Client's ref.: P2003-011

File: 0697-10222-US/final/dennis

What is claimed is:

1. A feedback control I/O buffer driven by a system voltage, comprising:

- an input/output circuit comprising a first PMOS transistor and a first NMOS transistor and having a transmission terminal coupled to an I/O pad, wherein the first PMOS transistor has an N-well region, a gate of the first NMOS transistor receives a first gate control signal, and a drain of the first PMOS transistor serves as the transmission terminal;
- a P-gate control circuit conveying a second gate control signal to the gate of the first PMOS transistor;
- a feedback detection device having an input coupled to
 the transmission terminal to output a feedback
 signal according to an input voltage at the I/O pad;
 and
- a N-well control circuit coupled to the P-gate control circuit to control the voltage level at the N-well region of the first PMOS transistor according to the feedback signal output from the feedback detection device.
- 2. The feedback control I/O buffer as claimed in Claim 1, wherein the N-well control circuit adjusts the voltage level at the N-well region of the first PMOS transistor to the voltage level of the input voltage when the input voltage exceeds the system voltage.

Client's ref.: P2003-011 File: 0697-10222-US/final/dennis

 The feedback control I/O buffer as claimed in Claim
2, wherein the N-well control circuit adjusts the voltage
level at the N-well region of the first PMOS transistor to
the system voltage when the input voltage is lower than the
system voltage.

- 4. The feedback control I/O buffer as claimed in Claim 1, wherein the input/output circuit further comprises a second NMOS transistor having a source and drain coupled to the I/O pad and the drain of the first NMOS transistor respectively, and a gate coupled to the system voltage.
- 5. The feedback control I/O buffer as claimed in Claim
 4, wherein the N-well control circuit comprises:
 - a second PMOS transistor having a source coupled to the I/O pad, a gate coupled to the system voltage, and a drain coupled to the N-well region of the first PMOS transistor;
 - a third PMOS transistor having a gate coupled to the system voltage, a source coupled to the I/O pad, and a drain;
 - a fourth PMOS transistor having a gate coupled to the drain of the third PMOS transistor, a drain coupled to the system voltage, and a source coupled to the N-well region of the first PMOS transistor;
 - a third NMOS transistor having a gate coupled to the feedback signal from the feedback detection device, and a source coupled to the ground; and
 - a fourth NMOS transistor having a gate coupled to the system voltage, a source coupled to a drain of the

Client's ref.: P2003-011

5

6

7

8

9

10

File: 0697-10222-US/final/dennis

19	third NMOS transistor, and a drain coupled to the
20	gate of the fourth transistor.
1	6. The feedback control I/O buffer as claimed in Claim
2	5, wherein the P-gate control circuit comprises:
3	a transmission gate having a fifth NMOS transistor and
4	a fifth PMOS transistor, the sources of which are
5	coupled to the second gate control signal, the
6	drains of which are coupled to the gate of the first
7	PMOS transistor, and the gates of which are coupled
8	to the system voltage and a drain of the third PMOS
9	transistor respectively; and
10	a sixth PMOS transistor having a gate coupled to the
11	system voltage, a drain coupled to the gate of the
12	first PMOS transistor, and a source coupled to the
13	source of the fourth transistor and the N-well
14	region of the first PMOS transistor.
1	7. The feedback control I/O buffer as claimed in Claim
2	1, wherein the feedback detection device is an inverter.
1	8. The feedback control I/O buffer as claimed in Claim
2	7, wherein the inverter comprises:
3	a sixth NMOS transistor having a source coupled to the
4	ground and a drain coupled to the gate of the third

system voltage and a drain coupled to the drain of
the sixth NMOS transistor; and
a seventh NMOS transistor having a gate coupled to the

a seventh PMOS transistor having a source coupled to the

a seventh NMOS transistor having a gate coupled to the system voltage, a drain coupled to the I/O pad, and

NMOS transistor;

Client's ref.: P2003-011 File: 0697-10222-US/final/dennis

11	a source coupled to gates of the sixth NMOS
12	transistor and the seventh PMOS transistor.
1	9. An input/output buffer, comprising:
2	a floating N-well;
3	a first NMOS transistor having a gate coupled to a first
4	gate control signal, a source coupled to the
5	ground;
6	a second NMOS transistor having a gate coupled to a system
7	voltage, a source coupled to a drain of the first
8	NMOS transistor and a drain coupled to an I/O pad;
9	an inverter having an input terminal coupled to the I/O
10	pad, and an output terminal;
11	a third NMOS transistor having a gate coupled to the
12	output terminal of the inverter and a source
13	coupled to the ground;
14	a fourth NMOS transistor having a source coupled to the
15	drain of the third NMOS transistor, and a gate
16	coupled to the system voltage;
17	a first PMOS transistor having a source coupled to the
18	system voltage, and a drain coupled to the I/O pad;
19	a second PMOS transistor having a source coupled to the
20	I/O pad, a gate coupled to the system voltage, and
21	a drain coupled to the floating N-well;
22	a third PMOS transistor having a source coupled to I/O
23	pad, a gate coupled to the system voltage, and a
24	drain coupled to a source of the fourth NMOS
25	transistor;
26	a fourth PMOS transistor having a gate coupled the drain
27	of the third PMOS transistor, a drain coupled to

Client's ref.: P2003-011 File: 0697-10222-US/final/dennis

28	the system voltage, and a source coupled to the
29	<pre>floating N-well;</pre>
30	a transmission gate including a fifth NMOS transistor
31	and a fifth PMOS transistor, the sources of which
32	are coupled to a second gate control signal, the
33	drains of which are coupled to the gate of the first
34	PMOS transistor, and the gates of which are coupled
35	to a drain of the third PMOS transistor and the
36	system voltage respectively;
37	a sixth PMOS transistor having a gate coupled to the
38	system voltage, a drain coupled to the gate of the
39	first PMOS transistor and a source coupled to the
40	floating N-well and the source of the fourth PMOS
41	transistor; wherein the floating N-well is
42	connected to the substrate on which the first to
43	sixth PMOS transistors are formed.
1	10. The input/output buffer as claimed in claim 9,
2	wherein the inverter comprises:
3	a sixth NMOS transistor having a source coupled to the
4	ground and a drain coupled to the gate of the third
5	NMOS transistor;
6	a seventh PMOS transistor having a source coupled to the
7	system voltage and a drain coupled to the drain of
8	the sixth NMOS transistor; and
9	a seventh NMOS transistor having a gate coupled to the
10	system voltage, a drain coupled to the I/O pad, and
11	a source coupled to gates of the sixth NMOS
12	transistor and the seventh PMOS transistor.