LATTICE ICE[™] Technology Library

Version 3.0 August, 2016

Copyright

Copyright © 2007-2016 Lattice Semiconductor Corporation. All rights reserved. This document may not, in whole or part, be reproduced, modified, distributed, or publicly displayed without prior written consent from Lattice Semiconductor Corporation ("Lattice").

Trademarks

All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and Synopsys, Inc. Aldec and Active-HDL are trademarks of Aldec, Inc. All other trademarks are the property of their respective owners.

Disclaimers

NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY, NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF LATTICE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Lattice may make changes to these materials, specifications, or information, or to the products described herein, at any time without notice. Lattice makes no commitment to update this documentation. Lattice reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errors contained herein or to advise any user of this document of any correction if such be made. Lattice recommends its customers obtain the latest version of the relevant information to establish that the information being relied upon is current and before ordering any products.

Revision History

Version	Changes
2.0	Added Version Number to document. Added sections on Default
	Signal Values for unconnected ports.
2.1	Added PLL primitives
2.2	Corrected SB_CARRY connections to LUT inputs
2.3	Added iCE40 RAM, PLL primitives.
2.4	Added PLL_DS, SB_MIPI_RX_2LANE, SB_TMDS_deserializer primitives.
2.5	Added SB_MAC16 Primitive details.
2.6	Added iCE40LM Hard Macro details. Removed PLL_DS, SB_MIPI, SB_TMDS, SB_MAC16 primitive
	details.
2.7	Added iCE5LP (iCE40 Ultra) primitive details.
2.8	Removed iCE65 RAM, PLL details.
2.9	Added iCE40UL (iCE40 Ultra Lite) primitive details
3.0	Added iCE40UP (iCE40 Ultra Plus) primitives.

Table of Contents

Register	Primitives	7
SB	DFF	7
SB	DFFE	9
SB	DFFSR	11
SB	DFFR	13
SB	DFFSS	15
	DFFS	
SB		19
SB	DFFER	21
SB	DFFESS	23
SB	DFFES	25
SB	DFFN	27
SB	DFFNE	29
SB	DFFNSR	31
SB	DFFNR	33
SB	DFFNSS	35
SB	DFFNS	37
SB	DFFNESR	39
SB	DFFNER	41
SB	DFFNESS	43
SB_	DFFNES	45
Combina	ational Logic Primitives	47
SB	LUT4	47
	CARRY	
_	AM Primitives	
		٠.
ICE40	Block RAM 51	
SB_	RAM256x16	52
SB_	RAM256x16NR	54
SB_	RAM256x16NW	55
SB_	RAM256x16NRNW	57
SB_	RAM512x8	60
SB_	RAM512x8NR	62
SB_	RAM512x8NW	63
SB_	RAM512x8NRNW	65
SB_	RAM1024x4	68
SB_	RAM1024x4NR	70
SB_	RAM1024x4NW	71
SB_	RAM1024x4NRNW	73
SB_	RAM2048x2	76
SB_	_RAM2048x2NR	78
SB_	_RAM2048x2NW	79
SB_	RAM2048x2NRNW	81

SB_RAM40_4KIO Primitives	
SB_IOGlobal Buffer Primitives	
SB_GB_IO SB_GB Primitive	93
iCE40 PLL Primitives	
SB_PLL40_CORESB_PLL40_PADSB_PLL40_2_PADSB_PLL40_2F_CORESB_PLL40_2F_PADSB_PLL40_2F_PADHard Macro Primitives	98 102 105 109
iCE40LM Hard Macros	
SB_HSOSC (For HSSG)SB_LSOSC (For LPSG)SB_I2CSB_SPIICE5LP (iCE40 Ultra) Hard Macros	113 114 114
SB_HFOSC	121
SB_LFOSC	
SB_LED_DRV_CUR	
SB_RGB_DRV	
SB_IR_DRV	
SB_RGB_IP	
SB_IO_OD	
SB_I2C SB_SPI	
SB_SFISB_MAC16	
iCE40UL (iCE40 Ultra Lite) Hard Macros	
SB_HFOSC	145
SB LFOSC	
SB_RGBA_DRV	
SB_IR400_DRV	
SB BARCODE DRV	
SB_IR500_DRV	
SB_LEDDA_IP	
SB IR IP	
SB_IO_OD	
SB _I2C_FIFO	
iCE40UP (iCE40 Ultra Plus) Hard Macros	
SB_HFOSC	162

SB LFOSC	
SB RGBA DRV	164
SB_LEDDA_IP	166
SB_IO_OD	167
SB_I2C	170
SB_SPI	
SB_MAC16	172
SB_SPRAM256KA	173
SB_IO_I3C	176
Device Configuration Primitives	180
SB_WARMBOOT	180

Register Primitives

SB_DFF D Flip-Flop

Data: D is loaded into the flip-flop during a rising clock edge transition.

Inputs			Output
	D	С	Q
	0	1	0
	1	1	1
Power on State	Х	Х	0

K	
1	Rising Edge
1	High logic leve
0	Low logic level
Χ	Don't care
?	Unknown

HDL use

This register is inferred during synthesis and can also be explicitly instantiated.

Verilog Instantiation

// End of SB_DFF instantiation

VHDL Instantiation

```
-- SB_DFF - D Flip-Flop.
```

-- End of SB_DFF instantiation

SB DFFE

D Flip-Flop with Clock Enable

Data D is loaded into the flip-flop when Clock Enable E is high, during a rising clock edge transition.

	Output		
E	D	С	Q
0	Х	X,	Previous Q
1	0	1	0
1	1	1	1
Power on State	Х	Х	0

Key

Rising Edge

High logic level

Low logic level

Don't care

Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0' Input C: Logic '0' Input E: Logic '1'

Note that explicitly connecting a logic '1' value to port E will result in a non-optimal implementation, since an extra LUT will be used to generate the logic '1'. It is recommended that the user leave the port E unconnected, or use the corresponding flip-flop without Enable functionality i.e. the DFF primitive.

Verilog Instantiation

```
// SB_DFFE - D Flip-Flop with Clock Enable.
```

```
SB_DFFE_inst (
.Q(Q), // Registered Output
.C(C), // Clock
.D(D), // Data
.E(E), // Clock Enable
);
```

// End of SB_DFFE instantiation

-- SB_DFFE - D Flip-Flop with Clock Enable.

-- End of SB_DFFE instantiation

SB DFFSR

D Flip-Flop with Synchronous Reset

Data: D is loaded into the flip-flop when Reset R is low during a rising clock edge transition.

Reset: R input is active high, overrides all other inputs and resets the Q output during a rising clock edge.

	Output		
R	D	С	Q
1	Х	1	0
X	Х	0	No Change
0	0	1	0
0	1	1	1
Power on State	Х	Х	0

K	ey
1	Rising Edge
1	High logic leve
0	Low logic level
Χ	Don't care
?	Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

```
Input D: Logic '0'
Input C: Logic '0'
Input R: Logic '0'
```

Verilog Instantiation

// SB_DFFSR - D Flip-Flop, Reset is synchronous with the rising clock edge

// End of SB DFFSR instantiation

-- SB_DFFSR - D Flip-Flop, Reset is synchronous with the rising clock edge

-- End of SB_DFFSR instantiation

SB DFFR

D Flip-Flop with Asynchronous Reset

Data: D is loaded into the flip-flop when R is low during a rising clock edge transition.

Reset: R input is active high, overrides all other inputs and asynchronously resets the Q output.

	Output		
R	D	С	Q
1	Х	X,	0
0	0	1	0
0	1	1	1
Power on State	Х	Х	0

Key

✓ Rising Edge

1 High logic level0 Low logic level

X Don't care

? Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

```
Input D: Logic '0' Input C: Logic '0' Input R: Logic '0'
```

Verilog Instantiation

// SB_DFFR - D Flip-Flop, Reset is asynchronous to the clock.

-- SB_DFFR - D Flip-Flop, Reset is asynchronous to the clock.

-- End of SB_DFFR instantiation

SB DFFSS

D Flip-Flop with Synchronous Set

Data: D is loaded into the flip-flop when the Synchronous Set S is low during a rising clock edge transition.

Set: S input is active high, overrides all other inputs and synchronously sets the Q output.

	Output		
S	D	С	Q
1	Х	1	1
0	0	1	0
0	1	1	1
Power on State	X	Х	0

Key

- ✓ Rising Edge
- 1 High logic level
- 0 Low logic level
- X Don't care
- ? Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0' Input C: Logic '0' Input S: Logic '0'

Verilog Instantiation

// SB_DFFSS - D Flip-Flop, Set is synchronous with the rising clock edge,

// End of SB_DFFSS instantiation

-- SB_DFFSS - D Flip-Flop, Set is synchronous with the rising clock edge

-- End of SB_DFFSS instantiation

SB DFFS

D Flip-Flop with Asynchronous Set

Data: D is loaded into the flip-flop when S is low during a rising clock edge transition.

Set: S input is active high, and it overrides all other inputs and asynchronously sets the Q output.

	Output		
S	D	С	Q
1	Х	Х	1
0	0	1	0
0	1	1	1
Power on State	X	X	0

K	еу
1	Rising Edge
1	High logic level
0	Low logic level
Χ	Don't care
?	Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0' Input C: Logic '0' Input S: Logic '0'

Verilog Instantiation

```
// SB_DFFS - D Flip-Flop, Set is asynchronous to the rising clock edge
```

// End of SB_DFFS instantiation

-- SB_DFFS - D Flip-Flop, Set is asynchronous to the rising clock edge

-- End of SB_DFFS instantiation

SB DFFESR

D Flip-Flop with Clock Enable and Synchronous Reset

Data: D is loaded into the flip-flop when Reset R is low and Clock Enable E is high during a rising clock edge transition.

Reset: R, when asserted with Clock Enable E high, synchronously resets the Q output during a rising clock edge.

	Output			
R	E	D	С	Q
1	1	Х	1	0
X	0	Х	X	Previous Q
0	1	0	1	0
0	1	1	1	1
Power on State	X	X	X	0

Key

✓ Rising Edge

1 High logic level

0 Low logic levelX Don't care

? Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0' Input C: Logic '0' Input R: Logic '0' Input E: Logic '1'

Note that explicitly connecting a Logic '1' value to port E will result in a non-optimal implementation, since an extra LUT will be used to generate the Logic '1'. If the user's intention is to keep the FF always enabled, it is recommended that either port E be left unconnected, or the corresponding FF without a Clock Enable port be used.

Verilog Instantiation

// End of SB_DFFESR instantiation

VHDL Instantiation

-- End of SB_DFFESR instantiation

SB DFFER

D Flip-Flop with Clock Enable and Asynchronous Reset

Data: D is loaded into the flip-flop when Reset R is low and Clock Enable E is high during a rising clock edge transition.

Reset: R input is active high, overrides all other inputs and asynchronously resets the Q output.

	Output			
R	E	D	С	Q
1	Х	Х	Х	0
0	0	Х	Х	Previous Q
0	1	0	1	0
0	1	1	1	1
Power on State	Х	Х	X	0

Key

✓ Rising Edge

1 High logic level

0 Low logic level

X Don't care

? Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0' Input C: Logic '0' Input R: Logic '0' Input E: Logic '1'

Note that explicitly connecting a Logic '1' value to port E will result in a non-optimal implementation, since an extra LUT will be used to generate the Logic '1'. If the user's intention is to keep the FF always enabled, it is recommended that either port E be left unconnected, or the corresponding FF primitive without a Clock Enable port be used.

Verilog Instantiation

// SB_DFFER - D Flip-Flop, Reset is asynchronously on rising clock edge with Clock Enable.

// End of SB_DFFER instantiation

VHDL Instantiation

-- End of SB_DFFER instantiation

SB DFFESS

D Flip-Flop with Clock Enable and Synchronous Set

Data: D is loaded into the flip-flop when S is low and E is high during a rising clock edge transition.

Set: Asserting S when Clock Enable E is high, synchronously sets the Q output.

	Output			
S	E	D	С	Q
1	1	Х	1	1
0	0	Х	X	Previous Q
0	1	0	1	0
0	1	1	1	1
Power on State	Х	Х	X	0

Key

- ✓ Rising Edge
- 1 High logic level
- 0 Low logic level
- X Don't care
- ? Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0' Input C: Logic '0' Input R: Logic '0' Input S: Logic '0'

Verilog Instantiation

// SB_DFFESS - D Flip-Flop, Set is synchronous with rising clock edge and Clock Enable.

-- SB_DFFESS - D Flip-Flop, Set is synchronous with rising clock edge and Clock Enable.

-- End of SB_DFFESS instantiation

SB DFFES

D Flip-Flop with Clock Enable and Asynchronous Set

Data: D is loaded into the flip-flop when S is low and E is high during a rising clock edge transition.

Set: S input is active high, overrides all other inputs and asynchronously sets the Q output.

	Output			
S	E	D	CLK	Q
1	Х	Х	Х	1
0	0	X	X	Previous Q
0	1	0	1	0
0	1	1	1	1
Power on State	X	Х	X	0

Key

✓ Rising Edge

1 High logic level

0 Low logic level

X Don't care

? Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

```
Input D: Logic '0'
Input C: Logic '0'
Input S: Logic '0'
Input E: Logic '1'
```

Verilog Instantiation

// SB_DFFES - D Flip-Flop, Set is asynchronous on rising clock edge with Clock Enable.

-- SB_DFFES - D Flip-Flop, Set is asynchronous on rising clock edge with Clock Enable.

```
SB_DFFES_inst : SB_DFFES

port map (
Q => Q, -- Registered Output
C => C, -- Clock
E => E, -- Clock Enable
D => D, -- Data
S => S -- Asynchronously Set
);
```

-- End of SB_DFFES instantiation

SB DFFN

D Flip-Flop – Negative Edge Clock

Data: D is loaded into the flip-flop during the falling clock edge transition.

	Output		
	D	С	Q
	0	¥	0
	1	¥	1
Power on State	Х	Х	0

Key

- ¥ Falling Edge
- 1 High logic level
- 0 Low logic level
- X Don't care
- ? Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

```
Input D: Logic '0' Input C: Logic '0'
```

Verilog Instantiation

// End of SB_DFFN instantiation

SB DFFNE

D Flip-Flop - Negative Edge Clock and Clock Enable

Data: D is loaded into the flip-flop when E is high, during the falling clock edge transition.

	Output		
E	D	С	Q
0	Х	Х	0
1	0	¥	0
1	1	¥	1
Power on State	X	X	0

Key

★ Falling Edge1 High logic level

0 Low logic level

X Don't care

? Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0' Input C: Logic '0' Input E: Logic '1'

Note that explicitly connecting a Logic '1' value to port E will result in a non-optimal implementation, since an extra LUT will be used to generate the Logic '1'. If the user's intention is to keep the FF always enabled, it is recommended that either port E be left unconnected, or the corresponding FF without a Clock Enable port be used.

Verilog Instantiation

// SB DFFNE - D Flip-Flop - Negative Edge Clock and Clock Enable.

-- SB_DFFNE - D Flip-Flop – Negative Edge Clock and Clock Enable.

-- End of SB_DFFNE instantiation

SB_DFFNSR

D Flip-Flop - Negative Edge Clock with Synchronous Reset

Data: D is loaded into the flip-flop when R is low during the falling clock edge transition.

Reset: R input is active high, overrides all other inputs and resets the Q output during the falling clock edge transition.

Inputs			Output
R	D	С	Q
1	Х	¥	0
X	X	1	No Change
0	0	¥	0
0	1	¥	1
Power on State	Х	X	0

Key

- ₹ Falling Edge
- 1 High logic level
- 0 Low logic level
- X Don't care
- ? Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0' Input C: Logic '0' Input R: Logic '0'

Verilog Instantiation

// SB_DFFNSR - D Flip-Flop - Negative Edge Clock, Reset is synchronous with the falling clock edge

-- SB_DFFNSR - D Flip-Flop - Negative Edge Clock, Reset is synchronous with the falling clock edge

-- End of SB_DFFNSR instantiation

SB DFFNR

D Flip-Flop – Negative Edge Clock with Asynchronous Reset

Data: D is loaded into the flip-flop when R is low during the falling clock edge transition.

Reset: R input is active high, overrides all other inputs and asynchronously resets the Q output.

	Output		
R	D	CLK	Q
1	Х	Х	0
0	0	¥	0
0	1	¥	1
Power on State	Х	X	0

Key

- ★ Falling Edge
- 1 High logic level
- 0 Low logic level
- X Don't care
- ? Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0' Input C: Logic '0' Input R: Logic '0'

Verilog Instantiation

// SB_DFFNR - D Flip-Flop - Negative Edge Clock, Reset is asynchronous to the clock.

// End of SB_DFFNR instantiation

-- SB_DFFNR - D Flip-Flop - Negative Edge Clock, Reset is asynchronous to the clock.

-- End of SB_DFFNR instantiation

SB DFFNSS

D Flip-Flop – Negative Edge Clock with Synchronous Set

Data: D is loaded into the flip-flop when S is low during the falling clock edge transition.

Set: S input is active high, overrides all other inputs and synchronously sets the Q output.

	Output		
S	D	С	Q
1	Х	¥	1
0	0	¥	0
0	1	¥	1
Power on State	X	X	0

Key

- ★ Falling Edge
 1 High logic level
- 0 Low logic level
- X Don't care
- ? Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0' Input C: Logic '0' Input S: Logic '0'

Verilog Instantiation

// SB_DFFNSS - D Flip-Flop - Negative Edge Clock, Set is synchronous with the falling clock edge,

// End of SB_DFFNSS instantiation

-- SB_DFFNSS - D Flip-Flop - Negative Edge Clock, Set is synchronous with the falling clock edge,

-- End of SB_DFFNSS instantiation

SB DFFNS

D Flip-Flop – Negative Edge Clock with Asynchronous Set

Data: D is loaded into the flip-flop when S is low during the falling clock edge transition.

Set: S input is active high, overrides all other inputs and asynchronously sets the Q output.

	Output		
S	D	С	Q
1	Х	Х	1
0	0	¥	0
0	1	¥	1
Power on State	X	X	0

Key

← Falling Edge

1 High logic level

0 Low logic level

X Don't care

? Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0' Input C: Logic '0'

Input S: Logic '0'

Verilog Instantiation

// SB_DFFNS - D Flip-Flop - Negative Edge Clock, Set is asynchronous to the falling clock edge,

// End of SB_DFFNS instantiation

VHDL Instantiation

-- SB_DFFNS - D Flip-Flop - Negative Edge Clock, Set is asynchronous to the falling clock edge

-- End of SB_DFFNS instantiation

SB DFFNESR

D Flip-Flop – Negative Edge Clock, Enable and Synchronous Reset

Data: D is loaded into the flip-flop when R is low and E is high during the falling clock edge transition.

Reset: Asserting R when the Clock Enable E is high, synchronously resets the Q output during the falling clock edge.

	Output			
R	E	D	С	Q
1	1	Х	¥	0
X	0	X	Χ	Previous Q
0	1	0	¥	0
0	1	1	¥	1
Power on State	X	Х	X	0

Key

- ← Falling Edge
- 1 High logic level 0 Low logic level
- X Don't care
- ? Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0' Input C: Logic '0' Input R: Logic '0' Input E: Logic '1'

Note that explicitly connecting a Logic '1' value to port E will result in a non-optimal implementation, since an extra LUT will be used to generate the Logic '1'. If the user's intention is to keep the FF always enabled, it is recommended that either port E be left unconnected, or the corresponding FF without a Clock Enable port be used.

Verilog Instantiation

// SB_DFFNESR - D Flip-Flop - Negative Edge Clock, Reset is synchronous with falling clock edge Clock Enable.

// End of SB_DFFNESR instantiation

VHDL Instantiation

-- SB_DFFNESR - D Flip-Flop – Negative Edge Clock, Reset is synchronous with falling clock edge Clock Enable.

-- End of SB_DFFNESR instantiation

SB DFFNER

D Flip-Flop – Negative Edge Clock, Enable and Asynchronous Reset

Data: D is loaded into the flip-flop when R is low and E is high during the falling clock edge transition.

Reset: R input is active high, and it overrides all other inputs and asynchronously resets the Q output.

	Inputs				
R	E	D	С	Q	
1	Х	Х	Х	0	
0	0	Х	X	Previous Q	
0	1	0	¥	0	
0	1	1	¥	1	
Power on State	X	X	X	0	

Kev	
1101	

- → Falling Edge
- 1 High logic level
- 0 Low logic level
- X Don't care
- ? Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0'

Input C: Logic '0'

Input R: Logic '0'

Input E: Logic '1'

Note that explicitly connecting a Logic '1' value to port E will result in a non-optimal implementation, since an extra LUT will be used to generate the Logic '1'. If the user's intention is to keep the FF always enabled, it is recommended that either port E be left unconnected, or the corresponding FF without a Clock Enable port be used.

Verilog Instantiation

// SB_DFFNER - D Flip-Flop — Negative Edge Clock, Reset is asynchronously // on falling clock edge and Clock Enable.

// End of SB_DFFNER instantiation

VHDL Instantiation

-- SB_DFFNER - D Flip-Flop – Negative Edge Clock, Reset is asynchronously -- on falling clock edge and Clock Enable.

-- End of SB_DFFNER instantiation

SB DFFNESS

D Flip-Flop – Negative Edge Clock, Enable and Synchronous Set

Data: D is loaded into the flip-flop when S is low and E is high during the falling clock edge transition.

Set: S and E inputs high, synchronously sets the Q output on the falling clock edge transition.

	Output			
S	E	D	С	Q
1	1	Х	¥	1
X	0	Х	X	Previous Q
0	1	0	X	0
0	1	1	X	1
Power on State	X	X	Х	0

Key

- ¥ Falling Edge
- 1 High logic level
- 0 Low logic level
- X Don't care
- ? Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0'

Input C: Logic '0'

Input S: Logic '0'

Input E: Logic '1'

Note that explicitly connecting a Logic '1' value to port E will result in a non-optimal implementation, since an extra LUT will be used to generate the Logic '1'. If the user's intention is to keep the FF always enabled, it is recommended that either port E be left unconnected, or the corresponding FF without a Clock Enable port be used.

Verilog Instantiation

// SB_DFFNESS - D Flip-Flop – Negative Edge Clock, Set is synchronous with falling clock edge, // and Clock Enable.

// End of SB_DFFNESS instantiation

VHDL Instantiation

-- SB_DFFNESS - D Flip-Flop – Negative Edge Clock, Set is synchronous with falling clock edge, -- and Clock Enable.

-- End of SB_DFFNESS instantiation

SB DFFNES

D Flip-Flop – Negative Edge Clock, Enable and Asynchronous Set

Data: D is loaded into the flip-flop when S is low and E is high during the falling clock edge transition.

Set: S input is active high, and it overrides all other inputs and asynchronously sets the Q output.

	Output			
S	E	D	CLK	Q
1	Χ	Х	Х	1
0	0	Χ	X	Previous Q
0	1	0	X	0
0	1	1	X	1
Power on State	X	X	X	0

Key

- → Falling Edge
- 1 High logic level
- 0 Low logic level
- X Don't care
- ? Unknown

HDL Usage

This register is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns the following signal values to unconnected input ports:

Input D: Logic '0'

Input C: Logic '0'

Input S: Logic '0'

Input E: Logic '1'

Note that explicitly connecting a Logic '1' value to port E will result in a non-optimal implementation, since an extra LUT will be used to generate the Logic '1'. If the user's intention is to keep the FF always enabled, it is recommended that either port E be left unconnected, or the corresponding FF without a Clock Enable port be used.

Verilog Instantiation

// SB_DFFNES - D Flip-Flop — Negative Edge Clock, Set is asynchronous on falling clock edge with clock // Enable.

// End of SB_DFFNES instantiation

VHDL Instantiation

```
-- SB_DFFNES - D Flip-Flop – Negative Edge Clock, Set is asynchronous -- on falling clock edge and Clock Enable.
```

-- End of SB_DFFNES instantiation

Combinational Logic Primitives

SB_LUT4

The LUT unit is a simple ROM 4 input look-up function table.

Initialization values

LUT state initialization parameter LUT_INIT = 16'hxxxx;

	Inputs			Output
13	12	I 1	10	0
0	0	0	0	LUT_INIT[0]
0	0	0	1	LUT_INIT[1]
0	0	1	0	LUT_INIT[2]
0	0	1	1	LUT_INIT[3]
0	1	0	0	LUT_INIT[4]
0	1	0	1	LUT_INIT[5]
0	1	1	0	LUT_INIT[6]
0	1	1	1	LUT_INIT[7]
1	0	0	0	LUT_INIT[8]
1	0	0	1	LUT_INIT[9]
1	0	1	0	LUT_INIT[10]
1	0	1	1	LUT_INIT[11]
1	1	0	0	LUT_INIT[12]
1	1	0	1	LUT_INIT[13]
1	1	1	0	LUT_INIT[14]
1	1	1	1	LUT_INIT[15]

HDL Usage

This primitive is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns logic value '0' to unconnected input ports.

Verilog Instantiation

VHDL Instantiation

SB_CARRY

Carry Logic

The dedicated Carry Logic within each Logic Cell primarily accelerates and improves the efficiency of arithmetic logic such as adders, accumulators, subtracters, incrementers, decrementers, counters, ALUs, and comparators. The Carry Logic also supports a limited number of wide combinational logic functions.

The figure below illustrates the Carry Logic structure within a Logic Cell. The Carry Logic shares inputs with the associated Look-Up Table (LUT). The I1 and I2 inputs of the LUT directly feed the Carry Logic.. The carry input from the previous adjacent Logic Cell optionally provides an alternate input to the LUT4 function, supplanting the I3 input.

Carry Logic Structure within a Logic Cell

	Output		
10	I1	CI	СО
0	0	Χ	0
0	X	0	0
X	1	1	1
X	0	0	0
1	X	1	1
1	1	Х	1

HDL Usage

This primitive is inferred during synthesis and can also be explicitly instantiated.

Default Signal Values

The iCEcube2 software assigns logic value '0' to unconnected input ports.

Verilog Instantiation

```
SB_CARRY my_carry_inst (
    .CO(CO),
    .IO(IO),
    .I1(I1),
    .CI(CI));
```

VHDL Instantiation

Block RAM Primitives

The iCE architecture supports dual ported synchronous RAM, with 4096 bits, and a fixed 16 bit datawidth. The block is arranged as 256 x 16 bit words. The RAM block may be configured to be used as a RAM with data between 1-16 bits.

iCE40 Block RAM

Each iCE40 device includes multiple high-speed synchronous RAM blocks, each 4Kbit in size. The RAM block has separate write and read ports, each with independent control signals. Each RAM block can be configured into a RAM block of size 256x16, 512x8, 1024x4 or 2048x2. The data contents of the RAM block are optionally pre-loaded during ICE device configuration.

The following table lists the supported dual port synchronous RAM configurations, each of 4Kbits in size. The RAM blocks can be directly instantiated in the top module and taken through iCube2 flow.

Block RAM Configuration	Block RAM Size	WADDR Port Size (Bits)	WDATA Port Size (Bits)	RADDR Port Size (Bits)	RDATA Port Size (Bits)	MASK Port Size (Bits)
SB_RAM256x16 SB_RAM256x16NR SB_RAM256x16NW SB_RAM256x16NRNW	256x16 (4K)	8 [7:0]	16 [15:0]	8 [7:0]	16 [15:0]	16 [15:0]
SB_RAM512x8 SB_RAM512x8NR SB_RAM512x8NW SB_RAM512x8NRNW	512x8 (4K)	9 [8:0]	8 [7:0]	8 [8:0]	8 [7:0]	No Mask Port
SB_RAM1024x4 SB_RAM1024x4NR SB_RAM1024x4NW SB_RAM1024x4NRNW	1024x4 (4K)	10 [9:0]	4 [3:0]	10 [9:0]	4 [3:0]	No Mask Port
SB_RAM2048x2 SB_RAM2048x2NR SB_RAM2048x2NW SB_RAM2048x2NRNW	2048x2 (4K)	11 [10:0]	2 [1:0]	10 [9:0]	2 [1:0]	No Mask Port

The Lattice Technologies convention for the iCE40 RAM primitives with negedge Read or Write clock is that the base primitive name is post fixed with N and R or W according to the clock that is affected, as displayed in the table below for 256x16 RAM block configuration.

RAM Primitive Name	Description
SB_RAM256x16	Posedge Read clock, Posedge Write clock
SB_RAM4256x16NR	Negedge Read clock, Posedge Write clock
SB_RAM256x16NW	Posedge Read clock, Negedge Write clock
SB_RAM256x16NRNW	Negedge Read clock, Negedge Write clock

SB_RAM256x16

//Posedge clock RCLK WCLK

The following modules are the complete list of SB_RAM256x16 based primitives

SB RAM256x16

SB_RAM256x16

```
(RDATA, RCLK, RCLKE, RE, RADDR, WCLK, WCLKE, WE, WADDR, MASK, WDATA);
Verilog Instantiation:
        ram256x16_inst (
SB RAM256x16
   .RDATA(RDATA_c[15:0]),
.RADDR(RADDR_c[7:0]),
   .RCLK(RCLK_c),
   .RCLKE(RCLKE_c),
   .RE(RE_c),
   .WADDR(WADDR_c[7:0]),
   .WCLK(WCLK_c),
   .WCLKE(WCLKE_c)
   .WDATA(WDATA_c[15:0]),
   .WE(WE_c),
   .MASK(MASK_c[15:0])
defparam ram256x16_inst.INIT_0 =
defparam ram256x16_inst.INIT_1 =
defparam ram256x16_inst.INIT_2 =
```

```
defparam ram256x16_inst.INIT_6 =
defparam ram256x16_inst.INIT_7 =
defparam ram256x16_inst.INIT_8 =
defparam ram256x16_inst.INIT_9 =
defparam ram256x16_inst.INIT_A =
defparam ram256x16_inst.INIT_B =
defparam ram256x16 inst.INIT D =
defparam ram256x16_inst.INIT_E =
defparam ram256x16_inst.INIT_F =
VHDL Instantiation:
    SB_RAM256x16
ram256x16_inst:
generic map (
INIT_0 =>
INIT_1 =>
INIT 2 \Rightarrow
INIT 5 \Rightarrow
INIT_7 =
INIT 8 \Rightarrow
INIT_9 =>
INIT_A =>
INIT_B =>
INIT_C =>
INIT E =>
port map (
  RDATA => RDATA_C,
  RADDR => RADDR C.
  RCLK => RCLK_C,
  RCLKE => RCLKE_C,
  RE => RE_C,
```

```
WADDR => WADDR_C,

WCLK=> WCLK_C,

WCLKE => WCLKE_C,

WDATA => WDATA_C,

MASK => MASK_C,

WE => WE_C
```

SB RAM256x16NR

SB_RAM256x16NR // Negative edged Read Clock – i.e. RCLKN (RDATA, RCLKN, RCLKE, RE, RADDR, WCLK, WCLKE, WE, WADDR, MASK, WDATA);

Verilog Instantiation:

```
SB_RAM256x16NR
    ram256x16NR_inst (
 .RDATA(RDATA_c[15:0]),
 .RADDR(RADDR_c[7:0]),
 .RCLKN(RCLKN_c),
 .RCLKE(RCLKE_C),
.RE(RE_C),
 .WADDR(WADDR_c[7:0]),
 .WCLK(WCLK_c)
 .WCLKE(WCLKE_c)
 .WDATA(WDATA_c[15:0]),
 .WE(WE_c),
 .MASK (MASK_c[15:0])
defparam ram256x16nr_inst.INIT_3 =
defparam ram256x16nr_inst.INIT_4 =
defparam ram256x16nr_inst.INIT_7 =
defparam ram256x16nr_inst.INIT_C =
defparam ram256x16nr_inst.INIT_D =
```

VHDL Instantiation:

```
ram256x16nr_inst :
     SB_RAM256x16NR
generic map (
INIT_0 =>
INIT_1 =>
INIT_2 =>
INIT 3 \Rightarrow
INIT_4 =>
INIT_5 =>
INIT 6 \Rightarrow
INIT_8 =>
INIT_9 =>
INIT_A =>
INIT_B =>
INIT C =>
INIT_D =>
port map (
  RDATA => RDATA_c,
  RADDR => RADDR_C,
  RCLKN => RCLKN_C,
  RCLKE => RCLKE_C,
  RE => RE_C,
  WADDR => WADDR_c,
  WCLK=> WCLK_C,
  WCLKE => WCLKE_C,
  WDATA => WDATA_c,
  MASK => MASK_c,
  WE => WE_C
 ):
```

SB_RAM256x16NW

SB_RAM256x16NW // Negative edged Write Clock – i.e. WCLKN (RDATA, RCLK, RCLKE, RE, RADDR, WCLKN, WCLKE, WE, WADDR, MASK, WDATA);

Verilog Instantiation:

```
SB_RAM256x16NW
                           ram256x16nw_inst (
          .RDATA(RDATA_c[15:0]),
.RADDR(RADDR_c[7:0]),
          .RCLK(RCLK_c)
          .RCLKE(RCLKE_c),
          .RE(RE_c),
          .WADDR(WADDR_c[7:0]),
          .WCLKN(WCLKN_c),
          .WCLKE(WCLKE_c)
          .WDATA(WDATA_c[15:0]),
          .WE(WE_c),
          .MASK(MASK_c[15:0])
defparam ram256x16nw_inst.INIT_2 =
defparam ram256x16nw_inst.INIT_3 =
defparam ram256x16nw_inst.INIT_5 =
256 ^{\circ} ^
defparam ram256x16nw_inst.INIT_6 =
defparam ram256x16nw_inst.INIT_9 =
defparam ram256x16nw_inst.INIT_B =
defparam ram256x16nw_inst.INIT_C =
defparam ram256x16nw_inst.INIT_E =
defparam ram256x16nw_inst.INIT_F =
VHDL Instantiation:
ram256x16nw_inst :
                               SB_RAM256x16NW
generic map (
INIT_0 =>
INIT_2 =>
INIT 3 \Rightarrow
INIT_4 =>
```

```
INIT_7 =>
INIT 9 \Rightarrow
INIT_A =>
INIT_B =>
INIT C =>
INIT_D =>
INIT_E =>
)
port map (
  RDATA => RDATA_C,
  RADDR => RADDR_C.
  RCLK => RCLK_C,
  RCLKE => RCLKE_C,
  RE => RE_C,
  WADDR => WADDR_c,
  WCLKN=> WCLKN_C,
  WCLKE => WCLKE_C.
  WDATA => WDATA_c,
  MASK => MASK_C,
  WE => WE_C
 );
SB RAM256x16NRNW
```

```
SB_RAM256x16NRNW // Negative edged Read and Write – i.e. RCLKN WRCKLN (RDATA, RCLKN, RCLKE, RE, RADDR, WCLKN, WCLKE, WE, WADDR, MASK, WDATA);
```

Verilog Instantiation:

```
ram256x16nrnw_inst (
SB_RAM256x16NRNW
    .RDATA(RDATA_c[15:0]),
    .RADDR(RADDR_c[7:0]),
    .RCLKN(RCLKN_c),
    .RCLKE(RCLKE_c),
    .RE(RE_c),
    .WADDR(WADDR_c[7:0]),
    .WCLKN(WCLKN_c),
    .WCLKE(WCLKE_c)
    .WDATA(WDATA_c[15:0]),
    .WE(WE_c),
    .MASK(MASK\_c[15:0])
defparam ram256x16nrnw inst.INIT 0 =
defparam ram256x16nrnw_inst.INIT_1 =
```

```
defparam ram256x16nrnw_inst.INIT_2 =
defparam ram256x16nrnw_inst.INIT_3 =
defparam ram256x16nrnw_inst.INIT_4 =
defparam ram256x16nrnw_inst.INIT_5
defparam ram256x16nrnw_inst.INIT_6 =
defparam ram256x16nrnw_inst.INIT_7 =
defparam ram256x16nrnw_inst.INIT_8 =
defparam ram256x16nrnw_inst.INIT_A =
defparam ram256x16nrnw_inst.INIT_C =
defparam ram256x16nrnw_inst.INIT_D =
defparam ram256x16nrnw_inst.INIT_F =
256 ^{\circ} ^
```

VHDL Instantiation:

```
ram256x16nrnw_inst :
   SB_RAM256x16NRNW
generic map (
INIT_0 =>
INIT 1 \Rightarrow
INIT_3 =>
INIT 4 \Rightarrow
INIT_5 =>
INIT_6 =>
INIT_7 =>
INIT_8 =>
INIT A =>
INIT_C =>
INIT D =>
INIT_E =>
```

SB_RAM512x8

The following modules are the complete list of SB_RAM512x8 based primitives

SB_RAM512x8

```
SB RAM512x8
                //Posedge clock RCLK WCLK
(RDATA, RCLK, RCLKE, RE, RADDR, WCLK, WCLKE, WE, WADDR, MASK, WDATA);
Verilog Instantiation:
SB_RAM512x8
        ram512x8_inst (
   .RDATA(RDATA_c[7:0]),
.RADDR(RADDR_c[8:0]),
.RCLK(RCLK_c),
   .RCLKE(RCLKE_c),
   .RE(RE_c),
   .WADDR(WADDR_c[8:0]),
   .WCLK(WCLK_c),
   .WCLKE(WCLKE_c)
   .WDATA(WDATA_c[7:0]),
   .WE(WE_c)
);
defparam ram512x8_inst.INIT_0 =
defparam ram512x8_inst.INIT_1 =
defparam ram512x8_inst.INIT_2 =
defparam ram512x8_inst.INIT_5 =
```

```
defparam ram512x8_inst.INIT_6 =
defparam ram512x8_inst.INIT_7 =
defparam ram512x8_inst.INIT_8 =
defparam ram512x8_inst.INIT_9 =
defparam ram512x8_inst.INIT_A =
defparam ram512x8_inst.INIT_B =
defparam ram512x8_inst.INIT_C =
defparam ram512x8 inst.INIT D =
defparam ram512x8_inst.INIT_E =
defparam ram512x8_inst.INIT_F =
VHDL Instantiation:
```

```
ram512x8_inst : SB_RAM512x8
generic map (
INIT_0 =>
INIT 2 \Rightarrow
INIT_3 =>
INIT_4 =>
INIT_6 =>
INIT 7 \Rightarrow
INIT_8 =>
INIT 9 \Rightarrow
INIT B =>
INIT_C =>
INIT_D =>
INIT E =>
)
port map
 RDATA => RDATA_c,
 RADDR => RADDR_C,
 RCLK => RCLK_C,
 RCLKE => RCLKE_C.
 RE => RE_C,
```

```
WADDR => WADDR_C,

WCLK=> WCLK_C,

WCLKE => WCLKE_C,

WDATA => WDATA_C,

WE => WE_C
```

SB_RAM512x8NR

```
SB_RAM512x8NR
                                                                                  // Negative edged Read Clock - i.e. RCLKN
(RDATA, RCLKN, RCLKE, RE, RADDR, WCLK, WCLKE, WE, WADDR, MASK, WDATA);
Verilog Instantiation:
SB_RAM512x8NR
                                                        ram512x8nr_inst (
                      .RDATA(RDATA_c[7:0]),
                      .RADDR(RADDR_c[8:0]),
                      .RCLKN(RCLKN_c),
                      .RCLKE(RCLKE_c),
                      .RE(RE_c),
                      .WADDR(WADDR_c[8:0]),
                      .WCLK(WCLK_c),
                      .WCLKE(WCLKE_c)
                      .WDATA(WDATA_c[7:0]),
                      .WE(WE_c)
);
defparam ram512x8nr inst.INIT 2 =
defparam ram512x8nr_inst.INIT_3 =
defparam ram512x8nr_inst.INIT_5
defparam ram512x8nr_inst.INIT_B =
256 ^{\circ} ^
defparam ram512x8nr_inst.INIT_C =
defparam ram512x8nr_inst.INIT_D =
defparam ram512x8nr_inst.INIT_E =
256 ^{\circ} ^
```

VHDL Instantiation:

```
ram512x8nr_inst: SB_RAM512x8NR
generic map (
INIT 0 =>
INIT_1 =>
INIT 2 \Rightarrow
INIT_3 = 
INIT_4 =>
INIT 5 \Rightarrow
INIT 6 \Rightarrow
INIT_7 =>
INIT 9 \Rightarrow
INIT_A =>
INIT_B =>
INIT_C =>
INIT_D =>
INIT E =>
)
port map (
  RDATA => RDATA_C,
  RADDR => RADDR_C,
  RCLKN => RCLKN_C.
  RCLKE => RCLKE_C,
  RE => RE_C,
  WADDR => WADDR_C.
  WCLK=> WCLK_C,
  WCLKE => WCLKE_C.
  WDATA => WDATA_c,
  WE \Rightarrow WE C
 ):
```

SB_RAM512x8NW

```
.RCLK(RCLK_c),
  .RCLKE(RCLKE_c),
  .RE(RE_c),
  .WADDR(WADDR_c[8:0]),
  .WCLKN(WCLKN_c),
  .WCLKE(WCLKE_c)
  .WDATA(WDATA_c[7:0]),
  .WE(WE_c)
);
defparam ram512x8nw_inst.INIT_0 =
defparam ram512x8nw_inst.INIT_1 =
defparam ram512x8nw_inst.INIT_2 =
defparam ram512x8nw_inst.INIT_3 =
defparam ram512x8nw_inst.INIT_5 =
defparam ram512x8nw_inst.INIT_6 =
defparam ram512x8nw_inst.INIT_8 =
defparam ram512x8nw_inst.INIT_9 =
defparam ram512x8nw_inst.INIT_A =
defparam ram512x8nw_inst.INIT_B =
defparam ram512x8nw_inst.INIT_C =
defparam ram512x8nw_inst.INIT_E =
defparam ram512x8nw_inst.INIT_F =
VHDL Instantiation:
ram512x8nw_inst:
     SB_RAM512x8NW
generic map (
INIT_0 =>
INIT_1 =>
INIT_2 =>
INIT 3 \Rightarrow
INIT_5 =>
INIT_7 =>
```

```
INIT_8 =>
INIT_A =>
INIT C =>
INIT_D =>
INIT_E =>
port map (
  RDATA => RDATA_c,
  RADDR => RADDR_C,
  RCLK => RCLK_C,
  RCLKE => RCLKE_C,
  RE => RE_C,
  WADDR => WADDR_c,
  WCLKN=> WCLKN_c,
  WCLKE => WCLKE_C.
  WDATA => WDATA_C,
  WE => WE_C
 );
```

SB_RAM512x8NRNW

SB RAM512x8NRNW

```
// Negative edged Read and Write - i.e. RCLKN WRCKLN
(RDATA, RCLKN, RCLKE, RE, RADDR, WCLKN, WCLKE, WE, WADDR, MASK, WDATA);
Verilog Instantiation:
                                                                    ram512x8nrnw inst (
SB RAM512x8NRNW
                        .RDATA(RDATA_c[7:0]),
                         .RADDR(RADDR_c[8:0]),
                        .RCLKN(RCLK_c),
                        .RCLKE(RCLKE_c),
                        .RE(RE_c),
                        .WADDR(WADDR c[8:0]).
                        .WCLKN(WCLK_c),
                        .WCLKE(WCLKE_c)
                         .WDATA(WDATA_c[7:0]),
                         .WE(WE_c)
);
defparam ram512x8nrnw_inst.INIT_0 =
defparam ram512x8nrnw_inst.INIT_2 =
256 ^{\circ} ^
defparam ram512x8nrnw_inst.INIT_3 =
defparam ram512x8nrnw_inst.INIT_4 =
```

```
defparam ram512x8nrnw_inst.INIT_5 =
defparam ram512x8nrnw_inst.INIT_6 =
defparam ram512x8nrnw_inst.INIT_7 =
defparam ram512x8nrnw_inst.INIT_8 =
256 ^{\circ} ^
defparam ram512x8nrnw_inst.INIT_9 =
defparam ram512x8nrnw_inst.INIT_A =
defparam ram512x8nrnw_inst.INIT_C =
defparam ram512x8nrnw_inst.INIT_D =
defparam ram512x8nrnw_inst.INIT_F =
VHDL Instantiation:
ram512x8nrnw_inst:
                          SB_RAM512x8NRNW
generic map (
INIT_0 =>
INIT 1 \Rightarrow
INIT_2 =>
INIT_3 =>
INIT_4 =>
INIT_5 =>
INIT 6 \Rightarrow
INIT 8 \Rightarrow
INIT_9 =>
INIT_A =>
INIT_B =>
INIT_C =>
INIT D =>
)
port map
           RDATA => RDATA_C,
           RADDR => RADDR_C,
           RCLKN => RCLKN_C,
```

```
RCLKE => RCLKE_C,
RE => RE_C,
WADDR => WADDR_C,
WCLKN=> WCLKN_C,
WCLKE => WCLKE_C,
WDATA => WDATA_C,
WE => WE_C
);
```

SB_RAM1024x4

The following modules are the complete list of SB RAM1024x4 based primitives

SB_RAM1024x4

```
SB_RAM1024x4 //Posedge clock RCLK WCLK (RDATA, RCLK, RCLKE, RE, RADDR, WCLK, WCLKE, WE, WADDR, MASK, WDATA);
```

Verilog Instantiation:

```
SB_RAM1024x4
       ram1024x4_inst (
   .RDATA(RDATA_c[3:0]),
.RADDR(RADDR_c[9:0]),
   .RCLK(RCLK_c)
   .RCLKE(RCLKE_c),
   .RE(RE\_c),
   .WADDR(WADDR_c[3:0]),
   .WCLK(WCLK_c),
   .WCLKE(WCLKE_c)
   .WDATA(WDATA_c[9:0]),
   .WE(WE_c)
defparam ram1024x4_inst.INIT_0 =
defparam ram1024x4_inst.INIT_1 =
defparam ram1024x4_inst.INIT_3 =
defparam ram1024x4_inst.INIT_4 =
```

```
defparam ram1024x4_inst.INIT_5 =
defparam ram1024x4_inst.INIT_6 =
defparam ram1024x4_inst.INIT_7 =
defparam ram1024x4_inst.INIT_8 =
defparam ram1024x4_inst.INIT_9 =
defparam ram1024x4_inst.INIT_A =
defparam ram1024x4 inst.INIT C =
256 ^{\circ} ^
defparam ram1024x4_inst.INIT_D =
defparam ram1024x4_inst.INIT_E =
defparam ram1024x4_inst.INIT_F =
256 ^{\circ} ^
VHDL Instantiation:
```

```
Ram1024x4_inst: SB_RAM1024x4
generic map (
INIT 0 =>
INIT_1 =>
INIT_2 =>
INIT_3 =>
INIT_4 =>
INIT_5 =>
INIT_6 =>
INIT_7 =>
INIT 9 \Rightarrow
INIT_B =>
INIT C =>
INIT_D =>
INIT E =>
)
port map
 RDATA => RDATA_C,
 RADDR => RADDR_C,
 RCLK => RCLK_C,
```

```
RCLKE => RCLKE_C,
RE => RE_C,
WADDR => WADDR_C,
WCLK=> WCLK_C,
WCLKE => WCLKE_C,
WDATA => WDATA_C,
WE => WE_C
);
```

SB RAM1024x4NR

SB RAM1024x4NR // Negative edged Read Clock - i.e. RCLKN (RDATA, RCLKN, RCLKE, RE, RADDR, WCLK, WCLKE, WE, WADDR, MASK, WDATA); Verilog Instantiation: SB RAM1024x4NR ram1024x4nr_inst (.RDATA(RDATA_c[3:0]),
.RADDR(RADDR_c[9:0]), .RCLKN(RCLKN_c), .RCLKE(RCLKE_c), .RE(RE_C), .WADDR(WADDR_C[3:0]), .WCLK(WCLK_c), .WCLKE(WCLKE_c) .WDATA(WDATA_c[9:0]), .WE(WE_c) defparam ram1024x4nr_inst.INIT_0 = defparam ram1024x4nr_inst.INIT_2 = defparam ram1024x4nr_inst.INIT_3 = defparam ram1024x4nr_inst.INIT_6 = defparam ram1024x4nr_inst.INIT_B = defparam ram1024x4nr_inst.INIT_C = 256 $^{\circ}$ $^$ defparam ram1024x4nr_inst.INIT_F =

VHDL Instantiation:

```
ram1024x4nr_inst:
    SB_RAM1024x4NR
generic map (
INIT 0 =>
INIT_1 =>
INIT 2 \Rightarrow
INIT_3 =>
INIT_4 =>
INIT_7 =>
INIT 9 \Rightarrow
INIT_A =>
INIT_B =>
INIT_C =>
INIT_D =>
INIT E =>
)
port map (
  RDATA => RDATA C.
  RADDR => RADDR_C,
  RCLKN => RCLKN_C.
  RCLKE => RCLKE_C,
  RE => RE_C,
  WADDR => WADDR_C.
  WCLK=> WCLK_C,
  WCLKE => WCLKE_C.
  WDATA => WDATA_c,
  WE \Rightarrow WE C
 );
```

SB RAM1024x4NW

SB_RAM1024x4NW // Negative edged Write Clock – i.e. WCLKN (RDATA, RCLK, RCLKE, RE, RADDR, WCLKN, WCLKE, WE, WADDR, MASK, WDATA);

Verilog Instantiation:

```
SB_RAM1024x4NW
                          ram1024x4nw_inst (
          .RDATA(RDATA_c[3:0]),
          .RADDR(RADDR_c[9:0]),
          .RCLK(RCLK_c)
          .RCLKE(RCLKE_c),
         .RE(RE_c),
         .WADDR(WADDR_c[3:0]),
         .WCLKN(WCLKN_c),
          .WCLKE(WCLKE_c)
          .WDATA(WDATA_c[9:0]),
          .WE(WE_c)
defparam ram1024x4_inst.INIT_1 =
defparam ram1024x4_inst.INIT_2 =
defparam ram1024x4_inst.INIT_3 =
defparam ram1024x4_inst.INIT_4 =
     defparam ram1024x4_inst.INIT_5 =
defparam ram1024x4_inst.INIT_6 =
defparam ram1024x4_inst.INIT_7 =
256 ^{\circ} ^
defparam ram1024x4_inst.INIT_8 =
defparam ram1024x4_inst.INIT_A =
defparam ram1024x4_inst.INIT_B =
defparam ram1024x4_inst.INIT_C =
defparam ram1024x4_inst.INIT_E =
defparam ram1024x4_inst.INIT_F =
VHDL Instantiation:
ram1024x4nw_inst :
                               SB_RAM1024x4NW
generic map (
INIT_0 =>
INIT_1 =>
INIT_3 =>
INIT 4 \Rightarrow
```

```
INIT_7 =>
INIT 9 \Rightarrow
INIT_A =>
INIT_B =>
INIT C =>
INIT_D =>
INIT_E =>
)
port map (
  RDATA => RDATA_C,
  RADDR => RADDR_C.
  RCLK => RCLK_C,
  RCLKE => RCLKE_C,
  RE => RE_C,
  WADDR => WADDR_C.
  WCLKN=> WCLKN_C,
  WCLKE => WCLKE_c,
  WDATA => WDATA_C,
  WE => WE_C
 );
```

SB RAM1024x4NRNW

SB_RAM1024x4NRNW // Negative edged Read and Write – i.e. RCLKN WRCKLN (RDATA, RCLKN, RCLKE, RE, RADDR, WCLKN, WCLKE, WE, WADDR, MASK, WDATA);

```
SB_RAM1024x4NRNW
           ram1024x4nrnw_inst (
   .RDATA(RDATA_c[3:0]),
   .RADDR(RADDR_c[9:0])
   .RCLKN(RCLK_c)
   .RCLKE(RCLKE_c),
    .RE(RE_c),
    .WADDR(WADDR_c[3:0]),
   .WCLKN(WCLK_c),
   .WCLKE(WCLKE_c)
   .WDATA(WDATA_c[9:0]),
   .WE(WE_c)
defparam ram1024x4nrnw_inst.INIT_0 =
defparam ram1024x4nrnw_inst.INIT_1 =
defparam ram1024x4nrnw_inst.INIT_2 =
```

```
defparam ram1024x4nrnw_inst.INIT_3 =
defparam ram1024x4nrnw_inst.INIT_4 =
defparam ram1024x4nrnw_inst.INIT_5 =
defparam ram1024x4nrnw_inst.INIT_6 =
defparam ram1024x4nrnw_inst.INIT_7 =
defparam ram1024x4nrnw_inst.INIT_8 =
defparam ram1024x4nrnw_inst.INIT_9 =
defparam ram1024x4nrnw_inst.INIT_B =
defparam ram1024x4nrnw_inst.INIT_C =
defparam ram1024x4nrnw_inst.INIT_D =
defparam ram1024x4nrnw_inst.INIT_E =
VHDL Instantiation:
ram1024x4nrnw_inst :
     SB_RAM1024x4NRNW
generic map (
INIT_0 =>
INIT_1 =>
INIT_2 =>
INIT_4 =>
INIT_5 =>
INIT_7 =>
INIT_8 =>
INIT_9 =>
INIT A =>
INIT_B =>
INIT_C =>
INIT D =>
INIT_E =>
```

SB RAM2048x2

The following modules are the complete list of SB_RAM2048x2 based primitives

SB_RAM2048x2

```
SB_RAM2048x2 //Posedge clock RCLK WCLK (RDATA, RCLK, RCLKE, RE, RADDR, WCLK, WCLKE, WE, WADDR, MASK, WDATA);
```

```
ram2048x2_inst (
SB RAM2048x2
  .RDATA(RDATA_c[1:0]), .RADDR(RADDR_c[10:0]),
  .RCLK(RCLK_c),
  .RCLKE(RCLKE_c),
  .RE(RE_c)
  .WADDR(WADDR_c[10:0]),
  .WCLK(WCLK_c),
  .WCLKE(WCLKE_c)
  .WDATA(WDATA_c[1:0]),
  .WE(WE_c)
defparam ram2048x2_inst .INIT_2 =
defparam ram2048x2_inst .INIT_6 =
```

```
defparam ram2048x2_inst .INIT_7 =
defparam ram2048x2_inst .INIT_8 =
defparam ram2048x2_inst .INIT_9 =
defparam ram2048x2_inst .INIT_A :
defparam ram2048x2_inst .INIT_B =
defparam ram2048x2_inst .INIT_C =
defparam ram2048x2_inst .INIT_F =
VHDL Instantiation:
Ram2048x2_inst : SB_RAM2048x2
generic map (
INIT_0 =>
INIT_1 =>
INIT_2 =>
INIT_3 =>
INIT_4 =>
INIT 7 \Rightarrow
INIT 9 \Rightarrow
INIT A =>
INIT_B =>
INIT_C =>
INIT_D =>
INIT_E =>
)
port map
  RDATA => RDATA_c,
  RADDR => RADDR_C,
  RCLK => RCLK_C,
  RCLKE => RCLKE_c,
  RE => RE_C,
  WADDR => WADDR_C,
  WCLK=> WCLK_C,
  WCLKE => WCLKE_c,
```

```
WDATA => WDATA_C,
  WE => WE_C
);
```

SB RAM2048x2NR

```
SB RAM2048x2NR
        // Negative edged Read Clock - i.e. RCLKN
(RDATA, RCLKN, RCLKE, RE, RADDR, WCLK, WCLKE, WE, WADDR, MASK, WDATA);
SB_RAM2048x2NR
      ram2048x2nr_inst (
  .RDATA(RDATA_c[1:0]),
.RADDR(RADDR_c[10:0]),
  .RCLKN(RCLKN_c),
  .RCLKE(RCLKE_c),
  .RE(RE_C),
  .WADDR(WADDR_c[10:0]),
  .WCLK(WCLK_c),
  .WCLKE(WCLKE_c)
  .WDATA(WDATA_c[1:0]),
  .WE(WE_c)
defparam ram2048x2nr_inst.INIT_0 =
defparam ram2048x2nr_inst .INIT_1 =
defparam ram2048x2nr_inst .INIT_6 =
defparam ram2048x2nr_inst .INIT_8 =
defparam ram2048x2nr_inst .INIT_9 =
defparam ram2048x2nr_inst .INIT_B =
defparam ram2048x2nr_inst .INIT_F =
VHDL Instantiation:
ram2048x2nr_inst :
       SB_RAM2048x2NR
generic map (
INIT_0 =>
```

```
INIT_3 =>
INIT_5 =>
INIT_6 =>
INIT_7 =>
INIT 8 \Rightarrow
INIT_9 =>
INIT A =>
INIT_C =>
INIT_E =>
)
port map (
 RDATA => RDATA_C,
 RADDR => RADDR_C,
 RCLKN => RCLKN_C,
 RCLKE => RCLKE_c,
 RE => RE_C,
 WADDR => WADDR_c,
 WCLK=> WCLK_C,
 WCLKE => WCLKE_C,
 WDATA => WDATA_C,
 WE => WE_C
 );
```

SB RAM2048x2NW

```
SB RAM2048x2NW
                     // Negative edged Write Clock - i.e. WCLKN
(RDATA, RCLK, RCLKE, RE, RADDR, WCLKN, WCLKE, WE, WADDR, MASK, WDATA);
SB_RAM2048x2NW
               ram2048x2nw_inst (
     .RDATA(RDATA_c[1:0])
     .RADDR(RADDR_c[10:0])
     .RCLK(RCLK_c).
     .RCLKE(RCLKE_c),
     .RE(RE_c),
     .WADDR(WADDR_c[10:0]),
     .WCLKN(WCLKN_c),
     .WCLKE(WCLKE_c)
     .WDATA(WDATA_c[1:0]),
     .WE(WE_c)
defparam ram2048x2nw_inst.INIT_0 =
```

```
defparam ram2048x2nw_inst .INIT_1 =
defparam ram2048x2nw_inst .INIT_2 =
defparam ram2048x2nw_inst .INIT_3 =
defparam ram2048x2nw_inst .INIT_4 =
defparam ram2048x2nw_inst .INIT_5 =
256 ^{\circ} ^
defparam ram2048x2nw_inst .INIT_6 =
defparam ram2048x2nw_inst .INIT_A =
defparam ram2048x2nw_inst .INIT_B =
defparam ram2048x2nw_inst .INIT_C =
defparam ram2048x2nw_inst .INIT_E =
256 ^{\circ} ^
defparam ram2048x2nw_inst .INIT_F =
VHDL Instantiation:
ram2048x2nw_inst:
                                           SB_RAM2048x2NW
generic map (
INIT_0 =>
INIT 3 =>
INIT 4 \Rightarrow
INIT_5 =>
INIT_6 =>
INIT_7 =>
INIT_8 =>
INIT A =>
INIT_C =>
```

SB RAM2048x2NRNW

SB_RAM2048x2NRNW // Negative edged Read and Write – i.e. RCLKN WRCKLN (RDATA, RCLKN, RCLKE, RE, RADDR, WCLKN, WCLKE, WE, WADDR, MASK, WDATA);

```
SB_RAM2048x2NRNW
      ram2048x2nrnw_inst (
  .RDATA(RDATA_c[1:0]),
  .RADDR(RADDR_c[10:0])
  .RCLKN(RCLKN_c),
  .RCLKE(RCLKE_c),
  .RE(RE_c),
  .WADDR(WADDR_c[10:0]),
.WCLKN(WCLKN_c),
  .WCLKE(WCLKE_c)
  .WDATA(WDATA_c[1:0]),
  .WE(WE_c)
defparam ram2048x2nrnw_inst.INIT_0 =
defparam ram2048x2nrnw inst .INIT 4 =
defparam ram2048x2nrnw_inst .INIT_5 =
defparam ram2048x2nrnw_inst .INIT_7 =
defparam ram2048x2nrnw_inst .INIT_8 =
defparam ram2048x2nrnw_inst .INIT_9 =
```

```
defparam ram2048x2nrnw_inst .INIT_D =
defparam ram2048x2nrnw_inst .INIT_E =
defparam ram2048x2nrnw_inst .INIT_F =
VHDL Instantiation:
ram2048x2nrnw_inst :
      SB_RAM2048x2NRNW
generic map (
INIT_0 =>
INIT 1 \Rightarrow
INIT_2 =>
INIT 3 \Rightarrow
INIT_5 =>
INIT_6 =>
INIT 8 \Rightarrow
INIT_9 =>
INIT A =>
INIT D =>
INIT_E =>
port map (
  RDATA => RDATA_c,
  RADDR => RADDR_C,
  RCLKN => RCLKN_C,
  RCLKE => RCLKE_c,
  RE => RE_C,
  WADDR => WADDR_C,
  WCLKN=> WCLKN_C,
  WCLKE => WCLKE_c,
  WDATA => WDATA_c,
  WE => WE_C
 );
```

SB_RAM40_4K

SB_RAM40_4K is the basic physical RAM primitive which can be instantiated and configured to different depth and dataports. The SB_RAM40_4K block has a size of 4K bits with separate write and read ports, each with independent control signals. By default, input and output data is 16 bits wide, although the data width is configurable using the READ_MODE and WRITE_MODE parameters. The data contents of the SB_RAM40_4K block are optionally pre-loaded during ICE device configuration.

SB_RAM40_4K Naming Convention Rules

RAM Primitive Name	Description
SB_RAM40_4K	Posedge Read clock, Posedge Write clock
SB_RAM40_4KNR	Negedge Read clock, Posedge Write clock
SB_RAM40_4KNW	Posedge Read clock, Negedge Write clock
SB_RAM40_4KNRNW	Negedge Read clock, Negedge Write clock

The following table lists the signals for both ports.

SB_RAM40_4K RAM Port Signals				
Signal Name	Direction	Description		
WDATA[15:0]	Input	Write Data input		
MASK[15:0]*	Input	Bit-line Write Enable input, active low. Applicable only when WRITE_MODE parameter is set to 0.		
WADDR[7:0]	Input	Write Address input. Selects up to 256 possible locations		
WE	Input	Write Enable input, active high		
WCLK	Input	Write Clock input, rising-edge active		
WCLKE	Input	Write Clock Enable input		
RDATA[15:0]	Output	Read Data output		
RADDR[7:0]	Input	Read Address input. Selects one of 256 possible locations		
RE	Input	Read Enable input, active high		
RCLK	Input	Read Clock input, rising-edge active		
RCLKE	Input	Read Clock Enable input		

Parameter Name	Description	Parameter Value	Configuration
INIT_0,	RAM Initialization Data. Passed using 16	INIT_0 to	Initialize the RAM with
,INIT_F	parameter strings, each comprising 256 bits. (16x256=4096 total bits)	INIT_F	predefined value
WRITE_MODE	Sets the RAM block write port	0	256x16
	configuration	1	512x8
		2	1024x4
		3	2048x2
READ_MODE	Sets the RAM block read port	0	256x16
	configuration	1	512x8
		2	1024x4
		3	2048x2

SB_RAM40_4K

Verilog Instantiation:

```
// Physical RAM Instance without Pre Initialization
SB_RAM40_4K ram40_4kinst_physical (
             .RDATA(RDATA),
             .RADDR(RADDR),
             .WADDR(WADDR),
             .MASK(MASK)
             .WDATA(WDATA),
             .RCLKE(RCLKE),
             .RCLK(RCLK),
             .RE(RE),
             .WCLKE(WCLKE),
             .WCLK(WCLK),
             .WE(WE)
);
defparam ram40_4kinst_physical.READ_MODE=0;
defparam ram40_4kinst_physical.WRITE_MODE=0;
VHDL Instantiation:
-- Physical RAM Instance without Pre Initialization
ram40_4kinst_physical: SB_RAM40_4K
generic map (
      READ_MODE \Rightarrow 0,
      WRITE_MODE= >0 )
port map
       RDATA=>RDATA,
       RADDR=>RADDR,
      WADDR=>WADDR,
      MASK=>MASK,
      WDATA=>WDATA,
       RCLKE=>RCLKE,
       RCLK=>RCLK,
       RE=>RE,
      WCLKE=>WCLKE,
      WCLK=>WCLK,
      WE=>WE
```

ICE Technology Library
Lattice Semiconductor Corporation Confidential

);

SB_RAM40_4KNR

```
// Physical RAM Instance without Pre Initialization
SB_RAM40_4KNR ram40_4knrinst_physical (
             .RDATA(RDATA),
             .RADDR(RADDR),
             .WADDR(WADDR),
             .MASK(MASK),
             .WDATA(WDATA),
             .RCLKE(RCLKE),
             .RCLKN(RCLKN),
             .RE(RE),
.WCLKE(WCLKE),
             .WCLK(WCLK),
             .WE(WE)
      );
defparam ram40_4knrinst_physical.READ_MODE=0;
defparam ram40_4knrinst_physical.WRITE_MODE=0;
VHDL Instantiation:
-- Physical RAM Instance without Pre Initialization
ram40_4knrinst_physical: SB_RAM40_4KNR
generic map (
      READ\_MODE => 0,
      WRITE\_MODE = > 0
port map (
      RDATA=>RDATA,
      RADDR=>RADDR,
      WADDR=>WADDR,
      MASK=>MASK,
      WDATA=>WDATA,
      RCLKE=>RCLKE,
      RCLKN=>RCLKN,
      RE=>RE,
      WCLKE=>WCLKE,
      WCLK=>WCLK,
      WE=>WE
      );
```

SB_RAM40_4KNW

```
// Physical RAM Instance without Pre Initialization
SB_RAM40_4KNW ram40_4knwinst_physical (
              .RDATA(RDATA),
              .RADDR(RADDR),
              .WADDR(WADDR),
              .MASK(MASK),
              .WDATA(WDATA),
              .RCLKE(RCLKE),
              .RCLK(RCLK),
             .RE(RE),
.WCLKE(WCLKE),
.WCLKN(WCLKN),
              .WE(WE)
      );
defparam ram40_4knwinst_physical.READ_MODE=0;
defparam ram40_4knwinst_physical.write_Mode=0;
VHDL Instantiation:
-- Physical RAM Instance without Pre Initialization
ram40_4knwinst_physical: SB_RAM40_4KNW
generic map (
       READ\_MODE => 0,
      WRITE\_MODE = > 0
port map (
       RDATA=>RDATA,
       RADDR=>RADDR,
      WADDR=>WADDR,
      MASK=>MASK,
      WDATA=>WDATA,
       RCLKE=>RCLKE,
       RCLK=>RCLK,
       RE=>RE,
      WCLKE=>WCLKE,
      WCLKN=>WCLKN,
      WE=>WE
      );
```

SB_RAM40_4KNRNW

```
// Physical RAM Instance without Pre Initialization
SB_RAM40_4KNRNW ram40_4knrnwinst_physical (
              .RDATA(RDATA),
              .RADDR(RADDR),
              .WADDR(WADDR),
              .MASK(MASK),
              .WDATA(WDATA),
              .RCLKE(RCLKE),
              .RCLKN(RCLKN),
             .RE(RE),
.WCLKE(WCLKE),
.WCLKN(WCLKN),
              .WE(WE)
      );
defparam ram40_4knrnwinst_physical.READ_MODE=0;
defparam ram40_4knrnwinst_physical.write_Mode=0;
VHDL Instantiation:
-- Physical RAM Instance without Pre Initialization
ram40_4knrnwinst_physical: SB_RAM40_4KNRNW
generic map (
       READ\_MODE => 0,
      WRITE\_MODE = > 0
port map (
       RDATA=>RDATA,
       RADDR=>RADDR,
      WADDR=>WADDR,
      MASK=>MASK,
      WDATA=>WDATA,
       RCLKE=>RCLKE,
       RCLKN=>RCLKN,
       RE=>RE,
      WCLKE=>WCLKE,
      WCLKN=>WCLKN,
      WE=>WE
      );
```

IO Primitives

SB IO

The SB_IO block contains five registers. The following figure and Verilog template illustrate the complete user accessible logic diagram, and its Verilog instantiation.

Default Signal Values

The iCEcube2 software assigns the logic '0' value to all unconnected input ports except for CLOCK_ENABLE.

Note that explicitly connecting a logic '1' value to port CLOCK_ENABLE will result in a non-optimal implementation, since an extra LUT will be used to generate the Logic '1'. If the user's intention is to keep the Input and Output registers always enabled, it is recommended that port CLOCK_ENABLE be left unconnected.

Input and Output Pin Function Tables

Input and Output functions are independently selectable via PIN_TYPE [1:0] and PIN_TYPE [5:2] parameter settings respectively. Specific IO functions are defined by the combination of both attributes. This means that the complete number of combinations is 64, although some combinations are not valid and not defined below.

Note that the selection of IO Standards such as SSTL and LVCMOS are not defined by these tables.

	Input Pin Function Table				
#	Pin Function Mnemonic	PIN_TYPE[1:0]		Functional Description of Package Pin Input Operation	
1	PIN_INPUT	0	1	Simple input pin (D_IN_0)	
2	PIN_INPUT_LATCH	1	1	Disables internal data changes on the physical input pin by latching the value.	
3	PIN_INPUT_REGISTERED	0	0	Input data is registered in input cell	
4	PIN_INPUT_REGISTERED _LATCH	1	0	Disables internal data changes on the physical input pin by latching the value on the input register	
5	PIN_INPUT_DDR	0	0	Input 'DDR' data is clocked out on rising and falling clock edges. Use the D_IN_0 and D_IN_1 pins for DDR operation.	

	Output Pin Function table						
#	Pin Function Mnemonic	PII	PIN_TYPE[5:2]		5:2]	Functional Description of Package Pin Output Operation	
1	PIN_NO_OUTPUT	0	0	0	0	Disables the output function	
2	PIN_OUTPUT	0	1	1	0	Simple output pin, (no enable)	
3	PIN_OUTPUT_TRISTATE	1	0	1	0	The output pin may be tristated using the enable	
4	PIN_OUTPUT_ENABLE_REGISTERED	1	1	1	0	The output pin may be tristated using a registered enable signal	
5	PIN_OUTPUT_REGISTERED	0	1	0	1	Output registered, (no enable)	
6	PIN_OUTPUT_REGISTERED_ENABLE	1	0	0	1	Output registered with enable (enable is not registered)	
7	PIN_OUTPUT_REGISTERED_ENABLE _REGISTERED	1	1	0	1	Output registered and enable registered	
8	PIN_OUTPUT_DDR	0	1	0	0	Output 'DDR' data is clocked out on rising and falling clock edges	
9	PIN_OUTPUT_DDR_ENABLE	1	0	0	0	Output data is clocked out on rising and falling clock edges	
10	PIN_OUTPUT_DDR_ENABLE_REGIST ERED	1	1	0	0	Output 'DDR' data with registered enable signal	
11	PIN_OUTPUT_REGISTERED_INVERT ED	0	1	1	1	Output registered signal is inverted	
12	PIN_OUTPUT_REGISTERED_ENABLE INVERTED	1	0	1	1	Output signal is registered and inverted, (no enable function)	
13	PIN_OUTPUT_REGISTERED_ENABLE _REGISTERED_INVERTED	1	1	1	1	Output signal is registered and inverted, the enable/tristate control is registered.	

Syntax Verilog Use

Output Pin Function is the bit vector associated with PIN_TYPE [5:2] and Input Pin Function is the bit vector associated with PIN_TYPE [1:0], resulting in a 6 bit value PIN_TYPE [5:0]

defparam my_generic_IO.PIN_TYPE = 6'b{Output Pin Function, Input Pin Function};

DDR IO Configuration

The following setting configures the SB_IO into a DDR IO.

```
defparam my_DDR_IO.PIN_TYPE = 6'b100000;

// PIN_TYPE [5:2] = 1000

// PIN_TYPE [1:0] = 00
```

This creates a DDR IO pin whereby the input data is clocked in on both the rising and falling input clock edges.

The output 'DDR' data is clocked out on rising and falling output clock edges, and the output may be tristated, using the output enable port of the SB_IO.

High Drive SB_IO

IO's in iCE40/iCE40LM device can be configured with different drive strengths to increase the IO output current. To configure an SB_IO with specific drive value, the user needs to specify the "DRIVE_STRENGTH" synthesis attribute on the SB_IO instance and the IO should be configured as output-only registered IO.

Synthesis Attribute Syntax:

/* synthesis DRIVE_STRENGTH = < Drive value> */

Drive Value:

Drive Strength Value	Description.
x1	Default drive strength. No replication of SB_IO.
x2	Increase default drive strength by 2. SB_IO replicated once.
х3	Increase default drive strength by 3. SB_IO replicated twice.

Note: High drive SB_IO is available only in selected iCE40/iCE40LM packages. Refer to Chapter 12 in iCEcube2_userguide for the list of supported device packages.

Pull Up Resistor Configuration.

For iCE40UL device, user can configure the internal pull up resistor strength of an IO to a predefined resistor value via attribute settings. By default, all the IO's are weakly pulled up by 100K internal resistor. The PULLUP RESISTOR attribute is effective only when PULLUP parameter is set to 1.

Synthesis Attribute Syntax:

```
/* synthesis PULLUP RESISTOR = "3P3K" */
```

Resistor Value:

Resistor Value	Description.
"3P3K"	Pull up resistor level is 3.3K.
"6P8K"	Pull up resistor level is 6.8K.
"10K"	Pull up resistor level is 10K.
"100K"	Pull up resistor level is 100K. (Default)

Note: PULLUP_RESISTOR attribute is supported only for iCE40UL devices.

```
IO_PIN_INST
SB_IO
.PACKAGE_PIN (Package_Pin),
.LATCH_INPUT_VALUE (latch_input_value),
                                                // User's Pin signal name
                                                // Latches/holds the Input value
.CLOCK_ENABLE (clock_enable),
                                                // Clock Enable common to input and
                                                // output clock
                                                // Clock for the input registers
.INPUT_CLK (input_clk).
                                                // Clock for the output registers
.OUTPUT_CLK (output_clk),
.OUTPUT_ENABLE (output_enable),
                                                // Output Pin Tristate/Enable
                                                // control
.D_OUT_0 (d_out_0),
                                                   Data 0 - out to Pin/Rising clk
                                                   edge
                                                   Data 1 - out to Pin/Falling clk
.D_OUT_1 (d_out_1),
                                                  edae
                                                  ′Data O - Pin input/Rising clk
.D_IN_0 (d_in_0),
                                                // edge
                                                // Data 1 - Pin input/Falling clk
.D_IN_1 (d_in_1)
                                                // edge
) /* synthesis DRIVE_STRENGTH= x2 */;
// an input pad, with the input signal
// registered.
defparam IO_PIN_INST.PULLUP = 1'b0;
                                  // By default, the IO will have NO pull up.
// This parameter is used only on bank 0, 1,
// and 2. Ignored when it is placed at bank 3
defparam IO_PIN_INST.NEG_TRIGGER = 1'b0;
// Specify the polarity of all FFs in the IO to
// be falling edge when NEG_TRIGGER = 1.
// Default is rising edge.
defparam IO_PIN_INST.IO_STANDARD = "SB_LVCMOS";
                                  // Other IO standards are supported in bank 3
                                  // only: SB_SSTL2_CLASS_2, SB_SSTL2_CLASS_1,
// SB_SSTL18_FULL, SB_SSTL18_HALF, SB_MDDR10,
                                  // SB_MDDR8, SB_MDDR4, SB_MDDR2 etc.
```

Global Buffer Primitives

SB_GB_IO

Default Signal Values

The iCEcube2 software assigns the logic '0' value to all unconnected input ports except for CLOCK_ENABLE.

Note that explicitly connecting a logic '1' value to port CLOCK_ENABLE will result in a non-optimal implementation, since an extra LUT will be used to generate the Logic '1'. If the user's intention is to keep the Input and Output registers always enabled, it is recommended that port CLOCK_ENABLE be left unconnected.

```
SB_GB_IO My_Clock_Buffer_Package_Pin (
.PACKAGE_PIN (Package_Pin),
.LATCH_INPUT_VALUE (latch_input_value),
.CLOCK_ENABLE (clock_enable),

// A users external Clock reference pin
// User's Pin signal name
// Latches/holds the Input value
// Clock Enable common to input and
// output clock
```

```
.INPUT_CLK (input_clk),
.OUTPUT_CLK (output_clk),
                                                // Clock for the input registers
                                                // Clock for the output registers
.OUTPUT_ENABLE (output_enable),
                                                // Output Pin Tristate/Enable
                                                // control
.D_OUT_0 (d_out_0),
                                                // Data 0 - out to Pin/Rising clk
                                                   edge
.D_OUT_1 (d_out_1),
                                                   Data 1 - out to Pin/Falling clk
                                                   edge
                                                 // Data 0 - Pin input/Rising clk
.D_IN_0 (d_in_0),
                                                   edge
.D_IN_1 (d_in_1)
                                                  Data 1 - Pin input/Falling clk
                                                // edge
.GLOBAL_BUFFER_OUTPUT (Global_Buffered_User_Clock)
                                                // Example use - clock buffer
//driven from the input pin
);
defparam My_Clock_Buffer_Package_Pin.PIN_TYPE = 6'b000000;
                                  // See Input and Output Pin Function Tables.
                                  // Default value of PIN_TYPE = 6'000000 i.e.
                                  // an input pad, with the input signal
                                  // registered
Note that this primitive is a superset of the SB_IO primitive, and includes the connectivity to drive a Global
Buffer. For example SB GB IO pins are likely to be used for external Clocks.
```

SB_GB Primitive

PLL Primitives

The Phase Lock Loop (PLL) function is offered as a feature in certain iCE device packages.

It is strongly recommended that the configuration of the PLL primitives be accomplished through the use of the PLL Configuration tool that is offered as part of the iCEcube2 software.

iCE40 PLL Primitives

There are 5 primitives that represent the PLL function in the iCEcube2 software viz. SB_PLL40_CORE, SB_PLL40_PAD, SB_PLL40_2_PAD, SB_PLL40_2F_CORE and SB_PLL40_2F_PAD for the ice40 device family. A short description of each primitive and its ports/parameters is provided in the following sections.

It is strongly recommended that the configuration of the PLL primitives be accomplished through the use of the PLL Configuration tool that is offered as part of the iCEcube2 software.

SB PLL40 CORE

The SB_PLL40_CORE primitive should be used when the source clock of the PLL is driven by FPGA routing i.e. when the PLL source clock originates on the FPGA or is driven by an input pad that is not in the bottom IO bank (IO Bank 2).

Ports

REFERENCECLK: PLL source clock that serves as the input to the SB PLL40 CORE primitive.

PLLOUTGLOBAL: Output clock generated by the PLL, drives a global clock network on the FPGA.

PLLOUTCORE: Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBAL port.

LOCK: Output port, when HIGH, indicates that the signal on PLLOUTGLOBAL/PLLOUTCORE is locked to the PLL source on REFERENCECLK.

EXTFEEDBACK: External feedback input to PLL. Enabled when the FEEDBACK_PATH parameter is set to EXTERNAL.

DYNAMICDELAY: 7 bit input bus that enables dynamic control of the delay contributed by the Fine Delay Adjust Block. The Fine Delay Adjust Block is used when there is a need to adjust the phase alignment of PLLOUTGLOBAL/PLLOUTCORE with respect to REFERENCECLK. The DYNAMICDELAY port controls are enabled when the DELAY_ADJUSTMENT_MODE parameter is set to DYNAMIC.

RESETB: Active low input that asynchronously resets the PLL.

BYPASS: Input signal, when asserted, connects the signal on REFERENCECLK to PLLOUTCORE/PLLOUTGLOBAL pins.

LATCHINPUTVALUE: Active high input, when enabled, forces the PLL into low-power mode. The PLLOUTGLOBAL/PLLOUTCORE pins are held static at their last value. This function is enabled when the parameter ENABLE_ICEGATE is set to '1'.

SCLK, SDI, SDO: These pins are used only for internal testing purposes, and need not be instantiated by users.

Parameters

The SB_PLL40_CORE primitive requires configuration through the specification of the following parameters. It is strongly recommended that the configuration of the PLL primitives be accomplished through the use of the PLL Configuration tool that is offered as part of the iCEcube2 software.

Parameter Name	Description	Parameter Value	Description
FEEDBACK_PATH	Selects the feedback path to the PLL	SIMPLE	Feedback is internal to the PLL, directly from VCO
		DELAY	Feedback is internal to the PLL, through the Fine Delay Adjust Block
		PHASE_AND_DELAY	Feedback is internal to the PLL, through the Phase Shifter and the Fine Delay Adjust Block
		EXTERNAL	Feedback path is external to the PLL, and connects to EXTFEEDBACK pin. Also uses the Fine Delay Adjust Block.
DELAY_ADJUSTMENT_MO DE_FEEDBACK	Selects the mode for the Fine Delay Adjust block in the feedback path	FIXED	Delay of the Fine Delay Adjust Block is fixed, the value is specified by the FDA_FEEDBACK parameter setting
		DYNAMIC	Delay of Fine Delay Adjust Block is determined by the signal value at the DYNAMICDELAY[3:0] pins
FDA_FEEDBACK	Sets a constant value for the Fine Delay Adjust Block in the feedback path	0, 1,,15	The PLLOUTGLOBAL & PLLOUTCORE signals are delay compensated by (n+1)*150 ps, where n = FDA_FEEDBACK only if the setting of the DELAY_ADJUSTMENT_MODE_F EEDBACK is FIXED.
DELAY_ADJUSTMENT_MO DE_RELATIVE	Selects the mode for the Fine Delay Adjust block	FIXED	Delay of the Fine Delay Adjust Block is fixed, the value is specified by the FDA_RELATIVE parameter setting
		DYNAMIC	Delay of Fine Delay Adjust Block is determined by the signal value at the DYNAMICDELAY[7:4] pins
FDA_RELATIVE	Sets a constant value for the Fine Delay Adjust Block	0, 1,,15	The PLLOUTGLOBALA & PLLOUTCOREA signals are additionally delayed by (n+1)*150 ps, where n = FDA_RELATIVE. Used if DELAY_ADJUSTMENT_MODE_ RELATIVE is "FIXED".
SHIFTREG_DIV_MODE	Selects shift register configuration	0,1	Used when FEEDBACK_PATH is "PHASE_AND_DELAY". 0→Divide by 4 1→Divide by 7
PLLOUT_SELECT	Selects the signal to be output at the PLLOUTCORE and	SHIFTREG_0deg	0° phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY"
	PLLOUTGLOBAL ports	SHIFTREG_90deg	90° phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY" and SHIFTREG_DIV_MODE=0
		GENCLK	The internally generated PLL frequency will be output without any phase shift.
		GENCLK_HALF	The internally generated PLL frequency will be divided by 2 and then output. No phase shift.
DIVR	REFERENCECLK divider	0,1,2,,15	These parameters are used to

DIVF	Feedback divider	0,1,,63	control the output frequency,
DIVQ	VCO Divider	1,2,,6	depending on the
FILTER_RANGE	PLL Filter Range	0,1,,7	FEEDBACK_PATH setting.
EXTERNAL_DIVIDE_FACT OR	Divide-by factor of a divider in external feedback path	User specified value. Default 1	Specified only when there is a user-implemented divider in the external feedback path.
ENABLE_ICEGATE	Enables the PLL power-	0	Power-down control disabled
	down control	1	Power-down controlled by LATCHINPUTVALUE input

SB PLL40 PAD

The SB_PLL40_PAD primitive should be used when the source clock of the PLL is driven by an input pad that is located in the bottom IO bank (IO Bank 2) or the top IO bank (IO Bank 0), and the source clock is not required inside the FPGA.

Ports

PACKAGEPIN: PLL REFERENCE CLOCK pin that serves as the input to the SB_PLL40_PAD primitive.

PLLOUTGLOBAL: Output clock generated by the PLL, drives a global clock network on the FPGA.

PLLOUTCORE: Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBAL port.

LOCK: Output port, when HIGH, indicates that the signal on PLLOUTGLOBAL/PLLOUTCORE is locked to the PLL source on PACKAGEPIN.

EXTFEEDBACK: External feedback input to PLL. Enabled when the FEEDBACK_PATH parameter is set to EXTERNAL.

DYNAMICDELAY: 7 bit input bus that enables dynamic control of the delay contributed by the Fine Delay Adjust Block. The Fine Delay Adjust Block is used when there is a need to adjust the phase alignment of PLLOUTGLOBAL/PLLOUTCORE with respect to PACKAGEPIN. The DYNAMICDELAY port controls are enabled when the DELAY_ADJUSTMENT_MODE parameter is set to DYNAMIC.

RESETB: Active low input that asynchronously resets the PLL.

BYPASS: Input signal, when asserted, connects the signal on PACKAGEPIN to PLLOUTCORE/PLLOUTGLOBAL pins.

LATCHINPUTVALUE: Active high input, when enabled, forces the PLL into low-power mode. The PLLOUTGLOBAL/PLLOUTCORE pins are held static at their last value. This function is enabled when the parameter ENABLE ICEGATE is set to '1'.

SCLK, SDI, SDO: These pins are used only for internal testing purposes, and need not be instantiated by users.

Parameters

The SB_PLL40_PAD primitive requires configuration through the specification of the following parameters. It is strongly recommended that the configuration of the PLL primitives be accomplished through the use of the PLL Configuration tool that is offered as part of the iCEcube2 software.

Parameter Name	Description	Parameter Value	Description
FEEDBACK_PATH	Selects the feedback path to the PLL	SIMPLE	Feedback is internal to the PLL, directly from VCO
		DELAY	Feedback is internal to the PLL, through the Fine Delay Adjust Block
		PHASE_AND_DELAY	Feedback is internal to the PLL, through the Phase Shifter and the Fine Delay Adjust Block
		EXTERNAL	Feedback path is external to the PLL, and connects to EXTFEEDBACK pin. Also uses the Fine Delay Adjust Block.
DELAY_ADJUSTMENT_MO DE_FEEDBACK	Selects the mode for the Fine Delay Adjust block in the feedback path	FIXED	Delay of the Fine Delay Adjust Block is fixed, the value is specified by the FDA_FEEDBACK parameter setting
		DYNAMIC	Delay of Fine Delay Adjust Block is determined by the signal value at the DYNAMICDELAY [3:0] pins
FDA_FEEDBACK	Sets a constant value for the Fine Delay Adjust Block in the feedback path	0, 1,,15	The PLLOUTGLOBAL & PLLOUTCORE signals are delay compensated by (n+1)*150 ps, where n = FDA_FEEDBACK only if the setting of the DELAY_ADJUSTMENT_MODE_F EEDBACK is FIXED.
DELAY_ADJUSTMENT_MO DE_RELATIVE	Selects the mode for the Fine Delay Adjust block	FIXED	Delay of the Fine Delay Adjust Block is fixed, the value is specified by the FDA_RELATIVE parameter setting
		DYNAMIC	Delay of Fine Delay Adjust Block is determined by the signal value at the DYNAMICDELAY[7:4] pins
FDA_RELATIVE	Sets a constant value for the Fine Delay Adjust Block	0, 1,,15	The PLLOUTGLOBALA & PLLOUTCOREA signals are additionally delayed by (n+1)*150 ps, where n = FDA_RELATIVE. Used if DELAY_ADJUSTMENT_MODE_ RELATIVE is "FIXED".
SHIFTREG_DIV_MODE	Selects shift register configuration	0,1	Used when FEEDBACK_PATH is "PHASE_AND_DELAY". 0→Divide by 4 1→Divide by 7
PLLOUT_SELECT	Selects the signal to be output at the PLLOUTCORE and	SHIFTREG_0deg	0° phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY"
	PLLOUTGLOBAL ports	SHIFTREG_90deg	90° phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY" and SHIFTREG_DIV_MODE=0
		GENCLK	The internally generated PLL frequency will be output without any phase shift.
		GENCLK_HALF	The internally generated PLL frequency will be divided by 2 and then output. No phase shift.
DIVR	REFERENCECLK divider	0,1,2,,15	These parameters are used to

DIVF	Feedback divider	0,1,,63	control the output frequency,
DIVQ	VCO Divider	1,2,,6	depending on the
FILTER_RANGE	PLL Filter Range	0,1,,7	FEEDBACK_PATH setting.
EXTERNAL_DIVIDE_FACT OR	Divide-by factor of a divider in external feedback path	User specified value. Default 1	Specified only when there is a user-implemented divider in the external feedback path.
ENABLE_ICEGATE	Enables the PLL power-	0	Power-down control disabled
	down control	1	Power-down controlled by LATCHINPUTVALUE input

SB PLL40 2 PAD

The SB_PLL40_2_PAD primitive should be used when the source clock of the PLL is driven by an input pad that is located in the bottom IO bank (IO Bank 2) or the top IO bank (IO Bank 0), and in addition to the PLL output, the source clock is also required inside the FPGA.

Ports

PACKAGEPIN: PLL REFERENCE CLOCK pin that serves as the input to the SB_PLL40_2_PAD primitive.

PLLOUTGLOBALA: The signal on PACKAGEPIN appears on the FPGA at this pin, and drives a global clock network on the FPGA. Do not use this pin in an external feedback path to the PLL.

PLLOUTCOREA: The signal on PACKAGEPIN appears on the FPGA at this pin, which drives regular FPGA routing. Do not use this pin in an external feedback path to the PLL.

PLLOUTGLOBALB: Output clock generated by the PLL, drives a global clock network on the FPGA.

PLLOUTCOREB: Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBAL port.

LOCK: Output port, when HIGH, indicates that the signal on PLLOUTGLOBALB/PLLOUTCOREB is locked to the PLL source on PACKAGEPIN.

EXTFEEDBACK: External feedback input to PLL. Enabled when the FEEDBACK_PATH parameter is set to EXTERNAL.

DYNAMICDELAY: 4 bit input bus that enables dynamic control of the delay contributed by the Fine Delay Adjust Block. The Fine Delay Adjust Block is used when there is a need to adjust the phase alignment of PLLOUTGLOBAL/PLLOUTCORE with respect to PACKAGEPIN. The DYNAMICDELAY port controls are enabled when the DELAY_ADJUSTMENT_MODE parameter is set to DYNAMIC.

RESET: Active low input that asynchronously resets the PLL.

BYPASS: Input signal, when asserted, connects the signal on PACKAGEPIN to PLLOUTCORE/PLLOUTGLOBAL pins.

LATCHINPUTVALUE: Active high input, when enabled, forces the PLL into low-power mode. The PLLOUTGLOBALA/PLLOUTCOREA pins are held static at their last value only when the parameter ENABLE_ICEGATE_PORTA is set to '1', and the LATCHINPUTVALUE signal is asserted. The PLLOUTGLOBALB/PLLOUTCOREB pins are held static at their last value only when the parameter ENABLE_ICEGATE_PORTB is set to '1', and the LATCHINPUTVALUE signal is asserted.

SCLK, SDI, SDO: These pins are used only for internal testing purposes, and need not be instantiated by users.

Parameters

The SB_PLL40_2_PAD primitive requires configuration through the specification of the following parameters. It is strongly recommended that the configuration of the PLL primitives be accomplished through the use of the PLL Configuration tool that is offered as part of the iCEcube2 software.

Parameter Name	Description	Parameter Value	Description
FEEDBACK_PATH	Selects the feedback path to the PLL	SIMPLE	Feedback is internal to the PLL, directly from VCO
		DELAY	Feedback is internal to the PLL, through the Fine Delay Adjust Block
		PHASE_AND_DELAY	Feedback is internal to the PLL, through the Phase Shifter and the Fine Delay Adjust Block
		EXTERNAL	Feedback path is external to the PLL, and connects to EXTFEEDBACK pin. Also uses the Fine Delay Adjust Block.
DELAY_ADJUSTMENT_MODE _FEEDBACK	Selects the mode for the Fine Delay Adjust block in the feedback path	FIXED	Delay of the Fine Delay Adjust Block is fixed, the value is specified by the FDA_FEEDBACK parameter setting
		DYNAMIC	Delay of Fine Delay Adjust Block is determined by the signal value at the DYNAMICDELAY[3:0] pins
FDA_FEEDBACK	Sets a constant value for the Fine Delay Adjust Block in the feedback path	0, 1,,15	The PLLOUTGLOBAL & PLLOUTCORE signals are delay compensated by (n+1)*150 ps, where n = FDA_FEEDBACK only if the setting of the DELAY_ADJUSTMENT_MODE_ FEEDBACK is FIXED.
DELAY_ADJUSTMENT_MODE _RELATIVE	Selects the mode for the Fine Delay Adjust block	FIXED	Delay of the Fine Delay Adjust Block is fixed, the value is specified by the FDA_RELATIVE parameter setting
		DYNAMIC	Delay of Fine Delay Adjust Block is determined by the signal value at the DYNAMICDELAY[7:4] pins
FDA_RELATIVE	Sets a constant value for the Fine Delay Adjust Block	0, 1,,15	The PLLOUTGLOBALA & PLLOUTCOREA signals are delayed w.r.t. the Port B signals, by (n+1)*150 ps, where n = FDA_RELATIVE. Used if DELAY_ADJUSTMENT_MODE_ RELATIVE is "FIXED".
SHIFTREG_DIV_MODE	Selects shift register configuration	0,1	Used when FEEDBACK_PATH is "PHASE_AND_DELAY". 0→Divide by 4 1→Divide by 7
PLLOUT_SELECT_PORTB	Selects the signal to be output at the PLLOUTCOREB and PLLOUTGLOBALB ports	SHIFTREG_0deg	0° phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY"
	T LEGO TOLOBALB PORS	SHIFTREG_90deg	90° phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY" and SHIFTREG_DIV_MODE=0
		GENCLK	The internally generated PLL frequency will be output to PortB. No phase shift.
		GENCLK_HALF	The internally generated PLL frequency will be divided by 2 and then output to PORTB. No phase shift.

DIVR	REFERENCECLK divider	0,1,2,,15	These parameters are used to control the output frequency, depending on the FEEDBACK_PATH setting.
DIVF	Feedback divider	0,1,,63	
DIVQ	VCO Divider	1,2,,6	
FILTER_RANGE	PLL Filter Range	0,1,,7	
EXTERNAL_DIVIDE_FACTOR	Divide-by factor of a divider in external feedback path	User specified value. Default 1	Specified only when there is a user-implemented divider in the external feedback path.
ENABLE_ICEGATE_PORTA	Enables the PLL power- down control	0	Power-down control disabled
		1	Power-down controlled by LATCHINPUTVALUE input
ENABLE_ICEGATE_PORTB	Enables the PLL power- down control	0	Power-down control disabled
		1	Power-down controlled by LATCHINPUTVALUE input

SB PLL40 2F CORE

The SB_PLL40_2F_CORE primitive should be used when PLL is used to generate 2 different output frequencies, and the source clock of the PLL is driven by FPGA routing i.e. when the PLL source clock originates on the FPGA.

Ports

REFERENCECLK: PLL source clock that serves as the input to the SB_PLL40_2F_CORE primitive.

PLLOUTGLOBALA: Output clock generated by the PLL, drives a global clock network on the FPGA.

PLLOUTCOREA: Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBALA port.

PLLOUTGLOBALB: Output clock generated by the PLL, drives a global clock network on the FPGA.

PLLOUTCOREB: Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBALB port.

LOCK: Output port, when HIGH, indicates that the signal on PLLOUTGLOBALB/PLLOUTCOREB is locked to the PLL source on PACKAGEPIN.

EXTFEEDBACK: External feedback input to PLL. Enabled when the FEEDBACK_PATH parameter is set to EXTERNAL.

DYNAMICDELAY: 4 bit input bus that enables dynamic control of the delay contributed by the Fine Delay Adjust Block. The Fine Delay Adjust Block is used when there is a need to adjust the phase alignment of PLLOUTGLOBAL/PLLOUTCORE with respect to REFERENCECLK. The DYNAMICDELAY port controls are enabled when the DELAY_ADJUSTMENT_MODE parameter is set to DYNAMIC.

RESETB: Active low input that asynchronously resets the PLL.

BYPASS: Input signal, when asserted, connects the signal on REFERENCECLK to PLLOUTCORE/PLLOUTGLOBAL pins.

LATCHINPUTVALUE: Active high input, when enabled, forces the PLL into low-power mode. The PLLOUTGLOBALA/PLLOUTCOREA pins are held static at their last value only when the parameter ENABLE_ICEGATE_PORTA is set to '1', and the LATCHINPUTVALUE signal is asserted. The PLLOUTGLOBALB/PLLOUTCOREB pins are held static at their last value only when the parameter ENABLE_ICEGATE_PORTB is set to '1', and the LATCHINPUTVALUE signal is asserted.

SCLK, SDI, SDO: These pins are used only for internal testing purposes, and need not be instantiated by users.

Parameters

The SB_PLL40_2F_CORE primitive requires configuration through the specification of the following parameters. It is strongly recommended that the configuration of the PLL primitives be accomplished through the use of the PLL Configuration tool that is offered as part of the iCEcube2 software.

Parameter Name	Description	Parameter Value	Description
FEEDBACK_PATH	Selects the feedback path to the PLL	SIMPLE	Feedback is internal to the PLL, directly from VCO
		DELAY	Feedback is internal to the PLL, through the Fine Delay Adjust Block
		PHASE_AND_DELAY	Feedback is internal to the PLL, through the Phase Shifter and the Fine Delay Adjust Block
		EXTERNAL	Feedback path is external to the PLL, and connects to EXTFEEDBACK pin. Also uses the Fine Delay Adjust Block.
DELAY_ADJUSTMENT_MODE _FEEDBACK	Selects the mode for the Fine Delay Adjust block in the feedback path	FIXED	Delay of the Fine Delay Adjust Block is fixed, the value is specified by the FDA_FEEDBACK parameter setting
		DYNAMIC	Delay of Fine Delay Adjust Block is determined by the signal value at the DYNAMICDELAY[3:0] pins
FDA_FEEDBACK	Sets a constant value for the Fine Delay Adjust Block in the feedback path	0, 1,,15	The PLLOUTGLOBALA & PLLOUTCOREA signals are delay compensated by (n+1)*150 ps, where n = FDA_FEEDBACK only if the setting of the DELAY_ADJUSTMENT_MODE_ FEEDBACK is FIXED.
DELAY_ADJUSTMENT_MODE _RELATIVE	Selects the mode for the Fine Delay Adjust block	FIXED	Delay of the Fine Delay Adjust Block is fixed, the value is specified by the FDA_RELATIVE parameter setting
		DYNAMIC	Delay of Fine Delay Adjust Block is determined by the signal value at the DYNAMICDELAY[7:4] pins
FDA_RELATIVE	Sets a constant value for the Fine Delay Adjust Block	0, 1,,15	The PLLOUTGLOBALA & PLLOUTCOREA signals are delayed w.r.t. the Port B signals, by (n+1)*150 ps, where n = FDA_RELATIVE. Used if DELAY_ADJUSTMENT_MODE_ RELATIVE is "FIXED".
SHIFTREG_DIV_MODE	Selects shift register configuration	0,1	Used when FEEDBACK_PATH is "PHASE_AND_DELAY". 0→Divide by 4 1→Divide by 7
PLLOUT_SELECT_PORTA	Selects the signal to be output at the PLLOUTCOREA and PLLOUTGLOBALA ports	SHIFTREG_0deg	0° phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY"
		SHIFTREG_90deg	90° phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY" and SHIFTREG_DIV_MODE=0
		GENCLK	The internally generated PLL frequency will be output to PortA. No phase shift.
		GENCLK_HALF	The internally generated PLL frequency will be divided by 2 and then output to PORTA. No phase shift.

PLLOUT_SELECT_PORTB	Selects the signal to be output at the PLLOUTCOREB and PLLOUTGLOBALB ports	SHIFTREG_0deg	0° phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY"
		SHIFTREG_90deg	90° phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY" and SHIFTREG_DIV_MODE=0
		GENCLK	The internally generated PLL frequency will be output to PortB. No phase shift.
		GENCLK_HALF	The internally generated PLL frequency will be divided by 2 and then output to PORTB. No phase shift.
DIVR	REFERENCECLK divider	0,1,2,,15	These parameters are used to control the output frequency, depending on the FEEDBACK_PATH setting.
DIVF	Feedback divider	0,1,,63	
DIVQ	VCO Divider	1,2,,6	
FILTER_RANGE	PLL Filter Range	0,1,,7	
EXTERNAL_DIVIDE_FACTOR	Divide-by factor of a divider in external feedback path	User specified value. Default 1	Specified only when there is a user-implemented divider in the external feedback path.
ENABLE_ICEGATE_PORTA	Enables the PLL power- down control	0	Power-down control disabled
		1	Power-down controlled by LATCHINPUTVALUE input
ENABLE_ICEGATE_PORTB	Enables the PLL power- down control	0	Power-down control disabled
		1	Power-down controlled by LATCHINPUTVALUE input

SB PLL40 2F PAD

The SB_PLL40_2F_PAD primitive should be used when the PLL is used to generate 2 different output frequencies, and the source clock of the PLL is driven by an input pad located in the bottom IO bank (IO Bank 2) or the top IO bank (IO Bank 0).

Ports

PACKAGEPIN: PLL REFERENCE CLOCK pin that serves as the input to the SB_PLL40_2F_PAD primitive.

PLLOUTGLOBALA: Output clock generated by the PLL, drives a global clock network on the FPGA.

PLLOUTCOREA: Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBALA port.

PLLOUTGLOBALB: Output clock generated by the PLL, drives a global clock network on the FPGA.

PLLOUTCOREB: Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBALB port.

LOCK: Output port, when HIGH, indicates that the signal on PLLOUTGLOBALB/PLLOUTCOREB is locked to the PLL source on PACKAGEPIN.

EXTFEEDBACK: External feedback input to PLL. Enabled when the FEEDBACK_PATH parameter is set to EXTERNAL.

DYNAMICDELAY: 4 bit input bus that enables dynamic control of the delay contributed by the Fine Delay Adjust Block. The Fine Delay Adjust Block is used when there is a need to adjust the phase alignment of PLLOUTGLOBAL/PLLOUTCORE with respect to PACKAGEPIN. The DYNAMICDELAY port controls are enabled when the DELAY_ADJUSTMENT_MODE parameter is set to DYNAMIC.

RESETB: Active low input that asynchronously resets the PLL.

BYPASS: Input signal, when asserted, connects the signal on PACKAGEPIN to PLLOUTCORE/PLLOUTGLOBAL pins.

LATCHINPUTVALUE: Active high input, when enabled, forces the PLL into low-power mode. The PLLOUTGLOBALA/PLLOUTCOREA pins are held static at their last value only when the parameter ENABLE_ICEGATE_PORTA is set to '1', and the LATCHINPUTVALUE signal is asserted. The PLLOUTGLOBALB/PLLOUTCOREB pins are held static at their last value only when the parameter ENABLE_ICEGATE_PORTB is set to '1', and the LATCHINPUTVALUE signal is asserted.

SCLK, SDI, SDO: These pins are used only for internal testing purposes, and need not be instantiated by users.

Parameters

The SB_PLL40_2F_PAD primitive requires configuration through the specification of the following parameters. It is strongly recommended that the configuration of the PLL primitives be accomplished through the use of the PLL Configuration tool that is offered as part of the iCEcube2 software.

Parameter Name	Description	Parameter Value	Description
FEEDBACK_PATH	Selects the feedback path to the PLL	SIMPLE	Feedback is internal to the PLL, directly from VCO
		DELAY	Feedback is internal to the PLL, through the Fine Delay Adjust Block
		PHASE_AND_DELAY	Feedback is internal to the PLL, through the Phase Shifter and the Fine Delay Adjust Block
		EXTERNAL	Feedback path is external to the PLL, and connects to EXTFEEDBACK pin. Also uses the Fine Delay Adjust Block.
DELAY_ADJUSTMENT_MODE _FEEDBACK	Selects the mode for the Fine Delay Adjust block in the feedback path	FIXED	Delay of the Fine Delay Adjust Block is fixed, the value is specified by the FDA_FEEDBACK parameter setting
		DYNAMIC	Delay of Fine Delay Adjust Block is determined by the signal value at the DYNAMICDELAY[3:0] pins
FDA_FEEDBACK	Sets a constant value for the Fine Delay Adjust Block in the feedback path	0, 1,,15	The PLLOUTGLOBALA & PLLOUTCOREA signals are delay compensated by (n+1)*150 ps, where n = FDA_FEEDBACK only if the setting of the DELAY_ADJUSTMENT_MODE_F EEDBACK is FIXED.
DELAY_ADJUSTMENT_MODE _RELATIVE	Selects the mode for the Fine Delay Adjust block	FIXED	Delay of the Fine Delay Adjust Block is fixed, the value is specified by the FDA_RELATIVE parameter setting
		DYNAMIC	Delay of Fine Delay Adjust Block is determined by the signal value at the DYNAMICDELAY[7:4] pins
FDA_RELATIVE	Sets a constant value for the Fine Delay Adjust Block	0, 1,,15	The PLLOUTGLOBALA & PLLOUTCOREA signals are delayed w.r.t. the Port B signals, by (n+1)*150 ps, where n = FDA_RELATIVE. Used if DELAY_ADJUSTMENT_MODE_ RELATIVE is "FIXED".
SHIFTREG_DIV_MODE	Selects shift register configuration	0,1	Used when FEEDBACK_PATH is "PHASE_AND_DELAY". 0→Divide by 4 1→Divide by 7
PLLOUT_SELECT_PORTA	Selects the signal to be output at the PLLOUTCOREA and	SHIFTREG_0deg	0° phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY"
	PLLOUTGLOBALA ports	SHIFTREG_90deg	90° phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY" and SHIFTREG_DIV_MODE=0
		GENCLK	The internally generated PLL frequency will be output to PortA. No phase shift.
		GENCLK_HALF	The internally generated PLL frequency will be divided by 2 and then output to PORTA. No phase shift.

PLLOUT_SELECT_PORTB	Selects the signal to be output at the PLLOUTCOREB and PLLOUTGLOBALB ports	SHIFTREG_0deg	0° phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY"
	PELOUTGEOBALB POITS	SHIFTREG_90deg	90° phase shift only if the setting of FEEDBACK_PATH is "PHASE_AND_DELAY" and SHIFTREG_DIV_MODE=0
		GENCLK	The internally generated PLL frequency will be output to PortB. No phase shift.
		GENCLK_HALF	The internally generated PLL frequency will be divided by 2 and then output to PORTB. No phase shift.
DIVR	REFERENCECLK divider	0,1,2,,15	These parameters are used to
DIVF	Feedback divider	0,1,,63	control the output frequency,
DIVQ	VCO Divider	1,2,,6	depending on the
FILTER_RANGE	PLL Filter Range	0,1,,7	FEEDBACK_PATH setting.
EXTERNAL_DIVIDE_FACTOR	Divide-by factor of a divider in external feedback path	User specified value. Default 1	Specified only when there is a user-implemented divider in the external feedback path.
ENABLE_ICEGATE_PORTA	Enables the PLL power-	0	Power-down control disabled
	down control	1	Power-down controlled by LATCHINPUTVALUE input
ENABLE_ICEGATE_PORTB	Enables the PLL power-	0	Power-down control disabled
	down control	1	Power-down controlled by LATCHINPUTVALUE input

Hard Macro Primitives

iCE40LM Hard Macros

This section describes the following dedicated hard macro primitives available in iCE40LM devices.

```
SB_HSOSC (macro primitive for HSSG)
SB_LSOSC (macro primitive for LPSG)
SB_I2C
SB_SPI
```

SB HSOSC (For HSSG)

SB_HSOSC primitive can be used to instantiate High Speed Strobe Generator (HSSG), which generates 12 MHz strobe signal. The strobe can drive either the global clock network or fabric routes directly based on the clock network selection.

Ports

		SB_HSOSC Ports
Signal Name	Direction	Description
ENACLKM	Input	Enable High Speed Strobe Generator. Active High.
CLKM	Output	Strobe Generator Output (12Mhz).

Clock Network Selection

By default the strobe generator use one of the dedicated clock networks in the device to drive the elements. The user may configure the strobe generator to use the fabric routes instead of global clock network using the synthesis attributes.

Synthesis Attribute

```
/* synthesis ROUTE_THROUGH_FABRIC=<value> */
Value:

0: Use dedicated clock network. Default option.
1: Use fabric routes.
```

```
SB_HSOSC OSCInst0 (
    .ENACLKM(ENACLKM),
    .CLKM(CLKM)
    /* synthesis ROUTE_THROUGH_FABRIC= [0|1] */;
```

SB_LSOSC (For LPSG)

SB_LSOSC primitive can instantiate Low Power Strobe Generator (LPSG), which generates 10 KHz strobe signal. The strobe can drive either the global clock network or fabric routes directly based on the clock network selection.

Ports

		SB_LSOSC Ports
Signal Name	Direction	Description
ENACLKK	Input	Enable Low Power Strobe Generator. Active High.
CLKK	Output	Strobe Generator Output (10Khz).

Clock Network Selection

By default the strobe generator use one of the dedicated clock networks in the device to drive the elements. The user may configure the strobe generator to use the fabric routes instead of global clock network using the synthesis attribute.

Synthesis Attribute:

```
/* synthesis ROUTE_THROUGH_FABRIC=<value> */
```

Value:

0: Use dedicated clock network. Default option.

1: Use fabric routes.

Verilog Instantiation

```
SB_LSOSC OSCInst0 (
    .ENACLKK(ENACLKK),
    .CLKK(CLKK)
    /* synthesis ROUTE_THROUGH_FABRIC= [0|1] */;
```

SB_I2C

The I2C hard IP provides industry standard two pin communication interface that conforms to V2.1 of the I2C bus specification. It could be configured as either master or slave port. In master mode, it support configurable data transfer rate and perform arbitration detection to allow it to operate in multi-master systems. It supports both 7 bits and 10 bits addressing in slave mode with configurable slave address and clock stretching in both master and slave mode with enable/disable capability.

iCE40LM device supports two I2C hard IP primitives, located at upper left corner and upper right corner of the chip.

Ports

SB I2C Ports			
Signal Name	Direction	Description	
SBCLKI	Input	System Clock input.	
SBRWI	Input	System Read/Write Input.	
SBSTBI	Input	Strobe Signal	
SBADRI0	Input	System Bus Control registers address. Bit 0.	
SBADRI1	Input	System Bus Control registers address. Bit 1.	
SBADRI2	Input	System Bus Control registers address. Bit 2.	
SBADRI3	Input	System Bus Control registers address. Bit 3.	
SBADRI4	Input	System Bus Control registers address. Bit 4.	
SBADRI5	Input	System Bus Control registers address. Bit 5.	
SBADRI6	Input	System Bus Control registers address. Bit 6.	
SBADRI7	Input	System Bus Control registers address. Bit 7.	
SBDATI0	Input	System Data Input. Bit 0.	
SBDATI1	Input	System Data input. Bit 1.	
SBDATI2	Input	System Data input. Bit 2.	
SBDATI3	Input	System Data input. Bit 3.	
SBDATI4	Input	System Data input. Bit 4.	
SBDATI5	Input	System Data input. Bit 5.	
SBDATI6	Input	System Data input. Bit 6.	
SBDATI7	Input	System Data input. Bit 7.	
SBDATO0	Output	System Data Output. Bit 0.	
SBDATO1	Output	System Data Output. Bit 1.	
SBDATO2	Output	System Data Output. Bit 2.	
SBDATO3	Output	System Data Output. Bit 3.	
SBDATO4	Output	System Data Output. Bit 4.	
SBDATO5	Output	System Data Output. Bit 5.	
SBDATO6	Output	System Data Output. Bit 6.	
SBDATO7	Output	System Data Output. Bit 7.	

SBACKO	Output	System Acknowledgement.
I2CIRQ	Output	I2C Interrupt output.
I2CWKUP	Output	I2C Wake Up from Standby signal.
SCLI	Input	Serial Clock Input.
SCLO	Output	Serial Clock Output
SCLOE	Output	Serial Clock Output Enable. Active High.
SDAI	Input	Serial Data Input
SDAO	Output	Serial Data Output
SDAOE	Output	Serial Data Output Enable. Active High.

Parameters

I2C Primitive requires configuring certain parameters for slave initial address and selecting I2C IP location.

I2C Location	Parameters	Parameter Default Value.	Description.
Upper Left Corner	I2C_SLAVE_INIT_ADDR	0b1111100001	Upper Bits <9:2> can be changed through control registers. Lower bits <1:0> are fixed.
	BUS_ADDR74	0b0001	Fixed value. SBADRI [7:4] bits also should match with this value to activate the IP.
Upper Right Corner	I2C_SLAVE_INIT_ADDR	0b1111100010	Upper Bits <9:2> can be changed through control registers. Lower bits <1:0> are fixed.
	BUS_ADDR74	0b0011	Fixed value. SBADRI [7:4] bits also should match with this value to activate the IP.

Synthesis Attribute

Synthesis attribute "I2C_CLK_DIVIDER" is used by PNR and STA tools for optimization and deriving the appropriate clock frequency at SCLO output with respect to the SBCLKI input clock frequency.

/* synthesis I2C_CLK_DIVIDER=[Divide Range] */

Divide Range : 0, 1, 2, 3 ... 1023. Default is 0.

Verilog Instantiation

```
SB_I2C i2cInst0 (
      .SBCLKI(sbclki),
      .SBRWI(sbrwi),
      .SBSTBI(sbstbi)
      .SBADRI7(sbadri[7])
      .SBADRI6(sbadri[6]),
.SBADRI5(sbadri[5]),
.SBADRI4(sbadri[4]),
.SBADRI3(sbadri[3]),
      .SBADRI2(sbadri[2]
      .SBADRI1(sbadri[1]),
      .SBADRIO(sbadri[0])
      .SBDATI7(sbdati[7]),
      .SBDATI6(sbdati[6]),
      .SBDATI5(sbdati[5]),
      .SBDATI3(SDdati[3]),
.SBDATI4(sbdati[4]),
.SBDATI3(sbdati[3]),
.SBDATI2(sbdati[2]),
.SBDATI1(sbdati[1]),
.SBDATI0(sbdati[0]),
      .SCLI(scli),
      .SDAI(sdai)
      .SBDATO7(sbdato[7])
      .SBDATO6(sbdato[6]),
      .SBDATO5(sbdato[5]),
.SBDATO4(sbdato[4]),
      .SBDATO3(sbdato[3]),
.SBDATO2(sbdato[2]),
.SBDATO1(sbdato[1]),
      .SBDATOO(sbdato[0]),
      .SBACKO(sbacko)
      .I2CIRQ(i2cirq)
      .I2CWKUP(i2cwkup),
      .SCLO(sclo)
      .SCLOE(scloe),
      .SDAO(sdao),
 .SDAOE(sdaoe)
)/* synthesis I2C_CLK_DIVIDER= 1 */;
defparam i2cInst0.I2C_SLAVE_INIT_ADDR = "0b1111100001";
defparam i2cInst0.BUS_ADDR7\overline{4} = \overline{0}b0001";
```

SB SPI

The SPI hard IP provide industry standard four-pin communication interface with 8 bit wide System Bus to communicate with System Host. It could be configured as Master or Slave SPI port with separate Chip Select Pin. In master mode, it provides programmable baud rate, and supports CS HOLD capability for multiple transfers. It provides variety status flags, such as Mode Fault Error flag, Transmit/Receive status flag etc. for easy communicate with system host.

iCE40LM device supports two SPI hard IP primitives, located at lower left corner and lower right corner of the chip.

Ports

SB SPI Ports			
Signal Name	Direction	Description	
SBCLKI	Input	System Clock input.	
SBRWI	Input	System Read/Write Input.	
SBSTBI	Input	Strobe Signal	
SBADRI0	Input	System Bus Control registers address. Bit 0.	
SBADRI1	Input	System Bus Control registers address. Bit 1.	
SBADRI2	Input	System Bus Control registers address. Bit 2.	
SBADRI3	Input	System Bus Control registers address. Bit 3.	
SBADRI4	Input	System Bus Control registers address. Bit 4.	
SBADRI5	Input	System Bus Control registers address. Bit 5.	
SBADRI6	Input	System Bus Control registers address. Bit 6.	
SBADRI7	Input	System Bus Control registers address. Bit 7.	
SBDATI0	Input	System Data Input. Bit 0.	
SBDATI1	Input	System Data input. Bit 1.	
SBDATI2	Input	System Data input. Bit 2.	
SBDATI3	Input	System Data input. Bit 3.	
SBDATI4	Input	System Data input. Bit 4.	
SBDATI5	Input	System Data input. Bit 5.	
SBDATI6	Input	System Data input. Bit 6.	
SBDATI7	Input	System Data input. Bit 7.	
SBDATO0	Input	System Data Output. Bit 0.	
SBDATO1	Input	System Data Output. Bit 1.	
SBDATO2	Input	System Data Output. Bit 2.	
SBDATO3	Input	System Data Output. Bit 3.	
SBDATO4	Input	System Data Output. Bit 4.	
SBDATO5	Input	System Data Output. Bit 5.	
SBDATO6	Input	System Data Output. Bit 6.	

SBDATO7	Input	System Data Output. Bit 7.
SBACKO	Output	System Acknowledgement
SPIIRQ	Output	SPI Interrupt output.
SPIWKUP	Output	SPI Wake Up from Standby signal.
MI	Input	Master Input from PAD
SO	Output	Slave Output to PAD
SOE	Output	Slave Output Enable to PAD. Active High.
SI	Input	Slave Input from PAD
MO	Output	Master Output to PAD
MOE	Output	Master Output Enable to PAD. Active High
SCKI	Input	Slave Clock Input From PAD
SCKO	Output	Slave Clock Output to PAD
SCKOE	Output	Slave Clock Output Enable to PAD. Active High.
SCSNI	Input	Slave Chip Select Input From PAD
MCSNO0	Output	Master Chip Select Output to PAD. Line 0.
MCSNO1	Output	Master Chip Select Output to PAD. Line 1.
MCSNO2	Output	Master Chip Select Output to PAD. Line 2.
MCSNO3	Output	Master Chip Select Output to PAD. Line 3.
MCSNOE0	Output	Master Chip Select Output Enable to PAD. Active High. Line 0.
MCSNOE1	Output	Master Chip Select Output Enable to PAD. Active High. Line 1
MCSNOE2	Output	Master Chip Select Output Enable to PAD. Active High. Line 2
MCSNOE3	Output	Master Chip Select Output Enable to PAD. Active High. Line 3

Parameters

SPI Primitive requires configuring a parameter for selecting the SPI IP location.

I2C Location	Parameters	Parameter Default Value.	Description.
Lower Left Corner	BUS_ADDR74	0b0000	Fixed value. SBADRI [7:4] bits also should match with this value to activate the IP.
Lower Right Corner	BUS_ADDR74	0b0001	Fixed value. SBADRI [7:4] bits also should match with this value to activate the IP.

Synthesis Attribute

Synthesis attribute "SPI_CLK_DIVIDER" is used by PNR and STA tools for optimization and deriving the appropriate clock frequency at SCKO output with respect to the SBCLKI input clock frequency.

/* synthesis SPI_CLK_DIVIDER= [Divide Range] */

Divide Range : 0, 1, 2, 3....63. Default is 0.

```
SB_SPI spiInst0 (
    .SBCLKI(sbclki),
    .SBRWI(sbrwi),
       .SBSTBI(sbstbi),
.SBADRI7(sbadri[7])
       .SBADRI6(sbadri[6]),
       .SBADRI5(sbadri[5]),
.SBADRI4(sbadri[4]),
       .SBADRI3(sbadri[3]),
       .SBADRI2(sbadri[2]),
.SBADRI1(sbadri[1]),
.SBADRI0(sbadri[0]),
.SBDATI7(sbdati[7]),
       .SBDATI6(sbdati[6])
       .SBDATI5(sbdati[5])
       .SBDATI4(sbdati[4]),
       .SBDATI3(sbdati[3]),
       .SBDATI2(sbdati[2]),
       .SBDATI1(sbdati[1]),
       .SBDATIO(sbdati[0]),
.MI(mi),
.SI(si),
.SCKI(scki),
       .SCSNI(scsni),
       .SBDATO7(sbdato[7]),
       .SBDATO6(sbdato[6]),
.SBDATO5(sbdato[5]),
       .SBDATO4(sbdato[4]),
       .SBDATO3(sbdato[3]),
.SBDATO2(sbdato[2]),
.SBDATO1(sbdato[1]),
.SBDATO0(sbdato[0]),
       .SBACKO(sbacko),
       .SPIIRQ(spiirq)
       .SPIWKUP(spiwkup),
       .SO(so)
       .SOE(soe),
       .MO(mo),
       .MOE(moe)
       .SCKO(scko)
       .SCKOE(sckoe),
.MCSNO3(mcsno_hi[3]),
       .MCSNO2(mcsno_hi[2]),
       .MCSNO1(mcsno_lo[1]),
.MCSNO0(mcsno_lo[0]),
       .MCSNOE3(mcsnoe\_hi[3]),
 .MCSNOE2(mcsnoe_hi[2]),
.MCSNOE1(mcsnoe_lo[1]),
.MCSNOE0(mcsnoe_lo[0])
) /* synthesis SPI_CLK_DIVIDER = "1" */;
defparam spiInst0.BUS_ADDR74 = "0b0000";
```

iCE5LP (iCE40 Ultra) Hard Macros

This section describes the following dedicated hard macro primitives available in iCE5LP (iCE40 Ultra) devices.

SB_HFOSC SB_LFOSC SB_LED_DRV_CUR SB_RGB_DRV SB_IR_DRV SB_IO_OD SB_I2C SB_SPI SB_MAC16

SB_HFOSC

SB_HFOSC primitive generates 48MHz nominal clock frequency within +/- 10% variation, with user programmable divider value of 1, 2, 4, and 8. The HFOSC can drive either the global clock network or fabric routes directly based on the clock network selection.

Ports

SB_HFOSC Ports			
Signal Name	Direction	Description	
CLKHFPU	Input	Power up the HFOSC circuit. After power up, oscillator output will be stable after 100us. Active High.	
CLKHFEN	Input	Enable the clock output. Enable should be low for the 100us power up period. Active High.	
CLKHF	Output	HF Oscillator output.	

Parameters

Parameter	Parameter Values.	Description.
	"0b00"	Sets 48MHz HFOSC output.
CLIVUE DIV	"0b01"	Sets 24MHz HFOSC output.
CLKHF_DIV	"0b10"	Sets 12MHz HFOSC output.
	"0b11"	Sets 6MHz HFOSC output

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input CLKHFEN: Logic "0" Input CLKHFPU: Logic "0"

Clock Network Selection

By default the oscillator use one of the dedicated clock networks in the device to drive the elements. The user may configure the oscillator to use the fabric routes instead of global clock network using the synthesis attribute.

Synthesis Attributes

```
/* synthesis ROUTE_THROUGH_FABRIC = <value> ^*/
```

Value:

0: Use dedicated clock network. Default option.

1: Use fabric routes.

Verilog Instantiation

```
SB_HFOSC OSCInst0 (
.CLKHFEN(ENCLKHF),
.CLKHFPU(CLKHF_POWERUP),
.CLKHF(CLKHF)
) /* synthesis ROUTE_THROUGH_FABRIC= [0|1] */;
defparam OSCInst0.CLKHF_DIV = "0b00";
```

SB LFOSC

SB_LFOSC primitive generates 10 KHz nominal clock frequency within +/- 10% variation. There is no divider on the LFOSC.

The LFOSC can drive either the global clock network or fabric routes directly based on the clock network selection

Ports

SB_LFOSC Ports						
Signal Name Direction Description						
CLKLFPU	Input	Power up the LFOSC circuit. After power up, oscillator output will be stable after 100us. Active High.				
CLKLFEN	Input	Enable the clock output. Enable should be low for the 100us power up period. Active High.				
CLKLF	Output	LF Oscillator output.				

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input CLKLFEN: Logic "0" Input CLKLFPU: Logic "0"

Clock Network Selection

By default the oscillator use one of the dedicated clock networks in the device to drive the elements. The user may configure the oscillator to use the fabric routes instead of global clock network using the synthesis attribute.

Synthesis Attributes

```
/* synthesis ROUTE_THROUGH_FABRIC = <value> */
```

0: Use dedicated clock network. Default option.

1: Use fabric routes.

Verilog Instantiation

SB_LED_DRV_CUR

SB_LED_DRV_CUR primitive generates the constant reference current required to power up the SB_RGB_DRV and SB_IR_DRV primitives.

Ports

SB_LED_DRV_CUR Ports						
Signal Name Direction Description						
EN	Input	Enable to generate constant current source for SB_RGB_DRV and SB_IR_DRV primitives. After Enable, reference current value will be stable after 100us. Active High.				
LEDPU	Output	Power up signal for SB_RGB_DRV and SB_IR_DRV primitives. This port should be connected only to RGBPU/IRPU pins of SB_RGB_DRV and SB_IR_DRV primitives.				

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input EN : Logic "0"

Verilog Instantiation

SB RGB DRV

SB_RGB_DRV primitive contains 3 dedicated open drain I/O pins for RGB LED outputs. Each of the RGB LED output is bonded out together with an SB_IO_OD primitive to the package pin. User can either use SB_RGB_DRV primitive or the SB_IO_OD primitive to drive the package pin, but not both.

The primitive allows configuration of each of the 3 RGB LED outputs individually. When the RGBx_CURRENT parameter of RGBx output is set to "0b0000000", then SB_IO_OD can be used to drive the package pin.

Ports

SB RGB DRV Ports					
Signal Name Direction Description					
RGBLEDEN	Input	Enable the SB_RGB_DRV primitive. Active High.			
RGBPU	Input	Power Up Signal. Connect to LEDPU port of SB_LED_DRV_CUR primitive.			
RGB0PWM	Input	Input data to drive RGB0 LED pin. This input is usually driven from the SB_LEDD_IP.			
RGB1PWM	Input	Input data to drive RGB1 LED pin. This input is usually driven from the SB_LEDD_IP.			
RGB2PWM	Input	Input data to drive RGB2 LED pin. This input is usually driven from the SB_LEDD_IP.			
RGB0	Output	RGB0 LED output.			
RGB1	Output	RGB1 LED output.			
RGB2	Output	RGB2 LED output.			

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input RGBLEDEN : Logic "0"
Input RGB0PWM : Logic "0"
Input RGB1PWM : Logic "0"

Input RGB2PWM : Logic "0" Input RGBPU : Logic "0"

Parameters

The SB RGB DRV primitive contains the following parameter and their default values:

```
Parameter RGB0_CURRENT = "0b0000000";
Parameter RGB1 CURRENT = "0b0000000";
Parameter RGB2 CURRENT = "0b0000000";
Parameter values:
       "0b000000" = 0mA. // Set this value to use the associated SB_IO_OD instance at RGB
                         // LED location.
       "0b000001" = 4mA.
       "0b000011" = 8mA.
       "0b000111" = 12mA.
       "0b001111" = 16mA.
       "0b011111" = 20mA.
       "0b111111" = 24mA.
Verilog Instantiation
SB_RGB_DRV RGB_DRIVER (
       .RGBLEDEN(ENABLE_LED),
       .RGBOPWM(RGBO),
       .RGB1PWM(RGB1),
       .RGB2PWM(RGB2),
       .RGBPU(led_power_up),
       .RGBO(LEDO),
```

defparam RGB_DRIVER.RGB1_CURRENT = "0b111111"; defparam RGB_DRIVER.RGB2_CURRENT = "0b111111";

defparam RGB_DRIVER.RGB0_CURRENT = "Ob1111111";

SB IR DRV

);

.RGB1(LED1), .RGB2(LED2)

SB_IR_DRV primitive contains a single dedicated open drain I/O pin for IRLED output. The IRLED output is bonded out together with an SB_IO_OD primitive to the package pin. User can either use SB_IR_DRV primitive or the SB_IO_OD primitive to drive the package pin, but not both.

When the IR_CURRENT parameter is set to "0b0000000000", then SB_IO_OD can be used to drive the package pin.

Ports

SB_IR_DRV Ports					
Signal Name Direction Description					
IRLEDEN	Input	Enable the SB_IR_DRV primitive. Active High.			
IRPU	Input	Power Up Signal. Connect to LEDPU port of			
		SB_LED_DRV_CUR primitive.			
IRPWM	Input	PWM Input data to drive IRLED pin.			
IRLED	Output	IR LED output.			

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input IRLEDEN : Logic "0" Input IRPWM : Logic "0"

Parameter

The SB_IR_DRV primitive contains the following parameter and their default values:

Parameter IR CURRENT = "0b0000000000";

```
Parameter Values:
```

```
"0b000000000"; = 0mA. // Set this value to use the associated SB_IO_OD instance at // IR LED location.

"0b0000000001"; = 50mA

"0b000000011"; = 150mA

"0b0000001111"; = 200mA

"0b0000011111"; = 250mA

"0b00001111111; = 350mA

"0b00011111111"; = 350mA

"0b00111111111"; = 450mA

"0b01111111111"; = 500mA
```

SB RGB IP

SB_RGB_IP primitive generates the 3 RGB PWM outputs, to be connected to the LED drivers.

Ports

SB_RGB_IP Ports							
Signal Name Direction Description							
CLK	Input	Clock Input.					
RST	Input	Asynchronous Reset Input.					
PARAMSOK	Input	Enable signal to sample the rgb data.					
RGBCOLOR[3:0]	Input	4 bit rgb color data input					
BRIGHTNESS[3:0]	Input	4 bit rgb brightness data input					
BREATHRAMP[3:0]	Input	4 bit breathramp data input					
BLINKRATE[3:0]	Input	4 bit blinkrate data input					
REDPWM	Output	RED PWM output.					
GREENPWM	Output	GREEN PWM output.					
BLUEPWM	Output	BLUE PWM output.					

Default Signal Values

The iCEcube2 software assigns the logic "0" value to all unconnected input ports.

SB_IO_OD

The SB_IO_OD is the open drain IO primitive. When the Tristate output is enabled, the IO pulls down the package pin signal to zero. The following figure and Verilog template illustrate the complete user accessible logic diagram, and its Verilog instantiation.

Ports

SB_IO_OD Ports						
Signal Name Direction Description						
PACKAGEPIN	Bidirectional	Bidirectional IO pin.				
LATCHINPUTVALUE	Input	Latches/Holds the input data.				
CLOCKENABLE	Input	Clock enable signal.				
INPUTCLK	Input	Clock for the input registers.				
OUTPUTCLK	Input	Clock for the output registers.				
OUTPUTENABLE	Input	Enable Tristate output. Active high.				
DOUT0	Input	Data to package pin.				
DOUT1	Input	Data to package pin.				
DIN0	Output	Data from package pin.				
DIN1	Output	Data from package pin.				

Default Signal Values

The iCEcube2 software assigns the logic "0" value to all unconnected input ports except for CLOCKENABLE.

Note that explicitly connecting logic "1" value to port CLOCKENABLE will result in a non-optimal implementation, since extra LUT will be used to generate the Logic "1". If the user's intention is to keep the Input and Output registers always enabled, it is recommended that port CLOCKENABLE to be left unconnected.

Parameter Values

```
Parameter PIN_TYPE = 6'b0000000;

// See Input and Output Pin Function Tables in SB_IO.

// Default value of PIN_TYPE = 6'b0000000

Parameter NEG_TRIGGER = 1'b0;

// Specify the polarity of all FFs in the I/O to be falling edge when NEG_TRIGGER = 1. Default is 1'b0, rising edge.
```

Input and Output Pin Function Tables

Refer SB_IO Input and Output Pin Functional Table for the PIN_TYPE settings. Some of the output pin configurations are not applicable for SB_IO_OD primitive.

```
OpenDrainInst0
SB_IO_OD
.PACKAGEPIN (PackagePin),
                                               // User's Pin signal name
                                               // Latches/holds the Input value // Clock Enable common to input and
.LATCHINPUTVALUE (latchinputvalue), .CLOCKENABLE (clockenable),
                                               // output clock
                                                 Clock for the input registers
.INPUTCLK (inputclk)
                                                 Clock for the output registers
.OUTPUTCLK (outputc1k).
.OUTPUTENABLE (outputenable),
                                               // Output Pin Tristate/Enable
                                                 / control
.DOUTO (dout0),
                                               // Data 0 - out to Pin/Rising clk
                                               // edge
.DOUT1 (dout1),
                                                  Data 1 - out to Pin/Falling clk
                                                  edge
.DINO (din0),
                                               / Data 0 - Pin input/Rising clk
                                               // edge
.DIN1 (din1)
                                               // Data 1 - Pin input/Falling clk
                                               // edge
);
defparam OpenDrainInstO.PIN TYPE = 6'b000000:
defparam OpenDrainInstO.NEG_TRIGGER = 1'b0;
```

SB I2C

iCE5LP device supports two I2C hard IP primitives, located at upper left corner and upper right corner of the chip.

Ports

The port interface is similar as iCE40LM SB_I2C primitive. Refer Page 114.

Parameters

The parameters are same as ICE40LM SB_I2C primitive.

Synthesis Attribute

I2C_CLK_DIVIDER

Synthesis attribute "I2C_CLK_DIVIDER" is used by PNR and STA tools for optimization and deriving the appropriate clock frequency at SCLO output with respect to the SBCLKI input clock frequency.

/* synthesis I2C_CLK_DIVIDER= Divide Value */

Divide Value: 0, 1, 2, 3 ... 1023. Default is 0.

SDA_INPUT_DELAYED

SDA_INPUT_DELAYED attribute is used to add 50ns additional delay to the SDAI signal.

/* synthesis SDA_INPUT_DELAYED= value */

Value:

- 0: No delay.
- 1: Add 50ns delay. (Default value).

SDA_OUTPUT_DELAYED

SDA_OUTPUT_DELAYED attribute is used to add 50ns additional delay to the SDAO signal.

/* synthesis SDA_OUTPUT_DELAYED= value */

Value:

- 0: No delay (Default value).
- 1: Add 50ns delay.

SB SPI

iCE5LP device supports two SPI hard IP primitives, located at lower left corner and lower right corner of the chip. The port interface of SB_SPI is similar as ICE40LM SB_SPI primitive. Refer Page 117.

Ports

The port interface is similar as iCE40LM SB_SPI primitive. Refer Page 117.

Parameters

The parameters are same as ICE40LM SB_SPI primitive.

Synthesis Attribute

The synthesis attribute is same as ICE40LM SB_SPI primitive.

SB MAC16

The SB_MAC16 primitive is the dedicated configurable DSP block available in iCE5LP devices. The SB_MAC16 can be configured into a multiplier, adder, subtracter, accumulator, multiply-add and multiply-sub through the instance parameters. The SB_MAC16 blocks can be cascaded to implement wider functional units.

iCEcube2 supports a set of predefined SB_MAC16 functional configurations. Refer Page 138 for the list of supported configurations.

Port A (Generated Clock)

Ports

		SB_MAC16 Ports	Default	
Signal Direction Description				
Name			Values	
CLK	Input	Clock input. Applies to all clocked elements in the MAC16 Block.		
CE	Input	Clock Enable Input. Active High.	1'b1	
C[15:0]	Input	Input to the C Register / Direct input to the adder accumulator.	16'b0	
A[15:0]	Input	Input to the A Register / Direct input to the multiplier blocks /Direct input to	16'b0	
		the adder accumulator.		
B[15:0]	Input	Input to the B Register / Direct input to the multiplier blocks /Direct input to	16'b0	
		the adder accumulator.		
D[15:0]	Input	Input to the D Register / Direct input to the adder accumulator.	16'b0	
AHOLD	Input	Hold A registers Data .Controls data flow into the input register A. Active	1'b0	
		High.		
		0 Update (load) register at next active clock edge.		

		1 Hold (retain) current register value, regardless of clock.				
BHOLD	Input	Hold B registers Data .Controls data flow into the B input register. Active High.	1′b0			
		0 Update (load) register at next active clock edge.				
		1 Hold (retain) current register value, regardless of clock.				
CHOLD	Input	Hold C registers Data. Controls data flow into the A input register. Active High.	1′b0			
		0 Update (load) register at next active clock edge.				
DI IOI D		1 Hold (retain) current register value, regardless of clock.				
DHOLD	Input	Hold D registers Data. Controls data flow into the A input register. Active High.	1′b0			
		0 Update (load) register at next active clock edge.				
		1 Hold (retain) current register value, regardless of clock.				
IRSTTOP	Input	Reset input to the A and C input registers, and the pipeline registers in the upper half of the multiplier block. Active High	1'b0			
IRSTBOT	Input	Reset input to the B and C input registers, and the pipeline registers in the lower half of the multiplier block, and the 32-bit multiplier result pipeline register. Active High.				
ORSTTOP	Input	Reset the high-order bits of the accumulator register ([31:16]). Active High.				
ORSTBOT	Input	Reset the low-order accumulator register bits ([15:0]). Active High.	1'b0			
OLOADTOP Input		High-order Accumulator Register Accumulate/Load. Controls whether the accumulator register accepts the output of the adder/subtracter or whether the register is loaded with the value from Input C (or Register C, if configured).	1'b0			
		Accumulator Register [31:16] loaded with output from adder/subtracter.				
		1 Accumulator Register [31:16] loaded with Input C or Register C, depending on primitive parameter value.				
OLOADBOT	Input	Low-order Accumulator Register Accumulate/Load. Controls whether the low-order accumulator register bits (15:0] accepts the output of the adder/subtracter or whether the register is loaded with the value from Input D (or Register D, if configured).	1'b0			
		0 Accumulator Register [15:0] loaded with output from adder/subtracter.				
		1 Accumulator Register [15:0] loaded with Input D or Register D, depending on primitive parameter value.				
ADDSUBTOP	Input	High-order Add/Subtract. Controls whether the adder/subtracter adds or subtracts.	1'b0: Add			
		0 Add: W+X+HCI				
		1 Subtract: W-X-HCI				
ADDSUBBOT	input	Low-order Add/Subtract. Controls whether the adder/subtracter adds or subtracts.	1'b0: Add			

		0 Add: Y+Z+LCI					
		1 Subtract: Y-Z-LCI					
OHOLDTOP	Input	High-order Accumulator Register Hold. Controls data flow into the high-					
ONOLDIO	mpat	order ([31:16]) bits of the accumulator.					
		order ([31.10]) bits of the decumulator.					
		0 Update (load) register at next active clock edge.					
		1 Hold (retain) current register value, regardless of clock.					
OHOLDBOT	Input	Low-order Accumulator Register Hold. Controls data flow into the high-					
		order ([15:0]) bits of the accumulator.					
		O Undete (lead) verietes et nort petits eleats edea					
		Update (load) register at next active clock edge. Used (retain) assessment as sistentially a regardless of all discontinuous.					
01	1	1 Hold (retain) current register value, regardless of clock.					
CI	Input	Carry/borrow input from lower logic tile.					
ACCUMCI	Input	Cascade Carry/borrow input from lower MAC16 block.					
		cascade carry, sorrow input from lower where stocking					
SIGNEXTIN	Input	Sign extension input from lower MAC16 block.					
O[31:0]	Output	32 bit MAC16 Output.					
		O[31:0] 32-bit result of a 16x16 multiply operation or a 32-bit					
		adder/accumulate function.					
		O[31:16] 16-bit result of an 8x8 multiply operation or a 32-bit					
		adder/accumulate function.					
		O[15:0] 16-bit result of an 8x8 multiply operation or a 32-bit					
CO	Output	adder/accumulate function.					
	Output	Carry/borrow output to higher logic tile.					
ACCUMCO	Output	Cascade Carry/borrow output to higher MAC16 block.					
SIGNEXTOUT	Output	Sign extension output to higher MAC16 block.					

Parameters

The parameter table below shows the list of parameters to configure the SB_MAC16 block. This table also maps the parameter to the configuration bits shown in the SB_MAC16 Functional diagram.

Parameter Name	Configuration	on Parameter	Parameter	Description
	bits	Description	Values	-
NEG_TRIGGER		Controls input clock	0	All the registers are
		polarity		rising_edge triggered.
			1	All the registers are
				falling_edge triggered.
C_REG	C0	Input C register	0	Input C not registered
		Control.	1	Input C registered
A_REG	C1	Input A register	0	Input A not registered
		Control	1	Input A registered
B_REG	C2	Input B register	0	Input B not registered
		Control	1	Input B registered
D_REG	C3	Input D register	0	Input D not registered
		Control	1	Input D registered
TOP_8x8_MULT_REG	C4	Top 8x8 multiplier	0	Top 8x8 multiplier output is
		output register		not registered.
		control (point F)	1	Top 8x8 multiplier output is
				registered.
BOT_8x8_MULT_REG	C5	Bottom 8x8 multiplier	0	Bottom 8x8 multiplier

		output register		output is not registered.
		control. (point G)	1	Bottom 8x8 multiplier
		control. (point d)	ı	output is registered
PIPELINE_16x16_MULT_REG1	C6	Intermediate 8x8	0	Intermediate 8x8 multiplier
FIFELINE_TOXTO_MOLT_REGT	Co		U	•
		multiplier pipeline	1	outputs are not registered.
		register controls	ı	Intermediate 8x8 multiplier
		(points J and K).		outputs are registered.
		These multipliers are		
		only used for 16x16		
		multiply operations.		
		For 8x8 multiply		
		operations, set C6		
		and C7 to 1, which		
		reduces power		
PIPELINE_16x16_MULT_REG2	C7	consumption. 16x16 multiplier	0	22 hit output from 16v16
PIPELINE_TOXTO_WOLT_REG2	C1	Pipeline registers	U	32-bit output from 16x16
		control. (point H)	1	multiplier is not registered.
		control. (point n)	ı	32-bit output from 16x16
TOPOLITRUT SELECT	C9,C8	Calasta Tan	00	multiplier is registered.
TOPOUTPUT_SELECT	C9,C6	Selects Top	00	16-bit output of Multiplexer
		SB_MAC16 output		P, from top
		O[31:16].	01	adder/subtracter,
			01	16-bit output from upper
			10	accumulator register, Q
			10	16-bit output from upper
			4.4	8x8 multiplier, F
			11	Upper 16-bit output from
TODADDOLID LOWEDINDLIT	044.040	C 1 1 1 1 1 1 1 C	00	16x16 multiplier, H
TOPADDSUB_LOWERINPUT	C11,C10	Selects input X for	00	16-bit input from A input or
		the upper	01	associated input register.
		adder/subtracter	UI	16-bit output from upper 8x8 multiplier, F
			10	Upper 16-bit output from
			10	16x16 multiplier, H
			11	Sign extension input from
				lower adder/subtracter,
				Z[15]. Duplicate 16 bits.
TOPADDSUB_UPPERINPUT	C12	Selects input W for	0	16-bit feedback from upper
_		the upper		accumulator register, Q
		adder/subtracter	1	16-bit input from C input or
		,		associated pipeline register
TOPADDSUB_CARRYSELECT	C14,C13	Carry/borrow input	00	Constant 0
		select to upper	01	Constant 1
		adder/subtracter.	10	Cascade Carry/borrow
				output from lower
				adder/subtracter
			11	Carry/borrow output from
				lower adder/subtracter
BOTOUTPUT_SELECT	C16,C15	Selects Lower	00	16-bit output of multiplexer
		SB_MAC16 output		R from lower
		O[15:0].		adder/subtracter
			01	16-bit output from lower
			40	accumulator register, S
			10	16-bit output from lower 8x8

				multiplier, G
			11	Lower 16-bit output from
				16x16 multiplier, H
BOTADDSUB_LOWERINPUT	C18,C17	Selects Input Z for	00	16-bit input from B input or
_		the lower		associated pipeline register
		adder/subtracter	01	16-bit output from lower
				8x8 multiplier, G
			10	Lower 16-bit output from
				16x16 multiplier, H
			11	Sign extension input
				SIGNEXTIN. Duplicate 16
				bits.
BOTADDSUB_UPPERINPUT	C19	Selects Input Y for	0	16-bit feedback from lower
		the lower		accumulator register, S
		adder/subtracter	1	16-bit input from D input or
				associated input register.
BOTADDSUB_CARRYSELECT	C21,C20	Carry/borrow input	00	Constant 0
		select to lower	01	Constant 1
		adder/subtracter	10	Cascade Carry/borrow input
				from ACCUMCI
			11	Carry/borrow input from CI
MODE_8x8	C22	Selects 8x8 Multiplier	0	No effect
		mode and 8x8 Low-	1	Selects 8x8 Multiplier mode.
		Power Multiplier		Holds the pipelining
		Blocking Option		registers associate with a
				16x16 multiplier in clock
				disable mode. Helps reduce
				the dynamic power
				consumption within the
				multiplier function. Used in conjunction with C6, C7
				settings.
A SIGNED	C23	Indicates whether	0	Multiplier input A is
/_0.0.46	020	multiplier input A is	J	unsigned.
		signed or unsigned.	1	Multiplier input A is signed.
		Applies regardless if	•	
		input A is 16-or 32-		
		bits wide.		
B_SIGNED	C24	Indicates whether	0	Multiplier input B is
_		multiplier input B is	-	unsigned.
		signed or unsigned.	1	Multiplier input B is signed.
		Applies regardless if		
		input B is 16-or 32-		
I .		bits wide.		i

SB_MAC16 Configurations

The following SB_MAC16 functional blocks are supported in iCEcube2.

- 1. Multiplier.
- 2. Multiply and Accumulate (MAC).
- 3. Accumulator (ACC).
- 4. Add/Subtract (ADD/SUB).
- 5. Multiply and Add/Subtract (MULTADDSUB)

The valid configuration parameter settings for each functional block are listed below.

Note: Read the configuration settings from left to right while filling the SB_MAC16 instance parameter values.

Table 1: Multiplier Configurations

8x8 Multiplier : 8x8 input multiplier with 16 bit output. 16x16 Multiplier: 16x16 input multiplier with 32 bit output.

SB_MAC16 Function/ Parameter Settings	CBIT[24] B_SIGNED	CBIT[23] A_SIGNED	CBIT[22] MODE_8x8		CBIT[20] BOTADDSOB_CARRISELECT	CBIT[19] BOTADDSUB_UPPERINPUT	CBIT[18]		CBIT[16] POTOLITRILE SELECT			CBIT[13] IOPADD3OB_CANNISELECT	CBIT[12] TOPADDSUB_UPPERINPUT		CBIT[10] IOPADD30B_COWERINFOI			CBIT[7] PIPELINE_16x16_MULT_REG2	CBIT[6] PIPELINE_16x16_MULT_REG1	CBIT[5] BOT_8x8_MULT_REG	CBIT[4] TOP_8x8_MULT_REG	CBIT[3] D_REG	CBIT[2] B_REG	CBIT[1] A_REG	CBIT[0] C_REG
8x8 Multiplier																									
mult_8x8_all_pipel ined_unsigned	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	1	1	0	1	1	0
mult_8x8_all_pipel ined_signed	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	1	1	0	1	1	0
mult_8x8_bypass_ unsigned	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
mult_8x8_bypass_ signed	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
16x16 Multiplier																									
mult_16x16_all_pi pelined_unsigned	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	1	1	1	1	1	0	1	1	0

mult_16x16_all_pi pelined_signed	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	1	1	1	1	1	1	0	1	1	0
mult_16x16_inter mediate_register_																									
bypassed_unsigne d	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	1	1	0	0	0	0	1	1	0
mult_16x16_inter mediate_register_ bypassed_signed	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	1	1	1	0	0	0	0	1	1	0
mult_16x16_bypas s_unsigned	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
mult_16x16_bypas s_signed	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0

Table 2 : MAC Configurations

16 bit MAC: 8x8 input, 16 bit output MAC. 32 bit MAC: 16x16 input, 32 bit output MAC.

SB_MAC16 Function/ Parameter Settings	CBIT[24] B_SIGNED	CBIT[23] A_SIGNED	CBIT[22] MODE_8x8		CBIT[20] BOTADDSUB_CARRISELECT	CBIT[19] BOTADDSUB_UPPERINPUT		CBIT[17] BO (AUDSUB_LOWERINPO)		CBIT[15] BOLOOLPOL_SELECT		CBIT[13] IOPADDSOB_CANNISELECT	CBIT[12] TOPADDSUB_UPPERINPUT	CBIT[11]]	CBIT[9]		CBIT[7] PIPELINE_16x16_MULT_REG2	CBIT[6] PIPELINE_16x16_MULT_REG1	CBIT[5] BOT_8x8_MULT_REG	CBIT[4] TOP_8x8_MULT_REG	CBIT[3] D_REG	CBIT[2] B_REG	CBIT[1] A_REG	CBIT[0] C_REG
16 bit MAC																									
mac_16_all_pipelin																									
ed_unsigned	0	0	1	0	0	0	0	1	0	1	0	0	0	0	1	0	1	1	1	1	1	1	1	1	1
mac_16_intermedia																									
te_register_bypasse	_			_			_				_							_		_	_				
d_unsigned	0	0	1	0	0	0	0	1	0	1	0	0	0	0	1	0	1	0	0	0	0	1	1	1	1
mac_16_bypassed_																									
unsigned	0	0	1	0	0	0	0	1	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
32 bit MAC																									
mac_32_all_pipelin																									
ed_unsigned	0	0	0	0	0	0	1	0	0	1	1	0	0	1	0	0	1	1	1	1	1	1	1	1	1

mac_32_all_pipelin	l													l				l		l	l				1 1
ed_cascaded_unsig																									
ned	0	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	1	1	1	1	1	1	1	1	1
mac_32_all_pipelin	Ť			_			_			_	_						_		_	_		_	_	_	
ed_cin_unsigned	0	0	0	1	1	0	1	0	0	1	1	0	0	1	0	0	1	1	1	1	1	1	1	1	1
mac_32_intermedia																									
te_register_bypasse																									
d_unsigned	0	0	0	0	0	0	1	0	0	1	1	0	0	1	0	0	1	1	0	0	0	1	1	1	1
mac_32_intermedia																									
te_register_bypasse																									
d_cascaded_unsign																									
ed	0	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	1	1	0	0	0	1	1	1	1
mac_32_intermedia																									
te_register_bypasse																									
d_cin_unsigned	0	0	0	1	1	0	1	0	0	1	1	0	0	1	0	0	1	1	0	0	0	1	1	1	1
mac_32_bypassed_																									
unsigned	0	0	0	0	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0
mac_32_bypassed_																									
cascaded_unsigned	0	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0
mac_32_bypassed_																									
cin_unsigned	0	0	0	1	1	0	1	0	0	1	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0
mac_32_intermedia																									
te_register_bypasse																									
d_signed	1	1	0	0	0	0	1	0	0	1	1	0	0	1	0	0	1	1	0	0	0	1	1	1	1

Table 3: ACCUMULATOR Configurations

16 bit ACCUMULATOR: 16 bit input, 16 bit output Accumulator. 32 bit ACCUMULATOR: 32 bit input, 32 bit output Accumulator.

SB_MAC16 Function/ Parameter Settings	B_SIGNED	A_SIGNED	MODE_8x8	POTANDSIIB CABBVSEIECT		BOTADDSUB_UPPERINPUT		BOTADDSUB_LOWERINPOT		BOTOUTPUL_SELECT		IOPADDSUB_CARRYSELECT	TOPADDSUB_UPPERINPUT		IOPADDSUB_LOWERINPUT		IOPOUIPUI_SELECI	PIPELINE_16x16_MULT_REG2	PIPELINE_16x16_MULT_REG1	BOT_8x8_MULT_REG	TOP_8x8_MULT_REG	D_REG	B_REG	A_REG	C_REG
	CBIT[24]	CBIT[23]	CBIT[22]	CBIT[21]	CBIT[20]	CBIT[19]	CBIT[18]	CBIT[17]	CBIT[16]	CBIT[15]	CBIT[14]	CBIT[13]	CBIT[12]	CBIT[11]	CBIT[10]	CBIT[9]	CBIT[8]	CBIT[7]	CBIT[6]	CBIT[5]	CBIT[4]	CBIT[3]	CBIT[2]	CBIT[1]	CBIT[0]
16 bit																									

ACCUMULATOR																									
acc_16_all_pipel																									
ined_unsigned	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	1	1	1
acc_16_bypasse																									
d_unsigned	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
32 bit ACCUMULATOR																									
acc_32_all_pipel																									
ined_unsigned	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	1	1	1	1
acc_32_all_pipel																									
ined_cascaded_																									
unsigned	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	1	1	1	1
acc_32_all_pipel																									
ined_cin_unsign																									
ed	0	0	1	1	1	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	1	1	1	1
acc_32_bypasse																									
d_unsigned	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
acc_32_bypasse																									
d_cascaded_uns																									
igned	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
acc_32_bypasse																									
d_cin_unsigned	0	0	1	1	1	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0

Table 4: Add/Subtract Configurations

16 bit ADDSUB: 16 bit input, 16 bit output ADDSUB. 32 bit ADDSUB: 32 bit input, 32 bit output ADDSUB.

SB_MAC16 Function/ Parameter Settings	CBIT[24] B_SIGNED	CBIT[23] A_SIGNED	CBIT[22] MODE_8x8	d d d	CBIT[20] BO I ADD SOB_CARRY SELECT	CBIT[19] BOTADDSUB_UPPERINPUT		CBIT[17] BO IADDSOB_LOWERINPOI	1	CBIT[15] BOTOUTPOT_SELECT		CBIT[13] IOPADD3OB_CARRISELECT	CBIT[12] TOPADDSUB_UPPERINPUT		CBIT[10] IOPADDSOB_LOWERINFOI	CBIT[9]		CBIT[7] PIPELINE_16x16_MULT_REG2	CBIT[6] PIPELINE_16x16_MULT_REG1	CBIT[5] BOT_8x8_MULT_REG	CBIT[4] TOP_8x8_MULT_REG	CBIT[3] D_REG	CBIT[2] B_REG	CBIT[1] A_REG	CBIT[0] C_REG
16 bit ADDSUB																									
add_sub_16_all_ pipelined_unsign ed	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	0	0	0	0	1	1	1	1

			ı		ı		ı		1 1	i	ı	i	i i	i i	i	i	i					i		i	
add_sub_16_byp																									
assed_unsigned	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
32 bit ADDSUB																									
add_sub_32_all_																									
pipelined_unsign																									
ed	0	0	1	0	0	1	0	0	0	1	1	0	1	0	0	0	1	0	0	0	0	1	1	1	1
add_sub_32_all_																									
pipelined_cascad																									
ed_unsigned	0	0	1	1	0	1	0	0	0	1	1	0	1	0	0	0	1	0	0	0	0	1	1	1	1
add_sub_32_all_																									
pipelined_cin_un																									
signed	0	0	1	1	1	1	0	0	0	1	1	0	1	0	0	0	1	0	0	0	0	1	1	1	1
add_sub_32_byp																									
assed_unsigned	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
add_sub_32_byp																									
assed_cascaded_																									
unsigned	0	0	1	1	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
add_sub_32_byp																									
assed_cin_unsig																									
ned	0	0	1	1	1	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0

Table 5: Multiply Add/Subtract Configurations

16 bit Mult-Add/Sub: 8x8 input, 16 bit output Mult-Add/Sub. 32 bit Mult-Add/Sub: 16x16 input, 32 bit output Mult-Add/Sub.

SB_MAC16 Function/ Parameter Settings	CBIT[24] B_SIGNED	CBIT[23] A_SIGNED	CBIT[22] MODE_8x8	CBIT[21] BOTABBSIIB CABBSEIECT	905008	CBIT[19] BOTADDSUB_UPPERINPUT	_	CBIT[17] BOTADDSOB_LOWERINPOT	CBIT[16] BOTOLITBLIT SELECT	_ BOTOUTPUT		CBIT[13] IOPADD3OB_CARRISELECT	CBIT[12] TOPADDSUB_UPPERINPUT	CBIT[11] TOBARDELIB LOWERINDLIT	- IOFAUUSUB	H I I I I I I I I I I I I I I I I I I I		CBIT[7] PIPELINE_16x16_MULT_REG2	CBIT[6] PIPELINE_16x16_MULT_REG1	CBIT[5] BOT_8x8_MULT_REG	CBIT[4] TOP_8x8_MULT_REG	CBIT[3] D_REG	CBIT[2] B_REG	CBIT[1] A_REG	CBIT[0] C_REG
16 bit Mult-Add/Sub																									
mult_add_sub_16_all _pipelined_unsigned	0	0	1	0	0	1	0	1	0	1	0	0	1	0	1	0	1	1	1	1	1	1	1	1	1

mult_add_sub_16_int	Ī																								
ermediate_register_b																									
ypassed_unsigned	0	0	1	0	0	1	0	1	0	1	0	0	1	0	1	0	1	0	0	0	0	1	1	1	1
mult_add_sub_16_by																									
passed_unsigned	0	0	1	0	0	1	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0
32 bit Mult-Add/Sub																									
mult_add_sub_32_all																									
_pipelined_unsigned	0	0	0	0	0	1	1	0	0	1	1	0	1	1	0	0	1	1	1	1	1	1	1	1	1
mult_add_sub_32_all																									
_pipelined_cascaded_																									
unsigned	0	0	0	1	0	1	1	0	0	1	1	0	1	1	0	0	1	1	1	1	1	1	1	1	1
mult_add_sub_32_all																									
_pipelined_cin_unsig																									
ned	0	0	0	1	1	1	1	0	0	1	1	0	1	1	0	0	1	1	1	1	1	1	1	1	1
mult_add_sub_32_int																									
ermediate_register_b																									
ypassed_unsigned	0	0	0	0	0	1	1	0	0	1	1	0	1	1	0	0	1	1	0	0	0	1	1	1	1
mult_add_sub_32_int																									
ermediate_register_b																									
ypassed_cascaded_u																									
nsigned	0	0	0	1	0	1	1	0	0	1	1	0	1	1	0	0	1	1	0	0	0	1	1	1	1
mult_add_sub_32_int																									
ermediate_register_b																									
ypassed_cin_unsigne																									
d	0	0	0	1	1	1	1	0	0	1	1	0	1	1	0	0	1	1	0	0	0	1	1	1	1
mult_add_sub_32_by																									
passed_unsigned	0	0	0	0	0	1	1	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0
mult_add_sub_32_by																									
passed_cascaded_uns																									
igned	0	0	0	1	0	1	1	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0
mult add sub 32 by																									
passed_cin_unsigned	0	0	0	1	1	1	1	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0
mult_add_sub_32_int																									
ermediate_register_b																									
ypassed_signed	1	1	0	0	0	1	1	0	0	1	1	0	1	1	0	0	1	1	0	0	0	1	1	1	1

```
SB_MAC16 i_sbmac16
                    .A(A_i),
                    .B(B_i),
.C(C_i),
.D(D_i),
                    .0(0),
                    .CLK(SYSCLK_i),
                    .CE(CE_i),
                    .IRSTTOP(RST_i),
                    .IRSTBOT(RST_i),
                    .ORSTTOP(RST_i),
                    .ORSTBOT(RST_i),
                    .AHOLD(AHOLD_i),
                    .BHOLD(BHOLD_i),
                    .CHOLD(CHOLD_i),
                    .DHOLD(DHOLD_i),
                    .OHOLDTOP(HLDTOPOUT_i),
                    .OHOLDBOT(HLDBOTOUT_i),
                    .OLOADTOP(LOADTOP_i),
                    .OLOADBOT(LOADBOT_i),
                    .ADDSUBTOP(ADDSUBTOP_i),
                    .ADDSUBBOT(ADDSUBBOT_i),
                    .co(co),
                    .ci(ci),
                    //MAC cascading ports.
                    .ACCUMCI(),
                    .ACCUMCO(),
                    .SIGNEXTIN()
                    .SIGNEXTOUT()
          );
// mult_8x8_all_pipelined_unsigned [24:0] = 001_0000010_0000010_0111_0110
// Read configuration settings [24:0] from left to right while filling the
instance parameters.
defparam i_sbmac16. B_SIGNED defparam i_sbmac16. A_SIGNED defparam i_sbmac16. MODE_8x8
                                                                     = 1'b0
                                                                     = 1'b0
                                                                     = 1'b1
                                                                     = 2'b00
defparam i_sbmac16. BOTADDSUB_CARRYSELECT
defparam i_sbmac16. BOTADDSUB_UPPERINPUT
                                                                     = 1'b0
                                                                     = 2'b00
defparam i_sbmac16. BOTADDSUB_LOWERINPUT
                                                                     = 2'b10
defparam i_sbmac16. BOTOUTPUT_SELECT
defparam i_sbmac16. TOPADDSUB_CARRYSELECT defparam i_sbmac16. TOPADDSUB_UPPERINPUT defparam i_sbmac16. TOPADDSUB_LOWERINPUT defparam i_sbmac16. TOPOUTPUT_SELECT
                                                                     = 2'b00
                                                                     = 1'b0
                                                                     = 2'b00
                                                                     = 2'b10
                                                                     = 1'b0
defparam i_sbmac16. PIPELINE_16x16_MULT_REG2
defparam i_sbmac16. PIPELINE_16x16_MULT_REG1
                                                                     = 1'b1
defparam i_sbmac16. BOT_8x8_MULT_REG
                                                                     = 1'b1
defparam i_sbmac16. TOP_8x8_MULT_REG
                                                                     = 1'b1
defparam i_sbmac16. D_REG
                                                                     = 1'b0
defparam i_sbmac16. B_REG
                                                                     = 1'b1
defparam i_sbmac16. A_REG
defparam i_sbmac16. C_REG
                                                                     = 1'b1
                                                                     = 1'b0
```

iCE40UL (iCE40 Ultra Lite) Hard Macros

This section describes the following dedicated hard macro primitives available in iCE40UL device.

SB_HFOSC SB_LFOSC SB_RGBA_DRV SB_IR400_DRV SB_BARCODE_DRV SB_IR500_DRV SB_LEDDA_IP SB_IR_IP SB_IO_OD SB_I2C_FIFO

SB_HFOSC

SB_HFOSC primitive generates 48MHz nominal clock frequency within +/- 10% variation, with user programmable divider value of 1, 2, 4, and 8. The HFOSC can drive either the global clock network or fabric routes directly based on the clock network selection.

Ports

		SB_HFOSC Ports
Signal Name	Direction	Description
CLKHFPU	Input	Power up the HFOSC circuit. After power up, oscillator output will be stable after 100us. Active High.
CLKHFEN	Input	Enable the clock output. Enable should be low for the 100us power up period. Active High.
CLKHF	Output	HF Oscillator output.

Parameters

Parameter	Parameter Values.	Description.
	"0b00"	Sets 48MHz HFOSC output.
CLIVUE DIV	"0b01"	Sets 24MHz HFOSC output.
CLKHF_DIV	"0b10"	Sets 12MHz HFOSC output.
	"0b11"	Sets 6MHz HFOSC output

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input CLKHFEN: Logic "0" Input CLKHFPU: Logic "0"

Clock Network Selection

By default the oscillator use one of the dedicated clock networks in the device to drive the elements. The user may configure the oscillator to use the fabric routes instead of global clock network using the synthesis attribute.

Synthesis Attributes

```
/* synthesis ROUTE_THROUGH_FABRIC = <value> */
Value:
0: Use dedicated clock network. Default option.
1: Use fabric routes.
```

Verilog Instantiation

```
SB_HFOSC OSCInst0 (
.CLKHFEN(ENCLKHF),
.CLKHFPU(CLKHF_POWERUP),
.CLKHF(CLKHF)
) /* synthesis ROUTE_THROUGH_FABRIC= [0|1] */;
defparam OSCInst0.CLKHF_DIV = "0b00";
```

SB LFOSC

SB_LFOSC primitive generates 10 KHz nominal clock frequency within +/- 10% variation. There is no divider on the LFOSC.

The LFOSC can drive either the global clock network or fabric routes directly based on the clock network selection

Ports

		SB_LFOSC Ports
Signal Name	Direction	Description
CLKLFPU	Input	Power up the LFOSC circuit. After power up, oscillator output will be stable after 100us. Active High.
CLKLFEN	Input	Enable the clock output. Enable should be low for the 100us power up period. Active High.
CLKLF	Output	LF Oscillator output.

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input CLKLFEN: Logic "0" Input CLKLFPU: Logic "0"

Clock Network Selection

By default the oscillator use one of the dedicated clock networks in the device to drive the elements. The user may configure the oscillator to use the fabric routes instead of global clock network using the synthesis attribute.

Synthesis Attributes

```
/* synthesis ROUTE_THROUGH_FABRIC = <value> */
Value:
0: Use dedicated clock network. Default option.
1: Use fabric routes.
```

Verilog Instantiation

SB RGBA DRV

SB_RGBA_DRV primitive is the RGB LED drive module which contains 3 dedicated open drain I/O pins for RGB LED outputs. Each of the RGB LED output is bonded out together with an SB_IO_OD primitive to the package pin. User can either use SB_RGB_DRV primitive or the SB_IO_OD primitive to drive the package pin, but not both.

The primitive allows configuration of each of the 3 RGB LED outputs individually. When the RGBx_CURRENT parameter of RGBx output is set to "0b0000000", then SB_IO_OD can be used to drive the package pin.

0113			
SB_RGBA_DRV Ports			
Signal Name	Direction	Description	
CURREN	Input	Enable the mixed signal control block to supply reference current to the IR drivers. When it is not enabled (CURREN=0), no current is supplied, and the IR drivers are powered down. Enabling the mixed signal control block takes 100us to reach a stable reference current value.	
RGBLEDEN	Input	Enable the SB_RGB_DRV primitive. Active High.	
RGB0PWM	Input	Input data to drive RGB0 LED pin. This input is usually driven from the SB_LEDD_IP.	
RGB1PWM	Input	Input data to drive RGB1 LED pin. This input is usually	

		driven from the SB_LEDD_IP.
RGB2PWM	Input	Input data to drive RGB2 LED pin. This input is usually
	•	driven from the SB_LEDD_IP.
RGB0	Output	RGB0 LED output.
RGB1	Output	RGB1 LED output.
RGB2	Output	RGB2 LED output.

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input CURREN : Logic "0"
Input RGBLEDEN : Logic "0"
Input RGB0PWM : Logic "0"
Input RGB1PWM : Logic "0"
Input RGB2PWM : Logic "0"

Parameters

The SB_RGBA_DRV primitive contains the following parameter and their default values:

```
Parameter CURRENT MODE = "0b0";
       Parameter values:
       "0b0" = Full Current Mode (Default).
       "0b1" = Half Current Mode.
Parameter RGB0_CURRENT = "0b0000000";
Parameter RGB1 CURRENT = "0b0000000";
Parameter RGB2_CURRENT = "0b0000000";
       Parameter values:
       "0b000000" = 0mA. // Set this value to use the associated SB IO OD instance at RGB
            // LED location.
       "0b000001" = 4mA for Full Mode; 2mA for Half Mode
       "0b000011" = 8mA for Full Mode; 4mA for Half Mode
       "0b000111" = 12mA for Full Mode; 6mA for Half Mode.
       "0b001111" = 16mA for Full Mode; 8mA for Half Mode
       "0b011111" = 20mA for Full Mode; 10mA for Half Mode.
       "0b111111" = 24mA for Full Mode; 12mA for Half Mode.
```

SB IR400 DRV

SB_IR400_DRV primitive is the IR driver which contains a single dedicated open drain I/O pin for IRLED output. The IRLED output is bonded out together with an SB_IO_OD primitive to the package pin. User can either use SB_IR400_DRV primitive or the SB_IO_OD primitive to drive the package pin, but not both.

When the IR400_CURRENT parameter is set to "0b00000000", then SB_IO_OD can be used to drive the package pin.

Ports

Signal Name	Direction	SB_IR400_DRV Ports Description
CURREN	Input	Enable the mixed signal control block to supply reference current to the IR drivers. When it is not enabled (CURREN=0), no current is supplied, and the IR drivers are powered down. Enabling the mixed signal control block takes 100us to reach a stable reference current value.
IRLEDEN	Input	Enable the SB_IR400_DRV primitive. Active High.
IRPWM	Input	PWM Input data to drive IRLED pin.
IRLED	Output	IR LED output.

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input CURREN : Logic "0"
Input IRLEDEN : Logic "0"
Input IRPWM : Logic "0"

Parameter

The SB_IR400_DRV primitive contains the following parameter and their default values:

```
Parameter CURRENT_MODE = "0b0 ";
Parameter values:
"0b0" = Full Current Mode (Default).
"0b1" = Half Current Mode.
```

Parameter IR400 CURRENT = "0b000000000";

Parameter Values:

"0b000000000"; = 0mA. //This is the setting to tristate the IR output to allow it to be used as GPIO (SB IO OD)

"0b00000001"; = 50mA for Full Mode; 25mA for Half Mode. "0b00000011"; = 100mA for Full Mode; 50mA for Half Mode. "0b00000111"; = 150mA for Full Mode; 75mA for Half Mode. "0b00001111"; = 200mA for Full Mode; 100mA for Half Mode. "0b000111111"; = 250mA for Full Mode; 125mA for Half Mode. "0b001111111"; = 300mA for Full Mode; 150mA for Half Mode. "0b01111111"; = 350mA for Full Mode; 175mA for Half Mode.

"0b11111111"; = 400mA for Full Mode; 200mA for Half Mode.

Verilog Instantiation

SB_BARCODE_DRV

SB_BARCODE_DRV primitive contains a single dedicated open drain I/O pin for BARCODE output. The BARCODE output is bonded out together with an SB_IO_OD primitive to the package pin. User can either use SB_BARCODE_DRV primitive or the SB_IO_OD primitive to drive the package pin, but not both.

When the BARCODE_CURRENT parameter is set to "0b0000", SB_IO_OD can be used to drive the package pin.

Ports

SB_BARCODE_DRV Ports			
Signal Name	Direction	Description	
CURREN	Input	Enable the mixed signal control block to supply reference current to the IR drivers. When it is not enabled (CURREN=0), no current is supplied, and the IR drivers are powered down. Enabling the mixed signal control block takes 100us to reach a stable reference current value.	
BARCODEN	Input	Enable the SB_BARCODE_DRV primitive. Active High.	
BARCODEPWM	Input	PWM Input data to drive BARCODE pin.	
BARCODE	Output	BARCODE output.	

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input CURREN : Logic "0"
Input BARCODEEN : Logic "0"
Input BARCODEPWM : Logic "0"

Parameter

The SB_BARCODE_DRV primitive contains the following parameter and their default values:

Verilog Instantiation

SB IR500 DRV

SB_IR500_DRV primitive is the IR driver which contains a two dedicated open drain I/O pin for IRLED1, IRLED2 outputs. The IRLED outputs are bonded out together with an SB_IO_OD primitive to the package pin. User can either use SB_IR500_DRV primitive or the SB_IO_OD primitive to drive the package pin, but not both.

When the IR4500_CURRENT parameter is set to "0b00000000", then SB_IO_OD can be used to drive the package pin.

SB IR500 DRV DRC Rule

This primitive cannot be instantiated along with SB BARCODE DRV or SB IR400 DRV instance.

Ports

SB_IR500_DRV Ports			
Signal Name	Direction	Description	
CURREN	Input	Enable the mixed signal control block to supply reference current to the IR drivers. When it is not enabled (CURREN=0), no current is supplied, and the IR drivers are powered down. Enabling the mixed signal control block takes 100us to reach a stable reference current value.	
IRLEDEN	Input	Enable the SB_IR400_DRV primitive. Active High.	
IRPWM	Input	PWM Input data to drive IRLED pin.	
IRLED1	Output	IR LED output 1.	
IRLED2	Output	IR LED output 2.	

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input CURREN : Logic "0"
Input IRLEDEN : Logic "0"
Input IRPWM : Logic "0"

Parameter

The SB_IR500_DRV primitive contains the following parameter and their default values:

```
Parameter CURRENT MODE = "0b0";
       Parameter values:
       "0b0"; = Full Current Mode (Default).
       "0b1"; = Half Current Mode.
Parameter IR500 CURRENT = "0b000000000000";
        Parameter values:
         "0b0000000000"; = 0mA. // This is the setting to tristate the BARCODE output to allow it to
                                    // be used as GPIO (SB_IO_OD).
        "0b00000000111"; = 50mA for Full Mode; 25mA for Half Mode.
        "0b00000001111"; = 100mA for Full Mode; 50mA for Half Mode.
        "0b00000011111"; = 150mA for Full Mode; 75mA for Half Mode.
        "0b000000111111"; = 200mA for Full Mode; 100mA for Half Mode.
        "0b0000011111111"; = 250mA for Full Mode; 125mA for Half Mode.
        "0b0000111111111"; = 300mA for Full Mode; 150mA for Half Mode.
        "0b000111111111"; = 350mA for Full Mode; 175mA for Half Mode.
        "0b00111111111"; = 400mA for Full Mode; 200mA for Half Mode.
        "0b01111111111"; = 450mA for Full Mode; 225mA for Half Mode.
        "0b1111111111"; = 500mA for Full Mode; 250mA for Half Mode.
```

SB_LEDDA_IP

SB_LEDDA_IP primitive generates the RGB PWM outputs for the RGB LED drivers. The IP contains registers that are programmed in by the SCI bus interface signals.

Oits		
		SB_LEDDA_IP Ports
Signal Name	Direction	Description
LEDDCS	Input	CS to write LEDD IP registers
LEDDCLK	Input	Clock to write LEDD IP registers
LEDDDAT7	Input	bit 7 data to write into the LEDD IP registers
LEDDDAT6	Input	bit 6 data to write into the LEDD IP registers
LEDDDAT5	Input	bit 5 data to write into the LEDD IP registers
LEDDDAT4	Input	bit 4 data to write into the LEDD IP registers
LEDDDAT3	Input	bit 3 data to write into the LEDD IP registers
LEDDDAT2	Input	bit 2 data to write into the LEDD IP registers
LEDDDAT1	Input	bit 1 data to write into the LEDD IP registers
LEDDDAT0	Input	bit 0 data to write into the LEDD IP registers
LEDDADDR3	Input	LEDD IP register address bit 3
LEDDADDR2	Input	LEDD IP register address bit 2
LEDDADDR1	Input	LEDD IP register address bit 1
LEDDADDR0	Input	LEDD IP register address bit 0
LEDDDEN	Input	Data enable input to indicate data and address are stable.
LEDDEXE	Input	Enable the IP to run the blinking sequence. When it is
		LOW, the sequence stops at the nearest OFF state.
LEDDRST	Input	Device level reset signal to reset all internal registers during
		the device configuration. This port is not accessible to user
		signals.
PWMOUT0	Output	PWM output 0
PWMOUT1	Output	PWM output 1
PWMOUT2	Output	PWM output 2

LEDDON	Output	Indicating the LED is on
--------	--------	--------------------------

Default Signal Values

The iCEcube2 software assigns the logic "0" value to all unconnected input ports.

Verilog Instantiation

```
SB_LEDDA_IP
           DA_IP PWMgen_inst (
.LEDDCS(ledd_cs),
           LEDDCLK(led_clk),
LEDDDAT7(led_ip_data[7])
LEDDDAT6(led_ip_data[6])
           .LEDDDAT5(led_ip_data[5]),
           .LEDDDAT4(]ed_ip_data[4]),
           .LEDDDAT3(led_ip_data[3]),
           .LEDDDAT2(led_ip_data[2]);
           .LEDDDAT2(led_ip_data[1]),
.LEDDDAT1(led_ip_data[1]),
.LEDDDAT0(led_ip_data[0]),
.LEDDADDR3(led_ip_addr[3]),
.LEDDADDR2(led_ip_addr[2]),
.LEDDADDR1(led_ip_addr[1]),
.LEDDADDR0(led_ip_addr[0]),
.LEDDADDR0(led_ip_addr[0]),
           .LEDDDEN(led_ip_den),
           .LEDDEXE(led_ip_exe),
           .LEDDRST(led_ip_rst),
           .PWMOUTO(LEDO),
           .PWMOUT1(LED1),
           .PWMOUT2(LED2)
           .LEDDON(led_on)
);
```

SB IR IP

SB_IR_IP primitive is the IR transceiver module. It generates or receives the modulated pulse for the IR driver primitives.

Ports

1 0113		SB_IR_IP Ports
Signal Name	Direction	Description
CLKI	Input	Clock input for IR IP
CSI	Input	Select Signal. Active High to activate the IP. This usually
		connects to the output of the decoding logic from MSB of the
		address bus
DENI	Input	Data Enable. When asserted, indicates that the data and
		address on the IR Transceiver Control Bus are stabilized and
		ready to be captured.
WEI	Input	Data Write Enable. Asserted during WRITE and de-asserted
		during READ cycle.
ADRI3	Input	Control Register Address Bit 3
ADRI2	Input	Control Register Address Bit 2
ADRI1	Input	Control Register Address Bit 1
ADRIO	Input	Control Register Address Bit 0
WDATA7	Input	Write Data Input Bit 7
WDATA6	Input	Write Data Input Bit 6
WDATA5	Input	Write Data Input Bit 5
WDATA4	Input	Write Data Input Bit 4
WDATA3	Input	Write Data Input Bit 3
WDATA2	Input	Write Data Input Bit 2
WDATA1	Input	Write Data Input Bit 1
WDATA0	Input	Write Data Input Bit 0
RDATA7	Output	Read Data Output Bit 7
RDATA6	Output	Read Data Output Bit 6
RDATA5	Output	Read Data Output Bit 5
RDATA4	Output	Read Data Output Bit 4
RDATA3	Output	Read Data Output Bit 3
RDATA2	Output	Read Data Output Bit 2
RDATA1	Output	Read Data Output Bit 1
RDATA0	Output	Read Data Output Bit 0
EXE	Input	Execute. when asserted, starts the IR Transceiver Hard IP to
		transmit or receive IR data
LEARN	Input	Learning Mode control. When asserted the IR Transceiver is in
		learning mode. The IR Transceiver will receive data instead of
		transmit data.
BUSY	Output	Busy status output
DRDY	Output	Data Buffer Ready status output
ERR	Output	Data Error status
RST	Input	Device level reset signal to reset all internal registers and
		IROUT signal to OFF state during the device configuration. This
		port is not accessible to user signals.
IRIN	Input	Modulated ON/OFF pulse from IR sensor.
IROUT	Output	Modulated ON/OFF pulse for IR Transmit.

Default Signal Values

The iCEcube2 software assigns the logic "0" value to all unconnected input ports.

```
.CSI(csi_i),
.DENI(deni_i),
             .WEI(wei_i),
.ADRI3(addri_i[3]),
.ADRI2(addri_i[2]),
.ADRI1(addri_i[1]),
             .ADRIO(addri_i[0]),
             .WDATA7(wdata_i[7]),
.WDATA6(wdata_i[6]),
.WDATA5(wdata_i[6]),
.WDATA5(wdata_i[4]),
.WDATA3(wdata_i[4])
             .WDATA2(wdata_i
             .WDATA1(wdata_i
             .WDATAO(wdata_i [0])
             .RDATA7(rdata_o[7]),
             .RDATA/(rdata_o[/]),
.RDATA6(rdata_o[6]),
.RDATA5(rdata_o[5]),
.RDATA4(rdata_o[4]),
.RDATA3(rdata_o[3]),
.RDATA2(rdata_o[2]),
.RDATA1(rdata_o[1]),
.RDATA1(rdata_o[1]),
             .RDATAO(rdata_o[0]),
             .EXE(exe_i),
.LEARN(learn_i),
             .BUSY(busy_o),
.DRDY(drdy_o),
             .ERR(err_o),
             .RST(rst_i),
.IRIN(irin_i),
             .IROUT(irpulse_w)
);
```

SB_IO_OD

The SB_IO_OD is the open drain IO primitive. When the Tristate output is enabled, the IO pulls down the package pin signal to zero. The following figure and Verilog template illustrate the complete user accessible logic diagram, and its Verilog instantiation.

		SB_IO_OD Ports
Signal Name	Direction	Description
PACKAGEPIN	Bidirectional	Bidirectional IO pin.
LATCHINPUTVALUE	Input	Latches/Holds the input data.
CLOCKENABLE	Input	Clock enable signal.
INPUTCLK	Input	Clock for the input registers.
OUTPUTCLK	Input	Clock for the output registers.
OUTPUTENABLE	Input	Enable Tristate output. Active high.
DOUT0	Input	Data to package pin.
DOUT1	Input	Data to package pin.
DIN0	Output	Data from package pin.
DIN1	Output	Data from package pin.

Default Signal Values

The iCEcube2 software assigns the logic "0" value to all unconnected input ports except for CLOCKENABLE.

Note that explicitly connecting logic "1" value to port CLOCKENABLE will result in a non-optimal implementation, since extra LUT will be used to generate the Logic "1". If the user's intention is to keep the Input and Output registers always enabled, it is recommended that port CLOCKENABLE to be left unconnected.

Parameter Values

```
Parameter PIN_TYPE = 6'b0000000;

// See Input and Output Pin Function Tables in SB_IO.

// Default value of PIN_TYPE = 6'b0000000

Parameter NEG_TRIGGER = 1'b0;

// Specify the polarity of all FFs in the I/O to be falling edge when NEG_TRIGGER = 1. Default is 1'b0, rising edge.
```

Input and Output Pin Function Tables

Refer SB_IO Input and Output Pin Functional Table for the PIN_TYPE settings. Some of the output pin configurations are not applicable for SB_IO_OD primitive.

```
OpenDrainInst0
SB_IO_OD
.PACKAGEPIN (PackagePin),
                                               // User's Pin signal name
                                               // Latches/holds the Input value // Clock Enable common to input and
.LATCHINPUTVALUE (latchinputvalue), .CLOCKENABLE (clockenable),
                                               // output clock
                                                 Clock for the input registers
.INPUTCLK (inputclk)
                                                 Clock for the output registers
.OUTPUTCLK (outputc1k).
.OUTPUTENABLE (outputenable),
                                               // Output Pin Tristate/Enable
                                                 / control
.DOUTO (dout0),
                                               // Data 0 - out to Pin/Rising clk
                                               // edge
.DOUT1 (dout1),
                                                  Data 1 - out to Pin/Falling clk
                                                  edge
.DINO (din0),
                                               / Data 0 - Pin input/Rising clk
                                               // edge
.DIN1 (din1)
                                               // Data 1 - Pin input/Falling clk
                                               // edge
);
defparam OpenDrainInstO.PIN TYPE = 6'b000000:
defparam OpenDrainInstO.NEG_TRIGGER = 1'b0;
```

SB_I2C_FIFO

iCE40UL device supports two I2C hard IP primitives , located at bottom left corner and bottom right corner of the chip.

SB_I2C_FIFO Ports			
Signal Name	Direction	Description	
CLKI	Input	System Clock input	
CSI	Input	Select Signal. Active High to activate the IP. This usually	
		connects to the output of the decoding logic from MSB of the	
		address bus	
STBI	Input	Strobe Signal	
WEI	Input	Write Enable Signal	
ADRI3	Input	Control Register Address Bit 3	
ADRI2	Input	Control Register Address Bit 2	
ADRI1	Input	Control Register Address Bit 1	
ADRI0	Input	Control Register Address Bit 0	
DATI9	Input	Data Input Bit 9	
DATI8	Input	Data Input Bit 8	
DATI7	Input	Data Input Bit 7	
DATI6	Input	Data Input Bit 6	
DATI5	Input	Data Input Bit 5	
DATI4	Input	Data Input Bit 4	
DATI3	Input	Data Input Bit 3	
DATI2	Input	Data Input Bit 2	
DATI1	Input	Data Input Bit 1	
DATI0	Input	Data Input Bit 0	
DATO9	Output	Data Output Bit 9	
DATO8	Output	Data Output Bit 8	
DATO7	Output	Data Output Bit 7	

DATO6	Output	Data Output Bit 6	
DATO5	Output	Data Output Bit 5	
DATO4	Output	Data Output Bit 4	
DATO3	Output	Data Output Bit 3	
DATO2	Output	Data Output Bit 2	
DATO1	Output	Data Output Bit 1	
DATO0	Output	Data Output Bit 0	
ACKO	Output	Acknowledgement	
I2CIRQ	Output	I2C Interrupt output	
I2CWKUP	Output	I2C Wake up from Standby signal	
SRWO	Output	Slave RW "1" master receiving / Slave transmitting	
		"0" master transmitting / Slave receiving	
SCLI	Input	Serial Clock Input	
SCLO	Output	Serial Clock Output	
SCLOE	Output	Serial Clock Output Enable. Active High	
SDAI	Input	Serial Data Input	
SDAO	Output	Serial Data Output	
SDAOE	Output	Serial Data Output Enable. Active High	
FIFORST ¹	Input	RESET for the FIFO logic	
TXFIFOAEMPTY ¹	Output	TX FIFO Status Signal	
TXFIFOEMPTY ¹	Output	TX FIFO Status Signal	
TXFIFOFULL ¹	Output	TX FIFO Status Signal	
RXFIFOAFULL ¹	Output	RX FIFO Status Signal	
RXFIFOFULL ¹	Output	RX FIFO Status Signal	
RXFIFOEMPTY ¹	Output	RX FIFO Status Signal	
MRDCMPL ¹	Output	Master Read Complete (only valid for Master Read Mode)	

Note ¹: Only available if I2C_FIFO_ENB = ENABLED.

Parameters

I2C Location	Parameters	Parameter Default	Description
Left Side Corner	I2C_SLAVE _ADDR	0b1111100001	Upper Bits <9:2> can be changed
			through control registers. Lower
			bits <1:0> are fixed.
Right Side	I2C_SLAVE _ADDR	0b1111100010	Upper Bits <9:2> can be changed
			through control registers. Lower
			bits <1:0> are fixed.

Synthesis Attribute

I2C_CLK_DIVIDER

Synthesis attribute "I2C_CLK_DIVIDER" is used by PNR and STA tools for optimization and deriving the appropriate clock frequency at SCLO output with respect to the SBCLKI input clock frequency.

/* synthesis I2C_CLK_DIVIDER= Divide Value */ Divide Value: 0, 1, 2, 3 ... 1023. Default is 0.

SDA_INPUT_DELAYED

SDA_INPUT_DELAYED attribute is used to add 50ns additional delay to the SDAI signal.

/* synthesis SDA_INPUT_DELAYED= value */

Value:

0: No delay.

1: Add 50ns delay. (Default value).

SDA_OUTPUT_DELAYED

SDA_OUTPUT_DELAYED attribute is used to add 50ns additional delay to the SDAO signal.

/* synthesis SDA_OUTPUT_DELAYED= value */

Value:

0: No delay (Default value).

1: Add 50ns delay.

I2C_FIFO_ENB

"I2C_FIFO_ENB" attribute is used to enable or disable FIFO

/* synthesis I2C_FIFO_ENB= [value] */

Value:

ENABLED: FIFO mode will be enabled. DISABLED: FIFO mode will be disabled.

iCE40UP (iCE40 Ultra Plus) Hard Macros

This section describes the following dedicated hard macro primitives available in iCE40UP device.

SB_HFOSC SB_LFOSC

SB_RGBA_DRV

SB_LEDDA_IP

SB_IO_OD

SB_I2C

SB_SPI

SB_MAC16

SB_SPRAM256KA

SB_IO_I3C

SB_HFOSC

SB_HFOSC primitive generates 48MHz nominal clock frequency within +/- 10% variation, with user programmable divider value of 1, 2, 4, and 8. The HFOSC can drive either the global clock network or fabric routes directly based on the clock network selection.

Ports

SB_HFOSC Ports			
Signal Name Direction Description			
CLKHFPU	Input	Power up the HFOSC circuit. After power up, oscillator output will be stable after 100us. Active High.	
CLKHFEN	Input	Enable the clock output. Enable should be low for the 100us power up period. Active High.	
CLKHF	Output	HF Oscillator output.	

Parameters

Parameter	Parameter Values.	Description.
	"0b00"	Sets 48MHz HFOSC output.
CLIVHE DIV	"0b01"	Sets 24MHz HFOSC output.
CLKHF_DIV	"0b10"	Sets 12MHz HFOSC output.
	"0b11"	Sets 6MHz HFOSC output

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input CLKHFEN: Logic "0" Input CLKHFPU: Logic "0"

Clock Network Selection

By default the oscillator use one of the dedicated clock networks in the device to drive the elements. The user may configure the oscillator to use the fabric routes instead of global clock network using the synthesis attribute.

Synthesis Attributes

```
/* synthesis ROUTE_THROUGH_FABRIC = <value> */
Value:
0: Use dedicated clock network. Default option.
1: Use fabric routes.
```

Verilog Instantiation

```
SB_HFOSC OSCInst0 (
.CLKHFEN(ENCLKHF),
.CLKHFPU(CLKHF_POWERUP),
.CLKHF(CLKHF)
) /* synthesis ROUTE_THROUGH_FABRIC= [0|1] */;
defparam OSCInst0.CLKHF_DIV = "0b00";
```

SB LFOSC

SB_LFOSC primitive generates 10 KHz nominal clock frequency within +/- 10% variation. There is no divider on the LFOSC.

The LFOSC can drive either the global clock network or fabric routes directly based on the clock network selection

Ports

SB_LFOSC Ports			
Signal Name Direction Description			
CLKLFPU	Input	Power up the LFOSC circuit. After power up, oscillator output will be stable after 100us. Active High.	
CLKLFEN	Input	Enable the clock output. Enable should be low for the 100us power up period. Active High.	
CLKLF	Output	LF Oscillator output.	

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input CLKLFEN: Logic "0" Input CLKLFPU: Logic "0"

Clock Network Selection

By default the oscillator use one of the dedicated clock networks in the device to drive the elements. The user may configure the oscillator to use the fabric routes instead of global clock network using the synthesis attribute.

Synthesis Attributes

```
/* synthesis ROUTE_THROUGH_FABRIC = <value> */
Value:
0: Use dedicated clock network. Default option.
1: Use fabric routes.
```

Verilog Instantiation

SB RGBA DRV

SB_RGBA_DRV primitive is the RGB LED drive module which contains 3 dedicated open drain I/O pins for RGB LED outputs. Each of the RGB LED output is bonded out together with an SB_IO_OD primitive to the package pin. User can either use SB_RGB_DRV primitive or the SB_IO_OD primitive to drive the package pin, but not both.

The primitive allows configuration of each of the 3 RGB LED outputs individually. When the RGBx_CURRENT parameter of RGBx output is set to "0b0000000", then SB_IO_OD can be used to drive the package pin.

SB_RGBA_DRV Ports			
Signal Name	Direction	Description	
CURREN	Input	Enable the mixed signal control block to supply reference current to the IR drivers. When it is not enabled (CURREN=0), no current is supplied, and the IR drivers are powered down. Enabling the mixed signal control block takes 100us to reach a stable reference current value.	
RGBLEDEN	Input	Enable the SB_RGB_DRV primitive. Active High.	
RGB0PWM	Input	Input data to drive RGB0 LED pin. This input is usually driven from the SB_LEDD_IP.	
RGB1PWM	Input	Input data to drive RGB1 LED pin. This input is usually	

		driven from the SB_LEDD_IP.	
RGB2PWM	Input	Input data to drive RGB2 LED pin. This input is usually	
	•	driven from the SB_LEDD_IP.	
RGB0	Output	RGB0 LED output.	
RGB1	Output	RGB1 LED output.	
RGB2	Output	RGB2 LED output.	

Default Signal Values

The iCEcube2 software assigns the following signal value to unconnected port:

Input CURREN : Logic "0"
Input RGBLEDEN : Logic "0"
Input RGB0PWM : Logic "0"
Input RGB1PWM : Logic "0"
Input RGB2PWM : Logic "0"

Parameters

The SB_RGBA_DRV primitive contains the following parameter and their default values:

```
Parameter CURRENT MODE = "0b0";
       Parameter values:
       "0b0" = Full Current Mode (Default).
       "0b1" = Half Current Mode.
Parameter RGB0_CURRENT = "0b0000000";
Parameter RGB1 CURRENT = "0b0000000";
Parameter RGB2_CURRENT = "0b0000000";
       Parameter values:
       "0b000000" = 0mA. // Set this value to use the associated SB IO OD instance at RGB
            // LED location.
       "0b000001" = 4mA for Full Mode; 2mA for Half Mode
       "0b000011" = 8mA for Full Mode; 4mA for Half Mode
       "0b000111" = 12mA for Full Mode; 6mA for Half Mode.
       "0b001111" = 16mA for Full Mode; 8mA for Half Mode
       "0b011111" = 20mA for Full Mode; 10mA for Half Mode.
       "0b111111" = 24mA for Full Mode; 12mA for Half Mode.
```

SB_LEDDA_IP

SB_LEDDA_IP primitive generates the RGB PWM outputs for the RGB LED drivers. The IP contains registers that are programmed in by the SCI bus interface signals.

		SB_LEDDA_IP Ports	
Signal Name	Direction	Description	
LEDDCS	Input	CS to write LEDD IP registers	
LEDDCLK	Input	Clock to write LEDD IP registers	
LEDDDAT7	Input	bit 7 data to write into the LEDD IP registers	
LEDDDAT6	Input	bit 6 data to write into the LEDD IP registers	
LEDDDAT5	Input	bit 5 data to write into the LEDD IP registers	
LEDDDAT4	Input	bit 4 data to write into the LEDD IP registers	
LEDDDAT3	Input	bit 3 data to write into the LEDD IP registers	
LEDDDAT2	Input	bit 2 data to write into the LEDD IP registers	
LEDDDAT1	Input	bit 1 data to write into the LEDD IP registers	
LEDDDAT0	Input	bit 0 data to write into the LEDD IP registers	
LEDDADDR3	Input	LEDD IP register address bit 3	
LEDDADDR2	Input	LEDD IP register address bit 2	
LEDDADDR1	Input	LEDD IP register address bit 1	
LEDDADDR0	Input	LEDD IP register address bit 0	
LEDDDEN	Input	Data enable input to indicate data and address are stable.	
LEDDEXE	Input	Enable the IP to run the blinking sequence. When it is	
		LOW, the sequence stops at the nearest OFF state.	
LEDDRST	Input	Device level reset signal to reset all internal registers during	
		the device configuration. This port is not accessible to user	
		signals.	
PWMOUT0	Output	PWM output 0	
PWMOUT1	Output	PWM output 1	
PWMOUT2	Output	PWM output 2	

LEDDON	Output	Indicating the LED is on
--------	--------	--------------------------

Default Signal Values

The iCEcube2 software assigns the logic "0" value to all unconnected input ports.

Verilog Instantiation

SB_IO_OD

The SB_IO_OD is the open drain IO primitive. When the Tristate output is enabled, the IO pulls down the package pin signal to zero. The following figure and Verilog template illustrate the complete user accessible logic diagram, and its Verilog instantiation.

Ports

SB_IO_OD Ports				
Signal Name Direction Description				
PACKAGEPIN	Bidirectional	Bidirectional IO pin.		
LATCHINPUTVALUE	Input	Latches/Holds the input data.		
CLOCKENABLE	Input	Clock enable signal.		
INPUTCLK	Input	Clock for the input registers.		
OUTPUTCLK	Input	Clock for the output registers.		
OUTPUTENABLE	Input	Enable Tristate output. Active high.		
DOUT0	Input	Data to package pin.		
DOUT1	Input	Data to package pin.		
DIN0	Output	Data from package pin.		
DIN1	Output	Data from package pin.		

Default Signal Values

The iCEcube2 software assigns the logic "0" value to all unconnected input ports except for CLOCKENABLE.

Note that explicitly connecting logic "1" value to port CLOCKENABLE will result in a non-optimal implementation, since extra LUT will be used to generate the Logic "1". If the user's intention is to keep

the Input and Output registers always enabled, it is recommended that port CLOCKENABLE to be left unconnected.

Parameter Values

```
Parameter PIN_TYPE = 6'b000000;

// See Input and Output Pin Function Tables in SB_IO.

// Default value of PIN_TYPE = 6'b000000

Parameter NEG_TRIGGER = 1'b0;

// Specify the polarity of all FFs in the I/O to be falling edge when NEG_TRIGGER = 1. Default is 1'b0, rising edge.
```

Input and Output Pin Function Tables

Refer SB_IO Input and Output Pin Functional Table for the PIN_TYPE settings. Some of the output pin configurations are not applicable for SB_IO_OD primitive.

```
OpenDrainInst0
SB_IO_OD
.PACKAGEPIN (PackagePin),
                                              // User's Pin signal name
.LATCHINPUTVALUE (latchinputvalue).
                                              // Latches/holds the Input value
.CLOCKENABLE (clockenable),
                                              // Clock Enable common to input and
                                              // output clock
                                              // Clock for the input registers
// Clock for the output registers
.INPUTCLK (inputclk), .OUTPUTCLK (outputclk),
.OUTPUTENABLE (outputenable),
                                              // Output Pin Tristate/Enable
                                              // control
                                              // Data 0 - out to Pin/Rising clk
.DOUTO (dout0),
                                              // edge
.DOUT1 (dout1),
                                              // Data 1 - out to Pin/Falling clk
                                              // Data 0 - Pin input/Rising clk
.DINO (din0),
                                              // edge
                                              // Data 1 - Pin input/Falling clk
.DIN1 (din1)
);
defparam OpenDrainInstO.PIN_TYPE = 6'b000000;
defparam OpenDrainInstO.NEG_TRIGGER = 1'b0;
```

SB I2C

iCE40UP device supports two I2C hard IP primitives, located at upper left corner and upper right corner of the chip.

Ports

The port interface is similar as iCE40LM/iCE5LP SB_I2C primitive. Refer Page 114.

Parameters

The parameters are same as ICE40LM/iCE5LP SB_I2C primitive.

Synthesis Attribute

I2C_CLK_DIVIDER

Synthesis attribute "I2C_CLK_DIVIDER" is used by PNR and STA tools for optimization and deriving the appropriate clock frequency at SCLO output with respect to the SBCLKI input clock frequency.

/* synthesis I2C_CLK_DIVIDER= Divide Value */

Divide Value: 0, 1, 2, 3 ... 1023. Default is 0.

SDA_INPUT_DELAYED

SDA_INPUT_DELAYED attribute is used to add 50ns additional delay to the SDAI signal.

/* synthesis SDA_INPUT_DELAYED= value */

Value:

- 0: No delay.
- 1: Add 50ns delay. (Default value).

SDA_OUTPUT_DELAYED

SDA_OUTPUT_DELAYED attribute is used to add 50ns additional delay to the SDAO signal.

/* synthesis SDA_OUTPUT_DELAYED= value */

Value:

- 0: No delay (Default value).
- 1: Add 50ns delay.

SCL_INPUT_FILTERED

SCL_INPUT_FILTERED attribute is used to add 50ns glitch filter to the SCLI signal.

/* synthesis SCL_INPUT_FILTERED= value */

Value:

- 0: No Filter delay (Default value).
- 1: Add 50ns glitch filter delay.

SB_SPI

iCE40UP device supports two SPI hard IP primitives, located at lower left corner and lower right corner of the chip. The port interface of SB_SPI is similar as ICE40LM/iCE5LP SB_SPI primitive. Refer Page 117.

Ports

The port interface is similar as iCE40LM/iCE5LP SB_SPI primitive. Refer Page 117.

Parameters

The parameters are same as ICE40LM/iCE5LP SB_SPI primitive.

Synthesis Attribute

The synthesis attribute is same as ICE40LM/iCE5LP SB_SPI primitive.

SB_MAC16

The SB_MAC16 primitive is the dedicated configurable DSP block available in iCE5LP/iCE40UP devices. The SB_MAC16 can be configured into a multiplier, adder, subtracter, accumulator, multiply-add and multiply-sub through the instance parameters. The SB_MAC16 blocks can be cascaded to implement wider functional units.

iCEcube2 supports a set of predefined SB_MAC16 functional configurations. Refer Page 133 for SB MAC16 functional model, port details and the list of supported configurations.

SB SPRAM256KA

iCE40UP devices offer four embedded memory blocks of Single Port RAM. Each of these blocks can be configured in 16K x 16 mode. These RAM blocks can be cascaded using logic implemented in the fabric to create larger memories.

Port Name	Port Width	Default Value	Description
ADDRESS	[13:0]	14b'000000 00000000	This Address input port is used to address the location to be written during the write cycle and read during the read cycle.
DATAIN	[15:0]	16b'000000 0000000000	The data input bus used to write the data into the memory location specified by address input port during the write cycle.

MASKWREN	[3:0]	4b'1111	The Bit Write feature where selective write to individual I/O's can be done using the Maskable Write Enable signals. Each bit masks a nibble of DATAIN.
WREN	[0:0]	1b'0	When the Write Enable input is Logic High, the memory is in the write cycle. When the Write enable is Logic Low, the memory is in the Read Cycle.
CHIPSELECT	[0:0]	1b'0	When the memory enable input is Logic High, the memory is enabled and read/write operations can be performed. When memory Enable input is logic Low, the memory is deactivated.
CLOCK	[0:0]	-	This is the external clock for the memory.
STANDBY	[0:0]	1b'0	When this pin is active then memory goes into low leakage mode, there is no change in the output state.
SLEEP	[0:0]	1b'0	This pin shut down power to periphery and maintain memory contents. The outputs of the memory are pulled low.
POWEROFF	[0:0]	1b'1	This pin turns off the power to the memory core when it is driven low (1'b0). There is no memory data retention when it is driven low. When POWEROFF is driven high (1'b1), the SPRAM is powered on.
DATAOUT	[15:0]	-	It outputs the contents of the memory location addressed by the Address Input signals.

The default value of each MASKWREN is 1. In order to mask a nibble of DATAIN, the MASKWREN needs to be pulled low (0).

The following shows which MASKWREN bits enables the mask for the DATAIN nibbles.

MASKWREN(3) enables mask for DATAIN(15:12) MASKWREN(2) enables mask for DATAIN (11:8) MASKWREN(1) enables mask for DATAIN (7:4)

MASKWREN(0) enables mask for DATAIN(3:0)

SB IO I3C

ICE40UP devices contain 2 special purpose IO blocks. These blocks are same as SB_IO, but have two additional user control signals PU_ENB, WEAK_PU_ENB to enable/disable the resistor networks. These blocks are useful in I3C applications.

The SB_IO_I3C block contains five registers. The following figure and Verilog template illustrate the complete user accessible logic diagram, and its Verilog instantiation.

Default Signal Values

The iCEcube2 software assigns the logic '0' value to all unconnected input ports except for CLOCK_ENABLE.

Note that explicitly connecting a logic '1' value to port CLOCK_ENABLE will result in a non-optimal implementation, since an extra LUT will be used to generate the Logic '1'. If the user's intention is to keep the Input and Output registers always enabled, it is recommended that port CLOCK_ENABLE be left unconnected.

Explicitly connecting a logic "0" value to port PU_ENB and/or WEAK_PU_ENB will result extra LUTs will be used to generate the Logic "0". If it is intended to always enable the pull-up and/or weak pull-up, it is recommended the associated port be left unconnected.

Input and Output Pin Function Tables

Input and Output functions are independently selectable via PIN_TYPE [1:0] and PIN_TYPE [5:2] parameter settings respectively. Specific IO functions are defined by the combination of both attributes. This means that the complete number of combinations is 64, although some combinations are not valid and not defined below.

Note that the selection of IO Standards such as LVCMOS etc is not defined by these tables.

	Input Pin Function Table							
#	Pin Function Mnemonic	PIN_TYPE[1:0]		Functional Description of Package Pin Input Operation				
1	PIN_INPUT	0	1	Simple input pin (D_IN_0)				
2	PIN_INPUT_LATCH	1	1	Disables internal data changes on the physical input pin by latching the value.				
3	PIN_INPUT_REGISTERED	0	0	Input data is registered in input cell				
4	PIN_INPUT_REGISTERED _LATCH	1	0	Disables internal data changes on the physical input pin by latching the value on the input register				
5	PIN_INPUT_DDR	0	0	Input 'DDR' data is clocked out on rising and falling clock edges. Use the D_IN_0 and D_IN_1 pins for DDR operation.				

	Output Pin Function table							
#	Pin Function Mnemonic	PIN_TYPE[5:		:2]	Functional Description of Package Pin Output Operation			
1	PIN_NO_OUTPUT		0	0	0	Disables the output function		
2	PIN_OUTPUT	0	1	1	0	Simple output pin, (no enable)		
3	PIN_OUTPUT_TRISTATE	1	0	1	0	The output pin may be tristated using the enable		
4	PIN_OUTPUT_ENABLE_REGISTERED	1	1	1	0	The output pin may be tristated using a registered enable signal		
5	PIN_OUTPUT_REGISTERED	0	1	0	1	Output registered, (no enable)		
6	PIN_OUTPUT_REGISTERED_ENABLE	1	0	0	1	Output registered with enable (enable is not registered)		
7	PIN_OUTPUT_REGISTERED_ENABLE _REGISTERED	1	1	0	1	Output registered and enable registered		
8	PIN_OUTPUT_DDR	0	1	0	0	Output 'DDR' data is clocked out on rising and falling clock edges		
9	PIN_OUTPUT_DDR_ENABLE	1	0	0	0	Output data is clocked out on rising and falling clock edges		
10	PIN_OUTPUT_DDR_ENABLE_REGIST ERED	1	1	0	0	Output 'DDR' data with registered enable signal		
11	PIN_OUTPUT_REGISTERED_INVERT ED	0	1	1	1	Output registered signal is inverted		
12	PIN_OUTPUT_REGISTERED_ENABLEINVERTED	1	0	1	1	Output signal is registered and inverted, (no enable function)		
13	PIN_OUTPUT_REGISTERED_ENABLE _REGISTERED_INVERTED	1	1	1	1	Output signal is registered and inverted, the enable/tristate control is registered.		

Syntax Verilog Use

Output Pin Function is the bit vector associated with PIN_TYPE [5:2] and Input Pin Function is the bit vector associated with PIN_TYPE [1:0], resulting in a 6 bit value PIN_TYPE [5:0]

defparam my_generic_IO.PIN_TYPE = 6'b{Output Pin Function, Input Pin Function};

Pull Up Resistor Configuration.

The user can configure the internal pull up resistor strength of an IO to a predefined resistor value via parameter settings and synthesis attributes. The PULLUP parameter setting enables one of the resistor values as given in table 1 and WEAKPULLUP parameter setting enables the 100K pull up resistor.

The specific resistor value associated with the PULLUP parameter needs to specify via PULLUP_RESISTOR attribute. The PULLUP_RESISTOR value is effective only when PULLUP parameter is set to 1.

Both the PULLUP & WEAKPULLUP parameters are allowed to set simultaneously. When both parameters are set the effective pull up resistor values is [100K || {3P3K/6P8K/10K}]

Once the required parameters, attribute values are set, the active low PU_ENB, WEAK_PU_ENB signals allows the user to control the pull up resistor network dynamically.

Synthesis Attribute Syntax:

/* synthesis PULLUP RESISTOR = "3P3K" */

Resistor Value:

Resistor Value	Description.
"3P3K"	Pull up resistor level is 3.3K.
"6P8K"	Pull up resistor level is 6.8K.
"10K"	Pull up resistor level is 10K.

Note: The PULLUP_RESISTOR value is effective only when PULLUP parameter is set to 1.

```
SB_IO_I3C
            I3CIO_INST
.PACKAGE_PIN (Package_Pin),
.LATCH_INPUT_VALUE (latch_input_value),
                                             // User's Pin signal name
                                             // Latches/holds the Input value
.CLOCK_ENABLE (clock_enable),
                                             // Clock Enable common to input and
                                            // output clock
.INPUT_CLK (input_clk)
                                             // Clock for the input registers
.OUTPUT_CLK (output_c1k),
                                             // Clock for the output registers
.OUTPUT_ENABLE (output_enable),
                                             // Output Pin Tristate/Enable
                                             // control
.D_OUT_0 (d_out_0),
                                             // Data 0 - out to Pin/Rising clk
                                               edge
.D_OUT_1 (d_out_1),
                                             // Data 1 - out to Pin/Falling clk
                                             // edae
                                             // Data 0 - Pin input/Rising clk
.D_IN_0 (d_in_0),
                                             // Data 1 - Pin input/Falling clk
.D_IN_1 (d_in_1),
                                             // edge
```

Device Configuration Primitives

SB WARMBOOT

iCE FPGA devices permit the user to load a different configuration image during regular operation. Through the use of the Warm Boot Primitive, the user can load one of 4 pre-defined configuration images into the iCE FPGA device.

Note that this Warm Boot mode is different from the Cold Boot operation, which is executed during the initial device boot-up sequence.

The selection of one of these 4 images is accomplished through 2 input signals, S1 and S0. In order to trigger the selection of a new image, an additional signal, BOOT, is provided. It should be noted that this signal is level-triggered, and should be used for every Warm Boot operation i.e. every time the user wishes to load a new image into the device.

The successful instantiation of this primitive also requires the user to specify the address locations of the 4 images. These addresses should be specified in the iCEcube2 software as per the Warm Boot Application Note.

```
SB_WARMBOOT my_warmboot_i
    .BOOT (my_boot),
    .S1 (my_sel1),
    .S0 (my_sel0)
);

// Level-sensitive trigger signal
// S1, S0 specify selection of the
// configuration image
// configuration image
```