EEL 3701 — Digital Logic & Computer Systems Revision 1

Lab 2 Report: MSI Circuits

Dupuis, Connor Class #: 12478 Kevin Lovell

9 17, 2019

PRE-LAB QUESTIONS OR EXERCISES

N/A

Page 1/7

PROBLEMS ENCOUNTERED

N/A

REQUIREMENTS NOT MET

N/A

FUTURE WORK/APPLICATIONS

This lab gave me a better understanding of how somewhat more complex circuit and logic designs can be made and implemented. In this lad we created a decoder that converted a binary number into HEX of an LED display. This is valuable because it gives insight as to how basic conversion works, even if this is at a really low level.

PRE-LAB REQUIREMENTS (Design, Schematic, ASM Chart, VHDL, etc.)

Part A

50	Sı	Dall	Dz(H)	DILLI	Dachi	X(1)	Sa	5,	DEU	(H)30	DYFJ	Da(H)	X(1)
0	0	-	-	-	0	0	٢	L	-	-	-	L	Н
0	0	_	-	_	l	١	L	L	-	-	-	H	L
0	١	-	-	0	-	0	L	H	-	-	L	-	L
0	١	-	-	(_	1	L	4	-	-	H	-	Н
1	0	_	0	_	_	0	H	L	_	L	-	-	Н
1	B	-	1	_	_	1	H	L	-	Н	-	_	L
1	1	0	_	_	_	0	H	H	٢	_	_	_	L
- 1	1	(_	_	_	1	Н	H	Н	_	-	_	H

Figure 1: Truth and voltage table for MUX

$$SOP = \overline{S}_{0}\overline{S}_{1}D_{0} + \overline{S}_{0}S_{1}D_{1} + S_{0}\overline{S}_{1}D_{2} + S_{0}S_{1}D_{3}$$

$$POS = (S_{0}+S_{1}+D_{0})(S_{0}+\overline{S}_{1}+D_{1})(\overline{S}_{0}+S_{1}+D_{2})(\overline{S}_{0}+\overline{S}_{1}+D_{3})$$

Figure 2: Logic equations for MUX

Revision 1
Lab 2 Report: MSI Circuits

Class #: 12478 Kevin Lovell 9 17, 2019

Dupuis, Connor

Page 2/7

Figure 3: Functional Block Diagram for MUX

Figure 4: Circuit design for MUX

University of Florida

Department of Electrical & Computer Engineering

EEL 3701 — Digital Logic & Computer Systems

Revision 1

Page 3/7

Lab 2 Report: MSI Circuits

Dupuis, Connor Class #: 12478 Kevin Lovell 9 17, 2019

Figure 5: Quartus circuit design for MUX

S0 and S1 corresponds to which input it is directing to. 00 goes to D0, 01 goes to D1_L, 10 goes to D2, and 11 goes to D3_L.

When being directed to, all the inputs have a 0 and a 1. The arrow is pointing to when S0 and S1 are 00, then D0 is 0 then 1.

The final output of the MUX.

Revision 1

Lab 2 Report: MSI Circuits

Dupuis, Connor Class #: 12478 Kevin Lovell 9 17, 2019

Part B

Page 4/7

TU	X,	Xz	Χ,	Xo	Α	В	C	D	٤	F	G	
1	0	0	0	0	١	1	١	Ī	Ī	١	0	1-1
1	0	0	0	1	0	1	١	0	0	0	0	1
_ \	0	0	١	0	١	١	0	l	١	0	١	
- 1	0	O	١		l			1	0	0	١	=1
1	0	١	٥	0	0	1	l	0	0	1	\	1_1
-	0	١	٥	(0	1	1	C	1	1	515
	0	\	١	0	1	0	1	١	1	١)	5
	0	1	١	1	1	1	1	0	C	0	0	1
- (1	0	0	0		1	1	١	١	_\	1	티
	1	0	0	١	i	1	١	١	C))	1	1271127
ĺ	1	0	١	0	1	1	1	0	1	. (1	1-1
- (1	0	١	١	0	0	1	1	١	. 1	l	1=
- (1	١	0	0	1	O	0	l	١		0	1-
- 1	1	(0	1	0	Ì	١)	1	(3 1	17
1		l	l	0	1	0	٥	1	1			171111111111111111111111111111111111111
١	1	1	١	1		Ö	C	0	1		1	F
0	_	_	_		1	١	١	1	\ \		ιi	1=1

Figure 6: Truth table for 7-segment LED

A POS: (X3+X2+X1+X0)(X3+X2+X1+X0)(X3+X2+X1+X0)(X3+X2+X1+X0)
B POS: (X3+X2+X,+X6) (X3+X2+X1+X6) (X3+X2+X1+X6) (X3+X2+X1+X6) (X3+X2+X1+X6) (X3+X2+X1+X6)
C POS: (X3+X2+X,+X0)(X3+X2+X1+X0)(X3+X2+X1+X0)(X3+X2+X1+X0)
D POS: (X3+X2+X,+X0) (X3+X2+X1+X0) (X3+X2+X,+X0) (X3+X2+X1+X0) (X3+X2+X1+X0)
E POS: (X3+X2+X,+X0) (X3+X2+X1+X0) (X3+X2+X1+X0) (X3+X2+X1+X0) (X3+X2+X1+X0) (X5+X2+X1+X0)
F POS: (X3+X2+X,+X0) (X3+X2+X1+X0) (X3+X2+X1+X0) (X3+X2+X1+X0) (X3+X2+X1+X0)
G POS: (X3+X2+X,+X0) (X3+X2+X1+X0) (X3+X2+X,+X0) (X3+X2+X1+X0)

Figure 7: Logic equations for 7-segment LED

Page 5/7

Department of Electrical & Computer Engineering

Revision 1

Lab 2 Report: MSI Circuits

Dupuis, Connor Class #: 12478 Kevin Lovell 9 17, 2019

TU	X.	X ₂	Χ,	Xo	Α	В	С	D	٤	F	G	
H	L	L	L	L	Н	H	H	H	H	H	L	
H	L	L	L	H	L	H	H	L	L	L	L	1
H	L	L	H	L	H	H	L	Н	H	L	Н	Ξ'
H	L	L	Н	Н	H	H	H	H	L	L	H	<u></u>
Н	L	Н	L	L	L	H	H	L	L	H	H	1_1
H	L	H	L	H	H	L	H	H	L	H	H	515
H	L	Н	Н	L	H	L	H	H	H	#	H	E
H	L	H	Н	4	H	H	#	L	L	L	L	-
Н	H	L	i	L	H	H	H	H	#	H	Н	E
H	H	L	L	H	H	#	#	H	L	H	H	
Н	Н	L	H	L	H	H	H	L	H	H	H	
H	H	L	H	H	L	L	H	H	H	H	H	15
H	H	H	Ĺ	L	H	L	L	H	H	H	L	1-
H	H	H	L	Н	L	H	H	H	H	L	H	7
Н	H	H	H	L	H	L	L	H	H	H	H	171111111111111111111111111111111111111
Н	Н	H	H	Н	H	L	L	L	H	H	H	1
L	_			-	H	H	H	H	H	H	H	1=1

Figure 8: Voltage table for 7-segment LED

Figure 9: Functional block diagram for 7-segment LED

Page 6/7

EEL 3701 — Digital Logic & Computer Systems Revision 1

Lab 2 Report: MSI Circuits

Dupuis, Connor Class #: 12478 Kevin Lovell 9 17, 2019

Figure 10: Quartus circuit design for 7-segment LED

Page 7/7

EEL 3701 — Digital Logic & Computer Systems Revision 1

Lab 2 Report: MSI Circuits

Dupuis, Connor Class #: 12478 Kevin Lovell 9 17, 2019

The letter determines whether not that respective LED segment is on. High is on and Low is off

The inputs represent a binary number which is then translated into the hex via the LED segments previously described. IE. 1111=15 = F

T is a test input which if it is Low, then all the LED segments should turn on.