# Algorithm Design and Analysis

**Network Flow Part II: Advanced Flow Algorithms** 

### Roadmap for today

- Review network flow and the Ford-Fulkerson algorithm
- Make the Ford-Fulkerson algorithm faster!
  - The *Edmonds-Karp* algorithm
  - Dinic's algorithm: The layered graph, and blocking flows

### **Network Flow recap**

- A *flow network* is a directed graph with:
  - capacities c(u, v)
  - A source vertex s and sink vertex t
- A flow is an assignment of values to edges:
  - Capacity constraint:  $0 \le f(u, v) \le c(u, v)$
  - Conservation constraint: "flow in = flow out" for all vertices except s, t

$$\sum_{v \in V} f(u, v) = \sum_{v \in V} f(v, u)$$

 The value of a flow is the net flow out of the source (can prove via conservation that is = net flow into sink)

### **Network Flow recap**

- The *maximum flow* problem is to find a flow of maximum value
- We learned the *Ford-Fulkerson* algorithm:
  - Define the *residual network:*  $C_{i}f$   $f(u_{i}r) > 0$   $c_{f}(u,v) = C(u_{i}r) f(u_{i}r)$   $c_{f}(v,u) = ((v_{i}u) + f(u_{i}r)$



• Then the algorithm is:

while there exists a path in the residual network:  $(s \rightarrow t)$  add flow to that path.

$$\begin{cases} c_f(u,v) = c(u,v) - f(u,v), \\ c_f(v,u) = c(v,u) + f(u,v) \end{cases}$$



Flow network G

Residual network  $G_f$ 

$$\begin{cases} c_f(u,v) = c(u,v) - f(u,v), \\ c_f(v,u) = c(v,u) + f(u,v) \end{cases}$$





Flow network G

Residual network  $G_f$ 

$$\begin{cases} c_f(u,v) = c(u,v) - f(u,v), \\ c_f(v,u) = c(v,u) + f(u,v) \end{cases}$$





Flow network G

Residual network  $G_f$ 

$$\begin{cases} c_f(u,v) = c(u,v) - f(u,v), \\ c_f(v,u) = c(v,u) + f(u,v) \end{cases}$$







Residual network  $G_f$ 

### **Worst-case runtime**

**Theorem**: Ford-Fulkerson runs in O(mF) time (with integer capacities)



(Or O((n+m)F) but we might as well assume that G is connected)

### How to make it faster?

- Ford-Fulkerson finds any augmenting path until there are none left
- *Idea*: Can we find "good" augmenting paths that guarantee a better running time? Yes!
- · Idea #1: Largest capacity
- · Idea #2: Shorter paths

### **Edmonds-Karp (Shortest Augmenting Paths)**

- When we described Ford-Fulkerson, we found any augmenting path, usually via DFS as the simplest possible implementation
- If we use a **BFS** instead, we get a shortest augmenting path (fewest possible edges)

**Theorem**: Edmonds-Karp runs in  $O(nm^2)$  time (polynomial!)

in ag

**Lemma**: Let d be the distance from s to t. In Edmonds-Karp, d never decreases.



**Lemma**: After *m* iterations, *d* **must** increase.

Each saturates >, 1 edge m edges

#### **Conclusion:**

- Each iteration takes: O(m)
- Iterations per value of  $d: \bigcirc (m)$
- d can increase: O(n)



### Redundancy in Edmonds-Karp

- ullet Edmonds-Karp does up to m augmenting paths for each value of d
- Hmm... is something redundant here?

- Does BFS only find you one shortest path?
- No! It finds every shortest path (from the source s)!
- Dinic's algorithm: Find many shortest augmenting paths per BFS call to save work!

# The "layered graph"

$$\varphi(\alpha) = \varphi(\lambda) - |$$

- a.k.a. level graph, a.k.a. admissible graph.
- Given a network  $G_f$ , what do we get when we run BFS?
- We want to find augmenting paths in the layered graph.
- Algorithm? Find augmenting paths using DFS until none remain?



Time per iteration:  $\bigcirc$  (m)

# Iterations:

O(m)

# layers: (

O(n)

### **Blocking flows**

**Definition:** A *blocking flow* in a flow network G' is a flow that saturates at least one edge in every s-t path in G'

**Note**: Not the same thing as a maximum flow! (Every maximum flow is a blocking flow, but the reverse is not true)



## Algorithmic goal

- We want to find a **blocking flow** in the **layered graph** 
  - Faster than just finding augmenting paths independently one by one

Dead end path? Dektete It!!



### Blocking flow algorithm

- Perform DFS to find capacitated s t paths
- When we traverse an edge that does not lead to t, mark it as "dead", i.e., logically delete it from the network
- In future DFS's, dead edges are not considered!

Note: Since we are looking for a blocking flow, not a maximum flow, we don't need to enable back edges after finding each s-t path!

• Why? A back edge always make the distance longer, so it can not possibly be in the layered graph for the current value of d. (Same proof as when we analyzed Edmonds-Karp)

### Dinic's algorithm

while the flow is not maximum: compute the layered graph of  $G_f$  for the current distance d (BFS) find a blocking flow in the layered graph augment f with the contents of the blocking flow

Correctness: Finding a blocking flow saturates every shortest path, so the distance d must increase. After increasing the distance n times there are no more augmenting paths, so the flow is maximum.

```
Blocking flow:
   RFS: 0 (m)
   DFS: O(n) + #dead edges
m DFS's:
    > n + # dead
   = nm + # total dead
   = O(nm) + O(m)
```

Dinic's =
$$n \cdot O(nm)$$

$$= O(n^2m)$$

### Dinic's on unit-capacity graphs

- Many problems modelled using network flow use only use capacity 1
  - Example: bipartite matching from last lecture
- Unit-capacity networks have low max flow ( $F \leq m$ ) so algorithms ought to be faster

**Theorem**: Dinic's runs in  $O(\sqrt{m} m)$  time on unit-capacity networks.

Proof by two lemmas:

- We can find a blocking flow in a unit-capacity network in O(m)
- $O(\sqrt{m})$  blocking flows is sufficient to find a maximum flow in a unit-capacity network.

## Dinic's on unit-capacity graphs

**Lemma**: We can find a blocking flow in a unit-capacity network in O(m)

Each edge in one path

Total length of all paths = 
$$O(m)$$

Total DFS cost =  $E \# path length + \# dead$ 
 $e \# path length + \# dead$ 

## Dinic's on unit-capacity graphs

**Lemma**:0(m) blocking flows is sufficient to find a maximum flow in a unit-capacity network.

Consider after 
$$k$$
 blocking flows  $d \gg k$   $passe flow \leq k + \frac{m}{k}$  How much remains?  $-$  paths at least length  $d$   $paths = k = \sqrt{m}$   $\leq m/k$  paths  $= k = \sqrt{m}$   $\leq m/k$  more flow  $= k = \sqrt{m}$ 

### Take-home messages

- Maximum flow can be solved in polynomial time!
- Edmonds-Karp (shortest augmenting paths) runs in  $O(nm^2)$
- Dinic's runs in  $O(n^2m)$ , better for sparse graphs!
  - Try to review and understand blocking flows
- Dinic's runs even faster,  $O(\sqrt{m} m)$  on unit-capacity graphs