Trustworthy Boolean Reasoning 1: (Un)Satisfiability and Proofs

Randal E. Bryant

Carnegie Mellon University

June, 2022

Important Ideas for These Lectures

- SAT solvers are useful tools
 - Many practical problems reducible to SAT
 - Need to learn effective encoding techniques
- ▶ For many applications, formulas should be unsatisfiable
 - Program should generate a checkable proof
 - ► There is a well-developed proof infrastructure
- ▶ Binary Decision Diagrams (BDDs) can play important role
 - In supplementing current SAT algorithms
 - In proof generation

SAT Application: Bit-Level Program Verification

Can the assertion fail?

```
int abs_bits(int x) {
    int m = x>>31;
    return (x^m) + ~m + 1;
}
    int abs_ref(int x) {
    return x < 0 ? -x : x;
}
Assume for int:

int main() {
    /* Value of t arbitrary */
    int t = random();
    int ab = abs_ref(t);
    int ab = abs_bits(t);
    int err = (ar != ab);
    assert(!err);
}</pre>
```

- ▶ 32-bit word
- ► Two's complement representation

Application: Bit-Level Program Verification

C Bounded Model Checker (CBMC)

Clarke, Kroening, Lerda TACAS 2004

Reduces Program Verification to SAT

- Unroll loops by bounded amount
- ► Encode arithmetic and logical operations at Boolean level
- Formula satisfied if err can be nonzero
 - Unsatisfiable when no error can occur

Widely Used in Industry

- Accurately models low-level program behavior
- Good for short, but tricky programs

Bryant: SSFT22 4/39

SAT Application: Coloring Pythagorean Triples

Pythagorean Triple (P-Triple)

- ▶ Positive integers a, b, c such that $a^2 + b^2 = c^2$
- ► E.g., a = 3, b = 4, c = 5.

Two-Coloring

- ▶ For integers $i \in \{1, 2, ..., n\}$, assign $C_i \in \{\text{red}, \text{blue}\}$
- ▶ For every P-Triple a, b, c, cannot have $C_a = C_b = C_c$.

Question

- ▶ What is the maximum *n* for which a two-coloring exists?
- Answer unknown until 2016

Bryant: SSFT22 5/39

SAT Application: Coloring Pythagorean Triples

Pythagorean Triple (P-Triple)

- ▶ Positive integers a, b, c such that $a^2 + b^2 = c^2$
- ► E.g., a = 3, b = 4, c = 5.

Two-Coloring

- ▶ For integers $i \in \{1, 2, ..., n\}$, assign $C_i \in \{\text{red}, \text{blue}\}$
- ▶ For every P-Triple a, b, c, cannot have $C_a = C_b = C_c$.

SAT Encoding PTC(n)

- n Boolean variables
- ▶ Variable $x_a = 1$ if a colored red, = 0 if colored blue
- ▶ Clauses for each P-Triple a, b, c, such that $1 \le a < b < c \le n$: $x_a \lor x_b \lor x_c$ At least one colored red $\overline{x}_a \lor \overline{x}_b \lor \overline{x}_c$ At least one colored blue

Bryant: SSFT22 5/39

SAT Application: Coloring Pythagorean Triples, n = 7824

SAT Application: Coloring Pythagorean Triples, $n \ge 7825$

Formula PTC(7825) unsatisfiable

- ► Heule, Kullmann, Marek, SAT 2016
- ► Partitioned into 10⁶ subproblems
 - ▶ By enumerating assignments for some of the variables
- Ran on 800-core supercomputer for two days
- Generated 10⁶ proofs of unsatisfiability
 - 200 Terabytes total
 - Validated with proof checker
 - A very long and very tedious collection of proofs!
- Unsatisfiability proof provides mathematical rigor

Boolean Satisfiability Solvers

SAT Solvers Useful

- Optimization
- Formal verification
- ► Mathematical proofs

Can We Trust Them?

- ► No!
- Complex software
- e.g., KISSAT: 35K lines of code

Boolean Satisfiability Solvers

SAT Solvers Useful

- Optimization
- Formal verification
- Mathematical proofs

Proof Generating Solvers

Unsatisfiability Proof

Step-by-step proof in some logical framework

Proof Checker

- Simple program
- May be formally verified

Impact of Proof Checking

Adoption

 Required for SAT competition entrants since 2016

Benefits

- Can clearly judge competition submissions
- Developers have improved quality of their solvers
- Firm foundation for use in mathematical proofs

Unintended Consequences

- Narrowed focus to single SAT algorithm
 - Conflict-Driven Clause Learning (CDCL)
 - Search for solution, but learn conflicts
- Other powerful solution methods have languished.

Bryant: SSFT22 10/39

Impact of Proof Checking

Adoption

 Required for SAT competition entrants since 2016

Benefits

- Can clearly judge competition submissions
- Developers have improved quality of their solvers
- Firm foundation for use in mathematical proofs

Unintended Consequences

- Narrowed focus to single SAT algorithm
 - Conflict-Driven Clause Learning (CDCL)
 - Search for solution, but learn conflicts
- Other powerful solution methods have languished.

My Long-Term Goals

- Enable proof generation for other SAT algorithms
- Develop checkable proof infrastructure for other domains

Bryant: SSFT22 10 / 39

Conjunctive Normal Form (CNF) Formulas

Variables

- ▶ Input: $X = \{x_1, x_2, ..., x_n\}$
- ▶ Informally: a, b, c, ...

Literals

- ▶ Variable *x*
- ▶ Complemented variable \overline{x} .

Clauses

- $ightharpoonup C = \{\ell_1, \ell_2, \dots, \ell_k\}$ Set of literals
- $ightharpoonup oxedsymbol{oxedsymbol{oxedsymbol{eta}}} oxedsymbol{oxedsymbol{eta}}$ Empty clause (False)

Formula

- $\phi = \{C_1, C_2, \dots, C_m\}$
- $C_1 \wedge C_2 \wedge \cdots \wedge C_m$ Conjunction of clauses

Bryant: SSFT22 11 / 39

Clausal Thinking

Useful tricks when writing CNF

Boolean Formula	CNF
$a \wedge b \rightarrow c$	$\overline{a} \lor \overline{b} \lor c$
$a o b \lor c$	$\overline{a} \lor b \lor c$
$(a \lor b) \to c$	$(\overline{a} \lor c) \land (\overline{b} \lor c)$
$a o (b\wedge c)$	$(\overline{a} \lor b) \land (\overline{a} \lor c)$
ITE(a,b,c)	$(\overline{a} \lor b) \land (a \lor c)$

Advice: think in terms of implication.

► E.g., $ITE(a, b, c) = (a \rightarrow b) \land (\overline{a} \rightarrow c)$

Clausal Thinking: Parity Encodings

Boolean Formula	CNF	Explanation
OddParity(a, b, c)	$egin{array}{ccc} (\overline{a}ee \overline{b}ee c) & \wedge & \\ (\overline{a}ee bee \overline{c}) & \wedge & \\ (aee \overline{b}ee \overline{c}) & \wedge & \\ (aee bee c) & \end{array}$	Even number of negations
EvenParity(a, b, c)	$egin{array}{ccc} (\overline{a}ee \overline{b}ee \overline{c}) & \wedge & \ (aee bee \overline{c}) & \wedge & \ (aee \overline{b}ee c) & \wedge & \ (\overline{a}ee bee c) & \end{array}$	Odd number of negations

Bryant: SSFT22 13 / 39

Clausal Thinking: Parity Encodings

Boolean Formula	CNF
OddParity(a,b,c)	$egin{array}{ccc} (\overline{a}ee \overline{b}ee c) & \wedge & \ (\overline{a}ee bee \overline{c}) & \wedge & \ (aee \overline{b}ee \overline{c}) & \wedge & \ (aee bee c) & \end{array}$
OddParity(a,b,c,d)	$(\overline{a} \vee \overline{b} \vee \overline{c} \vee \overline{d}) \wedge \\ (a \vee b \vee \overline{c} \vee \overline{d}) \wedge \\ (a \vee \overline{b} \vee c \vee \overline{d}) \wedge \\ (\overline{a} \vee \overline{b} \vee c \vee \overline{d}) \wedge \\ (\overline{a} \vee \overline{b} \vee c \vee d) \wedge \\ (\overline{a} \vee \overline{b} \vee \overline{c} \vee d) \wedge \\ (a \vee \overline{b} \vee \overline{c} \vee d) \wedge \\ (a \vee \overline{b} \vee \overline{c} \vee d) \wedge \\ (a \vee \overline{b} \vee \overline{c} \vee d)$

Bryant: SSFT22 14 / 39

Parity Encoding with Intermediate Variables

Task

- ▶ Encode *OddParity*($x_1, x_2, ..., x_n$)
- ▶ Direct encoding requires 2^{n-1} clauses
- All combinations with even number of negative literals

Decomposition

- ► Introduce new variable z
- ▶ Directly encode *EvenParity*(x_1, x_2, z)
- ▶ Recursively encode *OddParity*(z, x₃, x₄, . . . , x_n):
 - ▶ If $x_1 \oplus x_2 = 0$, then z = 0 and $OddParity(x_3, x_4, ..., x_n)$
 - ▶ If $x_1 \oplus x_2 = 1$, then z = 1 and $EvenParity(x_3, x_4, \dots, x_n)$

Bryant: SSFT22 15 / 39

Parity Encoding with Intermediate Variables

Decomposition

- ▶ Directly encode *EvenParity*(x_1, x_2, z)
- ▶ Recursively encode *OddParity*(z, x_3 , x_4 , ..., x_n):

General Form

$$z_{2} = x_{1} \oplus x_{2}$$

$$z_{3} = z_{2} \oplus x_{3}$$

$$\cdots$$

$$z_{n-2} = x_{n-2} \oplus x_{n-3}$$

$$z_{n-2} \oplus x_{n-1} \oplus x_{n} = 1$$

Complexity

- ▶ n − 3 additional variables
- ▶ 4(n-2) clauses

Clausal Thinking: Cardinality Constraints

$$a_1 x_1 + a_2 x_2 + \cdots + a_n x_n \geq t$$

Constraint $a_i t$
 $AtLeastOne \{0,1\} 1$
 $AtMostOne \{0,-1\} -1$

Boolean Formula	CNF
AtLeastOne(a, b, c)	$a \lor b \lor c$
AtMostOne(a, b, c)	$\left(\overline{a}\vee\overline{b}\right)\wedge\left(\overline{a}\vee\overline{c}\right)\wedge\left(\overline{b}\vee\overline{c}\right)$
AtMostOne(a, b, c, d)	$(\overline{a} \lor \overline{b}) \land (\overline{a} \lor \overline{c}) \land (\overline{a} \lor \overline{d}) \land (\overline{b} \lor \overline{c}) \land (\overline{b} \lor \overline{d}) \land (\overline{c} \lor \overline{d})$

Bryant: SSFT22 17 / 39

Encoding Arbitrary Formulas / Circuits

	Encode NAND gate	Encode OR gate
Formula	$\overline{t}_1 \leftrightarrow x_1 \wedge x_2$	$z \leftrightarrow t_1 \lor x_3$
	$t_1 \vee x_1$	$\overline{z} \lor t_1 \lor x_3$
Clauses	$t_1 \lor x_2$	$z \vee \overline{t}_1$
	$\overline{t}_1 \vee \overline{x}_1 \vee \overline{x}_2$	$z \vee \overline{x}_3$

Tseitin Encoding

- ▶ Introduce variables for intermediate values
- ► Linear complexity

Bryant: SSFT22 $18 \ / \ 39$

Proof Rules: Resolution

▶ Robinson, 1965

$$\frac{\overline{a} \vee b \vee x \qquad \overline{x} \vee c \vee \overline{d}}{(\overline{a} \vee b) \vee (c \vee \overline{d})}$$

- Generalization of implication
- ► See https://en.wikipedia.org/wiki/Resolution_(logic)

Bryant: SSFT22 19 / 39

Proof Rules: Resolution

▶ Robinson, 1965

$$(a \wedge \overline{b}) \to x \qquad x \to (c \vee \overline{d})$$

$$\frac{\overline{a} \vee b \vee x \qquad \overline{x} \vee c \vee \overline{d}}{(\overline{a} \vee b) \vee (c \vee \overline{d})}$$

$$(a \wedge \overline{b}) \to (c \vee \overline{d})$$

- Generalization of implication
- ► See https://en.wikipedia.org/wiki/Resolution_(logic)

Bryant: SSFT22 19 / 39

Resolution Principle Nuances

OK To Have Repeated Literal

$$\frac{\overline{a} \vee b \vee x \qquad \overline{x} \vee b \vee \overline{d}}{\overline{a} \vee b \vee \overline{d}}$$

Not OK to Have Multiple Resolution Variables

$$\begin{array}{c|cccc}
\overline{a} \lor d \lor x & \overline{x} \lor c \lor \overline{d} \\
\hline
\end{array}$$

Proof Rules: Subsumption

$$\frac{\overline{a} \lor b \lor \overline{c}}{\overline{a} \lor b \lor \overline{c} \lor d}$$

▶ General Principle: $F \rightarrow F \lor d$

Example Formula

DIMACS Format

- Standard for all solvers
- Positive integers for variables
- Negative integers for their negations
- Lists terminated with 0

ID	Clause	DIMACS Encoding
		p cnf 4 6
1	$\overline{a} ee \overline{b} ee \overline{c}$	-1 -2 -3 0
2	$\overline{a} \lor \overline{b} \lor c$	-1 -2 3 0
3	$a \lor \overline{d}$	1 -4 0
4	$a \lor d$	1 4 0
5	$b ee \overline{d}$	2 -4 0
6	$b \lor d$	2 4 0

Example Proof

▶ Derive empty clause ⊥ through set of resolution steps

But how can a program find such a proof?

Unit Propagation

Unit clauses

- ▶ If formula contains clause (x), then x must be assigned 1.
- ▶ If formula contains clause (\overline{x}) , then x must be assigned 0.

Propagating Unit Literal ℓ

- ▶ If $\ell \in C$ and $\ell = 0$, then $C \leftarrow C \{\ell\}$
- ▶ If $\ell \in C$ and $\ell = 1$, then C satisfied
- ▶ If any clause becomes unit, then iterate

Step	Formula	Units
1	$(a \lor \overline{c}) \land (\overline{a} \lor \overline{b} \lor \overline{c}) \land (a \lor b \lor c) \land (c)$	c = 1
2	$(a \lor \overline{c}) \land (\overline{a} \lor \overline{b} \lor \overline{c}) \land (a \lor b \lor c) \land (c)$	a = 1
3	$({\color{red} a} \lor {\color{red} \overline{c}}) \land ({\color{red} \overline{a}} \lor {\color{red} \overline{b}} \lor {\color{red} \overline{c}}) \land ({\color{red} a} \lor {\color{red} b} \lor {\color{red} c}) \land ({\color{red} c})$	b = 0
_	$(\mathbf{a} \lor \overline{c}) \land (\overline{a} \lor \overline{b} \lor \overline{c}) \land (\mathbf{a} \lor b \lor c) \land (c)$	

Bryant: SSFT22 24 / 3!

Basic CDCL Operation

Conflict-Driven Clause Learning

- Algorithm in state-of-the art solvers
- Search, but learn from dead ends

```
while(True):
    depth \leftarrow 0
    while(True):
         UnitPropagate()
         if all clauses satisfied
              return solution
         if ConflictDetected():
              Generate conflict clause
              break
         Choose variable and assign 0 or 1
         depth \leftarrow depth + 1
    if depth = 0:
         return UNSAT
```

▶ No initial unit propagations

•

ID	Clause	UProp?
1	$\overline{a} \lor \overline{b} \lor \overline{c}$	
2	$\overline{a} \lor \overline{b} \lor c$	
3	$a \lor \overline{d}$	
4	$a \lor d$	
5	$b ee \overline{d}$	
6	$b \lor d$	

▶ Setting b = 0 causes conflict. Learn clause b.

ID	Clause	UProp?
1	$\overline{a} \lor \overline{b} \lor \overline{c}$	
2	$\overline{a} \lor \overline{b} \lor c$	
3	$a ee \overline{d}$	
4	$a \lor d$	
5	$b \vee \overline{d}$	*
6	$b \lor d$	*
7	Ь	

▶ Unit propagate b. No conflict

ID	Clause	UProp?
1	$\overline{a} \lor \overline{b} \lor \overline{c}$	
2	$\overline{a} \lor \overline{b} \lor c$	
3	$a ee \overline{d}$	
4	$a \lor d$	
5	$b ee \overline{d}$	
6	$b \lor d$	
7	Ь	

▶ Setting c = 1 causes conflict. Learn clause \overline{c} .

ID	Clause	UProp?
1	$\overline{a} \lor \overline{b} \lor \overline{c}$	*
2	$\overline{a} \lor \overline{b} \lor c$	
3	$a ee \overline{d}$	*
4	$a \lor d$	*
5	$b ee \overline{d}$	
6	$b \lor d$	
7	Ь	*
8	<u></u> <u> </u> 	

▶ Unit propagate b and \overline{c} . Causes conflict. UNSAT!

ID	Clause	UProp?
1	$\overline{a} \lor \overline{b} \lor \overline{c}$	
2	$\overline{a} \lor \overline{b} \lor c$	*
3	$a ee \overline{d}$	*
4	$a \lor d$	*
5	$b ee \overline{d}$	
6	$b \lor d$	
7	Ь	*
8	<u>c</u>	*
9	\perp	

Proof from CDCL Run

Proof Follows Branching Structure of CDCL

Reverse Unit Propagation (RUP)

Purpose

- Simple and efficient rule for use by proof checkers
- Good match to operation of CDCL solvers

Operation

- ► Each RUP application forms one step of unsatisfiability proof
- ▶ Performs a linear sequence of resolutions steps + subsumption

Objective

- $C = \{\ell_1, \ell_2, \dots, \ell_m\}$ Clause to be added to proof
- ▶ $D_1, D_2, ..., D_k$ Previous clauses ("Antecedents")
- ▶ Prove: $D_1 \wedge D_2 \wedge \cdots \wedge D_k \rightarrow C$

Reverse Unit Propagation (RUP)

Objective

- $ightharpoonup C = \{\ell_1, \ell_2, \dots, \ell_m\}$ Clause to be added to proof
- ▶ $D_1, D_2, ..., D_k$ Previous clauses ("Antecedents")
- ▶ Prove: $D_1 \land D_2 \land \cdots \land D_k \rightarrow C$

Method

- Assume $\neg C = \overline{\ell}_1 \wedge \overline{\ell}_2 \wedge \cdots \wedge \overline{\ell}_m$
 - m unit clauses!
- ▶ Show contradiction with $D_1 \wedge D_2 \wedge \cdots \wedge D_k$
 - ightharpoonup Accumulate unit clauses, starting with those for $\neg C$.
 - Accrue more unit clauses from D_1, D_2, \dots, D_{k-1} .
 - \triangleright When encounter D_k , should have contradiction

Bryant: SSFT22 29 / 39

ID	Clause	Antecedents
C_1	$\overline{a} \lor \overline{b} \lor \overline{c}$	
C_2	$\overline{a} \lor \overline{b} \lor c$	
C_3	$a ee \overline{d}$	
C_4	$a \lor d$	
C_5	$b ee \overline{d}$	
<i>C</i> ₆	$b \lor d$	

ID	Clause	Antecedents
C_1	$\overline{a} \lor \overline{b} \lor \overline{c}$	
C_2	$\overline{a} \lor \overline{b} \lor c$	
C_3	$a ee \overline{d}$	
C_4	$a \lor d$	
C_5	$b ee \overline{d}$	
C_6	$b \lor d$	
C ₇	b	C_5, C_6

$$b \mid \frac{\overline{b}}{C_5} \qquad \frac{\overline{d}}{C_6} \qquad \bot$$

	ID	Clause	Antecedents
	C_1	$\overline{a} \lor \overline{b} \lor \overline{c}$	
	C_2	$\overline{a} \lor \overline{b} \lor c$	
	C_3	$a ee \overline{d}$	
	C_4	$a \lor d$	
	C_5	$b ee \overline{d}$	
	C_6	$b \lor d$	
	C ₇	Ь	C_5, C_6
	<i>C</i> ₈	\overline{c}	C_7, C_1, C_3, C_4
С		b ā	\overline{d} \perp
	C_7	C_1	C_3 C_4

ID	Clause	Antecedents
C_1	$\overline{a} \lor \overline{b} \lor \overline{c}$	
C_2	$\overline{a} \lor \overline{b} \lor c$	
C_3	$a ee \overline{d}$	
C_4	$a \lor d$	
C_5	$b ee \overline{d}$	
C_6	$b \lor d$	
C ₇	b	C_5, C_6
<i>C</i> ₈	<u>c</u>	C_7, C_1, C_3, C_4
C_9	\perp	C_7, C_8, C_2, C_3, C_4
	b \overline{c}	\overline{a} \overline{d}
C ₇	C ₈	C_2 C_3 C_4

Proof File Examples

Proof		
C ₇	Ь	C_5, C_6
C_8	\overline{c}	C_7, C_1, C_3, C_4
C_9	\perp	C_7, C_8, C_2, C_3, C_4

DRAT Proof File	
2 0	
-3 0	
0	

LRAT F	Proof File	
7	2 0	5 6 0
8	-3 0	7 1 3 4 0
9	0	7 8 2 3 4 0

Proof Checking Infrastructure

Operation:

- ▶ Drat-Trim adds antecedents to proof steps
- ► LRAT checker simply checks each proof step

LRAT Checkers:

- ► LRAT-CHECK written in C.
 - ► Fast and high capacity
 - Designed to be simple enough to easily understand
- ► Formally verified ones. Built on ACL2, Coq, HOL, ...
 - ▶ Integrity not compromised if solver or DRAT-TRIM has bug

Resolution and CDCL

$CDCL \approx Resolution$

- ► Strength: CDCL solver can readily generate resolution proofs
- ► Weakness: Lower bound on performance

Example: Pigeonhole Principle(PHP)

- Problem:
 - \triangleright *n* holes, n+1 pigeons
 - Assign pigeons to holes:
 - Each pigeon is assigned to some hole
 - ► Each hole has at most one pigeon
- SAT Encoding:
 - ▶ Variables: $p_{i,j}$: Pigeon j in hole i. $1 \le i \le n$, $1 \le j \le n+1$.
 - \triangleright n+1 at-least-one constraints
 - n at-most-one constraints
 - ► O(n³) total clauses
- \triangleright PHP(n) resolution proofs are exponential in n [Haken, 1985]

Parity Benchmark

- Chew and Heule, SAT 2020
- ▶ For random permtuation π :

```
x_1 \oplus x_2 \oplus \cdots \oplus x_n = 1 Odd parity x_{\pi(1)} \oplus x_{\pi(2)} \oplus \cdots \oplus x_{\pi(n)} = 0 Even parity
```

- Conjunction unsatisfiable
- Very challenging for CDCL solvers
- Unit propagation of limited value
 - ► *k*-way parity constraint
 - ▶ Only propagate when k-1 variables assigned

Parity Benchmark Runtime

- ► KISSAT: State-of-the-art CDCL solver
- ► Tried 3-different seeds for each value of n
- ▶ Limited to $n \le 42$ within 600 seconds

Extended Resolution

Tseitin, 1967

Can introduce extension variables

- ▶ Variable z that has not yet occurred in proof
- Must add defining clauses
 - ▶ Encode constraint of form $z \leftrightarrow F$
 - ▶ Boolean formula z over input and earlier extension variables

Extension variable z becomes shorthand for formula F

Repeated use can yield exponentially smaller proof

Similar to use of encoding variables in SAT formulas

- ► That's why they're called "Tseitin variables"
- ▶ But here they become part of proof, not of input formula

Extended RUP Proof Example

ID	Clause	Antecedents
C_1	$\overline{a} \lor \overline{b} \lor \overline{c}$	
C_2	$\overline{a} \lor \overline{b} \lor c$	
C_3	$a ee \overline{d}$	
C_4	$a \lor d$	
C_5	$b ee \overline{d}$	
C_6	$b \lor d$	

Strategy

▶ Use z to encode $a \land b$.

▶ E.g., C_1 becomes $\overline{z} \vee \overline{c}$.

Extended RUP Proof Example

ID	Clause	Antecedents
C_1	$\overline{a} \lor \overline{b} \lor \overline{c}$	
C_2	$\overline{a} \lor \overline{b} \lor c$	
C_3	$a ee \overline{d}$	
C_4	$a \lor d$	
C_5	$b ee \overline{d}$	
C_6	$b \lor d$	
C ₇	$\overline{z} \lor a$	Defining Clauses
<i>C</i> ₈	$\overline{z} \lor b$	
C_9	$z \vee \overline{a} \vee \overline{b}$	

Extended RUP Proof Example

ID	Clause	Antecedents
C_1	$\overline{a} \lor \overline{b} \lor \overline{c}$	
C_2	$\overline{a} \lor \overline{b} \lor c$	
C_3	$a ee \overline{d}$	
C_4	$a \lor d$	
C_5	$b ee \overline{d}$	
C_6	$b \lor d$	
<i>C</i> ₇	$\overline{z} \lor a$	Defining Clauses
<i>C</i> ₈	$\overline{z} \lor b$	
C_9	$z \vee \overline{a} \vee \overline{b}$	
C_{10}	$\overline{z} \vee \overline{c}$	C_7, C_8, C_1
C_{11}	\overline{Z}	C_7, C_8, C_2, C_{10}
C_{12}	d	C_4, C_6, C_9, C_{11}
C_{13}	\perp	$C_{12}, C_3, C_5, C_9, C_{11}$

Can Extended Resolution Yield Faster SAT Solvers?

PHP Proof Complexity

- Exponential for ordinary resolution
- ▶ $O(n^4)$ for extended resolution [Cook, 1976]

Use in SAT?

- ▶ No clear way to choose which formulas to abbreviate
- No clear way to shorten search by using abbreviations