# **Object Detection**

#### LATEST SUBMISSION GRADE

| 1 |   |   | 0/ |
|---|---|---|----|
| н | U | U | %  |

1.

Question 1

Check all the techniques that can be used to improve the accuracy of detecting objects and encapsulating them entirely within a single bounding box.

## 1 / 1 point

✓

Increase the size of the bounding box until the object fits entirely in it.

#### **Correct**

Correct! That is one of the simplest techniques.

✓

Use Selective Search technique

#### **Correct**

Correct! It is an advanced technique, and faster than a naive approach.

Scale down the image and then detect the object within it using the bounding box

2.

**Question 2** 

Check all that are true for Selective Search.

## 1 / 1 point

П

The biggest bounding box detected of the smaller objects in the end becomes the final bounding box around the identified object.

✓

It tries to identify larger objects by grouping together initially identified smaller objects.

#### **Correct**

Correct!

## ~

Image segmentation is used in this technique

#### Correct

Correct! It is used to identify smaller objects.

3.

## Question 3

The technique of selecting the best bounding box based on the highest intersection over union (IOU) between the true label and several predicted bounding boxes is called non-maximum \_ (NMS). (Hint: it is a one word answer)

## 1 / 1 point

suppression

### Correct

Correct!

4.

## Question 4

Consider the following image, according to the NMS technique which coloured bounding box will be eventually selected as the best bounding box around the football?



1 / 1 point

Green (# 1)

| © Red (# 3)                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C<br>Yellow (# 2)                                                                                                                                                                                                                                                                           |
| • Purple (# 4)                                                                                                                                                                                                                                                                              |
| Correct! As this bounding box encapsulates the maximum area of the object.                                                                                                                                                                                                                  |
| 5. Question 5 One of the differences between R-CNN and Fast R-CNN is that, Fast R-CNN proposes regions of interest to the input image (generates), whereas in R-CNN regions of interest are expected to be an input (as opposed to generating them) to the model.  1 / 1 point  True  False |
| Correct  Correct! R-CNN generates regions of interest to the input image, whereas in Fast R-CNN regions of interest are an input (as opposed to generating them).                                                                                                                           |
| 6. Question 6 Consider the following code and check all that are true.                                                                                                                                                                                                                      |

```
viz_utils.visualize_boxes_and_labels_on_image_array(
    image_np_with_detections[0],
    result['detection_boxes'][0],
    (result['detection_classes'][0] + label_id_offset).astype(int),
    result['detection_scores'][0],
    category_index,
    use_normalized_coordinates=True,
    min_score_thresh=.40,
)
```

## 1 / 1 point

◡

*label\_id\_offset* an adjustment in case the 'detection classes' starting index and actual starting index have an offset between them.

#### **Correct**

Correct!

✓

*min\_score\_thresh*is used to leave out object labels and their bounding boxes if their score falls below the set threshold.

## **Correct**

Correct!

*image\_np\_with\_detections[0]* is a numpy array containing the image, and 0 index shows there are multiple input images being passed to this function.

Setting *use\_normalized\_coordinates=True* indicates that your bounding box coordinates are not normalized, so you want them to be normalized.

7.

Question 7

The following code initializes a model and restores pre-trained weights, *detection\_model,* using the .config file method

О

True

**(**)

False

#### **Correct**

Correct! The code here only initializes a new model architecture with "empty" weights and does not restore pre-trained weights.

8.

Question 8

Which of the following is the correct syntax to print a list of your trainable variables in a model?

## 1 / 1 point

 $\bigcirc$ 

for varName in myModel.trainables:

print(varName.name)

 $\bigcirc$ 

for varName in myModel.trainableVariables:

print(varName.name)

**(** 

for varName in myModel.trainable\_variables:

print(varName.name)

 $\bigcirc$ 

print(varName.name)

Correct

for varName in myModel. Variables:

Correct!