

- Comfortable programming in Python
- Basic familiarity with machine learning and deep learning
- Basic familiarity with natural language processing

How comfortable are you building and training machine learning models in Python?

- Never worked with ML before
- Built traditional ML models using scikit-learn
- Built ML models using TensorFlow and PyTorch

Have you worked with Natural Language Processing before?

- Never worked with NLP before
- Built traditional NLP models with scikit-learn
- Built NLP models with TensorFlow, PyTorch

A company known for its work in the field of artificial intelligence particularly in the field of natural language processing

A machine learning and data science platform and community that helps users build, deploy, and train machine learning models

Natural Language Processing with Transformers

- The original transformer architecture was introduced in the 2017 paper "Attention Is All You Need"
- Introduced the novel concept of attention to focus on the right parts of the input
- Revolutionized the field of NLP, leading to the powerful LLMs that we work with today

Hugging Face Transformer Library

- Offer a wide range of pre-trained transformer models for different use cases
- Cross-framework compatibility all models can be used with both PyTorch and TensorFlow
- Used in a variety of applications chatbots, enhancing search, translation, and more

Attention in Neural Networks

Mechanism that allows the network to focus on specific parts of the input data while ignoring others

Language Translation Model

Model Without Attention

Parses the Entire Input

To Generate the Translation

Input and Output are Sequences

Input Sequence Fed In

Output Sequence Produced one Word at a Time

Complete Input + Words Produces So Far Used to Get Next Word in Sequence

Predict One Word at a Time

Attention

- Help models focus on the right parts of the input to generate the output
- The entire input along with attention generates better outputs
- Are the foundation of transformers used to power the large language models of today

A model architecture primarily used in natural language processing that relies on self-attention mechanisms to process sequential data more effectively than previous models

High-level Architecture of Transformers

Encoder Creates Abstract Representation Fed to the Decoder

Encoder Creates Abstract Representation Fed to the Decoder

This representation encodes the importance of every word with respect to other words in the same input sequence

Transformer Architecture

Encoder

Pretrained Transformers in Hugging Face

Transformers are very larger models and very expensive to train – in terms of data, time, and resources

Training Transformers from Scratch

Training transformer models from scratch (pretraining) - model weights are initialized at random and the model has no prior knowledge embedded within it

Training Transformers from Scratch

Needs huge amounts of data and compute resources - can be very expensive

Fine-tuning models involve additional training on an already pretrained model

Fine-tuning Transformers

Use less data, time, and resources to get good results - overall costs and environment impact of training is much lower than training from scratch

Hugging Face Pipelines

A high-level abstraction that makes it easy for users to perform NLP tasks using pre-trained models

Pipeline Components

Pipeline Components

Don't you know what time it is?

["Don't", "you", "know", "what", "time", "it", "is?"]

Consider Punctuation

["Don", "'", "t", "you", "know", "what", "time", "it", "is", "?"]

Split Words Like Won't and Don't

["Do", "n't", "you", "know", "what", "time", "it", "is", "?"]

Tokenizers

- Rule-based tokenizers with different rules split data in different ways
- Pretrained models only work well with inputs tokenized in the same manner as its training data

Categories of Tokenizers

Word Tokenizers

Character Tokenizers

Subword Tokenizers

Word and Character Tokenizers

- Split text into tokens in meaningful ways
- "swim" and "swimming" should be identified as related
- Reduce the number of unknown words
- Word tokenizers
 - Too large a vocabulary
 - Will not identify related words
- Character tokenizers
 - Large number of tokens for each sentence
 - Intuitively less meaningful

O.

Subword Tokenization

- Relies on the principle that frequently used words should not be split but rare words should be split into subwords
- "emotionally" could be a rare word, split into "emotional" and "ly"
- Allow models to have a reasonable vocabulary size and yet learn meaningful context independent representations

Pipeline Components

Hugging Face Transformer Pipeline

Hugging Face Transformer Pipeline

General Transformer Architecture

__

O.

Encoder-only Models

- Attention layers in the encoder can access all the words in the input sentence called "bidirectional" or "auto-encoding" models
- Pre-training involves corrupting the initial sentence (masking) and having the model predict the masked word
- Suited for tasks such as sentence classification, named entity recognition, and question answering

Masked Word Prediction

Let's have some fun doing _____ programming!

Python?

Java?

C++?

O.

Decoder-only Models

- Attention layers in the decoder can only access words before the current word in the sentence – called "auto-regressive" models
- Pre-training of these models involve predicting the next word in the sentence, given all words seen so far
- Models are best suited for natural language tasks such as text generation

Next Word Prediction

It's a nice sunny afternoon. Let's go _____

outside swimming running Dancing

Encoder-Decoder Models

- Called sequence-to-sequence models
- Attention layers in the encoder can access all parts of the input sentence,
- Attention in the decoder can only access words positioned before the given word
- Pre-training usually done using the objectives of the encoder and decoder (masked word prediction and next word prediction)
- Suited for tasks such as summarization, translation, and generative question answering

Model Responses to Prompts

Response a Sequence of Words

She speaks French quite well

Model Generates One Word at a Time

She \rightarrow speaks \rightarrow French \rightarrow quite \rightarrow well

Many Possible Words at Each Step

Each Possible Next Word is Assigned a Probability

The Model Picks One Word from Possible Next Words

Higher Probability Words are More Likely to be Picked

Response Generated by Picking Words at Each Step

She \rightarrow speaks \rightarrow French \rightarrow quite \rightarrow well

Large language models offer settings that you can tweak to make the generated text more creative and diverse or more predictable and deterministic

- High creativity will produce more diverse and unexpected results making the text more engaging
- High predictability generates more consistent and reliable text – useful when you need precise responses
- Striking a balance can produce text that is both interesting and coherent

Model Settings to Control Creativity and Predictability

- Temperature
- Top-p (Nucleus Sampling)
- Top-k

Temperature

- Values range between 0 and 1 (both inclusive)
- Higher values closer to 1 results in more creative output
- Lower values closer to 0 results in more predictable output

The Model Picks One Word from Possible Next Words

Original Probabilities of Possible Next Words

Higher Values of Temperature (Closer to 1)

The probability distribution over the next possible word becomes **flatter**.

Original Probabilities of Possible Next Words

Lower Values of Temperature (Closer to 0)

The probability distribution over the next possible word becomes **sharper**.

Top-p (Nucleus Sampling)

- Values range between 0 and 1 (both inclusive)
- Values close to 1 result in more diverse and creative output
- Values close to 0 result in more predictable output

Top-p sampling, also known as nucleus sampling, works by selecting the smallest set of top candidate words whose cumulative probability exceeds a given threshold p.

Probabilities of Possible Next Words

Sort All Words in Order of Probability

Top-p of 0.5

The next word selected will only choose between the smallest subset of words that exceeds the cumulative probability threshold

Top-p of 0.7

Top-p of 0.9

More words to choose from, more diversity in the output

Top-p of 1

Choose from among all possible words, greatest possible diversity

Top-k Sampling

O.

- Words to choose from limited to the K most likely words at each step
- Value is any positive integer
- Smaller values will pick more likely words, so less diverse output
- Larger values will pick less likely words, more diverse output

Top-K sampling limits the next-word selection to the **K most likely words** predicted by the model at each generation step.

Sort All Words in Order of Probability

Top-k of 3

The next word selected will only choose between the top 3 words in terms of probability

Top-k of 6

The next word selected will only choose between the top 6 words in terms of probability