

COMPUTER ORGANISATION (TỔ CHỨC MÁY TÍNH)

IO (Own reading only)

Acknowledgement

- The contents of these slides have origin from School of Computing, National University of Singapore.
- We greatly appreciate support from Mr. Aaron Tan Tuck Choy for kindly sharing these materials.

Policies for students

- These contents are only used for students PERSONALLY.
- Students are NOT allowed to modify or deliver these contents to anywhere or anyone for any purpose.

Input/Output Devices

Input/Output Devices

Why I/O Matters?

- CPU performance increase ~ 60% per year
- I/O performance increase < 10% per year
 - Limited by mechanical delays

Amdahl's Law:

- System speedup is limited by the slowest part
- Example:
 - Suppose 1 sec I/O + 4 sec CPU
 → 5 seconds
 - Increase CPU performance by 100% → 3 seconds
 - = Only get a 66% speedup → I/O bottleneck

I/O Devices: Types & Characteristics Behavior

- Input: read once
- Output: write only, cannot be read
- Storage: can be reread and usually rewritten

Partner

What's on the other end? Human or machine

Data Rate

Peak rate of transfer between I/O and memory/CPU

Some I/O Devices

Device	Behavior	Partner	Data Rate (MBit/sec)
Keyboard	Input	Human	0.0001
Mouse	Input	Human	0.0038
Laser Printer	Output	Human	3.2000
Optical Disk	Storage	Machine	80.0000 —
			220.0000
Flash Memory	Storage	Machine	32.0000 –
			200.0000
Network-LAN	Input or output	Machine	11.0000 —
			54.00000
Graphics Display	Output	Human	800.0000 —
			8000.00000

Hard Disk Drive Evolution

Flonny Disks

8-inch 1971 80KB 51/4-inch 1976 360KB

3½-inch Mid-1980s 1.44MB

Bus Basics Bus consists of:

- Control lines: Signal requests and acknowledgments
- Data lines: Carry information between the source and the destination

Bus Transactions

- Sending the address
- Receiving or sending the data

Advantages

- Versatility: single connection scheme for easy add-ons
- Low cost: single set of wires shared in multiple ways

Disadvantages

- Communication bottleneck: bandwidth limits the maximum I/O throughput
- Devices will not be able to use the bus when they need to

Types of Buses

- Processor-Memory Bus (design specific)
 - Short and high speed
 - Only need to match the memory system
 - Maximize memory-to-processor bandwidth
 - Connects directly to the processor
 - Optimized for cache block transfers
- I/O Bus (industry standard)
 - Usually is lengthy and slower
 - Need to match a wide range of I/O devices
 - Connects to the processor-memory bus or backplane bus
- Backplane Bus (standard or proprietary)
 - Backplane: an interconnection structure within the chassis
 - Allow processors, memory, and I/O devices to coexist
 - Cost advantage: one bus for all components

A Three-Bus System

- A small number of backplane buses tap into the processormemory bus
 - Processor-memory bus is used for processor memory traffic
 - I/O buses are connected to the backplane bus
- Advantage: workload on the processor bus is greatly reduced

Example: Pentium System Organisation

Processor/Memory Bus

PCI Bus [Backplane]

I/O Busses [IDE, SCSI]

Processor to I/O Devices

Two methods for communicating with the device

1. Special I/O instructions:

- Each instruction specifies:
 - **Device number**: Uniquely identifies the device
 - · Command word: Operation to be performed
- Information is sent using I/O bus

2. Memory-mapped I/O:

- Designates a portion of the memory address space to I/O device communication
- Read and writes to those addresses are interpreted as commands to the I/O devices

I/O Device to Processor

Two methods to communicate with the processor

Polling:

- The I/O device put information in a status register
- The processor periodically check the status register

Interrupt driven I/O:

- The I/O device causes the processor to be interrupted
- → Processor will cease doing it's original task and handle the interrupt accordingly
- The process above is commonly handled by part of the operating system (OS)

Polling: Programmed I/O

Busy wait loop

Inefficient use of the CPU time unless the device is very fast!

Advantage:

 Simple: the processor is totally in control and does all the work

Disadvantage:

Polling overhead can consume a lot of CPU time

- User program progress is only halted during actual transfer
- Disadvantage, special hardware is needed to:
 - Cause an interrupt (I/O device)
 - Detect an interrupt (processor)
 - Save the proper states to resume after the interrupt (processor)

I/O Interrupt

- An I/O interrupt is asynchronous with respect to instruction execution:
 - I/O interrupt is not associated with any instruction
 - I/O interrupt does not prevent any instruction from completion
 - You can pick your own convenient point to take an interrupt
- I/O interrupt is complicated:
 - Needs to convey the identity of the device generating the interrupt
 - Interrupt requests can have different urgencies:
 - Interrupt request needs to be prioritized

More I/O Related Topics

Bus access and Bus Arbitration Mechanism

Networking

Direct memory access

SUMMARY

- I/O performance is limited by weakest link in chain between OS and device
- Wide range of devices
- Communication between I/O device and Processor:
 - Polling: it can waste a lot of processor time
 - I/O interrupt: similar to exception except it is asynchronous

END