Package 'RESTK'

August 22, 2023

Version 1.0.0
Description Implementation of the RESTK algorithm based on Markov's Inequality from Vi-
lardell, Sergi, Serra, Isabel, Mezzetti, Enrico, Abella, Jaume, Cazorla, Fran-
cisco J. and Del Castillo, J. (2022). "Using Markov's Inequality with Power-Of-k Func-
tion for Probabilistic WCET Estimation". In 34th Euromicro Conference on Real-Time Sys-

tems (ECRTS 2022). Leibniz International Proceedings in Informatics (LIPIcs) 231 20:1-20:24. <doi:10.4230/LIPIcs.ECRTS.2022.20>. This work has been supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (great agreement No. 773773)

tion programme (grant agreement No. 772773).

Title An Implementation of the RESTK Algorithm

License GPL-3 Encoding UTF-8 RoxygenNote 7.2.3

Imports purrr

Suggests knitr, rmarkdown

NeedsCompilation no

Author Sergi Vilardell [aut, cre]

Maintainer Sergi Vilardell <sergi.vilardell@bsc.es>

Repository CRAN

Date/Publication 2023-08-22 18:20:02 UTC

R topics documented:

compute_maxk	2
estimate_quantiles_maxk	2
get_min_maxk	3
linear_adjust	4
RESTK	4
RESTK_training	5
RESTK_validation	6
sample_quantile_estimation	7
tightness	8

Index 10

compute_maxk	Compute the maximum k for a given sample	

Description

compute_maxk returns the estimated quantiles for the chosen probabilities from the input sample. This method uses the sample quantile method number 8 from the default quantile function.

Usage

```
compute_maxk(samp = NULL, probs = NULL, quants = NULL, k_range = c(1, 120))
```

Arguments

samp	Sample of data to model
probs	Probabilities of interest to generate the max_k line
quants	Estimated quantiles of interest to generate the max_k line
k_range	Range of k values for the optimization function

Value

Returns estimated maxk for the sample and quantiles given.

Examples

```
samp <- rnorm(1e3, mean = 100, sd = 10)
probs <- c(1-1e-1, 1-0.5e-1, 1-1e-2)
quants <- c(100, 125, 150)
estimated_max_k <- compute_maxk(samp = samp, probs = probs, quants = quants, k_range = c(1,100))</pre>
```

```
estimate_quantiles_maxk
```

Estimate Quantiles with Maxk

Description

estimate_quantiles_maxk use the maxk line obtained to estimate quantiles with MIK

Usage

```
estimate_quantiles_maxk(samp = NULL, maxk_line = NULL, probs_interest = NULL)
```

get_min_maxk 3

Arguments

```
samp sample
maxk_line maxk line obtained for the probabilities of interest
probs_interest Probabilities of interest to estimate
```

Value

Returns the estimation of the quantiles using the maxk line

Examples

```
linear_adjust(min_maxk = c(10, 15, 20),

probs = c(1-1e-1, 1-1e-2, 1-1e-3),

probs_interest = c(1-1e-6, 1-1e-7, 1-1e-8))
```

get_min_maxk

Get the minimum maxk

Description

get_min_maxk get the minimum maxk from a set of maxks and tightness

Usage

```
get_min_maxk(samp_tightness = NULL, k_seq = NULL)
```

Arguments

```
\begin{array}{ll} \text{samp\_tightness} & \text{tightness from a given sample and maxk} \\ \text{k\_seq} & \text{sequence of maxk to evaluate} \end{array}
```

Value

Returns the minimum maxk

Examples

```
get_min_maxk(samp_tightness = c(1.5, 1.2, 0.98),
 k_seq = c(20, 30, 40))
```

4 RESTK

linear_adjust

Linear adjust

Description

linear_adjust function used to project the max_k line into the probabilities of interest

Usage

```
linear_adjust(min_maxk = NULL, probs = NULL, probs_interest)
```

Arguments

```
min_maxk minimum maxk found for each probability of interest
probs Probabilities where maxk was evaluated
probs_interest Probabilities of interest to estimate
```

Value

Returns the maxk line for the probabilities of interest

Examples

```
linear_adjust(min_maxk = c(10, 15, 20),

probs = c(1-1e-1, 1-1e-2, 1-1e-3),

probs_interest = c(1-1e-6, 1-1e-7, 1-1e-8))
```

RESTK

RESTK

Description

RESTK function used to project the maxk line into the probabilities of interest

Usage

```
RESTK(
    training_data = NULL,
    validation_data = NULL,
    probs = NULL,
    probs_interest = NULL,
    bootstrap_size = NULL,
    bootstrap_training_sims = NULL,
    bootstrap_validation_sims = NULL)
```

RESTK_training 5

Arguments

```
training_data training data

validation_data

validation data

probs Probabilities where maxk was evaluated

probs_interest Probabilities of interest to estimate

bootstrap_size size of bootstrap simulations on the training data

bootstrap_training_sims

number of bootstrap simulations on the training data

bootstrap_validation_sims

number of bootstrap simulations on the validation data
```

Value

Returns the maxk line for the probabilities of interest

Examples

RESTK_training

RESTK Training

Description

RESTK_training function used to project the maxk line into the probabilities of interest

6 RESTK_validation

Usage

```
RESTK_training(
   training_data = NULL,
   probs = NULL,
   probs_interest = NULL,
   bootstrap_size = NULL,
   bootstrap_training_sims = NULL)
```

Arguments

```
training_data training data

probs Probabilities where maxk was evaluated

probs_interest Probabilities of interest to estimate

bootstrap_size size of bootstrap simulations on the training data

bootstrap_training_sims

number of bootstrap simulations on the training data
```

Value

Returns the estimated maxk line from the probabilities of interest

Examples

RESTK_validation

RESTK Validation

Description

 ${\tt RESTK_validation}\ main\ function\ for\ the\ validation\ of\ the\ RESTK\ methodology\ by\ using\ the\ maxk\ line$

Usage

```
RESTK_validation(
  validation_data = NULL,
  maxk_line = NULL,
  probs_interest = NULL,
  bootstrap_size = NULL,
  bootstrap_validation_sims = NULL)
```

Arguments

```
validation_data
validation data

maxk_line maxk line obtained from RESTK_training

probs_interest Probabilities of interest to estimate

bootstrap_size size of bootstrap simulations on the validation data

bootstrap_validation_sims

number of bootstrap simulations on the validation data
```

Value

Returns the estimated quantiles from the probabilities of interest

Examples

```
{\tt sample\_quantile\_estimation}
```

Estimate Quantiles within the Sample

Description

sample_quantile_estimation returns the estimated quantiles for the chosen probabilities from the input sample. This method uses the sample quantile method number 8 from the default quantile function.

8 tightness

Usage

```
sample_quantile_estimation(samp = NULL, probs = NULL, bootstrap_sims = NULL)
```

Arguments

samp Sample of data to model

probs Probabilities of interest to generate the max_k line

bootstrap_sims Number of bootstrap simulations to estimate the quantiles

Value

Returns estimated quantiles for the chosen probabilities.

Examples

tightness

Tightness function

Description

tightness function used to minimized the tightness as a function of the value of k

Usage

```
tightness(samp = NULL, prob = NULL, quant = NULL, k = NULL)
```

Arguments

samp	Sample of data to model
prob	Probability of interest
quant	Quantile of interest

k value of k to check tightness

Value

Returns the squared difference between the tightness and 1

tightness 9

Examples

```
samp <- rnorm(1e3, mean = 100, sd = 10)

prob <- c(1-1e-2)

k <- 1:100

quant <- qnorm(p = prob, mean = 100, sd = 10)

tightness(samp = samp, prob = prob, quant = quant, k = k)
```

Index

```
* RESTK
    compute_maxk, 2
    \verb|estimate_quantiles_maxk|, 2
    get_min_maxk, 3
    linear_adjust, 4
    RESTK, 4
    RESTK_training, 5
    RESTK_validation, 6
    {\tt sample\_quantile\_estimation, 7}
     tightness, 8
compute_maxk, 2
estimate_quantiles_maxk, 2
get_min_maxk, 3
linear_adjust, 4
RESTK, 4
{\tt RESTK\_training}, {\color{red} 5}
RESTK_validation, 6
{\tt sample\_quantile\_estimation, 7}
tightness, 8
```