Hierarchical Attention Network for Explainable Depression Detection on Twitter Aided by Metaphor Concept Mappings

Sooji Han, Rui Mao, and Erik Cambria.

COLING2022

<u>정 시 열</u>

목차

- 1. Introduction
- 2. Methodology
- 3. Experiments
- 4. Results
- 5. Conclusion

Introduction

- 최신 Depression Detection연구들은 성능 향상에 초점을 맞추어 SOTA 모델들을 사용하기에 설명이 어렵다는 단점 존재
- Depression 환자 특징
 - 본인의 감정과 정신 상태를 전문의에게 표현하기 앞서 Social Media에 표현하는 경향이 있음.
 - 본인의 감정과 경험을 *은유적으로 표현함.
 - *Metaphor is not only a linguistic phenomenon, but also a reflection of cognitive mappings of source and target concept
 - 환자의 은유 표현은 심리치료에서 중요함.
- "You are wasting my time" => "Time is Money"
- "This is the *core* of the matter" => "importance is interiority"

➤ MCM을 활용한 설명 가능한 모델 HAN을 소개함.

*MCM = Metaphor Concept Mappings (" A is B ") / A: target, B: Source

MCM 만들기

• MI 과정 (Metaphor Identification)

$$r_{\epsilon}, \rho_{\epsilon} = MI(\mathbf{x}_{\epsilon}),$$

Input:	I	have	already	passed	the	two	written	exams	
SMI:	lit	lit	lit	met	lit	lit	lit	lit	lit
PoS:	PRON	AUX	ADV	VERB	DET	NUM	VERB	NOUN	PUNCT

Pron 대명사, aux 조동사, adv 형용사 verb 동사, det: 한정사, num: 수사 noun 명사

Tweet 17
$$\parallel$$

$$x_{\epsilon} = \{\tau_{\epsilon,1}, \tau_{\epsilon,2}, ..., \tau_{\epsilon,g}\}$$

$$\downarrow$$
Metaphor label
$$r_{\epsilon} = \{r_{\epsilon,1}, r_{\epsilon,2}, ..., r_{\epsilon,g}\}$$

$$r_{\epsilon,j} = \{metaphor, literal\}$$
Pos label
$$\rho_{\epsilon} = \{\rho_{\epsilon,1}, \rho_{\epsilon,2}, ..., \rho_{\epsilon,g}\}$$

MCM 만들기

• MP 과정 (Metaphor paraphrasing)

은유 표현을 대신하는 단어 찾기
$$\omega_{\epsilon,j}^{\iota} = MP(\tau_{\epsilon,j},\rho_{\epsilon,j}).$$

$$p(m_i|w_1,...,w_{i-1},w_{i+1},...,w_n)$$
= BERT([CLS], $w_1,...,$ [MASK]_i,..., w_n , [SEP]),

해당 SENTENCE에서 은유표현을 마스킹 한 이후에 가장 적합한 단어를 찾도록 한다. 혹여 은유 표현이 여러 개이면 하나씩 찾는다.

진행 과정

1. 은유 표현을 표제화 시키기

$$au_{\epsilon,j} \leftarrow$$
 은유 표현 토큰
$$\downarrow \\ au^L_{\epsilon,i} \leftarrow$$
 표제화 된 은유 표현 토큰

- 2. 해당 단어의 동의어, 상위어 중 적합한 단어 찾기
- 3. 적합한 단어를 표제화 시켜서 리턴

MCM 만들기

• CG 과정 (Concept mapping Generation)

$$A_{\epsilon,j} = CG(\tau_{\epsilon,j}^{\iota}),$$
 $B_{\epsilon,j} = CG(\omega_{\epsilon,j}^{\iota}).$
 $MCM_{\epsilon,j} = B_{\epsilon,j} \text{ IS } A_{\epsilon,j}.$

컨셉은 해당 단어를 잘 드러내는 WordNet의 Hypernym => 해당 단어를 포함하는 상위 개념

entity.n.01	△(10, 1.00)	(8, 1.00)	(9, 1.00)	
physical_entity.n.01	△(9, 0.90)	(7, 0.88)	(8, 0.89)	
object.n.01	△(8, 0.80)	(6, 0.75)	(7, 0.78)	
whole.n.02	<u></u> (7, 0.70)	(5, 0.63)	(6, 0.67)	
artifact.n.01	△ (6, 0.60)	(4, 0.50)	(5, 0.56)	
instrumentality.n.03	△(5, 0.50)	(3, 0.38)	structure.n.01	(4, 0.44)
container.n.01	△ (4, 0.40)	(2, 0.25)	area.n.05	(3, 0.33)
wheeled_vehicle.n.01	△(3, 0.30)	(1, 0.13)	room.n.01	(2, 0.22)
self-propelled_vehicle.n.01	1 (2, 0.20)	com	partment.n.02	(1, 0.11)
motor_vehicle.n.01	△(1, 0.10)			
△ Hypernym path 1	○ Hyper	nym path 2	Hypernyi	m path 3

Figure 2: The rating scores of hypernyms of "car" in separate paths. The nodes in the same box denote the same synset in WordNet. The numbers in the parentheses besides a node denote the index of a node in a hypernym path (left), and the rating score in the path (right), respectively.

Word pa	ir DR	Target	Source
M1 steamroller	bill vo	DOCUMENT	WAY
M2 son drift	sv	MALE_OFFSP.	VESSEL
M3 wine breath	ne sv	ALCOHOL	ADULT
M4 story lend	sv	FICTION	ADULT
M5 government	t bow sv	POLITY	ADULT
T1 blind alley	an	STREET	ADULT
T2 raw emotio	n an	FEELING	ARTIFACT
T3 weak passw	ord an	POSITIVE_ID.	ARTIFACT
T4 rough draft	an	WRITING	ARTIFACT
T5 steep discou	ant an	DECREASE	GEOFORM.
G1 bitter night	an	TIME_PERIOD	SENSATION
G2 sour trade	an	TRANSACTION	SENSATION
G3 clear defini	tion an	EXPLANATION	MATERIAL
G4 warm gratit	ude an	FEELING	MATERIAL
G5 clean datun	n an	INFORMATION	MATERIAL

Table 7: Case study. M, T, and G are MOH, TSV, and GUT datasets. DR denotes dependency relationship, where sv, vo, and an are subjective-verb, verb-direct object, and adjective-noun dependencies, respectively.

User: u_k

Set of tweets: $X_k = \{x_{k,1}, ..., x_{k,n}\}$

Set of MCM in tweets: $M_k = \{m_{k,1}, ..., m_{k,n}\}$

$$u_k = [X_k, M_k]$$

$$T_0 = BERT(\mathbb{X}).$$

$$C_0 = BERT(\mathbb{M}).$$

$$v_i^t, T_i = HAN_i^t(v_{i-1}^t, T_{i-1}).$$

$$v_i^c, C_i = HAN_i^c(v_{i-1}^c, C_{i-1}).$$

Layer 내부 전개

$$K_{i-1} \in \mathbb{R}^{o \times d}$$
,
 $(q_{i-1} \in \mathbb{R}^{1 \times d})$
 $w_i = Softmax \left(\frac{q_{i-1} \otimes K_{i-1}^{\mathsf{T}}}{\sqrt{d}}\right)$
 $q_i = LN(ReLU(FNN_i^{query}(w_i \otimes K_{i-1})))$.
 $K_i = LN(ReLU(FNN_i^{key}(K_{i-1})))$.

Experiment

Dataset

• MDL (Twitter에서 Depression Detection을 위한 데이터 셋)

직접적으로 우울증에 걸렸다고 tweet을 올린 유저: positive 직접적으로 우울증에 걸렸다고 tweet을 올리지 않은 유저: negative

IMDL

MDL 데이터셋의 모든 트윗에서 직접적으로 우울증에 걸렸다고 적힌 트윗을 전부 삭제한 데이터셋

Dataset	Total #	of tweets	Mean # of tweets per user		
	Positive	Negative	Positive	Negative	
DI	156,013	153,328	72	75	
D2	151,538	119,188	71	58	
D3	142,057	118,611	66	58	
D4	143,725	124,925	66	61	
D5	148,039	134,700	69	66	

Table 1: Statistics of the five randomly sampled datasets. The number of positive users and that of negative users are 2,159 and 2,049 for all the datasets.

layer: 2 / Batch size:64 /

Optimizer: Adam/

input length:200 / Dropout: 0.2

Results

Model	P	R	F1	Acc.
Gui et al. (2019)	0.900	0.901	0.900	0.900
Lin et al. (2020)	0.903	0.870	0.886	0.884
Zogan et al. (2021)	0.909	0.904	0.912	0.901
HAN _{ours} -Avg _{D1-D5}	0.975	0.969	0.972	0.971
Dl	0.981	0.965	0.973	0.973
D2	0.988	0.956	0.972	0.971
D3	0.972	0.972	0.972	0.971
D4	0.968	0.970	0.969	0.968
D5	0.964	0.981	0.972	0.971

Table 2: Depression detection results. Our model result is averaged over the five testing sets (D1-D5).

# of HAN layers	1	2	4	8
MDL D1 validation	0.542	0.985	0.983	0.979

Table 4: F1 scores for different numbers of encoder layers.

34-1-1	F1 on MDL-validation						F1 on IMDL-validation					
Model	D1	D2	D3	D4	D5	Avg	D1	D2	D3	D4	D5	Avg
HAN	0.985	0.960	0.971	0.976	0.975	0.973	0.939	0.911	0.933	0.927	0.931	0.928
HAN-MCM	0.972	0.947	0.963	0.967	0.962	0.962	0.914	0.897	0.914	0.905	0.918	0.909
Δ	0.013	0.013	0.008	0.009	0.013	0.011	0.025	0.014	0.019	0.022	0.014	0.019

Table 3: Ablation study results on validation sets, measured by F1 score. Δ is defined by $F1_{\text{HAN}} - F1_{\text{HAN-MCM}}$.

	LSTM	BiLSTM	GRU	BiGRU	TF-first	HAN-TF	HAN
F1 on MDL D1 val. ↑	0.966	0.965	0.961	0.959	0.898	0.976	0.985
# of param. per layer ↓	4.72M	9.45M	3.54M	7.09M	3.55M	4.14M	1.18M

Table 5: Comparison results of different encoder layers. \uparrow denotes that the higher the value is, the better the model is. \downarrow denotes that the lower the value is, the better the model is.

Results

Figure 3: Visualization of attention weights for two depressed users. The lighter the color bar of an instance (tweet or MCM) is, the higher its attention weight is.

User	Tweet	Metaphor
	1. I hate how I can't tell if	1. LEVEL IS IMPORTANCE
	I have allergies or I'm getting	
	sick.	
	2. get better, I love you	2. PERSON IS EXTREMITY
	I'm slightly allergic to cats	3. SITUATION IS HAPPENING
1	but I still have them and I don't	
	CARE IF I SNEEZE	
	 I'm having a bad night 	4. ATHLETE IS AREA
	5. So I'm so nervous for my	5. MORPHEME IS EXTREMITY
	MAC interview tomorrow but I	
	know I'll do great. Everything	
	will be okay	
	 Today is not a good day: 	1. CONCERN IS STATE
	Driver, teen shot to death after	
	vehicle hits and kills -year-old	
	Autistic th Grader Assaulted	2. Position is disappear-
	by School Cop, Now He is a	ANCE
	Convicted Felon	
2	Thank you Father, GM FB!	3. LEVEL IS IMPORTANCE
_	I gotta start taking My butt to	
	bed at night, woke late again	
	 Cellphone Video Surfaces 	4. FEELING IS ILL_HEALTH
	Showing Moments After Po-	
	lice Shot -Year-Old Boy in the	
	Back	
	Freddie Gray dies one week	5. ARTIFACT IS SUPPORT
	after Baltimore arrest	

Table 6: The top 5 tweets and metaphors, selected based on attention weights, for two example users.

Conclusion

- Depression Detection을 위한 설명 가능한 모델을 만들었다.
- MCM을 활용하여 우울증 환자들이 그들의 감정 등을 표현하는 방법을 소개 가능했다.
- Depression Detection에 은유를 사용하는 것의 이점을 설명하였다.

End