```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#from google.colab import files
#uploaded = files.upload()
import pandas as pd
import io
#data = pd.read_csv(io.BytesIO(uploaded['housing.csv']))
data = pd.read_csv('/content/sample_data/housing.csv')
data.info()
   <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 20640 entries, 0 to 20639
     Data columns (total 10 columns):
         Column
                             Non-Null Count Dtype
     --- -----
                             -----
                            20640 non-null float64
     0
         longitude
     1
         latitude
                            20640 non-null float64
      2
         housing_median_age 20640 non-null float64
         total_rooms 20640 non-null float64
total_bedrooms 20433 non-null float64
      3
     4
         population
      5
                            20640 non-null float64
      6
         households
                           20640 non-null float64
         median_income
      7
                           20640 non-null float64
         median_house_value 20640 non-null float64
      8
         ocean_proximity 20640 non-null object
     dtypes: float64(9), object(1)
     memory usage: 1.6+ MB
```

data.head()

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population
0	-122.23	37.88	41.0	880.0	129.0	322.0
1	-122.22	37.86	21.0	7099.0	1106.0	2401.0
2	-122.24	37.85	52.0	1467.0	190.0	496.0
3	-122.25	37.85	52.0	1274.0	235.0	558.0
4	-122.25	37.85	52.0	1627.0	280.0	565.0

Encoding

- (1)Label encoder
- (2)Onehot encoder

```
from sklearn.preprocessing import LabelEncoder , OneHotEncoder
data['median_house_value'].value_counts()
```

```
500001.0
                 965
     137500.0
                 122
     162500.0
                 117
     112500.0
                 103
     187500.0
                  93
     303200.0
                   1
     307900.0
                   1
     383200.0
                   1
     360800.0
                   1
     405500.0
                   1
     Name: median_house_value, Length: 3842, dtype: int64
le=LabelEncoder()
data['median_house_value']=le.fit_transform(data['median_house_value'])
data['median_house_value'].value_counts()
     3841
             965
     959
             122
     1209
             117
     710
             103
     1459
              93
     3172
               1
     3275
               1
               1
     3204
     3091
               1
     2119
     Name: median house value, Length: 3842, dtype: int64
le.classes_
     array([ 14999., 17500., 22500., ..., 499100., 500000., 500001.])
(2)Onehot Encoder
data['ocean_proximity'].value_counts()
     <1H OCEAN
                   9136
     INLAND
                   6551
     NEAR OCEAN
                   2658
                   2290
     NEAR BAY
     ISLAND
     Name: ocean_proximity, dtype: int64
one_hot = OneHotEncoder()
transformed_data = one_hot.fit_transform(data['ocean_proximity'].values.reshape(-1,1)).toa
one_hot.categories_
     [array(['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'],
            dtype=object)]
transformed_data = pd.DataFrame(transformed_data ,
```

COLUMNS - ['Z1H OCEAN'

' דאו אאום'

'TCL VND'

'NEAR BAV'

transformed_data.head()

	<1H OCEAN	INLAND	ISLAND	NEAR BAY	NEAR OCEAN
0	0.0	0.0	0.0	1.0	0.0
1	0.0	0.0	0.0	1.0	0.0
2	0.0	0.0	0.0	1.0	0.0
3	0.0	0.0	0.0	1.0	0.0
4	0.0	0.0	0.0	1.0	0.0

```
transformed_data.iloc[90, ]
```

```
<1H OCEAN 0.0
INLAND 0.0
ISLAND 0.0
NEAR BAY 1.0
NEAR OCEAN 0.0
```

Name: 90, dtype: float64

```
data['median_house_value'][90]
```

1209

temp data

Normalization & Standardization

```
# consider only numerical columns
numeric_columns = [c for c in data.columns if data[c].dtype != np.dtype('0')]
numeric_columns
     ['longitude',
      'latitude',
      'housing median age',
      'total_rooms',
      'total_bedrooms',
      'population',
      'households',
      'median_income',
      'median_house_value']
len(numeric_columns) , len(data.columns)
     (9, 10)
numeric_columns.remove('longitude')
numeric_columns.remove('latitude')
temp_data = data[numeric_columns]
```

	housing_median_age	total_rooms	total_bedrooms	population	households	medi
0	41.0	880.0	129.0	322.0	126.0	
1	21.0	7099.0	1106.0	2401.0	1138.0	
2	52.0	1467.0	190.0	496.0	177.0	
3	52.0	1274.0	235.0	558.0	219.0	
4	52.0	1627.0	280.0	565.0	259.0	
		•••				
20635	25.0	1665.0	374.0	845.0	330.0	
20636	18.0	697.0	150.0	356.0	114.0	
20637	17.0	2254.0	485.0	1007.0	433.0	
20638	18.0	1860.0	409.0	741.0	349.0	
20639	16.0	2785.0	616.0	1387.0	530.0	

20640 rows × 7 columns

Normalization

```
from sklearn.preprocessing import StandardScaler , MinMaxScaler
import warnings
warnings.filterwarnings('ignore')
normalizer = MinMaxScaler()
temp_data.dropna(axis = 1 , inplace = True)
normalized_data = normalizer.fit_transform(temp_data)
pd.DataFrame(normalized_data , columns = temp_data.columns)
```

housing_median_age total_rooms population households median_income media

Standardization

1 0.392157 0.180503 0.067210 0.186976 0.538027

standard_scaler = StandardScaler()
standardized_data = standard_scaler.fit_transform(temp_data)
pd.DataFrame(standardized_data , columns = temp_data.columns)

	housing_median_age	total_rooms	population	households	median_income	media
0	0.982143	-0.804819	-0.974429	-0.977033	2.344766	
1	-0.607019	2.045890	0.861439	1.669961	2.332238	
2	1.856182	-0.535746	-0.820777	-0.843637	1.782699	
3	1.856182	-0.624215	-0.766028	-0.733781	0.932968	
4	1.856182	-0.462404	-0.759847	-0.629157	-0.012881	
20635	-0.289187	-0.444985	-0.512592	-0.443449	-1.216128	
20636	-0.845393	-0.888704	-0.944405	-1.008420	-0.691593	
20637	-0.924851	-0.174995	-0.369537	-0.174042	-1.142593	
20638	-0.845393	-0.355600	-0.604429	-0.393753	-1.054583	
20639	-1.004309	0.068408	-0.033977	0.079672	-0.780129	

20640 rows × 6 columns

Handling With Missing Values

data.isnull().sum()

0 longitude latitude 0 housing median age 0 total rooms 0 total bedrooms 207 population 0 households 0 median_income 0 median house value 0 ocean_proximity 0 dtype: int64

here I Will show you imputing values in Null columns only for 'agent' column
data['total_bedrooms'].isnull().sum()

207

Simple Imputer

Discretization

from sklearn.preprocessing import KBinsDiscretizer
temp_data.head()

	housing_median_age	total_rooms	population	households	median_income	median_hc
0	41.0	880.0	322.0	126.0	8.3252	
1	21.0	7099.0	2401.0	1138.0	8.3014	
2	52.0	1467.0	496.0	177.0	7.2574	
3	52.0	1274.0	558.0	219.0	5.6431	
4	52.0	1627.0	565.0	259.0	3.8462	

Quantile Discretization Transform

```
trans = KBinsDiscretizer(n_bins =10 , encode = 'ordinal' , strategy='quantile')
new_data = trans.fit_transform(temp_data)
pd.DataFrame(new_data,columns = temp_data.columns )
```

		housing_median_age	total_rooms	population	households	median_income	media
	0	8.0	0.0	0.0	0.0	9.0	
	1	3.0	9.0	8.0	9.0	9.0	
	2	9.0	2.0	0.0	0.0	9.0	
Unifor	m Disc	cretization Transform					
	4	9.0	3.0	1.0	2.0	5.0	
trans	= KBir	nsDiscretizer(n_bins	=10 , encode	= 'ordinal'	, strategy=	'uniform')	

trans = KBinsDiscretizer(n_bins =10 , encode = 'ordinal' , strategy='uniform')
new_data = trans.fit_transform(temp_data)

pd.DataFrame(new_data,columns = temp_data.columns)

	housing_median_age	total_rooms	population	households	median_income	media
0	7.0	0.0	0.0	0.0	5.0	
1	3.0	1.0	0.0	1.0	5.0	
2	9.0	0.0	0.0	0.0	4.0	
3	9.0	0.0	0.0	0.0	3.0	
4	9.0	0.0	0.0	0.0	2.0	
20635	4.0	0.0	0.0	0.0	0.0	
20636	3.0	0.0	0.0	0.0	1.0	
20637	3.0	0.0	0.0	0.0	0.0	
20638	3.0	0.0	0.0	0.0	0.0	
20639	2.0	0.0	0.0	0.0	1.0	

20640 rows × 6 columns

KMeans Discretization Transform

```
trans = KBinsDiscretizer(n_bins =10 , encode = 'ordinal' , strategy='kmeans')
new_data = trans.fit_transform(temp_data)
```

pd.DataFrame(new_data,columns = temp_data.columns)

	housing_median_age	total_rooms	population	households	median_income	media
0	7.0	0.0	0.0	0.0	6.0	
1	3.0	4.0	3.0	4.0	6.0	
2	9.0	1.0	0.0	0.0	6.0	
3	9.0	0.0	0.0	0.0	4.0	
4	9.0	1.0	0.0	1.0	3.0	
20635	4.0	1.0	1.0	1.0	0.0	
20636	3.0	0.0	0.0	0.0	1.0	
20637	3.0	1.0	1.0	2.0	0.0	
20638	3.0	1.0	0.0	1.0	0.0	
20639	2.0	2.0	1.0	2.0	1.0	

20640 rows × 6 columns

✓ 0s completed at 1:55 PM