NEURAL NETWORKS & DEEP LEARNING

By: Mohamed Aziz Tousli

BINARY CLASSIFICATION

- $(x,y), x \in R^{n_x}, y \in \{0,1\}$
- *m*: #*Training examples*
- m_{test} : #Test examples

$$X = \begin{bmatrix} \vdots & \cdots & \vdots \\ x^{(1)} & \cdots & x^{(m)} \\ \vdots & \cdots & \vdots \end{bmatrix} \in (n_x, m)$$

$$Y = [y^{(1)} \dots y^{(m)}] \in (1, m)$$

Logistic regression:

•
$$\hat{y} = P(y = 1 | x) = \sigma(z + b); z = w^T \rightarrow \hat{Y} = \sigma(\Theta^T X)$$
• Parameters: $w \in R^{n_x}, b \in R \rightarrow \Theta = \begin{bmatrix} \theta_0 = b \\ \theta_1 \\ \vdots \\ \theta_{n_x} \end{bmatrix}$
• PS: $X_0 = 1, x \in R^{n_x} + 1$

Sigmoid function: $\sigma(z) = \frac{1}{1 + e^{-z}}$

Loss error function: $L(\hat{y}, y) = -y \log \hat{y} + (1 - y) \log(1 - \hat{y}) = \frac{1}{2} (\hat{y} - y)^2$

Cost function: $J(w,b) = \frac{1}{m} \sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)})$

GRADIENT DESCENT

Want to find w, b that minimize J(w, b)

Repeat {

$$w \coloneqq w - \alpha \frac{dJ(w,b)}{dw}$$

$$b \coloneqq b - \alpha \frac{dJ(w,b)}{db}$$

$$\alpha = learning rate$$

$$dw = \frac{dJ(w,b)}{dw}$$

$$db = \frac{dJ(w,b)}{db}$$

J(w,b)

COMPUTATION GRAPH

LOGISTIC REGRESSION DERIVATIES

$$dz = \frac{dL}{dz} = a - y$$

$$da = \frac{dL}{da} = -\frac{y}{a} + \frac{1-y}{1-a}$$

$$dw = x \cdot dz$$

$$db = dz$$

```
for i=1 to m: z^{(i)} = w^T x^{(i)} + b
a^{(i)} = \sigma(z^{(i)})
J += -[y^{(i)}loga^{(i)} + (l1 - y^{(i)})log(1 - a^{(i)})
dz^{(i)} = a^{(i)} - y^{(i)}
dw_1 += x_1^{(i)}dz^{(i)}
dw_2 += x_2^{(i)}dz^{(i)}
db += dz^{(i)}
J/= m; dw_1/= m; dw_2/= m; db/= m
```

VECTORIZATION

Non vectorized: For loop → Slow

Vectorized: Tensor calculations → Fast

- Whenever possible, avoid explicit for-loops
- $u = Av \rightarrow u = np. dot(A, v)$
- $w_1, w_2 \dots \rightarrow one W$

Python Broadcasting

Vectorizing logistic regression:

$$Z = [z^{(1)} ... z^{(n+1)}] = w^T X + [b ... b] = [w^T x^{(1)} + b ... w^T x^{(2)} + b] = np. dot(w.T, X) + b$$

$$A = \left[a^{(1)} \dots a^{(m)} \right] = \boldsymbol{\sigma}(\boldsymbol{Z})$$

$$dZ^{[L]} = A^{[L]} - Y = [a^{(1)} - y^{(1)} \dots a^{(m)} - y^{(m)}]; dZ^{[l]} = w^{[l+1]T} dZ^{[l+1]} * g^{[l]'}(Z^{[l]})$$

$$\quad \cdot db^{[l]} = \frac{1}{n} np. \, sum \big(dZ^{[l]}, axis = 1, keepdims = True \big), dw^{[l]} = \frac{1}{n} dZ^{[l]} A^{[l-1]T}$$

•
$$w \coloneqq w - \alpha dw$$
; $b \coloneqq b - \alpha db$

NEURAL NETWORK

NEURAL NETWORK REPRESENTATION

$$z^{[l]} = \begin{bmatrix} \vdots \\ z_i^{[l]} \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ w_i^{[l]T}X + b_i^{[l]} \end{bmatrix} = W^{[l]}x + b^{[l]}$$

$$a^{[l]} = \begin{bmatrix} \vdots \\ a_i^{[l]} \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ \sigma\left(z_i^{[l]}\right) \\ \vdots \end{bmatrix} = \sigma(z^{[l]})$$

 $a_j^{[l](i)} = activation in node j in layer <math>l\left(\begin{array}{c} \mathbf{x_2} = \mathbf{a_2}^{(i)} \end{array} \right)$

in example i

 \rightarrow for i = 1 to m: Calculate $z^{[l](i)}$, $a^{[l](i)}$

PS: $Z^{[1]}$, $A^{[1]} \in (\#hidden\ units, \#training\ example)$

Input Layer

Hidden Layer

Output Layer

MORE ON VECTORIZED IMPLEMENTATION

$$\begin{cases}
x_{13} = P_{12} \times x_{1} + P_{12} \times x_{1} \\
P_{12} = P_{12} \times x_{1} + P_{12} \times x_{2} \\
P_{12} = P_{12} \times x_{1} + P_{12} \times x_{2} \\
P_{12} = P_{12} \times x_{1} + P_{12} \times x_{2} \\
P_{12} = P_{12} \times x_{1} + P_{12} \times x_{2} \\
P_{12} = P_{12} \times x_{1} + P_{12} \times x_{2} \\
P_{12} = P_{12} \times x_{1} + P_{12} \times x_{2} \\
P_{12} = P_{12} \times x_{1} + P_{12} \times x_{2} \\
P_{12} = P_{12} \times x_{1} + P_{12} \times x_{2} \\
P_{12} = P_{12} \times x_{1} + P_{12} \times x_{2} \\
P_{12} = P_{12} \times x_{2} \times x_{2}$$

ACTIVATION FUNCTIONS

Name	Plot	Equation	Derivative
Sigmoid	Sigmoid 12 1 0.8 0.8 0.2 0.2 0.50	$f(x)=\sigma(x)=rac{1}{1+e^{-x}}$	$f^{\prime}(x)=f(x)(1-f(x))$
Tanh	Tanh 55 1 05 05 000 10 -10 -5 05 5 10 -13	$f(x)= anh(x)=rac{(e^x-e^{-x})}{(e^x+e^{-x})}$	$f^{\prime}(x)=1-f(x)^2$
Rectified Linear Unit (relu)	Relu 12 10 2 10 2 10 5 10	$f(x) = egin{cases} 0 & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$	$f'(x) = egin{cases} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$
Leaky Rectified Linear Unit (Leaky relu)	Leaky Relu 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	$f(x) = egin{cases} 0.01x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$	$f'(x) = egin{cases} 0.01 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$

SUMMARY: FORWARD AND BACKWARD PROPAGATION

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = g^{[1]}(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = g^{[2]}(Z^{[2]})$$

$$\vdots$$

$$A^{[L]} = g^{[L]}(Z^{[L]}) = \hat{Y}$$

$$dZ^{[L]} = A^{[L]} - Y$$

$$dW^{[L]} = \frac{1}{m} dZ^{[L]} A^{[L]^T}$$

$$db^{[L]} = \frac{1}{m} np. \operatorname{sum}(dZ^{[L]}, axis = 1, keepdims = True)$$

$$dZ^{[L-1]} = dW^{[L]^T} dZ^{[L]} g'^{[L]} (Z^{[L-1]})$$

$$\vdots$$

$$dZ^{[1]} = dW^{[L]^T} dZ^{[2]} g'^{[1]} (Z^{[1]})$$

$$dW^{[1]} = \frac{1}{m} dZ^{[1]} A^{[1]^T}$$

$$db^{[1]} = \frac{1}{m} np. \operatorname{sum}(dZ^{[1]}, axis = 1, keepdims = True)$$

WEIGHT INITIALIZATION AND DIMENSIONALITY

Zero initialization \rightarrow Activations will be the same

Random initialization → Good

PS: b can be initialized to zero

Notations:

- $n^{[l]} = \#units in layer l$
- $W^{[l]}$, $dW^{[l]} \in (n^{[l]}, n^{[l-1]})$
- $A^{[l]}, Z^{[l]}, b^{[l]}, db^{[l]} \in (n^{[l]}, 1)$
- $A^{[l]}, dA^{[l]}, Z^{[l]}, dZ^{[l]} \in (n^{[l]}, m)$

DEEP REPRESENTATION

HYPERPARAMETERS

Parameters: W, b

Hyperparameters: Learning rate α , #iterations, #hidden layer L,

#hidden units, choice of activation functions

PS: Applying deep learning is a very empirical process

Experiment