Formale Sprachen und Automaten Prof. Dr. Uwe Nestmann - 26. Juli 2021

Schriftlicher Test

Studierendenidentifikation:

NACHNAME	
VORNAME	
Matrikelnummer	
STUDIENGANG	□ Informatik Bachelor, □

Aufgabenübersicht:

AUFGABE	SEITE	Punkte	THEMENBEREICH
1	3	15.5	MODELLE REGULÄRER SPRACHEN
2	4	16	Untermengen-Konstruktion
3	5	22	MINIMIERUNG EINES DFA
4	6	10	CYK-ALGORITHMUS
5	7	11	Modelle Kontextfreier Sprachen I
6	8	5	Modelle Kontextfreier Sprachen II

Zwei Punkte in diesem Test entsprechen einem Portfoliopunkt.

Korrektur:

AUFGABE	1	2	3	4	5	6	\sum
PUNKTE	15.5	16	22	10	11	5	79
ERREICHT							
Korrektor							
EINSICHT							

.5

Aufgabe 1: Modelle Regulärer Sprachen

(15.5 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b\},\$ die reguläre Sprache $A_1 \triangleq \{b^n x b a^m \mid m, n \in \mathbb{N} \land x \in \{\varepsilon, a\}\},\$ die reguläre Grammatik $G_2 \triangleq (\{S, T, U, W\}, \Sigma, P_2, S)$ und der NFA $M_3 \triangleq (\{q_0, q_1, q_2\}, \Sigma, \Delta_3, \{q_0\}, \{q_2\})$ mit:

$$P_{2}: S \rightarrow bT$$

$$T \rightarrow bS \mid aU$$

$$U \rightarrow bW \mid a$$

$$W \rightarrow bW \mid b$$

$$\Delta_{3}: \qquad b$$

$$q_{0} \qquad b$$

$$q_{1} \qquad a, b$$

$$q_{2} \qquad b$$

a. (6 Punkte) Gib einen DFA M_1 mit $L(M_1) = A_1$ an.

b. (4 Punkte) Gib eine Typ-3 Grammatik G_1 mit $L(G_1) = A_1$ an.

- c. (3 Punkte) $Gib L(G_2)$ an, ohne auf Automaten oder Grammatiken zu verweisen.
- d. (2.5 Punkte) $Gib L(M_3)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 2: Untermengen-Konstruktion

(16 Punkte)

 $\text{Gegeben sei der NFA } M \triangleq \left(\left\{ \right. q_0, \right. q_1, \right. q_2, \left. q_3, \right. q_4, \left. q_5 \right. \right\}, \\ \Sigma, \Delta, \left\{ \right. q_0, \right. q_2 \left. \right\}, \left\{ \right. q_3 \left. \right\} \right) \text{mit } \Sigma \triangleq \left\{ \right. 0, \left. 1 \right. \right\}$ und Δ :

a. (13 Punkte) Konstruiere nur mit Hilfe der Untermengen-Konstruktion den DFA M^\prime zum NFA M. Gib die bei der Untermengen-Konstruktion entstehende Tabelle sowie das Tupel des entstehenden Automaten M' an.

Hinweis: Es ist nicht nötig die Übergangsfunktion δ' von M' (z.B. graphisch) anzugeben.

b. (3 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 3: Minimierung eines DFA

(22 Punkte)

Gegeben sei der DFA $M \triangleq (Q, \Sigma, \delta, q_0, \{q_6\})$ mit $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$, $\Sigma = \{0, 1\}$ und δ :

- a. (1 Punkt) Gib an: Welche Zustände sind nicht erreichbar?
- b. **(9 Punkte)** *Gib an:* Fülle die folgende Tabelle entsprechend des Table-Filling-Algorithmus zum Minimieren von DFAs mit Kreuzen (x) und Kreisen (o) aus. *Hinweis: Bitte streiche zunächst alle Zeilen und Spalten für nicht erreichbare Zustände, falls es solche Zustände in M gibt.*

c. (4 Punkte) Die Minimierung unterteilt Q in Äquivalenzklassen. Gib alle Äquivalenzklassen an, die sich aus der Tabelle ergeben.

Hinweis: Die Namen der Klassen in der Form $[q_0]$ genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie $[q_0] = \{ \dots \}$, angegeben werden.

- d. (5 Punkte) Gib den minimierten DFA M' an.
- e. (3 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 4: CYK-Algorithmus

(10 Punkte)

Gegeben sei eine Menge Nicht-Terminale $V \triangleq \{\ S,\ T,\ U,\ V,\ W\ \}$, ein Alphabet $\Sigma \triangleq \{\ a,\ b\ \}$, sowie eine CNF-Grammatik $G \triangleq (V,\ \Sigma,\ P,\ S)$ mit

$$\begin{array}{cccc} P: & S & \rightarrow & WT \mid TW \mid VU \\ & T & \rightarrow & SV \mid a \\ & U & \rightarrow & WT \mid TW \\ & V & \rightarrow & VS \mid a \\ & W & \rightarrow & WS \mid b \end{array}$$

a. (2 Punkte) Begründe: Warum ist G eine CNF-Grammatik?

b. (8 Punkte) Berechne: Gegeben sei ein Wort $w \triangleq baaba$. Löse mit dem CYK-Algorithmus das Wortproblem: $w \in L(G)$ oder $w \notin L(G)$?

$CYK_w(i,j)$	1	2	3	4	5
1: b					
2: a					
3: a					
4: b					
5: a					

Matrikelnummer:	Name:
1V1ati 1NC111u11111tc1	I VAIIIC

Aufgabe 5: Modelle Kontextfreier Sprachen I

(11 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{\ a,\ b,\ c\ \}$ und die kontextfreie Sprache:

$$A \triangleq \{ wc^n \mid n \in \mathbb{N} \land w \in \{ a, b \}^* \land |w|_b = 1 \land |w|_a = n \}$$

a. (5 Punkte) Gib eine Typ-2 Grammatik G mit $\mathcal{L}(G)=A$ an.

b. (6 Punkte) Gib einen PDA M mit $L_{End}(M) = L_{Kel}(M) = A$ an.

Aufgabe 6: Modelle Kontextfreier Sprachen II

(5 Punkte)

Gegeben seien das Alphabet $\Sigma\triangleq\{\ 0,\ 1,\ 2\ \}$ und der PDA $M \stackrel{\triangle}{=} (\{ q_0, q_1, q_2, q_3 \}, \Sigma, \{ \Box, +, \bullet \}, \Box, \Delta, q_1, \{ q_3 \}) \text{ mit } \Delta$:

a. (2 Punkte) $Gib \ L_{End}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

b. (3 Punkte) $Gib \ L_{Kel}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

<i>Matrikelnummer:</i> —	Name:
Auf dieser Seite löse	ich einen Teil der Aufgabe:
Teilaufgabe:	8

Matrikelnummer: _	Name:	
Auf dieser Seite lös	se ich einen Teil der Aufgabe — :	
	se ich enten der Aufgabe	
Teilaufgabe:		