NOTIONS DE LOGIQUE

1 Propositions - Fonction proportionnelles

Activité 1

Mettre une croix (x) dans la case qui convient :

Textes mathématiques	Vrai	Faux	On ne peut pas décider sa vérité	N'a pas de sens
15×4				x
$12 \times 3 + 4 = 84$		×		
$-6 \in \mathbb{N}$		×		
2 est une racine du polynôme $P(x) = x^2 - x - 2$	x			
Chaque nombre impair est un nombre premier		Х		
$(x \in \mathbb{Z}) : x + 5 \ge 0$			х	
Soient x et y de \mathbb{Z} , on a : $2x - y = 1$			×	

Définitions

* Une proposition (ou assertion) est une phrase ou une expression qui a un sens et qui est soit vraie, soit fausse, mais pas les deux en même temps.

On note souvent une proposition par les lettres P, Q ou $R\dots$

* On appelle **fonction propositionnelle** tout énoncé qui contient une variable (ou plusieurs variables) d'un ensemble, elle devient proposition chaque fois qu'on remplace la variable par un élément de cet ensemble.

Exemples

- "Le nombre 2022 est pair" est une proposition vraie.
- "Tout carré est un parallélogramme" est une proposition vraie.
- "Tout nombre pair est divisible par 4" est une proposition fausse.
- "x + y = z" n'est pas une proposition.
- $P(x): x \in \mathbb{R}, \; x^2-x < 0$ est une fonction propositionnelle. P(0) est une proposition fausse mais $P\left(\frac{1}{2}\right)$ est une proposition vraie.

• P(n,m): n+m=10 avec $n,m\in\mathbb{N}$ est une fonction propositionnelle.

P(4;6) est une proposition vraie mais P(2;7) est une proposition fausse.

Application 1

Déterminer la vérité de chacun des propositions suivantes :

$$\bullet P: "\left(\frac{\sqrt{7}}{\sqrt{3}}\right)^2 = \frac{7}{3}".$$

- Q: " $(\sqrt{3}+\sqrt{5})(\sqrt{3}-\sqrt{5})\in\mathbb{N}$ ". R: "L'équation $x^2-3x+5=0$ admet deux solutions dans \mathbb{R} ".

Correction

- On a: $\left(\frac{\sqrt{7}}{\sqrt{3}}\right)^2 = \frac{(\sqrt{7})^2}{(\sqrt{3})^2} = \frac{7}{3}$. Donc P est vraie.
- On a: $(\sqrt{3} + \sqrt{5})(\sqrt{3} \sqrt{5}) = (\sqrt{3})^2 (\sqrt{5})^2 = 3 5 = -2$. Or $-2 \notin \mathbb{N}$. Donc Q est fausse.
- Considérons l'équation $x^2 3x + 5 = 0$.

Le discriminant est : $\Delta = (-3)^2 - 4 \times 1 \times 5 = 9 - 20 = -11 < 0$.

L'équation n'admet donc aucune solution réelle, ainsi R est fausse.

Quantificateurs

Activité 2

- 1. Résoudre dans $\mathbb R$ l'inéquation suivante : $x^2 x 6 < 0$
- 2. En déduire la valeur de vérité des propositions suivantes :
 - P_1 : "Quel que soit $x \in]-2; 3[, x^2-x-6<0"]$
 - P_2 : "Il existe au moins un nombre $x \in \mathbb{R}$ tel que $x^2 x 6 < 0$ "
 - P_3 : "Quel que soit $x \in \mathbb{R}, \ x^2 x 6 < 0$ "
 - P_4 : "Il existe au moins un nombre $x \in]-2;3[$ tel que $x^2-x-6<0$ "
 - P_5 : "Il existe un unique nombre réel x tel que $x^2 x 6 = 0$ "

Correction

1. Résolution de l'inéquation : $x^2 - x - 6 < 0$.

On calcule le discriminant : $\Delta = b^2 - 4ac = (-1)^2 - 4 \cdot 1 \cdot (-6) = 1 + 24 = 25$.

Les racines sont : $x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{1 - 5}{2} = -2, \qquad x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{1 + 5}{2} = 3.$

2

On dresse le tableau de signe :

x	$-\infty$	-2	3	$+\infty$
x^2-x-6	+	0	- 0	+

Donc: S =]-2;3[

2. Valeur de vérité des propositions

- P_1 : "Quel que soit $x \in]-2; 3[$, $x^2-x-6 < 0$ ".

 Dans l'intervalle]-2; 3[l'inéquation est vraie pour tout x. Donc P_1 est vraie.
- P_2 : «Il existe au moins un nombre $x \in \mathbb{R}$ tel que $x^2-x-6 < 0$ ». Par exemple pour x=0, on a : -6 < 0. Donc P_2 est **vraie**.
- P_3 : "Quel que soit $x \in \mathbb{R}, \; x^2-x-6 < 0$ ". Si on prend x=4, on a : $4^2-4-6=6>0\;$ Donc P_3 est fausse.
- P_4 : «Il existe au moins un nombre $x \in]-2;3[$ tel que $x^2-x-6<0$ ». Par exemple pour x=0, on a : -6<0. Donc P_4 est **vraie**.
- P_5 : «Il existe un unique nombre réel x tel que $x^2 x 6 = 0$ ». L'équation $x^2 - x - 6 = 0$ a pour solutions x = -2 et x = 3 (deux racines distinctes). Donc il n'y a pas d'unicité. Donc P_5 est **fausse**.

Définitions

Soit P(x) une proposition dépendant de la variable x appartenant à un ensemble E non vide.

- * $(\forall x \in E) : P(x)$ est vraie si chaque élément x de E vérifie la propriété P(x). Le symbole \forall est appelé quantificateur universel, et se lit « pour tout » ou « quel que soit ».
- * $(\exists x \in E) : P(x)$ est vraie s'il existe au moins un élément x de E qui vérifie la propriété P(x). Le symbole \exists est appelé quantificateur existentiel, et se lit « il existe au moins ».
- * $(\exists! x \in E) : P(x)$ est vraie s'il existe un unique élément x de E qui vérifie la propriété P(x). Le symbole $\exists!$ se lit « il existe un unique ».

Exemples

- P: " $(\forall x \in \mathbb{R})$: 2x + 1 = 0" est une proposition fausse parce que si x = 0, alors $2 \times 0 + 1 = 0$ est faux.
- Q: " $(\exists n \in \mathbb{R})$: 2n-4=0" est une proposition vraie car l'entier n=2 vérifie 2n-4=0.
- R : " $(\exists ! x \in \mathbb{R}) : x^2 2x + 1 = 0$ " est une proposition vraie parce que 1 est la seule solution de l'équation $x^2 2x + 1 = 0$.

3

Application 2

Donner la valeur de vérité des propositions suivantes :

• $P:"3 \times 2 = 6"$

• Q:"-1 est une solution de $x^2 - 2x + 3 = 0$ "

• R: "Tous les nombres naturels sont positifs"

• $S: (\exists! x \in \mathbb{R}); x^2 = 4$

• $T: (\exists n \in \mathbb{N}); 3n-1=0$

• $N: (\forall x \in \mathbb{R}); |x| = x$

• $\mathbf{E}: (\exists n \in \mathbb{R})(\exists m \in \mathbb{R}); n-m=12$

Correction

1. **P**:" $3 \times 2 = 6$ "

VRAI. $3 \times 2 = 6$ est correct.

2. **Q**: "-1 est une solution de l'équation $x^2 - 2x + 3 = 0$ "

FAUX. En substituant x = -1: $(-1)^2 - 2(-1) + 3 = 1 + 2 + 3 = 6 \neq 0$.

3. R: "Tous les nombres naturels sont positifs"

VRAI. Par définition, tous les nombres naturels (\mathbb{N}) sont positifs.

4. S: $(\exists! x \in \mathbb{R}); x^2 = 4$

FAUX. Il existe deux solutions réelles à $x^2 = 4$ (x = 2 et x = -2), donc ce n'est pas unique.

5. T: $(\exists n \in \mathbb{N})$; 3n - 1 = 0

FAUX. 3n-1=0 alors $n=\frac{1}{3}\notin\mathbb{N}$.

6. N: $(\forall x \in \mathbb{R}); |x| = x$

FAUX. Pour x = -1, $|-1| = 1 \neq -1$.

7. **E**: $(\exists n \in \mathbb{R})(\exists m \in \mathbb{R}); n-m=12$

VRAI. Par exemple : n = 13, m = 1 donne 13 - 1 = 12.

Remarque

* On peut permuter les quantificateurs de même type.

* On ne peut pas permuter les quantificateurs de nature différentes.

Exemples

• Les propositions " $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})$: x+y=2" et " $(\forall y \in \mathbb{R})(\forall x \in \mathbb{R})$: x+y=2" ont la même valeur de vérité.

 Voici une phrase vraie : «Pour toute personne, il existe un numéro de téléphone », bien sûr le numéro dépend de la personne.

Par contre cette phrase est fausse : «Il existe un numéro, pour toutes les personnes », ce serait le même numéro pour tout le monde!

4

Application 3

Déterminer la valeur de vérité de chacune des propositions suivantes :

• P_1 : " $(\exists x \in \mathbb{R})$: $x^2 + x - 1 = 0$ "

• P_2 : " $(\forall x \in \mathbb{R})$: $x^2 + 3x + 7 < 0$ "

• P_3 : " $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R}): x \leq y$ "

• $P_4: "(\exists y \in \mathbb{R})(\forall x > 0): xy > 0"$

• $P_5: "(\forall n \in \mathbb{N})(\forall m \in \mathbb{N}): n-m=10"$

• $P_6: "(\exists x \in \mathbb{R})(\exists y \in \mathbb{R}): xy \ge 0"$

Correction

• $P_1: (\exists x \in \mathbb{R}); x^2+x-1=0$ On a: $\Delta=b^2-4ac=1+4=5>0$ donc l'équation admet deux solutions réelles. Donc P_1 est vraie.

• $P_2: (\forall x \in \mathbb{R}); x^2 + 3x + 7 < 0$ Pour $x = 0: 0^2 + 3 \times 0 + 7 = 7 > 0$ Donc P_2 est fausse.

• $P_3: (\forall x \in \mathbb{R})(\exists y \in \mathbb{R}); x \leq y$ Pour tout $x \in \mathbb{R}$, on prend y = x + 1On a bien $x \leq x + 1$ Donc P_3 est vraie. • $P_4: (\exists y \in \mathbb{R}) (\forall x \in \mathbb{R}_+^*); xy > 0$ On prend y=1Pour tout x>0, on a $x\times 1=x>0$ Donc P_4 est vraie.

• $P_5: (\forall n \in \mathbb{N})(\forall m \in \mathbb{N}); n-m=10$ Pour n=0 et $m=1:0-1=-1 \neq 10$ Donc P_5 est fausse.

• $P_6: (\exists x \in \mathbb{R})(\exists y \in \mathbb{R}); xy \geq 0$ On prend x=1 et y=1On a $1 \times 1 = 1 \geq 0$ Donc P_6 est vraie.

3 Opérations sur les propositions

3.1 La négation d'une proposition

Définition

La négation d'une proposition P, notée \bar{P} ou $\neg P$, est la proposition qui est vraie lorsque P est fausse, et fausse lorsque P est vraie.

P	\bar{P}
٧	F
F	٧

Table de vérité de la négation

Exemples

- $\bullet\,$ La négation de la proposition "3>2" est " $3\leq 2$ "
- La négation de la proposition " $(-2)^2 = -4$ " est "' $(-2)^2 \neq -4$ "
- La négation de la proposition " $-3 \in \mathbb{N}$ " est " $-3 \notin \mathbb{N}$ "

Propriété : Négation d'une proposition quantifiée

Soit P(x) une fonction propositionnelle d'une variable x d'un ensemble non vide E.

- * La négation de la proposition $(\forall x \in E) P(x)$ est la proposition $(\exists x \in E) \overline{P(x)}$
- * La négation de la proposition $(\exists x \in E) P(x)$ est la proposition $(\forall x \in E) \overline{P(x)}$
- * La négation de la proposition " $(\forall x \in E)(\exists y \in E): P(x,y)$ " est : " $(\exists x \in E)(\forall y \in E): \overline{P(x,y)}$ "
- * La négation de la proposition " $(\exists x \in E)(\forall y \in E): P(x,y)$ " est : " $(\forall x \in E)(\exists y \in E): \overline{P(x,y)}$ "

Remarque

- * Les propositions P et \bar{P} ont des valeurs de vérité opposées.
- * La négation des symboles usuels :

Le symbole	>	<	>	<	=	\cup
Sa négation	<	/	<	>	<i>≠</i>	∉

Exemples

La proposition P	La négation $ar{P}$
$\bullet (\forall x \in \mathbb{R}) : x \ge 1$	$\bullet (\exists x \in \mathbb{R}) : x < 1$
$\bullet (\exists n \in \mathbb{N}) : \sqrt{n} \in \mathbb{N}$	$\bullet (\forall n \in \mathbb{N}) : \sqrt{n} \notin \mathbb{N}$
$\bullet (\forall x \in \mathbb{R}) : x^2 + x + 1 \ge 0$	$\bullet (\exists x \in \mathbb{R}) : x^2 + x + 1 < 0$
$\bullet (\forall n \in \mathbb{N}) (\exists m \in \mathbb{N}) : m \ge n$	$\bullet (\exists n \in \mathbb{N}) (\forall m \in \mathbb{N}) : m < n$

Application 4

Compléter le tableau suivant :

La proposition P	La négation $ar{P}$
$\bullet \ (\exists x \in \mathbb{R}) : x \in \emptyset$	$\bullet \ (\forall x \in \mathbb{R}) : x \notin \emptyset$
$\bullet \ (\exists x \in \mathbb{N}) : x \text{ est pair}$	$ullet$ $(\forall x \in \mathbb{N}): x$ est impair
$\bullet \ (\exists x \in \mathbb{N}) (\forall y \in \mathbb{N}) : x < y$	$\bullet (\forall x \in \mathbb{N})(\exists y \in \mathbb{N}) : x \ge y$
$\bullet (\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z}) : x - y = 3$	$\bullet (\exists x \in \mathbb{Z})(\forall y \in \mathbb{Z}) : x - y \neq 3$
Tout triangle est rectangle	Il existe au moins un triangle qui n'est pas rectangle
$\bullet \ (\forall x \in \emptyset)(\forall y \in \mathbb{Z}) : x \times y \in \mathbb{Z}$	$\bullet (\exists x \in \emptyset)(\exists y \in \mathbb{Z}) : x \times y \notin \mathbb{Z}$

3.2 La disjonction

Définition

La disjonction de deux propositions P et Q est la proposition qui est vraie si au moins l'une des deux propositions est vraie on la note P ou Q ou $P \vee Q$.

P	Q	P ou Q
V	٧	V
V	F	V
F	٧	V
F	F	F

Tableau de vérité de P ou Q

Exemples

- La proposition : $(-5 \ge 2)$ ou $(5 \ge 2)$ est vraie.
- La proposition : (3+2=6) ou $(-3 \ge 1)$ est fausse.
- La proposition : $(-5 \in \mathbb{R})$ ou (3 divise 12) est vraie.
- La proposition : $(\exists x \in \mathbb{R}) : x^2 = -1$ ou $\sqrt{2} \in \mathbb{Q}$ est fausse.

3.3 La conjonction

Définition

La conjonction de deux propositions P et Q est la proposition qui est vraie uniquement si les deux propositions P et Q sont vraies en même temps on la note : P et Q ou $P \wedge Q$.

P	Q	P et Q	
٧	V	٧	
٧	F	F	
F	٧	F	
F	F	F	

Tableau de vérité de (P et Q)

Exemples

• La proposition : $(-5 \ge 2)$ et $(5 \ge 2)$ est fausse.

• La proposition : (3+2=6) et $(-3 \ge 1)$ est fausse.

• La proposition : $(-5 \in \mathbb{R})$ et (3 divise 12) est vraie.

• La proposition : $(\exists x \in \mathbb{R}): x^2 = -1$ et $\sqrt{2} \in \mathbb{Q}$ est fausse.

Application 5

Déterminer la valeur de vérité de chacune des propositions suivantes :

• P_1 : (3 est impair) et (3 = 5).

• $P_2: (4 \times 8 = 20)$ ou (10 est pair).

• $P_3: (9-3=6)$ et $(-1 \in \mathbb{Z})$.

• $P_4: (-4 \in \mathbb{N})$ ou $(\forall x \in \mathbb{R}: x^2 + 1 > 0)$.

Correction

• P_1 : (3 est impair) et (3 = 5).

3 est impair : VRAI

3 = 5: FAUX

Donc P_1 est **FAUSSE**.

• $P_2: (4 \times 8 = 20)$ ou (10 est pair).

 $4 \times 8 = 32 \, \mathsf{donc} \, 4 \times 8 = 20 \, \mathsf{:FAUX}$

 $10 \operatorname{est} \operatorname{pair} : \operatorname{VRAI}$

Donc P_2 est **VRAIE**.

• $P_3: (9-3=6)$ et $(-1 \in \mathbb{Z})$.

9 - 3 = 6: VRAI

 $-1 \in \mathbb{Z}$: VRAI

Donc P_3 est **VRAIE**.

• $P_4: (-4 \in \mathbb{N}) \text{ ou } (\forall x \in \mathbb{R}: x^2 + 1 > 0).$

 $-4 \in \mathbb{N}$: FAUX (car \mathbb{N} contient les entiers positifs)

 $\forall x \in \mathbb{R} \,:\, x^2+1 \,>\, 0$: VRAI (car $x^2\,\geq\, 0$ donc

 $x^2 + 1 \ge 1 > 0$)

Donc P_4 est **VRAIE**.

4 L'implication

Définition

L'implication de deux propositions P et Q est la proposition qui est fausse seulement dans le cas P est vraie et Q est fausse. On la note par $P\Rightarrow Q$ et se lit : P implique Q.

P	Q	$P \Rightarrow Q$
V	V	٧
V	F	F
F	٧	٧
F	F	V

Tableau de vérité de $P \Rightarrow Q$

Exemples

- La proposition $2 > 1 \Rightarrow 2 + 3 = -1$ est fausse.
- La proposition $3 \times 2 = 9 \Rightarrow 5 1 = 20$ est vraie.
- La proposition $(3^2 = 9) \Rightarrow 4 1 = 3$ est vraie.
- La proposition $2 < 0 \Rightarrow 2 + 3 = 5$ est vraie.

Remarques

- $* P \Rightarrow Q$ signifie si P est vraie, alors Q est vraie.
- * L'implication $Q \Rightarrow P$ est appelée l'implication réciproque de l'implication $P \Rightarrow Q$.
- * Pour montrer que $P \Rightarrow Q$ est vrai, on suppose que P est vraie, et on montre que Q est vraie.
- * Les propositions $P\Rightarrow Q$ et $(\neg P$ ou Q) ont la même valeur de vérité.

Exemples

- " $x=2 \Rightarrow x^2=4$ " signifie: "si x=2, alors $x^2=4$ " et c'est une proposition vraie.
- " $x^2 = 4 \Rightarrow x = 2$ " est l'implication réciproque de " $x = 2 \Rightarrow x^2 = 4$ " et c'est une proposition fausse.
- Soit x un réel, Montrons que : $|x| \le 3 \Rightarrow |2x 4| \le 10$

On a:
$$|x| \le 3 \Rightarrow -3 \le x \le 3$$

 $\Rightarrow -6 \le 2x \le 6$
 $\Rightarrow -10 \le 2x - 4 \le 2$ Donc: $|x| \le 3 \Rightarrow |2x - 4| \le 10$.
 $\Rightarrow -10 \le 2x - 4 \le 10$
 $\Rightarrow |2x - 4| \le 10$.

Application 6

Soit $n \in \mathbb{N}$. Montrer que n pair $\Rightarrow n^2$ pair.

Correction

On a:
$$n$$
 est pair $\Rightarrow n=2k$ avec $k\in\mathbb{N}$
$$\Rightarrow n^2=(2k)^2$$

$$\Rightarrow n^2=4\times k^2$$

$$\Rightarrow n^2=2\times(2k^2)$$

$$\Rightarrow n^2=2k' \text{ avec } k'=2k^2\in\mathbb{N}$$

$$\Rightarrow n^2 \text{ est pair.}$$

5 L'équivalence

Définition

L'équivalence de deux propositions P et Q est la proposition ($P\Rightarrow Q$ et $Q\Rightarrow P$) qu'on note par $P\Leftrightarrow Q$ et se lit « P est équivalente à Q » ou bien « P si et seulement si Q ».

P	Q	$P \Leftrightarrow Q$
V	V	V
٧	F	F
F	٧	F
F	F	V

Tableau de vérité de $P \Leftrightarrow Q$

Exemples

Soient a et b deux nombres réels.

Si ab = 0, alors a = 0 ou b = 0.

Inversement, si a = 0 ou b = 0, alors ab = 0.

Donc on a l'équivalence suivante : $ab = 0 \Leftrightarrow a = 0$ ou b = 0.

Application 7

Déterminer la valeur de vérité de chacune des propositions suivantes :

- $P_1: 3$ est impair $\Leftrightarrow 3=5$
- $P_2: 4 \times 8 = 20 \Leftrightarrow 10$ est pair

- $P_3: -1 \in \mathbb{Z} \Leftrightarrow 9-3=6$
- $P_4: -4 \in \mathbb{N} \Leftrightarrow (\forall x \in \mathbb{R}): x^2 + 1 > 0$

Correction

• $P_1: 3$ est impair $\Leftrightarrow 3=5$

3 est impair : **Vrai**

3=5: Faux

Donc P_1 est **fausse**.

• $P_3: -1 \in \mathbb{Z} \Leftrightarrow 9-3=6$

 $-1 \in \mathbb{Z}$: Vrai

9 - 3 = 6: Vrai

Donc P_3 est vraie.

• $P_2: 4 \times 8 = 20 \Leftrightarrow 10$ est impair

 $4 \times 8 = 20$: Faux ($4 \times 8 = 32$)

10 est impair : Faux

Donc P_2 est **vraie**.

• $P_4: -4 \in \mathbb{N} \Leftrightarrow (\forall x \in \mathbb{R}, \ x^2 + 1 > 0)$

 $-4 \in \mathbb{N}$: Faux

 $\forall x \in \mathbb{R}, x^2 + 1 > 0$: Vrai $(x^2 \ge 0 \Rightarrow x^2 + 1 \ge 1 > 0)$

Faux ⇔ Vrai : **Faux**

Donc P_4 est **fausse**.

Lois logiques

Définition

Une loi logique est une proposition qui est vraie quel que soit la vérité des propositions qui la constitue.

Exemples

P et Q sont deux propositions. Montrons que $\neg(P \Rightarrow Q) \Leftrightarrow (P \text{ et } \neg Q)$ est une loi logique.

On dresse le tableau de vérité :

P	Q	$P \Rightarrow Q$	$\neg(P\Rightarrow Q)$	$\neg Q$	P et $\neg Q$	$\neg(P\Rightarrow Q)\Leftrightarrow (Pet\neg Q)$
V	٧	V	F	F	F	V
V	F	F	V	٧	V	V
F	٧	V	F	F	F	V
F	F	V	F	٧	F	V

La proposition $\neg(P\Rightarrow Q)\Leftrightarrow (P\text{ et }\neg Q)$ est toujours vraie quelles que soient les valeurs de vérité de P et Q. Donc elle est une loi logique.

Raisonnements mathématiques

Raisonnement par contre-exemple

Définition

Pour montrer qu'une proposition de type $(\forall x \in E) \ P(x)$ est fausse, il suffit de trouver $x \in E$ tel que P(x) soit fausse. Ce type de démonstration est appelé raisonnement par contre-exemple.

Exemple 1

Montrons que la proposition $P:(\forall x\in[0;1]):x^2\geq x$ est fausse. Un contre-exemple : Pour $x=\frac{1}{2}$, on a $\left(\frac{1}{2}\right)^2=\frac{1}{4}$ et $\frac{1}{4}<\frac{1}{2}$. Donc P est fausse.

Exemple 2

Montrons que la proposition $Q: (\forall x \in \mathbb{R}) \ (\forall y \in \mathbb{R}): x^2 + y^2 \ge x + y$ est fausse. Un contre-exemple : Pour $x = \frac{1}{2}$ et $y = \frac{1}{2}$, on a $x^2 + y^2 = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$ et $x + y = \frac{1}{2} + \frac{1}{2} = 1$. Or $\frac{1}{2} < 1$, donc Q est fausse.

11

7.2 Raisonnement direct

Définition

Pour montrer que la proposition $P \Rightarrow Q$ est vraie, on suppose que P est vraie et on montre qu'alors Q est vraie.

Ce type de démonstration est appelé raisonnement direct ou raisonnement déductif.

Exemple 1

Montrons que :
$$\forall x \in \mathbb{R}^+: \frac{1}{1+\sqrt{x}} = 1-\sqrt{x} \Rightarrow x=0$$
 Soit $x \in \mathbb{R}^+.$
$$\frac{1}{1+\sqrt{x}} = 1-\sqrt{x} \Rightarrow 1 = (1-\sqrt{x})(1+\sqrt{x})$$

$$\Rightarrow 1 = 1-x$$

$$\Rightarrow x = 0$$

Exemple 2

Soient $a\in\mathbb{Q}$ et $b\in\mathbb{Q}$. Alors il existe $p,p'\in\mathbb{Z}$ et $q,q'\in\mathbb{N}^*$ tels que $a=\frac{p}{q}$ et $b=\frac{p'}{q'}$.

On a alors $\ a+b=rac{p}{q}+rac{p'}{q'}=rac{p\,q'+p'\,q}{q\,q'}.$ Or :

 $p\,q'+p'\,q\in\mathbb{Z}$ (produit et somme d'entiers),

 $q\,q'\in\mathbb{N}^*$ (produit de naturels non nuls).

Donc a+b s'écrit sous la forme $\frac{p''}{q''}$ avec $p''\in\mathbb{Z}$ et $q''\in\mathbb{N}^*.$

Ainsi $a+b\in\mathbb{Q}$.

7.3 Raisonnement par contraposée

Définition

Pour montrer que $P\Rightarrow Q$, il suffit parfois de montrer que $\overline{Q}\Rightarrow \overline{P}$. Ce type de démonstration est appelé **raisonnement par contraposée**.

12

Exemple 1

Soient $x \in \mathbb{R}$ et $y \in \mathbb{R}$.

Montrer que : $x \neq 2$ et $y \neq 2 \Rightarrow 2x + 2y - xy - 2 \neq 2$

Utilisons un raisonnement par contraposée.

Montrons que : $2x + 2y - xy - 2 = 2 \Rightarrow x = 2$ ou y = 2

$$2x + 2y - xy - 2 = 2 \Rightarrow 2x + 2y - xy - 4 = 0$$

$$\Rightarrow x(2 - y) - 2(2 - y) = 0$$

$$\Rightarrow (2 - y)(x - 2) = 0$$

$$\Rightarrow 2 - y = 0 \quad \text{ou} \quad x - 2 = 0$$

$$\Rightarrow y = 2 \quad \text{ou} \quad x = 2$$

Par contraposée, on a bien :

$$x \neq 2$$
 et $y \neq 2 \Rightarrow 2x + 2y - xy - 2 \neq 2$

Exemple 2

Soit $n \in \mathbb{N}$. Montrer que : si n^2 est pair alors n est pair.

Utilisons un raisonnement par contraposée.

Montrons que : si n est impair, alors n^2 est impair. Supposons que n est impair.

Alors il existe $k \in \mathbb{N}$ tel que n = 2k + 1.

$$n^{2} = (2k + 1)^{2}$$

$$= 4k^{2} + 4k + 1$$

$$= 2(2k^{2} + 2k) + 1$$

$$= 2k' + 1 \text{ avec } k' = 2k^{2} + 2k \in \mathbb{N}$$

Donc n^2 est impair.

Par contraposée, on a bien : si n^2 est pair alors n est pair.

Raisonnement par équivalence

Définition

Pour démontrer qu'une équivalence $P \Leftrightarrow Q$ est vraie, on utilise l'une des méthodes suivantes :

Méthode 1:

On montre que :
$$\begin{cases} P &\Leftrightarrow R_1 \\ &\Leftrightarrow R_2 \\ &&\text{à l'aide des opérations et propriétés mathématiques.} \\ &\Leftrightarrow V \end{cases}$$

Ce type de démonstration est appelé raisonnement par équivalences successives. Méthode 2 :

On montre que les deux implications $P \Rightarrow Q$ et $Q \Rightarrow P$ sont vraies.

Exemple 1

Montrons que :
$$(\forall a \in \mathbb{R}) \ (\forall b \in \mathbb{R}) : a^2 + b^2 = 2ab \Leftrightarrow a = b$$

$$a^2 + b^2 = 2ab \Leftrightarrow a^2 - 2ab + b^2 = 0$$

$$\Leftrightarrow (a - b)^2 = 0$$

$$\Leftrightarrow a - b = 0$$

Exemple 2

Montrer que pour tout $x \in \mathbb{R}$: $x^2 - 3x + 2 = 0 \Leftrightarrow (x = 1 \text{ ou } x = 2)$

Implication directe:

Montrons que : $x^2 - 3x + 2 = 0 \Rightarrow (x = 1 \text{ ou } x = 2)$

$$x^2 - 3x + 2 = 0 \Rightarrow (x - 1)(x - 2) = 0$$
$$\Rightarrow x - 1 = 0 \quad \text{ou} \quad x - 2 = 0$$
$$\Rightarrow x = 1 \quad \text{ou} \quad x = 2$$

 $\Leftrightarrow a = b$

Implication réciproque :

Montrons que : $(x = 1 \text{ ou } x = 2) \Rightarrow x^2 - 3x + 2 = 0$

Si
$$x = 1 \Rightarrow x^2 - 3x + 2 = 1 - 3 + 2 = 0$$

Si
$$x = 2 \Rightarrow x^2 - 3x + 2 = 4 - 6 + 2 = 0$$

Dans les deux cas, $x^2 - 3x + 2 = 0$.

 $\mathsf{Donc}\colon \quad (\forall x \in \mathbb{R}): x^2 - 3x + 2 = 0 \Leftrightarrow (x = 1 \ \mathsf{ou} \ x = 2)$

7.5 Raisonnement par disjonction des cas

Définition

Pour montrer qu'une proposition de type $(\forall x \in E)$ P(x) est vraie, il suffit de montrer que P(x) est vraie dans tous les cas possibles de la variable x dans E.

14

Ce type de démonstration est appelé raisonnement par disjonction des cas.

Exemple 1

Montrons que : $(\forall x \in \mathbb{R}) \ x^2 - x + 1 \ge |x - 1|$

 $\mathbf{Cas}\,\mathbf{1}\, \mathbf{:}\, x\geq 1$

$$|x-1| = x - 1$$

$$x^2 - x + 1 - (x - 1) = x^2 - 2x + 2$$

$$= (x - 1)^2 + 1 \ge 1 > 0$$

Cas 2: x < 1

$$|x - 1| = 1 - x$$

$$x^{2} - x + 1 - (1 - x) = x^{2} - x + 1 - 1 + x$$

$$= x^{2} \ge 0$$

Dans les deux cas, $x^2 - x + 1 \ge |x - 1|$

Exemple 2

Montrons que : $(\forall n \in \mathbb{N}) \ n(n+1)$ est pair **Cas 1 :** n est pair

$$n=2k,\ k\in\mathbb{N}\Rightarrow n(n+1)=2k(n+1)$$
 $\Rightarrow n(n+1) \mbox{ est pair }$

Cas 2: n est impair

$$n=2k+1,\ k\in\mathbb{N}\Rightarrow n+1=2k+2=2(k+1)$$

$$\Rightarrow n(n+1)=n\times 2(k+1)$$

$$\Rightarrow n(n+1) \text{ est pair}$$

Dans les deux cas, n(n+1) est pair.

7.6 Raisonnement par l'absurde

Définition

Pour montrer qu'une proposition P est vraie par le raisonnement par l'absurde :

- 1. On suppose que P est fausse
- 2. On déduit une contradiction (une proposition logiquement impossible)
- 3. On conclut que P est nécessairement vraie

Exemple 1

Montrons que $\sqrt{2}\notin\mathbb{Q}$ Supposons par l'absurde que $\sqrt{2}\in\mathbb{Q}$. Alors il existe $a,b\in\mathbb{Z}^*$, premiers entre eux (i.e.

pgcd(a, b) = 1), tels que

$$\sqrt{2} = \frac{a}{b}.$$

donc:

$$2 = \frac{a^2}{b^2} \quad \Rightarrow \quad a^2 = 2b^2.$$

Ainsi a^2 est pair, donc a est pair (si a était impair, a^2 serait impair). Écrivons a=2k avec $k\in\mathbb{Z}$. Alors $a^2=4k^2=2b^2$ $\Rightarrow 2k^2=b^2$. Donc b^2 est pair, donc b est pair. Mais alors a et b sont tous deux pairs, ce qui contredit $\operatorname{pgcd}(a,b)=1$. Donc : $\sqrt{2}\notin\mathbb{Q}$.

Exemple 2

Soit $n \in \mathbb{N}$, on pose : $A = \frac{n}{n+1}$, montrons que $A \neq 1$

Supposons que A=1. Alors :

$$\frac{n}{n+1} = 1 \Rightarrow n = n+1$$
$$\Rightarrow 0 = 1$$

Contradiction. Ainsi, $A \neq 1$.

7.7 Raisonnement par récurrence

Définition

Le principe de récurrence permet de montrer qu'une fonction propositionnelle P(n) est vraie pour tout entier naturel $n \ge n_0$ avec $n_0 \in \mathbb{N}$. La démonstration par récurrence se déroule en trois étapes :

Initialisation: On prouve que $P(n_0)$ est vraie.

Hérédité : On suppose que P(n) est vraie pour un certain $n \ge n_0$ (hypothèse de récurrence), et on démontre que P(n+1) est vraie.

Conclusion : On conclut que, pour tout $n \ge n_0$, P(n) est vraie.

Exemple 1

Montrons que : $\forall n \in \mathbb{N}, \ 3 \ \text{divise} \ (4^n - 1)$

Soit P(n) la proposition : « 3 divise $4^n - 1$ »

Initialisation : Pour n = 0

$$4^0 - 1 = 1 - 1 = 0$$
 et 3 divise 0

Donc P(0) est vraie.

Hérédité : Supposons P(n) vraie pour un certain $n \in \mathbb{N}$, c'est-à-dire :

3 divise
$$(4^n - 1)$$
 soit $\exists k \in \mathbb{N}, 4^n - 1 = 3k$

Montrons P(n+1):

$$4^{n+1}-1=4\times 4^n-1$$

$$=4\times 4^n-4+3$$

$$=4(4^n-1)+3$$

$$=4\times 3k+3$$
 (d'après l'hypothèse de récurrence)
$$=3(4k+1)$$

Donc 3 divise $(4^{n+1} - 1)$, et P(n + 1) est vraie.

Conclusion : Par le principe de récurrence, P(n) est vraie pour tout $n \in \mathbb{N}$.

Exemple 2

Montrons que : $(\forall n \in \mathbb{N}^*)$ $1+2+3+\cdots+n=\frac{n(n+1)}{2}$

Soit P(n) la proposition : « $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ »

Initialisation : Pour n=1

$$\frac{1 \times (1+1)}{2} = \frac{2}{2} = 1$$

Donc P(1) est vraie.

Hérédité : Supposons P(n) vraie pour un certain $n \ge 1$, c'est-à-dire :

$$1+2+3+\cdots+n = \frac{n(n+1)}{2}$$

Montrons P(n+1):

$$1+2+3+\cdots+n+(n+1) = \frac{n(n+1)}{2} + (n+1)$$
$$= \frac{n(n+1)+2(n+1)}{2}$$
$$= \frac{(n+1)(n+2)}{2}$$

Donc P(n+1) est vraie.

Conclusion : Par le principe de récurrence, P(n) est vraie pour tout $n \in \mathbb{N}^*$.