PANDAS

Complete Revision Notes

RAHUL KUMAR

https://www.linkedin.com/in/rahul-kumar-1212a6141/

Outline

- **Installation of pandas** - Importing pandas - Importing the dataset - Dataframe/Series - **Basic ops on a DataFrame** - df.info() - df.head() - df.tail() - df.shape() - **Creating Dataframe from Scratch** - **Basic ops on columns** - Different ways of accessing cols - Check for Unique values - Rename column - Deleting col - Creating new cols - **Basic ops on rows** - Implicit/explicit index - Quiz 2 - df.index - Indexing in series - Slicing in series - loc/iloc - Indexing/Slicing in dataframe - Adding a row - Deleting a row - **Working with both rows and columns** - **More in-built ops in pandas** - sum() - count() - mean() - **Sorting** - **Concatenation** - pd.concat() - axis for concat - **Merge** - Concat v/s Merge - `left_on` and `right_on` - Joins - **Intoduction to IMDB dataset** - Reading two datasets - **Merging the dataframes** - `unique()` and `nunique()` - `isin()` - Using Left Join for `merge()` - **Feature Exploration** - Create new features - **Fetching data using pandas** - Quering from dataframe - Masking, Filtering, `&` and `|` - ASSESSMENT: - **Apply** - **Group based Apply** - `apply()` - **Restructuring data** - pd.melt() - pd.pivot() - pd.pivot_table() - pd.cut() - Dealing with Missing Values - None and nan values - isna() and isnull() - String method in pandas - Handling datetime - **Writing to a file**

Importing Pandas

- You should be able to import Pandas after installing it
- We'll import pandas as its alias name pd

```
In [1]: import pandas as pd
import numpy as np
```

Introduction: Why to use Pandas?

How is it different from numpy?

- The major limitation of numpy is that it can only work with 1 datatype at a time
- Most real-world datasets contain a mixture of different datatypes
 - Like names of places would be string but their population would be int

==> It is difficult to work with data having heterogeneous values using Numpy

Pandas can work with numbers and strings together

So lets see how we can use pandas

Imagine that you are a Data Scientist with McKinsey

- McKinsey wants to understand the relation between **GDP per capita** and **life expectancy** and various trends for their clients.
- The company has acquired data from multiple surveys in different countries in the past
- This contains info of several years about:
 - country
 - population size
 - life expectancy
 - GDP per Capita

• We have to analyse the data and draw **inferences** meaningful to the company

Reading dataset in Pandas

Link:https://drive.google.com/file/d/1E3bwvYGf1ig32RmcYiWc0IXPN-mD_bl_/view?usp=sharing

In [3]: df = pd.read_csv(r"C:\Users\kumar\Downloads\mckinsey.csv")

Now how should we read this dataset?

Pandas makes it very easy to work with these kinds of files

In [4]: df

Out[4]:

	country	year	population	continent	life_exp	gdp_cap
0	Afghanistan	1952	8425333	Asia	28.801	779.445314
1	Afghanistan	1957	9240934	Asia	30.332	820.853030
2	Afghanistan	1962	10267083	Asia	31.997	853.100710
3	Afghanistan	1967	11537966	Asia	34.020	836.197138
4	Afghanistan	1972	13079460	Asia	36.088	739.981106
•••						
1699	Zimbabwe	1987	9216418	Africa	62.351	706.157306
1700	Zimbabwe	1992	10704340	Africa	60.377	693.420786
1701	Zimbabwe	1997	11404948	Africa	46.809	792.449960
1702	Zimbabwe	2002	11926563	Africa	39.989	672.038623
1703	Zimbabwe	2007	12311143	Africa	43.487	469.709298

1704 rows × 6 columns

Dataframe and Series

What can we observe from the above dataset?

We can see that it has:

- 6 columns
- 1704 rows

What do you think is the datatype of df?

In [5]: type(df)

Out[5]: pandas.core.frame.DataFrame

L J

Its a pandas DataFrame

What is a pandas DataFrame?

- It is a table-like representation of data in Pandas => Structured Data
- Structured Data here can be thought of as tabular data in a proper order
- Considered as counterpart of 2D-Matrix in Numpy

Now how can we access a column, say country of the dataframe?

```
df["country"]
In [6]:
              Afghanistan
Out[6]:
              Afghanistan
             Afghanistan
       3
             Afghanistan
             Afghanistan
                  . . .
       1699
                Zimbabwe
       1700
                Zimbabwe
                Zimbabwe
       1701
       1702
                 Zimbabwe
       1703
                Zimbabwe
       Name: country, Length: 1704, dtype: object
```

As you can see we get all the values in the column **country**

Now what is the data-type of a column?

```
In [7]: type(df["country"])
Out[7]: pandas.core.series.Series
```

Its a pandas Series

What is a pandas Series?

Series in Pandas is what a Vector is in Numpy

What exactly does that mean?

- It means a Series is a single column of data
- Multiple Series stack together to form a DataFrame

Now we have understood what Series and DataFrames are

What if a dataset has 100 rows ... Or 100 columns?

How can we find the datatype, name, total entries in each column?

```
2 population 1704 non-null int64
3 continent 1704 non-null object
4 life_exp 1704 non-null float64
5 gdp_cap 1704 non-null float64
dtypes: float64(2), int64(2), object(2)
memory usage: 80.0+ KB
```

df.info() gives a **list of columns** with:

- Name/Title of Columns
- How many non-null values (blank cells) each column has
- **Type of values** in each column int, float, etc.

By default, it shows data-type as object for anything other than int or float - Will come back later

Now what if we want to see the first few rows in the dataset?

	141	Ow what h	what if we want to see the mist lew lows in the datase								
]:	df	head()									
]:		country	year	population	continent	life_exp	gdp_cap				
	0	Afghanistan	1952	8425333	Asia	28.801	779.445314				
	1	Afghanistan	1957	9240934	Asia	30.332	820.853030				
	2	Afghanistan	1962	10267083	Asia	31.997	853.100710				
	3	Afghanistan	1967	11537966	Asia	34.020	836.197138				
	4	Afghanistan	1972	13079460	Asia	36.088	739.981106				

It Prints top 5 rows by default

Out[10]:

We can also pass in number of rows we want to see in head()

```
In [10]: df.head(20)
```

	country	year	population	continent	life_exp	gdp_cap
0	Afghanistan	1952	8425333	Asia	28.801	779.445314
1	Afghanistan	1957	9240934	Asia	30.332	820.853030
2	Afghanistan	1962	10267083	Asia	31.997	853.100710
3	Afghanistan	1967	11537966	Asia	34.020	836.197138
4	Afghanistan	1972	13079460	Asia	36.088	739.981106
5	Afghanistan	1977	14880372	Asia	38.438	786.113360
6	Afghanistan	1982	12881816	Asia	39.854	978.011439
7	Afghanistan	1987	13867957	Asia	40.822	852.395945
8	Afghanistan	1992	16317921	Asia	41.674	649.341395
9	Afghanistan	1997	22227415	Asia	41.763	635.341351
10	Afghanistan	2002	25268405	Asia	42.129	726.734055
11	Afghanistan	2007	31889923	Asia	43.828	974.580338
12	Albania	1952	1282697	Europe	55.230	1601.056136
13	Albania	1957	1476505	Europe	59.280	1942.284244

14	Albania	1962	1728137	Europe	64.820	2312.888958
15	Albania	1967	1984060	Europe	66.220	2760.196931
16	Albania	1972	2263554	Europe	67.690	3313.422188
17	Albania	1977	2509048	Europe	68.930	3533.003910
18	Albania	1982	2780097	Europe	70.420	3630.880722
19	Albania	1987	3075321	Europe	72.000	3738.932735

Similarly what if we want to see the last 20 rows?

In [11]: df.tail(20) #Similar to head

Out[11]:

	country	year	population	continent	life_exp	gdp_cap
1684	Zambia	1972	4506497	Africa	50.107	1773.498265
1685	Zambia	1977	5216550	Africa	51.386	1588.688299
1686	Zambia	1982	6100407	Africa	51.821	1408.678565
1687	Zambia	1987	7272406	Africa	50.821	1213.315116
1688	Zambia	1992	8381163	Africa	46.100	1210.884633
1689	Zambia	1997	9417789	Africa	40.238	1071.353818
1690	Zambia	2002	10595811	Africa	39.193	1071.613938
1691	Zambia	2007	11746035	Africa	42.384	1271.211593
1692	Zimbabwe	1952	3080907	Africa	48.451	406.884115
1693	Zimbabwe	1957	3646340	Africa	50.469	518.764268
1694	Zimbabwe	1962	4277736	Africa	52.358	527.272182
1695	Zimbabwe	1967	4995432	Africa	53.995	569.795071
1696	Zimbabwe	1972	5861135	Africa	55.635	799.362176
1697	Zimbabwe	1977	6642107	Africa	57.674	685.587682
1698	Zimbabwe	1982	7636524	Africa	60.363	788.855041
1699	Zimbabwe	1987	9216418	Africa	62.351	706.157306
1700	Zimbabwe	1992	10704340	Africa	60.377	693.420786
1701	Zimbabwe	1997	11404948	Africa	46.809	792.449960
1702	Zimbabwe	2002	11926563	Africa	39.989	672.038623
1703	Zimbabwe	2007	12311143	Africa	43.487	469.709298

How can we find the shape of the dataframe?

In [12]: df.shape

Out[12]: (1704, 6)

Similar to Numpy, it gives No. of Rows and Columns -- Dimensions

Now we know how to do some basic operations on dataframes

But what if we aren't loading a dataset, but want to create our own.

Let's take a subset of the original dataset

```
In [13]: df.head(3) # We take the first 3 rows to create our dataframe
Out[13]:
               country year population continent life_exp
                                                             gdp_cap
          0 Afghanistan 1952
                                8425333
                                             Asia
                                                    28.801 779.445314
          1 Afghanistan 1957
                                9240934
                                             Asia
                                                   30.332 820.853030
          2 Afghanistan 1962
                               10267083
                                                   31.997 853.100710
                                             Asia
```

How can we create a DataFrame from scratch?

Approach 1: Row-oriented

- It takes 2 arguments Because DataFrame is 2-dimensional
 - A list of rows
 - Each **row** is packed in a **list** []
 - All rows are packed in an outside list [[]] To pass a list of rows
 - A list of column names/labels

```
pd.DataFrame([['Afghanistan',1952, 8425333, 'Asia', 28.801, 779.445314],
                        ['Afghanistan',1957, 9240934, 'Asia', 30.332, 820.853030],
                        ['Afghanistan',1962, 102267083, 'Asia', 31.997, 853.100710 ]],
                       columns=['country', 'year', 'population', 'continent', 'life exp', 'gdp cap'])
Out[14]:
              country year population continent life_exp
                                                         gdp_cap
         0 Afghanistan 1952
                                                 28.801 779.445314
                              8425333
                                           Asia
                                           Asia 30.332 820.853030
         1 Afghanistan 1957
                              9240934
         2 Afghanistan 1962
                            102267083
                                                31.997 853.100710
                                           Asia
```

Can you create a single row dataframe?

```
pd.DataFrame(['Afghanistan',1952, 8425333, 'Asia', 28.801, 779.445314],
In [15]:
                      columns=['country','year','population','continent','life exp','gdp cap'])
         ValueError
                                                   Traceback (most recent call last)
         Input In [15], in <cell line: 1>()
         ----> 1 pd.DataFrame(['Afghanistan',1952, 8425333, 'Asia', 28.801, 779.445314],
              2
                              columns=['country','year','population','continent','life exp','gdp
         cap'])
         File ~\anaconda3\lib\site-packages\pandas\core\frame.py:737, in DataFrame. init (self,
         data, index, columns, dtype, copy)
            729
                        mgr = arrays to mgr(
            730
                             arrays,
            731
                             columns,
            (\ldots)
            734
                             typ=manager,
            735
```

```
736
            else:
--> 737
                mgr = ndarray to mgr (
    738
                    data,
    739
                    index,
    740
                    columns,
    741
                    dtype=dtype,
    742
                    copy=copy,
    743
                    typ=manager,
    744
    745 else:
    746
            mgr = dict to mgr(
    747
                { },
   748
                index,
   (...)
    751
                typ=manager,
    752
File ~\anaconda3\lib\site-packages\pandas\core\internals\construction.py:351, in ndarray
to mgr (values, index, columns, dtype, copy, typ)
    346 # prep ndarray ensures that values.ndim == 2 at this point
    347 index, columns = get axes(
           values.shape[0], values.shape[1], index=index, columns=columns
    348
    349)
--> 351 check values indices shape match(values, index, columns)
    353 if typ == "array":
           if issubclass(values.dtype.type, str):
File ~\anaconda3\lib\site-packages\pandas\core\internals\construction.py:422, in check
values indices shape match (values, index, columns)
    420 passed = values.shape
    421 implied = (len(index), len(columns))
--> 422 raise ValueError(f"Shape of passed values is {passed}, indices imply {implied}")
ValueError: Shape of passed values is (6, 1), indices imply (6, 6)
```

Why did this give an error?

- Because we passed in a list of values
- DataFrame() expects a list of rows

Approach 2: Column-oriented

```
pd.DataFrame({'country':['Afghanistan', 'Afghanistan'], 'year':[1952,1957],
In [17]:
                         'population':[842533, 9240934], 'continent':['Asia', 'Asia'],
                         'life exp':[28.801, 30.332], 'gdp cap':[779.445314, 820.853030]})
                                      continent life_exp
Out[17]:
               country year population
                                                          gdp_cap
         0 Afghanistan
                      1952
                               842533
                                           Asia
                                                 28.801 779.445314
         1 Afghanistan 1957
                               9240934
                                           Asia
                                                 30.332 820.853030
```

- Key is the Column Name/Label
- Value is the list of values column-wise

We now have a basic idea about the dataset and creating rows and columns

What kind of **other operations** can we perform on the dataframe?

Thinking from database perspective:

- Adding data
- Removing data
- Updating/Modifying data

and so on

Basic operations on columns

Now what operations can we do using columns?

- Maybe add a column
- or delete a column
- or we can rename the column too

and so on.

We can see that our dataset has 6 cols

But what if our dataset has 20 cols? ... or 100 cols? We can't see ther names in one go.

How can we get the names of all these cols?

We can do it in two ways:

- 1. df.columns
- 2. df.keys

```
In [18]: df.columns # using attribute `columns` of dataframe
Out[18]: Index(['country', 'year', 'population', 'continent', 'life_exp', 'gdp_cap'], dtype='obje ct')
In [19]: df.keys() # using method keys() of dataframe
Out[19]: Index(['country', 'year', 'population', 'continent', 'life_exp', 'gdp_cap'], dtype='obje ct')
```

Note:

- Here, Index is a type of pandas class used to store the address of the series/dataframe
- It is an Immutable sequence used for indexing and alignment.

```
In [20]: # df['country'].head() # Gives values in Top 5 rows pertaining to the key
```

Pandas DataFrame and Series are specialised dictionary

But what is so "special" about this dictionary?

It can take multiple keys

And what if we pass a single column name?

```
In [22]: df[['country']].head()

Out[22]: country

O Afghanistan

1 Afghanistan

2 Afghanistan

3 Afghanistan

4 Afghanistan

Note:
```

Notice how this output type is different from our earlier output using df['country']

```
==> ['country'] gives series while [['country']] gives dataframe
```

Now that we know how to access columns, lets answer some questions

How can we find the countries that have been surveyed?

We can find the unique vals in the country col

How can we find unique values in a column?

```
'Indonesia', 'Iran', 'Iraq', 'Ireland', 'Israel', 'Italy',
'Jamaica', 'Japan', 'Jordan', 'Kenya', 'Korea, Dem. Rep.',
'Korea, Rep.', 'Kuwait', 'Lebanon', 'Lesotho', 'Liberia', 'Libya',
'Madagascar', 'Malawi', 'Malaysia', 'Mali', 'Mauritania',
'Mauritius', 'Mexico', 'Mongolia', 'Montenegro', 'Morocco',
'Mozambique', 'Myanmar', 'Namibia', 'Nepal', 'Netherlands',
'New Zealand', 'Nicaragua', 'Niger', 'Nigeria', 'Norway', 'Oman',
'Pakistan', 'Panama', 'Paraguay', 'Peru', 'Philippines', 'Poland',
'Portugal', 'Puerto Rico', 'Reunion', 'Romania', 'Rwanda',
'Sao Tome and Principe', 'Saudi Arabia', 'Senegal', 'Serbia',
'Sierra Leone', 'Singapore', 'Slovak Republic', 'Slovenia',
'Somalia', 'South Africa', 'Spain', 'Sri Lanka', 'Sudan',
'Swaziland', 'Sweden', 'Switzerland', 'Syria', 'Taiwan',
'Tanzania', 'Thailand', 'Togo', 'Trinidad and Tobago', 'Tunisia',
'Turkey', 'Uganda', 'United Kingdom', 'United States', 'Uruguay',
'Venezuela', 'Vietnam', 'West Bank and Gaza', 'Yemen, Rep.',
'Zambia', 'Zimbabwe'], dtype=object)
```

Now what if you also want to check the count of each country in the dataframe?

```
In [24]: df['country'].value counts()
Out[24]: Afghanistan
                            12
        Pakistan
                            12
        New Zealand
                           12
        Nicaragua
                           12
        Niger
        Eritrea
        Equatorial Guinea 12
        El Salvador
                           12
        Egypt
                            12
        Zimbabwe
                            12
        Name: country, Length: 142, dtype: int64
```

Note:

value_counts() shows the output in decreasing order of frequency

What if we want to change the name of a column?

We can rename the column by:

- passing the dictionary with old_name:new_name pair
- specifying axis=1

```
In [25]: df.rename({"population": "Population", "country":"Country" }, axis = 1)
```

Out[25]:		Country	year	Population	continent	life_exp	gdp_cap
	0	Afghanistan	1952	8425333	Asia	28.801	779.445314
	1	Afghanistan	1957	9240934	Asia	30.332	820.853030
	2	Afghanistan	1962	10267083	Asia	31.997	853.100710
	3	Afghanistan	1967	11537966	Asia	34.020	836.197138
	4	Afghanistan	1972	13079460	Asia	36.088	739.981106
	•••					•••	
	1699	Zimbabwe	1987	9216418	Africa	62.351	706.157306

1700	Zimbabwe	1992	10704340	Africa	60.377	693.420786
1701	Zimbabwe	1997	11404948	Africa	46.809	792.449960
1702	Zimbabwe	2002	11926563	Africa	39.989	672.038623
1703	Zimbabwe	2007	12311143	Africa	43.487	469.709298

1704 rows × 6 columns

Out[26]:

Alternatively, we can also rename the column without using axis

• by using the column parameter

```
In [26]: df.rename(columns={"country":"Country"})
```

	Country	year	population	continent	life_exp	gdp_cap
0	Afghanistan	1952	8425333	Asia	28.801	779.445314
1	Afghanistan	1957	9240934	Asia	30.332	820.853030
2	Afghanistan	1962	10267083	Asia	31.997	853.100710
3	Afghanistan	1967	11537966	Asia	34.020	836.197138
4	Afghanistan	1972	13079460	Asia	36.088	739.981106
•••						
1699	Zimbabwe	1987	9216418	Africa	62.351	706.157306
1700	Zimbabwe	1992	10704340	Africa	60.377	693.420786
1701	Zimbabwe	1997	11404948	Africa	46.809	792.449960
1702	Zimbabwe	2002	11926563	Africa	39.989	672.038623
1703	Zimbabwe	2007	12311143	Africa	43.487	469.709298

1704 rows × 6 columns

We can set it inplace by setting the inplace argument = True

```
In [27]: df.rename({"country": "Country"}, axis = 1, inplace = True)
df
```

Out[27]:		Country	year	population	continent	life_exp	gdp_cap
	0	Afghanistan	1952	8425333	Asia	28.801	779.445314
	1	Afghanistan	1957	9240934	Asia	30.332	820.853030
	2	Afghanistan	1962	10267083	Asia	31.997	853.100710
	3	Afghanistan	1967	11537966	Asia	34.020	836.197138
	4	Afghanistan	1972	13079460	Asia	36.088	739.981106
	•••					•••	
	1699	Zimbabwe	1987	9216418	Africa	62.351	706.157306
	1700	Zimbabwe	1992	10704340	Africa	60.377	693.420786
	1701	Zimbabwe	1997	11404948	Africa	46.809	792.449960

1702	Zimbabwe	2002	11926563	Africa	39.989	672.038623
1703	Zimbabwe	2007	12311143	Africa	43.487	469.709298

1704 rows × 6 columns

Note

- .rename has default value of axis=0
- If two columns have the **same name**, then df['column'] will display both columns

Now lets try another way of accessing column vals

```
df.Country
In [28]:
               Afghanistan
Out[28]:
              Afghanistan
              Afghanistan
              Afghanistan
              Afghanistan
                 Zimbabwe
        1699
        1700
                 Zimbabwe
        1701
                 Zimbabwe
        1702
                 Zimbabwe
        1703
                 Zimbabwe
        Name: Country, Length: 1704, dtype: object
```

This however doesn't work everytime

What do you think could be the problems with using attribute style for accessing the columns?

Problems such as

- if the column names are not strings
 - Starting with number: E.g., 2nd
 - Contains a **space**: E.g., Roll Number
- or if the column names conflict with methods of the DataFrame
 - E.g. shape

It is generally better to avoid this type of accessing columns

Are all the columns in our data necessary?

- We already know the continents in which each country lies
- So we don't need this column

How can we delete cols in pandas dataframe?

2	Afghanistan	1962	10267083	31.997	853.100710
3	Afghanistan	1967	11537966	34.020	836.197138
4	Afghanistan	1972	13079460	36.088	739.981106
•••					
1699	Zimbabwe	1987	9216418	62.351	706.157306
1700	Zimbabwe	1992	10704340	60.377	693.420786
1701	Zimbabwe	1997	11404948	46.809	792.449960
1702	Zimbabwe	2002	11926563	39.989	672.038623
1703	7imbabwe	2007	12311143	43.487	469.709298

1704 rows × 5 columns

The drop function takes two parameters:

- The column name
- The axis

Out[30]:

By default the value of axis is 0

An alternative to the above approach is using the "columns" parameter as we did in rename

In [30]: df.drop(columns=['continent'])

	Country	year	population	life_exp	gdp_cap
0	Afghanistan	1952	8425333	28.801	779.445314
1	Afghanistan	1957	9240934	30.332	820.853030
2	Afghanistan	1962	10267083	31.997	853.100710
3	Afghanistan	1967	11537966	34.020	836.197138
4	Afghanistan	1972	13079460	36.088	739.981106
•••					
1699	Zimbabwe	1987	9216418	62.351	706.157306
1700	Zimbabwe	1992	10704340	60.377	693.420786
1701	Zimbabwe	1997	11404948	46.809	792.449960
1702	Zimbabwe	2002	11926563	39.989	672.038623
1703	Zimbabwe	2007	12311143	43.487	469.709298

1704 rows × 5 columns

As you can see, **column contintent is dropped**

Has the column permanently been deleted?

In [31]: df.head()

Out[31]: Country year population continent life_exp gdp_cap

0	Afghanistan	1952	8425333	Asia	28.801	779.445314
1	Afghanistan	1957	9240934	Asia	30.332	820.853030
2	Afghanistan	1962	10267083	Asia	31.997	853.100710
3	Afghanistan	1967	11537966	Asia	34.020	836.197138
4	Afghanistan	1972	13079460	Asia	36.088	739.981106

NO, the column continent is still there

Do you see what's happening here?

We only got a view of dataframe with column continent dropped

How can we permanently drop the column?

We can either re-assign it

```
df = df.drop('continent', axis=1)OR
```

• We can **set parameter inplace=True**

By **default**, **inplace=False**

```
In [32]: df.drop('continent', axis=1, inplace=True)
In [33]: df.head() #we print the head to check
Out[33]: Country year population life_exp gdp_cap
```

	Country	year	population	life_exp	gdp_cap
0	Afghanistan	1952	8425333	28.801	779.445314
1	Afghanistan	1957	9240934	30.332	820.853030
2	Afghanistan	1962	10267083	31.997	853.100710
3	Afghanistan	1967	11537966	34.020	836.197138
4	Afghanistan	1972	13079460	36.088	739.981106

Now we can see the column continent is permanently dropped

Now similarly, what if we want to create a new column?

We can either

• use values from **existing columns**

OR

• create our own values

How to create a column using values from an existing column?

```
In [34]: df["year+7"] = df["year"] + 7
    df.head()
```

:		Country	year	population	life_exp	gdp_cap	year+7
	0	Afghanistan	1952	8425333	28.801	779.445314	1959
	1	Afghanistan	1957	9240934	30.332	820.853030	1964
	2	Afghanistan	1962	10267083	31.997	853.100710	1969
	3	Afghanistan	1967	11537966	34.020	836.197138	1974
	4	Afghanistan	1972	13079460	36.088	739.981106	1979

As we see, a new column year+7 is created from the column year

We can also use values from two columns to form a new column

Which two columns can we use to create a new column gdp?

```
In [35]: df['gdp']=df['gdp_cap'] * df['population']
    df.head()
```

[35]:		Country	year	population	life_exp	gdp_cap	year+7	gdp
	0	Afghanistan	1952	8425333	28.801	779.445314	1959	6.567086e+09
	1	Afghanistan	1957	9240934	30.332	820.853030	1964	7.585449e+09
	2	Afghanistan	1962	10267083	31.997	853.100710	1969	8.758856e+09
	3	Afghanistan	1967	11537966	34.020	836.197138	1974	9.648014e+09
	4	Afghanistan	1972	13079460	36.088	739.981106	1979	9.678553e+09

As you can see

Out[34]

Out

- An additional column has been created
- Values in this column are product of respective values in gdp_cap and population

What other operations we can use?

Subtraction, Addition, etc.

How can we create a new column from our own values?

• We can **create a list**

OR

• We can **create a Pandas Series** from a list/numpy array for our new column

```
In [36]: df["Own"] = [i for i in range(1704)] # count of these values should be correct
df
```

Out[36]:		Country	year	population	life_exp	gdp_cap	year+7	gdp	Own
	0	Afghanistan	1952	8425333	28.801	779.445314	1959	6.567086e+09	0
	1	Afghanistan	1957	9240934	30.332	820.853030	1964	7.585449e+09	1

2	Afghanistan	1962	10267083	31.997	853.100710	1969	8.758856e+09	2
3	Afghanistan	1967	11537966	34.020	836.197138	1974	9.648014e+09	3
4	Afghanistan	1972	13079460	36.088	739.981106	1979	9.678553e+09	4
•••								
1699	Zimbabwe	1987	9216418	62.351	706.157306	1994	6.508241e+09	1699
1700	Zimbabwe	1992	10704340	60.377	693.420786	1999	7.422612e+09	1700
1701	Zimbabwe	1997	11404948	46.809	792.449960	2004	9.037851e+09	1701
1702	Zimbabwe	2002	11926563	39.989	672.038623	2009	8.015111e+09	1702
1703	Zimbabwe	2007	12311143	43.487	469.709298	2014	5.782658e+09	1703

1704 rows × 8 columns

Now that we know how to create new cols lets see some basic ops on rows

Before that lets drop the newly created cols

```
In [37]: df.drop(columns=["Own",'gdp', 'year+7'], axis = 1, inplace = True)
df
```

_		_	_	-	
O11-	H I	2	7		0
Uu	L I	\supset	/		۰

	Country	year	population	life_exp	gdp_cap
0	Afghanistan	1952	8425333	28.801	779.445314
1	Afghanistan	1957	9240934	30.332	820.853030
2	Afghanistan	1962	10267083	31.997	853.100710
3	Afghanistan	1967	11537966	34.020	836.197138
4	Afghanistan	1972	13079460	36.088	739.981106
•••					
1699	Zimbabwe	1987	9216418	62.351	706.157306
1700	Zimbabwe	1992	10704340	60.377	693.420786
1701	Zimbabwe	1997	11404948	46.809	792.449960
1702	Zimbabwe	2002	11926563	39.989	672.038623
1703	Zimbabwe	2007	12311143	43.487	469.709298

1704 rows × 5 columns

Working with Rows

Just like columns, do rows also have labels?
YES

Notice the indexes in bold against each row

Lets see how can we access these indexes

In [38]: df.index.values

Out[38]: array([0, 1, 2, ..., 1701, 1702, 1703], dtype=int64)

Can we change row labels (like we did for columns)?

What if we want to start indexing from 1 (instead of 0)?

In [39]: df.index = list(range(1, df.shape[0]+1)) # create a list of indexes of same length
 df

43.487 469.709298

Out[39]:		Country	year	population	life_exp	gdp_cap
	1	Afghanistan	1952	8425333	28.801	779.445314
	2	Afghanistan	1957	9240934	30.332	820.853030
	3	Afghanistan	1962	10267083	31.997	853.100710
	4	Afghanistan	1967	11537966	34.020	836.197138
	5	Afghanistan	1972	13079460	36.088	739.981106
	•••					
	1700	Zimbabwe	1987	9216418	62.351	706.157306
	1701	Zimbabwe	1992	10704340	60.377	693.420786
	1702	Zimbabwe	1997	11404948	46.809	792.449960
	1703	Zimbabwe	2002	11926563	39.989	672.038623

1704 rows × 5 columns

Zimbabwe 2007

1704

As you can see the indexing is now starting from 1 instead of 0.

12311143

Explicit and Implicit Indices

What are these row labels/indices exactly?

- They can be called identifiers of a particular row
- Specifically known as **explicit indices**

Additionally, can series/dataframes can also use python style indexing? YES

The python style indices are known as **implicit indices**

How can we access explicit index of a particular row?

- Using df.index[]
- Takes **impicit index** of row to give its explicit index

```
In [40]: df.index[1] #Implicit index 1 gave explicit index 2
```

But why not use just implicit indexing?

Explicit indices can be changed to any value of any datatype

- Eg: Explicit Index of 1st row can be changed to First
- Or, something like a floating point value, say 1.0

```
In [41]: df.index = np.arange(1, df.shape[0]+1, dtype='float')
df
```

Country Out[41]: population life_exp year gdp_cap 1.0 Afghanistan 1952 8425333 28.801 779.445314 2.0 Afghanistan 1957 9240934 30.332 820.853030 Afghanistan 1962 853.100710 10267083 31.997 Afghanistan 1967 11537966 34.020 836.197138 Afghanistan 5.0 1972 13079460 36.088 739.981106 1700.0 706.157306 Zimbabwe 1987 9216418 62.351 1701.0 Zimbabwe 1992 10704340 60.377 693.420786 1702.0 Zimbabwe 1997 11404948 46.809 792.449960 1703.0 Zimbabwe 2002 672.038623 11926563 39.989

1704 rows × 5 columns

Zimbabwe 2007

1704.0

5.0

As we can see, the indices are floating point values now

12311143

Now to understand string indices, let's take a small subset of our original dataframe

```
In [42]: sample = df.head()
sample
```

43.487 469.709298

Out[42]: Country year population life_exp gdp_cap Afghanistan 1952 779.445314 1.0 8425333 28.801 2.0 Afghanistan 1957 9240934 30.332 820.853030 Afghanistan 1962 10267083 31.997 853.100710 Afghanistan 34.020 836.197138 4.0 1967 11537966

Afghanistan 1972

Now what if we want to use string indices?

13079460

```
In [43]: sample.index = ['a', 'b', 'c', 'd', 'e']
sample
```

36.088 739.981106

 Out[43]:
 Country
 year
 population
 life_exp
 gdp_cap

 a
 Afghanistan
 1952
 8425333
 28.801
 779.445314

b	Afghanistan	1957	9240934	30.332	820.853030
c	Afghanistan	1962	10267083	31.997	853.100710
d	Afghanistan	1967	11537966	34.020	836.197138
е	Afghanistan	1972	13079460	36.088	739.981106

This shows us we can use almost anything as our explicit index

Now let's reset our indices back to integers

```
In [44]: df.index = np.arange(1, df.shape[0]+1, dtype='int')
```

What if we want to access any particular row (say first row)?

Let's first see for one column

Later, we can generalise the same for the entire dataframe

```
ser = df["Country"]
In [45]:
        ser.head(20)
             Afghanistan
Out[45]:
             Afghanistan
             Afghanistan
        3
        4
             Afghanistan
        5
            Afghanistan
            Afghanistan
            Afghanistan
        7
            Afghanistan
        8
        9
            Afghanistan
        10 Afghanistan
            Afghanistan
        11
        12
            Afghanistan
        13
                Albania
        14
                Albania
        15
                 Albania
        16
                Albania
        17
                Albania
        18
                Albania
        19
                 Albania
        20
                 Albania
        Name: Country, dtype: object
```

We can simply use its indices much like we do in a numpy array

So, how will be then access the thirteenth element (or say thirteenth row)?

```
In [46]: ser[12]
Out[46]: 'Afghanistan'
```

And what about accessing a subset of rows (say 6th:15th)?

```
10 Afghanistan
11 Afghanistan
12 Afghanistan
13 Albania
14 Albania
15 Albania
Name: Country, dtype: object
```

This is known as slicing

Notice something different though?

- Indexing in Series used explicit indices
- Slicing however used implicit indices

Let's try the same for the dataframe now

So how can we access a row in a dataframe?

```
df[0]
In [48]:
        KeyError
                                                   Traceback (most recent call last)
        File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:3621, in Index.get loc(se
        lf, key, method, tolerance)
           3620 try:
        -> 3621
                    return self. engine.get loc(casted key)
           3622 except KeyError as err:
        File ~\anaconda3\lib\site-packages\pandas\ libs\index.pyx:136, in pandas. libs.index.Ind
        exEngine.get loc()
        File ~\anaconda3\lib\site-packages\pandas\ libs\index.pyx:163, in pandas. libs.index.Ind
        exEngine.get loc()
        File pandas\ libs\hashtable class helper.pxi:5198, in pandas. libs.hashtable.PyObjectHas
        hTable.get item()
        File pandas\_libs\hashtable_class_helper.pxi:5206, in pandas. libs.hashtable.PyObjectHas
        hTable.get item()
        KeyError: 0
        The above exception was the direct cause of the following exception:
        KeyError
                                                  Traceback (most recent call last)
        Input In [48], in <cell line: 1>()
        ---> 1 df[0]
        File ~\anaconda3\lib\site-packages\pandas\core\frame.py:3505, in DataFrame. getitem (s
        elf, key)
           3503 if self.columns.nlevels > 1:
                   return self. getitem multilevel(key)
        -> 3505 indexer = self.columns.get loc(key)
           3506 if is integer(indexer):
           3507
                    indexer = [indexer]
        File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:3623, in Index.get loc(se
        lf, key, method, tolerance)
           3621 return self. engine.get loc(casted key)
           3622 except KeyError as err:
                 raise KeyError (key) from err
           3624 except TypeError:
```

```
3625 # If we have a listlike key, _check_indexing_error will raise
3626 # InvalidIndexError. Otherwise we fall through and re-raise
3627 # the TypeError.
3628 self._check_indexing_error(key)

KeyError: 0
```

Notice, that this syntax is exactly same as how we tried accessing a column

```
===> df[x] looks for column with name x
```

How can we access a slice of rows in the dataframe?

```
In []: df[5:15]
```

Woah, so the slicing works

===> Indexing in dataframe looks only for explicit indices \ ===> Slicing, however, checked for implicit indices

This can be a cause for confusion

To avoid this pandas provides special indexers, loc and iloc

We will look at these in a bit Lets look at them one by one

loc and iloc

1. loc

Allows indexing and slicing that always references the explicit index

```
In [49]:
       df.loc[1]
       Country Afghanistan
Out[49]:
       year
                    1952
       population
                       8425333
       life exp
                        28.801
       gdp_cap
                   779.445314
       Name: 1, dtype: object
       df.loc[1:3]
In [50]:
Out[50]:
```

	Country	year	population	life_exp	gdp_cap
1	Afghanistan	1952	8425333	28.801	779.445314
2	Afghanistan	1957	9240934	30.332	820.853030
3	Afghanistan	1962	10267083	31.997	853.100710

Did you notice something strange here?

- The range is inclusive of end point for loc
- Row with Label 3 is included in the result

2. iloc

Allows indexing and slicing that always references the implicit Python-style index

```
In [51]: df.iloc[1]
Out[51]: Country Afghanistan
```

year 1957
population 9240934
life_exp 30.332
gdp_cap 820.85303
Name: 2, dtype: object

Now will iloc also consider the range inclusive?

```
In [52]: df.iloc[0:2]
```

Out[52]:		Country	year	population	life_exp	gdp_cap
	1	Afghanistan	1952	8425333	28.801	779.445314
	2	Afghanistan	1957	9240934	30.332	820.853030

NO

Because iloc works with implicit Python-style indices

It is important to know about these conceptual differences

Not just b/w loc and iloc, but in general while working in DS and ML

Which one should we use?

- Generally explicit indexing is considered to be better than implicit
- But it is recommended to always use both loc and iloc to avoid any confusions

What if we want to access multiple non-consecutive rows at same time?

For eg: rows 1, 10, 100

101 Bangladesh 1972

```
In [53]: df.iloc[[1, 10, 100]]
```

Out[53]: Country year population life_exp gdp_cap 2 Afghanistan 1957 9240934 30.332 820.853030 11 Afghanistan 2002 25268405 42.129 726.734055

As we see, We can just **pack the indices in** [] and pass it in loc or iloc

70759295 45.252 630.233627

What about negative index?

Which would work between iloc and loc?

```
In [54]: df.iloc[-1]
# Works and gives last row in dataframe
```

```
Out[54]:
        year
                            2007
        population
                       12311143
        life exp
                         43.487
        gdp cap
                     469.709298
        Name: 1704, dtype: object
In [55]: df.loc[-1]
         # Does NOT work
        KeyError
                                                   Traceback (most recent call last)
        File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:3621, in Index.get loc(se
        lf, key, method, tolerance)
            3620 try:
        -> 3621
                    return self. engine.get loc(casted key)
           3622 except KeyError as err:
        File ~\anaconda3\lib\site-packages\pandas\ libs\index.pyx:136, in pandas. libs.index.Ind
        exEngine.get loc()
         File ~\anaconda3\lib\site-packages\pandas\ libs\index.pyx:163, in pandas. libs.index.Ind
        exEngine.get loc()
        File pandas\ libs\hashtable class helper.pxi:2131, in pandas. libs.hashtable.Int64HashTa
        ble.get_item()
        File pandas\_libs\hashtable_class_helper.pxi:2140, in pandas. libs.hashtable.Int64HashTa
        ble.get item()
        KeyError: -1
        The above exception was the direct cause of the following exception:
        KeyError
                                                  Traceback (most recent call last)
         Input In [55], in <cell line: 1>()
        ----> 1 df.loc[-1]
        File ~\anaconda3\lib\site-packages\pandas\core\indexing.py:967, in LocationIndexer. ge
         titem (self, key)
            964 axis = self.axis or 0
            966 maybe callable = com.apply if callable(key, self.obj)
        --> 967 return self. getitem axis(maybe callable, axis=axis)
        File ~\anaconda3\lib\site-packages\pandas\core\indexing.py:1202, in LocIndexer. getitem
         axis(self, key, axis)
            1200 # fall thru to straight lookup
           1201 self. validate key(key, axis)
        -> 1202 return self. get label(key, axis=axis)
        File ~\anaconda3\lib\site-packages\pandas\core\indexing.py:1153, in LocIndexer. get lab
        el(self, label, axis)
           1151 def get label(self, label, axis: int):
           1152
                     # GH#5667 this will fail if the label is not present in the axis.
        -> 1153
                    return self.obj.xs(label, axis=axis)
        File ~\anaconda3\lib\site-packages\pandas\core\generic.py:3864, in NDFrame.xs(self, key,
         axis, level, drop level)
           3862
                            new index = index[loc]
           3863 else:
         -> 3864
                   loc = index.get loc(key)
            3866
                    if isinstance(loc, np.ndarray):
            3867
                        if loc.dtype == np.bool :
```

Country

Zimbabwe

```
File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:3623, in Index.get loc(se
lf, key, method, tolerance)
   3621
           return self. engine.get loc(casted key)
   3622 except KeyError as err:
           raise KeyError(key) from err
-> 3623
  3624 except TypeError:
  3625 # If we have a listlike key, check indexing error will raise
   3626
           # InvalidIndexError. Otherwise we fall through and re-raise
   3627
          # the TypeError.
   3628
          self._check_indexing_error(key)
KeyError: -1
```

So, why did iloc[-1] worked, but loc[-1] didn't?

- Because iloc works with positional indices, while loc with assigned labels
- [-1] here points to the **row at last position** in iloc

Can we use one of the columns as row index?

```
temp = df.set index("Country")
In [56]:
          temp
Out[56]:
                       year population life_exp
                                                   gdp_cap
              Country
          Afghanistan
                      1952
                               8425333
                                         28.801 779.445314
          Afghanistan
                      1957
                               9240934
                                         30.332 820.853030
          Afghanistan
                      1962
                              10267083
                                         31.997 853.100710
          Afghanistan
                      1967
                              11537966
                                         34.020 836.197138
          Afghanistan 1972
                              13079460
                                         36.088 739.981106
            Zimbabwe
                      1987
                               9216418
                                         62.351 706.157306
            Zimbabwe
                      1992
                              10704340
                                         60.377 693.420786
            Zimbabwe
                      1997
                              11404948
                                         46.809
                                                792.449960
            Zimbabwe 2002
                              11926563
                                         39.989
                                                672.038623
            Zimbabwe 2007
                              12311143
                                         43.487 469.709298
```

1704 rows × 4 columns

Now what would the row corresponding to index Afghanistan give?

```
temp.loc['Afghanistan']
In [57]:
Out[57]:
                       year population life_exp
                                                   gdp_cap
              Country
          Afghanistan 1952
                               8425333
                                          28.801 779.445314
          Afghanistan
                      1957
                               9240934
                                          30.332 820.853030
                                          31.997 853.100710
          Afghanistan 1962
                              10267083
```

Afghanistan	1967	11537966	34.020	836.197138
Afghanistan	1972	13079460	36.088	739.981106
Afghanistan	1977	14880372	38.438	786.113360
Afghanistan	1982	12881816	39.854	978.011439
Afghanistan	1987	13867957	40.822	852.395945
Afghanistan	1992	16317921	41.674	649.341395
Afghanistan	1997	22227415	41.763	635.341351
Afghanistan	2002	25268405	42.129	726.734055
Afghanistan	2007	31889923	43.828	974.580338

As you can see we got the rows all having index Afghanistan

Now how can we reset our indices back to integers?

140W How can we reset our marces back to integers.

0.141		١.
UUTI	58	

In [58]: df.reset index()

	index	Country	year	population	life_exp	gdp_cap
0	1	Afghanistan	1952	8425333	28.801	779.445314
1	2	Afghanistan	1957	9240934	30.332	820.853030
2	3	Afghanistan	1962	10267083	31.997	853.100710
3	4	Afghanistan	1967	11537966	34.020	836.197138
4	5	Afghanistan	1972	13079460	36.088	739.981106
•••						
1699	1700	Zimbabwe	1987	9216418	62.351	706.157306
1700	1701	Zimbabwe	1992	10704340	60.377	693.420786
1701	1702	Zimbabwe	1997	11404948	46.809	792.449960
1702	1703	Zimbabwe	2002	11926563	39.989	672.038623
1703	1704	Zimbabwe	2007	12311143	43.487	469.709298

1704 rows × 6 columns

Notice it's creating a new column index

How can we reset our index without creating this new column?

In [59]: df.reset_index(drop=True) # By using drop=True we can prevent creation of a new column

Out[59]:

	Country	year	population	life_exp	gdp_cap
0	Afghanistan	1952	8425333	28.801	779.445314
1	Afghanistan	1957	9240934	30.332	820.853030
2	Afghanistan	1962	10267083	31.997	853.100710
3	Afghanistan	1967	11537966	34.020	836.197138

```
4 Afghanistan 1972
                         13079460
                                    36.088 739.981106
 1699
        Zimbabwe 1987
                          9216418
                                    62.351 706.157306
 1700
        Zimbabwe 1992
                         10704340
                                    60.377 693.420786
 1701
        Zimbabwe 1997
                         11404948
                                    46.809 792.449960
 1702
        Zimbabwe 2002
                         11926563
                                    39.989 672.038623
 1703
        Zimbabwe 2007
                         12311143 43.487 469.709298
1704 rows × 5 columns
```

Great, now let's do this in place

```
In [60]: df.reset_index(drop=True, inplace=True)
```

Now how can we add a row to our dataframe?

There are multiple ways to do this:

- append()
- loc/iloc

How can we do add a row using the append() method?

```
new row = {'Country': 'India', 'year': 2000,'life exp':37.08,'population':13500000,'gdp
In [61]:
         df.append(new row)
        C:\Users\kumar\AppData\Local\Temp\ipykernel 4240\2797024952.py:2: FutureWarning: The fra
        me.append method is deprecated and will be removed from pandas in a future version. Use
        pandas.concat instead.
          df.append(new row)
        TypeError
                                                   Traceback (most recent call last)
        Input In [61], in <cell line: 2>()
              1 new row = {'Country': 'India', 'year': 2000,'life exp':37.08,'population':135000
        00, 'gdp cap':900.23}
        ---> 2 df.append(new row)
        File ~\anaconda3\lib\site-packages\pandas\core\frame.py:9039, in DataFrame.append(self,
         other, ignore index, verify integrity, sort)
           8936 """
           8937 Append rows of `other` to the end of caller, returning a new object.
           8938
            (...)
           9029 4
           9030 """
           9031 warnings.warn(
           9032
                    "The frame.append method is deprecated "
           9033
                    "and will be removed from pandas in a future version. "
            (...)
           9036
                    stacklevel=find stack level(),
           9037)
        -> 9039 return self. append(other, ignore index, verify integrity, sort)
        File ~\anaconda3\lib\site-packages\pandas\core\frame.py:9052, in DataFrame. append(self,
         other, ignore index, verify integrity, sort)
           9050 if isinstance(other, dict):
```

```
9051    if not ignore_index:
-> 9052         raise TypeError("Can only append a dict if ignore_index=True")
9053         other = Series(other)
9054    if other.name is None and not ignore_index:

TypeError: Can only append a dict if ignore index=True
```

Why are we getting an error here?

Its' saying the <code>ignore_index()</code> parameter needs to be set to True

```
In [62]: new_row = {'Country': 'India', 'year': 2000,'life_exp':37.08,'population':13500000,'gdp_
    df = df.append(new_row, ignore_index=True)
    df

C:\Users\kumar\AppData\Local\Temp\ipykernel_4240\1263752680.py:2: FutureWarning: The fra
    me.append method is deprecated and will be removed from pandas in a future version. Use
    pandas.concat instead.
    df = df.append(new row, ignore index=True)
```

Out[62]:

	Country	year	population	life_exp	gdp_cap
0	Afghanistan	1952	8425333	28.801	779.445314
1	Afghanistan	1957	9240934	30.332	820.853030
2	Afghanistan	1962	10267083	31.997	853.100710
3	Afghanistan	1967	11537966	34.020	836.197138
4	Afghanistan	1972	13079460	36.088	739.981106
•••					
1700	Zimbabwe	1992	10704340	60.377	693.420786
1701	Zimbabwe	1997	11404948	46.809	792.449960
1702	Zimbabwe	2002	11926563	39.989	672.038623
1703	Zimbabwe	2007	12311143	43.487	469.709298
1704	India	2000	13500000	37.080	900.230000

1705 rows × 5 columns

Perfect! So now our row is added at the bottom of the dataframe

But Please Note that:

- append() doesn't mutate the the dataframe.
- It does not change the DataFrame, but returns a new DataFrame with the row appended.

Another method would be by **using loc**:

We will need to provide the position at which we will add the new row

What do you think this positional value would be?

```
Input In [63], in <cell line: 1>()
---> 1 df.loc[len(df.index)] = ['India',2000 ,13500000,"Asia",37.08,900.23]
File ~\anaconda3\lib\site-packages\pandas\core\indexing.py:716, in LocationIndexer. se
titem (self, key, value)
   713 self. has valid setitem indexer(key)
   715 iloc = self if self.name == "iloc" else self.obj.iloc
--> 716 iloc. setitem with indexer(indexer, value, self.name)
File ~\anaconda3\lib\site-packages\pandas\core\indexing.py:1682, in iLocIndexer. setite
m with indexer(self, indexer, value, name)
          indexer, missing = convert missing indexer(indexer)
  1681
           if missing:
               self. setitem with indexer missing(indexer, value)
-> 1682
  1683
               return
  1685 # align and set the values
File ~\anaconda3\lib\site-packages\pandas\core\indexing.py:1998, in iLocIndexer. setite
m with indexer missing (self, indexer, value)
        if is list like indexer(value):
  1995
  1996
               # must have conforming columns
  1997
               if len(value) != len(self.obj.columns):
-> 1998
                   raise ValueError ("cannot set a row with mismatched columns")
  2000
         value = Series(value, index=self.obj.columns, name=indexer)
  2002 if not len(self.obj):
        # We will ignore the existing dtypes instead of using
   2003
  2004
           # internals.concat logic
ValueError: cannot set a row with mismatched columns
```

In [64]: df

Out[64]:

	Country	year	population	life_exp	gdp_cap
0	Afghanistan	1952	8425333	28.801	779.445314
1	Afghanistan	1957	9240934	30.332	820.853030
2	Afghanistan	1962	10267083	31.997	853.100710
3	Afghanistan	1967	11537966	34.020	836.197138
4	Afghanistan	1972	13079460	36.088	739.981106
•••					
1700	Zimbabwe	1992	10704340	60.377	693.420786
1701	Zimbabwe	1997	11404948	46.809	792.449960
1702	Zimbabwe	2002	11926563	39.989	672.038623
1703	Zimbabwe	2007	12311143	43.487	469.709298
1704	India	2000	13500000	37.080	900.230000

1705 rows × 5 columns

The new row was added but the data has been duplicated

What you can infer from last two duplicate rows?

Dataframe allow us to feed duplicate rows in the data

Now, can we also **use iloc**?

Adding a row at a specific index position will replace the existing row at that position.

```
In [65]: df.iloc[len(df.index)-1] = ['India', 2000,13500000,37.08,900.23]
df
```

Out[65]: Country year population life_exp gdp_cap **0** Afghanistan 1952 8425333 28.801 779.445314 1 Afghanistan 1957 9240934 30.332 820.853030 **2** Afghanistan 1962 10267083 31.997 853.100710 **3** Afghanistan 1967 11537966 34.020 836.197138 **4** Afghanistan 1972 13079460 36.088 739.981106 1700 Zimbabwe 1992 10704340 60.377 693.420786 1701 Zimbabwe 1997 11404948 46.809 792.449960 1702 Zimbabwe 2002 11926563 39.989 672.038623 1703 Zimbabwe 2007 12311143 43.487 469.709298 1704 India 2000 13500000 37.080 900.230000

1705 rows × 5 columns

What if we try to add the row with a new index?

```
df.iloc[len(df.index)] = ['India', 2000,13500000,37.08,900.23]
In [66]:
        IndexError
                                                   Traceback (most recent call last)
        Input In [66], in <cell line: 1>()
        ---> 1 df.iloc[len(df.index)] = ['India', 2000,13500000,37.08,900.23]
        File ~\anaconda3\lib\site-packages\pandas\core\indexing.py:713, in LocationIndexer. se
        titem (self, key, value)
                    key = com.apply if callable(key, self.obj)
            711
            712 indexer = self. get setitem indexer(key)
        --> 713 self. has valid setitem indexer(key)
            715 iloc = self if self.name == "iloc" else self.obj.iloc
            716 iloc. setitem with indexer(indexer, value, self.name)
        File ~\anaconda3\lib\site-packages\pandas\core\indexing.py:1413, in iLocIndexer. has va
         lid setitem indexer(self, indexer)
           1411 elif is integer(i):
                   if i >= len(ax):
           1412
        -> 1413
                        raise IndexError ("iloc cannot enlarge its target object")
           1414 elif isinstance(i, dict):
                    raise IndexError ("iloc cannot enlarge its target object")
        IndexError: iloc cannot enlarge its target object
```

Why we are getting error?

For using iloc to add a row, the dataframe must already have a row in that position.

If a row is not available, you'll see this IndexError

Please Note:

• When using the loc[] attribute, it's not mandatory that a row already exists with a specific label.

Now what if we want to delete a row?

Use df.drop()

Out[67]

If you remember we specified axis=1 for columns

We can modify this for rows

• We can use axis=0 for rows

Does drop() method uses positional indices or labels?

What do you think by looking at code for deleting column?

- We had to specify column title
- So drop() uses labels, NOT positional indices

```
In [67]: # Let's drop row with label 3
    df = df.drop(3, axis=0)
    df
```

•		Country	year	population	life_exp	gdp_cap
	0	Afghanistan	1952	8425333	28.801	779.445314
	1	Afghanistan	1957	9240934	30.332	820.853030
	2	Afghanistan	1962	10267083	31.997	853.100710
	4	Afghanistan	1972	13079460	36.088	739.981106
	5	Afghanistan	1977	14880372	38.438	786.113360
	•••					
	1700	Zimbabwe	1992	10704340	60.377	693.420786
	1701	Zimbabwe	1997	11404948	46.809	792.449960
	1702	Zimbabwe	2002	11926563	39.989	672.038623
	1703	Zimbabwe	2007	12311143	43.487	469.709298
	1704	India	2000	13500000	37.080	900.230000

1704 rows × 5 columns

Now we see that row with label 3 is deleted

We now have rows with labels 0, 1, 2, 4, 5, ...

Now df.loc[4] and df.iloc[4] will give different rows

In [68]: df.loc[4] # The 4th row is printed

Country

Afghanistan

```
1972
Out[68]: year
       population
                       13079460
        life exp
                       36.088
        gdp cap 739.981106
        Name: 4, dtype: object
In [69]: df.iloc[4] # The 5th row is printed
                    Afghanistan
        Country
Out[69]:
        year
                            1977
                        14880372
        population
        life exp
                          38.438
        gdp cap
                      786.11336
        Name: 5, dtype: object
```

And hww can we drop multiple rows?

```
In [70]: df.drop([1, 2, 4], axis=0) # drops rows with labels 1, 2, 4
```

Out[70]:		Country	year	population	life_exp	gdp_cap
	0	Afghanistan	1952	8425333	28.801	779.445314
	5	Afghanistan	1977	14880372	38.438	786.113360
	6	Afghanistan	1982	12881816	39.854	978.011439
	7	Afghanistan	1987	13867957	40.822	852.395945
	8	Afghanistan	1992	16317921	41.674	649.341395
	•••					
	1700	Zimbabwe	1992	10704340	60.377	693.420786
	1701	Zimbabwe	1997	11404948	46.809	792.449960
	1702	Zimbabwe	2002	11926563	39.989	672.038623
	1703	Zimbabwe	2007	12311143	43.487	469.709298
	1704	India	2000	13500000	37.080	900.230000

1701 rows × 5 columns

Let's reset our indices now

```
In [71]: df.reset_index(drop=True,inplace=True) # Since we removed a row earlier, we reset our in
```

Now if you remember, the last two rows were duplicates.

How can we deal with these duplicate rows?

Let's create some more duplicate rows to understand this

```
In [72]: df.loc[len(df.index)] = ['India',2000,13500000,37.08,900.23]
    df.loc[len(df.index)] = ['Sri Lanka',2022 ,130000000,80.00,500.00]
    df.loc[len(df.index)] = ['Sri Lanka',2022 ,130000000,80.00,500.00]
    df.loc[len(df.index)] = ['India',2000 ,13500000,80.00,900.23]
    df
```

```
        Out[72]:
        Country
        year
        population
        life_exp
        gdp_cap

        0
        Afghanistan
        1952
        8425333
        28.801
        779.445314
```

1	Afghanistan	1957	9240934	30.332	820.853030
2	Afghanistan	1962	10267083	31.997	853.100710
3	Afghanistan	1972	13079460	36.088	739.981106
4	Afghanistan	1977	14880372	38.438	786.113360
•••					
1703	India	2000	13500000	37.080	900.230000
1704	India	2000	13500000	37.080	900.230000
1705	Sri Lanka	2022	130000000	80.000	500.000000
1706	Sri Lanka	2022	130000000	80.000	500.000000
1707	India	2000	13500000	80.000	900.230000

1708 rows × 5 columns

Now how can we check for duplicate rows?

Use duplicated() method on the DataFrame

```
In [73]: df.duplicated()
               False
Out[73]:
              False
              False
        3
              False
              False
        1703 False
        1704
               True
        1705
               False
        1706
               True
        1707 False
        Length: 1708, dtype: bool
```

It outputs True if an entire row is identical to a previous row.

However, it is not practical to see a list of True and False

We can Pandas loc data selector to extract those duplicate rows

```
In [74]: # Extract duplicate rows
df.loc[df.duplicated()]
```

Out[74]:		Country	year	population	life_exp	gdp_cap
	1704	India	2000	13500000	37.08	900.23
	1706	Sri Lanka	2022	130000000	80.00	500.00

The first argument **df.duplicated()** will find the duplicate rows

The second argument: will display all columns

Now how can we remove these duplicate rows?

We can use drop_duplicates() of Pandas for this

In [75]: df.drop_duplicates()

Out[75]:		Country	year	population	life_exp	gdp_cap
	0	Afghanistan	1952	8425333	28.801	779.445314
	1	Afghanistan	1957	9240934	30.332	820.853030
	2	Afghanistan	1962	10267083	31.997	853.100710
	3	Afghanistan	1972	13079460	36.088	739.981106
	4	Afghanistan	1977	14880372	38.438	786.113360
	•••					
	1701	Zimbabwe	2002	11926563	39.989	672.038623
	1702	Zimbabwe	2007	12311143	43.487	469.709298
	1703	India	2000	13500000	37.080	900.230000
	1705	Sri Lanka	2022	130000000	80.000	500.000000
	1707	India	2000	13500000	80.000	900.230000

1706 rows × 5 columns

But how can we decide among all duplicate rows which ones we want to keep?

Here we can use argument **keep**:

This Controls how to consider duplicate value.

It has only three distinct value

- first
- last
- False

The default is 'first'.

If first, this considers first value as unique and rest of the same values as duplicate.

In [76]: df.drop_duplicates(keep='first')

Out[76]:		Country	year	population	life_exp	gdp_cap
	0	Afghanistan	1952	8425333	28.801	779.445314
	1	Afghanistan	1957	9240934	30.332	820.853030
	2	Afghanistan	1962	10267083	31.997	853.100710
	3	Afghanistan	1972	13079460	36.088	739.981106
	4	Afghanistan	1977	14880372	38.438	786.113360
	•••					
	1701	Zimbabwe	2002	11926563	39.989	672.038623
	1702	Zimbabwe	2007	12311143	43.487	469.709298

1703	India	2000	13500000	37.080	900.230000
1705	Sri Lanka	2022	130000000	80.000	500.000000
1707	India	2000	13500000	80.000	900.230000

1706 rows × 5 columns

If last, This considers last value as unique and rest of the same values as duplicate.

In [77]: df.drop_duplicates(keep='last')

Out[77]:

	Country	year	population	life_exp	gdp_cap
0	Afghanistan	1952	8425333	28.801	779.445314
1	Afghanistan	1957	9240934	30.332	820.853030
2	Afghanistan	1962	10267083	31.997	853.100710
3	Afghanistan	1972	13079460	36.088	739.981106
4	Afghanistan	1977	14880372	38.438	786.113360
•••					
1701	Zimbabwe	2002	11926563	39.989	672.038623
1702	Zimbabwe	2007	12311143	43.487	469.709298
1704	India	2000	13500000	37.080	900.230000
1706	Sri Lanka	2022	130000000	80.000	500.000000
1707	India	2000	13500000	80.000	900.230000

1706 rows × 5 columns

If False, this considers all of the same values as duplicates. All values are dropped.

In [78]: df.drop_duplicates(keep=False)

Out[78]:

	Country	year	population	life_exp	gdp_cap
0	Afghanistan	1952	8425333	28.801	779.445314
1	Afghanistan	1957	9240934	30.332	820.853030
2	Afghanistan	1962	10267083	31.997	853.100710
3	Afghanistan	1972	13079460	36.088	739.981106
4	Afghanistan	1977	14880372	38.438	786.113360
•••					
1699	Zimbabwe	1992	10704340	60.377	693.420786
1700	Zimbabwe	1997	11404948	46.809	792.449960
1701	Zimbabwe	2002	11926563	39.989	672.038623
1702	Zimbabwe	2007	12311143	43.487	469.709298
1707	India	2000	13500000	80.000	900.230000

1704 rows × 5 columns

What if you want to look for duplicacy only for a few columns?

We can use the argument subset to mention the list of columns which we want to use.

```
In [79]: df.drop_duplicates(subset=['Country'], keep='first')
```

Uί	IΤ	L /	9.]:

	Country	year	population	life_exp	gdp_cap
0	Afghanistan	1952	8425333	28.801	779.445314
11	Albania	1952	1282697	55.230	1601.056136
23	Algeria	1952	9279525	43.077	2449.008185
35	Angola	1952	4232095	30.015	3520.610273
47	Argentina	1952	17876956	62.485	5911.315053
•••					
1643	Vietnam	1952	26246839	40.412	605.066492
1655	West Bank and Gaza	1952	1030585	43.160	1515.592329
1667	Yemen, Rep.	1952	4963829	32.548	781.717576
1679	Zambia	1952	2672000	42.038	1147.388831
1691	Zimbabwe	1952	3080907	48.451	406.884115

142 rows × 5 columns

```
df.drop duplicates(subset=['Country', 'Continent'], keep='first')
In [80]:
        KeyError
                                                  Traceback (most recent call last)
        Input In [80], in <cell line: 1>()
        ---> 1 df.drop duplicates(subset=['Country', 'Continent'], keep='first')
        File ~\anaconda3\lib\site-packages\pandas\util\ decorators.py:311, in deprecate nonkeywo
        rd arguments.<locals>.decorate.<locals>.wrapper(*args, **kwargs)
            305 if len(args) > num_allow_args:
            306 warnings.warn(
            307
                       msq.format(arguments=arguments),
                       FutureWarning,
            308
            309
                       stacklevel=stacklevel,
                  )
            310
        --> 311 return func(*args, **kwargs)
        File ~\anaconda3\lib\site-packages\pandas\core\frame.py:6116, in DataFrame.drop duplicat
        es (self, subset, keep, inplace, ignore index)
           6114 inplace = validate bool kwarg(inplace, "inplace")
           6115 ignore index = validate bool kwarg(ignore index, "ignore index")
        -> 6116 duplicated = self.duplicated(subset, keep=keep)
           6118 result = self[-duplicated]
           6119 if ignore index:
        File ~\anaconda3\lib\site-packages\pandas\core\frame.py:6250, in DataFrame.duplicated(se
        lf, subset, keep)
           6248 diff = Index(subset).difference(self.columns)
           6249 if not diff.empty:
        -> 6250 raise KeyError (diff)
```

6252 vals = (col.values for name, col in self.items() if name in subset)

6253 labels, shape = map(list, zip(*map(f, vals)))

```
KeyError: Index(['Continent'], dtype='object')
```

Working with Rows and Columns together

```
In [81]: import pandas as pd
         import numpy as np
In [82]: | df = pd.read csv('mckinsey.csv')
        FileNotFoundError
                                                  Traceback (most recent call last)
         Input In [82], in <cell line: 1>()
        ----> 1 df = pd.read csv('mckinsey.csv')
         File ~\anaconda3\lib\site-packages\pandas\util\ decorators.py:311, in deprecate nonkeywo
         rd arguments.<locals>.decorate.<locals>.wrapper(*args, **kwargs)
            305 if len(args) > num allow args:
            306
                  warnings.warn(
            307
                       msg.format(arguments=arguments),
            308
                       FutureWarning,
            309
                       stacklevel=stacklevel,
            310
                   )
         --> 311 return func(*args, **kwargs)
        File ~\anaconda3\lib\site-packages\pandas\io\parsers\readers.py:680, in read csv(filepat
        h_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_
        dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skipr
        ows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_line
        s, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_date
        s, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quot
        ing, doublequote, escapechar, comment, encoding, encoding errors, dialect, error bad lin
        es, warn bad lines, on bad lines, delim whitespace, low memory, memory map, float precis
         ion, storage options)
            665 kwds defaults = refine defaults read(
                   dialect,
            667
                   delimiter,
            676
                   defaults={"delimiter": ","},
            678 kwds.update(kwds defaults)
        --> 680 return read(filepath or buffer, kwds)
         File ~\anaconda3\lib\site-packages\pandas\io\parsers\readers.py:575, in read(filepath o
        r buffer, kwds)
            572 validate names(kwds.get("names", None))
            574 # Create the parser.
         --> 575 parser = TextFileReader(filepath or buffer, **kwds)
            577 if chunksize or iterator:
            578
                  return parser
        File ~\anaconda3\lib\site-packages\pandas\io\parsers\readers.py:933, in TextFileReader.
         init (self, f, engine, **kwds)
                  self.options["has index names"] = kwds["has index names"]
            932 self.handles: IOHandles | None = None
        --> 933 self. engine = self. make engine(f, self.engine)
         File ~\anaconda3\lib\site-packages\pandas\io\parsers\readers.py:1217, in TextFileReader.
         make engine(self, f, engine)
                   mode = "rb"
           1214 # error: No overload variant of "get handle" matches argument types
           1215 # "Union[str, PathLike[str], ReadCsvBuffer[bytes], ReadCsvBuffer[str]]"
           1216 # , "str", "bool", "Any", "Any", "Any", "Any", "Any"
```

```
1218
        f,
  1219
          mode,
  1220
          encoding=self.options.get("encoding", None),
  1221
         compression=self.options.get("compression", None),
  1222
         memory map=self.options.get("memory map", False),
  1223
          is text=is text,
           errors=self.options.get("encoding errors", "strict"),
  1224
          storage options=self.options.get("storage options", None),
  1225
  1226 )
  1227 assert self.handles is not None
  1228 f = self.handles.handle
File ~\anaconda3\lib\site-packages\pandas\io\common.py:789, in get handle(path or buf, m
ode, encoding, compression, memory map, is text, errors, storage options)
   784 elif isinstance(handle, str):
   785 # Check whether the filename is to be opened in binary mode.
   786
           # Binary mode does not support 'encoding' and 'newline'.
           if ioargs.encoding and "b" not in ioargs.mode:
    787
   788
              # Encoding
--> 789
              handle = open(
   790
                  handle,
    791
                   ioargs.mode,
   792
                  encoding=ioargs.encoding,
   793
                  errors=errors,
   794
                   newline="",
   795
   796
           else:
   797
               # Binary mode
   798
               handle = open(handle, ioargs.mode)
FileNotFoundError: [Errno 2] No such file or directory: 'mckinsey.csv'
```

How can we slice the dataframe into, say, first 4 rows and first 3 columns?

-> 1217 self.handles = get handle(# type: ignore[call-overload

We can use iloc

Pass in 2 different ranges for slicing - one for row and one for column just like Numpy

Recall, iloc doesn't include the end index while slicing

Can we do the same thing with loc?

```
titem (self, key)
   959
          if self. is scalar access(key):
   960
               return self.obj. get value(*key, takeable=self. takeable)
--> 961
           return self. getitem tuple(key)
   962 else:
   963
         # we by definition only have the 0th axis
           axis = self.axis or 0
File ~\anaconda3\lib\site-packages\pandas\core\indexing.py:1149, in LocIndexer. getitem
tuple(self, tup)
   1146 if self. multi_take_opportunity(tup):
          return self. multi take(tup)
-> 1149 return self. getitem tuple same dim(tup)
File ~\anaconda3\lib\site-packages\pandas\core\indexing.py:827, in LocationIndexer. get
item tuple same dim(self, tup)
   824 if com.is null slice(key):
   825
          continue
--> 827 retval = getattr(retval, self.name). getitem axis(key, axis=i)
   828 # We should never have retval.ndim < self.ndim, as that should
   829 # be handled by the getitem lowerdim call above.
   830 assert retval.ndim == self.ndim
File ~\anaconda3\lib\site-packages\pandas\core\indexing.py:1180, in LocIndexer. getitem
axis(self, key, axis)
  1178 if isinstance(key, slice):
          self. validate key(key, axis)
  1179
           return self. get slice axis(key, axis=axis)
  1181 elif com.is bool indexer(key):
           return self. getbool axis(key, axis=axis)
File ~\anaconda3\lib\site-packages\pandas\core\indexing.py:1214, in LocIndexer. get sli
ce axis(self, slice obj, axis)
          return obj.copy(deep=False)
  1213 labels = obj. get axis(axis)
-> 1214 indexer = labels.slice indexer(slice obj.start, slice obj.stop, slice obj.step)
  1216 if isinstance(indexer, slice):
   1217
           return self.obj. slice(indexer, axis=axis)
File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:6274, in Index.slice inde
xer(self, start, end, step, kind)
  6231 """
  6232 Compute the slice indexer for input labels and step.
  6233
   (...)
  6270 slice(1, 3, None)
  6271 """
  6272 self. deprecated arg(kind, "kind", "slice indexer")
-> 6274 start slice, end slice = self.slice locs(start, end, step=step)
  6276 # return a slice
   6277 if not is scalar(start slice):
File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:6484, in Index.slice locs
(self, start, end, step, kind)
   6482 start slice = None
   6483 if start is not None:
        start slice = self.get slice bound(start, "left")
   6485 if start slice is None:
        start slice = 0
   6486
File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:6393, in Index.get slice
bound (self, label, side, kind)
   6389 original label = label
   6391 # For datetime indices label may be a string that has to be converted
   6392 # to datetime boundary according to its resolution.
-> 6393 label = self. maybe cast slice bound(label, side)
```

```
6395 # we need to look up the label
6396 try:

File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:6340, in Index._maybe_cas
t_slice_bound(self, label, side, kind)
6335 # We are a plain index here (sub-class override this method if they
6336 # wish to have special treatment for floats/ints, e.g. Float64Index and
6337 # datetimelike Indexes
6338 # reject them, if index does not contain label
6339 if (is_float(label) or is_integer(label)) and label not in self:

-> 6340     raise self._invalid_indexer("slice", label)
6342 return label

TypeError: cannot do slice indexing on Index with these indexers [1] of type int
```

Why does slicing using indices doesn't work with loc?

Recall, we need to work with explicit labels while using loc

```
In [85]: df.loc[1:5, ['country','life exp']]
        KeyError
                                                 Traceback (most recent call last)
        Input In [85], in <cell line: 1>()
        ---> 1 df.loc[1:5, ['country','life exp']]
        File ~\anaconda3\lib\site-packages\pandas\core\indexing.py:961, in LocationIndexer. ge
        titem (self, key)
            959
                  if self. is scalar access(key):
                       return self.obj. get value(*key, takeable=self. takeable)
            960
                  return self. getitem tuple(key)
        --> 961
            962 else:
            963 # we by definition only have the 0th axis
                  axis = self.axis or 0
        File ~\anaconda3\lib\site-packages\pandas\core\indexing.py:1149, in LocIndexer. getitem
        tuple(self, tup)
           1146 if self. multi take opportunity(tup):
           return self. multi take(tup)
        -> 1149 return self. getitem tuple same dim(tup)
        File ~\anaconda3\lib\site-packages\pandas\core\indexing.py:827, in LocationIndexer. get
        item tuple same dim(self, tup)
            824 if com.is null slice(key):
            825
                  continue
        --> 827 retval = getattr(retval, self.name). getitem axis(key, axis=i)
            828 # We should never have retval.ndim < self.ndim, as that should
            829 # be handled by the getitem lowerdim call above.
            830 assert retval.ndim == self.ndim
        File ~\anaconda3\lib\site-packages\pandas\core\indexing.py:1191, in LocIndexer. getitem
         axis(self, key, axis)
           if hasattr(key, "ndim") and key.ndim > 1:
           1189
                       raise ValueError ("Cannot index with multidimensional key")
        -> 1191 return self. getitem iterable(key, axis=axis)
           1193 # nested tuple slicing
           1194 if is nested tuple(key, labels):
        File ~\anaconda3\lib\site-packages\pandas\core\indexing.py:1132, in LocIndexer. getitem
        iterable(self, key, axis)
           1129 self. validate key(key, axis)
           1131 # A collection of keys
        -> 1132 keyarr, indexer = self. get listlike indexer(key, axis)
           1133 return self.obj. reindex with indexers (
```

```
1134
            {axis: [keyarr, indexer]}, copy=True, allow dups=True
   1135)
File ~\anaconda3\lib\site-packages\pandas\core\indexing.py:1327, in LocIndexer. get lis
tlike indexer(self, key, axis)
   1324 \text{ ax} = \text{self.obj. get axis(axis)}
   1325 axis name = self.obj. get axis name(axis)
-> 1327 keyarr, indexer = ax. get indexer strict(key, axis name)
   1329 return keyarr, indexer
File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:5782, in Index. get index
er strict(self, key, axis_name)
   5779 else:
   5780 keyarr, indexer, new indexer = self. reindex non unique(keyarr)
-> 5782 self. raise if missing(keyarr, indexer, axis name)
   5784 keyarr = self.take(indexer)
   5785 if isinstance(key, Index):
           # GH 42790 - Preserve name from an Index
File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:5845, in Index. raise if
missing (self, key, indexer, axis name)
          raise KeyError(f"None of [{key}] are in the [{axis name}]")
   5842
   5844 not found = list(ensure index(key)[missing mask.nonzero()[0]].unique())
-> 5845 raise KeyError(f"{not found} not in index")
KeyError: "['country'] not in index"
```

We can mention ranges using column labels as well in loc

How can we get specific rows and columns?

We pass in those **specific indices packed in** []

Can we do step slicing?

Yes, just like we did in Numpy

```
In [88]: df.iloc[1:10:2]
```

Out[88]:		Country	year	population	life_exp	gdp_cap
	1	Afghanistan	1957	9240934	30.332	820.853030
	3	Afghanistan	1972	13079460	36.088	739.981106
	5	Afghanistan	1982	12881816	39.854	978.011439
	Afghanistan	1992	16317921	41.674	649.341395	
	9	Afghanistan	2002	25268405	42.129	726.734055

Does step slicing work for loc too?

YES

```
In [89]:
          df.loc[1:10:2]
Out[89]:
                Country year population life_exp
                                                     gdp_cap
          1 Afghanistan 1957
                                 9240934
                                            30.332 820.853030
          3 Afghanistan 1972
                                 13079460
                                            36.088 739.981106
          5 Afghanistan 1982
                                12881816
                                            39.854 978.011439
                                            41.674 649.341395
          7 Afghanistan 1992
                                 16317921
          9 Afghanistan 2002
                                            42.129 726.734055
                                 25268405
```

Pandas built-in operation

Let's select the feature 'life_exp'

```
In [90]: le = df['life exp']
         le
                 28.801
Out[90]:
                 30.332
                 31.997
         3
                 36.088
                 38.438
         1703
                 37.080
         1704
                 37.080
         1705
                 80.000
         1706
                 80.000
         1707
                 80.000
         Name: life exp, Length: 1708, dtype: float64
```

How can we find the mean of the col life_exp?

```
In [91]: le.mean()
59.499171358313774
```

What other operations can we do?

• sum()

Out[91]:

count()

- min()
- max()

... and so on

Note:

We can see more methods by pressing "tab" after le.

```
In [92]: le.sum()
Out[92]: 101624.58468
In [93]: le.count()
Out[93]: 1708
```

What will happen we get if we divide sum() by count()?

```
In [94]: le.sum() / le.count()
Out[94]: 59.499171358313816
```

It gives the **mean** of life expectancy

Sorting

If you notice, life_exp col is not sorted

How can we perform sorting in pandas?

```
In [95]: df.sort_values(['life_exp'])
Out[95]: Country year population life_exp gdp_cap
```

	Country	year	population	life_exp	gdp_cap
1291	Rwanda	1992	7290203	23.599	737.068595
0	Afghanistan	1952	8425333	28.801	779.445314
551	Gambia	1952	284320	30.000	485.230659
35	Angola	1952	4232095	30.015	3520.610273
1343	Sierra Leone	1952	2143249	30.331	879.787736
•••					
1486	Switzerland	2007	7554661	81.701	37506.419070
694	Iceland	2007	301931	81.757	36180.789190
801	Japan	2002	127065841	82.000	28604.591900
670	Hong Kong, China	2007	6980412	82.208	39724.978670
802	Japan	2007	127467972	82.603	31656.068060

1708 rows × 5 columns

Rows get sorted based on values in life_exp column

By **default**, values are sorted in **ascending order**

How can we sort the rows in descending order?

In [96]: df.sort_values(['life_exp'], ascending=False)

Out[96]:

	Country	year	population	life_exp	gdp_cap
802	Japan	2007	127467972	82.603	31656.068060
670	Hong Kong, China	2007	6980412	82.208	39724.978670
801	Japan	2002	127065841	82.000	28604.591900
694	Iceland	2007	301931	81.757	36180.789190
1486	Switzerland	2007	7554661	81.701	37506.419070
•••					
1343	Sierra Leone	1952	2143249	30.331	879.787736
35	Angola	1952	4232095	30.015	3520.610273
551	Gambia	1952	284320	30.000	485.230659
0	Afghanistan	1952	8425333	28.801	779.445314
1291	Rwanda	1992	7290203	23.599	737.068595

1708 rows × 5 columns

Now the rows are sorted in **descending**

Can we do sorting on multiple columns?

YES

In [97]: df.sort_values(['year', 'life_exp'])

Out[97]:

	Country	year	population	life_exp	gdp_cap
0	Afghanistan	1952	8425333	28.801	779.445314
551	Gambia	1952	284320	30.000	485.230659
35	Angola	1952	4232095	30.015	3520.610273
1343	Sierra Leone	1952	2143249	30.331	879.787736
1031	Mozambique	1952	6446316	31.286	468.526038
•••					
694	Iceland	2007	301931	81.757	36180.789190
670	Hong Kong, China	2007	6980412	82.208	39724.978670
802	Japan	2007	127467972	82.603	31656.068060
1705	Sri Lanka	2022	130000000	80.000	500.000000
1706	Sri Lanka	2022	130000000	80.000	500.000000

1708 rows × 5 columns

What exactly happened here?

- Rows were **first sorted** based on **'year'**
- Then, rows with same values of 'year' were sorted based on 'lifeExp'

This way, we can do multi-level sorting of our data?

How can we have different sorting orders for different columns in multi-level sorting?

```
df.sort values(['year', 'life exp'], ascending=[False, True])
In [98]:
Out[98]:
                 Country year population life_exp
                                                       gdp_cap
         1705
                  Sri Lanka 2022
                                            80.000
                               130000000
                                                     500.000000
         1706
                  Sri Lanka 2022 130000000
                                            80.000
                                                     500.000000
         1462
                 Swaziland 2007
                                1133066
                                            39.613 4513.480643
         1042 Mozambique 2007 19951656
                                            42.082
                                                     823.685621
                                            42.384
         1690
                   Zambia 2007
                                  11746035
                                                    1271.211593
          407
                  Denmark 1952
                                  4334000
                                            70.780 9692.385245
          1463
                   Sweden 1952
                                   7124673
                                            71.860 8527.844662
          1079
                Netherlands 1952
                                  10381988
                                            72.130 8941.571858
          683
                   Iceland 1952
                                   147962
                                            72.490 7267.688428
                                            72.670 10095.421720
         1139
                   Norway 1952
                                   3327728
```

1708 rows × 5 columns

Just pack True and False for respective columns in a list []

Concatenating DataFrames

Let's use a mini use-case of users and messages

users --> Stores the user details - IDs and Names of users

```
In [99]: users = pd.DataFrame({"userid":[1, 2, 3], "name":["sharadh", "shahid", "khusalli"]})
users
```

```
        Out[99]:
        userid
        name

        0
        1
        sharadh

        1
        2
        shahid

        2
        3
        khusalli
```

msgs --> Stores the messages users have sent - User IDs and messages

msgs = pd.DataFrame({"userid":[1, 1, 2, 4], "msg":['hmm', "acha", "theek hai", "nice"]})

Can we combine these 2 DataFrames to form a single DataFrame?

```
pd.concat([users, msgs])
In [101...
Out[101]:
               userid
                        name
                                   msg
                      sharadh
                                   NaN
                       shahid
                                   NaN
            2
                   3
                      khusalli
                                  NaN
                   1
                         NaN
                                  hmm
                   1
            1
                         NaN
                                  acha
            2
                         NaN theek hai
            3
                   4
                         NaN
                                   nice
```

How exactly did concat work?

In [100...

- By default, axis=0 (row-wise) for concatenation
- userid, being same in both DataFrames, was combined into a single column
 - First values of users dataframe were placed, with values of column msg as NaN
 - Then values of msgs dataframe were placed, with values of column msg as NaN
- The original indices of the rows were preserved

Now how can we make the indices unique for each row?

```
pd.concat([users, msgs], ignore index = True)
In [102...
Out[102]:
              userid
                       name
                                  msg
           0
                  1 sharadh
                                  NaN
           1
                       shahid
                  2
                                  NaN
           2
                      khusalli
                  3
                                  NaN
           3
                  1
                        NaN
                                 hmm
           4
                  1
                        NaN
                                  acha
           5
                  2
                        NaN
                              theek hai
                  4
                        NaN
                                  nice
```

How can we concatenate them horizontally?

In [103... pd.concat([users, msgs], axis=1)

Out[103]:

	userid	name	userid	msg
0	1.0	sharadh	1	hmm
1	2.0	shahid	1	acha
2	3.0	khusalli	2	theek hai
3	NaN	NaN	4	nice

As you can see here:

- Both the dataframes are combined horizontally (column-wise)
- It gives 2 columns with different positional (implicit) index, but same label

Merging Dataframes

So far we have only concatenated and not merged data

But what is the difference between concat and merge?

- concat
 - simply stacks multiple DataFrame together along an axis
- merge
 - combines dataframes in a smart way based on values in shared columns

How can we know the name of the person who sent a particular message?

We need information from both the dataframes

So can we use pd.concat() for combining the dataframes?

No

pd.concat([users, msgs], axis=1) In [104... Out[104]: userid name userid msg 0 1.0 sharadh hmm 2.0 shahid acha 2 khusalli 3.0 2 theek hai 3 NaN NaN nice

What are the problems with concat here?

- concat simply combined/stacked the dataframe horizontally
- If you notice, userid 3 for user dataframe is stacked against userid 2 for msg dataframe
- This way of stacking doesn't help us gain any insights
- => pd.concat() does not work according to the values in the columns

We need to **merge** the data

How can we join the dataframes?

Notice that users has a userid = 3 but msgs does not

• When we merge these dataframes the userid = 3 is not included

- Similarly, userid = 4 is not present in users , and thus not included
- Only the userid common in both dataframes is shown

What type of join is this?

Inner Join

Remember joins from SQL?

The on parameter specifies the key, similar to primary key in SQL

Now what join we want to use to get info of all the users and all the messages?

In [106	usei	rs.me	rge(msg	s, on =
Out[106]:	u	serid	name	msg
	0	1	sharadh	hmm
	1	1	sharadh	acha
	2	2	shahid	theek hai
	3	3	khusalli	NaN
	4	4	NaN	nice
	Note			

Note:

All missing values are replaced with NaN

And what if we want the info of all the users in the dataframe?

Similarly, what if we want all the messages and info only for the users who sent a message?

Out[108]:		userid	name	msg
	0	1	sharadh	hmm
	1	1	sharadh	acha
	2	2	shahid	theek hai
	3	4	NaN	nice

Note,

NaN in name can be thought of as an anonymous message

But sometimes the column names might be different even if they contain the same data

Let's rename our users column userid to id

Now, how can we merge the 2 dataframes when the key has a different name?

Here,

- left_on : Specifies the **key of the 1st dataframe** (users here)
- right_on : Specifies the **key of the 2nd dataframe** (msgs here)

IMDB Movie Business Use-case

Imagine you are working as a Data Scientist for an Analytics firm

Your task is to analyse some movie trends for a client

IMDB has online database of information related to movies

The database contains info of several years about:

- Movies
- Rating
- Director
- Popularity
- Revenue & Budget

Lets download and read the IMDB dataset

- File1: https://drive.google.com/file/d/1s2TkjSpzNc4SyxqRrQleZyDIHlc7bxnd/view?usp=sharing
- File2: https://drive.google.com/file/d/1Ws-_s1fHZ9nHfGLVUQurbHDvStePIEJm/view?usp=sharing

```
import pandas as pd
In [111...
         import numpy as np
In [112...
         !gdown 1s2TkjSpzNc4SyxqRrQleZyDIHlc7bxnd
         Downloading...
         From: https://drive.google.com/uc?id=1s2TkjSpzNc4SyxqRrQleZyDIHlc7bxnd
         To: C:\Users\kumar\Jupyter Python Files\Scaler Lectures\movies.csv
                        \mid 0.00/112k [00:00<?, ?B/s]
         100%|########## 112k/112k [00:00<00:00, 2.40MB/s]
         !gdown 1Ws- s1fHZ9nHfGLVUQurbHDvStePlEJm
In [113...
         Downloading ...
         From: https://drive.google.com/uc?id=1Ws- s1fHZ9nHfGLVUQurbHDvStePlEJm
         To: C:\Users\kumar\Jupyter Python Files\Scaler Lectures\directors.csv
                        | 0.00/65.4k [00:00<?, ?B/s]
         100%|########## 65.4k/65.4k [00:00<00:00, 349kB/s]
         100%|########## 65.4k/65.4k [00:00<00:00, 349kB/s]
```

Here we have two csv files

- movies.csv
- directors.csv

```
In [114... movies = pd.read_csv('movies.csv')
#Top 5 rows
movies.head()
```

Out[114]: **Unnamed:** id budget popularity revenue vote average vote count director id year 0 0 43597 237000000 150 2787965087 7.2 11800 4762 2009 Avatar Pirates of the 1 1 43598 300000000 139 961000000 Caribbean: 6.9 4500 4763 2007 At World's End 2 245000000 880674609 2015 2 43599 107 6.3 4466 4764 Spectre The Dark 3 3 43600 250000000 112 1084939099 Knight 7.6 9106 4765 2012 Rises Spider-5 43602 258000000 115 890871626 5.9 3576 4767 2007 Man 3

So what kind of questions can we ask from this dataset?

- Top 10 most popular movies, using popularity
- Or find some **highest rated movies**, using vote_average
- We can find number of **movies released per year** too
- Or maybe we can find **highest budget movies in a year** using both budget and year

But can we ask more interesting/deeper questions?

- Do you think we can find the **most productive directors**?
- Which directors produce high budget films?
- Highest and lowest rated movies for every month in a particular year?

Notice, there's a column **Unnamed: 0** which represents nothing but the index of a row.

How to get rid of this Unnamed: 0 col?

```
In [115... movies = pd.read_csv('movies.csv', index_col=0)
    movies.head()
```

Out[115]:		id	budget	popularity	revenue	title	vote_average	vote_count	director_id	year	month	
	0	43597	237000000	150	2787965087	Avatar	7.2	11800	4762	2009	Dec	Th
	1	43598	300000000	139	961000000	Pirates of the Caribbean: At World's End	6.9	4500	4763	2007	May	c Th
	2	43599	245000000	107	880674609	Spectre	6.3	4466	4764	2015	Oct	٨
	3	43600	250000000	112	1084939099	The Dark Knight Rises	7.6	9106	4765	2012	Jul	٨
	5	43602	258000000	115	890871626	Spider- Man 3	5.9	3576	4767	2007	May	Т

index_col=0 explicitly states to treat the first column as the index

The default value is index_col=None

```
In [116... movies.shape
Out[116]: (1465, 11)
```

The movies df contains 1465 rows,11 columns

Lets read the directors dataset:

```
In [117... directors = pd.read_csv('directors.csv',index_col=0)
    directors.head()
```

Out[117]:		director_name	id	gender
	0	James Cameron	4762	Male

```
    Gore Verbinski 4763 Male
    Sam Mendes 4764 Male
    Christopher Nolan 4765 Male
    Andrew Stanton 4766 Male
```

```
In [118... directors.shape
Out[118]: (2349, 3)
```

Directors df contains:

2349 rows,3 columns

Summary

- 1. Movie dataset contains info about movies, release, popularity, ratings and the director ID
- 2. Director dataset contains detailed info about the director

Merging the director and movie data

Now, how can we know the details about the Director of a particular movie?

We will have to merge these datasets

So on which column we should merge the dfs?

We will use the **ID columns** (representing unique director) in both the datasets

If you observe,

=> director_id of movies are taken from id of directors dataframe

Thus we can merge our dataframes based on these two columns as keys

Before that, lets first check number of unique director values in our movies data

How do we get the number of unique directors in movies?

```
In [119... movies['director_id'].nunique()
Out[119]:

Recall,

we had learnt about nunique earlier

Similarly for unique diretors in directors df
```

```
In [120... directors['id'].nunique()
Out[120]: 2349
```

Summary:

- Movies Dataset: 1465 rows, but only 199 unique directors
- Directors Dataset: 2349 unique directors (= no of rows)

What can we infer from this?

=> Directors in movies is a subset of directors in directors

Now, how can we check if all director_id values are present in id?

```
In [121...
         movies['director id'].isin(directors['id'])
Out[121]:
                  True
                  True
          3
                 True
          5
                 True
          4736
                 True
          4743
                 True
          4748
                 True
          4749
                 True
                 True
          4768
         Name: director id, Length: 1465, dtype: bool
```

The isin() method checks if the Dataframe column contains the specified value(s).

How is isin different from Python in?

- in works for **one element** at a time
- isin does this for **all the values** in the column

If you notice,

- This is like a boolean "mask"
- It returns a df similar to the original df
- For rows with values of director_id present in id it returns True, else False

How can we check if there is any False here?

```
In [122... np.all(movies['director_id'].isin(directors['id']))
Out[122]:
True
```

Lets finally merge our dataframes

Do we need to keep all the rows for movies?

YES

Do we need to keep all the rows of directors?

NO

only the ones for which we have a corresponding row in movies

So which join type do you think we should apply here?

```
In [123... data = movies.merge(directors, how='left', left_on='director_id',right_on='id')
    data
```

Out[123]:		id_x	budget	popularity	revenue	title	vote_average	vote_count	director_id	year	month
Out[123]:	0	43597	237000000	150	2787965087	Avatar	7.2	11800	4762	2009	Dec
	1	43598	300000000	139	961000000	Pirates of the Caribbean: At World's End	6.9	4500	4763	2007	May
	2	43599	245000000	107	880674609	Spectre	6.3	4466	4764	2015	Oct
	3	43600	250000000	112	1084939099	The Dark Knight Rises	7.6	9106	4765	2012	Jul
	4	43602	258000000	115	890871626	Spider- Man 3	5.9	3576	4767	2007	May
	•••										
	1460	48363	0	3	321952	The Last Waltz	7.9	64	4809	1978	May
	1461	48370	27000	19	3151130	Clerks	7.4	755	5369	1994	Sep
	1462	48375	0	7	0	Rampage	6.0	131	5148	2009	Aug
	1463	48376	0	3	0	Slacker	6.4	77	5535	1990	Jul
	1464	48395	220000	14	2040920	El Mariachi	6.6	238	5097	1992	Sep

1465 rows × 14 columns

Notice, two stranger id columns id_x and id_y.

What do you think these newly created cols are?

Since the columns with name id is present in both the df

- id_x represents id values from movie df
- id_y represents id values from directors df

Do you think any column is redundant here and can be dropped?

- id_y is redundant as it is same as director_id
- But we dont require director_id further

So we can simply drop these features

```
In [124... data.drop(['director_id','id_y'],axis=1,inplace=True)
    data.head()
```

Out[124]: id_x budget popularity revenue title vote_average vote_count year month day direct

0	43597	237000000	150	2787965087	Avatar	7.2	11800	2009	Dec	Thursday	
1	43598	300000000	139	961000000	Pirates of the Caribbean: At World's End	6.9	4500	2007	May	Saturday	Gor
2	43599	245000000	107	880674609	Spectre	6.3	4466	2015	Oct	Monday	Sa
3	43600	250000000	112	1084939099	The Dark Knight Rises	7.6	9106	2012	Jul	Monday	C
4	43602	258000000	115	890871626	Spider- Man 3	5.9	3576	2007	May	Tuesday	

Feature Exploration

Lets explore all the features in the merged dataset

```
In [125...
       data.info()
       <class 'pandas.core.frame.DataFrame'>
       Int64Index: 1465 entries, 0 to 1464
       Data columns (total 12 columns):
          Column
                  Non-Null Count Dtype
           ----
        1 budget
                       1465 non-null int64
                       1465 non-null int64
          popularity 1465 non-null int64
        2
        3 revenue
                       1465 non-null int64
        4 title 1465 non-null object
        5 vote average 1465 non-null float64
          vote_count 1465 non-null int64
        7
          year
                        1465 non-null int64
        8 month
                       1465 non-null object
                       1465 non-null object
           day
        10 director name 1465 non-null object
        11 gender 1341 non-null object
       dtypes: float64(1), int64(6), object(5)
       memory usage: 148.8+ KB
```

Looks like only gender column has missing values (will come later)

How can we describe these features to know more about their range of values?

coun	1465.000000	1.465000e+03	1465.000000	1.465000e+03	1465.000000	1465.000000	1465.000000
mean	45225.191126	4.802295e+07	30.855973	1.432539e+08	6.368191	1146.396587	2002.615017
sto	l 1189.096396	4.935541e+07	34.845214	2.064918e+08	0.818033	1578.077438	8.680141
mir	43597.000000	0.000000e+00	0.000000	0.000000e+00	3.000000	1.000000	1976.000000
25%	44236.000000	1.400000e+07	11.000000	1.738013e+07	5.900000	216.000000	1998.000000
50%	45022.000000	3.300000e+07	23.000000	7.578164e+07	6.400000	571.000000	2004.000000

75%	45990.000000	6.600000e+07	41.000000	1.792469e+08	6.900000	1387.000000	2009.000000
max	48395.000000	3.800000e+08	724.000000	2.787965e+09	8.300000	13752.000000	2016.000000

This gives us all **statistical properties** of the columns

If you notice, some columns such as "title", "month" are missing

How are these missing columns different?

They are of **object dtype**

Then how can we include object type in df.describe()?

In [127... data.describe(include=object)

Out[127]:

	title	month	day	director_name	gender
count	1465	1465	1465	1465	1341
unique	1465	12	7	199	2
top	Avatar	Dec	Friday	Steven Spielberg	Male
freq	1	193	654	26	1309

If you notice,

- The range of values in the revenue and budget seem to be very high
- Generally budget and revenue for Hollywood movies is in million dollars

How can we change the values of revenue and budget into million dollars USD?

In [128... data['revenue'] = (data['revenue']/1000000).round(2)
 data

											data
dire	day	month	year	vote_count	vote_average	title	revenue	popularity	budget	id_x	
	Thursday	Dec	2009	11800	7.2	Avatar	2787.97	150	237000000	43597	0
Gor	Saturday	May	2007	4500	6.9	Pirates of the Caribbean: At World's End	961.00	139	300000000	43598	1
Sa	Monday	Oct	2015	4466	6.3	Spectre	880.67	107	245000000	43599	2
(Monday	Jul	2012	9106	7.6	The Dark Knight Rises	1084.94	112	250000000	43600	3
	Tuesday	May	2007	3576	5.9	Spider- Man 3	890.87	115	258000000	43602	4
											•••
	Monday	May	1978	64	7.9	The Last Waltz	0.32	3	0	48363	1460
ŀ	Tuesday	Sep	1994	755	7.4	Clerks	3.15	19	27000	48370	1461

1462	48375	0	7	0.00	Rampage	6.0	131	2009	Aug	Friday	
1463	48376	0	3	0.00	Slacker	6.4	77	1990	Jul	Friday	
1464	48395	220000	14	2.04	El Mariachi	6.6	238	1992	Sep	Friday	

1465 rows × 12 columns

2 43599

In [129...

Similarly, we can do it for 'budget' as well

data['budget']=(data['budget']/1000000).round(2)

```
data.head()
                 id_x budget popularity
Out[129]:
                                                          title vote_average vote_count year month
                                                                                                             day director_na
                                          revenue
                                                                                                                          Jai
            0 43597
                        237.0
                                           2787.97
                                                                         7.2
                                      150
                                                        Avatar
                                                                                   11800
                                                                                          2009
                                                                                                   Dec Thursday
                                                                                                                        Came
                                                     Pirates of
                                                           the
            1 43598
                        300.0
                                      139
                                            961.00 Caribbean:
                                                                         6.9
                                                                                    4500 2007
                                                                                                   May
                                                                                                        Saturday
                                                                                                                   Gore Verbi
                                                    At World's
```

End

Spectre

The Dark Christop **3** 43600 250.0 1084.94 7.6 9106 2012 112 Knight Jul Monday No Rises Spider-4 43602 258.0 115 890.87 5.9 3576 2007 May Tuesday Sam Ra Man 3

6.3

4466

2015

Monday

Oct

Sam Men

Fetching queries from dataframe

107

880.67

Lets say we are interested in fetching all **highly rated movies**

• say movies with ratings > 7

245.0

How can we get movies with ratings > 7?

We can use the concept of masking

Lets first create a mask to filter such movies

- In SQL: SELECT * FROM movies WHERE vote_average > 7
- In pandas:

```
data['vote average'] > 7
In [130...
                     True
Out[130]:
                    False
           2
                    False
           3
                     True
                    False
           1460
                     True
           1461
                     True
           1462
                    False
```

1463 False
1464 False

Name: vote average, Length: 1465, dtype: bool

But we still don't know the row values ... Only that which row satisfied the condtion

How do we get the row values from this mask?

data.loc[data['vote average'] > 7] In [131... Out[131]: id_x budget popularity title vote_average day direc revenue vote_count year month 0 43597 237.00 2787.97 7.2 2009 150 Avatar 11800 Dec Thursday The Dark C**3** 43600 250.00 112 1084.94 Knight 7.6 9106 2012 Jul Monday Rises The Hobbit: **14** 43616 250.00 956.02 120 7.1 4760 2014 Dec Wednesday The Battle Pet of the Five Armies The Hobbit: **16** 43619 250.00 94 958.40 The 7.6 4524 2013 Dec Wednesday Pet Desolation of Smauq 7.5 **19** 43622 200.00 100 1845.03 Titanic 7562 1997 Nov Tuesday **1456** 48321 0.01 20 Eraserhead 7.5 485 1977 D 7.00 Mar Saturday The **1457** 48323 0.00 5 0.00 7.1 1998 Oct Pete 51 Friday Mighty 1458 48335 0.06 27 3.22 Ρi 7.1 586 1998 Jul Friday

301 rows × 12 columns

0.00

0.03

1460 48363

1461 48370

You can also perform the filtering without even using loc

3

19

0.32

3.15

In [132... data[data['vote average'] > 7] Out[132]: id x budget popularity revenue title vote_average vote_count year day direc **0** 43597 237.00 150 2787.97 7.2 11800 2009 Dec Avatar Thursday The Dark C 43600 250.00 112 1084.94 Knight 7.6 9106 2012 Jul Monday Rises 120 956.02 The **14** 43616 250.00 7.1 4760 2014 Dec Wednesday Pet Hobbit:

The Last

Waltz

Clerks

7.9

7.4

64

755

1978

1994

May

Sep

Monday

Tuesday

Κ

						of the Five Armies						
	16	43619	250.00	94	958.40	The Hobbit: The Desolation of Smaug	7.6	4524	2013	Dec	Wednesday	Pet
	19	43622	200.00	100	1845.03	Titanic	7.5	7562	1997	Nov	Tuesday	
	•••											
1	1456	48321	0.01	20	7.00	Eraserhead	7.5	485	1977	Mar	Saturday	D
1	1457	48323	0.00	5	0.00	The Mighty	7.1	51	1998	Oct	Friday	Pete
1	1458	48335	0.06	27	3.22	Pi	7.1	586	1998	Jul	Friday	
1	1460	48363	0.00	3	0.32	The Last Waltz	7.9	64	1978	May	Monday	
1	1461	48370	0.03	19	3.15	Clerks	7.4	755	1994	Sep	Tuesday	K

The Battle

301 rows × 12 columns

But this is not recommended. Why?

- It can create a confusion between implicit/explicit indexing used as discussed before
- loc is also much faster

Now, how can we return a subset of columns, say, only title and director_name?

data.loc[data['vote_average'] > 7, ['title','director name']] In [133... Out[133]: title director name 0 Avatar James Cameron The Dark Knight Rises Christopher Nolan The Hobbit: The Battle of the Five Armies Peter Jackson 16 The Hobbit: The Desolation of Smaug Peter Jackson 19 Titanic James Cameron 1456 Eraserhead David Lynch 1457 The Mighty Peter Chelsom 1458 Darren Aronofsky 1460 The Last Waltz Martin Scorsese 1461 Kevin Smith Clerks

301 rows × 2 columns

So far we saw only single condition for filtering

What if we want to filter highly rated movies released after 2014?

Notice that two conditions are involved here

- 1. Movies need to be highly rated i.e.. > 7
- 2. They should be 2015 and onwards

We can use AND operator b/w multiple conditions

In [134	data	a.loc[(data['	vote_aver	age'] >	7) & (da	ıta['year']	>= 2015)]	.head	()		
Out[134]:		id_x	budget	popularity	revenue	title	vote_average	vote_count	year	month	day	directo
	30	43641	190.0	102	1506.25	Furious 7	7.3	4176	2015	Apr	Wednesday	Jam
	78	43724	150.0	434	378.86	Mad Max: Fury Road	7.2	9427	2015	May	Wednesday	Georg
	106	43773	135.0	100	532.95	The Revenant	7.3	6396	2015	Dec	Friday	Al G
	162	43867	108.0	167	630.16	The Martian	7.6	7268	2015	Sep	Wednesday	Ridle
	312	44128	75.0	48	108.15	The Man from U.N.C.L.E.	7.1	2265	2015	Aug	Thursday	Guy

Recall how we apply mutliple conditions in numpy?

Use **elementwise operator & or |**

Note:

- we cannot use and or or with dataframe
- for multiple conditions, we need to put each separate condition within parenthesis ()

Similarly how can we find movies released on either Friday or Sunday?

In [135	dat	a.loc	[(data['day'] ==	'Friday	') (data	['day'] == '	Saturday')].he	ad()		
Out[135]:		id_x	budget	popularity	revenue	title	vote_average	vote_count	year	month	day	directo
	1	43598	300.0	139	961.00	Pirates of the Caribbean: At World's End	6.9	4500	2007	May	Saturday	Gore Ve
	12	43614	380.0	135	1045.71	Pirates of the Caribbean: On Stranger Tides	6.4	4948	2011	May	Saturday	Rob N
	22	43627	200.0	35	783.77	Spider-Man 2	6.7	4321	2004	Jun	Friday	Sar
	25	43632	150.0	21	836.30	Transformers:	6.0	3138	2009	Jun	Friday	Mich

					Revenge of the Fallen						
40	43656	200.0	45	769.65	2012	5.6	4903	2009	Oct	Saturday	Em

Thus we can do complex queries using both & and | operators

Now let's try to answer few more Questions from this data

How will you find Top 5 most popular movies?

We can simply sort our data based on values of column 'popularity'

				(5)	False).head	ascending=	rity'],a	(['popula	_values	a.sort	data
direct	day	month	year	vote_count	vote_average	title	revenue	popularity	budget	id_x	
Cł	Wednesday	Nov	2014	10867	8.1	Interstellar	675.12	724	165.0	43692	58
Geo	Wednesday	May	2015	9427	7.2	Mad Max: Fury Road	378.86	434	150.0	43724	78
Gore	Wednesday	Jul	2003	6985	7.5	Pirates of the Caribbean: The Curse of the Bla	655.01	271	140.0	43796	119
	Tuesday	Nov	2014	5584	6.6	The Hunger Games: Mockingjay - Part 1	752.10	206	125.0	43797	120
Cł	Wednesday	Jul	2008	12002	8.2	The Dark Knight	1004.56	187	185.0	43662	45

On applying this to a string column, it sorts the dataframe *lexicographically

In [137	data	.sort	_values	(['title'],ascend	ling =Fals	•).head(5)					
Out[137]:		id_x	budget	popularity	revenue	title	vote_average	vote_count	year	month	day	directo
	436	44364	60.0	36	71.07	xXx: State of the Union	4.7	549	2005	Apr	Wednesday	Lee 1
	330 44165 70.0 46		277.45	xXx	5.8	1424	2002	Aug	Friday	Ro		
	994	45681	15.0	21	2.86	eXistenZ	6.7	475	1999	Apr	Wednesday	Cro
	547	44594	50.0	37	55.97	Zoolander 2	4.7	797	2016	Feb	Saturday	В
	850	45313	28.0	38	60.78	Zoolander	6.1	1337	2001	Sep	Friday	В

Now, how will get list of movies directed by a particular director, say, 'Christopher Nolan'?

```
title
   3 The Dark Knight Rises
  45
            The Dark Knight
  58
                 Interstellar
  59
                  Inception
  74
             Batman Begins
 565
                  Insomnia
 641
               The Prestige
1341
                  Memento
```

Note:

Out[138]:

- The string indicating "Christopher Nolan" could have been something else as well.
- The better way is to use string methods, we will discuss this later

In [138... data.loc[data['director_name'] == 'Christopher Nolan',['title']]

Apply

Now suppose we want to convert our Gender column data to numerical format

Basically,

- 0 for Male
- 1 for Female

How can we encode the column?

Let's first write a function to do it for a single value

```
In [139... def encode(data):
    if data == "Male":
        return 0
    else:
        return 1
```

Now how can we apply this function to the whole column?

```
In [140... data['gender'] = data['gender'].apply(encode)
    data
```

Out[140]:		id_x	budget	popularity	revenue	title	vote_average	vote_count	year	month	day	directo
	0	43597	237.00	150	2787.97	Avatar	7.2	11800	2009	Dec	Thursday	С
	1	43598	300.00	139	961.00	Pirates of the Caribbean: At World's End	6.9	4500	2007	May	Saturday	Gore V
	2	43599	245.00	107	880.67	Spectre	6.3	4466	2015	Oct	Monday	Sam

3	43600	250.00	112	1084.94	The Dark Knight Rises	7.6	9106	2012	Jul	Monday	Chri
4	43602	258.00	115	890.87	Spider- Man 3	5.9	3576	2007	May	Tuesday	Saı
•••											
1460	48363	0.00	3	0.32	The Last Waltz	7.9	64	1978	May	Monday	S
1461	48370	0.03	19	3.15	Clerks	7.4	755	1994	Sep	Tuesday	Kevi
1462	48375	0.00	7	0.00	Rampage	6.0	131	2009	Aug	Friday	ι
1463	48376	0.00	3	0.00	Slacker	6.4	77	1990	Jul	Friday	L
1464	48395	0.22	14	2.04	El Mariachi	6.6	238	1992	Sep	Friday	Ro

1465 rows × 12 columns

Notice how this is similar to using vectorization in Numpy

We thus can use apply to use a function throughout a column

Can we use apply on multiple columns?

Say,

How to find sum of revenue and budget per movie?

We can pass **multiple cols by packing them** within []

But there's a mistake here. We wanted our results per movie (per row)

But, we are getting the sum of the columns

How can we use apply to work on individual rows?

Every row of revenue was added to same row of budget

```
data[['revenue', 'budget']].apply(np.sum, axis=1)
In [142...
                 3024.97
Out[142]:
                 1261.00
                 1125.67
         3
                 1334.94
                 1148.87
         1460
                   0.32
         1461
                    3.18
         1462
                   0.00
         1463
                   0.00
                    2.26
         1464
         Length: 1465, dtype: float64
```

What does this axis mean in apply?

- If axis = 0, it will apply to each column, if axis = 1, each row
- By default axis = 0
- => apply() can be applied on any dataframe along any particular axis

Similarly, how can I find profit per movie (revenue-budget)?

```
In [143... def prof(x): # We define a function to calculate profit
    return x['revenue']-x['budget']
    data['profit'] = data[['revenue', 'budget']].apply(prof, axis = 1)
    data
```

directo	day	month	year	vote_count	vote_average	title	revenue	popularity	budget	id_x	
С	Thursday	Dec	2009	11800	7.2	Avatar	2787.97	150	237.00	43597	0
Gore V	Saturday	May	2007	4500	6.9	Pirates of the Caribbean: At World's End	961.00	139	300.00	43598	1
Sam	Monday	Oct	2015	4466	6.3	Spectre	880.67	107	245.00	43599	2
Chri	Monday	Jul	2012	9106	7.6	The Dark Knight Rises	1084.94	112	250.00	43600	3
Saı	Tuesday	May	2007	3576	5.9	Spider- Man 3	890.87	115	258.00	43602	4
											•••
S	Monday	May	1978	64	7.9	The Last Waltz	0.32	3	0.00	48363	1460
Kevi	Tuesday	Sep	1994	755	7.4	Clerks	3.15	19	0.03	48370	1461
L	Friday	Aug	2009	131	6.0	Rampage	0.00	7	0.00	48375	1462
l	Friday	Jul	1990	77	6.4	Slacker	0.00	3	0.00	48376	1463
Ro	Friday	Sep	1992	238	6.6	El Mariachi	2.04	14	0.22	48395	1464

1465 rows × 13 columns

Thus, we can access the columns by their names inside the functions too using apply

Importing Data

Let's first import our data and prepare it as we did in the last lecture

```
In [144... import pandas as pd
  import numpy as np
!gdown 1s2TkjSpzNc4SyxqRrQleZyDIHlc7bxnd
```

```
movies = pd.read_csv('movies.csv', index col=0)
directors = pd.read csv('directors.csv',index col=0)
data = movies.merge(directors, how='left', left on='director id',right on='id')
data.drop(['director id','id y'],axis=1,inplace=True)
Downloading...
From: https://drive.google.com/uc?id=1s2TkjSpzNc4SyxqRrQleZyDIHlc7bxnd
To: C:\Users\kumar\Jupyter Python Files\Scaler Lectures\movies.csv
             | 0.00/112k [00:00<?, ?B/s]
100%|########## 112k/112k [00:00<00:00, 508kB/s]
100%|########## 112k/112k [00:00<00:00, 508kB/s]
Downloading...
From: https://drive.google.com/uc?id=1Ws- s1fHZ9nHfGLVUQurbHDvStePlEJm
To: C:\Users\kumar\Jupyter Python Files\Scaler Lectures\directors.csv
             | 0.00/65.4k [00:00<?, ?B/s]
100%|########## 65.4k/65.4k [00:00<00:00, 296kB/s]
100%|########## 65.4k/65.4k [00:00<00:00, 296kB/s]
```

Grouping

How can we know the number of movies released by a particular director, say, Christopher Nolan?

```
In [145... data.loc[data['director_name'] == 'Christopher Nolan',['title']].count()
Out[145]: title 8
dtype: int64
```

What if we have to do find number of movies of each director?

We have value_counts() for this

!gdown 1Ws- s1fHZ9nHfGLVUQurbHDvStePlEJm

How does this exactly work?

We can assume pandas must have grouped the rows internally to find the count

But what if we need to find some **other metric** besides count?

For example, average popularity of each director, or max rating among all movies by a director?

How can you find the average popularity of each director?

We will have to some group our rows director wise.

What is Grouping?

Simply it could be understood through the terms - Split, apply, combine

- 1. **Split**: **Breaking up and grouping** a DataFrame depending on the value of the specified key.
- 2. **Apply**: Computing **some functio**n, usually an **aggregate, transformation, or filtering**, within the individual groups.
- 3. **Combine**: **Merge the results** of these operations into an output array.

Note:

All these steps are to understand the topic

Group based Aggregates

Now, how can we group our data director-wise?

```
In [147... data.groupby('director_name')
```

Out[147]: core.groupby.generic.DataFrameGroupBy object at 0x000001A2D0D84A30>

Notice,

• It's a DataFrameGroupBy type object

NOT a DataFrame type object

What is groupby('director name') doing?

Grouping all rows in which **director_name** value is **same**

But it's returning an object, we would want to get information out of this object.

Let's look at few attributes of the same.

How can we know the number of groups our data is divided into?

```
In [148... data.groupby('director_name').ngroups
```

Out[148]: 1

Based on this grouping, how can we find which keys belong to which group?

```
In [149... data.groupby('director_name').groups
```

Out[149]:

{'Adam McKay': [176, 323, 366, 505, 839, 916], 'Adam Shankman': [265, 300, 350, 404, 45 8, 843, 999, 1231], 'Alejandro González Iñárritu': [106, 749, 1015, 1034, 1077, 1405], 'Alex Proyas': [95, 159, 514, 671, 873], 'Alexander Payne': [793, 1006, 1101, 1211, 128 1], 'Andrew Adamson': [11, 43, 328, 501, 947], 'Andrew Niccol': [533, 603, 701, 722, 143 9], 'Andrzej Bartkowiak': [349, 549, 754, 911, 924], 'Andy Fickman': [517, 681, 909, 92 6, 973, 1023], 'Andy Tennant': [314, 320, 464, 593, 676, 885], 'Ang Lee': [99, 134, 748, 840, 1089, 1110, 1132, 1184], 'Anne Fletcher': [610, 650, 736, 789, 1206], 'Antoine Fuqu a': [310, 338, 424, 467, 576, 808, 818, 1105], 'Atom Egoyan': [946, 1128, 1164, 1194, 13 47, 1416], 'Barry Levinson': [313, 319, 471, 594, 878, 898, 1013, 1037, 1082, 1143, 118 5, 1345, 1378], 'Barry Sonnenfeld': [13, 48, 90, 205, 591, 778, 783], 'Ben Stiller': [20 9, 212, 547, 562, 850], 'Bill Condon': [102, 307, 902, 1233, 1381], 'Bobby Farrelly': [3 52, 356, 481, 498, 624, 630, 654, 806, 928, 972, 1111], 'Brad Anderson': [1163, 1197, 13 50, 1419, 1430], 'Brett Ratner': [24, 39, 188, 207, 238, 292, 405, 456, 920], 'Brian De Palma': [228, 255, 318, 439, 747, 905, 919, 1088, 1232, 1261, 1317, 1354], 'Brian Helgel and: [512, 607, 623, 742, 933], 'Brian Levant': [418, 449, 568, 761, 860, 1003], 'Brian Robbins': [416, 441, 669, 962, 988, 1115], 'Bryan Singer': [6, 32, 33, 44, 122, 216, 29 7, 1326], 'Cameron Crowe': [335, 434, 488, 503, 513, 698], 'Catherine Hardwicke': [602, 695, 724, 937, 1406, 1412], 'Chris Columbus': [117, 167, 204, 218, 229, 509, 656, 897, 9 96, 1086, 1129], 'Chris Weitz': [17, 500, 794, 869, 1202, 1267], 'Christopher Nolan': [3, 45, 58, 59, 74, 565, 641, 1341], 'Chuck Russell': [177, 410, 657, 1069, 1097, 1339], 'Clint Eastwood': [369, 426, 447, 482, 490, 520, 530, 535, 645, 727, 731, 786, 787, 899, 974, 986, 1167, 1190, 1313], 'Curtis Hanson': [494, 579, 606, 711, 733, 1057, 1310], 'Da nny Boyle': [527, 668, 1083, 1085, 1126, 1168, 1287, 1385], 'Darren Aronofsky': [113, 75 1, 1187, 1328, 1363, 1458], 'Darren Lynn Bousman': [1241, 1243, 1283, 1338, 1440], 'Davi d Ayer': [50, 273, 741, 1024, 1146, 1407], 'David Cronenberg': [541, 767, 994, 1055, 125 4, 1268, 1334], 'David Fincher': [62, 213, 253, 383, 398, 478, 522, 555, 618, 785], 'Dav id Gordon Green': [543, 862, 884, 927, 1376, 1418, 1432, 1459], 'David Koepp': [443, 64 4, 735, 1041, 1209], 'David Lynch': [583, 1161, 1264, 1340, 1456], 'David O. Russell': [422, 556, 609, 896, 982, 989, 1229, 1304], 'David R. Ellis': [582, 634, 756, 888, 934], 'David Zucker': [569, 619, 965, 1052, 1175], 'Dennis Dugan': [217, 260, 267, 293, 303, 7 18, 780, 977, 1247], 'Donald Petrie': [427, 507, 570, 649, 858, 894, 1106, 1331], 'Doug Liman': [52, 148, 251, 399, 544, 1318, 1451], 'Edward Zwick': [92, 182, 346, 566, 791, 8 19, 825], 'F. Gary Gray': [308, 402, 491, 523, 697, 833, 1272, 1380], 'Francis Ford Copp ola': [487, 559, 622, 646, 772, 1076, 1155, 1253, 1312], 'Francis Lawrence': [63, 72, 10 9, 120, 679], 'Frank Coraci': [157, 249, 275, 451, 577, 599, 963], 'Frank Oz': [193, 35 5, 473, 580, 712, 813, 987], 'Garry Marshall': [329, 496, 528, 571, 784, 893, 1029, 116 9], 'Gary Fleder': [518, 667, 689, 867, 981, 1165], 'Gary Winick': [258, 797, 798, 804, 1454], 'Gavin O'Connor': [820, 841, 939, 953, 1444], 'George A. Romero': [250, 1066, 109 6, 1278, 1367, 1396], 'George Clooney': [343, 450, 831, 966, 1302], 'George Miller': [7 8, 103, 233, 287, 1250, 1403, 1450], 'Gore Verbinski': [1, 8, 9, 107, 119, 633, 1040], 'Guillermo del Toro': [35, 252, 419, 486, 1118], 'Gus Van Sant': [595, 1018, 1027, 1159, 1240, 1311, 1398], 'Guy Ritchie': [124, 215, 312, 1093, 1225, 1269, 1420], 'Harold Rami

s': [425, 431, 558, 586, 788, 1137, 1166, 1325], 'Ivan Reitman': [274, 643, 816, 883, 91 0, 935, 1134, 1242], 'James Cameron': [0, 19, 170, 173, 344, 1100, 1320], 'James Ivory': [1125, 1152, 1180, 1291, 1293, 1390, 1397], 'James Mangold': [140, 141, 557, 560, 829, 8 45, 958, 1145], 'James Wan': [30, 617, 1002, 1047, 1337, 1417, 1424], 'Jan de Bont': [15 5, 224, 231, 270, 781], 'Jason Friedberg': [812, 1010, 1012, 1014, 1036], 'Jason Reitma n': [792, 1092, 1213, 1295, 1299], 'Jaume Collet-Serra': [516, 540, 640, 725, 1011, 118 9], 'Jay Roach': [195, 359, 389, 397, 461, 703, 859, 1072], 'Jean-Pierre Jeunet': [423, 485, 605, 664, 765], 'Joe Dante': [284, 525, 638, 1226, 1298, 1428], 'Joe Wright': [85, 432, 553, 803, 814, 855], 'Joel Coen': [428, 670, 691, 707, 721, 889, 906, 980, 1157, 12 38, 1305], 'Joel Schumacher': [128, 184, 348, 484, 572, 614, 652, 764, 876, 886, 1108, 1 230, 1280], 'John Carpenter': [537, 663, 686, 861, 938, 1028, 1080, 1102, 1329, 1371], 'John Glen': [601, 642, 801, 847, 864], 'John Landis': [524, 868, 1276, 1384, 1435], 'Jo hn Madden': [457, 882, 1020, 1249, 1257], 'John McTiernan': [127, 214, 244, 351, 534, 56 3, 648, 782, 838, 1074], 'John Singleton': [294, 489, 732, 796, 1120, 1173, 1316], 'John Whitesell': [499, 632, 763, 1119, 1148], 'John Woo': [131, 142, 264, 371, 420, 675, 118 2], 'Jon Favreau': [46, 54, 55, 382, 759, 1346], 'Jon M. Chu': [100, 225, 810, 1099, 118 6], 'Jon Turteltaub': [64, 180, 372, 480, 760, 846, 1171], 'Jonathan Demme': [277, 493, 1000, 1123, 1215], 'Jonathan Liebesman': [81, 143, 339, 1117, 1301], 'Judd Apatow': [32 1, 710, 717, 865, 881], 'Justin Lin': [38, 123, 246, 1437, 1447], 'Kenneth Branagh': [8 0, 197, 421, 879, 1094, 1277, 1288], 'Kenny Ortega': [412, 852, 1228, 1315, 1365], 'Kevi n Reynolds': [53, 502, 639, 1019, 1059], ...}

Now what if we want to extract data of a particular group from this list?

[150	data	.group	by('dired	ctor_name').get_gro	oup('Alexan	der Payne')					
0]:		id_x	id_x budget popularity revenue tit		title	vote_average	vote_count	year	month	day	d	
	793	45163	30000000	19	105834556	About Schmidt	6.7	362	2002	Dec	Friday	
	1006	45699	20000000	40	177243185	The Descendants	6.7	934	2011	Sep	Friday	
	1101	46004	16000000	23	109502303	Sideways	6.9	478	2004	Oct	Friday	
	1211	46446	12000000	29	17654912	Nebraska	7.4	636	2013	Sep	Saturday	
	1281	46813	0	13	0	Election	6.7	270	1999	Apr	Friday	

Great! We are able to extract the data from our DataFrameGroupBy object

But can we extend this to finding an aggregate metric of the data?

How can we find count of each director?

This does give us the max value of the data, but for all the features

```
data.groupby('director name')['title'].count()
In [151...
          director name
Out[151]:
          Adam McKay
                                            6
          Adam Shankman
                                            8
          Alejandro González Iñárritu
                                            6
          Alex Proyas
                                            5
          Alexander Payne
                                            5
          Wes Craven
                                          10
                                            7
          Wolfgang Petersen
          Woody Allen
                                          18
          Zack Snyder
```

```
Zhang Yimou 6
Name: title, Length: 199, dtype: int64
```

Now say we want to know two aggregations for any feature.

For e.g., the very first year and the latest year a director released a movie

This is basically the min and max of year column, grouped by director

How can we find multiple aggregations of any feature?

```
data.groupby(['director name'])["year"].aggregate(['min', 'max'])
In [152...
Out[152]:
                                   min max
                     director_name
                      Adam McKay 2004 2015
                   Adam Shankman 2001 2012
           Alejandro González Iñárritu 2000 2015
                       Alex Proyas
                                  1994 2016
                   Alexander Payne
                                  1999 2013
                        Wes Craven 1984 2011
                  Wolfgang Petersen
                                  1981 2006
                      Woody Allen
                                  1977 2013
                       Zack Snyder 2004 2016
                      Zhang Yimou 2002 2014
```

199 rows × 2 columns

Group based Filtering

How we find details of the movies by high budget directors?

Lets assume,

high budget director -> any director with atleast one movie with budget >100M

We can get the highest budget movie data of every director

How can we **filter** out the director names with **max budget >100M**?

In [154... names = data_dir_budget.loc[data_dir_budget["budget"] >= 100, "director_name"]

Finally, how can we filter out the details of the movies by these directors?

In [155... data.loc[data['director_name'].isin(names)]

Out[155]:

,		id_x	budget	popularity	revenue	title	vote_average	vote_count	year	month	day	(
	0	43597	237000000	150	2787965087	Avatar	7.2	11800	2009	Dec	Thursday	_
	1	43598	300000000	139	961000000	Pirates of the Caribbean: At World's End	6.9	4500	2007	May	Saturday	
	2	43599	245000000	107	880674609	Spectre	6.3	4466	2015	Oct	Monday	
	3	43600	250000000	112	1084939099	The Dark Knight Rises	7.6	9106	2012	Jul	Monday	
	4	43602	258000000	115	890871626	Spider- Man 3	5.9	3576	2007	May	Tuesday	
	•••											
	1460	48363	0	3	321952	The Last Waltz	7.9	64	1978	May	Monday	
	1461	48370	27000	19	3151130	Clerks	7.4	755	1994	Sep	Tuesday	
	1462	48375	0	7	0	Rampage	6.0	131	2009	Aug	Friday	
	1463	48376	0	3	0	Slacker	6.4	77	1990	Jul	Friday	
	1464	48395	220000	14	2040920	El Mariachi	6.6	238	1992	Sep	Friday	

1465 rows × 12 columns

Recall isin() from last lecture

Can we do filtering of groups in a single go? YES

In [156... data.groupby('director_name').filter(lambda x: x["budget"].max() >= 100)

Out[156]:		id_x	budget	popularity	revenue	title	vote_average	vote_count	year	month	day
	0	43597	237000000	150	2787965087	Avatar	7.2	11800	2009	Dec	Thursday
	1	43598	300000000	139	961000000	Pirates of the Caribbean:	6.9	4500	2007	May	Saturday

					At World's End					
2	43599	245000000	107	880674609	Spectre	6.3	4466	2015	Oct	Monday
3	43600	250000000	112	1084939099	The Dark Knight Rises	7.6	9106	2012	Jul	Monday
4	43602	258000000	115	890871626	Spider- Man 3	5.9	3576	2007	May	Tuesday
•••										
1460	48363	0	3	321952	The Last Waltz	7.9	64	1978	May	Monday
1461	48370	27000	19	3151130	Clerks	7.4	755	1994	Sep	Tuesday
1462	48375	0	7	0	Rampage	6.0	131	2009	Aug	Friday
1463	48376	0	3	0	Slacker	6.4	77	1990	Jul	Friday
1464	48395	220000	14	2040920	El Mariachi	6.6	238	1992	Sep	Friday

1465 rows × 12 columns

Notice what's happening here?

- We first group data by director and then use <code>groupby().filter</code> function
- Groups are filtered if they do not satisfy the boolean criterion specified by function
- This is called **Group Based Filtering**

NOTE

We are filtering the groups here and not the rows

==> The result is **not a groupby object** but **regular pandas DataFrame** with the **filtered groups eliminated**

Group based Apply

Now let's assume, we call a movi risky if,

• its budget is higher than the average revenue of its director

How do we filter risky movies?

We can subtract the average revenue of a director from budget col, for each director

Can we use apply here?

Yes!

How do we use apply for this column?

- We will define a function to compute the subtraction
 - Pass this function in apply

```
In [157... def func(x):
    x["risky"] = x["budget"] - x["revenue"].mean() >= 0
    return x
    data_risky = data.groupby("director_name").apply(func)
    data_risky
```

t[157]:		id_x	budget	popularity	revenue	title	vote_average	vote_count	year	month	day	(
	0	43597	237000000	150	2787965087	Avatar	7.2	11800	2009	Dec	Thursday	
	1	43598	300000000	139	961000000	Pirates of the Caribbean: At World's End	6.9	4500	2007	May	Saturday	
	2	43599	245000000	107	880674609	Spectre	6.3	4466	2015	Oct	Monday	
	3	43600	250000000	112	1084939099	The Dark Knight Rises	7.6	9106	2012	Jul	Monday	
	4	43602	258000000	115	890871626	Spider- Man 3	5.9	3576	2007	May	Tuesday	
	1460	48363	0	3	321952	The Last Waltz	7.9	64	1978	May	Monday	
	1461	48370	27000	19	3151130	Clerks	7.4	755	1994	Sep	Tuesday	
	1462	48375	0	7	0	Rampage	6.0	131	2009	Aug	Friday	
	1463	48376	0	3	0	Slacker	6.4	77	1990	Jul	Friday	
	1464	48395	220000	14	2040920	El Mariachi	6.6	238	1992	Sep	Friday	

1465 rows × 13 columns

Out

Recall apply() from our earlier lectures

What did we do here?

- Defined a custom function
- Grouped data acc to director_name
- Subtracted mean of budget from revenue
- Used apply with the custom function on the grouped data

Lets see if there are any risky movies

```
data risky.loc[data risky["risky"]]
In [158...
Out[158]:
                   id_x
                           budget popularity
                                                                title vote_average vote_count year month
                                                                                                                   day
                                                  revenue
                                                            Quantum
              7 43608 200000000
                                          107
                                                586090727
                                                                              6.1
                                                                                        2965 2008
                                                                                                       Oct
                                                                                                              Thursday
                                                            of Solace
              12 43614 380000000
                                          135 1045713802
                                                            Pirates of
                                                                               6.4
                                                                                        4948 2011
                                                                                                       May
                                                                                                              Saturday
```

the

					Caribbean: On Stranger Tides					
15	43618	200000000	37	310669540	Robin Hood	6.2	1398	2010	May	Wednesday
20	43624	209000000	64	303025485	Battleship	5.5	2114	2012	Apr	Wednesday
24	43630	210000000	3	459359555	X-Men: The Last Stand	6.3	3525	2006	May	Wednesday
•••										
1347	47224	5000000	7	3263585	The Sweet Hereafter	6.8	103	1997	May	Wednesday
1349	47229	5000000	3	4842699	90 Minutes in Heaven	5.4	40	2015	Sep	Friday
1351	47233	5000000	6	0	Light Sleeper	5.7	15	1992	Aug	Friday
1356	47263	15000000	10	0	Dying of the Light	4.5	118	2014	Dec	Thursday
1383	47453	3500000	4	0	In the Name of the King III	3.3	19	2013	Dec	Friday

131 rows × 13 columns

Yes, there are some 131 movies whose budget was **greater than average** earnings of its director

Multi-Indexing

Now, lets say, you want to find who is the **most productive director**

Which director according to you would be considered as most productive?

• Will you decide based on the **number of movies** released by a director?

Or

• will consider quality into consideration also?

Or

• will you also consider the amount of business the movie is doing?

To simplify,

Lets calculate who has directed maximum number of movies

```
Martin Scorsese 19
Woody Allen 18
Robert Rodriguez 16
...
Paul Weitz 5
John Madden 5
Paul Verhoeven 5
John Whitesell 5
Kevin Reynolds 5
Name: title, Length: 199, dtype: int64
```

Looks like Steven Spielberg has directed maximum number of movies

But does it make Steven the most productive director?

Chances are, he might be active for more years than other directors

How would you calculate active years for every director?

We can subtract both min and max of year

How can we calculate multiple aggregates such as min and max, along with count of titles together?

Adam Shankman	2001	2012	8
Alejandro González Iñárritu	2000	2015	6
Alex Proyas	1994	2016	5
Alexander Payne	1999	2013	5
•••			
Wes Craven	1984	2011	10
Wolfgang Petersen	1981	2006	7
Woody Allen	1977	2013	18
Zack Snyder	2004	2016	7
Zhang Yimou	2002	2014	6

199 rows × 3 columns

Notice,

- director_name column has turned into row labels
- There are multiple levels for the column names

This is called Multi-index Dataframe

What is Multi-index Dataframe?

- It can have multiple indexes along a dimension
 - no of dimensions remain same though => 2D
- Multi-level indexes are possible both for rows and columns

```
data agg.columns #Printing the columns for better clarity
In [161...
          MultiIndex([( 'year',
                                   'min'),
Out[161]:
                       ( 'year',
                                   'max'),
                       ('title', 'count')],
```

The level-1 column names are year and title

What would happen if we print the col year of this multi-index dataframe?

```
In [162...
           data agg["year"]
Out[162]:
                                    min max
                      director_name
                                   2004
                                         2015
                       Adam McKay
                    Adam Shankman 2001 2012
           Alejandro González Iñárritu 2000 2015
                                  1994 2016
                        Alex Proyas
                    Alexander Payne
                                  1999
                                         2013
                        Wes Craven 1984 2011
                  Wolfgang Petersen 1981 2006
                       Woody Allen 1977 2013
                        Zack Snyder 2004 2016
                       Zhang Yimou 2002 2014
```

199 rows × 2 columns

How can we convert multi-level back to only one level of columns?

```
Example: year_min , year_max , title_count
```

```
data agg.columns = [' '.join(col) for col in data agg.columns]
In [163...
         data agg
```

Out[163]: year_min year_max title_count

director_name			
Adam McKay	2004	2015	6
Adam Shankman	2001	2012	8
Alejandro González Iñárritu	2000	2015	6
Alex Proyas	1994	2016	5

Alexander Payne	1999	2013	5
Wes Craven	1984	2011	10
Wolfgang Petersen	1981	2006	7
Woody Allen	1977	2013	18
Zack Snyder	2004	2016	7
Zhang Yimou	2002	2014	6

199 rows × 3 columns

Since these were tuples, we can just join them

Out[164]: year_max year_min title_count

director_name			
Adam McKay	2015	2004	6
Adam Shankman	2012	2001	8
Alejandro González Iñárritu	2015	2000	6
Alex Proyas	2016	1994	5
Alexander Payne	2013	1999	5
Wes Craven	2011	1984	10
Wolfgang Petersen	2006	1981	7
Woody Allen	2013	1977	18
Zack Snyder	2016	2004	7
Zhang Yimou	2014	2002	6

199 rows × 3 columns

Columns look good, but we may want to turn back the row labels into a proper column as well

How can we convert row labels into a column?

```
In [165... data_agg.reset_index()
```

Out[165]:

	director_name	year_min	year_max	title_count
0	Adam McKay	2004	2015	6
1	Adam Shankman	2001	2012	8
2	Alejandro González Iñárritu	2000	2015	6

3	Alex Proyas	1994	2016	5
4	Alexander Payne	1999	2013	5
•••				
194	Wes Craven	1984	2011	10
195	Wolfgang Petersen	1981	2006	7
196	Woody Allen	1977	2013	18
197	Zack Snyder	2004	2016	7
198	Zhang Yimou	2002	2014	6

199 rows × 4 columns

Recall,

We learnt reset_index() earlier

Using the new features, can we find the most productive director?

First calculate how many years the director has been active.

year_min year_max title_count yrs_active

Out[166]:

director_name				
Adam McKay	2004	2015	6	11
Adam Shankman	2001	2012	8	11
Alejandro González Iñárritu	2000	2015	6	15
Alex Proyas	1994	2016	5	22
Alexander Payne	1999	2013	5	14
•••				
Wes Craven	1984	2011	10	27
Wolfgang Petersen	1981	2006	7	25
Woody Allen	1977	2013	18	36
Zack Snyder	2004	2016	7	12
Zhang Yimou	2002	2014	6	12

199 rows × 4 columns

Then calculate rate of directing movies by title_count / yrs_active

```
In [167... data_agg["movie_per_yr"] = data_agg["title_count"] / data_agg["yrs_active"]
    data_agg
```

Out[167]: year_min year_max title_count yrs_active movie_per_yr

director_name

Adam McKay	2004	2015	6	11	0.545455
Adam Shankman	2001	2012	8	11	0.727273
Alejandro González Iñárritu	2000	2015	6	15	0.400000
Alex Proyas	1994	2016	5	22	0.227273
Alexander Payne	1999	2013	5	14	0.357143
Wes Craven	1984	2011	10	27	0.370370
Wolfgang Petersen	1981	2006	7	25	0.280000
Woody Allen	1977	2013	18	36	0.500000
Zack Snyder	2004	2016	7	12	0.583333
Zhang Yimou	2002	2014	6	12	0.500000

199 rows × 5 columns

Now finally sort the values

In [168... data_agg.sort_values("movie_per_yr", ascending=False)

year_min year_max title_count yrs_active movie_per_yr

Out[168]:

	,	,		,	
director_name					
Tyler Perry	2006	2013	9	7	1.285714
Jason Friedberg	2006	2010	5	4	1.250000
Shawn Levy	2002	2014	11	12	0.916667
Robert Rodriguez	1992	2014	16	22	0.727273
Adam Shankman	2001	2012	8	11	0.727273
Lawrence Kasdan	1985	2012	5	27	0.185185
Luc Besson	1985	2014	5	29	0.172414
Robert Redford	1980	2010	5	30	0.166667
Sidney Lumet	1976	2006	5	30	0.166667
Michael Apted	1980	2010	5	30	0.166667

199 rows × 5 columns

Conclusion:

==> "Tyler Perry" turns out to be the **truly most productive director**

Importing our data

• For this topic we will be using data of few drugs being developed by PFizer

Link: https://drive.google.com/file/d/173A59xh2mnpmljCCB9bhC4C5eP2IS6qZ/view?usp=sharing

What is the data about?

!gdown 173A59xh2mnpmljCCB9bhC4C5eP2IS6qZ

- Temperature (K)
- Pressure (P)

In [169...

are recorded after an interval of 1 hour everyday to monitor the drug stability in a drug development test

==> These data points are thus used to **identify the optimal set of values of parameters** for the stability of the drugs

Now, Let's explore this dataset

10- hydrochloride

```
import pandas as pd
In [170...
            import numpy as np
            data = pd.read csv('Pfizer 1.csv')
In [171...
In [172...
            data.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 18 entries, 0 to 17
           Data columns (total 15 columns):
                Column Non-Null Count Dtype
             #
            --- ----
                               _____
               Date 18 non-null object
Drug_Name 18 non-null object
Parameter 18 non-null object
             \cap
             1
             2
             3 1:30:00 16 non-null
                                                  float64
                2:30:00 16 non-null
                                                  float64
             4
               2:30:00 16 non-null float64

3:30:00 12 non-null float64

4:30:00 14 non-null float64

5:30:00 16 non-null float64

6:30:00 18 non-null int64

7:30:00 16 non-null float64
             5
             6
             7
             8
             9
             10 8:30:00 14 non-null
                                                  float64
             11 9:30:00
                                                  float64
                              16 non-null
             12 10:30:00 18 non-null
                                                  int64
            13 11:30:00 16 non-null float64
14 12:30:00 18 non-null int64
           dtypes: float64(9), int64(3), object(3)
           memory usage: 2.2+ KB
            data.shape
In [173...
            (18, 15)
Out[173]:
            data.head()
In [174...
Out[174]:
                                    Parameter 1:30:00 2:30:00 3:30:00 4:30:00 5:30:00 6:30:00 7:30:00 8:30:00 9:30:0
               Date
                      Drug_Name
            0
                15-
                                                   23.0
                                                            22.0
                                                                    NaN
                                                                             21.0
                                                                                      21.0
                                                                                                22
                                                                                                       23.0
                                                                                                                21.0
                                                                                                                         22
                         diltiazem
                                   Temperature
```

		2020											
	1	15- 10- 2020	diltiazem hydrochloride	Pressure	12.0	13.0	NaN	11.0	13.0	14	16.0	16.0	24
	2	15- 10- 2020	docetaxel injection	Temperature	NaN	17.0	18.0	NaN	17.0	18	NaN	NaN	23
	3	15- 10- 2020	docetaxel injection	Pressure	NaN	22.0	22.0	NaN	22.0	23	NaN	NaN	27
	4	15- 10- 2020	ketamine hydrochloride	Temperature	24.0	NaN	NaN	27.0	NaN	26	25.0	24.0	23
In [175	da ⁻	ta.ta	il()										
Out[175]:		Date	Drug_Name	Parameter	1:30:00	2:30:00	3:30:00	4:30:00	5:30:00	6:30:00	7:30:00	8:30:00	9:30
Out[175]:	13	17- 10- 2020	diltiazem	Proceuro	1:30:00 3.0	2:30:00 4.0	3:30:00 4.0	4:30:00 4.0	5:30:00 6.0	6:30:00	7:30:00 9.0	8:30:00 NaN	9:30
Out[175]:	13	17- 10-	diltiazem hydrochloride docetaxel	Pressure									9:30
Out[175]:		17- 10- 2020 17- 10-	diltiazem hydrochloride docetaxel injection	Pressure Pressure	3.0	4.0	4.0	4.0	6.0	8	9.0	NaN	
Out[175]:	14	17- 10- 2020 17- 10- 2020 17- 10-	diltiazem hydrochloride docetaxel injection docetaxel injection	Pressure Pressure	3.0	4.0	4.0	4.0	6.0	17	9.0	NaN 19.0	2

Melting in Pandas

hydrochloride

As we saw earlier, the dataset has 18 rows and 15 columns

If you notice further, you'll see:

- The columns are 1:30:00, 2:30:00, 3:30:00, ... so on
- Temperature and Pressure of each date is in a separate row

Can we restructure our data into a better format?

Maybe we can have a column for time , with timestamps as the column value

Where will the Temperature/Pressure values go?

We can similarly create one column containing the values of these parameters

==> "Melt" timestamp columns into two columns - timestamp and corresponding values

How can we restructure our data into having every row corresponding to a single reading?

```
In [176... pd.melt(data, id_vars=['Date', 'Parameter', 'Drug_Name'])
```

Out[176]:

	Date	Parameter	Drug_Name	variable	value
0	15-10-2020	Temperature	diltiazem hydrochloride	1:30:00	23.0
1	15-10-2020	Pressure	diltiazem hydrochloride	1:30:00	12.0
2	15-10-2020	Temperature	docetaxel injection	1:30:00	NaN
3	15-10-2020	Pressure	docetaxel injection	1:30:00	NaN
4	15-10-2020	Temperature	ketamine hydrochloride	1:30:00	24.0
•••					
211	17-10-2020	Pressure	diltiazem hydrochloride	12:30:00	14.0
212	17-10-2020	Temperature	docetaxel injection	12:30:00	23.0
213	17-10-2020	Pressure	docetaxel injection	12:30:00	28.0
214	17-10-2020	Temperature	ketamine hydrochloride	12:30:00	24.0
215	17-10-2020	Pressure	ketamine hydrochloride	12:30:00	15.0

216 rows × 5 columns

This converts our data from wide to long format

Notice the 'id_vars are set of variables which remain unmelted

How does pd.melt() work?

- Pass in the **DataFrame**
- Pass in the column names to not melt

But we can provide better names to these new columns

How can we rename the columns "variable" and "value" as per our original dataframe?

Out[177]:

	Date	Drug_Name	Parameter	time	reading
0	15-10-2020	diltiazem hydrochloride	Temperature	1:30:00	23.0
1	15-10-2020	diltiazem hydrochloride	Pressure	1:30:00	12.0
2	15-10-2020	docetaxel injection	Temperature	1:30:00	NaN
3	15-10-2020	docetaxel injection	Pressure	1:30:00	NaN
4	15-10-2020	ketamine hydrochloride	Temperature	1:30:00	24.0
•••					
211	17-10-2020	diltiazem hydrochloride	Pressure	12:30:00	14.0

212	17-10-2020	docetaxel injection	Temperature	12:30:00	23.0
213	17-10-2020	docetaxel injection	Pressure	12:30:00	28.0
214	17-10-2020	ketamine hydrochloride	Temperature	12:30:00	24.0
215	17-10-2020	ketamine hydrochloride	Pressure	12:30:00	15.0

216 rows × 5 columns

Conclusion

- The labels of the timestamp columns are conviniently **melted into a single column** time
- It retained all values in column reading
- The labels of columns such as 1:30:00, 2:30:00 have now become categories of the variable column
- The values from columns we are melting are stored in value column

Pivot

Now suppose we want to convert our data back to wide format

The reason could be to maintain the structure for storing or some other purpose.

Notice:

- The variables Date, Drug_Name and Parameter will remain same
- The column names will be extracted from the column time
- The values will be extracted from the column readings

How can we restructure our data back to the original wide format, before it was melted?

```
In [178... data_melt.pivot(index=['Date','Drug_Name','Parameter'], # Column to use to make new fra
columns = 'time', # Column to use to make new frame's c
values='reading') # Columns to use for populating new
```

		V	ilucs— ica	aring ,			" columns to use for populating new					1 C VV
Out[178]:			time	10:30:00	11:30:00	12:30:00	1:30:00	2:30:00	3:30:00	4:30:00	5:30:00	6:30
	Date	Drug Name	Parameter									

Date	Drug_Name	Parameter									
15-	diltiazem	Pressure	18.0	19.0	20.0	12.0	13.0	NaN	11.0	13.0	
10- 2020	,	Temperature	20.0	20.0	21.0	23.0	22.0	NaN	21.0	21.0	;
	docetaxel	Pressure	26.0	29.0	28.0	NaN	22.0	22.0	NaN	22.0	í
	injection	Temperature	23.0	25.0	25.0	NaN	17.0	18.0	NaN	17.0	
	ketamine	Pressure	9.0	9.0	11.0	8.0	NaN	NaN	7.0	NaN	
	hydrochloride	Temperature	22.0	21.0	20.0	24.0	NaN	NaN	27.0	NaN	i
16-	diltiazem	Pressure	24.0	NaN	27.0	18.0	19.0	20.0	21.0	22.0	,
10- 2020	hydrochloride	Temperature	40.0	NaN	42.0	34.0	35.0	36.0	36.0	37.0	:
	docetaxel	Pressure	28.0	29.0	30.0	23.0	24.0	NaN	25.0	26.0	í

	injection	Temperature	56.0	57.0	58.0	46.0	47.0	NaN	48.0	48.0	4
	ketamine	Pressure	16.0	17.0	18.0	12.0	12.0	13.0	NaN	15.0	
	hydrochloride	Temperature	13.0	14.0	15.0	8.0	9.0	10.0	NaN	11.0	
17-	diltiazem	Pressure	11.0	13.0	14.0	3.0	4.0	4.0	4.0	6.0	
10- 2020	hydrochloride	Temperature	14.0	11.0	10.0	20.0	19.0	19.0	18.0	17.0	
	docetaxel	Pressure	28.0	29.0	28.0	20.0	22.0	22.0	22.0	22.0	,
	injection	Temperature	21.0	22.0	23.0	12.0	13.0	14.0	15.0	16.0	
	ketamine	Pressure	13.0	14.0	15.0	8.0	9.0	10.0	11.0	11.0	
hy	hydrochloride	Temperature	22.0	23.0	24.0	13.0	14.0	15.0	16.0	17.0	

Notice,

We are getting multiple indices here

How can we reset this to a single-index dataframe?

1.	tille	Date	Drug_ivaille	raiailletei	10.50.00	11.50.00	12.30.00	1.30.00	2.50.00	3.30.00	4.50.00	3.30.00
	0	15- 10- 2020	diltiazem hydrochloride	Pressure	18.0	19.0	20.0	12.0	13.0	NaN	11.0	13.0
	1	15- 10- 2020	diltiazem hydrochloride	Temperature	20.0	20.0	21.0	23.0	22.0	NaN	21.0	21.0
	2	15- 10- 2020	docetaxel injection	Pressure	26.0	29.0	28.0	NaN	22.0	22.0	NaN	22.0
	3	15- 10- 2020	docetaxel injection	Temperature	23.0	25.0	25.0	NaN	17.0	18.0	NaN	17.0
	4	15- 10- 2020	ketamine hydrochloride	Pressure	9.0	9.0	11.0	8.0	NaN	NaN	7.0	NaN
	5	15- 10- 2020	ketamine hydrochloride	Temperature	22.0	21.0	20.0	24.0	NaN	NaN	27.0	NaN
	6	16- 10- 2020	diltiazem hydrochloride	Pressure	24.0	NaN	27.0	18.0	19.0	20.0	21.0	22.0
	7	16- 10- 2020	diltiazem hydrochloride	Temperature	40.0	NaN	42.0	34.0	35.0	36.0	36.0	37.0
	8	16- 10- 2020	docetaxel injection	Pressure	28.0	29.0	30.0	23.0	24.0	NaN	25.0	26.0
	9	16-	docetaxel	Temperature	56.0	57.0	58.0	46.0	47.0	NaN	48.0	48.0

	10- 2020	injection									
10	16- 10- 2020	ketamine hydrochloride	Pressure	16.0	17.0	18.0	12.0	12.0	13.0	NaN	15.0
11	16- 10- 2020	ketamine hydrochloride	Temperature	13.0	14.0	15.0	8.0	9.0	10.0	NaN	11.0
12	17- 10- 2020	diltiazem hydrochloride	Pressure	11.0	13.0	14.0	3.0	4.0	4.0	4.0	6.0
13	17- 10- 2020	diltiazem hydrochloride	Temperature	14.0	11.0	10.0	20.0	19.0	19.0	18.0	17.0
14	17- 10- 2020	docetaxel injection	Pressure	28.0	29.0	28.0	20.0	22.0	22.0	22.0	22.0
15	17- 10- 2020	docetaxel injection	Temperature	21.0	22.0	23.0	12.0	13.0	14.0	15.0	16.0
16	17- 10- 2020	ketamine hydrochloride	Pressure	13.0	14.0	15.0	8.0	9.0	10.0	11.0	11.0
17	17- 10- 2020	ketamine hydrochloride	Temperature	22.0	23.0	24.0	13.0	14.0	15.0	16.0	17.0

==> pivot() is the exact opposite of melt

How does pivot() work?

• Column Time is pivoted upon Date, Drug_Name and Parameter

In [180... data_melt.head()

Out[180]:		Date	Drug_Name	Parameter	time	reading
	0	15-10-2020	diltiazem hydrochloride	Temperature	1:30:00	23.0
	1	15-10-2020	diltiazem hydrochloride	Pressure	1:30:00	12.0
	2	15-10-2020	docetaxel injection	Temperature	1:30:00	NaN
	3	15-10-2020	docetaxel injection	Pressure	1:30:00	NaN
	4	15-10-2020	ketamine hydrochloride	Temperature	1:30:00	24.0

Now if you notice,

We are **using 2 rows** to log readings for a single experiment.

Can we further restructure our data into dividing the Parameter column into T/P?

A format like:

Date | time | Drug_Name | Pressure | Temperature

would be really suitable

• We want to split one single column into multiple columns

How can we divide the Parameter column again?

Out[181]:

		Parameter	Pressure	Temperature
Date	time	Drug_Name		
15-10-2020	10:30:00	diltiazem hydrochloride	18.0	20.0
		docetaxel injection	26.0	23.0
		ketamine hydrochloride	9.0	22.0
	11:30:00	diltiazem hydrochloride	19.0	20.0
		docetaxel injection	29.0	25.0
	•••			
17-10-2020	8:30:00	docetaxel injection	26.0	19.0
		ketamine hydrochloride	11.0	20.0
	9:30:00	diltiazem hydrochloride	9.0	13.0
		docetaxel injection	27.0	20.0
		ketamine hydrochloride	12.0	21.0

108 rows × 2 columns

We can use reset_index() to remove the multi-index

```
In [182... data_tidy = data_tidy.reset_index()
    data_tidy
```

Out[182]:	Parameter	Date	time	Drug_Name	Pressure	Temperature
	0	15-10-2020	10:30:00	diltiazem hydrochloride	18.0	20.0
	1	15-10-2020	10:30:00	docetaxel injection	26.0	23.0
	2	15-10-2020	10:30:00	ketamine hydrochloride	9.0	22.0
	3	15-10-2020	11:30:00	diltiazem hydrochloride	19.0	20.0
	4	15-10-2020	11:30:00	docetaxel injection	29.0	25.0
	•••					
	103	17-10-2020	8:30:00	docetaxel injection	26.0	19.0
	104	17-10-2020	8:30:00	ketamine hydrochloride	11.0	20.0
	105	17-10-2020	9:30:00	diltiazem hydrochloride	9.0	13.0
	106	17-10-2020	9:30:00	docetaxel injection	27.0	20.0
	107	17-10-2020	9:30:00	ketamine hydrochloride	12.0	21.0

We can rename our index column from Parameter to simply None

```
data tidy.columns.name = 'None'
In [183...
            data tidy.head()
In [184...
Out[184]: None
                        Date
                                  time
                                                  Drug_Name Pressure Temperature
               0 15-10-2020 10:30:00 diltiazem hydrochloride
                                                                                20.0
                                                                  18.0
                1 15-10-2020 10:30:00
                                            docetaxel injection
                                                                  26.0
                                                                                23.0
               2 15-10-2020 10:30:00
                                        ketamine hydrochloride
                                                                   9.0
                                                                                22.0
                3 15-10-2020 11:30:00
                                        diltiazem hydrochloride
                                                                   19.0
                                                                                20.0
               4 15-10-2020 11:30:00
                                                                  29.0
                                                                                25.0
                                            docetaxel injection
In [185...
           pd.pivot table?
```

Pivot_table

Now suppose we want to find some insights, like mean temperature day wise

Can we use pivot to find the day-wise mean value of temperature for each drug?

```
In [186...
        data tidy.pivot(index=['Drug Name'],
                         columns = 'Date',
                         values=['Temperature'])
        ValueError
                                                   Traceback (most recent call last)
        Input In [186], in <cell line: 1>()
         ----> 1 data tidy.pivot(index=['Drug Name'],
                                columns = 'Date',
               3
                                 values=['Temperature'])
         File ~\anaconda3\lib\site-packages\pandas\core\frame.py:7876, in DataFrame.pivot(self, i
        ndex, columns, values)
           7871 @Substitution("")
           7872 @Appender( shared docs["pivot"])
           7873 def pivot(self, index=None, columns=None, values=None) -> DataFrame:
           7874
                     from pandas.core.reshape.pivot import pivot
        -> 7876
                     return pivot(self, index=index, columns=columns, values=values)
        File ~\anaconda3\lib\site-packages\pandas\core\reshape\pivot.py:520, in pivot(data, inde
        x, columns, values)
            518
                    else:
                         indexed = data. constructor sliced(data[values]. values, index=multiinde
        X)
         --> 520 return indexed.unstack(columns listlike)
         File ~\anaconda3\lib\site-packages\pandas\core\frame.py:8419, in DataFrame.unstack(self,
         level, fill value)
            8357 """
```

```
8358 Pivot a level of the (necessarily hierarchical) index labels.
   8359
   (...)
   8415 dtype: float64
  8416 """
  8417 from pandas.core.reshape.reshape import unstack
-> 8419 result = unstack(self, level, fill value)
   8421 return result. finalize (self, method="unstack")
File ~\anaconda3\lib\site-packages\pandas\core\reshape\reshape.py:478, in unstack(obj, 1
evel, fill value)
   476 if isinstance(obj, DataFrame):
   if isinstance(obj.index, MultiIndex):
              return unstack frame(obj, level, fill value=fill value)
--> 478
   479
           else:
               return obj.T.stack(dropna=False)
   480
File ~\anaconda3\lib\site-packages\pandas\core\reshape\reshape.py:505, in unstack frame
(obj, level, fill value)
           return obj. constructor(mgr)
   503
   504 else:
--> 505
         unstacker = Unstacker(obj.index, level=level, constructor=obj. constructor)
    506
          return unstacker.get result(
   507
               obj. values, value columns=obj.columns, fill value=fill value
   508
File ~\anaconda3\lib\site-packages\pandas\core\reshape\reshape.py:140, in Unstacker.
nit (self, index, level, constructor)
   133 if num cells > np.iinfo(np.int32).max:
        warnings.warn(
   134
   135
              f"The following operation may generate {num cells} cells "
              f"in the resulting pandas object.",
   137
              PerformanceWarning,
   138
           )
--> 140 self. make selectors()
File ~\anaconda3\lib\site-packages\pandas\core\reshape.py:192, in Unstacker. ma
ke selectors (self)
   189 mask.put(selector, True)
   191 if mask.sum() < len(self.index):</pre>
--> 192 raise ValueError ("Index contains duplicate entries, cannot reshape")
   194 self.group index = comp index
   195 \text{ self.mask} = \text{mask}
ValueError: Index contains duplicate entries, cannot reshape
```

Why did we get an error?

- We need to find the **average** of temperature values throughout a day
- If you notice, the error shows **duplicate entries.**

Hence the index values should be unique entry for each row.

What can we do to get our required mean values then?

diltiazem hydrochloride	21.454545	37.454545	15.636364
docetaxel injection	20.750000	51.454545	17.500000
ketamine hydrochloride	23.555556	11.500000	18.500000

This function is similar to pivot, with an extra feature of an aggregator

How does pivot_table work?

- The initial parameters are same as how we do in pivot()
- As an extra parameter, we pass the **type of aggregator**

Note:

- We could have done this using groupby too
- In fact, pivot_table uses groupby in the backend to group the data and perform the aggregration
- The only difference is in the type of output we get using both functions

Similarly, what if we want to find the minimum values of temperature and pressure on a particular date?

In [188	pd.pivot_table(data_tidy, index='Drug_Name', columns='Date', values=['Temperature', '							
Out[188]:	None			Pressure		Temperature		
	Date	15-10-2020	16-10-2020	17-10-2020	15-10-2020	16-10-2020	17-10-2020	
	Drug_Name							
	diltiazem hydrochloride	11.0	18.0	3.0	20.0	34.0	10.0	
	docetaxel injection	22.0	23.0	20.0	17.0	46.0	12.0	
	ketamine hydrochloride	7.0	12.0	8.0	20.0	8.0	13.0	

Handling Missing Values

If you notive, there are many "NaN" values in our data

In [189	data_	lata_tidy.head()										
Out[189]:	None	Date	time	Drug_Name	Pressure	Temperature						
	0	15-10-2020	10:30:00	diltiazem hydrochloride	18.0	20.0						
	1	15-10-2020	10:30:00	docetaxel injection	26.0	23.0						
	2	15-10-2020	10:30:00	ketamine hydrochloride	9.0	22.0						
	3	15-10-2020	11:30:00	diltiazem hydrochloride	19.0	20.0						

29.0

25.0

docetaxel injection

What are these "NaN" values?

4 15-10-2020 11:30:00

They are basically missing values

What are missing values?

A Missing Value signifies an empty cell/no data

There can be 2 kinds of missing values:

- 1. None
- 2. NaN (short for Not a Number)

Whats the difference between the "None" and "NaN"?

The diff mainly lies in their datatype

```
In [190... type(None)
Out[190]: NoneType
In [191... type(np.nan)
Out[191]: float
```

None type is for missing values in a column with non-number entries

• E.g.-strings

dtype: object

NaN occurs for columns with number entries

Note:

Pandas uses these values nearly **interchangeably**, converting between them where appropriate, based on column datatype

For **numerical** types, Pandas changes **None to NaN** type

For **object** type, the **None is preserved** and not changed to NaN

Now we have the basic idea about missing values

How to know the count of missing values for each row/column?

In [195	<pre>data.isna().head()</pre>

6:30:00 8:30:00 Out[195]: Drug_Name **Parameter** 1:30:00 2:30:00 3:30:00 4:30:00 5:30:00 7:30:00 9:30:00 0 False False False False False True False True False False False False False False 2 False False False True False False True False False True True False False **False** False False False True False True False True True False False **False** False False True True False True False False False False

We can also use isnull to get the same results

In [196	data.isnull().head()	
---------	----------------------	--

	Date	Drug_Name	Parameter	1:30:00	2:30:00	3:30:00	4:30:00	5:30:00	6:30:00	7:30:00	8:30:00	9:30:00
0	False	False	False	False	False	True	False	False	False	False	False	False
1	False	False	False	False	False	True	False	False	False	False	False	False
2	False	False	False	True	False	False	True	False	False	True	True	False
3	False	False	False	True	False	False	True	False	False	True	True	False
4	False	False	False	False	True	True	False	True	False	False	False	False

But, why do we have two methods, "isna" and "isnull" for the same operation?

isnull() is just an alias for isna()

1:30:00 2:30:00

2

Out[196]:

As we can see, function signature is same for both

isna() returns a **boolean dataframe**, with each cell as a boolean value

This value corresponds to whether the cell has a missing value

On top of this, we can use <code>.sum()</code> to find the count

```
3:30:00
              6
              4
4:30:00
5:30:00
              2
              0
6:30:00
              2
7:30:00
8:30:00
              4
              2
9:30:00
10:30:00
11:30:00
12:30:00
dtype: int64
```

This gives us the total number of missing values in each column

Can we also get the number of missing values in each row?

```
In [200...
             data.isna().sum(axis=1)
                     1
Out[200]:
                     1
             2
                     4
             3
                     4
             4
                     3
             5
                     3
             6
                     1
             7
                     1
                     1
             9
                     1
             10
                     2
                     2
             11
             12
                     1
             13
                     1
             14
                     0
             15
                     0
             16
                     0
             17
                     0
             dtype: int64
             data[data.isnull().any(axis = 1)]
 In [201...
Out[201]:
                  Date
                          Drug_Name
                                         Parameter
                                                     1:30:00 2:30:00
                                                                        3:30:00
                                                                                  4:30:00
                                                                                           5:30:00 6:30:00
                                                                                                             7:30:00
                                                                                                                       8:30:00
                                                                                                                                 9:30
                   15-
                             diltiazem
              0
                   10-
                                                         23.0
                                                                  22.0
                                                                                     21.0
                                                                                               21.0
                                                                                                          22
                                                                                                                  23.0
                                                                                                                           21.0
                                                                                                                                     2
                                        Temperature
                                                                           NaN
                        hydrochloride
                  2020
                   15-
                             diltiazem
              1
                                                                                                                                     2
                   10-
                                                         12.0
                                                                  13.0
                                                                                               13.0
                                                                                                                  16.0
                                                                                                                           16.0
                                                                           NaN
                                                                                     11.0
                                                                                                          14
                                           Pressure
                        hydrochloride
                  2020
                   15-
                            docetaxel
              2
                                                                                                                                     2
                                                                  17.0
                                                                            18.0
                                                                                               17.0
                   10-
                                        Temperature
                                                        NaN
                                                                                     NaN
                                                                                                          18
                                                                                                                 NaN
                                                                                                                           NaN
                             injection
                  2020
                   15-
                            docetaxel
                                                                                                                                     2
              3
                                                                            22.0
                                                                                                          23
                   10-
                                                                  22.0
                                                                                               22.0
                                           Pressure
                                                        NaN
                                                                                     NaN
                                                                                                                 NaN
                                                                                                                           NaN
                             injection
                  2020
                   15-
                             ketamine
                                                                                                                                     2
                                                                                                          26
                   10-
                                                         24.0
                                                                                     27.0
                                                                                                                  25.0
                                                                                                                           24.0
                                        Temperature
                                                                  NaN
                                                                           NaN
                                                                                              NaN
                        hydrochloride
                  2020
                   15-
                             ketamine
              5
                   10-
                                           Pressure
                                                          0.8
                                                                  NaN
                                                                           NaN
                                                                                      7.0
                                                                                              NaN
                                                                                                           9
                                                                                                                  10.0
                                                                                                                           11.0
                                                                                                                                     1
                        hydrochloride
                  2020
              6
                             diltiazem
                                                                            36.0
                                                                                     36.0
                                                                                               37.0
                                                                                                          38
                                                                                                                  37.0
                                                                                                                           38.0
                                                                                                                                     3
                   16-
                                       Temperature
                                                         34.0
                                                                  35.0
```

	10- 2020	hydrochloride										
7	16- 10- 2020	diltiazem hydrochloride	Pressure	18.0	19.0	20.0	21.0	22.0	23	24.0	25.0	2
8	16- 10- 2020	docetaxel injection	Temperature	46.0	47.0	NaN	48.0	48.0	49	50.0	52.0	5
9	16- 10- 2020	docetaxel injection	Pressure	23.0	24.0	NaN	25.0	26.0	27	28.0	29.0	2
10	16- 10- 2020	ketamine hydrochloride	Temperature	8.0	9.0	10.0	NaN	11.0	12	12.0	11.0	N
11	16- 10- 2020	ketamine hydrochloride	Pressure	12.0	12.0	13.0	NaN	15.0	15	15.0	15.0	N
12	17- 10- 2020	diltiazem hydrochloride	Temperature	20.0	19.0	19.0	18.0	17.0	16	15.0	NaN	1
13	17- 10- 2020	diltiazem hydrochloride	Pressure	3.0	4.0	4.0	4.0	6.0	8	9.0	NaN	

Note:

By default the value is axis=0 in sum()

We have identified the null count, but how do we deal with them?

We have two options:

- delete the rows/columns containing the null values
- fill the missing values with some data/estimate

Let's first look at deleting the rows

How can we drop rows containing null values?

In [202	dat	a.dro	ppna()										
Out[202]:	Date Drug_Name Parameter 1:30:00		2:30:00	3:30:00	4:30:00	5:30:00	6:30:00	7:30:00	8:30:00	9:30			
	14	17- 10- 2020	docetaxel injection	Temperature	12.0	13.0	14.0	15.0	16.0	17	18.0	19.0	2
	15	17- 10- 2020	docetaxel injection	Pressure	20.0	22.0	22.0	22.0	22.0	23	25.0	26.0	2
	16	17- 10- 2020	ketamine hydrochloride	Temperature	13.0	14.0	15.0	16.0	17.0	18	19.0	20.0	2
	17	17- 10-	ketamine hydrochloride	Pressure	8.0	9.0	10.0	11.0	11.0	12	12.0	11.0	1

Rows with **even a single missing value** have been deleted

What if we want to delete the columns having missing value?

In [203... data.dropna(axis=1)

Out[203]:

Date	Drug_Name	Parameter	6:30:00	10:30:00	12:30:00
15-10-2020	diltiazem hydrochloride	Temperature	22	20	21
15-10-2020	diltiazem hydrochloride	Pressure	14	18	20
15-10-2020	docetaxel injection	Temperature	18	23	25
15-10-2020	docetaxel injection	Pressure	23	26	28
15-10-2020	ketamine hydrochloride	Temperature	26	22	20
15-10-2020	ketamine hydrochloride	Pressure	9	9	11
16-10-2020	diltiazem hydrochloride	Temperature	38	40	42
16-10-2020	diltiazem hydrochloride	Pressure	23	24	27
16-10-2020	docetaxel injection	Temperature	49	56	58
16-10-2020	docetaxel injection	Pressure	27	28	30
16-10-2020	ketamine hydrochloride	Temperature	12	13	15
16-10-2020	ketamine hydrochloride	Pressure	15	16	18
17-10-2020	diltiazem hydrochloride	Temperature	16	14	10
17-10-2020	diltiazem hydrochloride	Pressure	8	11	14
17-10-2020	docetaxel injection	Temperature	17	21	23
17-10-2020	docetaxel injection	Pressure	23	28	28
17-10-2020	ketamine hydrochloride	Temperature	18	22	24
17-10-2020	ketamine hydrochloride	Pressure	12	13	15
	15-10-2020 15-10-2020 15-10-2020 15-10-2020 15-10-2020 15-10-2020 16-10-2020 16-10-2020 16-10-2020 16-10-2020 17-10-2020 17-10-2020 17-10-2020 17-10-2020 17-10-2020	15-10-2020 diltiazem hydrochloride 15-10-2020 docetaxel injection 15-10-2020 docetaxel injection 15-10-2020 ketamine hydrochloride 15-10-2020 ketamine hydrochloride 15-10-2020 diltiazem hydrochloride 16-10-2020 diltiazem hydrochloride 16-10-2020 docetaxel injection 16-10-2020 docetaxel injection 16-10-2020 ketamine hydrochloride 16-10-2020 ketamine hydrochloride 16-10-2020 ketamine hydrochloride 16-10-2020 ketamine hydrochloride 17-10-2020 diltiazem hydrochloride 17-10-2020 docetaxel injection 17-10-2020 docetaxel injection 17-10-2020 ketamine hydrochloride	15-10-2020 diltiazem hydrochloride Pressure 15-10-2020 docetaxel injection Pressure 15-10-2020 docetaxel injection Pressure 15-10-2020 ketamine hydrochloride Pressure 15-10-2020 ketamine hydrochloride Pressure 15-10-2020 diltiazem hydrochloride Pressure 16-10-2020 diltiazem hydrochloride Pressure 16-10-2020 docetaxel injection Pressure 16-10-2020 docetaxel injection Pressure 16-10-2020 docetaxel injection Pressure 16-10-2020 ketamine hydrochloride Pressure 16-10-2020 docetaxel injection Pressure 16-10-2020 ketamine hydrochloride Pressure 17-10-2020 diltiazem hydrochloride Pressure 17-10-2020 diltiazem hydrochloride Pressure 17-10-2020 docetaxel injection Temperature 17-10-2020 docetaxel injection Pressure 17-10-2020 docetaxel injection Pressure 17-10-2020 docetaxel injection Pressure	15-10-2020 diltiazem hydrochloride Temperature 22 15-10-2020 docetaxel injection Temperature 18 15-10-2020 docetaxel injection Pressure 23 15-10-2020 ketamine hydrochloride Temperature 26 15-10-2020 ketamine hydrochloride Pressure 9 16-10-2020 diltiazem hydrochloride Temperature 38 16-10-2020 diltiazem hydrochloride Pressure 23 16-10-2020 docetaxel injection Temperature 49 16-10-2020 docetaxel injection Pressure 27 16-10-2020 ketamine hydrochloride Temperature 12 16-10-2020 ketamine hydrochloride Temperature 12 16-10-2020 ketamine hydrochloride Pressure 15 17-10-2020 diltiazem hydrochloride Temperature 16 17-10-2020 diltiazem hydrochloride Pressure 8 17-10-2020 docetaxel injection Temperature 16 17-10-2020 docetaxel injection Temperature 17 17-10-2020 ketamine hydrochloride Pressure 8	15-10-2020 diltiazem hydrochloride Temperature 22 20 15-10-2020 diltiazem hydrochloride Pressure 14 18 15-10-2020 docetaxel injection Temperature 18 23 15-10-2020 docetaxel injection Pressure 23 26 15-10-2020 ketamine hydrochloride Temperature 26 22 15-10-2020 ketamine hydrochloride Pressure 9 9 16-10-2020 diltiazem hydrochloride Temperature 38 40 16-10-2020 docetaxel injection Temperature 49 56 16-10-2020 docetaxel injection Pressure 27 28 16-10-2020 ketamine hydrochloride Temperature 12 13 16-10-2020 ketamine hydrochloride Pressure 15 16 17-10-2020 diltiazem hydrochloride Pressure 8 11 17-10-2020 docetaxel injection Temperature 17 21 17-10-2020 <td< th=""></td<>

^{=&}gt; Every column which had even a single missing value has been deleted

But what are the problems with deleting rows/columns?

One of the major problems:

loss of data

Instead of dropping, it would be better to fill the missing values with some data

How can we fill the missing values with some data?

In [204	<pre>data.fillna(0).head()</pre>												
Out[204]:		Date	Drug_Name	Parameter	1:30:00	2:30:00	3:30:00	4:30:00	5:30:00	6:30:00	7:30:00	8:30:00	9:30:0
	0	15- 10- 2020	diltiazem hydrochloride	Temperature	23.0	22.0	0.0	21.0	21.0	22	23.0	21.0	22

1	15- 10- 2020	diltiazem hydrochloride	Pressure	12.0	13.0	0.0	11.0	13.0	14	16.0	16.0	24
2	15- 10- 2020	docetaxel injection	Temperature	0.0	17.0	18.0	0.0	17.0	18	0.0	0.0	23
3	15- 10- 2020	docetaxel injection	Pressure	0.0	22.0	22.0	0.0	22.0	23	0.0	0.0	27
4	15- 10- 2020	ketamine hydrochloride	Temperature	24.0	0.0	0.0	27.0	0.0	26	25.0	24.0	23

What is fillna(0) doing?

It fills all missing values with 0

We can do the same on a particular column too

```
data['2:30:00'].fillna(0)
In [205...
                22.0
Out[205]:
                13.0
                17.0
          3
                22.0
          4
                0.0
          5
                 0.0
                35.0
          7
                19.0
          8
                47.0
          9
                24.0
                9.0
          11
                12.0
          12
                19.0
          13
                4.0
                13.0
          14
          15
                22.0
          16
                14.0
          17
                 9.0
          Name: 2:30:00, dtype: float64
```

What other values can we use to fill the missing values?

We can use some kind of estimator too

• An estimator like mean or median

How would you calculate the mean of the column 2:30:00?

```
In [206... data['2:30:00'].mean()
Out[206]: 18.8125
```

Now let's fill the NaN values with the mean value of the column

```
2
      17.0000
3
      22.0000
      18.8125
5
      18.8125
6
      35.0000
7
      19.0000
8
      47.0000
9
      24.0000
10
      9.0000
11
      12.0000
12
      19.0000
13
       4.0000
14
      13.0000
      22.0000
15
16
      14.0000
       9.0000
17
Name: 2:30:00, dtype: float64
```

But this doesn't feel right. What could be wrong with this?

Can we use the mean of all compounds as average for our estimator?

- Different drugs have different characteristics
- We can't simply do an average and fill the null values

Then what could be a solution here?

We could fill the null values of respective compounds with their respective means

```
In [208... # data_tidy.groupby("Drug_Name")["Temperature"].mean()
```

How can we form a column with mean temperature of respective compounds?

We can use apply that we learnt earlier

Let's first create a function to calculate the mean

```
In [209... def temp_mean(x):
    x['Temperature_avg'] = x['Temperature'].mean() # We will name the new col Temperature_
    return x
```

Now we can form a new column based on the average values of temperature for each drug

```
Out[210]: None
                          Date
                                    time
                                                     Drug_Name Pressure
                                                                            Temperature
                                                                                            Temperature_avg
                 0 15-10-2020
                                 10:30:00
                                           diltiazem hydrochloride
                                                                       18.0
                                                                                      20.0
                                                                                                   24.848485
                 1 15-10-2020
                                 10:30:00
                                                docetaxel injection
                                                                       26.0
                                                                                      23.0
                                                                                                   30.387097
                 2 15-10-2020
                                10:30:00
                                           ketamine hydrochloride
                                                                        9.0
                                                                                      22.0
                                                                                                   17.709677
                                                                                      20.0
                 3 15-10-2020
                                11:30:00
                                           diltiazem hydrochloride
                                                                       19.0
                                                                                                   24.848485
                 4 15-10-2020 11:30:00
                                                                       29.0
                                                                                      25.0
                                                                                                   30.387097
                                               docetaxel injection
                                                                                      19.0
              103 17-10-2020
                                  8:30:00
                                                docetaxel injection
                                                                       26.0
                                                                                                   30.387097
```

104	17-10-2020	8:30:00	ketamine hydrochloride	11.0	20.0	17.709677
105	17-10-2020	9:30:00	diltiazem hydrochloride	9.0	13.0	24.848485
106	17-10-2020	9:30:00	docetaxel injection	27.0	20.0	30.387097
107	17-10-2020	9:30:00	ketamine hydrochloride	12.0	21.0	17.709677

108 rows × 6 columns

Now we fill the null values in Temperature using this new column!

```
In [211... data_tidy['Temperature'].fillna(data_tidy["Temperature_avg"], inplace=True)
    data_tidy
```

```
Out[211]:
             None
                           Date
                                     time
                                                      Drug_Name Pressure Temperature
                                                                                             Temperature_avg
                 0 15-10-2020
                                 10:30:00
                                            diltiazem hydrochloride
                                                                        18.0
                                                                                       20.0
                                                                                                     24.848485
                                 10:30:00
                                                docetaxel injection
                 1 15-10-2020
                                                                        26.0
                                                                                       23.0
                                                                                                     30.387097
                 2 15-10-2020
                                 10:30:00
                                            ketamine hydrochloride
                                                                         9.0
                                                                                       22.0
                                                                                                     17.709677
                 3 15-10-2020
                                 11:30:00
                                            diltiazem hydrochloride
                                                                        19.0
                                                                                       20.0
                                                                                                     24.848485
                 4 15-10-2020
                                 11:30:00
                                                docetaxel injection
                                                                        29.0
                                                                                       25.0
                                                                                                     30.387097
               103
                    17-10-2020
                                   8:30:00
                                                                        26.0
                                                                                       19.0
                                                                                                     30.387097
                                                docetaxel injection
                   17-10-2020
                                   8:30:00
                                            ketamine hydrochloride
                                                                        11.0
                                                                                       20.0
                                                                                                     17.709677
                    17-10-2020
                                   9:30:00
                                            diltiazem hydrochloride
                                                                         9.0
                                                                                       13.0
                                                                                                     24.848485
               106
                   17-10-2020
                                   9:30:00
                                                docetaxel injection
                                                                        27.0
                                                                                       20.0
                                                                                                     30.387097
               107 17-10-2020
                                   9:30:00
                                           ketamine hydrochloride
                                                                        12.0
                                                                                       21.0
                                                                                                     17.709677
```

108 rows × 6 columns

```
In [212...
          data tidy.isna().sum()
          None
Out[212]:
                                 0
          Date
          time
                                 0
                                 0
          Drug Name
          Pressure
                                13
          Temperature
                                 0
          Temperature avg
          dtype: int64
```

Great!!

We have removed the null values of our Temperature column

Let's do the same for Pressure

```
In [213... def pr_mean(x):
    x['Pressure_avg'] = x['Pressure'].mean()
    return x
    data_tidy=data_tidy.groupby(["Drug_Name"]).apply(pr_mean)
    data_tidy['Pressure'].fillna(data_tidy["Pressure_avg"], inplace=True)
    data_tidy
```

Out[213]:	None	Date	time	Drug_Name	Pressure	Temperature	Temperature_avg	Pressure_avg
	0	15-10-2020	10:30:00	diltiazem hydrochloride	18.0	20.0	24.848485	15.424242
	1	15-10-2020	10:30:00	docetaxel injection	26.0	23.0	30.387097	25.483871
	2	15-10-2020	10:30:00	ketamine hydrochloride	9.0	22.0	17.709677	11.935484
	3	15-10-2020	11:30:00	diltiazem hydrochloride	19.0	20.0	24.848485	15.424242
	4	15-10-2020	11:30:00	docetaxel injection	29.0	25.0	30.387097	25.483871
	•••							
	103	17-10-2020	8:30:00	docetaxel injection	26.0	19.0	30.387097	25.483871
	104	17-10-2020	8:30:00	ketamine hydrochloride	11.0	20.0	17.709677	11.935484
	105	17-10-2020	9:30:00	diltiazem hydrochloride	9.0	13.0	24.848485	15.424242
	106	17-10-2020	9:30:00	docetaxel injection	27.0	20.0	30.387097	25.483871
	107	17-10-2020	9:30:00	ketamine hydrochloride	12.0	21.0	17.709677	11.935484

108 rows × 7 columns

In [214	data_tidy.isna().	sum()		
+ [244].	None			
ut[214]:	Date	0		
	time	0		
	Drug Name	0		
	Pressure	0		
	Temperature	0		
	Temperature avg	0		
	Pressure_avg dtype: int64	0		

This gives us a **basic idea** about working with missing values

We will further learn more on this during later lectures of **feature engineering**

Pandas Cut

Sometimes, we would want our data to be in **categorical format instead of continous data**.

What do we mean by converting continous into categorical data?

Lets say, instead of knowing specific test values of a month, I want to know its type

What could be the types?

Depends on level of granularity we want to have - Low, Medium, High, V High

We could have defined more (or less) categories

But how can bucketisation of continous data help?

- Since, we can get the count of different categories
- We can get a idea of the bin which category (range of values) most of the temperature values lie.

What function can we use to convert cont. to cat. data?

- Will use pd.cut()
- We need to provide:
 - the continous data
 - bins edges (array of numbers) to "cut" the entire range
 - labels corresponding to every bin

Let's try to us this on our max (temp) column to categorise the data into bins

But, to define categories, lets first check min and max temp values

```
In [215... data_tidy
```

Out[215]:	None	Date	time	Drug_Name	Pressure	Temperature	Temperature_avg	Pressure_avg
	0	15-10-2020	10:30:00	diltiazem hydrochloride	18.0	20.0	24.848485	15.424242
	1	15-10-2020	10:30:00	docetaxel injection	26.0	23.0	30.387097	25.483871
	2	15-10-2020	10:30:00	ketamine hydrochloride	9.0	22.0	17.709677	11.935484
	3	15-10-2020	11:30:00	diltiazem hydrochloride	19.0	20.0	24.848485	15.424242
	4	15-10-2020	11:30:00	docetaxel injection	29.0	25.0	30.387097	25.483871
	•••							
	103	17-10-2020	8:30:00	docetaxel injection	26.0	19.0	30.387097	25.483871
	104	17-10-2020	8:30:00	ketamine hydrochloride	11.0	20.0	17.709677	11.935484
	105	17-10-2020	9:30:00	diltiazem hydrochloride	9.0	13.0	24.848485	15.424242
	106	17-10-2020	9:30:00	docetaxel injection	27.0	20.0	30.387097	25.483871
	107	17-10-2020	9:30:00	ketamine hydrochloride	12.0	21.0	17.709677	11.935484

108 rows × 7 columns

```
In [216... print(data_tidy['Temperature'].min(), data_tidy['Temperature'].max())
8.0 58.0
```

Min value = 8, Max value is 58.

- Lets's keep some buffer for future values and take the range from 5-60(instead of 8-58)
- Lets divide this data into 4 bins of 10-15 values each

```
In [217...
temp_points = [5, 20, 35, 50, 60]
temp_labels = ['low', 'medium', 'high', 'very_high'] # Here labels define the severity of t
data_tidy['temp_cat'] = pd.cut(data_tidy['Temperature'], bins=temp_points, labels=temp_l
data_tidy.head()
```

Out[217]:	None	ne Date time Drug_Name		Pressure	Temperature	Temperature_avg	Pressure_avg	temp_cat	
	0	15-10- 2020	10:30:00	diltiazem hydrochloride	18.0	20.0	24.848485	15.424242	low
	1	15-10- 2020	10:30:00	docetaxel injection	26.0	23.0	30.387097	25.483871	medium
	2	15-10- 2020	10:30:00	ketamine hydrochloride	9.0	22.0	17.709677	11.935484	medium
	3	15-10-	11:30:00	diltiazem	19.0	20.0	24.848485	15.424242	low

29.0

25.0

30.387097

25.483871

medium

String function and motivation for datetime

hydrochloride

11:30:00 docetaxel injection

What kind of questions can we use string methods for?

Find rows which contains a particular string

2020

15-10-

Say,

How you can you filter rows containing "hydrochloric" in their drug name?

```
In [219... data_tidy.loc[data_tidy['Drug_Name'].str.contains('hydrochloride')].head()
```

Out[219]:	None	Date	time	Drug_Name	Pressure	Temperature	Temperature_avg	Pressure_avg	temp_cat
	0	15-10- 2020	10:30:00	diltiazem hydrochloride	18.0	20.0	24.848485	15.424242	low
	2	15-10- 2020	10:30:00	ketamine hydrochloride	9.0	22.0	17.709677	11.935484	medium
	3	15-10- 2020	11:30:00	diltiazem hydrochloride	19.0	20.0	24.848485	15.424242	low
	5	15-10- 2020	11:30:00	ketamine hydrochloride	9.0	21.0	17.709677	11.935484	medium
	6	15-10- 2020	12:30:00	diltiazem hydrochloride	20.0	21.0	24.848485	15.424242	medium

So in general, we will be using the following format:

```
> Series.str.function()
```

Series.str can be used to access the values of the series as strings and apply several methods to it.

Now suppose we want to form a new column based on the year of the experiments?

What can we do form a column containing the year?

```
103 [17, 10, 2020]

104 [17, 10, 2020]

105 [17, 10, 2020]

106 [17, 10, 2020]

107 [17, 10, 2020]

Name: Date, Length: 108, dtype: object
```

To extract the year we need to select the last element of each list

```
data tidy['Date'].str.split('-').apply(lambda x:x[2])
In [221...
                  2020
Out[221]:
                  2020
          2
                  2020
          3
                  2020
          4
                  2020
                  . . .
          103
                  2020
          104
                  2020
          105
                  2020
          106
                  2020
          107
                  2020
          Name: Date, Length: 108, dtype: object
```

But there are certain problems with this approach:

- The dtype of the output is still an object, we would prefer a number type
- The date format will always not be in day-month-year, it can vary

Thus, to work with such date-time type of data, we can use a special method of pandas

Datetime

1

docetaxel injection

Lets start with understanding a date-time type of data

How can we handle handle date-time data-types?

- We can do using the to_datetime() function of pandas
- It takes as input:
 - Array/Scalars with values having proper date/time format
 - dayfirst : Indicating if the day comes first in the date format used
 - yearfirst : Indicates if year comes first in the date format

26.0

Let's first merge our Date and time columns into a new timestamp column

```
data tidy['timestamp'] = data tidy['Date']+ " "+ data tidy['time']
In [222...
           data tidy.drop(['Date', 'time'], axis=1, inplace=True)
In [223...
           data tidy.head()
In [224..
Out[224]: None
                         Drug_Name Pressure Temperature Temperature_avg Pressure_avg temp_cat
                                                                                                    timestamp
                                                                                                    15-10-2020
                            diltiazem
                                                     20.0
                                        18.0
                                                                 24.848485
                                                                             15.424242
                                                                                            low
                        hydrochloride
                                                                                                       10:30:00
```

23.0

30.387097

25.483871

medium

15-10-2020

10:30:00

2	ketamine hydrochloride	9.0	22.0	17.709677	11.935484	medium	15-10-2020 10:30:00
3	diltiazem hydrochloride	19.0	20.0	24.848485	15.424242	low	15-10-2020 11:30:00
4	docetaxel injection	29.0	25.0	30.387097	25.483871	medium	15-10-2020 11:30:00

Lets convert our timestamp col now

Out[225]:	None	Drug_Name	Pressure	Temperature	Temperature_avg	Pressure_avg	temp_cat	timestamp
	0	diltiazem hydrochloride	18.0	20.0	24.848485	15.424242	low	2020-10-15 10:30:00
	1	docetaxel injection	26.0	23.0	30.387097	25.483871	medium	2020-10-15 10:30:00
	2	ketamine hydrochloride	9.0	22.0	17.709677	11.935484	medium	2020-10-15 10:30:00
	3	diltiazem hydrochloride	19.0	20.0	24.848485	15.424242	low	2020-10-15 11:30:00
	4	docetaxel injection	29.0	25.0	30.387097	25.483871	medium	2020-10-15 11:30:00
	•••							
	103	docetaxel injection	26.0	19.0	30.387097	25.483871	low	2020-10-17 08:30:00
	104	ketamine hydrochloride	11.0	20.0	17.709677	11.935484	low	2020-10-17 08:30:00
	105	diltiazem hydrochloride	9.0	13.0	24.848485	15.424242	low	2020-10-17 09:30:00
	106	docetaxel injection	27.0	20.0	30.387097	25.483871	low	2020-10-17 09:30:00
	107	ketamine hydrochloride	12.0	21.0	17.709677	11.935484	medium	2020-10-17 09:30:00

108 rows × 7 columns

In [226... data_tidy.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 108 entries, 0 to 107
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Drug_Name	108 non-null	object
1	Pressure	108 non-null	float64
2	Temperature	108 non-null	float64
3	Temperature_avg	108 non-null	float64
4	Pressure_avg	108 non-null	float64
5	temp_cat	108 non-null	category
6	timestamp	108 non-null	datetime64[ns]

```
dtypes: category(1), datetime64[ns](1), float64(4), object(1)
memory usage: 10.3+ KB
```

The **type of timestamp column** has been **changed to datetime** from object

Now, Let's look at a single timestamp using Pandas

How can we extract information from a single timestamp using Pandas?

```
In [227... ts = data_tidy['timestamp'][0]
ts
Out[227]: Timestamp('2020-10-15 10:30:00')
```

Now how can we extract the year from this date?

```
In [228... ts.year
Out[228]:
```

Similarly we can also access the month and day using the month and day attributes

```
In [229... ts.month
Out[229]: 10
In [230... ts.day
Out[230]: 15
```

But what if we want to know the name of the month or the day of the week on that date?

We can find it using month_name() and day_name() methods

```
ts.month name()
In [231...
            'October'
Out[231]:
           ts.day name()
In [232..
           'Thursday'
Out[232]:
           ts.dayofweek
In [233...
Out[233]:
           ts.hour
In [234...
Out[234]:
           ts.minute
In [235...
Out[235]:
```

... and so on

We can similarly extract minutes and seconds

This data parsing from string to date-time makes it easier to work with data

We can use this data from the columns as a whole using .dt object

- dt gives properties of values in a column
- From this DatetimeProperties of column 'end', we can extract year

```
data tidy['timestamp'].dt.year
In [237...
                 2020
Out[237]:
                 2020
                 2020
          3
                 2020
                 2020
                  . . .
          103
                 2020
          104
                 2020
          105
                 2020
          106
                 2020
          107
                 2020
          Name: timestamp, Length: 108, dtype: int64
```

Now, Let's create the new column using these extracted values from the property

We will use strfttime, short for stringformat time, to modify our datetime format

Let's learn this with the help of few examples

00

```
data tidy['timestamp'][0]
In [238...
          Timestamp('2020-10-15 10:30:00')
Out[238]:
         print(data tidy['timestamp'][0].strftime('%Y')) # Formatter for year
In [239...
         2020
         print(data tidy['timestamp'][0].strftime('%m')) # Formatter for month
In [240...
         10
         print(data tidy['timestamp'][0].strftime('%d')) # Formatter for day
In [241...
         15
         print(data tidy['timestamp'][0].strftime('%H')) # Formatter for hour
In [242...
         10
         print(data tidy['timestamp'][0].strftime('%M')) # Formatter for minutes
In [243...
         30
         print(data tidy['timestamp'][0].strftime('%S')) # Formatter for seconds
```

Similarly we can combine the format types to modify the date-time format as per our convinience

```
In [245... data_tidy['timestamp'][0].strftime('%m-%d')
Out[245]: '10-15'
```

Writing to file

How can we write our dataframe to a csv file?

• We have to **provide the path and file_name** in which you want to store the data

```
In [246... data_tidy.to_csv('pfizer_tidy.csv', sep=",")

To find all the values from the series that starts with a pattern "s":

SQL - WHERE column_name LIKE 's%'

Python - column_name.str.startswith('s')

To find all the values from the series that ends with a pattern "s":

SQL - WHERE column_name LIKE '%s'

Python - column_name.str.endswith('s')

To find all the values from the series that contains pattern "s":

SQL - WHERE column_name LIKE '%s%'

Python - column_name.str.contains('s')
```

Thank You!

In []: