МОСКОВСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

ИНСТИТУТ КИБЕРНЕТИКИ

2019-2020 уч. год, специальность 01.03.02, 6 семестр

ТИПОВОЙ РАСЧЕТ ПО КУРСУ

"УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ"

ЗАДАЧА 1. Функция u(x,t) является: для вариантов с номерами N=3n+1 – решением задачи Коши

$$\begin{cases} u_{tt}(x,t) = u_{xx}(x,t), t > 0, x \in R, \\ u(x,0) = \varphi(x), u_t(x,0) = 0, \end{cases}$$

для N = 3n — решением краевой задачи

$$\begin{cases} u_{tt}(x,t) = u_{xx}(x,t), t > 0, x > 0, \\ u(x,0) = \varphi(x), u_{t}(x,0) = 0, u(0,t) = 0 \end{cases}$$

и для N = 3n + 2 — решением краевой задачи

$$\begin{cases} u_{tt}(x,t) = u_{xx}(x,t), t > 0, x > 0, \\ u(x,0) = \varphi(x), u_{t}(x,0) = 0, \frac{\partial u(0,t)}{\partial x} = 0. \end{cases}$$

График функции $\varphi(x)$ представляет собой ломаную с узлами в точках ABC..., причем левее первой точки и правее последней $\varphi(x)$ равна нулю.

Требуется построить график u(x,t) (профиль струны) в характерные моменты времени (промежутки времени, в течение которых профиль струны не меняет своей формы, можно пропустить).

$N_{\underline{0}}$	$\varphi(x)$	$\mathcal{N}_{\overline{0}}$	$\varphi(x)$
1	A(3,0), B(4,2), C(5,2), D(6,0)	2,3	A(0,0), B(1,2), C(2,0)
4	A(0,0), B(1,2), C(2,0), D(3,2), E(4,0)	5,6	A(1,0), B(2,-2), C(4,0)
7	A(0,0), B(1,2), C(2,0), D(3,-2), E(4,0)	8,9	A(0,0), B(1,2), C(3,0)
10	A(0,0), B(2,2), C(3,2), D(5,0)	11,12	A(0,0), B(1,-2), C(2,0)
13	A(0,0), B(1,2), C(2,0), D(3,2), E(4,0)	14, 15	A(2,0), B(3,-2), C(5,0)
16	A(0,0), B(2,-2), C(4,0), D(6,2), E(8,0)	17, 18	A(4,0), B(5,2), C(7,0)
19	A(-3,0), B(-2,-2), C(-1,-2), D(0,0)	20,21	A(4,0), B(6,-2), C(7,0)

22
$$A(-2,0), B(-1,-2), C(0,0), D(1,-2), E(2,0)$$
 23, 24 $A(3,0), B(5,-2), C(6,0)$

25
$$A(1,0), B(2,-2), C(4,-2), D(5,0)$$
 26, 27 $A(0,0), B(2,2), C(3,0)$

28
$$A(3,0), B(4,2), C(5,2), D(6,0)$$
 29, 30 $A(4,0), B(5,2), C(6,0)$

31
$$A(4,0), B(5,2), C(6,0), D(7,-2), E(8,0)$$
 32, 33 $A(4,0), B(5,-2), C(6,0)$

34
$$A(-3,0), B(-2,-2), C(-1,1), D(0,0)$$

ЗАДАЧА 2. Найти решение u(x,t) краевой задачи (ограниченная струна)

$$\begin{cases} u_{tt} = u_{xx} + f(x,t), x \in (0,\pi), t > 0, \\ u(0,t) = 0, u(\pi,t) = \varphi(t), \\ u(x,0) = 0, u_t(x,0) = \psi(x). \end{cases}$$

№	f(x,t)	$\varphi(t)$	$\psi(x)$	№	f(x,t)	$\varphi(t)$	$\psi(x)$
1	x+t	t	x/π	2	2x-t	t^2	$\sin 2x$
3	x + 2t	2 <i>t</i>	$1-\cos x$	4	1	$\sin^2 t$	$x(\pi-x)$
5	2x	$e^t - 1$	$\frac{1-\cos x}{2}$	6	-x	$\cos t - 1$	$\sin 3x$
7	2x+t	3 <i>t</i>	$3x/\pi$	8	3x-t	$e^{2t}-1$	$1-\cos x$
9	x-t	-2t	$\cos 3x - 1$	10	x^2	t	x/π
11	x+t	-2t	$-2x/\pi$	12	x+3t	$\cos t - 1$	$x(\pi-x)$
13	3x+t	t^2	$\sin 3x$	14	2x + 3t	$\cos 2t - 1$	$\sin 2x$
15	x+3t	$t^2 + t$	$\frac{1-\cos x}{2}$	16	2x+t	t^2-t	$-x/\pi$
17	2x + 3t	-t	$-x^2/\pi^2$	18	x-2t	$2t$ λ	$x(x+3\pi)/(2\pi^2)$
19	4x-t	sin t	$\sin x + x/\pi$	20	x+3t	$e^{-t}-1$	$\frac{\cos x - 1}{2}$
21	3x-2t	$e^{-2t}-1$	$\cos 5x - 1$	22	x + 4t	$-\sin 2t$	$\cos 3x - 1$

23
$$3x+t$$
 $\sin 3t$ $-3x/\pi$ 24 $x+t$ $\sin^2 t$ $\sin 4x$
25 xt t^2-t $\frac{\cos 5x-1}{2}$ 26 $-2xt$ $e^{-3t}-1$ $-3x/\pi$
27 $5x+t$ t^2-3t $\sin x-3x/\pi$ 28 $3xt$ t^2+2t $1-\cos x$
29 $-xt$ $e^{-2t}-1$ $\cos 3x-1$ 30 $x+2t$ 2t $1-\cos 5x$
31 $3x-2t$ $t-t^2$ $\cos 2x$ 32 $3x+t$ t^2 $\sin x$
33 $4x-t$ t^2 $\sin 4x$ 34 $x+3t$ 2 $t-t^2$ $1+\cos 2x$

ЗАДАЧА 3. Найти решение u(x, y, t) задачи Коши

$$\begin{cases} u_{tt} = a^{2} (u_{xx} + u_{yy}) + f(x, y, t); (x, y) \in \mathbb{R}^{2}, t > 0, \\ u|_{t=0} = \varphi(x, y), \\ u_{t}|_{t=0} = \psi(x, y). \end{cases}$$

Для нахождения одного из слагаемых, входящих в формулу для u(x,y,t), использовать формулу Пуассона, для второго — воспользоваться тем, что одна из функций φ,ψ или f является собственной функцией оператора Лапласа (в частности, гармонической функцией).

$N_{\underline{0}}$	f(x, y, t)	$\varphi(x,y)$	$\psi(x,y)$	$N_{\overline{0}}$	f(x, y, t)	$\varphi(x,y)$	$\psi(x,y)$
1	x^2yt	0	$e^{-x}\sin y$	2	xy^2t	$e^x \cos y$	0
3	$(x^2 + y)t$	$e^x \sin y$	0	4	$(y^2-x)t$	0	$e^{-x}\cos y$
5	0	$x^2 - y^2$	xy^3	6	0	$x^3 - y$	$3xy^2 - x^3$
7	x^2t^2	0	$chx\sin y$	8	y^2t	$shx \sin y$	0
9	x^3t	$chx\cos y$	0	10	y^3t	0	$shx\cos y$
11	0	$\sin x \cos 2y$	$y^3 - 3yx^2$	12	0	xy	$\cos y \sin 2x$
13	$t(x-y^2)$	0	$e^{-2x}\cos 2y$	14	$t(x+y^2)$	$e^{2x}\sin 2y$	0
15	$t(y-x^2)$	$e^{2x}\sin 2y$	0	16	$t(y+x^3)$	0	$e^{-2x}\cos 2y$
17	0	$chy\sin x$	$x^2 - y^3$	18	0	$2y^2 - x^3$	$x^2 - y^2$

19
$$(t^2 - x^2)y$$
 0 $shy \cos x$ 20 $(t^2 + y^2)x$ $chy \cos x$ 0
21 $(t^2 - x)y$ $shy \cos x$ 0 22 $(t^2 + 2y)x$ 0 $ch2x \sin 2y$
23 0 $ch2x \cos y$ $2x^3 - 3xy^2$ 24 0 $ch2x \cos 2y$ $x^2 + y^2$
25 $t(x^2 - y^2)$ 0 $x^3 - y^2$ 26 $te^x \sin y$ $x^2 - y^2$ 0
27 $te^y \cos x$ xy^3 0 28 $t^2 e^y \sin x$ 0 $x^2 y^2$
29 0 $e^x \sin y$ xy^2 30 0 $yx^3 - x^2$ $e^y \cos x$
31 $tchx \sin y$ 0 $x - y^3$ 32 $tshx \cos y$ x^3y 0
33 $t^2(x^2 - y^2)$ $y^2 + x$ 0 34 $t^2 chy \sin x$ 0 $x - y^3$

ЗАДАЧА 4. Решить задачу о колебаниях прямоугольной мембраны, закрепленной по контуру, т.е. найти решение u(x, y, t) задачи

$$\begin{cases} \frac{\partial^{2} u}{\partial t^{2}} = \frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + f(x, y, t); t > 0, (x, y) \in \Pi = (0, a) \times (0, b), \\ u|_{t=0} = \varphi(x, y), u_{t}|_{t=0} = \psi(x, y), (x, y) \in \Pi, \\ u(0, y, t) = u(a, y, t) = u(x, 0, t) = u(x, b, t) = 0. \end{cases}$$

$$Ne \quad a \quad b \qquad f(x, y, t) \qquad \varphi(x, y) \qquad \psi(x, y)$$

$$1 \quad 1 \quad \pi \qquad t + xy \qquad x(1 - x)\sin y \qquad 0$$

$$2 \quad \pi \quad 1 \qquad t^{2} + x^{2} \qquad 0 \qquad y(1 - y)\sin x$$

$$3 \quad 2 \quad \pi \qquad t - y^{2} \qquad \sin \pi x \sin y \qquad 0$$

$$4 \quad \pi \quad 2 \qquad x^{2} - y \qquad 0 \qquad y(2 - y)\sin 2x$$

$$5 \quad 1 \quad 2\pi \qquad t^{2} + y^{2} \qquad x(x - 1)\sin \frac{y}{2} \qquad 0$$

$$6 \quad 2\pi \quad 1 \qquad t^{2} - y^{2} \qquad 0 \qquad (y^{2} - y)\sin \frac{x}{2}$$

$$7 \quad \frac{\pi}{2} \quad 2 \qquad tx^{2} \quad (2y - y^{2})\sin 2x \qquad 0$$

8 2
$$\frac{\pi}{2}$$
 $t^2(y+x)$ 0 $(2x-x^2)\sin 4y$

$$9 \qquad \frac{\pi}{3} \qquad 1 \qquad t(x^2 + 3y) \qquad (y^2 - y)\sin 3x \qquad 0$$

10 3
$$\frac{\pi}{3}$$
 $t^2 - 3x^2$ 0 $(x^2 - 3x)\sin 6y$

11
$$3\pi$$
 2 $y^2 - tx$ $(y^2 - 2y)\sin\frac{2x}{3}$ 0

12 1
$$\pi$$
 $t^2 - 2xy$ 0 $\sin \pi x \sin 2y$

13
$$2\pi$$
 1 txy $\sin\frac{x}{2}\sin 3\pi y$ 0

14 2
$$3\pi$$
 $t(2x-y)$ 0 $x(2-x)\sin y$

15
$$3\pi \qquad 1 \qquad x(t-y) \qquad y(y-1)\sin x \qquad 0$$

16 2 2
$$tx-y$$
 0 $y(y-2)\sin\frac{\pi x}{2}$

17 1
$$2\pi$$
 $ty+x$ $x(x-1)\sin y$ 0

18
$$4\pi$$
 1 $tx-2y$ 0 $y(y-1)\sin\frac{x}{4}$

20 1 1
$$t(x^2 - 3y^2)$$
 0 $\sin \pi x \sin 2\pi y$

21
$$3\pi$$
 2 $x^2 - ty$ $(y^2 - 2y)\sin\frac{2x}{3}$ 0

$$22 1 \pi xt + y^2 0 \sin \pi x \sin 2y$$

$$23 2\pi 1 t^2 + x^2 \sin\frac{x}{2}\sin 3\pi y 0$$

24 2
$$3\pi$$
 $t(x-3y)$ 0 $x(2-x)\sin y$

25
$$3\pi$$
 1 $x(t-y)$ $y(y^2-1)\sin x$ 0

26 2 2
$$tx^2 + y$$
 0 $y(y-2)\sin\frac{\pi x}{2}$
27 1 π $ty + x$ $x(x-1)\sin y$ 0
28 4π 1 $t^2 - 2yx$ 0 $y(y-1)\sin\frac{x}{4}$
29 3 3π $t^2x - y$ $x(3-x)\sin 2y$ 0
30 1 2 $tx - y^2$ 0 $y(2-y)\sin \pi x$
31 2 π $x^2 + 2y^2$ $x(2-x)\sin 3y$ 0
32 π 1 $x^2 - 3y^2$ 0 $y(1-y)\sin 2x$
33 3 π $x^2 + 2t^2$ $x(3-x)\sin y$ 0
34 1 2 $t^2 - y^2$ 0 $y(2-y)\sin \pi x$

ЗАДАЧА 5. Найти решение смешанной задачи для волнового уравнения (m- номер варианта, $\mu_m^{(0)}>0-m$ -ый корень функции Бесселя $J_0(\mu)$ нулевого порядка):

$$\begin{cases} \frac{1}{a^2} u_{tt} = u_{xx} + u_{yy} + f(x, y, t), x^2 + y^2 < R^2, t > 0, \\ u\Big|_{x^2 + y^2 = R^2} = 0, \\ u\Big|_{t=0} = J_0 \left(\frac{\mu_m^{(0)} r}{R}\right), u_t\Big|_{t=0} = 0. \end{cases}$$

№	f(x, y, t)	№	f(x, y, t)	No	f(x, y, t)
1	x - y	2	x + y	3	xy
4	x+t	5	x-t	6	xt
7	y-t	8	y+t	9	yt
10	2x + y	11	x+3y	12	3x - y
13	3y-x	14	2x - y	15	t(x-y)
16	t(x+y)	17	y(t+x)	18	2y-x

19
$$y(t-x)$$
 20 $t(2x-y)$ 21 $t(y+2x)$
22 $x(t+y)$ 23 $x(t-y)$ 24 $x(2t-y)$
25 $1+x+y$ 26 $2-x+2y$ 27 $3+2y$
28 $t-xy$ 29 $t+xy$ 30 $t+3xy$
31 $t-y^2$ 32 x^2-y^2 33 txy

ЗАДАЧА 6. Найти решение u(x, y, z, t) задачи Коши

$$\begin{cases} u_{tt} = \Delta u + f(x, y, z, t), t > 0, (x, y, z) \in \mathbb{R}^3; \\ u\Big|_{t=0} = u_0(x, y, z), u_t\Big|_{t=0} = u_1(x, y, z). \end{cases}$$

Для нахождения одного из слагаемых, входящих в формулу для u(x, y, z, t), использовать формулу Кирхгофа, для второго — воспользоваться гармоничностью (бигармоничностью) одной из функций φ, ψ или f.

№	f	u_0	u_1	$\mathcal{N}_{\underline{0}}$	f	u_0	u_1
1	xyz	$(x^2-y^2)z$	0	2	tx^2	0	$x^2 + y^2 + z$
3	0	$x^2 + y^2 - z^2$	xyz	4	$x^2 + t^2$	$xy-z^2$	0
5	$(x^2 + y^2)t$	0	$x^2 + y^2 - z^2$	6	0	x(y+z)	$(x+y)z^2$
7	xyz-t	(x-y)z	0	8	$tx^2 - z$	0	yz + x
9	0	$(y-z)x^2$	$y^2(x+z)$	10	$t(x^2+y^2-z)$	xy^2z	0
11	t(y-x)z	0	$x^2(y+z)$	12	0	x(2y-z)	$z(x^2+y^2)$
13	t(x-2y)z	xyz	0	14	$t^2(x-y)$	0	$x^2 - y^2 + z$
15	0	xyz^2	$(x^2-y^2)z$	16	$x^2 - y^2 + t$	$x^2 - y^2 +$	z^2 0
17	tx(y-z)	0	xyz^2	18	0	$(x^2+z)y$	$x^2 - y^2 - z^2$
19 ((t-x+y)(z-	$-x) \left(x^2 - y^2\right)$	$)z^2 = 0$	20	$(x^2-2y^2)t$	0	xzy
21	0	$x-z^2$	$\left(x^2+2y^2\right)z$	22	$x^2 + 2y^2 - t$	$3x^2 + y^2 +$	$-z^2$ 0

23
$$tz(y+z)$$
 0 xy^2z^2 24 0 $(x^2-2z)y$ $x^2-y^2+3z^2$
25 $(t-x^2)(z-x)$ $(x^2-2y^2)z^2$ 0 26 $(x^2+y^2)t$ 0 x^2zy
27 0 $z(y+z)$ x^2y^2z 28 $(x^2-2z)t^2$ $x^2-y^2+3z^2$ 0
29 $(t+x^2)(z+2x)$ 0 $(x^2-2y^2)z^2$ 30 0 (x^2+3y^2) x^2zy
31 $x^2(t-y)$ 2 x^2+yz 0 32 $(t^2-x)y^2$ 0 xyz
33 0 x^2-yz xyz^2 34 t^2-z^2x x^2+y^2-z 0

ЗАДАЧА 7. Найти решение внутренней задачи Дирихле для уравнения Гельмгольца $\begin{cases} u_{xx} + u_{yy} + k^2 u = 0, x^2 + y^2 < R^2, k = const > 0, \\ u\Big|_{x^2 + y^2 = R^2} = g(\varphi). \end{cases}$

Предполагается, что число kR не является корнем уравнения $J_n(\mu) = 0$, где $J_n(x)$ - функция Бесселя порядка n, n = 0,1,2...

№	$g(\varphi)$	№	g(arphi)	№	$g(\varphi)$
1	$\sin \varphi - \cos 2\varphi$	2	$\cos^2 \varphi$	3	$\sin^2 \varphi$
4	$\sin \varphi + \cos 2\varphi$	5	$2\sin\varphi + \cos 3\varphi$	6	$\sin^2 2\varphi$
7	$\cos 2\varphi + \sin \varphi$	8	$\cos^2 2\varphi$	9	$\sin 3\varphi - 1$
10	$1-2\cos\varphi$	11	$2-\sin 2\varphi$	12	$\cos 3\varphi - 1$
13	$2 + \sin 2\varphi$	14	$\cos 3\varphi + 2$	15	$1+2\cos\varphi$
16	$\sin 3\varphi + \cos \varphi$	17	$1+\sin^2\varphi$	18	$1-\cos^2 2\varphi$
19	$-\sin 3\varphi + \cos \varphi$	20	$\cos 2\varphi + \sin 3\varphi$	21	$\sin 3\varphi - \cos 2\varphi$
22	$2-\sin 3\varphi$	23	$1 + 2\sin\varphi\cos3\varphi$	24	$1-\cos 4\varphi$
25	$1 + \sin 4\varphi$	26	$\sin 2\varphi \cos 4\varphi$	27	$2-\cos 4\varphi$
28	$1-2\cos\varphi\sin3\varphi$	29	$\sin \varphi \cos 2\varphi$	30	$1 + \sin \varphi \cos \varphi$
31	$1 - 2\sin 3\varphi \cos 5\varphi$	32	$2\sin\varphi\cos 5\varphi$	33	$\sin^4 \varphi$
34	$2-\cos 4 \varphi$				