YANG-MILLS ON RIEMANN SURFACES

JEFFREY JIANG

CONTENTS

1.	Preliminary Setup	1
2.	The Yang-Mills Functional	4
3.	A Symplectic Viewpoint	6
4.	Yang-Mills Over a Riemann Surface	6

1. Preliminary Setup

To discuss the Yang-Mills functional, we must first fix some data. The setup will consist of the following ingredients

- (1) A compact manifold *M*.
- (2) A compact connected Lie group *G*.
- (3) A principal *G*-bundle $P \rightarrow M$.

With this data, we have two associated bundles

$$Ad P := P \times_G G$$

$$\mathfrak{g}_P := P \times_G \mathfrak{g}$$

Where the action of G on G is by conjugation, and the action of G on $\mathfrak g$ is induced by the differential of conjugation. We note that these bundles both contain additional structure – Ad P is a bundle of groups (not a principal bundle), and $\mathfrak g_P$ is a bundle of Lie algebras. The space of sections $\Gamma(M,\operatorname{Ad} P)$ has a natural group structure given by pointwise multiplication, and is called the *gauge group* $\mathcal G(P)$. Likewise, the space of sections $\Gamma(M,\mathfrak g_P)$ has a natural Lie algebra structure given by the pointwise Lie bracket, and can be naturally identified with the Lie algebra of $\mathcal G(P)$. An alternate characterization of these spaces of sections comes from a general characterization of sections of associated bundles

Proposition 1.1. We have natural correspondences

$$\Gamma(M, \operatorname{Ad} P) \longleftrightarrow \left\{ f : P \to G : f(p \cdot g) = g^{-1}f(p)g \right\}$$

 $\Gamma(M, \mathfrak{g}_P) \longleftrightarrow \left\{ g : P \to \mathfrak{g} : f(p \cdot g) = \operatorname{Ad}_{g^{-1}}f(p) \right\}$

From the above correspondence we a group isomorphism $\mathcal{G}(P) \to \operatorname{Aut}(P)$, where $\operatorname{Aut}(P)$ denotes the group of G-equivariant diffeomorphisms $\varphi: P \to P$ such that the

following diagram commutes:

The isomorphism is given by mapping a G-equivariant map $f: P \to g$ to the automorphism $\varphi_f: P \to P$ defined by $\varphi_f(p) = p \cdot f(p)$. In the the case of $\Gamma(M, \mathfrak{g}_P)$, we can extend this to the spaces of \mathfrak{g}_P valued forms. The kernel of the differential of the projection $P \to M$ gives a subbundle of TP, which has a natural identification with the trivial bundle $\underline{\mathfrak{g}} = P \times \mathfrak{g}$. Then we can identify the space of sections of $\Lambda^k T^*M \otimes \mathfrak{g}_P$, (i.e. the space $\Omega_M^k(\mathfrak{g}_p)$ of \mathfrak{g}_p valued k-forms with a subspace of the space $\Omega_P^k(\mathfrak{g})$ of \mathfrak{g} -valued k-forms ω on P satisfying:

- (1) $R_g^*\omega = \operatorname{Ad}_{g^{-1}}\omega$, where $R_g: P \to P$ denotes the right action of $g \in G$.
- (2) $\iota_{\xi}\omega = 0$ for any $\xi \in \mathfrak{g}$, where ι denotes interior multiplication, and we identify ξ with the constant vector field ξ under the identification of the vertical space with \mathfrak{g} .

We have a maps

$$\Omega^p_M(\mathfrak{g}_p) \otimes \Omega^q_M(\mathfrak{g}_P) \to \Omega^{p+q}_M(\mathfrak{g}_p \otimes \mathfrak{g}_p)$$
$$(\omega_1 \otimes \xi_1) \otimes (\omega_2 \otimes \xi_2) \mapsto (\omega_1 \wedge \omega_2) \otimes (\xi_1 \otimes \xi_2)$$

From now on, we will usually omit the tensor symbol for \mathfrak{g}_P -valued forms in favor of juxtaposition, i.e. we write $\omega \xi$ instead of $\omega \otimes \xi$. Using the Lie bracket, we then get

$$\Omega^p_M(\mathfrak{g}_p)\otimes\Omega^q_M(\mathfrak{g}_P) o\Omega^{p+q}_M(\mathfrak{g}_p) \ \omega\otimes\eta\mapsto [\omega,\eta]$$

For any semisimple Lie group G (in particular, for any compact Lie group G), we have an inner product $\langle \cdot, \cdot \rangle : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ that is invariant under the adjoint action (e.g. the Killing form). Fixing one such inner product induces a fiber product on the trivial bundle $P \times \mathfrak{g}$, and invariance guarantees that this descends to a fiber product on \mathfrak{g}_P . This give us pairings

$$\Omega^p_M(\mathfrak{g}_P)\otimes\Omega^q_M(\mathfrak{g}_P) o\Omega^{p+q}_M \ \omega\otimes\eta\mapsto\langle\omega,\eta
angle$$

We then fix an orientation and Riemannian metric on M, which gives us a Hodge star operator $\star: \Omega_M^p \to \Omega_M^{n-p}$ and a Riemannian volume form dV_g . The Hodge star extends to \mathfrak{g}_P -valued k-forms, where given $\omega \in \Omega_M^p$ and $\xi \in \Gamma(M,\mathfrak{g}_P)$, we define $\star(\omega\xi) = (\star\omega)\xi$. Then given $\omega_1\xi_1,\omega_2\xi_2 \in \Omega_M^p(\mathfrak{g}_P)$, we have

$$\langle \omega_1 \xi_1, \star \omega_2 \xi_2 \rangle = \langle \omega_1, \omega_2 \rangle_g \langle \xi_1, \xi_2 \rangle$$

where $\langle \cdot, \cdot \rangle_g$ denotes the fiber metric on $\Lambda^p T^* M$ induced by g. This gives us an inner product on each $\Omega^p_M(\mathfrak{g}_P)$ defined by

$$(\theta, \varphi) = \int_M \langle \theta, \star \varphi \rangle$$

Which gives us the L_2 norm on $\Omega_M^p(\mathfrak{g}_P)$ with $||F||_{L^2}^2 = (F, F)$.

Definition 1.2. A connection on a principal bundle $\pi: P \to M$ is a choice of *G*-invariant splitting of the exact sequence of vector bundles over P

$$0 \longrightarrow \underline{\mathfrak{g}} \longrightarrow TP \longrightarrow \pi^*TM \longrightarrow 0$$

i.e. a distribution $H \subset TP$ such that

- (1) $(R_g)_*H_p = H_{p\cdot g}$ (2) $H \oplus \mathfrak{g} = TP$

Equivalently, it is the data of a \mathfrak{g} -valued 1-form $A \in \Omega^1_{\mathcal{P}}(\mathfrak{g})$ satisfying

- $(1) R_g^* A = \operatorname{Ad}_{g^{-1}} A$
- (2) $\iota_{\xi} A = \xi$ for all $\xi \in \mathfrak{g}$.

Note in particular that by a dimension count, we have that $\pi_*|_H: H \to TM$ is an isomorphism. This implies that given a tangent vector v at x and a point $p \in P$ in the fiber over x, we get a unique horizontal lift $\tilde{v} \in H_p$. For a fixed principal G-bundle $\pi : P \to M$, let $\mathscr{A}(P)$ denote the space of all connections on P, which is an affine space over $\Omega^1_M(\mathfrak{g}_P)$.

Given any distribution $E \subset TP$, we get a Frobenius tensor $\phi_E : E \otimes E \to TP/E$ given by $X \otimes Y \to [X,Y] \mod E$ where we extend X and Y to local vector fields. The Frobenius tensor should be thought of as the obstruction to the existence of an integral submanifold for the distribution E. In the case of a connection H on a principal bundle $P \to M$, we can extend to all of TP by first projecting onto H, and have an identification of $TP/H \cong \mathfrak{g}$, and the Frobenius tensor is given by $X \otimes Y \mapsto A([X,Y])$, where A is the connection $\overline{1}$ form, and is called the *curvature form* of the connection, and is denoted F_A . In terms of differential forms, we have that for horizontal vectors ξ_1 , ξ_2 on TP,

$$dA(\xi_1, \xi_2) = \xi_1 A(\xi_2) - \xi_2 A(\xi_1) - A([\xi_1, \xi_2])$$

The fact that ξ_1 and ξ_2 are horizontal implies that they are in the kernel of A, which gives us that

$$dA + \frac{1}{2}[A, A] = -F_A^{1}$$

It can be shown that F_A transforms by the adjoint action under pullback, and vanishes on vertical vectors, so it descends to a \mathfrak{g}_P -valued 2-form on the base manifold M.

Another thing to note is that there is a natural action of the gauge group $\mathcal{G}(P)$ on the space of connections $\mathscr{A}(P)$. Interpreting the elements of $\mathscr{G}(P)$ as bundle automorphisms $\varphi: P \to P$ and elements of $\mathscr{A}(P)$ as \mathfrak{g} -valued 1-forms A on P, the action is simply pullback, $(\varphi, A) \mapsto \varphi^* A$. To show that this defines an action, we must check that $\varphi^* A$ satisfies the conditions

- $(1) R_g^* \varphi^* A = \operatorname{Ad}_{g^{-1}} \varphi^* A$
- (2) $\iota_{\xi} \varphi^* A = \xi$ for all $\xi \in \mathfrak{g}$.

¹Our convention for the sign of the curvature is opposite from many other conventions, which usually sets $F_A = dA + \frac{1}{2}[A, A]$

Which are all simple consequences of the G-equivariance of φ and the transformation law for A. For a specific formula, let $\varphi:P\to P$ be an element of the gauge group, and let $g_\varphi:P\to G$ be its associated G-equivariant map. Then

$$\varphi^* A = \operatorname{Ad}_{g_{\varphi}^{-1}} A + g_{\varphi}^* \theta$$

where $\theta \in \Omega^1_G(\mathfrak{g})$ denotes the *Maurer-Cartan form*

$$\theta_{g}(v) = (dL_{g^{-1}})_{g}(v)$$

which satisfies the Maurer-Cartan equation

$$d\theta + \frac{1}{2}[\theta, \theta] = 0$$

Proposition 1.3. Let $A \in \mathscr{A}(P)$ be a connection and $\varphi : P \to P$ an element of $\mathscr{G}(P)$ with associated G-equivariant map $g_{\varphi} : P \to G$. Then

$$F_{\varphi^*A} = \operatorname{Ad}_{g_{\varphi}^{-1}} F_A$$

Proof. Using the transformation law for ϕ^*A we compute

$$\begin{split} F_{\varphi^*A} &= d(\mathrm{Ad}_{g_{\varphi}^{-1}}A + g_{\varphi}^*\theta) + \frac{1}{2}[\mathrm{Ad}_{g_{\varphi}^{-1}}A + g_{\varphi}^*\theta, \mathrm{Ad}_{g_{\varphi}^{-1}}A + g_{\varphi}^*\theta] \\ &= \mathrm{Ad}_{g_{\varphi}^{-1}}dA + g_{\varphi}^*d\theta + \frac{1}{2}\left([\mathrm{Ad}_{g_{\varphi}^{-1}}A, \mathrm{Ad}_{g_{\varphi}^{-1}}A] + [\mathrm{Ad}_{g_{\varphi}^{-1}}A, g_{\varphi}^*\theta] + [g_{\varphi}^*\theta, \mathrm{Ad}_{g_{\varphi}^{-1}}] + [g_{\varphi}^*\theta, g_{\varphi}^*\theta]\right) \\ &= \mathrm{Ad}_{g_{\varphi}^{-1}}dA + \frac{1}{2}[\mathrm{Ad}_{g_{\varphi}^{-1}}A, \mathrm{Ad}_{g_{\varphi}^{-1}}A]] \end{split}$$

Where we use skew-symmetry and the Maurer-Cartan equation.

2. The Yang-Mills Functional

With the setup done, we have the ingredients necessary to define the Yang-Mills functional.

Definition 2.1. The *Yang-Mills functional* is the map $L: \mathcal{A}(P) \to \mathbb{R}$ given by

$$L(A) = ||F_A||_{L^2}^2 = \int_M \langle F_A, F_A \rangle$$

Remark. The bilinear form $\langle \cdot, \cdot \rangle$ should be thought of as a symplectic form on $\mathscr{A}(P)$, and the mapping $A \mapsto F_A$ should be thought of as the moment map to some action of $\mathscr{G}(P)$. In this context, the Yang-Mills functional is the norm-square of the moment map.

We immediately see that the Yang-Mills equations are invariant under $\mathscr{G}(P)$ in the following sense – if we have any gauge transformation φ with associated map $g_{\varphi}: P \to G$, we have that $L(\varphi^*A) = L(A)$, which follows immediately from the invariance of $\langle \cdot, \cdot \rangle$ and the transformation law for curvature.

Our goal now will be to find the Euler-Lagrange equations for the Yang-Mills functional by computing the first and second variations. The connection form A on P induces an exterior covariant derivative on any associated vector bundle $E = P \times_G V$ arising from a

linear representation $\rho: G \to GL(V)$. Let $\dot{\rho}: \mathfrak{g} \to End(V)$ be the derivative of ρ at the identity. Then the exterior covariant derivative is given by

$$d_A: \Omega^p_M(E) \to \Omega^{p+1}_M(E)$$

 $\psi \mapsto d\psi + \dot{\rho}(A) \wedge \psi$

In particular, we get an exterior covariant derivative on \mathfrak{g}_P , which is given by

$$d_A \psi = d\psi + [A, \psi]$$

Using the Hodge star operator, we construct the formal adjoint with respect to the inner product $d_A^*:\Omega_M^p(\mathfrak{g}_P)\to\Omega_M^{p-1}(\mathfrak{g}_P)$ in the same manner as for classical Hodge theory on a Riemannian manifold. Explicitly, the formula on p-forms is given by

$$d_A^* = (-1)^{n(p+1)+1} \star d_A \star$$

where $n = \dim M$.

For any other connection $A + \eta$ with $\eta \in \Omega^1_M(\mathfrak{g}_P)$, a quick computation yields

$$F_{A+\eta} = F_A + \frac{1}{2}[\eta, \eta] + d_A \eta$$

This allows us to compute the first variation of *L*.

Proposition 2.2 (*The First Variation*). For a local extremum $A \in \mathcal{A}(P)$ of the Yang-Mills functional, we have

$$d_A \star F_A = 0$$

The local extremum connection A is then callled a Yang-Mills connection.

Proof. Consider a variation $A + t\eta$ with $t \in \mathbb{R}$ and $\eta \in \Omega^1_M(\mathfrak{g}_P)$. We have that the curvature is given by

$$F_{A+t\eta} = F_A + \frac{t^2}{2} [\eta, \eta] + t d_A \eta$$

This then gives us

$$\begin{aligned} \left\| F_{A+t\eta} \right\|_{L^2} &= \int_M \langle F_{A+t\eta}, F_{A+t\eta} \rangle \\ &= \int_M \langle F_A + \frac{t^2}{2} [\eta, \eta] + t d_A \eta, \star (F_A + \frac{t^2}{2} [\eta, \eta] + t d_A \eta \rangle \end{aligned}$$

Expanding this out, we get that the term that is linear in t is

$$\int_{M} \langle F_A, \star d_A \eta \rangle + \langle d_A \eta, \star F_A \rangle = 2(F_A, d_A \eta)$$

where we use symmetry of (\cdot, \cdot) . Since A is extremal, we have that this term must vanish, giving us that $(F_A, d_A \eta) = (d_A^* F, \eta) = 0$ for every η . Then since we have (up to sign) $d_A^* = \star d_A \star$, and \star is an isomorphism, this implies $d_A \star F_A = 0$.

Proposition 2.3 (*The Second Variation*). At a Yang-Mills connection $A \in \mathcal{A}(P)$, we have

$$d_A^*d_A\eta + \star [\eta, \star F_A] = 0$$

Proof. We differentiate the first variational equation with respect to t, i.e. we compute

$$\frac{d}{dt}\Big|_{t=0}d^*_{A+t\eta}F_{A+t\eta}$$

We expand out

$$d_{A+t\eta}^* F_{A+t\eta} = \pm \star d_{A+t\eta} \star F_{A+t\eta}$$

$$= \pm \left(\star d_A \star \left(F_A + t d_A \eta + \frac{t^2}{2} [\eta, \eta] \right) + t \star \left[\eta, \star \left(F_A + t d_A \eta + \frac{t^2}{2} [\eta, \eta] \right) \right] \right)$$

Taking the term linear in *t* yields

$$\pm (\star d_A \star d_A \eta + \star [\eta, \star F_A])$$

Giving us that at an extremal connection A, we have

$$d_A^* d_A \eta + \star [\eta, \star F_A] = 0$$

3. A Symplectic Viewpoint

4. YANG-MILLS OVER A RIEMANN SURFACE

We now restrict our attention to when M is a surface, i.e. a 2 dimensional real manifold. The Hodge star operator maps $\Omega_M^1 \to \Omega_M^1$, and satisfies $\star^2 = -\operatorname{id}$, which induces an almost complex structure on M, giving us a decomposition $\Omega_M^1(\mathbb{C}) = \Omega_M^{1,0}(\mathbb{C}) \oplus \Omega_M^{0,1}(\mathbb{C})$ into the $\pm i$ eigenspaces of the complexified Hodge star. The operator $\bar{\partial} := \pi^{0,1} \circ d$ (where $\pi^{0,1}$ denotes projection onto $\Omega_M^{0,1}(\mathbb{C})$) satisfies $\bar{\partial}^2 = 0$ since by dimension reasons, $\Omega_M^{0,2}(\mathbb{C}) = 0$, so the induced almost complex structure is integrable by the Newlander-Nirenberg theorem. The same argument with projection onto $\Omega_M^{1,0}(\mathbb{C})$ gives an operator ∂ satisfying $\partial^2 = 0$, and we get a decomposition $d = \partial + \bar{\partial}$. Then given a principal bundle $P \to M$, We get a similar decomposition for $\Omega_M^1(\mathfrak{g}_P)$ after complexification giving a decomposition $d_A = \partial_A + \bar{\partial}_A$ for any connection $A \in \mathscr{A}(P)$.