- 1. Recap of FSM design steps
 - a. Turn a word description into a state diagram
 - b. Turn the state diagram into a transition table
 - c. Use transition table to make K-maps to simplify circuit
 - d. Implement simplified circuit
- 2. Our word problem
 - a. Want to create an edge detecting circuit
 - i. Edge position in a string of 0s and 1s where a 0 is adjacent to a 1
 - ii. Essentially, XOR of adjacent bits
 - b. Since this involves remembering the previous value, machine will have different states
- 3. State transition diagram to minimize the number of states
 - a. Convert word description
 - i. States based on patterns of inputs
 - ii. Transitions between states based on individual input values
 - b. For this problem
 - i. S_i is our start state
 - ii. Every other state is labeled S_{xy} where x is the previous bit, y is the current bit
 - 1. Each state will have a unique label
 - 2. This minimizes the number of states
 - iii. Values inside each state are the output of the circuit
 - 1. 0 indicates no edge
 - 2. 1 indicates an edge was detected

- c. Mealy model differences
 - i. Mealy model state diagrams look slightly different
 - 1. Outputs are on the edges/transitions between states, rather than the states themselves
 - 2. Usually, the number before the slash indicates the input
 - 3. Number after the slash indicates the output
 - 4. Will come back to this later

4. State table

- a. Table that lists all transitions from each present state to the next state for different values of inputs
 - i. Output z is specified with respect to the present state
 - ii. x is the next input

Present State	Next	State	Output			
Present State	<i>x</i> = 0	x = 1	Z			
i	0	1	0			
0	00	01	0			
1	10	11	0			
00	00	01	0			
01	10	11	1			
10	00	01	1			
11	10	11	0			

- b. Choice of flip-flops
 - i. Here, will keep it simple and use DFFs
 - 1. Could use more complicated FFs, like J-K
 - 2. Using these means more logic in front of FFs
- 5. Derivation of next-state and output expressions
 - a. Will use a Moore model for this example
 - i. Need to assign binary codes to each state
 - 1. Have assigned them simply above
 - 2. Will talk about better way to do later
 - ii. Since we have 7 states, will need 3 DFFs to represent all possible states
 - iii. A, B, and C will represent the present state of the corresponding flip-flops
 - iv. Initial state we start out in i must always be assigned to binary code of all 0s
 - 1. Flip flops are assumed to be 0 when we first start circuit

Duncant State	Binary	Pres	Input	Ne	xt St	Output				
Present State	Code	Α	В	С	х	A'	B'	C'	Z	
i	000	0	0	0	0	0	0	1	0	
i	000	0	0	0	1	0	1	0	0	
0	001	0	0	1	0	0	1	1	0	
0	001	0	0	1	1	1	0	0	0	
1	010	0	1	0	0	1	0	1	0	
1	010	0	1	0	1	1	1	0	0	
00	011	0	1	1	0	0	1	1	0	
00	011	0	1	1	1	1	0	0	0	
01	100	1	0	0	0	1	0	1	1	
01	100	1	0	0	1	1	1	0	1	
10	101	1	0	1	0	0	1	1	1	
10	101	1	0	1	1	1	0	0	1	
11	110	1	1	0	0	1	0	1	0	
11	110	1	1	0	1	1	1	0	0	
	111	1	1	1	0	d	d	d	d	
	111	1	1	1	1	d	d	d	d	

- b. Use above to create K-maps for FF input combinational circuits
 - i. Inputs are the concatenation of the current state variables A, B, C, and the input x
 - ii. Outputs of each K-map are the next state variables A', B', C' and the output z
 - 1. Need to create 4 different K-maps, one for each variable
 - 2. Since state 111 wasn't assigned, combinations of that with x are don't cares

A'	A' AB						B' AB							C' AB								
		00	01	11	10					00	01	11	10					00	01	11	10	
	00	0	1	(1)	1				00	0	0	0	0				00	1	1	1	1	
Cu	01	0	[1	[1]	1			Car	01	1	1	1	1			Car	01	0	0	0	0	
Cx	11	1	1	d	1			Cx	11	0	0	d	0			Cx	11	0	0	d	0	
	10	0	0	d	0				10	1	1	d	1				10	1	1	d	1	
											-				•			•				
$A' = B\bar{C} + A\bar{C} + Cx$					$B' = \bar{C}x + C\bar{x}$							$C' = \bar{x}$										

- c. Create K-map to determine the output combinational circuit
 - i. Remember, Moore models don't use the input to determine the current output
 - 1. Therefore, K-map for z only uses A, B, and C
 - 2. Could place x in as well but result will be identical
 - ii. Mealy model differences
 - 1. Mealy models use the current input to determine the current output
 - 2. Final K-map for output z would incorporate current flip-flop values as well as input x
 - 3. In this case, final K-map below would have 4 inputs

$$z = A\bar{B}$$

- 6. Finishing steps
 - a. After K-maps done, implement these circuits
 - b. Mealy model differences
 - i. In general, Mealy model usually involves less circuitry
 - 1. In this case, it would
 - 2. Only need two DFFs to remember previous bit
 - 3. XOR those values with input to give final output
 - ii. Not always the case, though

