In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
```

In [103]:

```
#Load complete data@ and converting the date as index
energy_dat = pd.read_csv("E:/ADS/Case Study/casestudy/energydata_complete.csv", parse_d
ates= ['date'], index_col= 'date')
```

Data Clean:

The data is clean and need no cleaning as shown by the below information.

In [104]:

```
#All columns are non null and datetime as index
energy_dat.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 19735 entries, 2016-01-11 17:00:00 to 2016-05-27 18:00:00
Data columns (total 28 columns):
Appliances
               19735 non-null int64
lights
               19735 non-null int64
               19735 non-null float64
T1
RH 1
               19735 non-null float64
T2
               19735 non-null float64
RH_2
               19735 non-null float64
               19735 non-null float64
T3
RH_3
               19735 non-null float64
T4
               19735 non-null float64
               19735 non-null float64
RH 4
               19735 non-null float64
T5
RH 5
               19735 non-null float64
               19735 non-null float64
T6
               19735 non-null float64
RH 6
T7
               19735 non-null float64
RH 7
               19735 non-null float64
               19735 non-null float64
T8
               19735 non-null float64
RH 8
Т9
               19735 non-null float64
               19735 non-null float64
RH 9
               19735 non-null float64
T_out
               19735 non-null float64
Press mm hg
               19735 non-null float64
RH out
Windspeed
               19735 non-null float64
               19735 non-null float64
Visibility
Tdewpoint
               19735 non-null float64
rv1
               19735 non-null float64
rv2
               19735 non-null float64
dtypes: float64(26), int64(2)
memory usage: 4.4 MB
```

In [105]:

```
#Describe
energy_dat.describe()
```

Out[105]:

	Appliances	lights	T1	RH_1	T2	
count	19735.000000	19735.000000	19735.000000	19735.000000	19735.000000	1973
mean	97.694958	3.801875	21.686571	40.259739	20.341219	40.42
std	102.524891	7.935988	1.606066	3.979299	2.192974	4.069
min	10.000000	0.000000	16.790000	27.023333	16.100000	20.46
25%	50.000000	0.000000	20.760000	37.333333	18.790000	37.90
50%	60.000000	0.000000	21.600000	39.656667	20.000000	40.50
75%	100.000000	0.000000	22.600000	43.066667	21.500000	43.26
max	1080.000000	70.000000	26.260000	63.360000	29.856667	56.02

8 rows × 28 columns

Data Transformation

Add the columns many of columns such as week of day - Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday to denote the day of the week week status - with attributes such as weekends, weekdays to signify the day is weekends or weekdays. NSM - to denote the number of seconds from the midnight of a day

In [106]:

```
#Add the week day columns
energy_dat["week_of_day"] = energy_dat.index.to_series().apply(lambda x: x.dayofweek)
#Create a dictionary of the name of days
days = {0:'Sunday', 1:'Monday', 2:'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday'
, 6: 'Saturday'}
energy_dat1= energy_dat.replace({"week_of_day": days})
#Creating week status
day_split = { "weekdays" : ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday'], "w
eekends" :['Saturday', 'Sunday']}
d = {k: oldk for oldk, oldv in day_split.items() for k in oldv}
energy_dat1["week_status"] = energy_dat1["week_of_day"].map(d)
```

In [107]:

```
# Creating NSM (number of seconds from midnight)
energy_dat1["NSM"] = energy_dat1.index.to_series().apply(lambda x:x.hour*3600 + x.minut
e*60 +x.second)
```

In [108]:

```
#Time as index , total 31 columns and 19735 rows energy_dat1.shape
```

Out[108]:

(19735, 31)

In [109]:

#Applicances consumption on an monthly basis

In [13]:

```
# plot_app = energy_dat1["Appliances"].plot(title = "Appliances Energy Consumption for
    the whole period", xtick = "Applicances Wh", ytick = "Time")

# plt.show()
# fig, ax = plt.subplot()
plt.figure(figsize = (16,8), dpi = 80, facecolor = 'w', edgecolor = 'k', num = None)
plt.title('Appliances Energy Consumption for the whole period', fontsize=20)
plt.xlabel('Time', fontsize=18)
plt.ylabel('Appliances Wh', fontsize=16)
# ax.set_xlim([datetime.date(2016, 1, 1), datetime.date(2016, 5, 30)])
# ax.set_ylim([0, 1500])
# fig.savefig('test.jpg')
energy_dat1["Appliances"].plot()
plt.show()
```


In [110]:

```
# Geeting first week data:
appl = energy_dat1['2016-1-11': '2016-1-18']
```

In [25]:

```
plt.figure(figsize = (16,8), dpi =80, facecolor = 'w', edgecolor = 'k', num = None)
plt.title('Appliances Energy Consumption for first week', fontsize=20)
plt.xlabel('Time', fontsize=18)
plt.ylabel('Appliances Wh', fontsize=16)
appl["Appliances"].plot(kind = 'line')
plt.show()
```


In [16]:

```
#Frequency plots for Appliances usage:
plt.figure(figsize = (16,8), dpi =80, facecolor = 'w', edgecolor = 'b', num = None)
plt.title("Appliances energy consumption Histogram distribution", fontsize = 20)
plt.xlabel('Appliances in Wh', fontsize = 14)
plt.ylabel('frequency', fontsize = 14)
energy_dat1["Appliances"].plot(kind = "hist", bins = np.arange(min(energy_dat["Appliances"]) , max(energy_dat["Appliances"]) + 10, 10), edgecolor = 'b', facecolor = 'skyblue')
plt.show()
```


In [50]:

```
# Boxplot
plt.figure(figsize= (16,8), dpi = 80, edgecolor= 'w', facecolor = 'w', num= None)
plt.title("Box plot of Appliances energy consumption", fontsize= 24)
plt.ylabel("Appliances", fontsize= 20)
plt.xlabel("Appliances in Wh", fontsize=20)
energy_dat["Appliances"].plot(kind = 'box', vert = False)
plt.show()
```


In [19]:

```
energy_dat1["week"] = energy_dat1.index.week
```

In []:

#Correlation diagram

Features significance are measured by Correlation of Appliances with other variables:

- 1. Plot shows highest correlation between outdoor temperature and Appliances energy consumption.
- 2. Negative correlation exists between Appliances and outdoor humidity RH6.
- 3. Positive correlations between the consumption of appliances and T7, T8 and T9 being 0.03, 0.05 and 0.02 respectively.
- 4. Highest correlation between the energy consumption of appliances and NSM with a value of 0.22.
- 5. The correlation diag. shows the relationship of the energy consumption of various components of the house recorded over a period of six months.
- 6. The plot show the positive correlation between energy consumption of lights and Appliances.
- 7. Positive correlation is high i.e. 0.19 between indoor Temperature (T2) and Appliances energy consumption.
- 8. Positive correlation is expected between T1 and T3.
- 9. Plot shows highest correlation between outdoor temperature and Appliances energy consumption.
- 10. Negative correlation exists between Appliances and outdoor humidity RH6.
- 11. positive correlations between the consumption of appliances and T7, T8 and T9 being 0.03, 0.05 and 0.02 respectively.
- 12. Highest correlation between the energy consumption of appliances and NSM with a value of 0.22.

In [58]:

corr_num = energy_dat1[['Appliances', 'lights', 'T1', 'RH_1', 'T2', 'RH_2', 'T3', 'RH_
3']].corr()

Out[58]:

	Appliances	lights	T1	RH_1	T2	RH_2	
Appliances	1.000000	0.197278	0.055447	0.086031	0.120073	-0.060465	0.085
lights	0.197278	1.000000	-0.023528	0.106968	-0.005622	0.050985	-0.09
T1	0.055447	-0.023528	1.000000	0.164006	0.836834	-0.002509	0.892
RH_1	0.086031	0.106968	0.164006	1.000000	0.269839	0.797535	0.253
T2	0.120073	-0.005622	0.836834	0.269839	1.000000	-0.165610	0.735
RH_2	-0.060465	0.050985	-0.002509	0.797535	-0.165610	1.000000	0.137
Т3	0.085060	-0.097393	0.892402	0.253230	0.735245	0.137319	1.000
RH_3	0.036292	0.131161	-0.028550	0.844677	0.121497	0.678326	-0.01

In []:

In [79]:

```
var_t = energy_dat1[['Appliances', 'lights', 'T1', 'RH_1', 'T2', 'RH_2', 'T3', 'RH_3']]
plt.matshow(var_t.corr())
# plt.figure(figsize= (16,8), dpi = 80, edgecolor= 'w', facecolor = 'w', num= None)
plt.xticks(range(len(var_t.columns)), var_t.columns)
plt.yticks(range(len(var_t.columns)), var_t.columns)
plt.colorbar()
plt.show()
```


In [52]:

pd.scatter_matrix(var_t, figsize= (6,6))
plt.show()

C:\Users\Girijesh\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: Fut
ureWarning: pandas.scatter_matrix is deprecated. Use pandas.plotting.scatt
er_matrix instead

"""Entry point for launching an IPython kernel.

In [60]:

In [73]:

```
#Correaltion plot
var_t = energy_dat1[['Appliances', 'T4', 'RH_4', 'T5', 'RH_5', 'T6', 'RH_6', 'T4',
                                                                                      'R
H_4']]
corr_1 = var_t.corr()
#Crating a mask for upper triancgular matrix
mask = np.zeros_like(corr_1, dtype =np.bool)
mask[np.triu_indices_from(mask)] = True
#Figure size for the plot
f, ax = plt.subplots(figsize=(11, 9))
# Generate custom diverging colormap
cmap = sns.diverging_palette(220, 10, as_cmap=True)
#Create a Heatmap
sns.heatmap(corr_1, mask=mask, cmap=cmap, vmax=.3, center=0,
            square=True, linewidths=.5, cbar_kws={"shrink": .5})
plt.show()
```


In [74]:

In [70]:

Preprocessing is required as the data is measured with different scales:

```
In [91]:
```

```
energy_dat_p = energy_dat1.iloc[:,:28]
```

In [130]:

```
from sklearn import preprocessing
minmax_scalar = preprocessing.MinMaxScaler()
np_dat = minmax_scalar.fit_transform(energy_dat_p)
df_normalized = pd.DataFrame(np_dat)
```

```
In [112]:
```

```
names = energy_dat.iloc[:,:28].columns
```

In [114]:

```
# Add the column names for the normalized dataframe
df_normalized.columns = names
```

In [117]:

```
#Add the index for the normalized dataframes
df_normalized.index = energy_dat.iloc[:,:28].index
```

In [127]:

```
rem_col = energy_dat1[['week_of_day', 'week_status', 'NSM']]
```

Out[127]:

pandas.core.frame.DataFrame

In [129]:

```
#Normalized DataFrame
norm_df = pd.merge(df_normalized, rem_col, left_index=True, right_index=True, how= 'out
er')
```

In []: