

Introduction and Presentation Overview

We are presenting updates on the following:

- Thermal Analysis
- Gantt Chart
- Port control
- Pump control
- Sequence control
- Reagent housing design
- Final enclosure design
- Data collection

Thermal Analysis Update: We're going to be ok!

Given:

AC-DC Power Supply Rating: 108 [W]

Stepper Motor Wattage Rating: 48 [W]

P_total = 3*48 + 108 = 348 [W]

Power_wall_socket = 1800 [W]

Find: Temperature rise in enclosure

Assumptions

- 10% of wattage dissipates as heat

Wattage Dissipated as Heat

1800W-348 W = 1416 [W]

1416*.10 = 141.6 Watts dissipated as heat

Surface Area of Outside of Enclosure

107.8125 in^2 * 2 = 215.625[in ^2]

54.6875 in^2 * 2 = 109.375 [in ^2]

37.13 in^2 * 2 = 75.46 [in ^2]

Surface Area total = 400.16 [in ^2] * (1 [feet]/12 [inches]_)^2 = 25.8 [feet^2]

Determine Irradiance Value

141.6 [W] / 25.8 [feet^2] = 5.5 [W / feet ^2]

Extreme case +40 degrees Fahrenheit Temperature with respect to ambient

- Conservative estimate
- Raspberry Pi has 178 degree Fahrenheit
- ANSYS Icepack for variable thermal loading
- No need to retrofit enclosure with cooling solutions
- Current analysis is undergoing final review from sponsoring professors

Cameron

CONTROLLING THE PORTS

```
#NUTRIENT ANALYZER
import serial
import time
ser = serial.Serial('/dev/ttyUSB0')
t0 = 0.001  # time for running pumps simutaneously
                  # sytem flush dispense time (1000 ul at 150ul/sec)
# time for pump movements with mixing (ex: 600 ul at 60ul/sec)
# This section refers to port positions
          ser.write(b'AMA 960\r\n')
                                                              # Not used at this time
          ser.write(b'AMA 720\r\n')
          print("Moving to port 3 (Molybdate)")
          ser.write(b'AMA 480\r\n')
          print("Moving to port 4 (PO4 Sample)")
          ser.write(b'AMA 240\r\n')
          print("Moving to port 5 (Absorbic Acid Reagent)")
                                                                          #Move to port 5 (Absorbic Acid Reagent)
          ser.write(b'AMA 0\r\n')
```


Tracy Hunter

CONTROLLING THE PUMPS

```
item_flush():
print("System Flush In Progress")
ser.write(b'CVM 150*EU\r\n')
time.sleep(t0)
ser.write(b'DVM 150*EU\r\n')
ser.write(b'DVM 150*EU\r\n')
time.sleep(t2)
 def blank_sample():
    print("Dispensing Blank Sample")
    ser.write(b'CVM 60*EU\r\n')
    ser.write(b'CMR 600*EU\r\n')
def molybdate_reagent():
    print("Dispensing 320 ul pump_1/ aspirating 400 ul pump_2")
    ser.write(b'CVM 32*EU\r\n')
    ser.write(b'CMR 320*EU\r\n')
    time.sleep(t0)
    ser.write(b'DVM 40*EU\r\n')
    ser.write(b'DVM 40*EU\r\n')
    ser.write(b'DMR -400*EU\r\n')
    ime.sleep(t3)
                      print("Aspirating 400 ul pump_
ser.write(b'cVM do*EU\r\n')
ser.write(b'CMR -480*EU\r\n')
time.sleep(t0)
ser.write(b'DVM 32*EU\r\n')
ser.write(b'DVM 320*EU\r\n')
time.sleep(t3)
                                                                                                                                                               #This sets pump 1 to aspirate 400 @ 40ul/sec
                      print("Dispensing 400 ul pump_1 into flow cell")
ser.write(b'CVM 25*EU\r\n')
ser.write(b'CVM 400*EU\r\n')
time.sleep(t4)
time.sleep(t5)
                                                                                                                                                             #This sets pump 1 to dispense 400ul at 25ul/sec
                      _scaludra();
print("Aspirating 600 ul pump_1 ")
ser.write(b'CVM 60*EU\r\n')
ser.write(b'CMR -600*EU\r\n')
time.sleep(t3)
                       print("Aspirating 600 ul pump_1 ")
ser.write(b'CVM 60*EU\r\n')
ser.write(b'CMR -600*EU\r\n')
                                                                                                                                                              #This sets pump 1 to aspirate 600ul at 60 ul/sec
```


Tracy Hunter

SEQUENCE OF CONTROL

```
#and additional sleep cycle. This will be repeated again, then calibration process will be restarted(Running the complete #code from the beginning)
blank_sample()
port_3()
molybdate_reagent()
port_5()
#NEED REFERENCE SCAN HER
port_6()
pod_standard()
port_3()
molybdate_reagent()
port_5()
ascorbic_acid_reagent()
port_2()
flow_cell()
flow_cell()
```

This sequence is for one cycle only. Currently working to implement continuous application.

On 4/4/2022 there was an additional change to sequence by MLML.

Reagent Storage Design

Reagent storage specs changed

Initially: Reagents would be hung from a bar separate from the electronics housing

Scope change: reagents need to be in the dark and submerged in water

Internal Dimension needed

Width - 18"

Depth - 12"

Height - 22"

Container Solution

Water Butt Tap | U.S. Plastic Corp. (usplastic.com)

20 Gallon Black Polyethylene Tank - 18" L x 12" W x 24" Hgt. | U.S. Plastic Corp. (usplastic.com)

Tracy Hunter

Item	Price
.375 X 48" X 96" HDPE SHEET	344.35
.375 X 54" X 96" Seaboard Marine Grade Sheet	404.32
375 X 48" X 96" ABS Sheet	241.68

Item	Price
20 Gallon Tank	120.67
Lid	33.29
Water Tap	2.67
Nut & Washer	0.97
Total	157.60

Enclosure Design

Andrew

Enclosure Design

Andrew

Spectrometer Updates

- Initial issues
 - missing libraries
 - fixing file pathing
 - detecting hardware
- Software successfully installed and tested

Ocean Optic Flame S

Spectrometer Code

Main functions Provided by Marine

@MLML

- Our job:
 - o split
 - o integrate
 - test with lab values

```
#import necessary packages
import seabreeze
import pandas as pd
import numpy as np
import time
import matplotlib.pyplot as plt
#function for collecting dark scan
def darkscan(spec):
    -Spectrophotometer read from Seabreeze Library
    -Intensity values across all wavelengths taken with lamp off.
    time.sleep(10) #sleep 10s to ensure no light transmission after lamp turned off
    wavelengths = spec.wavelengths()
    intensities = spec.intensities()
   column names = ['wavelengths', 'intensities']
    combine = np.vstack((wavelengths, intensities)).T
    darkscan = pd.DataFrame(data=combine, columns=column names) #produces dataframe from most recent scan taken from spec.
```

Code provided by Marine from MLML

Next Steps for data collection

- Install the rest of the components
 - light source, flow cell, tubing

diagram of system flow

- Run tests using deionized water and blue dye
 - Compare numbers with values ran from lab deployed system
 - Adjust our system as needed

Parts	subtasks	September			December	January	February		April	May	
		5 12 19 26	3 10 17 24 31	7 14 21 28	5 12 19 26	2 9 16 23 30	6 13 20 27	6 13 20 27	3 10 17	24 1 8	15 22
Design / Planning											
	control of pumps				_						
Connecting	control of servo valve										
	control of spectrometer			-					_		
Hardware	User Interfacing, Terminal										
	Housing, Case			-							
System	combined controls										
System	feedback method										
	Interfacing with existing facilities										
Implementation	Reagents / DI containment										
	Monitoring system for Supply & Power										
Interfacing	accomidations for wireless communications										
	display, controls, fuses, etc										
Manufacturing											
MCU											
Wiring					1	Winter break					
process piping											
Programming											
Feedback loops											
Assembly											
soldering											
hardware											
process piping											
Reagent containment											
User Interface											
Validation											
Accuracy of Analysis											
continuous use test											
error flagging											
feedback tuning											
ancilaries											
					-						

