Рубежный контроль №2

Бутрим Андрей ИУ5-61Б

Вариант 3

Задание

Для заданного набора данных (по Вашему варианту) постройте модели классификации или регрессии (в зависимости от конкретной задачи, рассматриваемой в наборе данных). Для построения моделей используйте методы 1 и 2 (по варианту для Вашей группы). Оцените качество моделей на основе подходящих метрик качества (не менее двух метрик). Какие метрики качества Вы использовали и почему? Какие выводы Вы можете сделать о качестве построенных моделей? Для построения моделей необходимо выполнить требуемую предобработку данных: заполнение пропусков, кодирование категориальных признаков, и т.д.

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from imblearn.over_sampling import SMOTE
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, fl_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import MinMaxScaler
from typing import Dict

data = pd.read_csv('heart_failure_clinical_records_dataset.csv')
```

Был создан датафрейм, содержащий 12 нецелевых признаков и 1 целевой - смерть пациента

data

2 20 3 20 4 20 294 38 295 38 296 60 297 38 298 45	65.0	0		146	0		
	50.0	1		111	0		
	65.0	1		160	1		
	62.0	0		61	1		
	55.0	0		1820	0		
	45.0	0		2060	1		
	45.0	0		2413	0		
	50.0	0		196	0		
sex 0 1 1 1 2 1 3 1 4	high_blood_pressure		platelets	serum_crea	ntinine	serum_sodium	
	\	1	265000.00		1.9	130	
		0	263358.03		1.1	136	
		0	162000.00		1.3	129	
		0	210000.00		1.9	137	
		0	327000.00		2.7	116	
0							
294 1 295 0 296 0 297 1 298 1		1	155000.00		1.1	143	
		0	270000.00		1.2	139	
		0	742000.00		0.8	138	
		0	140000.00		1.4	140	
		0	395000.00		1.6	136	
0 1 2 3 4	smoking 0 0 1 0	time DEATH 4 6 7 7 8	I_EVENT 1 1 1 1 1				

```
. . .
                             . . .
294
               270
                               0
           1
295
           0
               271
                               0
296
           0
               278
                               0
           1
               280
                               0
297
298
           1
               285
                               0
[299 rows x 13 columns]
data y = data['DEATH EVENT']
data y
0
       1
1
       1
2
       1
3
       1
4
       1
294
       0
295
       0
296
       0
297
       0
298
Name: DEATH EVENT, Length: 299, dtype: int64
Типы данных всех полей являются числовыми
data.dtypes
                             float64
age
anaemia
                               int64
creatinine phosphokinase
                               int64
diabetes
                               int64
ejection_fraction
                               int64
high blood pressure
                               int64
platelets
                             float64
                             float64
serum_creatinine
serum sodium
                               int64
                               int64
sex
smoking
                               int64
time
                               int64
DEATH EVENT
                               int64
dtype: object
В наборе данных отсутствуют дубликаты и пропуски
data.duplicated().sum()
0
data.isnull().sum()
```

```
0
age
                              0
anaemia
creatinine_phosphokinase
                              0
diabetes
                              0
                              0
ejection fraction
high_blood_pressure
                              0
                              0
platelets
                              0
serum creatinine
serum sodium
                              0
                              0
sex
smoking
                              0
                              0
time
DEATH_EVENT
                              0
dtype: int64
```

Проведем корреляционный анализ, чтобы оценить вклад признаков для построения моделей классификации. Для визуализации корреляционной матрицы была использована тепловая карта.

```
plt.figure(figsize=(20, 18))
mask=np.triu(np.ones_like(data.corr(), dtype=bool))
sns.heatmap(data.corr(), mask=mask, annot=True, vmin=-1.0, vmax=1,
center=0, cmap='RdBu_r')
```


С целевым признаком наиболее сильную корреляцию имеют признаки 'time' (-0.53), 'ejection_fraction' (-0.27), 'serum_sodium' (-0.2), 'age' (0.25), 'serum_creatinine' (0.29). Эти признаки будут наиболее информативны при построении моделей машинного обучения. Остальные признаки слабо коррелируют с целевым признаком и могут негативно сказаться на модели машинного обучения, поэтому их стоит исключить из модели. В целом остальные нецелевые признаки не коррелируют друг с другом так сильно, поэтому их всех можно использовать для построения модели машинного обучения. Таким образом, на основе признаков 'time', 'ejection_fraction', 'serum_sodium', 'age', 'serum_creatinine' могут быть построены модели машинного обучения.

Paзобьем исходную выборку на обучающую и тестовую data_X_train, data_X_test, data_y_train, data_y_test = train test split(data[['time',

```
'ejection fraction', 'serum sodium', 'age', 'serum creatinine']],
data['DEATH EVENT'].values, test size=0.2, random state=2)
Выборка не является полностью сбалансированной. Для балансировки
выборки воспользуемся методом oversampling (увеличение выборки) с
использованием алгоритма SMOTE.
class counts = pd.Series(data y train).value counts()
print(class counts)
     160
1
     79
dtype: int64
Создаем экземпляр класса SMOTE
smote = SMOTE(random state=2)
Применяем метод увеличения выборки к обучающей выборке
data X train resampled, data y train resampled =
smote.fit resample(data X train, data y train)
class counts resampled =
pd.Series(data y train resampled).value counts()
print(class counts resampled)
1
     160
     160
dtype: int64
Было произведено MinMax масштабирование данных
mms = MinMaxScaler()
data X train scaled = mms.fit transform(data X train resampled)
data X test scaled = mms.fit transform(data X test)
Была обучена модель логической регрессии
cl=LogisticRegression(multi class='multinomial')
cl.fit(data X train scaled, data y train resampled)
LogisticRegression(multi class='multinomial')
Результаты классификации с использованием модели логической
регрессии
pred data y test = cl.predict(data X test scaled)
pred data y test
array([0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
0,
```

Для оценки качества моделей машинного обучения были использованы метрики ассигасу и F1-мера. Метрика ассигасу подходит для оценки качества моделей классификации для заданного набора данных, так как классификация производится по двум равноценным классам и нет необходимости в более точном определении того или иного класса. Метрика F1-мера подходит для оценки качества моделей классификации для заданного набора данных, так как в случае классификации по двум равноценным классам precision и recall имеют равноценное значение, поэтому их оценку можно совместить в метрику F1-мера.

```
для заданного набора данных, так как в случае классификации по двум
равноценным классам precision и recall имеют равноценное значение,
поэтому их оценку можно совместить в метрику F1-мера.
Значение метрики accuracy
accuracy_score(data_y_test, pred_data_y_test)
0.9
Функции вывода значения метрики accuracy для каждого класса
def accuracy score for classes(y true:np.ndarray, y pred:np.ndarray) -
> Dict[int, float]:
    d = {'t': y_true, 'p': y_pred}
    df = pd.DataFrame(data=d)
    classes = np.unique(y true)
    res = dict()
    for c in classes:
        temp_data_flt = df[df['t']==c]
        temp_acc = accuracy_score(
            temp data flt['t'].values, temp data flt['p'].values
        res[c] = temp acc
    return res
def print accuracy score for classes(y true: np.ndarray, y pred:
np.ndarray):
    accs = accuracy_score_for_classes(y_true, y_pred)
    if len(accs)>0:
        print('Meτκa \t Accuracy')
    for i in accs:
        print('{} \t {}'.format(i, accs[i]))
Значение метрики accuracy для каждого класса
print accuracy score for classes(data y test, pred data y test)
Метка
            Accuracy
      0.9302325581395349
0
1
      0.8235294117647058
```

```
Значение метрики F1-мера
f1 score(data y test, pred data y test, average=None)
array([0.93023256, 0.82352941])
Была обучена модель случайного леса
data rl cf = RandomForestClassifier(random state=2)
data rl cf.fit(data X train scaled, data y train resampled)
RandomForestClassifier(random state=2)
Результаты классификации с использованием модели случайного леса
pred_data_rf_y_test = data rl cf.predict(data X test scaled)
pred data rf y test
array([0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
0,
       1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,
0,
       0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0], dtype=int64)
Значение метрики accuracy для модели случайного леса
accuracy_score(data_y_test, pred_data_rf_y_test)
0.86666666666666
Значение метрики accuracy для каждого класса
print accuracy score for classes(data y test, pred data rf y test)
Метка
           Accuracy
      0.8837209302325582
      0.8235294117647058
Значение метрики F1-мера для модели случайного леса для каждого
класса
f1 score(data y test, pred data rf y test, average=None)
array([0.9047619 , 0.77777778])
```

Таким образом модель логистической регрессии производит классификацию лучше, чем модель случайного леса.