湖南工业大学

课程设计

资料袋

	计算机	几与通信	_学院(系、音	部) <u>2013</u>	~ 201	<u> [4 </u>	学年第	2	_学期
课程	名称	微波通信	课程设计	指导教师	邱银	き安	职称	副教	汝授
学生	姓名_	蒋培玉	_专业班级_	通信 1204	班	_学号	12408200	411	
题	目			微波放大器	的设计				
成	绩		起止日期	<u>2015</u> 年 <u>05</u> 月	月 <u>18</u> 日	~ <u>20</u>	<u>)15</u> 年 <u>05</u>	_月 <u>î</u>	<u>31</u> 日

目 录 清 单

序号	材料名称	资料数量	备注
1	课程设计任务书	1	
2	课程设计说明书	1	
3	课程设计图纸		张
4			
5			
6			

湖南工业大学

课程设计任务书

2014—2015 学年第 2 学期

计算	算机与通信	学院	通信工程	专业_	1204	_班级
课程名称:	微波	通信课程设	ìt			_
设计题目:	微波放	女大器的设计				_
完成期限:	自 2015 年 5	月 <u>18</u> 日至_	<u>2015</u> 年 <u>5</u> 月 <u>5</u>	<u>31</u> 日共_	2_周	

一、设计目的

- 1. 了解射频放大器的基本原理与设计方法。
- 2. 利用实验模块实际测量以了解放大器的特性。
- 3. 学会使用微波软件对射频放大器的设计和仿真,并分析结果。

内容及任

务

- 二、设计任务(内容)
 - 熟悉放大器原理等理论知识。
 - 熟悉放大器设计相关理论知识。
- 三、设计工作量 1 周完成

进	起止日期	工作内容
度	5月18至5月20号	组员分组、讨论任务分配、查资料理解理解课题
安	5月21至5月26号	详细分析放大器原理、设计放大器电路
排	5月27号5月30号	实验室验证电路和测试实验结果(或结果分析)
	5月31号	设计总结、书写实验报告

指导教师(签字):	年	月	日
系 (教研室)主任 (签字):	年	月	日

微波通信 设计说明书

微波放大器的设计

起止日	期: _	<u>18</u> 日至 <u>2015</u> 年 <u>5</u> 月 <u>31</u> 日		
学	生	姓	名	蒋培玉
班			级	通信 1204 班
学			号	12408200411
成			绩	
指馬	身教 り	师(签	字)	

计算机与通信学院 2015年5月31日

课题	题名	微波锁相振荡器的	设计	
组长		袁珍	同组人员	蒋培玉、付向宇、欧素珍、于薇
课题的主要内容和要求	1. 了 2. 利 3. 学 2. 熟悉	设计目的 解射频放大器的基本原用实验模块实际测量以 会使用微波软件对射影设计内容 放大器原理等理论知识 放大器设计相关理论知识	人了解放大器的特性 质放大器的设计和位 只。	
时间				

安
排
与
完
成

情

况

起止日期	工作内容
5月18至5月20号	组员分组、讨论任务分配、查资料理解理解课题
5月21至5月26号	详细分析锁相环原理、设计锁相环电路及压控振荡器电路
5月27号5月30号	实验室验证电路和测试实验结果(或结果分析)
5月31号	设计总结、书写实验报告

参考资

料

- 【1】 吴群 宋朝晖.《微波技术》 [M]. 哈尔滨工业大学出版社. 2004. 30~37.
- 【2】 范寿康等, 《微波技术与微波电路》[M]. 北京机械工业出版社. 2003. 254-275.

目录

1 设计实验设备	2
2基本原理	2
3 硬件测量	5
4 软件仿真	7
5 实例分析	8
6 设计总结	10
7 参考文献	11

微波放大器设计

一、设计实验设备

项次	设备名称	数量	备注
1	扫频信号源、示波器	1 套	亦可用标量网络分析 仪
2	放大器模块	1组	RF2KM7-1A
3	50Ω BNC及1MΩ BNC 连接线	4条	
4	直流电源连接线	1条	DC-1
5	MICROWAVE 软件	1 套	微波软件

二、基本原理

一个射频晶体放大器电路可分为三大部分:二端口有源电路、输入匹配电路及输出匹配电路,如图1所示。一般而言,二端口有源电路采用共射极(或共源极)三极管(BJT、FET)电路,此外,还包括直流偏压电路。而输入匹配电路及输出匹配电路大多采用无源电路,即利用电容、电感或传输线来设计电路。一般放大器电路,根据输入信号功率不同可以分为小信号放大器、低噪声放大器及功率放大器三类。而小信号放大器依增益参数及设计要求,可分成最大增益及固定增益两类。而就 S 参数设计而言,则可有单向设计及双边设计两种。本单元仅就小信号放大器来说明射频放大器之基本理论及设计方法。

则放大器之单边转换增益(Unilateral Transducer Gain, G_{TU})为: $G_{TU} = G_S G_O G_L$

其中
$$G_{S} = \frac{1 - \left|\Gamma_{S}\right|^{2}}{\left|1 - S_{11}\Gamma_{S}\right|^{2}}$$
 $G_{O} = \left|S_{21}\right|^{2}$ $G_{L} = \frac{1 - \left|\Gamma_{L}\right|^{2}}{\left|1 - S_{22}\Gamma_{L}\right|^{2}}$

假若电路又符合下列匹配条件:

$$\Gamma_s = S_{11} * \mathcal{B} \qquad \Gamma_L = S_{22} *$$

则可得到此放大器电路之最大单边转换增益(Maximum Unilaterla Transducer Gain, G_{TIL max}):

$$G_{TU,\text{max}} = \frac{1}{1 - |S_{11}|^2} \cdot |S_{21}|^2 \cdot \frac{1}{1 - |S_{22}|^2}$$

(二) 双边放大器设计(Bilateral Amplifier Dseign)

双边设计即是考虑有源器件 S 参数中的 S_{12} , 即是 $S_{12}\neq 0$ 。此时可得:

$$\Gamma_{IN} = S_{11}^{'} = S_{11} + \frac{S_{12}S_{21}\Gamma_{L}}{1 - S_{22}\Gamma_{L}} \qquad \cancel{Z} \qquad \Gamma_{OUT} = S_{22}^{'} = S_{22} + \frac{S_{12}S_{21}\Gamma_{S}}{1 - S_{11}\Gamma_{S}}$$

若利用最大增益匹配法(亦称共轭阻抗匹配法),则可得

$$\Gamma_{s} = \Gamma_{IN} * \mathcal{D} \qquad \Gamma_{L} = \Gamma_{OUT} *$$

经过推导可利用下列公式计算出最佳输入反射系数 Γ_{sm} 和最佳输出反射系数 Γ_{lm} :

$$\Gamma_{Sm} = \frac{\overline{C_{1}} \cdot \left[B_{1} \pm \sqrt{B_{1}^{2} - 4 \cdot \left| C_{1} \right|^{2}} \right]}{2 \cdot \left| C_{1} \right|^{2}} \quad \text{,} \quad \Gamma_{Lm} = \frac{\overline{C_{2}} \cdot \left[B_{2} \pm \sqrt{B_{2}^{2} - 4 \cdot \left| C_{2} \right|^{2}} \right]}{2 \cdot \left| C_{2} \right|^{2}}$$

其中

$$B_{1} = 1 + |S_{11}|^{2} - |S_{22}|^{2} - |\Delta|^{2}$$

$$B_{2} = 1 - |S_{11}|^{2} + |S_{22}|^{2} - |\Delta|^{2}$$

$$C_{1} = S_{11} - \Delta \cdot \overline{S_{22}}$$

$$C_{2} = S_{22} - \Delta \cdot \overline{S_{11}}$$

$$\Delta = S_{11}S_{22} - S_{12}S_{21}$$

(三)单边设计评价因子(Unilateral Figure of Merit, M)

在判断有源元件是否适用单边设计时,主要看它的评价因子是否够小。一般而言,当 M 值小于 0.03 或-15dB 时即可采用单边设计。

其计算公式如下:

$$M = \frac{|S_{12}| \cdot |S_{21}| \cdot |S_{11}| \cdot |S_{22}|}{(1 - |S_{11}|^2) \cdot (1 - |S_{22}|^2)}$$

最大增益误差比则为:

$$\frac{1}{(1+M)^2} < \frac{G_T}{G_{TU,\text{max}}} < \frac{1}{(1-M)^2}$$

其中 G_T 是有源元件的转换增益 (Transducer Gain)

$$G_{T} = \frac{(1 - \left|\Gamma_{S}\right|^{2}) \cdot \left|S_{21}\right|^{2} \cdot (1 - \left|\Gamma_{L}\right|^{2})}{\left|(1 - S_{11}\Gamma_{S})(1 - S_{22}\Gamma_{L}) - S_{12}S_{21}\Gamma_{S}\Gamma_{L}\right|^{2}}$$

(四)放大器的稳定条件(Stability Criteria)

- (1) 无条件稳定 Unconditionally stable)
- 一个良好的放大器设计电路除考虑增益和输出入匹配外,还需要考虑放大器在工件频段中是否为无条件稳定,以避免电路产生振荡。如图 5-2 (a) 所示:

对于一个放大器电路而言,其有源器件在 Γ s=0 及 Γ L=0 情况下,无条件稳定的充要条件为

$$K>1$$
 , $\left|S_{11}\right|<1$ 且 $\left|S_{22}\right|<1$

其中 K 称为稳定因子 (stability factor)

$$K = \frac{1 - \left| S_{11} \right|^2 - \left| S_{22} \right|^2 + \left| \Delta \right|^2}{2 \cdot \left| S_{12} S_{21} \right|}$$

(2) 条件稳定 (Conditionally stable)

当有源器件不符合上述无条件稳定的三大规定时,即称为条件稳定。在此情况下,在输入端平面及输出端平面,必存一些不稳定区域,如图 2 (b) 所示:

图 2 条件稳定圆示意图

而在设计输出入匹配电路时,务必避免使用这些区域,以免造成放大器 电路自激。

其对应无条件稳定的条件为

$$||c_s|-r_s|>1$$
, $|S_{11}|<1$ 且 $||c_L|-r_L|>1$, $|S_{22}|<1$ 而条件稳定则是

 $||c_s| - r_s| < 1$, $|S_{11}| < 1$ 或 $||c_L| - r_L| < 1$, $|S_{22}| < 1$

(A) 输出稳定圆 (Load Stability Circle):

(B) 输入稳定圆 (Source Stability Circle):

$$|\Gamma_{S} - c_{s}| = r_{s}$$

半径
$$r_s = \frac{\left|S_{12}S_{21}\right|}{\left\|S_{11}\right|^2 - \left|\Delta\right|^2}$$
 ; 圆心 $c_s = \frac{\overline{C_1}}{\left|S_{11}\right|^2 - \left|\Delta\right|^2}$

(五)设计步骤:

步骤一:设定放大器工件频率 (f_0) 与输出入阻抗 (R_s, R_L) 。一般射频放大器的输出入阻抗设定为 $50\,\Omega$ 。

步骤二:根据电源选用晶体三极管,同时设定三极管的偏压条件($_{VCE}$, I_c),决定出在该条件下的三极管的 S 参数(S_{11} , S_{21} , 12, S_{22}),并设计适用它的偏压电路。

步骤三:将步骤二所获得的 S 参数代入上述公式计算出下列设计参数。

稳定因子,K

单边设计评价因子, M

最大单边转换增益, GTL max

输入稳定圆的圆心, Cs及半径, rs

输出稳定圆的圆心, C_L及半径, r_L

最佳输入反射系数 Γsm

最佳输出反射系数 Γ.

步骤四:检查 K 值是否小于 1。若 K 值大于 1,则为无条件稳定可进行下一步骤。若小于,则须将输出入稳定圆标示于单位圆的史密斯圆图上,以便在设计输出入匹配电路时,避免使用到不稳定区域(如图 5-2(b))所示。

步骤五: 检查 M 值是否够小。

(1) 若 M 值接近 0.03(-15dB)则适用单边设计,可得

$$\Gamma_{S} = S_{11} * \mathcal{B} \qquad \Gamma_{L} = S_{22} *$$

最大增益即为 GTU, max

(2) 若 M 值大于 0.03(-15dB)则须用双边设计,可得

$$\Gamma_{S} = \Gamma_{Sm}$$
 \mathcal{K} $\Gamma_{L} = \Gamma_{Lm}$

最大增益即为 Gr.max

步骤六: 利用步骤五所得Γ。及Γ,设计输出入匹配电路

三、硬件测量

- 1、对 LNA, MMIC 放大器的 S11 及 S21 测量以了解 MMIC 放大电路的特性。对 LNA, BJT 放大器的 S11 及 S21 测量以了解射频 BJT 放大电路的特性。
- 2、准备电脑,测量软件,扫频仪、同轴检波器、示波器、相关模块,若干小器件等。
- 3、测量步骤:
 - 一、用标量网络分析仪的测量方法:
 - (1) LNA 的 P1 端子的 S11 测量:设定频段: BAND-4;用 DC-1 连接线将后面 12VDC 输出端子连接起来;对模块 P1 端子做 S11 测量,并将测量结果记录于表(1)中。

(2) LNA 的 P1 及 P2 端子的 S21 测量: 设定频段: BAND-4; 对模块 P1 及 P2 端子做 S21 测量,并将测量结果记录于表(2)中。

(3) LNA 的 P3 端子的 S11 测量: 设定频段: BAND-4; 对模块 P3 端子做 S11 测量,并将测量结果记录于表(3)中。

(4) LNA 的 P3 及 P4 端子的 S21 测量:设定频段: BAND-4;对模块 P3 及 P4 端子做 S21 测量,并将测量结果记录于表(4)中。

LAN 电路仿真结果

4、实验记录表 9-1、9-2、9-3、9-4 均为以下此表:

二、用扫频仪、同轴检波器、示波器、相关模块的测量方法:

- (1) 将示波器打到 X-Y 挡, 扫频仪扫瞄输出接示波器的 X 输入作为水平频率 线。
- (2)将扫频仪射频输 图 5-2 微波滤波器测量方框图 [Hz,滤波器输出接微波同轴检波器,然后接到示波器 Y 轴挡。将扫频仪扫瞄带宽打到 200MHz,带通滤波器带宽为 20MHz,用扫频仪 Maker 频标观查测量带内波动。注意扫频仪输出打到—30dBm。
- (3)带内增益的测量,去掉 LNA,直接将扫频仪输出接微波同轴检波器,到示波器观查前后两种情况下的电平差别,再调节扫频仪输出使两种情况示波器指示相同,记下两次的电平差,可测出带内增益分贝数。
- (4)其它指标测量方法同前。

四、软件仿真

- 1. 进入微波软件 MICROWAVE。
- 2. 在原理图上设计好相应的电路,设置好 P1, P2, P3, P4 端口,完成频率设置、尺寸规范、器件的加载、仿真图型等等的设置。

- 3. 最后进行仿真,结果应接近实际测量所得到的仿真图形。
- 4. 电路图(推荐以下),接着是相应的仿真图。

图 3 模拟结果

五、实例分析

试利用 ATF-35143 设计一 2000MHz 放大器。其中电源为 5VDC,输出入阻抗为 50 Ω 。ATF-35143 的 S 参表 (V_{CS} =2V, I_{DS} =10mA, Z_{O} =50 Ω , T_{A} =25 \mathbb{C}) 如下列:

Freqency		S ₁₁	S	21	S	12	S	22
(GHz)	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.5	0.49	-153	12. 7	98	0.030	50	0.42	-35
0.6	0.48	-159	10.7	94	0.034	52	0.39	-35
0.7	0.48	-163	9.3	90	0.037	53	0.38	-35
0.8	0.47	-167	8. 2	87	0.040	55	0.37	-36
0.9	0.47	-170	7. 3	85	0.044	56	0.36	-37
1.0	0.47	-171	6. 6	82	0.047	57	0.37	-38
1.5	0.44	177	4. 9	71	0.065	59	0.40	-42
2.0	0.41	163	3. 4	61	0.083	58	0.42	-45

ATF-35143 技术参数

- 1.9GHz; 2V, 15Ma
- 0. 4dB 噪声系数,18dB 增益 $P_{1dB} = 11dBm$

低相位噪声

ATF-35143 Electrical Specifications

 $TA = 25 \, \text{C}$, RF parameters measured in a test circuit for a typical device

TA = 25 °C, RF parameters measured in a test circuit for a typical device						
Symbo 1	Saturated Drain Current		Units	Min.	Тур.	Ma x
Idss	Pinchoff Voltage	VDS = 1.5 V, VGS = 0 V	mA	40	65	80
VP	Quiescent Bias Current	VDS = 1.5 V, Ids =10%Idss	V	-1	-0.5	-0.4
Id	Transconductance	VGS = 0.45 V, VDS = 2 V	mA		15	
gm	Gate to Drain Current	VDS = 1.5 V, gm = Idss /VP	mmho	90	120	
IGDO	Gate Leakage Current	VGD = 5 V	μА			250
Igss		VGD = VGS = -4 V	mA		10	150
NF	Noise Figure[3]	f = 2 GHz VDS = 2 V, IDS = 15	dB		0.4	
		mA VDS = 2 V, IDS = 5 mA f = 900MHz VDS = 2 V, IDS =	dB		0.5	
Ga	Associated Gain[3]	15 mA VDS = 2 V, IDS = 5 mA f = 2 GHz VDS = 2 V, IDS = 15 mA VDS = 2 V, IDS = 5 mA	dB	16.5 14	18 16	19. 5 18
		f = 900MHz VDS = 2 V, IDS = 15 mA VDS = 2 V, IDS = 5 mA	dB		20 18	
OIP3	Output 3rd Order Intercept Point	f = 2 GHz VDS = 2 V, IDS = 15 mA VDS = 2 V, IDS = 5 mA	dB		21 14	
		f = 900MHz VDS = 2 V, IDS = 15 mA VDS = 2 V, IDS = 5 mA	dB		19 14	
P1dB	1 dB Compressed Intercept Point	f = 2 GHz VDS = 2 V, IDS = 15 mA VDS = 2 V, IDS = 5 mA	dB		10 8	
		f = 900MHz VDS = 2 V, IDS = 15 mA VDS = 2 V, IDS = 5 mA	dB		9 9	

设计结果:

经公式计算结果,有源器件的 K 值在工件频率上大于 1,为无条件稳定。此结果也可由输出输入稳定圆来验证。输入稳定圆的圆心距离大小 $|c_s|=2.675$,大于其半径大小 $r_s=1.644$,输出稳定圆的圆心距离大小 $|c_L|=4.123$,也大于其半径大小 $r_L=3.085$,故可证得为无条件稳定。而计算所得单边设计评价因子 M=0.08>0.03,所以不可以用单边设计,而须采用双边设计。

经双边设计计算公式,可得:

最佳输入反射系数 Г_{sm}=0.821 △172.6°

最佳输出反射系数 Γ ...=0.787 △41.2°

最大转换增益 G_{Tmax}=20.821dB。

本例中最佳输入反射系数和最佳输出反射系数经匹配 F₀,再加入偏压电路后,可得该放大器电路及模拟结果。

六、设计总结

在这次的课程设计中,让我收获非常之多。这次的课程设计和以往不同,以往我们班上都是做一个课题,而这次是每组一个课题,所以也无法从同学那里获得经验。后来通过参考微波放大器的设计指导书以及上网查找资料来完成的。看到自己把所出现的错误一个个的改出来,心里真的很是欣慰。我体会到了自己和其他成员完成一次任务的成就感,更重要的是我体会到了认真对待一件事并好好完成的愉悦感,这将对我以后产生很大的帮助。

通过这一次课程设计,我学到的东西比以往上课学到的还多。这让我明白,理论永远是理论,要是没有实践,理论永远是一张空纸。我们要从实践中学到更过的东西。而实践又要以理论为基础的,要是微波通信知识学得不扎实,做出来的设计也是漏洞百出。所以,我们要将理论和实践结合起来,把我们在课堂上学到的东西运用在实际中,这样才能提高我们自身的能力。

在接到任务时,其实心里有点恐惧,感觉自己没有能力做出来,就想着反正可以去网上搜,也就不怎么着急。后来想到如果总是依赖互联网,而不去努力,自己永远不可能提高,于是开始自己尝试着做。

在学习微波通信的时候,老师就一直强调,学习需要细心和耐心,特别是设计较复杂内容的时候,真正在设计时还是会粗心。在整个设计过程中,还有很多是由于粗心而导致的错误,也有很多是对以前知识的遗忘,这就告诫自己以后做什么事情都要仔细认真,不要大大咧咧。即使再有能力,不认真,不付出努力,所谓的能力也终究只能是空有一身本领。

七、参考文献

- 【1】 吴群 宋朝晖.《微波技术》 [M]. 哈尔滨工业大学出版社. 2004. 30~37.
- 【2】 范寿康等, 《微波技术与微波电路》[M]. 北京机械工业出版社. 2003. 254-275.