FLIP00 Final Assessment

Cong Ma

2020-10-06

Overview

Problem Definition

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Conclusion

Problem Definition

Kaggle Project Introduce

Related Work and Challenges

Related Work - data collection Challenges (1)

GOAM Algorithm

Step One - Group Feature Extraction
Step Two - Outlying Degree Scoring
Step Three - Outlying Aspects Identification

Evaluation Results

Synthetic Dataset

Kaggle Project Introduce

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Conclusion

Problem Definition

Kaggle Project Introduce

Problem Definition

Kaggle Project Introduce

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Conclusion

Kobe Bryant marked his retirement from the NBA by scoring 60 points in his final game as a Los Angeles Laker on Wednesday, April 12, 2016. Drafted into the NBA at the age of 17, Kobe earned the sport's highest accolades throughout his long career. Using 20 years of data on Kobe's swishes and misses, can you predict which shots will find the bottom of the net? This competition is well suited for practicing classification basics, feature engineering, and time series analysis. Practice got Kobe an eight-figure contract and 5 championship rings. What will it get you?

Related Work and Challenges

Related Work - data collection

Challenges (1)

GOAM Algorithm

Evaluation Results

Conclusion

Related Work and Challenges

Related Work - data collection

Problem Definition

Related Work and Challenges

Related Work - data collection

Challenges (1)

GOAM Algorithm

Evaluation Results

- Existing Methods Download from kaggle
- Existing Methods Configure the running environment and load the required packages

Challenges (1)

Problem Definition

Related Work and Challenges

Related Work - data collection

Challenges (1)

GOAM Algorithm

Evaluation Results

- How to represent the group features.
 - ◆ Can be affected by outlier values.
 - ◆ Can Not reflect the overall distribution of group features.

Related Work and Challenges

GOAM Algorithm

Step One - Group Feature Extraction
Step Two - Outlying Degree Scoring
Step Three - Outlying Aspects
Identification

Evaluation Results

Conclusion

GOAM Algorithm

Step One - Group Feature Extraction

Problem Definition

Related Work and Challenges

GOAM Algorithm

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring Step Three - Outlying Aspects Identification

Evaluation Results

Conclusion

Suppose f_1 , f_2 , f_3 are three features of G_q .

$$f_1$$
: { $x_1, x_2, x_3, x_4, x_5, x_2, x_3, x_4, x_1, x_2$ }

$$f_2$$
: { $y_2, y_2, y_1, y_2, y_3, y_3, y_5, y_4, y_4, y_2$ }

$$f_3$$
: { $z_1, z_4, z_2, z_4, z_5, z_3, z_1, z_2, z_4, z_2$ }

Figure 1: Histogram of G_q on three features

Step Two - Outlying Degree Scoring

Problem Definition

Related Work and Challenges

GOAM Algorithm

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects Identification

Evaluation Results

- Calculate Earth Mover Distance
 - Represent one feature among different groups
 - ◆ Purpose: calculate the minimum mean distance

Figure 2: EMD of one feature

Step Two - Outlying Degree Scoring

Problem Definition

Related Work and Challenges

GOAM Algorithm

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects
Identification

Evaluation Results

Conclusion

Calculate the outlying degree

$$OD(G_q) = \sum_{1}^{n} EDM(h_{q_s}, h_{k_s})$$

- \bullet n \Leftrightarrow the number of contrast groups.
- $h_{k_s} \Leftrightarrow$ the histogram representation of G_k in the subspace s.

Step Three - Outlying Aspects Identification

Problem Definition

Related Work and Challenges

GOAM Algorithm

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects
Identification

Evaluation Results

- Identify group outlying aspects mining based on the value of outlying degree.
- The greater the outlying degree is, the more likely it is group outlying aspect.

Illustration

Problem Definition

Related Work and Challenges

GOAM Algorithm

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects
Identification

Evaluation Results

Table 1: Original Dataset

G_1	F_1	F_2	F_3	F_4	$ig G_2$	F_1	F_2	F_3	F_4
	10	8	9	8		7	7	6	6
	9	9	7	9		8	9	9	8
	8	10	8	8		6	7	8	9
	8	8	6	7		7	7	7	8
	9	9	9	8		8	6	6	7
G_3	F_1	F_2	F_3	F_4	$ig G_4$	F_1	F_2	F_3	F_4
	8	10	8	8		9	8	8	8
	9	9	7	9		7	7	7	9
	10	9	10	7		8	6	6	8
	9	10	8	6		9	8	8	7
	9	10	O	O			0	O	

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Synthetic Dataset

Conclusion

Evaluation Results

Synthetic Dataset

Problem Definition

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Synthetic Dataset

Conclusion

Synthetic Dataset and Ground Truth

Table 2: Synthetic Dataset and Ground Truth

Query group	\mathbf{F}_1	$\mathbf{F_2}$	F_3	\mathbf{F}_4	F_5	F_6	F_7	F_8
i_1	10	8	9	7	7	6	6	8
i_2	9	9	7	8	9	9	8	9
i_3	8	10	8	9	6	8	7	8
i_4	8	8	6	7	8	8	6	7
i_5	9	9	9	7	7	7	8	8
i_6	8	10	8	8	6	6	8	7
i_7	9	9	7	9	8	8	8	7
i_8	10	9	10	7	7	7	7	7
i_9	9	10	8	8	7	6	7	7
i_{10}	9	9	7	7	7	8	8	8

Synthetic Dataset Results

Problem Definition

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Synthetic Dataset

Table 3: The experiment result on synthetic dataset

Method	Truth Outlying Aspects	Identified Aspects	Accuracy
GOAM	$\{F_1\},\ \{F_2F_4\}$	$\{{\pmb F}_1\},\ \{{\pmb F}_2{\pmb F}_4\}$	100%
Arithmetic Mean based OAM	$\{{\pmb F}_1\},\ \{{\pmb F}_2{\pmb F}_4\}$	$\{m{F}_4\},\ \{m{F}_2\}$	0%
Median based OAM	$\{{\pmb F}_1\},\ \{{\pmb F}_2{\pmb F}_4\}$	$\{m{F}_2\},\ \{m{F}_4\}$	0%

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Conclusion

Conclusion

Problem Definition

Related Work and Challenges

GOAM Algorithm

Evaluation Results

Conclusion

- Formalize the problem of *Group Outlying Aspects Mining* by extending outlying aspects mining;
- Propose a novel method GOAM algorithm to solve the *Group Outlying Aspects Mining* problem;
- Utilize the pruning strategies to reduce time complexity.

Thanks For Your Listening

Made by MC QingDao technological university