Raport 3

Eksploracja danych

Mikołaj Langner, Marcin Kostrzewa nr albumów: 255716, 255749

2021-05-28

Spis treści

1	1 Wstęp	Wstęp										
2	2 Zadanie 1	Zadanie 1										
	2.1 Wczytanie danych	2.1 Wczytanie danych i podział na zbiór uczący i testowy										
		=	vZ	2								
	2.3 Ocena jakości klas	/fikacji		4								
	2.4 Zastosowanie regre	sji liniowej do modelu o rozsz	zerzonej ilości cech	4								
	2.5 Wnioski			(
3	3 Zadanie 2			,								
	3.1 Wczytanie i krótka	anliza danych		7								
	· ·	Ţ.		8								
	•	· -		11								
	· · ·	•		15								
	· · · · · · · · · · · · · · · · · · ·	~		17								
	_			19								

1 Wstęp

Raport zawiera rozwiązania listy 3.

W zadaniu pierwszym zbudujemy klasyfikator na bazie metody regresji liniowej i oceniamy jego skuteczność i dokładność.

W zadaniu drugim porównamy ze sobą rezultaty zastosowania następujących metod klasyfikacji:

- metoda k-najblizszych sasiadów (k-Nearest Neighbors),
- drzewa klasyfikacyjne (classification trees),

- naiwny klasyfikator bayesowski (naïve Bayes classifier),
- wieloklasowa regresja logistyczna (multinomial logistic regression).

2 Zadanie 1

2.1 Wczytanie danych i podział na zbiór uczący i testowy

Wczytajmy dane o irysach i podzielmy je na zbiór uczący i testowy w proporcji 1 : 2.

```
data(iris)
n <- dim(iris)[1]

train.set.index <- sample(1:n, 2/3*n)
train.set <- iris %>% slice(train.set.index) %>% arrange(Species)
test.set <- iris %>% slice(-train.set.index) %>% arrange(Species)
```

2.2 Konstrukcja klasyfikatora i wyznaczenie prognoz

Stworzymy teraz macierze eksperymentu i wskaźnikową zarówno dla zbioru uczącego, jak i testowego. W tym celu wykorzystamy funkcję dummyVars z pakietu caret.

Wykorzystując metodę najmniejszych kwadratów, wyznaczamy przewidywane prognozy klas dla obu zbiorów.

```
Y.hat <- solve(t(train.X) %*% train.X) %*% t(train.X) %*% train.Y

train.proba <- train.X %*% Y.hat

test.proba <- test.X %*% Y.hat
```

Przedstawmy prognozy klas na wykresach.

Rysunek 1: Prognozy klas dla zbioru uczacego.

Rysunek 2: Prognozy klas dla zbioru testowego.

2.3 Ocena jakości klasyfikacji

Wyznaczmy teraz macierz pomyłek dla zbioru uczącego.

	Species.setosa	Species.versicolor	Species.virginica
setosa	35	0	0
versicolor	0	25	9
virginica	0	6	25

Tabela 1: Macierz pomylek dla zbioru uczacego.

Błąd klasyfikacji to 0.15.

Podobnie, wyznaczymy teraz macierz pomyłek dla zbioru testowego.

	Species.setosa	Species.versicolor	Species.virginica
setosa	15	0	0
versicolor	0	12	4
virginica	0	3	16

Tabela 2: Macierz pomylek dla zbioru testowego.

Błąd klasyfikacji wynosi 0.14.

Przypatując się wykresom (1), (2) możemy zauważyć, że zachodzi zjawisko maskowania — klasa versicolor jest przysłaniana.

2.4 Zastosowanie regresji liniowej do modelu o rozszerzonej ilości cech

Najpierw uzupełnijmy dane o irysach o składniki wielomianowe stopnia 2.

Podobnie jak poprzednio podzielimy dane na zbiory: uczący i testowy, a następnie utworzymy macierze: eksperymentu i indykatorów.

```
train.set.index <- sample(1:n, 2/3*n)
train.set <- iris %>% slice(train.set.index) %>% arrange(Species)
test.set <- iris %>% slice(-train.set.index) %>% arrange(Species)
dummies <- dummyVars(" ~ .", data=iris)</pre>
```

```
train.dummies <- predict(dummies, newdata = train.set)
train.X <- as.matrix(cbind(rep(1, nrow(train.dummies)), train.dummies[, -c(5:7)]))
train.Y <- train.dummies[, 5:7]
test.dummies <- predict(dummies, newdata = test.set)
test.X <- as.matrix(cbind(rep(1, nrow(test.dummies)), test.dummies[, -c(5:7)]))
test.Y <- test.dummies[, 5:7]</pre>
```

Ponownie, wyznaczymy prognozy klas i zwizualizujemy to przypisanie na wykresach.

```
Y.hat <- solve(t(train.X) %*% train.X) %*% t(train.X) %*% train.Y

train.proba <- train.X %*% Y.hat

test.proba <- test.X %*% Y.hat
```


Rysunek 3: Prognozy klas dla zbioru uczacego o rozszerzonej liczbie cech.

Wyznaczymy także macierze pomyłek i błędy klasyfikacji.

	Species.setosa	Species.versicolor	Species.virginica
setosa	36	0	0
versicolor	0	36	1
virginica	0	1	26

Tabela 3: Macierz pomylek dla zbioru uczacego dla przypadku o rozszerzonej liczbie cech.

Błąd klasyfkacji wynosi 0.02.

Rysunek 4: Prognozy klas dla zbioru uczacego o rozszerzonej liczbie cech.

	Species.setosa	Species.versicolor	Species.virginica
setosa	14	0	0
versicolor	0	13	0
virginica	0	2	21

Tabela 4: Macierz pomylek dla zbioru testowego dla przypadku o rozszerzonej liczbie cech.

Błąd klasyfikacji wynosi 0.04.

Po przeanalizowaniu wykresów (3) i (4) dochodzimy do wniosku, że w tym przypadku zjawisko maskowania klas zostało zniwelowane.

2.5 Wnioski

Przede wszystkim zauważamy, że model oparty na rozszerzonej ilości cech dał znacznie lepsze rezultaty — błędy klasyfikacji były mniejsze zarówno dla zbioru uczącego, jak i testowego. W drugim modelu nie wystąpiło także zjawisko maskowania.

3 Zadanie 2

3.1 Wczytanie i krótka anliza danych

Wczytajmy i zapoznajmy się z danymi.

```
data(wine)
n <- dim(wine)[1]
variable.number <- ncol(wine)
observations.number <- nrow(wine)
NaN.number <- sum(is.na(wine))
class.number <- length(unique(wine$Type))</pre>
```

Mamy 14 zmiennych i 178 obserwacji. Są trzy klasy, informację o nich zawiera zmienna Type. Nie występują wartości brakujące (NaN. number = 0).

Przyjrzyjmy się naszym danym na wykresach pudełkowych — wykresy (5) i (6).

Rysunek 5: Wykresy pudelkowe naszych danych.

Możemy zauważyć, że zmiennymi, które dobrze dywersyfikują klasy są: Alcohol, Flavanoids i Phenols.

Podzielimy nasze dane na zbiór uczący i testowy w stosunku 2 : 1. Utworzymy także podzbiory, które będą zawierać tylko najlepiej dywersyfikujące cechy.

Rysunek 6: Wykresy pudelkowe naszych danych.

```
set.seed(42)
train.index <- sample(n, 2/3 * n)
train.data <- wine %>% slice(train.index)
test.data <- wine %>% slice(-train.index)
train.subset <- data.frame(train.data[, c(1, 2, 7, 8)])
test.subset <- data.frame(test.data[, c(1, 2, 7, 8)])</pre>
```

Zdefiniujmy też od razu rzeczywiste etykietki klas dla wcześniej utworzonych zbiorów.

```
train.etiquettes <- train.data$Type
test.etiquettes <- test.data$Type
subset.train.etiquettes <- train.subset$Type
subset.test.etiquettes <- test.subset$Type</pre>
```

Poniżej tworzymy także obiekt trainControl, który wykorzystamy przy przeprowadzaniu 5-krotnej walidacji krzyżowej.

```
cv <- trainControl(method="cv", number=5)</pre>
```

3.2 Metoda k-najbliższych sąsiadów

Na początku wytrenujmy nasz klasyfikator na zbiorze uczącym zawierającym wszystkie cechy (przyjmujemy k = 5).

```
model.knn.basic <- ipredknn(Type ~ ., data = train.data, k=5)
basic.knn.test.pred <- predict(model.knn.basic, test.data, type="class")
basic.knn.train.pred <- predict(model.knn.basic, train.data, type="class")</pre>
```

Wyznaczmy dla niego macierze pomyłek.

	1	2	3			1	2	3
1	32	5	1		1	21	1	2
2	2	39	8		2	0	15	9
3	2	7	22		3	2	4	6
(a) Zbior uczacy						Zbio	r test	owy

Tabela 5: Macierze pomylek dla metody KNN — wszystkie cechy.

Błędy klasyfikacji to 0.2118644 i 0.3.

Teraz stworzymy klasyfikator na zbiorze uczącym zawierającym wybrane cechy (przyjmujemy k=5).

```
knn.model.subset <- ipredknn(Type ~ ., data = train.subset, k=5)
subset.knn.test.pred <- predict(knn.model.subset, test.subset, type="class")
subset.knn.train.pred <- predict(knn.model.subset, train.subset, type="class")</pre>
```

Macierze pomyłek wyglądają następująco:

	1	2	3			1	2	3
1	35	3	0		1	22	2	0
2	1	46	0		2	1	16	0
3	0	2	31		3	0	2	17
(a) Zbior uczacy					(b) Zbic	or test	owy

Tabela 6: Macierze pomylek dla metody KNN — wybrance cechy.

Błędy klasyfikacji to 0.0508475 i 0.0833333.

Widzimy, że klasyfikator wyćwiczony na train.subset poradził sobie lepiej. Zobaczmy więc jak zmienia się błąd klasyfikacji w zależności od parametru k na zbiorze z ograniczoną liczbą cech.

Rysunek 7: Blad klasyfikacji w zaleznosci od parametru k.

Widzimy, że najlepsze rezultaty otrzymujemy dla k = 9.

Wykorzystamy teraz pakiet caret do stworzenia modelu stuningowanego. By taki model powstał, wykorzystamy 5-krotną walidację krzyżową.

```
model <- train(Type ~ ., data = train.subset, method = "knn", trControl = cv)
tuned.knn.test.pred <- predict(model, test.data)
tuned.knn.train.pred <- predict(model, train.data)</pre>
```

Jak się okazuje, model ten również przyjmuje k = 9.

Dla tego klasyfikatora także wyznaczymy macierze pomyłek i błędy klasyfikacji.

	1	2	3			1	2	3
1	35	2	0		1	23	2	0
2	1	47	0		2	0	18	2
3	0	2	31		3	0	0	15
(a) Zbior uczacy					(b) Zbio	or test	lowy

Tabela 7: Macierze pomylek dla metody KNN — stuningowany model.

Błędy klasyfikacji to 0.0423729 i 0.0666667.

Jak widzimy model stuningowany poradził sobie najlepiej. Wyznaczymy teraz dla niego błąd predykcji — skorzystamy z 5-krotnej walidacji krzyżowej, metody bootstrap oraz .632+.

Błędy wyniosły kolejno 0.0842697, 0.1011415 oraz 0.0822332.

3.3 Drzewa klasyfikacyjne

Najpierw wytrenujemy model na zbiorze uczącym zawierającym wszystkie cechy.

To drzewo klasyfikacyjne wygląda następująco (8).

Wyznaczymy dla tego modelu macierze pomyłek i błędy klasyfikacji.

	1	2	3			1	2	3
1	33	0	0		1	17	1	0
2	3	51	0		2	6	18	0
3	0	0	31		3	0	1	17
(a) Zbior uczacy					(b) Zbio	or test	owy

Tabela 8: Macierze pomylek dla metody drzew klasyfikacyjnych — wszystkie cechy.

Błędy klasyfikacji to 0.0254237 i 0.1333333.

Rysunek 8: Drzewo decyzyjne — wszystkie cechy.

Teraz stworzymy model, który wytrenujemy na train.subset.

To drzewo decyzyjne wygląda następująco (9).

Podobnie jak wczęśniej, wyznaczymy dla niego macierze pomyłek i błędy klasyfikacji.

	1	2	3			1	2	3
1	36	2	0		1	23	2	0
2	0	48	4		2	0	17	1
3	0	1	27		3	0	1	16
(a) Zbior uczacy					(b) Zbio	or test	owy

Tabela 9: Macierze pomylek dla metody drzew klasyfikacyjnych — wybrane cechy.

Błędy klasyfikacji to 0.059322 i 0.0666667.

Rysunek 9: Drzewo decyzyjne — wybrane cechy.

Ponownie stworzymy stuningowany model, zmieniając parametr cp, przy pomocy 5-krotnej walidacji krzyżowej.

	1	2	3		1	2	3
1	36	2	0	1	23	2	0
2	0	48	4	2	0	17	1
3	0	1	27	3	0	1	16
(a) Zbi	or ucz	zacy	(b) Zbio	or test	owy

Tabela 10: Macierze pomylek dla metody drzew klasyfikacyjnych — stuningowany model.

Błędy klasyfikacji to 0.059322 i 0.0666667.

Zobaczmy jak wpłynie na model wytrenowany na train.subset zmiana parametrów drzewa — tabela (11).

Rysunek 10: Drzewo decyzyjne — stunigowany model.

	cp	Accuracy	Kappa	AccuracySD	KappaSD
1	0.019	0.847	0.766	0.048	0.074
2	0.020	0.847	0.766	0.048	0.074
3	0.021	0.847	0.766	0.048	0.074
4	0.022	0.847	0.766	0.048	0.074
5	0.023	0.847	0.766	0.048	0.074

Tabela 11: 5 najlepszych modeli drzewa decyzyjnego.

Widzimy, że najlepsze reultaty otrzymujemy dla ${\tt cp}=0$ — drzewa nie trzeba w ogóle przycinać.

Jak widzimy model stuningowany poradził sobie najlepiej. Wyznaczymy teraz dla niego błąd predykcji — skorzystamy ponownie z 5-krotnej walidacji krzyżowej, metody bootstrap oraz .632+.

```
predictor <- function(model, newdata)</pre>
{ predict(model, newdata=newdata, type = "class") }
decision.tree.predictor <- function(formula, data)</pre>
{ rpart(formula, data = data, cp = 0)}
decision.tree.error.cv <- errorest(Type~., wine[, c(1, 2, 7, 8)],
                                    model=decision.tree.predictor,
                                    predict=predictor, estimator="cv",
                                    est.para=control.errorest(k = 5))
decision.tree.error.boot <- errorest(Type~., wine[, c(1, 2, 7, 8)],</pre>
                                      model=decision.tree.predictor,
                                      predict=predictor, estimator="boot",
                                      est.para=control.errorest(nboot = 25))
decision.tree.error.632 <- errorest(Type~., wine[, c(1, 2, 7, 8)],
                                      model=decision.tree.predictor,
                                      predict=predictor, estimator="632plus",
                                      est.para=control.errorest(nboot = 25))
```

Błędy wyniosły kolejno 0.1067416, 0.1244723 oraz 0.1044197.

3.4 Naiwny klasyfikator bayesowski

Najpierw wytrenujemy model na zbiorze uczącym zawierającym wszystkie zmienne.

```
bayes.model.basic <- naiveBayes(Type ~ ., data = train.data)
basic.bayes.train.pred <- predict(bayes.model.basic, train.data)
basic.bayes.test.pred <- predict(bayes.model.basic, test.data)</pre>
```

Wyznaczmy dla tego modelu macierze pomyłek i wartości błędów klasyfikacji.

	1	2	3			1	2	3
1	36	0	0		1	22	1	0
2	0	50	1		2	0	19	1
3	0	0	31		3	0	0	17
(a	(a) Zbior uczacy				(b) Zbic	or test	owy

Tabela 12: Macierze pomylek dla klasyfikatora bayesowskiego — wszystkie cechy.

Błędy klasyfikacji to kolejno 0.0084746 i 0.0333333.

Powtórzmy teraz powyższe dla wybranego podzbioru naszych danych.

```
bayes.model.subset <- naiveBayes(Type ~ ., data = train.subset)
bayes.subset.train.pred <- predict(bayes.model.subset, train.subset)
bayes.subset.test.pred <- predict(bayes.model.subset, test.subset)</pre>
```

	1	2	3			1	2	3
1	34	2	0		1	20	3	0
2	2	47	2		2	2	17	1
3	0	1	30		3	0	0	17
(a	(a) Zbior uczacy				(b) Zbic	or test	owy

Tabela 13: Macierze pomylek dla klasyfikatora bayesowskiego — wybrane cechy.

Błędy klasyfikacji to kolejno 0.059322 i 0.1.

Ponownie skorzystamy z pakietu caret, by stworzyć model stunigowany, wytrenowany na wsszystkich cechach. Wyznaczymy dla niego macierze pomyłek i błędy klasyfikacji.

	1	2	3			1	2	3
1	36	0	0		1	22	1	0
2	0	50	1		2	0	19	1
3	0	0	31		3	0	0	17
(a	(a) Zbior uczacy				(b) Zbio	or test	owy

Tabela 14: Macierze pomylek dla klasyfikatora bayesowskiego — model stuningowany.

Błędy klasyfikacji w tym przypadku to kolejno 0.0084746 i 0.0333333.

Widzimy, że poradził on sobie najlepiej z trzech rozważanych modeli.

Powtórzymy teraz ocenę klasyfikacji, podobnie jak dla wcześniej, dla stuningowanego klasyfikatora bayesowskiego.

Błędy predykcji wyniosły kolejno 0.0224719, 0.0347701 oraz 0.0244075.

3.5 Wieloklasowa regresja logistyczna

Najpierw wytrenujemy model na zbiorze uczącym zawierającym wszystkie zmienne.

```
mlr.model.basic <- multinom(Type ~ ., data = train.data)
basic.mlr.train.pred <- predict(mlr.model.basic, newdata = train.data, type = "class")
basic.mlr.test.pred <- predict(mlr.model.basic, newdata = test.data, type = "class")</pre>
```

Wyznaczmy dla tego modelu macierze pomyłek i wartości błędów klasyfikacji.

	1	2	3			1	2	3
1	36	0	0		1	22	0	1
2	0	51	0		2	1	18	1
3	0	0	31		3	0	0	17
(a	(a) Zbior uczacy				(b) Zbic	or test	owy

Tabela 15: Macierze pomylek dla regresji wieloklasowej — wszystkie cechy.

Błędy klasyfikacji to kolejno 0 i 0.05.

Powtórzmy teraz powyższe dla wybranego podzbioru naszych danych.

```
mlr.model.subset <- multinom(Type ~ ., data = train.subset)
mlr.subset.train.pred <- predict(mlr.model.subset, train.subset, type = "class")
mlr.subset.test.pred <- predict(mlr.model.subset, test.subset, type = "class")</pre>
```

Błędy klasyfikacji to kolejno 0.0847458 i 0.1.

Ponownie skorzystamy z pakietu caret, by stworzyć model stunigowany. Wyznaczymy dla niego macierze pomyłek i błędy klasyfikacji.

	1	2	3		1	2	3
1	34	2	0	1	19	4	0
2	3	45	3	2	1	19	0
3	0	2	29	3	0	1	16
(a	(a) Zbior uczacy			(b) Zbio	or test	owy

Tabela 16: Macierze pomylek dla wieloklasowej regresji — wybrane cechy.

	1	2	3		1	2	3
1	35	1	0	1	22	1	0
2	0	51	0	2	1	18	1
3	0	0	31	3	0	0	17
(a) Zbior uczacy				(b) Zbio	or test	owy

Tabela 17: Macierze pomylek dla klasyfikatora regresji wieloklasowej — model stuningowany.

Błędy klasyfikacji w tym przypadku to kolejno 0.0084746 i 0.05.

Powtórzymy teraz podobną jak wcześniej ocenę klasyfikacji dla stuningowanego modelu regresji wieloklasowej.

```
predictor <- function(model, newdata)
{ predict(model, newdata=newdata) }

mlr.predictor <- function(formula, data)
{ train(formula, data = data, method = "multinom", trControl = cv)}

mlr.error.cv <- errorest(Type~., wine, model=mlr.predictor, predict=predictor, estimator="cv", est.para=control.errorest(k = 5))

mlr.error.boot <- errorest(Type~., wine[, c(1, 2, 7, 8)], model=mlr.predictor, predict=predictor, estimator="boot", est.para=control.errorest(nboot = 25))

mlr.error.632 <- errorest(Type~., wine[, c(1, 2, 7, 8)], model=mlr.predictor, predict=predictor, estimator="632plus", est.para=control.errorest(nboot = 25))</pre>
```

Błędy predykcji wyniosły 0.0505618, 0.1068539 oraz 0.0959082.

3.6 Podsumowanie

Porównaliśmy ze sobą 4 klasyfikatory. Dla każdego z nich badaliśmy jaki wpływ na dokładność ich predykcji ma zmiana charaktrystycznych dla nich parametrów czy zmiany w zbiorze uczącym (klasyfikatory trenowliśmy na zbiorach, które albo zawierały wszystkie zmienne, albo te wybrane przez nas, które wprowadzły najlepszy podział na zmienne).

- Dla metody k najbliższych sąsiadów najlepsze rezultaty otrzymaliśmy dla k=9 i zbioru uczącego o zawężonej liczbie cech.
- Dla metody drzew decyzyjnych najlepszy okazała się wartość parametru cp=0 i wyuczenie modelu na zbiorze z wybranymi przez nas cechami.
- Dla naiwnego klasyfikatora bayesowskiego najlepsze efekty otrzymaliśmy, gdy wyuczyliśmy model na zbiorze uczącym zawierającym wszystkie zmienne.
- Dla wieloklasowej regresji logistycznej najefektywniejsze okazało się wyuczenie modelu na zbiorze zawierającym wszystkie zmienne.

Błędy predykacji dla 5-krotnej walidacji krzyżowej, metody bootstrap oraz .632+ wyglądają następująco — patrz tabela.

Metoda	KNN	Drzewa decyzyjne	Naiwny klasyfikator bayesowski	Wieloklasowa regresja logistyczna
CV	0.0842697	0.1067416	0.0224719	0.0505618
Bootstrap	0.1011415	0.1244723	0.0347701	0.1068539
632 +	0.0822332	0.1044197	0.0244075	0.0959082

Tabela 18: Wartości błędów predykcji.

Możemy zauważyć, że najlepszą metodą okazał się naiwny klasyfikator bayesowski. Najgorzej natomiast poradziły sobie drzewa decyzyjne.