		Not	e
		I	II
Name Vorname	1		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	$\frac{1}{2}$		
	3		
Unterschrift der Kandidatin/des Kandidaten	4		
	5		
TECHNISCHE UNIVERSITÄT MÜNCHEN			
Fakultät für Mathematik	6		
Klausur	7		
Mathematik 4 für Physiker	'		
(Analysis 3)	8		
Prof. Dr. D. Castrigiano			
	\sum		
18. Februar 2011, 08:30 – 10:00 Uhr			
Hörsaal: Platz:	I	 Erstkorrel	tur
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben	II	 Zweitkorre	ektur
Bearbeitungszeit: 90 min			
Erlaubte Hilfsmittel: zwei selbsterstellte DIN A4 Blätter			
Erreichbare Gesamtpunktzahl: 80 Punkte Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen.			
Bei Teilaufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.			
Nur von der Aufsicht auszufüllen:	1		
Hörsaal verlassen von bis			
Vorzeitig abgegeben um			

 $Musterl\ddot{o}sung \hspace{0.5cm} ({\rm mit\; Bewertung})$

Besondere Bemerkungen:

1. Komplexe Wegintegrale

[8 Punkte]

Gegeben ist der geschlossene Weg $\gamma:[0,2\pi]\to\mathbb{C},$

$$\gamma(t) = 1 + \cos t + i \sin t.$$

Berechnen Sie (mit Begründung) $\int\limits_{\gamma} f(z)dz$ für

(a)
$$f(z) = \operatorname{Im}(z)$$
,

(b)
$$f(z) = \cos z$$
,

(c)
$$f(z) = \frac{z^7}{z^2 - 1}$$
.

LÖSUNG:

(a) $\dot{\gamma}(t) = -\sin t + i\cos t$, $f(\gamma(t)) = \sin t$. Nach Definition des komplexen Wegintegrals ist

$$\int_{\gamma} f(z)dz = \int_{0}^{2\pi} f(\gamma(t))\dot{\gamma}(t)dt = \int_{0}^{2\pi} \sin t(-\sin t + i\cos t)dt$$
$$= \int_{0}^{2\pi} -\sin^2 t \, dt = -\pi.$$

[3]

- (b) Die Funktion ist holomorph auf \mathbb{C} . Nach dem Cauchyschen Integralsatz gilt $\int\limits_{\gamma}f(z)dz=0$. [2]
- (c) $f(z) = \frac{g(z)}{z-1}$ mit $g(z) = \frac{z^7}{z+1}$ holomorph auf einer Umgebung der Kreisscheibe. Nach der Cauchyschen Integralformel ist

$$\int\limits_{\gamma} f(z)dz = \int\limits_{\gamma} \frac{g(z)}{z-1}dz = 2\pi i g(1) = \pi i,$$

oder mit Residuensatz.

[3]

2. Residuen [12 Punkte]

Sei $f(z) = \frac{z}{(e^z - 1)^2}$.

- (a) Zeigen Sie, dass f außer bei $2i\pi\mathbb{Z}$ keine weiteren Pole besitzt.
- (b) Bestimmen Sie (mit Begründung) die Ordnung aller Pole von f.
- (c) Berechnen Sie das Residuum von f bei z = 0.
- (d) Welchen Konvergenzradius hat der Nebenteil der Laurent-Reihe von f um z=0?

Lösung:

- (a) Zähler und Nenner sind ganze Funktionen. Der Nenner ist 0, genau dann, wenn $1 = e^z = e^x(\cos y + i \sin y)$. Daraus folgt $\sin y = 0$, bzw., $y \in \pi \mathbb{Z}$. Damit der Realteil positiv ist, muss $y \in 2\pi \mathbb{Z}$ gelten, also $\cos y = 1$ und damit x = 0.
- (b) $e^z 1 = z + \frac{1}{2}z^2 + \cdots$ besitzt bei z = 0 eine einfache Nullstelle. Somit hat $(e^z 1)^2$ eine doppelte Nullstelle bei z = 0 und wegen der Periodizität auch bei $2i\pi\mathbb{Z}$. Da der Zähler nur bei z = 0 eine einfache Nullstelle hat, ergibt sich für f ein einfacher Pol bei z = 0 und Pole zweiter Ordnung bei $z \in 2i\pi\mathbb{Z} \setminus \{0\}$.
- (c) Da bei z = 0 ein einfacher Pol vorliegt, ist

Res₀(f) =
$$\lim_{z \to 0} z \frac{z}{(e^z - 1)^2} = \frac{1}{\left(\lim_{z \to 0} \frac{e^z - 1}{z}\right)^2} = 1$$
,

$$da \frac{d}{dz}(e^z - 1)|_{z=0} = 1.$$
 [3]

(d) Die nächstliegenden Pole von f sind bei $\pm 2\pi i$. Somit ist der Konvergenzradius des Nebenteils von f bei 0 gleich 2π . [2]

3. Residuenkalkül [8 Punkte]

Berechnen Sie
$$\int\limits_{-\infty}^{\infty} \frac{e^{-ix}}{x+i\eta} dx \text{ für } \eta \in \mathbb{R} \setminus \{0\}.$$

LÖSUNG:

Der rationale Anteil des Integranden, $\frac{1}{z+i\eta}$ geht für große |z| gegen 0. Die einzige einfache Nullstelle liegt bei $-i\eta \notin \mathbb{R}$. Als Integrationsweg wählen wir den Rand des unteren Halbkreises, dessen Radius gegen ∞ strebt, denn dort ist die Exponentialfunktion klein. [3]

Nach Kap. 24 (25) gilt dann für $\eta > 0$ liegt der Pol innerhalb des Integrationsweges, der im Uhrzeigersinn durchlaufen wird, somit [3]

$$\int_{-\infty}^{\infty} \frac{e^{-ix}}{x+i\eta} dx = -2\pi i \operatorname{Res}_{-i\eta}(\frac{e^{-ix}}{x+i\eta}) = -2\pi i e^{-\eta}.$$

Für $\eta < 0$ ist die Funktion holomorph innerhalb des Integrationswegs, also

$$\int_{-\infty}^{\infty} \frac{e^{-ix}}{x+i\eta} dx = 0.$$

[2]

4. σ -Subadditivität von Maßen

[6 Punkte]

Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum. Für die Mengen $A_n, B_n \in \mathcal{A}, n \in \mathbb{N}$, gelte $\mu(B_n \setminus A_n) = c_n$. Man zeige für $A = \bigcup_{n \in \mathbb{N}} A_n$ und $B = \bigcup_{n \in \mathbb{N}} B_n$, dass gilt

$$\mu(B \setminus A) \le \sum_{n=1}^{\infty} c_n.$$

LÖSUNG:

$$\mu(B \setminus A) = \mu\left(\bigcup_{n \in \mathbb{N}} B_n \setminus A\right) = \mu\left(\bigcup_{n \in \mathbb{N}} (B_n \setminus A)\right) \stackrel{A_n \subset A}{\leq} \mu\left(\bigcup_{n \in \mathbb{N}} (B_n \setminus A_n)\right)$$

$$\stackrel{\sigma\text{-Subadd.}}{\leq} \sum_{n=1}^{\infty} \mu(B_n \setminus A_n) = \sum_{n=1}^{\infty} c_n.$$

[0,2,2,2,0]

5. Bildmaß und Maß mit Dichte

Биатах und Max mit Dichte [8 Punkte] Gegeben ist die Abbildung $h: \mathbb{R}^2 \to \overline{\mathbb{R}}, (x,y) \mapsto \ln(x^2+y^2)$ für $(x,y) \neq 0$ und $h(0) = -\infty$. $\mu = h(\lambda^2)$ sei das zugehörige Bildmass.

- (a) Warum ist h messbar?
- (b) Berechnen Sie $\mu([a,b])$ für $a,b \in \mathbb{R}, a \leq b$.
- (c) Bestimmen Sie eine Dichte ρ , so dass $\rho \lambda^1([a,b]) = \mu([a,b])$ für alle $a,b \in \mathbb{R}$, a < b.

LÖSUNG:

- (a) $h^{-1}([-\infty, a]) = \{(x, y) \in \mathbb{R}^2 : \ln(x^2 + y^2) \le a\} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le e^a\} = \tilde{U}_{e^{a/2}}(0)$. Diese kompakten Kreisscheiben sind \mathcal{B}^2 -messbar für alle $a \in \mathbb{Q}$, also ist h messbar. [2]
- (b) Für kompakte Intervalle $[a, b], a \leq b$ gilt

$$\begin{split} \mu([a,b]) &= \lambda^2(h^{-1}([a,b])) = \lambda^2(\{(x,y) \in \mathbb{R}^2 : a \le \ln(x^2 + y^2) \le b\}) \\ &= \lambda^2(\{(x,y) \in \mathbb{R}^2 : e^a \le x^2 + y^2 \le e^b\}) = \lambda^2(\{x \in \mathbb{R}^2 : \|x\| \in [e^{a/2},e^{b/2}]\}) \\ &= \pi(e^b - e^a). \end{split}$$

[3]

(c) Für die Dichte $\rho: \mathbb{R} \to \mathbb{R}$ muss gelten

$$\pi(e^b - e^a) = \mu([a, b]) = (\rho \lambda^1)([a, b]) = \int_{[a, b]} \rho \, d\lambda^1 = \int_a^b \rho(x) dx$$

für alle a < b. Ableiten nach b ergibt $\pi e^b = \rho(b)$. Die Dichte $\rho(x) = \pi e^x$ erfüllt also die Gleichung $\rho \lambda^1([a,b]) = \mu([a,b])$ für alle $a, b \in \mathbb{R}, a < b$. [3]

[8 Punkte]

6. Lebesgue-Integrierbarkeit Sei $f: \mathbb{R} \to \mathbb{C}, \ f(x) = \frac{e^{-ix}}{x+i\eta}, \ \eta \in \mathbb{R} \setminus \{0\}.$

(a) Begründen Sie, warum die Funktion f nicht Lebesgue-integrierbar ist.

(b) Wie ist
$$\int_{-\infty}^{\infty} \frac{e^{-ix}}{x+i\eta} dx$$
 definiert?

$$\int\limits_{-\infty}^{\infty} \frac{e^{-ix}}{x+i\eta} dx := \lim_{a \to -\infty} \lim_{b \to \infty} \int\limits_{a}^{b} \frac{e^{-ix}}{x+i\eta} dx$$

LÖSUNG:

(a)
$$f$$
 ist nicht Lebesgue-integrierbar, da $|f(x)| = \frac{1}{\sqrt{x^2 + \eta^2}}$, und damit [2]

$$\int |f| \mathrm{d}\lambda^1 \ge 2 \int_{|\eta|}^{\infty} \frac{1}{\sqrt{2x^2}} dx = \infty.$$

[2]Die Ungleichung gilt, da $\frac{1}{\sqrt{x^2+\eta^2}} \ge \frac{1}{\sqrt{x^2+x^2}}$ für $|x| \ge |\eta|$. [2]

(b) Das Integral ist als uneigentliches Regelintegral definiert: $\int_{-\infty}^{\infty} \frac{e^{-ix}}{x+i\eta} dx := \lim_{a \to -\infty} \lim_{b \to \infty} \int_{a}^{b} \frac{e^{-ix}}{x+i\eta} dx.$ [2]

7. Fluss durch eine Oberfläche

[20 Punkte]

Gegeben Sie die Menge $B=\{(x,y,z)\in\mathbb{R}^3:\sqrt{x^2+y^2}\leq z,1\leq x^2+y^2+z^2\leq 4\}$ und das Vektorfeld F(x, y, z) = (-y, x, yz) mit G(x, y, z) = rot F(x, y, z) = (z, 0, 2).

- (a) Bestimmen Sie den Fluss $g_{\partial B}$ von G durch den Rand von B.
- (b) Bestimmen Sie den Fluss g_S von G durch das Flächenstück

$$S = \{(x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2} = z, 1 \le x^2 + y^2 + z^2 \le 4\}$$

mit von der z-Achse wegzeigender Flächennormale.

(c) Berechnen Sie $f_{\gamma} := \int_{\gamma} F \cdot d\vec{x}$ für $\gamma(t) = \frac{1}{\sqrt{2}} (\cos t, \sin t, 1), \quad t \in [0, 2\pi].$

$$f_{\gamma} = \pi$$

(d) Geben Sie den Fluss g_{K_1} von G durch das Flächenstück

$$K_1 = \{(x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2} \le z, x^2 + y^2 + z^2 = 1\}$$

an, wobei die Flächennormale vom Ursprung wegzeigt.

HINWEIS: Spur $\gamma = \text{Rand } K_1$.

$$g_{K_1} = f_{\gamma} = \pi$$

(e) Geben Sie den Fluss g_{K_2} von G durch das Flächenstück

$$K_2 = \{(x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2} \le z, x^2 + y^2 + z^2 = 4\}$$

an, wobei die Flächennormale vom Ursprung wegzeigt.

$$g_{K_2} = g_{K_1} - g_S = 4\pi$$

LÖSUNG:

- (a) Nach dem Satz von Gauss ist $\int_{\partial B} \operatorname{rot} F \cdot d\mathcal{O} = \int_{B} \operatorname{div} \operatorname{rot} F \, \mathrm{d}\lambda^{3} = 0$, da div rot F = 0. [3]
- (b) Eine Parametrisierung von S ist $\Phi(r,\phi) = (r\cos\phi, r\sin\phi, r)$ mit $r \in [\frac{1}{\sqrt{2}}, \sqrt{2}], \phi = [0, 2\pi].$ [2]Es ist

$$\partial_r \Phi(r,\phi) \times \partial_\phi \Phi(r,\phi) = \begin{pmatrix} \cos \phi \\ \sin \phi \\ 1 \end{pmatrix} \times \begin{pmatrix} -r \sin \phi \\ r \cos \phi \\ 0 \end{pmatrix} = \begin{pmatrix} -r \cos \phi \\ -r \sin \phi \\ r \end{pmatrix},$$
[2]

also ist die Flächennormale nach innen gerichtet. Damit

$$g_{S} = -\int_{S} G \cdot d\mathcal{O} = -\int_{0}^{\sqrt{2}} \int_{0}^{2\pi} {r \choose 0} \cdot {r \cos \phi \choose -r \sin \phi} d\phi dr = -\int_{0}^{\sqrt{2}} \int_{0}^{2\pi} (2r - r^{2} \cos \phi) d\phi dr$$

$$= -2\pi \int_{\frac{1}{\sqrt{2}}}^{\sqrt{2}} 2r dr = -2\pi \left[r^{2}\right]_{\frac{1}{\sqrt{2}}}^{\sqrt{2}} = 2\pi (\frac{1}{2} - 2) = -3\pi.$$
[5]

(c)
$$\int_{\gamma} F \cdot d\vec{x} = \int_{0}^{2\pi} \begin{pmatrix} -\frac{1}{\sqrt{2}} \sin t \\ \frac{1}{\sqrt{2}} \cos t \\ \frac{1}{2} \sin t \end{pmatrix} \cdot \begin{pmatrix} -\frac{1}{\sqrt{2}} \sin t \\ \frac{1}{\sqrt{2}} \cos t \\ 0 \end{pmatrix} dt = \int_{0}^{2\pi} \frac{1}{2} (\sin^{2} t + \cos^{2} t) = \pi.$$
 [3]

- (d) γ ist eine Parametrisierung des Randes von K_1 mit mathematischer Durchlaufrichtung bezüglich der Flächennormalen. Nach dem Satz von Stokes ist $g_{K_1} = \int_{K_1} G \cdot d\mathcal{O} = \int_{\gamma} F \cdot d\vec{x} = f_{\gamma} = \pi$. [2] (e) Für die Oberflächenintegrale gilt unter Berücksichtigung der Orientierung $g_{\partial B} = -g_{K_1} + g_S + g_{K_2}$.

[1]

8. Hilber Sei (x_n)	rtraum (10 Punkt) eine orthogonale Folge in einem Hilbertraum H , d.h. $\langle x_n, x_m \rangle = 0$ für $n \neq m$.	e]		
(a) Ze	leigen Sie: Ist die Folge (x_n) konvergent, so ist ihr Grenzwert 0.			
(b) Ze	Geigen Sie: Ist (x_n) orthonormal, so ist (x_n) nicht konvergent.			
	Geben Sie ein konkretes Beispiel für eine orthogonale Folge (x_n) an mit $x_n \neq 0$ für alle $n \in $ nd $x_n \to 0$.	∃N		
(d) G	Gilt (a) in jedem Vektorraum V mit Skalarprodukt?			
	$fixtilde{f M}$ Ja $igchapsi$ Nein			
(e) Gilt (b) in jedem Vektorraum V mit Skalarprodukt?				
	lacktriangleq Ja $lacktriangleq$ Nein			
Lösund	G:			
(a) Se	ei $x = \lim_{n \to \infty} x_n$. Für festes $m \in \mathbb{N}$ gilt			
	$\langle x_m, x \rangle = \langle x_m, \lim_{n \to \infty} x_n \rangle = \lim_{n \to \infty} \langle x_m, x_n \rangle = 0,$			
di		[2]		
Q.	a das Skalarprodukt stetig und die Folge für $n > m$ identisch 0 ist. Somit ist			
	$\langle x, x \rangle = \langle \lim_{m \to \infty} x_m, x \rangle = 0,$			
al	lso $x = 0$.	[2]		
(b) N	Vach Pythagoras ist für $n \neq m$			
	$ x_n - x_m ^2 = x_n ^2 + x_m ^2 = 2.$			
(2	(x_n) ist also kein Cauchyfolge und damit auch nicht konvergent.	[2]		
(c) $e^{(}$	$e^{(k)} \in \ell^2(\mathbb{N})$ mit $e^{(k)}_j = \delta_{jk}$ ist ONB von ℓ^2 . $x_n = \frac{1}{n}e^{(n)}$ ist offenbar Nullfolge, da $ x_n = \frac{1}{n}$	→ 0. [2]		
(d) In	m Beweis von (a) wurde die Vollständigkeit nirgends benutzt, also ja.	[1]		
(e) In	m Beweis von (b) wurde die Vollständigkeit nirgends benutzt, also ja.	[1]		