运筹学第六、七章习题答案

第六章

6.1 A - 2

这个题有歧义,如果考虑到体现动态规划问题的特质的话,这个题应该加一条,三座 山都必须要爬,在这个前提下求出最长距离的策略。

建立模型:

取i = 012分别表示华山,杰山和亚山。

 s_i 表示当天要爬的山, x_i 表示当天下山前往露营的山,也就是另一天要爬的山,所以 状态转移方程为 $s_{i+1}=x_i$,递归函数为:

$$f_i(s_i, x_i) = 2h(s_i) + d(s_i, x_i) + f^*(s_{i+1}),$$

 $h(s_i)$ 表示当天要爬的山的高度, $d(s_i, x_i)$ 表示当天要爬的山和另一天要爬的山的距离。 后向递归求解如下:

阶段5: 最后要回到华山山脚,所以 x_5 只能取0。

$$x_5$$
 x_5 f^* x^*
 0 $2 \times 6 = 12$ 12 0
 1 $8 + 3 = 11$ 11 0
 2 $10 + 5 = 15$ 15 0

阶段4: 相邻的两天不去同一座山,所以 $s_i \neq x_i$ 。

s_4	$x_4 = 0$	$x_4 = 1$	$x_4 = 2$	f^*	x^*
0		26	32	32	2
1	23		25	25	2
2	27	23		27	0

以此类推,最后求出最优策略为(考虑必须爬三座山的最长距离):

第一天: 爬杰山, 回华盛顿山脚; 第二天: 爬华山, 回亚山脚;

第三天: 爬亚山,回华山脚,…,之后就一直在这两座山之间来回,总路程为78。(这题逻辑上有点不太适合出在动态规划这一节,可能是数字没设计好。)

6.2 B - 3

这题关键的点在于建立模型时函数的表达式,理解题意的过程很重要。

建立动态规划模型:

$$b_1 = 7$$
, $b_2 = 4$, $b_3 = 7$, $b_4 = 8$

$$x_i > s_i$$
 时, $h(s_i, x_i) = 500 + 220x_i$; $x_i \le s_i$ 时, $h(s_i, x_i) = 220x_i$.

 s_i 为上周实际车辆数, x_i 为本周实际车辆数,阶段i中子问题的目标函数为:

$$f_i(s_i, x_i) = \min_{x_i} \{h(s_i, x_i) + f_{i+1}^*(s_{i+1})\}$$

最后求解最优策略为:第一周租7辆车;第二周还3辆车,实际车辆数4;

第三周租4辆车,实际车辆数8;第四周实际车辆数8。

最小花费为6940美元。

6.2 C - 4

题意关键:设备使用年限为5年,当前设备已经使用2年,所以未来5年必然会有更新过程,需要求的就是采取什么样的方式更新使得收益最大。

建立动态规划模型:

$$x_i = K$$
 $\forall i$ $\forall i$

$$x_i = K$$
时, $f_i(s_i, x_i) = r(s_i) + f_{i+1}^*(s_i + 1)$; $x_i = R$ 时, $f_i(s_i, x_i) = s(s_i) - b + r(0) + f_{i+1}^*(1)$;

阶段i中子问题的目标函数为:

$$f_i(s_i, x_i) = \max_{x_i \in \{K, R\}} \{r(s_i) + f_{i+1}^*(s_i + 1), s(s_i) - b + r(0) + f_{i+1}^*(1)\}$$

通过计算得出最优更新策略为:第一年保持,第二年更新设备,第三年保持,第四年保持,第五年保持;最大收益为3700。

6.2 D-3

最优策略:前两年不卖羊,第3年年底卖出去所有的羊,一共8只,收益960。

6.3 A-1a

$$x_1 \in [0, \frac{1}{3}]$$
, $x_2 = \frac{21 - 2x_1}{7}$ 时, $f^* = 42$ 。

第七章

7.1 B-4

Steve: $w_I w_{IS} + w_E w_{ES} + w_R w_{RS} = 0.331$

Jane: $w_I w_{IJ} + w_E w_{EJ} + w_R w_{RJ} = 0.29$

Maisa: $w_I w_{IM} + w_E w_{EM} + w_R w_{RM} = 0.377$

所以聘用Maisa。

数据的一致性问题:

$$CR^{A} = \frac{0.015}{0.58} = 0.026 < 0.1$$
 $CR^{A_{I}} = \frac{0.283}{0.58} = 0.488 > 0.1$
 $CR^{A_{E}} = \frac{0.368}{0.58} = 0.634 > 0.1$
 $CR^{A_{R}} = \frac{0.113}{0.58} = 0.195 > 0.1$

所以, A_I , A_E , A_R 不一致性程度太高,决策者需要重新估计。

7.1 B-5

三套房子的优先级次序:

A: $w_K(w_{KY}w_{KYA} + w_{KW}w_{KWA}) + w_J(w_{JY}w_{JYA} + w_{JW}w_{JWA}) = 0.4227$

B: $w_K(w_{KY}w_{KYB} + w_{KW}w_{KWB}) + w_J(w_{JY}w_{JYB} + w_{JW}w_{JWB}) = 0.2267$

C: $w_K(w_{KY}w_{KYC} + w_{KW}w_{KWC}) + w_J(w_{JY}w_{JYC} + w_{JW}w_{JWC}) = 0.351$ 所以优先级次序为A > C > B。 A_{JY} 不一致性程度太高,需要重新估计。

7.2 A - 9

期望利润为: $\mathbb{E} = \mathbb{E}(5a - 55ap) = 5a - 55a\mathbb{E}(p)$, 其中p为次品概率。

$$\mathbb{E}(p) = \frac{a}{a+1}$$
,

a = 0.05时,期望利润最大

7.2 B-5

(a):

$$Pr\{X = x_1 | Y = y_1\} = 0.96, \ Pr\{X = x_2 | Y = y_1\} = 0.04$$

 $Pr\{X = x_1 | Y = y_2\} = 0.851, \ Pr\{X = x_2 | Y = y_2\} = 0.149$
 $Pr\{X = x_1 | Y = y_3\} = 0.575, \ Pr\{X = x_2 | Y = y_3\} = 0.425$
(b):

决策树节点处期望值

节点5:
$$-50 \times 0.96 - 1000 \times 0.04 = -88$$

节点6:
$$-200 \times 0.96 - 700 \times 0.04 = -220$$

节点7:
$$-50 \times 0.851 - 1000 \times 0.149 = -192$$

节点8:
$$-200 \times 0.851 - 700 \times 0.149 = -275$$

节点9:
$$-50 \times 0.575 - 1000 \times 0.425 = -453$$

节点10:
$$-200 \times 0.575 - 700 \times 0.425 = -413$$

检验结果为 y_1 或者 y_2 时,给A优先供货;检验结果为 y_3 时,给B优先供货。

7.2 C - 1

略。

7.3 A - 1

最小遗憾准则: $r(a_i, s_j) = \max\{v(a_k, s_j)\} - v(a_i, s_j)$, v 为收益矩阵,根据极小化最大遗憾准则,最优行动方案为 a_3 。

折中主义:

v表示收益矩阵,选择行动方案的依据为:

$$\max_{a_i} \{ \alpha \max_{s_j} v(a_i, s_j) + (1 - \alpha) \min_{s_j} v(a_i, s_j) \}.$$

7.4 A-1

- (a)、纯策略解为 (A_2, B_3) ,并且是纯策略意义下的鞍点解,相应的对策值为v=4;
- (b)、纯策略解为 (A_1, B_3) ,并且是纯策略意义下的鞍点解,相应的对策值为v = -5。

7.4 A - 3

证明: (a)、

$$v^{-} = \max_{i} \{ \min_{j} a_{ij} \} \le \max_{i} \{ a_{ij} \}$$

对任意的;上述不等式都成立,所以

$$v^{-} \le \min_{i} \{ \max_{i} \{ a_{ij} \} = v^{+} \}$$

(b)、 $v^- = v^+ \Rightarrow$ 鞍点:

记 $v^- = v^+ = a_{irjr}$,即同行中最小,同列中最大的那个值; 所以

$$h_A(A_{ir}, B_{jr}) \ge h_A(A_k, B_{jr}),$$

$$h_B(A_{ir}, B_{jr}) \ge h_B(A_{ir}, B_l)$$

由此得: (A_{ir}, B_{jr}) 为纯策略意义下的鞍点。

鞍点 $\Rightarrow v^- = v^+$:

令 (A_{i_r}, B_{i_r}) 为其鞍点,则有

$$v^{-} = \max_{i} \{ \min_{j} a_{ij} \} \ge a_{irjr}$$
$$v^{+} = \min_{j} \{ \max_{i} \{ a_{ij} \} \le a_{irjr}$$

由此得 $v^- \ge v^+$,又由(a)的证明知 $v^- \le v^+$,结合得 $v^- = v^+$,由此得证。

7.4 B - 6

- (a), $v^-=2$, $v^+=4$;
- (b), $v^- = 0$, $v^+ = 7$;
- (c), $v^-=2$, $v^+=3$;
- (d)、 $v^- = v^+ = 1$, (A_1, B_3) 为纯策略意义下的鞍点;

7.4 B - 7

(a)、局中人为A,B两家公司,两个局中人分策略集分别记为 $\{A_1, A_2, A_3, A_4\}$ 、 $\{B_1, B_2, B_3, B_4\}$ 。

 A_1, B_1 : 两家公司都不做广告;

 A_2, B_2 : 两家公司都选择电视;

 A_3, B_3 : 两家公司都选择报纸;

 A_4, B_4 : 两家公司都选择广播;

赢得矩阵如下:这里对于潜在客户的理解有不同,但是最后得出的最优策略是一致的,但是理解的含义不同赢得矩阵不同,我就列出来直接含义的情况。

$$\begin{pmatrix}
B_1 & B_2 & B_3 & B_4 \\
A_1 & 0 & -50 & -30 & -20 \\
A_2 & 50 & 0 & 20 & 30 \\
A_3 & 30 & -20 & 0 & 10 \\
A_4 & 20 & -30 & -10 & 0
\end{pmatrix}$$

 $v^- = v^+ = 0$; 两家公司都选择电视广告,相应的对策值为v = 0。

7.4 C - 2

第3列被前两列的组合优超,所以化简后的矩阵为:

$$\begin{bmatrix} 0 & 8 \\ 8 & 4 \\ 12 & -4 \end{bmatrix}$$

使用图解法求解:

$$B$$
的最优解为 $y=\left[egin{array}{c} rac{1}{3} \ rac{2}{3} \end{array}
ight]$,相应的对策值为 $v=rac{16}{3}$;
$$A$$
的最优解为 $x=\left[egin{array}{c} rac{1}{3} \ rac{2}{3} \ 0 \end{array}
ight]$,相应的对策值为 $v=rac{16}{3}$ 。

7.4 D-2

Robin策略集: A_1 : 走路线A; A_2 : 走路线B;

交警策略集: B_1 : 只在A路上布防; B_2 : 两条路对半布防; B_3 : 只在B路上布防; Robin的赢得矩阵为:

$$\begin{pmatrix}
B_1 & B_2 & B_3 \\
A_1 & -100 & -50 & 0 \\
A_2 & 0 & -30 & -100
\end{pmatrix}$$

可以使用图解法求解: $x_1^* = 0.5$, 对应收益为-50; $y_1^* = 0.5$, 对应收益为50。

7.4 E-1a

使用图解法或者线性规划解法:

$$A$$
最优解为 $x=\left[egin{array}{c} rac{1}{5} \\ rac{4}{5} \end{array}
ight]$,相应的对策值为 $v=rac{8}{5}$, B 的最优解为 $y=\left[egin{array}{c} rac{1}{5} \\ 0 \\ 0 \\ rac{4}{5} \\ 0 \end{array}
ight]$,相应的对

策值为 $v = \frac{8}{5}$ 。