Příklad 1 - měření periody matematického kyvadla

Zadání:

V tabulce jsou uvedeny výsledky měření periody kmitů matematického kyvadla. Pro větší přesnost byla vždy změřena doba $10~\rm kmitů~10\,T.$

n	10T (s)
1	17.8
2	18.1
3	18.0
4	17.8
5	17.9
6	17.8
7	18.0
8	18.1
9	17.9
10	17.7

- (a) Vypočítejte odhad očekávané hodnoty μ_T a odchylky σ periody T.
- (b) Jaký typ neurčitosti je vypočítaná odchylka σ (typ A nebo B)?
- (c) Přesnost měření času (standardní odchylku) odhadujeme jako $0.05~\mathrm{s}$. Jaká je velikost dodatečné chyby, kterou je zatížená perioda T?
- (d) Jaký typ neurčitosti je tato dodatečná chyba (typ A nebo B)?
- (e) Vypočítejte celkovou neurčitost σ_C měření periody T.
- (f) Vypočítejte chybu odhadu μ_T očekávané hodnoty periody T.
- (g) Zapište výsledek měření ve správném tvaru.

(10 bodů)

Řešení:

(a) V prvním kroku je potřeba vydělit všechny naměřené hodnoty $10\,T$ deseti. Odhad očekávané hodnoty μ_T vypočítáme jako aritmetický průměr naměřených period T_n .

$$\mu_T = \bar{T} = \frac{1}{10} \sum_{n=1}^{10} T_n = 1.791 \text{ s}$$

Odchylku 1 měření periody vypočítáme jako nepředpojatý odhad standardní odchylky.

$$\sigma_A = \sqrt{\frac{1}{9} \sum_{n=1}^{10} (T_n - \bar{T})^2} = 0.014 \text{ s}$$

- (b) Odchylka σ_A má původ v náhodných jevech a je tedy neurčitostí typu A.
- (c) Čas, tj. 10 period kmitů, měříme standardně s přesností 0.1 s. Odhad $\sigma=0.05$ s je polovinou této přesnosti. Každá hodnota periody T je tudíž zatížena dodatečnou chybou $\sigma_B=0.005$ s, která je 10krát nižší než v případě měření 10 period kmitů.
- (d) Odchylka σ_B je dána odhadem přesnosti měřicí metody a je tedy neurčitostí typu B.
- (e) Celková neurčitost měření periody T je dána odmocninou ze součtu kvadrátů neurčitostí typu A a B.

$$\sigma_C = \sqrt{\sigma_A^2 + \sigma_B^2} = 0.015 \text{ s}$$

(f) Každá hodnota T_n je tedy určena s chybou σ_C . Chyba odhadu očekávané hodnoty je dána chybou aritmetického průměru.

$$\sigma_{\bar{T}} = \frac{\sigma_C}{\sqrt{10}} = 0.005$$

(g) Výsledek měření periody zapíšeme ve správném tvaru jako $T=(1.791\pm0.005)~\mathrm{s}.$

Příklad 2 - chyba triangulace

Zadání:

Pomocí triangulace je možné měřit vzdálenost velmi dalekých těles. Známe-li vzdálenost d dvou pozorovatelů A a B, kteří současně pozorují bod X pod úhly α a β , můžeme dopočítat vzdálenost h.

$$h = \frac{d \operatorname{tg} \alpha \operatorname{tg} \beta}{\operatorname{tg} \alpha + \operatorname{tg} \beta} = \frac{d}{\operatorname{cotg} \alpha + \operatorname{cotg} \beta}$$

Triangulací byla při demonstračním experimentu změřena výška učebny následovně. Pomocí 2 laserových ukazovátek namířených do stejného bodu na stropě byly určeny úhly $\alpha = (57 \pm 1)^{\circ}$ a $\beta = (74.5 \pm 0.5)^{\circ}$. Vzdálenost obou ukazovátek je $d = (6.72 \pm 0.03)$ m. Vypočítejte výšku místnosti h a její chybu σ_h . Výsledek zapište ve správném tvaru.

(5 bodů)

Řešení:

Spočítejme hodnotu výšky h pomocí druhého, jednoduššího vztahu.

$$h = \frac{d}{\cot g\alpha + \cot g\beta} = 7.3 \text{ m}$$

Chybu výšky h určíme pomocí metody přenosu chyb. Uvažujeme, že vzdálenost d a úhly α a β jsou nezávislé veličiny a jejich kovariance jsou tedy nulové. Zároveň nesmíme zapomenou převést chyby úhlů σ_{α} a σ_{β} do radiánů.

$$\sigma_h^2 = \left(\frac{\partial h}{\partial d}\sigma_d\right)^2 + \left(\frac{\partial h}{\partial \alpha}\sigma_\alpha\right)^2 + \left(\frac{\partial h}{\partial \beta}\sigma_\beta\right)^2$$

$$\sigma_h^2 = \left(\frac{\sigma_d}{\cot g\alpha + \cot g\beta}\right)^2 + \left(\frac{d}{(\cot g\alpha + \cot g\beta)^2}\frac{\sigma_\alpha}{\sin^2\alpha}\right)^2 + \left(\frac{d}{(\cot g\alpha + \cot g\beta)^2}\frac{\sigma_\beta}{\sin^2\beta}\right)^2$$

$$\sigma_h = \sqrt{\left(\frac{h}{d}\sigma_d\right)^2 + \left(\frac{h^2}{d}\frac{\sigma_\alpha}{\sin^2\alpha}\right)^2 + \left(\frac{h^2}{d}\frac{\sigma_\beta}{\sin^2\beta}\right)^2} = 0.2 \text{ m}$$

Výslednou výšku zapíšeme ve správném tvaru jako $h=(7.3\pm0.2)~\mathrm{m}.$