

电子线路设计、测试与实验

华中科技大学电子信息与通信学院 >>> 汪小燕

集成运算放大器 基本应用电路

华中科技大学电子信息与通信学院 汪小燕

实验目的

- 学握集成运算放大器的正确使用方法
- 掌握集成运算放大器各种基本应用电路的工作原理
- 熟练电子测量仪器的使用方法:
- 重点掌握使用示波器 交流耦合输入方式 和直流耦合输入方式 观察波形的方法
- 学握比例积分电路输入、输出波形的测量和描绘方法。

二、实验内容

实验任务

- 研究电压跟随器的作用
- 设计并安装实现反相比例放大电路
- 反相比例加法运算电路测试
- 反相比例减法运算电路测试
- 比例积分电路测试

三、实验原理

集成运算放大器简介

- 集成运算放大器(简称运放)是一种在实际中得到 广泛应用的模拟器件
- 集成运算放大器品种繁多, 性能参数也各不相同
- 针对每种器件,生产厂家一般会给出它的数据手册。 在实际应用时,我们必须注意其主要参数及使用规则。

NE5532器件手册解读

www.fairchildsemi.com

NE5532 Dual Operational Amplifier

Features

- · Internal Frequency Compensation
- Slew Rate: 8V/μs
- Input Noise Voltage: 8nV / \(\sqrt{Hz} \) (fo = 30Hz)
- Full Power Bandwidth: 140KHz

Description

Internal Block Diagram

Rev. 1.0.1

Absolute Maximum Ratings / 电源电压范围

	Parameter	Symbol	NE5532	Unit
	Power Supply Voltage	Vcc	±22	V
	Differential Input Voltage	V(DIFF)	±13	V
I	Input Voltage	Vı	Supply Voltage	V
П	Power Dissipation, TA = 25°C 8-DIP 8-SOP	PD	1100 500	mW
1	Operating Temperature Range	TOPR	0 ~ + 70	°C

Thermal Data

允许功耗

	Parameter	Symbol	Value	Unit
ı	Thermal Resistance Junction-Ambient Max. 8-DIP 8-SOP	Rθja	110 250	°C/W

Electrical Characteristics

共模抑制比

(VCC=15V, VEE= - 15V, TA = 25°C)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit		
Input Offset Voltage	Vio		-	0.5	4.0	mV		
Input Offset Current	0		-	10	150	nA		
Input Bias Current	IBIAS	•	-	200	800	nA		
Supply Current	lcc	-	-	6.0	16	mA		
Input Voltage Range	VI(R)	-	±12	±13	-	V		
Common Mode Rejection Range	CMRR	T _A = 25 °C	70	(100	-	dB		
Power Supply Rejection Ratio	PSRR	T _A = 25 °C	80	100	-	dB		
Output Voltage Swing	VO(P-P)	R _L ≥ 600Ω	±12	±13	-	V		
Input Resistance	RI	TA = 25 °C	30	300	-	ΚΩ		
Short Circuit Current	Isc	増益帯宽积、	-	38	-	mA		
Overshoot	os	R _L =600Ω, C _L =100pF	-	10	20	%		
Voltage Gain	Ğ	f= 10KHz	2	2.2	-	V/mV		
Gain Bandwidth Product	GBW	C _L =100pF, R _L = 600Ω	8	10	-	MHz		
Siew Rate	SR	R _L =1K, C _L =100pF, R _L =600Ω	6	.8.0	-	V/μs		
Input Noise Voltage	en	fo = 30Hz fo = 1KHz	-	8.0 5.0	-	nV/.√Hz		

玉摆率

::: NE5532器件手册解读

引脚图

8-DIP

集成运放NE5532正、负电源的连接

集成运放NE5532正、负电源的连接

注意: 正、负电源千万别接反!

集成运放LM324正、负电源的连接

集成运放电源的去耦连接方法

集成运算放大器的各种基本应用电路

- 电压跟随器
- 反相比例放大电路
- 反相比例加法电路
- 差分放大电路
- 比例积分电路
- 0 0 0

电压跟随器

 v_{i}

- 输入阻抗很高,
- 输出阻抗很小,
- 可视作电压源,
- 是比较理想的阻抗变换电路
- 有:

$$V_{o} \approx V_{i}$$

反相比例放大电路

v_i $R_p = R_1 / / R_F$

(1) 电压增益 A_{ν}

$$A_{v} = -\frac{R_{F}}{R_{1}}$$

(2) 输入电阻 R_i

$$R_{\rm i} = \frac{v_{\rm i}}{i_{\rm i}} = \frac{v_{\rm i}}{v_{\rm i}/R_{\rm i}} = R_{\rm i}$$

(3) 输出电阻R_。 R_o→0

泛 反相比例加法电路

$$\boldsymbol{v}_{o} = -(\frac{R_{3}}{R_{1}} \boldsymbol{v}_{i1} + \frac{R_{3}}{R_{2}} \boldsymbol{v}_{i2})$$

若
$$R_1 = R_2 = R_3$$

则有
$$oldsymbol{v}_{\mathrm{o}} = -(oldsymbol{v}_{\mathrm{i}1} + oldsymbol{v}_{\mathrm{i}2})$$

反相比例减法电路(差分电路)

$$v_{o} = (\frac{R_{1} + R_{4}}{R_{1}})(\frac{R_{3}}{R_{2} + R_{3}})v_{i2} - \frac{R_{4}}{R_{1}}v_{i1}$$

$$= \frac{R_4}{R_1} = \frac{R_3}{R_2}, \quad \text{MJ} \quad v_0 = \frac{R_4}{R_1} (v_{i2} - v_{i1})$$

若继续有
$$R_4=R_1$$
, 则 $v_{\rm o}=v_{\rm i2}-v_{\rm i1}$

比例积分电路

• 当输入信号频率大于

$$f_0 = \frac{1}{2\pi R_F C}$$

• 有

$$V_o(t) = -\frac{1}{R_1 C} \int_0^t V_i(t) dt + V_o(0)$$

四、实验要求

1. 研究电压跟随器的作用

实验重点:

- 学握集成运算放大器正负电源连接方式;
- 掌握集成运算放大器的正确使用方法
- 學握集成运算放大器电压跟随器的工作原理与工作 特点
- 掌握输出阻抗的测量方法。

1. 研究电压跟随器的作用

(1) 按图连接电路。

断开开关K。输入f 为1kHz, V_{ipp} =1V的正弦信号,用示

波器观察输出波形。

闭合开关队。观察输出波形的变化情况。

分别记录K闭合前、后信号源输出信号的峰—峰值,计算信号源的内阻 R_S ,并解释 100Ω 负载电阻连接到信号源上产生的负载效应。

1. 研究电压跟随器的作用

• 2) 按图 (b)连接电路。

仍然从信号源送出频率为1kHz、峰-峰值为1V的正弦信号,用示波器观察输入、输出波形(幅值与相位关系)。分别记录接上 R_L 和去掉 R_L 两种情况下输出信号 V_0 的大小,并解释观察到的实验现象。

(b) 通过电压跟随器连接

2.设计并安装实现反相比例放大电路

实验重点:

- 学握集成运算放大器正负电源连接方式;
- 掌握集成运算放大器的正确使用方法
- 掌握反相比例放大电路的工作原理与工作特点
- 学握放大输入、输出波形的测量和描绘方法。

2. 设计并安装实现反相比例放大电路

设计实现一个10倍反相比例放大器

要求:

输入阻抗R_i=10KΩ

闭环电压增益 | A_{vf} | =10

输入1kHz正弦波(峰峰值自定);研究vi与vo的反

相比例关系(传输特性测量?);

确定运算放大器的电源电压;

3.反相比例加法电路测试研究

实验重点:

- 學握反相比例加法电路的工作原理与工作 特点
- 学握使用电位器分压输入信号的方法。
- 掌握实验数据处理和误差分析的方法。

3.反相比例加法电路测试研究

实验内容:

从信号源输出频率为1kHz、峰-峰值为500mV的正弦信号 v_{i1} ,利用电位器分 压得到信号 v_{i2} ,再用示波器测量 v_{i1} , v_{i2} 和 v_{o} ,填入表3.6.2,改变电位器 分压值。得到两组测量数据。分析测量结果误差。填写表3.6.2

4.反相比例减法电路测试研究

实验重点:

- 學握反相比例減法电路的工作原理与 工作特点
- 学握使用电位器分压输入信号的方法。
- 掌握实验数据处理和误差分析的方法。

4.反相比例减法电路测试研究

实验内容:

从信号源输出频率为1kHz、峰-峰值为500mV的正弦信号 v_{i1} ,利用电位器分压得到信号 v_{i2} ,再用示波器测量 v_{i1} , v_{i2} 和 v_{o} ,填入自拟记录表格, 改变电位器分压值,得到两组测量数据,分析测量结果误差,填写自拟记录表格

5. 比例积分电路测试研究

实验重点:

- 进一步熟练集成运算放大器的正确使用方法。
- 掌握比例积分电路的基本原理和工作方式
- 學握使用信号源輸出带直流偏置的信号的 方法
- 學握使用示波器直流耦合档测量带直流偏 置的信号的方法,理解示波器直流耦合与 交流耦合输入方式的含义。

5. 比例积分电路测试研究

- $R_1 = 10$ kΩ, $R_F = 100$ kΩ, C = 0.22 μF, $R_p = 10$ kΩ °
 - 输入f = 500 Hz, 峰峰值为1 V的正方波。
 - $lacksymbol{\bullet}$ 用示波器测试 V_i 和 V_o ,并画出其波形。**标出其幅值和周期**

电子线路设计、测试与实验

实验报告要求

- · 正文内容:
 - 〉实验目的与要求
 - 〉实验所用器件与仪器
 - 〉实验原理与参考电路
 - >实验步骤与测量结果---必要实验数据记录表格;必要实验结果分析;
 - >实验中所遇到的问题、原因分析, 解决方法与 解决效果

谢谢观看

