PROFA. DRA. ESTHER LUNA COLOMBINI

THE CONSTANT GARDENER

GUILHERME CARREIRO
LUÍSA MADEIRA
MATEUS CORADINI

PROFA. DRA. ESTHER LUNA COLOMBINI

THE CONSTANT GARDENER

GUILHERME CARREIRO
LUÍSA MADEIRA
MATEUS CORADINI

HISTÓRICO

PROJETO 1

INTEGRAÇÃO COM V-REP ARQUITETURA BASE IDENTIFICAÇÃO DE PLANTAS

PROJETO 2

AVOID OBSTACLE COM FUZZY
WALL FOLLOWING HARD CODED
ODOMETRIA IMPRECISA
IDENTIFICAÇÃO DE OBSTÁCULOS

PROJETO FINAL

ODOMETRIA REFINADA
UTILIZAÇÃO DE GRID MÉTRICO
PLANEJAMENTO DE ROTAS
GO TO GOAL COM PID CONTROLLER
APRENDIZADO POR REFORÇO

PROPOSTA INICIAL

- MAPEAR TODAS AS PLANTAS DO AMBIENTE
- VISITAR TODAS AS PLANTAS PERIODICAMENTE

TAREFAS ENVOLVIDAS:

- LOCALIZAÇÃO
- MAPEAMENTO
- EXPLORAÇÃO
- PLANEJAMENTO DE ROTAS
- GO-TO-GOAL

PROPOSTA INICIAL

- MAPEAR TODAS AS PLANTAS DO AMBIENTE
- VISITAR TODAS AS PLANTAS PERIODICAMENTE

TAREFAS ENVOLVIDAS:

- LOCALIZAÇÃO
- MAPEAMENTO
- EXPLORAÇÃO-
- PLANEJAMENTO DE ROTAS
- GO-TO-GOAL

PREMISSAS

LOCALIZAÇÃO:

• BASE: SENSORES QUE MEDEM DISTÂNCIA DA BASE (EXEMPLO: STARGAZER)

PLANEJAMENTO DE ROTAS:

- MAPA DE PARADES
- MAPA COM REGÕES DE RISCO

LOCALIZAÇÃO

LOCALIZANDO A BASE

REFERÊNCIA LOCAL

FILTRO DE KALMAN EXTENDIDO

Algorithm 1 Extended Kalman filter
$$(\bar{\mu_t})\mu_{t-1}, \Sigma_{t-1}, \Sigma_{\Delta t}, z_t$$

$$\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$$

$$K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1} \quad \text{ODOMETRIA}$$

$$\mu_t = \bar{\mu}_t + K_t (z_t - \hat{z}_t) \rightarrow \text{LANDMARKS: DIFERENÇA CALCULADO X REAL}$$

$$\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$$

$$\mathbf{return} \quad \mu_t, \Sigma_t$$

$$z = \left[\begin{array}{c} L_{range} \\ L_{bearing} \end{array} \right]$$

$$\hat{z} = \left[\begin{array}{c} l_{range} \\ l_{bearing} \end{array} \right]$$

$$p_{range} = \sqrt{(p_x - x_t)^2 + (p_y - y_t)^2}$$

$$p_{bearing} = arctan2((p_y - y_t), (p_x - x_t)) - \theta_t$$

ODOMETRIA

EKF-1BASE

EKF-2BASES

EKF-3BASES

PLANEJAMENTO E EXECUÇÃO DE ROTAS

PLANEJAMENTO

$$f(n) = g(n) + h(n)$$

EXECUÇÃO

GO TO GOAL (PID)

```
Pose pose = pioneer.getPose();
if (isFound(pose)) {
    if (!nodes.isEmpty()) {
        goTo(nodes.pop());
    } else {
        setVelocity(0, 0);
        return;
double u = u(pose);
setVelocity(3 - (u * 2),
            3 + (u * 2);
```

APRENDIZADO

PROBLEMA

APLICAR OS ESTADOS PARA DEFINIR A NAVEGAÇÃO DO ROBÔ PARA MÁXIMA EXPLORAÇÃO

IMPLEMENTAÇÃO

- CUSTOMIZAÇÃO PARA O CENÁRIO DESCRITO
- ESTUDO DE CASO
- FRAMEWORK <u>BURLAP</u>

Figure: UML Digram of the Java interfaces/classes for an MDP definition.

DISCRETIZAÇÃO DO AMBIENTE

- CUSTOMIZAÇÃO PARA O CENÁRIO DESCRITO
- ESTUDO DE CASO
- FRAMEWORK <u>BURLAP</u>

LANDMARK

ROBOT

AÇÕES SIMPLES:

- 1 ACIMA
- 1 ABAIXO
- 1 ESQUERDA
- 1 DIREITA

VÍDEO

OBRIGADO