Exercice 1

1. Peut-on faire correspondre une fonction réelle (y=f(x)) à:

- $\bullet \ x + y = 1$
 - \square Vrai
 - ☐ Faux
- $\bullet \ x^2 y = 1$
 - $\hfill\Box$ Vrai
 - □ Faux
- $\bullet \ x + y^2 = 1$
 - \square Vrai
 - ☐ Faux
- $x^2 + y^2 = 1$
 - \square Vrai
 - ☐ Faux
- \bullet |y| = x
 - \square Vrai
 - ☐ Faux

2. Les graphiques suivants représentent une fonction réelle (y = f(x)):

 \square Faux

- 3. Mettre les équations suivantes sous la forme y=f(x), puis calculer l'image de 4 par f.
 - y = 1

•
$$y = \frac{4x}{x}$$

•
$$x = 2y + 5$$

•
$$x^2 = 5x^2 + y$$

4. Pour trouver les zéros d'une fonction y = f(x) il faut:

- \square résoudre l'équation f(x) = 0.
- \square calculer f(0).
- \Box trouver les x les plus nuls de f.
- \square voir si $0 \in \mathcal{D}_f$
- \square Aucune de ces réponses n'est correcte.

5. Pour trouver l'ordonnée à l'origine d'une fonction y=f(x) on peut:

- \square résoudre l'équation $f^{-1}(y) = 0$ si f est bijective.
- \square calculer f(0).
- \square trouver les y les plus nuls de f.
- $\hfill \square$ Aucune de ces réponses n'est correcte.

6. Donnez le \mathcal{D}_f des fonctions suivantes:

- $\bullet \ \ y = x$
 - $\square \mathcal{D}_f = \mathbb{R}$
 - $\square \mathcal{D}_f = \mathbb{Q}$
 - $\square \mathcal{D}_f = \mathbb{R}_- \cup \mathbb{N}$
 - $\square \mathcal{D}_f = \{x | x \in \mathbb{R}\}$
 - ☐ Aucune de ces réponses n'est correcte.
- $y = \frac{1}{\sqrt{x}}$
 - $\square \mathcal{D}_f = \mathbb{R}_+$
 - $\square \mathcal{D}_f = \mathbb{R}^*$
 - $\square \mathcal{D}_f =]0; +\infty]$
 - $\square \mathcal{D}_f = \mathbb{N}$
 - $\hfill \square$ Aucune de ces réponses n'est correcte.
- $y = \frac{1}{1-x}$
 - $\square \mathcal{D}_f = \{ x \in \mathbb{R} | 1 x \neq 0 \}$
 - $\square \mathcal{D}_f = \mathbb{R}^*$
 - $\square \mathcal{D}_f = \mathbb{R} \setminus \{1\}$
 - $\square \mathcal{D}_f =]-\infty; 1[\cup]1; +\infty[$
 - $\hfill \square$ Aucune de ces réponses n'est correcte.
- $y = \frac{1}{\sqrt{1 \ln(x)}}$
 - $\square \mathcal{D}_f = \mathbb{R}_+^*$
 - $\square \mathcal{D}_f = \mathbb{R}_+ \setminus \{0; e\}$

$$\square \mathcal{D}_f = \mathbb{R}_+ \setminus [0;1]$$

$$\square \mathcal{D}_f =]0; e[$$

 $\hfill \square$ Aucune de ces réponses n'est correcte.

7. Soit $f(x) = x^2 + 1$ et g(x) = 5x - 2:

• Quel est
$$(f+g)$$

$$\Box x^2 + 5x - 1$$

$$\Box 25x^2 - 20x + 5$$

$$\Box 5x^2 + 3$$

$$\Box \left(\frac{1}{5}x + \frac{2}{25}\right) + \frac{1 + \frac{4}{25}}{5x - 2}$$

 $\Box \left(\frac{1}{5}x + \frac{2}{25}\right) + \frac{1 + \frac{4}{25}}{5x - 2}$ $\Box \text{ Aucune de ces réponses n'est correcte.}$

• Quel est $(f \cdot g)$

$$\square \ x^2 + 5x - 1$$

$$\Box 25x^2 - 20x + 5$$

$$\Box 5x^2 + 3$$

$$\Box \left(\frac{1}{5}x + \frac{2}{25} \right) + \frac{1 + \frac{4}{25}}{5x - 2}$$

 $\hfill \square$ Aucune de ces réponses n'est correcte.

• Quel est $(\frac{f}{g})$

$$\square \ x^2 + 5x - 1$$

$$\Box 25x^2 - 20x + 5$$

$$\Box 5x^2 + 3$$

$$\Box \left(\frac{1}{5}x + \frac{2}{25} \right) + \frac{1 + \frac{4}{25}}{5x - 2}$$

 $\hfill \square$ Aucune de ces réponses n'est correcte.

• Quel est $(f \circ g)$

$$\Box 25x^2 - 20x + 5$$

$$\Box 5x^2 + 3$$

$$\Box \left(\frac{1}{5}x + \frac{2}{25} \right) + \frac{1 + \frac{4}{25}}{5x - 2}$$

 $\hfill \square$ Aucune de ces réponses n'est correcte.

• Quel est $\mathcal{D}_{(f+g)}$?

- \square \mathbb{R}
- \square \mathbb{R}_{-}
- \square \mathbb{R}^*
- $\square \mathbb{R}_+^*$

□ Aucune de ces réponses n'est correcte.

• Quel est $\mathcal{D}_{(\frac{f}{g})}$?

$$\square$$
 $\left\{\frac{2}{5}\right\}$

$$\square \mathbb{R} \cap \mathbb{R} \setminus \{0.4\}$$

$$\square \mathbb{R} \cap \{0.4\}$$

$$\square \mathbb{R} \setminus \{0.4\}$$

☐ Aucune de ces réponses n'est correcte.

- 8. Soit $h(x) = (x^3 5x + 1)^4$, quelles fonctions f, g donnent $f \circ g = h$?
 - $\Box f(x) = x^4 ; g(x) = x^3 5x + 1$
 - $\Box f(x) = x^2 ; g(x) = (x^3 5x + 1)^2$
 - $\Box f(x) = x ; g(x) = (x^3 5x + 1)^4$
 - $\Box f(x) = \sqrt[4]{x} ; g(x) = (x^3 5x + 1)^{16}$
 - □ Aucune de ces réponses n'est correcte.
- 9. Quelle est la réciproque de f(x) = ax + b, où $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$?
 - $\Box f^{-1}(x) = \frac{1}{ax+b}$
 - $\Box f^{-1}(x) = \frac{a}{x} b$
 - $\Box f^{-1}(x) = \frac{x-b}{a}$
 - $\Box f^{-1}(x) = x \frac{b}{a}$
 - $\Box f^{-1}(x) = \frac{x}{a} \frac{b}{a}$
 - ☐ Aucune de ces réponses n'est correcte.
- 10. Supposons que l'on ait pour une certaine fonction $\lim_{x\to 2} f(x) = 4$. Alors:
 - $\Box \ f(2) = 4$
 - \square $2 \in \mathcal{D}_f$ mais on n'a pas forcément f(2) = 4.
 - □ Aucune de ces réponses n'est correcte.
- 11. Que vaut $\lim_{x\to 0} \frac{1}{x}$?
 - $\Box +\infty$
 - \Box $-\infty$
 - □ Indéfini
 - ☐ Aucune de ces réponses n'est correcte.
- 12. Que vaut $\lim_{x\to 2} \frac{1}{x-2} \lim_{x\to 2} \frac{1}{x-2}$?
 - $\Box +\infty$
 - \Box $-\infty$
 - \Box 0
 - ☐ Indéfini
 - ☐ Aucune de ces réponses n'est correcte.
- 13. Soit $D_f = \mathbb{R}$ et $D_g = \mathbb{Z}$, que donne $D_f \cap D_g$?
 - \square \mathbb{R}
 - \square \mathbb{Q}

- \square \mathbb{Z}
- \square \mathbb{N}
- ☐ Aucune de ces réponses n'est correcte.
- 14. Soit $D_f = \mathbb{Z}$ et $D_g = \mathbb{N}$, que donne $D_f \setminus D_g$?
 - \square \mathbb{R}_{-}
 - \square \mathbb{Z}_{-}^{*}
 - \square \mathbb{Z}_{-}
 - \square \mathbb{N}_{-}
 - $\hfill \square$ Aucune de ces réponses n'est correcte.
- 15. Soit $h = f \circ g$ avec $f(x) = \sqrt{x}$, $g(x) = x^2$ quel est D_h ?
 - \square \mathbb{R}
 - $\square \mathbb{R}_+$
 - \square \mathbb{R}_{-}
 - \square \mathbb{R}_+^*
 - $\hfill \square$ Aucune de ces réponses n'est correcte.

Université de Genève Mathématiques I Mucyo Karemera

GSEM Automne 2020 Série 3

Exercice 2 Calculez les limites suivantes:

 $\textit{Indication: utilisez} \lim_{x \to a} x = a \ ; \ \lim_{x \to a} c = c \ \forall a,c \in \mathbb{R} \ et \ les \ propriétés \ des \ limites \ vues \ en \ classe.$

1.
$$\lim_{x \to 1} \frac{x^2 - 3x + 1}{x^2 + 4x + 2}$$

$$2. \lim_{x \to 2} \frac{x^2 - 4x + 4}{x^2 + x - 6}$$

2. $\lim_{x\to 2} \frac{x^2-4x+4}{x^2+x-6}$ Indication: factorisez la fraction et simplifiez-là.

$$3. \lim_{x \to 0} \frac{|x|}{x}$$

Exercice 3 Calculer les zéros des fonctions suivantes, définies sur \mathbb{R} .

1.
$$f(x) = x + 3$$

2.
$$f(x) = |x+3|$$

3.
$$f(x) = (x+3)^2$$

4.
$$f(x) = \ln(e^{(x+3)})$$