Statistical Methods in AI (CSE/ECE 471)

Lecture-16: Ensemble Methods (Bagging, Boosting, Stacking)

Ravi Kiran

Center for Visual Information Technology (CVIT), IIIT Hyderabad

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right] = \underbrace{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^2\right]}_{\mathsf{var}(\mathbf{x})} + \underbrace{\left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^2}_{\mathsf{bias}(\mathbf{x})}$$

$$\mathbb{E}_{\mathbf{x}}[\mathsf{bias}(\mathbf{\underline{x}}) + \mathsf{var}(\mathbf{\underline{x}})]$$

The tradeoff

$$\mathsf{bias} = \mathbb{E}_{\mathbf{x}} \left[\left(\bar{g}(\mathbf{x}) - f(\mathbf{x}) \right)^2 \right] \qquad \mathsf{var} = \mathbb{E}_{\mathbf{x}} \left[\left. \mathbb{E}_{\mathcal{D}} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) \right)^2 \right] \right]$$

High bias (underfit)

"Just right"

High variance (overfit)

Regularization

- Remember the intuition: complicated hypotheses lead to overfitting
- Idea: change the error function to *penalize hypothesis complexity*:

$$J(\mathbf{w}) = J_D(\mathbf{w}) + \lambda J_{pen}(\mathbf{w})$$

This is called *regularization* in machine learning and *shrinkage* in statistics

• λ is called *regularization coefficient* and controls how much we value fitting the data well, vs. a simple hypothesis

Regularization for linear models

• A squared penalty on the weights would make the math work nicely in our case:

$$\frac{1}{2}(\mathbf{\Phi}\mathbf{w} - \mathbf{y})^T(\mathbf{\Phi}\mathbf{w} - \mathbf{y}) + \frac{\lambda}{2}\mathbf{w}^T\mathbf{w}$$

- ullet This is also known as L_2 regularization, or weight decay in neural networks
- By re-grouping terms, we get:

$$J_D(\mathbf{w}) = \frac{1}{2} (\mathbf{w}^T (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I}) \mathbf{w} - \mathbf{w}^T \mathbf{\Phi}^T \mathbf{y} - \mathbf{y}^T \mathbf{\Phi} \mathbf{w} + \mathbf{y}^T \mathbf{y})$$

ullet Optimal solution (obtained by solving $abla_{\mathbf{w}}J_D(\mathbf{w})=0$)

$$\mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda I)^{-1} \mathbf{\Phi}^T \mathbf{v}$$

affect the output), L_2 will give them small, but non-zero weights.

(L2 norm)

• Ideally, irrelevant input should have weights exactly equal to 0.

• If there are irrelevant features in the input (i.e. features that do not

L_1 Regularization for linear models

• Instead of requiring the L_2 norm of the weight vector to be bounded, make the requirement on the L_1 norm:

$$\min_{\mathbf{w}} J_D(\mathbf{w}) = \min_{\mathbf{w}} (\mathbf{\Phi}\mathbf{w} - \mathbf{y})^T (\mathbf{\Phi}\mathbf{w} - \mathbf{y})$$
 such that $\sum_{i=1}^n |w_i| \leq \eta$

• This yields an algorithm called Lasso (Tibshirani, 1996)

- If there are irrelevant features in the input (i.e. features that do not affect the output), L_2 will give them small, but non-zero weights.
- Ideally, irrelevant input should have weights exactly equal to 0.

Francis Galton

- Galton promoted statistics and invented the concept of correlation.
- In 1906 Galton visited a livestock fair and stumbled upon an intriguing contest.
- An ox was on display, and the villagers were invited to guess the animal's weight.
- Nearly 800 gave it a go and, not surprisingly, not one hit the exact mark: 1,198 pounds.

Francis Galton

- Galton promoted statistics and invented the concept of correlation.
- In 1906 Galton visited a livestock fair and stumbled upon an intriguing contest.
- An ox was on display, and the villagers were invited to guess the animal's weight.
- Nearly 800 gave it a go and, not surprisingly, not one hit the exact mark: 1,198 pounds.
- Astonishingly, however, the average of those 800 guesses came close - very close indeed. It was 1,197 pounds.

Ensemble Learning

 An ensemble is a combination of classifiers that output a final classification.

General idea

- Generate many classifiers and combine them to get a final classification
- They perform very good. In general better than any of the single learners they are composed of
- The classifiers should be different from one another
- It is important to generate diverse classifiers from the available data

How to build them?

- There are several techniques to build diverse base learners in an ensemble:
 - Use modified versions of the training set to train the base learners

- Modifications of the training set can be generated by
 - Resampling the dataset. By bootstrap sampling (e.g. bagging), weighted sampling (e.g. boosting).

Bootstrap Aggregating (Bagging)

Why does it work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, ε = 0.35
 - Assume classifiers are independent
 - Probability that the ensemble classifier makes a wrong prediction:

Why does it work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, ε = 0.35
 - Assume classifiers are independent
 - Probability that the ensemble classifier makes a wrong prediction: $\sum_{i=1}^{25} {25 \choose i} \varepsilon^{i} (1-\varepsilon)^{25-i} = 0.06$

Output:

$$H(\mathbf{x}) = \underset{j}{\operatorname{argmax}} \left(\sum_{t=1}^{T} I(h_{t}(\mathbf{x}) = j) \right)$$
 Aggregation

"An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants" Eric Bauer & Ron Kohavi, Machine Learning 36, 105–139 (1999)

- · Modifications of the training set can be generated by
- Resampling the dataset. By bootstrap sampling (e.g. bagging), weighted sampling (e.g. boosting).
 - Altering the attributes: The base learners are trained using different feature subsets (e.g Random subspaces)

Random Forests

Ensemble Learning

 An ensemble is a combination of classifiers that output a final classification.

Ensemble methods that minimize variance

- Classifier Bagging
- Classifier + Feature Bagging (e.g. Random Forests)

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right] = \underbrace{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^2\right]}_{\mathsf{var}(\mathbf{x})} + \underbrace{\left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^2}_{\mathsf{bias}(\mathbf{x})}$$

How to build them?

- There are several techniques to build diverse base learners in an ensemble:
 - Use modified versions of the training set to train the base learners
 - Introduce changes in the learning algorithms

A toy example[2]

Training set: 10 points (represented by plus or minus)
Original Status: Equal Weights for all training samples

Round 1: Three "plus" points are not correctly classified; They are given higher weights.

Round 2: Three "minus" points are not correctly classified; They are given higher weights.

Round 3: One "minus" and two "plus" points are not correctly classified; They are given higher weights.

Final Classifier: integrate the three "weak" classifiers and obtain a final strong classifier.

Given:
$$(x_1, y_1), \dots, (x_m, y_m)$$
 where $x_i \in \mathcal{X}$, $y_i \in \{-1, +1\}$. Initialize $D_1(i) = 1/m$ for $i = 1, \dots, m$.

Initial Distribution of Data

Train model

For t = 1, ..., T:

- Train weak learner using distribution D_t .
- Get weak hypothesis $h_t: \mathscr{X} \to \{-1, +1\}$.
- Aim: select h_t with low weighted error:

$$\varepsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i].$$
 Error of model

- Choose $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \varepsilon_t}{\varepsilon_t} \right)$.
- Update, for $i = 1, \dots, m$:

$$D_{t+1}(i) = rac{D_t(i) \exp(-lpha_t y_i h_t(x_i))}{Z_t}$$
 Update Distribution

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final hypothesis:

$$H(x) = \mathrm{sign}\left(\sum_{t=1}^T lpha_t h_t(x)
ight).$$
 Final average

Theorem: training error drops exponentially fast

Revisit Bagging

Majority voting

Bagging vs Boosting

- Bagging
 - Construction of <u>complementary</u> base-learners is left to chance
 - .. and to the unstability of the learning methods.
- Boosting
 - Actively seek to generate complementary base-learner
 - Training the next base-learner based on the mistakes of the previous learners.

"An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants" Eric Bauer & Ron Kohavi, Machine Learning 36, 105–139 (1999)

 $(\pi/8, 3\pi/8]$

 $(3\pi/8, 5\pi/8]$

0

 $(5\pi/8, 7\pi/8]$

Feature value

Sum D

Given:
$$(x_1, y_1), \dots, (x_m, y_m)$$
 where $x_i \in \mathcal{X}$, $y_i \in \{-1, +1\}$.

Initialize $D_1(i) = 1/m$ for $i = 1, \dots, m$.

For $t = 1, \dots, T$:

• Train weak learner using distribution D_t .

- Train model Get weak hypothesis $h_t: \mathcal{X} \to \{-1, +1\}$.
- Aim: select h_t with low weighted error:

$$\mathcal{E}_t = \operatorname{Pr}_{i \sim D_t} \left[h_t(x_i) \neq y_i \right].$$
 Error of model
$$\mathsf{Choose} \left(\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \mathcal{E}_t}{\mathcal{E}_t} \right) \right).$$
 Coefficient of model
$$\mathsf{Update}, \text{ for } i = 1, \dots, m \text{:}$$

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$
 Update Distribution

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$
. Final average

Adaboost: Additive model with exponential loss function

$$\min_{lpha_{n=1:N},eta_{n=1:N}}L\left(y,\sum_{n=1}^{N}lpha_{n}f(x,eta_{n})
ight)$$

Output the final hypothesis:

• Train weak learner using distribution D_t .
• Get weak hypothesis $h_t: \mathcal{X} \to \{-1, +1\}$.
• Aim: select h_t with low weighted error: $\varepsilon_t = \Pr_{i \sim D_t} \left[h_t(x_i) \neq y_i \right].$ • Choose $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{a} \right)$.
• Coefficient of model

Initial Distribution of Data

Update, for i = 1, ..., m: $D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$ Update Distribution where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final hypothesis:
$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$
 Final average

Given: $(x_1, y_1), \dots, (x_m, y_m)$ where $x_i \in \mathcal{X}, y_i \in \{-1, +1\}$.

Initialize $D_1(i) = 1/m$ for i = 1, ..., m.

For t = 1, ..., T:

Adaboost: Additive model with exponential loss function

$$\min_{lpha_{n=1:N},eta_{n=1:N}}L\left(y,\sum_{n=1}^{N}lpha_{n}f(x,eta_{n})
ight)$$
 $\qquad \min_{lpha_{n},eta_{n}}L\left(y,f_{n-1}((x)+lpha_{n}f_{n}(x,eta_{n})
ight)$

Functional Gradient Descent

$$h(x) = h_1(x) + h_2(x) + ... + h_n(x)$$

Gradient Boosting

- 1. Start with a constant model f_0
- 2. Fit a weak learner h_n to the negative gradient of the loss function w.r.t. f_{n-1}
- 3. Take a step γ s.t. $f_n = f_{n-1} + \gamma h_n$ minimizes the loss $L\left(y, f_n(x)
 ight)$

Adaboost: Additive model with exponential loss function

Gradient Boost: Adaboost w/ Generic loss function

- Ensemble methods that minimize variance
 - Bagging
 - Random Forests

- Ensemble methods that minimize bias
 - Boosting

Combine bagging and boosting?

- Yes! Infinite Boosting
- .. But time-consumsing
- https://arxiv.org/abs/1706.01109
- Code: https://github.com/arogozhnikov/infiniteboost

Some Practical Advice

- If the classifier is unstable (high variance), then apply bagging!
- If the classifier is stable and simple (high bias), then apply boosting!
- If the classifier is stable and complex then apply randomization injection!

Train different models on same data

Voting or Averaging of predictions of multiple pre-trained models

 "Stacking": Use predictions of multiple models as "features" to train a new model and use the new model to make predictions on test data

Meta Classifier

High accuracy!

Low individual accuracy Computationally efficient

References

 https://cedar.buffalo.edu/~srihari/CSE555/Bo osting.pdf