Challenge 5: Transference

Transference

Definition: Transfer knowledge between modalities, usually to help the primary modality which may be noisy or with limited resources

Sub-challenges:

Transfer

Co-learning via generation

Definition: Transferring knowledge from large-scale pretrained models to downstream tasks involving the primary modality.

Transfer via prefix tuning

[Tsimpoukelli et al., Multimodal Few-Shot Learning with Frozen Language Models. NeurIPS 2021]

Transfer via prefix tuning

0-shot VQA:

[Tsimpoukelli et al., Multimodal Few-Shot Learning with Frozen Language Models. NeurIPS 2021]

Transfer via prefix tuning

1-shot outside knowledge VQA:

Recall reasoning

– leverage implicit
knowledge in LMs

[Tsimpoukelli et al., Multimodal Few-Shot Learning with Frozen Language Models. NeurIPS 2021]

Transfer via prefix tuning

Few-shot image classification:

[Tsimpoukelli et al., Multimodal Few-Shot Learning with Frozen Language Models. NeurIPS 2021]

This is a dax.

Transfer via representation tuning

[Ziegler et al., Encoder-Agnostic Adaptation for Conditional Language Generation. arXiv 2019] [Rahman et al., Integrating Multimodal Information in Large Pretrained Transformers. ACL 2020]

How can we transfer knowledge across multiple tasks, each over a different subset of modalities?

Video Time-series

Robot

dynamics

Generalization across modalities and tasks Important if some tasks are low-resource

Transfer across partially observable modalities

HighMMT: unified model + parameter sharing + multitask and transfer learning

Non-parallel multitask learning

Task-specific classifiers

Shared multimodal model

Same model architecture!

Same parameters!

Modality-specific embeddings

Standardized input sequence

Transfer across partially observable modalities

HighMMT: unified model + parameter sharing + multitask and transfer learning

Transfer across partially observable modalities

HighMMT: unified model + parameter sharing + multitask and transfer learning

Achieves both multitask and transfer capabilities across modalities and tasks

Transfer across partially observable modalities

Gato: unified model + parameter sharing + multitask learning

[Reed et al., A Generalist Agent. arXiv 2022]

Some implicit assumptions:

- All modalities can be represented as sequences without losing information

Standardized input sequence?

Some implicit assumptions:

- All modalities can be represented as sequences without losing information
- Dimensions of heterogeneity can be perfectly captured by modality-specific embeddings

Modality-specific embeddings?

Standardized input sequence?

Some implicit assumptions:

- All modalities can be represented as sequences without losing information
- Dimensions of heterogeneity can be perfectly captured by modality-specific embeddings
- Cross-modal connections & interactions are shared across modalities and tasks

Definition: Transferring information from secondary to primary modality by sharing representation spaces between both modalities.

Representation coordination: word embedding space for zero-shot visual classification

Recall representation coordination!

[Socher et al., Zero-Shot Learning Through Cross-Modal Transfer. NeurIPS 2013]

Representation coordination: word embedding space for zero-shot visual classification

[Socher et al., Zero-Shot Learning Through Cross-Modal Transfer. NeurIPS 2013]

Representation fusion

Multimodal co-learning

Unimodal learning

Train Multimodal data
Multimodal model

Modality A x_A Fusion + prediction \widehat{y} Modality B x_B

Test

Language-only data

Language-only model

Fill rest by 0s

Only text used at test-time

Multimodal co-learning > language-only training

Fusion Modality A prediction x_A Fusion -Modality A prediction

[Zadeh et al., Foundations of Multimodal Co-learning. Information Fusion 2020]

Definition: Transferring information from secondary to primary modality by using the secondary modality as a generation target.

Bimodal translations

Both modalities required at test time! Sensitive to noisy/missing visual modality.

We want to leverage information from visual modality while being robust to it during test-time.

Bimodal translations

Cross-modal translation during training
Only language modality required at test time!

Bimodal translations

Problem: how do you ensure that both modalities are being used?

Bimodal cyclic translations

Solution: cyclic translations from visual back to language

Cross-modal translation during training
Only language modality required at test time!

Predicting images from corresponding language

Voken (visual token) classification

Masked language modeling

Humans [mask] language by [mask] speaking

Only text used at test-time

Multimodal co-learning > language-only training

[Tan and Bansal, Vokenization: Improving Language Understanding with Contextualized, Visual-Grounded Supervision. EMNLP 2020]

Summary: Transference

Definition: Transfer knowledge between modalities, usually to help the primary modality which may be noisy or with limited resources.

Sub-challenges:

Transfer

Co-learning via representation

Co-learning via generation

More Transference

Many more dimensions of transfer

MultiModel

ViT-BERT

I: image
V: video
A: audio
S: set
L: language
T: time-series
Ta: tables
F: force sensor
P: proprioception sensor

common architecture

parameter sharing

Open challenges:

Perceiver

- Low-resource: little downstream data, lack of paired data, robustness (next section)
- Beyond language and vision
- Settings where SOTA unimodal encoders are not deep learning e.g., tabular data
- Complexity in data, modeling, and training

PolyViT

Interpretability (next section)