ЛАБОРАТОРНА РОБОТА № 6

НАЇВНИЙ БАЙЄС В РУТНОМ

Mema: набути навичок працювати з даними і опонувати роботу у Python з використанням теореми Байэса.

Хід роботи:

Завдання 1

Визначити відбудеться матч при наступних погодних умовах чи ні.

2, 7, 12	Outlook = Overcast	Перспектива = Похмуро
	Humidity = High	Вологість = Висока
	Wind = Strong	Вітер = Сильний

Програмний код:

```
import pandas as pd

def ChansGame(data, freq_table, elem):
    all_Yes = sum(freq_table["Yes"])
    all_No = sum(freq_table["No"])
    S_YaN = freq_table[Yes'][elem] + freq_table['No'][elem]

    all_Elem = len(data)
    PElem = round(S YaN / all_Elem, 8)
    PYesAElem = round(freq_table['Yes'][elem] / all_Yes, 8)
    PYes = round(all_Yes / all_Elem, 8)
    PY_s = round((PYesAElem * PYes) / PElem, 8)

    PNoAElem = round(freq_table['No'][elem] / all_No, 8)
    PNo = round(all_No / all_Elem, 8)
    P_N_s = round((PNoAElem * PNo) / PElem, 8)

    print(f"(elem) --- Yes = {round(P_Y_s, 3)}, No = {round(P_N_s, 3)}")
    return P_Y_s, P_N_s, PYes, PNo

data = pd.read_csv('data.csv')

freq_table_outlook = pd.crosstab(data['Outlook'], data['Play'])
freq_table_humidity = pd.crosstab(data['Humidity'], data['Play'])
freq_table_wind = pd.crosstab(data['Wind'], data['Play'])

P_Y_s1, P_N_s1, PYes1, PNol = ChansGame(data, freq_table_outlook, "Overcast")
P_Y_s2, P_N_s2, PYes2, PNo2 = ChansGame(data, freq_table_wind, "Strong")
```

				ДУ «Житомирська політехніка».24.121.12.000 –		.000 – Лр6			
3мн.	Арк.	№ докум.	Підпис	,	,				
Розроб. Перевір.	0 б.	Курач О.А.			Літ.	Арк.	Аркушів		
	Іванов Д.А		n_:		1	2			
Керівник Н. контр. Зав. каф.				Звіт з	ФІКТ Гр. ІПЗ-21-4				
				лабораторної роботи					

```
Probability_yes = round(P_Y_s1 * P_Y_s2 * P_Y_s3 * PYes1 * PYes2 * PYes3, 8)
Probability_no = round(P_N_s1 * P_N_s2 * P_N_s3 * PNo1 * PNo2 * PNo3, 8)

print(f"P(Yes) = {round(Probability_yes / (Probability_yes + Probability_no), 3)}")
print(f"P(No) = {round(Probability_no / (Probability_yes + Probability_no), 3)}")
```

Результат виконання:

```
C:\Users\user\AppData\Local\Programs
Overcast --- Yes = 1.0, No = 0.0
High --- Yes = 0.429, No = 0.571
Strong --- Yes = 0.5, No = 0.5
P(Yes) = 1.0
P(No) = 0.0

Process finished with exit code 0
```

Завдання 2.

Застосуєте методи байєсівського аналізу до набору даних про ціни на квитки на іспанські високошвидкісні залізниці.

Програмний код:

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score

data = pd.read_csv('renfe_small.csv')
freq_table = pd.crosstab(data['price'], data['destination'])
array = freq_table.values
X, y = array[:, :-1], array[:, -1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, ran-dom_state=8)
gnb = GaussianNB()
gnb.fit(X_train, y_train)
y_pred = gnb.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')
```

Результат виконання:

```
Accuracy: 0.7818181818181819
Process finished with exit code 0
```

Висновки: в ході виконання лабораторної роботи було набуто навичок працювати з даними і опонував роботу у Python з використанням теореми Байэса.

Арк. 2

		Курач О.А.			
		Іванов Д.А			ДУ «Житомирська політехніка». 24.121.12.000 – Лр6
Змн.	Арк.	№ докум.	Підпис	Дата	