Karnaugh Simplificações: Dont care Nao E Não OU

Considerações

Quando uma variável aparece nas formas complementada e não-complementada em um agrupamento, tal variável é eliminada da expressão. As variáveis que não se alteram para todos os quadros do agrupamento têm de permanecer na expressão final.

Procedimento passo-a-passo

- Passo 1 Construa o mapa K e coloque os 1s nos quadros que correspondem aos 1s na tabelaverdade. Coloque 0s nos outros quadros.
- Passo 2 Analise o mapa quanto aos 1s adjacentes e agrupe os 1s que não sejam adjacentes a quaisquer outros 1s. Esses são denominados 1s isolados.
- **Passo 3** Em seguida, procure os 1s que são adjacentes a somente um outro 1. Agrupe *todo* par que contém tal 1.
- Passo 4 Agrupe qualquer octeto, mesmo que ele contenha alguns 1s que já tenham sido agrupados.
- Passo 5 Agrupe qualquer quarteto que contenha um ou mais 1s que ainda não tenham sido agrupados, certificando-se de usar o menor número de agrupamentos.
- Passo 6 Agrupe quaisquer pares necessários para incluir quaisquer 1s que ainda não tenham sido agrupados, certificando-se de usar o menor número de agrupamentos.
- Passo 7 Forme a soma OR de todos os termos gerados por cada grupo.

Método Nao-E e Nao-OU

Relembrar Morgan

Simplificações de Funções Booleanas – Exemplo Morgan

Simplificações de Funções Booleanas – Simplificações com Portas NAND

Simplificações com Portas NOR

Exemplo:

Considere uma votação de 4 juízes (A, B, C e D). O juiz A tem direito a voto de qualidade valendo 3 votos simples enquanto os restantes apenas têm direito a um voto simples cada. Determine a tabela de verdade das funções que representam uma decisão a favor por unanimidade (F0), uma decisão a favor por maioria (> 50%) (F1) e uma decisão contra (F2). Utilizando Mapas de Karnaugh, simplifique as funções de saída. Implemente as funções de saída usando unicamente portas lógicas NOR.

DONT CARE

Condições irrelevantes ou don't care

- Em alguns projetos, a condição de saída pode ser irrelevante, porque certas condições de entrada nunca ocorrerão
- Essa condição de saída pode assumir o estado ALTO ou BAIXO, de acordo com a escolha do projetista, e é sinalizada na tabela verdade por um x
- Pode-se então escolher a saída como 0 ou 1, de forma a simplificar o circuito o máximo possível

Exemplo de don't care

Α	В	C	Z	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	Χl	don't
1	- 0	0	χſ	care
1	0	1	1	
1	1	0	1	
1	1	1	1	

Condições irrelevantes (Don't care)

No mapa de Karnaugh as combinações irrelevantes deverão assumir valores que permitem reduzir o número de literais em cada um dos implicantes primos (i.e. permitem aumentar as dimensões de cada conjunto de 2ⁿ células).

	X	У	Z	f(x,y,z)
0	0	0	0	0
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	Х
5	1	0	1	Х
6	1	1	0	X
7	1	1	1	Х
_				

$$f(x, y, z) = y$$

Condições irrelevantes (Don't care)

Inputs	Output
ABCD	Y
0000	0
1000	0
0010	0
0011	0
0100	0
0 1 0 1	0
0 1 1 0	0
0 1 1 1	1
1000	1
1001	1
1010	Х
1011	Х
1100	X
1 1 0 1	X
1110	Х
1111	X

Don't cares

(a) Truth table

(b) Without "don't cares" Y = ABC + ABCDWith "don't cares" Y = A + BCD

- 1) Determine, utilizando mapas de Karnaugh, a forma mínima do produto de somas das seguintes funções, atendendo às condições indiferente. a) $F(W,X,Y,Z)=\Sigma m(0,1,2,3,7,8,10)$;
- a) $F(W,X,Y,Z)=\Sigma$ m(0,1,2,3,7,8,10) $d(W,X,Y,Z)=\Sigma$ m(5,6,11,15)

b) $F(A,B,C,D)=\Sigma m(3,4,13,15)$; $d(A,B,C,D)=\Sigma m(1,2,5,6,8,10,12,14)$

Desafio:

- Projetar um circuito simplificado que caracterize um elevador da seguinte forma:
 - M sinaliza que o elevador está em movimento (1) ou parado (0)
 - O prédio possuir 3 andares (A1, A2 e A3)
 - O sistema deve reconhecer reconhecer a presença do elevador no andar (1) ou não (0)
 - A saída P deve indicar que a porta pode ser aberta (1) sempre que elevador estiver parado em um dado andar.