## 3.2.2. Резонанс напряжений

Рябых Владислав и Исыпов Илья, Б05-905 9 декабря 2020 г.

**Цель работы:** исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазово-частотных характеристик, а также определение основных параметров контура.

**В работе используются:** генератор сигналов, источник напряжения, нагруженный на последовательный колебательный контур с переменной ёмкостью, двулучевой осциллограф, цифровые вольтметры.

## Экспериментальная установка



Рис. 1: Схема установки для исследования свободных колебаний

Схема экспериментального стенда для изучения резонанса напряжений в последовательном колебательном контуре показана на рис. 1. Синусоидальный сигнал от генератора GFG8255A поступает через согласующую RC-цепочку на вход источника напряжения, собранного на операционном усилителе ОУ. Питание операционного усилителя осуществляется встроенным блоком-выпрямителем от сети переменного тока 220 Вольт (цепь питания на схеме не показана). Источник напряжения, обладающий по определению нулевым внутренним сопротивлением, фактически обеспечивает с высокой точностью постоянство амплитуды сигнала на меняющейся по величине нагрузке – последовательном колебательном контуре, изображенном на рисунке в виде эквивалентной схемы.

## Ход работы

- 1. Подготавливаем установку к работе и включаем приборы.
- 2. Выставляем на входе контура напряжение  $E=175.5~\mathrm{mB},~\mathrm{B}$  течение всей работы поддерживая его постоянным.
- 3. Добиваемся получения двух отцентрированных синусоид на осциллографе. Убеждаемся, что одна из синусоид при изменении частоты f генератора меняет амплитуду относительно начала координат, в то время как амплитуда другой не меняется с погрешностью не более 1%.
- 4. Для контуров с семью различными ёмкостями, меняя их с помощью переключателя на блоке, измеряем резонансные частоты  $f_{0n}$  и напряжения  $U_C(f_{0n})$ . Регистрируем также напряжения  $E(f_{0n})$ , игнорируя отклонения в пределах относительной погрешности 1%.
- 5. Для контуров ёмкостями  $C_2=47.6$  нФ и  $C_5=68.0$  нФ снимаем амплитудночастотные характеристики U(f) при том же напряжении E.
- 6. По данным из таблицы 1 построим на одном графике амплитудо-частотные характеристики в координатах f, U. См. рис. 2

| $C_2=47.6$ н $\Phi$ |                    |                           |      |                | $C_5 = 68.0 \; { m H}\Phi$ |        |                           |      |                |  |  |
|---------------------|--------------------|---------------------------|------|----------------|----------------------------|--------|---------------------------|------|----------------|--|--|
| n                   | $f$ , к $\Gamma$ ц | $\sigma_f$ , к $\Gamma$ ц | A, B | $\sigma_A$ , B | n                          | f, кГц | $\sigma_f$ , к $\Gamma$ ц | A, B | $\sigma_A$ , B |  |  |
| 1                   | 23.27              | 0.1                       | 3.30 | 0.01           | 1                          | 19.60  | 0.1                       | 2.89 | 0.01           |  |  |
| 2                   | 23.49              | 0.1                       | 3.10 | 0.01           | 2                          | 19.32  | 0.1                       | 2.54 | 0.01           |  |  |
| 3                   | 23.66              | 0.1                       | 2.80 | 0.01           | 3                          | 19.20  | 0.1                       | 2.28 | 0.01           |  |  |
| 4                   | 23.84              | 0.1                       | 2.49 | 0.01           | 4                          | 19.00  | 0.1                       | 1.93 | 0.01           |  |  |
| 5                   | 24.03              | 0.1                       | 2.15 | 0.01           | 5                          | 18.94  | 0.1                       | 1.81 | 0.01           |  |  |
| 6                   | 24.15              | 0.1                       | 1.96 | 0.01           | 6                          | 18.77  | 0.1                       | 1.57 | 0.01           |  |  |
| 7                   | 24.49              | 0.1                       | 1.55 | 0.01           | 7                          | 18.55  | 0.1                       | 1.34 | 0.01           |  |  |
| 8                   | 25.12              | 0.1                       | 1.07 | 0.01           | 8                          | 18.19  | 0.1                       | 1.06 | 0.01           |  |  |
| 9                   | 23.21              | 0.1                       | 3.34 | 0.01           | 9                          | 19.55  | 0.1                       | 2.86 | 0.01           |  |  |
| 10                  | 23.00              | 0.1                       | 3.05 | 0.01           | 10                         | 19.88  | 0.1                       | 2.66 | 0.01           |  |  |
| 11                  | 22.90              | 0.1                       | 2.83 | 0.01           | 11                         | 20.00  | 0.1                       | 2.47 | 0.01           |  |  |
| 12                  | 22.74              | 0.1                       | 2.47 | 0.01           | 12                         | 20.18  | 0.1                       | 2.17 | 0.01           |  |  |
| 13                  | 22.49              | 0.1                       | 1.97 | 0.01           | 13                         | 20.27  | 0.1                       | 2.01 | 0.01           |  |  |
| 14                  | 22.32              | 0.1                       | 1.72 | 0.01           | 14                         | 20.41  | 0.1                       | 1.80 | 0.01           |  |  |
| 15                  | 21.99              | 0.1                       | 1.37 | 0.01           | 15                         | 20.72  | 0.1                       | 1.43 | 0.01           |  |  |
| 16                  | 21.45              | 0.1                       | 1.02 | 0.01           | 16                         | 21.20  | 0.1                       | 1.05 | 0.01           |  |  |

Таблица 1: Результаты измерений

7. По тем же данным таблицы 1 построим на одном графике амплитудо-частотные характеристики в безразмерных координатах  $f/f_0, U/U_0$ . См. рис. 3. По ширине резонансных кривых на уровне определим добротности Q соответствующих контуров:  $Q_{C_2} = 20.6$  и  $Q_{C_5} = 17.2$ .



Рис. 2: Амплитудно-частотные характеристики



Рис. 3: Амплитудно-частотные характеристики

8. Для тех же двух контуров снимаем фазово-частотные характеристики  $\varphi_C(f)$  при том же напряжении E.

| (  | $C_2 = 47.6$       | Фн б           | $C_5 = 68.0 \; {\rm H}\Phi$ |                    |                |  |  |
|----|--------------------|----------------|-----------------------------|--------------------|----------------|--|--|
| n  | $f$ , к $\Gamma$ ц | $-\varphi/\pi$ | n                           | $f$ , к $\Gamma$ ц | $-\varphi/\pi$ |  |  |
| 1  | 23.21              | 0.46           | 1                           | 19.65              | 0.48           |  |  |
| 2  | 23.47              | 0.61           | 2                           | 19.27              | 0.32           |  |  |
| 3  | 23.57              | 0.64           | 3                           | 19.13              | 0.24           |  |  |
| 4  | 23.69              | 0.69           | 4                           | 18.91              | 0.20           |  |  |
| 5  | 23.93              | 0.75           | 5                           | 18.76              | 0.18           |  |  |
| 6  | 24.26              | 0.80           | 6                           | 18.56              | 0.13           |  |  |
| 7  | 24.56              | 0.83           | 7                           | 18.27              | 0.11           |  |  |
| 8  | 25.11              | 0.88           | 8                           | 18.03              | 0.09           |  |  |
| 9  | 23.20              | 0.46           | 9                           | 19.61              | 0.49           |  |  |
| 10 | 22.95              | 0.34           | 10                          | 19.86              | 0.60           |  |  |
| 11 | 22.77              | 0.27           | 11                          | 19.98              | 0.65           |  |  |
| 12 | 22.67              | 0.23           | 12                          | 20.24              | 0.74           |  |  |
| 13 | 22.51              | 0.18           | 13                          | 20.43              | 0.76           |  |  |
| 14 | 22.20              | 0.14           | 14                          | 20.68              | 0.82           |  |  |
| 15 | 21.71              | 0.10           | 15                          | 20.84              | 0.83           |  |  |
| 16 | 21.35              | 0.08           | 16                          | 21.15              | 0.86           |  |  |

Таблица 2: Результаты измерений

9. По данным таблицы 2 построим на одном графике фазово-частотные характеристики в координатах  $f/f_0$ , $\varphi_C/\pi$  для выбранных контуров. См. рис. 4. По этим характеристикам определим добротности контуров:  $Q_{C_2}=20$  и  $Q_{C_5}=16.4$ .



Рис. 4: Фазово-частотные характеристики

10. Результаты измерений представим в таблице.

| n                | $C_n$ , н $\Phi$      | $f_{0n},$ к $\Gamma$ ц | $U_C$ , B | E, MB | $L$ , mk $\Gamma$ h | Q     | ρ,<br>Οм | $R_{\sum},$ Om | $R_{S_{\max}}, \ \mathrm{O_M}$ | $R_L$ , Om | I, м $A$ |
|------------------|-----------------------|------------------------|-----------|-------|---------------------|-------|----------|----------------|--------------------------------|------------|----------|
| 1                | 24.8                  | 32.20                  | 4.38      | 175.5 | 986.1               | 25.0  | 199.4    | 7.99           | 0.20                           | 4.34       | 21.97    |
| 2                | 33.2                  | 27.78                  | 3.88      | 175.5 | 989.6               | 22.1  | 172.7    | 7.81           | 0.17                           | 4.19       | 22.47    |
| 3                | 47.6                  | 23.27                  | 3.35      | 175.5 | 983.7               | 19.1  | 143.8    | 7.53           | 0.14                           | 3.94       | 23.30    |
| 4                | 57.5                  | 21.17                  | 3.10      | 175.5 | 983.9               | 17.7  | 130.8    | 7.41           | 0.13                           | 3.82       | 23.70    |
| 5                | 68.0                  | 19.42                  | 2.88      | 175.5 | 988.7               | 16.4  | 120.6    | 7.35           | 0.12                           | 3.78       | 23.88    |
| 6                | 81.6                  | 17.73                  | 2.90      | 175.5 | 988.5               | 16.5  | 110.1    | 6.66           | 0.11                           | 3.63       | 26.35    |
| 7                | 102.8                 | 15.82                  | 2.42      | 175.5 | 985.5               | 13.8  | 97.9     | 7.10           | 0.10                           | 3.55       | 24.72    |
| Среднее значение |                       |                        |           | 986.6 | 18.6                | 139.3 | 7.41     | 0.14           | 3.89                           | 23.77      |          |
|                  | Коэффициент Стьюдента |                        |           |       | 2.23                | _     |          |                |                                | 2.26       | _        |

11. По данным таблицы построим график зависимости  $R_L(f_0)$ , также нанесём на него прямую  $\langle R_L \rangle$ . См. рис. 5



Рис. 5: график зависимости  $R_L(f_0)$ 

## Выводы

В данной работе мы исследовали резонансы напряжений в последовательном колебательном контуре с изменяемой ёмкостью, получали амплитудно-частотные характеристики, а также определили основные параметры контура.