Math 342W Lecture 20 Information on Models (Types)

hesponse space	Model Type	g returns	\mathcal{A}	Estimates
ye R	hogossion	Ŷ6B	OLS	y
y= &C,,C2,,C23	Classification	ĝEEC,,,43	KNN	y
4=80,13	Binary Classification	ĝ 6 80,13	SVM	y
y=(0,1)	Proportion	ĝ6(0,1)	Beta hegiossion	y
y= 1320	Survival	ŷ61320	Weitull Regression	y
y=80,1,2,3	Count	Ŷ680,1,Z3	Poisson Pagrassion	y-
y= 80,13	Probability 5541 mation Model	\$660,1]	logistic hagicssion	P(Y=1)=\$
y= & C,,, G3	4 11	pe[0,1]"		P(Y=C,) P(Y=C,)
y=&9,11,63	(i iì	la ta	Proportional Odds Model	u 11

ordinal These are some of the types of models in existence, but some of the more frequently used types.

Asymmetic Cost Modeling

Traditional Misclassification Error =
$$\frac{1}{n}\sum_{i=1}^{n} I \hat{g}_{i} \neq y_{i} = \lambda e_{i} = \lambda e_{i} = \lambda e_{i}$$

y 0 0 -1 Misclassification
Error

= S(Fp+fn)

False Degative

Another Objective Function => Total Cost = CFP · FP + CFN · FN Ly Averge Cost = Total Cost / 12

A: Unimize Total Cost => Asymetric Cost Model (CFP + CFN)

$$y = \{0,1\} \iff Y \sim \text{Bern}(t(\overline{z})) = 7 Y \sim \text{Bern}(f_{pr}(\overline{x}) + (t(\overline{z}) - f_{pr}(\overline{x})))$$

$$y = t(\overline{z}) \text{ for } (f_{pr}(\overline{x}))$$

$$= f(\overline{x}) + S \qquad \Rightarrow Y \sim \text{Bern}(f_{pr}(\overline{x}) + (f_{pr}(\overline{x}) - h_{pr}^{*}(\overline{x})) + (t(\overline{z}) - f_{pr}(\overline{x})))$$

$$= h^{*}(\overline{x}) + G \qquad \Rightarrow Y \sim \text{Bern}(g_{pr}(\overline{x}) + (f_{pr}(\overline{x}) - h_{pr}^{*}(\overline{x})) + (t(\overline{z}) - f_{pr}(\overline{x})))$$

$$= h^{*}(\overline{x}) + G \qquad \Rightarrow Y \sim \text{Bern}(g_{pr}(\overline{x}) + \dots)$$

$$= g(\overline{x}) + G \qquad \Rightarrow Y \sim \text{Bern}(g_{pr}(\overline{x}) + \dots)$$

$$= g(\overline{x}) + G \qquad \Rightarrow Y \sim \text{Bern}(g_{pr}(\overline{x}) + \dots)$$

$$= g(\overline{x}) + G \qquad \Rightarrow Y \sim \text{Bern}(g_{pr}(\overline{x}) + \dots)$$

$$= f_{pr}(\overline{x}) \cdot (g_{pr}(\overline{x})) = 7 \Rightarrow G \qquad \Rightarrow G \qquad$$