

Etienne Chardonnet

Sommaire

I. Parcours

II.Neutrinos et DUNE

III.Activité sur la simulation et identification de particules

Sommaire

I. Parcours

II. Neutrinos et DUNE

III.Activité sur la simulation et identification de particules

Parcours

- 2013-2014 : 1ère année CPGE MPSI Lycée Fénelon
- 2014-2015 : L2 Majeure Physique Mineure Maths UPMC
- 2015-2016: L3 Formation Inter-universitaire de Paris ENS Paris
 - Stage au laboratoire AstroParticules et Cosmologie (APC) "Caractérisation de photomultiplicateurs au Silicium (SiPM)"
- 2016-2017 : M1 Centre International de Physique Fondamentale ENS Paris
 - Stage au Fermilab: "Déterminateur du nombre d'évènements 'rocheux' dans l'expérience NOvA"
- 2017-2018 : M2 Noyaux-Particules-Astroparticules et Cosmologie Paris Diderot
 - Stage de pré-thèse au laboratoire APC: "Evaluation de l'efficacité de l'algorithme 'Muon Coulomb Scattering' dans l'expérience DUNE"
- 2018-2021: Thèse "Etude de la réponse du détecteur TPC à argon liquide à double-phase, ProtoDUNE Dual-Phase au CERN, et développement d'outils améliorant les performances du détecteur dans le cadre de l'expérience DUNE" dirigée par Thomas Patzak au laboratoire APC
- 2022-2023 : Préparation à l'agrégation Université de Bordeaux

Sommaire

I. Parcours

II.Neutrinos et DUNE

III.Activité sur la simulation et identification de particules

Modèle standard de la physique des particules

Modèle standard de la physique des particules

Interaction entre un neutrino muonique et un neutron ν_{μ}

W

p

Ils sont des fermions (spin ½)
 et interagissent uniquement via
 l'interaction faible.

Accélération des protons (120 GeV)

Collision des protons

Zone de désintégration

200m

Référentiel du pion

Référentiel terrestre

Référentiel du pion

Référentiel terrestre

Référentiel du pion

Référentiel terrestre

Zone de désintégration

200m

Par conservation de l'impulsion les neutrinos sont dirigés dans le sens du mouvement des pions

Initialement

Initialement

$$|\nu_{\mu}\rangle = \sin\theta |\nu_{1}\rangle - \cos\theta |\nu_{2}\rangle$$

Initialement

$$|\nu_{\mu}\rangle = \sin\theta |\nu_{1}\rangle - \cos\theta |\nu_{2}\rangle$$

Au cours du temps

$$|\nu(t)\rangle = \sin\theta \ e^{-i\frac{E_1}{\hbar}t} |\nu_1\rangle - \cos\theta \ e^{-i\frac{E_2}{\hbar}t} |\nu_2\rangle$$

18

Analogie avec le mouvements de pendules couplés

Principe de détection

Principe de détection

Principe de détection

Sommaire

I. Parcours

II. Neutrinos et DUNE

III.Activité sur la simulation et identification de particules

Activités pour les étudiants

Activités pour les étudiants **Partie I - Simulateur**

- Modélisation du détecteur : Grille 10x10

Objectif: Ecrire un code simulant des évènements avec 1 proton 1 muon et 1 pion

Topologie des traces :

• Proton : 3 cases d'énergie E = 3 par case

• Muon : 8 cases d'énergie E = 1 par case

• Pion : 3 cases d'énergie E = 1 par case

Contrainte : Les particules doivent être contenues dans le détecteur (image grille simulée)

Activités pour les étudiants Partie I - Simulateur

Objectif: Ecrire un code simulant des évènements avec 1 proton 1 muon et 1 pion

Contrainte : Les particules doivent être

contenues dans le détecteur (image grille simulée)

```
data = np.zeros((10, 10))
                                        PARTIE A - SIMULATION (à faire par les étudiants)
L short = 3
L long = 8
E low = 1
E high = 3
def simulateur (N proton, N muon, N pion) :
    ###Simulation des protons
    for k in range (N proton) :
        n = random()
                                         #Tirage de la direction de propagation
        if n < 0.5 : direction = 0
                                         #Direction horizontale
        else : direction = 1
                                         #Direction vertical.
        if direction == 0 :
                                         #Tirage de la position initiale
            x = randint (0, 7)
            y = randint(0, 9)
            for i in range (L short):
                data[x+i, y] += E high
        if direction == 1 :
            x = randint (0, 9)
                                         #Tirage de la position initiale
            y = randint(0, 7)
            for i in range (L short) :
                data[x, y+i] += E high
```


Activités pour les étudiants Partie II - Identification

On fournit la grille simulée sous la forme d'un numpy array avec son contenu

en particules ainsi que leur topologie.

Objectif: Associer les traces aux particules en donnant l'origine et la direction de chacune des traces

Activités pour les étudiants Partie II - Identification

On fournit la grille simulée sous la forme d'un numpy array avec son contenu

en particules ainsi que leur topologie.

Objectif: Associer les traces aux particules en donnant l'origine et la direction de chacune des traces

Activités pour les étudiants Partie II - Identification

On fournit la grille simulée sous la forme d'un numpy array avec son contenu

en particules ainsi que leur topologie.

Objectif: Associer les traces aux particules en donnant l'origine et la direction de chacune des traces

Un proton a été détecté en (2 , 5) et s'est propagé horizontalement. Un muon a été détecté en (4 , 0) et s'est propagé horizontalement.

Un pion a été détecté en (2 , 5) et s'est propagé verticalement.

Expérience dans l'enseignement

 2019 – 2021 : 128h de TD à l'IUT Paris (Thermodynamique, Microcontrôleurs, Algèbre linéaire) + 2h de TD en physique des neutrinos L3

• 2022-2023 : Observation et intervention en classe de seconde au Lycée Montaigne

Merci pour votre attention!

Des muons envahissants

Due aux <u>effets relativistes</u>, une quantité importante de muons atteint la surface.

Le détecteur doit être enfoui 1,5km sous terre.

Détecteurs de DUNE

Deux prototypes à l'étude

Détecteurs de DUNE

Deux prototypes à l'étude

