Aplicación práctica: Base de datos del HATCO

Datos: 100 observaciones de 14 variables obtenidos desde encuentas a clientes de un distribuidor industrial.

Variables de interés en la aplicación:

- Percepciones de HATCO:
 - X₁ Velocidad de entrega
 - X₂ Nivel de precios
 - X₃ Flexibilidad de precios
 - X₄ Imagen del fabricante
 - X₅ Servicio conjunto
 - X₆ Imagen de fuerza de ventas
 - X₇ Calidad de producto
- Resultados de compra:
 - X_a Nivel de fidelidad
- Características del comprador:
 - X₈ Tamaño de la empresa (Variable codificada 0-1)

Primer paso: Objetivos del análisis

Predecir los niveles de fidelidad a los productos por parte de los clientes basándonos en las percepciones que estos tienen de la actividad de HATCO, así como identificar los factores que llevan al aumento de la utilización del producto para su aplicación en campañas de marketing diferenciadas.

Segundo paso: Diseño de la investigación

Análisis de Regresión múltiple (lineal)

Variable dependiente: Fidelidad al producto (X₉)

Variables independientes: 7 percepciones (X₁, X₂, X₃, X₄, X₅, X₆, X₇)

Tamaño muestral: 100 (= n, N)

Tercer paso: Supuestos del análisis de regresión múltiple

1ª etapa: Contrastación de las variables dependiente e independientes

- A. Relación de linealidad de cada v. independiente con la dependiente
- B. Constancia en la varianza (Homocedasticidad) Después del ajuste.
- C. Normalidad (tests asociados al análisis)

(Hacemos un primer sondeo antes de ajustar el modelo)

2ª etapa: Contrastación de la relación conjunta después de la estimación del modelo (Se realizará después de haber estimado el modelo)

A. Relación de linealidad de cada v. independiente con la dependiente

Normal esperado

C. Normalidad de todas las variables

Pruebas de normalidad

	Kolm	ogorov-Smiri	nov ^a	Shapiro-Wilk				
	Estadístico	gl	Sig.	Estadístico	gl	Sig.		
X1	,063	100	,200*	,985	100	,341		
X2	,095	100	,028	,969	100	,017		
Х3	,095	100	,027	,950	100	,001		
X4	,107	100	,007	,982	100	,183		
X5	,085	100	,069	,986	100	,366		
X6	,122	100	,001	,963	100	,007		
X7	,091	100	,041	,971	100	,028		
Υ	,079	100	,131	,985	100	,320		

- * Este es un límite inferior de la significación verdadera.
- a. Corrección de la significación de Lilliefors

	2	3	4	5	6	7	8	9
	Valo	or observ	ado					
	Gr	áfico (Q-Q	norm	al de	X6		
	3							
	2 •					,		
	1.						ū	
	[]					<u> </u>		
	0 •			ó				
용	-1 •		_	, 6 ⁶				
spera			, o o o					
Normal esperado	-2 •							
No.	-3	1		2	3	4		
				2	3	4		э
	Valo	or observ	ado					

Cuarto paso: Estimación del modelo y valoración global del ajuste

2.551

-1,367

,587

4.185

1,282

16,151

Resumen del modelo

Modelo	R	R cuadrado	R cuadrado corregida	Error típ. de la estimación
1	,880 ^a	,775	,758	4,4237

a. Variables predictoras: (Constante), X7, X5, X6, X3, X2, X4, X1

Coeficientes

			entes no arizados	Coeficientes estandarizad os		
Modelo	. '	в	•Error típ.	Beta	t	Sig.
1	(Constante)	-10,187	4,977		-2,047	,04
	X1 :	-5,76E-02	2,013	-,008	-,029	,91
	X2	-,697	2,090	-,093	-,333	,74
	Х3	3,368	,411	,520	8,191	,000
	X4	-4,22E-02	,667	-,005	-,063	,950
	X5 :	8,369	3,918	,699	2,136	,035
	X6	1,281	,947	,110	1,352	,180

. El modelo ajustado y la bondad del ajuste

$$Y = -10.187 - 0.057 X_1 - 0.697 X_2 + 3.368 X_3 -$$

$$0.042 X_4 + 8.369 X_5 + 1.281 X_6 + 0.567 X_7$$

El modelo ajustado explica aproximadamente el 75.8% de la variabilidad de Y

ANOVAb

		Suma de		Media		,,,,,	
Modelo		cuadrados	gl	cuadrática	F	Sig	ļ.
1	Regresión	6198,677	7	885,525	45,252	,	000a
	Residual	1800,323	92	19,569		****	
I	Total	7000 000	00				Tal

- a. Variables predictoras: (Constante), X7, X5, X6, X3, X2, X4, X1
- b. Variable dependiente: Y

III. Significación individual de las variables X_i y la constante

 $H_0: \beta_i = 0$

 $H_1: \beta_i \neq 0$

- ➤ Al 5% las variables menos relevantes: X₁, X₂, X₄, X₆ y X₇
- Las que más influencia parecen tener son: X₃ y X₄, además de la constante que parece conveniente mantenerla en el modelo.
- Observar los coeficientes
 estandarizados (importancia relativa de cada variable X_j en la explicación de Y)

II. Tabla ANOVA

 $H_0: \beta_1 = \beta_2 = ... = \beta_7 = 0 \quad (R = 0)$

 H_1 : Algún $\beta_i \neq 0$ (R $\neq 0$)

Una significación de 0.000 nos dice que existe relación lineal entre las variables y tiene sentido el análisis de regresión

Coeficientes^a

	Coeficientes no estandarizados		Coeficientes estandarizad os		• • • • • • •	Intervalo de confianza para B al 95%		
	Б	F	Dete		0	I factor to factor	Límite	
	В	Error típ.	Beta	• [Sig.	Límite inferior	superior	
(Constante)	-10,187	4,977		• -2,047	,044	-20,071	-,303	
X1	-5,76E-02	2,013	-,008	-,029	,977	-4,055	3,940	
X2	-,697	2,090	-,093	-,333	,740	-4,848	3,454	
Х3	3,368	,411	,520	8,191	,000	2,551	4,185	
X4	-4,22E-02	,667	-,005	-,063	,950	-1,367	1,282	
X5	8,369	3,918	,699	2,136	,035	,587	16,151	
X6	1,281	,947	,110	1,352	,180	-,600	3,162	
X7	,567	,355	,100	1,595	,114	-,139	1,273	

riable dependiente: Y

Estas consideraciones no son concluyentes hay elegir las variables relevantes utilizando métodos secuenciales

IV. Examen de las correlaciones:

Detectar posible multicolinealidad y qué variables guardan mayor correlación con la variable dependiente (de nuevo no podremos concluir nada).

Correlaciones

		Υ	<u>X</u> 1	• X2	.X3	. X4	<u> X</u> 5	• X6	X7
Correlación de Pearson	Υ	1,000	,676	,082	,559	,224	,701	,256	-,192
	X1	,676	1,000	-,349	,509	,050	,612	,077	-,483
	X2	,082	-,349	1,000	-,487	,272	,513	,186	,470
	Х3	,559	,509	-,487	1,000	-,116	,067	-,034	-,448
	X4	,224	,050	,272	-,116	1,000	,299	,788	,200
	X5	,701	,612	,513	,067	,299	1,000	,241	-,055
	X6	,256	,077	,186	-,034	,788	,241	1,000	,177
	X7	-,192	-,483	,470	-,448	,200	-,055	,177	1,000
Sig. (unilateral)	Υ	,	,000	,209	,000	,012	,000	,005	,028
	X1	,000	,	,000	,000	,309	,000	,223	,000
	X2	,209	,000	,	,000	,003	,000	,032	,000
	Х3	,000	,000	,000	,	,125	,255	,367	,000
	X4	,012	,309	,003	,125	,	,001	,000	,023
	X5	,000	,000	,000	,255	,001	,	,008	,293
	X6	,005	,223	,032	,367	,000	,008	,	,039
	X7	,028	,000	,000	,000	,023	,293	,039	,
N	Υ	100	100	100	100	100	100	100	100
	X1	100	100	100	100	100	100	100	100
	X2	100	100	100	100	100	100	100	100
	Х3	100	100	100	100	100	100	100	100
	X4	100	100	100	100	100	100	100	100
	X5	100	100	100	100	100	100	100	100
	X6	100	100	100	100	100	100	100	100
	X7	100	100	100	100	100	100	100	100

- Las más correlacionadas con Y son X₁, X₂ y X₃
- ➤ Entre si la mayor correlación (moderada) se observa entre X₁ y X₅, X₂ y X₅, X₄ y X₆

V. Selección de variables independientes: Métodos secuenciales Utilizaremos el procedimiento de selección por pasos (Stepwise)

Variables introducidas/eliminadas

Modelo	Variables introducidas	Variables eliminadas	Método
1	X5	,	Por pasos (criterio: Prob. de F para entrar <= ,050, Prob. de F para salir >= ,100).
2	Х3	,	Por pasos (criterio: Prob. de F para entrar <= ,050, Prob. de F para salir >= ,100).
3	X6	,	Por pasos (criterio: Prob. de F para entrar <= ,050, Prob. de F para salir >= ,100).

a. Variable dependiente: Y

El modelo ajustado final (después de tres pasos)

 $Y = -6.520 + 3.376 X_3 + 7.621 X_5 + 1.406 X_6$

El modelo ajustado explica aproximadamente el 76.1% de la variabilidad de Y

Coeficientesa

	Coeficientes no estandarizados		Coeficientes estandarizad os			Intervalo de cor B al 95		
Modelo		В	Error típ.	Beta		Ci~	Límite inferior	Límite
1	(Constante)	21.653	2.596	Беіа	8.341	Sig. ,000	16.502	superior 26.804
'	` ,	,	,	704	- / -	· ·	-,	-,
	X5	8,384	,862	,701	9,722	,000	6,673	10,095
2	(Constante)	-3,489	3,057		-1,141	,257	-9,556	2,578
	X5	7,974	,603	,666	13,221	,000	6,777	9,171
	X3	3,336	,327	,515	10,210	,000	2,688	3,985
3	(Constante)	-6,520	3,247		-2,008	,047	-12,965	-,075
	X5	7,621	,607	,637	12,547	,000	6,416	8,827
	X3	3,376	,320	,521	10,562	,000	2,742	4,010
	X6	1,406	,591	,121	2,378	,019	,232	2,579

Resumen del modelo

						Estadí	sticos de can	nbio	
			R cuadrado	Error típ. de la	Cambio en				Sig. del
Modelo	R	R cuadrado	corregida	estimación	R cuadrado	Cambio en F	gl1	gl2	cambio en F
1	,701 ^a	,491	,486	6,4458	,491	94,525	1	98	,000
2	,869 ^b	,755	,750	4,4980	,264	104,252	1	97	,000
3	,877 ^c	,768	,761	4,3938	,014	5,656	1	96	,019

Variables excluidasd

						,
						Estadísticos de
					Correlación	colinealidad
Modelo		Beta dentro	t	Sig.	parcial	Tolerancia
1	X1	,396 ^a	4,812	,000	,439	626
	X2	-,377 ^a	-5,007	,000	-,453	,737
	Х3	,515 ^a	10,210	,000	,720	,996
	X4	,016 ^a	,216	,830	,022	,911
	X6	,093 ^a	1,252	,214	,126	,942
	X7	-,154 ^a	-2,178	,032	-,216	,997
2	X1	,016 ^b	,205	,838	,021	,405
	X2	-,020 ^b	-,267	,790	-,027	,464
	X4	,095 ^b	1,808	,074	,181	,892
	X6	,121 ^b	2,378	,019	,236	,939
	X7	,094 ^b	1,683	,096	,169	,799
3	X1	,030 ^c	,389	,698	,040	,403
	X2	-,029 ^c	-,405	,687	-,041	,462
	X4	-,002 ^c	-,021	,983	-,002	,357
	X7	,071 ^c	1,273	,206	,130	,768

- a. Variables predictoras en el modelo: (Constante), X5
- b. Variables predictoras en el modelo: (Constante), X5, X3
- c. Variables predictoras en el modelo: (Constante), X5, X3, X6
- d. Variable dependiente: Y

La interpretación del modelo ajustado (efectos) la realizaremos en el paso quinto

Para visualizar gráficamente la bondad del ajuste: Dispersión de valores exactos frente a valores predichos

Volvemos a comprobar la significación individual y conjunta de las variables: SPSS ofrece los resultados en cada paso realizado

ANOVAd

			7.1.10 171			,	.	
Modelo		Suma de cuadrados	gl	Media cuadrática	F	! ! Sig.		
1	Regresión	3927,309	1	3927,309	94,525	,000 ^a	!	Como ya sabíamos las variables
	Residual	4071,691	98	41,548	,	1 1	!	
	Total	7999,000	99			l I	!	guarda relación lineal con la v.
2	Regresión	6036,513	2	3018,256	149,184	,000b	Ш	dependiente en los tres modelos
	Residual	1962,487	97	20,232		İ] 	
	Total	7999,000	99			į	I I	
3	Regresión	6145,700	3	2048,567	106,115	,000°] 	
	Residual	1853,300	96	19,305		i İ	I I	
	Total	7999,000	99			I I	İ	
a. \/aı	riahles predict	oras: (Constant	(a) X5	_		\	;	

a. Variables predictoras: (Constante), X5

b. Variables predictoras: (Constante), X5, X3

c. Variables predictoras: (Constante), X5, X3, X6

d. Variable dependiente: Y

Todas las variables que se van introduciendo son significativas. Obsérvese que la constante en el modelo 2 resulta no significativa

Coeficientesa

									delo 2 resulta no signincativa
			entes no arizados	Coeficientes estandarizad os			Intervalo de cor B al 95		<u> </u>
						ľ	[i	Límite	
Modelo		В	Error típ.	Beta	t	! Sig.	Límite inferior	superior	
1	(Constante)	21,653	2,596		8,341	,000	16,502	26,804	
	X5	8,384	,862	,701	9,722	,000	6,673	10,095	
2	(Constante)	-3,489	3,057		-1,141	! ,257	-9,556	2,578	
	X5	7,974	,603	,666	13,221	,000	6,777	9,171	
	X3	3,336	,327	,515	10,210	,000	2,688	3,985	
3	(Constante)	-6,520	3,247		-2,008	,047	-12,965	-,075	
	X5	7,621	,607	,637	12,547	i ,000	6,416	8,827	
	X3	3,376	,320	,521	10,562	,000	2,742	4,010	
	X6	1,406	,591	,121	2,378	,019	,232	2,579	
						`	1	· · · · · ·	-

VI. ANÁLISIS DE LOS RESIDUOS: Evaluación de los supuestos del análisis

- a) Normalidad de los residuos: Histograma, gráfico de prob. normal
- b) No autocorrelación: Test de Durbin-Watson
- c) Homocedasticidad: Gráficos de dispersión (ZRESID frente a ZPRED)
- d) Falta de linealidad: Gráficos de regresión parcial
- e) No multicolinealidad: Diagnóstico de colinealidad
- Identificación de casos atípicos y datos influyentes: Diagnóstico por caso (atípicos), guardar residuos, estadísticos de influencia y distancias (Mahalanobis, Cook, valores de influencia)

Gráfico P-P normal de los residuos tipificados

Variable dependiente: Y

1,0

,8

,5

,0

0,0

,3

,5

,8

1,0

Prob acum observada

Histograma

Pruebas de normalidad

	Kolmogorov-Smirnov ^a					
	Estadístico	gl	Sig.			
Standardized Residual	,079	100	,127			

a. Corrección de la significación de Lilliefors

a) Se puede admitir la normalidad de los residuos del modelo

b) Se puede admitir que no existe autocorrelación serial (d>1.4)

Resumen del modelo

Modelo	Durbin-Watson	
3	: 1,910 ^a	•
	••	٠٠

- a. Variables predictoras: (Constante), X5, X3, X6
- b. Variable dependiente: Y

 No muestra una pauta clara de aumento o disminución de los residuos. Admitimos la hipótesis de homocedasticidad

d) Las relaciones entre Y y X_3 e Y y X_5 son claramente lineales y muy significativas (más pendiente más efecto de la variable). La relación con X_6 es menos clara y significativa, no obstante no muestra ninguna forma curvilínea. Admitimos la hipótesis de linealidad

Variables excluidasd

			Estadí	sticos de	
			colinealidad		
			/ · \	Tolerancia	
Modelo		Beta dentro	「FIV /	mínima	
1	X1	,396 ^a	7,599	,626	
	X2	-,377 ^a	1,357	,737	
	Х3	,515 ^a	1,004	,996	
	X4	,016 ^a	1,098	,911	
	X6	,093 ^a	1,062	,942	
	X7	-,154 ^a	1,003	,997	
2	X1	,016 ^b	2,469	,405	
	X2	-,020 ^b	2,156	,464	
	X4	,095 ^b	1,121	,892	
	X6	,121 ^b	1,064	,936	
	X7	,094 ^b	1,252	,797	
3	X1	,030 ^c	2,483	,403	
	X2	-,029 ^c	2,163	,462	
	X4	-,002 ^c	2,805	,357	
	X7	,071 ^c	1,301	,768	

- a. Variables predictoras en el modelo: (Constante), X5
- b. Variables predictoras en el modelo: (Constante), X5, X3
- Variables predictoras en el modelo: (Constante), X5, X3, X6
- d. Variable dependiente: Y

Interpretación de los índices de condición

- Identificar los índices que estén por encima del umbral: 30
- 2. Para los índices identificados, identificar las variables con proporciones de varianza por encima del 90%: Habrá multicolinealidad si ocurre con dos o más coeficientes.

Factor de inflacción de la varianza (FIV)

Localizar valores superiores a 10

Diagnósticos de colinealidad

			Indice de	I Pr	oporciones d	e la varianza	
Modelo	Dimensión	Autovalor	condición	(Constante)	X5	X3	X6
1	1	1,969	1,000	,02	,02		
	2	3,132E-02	7,928	,98	,98		
2	1	2,941	1,000	,00	,01	,00	
	2	4,595E-02	8,000	J ,03	,85	,19	
	3	1,347E-02	14,778	,97	,14	,80	
3	1	3,882	1,000	,00	,00	,00	,00
	2	5,997E-02	8,046	,01	,02	,11	,85
	3	4,541E-02	9,246	,02	,91	,14	,04
	4	1,237E-02	17,719	,97	,07	,75	,10

a. Variable dependiente: Y

e) No se viola la hipótesis de no multicolinealidad: Los índices de condición en el modelo 3 no superan 30 en ningún caso.

IDENTIFICACIÓN DE ATÍPICOS Y DATOS INFLUYENTES

> Detección de atípicos: Los residuos mayores corresponden a los casos 7, 11, 14 y 100.

Estadísticos sobre los residuos

		Mínimo	Máximo	Media	Desviación típ.	N
ı	Valor pronosticado	23,373	60,592	46,100	7,8789	100
	Valor pronosticado tip.	-2,885	1,839	,000	1,000	100
	Error típico del valor pronosticado	,4670	1,4292	,8468	,2359	100
	Valor pronosticado corregido	23,180	60,388	46,104	7,9148	100
Н	Residue brute	- 4 2 ,5 5 2	— — 7 ,5 74	,090 -	4 ,3 2 67 -	1 0 0
il	Residuo tip.	-2,857	1,724	,000	,985	100
1	Residuo estud.	-2,983	- - _{1,737}	- - , 00 0	1,004	100
	Residuo eliminado	-13,687	7,694	-,004	4,4970	100
	Residuo eliminado estud.	-3,115	1,756	-,004	1,017	100
	Dist. de Mahalanobis	,129	9,485	2,970	2,185	100
	Distancia de Cook	,000	,201	,010	,022	100
	Valor de influencia centrado	,001	,096	,030	,022	100

a. Variable dependie e: Y

-13,6870

-2,85677

-2,98313

-12,5520

Esta tabla es un resumen descriptivo, los valores para los 100 casos aparecen como variables añadidas en el editor de datos

Diagnósticos por casoª

Número de caso	Residuo tip.	Y	Valor pronosticado	Residuo bruto
7	-2,857	46,0	58,552	-12,552
11	-2,360	32,0	42,367	-10,367
14	-2,342	38,0	48,292	-10,292
100	-2,696	33,0	44,848	-11,848

a. Variable dependiente: Y

> Detección de puntos influyentes

<u>Límites</u>

Valor de influencia: 0.08

SDFBETA: (-0.2, 0.2)

SDFFIT: (-0.3244, 0.3244)

COVRATIO: (0.88, 1.12)

D. Cook: 0.042

res_1	dre_1	zre_1	sre_1	sdr_1	mah_1	coo_1	lev_1	cov_1	dff_1	sdf_1
-6,29856	-6,43100	-1,43352	-1,44851	-1,45696	1,04876	,01103	,01059	,97463	-,13244	-,21127
3,57540	3,80703	,81374	,83969	,83839	5,03337	,01142	,05084	1,07807	,23163	,21339
-1,29032	-1,39691	- ,29367	-,30556	-,30411	6,56411	,00193	,06630	1,12453	-,10659	-,08741
-2,40091	-2,48741	- ,54643	-,55619	-,55418	2,45292	,00279	,02478	1,06649	-,08650	-,10519
-,26802	-,29492	-,06100	-,06399	-,06366	8,04023	,00010	,08121	1,147;		00047
2,36338	2,41237	,53789	,54344	,54144	1,02013	,00153	,01030	1,051	Puntos	influyer

7,21926

,20116

,07292

,770

-3,11547

Puntos influyentes y atípicos:

7, 11, 14 y 100

(posible eliminación)

Quinto paso: Interpretación del resultado teórico

El modelo ajustado (Bondad del ajuste del 76.1%)

$$Y = -6.520 + 3.376 X_3 + 7.621 X_5 + 1.406 X_6$$

Interpretación de los efectos de cada variable explicativa

• Efectos tipificados (Importancia relativa de cada variable en la predicción del nivel de fidelidad)

El mayor efecto en la predicción del nivel de fidelidad al producto es el asociado a las variables servicio global (63.7%) y flexibilidad de los precios (52.1%).

Aunque con menos efecto, la variable imagen de los vendedores (12.1%) tiene influencia en el nivel de fidelidad.

• Efectos sin tipificar: (Incremento medio en el nivel de fidelidad cuando la variable aumenta en una unidad y el resto de variables valen 0)

Servicio global: 7.621

Flexibilidad de precios: 3.376

Imagen de los vendedores: 1.406

Término constante: -6.520 (Incremento medio en el nivel de fidelidad cuando el

resto de variables valen 0)

Predicciones

Nivel de fidelidad (cliente que responde 4.0 en las tres v. independientes) = 43.9

-En SPSS basta añadir un caso con datos en todas las variables excepto en el nivel de fidelidad-

Sexto paso: Validación de los resultados

✓ Comparación entre R² y R²-ajustado (grandes diferencias pude indicar un sobreajuste del modelo y que no se mantiene una razón adecuada de observaciones con respecto al número de variables)

En nuestro caso: 0.768, 0.761

- ✓ Obtener una segunda muestra y corroborar los resultados.
- ✓ Métodos de exploración intensiva de la muestra (bootstrap, jackknife, PRESS)

Evaluación de modelos de regresión alternativos

- Incorporación de nuevas variables.
- Inclusión de términos de interacción entre las presentes en el modelo
- Inclusión de términos cuadráticos o cúbicos en alguna variable independiente (si se alejaba de la linealidad)

Inclusión de una variable no métrica: tamaño de la empresa (X₈)

Inclusión de una variable no métrica: Tamaño de la empresa (X₈) 0 / 1 (empresa pequeña / grande)

OBSERVACIONES

- Al estar codificada con los valores 0 y 1 se puede introducir directamente en el modelo. Si está sin codificar o los códigos no se corresponden: Variables ficticias (en SPSS el módulo de Escalamiento óptimo)
- La interpretación del efecto asociado a la variable no métrica es distinto: Interpretamos el coeficiente como el valor de las grandes empresas comparado con el de las pequeñas. Un coeficiente positivo indica que las grandes empresas cuentan con un nivel de fidelidad mayor que el de las pequeñas, y al contrario si es negativo.

Coeficientesa

		Coeficie estanda		Coeficientes estandarizados			
Modelo		B Error típ.		Beta	t	Sig.	
1	(Constante)	21,653	2,596		8,341	,000	
	X5	8,384	,862	,701	9,722	,000	
2	(Constante)	-3,489	3,057		-1,141	,257	
	X5	7,974	,603	,666	13,221	,000	
	X3	3,336	,327 ,51	,515	10,210	,000	
3	(Constante)	-12,956	4,170		-3,107	,002	
	X5	8,411	,593	,703	14,190	,000	
	X3	4,184	,410	,645	10,193	,000	
	X8	3,762	1,182	,206	3,182	,002	
4	(Constante)	-16,335	4,254		-3,840	,000	
	X5	8,055	,592	,673	13,613	,000	
	X3	4,245	,399	,655	10,630	,000	
	X8	3,852	1,149	,211	3,353	,001	
	×6 – – –	- - 1,4 6 2	- , 56 2	,1 2 5 -	– 2,60 2	— — , 01 1~	
5	(Constante)	-15,963	4,186		-3,813	,000	
	X5	7,008	,772	,586	9,080	,000	
	X3	3,991	,411	,616	9,700	,000	
	X8	4,946	1,248	,271	3,964	,000	
	X6	1,574	,555	,135	2,834	,006	
	X1	1,123	,544	,165	2,064	,042	

Resumen del modelo

				R cuadrado	Error típ. de la	
	Modelo	R	R cuadrado	corregida	estimación	
	1	,701 ^a	,491	,486	6,4458	
	2	,869 ^b	,755	,750	4,4980	
	3	,882 ^c	,778	,771	4,3002	
	4	,890 ^d	,793	,784	4,1766	
,	5	– – ,895 ^e	– – – ,8 <u>02</u> –	7 91 -	4 ,1067	•

- Variables predictoras: (Constante), X5
- b. Variables predictoras: (Constante), X5, X3
- c. Variables predictoras: (Constante), X5, X3, X8
- d. Variables predictoras: (Constante), X5, X3, X8, X6
- e. Variables predictoras: (Constante), X5, X3, X8, X6, X1

Las empresas grandes cuentan con un nivel de fidelidad un 4.946% mayor que las pequeñas

Ejercicios propuestos

1. Con los datos contenidos en el fichero "coches.sav" ajustar mediante el procedimiento de regresión no lineal un modelo del tipo:

$$Y = a X_1 + b X_2 + c sqrt(X_3) + X_4^{**} d + e$$

Donde:

Y: Consumo

X₁: Motor

X₂: Potencia (cv)

X₃: Peso

X₄: Acel

Parámetros: a,b,c,d,e (Valor inicial 1)

- 2. Con los datos del fichero "coches.sav" ajustar mediante el procedimiento de regresión curvilínea el mejor modelo que permita explicar la variable Consumo en función de la variable Potencia.
- Ajustar mediante el procedimiento de regresión lineal un modelo que permita predecir el consumo en función de: motor, potencia y la variable codificada origen (utilizar variables ficticias).
- 4. Con los datos del fichero "encuesta.sav" ajustar mediante el procedimiento de regresión categórica un modelo que permita precedir el grado de felicidad (feliz) en términos del sexo, la raza y el tipo de vida (vida) de los encuestados. (Nota: en este caso los coeficientes resultantes, tipificados, indican en qué medida influye los valores de cada variable independiente en la variable dependiente.)