UNIT I - VECTOR CALCULUS

PART A

1. If $\phi = 3x^2y - y^3z^2$, find grad ϕ at (1, -1, 2)

Solution:
$$\frac{\partial \phi}{\partial x} = 6xy$$
, $\frac{\partial \phi}{\partial y} = 3x^2 - 3y^2z^2$, $\frac{\partial \phi}{\partial z} = -2y^3z$
 $grad\phi = 6xy\vec{i} + \left(3x^2 - 3y^2z^2\right)\vec{j} - 2y^3z\vec{k}$
 $(grad\phi)_{(1, -1, 2)} = -6\vec{i} - 9\vec{j} + 4\vec{k}$

2. Find $|\nabla \phi|$ if $\phi = 2xz^4 - x^2y$ at (2, -2, -1)

Solution:
$$\nabla \phi = \vec{i} \quad \frac{\partial \phi}{\partial x} + \vec{j} \quad \frac{\partial \phi}{\partial y} + \vec{k} \quad \frac{\partial \phi}{\partial z}$$

$$= \vec{i} \left(2z^4 - 2xy \right) + \vec{j} \left(-x^2 \right) + \vec{k} \left(8xz^3 \right)$$

$$(\nabla \phi)_{(2, -2, -1)} = 10\vec{i} - 4\vec{j} - 16\vec{k} \implies |\nabla \phi| = \sqrt{100 + 16 + 256} = \sqrt{372}$$

3. Find the directional derivative of $\phi = 3x^2 + 2y - 3z$ at (1, 1, 1) in the direction $2\vec{i} + 2\vec{j} - \vec{k}$

Solution:
$$\nabla \phi \cdot n = \left[(6x\vec{i} + 2\vec{j} - 3\vec{k}) \cdot \left(\frac{2\vec{i} + 2\vec{j} - \vec{k}}{3} \right) \right]_{(1,1,1)} = \frac{19}{3}$$

4. Find the unit normal vector to the surface $x^2 + xy + z^2 = 4$ at the point (1,-1,2)

Solution:
$$\phi = x^2 + xy + z^2$$
, $\left[\nabla \phi\right]_{(1,-1,2)} = \left[(2x + y)\vec{i} + x\vec{j} + 2z\vec{k}\right]_{(1,-1,2)} = \vec{i} + \vec{j} + 4\vec{k}$

$$\therefore \hat{n} = \frac{\nabla \phi}{|\nabla \phi|} = \frac{\vec{i} + \vec{j} + 4\vec{k}}{\sqrt{18}}$$

5. Find the angle between the surfaces $x \log z = y^2 - 1$ and $x^2y = 2 - z$ at the point (1, 1, 1) Solution: Let $\phi_1 = y^2 - x \log z - 1$

$$\nabla \phi_{1} = -\log z \ \vec{i} + 2y\vec{j} - \frac{x}{z}\vec{k} \ , \ (\nabla \phi_{1})_{(1,1,1)} = 2\vec{j} - \vec{k} \ \text{and} \ |\nabla \phi_{1}| = \sqrt{5}$$
 Let $\phi_{2} = x^{2}y - 2 + z$
$$\nabla \phi_{2} = \vec{i} (2xy) + \vec{j}x^{2} + \vec{k} (1) \ , \ (\nabla \phi_{2})_{(1,1,1)} = 2\vec{i} + \vec{j} + \vec{k} \ \text{and} \ |\nabla \phi_{2}| = \sqrt{6}$$

$$\cos\theta = \frac{\nabla \phi_{1} \cdot \nabla \phi_{2}}{|\nabla \phi_{1}| |\nabla \phi_{2}|} = \frac{0 + 2 - 1}{\sqrt{30}} \quad \Rightarrow \quad \theta = \cos^{-1} \left(\frac{1}{\sqrt{30}}\right)$$

6. In what direction from (-1,1,2) is the directional derivative of $\phi = xy^2z^3$ a maximum. Find also the magnitude of this maximum.

Solution: Given $\phi = xy^2z^3$

$$\nabla \phi = (y^2 z^3) \vec{i} + (2xyz^3) \vec{j} + (3xy^2 z^2) \vec{k}$$
 and $\nabla \phi$ at $(1,1,2) = 8\vec{i} - 16\vec{j} - 12\vec{k}$

... The maximum directional derivative occurs in the direction of $\nabla \phi = 8\vec{i} - 16\vec{j} - 12\vec{k}$

The magnitude of this max. directional derivative = $|\nabla \phi| = \sqrt{464}$

7. Prove that $\nabla (r^n) = nr^{n-2}\vec{r}$

Solution:

St. Joseph's College of Engineering & St. Joseph's Institute of Technology Page No: 1 ISO 9001:2008

$$\nabla (r^n) = \sum_{i} \vec{i} \frac{\partial r^n}{\partial x} = \sum_{i} \vec{i} n r^{n-1} \frac{x}{r} = \sum_{i} \vec{i} n r^{n-2} x = n r^{n-2} (x \vec{i} + y \vec{j} + z \vec{k}) = n r^{n-2} \vec{r}$$

If $\vec{F} = x^3 \vec{i} + y^3 \vec{j} + z^3 \vec{k}$, find div curl \vec{F} 8. **Solution:**

$$curl\vec{F} = \nabla \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^3 & y^3 & z^3 \end{vmatrix}$$

div (curl \vec{F}) = $\nabla \cdot (\nabla \times \vec{F}) = 0$

Find 'a', such that $(3x-2y+z)\vec{i} + (4x+ay-z)\vec{j} + (x-y+2z)\vec{k}$ is solenoidal. 9. **Solution:** div $\vec{F} = \nabla \cdot [(3x-2y+z)\vec{i} + (4x+ay-z)\vec{j} + (x-y+2z)\vec{k}] = 3+a+2=5+a$ $\operatorname{div} \vec{F} = 0 \implies a = -5$

If \vec{A} and \vec{B} are irrotational vectors prove that $\vec{A} \times \vec{B}$ is solenoidal. 10.

Solution: \vec{A} is irrotational \Rightarrow curl $\vec{A} = 0$ and \vec{B} is irrotational \Rightarrow curl $\vec{B} = 0$ $\nabla \cdot (\vec{A} \times \vec{B}) = \vec{B} \cdot (\text{curl } \vec{A}) - \vec{A} \cdot (\text{curl } \vec{B}) = \vec{B} \cdot 0 - \vec{A} \cdot 0 = 0$ $\vec{A} \times \vec{B}$ is solenoidal.

Show that the vector $\vec{F} = (6xy + z^3)\vec{i} + (3x^2 - z)\vec{j} + (3xz^2 - y)\vec{k}$ is irrotational. 11. **Solution:**

$$curl\vec{F} = \nabla \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 6xy + z^3 & 3x^2 - z & 3xz^2 - y \end{vmatrix} = \vec{i}(-1+1) - \vec{j}(3z^2 - 3z^2) + \vec{k}(6x - 6x) = 0$$

 \vec{F} is irrotational

If $\vec{F} = 5xy\vec{i} + 2y\vec{j}$, evaluate $\int \vec{F} d\vec{r}$ where C is the part of the curve $y = x^3$ between x = 1 and x = 212.

Solution: $y = x^3 \Rightarrow dy = 3x^2 dx$

$$\int_{c} \vec{F} \cdot d\vec{r} = \int_{c} (5xydx + 2ydy) = \int_{1}^{2} (5x^{4} + 6x^{5})dx = \left[x^{5} + x^{6}\right]_{1}^{2} = 31 + 63 = 94$$
If $\vec{F} = x^{2}\vec{i} + xy^{2}\vec{j}$, evaluate the line integral $\int_{c} \vec{F} \cdot d\vec{r}$ from (0,0) to (1,1) along the path $y = x$

13.

Solution:
$$\int_{c} \vec{F} \cdot d\vec{r} = \int_{c} x^{2} dx + xy^{2} dy \qquad (\because y = x)$$
$$= \int_{0}^{1} (x^{2} + x^{3}) dx = \frac{7}{12}$$

If $\vec{F} = (4xy - 3x^2z^2)\vec{i} + 2x^2\vec{j} - 2x^3z \ \vec{k}$. Check whether the integral $\int \vec{F} \cdot dr$ is independent of the 14. path C

St. Joseph's College of Engineering & St. Joseph's Institute of Technology Page No: 2 ISO 9001:2008

Solution: This integral is independent of the path of integration if $\nabla \times \vec{F} = 0$

$$\nabla \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 4xy - 3x^2 z^2 & 2x^2 & -2x^3 z \end{vmatrix} = 0$$

Hence the line integral is independent of path.

15. State Stoke's theorem.

Statement: If S is an open surface bounded by a simple closed curve C and if a vector function \vec{F} is continuous and has continuous partial derivatives in S and on C, then $\iint curl\vec{F} \cdot \hat{n}ds = \int \vec{F} \cdot d\vec{r}$

Where \hat{n} is the unit vector normal to the surface.

16. State Green's Theorem

Statement: If M(x,y) and N(x,y) are continuous function with continuous partial derivatives in a region

R of the xy plane bounded by a simple closed curve C, then $\oint Mdx + Ndy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy$

Where C is the curve described in positive direction.

State Gauss Divergence Theorem. **17.**

Statement: If V is the volume bounded by a closed surface S and if a vector function \vec{F} is continuous partial derivative in V and on S , then $\iint_S \vec{F} \cdot \hat{n} \, ds = \iiint_V div \vec{F} \, dv$

Where \hat{n} is the unit vector normal to the surface.

Using Divergence theorem, evaluate $\iint x dy dz + y dz dx + z dx dy$ over the surface of the sphere **18.**

$$x^2 + y^2 + z^2 = a^2$$

Solution: By Divergence theorem, $\iint_{S} \vec{F} \cdot \hat{n} \, ds = \iiint_{K} div \vec{F} \, dv$

$$\iint_{S} x dy dz + y dz dx + z dx dy = \iiint_{V} \nabla \cdot \vec{F} dv = \iiint_{V} 3 dv = 3 \left(\frac{4}{3} \pi a^{3} \right) = 4 \pi a^{3}$$

19. Find the area of a circle of radius 'a' using Green's theorem.

Solution: We know that the Green's theorem is $\oint M dx + N dy = \iiint_{\mathcal{O}} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$

Area = $\frac{1}{2} \int_c (x dy - y dx)$ on $x^2 + y^2 = a^2$. We have $x = a \cos \theta$ $y = a \sin \theta$, $\theta: 0 \rightarrow 2\pi$

Therefore Area =
$$\frac{1}{2} \int_{0}^{2\pi} (a^{2} \cos^{2} \theta + a^{2} \sin^{2} \theta) d\theta = \frac{a^{2}}{2} \int_{0}^{2\pi} d\theta = \pi a^{2}$$

If S is any closed surface enclosing a volume V and $\vec{F} = ax\vec{i} + by\vec{j} + cz\vec{k}$, prove that 20.

$$\iint\limits_{S} \vec{F} \cdot n \, ds = (a+b+c)V$$

Solution:
$$\iint_{S} \vec{F} \cdot \hat{n} \, ds = \iiint_{V} div \vec{F} \, dv$$
 div \vec{F} =a+b+c;
$$\iint_{S} \vec{F} \cdot \vec{n} ds = \iiint_{V} div \vec{F} \cdot dv = (a+b+c) \iiint_{V} dv = (a+b+c) V$$

PART B

- 1(a) Find the directional derivative of $\phi = 2xy + z^2$ at the point (1,-1,3) in the direction of $\vec{i} + 2\vec{j} + 2\vec{k}$
- (b) Show that $\vec{F} = (4xy z^3)\vec{i} + 2x^2\vec{j} 3xz^2\vec{k}$ is irrotational and find its scalar potential.
- 2(a) Find the angle between the normals to the surface $xy^3z^2 = 4$ at the points (-1,-1,2) and (4,1,-1)
- (b) Find the constants a, b, c so that $\vec{F} = (x + 2y + az)\vec{i} + (bx 3y z)\vec{j} + (4x + cy + 2z)\vec{k}$ is irrotational.
- 3(a) If \vec{r} is the position vector of the point (x,y,z), Prove that $\nabla^2 r^n = n(n+1)r^{n-2}$
- (b) Prove that $\nabla^2 \left(r^n \vec{r} \right) = n(n+3)r^{n-2} \vec{r}$
- Find the work done when a force $\vec{F} = (x^2 y^2 + x)\vec{i} (2xy + y)\vec{j}$ moves a particle in the XY -Plane from (0,0) to (1,1) along the parabola $y^2 = x$
- (b) Evaluate $\int_C ((x^2 + xy)dx + (x^2 + y^2)dy)$ where C is the square bounded by the lines x=0, x=1, y=0 and y=1
- Verify Green's theorem for $\int_C \left(x^2 dx xy dy\right)$ where C is the boundary of the square formed by the lines x = 0, y = 0, x = a, y = a
- Verify Green's theorem in the XY plane for $\int_C \left[\left(3x 8y^2 \right) dx + \left(4y 6xy \right) dy \right]$ where C is the
 - boundary of the region given by x = 0, y = 0, x+y = 1
- Verify Gauss- Divergence theorem for $\vec{A} = 4xz\vec{i} y^2\vec{j} + yz\vec{k}$ over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1
- Evaluate $\iint_S \vec{F} \cdot n \, ds$ where $\vec{F} = 4x\vec{i} 2y^2\vec{j} + z^2\vec{k}$ and S is the surface bounding the region $x^2 + y^2 = 4$, z = 0 and z = 3
- Verify Stoke's theorem for $\vec{F} = x^2 \vec{i} xy \vec{j}$ in the square region in the XY- plane bounded by the lines x = 0, y = 0, x = a and y = a
- 10(a) Evaluate the integral, $\int_C [(x+y)dx + (2x-z)dy + (y+z)dz]$ where C is the boundary of the triangle with vertices (2,0,0), (0,3,0) and (0,0,6) using Stoke's theorem.
 - (b) If $\vec{F} = (2x^2 3z)\vec{i} 2xy\vec{j} 4x\vec{k}$, Evaluate $\iiint_V \nabla \times \vec{F} dV$ where V is the region bounded by x = 0, x = 1, y = 0, y = 2, z = 0, z = 3

UNIT II - ORDINARY DIFFERENTIAL EQUATIONS

1. Solve
$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$$

Solution: Given $(D^2 - 5D + 6)y = 0$

The Auxiliary equation (A.E) is $m^2 - 5m + 6 = 0$

$$(m-2)(m-3)=0$$

 $m_1 = 2$, $m_2 = 3$ The roots are real and distinct.

Complementary function is (C.F) = $Ae^{m_1x} + Be^{m_2x} = Ae^{2x} + Be^{3x}$, Since R.H.S = 0 : P.I. = 0

 \therefore The general solution is $y = Ae^{2x} + Be^{3x}$

2. Solve
$$(D^3 + D^2 - D - 1)y = 0$$

Solution: The A.E. is $m^3 + m^2 - m - 1 = 0$

$$m^{2}(m+1)-1(m+1)=0$$

$$\left(m^2 - 1\right)\left(m + 1\right) = 0$$

$$m^2 = 1, m = -1$$
 $m = \pm 1, m = -1$ $m_1 = 1, m_2 = m_3 = -1$

Roots are real, distinct and equal

$$\therefore C.F. = Ae^{m_1x} + (Bx + C)e^{m_2x} = Ae^x + (Bx + C)e^{-x}$$

$$\therefore R.H.S. = 0, \therefore P.I. = 0$$
 $\therefore y = Ae^x + (Bx + C)e^{-x}$

3. Solve
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 13y = 0$$

Solution: Given $(D^2 - 6D + 13)y = 0$

The Auxiliary equation (A.E) is $m^2 - 6m + 13 = 0$

$$m = 3 \pm 2i$$
 $(\alpha \pm i\beta)$:. The roots are complex $(\alpha = 3, \beta = 2)$

C.F. =
$$e^{\alpha x} (A \cos \beta x + B \sin \beta x) = e^{3x} (A \cos 2x + B \sin 2x)$$
, $\therefore R.H.S = 0$ $\therefore P.I. = 0$

$$y = e^{3x} \left(A \cos 2x + B \sin 2x \right)$$

4. Find the P.I. of $(D^2 + 2D + 2)y = \cosh x$

Solution: P.I.
$$=\frac{1}{D^2 + 2D + 2} \cosh x = \frac{1}{D^2 + 2D + 2} \left(\frac{e^x + e^{-x}}{2} \right)$$
 $\left(\because \cosh x = \frac{e^x + e^{-x}}{2} \right)$

$$= \frac{1}{2} \left[\frac{1}{D^2 + 2D + 2} e^x + \frac{1}{D^2 + 2D + 2} e^{-x} \right] = \frac{1}{2} \left[\frac{e^x}{1^2 + 2(1) + 2} + \frac{e^{-x}}{(-1)^2 + 2(-1) + 2} \right]$$

St. Joseph's College of Engineering & St. Joseph's Institute of Technology Page No: 5 ISO 9001:2008

$$\therefore \qquad \text{P.I.} = \frac{1}{2} \left(\frac{e^x}{5} + e^{-x} \right)$$

5. Find the P.I. of $(D^2 + 3)y = \sin 3x$

Solution: P.I. =
$$\frac{1}{D^2 + 3} \sin 3x$$
 $\left(D^2 = -a^2 = -9\right)$
= $\frac{\sin 3x}{-9 + 3}$

$$\therefore \qquad P.I. = -\frac{\sin 3x}{6}$$

6. Find the P.I. of $(D^2 + 2)y = x^2$

Solution:
$$P.I. = \frac{1}{2+D^2} x^2 = \frac{x^2}{2\left[1 + \frac{D^2}{2}\right]} = \frac{1}{2} \left[1 + \frac{D^2}{2}\right]^{-1} x^2$$

$$= \frac{1}{2} \left[1 - \frac{D^2}{2} + \frac{D^4}{4} - \cdots\right] x^2 \qquad \left[\because (1+x)^{-1} = 1 - x + x^2 - \cdots\right]$$

$$= \frac{1}{2} \left[1 - \frac{D^2}{2}\right] x^2 = \frac{1}{2} \left[x^2 - \frac{D^2(x^2)}{2}\right] \qquad \text{(Omitting Higher terms of } D^2\text{)}$$

$$= \frac{1}{2} \left[x^2 - \frac{D(2x)}{2}\right] = \frac{1}{2} \left[x^2 - 1\right]$$

7. Find the Particular integral of $(D^2 + 4D + 4)y = e^{-2x}x$

Solution: P.I =
$$\frac{e^{-2x}x}{(D+2)^2} = e^{-2x} \frac{x}{((D-2)+2)^2} = e^{-2x} \frac{1}{D^2}(x) = e^{-2x} \frac{1}{D} \int x \, dx = e^{-2x} \int \frac{x^2}{2} \, dx = \frac{e^{-2x}x^3}{6}$$

8. Find the Particular integral of $(D^2 + 6)y = \sin x \cos x$

Solution:
$$P.I. = \frac{1}{D^2 + 6} \sin x \cos x$$
 $\left(\because \sin 2x = 2 \sin x \cos x \Rightarrow \sin x \cos x = \frac{\sin 2x}{2}\right)$
 $= \frac{1}{2} \left(\frac{\sin 2x}{-4 + 6}\right)$ $\left(D^2 = -\left(2^2\right)\right)$
 $= \frac{1}{2} \left(\frac{\sin 2x}{2}\right) = \frac{\sin 2x}{4}$

9. Find the solution of x from $\frac{dy}{dt} = x$, $\frac{dx}{dt} = y$

Solution: Given Dy = x, Dx = y

$$Dy - x = 0$$
 ----- (1) $-y + Dx = 0$ ----- (2)

Eliminate y from (1) and (2), we get

$$\left(D^2 - 1\right)x = 0$$

A.E. is
$$m^2 - 1 = 0$$
 $m = \pm 1$

$$C.F. = Ae^t + Be^{-t}$$

Since
$$R.H.S. = 0 \Rightarrow P..I. = 0$$
 : $x(t) = Ae^t + Be^{-t}$

10. Obtain the differential equation in terms of y, $\frac{dx}{dt} + 2x - 3y = 5t$, $\frac{dy}{dt} - 3x + 2y = 0$

Solution:
$$(D+2)x-3y=5t$$
 ----- (1) $-3x+(D+2)y=0$ ----- (2)

Eliminate x from (1) and (2), we get

$$(1) \times 3 \Rightarrow \qquad \qquad 3(D+2)x - 9y = 15t$$

$$(2)\times(D+2) \Rightarrow -3(D+2)x + (D+2)^2y = 0$$

$$(D+2)^2 - 9 y = 15t$$

$$(D^2 + 4D + 4 - 9) y = 15t$$

$$(D^2 + 4D - 5) y = 15t$$

11. Write Cauchy's homogeneous linear equation.

Answer:
$$x^n \frac{d^n y}{dx^n} + a_1 x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + a_2 x^{n-2} \frac{d^{n-2} y}{dx^{n-2}} + \dots + a_n y = X$$

12. Solve
$$x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = 0$$

Solution:
$$(x^2D^2 + 4xD + 2)y = 0$$

 $x = e^z$, $z = \log x$, $xD = \theta$, $x^2D^2 = \theta(\theta - 1)$
 $[\theta(\theta - 1) + 4\theta + 2]z = 0 \Rightarrow (\theta^2 + 3\theta + 2)z = 0$
 $m^2 + 3m + 2 = 0 \Rightarrow m = -2, -1$
 $z = Ae^{-2z} + Be^{-z}$
 $y = Ae^{-2\log x} + Be^{-\log x}$ $\therefore y = \frac{A}{x^2} + \frac{B}{x}$

13. Transform the equation $x^2 \frac{d^2y}{dx^2} + 6x \frac{dy}{dx} + 2y = x \log x$ into linear differential equation with constant coefficients.

Solution: $\left(x^2D^2 + 6xD + 2\right)y = x\log x$

$$x = e^{z}$$
, $z = \log x$, $xD = \theta$, $x^{2}D^{2} = \theta(\theta - 1)$

$$\left[\theta(\theta-1) + 6\theta + 2\right]y = e^{z}z \Rightarrow \left(\theta^{2} + 5\theta + 2\right)y = e^{z}z$$

14. Transform the equation $(x^2D^2 - xD + 1)y = \left(\frac{\log x}{x}\right)^2$ into linear differential equation with constant coefficients.

Solution: $(x^2D^2 + 6xD + 2)y = x \log x$

$$x = e^z$$
, $z = \log x$, $xD = \theta$, $x^2D^2 = \theta(\theta - 1)$

$$\therefore \left(\theta^2 - 2\theta + 1\right) y = \left(ze^{-z}\right)^2$$

15. Write Legendre's linear equation.

Answer: $(a+bx)^n \frac{d^n y}{dx^n} + A_1(a+bx)^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + A_2(a+bx)^{n-2} \frac{d^{n-2} y}{dx^{n-2}} + ... + A_n y = f(x)$

 A_1, A_2, \dots are constants.

16. Transform the equation $[(2x+3)^2 D^2 - (2x+3)D - 12]y = 6x$ into linear differential equation with constant coefficients.

Solution: Put $2x+3=e^z$, $z = \log(2x+3)$, $x = \frac{e^z-3}{2}$

$$(2x+3)^2 D^2 = 4(\theta^2 - \theta)$$

$$(2x+3)D = 2\theta$$

Hence the D.E is $\left(4\theta^2 - 6\theta - 12\right)y = 3e^z - 9$

17. Transform the equation $[(3x+5)^2 D^2 - 6(3x+5)D + 8]y = 0$ into linear differential equation with constant coefficients.

Solution: Put $3x + 5 = e^z$, $z = \log(3x + 5)$

$$(3x+5)^2 D^2 = 9(\theta^2 - \theta)$$

$$(3x+5)D = 3\theta$$

Hence the given equation becomes $\left[9(\theta^2 - \theta) - 18\theta + 8\right]y = 0 \Rightarrow \left(9\theta^2 - 27\theta + 8\right)y = 0$

18. Transform the equation $\left[(x-2)D^2 - 6D + \frac{8}{(x-2)} \right] y = 0$ into linear differential equation with constant coefficients.

St. Joseph's College of Engineering & St. Joseph's Institute of Technology Page No: 8 ISO 9001:2008

Solution: Pre multiply (x-2) on both sides $\left[(x-2)^2 D^2 - 6(x-2)D + 8 \right] y = 0$

$$(x-2)=e^z, z=\log(x-2)$$

$$(x-2)^2 D^2 = 1^2 (\theta^2 - \theta) = \theta^2 - \theta$$

$$(x-2)$$
 $D = 1$ $\theta = \theta$

 \therefore (1) implies

$$\left[\left(\theta^2 - \theta \right) - 6\theta + 8 \right] y = 0$$

$$\left[\theta^2 - 7\theta + 8\right]y = 0$$

19. Write down the P.I. formula of solving ODE using Method of variation of parameters.

Solution:

$$P.I.=P f_1 + Q f_2$$

Where
$$P = -\int \frac{f_2 X}{f_1 f_2 - f_1 f_2} dx$$
; $Q = \int \frac{f_1 X}{f_1 f_2 - f_1 f_2} dx$

20. Find Q from the given C.F and $(D^2 + 4)y = 4\tan 2x$

Solution:

$$C.F = C_1 \cos 2x + C_2 \sin 2x$$

$$f_1 = \cos 2x, \ f_2 = \sin 2x$$

$$f_1 f_2' - f_2 f_1' = \cos 2x (2\cos 2x) - \sin 2x (-2\sin 2x) = 2(\cos^2 2x + \sin^2 2x) = 2$$

$$Q = \int \frac{f_1 X}{f_1 f_2' - f_2 f_1'} dx = \int \frac{\cos 2x (4 \tan 2x)}{2} dx = 2 \int \sin 2x dx = -\cos 2x + c$$

PART B

1 (a) Solve
$$(D^2 + 16)y = \cos^2 x$$

(b) Solve
$$(D^2 + 4D + 3)y = e^{-x} \sin x$$

2 (a) Solve
$$(D^2 - 4D + 4)y = e^{2x} + x^2$$

(b) Solve
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 3y = \sin 3x \cos 2x$$

3 (a) Solve
$$\frac{dx}{dt} + 2y = -\sin t, \frac{dy}{dt} - 2x = \cos t$$

(b) Solve
$$\frac{dx}{dt} - 7x + y = 0$$
, $\frac{dy}{dt} - 2x - 5y = 0$

4 (a) Solve
$$\frac{dx}{dt} + \frac{dy}{dt} + x + y = 10e^t$$
, $\frac{dx}{dt} - \frac{dy}{dt} + x - y = 0$ given $x(0) = 2$, $y(0) = 3$

(b) Solve
$$Dx + y = e^t$$
, $x - Dy = t$

5 (a) Solve
$$(x^2D^2 - 3xD + 4)y = x^2\cos(\log x)$$

St. Joseph's College of Engineering & St. Joseph's Institute of Technology Page No: 9 ISO 9001:2008

- (b) Solve $(x^2D^2 2xD 4)y = x^2 + 2\log x$
- 6 (a) Solve $\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} = \frac{12\log x}{x^2}$
 - (b) Solve $x^2 \frac{d^2 y}{dx^2} 3x \frac{dy}{dx} + 4y = (1+x)^2$
- 7 (a) Solve $(3x+2)^2 y'' + 3(3x+2)y' 36y = 3x^2 + 4x + 1$
 - (b) Solve $(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin[\log(1+x)]$
- 8 (a) Solve $(2+x)^2 \frac{d^2y}{dx^2} (2+x)\frac{dy}{dx} + y = 2+x$
 - (b) Solve $(2x-3)^2 y'' 2(2x-3)y' 12y = 6x 9$
- 9 (a) Solve by the method of variation of parameters $\frac{d^2y}{dx^2} + 4y = \sec 2x$
- (b) Solve by the method of variation of parameters $\frac{d^2y}{dx^2} + y = \tan x$
- 10(a) Solve $(D^2 4D + 4)y = e^{2x}$ by method of variation of parameters.
 - (b) Solve by the method of variation of parameters $\frac{d^2y}{dx^2} + y = x \sin x$

UNIT- III LAPLACE TRANFORM PART A

1. State under which conditions Laplace transform of f(t) exists.

Answer: The Laplace transform of f(t) exists if

- (i) f(t) is piecewise continuous in [a,b] where a > 0.
- (ii) f(t) is of exponential order.
- 2. Find the Laplace transform of $e^{-2t}t^{\frac{1}{2}}$.

Solution:
$$L\left[e^{-2t}t^{\frac{1}{2}}\right] = L\left[t^{\frac{1}{2}}\right]_{s \to s+2}$$
 :: If $L\left[f(t)\right] = F(s)$, then $L\left[e^{-at}f(t)\right] = F(s)|_{s \to s+2}$

$$= \left[\Gamma\left(\frac{1}{2} + 1\right)\right]_{s \to s+2} = \frac{\sqrt{\pi}}{2(s+2)^{\frac{3}{2}}}$$

3. If L[f(t)] = F(s), prove that $L\{f(t/5)\} = 5 F(5s)$.

Solution:
$$L\left[f\left(\frac{t}{5}\right)\right] = \int_{0}^{\infty} e^{-st} f\left(\frac{t}{5}\right) dt$$

put
$$\frac{t}{5} = u \implies 5 du = dt$$

$$\therefore L \left[f\left(\frac{t}{5}\right) \right] = \int_{0}^{\infty} e^{-5su} f(u) 5du = 5 \int_{0}^{\infty} e^{-(5s)u} f(u) du = 5 \text{ F(5s)}$$

4. Find the Laplace transform of unit step function.

Solution: The unit step function is defined as $u_a(t) = \begin{cases} 0, t < a \\ 1, t > a, a \ge 0 \end{cases}$

We know that, $L[f(t)] = \int_{0}^{\infty} e^{-st} f(t) dt$

Therefore $L[u_a(t)] = \frac{e^{-as}}{s}$

5. Find the Laplace transform of $f(t) = \cos^2 3t$.

6. Does $L\left[\frac{\cos at}{t}\right]$ exist?

Solution: $\lim_{t \to 0} \frac{f(t)}{t} = \lim_{t \to 0} \frac{\cos at}{t} = \frac{1}{0} = \infty$

 $\therefore L \left[\frac{\cos at}{t} \right]$ does not exist.

7. Obtain the Laplace transform of sin2t – 2tcos2t in the simplified form.

Solution: $L[\sin 2t - 2t\cos 2t] = L[\sin 2t] - 2L[t\cos 2t]$

$$= \frac{2}{s^2 + 4} - (-1)\frac{d}{ds} \left(\frac{s}{s^2 + 4}\right)$$

$$= \frac{2}{s^2 + 4} + \left(\frac{4 - s^2}{\left(s^2 + 4\right)^2}\right)$$

$$= \frac{s^2 + 12}{\left(s^2 + 4\right)^2}$$

8. Find $L^{-1} \left[\frac{s+2}{s^2+2s+2} \right]$

Solution: $L^{-1} \left[\frac{s+2}{s^2 + 2s + 2} \right] = L^{-1} \left[\frac{(s+1)+1}{(s+1)^2 + 1} \right]$ = $L^{-1} \left[\frac{(s+1)}{(s+1)^2 + 1} \right] + L^{-1} \left[\frac{1}{(s+1)^2 + 1} \right]$

$$=e^{-t}\left(L^{-1}\left[\frac{s}{s^2+1}\right]+L^{-1}\left[\frac{1}{s^2+1}\right]\right)$$
$$=e^{-t}\left(\cos t + \sin t\right)$$

9. What is the Laplace transform of f(t) = f(t+10), 0 < t < 10? Solution: Given that f(t) is a periodic function with period 10

$$L\{f(t)\} = \frac{1}{1 - e^{-ps}} \int_{0}^{p} e^{-st} f(t) dt$$
Put p=10, L\{f(t)\} = \frac{1}{1 - e^{-10s}} \int_{0}^{10} e^{-st} f(t) dt

10. If L {f(t)} = F(S), find the value of $\int_{0}^{\infty} f(t)dt$

Solution:
$$\int_{0}^{\infty} f(t)dt = \left[\int_{0}^{\infty} e^{-st} f(t)dt\right]_{s=0} = \left[L[f(t)]\right]_{s=0} = \left[\frac{s+2}{s^2+4}\right]_{s=0} = \frac{1}{2}$$

11. Find $L^{-1}\left(\frac{s}{(s+2)^3}\right)$

Solution:
$$L^{-1} \left(\frac{s}{(s+2)^3} \right) = L^{-1} \left(\frac{s+2-2}{(s+2)^3} \right)$$

$$= L^{-1} \left(\frac{1}{(s+2)^2} \right) - 2 L^{-1} \left(\frac{1}{(s+2)^3} \right)$$

$$= e^{-2t} L^{-1} \left(\frac{1}{s^2} \right) - e^{-2t} L^{-1} \left(\frac{2}{s^3} \right) = e^{-2t} t(1-t)$$

12. Find the Laplace transform sin³2t

Solution:
$$L[\sin^3 2t] = \frac{1}{4}L[\sin 2t - \sin 6t] = \frac{3}{4}L[\sin 2t] - \frac{1}{4}L[\sin 6t]$$

$$= \frac{3}{4}\left(\frac{2}{s^2+4}\right) - \frac{1}{4}\left(\frac{6}{s^2+36}\right) = \frac{3}{2}\left(\frac{1}{s^2+4}\right) - \frac{6}{4}\left(\frac{1}{s^2+36}\right)$$

13. Find $L^{-1}\left(\tan^{-1}\left(\frac{1}{s}\right)\right)$

Solution: Let
$$F(s) = L^{-1} \left(\tan^{-1} \left(\frac{1}{s} \right) \right)$$

 $F'(s) = \frac{1}{1 + (1/s)^2} \left(\frac{-1}{s^2} \right) = \frac{-1}{s^2 + 1}$

$$\therefore L^{-1}(F'(s)) = -\sin t; \qquad L^{-1}(F(s)) = \frac{-1}{t}L^{-1}[F'(s)]$$
$$\therefore L^{-1}\left(\tan^{-1}\left(\frac{1}{s}\right)\right) = \frac{\sin t}{t}$$

14. Solve using Laplace transform $\frac{dy}{dt} + y = e^{-t}$ given that y(0)=0.

Solution: Taking L.T. on both sides, we get $L[y'] + L[y] = L[e^{-t}]$

15. Give an example for a function that do not have Laplace transform.

Solution: Consider $f(t) = e^{t^2}$, since $\lim_{t \to \infty} e^{-st} e^{t^2} = \infty$, hence e^{t^2} is not of exponential order function.

Hence $f(t)=e^{t^2}$, does not have Laplace transform.

16. Can F(s) = $\frac{s^3}{(s+1)^2}$ be the transform of some f(t)?

Solution:
$$\lim_{s \to \infty} F(s) = \lim_{s \to \infty} \frac{s^3}{(s+1)^2} \neq 0$$

Hence F(s) cannot be Laplace transform of f(t).

17. Evaluate $\int_{0}^{t} \sin u \cos(t-u) du$

Solution: Let
$$L\begin{bmatrix} \int_0^t \sin u \cos(t-u) du \end{bmatrix} = L[\sin t * \cos t]$$

$$= L[\sin t] L[\cos t] \quad \text{(by Convolution theorem)}$$

$$= \frac{s}{(s^2+1)} \frac{1}{(s^2+1)}$$

$$= \frac{s}{(s^2+1)^2}$$

$$\int_0^t \sin u \cos(t-u) du = L^{-1} \left[\frac{s}{(s^2+1)^2} \right] = \frac{t}{2} \sin t$$

18. Give an example for a function having Laplace transform but not satisfying the continuity condition.

Answer: $f(t) = t^{-1/2}$ has Laplace transform even though it does not satisfy the continuity condition. i.e. It

St. Joseph's College of Engineering & St. Joseph's Institute of Technology Page No: 13 ISO 9001:2008

is not piecewise continuous in $(0,\infty)$ as $t \to 0$ $f(t) = \infty$

19. Define a Periodic function and give examples.

Definition: A function f (t) is said to be periodic function if f(t + p) = f(t) for all t. The least value of p > 0 is called the period of f(t). For example, $\sin t$ and $\cos t$ are periodic functions with period 2π

20. State the Convolution theorem.

Answer: The convolution of two functions f(t) and g(t) is defined as $f(t) * g(t) = \int_{0}^{t} f(u)g(t-u)du$

PART B

- 1 (a) Find the Laplace transform of (i) $t^2 e^{-t} \cos t$ (ii) $\cosh at \cos at$
 - (b) Find $L[t^2e^t\sin t]$
- 2 (a) Find $L \left[\frac{\sin^2 t}{t} \right]$
 - (b) Find the Laplace transform of $e^{-4t} \int_{0}^{t} t \sin 3t dt$
- 3 (a) Evaluate $\int_{0}^{\infty} te^{-2t} \cos t dt$ using Laplace transform.
 - (b) Verify initial and final value theorems for the function $f(t) = 1 + e^{-t}(\sin t + \cos t)$
- 4 (a) Find the Laplace transform of the Periodic function $f(t) = \begin{cases} k, & 0 \le t \le a \\ -k, & a \le t \le 2a \end{cases}$ and f(t+2a) = f(t) for all t = t
 - (b) Find the Laplace transform of $f(t) = \begin{cases} t, & 0 \le t \le a \\ 2a t, & a \le t \le 2a \end{cases}$ and f(t+2a) = f(t) for all t
- 5 (a) Find the Laplace transform of the rectangular wave given by $f(t) = \begin{cases} \sin \omega t, & 0 < t < \frac{\pi}{\omega} \\ 0, & \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases}$
 - (b) Find the inverse Laplace transform of $\frac{1}{(s+1)(s^2+4)}$
- 6 (a) Find $L^{-1} \left[\frac{5s^2 15s 11}{(s+1)(s-2)^3} \right]$
 - (b) Find the inverse Laplace transform of $\log \left(\frac{1+s}{s^2} \right)$
- 7 (a) Find the inverse Laplace transform of $\frac{s^2}{(s^2+a^2)(s^2+b^2)}$ using convolution theorem.
 - (b) Using Convolution theorem find the inverse Laplace transform of $\frac{2}{(s+1)(s^2+4)}$

- Using Convolution theorem find $L^{-1} \left[\frac{s}{\left(s^2 + a^2\right)^2} \right]$ 8 (a)
- Solve Using Convolution theorem find $L^{-1} \left[\frac{s^2}{(s^2+9)(s^2+25)} \right]$ **(b)**
- Solve the equation y"+ 9y=cos2t with y(0) = 1 y $(\frac{\pi}{2})$ = -1 9 (a)
 - Solve $y'' + 2y' 3y = \sin t$, given y(0) = 0, y'(0) = 0
- Using Laplace transform solve the differential equation $y'' 3y' 4y = 2e^{-t}$ with y(0) = y'(0) = 1. 10(a)
 - (b) Determine y which satisfies the equation $\frac{dy}{dt} + 2y + \int_{0}^{t} y dt = 2\cos t$, y(0) = 1

UNIT-IV ANALYTIC FUNCTIONS

Define an analytic function (or) harmonic function (or) Regular function. 1.

Answer: A function is said to be analytic at a point if its derivative exists not only at that point but also in some neighbourhood of that point.

Define an entire function. 2.

> **Answer:** A function which is analytic everywhere in the finite plane is called an entire function. An entire function is analytic everywhere except at $z = \infty$

Ex. e^z, sinz, cosz, sinhz, coshz

State the necessary condition for f(z) to be analytic [Cauchy – Riemann Equations]. **3.**

Answer: The necessary conditions for a complex function f(z) = u(x, y) + iv(x, y) to be analytic in a

region R are
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ (i.e) $u_x = v_y$ and $v_x = -u_y$

State the sufficient conditions for f(z) to be analytic. 4.

> **Answer:** If the partial derivatives u_x , u_y , v_x and v_y are all continuous in D and $u_x = v_y$ and $u_y = -v_x$. Then the function f(z) is analytic in a domain D.

State the polar form of the C – R equations. 5.

Answer: In Cartesian coordinates any point z is z = x + iyIn polar coordinates it is $z = re^{i\theta}$ where r is the modulus and θ is the argument. Then the C- R equation in polar coordinates is given by

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
, $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$

Define harmonic function. 6.

> **Answer:** A real function of two variables x and y that possesses continuous second order partial derivatives and that satisfies Laplace equation is called a harmonic function.

Define conjugate harmonic function. 7.

Answer: If u and v are harmonic functions such that u + iv is analytic, then each is called the conjugate harmonic function of the other.

Define conformal mapping. 8.

> **Answer:** Consider the transformation w = f(z), where f(z) is a single valued function of z, a point z_0 and any two curves C1 and C2 passing through z0 in the Z plane, will be mapped onto a point w0 and two

St. Joseph's College of Engineering & St. Joseph's Institute of Technology Page No: 15 ISO 9001:2008

curves C'_1 and C'_2 in the W plane. If the angle between C_1 and C_2 at z_0 is the same as the angle between C_1 and C_2 at w_0 both in magnitude and direction, then the transformation w = f(z) is said to be conformed at the point z_0

Define Isogonal transformation. 9.

Answer: A transformation under which angles between every pair of curves through a point are preserved in magnitude but opposite in direction is said to be isogonal at that point.

10. **Define Bilinear transformation.**

Answer: The transformation $w = \frac{az+b}{cz+d}$, ad – bc $\neq 0$ where a, b,c,d are complex numbers is called a

bilinear transformation. This is also called as Mobius or linear fractional transformation.

11. **Define Cross Ratio.**

Answer: Given four points z_1, z_2, z_3, z_4 in this order, the ratio $\frac{(z_1 - z_2)(z_3 - z_4)}{(z_1 - z_4)(z_2 - z_2)}$ is called the cross ratio of

the four points.

12. Show that $f(z) = |z|^2$ is differentiable at z = 0 but not analytic at z = 0.

Solution: Let z = x + iy and $\overline{z} = x - iy$

$$\left|z\right|^2 = z\overline{z} = x^2 + y^2$$

$$f(z) = |z|^2 = (x^2 + y^2) + i0$$

$$u = x^2 + y^2 \quad , \quad v = 0$$

$$u_x = 2x \qquad , \quad v_x = 0$$

$$u_y = 2y \qquad , \quad v_y = 0$$

$$u_{v} = 2y$$
 , $v_{v} = 0$

So the CR equations $u_x = v_y$ and $u_y = v_x$ are not satisfied everywhere except at z = 0. So f(z) may be differentiable only at z = 0. Now $u_x = 2y$, $v_y = 0$ and $u_y = 2y$, $v_x = 0$ are continuous everywhere and in particular at (0, 0). So f(z) is differentiable at z = 0 only and not analytic there.

Determine whether the function $2xy + i(x^2 - y^2)$ is analytic or not? **13.**

Solution: Let $f(z) = 2xy + i(x^2 - y^2)$ u = 2xy ; $v = x^2 - y^2$

$$u = 2xy \qquad ; v = x^2 - y^2$$

$$u_x = 2y$$
, $v_y = -2y$ and $u_y = 2x$, $v_x = 2x$

$$u_x \neq v_y \text{ and } u_y \neq -v_x$$

CR equations are not satisfied.

Hence f(z) is not an analytic function

Determine whether the function $2xy + i(y^2 - x^2)$ is analytic or not? **14.**

Solution: Let $f(z) = 2xy + i(y^2 - x^2)$ u = 2xy; $v = y^2 - x^2$

$$u = 2xy$$
 ; $v = y^2 - x^2$

$$u_x=2y,\,v_y=2y$$
 and $\,u_y\!=2x\,,\,v_x=\text{-}2x\,$

$$u_{x} = v_y$$
 and $u_y = -v_x$

CR equations are satisfied.

Hence f(z) is an analytic function

Prove that an analytic function whose real part is constant must itself be a constant. **15.**

Solution: Let f(z) = u + iv

Given
$$u = constant$$
. $\Rightarrow u_x = 0$ and $u_y = 0$

$$u_x=0 \implies , \, v_y=0 \; ; \; \, u_y=0 \implies \; v_x=0$$

$$f'(z) = u_x + iv_x = 0 + i0$$

 $f'(z) = 0 \Rightarrow f(z) = c$

f(z) is a constant.

Show that the function $u = 2x - x^3 + 3xy^2$ is harmonic. Solution: Given $u = 2x - x^3 + 3xy^2$ 16.

$$\frac{\partial u}{\partial x} = 2 - 3x^2 + 3y^2$$
 and $\frac{\partial^2 u}{\partial x^2} = -6x$; $\frac{\partial u}{\partial y} = 6xy$ and $\frac{\partial^2 u}{\partial y^2} = 6x$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -6x + 6x = 0$$

Hence u is harmonic

17. Find a function w such that w = u + iv is analytic, if $u = e^x \sin y$

Solution: Given $u = e^x \sin y$

$$\phi_1(x, y) = u_x = e^x \sin y$$
 ; $\phi_2(x, y) = u_y = e^x \cos y$

$$\phi_1(z,0) = e^z(0) = 0$$
 ; $\phi_2(z,0) = e^z$

By Milne Thomson's method

$$f(z) = \int \phi_1(z,0)dz - i \int \phi_2(z,0)dz = 0 - i \int e^z dz = -ie^z + C$$

Obtain the invariant points (fixed points) of the transformation 18.

Solution:
$$w = 2 - \frac{2}{z}$$
, The invariant points are given by $z = 2 - \frac{2}{z}$

$$z = \frac{2z - 2}{z} \Rightarrow z^2 = 2z - 2 \Rightarrow z^2 - 2z + 2 = 0$$

$$z = \frac{2 \pm \sqrt{4 - 8}}{2} = \frac{2 \pm 2i}{2} = 1 \pm i$$

19. Define a critical point of the bilinear transformation.

> **Answer:** The point at which the mapping w = f(z) is not conformal, (i.e) f'(z) = 0 is called a critical point of the mapping.

20. Find the critical point of the transformation $w^2 = (z - \alpha)(z - \beta)$

Answer:
$$w^2 = (z - \alpha)(z - \beta)$$

$$2w\frac{dw}{dz} = (z - \alpha) + (z - \beta)$$

$$=2z-(\alpha+\beta)$$

$$\frac{dw}{dz} = 0 \Rightarrow z = \frac{(\alpha + \beta)}{2}$$

$$\frac{dz}{dw} = 0 \Rightarrow z = \alpha, \beta$$

Therefore the critical points are $z = \frac{(\alpha + \beta)}{2}, \alpha, \beta$

- Show that the function $f(z) = |z^2|$ is differentiable at z = 0 but not analytic at z = 01 (a)
 - Test the analyticity of the function $w = \tan z$ **(b)**
- The function f(z) = u + iv is analytic, show that u = constant and v = constant are orthogonal. 2 (a)

St. Joseph's College of Engineering & St. Joseph's Institute of Technology Page No: 17 ISO 9001:2008

- (b) Prove that an analytic function with constant modulus is constant.
- 3 (a) Prove that every analytic function w = u + iv can be expressed as a function of z alone, not as a function of \bar{z}
 - (b) If f(z) is an analytic function, prove that $\left\{ \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right\} |f(z)|^2 = 4 |f'(z)|^2$
- 4 (a) Show that the function $u = \frac{1}{2} \log(x^2 + y^2)$ is harmonic and determine its conjugate. Also find f(z).
 - (b) If $\varphi = 3x^2y y^3$, find ψ where $w = \varphi + i\psi$ is an analytic function.
- 5 (a) Determine the analytic function whose real part is $\frac{\sin 2x}{\cosh 2y \cos 2x}$
 - (b) Find the regular function whose imaginary part is $e^{-x}(x \cos y + y \sin y)$
- 6 (a) If f(z) = u + iv is an analytic function and $u v = e^x (\cos y \sin y)$ find f(z) in terms of z
 - (b) Find the analytic function f(z) = u + iv given that $2u + v = e^x(\cos y \sin y)$
- 7 (a) Find the image of |z-2i|=2 under the transformation $w=\frac{1}{z}$
 - (b) Find the image of the infinite strip $\frac{1}{4} < y < \frac{1}{2}$ under the transformation $w = \frac{1}{z}$
- 8 (a) Discuss the transformation of $w=e^z$
 - (b) Find the image of the circle |z-1|=1 under the transformation $w=z^2$
- 9 (a) Find the bilinear transformation of the points -1, 0, 1 in z-plane onto the points 0, i, 3i in w-plane.
 - (b) Find the bilinear transformation that maps z = 1, i, -1 into w = 2, i, -2
- 10(a) Find the bilinear transformation which maps the points $0,1,\infty$ in z-plane into itself in w-plane.
 - (b) Find the bilinear transformation which maps the points $z = \infty, i, 0$ into $w = 0, i, \infty$ respectively.

UNIT-V COMPLEX INTEGRATION

1. State Cauchy's Integral formula for Complex Integration.

Statement: If f(z) is analytic inside and on a closed curve C of a simply connected region R and if 'a' is any point with in C, then $f(a) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z-a} dz$

2. State Cauchy's integral formula for derivative of an analytic function.

Statement: If f(z) is analytic inside and on a closed curve C of a simply connected region R and if 'a' is

any point with in C, then
$$f(a) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - a} dz$$
, $f'(a) = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - a)^2} dz$

$$f''(a) = \frac{2!}{2\pi i} \int_C \frac{f(z)}{(z-a)^3} dz$$
 and in general $f^{(n)}(a) = \frac{n!}{2\pi i} \int_C \frac{f(z)}{(z-a)^{n+1}} dz$

3. What is the value of $\int_C e^z dz$, where C is |z|=1?

Answer: Since $f(z)=e^z$ is analytic and its derivative is continuous at all points inside the unit circle St. Joseph's College of Engineering & St. Joseph's Institute of Technology Page No: 18 ISO 9001:2008

|z|=1. Therefore by Cauchy's integral theorem $\int_C f(z)dz=0$

4. Evaluate $\int_{C} \frac{\cos \pi z}{z-1} dz$ where C is |z|=2

Solution: We know that by Cauchy's integral formula
$$\int_C \frac{f(z)}{z-a} dz = \begin{cases} 2\pi i \ f(a) & \text{if } a \text{ lies inside C} \\ 0 & \text{if } a \text{ lies outside C} \end{cases}$$

Given
$$\int_{C} \frac{\cos \pi z}{z-1} dz$$
, Here $f(z) = \cos \pi z$ and $a = 1$ lies inside $|z| = 2$

Therefore by Cauchy's integral Formula
$$\int_{C} \frac{\cos \pi z}{z-1} dz = 2\pi i (\cos \pi z)_{z=1} = -2\pi i$$

5. Evaluate
$$\int_C \frac{3z^2 + 7z + 1}{z + 1} dz$$
, where C is $|z| = \frac{1}{2}$

Solution: By Cauchy's integral formula
$$\int_{C} \frac{f(z)}{z-a} dz = \begin{cases} 2\pi i \ f(a) & \text{if } a \text{ lies inside C} \\ 0 & \text{if } a \text{ lies outside C} \end{cases}$$

Given
$$\int_{C} \frac{3z^2 + 7z + 1}{z + 1} dz$$
, f (z) = $3z^2 + 7z + 1$ and a = -1 lies outside $|z| = \frac{1}{2}$.

Therefore
$$\int_{C} \frac{3z^2 + 7z + 1}{z + 1} dz = 0$$

6. Evaluate
$$\int_C \frac{e^{2z}}{(z^2+1)} dz$$
 where C is $|z| = \frac{1}{2}$

Solution: By Cauchy's integral formula
$$\int_C \frac{f(z)}{z-a} dz = \begin{cases} 2\pi i \ f(a) & \text{if } a \text{ lies inside C} \\ 0 & \text{if } a \text{ lies outside C} \end{cases}$$

Given
$$\int_{c} \frac{e^{2z}}{z^2 + 1} dz = \int_{c} \frac{e^{2z}}{(z + i)(z - i)} dz$$
, $f(z) = e^{2z}$ and $a = \pm i$ lies outside c.

Therefore
$$\int_{c} \frac{e^{2z}}{z^2 + 1} dz = 0$$

7. Evaluate
$$\int_C \frac{e^{2z}}{(z+2)^4} dz$$
 where C is $|z| = 1$ using Cauchy's integral formula.

Solution: By Cauchy's integral formula
$$\int_C \frac{f(z)}{z-a} dz = \begin{cases} 2\pi i \ f(a) & \text{if } a \text{ lies inside C} \\ 0 & \text{if } a \text{ lies outside C} \end{cases}$$

Given
$$\int_C \frac{e^{2z}}{(z+2)^4} dz$$
, $f(z) = e^{2z}$ and $a = -2$ lies outside C.

Hence
$$\int_C \frac{e^{zz}}{(z+2)^4} dz = 0$$

8. Obtain the Taylor's series expansion of log(1+z) when |z| = 0

Solution: Let $f(z) = \log(1+z)$

$$f(0) = \log 1 = 0$$

$$f'(z) = \frac{1}{1+z}$$

$$f'(0) = \frac{1}{1+0} = 1$$

$$f''(z) = \frac{-1}{(1+z)^2}$$

$$f''(0) = -1$$

$$f'''(z) = \frac{2}{\left(1+z\right)^3}$$

$$f'''(0) = 2$$

$$f^{iv}(z) = \frac{-6}{(1+z)^4}$$

$$f^{iv}(0) = -6$$

$$\log(1+z) = f(0) + \frac{f'(0)}{1!}z + \frac{f''(0)}{2!}z^2 + \dots$$

$$\log(1+z) = 0 + z - \frac{z^2}{2} + \frac{z^3}{3} - \frac{z^4}{4} + \dots = z - \frac{z^2}{2} + \frac{z^3}{3} - \frac{z^4}{4} + \dots$$

9. Find the region of convergence to expand cos z in Taylor's series.

Solution: Let $f(z) = \cos z$

$$f^{n}(z) = \cos\left(z + \frac{n\pi}{2}\right)$$

$$f^{n}\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4} + \frac{n\pi}{2}\right)$$

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{n}\left(\frac{\pi}{4}\right)}{n!} \left(z - \frac{\pi}{4}\right)^{n} = \sum_{n=0}^{\infty} \frac{\cos\left(\frac{\pi}{4} + \frac{n\pi}{2}\right)}{n!} \left(z - \frac{\pi}{4}\right)^{n}$$

The region of convergence is $\left|z - \frac{\pi}{4}\right| < \infty$

10. Expand $f(z) = \frac{1}{(1+z)}$ in the region |Z| < 1 Using this result expand $\tan^{-1}z$ in powers of z.

Solution: $f(z) = (1+z)^{-1}$ By using binomial series expansions, $(1+z)^{-1} = 1 - z + z^2 - z^3 + ...$

$$\frac{1}{(1+z)} = 1 - z + z^2 - z^3 + \dots$$
 (1)

$$\frac{1}{1+z^2} = 1 - z^2 + z^4 - z^6 + \dots$$
 (2)

If
$$f(z)=\tan^{-1}z$$
, then $f'(z)=\frac{1}{1+z^2}$

Hence by integrating (2) with respect to z, $\tan^{-1}z = z - \frac{z^3}{3} + \frac{z^5}{5} - \frac{z^7}{7} + \dots$

11. State Laurent's series.

Solution: If C_1 , C_2 are two concentric circles with centre z=a and radii r_1 and r_2 ($r_1 < r_2$) and if f(z) is analytic inside and on the annular region between C_1 and C_2 , then, we have

$$f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n + \sum_{n=0}^{\infty} b_n (z-a)^{-n}$$
, where $a_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-a)^{n+1}} dz$ and

 $b_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-a)^{-n+1}} dz$ where C is any circle lying between C₁ and C₂ with centre at z = a for all n.

12. Obtain the Laurent expansion of the function $\frac{e^z}{z^2}$ in the neighbourhood of its singular point. Hence find the residue at that point.

Solution: z=0 is a pole of order 2 $f(z) = \frac{e^z}{z^2}$ becomes $f(z) = \frac{1}{z^2} \left[1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots \right]$

 $f(z) = \frac{1}{z^2} + \frac{1}{z} + \frac{1}{z^2} \left[\frac{z^2}{2!} + \frac{z^3}{3!} + \dots \right]$ Residue of $f(z) = \text{Coefficient of } \frac{1}{z} = 1$

13. Obtain the Laurent expansion of the function $\frac{e^z}{(z-1)^2}$ in the neighbourhood of its

Singular point. Hence find the residue at that point.

Solution: z = 1 is a pole of order 2

Put z-1=u .Then $f(z) = \frac{e^z}{(z-1)^2}$ becomes $f(z) = \frac{e \cdot e^u}{u^2} = \frac{e}{u^2} \left[1 + u + \frac{u^2}{2!} + \frac{u^3}{3!} + \dots \right]$ $f(z) = \frac{e}{u^2} + \frac{e}{u} + \frac{e}{u^2} \left[\frac{u^2}{2!} + \frac{u^3}{3!} + \dots \right]$ $f(z) = \frac{e}{(z-1)^2} + \frac{e}{(z-1)} + \frac{e}{(z-1)^2} \left[\frac{(z-1)^2}{2!} + \frac{(z-1)^3}{3!} + \dots \right]$

Residue of $f(z)|_{z=1} = \text{Coefficient of } \frac{1}{z-1} = \text{e}$

14. Find the Singular points of $f(z) = \frac{\sin z}{(z+1)(z-2)}$

Solution: Since f(z) is not analytic at z=-1 and z=2, Hence the singular points are z=-1 and z=2

15. What is the Nature of the singularity at z=0 of the function $\frac{\sin z - z}{z^3}$.

Solution: $f(z) = \frac{\sin z - z}{z^3}$ The function f(z) is not defined at z = 0

But by L'Hospital's rule,

$$\lim_{z \to 0} \frac{\sin z - z}{z^3} = \lim_{z \to 0} \frac{\cos z - 1}{3z^2} = \lim_{z \to 0} \frac{-\sin z}{6z} = \lim_{z \to 0} \frac{-\cos z}{6} = \frac{-1}{6}$$

St. Joseph's College of Engineering & St. Joseph's Institute of Technology Page No: 21 ISO 9001:2008

Therefore the limit exists and is finite. Hence z = 0 is a removable singularity.

16. Define essential singularity with an example.

Solution: If the principal part contains an infinite number of non zero terms, then $z = z_0$ is known as a essential singularity.

$$f(z) = e^{\frac{1}{z}} = 1 + \frac{\frac{1}{z}}{\frac{z}{1!}} + \frac{\frac{1}{z^2}}{\frac{z}{2!}} + \dots \text{ has } z = 0 \text{ as an essential singularity.}$$

Since f(z) is an infinite series of negative powers of z.

17. Define removable singularity with an example.

Solution: If the principal part of f(z) contains no terms, That is $b_n = 0$ for all n, then the singularity $z = z_0$ is known as the removable singularity of f(z).

Example,
$$f(z) = \frac{\sin z}{z} = \frac{1}{z} \left[z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots \right] = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots - \frac{z^2}{5!} - \dots$$

There is no negative power of z. Hence z = 0 is a removable singularity.

18. State Cauchy's residue theorem.

Solution: If f(z) is analytic inside a closed curve C except at a finite number of isolated singular points $a_1, a_2, \dots a_n$ inside C, then $\int_C f(z) dz = 2\pi i$ (Sum of the residues of f(z) at these singular points).

19. Find the residue of the function
$$f(z) = \frac{z^2}{(z-1)(z-2)^2}$$
 at a simple pole.

Solution: Given
$$f(z) = \frac{z^2}{(z-1)(z-2)^2}$$
. Here $z = 1$ is a simple pole

$$\operatorname{Re} s[f(z)]\Big|_{z=1} = \underset{z \to 1}{\operatorname{lt}} (z-1) \frac{z}{(z-1)(z-2)^2} = 1$$

20. Find the poles and residues of $f(z) = \frac{z}{z^2 - 3z + 2}$

Solution: Poles of f(z) are z = 1, 2

$$\operatorname{Re} s[f(z)]\Big|_{z=1} = \lim_{z \to 1} (z-1) \frac{z}{(z-1)(z-2)} = -1$$

$$\operatorname{Re} s[f(z)]\Big|_{z=2} = \lim_{z \to 2} (z-2) \frac{z}{(z-1)(z-2)} = 2$$

PART B

1(a) Using Cauchy's integral formula, find
$$\int_C \frac{z+4}{z^2+2z+5} dz$$
, where C is $|z+1-i|=2$

(b) Using Cauchy's integral formula, evaluate
$$\int_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-2)(z-1)} dz$$
, where C is $|z| = 3$

2(a) Using Cauchy's integral formula, evaluate
$$\int_{C} \frac{z}{(z-1)(z-2)^2} dz$$
, where C is $|z-2| = \frac{1}{2}$

- (b) Using Cauchy's integral formula, evaluate $\int_C \frac{1}{(z-2)(z+1)^2} dz$, where C is $|z| = \frac{3}{2}$
- Expand $f(z) = \frac{1}{z}$ as a Taylor's series about z = 1 and z = 2
 - (b) Find the Taylor's series expansion of $f(z) = \frac{z}{(z+1)(z-3)}$, about z=0
- Expand f(z) = $\frac{z^2 1}{z^2 + 5z + 6}$ in a Laurent's series expansion for |z| > 3 and 2 < |z| < 3
- (b) Obtain the Laurent's series expansion for the function $f(z) = \frac{4z}{\left(z^2 1\right)\left(z 4\right)}$ in |z-1| > 4 and 2 < |z-1| < 3
- 5(a) Find the residues of $f(z) = \frac{z^2}{(z-1)(z+2)^2}$ at its isolated singularities using Laurent's series expansion.
- (b) Evaluate $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent's series valid for the regions |z| > 3 and 1 < |z| < 3
- 6(a) Using Cauchy's residue theorem evaluate $\int_{C} \frac{3z^2 + z 1}{\left(z^2 1\right)(z 3)} dz$, where C is |z| = 2
- (b) Evaluate $\int_{C} \frac{z-1}{(z+1)^{2}(z-2)} dz$, where C is |z-i|=2 using Cauchy's residue theorem
- 7 Evaluate $\int_{0}^{2\pi} \frac{\cos 2\theta d\theta}{5 + 4\cos \theta}$, using contour integration.
- 8 Evaluate $\int_{0}^{2\pi} \frac{d\theta}{13 + 4\sin\theta}$, using contour integration.
- 9(a) Evaluate $\int_{-\infty}^{\infty} \frac{dx}{x^4 + 8x^2 + 16}$, , using contour integration.
- (b) Evaluate $\int_{-\infty}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)}$, a > 0, b > 0, using contour integration.
- 10(a) Evaluate $\int_{0}^{\infty} \frac{\cos ax \, dx}{x^2 + 1}$, a > 0, using contour integration.
 - (b) Evaluate $\int_{0}^{\infty} \frac{x^2 x + 2}{x^4 + 10x^2 + 9} dx$, using contour integration.