

Functional Analysis I

Tutorial Assignment 7

Martin Genzel, Mones Raslan

Summer Term 2019

Exercise 1: Prove or disprove (by giving a counterexample) the following statements:

- (i) A linear, open map $T: X \to Y$, where X, Y are normed spaces, maps closed sets in X onto closed sets in Y.
- (ii) The map $T: \ell_{\infty} \to c_0, (t_n)_n \mapsto (t_n/n)_n$ is open. Here, c_0 denotes the space of all sequences with elements in \mathbb{K} which converge to 0 with respect to $\|\cdot\|_{\infty}$.

Exercise 2: Let E and F be normed spaces and $T, T_n \in L(E, F), n \in \mathbb{N}$. Discuss: T_n converges to T pointwise if and only if T_n converges to T in operator norm.

Exercise 3: Let E, F, and G be Banach spaces, let $T: E \to F$ be linear and let $S \in L(F,G)$ be injective. Show that $S \circ T \in L(E,G)$ implies $T \in L(E,F)$.

Exercise 4: Let E and F be Banach spaces and $T_n \in L(E, F)$, $n \in \mathbb{N}$. Moreover, assume $\sup_{n \in \mathbb{N}} ||T_n|| = \infty$. Prove that there exists some $x \in E$ such that $\sup_{n \in \mathbb{N}} ||T_n x|| = \infty$.

Exercise 5: Let E and F be Banach spaces, let $\mathcal{D} \subset E$ be dense, and let $T, T_n \in L(E, F)$, $n \in \mathbb{N}$. Prove that the following conditions are equivalent.

- (i) For all $x \in E$ we have $T_n x \to Tx$ as $n \to \infty$.
- (ii) $\sup_{n\in\mathbb{N}} ||T_n|| < \infty$ and for all $x \in \mathcal{D}$ we have $T_n x \to Tx$ as $n \to \infty$.

Exercise 6: Let E be a Banach space, F a normed space, and $T_n: E \to F, n \in \mathbb{N}$, a sequence of linear bounded operators. Further, assume that for all $(x_n)_n \subseteq E$ with $||x_n|| \to 0$ as $n \to \infty$ we have $||T_n x_n|| \to 0$ as $n \to \infty$. Prove that $\sup_{n \in \mathbb{N}} ||T_n|| < \infty$.