I. Nemzetközi Magyar Matematika Verseny

Révkomárom, 1992. ápr. 9-12.

12. osztály

1. feladat: Határozzuk meg azon x, y egészeket, amelyekre $x^2(x^2 + 4xy + 3y^2)$ és $y^2(y^2 + 4xy + 3x^2)$ kifejezések egyszerre teljes negyedik hatványok.

Bencze Mihály (Brassó)

 ${f 2.}$ feladat: Egy konvex 10-szög belsejében vegyünk fel k pontot úgy, hogy bármely két pontösszekötő egyenese ne tartalmazzon sem a felvett pontok, sem a sokszögcsúcsok közül még egyet. Bontsuk fel a sokszöget háromszögekre úgy, hogy minden háromszög csúcsa csak a sokszögcsúcsokkal vagy pedig a felvett pontokkal esik egybe. Bizonyítsuk be, hogy bármilyen módon bontjuk fel a sokszöget háromszögekre, a háromszögek száma mindig ugyanakkora.

Reiman István (Budapest)

3. feladat: Igazoljuk, hogy

$$\frac{1}{3!} + \frac{1}{5!} + \frac{1}{7!} + \dots$$

irracionális.

Bencze Mihály (Brassó)

4. feladat: Legyen $f: \mathbb{R} \to \mathbb{R}$ egy folytonos függvény, ahol $f(f(x)) = x^{2n+1}, n \in \mathbb{N}$ és f(1) = -1. Igazoljuk, hogy f szigorúan csökkenő és f(0) = 0, valamint

$$\lim_{x \to -\infty} f(x) = -\lim_{x \to +\infty} f(x) = +\infty.$$

Adjunk példát a fenti feltételeket kielégítő függvényekre.

Bencze Mihály (Brassó)

5. feladat: Az ABC derékszögű háromszögben meghúzzuk az átfogóra a magasságot. Az így keletkezett két háromszögnek megszerkesztjük a beírt köreit. Bizonyítsuk be, hogy a talppontból és ezen körök középpontjaiból alkotott háromszög hasonló az eredetihez!

Fonód Tibor (Komárom)

6. feladat: Vágjunk ketté egy háromszöget egy egyenessel két egyenlő területű részre úgy, hogy az egyenesnek a háromszögön belüli szakasza a lehető legrövidebb legyen.

Szabó Magda (Szabadka)