Resistive Load Inverter Introduction and Physical Properties

1) Cell Description

By using the equivalent resistance of the enhancement NMOS inverter, the Id is equivalent. The NMOS being a normally closed switch, an input low, allows VDD propagation to the output. When the input is high the NMOS creates a direct path to ground causing a logical low.

Figure 1: Symbol for Resistive Load Inverter

3) Cell Truth Table

Cell Truth Table				
Inputs	Outputs			
0	1			
1	0			

4) Cell Schematic Diagram

Figure 2: Circuit for Resistive Load Inverter

5) Transistor Dimensions

Transistor Dimensions					
Transistor Instance Length (nm) Width (nm)					
Number					
NMOS (M0)	90	50			

Performance Analysis

6,7) Output Rise/Fall Time Data

Input X: Output Rise Time Data t _r (ps)					
Input Rise/ Output Load (FOx)					
Fall Time	0 1 2 4 8				
40				1,194	

Input X: Output Fall Time Data t _f (ps)					
Input Rise/ Output Load (FOx)					
Fall Time	0 1 2 4 8				
40 120					

Figure 3: Plot of The Input and Output Waveforms with Rise and Fall Times

8,9) Propagation Delays

Data Worst Case Low to High Propagation Delay Data t _{plh} (ps)							
Input Rise/	Output Load (FOx)						
Fall Time	0	0 1 2 4 8					
40		95					

Data Worst Case High to Low Propagation Delay Data tphi (ps)					
Input Rise/ Fall	Output Load (FOx)				
Time	0 1 2 4 8				
40				567	

Figure 4: Plot of The Input and Output Waveforms with Propagation Delay Times

10.) DC Analysis

V _{IH DC} (mV)	$V_{IL\ DC}(mV)$	V _{OH DC} (mV)	V _{OL DC} (mV)
695.8	316.4	1125	128.5

Figure 5: Plot of DC Sweep with the Derivative of the Output Response

Long-Gate Resistive Load Inverter Joseph Wetzel, Alex Beaulier, Josh Horejs Group 17 10/29/2021 Introduction and Physical Properties

1) Cell Description

By using the equivalent resistance of the enhancement NMOS inverter, the Id is equivalent. The 'enhancement' NMOS being a normally off switch, an input low, allows VDD propagation to the output. When the input is high the NMOS creates a direct path to ground causing a logical low.

2) Cell Symbol

Figure 6: Symbol for Resistive Load Long-Gate Inverter

3) Cell Truth Table

Cell Truth Table				
Inputs	Outputs			
0	1			
1	0			

4) Cell Schematic Diagram

Figure 7: Circuit for Resistive Load Long-Gate Inverter

5) Transistor Dimensions

Transistor Dimensions							
Transistor Instance Length (nm) Width (nm)							
Number							
NMOS							

Performance Analysis

6,7) Output Rise/Fall Time Data

Input X: Output Rise Time Data t _r (ps)							
Input Rise/ Output Load (FOx)							
Fall Time	0	0 1 2 4 8					
40	40 2783						

Input X: Output Fall Time Data t _f (ps)					
Input Rise/	t Rise/ Output Load (FOx)				
Fall Time	0 1 2 4 8				
40 112					

Figure 8: Plot of The Input and Output Waveforms with Rise and Fall Times

8,9) Propagation Delays

Data Worst Case Low to High Propagation Delay Data t _{plh} (ps)						
Input Rise/	Output Load (FOx)					
Fall Time	0	0 1 2 4 8				
40 1378						

Data Worst Case High to Low Propagation Delay Data t _{phl} (ps)						
Input Rise/ Fall	Output Load (FOx)					
Time	0	1	2	4	8	
40				80		

Figure 9: Plot of The Input and Output Waveforms with Propagation Delay Times

10.) DC Analysis

V _{IH_DC} (mV)	$V_{IL_DC}(mV)$	V _{OH_DC} (mV)	V_{OL_DC} (mV)
593	261	1,131	69.6

Figure 10: Plot of DC Sweep with the Derivative of the Output Response

Calculating NMOS Equivalent Resistance

Finding the correct R value

Starting with the base NMOS device, the equivalent resistance is found as follows, from page (pg149):

$$t_{pd} = ln(2)RC$$

The following circuit is used to find the exact equivalent resistance of one NMOS using capacitive decay.

Figure: Schematic of single unaltered NMOS(L=50nm by W=90nm)

The propagation delay time or t_{pd} is found below.

Figure: Finding t_{pd} using capacitive decay.

With C and t_{pd} , R is found for an unedited L=50nm by W=90nm device.

$$\begin{split} t_{pd} &= t_{pd} (\sim 600 mV) \\ R_{NMOS} &= t_{pd} / (ln(2)C) \\ &= 2.85 ns / (ln(2) \bullet 500 fF) \\ &= 8229 \, \Omega \end{split}$$

Resistance is proportional to length with respect to width as follows:

$$R \propto L/W$$

The first resistor inverter length is increased by a factor of 7.

$$7 \cdot 8229 \Omega = 7 \cdot 50 \text{nm} / 90 \text{nm} \cong 57603 \Omega$$

The second resistor inverter length is increase by a factor of 20.

20•8229 Ω = 20 • 50nm / 90nm
$$\cong$$
 164580 Ω

This method worked for ball park figures but using the exact tpd analysis worked much better in the end.