Задача А. Трудный путь

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 512 мегабайт

На плоскость накинута сетка с узлами в точках с целочисленными координатами. В точке (xa, ya) стоит Поликарп, который хочет попасть в точку (xb, yb). У Поликарпа есть набор из n векторов (xv_i, yv_i) . Чтобы сделать один шаг из точки (x, y), Поликарп выбирает вектор i из своего набора и переходит в точку $(x+xv_i, y+yv_i)$. Поликарп не может останавливаться во время перехода. Переход всегда происходит от одного узла сетки к другому.

K несчастью для Поликарпа, на плоскости находятся m препятствий в виде отрезков. Поликарп не может пересекать или касаться их во время передвижения. Начальная точка, где находится Поликарп, может принадлежать отрезку, в таком случае он не может двигаться.

Поликарп очень устал и не может сделать больше l шагов. Скажите, за какое минимальное число шагов Поликарп может добраться до конечной точки. Если это невозможно сделать не более, чем за l шагов, выведите -1. Каждый вектор можно использовать произвольное число раз.

Формат входных данных

В первой строке находятся целые числа xa, ya, xb, yb, l — начальные и конечные координаты пути и максимальное количество шагов, которое может сделать Поликарп. $-500 \leqslant xa, ya, xb, yb \leqslant 500, 1 \leqslant l \leqslant 20.$

Во второй строчке написано число n ($1 \le n \le 10$) — количество векторов у Поликарпа. В следующих n строках написаны пары целых чисел xv_i , yv_i — координаты векторов. $-10 \le xv_i$, $yv_i \le 10$.

В следующей строке написано число m ($0 \le m \le 10$) — количество препятствий на плоскости в виде отрезков. Далее в m строчках написаны целые числа $x0_i, y0_i, x1_i, y1_i$ — координаты концов отрезков. $-1000 \le x0_i, y0_i, x1_i, y1_i \le 1000$.

Гарантируется что начальная и конечная точки пути различны и что препятствия не вырождаются в точку. Для каждой строки все числа в ней разделены пробелами.

Формат выходных данных

Единственное число — минимальное количество шагов, за которое Поликарп может дойти до конечной точки, или -1, если это невозможно.

стандартный ввод	стандартный вывод
0 0 10 10 10	-1
1	
10 10	
1	
0 0 10 10	
0 0 10 10 10	-1
1	
10 10	
1	
5 5 25 25	
0 0 9 9 10	2
2	
10 10	
-1 -1	
0	

Задача В. Подсчет размещений

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

У Поликарпа есть три целых числа N, K и D. Он хочет посчитать число различных размещений из чисел $1, 2, \ldots, N$ по K по модулю 1000000007. Размещение — это некоторый набор чисел. Размещения являются одинаковыми, если они содержат одни и те же числа в одном и том же порядке.

Все числа в размещении должны образовывать неубывающую последовательность, при этом каждое следующее число должно отличаться от предыдущего не более, чем на D.

Помогите Поликарпу решить задачу.

Формат входных данных

Даны три целых числа: N, K, D. $1 \le N \le 1000, 1 \le K, D \le N$. Числа разделены пробелами.

Формат выходных данных

Вывести число различных размещений по модулю 1000000007.

стандартный ввод	стандартный вывод
5 3 1	3
5 3 2	8
1000 500 1000	159835829

Задача С. Поликарп и источник света

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

В точке (x_1, y_1, z_1) Поликарп поставил источник света, который светит равномерно во все стороны. В точке $(x_2, y_2, 0)$ находится центр нижнего основания цилиндра, который Поликарп так же зачем-то туда поставил. Цилиндр имеет высоту h, радиус r, его верхнее основание параллельно плоскости xOy, а нижнее — лежит в ней.

По неизвестной причине, Поликарпу интересно узнать площадь освещенной поверхности цилиндра.

Цилиндр сплошной и не пропускает свет. Источник настолько яркий, что может осветить любую точку пространства, если на пути к ней не будет препятствий.

Формат входных данных

В первой строке даны целые числа x_1, y_1, z_1 . Числа разделены пробелами.

Во второй строке находятся целые числа x_2, y_2, h, r . Числа разделены пробелами.

Координаты по модулю не превышают 1000. $1 \leqslant h, r \leqslant$ 1000. Гарантируется, что источник света не находится внутри цилиндра.

Формат выходных данных

Необходимо вывести площадь освещенной поверхности цилиндра с точностью не менее 10^{-6} .

Примеры

стандартный ввод	стандартный вывод
0 0 100	314.159265
0 0 10 10	
50 50 5	285.779854
0 0 10 10	

Замечание

Источник освещает нижнее основание, только если находится под ним, и верхнее - над ним. Если источник располагается в одной плоскости с основанием, он его не освещает.

Задача D. Прогулка по дереву

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

У Поликарпа есть неориентированный связный граф с N вершинами и N-1 ребром. У каждой вершины записано целое число v_i , где i — номер вершины. Далее Поликарп выполняет следующий алгоритм:

- 1. Равновероятно выбирается произвольная вершина, Поликарп переходит туда.
- 2. Пусть у текущей вершины есть m непосещенных смежных вершин. Тогда с одинаковой вероятностью $\frac{1}{m+1}$ Поликарп выбирает одну из этих вершин или алгоритм прекращает работу.
- 3. Если Поликарп выбрал вершину, то он переходит в неё, алгоритм переходит к шагу 2.

После того, как алгоритм закончит свою работу, у всех посещенных вершин выписываются числа и складываются. Поликарпу, а заодно и вам, нужно найти математическое ожидание данной суммы.

Формат входных данных

В первой строке записано число $N,\ 1\leqslant N\leqslant 100000$. Во второй строке записаны числа $v_i,\ i=1\dots N,\ -1000\leqslant v_i\leqslant 1000$. В следующих N-1 строках записаны пары чисел $a_i,\ b_i,\ 1\leqslant a_i,b_i\leqslant N$ — ребра графа.

Все числа разделены пробелами между собой в одной строке.

Формат выходных данных

Единственное число — математическое ожидание суммы с точностью не менее 10^{-4} .

Примеры

стандартный ввод	стандартный вывод
3	6.361111
5 4 2	
1 2	
2 3	
5	50.100000
10 20 30 40 50	
1 2	
1 3	
1 4	
1 5	

Замечание

Пояснение к первому примеру. Путь выбирается вторая вершина. Тогда с вероятностью $\frac{1}{3}$ процесс останавливается, с вероятностью $\frac{1}{3}$ происходит переход в первую вершину и, наконец, с вероятностью $\frac{1}{3}$ — в третью. Если выбирается первая, то возможен переход во вторую с вероятностью $\frac{1}{2}$, а оттуда — в третью с такой же вероятностью. Для третьей все происходит аналогично первой.

Если распишем итоговое выражение, получаем:

$$(5 + \frac{1}{2} \cdot (4 + \frac{1}{2} \cdot 2)) \cdot \frac{1}{3} + (4 + \frac{1}{3} \cdot 5 + \frac{1}{3} \cdot 2) \cdot \frac{1}{3} + (2 + \frac{1}{2} \cdot (4 + \frac{1}{2} \cdot 5)) \cdot \frac{1}{3} = (7.5 + 6.3333 + 5.25) \cdot \frac{1}{3} = 6.361111$$

Задача Е. Массовые замены

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 4 секунды Ограничение по памяти: 512 мегабайт

У Поликарпа есть строка s из n строчных латинских символов. Над строкой он последовательно проводит m операций. Каждая операция i заменяет все символы fr_i на to_i на позициях $l_i \dots r_i$.

Поликарп устал проводить замены вручную и спрашивает вас, как будет выглядеть строка после проведения всех операций.

Формат входных данных

В первой строке записано число $n,\,1\leqslant n\leqslant 100000$ — длина строки. Во второй строке записана строка s. В третьей записано число $m,\,0\leqslant m\leqslant 100000$ — количество операций. В следующих m строках записаны операции.

Каждая операция имеет вид строки l_i r_i fr_i to_i , где i — номер операции. $1 \le l_i \le r_i \le n$ — на каком интервале производить замену. fr_i и to_i — это строчные латинские символы, определяющие, какой символ на что заменить. Все разделяется пробелами.

Формат выходных данных

В единственной строке вывести, что получится в результате замен символов.

стандартный ввод	стандартный вывод
5	bcecb
aaaaa	
4	
15 a b	
2 4 b c	
3 3 c a	
1 5 a e	
7	czcdzzz
abadaba	
4	
1 3 a c	
47 a a	
17 b a	
17 a z	

Задача F. Интересные числа

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Поликарп считает число x является q-интересным, если в нем встречается не более q идущих подряд одинаковых цифр.

Даны три целых числа: l, r и k. Поликарп хочет найти количество k-интересных числе в промежутке от l до r включительно.

Формат входных данных

Три целых числа: $l, r, k. \ 0 \leqslant l < r \leqslant 10^{18}, \ 1 \leqslant k \leqslant 18$. Числа разделены пробелом.

Формат выходных данных

Единственное целое число — количество чисел в промежутке с не более, чем k идущими подряд одинаковыми цифрами.

стандартный ввод	стандартный вывод
0 100000000000000000000 1	168856464709124011
0 100 2	101
123 456 2	331

Задача G. Потоп

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 5 секунд Ограничение по памяти: 512 мегабайт

Поликарп решил провести эксперимент. Для этого он расположил установку в виде поля размером $n \times m$ клеток в верху очень высокой камеры. На каждой клетке поля находится либо яма, либо плоскость. Для каждой клетки записан её уникальный номер.

В одну из точек поля начинает течь вода в течение k секунд, за секунду втекает 1 единица воды. Если единица воды попадает в яму, она уменьшает глубину ямы на 1, при этом яма становится плоскостью, если её глубина до попадания была равна 1. Если вода попадает на плоскость, то она может двигаться в любую клетку поля, до которой можно добраться, двигаясь по смежным между собой клеткам. Две клетки называются смежными, если у них есть общая сторона. Все клетки в пути должны быть плоскостями, за исключением последней. При этом вода течет в самую глубокую яму, до которой она может добраться. Если таких ям несколько, вода течет в яму в клетке с координатами (i,j), у которой номер $num_{i,j}$ наибольший. Если все ямы заполнены, вода вытекает за пределы поля и ничего не меняется. За один момент времени может глубина может уменьшиться максимум у одной ямы.

Перед реализацией эксперимента Поликарп решил предварительно смоделировать эксперимент и обратился к Вам, поскольку сам он не может решить данную задачу. Вам необходимо найти, в каком состоянии будет находится каждая клетка поля после k секунд.

Формат входных данных

В первой строке находятся 5 чисел - n, m, x, y, k. $1 \le n, m \le 100$, $1 \le x \le n$, $1 \le y \le m$, $1 \le k \le 10^{12}$. n и m — это размеры поля, x и y — соответственно номер строки и столбца, куда течет вода, k — длительность эксперимента.

В следующих n строках записано по m чисел $a_{i,j}$ — глубина ямы, находящейся в клетке (i,j). Если в клетке находится плоскость, $a_{ij}=0.$ $0\leqslant a_{ij}\leqslant 10^{12},$ $1\leqslant i\leqslant n,$ $1\leqslant j\leqslant m.$

В следующих n строках записано по m чисел $num_{i,j}$ — номера клеткок. $1 \leqslant num_{ij} \leqslant n \cdot m$, $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m$. Все номера клеток различны.

Числа в каждой строке между собой разделены пробелами

Формат выходных данных

Надо вывести n строк по m чисел, разделенных пробелами — состояния клеток поля в таком же формате, как во входных данных.

стандартный ввод	стандартный вывод
2 2 1 1 10	0 5
0 10	5 10
10 10	
1 3	
2 4	
4 4 1 1 11	0 0 0 1
1 2 3 4	1 1 0 0
1 1 1 1	1 1 1 1
1 1 1 1	1 1 1 1
1 1 1 1	
16 15 14 5	
9 8 13 12	
4 7 6 11	
1 2 3 10	

Задача Н. Вторжение сфер

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

На плоскости в точке (0,0) находится Поликарп и пушка. Поликарп стреляет из неё под углом a от положительного направления оси Ox в сторону положительного направления оси Oy. Снаряд всегда летит по прямой со скоростью v. На плоскости находятся n препятствий в виде абсолютно упругих сфер. При попадании в сферу или при касании с ней снаряд отскакивает от неё, а сфера исчезает.

Вам необходимо выяснить, сколько времени проведет снаряд, пока не окажется на оси Ox, то есть координата y снаряда будет равна 0, и каково будет при этом значение координаты x. Если снаряд не пересечет ось Ox, выведите -1.

Формат входных данных

В первой строке записаны числа a и v — угол в градусах и скорость снаряда. $1\leqslant a\leqslant 179, 1\leqslant v\leqslant 10.$

Во второй строке записано одно число n — число препятствий. $0 \leqslant n \leqslant 100$.

В следующих n строках записаны тройки чисел x_i, y_i, r_i — координаты и радиус сферы соответственно. $-1000 \leqslant x_i, y_i \leqslant 1000, 1 \leqslant r_i \leqslant 100$.

Все числа целые и разделены пробелами. Сферы не пересекают и не касаются друг друга. Ни одна сфера не содержит и не касается пушки.

Indian Summer KFU Programming Contest 2015 Russia, Kazan, October, 10, 2015

Формат выходных данных

Если снаряд попадает на ось Ox, выведите два числа t и x, разделенные пробелами - время попадания и координату x. Если не попадает, выведите единственное число -1. Ответ необходимо найти с точностью не менее 10^{-4} .

стандартный ввод	стандартный вывод
90 1	49.01923789 -28.30127019
1	
5 25 10	
90 1	-1
2	
5 25 10	
-11 0 10	

Задача I. Разрез торта

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

У Поликарпа есть торт, расположенный на координатной плоскости. Левый нижний угол торта находится в точке (0,0), правый верхний — в (n,m). На торте есть две вишенки, которые находятся в точках (x1,y1) и (x2,y2).

Поликарп хочет разрезать торт на две части, так, чтобы на каждой части было по одной вишенке. Торт можно разрезать горизонтально или вертикально, при этом концы разреза должны быть в целочисленных точках. Разрезать вишенки нельзя.

Помогите Поликарпу решить задачу.

Формат входных данных

В единственной строке находятся 6 целых чисел, разделенных пробелами: n, m, x1, y1, x2, y2. $1 \le n, m \le 10^9, 0 \le x1, x2 \le n, 0 \le y1, y2 \le m$. Гарантируется, что вишенки находятся в разных точках.

Формат выходных данных

Если разрез сделать нельзя, выведите единственное число "-1". Если надо сделать горизонтальный разрез, выводите "Y С". Если надо сделать вертикальный — "X С". С — координата разреза. Кавычки выводить не нужно.

стандартный ввод	стандартный вывод
2 1 1 0 1 1	-1
5 5 1 1 2 4	Y 2

Задача Ј. Переворачивание карточек

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 4 секунды Ограничение по памяти: 512 мегабайт

У Поликарпа есть два набора из одинаковых карточек, каждый набор содержит $n \cdot m$ карточек. С одной стороны каждой карточки написано 0, с другой написано 1.

Поликарп сделал из этих наборов две таблички a и b размером n строк на m столбцов. Часть карт лежат стороной с 1 вверх, остальные — с 0. Поликарп может проводить операции следующего вида над таблицей a: можно взять любую строку или столбец и перевернуть все карты в ней/нем на другую сторону: все 0 переворачиваются в 1, а 1 в 0. Назовем подобную операцию переворотом.

Необходимо узнать, существует ли такая последовательность переворотов, которая превращает таблицу a в таблицу b.

Формат входных данных

В первой строке даны два числа n и m, $1 \le n, m \le 1000$.

Далее в следующих n строках находятся по m целых чисел $a_{ij}, a_{ij} \in \{0,1\}$ — содержимое таблицы a, каждое число показывает, какой стороной вверх находится очередная карта. Числа разделены пробелами.

Следующие n строк описывают таблицу b в таком же формате, что и a.

Все числа в одной строке разделены пробелами между собой.

Формат выходных данных

Если решения нет, выведите "-1"(без кавычек).

Если решение есть, то в первой строке выведите количество операций. Оно не должно превышать n+m. В последующих строках выведите сами операции в таком формате: если необходимо перевернуть i-ую строку, выведите "0 i"; если j-ый столбец — "1 j". Кавычки выводить не нужно. Каждая операция должна быть в отдельной строке.

стандартный ввод	стандартный вывод
3 3	2
1 0 1	0 2
0 1 0	1 2
1 0 1	
1 1 1	
1 1 1	
1 1 1	
3 3	-1
1 0 1	
0 1 0	
1 0 1	
1 1 1	
1 0 1	
1 1 1	