Machine Learning HW12 Report

學號:B06901045 系級:電機三 姓名:曹林熹

1. 請描述你實作的模型架構、方法以及 accuracy 為何。其中你的方法必須為 domain adversarial training 系列 (就是你的方法必須要讓輸入 training data & testing data 後的某一層輸出 domain 要相近)。(2%)

ANS:

我使用的方法主要可以分為兩大部分,第一部分為訓練我的 DANN 模型,第二部分為我用 DANN 使用 semi-supervised 再重新 train 一次 CNN。

第一部分)

改的地方為:

1. Dataloader batch_size

會這樣改是因為想說每一次 step 能夠考慮的資料數比較多,所以讓 sample code 的 batch_size = 32 改成 batch_size = 64。

2. DANN model

這邊是我主要改的部分,label_predictor、domain_classifier 都跟 sample code 一樣,feature_extractor的話我把 convolution layer 改成 7 層,以利於得到比較好的 feature (最後出來是 1*1),但是我們的 image input 是 32*32 的 image,如果我每一層都使用 maxpooling 的話會不夠用,因此我在前期時單純用 convolution 並沒有 pooling,到第三層才開始用 pooling,最後可以得到我們的特徵 圖。

Layer (type)	Output Shape	Param #
Conv2d-1	[-1, 64, 32, 32]	1,664
BatchNorm2d-2	[-1, 64, 32, 32]	128
ReLU-3	[-1, 64, 32, 32]	0
Conv2d-4	[-1, 128, 32, 32]	73,856
BatchNorm2d-5	[-1, 128, 32, 32]	256
ReLU-6	[-1, 128, 32, 32]	0
Conv2d-7	[-1, 256, 32, 32]	295,168
BatchNorm2d-8	[-1, 256, 32, 32]	512
ReLU-9	[-1, 256, 32, 32]	0
MaxPool2d-10	[-1, 256, 16, 16]	0
Conv2d-11	[-1, 256, 16, 16]	590,080
BatchNorm2d-12	[-1, 256, 16, 16]	512
ReLU-13	[-1, 256, 16, 16]	0
MaxPool2d-14	[-1, 256, 8, 8]	0
Conv2d-15	[-1, 512, 8, 8]	1,180,160
BatchNorm2d-16	[-1, 512, 8, 8]	1,024
ReLU-17	[-1, 512, 8, 8]	0
MaxPool2d-18	[-1, 512, 4, 4]	0
Conv2d-19	[-1, 512, 4, 4]	2,359,808
BatchNorm2d-20	[-1, 512, 4, 4]	1,024
ReLU-21	[-1, 512, 4, 4]	0
MaxPool2d-22	[-1, 512, 2, 2]	0
Conv2d-23	[-1, 512, 2, 2]	2,359,808
BatchNorm2d-24	[-1, 512, 2, 2]	1,024
ReLU-25	[-1, 512, 2, 2]	0
MaxPool2d-26	[-1, 512, 1, 1]	0

Total params: 6,865,024 Trainable params: 6,865,024 Non-trainable params: 0 Training epoch 就是 300,得到第一部份的 DANN 後拿去 kaggle,可以得到 0.59212 acc。

DaNN_submission_1.csv 0.59212
7 days ago by b06901045_DPG00
DaNN_submission_1.csv: # 2t cnn model 7 layer # acc =

第二部分)

因為準確率還不足,因此我採用 semi-supervised 方式重新 train 一個模型,可以細分為幾個步驟。

1. pseudo label

我拿我第一部份的 DANN 去對 target data 做 pseudo label,這時候我使用 softmax 函數去取得我最大的 label,這時設定 threshold =0.999,要大於此閾值我才拿做 semi_train_data。可以看到我們得到的資料共有 52314 筆,但是資料分布相當不平衡。

2. 平衡資料

因為 training data 資料不平衡的話,我們預測 testing data 時就有高機率都會集中在特定的 class,因此我將資料平衡處理,新的 semi_train_data_loader batch_size = 256,每一種類別資料約有 5000 筆,共 50000 筆左右。

3. CNN model

我拿建立好的 semi data 訓練我們 hw3 的 model,模型部分就是建立一個 CNN。convolution layer 有五層,flatten 的部分有用兩次 Dropout2d,是個簡單的模型。

Param	Output Shape	Layer (type)
64	[-1, 64, 32, 32]	
12	[-1, 64, 32, 32]	BatchNorm2d-2
	[-1, 64, 32, 32]	ReLU-3
	[-1, 64, 16, 16]	MaxPool2d-4
73,85	[-1, 128, 16, 16]	Conv2d-5
25	[-1, 128, 16, 16]	BatchNorm2d-6
	[-1, 128, 16, 16]	ReLU-7
	[-1, 128, 8, 8]	MaxPool2d-8
295,16	[-1, 256, 8, 8]	Conv2d-9
51	[-1, 256, 8, 8]	BatchNorm2d-10
	[-1, 256, 8, 8]	ReLU-11
	[-1, 256, 4, 4]	MaxPool2d-12
1,180,16	[-1, 512, 4, 4]	Conv2d-13
1,02	[-1, 512, 4, 4]	BatchNorm2d-14
	[-1, 512, 2, 2]	MaxPool2d-15
	[-1, 512, 2, 2]	ReLU-16
2,359,80	[-1, 512, 2, 2]	Conv2d-17
1,02	[-1, 512, 2, 2]	BatchNorm2d-18
	[-1, 512, 1, 1]	MaxPool2d-19
	[-1, 512, 1, 1]	ReLU-20
131,32	[-1, 256]	Linear-21
	[-1, 256]	ReLU-22
	[-1, 256]	Dropout2d-23
32,89	[-1, 128]	Linear-24
	[-1, 128]	ReLU-25
	[-1, 128]	Dropout2d-26
1,29	[-1, 10]	Linear-27

Total params: 4,078,090 Trainable params: 4,078,090 Non-trainable params: 0

4. training

optimizer 使用 SGD (1r = 0.01、momentum = 0.02), 不使用 Adam 是 因為經過幾次訓練好發現 SGD 比較好。

Epoch = 3,我發現 epoch 不用訓練太多,很快 acc 就到 90% 左右, 為了以防 overfitting 我只 train 三次, train_acc = 0.8734

最後,拿此模型去對我們的 testing 預測,可以看到資料分布有比較平衡了,拿去 kaggle 可以得到 0.68976 成績,比原來多了 10% acc。

1_final_semi_model_10.csv 4 days ago by b06901045_DPGOD 0.68976

2. 請視覺化真實圖片以及手繪圖片通過沒有使用 domain adversarial training 的 feature extractor 的 domain 分布圖。(2%)

ANS:

這邊很簡單,我就單純使用 PCA 降維法去對原本的(1, 32, 32) image 做降維, PCA 模型是拿

pca_total = PCA(n_components=2, random_state = 0).fit(source_data + target_data)

然後降維的話再各別使用

source_projected = pca_total.transform(source_data)
target_projected = pca_total.transform(targe_data)

source_data 有 5000 筆, target_data 5056 筆。可以看到少部分點有重疊, 但是在外圍部分明顯被散開來。

3. 請視覺化真實圖片以及手繪圖片通過有使用 domain adversarial training 的 feature extractor 的 domain 分布圖。(2%)

ANS:

這裡我使用的 DANN model 為我在 kaggle 上不使用 semi 前直接預測的 model,那他在 kaggle 上的成績會有 0.58994,此架構也就是在第一題使用的 DANN 模型。

接下來我取得 source_data 與 target_data 經過 feature_extractor 後的 feacture,這些 feature 最後每一個 item 是 (512, 1, 1) 的大小,意即最 後是 512 層 1*1 的特徵圖。這邊我的 source_data 有 5000 筆, target_data 有 5056 筆。

降維的話,我一樣採用上題使用的 PCA 降維法,可以發現經過 feature_extractor 後的 feature 在 PCA 降維圖幾乎都混一起,是個成功的 結果。

