# SMDM PROJECT



### ASHWANI KUMAR – June 13, 2021

In this Project, I have submitted all the answer to the entire question in a sequential manner with the detailed explanation of the approach used, insights, inferences, all outputs of codes along with graphs and tables.

### Problem 1:

A wholesale distributor operating in different regions of Portugal has information on annual spending of several items in their stores across different regions and channels. The data consists of 440 large retailers' annual spending on 6 different varieties of products in 3 different regions (Lisbon, Oporto, Other) and across different sales channel (Hotel, Retail).

#### Overview:

|                  | count | unique | top   | freq | mean    | std     | min | 25%     | 50%    | 75%     | max    |
|------------------|-------|--------|-------|------|---------|---------|-----|---------|--------|---------|--------|
| Buyer/Spender    | 440   | NaN    | NaN   | NaN  | 220.5   | 127.161 | 1   | 110.75  | 220.5  | 330.25  | 440    |
| Channel          | 440   | 2      | Hotel | 298  | NaN     | NaN     | NaN | NaN     | NaN    | NaN     | NaN    |
| Region           | 440   | 3      | Other | 316  | NaN     | NaN     | NaN | NaN     | NaN    | NaN     | NaN    |
| Fresh            | 440   | NaN    | NaN   | NaN  | 12000.3 | 12647.3 | 3   | 3127.75 | 8504   | 16933.8 | 112151 |
| Milk             | 440   | NaN    | NaN   | NaN  | 5796.27 | 7380.38 | 55  | 1533    | 3627   | 7190.25 | 73498  |
| Grocery          | 440   | NaN    | NaN   | NaN  | 7951.28 | 9503.16 | 3   | 2153    | 4755.5 | 10655.8 | 92780  |
| Frozen           | 440   | NaN    | NaN   | NaN  | 3071.93 | 4854.67 | 25  | 742.25  | 1526   | 3554.25 | 60869  |
| Detergents_Paper | 440   | NaN    | NaN   | NaN  | 2881.49 | 4767.85 | 3   | 256.75  | 816.5  | 3922    | 40827  |
| Delicatessen     | 440   | NaN    | NaN   | NaN  | 1524.87 | 2820.11 | 3   | 408.25  | 965.5  | 1820.25 | 47943  |

## 1.1 ). Use methods of descriptive statistics to summarize data. Which Region and which Channel spent the most? Which Region and which Channel spent the least?

|   | Buyer/Spender | Channel | Region | Fresh | Milk | Grocery | Frozen | Detergents_Paper | Delicatessen | Total_Spent |
|---|---------------|---------|--------|-------|------|---------|--------|------------------|--------------|-------------|
| 0 | 1             | Retail  | Other  | 12669 | 9656 | 7561    | 214    | 2674             | 1338         | 32774       |
| 1 | 2             | Retail  | Other  | 7057  | 9810 | 9568    | 1762   | 3293             | 1776         | 31490       |
| 2 | 3             | Retail  | Other  | 6353  | 8808 | 7684    | 2405   | 3516             | 7844         | 28766       |
| 3 | 4             | Hotel   | Other  | 13265 | 1196 | 4221    | 6404   | 507              | 1788         | 25593       |
| 4 | 5             | Retail  | Other  | 22615 | 5410 | 7198    | 3915   | 1777             | 5185         | 40915       |

Other 316 Lisbon 77 Oporto 47

Name: Region, dtype: int64



#### **Observation:**

So, as per observation we found that "Retail" Channel of "Lisbon" Region spent the most and "Hotel" Channel of "Oporto" Region spent the least.

# 1.2). There are 6 different varieties of items that are considered. Describe and comment/explain all the varieties across Region and Channel? Provide a detailed justification for your answer.

|          |           | Delicat | essen [ | Deterger | nts_Pa | per F    | resh  | Froz | zen | Grocery  | Mi      | lk      |        |
|----------|-----------|---------|---------|----------|--------|----------|-------|------|-----|----------|---------|---------|--------|
| Channel  | Region    |         |         |          |        |          |       |      |     |          |         | _       |        |
| ·        | Lisbon    | 11      | 197.15  |          | 950    | .53 1290 | 02.25 | 3127 | .32 | 4026.14  | 3870.2  | 20      |        |
| Hotel    | Oporto    | 11      | 105.89  |          | 482    | .71 1165 | 50.54 | 5745 | .04 | 4395.50  | 2304.2  | 25      |        |
|          | Other     | 15      | 518.28  |          | 786    | .68 1387 | 78.05 | 3656 | .90 | 3886.73  | 3486.9  | 8       |        |
|          | Lisbon    | 18      | 371.94  |          | 8225   | .28 520  | 00.00 | 2584 | .11 | 18471.94 | 10784.0 | 00      |        |
| Retail   | Oporto    | 12      | 239.00  |          | 8410   | .26 728  | 39.79 | 1540 | .58 | 16326.32 | 9190.7  | 79      |        |
|          | Other     | 18      | 326.21  |          | 6899   | .24 983  | 31.50 | 1513 | .20 | 15953.81 | 10981.0 | )1      |        |
|          |           | count   | unique  | ton      | freq   | mean     |       | std  | min | 25%      | 50%     | 75%     | max    |
|          |           |         |         |          |        |          |       |      |     |          |         |         |        |
| Buyer    | /Spender  | 440     | NaN     | NaN      | NaN    | 220.5    | 127.1 | 161  | - 1 | 110.75   | 220.5   | 330.25  | 440    |
|          | Channel   | 440     | 2       | Hotel    | 298    | NaN      | N     | aN I | NaN | NaN      | NaN     | NaN     | NaN    |
|          | Region    | 440     | 3       | Other    | 316    | NaN      | N     | aN I | NaN | NaN      | NaN     | NaN     | NaN    |
|          | Fresh     | 440     | NaN     | NaN      | NaN    | 12000.3  | 1264  | 7.3  | 3   | 3127.75  | 8504    | 16933.8 | 112151 |
|          | Milk      | 440     | NaN     | NaN      | NaN    | 5796.27  | 7380  | .38  | 55  | 1533     | 3627    | 7190.25 | 73498  |
|          | Grocery   | 440     | NaN     | NaN      | NaN    | 7951.28  | 9503  | .16  | 3   | 2153     | 4755.5  | 10655.8 | 92780  |
|          | Frozen    | 440     | NaN     | NaN      | NaN    | 3071.93  | 4854  | .67  | 25  | 742.25   | 1526    | 3554.25 | 60869  |
| Detergen | its_Paper | 440     | NaN     | NaN      | NaN    | 2881.49  | 4767  | .85  | 3   | 256.75   | 816.5   | 3922    | 40827  |
| Deli     | icatessen | 440     | NaN     | NaN      | NaN    | 1524.87  | 2820  | .11  | 3   | 408.25   | 965.5   | 1820.25 | 47943  |
| Tot      | tal Spent | 440     | NaN     | NaN      | NaN    | 31701.3  | 2507  | 4.9  | 896 | 16547    | 26496   | 39404   | 196947 |

|         | count | unique | top   | freq |
|---------|-------|--------|-------|------|
| Channel | 440   | 2      | Hotel | 298  |
| Degion  | 440   | 2      | Other | 316  |

#### Observation:

As per observation, we found that there are 6 different varieties of item in which both Channel such as Hotel & Retail. 'Other' Category Region is spending more as comparision of 'Lisbon' & 'Oporto'.

### 1.3 ). On the basis of a descriptive measure of variability, which item shows the most inconsistent behaviour? Which items show the least inconsistent behaviour?



#### **Observation:**

In the Graph, we are able to descripe measures of vaiability like IQR, Variance, Outlier and means. Looking at the problem objective we have computed that, variable "Fresh" has the most inconsistent behaviour and variable "Detergents\_Paper" has the leat inconsistent behaviour among all

### 1.4). Are there any outliers in the data? Back up your answer with a suitable plot/technique with the help of detailed comments.



#### Observation:

Yes, there area outliers in the data which we can observe from the graph.

### 1.5 ). On the basis of your analysis, what are your recommendations for the business? How can your analysis help the business to solve its problem?

### Observation:

As per observation, we have found that in Hotel the 'Fresh' Varieble is consumed more and in Retail ('Grocery' and 'Millk') are the product which is consumed in most. So, as conclusion it will be more profitable to invest more in these mentioned variable, according to their mentioned Channel.

### **Problem 2**

The Student News Service at Clear Mountain State University (CMSU) has decided to gather data about the undergraduate students that attend CMSU. CMSU creates and distributes a survey of 14 questions and receives responses from 62 undergraduates (stored in the Survey data set).

Overview:

|                   | count | mean       | std        | min   | 25%    | 50%    | 75%    | max    |
|-------------------|-------|------------|------------|-------|--------|--------|--------|--------|
| ID                | 62.0  | 31.500000  | 18.041619  | 1.0   | 16.25  | 31.50  | 46.75  | 62.0   |
| Age               | 62.0  | 21.129032  | 1.431311   | 18.0  | 20.00  | 21.00  | 22.00  | 26.0   |
| GPA               | 62.0  | 3.129032   | 0.377388   | 2.3   | 2.90   | 3.15   | 3.40   | 3.9    |
| Salary            | 62.0  | 48.548387  | 12.080912  | 25.0  | 40.00  | 50.00  | 55.00  | 80.0   |
| Social Networking | 62.0  | 1.516129   | 0.844305   | 0.0   | 1.00   | 1.00   | 2.00   | 4.0    |
| Satisfaction      | 62.0  | 3.741935   | 1.213793   | 1.0   | 3.00   | 4.00   | 4.00   | 6.0    |
| Spending          | 62.0  | 482.016129 | 221.953805 | 100.0 | 312.50 | 500.00 | 600.00 | 1400.0 |
| Text Messages     | 62.0  | 246.209677 | 214.465950 | 0.0   | 100.00 | 200.00 | 300.00 | 900.0  |

### 2.1.). For this data, construct the following contingency tables (Keep Gender as row variable)

|        | Age | GPA   | Salary | Satisfaction | Social Networking | Spending | Text Messages |
|--------|-----|-------|--------|--------------|-------------------|----------|---------------|
| Gender |     |       |        |              |                   |          |               |
| Female | 696 | 104.6 | 1610.0 | 116          | 47                | 14920    | 7835          |
| Male   | 614 | 89.4  | 1400.0 | 116          | 47                | 14965    | 7430          |

### 2.1.1.). Gender and Major

| Major  | Accounting | CIS | Economics/Finance | International Business | Management | Other | Retailing/Marketing | Undecided |
|--------|------------|-----|-------------------|------------------------|------------|-------|---------------------|-----------|
| Gender |            |     |                   |                        |            |       |                     |           |
| Female | 3          | 3   | 7                 | 4                      | 4          | 3     | 9                   | 0         |
| Male   | 4          | 1   | 4                 | 2                      | 6          | 4     | 5                   | 3         |

### 2.1.2.). Gender and Grad Intention

| Grad Intention | No | Undecided | Yes |
|----------------|----|-----------|-----|
| Gender         |    |           |     |
| Female         | 9  | 13        | 11  |
| Male           | 3  | 9         | 17  |

### 2.1.3.). Gender and Employment

| Employment | Full-Time | Part-Time | Unemployed |  |
|------------|-----------|-----------|------------|--|
| Gender     |           |           |            |  |
| Female     | 3         | 24        | 6          |  |
| Male       | 7         | 19        | 3          |  |

### 2.1.4.). Gender and Computer

| Computer | Desktop | Laptop | Tablet |  |
|----------|---------|--------|--------|--|
| Gender   |         |        |        |  |
| Female   | 2       | 29     | 2      |  |
| Male     | 3       | 26     | 0      |  |

### 2.2.). Assume that the sample is representative of the population of CMSU. Based on the data, answer the following question:

### 2.2.1.). What is the probability that a randomly selected CMSU student will be male?

```
Female 33
Male 29
Name: Gender, dtype: int64

Total number of students are 62

P(Male)= Number of Males/Total Number of Students

P(Male)= 0.46774193548387094
```

#### Observation:

### 2.2.2.). What is the probability that a randomly selected CMSU student will be female?

Female 33 Male 29

Name: Gender, dtype: int64

Total number of students are 62

P(Female) = Number of Females/Total Number of Students

P(Female) = 0.532258064516129

#### Observation:

So, the probability that a randomly selected CMSU student of being female is 0.532258064516129

### 2.3.). Assume that the sample is representative of the population of CMSU. Based on the data, answer the following question:

### 2.3.1.). Find the conditional probability of different majors among the male students in CMSU.

| Gender                 | Female   | Male     |
|------------------------|----------|----------|
| Major                  |          |          |
| Accounting             | 0.428571 | 0.571429 |
| CIS                    | 0.750000 | 0.250000 |
| Economics/Finance      | 0.636364 | 0.363636 |
| International Business | 0.666667 | 0.333333 |
| Management             | 0.400000 | 0.600000 |
| Other                  | 0.428571 | 0.571429 |
| Retailing/Marketing    | 0.642857 | 0.357143 |
| Undecided              | 0.000000 | 1.000000 |
| All                    | 0.532258 | 0.467742 |

| Gender                 | Female   | Male     | AII      |
|------------------------|----------|----------|----------|
| Major                  |          |          |          |
| Accounting             | 0.090909 | 0.137931 | 0.112903 |
| CIS                    | 0.090909 | 0.034483 | 0.064516 |
| Economics/Finance      | 0.212121 | 0.137931 | 0.177419 |
| International Business | 0.121212 | 0.068966 | 0.096774 |
| Management             | 0.121212 | 0.206897 | 0.161290 |
| Other                  | 0.090909 | 0.137931 | 0.112903 |
| Retailing/Marketing    | 0.272727 | 0.172414 | 0.225806 |
| Undecided              | 0.000000 | 0.103448 | 0.048387 |

Ans: So, as per above table we can see the probability of male students in different majors along with total probability.

### 2.3.2.). Find the conditional probability of different majors among the female students of CMSU.

| Gender                 | Female   | Male     |  |
|------------------------|----------|----------|--|
| Major                  |          |          |  |
| Accounting             | 0.428571 | 0.571429 |  |
| CIS                    | 0.750000 | 0.250000 |  |
| Economics/Finance      | 0.636364 | 0.363636 |  |
| International Business | 0.666667 | 0.333333 |  |
| Management             | 0.400000 | 0.600000 |  |
| Other                  | 0.428571 | 0.571429 |  |
| Retailing/Marketing    | 0.642857 | 0.357143 |  |
| Undecided              | 0.000000 | 1.000000 |  |
| All                    | 0.532258 | 0.467742 |  |
|                        |          |          |  |

|                        |          |          | All      |  |
|------------------------|----------|----------|----------|--|
| Gender                 | Female   | Male     |          |  |
| Major                  |          |          |          |  |
| Accounting             | 0.090909 | 0.137931 | 0.112903 |  |
| CIS                    | 0.090909 | 0.034483 | 0.064516 |  |
| Economics/Finance      | 0.212121 | 0.137931 | 0.177419 |  |
| International Business | 0.121212 | 0.068966 | 0.096774 |  |
| Management             | 0.121212 | 0.206897 | 0.161290 |  |
| Other                  | 0.090909 | 0.137931 | 0.112903 |  |
| Retailing/Marketing    | 0.272727 | 0.172414 | 0.225806 |  |
| Undecided              | 0.000000 | 0.103448 | 0.048387 |  |

Ans: So, as per above table we can see the probability of female students in different majors along with total probability.

### 2.4.). Assume that the sample is a representative of the population of CMSU. Based on the data, answer the following question:

## 2.4.1.). Find the probability That a randomly chosen student is a male and intends to graduate.

Yes 28 Undecided 22 No 12

Name: Grad Intention, dtype: int64

The probability that a randomly selected CMSU student of being male is 0.46774193548387094 and the probability of intend to graduate is 0.45161290322580644 So, based on independent Mutiplication Rule P(Int. to Grad)\*P(Male)

= 0.21123829344432882

#### Observation:

So the probability that a randomly chosen student is a male who intend to graduate is 0.21123829344432882

### 2.4.2.). Find the probability that a randomly selected student is a female and does NOT have a laptop.

```
Laptop 55
Desktop 5
Tablet 2
Name: Computer, dtype: int64

The probability that a randomly selected CMSU student of being female is 0.532258064516129
Probability of not having Laptop is 0.11290322580645161
So, based on independent Mutiplication Rule
P(Not Having Laptop)*P(Female)
```

= 0.060093652445369405

#### Observation:

So the probability that a randomly chosen student is a female who don't have Laptop is 0.060093652445369405

### 2.5.). Assume that the sample is a representative of the population of CMSU. Based on the data, answer the following question:

### 2.5.1.) Find the probability that a randomly chosen student is a male or has a full-time employment

```
Part-Time 43
Full-Time 10
Unemployed 9
Name: Employment, dtype: int64

The probability that a randomly selected CMSU student of being male is 0.46774193548387094
Probability of having Full-Time employment is 0.16129032258064516
So Based on Addition Rule
P(Male)+P(Full-Time Employment)
= 0.6290322580645161
```

### Observation:

Retailing/Marketing

14

So the probability that a radnomly chosen student is a male or has a full time employment is 0.6290322580645161

### 2.5.2.). Find the conditional probability that given a female student is randomly chosen, she is majoring in international business or management.

```
Economics/Finance
                          11
Management
0ther
                          7
Accounting
                          7
International Business
CIS
                           4
Undecided
Name: Major, dtype: int64
The probability that a randomly selected CMSU student of being female is 0.532258064516129
Probability of internation business is 0.0967741935483871
Probability of management is 0.16129032258064516
P(Internation Business|Female)+P(Management|Female)
      0.484848484848486
      0.3998044965786901
So, the conditional probability of a female student of being randomly chosen as international business or management is 0.48484
848484848486
```

### 2.6.). Construct a contingency table of Gender and Intent to Graduate at 2 levels (Yes/No). The Undecided students are not considered now and the table is a 2x2 table. Do you think the graduate intention and being female are independent events?

Yes, the graduate intention and being female are independent events. and to check the probability we will be using Multiplication Rule, which is P(Female or Yes) = P(Female)\*P(Yes) So the probability of Graduate intention and being female is 0.35 Grad Intention No Yes Gender Female 9 11 Male 3 17

### 2.7. Note that there are four numerical (continuous) variables in the data set, GPA, Salary, Spending, and Text Messages.

### Answer the following questions based on the data

### 2.7.1.). If a student is chosen randomly, what is the probability that his/her GPA is less than 3?

| GPA    | False | True | All |  |
|--------|-------|------|-----|--|
| Gender |       |      |     |  |
| Female | 25    | 8    | 33  |  |
| Male   | 20    | 9    | 29  |  |
| All    | 45    | 17   | 62  |  |

The probability of GPA less than 3 is:

$$P(GPA < 3) = 17/62$$

Observation"

So, the probability of GPA less than 3 is 0.27419354838709675

### 2.7.2. Find the conditional probability that a randomly selected male earns 50 or more. Find the conditional probability that a randomly selected female earns 50 or more.



The probability of randomly selected male earns 50 or more is"

P(Selected. male. earns.50. or. more) = 14/29

P(Selected. female. earns.50. or. more) = 18/33

Observation:

So, the probability of randomly selected male earns 50 or more is 0.4827586206896552.

### 2.8. Note that there are four numerical (continuous) variables in the data set, GPA, Salary, Spending, and Text Messages. For each of them comment whether they follow a normal distribution. Write a note summarizing your conclusions for this whole Problem 2.





#### Overview of "Spending" count 62.000000 482.016129 mean std 221.953805

100.000000 min 25% 312.500000 50% 500.000000 75% 600.000000

max

1400.000000 Name: Spending, dtype: float64





| Count | 02.000000 |
|-------|-----------|
| mean  | 48.548387 |
| std   | 12.080912 |
| min   | 25.000000 |
| 25%   | 40.000000 |
| 50%   | 50.000000 |
| 75%   | 55.000000 |
| max   | 80.000000 |

Name: Salary, dtype: float64



Overview of "Text Messages"

| count | 62.000000  |
|-------|------------|
| mean  | 246.209677 |
| std   | 214.465950 |
| min   | 0.000000   |
| 25%   | 100.000000 |
| 50%   | 200.000000 |
| 75%   | 300.000000 |
| max   | 900.00000  |

Name: Text Messages, dtype: float64



#### Observation:

As per observation, we found that all four numerical (continuous) variables in the data set, GPA, Salary, Spending, and Text Messages forms a Normal Distribution Bell Curve.

#### Problem 3:

An important quality characteristic used by the manufacturers of ABC asphalt shingles is the amount of moisture the shingles contain when they are packaged. Customers may feel that they have purchased a product lacking in quality if they find moisture and wet shingles inside the packaging. In some cases, excessive moisture can cause the granules attached to the shingles for texture and colouring purposes to fall off the shingles resulting in appearance problems. To monitor the amount of moisture present, the company conducts moisture tests. A shingle is weighed and then dried. The shingle is then reweighed, and based on the amount of moisture taken out of the product, the pounds of moisture per 100 square feet is calculated. The company would like to show that the mean moisture content is less than 0.35 pound per 100 square feet.

|   | count | mean     | std      | min  | 25%    | 50%  | 75%    | max  |
|---|-------|----------|----------|------|--------|------|--------|------|
| Α | 36.0  | 0.316667 | 0.135731 | 0.13 | 0.2075 | 0.29 | 0.3925 | 0.72 |
| В | 31.0  | 0.273548 | 0.137296 | 0.10 | 0.1600 | 0.23 | 0.4000 | 0.58 |

### 3.1 Do you think there is evidence that means moisture contents in both types of shingles are within the permissible limits? State your conclusions clearly showing all steps.

 $H_0$ : MeanMoisture = 0.35

 $H_a$ : MeanMoisture > 0.35

In this case, lets consider alpha as 0.05 as it is not specified

The mean of "A" is 0.316666666666666666 and the mean of "B" is 0.2735483870967742

The Standard Deviation of "A" is 0.13573082605973166 and the Standard Deviation of "B" is 0.13729647694185443

The number (n) of variables in column 'A' is 36 and the number (n) of variables in column 'B' is 31 .

For A: Ttest\_1sampResult(statistic=-1.4735046253382782, pvalue= 0.07477633144907513 For B: Ttest\_1sampResult(statistic=-3.1003313069986995, pvalue= 0.0020904774003191826

So, As per review:

For A Shingles: P\_value is greater than alpha, So, in this case we have Failed Reject Null Hypothesis.

Whereas:

For B Shingles: P\_value is smaller than alpha, So, in this case we have Rejected the Null Hypothesis.

# 3.2 Do you think that the population mean for shingles A and B are equal? Form the hypothesis and conduct the test of the hypothesis. What assumption do you need to check before the test for equality of means is performed?

ShapiroResult(statistic=0.9375598430633545, pvalue=0.042670514434576035)
ShapiroResult(statistic=nan, pvalue=1.0)
LeveneResult(statistic=nan, pvalue=nan)

So, the T\_stat is 1.2896282719661123 and the P\_Value is 0.2017496571835306

Type Markdown and LaTeX:  $\alpha^2$ 

#### Observation:

P\_value is greater than alpha, So, in this case we have Failed to Reject the Null Hypothesis.