Práctica 2: Nociones de Fonética

1. Análisis de la frecuencia glótica F0

- a) Compare los espectrogramas de las señales s0.wav y s25.wav. Mida la frecuencia F0 en cada caso.
- b) Utilize Praat show pitch para corroborar su medición y visulizar la variación de F0 en el tiempo.

2. Análisis de vocales y vocales en diptongo

- a) La señal s1.wav corresponde a la emisión de las vocales en el siguiente órden : [i], [e], [a], [o] y [u]. Mirando los espectrogramas encuentre la ubicación de los tres primeros formantes, y utilice dicha información para los siguientes items.
- b) Encuentre diptongos que aparecen en s21.wav.
- c) Verifique en algunos de ellos si se cumplen las características descriptas en fonetica.pdf (pag. 24 y 25).

3. Análisis de Explosivas

- a) Visualice el espectro de los archivos s26.wav y s16.wav. Los mismos contienen tres sílabas vocal-explosiva-vocal. Cual es la vocal?. Verifique si se cumplen las características descriptas en fonetica.pdf (pag 28).
- b) Visualice los espectros de s6.wav, s7.wav. Los mismos contienen tres sílabas cada uno. Cada sílaba corresponde a una explosiva ([p],[k],[t],[b],[d] o [g]) seguida de una vocal. Cual es la vocal?. Podría decir cuales explosivas son sonoras y cuales sordas de acuerdo a la medición del VOT? (fonetica.pdf pag. 28).
- c) Se sabe que las velares [k] y [g] presentan una concentración importante de ruido que, para el caso en que la siguiente vocal sea una [a], dicho ruido se encuentra en la zona donde F2 y F3 se acercan. Tambien se sabe que en las labiales [p] y [b] la energía se concentra en las bajas frecuencias. En base a esta información podría deducir cuales son las sílabas de s6.way y s7.way?.

4. Análisis de Fricativas

- *a*) Visualice el espectro de s15.wav. El mismo corresponde a tres fricativas dichas en forma aislada. Son sordas o sonoras?
- b) Se sabe que el fonema [s] tiene dos picos, el primero entre 4000 y 6500 hz. y el segundo entre 7500 y 9500. Tambíen se sabe que el fonema [sh] tiene picos en 2500 y 5000 hz. Por último el sonido [f] tiene picos en 1500 y 8500. Verifique si puede identificar estos fonemas en la señal.
- c) Compare los espectros del punto anterior con los espectros de s13.wav, s14.wav y s17.wav. Podría identificar las palabras de dichas señales?.

5. Análisis de Nasales

a) Visualice el espectro de los archivos s10.wav, s23.wav y s24.wav. Los mismos corresponden a sílabas formadas por una nasal [m], [n], [n] con una vocal. Cual es la vocal?. Verifique si se cumplen las características descriptas en prodhabla.pdf.

6. Análisis de Africadas

a) Visualice el espectro de los archivos s11.wav y s12.wav. Los mismos corresponden a sílabas formadas por vocal, africada y vocal. Cuales son las vocales?. Verifique si se cumplen las características descriptas en prodhabla.pdf.

7. Análisis de laterales y vibrantes

- *a*) Visualice los espectros de s18.wav, s19.wav y s20.wav. El s18.wav corresponde a una consonante lateral con una vocal (cual?). El s19.wav corresponde a una vibrante con una vocal (cuales?). y la s20.wav corresponde a dos palabras que contienen una vibrante simple y una compuesta. Podría determinar que palabras son?.
- b) En todos los casos verifique si se cumplen los items descriptos en fonetica.pdf pag. 32.

8. Análisis de frases completas

- a) Identifique la mayor cantidad de fonemas y palabras posibles de la frase s0.wav
- b) Identifique la mayor cantidad de fonemas y palabras posibles de la frase s25.wav

9. Síntesis de voz

- *a*) Implemente una señal de medio segundo de duración usando un tren de pulsos de 100 Hz y formantes correspondientes al fonema /a/
- b) Idem pero agregando una variación del pitch entre 150 y 100 Hz.
- c) Idem pero utilizando una fuente glotal
- d) Idem pero extrayendo el pitch de un sonido real
- e) Utilizando el pitch de la fuente glotal implementar las vocales por separado y los sonidos /aea/ y /eia/
- *f*) Extraiga el pitch y los formantes de la señales s28.wav y s25.wav. Utilice el pitch extraido como entrada y los formantes como filtros y genere una nueva señal con la señal filtrada. Que conclusión se puede obtener?.
- g) Construya una fuente glótica siguiendo los siguientes pasos:

Construya una grilla de formantes de acuerdo a las siguientes instrucciones:

New -> tiers -> Create FormantGrid:

"filtro", 0.0, 0.5, 9, 800, 1000, 60, 80

agregar los puntos necesarios para crear el perfil para cada sonido, tener en cuenta:

-La transición de los formantes F1 y F2 (y sus anchos de banda) se hace entre: 0.05 y 0.1 (50mseg).

-El resto del tiempo (entre 0.1 y 0.5) permanecen constantes.

-Los valores target de los formantes vienen dados por:

Formantes	/i/	/e/	/a/	/o/	/u/
F1	300	500	800	500	300
F2	2000	1700	1200	900	600
F3	2500	2200	2500	2300	2300

-Los valores de F1 al comienzo de la transición vienen dados por: 200 delante de /i/ /e/ /o/ /u/

350 delante de /a/

-Los valores de comienzo de F2 serán variables de acuerdo a:

/i/	/e/	/a/	/o/	/u/
2100	1850	1200	800	700
2200	2000	1600	1400	1250
2200	2050	1650	850	850
2050	1800	1150	800	700
2100	2000	1700	950	850
2200	1900	1600	1400	1350

Sintetize los sonidos que se obtienen para diferentes combinaciones de fonemas y transiciones y obtenga conclusiones. Utilice también la duración de la transición como variable a ajustar usando valores de 30 y 40 mseg.