Digital Logic Design

Lecture 17

Selecting

- Selecting of data or information is a critical function in digital systems and computers
- Circuits that perform selecting have:
 - **O**A set of information inputs from which the selection is made
 - **O**A single output
 - **O**A set of control lines for making the selection
- Logic circuits that perform selecting are called multiplexers
- Selecting can also be done by three-state logic or transmission gates

Multiplexers

- A multiplexer selects information from an input line and directs the information to an output line
- A typical multiplexer has n control inputs $(S_{n-1}, ..., S_0)$ called selection inputs, 2^n information inputs $(I_2^n_{-1}, ... I_0)$, and one output Y
- A multiplexer can be designed to have m information inputs with $m < 2^n$ as well as n selection inputs

2-to-1-Line Multiplexer

- Since $2 = 2^1$, n = 1
- The single selection variable S has two values:
 - $\mathbf{0}\mathbf{S} = \mathbf{0}$ selects input $\mathbf{I}_{\mathbf{0}}$
 - $\mathbf{0}\mathbf{S} = \mathbf{1}$ selects input \mathbf{I}_1
- The equation:

$$\mathbf{Y} = \overline{\mathbf{S}}\mathbf{I}_0 + \mathbf{S}\mathbf{I}_1$$

Enabling • The circuit: Decoder Circuits S-

2-to-1-Line Multiplexer (continued)

- Note the regions of the multiplexer circuit shown:
 - **1-to-2-line Decoder**
 - **©2** Enabling circuits
 - **10**2-input OR gate
- To obtain a basis for multiplexer expansion, we combine the Enabling circuits and OR gate into a 2×2 AND-OR circuit:
 - 1-to-2-line decoder
 - 02×2 AND-OR
- In general, for an 2^n -to-1-line multiplexer:
 - 0 n-to- 2^n -line decoder
 - $\bigcirc 2^n \times 2$ AND-OR

Example: 4-to-1-line Multiplexer

Example: 8-to-1-line Multiplexer

Se	lect Data Inp	uts	Output
S ₂	S ₁	S ₀	Y
0	0	0	D ₀
0	0	1	D ₁
0	1	0	D ₂
0	1	1	D ₃
1	0	0	D ₄
1	0	1	D ₅
1	1	0	D ₆
1	1	1	D ₇

Example: 8-to-1-line Multiplexer

Multiplexer Expansion

8-to-1 MUX using Dual 4-to-1 MUX

Multiplexer Width Expansion

Select "vectors of bits" instead of "bits"

• Use multiple copies of $2^n \times 2$ AND-OR in

parallel

Example:4-to-1-linequad multiplexer

Combinational Circuits using Multiplexer

Approach 1: Using n number of selection lines

Approach 2: Using n-1 number of selection lines

***** Example

$$F(x, y) = \sum (0, 1, 3)$$

***** Example

$$F(x, y, z) = \sum (1, 2, 6, 7)$$

x	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Example

$$F(x, y, z) = \sum (1, 2, 6, 7)$$

x y z	F		
0 0 0	0	$\left[\begin{array}{c} I \\ I \end{array} \right]_{E} = I$	$z - I_0$
0 0 1	1	F = z	$\overline{z} \longrightarrow I_1 \longrightarrow Y$
$\begin{bmatrix} 0 & 1 \end{bmatrix} 0$	1		I_2
0 1 1	0	$F = \overline{z}$	$1 - I_3 S_1 S_0$
1 0 0	0	F = 0	
1 0 1	0		\boldsymbol{x} \boldsymbol{y}
1 1 0	1	F = 1	
1 1 1	1]	

 \boldsymbol{F}

Example

$$F(A, B, C, D) = \sum (1, 3, 4, 11, 12, 13, 14, 15)$$

A B C D	F	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	F = D
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	$\int \mathbf{F} = \mathbf{D}$
0 0 1 0	0	F = D
$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ 1	1	
0 1 0 0	1	$F = \overline{D}$
0 1 0 1	0	
0 1 1 0	0	F = 0
0 1 1 1	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	
1 0 0 1	0	F = 0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	F = D
1 0 1 1	1	$\Gamma = D$
1 1 0 0	1	$\mathbf{F} = 1$
1 1 0 1	1	
1110	1	F=1
1 1 1 1	1	\ \ \^{1\cdot - 1}

DeMultiplexers

$S_1 S_0$	Y ₃	Y_2	Y_1	Y_{0}
0 0	0	0	0	Ι
0 1	0	0	Ι	0
1 0	0	Ι	0	0
1 1	Ι	0	0	0

Multiplexer / DeMultiplexer Pairs

DeMultiplexers / Decoders

Half Adder

- A half adder is an arithmetic circuit that generates the sum of two binary digits.
- The circuit has two inputs and two outputs.

Truth Table of Half Adder

Inp	uts	Out	puts
X	Υ	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = \overline{X}Y + X\overline{Y} = X \oplus Y$$
$$C = XY$$

Full Adder

- A full adder is a combinational circuit that forms the arithmetic sum of three input bits.
- Besides the three inputs, it has two outputs.

Truin Table of Fu	ıll Adder
-------------------	-----------

lr	nput	s	Outp	uts
Х	Υ	Z	С	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

K-map: For sum

$$X = \overline{X} \overline{Y} Z + \overline{X} Y \overline{Z} + X \overline{Y} \overline{Z} + X Y Z$$

$$= \overline{X} (\overline{Y} Z + Y \overline{Z}) + X (\overline{Y} \overline{Z} + Y Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \odot Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \oplus Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \oplus Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \oplus Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \oplus Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \oplus Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \oplus Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \oplus Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \oplus Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \oplus Z)$$

$$= \overline{X} (Y \oplus Z) + X (Y \oplus Z)$$

K-map: For Carry

$$C = XY + XZ + YZ$$

$$= XY + Z(X\overline{Y} + \overline{X}Y)$$

$$= XY + Z(X \oplus Y)$$

C=
$$XY + XZ + YZ$$

= $XY + XZ + YZ (X + X')$
= $XYZ + XY + XZ + X'YZ$
= $XY(Z+1) + XZ + X'YZ$
= $XY + XZ + X'YZ$
= $XY + XZ (Y + Y') + X'YZ$
= $XY + XYZ + XY'Z + X'YZ$
= $XY + XYZ + XY'Z + X'YZ$
= $XY + XY'Z + X'YZ$
= $XY + Z (XY' + X'Y)$
= $XY + Z (X \oplus Y)$