

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)
Hingna Road, Wanadongri, Nagpur - 441 110
NAAC A++

Ph.: 07104-237919, 234623, 329249, 329250 Fax: 07104-232376, Website: www.vcce.edu

Department of Computer Technology

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

To establish learning ambience for ushering in computer engineering professionals in core and multidisciplinary area by developing Problem-solving skills through emerging technologies.

Session 2025-2026

Vision: To help businesses uncover crucial	Mission: To be a good data scientist
insights	

Program Educational Objectives of the program (PEO): (broad statements that describe the professional and career accomplishments)

PEO1	Preparation	P: Preparation	Pep-CL abbreviation
PEO2	Core Competence	E: Environment	pronounce as Pep-si-lL
	_	(Learning Environment)	easy to recall
PEO3	Breadth	P: Professionalism	
PEO4	Professionalism	C: Core Competence	
PEO5	Learning	L: Breadth (Learning in	
	Environment	diverse areas)	

Program Outcomes (PO): 1. Understand and Apply Parallel Programming Concepts

- 2. Analyse and Improve Program Performance.
- 3. Demonstrate Practical Skills in HPC Tools and Environments.

Keywords of POs:

Engineering knowledge, Problem analysis, Design/development of solutions, Conduct Investigations of Complex Problems, Engineering Tool Usage, The Engineer and The World, Ethics, Individual and Collaborative Team work, Communication, Project Management and Finance, Life-Long Learning

PSO Keywords: Cutting edge technologies, Research

"I am an engineer, and I know how to apply engineering knowledge to investigate, analyse and design solutions to complex problems using tools for entire world following all ethics in a collaborative way with proper management skills throughout my life." to contribute to the development of cutting-edge technologies and Research.

Integrity: I will adhere to the Laboratory Code of Conduct and ethics in its entirety.

Name and Signature of Student and Date

Samriddhi Kaswa-01/09/2025

Ph.: 07104-237919, 234623, 329249, 329250 Fax: 07104-232376, Website: www.ycce.edu

Department of Computer Technology

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

Session	2025-26 (ODD)	Course Name	HPC Lab
Semester	7	Course Code	22ADS706
Roll No	17	Name of Student	Samriddhi Kaswa

D (1			
Practical			
Number			
Course	1. Understand and Apply Parallel Programming Concepts		
Outcome	2. Analyse and Improve Program Performance		
Aim	Measuring Program Performance		
Problem	Measuring Program Performance		
Definition			
Theory	Why measure performance?		
(100 words)	1. To understand how long a program runs.		
	2. To identify bottlenecks.		
	3. To optimize code and compare different implementations.		
	4. To benchmark HPC applications.		
	Common ways to measure program performance in Linux		
	HPC:		
	A. Using Linux time command		
	B. Using built-in timing functions in code (e.g., OpenMP, MPI timing		
	functions)		
	C. Using profiling tools (basic overview)		
	Example: Measuring Performance of Matrix		
	Multiplication		
	Step 1: Write the serial (single-threaded) matrix		
	multiplication code.		
	Step 2: Compile and run the serial program		
	Step 3: Add OpenMP parallelization and timing		
	Step 4: Compile and run the OpenMP version		
	Step 5: Compare results		
	Step 3. Compare results		

Nagar Yuwak Shikshan Sanstha's

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) Hingna Road, Wanadongri, Nagpur - 441 110

Department of Computer Technology

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

```
Code:
                   1. Matmul_serial.c
               #include <stdio.h>
               #include <stdlib.h>
               #include <time.h>
               void matmul(int N, double *A, double *B, double *C) {
                  for (int i = 0; i < N; i++)
                    for (int j = 0; j < N; j++) {
                       double sum = 0;
                       for (int k = 0; k < N; k++)
                         sum += A[i*N+k] * B[k*N+j];
                       C[i*N+j] = sum;
               int main(int argc, char **argv) {
                  if (argc < 2) {
                    printf("Usage: %s matrix size\n", argv[0]);
                    return 1;
                  int N = atoi(argv[1]);
                  double *A = malloc(N*N*sizeof(double));
                  double *B = malloc(N*N*sizeof(double));
                  double *C = malloc(N*N*sizeof(double));
                  // Initialize matrices A and B
                  for (int i = 0; i < N*N; i++) {
                    A[i] = 1.0;
                    B[i] = 2.0;
                  clock_t start = clock();
                  matmul(N, A, B, C);
                  clock tend = clock();
                  double time spent = (double)(end - start) / CLOCKS PER SEC;
                  printf("Serial MatMul elapsed time: %f seconds\n", time_spent);
                  free(A); free(B); free(C);
                  return 0;
                   2. Matmul_openmp.c
```

Nagar Yuwak Shikshan Sanstha's

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) Hingna Road, Wanadongri, Nagpur - 441 110

Ph.: 07104-237919, 234623, 329249, 329250 Fax: 07104-232376, Website: www.ycce.edu

Department of Computer Technology

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration. Mission of the Department

```
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
void matmul(int N, double *A, double *B, double *C) {
  #pragma omp parallel for collapse(2)
  for (int i = 0; i < N; i++)
     for (int j = 0; j < N; j++) {
       double sum = 0;
       for (int k = 0; k < N; k++)
          sum += A[i*N+k] * B[k*N+i];
       C[i*N+j] = sum;
int main(int argc, char **argv) {
  if (argc < 2) {
     printf("Usage: %s matrix size\n", argv[0]);
     return 1;
  int N = atoi(argv[1]);
  double *A = malloc(N*N*sizeof(double));
  double *B = malloc(N*N*sizeof(double));
  double *C = malloc(N*N*sizeof(double));
  for (int i = 0; i < N*N; i++) {
     A[i] = 1.0;
     B[i] = 2.0;
  double start = omp_get_wtime();
  matmul(N, A, B, C);
  double end = omp_get_wtime();
  printf("OpenMP MatMul elapsed time: %f seconds\n", end - start);
  free(A); free(B); free(C);
  return 0;
```


Ph.: 07104-237919, 234623, 329249, 329250 Fax: 07104-232376, Website: www.vcce.edu

Department of Computer Technology

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) Hingna Road, Wanadongri, Nagpur - 441 110 NAAC A++

Ph.: 07104-237919, 234623, 329249, 329250 Fax: 07104-232376, Website: www.ycce.edu

Department of Computer Technology

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

Output	The matmul_serial file executes in 0.4 seconds, whereas the matmul_openmp	
Analysis	files executes in 0.2. There's a significate improvement in execution time.	
Link of	https://github.com/samriddhikaswa/HPC	
student		
Github		
profile where		
lab		
assignment		
has been		
uploaded		
Conclusion	Using OpenMP drastically improve the perform	nance of a program.
Plag Report		
(Similarity	Result Word Statistics	0% Exact Match 0% 100%
index $< 12\%$)	Why measure performance?	Plagiarism Partial Match 0% Unique
1110ex < 12%)	To understand how long a program runs. To identify bottlenecks.	⊎ Download Report ∨
	3. To optimize code and compare different implementations.	
	4. To benchmark HPC applications.	~ Som
	Common ways to measure program performance in Linux	
	HPC: A. Using Linux time command	
	B. Using built-in timing functions in code (e.g., OpenMP, MPI timing functions)	
	C. Using profiling tools (basic overview)	
	Example: Measuring Performance of Matrix	pro-
	Multiplication	Congratulation!
	Step 1: Write the serial (single-threaded) matrix	No Plagiarism Found
	multiplication code.	
	Step 2: Compile and run the serial program Step 3: Add OpenMP parallelization and timing	
Date	01/09/2025	1.1