Topic 4: The quasigeostrophic model

MATH3261/5285: Fluids, Oceans, and Climate

{Shane Keating}, School of Mathematics and Statistics

UNSW Sydney, Term 1 2019

4.1 Scaling theory

Scaling theory for the shallow water model

$$\frac{\partial}{\partial t} = \frac{U}{L} \frac{\partial}{\partial \hat{t}}$$

$$\nabla = \frac{1}{L} \hat{\nabla}$$

$$\mathbf{u} = U \hat{\mathbf{u}}$$

$$\eta = \mathcal{H} \hat{\eta}$$

$$f = f_0 \hat{f}$$

Dimensional momentum equation

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} + \mathbf{f} \times \mathbf{u} = -g \nabla \eta$$

Non-dimensional momentum equation

$$\operatorname{Ro}\left[\frac{\partial \hat{\mathbf{u}}}{\partial \hat{t}} + \hat{\mathbf{u}} \cdot \hat{\nabla} \hat{\mathbf{u}}\right] + \hat{\mathbf{f}} \times \hat{\mathbf{u}} = -\hat{\nabla} \hat{\eta}$$

$$Ro = \frac{U}{f_0 L} = Rossby number$$

Dimensional continuity equation

$$\frac{\partial h}{\partial t} + \mathbf{u} \cdot \nabla h + h \ \nabla \cdot \mathbf{h} = 0$$

Non-dimensional continuity equation

Ro F
$$\left[\frac{\partial \hat{\eta}}{\partial \hat{t}} + \hat{\mathbf{u}} \cdot \hat{\nabla} \hat{\eta}\right] + \left(1 + \text{Ro F } \hat{\eta}\right) \hat{\nabla} \cdot \hat{\mathbf{u}} = 0$$

$$F = \frac{L^2}{L_D^2} = Froude number$$

$$L_D = \frac{\sqrt{gH}}{f_0}$$
 = Rossby deformation scale

Quasigeostrophic limit

$$Ro \ll 1$$
 and $F \approx O(1)$ \Longrightarrow $L \approx L_D$

Ocean:

$$L_D \approx 100 \text{ km}$$
 mesoscale (eddy scale)

Atmosphere:

 $L_D \approx 1000 \text{ km}$ synoptic scale (weather scale)

4.2 Asymptotic scaling theory

Non-dimensional momentum equation

$$\operatorname{Ro}\left[\frac{\partial \hat{\mathbf{u}}}{\partial \hat{t}} + \hat{\mathbf{u}} \cdot \hat{\nabla} \hat{\mathbf{u}}\right] + \hat{\mathbf{f}} \times \hat{\mathbf{u}} = -\hat{\nabla} \hat{\eta}$$

Non-dimensional continuity equation

Ro F
$$\left[\frac{\partial \hat{\eta}}{\partial \hat{t}} + \hat{\mathbf{u}} \cdot \hat{\nabla} \hat{\eta}\right] + \left(1 + \text{Ro F } \hat{\eta}\right) \hat{\nabla} \cdot \hat{\mathbf{u}} = 0$$

Asymptotic scaling theory

Expand fields in powers of Ro and gather terms at each order:

$$\hat{\boldsymbol{\eta}} = \hat{\eta}_0 + \operatorname{Ro} \, \hat{\eta}_1 + \operatorname{Ro}^2 \, \hat{\eta}_2$$

$$\hat{\mathbf{u}} = \hat{\mathbf{u}}_1 + \operatorname{Ro} \, \hat{\mathbf{u}}_1 + \operatorname{Ro}^2 \, \hat{\mathbf{u}}_2 + \cdots$$

$$\hat{f} = 1 + \operatorname{Ro} \, \hat{\beta} \, \hat{y}$$

- geostrophic flow: $\hat{\eta}_0$, $\hat{\mathbf{u}}_0$
- ageostrophic flow: $\hat{\eta}_1$, $\hat{\mathbf{u}}_1$, $\hat{\eta}_2$, $\hat{\mathbf{u}}_2$, ...

Summary: derivation of the QG system

- non-dimensionalize the momentum and continuity equations and express in terms of Ro and F
- in limit Ro $\ll 1$, $F \approx O(1)$, expand $\hat{\eta}$, $\hat{\mathbf{u}}$, \hat{f} in powers of Ro
- collect terms in each equation at O(1), O(Ro):
 - geostrophic flow $\hat{\eta}_0$, $\hat{\mathbf{u}}_0$, $\hat{\boldsymbol{\psi}}_0$
 - \circ ageostrophic correction $\hat{\eta}_1$, $\hat{\mathbf{u}}_1$
- take curl of O(Ro) momentum equation and combine with O(Ro) continuity equation
 - o non-dimensional QG potential vorticity equation
- rescale to get dimensional QG potential vorticity equation

Quasigeostrophic potential vorticity equation

$$\frac{D_0 Q}{Dt} = 0, \qquad Q = \nabla^2 \psi + \beta y - \frac{\psi}{L_D^2}$$

$$\frac{D_0}{Dt} = \frac{\partial}{\partial t} + \mathbf{u}_0 \cdot \nabla = \text{advection by geostrophic velocity}$$

4.3 Rossby waves in the QG system

Dispersion relation

$$\omega = kU - k \frac{\beta + k_D^2 U}{k^2 + l^2 + k_D^2}$$

Case 1: $k_D = 0$

$$\omega = kU - k \frac{\beta}{k^2 + l^2}$$

- barotropic Rossby wave
- effect of *U* is to Doppler shift the frequency

Case 2: U = 0

$$\omega = -k \frac{\beta}{k^2 + l^2 + k_D^2}$$

- baroclinic Rossby wave
- get a maximum frequency of $\omega_{max} = \beta/2k_D$.

