МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ДАЛЬНЕВОСТОЧНЫЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ТЕХНОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ

Н.П. Кидяева, З.И. Каньшина

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Учебно-методическое пособие

Благовещенск Издательство ДальГАУ 2015 УДК 519.2(075.8) ББК 22.171

Кидяева, Н.П. Определенный интеграл: учебно-методическое пособие / сост.: Н.П. Кидяева, З.И. Каньшина – Благовещенск: ДальГАУ, 2015. – 44 с.

Пособие написано в соответствии с требованиями Государственных стандартов высшего профессионального образования по направлениям бакалавриата.

Каждый параграф содержит краткое изложение теоретических вопросов, необходимых для решения последующих задач, а также достаточно большое количество решенных примеров и задач. В пособии подобраны задания для аудиторных занятий и самостоятельной (внеаудиторной) работы студентов. В пособии имеются задания для контрольной работы, которые можно использовать и для типового расчета.

Пособие предназначено для студентов очной и заочной форм обучения. Может быть использовано студентами для проведения самостоятельных работ.

Рецензент – З.Ф. Кривуца, канд.физ.-мат.наук, доцент

Рекомендовано к печати методическим советом технологического факультета Дальневосточного государственного аграрного университета (Протокол №3 от 19 ноября 2014 года).

Издательство ДальГАУ

ПРЕДИСЛОВИЕ

Учебно-методическое пособие содержит материал, относящийся к разделу курса математического анализа — интегральному исчислению. В данной работе рассмотрены основные положения, связанные с изучением определенного, несобственного интегралов и приложений определенного интеграла.

Решение задач с использованием приложений определенного интеграла представляет собой один из сложных разделов математического анализа. Количество часов, отведенных на изучение данной темы, очень маленькое. Поэтому данное пособие спланировано таким образом, чтобы изложенные в ней аспекты представляли собой интересный и освобожденный от излишних трудностей для студентов материал.

Учебно-методическое пособие может быть использовано, как пособие для организации самостоятельной работы студентов как очной, так и заочной форм обучения.

§1 ЗАДАЧА, ПРИВОДЯЩАЯ К ПОНЯТИЮ ОПРЕДЕЛЁННОГО ИНТЕГРАЛА

Определённый интеграл

Пусть на отрезке [a;b] задана неотрицательная функция y = f(x).

Рис. 1. Криволинейная трапеция

Найти площадь фигуры, ограниченной графиком функции y = f(x), прямыми x = a и x = b, и осью Ox. Такие фигуры называются *криволинейными трапециями* (рис.1).

Используем прием, которым пользовались математики древней Греции и который называют методом Эвдокса или методом исчерпывания.

Идея Эвдокса состоит в следующем:

- а. разбить сложную фигуру на части;
- б. получившиеся части заменить простыми фигурами, площади которых находить умеем, и сложить площади этих простых фигур;
- в. полученное в результате сложения число есть некоторое приближение к желаемому, поэтому переходим к пределу при разбиении сложной фигуры на все более и более мелкие части.

Для решения поставленной задачи поступим следующим образом:

- 1) отрезок [a;b] произвольным образом разобьём на n равных частей $a=x_0 < x_1 < x_2 < ... < x_n = b$, из каждой точки деления восстановим перпендикуляры до пересечения с графиком функции (рис. 2);
- 2) обозначим длину каждого частичного отрезка $\Delta x_k = x_k x_{k-1}$;
- 3) на каждом частичном отрезке $[x_{k-1}; x_k]$ выберем произвольно точку ξ_k , из каждой точки деления восстановим перпендикуляры до пересечения с графиком функции;

4) каждую криволинейную полоску заменим прямоугольником с основанием Δx_k и высотой равной $f(\xi_k)$ и найдём их площади $S_k = f(\xi_k) \cdot \Delta x_k$;

Рис. 2.

- 5) все прямоугольники образуют ступенчатую фигуру, её площадь $S_{cm.\phi.} = \sum_{k=1}^n f(\xi_k) \Delta x_k \ \ \text{интегральная сумма};$
- 6) очевидно, что $S_{cm.\phi.} \approx S_{\kappa p.mp.}$, будем увеличивать число делений отрезка [a;b], т.е $n \to \infty$, но так чтобы $\Delta x_k \to 0$ (обозначим $\max\{\Delta x_k\} = \lambda$);
- 7) за точное значение $S_{\kappa p.mp.}$ принимаем $\lim S_{cm.\phi.}$, таким образом

$$S_{\kappa p.mp.} = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_k) \Delta x_k . \tag{1}$$

Определение. Определённым интегралом называется конечный предел интегральных сумм, если он существует, при $\lambda \to 0$ и не зависит ни от способа деления отрезка на части, ни от выбора точки внутри каждой части, т.е.

$$\int_{a}^{b} f(x)dx = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_k) \Delta x_k , \qquad (2)$$

где f(x) - подынтегральная функция,

f(x)dx - подынтегральное выражение,

 $a\,$ - нижний предел интегрирования,

b - верхний предел интегрирования.

Геометрический смысл: определённый интеграл численно равен площади криволинейной трапеции.

Вычисление определённого интеграла непосредственно по определению представляет собой трудную работу. Более лёгкий и удобный способ вычисления был предложен в 17 веке Ньютоном и Лейбницем. Этот способ основан на тесной связи, существующей между производной и интегралом.

Теорема. Если функция y = f(x) непрерывна на отрезке [a;b] и F(x) - какаялибо первообразная на [a;b] для f(x), то имеет место формула:

$$\int_{a}^{b} f(x)dx = F(b) - F(a). \tag{3}$$

Формулу (3) называют формулой Ньютона-Лейбница.

§2 СВОЙСТВА ОПРЕДЕЛЁННОГО ИНТЕГРАЛА

1. Постоянный множитель можно выносить за знак определённого интеграла, т.е.

$$\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx.$$

2. Определённый интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме определённых интегралов от этих функций, т.е.

$$\int (f_1(x) \pm ... \pm f_2(x)) dx = \int_a^b f_1(x) dx \pm ... \pm \int_a^b f_2(x) dx.$$

3. Определённый интеграл с одинаковыми пределами интегрирования равен нулю, т.е.

$$\int_{a}^{a} f(x)dx = 0.$$

4. При изменении порядка интегрирования знак определённого интеграла меняется на противоположный, т.е.

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx.$$

5. Если отрезок [a;b] точкой x = c разбит на части, то имеет место равенство:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

6. Если на отрезке [a;b], где a < b и $f(x) \le \varphi(x)$, то

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} \varphi(x)dx.$$

7. Если m и M — наименьшее и наибольшее значения функции f(x) на [a;b] и $a \le b$, то

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a).$$

8. *Теорема о среднем*: Если функция f(x) непрерывна на [a;b], то на этом отрезке найдётся такая точка ξ , что справедливо равенство

$$\int_{a}^{b} f(x)dx = (b-a) \cdot f(\xi).$$

9. Если функция f(x) - нечетная, т.е. f(-x) = -f(x), то

$$\int_{-a}^{a} f(x)dx = 0.$$

10. Если функция f(x) - четная, т.е. f(-x) = f(x), то

$$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx.$$

§3 МЕТОДЫ ИНТЕГРИРОВАНИЯ

Методы вычисления определённого интеграла те же, что и для неопределённого, однако нужно использовать формулу Ньютона-Лейбница.

Пример 1. Вычислить интеграл $\int_{0}^{1} (x^2 + 1)^2 dx$.

Решение.

$$\int_{0}^{1} (x^{2} + 1)^{2} dx = \int_{0}^{1} (x^{4} + 2x^{2} + 1) dx = \left(\frac{x^{5}}{5} + \frac{2x^{3}}{3} + x\right) \Big|_{0}^{1} = \frac{1}{5} + \frac{2}{3} + 1 = \frac{28}{15}.$$

Пример 2. Вычислить интеграл $\int_{0}^{\frac{\pi}{2}} \cos^2 x dx$.

Решение.

$$\int_{0}^{\frac{\pi}{2}} \cos^{2} x dx = \int_{0}^{\frac{\pi}{2}} \frac{1 + \cos 2x}{2} dx = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (1 + \cos 2x) dx = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{0}^{\frac{\pi}{2}} = \frac{1}{2} \left(\frac{\pi}{2} + \frac{1}{2} \left(\sin \pi - \sin 0 \right) \right) = \frac{\pi}{4}.$$

Пример 3. Вычислить интеграл $\int_{-2}^{-1} \frac{dx}{(11+5x)^3}$.

Решение.

$$\int_{-2}^{-1} \frac{dx}{(11+5x)^3} = \int_{-2}^{-1} (11+5x)^{-3} dx = \frac{1}{5} \int_{-2}^{-1} (11+5x)^{-3} d(11+5x) = \frac{1}{5} \frac{(11+5x)^{-2}}{-2} \Big|_{-2}^{-1} =$$

$$= -\frac{1}{10(11+5x)^2} \Big|_{-2}^{-1} = -\frac{1}{10} \left(\frac{1}{6^2} - \frac{1}{1^2} \right) = -\frac{1}{10} \left(-\frac{35}{36} \right) = \frac{7}{72}.$$

Пример 4. Вычислить интеграл $\int_{1}^{4} \left(\sqrt{x} - \frac{1}{\sqrt{x}} \right) dx$.

Решение.

$$\int_{1}^{4} \left(\sqrt{x} - \frac{1}{\sqrt{x}} \right) dx = \int_{1}^{4} \left(x^{\frac{1}{2}} - x^{-\frac{1}{2}} \right) dx = \left(\frac{2x^{\frac{3}{2}}}{3} - \frac{2x^{\frac{1}{2}}}{1} \right) \Big|_{1}^{4} = \left(\frac{2}{3} \sqrt{x^{3}} - 2\sqrt{x} \right) \Big|_{1}^{4} =$$

$$= \frac{2}{3} \left(\sqrt{4^{3}} - \sqrt{1^{3}} \right) - 2\left(\sqrt{4} - \sqrt{1} \right) = \frac{2}{3} (8 - 1) - 2(2 - 1) = \frac{14}{3} - 2 = \frac{8}{3}.$$

3.1 Метод замены переменной

Пусть функция y = f(x) непрерывна на отрезке $\begin{bmatrix} a, & b \end{bmatrix}$, требуется вычислить

$$\int_{a}^{b} f(x) dx.$$

Заменим переменную x, полагая

$$x = \varphi(t), \tag{4}$$

тогда

$$dx = \varphi'(t)dt. (5)$$

Из равенства (4) найдем, что значению x=a соответствует значение $t=\alpha$, а значению x=b соответствует $t=\beta$. Следовательно, справедлива формула

$$\int_{a}^{b} f(x)dx = \begin{cases} x = \varphi(t) \implies dx = \varphi'(t)dt \\ npu \ x = a \implies t_{u} = \alpha \\ npu \ x = b \implies t_{e} = \beta \end{cases} = \int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t)dt$$
 (6)

Пример 5. Вычислить интеграл $\int_{2}^{e^{2}} \frac{dx}{x \ln^{3} x}$.

Решение.

$$\int_{2}^{e^{2}} \frac{dx}{x \ln^{3} x} = \left/ \begin{array}{c} B \text{ведём замену } \ln x = t \implies \frac{dx}{x} = dt \\ M \text{зменим пределы интегрирования} \\ t_{_{H}} = \ln 2, \ t_{_{\theta}} = \ln e^{2} = 2 \end{array} \right. = \frac{1}{2t^{2}} \bigg|_{\ln 2}^{2} = -\frac{1}{8} + \frac{1}{2 \ln^{2} 2} = -\frac{\ln^{2} 2 + 4}{8 \ln^{2} 2} = \frac{4 - \ln^{2} 2}{8 \ln^{2} 2}.$$

Пример 6. Вычислить интеграл $\int_{0}^{2} \sqrt{4-x^{2}} dx$.

Решение.

Введём замену
$$x = 2\sin t \implies dx = 2\cos t dt$$

Изменим пределы интегрирования
$$ecnu \ x = 0 \implies t_{_{\!\mathit{H}}} = 0;$$

$$ecnu \ x = 2 \implies t_{_{\!\mathit{B}}} = \frac{\pi}{2}.$$

$$= 4\int\limits_{0}^{\frac{\pi}{2}} \sqrt{1-\sin^2 t} \cos t dt = 4\int\limits_{0}^{\frac{\pi}{2}} \cos^2 t dt = 4\int\limits_{0}^{\frac{\pi}{2}} \frac{1+\cos 2t}{2} dt = 2\int\limits_{0}^{\frac{\pi}{2}} (1+\cos 2t) dt =$$

$$= 2\left(t + \frac{1}{2}\sin 2t\right)\Big|_{0}^{\frac{\pi}{2}} = (2t + \sin 2t)\Big|_{0}^{\frac{\pi}{2}} = 2\left(\frac{\pi}{2} - 0\right) + (\sin \pi - \sin 0) = \pi.$$

Пример 7. Вычислить интеграл $\int_{1}^{\sqrt{3}} \frac{16x dx}{(x^2+1)^5}$.

Решение.

$$\int_{1}^{\sqrt{3}} \frac{16xdx}{\left(x^{2}+1\right)^{5}} = \left(\begin{array}{c} B B B \partial \ddot{e}M \ 3 A M E H Y \ X^{2}+1=t \ \Rightarrow \ 2 X d X = d t \\ H 3 M E H UM \ n D E \partial E D B UH M E P D D D E A H U B \\ E C D U \ X=1 \ \Rightarrow \ t_{_{H}}=2; \\ E C D U \ X=\sqrt{3} \ \Rightarrow \ t_{_{G}}=4. \end{array}\right) \left(\begin{array}{c} \int_{2}^{4} \frac{8 dt}{t^{5}} = 8 \int_{2}^{4} t^{-5} dt = 0 \\ \int_{2}^{4} \frac{8 dt}{t^{5}} = 8 \int_{2}^{4} t^{-5} dt = 0 \\ \left(\begin{array}{c} \left(\frac{2}{4} - \frac{2}{4}\right)^{4} = -\left(\frac{2}{4^{4}} - \frac{2}{2^{4}}\right) = -\left(\frac{2}{64} - \frac{2}{16}\right) = -\frac{1}{16} \end{array}\right).$$

Пример 8. Вычислить интеграл $\int_{0}^{\frac{\pi}{2}} \frac{dx}{2\cos x + 3}$.

Решение.

Введём замену
$$t = tg \frac{x}{2}$$
 $\cos x = \frac{1-t^2}{1+t^2}; \ dx = \frac{2dt}{1+t^2}$ H Зменим пределы интегрирования $= \int_0^1 \frac{2dt}{(1+t^2)\cdot \left(\frac{2(1-t^2)}{1+t^2}+3\right)} = \int_0^1 \frac{2dt}{(1+t^2)\cdot \left(\frac{2(1-t^2)}{1+t^2}+3\right)} = 2\int_0^1 \frac{dt}{2-2t^2+3+3t^2} = 2\int_0^1 \frac{dt}{t^2+5} = \frac{2}{\sqrt{5}} \arctan \left(\frac{t}{\sqrt{5}}\right)_0^1 = \frac{2}{\sqrt{5}} \left(\arctan \left(\frac{1}{\sqrt{5}}\right) - \arctan \left(\frac{1}{\sqrt{5}}\right)\right) = \frac{2}{\sqrt{5}} \arctan \left(\frac{1}{\sqrt{5}}\right)$

3.2 Интегрирование по частям

Пусть u = u(x) и v = v(x) непрерывно дифференцируемые функции, тогда

$$d(u \cdot v) = v du + u dv. \tag{7}$$

Проинтегрируем обе части (7) в пределах от a до b

$$\int_{a}^{b} d(u \cdot v) = \int_{a}^{b} v du + \int_{a}^{b} u dv,$$

ИЛИ

$$|u\cdot v|_a^b = \int_a^b v du + \int_a^b u dv.$$

Таким образом,

$$\int_{a}^{b} u dv = uv \Big|_{a}^{b} - \int_{a}^{b} v du \tag{8}$$

Формула (8) носит название формулы интегрирования по частям определенного интеграла.

Пример 9. Вычислить интеграл $\int_{0}^{1} xe^{-x} dx$.

Решение.

$$\int_{0}^{1} xe^{-x} dx = \left| \begin{cases} u = x \implies du = dx \\ dv = e^{-x} dx \implies v = -e^{-x} \end{cases} \right|_{0}^{1} - \int_{0}^{1} \left(-e^{-x} \right) dx = -e^{-1} + \int_{0}^{1} e^{-x} dx =$$

$$= -e^{-1} - e^{-x} \Big|_{0}^{1} = -e^{-1} - \left(e^{-1} - e^{0} \right) = -2e^{-1} + 1 = 1 - \frac{2}{e} = \frac{e - 2}{e}.$$

Пример 10. Вычислить интеграл $\int_{0}^{3} arctgx dx$.

Решение.

$$\int_{0}^{3} arctgx \ dx = \sqrt{u = arctgx} \implies du = \frac{dx}{1+x^{2}} / = x \cdot arctgx \Big|_{0}^{3} - \int_{0}^{3} \frac{xdx}{1+x^{2}} =$$

$$= x \cdot arctgx \Big|_{0}^{3} - \frac{1}{2} \int_{0}^{3} \frac{d(1+x^{2})}{1+x^{2}} = x \cdot arctgx \Big|_{0}^{3} - \frac{1}{2} \ln|1+x^{2}|\Big|_{0}^{3} = 3arctg \ 3 - \frac{1}{2} (\ln 10 - \ln 1) =$$

$$= 3arctg \ 3 - \frac{1}{2} \ln 10.$$

Пример 11. Вычислить интеграл $\int_{1}^{e} \ln^2 x dx$.

Решение.

$$\int_{1}^{e} \ln^{2} x dx = \sqrt{u = \ln^{2} x} \implies du = \frac{2 \ln x}{x} dx = \left| x \ln^{2} x \right|_{1}^{e} - 2 \int_{1}^{e} \ln x dx = \left| x \ln^{2} x \right|_{1}^{e} = 2 \int_{1}^{e} \ln x dx = \left| x \ln^{2} x \right|_{1}^{e} = 2 \int_{1}^{e} \ln x dx = \left| x \ln^{2} x \right|_{1}^{e} = 2 \int_{1}^{e} \ln x dx = \left| x \ln^{2} x \right|_{1}^{e} = 2 \int_{1}^{e} \ln x dx = \left| x \ln^{2} x \right|_{1}^{e} = 2 \int_{1}^{e} \ln x dx = \left| x \ln^{2} x \right|_{1}^{e} = 2 \int_{1}^{e} \ln x dx = \left| x \ln^{2} x \right|_{1}^{e} = 2 \int_{1}^{e} \ln x dx = 2 \int_{1}^{e$$

$$= \begin{vmatrix} u = \ln x \implies du = \frac{dx}{x} \\ dv = dx \implies v = x \end{vmatrix} = x \ln^2 x \Big|_1^e - 2 \left(x \ln x \Big|_1^e - \int_1^e dx \right) =$$

$$= x \ln^2 x \Big|_0^e - 2x \ln x \Big|_0^e + 2x \Big|_0^e = e \ln^2 e - 2e \ln e + 2e = e - 2e + 2e = e.$$

Практические задания

Задание 1. Вычислить определённый интеграл

1)
$$\int_{0}^{1} (x^2 + 1)^2 dx$$
;

$$2) \int_{0}^{\frac{\pi}{2}} \cos^2 x dx;$$

3)
$$\int_{-\frac{\pi}{4}}^{0} \frac{3x^4 + 3x^2 + 1}{1 + x^2} dx;$$

$$4) \int_{0}^{3} e^{\frac{x}{3}} dx;$$

$$5) \int_{0}^{\frac{\pi}{2}} \sqrt{\sin x} \cdot \cos x dx ;$$

$$6) \int_{4}^{9} \frac{dx}{\sqrt{x} - 1};$$

7)
$$\int_{0}^{1} \frac{dx}{e^{x}+1}$$
;

8)
$$\int_{0}^{1} xe^{-x} dx$$
;

9)
$$\int_{0}^{\frac{\pi}{6}} x \cdot \cos 3x dx;$$

$$10) \int_{1}^{e} \frac{\ln x}{x^3} dx;$$

11)
$$\int_{1}^{e} \ln^3 x dx$$
;

12)
$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{2\cos x + 3}$$
;

13)
$$\int_{1}^{3} \frac{dx}{x+x^2}$$
;

14)
$$\int_{-1}^{1} \frac{dx}{x^2 + 2x + 2}$$
;

15)
$$\int_{1}^{2} \frac{dx}{x+x^3}$$
;

16)
$$\int_{0}^{\frac{1}{2}} \frac{x^{3} dx}{x^{2} - 3x + 2};$$

17)
$$\int_{0}^{4} \sqrt{16-x^2} dx;$$

$$18) \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos x}{\sin^3 x} dx.$$

Самостоятельная работа

Задание 1. Вычислить определённый интеграл

1)
$$\int_{0}^{1} e^{3x+2} dx$$
; 2) $\int_{0}^{2} \frac{x^{2}+5}{x^{2}+2} dx$; 3) $\int_{1}^{\sqrt{3}} \frac{32x dx}{(x^{2}+1)^{5}}$;

4)
$$\int_{\ln 2}^{\ln 3} \frac{dx}{e^x - e^{-x}};$$
 5) $\int_{\frac{\pi}{2}}^{\pi} \frac{\sin x dx}{(1 - \cos x)^2};$ 6) $\int_{0}^{\frac{\pi}{2}} x \sin x dx;$

7)
$$\int_{1}^{5} \ln(x^2 + x) dx$$
; 8) $\int_{0}^{1} \frac{x dx}{x + 3x + 2}$; 9) $\int_{1}^{2} \frac{dx}{x(x+1)^2}$;

10)
$$\int_{0}^{\frac{\pi}{4}} \sin 5x \cdot \cos 3x dx;$$
 11)
$$\int_{0}^{\frac{\pi}{2}} \frac{\cos x dx}{6 - 5\sin x + \sin^{2} x};$$
 12)
$$\int_{0}^{3} x^{2} \sqrt{9 - x^{2}} dx.$$

§4 НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ

Определение определённого интеграла было дано в предположении, что промежуток интегрирования [a; b] конечен и функция f(x) непрерывна на нём. Такой интеграл ещё называется собственным. Если хотя бы одно из условий не выполняется, то интеграл называется несобственным. Например

$$\int_{-\infty}^{b} f(x)dx; \qquad \int_{a}^{+\infty} f(x)dx; \qquad \int_{-\infty}^{+\infty} f(x)dx; \qquad \int_{a}^{b} \frac{dx}{x-a}.$$

4.1. Несобственные интегралы I рода

(интегралы с бесконечными пределами)

Пусть функция y = f(x) непрерывна на $[a; +\infty)$, тогда несобственный интеграл определяется равенством

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx = \lim_{b \to +\infty} F(x)\Big|_{a}^{b} = \lim_{b \to +\infty} (F(b) - F(a)). \tag{9}$$

Если этот предел существует и конечен, то несобственный интеграл существует или говорят, что он сходится. Если же этот предел не существует или равен ∞ , то говорят, что несобственный интеграл расходится.

Аналогично

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx \tag{10}$$

$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \int_{a}^{b} f(x)dx \quad \text{ИЛИ} \quad \int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx, \tag{11}$$

где c - произвольное число.

Пример 12. Вычислить интеграл $\int_{-\infty}^{0} \frac{dx}{4+x^2}$.

Решение.

$$\int_{-\infty}^{0} \frac{dx}{4+x^{2}} = \lim_{a \to -\infty} \int_{a}^{0} \frac{dx}{4+x^{2}} = \frac{1}{2} \lim_{a \to -\infty} \operatorname{arctg} \left(\frac{x}{2} \right) = \frac{1}{2} \lim_{a \to -\infty} \left(\operatorname{arctg} \left(0 - \operatorname{arctg} \left(\frac{a}{2} \right) \right) \right) = \frac{1}{2} \operatorname{arctg} \left(-\operatorname{arctg} \left(\frac{a}{2} \right) \right) = \frac{1}{2} \operatorname{arctg} \left(-\operatorname{arctg} \left(\frac{a}{2} \right) \right) = \frac{1}{2} \operatorname{arctg} \left(-\operatorname{arctg} \left(\frac{a}{2} \right) \right) = \frac{1}{2} \operatorname{arctg} \left(-\operatorname{arctg} \left(\frac{a}{2} \right) \right) = \frac{1}{2} \operatorname{arctg} \left(-\operatorname{arctg} \left$$

Следовательно, несобственный интеграл сходится.

Пример 13. Вычислить интеграл $\int_{1}^{+\infty} \frac{(x+5)dx}{x \cdot \sqrt[3]{x}}$

Решение.

$$\int_{1}^{+\infty} \frac{(x+5)dx}{x \cdot \sqrt[3]{x}} = \int_{1}^{+\infty} x^{-\frac{4}{5}} (x+5)dx = \lim_{b \to +\infty} \int_{0}^{b} \left(x^{-\frac{1}{3}} + 5x^{-\frac{4}{5}} \right) dx = \lim_{b \to +\infty} \left(\frac{3x^{\frac{2}{3}}}{2} - \frac{15}{x^{\frac{1}{3}}} \right) \Big|_{1}^{b} = \lim_{b \to +\infty} \left(\frac{3}{2} \sqrt[3]{x^{2}} - \frac{15}{\sqrt[3]{x}} \right) \Big|_{1}^{b} = \lim_{b \to +\infty} \left(\frac{3}{2} \sqrt[3]{x^{2}} - \frac{15}{\sqrt[3]{x}} \right) \Big|_{1}^{b} = \lim_{b \to +\infty} \left(\frac{3}{2} \sqrt[3]{x^{2}} - \frac{15}{\sqrt[3]{x}} \right) \Big|_{1}^{b} = \infty.$$

Следовательно, несобственный интеграл расходится.

Пример 14. Вычислить интеграл $\int_{0}^{+\infty} xe^{-x^2} dx$.

Решение.

$$\int_{0}^{+\infty} x e^{-x^{2}} dx = \lim_{b \to +\infty} \int_{0}^{b} x e^{-x^{2}} dx = -\frac{1}{2} \lim_{b \to +\infty} \int_{0}^{b} -2x e^{-x^{2}} dx = -\frac{1}{2} \lim_{b \to +\infty} \int_{0}^{b} e^{-x^{2}} d\left(-x^{2}\right) = -\frac{1}{2} \lim_{b \to +\infty} e^{-x^{2}} \Big|_{0}^{b} =$$

$$= -\frac{1}{2} \lim_{b \to +\infty} \left(e^{-b^{2}} - e^{0}\right) = -\frac{1}{2} \lim_{b \to +\infty} \left(\frac{1}{e^{b^{2}}} - 1\right) = -\frac{1}{2} (0 - 1) = \frac{1}{2}.$$

Следовательно, несобственный интеграл сходится.

Пример 15. Вычислить интеграл $\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 5}$.

Решение.

$$\int_{-\infty}^{+\infty} \frac{dx}{x^{2} + 2x + 5} = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \int_{a}^{b} \frac{dx}{x^{2} + 2x + 5} = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \int_{a}^{b} \frac{dx}{\left(x^{2} + 2x + 1\right) + 4} = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \int_{a}^{b} \frac{dx}{\left(x + 1\right)^{2} + 4} = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \int_{a}^{b} \frac{dx}{\left(x + 1\right)^{2} + 4} = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \int_{a}^{b} \frac{dx}{\left(x + 1\right)^{2} + 4} = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x + 1}{2} \right) = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left(\frac{x$$

Следовательно, несобственный интеграл сходится.

4.2. Несобственные интегралы II рода (интегралы от разрывных функций)

Если функция y = f(x) определена на [a; b) и имеет разрыв в точке x = b, то несобственный интеграл определяется равенством

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a}^{b-\varepsilon} f(x)dx.$$
 (12)

Если этот предел существует и конечен, то несобственный интеграл существует или сходится. Если же этот предел не существует или равен ∞ , то говорят, что несобственный интеграл расходится.

Аналогично

если функция y = f(x) определена на (a; b] и имеет разрыв в точке x = a, то

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} f(x)dx;$$
 (13)

если функция y = f(x) определена на $\begin{bmatrix} a; & b \end{bmatrix}$ и имеет разрыв в точке x = c, причем a < c < b, то

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$
 (14)

Пример 16. Вычислить интеграл $\int_{0}^{2} \frac{dx}{\sqrt{2-x}}$.

Решение. Подынтегральная функция терпит разрыв при x = 2, тогда

$$\int_{0}^{2} \frac{dx}{\sqrt{2-x}} = \lim_{\varepsilon \to 0} \int_{0}^{2-\varepsilon} \frac{dx}{\sqrt{2-x}} = \lim_{\varepsilon \to 0} \int_{0}^{2-\varepsilon} (2-x)^{-\frac{1}{2}} dx = -\lim_{\varepsilon \to 0} \int_{0}^{2-\varepsilon} (2-x)^{-\frac{1}{2}} d(2-x) =$$

$$= -\lim_{\varepsilon \to 0} \frac{(2-x)^{\frac{1}{2}}}{\frac{1}{2}} \Big|_{0}^{2-\varepsilon} = -2\lim_{\varepsilon \to 0} \sqrt{2-x} \Big|_{0}^{2-\varepsilon} = -2\lim_{\varepsilon \to 0} (\sqrt{\varepsilon} - \sqrt{2}) = 2\sqrt{2}.$$

Следовательно, несобственный интеграл сходится.

Пример 17. Вычислить интеграл $\int_{1}^{2} \frac{dx}{x \ln x}$.

Решение. При x = 1 функция $y = \frac{1}{x \ln x}$ является разрывной, тогда

$$\int_{1}^{2} \frac{dx}{x \ln x} = \lim_{\varepsilon \to 0} \int_{1+\varepsilon}^{2} \frac{dx}{x \ln x} = \lim_{\varepsilon \to 0} \int_{1+\varepsilon}^{2} \frac{d(\ln x)}{\ln x} = \lim_{\varepsilon \to 0} |\ln x|_{1+\varepsilon}^{2} = \lim_{\varepsilon \to 0} (\ln \ln 2 - \ln |\ln (1+\varepsilon)|) =$$

$$= \ln \ln 2 - \ln \ln 1 = \ln \ln 2 - \infty = -\infty.$$

Следовательно, несобственный интеграл расходится.

Пример 18. Вычислить интеграл
$$\int_{2}^{6} \frac{dx}{\sqrt[3]{(4-x)^2}}$$
.

Решение. Подынтегральная функция терпит разрыв при x = 4. Для вычисления неопределённого интеграла отрезок [2, 6] разделим на две части точкой x = 4 и данный интеграл найдём как сумму двух несобственных интегралов.

$$\int_{2}^{6} \frac{dx}{\sqrt[3]{(4-x)^{2}}} = \int_{2}^{4} \frac{dx}{\sqrt[3]{(4-x)^{2}}} + \int_{4}^{6} \frac{dx}{\sqrt[3]{(4-x)^{2}}} = \lim_{\varepsilon \to 0} \int_{2}^{4-\varepsilon} (4-x)^{-\frac{2}{3}} dx + \lim_{\varepsilon \to 0} \int_{4+\varepsilon}^{6} (4-x)^{-\frac{2}{3}} dx =$$

$$= \lim_{\varepsilon \to 0} \int_{2}^{4-\varepsilon} (4-x)^{-\frac{2}{3}} d(4-x) - \lim_{\varepsilon \to 0} \int_{4+\varepsilon}^{6} (4-x)^{-\frac{2}{3}} d(4-x) = \lim_{\varepsilon \to 0} \frac{(4-x)^{\frac{1}{3}}}{\frac{1}{3}} \Big|_{2}^{4-\varepsilon} - \lim_{\varepsilon \to 0} \frac{(4-x)^{\frac{1}{3}}}{\frac{1}{3}} \Big|_{4+\varepsilon}^{6} =$$

$$= -3 \lim_{\varepsilon \to 0} \sqrt[3]{4-x} \Big|_{2}^{4-\varepsilon} - 3 \lim_{\varepsilon \to 0} \sqrt[3]{4-x} \Big|_{4+\varepsilon}^{6} = -3 \lim_{\varepsilon \to 0} \left(\sqrt[3]{\varepsilon} - \sqrt[3]{2}\right) - 3 \lim_{\varepsilon \to 0} \left(\sqrt[3]{(-2)} - \sqrt[3]{(-\varepsilon)}\right) =$$

$$= -3 \lim_{\varepsilon \to 0} \left(\sqrt[3]{\varepsilon} - \sqrt[3]{2}\right) - 3 \lim_{\varepsilon \to 0} \left(\sqrt[3]{(-2)} - \sqrt[3]{(-\varepsilon)}\right) = -3 \left(-\sqrt[3]{2}\right) - 3\sqrt[3]{(-2)} = 3\sqrt[3]{2} + 3\sqrt[3]{2} = 6\sqrt[3]{2}.$$

Следовательно, несобственный интеграл сходится.

Практические задания

Задание 2. Вычислить несобственный интеграл І рода

1)
$$\int_{-\infty}^{0} \frac{dx}{4+x^2}$$
;

2)
$$\int_{1}^{+\infty} \frac{dx}{x^2}$$
;

3)
$$\int_{0}^{+\infty} \cos x dx$$
;

4)
$$\int_{0}^{+\infty} \frac{arctgx}{1+x^2} dx;$$

5)
$$\int_{-1+x^2}^{+\infty} \frac{dx}{1+x^2};$$

6)
$$\int_{-\infty}^{0} \frac{x dx}{\sqrt{x^2 + 8}}$$
;

7)
$$\int_{1}^{+\infty} \frac{x^4 dx}{(x^5 + 1)^4};$$

8)
$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 5}$$
;

$$9) \int_{-\infty}^{-2} \frac{dx}{x+x^3}.$$

Задание 3. Вычислить несобственный интеграл II рода

1)
$$\int_{1}^{5} \frac{dx}{\sqrt{5-x}}$$
;

2)
$$\int_{-1}^{1} \frac{3x^2 + 2}{\sqrt[3]{x^2}} dx$$
;

3)
$$\int_{3}^{5} \frac{dx}{(x-3)^2}$$
;

4)
$$\int_{0}^{1} \ln x dx$$
;

5)
$$\int_{2}^{6} \frac{dx}{\sqrt[3]{(4-x)^2}};$$

6)
$$\int_{\frac{3}{2}}^{3} \frac{dx}{\sqrt{9-x^2}}$$
;

$$7) \int_{1}^{e} \frac{dx}{x \cdot \sqrt[4]{\ln x}};$$

8)
$$\int_{0}^{2} \frac{dx}{x^2 - x - 2}$$
;

9)
$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{\cos x}.$$

Самостоятельная работа

Задание 2. Вычислить несобственный интеграл І рода

$$1) \int_{1}^{+\infty} \frac{dx}{x};$$

2)
$$\int_{-\infty}^{0} \frac{dx}{x^2 + 9}$$
;

$$3) \int_{-\infty}^{\frac{\pi}{2}} \sin x dx;$$

4)
$$\int_{0}^{+\infty} e^{-5x} dx$$
;

5)
$$\int_{-1}^{+\infty} \frac{dx}{\sqrt[3]{(2x+1)^2}}$$
;

6)
$$\int_{1}^{+\infty} \frac{x+5}{x \cdot \sqrt[3]{x}} dx;$$

$$7) \int_{-\infty}^{+\infty} xe^{2x} dx;$$

$$8) \int_{0}^{+\infty} e^{-x} \sin x dx;$$

$$9) \int_{-\infty}^{+\infty} \frac{dx}{x^2 + 4x + 9}.$$

Задание 3. Вычислить несобственный интеграл II рода

1)
$$\int_{0}^{1} \frac{x^{3} + \sqrt[3]{x} - 7}{\sqrt[5]{x^{3}}} dx;$$

2)
$$\int_{2}^{4} \frac{xdx}{\sqrt{x-2}}$$
;

3)
$$\int_{-2}^{0} \frac{dx}{x^2 - 1}$$
;

4)
$$\int_{0}^{2} \frac{dx}{(x-2)^{2}}$$
;

5)
$$\int_{-3}^{1} \frac{xdx}{x^2 - 4}$$
;

$$6) \int_{0}^{\frac{1}{e}} \frac{dx}{x \ln^2 x};$$

$$7) \int_{0}^{\frac{\pi}{2}} \frac{dx}{\sin x};$$

8)
$$\int_{0}^{1} \frac{dx}{x^2 - 3x + 2}$$
;

9)
$$\int_{0}^{\frac{2}{3}} \frac{dx}{\sqrt{4-9x^2}}$$
.

§5 ГЕОМЕТРИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЁННОГО ИНТЕГРАЛА

5.1. Вычисление площадей плоских фигур

Если криволинейная трапеция, ограниченна сверху непрерывной кривой y = f(x), снизу осью OX, с боков прямыми x = a и x = b (a < b), то

Рис. 3

Если криволинейная трапеция, ограниченна сверху непрерывной кривой y = f(x), снизу осью OX, с боков прямыми x = a, x = b, причем a < b, то площадь криволинейной трапеции (рис. 3) вычисляется по формуле

$$S = \int_{a}^{b} f(x)dx. \tag{15}$$

Если криволинейная трапеция, ограниченна снизу непрерывной кривой y = f(x), сверху осью OX, с боков прямыми x = a, x = b, причем a < b, то площадь криволинейной трапеции (рис. 4) вычисляется по формуле

$$S = -\int_{a}^{b} f(x)dx \tag{16}$$

Рис. 4

ИЛИ

$$S = \left| \int_{a}^{b} f(x) dx \right|. \tag{17}$$

Если непрерывная кривая y = f(x) пересекает ось OX конечное число раз (рис. 5), то чтобы вычислить площадь фигуры надо [a, b] разбить на части, в пределах которых функция не меняет знак и применить соответствующую формулу (15), (16), (17)

$$S = \int_{a}^{b} f(x)dx + \left| \int_{b}^{c} f(x)dx \right| + \int_{c}^{d} f(x)dx$$
 (18)

Площадь фигуры, ограниченной двумя непрерывными кривыми $y = f_1(x)$ и $y = f_2(x)$, причём $f_1(x) \le f_2(x)$ и прямыми x = a и x = b (рис. 6) находится по формуле

$$S = \int_{a}^{b} (f_2(x) - f_1(x)) dx.$$
 (19)

Если криволинейная трапеция, ограниченна справа непрерывной кривой $x = \varphi(y)$, слева осью OY, сверху и снизу прямыми y = c, y = d, причем c < d, то площадь криволинейной трапеции (рис.7) вычисляется по формуле

$$S = \int_{c}^{d} \varphi(y) dy.$$
 (20)

Если кривая задана параметрическими уравнениями $\begin{cases} x = \varphi(t), \\ y = \psi(t) \end{cases}$, то площадь

Рис. 5

Рис. 6

Рис. 7

криволинейной трапеции, ограниченной этой кривой, прямыми x = a, x = b и отрезком [a, b] оси OX, выражается формулой

$$S = \int_{t_1}^{t_2} \psi(t) \cdot \varphi'(t) dt , \qquad (21)$$

где t_1 и t_2 определяются из уравнений $a = \varphi(t_1), \ b = \varphi(t_2) \ (\psi(t) \ge 0 \ \text{при} \ t_1 \le t \le t_2).$

Площадь криволинейного сектора, ограниченного кривой $\rho = \rho(\varphi)$ и двумя полярными радиусами $\varphi = \alpha$ и $\varphi = \beta$ (где $\alpha < \beta$) (рис. 8), вычисляется по формуле

$$S = \frac{1}{2} \int_{\alpha}^{\beta} \rho^2(\varphi) d\varphi \tag{22}$$

Пример 19. Вычислить площадь фигуры ограниченной параболой $y = 2x - x^2$ и осью OX.

Рис. 9

Решение. Парабола пересекает ось *OX* в точках (0, 0) и (2, 0) (рис. 9) Следовательно,

$$S = \int_{0}^{2} (2x - x^{2}) dx = \left(x^{2} - \frac{x^{3}}{3} \right) \Big|_{0}^{2} = 4 - \frac{8}{3} = \frac{4}{3} \left(e \partial^{2} \right)$$

Пример 20. Вычислить площадь фигуры ограниченной линиями $y = 6 - x^2$ и $y = x^2 - 2$.

Рис. 10

Решение. Уравнению $y = 6 - x^2$ соответствует парабола с вершиной в точке (0, 6). Уравнению $y = x^2 - 2$ соответствует парабола с вершиной в точке (0, -2) (рис. 10). Найдем абсциссы точек пересечения заданных кривых

$$\begin{cases} y = 6 - x^2 \\ y = x^2 - 2 \end{cases} \Rightarrow 6 - x^2 = x^2 - 2 \Rightarrow x_1 = -2, x_2 = 2.$$

Таким образом,
$$S = \int_{-2}^{2} [(6-x^2)-(x^2-2)] dx = 2 \int_{-2}^{2} (4-x^2) dx =$$

$$=2\left(4x-\frac{x^3}{3}\right)^2=2\left(4(2+2)-\frac{1}{3}\left(2^3-(-2)^3\right)\right)=2\left(16-\frac{1}{3}\cdot 16\right)=2\cdot \frac{48-16}{3}=\frac{64}{3}=21\frac{1}{3} \ (e\delta^2).$$

Пример 21. Вычислить площадь фигуры ограниченной параболой $y = -x^2 + 6x - 5$ и осями координат.

Рис. 11

Решение. Парабола пересекает ось *OX* в точках (1, 0) и (5, 0) (рис. 11). Следовательно,

$$S = \left| \int_{0}^{1} (-x^{2} + 6x - 5) dx \right| + \int_{1}^{5} (-x^{2} + 6x - 5) dx =$$

$$= \left| \left(-\frac{x^{3}}{3} + 3x^{2} - 5x \right) \right|_{0}^{1} + \left(-\frac{x^{3}}{3} + 3x^{2} - 5x \right) \right|_{1}^{5} =$$

$$= \left| -\frac{1}{3} + 3 - 5 \right| + \left(-\frac{125}{3} + 75 - 25 + \frac{1}{3} - 3 + 5 \right) =$$

$$= \frac{7}{3} - \frac{124}{3} + 52 = -\frac{117}{3} + 52 = -39 + 52 = 13 \ (eo^2).$$

Пример 22. Вычислить площадь фигуры ограниченной одной аркой

циклоиды
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$$
 и осью OX .

Рис. 12. Циклоида

Решение. Циклоида – плоская кривая, которую описывает точка М окружности радиуса *a*, катящаяся без скольжения по прямой линии (рис. 12).

Заметим, что данная кривая задана в параметрическом виде, при этом $0 \le x \le 2\pi a$.

Если $x = 0 \implies a(t - \sin t) = 0 \implies t = 0$.

Если $x = 2\pi a \implies a(t - \sin t) = 2\pi a \implies t = 2\pi$.

$$S = \int_{0}^{2\pi a} y dx = \int_{0}^{2\pi} a (1 - \cos t) a (1 - \cos t) dt = \int_{0}^{2\pi} a^{2} (1 - \cos t)^{2} dt = a^{2} \int_{0}^{2\pi} (1 - 2\cos t + \cos^{2} t) dt =$$

$$= a^{2} \int_{0}^{2\pi} (1 - 2\cos t + \frac{1 + \cos 2t}{2}) dt = a^{2} \int_{0}^{2\pi} (1 - 2\cos t + \frac{1}{2} + \frac{1}{2}\cos 2t) dt =$$

$$=a^{2}\int_{0}^{2\pi} \left(\frac{3}{2}-2\cos t+\frac{1}{2}\cos 2t\right)dt=a^{2}\left(\frac{3}{2}t-2\sin t+\frac{1}{4}\sin 2t\right)\Big|_{0}^{2\pi}=3\pi a^{2}\left(e\partial^{2}\right).$$

Пример 23. Вычислить площадь фигуры ограниченной эллипсом

$$\begin{cases} x = a \cos t, \\ y = b \sin t. \end{cases}$$

Рис. 13. Эллипс

Решение. Т.к. эллипс, симметричен относительно осей координат (рис. 13), то достаточно вычислить площадь $\frac{1}{4}$ части всей фигуры, а результат умножить на 4.

Данная кривая задана в параметрическом виде, при этом $0 \le x \le 2\pi a$.

Если
$$x = 0 \implies a \cos t = 0 \implies t = \frac{\pi}{2}$$
.

Если $x = a \implies a \cos t = a \implies t = 0$.

$$S = 4 \int_{0}^{a} y dx = 4 \int_{\frac{\pi}{2}}^{0} b \sin t \cdot a(-\sin t) dt = -4ab \int_{\frac{\pi}{2}}^{0} \sin^{2} t dt = 4ab \int_{0}^{\frac{\pi}{2}} \frac{1 - \cos 2t}{2} dt =$$

$$=4ab\left(\frac{1}{2}t - \frac{1}{4}\sin 2t\right)\Big|_{0}^{\frac{\pi}{2}} = 4ab\left(\frac{1}{2} \cdot \frac{\pi}{2} - \frac{1}{4}(\sin \pi - \sin 0)\right) = ab\pi \ (eo^{2}).$$

Пример 24. Вычислить площадь фигуры ограниченной кривой

$$\rho = a\cos 3\varphi \ (a > 0).$$

Рис. 14. Трилистник

Решение. Т.к. фигура состоит из трёх одинаковых «лепестков» (трёхлепестковая роза) (рис. 14), то достаточно вычислить площадь $\frac{1}{6}$ части всей фигуры, а результат умножить на 6.

Если
$$\rho = 0 \implies a\cos 3\phi = 0 \implies \varphi = \frac{\pi}{6}$$
.

Если
$$\rho = a \implies a \cos 3\varphi = a \implies \varphi = 0$$
.

$$S = 6 \cdot \frac{1}{2} \int_{0}^{\frac{\pi}{6}} \rho^{2} d\varphi = 3 \int_{0}^{\frac{\pi}{6}} a^{2} \cos^{2} 3\varphi \ d\varphi = 3a^{2} \int_{0}^{\frac{\pi}{6}} \frac{1 + \cos 6\varphi}{2} d\varphi = \frac{3}{2} a^{2} \left(\varphi + \frac{1}{6} \sin 6\varphi \right) \Big|_{0}^{\frac{\pi}{6}} = \frac{\pi a^{2}}{4} \left(e \delta^{2} \right).$$

Пример 25. Вычислить площадь фигуры ограниченной кардиоидой $\rho = a(1 + \cos \varphi)$.

2a

Рис. 15. Кардиоида

достаточно вычислить площадь $\frac{1}{2}$ части всей фигуры, а результат умножить на 2.

Решение. В силу симметрии кардиоиды (рис.15)

Если
$$\rho = 0 \Rightarrow a(1 + \cos \varphi) = 0 \Rightarrow \varphi = \pi$$
.

Если $\rho = 2a \implies a(1 + \cos \varphi) = 2a \implies \varphi = 0$.

$$S = 2 \cdot \frac{1}{2} \int_{0}^{\pi} \rho^{2} d\varphi = \int_{0}^{\pi} a^{2} (1 + \cos \varphi)^{2} d\varphi = a^{2} \int_{0}^{\pi} (1 + 2\cos \varphi + \cos^{2} \varphi) d\varphi =$$

$$= a^{2} \int_{0}^{\pi} (1 + 2\cos \varphi + \frac{1 + \cos 2\varphi}{2}) d\varphi = a^{2} \left(\frac{3}{2} \varphi + 2\sin \varphi + \frac{1}{4} \sin 2\varphi \right) \Big|_{0}^{\pi} = \frac{3\pi}{2} a^{2} (e\partial^{2}).$$

5.2 Объём тела вращения

Если криволинейная трапеция, ограничена кривой y = f(x) и прямыми x = a, x = b вращается вокруг оси OX, то объём тела вращения вычисляется по формуле

$$V_{ox} = \pi \int_{a}^{b} y^2(x) dx \tag{23}$$

Объём тела, образованного вращением криволинейной трапецией, ограниченной непрерывной кривой $x = \varphi(y)$, прямыми y = c, y = d, отрезком [c, d] на оси OY вычисляется по формуле

$$V_{oy} = \pi \int_{0}^{d} \varphi^{2}(y) dy$$
 (24)

Если фигура, ограничена кривыми $y_1 = f_1(x)$, $y_2 = f_2(x)$, причём $f_1(x) \le f_2(x)$ и прямыми x = a, x = b вращается, вокруг оси OX, то объём тела вращения вычисляется по формуле

$$V_{ox} = \pi \int_{a}^{b} \left(f_2^{2}(x) - f_1^{2}(x) \right) dx$$
 (25)

Объём тела, образованного вращением кривых $x_1 = \varphi_1(y)$, $x_2 = \varphi_2(y)$ ($\varphi_1(y) \le \varphi_2(y)$) и прямыми y = c, y = d вокруг оси OY вычисляется по формуле

$$V_{oy} = \pi \int_{c}^{d} (\varphi_{2}^{2}(y) - \varphi_{1}^{2}(y)) dy$$
 (26)

Если криволинейная трапеция ограничена кривой, заданной параметрическими уравнениями $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases},$ где $\alpha \leq t \leq \beta$, то

$$V_{ox} = \pi \int_{\alpha}^{\beta} \psi^2(t) \varphi'(t) dt$$
 (27)

$$V_{oy} = \pi \int_{\alpha}^{\beta} \varphi^2(t) \psi'(t) dt$$
 (28)

Объём тела, полученного при вращении сектора, ограниченного кривой $\rho = \rho(\varphi)$ и двумя полярными радиусами $\varphi = \alpha$ и $\varphi = \beta$, вокруг полярной оси, вычисляется по формуле

$$V = \frac{2}{3}\pi \int_{\alpha}^{\beta} \rho^3 \sin\varphi d\varphi. \tag{29}$$

Пример 26. Найти объём тела, образованного вращением вокруг оси *OX* фигуры, ограниченной кривыми $y = x^2$, $x = y^2$.

Рис. 16.

Решение. Тело образованное вращением вокруг оси *ОХ* фигуры, ограниченной параболами, представлено на рисунке 16. Найдем координаты (абсциссы) точек пересечения парабол из системы уравнений

$$\begin{cases} y = x^2 \\ x = y^2 \end{cases} \Rightarrow x = x^4 \Rightarrow x^4 - x = 0 \Rightarrow x(x^3 - 1) = 0 \Rightarrow x_1 = 0, x_2 = 1.$$

Применим формулу ()

$$V_{ox} = \pi \int_{a}^{b} \left(f_{2}^{2}(x) - f_{1}^{2}(x) \right) dx = \pi \int_{0}^{1} \left(x - x^{4} \right) dx = \pi \left(\frac{x^{2}}{2} - \frac{x^{5}}{5} \right) \Big|_{0}^{1} = \frac{3}{10} \pi \left(e \partial^{3} \right).$$

Пример 27. Вычислить объём тела, образованного вращением первой арки циклоиды $\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$ вокруг оси OX.

Решение. Заметим, что данная кривая задана в параметрическом виде, при этом $0 \le x \le 2\pi a$.

Если
$$x = 0 \implies a(t - \sin t) = 0 \implies t = 0$$
.

Если
$$x = 2\pi a \implies a(t - \sin t) = 2\pi a \implies t = 2\pi$$
.

$$V_{OX} = \pi \int_{0}^{2\pi a} y^{2} dx = \pi \int_{0}^{2\pi} a^{2} (1 - \cos t)^{2} a (1 - \cos t) dt = \pi \int_{0}^{2\pi} a^{3} (1 - \cos t)^{3} dt = \pi \cdot a^{3} \int_{0}^{2\pi} (1 - \cos t)^{3} dt = \pi$$

5.3 Длина дуги плоской кривой

Пусть в прямоугольных координатах дана плоская кривая AB, уравнение которой y = f(x), где $a \le x \le b$ и функция y = f(x) имеет на [a; b] непрерывную производную f'(x).

Определение. Длиной дуги *AB* называется предел, к которому стремится длина ломанной линии, вписанной в эту дугу, когда длина наибольшего звена стремиться к нулю

$$l = \lim_{\max \Delta x_i \to 0} \sum_{l=1}^n \Delta l_i .$$

Если кривая AB задана функцией y = f(x) непрерывной вместе со своей производной на отрезке $[a;\ b]$, длина этой кривой AB вычисляется по формуле

$$l = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx.$$
 (30)

Если кривая AB задана функцией $x = \varphi(y)$ непрерывной вместе со своей производной на отрезке [c; d], длина этой кривой AB вычисляется по формуле

$$l = \int_{c}^{d} \sqrt{1 + (\varphi'(y))^{2}} \, dy \,. \tag{31}$$

Если кривая АВ задана параметрическими уравнениями

$$\begin{cases} x = \varphi(t), \\ y = \psi(t), \end{cases}$$
 причём $t_1 \le t \le t_2$, то

лучим

$$l = \int_{t_1}^{t_2} \sqrt{(\varphi'(t))^2 + (\psi'(t))^2} dt.$$
 (32)

Если кривая AB задана уравнениям в полярной системе координат $\rho = \rho(\varphi), \ \alpha \le \varphi \le \beta$, то длина дуги AB вычисляется по формуле

$$l = \int_{\alpha}^{\beta} \sqrt{(\rho(\varphi))^2 + (\rho'(\varphi))^2} d\varphi.$$
 (33)

Пример . Найти длину дуги полукубической параболы $y^2 = x^3$ от начала координат до т A(4; 8).

Рис. 17

Решение. Кривая симметрична относительно оси *ОХ* (рис. 17), поэтому вычислим длину верхней части кривой и результат удвоим. Уравнение полукубической параболы имеет вид $y^2 = x^3$ или $y = x^{\frac{3}{2}}$. Дифференцируя уравнение кривой, найдем $y' = \frac{3}{2}x^{\frac{1}{2}}$. Применив формулу (30) по-

$$l = 2 \cdot \int_{0}^{4} \sqrt{1 + \frac{9}{4}x} dx = \frac{8}{9} \cdot \int_{0}^{4} \sqrt{1 + \frac{9}{4}x} d\left(1 + \frac{9}{4}x\right) = \frac{8}{9} \cdot \frac{2}{3} \sqrt{\left(1 + \frac{9}{4}x\right)^{3}} \Big|_{0}^{4} =$$

$$= \frac{16}{27} \left(\sqrt{(1+9)^{3}} - \sqrt{1}\right) = \frac{16}{27} \left(10\sqrt{10} - 1\right) \text{ (ed)}.$$

Пример 29. Найти длину дуги астроиды $\begin{cases} x = a \cos^3 t, \\ y = a \sin^3 t, \end{cases}$ $0 \le t \le 2\pi$, предполагая, что a > b.

Рис. 18. Астроида

Решение. В силу симметрии астроиды (рис.

18) вычислим сначала $\frac{1}{4}$ длины, а затем результат умножим на 4.

Применяя формулу (32) получим

$$l = 4 \int_{0}^{\frac{\pi}{2}} \sqrt{a^2 9 \cos^4 t (-\sin t)^2 + a^2 9 \sin^4 t \cos^2 t} dt =$$

$$=12a\int_{0}^{\frac{\pi}{2}}\sqrt{\sin^{2}t\cos^{2}t(\cos^{2}t+\sin^{2}t)}dt=12a\int_{0}^{\frac{\pi}{2}}\sin t\cos tdt=6a\int_{0}^{\frac{\pi}{2}}\sin 2tdt=3a(-\cos 2t)\Big|_{0}^{\frac{\pi}{2}}=6a(e\delta).$$

Пример 30. Найти длину первого витка архимедовой спирали $\rho = a \varphi$.

Рис. 19. Спираль Архимеда

Решение. Первый виток архимедовой спирали образуется при изменении полярного угла $0 \le \varphi \le 2\pi$ (рис.19). Используя формулу (33) имеем

$$l = \int_{0}^{2\pi} \sqrt{a^{2} \varphi^{2} + a^{2}} d\varphi = a \int_{0}^{2\pi} \sqrt{\varphi^{2} + 1} d\varphi =$$

$$= \left| \begin{array}{cc} u = \sqrt{\varphi^2 + 1} & du = \frac{\varphi}{\sqrt{\varphi^2 + 1}} d\varphi \\ dv = d\varphi & v = \varphi \end{array} \right| =$$

Рассмотрим решение последнего интеграла методом интегрирования по частям

$$a\int_{0}^{2\pi} \sqrt{\varphi^{2} + 1} d\varphi = \sqrt{u = \sqrt{\varphi^{2} + 1}} \quad du = \frac{\varphi}{\sqrt{\varphi^{2} + 1}} d\varphi = \sqrt{u = \sqrt{\varphi^{2} + 1}} d\varphi = \sqrt{u = \sqrt{u}} d\varphi = \sqrt{u = \sqrt{u}} d\varphi = \sqrt{u = \sqrt{u}} d\varphi = \sqrt{u} d\varphi$$

Выразим
$$a \int_{0}^{2\pi} \sqrt{\varphi^2 + 1} d\varphi = a \left(\frac{1}{2} \varphi \sqrt{\varphi^2 + 1} \Big|_{0}^{2\pi} + \frac{1}{2} \ln \left(\varphi + \sqrt{\varphi^2 + 1} \right)_{0}^{2\pi} \right).$$

Таким образом,
$$l = a \int_{0}^{2\pi} \sqrt{\varphi^2 + 1} d\varphi = a \left(\pi \sqrt{4\pi^2 + 1} + \frac{1}{2} \ln \left(2\pi + \sqrt{4\pi^2 + 1} \right) \right)$$
 (ед).

Практические задания

Задание 4. Вычислить площадь фигуры, ограниченной линиями

a)
$$y = x^2$$
, $y = 2 - x^2$;

$$6) \quad y = 1 - x^2, \ y = x^2 + 2, \ x = 0, \ x = 1;$$

B)
$$y = \sin 2x$$
, $y = 1$, $x = \frac{\pi}{2}$, $\frac{\pi}{4} \le x \le \frac{\pi}{2}$;

$$\Gamma$$
) $y = \cos x$, $y = -\frac{x}{2}$, $x = 0$, $x = \frac{3}{2}\pi$.

Задание 5. Вычислить площадь фигуры, ограниченной линиями

a) астроидой
$$\begin{cases} x = a \cos^3 t, \\ y = a \sin^3 t, \end{cases}$$

$$\delta) \begin{cases}
 x = a \sin t \cos^2 t, \\
 y = a \cos t \sin^2 t,
\end{cases} \quad 0 \le x \le \frac{\pi}{2};$$

- в) первым витком спирали Архимеда $\rho = a\varphi$, a > 0 и полярной осью;
- Γ) лемнискатой $\rho^2 = 2\cos 2\varphi$.

Задание 6. Найти объём тела, образованного вращением вокруг оси *OX* фигуры ограниченной линиями

a)
$$y^2 = (x-1)^3$$
, $x = 2$;

6)
$$y = \frac{x^2}{2} + 1$$
, $x = 0$, $x = 2$.

Задание 7. Найти объём тела, образованного вращением вокруг оси *OУ* фигуры ограниченной линиями

a)
$$y = \frac{4}{x}$$
, $x = 1$, $x = 4$;

6)
$$y = \arcsin x$$
, $y = 0$, $y = \frac{\pi}{2}$.

Задание 8. Найти объём тела, образованного вращением вокруг оси ОХ

a) астроиды
$$\begin{cases} x = a \cos^3 t, \\ y = a \sin^3 t, \end{cases}$$

б) кривой
$$\begin{cases} x = \sin t + 1, \\ y = \sin^3 t, \end{cases}$$
 $x = 0, y = 0, 0 \le x \le 1.$

Задание 9. Найти длину дуги

а) кривой
$$y = \ln \cos x$$
 от $x = 0$ до $x = \frac{\pi}{6}$;

б) кривой
$$\begin{cases} x = t^3 - t, \\ y = t^2 + 2, \end{cases}$$
 $0 \le t \le 3;$

в) кардиоиды
$$\rho = a(1 + \cos \varphi), \ a > 0$$
;

г) первой арки циклоиды
$$\begin{cases} x = a(t - \sin t), \\ y = a(1 - \cos t). \end{cases}$$

Самостоятельная работа

Задание 4. Вычислить площадь фигуры, ограниченной линиями

a)
$$y = \ln x$$
, $y = 0$, $x = 2$, $x = 10$;

$$6) x^2 + y - 3 = 0, x + y - 1 = 0;$$

в)
$$\begin{cases} x = t^2, \\ y = \frac{t}{3}(t^2 - 3), \end{cases}$$
 между точками пересечения с осью OX ;

 Γ) одним лепестком кривой $\rho = 5 \sin 3\varphi$.

Задание 5. Найти объём тела вращения, ограниченного линиями

а)
$$y = 2x - x^2$$
 и $y = -x + 2$ вокруг оси OX ;

б)
$$y = x^2 + 1$$
, $y = x$, $x = 0$, $x = 1$, вокруг оси OY ;

в) верхней половиной эллипса
$$\begin{cases} x = \sqrt{3}\cos t, \\ y = 2\sin t, \end{cases}$$
 $x = 0, y = 0,$

вокруг оси ОУ.

Задание 6. Найти длину дуги

а) кривой $y = 2 - e^x$, $\ln \sqrt{3} \le x \le \ln \sqrt{8}$;

б) кривой
$$\begin{cases} x = 4 - \frac{t^4}{4}, \\ y = \frac{t^6}{6}, \end{cases}$$
 $0 \le t \le 2;$

в) кривой
$$\rho = 2e^{\frac{4\varphi}{3}}, -\frac{\pi}{2} \le \varphi \le \frac{\pi}{2}$$
.

ЗАДАНИЯ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ (ТИПОВОГО РАСЧЕТА)

ВАРИАНТ 1

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{0}^{4} x^{2} \cdot \sqrt{16 - x^{2}} dx$$
; 2) $\int_{0}^{\frac{\pi}{6}} x \cdot \cos x dx$; 3) $\int_{0}^{1} \frac{dx}{x^{2} + 4x + 5}$.

Задание 2. Вычислить несобственный интеграл $\int_{0}^{\frac{\pi}{3}} \frac{tg^{2}x}{4+3\cos 2x} dx.$

Задание 3. Вычислить площадь фигуры ограниченной кривой $\rho = a\sqrt{\cos 2\varphi}$.

Задание 4. Найти объём тела вращения, образованного вращением фигуры, ограниченной синусоидой $y = \sin x$ и отрезком $0 \le x \le \pi$ оси OX вокруг: а) оси OX; в) оси OY.

Задание 5. Найти длину дуги
$$\begin{cases} x = 5(t - \sin t) \\ y = 5(1 - \cos t) \end{cases}$$
 $0 \le t \le \pi$.

ВАРИАНТ 2

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{-1}^{6} \frac{dx}{1 + \sqrt[3]{x+2}}$$
;

$$2) \quad \int_0^1 x \cdot \ln(x^2 + 1) dx;$$

2)
$$\int_{0}^{1} x \cdot \ln(x^{2} + 1) dx$$
; 3) $\int_{\frac{\pi}{2}}^{\pi} 2^{8} \cdot \sin^{2} x \cdot \cos^{6} x dx$.

Задание 2. Вычислить несобственный интеграл $\int_{0}^{0} x \cdot e^{x} dx$.

Задание 3. Вычислить площадь фигуры ограниченной кривой $\rho = a$.

Задание 4. Найти объём тела, образованного вращением вокруг оси ОХ фигуры, ограниченной кривой $y^2 = \frac{2x^3 + x}{4}$.

Задание 5. Найти длину дуги
$$\begin{cases} x = 3(2\cos t - \cos 2t) \\ y = 3(2\sin t - \sin 2t) \end{cases}$$
 $0 \le t \le 2\pi$.

ВАРИАНТ 3

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{0}^{1} x^{2} \cdot \sqrt{1-x^{2}} dx$$
;

$$2) \quad \int_{1}^{2} \frac{x^3 - 1}{4x^3 - x} dx$$

1)
$$\int_{0}^{1} x^{2} \cdot \sqrt{1-x^{2}} dx$$
; 2) $\int_{1}^{2} \frac{x^{3}-1}{4x^{3}-x} dx$; 3) $\int_{\frac{\pi}{2}}^{\pi} 2^{8} \cdot \cos^{8} x dx$.

Задание 2. Вычислить несобственный интеграл $\int_{-x^2+2x+2}^{\infty} \frac{dx}{x^2+2x+2}$.

Задание 3. Вычислить площадь фигуры ограниченной частью спирали $\rho = a + b\varphi$, (a > 0) при $\varphi \in [0; 2\pi]$.

Задание 4. Вычислить объём тела, полученного от вращения вокруг оси OXфигуры, ограниченной осью OV, синусоидой и косинусоидой ($0 \le x \le \frac{\pi}{2}$).

$$3adaние 5.$$
 Найти длину дуги
$$\begin{cases} x = 4(\cos t + t \sin t) \\ y = 4(\sin t - t \cos t) \end{cases} 0 \le t \le 2\pi.$$

ВАРИАНТ 4

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{0}^{4} \sqrt{16-x^2} dx$$
;

2)
$$\int_{2}^{3} \frac{dx}{6x^3 - 7x^2 - 3x}$$

1)
$$\int_{0}^{4} \sqrt{16-x^{2}} dx$$
; 2) $\int_{2}^{3} \frac{dx}{6x^{3}-7x^{2}-3x}$; 3) $\int_{0}^{\frac{\pi}{4}} \frac{6\sin^{2}x}{2\cos 2x-4} dx$.

Задание 2. Вычислить несобственный интеграл $\int_{-\sqrt{x-1}}^{2} \frac{dx}{\sqrt{x-1}}$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми

$$y = 2x - x^2 + 3$$
; $y = x^2 - 4x + 3$.

Задание 4. Найти объём тела, образованного вращением вокруг оси ОХ фигуры, ограниченной кривой $y^2 = (x-1)^3$ и прямой x = 2.

Задание 5. Найти длину дуги
$$\begin{cases} x = 10\cos^3 t \\ y = 10\sin^3 t \end{cases} \qquad 0 \le t \le \frac{\pi}{2} \, .$$

ВАРИАНТ 5

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{0}^{4} \frac{dx}{1+\sqrt{x}};$$

2)
$$\int_{0}^{1} \frac{xdx}{(x+1)(2x+1)}$$

2)
$$\int_{0}^{1} \frac{x dx}{(x+1)(2x+1)}$$
; 3) $\int_{1}^{2} \frac{3x-1}{\sqrt{x^2+x+2}} dx$.

Задание 2. Вычислить несобственный интеграл $\int_{2}^{+\infty} \frac{xdx}{\sqrt{(x^2-3)^3}}$.

Задание 3. Вычислить площадь фигуры ограниченной кривой $y^2 = (4-x)^3$ и прямой x = 0.

Задание 4. Определить объём тела, образованного вращением вокруг оси ОХ фигуры, ограниченной кривой y = ctgx, $\frac{\pi}{4} \le x \le \frac{\pi}{2}$.

Задание 5. Найти длину дуги
$$\begin{cases} x = 3(t - \sin t) \\ y = 3(1 - \cos t) \end{cases} \quad 0 \le t \le 2\pi.$$

ВАРИАНТ 6

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{1}^{8} \frac{dx}{\sqrt[3]{x^2} \cdot (1 + \sqrt[3]{x})};$$

1)
$$\int_{1}^{8} \frac{dx}{\sqrt[3]{x^2 \cdot (1 + \sqrt[3]{x})}};$$
 2) $\int_{0}^{1} \frac{x^2 dx}{(x+2)^2 (x+4)^2};$ 3) $\int_{0}^{1} \frac{dx}{\sqrt{x^2 - 10x + 3}}.$

3)
$$\int_{0}^{1} \frac{dx}{\sqrt{x^2 - 10x + 3}}.$$

Задание 2. Вычислить несобственный интеграл $\int_{2}^{6} \frac{dx}{\sqrt[3]{(4-x)^2}}$.

Задание 3. Вычислить площадь фигуры ограниченной кривой $y^2 = x^3$ и прямыми y = 8; x = 0.

Задание 4. Найти объём тела, образованного вращением криволинейной трапеции вокруг оси OX, ограниченной кривыми $y = \frac{1}{x}$, x = 1, ($x \ge 1$) y = 0.

3adaние 5. Найти длину дуги $\begin{cases} x = 3(\cos t + t \sin t) \\ y = 3(\sin t - t \cos t) \end{cases}$ $0 \le t \le \frac{\pi}{3}$.

ВАРИАНТ 7

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{-\frac{1}{2}}^{0} \frac{x dx}{2 + \sqrt{2x + 1}};$$
 2)
$$\int_{3}^{4} \frac{x^5 + x^4 - 8}{x^3 - 4x} dx;$$
 3)
$$\int_{0}^{1} \frac{2x - 3}{x^2 + 2x + 7} dx.$$

Задание 2. Вычислить несобственный интеграл $\int_{0}^{\infty} x^2 \cdot e^{-x^3} dx$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми $y = x^2 + 4x$; y = x + 4.

Задание 4. Найти объём тела, образованного вращением фигуры, ограниченной кривой $(6-x)y^2 = x^2$; $0 \le x \le 4$ вокруг оси *OX*.

Задание 5. Найти длину дуги $\begin{cases} x = 6\cos^3 t \\ y = 6\sin^3 t \end{cases} \qquad 0 \le t \le \frac{\pi}{3}.$

ВАРИАНТ 8

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{0}^{\ln 5} \frac{e^{x} \cdot \sqrt{e^{x} - 1}}{e^{x} + 3} dx;$$
 2)
$$\int_{1}^{2} \frac{x^{2} - 3x + 2}{x \cdot (x^{2} + 2x + 1)} dx;$$
 3)
$$\int_{0}^{1} \frac{4x - 1}{4x^{2} - 4x + 5} dx.$$

Задание 2. Вычислить несобственный интеграл $\int_{0}^{\infty} \frac{x+2}{x^2+2x+2} dx$.

Задание 3. Вычислить площадь фигуры ограниченной параболой $y^2 = 2x + 4$ и прямой x = 0.

Задание 4. Найти объём тела, образованного вращением фигуры вокруг оси OX, ограниченной параболой $y = 2x - x^2$ и прямой y = -x + 2.

Задание 5. Найти длину дуги
$$\begin{cases} x = 6(\cos t + t \sin t) \\ y = 6(\sin t - t \cos t) \end{cases}$$
 $0 \le t \le \pi$.

ВАРИАНТ 9

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{0}^{5} x^{2} \cdot \sqrt{25 - x^{2}} dx$$
; 2) $\int_{2}^{3} \frac{dx}{x \cdot (x^{2} + 1)}$; 3) $\int_{1}^{2} \frac{3x + 4}{\sqrt{x^{2} + 6x + 13}} dx$.

Задание 2. Вычислить несобственный интеграл $\int_{1}^{e} \frac{dx}{x\sqrt[4]{\ln x}}$.

Задание 3. Вычислить площадь фигуры ограниченной кривой $y = 4 - x^2$ и осью OX.

Задание 4. Найти объём тела, образованного вращением фигуры вокруг оси OX ограниченной кривыми $y = 1 - x^2$; x = 0; $x = \sqrt{y-2}$; x = 1.

Задание 5. Найти длину дуги
$$\begin{cases} x = 2(t - \sin t) \\ y = 2(1 - \cos t) \end{cases} \quad 0 \le t \le \frac{\pi}{2}.$$

ВАРИАНТ 10

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{4}^{9} \frac{x-1}{\sqrt{x}+1} dx$$
; 2) $\int_{1}^{2} \frac{dx}{(x+1)^{2}(x^{2}+1)}$; 3) $\int_{0}^{1} \frac{x+1}{2x^{2}+x+1}$.

Задание 2. Вычислить несобственный интеграл $\int_{1}^{\infty} \frac{dx}{x^2 + 4x + 13}$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми $v = x^2$; $v = 2 - x^2$.

Задание 4. Найти объём тела, образованного вращением фигуры вокруг оси OX ограниченной кривыми $y = x^3$; $y = \sqrt{x}$.

Задание 5. Найти длину дуги $\rho = a\sqrt{\cos 2\varphi}$.

ВАРИАНТ 11

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{0}^{1} \sqrt{4-x^2} dx$$
;

$$2) \quad \int_{0}^{1} x \cdot e^{-x} dx$$

1)
$$\int_{0}^{1} \sqrt{4-x^{2}} dx$$
; 2) $\int_{0}^{1} x \cdot e^{-x} dx$; 3) $\int_{0}^{1} \frac{dx}{\sqrt{x^{2}+4x+1}}$.

Задание 2. Вычислить несобственный интеграл $\int_{\sqrt{2x+7}}^{\infty} \frac{dx}{\sqrt{2x+7}}$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми

$$y = (x-1)^2$$
; $y^2 = (x-1)$.

Задание 4. Найти объём тела, образованного вращением фигуры вокруг оси OX ограниченной кривыми $y = 3\sin x$; $y = \sin x$; $0 \le x \le \pi$.

Задание 5. Найти длину дуги
$$\begin{cases} x = 8\cos^3 t \\ y = 8\sin^3 t \end{cases} \qquad 0 \le t \le \frac{\pi}{6}.$$

$$0 \le t \le \frac{\pi}{6}$$

ВАРИАНТ 12

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{0}^{\frac{3}{2}} \frac{x^2 dx}{\sqrt{9-x^2}}$$
;

$$2) \quad \int_{0}^{\frac{\pi}{2}} x^2 \cdot \cos 2x dx \; ;$$

1)
$$\int_{0}^{\frac{3}{2}} \frac{x^2 dx}{\sqrt{9-x^2}}$$
; 2) $\int_{0}^{\frac{\pi}{2}} x^2 \cdot \cos 2x dx$; 3) $\int_{0}^{1} \frac{dx}{\sqrt{x^2-6x+13}}$.

Задание 2. Вычислить несобственный интеграл $\int_{0}^{2} \frac{dx}{x^2 - 4x + 3}$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми

$$y = x^2 \sqrt{8 - x^2}$$
; $y = 0$; $0 < x < 2\sqrt{2}$.

Задание 4. Найти объём тела, образованного вращением фигуры вокруг оси *OX* ограниченной кривыми $y = -x^2 + 5x + 6$; y = 0.

Задание 5. Найти длину дуги
$$\begin{cases} x = 4(t - \sin t) & \frac{\pi}{2} \le t \le \frac{2\pi}{3} \end{cases}.$$

ВАРИАНТ 13

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{1}^{2} \frac{dx}{(x+1)\cdot\sqrt{x}}$$
; 2) $\int_{0}^{2} x\cdot e^{2x}dx$; 3) $\int_{0}^{1} \frac{dx}{4x^{2}+3x+1}$.

$$2) \quad \int_{0}^{2} x \cdot e^{2x} dx;$$

3)
$$\int_{0}^{1} \frac{dx}{4x^2 + 3x + 1}$$
.

Задание 2. Вычислить несобственный интеграл $\int_{0.3}^{\infty} \frac{xdx}{\sqrt[3]{x^2+1}}$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми

$$y = x\sqrt{4 - x^2}$$
; $y = 0$; $0 \le x \le 2$.

Задание 4. Найти объём тела, образованного вращением фигуры вокруг оси OX ограниченной кривыми $y = 5\cos x$; $y = \cos x$; x = 0; x > 0.

Задание 5. Найти длину дуги
$$\begin{cases} x = 2.5(t - \sin t) \\ y = 2.5(1 - \cos t) \end{cases} \quad 2^{\frac{\pi}{2}} \le t \le \pi.$$

ВАРИАНТ 14

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{2}^{9} \frac{x dx}{\sqrt[3]{x-1}}$$
;

$$2) \quad \int_{0}^{\pi} x^{3} \cdot \sin x dx;$$

2)
$$\int_{0}^{\pi} x^{3} \cdot \sin x dx$$
; 3) $\int_{0}^{1} \frac{dx}{\sqrt{x^{2} - 8x + 1}}$.

Задание 2. Вычислить несобственный интеграл $\int_{0}^{4} \frac{dx}{\sqrt[3]{(x-3)^2}}$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми

$$y = (x+1)^2$$
; $y^2 = x+1$.

Задание 4. Найти объём тела, образованного вращением фигуры вокруг оси OX ограниченной кривыми $y = 2x - x^2$; $2x^2 - 4x + y = 0$.

Задание 5. Найти длину дуги $\rho = 3\sqrt{\cos 3\varphi}$.

ВАРИАНТ 15

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{0}^{1} \frac{x^{2}dx}{\sqrt{4-x^{2}}};$$

$$2) \int_{0}^{\frac{\pi}{2}} x \cdot \sin 2x dx;$$

3)
$$\int_{-1}^{0} \frac{x+2}{x^2+2x+2} dx.$$

Задание 2. Вычислить несобственный интеграл $\int_{x}^{\infty} \frac{dx}{x^2 - 8x + 17}$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми

$$y = 4 - x^2$$
; $y = x^2 - 2x$.

Задание 4. Найти объём тела, образованного вращением фигуры вокруг оси OV ограниченной кривыми $y = (x-1)^2$; y = 1.

Задание 5. Найти длину дуги
$$\begin{cases} x = 2(2\cos t - \cos 2t) \\ y = 2(2\sin t - \sin 2t) \end{cases} \quad 0 \le t \le \frac{\pi}{3}.$$

ВАРИАНТ 16

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{1}^{3} x^{3} \cdot \sqrt{x^{2} - 1} dx$$
; 2) $\int_{0}^{\frac{\sqrt{3}}{3}} \arcsin x dx$; 3) $\int_{1}^{2} \frac{dx}{x^{2} + 2x + 5}$.

Задание 2. Вычислить несобственный интеграл $\int_{0}^{\infty} \frac{dx}{x^2 + 2x + 4}$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми

$$y = \sqrt{4 - x^2}$$
; $y = 0$; $x = 0$; $x = 1$.

Задание 4. Найти объём тела, образованного вращением фигуры вокруг оси OY ограниченной кривыми $y = x^2 + 1$; y = x; x = 0; x = 1.

3adaнue 5. Найти длину дуги $\rho = b + 2a\cos\varphi$.

ВАРИАНТ 17

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{0}^{\frac{1}{\sqrt{2}}} \frac{dx}{(1-x^2)\cdot\sqrt{1-x^2}};$$
 2)
$$\int_{2}^{3} \frac{dx}{x^3(x-1)^2};$$
 3)
$$\int_{0}^{1} \frac{x+2}{x^2+2x+5} dx.$$

Задание 2. Вычислить несобственный интеграл $\int_{0}^{3} \frac{x dx}{\sqrt{9-x^{2}}}$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми

$$y = \frac{x}{x^2 + 1}$$
; $y = 0$; $x = 0$.

Задание 4. Найти объём тела, образованного вращением фигуры вокруг оси OV ограниченной кривыми $y = (x-1)^2$; x = 0; y = 0; x = 2.

$$3adaние 5.$$
 Найти длину дуги
$$\begin{cases} x = 8(\cos t + t \sin t) \\ y = 8(\sin t - t \cos t) \end{cases}$$
 $0 \le t \le \frac{\pi}{4}$.

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{0}^{2} \frac{dx}{(4+x^{2})\cdot\sqrt{4+x^{2}}};$$
 2) $\int_{3}^{4} \frac{x^{3}dx}{(x^{2}-1)(x+1)};$ 3) $\int_{0}^{\frac{\pi}{2}} \frac{\sin x dx}{2+\sin x}.$

Задание 2. Вычислить несобственный интеграл $\int_{2}^{10} \frac{dx}{\sqrt[3]{(x-2)^2}}$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми $y = e^x$; $y = e^{-x}$; x = 1.

Задание 4. Найти объём тела, образованного вращением фигуры вокруг оси OY ограниченной кривыми $y = x^3$; $y = x^2$.

Задание 5. Найти длину дуги
$$\begin{cases} x = 4\cos^3 t & \frac{\pi}{6} \le t \le \frac{\pi}{4} \end{cases}$$

ВАРИАНТ 19

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{-\frac{5}{3}}^{1} \frac{\sqrt[3]{3x+5}+2}{1+\sqrt{3x+5}} dx$$
; 2) $\int_{4}^{5} \frac{dx}{(x-1)^{2}(x^{2}+2)}$; 3) $\int_{0}^{1} \frac{dx}{x^{2}+x+1}$.

Задание 2. Вычислить несобственный интеграл $\int_{-1}^{7} \frac{dx}{\sqrt[3]{7-x}}$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми $y = (x-2)^3$; y = 4x-8.

Задание 4. Найти объём тела, образованного вращением фигуры вокруг оси OY ограниченной параболой $y = x^2 - 2x + 1$ и прямыми x = 2; y = 0.

Задание 5. Найти длину дуги
$$\begin{cases} x = 4(2\cos t - \cos 2t) \\ y = 4(2\sin t - \sin 2t) \end{cases}$$
 $0 \le t \le \pi$.

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{-3}^{3} x^2 \cdot \sqrt{9 - x^2} dx$$
;

2)
$$\int_{0}^{\frac{\pi}{6}} x \cdot \cos 3x dx$$
; 3) $\int_{0}^{\frac{\pi}{2}} \frac{\sin x dx}{5 + 3\sin x}$.

$$3) \int_{0}^{\frac{\pi}{2}} \frac{\sin x dx}{5 + 3\sin x}$$

Задание 2. Вычислить несобственный интеграл $\int_{-\infty}^{\infty} \frac{dx}{x \cdot (\ln x)^2}$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми $x = 4 - v^2$; $x = v^2 - 2v$.

Задание 4. Найти объём тела, образованного вращением фигуры вокруг оси OY ограниченной кривыми $y^2 = x - 2$; y = 0; $y = x^3$; y = 1.

Задание 5. Найти длину дуги кривой $\rho = 3e^{\frac{3\varphi}{4}}; -\frac{\pi}{2} \le \varphi \le \frac{\pi}{2}$.

ВАРИАНТ 21

Задание 1. Вычислить определённый интеграл:

$$1) \int_{4}^{9} \frac{\sqrt{x} dx}{\sqrt{x} - 1};$$

$$2) \int_{1}^{3} x^2 \ln x dx;$$

3)
$$\int_{0}^{\frac{2\pi}{3}} \frac{1+\sin x}{1+\cos x+\sin x}.$$

Задание 2. Вычислить несобственный интеграл $\int_{-\infty}^{e} \frac{dx}{x \cdot \sqrt{\ln x}}$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми

$$y = x\sqrt{36 - x^2}$$
; $y = 0$; $0 \le x \le 6$.

Задание 4. Найти объём тела, образованного вращением фигуры вокруг оси OY ограниченной кривыми $y = x^3$; y = x.

Задание 5. Найти длину дуги $\rho = \sin^3 \frac{\varphi}{3}$ $0 \le \varphi \le \frac{\pi}{2}$.

ВАРИАНТ 22

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{0}^{5} x^{2} \cdot \sqrt{25 - x^{2}} dx$$
; 2) $\int_{0}^{1} arctgx dx$;

2)
$$\int_{0}^{1} arctgxdx$$
;

$$3) \int_{0}^{\frac{\pi}{2}} \frac{dx}{1+\sin x + \cos x}.$$

Задание 2. Вычислить несобственный интеграл: $\int_{0}^{2} \frac{x dx}{\sqrt{4-x^2}}$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми $x = (y-2)^3$; x = 4y-8.

Задание 4. Найти объём тела, образованного вращением фигуры вокруг оси OY ограниченной линиями $y = \sqrt{x-1}$; y = 0; y = 1; x = 0.5.

3adaние 5. Найти длину дуги $\begin{cases} x = 2(\cos t + t \sin t) \\ y = 2(\sin t - t \cos t) \end{cases}$ $0 \le t \le \frac{\pi}{2}.$

ВАРИАНТ 23

Задание 1. Вычислить определённый интеграл:

1)
$$\int \frac{x^4 dx}{(16-x^2)\sqrt{16-x^2}}$$
; 2) $\int_{1}^{3} \ln x dx$; 3) $\int_{0}^{\frac{\pi}{2}} \frac{\sin x dx}{1+\cos x+\sin x}$.

Задание 2. Вычислить несобственный интеграл $\int_{0}^{+\infty} \frac{x dx}{(1+x^2)^2}$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми $y = (x-1)^2$; $y^2 = x-1$.

Задание 4. Найти объём тела, образованного вращением фигуры вокруг оси OX ограниченной кривыми $x = \sqrt[3]{y-2}$; x = 1; y = 1.

Задание 5. Найти длину дуги $\rho = 6e^{\frac{12\varphi}{5}}$ $-\frac{\pi}{2} \le \varphi \le \frac{\pi}{2}$.

ВАРИАНТ 24

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{1}^{2} \frac{\sqrt{x^2 - 1}}{x^4} dx$$
; 2) $\int_{0}^{4} x \cdot e^{2x} dx$; 3) $\int_{0}^{\frac{\pi}{2}} \frac{\cos x dx}{5 + 4\cos x}$.

Задание 2. Вычислить несобственный интеграл $\int_{-1}^{2} \frac{dx}{x^2 - x - 2}$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми $y = x^2 \sqrt{16 - x^2}$; y = 0; $0 \le x \le 4$.

Задание 4. Найти объём тела, образованного вращением фигуры вокруг оси OY, ограниченной кривыми $y = \ln x$; x = 2; y = 0.

Задание 5. Найти длину дуги $\rho = 3(1 + \sin \varphi)$ $-\frac{\pi}{6} \le \varphi \le 0$.

ВАРИАНТ 25

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{0}^{1} \frac{dx}{\sqrt{4-x^{2}}};$$

$$2) \int_{1}^{e} \frac{\ln x}{x^2} dx;$$

$$3) \int_{0}^{\frac{\pi}{2}} \frac{dx}{2-\cos x}.$$

Задание 2. Вычислить несобственный интеграл $\int_{a^2}^{+\infty} \frac{dx}{x \cdot \ln^4 x}$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми

$$y = \frac{1}{1+x^2}$$
, $y = \frac{1}{2}x^2$.

Задание 4. Найти объём тела, образованного вращением вокруг оси *OX* фигуры, ограниченной кривыми $y = \sqrt{x}e^x$, x = 1, y = 0.

Задание 5. Найти длину дуги $\rho = a(1 + \cos \varphi)$

ВАРИАНТ 26

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{-1}^{1} \frac{x dx}{\sqrt{5+4x}}$$
;

2)
$$\int_{1}^{2} x \cdot \ln x dx$$
;

$$3) \int_{0}^{\frac{\pi}{2}} \frac{\cos x dx}{2 + \cos x}.$$

Задание 2. Вычислить несобственный интеграл $\int_{0}^{1} x^3 \cdot \ln x dx$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми $y^2 = 9x$, y = x + 2.

Задание 4. Найти объём тела, образованного вращением вокруг оси *OX* фигуры, ограниченной кривыми $y = \frac{1}{4}x^2$, $y = \frac{1}{8}x^3$.

Задание 5. Найти длину дуги $\rho = \frac{1}{2} \left(\varphi + \frac{1}{\varphi} \right), 1 \le \varphi \le 3.$

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{0}^{1} \frac{dx}{e^{x} + e^{-x}};$$

2)
$$\int_{2}^{3} \frac{xdx}{(x-1)(x+2)}$$
;

$$3) \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\cos x dx}{1 + \sin x + \cos x}.$$

Задание 2. Вычислить несобственный интеграл $\int_{1}^{3} \frac{x dx}{(x-2)^{3}}$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми

$$x = 0$$
, $x = 2$, $y = 2^x$, $y = 2x - x^2$.

Задание 4. Найти объём тела, образованного вращением вокруг оси *OX* фигуры, ограниченной кривыми $y = 2 - x^4$, $y = x^2$.

ВАРИАНТ 28

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{0}^{1} \sqrt{4-x^2} dx$$
;

2)
$$\int_{2}^{3} \frac{x dx}{x^3 - 1}$$
;

$$3) \int_{0}^{\frac{\pi}{4}} \frac{dx}{\cos^4 x}.$$

Задание 2. Вычислить несобственный интеграл $\int_{-1}^{2} \frac{dx}{\sqrt[3]{x-1}}$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми

$$y = x^2 \sqrt{16 - x^2}$$
; $y = 0$; $0 \le x \le 4$.

Задание 4. Найти объём тела, образованного вращением вокруг оси *OY* фигуры, ограниченной кривыми $y = 3 - x^2$, y = 2x, y = 0.

Задание 5. Найти длину дуги кривой $y = \frac{x^2}{4} - \frac{1}{2} \ln x$, $1 \le x \le e$.

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{0}^{3} \frac{\sqrt{x}}{1+x} dx$$
;

2)
$$\int_{1}^{2} \frac{dx}{1+x^3}$$
;

$$3) \int_{0}^{\frac{\pi}{2}} \frac{\cos x dx}{1 + \cos x + \sin x}.$$

Задание 2. Вычислить несобственный интеграл $\int_{0}^{\infty} x \cdot e^{-x^2} dx$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми

$$y = 2x - x^2$$
; $y = -x$.

Задание 4. Найти объём тела, образованного вращением фигуры вокруг оси OV ограниченной кривыми $y = x^3$; $y = \sqrt{x}$.

Задание 5. Найти длину дуги
$$\begin{cases} x = 2(t - \sin t) \\ y = 2(1 - \cos t) \end{cases}$$
 $0 \le t \le \frac{\pi}{2}$.

$$0 \le t \le \frac{\pi}{2}$$
.

ВАРИАНТ 30

Задание 1. Вычислить определённый интеграл:

1)
$$\int_{0}^{16} \frac{dx}{\sqrt{x-9} + \sqrt{x}}$$
;

1)
$$\int_{0}^{16} \frac{dx}{\sqrt{x-9} + \sqrt{x}}$$
; 2) $\int_{0}^{1} \frac{x^{2}dx}{x^{3} + 5x^{2} + 8x + 4}$; 3) $\int_{0}^{\frac{\pi}{3}} \frac{tg^{2}x}{4 + 3\cos 2x} dx$.

3)
$$\int_{0}^{\frac{\pi}{3}} \frac{tg^{2}x}{4+3\cos 2x} dx$$

Задание 2. Вычислить несобственный интеграл $\int_{-\infty}^{\infty} \frac{\ln x}{x} dx$.

Задание 3. Вычислить площадь фигуры ограниченной кривыми

$$y = x \cdot \sqrt{9 - x^2}$$
; $y = 0$; $0 \le x \le 3$.

Задание 4. Найти объём тела, образованного вращением фигуры вокруг оси OX ограниченной кривыми $y = xe^x$, x = 1, y = 0.

Задание 5. Найти длину дуги $\rho = 2\sin 2\varphi$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Берман, А.Ф. Краткий курс математического анализа [Текст]: учеб. пособие; доп. науч. метод. советом М-ва образования и науки РФ / А.Ф. Бермант, И.Г. Араманович. 16-е изд., стер. СПб.: Лань, 2010. 735 с.
- 2. Запорожец, Г.И. Руководство к решению задач по математическому анализу [Текст]: учеб.пособие / Г.И. Запорожец.- 6-е изд., стер.- СПб.: Лань, 2009.- 464 с.
- 3. Курс математики для технических высших заведений [Электронный ресурс] : учеб. пособие; доп. НМС по мат. М-ва образ. и науки РФ / В.Г. Зубков [и др.]; под ред.: В.Б. Миносцева, Е.А. Пушкаря. 2-е изд., испр. . СПб: Лань. Часть 2. Функции нескольких переменных. Интегральное исчисление. Теория поля. 2013. 428, [4] с. (Учебники для вузов. Специальная литература) / www.e.lanbook.com.
- 4. Практическое руководство к решению задач по высшей математике. Интегрирование функций одной переменной, функции многих переменных, ряды [Текст]: учеб.пособие; рек. Науч.- метод.советом М-ва образ. РФ / И.А. Соловьев [и др.].-СПб.: Лань, 2009.- 288 с.
- 5. Щипачев В.С. Высшая математика: Учебник для вузов.- М.: Высш. шк., 2003. 479 с.

СОДЕРЖАНИЕ

ПР	РЕДИСЛОВИЕ	3
§1	ЗАДАЧА, ПРИВОДЯЩАЯ К ПОНЯТИЮ ОПРЕДЕЛЁННОГО ИНТЕГРАЛА	4
§2	СВОЙСТВА ОПРЕДЕЛЁННОГО ИНТЕГРАЛА	6
§3	МЕТОДЫ ИНТЕГРИРОВАНИЯ	7
	3.1 Метод замены переменной	9
	3.2 Интегрирование по частям	11
	Практические задания	12
	Самостоятельная работа	13
§4	НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ	13
	4.1. Несобственные интегралы I рода (интегралы с бесконечными пределами)	13
	4.2. Несобственные интегралы II рода (интегралы от разрывных функций)	15
	Практические задания	17
	Самостоятельная работа	17
§5	ГЕОМЕТРИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЁННОГО ИНТЕГРАЛА	18
	5.1. Вычисление площадей плоских фигур	18
	5.2 Объём тела вращения	
	5.3 Длина дуги плоской кривой	25
	Практические задания	28
	Самостоятельная работа	29
3A	(ТИПОВОГО РАСЧЕТА)	30
СГ	ІИСОК ЛИТЕРАТУРЫ	44

Кидяева Наталья Петровна, Каньшина Зоя Ивановна

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Учебно-методическое пособие

В редакции составителей

Лицензия ЛР 020427 от 25.04.1997 г. Подписано к печати 13.01.2015 г. Формат $60\times90/16$. Уч.-изд.л. — 2,2. Усл.-п.л. — 3,0. Тираж 100 экз. Заказ 6.

Отпечатано в отделе оперативной полиграфии издательства ДальГАУ 675005, г. Благовещенск, ул. Политехническая, 86