- CaVE

A Cone-Aligned Approach for

Fast Predict-then-Optimize

Presented by Bo Tang May 30, 2024

Authors

Bo Tang

PhD Candidate
Department of Mechanical &
Industrial Engineering,
University of Toronto

Elias B. Khalil

Assistant Professor
Department of Mechanical &
Industrial Engineering, University
of Toronto

SCALE AI Research Chair Data-Driven Algorithms for Modern Supply Chains

ntroduction

CaVE (Cone-aligned Vector Estimation) is an efficient and accurate **Decision- focused Learning** approach for **Binary Linear Programs** (BLPs).

Notation


```
\min_{w} \{ c_1^\top w : w \in S \}
\min_{w} \{ c_2^\top w : w \in S \}
\min_{w} \{ c_3^\top w : w \in S \}
\vdots
```

```
Unknown
     Coefficients
\min\{\boldsymbol{c}_1^\mathsf{T}\boldsymbol{w}:\boldsymbol{w}\in\mathcal{S}\}
  \min\{c_2^\top w : w \in S\}
     \min\{c_3^\top w : w \in S\}
        W
                                Identical
                              Constraints
```

```
Unknown
        Coefficients
\min\{\boldsymbol{c_1}^\mathsf{T}\boldsymbol{w};\boldsymbol{w}\in\boldsymbol{S}\}
    \min\{\boldsymbol{c_2}^\top \boldsymbol{w} : \boldsymbol{w} \in \boldsymbol{S}\}
        \min\{\boldsymbol{c_3}^\top \boldsymbol{w} : \boldsymbol{w} \in \boldsymbol{S}\}
             W
                                                  Identical
                                                Constraints
```

Observed Feature Vector

 \boldsymbol{x}_1

 \boldsymbol{x}_2

 \boldsymbol{x}_3

•

Observed Feature Vector

Observed Feature Vector

Examples

❖ Vehicle Routing

Energy Scheduling

Portfolio Optimization

Examples

Energy Scheduling

Portfolio Optimization

Examples

Energy Scheduling

Portfolio Optimization

? Unknown Costs: Travel Time, Electricity Prices, Asset Returns

Observed Features: Distance, Time, Weather, Financial Factors...

Dataset \mathcal{D} with data points (x, c)

Prediction model $g(x, \theta)$ with parameters θ

Optimization solver $w^*(\hat{c}) = \underset{w \in S}{\operatorname{argmin}} \hat{c}^{\mathsf{T}} w$

Loss function $\mathcal{L}(\cdot)$ to measure decision error

Dataset \mathcal{D} with data points (x, c) Prediction model $g(x, \theta)$ with parameters $oldsymbol{ heta}$

Optimization solver $\mathbf{w}^*(\hat{\mathbf{c}}) = \operatorname{argmin} \hat{\mathbf{c}}^\mathsf{T} \mathbf{w}$ wes

Loss function $\mathcal{L}(\cdot)$ to measure decision error

$$\mathcal{L}_{\text{Regret}}(\hat{\boldsymbol{c}}, \boldsymbol{c}) = \boldsymbol{c}^{\mathsf{T}} \boldsymbol{w}^*(\hat{\boldsymbol{c}}) - \boldsymbol{c}^{\mathsf{T}} \boldsymbol{w}^*(\boldsymbol{c})$$

$$\mathcal{L}_{\text{Regret}}(\hat{c}, c) = c^{\mathsf{T}} w^{*}(\hat{c}) - c^{\mathsf{T}} w^{*}(c)$$

$$\mathcal{L}_{\text{Square}}(\hat{c}, c) = \frac{1}{2} \| w^{*}(c) - w^{*}(\hat{c}) \|_{2}^{2}$$

Dataset \mathcal{D} with data points (x, c)

Prediction model $g(x, \theta)$ with parameters θ

Optimization solver $w^*(\hat{c}) = \underset{w \in S}{\operatorname{argmin}} \hat{c}^{\mathsf{T}} w$

Loss function $\mathcal{L}(\cdot)$ to measure decision error

Computational Bottleneck:

All state-of-the-art methods require repeated solving during the iteration.

Dataset \mathcal{D} with data points (x, c)

Prediction model $g(x, \theta)$ with parameters θ

Optimization solver $w^*(\hat{c}) = \operatorname*{argmin} \hat{c}^\mathsf{T} w$ $w \in S$

Loss function $\mathcal{L}(\cdot)$ to measure decision error

Cone-aligned Vector Estimation:

Replace the original optimization problem with projection (quadratic programming).

Similarity Loss Function

When the predicted cost vector lies inside the **optimal subcone**, the optimal solution to the linear relaxation is the optimal of original BLP problem.

Similarity Loss Function

• What is the optimal subcone? • How to obtain the angle ϕ ?

When the predicted cost vector lies inside the optimal subcone, the optimal solution to the linear relaxation is the optimal of original BLP problem.

Binary Linear Program

1. For ILP, the normal cone to the convex hull at the optimal solution $w^*(c)$ is defined as optimal cone $\mathcal{C}^*(c)$.

Binary Linear Program

- **1.** For ILP, the normal cone to the convex hull at the optimal solution $w^*(c)$ is defined as optimal cone $\mathcal{C}^*(c)$.
- **2.** $\forall c' \in \mathcal{C}^*(c), w^*(c') = w^*(c)$. Cost vectors yield the same optimal solution if and only if they are in the same optimal cone.

Binary Linear Program

- 1. For ILP, the normal cone to the convex hull at the optimal solution $w^*(c)$ is defined as optimal cone $\mathcal{C}^*(c)$.
- **2.** $\forall c' \in \mathcal{C}^*(c), w^*(c') = w^*(c)$. Cost vectors yield the same optimal solution if and only if they are in the same optimal cone.
- However, for ILP, obtaining the convex hull is NOT trivial. e.g., Cutting Plane method...

1. For BLP, the normal cone to the feasible region of linear relaxation at the optimal solution $w^*(c)$ is defined as optimal subcone $\mathcal{SC}^*(c)$.

1. For BLP, the normal cone to the feasible region of linear relaxation at the optimal solution $w^*(c)$ is defined as optimal subcone $\mathcal{SC}^*(c)$.

Note: This does not apply to general ILP

- 1. For BLP, the normal cone to the feasible region of linear relaxation at the optimal solution $w^*(c)$ is defined as optimal subcone $\mathcal{SC}^*(c)$.
- 2. $SC^*(c) \subseteq C^*(c)$. Thus, cost vectors yield the same optimal solution if they are in the same optimal subcone.

Optimal Subcone $\mathcal{SC}^*(c)$

- 1. For BLP, the normal cone to the feasible region of linear relaxation at the optimal solution $w^*(c)$ is defined as optimal subcone $\mathcal{SC}^*(c)$.
- 2. $SC^*(c) \subseteq C^*(c)$. Thus, cost vectors yield the same optimal solution if they are in the same optimal subcone.
- The optimal subcone is the conic combination of tight constraints, which is trivial.

- 1. For BLP, the normal cone to the feasible region of linear relaxation at the optimal solution $w^*(c)$ is defined as optimal subcone $\mathcal{SC}^*(c)$.
- 2. $SC^*(c) \subseteq C^*(c)$. Thus, cost vectors yield the same optimal solution if they are in the same optimal subcone.
- The optimal subcone is the conic combination of tight constraints, which is trivial.

$$\widetilde{A}(c):\widetilde{A}(c)^{\mathsf{T}}w^*(c)=b$$

Exact Projection

Inner Projection

Heuristic Projection

CaVE Exact performs exact projection, wherein the optimal solution of the NNLS is on the surface of the cone.

This approach results in the <u>vanishing gradients</u> as the predicted cost vector close the surface.

Exact Projection

Inner Projection

Heuristic Projection

The goal is to obtain a projection of the predicted cost vector that lies <u>inside the subcone</u>. (suboptimal solution)

Since the solver (Clarabel) uses the primal-dual interior point, the feasibility is guaranteed at each iteration. We can simply <u>set the maximum iterations</u>.

Exact Projection

Inner Projection

Heuristic Projection

A heuristic projection that does not require solving NNLS and relies on <u>simple</u> <u>operations</u>.

This approach <u>does NOT guarantee feasibility</u>, yet it ensures that the cost vector is pushed towards the cone.

Heuristic Projection

Algorithm

Algorithm Cone-aligned Vector Estimation (CaVE)

Require: Pairs of feature vectors and binding constraints $\{(\boldsymbol{x}^i, \widetilde{\boldsymbol{A}}^i)\}_{i=1}^n$ for n training instances; learning rate $\alpha > 0$ 1: Initialize model parameters θ 2: for each training epoch do for each batch of training samples (x, A) do 3: Predict cost coefficient $\hat{\boldsymbol{c}} \leftarrow g(\boldsymbol{x}, \boldsymbol{\theta})$ Compute projection $p_{\hat{c}}$ with quadratic program 5: Compute cosine similarity loss $\mathcal{L}_{\text{CaVE}}(\hat{\boldsymbol{c}}, \widetilde{\boldsymbol{A}})$ 6: Compute the gradient $\nabla_{\theta} \mathcal{L}_{\text{CaVE}}(\hat{\boldsymbol{c}}, \widetilde{\boldsymbol{A}})$ with backpropagation Update ML model parameters $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\theta} \mathcal{L}_{\text{CaVE}}(\hat{\boldsymbol{c}}, \hat{\boldsymbol{A}})$ end for 10: end for 11: return $g(\cdot, \boldsymbol{\theta})$

Algorithm

Algorithm Cone-aligned Vector Estimation (CaVE)

Require: Pairs of feature vectors and binding constraints $\{(\boldsymbol{x}^i, \widetilde{\boldsymbol{A}}^i)\}_{i=1}^n$ for n training instances; learning rate $\alpha > 0$

- 1: Initialize model parameters θ
- 2: for each training epoch do
- 3: for each batch of training samples (x, \widetilde{A}) do
- 4: Predict cost coefficient $\hat{\boldsymbol{c}} \leftarrow g(\boldsymbol{x}, \boldsymbol{\theta})$
- 5: Compute projection $p_{\hat{c}}$ with quadratic program
- 6: Compute cosine similarity loss $\mathcal{L}_{\text{CaVE}}(\hat{\boldsymbol{c}}, \widetilde{\boldsymbol{A}})$

Faster than solving BLP!

- 7: Compute the gradient $\nabla_{\theta} \mathcal{L}_{\text{CaVE}}(\hat{\boldsymbol{c}}, \widetilde{\boldsymbol{A}})$ with backpropagation
- 8: Update ML model parameters $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} \alpha \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\text{CaVE}}(\hat{\boldsymbol{c}}, \hat{\boldsymbol{A}})$
- 9: end for
- 10: end for
- 11: return $g(\cdot, \boldsymbol{\theta})$

Experiments - SP5

Shortest Path on 5×5 Grid

Average Test Normalized Regret (%) with Standard Deviation

Methods	2-Stage	CaVE-E	CaVE+	CaVE-H	SPO+	PFYL	NCE
Deg 4	8.82 ± 1.15	10.73 ± 1.54	8.39 ± 0.95	8.35 ± 0.88	7.79 ± 1.00	7.68 ± 0.99	11.34 ± 1.11
Deg 6	12.58 ± 2.14	11.30 ± 1.30	8.89 ± 0.90	8.84 ± 1.00	7.72 ± 1.11	7.86 ± 0.96	13.78 ± 1.58

Methods	2-Stage	CaVE-E	CaVE+	CaVE-H	SPO+	PFYL	NCE
Deg 4	1.52 ± 0.14	4.64 ± 0.09	4.89 ± 0.12	2.57 ± 0.19	17.64 ± 0.12	18.52 ± 0.31	4.50 ± 0.48
Deg 6	1.38 ± 0.13	3.52 ± 0.11	3.72 ± 0.14	2.39 ± 0.19	18.68 ± 0.40	17.78 ± 0.13	4.38 ± 0.42

Experiments – TSP20

Traveling Salesperson with 20 Nodes

Average Test Normalized Regret (%) with Standard Deviation

Methods	2-Stage	CaVE-E	CaVE+	CaVE-H	SPO+	PFYL	NCE
Deg 4	12.12 ± 0.89	7.35 ± 0.40	6.20 ± 0.24	7.69 ± 0.33	5.95 ± 0.16	6.56 ± 0.21	12.21 ± 0.88
Deg 6	21.32 ± 1.81	8.01 ± 0.45	6.97 ± 0.37	9.52 ± 0.64	7.48 ± 0.36	7.41 ± 0.37	14.31 ± 0.40

Methods	2-Stage	CaVE-E	CaVE+	CaVE-H	SPO+	PFYL	NCE
Deg 4	1.52 ± 0.10	113.56 ± 3.16	107.15 ± 3.80	27.06 ± 2.17	175.23 ± 4.95	220.21 ± 24.20	25.92 ± 4.23
Deg 6	1.53 ± 0.19	158.66 ± 9.65	102.19 ± 10.38	30.17 ± 2.62	185.13 ± 7.44	185.02 ± 5.09	25.48 ± 3.66

Experiments – TSP50

Traveling Salesperson with 50 Nodes

Average Test Normalized Regret (%) with Standard Deviation

Methods	2-Stage	CaVE-E	CaVE+	CaVE-H	SPO+	PFYL	NCE
Deg 4	28.16 ± 1.08	15.19 ± 0.65	7.69 ± 0.22	9.59 ± 0.44	7.57 ± 0.20	8.03 ± 0.23	14.31 ± 0.40
Deg 6	52.61 ± 2.36	23.25 ± 2.41	8.57 ± 0.38	11.28 ± 0.80	10.26 ± 0.46	9.00 ± 0.52	17.12 ± 0.48

Methods	2-Stage	CaVE-E	CaVE+	CaVE-H	SPO+	PFYL	NCE
Deg 4	1.55 ± 0.18	611.47 ± 23.52	518.07 ± 51.89	196.96 ± 35.92	1220.68 ± 85.39	1328.99 ± 28.87	151.80 ± 24.21
Deg 6	1.16 ± 0.13	502.71 ± 16.03	573.87 ± 20.19	253.93 ± 27.67	1191.29 ± 42.63	1456.21 ± 34.18	155.95 ± 24.46

Experiments – CVRP20

Capacity Vehicle Routing with 20 Nodes

Average Test Normalized Regret (%) with Standard Deviation

Methods	2-Stage	CaVE-E	CaVE+	CaVE-H	SPO+	PFYL	NCE
Deg 4	10.10 ± 0.64	9.26 ± 1.56	6.44 ± 0.24	7.92 ± 0.52	5.94 ± 0.25	6.32 ± 0.28	15.77 ± 0.96
Deg 6	19.50 ± 1.22	11.64 ± 0.25	7.94 ± 0.54	11.44 ± 1.14	8.75 ± 0.28	8.09 ± 0.57	18.96 ± 1.01

Methods	2-Stage	CaVE-E	CaVE+	CaVE-H	SPO+	PFYL	NCE
Deg 4	1.65 ± 0.48	213.56 ± 42.36	153.56±11.08	44.52 ± 6.27	7020.11 ± 1043.05	3773.31 ± 288.84	583.56 ± 170.67
Deg 6	1.54 ± 0.25	208.95±12.90	127.94 ± 13.84	51.83 ± 8.78	2204.83±99.86	6197.84±288.63	470.20 ± 84.46

Experiments – CVRP30

Capacity Vehicle Routing with 30 Nodes

Test Normalized Regret (%)

Due to the scale of the problem, we did not repeat our experimental evaluation with random seeds.

Methods	2-Stage	CaVE-E	CaVE+	CaVE-H	SPO+	PFYL	NCE
Deg 4	19.72	12.54	9.13	9.99		N/A	18.28

Training Time (Sec)

Methods	2-Stage	CaVE-E	CaVE+	CaVE-H	SPO+	PFYL	NCE
Deg 4	9.27	331.73	287.77	132.62		≥100h	884.95

Experiments – Relaxation

Traveling Salesperson with 50 Nodes

Average Test Normalized Regret (%)

Average Training Time (Sec)

Methods	CaVE+	SPO+ Rel	PFYL Rel
Deg 4	7.69 ± 0.22	10.17 ± 0.23	11.11 ± 0.33
Deg 6	8.57 ± 0.38	13.14 ± 0.46	13.38 ± 0.58

Methods	CaVE+	SPO+ Rel	PFYL Rel	
Deg 4	518.07 ± 51.89	386.06 ± 9.69	536.67 ± 4.94	
Deg 6	573.87 ± 20.19	636.99 ± 3.04	510.37 ± 3.46	

Capacity Vehicle Routing with 20 Nodes

Average Test Normalized Regret (%)

Average Training Time (Sec)

Methods	CaVE+	SPO+ Rel	PFYL Rel
Deg 4	6.44 ± 0.24	8.03 ± 0.38	17.07 ± 0.63
Deg 6	7.94 ± 0.54	15.73 ± 0.39	19.19 ± 1.66

Methods	CaVE+	SPO+ Rel	PFYL Rel
Deg 4	153.56 ± 11.08	78.95 ± 0.73	78.80 ± 1.19
Deg 6	127.94 ± 13.84	78.74 ± 3.82	81.80 ± 0.86

Thank You

