Derivation of Algorithms Problem Sheet 3 Solutions

Question 1

```
Let U = \{2,4,6\} and let P(x) = x \mod 2 = 0
```

Evaluate $\forall x P(x)$ and $\exists x P(x)$

$\forall x P(x)$

- **=** {substitution}
- $2 \mod 2 = 0 \land 4 \mod 2 = 0 \land 6 \mod 2 = 0$
- **=** {arithmetic}

true A true A true

 $= \{constants\}$

<u>true</u>

$\exists x P(x)$

- = {substitution}
- $2 \mod 2 = 0 \vee 4 \mod 2 = 0 \vee 6 \mod 2 = 0$
- **=** {arithmetic}

true v true v true

 $= \{constants\}$

true

Question 2

Let
$$U = \{5,6,7,11\}$$
 and let $P(x) = x < 10$

Evaluate $\forall x P(x)$ and $\neg \exists x P(x)$

$\forall x P(x)$

- = {substitution}
- $5 < 10 \land 6 < 10 \land 7 < 10 \land 11 < 10$
- = {arithmetic}

true A true A true A false

 $= \{constants\}$

false

$\neg \exists x P(x)$

 $= \{\exists \text{ negation}\}\$

$$\forall x \neg P(x)$$
 NOTE: $\neg P(x) \equiv x \ge 10$

- $= \{ substitution \}$
- $5 \geq 10 \mathrel{\wedge} 6 \geq 10 \mathrel{\wedge} 7 \geq 10 \mathrel{\wedge} 11 \geq 10$
- = {arithmetic}

false \wedge false \wedge true

 $= \{constants\}$

false

Question 3

Specify a universe of discourse for the following propositions

- ii) $\forall x[x = 3]$, $U = \{3\}$
- iii) $\exists y \forall x [x + y < 0]$, $U = \{-1, -2, -3, -4, ...\}$

Question 6

- i) X is a multiple of k $\exists x \forall k[x = k * t], t \in N$
- iv) X is a prime. **NOTE:** all numbers are evenly divisible by themselves and 1. Definition of prime number is one that is greater then 1 and has no other divisors other then itself and 1. Therefore:

$$(1 < x) \land \forall y [\exists z (y \cdot z = x) => (y = 1 \lor y = x)]$$

OR

$$(1 \le x) \land \forall y[(x \bmod y = 0) => (y = 1 \lor y = x)]$$

Question 8

ii)
$$\neg \exists x \neg P(x) \equiv \forall x P(x)$$

 $\equiv \{\exists \text{ negation}\}$
 $\forall x \neg \neg P(x)$
 $\equiv \{\neg \neg\}$
 $\forall x P(x)$

Question 9

- i) $\forall x: 0 \le x \le N : A, x \ge 1 \land A, x \le 100$
- iii) $0 \le j \le N \land 0 \le k \le N \land \forall x: j \le x \le k: A.x \mod 2 = 0$
- v) $\forall x: 0 \le x \le N: A.x \le MAX$
- viii) $0 \le i \le N \land 0 \le j \le N \land \forall x: i \le x \le N: A.x \ge A.j$