Lambda Encoding, Types and Confluence

Peng Fu

Advisor: Prof. Aaron Stump Dept. of Computer Science

Program as data

- Program as data
- Data as Program?

- Program as data
- Data as Program?
- \triangleright 2 f a = f(f a).

- Program as data
- Data as Program?
- \triangleright 2 f a = f(f a).
- Lambda Calculus

Outline

- Typed Lambda Calculus and Lambda Encoding
- Type Preservation and Confluence
- Limits of Dependent type
- Selfstar
- Summary

Lambda Calculus

How to describe the *plus one* function.

- $\rightarrow x+1$
- $\xi + 1$ (Frege, Grundgesetze der Arithmetik)
- $\hat{x} + 1$ (Principia Mathematica)
- $\hat{x}.x + 1$ (Church)¹
- $ightharpoonup \wedge x.x + 1$ (Typewriter)
- $\lambda x.x + 1$ (Modern)
- ► x + 1 v.s. $\lambda x.x + 1$

¹Come from Barendregt's Impact of Lambda Calculus

Lambda Calculus

Higher order expression reduction system

- ▶ Terms(expression) $t := x \mid \lambda x.t \mid t t'$
- ▶ Reduction $(\lambda x.t)t' \rightarrow_{\beta} [t'/x]t$
- In what sense it is higher order?
- ▶ Bind and free variable are primitives. free variable of $\lambda x.x$ y is y, x is called bind variable.
- ▶ Variable binding in $\lambda x.\lambda y.x$ $y \equiv \lambda z.\lambda x.z$ x $\lambda x.x \equiv \lambda y.y$
- ► Reduction examples: $(\lambda x.x) \ y \rightarrow_{\beta} y$ $(\lambda x.x) \ y \rightarrow_{\beta} y \ y$.

Lambda Calculus

- To express higher order function
- ▶ Semantically, for an $a \in A$, $g : (A \rightarrow A) \rightarrow A$, where $f \mapsto f(a)$.
- With Lambda Calculus:

$$g := \lambda y.y \ a$$

 $g f \equiv (\lambda y.y \ a) f \rightarrow_{\beta} f \ a$

► Function *g* is emulated at the syntactic level.

Types

- Originated from Russell works, later used by Curry, Church and many others.
- Now common in programming language.
- E.g. types in C, java. Central in Ocaml, Haskell.
- ▶ Used to express certain assumptions, e.g. String → int
- The notion of types can be generalized to some sophisticated types, leads to theorem provers like Coq, Agda.

Type is expression to govern the form of lambda term: $\Gamma \vdash t : T$

- ▶ Simple type: $T ::= X \mid T \rightarrow T'$
- ▶ Context(Environment) $\Gamma ::= \cdot | \Gamma, x : T$
- Typing

$$\frac{(x:T)\in\Gamma}{\Gamma\vdash x:T}$$
 Var $\frac{\Gamma,x:T_1\vdash t:T_2}{\Gamma\vdash\lambda x.t:T_1\to T_2}$ Abs

$$\frac{\Gamma \vdash t: T_1 \to T_2 \quad \Gamma \vdash t': T_1}{\Gamma \vdash t \ t': T_2} \ \textit{App}$$

Extend simple type:

- ▶ Polymorphic type: $T ::= ... \mid \forall X : \kappa . T$
- ► Kind: κ ::= *
- Context: Γ ::= ... | X : κ
- Typing

$$\frac{\Gamma, X: \kappa \vdash t: T}{\Gamma \vdash t: \forall X: \kappa. T} \; \textit{Gen} \quad \frac{\Gamma \vdash t: \forall X: \kappa. T \quad \Gamma \vdash T': \kappa}{\Gamma \vdash t: [T'/X]T} \; \textit{Inst}$$

Extends Polymorphic type(System F):

- ▶ Product type(dependent type): $T ::= ... \mid \Pi x : T.T' \mid T t$
- Kind: $\kappa ::= * | \xi x : T.\kappa$.
- Typing

$$\begin{split} &\frac{\Gamma,x:T'\vdash t:T\quad x\in FV(T)}{\Gamma\vdash \lambda x.t:\Pi x:T'.T} \ \textit{Pi} \\ &\frac{\Gamma\vdash t:\Pi x:T'.T\quad \Gamma\vdash t':T'}{\Gamma\vdash t\;t':[t'/x]T} \ \textit{Elim} \\ &\frac{\Gamma\vdash t:[t_1/x]T\quad t_1=_{\beta}t_2}{\Gamma\vdash t:[t_2/x]T} \ \textit{Conv} \end{split}$$

Why Dependent Types?

- Curry-Howard correspondent for Γ ⊢ t : T
 Environment > ⊢ < program >:< type >
 Assumptions > ⊢ < proof >:< formula >
- ▶ Type Preservation: If $\Gamma \vdash t : T$ and $t \rightarrow_{\beta} t'$, then $\Gamma \vdash t' : T$.
- Strong Normalization:
 If Γ ⊢ t : T, then there is no infinite beta reduction sequence.

Algebraic Data types

An example in Haskell:

```
data Nat = Zero
          Succ Nat
add :: Nat-> Nat -> Nat
add n m = case n of
          Zero -> m
         | Succ p -> add p (Succ m)
data List a = Nil | Cons a (List a)
data Tree = Empty
          | Leaf Int
          | Node Tree Tree
```

Core Language Design

To support (algebraic) data type, one way is to add data type and pattern matching(to core) as primitive.

- ▶ expression for data type declaration: data T (a_i : A_i)_{i∈I} : A where {C_i : A_i}_{i∈I}
- ▶ expression for pattern matching : case a of $\{C_i(x_1,...x_u) \Rightarrow a\}_{i \in I}$

Core Language Design

To support (algebraic) data type, one way is to add data type and pattern matching(to core) as primitive.

- ▶ expression for data type declaration: data $T(a_i : A_i)_{i \in I} : A$ where $\{C_i : A_i\}_{i \in I}$
- expression for pattern matching : case a of $\{C_i(x_1,...x_u) \Rightarrow a\}_{i \in I}$
- Now typing rule become:

```
\begin{array}{c} r=n+m \\ x_1\dots x_n\not\in \mathsf{FV}\left(|t''|\right) \\ \mathsf{getArgs}(t')=[w_1,\dots,w_m] \\ \mathsf{buildCtx}(\Delta_2(\mathsf{getHC}(t')))=[y_1:t_1'',\dots,y_n:t_m''] \\ \mathsf{cut}([y_1:t_1'',\dots,y_n:t_m''],\mathsf{buildCtx}(\mathsf{getCType}(t',\mathsf{C},\Delta)))=[x_1:t_1',\dots,x_n:t_n'] \\ \Delta,\Gamma\vdash^{TB}Ht_1t'y(l-\left\{\mathsf{C}:\mathit{getCType}(t',\mathsf{C},\Delta)\right\}:t'' \\ \Delta,\Gamma,x_1:[w_1/y_1]t_1',\dots,x_n:[w_m/y_m]t_n',y:t_1=(\mathsf{C}w_1'\varepsilon_1\dots w_{r\varepsilon_n}')\vdash t_2:t'' \\ \hline \Delta,\Gamma\vdash^{TB}(\mathsf{C}x_1\varepsilon_1'\dots x_n\varepsilon_n'\Rightarrow t_2\mid H)\,t_1\,t'\,y\,l:t'' \end{array} \qquad \mathsf{TB\_Branch}
```

Core Language Design

Complicate the analysis for core language.

- Type Preservation Proof for Standard ML
- ► The machine-assisted proof of programming language properties, 1996, Ph.D thesis by M. VanInwegen.
- Machine assisted proof by HOL.
- Quoted from abstract: "We were not able to complete the proof of type preservation because it is not true: we found counterexamples."
- In Haskell Core Language ²: "Case expressions are the most complicated bit of Core."

²http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/CoreSynType

Scott Numerals

Scott encoding with Recursive Definition:

Scott Numerals

Scott encoding with Recursive Definition:

Translate to lambda calculus with recursive definition

```
Zero := \lambda s. \lambda z. z

Succ := \lambda n. \lambda s. \lambda z. s n

add := \lambda n. \lambda m. n (\lambda p.add p (Succ m)) m

pred := \lambda n. n (\lambda p. p) Zero
```

Scott Numerals

- Isn't it great? No primitive data type and pattern matching needed!
- Beta reduction and definition unfolding are enough.
- the catch(or is it?): need recursive type and operation on Scott encoding data can not be typed in polymorphic type system.

$$\frac{\Gamma \vdash t : [\mu X.T/X]T}{\Gamma \vdash t : \mu X.T} \ \textit{Fold} \quad \frac{\Gamma \vdash t : \mu X.T}{\Gamma \vdash t : [\mu X.T/X]T} \ \textit{unFold}$$

Nat $:= \mu X.(X \to U) \to U \to U$ for any type U.

- $\cdot \vdash \mathsf{add} : \mathsf{Nat} \to \mathsf{Nat} \to \mathsf{Nat}.$
- $\cdot \vdash \mathsf{Zero} : \mathsf{Nat}.$
- $\cdot \vdash \mathsf{Succ} : \mathsf{Nat} \to \mathsf{Nat}.$

Church Numerals

Idea,
$$((2f) a) = f(f a)$$
, so $2 := \lambda f.\lambda a.f(f a)$.

Church encoding

```
Zero = lam s . lam z . z
Succ n = lam s . lam z . s (n s z)
iterator n f a = n f a
add n m = iterator n Succ m
```

One can see

1 = Succ Zero
$$\rightarrow_{\beta}^{*} \lambda s. \lambda z. s z$$

2 = Succ 1 $\rightarrow_{\beta}^{*} \lambda s. \lambda z. s (s z)$

Easily translated to lambda calculus.

Church Numerals

- This is also great.
- ► Even better, it can be typed in system F(Polymorphic type).

Nat :=
$$\forall X : *.(X \rightarrow X) \rightarrow X \rightarrow X$$

- $\cdot \vdash \mathsf{Succ} : \mathsf{Nat} \to \mathsf{Nat}$
- $\cdot \vdash \mathsf{iterator} : \forall X : *.\mathsf{Nat} \to (X \to X) \to X \to X$
- $\cdot \vdash \mathsf{add} : \mathsf{Nat} \to \mathsf{Nat} \to \mathsf{Nat}$
- The catch, inefficient predecessor.
- The predecessor function takes linear time(beta reductions) to compute, while with Scott encoding it only takes constant time.

Outline

- Typed Lambda Calculus and Lambda Encoding
- ► Type Preservation and Confluence
- Limits of Dependent type
- Selfstar
- Summary

Abstract Reduction System

- ▶ Abstract Reduction System(ARS): $(A, \{\rightarrow_i\}_{i \in \mathcal{I}})$
- ▶ Basic concepts: $a \stackrel{*}{\rightarrow}_i b$ (or $a \rightarrow b$), a = b, reducible, normal form.
- Confluence and Church-Rosser property:

$$\rightarrow := \bigcup_{i \in \mathcal{I}} \rightarrow_i$$
.

▶ Recall type preservation: If $\Gamma \vdash t : T$ and $t \to t'$, then $\Gamma \vdash t' : T$. Usually prove by induction on derivation of $\Gamma \vdash t : T$.

- ▶ Recall type preservation: If $\Gamma \vdash t : T$ and $t \to t'$, then $\Gamma \vdash t' : T$. Usually prove by induction on derivation of $\Gamma \vdash t : T$.
- ▶ Need to analyze the case:

$$\frac{\Gamma \vdash \lambda x.t : T' \rightarrow T \quad \Gamma \vdash t' : T'}{\Gamma \vdash (\lambda x.t)t' : T} \text{ App}$$

- ▶ Recall type preservation: If $\Gamma \vdash t : T$ and $t \to t'$, then $\Gamma \vdash t' : T$. Usually prove by induction on derivation of $\Gamma \vdash t : T$.
- Need to analyze the case:

$$\frac{\Gamma \vdash \lambda x.t : T' \rightarrow T \quad \Gamma \vdash t' : T'}{\Gamma \vdash (\lambda x.t)t' : T} App$$

Present of non-syntax directed rule:

$$\frac{\Gamma \vdash t : T' \quad T = T'}{\Gamma \vdash t : T} \quad \textit{Conv}$$

▶ Inversion on $\Gamma \vdash \lambda x.t : T' \rightarrow T$ gives us only:

$$\Gamma, x: T_1 \vdash t: T_2 \text{ where } T_1 \rightarrow T_2 = T' \rightarrow T.$$

- ▶ Recall type preservation: If $\Gamma \vdash t : T$ and $t \to t'$, then $\Gamma \vdash t' : T$. Usually prove by induction on derivation of $\Gamma \vdash t : T$.
- Need to analyze the case:

$$\frac{\Gamma \vdash \lambda x.t : T' \rightarrow T \quad \Gamma \vdash t' : T'}{\Gamma \vdash (\lambda x.t)t' : T} App$$

Present of non-syntax directed rule:

$$\frac{\Gamma \vdash t : T' \quad T = T'}{\Gamma \vdash t : T} \quad Conv$$

- Inversion on $\Gamma \vdash \lambda x.t : T' \to T$ gives us only: $\Gamma, x : T_1 \vdash t : T_2$ where $T_1 \to T_2 = T' \to T$.
- ▶ Want *inverse structure congruence*: If $T_1 \rightarrow T_2 = T_1' \rightarrow T_2'$, then $T_1 = T_1'$ and $T_2 = T_2'$.

- ▶ Recall type preservation: If $\Gamma \vdash t : T$ and $t \to t'$, then $\Gamma \vdash t' : T$. Usually prove by induction on derivation of $\Gamma \vdash t : T$.
- ► Need to analyze the case:

$$\frac{\Gamma \vdash \lambda x.t : T' \rightarrow T \quad \Gamma \vdash t' : T'}{\Gamma \vdash (\lambda x.t)t' : T} App$$

Present of non-syntax directed rule:

$$\frac{\Gamma \vdash t : T' \quad T = T'}{\Gamma \vdash t : T} \quad Conv$$

- Inversion on $\Gamma \vdash \lambda x.t : T' \to T$ gives us only: $\Gamma, x : T_1 \vdash t : T_2$ where $T_1 \to T_2 = T' \to T$.
- ▶ Want inverse structure congruence: If $T_1 \rightarrow T_2 = T_1' \rightarrow T_2'$, then $T_1 = T_1'$ and $T_2 = T_2'$.
- ▶ By induction on derivation of $T_1 \rightarrow T_2 = T_1' \rightarrow T_2'$, case: $T_1 \rightarrow T_2 = T_3$ $T_3 = T_1' \rightarrow T_2'$

$$rac{T_1 o T_2 = T_3}{T_1 o T_2 = T_1' o T_2'}$$
 Trans

- ▶ Recall type preservation: If $\Gamma \vdash t : T$ and $t \to t'$, then $\Gamma \vdash t' : T$. Usually prove by induction on derivation of $\Gamma \vdash t : T$.
- ► Need to analyze the case:

$$\frac{\Gamma \vdash \lambda x.t : T' \rightarrow T \quad \Gamma \vdash t' : T'}{\Gamma \vdash (\lambda x.t)t' : T} App$$

Present of non-syntax directed rule:

$$\frac{\Gamma \vdash t : T' \quad T = T'}{\Gamma \vdash t : T} \quad Conv$$

- ▶ Inversion on $\Gamma \vdash \lambda x.t : T' \to T$ gives us only: $\Gamma, x : T_1 \vdash t : T_2$ where $T_1 \to T_2 = T' \to T$.
- ▶ Want inverse structure congruence: If $T_1 \rightarrow T_2 = T_1' \rightarrow T_2'$, then $T_1 = T_1'$ and $T_2 = T_2'$.
- ▶ By induction on derivation of $T_1 \rightarrow T_2 = T_1' \rightarrow T_2'$, case: $\frac{T_1 \rightarrow T_2 = T_3 \quad T_3 = T_1' \rightarrow T_2'}{T_1 \rightarrow T_2 = T_1' \rightarrow T_2'} \text{ Trans}$
- Can't apply induction hypothesis!

Inverse structure congruence:

If
$$T_1 \rightarrow T_2 = T_1' \rightarrow T_2'$$
, then $T_1 = T_1'$ and $T_2 = T_2'$.

- We can define = to be the reflexive, symmetric, transitive closure of →.
- We show that → is confluent, thus Church-Rosser.
- ▶ So $T_1 \to T_2 = T_1' \to T_2'$ implies there is a T_3 such that $T_1 \to T_2 \stackrel{*}{\rightarrowtail} T_3$ and $T_1' \to T_2' \stackrel{*}{\rightarrowtail} T_3$.
- ▶ We design \rightarrowtail in such a way that $T_a \to T_b \rightarrowtail T$ iff $T \equiv T'_a \to T_b$ or $T \equiv T_a \to T'_b$, where $T_a \rightarrowtail T'_a$, $T_b \rightarrowtail T'_b$.
- Thus we conclude inverse structure congruence, conquered one problem for proving type preservation.

Confluence: Tait-Martin Löf's Method

Lambda calculus $(\Lambda, \rightarrow_{\beta})$ as ARS is confluent.

Diamond property:

Confluence: Tait-Martin Löf's method

 \rightarrow_{β} reduction does not have diamond property.

$$f((\lambda y.yz)u)((\lambda y.yz)u) \qquad (\lambda x.f \ x \ x)(u \ z)$$

Not joinable in one step, but joinable in "many" steps.

Confluence: Tait-Martin Löf's method

Parallel Reduction(a notion of "many" steps).

$$\frac{t_1 \Rightarrow_{\beta} t'_1 \quad t_2 \Rightarrow_{\beta} t'_2}{(\lambda x. t_1) t_2 \Rightarrow_{\beta} [t'_2/x] t'_1}$$

- It has diamond property.
- $\rightarrow_{\beta}\subseteq \Rightarrow_{\beta}\subseteq \stackrel{*}{\rightarrow}_{\beta}$, which implies $(\stackrel{*}{\rightarrow}_{\beta})=(\stackrel{*}{\Rightarrow}_{\beta})$
- ▶ Confluence of \Rightarrow_{β} implies confluence of \rightarrow_{β}

Confluence: Takahashi's method

A stronger property, triangle property:

Parallel contractions:

$$x^* := x.$$
 $(\lambda x.t)^* := \lambda x.t^*.$
 $(t_1 \ t_2)^* := t_1^* \ t_2^* \ \text{if} \ t_1 \ t_2 \ \text{is not a beta redex.}$
 $((\lambda x.t_1) \ t_2)^* := [t_2^*/x]t_1^*.$

Confluence: Barendregt's method

Strip property:

Confluence: Hardin's Interpretation method

- ▶ Assumption I: \rightarrow := $\rightarrow_1 \cup \rightarrow_2$ and \rightarrow_1 is strongly normalizing and confluent.
- ▶ Assumption II: $\rightarrow_i \subseteq \rightarrow$ is defined on \rightarrow_1 normal form $\nu(t)$.
- ▶ Assumption III: If $a \to_2 b$, then $\nu(a) \to_i \nu(b)$.
- ▶ Then: Confluence of \rightarrow_i implies confluence of \rightarrow .

Þ

Hardin's Interpretation method: Applications

- ▶ Confluence of $(\Lambda_{\mu}, \rightarrow_{\beta}, \rightarrow_{\mu})$, originated from Selfstar.
- $ightharpoonup \Lambda_{\mu}$ denotes terms $t ::= x \mid \lambda x.t \mid tt' \mid \mu t$.
- ▶ Closure: $\mu ::= \{x_i \mapsto t_i\}_{i \in \mathcal{I}}$. Locality.
- New reductions:

$$\frac{(x_i \mapsto t_i) \in \mu}{\mu x_i \to_{\beta} \mu t_i} \qquad \frac{dom(\mu) \# \mathsf{FV}(t)}{\mu t \to_{\mu} t}$$

$$\frac{dom(\mu) \# \mathsf{FV}(t)}{\mu t \to_{\mu} t}$$

$$\frac{dom(\mu) \# \mathsf{FV}(t)}{\mu t \to_{\mu} t}$$

$$\frac{dom(\mu) \# \mathsf{FV}(t)}{\mu t \to_{\mu} t}$$

Outline

- Typed Lambda Calculus and Lambda Encoding
- Type Preservation and Confluence
- Limits of Dependent type
- Selfstar
- Summary

How to show some formula is unprovable.

- Formalized the notion of proof.
- If there is a proof of ⊥, then draw a contradiction at meta-level.
- Under Curry Howard correspondent, showing some type is uninhabited.

Recall second order dependent type:

Type as expression:

$$T:=X\mid \forall X:\kappa.T\mid T_1\to T_2\mid \Pi x:T_1.T_2\mid T\ t$$

Kind as expression $\kappa:=*\mid \xi x:T.\kappa$

³Coquand's Metamathematical investigations of a calculus of constructions ⁴Werner's A Normalization Proof for an Impredicative Type System with Large Elimination over Integers

Recall second order dependent type:

Type as expression:

$$T:=X\mid \forall X:\kappa.T\mid T_1\to T_2\mid \Pi x:T_1.T_2\mid T\ t$$

Kind as expression $\kappa:=*\mid \xi x:T.\kappa$

Induction principle:

$$\forall P: (\xi x: \mathsf{Nat}.*).P \ 0 \rightarrow (\Pi y: \mathsf{Nat}.(P \ y) \rightarrow (P \ (\mathsf{S} \ y))) \rightarrow \Pi x: \mathsf{Nat}.P \ x$$

³Coquand's Metamathematical investigations of a calculus of constructions ⁴Werner's A Normalization Proof for an Impredicative Type System with Large Elimination over Integers

Recall second order dependent type:

Type as expression:

$$T:=X\mid \forall X:\kappa.T\mid T_1\to T_2\mid \Pi x:T_1.T_2\mid T\ t$$

Kind as expression $\kappa:=*\mid \xi x:T.\kappa$

Induction principle:

```
\forall P: (\xi x: \mathsf{Nat.}*).P \ 0 \rightarrow (\Pi y: \mathsf{Nat.}(P \ y) \rightarrow (P \ (\mathsf{S} \ y))) \rightarrow \Pi x: \mathsf{Nat.}P \ x
```

▶ $P: (\xi x: \mathsf{Nat.*}), a: P\ 0, b: \Pi y: \mathsf{Nat.}(P\ y) \to (P\ (\mathsf{S}\ y)), x: \mathsf{Nat} \vdash (b\ 1\ (b\ 0\ a)): P\ (\mathsf{S}\ 1)$ Induction is not derivable(provable) within Dependent type system³

³Coquand's Metamathematical investigations of a calculus of constructions ⁴Werner's A Normalization Proof for an Impredicative Type System with Large Elimination over Integers

Recall second order dependent type:

Type as expression:

```
T:=X\mid \forall X:\kappa.T\mid T_1\to T_2\mid \Pi x:T_1.T_2\mid T\ t
Kind as expression \kappa:=*\mid \xi x:T.\kappa
```

Induction principle:

```
\forall P: (\xi x: \mathsf{Nat.}*).P \ 0 \rightarrow (\Pi y: \mathsf{Nat.}(P\ y) \rightarrow (P\ (\mathsf{S}\ y))) \rightarrow \Pi x: \mathsf{Nat.}P\ x
```

- ▶ $P: (\xi x: \mathsf{Nat.*}), a: P\ 0, b: \Pi y: \mathsf{Nat.}(P\ y) \to (P\ (\mathsf{S}\ y)), x: \mathsf{Nat} \vdash (b\ 1\ (b\ 0\ a)): P\ (\mathsf{S}\ 1)$ Induction is not derivable(provable) within Dependent type system³
- ▶ Since \bot is uninhabit, can not inhabit types like $T \to \bot$, where T is inhabited. Thus can not prove $0 \neq 1$.⁴

³Coquand's Metamathematical investigations of a calculus of constructions

⁴Werner's A Normalization Proof for an Impredicative Type System with Large Elimination over Integers

Recall second order dependent type:

Type as expression:

```
T := X \mid \forall X : \kappa.T \mid T_1 \rightarrow T_2 \mid \Pi x : T_1.T_2 \mid T \ t
Kind as expression \kappa := * \mid \xi x : T.\kappa
```

Induction principle:

```
\forall P: (\xi x: \mathsf{Nat.}*).P \overset{\cdot}{0} \rightarrow (\Pi y: \mathsf{Nat.}(P\ y) \rightarrow (P\ (\mathsf{S}\ y))) \rightarrow \Pi x: \mathsf{Nat.}P\ x
```

- ▶ $P: (\xi x: \mathsf{Nat}.*), a: P\ 0, b: \Pi y: \mathsf{Nat}.(P\ y) \to (P\ (S\ y)), x: \mathsf{Nat} \vdash (b\ 1\ (b\ 0\ a)): P\ (S\ 1)$ Induction is not derivable(provable) within Dependent type system³
- ▶ Since \bot is uninhabit, can not inhabit types like $T \to \bot$, where T is inhabited. Thus can not prove $0 \neq 1$.⁴
- These compromise the usage of Church encoding in dependent type system.

Large Elimination over Integers

³Coquand's Metamathematical investigations of a calculus of constructions ⁴Werner's A Normalization Proof for an Impredicative Type System with

Outline

- Typed Lambda Calculus and Lambda Encoding
- Type Preservation and Confluence
- Limits of Dependent type
- ► Selfstar
- Summary

Selfstar: I

- Recall that:
 - $x: \mathsf{Nat} \vdash \bar{n}: \forall P: (\xi x: \mathsf{Nat}.*).P \ 0 \to (\Pi y: \mathsf{Nat}.(P\ y) \to (P\ (\mathsf{S}\ y))) \to P\ \bar{n},$ for any Church numerals \bar{n}
- \blacktriangleright Dependent type system, namely, Π construct can not grasp this level of quantification.
- ▶ One way to try to capture(with the help of recursion) this is: $x : \mathsf{Nat} \vdash \overline{n} : \iota x. \forall P : (\xi x : \mathsf{Nat.*}).P \ 0 \rightarrow (\Pi y : \mathsf{Nat.}(P \ y) \rightarrow (P \ (\mathsf{S} \ y))) \rightarrow P \ x$ $\mathsf{Nat} := \iota x. \forall P : (\xi x : \mathsf{Nat.*}).P \ 0 \rightarrow (\Pi y : \mathsf{Nat.}(P \ y) \rightarrow (P \ (\mathsf{S} \ y))) \rightarrow P \ x$
- add two typing rules:

$$\frac{\Gamma \vdash t : \iota x.T}{\Gamma \vdash t : [t/x]T} \; \textit{SelfInst} \quad \frac{\Gamma \vdash t : [t/x]T}{\Gamma \vdash t : \iota x.T} \; \textit{SelfGen}$$

- ▶ Introduce closure $\mu := \{x_i \mapsto t_i\}_{i \in \mathcal{I}} \cup \{X_i \mapsto T_i\}_{i \in \mathcal{N}}$
- ▶ Wrap around term and type, μt , μT , $\tilde{\mu} \in \Gamma$.

Selfstar: II

Church encoding and Scott encoding in Selfstar

▶ Church encoding($\tilde{\mu_c}$):

```
(Nat:*) \mapsto
    \iota x.\Pi C: \mathsf{Nat} \to *.(\Pi n: \mathsf{Nat}.(C n) \to (C (\mathsf{S} n))) \to (C 0) \to (C x)
    (S : Nat \rightarrow Nat) \mapsto \lambda n. \lambda C. \lambda s. \lambda z. s n (n C s z)
    (0: Nat) \mapsto \lambda C.\lambda s.\lambda z.z.
▶ Scott encoding(\tilde{\mu}_s):
    (Nat:*) \mapsto \iota x.\Pi C: Nat \to *.(\Pi n: Nat.C (S n)) \to (C 0) \to (C x)
```

 $(S : Nat \rightarrow Nat) \mapsto \lambda n. \lambda C. \lambda s. \lambda z. s n$

 $(0: Nat) \mapsto \lambda C.\lambda s.\lambda z.z$

Selfstar: II

Induction principle for Church encoding:

```
	ilde{\mu_{\mathcal{C}}} \vdash (\mathsf{Ind} := \lambda C.\lambda s.\lambda z.\lambda n.n \ C \ s \ z) : \Pi C : \mathsf{Nat} \to *.\Pi n : \mathsf{Nat}.((C \ n) \to (C \ (\mathsf{S} \ n))) \to C \ 0 \to \Pi n : \mathsf{Nat}.C \ n
```

Addition function:

$$\tilde{\mu_c} \vdash (\mathsf{add} := \lambda n. \lambda m. \mathsf{Ind} \ (\lambda y. \mathsf{Nat}) \ (\lambda x. \mathsf{S}) \ m \ n) : \mathsf{Nat} \to \mathsf{Nat} \to \mathsf{Nat}.$$

Case analysis principle for Scott encoding:

$$ilde{\mu_s} \vdash (\mathsf{Case} := \lambda C.\lambda s.\lambda z.\lambda n.n \ C \ s \ z) : \\ \Pi C : \mathsf{Nat} \rightarrow *.\Pi n : \mathsf{Nat}.(C \ (\mathsf{S} \ n)) \rightarrow C \ 0 \rightarrow \Pi n : \mathsf{Nat}.C \ n$$

addition function:

```
(add : Nat → Nat → Nat) \mapsto
\lambda n.\lambda m.Case (\lambda n.Nat) (\lambda p.(S (add p m))) m n
```

Selfstar: III

- Due to * : * and recursive defintion, term does not correspond to proof, type does not correspond to formula.
- ▶ Future work: show a fragment of Selfstar that can be erased to F^{ω} .

Outline

- Typed Lambda Calculus and Lambda Encoding
- Type Preservation and Confluence
- Limits of Dependent type
- Selfstar
- Summary

Summary

- We seen Church and Scott encoding data and as alternatives to implement algebraic data type.
- The use of confluence in preservation proof.
- Several methods to prove confluence.
- Limits of dependent type system give rise to Selfstar.
- Introduced Selfstar.

Last But Not Least

- Thank my advisor Prof. Aaron Stump.
- Thank my exam committee: Prof. Cesare Tinelli, Prof. Kasturi Varadarajan, Prof. Ted Herman, Prof. Douglas Jones.
- For all the audiences.