





• Distance > |displacement|



A particle moves from A to B in a circular path of radius R covering an angle  $\theta$  with uniform speed  $\bot$ 



• Ratio of Displacement to Distance = Sin  $\left(\frac{v}{2}\right)$ 

Average Velocity = \_

• Average Acceleration =  $U^2 Sin \left( \frac{\theta}{2} \right)$ 

### For uniform motion

Displacement = velocity x time

Average speed = |average velocity|=|instantaneous velocity|

### Time average speed

$$\mathbf{V}^{\text{ov}} = \frac{\textbf{Total distance covered}}{\textbf{Total time elapsed}} \quad = \frac{\mathbf{S}_1 + \mathbf{S}_2 + \mathbf{S}_3 + \ldots + \mathbf{S}_n}{\mathbf{t}_1 + \mathbf{t}_2 + \mathbf{t}_3 + \ldots + \mathbf{t}_n} \quad = \frac{\mathbf{v}_1 \mathbf{t}_1 + \mathbf{v}_2 \mathbf{t}_2 + \mathbf{v}_3 \mathbf{t}_3 + \ldots}{\mathbf{t}_1 + \mathbf{t}_2 + \mathbf{t}_3 + \ldots + \mathbf{t}_n}.$$

$$\mathbf{If} \ \mathbf{t}_1 = \mathbf{t}_2 = \mathbf{t}_3 = \ldots = \mathbf{t}_n$$

 $v_{av} = \frac{v_1 + v_2 + v_3 + \dots + v_n}{v_{av}}$ 

 $V_{av} = \frac{1}{1 + \frac{1}{2}} \frac{1}{n}$ for  $V_1 & V_2$ ,  $V_{avg} = \frac{V_1 + V_2}{2}$  (Arithmetic mean of speeds)

### Distance average speed

$$\begin{aligned} & v_{av} = \frac{\text{Total distance covered}}{\text{Total time elapsed}} = \frac{s_1 + s_2 + s_3 + \dots + s_n}{t_1 + t_2 + t_3 + \dots + t_n} = \frac{s_1 + s_2 + s_3 + \dots + s_n}{\frac{s_1}{v_1} + \frac{s_2}{v_2} + \frac{s_3}{v_3} + \dots + \frac{s_n}{v_n}} \end{aligned}$$



Motion with constant acceleration: Equations of motion

(i) v=u+at

(ii)  $S = ut + \frac{1}{5} at^2$ 

• A Person travels from A to B covers unequal distances in equal interval of time with constant acceleration a then

initial velocity  $U = \frac{3S_1 - S_2}{2t}$ 



(iii)  $v^2=u^2+2a.s$ 

• The number of planks required to stop the bullet







• Calculation of stopping distance  $s = \frac{u^2}{2a}$   $u \to 0$  0



(iv)  $|s_n| = u + \frac{a}{2}(2n-1)$ 

• Ratio of distance travelled in equal interval of time in a uniformly accelerated motion from rest

 $S_1:S_2:S_3 = 1:3:5$ 



• for uniform accelerated motion

$$v_{avg} = \frac{u+v}{2}$$

| Different Cases                                                                          | v-t graph                               | s-t graph                                                                                                                                             |
|------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Uniform motion                                                                        | v = constant                            | s sent                                                                                                                                                |
| 2. Uniformly accelerated motion with u =0 at t=0                                         | ** v=at                                 | s = ½ at²                                                                                                                                             |
| <ol> <li>Uniformly accelerated with<br/>u ≠ 0 at t=0 &amp; s=0 at t=0</li> </ol>         | u V V V V V V V V V V V V V V V V V V V | $s = ut + \frac{1}{2}\alpha t^2$                                                                                                                      |
| <ol> <li>Uniformly accelerated motion<br/>with u≠0 and s=s<sub>0</sub> at t=0</li> </ol> | u V V V V V V V V V V V V V V V V V V V | $s = s_0 + ut + \frac{1}{2}at^2$                                                                                                                      |
| 5. Uniformly retarded motion till velocity becomes zero                                  | u v v t                                 | $\begin{array}{c} \uparrow S & S = U \uparrow - \frac{1}{2} \alpha \uparrow^2 \\ \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \end{array}$ |
| 6. Uniformly retarded then accelerated in opposite direction                             | u k <sub>th</sub> o <sub>x</sub> →†     | $\begin{array}{c} s \\ s = ut - \frac{1}{2}at^2 \\ \hline \\ t_0 \end{array}$                                                                         |

# Important points about graphical analysis of motion

• Instantaneous velocity is the slope of position-time curve |∆x=∫vdt|

● Area of v-t curvegives displacement.

• Slope of velocity-time curve = instantaneous

• Area of a-t curve gives change in velocity.

|∆v=∫adt|

# MOTION STRAIGHT

A car accelerates from rest at a constant rate  $\alpha$  for some time, after which it decelerates at a constant rate  $\beta$ , to come to rest. If the total time elapsed is t, then

$$V_{\text{max}} = \frac{\alpha\beta}{\alpha + \beta}$$



# MOTION UNDER GRAVITY

Sign Convention

acceleration

(i) initial velocity

+ve = upward motion -ve = downward motion

(ii) Acceleration

Always -ve

(iii) Displacement

+ve = final position is above initial position

-ve = final position is below initial position

Zero = final position & initial position are at same level

Object is dropped from top of a tower

(i) Ratio of displacement in equal interval of time  $S_1:S_2:S_3...=1:3:5...$ 

(ii) Ratio of time of covering equal distance

$$+_{1}:(+_{2}-+_{1}):(+_{3}-+_{2}):\ldots:(+_{n}-+_{n-1})=1: (\sqrt{2}-\sqrt{1}):(\sqrt{3}-\sqrt{2}):\ldots:(\sqrt{n}-\sqrt{n-1})=1: (\sqrt{2}-\sqrt{1}):(\sqrt{2}-\sqrt{1}):(\sqrt{2}-\sqrt{2}):\ldots:(\sqrt{n}-\sqrt{n-1})=1: (\sqrt{2}-\sqrt{1}):(\sqrt{2}-\sqrt{1}):(\sqrt{2}-\sqrt{2}):\ldots:(\sqrt{n}-\sqrt{n-1})=1: (\sqrt{2}-\sqrt{1}):(\sqrt{2}-\sqrt{2}):\ldots:(\sqrt{n}-\sqrt{n-1})=1: (\sqrt{2}-\sqrt{2}):\ldots:(\sqrt{n}-\sqrt{n-1})=1: (\sqrt{2}-\sqrt{2}):\ldots:(\sqrt{n}-\sqrt{n-1})=1: (\sqrt{2}-\sqrt{2}):\ldots:(\sqrt{n}-\sqrt{n-1})=1: (\sqrt{2}-\sqrt{2}):\ldots:(\sqrt{n}-\sqrt{n-1})=1: (\sqrt{2}-\sqrt{2}):\ldots:(\sqrt{n}-\sqrt{n-1})=1: (\sqrt{2}-\sqrt{2}):\ldots:(\sqrt{n}-\sqrt{n-1})=1: (\sqrt{2}-\sqrt{2}):\ldots:(\sqrt{n}-\sqrt{n-1})=1: (\sqrt{n}-\sqrt{n-1})=1: (\sqrt{n}-\sqrt{n-1})=1$$

(iii) Ratio of total distance covered at the end of time t: 2t: 3t: ... = 1<sup>2</sup>: 2<sup>2</sup>: 3<sup>2</sup>...

• If a body is thrown vertically up with a velocity u in the uniform gravitational field (neglecting air resistance) then

(i) Maximum height attained  $H = \frac{u^2}{2a}$ 

(ii) Time of ascent = time of descent  $\frac{u}{a}$ 

(iii) Total time of flight =  $\frac{1}{920}$ 

(iv) Velocity of fall at the point of projection = u (downwards)

• At any point on its path the body will have same speed for upward journey and downward journey. If a body thrown upwards crosses a point in time t, & t, respectively then

height of point  $h=\frac{1}{2}gt_1t_2$  Maximum height  $H=\frac{1}{8}g(t_1+t_2)^2$ Time of flight =  $t_1 + t_2 = \frac{2u}{q}$ 

 A body is thrown upward, downward & horizontally with same speed takes time t<sub>1</sub>, t<sub>2</sub> & t<sub>3</sub> respectively to reach the ground then

 $\dagger_3 = \sqrt{\dagger_1 \dagger_2}$  & height from where the particle was throw is  $h = \frac{1}{2} g_1^{\dagger_1} \dagger_2$ 





# **VECTORS**

**Position Vector** 

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$
$$|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$$







Displacement Vector

Particle displaces from position P<sub>1</sub> to position P<sub>2</sub>



Parallel Vectors

Components of Vector



In two dimentions





Addition Of Vectors

$$R = \sqrt{A^2 + B^2 + 2A B \cos \theta}$$

$$R_{max} = A + B$$







$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x A_y & A_z \\ B_x B_y & B_z \end{vmatrix} = \hat{i}[A_y B_z - B_y A_z] - \hat{j}[A_x B_z - A_z B_x] + \hat{k}[A_x B_y - A_y B_x]$$

 $R_{min} = |A - B|$ 

Dot product

 $x=\vec{A}.\vec{B}=AB\cos\theta$ 

# Projectile motion

Horizontal component =  $U\cos\theta$ Vertical component =  $Usin\theta$ 

$$H = \frac{U^2 \sin^2 \theta}{2g} = \frac{(U \sin \theta)^2}{2g} = \frac{U_y^2}{2g}$$

$$R = \frac{U^2 \sin 2\theta}{g} = \frac{2U \sin \theta U \cos \theta}{g} = \frac{2U_x U_y}{g}$$



# Same range for $\theta$ and (90- $\theta$ )







For 
$$\theta = 45^{\circ}$$

$$R_{\text{max}} = \frac{U^2}{9}$$

# $R=4\sqrt{H_{1}.H_{2}}$

**PROJECTILE MOTION** 

$$\frac{\mathsf{T}_1}{\mathsf{T}_2} = \mathsf{tan}\,\theta \qquad \bullet =$$

• 
$$T_1 \times T_2 = \frac{2R}{g}$$
 •  $H_1 \times H_2 = \frac{R^2}{16}$ 

$$T_1^2 + T_2^2 = \frac{4 R_{\text{max}}}{9}$$
  $H_1 + H_2 = \frac{R_{\text{max}}}{2}$ 

From the relation,  $4H=Rtan\theta=5T^2$ 

$$4H=R_{max} tan45 \Rightarrow H = \frac{R_{max}}{4}$$

$$4H=R_{max} \Rightarrow H = \frac{u^2}{4q}$$

# KE at maximum height =Kcos²θ





$$\triangle p = -mgt \hat{j}$$

$$= -mg \times \frac{u \sin\theta}{g} \hat{j}$$

# =-mu sin⊖ĵ

# Equation of Velocity





# Relative Motion

- 1) Velocity of A with respect to B VAB=VA-VB
- 2)  $V_{A/B} = V_A V_B$ 
  - $=V_A (-V_B) = V_A + V_B$



- 3)V<sub>A/Tree</sub>=V<sub>A</sub>-V<sub>Tree</sub>=60-0=60
- $V_{B/Tree} = V_B V_{Tree} = -40$



# Relative Motion in one dimension (overtaking & chasing)



**RELATIVE MOTION** 





# Minimum separation to avoid collision







to avoid collision,

 $\Rightarrow d \ge \frac{(u_1 - u_2)^2}{2a_1}$ 

















# **RELATIVE MOTION**

### Man-river problem

- 1)  $V_{MR}$  or  $V_{M/Still\ water}$  = velocity due to effort of man, OR velocity of man in still water
- 2) V<sub>s</sub>= velocity of River
- 3) V = Resultant velocity of man with respect to ground
- 1) Upstream



w.r.t. A

2) Down stream



Swimming across the river



$$t_{cross} = \frac{d}{V_{MR} cos \theta} = \frac{d}{V_{L}}$$

$$X_{drift} = (V_{MR} \cos \theta + V_{R}) \times t$$





•X<sub>drift</sub>=V<sub>R</sub>x t

$$\bullet V_m = \sqrt{(V_{MR})^2 + (V_R)^2}$$

# $\Rightarrow$ sin $\theta = \frac{V_R}{V_{\mu\rho}}$ t,=Time taken by a man to move distance d

on a stationary escalator t<sub>a</sub>=Time taken by a stationary man to move distance d along with moving escalator

t<sub>3</sub>=Time taken by a man to move distance d while walking along a moving escalator

V=Velocity of escalator

V<sub>M/E</sub>=Velocity of man w.r.t escalator

# **MAN RAIN PROBLEM**

# Man-rain problem



In order to find the relative velocity of B with respect to A we have to reverse the direction of vector A and add it with vector B



 $V_{B/A} = V_B - V_A$ ,  $V_B$  w.r.t A  $V_{A/R} = V_R - V_A , V_A w.r.t B$ 





 $V_{\rm b} \Rightarrow \text{Velocity of rain w.r.t}$ stationary man

 $V_m \Rightarrow Velocity of man$ 

V<sub>R/m</sub>⇒ Velocity of Rain w.r.t man



Method

$$V_{R/m} = \sqrt{(V_R \sin\theta - V_m)^2 + (V_R \cos\theta)^2}$$

# V<sub>p</sub>sin0 > V<sub>m</sub>



 $V_{R/m} = \sqrt{(V_R \cos \theta)^2 + (V_R \sin \theta - V_m)^2}$ 

$$\tan \alpha = \frac{V_R \sin \theta - V_m}{V_R \cos \theta}$$

$$\alpha = \tan^{-1} \left( \frac{V_R \sin \theta - V_m}{V_R \cos \theta} \right)$$

# Case 2 V<sub>m</sub>>V<sub>p</sub>sinθ



$$V_{R/m} = \sqrt{(V_R \cos \theta)^2 + (V_m - V_R \sin \theta)^2}$$

$$\propto = \tan^{-1} \left( \frac{V_m - V_R \sin \theta}{V_n \cos \theta} \right)$$

### Case 3 V\_=V\_sine

 $\Rightarrow$ t<sub>cross</sub> =  $\frac{d}{V_{ii}}$ 

⇒Drift=0

 $\Rightarrow$   $V_m = \sqrt{V_{MR}^2 - V_R^2}$ 



 $V_m = V_R \sin \theta$  $V_{R/m} = V_{R} \sin \theta$ ∝ = 0



 $d \times U$ 

# $1^{\circ} = \frac{\pi}{180} \text{ rad}$

# Angular velocity

 $\omega = \frac{\Delta \theta}{\Delta t} = \frac{2\pi}{T}$  (in uniform circular motion), V=  $\omega$ 

 $\vec{V} = \vec{\omega} \times \vec{r}$ 

# Angular acceleration

$$CX = \frac{dC}{dt} \qquad \frac{a_t}{a_t} = \frac{rC}{C} \times \frac{r}{C}$$

# Equation of angular motion

- 1) Constant angular velocity: (i) = constant
- 2) Constant angular acceleration

- $\Rightarrow \omega = \omega_{\circ} + \Omega \uparrow$
- $\Rightarrow \Delta\theta = \omega_{\circ} t + 1/2 \Omega t^2$
- $\Rightarrow \omega^2 = \omega_0^2 + 2\Omega(\Delta\theta)$

## Centripetal acceleration Directed towards centre

Not a constant vector



$$a_c = \frac{v^2}{R} = a_c = r(0)^2$$

· a \_ L v  $\cdot \vec{F} \perp \vec{s}$ 

## Tangential acceleration



 $\mathbf{a}_{\scriptscriptstyle{+}}$  is due to change in magnitude of velocity

Resultant acceleration



# Circular Motion

Uniform Circular Motion

- Speed Constant
- Direction of velocity changes

- (i) = Constant
- $a_c = \frac{v^2}{r} = r(0)^2$ - a<sub>+</sub> = 0

**CIRCULAR MOTION** 

- Non-uniform Circular Motion
- Speed not Constant
- Velocity changes in direction and magnitude
- a = Centripetal acceleration - a = tangential acceleration
- $-\alpha = \frac{d\omega}{dt}$
- ω = Changes → α angular acceleration Horizontal circular motion





 $T_1 = m_1 l_1 \omega^2 + m_2 (l_1 + l_2) \omega^2 + m_3 (l_1 + l_2 + l_3) \omega^2$ 

$$T_2 = m_2(l_1 + l_2) \oplus + m_3(l_1 + l_2 + l_3) \oplus^2$$

 $T_3 = m_3(l_1 + l_2 + l_3) \oplus^2$ 

Flat circular track









At Bottom

a)  $T_{max} = \frac{mv^2}{r} + mg$ 

b) min velocity at bottom to complete circle =  $\sqrt{5gR}$ 

At Top

a)  $T_{min} = \frac{mv^2}{r} - mg$ 

b) min velocity at top to complete the circle =  $\sqrt{gR}$