CS7GV6: Computer Vision

Edge Detection

Read: Szeliski, Ch. 7.2

Credits: Some slides from Noah Snavely & others

Edge detection

- Convert a 2D image into a set of curves
 - Extracts salient features of the scene
 - More compact than pixels

Origin of edges

• Edges are caused by a variety of factors

Images as functions...

• Edges look like steep cliffs

Characterizing edges

 An edge is a place of rapid change in the image intensity function

Image derivatives

- How can we differentiate a digital image F[x,y]?
 - Option 1: reconstruct a continuous image, f, then compute the derivative
 - Option 2: take discrete derivative (finite difference)

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

How would you implement this as a linear filter?

Image gradient

• The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

The gradient points in the direction of most rapid increase in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The *edge strength* is given by the gradient magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The gradient direction is given by:

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

how does this relate to the direction of the edge?

Image gradient

Effects of noise

Noisy input image

Where is the edge?

Source: S. Seitz

Solution: smooth first

To find edges, look for peaks in $\frac{d}{dx}(f*h)$

Source: S. Seitz

Associative property of convolution

• Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f*h) = f*\frac{d}{dx}h$

• This saves us one operation: f

The 1D Gaussian and its derivatives

$$G_{\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$

$$G'_{\sigma}(x) = \frac{d}{dx}G_{\sigma}(x) = -\frac{1}{\sigma}\left(\frac{x}{\sigma}\right)G_{\sigma}(x)$$

2D edge detection filters

Gaussian

$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}}$$

derivative of Gaussian (x)

$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$

Derivative of Gaussian filter

The Sobel operator

Common approximation of derivative of Gaussian

- The standard definition of the Sobel operator omits the 1/8 term
 - doesn't make a difference for edge detection
 - the 1/8 term **is** needed to get the right gradient magnitude

The Sobel operator

The operator uses two 3×3 kernels s_x and s_y

 these are convolved with the original image to calculate approximations of the derivatives, i.e., – one for horizontal changes, and one for vertical.

This gives two images, G_x and G_y which at each point contain the horizontal and vertical derivative approximations respectively

• At each point in the image, the resulting gradient approximations can be combined to give the gradient magnitude, using $\mathbf{G} = \operatorname{sqrt}(\mathbf{G}_{\chi}^2 + \mathbf{G}_{V}^2)$

The gradient's direction at each point is $\Theta = atan2(\mathbf{G}_y, \mathbf{G}_x)$

o For example, Θ is 0 for a vertical edge which is lighter on the right side

Sobel operator: example

Source: Wikipedia

Example

original image

Demo: http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Finding edges

smoothed gradient magnitude

Finding edges

smoothed gradient magnitude

Finding edges

thresholding

Get Orientation at Each Pixel

• Get orientation (below, threshold at minimum gradient magnitude)

theta = atan2(gy, gx)

360

Gradient orientation angle

Non-maximum supression

- Check if pixel is local maximum along gradient direction
 - requires interpolating pixels p and r

Before Non-max Suppression

After Non-max Suppression

Thresholding edges

- Still some noise
- Only want strong edges
- 2 thresholds, 3 cases
 - R > T: strong edge
 - R < T but R > t: weak edge
 - R < t: no edge
- Why two thresholds?

Connecting edges

- Strong edges are edges!
- Weak edges are edges iff they connect to strong
- Look in some neighborhood (usually 8 closest)

Canny edge detector

MATLAB: edge (image, 'canny')

1. Filter image with derivative of Gaussian

3. Non-maximum suppression

- 4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

Canny edge detector

- Our first computer vision pipeline!
- Still a widely used edge detector in computer vision

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Depends on several parameters:

high threshold low threshold

 σ : width of the Gaussian blur

Canny edge detector

- The choice of $\,\sigma\,$ depends on desired behavior
 - large σ detects "large-scale" edges
 - small σ detects fine edges

Scale space [Witkin 83]

- Properties of scale space (w/ Gaussian smoothing)
 - edge position may shift with increasing scale (σ)
 - two edges may merge with increasing scale
 - an edge may *not* split into two with increasing scale