

August 9th 2011, OSG Site Admin Workshop Jason Zurawski – Internet2 Research Liaison

Diagnostics vs Regular Monitoring

Agenda

Tutorial Agenda:

- Network Performance Primer Why Should We Care? (30 Mins)
- Introduction to Measurement Tools (20 Mins)
- Use of NTP for network measurements (15 Mins)
- Use of the BWCTL Server and Client (25 Mins)
- Use of the OWAMP Server and Client (25 Mins)
- Use of the NDT Server and Client (25 Mins)
- perfSONAR Topics (30 Mins)
- Diagnostics vs Regular Monitoring (20 Mins)
- Use Cases (30 Mins)
- Exercises

Performance Monitoring Motivation

- Finding a solution to network performance problems can be broken into two distinct steps:
 - Use of *Diagnostic Tools* to locate problems
 - Tools that actively measure performance (e.g. Latency, Available Bandwidth)
 - Tools that passively observe performance (e.g. error counters)
 - Regular Monitoring to establish performance baselines and alert when expectation drops.
 - Using diagnostic tools in a structured manner
 - Visualizations and alarms to analyze the collected data
- Incorporation of either of these techniques must be:
 - ubiquitous, e.g. the solution works best when it is available everywhere
 - seamless (e.g. federated) in presenting information from different resources and domains

On Demand vs Scheduled Testing

- On-Demand testing can help solve existing problems once they occur
- Regular performance monitoring can quickly identify and locate problems before users complain
 - Alarms
 - Anomaly detection
- Testing and measuring performance increases the value of the network to all participants

How it **Should** Work

- To accurately and swiftly address network performance problems the following steps should be undertaken
 - Identify the problem: if there a user in one location is complaining about performance to another, get as much information as possible
 - Is the problem un-directional? Bi-directional?
 - Does the problem occur all the time, frequently, or rarely?
 - Does the problem occur for only a specific application, many applications, or only some applications?
 - Is the problem reproducible on other machines?
 - Gather information about the environment
 - Hosts
 - Network Path
 - Configuration (where applicable)
 - Resources available

How it **Should** Work

- Cont.
 - Methodically approach the problem
 - Test using the same tool everywhere, gather results
 - Before moving on to the next tool, did you gather everything of value?
 - Are the results consistent?
 - After proceeding through all tools and approaches, form theories
 - Can the problem be isolated to a specific resource or component?
 - Can testing be performed to eliminate dead ends?
- Consider the following example:
 - International path
 - Problems noted
 - We know the path
 - We have tools available

Scenario: Multi-domain International Path

Desirable Case: Expected Performance

Solution: Test Points + Regular Monitoring

perfSONAR: Backbone and Exchanges

perfSONAR: Regional Networks

perfSONAR: Campus

Lessons Learned

- Problem resolution requires proper tools
 - Specialized to given task (e.g. Bandwidth, Latency)
 - Widely available where the problems will be
- Isolating a problem is a well defined, multi-step process
 - Rigid set of steps systematic approach to prevent causing new problems
- Diagnostics, as well as regular monitoring, can reveal true network performance

How it **Probably** Works

- If the suggested steps aren't taken (or followed in an ad-hoc manner), results will vary.
 - Skipping steps leads to missing clues
- Deployment and participation may vary, this leads to some gaps in the debugging process
- Consider the following example:
 - International path
 - Problems noted
 - We know the path
 - We have tools available almost everywhere

Scenario: Multi-domain International Path

Desirable Case: Expected Performance

Solution: Test Points + Regular Monitoring

Solution: Test Points + Regular Monitoring

Lessons Learned

- Missing part of the path leaves us with a huge disadvantage
- May discover some problems through isolation on the path we know, could miss something
 - Most network problems occur on the demarcation between networks
 - Testing around the problem won't work (we still have to transit this network)

Diagnostics vs Regular Monitoring

August 9th 2011, OSG Site Admin Workshop Jason Zurawski – Internet2 Research Liaison

For more information, visit http://www.internet2.edu/workshops/npw

