Divisibility and Modular Arithmetic

Sections 4.1& 4.3

INTEGERS, DIVISION, PRIMES

Notables

- Homework due now!
- Reading Chapter 4
- Forthcoming topics
 - Integers and division
- Integer representation and bases

CSE 260 MSU

INTEGERS, DIVISION, PRIMES

Division

- If a and b are integers with $a \neq 0$, then a divides b if there exists an integer c such that b = ac.
- When a divides b we say
 - \Box a is a *factor* of b
 - \Box a is a *divisor* of b
 - \Box b is a multiple of a.
- The notation $a \mid b$ denotes "a divides b".
- \Box $a \mid b$ if and only if b/a is an integer.
- The notation $a \nmid b$ denotes "a does not divide b"

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

Division

- **Exercise**: Which of the following are true?
 - □ 3 | 7
 - **3** | 12
 - □ 5 ∤ 15

CSE 260, MSU

Properties of Divisibility

- **Theorem 1**: Let a, b, and c be integers, where $a \neq 0$.
 - If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$;
 - ii. If $a \mid b$, then $a \mid (bc)$ for all integers c;
 - iii. If $a \mid b$ and $b \mid c$, then $a \mid c$.

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

VISION, PRIMES

Properties of Divisibility

Theorem 1: Let a, b, and c be integers, where $a \neq 0$.

- i. If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$;
- ii. If $a \mid b$, then $a \mid (bc)$ for all integers c;
- iii. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Corollary: If a, b, and c be integers such that $a \neq 0$ and $a \mid b$ and $a \mid c$, then $a \mid (mb + nc)$ whenever m and n are integers.

Exercise: Show how this Corollary follows from Theorem 1.

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$

Proof:

Suppose $a \mid b$ and $a \mid c$.

Then there are integers s and t such that b = as and c = at.

Hence, b + c = as + at = a(s + t).

Since (s + t) is an integer, it follows that $a \mid (b + c)$.

Hence, if $a \mid b$ and $a \mid c$, then $a \mid (b + c)$.

(ii), (iii): Exercise (the proofs are similar to the proof above).

CSE 260, MSU

U INTEGERS, DIVISION, PRIMES

Properties of Divisibility

- Lemma: If n is a positive integer and a is a positive factor of n, then $1 \le a \le n$.
- Proof.

Assume n is a positive integer and a is a positive factor of n.

Then n = ab, for some integer b.

Moreover, b must be positive since both n and a are.

Hence $b \ge 1$.

Multiplying by a we get: $n = ab \ge a \cdot 1 = a$.

Thus, $1 \le a \le n$.

CSE 260, MSU

Division Algorithm

- **Division Algorithm (Theorem)**: If a is an integer and d is a positive integer, then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r.
 - \Box d is called the *divisor*.
 - □ *a* is called the *dividend*.
 - \Box q is called the *quotient*.
 - \Box r is called the *remainder*.

Definitions of div and mod:

 $q = a \operatorname{div} d$

 $r = a \bmod d$

What other notation do we have for $a \operatorname{\mathbf{div}} d$? |a/d|

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

Exercise

- Find the following:
 - □ 39 **div** 15 and 39 **mod** 15
 - **a** 45 **div** 15 and 45 **mod** 15
 - □ -20 **div** 15 and -20 **mod** 15

60, MSU INTEGERS, DIVISION, PRIMES

Congruence Relation

- Definition: If a, b, and m are integers and m > 0, then a is congruent to b modulo m iff $m \mid (a b)$.
 - $a \equiv b \pmod{m}$ stands for "a is congruent to b modulo m."
 - $a \equiv b \pmod{m}$ stands for "a is not congruent to b modulo m."
- Theorem: Two integers are congruent mod *m* if and only if they have the same remainder when divided by *m*. Proof: exercise

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

Exercise

- Which of the following are true?
 - $17 \equiv 5 \pmod{6}$
 - $24 \equiv 14 \pmod{6}$
 - $24 \equiv -14 \pmod{6}$
 - $= -15 \equiv -15 \pmod{6}$

CSE 260, MSU

Exercise

Theorem 4: Let m be a positive integer and a and b be integers. Then a ≡ b (mod m) if and only if there is an integer k such that a = b + km.

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

■ **Theorem 4**: Let m be a positive integer and a and b be integers. Then $a \equiv b \pmod{m}$ if and only if there is an integer k such that a = b + km.

Proof (more concisely):

Exercise

CSE 260 MSU

INTEGERS, DIVISION, PRIMES

Notation Hazard: $\equiv \pmod{m}$ v.s. **mod**

- The "mod" in $a \equiv b \pmod{m}$ and $a \mod m$ are different.
 - $a \equiv b \pmod{m}$ is true iff $m \mid (a b)$ is true.
 - \Box a mod m denotes the remainder of a divided by m
 - Here, **mod** denotes a binary operation (function).

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

Relationship between $\equiv \pmod{m}$ & mod

■ **Theorem 3**: Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if $(a \mod m) = (b \mod m)$. (Proof in the exercises)

CSE 260, MSU

Congruences of Sums and Products

- Theorem 5: Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ $ac \equiv bd \pmod{m}$.
- Proof:

```
Assume a \equiv b \pmod{m} and c \equiv d \pmod{m}.
```

Then, by Theorem 4, there are integers s and t such that b = a + sm and d = c + tm.

Therefore,

```
b+d = (a + sm) + (c + tm) = (a + c) + m(s + t) and

bd = (a + sm) (c + tm) = ac + m(at + cs + stm).
```

Hence, by Theorem 4, $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

17

Congruences of Sums and Products

- Theorem 5: Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ $ac \equiv bd \pmod{m}$.
- Example: Because $7 \equiv 2 \pmod{5}$ and $11 \equiv 1 \pmod{5}$, it follows that $18 \equiv 3 \pmod{5}$ and $77 \equiv 2 \pmod{5}$.

CSE 260 MSU

INTEGERS, DIVISION, PRIMES

Algebraic Manipulation of Congruences

 Multiplying both sides of a valid congruence by an integer preserves validity.

I.e., if $a \equiv b \pmod{m}$, then $c \cdot a \equiv c \cdot b \pmod{m}$, where c is any integer.

Proof: Theorem 5 since $c = c \pmod{m}$.

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

Algebraic Manipulation of Congruences

 Adding an integer to both sides of a valid congruence preserves validity.

I.e., if $a \equiv b \pmod{m}$, then $c + a \equiv c + b \pmod{m}$, where c is any integer.

Proof: Theorem 5 since $c = c \pmod{m}$.

CSE 260, MSU

Computing mod for Products and Sums

- Corollary: Let *m* be a positive integer and let *a* and *b* be integers. Then the following are true:
 - $aole (a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m$
 - \Box ab mod $m = ((a \mod m) (b \mod m)) \mod m$.
- Exercise: Use this corollary to find the following
 - □ 240025 **mod** 12
 - \square ((39)(53)) **mod** 11

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

. . .

Arithmetic Modulo m

- The operations $+_m$ and \cdot_m satisfy many of the same properties as ordinary addition and multiplication.
 - \Box Closure: If a and b belong to \mathbb{Z}_m , then $a+_m b$ and $a\cdot_m b$ belong to \mathbb{Z}_m .
 - □ Associativity: If a, b, and c belong to Z_m , then $(a +_m b) +_m c = a +_m (b +_m c)$ and $(a \cdot_m b) \cdot_m c = a \cdot_m (b \cdot_m c)$.
 - □ Commutativity: If a and b belong to \mathbb{Z}_m , then $a +_m b = b +_m a$ and $a \cdot_m b = b \cdot_m a$.
 - □ Identity elements: If a belongs to \mathbb{Z}_m , then $a +_m 0 = a$ and $a \cdot_m 1 = a$.

 $continued \rightarrow$

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

Arithmetic Modulo m

- Definitions: Let \mathbb{Z}_m be the set of nonnegative integers less than m: $\mathbb{Z}_m = \{0,1, ..., m-1\}$
- The operation $+_m$ is defined as $a +_m b = (a + b) \mod m$. This is *addition modulo m*.
- The operation \cdot_m is defined as $a \cdot_m b = (a + b) \mod m$. This is *multiplication modulo m*.
- Using these operations is called *doing arithmetic modulo m*.
- Example: Find $7 +_{11} 9$ and $7 \cdot_{11} 9$.
- Solution: Using the definitions above:
 - $9 + 7 + 11 = 16 \mod 11 = 16 \mod 11 = 5$
 - $7 \cdot _{11} 9 = (7 \cdot 9) \mod 11 = 63 \mod 11 = 8$

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

Arithmetic Modulo *m*

- □ Additive inverses: If $a \neq 0$ belongs to \mathbb{Z}_m , then m a is the additive inverse of a modulo m and 0 is its own additive inverse.
- $a +_m (m a) = 0$ and $0 +_m 0 = 0$
- \Box Distributivity: If a, b, and c belong to \mathbb{Z}_m , then
 - $a \cdot_m (b +_m c) = (a \cdot_m b) +_m (a \cdot_m c) \text{ and } (a +_m b) \cdot_m c = (a \cdot_m c) +_m (b \cdot_m c).$
- Proofs are exercises.
- Multiplicative inverses have not been included since they do not always exist. For example, there is no multiplicative inverse of 2 modulo 6.
- (*optional*) Using the terminology of abstract algebra, \mathbb{Z}_m with $+_m$ is a commutative group and \mathbb{Z}_m with $+_m$ and \cdot_m is a commutative ring.

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

24

Primes and Greatest Common Divisors

Sections 4.3

INTEGERS, DIVISION, PRIMES

25

Primes

- **Definition:** A positive integer *p* greater than 1 is *prime* if the only positive factors of *p* are 1 and *p*.
- A positive integer that is greater than 1 and is not prime is called *composite*.

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

The Fundamental Theorem of Arithmetic

Prime FactorizationTheorem:

Every integer n greater than 1 can be written as the product of one or more primes—called the prime factorization of n.

Additionally, the prime factorization of n is unique up to the order of the factors.

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

The Fundamental Theorem of Arithmetic

Examples:

 $100 = 2 \cdot 2 \cdot 5 \cdot 5 = 2^2 \cdot 5^2$

641 = 641

 $999 = 3 \cdot 3 \cdot 3 \cdot 37 = 3^3 \cdot 37$

CSE 260, MSU

Erastothenes (276-194 B.C.)

- A method for finding all primes that do not exceed a given positive integer, n.
 - \Box List all of the integers from 2 to n in increasing order.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

CSE 260, MS

CSE 260 MSU

INTEGERS, DIVISION, PRIMES

29

The Sieve of Erastosthenes

Erastothenes (276-194 B.C.)

- A method for finding all primes that do not exceed a given positive integer, n.
 - \Box List all of the integers from 2 to *n* in increasing order.
 - □ Mark the first unmarked element of the list as "prime".

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

CSE 260 MSU

INTEGERS, DIVISION, PRIMES

30

The Sieve of Erastosthenes

Erastothenes (276-194 B.C.)

- A method for finding all primes that do not exceed a given positive integer, n.
 - □ List all of the integers from 2 to *n* in increasing order.
 - □ Mark the first unmarked element of the list as "prime".
 - Delete all the unmarked integers that are divisible by the last element that was marked as "prime".
 - Repeat the previous two steps until only marked integers are left.

 23
 5
 7
 9
 11
 13
 15
 17
 19
 21
 23
 25
 27
 29
 31

 33
 35
 37
 39
 41
 43
 45
 47
 49
 51
 53
 55
 57
 59
 61

 63
 65
 67
 69
 71
 73
 75
 77
 79
 81
 83
 85
 87
 89

INTEGERS, DIVISION, PRIMES

The Sieve of Erastosthenes

Erastothenes (276-194 B.C.)

- A method for finding all primes that do not exceed a given positive integer, n.
 - □ List all of the integers from 2 to *n* in increasing order.
 - □ Mark the first unmarked element of the list as "prime".
 - Delete all the unmarked integers that are divisible by the last element that was marked as "prime".
 - Repeat the previous two steps until only marked integers are left.

 23
 5
 7
 9
 11
 13
 15
 17
 19
 21
 23
 25
 27
 29
 31

 33
 35
 37
 39
 41
 43
 45
 47
 49
 51
 53
 55
 57
 59
 61

 63
 65
 67
 69
 71
 73
 75
 77
 79
 81
 83
 85
 87
 89

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

32

Erastothenes (276-194 B.C.)

- A method for finding all primes that do not exceed a given positive integer, n.
 - \Box List all of the integers from 2 to *n* in increasing order.
 - □ Mark the first unmarked element of the list as "prime".
 - Delete all the unmarked integers that are divisible by the last element that was marked as "prime".
 - Repeat the previous two steps until only marked integers are left.

23 5	7	11	13	17	19	23	25	29	31	
35	37		41	43	47	49	53	55	59	61
	65 6	67	71	73	77	79	83	85	8	9
CSE 260, I	MSU			INTEGE	RS, DIVISIO	N, PRIMES				33

The Sieve of Erastosthenes

Erastothenes (276-194 B.C.)

- A method for finding all primes that do not exceed a given positive integer, n.
 - \Box List all of the integers from 2 to n in increasing order.
 - □ Mark the first unmarked element of the list as "prime".
 - Delete all the unmarked integers that are divisible by the last element that was marked as "prime".
 - Repeat the previous two steps until only marked integers are left.

23 5	7 11	13	17	19	23		29	31	
	37	41 4	13	47	49	53		59	61
	67	71	73	77 79		83		8	9
CSE 260, MSU INTEGERS, DIVISION, PRIMES									35

The Sieve of Erastosthenes

Erastothenes (276-194 B.C.)

- A method for finding all primes that do not exceed a given positive integer, n.
 - □ List all of the integers from 2 to *n* in increasing order.
 - □ Mark the first unmarked element of the list as "prime".
 - Delete all the unmarked integers that are divisible by the last element that was marked as "prime".
 - Repeat the previous two steps until only marked integers are left.

23	5	7	11	13		17	19		23	25		29	31	
	35	37	7	41	43		47	49		53	55		59	61
		65	67	7	1 7	73	7'	7	79	8	3 8	35	89)
CSE 260, MSU INTEGERS, DIVISION, PRIMES									34					

The Sieve of Erastosthenes

Erastothenes (276-194 B.C.)

- A method for finding all primes that do not exceed a given positive integer, n.
 - \Box List all of the integers from 2 to n in increasing order.
 - □ Mark the first unmarked element of the list as "prime".
 - Delete all the unmarked integers that are divisible by the last element that was marked as "prime".
 - Repeat the previous two steps until only marked integers are left.

23 5	7 11	13	17	19	23		29	31		
	37	41 43	3	47 4	.9	53		59	61	
	67	71	73	77 79		83		89		
CSE 260, M	ISU		INTEGERS, DIVISION, PRIMES					36		

Erastothenes (276-194 B.C.)

- A method for finding all primes that do not exceed a given positive integer, n.
 - \Box List all of the integers from 2 to *n* in increasing order.
 - □ Mark the first unmarked element of the list as "prime".
 - Delete all the unmarked integers that are divisible by the last element that was marked as "prime".
 - Repeat the previous two steps until only marked integers are left.

23 5	7	11	13		17	19	23		29	31	
	37		41	43		47		53		59	61
	67		1	73		79 83		89			
CSE 260, MSU					INTEGE	RS, DIVISIO			37		

The Sieve of Erastosthenes

Erastothenes (276-194 B.C.)

- A method for finding all primes that do not exceed a given positive integer, n.
 - \Box List all of the integers from 2 to n in increasing order.
 - □ Mark the first unmarked element of the list as "prime".
 - Delete all the unmarked integers that are divisible by the last element that was marked as "prime".
 - Repeat the previous two steps until only marked integers are left.

23 5	7 11	13	17	19	23		29	31	
	37	41 4	13	47		53		59	61
	67	, -	73	79		83		89	9
And so on, until INTEGERS, DIVISION, PRIMES									39

The Sieve of Erastosthenes

Erastothenes (276-194 B.C.)

- A method for finding all primes that do not exceed a given positive integer, n.
 - \Box List all of the integers from 2 to *n* in increasing order.
- Mark the first unmarked element of the list as "prime".
- Delete all the unmarked integers that are divisible by the last element that was marked as "prime".
- Repeat the previous two steps until only marked integers are left.

2 3	5	7		11	13		17	19	2	23	29	31		
			37		41	4	3	47		53		59	61	
			6	57	,	71	73		79	83		8	9	
CSE 260, MSU							INTEGERS, DIVISION, PRIMES					38		

The Sieve of Erastosthenes

Erastothenes (276-194 B.C.)

- A method for finding all primes that do not exceed a given positive integer, n.
 - □ List all of the integers from 2 to *n* in increasing order.
 - □ Mark the first unmarked element of the list as "prime".
 - Delete all the unmarked integers that are divisible by the last element that was marked as "prime".
 - Repeat the previous two steps until only marked integers are left.

Erastothenes (276-194 B.C.)

When could you stop marking numbers and just say "the remaining unmarked integers are all prime"?

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

41

The Sieve of Erastosthenes

Erastothenes (276-194 B.C.)

■ **Theorem 2**: If *n* is a composite integer, then *n* has a prime divisor less than or equal to \sqrt{n}

Proof: Assume n is composite.

Then n = ab, for some integers, a and b, both greater than 1.

We show by contradiction that either $a \le \sqrt{n}$ or $b \le \sqrt{n}$.

Assume $a > \sqrt{n}$ and $b > \sqrt{n}$. (*)

Then ab > n, which contradicts the choice of a and b.

Hence, the assumption (*) must be false. QED.

• This theorem justifies stopping at $\lfloor \sqrt{n} \rfloor$

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

Infinitude of Primes

Euclid (325 B.C. – 265 B.C.)

- Theorem: There are infinitely many primes. (Euclid)
- Proof:
 - \Box Assume that there are only *n* primes: $p_1, p_2, ..., p_n$
 - $\Box \text{ Let } q = p_1 p_2 \cdots p_n + 1$
 - □ Either q is prime or it is a product of primes (Fund. Thm. Arith.).
 - □ But none of the primes p_j divides q since if $p_j | q$, then p_j divides $q p_1 p_2 \cdots p_n = 1$ and 1 has no prime factors.
 - \Box As these are the only primes, q must be prime.
 - \Box But $q > p_i$, for all the p_i .
 - \Box So, contrary to our starting assumption, there are at least n+1 primes.
 - Consequently, there are infinitely many primes.

This proof was given by Euclid *The Elements*. The proof is considered to be one of the most beautiful in all mathematics. It is the first proof in *The Book*, inspired by the famous mathematician Paul Erdős' imagined collection of perfect proofs maintained by God.

Paul Erdős (1913-1996)

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

Generating Primes

- Finding large primes with hundreds of digits is important in cryptography.
- So far, no one has found a closed formula that always produces primes.
- $f(n) = n^2 n + 41$ is prime for all integers 1,2,..., 40. But $f(41) = 41^2$ is not prime.
- More generally, there is no polynomial with integer coefficients such that f(n) is prime for all positive integers n.
- Fortunately, we can generate large integers which are almost certainly prime.

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

44

Conjectures about Primes

Many conjectures about primes are unresolved, including:

- Goldbach's Conjecture: Every even integer n, n > 2, is the sum of two primes. This conjecture has been verified by computer for all positive even integers up to 1.6×10^{18} . It is believed to be true by most mathematicians.
- The Twin Prime Conjecture: The twin prime conjecture is that there are infinitely many pairs of twin primes. Twin primes are pairs of primes that differ by 2. Examples are 3 and 5, 5 and 7, 11 and 13, etc. The current world's record for twin primes (as of mid 2011) consists of numbers 65,516,468,355·23^{33,333} ±1, which have 100,355 decimal digits.

CSE 260 MSI

INTEGERS, DIVISION, PRIMES

45

Greatest Common Divisor

- **Definition**: Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and also $d \mid b$ is called the *greatest common divisor* of a and b. It is denoted by gcd(a,b).
- Example: gcd(24, 36) = ?
- **Example:** gcd(17, 22) = ?
- **Example:** gcd(10024, 0) = ?

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

Finding gcd using prime factorizations

• Suppose the prime factorizations of a and b are:

$$a=p_1^{a_1}p_2^{a_2}\dots p_n^{a_n}\;,\quad b=p_1^{b_1}p_2^{b_2}\dots p_n^{b_n}\;,$$
 where each exponent is a nonnegative integer, and where all primes occurring in either prime factorization are included in both. Then:

$$\gcd(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \dots p_n^{\min(a_n,b_n)}.$$

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

Finding gcd using prime factorizations

■ Example: Find gcd(120, 500)

$$120 = 2^3 \cdot 3 \cdot 5$$

$$\begin{array}{rcl} \Box & 500 = & 2^2 \cdot 5^3 \\ & = & 2^2 \cdot 3^0 \cdot 5^3 \end{array}$$

□ So, $gcd(120, 500) = 2^2 \cdot 3^0 \cdot 5^1 = 20$

CSE 260, MSU

Finding gcd using prime factorizations

- Example: Find gcd(17, 22)
 - $\begin{array}{ccc} \mathbf{17} = & 17^{1} \\ & = & 2^{0} \cdot 11^{0} \cdot 17^{1} \end{array}$
 - $22 = 2^{1} \cdot 11^{1}$ $= 2^{1} \cdot 11^{1} \cdot 17^{0}$
 - \square So, gcd(17, 22) = $2^0 \cdot 11^0 \cdot 17^0 = 1$

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

Greatest Common Divisor

- **Definition**: The integers *a* and *b* are *relatively prime* if their greatest common divisor is 1.
 - □ Example: 17 and 22
- **Definition**: The integers $a_1, a_2, ..., a_n$ are *pairwise relatively prime* if $gcd(a_i, a_i) = 1$ whenever $1 \le i < j \le n$.

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

Greatest Common Divisor

- Exercise: Which of the following are pairwise relatively prime?
 - □ 10. 17 and 21
 - □ 10, 19 and 24
 - □ 25, 26, 9 and 121

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

Euclidean Algorithm

Euclid (325 B.C. – 265 B.C.)

- The Euclidian algorithm is an efficient method for computing the greatest common divisor of two integers.
- It is based on the fact that, if a > b, then gcd(a, b) = gcd(b, a mod b).
- Example: Find gcd(91, 287):
 - $287 \mod 91 = 14$, so gcd(91, 287) = gcd(91, 14)
 - $91 \text{ mod } 14 = 7, \text{ so } \gcd(91, 14) = \gcd(14, 7)$
 - $14 \mod 7 = 0, \text{ so } \gcd(14, 7) = \gcd(7, 0)$
 - $\gcd(7, 0) = 7$
 - \Box Hence, gcd(91, 287) = 7

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

`52

Euclidean Algorithm

Euclid (325 B.C. – 265 B.C.)

- An efficient method for computing gcd.
- It is based on the fact that, if a > b, then gcd(a, b) = gcd(b, a mod b).
- Example: Find gcd(91, 287):
 - $287 \mod 91 = 14$, so gcd(91, 287) = gcd(91, 14)
 - $91 \text{ mod } 14 = 7, \text{ so } \gcd(91, 14) = \gcd(14, 7)$
 - 14 mod 7 = 0, so gcd(14, 7) = gcd(7, 0)
 - $\gcd(7,0) = 7$
 - \Box Hence, gcd(91, 287) = 7

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

`53

Least Common Multiple

■ **Definition**: The *least common multiple* of the positive integers a and b is the smallest positive integer that is divisible by both a and b. It is denoted by lcm(a,b).

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

Least Common Multiple

• If the prime factorizations of a and b are:

 $a=p_1^{a_1}p_2^{a_2}\dots p_n^{a_n}$, $b=p_1^{b_1}p_2^{b_2}\dots p_n^{b_n}$, where each exponent is a nonnegative integer, and where all primes occurring in either prime factorization are included in both. Then:

$$lcm(a,b) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \cdots p_n^{\max(a_n,b_n)}$$

CSE 260, MSU

INTEGERS, DIVISION, PRIMES

Least Common Multiple

■ **Theorem 5**: Let a and b be positive integers. Then $ab = \gcd(a,b) \cdot \operatorname{lcm}(a,b)$

Proof: Exercise.

CSE 260, MSU