

Escuela Rafael Díaz Serdán

Matemáticas 3

J. C. Melchor Pinto

3° de Secundaria

2022-2023

Determina ángulos en triángulos isóceles

Aprendizajes

 Comprende los criterios de congruencia de triángulos y los utiliza para determinar triángulos congruentes.

Puntuación

Pregunta	1	2	3	4	5	6	7	8	9	10	Total
Puntos	10	10	10	10	10	10	10	10	10	10	100
Obtenidos											

Vocabulario

Ángulo (\angle) \rightarrow Medida de abertura entre dos rectas. Congruente (\cong) \rightarrow que tiene el mismo tamaño, forma y medida.

Lados Correspondientes \rightarrow los lados que ocupan la misma posición relativa.

Similar o Semejante (\sim) \rightarrow que tiene la misma forma, pero no el mismo tamaño. Las formas similares son proporcionales entre sí.

Definición de congruencia

Dos figuras son congruentes si y solo si se puede mapear una a la otra con transformaciones rígidas. Como las transformaciones rígidas preservan distancias y medidas de ángulos, todos los lados y ángulos correspondientes son congruentes.

Suma de los ángulos interiores de un triángulo

Figura 1: La suma de los ángulos interiores de un triángulo es 180°.

 $\angle ABC + \angle BCA + \angle CAB = 180^{\circ}$

Criterios de congruencia

Lado Lado (LLL)

Cuando los tres pares de lados correspondientes son congruentes, los triángulos son congruentes. Lado Ángulo Lado (LAL)

Cuando dos pares de lados correspondientes y los ángulos entre ellos son congruentes, los triángulos son congruentes. Ángulo Lado Ángulo (ALA)

Cuando dos pares de ángulos correspondientes y los lados entre ellos son congruentes, los triángulos son congruentes.

Ángulo Ángulo Lado (AAL)

tes, los triángulos son congruentes.

Ejercicio 1 10 puntos

Calcula el valor de x en el triángulo isóseles que se muestra abajo (figura 6).

Figura 6

Solución:

Figura 7

Dado que tiene dos lados congruentes (aquellos cuya longitud es 14), el triángulo es isósceles. Los ángulos opuestos a los lados congruentes también son congruentes, por lo que el ángulo sin etiqueta mide 50° (Ver Figura 7). Los tres ángulos en un triángulo suman 180°. Podemos escribir este enunciado como una ecuación:

$$x^{\circ} + 50^{\circ} + 50^{\circ} = 180^{\circ}$$

$$\therefore x^{\circ} = 180^{\circ} - 50^{\circ} - 50^{\circ} = 80^{\circ}$$

Ejercicio 2 10 puntos

¿Cuál es el valor de x en la figura 8?

Figura 8

Solución:

Figura 9

Dado que tiene dos lados congruentes (aquellos cuya longitud es 12), el triángulo es isósceles. Los ángulos opuestos a los lados congruentes también son congruentes, por lo que el ángulo sin etiqueta mide 62° (Ver Figura 9). Los tres ángulos en un triángulo suman 180°. Podemos escribir este enunciado como una ecuación:

$$x^{\circ} + 62^{\circ} + 62^{\circ} = 180^{\circ}$$

$$\therefore x^{\circ} = 180^{\circ} - 62^{\circ} - 62^{\circ} = 56^{\circ}$$

Ejercicio 3 10 puntos

Calcula el valor de x en el triángulo isóseles que se muestra abajo (figura 10).

Figura 10

Solución:

Figura 11

Dado que tiene dos lados congruentes (aquellos cuya longitud es 3.5), el triángulo es isósceles. Los ángulos opuestos a los lados congruentes también son congruentes, por lo que el ángulo sin etiqueta mide 55° (Ver Figura 11). Los tres ángulos en un triángulo suman 180°. Podemos escribir este enunciado como una ecuación:

$$x^{\circ} + 55^{\circ} + 55^{\circ} = 180^{\circ}$$

$$\therefore x^{\circ} = 180^{\circ} - 55^{\circ} - 55^{\circ} = 70^{\circ}$$

Ejercicio 4 10 puntos

¿Cuál es el valor de x en la figura 12?

Figura 12

Solución:

Figura 13

Dado que tiene dos lados congruentes (aquellos cuya longitud es 4), el triángulo es isósceles. Los ángulos opuestos a los lados congruentes también son congruentes, por lo que el ángulo sin etiqueta mide 56° (Ver Figura 13). Los tres ángulos en un triángulo suman 180°. Podemos escribir este enunciado como una ecuación:

$$x^{\circ} + 56^{\circ} + 56^{\circ} = 180^{\circ}$$

$$x^{\circ} = 180^{\circ} - 56^{\circ} - 56^{\circ} = 68^{\circ}$$

Ejercicio 5 10 puntos

Calcula el valor de x en el triángulo isóseles que se muestra abajo (figura 14).

Figura 14

Solución:

Figura 15

Dado que tiene dos lados congruentes (aquellos cuya longitud es 3.3), el triángulo es isósceles. Los ángulos opuestos a los lados congruentes también son congruentes, por lo que el ángulo sin etiqueta mide 39° (Ver Figura 15). Los tres ángulos en un triángulo suman 180°. Podemos escribir este enunciado como una ecuación:

$$x^{\circ} + 39^{\circ} + 39*^{\circ} = 180^{\circ}$$

$$\therefore x^{\circ} = 180^{\circ} - 39^{\circ} - 39^{\circ} = 102^{\circ}$$

Ejercicio 6 10 puntos

¿Cuál es el valor de x en la figura 16?

Figura 16

Solución:

Figura 17

Dado que tiene dos lados congruentes (aquellos cuya longitud es 7), el triángulo es isósceles. Los ángulos opuestos a los lados congruentes también son congruentes, por lo que el ángulo sin etiqueta mide x° (Ver Figura 17). Los tres ángulos en un triángulo suman 180°. Podemos escribir este enunciado como una ecuación:

$$x^{\circ} + x^{\circ} + 80^{\circ} = 180^{\circ}$$

$$\therefore x^{\circ} = \frac{180^{\circ} - 80^{\circ}}{2} = 50^{\circ}$$

Ejercicio 7 10 puntos

Calcula el valor de x en el triángulo isóseles que se muestra abajo (figura 18).

Figura 18

Solución:

Figura 19

Dado que tiene dos lados congruentes (aquellos cuya longitud es 6), el triángulo es isósceles. Los ángulos opuestos a los lados congruentes también son congruentes, por lo que el ángulo sin etiqueta mide x° (Ver Figura 19). Los tres ángulos en un triángulo suman 180°. Podemos escribir este enunciado como una ecuación:

$$x^{\circ} + x^{\circ} + 56^{\circ} = 180^{\circ}$$

$$\therefore x^{\circ} = \frac{180^{\circ} - 56^{\circ}}{2} = 62^{\circ}$$

Ejercicio 8 10 puntos

¿Cuál es el valor de x en la figura 20?

Figura 20

Solución:

Figura 21

Dado que tiene dos lados congruentes (aquellos cuya longitud es 5), el triángulo es isósceles. Los ángulos opuestos a los lados congruentes también son congruentes, por lo que el ángulo sin etiqueta mide x° (Ver Figura 21). Los tres ángulos en un triángulo suman 180°. Podemos escribir este enunciado como una ecuación:

$$x^{\circ} + x^{\circ} + 70^{\circ} = 180^{\circ}$$

$$\therefore x^{\circ} = \frac{180^{\circ} - 70^{\circ}}{2} = 55^{\circ}$$

Ejercicio 9 10 puntos

Calcula el valor de x en el triángulo isóseles que se muestra abajo (figura 22).

Figura 22

Solución:

Figura 23

Dado que tiene dos lados congruentes (aquellos cuya longitud es 7.2), el triángulo es isósceles. Los ángulos opuestos a los lados congruentes también son congruentes, por lo que el ángulo sin etiqueta mide x° (Ver Figura 23). Los tres ángulos en un triángulo suman 180°. Podemos escribir este enunciado como una ecuación:

$$x^{\circ} + x^{\circ} + 32^{\circ} = 180^{\circ}$$

$$\therefore x^{\circ} = \frac{180^{\circ} - 32^{\circ}}{2} = 74^{\circ}$$

Ejercicio 10 10 puntos

¿Cuál es el valor de x en la figura 24?

Figura 24

Solución:

Figura 25

Dado que tiene dos lados congruentes (aquellos cuya longitud es 10), el triángulo es isósceles. Los ángulos opuestos a los lados congruentes también son congruentes, por lo que el ángulo sin etiqueta mide x° (Ver Figura 25). Los tres ángulos en un triángulo suman 180°. Podemos escribir este enunciado como una ecuación:

$$x^{\circ} + x^{\circ} + 116^{\circ} = 180^{\circ}$$

$$\therefore x^{\circ} = \frac{180^{\circ} - 116^{\circ}}{2} = 32^{\circ}$$