

Séries numériques et familles sommables

Solution 1.

1. On a $b_0 = a_1 = 5$, $b_1 = a_3 = 13$ et pour $p \ge 2$, $b_p = 2b_{p-1} + 3b_{p-2}$.

On a donc l'équation caractéristique $x^2 - 2x - 3 = 0$. Les deux solutions sont 3 et -1. Donc il existe $(\lambda, \mu) \in \mathbb{R}^2$, $b_p = \lambda 3^p + \mu (-1)^p$.

On a alors $b_0 = 5 = \lambda + \mu$ et $b_1 = 13 = 3\lambda - \mu$. On trouve alors

$$\lambda = \frac{9}{2} \text{ et } \mu = \frac{1}{2}$$
 (1)

- 2. On le montre par récurrence sur $p \in \mathbb{N}$.
- 3. Si $3^p \le n < 3^{p+1}$, on a $a_n = b_p = \frac{9}{2}3^p + \frac{1}{2}(-1)^p$. Alors

$$\frac{3}{2} + \frac{1}{2}(-1)^p \frac{1}{3^{p+1}} < \frac{a_n}{n} \leqslant \frac{9}{2} + \frac{1}{2}(-1)^p \frac{1}{3^p}$$
 (2)

Soit $\sigma \colon \mathbb{N} \to \mathbb{N}$ strictement croissante telle que

$$\frac{a_{\sigma(n)}}{\sigma(n)} \xrightarrow[n \to +\infty]{} \lambda \tag{3}$$

Soit $p_n \in \mathbb{N}$ tel que $3^{p_n} \leqslant \sigma(n) < 3^{p_n+1}$. On a

$$p_n = \left\lfloor \log_3(\sigma(n)) \right\rfloor \xrightarrow[n \to +\infty]{} +\infty \tag{4}$$

En reportant, on a $\frac{3}{2} \leqslant \lambda \leqslant \frac{9}{2}$.

Si $\sigma(n) = 3^n$, on a

$$\frac{a_{3^n}}{3^n} = \frac{b_n}{3^n} = \frac{9}{2} + \frac{1}{2} \frac{(-1)^n}{3^n} \xrightarrow[n \to +\infty]{} \frac{9}{2}$$
 (5)

Si $\sigma(n) = 3^{n+1} - 1$, on a

$$\frac{a_{3^n}}{3^n} = \frac{b_n}{3^{n+1} - 1} \xrightarrow[n \to +\infty]{} \frac{3}{2} \tag{6}$$

Soit $\mu \in [1, 3[$ et $\sigma(n) = \lfloor 3^n \mu \rfloor \underset{n \to +\infty}{\sim} 3^n \mu$. Alors

$$\frac{a_{\sigma(n)}}{\sigma(n)} = \frac{b_n}{\left[3^n \mu\right]} \underset{n \to +\infty}{\sim} \frac{b_n}{3^n \mu} = \frac{9}{2\mu} + \frac{1}{2\mu} \frac{(-1)^n}{3^n} \xrightarrow[n \to +\infty]{} \frac{9}{2\mu}$$
 (7)

Donc tout réel compris dans
$$\left[\frac{3}{2}, \frac{9}{2}\right]$$
 est valeur d'adhérence. (8)

Solution 2.

1.

$$g: [a,b] \to \mathbb{R}$$

$$x \mapsto f(x) - x \tag{9}$$

est continue, $g(a) \ge 0$ et $g(b) \le 0$, donc le théorème des valeurs intermédiaires affirme qu'il existe $l \in [a, b]$ avec g(l) = 0, d'où

$$f(l) = l \tag{10}$$

2. On note $A = \{\lambda \mid \lambda \text{ est valeur d'adhérence}\}$. Le théorème de Bolzano-Weierstrass indique que A est non vide. De plus, A est borné car $A \subset [a,b]$. Soit $\lambda = \inf(A)$ et $\mu = \sup(A)$.

Si
$$\lambda = b$$
, on a $\mu = b$ et $A = \{b\} = \{\lambda\} = \{\mu\}$.

Si $\lambda < b$, soit $\varepsilon > 0$. Si $\lambda \notin A$, $\{k \in \mathbb{N} \mid x_k \in]\lambda, \lambda + \varepsilon[\}$ est infini. Par définition, λ est valeur d'adhérence. Donc $\lambda \in A$, et de même $\mu \in A$.

Soit $\nu \in]\lambda, \mu[$ avec $\lambda < \mu$. Si $\nu \notin A$, il existe $\varepsilon_0 > 0$ tel que $\{k \in \mathbb{N} \mid |x_k - \nu| < \varepsilon_0\}$ est fini. Donc il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \geq N_0, x_n \notin]\nu - \varepsilon_0, \nu + \varepsilon_0[$. Comme $\lim_{n \to +\infty} |x_{n+1} - x_n| = 0$, il existe $N_1 \in \mathbb{N}$ tel que pour tout $n \geq N_1, |x_{n+1} - x_n| < 2\varepsilon_0$. Soit alors $n \geq \max(N_0, N_1)$. Si $x_n \leq \nu - \varepsilon_0$, alors $x_{n+1} \leq \nu - \varepsilon_0$. Si $x_n \geq \nu + \varepsilon_0$, alors $x_{n+1} \geq \nu + \varepsilon_0$. Ceci contredit que λ et μ sont valeur d'adhérence.

Ainsi, $\nu \in A$ et

$$[\lambda, \mu]$$
 est le segment des valeurs d'adhérence. (11)

3. Si (x_n) converge, alors $\lim_{n\to +\infty} x_{n+1} - x_n = 0$. Réciproquement, si $\lim_{n\to +\infty} x_{n+1} - x_n = 0$, d'après 2., on a $A = [\lambda, \mu]$. On suppose $\lambda < \nu$. Ainsi, $\frac{\lambda+\nu}{2} = \alpha$ est valeur d'adhérence. Donc il existe $\sigma \colon \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $x_{\sigma(n)} \xrightarrow[n\to +\infty]{} \alpha$. Alors $\lim_{n\to +\infty} x_{\sigma(n)+1} = f(\alpha)$ par continuité de f et c'est aussi égale à $\lim_{n\to +\infty} x_{\sigma(n)} = \alpha$ car $\lim_{n\to +\infty} x_{n+1} - x_n = 0$. Ainsi,

$$f(\alpha) = \alpha \tag{12}$$

Par ailleurs, il existe $n_0 \in \mathbb{N}$ tel que $x_{n_0} \in [\lambda, \mu]$ et $f(x_{n_0}) = x_{n_0} \in A$, alors pour tout $n \geqslant n_0$, on a $x_n = x_{n_0}$. Donc $(x_n)_{n \in \mathbb{N}}$ converge et $\lambda = \mu : (x_n)_{n \in \mathbb{N}}$ est bornée et a une unique valeur d'adhérence.

Donc
$$(x_n)_{n\in\mathbb{N}}$$
 converge. (13)

Solution 3. On a $u_n = e^{i2^n\theta}$ pour tout $n \in \mathbb{N}$.

Si $(u_n)_{n\in\mathbb{N}}$ converge vers l, alors $\lim_{n\to+\infty}u_n=1$ car $l=l^2$ et |l|=1.

Si $(u_n)_{n\in\mathbb{N}}$ est périodique au-delà d'un certain rang, il existe $T\in\mathbb{N}^*$, il existe $N_0\in\mathbb{N}$ tel que pour tout $n\geqslant N_0,\ u_{n+T}=u_n$. En particulier, $u_{N_0+T}=u_{N_0}$. On veut alors $2^{N_0+T}\theta\equiv 2^{N_0}\theta[2\pi]$. D'où $2^{N_0+T}\theta=2\theta+2k\pi$ donc $2^{N_0}(2^T-1)\theta=2k\pi$. Donc $\frac{\theta}{2\pi}\in\mathbb{Q}$.

Réciproquement, si $\frac{\theta}{2\pi} \in \mathbb{Q}$, son développement binaire est périodique à partir d'un certain rang, et donc $(u_n)_{n\in\mathbb{N}}$ l'est aussi.

Si $(u_n)_{n\in\mathbb{N}}$ est stationnaire, il existe $N\in\mathbb{N}$ tel que pour tout $n\geqslant N,$ $U_{N+1}=U_N=U_{N^2}.$ Comme $|U_N|=1$, alors $2^n\theta\in 2\pi\mathbb{N}$ et $\frac{\theta}{2\pi}$ est dyadique.

Réciproquement, s'il existe $p \in \mathbb{N}$, $u_0 \in \mathbb{N}$ tel que $\frac{\theta}{2\pi} = \frac{p}{2^{n_0}}$ (nombre dyadique). Alors pour tout $n \ge n_0$, $2^n \theta \in 2\pi \mathbb{N}$ et $u_n = u_{n_0} = 1$.

Pour la densité, on prend une suite $(a_n)_{n\in\mathbb{N}}$ en écrivant successivement, pour tout $k\in\mathbb{N}^*$, tous les paquets de k entiers sont dans $\{0,1\}^k$. Soit $x\in[0,1[$ tel que

$$x = \sum_{n=1}^{+\infty} \frac{a_n}{2^n} \tag{14}$$

Soit $N \in \mathbb{N}$, il existe $p_N \in \mathbb{N}$,

$$2^{p_N}\theta = 2\pi \underbrace{(\dots)}_{\in \mathbb{N}} + 2\pi \left(\frac{a_1}{2} + \dots + \frac{a_N}{2^N} + \underbrace{\dots}_{\in [0, \frac{1}{2^N}[}\right)$$
 (15)

On a alors

$$e^{i2^{p_N}\theta} = e^{i2\pi(\frac{a_1}{2} + \dots + \frac{a_N}{2^N} + \dots)}$$
(16)

et

$$\left| \frac{a_1}{2} + \dots + \frac{a_N}{2^N} - x \right| \leqslant \frac{1}{2^N} \tag{17}$$

D'où $\lim_{N\to+\infty}u_{p_N}=e^{\mathrm{i}2\pi x}$ et $(u_n)_{n\in\mathbb{N}}$ est dense dans \mathbb{U} .

Solution 4. Si a = 0 et b = 0, $u_n \xrightarrow[n \to +\infty]{} 0$.

Si a = 0 et $b \neq 0$ (ou inversement), $u_n \underset{n \to +\infty}{\sim} \left(\frac{1}{2}\right)^{n^2} \xrightarrow[n \to +\infty]{} 0$.

Si a > 0 ou b > 0, on a

$$u_n = \exp\left(n^2 \ln\left(\frac{e^{\frac{1}{n}\ln(a)} + e^{\frac{1}{n}\ln(b)}}{2}\right)\right) \tag{18}$$

$$= \exp\left(n^2 \ln\left(1 + \frac{1}{2n}\ln(ab) + \frac{1}{4n^2}(\ln(a)^2 + \ln(b)^2)\right) + o\left(\frac{1}{n^2}\right)\right)$$
(19)

$$= \exp\left(\frac{n}{2}\ln(ab) + \frac{1}{4}(\ln(a)^2 + \ln(b)^2) - \frac{1}{8}\ln(ab)^2 + o(1)\right)$$
 (20)

Si ab > 1, on a

$$\lim_{n \to +\infty} u_n = +\infty$$
(21)

Si ab < 1, on a

$$\lim_{n \to +\infty} u_n = 0 \tag{22}$$

Si ab = 1, on a

$$\lim_{n \to +\infty} u_n = e^{\frac{1}{2}\ln(a)^2} \tag{23}$$

Solution 5.

1. Soit $M = \sup_{n \in \mathbb{N}} x_n > 0$ (car $\sum_{n \in \mathbb{N}} x_n = +\infty$).

$$J = \left\{ k \in \mathbb{N} \mid x_k \geqslant \frac{M}{2} \right\} \tag{24}$$

est fini car $x_n \xrightarrow[n \to +\infty]{} 0$ et est non vide. On définit

$$\varphi(0) = \min \left\{ k \in J \mid x_k = \max\{x_n \mid n \in J\} \right\}$$
 (25)

Pour tout $n \in J$, $x_{\varphi(0)} \geqslant x_n$. Si $n \notin J$, $x_n \leqslant \frac{M}{2} < x_{\varphi(0)}$. Ainsi,

$$x_{\varphi(0)} = \max\{x_n \mid n \in \mathbb{N}\}\$$
(26)

Puis on recommence avec

$$\left\{ x_n \mid n \in \mathbb{N} \setminus \{\varphi(0)\} \right\} \tag{27}$$

2. Pour l=0, pour tout $\varepsilon>0$, il existe $n\in\mathbb{N}$ tel que $x_N<\varepsilon$. On pose

$$I = \{N\} \tag{28}$$

et on a bien

$$\left| \sum_{k \in I} x_k - l \right| \leqslant \varepsilon \tag{29}$$

Si $l = +\infty$, soit A > 0. Il existe $N \in \mathbb{N}$ tel que $\sum_{k=0}^{N} x_k > A$ (car $\sum_{n \in \mathbb{N}} x_n = +\infty$). Donc on peut prendre

$$\boxed{I = \{0, \dots, N\}}\tag{30}$$

Si $l \in \mathbb{R}_+^*$. Soit $\varepsilon > 0$, on peut supposer sans perte de généralité que $\varepsilon < l$. Il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \geqslant N_0$, on a $x_n < \varepsilon$ et $\sum_{n=N_0}^{+\infty} x_n = +\infty$. Donc il existe un plus petit entier N_1 tel que $\sum_{n=N_0}^{N_1} x_n \geqslant l - \varepsilon$. Comme $x_{N_1} < \varepsilon$, on a $\sum_{n=N_0}^{N_1} x_n \leqslant l + \varepsilon$. Donc

$$\boxed{I = \{N_0, \dots, N_1\}} \tag{31}$$

Solution 6. On pose

$$S_n = \sum_{k=0}^n u_k^2 \tag{32}$$

Montrons que $S_n \xrightarrow[n \to +\infty]{} +\infty$. D'abord, il existe $n_0 \in \mathbb{N}$ tel que $u_{n_0} > \operatorname{donc} \lim_{n \to +\infty} S_n = l \in \overline{R}_+^*$. Si $l < +\infty$, on a $u_n \xrightarrow[n \to +\infty]{} \frac{1}{l}$ et donc $u_n^2 \xrightarrow[n \to +\infty]{} \frac{1}{l^2}$ et la série diverge. Donc $l = +\infty$ et comme $u_n \underset{n \to +\infty}{\sim} \frac{1}{S_n}$, on a $u_n \xrightarrow[n \to +\infty]{} 0$.

On observe ensuite que $S_n - S_{n-1} = u_n^2 = o(1)$ donc $S_{n-1} \underset{n \to +\infty}{\sim} S_n$. Ainsi,

$$\underbrace{u_n^2 S_n^2}_{n \to +\infty} \xrightarrow[n \to +\infty]{} 1 \tag{33}$$

$$= (S_n - S_{n-1}) S_n^2$$

et on a

$$\frac{S_n^2 + S_n S_{n-1} + S_{n-1}^2}{S_n^2} = 1 + \frac{S_{n-1}}{S_n} + \frac{S_{n-1}^2}{S_n^2} \xrightarrow[n \to +\infty]{} 3$$
 (34)

donc

$$\underbrace{(S_n - S_{n-1})(S_n^2 + S_n S_{n-1} + S_{n-1}^2)}_{= S_n^3 - S_{n-1}^3} \xrightarrow[n \to +\infty]{} 3$$
(35)

On applique le théorème de Césaro à la suite $S_n^3 - S_{n-1}^3$:

$$\frac{S_n^3 - S_0^3}{n} \xrightarrow[n \to +\infty]{} 3 \tag{36}$$

donc $S_n \underset{n \to +\infty}{\sim} \sqrt[3]{3n}$, et comme $u_n \underset{n \to +\infty}{\sim} \frac{1}{S_n}$, on a bien

$$u_n \underset{n \to +\infty}{\sim} \frac{1}{\sqrt[3]{3n}} \tag{37}$$

Réciproquement, soit $u_n = \frac{1}{\sqrt[3]{3n}}$ avec $u_0 = 1$. On a

$$u_n^2 = \frac{1}{(3n)^{\frac{2}{3}}} \tag{38}$$

Par comparaison série-intégrale, on a

$$\sum_{k=0}^{n} u_k^2 \underset{n \to +\infty}{\sim} \frac{1}{3^{\frac{2}{3}}} \times 3n^{\frac{1}{3}} = (3n)^{\frac{1}{3}}$$
 (39)

et donc

$$u_n \times \sum_{k=0}^n u_k^2 \underset{n \to +\infty}{\sim} \frac{\sqrt[3]{3n}}{\sqrt[3]{3n}} = 1$$

$$(40)$$

Remarque 1. On rappelle que l'on a la comparaison série-intégrale, pour $\alpha < 1$,

$$\sum_{k=1}^{N} \frac{1}{k^{\alpha}} \underset{n \to +\infty}{\sim} \int_{1}^{N} \frac{dt}{t^{\alpha}} \underset{n \to +\infty}{\sim} \frac{1}{1-\alpha} N^{1-\alpha}$$

$$\tag{41}$$

Solution 7. Tout d'abord, on montre que pour tout $x \in [0,1]$,

$$0 \leqslant \cosh(x) - 1 - \frac{x^2}{2} \leqslant x^4 \tag{42}$$

en posant

$$f: [0,1] \rightarrow \mathbb{R}$$

$$x \mapsto \cosh(x) - 1 - \frac{x^2}{2}$$

$$(43)$$

de classe C^{∞} sur [0,1] et on a $f''(x) = \cosh(x) - 1 \ge 0$ et f'(0) = 0. Comme f(0) = 0, on a pour tout $x \in [0,1], f(x) \ge 0$.

Avec l'inégalité de Taylor-Lagrange à l'ordre 4 sur f, on a

$$0 \leqslant \cosh(x) - 1 - \frac{x^2}{2} \leqslant \frac{x^4}{24} \times \underbrace{\sup_{t \in [0,1]} |\cosh^{(4)}(t)|}_{\leqslant \cosh(1)} \leqslant x^4$$
 (44)

Figure $1 - 0 \le \cosh(x) - 1 - \frac{x^2}{2} \le x^4$ pour $x \in \mathbb{R}$.

On a

$$-x_n = \sum_{k=1}^n \left[\cosh\left(\frac{1}{\sqrt{k+n}}\right) - 1 \right] \tag{45}$$

Ainsi,

$$0 \leqslant x_n - \sum_{k=1}^n \frac{1}{2n+k} \leqslant \sum_{k=1}^n \frac{1}{(n+k)^2} \leqslant \frac{n}{(n+1)^2} \xrightarrow[n \to +\infty]{} 0 \tag{46}$$

On a

$$\sum_{k=1}^{n} \frac{1}{n+k} = H_{2n} - H_n = \ln(2n) + \gamma + o(1) - \ln(n) - \gamma = \ln(2) + o(1)$$
(47)

Donc

$$\left| \lim_{n \to +\infty} x_n = -\frac{\ln(2)}{2} \right| \tag{48}$$

Solution 8. φ est dérivable sur \mathbb{R} et on a pour tout $x \in \mathbb{R}$, $\varphi'(x) = e^x - 1$.

Figure $2 - e^x - x - 1 \geqslant -x - 1$ pour $x \in \mathbb{R}$.

On a

$$0\varphi(a_n) \leqslant \varphi(a_n) + \varphi(b_n) + \varphi(c_n) \xrightarrow[n \to +\infty]{} 0 \tag{49}$$

donc

$$\lim_{n \to +\infty} \varphi(a_n) = 0 \tag{50}$$

Par l'absurde, soit $\varepsilon > 0$. Supposons qu'il existe une infinité d'entiers $k \in \mathbb{N}$ tel que $|a_k| > \varepsilon$. Cela implique alors

$$\varphi(a_k) \geqslant \min(\varphi(\varepsilon), \varphi(-\varepsilon)) > 0$$
(51)

ce qui contredit $\lim_{n\to+\infty} \varphi(a_n) = 0$. Donc

$$\lim_{n \to +\infty} a_n = 0$$
(52)

et c'est pareil pour b_n et c_n .

Solution 9.

1. Soit

$$f:]0,1[\rightarrow \mathbb{R}$$

$$x \mapsto x(1-x)$$

$$(53)$$

On a $f(x) \in]0, \frac{1}{4}]$. Pour tout $n \in \ge 1$, $u_n \in]0, \frac{1}{4}]$. Par récurrence, on a donc $u_{n+1} \le u_n$ et $\lim_{n \to +\infty} u_n = 0$.

Donc v_n est bien définie.

(54)

Figure $3 - x(1 - x) \in \left]0, \frac{1}{4}\right]$ pour $x \in]0, 1[$.

2. On a

$$\frac{1}{u_{n+1}} = \frac{1}{u_n} \times \frac{1}{1 - u_n} = \frac{1}{u_n} (1 + u_n + o(u_n)) = \frac{1}{u_n} + 1 + o(1)$$
 (55)

Donc $v_{n+1}-v_n \xrightarrow[n \to +\infty]{} 1$. D'après le théorème de Césaro, on a

$$\frac{v_n - v_0}{n} \xrightarrow[n \to +\infty]{} 1 \tag{56}$$

donc $v_n \underset{n \to +\infty}{\sim} n$ et $u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$.

On a

$$\frac{1}{u_{n+1}} = \frac{1}{u_n} (1 + u_n + u_n^2 + O(u_n^3)) = \frac{1}{u_n} + 1 + u_n + \underbrace{O(u_n^2)}_{= O(\frac{1}{n^2})}$$
(57)

donc

$$\frac{1}{u_{n+1}} - \frac{1}{u_n} = 1 + u_n + O\left(\frac{1}{n^2}\right) \tag{58}$$

et $u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$ donc $\sum_{k=0}^n u_k \underset{n \to +\infty}{\sim} \ln(n)$. En sommant, on a donc

$$v_n - v_0 = n + \ln(n) + o(\ln(n))$$
 (59)

On a alors

$$u_n = \frac{1}{n + \ln(n) + o(\ln(n))} \tag{60}$$

$$= \frac{1}{n} \times \frac{1}{1 + \frac{\ln(n)}{n} + o(\frac{\ln(n)}{n})}$$
 (61)

$$= \frac{1}{n} \left(1 - \frac{\ln(n)}{n} + o\left(\frac{\ln(n)}{n}\right) \right) \tag{62}$$

$$=\frac{1}{n}-\underbrace{\frac{\ln(n)}{n^2}+o\left(\frac{\ln(n)}{n^2}\right)}_{=0}$$
(63)

 α_n est le terme genéral d'une série à termes positifs convergentes car $\alpha_n = O\left(\frac{1}{n^{\frac{3}{2}}}\right)$. Donc

$$v_{n+1} - v_n = 1 + \frac{1}{n} + \alpha_n + O\left(\frac{1}{n^2}\right)$$
 (64)

et en sommant,

$$v_n = n + \ln(n) + O(1) \tag{65}$$

et comme montré auparavant,

$$u_n = \frac{1}{n} - \frac{\ln(n)}{n^2} + o\left(\frac{\ln(n)}{n^2}\right)$$
(66)

Solution 10.

1. Soit

$$f_n: \mathbb{R}^+ \to \mathbb{R}$$

$$x \mapsto x^n - x - n \tag{67}$$

On a $f'_n(x) = nx^{n-1} - 1 = 0$ si et seulement si

$$x = \left(\frac{1}{n}\right)^{\frac{1}{n-1}} = \alpha_n \tag{68}$$

 $f_n(0) = 0$ et $f_n(x) \xrightarrow[x \to +\infty]{} +\infty$. f_n est monotone strictement sur $]\alpha_n, +\infty[$.

Donc il existe un unique
$$x_n \in \mathbb{R}^+$$
 tel que $f_n(x_n) = 0$ (69)

On a $f_n(1) = -n < 0$ donc $x_n > 1$ et $f_n(2) = 2^n - 2 - n > 0$ pour $n \ge 3$ (on a $x_2 = 2$). Donc pour $n \ge 3$, $x_n \in]1, 2[$.

FIGURE $4-x\mapsto x^3-x-3$ a exactement un zéro sur \mathbb{R}_+ .

2. On a $x_n^n = x_n + n \le 2 + n$ donc

$$1 \leqslant x_n \leqslant (2+n)^{\frac{1}{n}} = e^{\frac{1}{n}\ln(2+n)} \xrightarrow[n \to +\infty]{} 1$$
 (70)

Donc

$$\lim_{n \to +\infty} x_n = 1 \tag{71}$$

3. On peut poser $x_n=1+\varepsilon_n$ avec $\varepsilon_n>0$ et $\lim_{n\to+\infty}\varepsilon_n=0$. On a

$$(1 + \varepsilon_n)^n = 1 + \varepsilon_n + n \tag{72}$$

donc

$$n\ln(1+\varepsilon_n) = \ln(1+\varepsilon_n+n) = \ln(n) + \underbrace{\ln\left(1+\frac{1+\varepsilon_n}{n}\right)}_{\substack{n \to +\infty}}$$
(73)

et donc

$$\varepsilon_n \underset{n \to +\infty}{\sim} \frac{\ln(n)}{n} \tag{74}$$

On a donc

$$x_n = 1 + \frac{\ln(n)}{n} + o\left(\frac{\ln(n)}{n}\right) \tag{75}$$

On a enfin

$$(1 + \varepsilon_n)^n = 1 + \varepsilon_n + n = 1 + n + \frac{\ln(n)}{n} + o\left(\frac{\ln(n)}{n}\right)$$
(76)

d'où

$$\ln(1+\varepsilon_n) = \frac{1}{n}\ln(n+1+\frac{\ln(n)}{n}+o\left(\frac{\ln(n)}{n}\right))$$
(77)

$$= \frac{1}{n} \left[\ln(n) + \ln\left(1 + \frac{1}{n} + \underbrace{\frac{\ln(n)}{n^2} + o\left(\frac{\ln(n)}{n^2}\right)}_{-o\left(\frac{1}{n}\right)} \right) \right]$$
(78)

$$= \frac{\ln(n)}{n} + \frac{1}{n^2} + o\left(\frac{1}{n^2}\right) \tag{79}$$

donc

$$1 + \varepsilon_n = e^{\frac{\ln(n)}{n} + \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)} = 1 + \frac{\ln(n)}{n} + \frac{\ln(n)^2}{2n^2} + o\left(\frac{\ln(n)^2}{n^2}\right)$$
(80)

puis

$$\varepsilon_n = \frac{\ln(n)}{n} + \frac{\ln(n)^2}{2n^2} + o\left(\frac{\ln(n)^2}{n^2}\right) \tag{81}$$

et ainsi

$$x_n = 1 + \frac{\ln(n)}{n} + \frac{\ln(n)^2}{2n^2} + o\left(\frac{\ln(n)^2}{n^2}\right)$$
 (82)

Solution 11. On note

$$v_n = \lim_{n \to +\infty} \frac{u_n a_0 + u_{n-1} a_1 + \dots + u_0 a_n}{u_0 + \dots + u_n}$$
(83)

Si pour tout $n \in \mathbb{N}$, $a_n = a$ alors $v_n = a \xrightarrow[n \to +\infty]{} a$. De manière générale, on a

$$v_n - a = v_n - a \frac{u_n + \dots + u_0}{u_0 + \dots + u_n} = \frac{\sum_{k=0}^n u_{n-k}(a_k - a)}{u_0 + \dots + u_n}$$
(84)

Ainsi,

$$|u_n - a| \leqslant \frac{\sum_{k=0}^n u_{n-k} |a_k - a|}{u_0 + \dots + u_n} \tag{85}$$

Soit $\varepsilon > 0$. Il existe $N \in \mathbb{N}$ tel que pour tout $k \ge N$, $|a_k - a| \le \frac{\varepsilon}{2}$. Comme $(a_k)_{k \in \mathbb{N}}$ converge, on note $M = \sup_{k \in \mathbb{N}} |a_k - a|$. Soit $n \ge N$, on a

$$|v_n - a| \leqslant \frac{\sum_{k=0}^{N-1} u_{n-k} |a_k - a| + \sum_{k=N}^n |a_k - a|}{u_0 + \dots + u_n}$$
(86)

$$\leqslant \frac{\sum_{k=n-N+1}^{n} u_k M}{u_0 + \dots + u_n} + \underbrace{\frac{\sum_{k=N}^{n} u_{n-k} \frac{\varepsilon}{2}}{u_0 + \dots + u_n}}_{\leqslant \frac{\varepsilon}{2}}$$

$$\tag{87}$$

car les u_i sont positifs.

On remarque enfin que

$$u_{n} = o(u_{0} + \dots + u_{n})$$

$$u_{n-1} = o(u_{0} + \dots + u_{n-1}) = o(u_{0} + \dots + u_{n})$$

$$\vdots$$

$$u_{n-N+1} = o(u_{0} + \dots + u_{n})$$
(88)

Donc

$$M \xrightarrow{\sum_{k=n-N+1}^{n} u_k} \xrightarrow[n \to +\infty]{} 0 \tag{89}$$

et il existe $N' \in \mathbb{C}$ tel que pour tout $n \geqslant N'$, on a

$$M\frac{\sum_{k=n-N+1}^{n} u_k}{u_0 + \dots + u_n} \leqslant \frac{\varepsilon}{2} \tag{90}$$

et donc pour tout $n \ge \max(N, N')$, on a $|v_n - a| \le \frac{\varepsilon}{2}$ et ainsi

$$\lim_{n \to +\infty} v_n = a$$
(91)

Solution 12.

1. Pour $n \ge 2$, (iii) donne

$$x - \frac{a_2}{2} - \dots - \frac{a_n}{n!} = \sum_{k=n+1}^{+\infty} \frac{a_k}{k!}$$
 (92)

Ainsi,

$$0 \leqslant x - \frac{a_2}{2} - \dots - \frac{a_n}{n!} < \sum_{k=n+1}^{+\infty} \frac{k-1}{k!} = \sum_{k=n+1}^{+\infty} \frac{1}{(k-1)!} - \frac{1}{k!} = \frac{1}{n!}$$
 (93)

où l'inégalité est stricte d'après (ii). Pour $n \ge 2$, on a

$$x - \frac{a_2}{2} < \frac{1}{2!} \tag{94}$$

donc

$$0 \leqslant 2x - \underbrace{a_2}_{\in \mathbb{N}} < 1 \tag{95}$$

Donc $a_2 = \lfloor 2x \rfloor$. On a ensuite

$$0 \leqslant n! \left(x - \frac{a_2}{2} - \dots - \frac{a_{n-1}}{(n-1)!} \right) - \underbrace{a_n}_{\in \mathbb{N}} < 1$$
 (96)

donc

$$a_n = \left[n! \left(x - \frac{a_2}{2} - \dots - \frac{a_{n-1}}{(n-1)!} \right) \right]$$
 (97)

On a donc bien unicité.

Soit maintenant $(a_n)_{n\in\mathbb{N}}$ définie comme ci-dessus. On a, pour tout $n\geqslant 2$, on a

$$0 \leqslant n! \left(x - \frac{a_2}{2} - \dots - \frac{a_{n-1}}{(n-1)!} \right) - \underbrace{a_n}_{\in \mathbb{N}} < 1$$
 (98)

Or

$$0 - \frac{a_2}{2} - \dots - \frac{a_{n-1}}{(n-1)!} \le \frac{1}{(n-1)!}$$
(99)

donc

$$a_n \in \{0, \dots, n-1\} \tag{100}$$

et (i) est vérifié.

On a

$$0 \leqslant x - \sum_{k=2}^{n} \frac{a_k}{k!} < \frac{1}{n!} \xrightarrow[n \to +\infty]{} 0 \tag{101}$$

donc (iii) est vérifié, et supposons qu'il existe $n_0 \ge 2$ tel que pour tout $m \ge n_0 + 1$, on a $a_m = m - 1$. Alors

$$x = \sum_{k=0}^{n_0} \frac{a_k}{k!} + \sum_{k=n_0+1}^{+\infty} \frac{k-1}{k!}$$
 (102)

et

$$x - \sum_{k=0}^{n_0} \frac{a_k}{k!} = \sum_{k=n_0+1}^{+\infty} \frac{k-1}{k!} = \frac{1}{n_0!}$$
 (103)

donc

$$n_0! \left(x - \sum_{k=0}^{n_0} \frac{a_k}{k!} \right) = 1 \tag{104}$$

et

$$n_0! \left(x - \sum_{k=0}^{n_0 - 1} \frac{a_{n_0 - 1}}{(n_0 - 1)!} \right) - a_{n_0} = 1$$
 (105)

En prenant la partie entière, on a donc 0 = 1 ce qui est absurde.

Donc (ii) est vérifié.

2. S'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$, $a_n = 0$ alors $x \in \mathbb{Q}$.

Si $x = \frac{p}{q} \in \mathbb{Q}$, on a

$$x = \frac{a_2}{2} + \dots + \frac{a_n}{n!} \tag{106}$$

si et seulement si

$$a_n = n! \left(x - \frac{a_2}{2} - \dots - \frac{a_{n-1}}{(n-1)!} \right)$$
 (107)

si et seulement si

$$n! \left(x - \frac{a_2}{2} - \dots - \frac{a_{n-1}}{(n-1)!} \right) \in \mathbb{N}$$
 (108)

ce qui est vrai dès que $n \ge q$. Donc pour tout n > q, on a $a_n = 0$ par unicité.

3. Soit $l \in [-1, 1]$. Soit $x \in [0, 1[$ avec

$$x = \sum_{k=2}^{+\infty} \frac{a_k}{k!} \tag{109}$$

On a alors

$$n!2\pi x = \underbrace{\sum_{k=2}^{n} \frac{2\pi a_k n!}{k!}}_{\in 2\pi \mathbb{Z}} + \frac{2\pi a_{n+1}}{n+1} + \underbrace{\sum_{k \geqslant n+2} \frac{2\pi a_k n!}{k!}}_{= \varepsilon_n}$$
(110)

On a

$$0 \leqslant \varepsilon_n < \frac{2\pi n!}{(n+1)!} = \frac{2\pi}{n+1} \xrightarrow[n \to +\infty]{} 0 \tag{111}$$

Donc

$$\sin(n!2\pi x) = \sin\left(\frac{2\pi a_{n+1}}{n+1} + \varepsilon_n\right) \tag{112}$$

et il suffit d'avoir, comme $\varepsilon_n \xrightarrow[n \to +\infty]{} 0$,

$$\frac{a_n}{n} \xrightarrow[n \to +\infty]{} \frac{\arcsin(l)}{2\pi} \in \left[0, \frac{1}{4}\right]$$
 (113)

On pose alors

$$a_n = \left\lfloor \frac{n \arcsin(l)}{2\pi} \right\rfloor \tag{114}$$

pour $n \ge 2$ et on a $0 \le a_n \le \frac{n}{4} < n-1$ pour tout $n \ge 2$. On a donc le résultat.

Remarque 2. Il n'y a pas unicité. Par exemple, pour l=0, x=0 ou $x=\frac{1}{2}$ convient. Plus généralement, pour tout $\frac{p}{q} \in \mathbb{Q}$, pour tout $n \geqslant q$, on a

$$\sin\left(n!2\pi\left(x+\frac{p}{q}\right)\right) = \sin(n!2\pi x) \tag{115}$$

Solution 13. Par récurrence, on a $u_n > 0$ pour tout $n \in \mathbb{N}$. Soit

$$g: \mathbb{R}_{+} \to \mathbb{R}$$

$$x \mapsto 2\ln(1+x) - x \tag{116}$$

et

$$f: \mathbb{R}_{+} \to \mathbb{R}$$

$$x \mapsto 2\ln(1+x)$$
(117)

g est dérivable est

$$g'(x) = \frac{1-x}{1+x} \tag{118}$$

donc g est croissante sur [0,1] et décroissante sur $[1,+\infty[$. Comme g(0)=0 et $\lim_{x\to+\infty}g(x)=-\infty,$ d'après le théorème des valeurs intermédiaires, il existe un unique réel $l\in]0,+\infty[$ tel que g(l)=0 d'où f(l)=l.

FIGURE $5 - x \mapsto 2 \ln(1 + x)$ admet un unique point fixe sur \mathbb{R}_+^* .

Pour tout $x \in]0, l]$, on a $x \leq f(x) \leq l$ et pour tout x > l, on a $l \leq f(x) \leq x$.

Soit $n \ge 1$. Si $u_n \ge l$ et $u_{n-1} \ge l$, on a $m_n = l$ et $M_n \in \{u_n, u_{n-1}\}$. Il vient donc

$$u_{n+1} = \frac{1}{2}(f(u_n) + f(u_{n-1})) \geqslant f(l) = l$$
(119)

 et

$$u_{n+1} \leqslant \frac{1}{2}(u_n + u_{n-1}) \leqslant M_n \tag{120}$$

Donc $m_{n+1} = l = m_n$ et $M_{n+1} \leqslant M_n$.

Par récurrence, on a pour tout $k \ge n$, $u_k \ge l$ et $(M_k)_{k \ge n}$ converge vers $\lambda \ge l$ (car décroissante et plus grande que l) et $m_k = l$ pour tout $k \ge n$.

De plus pour tout $k \ge n$, on a

$$u_{k+1} = \frac{1}{2}(f(u_k) + f(u_{k-1})) \leqslant f(M_k)$$
(121)

car f est croissante et donc

$$u_{k+2} \leqslant f(M_{k+1}) \leqslant f(M_k) \tag{122}$$

Par passage à la limite, on a $\lambda \leqslant f(\lambda)$ donc $\lambda = f(\lambda)$ et donc $\lambda = l$. Or pout tout $k \geqslant n$, on a

$$\underbrace{m_k}_{=l} \leqslant u_k \leqslant M_k \xrightarrow[k \to +\infty]{} l \tag{123}$$

donc

$$\boxed{u_k \xrightarrow[k \to +\infty]{} l}$$
(124)

S'il existe $n_0 \in \mathbb{N}^*$ tel que $u_{n_0-1} \geqslant l$ et $u_{n_0} \geqslant l$ alors $\lim_{n \to +\infty} u_n = l$. Or même s'il existe $n_1 \in \mathbb{N}^*$ tel que $u_{n_1-1} \leqslant l$ et $u_{n_1} \leqslant l$, alors on inverse les rôles de M_{n_1} et m_{n_1} .

Si pour tout $n \in \mathbb{N}$,

$$(u_n - l)(u_{n+1} - l) \le 0 (125)$$

Supposons par exemple $u_0 \ge l$ et $u_1 \le l$. Alors

$$0 \leqslant u_2 - l \leqslant \frac{u_0 - l}{2} \tag{126}$$

et par récurrence, pour tout $k \in \mathbb{N}$, on a $0 \leqslant u_{2k} - l \leqslant \frac{u_0 - l}{2^k}$. Donc $u_{2k} \xrightarrow[k \to +\infty]{} l$ et de même $u_{2k+1} \xrightarrow[k \to +\infty]{} l$ (par valeurs inférieures). Donc

$$\boxed{u_k \xrightarrow[k \to +\infty]{} l}$$
(127)

Solution 14. Soit $(\theta, \theta') \in [2, 2\pi]^2$ tel que

$$\lim_{k \to +\infty} e^{ipx_n} = e^{i\theta} \tag{128}$$

 et

$$\lim_{k \to +\infty} e^{iqx_n} = e^{i\theta'} \tag{129}$$

Soient x,x' deux valeurs d'adhérence de $(x_n)_{n\in\mathbb{N}}$ distinctes. On a

$$\begin{cases}
e^{ipx} = e^{i\theta} = e^{ipx'} \\
e^{iqx} = e^{i\theta'} = e^{iqx'}
\end{cases}$$
(130)

Il existe $(k,k') \in \mathbb{Z}^2$ tel que

$$\begin{cases} px = px' + 2k\pi \\ qx = qx' + 2k\pi \end{cases}$$
(131)

et donc $p(x-x')=2k\pi$ et $q(x-x')=2k'\pi$ et alors $\frac{p}{q}\in\mathbb{Q}$ ce qui contredit l'hypothèse. Donc $(u_n)_{n\in\mathbb{N}}$ possède une unique valeur d'adhérence. Comme elle est bornée,

$$(x_n)_{n\in\mathbb{N}}$$
 converge. (132)

Si $(x_n)_{n\in\mathbb{N}}$ n'est pas bornée, on peut prendre

$$x_n = n!$$
 (133)

On a

$$e^{2i\pi n!} = 1 \tag{134}$$

 et

$$n!e = n! \sum_{k=0}^{+\infty} \frac{1}{k!} = \sum_{k=0}^{n} \frac{n!}{k!} + \sum_{k=n+1}^{+\infty} \frac{n!}{k!}$$

$$\underbrace{\sum_{k=0}^{+\infty} \frac{n!}{k!}}_{k \to +\infty} + \underbrace{\sum_{k=n+1}^{+\infty} \frac{n!}{k!}}_{k \to +\infty}$$
(135)

Si on veut x_n divergente dans $\overline{\mathbb{R}}$, on peut prendre

$$x_n = (-1)^n n! \tag{136}$$

Solution 15.

1. On a

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\dots(n-k+1)}{k!} \leqslant \boxed{\frac{n^k}{k!}}$$
(137)

2. On a

$$\left(1 + \frac{z}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \left(\frac{z}{n}\right)^k \tag{138}$$

donc

$$\left| \sum_{k=0}^{n} \frac{z^k}{k!} - \binom{n}{k} \frac{z^k}{n^k} \right| \leqslant \sum_{k=0}^{n} |z|^k \underbrace{\left| \frac{1}{k!} - \binom{n}{k} \frac{1}{n^k} \right|}_{>0}$$
 (139)

$$\leq \sum_{k=0}^{n} \frac{|z|^k}{k!} - \sum_{k=0}^{n} {n \choose n} \frac{|z|^k}{n^k}$$
 (140)

3. On sait que

$$\sum_{k=0}^{n} \frac{|z|^k}{k!} \xrightarrow[k \to +\infty]{} e^{|z|} \tag{142}$$

et

$$\left(1 + \frac{|z|}{n}\right)^n = e^{n\ln\left(1 + \frac{|z|}{n}\right)} = e^{n\left(\frac{|z|}{n} + o\left(\frac{|z|}{n}\right)\right)} = e^{|z|}e^{o(1)} \xrightarrow[n \to +\infty]{} e^{|z|} \tag{143}$$

En reportant dans la question précédente, on a donc

$$\left| \lim_{n \to +\infty} \left(1 + \frac{z}{n} \right)^n = \sum_{k=0}^{+\infty} \frac{z^k}{k!} = e^z \right|$$
 (144)

Remarque 3. Une autre méthode est d'écrire, pour z = a + ib,

$$1 + \frac{z + ib}{n} = 1 + \frac{a}{n} + i\frac{b}{n} = \rho_n e^{i\theta_n}$$
 (145)

. On a alors

$$\left| 1 + \frac{a + ib}{n} \right| = \sqrt{\left(1 + \frac{a}{n} \right)^2 + \frac{b^2}{n^2}} = \rho_n$$
 (146)

et alors

$$\rho_n^n = \left| \left(1 + \frac{z}{n} \right) \right|^n \tag{147}$$

$$=e^{\frac{n}{2}\ln\left(\left(1+\frac{a}{n}\right)^2+\frac{b^2}{n^2}\right)}\tag{148}$$

$$=e^{\frac{n}{2}\ln\left(1+\frac{2a}{n}+o\left(\frac{1}{n}\right)\right)}\tag{149}$$

$$= e^{a+o(1)} \xrightarrow[n \to +\infty]{} e^a = |e^z| \tag{150}$$

On écrit ensuite

$$1 + \frac{a + ib}{n} = \rho_n \left(\underbrace{\frac{1 + \frac{a}{n}}{\rho_n}}_{= \cos(\theta_n)} + i \underbrace{\frac{b}{n\rho_n}}_{= \sin(\theta_n)} \right)$$

$$(151)$$

On a alors

$$\lim_{n \to +\infty} \frac{b}{n\rho_n} = 0 \ et \lim_{n \to +\infty} \frac{1 + \frac{a}{n}}{\rho_n} = 1 \tag{152}$$

On peut imposer $\theta_n \in]-\pi,\pi]$ et il existe alors $N \in \mathbb{N}$ tel que pour tout $n \geqslant N$, $\cos(\theta_n) \geqslant 0$. Pour $n \geqslant N$, on a alors $\theta_n \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ donc

$$\theta_n = \arcsin\left(\frac{b}{n\rho_n}\right) \tag{153}$$

et $n\theta_n = n \arcsin\left(\frac{b}{n\rho_n}\right) \underset{n \to +\infty}{\sim} b$. Finalement, on a bien

$$\left(1 + \frac{z}{n}\right)^n = \rho_n^n e^{i\theta_n} \xrightarrow[n \to +\infty]{} e^a e^{ib} = e^z \tag{154}$$

Solution 16. Pour tout $n \ge 2$, $u_n > 0$. On a

$$u_{n+1} = \underbrace{\frac{\sqrt{n+1}-1}{\sqrt{n+1}+1}}_{\le 1} u_n \tag{155}$$

donc $(u_n)_{n\in\mathbb{N}}$ est décroissante donc converge. On a

$$\ln(u_n) = \sum_{k=2}^{n} \ln\left(1 - \frac{1}{\sqrt{k}}\right) - \ln\left(1 + \frac{1}{\sqrt{k}}\right) < 0$$
(156)

Ensuite,

$$v_k = -\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k}} + o\left(\frac{1}{\sqrt{k}}\right) \underset{k \to +\infty}{\sim} -\frac{2}{\sqrt{k}}$$

$$\tag{157}$$

Comme $\sum_{k\geqslant 2} \frac{1}{\sqrt{k}}$ diverge, on a $\lim_{n\to +\infty} \ln(u_n) = -\infty$.

Ainsi,

$$\left[\lim_{n \to +\infty} u_n = 0 \right] \tag{158}$$

On a ensuite

$$u_n = \exp\left(\sum_{k=2}^n \left[\ln\left(1 - \frac{1}{\sqrt{k}}\right) - \ln\left(1 + \frac{1}{\sqrt{k}}\right)\right]\right)$$
 (159)

et

$$\ln\left(1 \pm \frac{1}{\sqrt{k}}\right) = \pm \frac{1}{\sqrt{k}} - \frac{1}{2k} + O\left(\frac{1}{k^{\frac{3}{2}}}\right) \tag{160}$$

Donc

$$v_k = -\frac{2}{\sqrt{k}} + O\left(\frac{1}{k^{\frac{3}{2}}}\right) \tag{161}$$

Le terme dans le O est le terme générale d'une série absolument convergent donc convergent, on note ce terme α_k . On a alors

$$\sum_{k=2}^{n} v_k = \sum_{k=2}^{n} \left(-\frac{2}{\sqrt{k}} + \alpha_k \right) = -2 \sum_{k=2}^{n} \frac{1}{\sqrt{k}} + \sum_{k=2}^{+\infty} \alpha_k + o(1)$$
(162)

Par comparaison série-intégrale, on a

$$\sum_{k=2}^{n} \frac{1}{\sqrt{k}} \underset{k \to +\infty}{\sim} \int_{2}^{n} \frac{dt}{\sqrt{t}} \underset{k \to +\infty}{\sim} 2\sqrt{n}$$
 (163)

Posons

$$w_n = \sum_{k=2}^n \frac{1}{\sqrt{k}} - 2\sqrt{n} \tag{164}$$

On étudie la série de terme général $w_n - w_{n-1}$. On a

$$w_n - w_{n-1} = \frac{1}{\sqrt{n}} - 2\left(\sqrt{n} - \sqrt{n-1}\right) \tag{165}$$

$$= \frac{1}{\sqrt{n}} - 2\left(1 - \sqrt{1 - \frac{1}{n}}\right) \tag{166}$$

$$= \frac{1}{\sqrt{n}} - 2\left(1 - \left(1 - \frac{1}{2n} + O\left(\frac{1}{n^2}\right)\right)\right)$$
 (167)

$$=\frac{1}{\sqrt{n}} - \frac{\sqrt{n}}{n} + O\left(\frac{1}{n^{\frac{3}{2}}}\right) \tag{168}$$

$$=O\left(\frac{1}{n^{\frac{3}{2}}}\right) \tag{169}$$

Donc la série de terme général $w_n - w_{n-1}$ converge et ainsi $(w_n)_{n \geqslant 2}$ converge : il existe $C' \in \mathbb{R}$ tel que

$$\sum_{k=2}^{n} \frac{1}{\sqrt{n}} = 2\sqrt{n} + C' + o(1) \tag{170}$$

On a donc

$$\ln(u_n) = \sum_{k=2}^{n} v_k = -4\sqrt{n} - 2C' + C + o(1)$$
(171)

Ainsi,

$$u_n = \exp\left(-4\sqrt{n} - 2C' + C + o(1)\right) \underset{n \to +\infty}{\sim} Ke^{-4\sqrt{n}}$$
 (172)

où $K = e^{-2C' + C} > 0$.

Donc

$$u_n^{\alpha} \underset{n \to +\infty}{\sim} K^{\alpha} e^{-4\alpha\sqrt{n}}$$
 (173)

Si $\alpha \leq 0$, $\lim_{n \to +\infty} u_n^{\alpha} \not\to 0$ donc

$$\boxed{\sum u_n^{\alpha} \text{ diverge.}}$$
(174)

Si $\alpha>0,\,u_n^\alpha=o\left(\frac{1}{n^2}\right)$ donc d'après le critère de Riemann,

$$\boxed{\sum u_n^{\alpha} \text{ converge.}}$$
(175)

Solution 17. Soit $S_n = \sum_{k=0}^n u_k$. On a

$$u_{n+1} + \dots + u_{2n} \geqslant nu_{2n} \geqslant 0 \tag{176}$$

Si (S_n) converge alors $S_{2n} - S_n \xrightarrow[n \to +\infty]{} 0$. Alors $\lim_{n \to +\infty} nu_{2n} = 0$ et $\lim_{n \to +\infty} 2nu_{2n} = 0$.

Comme on a $(2n+1)u_{2n} \ge (2n+1)u_{2n+1} \ge 0$, on a aussi $\lim_{n\to+\infty} (2n+1)u_{2n} = 0$. Finalement, on a bien

$$\lim_{n \to +\infty} n u_n = 0 \text{ et donc } u_n = o\left(\frac{1}{n}\right)$$
 (177)

Si $\{p \in \mathbb{N} | pu_p \geqslant 1\}$ est infini, alors $u_p \neq o\left(\frac{1}{p}\right)$ donc

$$\sum u_p \text{ diverge.}$$
(178)

Remarque 4. Ce n'est pas vrai si $(u_n)_{n\in\mathbb{N}}$ n'est pas décroissante, par exemple si $u_n = \frac{1}{n}$ si n est un carré et 0 sinon.

Solution 18. 1. C'est une série à termes positifs. On a

$$n^{\frac{1}{n}} = e^{\frac{1}{n}\ln(n)} \xrightarrow[n \to +\infty]{} 1 \tag{179}$$

Ainsi

$$n^{-1-\frac{1}{n}} \underset{n \to +\infty}{\sim} \frac{1}{n} \tag{180}$$

et donc

$$\sum u_n$$
 diverge. (181)

2. C'est une série à termes positifs. On a

$$u_n \geqslant \int_1^{\frac{\pi}{2}} t^n \sin(1) dt = \frac{\sin(1)}{n+1} \times \left(\left(\frac{\pi}{2} \right)^{n+1} - 1 \right) \xrightarrow[n \to +\infty]{} + \infty$$
 (182)

donc

3. On écrit

$$\frac{n!}{e} = \sum_{k=0}^{+\infty} \frac{n!}{k!} (-1)^k = \underbrace{\sum_{k=0}^{n} \frac{n!}{k!} (-1)^k}_{\in \mathbb{Z}} + \frac{(-1)^{n+1}}{n+1} + \sum_{k=n+2}^{+\infty} \frac{n!}{k!} (-1)^k$$
(184)

et

$$\left| \sum_{k=n+2}^{+\infty} \frac{n!}{k!} (-1)^k \right| < \frac{1}{(n+1)(n+2)}$$
 (185)

d'après le critère spécial des séries alternées.

Donc

$$\sin\left(2\pi\frac{n!}{e}\right) = \sin\left(\frac{2\pi(-1)^{n+1}}{n+1} + O\left(\frac{1}{n^2}\right)\right) \tag{186}$$

$$=\underbrace{\frac{2\pi(-1)^{n+1}}{n+1}}_{\text{terme général d'une série alternée convergente}} + \underbrace{O\left(\frac{1}{n^2}\right)}_{\text{terme général d'une série absolument convergente}}$$
(187)

Donc

$$\sum u_n \text{ converge.}$$
 (188)

4. Si $\alpha \leqslant 0$, $u_n \underset{n \to +\infty}{\sim} \frac{1}{\ln(n)}$ et comme $\frac{1}{n} = O\left(\frac{1}{\ln(n)}\right)$,

$$\sum u_n \text{ diverge.}$$
 (189)

Si $\alpha > 1$, $|u_n| \underset{n \to +\infty}{\sim} \frac{1}{n^{\alpha}}$ donc d'après le critère de Riemann,

$$\sum u_n \text{ converge absolument donc converge.}$$
 (190)

Si $\alpha \in]0,1]$, on écrit

$$u_n = \frac{(-1)^n}{n^{\alpha}} \times \frac{1}{1 + \underbrace{(-1)^n \frac{\ln(n)}{n^{\alpha}}}_{n \to +\infty}}$$

$$(191)$$

$$= \frac{(-1)^n}{n^\alpha} \left(1 - (-1)^n \frac{\ln(n)}{n^\alpha} + o\left(\frac{\ln(n)}{n^\alpha}\right) \right) \tag{192}$$

$$=\underbrace{\frac{(-1)^n}{n^{\alpha}}}_{\text{terme général d'une série alternée convergente}}\underbrace{-\frac{\ln(n)}{n^{2\alpha}} + o\left(\frac{\ln(n)}{n^{2\alpha}}\right)}_{\text{terme général d'une série convergente}}$$

$$\underbrace{-\frac{\ln(n)}{n^{2\alpha}} + o\left(\frac{\ln(n)}{n^{2\alpha}}\right)}_{\text{terme général d'une série alternée}}$$

$$\sum u_n \text{ converge si et seulement si } \alpha > \frac{1}{2}.$$
 (194)

Remarque 5. Soit $\alpha \in [0,1]$ et

$$u_n = \int_0^\alpha t^n \sin(t)dt \geqslant 0 \tag{195}$$

Si $\alpha < 1$, $u_n \leqslant \alpha^{n+1}$, terme général d'une série convergente donc $\sum u_n$ converge.

Si $\alpha = 1$, on utilise

$$\forall t \in \left[0, \frac{\pi}{2}\right], \sin(t) \geqslant \frac{2}{\pi}t\tag{196}$$

Alors $u_n \geqslant \frac{2}{\pi(n+2)}$, terme générale d'une série divergente donc $\sum u_n$ diverge.

Figure 6 – $\sin(t) \geqslant \frac{2}{\pi}t$ pour $t \in \left[0, \frac{\pi}{2}\right]$.

Solution 19.

On a

$$u_n = \sum_{k=n}^{+\infty} \frac{(-1)^k}{k}$$
 (197)

 u_n est le reste d'ordre n d'une série alternée, donc u_n est du signe de $\frac{(-1)^n}{n}$. Donc on a

$$u_{n+1} \times u_n \leqslant 0 \tag{198}$$

Par ailleurs,

$$|u_n| = \underbrace{\frac{1}{n} - \frac{1}{n+1}}_{=\frac{1}{n(n+1)}} + \underbrace{\frac{1}{n+2} - \frac{1}{n+3}}_{=\frac{1}{(n+2)(n+3)}} + \dots = \sum_{p=0}^{+\infty} \frac{1}{(n+2p)(n+2p+1)}$$
(199)

Donc $(|u_n|)_{n\geqslant 1}$ est décroissante.

D'après le critère des séries alternées,

$$\sum u_n \text{ converge.}$$
 (200)

Pour calculer la somme, on peut chercher si la famille $(u_{n,p})_{\substack{n\geqslant 1\\p\in\mathbb{N}}}$ est sommable où

$$u_{n,p} = \frac{(-1)^n}{(n+2p)(n+2p+1)} \tag{201}$$

Soit $p \ge 0$, on a

$$\sum_{n=1}^{+\infty} \frac{1}{(n+2p)(n+2p+1)} = \sum_{n=1}^{+\infty} \left(\frac{1}{n+2p} - \frac{1}{n+2p+1} \right) = \frac{1}{2p+1}$$
 (202)

Donc

$$\sum_{p \in \mathbb{N}} \sum_{n \geqslant 1} |u_{n,p}| = +\infty \tag{203}$$

Ainsi, cette famille n'est pas sommable. Essayons plutôt de calculer u_n d'abord : soit $n \ge 1$ fixé et $N \ge n$. On a

$$\sum_{k=n}^{N} \frac{(-1)^k}{k} = \sum_{k=n}^{N} (-1)^k \int_0^1 t^{k-1} dt$$
 (204)

$$= -\sum_{k=n}^{N} \int_{0}^{1} (-t)^{k-1} dt \tag{205}$$

$$= -\int_0^1 \sum_{k=n}^N (-t)^{k-1} dt \tag{206}$$

$$= \int_0^1 (-t)^n \frac{1 - (-t)^{N-n+1}}{1+t} dt \tag{207}$$

Ainsi,

$$\sum_{k=n}^{N} \frac{(-1)^k}{k} = -\int_0^1 \frac{(-t)^n}{1+t} dt + \int_0^1 \frac{(-t)^{N+1}}{1+t} dt$$
 (208)

et

$$\left| \int_0^1 \frac{(-t)^{N+1}}{1+t} dt \right| \leqslant \int_0^1 t^{N+1} dt = \frac{1}{N+2}$$
 (209)

Donc

$$u_n = -\int_0^1 \frac{(-t)^n}{1+t} dt \tag{210}$$

Soit alors $M \ge 1$. On a

$$\sum_{n=1}^{M} u_n = \sum_{n=1}^{M} \left(-\int_0^1 \frac{(-t)^n}{t+1} dt \right)$$
 (211)

$$= -\int_0^1 \frac{1}{1+t} \sum_{n=1}^M (-t)^n dt \tag{212}$$

$$= -\int_0^1 \frac{-t}{1+t} \frac{1 - (-t)^M}{1+t} dt \tag{213}$$

$$= \int_0^1 \frac{t}{(1+t)^2} dt + \int_0^1 \frac{(-t)^{M+1}}{(1+t)^2} dt$$
 (214)

Comme

$$\left| \int_0^1 \frac{(-t)^{M+1}}{(1+t)^2} dt \right| \le \int_0^1 t^{M+1} dt = \frac{1}{M+2} \xrightarrow[M \to +\infty]{} 0 \tag{215}$$

on a

$$\sum_{n=1}^{+\infty} u_n = \int_0^1 \frac{t}{(1+t)^2} dt \tag{216}$$

$$= \int_0^1 \frac{(t+1)-1}{(1+t)^2} dt \tag{217}$$

$$= \int_0^1 \frac{1}{1+t} dt - \int_0^1 \frac{1}{(1+t)^2} dt \tag{218}$$

$$= \left[\ln\left(1+t\right)\right]_0^1 + \left[\frac{1}{2} - 1\right] \tag{219}$$

$$= \ln(2) - \frac{1}{2} \tag{220}$$

Finalement,

$$\sum_{n=1}^{+\infty} u_n = \ln(2) - \frac{1}{2}$$
 (221)

$$\frac{1}{(3n)!} = \left(\frac{1}{n^2}\right) \tag{222}$$

donc d'après le critère de Riemann,

$$\sum u_n \text{ converge.}$$
 (223)

Posons

$$\begin{cases}
S_0 = \sum_{n=0}^{+\infty} \frac{1}{(3n)!} \\
S_1 = \sum_{n=0}^{+\infty} \frac{1}{(3n+1)!} \\
S_2 = \sum_{n=0}^{+\infty} \frac{1}{(3n+2)!}
\end{cases}$$
(224)

On a

$$\begin{cases}
S_0 + S_1 + S_2 = e \\
S_0 + jS_1 + j^2S_2 = \exp(j) \\
S_0 + j^2S_1 + jS_2 = \exp(j^2)
\end{cases}$$
(225)

où $j = \exp\left(\frac{2i\pi}{3}\right)$. En sommant les trois lignes, on a

$$3S_0 = e + \exp(j) + \exp(j^2) = e + e^{-\frac{1}{2}} \left(2\cos\left(\frac{\sqrt{3}}{2}\right) \right)$$
 (226)

Donc

$$\sum_{n=0}^{+\infty} u_n = \frac{1}{3} \left(e + e^{-\frac{1}{2}} \left(2 \cos \left(\frac{\sqrt{3}}{2} \right) \right) \right)$$
 (227)

S'il existe $p \ge 0$ tel que $n = p^3$, alors

$$\left| n^{\frac{1}{3}} \right| = p \tag{228}$$

 et

$$\left[(n-1)^{\frac{1}{3}} \right] = \left[(p^3 - 1)^{\frac{1}{3}} \right] = p - 1 \tag{229}$$

Sinon, $n^{\frac{1}{3}} \notin \mathbb{N}$. Soit $k = \lfloor n^{\frac{1}{3}} \rfloor$. Alors $k^3 < n \leqslant (k+1)^3$ donc $k^3 \leqslant n-1 < (k+1)^3$ d'où $k \leqslant (n-1)^{\frac{1}{3}} < k+1$. Donc $\lfloor (n-1)^{\frac{1}{3}} \rfloor = k$.

Donc $\sum u_n$ est une série lacunaire. Comme $u_{p^3}=O\left(\frac{1}{p^3}\right)$, d'après le critère de Riemann,

$$\boxed{\sum u_n \text{ converge.}}$$
(230)

Sa somme vaut

$$\sum_{n=1}^{+\infty} u_n = \sum_{n=1}^{+\infty} \frac{1}{4p^3 - p} \tag{231}$$

On décompose en éléments simples :

$$\frac{1}{4x^3 - x} = \frac{1}{x(4x^2 - 1)} = \frac{-1}{x} + \frac{1}{2x - 1} + \frac{1}{2x + 1}$$
 (232)

Donc la somme partielle jusqu'au rang n vaut

$$S_n = -\sum_{p=1}^n \frac{1}{p} + \sum_{p=1}^n \frac{1}{2p-1} + \sum_{p=1}^n \frac{1}{2p+1}$$
(233)

$$= -H_n + 1 + \frac{1}{2n+1} + 2\sum_{p=1}^{n-1} \frac{1}{2p+1}$$
 (234)

$$= -H_n + 1 + \frac{1}{2n+1} + 2 \left(\sum_{k=1}^{2n-1} \frac{1}{k} - 1 - \sum_{k=1}^{n-1} \frac{1}{2k} \right)$$

$$= -H_n + 1 + \frac{1}{2n+1} + 2 \left(\sum_{k=1}^{2n-1} \frac{1}{k} - 1 - \sum_{k=1}^{n-1} \frac{1}{2k} \right)$$

$$= \frac{1}{2} H_{n-1}$$
(235)

$$= -H_n + 2H_{2n-1} - H_{n-1} - 1 + \frac{1}{2n+1}$$
(236)

$$= -\ln(n) + 2\ln(2n-1) - \ln(n-1) - 1 + \underbrace{\frac{1}{2n+1}}_{=o(1)} + o(1)$$
(237)

$$= \ln\left(\frac{(2n-1)^2}{n(n-1)}\right) - 1 + o(1) \xrightarrow[n \to +\infty]{} \ln(4) - 1$$
 (238)

Donc

$$\sum_{n=1}^{+\infty} u_n = \ln(4) - 1 \tag{239}$$

Solution 20. Soit $\varepsilon > 0$ tel que $a + \varepsilon < 0$. Il existe A > 0 tel que pour tout x > A,

$$a - \varepsilon \leqslant \frac{f'(x)}{f(x)} \leqslant a + \varepsilon$$
 (240)

Alors

$$(a - \varepsilon)f(x) \leqslant f'(x) \leqslant (+\varepsilon)f(x) \tag{241}$$

On voit donc que

$$f'(x) - f(x)(a + \varepsilon) \leqslant 0 \tag{242}$$

On pose alors (sorte d'inéquation différentielle)

$$g_1(x) = f(x)e^{-(a+\varepsilon)x} \tag{243}$$

On a

$$g_1'(x) = e^{-(a+\varepsilon)x} \left(f'(x) - f(x)(a+\varepsilon) \right) \leqslant 0 \tag{244}$$

pour tout $x \ge A$. Donc g_1 est décroissante sur $[A, +\infty[$. Alors

$$0 < g_1(x) \le g_1(A) = f(A)e^{-(a+\varepsilon)A}$$
 (245)

Alors

$$0 < f(x) \leqslant \left(f(A)e^{-(a+\varepsilon)A} \right) e^{(a+\varepsilon)x} \tag{246}$$

De même, pour $x \ge A$,

$$\left(f(A)e^{-(a+\varepsilon)A}\right)e^{(a-\varepsilon)x} \leqslant f(x) \tag{247}$$

car $g_2(x) = f(x)e^{-(a-\varepsilon)x}$ est croissante sur $[A, +\infty[$.

Donc

$$f(n) \leqslant \left(f(A)e^{-(a+\varepsilon)A}\right)e^{(a+\varepsilon)n} \tag{248}$$

Comme $a + \varepsilon < 0$,

$$\sum_{n\geqslant 1} f(n) \text{ converge.}$$
 (249)

De plus

$$f(A)e^{-(a-\varepsilon)A}\frac{e^{(a-\varepsilon)N}}{1-e^{a-\varepsilon}} \leqslant R_N = \sum_{n=N}^{+\infty} f(n) \leqslant f(A)e^{-(a+\varepsilon)A}\frac{e^{(a+\varepsilon)N}}{1+e^{a+\varepsilon}}$$
(250)

Donc

$$R_N = \underset{n \to +\infty}{O} \left(e^{aN} \right) \text{ et } e^{aN} = \underset{n \to +\infty}{O} \left(R_N \right)$$
(251)

Solution 21. On a

$$S_n = \sum_{k=1}^n \underbrace{\frac{e^k}{k}}_{\underset{k \to +\infty}{\longrightarrow} +\infty} + \infty \tag{252}$$

On utilise la règle d'Abel : on écrit $e^k = B_k - B_{k-1}$ avec

$$\begin{cases}
B_k = \sum_{j=0}^k e^j = \frac{e^{k+1}-1}{e-1} \\
B_{-1} = 0
\end{cases}$$
(253)

Alors

$$S_{n} = \sum_{k=1}^{n} \frac{B_{k}}{k} - \sum_{k=0}^{n-1} \frac{B_{k}}{k+1} = -1 + \sum_{k=1}^{n-1} \underbrace{\frac{B_{k}}{k(k+1)}}_{\substack{k \to +\infty}} + \underbrace{\frac{B_{n}}{n}}_{\substack{n \to +\infty}} \underbrace{\frac{e^{n}e}{n(e-1)}}_{\substack{n \to +\infty}}$$
(254)

Donc

$$S_n \underset{n \to +\infty}{\sim} \frac{e^{n+1}}{n(e-1)}$$
 (255)

Solution 22.

1. $u_n > 0$ et

$$u_n = e^{n^{\alpha} \ln\left(1 - \frac{1}{n}\right)} = e^{n^{\alpha}\left(-\frac{1}{n} + O\left(\frac{1}{n^2}\right)\right)} = e^{-n^{\alpha - 1} + O\left(n^{\alpha - 2}\right)}$$
 (256)

Si $\alpha < 1$, $u_n \xrightarrow[n \to +\infty]{} 1$ donc

$$\sum u_n$$
 diverge grossièrement. (257)

Si $\alpha = 1$, $u_n \xrightarrow[n \to +\infty]{1}{e}$ donc

$$\sum u_n$$
 diverge grossièrement. (258)

Si $\alpha > 1$, on a

$$-n^{\alpha-1} + O\left(n^{\alpha-2}\right) \underset{n \to +\infty}{\sim} -n^{\alpha-1} \tag{259}$$

donc il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \geqslant N_0$,

$$-n^{\alpha-1} + O\left(n^{\alpha-2}\right) \leqslant \frac{-n^{\alpha-1}}{2} \tag{260}$$

d'où

$$u_n \leqslant e^{-\frac{n^{\alpha-1}}{2}} = \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right) \tag{261}$$

donc

$$\sum u_n \text{ converge.}$$
 (262)

2. On a $u_n > 0$ et

$$\left(\frac{1}{k}\right)^{\frac{1}{k}} e^{-\frac{1}{k}\ln(k)} \xrightarrow[k \to +\infty]{} 1 \tag{263}$$

donc par comparaison des sommes partielles, on a

$$\sum_{k=1}^{n} \left(\frac{1}{k}\right)^{\frac{1}{k}} \underset{n \to +\infty}{\sim} n \tag{264}$$

Donc $u_n \sim \frac{1}{n \to +\infty}$ et

$$\sum u_n \text{ diverge.}$$
 (265)

3. On écrit $n!e = \lfloor n!e \rfloor + \alpha_n$. Alors

$$\sin(n!\pi e) = (-1)^{\lfloor n!e\rfloor} \sin(\alpha_n \pi) \tag{266}$$

On écrit

$$n!e = \sum_{k=0}^{n-2} \frac{n!}{k!} + n + 1 + \frac{1}{n+1} + \sum_{k=n+2}^{+\infty} \frac{n!}{k!}$$
 (267)

On pose $v_n = \sum_{k=0}^n \frac{1}{k!}$ et $w_n = v_n + \frac{1}{n \times n!}$. On a

$$v_n \leqslant e \leqslant w_n \tag{268}$$

donc

$$0 \leqslant e - v_n \leqslant \frac{1}{n \times n!} \tag{269}$$

d'où

$$0 \leqslant \sum_{k=n+1}^{+\infty} \frac{n!}{k!} \leqslant \frac{n!}{(n+1)(n+1)!} = \frac{1}{(n+1)^2}$$
 (270)

Donc

$$n!e\pi = \underbrace{\sum_{k=0}^{n-2} \frac{n!}{k!}}_{\text{pair}} \pi + (n+1)\pi + \frac{\pi}{n+1} + O\left(\frac{1}{n^2}\right)$$
 (271)

Finalement,a

$$\frac{\sin(n!e\pi)}{\ln(n)} = (-1)^{n+1} \frac{\sin\left(\frac{\pi}{n+1} + O\left(\frac{1}{n^2}\right)\right)}{\ln(n)} = \underbrace{\frac{(-1)^{n+1}\pi}{\ln(n)(n+1)}}_{\text{terme général d'une série alternée convergente}} + \underbrace{O\left(\frac{1}{n^2\ln(n)}\right)}_{\text{terme général d'une série absolument convergente}}$$
(272)

Donc

$$\sum u_n \text{ converge.}$$
 (273)

Solution 23.

1. On a

$$u_n = (a+b+c)\ln(n) + b\ln\left(1 + \frac{1}{n}\right) + c\ln\left(1 + \frac{2}{n}\right) = (a+b+c)\ln(n) + \frac{b+2c}{n} + O\left(\frac{1}{n^2}\right)$$
(274)

Donc $\sum u_n$ converge si et seulement si

$$\begin{cases} a+b+c = 0 \\ b+2c = 0 \end{cases} \tag{275}$$

si et seulement si

$$\begin{cases}
 a = c \\
 b = -2c
\end{cases}$$
(276)

Donc

$$\sum u_n \text{ converge si et seulement si} a = b \text{ et } b = -2c \text{ avec } c \in \mathbb{R}$$
 (277)

Prenons c = 1 pour calculer la somme. On a

$$\sum_{n=1}^{N} u_n = \sum_{n=1}^{N} \ln(n) - 2\ln(n+1) + \ln(n+2)$$
(278)

$$= \sum_{n=1}^{N} \ln(n) - \ln(n+1) + \sum_{n=1}^{N} \ln(n+2) - \ln(n+1)$$
 (279)

$$= -\ln(N+1) - \ln(2) + \ln(N+2) \tag{280}$$

$$= \ln\left(\frac{N+2}{N+1}\right) - \ln(2) \xrightarrow[n \to +\infty]{} - \ln(2) \tag{281}$$

Donc

$$\sum_{n=1}^{+\infty} u_n = -\ln(2) \tag{282}$$

2. On a $u_n = \underset{n \to +\infty}{O} \left(\frac{1}{n^2}\right)$ donc d'après le critère de Riemann,

$$\sum u_n \text{ converge.}$$
 (283)

On écrit

$$u_n = \frac{2^n \left(3^{2^{n-1}} - 1\right)}{\left(3^{2^{n-1}} + 1\right)\left(3^{2^n} - 1\right)} = \frac{2^n \left(3^{2^{n-1}} + 1 - 2\right)}{3^{2^n} - 1} = \underbrace{\frac{2^n}{3^{2^{n-1}} - 1} - \underbrace{\frac{2^{n+1}}{3^{2^n} - 1}}_{= v_n} - \underbrace{\frac{2^{n+1}}{3^{2^n} - 1}}_{= v_{n+1}}$$
(284)

Donc

$$\left| \sum_{n=1}^{+\infty} u_n = v_1 = 1 \right| \tag{285}$$

3. On remarque que $k-n\left\lfloor\frac{k}{n}\right\rfloor$ est le reste de la division euclidienne de k par n. Donc ce reste est borné par k-1. Donc $u_n=\mathop{O}\limits_{n\to+\infty}\left(\frac{1}{n^2}\right)$. D'après le critère de Riemann,

On note alors

$$J_r = \{ n \in \mathbb{N}^* | n \equiv r[k] \} \tag{287}$$

 $(J_r)_{r\in\{0,\dots,k-1\}}$ forme une partition de $\mathbb{N}^*.$ On a

$$\sum_{n \in J_r} \frac{r}{n(n+1)} = 0 \tag{288}$$

si r = 0. Si $r \in \{1, \dots, k-1\}$, on a

$$S_r = r \sum_{p=0}^{+\infty} \frac{1}{(kp+r)(kp+r+1)}$$
 (289)

et par sommabilité on a

$$S = \sum_{k=1}^{+\infty} \frac{n - k \left\lfloor \frac{n}{k} \right\rfloor}{n(n+1)} = \sum_{r=1}^{k-1} S_r = \sum_{p=0}^{+\infty} \sum_{r=1}^{k-1} \frac{1}{(kp+r)(kp+r+1)}$$
 (290)

Soit $p \in \mathbb{N}$ fixé. On a

$$v_p = \sum_{r=1}^{k-1} \frac{r}{(kp+r)(kp+r+1)}$$
 (291)

$$=\sum_{r=1}^{k-1} \frac{r}{kp+r} - \sum_{r=1}^{k-1} \frac{r}{kp+r+1}$$
 (292)

$$=\sum_{r=1}^{k-1} \frac{r}{kp+r} - \sum_{r=2}^{k} \frac{r-1}{kp+r}$$
 (293)

$$= \frac{1}{kp+1} + \sum_{r=2}^{k-1} \frac{1}{kp+r} - \frac{k-1}{k(p+1)}$$
 (294)

$$=\sum_{r=1}^{k} \frac{1}{kp+r} - \frac{1}{p+1} \tag{295}$$

Ainsi,

$$\sum_{p=0}^{N} v_p = \sum_{n=1}^{k(N+1)} \frac{1}{n} - \sum_{n=1}^{N+1} \frac{1}{n} = \ln\left(\frac{k(N+1)}{N+1}\right) + \underset{n \to +\infty}{o}(1) = \ln(k) + \underset{n \to +\infty}{o}(1)$$
 (296)

Donc

$$\sum_{n=1}^{+\infty} u_n = \ln(k) \tag{297}$$

4. On a

$$\arctan(u) + \arctan(v) = \arctan\left(\frac{u+v}{1-uv}\right)$$
 (298)

donc

$$\arctan\left(\frac{1}{n^2+n+1}\right) = \arctan(n+1) - \arctan(n)$$
 (299)

Ainsi,

$$\sum_{n=0}^{+\infty} \arctan\left(\frac{1}{n^2 + n + 1}\right) = \frac{\pi}{2}$$
 (300)

Solution 24. On a

$$\sum_{k=1}^{n} v_k = \sum_{k=1}^{n} k u_k - \sum_{k=2}^{n+1} (k-1)u_k = u_1 - nu_{n+1} + \sum_{k=2}^{n} u_k = \sum_{k=1}^{n} u_k - nu_{n+1}$$
 (301)

Si $(nu_n)_{n\geqslant 1}$, on a donc évidemment d'après ce qui précède

$$\sum_{k=1}^{+\infty} v_k = \sum_{k=1}^{+\infty} u_k \tag{302}$$

Si $(u_n)_{n\geqslant 1}$ décroît, $v_n\geqslant 0$ et on a

$$\frac{v_k}{k} = u_k - u_{k+1} \tag{303}$$

et donc

$$\sum_{k=n}^{+\infty} \frac{v_k}{k} = u_n = \sum_{k=1}^{+\infty} w_{k,n}$$
 (304)

en définissant $w_{n,k} = \frac{v_k}{k}$ si $k \ge n$ et 0 sinon. On a $w_{k,n} \ge 0$ car $(u_n)_{n \ge 1}$ est décroissante.

Ainsi, $\sum_{n\geqslant 1} u_n$ converge si et seulement si $(u_n)_{n\in\mathbb{N}^*}$ sommable si et seulement si $(w_{n,k})_{k\in\mathbb{N}^*}$ si et seulement si (d'après le théorème de Fubini)

$$\sum_{k=1}^{+\infty} \sum_{n=1}^{+\infty} w_{n,k} < +\infty$$

$$\sum_{k=1}^{\infty} \frac{v_k}{k} = v_k$$
(305)

Et dans ce cas (toujours d'après le théorème de Fubini),

$$\sum_{n=1}^{+\infty} \sum_{k=1}^{+\infty} w_{n,k} = \sum_{k=1}^{+\infty} \sum_{n=1}^{+\infty} w_{n,k} < +\infty$$
(306)

donc

$$\sum_{k=1}^{+\infty} v_k = \sum_{k=1}^{+\infty} u_k \tag{307}$$

On pose

$$u_n = \frac{1}{n(n+1)\dots(n+p)}$$
 (308)

et

$$v_n = \frac{1}{(n+1)\dots(n+p)} - \frac{n}{(n+1)\dots(n+p+1)} = \frac{p+1}{(n+1)\dots(n+p+1)}$$
(309)

Soit

$$S_p = \sum_{n=1}^{+\infty} \frac{1}{n(n+1)\dots(n+p)} = (p+1)\sum_{n=2}^{+\infty} \frac{1}{n(n+1)\dots(n+p)} = (p+1)\left(S_p - \frac{1}{p!}\right)$$
(310)

Ainsi,

$$\left| \sum_{n=1}^{+\infty} \frac{1}{n(n+1)\dots(n+p)} \right| = \frac{p+1}{p(p!)}$$
 (311)

Solution 25. Montrons d'une manière générale que si $(u_k)_{k\in\mathbb{N}}\in\left(\mathbb{R}_+^*\right)^{\mathbb{N}}$ est telle que

$$u_k = \underset{k \to +\infty}{o} (u_{k+1}) \tag{312}$$

, alors $\sum u_k$ diverge et $\sum_{k=0}^n u_k \underset{n\to+\infty}{\sim} u_n$.

En effet, on a alors $\lim_{k\to +\infty} \frac{u_{k+1}}{u_k} = +\infty$ et d'après la règle de d'Alembert, $\sum u_k$ diverge. Soit ensuite $\varepsilon > 0$. Il existe $N \in \mathbb{N}$ tel que pour tout $k \geqslant N$,

$$0 \leqslant \frac{u_k}{u_{k+1}} \leqslant \varepsilon \tag{313}$$

Soit $n \ge N$. Pour $k \ge N + 1$, on a

$$u_k \leqslant \varepsilon u_{k+1} \leqslant \dots \leqslant \varepsilon^{n-k} u_n$$
 (314)

pour $k \leqslant n - 1$.

Alors

$$0 \leqslant \sum_{k=0}^{n-1} u_k \leqslant \sum_{k=0}^{N} u_k + \sum_{k=N+1}^{n-1} u_k \leqslant \left(\varepsilon + \varepsilon^2 + \dots + \varepsilon^{n-N-1} u_n\right)$$
(315)

On peut supposer que $\varepsilon < \frac{1}{2}$ et alors

$$0 \leqslant \sum_{k=0}^{n-1} u_k \leqslant \frac{\varepsilon}{1-\varepsilon} u_n \leqslant 2\varepsilon u_n \tag{316}$$

Donc on a bien le résultat voulu.

Pour revenir à l'exercice, on a alors

$$v_n \underset{n \to +\infty}{\sim} \frac{n!}{(n+q)!} \underset{n \to +\infty}{\sim} \frac{1}{n^q} \tag{317}$$

qui est le terme général d'une série absolument convergente. Donc

$$\sum v_n$$
 converge. (318)

Solution 26. On a

$$\left| \frac{z^{nb}}{z^{na+c} + 1} \right| = \frac{|z|^{nb}}{|1 + z^{na+c}|} \underset{n \to +\infty}{\sim} |z|^{nb} \tag{319}$$

car |z| < 1. $|z|^{nb}$ est le terme général d'une série absolument convergente.

Pour n fini, on a

$$\frac{1}{1+z^{na+c}} = \sum_{k=0}^{+\infty} (-z^{na+c})^k \tag{320}$$

Montrons donc que $\left(z^{nb}\left((-z^{na+c})^k\right)\right)_{(k,n)\in\mathbb{N}^2}$ est sommable. On a

$$\sum_{n=0}^{+\infty} \sum_{k=0}^{+\infty} |z|^{nb} |z|^{k(na+c)} = \sum_{n=0}^{+\infty} \frac{|z|^{nb}}{1 - |z|^{na+c}} < +\infty$$
 (321)

d'après ce qui précède. On a sommabilité, donc d'après le théorème de Fubini,

$$\sum_{n=0}^{+\infty} \frac{z^{nb}}{1+z^{na+c}} = \sum_{k=0}^{+\infty} \sum_{n=0}^{+\infty} z^{nb} (-z^{na+c})^k$$
(322)

$$= \sum_{k=0}^{+\infty} (-1)^k z^{ck} \left(\sum_{n=0}^{+\infty} z^{n(b+ak)} \right)$$
 (323)

$$=\sum_{k=0}^{+\infty} \frac{(-1)^k z^{ck}}{1 - z^{b+ak}}$$
 (324)

Ainsi, on a bien

$$\left| \sum_{n=0}^{+\infty} \frac{z^{nb}}{1 + z^{na+c}} = \sum_{k=0}^{+\infty} \frac{(-1)^k z^{ck}}{1 - z^{b+ak}} \right|$$
 (325)

Solution 27. On a

$$b_q = \sum_{n=1}^q u_{n,q} = \sum_{n=1}^{+\infty} u_{n,q}$$
 (326)

Montrons donc que la famille des $(u_{n,q})_{(n,q)\in(\mathbb{N}^*)^2}$ est sommable. On a

$$\sum_{n=1}^{+\infty} \sum_{q=1}^{+\infty} |u_{n,q}| = \sum_{n=1}^{+\infty} \sum_{q=n}^{+\infty} \frac{n|a_n|}{q(q+1)}$$
(327)

$$= \sum_{n=1}^{+\infty} n|a_n| \left(\sum_{q=n}^{+\infty} \frac{1}{q} - \frac{1}{q+1} \right)$$
 (328)

$$=\sum_{n=1}^{+\infty}|a_n|<+\infty\tag{329}$$

Donc le théorème de Fubini s'applique et on a

$$\sum_{q=1}^{+\infty} \sum_{n=1}^{+\infty} u_{n,q} = \sum_{q=1}^{+\infty} b_q = \sum_{n=1}^{+\infty} \sum_{q=1}^{+\infty} u_{n,q} = \sum_{n=1}^{+\infty} a_n$$
 (330)

Donc

$$\sum_{q=1}^{+\infty} b_q = \sum_{n=1}^{+\infty} a_n \tag{331}$$

Solution 28. D'après l'exercice précédent, $\sum v_n$ converge et

$$\sum_{n=1}^{+\infty} v_n = \sum_{n=1}^{+\infty} u_n \tag{332}$$

On applique l'inégalité de la moyenne géométrique et arithmétique à $(u_1, 2u_2, \dots, nu_n)$:

$$\sqrt[n]{u_1 \times 2u_2 \times \dots \times nu_n} = w_n \sqrt[n]{n!} \leqslant \frac{1}{n} (u_1 + 2u_2 + \dots + nu_n) = (n+1)v_n$$
 (333)

Donc on a

$$w_n \leqslant \frac{(n+1)v_n}{\sqrt[n]{n!}} \tag{334}$$

On étudie donc $\sqrt[n]{n!}$:

$$\sqrt[n]{n!} = \exp\left(\frac{1}{n}\ln(n!)\right) \tag{335}$$

$$= \exp\left(\frac{1}{n}\ln\left(n^n e^{-n}\sqrt{2\pi n}\left(1 + \underset{n \to +\infty}{o}(1)\right)\right)\right)$$
(336)

$$= \exp\left(\frac{1}{n}\left(n\ln\left(n\right) - n + \frac{1}{2}\ln\left(\pi n\right) + \ln\left(1 + \underset{n \to +\infty}{o}(1)\right)\right)\right) \tag{337}$$

$$= n \exp\left(-1 + \underset{n \to +\infty}{o}(1)\right) \tag{338}$$

$$\underset{n \to +\infty}{\sim} \frac{n}{e} \tag{339}$$

Donc

$$\lim_{n \to +\infty} \frac{n+1}{\sqrt[n]{n!}} = e \tag{340}$$

Ainsi, $w_n = \underset{n \to +\infty}{O}(v_n)$ donc

$$\sum w_n \text{ converge.}$$
 (341)

Montrons que pour tout $n \geqslant 1$,

$$\frac{n+1}{\sqrt[n]{n!}} \leqslant e \tag{342}$$

Cela équivaut à $(n+1)^n \leqslant e^n n!$ si et seulement si

$$\sum_{k=0}^{n} \binom{n}{k} n^k \leqslant n! e^n \tag{343}$$

ce qui est vrai car pour tout $k \in \{0, ..., n\}$ on a $\frac{1}{(n-k)!} \leq 1$. Donc $w_n \leq ev_n$ pour tout $n \geq 1$ et donc

$$\sum_{n=1}^{+\infty} w_n \leqslant e \sum_{n=1}^{+\infty} v_n = e \sum_{n=1}^{+\infty} u_n$$
(344)

Pour montrer que e est la meilleure constante possible, on forme pour $N \in \mathbb{N}^*$, $u_{n,N} = \frac{1}{n}$ si $n \leq N$ et 0 sinon. On a

$$\sum_{n=1}^{+\infty} = H_n < +\infty \tag{345}$$

Dans ce cas, on a

$$w_{n,N} = \sqrt[n]{u_{1,N} \dots w_{n,N}} = \frac{1}{\sqrt[n]{n!}} = \frac{n+1}{\sqrt[n]{n!}} v_n$$
 (346)

pour $n \leq N$ et 0 sinon. On a alors

$$\sum_{n=1}^{+\infty} w_{n,N} = \sum_{n=1}^{N} w_{n,N} = \sum_{n=1}^{N} \frac{n+1}{\sqrt[n]{n!}} v_n$$
(347)

En divisant par $\sum_{n=1}^{+\infty} u_n = \sum_{n=1}^{+\infty} v_n$, on a donc

$$\frac{\sum_{n=1}^{+\infty} w_{n,N}}{\sum_{n=1}^{+\infty} u_{n,N}} = \frac{\sum_{n=1}^{N} v_{n,N} \times \frac{n+1}{\sqrt[N]{n!}}}{\sum_{n=1}^{+\infty} v_{n,N}} \xrightarrow[n \to +\infty]{} e$$
 (348)

d'après le théorème de Césaro.

On a trouvé une suite donc la constante C est égale à e. D'après ce qui précède,

$$e$$
 est la meilleure constante possible. (349)

Remarque 6. Pour la fin de l'exercice précédent, on peut utiliser le fait que $H_N \underset{N \to +\infty}{\sim} \ln(N)$ et alors

$$\sum_{n=1}^{N} w_{n,N} \sum_{n=1}^{N} \underbrace{\frac{n+1}{\sqrt[n]{n!}} \times \frac{1}{n+1}}_{\substack{n \to +\infty}} \underset{N \to +\infty}{\sim} e \sum_{n=1}^{N} \frac{1}{n} \underset{N \to +\infty}{\sim} e \ln(N)$$
(350)

par le théorème de sommation des relations de comparaison.

Solution 29.

1. Soit $n \in \mathbb{N}^*$ et

$$I_n = \{ (p, q) \in \mathbb{N}^2 \setminus \{ (0, 0) \} | p + q = n \}$$
(351)

On a alors

$$\Sigma_n = \sum_{(p,q)\in I_n} \frac{1}{(p+q)^{\alpha}} = \sum_{(p,q)\in I_n} \frac{1}{n^{\alpha}} = \frac{n+1}{n^{\alpha}} \underset{n\to+\infty}{\sim} \frac{1}{n^{\alpha-1}}$$
(352)

Donc la condition nécessaire et suffisante est
$$\alpha > 2$$
. (353)

Dans ce cas, par le théorème des sommation par paquets, on a

$$\sum_{(p,q)\in\mathbb{N}^2\setminus\{(0,0)\}} \frac{1}{(p+q)^{\alpha}} = \sum_{n=0}^{+\infty} \frac{1}{n^{\alpha-1}} + \frac{1}{n^{\alpha}} = \zeta(\alpha-1) + \zeta(\alpha)$$
 (354)

2. Pour tout $(p,q) \in \mathbb{N}^2 \setminus \{(0,0)\}$, on a

$$\frac{(p+q)^2}{2} \leqslant p^2 + q^2 \leqslant (p+q)^2 \tag{355}$$

Pour $\alpha \leq 0$, il est clair que l'on a divergence. Pour $\alpha > 0$, on a donc

$$\frac{1}{(p+q)^{2\alpha}} \leqslant \frac{1}{(p^2+q^2)^{\alpha}} \leqslant \frac{2^{\alpha}}{(p+q)^{2\alpha}} \tag{356}$$

Donc la condition nécessaire et suffisante est
$$\alpha > 1$$
. (357)

d'après le 1.

Solution 30. On fixe $n \in \mathbb{N}^*$. On a

$$\sum_{m=0}^{+\infty} \frac{1}{(m+n^2)(m+n^2+1)} = \sum_{m=0}^{+\infty} \frac{1}{m+n^2} - \frac{1}{m+n^2-1} = \frac{1}{n^2} = \Sigma_n$$
 (358)

par téléscopage. $\sum_{n\geqslant 1} \Sigma_n$ converge et

$$\sum_{n\geq 1} \Sigma_n = \frac{\pi^2}{6} \tag{359}$$

Donc
$$\left(\frac{1}{(m+n^2)(m+n^2+1)}\right)_{(m,n)\in\mathbb{N}\times\mathbb{N}^*}$$
 est sommable et la somme vaut $\frac{\pi^2}{6}$. (360)

Posons, pour $k \geqslant 1$,

$$I_k = \left\{ (m, n) \in \mathbb{N} \times \mathbb{N}^* \middle| m + n^2 = k \right\}$$
(361)

On a $n^2 \in \{1, \dots, k\}$ si et seulement si $n \in \{1, \dots, \left\lfloor \sqrt{k} \right\rfloor \}$ et $(m, n) \in I_k$ si et seulement si $m = k - n^2$.

On a $|I_k| = \lfloor \sqrt{k} \rfloor$ et par sommation par paquets,

$$\boxed{\frac{\pi^2}{6} = \sum_{k=1}^{+\infty} \sum_{(m,n)\in I_k} \frac{1}{(m+n^2)(m+n^2+1)} = \sum_{k=1}^{+\infty} \frac{\lfloor k \rfloor}{k(k+1)}}$$
(362)

Remarque 7. Grâce à une transformation d'Abel, on a aussi, pour $N \geqslant 1$,

$$\sum_{k=1}^{N} \frac{\lfloor k \rfloor}{k(k+1)} = \sum_{k=1}^{N} \frac{\lfloor k \rfloor}{k} - \sum_{k=1}^{N} \frac{\lfloor k \rfloor}{k+1}$$
(363)

$$=1+\sum_{k=2}^{N}\underbrace{\frac{\lfloor k\rfloor-\lfloor k-1\rfloor}{k}}_{\neq 0 \ ssi \ k=p^2}+\underbrace{\frac{\lfloor N\rfloor}{N+1}}_{N\to+\infty}$$
(364)

et on retrouve le résultat.

Solution 31.

1.

$$\prod_{k \ge 1} \frac{1}{1 - \frac{1}{p_k}} \tag{365}$$

converge si et seulement si

$$\sum_{k\geqslant 1} -\ln\left(\frac{1}{1-\frac{1}{p_k}}\right) \tag{366}$$

converge si et seulement si

$$\sum_{k\geqslant 1} -\ln\left(1 - -\frac{1}{p_k}\right) \tag{367}$$

converge si et seulement si (car $-\ln\left(1-\frac{1}{p_k}\right) \underset{k\to+\infty}{\sim} p_k > 0$ vu que $p_k \geqslant k$ pour tout $k\geqslant 1$)

$$\sum_{k\geqslant 1} \frac{1}{p_k} \tag{368}$$

converge.

Donc

$$\prod_{k\geqslant 1} \frac{1}{1-\frac{1}{p_k}} \text{ converge si et seulement si } \sum_{k\geqslant 1} \frac{1}{p_k} \text{ converge.}$$
(369)

Fixons alors $N \in \mathbb{N}^*$. On a

$$\prod_{k=1}^{N} \frac{1}{1 - \frac{1}{p_k}} = \prod_{k=1}^{N} \left(\sum_{n_k=0}^{+\infty} \frac{1}{p_k^{n_k}} \right)$$
 (370)

où la série est à termes positifs et est convergent. Par produit de Cauchy,

$$\left(\frac{1}{p_1^{n_1}\dots p_N^{n_N}}\right)_{n_1,\dots,n_N\in\mathbb{N}^N} \tag{371}$$

est sommable et on a

$$\prod_{k=1}^{N} \frac{1}{1 - \frac{1}{p_k}} = \sum_{(n_1, \dots, n_N) \in \mathbb{N}^N} \frac{1}{p_1^{n_1} \dots p_N^{n_N}}$$
(372)

$$\geqslant \sum_{k=1}^{p_{N+1}-1} \frac{1}{k} \xrightarrow[N \to +\infty]{} +\infty \tag{373}$$

car dans la première somme, tous les inverses (et une seule fois) des nombres dont les facteurs premiers sont dans $\{p_1, \ldots, p_N\}$ apparaissent.

Donc

$$\sum_{k\geqslant 1} \frac{1}{p_k} \text{ diverge.}$$
 (374)

2. Posons

$$\Pi_n = \prod_{k=1}^n \frac{1}{1 - \frac{1}{p_k^s}} \tag{375}$$

On a

$$\ln\left(\Pi_{n}\right) = \sum_{k=1}^{n} -\ln\left(1 - \frac{1}{1 - \frac{1}{p_{k}^{s}}}\right) \tag{376}$$

 $\operatorname{car} p_k \geqslant k$. Donc

$$(\Pi_n)$$
 converge dans \mathbb{R}_+^* . (377)

Par produit de Cauchy,

$$\left(\frac{1}{\left(p_1^s\right)^{j_1}\dots\left(p_n^s\right)^{j_n}}\right)_{(j_1,\dots,j_n)\in\mathbb{N}^n}\tag{378}$$

Ainsi, on a

$$\Pi_n = \sum_{(j_1, \dots, j_n) \in \mathbb{N}^n} \left(\frac{1}{p_1^{j_1} \dots p_n^{j_n}} \right)^s \leqslant \sum_{k=1}^{+\infty} \frac{1}{k^s}$$
 (379)

$$= \zeta(s) \tag{380}$$

car dans la première somme, par unicité de la décomposition en facteurs premiers, chaque k n'apparaît qu'une unique fois. Comme on a

$$\sum_{k=1}^{p_{n+1}-1} \frac{1}{k^s} \leqslant \Pi_n \tag{381}$$

Donc $\Pi_n \xrightarrow[n \to +\infty]{} \zeta(s)$ et ainsi

$$\prod_{k=1}^{+\infty} \frac{1}{1 - \frac{1}{p_k^s}} = \zeta(s)$$
 (382)

3. Soit $z = a + \mathrm{i} b \in \mathbb{C}$. Si a > 1, on a

$$\left|\frac{1}{n^z}\right| = \frac{1}{n^a} \tag{383}$$

Donc $\sum \frac{1}{n^z}$ converge absolument. On peut donc prolonger ζ à $\{z \in \mathbb{C} | \Re(z) > 1\}$.

De même que précédemment, puisque

$$\left| \left(\frac{1}{p_1^{j_1} \dots p_n^{j_n}} \right)^z \right| = \frac{1}{\left(p_1^{j_1} \dots p_n^{j_n} \right)^a} \tag{384}$$

la famille

$$\left(\left(\frac{1}{p_1^{j_1} \dots p_n^{j_n}} \right)^z \right)_{(j_1, \dots, j_n) \in \mathbb{N}^n}$$

$$(385)$$

est sommable. On peut aussi développer et

$$\Pi_n = \prod_{k=1}^n \frac{1}{1 - \frac{1}{p_k^z}} = \sum_{(j_1, \dots, j_n) \in \mathbb{N}^n} \left(\frac{1}{p_1^{j_1} \dots p_n^{j_n}} \right)^z$$
 (386)

On a

$$|\Pi_n - \zeta(z)| = \left| \sum_{(j_1, \dots, j_n) \in \mathbb{N}^n} \left(\frac{1}{p_1^{j_1} \dots p_n^{j_n}} \right)^z - \sum_{k=1}^{+\infty} \frac{1}{k^z} \right|$$
 (387)

$$= \left| \sum_{k \in \mathbb{N} \setminus J_n} \frac{1}{k^z} \right| \tag{388}$$

$$\leqslant \sum_{k \in \mathbb{N} \setminus J_n} \frac{1}{k^a} \xrightarrow[n \to +\infty]{} 0 \tag{389}$$

où l'on a noté $J_n = \{k \ge 1 | \text{ les facteurs premiers de } k \text{ sont dans } \{p_1, \dots, p_n\}\}$ et où l'on a appliqué l'inégalité triangulaire et le résultat de 2. pour conclure.

Ainsi, on a bien

$$\zeta(z) = \prod_{k=1}^{+\infty} \frac{1}{1 - \frac{1}{p_k^s}}$$
 (390)

Solution 32. Pour $\alpha > 2$, puisque $\varphi(n) \geqslant n$, on a

$$\frac{\varphi(n)}{n^{\alpha}} \leqslant \frac{1}{n^{\alpha - 1}} \tag{391}$$

qui est le terme général d'une série absolument convergente.

Pour $\alpha = 2$, si $n = p_k$ est premier, on a $\varphi(p_k) = p_k - 1$ et

$$\frac{\varphi(p_k)}{p_k^2} = \frac{p_k - 1}{p_k^2} \underset{k \to +\infty}{\sim} \frac{1}{p_k} \tag{392}$$

et $\sum_{k\geqslant 1} \frac{1}{p_k}$ diverge.

De même pour $\alpha < 2$, $\sum \frac{\varphi(n)}{n^{\alpha}}$ diverge car $\frac{\varphi(n)}{n^2} = O(\frac{\varphi(n)}{n^{\alpha}})$.

Donc

$$\sum \frac{\varphi(n)}{n^{\alpha}} \text{ converge si et seulement si } \alpha > 2.$$
 (393)

Pour $\alpha > 1$, on calcule

$$S = \sum_{n_1=1}^{+\infty} \frac{\varphi(n_1)}{n_1^{\alpha}} \times \sum_{n_2=1}^{+\infty} \frac{1}{n_2^{\alpha}} = \sum_{(n_1, n_2) \in \mathbb{N}^2} \frac{\varphi(n_1)}{(n_1 n_2)^{\alpha}}$$
(394)

ce qui est légitime car il s'agit de deux séries à termes positifs convergentes. Soit, pour $n \ge 1$, $D_n = \{(n_1, n_2) \in (\mathbb{N}^*)^2 | n = n_1 n_2 \}$. Par sommation par paquets, on a,

$$S = \sum_{n=1}^{+\infty} \sum_{(n_1, n_2) \in D_n} \frac{\varphi(n_1)}{n^{\alpha}} = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} \left(\sum_{n_1 \mid n} \varphi(n_1) \right)$$
(395)

et grâce à la formule d'Euler-Möbius, on a

$$\sum_{n_1|n} \varphi(n_1) = n \tag{396}$$

Ainsi, $S = \zeta(\alpha - 1)$ et donc

$$\sum_{n\geqslant 1} \frac{\varphi(n)}{n^{\alpha}} = \frac{\zeta(\alpha-1)}{\zeta(\alpha)} \tag{397}$$

Solution 33. Soit $A \in \mathbb{C}$ et R > 0. S'il y a n indices $k \in \mathbb{N}$ tels que $z_k \in B(A, R)$, alors pour ces indices k, on a $B(z_k, \frac{1}{2}) \subset B(A, R + \frac{1}{2})$. Donc (faire un dessin!), on a

$$n\frac{\pi}{4} \leqslant \pi \left(R + \frac{1}{2}\right)^2 \tag{398}$$

On pose, pour tout $n \in \mathbb{N}$, $B_n = \{i \in \mathbb{N} | z_i \in B(0,n)\}$. De l'inégalité précédente, pour tout $n \in \mathbb{N}$, D_n est fini. Il existe $\sigma \colon \mathbb{N} \to \mathbb{N}$ bijective qui permet d'ordonner les z_n par module croissante et à même module par indice croissant.

Pour $n \in \mathbb{N}$ et $R = |z_{\sigma(n)}|$, on a pour tout $k \leq n$, $z_{\sigma(k)} \in B(0, R)$.

Donc

$$n\frac{\pi}{4} \leqslant \pi \left(\left| z_{\sigma(n)} \right| + \frac{1}{2} \right)^2 \tag{399}$$

d'où

$$\left|z_{\sigma(n)}\right| \geqslant \left|z_{\sigma(n)} + \frac{1}{2}\right| - \frac{1}{2} \geqslant \frac{\sqrt{n}}{2} - \frac{1}{2} \tag{400}$$

Donc

$$\left| \frac{1}{z_{\sigma(n)}} \right|^3 = \mathop{O}_{n \to +\infty} \left(\frac{1}{n^{\frac{3}{2}}} \right) \tag{401}$$

Donc

$$\sum \frac{1}{z_{\sigma(n)}^3} \text{ est absolument convergente.}$$
 (402)

Solution 34. On a $k = \lfloor n \rfloor$ si et seulement si $k^2 \leqslant n < (k+1)^2$. Il y a $(k+1)^2 - k^2 = 2k+1$ entiers.

Posons

$$B_p = \sum_{n=1}^{p} (-1)^{\lfloor n \rfloor} \tag{403}$$

et $B_{-1} = 0$. Si $k^2 \leqslant p \leqslant (k+1)^2$, on a

$$B_p = \underbrace{B_k^2}_{\text{signe de } (-1)^k} + (-1)^k \underbrace{(p-k)^2}_{|\cdot| \leqslant 2k+1}$$
(404)

Par récurrence, pour tout $p \in \mathbb{N}$,

$$|B_p| \leqslant 2|p| + 1\tag{405}$$

Donc avec une transformation d'Abel, on a

$$\sum_{n=1}^{N} \frac{(-1)^{\lfloor n \rfloor}}{n} = \sum_{n=1}^{N} \frac{(B_n - B_{n-1})}{n}$$
(406)

$$=\sum_{n=1}^{N} \frac{B_n}{n} - \sum_{n=0}^{N-1} \frac{B_n}{n+1}$$
(407)

$$=\underbrace{\frac{B_N}{N}}_{N\to+\infty} -B_0 + \underbrace{\sum_{n=1}^{N-1} \frac{B_n}{n(n+1)}}_{=\underset{N\to+\infty}{O}\left(\frac{1}{\sqrt{N}}\right)}$$
(408)

D'après le critère de Riemann, la dernière somme converge absolument et donc

$$\sum_{n\geqslant 1} \frac{(-1)^{\lfloor n\rfloor}}{n} \text{ converge.}$$
 (409)

Solution 35.

1. Pour tout $n \in \mathbb{N}$, on a $u_n \neq 0$. Il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \geq N_0$, $u_n u_{n+1} > 0$. On a

$$\ln\left(\frac{u_n}{u_{N_0}}\right) = \sum_{k=N_0+1}^n \ln\left(\frac{a+k}{n+k}\right) = \sum_{k=N_0+1} \ln\left(1+\frac{a}{k}\right) - \ln\left(1+\frac{b}{k}\right) \tag{410}$$

Alors

$$\ln\left(\frac{u_n}{u_{N_0}}\right) = \sum_{k=N_0+1}^n \frac{a-b}{k} + \underbrace{O\left(\frac{1}{k^2}\right)}_{\text{terme général d'une série convergente}} = (a-b)\ln(n) + \underbrace{C}_{\in\mathbb{R}} + \underbrace{O}_{n\to+\infty}(1)$$

$$(411)$$

Ainsi,

$$u_n = u_{N_0} n^{a-b} \underbrace{k^{1+ o(1)}_{n \to +\infty}}_{N_0} \sim U_{N_0} n^{a-b} k$$
(412)

Donc

$$\sum u_n \text{ converge si et seulement si } b - a > 1$$
(413)

2. On a

$$u_{n+1}(b+n+1) = u_n(a+n+1)$$
(414)

donc

$$(a+1)u_n = bu_{n+1} + (n+1)u_{n+1} - nu_n$$
(415)

En sommant sur \mathbb{N} , on a

$$(a+1)\sum_{n=0}^{+\infty} u_n = b\sum_{n=1}^{+\infty} u_n + u_1 = b\sum_{n=1}^{+\infty} + \underbrace{u_1 - bu_0}_{=\frac{a(a+1)}{b(b+1)} - a}$$

$$(416)$$

Ainsi,

$$\left| \sum_{n=0}^{+\infty} u_n = \frac{a(a+1-b(b+1))}{b(b+1)(a+1-b)} = a\left(\frac{1}{b(b+1)} - \frac{b}{(b+1)(a+1-b)}\right) \right|$$
(417)

3. Pour $a = -\frac{1}{2}$ et b = 1, on a

$$u_n = \frac{\left(-\frac{1}{2}\right)\left(\frac{1}{2}\right)\dots\left(n-\frac{1}{2}\right)}{(n+1)!} = \frac{-\frac{(2n)!}{2^{2n+1}n!}}{(n+1)!} = -\frac{1}{2^{2n+1}(n+1)} \binom{2n}{n}$$
(418)

Solution 36.

1. u_n est une série à termes positifs et

$$\frac{1}{n} = \underset{n \to +\infty}{O} \left(\frac{\ln(n)}{n} \right) \tag{419}$$

donc

$$\sum u_n \text{ diverge.}$$
 (420)

 $\sum v_n$ est une série alternée. On a $\lim_{n\to+\infty}v_n=0$ et en formant

$$f: [2, \infty[\rightarrow \mathbb{R}$$

$$x \mapsto \frac{\ln(x)}{x}$$

$$(421)$$

On a $f'(x) = \frac{1-\ln(x)}{x^2}$ qui est négatif dès que x > e. Donc $(v_n)_{n\geqslant 3}$ décroît. D'après le critère des séries alternées,

$$\sum v_n$$
 converge. (422)

2. f décroît sur $[+\infty)$ donc pour tout $k \ge 4$, on a

$$\int_{k}^{k+1} \frac{\ln(x)}{x} dx \le \frac{\ln(k)}{k} \le \int_{k-1}^{k} \frac{\ln(x)}{x} dx \tag{423}$$

d'où

$$\underbrace{\int_{4}^{N+1} \frac{\ln(x)}{x} dx}_{=\frac{1}{2} \left[\ln^{2}(N+1) - \ln^{2}(4)\right]} \leqslant \sum_{k=4}^{N} \frac{\ln(k)}{k} \leqslant \underbrace{\int_{3}^{N} \frac{\ln(x)}{x} dx}_{=\frac{1}{2} \left[\ln^{2}(N) - \ln^{2}(3)\right]}$$
(424)

Donc

$$S_N \underset{N \to +\infty}{\sim} \frac{1}{2} \ln^2(N)$$
(425)

Formons $w_n = S_n - \frac{\ln^2(n)}{2}$. $(w_n)_{n \in \mathbb{N}}$ converge si et seulement si $\sum_{n \in \mathbb{N}^*} w_n - w_{n-1}$ converge.

On a

$$w_n - w_{n-1} = \frac{\ln(n)}{n} - \frac{\ln^2(n)}{2} + \frac{\ln^2(n-1)}{2}$$
(426)

On a

$$\ln(n-1) = \ln(n) + \ln\left(1 - \frac{1}{n}\right) = \ln(n) - \frac{1}{n} + \mathop{O}_{n \to +\infty}\left(\frac{1}{n^2}\right)$$
(427)

et

$$\ln^{2}(n-1) = \ln^{2}(n) - \frac{2\ln(n)}{n} + \underbrace{O\left(\frac{\ln(n)}{n^{2}}\right)}_{= \underbrace{O\left(\frac{1}{3}\right)}}$$

$$(428)$$

Donc

$$w_n - w_{n-1} = \underbrace{O}_{n \to +\infty} \left(\frac{1}{n^{\frac{3}{2}}} \right) \tag{429}$$

terme général d'une série absolument convergente

Donc il existe $L \in \mathbb{R}$ tel que

$$S_n = \frac{\ln^2(n)}{2} + L + \underset{n \to +\infty}{o}(1)$$
 (430)

3. On a

$$\sum_{n=2}^{2N} v_n = \underbrace{\sum_{k=1}^{N} \frac{\ln(2k)}{2k}}_{=I_N} - \underbrace{\sum_{k=1}^{N-1} \frac{\ln(2k+1)}{2k+1}}_{=J_N}$$
(431)

Donc

$$\sum_{n=2}^{2N} v_n = I_N - (S_{2N} - I_N) \tag{432}$$

On a

$$S_{2N} = \frac{\ln^2(2N)}{2} + L + \underset{N \to +\infty}{o}(1) = \frac{\ln^2(2)}{2} + \frac{\ln^2(N)}{2} + \ln(2)\ln(N) + L + \underset{N \to +\infty}{o}(1)$$
 (433)

De plus,

$$I_{N} = \sum_{k=1}^{N} \frac{\ln(2)}{2k} + \sum_{k=1}^{N} \frac{\ln(k)}{2k}$$

$$= \frac{\ln(2)}{2} \left(\ln(N) + \gamma + \underset{N \to +\infty}{o} (1) \right) = \frac{1}{2} S_{N} = \frac{\ln^{2}(N)}{4} + \frac{L}{2} + \underset{N \to +\infty}{o} (1)$$

$$(434)$$

Finalement, on a bien

$$\sum_{n=2}^{2N} v_n = 2I_n - S_{2N} \tag{435}$$

$$= \ln(2)\gamma - \frac{\ln^2(2)}{2} + \underset{N \to +\infty}{o}(1)$$
 (436)

Donc

$$\sum_{n=2}^{+\infty} v_n = \ln(2)\gamma - \frac{\ln^2(2)}{2}$$
 (437)

Solution 37. Si $\alpha_0 = 2$ et $\alpha_{n+1} = 10^{\alpha_n - 1}$. Alors $q_1(\alpha_{n+1}) = \alpha_n$, $q_k(\alpha_n) = \alpha_{n-k}$, $q_n(\alpha_n) = 2$ et $q_{n+1}(\alpha_n) = 1$.

Si $k < \alpha_n, q_n(k) = 1$. Soit

$$S_n = \sum_{k=\alpha_n}^{\alpha_{n+1}-1} u_k \tag{438}$$

Comme c'est une série à termes positifs, $\sum_{k\geqslant 1}u_k$ converge si et seulement $\sum_{n\geqslant 0}S_n$ converge.

Par définition, pour tout $k \in \{\alpha_n, \dots, \alpha_{n+1} - 1\}$, on a $q_{n+1}(k) = 1$ et pour tout $p \ge n + 1$, $q_p(k) = 1$. Donc

$$S_n = \sum_{k=\alpha_n}^{\alpha_{n+1}-1} \frac{1}{kq_1(k)\dots \underbrace{q_n(k)}_{\geqslant 2}}$$

$$\tag{439}$$

Posons

$$f: \mathbb{R}_{+}^{*} \to \mathbb{R}$$

$$t \mapsto \log_{10}(t) = \frac{\ln(t)}{\ln(10)}$$

$$(440)$$

Il vient $q_1(t) = \lfloor f(t) \rfloor + 1 > f(t)$. Par récurrence, on a

$$q_n(t) \geqslant f^n(t) \tag{441}$$

défini pour $t \geqslant \alpha_n$. On a donc

$$S_n \sum_{k=\alpha_n}^{\alpha_{n+1}-1} \frac{1}{k(f(k))\dots f^n(k)}$$
 (442)

On forme

$$g_n: \left[\alpha_n, \alpha_{n+1} - 1 \to \mathbb{R} \right]$$

$$t \mapsto \frac{1}{tf(t) \dots f^n(t)}$$

$$(443)$$

qui est décroissante. Ainsi, pour tout $k \in \{\alpha_n, \alpha_{n+1} - 1\}$, on a

$$\int_{k}^{k+1} g_n(t) \leqslant u_k \leqslant \int_{k-1}^{k} g_n(t) \tag{444}$$

d'où en faisant le changement de variables $u = \log_{10}(t)$, on a

$$\int_{\alpha_{n-1}-1}^{\alpha_n-1} g_{n-1}(u) du(\ln(10)) \leqslant S_n \leqslant \int_{\alpha_n-1}^{\alpha_{n+1}-1} g_n(t) dt$$
 (445)

On obtient donc une minoration par $C \times (\ln(10))^n$ donc

Solution 38.

1. Montrons le résultat par récurrence sur $n \in \mathbb{N}^*$. On a $P_0 = 1 > 0$ et $P_1(x) = 1 + x$ s'annule en -1. Soit $n \in \mathbb{N}^*$, supposons le résultat au rang n. On a $P'_{2n+2}(x) = P_{2n+1}(x)$, par hypothèse P_{2n+1} s'annule uniquement en $\alpha_{2n+1} < 0$. Donc $P_{2n+2}(\alpha_{2n+1}) = \frac{(\alpha_{2n+1})^{2n+2}}{(2n+2)!} > 0$ donc $P_{2n+2} > 0$. Comme $P'_{2n+3} = P_{2n+2} > 0$ donc P_{2n+3} est strictement croissante sur \mathbb{R} . On a $\lim_{x \to \pm \infty} P_{2n+3} = \pm \infty$. Donc il existe un unique $\alpha_{2n+3} \in \mathbb{R}$ tel que $P_{2n+3}(\alpha_{2n+3}) = 0$. Comme $P_{2n+3}(0) = 1 \geqslant 1$, $\alpha_{2n+3} < 0$.

2. Soit x < 0, on a $\lim_{n \to +\infty} P_n(x) = e^x > 0$. Donc il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$, $P_{2n+1}(x) > 0$. En particulier, $\alpha_{2n+1} < x$ donc

$$\lim_{n \to +\infty} \alpha_{2n+1} = -\infty$$
(448)

Solution 39. On pose $f_n(x) = e^x - x - n$, on a $f'_n(x) = e^x - 1$. Donc $x_1 = 0$ et ainsi

Pour tout $x \ge 0$, on a $f_{n+1}(x) - f_n(x) = -1 < 0$ donc $f_{n+1}(x) < f_n(x)$ et ainsi $f_{n+1}(x_n) < 0$ et $x_n < x_{n+1}$.

 $(x_n)_{n\in\mathbb{N}}$ est strictement croissante, de plus $e^{x_n}=x_n+n\geqslant n$ donc $x_n\geqslant \ln(n)$ et donc

$$\lim_{n \to +\infty} x_n = +\infty$$
(450)

De plus, $x_n = \ln(x_n + n)$ et $f_n(n) = e^n - 2n > 0$ (par récurrence), donc $x_n < n$ par stricte croissante de f_n donc

$$x_n = \ln(x_n + n) \le \ln(2n) = \ln(n) + \ln(2)$$
 (451)

Ainsi, $x_n = \underset{n \to +\infty}{O}(\ln(n))$. En reportant, on a

$$x_n = \ln(n + O_{n \to +\infty}(\ln(n))) = \ln(n) + \ln(1 + O_{n \to +\infty}\left(\frac{\ln(n)}{n}\right)) = \ln(n) + O_{n \to +\infty}(1)$$
 (452)

donc

$$x_n \underset{n \to +\infty}{\sim} \ln(n) \tag{453}$$

En reportant, on a

$$x_n = \ln(n) + \frac{\ln(n)}{n} + \underset{n \to +\infty}{o} \left(\frac{\ln(n)}{n}\right)$$
(454)

Solution 40.

1. Si $S_n \xrightarrow[n \to +\infty]{} S \in \mathbb{R}_+^+$, on a

$$v_n \underset{n \to +\infty}{\sim} \frac{u_n}{S^{\alpha}} \tag{455}$$

Comme u_n est le terme générale d'une série convergente donc

$$\sum v_n \text{ converge.}$$
 (456)

2. On a $\alpha = 1$ donc $v_n = \frac{u_n}{S_n}$, soit $(n, p) \in \mathbb{N}^2$. On a

$$\sum_{i=n+1}^{n+p} v_i = \sum_{i=1}^{n+p} \frac{u_i}{S_i} \tag{457}$$

où $(S_i)_{i\in\mathbb{N}}$ est croissante donc pour tout $i\in\{n+1,n+p\},\,S_i\leqslant S_{n+p}$ donc

$$\sum_{i=n+1}^{n+p} v_i \geqslant \frac{1}{S_{n+p}} \sum_{i=n+1}^{n+p} u_i = \frac{1}{S_{n+p}} \left(S_{n+p} - S_n \right) = 1 - \frac{S_n}{S_{p+n}}$$
(458)

et ainsi,

$$\sum_{i=n+1}^{n+p} v_i \geqslant 1 - \frac{S_n}{S_{n+p}}$$
 (459)

Supposons que $\sum v_n$ converge. Pour n fixé, on a $\lim_{p\to +\infty} S_{n+p} = +\infty$ (car $\sum u_n$ diverge). Donc lorsque $p\to +\infty$, on a pour tout $n\in\mathbb{N}$,

$$\sum_{i=n+1}^{+\infty} v_i \geqslant 1 \tag{460}$$

ce qui est absurde puisque la limite en $+\infty$ du reste est 0. Ainsi,

$$\sum v_n \text{ diverge.}$$
 (461)

3. On a $\lim_{n\to+\infty} S_n = +\infty$ et

$$v_n = \frac{1}{\alpha - 1} \left(S_{n-1}^{1-\alpha} - S_n^{1-\alpha} \right) \tag{462}$$

avec $(S_n^{1-\alpha})_{n\in\mathbb{N}}$ tend vers 0 quand $n\to +\infty$. Donc $\sum w_n$ est une série téléscopique convergente. Comme $t\mapsto \frac{1}{t^{\alpha}}$ est décroissante, on a

$$\frac{u_n}{S_n^{\alpha}} \leqslant w_n \leqslant \frac{u_n}{S_{n-1}^{\alpha}} \tag{463}$$

car $u_n = S_n - S_{n-1}$. Comme $\sum w_n$ converge,

$$\sum \frac{u_n}{S_n^{\alpha}} \text{ converge.}$$
(464)

Si $\alpha < 1$, comme $\lim_{n \to +\infty} S_n^{\alpha - 1} = 0$,

$$\frac{u_n}{S_n} = \underset{n \to +\infty}{o} \left(\frac{u_n}{S_n^{\alpha}} \right) \tag{465}$$

donc

$$\sum v_n$$
 diverge. (466)

4. On a $\lim_{n\to+\infty} R_n = 0$ par convergence et $\lim_{n\to+\infty} u_n = 0$ et de plus $u_n = R_n - R_{n+1}$. On pose

$$\alpha_n = \int_{R_{n+1}}^{R_n} \frac{dt}{t^{\alpha}} = \frac{1}{\alpha - 1} \left(R_{n+1}^{1-\alpha} - R_n^{1-\alpha} \right)$$
 (467)

si $\alpha \neq 1$.

Si $0<\alpha<1, \lim_{n\to+\infty}R_n^{1-\alpha}=0$ donc $\sum \alpha_n$ est une série téléscopique convergente et de même que précédemment, on a

$$\frac{u_n}{R_n^{\alpha}} \leqslant \alpha_n \tag{468}$$

donc $w_n \leqslant \alpha_n$ et

$$\sum w_n$$
 converge. (469)

Si $\alpha = 1$, on a

$$\alpha_n = \ln(R_n) - \ln(R_{n+1}) \tag{470}$$

où $\ln(R_n) \xrightarrow[n \to +\infty]{} -\infty$. Donc $\sum \alpha_n$ est une série téléscopique divergente. De plus

$$\frac{u_n}{R_n} = \frac{R_n - R_{n+1}}{R_n} = 1 - \frac{R_{n+1}}{R_n} \tag{471}$$

donc

$$\ln\left(\frac{R_{n+1}}{R_n}\right) = \ln\left(1 - \frac{u_n}{R_n}\right) \underset{n \to +\infty}{\sim} \frac{-u_n}{R_n} \tag{472}$$

On a donc

$$\frac{u_n}{R_n} \underset{n \to +\infty}{\sim} \alpha_n \tag{473}$$

donc

$$\sum w_n \text{ diverge.}$$
 (474)

Si $\alpha > 1$, on a

$$\frac{u_n}{R_n} = \underset{n \to +\infty}{o} \left(\frac{u_n}{R_n^{\alpha}}\right) \tag{475}$$

donc

$$\sum w_n \text{ diverge.}$$
 (476)

Solution 41.

1. Pour tout $x \in [0, 1[$ il existe un unique $q_x \in \{0, \dots, n-1\}$ tel que $x \in [\frac{q_x}{n}, \frac{q_x+1}{n}]$ avec $q_x = \lfloor nx \rfloor$ et

$$h: \{0, \dots, n\} \rightarrow \{0, \dots, n-1\}$$

$$k \mapsto q_{x_k} = |nx_k|$$

$$(477)$$

n'est pas injective donc il existe k>k' tel que $|x_k-x_{k'}|<\frac{1}{n}$ avec $(k,k')\in\{0,\dots,n\}^2$ d'où

$$|kx - \lfloor kx \rfloor - (k'x - \lfloor k'x \rfloor)| < \frac{1}{n} \tag{478}$$

d'où

$$|(k - k')x - p| < \frac{1}{n} \tag{479}$$

avec $p \in \mathbb{Z}$ et pour $q = (k - k') \in \{1, \dots, n\}$, on a

$$\left| \left| x - \frac{p}{q} \right| < \frac{1}{qn} \right| \tag{480}$$

2. D'après ce qui précède, pour tout $n \geqslant 1$, il existe $(p_n,q_n) \in \mathbb{Z} \times \{1,\ldots,n\}$ tels que

$$\left| x - \frac{p_n}{q_n} \right| < \frac{1}{nq_n} \leqslant \frac{1}{q_n^2} \tag{481}$$

car $n \geqslant q_n$. Donc

$$\left| \left| x - \frac{p_n}{q_n} \right| < \frac{1}{q_n^2} \right| \tag{482}$$

On a donc $\frac{p_n}{q_n} \xrightarrow[n \to +\infty]{} x \in \mathbb{R} \setminus \mathbb{Q}$. Si q_n ne tend pas vers $+\infty$, il existe A > 0 tel que pour tout $N \in \mathbb{N}$ il existe n > N avec $q_n < A$. Donc $\{n \in \mathbb{N} | q_n < A\}$ est infini : on peut

extraire $(q_{\sigma(n)})$ telle que pour tout $n \in \mathbb{N}$, on a $q_{\sigma(n)} < A$. D'après le théorème de Bolzano-Weierstrass, on peut extraire $(q_{\varphi(n)})$ qui converge vers $q \in \mathbb{R}$. Notons que toute suite d'entiers relatifs qui converge est stationnaire à partir d'un certain rang donc $q \in \mathbb{N}^*$. Or pour tout $n \in \mathbb{N}$, on a $p_{\varphi(n)} = \frac{p_{\varphi(n)}}{q_{\varphi(n)}} q_{\varphi(n)} \xrightarrow[n \to +\infty]{} \alpha q$. $(p_{\varphi(n)})_{n \in \mathbb{N}}$ est une suite convergente d'entiers relatifs stationnaire, donc $\alpha q \in \mathbb{Z}$ et $\alpha \in \mathbb{Q}$ ce qui est absurde.

Donc

$$\lim_{n \to +\infty} q_n = +\infty$$
(483)

3. On sait qu'il existe $\sigma \colon \mathbb{N} \to \mathbb{N}$ croissante telle que $\sin(\sigma(n)) \xrightarrow[n \to +\infty]{} 1$ alors

$$\lim_{n \to +\infty} \frac{1}{\sigma(n)\sin(\sigma(n))} = 0 \tag{484}$$

donc si la suite converge, alors elle converge vers 0.

Appliquons ce qui précède à $\alpha = \frac{1}{\pi} \notin \mathbb{Q}$. Il existe $(p_n, q_n) \in \mathbb{Z}^{\mathbb{N}} \times (\mathbb{N}^*)^{\mathbb{N}}$ avec $\lim_{n \to +\infty} q_n = 0$ et

$$\left| \frac{1}{\pi} - \frac{p_n}{q_n} \right| < \frac{1}{q_n^2} \tag{485}$$

Alors

$$|q_n - \pi p_n| < \frac{\pi}{q_n} \leqslant \frac{\pi}{2} \tag{486}$$

pour n suffisamment grand. Quitte à extraire, on peut supposer que $(q_n)_{n\in\mathbb{N}}$ est croissante. On a

$$|\sin(x)| = |\sin(q_n - \pi q_n)| \tag{487}$$

donc

$$|\sin(q_n)| \le \left|\sin\left(\frac{\pi}{q_n}\right)\right| \le \frac{\pi}{q_n}$$
 (488)

car sin est croissant sur $\left[0, \frac{\pi}{2}\right]$ et $|\sin(x)| \leq |x|$.

Donc

$$\underbrace{\frac{1}{|q_n \sin(q_n)|}}_{\longrightarrow 0} \geqslant \frac{1}{\pi} \tag{489}$$

ce qui est absurde.

Donc

$$\left(\frac{1}{n\sin(n)}\right)_{n\geqslant 1}$$
 ne converge pas. (490)

Solution 42.

1. On a

$$\left| \sum_{p=1}^{n} a_{n,p} - \sum_{p=1}^{+\infty} a_p \right| = \left| \sum_{p=1}^{n} (a_{n,p} - a_p) - \sum_{p=n+1}^{+\infty} a_p \right| = \leqslant \sum_{p=1}^{n} |a_{n,p} - a_p| + \sum_{p=n+1}^{+\infty} |a_p|$$
 (491)

Soit $N \in \mathbb{N}^*$. Si $n \geq N$, on a

$$\sum_{p=1}^{n} |a_{n,p} - a_p| = \sum_{p=1}^{N} |a_{n,p} - a_p| + \sum_{p=N+1}^{n} |a_{n,p} - a_p|$$
(492)

Pour p fixé, on a $|a_p| \leq b_p$ donc

$$\sum_{p=N+1}^{n} |a_{n,p} - a_p| \leqslant 2 \sum_{p=N+1}^{n} b_p \tag{493}$$

Ainsi,

$$\left| \sum_{p=1}^{n} a_{n,p} - \sum_{p=1}^{+\infty} a_p \right| \leqslant \sum_{p=1}^{N} |a_{n,p} - a_p| + 3 \sum_{p=N+1}^{+\infty} b_p$$
 (494)

Soit $\varepsilon > 0$. Comme $\sum_{p \geqslant 1} b_p$ converge, il existe $N_1 \in \mathbb{N}$ tel que

$$3\sum_{p=N_1+1}^{+\infty} b_p \leqslant \frac{\varepsilon}{2} \tag{495}$$

donc pour tout $n \ge N_1$, on a

$$\left| \sum_{p=1}^{n} a_{n,p} - \sum_{p=1}^{+\infty} a_p \right| < \frac{\varepsilon}{2} + \sum_{p=1}^{N_1} |a_{n,p} - a_p|$$
 (496)

 N_1 étant fixé, il existe $N_2 \in \mathbb{N}$ tel que pour tout $n \geqslant N_2$, on a

$$\sum_{p=1}^{N_1} |a_{n,p} - a_p| < \frac{\varepsilon}{2} \tag{497}$$

car

$$\lim_{n \to +\infty} \sum_{p=1}^{N_1} |a_{n,p} - a_p| = 0 \tag{498}$$

Donc pour tout $n \ge \max(N_1, N_2)$, on a

$$\left| \sum_{p=1}^{n} a_{n,p} - \sum_{p=1}^{+\infty} a_p \right| < \varepsilon \tag{499}$$

Ainsi,

$$\lim_{n \to +\infty} \sum_{p=1}^{+\infty} a_{n,p} = \sum_{p=1}^{+\infty} a_p$$
 (500)

2. On fixe $p \in \mathbb{N}$, on a

$$\lim_{n \to +\infty} \left(1 - \frac{p}{n} \right)^n = e^{-p} \tag{501}$$

Pour $x \ge -1$, on a $\ln(1+x) \le x$ donc $\ln(1-\frac{p}{n}) \le -\frac{p}{n}$ et $a_{n,p} = e^{n\ln(1-\frac{p}{n})} \le e^{-p} = b_p$ Donc d'après ce qui précède,

$$\lim_{n \to +\infty \left(\left(\frac{1}{n}\right)^n + \dots + \left(\frac{n-1}{n}\right)^n \right)} = \frac{1}{e-1}$$
(502)

FIGURE 7 – $\ln(1+x) \leqslant x$ pour x > -1.

Remarque 8. C'est faux si on n'a pas l'hypothèse (ii). Par exemple,

$$a_{n,p} = \frac{1}{\sqrt{n}} \xrightarrow[n \to +\infty]{} 0 \tag{503}$$

pour p fixé mais

$$\sum_{p=1}^{n} \frac{1}{\sqrt{n}} = \sqrt{n} \xrightarrow[n \to +\infty]{} + \infty \tag{504}$$

Solution 43.

1. Pour tout $k \ge 1$, $(u_{kn})_{n\ge 1}$ est une sous-famille de $(u_n)_{n\ge 1}$ sommable, donc $(u_{kn})_{n\ge 1}$ est sommable.

Donc
$$S_k$$
 existe. (505)

2. On a

$$\begin{cases} S_{1} - S_{2} &= u_{1} + u_{3} + \dots + u_{2n+1} + \dots = 0 \\ S_{1} - S_{2} - S_{3} + S_{6} &= u_{1} + u_{5} + u_{7} + u_{11} + \dots = 0 \\ S_{1} - S_{2} - S_{3} - S_{5} + S_{6} + S_{10} + S_{15} - S_{10} &= u_{1} + u_{7} + u_{11} + \dots = 0 \end{cases}$$

$$(506)$$

A la première ligne on enlève les multiples de 2, à la deuxième ligne on enlève les multiples de 2 et 3, à la troisième ligne on enlève les multiples de 2, 3 et 5. Et ainsi de suite.

Soient donc p_1, \ldots, p_N les N premiers nombres premiers. On a

$$0 = \sum_{k=1}^{p_1...p_N} \mu(k) S_k = \sum_{k \in \{p_1^{\alpha_1}...p_N^{\alpha_N} | (\alpha_1,...,\alpha_N) \in \{0,1\}^N\}} \mu(k) S_k$$
 (507)

où si $k = p_1^{\alpha_1} \dots p_r^{\alpha_r}$, $\mu(k) = 0$ s'il existe $\alpha_i \ge 2$ et $\mu(p_{i_1} \dots p_{i_s}) = (-1)^s$ sinon (fonction de Möbius).

Soit $n = p_1^{\beta_1} \dots p_N^{\beta_N}$. On cherche le coefficient en u_n dans la somme. Si n = 1, c'est 1. Si $n \ge 1$, on a

$$\sum_{k|n} \mu(k) = 0 \tag{508}$$

donc

$$\sum_{k \in \{p_1^{\alpha_1} \dots p_N^{\alpha_N} | (\alpha_1, \dots, \alpha_N) \in \{0, 1\}^N\}} \mu(k) S_k = u_1 + \alpha_N$$
(509)

avec

$$\alpha_N = \sum_{k \in B_N} u_k \tag{510}$$

où $B_N \subset \mathbb{N}^*$ est tel que min $(B_N) = p_{N+1}$. On a

$$|\alpha_N| \leqslant \sum_{k \geqslant p_{N+1}} |u_k| \xrightarrow[N \to +\infty]{} 0 \tag{511}$$

car c'est le reste de $\sum_{n\geqslant 1}|u_n|$ convergente.

Donc $u_1 + \alpha_N = 0 \xrightarrow[N \to +\infty]{} u_1$ donc $u_1 = 0$.

Avec $u_1 = 0$,

$$\begin{cases}
S_n = u_n + u_{2n} + u_{3n} + \dots = 0 \\
S_{2n} = u_{2n} + u_{4n} + u_{6n} + \dots = 0
\end{cases}$$
(512)

et en recommençant avec u_n pour tout $n \ge 1$, on obtient bien

$$\boxed{u_n = 0} \tag{513}$$

Solution 44.

1. On prend $u_n = 0$ pour tout $n \in \mathbb{N}$. Alors $\sum u_n = 0$ converge donc $\sum f(u_n) = \sum f(0)$ converge. Donc

$$f(0) = 0 \tag{514}$$

Supposons que f n'est pas continue en 0. Alors il existe $\varepsilon_0 >$ tel que pour tout $\alpha > 0$, il existe $x \in [-\alpha, \alpha] : |f(x)| \geqslant \varepsilon_0$. Pour $\alpha \equiv \alpha_n = \frac{1}{n^2}$, il existe $x_n \in \left[-\frac{1}{n^2}, \frac{1}{n^2}\right] : |f(x_n)| \geqslant \varepsilon_0$. $\sum x_n$ converge absolument mais $\sum f(x_n)$ diverge grossièrement ce qui est absurde.

$$f \text{ est continue en } 0. \tag{515}$$

2. Supposons que pour tout $\alpha > 0$, il existe $x \in]-\alpha, \alpha[: f(-x) \neq -f(x)]$. On définit $(x_n)_{n \in \mathbb{N}} \xrightarrow[n \to +\infty]{} 0$ telle que $f(-x_n) + f(x_n) \neq 0$. Il existe $N_n \in \mathbb{N}^*$ tel que

$$N_n \left| f\left(-x_n \right) + f\left(x_n \right) \right| \geqslant 1 \tag{516}$$

(il suffit de prendre $N_n = \left\lfloor \frac{1}{|f(x_n) + f(-x_n)|} \right\rfloor + 1$)

On définit

$$(u_n)_{n\in\mathbb{N}} = (x_0, -x_0, x_0, -x_0, \dots, x_n, -x_n, \dots, \dots)$$
(517)

où $(x_n, -x_n)$ apparaît N_n fois. On a $\sum_{k=0}^{2N} u_k = 0$ et $\sum_{k=0}^{2N+1} u_k = x_n \xrightarrow[n \to +\infty]{} 0$. Donc $\sum u_n$ converge.

Si $\sum f(u_n)$ convergeait, alors il existerait $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$ alors

$$\left| \sum_{k=n+1}^{+\infty} f\left(x_k\right) \right| < \frac{1}{2} \tag{518}$$

De plus, pour $n \ge n_0$, on a

$$|f(x_n) + f(-x_n) + \dots + f(x_n) + f(-x_n) + f(x_{n+1}) + f(-x_{n+1}) + \dots| < \frac{1}{2}$$
 (519)

où $(f(x_n), f(-x_n))$ apparaît N_n fois. Comme

$$|f(x_{n+1}) + f(-x_{n+1}) + \dots| < \frac{1}{2}$$
 (520)

on a

$$|f(x_n) + f(-x_n) + \dots + f(x_n) + f(-x_n)| = N_n |f(x_n) + f(-x_n)| < 1$$
 (521)

ce qui est absurde.

3. Supposons que pour tout $\beta > 0$, il existe $(x,y) \in]-\beta, \beta[^2$ avec $f(x+y) \neq f(x) + f(y)$. Alors il existe $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ qui tendent vers 0 telles que pour tout $n \in \mathbb{N}$, il existe $M_n \in \mathbb{N}$,

$$M_n |f(x_n + y_n) - f(x_n) - f(y_n)| \ge 1$$
 (523)

On définit alors

$$(u_n)_{n\in\mathbb{N}} = (x_0 + y_0, -x_0, -y_0, \dots, x_0 + y_0, -x_0, -y_0, \dots, x_n + y_n, -x_n, -y_n, \dots)$$
 (524)

où $(x_n + y_n, -x_n, -y_n)$ apparaît M_n fois. On a

$$\sum_{k=0}^{N} u_k = \begin{cases} 0 & \text{si } N \equiv 0[3] \\ x_n + y_n & \text{si } N \equiv 1[3] \xrightarrow[N \to +\infty]{} 0 \\ y_n & \text{si } N \equiv 2[3] \end{cases}$$
 (525)

donc $\sum u_n$ converge.

Si $\sum f(u_n)$ convergeait, alors il existerait $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$,

$$\left| \sum_{k=n+1}^{+\infty} f\left(u_k\right) \right| < \frac{1}{2} \tag{526}$$

De plus, d'après 2., il existe $n_1 \in \mathbb{N}$ tel que pour tout $n \ge n_1$, on a $f(-x_n) + f(-y_n) = -f(x_n) - f(y_n)$ donc pour tout $n \ge \max(n_0, n_1)$, on a

$$|f(x_n + y_n) + f(-x_n) + f(-y_n)| \times M_n = |f(x_n + y_n) - f(x_n) - f(y_n)| \times M_n < 1$$
 (527)

ce qui est absurde.

4. Soit $k \in \mathbb{Z}^*, x \in \mathbb{R}, |x| \leqslant \frac{\beta}{|k|}$. Par récurrence, on a f(kx) = kf(x).

Si $|x| < \beta$ et si $\frac{x}{\beta} \in \mathbb{Q}$, on a

$$\frac{x}{\frac{\beta}{2}} = \frac{p}{q} \tag{529}$$

donc en posant $\lambda = \frac{2}{\beta} f\left(\frac{\beta}{2}\right)$, on a

$$f(x) = f\left(\frac{p\beta}{2q}\right) = \frac{p}{q}f\left(\frac{\beta}{2}\right) = \frac{p}{q}\frac{\beta}{2}\lambda = \lambda x$$
 (530)

Si $\frac{x}{\beta} \notin \mathbb{Q}$, il existe une suite de rationnels $(r_n)_{n \in \mathbb{N}}$ telle que $\lim_{n \to +\infty} r_n = \frac{x}{\frac{\beta}{2}}$. On a alors

$$f(x) = f\left(\left(x - \frac{r_n \beta}{2}\right) + r_n \frac{\beta}{2}\right) \tag{531}$$

$$= f\left(x - \frac{r_n \beta}{2}\right) + f\left(\frac{r_n \beta}{2}\right) \tag{532}$$

et $x - \frac{r_n \beta}{2} \xrightarrow[n \to +\infty]{} 0$ et donc $f\left(x - \frac{r_n \beta}{2}\right) \xrightarrow[n \to +\infty]{} 0$ d'après 1. et $r_n f\left(\frac{\beta}{2}\right) \xrightarrow[n \to +\infty]{} \lambda x$