

Telco Customer Churn Prediction

Introduction

Motivation, Problem Description, Goal

Models

Model training, Accuracy, comparison

Data

Overview, pre-processing feature selection

Conclusion

Summary, Recommendation

1. Introduction

Motivation, Problem Description, Goal

Motivation

Problem statement

Using statistical learning methods to build a predictive model which helps to identify customers that are most likely to churn based on the customers' information.

2. Data

Overview; Pre-processing; Feature selection

Main features

Split some variables

7032 entries, each represent a customer

26 features, containing customer attributes, services, account information, and demographics

Multicollinearity

	feature	VIF
0	gender	1.002106
1	SeniorCitizen	1.153220
2	Partner	1.462988
3	Dependents	1.381598
4	tenure	7.584453
5	PhoneService	34.893857
6	MultipleLines	7.289761
7	OnlineSecurity	6.338349
8	OnlineBackup	6.796678
9	DeviceProtection	6.924754
10	TechSupport	6.476508
11	StreamingTV	24.080019
12	StreamingMovies	24.156394
13	PaperlessBilling	1.208455
14	MonthlyCharges	866.089640
15	TotalCharges	10.811490
16	InternetService_DSL	inf
17	InternetService_Fiber optic	inf
18	InternetService_No	inf
19	Contract_Month-to-month	inf
20	Contract_One year	inf
21	Contract_Two year	inf
22	PaymentMethod_Bank transfer (automatic)	inf
23	PaymentMethod_Credit card (automatic)	inf
24	PaymentMethod_Electronic check	inf
25	PaymentMethod_Mailed check	inf

- Some of the variables have infinity returned (perfectly correlated)
- PhoneService, StreamingTV, StreamingMovies, MonthlyCharges and TotalCharges have high VIF value of more than 10

Data Scaling

Figure 4: MonthlyCharges Histogram Display

Figure 5: TotalCharges Histogram Display

- There are some non-normal behaviour in some quantitative variables
- We consider standard scaler, min-max scaler and quantile scaler on different models

Imbalanced Dataset

- The model fitted by general methods will skew to the majority class "No"
- For the explanatory variable "Churn": "No" label is about 3 times larger than "Yes" labels

Imbalanced Dataset

XGBoost Model Without Tuning

- Random-under-sample and over-sample are used to handle this imbalance
- However, both treatments performed poorly

Reasons for poor

performance of balanced methods

- According to He, H., & Garcia, E. A. (2009), the imbalance ratio below 1:10 is considered to be insignificant
- Hence, the 3:1 ratio of "No" to "Yes" in our dataset is not a severe imbalance problem
- The imbalanced distribution is reflective of that in the real world at 3:1
- Losing information

Feature selection

- We select important features by Boruta
- 11 in 26 features are selected via cross-validation

The best number of features is: 11

'tenure', 'OnlineSecurity',
'TechSupport',
'PaperlessBilling',
'MonthlyCharges',
'TotalCharges',
'InternetService_DSL',
'InternetService_Fiber optic',
'InternetService_No',
'Contract_Month-to-month',
'Contract_One year'.

3. Model

Model training; Accuracy; Comparison

3.1

Logistic Regression

		Coef.	Std.Err.	z	P> z	[0.025	0.975]	
	Intercept	-0.1225	0.1680	-0.7287	0.4662	-0.4518	0.2069	
	gender	0.0225	0.0776	0.2900	0.7718	-0.1296	0.1746]
	SeniorCitizen	0.2769	0.1021	2.7126	0.0067	0.0768	0.4770	Ī
Γ	Partner	-0.0212	0.0935	-0.2271	0.8203	-0.2046	0.1621	1
	Dependents	-0.1135	0.1082	-1.0485	0.2944	-0.3255	0.0986	
	PhoneService	0.7239	0.7829	0.9246	0.3552	-0.8106	2.2584	
	MultipleLines	0.5206	0.2146	2.4262	0.0153	0.1000	0.9411	
	OnlineSecurity	-0.0753	0.2157	-0.3491	0.7270	-0.4981	0.3475	
	OnlineBackup	0.1988	0.2127	0.9349	0.3499	-0.2180	0.6157	
	DeviceProtection	0.2476	0.2115	1.1708	0.2417	-0.1669	0.6620	
	TechSupport	-0.0860	0.2158	-0.3984	0.6903	-0.5089	0.3369	
	StreamingTV	0.9323	0.3958	2.3556	0.0185	0.1566	1.7080	
	StreamingMovies	0.7770	0.3943	1.9706	0.0488	0.0042	1.5498	
	PaperlessBilling	0.2710	0.0889	3.0489	0.0023	0.0968	0.4452	
	InternetService_DSL	-0.0547	0.0878	-0.6235	0.5329	-0.2268	0.1173	
	InternetService_Fiber_optic	2.3949	1.0074	2.3774	0.0174	0.4205	4.3693	
	InternetService_No	-2.4626	0.9233	-2.6672	0.0076	-4.2723	-0.6530	
	Contract_Month	0.7104	0.0949	7.4867	0.0000	0.5245	0.8964	
	Contract_One_year	-0.0490	0.1107	-0.4425	0.6581	-0.2661	0.1680	
	Contract_Two_year	-0.7839	0.1590	-4.9293	0.0000	-1.0956	-0.4722	
	PaymentMethod_Bank_transfer	-0.0707	0.0924	-0.7654	0.4440	-0.2518	0.1104	
	PaymentMethod_Credit_card	-0.1400	0.0965	-1.4513	0.1467	-0.3291	0.0491	
	PaymentMethod_Electronic_check	0.2203	0.0743	2.9633	0.0030	0.0746	0.3660	
	PaymentMethod_Mailed_check	-0.1320	0.0907	-1.4562	0.1453	-0.3098	0.0457	
	tenure	-3.9702	0.5276	-7.5253	0.0000	-5.0042	-2.9362	
	TotalCharges	2.3961	0.7328	3.2696	0.0011	0.9598	3.8324	
	MonthlyCharges	-6.4828	3.8442	-1.6864	0.0917	-14.0174	1.0517	

Fit with Initial scaled dataset

- Test accuracy is 80.85%
- Insignificant variables with high p-value (i.e. gender, Partner, etc.)
- Some variables with high p-value were previously highlighted to have high VIF values

		feature	VIF	
	0	gender	1.002106	
	1	SeniorCitizen	1.153220	
	2	Partner	1.462988	
	3	Dependents	1.381598	
\	4	tenure	7.584453	
١	5	PhoneService	34.893857	
	D	multipletines	/.209/01	\/ ∟
	7	OnlineSecurity	6.338349	VII
	8	OnlineBackup	6.796678	
	9	DeviceProtection	6.924754	
	10	TechSupport	6.476508	
	11	StreamingTV	24.080019	
	12	StreamingMovies	24.156394	
	13	PaperlessBilling	1.208455	
	14	MonthlyCharges	866.089640	
	15	TotalCharges	10.811490	

	Coef.	Std.Err.	z	P> z	[0.025	0.975]
Intercept	-1.5955	0.1151	-13.8669	0.0000	-1.8210	-1.3700
SeniorCitizen	0.2936	0.0998	2.9412	0.0033	0.0980	0.4893
MultipleLines	0.3313	0.1050	3.1543	0.0016	0.1254	0.5371
OnlineSecurity	-0.2657	0.1068	-2.4881	0.0128	-0.4750	-0.0564
TechSupport	-0.2668	0.1090	-2.4473	0.0144	-0.4804	-0.0531
StreamingTV	0.5642	0.1167	4.8363	0.0000	0.3356	0.7929
StreamingMovies	0.4156	0.1150	3.6154	0.0003	0.1903	0.6409
PaperlessBilling	0.2773	0.0887	3.1257	0.0018	0.1034	0.4512
InternetService_DSL	-0.5359	0.0891	-6.0118	0.0000	-0.7106	-0.3612
InternetService_Fiber_optic	0.9812	0.1746	5.6202	0.0000	0.6390	1.3234
InternetService_No	-2.0408	0.2159	-9.4544	0.0000	-2.4638	-1.6177
Contract_Month	0.2214	0.0901	2.4579	0.0140	0.0449	0.3980
Contract_One_year	-0.5403	0.0998	-5.4155	0.0000	-0.7358	-0.3447
Contract_Two_year	-1.2766	0.1527	-8.3591	0.0000	-1.5760	-0.9773
PaymentMethod_Bank_transfer	-0.2924	0.1115	-2.6225	0.0087	-0.5109	-0.0739
PaymentMethod_Credit_card	-0.3582	0.1176	-3.0466	0.0023	-0.5886	-0.1277
PaymentMethod_Mailed_check	-0.3570	0.1168	-3.0568	0.0022	-0.5859	-0.1281
tenure	-1.3875	0.1808	-7.6749	0.0000	-1.7419	-1.0332
TotalCharges	0.6513	0.1912	3.4065	0.0007	0.2766	1.0260
MonthlyCharges	-0.8344	0.2060	-4.0512	0.0001	-1.2380	-0.4307

Remove insignificant variables and high VIF variables

- Test accuracy is 80.52%
- Predictors all have small p-value near to 0

	Coef.	Std.Err.	Z	P> z	[0.025	0.975]	
Intercept	-2.1643	0.1614	-13.4104	0.0000	-2.4806	-1.8480	
tenure	-1.3657	0.1804	-7.5717	0.0000	-1.7192	-1.0122	
OnlineSecurity	-0.5031	0.1007	-4.9952	0.0000	-0.7005	-0.3057	
TechSupport	-0.4823	0.1042	-4.6303	0.0000	-0.6864	-0.2781	
PaperlessBilling	0.3554	0.0872	4.0779	0.0000	0.1846	0.5263	
MonthlyCharges	0.1362	0.1315	1.0353	0.3005	-0.1216	0.3940	
TotalCharges	0.6779	0.1913	3.5436	0.0004	0.3029	1.0528	
InternetService_DSL	-0.6005	0.0889	-6.7554	0.0000	-0.7747	-0.4262	
InternetService_Fiber_optic	0.0846	0.1454	0.5818	0.5607	-0.2004	0.3695	
InternetService_No	-1.6484	0.1682	-9.8028	0.0000	-1.9780	-1.3188	
Contract_Month	1.6036	0.2141	7.4880	0.0000	1.1838	2.0233	
Contract_One_year	0.7666	0.2177	3.5219	0.0004	0.3400	1.1931	

Fit with selected 11 features in previous feature selected stage

- Test accuracy is 80.14%
 Perform Worse
- Still some Predictors have high p-values(MonthlyCharges and InternetService_Fiber_optic)

Model Interpretation

- We decide that the 2nd model performs the best
- InternetService_Fiber_optic has the greatest positive coefficient
- Payment methods matter less to customers churn
- OnlineSecurity has the smallest coefficient

3.2

Support Vector Machine (SVM)

We are using three types of SVM

Linear SVM

- Computationally efficient, even for large datasets
- Performs well in high-dimensional spaces

Polynomial SVM

- Can capture complex non-linear relationships between input features and target variable
- Effective when data is not linearly separable and has a complex decision boundary

Accuracy: Original dataset: 74.77% Boruta dataset: 74.77%

Radial Basis Function (RBF) SVM

- Can capture complex non-linear relationships between input features and target variable
- Effective when data is not linearly separable and has a non-linear decision boundary.

Accuracy: Original dataset: 78.11% Boruta dataset: 78.46%

Accuracy: Original dataset: 76.47% Boruta dataset: 78.75%

Support Vector Machine

3.3

Artificial Neural Network (ANN)

3-layer ANN Model

Fit on full dataset

- We consider two- and three-hidden-layer ANN models according to the problem's complexity.
- After scaling, the prediction accuracy has been significantly improved
- Min-max and quantile scaling perform better
- The accuracy of 2-layer model is higher

ANN

Fit on 11 selected features

- The accuracy after scaling increases slightly, comparing to full model.
- The accuracy does not change after we reduce the node's number and epochs.
- The overall performance of the ANN model are not as good as other simpler models

3.4

XGBoost

What is XGBoost

How it works

- XGBoost improves its prediction accuracy by integrating weak decision tree classifiers.
- XGBoost uses second-order gradient information as the loss function

Advantage

 XGBoost will perform regularization during the training process which can avoid the huge influence of outliers

Fit with original dataset

- Test accuracy is 81.37%, best among all other models
- Important variables are Total Charges,
 Monthly Charge and tenure.

Fit with original dataset

- SHAP diagram is used to compare and see the contribution strength of different variables to the final prediction result.
- the Monthly Charges with high feature importance in previous slides did not appear in the SHAP graph

No Monthly_Charges

Fit with 11 selected features

- Test accuracy is 80.81%, slight lower than full model
- Important variables are still Total Charges, Monthly Charge and tenure.

SHAP diagram

Fit with 11 selected features

- Substantial changes in SHAP diagram
- Indicate that some variables are indeed unnecessary

Previous SHAP plot

Comparing tree diagram

model tree after selecting features is more complex and deeper,

There may be an 'erfitting problem.

/e still choose the full riable model

4. Conclusion

Summary and recommendation

Best Model

XGBoost

- fitted on original scaled dataset

Reasons for selection

- Highest accuracy of all models at 81.37%
- Provides additional properties like regularization
- 3. Gives a resulting tree with relative small depth

Reasons against feature selection

Feature selection does not perform well due to the factors:

- Small sample size (as a percentage of total telecommunication industry)
- High dimensionality

This is supported by the following papers:

- Zheng et al. (2007) → In datasets with many features, some features may have low discriminatory power, difficult to identify the most relevant features
- **Meinshausen and Bühlmann (2010)** → Performance of feature selection methods are dependent on sample size, and sometimes not reliable if sample size is too small

References

Bengio, Y., Goodfellow, I., & Courville, A. (2016). Deep learning. MIT Press.

He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263-1284

https://doi.org/10.1109/TKDE.2008.239

Liuzhi Yin, Yong Ge, Keli Xiao, Xuehua Wang, Xiaojun Quan, Feature selection for high-dimensional imbalanced data, Neurocomputing, Volume 105, 2013, Pages 3-11, ISSN 0925-2312, https://doi.org/10.1016/j.neucom.2012.04.039

Zheng, Z., Wu, X., & Srihari, R. K. (2007). Feature selection for high-dimensional data: A fast correlation-based filter solution. In Proceedings of the 20th International Conference on Machine Learning (ICML-07) (pp. 856-863).

Meinshausen, N., & Bühlmann, P. (2010). Stability selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(4), 417-473. https://doi.org/10.1111/j.1467-9868.2010.00740.x

