Klausur zur Vorlesung "Softwarewerkzeuge der Bioinformatik"

4 0.	TATI	mu	IL II	
	20	<u>~</u> U 111.	<u>-0 miniu</u>	20 Minuten

Erlaubte Hilfsmittel: keine

Maximale Punktzahl: 100. Ab 50 Punkten gilt die Klausur als bestanden

Vorname:

MatrikelNr:

Kennzeichnen Sie jedes zusätzliche mit der Klausur abgegebene Blatt mit Ihrem Namen und Vornamen.

Nr.	1	2	3	4	5	6	7	8	9	10	11	Σ
mögliche	6	6	6	12	10	8	8	14	10	10	10	100
Punkte												
Ihre Punkte												

Bereich I Sequenzanalyse

Aufgabe 1 (6 Punkte)

Definieren Sie die Begriffe Sequenzidentität und Sequenzähnlichkeit.

Sequenzidentität:

Sequenzähnlichkeit:

Wie hängt der Begriff Homologie mit einem oder beiden dieser Begriffe zusammen?

Aufgabe 2 (6 Punkte)

Vergleichen Sie die Stärken und Schwächen von Algorithmen für das paarweise Sequenzalignment:

dynamische Programmierung kontra heuristischer BLAST-Algorithmus

Aufgabe 3 (6 Punkte)

Was ist der grundsätzliche Unterschied von BLAST und PSI-BLAST?

Aufgabe 4 (12 Punkte)

- (a) Wieviele Mutationen werden bei Verwendung der PAM250-Matrix pro Aminosäureposition erwartet? (2 Punkte)
- (b) Die PAM250 Matrix lautet:

C	12																			
S	0	2																		
T	-2"	1	3																	
P	-3	1	0	6																
A	-2	1	1	1	2															
G	-3	1	0	-1	1															
N	-4	1	0	-1	0	0	2													
D	-5	0	0	-1	0	1	2	4												
E	-5	0	0	-1	0		1	3	4											
Q	-5	-1	-1	0	0	-1	1	2	2	4										
H	-3	-1	-1	0	-1	-2	2	1	1	3	6									
R	-4	0	-1	0	-2	-3	0	-1	-1	1	2	6								
K	-5	0	0	-1	-1	-2	1	0	0	1	0	3	5	_						
M	-5	-2	-1	-2	-1	-3	-2	-3	-2	-1	-2	0	0	6						
1	-2	-1	0	-2	-1	-3	-2	-2	-2	-2	-2	-2	-2	2	5					
L	-6	-3	-2	-3	-2		-3	-4	-3	-2	-2	-3	-3	4	2	6				
٧	-2	-1	0	-1	0	-1	-2	-2	-2	-2	-2	-2	-2	2	4	2	4			
F	-4	-3	-3	-5	-4	-5	-4	-6	-5	-5	-2	-4	-5	0	1	2	-1	9		
Y	0	-3	-3	-5	-3	-5	-2	-4	-4	-4	0	-4	-4	-2	-1	-1	-2	7	10	
W	-8	-2	-5	-6	-6		-4	-7	-7	-5	-3	2	-3	-4	-5	-2	-6	0	0	17
	C	S	T	P	A	G	N	D	E	Q	Н	R	K	M	I	L	٧	F	Y	W

Durch einen Fehler bei dem Druck eines Bioinformatik-Lehrbuchs wurden folgende vier Werte nicht eingetragen: -4, 5, -7, 0. Tragen Sie die Werte in die richtigen Kästchen ein. (4 Punkte)

(c) Für welche Aminosäuren stehen die Buchstaben 'G' und 'F' ? (2 Punkte)

G:

F:

(d) Begründen Sie aufgrund der Eigenschaften der beiden Aminosäuren G und F, warum man wenige Austausche G - F in der Natur betrachtet. (4 Punkte)

Aufgabe 5 (10 Punkte)

(a) Der Sankoff-Algorithmus für die Erstellung von Phylogenien verwendet folgende Formel zur Berechnung der evolutionären Kosten für einen Vorfahren-Knoten *a*:

$$S_a(i) = \min_{j} [c_{ij} + S_l(j)] + \min_{k} [c_{ik} + S_r(k)]$$

Benutzen Sie diese Formel und die symmetrische Kostenmatrix

	A	С	G	T
A	0	3	1	3
С	3	0	3	1
G	1	3	0	3
Т	3	1	3	0

um die fehlenden Werte in dem Baum (unten) zu ergänzen. (7 Punkte)

(b) Spekulieren Sie, weshalb man die evolutionären Kosten für Basenaustausche symmetrisch ansetzt (A -> C erhält dieselben Kosten wie C -> A) (3 Punkte)

Bereich II Proteinstruktur

Aufgabe 6 (8 Punkte)

(a) Was versteht man unter Protein-Threading? (4 Punkte)

(b) Wozu benutzt man Profil-Profil-Alignment? (4 Punkte)

Aufgabe 7 (8 Punkte)

(a) Skizzieren Sie die Twilight-Zone, die den Zusammenhang zwischen Proteinsequenz und -struktur beschreibt. Achsen beschriften! (6 Punkte)

(b) Wie verläuft die Trennlinie, wenn Sie statt Sequenzidentität nur Sequenzähnlichkeit fordern? (2 Punkte)

Aufgabe 8 (14 Punkte)

Das Bild zeigt einen Ausschnitt des Komplexes von Galanthamin, einem Inhibitormolekül (hellgrün gezeichnet) mit dem Protein Acetylcholinesterase, wobei der Inhibitor in der Bindungstasche des Proteins gebunden ist.

- Tryptophan:
- Phenylalanin:
- (d) Wenn Sie in dem Bild zusätzlich das versteckte Histidin kennzeichnen können, erhalten Sie dafür 2 Bonuspunkte.

Bereich III Netzwerke

Aufgabe 9 Genexpression/funktionelle Annotation (10 Punkte)

(a) Was ist die Gen-Ontologie (GO)? (3 Punkte)

(b) Der hypergeometrische Test benutzt folgende Formel:

$$\sum_{i=k_{\pi}}^{\min(n,K_{\pi})} \frac{\binom{K_{\pi}}{i} \binom{N-K_{\pi}}{n-i}}{\binom{N}{n}}$$

Sei N = 6 die Anzahl an Genen im Genom,

n = 4 die Anzahl an Genen in der Testmenge.

 $K_{\pi} = 4$ die Anzahl an Genen im Genom mit der Annotation π .

 $k_{\pi} = 4$ die Anzahl an Genen in der Testmenge mit der Annotation π .

Berechnen Sie mit obiger Formel den p-Wert. (5 Punkte)

Beantworten Sie damit die Frage, ob die Annotation π in der Testmenge von 4 Genen signifikant angereichert ist? (2 Punkte)

Aufgabe 10 Diffusionsgleichung (10 Punkte)

(a) Die Kontinuitätsgleichung lautet:

$$\frac{\partial \rho(\vec{r},t)}{\partial t} = -\nabla \vec{j}(\vec{r},t) = -\text{div } \vec{j}(\vec{r},t)$$

Was wird hier mit ρ bezeichnet und was mit j ? (2 Punkte)

ρ:

j:

(b) Der Diffusionsstrom aufgrund eines Dichteunterschiedes (Gradienten) lautet gemäß dem Fick'schen Gesetz:

$$\vec{j}(\vec{r},t) = -D \ \nabla \rho(\vec{r},t) = -D \ \text{grad} \ \rho(\vec{r},t)$$

Wie kann man damit die Diffusionsgleichung

$$\frac{\partial \rho(\vec{r},t)}{\partial t} = -\nabla(-D \,\nabla \rho(\vec{r},t)) = D \,\Delta \rho(\vec{r},t)$$

herleiten? (3 Punkte)

(c) Beschreiben Sie einen Algorithmus, wie man den zeitlichen Verlauf eines Diffusionsprozesses auf einem räumlichen Gitter simulieren kann (5 Punkte).