Université Badji Mokhtar, Annaba Faculté des Sciences Mathématiques et Informatique

T. C. M. I.Semestre 22018/2019

Corrigé du rattrapage

Exercice 1.

1.

Note	0	1	2	3	4	5	6	7	8	9	10	Total
n_i	3	7	8	11	8	12	10	15	12	8	6	100
$n_i \uparrow$	3	10	18	29	37	49	59	74	86	94	100	_
$n_i x_i$	0	7	16	33	32	60	60	105	96	72	60	541
$n_i x_i^2$	0	7	36	99	128	300	360	735	768	648	600	3677

2. Courbe des effectifs cumulés croissants

3. La moyenne:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{11} n_i x_i = \frac{541}{100} = 5,41.$$

Le mode : Mo=7 qui a l'effectif le plus élevé.

La médiane : $n=100=2\times 50$ d'où p=50 alors $Me=\frac{x_p+x_{p+1}}{2}=\frac{x_{50}+x_{51}}{2}=\frac{6+6}{2}\Longrightarrow Me=6.$

4. L'écart-type est σ_X , on a

$$\sigma_X^2 = \frac{1}{n} \sum_{i=1}^{11} n_i x_i^2 - \overline{X}^2 = \frac{3677}{100} - 5,41^2 = 7,5019.$$
 alors $\sigma_X = \sqrt{7,5019} \simeq 2,7390.$

L'écart interquartile : On a
$$n'=\frac{n}{2}=50=2\times 25 \Longrightarrow p'=25$$
 d'où
$$Q_1=\frac{x_{p'}+x_{p'+1}}{2}=\frac{x_{25}+x_{26}}{2}=\frac{3+3}{2}=3.$$
 et $Q_3=\frac{x_{p+p'}+x_{p+p'+1}}{2}=\frac{x_{75}+x_{76}}{2}=\frac{8+8}{2}=8.$
$$IQR=Q_3-Q_1=8-3$$

$$IQR=4.$$

Le coefficient de variation :

$$CV_X = \frac{\sigma_X}{\overline{X}}100 = \frac{2,7390}{5,41}100$$

 $CV_X \simeq 50,63\%$.

Exercice 2.

1.

Durée	[4, 8[[8, 12[[12, 16[[16, 24[[24, 40[[40, 60[[60, 80[Total
Centre n_i	6	10	14	20	32	50	70	-
Effectif x_i	6	11	17	25	20	14	7	100
Fréquence	0,06	0,11	0, 17	0, 25	0, 20	0, 14	0,07	1
$n_i \uparrow$	6	17	34	59	79	93	100	_
$n_i x_i$	36	110	238	500	640	700	490	2714
$n_i x_i^2$	216	1100	3332	10000	20480	35000	34300	104428

2. Histogramme

3. La moyenne:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{7} n_i x_i = \frac{2714}{100} = 27, 14.$$

La médiane : $\frac{n}{2} = 50 \Longrightarrow Me \in [16, 24[$ et elle est donnée par

$$\frac{Me - 16}{24 - 16} = \frac{50 - 34}{59 - 34}$$

$$\Longrightarrow Me = \frac{16}{25}8 + 16$$

$$\Longrightarrow Me = 21, 12.$$

4. L'écart-type est σ_X , on a

$$\sigma_X^2 = \frac{1}{n} \sum_{i=1}^7 n_i x_i^2 - \overline{X}^2 = \frac{104428}{100} - 27, 14^2 = 389, 1204.$$
alors $\sigma_X = \sqrt{389, 1204} \simeq 19, 7261.$

Le coefficient de variation est

$$CV_X = \frac{\sigma_X}{\overline{X}}100 = \frac{19,7261}{27,14}100$$

 $CV_X \simeq 72,68\%$.

Exercice 3.

1. On complète le tableau pour faciliter le calcul des différentes caractéristiques

$X \setminus Y$	4	8	12	16	20	n_{i} .	$n_i.x_i$	$n_i x_i^2$
1	3	2	1			6	6	6
2		4	5	2		11	22	44
3		2	6	4	1	13	39	117
4			2	5	3	10	40	160
$n_{\cdot j}$	3	8	14	11	4	40	107	327
$n_{\cdot j}y_j$	12	64	168	176	80	500		
$n_{\cdot j}y_j^2$	48	512	2016	2816	1600	6992		
$n_{ij}x_iy_j$	12	128	444	576	300	1460		

2. Moyenne de X

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{4} n_i \cdot x_i = \frac{107}{40} = 2,675.$$

Variance de X

$$\sigma_X^2 = \frac{1}{40} \sum_{i=1}^4 n_i \cdot x_i^2 - \overline{X}^2 = \frac{327}{40} - 2,675^2 = 1,0194;$$

Moyenne de Y

$$\overline{Y} = \frac{1}{n} \sum_{j=1}^{5} n_{j} y_{j} = \frac{500}{40} = 12, 5.$$

Variance de Y

$$\sigma_Y^2 = \frac{1}{40} \sum_{i=1}^5 n_{ij} y_j^2 - \overline{Y}^2 = \frac{6992}{40} - 12, 5^2 = 18, 55;$$

3. Covariance

$$Cov(X,Y) = \frac{1}{40} \sum_{i=1}^{4} \sum_{j=1}^{5} n_{ij} x_i y_j - \overline{XY} = \frac{1460}{40} - 2,675 \cdot 12, 5 = 3,0625.$$

Coefficient de corrélation linéaire

$$\rho\left(X,Y\right) = \frac{Cov\left(X,Y\right)}{\sigma_X\sigma_Y}$$

$$\sigma_X = \sqrt{1,0194} \simeq 1,0097 \text{ et } \sigma_Y = \sqrt{18,55} = 4,3070;$$

d'où

$$\rho(X,Y) = \frac{3,0625}{1,0097 \cdot 4,3070} \simeq 0,7042.$$

4. Droite de régression de Y en X

$$Y = aX + b \text{ où } a = \frac{Cov(X,Y)}{\sigma_X^2} \text{ et } b = \overline{Y} - a\overline{X}$$

$$a = \frac{3,0625}{1,0194} \simeq 3,0042;$$

$$b = 2,675 - 3,0042 \cdot 12,5 \simeq -34,8775.$$

D'où

$$Y = 3,0042 \cdot X - 34,8775.$$

5. Le nuage de points et la droite de régression

Exercice 3. (Etudiants en L2 avec dettes)

1. Les résultats possibles sont

$$\left\{PPP,PPF,PFP,FPP,PFF,FPF,FFP,FFF\right\}.$$

2. La probabilité d'obtenir 3 piles

$$\mathbb{P}(A) = \mathbb{P}(PPP) = \frac{1}{8} = 0,125.$$

3. La probabilité d'obtenir au moins 1 faces

$$\mathbb{P}(B) = 1 - \mathbb{P}(A) = 1 - \frac{1}{8} = \frac{7}{8} = 0,875.$$

4. La probabilité d'obtenir 2 piles ou 2 faces

$$\mathbb{P}\left(C\right) = \mathbb{P}\left(PPF, PFP, FPP\right) + \mathbb{P}\left(PFF, FPF, FFP\right) = \frac{3}{8} + \frac{3}{8} = \frac{6}{8} = 0,75.$$