МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Организация ЭВМ и систем» Представление и обработка целых чисел. Организация ветвящихся процессов

Студент гр. 0383	 Девятериков И.С
Преподаватель	 Ефремов М.А

Санкт-Петербург 2021

Вариант № 2.

Цель работы.

Изучение режима адресации при помощи программы, которая тестирует режимы адресации. Научиться находить допущенные при реализации ошибки адресации.

Задание.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет: значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i); значения результирующей функции res = f3(i1,i2,k), где вид функций f1 и f2 определяется из табл. 2, а функции f3 - из табл.3 по цифрам шифра индивидуального задания (n1,n2,n3), приведенным в табл.4. Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

Выполнение работы.

В ходе выполнения работы были использованы команды cmp, jle/jg, jde/jl, выполняющие сравнение значений, позволяющие выполнять только определённые условием участки кода.

Все возможные варианты работы кода в зависимости от исходных данных представлены в Табл.1.

Табл.1

Значения	Результат	Результат	Результат	Комментарий
a, b, i, k	вычисления f1	вычисления f3	вычисления f2	
a = -1	0010 = 16	FFF0 = -16	001A = 26	Верно
b = 1				
i = 4				
k = -1				
a = -1	0010 = 16	FFF0 = -16	0020 = 32	Верно
b = 1				
i = 4				
k = 1				
a = 1	0007 = 7	FFF7 = -9	0013 = 19	Верно
b = -1				
i = 4				
k = -1				
a = 1	0007 = 7	FFF7 = -9	0010 = 16	Верно
b = -1				
i = 4				
k = 1				

Разработанный программный код см. Приложение А.

Выводы.

В ходе выполнения лабораторной работы были изучены различные способы сравнения чисел. Был изучен процесс работы программы с ветвлением в процессе выполнения.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

main.asm

AStack SEGMENT STACK

DW 12 DUP(?)

AStack ENDS

;Данные программы

DATA SEGMENT

;Директивы описания данных

- a DW 0
- b DW 0
- i DW 0
- k DW 0
- i1 DW 0
- i2 DW 0

DATA ENDS

; Код программы

CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

; Головная процедура

Main PROC FAR

push DS

sub AX,AX

push AX

mov AX,DATA

mov DS,AX

```
mov a, 1
mov b, -1
mov i, 4
mov k, 1
 ;f1&f3
 mov cx, i
 shl cx, 1; cx = 2*i
 mov ax, cx
 mov bx, b
 cmp a, bx; сравнение а и b
 jle f1f3
      neg cx; a > b
      add cx, 15
      mov i1, cx
      shl ax, 1
      neg ax
      add ax, 7
      mov i2, ax
      jmp f1f3End
 f1f3: ; a <= b
      add cx, i
      add cx, 4
      mov i1, cx
```

```
mov cx, ax
     shl ax, 1
     add ax, cx
     neg ax
     add ax, 8
     mov i2, ax
f1f3End:
;f2
mov ax, i1
mov cx, i2
neg cx
mov bx, k
cmp bx, 0
jge f2
     add cx, 10; k \le 0
     cmp ax, cx
    jge max
           mov ax, cx
     max:; ax \ge cx
    jmp f2End
f2:; k \ge 0
     add ax, cx
     cmp ax, 0
    jge modul
           neg ax
     modul:; ax \ge 0
f2End:
```

MainEnd: ; в ах лежит значение функции f2

ret

Main ENDP

CODE ENDS

END Main

main.lst

Page 1-1

0000	AStack SEGMENT STACK
0000 000C[DW 12 DUP(?)
????	
]	
0018	AStack ENDS
	;Данные программы
0000	DATA SEGMENT
	;Директивы описания данных
0000 0000	a DW 0
0002 0000	b DW 0
0004 0000	i DW 0
0006 0000	k DW 0
0008 0000	i1 DW 0
000A 0000	i2 DW 0
000C	DATA ENDS
	; Код программы
0000	CODE SEGMENT
	ASSUME CS:CODE, DS:DATA, SS:AStack
	; Головная процедура
0000	Main PROC FAR
0000 1E	push DS
0000 IL	pusii Do

0001 2B C0	sub AX,AX
0003 50	push AX
0004 B8 R	mov AX,DATA
0007 8E D8	mov DS,AX
0009 C7 06 0000 R FFFF	mov a, -1
000F C7 06 0002 R 0001	mov b, 1
0015 C7 06 0004 R 0004	mov i, 4
001B C7 06 0006 R FFFF	mov k, -1
	;f1&f3
0021 8B 0E 0004 R	mov cx, i
0025 D1 E1	shl cx, 1; cx = $2*i$
0027 8B C1	mov ax, cx
0029 8B 1E 0002 R	mov bx, b
002D 39 1E 0000 R	cmp a, bx ; сравнение a и b
0031 7E 16	jle f1f3
0033 F7 D9	neg cx; a > b
0035 83 C1 0F	add cx, 15
0038 89 0E 0008 R	mov i1, cx
003C D1 E0	shl ax, 1
003E F7 D8	neg ax
0040 05 0007	add ax, 7
0043 A3 000A R	mov i2, ax
0046 EB 1A 90	jmp f1f3End

f1f3: ; a <= b

Page 1-2

add cx, i
add CA, I
add cx, 4
mov i1, cx
mov cx, ax
shl ax, 1
add ax, cx
neg ax
add ax, 8
mov i2, ax
End:
v ax, i1
mov cx, i2
neg cx
mov bx, k
cmp bx, 0
jge f2
jge f2 add cx, 10; k < 0
add cx, 10; k < 0
add cx, 10; k < 0 cmp ax, cx

007D EB 0A 90 jmp f2End

0080 f2:; $k \ge 0$

0080 03 C1 add ax, cx

0082 3D 0000 cmp ax, 0

0085 7D 02 jge modul

0087 F7 D8 neg ax

0089 modul:; $ax \ge 0$

0089 f2End:

0089 MainEnd: ; в ах лежит значение функци

и f2

0089 CB ret

008A Main ENDP

008A CODE ENDS

END Main

Symbols-1

Segments and Groups:

N a m e	Length		Align	AlignCombine Class		
ASTACK		008A	PARA	Λ	NONE	
DATA	000C	PARA	Λ	NON	E	
Symbols:						
N a m e	Type	Value	e Attr			
A	LWC	ORD	0000	DATA	Α	
В	L WC	ORD	0002	DATA	Α	
F1F3	L NE	AR	0049	COD	E	
F1F3END		L NE	AR	0062	CODE	
F2	L NE	AR	0800	COD	E	
F2END		L NE.	AR	0089	CODE	
I	LWC)RD	0004	DATA	Λ	
I1	L WC	ORD	8000	DATA	Λ	
I2	L WC	ORD	000A	DATA	Λ	

K L WORD 0006 DATA Length = F PROC 0000 CODE 008A MAINEND L NEAR 0089 CODE MAX L NEAR 007D CODE MODUL L NEAR 0089 CODE TEXT 0101h @FILENAME TEXT main @VERSION **TEXT 510**

89 Source Lines

89 Total Lines

22 Symbols

47966 + 461341 Bytes symbol space free

0 Warning Errors

0 Severe Errors