NASA RFID Applications

Patrick W. Fink, Ph.D.

April 19, 2007

Contributors

- Patrick Fink, Ph.D.
- Timothy Kennedy, Ph.D.
- Anne Powers
- Yasser Haridi
 - Andrew Chu
- Greg Lin
- Hester Yim
- Kent Byerly, Ph.D. (Spatial Acuity)
- Richard Barton, Ph.D.
- Michael Khayat, Ph.D.
- George Studor
- Robert Brocato (Sandia National Laboratories)

- Phong Ngo
- G. D. Arndt, Ph.D.
- Julia Gross
- Chau Phan
- David Ni, Ph.D.
- Richard Barton, Ph.D.
- John Dusl
- Kent Dekome

Outline

- Inventory management in space
- Apollo, Space Shuttle, Space Station
- Potential RFID uses in a remote human outpost
- **Ultra-Wideband RFID for Tracking**
- Passive, wireless sensors in NASA applications
- Micrometeoroid impact detection
- Sensor measurements in environmental facilities
- E-textiles for wireless and RFID

Apollo Inventory Concept

(Reference Apollo Experience Report: Crew Station Integration - Stowage & the Support Team Concept, 1972)

Top level stowage drawing showing Command Module stowage layout

Sample table of items contained in modular container locations — used to layout vehicle and train crews on item locations

	Equipment	Quantity
Headrest pads		60
Heel restraints		3 pair
Sleep restraint ropes		2
Sextant adapter for	Sextant adapter for 16-mm camera	1
Spotmeter		
Two-speed timer		1
Carbon dioxide absorbers	sorbers	2
Television monit	Television monitor with cable and strap	
12-foot television	12-foot television cable with strap	_
Television-camera bracket	ra bracket	1

Shuttle Inventory Concept (non-Transfer to ISS)

- Crew is provided hard copy of items listed by location (no part numbers, serial numbers, etc., provided)
- Crew also has the ability to look items up in laptop database, but often requests item locations from Mission Control

STS-109 MIDDECK STOWAGE

FORWARD LOCKERS

MF14H	(Cont) Kits	Comm	Cables	Comm, 4 ff	Mic, Handheld (3)	VLHS (2)	Saliva	Mirror (2)	O2 Bleed Orifice	Pip Pin (12)	Pip Pin, Escape Pole (Spare)	Switch Guard, Computer	Grav 1 in	Gray, Till	7inloc 8 in /201	Ziploc, 9 III (20) Ziploc 12 in (8)	Zipioc, 12 III (9)	
MF14E	Food, Menu FRED		MF14G	Clothing, CDR	Clothing, CDR		MF14H		Dags Holmot Stamons (2)	neimet Stowage (z) Inflight Stowage Restraint (10)	Jettison Stowage (10)	Bungee, Adjustable (7)	Canister, WCS (Coffee Can)	Covers	HUD (4)	Parachute (7)	Hoses	Personal Hygiene

Filter, Waste Water Dump Breaker Bar, 3/8 in Kit, RMS D&C Breakout Box urnbuckles Air Bottles MF14K

FDF | Bag, WVS MF14M

Food, Menu Food, Menu MF140

ood, Menu Food, Menu MF28E

Clothing, PLT Clothing, PLT MF28G

(Reference STS-109 FDF Flight Supplement)

Current ISS Inventory Concept

- The Inventory Management System (IMS) is used to track items on the ISS
- Handheld barcode reader is used by the crew for quick on-site updates
- Data from the barcode reader may be passed to the onboard IMS database by RF or serial hardline connection to the laptop
- Expedition 15 will use the new PDAs to access IMS and perform barcode scans.
- IMS software application is used for complex updates
- Manual crew entries into onboard database on laptop
- Flight control team entries into ground database
- Databases are synchronized by uplinking and downlinking "Delta Files" I

Space Station RFID Test 2008

Objectives:

- flight certify a commercial RFID interrogator and tags
- demonstrate RFID inventory of crew items and office supplies at bag and item level

ISS Shampoo with tag

Pulses contain

ID code

RFID - Lunar Outpost

High probability applications

- Inventory management
- Crew supplies (e.g., personal items, office supplies, clothing)
 - Food, medicine
- Real-Time Localization
- EVA tools, equipment
- Monitoring/verifying inter-habitat supply transfers
- "Boneyard" inventory
- Real-time access to surplus parts

Smart tag and other potential applications

- Monitor tool exposure limits and provide warnings (e.g., temperature extremes, shocks)
- Storage of calibration information on sensors, LRUs
- Passive tag tracking

Example: passive COTS tag with 64 bit ID code, temperature and range telemetry

Active UWB RFID for Tracking Applications

- **Evaluate UWB-RFID system Sapphire DART**
- Customize the system and enhance the tracking performance

UWB Precision Tracking

Laboratory test configuration for Sapphire DART

UWB Precision Tracking

- **UWB TDOA high resolution proximity tracking** for robonaut
- Theoretical analysis and simulation for TDOA proximity applications
- Lab tests show sub-inch tracking resolution

Passive, Wireless Sensors

- Where possible, no-batteries
- Reduces wire, crew time, certification costs, weight, power, and size
- Numerous conceivable applications

64-bit SAW-based COTS RFID tag

wireless ice sensor systen

Passive sensor arrays (enlarged)

AirGATE Technologies / CTR tag

8-bit SAW-based COTS RFID tag

WS W

Antennas for HF SAW Sensor System

- 70 MHz SAW-based sensors
- G. Studor (JSC), R. Brocato (SNL), et al
- sensor types into passive, wireless Key advantage: integrates existing system
- micrometeoroid impact detection Targeted application:
- Requires efficient, miniaturized antennas

HF Antennas

EIGER Simulation

Significant size reduction of the antenna

- ightharpoonup Half-wave dipole (0.5 λ_0 , 2.14m)
- Miniaturized spiral-loaded slot antenna & ground plane $(0.07\lambda_0 \times 0.11\lambda_0, 0.3m \times 0.46m)$

*Habitat walls are electrically conductive

- Cannot use wire antenna directly against conducting wall
- Integration of miniaturized HF antenna with habitat walls
- E-textile antennas

HF Passive Sensor Antennas

-50 Miniature Spiral-Loaded Slot Antenna

နှ

-20

œ

8b |rg8| 왕

 $(45.7cm \times 30.5cm \times 0.32cm)$ Prototype 4

8

75

75

Habitat Module Interrogator-to-Tag Coupling

Coupling between two 70MHz antennas

- Received power levels at different locations in the mockup
- Model effects of blockage with equipment in habitat module

NASA Use of 2.4 ISM SAW-Based RFID

SAW Transponder

Courtesy AirGATE Technologies

Courtesy RFSAW, Inc.

RF Collision Avoidance Methods

Spatial diversity through adaptive digital beamforming

JSC Chamber A Passive, Wireless Sensors (CHAPS)

- Chamber A: Vacuum and Thermal Cycle Testing of Flight Hardware
- Objective: replace wired thermal and pressure sensors with wireless sensors
- Reduces setup time between vehicle configuration changes
- Stage: feasibility assessment
- Thermal limit cold side: 20K
- Applications for vibration and acoustic facilities are also being explored

Approximate dimensions

Environmental Facility Wireless Sensors

- Adaptive interrogation of wireless temperature and pressure sensors
 - Goals: T_{low} = 20K; 1000s of T-sensors; 100s of P-sensors

72-Element, S-Band, Adaptive, Digital Beamforming for Tag Interrogation

JSC Chamber A (Vacuum & Thermal Cycle)

Antenna System Approach

- No active sensor system elements inside the chamber
- Adaptive digital beamforming offers many design degrees of freedom
- The system can learn optimal channel weighting coefficients prior to commencement of tests
- Interrogator aperture:
- Small transmit aperture attempt to minimize transmit directivity
- Large receive aperture high directivity for spatial diversity
- Additional collision avoidance obtained through:
- polarization division and code division

Large Receive Aperture for Spatial Diversity

- Digital samples on each receive element
- Beams are formed digitally
- number of simultaneous
 beams limited only by
 external processors
- All tags within transmit beam are read by multiple, simultaneous receive beams

Transmitter

receiver

Example of Spatial Diversity: Schelkunoff array

Chamber Simulation Tag 5

8 Element Schelkunoff Array

Patch width = 4.14 cm Substrate thickness = .445cm Element spacing: d = .62 λ

Beamforming and Temperature Sensor Demo

E-Textiles for Wireless & RFID

- manufactured in an art-to-part process (e.g., see NASA MSC-24332, DARPA efforts) Conductive fabric circuits and antennas can be
- conventional counterparts for many circuits, including Performance can be indistinguishable from RF/microwave circuits and antennas
- Equiangular spiral
- Microstrip patch antennas
- Quadrature hybrid coupler

