nndl ที่ สีขนาดเล็กมาก จำแนกสภาม-ชับชับนโม่ได้ กับพิม hidden เข้าถึง จำแนกได้มากขึ้น

MULTI-LAYER PERCEPTRON

Asst.Prof.Dr.Supakit Nootyaskool IT-KMITL

Study map

- 1.Basic programming
 - R-programming
- 2. Perceptron
 - Activity function
- 3. Feed Forward NN
 - Logistic function
- 4. Feed Forward NN
 - XOR gate
 - Multi-layer perceptron
- 5. Example & Library Feed Forward NN
 - N:N, 1:N model
 - iris dataset

- 6. Writing NN Code
 - Data scaling, Confusion matrix
 - Writing NN code
- 7. Recurrent Neural Network
- 8. Apply RNN & Library
- 9. GRU LSTM
- 10. CNN
- 11 Apply GA to NN

Learning Outcome

- Understand number of hidden relate to data complexity.
- Have an experience using neuralnet() to train and predict small data.
- o understand The condudation matrix

NN -> (x?) train on

Overview NN Pros and Cons

Train - 1820 weight

risuum

Some

Train - 1820 weight

Pros

ไปเป็นเชื้อเส้น

- NN are goods for nonlinear data with sound large number of input such as images.
- After training, the predictions are fast
- NN can be trained with any number of inputs and layers \ Mod fy
- NN works best with more data points

ta. Trainquit mansotrain ud mostila

Cons

- NN are black boxes
- NN uses time consuming to training on the CPUs-> solved by using GPUs
- NN may leads to over-fitting.

train A -> [NN]

Overview ML

- Supervised learning is the training data as a teacher to the model
- Machine learn from the target data

Reinforcement learning is ML
 where is constant feedback
 given model to adapt to

- Unsupervised is self organization
- The output is trained without a target variable
- Techniques related to unsupervised
 - K-means, hierarchical
 - Dimension reduction

Value

FALSE

False

True

(TN)

Example: ATK results

ความจริง covid

ผลตรวจ covid

Actual value	Predicted value TRUE ผลตรวจว่าติด COvid	Predicted Value FALSE ผลตรวจว่าไม่ติด
TRUE ติด covid	True Positive (TP)	False Negative (FN) err2
FALSE ไม่ติด covid	False Positive (FP) err1 เสียเวลา	True Negative (TN)

Example: Weather forecasting

Predict

Overview Error Matrix

Actual value	Predicted value TRUE	Predicted Value FALSE
TRUE	True Positive (TP)	False Negative (FN) err2
FALSE	False Positive (FP) err1	True Negative (TN)

ความแม่นย้ำ

$$Accuracy = (TP + TN) / (TP + TN + FP + FN)$$

ความเที่ยงตรง

Precision = TP / (TP + FN)

Calculate accuracy (แม่นยำ) and precision (เที่ยงตรง)

Calculate accuracy (แม่นยำ) and precision (เที่ยงตรง)

```
Accuracy = (TP + TN) / (TP + TN + FP + FN)
= (20 + 50) / (20+50+12+18)
= 70 / 100
= 0.7
```

Precision = TP / (TP + FN)= 20 / (20 + 50)= 0.28

Activity 4.1 Create XOR on Perceptron


```
library("neuralnet")
XOR = c(0,1,1,0)
truthtable = expand.grid(c(0,1), c(0,1))
XOR.data <- data.frame(truthtable, XOR)
print(XOR.data)
model <- neuralnet( XOR~Var1+Var2,
        XOR.data,
        hidden=0, ##<--Change here
        rep = 5,
        linear.output = FALSE,
        err.fct = "ce")
print(model)
plot(model)
```


Activity 4.1 Create XOR on Perceptron

Activity 4.2 Predict the model XOR gate

```
var1 = c(0,1,0,1)
var2 = c(0,0,1,1)
datatest = data.frame(var1,var2)
pred <- predict(model, datatest)
pred</pre>
```

```
R Console
                                        R Graphics: Device 10 (ACTIVE)
                                                                                       > var1 = c(0,1,0,1)
> var2 = c(0,0,1,1)
> datatest = data.frame(var1,var2)
> pred <- predict(model, datatest)
> pred
             [,1]
[1,] 0.008446495
[2,] 0.991562451
                                             Var1
                                                          -8.05393
[3,1 0.991571910
[4,1 0.012957772
                                                        Error: 0.038462 Steps: 101
```

Why does the XOR gate need two hidden nodes?

Uses two classifier

XOR is a three-layer network combining OR and

Multi-Layer Perceptron (MLP)

- MLPs are extremely useful for complex problems in the research.
- MLP are used in diverse fields, such as speech recognition,, object recognition, image classification, object localization, object detection, image segmentation, and language translation.

Activity 4.3 Calculate volume of cylinder with NN

Activity 4.3 Calculate volume of cylinder with NN

```
# TRAIN THE DATA
model <- neuralnet( volume~radius+height,
       datatrain,
       hidden=20, ##<--Change here
       rep = 1,
       linear.output = TRUE)
print(model)
plot(model)
print(model$net.result)
```


Activity 4.3 Calculate volume of cylinder with NN # SAVE THE MODEL TO A BINARY FILE NS MAY GAY SAVE ROS

```
> datatest[,3] = pred
save(model,file = "nnmodel.dat")
                                                                            > datatest
                                      $data
                                                                                  radius
                                                                                           height
                                                                                                           V3
                                         radius height
                                                             volume
                                                                               2.026547 2.026547
                                                                                                     25.73332
                                                            3.141593
# PREPARING TEST DATA
                                                                               2.390563 2.390563
                                                                                                     37.84731
                                                          25.132741
radius = runif(12,1,12)
                                                                               7.679099 7.679099 1446.11547
                                                          84.823002
                                                                               1.172730 1.172730
                                                                                                      9.28779
                                                          201.061930
                                                                               3.102445 3.102445
                                                                                                     96.04251
height = radius
                                                         392.699082
                                                                               9.432652 9.432652 2675.39493
                                                          678.584013
datatest = data.frame(radius,height)
                                                                               2.831166 2.831166
                                                                                                     68.02305
                                                      7 1077.566280
                              ReadROS
                                                                               9.264796 9.264796 2524.03196
                                                        1608.495439
# LOAD THE MODEL
                                                                                                     20.05491
                                                                               1.724214 1.724214
                                                      9 2290,221044
                                                                               1.990937 1.990937
                                                                                                     24.93392
model test = load("nnmodel.dat")
                                                     10 3141.592654
                                              10
                                                                                                     20.50487
                                                                               1.752011 1.752011
                                              11
                                                        4181,459822
pred <- predict(model, datatest)</pre>
                                                                            12 4.847668 4.847668
                                                                                                    355.61002
                                      12
                                              12
                                                     12 5428.672105
pred
                                                                    compare
```

datatest[,3] = pred

datatest

Activity 4.4

Summary