

Trabajo Práctico N° 8 Torsión

Ejercicio 8.1 Un eje hueco y uno sólido construidos con el mismo material tienen la misma longitud y radios exteriores R. El radio interior del eje hueco es 0.6R.

- (a) Suponiendo que los dos ejes se someten al mismo par de torsión, compare sus esfuerzos cortantes, ángulos de torsión y pesos.
- (b) Determine las razones entre resistencia y peso de los ejes.

Ejercicio 8.2 El eje solido está hecho de un material que tiene un esfuerzo cortante permisible de t_{per}=10Mpa. Determine el diámetro requerido del eje con una precisión de 1mm. Dibuje el diagrama de momento a lo largo del eje.

Ejercicio 8.3 El motor mostrado en la figura entrega 15HP a la polea A mientras gira a la velocidad constante de 1800 rpm. Determine, el diámetro más pequeño posible para fijar el eje BC, si el esfuerzo cortante permisible para el acero es $t_{per} = 12ksi$. La banda no se desliza sobre la polea.

Ejercicio 8.4 El motor de un helicóptero entrega 600 HP al eje del rotor AB cuando la hélice está girando a 1200 rev/min. Determine el diámetro del eje AB si el esfuerzo cortante permisible t_{per}=8ksi y las vibraciones limitan un ángulo de torsión del eje a 0.05 rad. El eje tiene 2 pies de largo y está fabricado de acero L2.

Ejercicio 8.5 El eje ABC de 60mm de diámetro se encuentra apoyado en dos chumaceras, mientras que el eje EH con un diámetro de 80mm esta fijo en E y se apoya sobre una chumacera en H. Si T_1 = 3 kN.m y T_2 =4kN.m, determine el ángulo de giro de los engranajes en A y C. Los ejes están fabricados de acero A-36.

Ejercicio 8.6 El motor A desarrolla un par de torsión de 450 lb.pie en el engranaje B, el cual se aplica a lo largo de la línea central del eje de acero CD que tiene un diámetro de 2 pulg. Este par de torsión se transmite a los engranajes de piñón en E y F. Si los engranajes se fijan de manera temporal, determine el esfuerzo cortante máximo en los segmentos CB y BD del eje. Además, ¿Cuál es el ángulo de giro de cada uno de estos segmentos? Los cojinetes en C y D sólo ejercen reacciones de fuerza sobre el eje y no se resisten al par de torsión. G_{ac}= 12x10³ ksa.

Ejercicio 8.7 El eje de acero inoxidable 304 tiene 3m de longitud y un diámetro exterior de 60mm. Cuando gira a 60 rad/s transmite 30kw de potencia desde el motor E hasta el generador G. Determine el menor grosor posible del eje si el esfuerzo cortante permisibles es t_{per} = 150MPa y el eje no se puede torcer más de 0.08 rad.

Mecánica de los Sólidos 2019 Profesor Titular Daniel Millán JTP Eduardo Rodríguez

Ejercicio 8.8 Si el eje solido AB al que está conectada la n C83400 y tiene un diámetro de 10mm, determine las n aplicarse a la manivela justo antes de que el material cor ¿Cuál es el ángulo de giro en la manivela? El eje se encuenti

Ejercicio 8.9 Al taladrar un agujero en una pata de una n operación manual con una broca con diámetro d = 4.0 suministrado por la pata de la mesa es igual a 0.3 N·m, ¿cu broca del taladro? (b) Si el módulo de elasticidad cortant razón de torsión de la broca del taladro (grados por metro)?

Ejercicio 8.10 Al desmontar una rueda para caml P=25lb en los extremos de dos de los brazos de una módulo de elasticidad cortante G=11.4×10⁶ psi. Cac tiene una sección transversal circular sólida con diá

- (a) Determine el esfuerzo cortante máximo en el bra
- (b) Determine el ángulo de torsión (en grados) de es

Ejercicio 8.11 Un eje escalonado ABCD que cons tres pares de torsión, como muestra en la figura. Los 9.8 k-in y 9.2 k-in. La longitud de cada segmento e in, 2.75 in y 2.5 in. El material es acero con módulo

- (a) Calcule el esfuerzo cortante máximo $t_{máx}$ en el eje.
- (b) Calcule el ángulo de torsión (en grados) en el extremo D.

Ejercicio 8.12 Un tubo hueco ABCDE construido de metal está sometido a cinco pares de torsión que actúan en los sentidos que se muestran en la figura. Las magnitudes de los pares de torsión son $T_1 = 1000$ lb-in, $T_2 = T_4 = 500$ lb-in y $T_3 = T_5 = 800$ lb-in. El tubo tiene un diámetro exterior d_2 =1in. El esfuerzo cortante permisible es 12,000 psi y la razón de torsión permisible es 2.0°/ft. Determine el diámetro interior máximo permisible d_1 del tubo.

Ejercicio 8.13 Un motor suministra 275 hp a 1000 rpm al extremo de un eje. Los engranes en B y C toman 125 y 150 hp, respectivamente. Determine el diámetro "d" requerido del eje si el esfuerzo cortante permisible es 7500 psi y el ángulo de torsión entre el motor y el engrane C está limitado a 1.5° . (G = 11.5×10^{6} psi, L_1 = 6 ft y L_2 = 4 ft).

Mecánica de los Sólidos 2019 Profesor Titular Daniel Millán JTP Eduardo Rodríguez

Ejercicio 8.14 Una barra ahusada AB con sección transversal circular se somete a pares de torsión T aplicados en los extremos. El diámetro de la barra varía linealmente de d_A en el extremo izquierdo a d_B en el extremo derecho, suponiendo que d_B es mayor que d_A .

- (a) Determine el esfuerzo cortante máximo en la barra.
- (b) Deduzca una fórmula para el ángulo de torsión de la barra.

Ejercicio 8.15 Al perforar un pozo, se supone que el extremo profundo de la tubería de perforación encuentra una resistencia a la torsión T_A . Por otra parte, la fricción del suelo a lo largo de los lados del tubo crea una distribución lineal del par de torsión por unidad de longitud que varía desde cero en la superficie B hasta t_A en A.

- (a) Determine el par de torsión necesario T_B que debe suministrar la unidad propulsora para girar la tubería.
- (b) Calcule el esfuerzo cortante máximo en la tubería.
- (c) Además, ¿cuál es el ángulo relativo de giro de un extremo de la tubería con respecto al otro extremo cuando el tubo está a punto de girar?

El tubo tiene un radio exterior r_o y un radio interior r_i . El módulo cortante es G.

