Long, associative, telechelic poly(acrylamide) under shear

Caltech and elongational flow

Robert W. Learsch¹, Red C. Lhota², Hojin Kim², Christopher W. Nelson³, Sipei Zhang³, Thomas H. Kalantar³, Christopher J. Tucker³, Kylie Kennedy³, Zachary Kean³, Roxanne M. Jenkins³, Michael P. Tate³, and Julia A. Kornfield²

Exacerbated by plants with hydrophobic surfaces such as corn

Pesticide off target: currently 50 to 80%

Droplets rarely stick to their target:

- Droplets too small: drift away
- Droplets too large: bounce and shatter

Tailoring droplet impact behavior through extensional viscosity

Dripping onto substrate extensional rheology

Calculate elongational relaxation time and elongational viscosity from the elastocapillary regime ($t > t_c$)

$$\frac{D(t)}{D0} \cong \frac{D(tc)}{D_0} \exp\left(-\frac{(t - t_c)}{3\lambda_E}\right)$$

$$\eta_E = \frac{3\sigma\lambda_E}{D(t_c) * e^{\frac{(t-t_c)}{3\lambda_E}}}$$

Poly(acrylamide) as an agricultural additive

- PAM is water soluble, biodegradable, and approved for agricultural use
- Terpyridine-ended PAM (T-PAM) associates into long megapolymers in the presence of metal ions^C

0.8 Mg/mol T-PAM, 0.1 wt %

- Behaves as 6 Mg/mol covalent PAM with addition of Ni²⁺ in a
 1:2 ratio with terpyridine
 - Survives 20+ pumping cycles without degradation
 Reforms associations afterwards
- \bullet [Ni²⁺]:[Terpyridine] = 0 Effective \bullet [Ni²⁺]:[Terpyridine] = 0.5 MW Polymer Terpyridine (Mg/mol) weight % (Pas) 10^0 ratio (ms) 0.6 14 8.0 D/D₀ 1.0 10^-1 7.1 76.3 1000 0.5 3 8.0 10^-2 0.1 0.02 **5.5** 30 0.5

Affiliations, References, and Acknowledgements

A. Josh Stir, Flickr.com
B. Dinic, J. et. al. (2015). ACS Macro Letters, 4(7), 804-808.
C. Lewis, R. W. et. al. (2019). Chemical Science, 10(24), 6174-6183.

 $t - t_c(s)$

Materials Science, California Institute of Technology,
 Pasadena, CA, United States.
 Chemical Engineering, California Institute of Technology,
 Pasadena, CA, United States.
 The Dow Chemical Company, Midland, MI, United States

Dow