Data Structure and Algorithm

Heap

<u>Heap</u>

- A heap is a complete binary tree except the bottom level adjusted to the left.
- The value of each node is greater than that of its two children. (Max Heap)
- The value of each node is less than that of its two children. (Min Heap)
- Height of the heap is log₂n.
- Example

Figure: A Heap

Figure: Not a

Heap

Heap Implementation

- We can use an array (due to the regular structure or completeness of binary tree).
- For a node N with location i, the following factors can be calculated.
 - 1. Left child of N is in location (2 * i).
 - 2. Right child of N is in location (2 * i + 1).
 - 3. Parent of N is in location [i/2].

• Example

Figure: Heap and Its Array Representation

Figure 6.1 A max-heap viewed as (a) a binary tree and (b) an array. The number within the circle at each node in the tree is the value stored at that node. The number above a node is the corresponding index in the array. Above and below the array are lines showing parent-child relationships; parents are always to the left of their children. The tree has height three; the node at index 4 (with value 8) has height one.

```
MAX-HEAPIFY (A, i)
     l \leftarrow \text{LEFT}(i)
 2 r \leftarrow RIGHT(i)
     if l \leq heap-size[A] and A[l] > A[i]
         then largest \leftarrow l
         else largest \leftarrow i
     if r \leq heap\text{-size}[A] and A[r] > A[largest]
         then largest \leftarrow r
     if largest \neq i
         then exchange A[i] \leftrightarrow A[largest]
10
               MAX-HEAPIFY(A, largest)
```


Figure 6.2 The action of MAX-HEAPIFY(A, 2), where heap-size[A] = 10. (a) The initial configuration, with A[2] at node i = 2 violating the max-heap property since it is not larger than both children. The max-heap property is restored for node 2 in (b) by exchanging A[2] with A[4], which destroys the max-heap property for node 4. The recursive call MAX-HEAPIFY(A, A) now has A[4] with A[9], as shown in (c), node 4 is fixed up, and the recursive call A[1/05/08] MAX-HEAPIFY(A, A[9) yields no further change to the data structure.

```
BUILD-MAX-HEAP(A)

1 heap-size[A] \leftarrow length[A]

2 \mathbf{for}\ i \leftarrow \lfloor length[A]/2 \rfloor \mathbf{downto}\ 1

3 \mathbf{do}\ MAX-HEAPIFY(A, i)
```


Figure 6.3 The operation of BUILD-MAX-HEAP, showing the data structure before the call to MAX-HEAPIFY in line 3 of BUILD-MAX-HEAP. (a) A 10-element input array A and the binary tree it represents. The figure shows that the loop index i refers to node 5 before the call MAX-HEAPIFY(A, i). (b) The data structure that results. The loop index i for the next iteration refers to node 4. (c)—(e) Subsequent iterations of the for loop in BUILD-MAX-HEAP. Observe that whenever MAX-HEAPIFYData-Structure and Algorithm ode are both max-beaps. (f) The max-beap after BUILD-MAX-HEAP finishes.

```
HEAPSORT(A)

1 BUILD-MAX-HEAP(A)

2 for i \leftarrow length[A] downto 2

3 do exchange A[1] \leftrightarrow A[i]

4 heap-size[A] \leftarrow heap-size[A] -1

MAX-HEAPIFY(A, 1)
```


Figure 6.4 The operation of HEAPSORT. (a) The max-heap data structure just after it has been built by BUILD-MAX-HEAP. (b)-(j) The max-heap just after each call of MAX-HEAPIFY in line 5. The value of *i* at that tile at a Structure and Algorithm remain in the heap. (k) The resulting sorted array *A*.

HEAP-MAXIMUM(A) 1 return A[1]

HEAP-EXTRACT-MAX(A)

- 1 **if** heap-size[A] < 1
- 2 then error "heap underflow"
- $3 \quad max \leftarrow A[1]$
- $A[1] \leftarrow A[heap-size[A]]$
- 5 heap- $size[A] \leftarrow heap$ -size[A] 1
- 6 MAX-HEAPIFY (A, 1)
- 7 return max

```
HEAP-INCREASE-KEY(A, i, key)

1 if key < A[i]

2 then error "new key is smaller than current key"

3 A[i] \leftarrow key

4 while i > 1 and A[PARENT(i)] < A[i]

5 do exchange A[i] \leftrightarrow A[PARENT(i)]

6 i \leftarrow PARENT(i)
```

MAX-HEAP-INSERT(A, key)

- 1 heap-size $[A] \leftarrow heap$ -size[A] + 1
- 2 $A[heap-size[A]] \leftarrow -\infty$
- 3 HEAP-INCREASE-KEY (A, heap-size[A], key)

Figure 6.5 The operation of HEAP-INCREASE-KEY. (a) The max-heap of Figure 6.4(a) with a node whose index is i heavily shaded. (b) This node has its key increased to 15. (c) After one iteration of the while loop of lines 4–6, the node and its parent have exchanged keys, and the index i moves up to the parent. (d) The max-heap after one more iteration of the while loop. At this point, 11/05/08 A[PARENT(i)] ≥ A[i]. The max Patap Structure and Algorithm the procedure terminates.

```
BUILD-MAX-HEAP(A)

1 heap-size[A] \leftarrow length[A]

2 \mathbf{for}\ i \leftarrow \lfloor length[A]/2 \rfloor \mathbf{downto}\ 1

3 \mathbf{do}\ \mathsf{MAX}-HEAPIFY(A, i)
```