Modal Logics with Composition on Finite Forests: Expressivity and Complexity

Bartosz Bednarczyk² Stéphane Demri¹ Raul Fervari³ **Alessio Mansutti**¹

LICS 2020

¹LSV, CNRS, E.N.S. Paris-Saclay

²TU Dresden & University of Wrocław

³FAMAF, Universidad Nacional de Córdoba & CONICET

Reasoning on resources, locally

'99 Logic of Bunched Implications (BI) [P. O'Hearn, D. Pym]

Resources composition: $\varphi \bullet \psi$:

1

Reasoning on resources, locally

'99 Logic of Bunched Implications (BI) [P. O'Hearn, D. Pym]

Resources composition: $\varphi \bullet \psi$:

Ambient Logic

 $\varphi | \psi$

Verification of Concurrent Systems specified in Ambient Calculus

Separation Logic

 $\varphi * \psi$

Verification of programs manipulating pointers

Reasoning on resources, locally

'99 Logic of Bunched Implications (BI) [P. O'Hearn, D. Pym]

Resources composition: $\varphi \bullet \psi$:

1

Ambient Logic

Model: Information trees

$$T := 0$$
 empty tree $| n[T]$ $| T | T$ union of trees

Separation Logic

Ambient Logic

Model: Information trees

$$T := 0$$
 empty tree $+ \text{congruence}$ $| n[T] + \text{congruence}$ $| T|T + \text{union of trees}$

Separation Logic

Ambient Logic

Model: Information trees

$$T := 0$$
 empty tree $+ \text{congruence}$ $| n[T] + \text{congruence}$ $| T|T + \text{union of trees}$

e.g.
$$a[0] \mid b[b[0] \mid a[0]]$$
 $a \mid b$

Chop operator:

$$T \models \varphi | \psi$$
 iff there are T_1 and T_2 such that $T \equiv T_1 | T_2$, $T_1 \models \varphi$ and $T_2 \models \psi$.

Separation Logic

Ambient Logic

Model: Information trees

$$T := 0$$
 empty tree $+ \text{congruence}$ $| n[T]$ union of trees $=$

e.g. a[0] | b[b[0] | a[0]] a

Chop operator:

$$T \models \varphi | \psi$$
 iff there are T_1 and T_2 such that $T \equiv T_1 | T_2$, $T_1 \models \varphi$ and $T_2 \models \psi$.

Separation Logic

Model: Memory state (s, h)

A heap $h \in \mathbb{H}$: finite functional graph

Ambient Logic

Model: Information trees

$$T := 0$$
 empty tree $| n[T]$ + congruence $| T|T$ union of trees

e.g. $a[0] \mid b[b[0] \mid a[0]]$

Chop operator:

$$T \models \varphi | \psi$$
 iff there are T_1 and T_2 such that $T \equiv T_1 | T_2$, $T_1 \models \varphi$ and $T_2 \models \psi$.

Separation Logic

Model: Memory state (s, h)

A heap $h \in \mathbb{H}$: finite functional graph

+: union of heaps

Ambient Logic

Model: Information trees

$$T := 0$$
 empty tree $\mid \mathbf{n}[T]$ + congruence $\mid T \mid T$ union of trees

e.g. a[0] | b[b[0] | a[0]] a

Chop operator:

$$T \models \varphi | \psi$$
 iff there are T_1 and T_2 such that $T \equiv T_1 | T_2, T_1 \models \varphi$ and $T_2 \models \psi$.

Separation Logic

Model: Memory state (s, h)

A heap $h \in \mathbb{H}$: finite functional graph

+: union of heaps

Star operator:

$$(s,h) \models \varphi * \psi$$
 iff there are h_1 and h_2 such that $h = h_1 + h_2$, $(s,h_1) \models \varphi$ and $(s,h_2) \models \psi$.

Ambient Logic

Model: Information trees

$$T := 0$$
 empty tree $\mid \mathbf{n}[T]$ + congruence $\mid T \mid T$ union of trees

e.g. a[0] | b[b[0] | a[0]] a

Chop operator:

$$T \models \varphi | \psi$$
 iff there are T_1 and T_2 such that $T \equiv T_1 | T_2, T_1 \models \varphi$ and $T_2 \models \psi$.

Separation Logic

Model: Memory state (s, h)

A heap $h \in \mathbb{H}$: finite functional graph

+: union of heaps

Star operator:

$$(s,h) \models \varphi * \psi$$
 iff there are h_1 and h_2 such that $h = h_1 + h_2$, $(s,h_1) \models \varphi$ and $(s,h_2) \models \psi$.

We introduce,

- ullet ML(|): Modal Logic (ML) extended with $\varphi | \psi$ from Ambient Logic
- ML(*)

We introduce,

- \bullet ML(|) : Modal Logic (ML) extended with $\varphi \, | \! | \psi$ from Ambient Logic
- \bullet ML(*) : ML extended with $\varphi*\psi$ from Separation Logic

We introduce,

- \bullet ML(|) : Modal Logic (ML) extended with $\varphi \, | \! | \psi$ from Ambient Logic
- ullet ML(*) : ML extended with $\varphi * \psi$ from Separation Logic

For ML(1) and ML(*) interpreted on finite forests:

	ML()	ML(*)
Expressive Power	Graded Modal Logic (GML)	< GML
Complexity (SAT)	${ m AExp}_{ m POL}$ -complete	Tower-complete

We introduce.

- ML($\|$): Modal Logic (ML) extended with $\varphi \| \psi$ from Ambient Logic
- ML(*): ML extended with $\varphi * \psi$ from Separation Logic

For ML(1) and ML(*) interpreted on finite forests:

	ML()	ML(*)
Expressive Power	Graded Modal Logic (GML)	< GML
Complexity (SAT)	${ m AExp}_{ m POL}$ -complete	$\operatorname{Tower} ext{-complete}$

 \bigwedge AEXPTIME, with polynomially many alternations

We introduce,

- \bullet ML(|) : Modal Logic (ML) extended with $\varphi \, | \! | \psi$ from Ambient Logic
- ullet ML(*) : ML extended with $\varphi * \psi$ from Separation Logic

For ML(|) and ML(*) interpreted on finite forests:

	ML()	ML(*)
Expressive Power	Graded Modal Logic (GML)	< GML
Complexity (SAT)	${ m AExp}_{ m POL}$ -complete	Tower-complete

We introduce,

- \bullet ML(|) : Modal Logic (ML) extended with $\varphi \, | \! | \psi$ from Ambient Logic
- ullet ML(*) : ML extended with $\varphi * \psi$ from Separation Logic

For ML(1) and ML(*) interpreted on finite forests:

	ML()	ML(*)
Expressive Power	Graded Modal Logic (GML)	< GML
Complexity (SAT)	${ m AEx}_{ m POL}$ -complete	$\operatorname{Tower} ext{-complete}$

We introduce,

- ullet ML(|): Modal Logic (ML) extended with φ | ψ from Ambient Logic
- ullet ML(*) : ML extended with $\varphi * \psi$ from Separation Logic

For ML(|) and ML(*) interpreted on finite forests:

	ML()	ML(*)
Expressive Power	Graded Modal Logic (GML)	< GML
Complexity (SAT)	${ m AExp}_{ m POL}$ -complete	Tower-complete

Results transfer to known fragments/extensions of Ambient Logic and Separation Logic.

The models:

- Atomic propositions: p, q, \dots
- Kripke-style finite forest: (\mathfrak{M}, w)

Standard ML:

$$\varphi \; := \; \textbf{\textit{p}} \; | \; \top \; | \; \varphi \wedge \psi \; | \; \neg \varphi \; | \; \Diamond \varphi$$

The models:

- Atomic propositions: *p*, *q*, . . .
- Kripke-style finite forest: (\mathfrak{M}, w)

Standard ML:

$$\varphi \ := \ \textbf{\textit{p}} \mid \top \mid \varphi \wedge \psi \mid \neg \varphi \mid \Diamond \varphi$$

Л

The models:

- Atomic propositions: *p*, *q*, . . .
- Kripke-style finite forest: (\mathfrak{M}, w)

Standard ML:

$$\varphi \; := \; \boldsymbol{p} \mid \top \mid \varphi \wedge \psi \mid \neg \varphi \mid \Diamond \varphi$$

$$ML(*) = ML + \varphi * \psi$$

 $\mathfrak{M}, w \models \varphi * \psi$ iff there are \mathfrak{M}_1 and \mathfrak{M}_2 , such that

•
$$\mathfrak{M} = \mathfrak{M}_1 + \mathfrak{M}_2$$
,

•
$$\mathfrak{M}_1$$
, $w \models \varphi$ and \mathfrak{M}_2 , $w \models \psi$.

$$\mathfrak{M}=\mathfrak{M}_1+\mathfrak{M}_2$$
:

The models:

- Atomic propositions: *p*, *q*, . . .
- Kripke-style finite forest: (\mathfrak{M}, w)

Standard ML:

$$\varphi \; := \; \boldsymbol{p} \; | \; \top \; | \; \varphi \wedge \psi \; | \; \neg \varphi \; | \; \Diamond \varphi$$

$$ML(*) = ML + \varphi * \psi$$

 $\mathfrak{M}, w \models \varphi * \psi$ iff there are \mathfrak{M}_1 and \mathfrak{M}_2 , such that

- $\mathfrak{M} = \mathfrak{M}_1 + \mathfrak{M}_2$,
- \mathfrak{M}_1 , $w \models \varphi$ and \mathfrak{M}_2 , $w \models \psi$.

The models:

- Atomic propositions: *p*, *q*, . . .
- Kripke-style finite forest: (\mathfrak{M}, w)

Standard ML:

$$\varphi \; := \; \boldsymbol{p} \; | \; \top \; | \; \varphi \wedge \psi \; | \; \neg \varphi \; | \; \Diamond \varphi$$

$$ML(*) = ML + \varphi * \psi$$

 $\mathfrak{M}, w \models \varphi * \psi$ iff there are \mathfrak{M}_1 and \mathfrak{M}_2 , such that

•
$$\mathfrak{M} = \mathfrak{M}_1 + \mathfrak{M}_2$$
,

•
$$\mathfrak{M}_1$$
, $w \models \varphi$ and \mathfrak{M}_2 , $w \models \psi$.

Arrows of \mathfrak{M} are arbitrarily split between \mathfrak{M}_1 and \mathfrak{M}_2 .

The models:

- Atomic propositions: *p*, *q*, . . .
- Kripke-style finite forest: (\mathfrak{M}, w)

Standard ML:

$$\varphi \; := \; \boldsymbol{p} \mid \top \mid \varphi \wedge \psi \mid \neg \varphi \mid \Diamond \varphi$$

$$ML(||) = ML + \varphi ||\psi|$$

 $\mathfrak{M}, w \models \varphi \mathbf{I} \psi$ iff there are \mathfrak{M}_1 and \mathfrak{M}_2 , such that

•
$$\mathfrak{M} = \mathfrak{M}_1 \mid_{w} \mathfrak{M}_2$$
,

•
$$\mathfrak{M}_1, w \models \varphi$$
 and $\mathfrak{M}_2, w \models \psi$.

$$\mathfrak{M}=\mathfrak{M}_1$$
 \downarrow_{w} \mathfrak{M}_2 :

The models:

- Atomic propositions: *p*, *q*, . . .
- Kripke-style finite forest: (\mathfrak{M}, w)

Standard ML:

$$\varphi \; := \; \boldsymbol{p} \; | \; \top \; | \; \varphi \wedge \psi \; | \; \neg \varphi \; | \; \Diamond \varphi$$

$$ML(||) = ML + \varphi ||\psi||$$

 $\mathfrak{M}, w \models \varphi | \psi$ iff there are \mathfrak{M}_1 and \mathfrak{M}_2 , such that

•
$$\mathfrak{M} = \mathfrak{M}_1 \mid_{w} \mathfrak{M}_2$$
,

•
$$\mathfrak{M}_1$$
, $w \models \varphi$ and \mathfrak{M}_2 , $w \models \psi$.

The models:

- Atomic propositions: *p*, *q*, . . .
- Kripke-style finite forest: (\mathfrak{M}, w)

Standard ML:

$$\varphi \; := \; \boldsymbol{p} \; | \; \top \; | \; \varphi \wedge \psi \; | \; \neg \varphi \; | \; \Diamond \varphi$$

$$ML(||) = ML + \varphi ||\psi||$$

 $\mathfrak{M}, w \models \varphi | \psi$ iff there are \mathfrak{M}_1 and \mathfrak{M}_2 , such that

•
$$\mathfrak{M} = \mathfrak{M}_1 \mid_{w} \mathfrak{M}_2$$
,

•
$$\mathfrak{M}_1$$
, $w \models \varphi$ and \mathfrak{M}_2 , $w \models \psi$.

Subtrees rooted in a children of w are preserved.

The models:

- Atomic propositions: *p*, *q*, . . .
- Kripke-style finite forest: (\mathfrak{M}, w)

Standard ML:

$$\varphi \; := \; \boldsymbol{p} \; | \; \top \; | \; \varphi \wedge \psi \; | \; \neg \varphi \; | \; \Diamond \varphi$$

$$ML(||) = ML + \varphi ||\psi||$$

 $\mathfrak{M}, w \models \varphi | \psi$ iff there are \mathfrak{M}_1 and \mathfrak{M}_2 , such that

•
$$\mathfrak{M} = \mathfrak{M}_1 \mid_{w} \mathfrak{M}_2$$
,

•
$$\mathfrak{M}_1$$
, $w \models \varphi$ and \mathfrak{M}_2 , $w \models \psi$.

$$\mathfrak{M} = \mathfrak{M}_1 \mid_{w} \mathfrak{M}_2$$
:

The models:

- Atomic propositions: *p*, *q*, . . .
- Kripke-style finite forest: (\mathfrak{M}, w)

Standard ML:

$$\varphi \; := \; \boldsymbol{p} \; | \; \top \; | \; \varphi \wedge \psi \; | \; \neg \varphi \; | \; \Diamond \varphi$$

$$ML(||) = ML + \varphi ||\psi||$$

 $\mathfrak{M}, w \models \varphi \mid \psi$ iff there are \mathfrak{M}_1 and \mathfrak{M}_2 , such that

•
$$\mathfrak{M} = \mathfrak{M}_1 \mid_{w} \mathfrak{M}_2$$
,

•
$$\mathfrak{M}_1$$
, $w \models \varphi$ and \mathfrak{M}_2 , $w \models \psi$.

$$\mathfrak{M} = \mathfrak{M}_1 \mid_{w} \mathfrak{M}_2$$
:

- Both ML(|) and ML(*) are captured by MSO on finite forests
- \Rightarrow their SAT problem is in ToWER

- Both ML(|) and ML(*) are captured by MSO on finite forests
- \Rightarrow their SAT problem is in Tower

$$(\Diamond \varphi) | (\Diamond \varphi) | \Diamond \varphi$$

- Both ML(1) and ML(*) are captured by MSO on finite forests
- \Rightarrow their SAT problem is in Tower

$$(\Diamond \varphi) | (\Diamond \varphi) | \Diamond \varphi$$

- Both ML(|) and ML(*) are captured by MSO on finite forests
- \Rightarrow their SAT problem is in TOWER

$$\lozenge_{\geq 3}\,\varphi \;\equiv\; (\lozenge\varphi)\, \mathbf{I}\, (\lozenge\varphi)\, \mathbf{I}\, \lozenge\varphi$$

Graded modal logic (GML): $\mathsf{ML} + (\lozenge_{\geq k} \varphi)_{k \in \mathbb{N}}$

 $\mathfrak{M}, w \models \lozenge_{\geq k} \varphi \text{ iff } w \text{ has at least } k \text{ children satisfying } \varphi.$

ML(I) is as expressive as GML

Show that GML is closed under the operator |:

Consider $\varphi_1 | \varphi_2$ such that φ_1 and φ_2 are in GML. Find γ in GML s.t. $\gamma \equiv \varphi_1 | \varphi_2$.

6

ML(|) is as expressive as GML

Show that GML is closed under the operator |:

Consider $\varphi_1 | \varphi_2$ such that φ_1 and φ_2 are in GML. Find γ in GML s.t. $\gamma \equiv \varphi_1 | \varphi_2$.

Some ingredients:

$$(\lozenge_{\geq 3}\,\varphi \wedge \neg \lozenge_{\geq 7}\,\varphi) \, | \, \lozenge_{\geq 2}\,\varphi \; \equiv \; \lozenge_{\geq 3+2}\,\varphi$$

ML(|) is as expressive as GML

Show that GML is closed under the operator :

Consider $\varphi_1 | \varphi_2$ such that φ_1 and φ_2 are in GML. Find γ in GML s.t. $\gamma \equiv \varphi_1 | \varphi_2$.

Some ingredients:

$$(\lozenge_{\geq 3} \varphi \wedge \neg \lozenge_{\geq 7} \varphi) | \lozenge_{\geq 2} \varphi \equiv \lozenge_{\geq 3+2} \varphi$$

• Idea: we see $\lozenge_{\geq k}\varphi$ as the expression $\mathtt{x}_{\varphi}\geq k$ of Presburger Arithmetic (PA)

• Translation in PA:

$$\underbrace{\exists \mathbf{y}_{\varphi} \ \exists \mathbf{z}_{\varphi}}_{\text{there are } \mathfrak{M}_{1},\mathfrak{M}_{2}} \ . \ \underbrace{\mathbf{x}_{\varphi} = \mathbf{y}_{\varphi} + \mathbf{z}_{\varphi}}_{\mathfrak{M} = \mathfrak{M}_{1}} \wedge \underbrace{\mathbf{y}_{\varphi} \geq 3 \wedge \neg \mathbf{y}_{\varphi} \geq 7}_{\mathfrak{M}_{1}, w \models \Diamond_{\geq 3} \varphi \wedge \neg \Diamond_{\geq 7} \varphi} \wedge \underbrace{\mathbf{z}_{\varphi} \geq 2}_{\mathfrak{M}_{2}, w \models \Diamond_{\geq 2} \varphi}$$

6

ML(|) is as expressive as GML

Show that GML is closed under the operator |:

Consider $\varphi_1 | \varphi_2$ such that φ_1 and φ_2 are in GML. Find γ in GML s.t. $\gamma \equiv \varphi_1 | \varphi_2$.

Some ingredients:

$$(\lozenge_{\geq 3}\,\varphi \wedge \neg \lozenge_{\geq 7}\,\varphi) \, | \, \lozenge_{\geq 2}\,\varphi \; \equiv \; \lozenge_{\geq 3+2}\,\varphi$$

• Idea: we see $\lozenge_{\geq k} \varphi$ as the expression $\mathtt{x}_{\varphi} \geq k$ of Presburger Arithmetic (PA)

• Translation in PA:

$$\underbrace{\exists \mathbf{y}_{\varphi} \ \exists \mathbf{z}_{\varphi}}_{\text{there are } \mathfrak{M}_{1},\mathfrak{M}_{2}} \ . \ \underbrace{\mathbf{x}_{\varphi} = \mathbf{y}_{\varphi} + \mathbf{z}_{\varphi}}_{\mathfrak{M} = \mathfrak{M}_{1} \Big|_{\mathbf{w}} \mathfrak{M}_{2}} \wedge \underbrace{\mathbf{y}_{\varphi} \geq 3 \wedge \neg \mathbf{y}_{\varphi} \geq 7}_{\mathfrak{M}_{1}, \mathbf{w} \models \Diamond_{\geq 3} \varphi \wedge \neg \Diamond_{\geq 7} \varphi} \wedge \underbrace{\mathbf{z}_{\varphi} \geq 2}_{\mathfrak{M}_{2}, \mathbf{w} \models \Diamond_{\geq 2} \varphi}$$

6

Show that GML is closed under the operator |:

Consider $\varphi_1 | \varphi_2$ such that φ_1 and φ_2 are in GML. Find γ in GML s.t. $\gamma \equiv \varphi_1 | \varphi_2$.

Some ingredients:

$$(\lozenge_{\geq 3} \varphi \land \neg \lozenge_{\geq 7} \varphi) | \lozenge_{\geq 2} \varphi \equiv \lozenge_{\geq 3+2} \varphi$$

• Idea: we see $\lozenge_{\geq k} \varphi$ as the expression $\mathbf{x}_{\varphi} \geq k$ of Presburger Arithmetic (PA)

• Translation in PA:

$$\underbrace{\exists \mathbf{y}_{\varphi} \ \exists \mathbf{z}_{\varphi}}_{\text{there are } \mathfrak{M}_{1},\mathfrak{M}_{2}} . \ \ \underbrace{\mathbf{x}_{\varphi} = \mathbf{y}_{\varphi} + \mathbf{z}_{\varphi}}_{\mathfrak{M} = \mathfrak{M}_{1}} \wedge \underbrace{\mathbf{y}_{\varphi} \geq 3 \wedge \neg \mathbf{y}_{\varphi} \geq 7}_{\mathfrak{M}_{1},w \models \Diamond_{\geq 3}\varphi \wedge \neg \Diamond_{\geq 7}\varphi} \wedge \underbrace{\mathbf{z}_{\varphi} \geq 2}_{\mathfrak{M}_{2},w \models \Diamond_{\geq 2}\varphi} \equiv \mathbf{x}_{\varphi} \geq 3 + 2$$

6

Show that GML is closed under the operator |:

Consider $\varphi_1 | \varphi_2$ such that φ_1 and φ_2 are in GML. Find γ in GML s.t. $\gamma \equiv \varphi_1 | \varphi_2$.

Some ingredients:

$$\lozenge_{\geq k_1} \varphi \, | \, \lozenge_{\geq k_2} \psi$$

If $\varphi \wedge \psi$ is satisfiable, then the value of x_{φ} could depend on the value of x_{ψ} .

Show that GML is closed under the operator :

Consider $\varphi_1 | \varphi_2$ such that φ_1 and φ_2 are in GML. Find γ in GML s.t. $\gamma \equiv \varphi_1 | \varphi_2$.

Some ingredients:

$$\lozenge_{\geq k_1} \varphi \, | \, \lozenge_{\geq k_2} \psi$$

If $\varphi \wedge \psi$ is satisfiable, then the value of x_{φ} could depend on the value of x_{ψ} .

- Idea: manipulate the formula so that $\varphi=\psi$, or $\varphi\wedge\psi$ unsatisfiable
- Cost: one exponential blow-up

Show that GML is closed under the operator :

Consider $\varphi_1 | \varphi_2$ such that φ_1 and φ_2 are in GML. Find γ in GML s.t. $\gamma \equiv \varphi_1 | \varphi_2$.

Some ingredients:

$$\lozenge_{\geq k_1} \varphi \, | \, \lozenge_{\geq k_2} \psi$$

If $\varphi \wedge \psi$ is satisfiable, then the value of x_{φ} could depend on the value of x_{ψ} .

- Idea: manipulate the formula so that $\varphi = \psi$, or $\varphi \wedge \psi$ unsatisfiable
- Cost: one exponential blow-up

From the translation: ML(1) has an exp-size small-model property.

SAT(ML(|)) is $AExp_{POL}$ -complete

AEXPTIME, with polynomially many alternations

SAT(ML(|)) is in $AExp_{POL}$:

- See φ in ML(|) as a formula from MSO (on finite forests)
- ullet Guess a finite forest (\mathfrak{M},w) of size exponential in |arphi|
- Check whether $\mathfrak{M}, w \models \varphi$

SAT(ML(|)) is $AExp_{POL}$ -complete

AEXPTIME, with polynomially many alternations

SAT(ML(|)) is in $AExp_{POL}$:

- See φ in ML($\|$) as a formula from MSO (on finite forests)
- ullet Guess a finite forest (\mathfrak{M},w) of size exponential in |arphi|
- Check whether $\mathfrak{M}, w \models \varphi$

SAT(ML(||)) is **AE**xp_{POL}-hard:

- ullet Every formula of Team Logic can be translated to a ML(ullet) formula of with modal depth 1
- \bullet Team Logic is $\rm AExp_{POL}\text{-}complete}$ [Hannula et al., TOCL'18]

$$(\Diamond\varphi)\, \mathsf{I}(\Diamond\varphi) \Rightarrow \Diamond_{\geq 2}\varphi$$

$$(\Diamond\Diamond_{=1}\bigcirc) \mid (\Diamond\Diamond_{=1}\bigcirc) \Rightarrow \Diamond_{\geq 2}\Diamond_{=1}\bigcirc$$

Show that GML is closed under the "operator" (_) * \square $\bot.$

Show that GML is closed under the "operator" (_) $* \square \perp$.

Some ingredients:

We rely on g-bisimulation [see De Rijke,'00]

$$\mathfrak{M}, w \approx_{m,k}^{P} \mathfrak{M}', w \text{ iff for every } \varphi \in \mathsf{GML}[m,k,P] \ (\mathfrak{M}, w \models \varphi \text{ iff } \mathfrak{M}', w' \models \varphi)$$

(m maximal modal depth, k maximal coefficient for $\lozenge_{\geq k}$, P finite set of atomic propositions)

Show that GML is closed under the "operator" (_) * \square \bot .

Some ingredients: $(\text{modal depth, coefficient } \lozenge_{\geq k})$

To show: there is a function $\mathfrak{f}:\mathbb{N}^2\to\mathbb{N}$ such that

Show that GML is closed under the "operator" (_) * \square \bot .

Some ingredients:

To show: there is a function $\mathfrak{f}\colon \mathbb{N}^2 \to \mathbb{N}$ such that

Show that GML is closed under the "operator" (_) * \square \bot .

Some ingredients:

To show: there is a function $\mathfrak{f}\colon \mathbb{N}^2 \to \mathbb{N}$ such that

Show that GML is closed under the "operator" (_) * \square \bot .

Some ingredients:

To show: there is a function $\mathfrak{f}\!:\!\mathbb{N}^2\to\mathbb{N}$ such that

Show that GML is closed under the "operator" (_) $* \square \perp$.

Some ingredients:

To show: there is a function $\mathfrak{f}\colon \mathbb{N}^2 \to \mathbb{N}$ such that

No: we can characterise worlds of "type k" with a ML(*) formula of size exponential in k

No: we can characterise worlds of "type k" with a ML(*) formula of size exponential in k

No: we can characterise worlds of "type k" with a ML(*) formula of size exponential in k

No: we can characterise worlds of "type k" with a ML(*) formula of size exponential in k

- every child is of type 1
- every child encode a different number
- every number is encoded by a child

No: we can characterise worlds of "type k" with a ML(*) formula of size exponential in k

No: we can characterise worlds of "type k" with a ML(*) formula of size exponential in k

No: we can characterise worlds of "type k" with a ML(*) formula of size exponential in k

\mathfrak{f} is a non-elementary function. Can we do better?

No: we can characterise worlds of "type k" with a ML(*) formula of size exponential in k

• Type *k* nodes used for Quantified ML (QML) [Bednarczyk, Demri, LICS'19]

10

\mathfrak{f} is a non-elementary function. Can we do better?

No: we can characterise worlds of "type k" with a ML(*) formula of size exponential in k

• Type k nodes used for Quantified ML (QML) [Bednarczyk, Demri, LICS'19]

Issues:

- The operator * is less powerful than the 2nd-order quantification of QML
- The operator * breaks the encoding of numbers (if not handled correctly)

Tower-hardness of SAT(ML(*)):

• Uniform reduction from the k-NEXPTIME version of the tiling problem, for $k \geq 2$

Recap

There is more...

Recap

There is more...

 $\lozenge_{=2} \lozenge_{=1} \top$ cannot be expressed in ML(*) (proof via EF-games)

There is more...

SAT(ML(||)) shows that

- \bullet Quantifier-free Intensional fragment of Ambient Logic is $\mathrm{AExp}_{\mathrm{POL}}\text{-complete}$
- \bullet Ambient Logic in [Calcagno et al., TLDI'03] is $\mathrm{AExp}_{\mathrm{POL}}\text{-hard}$

Recap

There is more...

SAT(ML(*)) shows that MSL(*, \Diamond^{-1}) [Demri, Fervari, AIML'18] is ToWER-complete.

Thanks for your attention.

Modal Logics with Composition on Finite Forests: Expressivity and Complexity

Bartosz Bednarczyk, Stéphane Demri, Raul Fervari, Alessio Mansutti