Determinantal Varieties, Linear Codes, and Rook Placements

Sudhir R. Ghorpade

Department of Mathematics
Indian Institute of Technology Bombay
Powai, Mumbai 400076, India
http://www.math.iitb.ac.in/~srg/

Based on joint work with Mahir Bilen Can and previously with Peter Beelen and Sartaj UI Hasan as well as with Peter Beelen

NORCOM 2025 Reykjavik, Iceland June 16–18, 2025

Determinantal Varieties

Fix a prime power q, positive integers t, ℓ , m, and define:

- $X = (X_{ij})$: an $\ell \times m$ matrix with variable entries
- ullet $\mathbb{F}_q[X]$: polynomial ring over \mathbb{F}_q in the ℓm variables X_{ij}
- ullet $\mathbb{M}_{\ell imes m}(\mathbb{F}_q)$: set of all $\ell imes m$ matrices with entries in \mathbb{F}_q
- ullet \mathcal{I}_{t+1} : ideal of $\mathbb{F}_q[X]$ generated by all (t+1) imes (t+1) minors
- $\mathcal{D}_t = \mathcal{D}_t(\ell, m) = \{M \in \mathbb{M}_{\ell \times m}(\mathbb{F}_q) : \mathsf{rk}(M) \leq t\}.$
- $\widehat{\mathcal{D}}_t = \widehat{\mathcal{D}}_t(\ell, m)$: corres. projective variety $\mathbb{P}(\mathcal{D}_t) \subseteq \mathbb{P}^{\ell m 1}(\mathbb{F}_q)$.

Determinantal Varieties

Fix a prime power q, positive integers t, ℓ, m , and define:

- $X = (X_{ij})$: an $\ell \times m$ matrix with variable entries
- ullet $\mathbb{F}_q[X]$: polynomial ring over \mathbb{F}_q in the ℓm variables X_{ij}
- ullet $\mathbb{M}_{\ell imes m}(\mathbb{F}_q)$: set of all $\ell imes m$ matrices with entries in \mathbb{F}_q
- ullet \mathcal{I}_{t+1} : ideal of $\mathbb{F}_q[X]$ generated by all (t+1) imes (t+1) minors
- $\mathcal{D}_t = \mathcal{D}_t(\ell, m) = \{M \in \mathbb{M}_{\ell \times m}(\mathbb{F}_q) : \mathsf{rk}(M) \leq t\}.$
- $\widehat{\mathcal{D}}_t = \widehat{\mathcal{D}}_t(\ell, m)$: corres. projective variety $\mathbb{P}(\mathcal{D}_t) \subseteq \mathbb{P}^{\ell m 1}(\mathbb{F}_q)$.

We will also consider open (quasi-affine/quasi-projective) varieties:

•
$$\mathcal{E}_t = \mathcal{E}_t(\ell, m) = \{M \in \mathbb{M}_{\ell \times m}(\mathbb{F}_q) : \mathsf{rk}(M) > t\}$$

$$\bullet \ \widehat{\mathcal{E}}_t = \widehat{\mathcal{E}}_t(\ell, m) = \mathbb{P}\left(\widehat{\mathcal{E}}_t\right) \subseteq \mathbb{P}^{\ell m - 1}(\mathbb{F}_q).$$

(Linear) Codes

- \mathbb{F}_q : finite field with q elements.
- $[n, k]_q$ -code: a k-dimensional subspace C of \mathbb{F}_q^n .
- C is nondegenerate if $C \not\subseteq$ coordinate hyperplane of \mathbb{F}_q^n .
- Hamming weight of $c = (c_1, \ldots, c_n) \in \mathbb{F}_q^n$:

$$\operatorname{wt}(c) := |\{i : c_i \neq 0\}|.$$

• Minimum distance of a (linear) code C:

$$d(C) := \min \{ \operatorname{wt}(c) : c \in C, \ c \neq 0 \}.$$

• Spectrum or the Weight distribution of a $[n, k]_q$ -code C:

the sequence
$$(A_i)_{i>0}$$
 where $A_i := \#\{c \in C : \operatorname{wt}(c) = i\}$.

or equivalently, the polynomial $\sum_{i=0}^{n} A_i Z^i$.

Determinantal Codes

Fix an ordering M_1, \ldots, M_n of \mathcal{D}_t and consider the evaluation map

$$\mathrm{Ev}: \mathbb{F}_q[X]_1 o \mathbb{F}_q^n$$
 defined by $\mathrm{Ev}(f) = c_f := (f(M_1), \dots, f(M_n)),$

Define $C_{\text{det}}(t; \ell, m) := \text{im}(\text{Ev})$.

Also, let $P_1, \ldots, P_{\hat{n}}$ be an ordering of $\widehat{\mathcal{D}}_t$ and $\widehat{M}_1, \ldots, \widehat{M}_{\hat{n}}$ be their fixed representatives in $\mathbb{M}_{\ell \times m}(\mathbb{F}_q)$. Consider the evaluation map

$$\widehat{\mathrm{Ev}}: \mathbb{F}_q[X]_1 \to \mathbb{F}_q^{\hat{n}} \quad \text{defined by} \quad \widehat{\mathrm{Ev}}(f) = \hat{\mathsf{c}}_f := \Big(f(\widehat{M}_1), \dots, f(\widehat{M}_{\hat{n}})\Big).$$

Determinantal code: $\widehat{C}_{det}(t; \ell, m) := \operatorname{im}(\widehat{Ev}).$

Determinantal Codes

Fix an ordering M_1,\ldots,M_n of \mathcal{D}_t and consider the evaluation map

$$\mathrm{Ev}: \mathbb{F}_q[X]_1 o \mathbb{F}_q^n$$
 defined by $\mathrm{Ev}(f) = c_f := (f(M_1), \dots, f(M_n)),$

Define $C_{\text{det}}(t; \ell, m) := \text{im}(\text{Ev})$.

Also, let $P_1, \ldots, P_{\hat{n}}$ be an ordering of $\widehat{\mathcal{D}}_t$ and $\widehat{M}_1, \ldots, \widehat{M}_{\hat{n}}$ be their fixed representatives in $\mathbb{M}_{\ell \times m}(\mathbb{F}_q)$. Consider the evaluation map

$$\widehat{\operatorname{Ev}}: \mathbb{F}_q[X]_1 \to \mathbb{F}_q^{\hat{n}}$$
 defined by $\widehat{\operatorname{Ev}}(f) = \hat{c}_f := \Big(f(\widehat{M}_1), \dots, f(\widehat{M}_{\hat{n}})\Big).$

Determinantal code: $\widehat{C}_{det}(t; \ell, m) := \operatorname{im}(\widehat{Ev}).$

One can also define similarly the linear code $C(\widehat{\mathcal{E}}_t(\ell,m))$ corresponding to the open determinantal variety $\widehat{\mathcal{E}}_t(\ell,m)$ and refer to it as an open determinantal code.

We will usually assume (WLOG) that $1 \leq t \leq \ell \leq m$.

Relation between $C_{\text{det}}(t; \ell, m)$ and $\widehat{C}_{\text{det}}(t; \ell, m)$

Proposition

Write $C = C_{\text{det}}(t; \ell, m)$ and $\widehat{C} = \widehat{C}_{\text{det}}(t; \ell, m)$. Let n, k, d, and A_i (resp. $\hat{n}, \hat{k}, \hat{d}$, and \hat{A}_i) denote, respectively, the length, dimension, minimum distance and the number of codewords of weight i of C (resp. \widehat{C}). Then

$$n=1+\hat{n}(q-1), \qquad k=\hat{k} \qquad \text{and} \qquad d=\hat{d}(q-1).$$

Further,

$$A_{i(q-1)} = \hat{A}_i$$
 for $0 \le i \le \hat{n}$.

Moreover $A_n = 0$ and $A_j = 0$ whenever $0 \le j \le n$ and $(q - 1) \nmid j$.

Question: Determine explicitly the length, dimension, and the minimum distance and more generally, the weight distribution of the determinantal code $\widehat{C}_{\text{det}}(t;\ell,m)$.

Length and Dimension

Proposition (Landsberg (1893))

 $\widehat{C}_{\mathsf{det}}(t;\ell,m)$ is nondegenerate of dimension $\hat{k}=\ell m$ and length

$$\hat{n} = \sum_{j=1}^t \hat{\mu}_j(\ell, extit{m})$$
 where $\hat{\mu}_j(\ell, extit{m}) = rac{\mu_j(\ell, extit{m})}{q-1}$

where $\mu_j(\ell, m)$ is the number of matrices in $\mathbb{M}_{\ell \times m}(\mathbb{F}_q)$ of rank j:

$$\mu_j(\ell,m) = q^{\binom{j}{2}} \prod_{i=0}^{j-1} \frac{\left(q^{\ell-i}-1\right) \left(q^{m-i}-1\right)}{q^{i+1}-1}.$$

Notation: For integers a, b with $0 < b \le a$, define

$$[\mathbf{a}]_q := \frac{q^{\mathbf{a}} - 1}{q - 1}, \quad [\mathbf{a}]! := [\mathbf{a}]_q [\mathbf{a} - 1]_q \cdots [1]_q \quad \text{and} \quad \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} := \frac{[\mathbf{a}]!}{[\mathbf{b}]![\mathbf{a} - \mathbf{b}]!}.$$

By convention, $[0]_q:=1=[0]!$ and $\begin{bmatrix} a \\ b \end{bmatrix}:=0$ if b<0 or $b>a\geq 0$.

Some Examples

(i) $t = \ell = \min\{\ell, m\}$: Here $\widehat{C}_{\det}(t; \ell, m)$ is a simplex code. So

$$\hat{n} = \frac{q^{\ell m} - 1}{q - 1}, \quad \hat{k} = \ell m \quad \text{and} \quad \hat{d} = q^{\ell m - 1}.$$

(ii) $\ell = m = t+1$: Here $\mathcal{D}_t = \mathbb{M}_{\ell \times m} \setminus \operatorname{GL}_{\ell}(\mathbb{F}_q)$ while $\widehat{\mathcal{D}}_t$ is the hypersurface in \mathbb{P}^{ℓ^2-1} given by $\det(X) = 0$. Thus

$$\hat{d} = \hat{n} - \max_{H} |\widehat{\mathcal{D}}_t \cap H|, \quad \text{where} \quad \hat{n} = |\widehat{\mathcal{D}}_t| = \frac{q^{\ell^2} - 1}{q - 1} - q^{\binom{\ell}{2}} \prod_{i=2}^{\ell} (q^i - 1)$$

The irreducible polynomial $\det(X)$, when restricted to H gives rise to a (possibly reducible) hypersurface in $\mathbb{P}(H) \simeq \mathbb{P}^{\ell^2-2}$ of degree $\leq \ell$. Hence by Serre's inequality (1991)

$$|\widehat{\mathcal{D}}_t \cap H| \leq \ell q^{\ell^2 - 3} + \frac{q^{\ell^2 - 3} - 1}{q - 1}.$$

Example (ii) continued

Hence we get a bound on the minimum distance of $\widehat{C}_{det}(t; \ell, \ell)$:

$$\hat{d} \geq q^{\ell^2-1} + q^{\ell^2-2} - (\ell-1)q^{\ell^2-3} - q^{\binom{\ell}{2}} \prod_{i=2}^\ell (q^i-1).$$

In the special case when $\ell=m=2$ and t=1, we find

$$|\widehat{\mathcal{D}}_t \cap H| \le 2q+1$$
 and $\widehat{d} \ge q^2$.

The Serre bound 2q+1 is attained if we take H to be any of the coordinate hyperplanes. Hence $d\left(\widehat{C}_{\det}(1;2,2)\right)=q^2$.

Remark: In general, the Serre bound gives a rather crude bound on the minimum distance of the determinantal code $\widehat{C}_{\text{det}}(\ell-1;\ell,\ell)$.

Weight Distribution of Determinantal Codes

Lemma (Beelen-G-Hasan, 2015)

Let $f(X) = \sum_{i=1}^{\ell} \sum_{j=1}^{m} f_{ij} X_{ij} \in \mathbb{F}_q[X]_1$ and let $F = (f_{ij})$ be the coefficient matrix of f. Then the Hamming weights of the corresponding codewords c_f of $C_{\det}(t;\ell,m)$ and \hat{c}_f of $\widehat{C}_{\det}(t;\ell,m)$ depend only on $\operatorname{rk}(F)$. In fact, $\operatorname{wt}(c_f) = \operatorname{wt}(c_{\tau_r})$ and $\operatorname{wt}(\hat{c}_f) = \operatorname{wt}(\hat{c}_{\tau_r})$, where $r = \operatorname{rk}(F)$ and $\tau_r := X_{11} + \cdots + X_{rr}$.

Weight Distribution of Determinantal Codes

Lemma (Beelen-G-Hasan, 2015)

Let $f(X) = \sum_{i=1}^{\ell} \sum_{j=1}^{m} f_{ij} X_{ij} \in \mathbb{F}_q[X]_1$ and let $F = (f_{ij})$ be the coefficient matrix of f. Then the Hamming weights of the corresponding codewords c_f of $C_{\det}(t;\ell,m)$ and \hat{c}_f of $\widehat{C}_{\det}(t;\ell,m)$ depend only on $\operatorname{rk}(F)$. In fact, $\operatorname{wt}(c_f) = \operatorname{wt}(c_{\tau_r})$ and $\operatorname{wt}(\hat{c}_f) = \operatorname{wt}(\hat{c}_{\tau_r})$, where $r = \operatorname{rk}(F)$ and $\tau_r := X_{11} + \cdots + X_{rr}$.

Corollary

Each of the codes $C_{\text{det}}(t;\ell,m)$ and $\widehat{C}_{\text{det}}(t;\ell,m)$ have at most $\ell+1$ distinct weights, w_0,w_1,\ldots,w_ℓ and $\hat{w}_0,\hat{w}_1,\ldots,\hat{w}_\ell$ respectively, given by $w_r = \text{wt}(c_{\tau_r})$ and $\hat{w}_r = \text{wt}(\hat{c}_{\tau_r}) = w_r/(q-1)$ for $r=0,1,\ldots,\ell$. Moreover, the weight enumerator polynomials A(Z) of $C_{\text{det}}(t;\ell,m)$ and $\hat{A}(Z)$ of $\widehat{C}_{\text{det}}(t;\ell,m)$ are given by $A(Z) = \sum_{r=0}^\ell \mu_r(\ell,m) Z^{w_r}$ and $\hat{A}(Z) = \sum_{r=0}^\ell \mu_r(\ell,m) Z^{\hat{w}_r}$,

Case of 2×2 minors [t = 1]

Using an elementary approach, we obtain rather easily the complete weight distribution of determinantal codes in the case t=1:

Theorem (Beelen-G-Hasan, 2015)

The nonzero weights of $\widehat{C}_{det}(1;\ell,m)$ are $\hat{w}_1,\ldots,\hat{w}_\ell$, given by

$$\hat{w}_r = \operatorname{wt}(\hat{c}_{\tau_r}) = q^{\ell+m-2} + q^{\ell+m-3} + \cdots + q^{\ell+m-r-1}$$

for $r=1,\ldots,\ell$. In particular, $\hat{w}_1<\hat{w}_2<\cdots<\hat{w}_\ell$ and the minimum distance of $\widehat{C}_{det}(1;\ell,m)$ is $q^{\ell+m-2}$.

Remark: The exponent $\ell+m-2$ of q in the minimum distance $\widehat{C}_{\text{det}}(1;\ell,m)$ is precisely the dimension of the determinantal variety $\widehat{\mathcal{D}}_t$ when t=1. Also, the relative distance $\delta=d/n$ of $\widehat{C}_{\text{det}}(1;\ell,m)$ is asymptotically equal to 1 as $q\to\infty$. On the other hand, the rate R=k/n is quite small as $q\to\infty$, but it tends to 1 as $q\to1$.

Formulas for possible weights in the general case

• Thanks to the above Lemma, the possible nonzero weights of $\widehat{C}_{\text{det}}(t;\ell,m)$ and $C_{\text{det}}(t;\ell,m)$ are precisely

$$\widehat{w}_r(t;\ell,m) = rac{w_r(t;\ell,m)}{q-1}$$
 and $w_r(t;\ell,m) = \sum_{s=1}^t \mathfrak{w}_r(s;\ell,m)$

for $r=1,\ldots,\ell$, where $\mathfrak{w}_r(s;\ell,m)$ is the number of $\ell\times m$ matrices $M\in\mathbb{M}_{\ell\times m}(\mathbb{F}_q)$ of rank s for which $\tau_r(M)\neq 0$

Formulas for possible weights in the general case

• Thanks to the above Lemma, the possible nonzero weights of $\widehat{C}_{\text{det}}(t;\ell,m)$ and $C_{\text{det}}(t;\ell,m)$ are precisely

$$\widehat{w}_r(t;\ell,m) = rac{w_r(t;\ell,m)}{q-1}$$
 and $w_r(t;\ell,m) = \sum_{s=1}^t \mathfrak{w}_r(s;\ell,m)$

for $r=1,\ldots,\ell$, where $\mathfrak{w}_r(s;\ell,m)$ is the number of $\ell\times m$ matrices $M\in\mathbb{M}_{\ell\times m}(\mathbb{F}_q)$ of rank s for which $\tau_r(M)\neq 0$

• Delsarte (1978), using an explicit determination of characters of the Schur ring of an association scheme corresponding to bilinear forms, showed that $\mathfrak{w}_r(s;\ell,m)$ equals

$$\frac{q-1}{q}\left(\mu_s(\ell,m)-\sum_{i=0}^{\ell}(-1)^{s-i}q^{im+\binom{s-i}{2}}\begin{bmatrix}\ell-i\\\ell-s\end{bmatrix}\begin{bmatrix}\ell-r\\i\end{bmatrix}\right).$$

 Ravagnani (2016) gave an alternative approach to Delsarte's formula using MacWilliams identities for suitable Delsarte rank metric codes.

More Formulas for the possible weights of det'l codes

• Ravagnani's formula for $w_r(s; \ell, m)$ is as follows.

$$\frac{1}{q}\sum_{i=0}^{\ell}(-1)^{t-i}q^{mi+\binom{s-i}{2}}\begin{bmatrix}\ell-i\\\ell-s\end{bmatrix}\left(\begin{bmatrix}\ell\\i\end{bmatrix}+(q-1)\begin{bmatrix}\ell-r\\i\end{bmatrix}\right).$$

Equivalence of Delsarte and Ravagnani's formula follows using

$$\mu_{s}(\ell,m) = \sum_{i=0}^{\ell} (-1)^{s-i} q^{mi+\binom{t-i}{2}} \begin{bmatrix} \ell-i \\ \ell-s \end{bmatrix} \begin{bmatrix} \ell \\ i \end{bmatrix}.$$

More Formulas for the possible weights of det'l codes

• Ravagnani's formula for $w_r(s; \ell, m)$ is as follows.

$$\frac{1}{q}\sum_{i=0}^{\ell}(-1)^{t-i}q^{mi+\binom{s-i}{2}}\begin{bmatrix}\ell-i\\\ell-s\end{bmatrix}\left(\begin{bmatrix}\ell\\i\end{bmatrix}+(q-1)\begin{bmatrix}\ell-r\\i\end{bmatrix}\right).$$

Equivalence of Delsarte and Ravagnani's formula follows using

$$\mu_{s}(\ell,m) = \sum_{i=0}^{\ell} (-1)^{s-i} q^{mi+\binom{t-i}{2}} \begin{bmatrix} \ell-i \\ \ell-s \end{bmatrix} \begin{bmatrix} \ell \\ i \end{bmatrix}.$$

• Beelen–G (2020) obtained two more formulas for $w_r(s; \ell, m)$:

$$\frac{q-1}{q} \sum_{j=1}^{r} q^{\binom{j}{2}} \left(\frac{[m]!}{[m-s]!} - (-1)^{j} \frac{[m-j]!}{[m-s]!} \right) q^{j(\ell-r)} q^{\binom{s-j}{2}} {r \brack s} {\ell-r \brack s-j}
= \frac{q-1}{q} \left(\mu_{s}(\ell,m) - \sum_{j=0}^{r} q^{\binom{j}{2}} (-1)^{j} \frac{[m-j]!}{[m-s]!} q^{j(\ell-r)} q^{\binom{s-j}{2}} {r \brack j} {\ell-r \brack s-j} \right).$$

Issues about using these formulas for possible weights

- It is far from obvious whether or not the possible weights $\widehat{w}_r(t;\ell,m)$ of $\widehat{C}_{\text{det}}(t;\ell,m)$ are distinct.
- It is also not clear which among the ℓ possible nonzero weights $\widehat{w}_1(t;\ell,m),\ldots,\widehat{w}_\ell(t;\ell,m)$ has the least value (so that it would give the minimum distance).
- In general, it would be interesting to know how the weights $\widehat{w}_1(t; \ell, m), \dots, \widehat{w}_\ell(t; \ell, m)$ are ordered.
- Recall that in the simple case when t=1, all these questions have nice answers since $\widehat{w}_1(1;\ell,m)<\cdots<\widehat{w}_\ell(1;\ell,m)$.
- Even in the very simple case $t = \ell$, where $\widehat{C}_{det}(t; \ell, m)$ is the simplex code of dimension ℓm , and

$$\widehat{w}_1(\ell;\ell,m) = \cdots = \widehat{w}_\ell(\ell;\ell,m) = q^{\ell m-1},$$

the above formulas give a much more complicated expression.

A partial solution and some Conjectures

Theorem (Beelen–G (2020))

Suppose $1 < r \le \ell$ and $1 \le t < \ell$. Then

$$\widehat{w}_r(t;\ell,m) - \widehat{w}_1(t;\ell,m) = q^t \widehat{w}_{r-1}(t;\ell-1,m-1),$$

Consequently, $\widehat{w}_1(t;\ell,m) < \widehat{w}_r(t;\ell,m)$. Moreover,

$$\widehat{w}_1(t;\ell,m) = q^{\ell+m-2} \sum_{s=1}^t \mu_{s-1}(\ell-1,m-1).$$

A partial solution and some Conjectures

Theorem (Beelen-G (2020))

Suppose $1 < r \le \ell$ and $1 \le t < \ell$. Then

$$\widehat{w}_r(t;\ell,m) - \widehat{w}_1(t;\ell,m) = q^t \widehat{w}_{r-1}(t;\ell-1,m-1),$$

Consequently, $\widehat{w}_1(t;\ell,m) < \widehat{w}_r(t;\ell,m)$. Moreover,

$$\widehat{w}_1(t;\ell,m) = q^{\ell+m-2} \sum_{s=1}^t \mu_{s-1}(\ell-1,m-1).$$

Conjecture (Beelen–G (2020))

Assume that t, ℓ, m are integers with $1 < t < \ell \le m$. Then:

- All weights $\widehat{w}_1(t;\ell,m),\ldots,\widehat{w}_\ell(t;\ell,m)$ are mutually distinct.
- $\widehat{w}_1(t;\ell,m) < \widehat{w}_2(t;\ell,m) < \cdots < \widehat{w}_{\ell-t+1}(t;\ell,m).$
- **③** For all $\ell t + 2 \le r \le \ell$, the weight $\widehat{w}_r(t; \ell, m)$ lies between $\widehat{w}_{r-2}(t; \ell, m)$ and $\widehat{w}_{r-1}(t; \ell, m)$. [Interlacing Conjecture]

Codes associated to General Linear Groups

In a distinct, but in hindsight, related development, Mahir Bilen Can (2023) considered the linear code, say C(m), associated to $\mathrm{GL}_m(\mathbb{F}_q)$ given by the evaluations of homogeneous linear polynomials in m^2 (matrix of) variables on elements of $\mathrm{GL}_m(\mathbb{F}_q)$. He showed that;

length(
$$C(m)$$
) = $q^{\binom{m}{2}}(q-1)^m[m]!$, dim($C(m)$) = m^2 , and min. dist.($C(m)$) = $q^{\binom{m}{2}-1}(q-1)^{m-1}((q-1)^2[m]! - [m-2]!)$

For example, C(4) is a $[q^4-q^3-q^2+q,\ 4,\ q^4-2q^3+q]$ -code. In fact, Can not only found the minimum (nonzero) weight of C(m), but also the maximum weight of C(m). This was done by analyzing for $r=1,\ldots,m$, the function

$$f_r(m) := |\mathrm{GL}_m(\mathbb{F}_q) \cap \{M \in M_m(\mathbb{F}_q) : \tau_r(M) = m_{11} + \cdots + m_{rr} = 0\}|$$

and showing that

$$\max_{1 \le r \le m} f_r(m) = f_2(m) \quad \text{and} \quad \min_{1 \le r \le m} f_r(m) = f_1(m).$$

Main Result

Theorem (Can–G)

All three parts of the conjecture hold in the affirmative. In other words, if $1 < r < \ell \le m$, then the weights $\widehat{w}_r = \widehat{w}_r(t; \ell, m)$, $r = 1, ..., \ell$, of $\widehat{C}_{det}(t; \ell, m)$ satisfy:

- **1** [Distinctness] $\widehat{w}_1, \ldots, \widehat{w}_\ell$ are mutually distinct.
- **③** [Interlacing] \widehat{w}_r lies between \widehat{w}_{r-2} and \widehat{w}_{r-1} for all $\ell t + 2 \le r \le \ell$.

Main Result

Theorem (Can–G)

All three parts of the conjecture hold in the affirmative. In other words, if $1 < r < \ell \le m$, then the weights $\widehat{w}_r = \widehat{w}_r(t; \ell, m)$, $r = 1, \dots, \ell$, of $C_{det}(t; \ell, m)$ satisfy:

- **1** [Distinctness] $\widehat{w}_1, \ldots, \widehat{w}_{\ell}$ are mutually distinct.
- **2** [Partial Monotonicity] $\widehat{w}_1 < \widehat{w}_2 < \cdots < \widehat{w}_{\ell-t+1}$.
- 3 [Interlacing] \widehat{w}_r lies between \widehat{w}_{r-2} and \widehat{w}_{r-1} for all $\ell - t + 2 < r < \ell$.

Remark: The assertions on the weights $\hat{w}_r = \hat{w}_r(t; \ell, m)$ are equivalent to similar assertions for the "Delsarte weights" $\mathfrak{w}_r = \mathfrak{w}_r(t; \ell, m)$ since for $1 \le s \le r \le \ell$ and $1 \le t < \ell$,

$$\widehat{w}_r - \widehat{w}_s = q^t \left(w_{r-1}(t; \ell-1, m-1) - w_{s-1}(t; \ell-1, m-1) \right)$$

Moreover, the first assertion is a consequence of the second and third assertions.

Some Consequences

Corollary

We know the complete weight distribution of $\widehat{C}_{det}(t; \ell, m)$. In particular.

$$min.wt\left(\widehat{C}_{\det}(t;\ell,m)\right) = \widehat{w}_1(t;\ell,m)$$

and

$$max.wt\left(\widehat{C}_{\mathsf{det}}(t;\ell,m)\right) = \widehat{w}_{\ell-t+1}(t;\ell,m).$$

Corollary

The result of Can (2023) on the minimum and maximum weights of the code associated to $\mathrm{GL}_m(\mathbb{F}_q)$ follows as a special case. More generally, we obtain the complete weight distribution of open determinantal codes $C(\widehat{\mathcal{E}}_t(\ell,m))$ and results on weights similar to those for determinantal codes, and in particular, the explicit determination of its minimum and maximum weights.

Final Remark: There are also nice connections of (the minimum distance of) determinantal codes with the rook monoids, Bruhat-Chevalley-Renner double coset decompositions, H-polynomials of certain configurations of rook placements on an $m \times m$ board, and Garsia-Remmel q-rook polynomials. But more about that some other time!

Final Remark: There are also nice connections of (the minimum distance of) determinantal codes with the rook monoids, Bruhat-Chevalley-Renner double coset decompositions, H-polynomials of certain configurations of rook placements on an $m \times m$ board, and Garsia-Remmel q-rook polynomials. But more about that some other time!

Thank you!