

Business Context

- You are a Data Scientist at a growing e-commerce company. Your manager is concerned about high
 return rates they affect profit margins and logistic costs. You've been asked to develop a
 machine learning model that predicts whether a product will be returned, based on features
 known at purchase time.
- Before jumping into deep learning, your manager expects:
- A thorough exploration of the dataset to understand the return patterns
- A solid baseline model
- A progressively more **complex neural network** with the right **regularization** techniques to improve generalization
- Jupyter notebook summarizing your approach, findings, and model performance.

Dataset

- You will use a **synthetic e-commerce dataset** containing features like:
- Customer ID, Purchase Amount, Product Category
- Shipping Method, Delivery Time, Customer Review Score
- Product Size, Discount Applied, Order Date
- Return Status (target variable)

Field Name	Туре	Description	
Customer_ID	Categorical	Unique identifier for each customer. Useful for analyzing repeat behavior (e.g., return patterns).	
Purchase_Amount	Numeric	Value (in dollars) of the transaction. High-value vs. low-value return behavior.	
Product_Category	Categorical	Product type: Electronics, Clothing, Home, Beauty, Sports. Assess category-wise return risks.	
Shipping_Method	Categorical	Options: Standard, Express, Two-Day, Overnight. Analyze impact of delivery type.	
Delivery_Time_Days	Numeric	Days it took to deliver. Time-sensitive satisfaction factor.	
Customer_Review_Score	Numeric	Rating given by customer (1.0 to 5.0). Proxy for satisfaction.	
Product_Size	Categorical	Size: Small, Medium, Large. Important for clothing and large items.	
Discount_Applied	Binary	1 = Yes, 0 = No. Promo items might have higher returns.	
Order_Date	Date	Date of purchase. Explore seasonality or sales periods.	
Return_Status	Binary	Target variable. 1 = Returned, 0 = Not Returned.	

EDA: Understand the Problem

- Tasks: Simulate a "morning task" to analyze what might be driving returns.
 - Load the dataset and provide summary statistics
 - Visualize class imbalance (Returned vs Not Returned)
 - Plot correlations or feature importance heatmaps
 - Identify features with missing data and propose fixes
 - Identify suspicious patterns or business insights (e.g., return rate by category)
- Deliverable:
 - Write-up with <u>visuals and key insights</u>.

Baseline Model

- Tasks: Build a Multilayer Perceptron (MLP) to predict returns.
 - Normalize features and split into train/val/test sets
 - Create a simple model with 1–2 dense layers
 - Use binary cross-entropy and accuracy
 - Plot training and validation loss curves

• Deliverable:

- Baseline performance metrics
- Training curve visualization

Overfitting & Regularization

- Tasks: Use class techniques to improve generalization.
 - Apply:
- L2 Regularization
- Dropout Layers
- EarlyStopping
- Compare new performance to baseline
- Deliverable:
 - Table comparing before/after regularization
 - Explanation of each technique's impact

CNN Variant

- Tasks: Use Fashion MNIST or CIFAR-10 to practice image-based classification.
 - Train a CNN with:
 - Conv2D + MaxPooling
 - Flatten + Dense
 - Dropout and L2
 - Discuss when CNNs are better than MLPs
 - Deliverable:
 - CNN summary and comparative notes

Final Deliverable

- Jupyter Notebook with:
 - Clean code, comments, explanations
 - Visuals and performance reports
- 1-slide summary (PPT file):
 - Problem, approach, insights, value

Evaluation Criteria

Section	Points	Criteria
EDA & Insights	1	Relevant visuals, patterns, and business logic
Baseline Model	1	Code quality, architecture logic, baseline accuracy
Regularization Strategy	2	Techniques applied, reasoning, performance improvement
CNN Challenge (Optional)	2	Correct logic, architecture discussion
Final Summary	2	Business clarity and synthesis of results
Code Style & Documentation	2	Commented, readable, cleanly structured