Organic Semiconductors & Devices

Kalyani Patrikar

IIT Gandhinagar

Flexible and Conformable Devices

How to predict any device

- Equilibrium
 - Energy levels
 - DoS (Eg, N)
 - Charge carriers
- Operation
 - Electric Field
 - Mobility

Organic Semiconductors

There are no energy bands

There are no charge carriers

Fermi level at interfaces don't line up

Organic Materials

 Molecular or polymer solids: molecular or long chain

 Amorphous thinfilms: Positional disorder, order not longer than 10nm

Strong covalent bonds, weak intermolecular interactions

Energy Levels

- As distance between atoms reduces, energy levels split
- 2N electrons occupy N energy levels

- Molecular orbitals form from atomic orbitals
- Strong covalent bonds
- Weak intermolecular interactions; molecular orbitals don't split further
- Highest Occupied & Lowest Unoccupied Molecular Orbital

Conjugation

1,3-Cyclohexadiene (Conjugated)

1,4-Cyclohexadiene (Non-Conjugated)

1,3-Butadiene (Conjugated)

1,4-Pentadiene (Non-Conjugated)

Pentacene

Conjugation --> Delocalization

LUMO of pentacene delocalized over molecule

LUMO delocalized over conjugated backbone but not non-conjugated side chains

Density of States

- Molecular distances are large: no further splitting
- Solid state: shift in energy levels
- Amorphous materials:
 - Environment of each molecule is different
 - Shift in energy is different for each molecule

Environment of each molecule is different; unpredictable

Energy levels throughout the solid are shifted by a random amount; considered to form a gaussian distribution

Charge Transport

- Charge hopping to neighbouring sites
- Neighbouring sites are accessible
- Orbital transfer—a connected pathway for electrons

Hops depend on
Site energy level
Physical site proximity
Activation energy

Charge Transport

- Addition of charge to a neutral molecule causes bonds to rearrange; consumes reorganisation energy (λ)
- Reorganisation energy is activation barrier to every charge hop
- 'J' is charge transfer integral: Intermolecular electronic coupling
- Is the overlap of orbitals feasible?

Addition of charge changes configuration

$$k_{ij} = \frac{J^2}{h} \sqrt{\frac{\pi}{\lambda kT}} \exp\left(-\frac{(\lambda + E_i - E_j)^2}{4 \lambda kT}\right)$$

Mobility

- Charge transport is sequence of hops, each taking time $(t=1/k_{ij})$
- Random walk follows path of several electrons, get average displacement (r)
- Intermolecular distance is a gaussian distribution around ideal molecular spacing
- In electric field, average displacement is according to its direction, but hops are in random direction too, depending on which neighbours allow feasible energy levels and orbital overlap

Organic Field Effect Transistors

$$n = C(V_G - V_T)$$

Low charge carrier density:

- Thin Film Transistors
- Accumulation mode

$$n = C(V_G - V_T - V_D/2)$$

Linear
$$I_D = \mu C \left(V_G - V_T - \frac{V_D}{2} \right) V_D \frac{W}{L}$$

Saturation
$$I_D = \mu C(\frac{V_G - V_T}{2}) \frac{W}{L} (V_G - V_T)$$

$$\mu_{Sat} = \left(\frac{\partial \sqrt{I_D}}{V_G}\right)^2 \frac{2L}{CW}$$

Simplest Solar Cell

Binding Energy

- Exciton formation
 - Binding Energy: electron and hole are bound together on a molecule
- Exciton Diffusion
 - Excitation transfers have a small diffusion length
 - Exciton recombines before reaching electrodes: inefficient device

Organic Diode

Bulk Heterojunction Organic Solar Cells

- Molecular junctions
- Energy difference at DA interface separates exciton
- Electron and hole transport to electrodes via network of acceptor and donors

Summary

- Amorphous solids
- Energy levels
- Polarons transport- *k*
- Mobility
- Organic transistors
- Exciton transport
- BHJ cells