Question 1. Comparing Algorithms

- (a) In this lab, for all three algorithms you will
- (b) write the pseudo code. (Must follow the notations and conventions used in today's Lecture)
- (c) determine the worst case time complexity.

Problem statement

Find the largest distance between any two even integers in an integer array.

Algorithm 1.

Create a new array consisting of even numbers only. Then use nested loops to solve the problem using

the newly created array of even numbers only.

```
Algorithm findLargestDistance(A, n)
Input Array A of n integers
Output largestDistance between 2 even elements of A
```

```
numsEven <- new Array

for i <- 0 to n - 1 do

if(A[i]%2 == 0)

numsEven[x] <- A[i]

largestDistance <- 0

for i <- 0 to n - 2 do

for j <- 1 to n - 1 do

distance <- numsEven[i] - numsEvent[j]

if(numsEven[j] > numsEvent[i])

distance <- numsEven[j] - numsEvent[i]

if(largestDistance < distance)

largestDistance <- distance
```

return largestDistance

Time complexity: $O(n) + O(n^2) \rightarrow O(n^2)$

Algorithm 2.

Use a nested loop to solve the problem without creating an extra array.

```
Algorithm findLargestDistance(A, n)
Input Array A of n integers
Output largestDistance between 2 even elements of A

largestDistance <- 0
for i <- 0 to n - 2 do
    if(A[i]%2!= 0)
        continue
    for j <- 1 to n - 1 do
        if(A[j]%2!= 0)
        continue
    distance <- A[i] - A[j]
        if(A[j] > A[i])
        distance <- A[j] - A[i]
        if(largestDistance < distance)
        largestDistance <- distance
```

return largestDistance

Time complexity: O(n²)

Algorithm 3.

max <- A[i]

Use one loop. Find max and min of even integers. Compute max – min.

```
Algorithm findLargestDistance(A, n)
Input Array A of n integers
Output largestDistance between 2 even elements of A

max <- Integer.MIN_VALUE
min <- Integer.MAX_VALUE
for i <- 0 to n - 1 do
    if(A[i]%2 == 0)
        if(max < A[i])
```

```
if(min > A[i])
  min <- A[i]

largestDistance <- max - min
return largestDistance</pre>
```

Time complexity: O(n)

Question 2.

Consider the following functions to determine the relationships that exist among the complexity classes they belong: 10, 1, n^3 , $n^{1/3}$, log(log(n)), n^2 , $n^{1/2}$, logn, $logn^n$, n^k (k > 3), $n^{1/k}$ (k > 3), $n^{1/k}$ (k > 3), $n^{1/2}$ logn, $n^{1/2}$ logn logn

10, 1	Θ (1)	
log(log(n))	$\Theta(\log(\log(n)))$	
log(n), ln(n)	$\Theta(\log(n))$	
$n^{1/2}, n^{1/3}, n^{1/k} (k > 3)$	$\Theta(n^{1/k}) (0 < k < 1)$	
n ^{1/2} logn, n ^{1/3} logn	Θ (n ^{1/k} logn) (0 < k < 1)	
nlogn, logn ⁿ	∂ (nlog(n))	
n ²	Θ (n²)	
n ³	$\Theta(n^3)$	
n^k ($k > 3$), n^n	$\Theta(n^k)$	
2 ⁿ	Θ (2 ⁿ)	
3 ⁿ	Θ (3 ⁿ)	
n!	Θ (n!)	