Build a decision tree classifier to predict whether a customer will purchase a product or service based on their demographic and behavioral data. Use a dataset such as the Bank Marketing dataset from the UCI Machine Learning Repository.

```
In [1]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.model_selection import train_test_split
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.metrics import accuracy_score
```

New Section

2

35

management

single

```
In [3]:
         df = pd.read_csv('bank.csv', sep=';')
          df.head()
Out[3]:
              age
                           job marital education default balance housing
                                                                            loan
                                                                                   contact day
                                                                                                mor
           0
               30
                   unemployed
                               married
                                          primary
                                                             1787
                                                                                    cellular
               33
           1
                       services married
                                        secondary
                                                      no
                                                             4789
                                                                        yes
                                                                             yes
                                                                                    cellular
                                                                                             11
                                                                                                   m
```

tertiary

no

1350

yes

no

cellular

16

EDA

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4521 entries, 0 to 4520
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype				
0	age	4521 non-null	int64				
1	job	4521 non-null	object				
2	marital	4521 non-null	object				
3	education	4521 non-null	object				
4	default	4521 non-null	object				
5	balance	4521 non-null	int64				
6	housing	4521 non-null	object				
7	loan	4521 non-null	object				
8	contact	4521 non-null	object				
9	day	4521 non-null	int64				
10	month	4521 non-null	object				
11	duration	4521 non-null	int64				
12	campaign	4521 non-null	int64				
13	pdays	4521 non-null	int64				
14	previous	4521 non-null	int64				
15	poutcome	4521 non-null	object				
16	У	4521 non-null	object				
d+							

dtypes: int64(7), object(10)
memory usage: 600.6+ KB

In [5]: df.tail()

Out[5]:

	age	job	marital	education	default	balance	housing	loan	contact	day	ı
4516	33	services	married	secondary	no	-333	yes	no	cellular	30	
4517	57	self- employed	married	tertiary	yes	-3313	yes	yes	unknown	9	
4518	57	technician	married	secondary	no	295	no	no	cellular	19	
4519	28	blue-collar	married	secondary	no	1137	no	no	cellular	6	
4520	44	entrepreneur	single	tertiary	no	1136	yes	yes	cellular	3	
4											

```
In [6]: df.nunique()
```

Out[6]: age 67 job 12 marital 3 education 4 default 2 balance 2353 housing 2 loan 2 contact 3 day 31 month 12 duration 875 campaign 32 292 pdays previous 24 poutcome 4

dtype: int64

2

In [7]: df.describe()

Out[7]:

	age	balance	day	duration	campaign	pdays	pı
count	4521.000000	4521.000000	4521.000000	4521.000000	4521.000000	4521.000000	4521.
mean	41.170095	1422.657819	15.915284	263.961292	2.793630	39.766645	0.
std	10.576211	3009.638142	8.247667	259.856633	3.109807	100.121124	1.
min	19.000000	-3313.000000	1.000000	4.000000	1.000000	-1.000000	0.
25%	33.000000	69.000000	9.000000	104.000000	1.000000	-1.000000	0.
50%	39.000000	444.000000	16.000000	185.000000	2.000000	-1.000000	0.
75%	49.000000	1480.000000	21.000000	329.000000	3.000000	-1.000000	0.
max	87.000000	71188.000000	31.000000	3025.000000	50.000000	871.000000	25.
4							

```
# chicking for duplicites
 In [8]:
           df[df.duplicated()].count()
 Out[8]: age
                          0
           job
                          0
           marital
                          0
           education
                          0
           default
                          0
           balance
                          0
           housing
                          0
           loan
                          0
                          0
           contact
                          0
           day
           month
                          0
           duration
                          0
                          0
           campaign
           pdays
                          0
                          0
           previous
           poutcome
                          0
           dtype: int64
 In [9]:
          #check for missing values
           df.isnull().sum()
 Out[9]: age
                          0
           job
                          0
           marital
                          0
           education
                          0
           default
                          0
           balance
                          0
           housing
                          0
           loan
                          0
                          0
           contact
                          0
           day
           month
                          0
                          0
           duration
           campaign
                          0
                          0
           pdays
           previous
                          0
                          0
           poutcome
           dtype: int64
In [10]:
          # dropping unnecissery columns
           df.drop(['day', 'month'], axis=1, inplace=True)
           df.head()
Out[10]:
                           job
                                marital education
                                                  default balance
                                                                  housing
                                                                           loan
                                                                                  contact duration
              age
           0
                                                                                               79
               30
                                                             1787
                                                                                   cellular
                    unemployed
                               married
                                          primary
                                                      no
                                                                        no
                                                                             no
            1
               33
                                                             4789
                                                                                  cellular
                                                                                              220
                       services
                               married
                                        secondary
                                                                       yes
                                                      no
                                                                            yes
           2
               35
                   management
                                 single
                                           tertiary
                                                             1350
                                                                       yes
                                                                                  cellular
                                                                                               185
                                                      no
                                                                             no
            3
               30
                   management married
                                           tertiary
                                                             1476
                                                                       yes
                                                                                 unknown
                                                                                               199
                                                      no
                                                                            yes
               59
                     blue-collar married
                                        secondary
                                                                0
                                                                       yes
                                                                                 unknown
                                                                                               226
                                                      no
                                                                             no
```

```
In [12]: # distribution of Age
    plt.figure()
    plt.hist(df['age'], bins=15, color='pink', edgecolor='black')
    plt.title('Distribution of Age')
    plt.xlabel('Age')
    plt.ylabel('Frequency')
    plt.show()
```



```
In [13]: # relationships
    plt.figure(figsize=(10, 6))
    sns.countplot(x='marital', data=df)
    plt.title('Distribution of marital status')
    plt.show()
```



```
In [14]: # target vlaue
    plt.title('has the client subscribed a term deposit ?')
    sns.countplot(x='y', data=df)
    plt.show()
```



```
In [15]: X = df.drop('y', axis=1)
y = df['y']
X = pd.get_dummies(X, columns=['job', 'marital', 'education', 'default', 'h
y_binary = y.map({'yes': 1, 'no': 0})
```

```
In [16]: # decising tree
X_train, X_test, y_train, y_test = train_test_split(X, y_binary, test_size=

dt_classifier = DecisionTreeClassifier(random_state=42)
dt_classifier.fit(X_train, y_train)
y_pred_dt = dt_classifier.predict(X_test)

# Store evaluation metrics
accuracy_dt = accuracy_score(y_test, y_pred_dt)
print(accuracy_dt)
```

0.850828729281768

```
In [ ]:
```