Algorithm for 3D Cube Rotation Around an Arbitrary Axis

Step 1: Input Data

- Define the cube with its vertices and edges.
- Define the rotation axis using two points (x_1, y_1, z_1) and (x_2, y_2, z_2) .
- Define the rotation angle (in degrees).

Step 2: Initialize Variables

• Compute the direction vector of the rotation axis:

$$dx = x_2 - x_1$$
, $dy = y_2 - y_1$, $dz = z_2 - z_1$

• Normalize the direction vector:

length =
$$sqrt(dx^2 + dy^2 + dz^2)$$

$$dx = dx / length, dy = dy / length, dz = dz / length$$

- Compute alignment angles:
- α = arctan2(dy, dz) (Rotation around X-axis)
- β = arctan2(dx, sqrt(dy² + dz²)) (Rotation around Y-axis)

Step 3: Construct Transformation Matrices

- 1. Translation to Origin: Moves the axis start point to (0,0,0).
- 2. Rotation to Align Axis with Z-axis:
- Rotate around X-axis by α .
- Rotate around Y-axis by β.
- 3. Perform Rotation:
 - Rotate around Z-axis by the given angle.
- 4. Inverse Transformations:
 - Rotate back around Y-axis by -β.
 - Rotate back around X-axis by - α .
 - Translate back to the original position.

Step 4: Apply Transformation

- Multiply the transformation matrix with all cube vertices.
- Store the transformed vertices.

Step 5: Visualization

- Plot the original cube.
- Plot the transformed cube after rotation.
- Display the rotation axis as a dashed red line.

Step 6: Output

- Print the transformation matrix.
- Display both original and rotated cubes in a 3D plot.