Um algoritmo para a construção de vetores de sufixo generalizados em memória externa

Aluno: Felipe Alves da Louza Orientadora: Profa. Dra. Cristina Dutra de Aguiar Ciferri

> Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo, SP, Brasil

> > **Defesa de Mestrado** 17 de dezembro de 2013

Sumário

- 1. Introdução
- 2. Fundamentos
- 3. Algoritmo eGSA
- 4. Testes de desempenho
- 5. Conclusões
- 6. Referências

Introdução

Vetor de sufixo [Manber and Myers, 1990, Gonnet et al., 1992]:

- Estrutura de dados utilizada em problemas que envolvem cadeias de caracteres
- ▶ Muitos trabalhos têm sido propostos para construção de vetores de sufixo em memória externa *e.g.* [Dementiev et al., 2008, Bingmann et al., 2013]

Indexação de conjuntos de cadeias

- Para utilizar esses algoritmos é necessário concatenar todas as cadeias $T_i \in \mathcal{T}$ em $T = T_1 \$_1 \dots T_k \$_k$, utilizando diferentes símbolos terminais $\$_i$
- Vetor de sufixo generalizado para conjuntos de cadeias

Limitação

▶ Esses algoritmos são direcionados para indexação de apenas uma cadeia

Introdução

Vetor de sufixo [Manber and Myers, 1990, Gonnet et al., 1992]:

- Estrutura de dados utilizada em problemas que envolvem cadeias de caracteres
- ▶ Muitos trabalhos têm sido propostos para construção de vetores de sufixo em memória externa *e.g.* [Dementiev et al., 2008, Bingmann et al., 2013]

Indexação de conjuntos de cadeias

- Para utilizar esses algoritmos é necessário concatenar todas as cadeias $T_i \in \mathcal{T}$ em $T = T_1 \$_1 \dots T_k \$_k$, utilizando diferentes símbolos terminais $\$_i$
- Vetor de sufixo generalizado para conjuntos de cadeias

Observações

- lacktriangle Essa abordagem limita o número de possíveis cadeias em ${\mathcal T}$
- lacktriangle Por exemplo, utilizando 1 byte para cada caractere, k é limitado por 256 $|\Sigma|$

Introdução

Vetor de sufixo [Manber and Myers, 1990, Gonnet et al., 1992]:

- Estrutura de dados utilizada em problemas que envolvem cadeias de caracteres
- ▶ Muitos trabalhos têm sido propostos para construção de vetores de sufixo em memória externa *e.g.* [Dementiev et al., 2008, Bingmann et al., 2013]

Indexação de conjuntos de cadeias

- Para utilizar esses algoritmos é necessário concatenar todas as cadeias $T_i \in \mathcal{T}$ em $T = T_1 \$_1 \dots T_k \$_k$, utilizando diferentes símbolos terminais $\$_i$
- Vetor de sufixo generalizado para conjuntos de cadeias

Contribuição

- Primeiro algoritmo para a construção de vetores de sufixo generalizados em memória externa
- ▶ Algoritmo eGSA [Louza et al., 2013]

Sumário

- 1. Introdução
- 2. Fundamentos
- 3. Algoritmo eGSA
- 4. Testes de desempenho
- 5. Conclusões
- 6. Referências

Fundamentos

Seja $T=T[1]T[2]\dots T[n-1]$ \$\square\$ uma cadeia de tamanho $n,\ T[i]\in\Sigma$ e \$\neq\in\Sigma\$

- ▶ $T[i,j] = T[i] \dots T[j]$, $1 \le i \le j \le n$ é uma sub-cadeia de T
- ightharpoonup T[i, n] é um sufixo de T

Vetor de sufixo (SA):

- ▶ Vetor de inteiros $i \in [1, n]$
- ▶ Sufixos T[i, n] ordenados lexicograficamente (\$ < A < C < G < T)

i	SA[i]	suff(i)
1	7	\$
2	6	A\$
3	4	AGA\$
4	2	ATAGA\$
5	5	GA\$
6	1	GATAGA\$
7	3	TAGA\$

Figura : SA para T = GATAGA\$

$$suff(i) = T[SA[i], n].$$

Busca por padrões

Busca binária $O(m \log n)$

Fundamentos

Estruturas auxiliares:

- ▶ Vetor de prefixo comum mais longo (LCP)
- ► Transformada de Burrows-Wheeler (BWT)
- $\blacktriangleright \ \, \mathsf{Vetor} \,\, \mathsf{de} \,\, \mathsf{sufixo} \,\, \mathsf{aumentado} \,\, \mathit{ESA}[\mathit{i}] = \langle \mathit{SA}[\mathit{i}], \mathit{LCP}[\mathit{i}], \mathit{BWT}[\mathit{i}] \rangle$

i		ESA_1	suff(i)	
'	SA	LCP	BWT	Sun(1)
1	7	0	Α	\$
2	6	0	G	A\$
3	4	1	T	AGA\$
4	2	1	G	ATAGA\$
5	5	0	Α	GA\$
6	1	2	\$	GATAGA\$
7	3	0	Α	TAGA\$

Figura : ESA para T = GATAGA\$

LCP
$$LCP[i] = lcp(suff(i-1), suff(i)) \in LCP[1] = 0$$

$$egin{aligned} & \mathcal{BWT} \ & \mathcal{BWT}[i] = \left\{ egin{array}{ll} T[\mathcal{SA}[i]-1] & & \mathsf{se} \ \mathcal{SA}[i]
eq 1 \ & \mathsf{caso} \ \mathsf{contrário} \end{array}
ight. \end{aligned}$$

Busca por padrões

Busca binária $O(m + \log n)$ FM-index [Ferragina and Manzini, 2000] Árvore de sufixo [Abouelhoda et al., 2004]

Fundamentos

Vetor de sufixo generalizado (GSA):

- ▶ Seja $\mathcal{T} = \{T_1, ..., T_k\}$ um conjunto de k cadeias
- ▶ Vetor de pares de inteiros (i, j)
- ▶ Sufixos $T_i[j, n_i]$ ordenados lexicograficamente (\$ < A < C < G < T)

i		GESA[i	suff(i)	
'	GSA	LCP	BWT	Suii(i)
1	(1,7)	0	Α	\$
2	(2,7)	1	Α	\$
3	(1,6)	0	G	A\$
4	(2,6)	1	G	A\$
5	(1,4)	1	Т	AGA\$
6	(2,4)	3	G	AGA\$
7	(2,2)	3	T	AGAGA\$
8	(1,2)	1	G	ATAGA\$
9	(1,5)	0	A	GA\$
10	(2,5)	2 2	A	GA\$
11	(2,3)	2	Α	GAGA\$
12	(1,1)	2	\$	GATAGA\$
13	(1,3)	0	Α	TAGA\$
14	(2,1)	4	\$	TAGAGA\$

Figura : GESA para $T_1 = GATAGA$ \$ e $T_2 = TAGAGA$ \$

Ordem lexicográfica
$$T_i[n_i, n_i] =$$
\$
$$T_i[n_i, n_i] < T_i[n_i, n_i] \text{ se } i < j$$

LCP e BWT

Estruturas auxiliares podem ser generalizadas

Busca por padrões

Busca binária $O(m + \log N)$

Sub-cadeia em comum mais longa

Identificação de repetições

...

Sumário

- 1. Introdução
- 2. Fundamentos
- 3. Algoritmo eGSA
- 4. Testes de desempenho
- 5. Conclusões
- Referências

Algoritmo eGSA

eGSA: External Generalized Enhanced Suffix Array Construction Algorithm

- ▶ Baseado no algoritmo 2PMMS [Garcia-Molina et al., 1999]
- ▶ Entrada: um conjunto de k cadeias $\mathcal{T} = \{T_1, \ldots, T_k\}$
- **Saída**: GESA = GSA + LCP + BWT para T

Em resumo, eGSA funciona da seguinte forma:

- ▶ Fase 1: para cada $T_i \in \mathcal{T}$, construção em memória interna $\rightarrow SA_i$, LCP_i , e são armazenados em memória externa
- ▶ Fase 2: União dos vetores calculados obtendo GESA

Para cada $T_i \in \mathcal{T}$:

- 1. T_i é carregada em memória interna
- 2. Construção de *SA_i* e *LCP_i* utilizando qualquer algoritmo em memória interna (*e.g.* [Nong et al., 2011, Kasai et al., 2001, Fischer, 2011])
- 3. Vetores auxiliares: BWT; e PRE;
- 4. Escrever vetor composto em memória externa

Observações

- ightharpoonup Caso não haja memória interna suficiente ightharpoonup construção em memória externa (e.g. [Bingmann et al., 2013]).
- No caso de muitas cadeias, \mathcal{T} pode ser dividido em r partições $\mathcal{T}^1, \ldots, \mathcal{T}^r$, \rightarrow construir um GSA para cada partição utilizando algum algoritmo em memória interna (e.g. [Shi, 1996]).

Para cada $T_i \in \mathcal{T}$:

- 1. T_i é carregada em memória interna
- 2. Construção de *SA_i* e *LCP_i* utilizando qualquer algoritmo em memória interna (*e.g.* [Nong et al., 2011, Kasai et al., 2001, Fischer, 2011])
- 3. Vetores auxiliares: BWT_i e PRE_i
- 4. Escrever vetor composto em memória externa

Vetores auxiliares

- ▶ $BWT_i[i] = T_i[SA_i[i] 1]$ if $SA_i[i] \neq 1$ ou $BWT_i[i] = \$$ caso contrário
- ▶ $PRE_i[i]$ armazena o prefixo de $T_i[SA_i[i], n_i]$

Observação

Utilizados para melhorar a segunda fase do algoritmo

Para cada $T_i \in \mathcal{T}$:

- 1. T_i é carregada em memória interna
- 2. Construção de *SA_i* e *LCP_i* utilizando qualquer algoritmo em memória interna (*e.g.* [Nong et al., 2011, Kasai et al., 2001, Fischer, 2011])
- 3. Vetores auxiliares: BWTi e PREi
- 4. Escrever vetor composto em memória externa

Vetor composto

$$R_i[j] = \langle SA_i[j], LCP_i[j], BWT_i[j], PRE_i[j] \rangle$$

Vetor de prefixo de T_i , (PRE_i):

- ▶ PRE_i armazena o início de cada sufixo (de tamanho p) em SA_i
- ▶ $PRE_i[j] = T_i[SA_i[j], SA_i[j] + p]$ [Barsky et al., 2008]
- ▶ $PRE_i[j] = T_i[SA_i[j] + h_j, SA_i[j] + h_j + p]$, para $h_j = min(LCP_i[j], h_{j-1} + p)$

Figura : Exemplo para $T_1 = GATAGA$ \$ e p = 3

j	$SA_1[j]$	$LCP_1[j]$] [$PRE_1[j]$	suff(j)
1	7	0	1 [\$\$\$	<u>\$</u>
2	6	0		A\$\$	<u>A\$</u>
3	4	1		AGA	AGA\$
4	2	1		ATA	<u>ATA</u> GA\$
5	5	0		GA\$	GA\$
6	1	2		GAT	<u>GAT</u> AGA\$
7	3	0		TAG	TAGA\$

Limitação

Entretanto, a probabilidade de que dois valores consecutivos sejam iguais é alta, já que os sufixos $T_i[SA_i[j-1], n_i]$ e $T_i[SA_i[j], n_i]$ estão ordenados em SA_i .

Vetor de prefixo de T_i , (PRE_i):

- ▶ PRE_i armazena o início de cada sufixo (de tamanho p) em SA_i
- ▶ $PRE_i[j] = T_i[SA_i[j], SA_i[j] + p]$ [Barsky et al., 2008]
- ▶ $PRE_i[j] = T_i[SA_i[j] + h_j, SA_i[j] + h_j + p]$, para $h_j = min(LCP_i[j], h_{j-1} + p)$

Figura : Exemplo para $T_1 = GATAGA$ \$ e p = 3

j	$SA_1[j]$	$LCP_1[j]$	$PRE_1[j]$	suff(j)
1	7	0	\$\$\$	<u>\$</u>
2	6	0	A\$\$	A\$
3	4	1	GA\$	AGA\$
4	2	1	TAG	ATAGA\$
5	5	0	GA\$	GA\$
6	1	2	TAG	GATAGA\$
7	3	0	TAG	TAGA\$

Melhoria [Sinha et al., 2008]

 $PRE_i[j]$ armazena os p primeiros caracteres não comuns a $T_i[SA_i[j-1], n_i]$ e $T_i[SA_i[j], n_i]$ ou os que são comuns mas não foram armazenados anterioriormente

União de todos os vetores R_i construídos na primeira fase utilizando:

- ▶ Para cada $T_i \in \mathcal{T}$:
 - ▶ Buffer de partição $B_i \rightarrow \text{blocos de } R_i = \langle SA_i, LCP_i, BWT_i, PRE_i \rangle$
 - ightharpoonup Buffer de cadeia $S_i
 ightarrow$ sub-cadeias dos sufixos de T_i
- Arvore binária de comparação (heap), cada nó representa o elemento topo (sufixo) de cada B_i
- ▶ Buffer de saída \rightarrow *GESA* = *GSA* + *LCP* + *BWT*

União de todos os vetores R_i construídos na primeira fase utilizando:

- ▶ Para cada $T_i \in \mathcal{T}$:
 - ▶ Buffer de partição $B_i \rightarrow \text{blocos de } R_i = \langle SA_i, LCP_i, BWT_i, PRE_i \rangle$
 - ▶ Buffer de cadeia S_i → sub-cadeias dos sufixos de T_i
- Árvore binária de comparação (heap), cada nó representa o elemento topo (sufixo) de cada B_i
- ▶ Buffer de saída \rightarrow *GESA* = *GSA* + *LCP* + *BWT*

União de todos os vetores R_i construídos na primeira fase utilizando:

- ▶ Para cada $T_i \in \mathcal{T}$:
 - ▶ Buffer de partição B_i → blocos de $R_i = \langle SA_i, LCP_i, BWT_i, PRE_i \rangle$
 - ▶ Buffer de cadeia S_i → sub-cadeias dos sufixos de T_i
- ▶ Buffer de saída \rightarrow *GESA* = *GSA* + *LCP* + *BWT*

União de todos os vetores R_i construídos na primeira fase utilizando:

- ▶ Para cada $T_i \in \mathcal{T}$:
 - ▶ Buffer de partição $B_i \rightarrow$ blocos de $R_i = \langle SA_i, LCP_i, BWT_i, PRE_i \rangle$
 - ▶ Buffer de cadeia S_i → sub-cadeias dos sufixos de T_i
- \blacktriangleright Árvore binária de comparação (heap), cada nó representa o elemento topo (sufixo) de cada B_i
- ▶ Buffer de saída \rightarrow *GESA* = *GSA* + *LCP* + *BWT*

A comparação entre os elementos na *heap* constitui a operação mais sensível nessa fase do algoritmo

Abordagem simples:

- ▶ Para cada comparação é necessário acessar *Ti* em memória externa
- ▶ Essas comparações podem exigir muitos acessos aleatórios à memória externa

Método melhorado para comparação de sufixos na heap:

Para reduzir o número de acessos à memória externa, são propostas três estratégias: (i) montagem de prefixo; (ii) comparações de LCP; e (iii) indução de sufixos

A comparação entre os elementos na *heap* constitui a operação mais sensível nessa fase do algoritmo

Abordagem simples:

- ▶ Para cada comparação é necessário acessar *Ti* em memória externa
- Essas comparações podem exigir muitos acessos aleatórios à memória externa

Método melhorado para comparação de sufixos na heap:

Para reduzir o número de acessos à memória externa, são propostas três estratégias: (i) montagem de prefixo; (ii) comparações de LCP; e (iii) indução de sufixos

- (i) Montagem de prefixo
 - ▶ PRE_i é utilizado para carregar o início de $T_i[SA_i[j], n_i]$ em S_i
 - ▶ Utilizando LCP; e PRE; podemos concatenar (·) PRE;[m] anteriores
 - $ightharpoonup S_i[1, h_j + p + 1] = S_i[1, h_j] \cdot PRE_i[j] \cdot \#$
 - $h_j = min(LCP_i[j], h_{j-1} + p), h_0 = 0$

j	$SA_1[j]$	$LCP_1[j]$	BWT_i	$PRE_1[j]$
 5	 5	 0	 A	 GA\$

Exemplo

$$j = 5, h_5 = 0$$

 $S_1 = GA\$\#$

(i) Montagem de prefixo

- ▶ PRE_i é utilizado para carregar o início de $T_i[SA_i[j], n_i]$ em S_i
- Utilizando LCP_i e PRE_i podemos concatenar (·) $PRE_i[m]$ anteriores

•
$$S_i[1, h_j + p + 1] = S_i[1, h_j] \cdot PRE_i[j] \cdot \#$$

•
$$h_j = min(LCP_i[j], h_{j-1} + p), h_0 = 0$$

j	$SA_1[j]$	$LCP_1[j]$	BWT_i	$PRE_1[j]$	$T_1[SA[j], n_1]$
 5 6	 5 1	 0 2	 A \$	GA\$	GA\$ GA <mark>TAG</mark>

Exemplo

$$j = 6$$
, $h_6 = min(LCP_i[6], h_5 + p) = min(2, 0 + 2) = 2$
 $S_1 = S_1[1, 2] \cdot PRE_1[5] \cdot \# = GA \cdot TA \cdot \#$

Concatenação de $PRE_i[i]$ com os prefixos dos sufixos anteriores à $SA_i[i]$, armazenados em $PRE_{i}[m]$, para m = 1, 2, ..., j - 1.

(i) Montagem de prefixo

- ▶ PRE_i é utilizado para carregar o início de $T_i[SA_i[j], n_i]$ em S_i
- Utilizando LCP_i e PRE_i podemos concatenar (·) $PRE_i[m]$ anteriores

•
$$S_i[1, h_j + p + 1] = S_i[1, h_j] \cdot PRE_i[j] \cdot \#$$

•
$$h_j = min(LCP_i[j], h_{j-1} + p), h_0 = 0$$

j	$SA_1[j]$	$LCP_1[j]$	BWT_i	$PRE_1[j]$	$T_1[SA[j], n_1]$
5 6	 5 1	 0 2	 A \$	GA\$	GA\$ GA <mark>TAG</mark>

$$S_1$$
 G A T A G #

Exemplo

$$j = 6$$
, $h_6 = min(LCP_i[6], h_5 + p) = min(2, 0 + 2) = 2$
 $S_1 = S_1[1, 2] \cdot PRE_1[5] \cdot \# = GA \cdot TA \cdot \#$

Operação de I/O \rightarrow apenas se a comparação envolver $h_i + p$ caracteres

(ii) Comparações de LCP

 Os valores de *lcp* podem ser utilizados para otimizar comparações de cadeias [Ng and Kakehi, 2008]

Lema 1

Seja $S_1 < S_2$ e $S_1 < S_k$

- ightharpoonup $lcp(S_1, S_2) = lcp(S_1, S_k) = l$ então $lcp(S_2, S_k) \ge l$

(ii) Comparações de LCP

 Os valores de *lcp* podem ser utilizados para otimizar comparações de cadeias [Ng and Kakehi, 2008]

Lema 1:

Seja $S_1 < S_2$ e $S_1 < S_k$

- ightharpoonup $lcp(S_1, S_2) = lcp(S_1, S_k) = l$ então $lcp(S_2, S_k) \ge l$

(ii) Comparações de LCP

 Os valores de *lcp* podem ser utilizados para otimizar comparações de cadeias [Ng and Kakehi, 2008]

Lema 1:

Seja $S_1 < S_2$ e $S_1 < S_k$

- ightharpoonup $lcp(S_1, S_2) = lcp(S_1, S_k) = l$ então $lcp(S_2, S_k) \ge l$

(ii) Comparações de LCP

 Os valores de *lcp* podem ser utilizados para otimizar comparações de cadeias [Ng and Kakehi, 2008]

Lema 1:

Seja $S_1 < S_2$ e $S_1 < S_k$

- \blacktriangleright $lcp(S_1, S_2) < lcp(S_1, S_k) \iff S_2 > S_k$
- ightharpoonup $lcp(S_1, S_2) = lcp(S_1, S_k) = I$ então $lcp(S_2, S_k) \ge I$

			lcp		
S_I					
S_2					
	_				
S_k					

Observação

Podemos iniciar a comparação de S_2 e S_k a partir de I

(ii) Comparações de LCP

Sejam X, Y e Z nós na heap representando $B_1[i]$, $B_2[j]$ e $B_k[k]$

- ightharpoonup Conforme X é removido da heap, $B_1[i]$ é movido para o buffer de saída
- ▶ X é substituído por outro nó W representando $B_1[i+1]$.
- ▶ A comparação de W com Y e Z pode utilizar o Lema 1

Exemplo

Se lcp(X, W) > lcp(X, Y) e lcp(X, W) > lcp(X, Z) então W < Y e W < Z

ICMCUSP SÃO CARLOS

(ii) Comparações de LCP

Sejam X, Y e Z nós na heap representando $B_1[i]$, $B_2[j]$ e $B_k[k]$

- ightharpoonup Conforme X é removido da heap, $B_1[i]$ é movido para o buffer de saída
- \blacktriangleright X é substituído por outro nó W representando $B_1[i+1]$.
- ▶ A comparação de *W* com *Y* e *Z* pode utilizar o Lema 1

Exemplo

Se lcp(X, W) > lcp(X, Y) e lcp(X, W) > lcp(X, Z) então W < Y e W < Z

ICMCUSP SÃO CARLOS

(ii) Comparações de LCP

Sejam X, Y e Z nós na heap representando $B_1[i]$, $B_2[j]$ e $B_k[k]$

- ightharpoonup Conforme X é removido da heap, $B_1[i]$ é movido para o buffer de saída
- \blacktriangleright X é substituído por outro nó W representando $B_1[i+1]$.
- ▶ A comparação de W com Y e Z pode utilizar o Lema 1

Exemplo

Se lcp(X, W) > lcp(X, Y) e lcp(X, W) > lcp(X, Z) então W < Y e $W < Z \rightarrow W$ é o próximo a ser removido da *heap* sem comparação de cadeias

(ii) Comparações de LCP

Sejam X, Y e Z nós na heap representando $B_1[i]$, $B_2[j]$ e $B_k[k]$

- ightharpoonup Conforme X é removido da heap, $B_1[i]$ é movido para o buffer de saída
- lacksquare X é substituído por outro nó W representando $B_1[i+1]$.
- ▶ A comparação de W com Y e Z pode utilizar o Lema 1

Exemplo

Se lcp(X, W) > lcp(X, Y) e lcp(X, W) > lcp(X, Z) então W < Y e $W < Z \rightarrow W$ é o próximo a ser removido da *heap* sem comparação de cadeias

ICMCUSP SÃO CARLOS

(ii) Comparações de LCP

Sejam X, Y e Z nós na heap representando $B_1[i]$, $B_2[j]$ e $B_k[k]$

- ightharpoonup Conforme X é removido da heap, $B_1[i]$ é movido para o buffer de saída
- ▶ X é substituído por outro nó W representando $B_1[i+1]$.
- ▶ A comparação de W com Y e Z pode utilizar o Lema 1

Exemplo

Se lcp(X, W) > lcp(X, Y) e lcp(X, W) > lcp(X, Z) então W < Y e W < Z

 $\rightarrow W$ é o próximo a ser removido da *heap* sem comparação de cadeias

(iii) Indução de sufixos

 Podemos determinar a ordem de sufixos não ordenados por meio dos sufixos já ordenados

Essa técnica tem sido empregada por diferentes algoritmos de construção em memória interna [Puglisi et al., 2007] e em memória externa [Bingmann et al., 2013]

(iii) Indução de sufixos

 Podemos determinar a ordem de sufixos não ordenados por meio dos sufixos já ordenados

Lema 2:

Seja Π o conjunto de todos os sufixos de $\mathcal T$

- Se $T_i[j, n_i] = \alpha \cdot T_i[j+1, n_i]$ é o menor sufixo de Π
- ▶ Então $T_i[j-1,n_i] = \beta \cdot T_i[j,n_i]$ é o menor β -sufixo de $\Pi \setminus \{T_i[j,n_i]\}$

$$T_{i}[j, n_{i}] < T_{a}[h, n_{a}] < \cdots < T_{a}[h, n_{a}] < \cdots < T_{a}[h, n_{a}] = \alpha \cdot T_{a}[h, n_{a}] < \cdots < T_{a}[h-1, n_{a}] = \alpha \cdot T_{a}[h, n_{a}] < \cdots$$

(iii) Indução de sufixos

 Podemos determinar a ordem de sufixos não ordenados por meio dos sufixos já ordenados

Lema 2:

Seja Π o conjunto de todos os sufixos de $\mathcal T$

- ▶ Se $T_i[j, n_i] = \alpha \cdot T_i[j+1, n_i]$ é o menor sufixo de Π
- ▶ Então $T_i[j-1,n_i] = \beta \cdot T_i[j,n_i]$ é o menor β -sufixo de $\Pi \setminus \{T_i[j,n_i]\}$

Indução:

- ▶ Remover $T_i[j, n_i] = \alpha \cdot T_i[j+1, n_i]$ de Π
- ▶ Induzir $T_i[j-1, n_i] = \beta \cdot T_i[j, n_i]$ para a primeira posição disponível no β -bucket
- ightharpoonup eta-bucket: uma partição de SA que contém apenas eta-sufixos

Note que se $\alpha > \beta$ o sufixo $T_i[j-1,n_i] = \beta \cdot T_i[j,n_i]$ já foi ordenado

(iii) Indução de sufixos

Utilizando o Lema 2 podemos induzir sufixos na heap:

- $ightharpoonup \Pi$ é o conjunto de todos os sufixos não ordenados de \mathcal{T} (restantes em B_i)
- ▶ Encontre o menor sufixo $T_1[j,n_1] = \alpha \cdot T_i[j+1,n_i] \rightarrow \textit{buffer}$ de saída
- ▶ Induza $T_i[j-1,n_i] = \beta \cdot T_i[j,n_i]$ se $\alpha < \beta$ (informação em $BWT_i[j]$
- ▶ Quando o primeiro β -sufixo $T_i[j-1, n_i]$ for o menor na heap, F_β é lido, e outros sufixos são induzidos

(iii) Indução de sufixos

Utilizando o Lema 2 podemos induzir sufixos na heap:

- lacksquare Π é o conjunto de todos os sufixos não ordenados de $\mathcal T$ (restantes em $\mathcal B_i$)
- ▶ Encontre o menor sufixo $T_1[j, n_1] = \alpha \cdot T_i[j+1, n_i] \rightarrow \textit{buffer}$ de saída
- linduza $T_i[j-1,n_i]=eta\cdot T_i[j,n_i]$ se lpha<eta (informação em $BWT_i[j]$)
- ▶ Quando o primeiro β -sufixo $T_i[j-1, n_i]$ for o menor na heap, F_β é lido, e outros sufixos são induzidos

(iii) Indução de sufixos

Utilizando o Lema 2 podemos induzir sufixos na heap:

- $ightharpoonup \Pi$ é o conjunto de todos os sufixos não ordenados de \mathcal{T} (restantes em B_i)
- ► Encontre o menor sufixo $T_1[j, n_1] = \alpha \cdot T_i[j+1, n_i] \rightarrow buffer$ de saída
- ▶ Induza $T_i[j-1,n_i] = \beta \cdot T_i[j,n_i]$ se $\alpha < \beta$ (informação em $BWT_i[j]$)
- ▶ Quando o primeiro β -sufixo $T_i[j-1, n_i]$ for o menor na heap, F_β é lido, e outros sufixos são induzidos

(iii) Indução de sufixos

Utilizando o Lema 2 podemos induzir sufixos na heap:

- $ightharpoonup \Pi$ é o conjunto de todos os sufixos não ordenados de \mathcal{T} (restantes em B_i)
- ► Encontre o menor sufixo $T_1[i, n_1] = \alpha \cdot T_i[i+1, n_i] \rightarrow buffer$ de saída
- ▶ Induza $T_i[j-1, n_i] = \beta \cdot T_i[j, n_i]$ se $\alpha < \beta$ (informação em $BWT_i[j]$)
- ▶ Quando o primeiro β -sufixo $T_i[j-1, n_i]$ for o menor na heap, F_β é lido, e outros sufixos são induzidos

Buffer de sufixos induzidos I, composto por $|\Sigma|$ buffers I_{β}

ightharpoonup Quando I_{β} está cheio, ele é escrito no arquivo F_{β} em memória externa

(iii) Indução de sufixos

Utilizando o Lema 2 podemos induzir sufixos na heap:

- $ightharpoonup \Pi$ é o conjunto de todos os sufixos não ordenados de \mathcal{T} (restantes em B_i)
- ▶ Encontre o menor sufixo $T_1[j, n_1] = \alpha \cdot T_i[j+1, n_i] \rightarrow \textit{buffer}$ de saída
- ▶ Induza $T_i[j-1, n_i] = \beta \cdot T_i[j, n_i]$ se $\alpha < \beta$ (informação em $BWT_i[j]$)
- ▶ Quando o primeiro β -sufixo $T_i[j-1, n_i]$ for o menor na heap, F_β é lido, e outros sufixos são induzidos

Observação

Sufixos induzidos também podem induzir

(iii) Indução de sufixos

Utilizando o Lema 2 podemos induzir sufixos na heap:

- \blacktriangleright Π é o conjunto de todos os sufixos não ordenados de \mathcal{T} (restantes em B_i)
- ▶ Encontre o menor sufixo $T_1[j, n_1] = \alpha \cdot T_i[j+1, n_i] \rightarrow \textit{buffer}$ de saída
- ▶ Induza $T_i[j-1,n_i] = \beta \cdot T_i[j,n_i]$ se $\alpha < \beta$ (informação em $BWT_i[j]$)
- ▶ Quando o primeiro β -sufixo $T_i[j-1, n_i]$ for o menor na heap, F_β é lido, e outros sufixos são induzidos

Observação

Não é preciso compará-los novamente ightarrow seguir a ordem dos valores em F_{lpha} removendo os elementos de B_i

Sumário

- 1. Introdução
- 2. Fundamentos
- 3. Algoritmo eGSA
- 4. Testes de desempenho
- 5. Conclusões
- 6. Referências

Experimentos

O algoritmo eGSA foi analisado utilizando dados biológicos reais:

- ► Sequências de DNA (http://www.ensembl.org/)
- Proteínas (http://www.uniprot.org/)

Implementação:

- ► ANSI/C e compilado em GNU gcc, versão 4.6.3, com o parâmetro -O3
- ► Seu código fonte encontra-se disponível http://code.google.com/p/egsa/

Configuração:

- ► Linux Ubuntu 12.04/64 bits
- processador Intel Core i7 2,67 GHz, 8MB L2 cache
- ▶ 12 GB de memória interna
- disco SATA de 1 TB, 5900 RPM e 64MB cache

Cadeias grandes: DNA

Foram gerados 5 conjuntos de testes (BDBs) utilizando os seguintes genomas:

- ▶ (1) Homo sapiens, (2) Oryzias latipes, (3) Danio rerio, (4) Bos taurus,
 - (5) Mus musculus e (6) Gallus gallus

BDBs

		maior cadeia (MB)			Total (GB)
	24			4.073	0,54
		186,14	17	5.476	
		186,14		71.314	
D_4 2, 3, 4		129,90	44	71.314	4,26
D ₅ 1, 4, 5, 6					

Observaçõe

- Os valores de *lcp-médio* e *lcp-máximo* indicam a dificuldade da ordenação
- Cada caractere ocupa 1 byte em memória

ICMCUSP SÃO CARLOS

Cadeias grandes: DNA

Foram gerados 5 conjuntos de testes (BDBs) utilizando os seguintes genomas:

- ▶ (1) Homo sapiens, (2) Oryzias latipes, (3) Danio rerio, (4) Bos taurus,
 - (5) Mus musculus e (6) Gallus gallus

BDBs:

BDB Genomas	n° cadeias	maior cadeia (MB)	lcp-médio lcp-máximo		Total (GB)
D ₁ 2	24	29,37	19	4.073	0,54
D_2 6	30	186,14	17	5.476	0,92
D_3 3, 6	56	186,14	58	71.314	2,18
D_4 2, 3, 4	80	129,90	44	71.314	4,26
D ₅ 1, 4, 5, 6	105	226,69	59	168.246	8,50

Observações

- ▶ Os valores de *lcp-médio* e *lcp-máximo* indicam a dificuldade da ordenação
- ► Cada caractere ocupa 1 byte em memória

Cadeias grandes: DNA

eGSA:

- ▶ Fase 1: algoritmo inducing+sais-lite [Fischer, 2011] para construir SA_i e LCP_i
- ▶ Tamanho de p = 10 para PRE_i
- ▶ Fase 2: os *buffers* S_i , B_i , saída e I foram configurados para utilizar 200 KB, 10 MB, 16 MB e 64 MB de memória interna

Comparação com o algoritmo eSAIS [Bingmann et al., 2013]:

 Estado da arte para construção de vetores de sufixo para uma única cadeia em memória externa

Limitação

► Entrada adaptada \rightarrow todas as cadeias $T_i \in \mathcal{T}$ foram concatenadas em uma única cadeia $T = T_1\$_1 \cdot T_2\$_2 \cdot \ldots \cdot T_k\$_k$, de forma que $\$_i < \$_j$ se i < j e $\$_i < \alpha, \forall \alpha \in \Sigma$.

Cadeias grandes: DNA

eGSA:

- ▶ Fase 1: algoritmo inducing+sais-lite [Fischer, 2011] para construir SA_i e LCP_i
- ▶ Tamanho de p = 10 para PRE_i
- ▶ Fase 2: os *buffers* S_i , B_i , saída e I foram configurados para utilizar 200 KB, 10 MB, 16 MB e 64 MB de memória interna

Comparação com o algoritmo eSAIS [Bingmann et al., 2013]:

 Estado da arte para construção de vetores de sufixo para uma única cadeia em memória externa

Limitação

► Entrada adaptada \rightarrow todas as cadeias $T_i \in \mathcal{T}$ foram concatenadas em uma única cadeia $T = T_1\$_1 \cdot T_2\$_2 \cdot \ldots \cdot T_k\$_k$, de forma que $\$_i < \$_j$ se i < j e $\$_i < \alpha, \forall \alpha \in \Sigma$.

Cadeias grandes: DNA

Tempo de execução

- eGSA foi muito mais rápido em todos os testes
- ► Tempo médio de 3,2 a 8,3 vezes menor que o eSAIS

Cadeias grandes: DNA

Eficiência

▶ Indica o proporção do *cputime* no tempo total

Cadeias grandes: DNA

Eficiência

- ▶ Pode-se observar que a eficiência do eGSA diminui no BDB D₅
- lsso ocorre devido aos valores de *lcp-médio* e *lcp-máximo*, que aumentam 1,34 e 2,35 vezes do D_4 para o D_5

Cadeias grandes: DNA

Memória interna do eSAIS

- ▶ Parâmetro utilizado pelo eSAIS no início da execução do algoritmo
- ▶ 4,0 GB

Cadeias grandes: DNA

Memória interna do eGSA

- ▶ Fase 1: 1,99 GB para a construção do vetor de sufixo da maior cadeia do BDB D_5 , a qual possui tamanho de 226,69 MB
- ► Fase 2: 1,1 GB para o BDB D₅

Cadeias pequenas: proteínas

Foram gerados 5 conjuntos de testes (BDBs) de tamanhos entre 0,22 GB e 3,64 GB com 0,7 a 11 milhões de cadeias a partir do arquivo *uniprot_trembl.fasta*¹

BDBs

	0,7M	12.220	344		
A_2	1,1M	12.220		42	
A_3	2,3M				
A_4	4,8M				
A_5	11,2M				

Observaçõe:

- ▶ Os valores de *lcp-médio* e *lcp-máximo* indicam a dificuldade da ordenação
- Cada caractere ocupa 1 byte em memória

http://www.uniprot.org/downloads

Cadeias pequenas: proteínas

Foram gerados 5 conjuntos de testes (BDBs) de tamanhos entre 0,22 GB e 3,64 GB com 0,7 a 11 milhões de cadeias a partir do arquivo *uniprot_trembl.fasta*¹

BDBs:

В	DB n	° cadeias	menor (bp)	maior (bp)	média (bp)	lcp-médio	lcp-máximo	Total (GB)
	$\overline{A_1}$	0,7M	78	12.220	344	26	72	0,22
	A_2	1,1M	78	12.220	378	42	72	0,38
	A_3	2,3M	70	36.686	398	48	88	0,85
	A_4	4,8M	62	36.686	403	63	107	1,80
	A_5	11,2M	62	36.686	348	65	167	3,64

Observações

- ▶ Os valores de *Icp-médio* e *Icp-máximo* indicam a dificuldade da ordenação
- ► Cada caractere ocupa 1 byte em memória

¹http://www.uniprot.org/downloads

Cadeias pequenas: proteínas

eGSA:

- Fase 1: \mathcal{T} foi dividido em r partições de tamanhos iguais
 - SAIS [Nong et al., 2011] adaptado² para construção de GSA
 - Kasai [Kasai et al., 2001] para construção de LCP
- ▶ Tamanho de p = 5 para PRE_i
- ▶ Fase 2: os buffers S_i , B_i , D e I foram configurados para utilizar 200 bytes, 10

²disponível em https://github.com/jts/sga/blob/master/src/SuffixTools/

Cadeias pequenas: proteínas

eGSA:

- Fase 1: \mathcal{T} foi dividido em r partições de tamanhos iguais
 - ► SAIS [Nong et al., 2011] adaptado² para construção de GSA
 - ► Kasai [Kasai et al., 2001] para construção de LCP
- ▶ Tamanho de p = 5 para PRE_i
- ▶ Fase 2: os *buffers* S_i , B_i , D e I foram configurados para utilizar 200 *bytes*, 10 MB, 16 MB e 64 MB de memória interna

Comparação

 No melhor de nosso conhecimento, não existem trabalhos correlatos que possam utilizados para conjuntos com muitas cadeias

Observação

 $R_i[j] = \langle GSA_i[j], LCP_i[j], BWT_i[j], PRE_i[j] \rangle$, isto é, GSA_i ao invés de SA_i

²disponível em https://github.com/jts/sga/blob/master/src/SuffixTools/

Cadeias pequenas: proteínas

eGSA:

- Fase 1: \mathcal{T} foi dividido em r partições de tamanhos iguais
 - ► SAIS [Nong et al., 2011] adaptado² para construção de GSA
 - Kasai [Kasai et al., 2001] para construção de LCP
- ▶ Tamanho de p = 5 para PRE_i
- ▶ Fase 2: os *buffers* S_i , B_i , D e I foram configurados para utilizar 200 *bytes*, 10 MB, 16 MB e 64 MB de memória interna

Comparação:

No melhor de nosso conhecimento, não existem trabalhos correlatos que possam utilizados para conjuntos com muitas cadeias

Problema

A estratégia de adaptar a entrada não pode ser utilizada, devido ao número k de cadeias em $\mathcal T$ ser muito grande

²disponível em https://github.com/jts/sga/blob/master/src/SuffixTools/

Cadeias pequenas: proteínas

eGSA:

- Fase 1: \mathcal{T} foi dividido em r partições de tamanhos iguais
 - ► SAIS [Nong et al., 2011] adaptado² para construção de GSA
 - Kasai [Kasai et al., 2001] para construção de LCP
- ▶ Tamanho de p = 5 para PRE_i
- ▶ Fase 2: os *buffers* S_i , B_i , D e I foram configurados para utilizar 200 *bytes*, 10 MB, 16 MB e 64 MB de memória interna

Comparação:

▶ No melhor de nosso conhecimento, não existem trabalhos correlatos que possam utilizados para conjuntos com muitas cadeias

Observação

Os experimentos para conjuntos de cadeias pequenas consideram apenas o eGSA

²disponível em https://github.com/jts/sga/blob/master/src/SuffixTools/

Cadeias pequenas: proteínas

Tempo de execução

- ▶ Pode-se observar que os tempos são competitivos
- ► Além disso, eGSA é o único algoritmo que pode ser aplicado para esses BDBs

Cadeias pequenas: proteínas

Eficiência

► Indica o proporção do *cputime* no tempo total

Cadeias pequenas: proteínas

Eficiência

- ▶ Pode-se observar que a eficiência do eGSA diminui a partir do BDB A₂
- ▶ Isso ocorre devido aos valores de *Icp-médio* e *Icp-máximo* que aumentam nos BDBs A₂, A₃, A₄ e A₅

Cadeias pequenas: proteínas

Memória interna do eGSA

- ightharpoonup Fase 1: 1,03 GB para a construção da maior partição do BDB A_5 , a qual possui tamanho de 85,89 MB
- ► Fase 2: 1,1 GB para o BDB A₅

Características específicas do eGSA

- ► Tamanho para o parâmetro *p* do vetor de prefixos
- Sufixos induzidos
- Efeito de cada estratégia na heap
 - Montagem de prefixo
 - Comparações de LCP
 - Indução de sufixos

BDBs

Testes com os BDBs de DNA e de proteínas

Tamanho do vetor de prefixo

$$p = 0, 5, 10, 15, 20, 25$$

DNA e Proteínas

- ▶ DNA: p = 10 foi o melhor em todos os experimentos
- Proteínas: p = 5 foi o melhor em quase todos os experimentos

ICMCUSP SÃO CARLOS

Tamanho do vetor de prefixo

$$p = 0, 5, 10, 15, 20, 25$$

Conclusões

► Conforme *p* aumenta, o prefixo montado aumenta e melhora o desempenho do algoritmo até que *B_i* diminui fazendo com que o número de acessos à memória externa para carregar *R_i* tenha um impacto no desempenho

Sufixos induzidos

Porcentagem de cada α -sufixo

40

30

20

10 0

> Αı A₂

> > BDB

Observações

Dı

40

30 20

10

- A porcentagem dos sufixos que começam com "A" é muito pequena
- Esses sufixos podem ser induzidos apenas por sufixos que começam com \$

Dο

Dα

BDB

D₄

D٩

Sufixos induzidos

Porcentagem de cada α -sufixo

A, C, D, E, F --■--G, H, I, J, L — M, N, P, Q, R — S, T, V, W, Y — Total —

DNA e Proteínas, em média

► DNA: 37, 49%

► Proteínas: 46, 18%

ICMCUST SÃO CARLOS

Efeito de cada estratégia da heap

Foram desenvolvidas 8 versões do algoritmo eGSA:

(a) montagem de prefixo, (b) comparações de LCP e (c) indução de sufixos

ICMCUSP SÃO CARLOS

Efeito de cada estratégia da heap

Foram desenvolvidas 8 versões do algoritmo eGSA:

(a) montagem de prefixo, (b) comparações de LCP e (c) indução de sufixos

DNA e Proteínas

- ▶ DNA: a versão completa do algoritmo (a, b, c) foi a melhor em todos os casos
- Proteínas: apenas no BDB A_5 , a versão completa não foi a melhor

ICMCUST SÃO CARLOS

Efeito de cada estratégia da heap

Foram desenvolvidas 8 versões do algoritmo eGSA:

(a) montagem de prefixo, (b) comparações de LCP e (c) indução de sufixos

Conclusão

- ► Todas as estratégias, individualmente, melhoraram o desempenho do algoritmo
- ▶ DNA: a estratégia sem melhoria ainda é melhor do que o eSAIS

Sumário

- 1. Introdução
- Fundamentos
- 3. Algoritmo eGSA
- 4. Testes de desempenho
- 5. Conclusões
- Referências

Conclusões

Principais contribuições:

- ▶ Proposta do algoritmo eGSA para construção de vetores de sufixo generalizados aumentados em memória externa.
- ▶ Validação do algoritmo eGSA com conjuntos de cadeias pequenas e cadeias grandes, evidenciando um avanço no estado da arte.
- Revisão bibliográfica de algoritmos para construção de vetores de sufixo em memória externa.

Estágio BEPE (Apêndice)

- ▶ Montagem de genomas de-novo [Baets et al., 2012].
- ▶ No Apêndice é apresentado um algoritmo preliminar para a construção de grafos de cadeias utilizando vetores de sufixo generalizados

Conclusões

Principais contribuições:

- ▶ Proposta do algoritmo eGSA para construção de vetores de sufixo generalizados aumentados em memória externa.
- ▶ Validação do algoritmo eGSA com conjuntos de cadeias pequenas e cadeias grandes, evidenciando um avanço no estado da arte.
- Revisão bibliográfica de algoritmos para construção de vetores de sufixo em memória externa.

Estágio BEPE (Apêndice)

- ▶ Montagem de genomas *de-novo* [Baets et al., 2012].
- ▶ No Apêndice é apresentado um algoritmo preliminar para a construção de grafos de cadeias utilizando vetores de sufixo generalizados

Conclusões

Trabalhos Futuros:

- ► Adaptação do algoritmo eGSA para trabalhar com múltiplos discos
- Desenvolvimento de um método para particionar automaticamente o conjunto de cadeias na primeira fase no caso de conjuntos de cadeias pequenas
- ► Validação do algoritmo eGSA em outros domínios de dados

Publicações

- Louza, F. A., Telles, G. P. e Ciferri, C. D. A. . External Memory Generalized Suffix and LCP Arrays Construction. In: Proceedings of 24th Annual Symposium on Combinatorial Pattern Matching (CPM), 2013, Bad Herrenalb, Germany, p. 201-210.
- Louza, F. A., Hoffmann, S., Stadler, P. F., Telles, G. P. e Ciferri, C. D. A. .
 Suffix Arrays and Genome Assembly. In: Digital Proceedings of the 8th
 Brazilian Symposium on Bioinformatics (BSB) 2013, Recife, Brazil, p. 1-1.
- 3. Louza, F. A. e Ciferri, C. D. A.. Indexação de Dados Biológicos baseada em Vetores de Sufixo Generalizados para Disco. In: Anais do Workshop de Teses e Dissertações em Banco de Dados do 27º Simpósio Brasileiro de Banco de Dados (SBBD), 2012, São Paulo, Brasil. p. 87-92.
- Chino, D. Y. T., Louza, F. A., Traina, A. J. M., Ciferri, C. D. A. e Traina Jr., C.. Time Series Indexing Taking Advantage of the Generalized Suffix Tree. Journal of Information and Data Management - JIDM, v. 3, p. 101-109, 2012.

Final

Muito obrigado!

Dúvidas?

Sumário

- 1. Introdução
- 2. Fundamentos
- 3. Algoritmo eGSA
- 4. Testes de desempenho
- 5. Conclusões
- 6. Referências

Referências I

- Abouelhoda, M. I., Kurtz, S., and Ohlebusch, E. (2004). Replacing suffix trees with enhanced suffix arrays. *Journal of Discrete Algorithms*, 2(1):53–86.
 - Baets, B. D., Fack, V., and Dawyndt, P. (2012).
 Prospects and limitations of full-text index structures in genome analysis.

 Nucleic Acids Research, pages 1–23.
 - Barsky, M., Stege, U., Thomo, A., and Upton, C. (2008). A new method for indexing genomes using on-disk suffix trees. *Proc. CIKM*, 236(1-2):649.
- Bingmann, T., Fischer, J., and Osipov, V. (2013). Inducing suffix and Icp arrays in external memory. In *Proc. ALENEX*, pages 88–103.
- Dementiev, R., Kärkkäinen, J., Mehnert, J., and Sanders, P. (2008). Better external memory suffix array construction. ACM J. of Experimental Algorithmics, 12.

Referências II

Ferragina, P. and Manzini, G. (2000). Opportunistic Data Structures with Applications. In *Proc. FOCS*, pages 390—398.

Fischer, J. (2011).

Inducing the lcp-array.

In Proc. Algorithms and Data Structures Symp., pages 374–385.

Garcia-Molina, H., Widom, J., and Ullman, J. D. (1999). Database System Implementation.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Gonnet, G. H., Baeza-yates, R., and Snider, T. (1992).

New indices for text: PAT Trees and PAT arrays, pages 66–82.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Kasai, T., Lee, G., Arimura, H., Arikawa, S., and Park, K. (2001). Linear-time longest-common-prefix computation in suffix arrays and its applications.

In *Proc. CPM*, pages 181–192.

Referências III

Louza, F. A., Telles, G. P., and Ciferri, C. D. A. (2013). External Memory Generalized Suffix and LCP Arrays Construction. In Fischer, J. and Sanders, P., editors, *Proc. CPM*, pages 201–210, Bad Herrenalb. Springer.

Manber, U. and Myers, E. W. (1990).

Suffix arrays: A new method for on-line string searches.

In *Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 319–327.

Ng, W. and Kakehi, K. (2008). Merging string sequences by longest common prefixes. IPSJ Digital Courier, 4:69–78.

Nong, G., Zhang, S., and Chan, W. H. (2011).

Two efficient algorithms for linear time suffix array construction.

Computers, IEEE Transactions on, 60(10):1471–1484.

Referências IV

Puglisi, S. J., Smyth, W. F., and Turpin, A. H. (2007). A taxonomy of suffix array construction algorithms. *ACM Computing Surveys*, 39(2):1–31.

Shi, F. (1996).

Suffix arrays for multiple strings: A method for on-line multiple string searches.

In Jaffar, J. and Yap, R., editors, *Proc. ASIAN*, volume 1179 of *Lecture Notes in Computer Science*, pages 11–22. Springer Berlin / Heidelberg.

Sinha, R., Puglisi, S. J., Moffat, A., and Turpin, A. (2008). Improving suffix array locality for fast pattern matching on disk. In *Proc. ACM SIGMOD*, pages 661–672.

ICMCUSP SÃO CARLOS

(iii) Indução de sufixos

Os valores de *LCP* entre os sufixos induzidos também devem ser induzidos, desde que esses valores não são calculados quando os sufixos induzidos são ignorados na *heap*.

- $lacktriangledown T_a[i,n_a]$ induz um lpha-sufixo e $T_b[j,n_b]$ induz o próximo lpha-sufixo
- $\qquad \textit{LCP}(\textit{T}_{\textit{a}}[i-1,\textit{n}_{\textit{a}}],\textit{T}_{\textit{b}}[j-1,\textit{n}_{\textit{b}}]) = \textit{LCP}(\textit{T}_{\textit{a}}[i,\textit{n}_{\textit{a}}],\textit{T}_{\textit{b}}[j,\textit{n}_{\textit{b}}]) + 1.$

(iii) Indução de sufixos

Os valores de *LCP* entre os sufixos induzidos também devem ser induzidos, desde que esses valores não são calculados quando os sufixos induzidos são ignorados na *heap*.

- $ightharpoonup T_a[i,n_a]$ induz um lpha-sufixo e $T_b[j,n_b]$ induz o próximo lpha-sufixo
- $LCP(T_a[i-1, n_a], T_b[j-1, n_b]) = LCP(T_a[i, n_a], T_b[j, n_b]) + 1.$

ICMCUSP SÃO CARLOS

(iii) Indução de sufixos

Os valores de *LCP* entre os sufixos induzidos também devem ser induzidos, desde que esses valores não são calculados quando os sufixos induzidos são ignorados na *heap*.

- $ightharpoonup T_a[i,n_a]$ induz um lpha-sufixo e $T_b[j,n_b]$ induz o próximo lpha-sufixo
- ► $LCP(T_a[i-1, n_a], T_b[j-1, n_b]) = LCP(T_a[i, n_a], T_b[j, n_b]) + 1.$

Range minimum query(rmq):

 $rmq_{ICP}(i,j) = \min_{i < k < i} \{LCP[k]\}$

ICMCUSP SÃO CARLOS

(iii) Indução de sufixos

Os valores de *LCP* entre os sufixos induzidos também devem ser induzidos, desde que esses valores não são calculados quando os sufixos induzidos são ignorados na *heap*.

- $ightharpoonup T_a[i,n_a]$ induz um lpha-sufixo e $T_b[j,n_b]$ induz o próximo lpha-sufixo
- $LCP(T_a[i-1, n_a], T_b[j-1, n_b]) = LCP(T_a[i, n_a], T_b[j, n_b]) + 1.$

LCP e rmg:

- $\blacktriangleright LCP(T_a[j, n_a], T_b[j, n_b]) = rmq_{LCP}(x + 1, y)$
- \blacktriangleright É possível resolver a função $rmq_{LCP}(x,y)$ durante a indução dos sufixos

ICMCUSE SÃO CARLOS

(iii) Indução de sufixos

Os valores de *LCP* entre os sufixos induzidos também devem ser induzidos, desde que esses valores não são calculados quando os sufixos induzidos são ignorados na *heap*.

- $ightharpoonup T_a[i,n_a]$ induz um lpha-sufixo e $T_b[j,n_b]$ induz o próximo lpha-sufixo
- $ightharpoonup LCP(T_a[i-1, n_a], T_b[j-1, n_b]) = LCP(T_a[i, n_a], T_b[j, n_b]) + 1.$

Função $min[\alpha], \forall \alpha \in \Sigma$

Quando um α -sufixo é induzido, $min[\alpha] \leftarrow \infty$, e $min[\alpha]$ é calculado até que o próximo α -sufixo seja induzido

ICMCUST SÃO CARLOS

(iii) Indução de sufixos

Os valores de *LCP* entre os sufixos induzidos também devem ser induzidos, desde que esses valores não são calculados quando os sufixos induzidos são ignorados na *heap*.

- $ightharpoonup T_a[i,n_a]$ induz um lpha-sufixo e $T_b[j,n_b]$ induz o próximo lpha-sufixo
- $LCP(T_a[i-1, n_a], T_b[j-1, n_b]) = LCP(T_a[i, n_a], T_b[j, n_b]) + 1.$

α -bucket e I_{α}

O valor de *LCP* deve ser induzido junto com o valor da cadeia em $I_{lpha}=(\mathit{cadeia},\mathit{lcp})$

▶ $LCP = min[\alpha] + 1$ é induzido junto com $T_b[j-1, n_b]$ em I_α e $min[\alpha] \leftarrow max_int$

(iii) Indução de sufixos

A montagem de prefixo deve considera os sufixos induzidos

Sejam dois
$$\alpha$$
-sufixos consecutivos em SA_i , $SA_i[j] = a$ e $SA_i[j+1] = b$

 $ightharpoonup T_i[a, n_i]$ é o último α -sufixo induzido

T_i[a, n_i] será ignorado durante as comparações na heap (sem montagem)
 T_i[b, n_i] deve começar a montagem do início

	$SA_1[j]$	$LCP_1[j]$	BWT_i	$PRE_1[j]$	suff(j)
 j	 a	0	 A	GCC	GCC
j+1	b	1	\$	TAG	GTAG
	S_1	# #	# #	# er	

- ightharpoonup Se um sufixo será induzido $(T_i[a] > T_i[a+1])
 ightarrow LCP[j+1] = 0$
- Esses valores não interferem na construção do vetor LCP generalizado, desde que os valores de LCP também são induzidos.
- ightharpoonup O valor de LCP[j+1] é sempre igual à 1, caso contrário, teria sido induzido

(iii) Indução de sufixos

A montagem de prefixo deve considera os sufixos induzidos

Sejam dois α -sufixos consecutivos em SA_i , $SA_i[j] = a$ e $SA_i[j+1] = b$

- ▶ $T_i[a, n_i]$ é o último α -sufixo induzido
 - $ightharpoonup T_i[a, n_i]$ será ignorado durante as comparações na heap (sem montagem)
 - $ightharpoonup T_i[b, n_i]$ deve começar a montagem do início

	$SA_1[j]$	LCI	$P_1[j]$	BW	T_i	PRE_1	[<i>j</i>]	suff(j)
 j j+1	 a b		 0 1	 A \$		GC0 TA0		GCC GTAG
	S_1 [#	#	#	#	#		

- ▶ Se um sufixo será induzido $(T_i[a] > T_i[a+1]) \rightarrow LCP[j+1] = 0$
- Esses valores não interferem na construção do vetor LCP generalizado, desde que os valores de LCP também são induzidos.
- lacktriangle O valor de LCP[j+1] é sempre igual à 1, caso contrário, teria sido induzido

(iii) Indução de sufixos

A montagem de prefixo deve considera os sufixos induzidos

Sejam dois α -sufixos consecutivos em SA_i , $SA_i[j] = a$ e $SA_i[j+1] = b$

- ▶ $T_i[a, n_i]$ é o último α -sufixo induzido
 - $ightharpoonup T_i[a, n_i]$ será ignorado durante as comparações na heap (sem montagem)
 - $ightharpoonup T_i[b, n_i]$ deve começar a montagem do início

	$SA_1[j]$	$LCP_1[j]$	BWT_i	$PRE_1[j]$	suff(j)
 j j+1	 a h	 0 1	 A \$	 GCC TAG	GCC GTAG
J 1 ±	S_1	# T	A G	# eri	

Solução

lacktriangle Se um sufixo será induzido $(T_i[a] > T_i[a+1])
ightarrow \mathit{LCP}[j+1] = 0$

Esses valores não interferem na construção do vetor LCP generalizado, desde que os valores de LCP também são induzidos.

 \triangleright O valor de LCP[i+1] é sempre igual à 1, caso contrário, teria sido induzido

(iii) Indução de sufixos

A montagem de prefixo deve considera os sufixos induzidos

Sejam dois α -sufixos consecutivos em SA_i , $SA_i[j] = a$ e $SA_i[j+1] = b$

- ▶ $T_i[a, n_i]$ é o último α -sufixo induzido
 - $ightharpoonup T_i[a, n_i]$ será ignorado durante as comparações na heap (sem montagem)
 - $ightharpoonup T_i[b, n_i]$ deve começar a montagem do início

	$SA_1[j]$	$LCP_1[j]$	BWT_i	$PRE_1[j]$	suff(j)
 j j+1	 a b	0 0	 A \$	GCC GTA	GCC GTAG
	S ₁ [# #	# #	# er	

- ▶ Se um sufixo será induzido $(T_i[a] > T_i[a+1]) \rightarrow LCP[j+1] = 0$
- Esses valores não interferem na construção do vetor LCP generalizado, desde que os valores de LCP também são induzidos.
- ▶ O valor de LCP[j+1] é sempre igual à 1, caso contrário, teria sido induzido

(iii) Indução de sufixos

A montagem de prefixo deve considera os sufixos induzidos

Sejam dois α -sufixos consecutivos em SA_i , $SA_i[j] = a$ e $SA_i[j+1] = b$

- $T_i[a, n_i]$ é o último α -sufixo induzido
 - $ightharpoonup T_i[a, n_i]$ será ignorado durante as comparações na heap (sem montagem)
 - $ightharpoonup T_i[b, n_i]$ deve começar a montagem do início

	$SA_1[j]$	$LCP_1[j]$	BWT_i	$PRE_1[j]$	suff(j)
 i	 a		 A	GCC	GCC
j+1	b	0	\$	GTA	GCC GTAG
	S_1	G T	A #	# eri	

- lacksquare Se um sufixo será induzido $(T_i[a] > T_i[a+1]) o LCP[j+1] = 0$
- Esses valores não interferem na construção do vetor LCP generalizado, desde que os valores de LCP também são induzidos.
- ightharpoonup O valor de LCP[j+1] é sempre igual à 1, caso contrário, teria sido induzido

(iii) Indução de sufixos

A montagem de prefixo deve considera os sufixos induzidos

Sejam dois α -sufixos consecutivos em SA_i , $SA_i[j] = a$ e $SA_i[j+1] = b$

- ▶ $T_i[a, n_i]$ é o último α -sufixo induzido
 - $ightharpoonup T_i[a, n_i]$ será ignorado durante as comparações na heap (sem montagem)
 - $ightharpoonup T_i[b, n_i]$ deve começar a montagem do início

	$SA_1[j]$	$LCP_1[j]$	BWT_i	$PRE_1[j]$	suff(j)
					666
J	a	0	Α	GCC	GCC
j+1	b	0	\$	GTA	GTAG
	S_1	G T	A #	# eri	

- lacksquare Se um sufixo será induzido $(T_i[a] > T_i[a+1]) o LCP[j+1] = 0$
- Esses valores não interferem na construção do vetor LCP generalizado, desde que os valores de LCP também são induzidos.
- ▶ O valor de LCP[j+1] é sempre igual à 1, caso contrário, teria sido induzido

(iii) Indução de sufixos

A montagem de prefixo deve considera os sufixos induzidos

Sejam dois α -sufixos consecutivos em SA_i , $SA_i[j] = a$ e $SA_i[j+1] = b$

- ▶ $T_i[a, n_i]$ é o último α -sufixo induzido
 - $ightharpoonup T_i[a, n_i]$ será ignorado durante as comparações na heap (sem montagem)
 - $ightharpoonup T_i[b, n_i]$ deve começar a montagem do início

	$SA_1[j]$	$LCP_1[j]$	BWT_i	$PRE_1[j]$	suff(j)
j	a	0	Α	GCC	GCC
j+1	b	1	\$	GTA	GTAG
	S_1	G T	A #	# eri	

- ▶ Se um sufixo será induzido $(T_i[a] > T_i[a+1]) \rightarrow LCP[j+1] = 0$
- Esses valores não interferem na construção do vetor LCP generalizado, desde que os valores de LCP também são induzidos.
- ▶ O valor de LCP[j+1] é sempre igual à 1, caso contrário, teria sido induzido

(iii) Inducing Suffixes

- $ightharpoonup \Pi$ starts with all suffixes of T_i
- ▶ Find the smallest suffix $T_i[j, n_i] = \alpha \cdot T_i[j+1, n_i]$ and remove it from Π
- ▶ Induce $T_i[j-1, n_i] = \beta \cdot T_i[j, n_i]$ to the first available position in the β -bucket

ICMCUSP SÃO CARLOS

(iii) Inducing Suffixes

- ▶ Π starts with all suffixes of T_i
- Find the smallest suffix $T_i[j,n_i] = \alpha \cdot T_i[j+1,n_i]$ and remove it from Π
- ▶ Induce $T_i[j-1, n_i] = \beta \cdot T_i[j, n_i]$ to the first available position in the β -bucket

ICMCUST SÃO CARLOS

(iii) Inducing Suffixes

- ▶ Π starts with all suffixes of T_i
- Find the smallest suffix $T_i[j, n_i] = \alpha \cdot T_i[j+1, n_i]$ and remove it from Π
- ▶ Induce $T_i[j-1, n_i] = \beta \cdot T_i[j, n_i]$ to the first available position in the β -bucket

ICMCUSH SÃO CARLOS

(iii) Inducing Suffixes

Lemma 2 can be used to sort the suffixes of T_i as follows:

- ▶ Π starts with all suffixes of T_i
- ▶ Find the smallest suffix $T_i[j, n_i] = \alpha \cdot T_i[j+1, n_i]$ and remove it from Π
- ▶ Induce $T_i[j-1, n_i] = \beta \cdot T_i[j, n_i]$ to the first available position in the β -bucket

We define β -bucket is a partition of SA that contains only suffixes starting with β

ICMCUSP SÃO CARLOS

(iii) Inducing Suffixes

Lemma 2 can be used to sort the suffixes of T_i as follows:

- ▶ Π starts with all suffixes of T_i
- ▶ Find the smallest suffix $T_i[j, n_i] = \alpha \cdot T_i[j+1, n_i]$ and remove it from Π
- ▶ Induce $T_i[j-1, n_i] = \beta \cdot T_i[j, n_i]$ to the first available position in the β -bucket

The induced suffixes $T_i[j-1,n_i]=\alpha\cdot T_i[j,n_i]$ cannot be removed from Π because they must induce suffixes $T_i[j-2,n_i]$ as well

ICMCUSP SÃO CARLOS

(iii) Inducing Suffixes

- ▶ Π starts with all suffixes of T_i
- ▶ Find the smallest suffix $T_i[j, n_i] = \alpha \cdot T_i[j+1, n_i]$ and remove it from Π
- ▶ Induce $T_i[j-1, n_i] = \beta \cdot T_i[j, n_i]$ to the first available position in the β -bucket

(iii) Inducing Suffixes

- $ightharpoonup \Pi$ starts with all suffixes of T_i
- ▶ Find the smallest suffix $T_i[j, n_i] = \alpha \cdot T_i[j+1, n_i]$ and remove it from Π
- ▶ Induce $T_i[j-1, n_i] = \beta \cdot T_i[j, n_i]$ to the first available position in the β -bucket

$T_i[6, 6] = $ \$	\$-bucket
$T_i[2, 6] = AGTG$ \$	A-bucket
$T_i[5, 6] = G$ \$	G-bucket
T_i [1, 6] = TAGTG\$	T-hucket

ICMCUSP SÃO CARLOS

(iii) Inducing Suffixes

Lemma 2 can be used to sort the suffixes of T_i as follows:

- ▶ Π starts with all suffixes of T_i
- ▶ Find the smallest suffix $T_i[j, n_i] = \alpha \cdot T_i[j+1, n_i]$ and remove it from Π
- ▶ Induce $T_i[j-1, n_i] = \beta \cdot T_i[j, n_i]$ to the first available position in the β -bucket

When we reach the β -bucket, as the suffixes $T_i[j-2,n_i]$ are analyzed to be induced, the suffixes $T_i[j-1,n_i]$ are removed from Π find the first β -suffix $T_i[j-1,n_i]$ as the smallest suffix in Π , the β -bucket is read starting from the second element. As the suffixes $T_i[j-2,n_i]$ are analyzed to be induced, the suffixes $T_i[j-1,n_i]$ are removed from Π

ICMCUSP SÃO CARLOS

(iii) Inducing Suffixes

Lemma 2 can be used to sort the suffixes of T_i as follows:

- ▶ Π starts with all suffixes of T_i
- ▶ Find the smallest suffix $T_i[j, n_i] = \alpha \cdot T_i[j+1, n_i]$ and remove it from Π
- ▶ Induce $T_i[j-1, n_i] = \beta \cdot T_i[j, n_i]$ to the first available position in the β -bucket

When we reach the β -bucket, as the suffixes $T_i[j-2,n_i]$ are analyzed to be induced, the suffixes $T_i[j-1,n_i]$ are removed from Π find the first β -suffix $T_i[j-1,n_i]$ as the smallest suffix in Π , the β -bucket is read starting from the second element. As the suffixes $T_i[j-2,n_i]$ are analyzed to be induced, the suffixes $T_i[j-1,n_i]$ are removed from Π

(iii) Inducing Suffixes

- ▶ Π starts with all suffixes of T_i
- ▶ Find the smallest suffix $T_i[j, n_i] = \alpha \cdot T_i[j+1, n_i]$ and remove it from Π
- ▶ Induce $T_i[j-1, n_i] = \beta \cdot T_i[j, n_i]$ to the first available position in the β -bucket

SÃO CARLOS

(iii) Inducing Suffixes

Lemma 2 can be used to sort the suffixes of T_i as follows:

- ▶ Π starts with all suffixes of T_i
- ▶ Find the smallest suffix $T_i[j, n_i] = \alpha \cdot T_i[j+1, n_i]$ and remove it from Π
- ▶ Induce $T_i[j-1, n_i] = \beta \cdot T_i[j, n_i]$ to the first available position in the β -bucket

Note that if $\alpha > \beta$ the suffix $T_i[j-1, n_i]$ was already sorted

(iii) Inducing Suffixes

- $ightharpoonup \Pi$ starts with all suffixes of T_i
- ▶ Find the smallest suffix $T_i[j, n_i] = \alpha \cdot T_i[j+1, n_i]$ and remove it from Π
- ▶ Induce $T_i[j-1, n_i] = \beta \cdot T_i[j, n_i]$ to the first available position in the β -bucket

$T_i[6, 6] = $ \$	 \$-bucket
$T_i[2, 6] = AGTG$ \$	A-bucket
T_i [5, 6] = G\$	G-bucket
$T_i [3, 6] = GTG$ \$ $T_i [1, 6] = TAGTG$ \$	 T-bucket
$T_i [4, 6] = TG$ \$	

(iii) Inducing Suffixes

- $ightharpoonup \Pi$ starts with all suffixes of T_i
- ▶ Find the smallest suffix $T_i[j, n_i] = \alpha \cdot T_i[j+1, n_i]$ and remove it from Π
- ▶ Induce $T_i[j-1, n_i] = \beta \cdot T_i[j, n_i]$ to the first available position in the β -bucket

$T_i[6, 6] = $ \$	
$T_i [2, 6] = AGTG$ \$	A-bucket
$T_i[5, 6] = G$ \$	G-bucket
$T_i [3, 6] = GTG\$$	
$T_i[1, 6] = TAGTG$ \$	T-bucket
$T_i [4, 6] = TG$ \$	

ICMC SÃO CARLOS

(iii) Inducing Suffixes

Lemma 2 can be used to sort the suffixes of T_i as follows:

- ▶ Π starts with all suffixes of T_i
- ▶ Find the smallest suffix $T_i[j, n_i] = \alpha \cdot T_i[j+1, n_i]$ and remove it from Π
- ▶ Induce $T_i[j-1, n_i] = \beta \cdot T_i[j, n_i]$ to the first available position in the β -bucket

$T_i[6, 6] = $ \$	\$-bucket
$T_i[2, 6] = AGTG\$$	A-bucket
$T_i[5, 6] = G$ \$	G-bucket
$T_i [3, 6] = GTG$ \$ $T_i [1, 6] = TAGTG$ \$	T-bucket
$T_i[4, 6] = TG$ \$	

Problem:

However, this approach is not efficient to sort a single string T_i , since it is always necessary to find the smallest suffix $T_i[j, n_i]$ in Π

(iii) Inducing Suffixes

Lemma 2 can be used to sort the suffixes of T_i as follows:

- $ightharpoonup \Pi$ starts with all suffixes of T_i
- ▶ Find the smallest suffix $T_i[j, n_i] = \alpha \cdot T_i[j+1, n_i]$ and remove it from Π
- ▶ Induce $T_i[j-1, n_i] = \beta \cdot T_i[j, n_i]$ to the first available position in the β -bucket

$T_i[6, 6] = $ \$	\$-bucket
$T_i[2, 6] = AGTG\$$	A-bucket
$T_i[5, 6] = G$ \$	G-bucket
$T_i[3, 6] = \text{GTG}$ \$ $T_i[1, 6] = \text{TAGTG}$ \$	 T-bucket
$T_i [4, 6] = TG$ \$	

Merging Sorting:

The smallest suffix is one of those nodes in the heap and can be determined efficiently