- 1、查资料写出可见光波波谱中代表性可见光(红、橙、黄、绿、蓝、紫)的波长间隔,并计算相应的频率间隔。
- 2、真空中波长为1微米光子的频率(赫兹)、波数(cm⁻¹)和能量, 并转化为电子伏特单位。
- 3、计算对应于能级间隔为 kT 的光波的波数。K 为 Boltzmann 常数, T 为绝对温度。假设 T=300K.
- 4、计算热平衡时下列能级差为⊿E 的二能级系统的上下能级粒子数之比:(a)10 eV,相对应于很多分子的转动能级的间隔;(b)5*10 eV,相对于分子的振动能级;(c) 3eV,电子从原子或者分子激发所需能量的数量级。假设两个能级有相同的能级简并度,分别计算温度为100k、300K 和 1000K 时的情况。
- 5、如果激光器和微波激射器分别在 $\lambda=10\,\mu\text{m}$ 、 $\lambda=500\,\text{nm}$ 和 $\nu=3000\,\text{MHz}$ 输出 1W 连续功率,问每秒从激光上能级向下能级跃迁的粒子数是多少? $h=6.626\times10^{-34}\,\text{J}\cdot\text{s}$ 。 $c=3\times10^8\,\text{m/s}$
- 6、设一对激光能级为 E_2 和 E_1 ($^{f_2=f_1}$),相应的频率为 $^{\nu}$ (波长为 $^{\lambda}$),能级上的粒子数密度分别为 n_2 和 n_1 ,求
- (a) $\leq v = 3000 \text{MHz}$, T = 300 K Hz, $n_2 / n_1 = ?$

- (b) 当 $^{\lambda=1\mu m}$, T=300K 时, $^{n_2/n_1=?}$
- (c) 当 $^{\lambda=1}\mu m$, $n_2/n_1=0.1$ 时,温度 T=?