Решение задач по теме «Фотоэффект»

Разбор алгоритма применения уравнения Эйнштейна для фотоэффекта к решению задач

- 1. Фотоэффект описывается уравнением Эйнштейна: $h_V = A_{ms} + \frac{m \, v^2}{2}$, в котором $\ell_V = h_V$ энергия светового кванта (фотона),
- 4- работа выхода электрона из металла,
- $-\frac{W_{i}}{2} = \frac{m U^{2}}{2}$ -кинетическая энергия фотоэлектрона.
- 2. Нахождение энергии фотона.
- 2.1. Если в задаче приводится значение длины волны, используйте формулу связи длины волны и скорости её распространения с частотой $e^{-\lambda x}$.
- 2.2. Энергию одного фотона можно найти, зная энергию излучения: $\epsilon_r = \frac{\Delta E_{\pi}}{N}$ гле N число фотонов.
- 2.3. Энергия фотона связана с собственными характеристиками фотона как световой частицы. Формула связи импульса и энергии фотона: $p_{\nu} = \frac{\ell_{\nu}}{c}$.
- 3. Нахождение работы выхода электрона из металла.

Значение работы выхода электрона может быть определено:

- 3.1. с помощью справочной таблицы «Работа выхода электрона из металла», если известен металл и нет усложняющих нахождение работы выхода величин.
- 3.2. через значение красной границы фотоэффекта для данного металла в данном состоянии $A_{mn} = h\nu_{mn} = \frac{hc}{\lambda_{mn}}$.
- 4. Поведение фотоэлектрона после вылета из металла может быть описано из следующих соображений:
- 4.1. В задерживающем однородном электрическом поле, согласно теореме о кинетической энергии, изменение кинетической энергии фотоэлектрона равно работе сил поля W_{iz} W_{iz} = $e^{-U_{iz}}$, т. е. $\frac{m \cdot v^z}{2}$ = $e^{-U_{iz}}$
- 4.2. Следует помнить, что движение фотоэлектронов вдоль силовых линий однородного электрического поля движение с постоянным ускорением $a = \frac{F_m}{m} = \frac{|\mathbf{j}| \cdot E}{m} = \frac{|\mathbf{j}| \cdot E}{m} = \frac{|\mathbf{j}| \cdot E}{m} \cdot \frac{\mathbf{j}}{m} \cdot \frac{\mathbf{j}}{d}$.
- 4.3. Если фотоэлектроны попадают в однородное магнитное поле, то в зависимости от угла между вектором скорости и вектором магнитной индукции они движутся прямолинейно (= 0° , = 180°), по окружности (= 90°) или по спирали (90° 0°).

Например, при = 90° фотоэлектрон движется под действием силы Лоренца $F = |\cdot| \cdot B \cdot v$ с ускорением $a = \frac{F}{m} = \frac{|\cdot| \cdot B \cdot v|}{m}$ по окружности радиуса $r = \frac{m \cdot v}{|\cdot| \cdot B}$, при этом период обращения фотоэлектрона равен $T = \frac{2\pi \cdot m}{v} = \frac{2\pi \cdot m}{|\cdot| \cdot B}$.

3. Решение задач в группах с последующей защитой решения

Задачи для решения в группах:

№ 1104. Длинноволновая (красная) граница фотоэффекта для меди 282 нм. Найти работу выхода электронов из меди (в эВ).

Решение задачи:

дано:

$$\lambda_0 = 282 \text{ HM} =$$
=2,82·10⁻⁷ M,
 $h = 4,136\cdot10^{-15} \text{ 9B}\cdot\text{c}.$

найти $a_{вых}$. решение.

C

$$A_{\text{BMX}} = h v_0; \ v_0 = \frac{c}{\lambda_0}; \ A_{\text{BMX}} = h \frac{c}{\lambda_0} =$$

$$= 4,136 \cdot 10^{-15} \ 9\text{B} \cdot \text{c} \cdot \frac{3 \cdot 10^8 \text{ m/c}}{282 \cdot 10^{-7} \text{ m}} = 4,4 \ 9\text{B}.$$

ответ: $a_{вых} = 4,4 эв.$

№ 1105. Найти красную границу фотоэффекта для калия.

Решение задачи:

дано:

$$A_{\text{BMX}} = 2.2 \text{ 3B},$$

 $h=4.136\cdot10^{-15}\text{3B}\cdot\text{c}.$

найти λ_0 .

решение.

$$\mathbf{A}_{\text{BMX}} = h \mathbf{v}_0 = h \frac{c}{\lambda_0} \; ;$$

$$\lambda_0 = \frac{hc}{A_{\text{RMX}}} = \frac{4,136 \cdot 10^{-15} \text{ 3B} \cdot c \cdot 3 \cdot 10^8 \text{ M/c}}{2,2 \text{ 3B}} = 5,64 \cdot 10^{-7} \text{ M} =$$

= 564 HM.

ответ: $\lambda_0 = 564$ нм.

№ 1106. Возникнет ли фотоэффект в цинке под действием облучения, имеющего длину волны 450 нм?

Решение задачи:

дано:

$$\lambda_1 = 450 \text{ HM} =$$
=4,5·10⁻⁷ M,
 $A_{\text{Bbix}} = 4,2 \text{ 3B},$
 $h = 4,13\cdot10^{-15} \text{ 3B}\cdot\text{c}.$

найти λ_0 . решение.

$$\begin{aligned} \mathbf{A}_{\text{вых}} &= h \mathbf{v}_0 = h \frac{c}{\lambda_0} \\ \lambda_0 &= \frac{hc}{A_{\text{вых}}} = \frac{4,136 \cdot 10^{-15} \, \text{эB} \cdot c \cdot 3 \cdot 10^8 \, \text{m/c}}{4,2 \, \text{эB}} = 2,95 \cdot 10^{-7} \text{m} = 0.00 \, \text$$

=295 HM.

так $\lambda_1 > \lambda_0$, то фотоэффект не возникнет.

ответ: не возникнет.

№ 1107. Какую максимальную кинетическую энергию имеют электроны, вырванные из оксида бария, при облучении светом частотой 1 ПГц?

Решение задачи:

дано:

$$\nu = 1 \, \Pi \Gamma \mu = 10^{15} \, \Gamma \mu, \, A_{\text{вых}} = 15 \, B.$$
 найти е. решение.

$$E=hv-A_{\text{вых}}=4,136\cdot10^{-15}$$
 $9B\cdot c\cdot10^{-15}c-1$ $9B=3,136$ $9B$.

ответ: e = 3,136 эв.

№ 1109. Какой длины волны свет надо направить на поверхность цезия, чтобы максимальная скорость фотоэлектронов была 2 Mm/c?

Решение задачи:

дано:

$$A_{\text{вых}} = 1.8 \text{ эB},$$

 $v = 2 \text{ Mm/c} =$
 $= 2.10^6 \text{ m/c}.$

найти λ. решение.

E=
$$hv-A_{\text{BMX}} = \frac{hc}{\lambda} - A_{\text{BMX}}; E = \frac{mv^2}{2}; \frac{mv^2}{2} = \frac{hc}{\lambda} - A_{\text{BMX}}$$

$$\lambda = \frac{hc}{\frac{mv^2}{2} + A_{ebix}}; \lambda = \frac{4,136 \cdot 10^{-15} \, \text{9B} \cdot c \cdot 3 \cdot 10^8 \, \text{m/c}}{\frac{9,1 \cdot 10^{-31} \, \text{kg} \cdot (2 \cdot 10^6 \, \text{m/c})^2}{2 \cdot 1.6 \cdot 10^{-19} \, \text{Hz/9B}} + 1,89B} =$$

 $= 9.43 \cdot 10^{-8} \text{ M} = 94.3 \text{ HM}.$

ответ: $\lambda = 94,3$ нм.

№ 1113. К вакуумному фотоэлементу, у которого катод выполнен из цезия, приложено запирающее напряжение 2 В. При какой длине волны падающего на катод света появится фототок?

Решение задачи:

дано:

$$U$$
 = 2 В, $A_{\text{вых}}$ = 2,9·10⁻¹⁹ Дж. найти λ .

решение.

$$hv = A_{\text{вых}} + \frac{mv^2}{2} = A_{\text{вых}} + eU; \frac{hc}{\lambda} = A_{\text{вых}} + eU;$$

$$\lambda = \frac{hc}{A_{\text{вых}} + eU} = \frac{6,626 \cdot 10^{-34} \, \text{Дж} \cdot c \cdot 3 \cdot 10^8 \, \text{м/c}}{2,9 \cdot 10^{-19} \, \text{Дж} + 1,6 \cdot 10^{-19} \, \text{Кл} \cdot 2B} \approx 3,3 \cdot 10^{-7} \, \text{м} = 330 \, \text{нм}.$$

ответ: $\lambda = 330$ нм.

№ 1111. Найти максимальную кинетическую энергию фотоэлектронов, вырванных с катода К (рис. 124), если запирающее напряжение равно 1,5 В.

Решение задачи:

Рис. 124

дано: u=1,5в. найти е. решение.

$$E=eU=1,6\cdot10^{-19} \text{ K}\pi \cdot 1,5 \text{B}=2,4\cdot10^{-19} \text{ Дж}=1,5 \text{эВ}$$
ответ: $e=1,5$ эв.

№ 1114. Какое запирающее напряжение надо подать на вакуумный фотоэлемент, чтобы электроны, вырванные ультрафиолетовым светом с длиной волны 100 нм из вольфрамового катода, не могли создать ток в цепи?

Решение задачи:

дано:

$$\lambda = 100 \text{ нм} =$$
 $= 10^{-7} \text{ м},$
 $A_{\text{вых}} = 7,2 \cdot 10^{-19} \text{ Дж}.$

найти u. решение.

$$\begin{split} h \mathbf{v} &= \mathbf{A}_{\text{BMX}} + \frac{m v^2}{2} = \mathbf{A}_{\text{BMX}} + \mathrm{e}\,U; \; \frac{hc}{\lambda} = \mathbf{A}_{\text{BMX}} + \mathrm{e}\,U \\ U &= \frac{\frac{hc}{\lambda} - A_{\text{BMX}}}{e} = \frac{\frac{6,626\,10^{-34}\,\text{Джc}\cdot3\,10^8\,\text{м/c}}{10^{-7}_{\text{M}}} - 7,2\cdot10^{-19}\,\text{Дж}}{1,6\cdot10^{-19}\,\text{Кл}} = 7,9\mathrm{B}. \end{split}$$

ответ: u = 7.9 b

№ 1117. Определить энергию фотонов, соответствующих наиболее длинным ($\lambda = 760$ нм) и наиболее коротким ($\lambda = 380$ нм) волнам видимой части спектра.

Решение задачи:

дано:

$$\lambda_1 = 760 \text{ HM} =$$
 $= 7.6 \cdot 10^{-7} \text{ M},$
 $\lambda_2 = 380 \text{ HM} =$
 $= 3.8 \cdot 10^{-7} \text{ M}.$

найти е. решение.

$$\begin{split} E = & h v = \frac{hc}{\lambda}; \\ E_1 = & \frac{6,626 \cdot 10^{-34} \, \text{Дж} \cdot c \cdot 3 \cdot 10^8 \, \text{м/c}}{7,6 \cdot 10^{-7} \, \text{м}} = 2,62 \cdot 10^{-19} \, \text{Дж} \\ E_2 = & \frac{6,626 \cdot 10^{-34} \, \text{Дж} \cdot c \cdot 3 \cdot 10^8 \, \text{м/c}}{3,8 \cdot 10^{-7} \, \text{м}} = 5,23 \cdot 10^{-19} \, \text{Дж}. \end{split}$$

ответ:

$$E_1=2,62\cdot10^{-19}$$
 Дж, $E_2=5,23\cdot10^{-19}$ Дж.

№ 1121. Каков импульс фотона ультрафиолетового излучения с длиной волны 100 нм? Решение задачи:

дано:

 λ =100 нм = 10^{-7} м. найти р. решение.

$$p=mc=\frac{E}{c}=\frac{E}{\lambda v}=\frac{hv}{\lambda v}=\frac{h}{\lambda v}=\frac{h}{\lambda}; p=\frac{6.626\cdot 10^{-34} \text{ M/m}\cdot c}{10^{-7} \text{ M}}=6.626\cdot 10^{-27} \frac{\text{K}\cdot \text{M}}{c}.$$

ответ:

$$p = 6.626 \cdot 10^{-27} \frac{\text{K} \cdot \text{K} \cdot \text{M}}{c}$$

№ 1125. Источник света мощностью 100 Вт испускает $5 \cdot 1020$ фотонов за 1 с. Найти среднюю длину волны излучения.

Решение задачи:

дано:

p = 100 вт, $n = 5 \cdot 10^{20}$, t = 1 с. найти λ . решение.

$$\mathbf{P}_1 = \frac{P}{n};$$

$$P_1 = \frac{E}{t} = \frac{hv}{t} = \frac{hc}{\lambda t}; \frac{P}{n} = \frac{hc}{\lambda t}$$

$$\lambda = \frac{nhc}{Pt} = \frac{5 \cdot 10^{20} \cdot 6,626 \cdot 10^{-34} \, \text{Дж} \cdot c \cdot 3 \cdot 10^8 \, \text{m/c}}{100 \, \text{Bt} \cdot 1 \, \text{c}} =$$

$$= 9.9 \cdot 10^{-7} \text{ M} = 0.99 \text{ MKM}.$$

ответ: $\lambda = 0.99$ мкм.

№ 1118. К какому виду следует отнести излучения, энергия фотонов которых равна: a) 4140 эВ; б) 2,07 эВ?

Решение задачи:

дано:

 e_1 =4140 эв, e_2 =2,07 эв.

найти

 λ_1, λ_2 .

решение.

$$E=hv=\frac{hc}{\lambda}$$
;

$$\lambda = \frac{hc}{E}$$
; $\lambda_1 = \frac{4,136 \cdot 10^{-15} \, \text{9B} \cdot c \cdot 3 \cdot 10^8 \, \text{m/c}}{4140 \, \text{9B}} \approx 3 \cdot 10^{-10} \, \text{m}$

— рентгеновское излучение

$$\lambda_2 = \frac{4,136 \cdot 10^{-15} \, \text{9B} \cdot c \cdot 3 \cdot 10^8 \, \text{m/c}}{2,07 \, \text{9B}} \approx 6 \cdot 10^{-7} \, \text{m} = 600 \, \text{HM}$$

— видимое излучение.

ответ: а) $\lambda_1 = 3 \cdot 10^{-10}$ м — рентгеновское излучение; б) $\lambda_2 = 600$ нм — видимое излучение.

№ 1119. Определить длину волны излучения, фотоны которого имеют такую же энергию, что и электрон, ускоренный напряжением 4 В.

Решение задачи:

дано: u = 4 b. найти λ. решение.

$$hv=eU;$$
 $h\frac{c}{\lambda}=eU;$

$$\lambda = \frac{hc}{eU} = \frac{6,626 \cdot 10^{-34} \, \text{Дж} \cdot c \cdot 3 \cdot 10^8 \, \text{м/c}}{1,6 \cdot 10^{-19} \, \text{Кл} \cdot 4\text{B}} = \frac{3,1 \cdot 10^{-7} \, \text{м} = 310 \, \text{нм}.}{0 \, \text{Твет: } \lambda = 310 \, \text{нм}.}$$

№ 1123. При какой скорости электроны будут иметь энергию, равную энергии фотонов ультрафиолетового света с длиной волны 200 нм?

Решение задачи:

дано:

$$E_e = E,$$

 $\lambda = 200 \text{ HM} =$
 $= 2.10^{-7} \text{ M}.$

найти у. решение.

$$\begin{split} \mathbf{E}_{\mathrm{e}} &= \frac{m_{e}v^{2}}{2} \; ; \; \mathbf{E} = hv = \frac{hc}{\lambda} \; ; \; \frac{m_{e}v^{2}}{2} = \frac{hc}{\lambda} \\ v &= \sqrt{\frac{2hc}{m_{e}\lambda}} = \sqrt{\frac{2 \cdot 6,626 \cdot 10^{-34} \, \text{Дж} \cdot c \cdot 3 \cdot 10^{8} \, \text{m/c}}{9,1 \cdot 10^{-31} \, \text{K} \cdot c \cdot 3 \cdot 10^{-7} \, \text{M}}} \approx 1,48 \cdot 10^{6} \, \, \text{M/c}. \end{split}$$
 other: $v = 1.48 \cdot 10^{6} \, \, \text{M/c}.$