Лабораторная работа 2.1.6

Эффект Джоуля-Томсона

Колинько Кира, Б04-207

1 Введение

Цель работы:

- 1. определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры;
- 2. вычисление по результатам опытов коэффициентов Ван-дер-Ваальса «а» и «b».

Оборудование и материалы: трубка с пористой перегородкой; труба Дьюара; термостат; термометры; дифференциальная термопара; микровольтметр; балластный баллон; манометр.

2 Теоретические сведения

- 1. Эффектом Джоуля-Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции
- 2. В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой (рис. 2). Рассматривая два произвольных сечения

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right).$$

3. Так как

$$H = U + PV$$

$$H_1 - H_2 = (U_1 + P_1 V_1) - (U_2 + P_2 V_2) = \frac{1}{2} \mu \left(v_2^2 - v_1^2 \right). \tag{1}$$

В процессе Джоуля-Томсона:

$$H_1 = H_2$$

4. Коэффициент Джоуля-Томсона для газа Ван-дер-Ваальса

$$\mu_{\text{Д-T}} = \frac{\Delta T}{\Delta P} \approx \frac{(2a/RT) - b}{C_P}.$$
 (2)

5. Изменение знака эффекта Джоуля-Томсона происходит при температуре, называемой температурой инверсии

$$T_{\text{\tiny MHB}} = \frac{2a}{Rb} \tag{3}$$

6. Оценим влияние правой части уравнения (1) на изменение температуры расширяющегося газа. Заменяя в формуле (1) U через C_VT и PV через RT, найдем

$$(R + C_V) (T_1 - T_2) = \mu (v_2^2 - v_1^2) / 2$$

или

$$\Delta T = \frac{\mu}{2C_P} \left(v_2^2 - v_1^2 \right).$$

В условиях нашего опыта расход газа Q на выходе из пористой перегородки не превышает $10~{\rm cm}^3/{\rm c}$, а диаметр трубки равен $3~{\rm mm}$. Поэтому

$$v_2 <= \frac{4Q}{\pi d^2} = \frac{4 \cdot \text{cm}^3/\text{c}}{3.14 \cdot (0.3)^2 \text{ cm}^2} \approx 140 \text{ cm/c}.$$

Скорость v_1 газа у входа в пробку относится к скорости v_2 у выхода из нее как давление P_2 относится к P_1 . В нашей установке $P_1=4$ атм, а $P_2=1$ атм, поэтому

$$v_1 = \frac{P_2}{P_1} v_2 = 35 \text{ cm/c}.$$

Для углекислого газа $\mu = 44$ г/моль, $C_P = 40$ Дж/(моль·К); имеем

$$\Delta T = \frac{\mu}{2C_P} \left(v_2^2 - v_1^2 \right) \approx 7 \cdot 10^{-4} \text{ K}.$$

Это изменение температуры ничтожно мало по сравнению с измеряемым эффектом (несколько градусов).

3 Экспериментальная установка

Рис. 1: Схема установки

1 - трубка; 2 - пористая перегородка; 3 - труба Дьюара; 4 - кольцо; 5 - змеевик; 6 - балластный балон; 7 - вольтметр; 8,9 - спаи; 10 - пробка из пенопласта

4 Ход работы

4.1 Определение коэффициента Джоуля-Томсона

Проведём измерение зависимости ΔT от ΔP для разных значений температур. Полученные значения заносим в таблицы 1, 2, 3 и 4. При записи полученных данных также учитываем, что чувствительность термопары медь – константан зависит от температуры. При вычислении будем использовать следующую формулу:

$$\Delta T = \frac{U}{\alpha},$$

где

 $\alpha_{20^{\circ}C} = 39.8 \text{ MKB}/^{\circ}C, \quad \alpha_{35^{\circ}C} = 41.6 \text{ MKB}/^{\circ}C, \quad \alpha_{50^{\circ}C} = 42.5 \text{ MKB}/^{\circ}C, \quad \alpha_{65^{\circ}C} = 44.1 \text{ MKB}/^{\circ}C$

$T = 20 ^{\circ}C$						
ΔP , atm	σ_p , atm	U, MB	σ_U , мВ	ΔT , K	$\sigma_{\Delta T}$, K	
4,00	0,05	0,135	0,001	3,39	0,02	
3,50	0,05	0,115	0,001	2,89	0,02	
3,00	0,05	0,096	0,001	2,41	0,02	
2,60	0,05	0,084	0,001	2,11	0,02	
1,90	0,05	0,059	0,001	1,48	0,02	

Таблица 1: Экспериментальные данные для 20 °C

$T = 35 ^{\circ}C$						
ΔP , atm	σ_p , atm	U, MB	σ_U , мВ	ΔT , K	$\sigma_{\Delta T}$, K	
4,00	0,05	0,130	0,001	3,13	0,02	
3,50	0,05	0,011	0,001	2,64	0,02	
3,00	0,05	0,096	0,001	2,31	0,02	
2,50	0,05	0,080	0,001	1,92	0,02	
2,00	0,05	0,063	0,001	1,51	0,02	

Таблица 2: Экспериментальные данные для 35 °C

$T = 50 ^{\circ}C$						
ΔP , atm	σ_p , atm	U, мВ	σ_U , мВ	ΔT , K	$\sigma_{\Delta T}$, K	
4,20	0,05	0,126	0,001	2,96	0,02	
3,60	0,05	0,108	0,001	2,54	0,02	
3,10	0,05	0,094	0,001	2,21	0,02	
2,60	0,05	0,080	0,001	1,88	0,02	
2,10	0,05	0,066	0,001	1,55	0,02	

Таблица 3: Экспериментальные данные для 50 °C

$T=65~^{\circ}C$						
ΔP , atm	σ_p , atm	U, мВ	σ_U , мВ	ΔT , K	$\sigma_{\Delta T}$, K	
4,20	0,05	0,119	0,001	2,69	0,02	
3,70	0,05	0,104	0,001	2,35	0,02	
3,20	0,05	0,093	0,001	2,11	0,02	
2,80	0,05	0,081	0,001	1,84	0,02	
2,30	0,05	0,070	0,001	1,59	0,02	

Таблица 4: Экспериментальные данные для 65 °C

Также необходимо учесть, что при $\Delta P=0$ показания вольтметра составляли U(0)=-0.008 мкВ. Поэтому для корректной обработки данных сделаем необходимую поправку, вычитая из полученных показаний U(0).

Кроме того, при вычислении ΔT погрешность этого вычисления определяем по формуле:

$$\sigma_{\Delta T} = \Delta T \frac{\sigma_U}{U}.$$

По имеющимся данным проведём аппроксимацию зависимости ΔT от ΔP , чтобы определить коэффициент Джоуля-Томсона. На рисунке ?? изображены графики зависимостей.

Вычислим $\mu_{\text{Д-T}} = \frac{dT}{dP}$, используя метод наименьших квадратов:

$$\mu_{\text{Д-T}} = \frac{\langle \Delta P \Delta T \rangle - \langle \Delta P \rangle \langle \Delta T \rangle}{\langle \Delta P \rangle - \langle \Delta P \rangle^2}.$$

Случайную погрешность определения этого коэффициента вычислим по следующей формуле:

$$\sigma_{\mu_{\text{Д-T}}}^{\text{случ}} = \sqrt{\frac{1}{N-2} \left(\frac{\left\langle \left(\Delta T - \left\langle \Delta T \right\rangle \right)^2 \right\rangle}{\left\langle \left(\Delta P - \left\langle \Delta P \right\rangle \right)^2 \right\rangle} \right) - \mu_{\text{Д-T}}^2},$$

где N – колличество измерений.

Систематические погрешности оценим по следующим формуле:

$$\sigma_{\mu_{\text{Д-T}}}^{\text{сист}} = \mu_{\text{Д-T}} \sqrt{\varepsilon_{\Delta P}^2 + \varepsilon_{\Delta T}^2}.$$

Рис. 2: График зависимости dT om dP

Таким образом, полная погрешность измерения определяется следующим соотношением:

$$\sigma_{\mu_{\textrm{\tiny $J\!-\!T$}}} = \sqrt{(\sigma_{\mu_{\textrm{\tiny $J\!-\!T$}}}^{\textrm{chct}})^2 + (\sigma_{\mu_{\textrm{\tiny $J\!-\!T$}}}^{\textrm{chyq}})^2}.$$

Результаты вычислений заносим в таблицу 5.

$T, {}^{\circ}C$	$\mu_{ extsf{Д-T}}, ext{K/atm}$	$\sigma_{\mu_{ m ilde{A}-T}},~{ m K/atm}$	ε , %
20	0,90	0,02	2,2
35	0,79	0,03	3,8
50	0,67	0,02	2,9
65	0,58	0,02	3,4

Таблица 5: Результаты измерений $\mu_{\mathrm{A-T}}$

4.2 Вычисление параметров газа Ван-дер-Ваальса

Вычислим параметры газа Ван-дер-Ваальса, используя коэффициенты $\mu_{\text{Д-T}}$, полученные в 4.1, для разных пар температур.

Пользуясь формулой (3), получим

$$\begin{cases} a = \frac{(\mu_1 - \mu_2) C_P R T_1 T_2}{2 (T_2 - T_1)}, \\ b = \frac{C_P (\mu_2 T_2 - \mu_1 T_1)}{T_1 - T_2}. \end{cases}$$

Погрешности этих вычислений можно оценить используя следующие формулы:

$$\sigma_{a} = a\sqrt{\varepsilon_{\mu_{1}-\mu_{2}}^{2} + \varepsilon_{T_{1}}^{2} + \varepsilon_{T_{2}}^{2} + \varepsilon_{T_{2}-T_{1}}^{2}},$$

$$\sigma_{b} = b\sqrt{\varepsilon_{\mu_{2}T_{2}-\mu_{1}T_{1}}^{2} + \varepsilon_{T_{1}-T_{2}}^{2}},$$

$$\sigma_{x\pm y} = \sqrt{\sigma_x^2 + \sigma_y^2}.$$

Для температур 20°C и 35°C, а также для 50°C и 65°C, вычисляем параметры «а» и «b» газа Ван-дер-Ваальса. Результаты вычислений заносим в таблицу 6.

$T, \circ C$	$a, \frac{\Pi \mathbf{a} \cdot \mathbf{m}^6}{\text{моль}^2}$	$\sigma_a, \frac{\Pi \mathbf{a} \cdot \mathbf{m}^6}{\text{моль}^2}$	$\varepsilon_a, \%$	$b \cdot 10^{-4}, \frac{\text{M}^3}{\text{МОЛЬ}}$	$\sigma_b \cdot 10^{-4}, \frac{\text{M}^3}{\text{MOJIB}}$	ε_b , %
35 - 20	0,91	0,29	32,75	4,52	1,99	44,02
65 - 50	0,90	0,28	31,11	4,52	2,06	45,58

Таблица 6: Результаты измерения параметров газа Ван-дер-Ваальса

Сверим полученные результаты с табличными. Согласно справочнику для углекислого газа

$$a = 0.36 \; \frac{\Pi \mathbf{a} \cdot \mathbf{m}^6}{\text{MOJIb}^2},$$

$$b = 0.42 \cdot 10^{-4} \frac{\text{M}^3}{\text{MOJIb}}.$$

Результаты, полученные экспериментально, значительно отличаются от табличных

4.3 Вычисление температуры инверсии

Используя формулу (3), по полученным параметрам газа Ван-дер-Ваальса вычислим $T_{\text{инв}}$. Также оценим погрешность по следующей формуле:

$$\sigma_{T_{\text{инв}}} = T_{\text{инв}} \sqrt{\varepsilon_a^2 + \varepsilon_b^2}.$$

Результаты вычислений занесём в таблицу 7.

$T, {}^{\circ}C$	$T_{\text{инв}}$, °К	$\sigma_{T_{\text{\tiny MHB}}}, {}^{\circ}\text{K}$	ε , %
20-35	484	263	54
50-65	479	264	55

Таблица 7: Результаты вычисления температуры инверсии

Для углекислого газа, согласно справочнику

$$T_{\text{MHB}} = 2053 \text{ K}.$$

Результаты, полученные экспериментально, значительно отличаются от табличных

5 Выводы

1. В ходе работы удалось экспериментально определить коэффициенты газа Ван-дер-Ваальса и вычислить $T_{\text{инв}}$. Полученные результаты значительно отличаются от табличных: погрешность измерения коэффициента "а"составила $\approx 32\%$; погрешность измерения коэффициента "b" $\approx 42\%$; погрешность измерения $T_{\text{инв}}:\approx 55\%$. Такая большая ошибка связана с неприменимостью уравнения Ван-дер-Ваальса в данной лабораторной работе. Несмотря на то, что полученные зависимости, как и предполагалось, оказались линейны, характеризующие их коэффициенты значительно отличаются от предсказанных теоретически.

- 2. Попробуем объяснить неприменимость уранения Ван-дер-Ваальса для нашей модели. Вопервых, при выводе уравнения Ван-дер-Ваальса учитываются только парные столкновения молекул. Очевидно, что в случае с плотными газами, влиянием тройных и более столкновений молекул пренебречь нельзя. Во-вторых, вывод уравнения предполагает, что молекулы газа сферически симметричны, то есть являются моделями твердых упругих шаров. Для плотных газов уравнение Ван-дер-Ваальса, как количественное соотношение не годится.
- 3. Для улучшения точности эксперимента можно было бы использовать более точные методы измерения температуры