Mathematical Statistics I

Chapter 5: Limit theorems

Jesse Wheeler

Contents

1	Convergence Concepts	1
2	Test Section	4

1 Convergence Concepts

Introduction

- This material comes primarily from Rice (2007, Chapter 5), but will be supplemented with material from Casella and Berger (2024, Chapter 5).
- In this chapter, we are interested in the convergence of sequences of random variables.
- In particular, we are interested in the convergence of the sample mean, $\bar{X}_n = (X_1 + X_2 + ... + X_n)/n$, as the number of samples n grows.
- Because \bar{X}_n is itself a random variable, we have to carefully define what it means for the convergence of a random variable.
- In this class, we are mainly concerned with three types of convergence.
- Because convergence of random variables is a tricky topic, we will treat them in varying amounts of detail.

Convergence in Probability

• The first type of convergence is one of the weaker types, and is usually easy(ish) to verify.

Definition: Convergence in Probability

A sequence of random variables X_1, X_2, \ldots converges in probability to a random variable X if, for every $\epsilon > 0$,

$$\lim_{n \to \infty} P(|X_n - X| \ge \epsilon) = 0$$

or, equivalently,

$$\lim_{n \to \infty} P(|X_n - X| < \epsilon) = 1.$$

• We often use the shorthand $X_n \stackrel{P}{\to} X$ to denote " X_n converges in probability to X as n goes to infinity".

- Note that the X_i in the definition above do *not* need to be independent and identically distributed.
- The distribution of X_n changes as the subscript changes, and each of the convergence concepts we will discuss will describe different ways in which the distribution of X_n converges to some limiting distribution as the subscript becomes large.
- A special case is when the limiting random variable X is a constant.

Example: The (Weak) Law of Large Numbers

Let X_1, X_2, \ldots be iid random variables with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$. Define $\bar{X}_n = (1/n) \sum_{i=1}^n X_i$. Then $\bar{X}_n \stackrel{P}{\to} \mu$.

Proof. The proof is a straightforward application of Chebychev's Inequality.

• We want to show that

$$\lim_{n \to \infty} P(|\bar{X}_n - \mu| \ge \epsilon) = 0.$$

• For every $\epsilon > 0$, Chebychev's inequality gives us:

$$P(|\bar{X}_n - \mu| \ge \epsilon) = P((\bar{X}_n - \mu)^2 \ge \epsilon^2)$$

$$\le \frac{E[(\bar{X}_n - \mu)^2]}{\epsilon^2}$$

$$= \frac{\operatorname{Var}(\bar{X}_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}.$$

• Thus, taking the limit, we have $\lim_{n\to\infty} P(|\bar{X}_n - \mu| \ge \epsilon) = 0$

• The WLLN is very elegant; under general conditions, the sample mean of independent random variables approaches the population mean as $n \to \infty$.

• This is also used for proportions, as proportions are just means of indicator random variables.

- The WLLN can also be extended to show that the results hold even if the variance is infinite, the only condition needed is that the expectation is finite. However, the proof in this case is beyond the scope of this course.
- When a sequence of the "same" sample quantity approaches a constant, we say that the sample quantity is *consistent*.
- A natural extension of the definition of the convergence of probability, is convergence of functions of random variables: $h(X_1), h(X_2), \ldots$

Theorem: Convergence in probability for continuous functions

Let X_1, X_2, \ldots be a sequence of random variables that converges in probability to a random variable X, and let h be a continuous function.

Then, $h(X_1), h(X_2), \ldots$ converges in probability to h(X).

Almost sure convergence

• Our next convergence concept is stronger than convergence in probability.

Definition: Almost Sure Convergence

A sequence of random variables X_1, X_2, \ldots converge almost surely to a random variable X if, for every $\epsilon > 0$,

$$P\left(\lim_{n\to\infty}|X_n-X|<\epsilon\right)=1,$$

or

$$P\big(\lim_{n\to\infty} X_n = X\big) = 1.$$

- Almost sure convergence is often written as $X_n \stackrel{a.s.}{\to} X$.
- It appears similar to convergence in probability, but they are in fact very different. In particular, almost sure convergence is a stronger concept.
- One way to think about this difference is that the probability gives a weight to individual sets.
- For convergence in probability, the set where $|X_n X| > \epsilon$ can have positive probability, but that probability converges to zero for large n.
- For almost sure convergence, the set where $|X_n X| > \epsilon$ has probability zero. This doesn't imply that the set $|X_n X| > \epsilon$ is empty, but it has zero probability.
- Almost sure convergence is very similar to pointwise convergence of a sequence of functions. This is no accident, as random variables *are* functions:

$$P(\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)) = 1.$$

• In the equivalent definition above, we see we must have point-wise convergence almost-everywhere, except for the possibility that for some set $N \subset \Omega$ such that P(N) = 0, we allow $s \in N$ to not converge: $\lim_{n\to\infty} X_n(s) \neq X(s)$.

Example: Convergence in prob, not a.s.

Let the sample space $\Omega = [0,1]$, and assign the uniform probability on this interval. Define the sequence of random variables X_i as: $X_1(s) = s + 1_{[0,1]}(s)$, $X_2(s) = s + 1_{[0,\frac{1}{2}]}(s)$, $X_3(s) = s + 1_{[\frac{1}{2},1]}(s)$, $X_4(s) = s + 1_{[0,\frac{1}{3}]}(s)$, $X_5(s) = s + 1_{[\frac{1}{3},\frac{2}{3}]}(s)$, $X_6(s) = s + 1_{[\frac{2}{3},1]}(s)$, ..., and then define X(s) = s. We can see that $X_n \stackrel{P}{\to} X$. However, X_n does not converge almost surely, because there is no values $s \in \Omega$ that satisfy $X_n(s) \to X(s)$. For every ω , the value of $X_n(s)$ alternates between s and s+1 infinitely often.

Theorem: almost sure convergence implies convergence in probability

If X_1, X_2, \ldots are a sequence of random variables such that $X_n \stackrel{a.s.}{\to} X$, for some random variable X, then $X_n \stackrel{P}{\to} X$.

- The converse of the statement above is false. That is, convergence in probability does not imply almost sure convergence.
- A proof of the theorem above, as well as additional treatment of the connection between almost sure convergence and convergence in probability is found in Resnick (2019, Chatper 6).
- Note: As stated, the weak-law of large numbers (WLLN) can actually be shown to hold a.s., in which case we call it the strong-law of large numbers (SLLN).

Convergence in Distribution

• The final form of convergence we will consider in this course is convergence in distribution.

Definition: Convergence in Distribution

A sequence of random variables X_1, X_2, \ldots converges in distribution to a random variable X if

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$

at all points x where $F_X(x)$ is continuous.

- One way to think about convergence in distribution is that it's really a statement about the long-run behavior of a sequence of random variables, as it's a statement about the CDFs.
- This is different from the other types of convergence, which are concerned with the random variable itself.
- A quick recap of how the different types of convergence are related:
 - a.s. convergence \implies convergence in prob \implies convergence in Distribution.
- In a few special scenarios, we can talk about more connections between the types of convergence.
- One such example is convergence in probability to a constant. Casella and Berger (Theorem 5.5.13 of 2024) shows that $X_n \stackrel{P}{\to} a$ for some constant a if and only if $X_n \stackrel{d}{\to} a$.

The Central Limit Theorem

- TODO: Add continuity theorem (Rice CH 5.3)
- Add some primer about the CLT
- Prove the CLT.

2 Test Section

Test Frame

Acknowledgments

- Compiled on October 20, 2025 using R version 4.5.1.
- Licensed under the Creative Commons Attribution-NonCommercial license. © 3 Please share and remix non-commercially, mentioning its origin.

References

Casella G, Berger R (2024). Statistical inference. Chapman and Hall/CRC. 1, 4

Resnick S (2019). A probability path. Springer. 3

Rice JA (2007). Mathematical statistics and data analysis, volume 371. 3 edition. Thomson/Brooks/Cole Belmont, CA. 1