

Distributionally Adaptive Meta Reinforcement Learning

Anurag Ajay*, Abhishek Gupta*, Dibya Ghosh, Sergey Levine, Pulkit Agrawal (*Equal Contribution)

Meta Reinforcement Learning resilient to task distribution shift via test-time uncertainty set adaptation

Failure of Meta Reinforcement Learning

$$\min_{\pi_{ ext{meta}}} \mathbb{E}_{\mathcal{T} \sim p(\mathcal{T})} \left[\operatorname{Regret}(\pi_{ ext{meta}}, \mathcal{T})
ight]$$

$$\operatorname{Regret}(\pi_{\text{meta}}, \mathcal{T}) = J(\pi_{\mathcal{T}}^*) - \mathbb{E}_{a_t^{(i)} \sim \pi_{\text{meta}}(\cdot | h_t^{(i)}), \mathcal{T}} \left[\frac{1}{k} \sum_{i=1}^k \sum_{t=1}^T r_t^{(i)} \right]$$

 π_{meta} solves a new task T using history h of states, actions and rewards from few episodes (i.e. k)

But, what if $p_{\text{test}}(\mathcal{T}) \neq p(\mathcal{T})$ due to shift in reward or dynamic distribution?

 $p_{train}(T) = p_{test}(T)$

 $p_{train}(T) \neq p_{test}(T)$

Known Level of Test-Time Distribution Shift

 $\min_{\pi_{\text{meta}}} \mathcal{R}(\pi_{\text{meta}}, p_{\text{train}}(\mathcal{T}), \epsilon) = \min_{\pi_{\text{meta}}} \max_{q(\mathcal{T})} \mathbb{E}_{\mathcal{T} \sim q(\mathcal{T})} \left[\text{Regret}(\pi_{\text{meta}}, \mathcal{T}) \right]$

Uncertainty set S.t. $D(p_{\text{train}}(\mathcal{T}) \| q(\mathcal{T})) \le \epsilon$

Makes π_{meta} robust to task distributions in the uncertainty set. However, a large uncertainty set can make π_{meta} too conservative.

Arbitrary Level of Distribution Shift

Meta-train on train-task distribution

Meta-train on *imagined* test-task distributions

Meta-policy selection during meta-test

Test time Meta-policy adaptation

Experimental Setup

Train/test task parameter Δ distributions

Baselines:
RL2 (Ni et al., 2021)
VariBAD (Zintgraf et al., 2019)
HyperX (Zintgraf et al., 2020)

Resilience to test-task distribution shift

Importance of Multiple Uncertainty Sets

Imagined target distributions from different uncertainty sets

Ant navigation

Object Localization

Wind

Adapt infers uncertainty set during test time

Test task distribution