

73rd MORSS CD Cover Page

UNCLASSIFIED DISCLOSURE FORM CD Presentation

712CD

For office use only 41205

21-23 June 2005, at US Military Academy, West Point, NY

Please complete this form 712CD as your cover page to your electronic briefing submission to the MORSS CD. Do not fax to the MORS office.

<u>Author Request</u> (To be completed by applicant) - The following author(s) request authority to disclose the following presentation in the MORSS Final Report, for inclusion on the MORSS CD and/or posting on the MORS web site.

Name of Principal Author and all other author(s):	Name: Robyn A. Kane
Principal Author's Organization and address:	Phone: (719) 572-8409
	Fax: (719) 572-8477_
	Email: <u>rkane@mitre.org</u>
Original title on 712 A/B:	
Revised title: AoA Case Study: A Variation of Regret Analys	sis
Presented in (input and Bold one): (WG 27 , CG, Special Session _	, Poster, Demo, or Tutorial)

This presentation is believed to be:

		Form Approved IB No. 0704-0188				
maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding an DMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate or ormation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 23 JUN 2005 2. REPORT TYPE N/A					ERED	
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER	
AoACase Study: A	Variation of Regre	t Analysis		5b. GRANT NUN	MBER	
				5c. PROGRAM E	ELEMENT NUMBER	
6. AUTHOR(S)				5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER		
				5e. TASK NUME	BER	
				5f. WORK UNIT	NUMBER	
	ZATION NAME(S) AND AE pration 202 Burling t		MA 01730-1420	8. PERFORMING REPORT NUMB	G ORGANIZATION ER	
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)	
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)				
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
	otes 46, Military Operat The original docum		• •	3rd) Held in	West Point, NY on	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	ATION OF:	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	25	RESTONSIBLE FERSON	

Form Approved OMB No. 0704-0188

Agenda

- Risk vs Regret
- The Case Study ORS AoA
 - Capabilities-Based Approach
 - ORS AoA Process
- Cost-Effectiveness A Deeper Look
- Least Costly Launch Vehicle Architecture Alternatives
- Rank Order of Sensitivity Variability
- Average Regret Process & Results
- Minimax Regret Process & Results
- Summary
- Study Impact
- Conclusion

Risk vs Regret

Risk

- Potential future harm that may arise from some present action
- Often combined or confused with the probability of an event which is seen as undesirable
- Some theorists have defined quite general methods to assess risk as an expected afterthe-fact level of regret

[http://www.wordiq.com/definition/Risk#Risk_as_regret]

Regret

To experience regret on account of; to lose or miss with a sense of regret; to feel sorrow or dissatisfaction on account of (the happening or the loss of something); as, to regret an error; to regret lost opportunities or friends [Source:

Woheter's Povised Unahridged Dictionary

Regret

- Regret associated with an outcome
 - Defined as the utility of that outcome subtracted from the maximum utility for a given condition
 - Measures the extent to which one would be unhappy to miss out on an outcome
 - Expresses how much worse things are than they would have been had one chosen the other option
- Calculate it by comparing the utility of the outcome with the maximum utility of that state (condition)
 - When the utility of an outcome is the maximum for that state (condition), the regret associated with that outcome is defined as zero

http://www.utas.edu.au/docs/humsoc/philosophy/courses/reasoning/rs/overheads/o17f.htm

The Case Study Background

- AFSPC/DR was commissioned to deliver an Operationally Responsive Spacelift (ORS) Analysis of Alternatives (AoA) Study
- The Problem Statement was to determine the best means to responsively
 - LaunchManeuver
 - Service
 - Retrieve

HOW TO

DO THIS

Space payloads

WITH THIS

To enhance military effectiveness

FOR THIS PURPOSE

Capabilities-Based Approach

TRADITIONAL APPROACH

Alternative Selection and Design Process

Effectiveness Analysis

Cost Analysis
Risk Analysis
Other Analysis

ORS APPROACH

Alternative Design

Cost Analysis
Risk Analysis
Other Analysis

ORS AoA Process: 4 Major Steps

- 1. Examine Military Utility
- 2. Derive responsive space system architectures and launch loads
- 3. Explore responsive launch options to meet loads
- 4. Determine most cost-effective launch solution

A Real Example – ORS AoA

- Effectiveness Analysis Working Group
 - Conducted a series of parametric experiments to establish three levels of performance (low, medium, and high)
 - Determined the military utility associated with those levels of performance
- Integrated Concepts Working Group
 - Used the parameters associated with L, M, H performance levels as the basis to develop alternatives
 - Involved establishing eight Space Asset Deployment Profiles (SADP) as alternative means to achieve the tasks required of the on-orbit assets
 - Devised a series of Spacelift Architecture Options to span the spectrum of potential approaches to responsive launch
- Different launch capacities combined with these fundamental approaches, the set of Launch Vehicle Architectures (LVAs) > 85
- Reduced to 15 LVAs for detailed analysis, and costed for the SADPs

Fixed performance across alternatives at a given performance level, enables the alternatives to be evaluated strictly on *cost* and *risk*.

ORS AoA Space Asset Deployment Profiles

Cost-Effectiveness: A Deeper Look

The Cost Effectiveness Working Group faced two issues:

- First issue: What is the relationship between performance and cost?
 - The LVA types were designed to achieve low, medium and high performance

Best Case: the least expensive option is Hybrid LVA # 71

Worst Case: least expensive option is ELV or Hybrid LVA # 67

Best Case = Faster Processing, Low Prod Cost Worst Case = Slower Processing, High Prod Cost

Cost-Effectiveness: A Deeper Look

- Second issue: What happens when you consider performance, cost, and risk together?
 - The uncertainties in processing time and production cost are unknown - only extremes were analyzed
 - Undertook a variation of regret analysis to shed light on the question
- "Regret" can be defined as "the difference in exposure between some choice and the best choice for a particular realization of the uncertainties"
- Average Regret
 - Is the equivalent of having all equally likely outcomes,
- Minimax Regret
 - Is equivalent to being pessimistic
 - The "Eeyore" syndrome

Least Costly Launch Vehicle Architecture Alternatives

- There were 15 options in the set of narroweddown LVAs spanning the four types of vehicles
 - 3 Expendables, 8 Reusables, 3 Hybrids, 1 Hypersonic
- Included four conditions
 - High & Low Production Cost
 - Faster & Slower Processing
- Hybrid #71 has the lowest Life Cycle Cost Estimate for low performance...but that does not tell the whole story

ORS AoA Launch Vehicle Architectures (LVAs)*

LVA#		Configuration	
LVA#	Vehicle A	Vehicle B	Vehicle C
Exp LVAs			
4	Sol 25 k	Exp-Generic EELV 45 k	
11	RPRP 25 k	Exp-Generic EELV 45 k	
12	RPRP 45 k		
Reuseable LVAs			
30	RPOpt 15 k	RPOpt Growth to Trimese	
36	RPLHOpt 5 k	RPLHOpt Growth to 45 k	
39	RPLHOpt 25 k	Exp-Generic EELV 45 k	
41	RPLHOpt 45 k		
46	LH Bimese 15 k	LHBi Growth to 45 k	
47	LH Bimese 15 k	LHBi Growth to Trimese	
48	LH Bimese 25 k	Exp-Generic EELV 45 k	
51	LH Bimese 45 k		
Hypersonic LVAs			
64	RBCC 25 k	Exp-Generic EELV 45 k	
Hybrid LVAs			
67	RLV/ELV-Solid RD180	Exp-Generic EELV 25 k	Exp-Generic EELV 45 k
70	RLV/ELV 12.7k	Hybrid 2 RLVs/ELV 45k	
71	RLV/ELV 19.5k	Hybrid Growth to Trimese	

^{*}This presentation will not discuss the details of the LVs

Rank Order of Sensitivity Variability

Space Architecture	Arch 2	Arch 2	Arob 2	Arch 2	Arch 2	Arob 2	Arob 2	Arob 2	Arob 2	Arch 2	Arch 2	Arch 2
Space Architecture		Arch 2	Arch 2	Arch 2	Arch 2	Arch 2	Arch 2	Arch 2	Arch 2	Arch 2	Arch 2	
Performance	Low	Low	Low	Low	Medium	Medium	Medium	Medium	High	High	High	High
Processing Time		Faster	Slower	Slower	Faster	Faster	Slower	Slower	Faster	Faster	Slower	Slower
Production Cost	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low
		· · · · · · · · · · · · · · · · · · ·										
Expendable (4)	6	12	2	9	4	11	1	4	4	10	1	2 /
Expendable (11)	8	13	3	10	5	13	2	5	5	12	3	6
Expendable (12)	13	15	6	12	8	14	4	6	6	13	2	5
Reusable (30)	5	2	11	8	6	4	8	8	7	5	10	11 /
Reusable (36)	11	10	10	11	12	10	9	9	11	8	7	7 !
Reusable (39)	4	7	7	5	9	9	11	12	12	11	12	12
Reusable (41)	7	3	8	4	7	5	7	7	8	6	9	9
Reusable (46)	12	8	14	13	10	7	10	10	10	7	11	10
Reusable (47)	14	9	15	14	11	6	12	11	9	4	8	8
Reusable (48)	10	11	9	7	14	12	13	14	14	14	13	14
Reusable (51)	9	4	12	6	13	8	14	13	13	9	14	13
Hypersonic (64)	15	14	13	15	15	15	15	15	15	15	15	15
Hybrid (67)	2	6	1	2	2	3	3	2	1	3	4	1
Hybrid (70)	3	5	5	3	_3	2	5	3	3	2	5	3
Hybrid (71)) (1	4	1	\supset \subset 1	\mathcal{I}	6	(1	2	(1	6	4

What's going on between #71 & #67?

- For Low production cost, 5 of 6 times #71 wins (Red oval)
- For High production cost, 2 of 6 times #71 wins (Black oval)
- For Faster processing time, #71 ranks first 5 of 6 times.
- For Slower processing time, #71 ranks first 2 of 6 times.

Are Low production cost and Faster processing time really possible?

Process to Calculate Average Regret

- Compare Cost of each LVA to Hybrid LVA #71 to identify a delta
 - If delta is positive, LVA #71 cheaper
 - If delta cost is negative, LVA #71 is more expensive
- 2. Calculate the four deltas at each performance level for the four conditions:
 - Low Prod Cost, Faster Processing Time
 - High Prod Cost, Faster Processing Time
 - Low Prod Cost, Slower Processing Time
 - High Prod Cost, Slower Processing Time
- 3. Sum delta costs (step 2) across the four conditions
- 4. Calculate average regret value (step 3 divided by 4)
 - If average delta is positive, LVA #71 is cheaper
- Issues/Concerns
 - Each condition does not have the same probability

ORS AoA Average Regret

(All vs Hybrid LVA #71)

- Positive regret values reflect average potential savings (BY03\$M) by choosing Hybrid LVA #71 concept over other LVA concepts
- Negative regret value reflect average potential costs by choosing Hybrid LVA #71 concept over that LVA concept

Architecture	SA 2	SA 2	SA 2
Performance	Low	Medium	High
Average Regret versus LVA #71	(+ is go	ood for LV	VA #71)
Expendable (4)	15,596	11,727	-6,034
Expendable (11)	19,592	18,455	4,764
Expendable (12)	29,776	27,023	4,299
Reusable (30)	20,235	50,253	58,743
Reusable (36)	28,342	62,334	54,426
Reusable (39)	14,241	66,073	89,367
Reusable (41)	16,110	47,311	54,096
Reusable (46)	40,830	62,298	62,382
Reusable (47)	45,611	64,472	52,762
Reusable (48)	24,554	87,401	108,274
Reusable (51)	23,207	86,647	98,980
Hypersonic (64)	48,274	153,307	228,433
Hybrid (67)	2,174	-496	-10,688
Hybrid (70)	8,150	5,974	-1,435

Minimax Regret Analysis

- Decisions made with minimizing the maximum regret are to control the remorse that inevitably accompanies hindsight
- Minimax Regret is distribution independent which gives it its power (not uniformly distributed)
- All other LVAs were compared to the least costly LVA in each case within each performance level. This regret function is:

Minimax Regret (of a particular alternative #) = (LCCE of other LVA #) – (Least costly LCCE)

- Find lowest LCCE for each condition
- Calculate regret value by subtracting the lowest LCCE (step 1) from each of the other LVAs within the respective condition
- 3. Obtain maximum regret value for each LVA by taking the largest regret value of the four conditions
- 4. Choose the minimum of the maximum regret values for each performance level
- 5. Examine the first and second choices for inconsistencies

(Due to complexity of this process, steps will be shown in detail)

	Space Arch 2						
	Low	Med	High				
Max Regret (BY03\$M)							
Expendable (4)	33,563	39,004	35,574				
Expendable (11)	39,881	47,482	47,305				
Expendable (12)	49,943	56,713	48,609				
Reusable (30)	51,055	130,510	185,371				
Reusable (36)	50,236	133,708	155,299				
Reusable (39)	29,269	146,831	233,414				
Reusable (41)	36,083	116,009	172,178				
Reusable (46)	86,072	145,051	187,384				
Reusable (47)	95,956	150,581	171,974				
Reusable (48)	38,535	178,474	257,857				
Reusable (51)	51,900	200,298	267,315				
Hypersonic (64)	66,475	281,238	478,988				
Hybrid (67)	14,138	14,777	21,107				
Hybrid (70)	14,666	23,869	47,700				
Hybrid (71)	(13,748)	26,226	64,576				
	*						
Mini-Max Regret							
Ĭ	Hybrid	Hybrid	Hybrid				
	(71)	(67)	(67)				
	13,748	14,777	21,107				
	, ,	,	, ,				
Delta between 71 & 67:	-390	11,449	43,468				

- Find lowest LCCE for each condition
- 2. Calculate regret value by subtracting the lowest LCCE (step 1) from each of the other LVAs within the respective condition
- 3. Obtain maximum regret value for each LVA by taking the largest regret value of the four conditions
- 4. Choose the minimum of the maximum regret values for each performance level
- 5. Examine the first and second choices for inconsistencies

Architecture	SA 2	SA 2	SA 2	SA 2
Performance	Low	Low	Low	Low
Processing time	Faster	Faster	Slower	Slower
Production Cost	High	Low	High	Low
Expendable (4)	20,679	33,563	5,141	16,747
Expendable (11)	26,996	39,881	6,817	18,423
Expendable (12)	37,058	49,943	17,122	28,728
Reusable (30)	17,876	9,278	51,055	16,479
Reusable (36)	34,538	22,463	50,236	19,879
Reusable (39)	16,488	14,815	29,269	10,140
Reusable (41)	21,165	12,022	36,083	8,920
Reusable (46)	36,394	19,843	86,072	34,759
Reusable (47)	39,855	20,681	95,956	39,699
Reusable (48)	33,320	24,394	38,535	15,716
Reusable (51)	27,823	12,678	51,900	14,174
Hypersonic (64)	55,760	44,796	66,475	39,813
Hybrid (67)	5,352	14,138	0	2,952
Hybrid (70)	10,183	13,502	14,666	7,996
Hybrid (71)	0	0	13,748	0

- 1. Find lowest LCCE for each condition
- 2. Calculate regret value by subtracting the lowest LCCE (step 1) from each of the other LVAs within the respective condition
- 3. Obtain maximum regret value for each LVA by taking the largest regret value of the four conditions
- 4. Choose the minimum of the maximum regret values for each performance level
- 5. Examine the first and second choices for inconsistencies

Architecture	SA 2
Performance	Low
Expendable (4)	33,563
Expendable (11)	39,881
Expendable (12)	49,943
Reusable (30)	51,055
Reusable (36)	50,236
Reusable (39)	29,269
Reusable (41)	36,083
Reusable (46)	86,072
Reusable (47)	95,956
Reusable (48)	38,535
Reusable (51)	51,900
Hypersonic (64)	66,475
Hybrid (67)	14,138
Hybrid (70)	14,666
Hybrid (71)	13,748

- Find lowest LCCE for each condition
- 2. Calculate regret value by subtracting the lowest LCCE (step 1) from each of the other LVAs within the respective condition
- 3. Obtain maximum regret value for each LVA by taking the largest regret value of the four conditions
- 4. Choose the minimum of the maximum regret values for each performance level
- Examine the first and second choices for inconsistencies

	Space Arch 2						
	Low	Med	High				
Max Regret (BY03\$M)							
Expendable (4)	33,563	39,004	35,574				
Expendable (11)	39,881	47,482	47,305				
Expendable (12)	49,943	56,713	48,609				
Reusable (30)	51,055	130,510	185,371				
Reusable (36)	50,236	133,708	155,299				
Reusable (39)	29,269	146,831	233,414				
Reusable (41)	36,083	116,009	172,178				
Reusable (46)	86,072	145,051	187,384				
Reusable (47)	95,956	150,581	171,974				
Reusable (48)	38,535	178,474	257,857				
Reusable (51)	51,900	200,298	267,315				
Hypersonic (64)	66,475	281,238	478,988				
Hybrid (67)	14,138	14,777	21,107				
Hybrid (70)	14,666	23,869	47,700				
Hybrid (71)	13,748	26,226	64,576				
Mini-Max Regret							
	Hybrid	Hybrid	Hybrid				
	(71)	(67)	(67)				
	13,748	14,777	21,107				
Delta between 71 & 67:	-390	11,449	43,468				

Comparison of Average vs Minimax Regret

Average Regret

- Hides results for the conditions where hybrid does not win
- Do not have insight into the combination of conditions (cost and processing time) for which LVA #71 is better than LVA #67
- Do not know which conditions directly affected the LCCEs of LVA #67 and LVA #71

Minimax Regret

- Revealed the hybrid type launch vehicle had the least regret for all performance levels
- Through minimax regret analysis, the decision-maker can see which hybrid launch vehicle to pursue if growth in performance (low, medium, or high), funding, or risk were priorities

Average Regret & Minimax Regret can be powerful analytical tools if limitations of each are known and understood

Summary (cont.)

- Clearly there is an interaction between the performance levels and which hybrid is best
- Regret analysis verifies that hybrid LVA does beat the other LVA types – even when we assume the worst condition
- Regret analysis gave AFSPC and other decision-makers repeatable, traceable analysis to focus on the most viable architecture type
- ORS AoA recommended to pursue first stage reusable launch vehicle (RLV) demonstrations
 - Assess cost, operability, technology readiness levels
 - Test operations concepts/processes
 - Follow-on demonstrations of Hybrid (reusable first stage with expendable upper stages)
 - Assess scalability of cost and operations data; test more realistic operations concepts

Demonstrations will reduce cost uncertainty as well as technical risk

Study Impact

- Since completion of this study, the HQ AFSPC/CC gave permission in January 2005 for the ORS Demonstrator to begin
- A Phase I Program Research and Development Announcement (PRDA) notice was posted on February 16, 2005 for the Affordable REsponsive Spacelift-Subscale Demonstration (ARES-SD)
- The ARES Phase I Concept Development and Demonstration Planning Program is contracted by the Department of the Air Force, Air Force Space Command, SMC -Space and Missiles System Center

Conclusion

- Bottom line: different tools and types of analysis yield different analysis results
- To achieve unbiased analysis, the analyst cannot overlook one tool or type of analysis over another
- When used appropriately, Average Regret and Minimax Regret can be powerful analytical tools if limitations of each are known and understood