Demostración:

Lema 1 Sea V un espacio vectorial $y v_1, v_2, \dots, v_m \in V$. Entonces

- i) $v_j \in S.E.(v_1, v_2, \dots, v_m), j = 1, \dots, m.$
- ii) S.E. (v_1, v_2, \dots, v_m) es un subespacio de V.
- iii) Si $U \subset V$ es un subespacio tal que $v_1, \dots, v_m \in U$, luego $\langle v_1, v_2, \dots, v_m \rangle \subset U$.

Milton Pacheco

September 8, 2023

1 Lema

Sea V un espacio vectorial y $v_1, v_2, \ldots, v_m \in V$. Entonces

- i) $v_i \in S.E(v_1, v_2, \dots, v_m), j = 1, \dots, m.$
- ii) $S.E.(v_1, v_2, \ldots, v_m \text{ es un subespacio de } V$
- iii) Si $U \subset V$ es un subespacio tal que $v_1, \ldots, v_m \in U$, luego $< v_1, v_2, \ldots, v_m > \subset U$.

Demostracion:

2 Paso 1: Mostrar que $\langle v_1, v_2, \dots, v_m \rangle$ es un subespacio de V

a) El vector cero de V está en $< v_1, v_2, \ldots, v_m >$ porque se puede escribir como una combinación lineal de los vectores v_1, v_2, \ldots, v_m de la siguiente manera:

$$0 \cdot v_1 + 0 \cdot v_2 + \ldots + 0 \cdot v_m = 0$$

Por lo tanto, el vector cero está en $\langle v_1, v_2, \dots, v_m \rangle$.

b) $\langle v_1, v_2, \dots, v_m \rangle$ es cerrado bajo la suma de vectores porque si tomamos dos vectores cualesquiera u y w en $\langle v_1, v_2, \dots, v_m \rangle$, entonces también están en el espacio generado por estos vectores, y la suma u+w también estará en ese espacio.

c) $\langle v_1, v_2, \dots, v_m \rangle$ es cerrado bajo la multiplicación por escalares porque si tomamos un vector u en $\langle v_1, v_2, \dots, v_m \rangle$ y multiplicamos u por cualquier escalar c, entonces el resultado $c \cdot u$ seguirá estando en $\langle v_1, v_2, \dots, v_m \rangle$.

Luego $< v_1, v_2, \ldots, v_m > \subset v_1, v_2, \ldots, v_m$ y $v_1, v_2, \ldots, v_m \subset V$ entonces $< v_1, v_2, \ldots, v_m > \subset V$ lema. Dado que hemos demostrado que $< v_1, v_2, \ldots, v_m >$ cumple con las cuatro propiedades de un subespacio vectorial, podemos concluir que $< v_1, v_2, \ldots, v_m >$ es un subespacio de V.

3 Paso 2: Demostrar que cualquier subconjunto U de V que contiene a v_1, v_2, \ldots, v_m debe ser un subconjunto de $\langle v_1, v_2, \ldots, v_m \rangle$

Si U es un subconjunto de V que contiene a v_1, v_2, \ldots, v_m . Queremos demostrar que $\langle v_1, v_2, \ldots, v_m \rangle$ también es un subconjunto de U.

Dado que U es un subconjunto de V, cualquier vector u en U es un vector de V. Además, sabemos que v_1, v_2, \ldots, v_m pertenecen a U según la hipótesis.

Ahora, consideremos un vector u en U. Podemos escribir u como una combinación lineal de v_1, v_2, \ldots, v_m , ya que v_1, v_2, \ldots, v_m son vectores en U:

$$u = a_1 \cdot v_1 + a_2 \cdot v_2 + \ldots + a_m \cdot v_m$$

Donde a_1, a_2, \ldots, a_m son escalares. Esto significa que u está en el espacio generado por v_1, v_2, \ldots, v_m , por ser cerrada con respecto al producto por escalaras es decir, u está en $< v_1, v_2, \ldots, v_m >$.

Dado que hemos demostrado que u está en $< v_1, v_2, \dots, v_m >$ para cualquier vector u en U.

4 Conclusión

Hemos demostrado que $< v_1, v_2, \ldots, v_m >$ es un subespacio de V y que cualquier subconjunto U de V que contiene a v_1, v_2, \ldots, v_m es un subconjunto de $< v_1, v_2, \ldots, v_m >$. Por lo tanto, hemos demostrado que $< v_1, v_2, \ldots, v_m >$ es el menor subespacio de V que contiene a v_1, v_2, \ldots, v_m , como se quería demostrar.