Galactic dynamics and models of galaxies

Tirawut Worrakitpoonpon

at IF-SUT School, Phitsanulok 19th February 2023

Hubble sequence

Galaxy can be classified by *Hubble sequence* (or Hubble's tuning-fork diagram). From left to right, galaxies are identified as *early type* to *late type*.

- E = Elliptical
- S = Spiral
- S0, SB0 = Lenticular
- Irr = Irregular

cr: https://www.physast.uga.edu/~rls/

Elliptical galaxies

Surface brightness of elliptical galaxies along the axis can be fitted by *de Vaucouleurs law* (or $R^{1/4}$ *law*)

$$I(R) = I_e e^{\{-7.67[(R/R_e)^{1/4} - 1]\}}$$

where R_e = effective radius

 I_e = constant.

de Vaucouleurs profile can be generalized to *Sersic profile*

$$I(R) = I_e e^{\{-b_n[(R/R_e)^{1/n} - 1]\}}$$

where $b_n \approx 2n - \frac{1}{3}$. Note that the situation for cD or dwarf galaxies is different.

Surface brightness and de Vaucouleurs profile

cr: Chitre & Jog (2002) A&A

- -

Elliptical galaxies

Central velocity dispersion of massive elliptical galaxies exhibits simple scaling known as *Faber-Jackson relation*

$$L \propto \sigma_0^4$$

where L = luminosity

 σ_0 = central velocity dispersion.

Note that

 $\mathcal{M} \propto \log(L)$

where $\mathcal{M} = absolute$ magnitude.

Faber-Jackson relation in various elliptical systems cr: Bender et al. 1992, ApJ

Elliptical galaxies

Elliptical galaxies exhibits great varieties in size, spectrum, luminosity due to different origins. Rough classification is as follow

- Normal elliptical (E or gE)
- Dwarf elliptical (dE): small mass and low luminosity
- cD elliptical: very luminous and large in the center of galaxy cluster
- Blue compact dwarf elliptical (BCD): with many young blue star.
- Dwarf spheroidal elliptical (dSph): dwarf close to spheroidal

Table 3.1 Characteristic values for early-type galaxies

	7 71 0						
	S0	cD	Е	dE	dSph	BCD	
$M_{ m B}$	-17 to -22	-22 to -25	−15 to −23	-13 to -19	-8 to -15	-14 to -17	
<i>M</i> (M _☉)	$10^{10} - 10^{12}$	$10^{13} - 10^{14}$	$10^8 - 10^{13}$	$10^7 - 10^9$	$10^7 - 10^8$	$\sim 10^9$	
D_{25} (kpc)	10-100	300-1000	1-200	1-10	0.1-0.5	<3	
$\langle M/L_{\rm B} \rangle$	~ 10	>100	10-100	1-10	5-100	0.1-10	
$\langle S_{\rm N} \rangle$	~ 5	~ 15	~ 5	4.8 ± 1.0	_	-	

5

Spiral galaxies

In general, major components of elliptical galaxies include

- <u>Disk</u>: flattened component where spiral arms or bar reside.
- Bulge: central ellipsoidal component.
- Halo: extended envelop.

Components of spiral (or lenticular) galaxy

cr: https://kof.zcu.cz/st/dis/schwarzmeier/

Spiral galaxies

Galactic bulge follows de Vaucouleurs profile similar to elliptical galaxy, i.e.

$$I_{bulge}(R) = I_e e^{\{-7.67[(R/R_e)^{1/4}-1]\}}.$$

where R_e = effective radius

 I_e = constant.

Galactic disk brightness follows exponential profile, i.e.

$$I_{disk}(R) = I_d e^{-(R/R_d)}$$

where $R_d = \text{disk}$ scale length

 $I_d = \text{constant}.$

M81

cr: https://kof.zcu.cz/st/dis/schwarzmeier/

7

Spiral galaxies

Rotation curve of spiral galaxies is flat at large distance. This implies the embedding dark matter.

Rotation curve of spiral galaxies cr: Rubin et al. (1978) ApJ

Reconstruction of rotation curve

cr: van Albada et al. (1985) ApJ

Spiral galaxies

Distinction from Sa to Sc is mainly from bulge fraction and opening angle of spiral arms.

Table 3.2	Characteristic	values for	spiral	galaxies

	Sa	Sb	Sc	Sd/Sm	Im/Ir
$M_{ m B}$	-17 to -23	-17 to -23	-16 to -22	-15 to -20	−13 to −18
$M(M_{\odot})$	$10^9 - 10^{12}$	$10^9 - 10^{12}$	$10^9 - 10^{12}$	$10^8 - 10^{10}$	$10^8 - 10^{10}$
$\langle L_{\text{bulge}}/L_{\text{tot}}\rangle_{B}$	0.3	0.13	0.05	-	_
Diam. (D ₂₅ ,kpc)	5-100	5-100	5-100	0.5-50	0.5-50
$\langle M/L_{\rm B}\rangle (M_{\odot}/L_{\odot})$	6.2 ± 0.6	4.5 ± 0.4	2.6 ± 0.2	~ 1	~ 1
$V_{\rm max} {\rm range}({\rm km s}^{-1})$	163-367	144-330	99-304	-	50-70
Opening angle	$\sim 6^{\circ}$	$\sim 12^{\circ}$	$\sim 18^{\circ}$	-	_

Introduction – Long-range interacting system

Given a d-dimensional pair-potential in the form

$$V \propto \frac{1}{r^{\alpha}}$$

the interaction is classified as

- Short-range interaction (SRI) if $\alpha > d$
- Long-range interaction (LRI) if $\alpha \leq d$

Introduction – Long-range interacting system

Potential energy of long-range interacting system diverges as system size goes to infinity, with constant density.

short range

long range

Introduction – Long-range interacting system

Current understanding suggests the following relaxation scheme for systems governed by gravity

Introduction – Long-range interacting system

Estimate of violent relaxation time scale using the rate of mean-field fluctuation gives

$$t_{relax} = \frac{3}{4} \left[\frac{\dot{\Phi}^2}{\Phi^2} \right]^{-\frac{1}{2}} = \frac{3}{\lambda} \sqrt{\frac{3}{32\pi G\bar{\rho}}}$$

which is of order free-fall time and does not depend on particle number, N.

Typical galaxies have free-fall time of order 10^7 - 10^8 years.

Introduction – Long-range interacting system

Estimate of collision rate demonstrates that relaxation time scale to thermal equilibrium diverges with particle number, N, as

$$t_{relax} \sim \frac{N}{8 \ln N} t_{cross}$$

(see Chandrasekhar 1943)

Massive galaxies are currently in quasi-stationary states

