0.1 Measure Theory

We work with a background probability space $(\Omega, \Sigma_{\Omega}, \mathbb{P})$. For a measurable space $(\mathcal{X}, \Sigma_{\mathcal{X}})$ we denote the set of probability measures on this space $\mathcal{P}(\Sigma_{\mathcal{X}})$ or simply $\mathcal{P}(\mathcal{X})$ when the σ -algebra is unambiguous. When taking cartesian products $\mathcal{X} \times \mathcal{Y}$ of measurable spaces $(\mathcal{X}, \Sigma_{\mathcal{X}}), (\mathcal{Y}, \Sigma_{\mathcal{Y}})$ we always endow such with the product σ -algebra $\Sigma_{\mathcal{X}} \otimes \Sigma_{\mathcal{Y}}$, unless otherwise specified. A map $f: \mathcal{X} \to \mathcal{Y}$ is called $\Sigma_{\mathcal{X}}$ - $\Sigma_{\mathcal{Y}}$ measurable provided $f^{-1}(\Sigma_{\mathcal{Y}}) \subseteq \Sigma_{\mathcal{X}}$ and we denote the set of such functions $\mathcal{M}(\Sigma_{\mathcal{X}}, \Sigma_{\mathcal{Y}})$. By a random variable X on $(\mathcal{X}, \Sigma_{\mathcal{X}})$ mean a Σ_{Ω} - $\Sigma_{\mathcal{X}}$ measurable map.

0.1.1 Kernels

Definition 1 (Probability kernel). Let $(\mathcal{X}, \Sigma_{\mathcal{X}}), (Y, \Sigma_{\mathcal{Y}})$ be measurable spaces. A function

$$\kappa(\cdot \mid \cdot) : \Sigma_{\mathcal{Y}} \times \mathcal{X} \to [0, 1]$$

is a $(\mathcal{X}, \Sigma_{\mathcal{X}})$ -probability kernel on $(\mathcal{Y}, \Sigma_{\mathcal{Y}})$ provided

- 1. $B \mapsto \kappa(B \mid x) \in \mathcal{P}(\Sigma_{\mathcal{Y}})$ that is $\kappa(\cdot \mid x)$ is a probability measure for any $x \in \mathcal{X}$.
- 2. $x \mapsto \kappa(B \mid x) \in \mathcal{M}(\Sigma_{\mathcal{X}}, \Sigma_{\mathcal{Y}})$ that is $\kappa(B \mid \cdot)$ is $(\Sigma_{\mathcal{X}} \Sigma_{\mathcal{Y}})$ measurable for any $B \in \Sigma_{\mathcal{Y}}$.

When the σ -algebras are unambiguous we shall simply say an $\mathcal{X} \leadsto \mathcal{Y}$ kernel. For any $x \in \mathcal{X}$ and $f \in \mathcal{L}_1(\kappa(\cdot \mid x))$ we write the integral of f over $\kappa(\cdot \mid x)$ as $\int f(y) d\kappa(y \mid x)$.

We now state some fundamental results on probability kernels

Theorem 1 (Integration of a kernel). Let $\mu \in \mathcal{P}(\mathcal{X})$ and $\kappa : \mathcal{X} \leadsto \mathcal{Y}$. Then there exists a uniquely determined probability measure $\lambda \in \mathcal{P}(\Sigma_{\mathcal{X}} \otimes \Sigma_{\mathcal{Y}})$ such that

$$\lambda(A \times B) = \int_A \kappa(B, x) \mathrm{d}\mu(x)$$

We denote this measure $\lambda = \kappa * \mu$.

Proof. We refer to [ref to EH markov, thm. 1.2.1].

Notice that by theorem 1 besides getting a probability measure on $\mathcal{X} \times \mathcal{Y}$ we get an induced probability measure on \mathcal{Y} defined by $B \mapsto (\kappa * \mu)(\mathcal{X} \times B)$. We will denote this measure by $\kappa(\cdot \mid \mu)$. This way $\kappa(\cdot \mid \cdot)$ can also be seen as a mapping from $\mathcal{P}(\mathcal{X}) \to \mathcal{P}(\mathcal{Y})$ (in the second entry).

П

For an idea how to actually compute integrals over kernel derived measures we here include

Theorem 2 (Extended Tonelli and Fubini). Let $\mu \in \mathcal{P}(\mathcal{X})$, $f \in \mathcal{M}(\Sigma_{\mathcal{X}} \otimes \Sigma_{\mathcal{Y}}, \mathbb{B})$ be a measurable function and $\kappa : \mathcal{X} \leadsto \mathcal{Y}$ be a probability kernel. Then

$$\int |f| \, \mathrm{d}\kappa(\cdot \mid \mu) = \int \int |f| \, \mathrm{d}\kappa(\cdot \mid x) \mathrm{d}\mu(x)$$

Furthermore if this is finite, i.e. $f \in \mathcal{L}_1(\kappa(\cdot, \mu))$ then $A_0 := \{x \in \mathcal{X} \mid \int f d\kappa(\cdot \mid x) < \infty\} \in \Sigma_{\mathcal{X}}$ with $\mu(A_0) = 1$,

$$x \mapsto \begin{cases} \int f d\kappa(\cdot \mid x) & x \in A_0 \\ 0 & x \notin A_0 \end{cases}$$

is $\Sigma_{\mathcal{X}}$ - \mathbb{B} measurable and

$$\int f d\kappa(\cdot \mid \mu) = \int_{A_0} \int f d\kappa(\cdot \mid x) d\mu(x)$$

Proof. We refer to [ref to EH markov, thm. 1.3.2 + 1.3.3]

Proposition 1 (Composition of kernels). Let $\kappa: \mathcal{X} \leadsto \mathcal{Y}, \psi: \mathcal{Y} \leadsto \mathcal{Z}$ be probability kernels. Then

$$(\psi \circ \kappa)(A \mid x) := \int \psi(A \mid y) d\kappa(y \mid x), \qquad \forall A \in \Sigma_{\mathcal{Z}}, x \in \mathcal{X}$$

is a $\mathcal{X} \leadsto \mathcal{Z}$ probability kernel called the composition of κ and ψ . The composition operator \circ is associative, i.e. if $\phi: \mathcal{Z} \leadsto \mathcal{W}$ is a third probability kernel then $(\phi \circ \psi) \circ \kappa = \phi \circ (\psi \circ \kappa)$. The associativity also extends to measures, i.e. $\forall \mu \in \mathcal{X}: (\psi \circ \kappa)(\cdot \mid \mu) = \psi(\cdot \mid \kappa(\cdot \mid \mu))$ and this is uniquely determined by ψ, κ and μ .

Proof. The first assertion is a trivial verification of the two conditions in definition 1 and left as an exercise. For the associativity we refer to [todo ref to EH markov, lem. 4.5.4].

Proposition 1 actually makes the class of measurable spaces into a category [todo ref: see Lawvere, The Category of Probabilistic Mappings], with identity $\mathrm{id}_{\mathcal{X}}(\cdot \mid x) = \delta_x$. Notice that the mapping $(A,x) \mapsto \delta_x(A)\kappa(A \mid x)$ defines a probability kernel $\mathcal{X} \leadsto \mathcal{X} \times \mathcal{Y}$ which we could denote $\mathrm{id}_{\mathcal{X}} \times \kappa$. Now if $\psi : \mathcal{X} \times \mathcal{Y} \leadsto \mathcal{Z}$ is a kernel then by proposition 1 the composition $(\mathrm{id}_{\mathcal{X} \times \mathcal{Y}} \times \psi) \circ (\mathrm{id}_{\mathcal{X}} \times \kappa)$ is a kernel $\mathcal{X} \to \mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$ which we will denote $\psi * \kappa$. It inherits associativity from \circ and again this associativity extends to application on measures: if μ is a measure on \mathcal{X} then $\psi * (\kappa * \mu) = (\psi * \kappa) * \mu$.

0.1.2 Kernel derived processes

Let $(\mathcal{X}_n, \Sigma_{\mathcal{X}_n})_{n \in \mathbb{N}}$ be a sequence of measurable spaces. For each $n \in \mathbb{N}$ define $\mathcal{X}^{\underline{n}} := \mathcal{X}_1 \times \cdots \times \mathcal{X}_n$, $\Sigma_{\mathcal{X}_n} := \Sigma_{\mathcal{X}_1} \otimes \cdots \otimes \Sigma_{\mathcal{X}_n}$ and let $\kappa_n : \mathcal{X}^{\underline{n}} \leadsto \mathcal{X}_{n+1}$ be a probability kernel.

Proposition 2 (Existence and uniqueness of finite kernel processes). For any probability measure $\rho_1 \in \mathcal{P}(\mathcal{X}_1)$ and every $n \in \mathbb{N}$ there exists a unique probability measure ρ_n on $\mathcal{X}^{\underline{n}}$ defined by

$$\rho_n := \kappa_{n-1} * \cdots * \kappa_1 * \rho_1$$

(with the convention that an empty *-product is $id_{\mathcal{X}_1}$ by context)

Proof. This follows simply by induction using proposition 1.

Let $\mathcal{X}^{\underline{\infty}} := \prod_{n \in \mathbb{N}} \mathcal{X}_n$ and $\Sigma_{\mathcal{X}^{\underline{\infty}}} := \bigotimes_{n \in \mathbb{N}} \Sigma_{\mathcal{X}_n}$. Proposition 2 is not enough to establish existence of a kernel generated measure on $(\mathcal{X}^{\underline{\infty}}, \Sigma_{\mathcal{X}^{\underline{\infty}}})$ which we will need later. This problem was solved by Cassius Ionescu-Tulcea in 1949:

Theorem 3 (Ionescu-Tulcea extension theorem). For every $\mu \in \mathcal{P}(\mathcal{X}_1)$ there exists a unique probability measure $\rho \in \mathcal{P}(\mathcal{X}^{\underline{\infty}})$ such that

$$\rho_n(A) = \rho \left(A \times \prod_{k=n+1}^{\infty} \mathcal{X}_k \right), \quad \forall A \in \Sigma_{\mathcal{X}^{\underline{n}}}$$

for all $n \in \mathbb{N}$. We denote this measure $\rho_{\mu}^{(\kappa_1, \kappa_2, \dots)}$.

Proof. Todo: what about this.

We here include lemma about the behavior of the Ionescu-Tulcea measure for use later.

Lemma 1. The Ionescu-Tulcea measure satisfies $\rho_{\mu}^{(\kappa_1,\dots)} = \rho_{\kappa_1*\mu}^{(\kappa_2,\dots)}$.

Proof. Notice that by associativity $\kappa_n * \cdots * \kappa_1 * \mu = (\kappa_n * \cdots * \kappa_2) * (\kappa_1 * \mu)$. This implies that

$$\rho_{\mu}^{(\kappa_1,\dots)}\left(A\times\prod_{k=n+1}^{\infty}\mathcal{X}_k\right) = \rho_{\kappa_1*\mu}^{(\kappa_2,\dots)}\left(A\times\prod_{k=n+1}^{\infty}\mathcal{X}_k\right)$$

for all $n \in \mathbb{N}$ and $A \in \Sigma_{\mathcal{X}_{\underline{n}}}$. By the uniqueness in theorem 3 we are done.

0.2 Dynamic programming

Definition 2 (Dynamic programming model). A general dynamic programming model is determined by

- 1. $(S_n, \Sigma_{S_n})_{n \in \mathbb{N}}$ a measurable space of **states** for each timestep.
- 2. $(\mathcal{A}_n, \Sigma_{\mathcal{A}_n})_{n \in \mathbb{N}}$ a measurable space of **actions** for each timestep.

for each $n \in \mathbb{N}$ write $\mathcal{H}_n = \mathcal{S}_1 \times \mathcal{A}_1 \times \cdots \times \mathcal{S}_n$, $\mathcal{H}_{\infty} = \mathcal{S}_1 \times \mathcal{A}_1 \times \cdots$, with associated σ -algebras $\Sigma_{\mathcal{H}_n} := \left(\bigotimes_{n=1}^{n-1} (\Sigma_{\mathcal{S}_n} \otimes \Sigma_{\mathcal{A}_n}) \right) \otimes \Sigma_{\mathcal{S}_n}$ and $\Sigma_{\mathcal{H}_{\infty}} := \bigotimes_{n=1}^{\infty} (\Sigma_{\mathcal{S}_n} \otimes \Sigma_{\mathcal{A}_n})$.

- 3. $(P_n)_{n\in\mathbb{N}}$ a sequence of $\mathcal{H}_n \times \mathcal{A}_n \rightsquigarrow \mathcal{S}_{n+1}$ kernels called the **transition** kernels.
- 4. $(R_n)_{n\in\mathbb{N}}$ a sequence of $\mathcal{H}_{n+1} \leadsto \mathbb{R}$ kernels called the **reward** kernels.

For such a model we can define

Definition 3 (Policy). A (randomized) **policy** $\pi = (\pi_n)_{n \in \mathbb{N}}$ is a sequence of $\mathcal{H}_n \rightsquigarrow \mathcal{A}_n$ kernels. The set of all policies we denote $R\Pi$.

Proposition 3 (Existence and uniqueness of policy generated processes). Let $(\pi_n)_{n\in\mathbb{N}}$ be a policy and $\mu \in \mathcal{P}(\mathcal{S}_1)$ be a probability measure. Then for every $n \in \mathbb{N}$ there exists a unique probability measure $\rho_n \in \mathcal{P}(\mathcal{H}_n)$ such that $\rho_1 = \mu$ and $\rho_n = (P_n * \pi_n)(\cdot \mid \rho_{n-1})$. Furthermore there exists a unique probability measure $\rho \in \mathcal{P}(\mathcal{H}_{\infty})$ satisfying

$$\rho_n(H_n) = \rho \left(H_n \times \prod_{k=n+1}^{\infty} (\mathcal{A}_k \times \mathcal{S}_k) \right)$$

We will call this the **process** measure for π and μ and denote it ρ_{μ}^{π} with a slight abuse of notation $(\rho_{\mu}^{(P_n*\pi_n)_{n\in\mathbb{N}}})$ would be less abusive). Expectations it we denote \mathbb{E}_{μ}^{π} . In particular when $\mu = \delta_s$, i.e. the one-point measure of $s \in \mathcal{S}_1$ we write ρ_s^{π} and \mathbb{E}_s^{π} for short.

Proof. This is directly from proposition 2 and theorem 3 with $\kappa_1 = P_1 * \pi_1, \kappa_2 = P_2 * \pi_2 \dots$

0.2.1 Optimal policies

Let $(S_n, A_n, P_n, R_n)_{n \in \mathbb{N}}$ be a dynamic programming model. Define the *n*th **expected reward** function $r_n : \mathcal{H}_{n+1} \to \mathbb{R}$ by $r_n(h) = \int r dR_n(r \mid h)$ for any $h \in \mathcal{H}_{n+1}$.

In litterature the terminology varies and generally any function mapping a state space S to \mathbb{R} can be called a (state) **value** function. Similarly any function mapping some the product of a state space and an action space A to \mathbb{R} can be called (state) **action value** or \mathbb{Q} - function. The idea behind such functions are (usually) to estimate the cumulative rewards associated with a state or state-action pair and the trajectory of states it can lead to.

Assumption 1 (General assumption). We assume that $\sum_{i\in\mathbb{N}} \mathbb{E}_{\pi} r_i^+ < \infty$ for all policies $\pi \in R\Pi$.

Then following definition makes sense

Definition 4 (Ideal and optimal value functions). Let π be a policy. We define

$$V_n^{\pi}(s) := \mathbb{E}_s^{\pi} \sum_{i \in [n]} r_i \qquad V^{\pi}(s) := \mathbb{E}_s^{\pi} \sum_{i \in \mathbb{N}} r_i$$

called the **ideal** value functions for the policy π and

$$V_n^*(s) := \sup_{\pi \in R\Pi} V_n^{\pi}(s) \qquad \qquad V^*(s) := \sup_{\pi \in R\Pi} V^{\pi}(s)$$

called the **optimal** value functions. A policy for which $V^{\pi^*} = V^*$ is called an **optimal** policy.

At this point many interesting questions can be asked.

- 1. Does an optimal policy π^* exist?
- 2. Does V_n^* converge to V^* ?
- 3. Can π^* be chosen to be deterministic?

These questions has been answered in a variety of settings. In a quite general setting, questions 1 and 2 was investigated by M. Schäl in 1974 [todo ref. to On Dynamic Programming: Compactness of the space of policies, 1974]. Here some additional structure on our model is imposed:

Setting 1 (Schäl). 1. (S_n, Σ_{S_n}) is assumed to be standard Borel. I.e. S_n is a non-empty Borel subset of a Polish space and Σ_{S_n} is the Borel subsets of S_n .

2. (A_n, Σ_{A_n}) is similarly assumed to be standard Borel.

- 3. A_n is compact.
- 4. $\forall s \in \mathcal{S}_1 : Z_n = \sup_{N \geqslant n} \sup_{\pi \in R\Pi} \sum_{t=n+1}^N \mathbb{E}_s^{\pi} r_n \to 0 \text{ as } n \to \infty.$

In this setting Schäl introduced two set of criteria for the existence of an optimal policy:

Condition S. 1. The function

$$(a_1, a_2, \dots, a_n) \mapsto P_n(\cdot \mid s_1, a_1, s_2, a_2, \dots, s_n, a_n)$$

is set-wise continuous (hence the name **S**) for all $s_1, \ldots, s_n \in \mathcal{S}^{\underline{n}}$.

2. r_n is upper semi-continuous.

Condition W. 1. The function

$$(h_n, a_n) \mapsto P_n(\cdot \mid h_n, a_n)$$

is weakly continuous (hence the name \mathbf{W}).

2. r_n is continuous.

Theorem 4 (Existence and convergence of optimal policies in DP). When either condition S or condition W hold then

- 1. There exist an optimal oplicy $\pi^* \in R\Pi$.
- 2. $V_n^* \to V^*$ as $n \to \infty$.

Proof. We refer to [todo ref: On Dynamic Programming: Compactness of the space of policies, M. Schäl 1974]. \Box

0.3 Stationary policies

We will now specialize the dynamic programming model to:

Setting 2 (Finite action decision model). 1. $S_1 = S_2 = \ldots := S$ and S is standard Borel.

- 2. $A_1 = A_2 = \ldots := A$ and A is finite.
- 3. There exist a kernel $P: \mathcal{S} \times \mathcal{A} \leadsto \mathcal{S}$ such that

$$P_n(\cdot \mid s_1, a_1, \dots, s_n, a_n) = P(\cdot \mid s_n, a_n), \quad \forall n \in \mathbb{N}$$

4. There exist a kernel $R: \mathcal{S} \times \mathcal{A} \leadsto (-\infty, R_{\text{max}}]$ such that

$$R_n(\cdot \mid s_1, a_1, \dots, s_n, a_n, s_{n+1}) = \gamma^{n-1} R(\cdot \mid s_n, a_n), \quad \forall n \in \mathbb{N}$$

where $\gamma \in [0,1)$ is called the **discount factor**. We donte $r(s,a) := \int r' dR(r' \mid s,a)$.

5. r is semi upper continuous.

Proposition 4. Setting 2 implies setting 1 and condition S.

Proof. Pt. 1 is by definition. We naturally endow \mathcal{A} with the discrete topology and the powerset σ -algebra, making it standard Borel and compact. The last point in setting 1 is implied by assumption 1 and the discounting in setting 2 pt. 4. Pt. 1 in condition S is trivial since all functions are continuous from a discrete space and pt. 2 is by definition.

Definition 5 (Markov and stationary policies). A policy $(\pi_n)_{n\in\mathbb{N}}$ called **Markov** if π_n only depends on the last item in the history, that is $\pi_n(\cdot \mid s_1, a_1, \dots a_{n-1}, s_n) = \pi'_n(\cdot \mid s_n)$ for some kernel $\pi'_n : \mathcal{S} \leadsto \mathcal{A}$ for all $n \in \mathbb{N}$. The set of Markov policies we denote $M\Pi$.

A Markov policy is called **stationary** if there exist a kernel $\pi : \mathcal{S} \leadsto \mathcal{A}$ such that $\pi'_n = \pi$ for all $n \in \mathbb{N}$. The space of such policies we denote Π .

We remark that

$$\Pi \subseteq M\Pi \subseteq R\Pi$$

Proposition 5. There is an optimal policy which is Markov.

Proof. We first show that there exist optimal finite-horizon Markov policy for each $n \in \mathbb{N}$. Let $\tau_1 : \mathcal{S} \leadsto \mathcal{A}$ be a policy such that $\tau_1(\operatorname{argmax}_{a \in \mathcal{A}} r(s, a) \mid s) = 1$. Then clearly $V_1^{\tau_1}(s) = \max_{a \in \mathcal{A}} r(s, a) = V_1^*(s)$ and τ_1 is Markov as any one-step policy. For $n \in \mathbb{N}$ assume (τ_n, \ldots, τ_1) is an optimal finite-horizon Markov policy. Let

$$\tau_{n+1} \left(\operatorname{argmax}_{a \in \mathcal{A}} r(s, a) + \gamma \int V_n^{(\tau_n, \dots, \tau_1)}(s') dP(s' \mid s, a) \mid s \right)$$

Then $(\tau_{n+1}, \ldots, \tau_1)$ is an n+1-optimal Markov policy. ...

Definition 6 (The *T*-operators). For a stationary policy π we define the operator T^{π} on $\mathcal{L}_{\infty}(\mathcal{S})$ by

$$T^{\pi}(V) := s \mapsto \int r(s, a) + \gamma V(s') \mathrm{d}(P * \pi)(s, a, s' \mid s)$$

When $\pi = \delta_a$ for some $a \in \mathcal{A}$ we simply write T^a .

Proposition 6. T^{π} is γ -contractive on $\mathcal{L}_{\infty}(\mathcal{S})$.

Proof. Let $V, V' \in \mathcal{L}_{\infty}(\mathcal{S})$ and let $K = ||V - V'||_{\infty}$. Then

$$||T^{\pi}V - T^{\pi}V'||_{\infty} = \sup_{s \in \mathcal{S}} |\gamma \int V - V' d(P \circ \pi)(\cdot \mid s)| \leq \gamma K$$

Let $\pi = (\pi_n)_{n \in \mathbb{N}}$ be a Markov policy.

Proposition 7. $V^{\pi} = T^{\pi_1}V^{(\pi_2,\dots)}$. In particular if π is stationary then V^{π} is the unique bounded fixed point for T^{π} .

Proof. Fix $s \in \mathcal{S}$ and let ρ_s^{π} be the process measure (see proposition 3) of π .

$$T^{\pi_1}V^{(\pi_2,\dots)} = \int V^{(\pi_2,\dots)}(s_2)d(P*\pi_1)(s_1,a_1,s_2 \mid \mu)$$

$$= \int \int \sum_{n=1}^{\infty} \gamma^n r(s'_{n+1},a'_{n+1})d\rho_{s_2}^{(\pi_2,\dots)}(s'_1,a'_1,\dots)d(P*\pi_1)(s_1,a_1,s_2|\mu)$$

$$= \int \int \sum_{n=1}^{\infty} \gamma^n r(s'_{n+1},a'_{n+1})d\rho_{(P\circ\pi_1)(\cdot|\mu)}^{(\pi_2,\dots)}(s'_1,a'_1,\dots)$$

Proposition 8. There exists a stationary policy τ such that $V^{\tau} \geqslant V^{\pi}$.

 Γ