Algoritmi e Strutture Dati 2023-24 (M. Benerecetti)

Contents

	Algoritmo di Conteggio			
	1.1	Algoritmo di conteggio 2	3	
	1.2	Algoritmo di conteggio 3	4	

1 Algoritmo di Conteggio

Descrivere un algoritmo che accetta come input un intero $N \geq 1$ e produce in output il numero di coppie ordinate $i, j \in \mathbb{N}$ $(i, j) : 1 \leq i \leq j \leq \mathbb{N}$ Esempio:

- Input:N=4
- Output: $10 \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$

```
Conta(N):
ris = 0;
for i=1 to N do
for j=1 to N do
    if i<=j then
        ris = ris+1
return ris</pre>
```

Andiamo a definire per ogni riga un costo:

- 2) Assegnamento costante, 1 operazione elementare
- 3) Al primo giro: Assegnamento + confronto (2 operazioni elementari), successivi giri: Incremento+confronto (2 operazione elementari)
- 4) idem 3
- 5) 2 letture + confronto (3 operazioni elementari)
- 6) lettura+scrittura+assegnamento (3 operazioni elementari)
- 7) 1 operazione elementare

Ognuna di queste operazioni (righe) vengono eseguite più di una volta, quindi il costo sarà maggiore, andiamo ad esprimerlo:

- 2) Costo = 1 (fuori dal ciclo)
- 3) La testa viene eseguita n+1 volte poiché abbiamo anche l'ultima operazione per uscire dal ciclo, quindi Costo = $2*(n+1) = 2*\sum_{i=1}^{N+1} 1$
- 4) Questo for verrà ripetuto N volte poiché il corpo del for viene eseguito N volte, quindi il suo costo sarà:

$$\underbrace{2}_{\text{costo dell'operazione}} * \underbrace{\sum_{i=1}^{N} \sum_{j=1}^{N+1} 1}_{\text{for esterno for interno}}$$

• 5) L'if stando in entrambi i for avrà un costo di: $3 * \sum_{i=1}^{N} \sum_{j=1}^{N+1} 1$

• 6) Questa operazione non ha un numero fisso di volte di esecuzione. Pertanto e necessario stabilirne un algoritmo per decretarne il numero. Pensandoci il numero di volte che questa operazione esegue dipende da N e dall' i fissate in precedenza. Calcolando, anche banalmente a mano, quante operazioni vengono eseguite ci troveremo con:

N-i+1volte che l'operazione viene eseguita.

• 7) Costo = 1 (fuori dal ciclo)

Dopo che viene effettuata l'analisi, possiamo andare a sommare tutti i risultati che abbiamo ottenuto in termini di unita (correggere accento) di tempo. La funzione T(n) e(correggere) la funzione che ci tiene traccia della complessita dell'algoritmo.

Andiamo semplicemente a sommare i nostri risultati di ogni riga.

$$T(n) = 1 + 2 * (N) + 2 * (N^2 + N) + 3 * \frac{N(N+1)}{2}$$

Questo risultato e ottenuto semplificando le nostre sommatorie:

- 3) $2 * \sum_{i=1}^{N+1} 1 = 2 * (N+1)$
- 4) $2 * \sum_{i=1}^{N} \sum_{i=1}^{N+1} 1 = 2 * \sum_{i=1}^{N} N + 1 = 2 * (N^2 + N)$
- 5) $3 * \sum_{i=1}^{N} \sum_{i=1}^{N} 1 = 3 * \sum_{i=1}^{N} N = 3N^2$
- 6) $\sum_{i=1}^{N} (N-i+1) = N-(k-1)$ cioe ad ogni ciclo il numero delle volte che viene eseguita questa operazione diminuisce costantemente di 1 (cioe dipendente dal salire di i).

$$T(n) = \frac{13}{2}N^2 = \frac{9}{2}N + 4$$

Come vediamo questa funzione e quadratica, quindi cresce esponenzialmente nel tempo, molto pesante e lenta come funzione.

1.1 Algoritmo di conteggio 2

Dopo aver ottenuto i risultati dell'analisi sopra, possiamo dire che e sicuramente possibile semplificare il nostro codice in modo tale da far eseguire meno operazioni al nostro processore e quindi utilizzare meno tempo.

```
Conta(N):
ris = 0;
for i=1 to N do
    ris = ris + (N-i+1)
return ris
```

Cosi facendo abbiamo semplicemente detto al nostro codice che deve sommare soltanto gli elementi che nel momento in cui i e fissato, sono \leq di se stesso.

Cosi facendo si dovrebbero eliminare molte operazion inutili, analizziamo.

- 2)sempre 1 operazione
- 3) $2 * \sum_{i=1}^{N+1} 1$
- 4) $\sum_{i=1}^{N} 7 = 7 \cdot N$

Come possiamo osservare abbiamo eliminato il secondo for, dunque abbiamo eliminato la quadraticita, ora l'operazionea riga 4 viene eseguita solamente N volte, e il numero di operazioni semplici che esegue e fissato.

$$T(n) = 1 + 2(N+1) + 7N + 1 = 9N + 4$$

1.2 Algoritmo di conteggio 3

Da come possiamo notare e possibile di nuovo semplificare l'ultima sommatoria della riga 4 dello scorso algoritmo.

Da

$$\sum_{i=1}^{N} N - i + 1 \rightarrow \sum_{i=1}^{N} i$$

Il risultato della sommatoria e lo stesso, se andiamo a semplificarlo.

$$\sum_{i=1}^{N} N - i + 1 = \sum_{i=1}^{N} i = \frac{N(N+1)}{2}$$

```
Conta(N):
ris = 0
ris = ris+(N-i+1)
return ris
```

In questo modo abbiamo eliminato qualsiasi ciclo e quindi il risultato sara un numero fisso di operazioni.

- 1) 1 operazione
- 2) 5 operazioni elementari

$$T(n) = 5 + 1 = 6$$

In questo caso la funzione tempo per eseguire queste operazioni e fissa, non dipendente da nessun N, dunque e la migliore soluzione possibile per questo algoritmo.