
e _{min}	-126	≤ -1022	-1022	≤ -16382
Bias	127	Non def.	1023	Non def.
bit esponente	8	≥ 11	11	≥ 15
Bit totali	32	≥ 43	64	≥ 79

Bit di segno: + ⇒ 0 - ⇒ 1

Standard IEEE 754 – 1985: Singola Precisione 32 bit

$$E = 0, \quad m = 0 \quad \rightarrow \quad a = (-1)^{s} \times 0$$

$$E = 255, \quad m = 0 \quad \rightarrow \quad a = (-1)^{s} \times \infty$$

$$E = 255, \quad m \neq 0 \quad \rightarrow \quad a = \text{NaN}$$

$$0 < E < 255 \quad \rightarrow \quad a = (-1)^{s} \times 2^{(E-127)} \times (1. \text{ m})$$

E = 0, m \neq 0
$$\rightarrow$$
 $a = (-1)^s \times 2^{(-126)} \times (0, m)$

Standard IEEE 754 – 1985: Doppia Precisione 64 bit

E = 0, m = 0
$$\rightarrow$$
 $a = (-1)^s \times 0$
E = 2047, m = 0 \rightarrow $a = (-1)^s \times \infty$
E = 2047, m \neq 0 \rightarrow $a = NaN$

$$0 < E < 2047 \rightarrow a = (-1)^{s} \times 2^{(E-1023)} \times (1. m)$$

E = 0, m \neq 0
$$\rightarrow$$
 $a = (-1)^s \times 2^{(-1022)} \times (0, m)$

$$+1\times2^{(128-127)}\times1.0=2$$

$$+1\times2^{(129-127)}\times1.101=6.5$$

$$-1 \times 2^{(129-127)} \times 1.101 = -6.5$$

Codici Binari per Numeri Decimali

- Codici Binari: insieme di stringhe a n-bit in cui ogni stringa rappresenta un numero o un altro simbolo.
- Il *codice BCD* (binary-coded decimal) rappresenta le 10 cifre decimali con i bit da 0000 a 1001.
- Le parole da 1010 a 1111 non vengono usate.
- Ogni parola a 4-bit viene sostituita con una cifra decimale.
- Viene usata una stringa a 4-bit per il segno. 0000 = +, 1001 = -

di numeri a 4-bit

Se il risultato eccede 1001, si deve correggere sommando + 6.

0101 + 1001 1110 + 0110 correzione

Codici BCD e 2421

Il codice BCD è un codice pesato viene anche detto Codice - 8421 : $1001 = 1x8 + 0x4 + 0x2 + 1x1 = 9_{10}$

Codice - 2421:
$$1001 = 1x2 + 0x4 + 0x2 + 1x1 = 3_{10}$$

Il vantaggio di questo codice è che è autocomplementante ⇒ il complemento a 9 si può ottenere complementando i singoli bit.

$$9_{10} = 1111_{2421}$$
 complemento \Rightarrow $0000_{2421} = 0_{10}$

$$5_{10} = 1011_{2421}$$
 complemento \Rightarrow $0100_{2421} = 4_{10}$

Altri Codici Binari

Codice Eccesso 3

E' autocomplementante

Si ottiene dal codice BCD sommando 3 = 0011₂

Codice Biquinary

Usa 7 bit:

primi due bit = 01 per il range 0-4

primi due bit = 10 per il range 5-9

Codice 1-out-of-10

Usa 10 bit : uno solo è uguale a 1 gli altri sono 0

Tabella di Conversione fra Codici Binari						Elettronica (INF) A.A. 2021-2
Decimale	BCD	2421	Eccesso-3	Biquinary	1-out-	of-10
0	0000	0000	0011	0100001	10000	00000

 2^{7} -10=118

non utilizzate

Num. di code-word

 2^{10} -10=1014

Elementi di **Elettronica** (INF) A.A. 2021-22

Codice Gray

Nel codice Gray si hanno variazioni di un solo bit

Costruzione del Codice Gray a n-bit

Algoritmo

- Il codice Gray a 1 bit ha solo 2 parole, 0 e
 1.
- 2. Le prime 2ⁿ parole del codice a (n+1)-bit sono uguali a quelle del codice a n-bit scritte nello stesso ordine, con uno "0" come (n+1)-bit.
- 3. Le restanti 2ⁿ parole sono uguali a quelle del codice a n-bit ma scritte in ordine inverso, con un "1" come (n+1)-bit.

Codice ASCII (standard No. X3.4-1998 American National Standards Institute)

Il codice comunemente usato per i caratteri è il codice **ASCII**

"American Standard Code for Information Interchange"

Per esempio la parola

"Yahoo"

è rappresentata da:

1011001 1100001 1101000 1101111 1101111

		$\mathbf{b_6} \mathbf{b_5} \mathbf{b_4} (\mathbf{colonna})$							
	Riga	000	001	010	011	100	101	110	111
$b_3b_2b_1b_0$	Hex	0	1	2	3	4	5	6	7
0000	0	NUL	DLE	SP	O	@	P	4	p
0001	1	SOH	DC1	!	1	A	Q	a	q
0010	2	STX	DC2	66	2	В	R	b	r
0011	3	ETX	DC3	#	3	\mathbf{C}	S	c	s
0100	4	EOT	DC4	\$	4	D	\mathbf{T}	d	t
0101	5	ENQ	NAK	%	5	E	\mathbf{U}	e	u
0110	6	ACK	SYN	&	6	F	V	f	V
0111	7	BEL	ETB	,	7	\mathbf{G}	W	g	w
1000	8	BS	CAN	(8	Н	X	h	X
1001	9	НТ	EM)	9	I	\mathbf{Y}	i	У
1010	A	LF	SUB	*	:	J	Z	j	Z
1011	В	VT	ESC	+	•	K	Ε	k	{
1100	C	FF	FS	,	<	L	\	1	1
1101	D	CR	GS	-	=	M]	m	}
1110	E	so	RS		>	N	^	n	~
1111	F	SI	US	/	?	O	_	O	DEL

Elementi di Elettronica (INF) A.A. 2021-22

Codice ASCII: Tabella dei Simboli

Control Code

NUL	Null	DLE	Data link escape
SOH	Start of heading	DC1	Device control 1
STX	Start of text	DC2	Device control 2
ETX	End of text	DC3	Device control 3
EOT	End of trasmission	DC4	Device control 4
ENQ	Enquiry	NAK	Negative acknowledge
ACK	Acknowledge	SYN	Synchronize
BEL	Bell	ETB	End transmitted block
BS	Backspace	CAN	Cancel
HT	Horizontal tab	EM	End of medium
LF	Line feed	SUB	Substitute
VT	Vertical tab	ESC	Escape
FF	Form feed	FS	File separator
CR	Carriage return	GS	Group separator
so	Shift out	RS	Record separator
SI	Shift in	US	Unit separator
SP	Space	DEL	Delete or rubout

Codici per Azioni, Condizioni e Stati

n - differenti azioni, o condizioni, o stati possono essere rappresentate con un codice a b-bit

b è il più piccolo intero maggiore di log₂ (n)

NIC

<u>Esempio:</u> Controllo di un semaforo. Gli stati del semaforo sono codificati con una parola a 3-bit.

	NS	NS	NS	EW	EW	EW	
State	Green \	fellow	Red	Green `	Yellow	Red	Code
NS go	ON	off	off	off	off	ON	000
NS wait	off	ON	Off	off	off	ON	001
NS dela	y off	off	ON	off	off	ON	010
EW go	off	off	ON	ON	off	off	100
EW wait	off	off	ON	off	ON	off	101
EW dela	y off	off	ON	off	off	ON	110

Rappresentazione Geometrica di Numeri Binari

 \bigcirc

zero - cubo

1 - cubo

2 - cubo

3 - cubo

Distanza di Hamming

Si definisce **somma modulo-2** tra due bit, indicata con il simbolo ⊕, l'operazione:

$$0 \oplus 0 = 0$$
 $1 \oplus 0 = 1$ $0 \oplus 1 = 1$ $1 \oplus 1 = 0$

$$1 \oplus 0 = 1$$

$$0 \oplus 1 = 1$$

$$1 \oplus 1 = 0$$

0 se gli ingressi sono uguali, 1 se sono diversi

Si definisce somma modulo-2 di due punti dell'n-cubo Pi e Pj

$$P_{k} = P_{i} \oplus P_{j} = (a_{n-1} \oplus b_{n-1}, a_{n-2} \oplus b_{n-2}, ..., a_{0} \oplus b_{0})$$

Si indica con |Pk| il numero di "1" di Pk

Si definisce distanza di Hamming (o metrica) tra due punti

$$D(P_i,P_j) = |P_i \oplus P_j|$$
 distanza di Hamming

Distanza di Hamming

Valgono le seguenti proprietà:

$$D(P_i, P_j) = 0$$
 se e solo se $P_i = P_j$

$$D(P_i, P_j) = D(P_j, P_i) > 0$$
 se $P_i \neq P_j$

$$D(P_i, P_j) + D(P_i, P_k) \ge D(P_i, P_k)$$
 disuguaglianza triangolare

Esempio

$$b = 0 1 0 1 0 1 0 1$$

$$a \oplus b = 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1$$
 $D(a,b) = 6$

Due punti adiacenti su un n-cubo hanno distanza unitaria.

Il codice Gray è a distanza unitaria.

Codici a Rilevazione di Errore

Un codice che usa stringhe di n-bit non necessariamente contiene 2ⁿ parole valide (*code word*).

Un codice rilevatore di errore ha la proprietà che un'alterazione della parola produce (con elevata probabilità) una stringa di bit che non è una parola del codice (*non coded word*).

Se una stringa è

 \int una code word \Rightarrow corretta una non code word \Rightarrow errata

- = code word
- = non code word

Un errore di un bit di 111 lo può cambiare in 110, 011, 101

Questa codifica non ha proprietà di rilevazione del singolo errore

Codici a Rilevazione di Errore

Un codice rileva i singoli errori se la minima distanza = 2

Sono necessari n+1 bit per costruire un codice rilevatore di singolo errore con 2ⁿ parole

Codici a Rilevazione di Errore

Bit di parità pari:

0 se il numero di 1 è pari

1 se il numero di 1 è dispari

Bit di parità dispari:

1 se il numero di 1 è pari

0 se il numero di 1 è dispari

Es:	dato	cod. a parità pari	cod. a parità dispari
	0101110	01011100	0101110 <mark>1</mark>
	1011000	10110001	10110000

Codici Correttori di Errore

Esempio: codice a distanza 3

Anche con un errore di un bit è possibile riottenere il valore corretto: correzione di errore singolo

Trasmissioni Seriali e Parallele

Trasmissioni seriali sincrone:

è necessario trasmettere un segnale di clock, uno di sincronismo e la linea dati

Codici Seriali

- NRZ (Non Return to Zero): il valore del bit è mantenuto per tutto il tempo di bit
- Manchester: una transizione low-high rappresenta uno 0, una transizione high-low rappresenta un 1