Autour des coefficients binomiaux

Table des matières

1	Les coefficients binomiaux	4							
	1.1 Définition								
	1.2 Interprétation combinatoire								
	1.3 Calculer avec les coefficients binomiaux								
2	La formule du binôme de Newton	4							
	2.1 Le développement de $(1+x)^n$								
	2.2 Forme générale								
3	Applications en probabilités								
	3.1 Suites de succès / échecs								
	3.2 La loi binomiale								
	3.3 Moments de la loi binomiale								
1	Evoreicos								

1 Les coefficients binomiaux

1.1 Définition

Définition 1 (Coefficient binomial)

▶ Factorielle Pour $n \in \mathbb{N}$, on pose $n! = \prod_{k=1}^{n} k = 1 \times 2 \times \dots (n-1) \times n$.

Ainsi : $\forall n \in \mathbb{N}, \ n! = \begin{cases} 1 & \text{si } n = 0 \\ n \times (n-1)! & \text{si } n \geqslant 1 \end{cases}$ (relation de récurrence)

▶ Coefficient binomial Pour k, n entiers avec $0 \le k \le n$, on pose :

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Représentation : le triangle de Pascal :

On place les coefficients binomiaux $\binom{n}{k}$ dans ce

tableau avec $\rightarrow k$ en abscisse,

 \triangleright n en ordonnée décroissante.

$n\downarrow$	k:0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	10	5	1		
6	1	6	15	20	15	6	1	
7	1	7	21	35	35	21	7	1

La représentation « pyramidale » met mieux en évidence leurs propriétés.

Proposition 2 (Symétrie de la pyramide)

Pour $k, n \in \mathbb{N}$, avec $0 \le k \le n$, on a :

$$\binom{n}{k} = \binom{n}{n-k}$$

1.2 Interprétation combinatoire

Soient $k, n \in \mathbb{N}$, avec $k \leq n$.

Le coefficient binomial $\binom{n}{k}$ est le nombre de manières de choisir k objets parmi n. Plus précisément :

Proposition 3 (Dénombrement des sous-parties de cardinal donné)

Soit E un ensemble à n éléments.

Alors l'ensemble E contient exactement $\binom{n}{k}$ sous-parties distinctes à k éléments.

Exemple: mains dans un jeu de cartes:

Dans un jeu de 32 cartes, on pioche 5 cartes.

Dénombrons les mains (issues) possibles : (cardinal de l'univers Ω)

L'ensemble des cartes C contient 32 éléments (les cartes du jeu!).

Les mains de 5 cartes du jeu sont les sous-parties de C formées de 5 éléments.

Leur nombre est donc : $\binom{32}{5} = \frac{32!}{5!27!} = \frac{32 \times 31 \times 30 \times 29 \times 28}{5 \times 4 \times 3 \times 2 \times 1}$. On peut retrouver le résultat par un raisonnement « à la » formule des probabilités composées :

- Pour la première carte, les 32 cartes du jeu sont possibles
- ▶ Pour la deuxième carte, les 31 cartes restant dans jeu sont possibles
- ▶ Pour la troisième carte, les 30 cartes restant dans jeu sont possibles etc.

En tenant compte de l'ordre de pioche, il y a donc $32 \times 31 \times 30 \times 29 \times 28$ tirages possibles.

Une fois les 5 cartes piochées, il y a 5! façons de réarranger les cartes de la main (5 positions pour la première, 4 pour la deuxième, etc.)

1.3 Calculer avec les coefficients binomiaux

Pour calculer une ligne du triangle de Pascal en connaissant celle au dessus, on utilise:

Proposition 4 (Formule de Pascal)

Soit
$$n \in \mathbb{N}^*$$
.

Pour
$$k \in [0, n-1]$$
, on a:

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}.$$

Démonstration:

On part du membre de gauche et on réduit les deux termes au même dénominateur :

$$\binom{n}{k} + \binom{n}{k+1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k+1)!(n-k-1)!} = \frac{n! \times (k+1)}{(k+1)!(n-k)!} + \frac{n! \times (n-k)}{(k+1)!(n-k)!}$$

$$= \frac{n! \times (n+1)}{(k+1)!(n-k)!} = \binom{n+1}{k+1}$$

Cette démonstration exploite l'une des relations entre coefficients binomiaux sont voisins dans le triangle de Pascal:

Proposition 5 (Petite formule)

Pour les valeurs de k, n qui font sens :

ligne
$$\binom{n}{k+1} = \frac{n-k}{k+1} \binom{n}{k} \qquad \binom{n}{k-1} = \frac{k}{n+1-k} \binom{n}{k}$$
 oblique
$$\nearrow \qquad \binom{n+1}{k} = \frac{n+1}{n-k+1} \binom{n}{k} \qquad \binom{n-1}{k} = \frac{n-k-1}{n-1} \binom{n}{k}$$
 oblique
$$\searrow \qquad \binom{n+1}{k+1} = \frac{n+1}{k+1} \binom{n}{k} \qquad \binom{n-1}{k-1} = \frac{k}{n} \binom{n}{k}$$

Démonstration : On démontre la dernière (et la plus célèbre) de ces formules : pour $k, n \ge 1$, avec $k \le n : \binom{n-1}{k-1} = \frac{k}{n} \binom{n}{k}$.

On écrit donc $\binom{n-1}{k-1} = \frac{(n-1)!}{(k-1)!(n-k)!}$, où l'on substitue : $(n-1)! = \frac{n!}{n}$, $(k-1)! = \frac{k!}{k}$, pour reconnaître l'expression de droite.

Exemples de programmation : On peut utiliser la formule $\binom{n}{k+1} = \frac{n-k}{k+1} \binom{n}{k}$ pour programmer le calcul des coefficients binomiaux en se déplaçant horizontalement de gauche à droite sur le triangle de Pascal, en partant de $\binom{n}{0} = 1$.

2 La formule du binôme de Newton

2.1 Le développement de $(1+x)^n$

2.2 Forme générale

Théorème 6 (Formule du binôme de Newton)

Soient $a, b \in \mathbb{R}$, et $n \in \mathbb{N}$. On alors :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Cas remarquables: Si l'un des deux termes vaut 1, il n'apparaît qu'une seule puissance dans la

somme (car
$$1^k = 1^{n-k} = 1$$
).

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k = 1 + nx + \frac{n(n-1)}{2} x^2 + \frac{n(n-1)(n-2)}{2 \times 3} x^3 + \dots + nx^{n-1} + x^n$$

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}, \qquad (pour \ a = b = 1)$$

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0 \qquad (pour \ a = -1, \ b = 1, \ n \ge 1)$$

Remarques:

- 1. Il y a n+1 termes dans la somme pour $(a+b)^n$. Tous ces termes sont homogènes de degré n, au sens où les deux exposants de chaque terme ont pour somme n.
- 2. Cette formule s'applique aussi en calcul matriciel pour $(A+B)^n$ pour des matrices carrées A, B qui commutent, soit AB = BA.

3 Applications en probabilités

3.1 Suites de succès / échecs

Considérons une alternative binaire de la forme → succès ✓, → échec ✗.

On s'intéresse au dénombrement de suites formées de ces deux symboles (les bits de t. X).

On peut représenter ces suites comme les chemins descendant l'arbre binaire : On regroupe ensemble les chemins de même longueur par le nombre de succès qu'ils contiennent :

Proposition 7 (Coefficients binomiaux et chemins binaires)

Pour $n \in \mathbb{N}$ et $k \in [0, n]$, le coefficient binomial $\binom{n}{k}$ est le nombre de chemins

- de longueur n de succès \checkmark -échecs x
- contenant exactement k succès \checkmark

Démonstration:

On a une bijection :

Les chemins à exactement k succès correspondent alors aux sous-parties de $[\![1,n]\!]$ de k éléments. Leur nombre est donc bien $\binom{n}{k}$

3.2 La loi binomiale

Soient $n \in \mathbb{N}$, $p \in [0, 1]$. On note q = 1 - p.

Définition 8 (Loi binomiale)

• On dit que X suit la loi binomiale $\mathcal{B}(n,p)$ si $X(\Omega) = \{0,1,\ldots,n\}$, et

$$\forall k = 0 : n, \ \mathbb{P}(X = k) = \binom{n}{k} p^k q^{n-k}.$$

Considérons un processus à épreuve de Bernoulli $\mathcal{B}(p)$ sans mémoire. Alors le **nombre** de succès à l'issue des n premiers essais est une variable aléatoire qui suit la loi binomiale $\mathcal{B}(n,p)$.

Exemples:

- 1. On fait rouler 10 fois un dé à 6 faces, et l'on gagne 1 point à chaque « 6 » obtenu. Alors le score final X suit la loi $\mathcal{B}(10, \frac{1}{6})$.
 - Si les résultats obtenus sont (3,1,3,6,5,2,6,6,1,2), alors X=3.
- 2. Pour estimer le résultat à un référendum, on sonde un échantillon du corps électoral.
 - Si \rightarrow la proportion (inconnue!) d'électeurs favorables au référendum est p,

(le score « si le scrutin avait lieu aujourd'hui »)

ightharpoonup et si l'échantillon est formé de n personnes,

alors le nombre d'avis favorables recueilli lors du sondage peut être modélisé par une variable aléatoire de loi binomiale $\mathcal{B}(n,p)$.

Remarque: La formule $\sum_{k=0}^{n} \mathbb{P}(X=k) = 1$ correspond à la formule du binôme de Newton pour $(p+q)^n$, avec p+q=1.

Calcul des probabilités avec Scilab:

```
scripts/binomialPlot.sci

-->probas = binomial(p, n)

probas =

column 1 to 6

0.028 0.121 0.233 0.266 0.200 0.102

column 7 to 11

0.036 0.009 0.001 0.000 0.000

-->plot2d3 (0:n, probas) // en bâtons
```


3.3 Moments de la loi binomiale

Proposition 9 (Espérance, variance de la loi binomiale)

Soit X une variable aléatoire suivant la loi $\mathcal{B}(n,p)$. Alors, on a :

$$\mathbb{E}[X] = np \qquad \qquad \text{Var}(X) = npq$$

Démonstration:

Soit
$$X \hookrightarrow \mathcal{B}(n,p)$$
. On a donc $\forall k = 0 : n$, $\mathbb{P}(X = k) = \binom{n}{k} p^k q^{n-k}$.

On va calculer les sommes qui définissent $\mathbb{E}[X]$ et $\mathbb{E}[X^2]$ en utilisant la petite formule :

▶ Espérance

On écrit
$$\mathbb{E}[X] = \sum_{k=0}^{n} k \mathbb{P}(X = k) = \sum_{k=0}^{n} k \times \binom{n}{k} p^k q^{n-k}$$
.

On a la petite formule : $k \binom{n}{k} = n \binom{n-1}{k-1}$ pour chaque terme (sauf celui où k=0 qui est nul!)

Ainsi :
$$\mathbb{E}[X] = \sum_{k=1}^{n} k \binom{n}{k} p^k q^{n-k} = \sum_{k=1}^{n} n \binom{n-1}{k-1} p^k q^{n-k}$$

$$= n \sum_{\ell=0}^{n-1} \binom{n-1}{\ell} p^{\ell+1} q^{n-1-\ell} \quad \text{(changement d'indice } \ell = k-1)$$

$$= np \sum_{\ell=0}^{n-1} \binom{n-1}{\ell} p^{\ell} q^{n-1-\ell}$$

On reconnaît la formule du binôme de Newton pour p+q.

Il vient donc bien
$$\mathbb{E}[X] = np \times (\underbrace{p+q})^{n-1} = np$$
.

▶ Calcul intermédiaire de $\mathbb{E}[X(X-1)]$.

Comme pour $\mathbb{E}[X]$, on change d'indice, après avoir appliqué la petite formule (deux fois!):

$$\mathbb{E}[X(X-1)] = \sum_{k=2}^{n} (k-1)k \binom{n}{k} p^k q^{n-k} = \sum_{k=2}^{n} (k-1)n \binom{n-1}{k-1} p^k q^{n-k}$$
$$= n \sum_{k=2}^{n} (n-1) \binom{n-2}{k-2} p^k q^{n-k} = n(n-1)p^2 \sum_{\ell=0}^{n-2} \binom{n-2}{\ell} p^\ell q^{n-2-\ell}$$

Par la formule du binôme, il vient : $\mathbb{E}[X(X-1)] = n(n-1)p^2(p+q)^{n-2} = n(n-1)p^2$.

▶ Variance

On écrit la formule de Kœnig-Huygens :
$$\operatorname{Var}(X) = \mathbb{E}[X^2] - \left(\mathbb{E}[X]\right)^2$$
, avec la forme :
$$\mathbb{E}[X^2] = \mathbb{E}[X(X-1)] + \mathbb{E}[X].$$

Il vient donc :
$$Var(X) = n(n-1)p^2 + np - (np)^2 = np[(n-1)p + 1 - np].$$

Ainsi:
$$Var(X) = np(1-p) = npq$$
.

4 Exercices

Exercice 1 (Formule sommatoire de Pascal (the « hockey stick » formula))

- 1. a) Rappeler la formule de Pascal.
 - **b)** En déduire que $\forall d \in \mathbb{N}$, et $k \ge d$, on a $\binom{k}{d} = \binom{k+1}{d+1} \binom{k}{d+1}$
- **2.** a) Par sommation télescopique, montrer que $\forall d \in \mathbb{N}$ et $n \ge d$, on a $\sum_{k=d}^{n} \binom{k}{d} = \binom{n+1}{d+1}$.
 - **b)** Par changement d'indices, montrer que $\forall d \in \mathbb{N}$ et $n \ge d$, on a $\sum_{k=1}^{n} \binom{k+d-1}{d} = \binom{n+d}{d+1}$.
- **3.** En déduire les formules $\forall n \in \mathbb{N}$:

a)
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
,

b)
$$\sum_{k=1}^{n} k(k+1) = \frac{n(n+1)(n+2)}{3}$$
,

c)
$$\sum_{k=1}^{n} k(k+1)(k+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$
,

d)
$$\sum_{k=1}^{n} k(k+1)(k+2)\dots(k+d-1) = \frac{1}{d+1} \times n(n+1)(n+2)\dots(n+d)$$
. (pour $d \in \mathbb{N}$)

Exercice 2 (Séries géométriques dérivées par la formule de Pascal)

Soit $q \in \mathbb{R}$ un réel tel que |q| < 1.

On montre que pour $d \in \mathbb{N}$, on a : $\sum_{k=d} k(k-1)(k-2)\dots(k-d+1)q^{k-d} = \frac{d!}{(1-q)^{d+1}}$.

- 1. Traduire cette formule pour d = 0, 1 et 2.
- **2.** Convergence de la série. Soit $d \in \mathbb{N}$ (fixé dans cette question)
 - a) Montrer que $\forall k \ge d$, on a $0 \le k(k-1)(k-2)\dots(k-d+1) \le k^d$.
 - **b)** Déduire quand $k \to +\infty$ la négligeabilité $k(k-1)(k-2)\dots(k-d+1)q^{k-d} = o\left(\frac{1}{k^2}\right)$.
 - c) En déduire que la série $\sum_{k=d}^{+\infty} k(k-1)(k-2)\dots(k-d+1)q^{k-d}$ converge.

Pour $d \in \mathbb{N}$, on note $S_d = \sum_{k=d}^{+\infty} {k \choose d} q^{k-d}$.

- **3.** a) Combien vaut S_0 ?
 - **b)** Vérifier la formule $\sum\limits_{k=d}^{+\infty} k(k-1)(k-2)\dots(k-d+1)q^{k-d}=d!\,S_d.$ Que reste-t-il à montrer sur S_d ? (on n'utilisera maintenant plus l'expression à gauche.)
- **4.** Montrer que l'on peut écrire : $S_d = \sum_{k=0}^{+\infty} \binom{k+d}{d} q^k$.
- **5.** a) Montrer que $\binom{k+d}{d} + \binom{k+d}{d+1} = \binom{k+d+1}{d+1}$
 - **b)** En déduire que $S_{d+1} = S_d + \sum_{k=1}^{+\infty} {k+d \choose d+1} q^k$.
 - c) Montrer que $\sum_{k=1}^{+\infty} {k+d \choose d+1} q^k = qS_{d+1}$.
 - d) En déduire que $(1-q)S_{d+1} = S_d$, et que la suite (S_d) est géométrique.
- 6. Conclure sur le terme général de la suite (S_d) et sur l'objectif de l'exercice.