Let $r \in (\mu,s(B+\phi_{\mu})]$ and assume $r \in \rho(B+\phi_{\mu})$. By the definition of μ we have $r \in \rho(B+\phi_{\mu+\epsilon})$ for all $\epsilon > 0$. By C-III,Thm.1.1 $R(r,B+\phi_{\mu+\epsilon}) \geq 0$ and by the assumption $R(r,B+\phi_{\mu}) \geq 0$ as well. Now C-III,Thm.1.1 implies $r > s(B+\phi_{\mu})$ which yields a contradiction to the choice of r. Thus $r \in \sigma(B+\phi_{\mu})$ for every $r \in (\mu,s(B+\phi_{\mu}))$ and hence $\mu \in \sigma(B+\phi_{\mu})$. Consequently $s(A) \geq \mu$.

Finally we assume $s(A) > \mu$. The definition of μ yields $s(A) > s(B+\phi_{s(A)})$. Hence $s(A) \in \rho(B+\phi_{s(A)})$ and thus $s(A) \in \rho(A)$ by Prop. 3.4. This yields a contradiction, since A generates a positive semigroup, hence $s(A) = \mu$.

An immediate consequence of the preceding lemma is the following stability criterion.

<u>Corollary</u> 3.8. Let $\phi \in L(E,F)$ be positive and let B be the generator of a positive semigroup. The following assertions are equivalent:

- (i) The semigroup generated by A is exponentially stable in E.
- (ii) The semigroup generated by B + $\Phi_{\rm O}$ is exponentially stable in F.

<u>Proof.</u> We can assume that there exists $\lambda \in \mathbb{R}$ with $\sigma(B+\phi_{\lambda}) \neq \emptyset$. The implication "(i)+(ii)" follows immediately from Thm. 3.7.(a). It remains to show "(ii)+(i)". Let $s(B+\phi_{0}) < 0$. By the lemma and since $\lambda \to s(B+\phi_{\lambda})$ is non-increasing we have $s(A) = \mu = \sup\{\lambda : s(B+\phi_{\lambda}) > \lambda\} < 0$. Thus the semigroup generated by A is exponentially stable.

<u>Remark</u>. In the situation of Thm.3.7(c) we have the stronger result that s(A) and $s(B + \Phi_0)$ have the same sign.

Example 3.9 (see also C-II,Ex.4.14). Take $E = C([-1,0],\mathbb{C})$, $\alpha \in \mathbb{C}$ and $\mu \in M[-1,0]_+$ such that $\mu(\{0\}) = 0$. Then the operator A given by Af = f' on $D(A) = \{f \in C^1([-1,0],\mathbb{C}) : f'(0) = \alpha f(0) + \langle f,\mu \rangle \}$ generates a strongly continuous semigroup $(T(t))_{t \geq 0}$. In fact, this follows from Thm.3.1 if we put $F = \mathbb{C}$, $\phi = \mu$ and B the multiplication by α . Moreover ϕ_O is the multiplication by $\langle \epsilon_O, \phi \rangle = \|\phi\|$ (notice $\phi \geq 0$) and $S(B + \phi_O) = \alpha + \|\phi\|$. Since $\omega(A) = S(A)$ by B-IV,(1.1) we obtain from Cor.3.8 that A generates a uniformly exponentially stable semigroup if and only if $\alpha + \|\phi\| < 0$.