MATH 307 Midterm Exam 1

June 2, 2022

 $\bullet\,$ No calculators, cell phones, laptops or notes

• Time allowed: 50 minutes				
• 45 total marks				
• Write your name and student number in the space below				
• Notation: $N(A)$ is the nullspace of A and $R(A)$ is the range of A				
Name:				
Student Number:				

- 1. Determine if the statement is **True** or **False**. No justification required.
 - (a) (2 marks) If $A^3 = 0$ then $R(A) \subseteq N(A)$.

(b) (2 marks) Let A and B be $m \times n$ matrices. Then the set

$$U = \{ \boldsymbol{x} \in \mathbb{R}^n : A\boldsymbol{x} = B\boldsymbol{x} \}$$

is a subspace of \mathbb{R}^n .

(c) (2 marks) If $\{\boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3\}$ is a basis of a subspace $U \subseteq \mathbb{R}^n$ then

$$\{ u_1 + u_2 + u_3 , u_1 + u_3 , u_1 - u_2 + u_3 \}$$

is also a basis of U.

(d) (2 marks) Suppose A_1 and A_2 are $m \times n$ matrices such that $A_1 = LU_1$ and $A_2 = LU_2$. In other words, the unit lower triangular matrix L is the same in both LU decompositions (however the upper triangular matrices U_1 and U_2 are different). If $\operatorname{rank}(A_1) \leq \operatorname{rank}(A_2)$ then $R(A_1) \subseteq R(A_2)$.

- 2. Short answer questions. Give a <u>brief</u> justification. Parts (a) and (b) are independent.
 - (a) (3 marks) Let A be a $n \times n$ matrix, and let $\boldsymbol{x}_1, \boldsymbol{x}_2 \in \mathbb{R}^n$ such that $||A\boldsymbol{x}_1|| = 5$, $||A\boldsymbol{x}_2|| = 15$, $||\boldsymbol{x}_1|| = 2$ and $||\boldsymbol{x}_2|| = 1$. Find a value C > 1 such that $C \leq \operatorname{cond}(A)$.

(b) (3 marks) Consider N+1 points $(t_0, y_0), \ldots, (t_N, y_N)$. Suppose we want to construct an interpolating function p(t) defined piecewise by N functions $p_1(t), \ldots, p_N(t)$ such that each $p_k(t)$ is defined on the interval $[t_{k-1}, t_k]$. Determine the number of equations the functions $p_1(t), \ldots, p_N(t)$ must satisfy to guarantee that p(t) interpolates the data and p'(t), p''(t) and p'''(t) are continuous.

3. (5 marks) Find the unique function of the form

$$p(t) = a + bt^2 + ct^3$$

such that
$$p(-1) = 1$$
, $p'(1) = 0$ and $p''(2) = -1$.

4. Suppose A = LU where L is a unit lower triangular matrix and

$$U = \begin{bmatrix} 2 & 1 & 0 & -3 & -2 & 3 \\ 0 & 0 & 1 & -1 & 4 & 1 \\ 0 & 0 & 0 & 0 & 5 & 6 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

Let $\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3, \boldsymbol{a}_4, \boldsymbol{a}_5, \boldsymbol{a}_6 \in \mathbb{R}^4$ be the columns of A

$$A = \left[egin{array}{ccccc} oldsymbol{a}_1 & oldsymbol{a}_2 & oldsymbol{a}_3 & oldsymbol{a}_4 & oldsymbol{a}_5 & oldsymbol{a}_6 \end{array}
ight]$$

Determine if the statement is **True** or **False**. No justification required.

- (a) (2 marks) The dimension of span $\{a_1, a_2, a_3, a_4\}$ is 2.
- (b) (2 marks) The vectors a_3, a_4, a_5 are linearly independent.
- (c) $(2 \text{ marks}) \dim(N(A)) = 3.$
- (d) (2 marks) The set $\{a_2, a_4, a_5, a_6\}$ is a basis of R(A).

5. (5 marks) Suppose p(t) is a natural cubic spline with coefficient matrix

$$C = \begin{bmatrix} 2 & -3 & -2 & 2 & 0 & 1 \\ 0 & 6 & -3 & -9 & -3 & -3 \\ -1 & 5 & c_3 & c_4 & -16 & -22 \\ 1 & 2 & d_3 & d_4 & 2 & -17 \end{bmatrix}$$

such that p(t) interpolates $(t_0, y_0), \ldots, (t_6, y_6)$ where

$$t_0 = 0 \; , \; t_1 = 1 \; , \; t_2 = 2 \; , \; t_3 = 3 \; , \; t_4 = 4 \; , \; t_5 = 5 \; , \; t_6 = 6$$

and

$$p_k(t) = a_k(t - t_{k-1})^3 + b_k(t - t_{k-1})^2 + c_k(t - t_{k-1}) + d_k$$

Determine the coefficients c_3, d_3, c_4, d_4 .

6. Consider the matrix

$$A = \begin{bmatrix} -1 & 1 & 0 & -6 & 2 \\ -1 & -1 & 3 & -8 & 3 \\ 3 & 3 & -9 & 29 & -6 \\ 0 & 12 & -18 & 7 & -9 \end{bmatrix}$$

- (a) (5 marks) Find the LU decomposition of A.
- (b) (3 marks) Find a basis for R(A).

7. (5 marks) Let $a, b \in \mathbb{R}$ such that 0 < a < b. Find \boldsymbol{c} such that $A\boldsymbol{c} = \boldsymbol{y}$ where

$$A = \begin{bmatrix} 1 & -b & b^2 & -b^3 & b^4 \\ 1 & -a & a^2 & -a^3 & a^4 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & a & a^2 & a^3 & a^4 \\ 1 & b & b^2 & b^3 & b^4 \end{bmatrix} \qquad \qquad \mathbf{y} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Hints: (1) A is a Vandermonde matrix; (2) it is possible to determine c without using Gaussian elimination to solve the system.

 ${\it Extra~work space.~Do~not~write~in~the~table~below.}$

Q1	/8
Q2	/6
Q3	/5
Q4	/8
Q5	/5
Q6	/8
Q7	/5
Total	/45