Wire Cell Toolkit Updates and Status

Brett Viren (for WCT team)

Physics Department

BROOKHAVEN NATIONAL LABORATORY

SimReco 2017 May 18

Outline

Simulation

Noise Filter

Signal Processing

Toolkit Improvements

LArSoft Integration

Status and Work Needed

WCT Simulation Scope

Overview:

- Energy depositions ideal, parameterized line sources or detailed deposition from file (LArG4 dumps: **Brooke**)
- Drift physics Fano factor, recombination, absorption, diffusion and related statistics (**Hanyu**)
 - Response long-range/fine-grained DUNE and $\mu BooNE~2D$ Garfield field (**Yichen**) and electronics (**Huchen**) responses.
- Wire geometry 3D wires from file or parameterized generator.
- Convolution $Q_{drift} \otimes R_{field} \otimes R_{elec}$ optimized for RAM and CPU (200 MB max RAM, 20k depos/minute).
 - Noise empirical μ BooNE (**Jyoti**) and first principle (**Milind/Arbin**) noise models, in development.
 - Digitizer simple, parameterized linear model.

3/14

DUNE Field Responses

Induced current of one drifting e^{-1} in impact position vs. time.

- Garfield 2D wire model, 4.71 mm pitch.
- $E_{field} = 500 V/cm$, $v_{drift} = 1.6 \text{ mm}/\mu s$.
- 21 wires, $\frac{1}{10}$ pitch drift path impact positions.

Ideal Isochronous Track Response

Induced current, amplified and shaped voltage and digitized ADC due to ideal isochronous, MIP track (used: $16k e^-/pitch$).

- Ideal line source and R_{field} , R_{elec} and a simple digitizer.
- Provides simple, understandable case that can be calculated to check normalization.
 - $16,000e^-/\mu s = 2.6 \, \text{nA}$
 - $16,000e^- \times 14 \,\text{mV/fC} = 36 \,\text{mV}$
 - $25mV \times 1.2 \times 4096ADC/2V = 61V$
 - \rightarrow n.b.: plots happen to use μ BooNE's 1.2 post-FEE gain and MIP e^- /pitch number, but DUNE fields. DUNE normalization is $\sim \frac{5}{3} \times \frac{1}{12} = 1.4$ higher.

5/14

Tracked muon event

- LArG4 energy depositions dumped to JSON (Brooke)
- ADC waveforms for U/V/W planes
 - Generated pD/SP wires and "wire attachment number" as channel number.
 - Todo: full FEE channel "shuffle"
- True depo points below.

Software Noise Filter

- Class Interfaces based on per-channel and group-of-channel (coherent) operations.
- Current implementation is rather MicroBooNE-specific.
- Could be a basis for protoDUNE/SP noise filter but depends on what excess noise we actually see.
- Already integrated into LArSoft in larwirecell using UPS product wirecell (providing Wire Cell Toolkit 0.5.2 currently)
 - Integration layer at Module level.
 - Exposes more WCT implementation than ideal.
 - → Could clean this up to access WCT Compontents via Art Tools but this work only pays off if its reused for protoDUNE.

Signal Processing

2D time/wire deconvolution and signal-ROI selections.

- Two filters applied in deconvolution:
 - Wiener maximize S/N, used for signal-ROI selection. Gaussian preserves charge, produces final signal.
- Signal-ROI uses "tight" and "loose" criteria and both local and neighboring channel info.
- Developed and tested on μ BooNE data.
 - Will be fully applicable to DUNE, others via configuration mods.
 - MicroBooNE paper describing performance is in prep.
- WCT sim with proper response and noise to validate SP.
- Initial implementation in Wire Cell prototype codebase.
 - Porting to Toolkit and integration into LArSoft is high priority
 - Integration into LArSoft driven by paper schedule. Needed sooner than for protoDUNE.

8/14

Toolkit Improvements

- Underlying configuration uses JSON. WCT adds optional support for the Jsonnet data templating language to allow for structured configuration.
- Switched from Eigen3 to FFTW3 for FFTs. Substantial speed up for noise filtering, signal processing and simulation components.
- The Interface and Dynamic Component/Plugin based design, long existing in WCT, is now being applied pervasively.
- The nascent command line program application, wire-cell, is now fully usable to aggregate components into a working application. Eg, run sim:
 - \$ wire-cell -c dune/fourdee.jsonnet
- Input data/configuration preparation and diagnostic functions available as various Python CLIs, eg generate wires or prepare Garfield responses:
 - \$ wirecell-util make-wires pdsp-wires.json.bz2

Simulation

Noise Filte

Signal Processing

Toolkit Improvements

LArSoft Integration

Status and Work Needec

Integration Motivations

WCT has substantial stand-alone functionality exposed by wire-cell CLI. However, it is primarily a **toolkit** to be used in other applications

WCT needs LArSoft (the framework) for some critical things:

- I/O access to official DUNE file formats.
- Memory-based exchange of data products to/from WCT components and LS modules.

WCT lacks a subset of functionality provided by LArSoft modules:

- Particle interactions and tracking (ie, Geant4/GENIE/etc).
- All the many, alternative reconstruction modules.

Integration Status and Design

- Wire Cell Toolkit built as wirecell UPS product (Lynn)
- LS package larwirecell holds layers between WCT and LS
- WCT heavily uses interfaces and dynamic components, similar to recently invented Art Tool concept.
- Integrate via Art Tool facade to WCT interface.
 - → basic model: "LArSoft uses Wire Cell tools"
- Same WCT app component exposed to user as CLI via wire-cell (eg, Fourdee sim below) will be exposed to LS with a single Tool facade.
- One Tool facade for data conversion at input/output components.

WCT Simulation App with LS Tool facades for input/output components.

Simulation

Noise Filte

Signal Processing

Toolkit Improvements

LArSoft Integration

Status and Work Needed

What's left to do?

Areas where help is welcome are in blue.

- Noise filtering
 - Rework to better follow WCT interfaces/components patterns. (bv)
 - Rework LArSoft integrating to follow Art Tool paradigm (??, or bv)
- Improved detector simulation:
 - Long-range/fine-grained detector response, **done** (Yichen, bv).
 - Normalization and validation, in progress (Hanyu, bv).
 - Proper noise (Jyoti/Milind/Arbin) and drift (Hanyu) models: in progress.
 - Implement FEE "channel shuffle" and match numbering convention. (bv)
 - Integrate WCT sim components into LArSoft. design (Brian, bv)
- Signal processing
 - Port prototype code into toolkit: started (bv, Xin)
 - Validate signal processing with simulation, develop "truth metrics" (Brooke), understand SP under different signal and noise assumptions.
 - Integrate WCT sigproc components into LArSoft. **design** (Brian, bv)
 - Finish MicroBooNE paper (whole SP team)
- Toolkit infrastructure miscellany
 - Various improvements/cleanups in configuration layer and build/source management. (bv)