3.23 Electrical, Optical, and Magnetic Properties of Materials Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

3.23 Fall 2007 – Lecture 17 FERMAT'S FIRST THEOREM

Image removed due to copyright restrictions.

Please see: http://en.wikipedia.org/wiki/ Image:Ibn_haithem_portrait.jpg

Pierre-Louis Moreau de Maupertuis

Abū 'Alī al-Ḥasan ibn al-Ḥasan ibn al-Haytham

Hero

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Last time

- 1. Electric field, polarization, displacement, susceptibility
- 2. Maxwell's equations
- 3. Potentials and gauges
- 4. Electromagnetic waves (no free charges, currents)
- 5. Refractive index, phase and group velocity

Study

 (mostly read) Fox, Optical Properties of Solids: 1.1 to 1.4, 2.1 to 2.2.3, 3.1 to 3.3

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Polarization, transversality of EM fields

Boundary conditions (Gauss theorem)

$$\int_{volume} \vec{\nabla} \cdot \vec{B} dv = \int_{surface} \vec{B} \cdot \hat{n} dS = 0$$

$$\int_{volume} \vec{\nabla} \cdot \vec{D} dv = \int_{surface} \vec{D} \cdot \hat{n} dS = 4\pi \int_{volume} \rho dv$$

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Boundary conditions

$$\hat{n} \cdot \left(\vec{B}_2 - \vec{B}_1 \right) = 0$$

$$\hat{n} \cdot (\vec{D}_2 - \vec{D}_1) = \sigma \ (\sigma = \text{surface charge density})$$

Boundary conditions (Stokes theorem)

$$\int_{surface} \vec{\nabla} \times \vec{E} \cdot \hat{n} dS = \int_{line} \vec{E} \cdot d\vec{r}$$

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Boundary conditions

$$\hat{n} \times (\vec{E}_2 - \vec{E}_1) = 0$$

$$\hat{n} \times (\vec{H}_2 - \vec{H}_1) = \vec{K}$$

$$(\vec{K} = \text{surface current density})$$

Snell's law

 $\vec{E}_{i}\dot{e}^{\omega t-i\vec{k}_{i}\cdot\vec{r}}$ incident wave $\vec{E}_{r}\dot{e}^{\omega t-i\vec{k}_{r}\cdot\vec{r}}$ reflected wave $\vec{E}_{t}\dot{e}^{\omega t-i\vec{k}_{r}\cdot\vec{r}}$ transmitted wave

Image from Wikimedia Commons, http://commons.wikimedia.org

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Snell's law

$$\left| \vec{k}_i \right| = \left| \vec{k}_r \right| = \frac{\omega n_1}{c}$$

$$\left| \vec{k}_{t} \right| = \frac{\omega n_{2}}{c}$$

Image from Wikimedia Commons, http://commons.wikimedia.org

Snell's law

$$\begin{pmatrix}
(\vec{k}_{1} \cdot \vec{r})_{x=0} = (\vec{k}_{1}' \cdot \vec{r})_{x=0} = (\vec{k}_{2} \cdot \vec{r})_{x=0} \\
(\vec{k}_{1y}y + \vec{k}_{1z}z) = (\vec{k}_{1y}'y + \vec{k}_{1z}'z) = (\vec{k}_{2y}y + \vec{k}_{2z}z) \rightarrow \vec{k}_{1y} = \vec{k}_{1y}' = \vec{k}_{2y} \\
\text{and } \vec{k}_{1z} = \vec{k}_{1z}' = \vec{k}_{2z}$$

$$\left(\vec{k}_{1t} \cdot \vec{r}_{t}\right) = \left(\vec{k}_{1t}' \cdot \vec{r}_{t}\right) = \left(\vec{k}_{2t} \cdot \vec{r}_{t}\right)$$

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Snell's law

$$\begin{vmatrix} \vec{k}_1 \end{vmatrix} = \begin{vmatrix} \vec{k}_1' \end{vmatrix} = n_1 \frac{\omega}{c}$$
$$\begin{vmatrix} \vec{k}_2 \end{vmatrix} = n_2 \frac{\omega}{c}$$

$$k_{iz} = k_{tz} \rightarrow |k_i| \sin \theta_1 = |k_t| \sin \theta_2$$
$$\frac{\omega n_1}{c} \sin \theta_1 = \frac{\omega n_2}{c} \sin \theta_2$$

Snell's law

$$k_{1z} = \left| \vec{k}_1 \right| \sin \theta_1 = n_1 \frac{\omega}{c} \sin \theta_1$$

$$k_{2z} = \left| \vec{k}_2 \right| \sin \theta_2 = n_2 \frac{\omega}{c} \sin \theta_2$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Principle of least action

Energy law

$$\vec{E} \cdot \vec{\nabla} \times \vec{H} - \vec{H} \cdot \vec{\nabla} \times \vec{E} = \frac{4\pi}{c} \vec{J} \cdot \vec{E} + \frac{1}{c} \vec{E} \cdot \frac{\partial \vec{D}}{\partial t} + \frac{1}{c} \vec{H} \cdot \frac{\partial \vec{B}}{\partial t}$$

$$\vec{E} \cdot \vec{\nabla} \times \vec{H} - \vec{H} \cdot \vec{\nabla} \times \vec{E} = -\vec{\nabla} \cdot (\vec{E} \times \vec{H})$$

$$\rightarrow \frac{4\pi}{c} \vec{J} \cdot \vec{E} + \frac{1}{c} \vec{E} \cdot \frac{\partial \vec{D}}{\partial t} + \frac{1}{c} \vec{H} \cdot \frac{\partial \vec{B}}{\partial t} + \vec{\nabla} \cdot (\vec{E} \times \vec{H}) = 0$$
Apply Gauss's theorem
$$\int \frac{4\pi}{c} \vec{J} \cdot \vec{E} dv + \int \left(\frac{1}{c} \vec{E} \cdot \frac{\partial \vec{D}}{\partial t} + \frac{1}{c} \vec{H} \cdot \frac{\partial \vec{B}}{\partial t}\right) dv + \int (\vec{E} \times \vec{H}) \cdot \hat{n} dS = 0$$

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Energy law

$$\frac{1}{4\pi}\vec{E} \cdot \frac{\partial \vec{D}}{\partial t} = \frac{1}{4\pi}\vec{E} \cdot \frac{\partial \varepsilon \vec{E}}{\partial t} = \frac{1}{8\pi} \frac{\partial \varepsilon \vec{E}^{2}}{\partial t} = \frac{1}{8\pi} \frac{\partial \left(\vec{E} \cdot \vec{D}\right)}{\partial t}$$
$$\frac{1}{4\pi}\vec{H} \cdot \frac{\partial \vec{B}}{\partial t} = \frac{1}{8\pi} \frac{\partial \left(\vec{H} \cdot \vec{B}\right)}{\partial t}$$

Energy conservation

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Optical processes

- Reflection and refraction
- Absorption
- Luminescence
- Scattering

Optical coefficients

T: ratio of transmitted vs incident power R+T=1 (no absorption, scattering)

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Complex refractive index

$$\tilde{n} = n + ik$$

$$\tilde{E}(u, q, 2, t) = \tilde{E}_{0} e^{i} (b \cdot r^{2} - Nt)$$

$$k = \frac{\omega n}{e} \Rightarrow \frac{\omega}{\omega} (n + ik)$$

$$S = \frac{\kappa + 2\epsilon}{e} e^{i} (wn 2/e - Nt)$$

$$E = N^{2} \Rightarrow \tilde{E} = \tilde{N}^{2} = \tilde{E}_{1} + i\tilde{E}_{2}$$

Complex refractive index

Image removed due to copyright restrictions. Please see any image of the structure of amorphous silica, such as http://www.research.ibm.com/amorphous/figure1.gif.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Modeling Optical Constants with a Damped Harmonic Oscillator

$$m_0 \frac{d^2X}{dt^2} + m_0 \gamma \frac{dX}{dt} + m_0 \omega_0^2 X = -eE(t)$$

$$\frac{d^2X}{dt^2} + m_0 \gamma \frac{dX}{dt} + m_0 \omega_0^2 X = -eE(t)$$

$$\frac{d^2X}{dt^2} + m_0 \gamma \frac{dX}{dt} + m_0 \omega_0^2 X = -eE(t)$$

$$\frac{d^2X}{dt^2} + m_0 \gamma \frac{dX}{dt} + m_0 \omega_0^2 X = -eE(t)$$

$$\frac{d^2X}{dt^2} + m_0 \gamma \frac{dX}{dt} + m_0 \omega_0^2 X = -eE(t)$$

$$\frac{d^2X}{dt} + m_0 \omega_0^2 X = -eE(t)$$

Modeling Optical Constants with a Damped Harmonic Oscillator

$$X_{0} = \frac{-eE_{0}}{m_{0}\left(\omega_{0}^{2} - \omega^{2} - i\gamma\omega\right)} \qquad \qquad X_{3} X_{0} C^{-i\omega T}$$

$$\begin{split} P_{resonant} &= Np = -NeX = \underbrace{\frac{Ne^2}{m_0 \left(\omega_0^2 - \omega^2 - i\gamma\omega\right)}}_{\alpha} E \\ D &= E + 4\pi P + 4\pi P_{resonant} = E + 4\pi \chi E + 4\pi \frac{Ne^2}{m_0 \left(\omega_0^2 - \omega^2 - i\gamma\omega\right)} E = \varepsilon E \end{split}$$

Atomic polarizability = α

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Modeling Optical Constants with a Damped Harmonic Oscillator

$$\varepsilon = 1 + 4\pi\chi + 4\pi \frac{Ne^{2}\left(\omega_{0}^{2} - \omega^{2}\right)}{m_{0}\left(\left(\omega_{0}^{2} - \omega^{2}\right)^{2} + \gamma^{2}\omega^{2}\right)} - i 4\pi \frac{Ne^{2}\gamma\omega}{m_{0}\left(\left(\omega_{0}^{2} - \omega^{2}\right)^{2} + \gamma^{2}\omega^{2}\right)}$$

$$\varepsilon = (n+ik)^2 = \underbrace{n^2 - k^2}_{\varepsilon_1} + i\underbrace{2nk}_{\varepsilon_2}$$

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Optical materials

Image removed due to copyright restrictions

Please see: Fig. 1.4 in Fox, Mark. Optical Properties of Solids. Oxford, England: Oxford University Press, 2001.

Infrared active modes

Image removed due to copyright restrictions. Plea	se see Fig. 1a and 2a in Giannozzi, Paolo, et al.
"Ab initio Calculation of Phonon Dispersions in S	emiconductors." Physical Review B 43 (March 15, 1991): 7231-7242

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Optical materials

Image removed due to copyright restrictions.

 $Please \ see: Fig.\ 1.7 \ in \ Fox, Mark. \ \textit{Optical Properties of Solids}. \ Oxford, England: Oxford \ University \ Press, 2001.$

Optical materials

Image removed due to copyright restrictions.

Please see: Fig. 1.5 in Fox, Mark. Optical Properties of Solids. Oxford, England: Oxford University Press, 2001.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Transition rate for direct absorption

Image removed due to copyright restrictions.

Please see any diagram of GaAs energy bands,
such as http://ecee.colorado.edu/~bart/book/book/chapter2/gif/fig2_3_6.gif.