Домашнее задание 3

Христолюбов Максим, 771

Задание 1

При вычитании делимость чисел на их НОД не меняется, значит, НОД всех чисел, записанных изначально на доске, и в конце одинаковый. Следовательно, так все числа будут равны, то их НОД будут равен им самим, т. е. на доске будет записан НОД всех этих чисел.

Задание 2

Найдем НОД по алгоритму Евклида. НОК находится из равенств НОК· НОД= $a \cdot b$. Сложность алгоритма $O(n^3)$, т к на умножение требуется $O(n^{\log_2^3})$ по алгоритму быстрого умножения, на деления $O(n^2)$, значит, сложность алгоритма нахождения НОК - $O(n^3)$

Задание 3

$$\sum a_i \cdot a_j = \frac{1}{2} \cdot \left(\left(\sum a_i \right)^2 - \sum a_i^2 \right)$$

Для нахождение суммы элементов требуется O(n) операций, возведение в квадрат одного числа, равного суме элементов - константа, для суммы квадратов - O(n), т к возведение элемента в квадрат происходит за константу действий. Значит $\sum a_i \cdot a_j$ вычисляется за O(n) операций.

Задание 4

а)
$$a=36,\,b=6,\,f(n)=n^2=n^{\log_6 36}=\Theta(n^{log_b a})$$
 По мастер-теореме $T(n)=\Theta(n^2\log n)$ б) $a=3,\,b=3,\,f(n)=n^2=n^{\log_3 3+1}=\Omega(n^{\log_b a+\epsilon}),$ где $\epsilon=\frac12$

По мастер-теореме
$$T(n) = \Theta(f(n)) = \Theta(n^2)$$
 в) $a=4, \ b=2, \ f(n)=\frac{n}{\log n}=O(n^{\log_2 4-\frac{1}{2}})=O(n^{\log_b a-\epsilon}), \ \epsilon=\frac{1}{2}$ По мастер-теореме $T(n)=\Theta(n^{\log_b a})=\Theta(n^2)$

Задание 5

$$T(n) = n \cdot T(\frac{n}{2}) + O(n) = n\left(\frac{n}{2} \cdot T\left(\frac{n}{4}\right) + O(n)\right) + O(n) = \frac{n^2}{2} \cdot T(\frac{n}{4}) + O(n^2) = \frac{n^3}{8} \cdot T(\frac{n}{8}) + O(n^3) = \dots = \frac{n^k}{2^{\frac{k(k-1)}{2}}} \cdot T(\frac{n}{2^k}) + O(n^k), \ k = \log_2 n$$

$$T(n) = \frac{n^{\log_2 n}}{\left(2^{\log_2 n}\right)^{\frac{\log_2 n-1}{2}}} \cdot T(1) + O(n^{\log_2 n}) = n^{\log_2 n - \frac{1}{2}\log_2 n + \frac{1}{2}} + O(n^{\log_2 n}) = n^{\frac{1}{2}\log_2 n + \frac{1}{2}} + O(n^{\log_2 n}) = O(n^{\log_2 n} \sqrt{n}) = \Omega(n^{\log_2 n})$$

Задание 6

а) Пусть для определенности $\alpha<1-\alpha$ $T(n)\leq T(\alpha n)+T((1-\alpha)n)+\Theta(n)=T(\alpha^2 n)+2T(\alpha(1-\alpha)n)+T((1-\alpha)^2 n)+2\Theta(n)\leq ...\leq 2^{\log_\alpha n}T(1)+\log_\alpha n\cdot\Theta(n)=Cn+\Theta(n\log_\alpha n)=O(n\log n)$ $T(n)\geq 2^{\log 1-\alpha n}T(1)+\log_{1-\alpha} n\Theta(n)=Cn+\Theta(n\log_{1-\alpha} n)=\Omega(n\log n)$ $T(n)=\Theta(n\log n)$ 6) $T(n)=T(\frac{n}{2})+2T(\frac{n}{4})+\Theta(n)=T(\frac{n}{4})+2T(\frac{n}{8})+4T(\frac{n}{16})+2\Theta(n)\leq ...\leq 2^{\log 2n}T(1)+\log_2 n\Theta(n)=O(n\log n)$ $T(n)\geq 2^{\log 4n}T(1)+\log_4 n\Theta(n)=\Omega(n\log n)$ $T(n)\geq 2^{\log 4n}T(1)+\log_4 n\Theta(n)=\Omega(n\log n)$ B) $T(n)=27T(\frac{n}{3})+\frac{n^3}{\log^2 n}=3^{3\cdot2}T(\frac{n}{3^2})+3^3\cdot\frac{\left(\frac{n}{3}\right)^3}{\log^2\frac{n}{3}}+\frac{n^3}{\log^2 n}=3^{3\cdot2}T(\frac{n}{3^2})+\frac{n^3}{\log^2\frac{n}{3}}+\frac{n^3}{\log^2 n}=3^{3\cdot3}T\left(\frac{n}{3^3}\right)+\frac{n^3}{\log^2\frac{n}{3}}+\frac{n^3}{\log^2 n}=3^{3\cdot3}T\left(\frac{n}{3^3}\right)+\frac{n^3}{\log^2\frac{n}{3}}+\frac{n^3}{\log^2 n}=3^{3\cdot3}T\left(\frac{n}{3^3}\right)+\frac{n^3}{\log^2\frac{n}{3}}+\frac{n^3}{\log^2 n}=3^{3\cdot3}T\left(\frac{n}{3^3}\right)+\frac{n^3}{\log^2\frac{n}{3}}+\frac{n^3}{\log^2 n}=3^{3\cdot3}T\left(\frac{n}{3^3}\right)+\frac{n^3}{\log^2\frac{n}{3}}+\frac{n^3}{\log^2 n}=3^{3\cdot3}T\left(\frac{n}{3^3}\right)+\frac{n^3}{\log^2\frac{n}{3}}+\frac{n^3}{\log^2 n}=3^{3\cdot3}T\left(\frac{n}{3^3}\right)+\frac{n^3}{\log^2\frac{n}{3}}+\frac{n^3}{\log^2 n}=3^{3\cdot3}T\left(\frac{n}{3^3}\right)+\frac{n^3}{\log^2\frac{n}{3}}+\frac{n^3}{\log^2\frac{n}{3}}=3^{3\cdot3}T\left(\frac{n}{3^3}\right)+\frac{n^3}{\log^2\frac{n}{3}}+\frac{n^3}{\log^2\frac{n}{3}}=3^{3\cdot3}T\left(\frac{n}{3^3}\right)+\frac{n^3}{\log^2\frac{n}{3}}+\frac{n^3}{\log^2\frac{n}{3}}=3^{3\cdot3}T\left(\frac{n}{3^3}\right)+\frac{n^3}{\log^2\frac{n}{3}}+\frac{n^3}{\log^2\frac{n}{3}}=3^{3\cdot3}T\left(\frac{n}{3^3}\right)+\frac{n^3}{\log^2\frac{n}{3}}+\frac{n^3}{\log^2\frac{n}{3}}=3^{3\cdot3}T\left(\frac{n}{3^3}\right)+\frac{n^3}{\log^2\frac{n}{3}}+\frac{n^3}{\log^2\frac{n}{3}}=3^{3\cdot3}T\left(\frac{n}{3^3}\right)+\frac{n^3}{\log^2\frac{n}{3}}+\frac{n^3}{\log^2\frac{n}{3}}=3^{3\cdot3}T\left(\frac{n}{3^3}\right)+\frac{n^3}{\log^2\frac{n}{3}}+\frac{n^3}{\log^2\frac{n}{3}}=3^{3\cdot3}T\left(\frac{n}{3^3}\right)+\frac{n^3}{\log^2\frac{n}{3}}$

Т.к. бесконечный ряд обратных квадратов натуральных чисел сходится, т.е. имеет конечную сумму, а $\log^2 \frac{n}{3^k}$ - некоторые натуральные числа, причем не равные друг другу и упорядоченные, то $\sum_{k=0}^{\log_3 n-1} \frac{1}{\log^2 \frac{n}{3^k}}$ меньше чем конечная сумма обратных квадратов натуральных чисел, значит, меньше бесконечной суммы меньше некоторой константы.

$$T(n) = O(n^3 + n^3 \cdot C) = O(n^3) = \Theta(n^3)$$

Задание 7

$$(i!)^{-1}(\mod p) = x$$
$$x \cdot i! \equiv 1(\mod p)$$
$$x \cdot i! + p \cdot k = 1$$

Это уравнение решается в целых числах с помощью алгоритма Евклида за константное кол-во C_k арифметических действий для конкретного x_k . Решим это уравнение для $i \in 1..p-1$ и получим $x_1,x_2,...,x_i$. Это можно сделать за $\Theta(n)$ арифметических действий, т.к. сумма действий ограничена сверху $C_k n$, где C_k -самый большой коэффициент, а снизу - $C_j \frac{n}{2}$, где C_j - медиана массивов коэффициентов.

$$(i!)^{-1} \pmod{p} = (1 \cdot 2 \cdot \dots \cdot p \cdot \dots \cdot i)^{-1} \pmod{p} = 1^{-1} \cdot 2^{-1} \cdot \dots \cdot (i)^{-1} \pmod{p} = x_1 x_2 \dots x_i \pmod{p}$$

 x_i перемножаются за $\Theta(n)$ действий, а делится по модулю за константу. Значит можно найти $x_1 = 1^{-1}$ по алгоритму Евклида, записать в массив, умножить его на 2^{-1} и получить x_2 ? записать в массив и тп на это потребуется n шагов, на каждом - константное кол-во действий - всего $\Theta(n)$.

Следовательно весь алгоритм работает за $\Theta(n)$ и вычисляет $(i!)^{-1} \pmod{p}$.

Задание 7 с семинара

 N_k - длина числа в k-ой записи.

$$n=N_2\leq N_{10}\leq N_{16}=4\cdot N_2=O(n),$$
 значит, $N_{10}=\Theta(n),$ где $n=N_2=\Theta(n)$

Умножение числа N длины n на число M. На первом шаге:

$$N = M + N_1,$$
где $N_1 < M$

$$N \cdot M = M^2 + M * N_1$$

Найдем $M \cdot N_1$ тем же алгоритмом или же если одно из них достаточно маленькое просто умножим "столбиком"за константное время, и будем продолжать, пока N_i или M_i не станет равно 0.

Корректность. На каждом шаге или N_i , или M_i уменьшается хотябы на 1, значит настанет момент когда один из них станет равен 0.

Если одно из чисел достаточно маленькое, то его можно считать константой, а умножение числа длины n на константу происходит за $\Theta(n)$. Если считать что второе число достаточно большое, то это значит, что числа отличаются на небольшое число шагов, и кол-во действий которое

надо произвести - константа, так как на каждом шаге $\Theta(n)$ операций, то всего потребуется $\Theta(n)$.