L'INDIPENDENZA DELLA MEDIA E VARIANZA CAMPIONARIE IN UNA DISTRIBUZIONE NORMALE, ATTRAVERSO DUE DISTINTE VIE: TEOREMA DI DALY E TEOREMA DI COCHRAN

FILIPPO MARIA MASI, 833659

1. Esercizio: dimostrare la proprietà della Normale

La distribuzione Normale ha una caratteristica che la distingue dalle altre distribuzioni note. Infatti considerando un vettore casuale $(X_1,X_2,...,X_n)$ composto da variabili casuali indipendenti identicamente distribuite come una N(0,1), la media campionaria di esse, definita come: $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, e la loro varianza campionaria: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$, sono indipendenti.

L'Esercizio della Relazione richiede la dimostrazione dell'indipendenza tra le due statistiche campionarie e troverà la soluzione attraverso l'impiego di due vie differenti.

Inizialmente verrà provata l'indipendenza grazie all'applicazione di trasformazioni ortogonali e del teorema di Daly; nella seconda soluzione, la prova è ottenuta dall'utilizzo di forme quadratiche e del teorema di Cochran.

2. Procedimenti e Soluzioni

2.1. **Primo Metodo.** Come primo passo, si esibisce una definizione di distribuzione Normale Multivariata che servirà poi per dimostrare una sua proprietà importante.

$Def\ Normale Multivariata$

Il vettore casuale n-dimensionale X è normale se e solo se, per ogni vettore n-dimensionale a, la variabile casuale (unidimensionale) a'X è normale.

La notazione $X \in N_n(\mu, \Sigma)$ sarà usata nell'elaborato per denotare che X ha una distribuzione normale multivariata n-dimensionale con media μ e varianza Σ , con $n \in N$.

Ora si può procedere con il seguente teorema:

Theorem 2.1. Sia
$$X \in N_n(\mu, \Sigma)$$
 e $Y = BX + b$, allora $Y \in N_n(B\mu + b, B\Sigma B')$.

Proof. Dalla definizione sopra esposta si nota che basta mostrare che a'Y sia normale $\forall a$ vettore n-dimensionale.

(2.1)
$$a'Y = a'BX + a'b = (B'a)'X + a'b = c'X + d,$$

dove c = B'a e d = a'b. Dal momento che c'X è normale $\forall c$ secondo la definizione, e d è una costante, ne consegue che a'Y è normale.

Infine:

$$E[Y] = BE[X] + b = B\mu + b,$$

e Cov[
$$Y$$
] = E[(Y - E[Y])(Y - E[Y])'] = E[$B(X - \mu)(X - \mu)$ ' B '] = B E[($X - \mu)(X - \mu)$ ' B '] = $B\Lambda B'$. (2.2)

Questo esito mostra che nell'applicare una trasformazione lineare ad un vettore normale, la normalità si mantiene.

Inoltre è possibile effettuare una trasformazione lineare ad un vettore normale in modo tale che il nuovo abbia componenti indipendenti. In particolare, qualsiasi trasformazione ortogonale di

Received by the editors 7/10/2020.

Relazione di Probabilità Applicata.

un vettore normale le cui componenti hanno varianza comune, produce un nuovo vettore casuale normale con componenti indipendenti. Come mostrato nel seguente risultato:

Theorem 2.2. Sia $X \in N_n(\mu, \sigma^2 I)$, dove $\sigma^2 > 0$, e sia C una matrice ortogonale. Si ponga Y = CX. Allora $Y \in N_n(C\mu, \sigma^2 I)$ e $Y_1, Y_2, ..., Y_n$ sono variabili casuali indipendenti.

Proof. Dal Teorema 2.1 segue che $Y \in N_n(C\mu, \sigma^2 I)$.

Infatti per il Teorema, la matrice varianze covarianze è data dal prodotto matriciale tra $C\sigma^2 IC'$, ma grazie all'ipotesi di ortogonalità di C si ha:

$$\sigma^2 CIC' = \sigma^2 CC' = \sigma^2 I.$$

Le componenti di \boldsymbol{Y} risultano perciò Normali e incorrelate, condizione necessaria e sufficiente per la loro indipendenza.

Quest'ultima proprietà dà il seguito al teorema che permette di dimostrare il risultato richiesto nell'esercizio:

Theorem 2.3 (Teorema di Daly). Sia $\mathbf{X} \in N_n(\mathbf{0}, \mathbf{I})$ e sia $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Supponiamo che $g(\mathbf{x})$ sia una trasformazione invariante rispetto alla traslazione (cioè, $\forall \mathbf{x} \in \mathbf{R}^n$, $g(\mathbf{x} + a\mathbf{1}) = g(\mathbf{x})$ per ogni a), allora \bar{X}_n e $g(\mathbf{X})$ sono indipendenti.

Proof. Per procedere con un cambio di variabile, si definisce una matrice ortogonale C tale che la sua prima riga abbia tutti gli elementi uguali a $\frac{1}{\sqrt{n}}$. Sia così Y = CX. Per costruzione si ha $Y_1 = \sqrt{n} \cdot \bar{X}_n$, e per il teorema $2.2 \ Y \in N_n(\mathbf{0}, \mathbf{I})$. Inoltre considerando la partizione di Y nei due elementi (Y_1) e $(Y_2, Y_3, ..., Y_n)$ per il teorema, essi risultano indipendenti. L'invarianza della funzione $g(\cdot)$ alle traslazioni implica che essa stia nell'iperpiano (n-1)-dimensionale $x_1 + x_2 + ... + x_n = costante$ sul quale \bar{X}_n è costante. Per questo motivo la funzione dipende solo dagli elementi $Y_2, Y_3, ..., Y_n$ e dunque è indipendente da Y_1 e di conseguenza anche da \bar{X}_n .

2.1.1. *Prima Soluzione*. Riconsiderando il vettore casuale di componenti normali standard dell'esercizio, illustrato nella prima Sezione, si osservi che esso si distribuisce come una Normale *n*-dimensionale, di media il vettore nullo e come matrice varianze e covarianze l'identità, ovvero:

$$(X_1, X_2, ..., X_n) = \mathbf{X} \in N_n(\mathbf{0}, \mathbf{I}).$$

Questo implica che ad esso si può applicare il Teorema di Daly ed affermare che: poichè la varianza campionaria è una funzione delle osservazioni invariante rispetto alla traslazione, essa è indipendente dalla media campionaria.

La tesi iniziale è stata provata e l'obbiettivo dell'esercizio raggiunto.

2.2. **Secondo Metodo.** Per ottenere il risultato desiderato con un secondo procedimento, si parte dalla seguente partizione:

(2.3)
$$\sum_{i=1}^{n} X_i^2 = \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 + n\bar{X}_n^2$$

dove le X_i costituiscono le n variabili Normali presentate nella prima sezione e \bar{X}_n la loro media campionaria.

Si noti che il primo addendo del lato destro della equazione 2.3 è uguale a $(n-1)S^2$ (dove S^2 è la loro varianza campionaria), per questo motivo è sufficiente mostrare l'indipendenza dei due addendi a destra dell'uguale per provare il risultato ricercato nell'esercizio.

Per procedere nel seguente modo è doveroso esibire il Teorema 2.4 utile per la dimostrazione del Teorema di Cochran.

Theorem 2.4. Considerati $x_1, x_2, ..., x_n$ numeri reali, supponiamo che $\sum_{i=1}^n x_i^2$ possa essere diviso in una somma di forme quadratiche definite non negative, cioè che:

$$\sum_{i=1}^{n} x_i^2 = Q_1 + Q_2 + Q_k,$$

dove $Q_i = \mathbf{x'} \mathbf{A_i} \mathbf{x}$ e $Rank(\mathbf{A_i}) = r_i$ per i = 1, 2, ...k. Se $\sum_{i=1}^k r_i = n$, allora esiste una matrice ortogonale \mathbf{C} tale che, con $\mathbf{x} = \mathbf{C} \mathbf{y}$, abbiamo che:

$$Q_{1} = y_{1}^{2} + y_{2}^{2} + \dots + y_{r_{1}}^{2},$$

$$Q_{2} = y_{r_{1}+1}^{2} + y_{r_{1}+2}^{2} + y_{r_{1}+r_{2}}^{2},$$

$$\vdots$$

$$Q_{k} = y_{n-r_{k}+1}^{2} + y_{n-r_{k}+2}^{2} + y_{n}^{2}$$

$$Q_{k} = y_{n-r_{k}+1}^{2} + y_{n-r_{k}+2}^{2} + y_{n}^{2}$$

Dimostrazione. Se K = 2 si ha che:

(2.5)
$$Q = \sum_{i=1}^{n} x_i^2 = x' A_1 x + x' A_2 x = (Q_1 + Q_2),$$

dove A_1 e A_2 sono matrici definite non negative con ranghi r_1 e r_2 rispettivamente e $r_1 + r_2 = n$ per ipotesi.

Poiché A_1 è definita non negativa, esiste una matrice ortogonale C tale che $C'A_1C = D$, dove D è una matrice diagonale, con gli elementi sulla stessa diagonale $\lambda_1, \lambda_2, ..., \lambda_n$ che sono gli autovalori di A_1 .

Poiché $rank(A_1) = r_1$, ci sono r_1 valori tra i λ positivi e $n - r_1$ valori nulli.

Supponiamo, senza limitazioni, che $\lambda_i > 0$ per $i = 1, 2, ..., r_1$ e che $\lambda_{r_1+1} = \lambda_{r_1+2} = ... = \lambda_n = 0$, e poniamo $\boldsymbol{x} = \boldsymbol{C}\boldsymbol{y}$. Quindi:

$$Q = \sum_{i=1}^n y_i^2 = \sum_{i=1}^{r_1} \lambda_i \cdot y_i^2 + oldsymbol{y'C'A_2Cy}$$

O equivalentemente:

(2.6)
$$\sum_{i=1}^{r_1} (1 - \lambda_i) \cdot y_i^2 + \sum_{i=r_1+1}^n y_i^2 = \mathbf{y'C'A_2Cy}.$$

Poiché il rango del lato destro di 2.6 è $r_2 = n - r_1$, ne segue che $\lambda_1 = \lambda_2 = ... = \lambda_{r_1} = 1$, il che dimostra:

(2.7)
$$Q_1 = \sum_{i=1}^{r_1} y_i^2 \ e \ Q_2 = \sum_{i=r_1+1}^n y_i^2$$

Mostrato questo risultato, è dunque ora possibile provare il Teorema necessario per la prova dell'indipendenza ricercata nell'esercizio:

Theorem 2.5 (Teorema di Cochran). Siano $X_1, X_2, ..., X_n$ v.c. indipendenti e identicampente distribuite come $N(0, \sigma^2)$ e che $\sum_{i=1}^n X_i^2 = Q_1 + Q_2 + Q_i$,

dove $Q_1,...Q_k$ sono forme quadratiche definite non negative delle variabili $X_1,...X_n$, tali che $Q_i = \mathbf{X'AX}, i = 1,...,k$.

Sia poi $rank(\mathbf{A_i}) = r_i, \ i = 1, ..., k.$

Se $r_1 + r_2 + ... + r_k = n$, allora:

 $(a)Q_1,...Q_k$ sono indipendenti;

$$(b)Q_i \in \sigma^2 \chi^2(r_i), i = 1, ..., k.$$

Proof. Dal Teorema 2.4 segue che $\exists C$, ortogonale, tale che X = CY e valgano :

$$Q_{1} = Y_{1}^{2} + Y_{2}^{2} + \dots + Y_{r_{1}}^{2},$$

$$Q_{2} = Y_{r_{1}+1}^{2} + Y_{r_{1}+2}^{2} + Y_{r_{1}+r_{2}}^{2},$$

$$\vdots$$

$$Q_{k} = Y_{n-r_{k}+1}^{2} + Y_{n-r_{k}+2}^{2} + Y_{n}^{2}.$$

Poichè dal Teorema 2.2 $Y_1, ..., Y_n$ sono indipendenti e distribuiti come una $N(0, \sigma^2)$ e, poichè ogni Y_j^2 , con j = 1, ..., n, si presenta esattamente in una sola Q_i , con i = 1, ..., k, entrambe le tesi sono dimostrate.

2.2.1. Seconda soluzione. Riconsiderando la partizione 2.3 delle v.c. iniziali, si noti che il primo elemento $A_1=(n-1)S^2$ e il secondo $A_2=n\cdot \bar{X}_n^2$ sono forme quadratiche la cui somma dà $\sum_{i=1}^n X_i^2$. Per il Teorema di Cochran A_1 e A_2 sono dunque indipendenti, e di conseguenza anche S^2 e \bar{X}_n .

La dimostrazione richiesta dall'esercizio è stata nuovamente provata, con utilizzo di tecniche diverse, l'obbiettivo è stato raggiunto. In più: $A_1 = (n-1)S^2 \in \sigma^2 \chi^2(n-1)$, che si traduce nel seguente risultato molto rilevante a fini applicativi (vedi Sezione finale):

(2.9)
$$W = (n-1)\frac{S^2}{\sigma^2} \sim \chi_{n-1}^2$$

3. Applicazione risultato ottenuto

Il risultato ottenuto si rivela di grande importanza quando, da un campione $(X_1, ..., X_n)$ di v.c. indipendenti e identicamente distribuiti come una Normale con media μ e varianza σ^2 ignota, si vuole risolvere un test di verifica d'ipotesi sul valore atteso:

$$H_0: \mu = \mu_0$$

Infatti, dati gli stimatori S^2 e \bar{X} per σ^2 e μ , grazie all'indipendenza provata, è possibile ottenere la seguente Statistica Test, che non dipende dall'ignota σ^2 :

(3.1)
$$T = \frac{Z}{\sqrt{W}} \sqrt{n-1} = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} \mid H_0 \sim t_{n-1},$$

dove W è data dalla formula 2.9 e $Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1).$

Infine grazie alla T nell'equazione, si può ricavare anche un intervallo di confidenza per μ mediante i quantili della distribuzione T di student.

Relazione di Probabilità Applicata