Nom: Prénom:

Numéro étudiant :

Questions	Réponses
utilisateurs souhaitent communiquer 2 à 2 de façon confidentielle grâce à la cryptographie à clé secrète.	\square $n!$ \square $n(n-1)/2$
Combien de clés doivent être générées?	
	$\Box \sqrt{n}$
ny analysisant communiquer 2 à 2 de façon	
utilisateurs souhaitent communiquer 2 à 2 de façon confidentielle grâce à la cryptographie à clé <i>publique</i> . Combien de clés doivent être générées?	$\square 2^{n/2}$
	□ n!
	$\Box \sqrt{n}$
Un système est considéré comme sûr si la meilleure	□ 128
attaque connue nécessite au moins 2^{128} opérations élémentaires. Si le meilleur algorithme pour factoriser des entiers de taille n a pour complexité $2^{n^{1/3}}$, quelle est la valeur de n qui permet à un système cryptographique reposant sur la difficulté de la factorisation d'être sûr?	□ 384
	□ 2097152
	□ 2048
Quel est le chiffré du message $m=10110101$ par le chiffrement de Vernam en utilisant la clé $k=01011101$, sachant que le chiffrement se fait par un ou exclusif bit à bit entre la clé et le message?	□ 00010101
	□ 00000000
	□ 11101000
	□ 10010101
Quel est le message clair dont le chiffré est $c=00010010$ en utilisant le chiffrement de Vernam avec comme clé $k=01011101$	□ 00010000
	□ 01001111
	□ 10101010
	□ 10101001
Soit a, b, c trois entiers et considérons l'algorithme A suivant.	☐ A peut être utilisé dans le dé- chiffrement RSA
A(a,b,c):	\square A calcule $a^c \mod b$
R=1	
Pour $i = 1$ à b faire $R = R \times a$	☐ A est efficace
$r = R \pmod{c}$	☐ A a une complexité expo-
Retourner r	nentielle en la taille des en-
	trées
Quelles propriétés sont assurées par la signature?	□ confidentialité et intégrité
	☐ intégrité et authenticité
	☐ authenticité et confidentialité
	□ confidentialité, intégrité et authenticité

Questions	Réponses
ans un algorithme de chiffrement à clé ublique, quelle est la clé utilisée pour chiffrer?	☐ la clé publique
	□ la clé secrète
	□ les deux
	□ aucune
Que représente un certificat numérique?	Un moyen d'assurer la non- répudiation du message transmis
	Un moyen de garantir la relation univoque entre une clef publique et son véritable propriétaire
	Une garantie donnée sur l'intégrité du message transmis
	Un moyen pour chiffrer la clé se- crète sur le disque dur
Quelle complexité est la plus proche de celle de la meilleure méthode de factorisation?	□ 2 ⁿ
	□ 2 ^{n/4}
	□ 2 ^{n1/3}
	□ n ⁸
Combien y a-t-il d'éléments inversibles modulo 21?	□ 20
	□ 12
	□ 8 □ Résoudre $X^2 = 3 \mod p$ avec p premier
Parmi ces problèmes, quel est celui qui est « facile»?	$\Box \text{ Factoriser N} = p \times q, \text{ avec } p \text{ et } q \text{ premiers}$
	☐ Calculer un logarithme discret modulo <i>p</i> ☐ Aucun n'est facile
À quoi peut servir le théorème des restes chinois?	☐ Accélérer le chiffrement RSA
	☐ Accélérer le déchiffrement RSA
	☐ Accélérer la génération des clés RSA
	☐ Il ne sert qu'à attaquer RSA
Si N = 77, que vaut $\varphi(N)$?	
	1 0 0
à mai and the Leadahan a Dr. 11.1 de 1.2	□ 60
À quoi sert l'algorithme d'Euclide étendu?	☐ Il permet de factoriser les grands entien ☐ Il est utiliser pour calculer un in-
À quoi sert l'algorithme d'Euclide étendu?	□ Il permet de factoriser les grands entier