NIST Special Publication 800-161

Supply Chain Risk Management Practices for Federal Information Systems and Organizations

Jon Boyens Celia Paulsen Computer Security Division Information Technology Laboratory

> Rama Moorthy Hatha Systems Washington, D.C.

Nadya Bartol Utilities Telecom Council Washington, D.C.

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.SP.800-161

April 2015

U.S. Department of Commerce Penny Pritzker, Secretary

National Institute of Standards and Technology Willie May, Acting Under Secretary of Commerce for Standards and Technology and Acting Director

Table of Contents

INTROD	UCTION		1
1.1	PURPO	OSE	2
1.2	SCOPE	· 2	
1.3	TARGE	ET AUDIENCE	3
1.4	BACK	GROUND	3
	1.4.1	Federal Agencies ICT Supply Chain	4
		ICT Supply Chain Risk	
1 5		Federal Agency Relationships with System Integrators, Suppliers, and External Service Provided DATIONAL PRACTICES	
1.5			
1.6		IONSHIP TO OTHER PROGRAMS AND PUBLICATIONS	
1.7	METH	ODOLOGY FOR BUILDING ICT SCRM GUIDANCE USING SP 800-39 AND NIST SP 800-53 REVISION	
	1.7.1	Integration into Risk Management Process	
4.0	1.7.2	Enhanced ICT SCRM Overlay	
1.8		NIZATION OF THIS SPECIAL PUBLICATION	
INTEGRA		F ICT SCRM INTO ORGANIZATION-WIDE RISK MANAGEMENT	
2.1	MULTI	ITIERED RISK MANAGEMENT	
	2.1.1	TIER 1 – ORGANIZATION	
	2.1.2	TIER 2 – MISSION/BUSINESS PROCESS	
	2.1.3	TIER 3 – INFORMATION SYSTEMS	
2.2	ICT SC	RM ACTIVITIES IN RISK MANAGEMENT PROCESS	
	2.2.1	FRAME	
	2.2.2	ASSESS	
	2.2.3 2.2.4	RESPONDMONITOR	
ICT CCDA		ROLS	
ICI SCRI			
3.1		RM CONTROLS SUMMARY	
3.2	ICT SC	RM CONTROLS THROUGHOUT THE ORGANIZATION	50
3.3	APPLY	ING ICT SCRM CONTROLS TO ACQUIRING ICT PRODUCTS AND SERVICES	50
	3.3.1	System Integrators	51
	3.3.2	Suppliers	
	3.3.3	External Providers of Information System Services	
3.4	SELEC	TING AND TAILORING IMPLEMENTING ICT SCRM SECURITY CONTROLS	52
	3.4.1	ICT SCRM Control Format	
2 5	3.4.2	Using ICT SCRM Controls in This Publication	
3.5		RM SECURITY CONTROLS	
		Y: ACCESS CONTROL	
		Y: AWARENESS AND TRAININGY: AUDIT AND ACCOUNTABILITY	
	FAIVIIL	I. AUDIT AND ACCOUNTABILIT	02

FAMILY: SECURITY ASSESSMENT AND AUTHORIZATION	65
FAMILY: CONFIGURATION MANAGEMENT	68
FAMILY: CONTINGENCY PLANNING	74
FAMILY: IDENTIFICATION AND AUTHENTICATION	77
FAMILY: INCIDENT RESPONSE	
FAMILY: MAINTENANCE	81
FAMILY: MEDIA PROTECTION	
FAMILY: PHYSICAL AND ENVIRONMENTAL PROTECTION	
FAMILY: PLANNING	
FAMILY: PROGRAM MANAGEMENT	
FAMILY: PERSONNEL SECURITY	
FAMILY: PROVENANCE	_
FAMILY: RISK ASSESSMENT	
FAMILY: SYSTEM AND SERVICES ACQUISITION	
FAMILY: SYSTEM AND COMMUNICATIONS PROTECTION	
FAMILY: SYSTEM AND INFORMATION INTEGRITY	115
ICT SCRM CONTROL SUMMARY	1
NIST SP 800-53 ICT SCRM-RELEVANT CONTROLS	1
FAMILY: ACCESS CONTROL	1
FAMILY: AWARENESS AND TRAINING	
FAMILY: AUDIT AND ACCOUNTABILITY	14
FAMILY: SECURITY ASSESSMENT AND AUTHORIZATION	19
FAMILY: CONFIGURATION MANAGEMENT	25
FAMILY: CONTINGENCY PLANNING	35
FAMILY: IDENTIFICATION AND AUTHENTICATION	40
FAMILY: INCIDENT RESPONSE	44
FAMILY: MAINTENANCE	47
FAMILY: MEDIA PROTECTION	
FAMILY: PHYSICAL AND ENVIRONMENTAL PROTECTION	
FAMILY: PLANNING	
FAMILY: PROGRAM MANAGEMENT	
FAMILY: PERSONNEL SECURITY	
FAMILY: RISK ASSESSMENT	
FAMILY: SYSTEM AND SERVICES ACQUISITION	
FAMILY: SYSTEM AND COMMUNICATIONS PROTECTION	
FAMILY: SYSTEM AND INFORMATION INTEGRITY	96
ICT SUPPLY CHAIN THREAT EVENTS	1
SUPPLY CHAIN THREAT SCENARIOS AND ANALYSIS FRAMEWORK	1
DEVELOPING AND ANALYZING THREAT SCENARIOS & IDENTIFYING APPLICABLE CONTROLS	2
SAMPLE SCENARIOS	5
SCENARIO 1: Telecommunications Counterfeits	
SCENARIO 2: Industrial Espionage	
SCENARIO 3: Malicious Code Insertion	
SCENARIO 4: Unintentional Compromise	16
ICT SCRM PLAN TEMPLATE	1
1 INTRODUCTION	4

1.1 Purpose and Scope	4
1.2 Authority	
1.3 Audience	4
2 ROLES AND RESPONSIBILITIES	5
2.1 Responsibility for the plan	5
2.2 Key Contributors	5
3 ICT SCRM CONTROLS	5
4 USING AND REVISING ICT SCRM PLAN	5
4.1 Communicating ICT SCRM Plan	6
4.2 Revision and Improvement	6
4.3 Implementing and Assessing Effectiveness of ICT SCRM Plans	
4.4 Use of ICT SCRM Plan during Contingencies and Emergencies	8
ATTACHMENTS	8
GLOSSARY	1
ACRONYMS	1
REFERENCES	1

SCRM controls. Implementing these controls will require financial and human resources, not just from the agencies directly but also potentially from their systems integrators, suppliers, and external service providers that would also result in increased costs to the acquirer. ICT SCRM controls support risk management, and should be considered in the context of the agency's or organization's unique missions, operational environments, and risks.

In applying the processes and controls, organizations may decide to include requirements that they include in their policies, acquisition guidelines, and procurement documents.

In this document, the word *organization* refers to the *federal agency*. In the context of this document, the *acquirer* is the federal agency.

Federal agencies are a diverse set of organizations with different missions, structures, and sizes. The guidance in this publication applies across the federal sector, and therefore this publication does not differentiate between the terms *federal agency* and *organization*, and uses those terms interchangeably.

1.3 TARGET AUDIENCE

ICT SCRM is an organization-wide activity that should be directed under the overall agency governance, regardless of the specific organizational structure. At the organization level, ICT SCRM activities should be led by the risk executive function, described in [NIST SP 800-39], and implemented throughout the organization by a variety of individuals in different roles. The audience for this publication is federal agency personnel involved in engineering/developing, testing, deploying, acquiring, maintaining, and retiring ICT components and systems. These functions may include, but are not limited to, information technology, information security, contracting, risk executive, program management, legal, supply chain and logistics, acquisition and procurement, other related functions, and system owner. Other personnel or entities are free to make use of the guidance as appropriate to their situation.

1.4 BACKGROUND

ICT SCRM encompasses activities in the system development life cycle, including research and development (R&D), design, manufacturing, acquisition, delivery, integration, operations, and disposal/retirement of an organization's ICT products (i.e., hardware and software) and services. ICT SCRM lies at the intersection of security, integrity, resilience, and quality, as depicted in Figure 1-1.

- Security provides the confidentiality, integrity, and availability of information that (a) describes the ICT supply chain (e.g., information about the paths of ICT products and services, both logical and physical); or (b) traverses the ICT supply chain (e.g., intellectual property contained in ICT products and services), as well as information about the parties participating in the ICT supply chain (anyone who touches an ICT product or service throughout its life cycle);
- Integrity is focused on ensuring that the ICT products or services in the ICT supply chain are genuine, unaltered, and that the ICT products and services will perform according to acquirer specifications and without additional unwanted functionality.
- Resilience is focused on ensuring that ICT supply chain will provide required ICT products and services under stress or failure; and
- Quality is focused on reducing vulnerabilities that may limit the intended function of a component, lead to component failure, or provide opportunities for exploitation.

This publication addresses the overlap of the four pillars of ICT SCRM - security, integrity, resilience, and quality - as depicted in Figure 1-1. The publication does not address the entire body of knowledge of these disciplines that is depicted by the non-overlapping areas of the circles in Figure 1-1.

Figure 1-1: Four Pillars of ICT SCRM

1.4.1 Federal Agencies ICT Supply Chain

Federal agencies run complex information systems and networks to support their missions. These information systems and networks are composed of ICT products and components made available by ICT *suppliers*. Federal agencies also acquire and deploy an array of IT services, including those that:

- Integrate or provide operations, maintenance, and disposal support for federal information systems and networks within and outside of the federal agency authorization boundaries, and available by *system integrators;* and
- Provide external services to support federal agency operations that are provided from both within
 or outside of the federal agency authorization boundaries, made available by *external service*providers.

In addition to operating information systems and networks internally, organizations also host system development and integration activities within their authorization boundaries. Those activities may be performed by the agency themselves or by system integrators. The *ICT supply chain infrastructure* is the integrated set of components (hardware, software, and processes) within the organizational boundary that

⁴ NIST SP 800-53 Rev. 4 defines Authorization Boundary as:

All components of an information system to be authorized for operation by an authorizing official and excludes separately authorized systems, to which the information system is connected.[NIST SP 800-53 Rev. 4, p. B-2]

, ,

composes the environment in which a system is developed or manufactured, tested, deployed, maintained, and retired/decommissioned. Figure 1-2 depicts a federal agency ICT supply chain that consists of multiple layers of system integrators, external service providers, and suppliers with respect to the scope of this publication and the drivers that influence activities described herein.

The *ICT supply chain infrastructure* is the integrated set of components (hardware, software and processes) within the organizational boundary that composes the environment in which a system is developed or manufactured, tested, deployed, maintained, and retired/decommissioned.

Depicted in Figure 1-2, organizations define which mission functions and information systems compose the ICT supply chain infrastructure, potentially including system integrator and external service provider support.

An organization's ICT supply chain infrastructure includes internal development, information, information systems, services, components, and processes to create, maintain, and retire an organization's information systems. Examples include development environments, individuals who are working within the organization's facilities, logistics/delivery environments that transport information systems and components, or applicable system and communications interfaces. These elements of the ICT supply chain infrastructure may be provided by the organization itself, system integrator, or external service provider. Inclusion in ICT supply chain infrastructure is defined by agreement documents for organization's information systems between system integrator or external service provider or the organization.

Figure 1-2: Federal Agency Relationships with System Integrators, Suppliers, and External Service Providers with Respect to the Scope of NIST SP 800-161.

·

The ICT supply chain infrastructure *does not* include:

- The information system traversing the supply chain;
- Any information system *not* used in the development, testing, maintenance, or retirement of information system components;
- System integrator, supplier, and external service provider information systems that are *outside* of the organization's information system boundaries as defined by [NIST SP 800-37 Rev. 1];
- System integrator, supplier, and external service provider people, processes, and technology that are *not engaged* in supporting the information system sytem development life cycle (SDLC); and
- The organization's people, processes, and technology *not engaged* in the SDLC for an information system. For example, organization's shipping and receiving processes handling non-ICT are not included in the ICT supply chain infrastructure, such as food services or paper clips.

Supplier and *system integrator* are included under the definition of "*developer*" by NIST SP 800-53 Revision 4, *Security and Privacy Controls for Federal Information Systems and Organizations*:

A general term that includes: (i) developers or manufacturers of information systems, system components, or information system services; (ii) systems integrators; (iii) vendors; and (iv) product resellers. Development of systems, components, or services can occur internally within organizations (i.e., in-house development) or through external entities. [NIST SP 800-53 Rev. 4, p. B-6]

NIST SP 800-161 uses NIST SP 800-53 Revision 4 *developer* definition items (i), (iii), and (iv) to define *supplier* and item (ii) to define *system integrator*.

NIST SP 800-53 Revision 4 describes external information system service provider as follows:

External services can be provided by: (i) entities within the organization but outside of the security authorization boundaries established for organizational information systems; (ii) entities outside of the organization either in the public sector (e.g., federal agencies) or private sector (e.g., commercial service providers); or (iii) some combination of the public and private sector options. External information system services include, for example, the use of service-oriented architectures (SOAs), cloud-based services (infrastructure, platform, software), or data center operations. External information system services may be used by, but are typically not part of, organizational information systems. In some situations, external information system services may completely replace or heavily augment the routine functionality of internal organizational information systems. [NIST SP 800-53 Rev. 4, p. B-8]

Additionally, NIST SP 800-53 Revision 4 describes *organizational users* as follows:

An organizational employee or an individual the organization deems to have equivalent status of an employee including, for example, contractor, guest researcher, or individual detailed from another organization.[NIST SP 800-53 Rev. 4, p. B-16]

1.4.2 ICT Supply Chain Risk

ICT supply chain risks include insertion of counterfeits, unauthorized production, tampering, theft, insertion of malicious software and hardware (e.g., GPS tracking devices, computer chips, etc.), as well as poor manufacturing and development practices in the ICT supply chain. These risks are realized when threats in the ICT supply chain exploit existing vulnerabilities.

Figure 1-3 depicts ICT supply chain risk resulting from the likelihood that relevant threats may exploit applicable vulnerabilities and the consequential potential impact.

ICT Supply Chain Risk

Figure 1-3: ICT Supply Chain Risk

It should be noted that it might take years for a vulnerability stemming from the ICT supply chain to be exploited or discovered. In addition, it may be difficult to determine whether an event was the direct result of a supply chain vulnerability. This may result in a persistent negative impact on an organization's missions that could range from reduction in service levels leading to customer dissatisfaction to theft of intellectual property or degradation of mission-critical functions.

1.4.3 Federal Agency Relationships with System Integrators, Suppliers, and External Service Providers

ICT supply chain risks are associated with an organization's decreased visibility into, and understanding of, how the technology that they acquire is developed, integrated, and deployed. They are also associated with the processes, procedures, and practices used to assure the integrity, security, resilience, and quality of the products and services. Federal agencies have a variety of relationships with their system integrators, suppliers, and external service providers. Figure 1-4 depicts how the diverse types of these relationships affect an organization's visibility and control of the supply chain.

Figure 1-4: An Organization's Visibility, Understanding, and Control of its ICT Supply Chains

Some supply chain relationships are tightly intermingled, such as when a system integrator develops a complex information system to be operated within the federal agency's authorization boundary or when an external service provider manages federal agency information systems and resources on behalf of the department. These relationships are usually guided by an agreement (e.g., contract) that establishes detailed functional and security requirements and may provide for custom development or significant customization of ICT products and services. For these relationships, system integrators and external service providers are likely to be able to work with the federal agency to implement those processes and controls listed within this document, which are deemed appropriate based on the results of a risk assessment and cost/benefit analysis. This may include floating requirements upstream in the supply chain that can significantly impact costs to the supplier. The cost of requiring system integrators and external service providers to implement ICT SCRM processes and controls should be weighed against the risks to the organization of not adhering to those additional requirements. Often, working directly with the system

, ,

integrators and external service providers to identify appropriate mitigation processes and controls will help create a more cost-effective strategy.

Procuring ICT products directly from ICT suppliers establishes a direct relationship between those suppliers and the acquirers. This relationship is also usually guided by an agreement between the acquirer and ICT supplier. However, commercial ICT developed by suppliers are typically designed for general purposes for a global market and typically are not tailored to any individual customer's specific operational or threat environments. Organizations should establish a dialog with ICT suppliers regarding their specific ICT SCRM requirements to determine if an ICT solution is "fit for purpose."

This dialog will help acquirers understand the capabilities of existing ICT products and services, set expectations and requirements for suppliers, and identify ICT SCRM needs not yet satisfied by the market. It can also help identify emerging solutions that may at least partially support the acquirer need. Overall, the dialog will allow the acquirer to better articulate their requirements to align with and drive market offerings.

This dialog will also help system integrators, suppliers, and external service providers achieve a more nuanced understanding of the organization's requirements and how their current and emerging ICT products and services may be able to satisfy them.

Organizations should recognize that ICT suppliers may or may not be able to offer customization or tailoring to their ICT SCRM needs, and that such tailoring may have cost implications. Acquirers should weigh the costs and benefits afforded by these products to make their final acquisition decision. Acquirers should also recognize that ICT suppliers may choose to keep their processes or products as is and not support the acquirer's security and ICT SCRM requirements. The dialog between acquirers and ICT suppliers may help acquirers and ICT suppliers achieve an understanding and identify acceptable solutions when such challenges occur.

Requiring a greater level of testing, documentation, or security features from system integrators, suppliers, and external service providers may increase the price of a product or service. Additional costs may include the development or testing of products, or the collection, analysis, storage and protection of data. This is especially true for those products and services developed for general-purpose application and not tailored to the specific organization's security or ICT SCRM requirements. Acquirers should evaluate and weigh the costs of adding ICT SCRM requirement into agreements against the risks to the organization of not adding ICT SCRM requirements.

⁵ "Fit for purpose" is a term used informally to describe a process, configuration item, IT service, etc., that is capable of meeting its objectives or service levels. Being fit for purpose requires suitable design, implementation, control, and maintenance. (Adapted from Information Technology Infrastructure Library (ITIL) Service Strategy. [ITIL Service Strategy)

CHAPTER TWO

INTEGRATION OF ICT SCRM INTO ORGANIZATION-WIDE RISK MANAGEMENT

ICT SCRM should be integrated into the organization-wide risk management process described in [NIST SP 800-39] and depicted in Figure 2-1. This process includes the following continuous and iterative steps:

- (i) Frame risk establish the context for risk-based decisions and the current state of the information system or ICT supply chain infrastructure;
- (ii) Assess risk review and interpret criticality, threat, vulnerability, likelihood, impact, and related information;
- (iii) Respond to risk once determined select, tailor, and implement mitigation controls; and
- (iv) Monitor risk on an ongoing basis, including changes to an information system or ICT supply chain infrastructure, using effective organizational communications and a feedback loop for continuous improvement.

Figure 2-1: Risk Management Process

Managing ICT supply chain risks is a complex, multifaceted undertaking that requires a coordinated effort across an organization and building trust relationships and communicating with external and internal partners and stakeholders. This includes: engaging multiple disciplines in identifying priorities and developing solutions; ensuring that ICT SCRM activities are performed throughout the SDLC; and incorporating ICT SCRM into overall risk management decisions. ICT SCRM activities should involve

identifying and assessing applicable risks, determining appropriate mitigating actions, developing ICT SCRM Plans to document selected mitigating actions, and monitoring performance against ICT SCRM Plans. Because ICT supply chains differ across and within organizations, ICT SCRM plans should be tailored to individual organizational, program, and operational contexts. These tailored ICT SCRM Plans will provide the basis for determining whether an information system is "fit for purpose" and as such, the controls need to be tailored accordingly. Tailored ICT SCRM plans will help organizations to focus appropriate resources on the most critical functions and components based on organizational mission/business requirements and their risk environment.

Organizations should ensure that tailored ICT SCRM Plans are designed to:

- Manage, rather than eliminate risk;
- Ensure that operations are able to adapt to constantly evolving threats;
- Be responsive to changes within their own organization, programs, and the supporting information systems; and
- Adjust to the rapidly evolving practices of the private sector's global ICT supply chain.

Chapter 2.1 describes the three-tier risk management approach in terms of ICT SCRM. Generally, senior leaders provide the strategic direction, mid-level leaders plan and manage projects, and individuals on the front lines develop, implement, and operate the ICT supply chain infrastructure. The activities performed in each tier can be integrated into an organization's overall risk management process in order to ensure that the ICT SCRM program appropriately supports the organization's mission and goals. ¹⁰ Chapter 2.2 describes the Risk Management Framework as it applies to ICT SCRM. The foundational concepts are described in greater detail in [NIST SP 800-39].

2.1 MULTITIERED RISK MANAGEMENT

To integrate risk management throughout an organization, [NIST SP 800-39] describes three organizational tiers, depicted in Figure 2-2, that address risk at the: (i) organization level; (ii) mission/business process level; and (iii) information system level. ICT SCRM requires the involvement of all three tiers.

⁹ The tailoring of ICT SCRM plans to individual organizational, program, and operational contexts may be referred to as "fit for purpose" as defined by Information Technology Infrastructure Library (ITIL) Service Strategy.[ITIL Service Strategy]

¹⁰ This document uses the word "mission" to mean the organization's required tasks as determined by the organization's purpose and enterprise-level goals and priorities.

Figure 2-2: Multitiered Organization-wide Risk Management¹¹

In general, Tier 1 is engaged in the development of the overall ICT SCRM strategy, determination of organization-level ICT SCRM risks, and setting of the organization-wide ICT SCRM policies to guide the organization's activities in establishing and maintaining organization-wide ICT SCRM capability. Tier 2 is engaged in prioritizing the organization's mission and business functions, conducting mission/business-level risk assessment, implementing Tier 1 strategy and guidance to establish an overarching organizational capability to manage ICT supply chain risks, and guiding organization-wide ICT acquisitions and their corresponding SDLCs. Tier 3 is involved in specific ICT SCRM activities to be applied to individual information systems and information technology acquisitions, including integration of ICT SCRM into these systems' SDLCs.

The ICT SCRM activities can be performed by a variety of individuals or groups within an organization ranging from a single individual to committees, divisions, programs, or any other organizational structures. ICT SCRM activities will be distinct for different organizations depending on their organization's structure, culture, mission, and many other factors. It should be noted that this publication gives organizations the flexibility to either develop stand-alone documentation (e.g., policies, assessment and authorization [A&A] plan and ICT SCRM Plan) for ICT SCRM, or to integrate it into existing agency documentation.

¹¹ Further information about the concepts depicted in Figure 2-2 can be found in [NIST SP 800-39].

mornation bystome and briganizations

Table 2-1 shows generic ICT SCRM stakeholders for each tier with the specific ICT SCRM activities performed within the corresponding tier. These activities are either direct ICT SCRM activities or have a direct impact on ICT SCRM.

Tiers	Tier Name	Generic Stakeholder	Activities
1	Organization	Executive Leadership (CEO, CIO, COO, CFO, CISO, CTO, etc.) - Risk executive	Define corporate strategy, policy, goals and objectives
2	Mission	Business Management (includes program management [PM], research and development [R&D], Engineering [SDLC oversight], Acquisitions / Procurement, Cost Accounting, and other management related to reliability, safety, security, quality, etc.)	Develop actionable policies and procedures, guidance and constraints
3	Information Systems	Systems Management (architect, developers, system owner, QA/QC, test, and contracting personnel, approving selection, payment and approach for obtaining, maintenance engineering, disposal personnel, etc.)	Policy implementation, requirements, constraints, implementations

Table 2-1: Supply Chain Risk Management Stakeholders

The ICT SCRM process should be carried out across the three risk management tiers with the overall objective of continuous improvement in the organization's risk-related activities and effective inter-tier and intra-tier communication, thus integrating both strategic and tactical activities among all stakeholders with a shared interest in the mission/business success of the organization. Whether addressing a component, a system, a process, a mission function, or a policy, it is important to engage the relevant ICT SCRM stakeholders at each tier to ensure that risk management activities are as informed as possible.

The next few sections provide example activities in each tier. However, because each organization is different, there may be activities that are performed in different tiers than listed as individual organizational context requires.

<u>Chapter 3</u> provides a number of mission/business ICT SCRM controls that organizations can tailor for their use to help guide Tier 1, Tier 2, and Tier 3 ICT SCRM activities. It should be noted the tailoring should be scoped to the organization's risk management needs and take into consideration the costs associated with implementing ICT SCRM.

2.1.1 TIER 1 - ORGANIZATION

Tier 1 (Organization) provides strategic ICT SCRM direction for an organization using organizational-level mission/business requirements and policies, governance structures such as the risk executive (function), and organization-wide resource allocation for ICT SCRM. Tier 1 activities help to ensure that ICT SCRM mitigation strategies are cost-effective, efficient, and consistent with the strategic goals and objectives of the organization. It is critical that, as organizations define and implement organization-wide strategies, policies, and processes in this tier, they include ICT SCRM considerations.

ICT SCRM activities at this tier include:

- Establish ICT SCRM policies based on external and organizational requirements and constraints (e.g., applicable laws and regulations). Policies should include the purpose and applicability, as well as investment and funding requirements, of the ICT SCRM program;
- Based on the ICT SCRM policy, identify:
 - Mission/business requirements that will influence ICT SCRM, such as cost, schedule, performance, security, privacy, quality, and safety;
 - o Information security requirements, including ICT SCRM-specific requirements; and
 - Organization-wide mission/business functions and how ICT SCRM will be integrated into their processes;
- Establish risk tolerance level for ICT supply chain risks;
- Establish a group of individuals across the organization who will address ICT SCRM throughout the organization, known as the ICT SCRM Team; and
- Ensure that ICT SCRM is appropriately integrated into the organization risk management policies and activities.

Implementing ICT SCRM requires that organizations establish a coordinated team-based approach to assess ICT supply chain risk and manage this risk by using programmatic and technical mitigation techniques. The coordinated team approach, either ad hoc or formal, will enable agencies to conduct a comprehensive analysis of their ICT supply chain, communicate with external partners/stakeholders, and gain broad consensus regarding appropriate resources for ICT SCRM.

The ICT SCRM Team should consist of members with diverse roles and responsibilities for leading and supporting ICT SCRM activities including information technology, information security, contracting, risk executive, mission/business, legal, supply chain and logistics, acquisition and procurement, and other relevant functions. These individuals may include government personnel or prime contractors hired to provide acquisition services to a government client.

Members of the ICT SCRM team should be a diverse group of people who are involved in the various aspects of the SDLC. Collectively, to aid in ICT SCRM, these individuals should have an awareness of, and provide expertise in organizational acquisition processes, legal practices, vulnerabilities, threats, and attack vectors, as well as an understanding of the technical aspects and dependencies of systems. The ICT SCRM team may be an extension of an organization's existing information system risk management or include parts of a general risk management team.

2.1.2 TIER 2 - MISSION/BUSINESS PROCESS

Tier 2 (Mission/Business Process) addresses risk from a *mission/business process* perspective and is informed by the risk context, risk decisions, and risk activities at Tier 1.¹² In this tier, program requirements are defined and managed – including ICT SCRM as well as cost, schedule, performance, and a variety of critical nonfunctional requirements. These nonfunctional requirements include concepts such as reliability, dependability, safety, security, and quality. Many threats *to* and *through* the supply chain are addressed at this level in the management of trust relationships with system integrators,

¹² For more information, see [NIST SP 800-39 Section 2.2].

· · · · · ·

suppliers, and external service providers of ICT products and services. Because ICT SCRM can both directly and indirectly impact mission/business processes, understanding, integrating and coordinating ICT SCRM activities at this tier are critical for ensuring successful mission and business operations.

ICT SCRM activities at this tier include:

- Defining the risk response strategy, including ICT SCRM considerations, for critical processes;
- Establishing ICT SCRM processes to support mission/business processes;
- Determining the ICT SCRM requirements of the mission/business systems needed to execute the mission/business processes;
- Incorporating ICT SCRM requirements into the mission/business processes;
- Integrating ICT SCRM requirements into an enterprise architecture to facilitate the allocation of ICT SCRM controls to organizational information systems and the environments in which those systems operate; and
- Establishing a mission/business-specific ICT SCRM team that coordinates and collaborates with the organizational ICT SCRM team.

2.1.3 TIER 3 – INFORMATION SYSTEMS

Tier 3 (Information Systems) is where ICT SCRM activities are integrated into the SDLC of organizational information systems and system components. Many threats *through* the supply chain are addressed at this level with the use of ICT SCRM-related information security requirements. Risk management activities at Tier 3 reflect the organization's risk management strategy defined in Tier 1 (per NIST SP 800-39), as well as cost, schedule, and performance requirements for individual information systems as defined in Tier 2. ICT SCRM activities at this tier include:

- Applying, monitoring and managing ICT SCRM controls in the development and sustainment of systems supporting mission/business processes; and
- Applying, monitoring and managing ICT SCRM controls to the SDLC and the environment in which the SDLC is conducted (e.g., ICT supply chain infrastructure) used to develop and integrate mission/business systems.

At Tier 3, ICT SCRM significantly intersects with the SDLC, which includes acquisition (both custom and off-the-shelf), requirements, architectural design, development, delivery, installation, integration, maintenance, and disposal/retirement of information systems, including ICT products and services.

2.2 ICT SCRM ACTIVITIES IN RISK MANAGEMENT PROCESS

Risk management is a comprehensive process that requires organizations to: (i) frame risk (i.e., establish the context for risk-based decisions); (ii) assess risk; (iii) respond to risk once determined; and (iv) monitor risk on an ongoing basis using effective organizational communications and a feedback loop for continuous improvement in the risk-related activities of organizations. Figure 2-3 depicts interrelationships among the risk management process steps, including the order in which each analysis may be executed and the interactions required to ensure that the analysis is inclusive of the various inputs at the organization, mission, and operations levels.

Figure 2-3: ICT SCRM Risk Management

The steps in the risk management process – Frame, Assess, Respond, and Monitor - are iterative and not inherently sequential in nature. Different individuals may be required to perform the steps at the same time depending on a particular need or situation. Organizations have significant flexibility in how the risk management steps are performed (e.g., sequence, degree of rigor, formality, and thoroughness of application) and in how the results of each step are captured and shared—both internally and externally. The outputs from a particular risk management step will directly impact one or more of the other risk management steps in the risk management process.

Figure 2-4 summarizes ICT SCRM activities throughout the risk management process as they are performed within the three organizational tiers. The arrows between different steps of the risk management process depict simultaneous flow of information and guidance among the steps. Together the arrows indicate that the inputs, activities, and outputs are continuously interacting and influencing one another. More details are provided in the following subsections.

Figure 2-4: ICT SCRM Activities in Risk Management Process

Figure 2-4 depicts interrelationships among the risk management process steps including the order in which each analysis is executed and the interactions required to ensure that the analysis is inclusive of the various inputs at the organization, mission, and operations levels.

The remainder of this section provides a detailed description of ICT SCRM activities within the Frame, Assess, Respond, and Monitor steps of the Risk Management Process. The structure of subsections 2.2.1 through 2.2.4 mirrors the structure of NIST SP 800-39, Chapters 3.1-3.4. For each step of the Risk Management Process (i.e., Frame, Assess, Respond, Monitor), the structure includes Inputs and Preconditions, Activities, and Outputs and Post-Conditions. Activities are further organized into Tasks according to [NIST SP 800-39] . NIST SP 800-161 cites the steps and tasks of the risk management process but rather than repeating any other content of [NIST SP 800-39], it provides ICT SCRM-specific guidance for each step with its Inputs and Preconditions, Activities with corresponding Tasks, and Outputs and Post-Conditions. NIST SP 800-161 adds one task to the tasks provided in [NIST SP 800-39], under the Assess step: Task 2-0, *Criticality Analysis*.

2.2.1 FRAME

Inputs and Preconditions

Frame is the step that establishes context for ICT SCRM in all three tiers. The scope and structure of the organizational ICT supply chain infrastructure, the overall risk management strategy, as well as specific

,

program/project or individual information system needs, are defined in this step. The data and information collected during Frame provides inputs for scoping and fine-tuning ICT SCRM activities in other risk management process steps throughout the three tiers.

[NIST SP 800-39] defines risk framing as "the set of assumptions, constraints, risk tolerances, and priorities/trade-offs that shape an organization's approach for managing risk." ICT SCRM risk framing should be integrated into the overall organization risk framing process. Outputs of the organization's risk framing and the overall risk management process should serve as inputs into the ICT SCRM risk framing, including but not limited to:

- Organization policies, strategies, and governance;
- Applicable laws and regulations;
- Mission functions and business goals;
- Organization processes (security, quality, etc.);
- Organization threats, vulnerabilities, risks, and risk tolerance;
- Criticality of mission functions;
- Enterprise architecture;
- Mission-level security policies;
- Functional requirements; and
- Security requirements.

ICT SCRM risk framing is an iterative process that also uses inputs from the other steps of the risk management process (Assess, Respond, and Monitor) as inputs. Figure 2-5 depicts the Frame Step with its inputs and outputs along the three organizational tiers.

Figure 2-5: ICT SCRM in the Frame Step

Figure 2-5 depicts inputs, activities, and outputs of the Frame Step distributed along the three organizational tiers. The large arrows on the left and right sides of the activities depict the inputs and outputs to and from other steps of the Risk Management Process, with the arrow on the left depicting that the steps are in constant interaction. Inputs into the Frame Step include inputs from other steps as well as inputs from the organization risk management process that are shaping the ICT SCRM process. Up-down arrows between the tiers depict flow of information and guidance from the upper tiers to the lower tiers and the flow of information and feedback from the lower tiers to the upper tiers. Together the arrows indicate that the inputs, activities, and outputs are continuously interacting and influencing one another.

Activities

RISK ASSUMPTIONS

TASK 1-1: Identify assumptions that affect how risk is assessed, responded to, and monitored within the organization.

Supplemental Guidance:

As a part of identifying ICT supply chain Risk Assumptions within the broader Risk Management process (described in [NIST SP 800-39]), agencies should do the following:

- Define ICT SCRM mission, business, and system-level requirements;
- Identify which mission functions and related components are critical to the organization, including FIPS 199 impact level, to determine the **baseline criticality**;
- Identify, characterize, and provide representative examples of **threat sources**, **vulnerabilities**, **consequences/impacts**, and **likelihood** determinations related to ICT supply chain;
- Develop organization-wide ICT SCRM policy;
- Select appropriate ICT supply chain risk assessment methodologies, depending on organizational governance, culture, and diversity of the missions/business functions;
- Establish a method for the results of ICT SCRM activities to be integrated into the overall agency Risk Management Process; and
- Define which mission functions and information systems compose the ICT supply chain infrastructure, potentially including system integrator and external service provider support and periodically review its ICT supply chain infrastructure because it may evolve over time.

Baseline Criticality:

Critical functions are those functions, which if corrupted or disabled, are likely to result in mission degradation or failure. Mission-critical functions are dependent on their supporting systems that in turn depend on critical components in those systems (hardware, software, and firmware). Mission-critical functions also depend on processes that are used to execute the critical functions. Those components and processes that deliver defensive functions (e.g., access control, identity management, and crypto) and unmediated access (e.g., power supply) may also be considered mission-critical. A criticality analysis is the primary method by which mission-critical functions and associated systems/components are identified and prioritized.

Baseline criticality determination is the initial identification of specific critical components and processes based on the required function. This includes the analysis of requirements, architecture, and design to identify the minimum set of components required for system operation. Baseline criticality determination includes first identifying system requirements that support mission function and systems/components that have a direct impact on system requirements. This analysis should include agency system and ICT supply chain dependencies. Organizations should define the baseline criticality in the Frame phase to be updated and tailored to specific context in the Assess phase.

Determining baseline criticality is an iterative process performed at all tiers during both Frame and Assess. In Frame, baseline criticality determination is expected to be performed at a high level, using the available information with further detail incorporated through additional iterations or at the Assess step. Determining baseline criticality may include the following:

- Identify mission and business drivers, such as applicable regulations, policies, requirements, and operational constraints;
- Prioritize these drivers to help articulate the organization's critical functions, systems, and components;
- Identify, group, and prioritize mission functions based on the drivers;
- Establish [FIPS 199] impact levels (high, moderate, low) for individual systems; and
- Map the mission functions to the system architecture and identify the systems/ components (hardware, software, and firmware) and processes that are critical to the mission/business effectiveness of the system or an interfacing network.

Please note that baseline criticality can be determined for existing systems or for future system integration efforts based on system architecture and design. It is an iterative activity that should be performed if a change warranting iteration is identified in the Monitor step.

Threat Sources:

For ICT SCRM, threat sources include: (i) hostile cyber/physical attacks either to the supply chain or to an information system component(s) traversing the supply chain; (ii) human errors; or (iii) geopolitical disruptions, economic upheavals, and natural or man-made disasters. [NIST SP 800-39] states that organizations provide a succinct characterization of the types of tactics, techniques, and procedures employed by adversaries that are to be addressed by safeguards and countermeasures (i.e., security controls) deployed at Tier 1 (organization level), at Tier 2 (mission/business process level), and at Tier 3 (information system level)—making explicit the types of threat sources that are to be addressed as well as making explicit those not being addressed by the safeguards/countermeasures.

Threat information includes historical threat data, factual threat data, or validated technology-specific threat information. Threat information may come from multiple information sources, including the U.S. Intelligence Community (for federal agencies), as well as open source reporting such as news and trade publications, partners, suppliers, and customers.

Information about ICT supply chain (such as from supply chain maps) provides the context for identifying possible locations or access points for threat agents to enter the ICT supply chain. The ICT supply chain threat agents are similar to the information security threat agents, such as attackers or industrial spies. Table 2-2 lists examples of ICT supply chain threat agents. Appendix D provides Supply Chain Threat Scenarios listed in Table 2-2.

Threat Agent Scenario **Examples** Counterfeiters Counterfeits inserted Criminal groups seek to acquire and sell counterfeit ICT into ICT supply chain components for monetary gain. Specifically, organized crime (see Appendix D groups seek disposed units, purchase overstock items, and Scenario 1) acquire blueprints to obtain ICT components that they can sell through various gray market resellers to acquirers. 13 Insiders Disgruntled insiders sell or transfer intellectual property to Intellectual property loss competitors or foreign intelligence agencies for a variety of reasons including monetary gain. Intellectual property includes software code, blueprints, or documentation. Malicious code Foreign intelligence services seek to penetrate ICT supply Foreign Intelligence insertion (see chain and implant unwanted functionality (by inserting new

Table 2-2: Examples of ICT Supply Chain Threat Agents

¹³ "Defense Industrial Base Assessment: Counterfeit Electronics," [Defense Industrial Base Assessment: Counterfeit Electronics]

Threat Agent	Scenario	Examples		
Services Appendix D Scenario		or modifying existing functionality) to be used when the		
	3)	system is operational to gather information or subvert ¹⁴		
		system or mission operations.		
Terrorists	Unauthorized access	Terrorists seek to penetrate or disrupt the ICT supply chain		
		and may implant unwanted functionality to obtain		
		information or cause physical disablement and destruction		
		through ICT.		
Industrial	Industrial	Industrial spies/cyber criminals seek ways to penetrate ICT		
Espionage/Cyber	Espionage/Intellectual	supply chain to gather information or subvert system or		
Criminals	Property Loss (see	mission operations (e.g., exploitation of an HVAC contractor		
	Appendix D Scenario	to steal credit card information).		
	2)			

Agencies can identify and refine ICT SCRM-specific threats in all three tiers. Table 2-3 provides examples of threat considerations and different methods that can be used to characterize ICT supply chain threats at different tiers.

Table 2-3: Supply Chain Threat Considerations

Tier	Threat Consideration	Methods
Tier 1	 Organization's business and mission Strategic supplier relationships Geographical considerations related to the extent of the organization's ICT supply chain 	 Establish common starting points for identifying ICT supply chain threat. Establish procedures for countering organization-wide threats such as insertion of counterfeits into critical systems and components.
Tier 2	 Mission functions Geographic locations Types of suppliers (COTS, external service providers, or custom, etc.) Technologies used organization-wide 	 Identify additional sources of threat information specific to organizational mission functions. Identify potential threat sources based on the locations and suppliers identified through examining available agency ICT supply chain information (e.g., from supply chain map.) Scope identified threat sources to the specific mission functions, using the agency the ICT supply chain information. Establish mission-specific preparatory procedures for countering threat

¹⁴ Examples of subverting operations include gaining unauthorized control to ICT supply chain or flooding it with unauthorized service requests to reduce or deny legitimate access to ICT supply chain.

Tier	Threat Consideration	Methods
		adversaries/natural disasters.
Tier 3	• SDLC	 Base the level of detail with which threats should be considered on the SDLC phase. Identify and refine threat sources based on the potential for threat insertion within individual SDLC processes.

Vulnerabilities

A *vulnerability* is a weakness in an information system, system security procedures, internal controls, or implementation that could be exploited or triggered by a threat source [FIPS 200], [NIST SP 800-34 Rev. 1], [NIST SP 800-53 Rev 4], [NIST SP 800-53A Rev. 4], [NIST SP 800-115]. Within the ICT SCRM context, it is any weakness in the system/component design, development, manufacturing, production, shipping and receiving, delivery, operation, and component end-of life that can be exploited by a threat agent. This definition applies to both the systems/components being developed and integrated (i.e., within the SDLC) and to the ICT supply chain infrastructure, including any security mitigations and techniques, such as identity management or access control systems.

ICT supply chain vulnerabilities may be found in:

- The systems/components within the SDLC (i.e., being developed and integrated);
- The development and operational environment directly impacting the SDLC; and
- The logistics/delivery environment that transports ICT systems and components (logically or physically).

Organizations should identify approaches used to characterize ICT supply chain vulnerabilities, consistent with the characterization of threat sources and events and with the overall approach used by the organization for characterizing vulnerabilities. Appendix C provides examples of ICT supply chain threat events, based on [NIST SP 800-30 Rev. 1, Appendix B].

All three organizational tiers should contribute to determining the organization's approaches to characterize vulnerabilities, with progressively more detail identified and documented in the lower tiers. Table 2-4 provides examples of considerations and different methods that could be used to characterize ICT supply chain vulnerabilities at different tiers.

Table 2-4: Supply Chain Vulnerability Considerations

Tier	Vulnerability Consideration	Methods
Tier 1	Organization's mission/business	Examine agency ICT supply chain information
	Supplier relationships (e.g., system	including that from supply chain maps to
	integrators, COTS, external services)	identify especially vulnerable locations or
	Geographical considerations related to	organizations.
	the extent of the organization's ICT	Analyze agency mission for susceptibility to
	supply chain	potential supply chain vulnerabilities.
	Enterprise/Security Architecture	Examine system integrator and supplier
	Criticality Baseline	relationships for susceptibility to potential

Tier	Vulnerability Consideration	Methods
Tier 2	 Mission functions Geographic locations Types of suppliers (COTS, custom, etc.) Technologies used 	 supply chain vulnerabilities. Review enterprise architecture and criticality baseline to identify areas of weakness requiring more robust ICT supply chain considerations. Refine analysis from Tier 1 based on specific mission functions and applicable threat and supply chain information. Consider using the National Vulnerability Database (NVD), including Common Vulnerabilities and Exposures (CVE) and Common Vulnerability Scoring System (CVSS), to characterize, categorize, and score vulnerabilities¹⁵. Consider using scoring guidance to prioritize
		vulnerabilities for remediation.
Tier 3	Individual technologies, solutions, and suppliers should be considered.	 Use CVEs where available to characterize and categorize vulnerabilities. Identify weaknesses.

Consequences and Impact

Impact is the effect on organizational operations, organizational assets, individuals, other organizations, or the Nation (including the national security interests of the United States) of a loss of confidentiality, integrity, or availability of information or an information system [NIST SP 800-53 Rev.4].

For ICT SCRM, impact should be considered for the systems or components traversing the ICT supply chain, the supply chain itself, the ICT supply chain infrastructure, and the organization- or mission-level activities. All three tiers in the risk management hierarchy may be impacted. Potential impacts can be gathered through reviewing historical data for the agency, similar peer organizations, or applicable industry surveys. In this publication, impact is always in relation to the organization's mission and includes the systems or components traversing the supply chain as well as the supply chain itself.

The following are examples of ICT supply chain consequences and impact:

- An earthquake in Malaysia reduced the amount of commodity Dynamic Random Access Memory (DRAM) to 60 percent of the world's supply, creating a shortage for hardware maintenance and new design.
- Accidental procurement of a counterfeit part resulted in premature component failure, thereby impacting the organization's mission performance.

¹⁵ See https://nvd.nist.gov/

Likelihood

In an information security risk analysis, likelihood is a weighted factor based on a subjective analysis of the probability that a given threat is capable of exploiting a given vulnerability[CNSSI 4009]. Agencies should determine which approach(es) they will use to determine the likelihood of an ICT supply chain

compromise, consistent with the overall approach used by the agency's risk management function.

RISK CONSTRAINTS

TASK 1-2: Identify constraints¹⁶ on the conduct of risk assessment, risk response, and risk monitoring activities within the organization.

Supplemental Guidance:

Identify the following two types of constraints to ensure that the ICT supply chain is integrated into the agency risk management process:

- 1. Agency constraints; and
- 2. ICT supply chain-specific constraints.

Agency constraints serve as an overall input into framing the ICT supply chain policy at Tier 1, mission requirements at Tier 2, and system-specific requirements at Tier 3. Table 2-5 lists the specific agency and ICT supply chain constraints. ICT supply chain constraints, such as ICT SCRM policy and ICT SCRM requirements, may need to be developed if they do not exist.

Table 2-5: Supply Chain Constraints

Tier	Agency Constraints	ICT Supply Chain Constraints
Tier 1	 Organization policies, strategies, governance Applicable laws and regulations Mission functions Organization processes (security, quality, etc.) 	Organization ICT SCRM policy based on the existing agency policies, strategies, and governance; applicable laws and regulations; mission functions; and organization processes.
Tier 2	 Mission functions Criticality of functions Enterprise architecture Mission-level security policies 	ICT SCRM Mission/business requirements that are incorporated into mission/business processes and enterprise architecture.
Tier 3	Functional requirements	System-level ICT SCRM requirements.

¹⁶ Refer to [NIST SP 800-39], Section 3.1, Task 1-2 for a description of constraints in the risk management context.

Security requirements

An organization ICT SCRM policy is a critical vehicle for guiding ICT SCRM activities. Driven by applicable laws and regulations, this policy should support applicable organization policies including acquisition and procurement, information security, quality, and supply chain and logistics. It should address goals and objectives articulated in the overall agency strategic plan, as well as specific mission functions and business goals, along with the internal and external customer requirements. It should also define the integration points for ICT SCRM with the agency's Risk Management Process and SDLC.

ICT SCRM policy should define ICT SCRM-related roles and responsibilities of the agency ICT SCRM team, any dependencies among those roles, and the interaction among the roles. ICT SCRM-related roles will articulate responsibilities for collecting ICT supply chain threat intelligence, conducting risk assessments, identifying and implementing risk-based mitigations, and performing monitoring functions. Identifying and validating roles will help to specify the amount of effort that will be required to implement the ICT SCRM Plan. Examples of ICT SCRM-related roles include:

- Risk executive function that provides overarching ICT supply chain risk guidance to engineering decisions that specify and select ICT products as the system design is finalized;
- Procurement officer and maintenance engineering responsible for identifying and replacing the hardware when defective;
- Delivery organization and acceptance engineers who verify that the part is acceptable to receive into the acquiring organization;
- System integrator responsible for system maintenance and upgrades, whose staff resides in the acquirer facility and uses system integrator development infrastructure and the acquirer operational infrastructure;
- System Security Engineer/Systems Engineer responsible for ensuring that information system security concerns are properly identified and addressed; and
- The end user of ICT systems/components/services.

ICT SCRM requirements should be guided by the ICT SCRM policy, as well as by the mission functions and their criticality at Tier 2 and by known functional and security requirements at Tier 3.

RISK TOLERANCE

TASK 1-3: Identify the level of risk tolerance for the organization.

Supplemental Guidance:

Risk tolerance is the level of risk that organizations are willing to accept in pursuit of strategic goals and objectives [NIST SP 800-39]. Organizations should take into account ICT supply chain threats, vulnerabilities, constraints, and baseline criticality, when identifying the overall level of risk tolerance.¹⁷

¹⁷ Federal Departments' and Agencies' governance structures vary widely (see [NIST SP 800-100, Section 2.2.2]). Regardless of the governance structure, individual agency risk decisions should apply to the agency and any subordinate organizations, but not in the reverse direction.

PRIORITIES AND TRADE-OFFS

TASK 1-4: Identify priorities and trade-offs considered by the organization in managing risk.

Supplemental Guidance

As a part of identifying priorities and trade-offs, organizations should consider ICT supply chain threats, vulnerabilities, constraints, and baseline criticality.

Outputs and Post Conditions

Within the scope of NIST SP 800-39, the output of the risk framing step is the *risk management strategy* that identifies how organizations intend to assess, respond to, and monitor risk over time. This strategy should clearly include any identified ICT SCRM considerations and should result in the establishment of ICT SCRM-specific processes throughout the agency. These processes should be documented in one of three ways:

- 1. Integrated into existing agency documentation;
- 2. A separate set of documents addressing ICT SCRM; or
- 3. A mix of separate and integrated documents, based on agency needs and operations.

The following information should be provided as an output of the risk framing step, regardless of how the outputs are documented:

- ICT SCRM Policy;
- Baseline Criticality including prioritized mission functions and FIPS 199 criticality;
- ICT supply chain risk assessment methodology and guidance;
- ICT supply chain risk response guidance;
- ICT supply chain risk monitoring guidance;
- ICT SCRM mission/business requirements;
- Revised mission/business processes and enterprise architecture with ICT SCRM considerations integrated; and
- System-level ICT SCRM requirements.

Outputs from the risk framing step serve as inputs to the risk assessment, risk response, and risk monitoring steps.

2.2.2 ASSESS

Inputs and Preconditions

Assess is the step where all the collected data is used to conduct a risk assessment. A number of inputs are combined and analyzed to identify the likelihood and the impact of an ICT supply chain compromise, including criticality, threat, and vulnerability analysis results; stakeholder knowledge; and policy, constraints, and requirements.

An ICT supply chain risk assessment should be integrated into the overall organization risk assessment processes. ICT SCRM risk assessment results should be used and aggregated as appropriate to communicate ICT supply chain risks at each tier of the organizational. Figure 2-6 depicts the Assess Step with its inputs and outputs along the three organizational tiers.

Figure 2-6: ICT SCRM in the Assess Step

Similar to Figure 2-5, Figure 2-6 depicts inputs, activities, and outputs of the Assess Step distributed along the three organizational tiers. The large arrows on the left and right sides of the activities depict the inputs from other steps of the Risk Management Process, with the arrow on the left depicting that the steps are in constant interaction. Inputs into the Assess Step include inputs from the other steps. Up-down arrows between the tiers depict flow of information and guidance from the upper tiers to the lower tiers and the flow of information and feedback from the lower tiers to the upper tiers. Together the arrows indicate that the inputs, activities, and outputs are continuously interacting and influencing one another.

Criticality, vulnerability, and threat analyses are essential to the supply chain risk assessment process. As depicted in Figure 2-4, vulnerability and threat analyses can be performed in any order and may be performed iteratively to ensure that all applicable threats and vulnerabilities have been identified.

The order of activities that begins with the update of the criticality analysis ensures that the assessment is scoped to include only relevant critical mission functions and the impact of ICT supply chain on these mission functions. The likelihood of exploitability is a key step to understanding impact. It becomes a synthesis point for criticality analysis, vulnerability analysis, and threat analysis and helps to further clarify impact to support an efficient and cost-effective risk decision.

Activities

CRITICALITY ANALYSIS

TASK 2-0: Update Criticality Analysis of mission-critical functions, systems, and components to narrow the scope (and resources) for ICT SCRM activities to those most important to mission success.

Supplemental Guidance

Criticality analysis should include the ICT supply chain infrastructure for both the organization and applicable system integrators, suppliers, external service providers, and the systems/components/services. Criticality analysis assesses the direct impact they each have on the mission priorities. ICT supply chain infrastructure includes the SDLC for applicable systems, services, and components because the SDLC defines whether security considerations are built into the systems/components or added after systems/components have been created.

Organizations should update and tailor Baseline Criticality established during the Frame Step of the risk management process, including FIPS 199 system categorization, based on the information newly discovered in the Assess step. Organizations should use their own discretion for whether to perform criticality analysis for moderate-impact systems.

In addition to updating and tailoring Baseline Criticality, performing criticality analysis in the Assess Step may include the following:

- Perform a dependency analysis and assessment to establish which components may require hardening given the system architecture;
- Obtain and review existing information that the agency has about critical ICT systems/components such as locations where they are manufactured or developed, physical and logical delivery paths, information flows and financial transactions associated with these components, and any other available information that can provide insights into ICT supply chain of these components;¹⁸ and
- Correlate identified critical components/services to the information about the ICT supply chain, the ICT supply chain infrastructure, historical data, and SDLC to identify critical ICT supply chain paths.

The outcome of the updated criticality analysis is a narrowed, prioritized list of the organization's critical functions, systems, and components. Organizations can use the Baseline Criticality process in Chapter 2.2.1, Task 1-1, to update Criticality Analysis.

¹⁸ This information may be available from a supply chain map for the agency or individual IT projects or systems. Supply chain maps are descriptions or depictions of supply chains including the physical and logical flow of goods, information, processes, and money upstream and downstream through a supply chain. They may include supply chain nodes, locations, delivery paths, or transactions.

Because more information will be available in the Assess step, organizations can narrow the scope and increase the granularity of a criticality analysis. When identifying critical functions and associated systems/components and assigning them criticality levels, consider the following:

- Functional breakdown is an effective method to identify functions, associated critical components, and supporting defensive functions;
- Dependency analysis is used to identify the functions on which critical functions depend (e.g., defensive functions such as digital signatures used in software patch acceptance). Those functions become critical functions themselves;
- Identification of all access points to identify and limit unmediated access to critical function/components (e.g., least-privilege implementation); and
- Malicious alteration can happen throughout the SDLC.

The resulting list of critical functions is used to guide and inform the vulnerability analysis and threat analysis to determine the initial ICT SCRM risk as depicted in Figure 2-3. ICT supply chain countermeasures and mitigations can then be selected and implemented to reduce risk to acceptable levels.

Criticality analysis is performed iteratively and may be performed at any point in the SDLC and concurrently at each tier. The first iteration is likely to identify critical functions and systems/components that have a direct impact on mission functions. Successive iterations will include information from the criticality analysis, threat analysis, vulnerability analysis, and mitigation strategies defined at each of the other tiers. Each iteration will refine the criticality analysis outcomes and result in the addition of defensive functions. Several iterations are likely needed to establish and maintain the criticality analysis results.

THREAT AND VULNERABILITY IDENTIFICATION

TASK 2-1: Identify threats to and vulnerabilities in organizational information systems and the environments in which the systems operate.

Supplemental Guidance

In addition to threat and vulnerability identification, as described in [NIST SP 800-39] and [NIST SP 800-30 Rev. 1], organizations should conduct ICT supply chain threat analysis and vulnerability analysis.

Threat Analysis

For ICT SCRM, a threat analysis provides specific and timely threat characterization of threat events (see <u>Appendix C</u>) and potential threat actors, including any identified system integrators, suppliers, or external service providers, ¹⁹ to inform management, acquisition, engineering, and operational activities within an

¹⁹ Please note that threat characterization of system integrators, suppliers, and external service providers may be benign.

organization. Threat analyses can use a variety of information to assess potential threats, including open source, intelligence, and counterintelligence. Organizations should use the threat sources defined during the Frame Step in the threat analysis conducted during the Assess Step. Organizations should use the results of the threat analysis in the Assess Step to ultimately support acquisition decisions, alternative build decisions, and development and selection of appropriate mitigations in the Respond Step. ICT supply chain threat analysis should be based on the results of the criticality analysis. Specific identified threats may include people, processes, technologies, or natural and man-made disasters.

Agencies should use information available from existing incident management activities to determine whether they have experienced an ICT supply chain compromise and to further investigate such compromises. Some ICT supply chain compromises may not be recognized as such at first and may be initially identified as an information security or logistics incident. Agencies should define criteria for what constitutes an ICT supply chain compromise to ensure that such compromises can be identified as a part of post-incident activities, including forensics investigations.

An ICT supply chain threat analysis should capture at least the following data:

- Changes to the systems/components or SDLC environment;
- Observation of ICT supply chain-related attacks while they are occurring;
- Incident data collected post-ICT supply chain-related compromise;
- Observation of tactics, techniques, and procedures used in specific attacks, whether observed or collected using audit mechanisms; and
- Natural and man-made disasters before, during, and after occurrence.

Vulnerability Analysis

For ICT SCRM, a vulnerability is any weakness in system/component design, development, production, or operation that can be exploited by a threat to defeat a system's mission objectives or to significantly degrade its performance.

A vulnerability analysis is an iterative process that informs risk assessment and countermeasure selection. The vulnerability analysis works alongside the threat analysis to help inform the impact analysis and to help scope and prioritize vulnerabilities to be mitigated.

Vulnerability analysis in the Assess Step should use the approaches used during the Frame Step to characterize ICT supply chain vulnerabilities. Vulnerability analysis should begin with identifying vulnerabilities that are applicable to mission-critical functions and systems/components identified by the criticality analysis. An investigation of vulnerabilities may indicate the need to raise or at least reconsider the criticality levels of functions and components identified in earlier criticality analyses. Later iterations of the vulnerability analysis may also identify additional threats, or opportunities for threats, not considered in earlier threat assessments.

Table 2-6 provides examples of applicable ICT supply chain vulnerabilities that can be observed within the three organizational tiers.

Table 2-6: Examples of ICT Supply Chain Vulnerabilities Mapped to the Organizational Tiers

	Vulne	erability Types		Mitigation Types
Tier 1 –	1) Deficienci	ies or weaknesses in	1)	Provide guidance on how to consider
Organization	organizati	onal governance		dependencies on external organizations as
	structures	or processes such as a		vulnerabilities.
	lack of IC	T SCRM Plan	2)	Seek out alternate sources of new
				technology including building in-house.
Tier 2 –	1) No operat	ional process is in place	1)	Develop a program for detecting
Mission/	for detecti	ng counterfeits.		counterfeits and allocate appropriate
Business	2) No budget	t was allocated for the		budgets for putting in resources and
	implemen	tation of a technical		training.
	screening	for acceptance testing	2)	Allocate budget for acceptance testing –
	of ICT con	mponents entering the		technical screening of components
	SDLC as a	replacement parts.		entering into SDLC.
	3) Susceptibil	llity to adverse issues		
	from inno	vative technology		
	supply sou	irces (e.g., technology		
	owned or	managed by third		
	parties is b	ouggy).		
Tier 3 –	1) Discrepand	ey in system functions	1)	Initiate engineering change. Malicious
Operation	not meeting	g requirements,		alteration can happen throughout the
	resulting in	substantial impact to		system life cycle to an agency system to
	performance	ce,		address functional discrepancy and test
				correction for performance impact.

The principal vulnerabilities to identify are:

- Access paths within the supply chain that would allow malicious actors to gain information about
 the system and ultimately introduce components that could cause the system to fail at some later
 time ("components" here include hardware, software, and firmware);
- Access paths that would allow malicious actors to trigger a component malfunction or failure during system operations; and
- Dependencies on supporting or associated components that might be more accessible or easier for malicious actors to subvert than components that directly perform critical functions.

RISK DETERMINATION

TASK 2-2: Determine the risk to organizational operations and assets, individuals, other organizations, and the Nation if identified threats exploit identified vulnerabilities.

Supplemental Guidance

Organizations determine ICT supply chain risk by considering the likelihood that known threats exploit known vulnerabilities to and through the ICT supply chain and the resulting consequences or adverse impacts (i.e., magnitude of harm) if such exploitations occur. Organizations use threat and vulnerability

information together with likelihood and consequences/impact information to determine ICT SCRM risk either qualitatively or quantitatively.

Likelihood

Likelihood is the probability that an exploit occurrence may result in the loss of mission capability. Determining the likelihood requires the consideration of the characteristics of the threat sources, the identified vulnerabilities, and the organizations susceptibility to the ICT supply chain compromise, prior to and with the safeguards/mitigations implemented. This analysis should consider the degree of an adversary's intent to interfere with the organization's mission. For example, how much time or money would the adversary spend to validate the existence of and leverage the vulnerability to attack a system? ICT supply chain risk assessment should consider two views:

- The likelihood that the ICT supply chain itself is compromised. This may impact, for example, the availability of quality components or increase the risk of intellectual property theft; and
- The likelihood that the system or component within the supply chain may be compromised, for example, if malicious code is inserted into a system or an electric storm damages a component.

In some cases, these two views may overlap or be indistinguishable, but both may have an impact on the agency's ability to perform its mission.

Likelihood determination should consider:

- Threat assumptions that articulate the types of threats that the system or the component may be subject to, such as cybersecurity threats, natural disasters, or physical security threats;
- Actual supply chain threat information such as adversaries' capabilities, tools, intentions, and targets;
- Exposure of components to external access;
- Identified system, process, or component vulnerabilities; and
- Empirical data on weaknesses and vulnerabilities available from any completed analysis (e.g., system analysis, process analysis) to determine probabilities of ICT supply chain threat occurrence.

Factors to consider include the ease or difficulty of successfully attacking through a vulnerability and the ability to detect the method used to introduce or trigger a vulnerability. The objective is to assess the net effect of the vulnerability, which will be combined with threat information to determine the likelihood of successful attacks in the risk assessment process. The likelihood can be based on threat assumptions or actual threat data, such as previous breaches of the supply chain, specific adversary capability, historical breach trends, or frequency of breaches. The organization may use empirical data and statistical analysis to determine specific probabilities of breach occurrence, depending on the type of data available and accessible within the organization and from supporting organizations.

Impact

Organizations should begin impact analysis with the potential impacts identified during the Frame Step, determining the *impact* of a compromise and then the impact of mitigating that compromise. Organizations need to identify the various adverse impacts of compromise, including: (i) the characteristics of the threat sources that could initiate the events; (ii) identified vulnerabilities; and (iii) the organizational susceptibility to such events based on planned or implemented countermeasures. Impact analysis is an iterative process performed initially when a compromise occurs, when mitigation

, ,

approach is decided to evaluate the impact of change, and finally, in the ever-changing SDLC, when the situation/context of the system or environment changes.

Organizations should use the result of impact analysis to define an acceptable level of ICT supply chain risk for a given system. Impact is derived from criticality, threat, and vulnerability analyses results, and should be based on the likelihood of exploit occurrence. Impact is likely to be a qualitative measure requiring analytic judgment. Executive/decision makers use impact as an input into the risk-based decisions whether to accept, avoid, mitigate, share, or transfer the resulting risks and the consequences of such decisions.

Organizations should document the overall results of ICT supply chain risk assessments in risk assessment reports. ²⁰ ICT supply chain risk assessment reports should cover risks in all three organizational tiers as applicable. Based on the organizational structure and size, multiple ICT supply chain risk assessment reports may be required. Agencies are encouraged to develop individual reports at Tier 1. For Tier 2, agencies may want to integrate ICT supply chain risks into the respective mission-level Business Impact Assessments (BIA) or develop separate mission-level ICT supply chain risk assessment reports. For Tier 3, agencies may want to integrate ICT supply chain risks into the respective System Risk assessment reports or develop separate system-level ICT supply chain risk assessment reports. The ICT supply chain risk assessment reports applies only to High Criticality systems per [FIPS 199].

Organizations may decide to develop ICT supply chain risk assessment reports for Moderate Criticality systems per [FIPS 199].

ICT supply chain risk assessment reports at all three tiers should be interconnected, reference each other when appropriate, and integrated into the ICT SCRM Plans.

Outputs and Post Conditions

This step results in:

- Confirmed mission function criticality;
- Establishment of relationships between the critical aspects of the system's ICT supply chain infrastructure (e.g., SDLC) and applicable threats and vulnerabilities;
- Understanding of the likelihood and the impact of a potential ICT supply chain compromise;
- Understanding of mission and system-specific risks;
- Documented ICT supply chain risk assessments for mission functions and individual systems;
 and
- Integration of relevant ICT supply chain risk assessment results into the organization risk management process.

²⁰ See [NIST SP 800-30 Rev. 1 Appendix K] for a description of risk assessment reports.

2.2.3 RESPOND

Inputs and Preconditions

Respond is the step in which the individuals conducting risk assessment will communicate the assessment results, proposed mitigation/controls options, and the corresponding acceptable level of risk for each proposed option to the decision makers. This information should be presented in a manner appropriate to inform and guide risk-based decisions. This will allow decision makers to finalize appropriate risk response based on the set of options along with the corresponding risk factors for choosing the various options. Sometimes an appropriate response is to do nothing and to monitor the adversary's activities and behavior to better understand the tactics and to attribute the activities.

ICT supply chain risk response should be integrated into the overall organization risk response. Figure 2-7 depicts the Respond Step with its inputs and outputs along the three organizational tiers.

Figure 2-7: ICT SCRM in the Respond Step

Figure 2-7 depicts inputs, activities, and outputs of the Respond Step distributed along the three organizational tiers. The large arrows on the left and right sides of the activities depict the inputs from the other steps of the Risk Management Process, with the arrow on the left depicting that the steps are in constant interaction. Inputs into the Respond Step include inputs from other steps. Outputs of the Respond Steps serve as inputs into the other steps, as well as inputs into the overall organization Risk Management Program at all three tiers. Up-down arrows between the tiers depict flow of information and guidance

· · · · · ·

from the upper tiers to the lower tiers and the flow of information and feedback from the lower tiers to the upper tiers. Together the arrows indicate that the inputs, activities, and outputs are continuously interacting and influencing one another.

Activities

RISK RESPONSE IDENTIFICATION

TASK 3-1: Identify alternative courses of action to respond to risk determined during the risk assessment.

Organizations should select ICT SCRM controls and tailor these controls based on the risk determination. ICT SCRM controls should be selected for all three organizational tiers, as appropriate per findings of the risk assessments for each of the tiers.

Many of the ICT SCRM controls included in this document may be part of an IT security plan. These controls are included because they apply to ICT SCRM.

This process should begin with determining acceptable risk to support the evaluation of alternatives (also known as trade-off analysis).

EVALUATION OF ALTERNATIVES

TASK 3-2: Evaluate alternative courses of action for responding to risk.

Once an initial acceptable level of risk has been defined and options identified, these options should be evaluated for achieving this level of risk by selecting mitigations from ICT SCRM controls and tailoring them to the organization's context. Chapter 3 provides risk mitigations and more information on how to select and tailor them.

This step involves conducting analysis of alternatives to select the proposed options for ICT SCRM mitigations/controls to be applied throughout the organization.

To tailor a set of ICT SCRM controls, the organization should perform ICT SCRM and mission-level trade-off analysis to achieve appropriate balance among ICT SCRM and functionality needs of the organization. This analysis will result in a set of cost-effective ICT SCRM controls that is dynamically updated to ensure that mission-related considerations trigger updates to ICT SCRM controls.

During this evaluation, applicable requirements and constraints are reviewed with the stakeholders to ensure that ICT SCRM controls appropriately balance ICT SCRM and the broader organizational requirements, such as cost, schedule, performance, policy, and compliance.

ICT SCRM controls will vary depending on where they are applied within organizational tiers and SDLC processes. For example, ICT SCRM controls may range from using a blind buying strategy to obscure end use of a critical component, to design attributes (e.g., input validation, sandboxes, and anti-tamper design). For each implemented control, the organization should identify someone responsible for its execution and develop a time- or event-phased plan for implementation throughout the SDLC. Multiple controls may address a wide range of possible risks. Therefore, understanding how the controls impact the overall risk is critical and must be considered before choosing and tailoring the combination of controls as yet another trade-off analysis may be needed before the controls can be finalized. The organization may

·

be trading one risk for a larger risk unknowingly if the dependencies between the proposed controls and the overall risk are not understood and addressed.

RISK RESPONSE DECISION

TASK 3-3: Decide on the appropriate course of action for responding to risk.

As described in [NIST SP 800-39], organizations should finalize identified and tailored ICT SCRM controls, based on the evaluation of alternatives and an overall understanding of threats, risks, and supply chain priorities.

Risk response decisions may be made by a risk executive or be delegated by the risk executive to someone else in the organization. While the decision can be delegated to Tier 2 or Tier 3, the significance and the reach of the impact should determine the tier where the decision is being made. Risk response decisions may be made in collaboration with an organization's risk executives, mission owners, and system owners, as appropriate.

The resulting decision, along with the selected and tailored controls should be documented in an ICT SCRM Plan. While the ICT SCRM Plan should ideally be developed proactively, it may also be developed in response to an ICT supply chain compromise. Ultimately, the ICT SCRM Plan should cover the full SDLC, document an ICT SCRM baseline, and identify ICT supply chain requirements and controls for Tiers 1, 2, and 3. The ICT SCRM Plan should be revised and updated based on the output of ICT supply chain monitoring.

ICT SCRM Plans should:

- Represent the result of an internal dialogue among Tiers 1, 2, and 3 stakeholders within the organization in support of the organization's mission and relevant mission function;
- Set the framework for an external dialogue between acquirers and system integrators, suppliers, and external service providers;
- Help define the state of the information system that will be "fit for purpose"; and
- Establish acceptance criteria that may be used in acquiring and sourcing ICT components and services.

The ICT SCRM Plan should cover activities in all three organizational tiers as applicable.

Depending on their governance structure and size, agencies can have multiple ICT SCRM Plans, one for Tier 1, several for Tier 2, and several for Tier 3. Agencies are encouraged to develop individual plans at Tiers 1 and 2. For Tier 3, agencies may want to integrate ICT SCRM controls into the respective System Security Plans or develop separate system-level ICT SCRM Plans. At Tier 3, the ICT SCRM Plan applies to High-Impact systems per [FIPS 199], though organizations may decide to develop an ICT SCRM Plan for Moderate-Impact systems per [FIPS 199]. Regardless of the total number of plans, the ICT SCRM requirements and controls at the higher tiers will flow down to the lower tiers and should be used to guide the development of the lower tier ICT SCRM Plans. Conversely, the ICT SCRM controls and requirements at the lower tiers should be considered in developing and revising requirements and controls applied at the higher tiers. Agencies may choose to integrate their Tier 3 ICT SCRM controls into the applicable System Security Plans or create individual ICT SCRM Plans for Tier 3 that reference corresponding System Security Plans.

ICT SCRM Plans at all three tiers should be interconnected and reference each other when appropriate.

At each Tier, the plan should:

 Summarize the environment as determined in Frame such as applicable policies, processes, and procedures based on organization and mission requirements currently implemented in the organization;

- State the role responsible for the plan such as Risk Executive, Chief Financial Officer (CFO), Chief Information Officer (CIO), Program Manager, or System Owner;
- Identify key contributors such as CFO, Chief Operations Officer (COO), Acquisition/Contracting, System Engineer, System Security Engineer, Developer/Maintenance Engineer, Operations Manager, or System Architect;
- Provide the applicable (per tier) set of controls resulting from the Analysis of Alternatives (in Respond);
- Provide tailoring decision for selected controls including the rationale for the decision;
- Describe feedback processes among the tiers to ensure that ICT supply chain interdependencies are addressed;
- Describe monitoring and enforcement activities (including auditing if appropriate) applicable to the scope of each specific ICT SCRM Plan;
- If appropriate, state qualitative or quantitative measures to support implementation of the ICT SCRM Plan and to assess effectiveness of this implementation;²¹
- Define frequency for deciding whether the plan needs to be reviewed and revised;
- Include criteria that would trigger revision, for example, life cycle milestones, gate reviews, or significant contracting activities; and
- Include system integrator, supplier, and external service provider ICT SCRM Plans if made available as part of agreements.

Table 2-7 summarizes the controls to be contained in the ICT SCRM Plans at Tiers 1, 2, and 3 and provides examples of those controls.

²¹ NIST SP 800-55 Revision 1, *Performance Measurement Guide for Information Security* (July 2008), provides guidance on developing information security measures. Agencies can use general guidance in that publication to develop specific measures for their ICT SCRM plans. See http://csrc.nist.gov/publications/nistpubs/800-55-Rev1/SP800-55-rev1.pdf

Table 2-7: ICT SCRM Plan Controls at Tiers 1, 2, and 3

Tier	Controls	Examples
Tier 1	Provides organization common controls baseline to Tiers 2 and 3	 Minimum sets of controls applicable to all ICT suppliers Organization-level controls applied to processing and storing supplier information ICT supply chain training and awareness for acquirer staff at the organization level
Tier 2	 Inherits common controls from Tier 1 Provides mission function-level common controls baseline to Tier 3 Provides feedback to Tier 1 about what is working and what needs to be changed 	 Minimum sets of controls applicable to ICT suppliers for the specific mission function Program-level refinement of Identity and Access Management controls to address ICT SCRM concerns Program-specific ICT supply chain training and awareness
Tier 3	 Inherits common controls from Tiers 1 and 2 Provides system-specific controls for Tier 3 Provides feedback to Tier 2 and Tier 1 about what is working and what needs to be changed 	 Minimum sets of controls applicable to specific hardware and software for the individual system Appropriately rigorous acceptance criteria for change management for systems that support ICT supply chain, e.g., as testing or integrated development environments System-specific ICT supply chain training and awareness Intersections with the SDLC

Appendix E provides an example ICT SCRM Plan template with the sections and the type of information that organizations should include in their ICT SCRM Planning activities.

RISK RESPONSE IMPLEMENTATION

TASK 3-4: Implement the course of action selected to respond to risk.

Organizations should implement the ICT SCRM Plan in a manner that integrates the ICT SCRM controls into the overall agency risk management processes.

Outputs and Post Conditions

The output of this step is a set of ICT SCRM controls that address ICT SCRM requirements and can be incorporated into the system requirements baseline. These requirements and resulting controls will be incorporated into the SDLC and other organizational processes, throughout the three tiers.

This step results in:

- Selected, evaluated, and tailored ICT SCRM controls that address identified risks;
- Identified consequences of accepting or not accepting the proposed mitigations; and
- Development and implementation of the ICT SCRM Plan.

2.2.4 MONITOR

Inputs and Preconditions

Monitor is the step in which the project/program is routinely evaluated to maintain or adjust the acceptable level of risk. Changes to the organization, mission/business, operations, or the supply chain can directly impact an individual project/program and the organization's ICT supply chain infrastructure. The monitor step provides a mechanism for tracking such changes and ensuring that they are appropriately assessed for impact (in Assess). If ICT supply chain infrastructure is redefined as a result of monitoring, organizations should engage in a dialog with the system integrators, supplier, and external service providers about implications and mutual obligations.

Organizations should integrate ICT SCRM into existing continuous monitoring programs.²² In case a Continuous Monitoring program does not exist, ICT SCRM can serve as a catalyst for establishment of a more comprehensive continuous monitoring program. Figure 2-8 depicts the Monitor Step with its inputs and outputs along the three organizational tiers.

Figure 2-8: ICT SCRM in the Monitor Step

²² NIST SP 800-137, *Information Security Continuous Monitoring (ISCM) for Federal Information Systems and Organizations* (September 2011), describes how to establish and implement a continuous monitoring program. See http://csrc.nist.gov/publications/nistpubs/800-137/SP800-137-Final.pdf

To monitor changes, organizations need to identify and document the set of triggers that would change ICT supply chain risk. While the categories of triggers will likely include changes to constraints, identified in Table 2-6 (during the Frame Step), such as policy, mission, change to the threat environment, enterprise architecture, SDLC, or requirements, the specific triggers within those categories may be substantially different for different organizations.

An example of the ICT supply chain infrastructure change is two key vetted suppliers²³ announcing their departure from a specific market, therefore creating a supply shortage for specific components. This would trigger the need to evaluate whether reducing the number of suppliers would create vulnerabilities in component availability and integrity. In this scenario, potential deficit of components may result simply from insufficient supply of components, because fewer components are available. If none of the remaining suppliers are vetted, this deficit may result in uncertain integrity of the remaining components. If the organizational policy directs use of vetted components, this event may result in the organization's inability to fulfill its mission needs.

In addition to regularly updating existing risks assessments with the results of the ongoing monitoring, the organization should determine what would trigger a reassessment. Some of these triggers may include availability of resources, changes to ICT supply chain risk, natural disasters, or mission collapse.

Outputs and Post Conditions

Organizations should integrate the ICT supply chain outputs of the Monitor Step into the ICT SCRM Plan. This plan will provide inputs into iterative implementations of the Frame, Assess, and Respond Steps as required.

²³ A vetted supplier is a supplier with whom the organization is comfortable doing business. This level of comfort is usually achieved through developing an organization-defined set of supply chain criteria and then *vetting* suppliers against those criteria.

3.5 ICT SCRM SECURITY CONTROLS

FAMILY: ACCESS CONTROL

[FIPS 200] specifies the Access Control minimum security requirement as follows:

Organizations must limit information system access to authorized users, processes acting on behalf of authorized users, or devices (including other information systems) and to the types of transactions and functions that authorized users are permitted to exercise.

Systems and components that traverse the ICT supply chain infrastructure are subject to access by a variety of individuals within an organization, system integrator, supplier, or external service provider. Such access should be defined and managed to ensure that it does not inadvertently result in unauthorized release, modification, or destruction of sensitive information. This access should be limited to only the necessary access for authorized individuals and monitored for ICT supply chain impact.

AC-1 ACCESS CONTROL POLICY AND PROCEDURES

<u>Supplemental ICT SCRM Guidance</u>: Organizations should specify and include in agreements (e.g., contracting language) access control policies for their system integrators, suppliers, and external service providers. These should include both physical and logical access to the ICT supply chain infrastructure and the information system.

TIER: 1, 2, 3

AC-2 ACCOUNT MANAGEMENT

<u>Supplemental ICT SCRM Guidance</u>: Use of this control helps in traceability of actions and actors in the ICT supply chain infrastructure.

TIER: 2, 3

AC-3 ACCESS ENFORCEMENT

<u>Supplemental ICT SCRM Guidance:</u> Ensure that the information systems and the ICT supply chain infrastructure have appropriate access enforcement mechanisms in place. This includes both physical and logical access enforcement mechanisms, which likely work in coordination for ICT supply chain needs. Organizations should ensure a detailed definition of access enforcement.

TIER: 2, 3

Control enhancements:

(8) <u>ACCESS ENFORCEMENT | REVOCATION OF ACCESS AUTHORIZATIONS</u>

<u>Supplemental ICT SCRM Guidance:</u> Prompt revocation is critical to ensure that system integrators, suppliers, and external service providers who no longer require access are not able to access an organization's system. For example, in a "badge flipping" situation, a contract is transferred from one system integrator organization to another with the same personnel supporting the contract. In that situation, the organization should retire the old credentials and issue completely new credentials.

TIER: 2, 3

(9) ACCESS ENFORCEMENT | CONTROLLED RELEASE

<u>Supplemental ICT SCRM Guidance:</u> Information about the ICT supply chain should be controlled for release between the organizations. Information may be continuously exchanged between the organization and its system integrators, suppliers, and external service providers. Controlled release of organizational information provides protection to manage risks associated with disclosure.

TIER: 2, 3

AC-4 INFORMATION FLOW ENFORCEMENT

<u>Supplemental ICT SCRM Guidance</u>: Supply chain information may traverse a large ICT supply chain infrastructure to a broad set of stakeholders including the organization and its various federal stakeholders, as well as system integrators, suppliers, and external service providers. Requirements of information flow enforcement should ensure that only the required information, and not more, is communicated to the various participants in the supply chain.

TIER: 2, 3

Control enhancements:

(6) INFORMATION FLOW ENFORCEMENT | METADATA

<u>Supplemental ICT SCRM Guidance</u>: Metadata relevant to ICT SCRM is quite extensive and includes activities within the SDLC. For example, information about systems and system components, acquisition details, and delivery is considered metadata and should be appropriately protected. Organizations should identify what metadata is directly relevant to their ICT supply chain security and ensure that information flow enforcement is implemented in order to protect the metadata.

TIER: 2, 3

(17) INFORMATION FLOW ENFORCEMENT | DOMAIN AUTHENTICATION

<u>Supplemental ICT SCRM Guidance</u>: Within the ICT SCRM context, organizations should specify various source and destination points for information about ICT supply chain and information that flows through the supply chain. This is so that organizations have visibility of information flow within the ICT supply chain infrastructure.

TIER: 2, 3

(19) INFORMATION FLOW ENFORCEMENT | VALIDATION OF METADATA

<u>Supplemental ICT SCRM Guidance</u>: For ICT SCRM, data and the relationship to its metadata and the validation of it become critical. Much of the data transmitted through the ICT supply chain infrastructure is validated with the verification of the metadata that is bound to it. Ensuring that proper filtering and inspection is put in place for validation before allowing payloads into the ICT supply chain infrastructure.

TIER: 2, 3

(21) INFORMATION FLOW ENFORCEMENT | PHYSICAL / LOGICAL SEPARATION OF INFORMATION FLOWS

<u>Supplemental ICT SCRM Guidance</u>: The organization should ensure the separation of the information system and ICT supply chain infrastructure information flow. Various mechanisms can be implemented including, for example, encryption methods (e.g., digital signing). Addressing information flow between the organization and its system integrator, external service provider, or

supplier may be challenging, especially when leveraging public networks. Organizations should ensure that, at a minimum, protection measures are implemented for any appropriate data (e.g., component data and any related metadata).

TIER: 3

AC-5 SEPERATION OF DUTIES

<u>Supplemental ICT SCRM Guidance</u>: The organization should ensure that appropriate separation of duties is established for decisions requiring the acquisition of both information system and ICT supply chain infrastructure components. Separation of duties helps to ensure that adequate protections are in place for components entering the organization's supply chain. An example may be separating technical decision makers from the procurement personnel for deciding on components in the supply chain.

TIER: 2, 3

AC-6 LEAST PRIVILEGE

<u>Supplemental ICT SCRM Guidance</u>: ICT SCRM-specific supplemental guidance provided in control enhancement AC-6 (6).

Control enhancements:

(6) LEAST PRIVILEGE | PRIVILEGED ACCESS BY NON-ORGANIZATIONAL USERS

<u>Supplemental ICT SCRM Guidance</u>: Organizations should ensure that protections are in place to prevent non-organizational users from having privileged access to organizational ICT supply chain infrastructure and related supply chain information. When organizational users may include independent consultants, system integrators, suppliers, and external services providers, relevant access requirements may need to be more precisely defined regarding which information and/or components are accessible, for what duration, at which frequency, using which access methods, and by whom, using least privilege mechanisms. Understanding which components are critical and noncritical can aid in understanding the level of detail that may need to be defined regarding least privilege access for non-organizational users.

TIER: 2, 3

AC-17 REMOTE ACCESS

<u>Supplemental ICT SCRM Guidance</u>: With the push toward distributed approaches to accessing ICT supply chain infrastructures, whether for development, maintenance, or operation of information systems, organizations should implement secure remote access mechanisms and allow remote access only to vetted personnel. Remote access to an organization's ICT supply chain infrastructure (including distributed software development environments) should be limited to the organization or system integrator personnel as required to perform their tasks. Ensure that appropriate levels of remote access requirements are properly defined (including agreements between organization and its system integrators).

TIER: 2, 3

Control enhancements:

(6) REMOTE ACCESS | PROTECTION OF INFORMATION

<u>Supplemental ICT SCRM Guidance</u>: Organizations should ensure that detailed requirements are properly defined and access to information regarding the information system and ICT supply chain infrastructure is protected from unauthorized use and disclosure. Since supply chain data and metadata

disclosure or access can have significant implications to an organization's mission processes, appropriate measures must be taken to vet both the ICT supply chain infrastructure and personnel

processes to ensure that adequate protections are implemented. Ensure that remote access to such information is included in requirements.

TIER: 2, 3

AC-18 WIRELESS ACCESS

<u>Supplemental ICT SCRM Guidance:</u> An organization's ICT supply chain infrastructure may include wireless infrastructure that supports supply chain logistics (e.g., Radio Frequency Identification Device [RFID] support, software call home features). Supply chain systems/components traverse such ICT supply chain infrastructures as they are moved from one location to another, whether within the organization's own environment or during delivery from system integrators or suppliers. Ensuring appropriate access mechanisms are in place within this ICT supply chain infrastructure enables the protection of the information systems and components, as well as logistics technologies and metadata used during shipping (e.g., within tracking sensors). The organization should explicitly define appropriate wireless access control mechanisms for the ICT supply chain infrastructure in policy and implement appropriate mechanisms.

TIER: 1, 2, 3

AC-19 ACCESS CONTROL FOR MOBILE DEVICES

Supplemental ICT SCRM Guidance: Use of mobile devices has become common in ICT supply chain infrastructure. They are used as mechanisms for tracking supply chain logistics data as information systems and components traverse organization or systems integrator ICT supply chain infrastructure. Ensure that access control mechanisms are clearly defined and implemented where relevant when managing organizations ICT supply chain components. An example of such an implementation includes access control mechanisms implemented for use with remote handheld units in RFID for tracking components traversing the supply chain as well as any associated data and metadata.

TIER: 2, 3

AC-20 USE OF EXTERNAL INFORMATION SYSTEMS

<u>Supplemental ICT SCRM Guidance</u>: Organizations' external information systems include those of system integrators, suppliers, and external service providers. Unlike in an acquirer's internal organization where direct and continuous monitoring is possible, in the external supplier relationship, information may be shared on an as-needed basis and should be articulated in an agreement. Access to the ICT supply chain infrastructure from such external information systems should be monitored and audited.

TIER: 1, 2, 3

Control enhancements:

(1) USE OF EXTERNAL INFORMATION SYSTEMS | LIMITS ON AUTHORIZED USE

<u>Supplemental ICT SCRM Guidance</u>: This enhancement helps limit exposure of the ICT supply chain infrastructure to system integrator, supplier, and external service provider systems.

TIER: 2, 3

(3) <u>USE OF EXTERNAL INFORMATION SYSTEMS / NON-ORGANIZATIONALLY OWNED SYSTEMS / COMPONENTS / DEVICES</u>

<u>Supplemental ICT SCRM Guidance</u>: Devices that do not belong to the organization increase the organization's exposure to ICT supply chain risks.

TIER: 2, 3

AC-21 COLLABORATION AND INFORMATION SHARING

Supplemental ICT SCRM Guidance: Sharing information within the ICT supply chain can help to manage ICT supply chain risks. This information may include vulnerabilities, threats, criticality of systems and components, or delivery information. This information sharing should be carefully managed to ensure that the information is accessible only to authorized individuals within the organization's ICT supply chain. Organizations should clearly define boundaries for information sharing with respect to temporal, informational, contractual, security, access, system, and other requirements. Organizations should monitor and review for unintentional or intentional information sharing within its ICT supply chain activities including information sharing with system integrators, suppliers, and external service providers.

TIER: 1, 2

AC-22 PUBLICLY ACCESSIBLE CONTENT

<u>Supplemental ICT SCRM Guidance</u>: Within the ICT SCRM context, publicly accessible content may include Requests for Information, Requests for Proposal, or information about delivery of systems and components. This information should be reviewed to ensure that only appropriate content is released for public consumption, alone or in aggregation with other information.

TIER: 2, 3

AC-24 ACCESS CONTROL DECISIONS

<u>Supplemental ICT SCRM Guidance</u>: Organizations should assign access control decisions to support authorized accesses to the ICT supply chain infrastructure. Ensure that if a system integrator or external service provider is used, there is consistency in access control decision requirements and how the requirements are implemented to deliver consistency in support of the organization's supply chain needs. This may require defining such requirements in service-level agreements in many cases as part of the upfront relationship established between the organization and system integrator or the organization and external service provider.

TIER: 1, 2, 3

FAMILY: MAINTENANCE

[FIPS 200] specifies the Maintenance minimum security requirement as follows:

Organizations must: (i) perform periodic and timely maintenance on organizational information systems; and (ii) provide effective controls on the tools, techniques, mechanisms, and personnel used to conduct information system maintenance.

Maintenance is frequently performed by an entity that is different from the organization. As such, maintenance becomes part of the ICT supply chain. Maintenance includes performing updates and replacements. This document can be applied to a maintenance situation including assessing the ICT supply chain risks, selecting ICT SCRM controls, implementing these controls, and monitoring them.

MA-1 SYSTEM MAINTENANCE POLICY AND PROCEDURES

Supplemental ICT SCRM Guidance: Organizations should ensure that ICT supply chain concerns are included in maintenance policies and procedures for all organizational information systems and the ICT supply chain infrastructure. With many maintenance contracts, information on mission, organization, and system-specific objectives and requirements is shared between the organization and its system integrators, suppliers, or external service providers, allowing for vulnerabilities and opportunities for attack. In many cases, the maintenance of systems is outsourced to a system integrator and as such, appropriate measures must be taken. Even when maintenance is not outsourced, the upgrades and patches, frequency of maintenance, replacement parts, and other aspects of system maintenance are affected by the supply chain.

Maintenance policies should be defined both for the information system and the ICT supply chain infrastructure. The maintenance policy should reflect controls based on a risk assessment (including criticality analysis), including controls such as remote access, roles and attributes of maintenance personnel that have access, the frequency of updates, duration of contract, logistical path used for updates or maintenance, and monitoring and audit mechanisms. The maintenance policy should state which tools are explicitly allowed or not allowed. For example, in the case of software maintenance, source code, test cases, and other item accessibility to maintain a system or components should be stated in the contract.

Maintenance policies should be refined and augmented at each tier. At Tier 1, the policy should define allowed maintenance activities. At Tier 2, the policy should reflect the mission operation's needs and critical functions. At Tier 3 it should reflect the specific system needs. The requirements in Tier 1, such as nonlocal maintenance, should flow to Tiers 2 and 3; for example, when nonlocal maintenance is not allowed by Tier 1, it should also not be allowed at Tiers 2 and 3.

TIER: 1, 2, 3

MA-2 <u>CONTROLLED MAINTENANCE</u>

<u>Supplemental ICT SCRM Guidance</u>: ICT SCRM-specific supplemental guidance is provided in control enhancement MA-2 (2).

Control enhancements:

(2) CONTROLLED MAINTENANCE | AUTOMATED MAINTENANCE ACTIVITIES

<u>Supplemental ICT SCRM Guidance</u>: Organizations should ensure that all automated maintenance activities for the ICT supply chain infrastructure are controlled and managed according to the maintenance policy. Examples of automated maintenance activities can include COTS product patch updates, call

home features with failure notification feedback, etc. Managing these activities may require establishing staging processes with appropriate supporting mechanisms to provide vetting or filtering as appropriate. Staging processes may be especially important for critical systems and components.

TIER: 3

MA-3 MAINTENANCE TOOLS

<u>Supplemental ICT SCRM Guidance</u>: Maintenance tools are considered part of the ICT supply chain infrastructure. They also have an ICT supply chain of their own. ICT SCRM should be considered when the organization acquires or upgrades a maintenance tool (e.g., an update to development environment or testing tool), including during the selection, ordering, storage, and integration of the maintenance tool. The organization should also consider ICT SCRM when evaluating replacement parts for maintenance tools. This control may be performed at both Tiers 2 and 3, depending on how an agency handles the acquisition, operations, and oversight of maintenance tools.

TIER: 2, 3.

Control enhancements:

(1) MAINTENANCE TOOLS | INSPECT TOOLS

<u>Supplemental ICT SCRM Guidance</u>: The organization should deploy acceptance testing to verify that the maintenance tools of the ICT supply chain infrastructure are as expected. Maintenance tools should be authorized with appropriate paperwork, verified as claimed through initial verification, and tested for stated functionality.

TIER: 3

(2) MAINTENANCE TOOLS | INSPECT MEDIA

<u>Supplemental ICT SCRM Guidance</u>: The organization should verify that the media containing diagnostic and test programs of the ICT supply chain infrastructure are as expected and provide only required functions. Media should be authorized with appropriate paperwork, verified as claimed through initial verification, and tested for stated functionality.

TIER: 3

(3) MAINTENANCE TOOLS | PREVENT UNAUTHORIZED REMOVAL

Supplemental ICT SCRM Guidance: Unauthorized removal of ICT maintenance tools from the ICT supply chain infrastructure may introduce ICT supply chain risk including, for example, unauthorized modification, replacement with counterfeit, or malware insertion while the tool is outside of the organization's control. ICT maintenance tools can include integrated development environment (IDE), testing, or vulnerability scanning. For ICT SCRM, it is important that organizations should explicitly authorize, track, and audit any removal of maintenance tools. Once ICT tools are allowed access to an organization/information system, they should remain the property/asset of the information system owner and tracked if removed and used elsewhere in the organization. ICT maintenance tools either currently in use or in storage should not be allowed to leave the organization's premises until they are properly vetted for removal.

<u>TIER</u>: 3

MA-4 NONLOCAL MAINTENANCE

<u>Supplemental ICT SCRM Guidance:</u> Nonlocal maintenance may be provided by system integrators or external service providers. Appropriate protections should be in place to manage associated risks.

TIER: 2, 3

Control enhancements:

(2) NONLOCAL MAINTENANCE | DOCUMENT NONLOCAL MAINTENANCE

<u>Supplemental ICT SCRM Guidance</u>: The organization should document types of maintenance tools which may or may not be used nonlocally and verify that the maintenance tools used are as expected and provide only required functions (e.g., by using acceptance testing). Maintenance tools should be authorized with appropriate paperwork, verified as claimed through initial verification, and tested for stated functionality.

TIER: 2, 3

(3) NONLOCAL MAINTENANCE | COMPARABLE SECURITY | SANITIZATION

<u>Supplemental ICT SCRM Guidance</u>: Should any nonlocal maintenance or diagnostic services be performed to ICT components or information systems by a system integrator, supplier, or external service provider, the organization should ensure that:

- Appropriate measures are taken to verify that the nonlocal environment meets appropriate security levels for maintenance and diagnostics per agreements between the organization and vendor:
- Appropriate levels of sanitizing are completed to remove any organization-specific data residing in components; and
- Appropriate diagnostics are completed to ensure that components are sanitized, preventing
 malicious insertion prior to returning to the organizational information system and or ICT
 supply chain infrastructure.

TIER: 2, 3

MA-5 MAINTENANCE PERSONNEL

<u>Supplemental ICT SCRM Guidance:</u> Maintenance personnel may be employed by a system integrator, supplier, or external service provider. As such, appropriate protections should be in place to manage associated risks.

TIER: 2, 3

MA-6 TIMELY MAINTENANCE

<u>Supplemental ICT SCRM Guidance</u>: For spare parts, replacement parts, or alternate sources, the organization should ensure appropriate lead times to purchase through original equipment manufacturers (OEMs) or authorized distributors. If OEMs are not available, it is preferred to acquire from authorized distributors. If an OEM or an authorized distributor is not available and the only alternative is to purchase from a non-authorized distributor or secondary market, a risk assessment should be performed, including a revisit of criticality and threat analysis to identify additional risk mitigations to be used. For example, the organization should check the source of supply for history of counterfeits, inappropriate practices, or a criminal record. See Chapter 2 for criticality and threat analysis details.

TIER: 3

MA-7 MAINTENANCE MONITORING AND INFORMATION SHARING

<u>Control</u>: The organization monitors the status of systems and components, and communicates out-of-bounds and out-of-spec performance to [Assignment: organization-defined system integrators, suppliers, or external service providers].

<u>Supplemental ICT SCRM Guidance</u>: Tracking failure rates of components provides useful information to the acquirer to help plan for contingencies, alternate sources of supply, and replacements. Failure rates are also

useful for monitoring quality and reliability of systems and components. This information provides useful feedback to system integrators, suppliers, and external service providers for corrective action and continuous improvement. In Tier 2, agencies should track and communicate the failure rates to suppliers

continuous improvement. In Tier 2, agencies should track and communicate the failure rates to suppliers (OEM and/or an authorized distributor). The failure rates and the issues that can indicate failures including root causes should be identified by an agency's technical personnel (e.g., developers, administrators, or maintenance engineers) in Tier 3 and communicated to Tier 2. These individuals are able to verify the problem and identify technical alternatives.

Related Control: IR-4(10)

TIER: 3

FAMILY: PHYSICAL AND ENVIRONMENTAL PROTECTION

[FIPS 200] specifies the Physical and Environmental Protection minimum security requirement as follows:

Organizations must: (i) limit physical access to information systems, equipment, and the respective operating environments to authorized individuals; (ii) protect the physical plant and support infrastructure for information systems; iii) provide supporting utilities for information systems; (iv) protect information systems against environmental hazards; and (v) provide appropriate environmental controls in facilities containing information systems.

ICT supply chains span the physical and logical world. Physical factors include, for example, weather and road conditions that may have an impact to transporting ICT components (or devices) from one location to another between system integrators, suppliers, and organizations. If not properly addressed as a part of the ICT SCRM risk management processes, physical and environmental risks may have a negative impact on the organization's ability to receive critical components in a timely manner, which may in turn impact their ability to perform mission operations. Organizations should integrate physical and environmental protection controls into the ICT supply chain infrastructure to mitigate such risks and ensure that there are no gaps. It should be noted that the degree of physical and environmental protection required throughout the ICT supply chain is greatly dependent on the degree of integration between acquirer and system integrator/supplier/external service provider organizations, systems, and processes.

PE-1 PHYSICAL AND ENVIRONMENTAL PROTECTION POLICY AND PROCEDURES

<u>Supplemental ICT SCRM Guidance</u>: The organization should integrate ICT supply chain risks into physical and environmental protection policy and procedures. The degree of such protection required throughout the ICT supply chain is greatly dependent on the degree of integration between the organization and its system integrator, supplier, and external service provider systems and processes. The physical and environmental protection policy should ensure that the physical interfaces of the ICT supply chain infrastructure have adequate protection and audit for such protection.

TIER: 1, 2, 3

PE-3 PHYSICAL ACCESS CONTROL

<u>Supplemental ICT SCRM Guidance</u>: Physical access control should include individuals and organizations engaged in the organization's ICT supply chain. A vetting process should be in place based on organizational-defined requirements and policy prior to granting access to the ICT supply chain infrastructure and any relevant elements. Access establishment, maintenance, and revocation processes should meet organizational access control policy rigor. The speed of revocation for system integrators, external services providers, and suppliers needing access to physical facilities should be managed in accordance with the activities performed in their contracts. Prompt revocation is critical when either individual or organizational need no longer exists.

TIER: 2, 3

Control enhancements:

(5) PHYSICAL ACCESS CONTROL | TAMPER PROTECTION

<u>Supplemental ICT SCRM Guidance</u>: Tamper protection is critical for reducing ICT supply chain risks in hardware. The organization should implement validated tamper protections techniques within the supply chain infrastructure. The organization should also verify tamper protection mechanisms provided by integrators, suppliers, and external service providers.

TIER: 2, 3

PE-6 MONITORING PHYSICAL ACCESS

<u>Supplemental ICT SCRM Guidance</u>: Individuals physically accessing the organization's facilities, including the ICT supply chain infrastructure, may be employed by system integrators, suppliers, and external service providers. The organization should monitor these individuals' activities to reduce associated ICT supply chain risks.

<u>TIER</u>: 3

PE-16 DELIVERY AND REMOVAL

<u>Supplemental ICT SCRM Guidance</u>: This control enhancement reduces ICT supply chain risks introduced during the physical delivery and removal of hardware components from the organization's information systems or ICT supply chain infrastructure.

TIER: 3

PE-17 ALTERNATE WORK SITE

<u>Supplemental ICT SCRM Guidance</u>: The organization should consider the ICT supply chain risks associated with organizational employees or system integrator personnel within or accessing the supply chain infrastructure using alternate work sites. This can include work from home or other non-work locations.

TIER: 3

PE-18 LOCATION OF INFORMATION SYSTEM COMPONENTS

<u>Supplemental ICT SCRM Guidance</u>: Physical and environmental hazards have an impact on the availability of systems and components that are or will be acquired and physically transported to the organization's locations. For example, organizations should consider the location of information system components critical for agency operations when planning for alternative suppliers for these components. See CP-6 and CP-7.

TIER: 1, 2, 3

PE-20 ASSET MONITORING AND TRACKING

<u>Supplemental ICT SCRM Guidance</u>: The organization should use asset location technologies to track system and components transported between protected areas, or in storage awaiting implementation, testing, maintenance, or disposal. Methods include RFID or digital signatures. These technologies help protect against:

- a. Diverting system or component for counterfeit replacement;
- b. Loss of confidentiality, integrity, or availability of system or component function and data (including data contained within the component and data about the component); and
- c. Interrupting supply chain and logistics processes for critical components.

Asset location technologies also help gather data that can be used later for incident management.

TIER: 2, 3

APPENDIX C

ICT SUPPLY CHAIN THREAT EVENTS

This appendix provides examples of ICT supply chain threat events. These examples are based on [NIST SP 800-30 Rev. 1], Appendix E, *Threat Events*. Specifically, Tables E-2, *Representative Examples – Adversarial Threat Events*, and E-3, *Representative Examples – Non-Adversarial Threat Events*, were used to create the two corresponding tables in this document. It should be noted that the threat events in NIST SP 800-30 Revision 1, Appendix E, are generic threat events for information security rather than for ICT SCRM. The tables used as source material for this appendix contain 2 columns – Threat Events and Description.

The generic threats in NIST SP 800-30 Revision 1, Appendix E, are at times quite broad and needed to be further specified to be ICT supply chain-specific for use in this document. This document lists only those threats events that are relevant to ICT supply chain in all or under some circumstances. A comment is included in the third column, Comments, to provide the rationale for when the specific threat event is relevant to the ICT supply chain or relevant under some, but not all, circumstances.

Organizations may use the examples of ICT supply chain threat events provided in this appendix during threat analysis described in Chapter 2, if appropriate.

Table C-1: Adversarial ICT Supply Chain Threat Events

Threat Events (Characterized by TTPs)	Description	Comments
Perform		
Perform malware-directed internal reconnaissance.	Adversary uses malware installed inside the organizational perimeter to identify targets of opportunity. Because the scanning, probing, or observation does not cross the perimeter, it is not detected by externally placed intrusion detection systems.	
Craft phishing attacks.	Adversary counterfeits communications from a legitimate/trustworthy source to acquire sensitive information such as usernames, passwords, or SSNs. Typical attacks occur via email, instant messaging, or comparable means, commonly directing users to websites that appear to be legitimate sites, while actually stealing the entered information.	
Craft attacks specifically based on deployed information technology environment.	Adversary develops attacks (e.g., crafts targeted malware) that take advantage of adversary knowledge of the organizational information technology environment.	

Threat Events (Characterized by TTPs)	Description	Comments
Create counterfeit/spoof website.	Adversary creates duplicates of legitimate websites; when users visit a counterfeit site, the site can gather information or download malware.	
Craft counterfeit certificates.	Adversary counterfeits or compromises a certificate authority, so that malware or connections will appear legitimate.	
Create and operate false front organizations to inject malicious components into the supply chain.	Adversary creates false front organizations with the appearance of legitimate suppliers in the critical life cycle path that then inject corrupted/malicious information system components into the organizational supply chain.	
	ver/insert/install malicious capabilities.	
Deliver known malware to internal organizational information systems (e.g., virus via email).	Adversary uses common delivery mechanisms (e.g., email) to install/insert known malware (e.g., malware whose existence is known) into organizational information systems.	
Deliver modified malware to internal organizational information systems.	Adversary uses more sophisticated delivery mechanisms than email (e.g., web traffic, instant messaging, FTP) to deliver malware and possibly modifications of known malware to gain access to internal organizational information systems.	
Deliver targeted malware for control of internal systems and exfiltration of data.	Adversary installs malware that is specifically designed to take control of internal organizational information systems, identify sensitive information, exfiltrate the information back to adversary, and conceal these actions.	
Deliver malware by providing removable media.	Adversary places removable media (e.g., flash drives) containing malware in locations external to organizational physical perimeters but where employees are likely to find the media (e.g., facilities parking lots, exhibits at conferences attended by employees) and use it on organizational information systems.	
Insert untargeted malware into downloadable software and/or into commercial information technology products.	Adversary corrupts or inserts malware into common freeware, shareware, or commercial information technology products. Adversary is not targeting specific organizations, simply looking for entry points into internal organizational information systems. Note that this is particularly a concern for mobile applications.	
Insert targeted malware into organizational information systems and information system components.	Adversary inserts malware into organizational information systems and information system components (e.g., commercial information technology products), specifically targeted to the hardware, software, and firmware used by organizations (based on knowledge gained via reconnaissance).	

Threat Events (Characterized by **Description Comments** TTPs) Insert specialized Adversary inserts specialized, non-detectable malware into malware into organizational information systems based on system organizational configurations, specifically targeting critical information information systems system components based on reconnaissance and based on system placement within organizational information systems. configurations. Insert counterfeit or Adversary intercepts hardware from legitimate suppliers. Adversary modifies the hardware or replaces it with faulty tampered hardware into the supply chain. or otherwise modified hardware. Adversary replaces, though supply chain, subverted Insert tampered critical insider, or some combination thereof, critical information components into system components with modified or corrupted organizational systems. components. Adversary uses postal service or other commercial Insert malicious delivery services to deliver to organizational mailrooms a scanning devices (e.g., device that is able to scan wireless communications wireless sniffers) inside accessible from within the mailrooms and then wirelessly facilities. transmit information back to adversary. Insert subverted Adversary places individuals within organizations who are YES, if the individual is individuals into willing and able to carry out actions to cause harm to placed by an organizational missions/business functions. organizations. external party. Adversary places individuals in privileged positions within organizations that are willing and able to carry out actions Insert subverted to cause harm to organizational missions/business individuals into functions. Adversary may target privileged functions to privileged positions in gain access to sensitive information (e.g., user accounts, organizations. system files, etc.) and may leverage access to one privileged capability to get to another capability. Exploit and compromise. YES, if Adversary takes advantage of external organizational or information personal information systems (e.g., laptop computers at systems are remote locations) that are simultaneously connected Exploit split tunneling. those securely to organizational information systems or networks belonging to and to nonsecure remote connections. external organization.

Threat Events (Characterized by TTPs)	Description	Comments
Exploit vulnerabilities in information systems timed with organizational mission/business operations tempo.	Adversary launches attacks on organizations in a time and manner consistent with organizational needs to conduct mission/business operations.	YES, if the threat is to ICT supply chain.
Exploit insecure or incomplete data deletion in multi-tenant environment.	Adversary obtains unauthorized information due to insecure or incomplete data deletion in a multi-tenant environment (e.g., in a cloud computing environment).	
Violate isolation in multi-tenant environment.	Adversary circumvents or defeats isolation mechanisms in a multi-tenant environment (e.g., in a cloud computing environment) to observe, corrupt, or deny service to hosted services and information/data.	
Compromise information systems or devices used externally and reintroduced into the enterprise.	Adversary installs malware on information systems or devices while the systems/devices are external to organizations for purposes of subsequently infecting organizations when reconnected.	
Compromise design, manufacture, and/or distribution of information system components (including hardware, software, and firmware).	Adversary compromises the design, manufacture, and/or distribution of critical information system components at selected suppliers.	
Conduct an atta	ck (i.e., direct/coordinate attack tools or activities).	
Conduct physical attacks on infrastructures supporting organizational facilities.	Adversary conducts a physical attack on one or more infrastructures supporting organizational facilities (e.g., breaks a water main, cuts a power line).	
Conduct internally based session hijacking.	Adversary places an entity within organizations in order to gain access to organizational information systems or networks for the express purpose of taking control (hijacking) an already established, legitimate session either between organizations and external entities (e.g., users connecting from remote locations) or between two locations within internal networks.	YES, for critical systems.

Threat Events Description (Characterized by **Comments** TTPs) Adversary targets and compromises the operation of Conduct supply chain software (e.g., through malware injections), firmware, and attacks targeting and hardware that performs critical functions for organizations. exploiting critical This is largely accomplished as supply chain attacks on hardware, software, or both commercial off-the-shelf and custom information firmware. systems and components. Achieve results (i.e., cause adverse impacts, obtain information) Adversary contaminates organizational information systems (including devices and networks) by causing them Cause unauthorized to handle information of a classification/sensitivity for YES, because disclosure and/or which they have not been authorized. The information is this may be unavailability by exposed to individuals who are not authorized access to related to spilling sensitive such information, and the information system, device, or informationinformation. network is unavailable while the spill is investigated and sharing mitigated. agreements. Adversary intercepts organizational communications over Obtain information by wireless networks. Examples include targeting public externally located wireless access or hotel networking connections, and YES, because interception of wireless drive-by subversion of home or organizational wireless this originates network traffic. externally. routers. YES, if an Adversary with authorized access to organizational adversary is Obtain unauthorized information systems, gains access to resources that access. not an exceeds authorization. employee. Obtain information by Adversary steals information systems or components opportunistically (e.g., laptop computers or data storage media) that are left stealing or scavenging unattended outside of the physical perimeters of information organizations, or scavenges discarded components. systems/components. Maintain a presence or set of capabilities. Coordinate campaigns YES, if these across multiple are multiple Adversary does not limit planning to the targeting of one organizations to acquire organizations organization. Adversary observes multiple organizations to specific information or composing acquire necessary information on targets of interest. achieve desired ICT supply outcome. chain. Coordinate cyber attacks using external Adversary employs continuous, coordinated attacks, (outsider), internal potentially using all three attack vectors for the purpose of (insider), and supply impeding organizational operations. chain (supplier) attack vectors.

Table C-2: Non-Adversarial ICT Supply Chain Threat Events

Threat Event	Description	Comments
Spill sensitive information	Authorized user erroneously contaminates a device, information system, or network by placing on it or sending to it information of a classification/sensitivity, which it has not been authorized to handle. The information is exposed to access by unauthorized individuals, and as a result, the device, system, or network is unavailable while the spill is investigated and mitigated.	
Mishandling of critical and/or sensitive information by authorized users	Authorized privileged user inadvertently exposes critical/sensitive information.	YES, if user is not an employee.
Incorrect privilege settings	Authorized privileged user or administrator erroneously assigns a user exceptional privileges or sets privilege requirements on a resource too low.	YES, if user is not an employee.
Resource depletion	Degraded processing performance due to resource depletion.	YES, if physical resources are being depleted. YES, if resources of an external service provider are being depleted.
Introduction of vulnerabilities into software products	Due to inherent weaknesses in programming languages and software development environments, errors and vulnerabilities are introduced into commonly used software products.	
Pervasive disk error	Multiple disk errors due to aging of a set of devices all acquired at the same time, from the same supplier.	