Murphi-Class2

August 1, 2018

DeadLock

No next state

- no rule to execute
- have one rule

Running Example: Mutual Exclusion Protocol

N symmetric processors, behaviour of processor i is described by:

- $try(i) := a[i] = I \rightarrow a[i]' = T$
- $crit(i) := (a[i] = T \land x = true \rightarrow a[i]' = C \land x' = false)$
- $exit(i) := a[i] = C \rightarrow a[i]' = E$
- $idle(i) := a[i] = E \rightarrow a[i]' = I \land x' = true$

Initial states: x = true and a[i] = I for all i

Invariant property (where we assume parameters are pairwise disjoint): $\neg(a[i] = C \land a[j] = C)$

Reachable state set

T

he set of reachable states for a protocol $\mathcal{P} = (I, R)$, denoted as $RS(\mathcal{P})$, can be defined inductively:

- a state s is in $RS(\mathcal{P})$ if there exists a formula $f \in I$ such that $s \models f$;
- a state s' is in RS(\mathcal{P}) if there exists a state s and a guarded command $r \in R$ such that $s \in RS(\mathcal{P})$ and $s \stackrel{r}{\rightarrow} s'$.

Important properties–Safety Properties

- Bad things never happen $\Box P$.
- Invariants properties of a protocol: mutual exclusion $\neg(a[i] = C \land a[j] = C)$
- Data Coherence: $(ExGntd = false \rightarrow MemData = AuxData)$ $\forall i \in NODE.Cache[i].State! = I \rightarrow Cache[i].Data = AuxDataend;$
- No deadLock.

Important properties-Liveness Properties

- Good things eventually happen
- A request eventually is served $\Box(P \to \Diamond Q)$
- A process is eventually scheduled
- A Loop is terminated

Use Murphi to Compute Reachable state set

```
./mutualEx -ta -d ./ Use python to create the table from the trace % \left( 1\right) =\left( 1\right) \left( 1\right)
```

Output Result

A Table to illustrate a reachable state set

Table: a data table transformed from reachable state set

n[1]	n[2]	Χ
1	1	TRUE
Τ	I	TRUE
I	Τ	TRUE
C	I	FALSE
T	Τ	TRUE
1	C	FALSE
Ε		FALSE
C	Τ	FALSE
Τ	C	FALSE
1	Ε	FALSE
Ε	Τ	FALSE
Т	Ε	FALSE