Mitschrift Differentialrechnung in \mathbb{R}^n und Differentialgleichungen, WS 2015/16 Prof. Dr. Josef Hörwick

M. Zell

5. Januar 2016

1	Him	weise	8
2	Abb	vildungen des Typs $\mathbb{R}^n o \mathbb{R}$	9
	2.1	Beispiele	9
	2.2	Verallgemeinerung	10
	2.3	Beispiele	10
	2.4	Linearisierung von Funktionen $\mathbb{R}^2 \to \mathbb{R}$	10
	2.5		10
	2.6		10
	2.7	Verallgemeinerung	11
	2.8	· ·	12
	2.9	1	12
	2.10		12
			$\frac{12}{12}$
			12
		•	14
			14
		•	14
			$\frac{14}{14}$
			$14 \\ 15$
			$\frac{15}{15}$
	2.10	Hausaufgabe	19
3		v i	15
	3.1		15
	3.2	0	16
	3.3	1	17
	3.4	Beispiel	19
4	Fläc	henberechnung und Volumenberechnung	19
	4.1		19
	4.2		20
	4.3		20
	4.4		20
5	Häh	ere partielle Ableitungen	21
J	5.1	-	21 22
	$5.1 \\ 5.2$		22 22
	$\frac{5.2}{5.3}$		22 22
	5.5	Test	22
6		8	23
	6.1	Beispiel	23
7	\mathbf{Abb}	oildungen des Typs $\mathbb{R} o \mathbb{R}^n$	24
	7.1	Beispiel	24
	7.2		25
	7.3	•	25
	7.4		26
	7.5		26
	7.6		26

	7.7	Beispiele	27
	7.8	Linearisierung	29
	7.9		29
8	\mathbf{Bog}		30
	8.1	Beispiel Kreis	31
	8.2		31
	8.3	Beispiel Schraubenlinie	31
	8.4		31
	8.5	Bogenlänge der Zykloide	33
	8.6		33
	8.7		33
	8.8		33
	8.9	Umwandlung einer Parameterdarstellung in eine natürliche Pa-	
			34
	8.10	1 2	34
		e	35
		1 0	36
	8.13	Krümmung einer ebenen Kurve, die als Graph einer Funktion	0.0
	0.14	<i>v v</i> · / 0 0	36
		1	$\frac{37}{2}$
			38
	8.16	Beispiel Ellipse	38
9	Kur	ven in Polarkoordinaten	39
	9.1	Beispiel Archimedische Spirale	40
	9.2	Sektorflächeninhalt	40
	9.3		41
	9.4	Beispiel Logarithmische Spirale	41
	9.5	Linienintegrale	42
		9.5.1 1. Art:	42
	9.6	Beispiel	42
	9.7	Beispiel	42
		9.7.1 2. Art Arbeitsintegral (in der Ebene)	43
	9.8	Beispiel Arbeitsintegral	43
	9.9	Beispiel	45
10	Diff	erenzieren von Funktionen des Typs $\mathbb{R}^n o \mathbb{R}^m$	4 5
			45
			45
			46
			46
		1	46
		0	47
11	Pare	ameterdarstellung von Flächen	17
11			±1 48
			48 48

12	Imp	olizite Darstellung von Kurven und Flächen	49
		Kurven in \mathbb{R}^2	49
		Lot auf eine Kurve	50
		Ellipse	50
		12.3.1 andere Berechnungsmethode	50
	12.4	Implizite Darstellung von Flächen im \mathbb{R}^3	50
		Beispiel	51
13		1	51
		Zahlenebene	53
		sin, cos, e-Funktion im Komplexen	54
		Die n-ten Wurzeln von 1	54
	13.4	Bemerkung	56
		Polynome in \mathbb{C}	56
	13.6	Beispiel	56
14	Diff	erentialgleichungen (DGL)	57
		- · · /	58
			60
			61
		<u> </u>	62
		11 0 0	63
		Existenzsatz von Picard-Lindelöf	63
		Beispiel	65
		•	
15		0	65
	15.1	Beispiel DGL 2. Ordnung	66
16	Eler	mentare Lösungsmethoden	67
			67
		Beispiel	67
		Lineare DGL	68
		Beispiel	68
		Inhomogene DGL	68
		Beispiel	70
		DGL vom Typ $y' = f(\frac{y}{x})$	70
		Beispiel	70
		*	
		Beispiel	70
	10.10	0Numerische Lösung von DGL	71
		16.10.1 Verbesserung: Mittelpunktsregel	71
		16.10.2 Rückwärts	72
		16.10.3 Hausaufgabe	72
	16.1	1Runge-Kutta-Verfahren	73
17	Line	eare DGL-Systeme	73
		Beispiel	74
		Beispiel	76

18	Lösı	ıng	für	d	\mathbf{ie}	P	ri	if	uı	ng	, 1	W	\mathbf{S}	2	0	13	3/	1	4									7 9
	18.1	zu	1) .																									79
	18.2	zu	2a)																									79
	18.3	zu	2b)																									79
	18.4	zu	3a)																									79
	18.5	zu	3b)																									79
	18.6	zu	4a)																									79
	18.7	zu	4b)																									80
	18.8	EX	TRA	4	zu	4) .																					80
	18.9	zu	5) .																									80
	18.10)zu	6) .																									81
Sti	chwe	orts	verz	ei	ch.	ni	S																					82

Abbildungsverzeichnis

1	Schnittfunktionen im \mathbb{R}^n	. 9
2	2 Tangentialebene anstelle eines Funktiongebirges	. 11
3	Richtungsableitung im Raum	. 13
4		. 13
5		
6		
7		
8		. 16
9		. 17
1	10 Querschnittsfläche bei x	. 17
1	11 Beispiel	. 18
1	12 Dreiecksfläche	. 19
1	Berechnung einer Fläche	. 19
	14 Berechnung des Volumens eines dreidimensionalen Körpers	. 20
	15 Berechnung Kugelvolumen	. 20
	16 Beispiel Wahrscheinlichkeitsberechnung	
	Beweis $f_{y,x} = f_{x,y}$	
	Punktbewegung im Raum	$\frac{-}{24}$
	19 Ellipse	25
	20 Geschwindigkeitsvektoren	25
	21 Geschwindigkeitsvektor im Kreis	
	22 Beschleunigungsvektor	27
	23 Beschleunigung im Kreis	
	24 Ein Zykloid	
	25 Zykloidbahn	
	26 Bogenlänge einer Kurve	
	27 Bogenlänge einer Kurve	
	28 Beispiel Kreis	31
	29 Bogenlänge einer Kurve	31
	30 Schraubenlinie	32
	31 Abgewickelte Schraubenlinie	
	Parametrisierung nach der Bogenlänge	
	33 Parametertransformation	34
	34 Umwandlung einer Parameterdarstellung	
	35 Krümmung einer Kurve	35
	36 Krümmung einer ebenen Kurve	
	37 Beispiel Krümmungskreis	
	38 Krümmung einer ebenen Kurve	38
	39 Ellipse	
	40 Ellipse	
	41 Kurven in Polarkoordinaten	
	42 Beispiel Archimedische Spirale	
	43 Sektorflächeninhalt	
	44 Bogenlänge in Polarkoordinaten	
	45 Logarithmische Spirale	
	46 Linienintegral	
	47 Bogenlänge	
	48 Beispiel	
1		

49	Arbeitsintegral (in der Ebene)
50	Arbeitsintegral
51	Parameterdarstellung von Flächen
52	Beispiel Erdkugel
53	Parameterdarstellung des Drehellipsoids 48
54	Höhenlinienplan
55	Implizite Darstellung von Flächen im \mathbb{R}^3 51
56	Komplexen Zahlen
57	Zahlenebene
58	\sin, \cos, e -Funktion im Komplexen
59	Geometrische Interpretation
60	Die n-ten Wurzeln von 1
61	Bemerkung zu e^z
62	Bemerkung 2
63	Bemerkung 3
64	Differentialgleichungen
65	Fläche unterhalb der Funktion
66	Geometrische Interpretation von DGL
67	System von DGL
68	DGL und der Geschwindigkeitsvektor 61
69	Eindimensionales DGL 61
70	Die Lippschitzbedingung
71	Eindeutigkeitssatz
72	Existenzsatz von Picard-Lindelöf 63
73	Näherung
74	Bedeutung des Existenz- und des Eindeutigkeitssatzes 65
75	DGL 2. Ordnung
76	Beispiel für verschiedene Werte von c
77	Numerische Lösung von DGL
78	Verbesserung: Mittelpunktsregel
79	Rückwärts
80	Beispiel
81	Runge-Kutta-Verfahren

1 Hinweise 8

1 Hinweise

Diese Mitschrift basiert auf der Vorlesung "Differentialrechnung in \mathbb{R}^n und Differentialgleichungen" von Prof. Dr. Josef Hörwick im WS 2015/16. Du kannst sie gerne benutzen, kopieren und an andere weitergeben. Auch in der Prüfung - soweit zugelassen 1 - kannst du sie gerne als Hilfsmittel verwenden, wenn das meine Nutzung als Prüfungshilfsmittel nicht in irgendeiner Weise beeinträchtigt.

Natürlich besteht kein Anspruch auf Aktualität, Richtigkeit, Fortsetzung meines Angebots oder dergleichen. Sollten dir Fehler auffallen oder solltest du Verbesserungsvorschläge haben, würde ich mich über eine E-Mail (zell@hm.edu) freuen. Wenn du mir als kleines Dankeschön z.B. ein Club-Mate² ausgeben möchtest, findest du mich meistens hier: http://fi.cs.hm.edu/fi/rest/public/timetable/group/if3b. Wenn nicht, ist es auch ok;-)

Nach der Prüfung werde ich den L^ATEX-Quelltext veröffentlichen, damit die Mitschrift weitergeführt, korrigiert und ergänzt werden kann.

Viele Grüße M. Zell

 $^{^{1}} http://www.cs.hm.edu/meinstudium/studierenden_services/fi_pruefungskatalog. \\ de.html$

 $^{^2 {\}tt http://www.clubmate.de/ueber-club-mate.html}$

2 Abbildungen des Typs $\mathbb{R}^n \to \mathbb{R}$

$$f: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \to f(x,y) \end{cases}$$
 Zwei Variablen.

"Gebirge über der x,y-Ebene."

Abbildung 1: Schnittfunktion parallel zur yz-Ebene (rot); Schnittfunktion parallel zur xz-Ebene (blau).

Die Ableitungen der Schnittfunktionen heißen partielle Ableitungen. $\frac{\delta f}{\delta x}(x,y)$ ist die Ableitung der blauen Funktion (nur x ist Variable). $\frac{\delta f}{\delta y}(x,y)$ ist die Ableitung der roten Funktion (nur y ist Variable).

2.1 Beispiele

a)
$$f(x,y) = 2x^3y^2 + x + 2y$$

 $\frac{\delta f}{\delta x} = 2y^23x^2 + 1$
 $\frac{\delta f}{\delta y} = 2x^32y + 2$

b)
$$f(x,y) = \sin(xy^2)$$

 $\frac{\delta f}{\delta x} = \cos(xy^2)y^2$
 $\frac{\delta f}{\delta y} = \cos(xy^2)x2y$

2.2 Verallgemeinerung

$$\begin{split} f: & \begin{cases} \mathbb{R}^n \to \mathbb{R} \\ (x_1,...,x_n) \to f(x_1,...,x_n) \end{cases} \\ & \frac{\delta f}{\delta x_1}(x_1,...,x_n) \text{ nur } x_1 \text{ ist Variable.} \\ & \vdots \\ & \frac{\delta f}{\delta x_n}(x_1,...,x_n) \text{ nur } x_n \text{ ist Variable.} \\ & \text{Zum Beispiel: } \frac{\delta f}{\delta x_1} \end{split}$$

2.3 Beispiele

$$\begin{array}{l} \textbf{a)} \quad f(x,y,z) = x^5 y^2 z^3 + xy + z^2 \\ \frac{\delta f}{\delta x} = 5 x^4 y^2 z^3 + y \\ \frac{\delta f}{\delta y} = 2 y x^5 z^3 + x \\ \frac{\delta f}{\delta z} = 3 z^2 x^5 y^2 + 2 z \end{array}$$

c)
$$f(x, y, z) = e^x \sin(xy) + yze^z$$
$$\frac{\delta f}{\delta x} = e^x \sin(xy) + e^x \cos(xy)y$$
$$\frac{\delta f}{\delta y} = e^x \cos(xy)x + ze^z$$
$$\frac{\delta f}{\delta z} = ye^z + yze^z$$

2.4 Linearisierung von Funktionen $\mathbb{R}^2 \to \mathbb{R}$

Ersetze das Funktionsgebirge im Punkt (x,y,z) durch die Tangentialebene ε . Dieses ε wird aufgespannt durch die beiden Tangenten an die beiden Schnittfunktionen (siehe Abb. 2).

"Heißt nichts anderes als ich ersetze die Funktion durch die Tangente. Dadurch kann man eine schwierige Funktion durch eine einfachere ersetzen."

2.5 Linearisierungsformel

$$f(x + dx, y + dy) \approx f(x, y) + \frac{\delta f}{\delta x}(x, y)dx + \frac{\delta f}{\delta y}(x, y)dy$$

2.6 Beispiel

Linearisiere
$$f(x,y)=x^2y^3$$
 bei $x=2,y=1$
$$\frac{\delta f}{\delta x}=2xy^3$$

$$\frac{\delta f}{\delta y}=3y^2x^2$$

$$f(x+dx,y+dy)\approx x^2y^3+2xy^3\cdot dx+3y^2x^2\cdot dy$$

$$f(2,1)=4$$

"Mit dieser Formel können wir die Funktion im Punkt (x,y) durch die Tangentialebene ersetzen."

Abbildung 2: Die orangenen Tangenten an die blaue und die rote Schnittfunktion spannen eine Tangentialebene auf. Diese entspricht dem ε . Es gilt: blaue Schnittfunktion: $\frac{\delta f}{\delta x}(x,y)dx$, rote Schnittfunktion: $\frac{\delta f}{\delta y}(x,y)dy$ und dz = $\frac{\delta f}{\delta x}(x,y)dx + \frac{\delta f}{\delta y}(x,y)dy$

$$\begin{array}{l} \frac{\delta f}{\delta x}(2,1) = 2 \cdot 2 \cdot 1 = 4 \\ \frac{\delta f}{\delta y}(2,1) = 3 \cdot 4 = 12 \\ \Rightarrow f(2+dx,1+dy) \approx 4+4 \cdot dx + 12 \cdot dy \\ \textbf{Test mit } dx = 0.1, dy = -0.1 \\ f(2.1,0.9) = 2.1^2 0.9^3 = \textbf{3.214...} \\ f(2+0.1,1-0.1) \approx 4+4 \cdot 0.1 - 12 \cdot 0.1 = 4+0.4-1.2 = \textbf{3.2} \checkmark \end{array}$$

2.7 Verallgemeinerung

$$f(x_1 + dx_1, x_2 + dx_2, ..., x_n + dx_n) \approx f(x_1, ..., x_n) + \frac{\delta f}{\delta x_1} \cdot dx_1 + ... + \frac{\delta f}{\delta x_n} \cdot dx_n$$

2.8 Beispiel

Linearisiere $f(x,y,z) = x \sin y + y \cos z$ bei (0.5, 1, 0.9) $f(0.5, 1, 0.9) = 0.5 \sin 1 + 1 \cos 0.9 = 1.042$ $\frac{\delta f}{\delta x} = \sin(y) = \sin(1) = 0.841$ $\frac{\delta f}{\delta y} = x \cos(y) + \cos(z) = 0.5 \cos 1 + \cos 0.9 = 0.892$ $\frac{\delta f}{\delta z} = -y \sin z = -1 \sin 0.9 = -0.783$ $\text{Test: } f(0.5 + dx, 1 + dy, 0.9 + dz) \approx 1.042 + 0.841 dx + 0.892 dy - 0.783 dz \text{ z.B.: } f(0.5 + 0.1, 1 + 0.1, 0.9 - 0.1) \approx \dots = 1.293. \text{ Der exakte Wert: } f(0.6, 1.1, 0.8) = 1.301\dots$

2.9 Anwendung der Linearisierung - Die Fehlerrechnung

Gegeben ist $f(x_1,...,x_n)$. Die Größen $x_1,...,x_n$ werden gemessen, wobei $x_1=\overline{x_1}+w_1$ (wahrer Wert, Messwert und Fehler), ..., $x_n=\overline{x_n}+w_n$. Wahres Ergebnis: $e=f(x_1,...,x_n)$ Fehlerhaftes Ergebnis: $\overline{e}=f(\overline{x_1},...,\overline{x_n})$ $\Rightarrow e=f(\overline{x_1}+w_1,...,\overline{x_n}+w_n)$. Wir linearisieren an der Messstelle: $e=f(\overline{x_1},...,\overline{x_n})+\frac{\delta f}{\delta x_1}(\overline{x_1},...,\overline{x_n})w_1+...+(\overline{x_1},...,\overline{x_n})w_n$. Die Fehler $w_1,...,w_n$ kennt man nicht. Gegeben sind die maximalen Fehler der Messwerte: $x_i=\overline{x_i}\pm\Delta x_i$. Der maximale Fehler des Ergebnisses ist:

$$\left|\frac{\delta f}{\delta x_1}(\overline{x_1},...,\overline{x_n})\Delta x_1\right|+...+\left|\frac{\delta f}{\delta x_n}(\overline{x_1},...,\overline{x_n})\Delta x_n\right|$$

2.10 Beispiel

```
f(x_1,x_2,x_3,x_4) = x_1^2 \sin(x_2) + x_3 x_4 \cos x_2 x_1 = 10m \pm 5cm x_2 = 40^{\circ} \pm 1^{\circ} = 0.01745 rad x_3 = 12m \pm 6cm x_4 = 7m \pm 4cm f(10m, 40^{\circ}, 12m, 7m) = 128.6m^2 \frac{\delta f}{\delta x_1} = 2x_1 \sin x_2 = 2 \cdot 10 \sin 40^{\circ} = 12.86 \frac{\delta f}{\delta x_2} = x_1^2 \cos x_2 - x_3 x_4 \sin x_2 = 22.61 \frac{\delta f}{\delta x_3} = x_4 \cos x_2 = 5.36 \frac{\delta f}{\delta x_4} = x_3 \cos x_2 = 9.19 maximaler Fehler = |12.85 \cdot 0.05| + |22.61 \cdot 0.01745| + |5.36 \cdot 0.06| + |9.19 \cdot 0.04| = 0.64 + 0.39 + 0.32 + 0.37 = (\text{von } \Delta x_1 \Delta x_2 \Delta x_3 \text{ und } \Delta x_4) = 1.73
```

2.11 Die Richtungsableitung

Wir betrachten $f: \mathbb{R}^n \to \mathbb{R}$. Wir wollen nun die Richtungsableitung des Vektors $v \in \mathbb{R}^n, |v| = 1$ aufstellen (Abb. 3). Dazu betrachten wir die Funktion entlang der Geraden g (Abb. 4) und erhalten: $f_v(x_1, ..., x_n) = \lim_{h \to 0} \frac{f((x_1, ..., x_n) + h(v_1, ..., v_n)) - f(x_1, ..., x_n)}{h}$

2.12 Beispiel

$$\begin{array}{l} f: \mathbb{R}^3 \to \mathbb{R}, (x_1, x_2, x_3) \to x_1 x_2 + 2 x_3 \\ \tilde{v} = (1, 2, 2), |\tilde{v}| = \sqrt{1^2 + 2^2 + 2^2} = 3, v = \frac{1}{3} (1, 2, 2) = (\frac{1}{3}, \frac{2}{3}, \frac{2}{3}) \end{array}$$

Abbildung 3: Der rote Vektor v liegt auf der Geraden g und im Raum \mathbb{R}^n

Abbildung 4: Wir betrachten die Funktion entlang g.

$$f_v(x_1,x_2,x_3) = \lim_{h \to 0} \frac{f((x_1,x_2,x_3) + h(v_1,v_2,v_3)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim_{h \to 0} \frac{f((x_1 + \frac{1}{3}h,x_2 + \frac{2}{3}h,x_3 + \frac{2}{3}h)) - f(x_1,x_2,x_3)}{h} = \lim$$

2.13 Definition

Wiederholung Richtungsableitung: $f_v(x) = \lim_{h \to 0} \frac{f(x+h \cdot v) - f(x)}{h}$

Definition 2.1. $f: \mathbb{R}^n \to R$ Der Vektor $(\frac{\delta f}{\delta x_1}, \frac{\delta f}{\delta x_2}, ..., \frac{\delta f}{\delta x_n})$ heißt der Gradient von f bei x.

Satz 2.1.
$$f: \mathbb{R}^n \to \mathbb{R}$$
 $v = (v_1, ..., v_n) mit|v| = 1 Dann gilt: $f_v(x_1, ..., x_n) = (v_1, ..., v_n) \cdot \frac{\delta f}{\delta x_1}, \frac{\delta f}{\delta x_2}, ..., \frac{\delta f}{\delta x_n}$ $f_v(x) = v \cdot Gradient \ von \ f(\widehat{=} \ Skalar produkt: (x_1, x_2) \cdot (y_1, y_2) = x_1 y_1 + x_2 + y_2)$$

Beweis.
$$f(x_1+dx_1,...,x_n+dx_n)\approx f(x_1,...,x_n)+\frac{\delta f}{\delta x_1}\cdot dx_1+...+\frac{\delta f}{\delta x_n}\cdot dx_n$$
 $f(x_1+hv_1,x_2+hv_2,...,x_n+hv_n)\approx f(x_1,...,x_n)+\frac{\delta f}{\delta x_1}\cdot h\cdot v_1+...+\frac{\delta f}{\delta x_n}\cdot h\cdot v_n$ Einsetzen der Grenzwertbildung:

Einsetzen der Grenzwertsnating.
$$\lim_{h\to 0} = \frac{f(x_1+hv_1,\dots,x_n+hv_n)-f(x_1,\dots,x_n)}{h} = \lim_{h\to 0} \frac{f(x_1,\dots x_n)+\frac{\delta f}{\delta x_1}hv_1+\dots+\frac{\delta f}{\delta x_n}hv_n-f(x_1,\dots,x_n)}{h} = \lim_{h\to 0} = \frac{\delta f}{\delta x_1}v_1+\dots+\frac{\delta f}{\delta x_n}v_n = \text{Gradient von } \mathbf{f}\cdot v$$

2.14 Beispiel von oben

$$f(x_1, x_2, x_3) = x_1 x_2 + 2 x_3, v = (\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$$

$$f_v(x_1, x_2, x_3) = (v_1, v_2, v_3) \cdot (\frac{\delta f}{\delta x_1}, \frac{\delta f}{\delta x_2}, \frac{\delta f}{\delta x_3}) = (\frac{1}{3}, \frac{2}{3}, \frac{2}{3}) \cdot (x_2, x_1, 2) = \frac{1}{3} x_2 + \frac{2}{3} x_1 + \frac{4}{3}$$

2.15 Hausaufgabe

$$f(x_1, x_2, x_3, x_4) = x_1^2 x_2 x_3 + x_3^2 x_4$$

Richtung $\tilde{v} = (1, -1, -1, 1)$
Richtungsableitung in: $(1, 0, 2, -1)$

2.16 Problem

 $f: \mathbb{R}^n \to \mathbb{R}$ Folgende Fragen stellen wir uns:

Abbildung 5: In welcher Richtung geht es am steilsten bergauf?

- In welcher Richtung v ist die Richtungsableitung am größten?
- In welcher Richtung wächst die Funktion am schnellsten?

Abbildung 6: Gradient von f

• In welcher Richtung geht es am steilsten Bergauf? (Abb. 5)

 $\cos = \frac{vgradf}{|v|\cdot|gradf|} = \frac{f_v}{|gradf|} \Rightarrow f_v = \cos \delta \cdot |gradf|$ (Abb. 6). f_v ist maximal bei $\cos \delta = 1$, d.h. bei $\delta = 0^\circ$. Die Richtungsableitung ist maximal in Richtung gradf. Die maximale Richtungsableitung ist |gradf|.

2.17 Beispiel

 $f(x_1,x_2,x_3)=3x_1x_2+2x_3^2$ Punkt: (1,2,-2) In welcher Richtung wächst f am stärksten? $\begin{aligned} &gradf=(3x_2,3x_1,4x_3)\\ &gradf(1,2,-2)=\underline{(6,3,-8)} \text{ (gesuchte Richtung)} \end{aligned}$ Die maximale Steigung ist $|gradf|=|(6,3,-8)|=\sqrt{36+9+64}=\sqrt{109}$ Steigungswinkel $\alpha=\arctan(\sqrt{109})=84,5^\circ$

2.18 Hausaufgabe

 $f(x_1,x_2,x_3,x_4)=x_1x_2^2-x_3x_4+x_2x_3^2$ Punkt: (2,1,-3,2) In welcher Richtung wächst f am stärksten? Wie groß ist dort der Steigungswinkel?

Lösung //TODO

3 Integration von Funktionen des Typs $\mathbb{R}^2 o \mathbb{R}$

 $\int_B f$ ist das Volumen des "Zylinders" über B (von B bis zur Funktion, vgl. Abb. 7).

3.1 Annäherung

Zur Annäherung des Volumens betrachten wir nun die Draufsicht (Abb. 8). Sei $\tilde{f}: [a_1,a_2] \times [b_1,b_2] \to \mathbb{R}$ $(x,y) \to f(x,y)$ für $(x,y) \in B,0$ sonst

Abbildung 7: Das Volumen soll dem Integral $\int_B f$ entsprechen. Dabei ist die Fläche B beliebig und der obere "Deckel" des "Zylinders" entspricht irgendeinem "Funktionsgebirge"

Abbildung 8: Zur Annäherung des Volumens betrachten wir nun die Draufsicht $f:[a_1,a_2]\times [b_1,b_2]\to \mathbb{R}$

3.2 Annäherung durch Scheiben

Nun näheren wir uns dem Volumen durch eine Unterteilung in Scheiben (rot) an (Abb. 9).

an (Abb. 9).
$$\int_{B} f(x,y) \approx \sum_{i=1}^{n} \underbrace{\left(\int_{b_{1}}^{b_{2}} \tilde{f}(z_{i},y)dy\right)\Delta x}\right)}_{\text{Das Volumen als Summe der einzelnen Scheiben}} \rightarrow \sum_{i=1}^{n} g(z_{i}) \cdot \Delta x \xrightarrow{n \to \inf} \int_{a_{1}}^{a_{2}} g(x)dx$$

$$= \int_{a_{1}}^{a_{2}} \left(\int_{b_{1}}^{b_{2}} f(x,y)dy\right)dx \text{ (für } g(z_{i}) \text{ vgl. Abb. 10)}$$

Abbildung 9: Nun näheren wir uns dem Volumen durch eine Unterteilung in Scheiben (rot) an.

Abbildung 10: Querschnittsfläche bei x. Das Ergebnis ist irgendeine Funktion $g(x)=\int_{b_1}^{b_2}f(x,y)dy$

also: $\int_B f(x,y) = \int_{a_1}^{a_2} (\int_{b_1}^{b_2} \tilde{f}(x,y) dy) dx$ (Doppelintegral über die gelben Querschnitte)

analog: $\int_B f(x,y) = \int_{b_1}^{b_2} (\int_{a_1}^{a_2} \tilde{f}(x,y) dx) dy$ (Doppelintegral über die roten Querschnitte)

3.3 Beispiel

$$\begin{array}{l} f: \mathbb{R}^2 \to \mathbb{R} \\ f(x,y) = 1 + xy^2 \\ \int_B f(x,y) \ (\text{vgl. Abb. 11}) \\ \text{Als erstes integrieren wir über die gelben Querschnitte:} \\ \int_B f(x,y) = \int_0^3 (\int_0^2 (1 + xy^2) dy) dx = \int_0^3 (x + \frac{1}{3}xy^3)|_{y=0}^{y=2} dx = \int_0^3 (2 + \frac{1}{3}x \cdot 8) dx \\ = \int_0^3 (2 + \frac{8}{3}x) dx = 2x + \frac{8}{3} \cdot \frac{1}{2}x^2|_{x=0}^{x=3} = 2 \cdot 3 + \frac{4}{3} \cdot 9 = 6 + 12 = 18 \end{array}$$

Abbildung 11: Flächenberechnung durch Integration über die gelben oder roten Querschnitte

Nun integrieren wir über die roten Querschnitte. Es muss das gleiche rauskom-

men:
$$\int_0^2 (\int_0^3 f(x,y) dx) dy = \int_0^2 (\int_0^3 (1+xy^2 dx) dy = \int_0^2 (x+\frac{1}{2}x^2y^2)_{x=0}^{x=3} dy = \int_0^2 (3+\frac{1}{2}\cdot 9y^2) dy = 3y + \frac{9}{2} \cdot \frac{1}{3}y^3|_{y=0}^{y=2} 3 \cdot 2 + \frac{3}{2} \cdot 8 = 6 + 12 = 18$$

Beispiel 3.4

Abbildung 12: Berechnung der Dreiecksfläche unterhalb von g(x) mit Hilfe der Querschnitte.

$$f(x,y) = xy^{2}$$

$$\int_{B} f(x,y) = ?$$

$$g(x) = \frac{2}{5}x$$

$$\begin{split} &\int_B f(x,y) = \int_0^5 (\int_0^{g(x)} f(x,y) dy) dx = \int_0^5 (\int_0^{\frac{2}{5}x} (xy^2) dy) dx = \int_0^5 ((x \cdot \frac{1}{3}y^3)|_{y=0}^{y=\frac{2}{5}x}) dx \\ &= \int_0^5 (x \cdot \frac{1}{3}(\frac{2}{5}^3)) dx = \int_0^5 (x^4 \cdot \frac{8}{375}) dx = \frac{8}{375} \cdot \frac{1}{5}x^5|_0^5 = \frac{8}{375 \cdot 5} \cdot 3125 = 13,33... \\ &\text{Ander Reihenfolge (blaue Querschnitte):} \\ &g(x) = \frac{2}{5}x \\ &y = \frac{2}{5}x \Rightarrow x = \frac{5}{2}y \\ &\int_B f = \int_0^2 (\int_{\frac{5}{2}y}^5 (f(x,y) dx) dy) = \int_0^2 (\int_{\frac{5}{2}y}^5 (xy^2) dx) dy = \int_0^2 (\frac{1}{2}x^2y^2)|_{\frac{x=5}{2}y}^{x=5} dy = \int_0^2 (\frac{1}{2} \cdot 2y^2)|_{\frac{5}{2}y}^{x=5} dy = \int_0^2 (\frac{1}{2} \cdot 2y^2)|_{\frac{5}{2}y}^{x=5} dy = \int_0^2 (\frac{1}{2} \cdot 3y^2)|_{\frac{5}{2}y}^{x=5} dy = \int_0^2 (\frac{1}{2} \cdot 3y^2)|_{\frac$$

$$\int_{B} f = \int_{0}^{2} \left(\int_{\frac{5}{2}y}^{5} (f(x,y)dx)dy \right) = \int_{0}^{2} \left(\int_{\frac{5}{2}y}^{5} (xy^{2})dx \right) dy = \int_{0}^{2} \left(\frac{1}{2}x^{2}y^{2} \right) \Big|_{\frac{5}{2}y}^{x=5} dy = \int_{0}^{2} \left(\frac{1}{2} \cdot 2y^{2} \right) dy = \int_{0}^{2} \left(\frac{25}{2}y^{2} - \frac{25}{8}y^{4} \right) dy = \frac{25}{2} \cdot \frac{1}{3}y^{3} - \frac{25}{8} \cdot \frac{1}{5}y^{5} \Big|_{0}^{2} = \frac{25}{6} \cdot 8 - \frac{5}{8} \cdot 32 = 13,33...$$

Flächenberechnung und Volumenberechnung 4

Flächenberechnung 4.1

Abbildung 13: Näherungsweise bekommen wir den Flächeninhalt der Fläche F, wenn wir die Summe der Streifen/Rechtecke aus der Länge der Zwischenstellen z_i und der Breite Δx berechnen.

$$F \approx \sum_{i=1}^{n} l(z_i) \cdot \Delta x \to \int_a^b l(x) dx$$

4.2 Volumenberechnung

Abbildung 14: Irgendein Körper im \mathbb{R}^3 . Und wir berechnen sein Volumen.

Körper im \mathbb{R}^3 . Wie ist das Volumen? $V \approx \sum_{i=1}^n q(z_i) \cdot \Delta x \to \int_a^b q(x) dx$

4.3 Beispiel Kugelvolumen

Abbildung 15: Berechnung des Kugelvolumens mit Hilfe der Streifensummen und des dazugehörigen Integrals.

Radius R
$$r^2 + x^2 = R^2$$

$$q(x) = r^2 \pi$$

$$q(x) = (R^2 - x^2) \pi$$

$$\frac{1}{2} V = \int_0^R ((R^2 - x^2) \pi) dx = \pi \int_0^R (R^2 - x^2) dx = \pi [R^2 x - \frac{1}{3} x^3]_{x=0}^R = \pi [R^3 - \frac{1}{3} R^3] = \pi \frac{2}{3} R^3 \Rightarrow V = \frac{4}{3} R^3 \pi$$

4.4 Beispiel aus der Wahscheinlichkeitsrechnung

 $f: \mathbb{R}^3 \to \mathbb{R}$ ist Dichte, wenn:

Abbildung 16: Dem Bereich B wird eine Wahrscheinlichkeit zugeordnet.

- $f(x,y) \ge 0$
- $\bullet \int_{\mathbb{R}^2} f(x,y) = 1$

Dem Bereich wird eine Wahrscheinlichkeit zugeordnet: $P(B) = \int_B f(x, y)$

5 Höhere partielle Ableitungen

 $f: \mathbb{R}^2 \to \mathbb{R}$ $(x,y) \to f(x,y) = x^2y + \sin(xy)$ f_x partielle Ableitung nach x $f_{x,y}$ erst nach x, dann nach y ableiten.

Die verschiedenen Ableitung der o.g. Funktion:

- $f_x = 2xy + \cos(xy)y$
- $f_y = x^2 + \cos(xy)x$
- $f_{x,x} = 2y y\sin(xy)y$
- $f_{y,y} = -x\sin(xy)x$
- $f_{x,y} = 2x + [-x\sin(xy)y + \cos(xy)]$
- $f_{y,x} = 2x + [-y\sin(xy)x + \cos(xy)]$

Es fällt auf, dass hier gilt: $f_{x,y} = f_{y,x}$

5.1 Beispiel zur Wiederholung

$$\begin{split} f(x,y) &= x^2 y + \sin(xy) \\ f_x &= 2xy + \cos(xy) \cdot y \\ f_{x,y} &= 2x + [-\sin(xy)] \cdot y + \cos(xy)] \\ f_y &= x^2 + \cos(xy) \cdot x \\ f_{y,x} &= 2x + [-y\sin(xy) \cdot x + \cos(xy)] \\ \text{Hier } f_{x,y} &= f_{y,x} \end{split}$$

5.2 Allgemein gilt

 $f: \mathbb{R}^2 \to \mathbb{R}$ Sind $f_{x,y}$ und $f_{y,x}$ stetig, so ist $f_{x,y} = f_{y,x}$

Abbildung 17: Beweis $f_{y,x} = f_{x,y}$

Beweis. Wir berechnen: $\int_B f_{x,y}$ und $\int_B f_{y,x}$

1.)
$$\int_{B} f_{x,y} = \int_{a_{1}}^{b_{1}} (\int_{a_{2}}^{b_{2}} f_{x,y} dy) dx = \int_{a_{1}}^{b_{1}} f_{x}(x,y)|_{y=a_{2}}^{y=b_{2}} dx = \int_{a_{1}}^{b_{1}} f_{x}(xb_{2}) - f_{x}(x,a_{2}) dx$$

$$= f(xb_{2}) - f(xa_{2})|_{x=a_{1}}^{x=b_{1}}$$

$$= [f(b_{1},b_{2}) - f(b_{1},a_{2})] - [f(a_{1},b_{2}) - f(a_{1},a_{2})]$$

2.
$$\int_{B} f_{y,x} = \int_{a_{2}}^{b_{2}} (\int_{a_{1}}^{b_{1}} f_{y,x} dx) dy = \int_{a_{2}}^{b_{2}} f_{y}(x,y)|_{x=a_{1}}^{x=b_{1}} dy = \int_{a_{2}}^{b_{2}} f_{y}(b_{1}y) - f_{y}(a_{1}y) dy$$

$$= f(b_{1}y) - f(a_{1}y)|_{y=a_{2}}^{y=b_{2}} = [f(b_{1},b_{2}) - f(a_{1},b_{2})] - [f(b_{1},a_{2}) - f(a_{1},a_{2})]$$

$$\Rightarrow \int_{B} f_{x,y} = \int_{B} f_{y,x} \text{ für jedes B}$$

$$\Rightarrow f_{y,x} = f_{x,y} \text{ (vgl. Abb. 17)}$$

5.3 Test

$$f(x,y) = y \cdot e^x + \sin(xy^2)$$

$$f_x = y \cdot e^x + \cos xy^2 \cdot y^2$$

$$f_{x,y} = e^x + [-\sin(xy^2) \cdot 2yx \cdot y^2 + \cos(xy^2)2y]$$

$$f_y = e^x + \cos(xy^2) \cdot 2yx$$

$$f_{y,x} = e^x + 2y[-\sin(xy^2) \cdot y^2x + \cos(xy^2)]$$

6 Extremwertaufgaben mit zwei Variablen

f(x,y): Wir suchen ein relatives Maximum oder relatives Minimum. Eine notwendige Bedingung hierfür ist eine horizontale Tangentialeben, d.h. $\frac{\delta f}{\delta y}=0$ und $\frac{\delta f}{\delta y}=0$.

Satz 6.1 (Rezept). f hat bei (x_0, y_0) einen relativen Extremwert, wenn:

- 1. $f_x(x_0, y_0) = 0$ und $f_y(x_0, y_0) = 0$
- 2. $\Delta = f_{x,x}(x_0, y_0) \cdot f_{y,y}(x_0, y_0) \cdot f_{x,y}(x_0, y_0)^2 > 0$
 - $f_{x,x}(x_0, y_0) < 0$ relatives Maximum
 - $f_{x,x}(x_0,y_0) > 0$ relatives Minimum

Ist $\Delta < 0$, so haben wir einen Sattelpunkt. Ist $\Delta < 0$, so ist keine Entscheidung möglich.

6.1 Beispiel

 $f(x,y)=xy-27(\frac{1}{x}-\frac{1}{y})=xy-27x^{-1}+27y^{-1}$. Gibt es Extremwerte und wenn: Handelt es sich um ein Minimum oder ein Maximum?

$$\begin{split} f_x &= y + 27x^{-2} \\ f_y &= x - 27y^{-2} \\ f_{xx} &= -54x^{-3} \\ f_{yy} &= 54y^{-3} \\ f_{xy} &= 1 \\ f_{yx} &= 1 \\ \text{Kritische Punkte: } f_x &= 0 \text{ und } f_y &= 0 \\ I: y + 27x^{-2} &= 0 \\ II: y - 27x^{-2} &= 0 \Rightarrow x = 27y^{-2} \text{ in I} \\ I: y + 27(27y^{-2})^{-2} &= 0 \\ y + 27 \cdot 27^{-2}y^4 &= 0 \\ y + 27^{-1}y^4 &= 0 \Rightarrow y \neq 0 \\ 1 + 27^{-1}y^3 &= 0 \\ y^3 &= (-1)27 \Rightarrow y = -3 \\ \text{in II: } x - 27(-3^{-2}) &= 0 \\ x - 27(\frac{1}{-3}^{-2}) &= 0 \\ x - \frac{27}{9} &= 0 \Rightarrow x = 3 \\ \text{Also } (x_0, y_0) &= (3, -3) \end{split}$$

Jetzt müssen wir das Delta
$$\Delta$$
 ausrechnen: $f_{x,x}(3,-3) \cdot f_{y,y}(3,-3) - f_{x,y}(3,-3)^2 = (-54 \cdot 3^{-3}) \cdot (54(-3)^{-3}) - 1 = (-\frac{54}{27})(-\frac{54}{27}) - 1 = (-2)(-2) - 1 = 3 < 0$

Jetzt müssen wir $f_{x,x}$ anschauen: $f_{x,x}(3,-3) = -2 < 0$ \Rightarrow relatives Maximum bei (3,-3)

Abbildung 18: Die Bewegung eines Punktes im Raum

7 Abbildungen des Typs $\mathbb{R} \to \mathbb{R}^n$

 $f(t)=\left(\begin{array}{c}x(t)\\y(t)\\z(t)\end{array}\right)$ mit $\mathbb{R}\to\mathbb{R}^3,$ t als Parameter. Das stellt die Bewegung eines

Punktes im Raum dar. Es handelt sich um die Parameterdarstellung einer Kurve im \mathbb{R}^3 . Es wird nicht nur die Kurve gegeben, sondern wie ein Punkt die Kurve durchläuft (Abb. 18).

7.1 Beispiel

1.
$$f(t) = \begin{pmatrix} t^2 + t \\ t^3 \end{pmatrix}$$

2.
$$f(t) = \begin{pmatrix} R\cos(t) \\ R\sin(t) \end{pmatrix}$$
t Winkel, R
 Radius Kreis

7.2 Ellipse

Abbildung 19: Eine Ellipse mit a=3 cm, b=2 cm, Punktkoordinaten

Mit $f(t) = \begin{pmatrix} a\cos(t) \\ b\sin(t) \end{pmatrix}$, a,b>0 (Halbachsen) wird eine Ellipse beschrieben (Abb. 19). In unserem Beispiel sind a=3 cm und b=2 cm.

7.3 Geschwindigkeitsvektor

Abbildung 20: Geschwindigkeitsvektor links: Richtung, —v
— Betrag der Geschwindigkeit. Rechts: Durchschnittsgeschwindigkeitsvektor

Wir berechnen den Geschwindigkeitsvektor [t = Zeit]. Der Durchschnittsgeschwindigkeitsvektor berechnet sich durch $\frac{f(t+h)-f(t)}{h}$, Test: $f(t)+h\cdot\frac{f(t+h)-f(t)}{h}=f(t+h)$. (Abb. 20)

 $\begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \end{pmatrix}$ mit $\dot{x}(t) = \frac{dx}{dt}$, $\dot{y}(t) = \frac{dy}{dt}$. Der Ableitungsvektor ist der Geschwindigkeitsvektor. Er ist auch Tangentenvektor an die Kurve.

7.4 Beispiele

1.
$$f(t) = \begin{pmatrix} t^3 + t \\ 2t \\ t^2 \end{pmatrix}, f'(t) = \begin{pmatrix} 3t^2 + 1 \\ 2 \\ 2t \end{pmatrix}$$

$$\begin{aligned} \mathbf{2. \ Kreis} \quad & f(t) = \left(\begin{array}{c} R\cos(t) \\ R\sin(t) \end{array} \right), \ f'(t) = \left(\begin{array}{c} -R\sin(t) \\ R\cos(t) \end{array} \right) \\ R = 1: f(t) = \left(\begin{array}{c} \cos(t) \\ \sin(t) \end{array} \right) f'(1) = \left(\begin{array}{c} -\sin(t) \\ \cos(t) \end{array} \right) \\ |f'(t)| = \sqrt{\sin^2(t) + \cos^2(t)} = 1 \\ \mathrm{Skalarprodukt:} \left(\begin{array}{c} \cos t \\ \sin t \end{array} \right) \cdot \left(\begin{array}{c} -\sin t \\ \cos t \end{array} \right) = -\cos t \sin t + \sin t \cos t = 0 \Rightarrow 90^\circ. \end{aligned}$$

Abbildung 21: Geschwindigkeitsvektor im Kreis

Ellipse
$$f(t) = \begin{pmatrix} a \cos t \\ b \sin t \end{pmatrix}, f'(t) = \begin{pmatrix} -a \sin t \\ b \cos t \end{pmatrix}$$

7.5 Der Beschleunigungsvektor

Durchschnittsbeschleunigung (Abb. 22) zwischen t und t+h: $\frac{v(t+h)-v(t)}{h}$ Test: $v(t)+h\cdot\frac{v(t+h)-v(t)}{h}=v(t+h)$ Momentanbeschleunigung: $b(t)=\lim_{h\to 0}\frac{v(t+h)-v(t)}{h}=v'(t)$ b(t)=f''(t)

7.6 Merke

1. Die erste Ableitung f'(t) entspricht dem Geschwindigkeitsvektor f'(t) = v(t).

Abbildung 22: Der Beschleunigungsvektor

2. Die zweite Ableitung f''(t) entspricht dem Beschleunigungsvektor f''(t)v'(t) = b(t).

7.7 Beispiele

1.
$$f(t) = \begin{pmatrix} 3t^2 \\ t^3 \end{pmatrix}, v(t) = \begin{pmatrix} 6t \\ 3t^2 \end{pmatrix}, b(t) = \begin{pmatrix} 6 \\ 6t \end{pmatrix}$$

Abbildung 23: Beschleunigung im Kreis

2. Kreis Jetzt sehen wir uns die Beschleunigung im Kreis an (Abb. 23).

2. Kreis Jetzt sehen wir uns die Beschleunigung im Kreis an (Ab
$$f(\varphi) = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}$$

$$v(\varphi) = \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix}, |v| = 1$$

$$b(\varphi) = \begin{pmatrix} -\cos \varphi \\ -\sin \varphi \end{pmatrix}, |b| = 1$$
Zentrifuge: $R = 5$ m, 2 Umdrehungen pro Sekunde, $\varphi = 4\pi t = \varphi(t)$

$$f(t) = \begin{pmatrix} R\cos \varphi \\ R\cos \varphi \end{pmatrix} = \begin{pmatrix} 5\cos(4\pi t) \\ 5\sin(4\pi t) \end{pmatrix}$$

$$f'(t) = \begin{pmatrix} -5 \cdot 4\pi \sin(4\pi t) \\ 5 \cdot 4\pi \cos(4\pi t) \end{pmatrix}$$

$$f''(t) = -80\pi^2 \cdot \underbrace{\begin{pmatrix} \cos(4\pi t) \\ \sin(4\pi t) \end{pmatrix}}_{\text{Länge 1}}$$

$$|f''(t)| = 80\pi^2 = 789 \frac{\pi}{s^2}$$

Ellipse
$$f(\varphi) = \begin{pmatrix} a\cos\varphi\\b\sin\varphi \end{pmatrix}$$

 $f'(\varphi) = \begin{pmatrix} -a\sin\varphi\\b\cos\varphi \end{pmatrix} = v(\varphi)$
 $f''(\varphi) = \begin{pmatrix} -a\cos\varphi\\-\sin\varphi \end{pmatrix} = b(\varphi)$

Linearisierung

$$f: \mathbb{R} \to \mathbb{R}^{n}, f(t + \Delta t) \approx f(t) + \Delta t f'(t)$$

$$z.B. \ f(t) = \begin{pmatrix} \sin t \\ \cos t \\ \sin t^{2} \end{pmatrix}, f'(t) = \begin{pmatrix} \cos t \\ -\sin t \\ 2t \cos t^{2} \end{pmatrix}$$

$$f(t + \Delta t) \approx \begin{pmatrix} \sin t \\ \cos t \\ \sin t^{2} \end{pmatrix} + \Delta t \cdot \begin{pmatrix} \cos t \\ -\sin t \\ 2t \cos t^{2} \end{pmatrix}$$

$$\frac{\text{Bei } t = 0:}{f(\Delta t)} \approx \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \Delta t \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\Delta t = 0.1: f(0.1) \approx \begin{pmatrix} 0 + 0.1 \\ 1 + 0 \\ 0 + 0 \end{pmatrix} = \begin{pmatrix} 0.1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \sin 0.1 \\ \cos 0.1 \\ \sin 0.01 \end{pmatrix} = \begin{pmatrix} 0.1 \\ 0.99 \\ 0.01 \end{pmatrix} \checkmark$$

7.9 Die Zykloide

Abbildung 24: Ein Zykloid entsteht durch Abrollen eines Kreispunktes (rote Linie). Radius R, Parameter φ , t-s-Hilfskoordinatensystem (blau)

Ein Kreis rollt auf einer Geraden ab. Bahn des Punktes P. Im s-t-Hilfskoordinatensystem (vgl. Abb. 24): $s(\varphi) = R\cos\varphi, t(\varphi) = R\sin\varphi, \text{ im x-y-System: } x(\varphi) = R\varphi - t =$

$$R\varphi - R\sin\varphi, y(\varphi) = R - s = R - R\cos\varphi, \text{ also:}$$

$$f(\varphi) = \begin{pmatrix} x(\varphi) \\ y(\varphi) \end{pmatrix} = \begin{pmatrix} R\varphi - R\sin\varphi \\ R - R\cos\varphi \end{pmatrix} = R \begin{pmatrix} \varphi - \sin\varphi \\ 1 - \cos\varphi \end{pmatrix} \text{ (Zykloide)}$$
Eine Umdrehung in 2π Sekunden, Radgeschwindigkeit: $\frac{2R\pi}{2\pi} = R$

$$f'(\varpi) = R \begin{pmatrix} 1 - \cos \varphi \\ \sin \varphi \end{pmatrix} f'(\pi) = R \begin{pmatrix} 1 - (-1) \\ 0 \end{pmatrix} = R \begin{pmatrix} 2 \\ 0 \end{pmatrix}, |f'(\pi)| = 2R \Rightarrow \text{Doppelt so schnell wie Radgeschwindigkeit.}$$

Abbildung 25: Die Bahn eines Zykloids

8 Bogenlänge einer Kurve

Abbildung 26: Wir wollen die Bogenlänge einer Kurve berechnen (s).

Abbildung 27: Die Bogenlänge für den Abschnitt a bis b.

$$\begin{split} y &= f(x), s = \sqrt{\Delta y^2 + \Delta t^2}, f'(x_i) \approx \frac{\Delta y}{\Delta x} \\ s &\approx \sqrt{\Delta x^2 + f'(x_i)^2 \cdot \Delta x^2} \approx \Delta x \sqrt{1 + f'(x_i)^2} \text{ (Abb. 26)} \\ L_{a,b} &\approx \sum_{i=0}^{n-1} s_i \approx \sum_{i=0}^{n-1} \Delta x \sqrt{1 + f'(x_i)^2} \xrightarrow[n \to \infty]{} \int_a^b \sqrt{1 + f'(x)^2} dx \text{ (Bogenlänge, vgl. Abb. 27)} \end{split}$$

Abbildung 28: Beispiel Kreis

8.1 Beispiel Kreis

$$r^{2} = x^{2} + y^{2} \Rightarrow y = \sqrt{r^{2} - x^{2}}, f(x) = (r^{2} - x^{2})^{\frac{1}{2}}, f'(x) = \frac{1}{2}(r^{2} - x^{2})^{-\frac{1}{2}}$$

$$L_{0,r} = \int_{0}^{r} \sqrt{1 + \frac{x^{2}}{r^{2} - x^{2}}} dx = \int_{0}^{r} \sqrt{\frac{r^{2} - x^{2} + x^{2}}{r^{2} - x^{2}}} dx = \int_{0}^{r} \sqrt{\frac{r^{2}}{r^{2} - x^{2}}} dx = r \int_{0}^{r} \sqrt{\frac{1}{r^{2} - x^{2}}} dx$$

$$= \left[r \arcsin \frac{x}{r} \right]_{0}^{r} = r(\arcsin 1 - \arcsin 0) = r(\frac{\pi}{2} - 0) = r\frac{\pi}{2}$$
Formelsammlung
genger Knoice $Ar^{\pi} = 2\pi r$

ganzer Kreis: $4r\frac{\pi}{2} = 2\pi r$

Bogenlänge einer Kurve in Parameterdarstellung

Abbildung 29: Bogenlänge einer Kurve in Parameterdarstellung

$$\begin{split} L_{a,b} &\approx \sum_{i=0}^{n-1} |f(t_{i+1}) - f(t_i)| \approx \sum_{i=0}^{n-1} |f'(t_i)| \cdot \Delta t \xrightarrow[n \to \infty]{} \int_a^b |f'(t)| \, \Delta t, \text{ also:} \\ L_{a,b} f(t) &= \int_a^b |f'(t)| \, \Delta t \text{ (Integral "uber Betrag der Geschwindigkeit)}. \end{split}$$

Beispiel Schraubenlinie

 $f(\varphi) = (R\cos\varphi, R\sin\varphi, v\cdot\varphi)$, v ist der Vorschub. Die Schraubenlinie befindet sich auf dem Schraubzylinder. Wickelt man den Schraubzylinder entlang der roten Linie (Abb. 30) ab, so entsteht ein Rechteck (Abb. 31). $L^2 = (2R\pi)^2 + (v2\pi)^2 = 4R^2\pi^2 + 4v^2\pi^2 = 4\pi^2(R^2 + v^2) \Rightarrow L = 2\pi\sqrt{R^2 + v^2}$

8.4 Hausaufgabe

$$\begin{split} f(\varphi) &= (R\cos\varphi, R\sin\varphi, v\cdot\varphi), \ f'(\varphi) = (-R\sin\varphi, R\cos\varphi, v) \\ |f'(\varphi)| &= \sqrt{R^2\sin^2\varphi + R^2\cos^2\varphi + v^2} = \sqrt{R^2 + v^2} \end{split}$$

Abbildung 30: Eine Schraubenlinie im $\mathbb{R}^3.$ Sie wird entlang der roten Linie abgewickelt

Abbildung 31: Durch das Abwickeln der Schraubenlinie entlang der roten Linie entsteht ein Rechteck. Die abgewickelte Schraubenlinie ist eine Gerade.

$$L_{0,2\pi} = \int_0^{2\pi} \sqrt{R^2 + v^2} dt = \left[\sqrt{R^2 + v^2} t \right]_{t=0}^{t=2\pi} = \sqrt{R^2 + v^2} 2\pi$$

8.5 Bogenlänge der Zykloide

$$\begin{split} &f(\varphi) = R\left(\varphi - \sin\varphi, 1 - \cos\varphi\right), \ f'(\varphi) = R\left(1 - \cos\varphi, \sin\varphi\right) \\ &|f'(\varphi)| = R\sqrt{(1 - \cos\varphi)^2 + \sin^2\varphi} = R\sqrt{1 + \cos^2\varphi - 2\cos\varphi + \sin^2\varphi} = R\sqrt{2 - 2\cos\varphi} \\ &= 2R\sqrt{\frac{2 - 2\cos\varphi}{4}} = 2R\sqrt{\frac{1 - \cos\varphi}{2}} \underbrace{\qquad \qquad }_{\text{Formelsammlung}} \\ &\int_0^{2\pi} |f'(\varphi)| \, d\varphi = \int_0^{2\pi} 2R\sin\frac{\varphi}{2} d\varphi = \left[-4R\cos\frac{\varphi}{2} \right]_0^{2\pi} = -4R\left(\cos\pi - \cos0\right) = -4R(-1 - 1) \\ &= 8r \ \text{(Länge)}, \ \underline{\text{Weg: } 2\pi R} \end{split}$$

8.6 Die natürliche Parameterdarstellung

Definition 8.1. Eine Parameterdarstellung k(t) heißt natürlich, wenn |k'(t) = 1|, $\forall t$ (konstante Geschwindigkeit 1).

Abbildung 32: Parametrisierung nach der Bogenlänge. Eine Parameterdarstellung ist natürlich, wenn $L_{a,t}=t-a$

Sei k(t) natürlich:
$$L_{a,b}=\int_a^{t_0}|f'(t)|\,dt=\int_a^{t_0}1dt=[t]_a^{t_0}$$
 $\underline{=t_0-a}$

8.7 Parametertransformation

Die Funktion $t(\theta)$ sei streng monoton wachsend (in Abb. 33 ist das so!) oder streng monoton fallend. Neue Parameterdarstellung der Kurve: $k(t(\theta)), \theta \in [c,d]$.

 $t(\theta)$ steng monoton wachsend: Durchlaufsinn bleibt (gestrichelten Linien in Abb. 33).

 $t(\theta)$ steng monoton fallend: anderer Durchlaufsinn.

8.8 Beispiel

$$\begin{split} f(t) &= \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}, t \in \sqrt{0,2\pi} \\ f(\theta) &= 2\theta + 1 \text{ (monoton steigend)} \\ k(t(\theta)) &= \begin{pmatrix} \cos(2\theta + 1) \\ \sin(2\theta + 1) \end{pmatrix} \\ t(c) &= 0, 2c + 1 = 0 \Rightarrow c = \frac{1}{2} \\ t(d) &= 2\pi, 2d + 1 = 2\pi \Rightarrow d = \frac{2\pi - 1}{2} \end{split}$$

Abbildung 33: Parametertransformation

8.9 Umwandlung einer Parameterdarstellung in eine natürliche Parameterdarstellung

Abbildung 34: Umwandlung einer Parameterdarstellung in eine natürliche Parameterdarstellung. Die Bogenlänge soll so lang sein wie die Zeit (rote Linien).

Wir wollen eine Parameterdarstellung in eine natürliche Parameterdarstellung umwandeln (Abb. 34). $\theta(t) - c = \int_a^t |k'(s)| ds$. $t(\theta)$ ist die Umkehrfunktion von $\theta(t)$.

"Wir suchen das $t(\theta)$, haben aber nur $\theta(t)$."

8.10 Beispiel Zykloide

Wir suchen die natürliche Parameterdarstellung der Zykloide. R = 1, f(t) = $(t-\sin t, 1-\cos t), a=0 \le t \le b=\pi$ (halber Bogen bis 180°). Setze c=0 (d= 4), $|f't(t)| = 2\sin\frac{t}{2}$ (Wir ersetzen im Folgenden t durch s). $\theta(t) = \int_0^t 2\sin\frac{s}{2}ds = \left[4\cos\frac{s}{2}\right]_{s=0}^{s=t} = -4\left(\cos\frac{t}{2} - \cos 0\right) = -4\cos\frac{t}{2} + 4$ $\theta(t) = 4 - 4\cos\frac{t}{2} = \theta$ Nun suchen wir die Umkehrfunktion $\to t(\theta)$ nach t

$$\theta(t) = \int_0^t 2\sin\frac{\pi}{2}ds = \left[4\cos\frac{\pi}{2}\right]_{s=0}^t = -4\left(\cos\frac{\pi}{2} - \cos\theta\right) = -4\cos\frac{\pi}{2} + 4$$

 $\theta(t) = 4 - 4\cos\frac{\pi}{2} = \theta$ Nun suchen wir die Umkehrfunktion $\to t(\theta)$ nach

auflösen.
$$-4\cos\frac{t}{2} = \theta - 4$$

$$\cos\frac{t}{2} = 1 - \frac{\theta}{4}$$

$$\frac{t}{2} = \arccos\left(1 - \frac{\theta}{4}\right)$$

$$t = 2\arccos\left(1 - \frac{\theta}{4}\right), 0 \le \theta \le 4$$

$$t(\theta) = 2\arccos\left(1 - \frac{\theta}{4}\right)$$

$$f(t(\theta)) = \begin{pmatrix} 2\arccos\left(1 - \frac{\theta}{4}\right) - \sin\left(2\arccos\left(1 - \frac{\theta}{4}\right)\right) \\ 1 - \cos\left[2\arccos\left(1 - \frac{\theta}{4}\right)\right] \end{pmatrix}$$

8.11 Die Krümmung einer Kurve

Abbildung 35: Die Krümmung einer Kurve

Die Parameterdarstellung k(t) sei **natürlich**. Krümmung = $\frac{\text{Winkeländerung des Geschwindigkeitsvektors}}{\text{Bogenlänge}}$ Krümmung = $\lim_{h \to 0} \frac{\left| k'(t+h) - k'(t) \right|}{|h|} = \lim_{h \to 0} \left| \frac{k'(t+h) - k'(t)}{h} \right|$ Krümmungsvektor (ohne Betrag): $\lim_{h \to 0} \frac{k'(t+h) - k'(t)}{h} = \frac{k''(t)}{h}$ Krümmung: |k''(t)|

Der Krümmungsvektor k''(t) steht senkrecht auf k'(t).

"Zähler ≘ blaue Linie in Abb. 35"

Annäherung durch Kreis Wir nähern die Kurve k im Punkt k(t) durch einen Kreis an (Abb. 35). $\lim_{h\to 0} \frac{k'(t+h)-k(t)}{h}$ mit $\alpha=\frac{h}{R}$

 $\lim_{h\to 0}\frac{\left|k'(t+h)-k(t)\right|}{|h|}=\lim_{h\to 0}\frac{\alpha}{\alpha\cdot R}=\frac{1}{R}. \text{ Der Betrag der Krümmung ist somit }\frac{1}{R}. \text{ Also: Der Krümmungsvektor zeigt in Richtung des Krümmungskreismittelpunkts. Der Krümmungskreisradius ist }\frac{1}{\text{Krümmung}}. \text{ Die Ebene des Krümmungskreises wird aufgespannt durch den Geschwindigkeitsvektor und den Krümmungsvektor.}$

Beispiel Krümmung der Schraublinie

 $f(t) = (R\cos t, R\sin t, v\cdot t)$. Wir brauchen die natürliche Parameterdarstellung und müssen daher eine Transformation machen: $\theta(t) - c = \int_a^t |f'(s)| ds$ mit a = $0, c = 0. \ \theta(t) = \int_0^t \left| (-R \sin s, R \cos s, v) \right| ds = \int_0^t \sqrt{R^2 \sin^2 s + R^2 \cos^2 s + v^2} ds$ $= \int_0^t \sqrt{R^2 + v^2} ds = \left[\sqrt{R^2 + v^2} s \right]_0^t = t \sqrt{R^2 + v^2} = \theta$ Auflösen nach t: $t = \frac{\theta}{\sqrt{R^2 + v^2}}$ Admosen fraction t: $t - \sqrt{R^2 + v^2}$ $\Rightarrow g(\theta) = \left(R\cos\frac{\theta}{\sqrt{R^2 + v^2}}, R\sin\frac{\theta}{\sqrt{R^2 + v^2}}, v\frac{\theta}{\sqrt{R^2 + v^2}}\right)$ $g'(\theta) = \left(-\frac{R}{\sqrt{R^2 + v^2}}\sin\frac{\theta}{\sqrt{R^2 + v^2}}, \frac{R}{\sqrt{R^2 + v^2}}\cos\frac{\theta}{\sqrt{R^2 + v^2}}, \frac{v}{\sqrt{R^2 + v^2}}\right)$ $g''(\theta) = \left(-\frac{R}{\sqrt{R^2 + v^2}\sqrt{R^2 + v^2}}\cos\frac{\theta}{\sqrt{R^2 + v^2}}, -\frac{R}{\sqrt{R^2 + v^2}\sqrt{R^2 + v^2}}\sin\frac{\theta}{\sqrt{R^2 + v^2}}, 0\right)$ $= -\frac{R}{\sqrt{R^2 + v^2}\sqrt{R^2 + v^2}}\left(\cos\frac{\theta}{\sqrt{R^2 + v^2}}, \sin\frac{\theta}{\sqrt{R^2 + v^2}}, 0\right)$ Länge 1

 $|g''(\theta)|=\frac{R}{R^2+v^2}$ Konstante Krümmung. R
 Radius Schraubzylinder. Krümmungskreisradius
 $=\frac{1}{\text{Krümmung}}=\frac{R^2+v^2}{R}=R+\frac{v^2}{R}$

Krümmung einer ebenen Kurve, die als Graph einer Funktion y = f(x) gegeben ist

Abbildung 36: $\Delta \alpha$ ist der Winkel zwischen den beiden Tangenten. s ist die Bogenlänge.

Krümmung von f bei x $\approx \frac{\Delta \alpha}{\Delta s}$. $s(x) = \int_a^x \sqrt{1 + f'(t)^2} dt$, $\frac{ds}{dx} = \sqrt{1 + f'(x)^2}$, $\alpha_1(x) = \arctan f'(x)$, $\alpha_2(s) = \alpha_1(x(s))$ $K(x) = \frac{d\alpha_2}{ds} = \frac{d\alpha_1}{dx} \cdot \frac{dx}{ds}$ $\frac{d\alpha_1}{dx} = \frac{1}{1+f'(x)^2} \cdot f''(x)$ Ableitung von x nach s, x(s) ist die Umkehrfunktion von s(x). Dafür gibt es eine Formel: $\frac{dx}{ds} = \frac{1}{\frac{ds}{dx}} = \frac{1}{\sqrt{1+f'(x)^2}}$ Also: $K(x) = \frac{1}{1+f'(x)^2} \cdot f''(x) \cdot \frac{1}{\sqrt{1+f'(x)^2}}$ "Kettenregel!"

Formel für die Krümmung bei x $K(x) = \frac{f''(x)}{\sqrt{1+f'(x)^2}}$

8.14 Ein einfaches Beispiel

Abbildung 37: Beispiel Krümmungskreis mit dessen Hilfe die Funktion angenähert werden kann. Der Kreisradius beträgt $\frac{1}{2}$ und f'(1)=2

$$\begin{array}{l} f(x)=x^2,\,f'(x)=2x,\,f''(x)=2\Rightarrow K(x)=\frac{2}{\sqrt{1+4x^2}^3}\\ \text{Die Krümmung im Scheitel, also bei 0: } K(0)=\frac{2}{1}=2\\ \text{Der Krümmungskreisradius ist } \frac{1}{\text{Krümmung}},\,\text{also } \frac{1}{2}\,\text{(vgl. Abb. 37)} \end{array}$$

8.15 Krümmung einer ebenen Kurve in Parameterdarstellung

Abbildung 38: Krümmung einer ebenen Kurve

Steigung an der Stelle x(t), y(t): $\tan \alpha = \frac{\dot{y}(t)}{\dot{x}(t)} = f'(t) = \frac{df}{dx}(x(t))$ (Abb. 38)

Beide Seiten nach t ableiten:
$$\frac{\dot{x}(t)\ddot{y}(t)-\dot{y}(t)\ddot{x}(t)}{\dot{x}(t)^2}=\frac{df}{dx\cdot dx}\cdot\dot{x}(t)\Rightarrow f''(x)=\frac{\dot{x}(t)\ddot{y}(t)-\dot{y}(t)\ddot{x}(t)}{\dot{x}(t)^3}$$

Krümmung beim Parameterwert t
$$K(t)=rac{f''(x)}{\sqrt{1+f'(x)^2}^3}=rac{\dot{x}\ddot{y}-\dot{y}\ddot{x}}{\dot{x}^3\sqrt{1+rac{\dot{x}}{\dot{x}}^2}^3}$$

Krümmung bei t
$$K(t)=rac{\ddot{y}\dot{x}-\dot{y}\ddot{x}}{\left(\dot{x}\sqrt{1+\frac{\dot{y}^2}{\dot{x}}^2}
ight)^3}$$

8.16 Beispiel Ellipse

Abbildung 39: So kann eine Ellipse ausschauen ;-)

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} a\cos t \\ b\sin t \end{pmatrix}$$
$$\dot{x} = -a\sin t, \ddot{x} = -a\cos t$$
$$\dot{y} = b\cos t, \ddot{y} = -bin\sin t$$

$$K(t) = \frac{b \sin(t) a \sin(t) + b \cos(t) a \cos(t)}{\left(-a \sin t \sqrt{1 + \frac{b \cos t}{-a \sin t}^2}\right)^3} = \frac{ab}{\left(-a \sin t \sqrt{1 + \frac{a^2 \sin^2 t + b^2 \cos^2 t}{a^2 \sin^2 t}}\right)^3} = \frac{ab}{\left(\pm 1 \sqrt{a^2 \sin^2 t + b^2 \cos^2 t}^3\right)}$$

Krümmung an den Scheiteln (0°,90°) $t=0^\circ:K(0)=\frac{ab}{\sqrt{b^2}^3}=\frac{ab}{b^3}=\frac{a}{b^2}$ \Rightarrow Krümmungskreisradius $=\frac{b^2}{a}$

 $t=90^\circ:K(\frac{\pi}{2})=\frac{ab}{\sqrt{a^2}^3}=\frac{ab}{a^3}=\frac{b}{a^2}\Rightarrow \text{Krümmungskreisradius}=\frac{a^2}{b}$

Abbildung 40: Konstruktion einer Ellipse mit a=3,b=2 mit Hilfe von ähnlichen Dreiecken. R und r sind die Krümmungskreismittelpunkte.

Wir suchen nun ähnliche Dreiecke (Abb. 40), bei denen die Seiten Senkrecht zueinander sind. $\frac{b}{a}=\frac{a}{R}\Rightarrow bR=a^2\Rightarrow R=\frac{a^2}{b}$ $\frac{b}{a}=\frac{r}{b}\Rightarrow r=\frac{b^2}{a}$

9 Kurven in Polarkoordinaten

Abbildung 41: Kurven in Polarkoordinaten umrechnen. Gegeben $r(\varphi)$

Gegeben ist $r(\varphi) \Rightarrow$ übliche Parameterdarstellung: $x(\varphi) = r(\varphi) \cdot \cos \varphi, \ y(\varphi) = r(\varphi) \cdot \sin \varphi$

Abbildung 42: Beispiel Archimedische Spirale (Quelle: Wikipedia)

9.1 Beispiel Archimedische Spirale

 $r(\varphi) = a \cdot \varphi, a > 0$ $x(\varphi) = a \cdot \varpi \cdot \cos \varphi, \ y(\varphi) = a \cdot \varpi \cdot \sin \varphi$, Tangentenvektor: $x'(\varphi) = a(1\cos \varphi - \varphi \sin \varphi), \ y'(\varphi) = a(1\sin \varphi + \varphi \cos \varphi).$

Bei
$$\varphi = 0^{\circ}$$
: $(x'(0), y'(0)) = a(1, 0)$
Bei $\varphi = 2\pi$: $a(\cos 2\pi - 2\pi \sin 2\pi, \sin 2\pi + 2\pi \cos 2\pi) = a(1, 2\pi)$

9.2 Sektorflächeninhalt

Abbildung 43: Sektorflächeninhalt: Annäherung durch Kreissegment (1), durch eine Funktion (2) und durch die Archimedische Spirale (3).

Annäherung durch Kreissegmente: $\textstyle \sum_{i=1}^n \frac{r(\varphi_i)^2\pi}{2\pi} \Delta \varphi = \sum_{i=1}^n \frac{1}{2} r(\varphi_i)^2 \Delta \varphi \ \overline{n \Rightarrow \infty}$ $\int_{\varphi_1}^{\varphi_2} \frac{1}{2} r(\varphi)^2 d\varphi$

Archimedische Spirale: 2π

Archimetrische Spirale.
$$2\pi$$

$$\int_{\varphi_1}^{\varphi_2} \frac{1}{2} r(\varphi)^2 d\varphi = \int_0^{2\pi} \frac{1}{2} (a\varphi)^2 d\varphi = \left[\frac{a^2}{2} \int_0^{2\pi} \varphi^2 d\varphi = \left[\frac{a^2}{2} \frac{1}{3} \varphi^3\right]_0^{2\pi} = \frac{a^2}{2} \frac{1}{3} (2\pi)^3 = \frac{4}{3} a^2 \pi^3 \text{ mit } a = 1: \frac{4}{3} \pi^3 = 41.3$$

9.3 Bogenlänge in Polarkoordinaten

Abbildung 44: Bogenlänge in Polarkoordinaten

$$\sum_{i=1}^{n} \frac{2r(\varphi_i)\pi}{2\pi} \cdot \Delta \varphi, \int_{\alpha}^{\beta} r(\varphi) dy \text{ ist falsch!}$$

Formel für die Bogenlänge
$$\int_{t=a}^{t=b} |f'(t)| \, dt = \int_a^b \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2} \, dt$$
 Polarkoordinaten: $x(\varphi) = r(\varphi) \cos \varphi \ y(\varphi) = r(\varphi) \sin \varphi$
$$\left(\frac{dx}{d\varphi}\right)^2 + \left(\frac{dy}{dp}\right)^2 = (r'(\varphi) \cos \varphi - r(\varphi) \sin \varphi)^2 + (r'(\varphi) \sin \varphi + r(\varphi) \cos \varphi)^2 = \dots = r'(\varphi)^2 + r(\varphi)^2 \Rightarrow \mathbf{Bogenlänge} = \int_{\varphi_1}^{\varphi_2} \sqrt{r'(\varphi)^2 + r(\varphi)^2} \, d\varphi$$

9.4 Beispiel Logarithmische Spirale

Abbildung 45: Logarithmische Spirale

Wir berechnen die Logarithmische Spirale (Abb. 45):
$$r(\varphi) = a \cdot e^{b\varphi}$$
, $a,b>0$ $r'(\varphi) = abe^{b\varphi} \int_{\varphi_1}^{\varphi_2} \sqrt{a^2b^2e^{2b\varphi} + a^2e^{2b\varphi}} d\varphi = \int_{\varphi_1}^{\varphi_2} ae^{b\varphi} \sqrt{b^2 + 1} d\varphi = a\sqrt{b^2 + 1} \int_{\varphi_1}^{\varphi_2} e^{b\varphi} d\varphi = a\sqrt{b^2 + 1} \left[\frac{1}{b}e^{b\varphi}\right]_{\varphi_1}^{\varphi_2} = \frac{a}{b}\sqrt{b^2 + 1} \left(e^{b\varphi_2} - e^{b\varphi_1}\right)$ Berechne: $\lim_{\varphi \to \infty} \int_{\varphi}^0 \sqrt{r'(\varphi)^2 + r(\varphi)^2} d\varphi = \lim_{\varphi \to \infty} \frac{a}{b}\sqrt{b^2 + 1} \left(\underbrace{e^{b\cdot 0}}_1 - \underbrace{e^{b\varphi}}_0\right) = \frac{a}{b}\sqrt{b^2 + 1} \Rightarrow$

Strecke ist endlich z.B. $a = b = 1 \Rightarrow \text{Länge} = \sqrt{2}$

Windet sich umendlich am Nullpunkt, aber die Strecke ist dennoch endlich."

Abbildung 46: Linienintegral

9.5 Linienintegrale

9.5.1 1. Art:

Gegeben ist eine ebene Kurve (Abb. 46) in der xy-Ebene durch Parameterdarstellung K(t) und die Funktion $F: \mathbb{R}^2 \to \mathbb{R}$. Gesucht wird der Inhalt der abgewickelten Fläche.

abgewickelten Fläche.
$$\sum_{i=1}^{n} F(K(t_i)) \cdot |K'(t_i)| \cdot \Delta t \ \overrightarrow{n \to \infty} \int_a^b F(K(t)) \cdot |K'(t)| \ dt = \int_a^b F(K_1(t), K_2(t)) \cdot \sqrt{K_1'(t)^2 + K_2'(t)^2} \ dt$$

9.6 Beispiel

Abbildung 47: F(x,y)= Länge des Bogens b im Einheitskreis und die abgewickelte Fläche mit $F=2\pi^2$ (rechts)

$$\begin{split} K(t) &= \left(\begin{array}{c} \cos t \\ \sin t \end{array}\right) \text{ (Einheitskreis)} \\ &\int_0^{2\pi} F(K(t)) \left| K'(t) \right| dt = \int_0^{2\pi} F(\cos t, \sin t) \cdot \left| -\sin t, \cos t \right| dt = \int_0^{2\pi} t \cdot 1 dt = \left[\frac{1}{2} t^2\right]_0^{2\pi} \\ &= \frac{1}{2} 4 \pi^2 = 2 \pi^2 \text{ (vgl. Abb. 47)} \end{split}$$

9.7 Beispiel

$$F(x,y) = x^2 + y^2 \ K(t) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$$

Abbildung 48: Beispiel und die abgewickelte Fläche (rechts)

$$\begin{array}{l} \int_{0}^{2\pi} F(K(t)) \cdot |K'(t)| \, dt = \int_{0}^{2\pi} F(\cos t, \sin t) \cdot |(-\sin t, \cos t)| \, dt = \int_{0}^{2\pi} \left(\cos^2 t + \sin^2 t\right) \cdot 1 \, dt = \int_{0}^{2\pi} 1 \, dt = [t]_{0}^{2\pi} = 2\pi \text{ (vgl. Abb. 48)} \end{array}$$

9.7.1 2. Art Arbeitsintegral (in der Ebene)

Abbildung 49: Arbeitsintegral und rechts ein Kraftvektor

Gegeben ist eine Kurve K(t), ein Vektorfeld
$$F(x,y) = \begin{pmatrix} F_1(x,y) \\ F_2(x,y) \end{pmatrix}$$
 und Kraftvektoren (Abb. 49). Arbeit ist Kraft mal Weg. Arbeit $\approx \sum_{i=1}^n \left| \tilde{K}'(t) \right| \cdot |K'(t)| \cdot \Delta t \sum_{i=1}^n |F(K(t))| \cdot \cos \alpha \cdot |K'(t)| \cdot \Delta t$ mit
$$\cos \alpha = \frac{F(K(t)) \cdot K'(t)}{|F(K(t))| \cdot |K'(t)|} = \sum_{i=1}^n |F(K(t_i))| \cdot |K'(t_i)| \cdot \frac{F(K(t_i)) \cdot K'(t_i)}{|F(K(t_i))| \cdot |K'(t_i)|} \cdot \Delta t = \sum_{i=1}^n F(K(t_i)) \underbrace{K'(t_i) \cdot \Delta t}_{\text{Skalarprodukt}} \times K'(t_i) \cdot \Delta t \xrightarrow{n \to \infty} \int_a^b F(K(t)) \cdot K'(t) dt \text{ (Arbeitsintegral)}$$

9.8 Beispiel Arbeitsintegral

Vektorfeld
$$F(x,y) = \binom{x^2y}{xy^2}$$
, Kurve $K(t) = \binom{2t}{t}$ von $t = 0$ bis $t = 1$ (Abb. 50).
 $K'(t) = \binom{2}{1} F(K(t)) = F \binom{2t}{t} = \binom{4t^3}{2t^3}$

$$\int_0^1 F(K(t)) \cdot K'(t) dt = \int_0^1 \binom{4t^3}{2t^3} \cdot \binom{2}{1} dt = \int_0^1 8t^3 + 2t^3 dt = \int_0^1 10t^3 dt$$

$$= \left[10 \cdot \frac{1}{4}\right]_0^1 = 2.5$$

Abbildung 50: Arbeitsintegral: heir Gerade

9.9 Beispiel

Wir rechnen im \mathbb{R}^3 mit dem Vektorfeld $F(x,y,z)=\begin{pmatrix}0\\0\\-1\end{pmatrix}$ und der Kurve $K(\varphi)=(\cos\varphi,\sin\varphi,\varphi)$ (Schraubenlinie)

$$\int_0^{2\pi} F(K(\varphi)) \cdot K'(\varphi) d\varphi = \int_0^{2\pi} \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} -\sin\varphi \\ \cos\varphi \\ 1 \end{pmatrix} d\varphi = \int_0^{2\pi} -1 d\varphi = -2\pi$$

"Bei einer Umdrehung geht es 2π nach oben"

10 Differenzieren von Funktionen des Typs $\mathbb{R}^n o \mathbb{R}^m$

$$\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix} \rightarrow
\begin{pmatrix}
 f_1(x_1, ..., x_n) \\
 \vdots \\
 f_m(x_1, ..., x_n)
\end{pmatrix}$$

10.1 Linearisierung

$$f\begin{pmatrix} x_1 + \Delta x_1 \\ \vdots \\ x_n + \Delta x_n \end{pmatrix} = \begin{pmatrix} f_1(x_1 + \Delta x_1, \dots, x_n + \Delta x_n) \\ \vdots \\ f_m(x_1 + \Delta x_1, \dots, x_n + \Delta x_n) \end{pmatrix}$$

$$\approx \begin{pmatrix} f_1(x_1, \dots, x_n) + \frac{\delta f_1}{\delta x_1} \cdot \Delta x_1 + \dots + \frac{\delta f_1}{\delta x_n} \cdot \Delta x_n \\ \vdots \\ f_m(x_m, \dots, x_n) + \frac{\delta f_m}{\delta x_1} \cdot \Delta x_1 + \dots + \frac{\delta f_m}{\delta x_2} \cdot \Delta x_n \end{pmatrix}$$

$$= \begin{pmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_m(x_1, \dots, x_n) \end{pmatrix} + \begin{pmatrix} \frac{\delta f_1}{\delta x_1}, \frac{\delta f_1}{\delta x_2}, \dots, \frac{\delta f_1}{\delta x_n} \\ \vdots \\ \frac{\delta f_m}{\delta x_1}, \frac{\delta f_m}{\delta x_2}, \dots, \frac{\delta f_m}{\delta x_n} \end{pmatrix} \begin{pmatrix} \Delta x_1 \\ \Delta x_2 \\ \vdots \\ \Delta x_n \end{pmatrix}$$

"Linearisierung mittels partieller Ableitung"

"Die mittlere Matrix nennen wir Ableitungsmatrix, hier: Ableitung von mn m m m m m

10.2 Beispiel

$$\begin{split} &f: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \\ &\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \rightarrow \begin{pmatrix} x_1 \cdot x_2^2 \\ x_2 \cdot x_3 \\ x_1^2 \cdot x_2 \cdot x_3 \end{pmatrix} \\ &\text{Ableitungsmatrix:} \begin{pmatrix} x_2^2, 2x_1x_2, 0 \\ 0, x_3, x_2 \\ 2x_1x_2x_3, x_1^2x_3, x_1^2x_2 \end{pmatrix} \\ &\text{Linearisierung:} & f\begin{pmatrix} x_1 + \Delta x_1 \\ x_2 + \Delta x_2 \\ x_3 + \Delta x_3 \end{pmatrix} \approx f\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} x_2^2, 2x_1x_2, 0 \\ 0, x_3, x_2 \\ 2x_1x_2x_3, x_1^2x_3, x_1^2x_2 \end{pmatrix} \begin{pmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \end{pmatrix} \end{split}$$

10.3 Kettenregel

$$(g \circ f)(x + \Delta x) = g(f(x + \Delta x)) \approx g(\underline{f(x)} + \underline{f'(x) \cdot \Delta x}) \approx g(f(x)) + g'(f(x)) \cdot [f'(x) \cdot \Delta x] = g(f(x)) + \underbrace{[g'(f(x)) \cdot f'(x)]}_{\text{Die Ableitungsmatrix von } g \circ f} \cdot \Delta x$$

$$\textbf{Kettenregel:} \quad (g \circ f)'(x) = \underbrace{g'(f(x))}_{\text{Matrix}} \underbrace{\quad \quad \quad \quad \quad \quad \quad }_{\text{Matrizenmultiplikation}} \underbrace{f'(x)}_{\text{Matrix}}$$

10.4 Beispiel

$$\mathbb{R}^{2} \xrightarrow{f} \mathbb{R}^{2} \xrightarrow{g} \mathbb{R}^{2} f \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \cdot x_{2} \\ x_{1}^{2} \end{pmatrix} g \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} 2x_{2} \\ 3x_{1}x_{2} \end{pmatrix}$$
Direkt: $(g \circ f) \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = g \begin{pmatrix} x_{1}x_{2} \\ x_{1}^{2} \end{pmatrix} = \begin{pmatrix} 2x_{1}^{2} \\ 3x_{1}^{3}x_{2} \end{pmatrix}$

$$(g \circ f)' \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} 4x_{1}, 0 \\ 9x_{1}^{2}x_{2}, 3x_{1}^{3} \end{pmatrix}$$
Mit der Kettenregel: $f' \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} x_{2}, x_{1} \\ 2x_{1}, 0 \end{pmatrix}, g' \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} 0, 2 \\ 3x_{2}, 3x_{1} \end{pmatrix}$

$$g'(f(x)) = g' \begin{pmatrix} x_{1}x_{2} \\ x_{1}^{2} \end{pmatrix} = \begin{pmatrix} 0, 2 \\ 3x_{1}^{2}, 3x_{1}x_{2} \end{pmatrix}$$

$$g'(f(x)) \cdot f'(x) = \begin{pmatrix} 0, 2 \\ 3x_{1}^{2}, 3x_{1}x_{2} \end{pmatrix} \cdot \begin{pmatrix} x_{2}, x_{1} \\ 2x_{1}, 0 \end{pmatrix} = \begin{pmatrix} 4x_{1}, 0 \\ 3x_{1}^{2}x_{2} + 6x_{1}^{2}x_{2}, 3x_{1}^{3} \end{pmatrix} = \begin{pmatrix} 4x_{1}, 0 \\ 9x_{1}^{2}x_{2}, 3x_{1}^{3} \end{pmatrix}$$

10.5 Hausaufgabe

$$\begin{split} f: \mathbb{R} &\to \mathbb{R}^2, x \to \left(\begin{array}{c} x \\ \cos x \end{array}\right), \, g: \mathbb{R}^2 \to \mathbb{R}, \left(\begin{array}{c} x \\ y \end{array}\right) \to x^y \\ \textbf{gesucht:} \ (g \circ f)' \end{split}$$

- 1. direkt
- 2. mit Kettenregel

10.6 Beispiel

$$f: \mathbb{R} \to \mathbb{R}^2, x \to \left(\begin{array}{c} x \\ \cos x \end{array}\right), \ g: \mathbb{R}^2 \to \mathbb{R}, \left(\begin{array}{c} x \\ y \end{array}\right) \to x^y$$
 gesucht: $(g \circ f)'$

- 1. direkt
- 2. mit Kettenregel

1) direkt
$$(g \circ f)(x) = g \begin{pmatrix} x \\ \cos x \end{pmatrix} = x^{\cos x} = h(x)$$

 $h(x) = e^{\ln x \cdot \cos x}, h'(x) = e^{\ln x \cdot \cos x} \cdot \left(\frac{1}{x} \cos x - \ln x \sin x\right) = x^{\cos x} \cdot \left(\frac{1}{x} \cos x - \ln x \sin x\right)$

2) mit der Kettenregel
$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$
 mit $f(x) = \begin{pmatrix} x \\ \cos x \end{pmatrix}$

$$= \begin{pmatrix} f_1(x) \\ f_2(x) \end{pmatrix} \Rightarrow f'(x) = \begin{pmatrix} 1 \\ -\sin x \end{pmatrix}$$
Aus der Formelsammlung:
$$g \begin{pmatrix} x \\ y \end{pmatrix} = x^y \Rightarrow g' \begin{pmatrix} x \\ y \end{pmatrix} = (y \cdot x^{y-1}, x^y \cdot \ln x)$$

$$g'(f(x)) = g' \begin{pmatrix} x \\ \cos x \end{pmatrix} = (\cos x \cdot x^{(\cos x)-1}, x^{\cos x} \cdot \ln x)$$

$$g'(f(X)) \cdot f'(x) = (\cos x \cdot x^{(\cos x)-1}, x^{\cos x} \cdot \ln x) \cdot \begin{pmatrix} 1 \\ -\sin x \end{pmatrix} = \cos x \cdot x^{(\cos x)-1} - x^{\cos x} \cdot \ln x$$

$$x^{\cos x} \ln x \sin x = x^{\cos x} \cdot \left(\frac{1}{x} \cos x - \ln x \sin x\right)$$

11 Parameterdarstellung von Flächen

Abbildung 51: Das rote ist die $\lambda\textsc{-Parameterlinie}$ (Immer die Variable), das blaue die $\mu\textsc{-Parameterlinie}$

$$f: F \subset \mathbb{R}^2 \to \mathbb{R}^3$$

$$\begin{pmatrix} \lambda \\ \mu \end{pmatrix} \to \begin{pmatrix} f_1(\lambda, \mu) \\ f_2(\lambda, \mu) \\ f_3(\lambda, \mu) \end{pmatrix}$$

Abbildung 52: Beispiel Erdkugel: Erdachse: $z=R\sin\varphi,$ Breite: $-\frac{\pi}{2}\leq\varphi\frac{\pi}{2},$ Länge: $0\leq\lambda\leq2\pi$

11.1 Beispiel

Parameterdarstellung: Wir betrachten die Erdkugel um 0 mit Radius R.

 $z=R\cos\varphi$

 $x=R\cos\varphi$

 $y = R\cos\varphi\sin\lambda$

 $\lambda\text{-Parameterlinie}$ ist der Breitenkreis, $\varphi\text{-Parameterlinie}$ der Längenhalbkreis.

11.2 Parameterdarstellung des Drehellipsoids

Abbildung 53: Parameterdarstellung des Drehellipsoids: $x = a \cos \varphi, z = b \sin \varphi$

"Wir konstruieren die Ellipse wie in Abb. 40"

Wir lassen eine Ellipse um ihre Nebenachse rotieren (Abb. 53).

 $r = a\cos\varphi$

 $x = r \cos \lambda$

 $y = r \sin \lambda$

 \Rightarrow Parameterdarstellung

 $x = a\cos\varphi\cos\lambda$

 $y = a\cos\varphi\sin\lambda$

 $z = b \sin \varphi$

 $\varphi\text{-Parameterlinie:}$ Längenhalbellipse, Länge λ

 λ -Parameterlinie: Breitenkreis, die geographische Breite ist nicht φ sondern $\tilde{\varphi}$.

12 Implizite Darstellung von Kurven und Flächen

Kurven in \mathbb{R}^2

f(x,y) = 0 Kreis um den Mittelpunkt $\begin{pmatrix} a \\ b \end{pmatrix}$ mit Radius R.

Distanz $d\left(\begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} a \\ b \end{pmatrix}^2\right) = R^2$ $\left|\begin{pmatrix} x-a \\ y-b \end{pmatrix}\right|^2 = R^2$ $(x-a)^2 + (y+b)^2 = R^2$

Gerade: ax + by + c = 0Ellipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ mit a,b Halbachsen. Sonderfall Kreis: $\frac{x^2}{R^2} + \frac{y^2}{R^2} = 1 \Rightarrow x^2 + y^2 = R^2 \checkmark$

12.2Lot auf eine Kurve

Abbildung 54: Höhenlinienplan: 0-er (rot)

$$f(x,y)=0,\ f: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \to f(x,y) \end{cases}$$
 ist ein "Funktionsgebirge". Die Kurve $f(x,y)=0$ ist die 0-er Höhenlinie (Abb. 54). Der Ableitungsvektor in P (Gradient) zeigt in Richtung des steilsten Anstieg. Das ist senkrecht zur Höhenlinie. Das Lot ist also der Gradient. Lot im Punkt (x,y) ist $\left(\frac{\delta f}{\delta x},\frac{\delta f}{\delta y}\right)$ (rechts in Abb. 54).

12.3 Ellipse

12.3.1 andere Berechnungsmethode

Parameterdarstellung: $(a\cos\varphi, b\sin\varphi)$ **Tangentenvektor:** $(-a\sin\varphi, b\cos\varphi)$

Lotvektor: $(b\cos\varphi, a\sin\varphi)$

45°: $b\cos\varphi = a\sin\varphi \Rightarrow \frac{b}{a} = \frac{\sin\varphi}{\cos\varphi} = \tan\varphi$ Für $b = 2, a = 3: \frac{2}{3} = \tan\varphi \Rightarrow \varphi = 33,69^{\circ}$

einsetzen: $(a\cos\varphi, b\sin\varphi) = (3\cos 33.69^{\circ}, 2\sin 33.69^{\circ}) = (2.496, 1.109)$

Implizite Darstellung von Flächen im \mathbb{R}^3

f(x, y, z) = 0. Kugel um 0 mit dem Radius R: $x^2 + y^2 + z^2 = R^2$.

Drehellipsoid: $\frac{x^2}{a^2} + \frac{z^2}{b^2} = 1$ (Abb. 55) Rotation um Z-Achse: $\frac{r^2}{a^2} + \frac{z^2}{b^2} = 1$; $r^2 = x^2 + y^2 \Rightarrow \frac{x^2 + y^2}{a^2} + \frac{z^2}{b^2} = 1$

Abbildung 55: Implizite Darstellung von Flächen im \mathbb{R}^3

Lot in einem Flächenpunkt: $F: f(x, y, z) = 0, f: \mathbb{R}^3 \to \mathbb{R}$. Fläche F ist die "0-er Niveaufläche".

Bewegt man sich im Flächenpunkt P in Richtung grad(f), so wächst die Funktion am stärksten. Der Gradient in P ist also das Lot auf die Fläche in P (Abb. 55).

12.5 Beispiel

Kugel:
$$x^2 + y^2 + z^2 - R^2 = 0 \Rightarrow grad(f) = (2x, 2y, 2z)$$

Drehellipsoid $\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{b^2} - 1 = 0 \Rightarrow grad(f) = \left(\frac{2x}{a^2}, \frac{2y}{a^2}, \frac{2z}{b^2}\right)$

13 Die komplexen Zahlen

Abbildung 56: Menge der komplexen Zahlen. Menge M und Menge $\mathbb C$ (rot)

Wir starten mit den reellen Zahlen $(\mathbb{R}, +, \cdot)$. $(M, +, \cdot)$ sei eine Erweiterung von $(\mathbb{R}, +, \cdot)$ (vgl. Abb. 56). In $(M, +, \cdot)$ sollen die üblichen Rechenregeln gelten. Das heißt, die Körperaxiome sollen gelten:

"Einschub"

- (M, +) kommutative Gruppe, 0 neutral
- (M^*, \cdot) kommutative Gruppe, 1 neutral
- das Distributivgesetz muss gelten: a(b+c) = ab + ac

Wir nehmen an, es gibt ein $i \in M$ mit $i^2 = -1$.

Definition 13.1. Wir definieren.: $\mathbb{C} = \{x \in M : x = a + b \cdot i; a, b \in \mathbb{R}\}$

$$\begin{array}{l} (a+bi)+(c+di)=(a+c)+(b+d)i\in\mathbb{C}\\ (a+bi)\cdot(c+di)=(ac+adi+bci-bd)=(ac-bd)+(ad+bc)i\in\mathbb{C}\\ \Rightarrow\mathbb{C} \text{ ist abgeschlossen bezüglich}+\text{ und }\cdot,\mathbb{R}\subset\mathbb{C}. \text{ Die Darstellung }a+bi \text{ ist eindeutig.} \end{array}$$

Beweis.
$$a+bi=c+di$$

$$a-c=di-bi=(d-b)i$$
 angenommen: $d-b\neq 0 \Rightarrow i=\frac{a-c}{d-b}$ (!) Also: $d=b$ und $a=c$

Definition 13.2. Wir definieren:
$$\mathbb{C} = \{x \in M : x = a + b \cdot i; a, b \in \mathbb{R}\}$$
 +: $(a,b) + (c,d) = (a+c,b+d)$:: $(a,b) \cdot (c,d) = (ac-bd,ad+bc)$

Die reellen Zahlen sind in
$$\mathbb{C}$$
 eingebettet. $x \in \mathbb{R} \leftrightarrow (x,0) \in \mathbb{C}$ $(x,0)+(y,0)=(x+y,0)$ $(x,0)\cdot(y,0)=(xy,0+0)$

In $(\mathbb{C}, +, \cdot)$ gelten die Körperaxiome:

- assoziativ: a + (b + c) = (a + b) + c, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- kommutativ: a + b = b + a, $a \cdot b = b \cdot a$
- distributiv: a(b+c) = ab + ac
- (0,0)ist neutrales Element bezüglich der Addition, (1,0) bezüglich der Multiplikation. Inverses Element bezüglich der Addition: (a,b)+(-a,-b)=(0,0). Inverses Element bezüglich der Multiplikation: $(a,b)\cdot(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2})=(1,0).$ Schreibweisen: x+(-y)=x-y und $x\cdot y^{-1}=\frac{x}{y}$

Definition 13.3.
$$i = (0, 1)$$

$$i^2 = (0,1) \cdot (0,1) = (-1,0) \stackrel{\frown}{=} -1$$

Die komplexe Zahl
$$(a,0)$$
 bezeichnen wir auch als a. $(a,b) = (a,0) + \underbrace{(b,0) \cdot (0,1)}_{(0,b)}$

= a + bi

(a,b) = a + bi Darstellung ist eindeutig.

13.1 Zahlenebene

Abbildung 57: Zahlenebene: Addition \Leftrightarrow Vektoraddition und $(-i)^2 = -1 \Leftrightarrow (0,-1)(0,-1) = (-1,0)$

Die Addition komplexer Zahlen entspricht der Vektoraddition (Abb. 57). Spiegeln an der x-Achse (**konjugieren**): $(a,b) \to (a,-b) = (a,b)$ und $a+bi \to a-bi$. Es gilt also: $z=\bar{z} \Leftrightarrow z \in \mathbb{R}$.

*** ist ein Automorphismus, d.h.

- 1. *** ist bijektiv
- $2. \ \overline{x+y} = \bar{x} + \bar{y}$
- $3. \ \overline{x \cdot y} = \bar{x} \cdot \bar{y}$

 $von \ 3.) \ \overline{(x_1, x_2) \cdot (y_1, y_2)} = \overline{x_1 y_1 - x_2 y_2, x_1 y_2 + x_2 y_1} = (x_1 y_1 - x_2 y_2, x_1 y_2 + x_2 y_1)$ $\overline{(x_1, x_2)} \cdot \overline{(y_1, y_2)} = (x_1, -x_2)(y_1, -y_2) = (x_1 y_1 - x_2 y_2, x_1 y_2 + x_2 y_1)$

Damit gilt z.B.:

$$\overline{x + z^2y + y^4} = \bar{x} + \bar{z}^2\bar{y} + \bar{y}^4$$

Polynom mit reellen Koeffizienten: $ax^4 + bx^4 + cx + d$ x Variable, $a, b, \underline{c}, d \in \mathbb{R}$. Ist x_0 eine Nullstelle, dann auch $\overline{x_0}$: $ax_0^4 + bx_0^2 + cx_0 + d = \overline{0} \Leftrightarrow ax_0^4 + bx_0^2 + c\overline{x_0} + d$ Es gilt:

- 1. $z + \bar{z} \in \mathbb{R}$
- $2. \ z \cdot \bar{z} \in \mathbb{R}$

(a, b) = z, a =

*** ist der Überstrich

2). Es

leider derzeit nicht anders

darstellen.

Zif-

sich

(vgl.

lässt

Beweis. (1)
$$\overline{z+\bar{z}} = \bar{z} + \bar{z} = \bar{z} + z$$

 $(2) \ \overline{z \cdot \overline{z}} = \overline{z} \cdot \overline{\overline{z}} = \overline{z} \cdot z$

Es gilt: (1) Re
$$z = \frac{1}{2}(z + \bar{z})$$

(2) Im $z = \frac{1}{2} \cdot i \cdot (\bar{z} - z)$
 $z = z_1 + iz_2$
Beweis. (2) $\frac{1}{2} \cdot i \cdot (z_1 - iz_2 - z_1 - iz_2) = \frac{1}{2} \cdot i(-2iz_2) = (-1)(-1)z_2 = z_2$

sin, cos, e-Funktion im Komplexen 13.2

Abbildung 58: sin, cos, e-Funktion im Komplexen am Beispiel des Einheitskrei-

Reihendarstellung: (vgl. Abb. 58) $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$ $\mathbb{C}^{\text{Setze einfach } x \in \mathbb{C}} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$ $\mathbb{C}^{\text{Setze einfach } x \in \mathbb{C}} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$ $\mathbb{C}^{\text{Setze einfach } x \in \mathbb{C}} = 1 + \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \dots$ Es gelten die üblichen Rechenregeln z.B. $e^{x+y} = e^x e^y$. (1) $\varphi \in \mathbb{R} : e^{i\varphi} = 1 + i\varphi - \frac{\varphi^2}{2!} - \frac{i\varphi^3}{3!} + \frac{\varphi^4}{4!} + \frac{i\varphi^5}{5!} - \frac{\varphi^6}{6!} - \frac{i\varphi^7}{7!} + \frac{\varphi^8}{8!} + \dots$

$$(1) \ \varphi \in \mathbb{R} : e^{i\varphi} = 1 + i\varphi - \frac{\varphi^2}{2!} - \frac{i\varphi^3}{3!} + \frac{\varphi^4}{4!} + \frac{i\varphi^5}{5!} - \frac{\varphi^6}{6!} - \frac{i\varphi^7}{7!} + \frac{\varphi^8}{8!} + \dots$$

(2)
$$\cos \varphi + i \sin \varphi = \left(1 - \frac{\varphi^2}{2!} + \frac{\varphi^4}{4!} - \frac{\varphi^6}{6!} + \ldots\right) + \left(i\varphi - \frac{i\varphi^3}{3!} + \frac{i\varphi^5}{5!} - \frac{i\varphi^7}{7!} + \ldots\right)$$

$$= \left(1 + i\varphi - \frac{\varphi^2}{2!} - \frac{i\varphi^3}{3!} + \frac{\varphi^4}{4!} + \frac{i\varphi^5}{5!} - \frac{\varphi^6}{6!} - \frac{i\varphi^7}{7!} + \ldots\right)$$

Es gilt (1) = (2), also: $e^{i\varphi} = \cos \varphi + i \sin \varphi, \varphi \in \mathbb{R}$ (Eulersche Formel).

 $(\cos\varphi, \sin\varphi) = \cos\varphi + i\sin\varphi = e^{i\varphi}$ Geometrische Interpretation von + und · (vgl. auch Abb. 59).

+: Vektoraddition

 $: z \cdot s = r_1 \cdot e^{i\varphi_1} \cdot r_2 \cdot e^{i\varphi_2} = r_1 \cdot r_2 \cdot e^{i\varphi_1 + i\varphi_2} = r_1 \cdot r_2 \cdot e^{i(\varphi_1 + \varphi_2)}, \text{ also Radien}$ multiplizieren und Winkel addieren.

 $|z| = |(z_1, z_2)| = r = \sqrt{z_1^2 + z_2^2}$. Die Multiplikation mit einer komplexen Zahl ist eine Drehstreckung.

13.3 Die n-ten Wurzeln von 1

Für welche komplexen Zahlen gilt $z^n = 1$? Es muss gelten: |z| = 1, z auf Einheitskreis. $(e^{i\varphi})^n = 1 \Rightarrow e^{i\varphi n} = 1$ φn Vielfaches von $2\pi \Leftrightarrow \varphi n = k \cdot 2\pi \Leftrightarrow \varphi = k \cdot \frac{2\pi}{n}$

Abbildung 59: Geometrische Interpretation

Abbildung 60: Die n-ten Wurzeln von 1 am Beispiel eines Einheitskreises und einem 8-Eck.

 $1\cdot\frac{2\pi}{n},2\cdot\frac{2\pi}{n},3\cdot\frac{2\pi}{n},...,n\cdot\frac{2\pi}{n}=2\pi$ sind alle. Das sind die passenden Winkel. Regelmäßiges 8-Eck auf dem Einheitskreis (Abb. 60).

Allgemein 1 hat genau
n n-te Wurzeln, ein regelmäßiges n-Eck auf dem Einheitskreis. Jede komplexe Zahl z
 hat genau n-te Wurzeln (regelmäßiges n-Eck auf Kreis um 0 mit Radius R
, verdreht).

13.4 Bemerkung

Abbildung 61: Bemerkung: e^z ist periodisch mit Periode 2π

Abbildung 62: Bemerkung 2: $f(z) = e^z$, gleicher Funktionswert

$$z \in \mathbb{C}, z = z_1 + iz_2$$

$$e^z = e^{z_1 + iZ_2} = \underbrace{e^{z_1}}_{\text{reelle Zahl (Radius)}} \cdot \underbrace{e^{iZ_2}}_{\text{cos } z_2 + i \sin z_2, \text{Einheitskreis zum Winkel} z_2}$$
und 62)
$$\underbrace{e^{z_1 + iz_2 + 2\pi i}}_{=} = e^{z_1 + i(z_2 + 2\pi)} = e^{z_1} \cdot e^{i(z_2 + 2\pi)} = e^{z_1} \cdot e^{iz_2} \cdot \underbrace{e^{i2\pi}}_{=1} = \underbrace{e^{z_1 + iz_2}}_{=1} \text{ (Abb. ??)}$$

13.5 Polynome in \mathbb{C}

Sei $P(x)=a_0+a_1x^1+a_2x^2+a_3x^3+...+a_nx^n$ mit $a_0,a_1,...,a_n\in\mathbb{C}$ Koeffizienten und x Variable.

In $\mathbb C$ hat jedes Polynom von Grad \geq eine Nullstelle. x_0 ist Nullstelle von P(x). $\underbrace{P(x)}_{\text{Grad m}} = \underbrace{Q(x)}_{\text{Grad n-1}} \cdot (x-x_0) \Rightarrow \text{In } \mathbb C$ zerfällt jedes Polynom in Linearfaktoren: $P(x) = c \cdot (x-c_1)(x-c_2) \cdot \ldots \cdot (x-c_n)$

"Durch die Nullstellen kann man dividieren."

13.6 Beispiel

$$P(x) = x^2 - 2ix - 5 = 0$$
$$x^2 - 2ix + i^2 = 5 + i^2$$

Nullstellen $c_1, c_2, ..., c_n$, c Koeffizient vor x^n

Abbildung 63: Ich habe vergessen, was die Grafik soll.

$$(x-i)^2 = 4$$

$$x-i = \pm 2 \Rightarrow x_1 = 2+i, x_2 = -2+i$$

Probe mit x_1 :

1.
$$(2+i)^2 - 2i(2+i) - 5 = 4 + 4i - 1 - 4i + 2 - 5 = 0$$

2.
$$(x-x_1)(x-x_2) = (x-2-i)(x+2-i) = x^2+2x-ix-2x-4+2i-ix-2i-1$$

= $x^2-2ix-5\checkmark$

14 Differentialgleichungen (DGL)

Abbildung 64: Differentialgleichungen (DGL)

Definition 14.1.
$$G \subset \mathbb{R}^2$$
 $f: \begin{cases} G \to \mathbb{R} \ stetig \\ (x,y) \to f(x,y) \end{cases}$

(Abb. 64)

y' = f(x, y) heißt Differentialgleichung (DGL) erster Ordnung. φ : Intervall $I \to \mathbb{R}$ heißt Lösung der DGL, wenn $\varphi'(x) = f(x, \varphi(x)), \forall x \in I$

Sonderfall: y'=f(x) f nicht abhängig vom y-Wert. $\varphi(x)=\int_{x_0}^x f(f)dt+c$ ist eine Lösung. $(\varphi'(x)=f(x))$. Es gilt auch $\underline{\varphi}(x_0)=c$

Allgemein: Es sei $\varphi(x)$ eine Lösung von y'=f(x,y) ,ot $\varphi(x_0)=c$ $[\varphi'(x)=f(x,\varphi(x))].$

Es gilt:
$$\int_{x_0}^x \varphi'(t)dt + c = \varphi(x) - \underbrace{\varphi(x_0)}_{=c} + c$$
$$\Rightarrow \varphi(x) = \int_{x_0}^x \varphi'(t)dt + c$$
$$\varphi(x) = f(x, \varphi(x))$$

Abbildung 65: Gesucht ist die exakte Fläche (blau) - Näherung durch Rechteck (rot) - der Funktion $f(t, \varphi(t))$ unterhalb des Graphen.

 $\varphi(x) = \int_{x_0}^x f(t, \varphi(t)) dt + c$. Damit kann man aber die gesuchte Funktion $\varphi(x)$ auch nicht ausrechnen! Wenn $|x - x_0|$ klein ist, so kann man $\varphi(x)$ näherungsweise berechnen (Abb. 65).

$$\varphi(x) \approx (x - x_0) \cdot f(x_0, \varphi(x_0)) + c$$

$$\varphi(x) \approx (x - x_0) \cdot f(x_0, c) + c$$

"Jetzt ned mitschreiben. "

14.1 Geometrische Interpretation

Abbildung 66: In jedem Punkt gibt es Steigungen, die passen müssen (links). Näherungslösung (rechts).

$$y' = f(x, y)$$
 DGL und $\varphi(x) = f(x, \varphi(x))$

Die DGL gibt in jedem Punkt (x,y) eine Steigung f(x,y) an. Gesucht ist die Funktion $\varphi(x)$, die passt (links in Abb. 66). $\varphi(x) = f(x, \varphi(x))$. Es gelte $\varphi(x_0) = c$ (rechts in Abb. 66).

Näherungslösung für $|x-x_0|$ klein: $\varphi(x) \approx c + (x-x_0) \cdot \varphi'(x_0) = c + f(x_0, \varphi(x_0)) = c + f(x_0, c) \approx \varphi(x)$

Ein System von DGL

$$\begin{array}{l} y_1' = f_1(x_1,y_1,y_2), \ y_2' = f_2(x_1,y_1,y_2) \\ \text{L\"osung:} \ \ \varphi_1,\varphi_1 \ \text{mit} \ \varphi_1'(x) = f_1(x,\varphi_1(x),\varphi_2(x)), \ \varphi_2'(x) = f_2(x,\varphi_1(x),\varphi_2(x)) \end{array}$$

Abbildung 67: System von DGL

Allgemein:

$$y'_1 = f_1(x, y_1, y_2, ..., y_n)$$

$$y'_2 = f_2(x, y_1, y_2, ..., y_n)$$

$$\vdots$$

$$y'_n = f_n(x, y_1, y_2, ..., y_n)$$

Lösung: Funktionen $\varphi_1, ..., \varphi_n$ (vgl. Abb. 67) mit $\varphi_1'(x) = f_1(x, \varphi_1(x), ..., \varphi_n'(x))$ $\varphi_2'(x) = f_2(x, \varphi_1(x), ..., \varphi_n'(x))$

$$\varphi'_n(x) = f_n(x, \varphi_1(x), ..., \varphi'_n(x))$$

Die fassen wir nun zusammen:

$$\varphi(x) = \begin{pmatrix} \varphi_1(x) \\ \varphi_2(x) \\ \vdots \\ \varphi_n(x) \end{pmatrix}$$

Das ist die Parameterdarstellung einer Kurve im \mathbb{R}^n . Dabei ist x die Zeit, die Bewegung eines Punktes im \mathbb{R}^n . Also ist

bewegung eines i unktes in
$$\varphi'(x) = \begin{pmatrix} \varphi'_1(x) \\ \varphi'_2(x) \\ \vdots \varphi'_n(x) \end{pmatrix}$$
 der Geschwindigkeitsvektor.

$$f\left(x, \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}\right) = \begin{pmatrix} f_1(x, y_1, \dots, y_n) \\ f_2(x, y_1, \dots, y_n) \\ \vdots \\ f_n(x, y_1, \dots, y_n) \end{pmatrix} = \begin{pmatrix} y_1' \\ \vdots \\ y_n' \end{pmatrix}$$

f gibt zu jedem Zeitpunkt x und Raumpunkt $y=\begin{pmatrix}y_1\\\vdots\\y_n\end{pmatrix}$ einen Vektor aus \mathbb{R}^n an.

Lösung: $\varphi(x)$ mit $\varphi'(x) = f(x, \varphi(x))$

Abbildung 68: DGL und der Geschwindigkeitsvektor $\varphi'(x)$

Die DGL gibt zu jedem Zeitpunkt x und Raumpunkt $y=\begin{pmatrix}y_1\\\vdots\\y_n\end{pmatrix}$ einen Ge-

schwindigkeitsvektor an. Gesucht ist die Bewegung im Raum $\varphi(x)$, die dazu passt (Abb. 68).

Gegeben: $\varphi(x_0) = y_0$. Falls $|x - x_0|$ klein \Rightarrow Näherung: $\varphi(x) = \varphi(x_0) + \varphi'(x_0) \cdot (x - x_0) \varphi(x_0) + f(x_0, \varphi(x_0)) \cdot (x - x_0)$

Auch eine normale eindimensionale DGL (Abb. 69) kann man so auffassen: y'=f(x,y) Lösung $\varphi(x)$

Abbildung 69: Eindimensionales DGL: Der Punkt y zur Zeit x \Rightarrow Die DGL gibt die Geschwindigkeit vor.

 $\varphi'(x) = f(x, \varphi(x)) \varphi(x)$ fassen wir als Bewegung eines Punktes auf der Geraden \mathbb{R} auf. $\varphi'(x)$ ist dabei die Geschwindigkeit (Abb. ??). Lösung: Bewegung eines Punktes, die dazu passt.

14.3 DGL n-ter Ordnung

Definition 14.2. $f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$, $f(x, y, y', y'', ..., y^{(n-1)}) = y^{(n)}$ heißt DGL n-ter Ordnung. Eine Lösung ist $\varphi(x): I \to \mathbb{R}$ mit $*\varphi^{(n)}(x) = f(x, \varphi(x), \varphi'(x), \varphi''(x), ..., \varphi^{(n-1)}(x))$

Das kann man umformen in ein System von DGL (DGL-System):

$$y^{(n)} = f(x, \underbrace{y}_{y_0}, \underbrace{y'}_{y_1}, \dots, \underbrace{y^{(n-1)}}_{y_{n-1}})$$

$$y'_0 = y_1 = f_1(x, y_0, y_1, \dots, y_{n-1})$$

$$y'_1 = y_2 = f_2(x, y_0, y_1, \dots, y_{n-1})$$

$$\vdots$$

$$y'_{n-2} = y_{n-1} = f_{n-1}(x, y_0, y_1, \dots, y_{n-1})$$

$$y'_{n-1} = f(x, y_0, y_1, ..., y_{n-1})$$

Ist $\varphi(x) = \begin{pmatrix} \varphi_0(x) \\ ... \\ \varphi_{n-1}(x) \end{pmatrix}$ eine Lösung des Systems, so ist $\varphi_0(x)$ eine Lösung von * in der Definition 14.2.

14.4 Lippschitzbedingung

Abbildung 70: Die Lippschitzbedingung

Definition 14.3 (Lippschitzbedingung1). $f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, $(x,y) \to f(x,y)$ genügt der Lippschitzbedingung mit konstanter L > 0, wenn gilt: $|f(x,y) - f(x,\tilde{y})| \le L \cdot |y - \tilde{y}|$ (vgl. Abb. 70)

An dieser Stelle erst einmal einen herzlichen Dank an Marianus für die Bilder vom 03.12.2015!

14.5 Eindeutigkeitssatz

Abbildung 71: Eindeutigkeitssatz: In \mathbb{R}^n links und in \mathbb{R} rechts

Satz 14.1 (Eindeutigkeitssatz). $f: \mathbb{R}x\mathbb{R}^n \to \mathbb{R}^n, (x,y) \to f(x,y)$

$$DGL \ y' = f(x, y), \left(\begin{array}{c} \varphi'_1 \\ \vdots \\ \varphi'_n \end{array}\right) = f\left(\underbrace{x}_{Zeit}, \underbrace{\left(\begin{array}{c} \varphi'_1(n) \\ \vdots \\ \varphi'_n(n) \end{array}\right)}_{Ort}\right)$$

Es seien φ, ψ zwei Lösungen, der DGL. $\varphi, \psi : \mathbb{R} \to \mathbb{R}^n$. gilt $\varphi(x_0) = \psi(x_0)$ für ein $x_0 \in \mathbb{R}$, so gilt $\varphi(x) = \varphi(\psi), \forall x$ (ohne Beweis, Abb. 71).

14.6 Existenzsatz von Picard-Lindelöf

Abbildung 72: Existenzsatz von Picard-Lindelöf: eindimensional

Satz 14.2 (Existenzsatz von Picard-Lindelöf). $f: \mathbb{R}x\mathbb{R}^n \to \mathbb{R}^n, (x,y) \to f(x,y), \, DGL \, y'=f(x,y)$

Dann gibt es eine Lösung
$$\varphi$$
 mit $\varphi(\underbrace{a}_{Zeit}) = c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \\ Ort \end{pmatrix}$. Zur Zeit a den

Raumpunkt c vorschreiben (Abb. 72). Aus dem vorigen Satz folgt die Eindeutigkeit.

Beweisidee. Eindimensionaler Fall: $f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \to f(x,y), y' = f(x,y)$

1.) $\varphi : \mathbb{R} \to \mathbb{R}$ erfüllt genau dann die DGL y' = f(x, y) mit $\varphi(a) = c$, wenn: $\varphi(x) = \int_a^x f(t, \varphi(t)) dt + c$

I) Es gelte $\varphi(x) = \int_a^x f(t, \varphi(t)) dt + c, \varphi(a) = c, \varphi'(a) = f(x, \varphi(x))$ Hauptsatz (H.S.)

II) Es gelte $\varphi(a)=c$ und $\varphi'(x)=f(x,\varphi(x)),$ also: $c+\int_a^x f(t,\varphi(t))dt=c+\int_a^x \varphi'(t)dt=c+\varphi(x)-\varphi(a)=c+\varphi(x)-c=\varphi(x)\checkmark$

Abbildung 73: Wir versuchen φ näherungsweise zu berechnen.

Wir versuchen φ näherungsweise zu berechnen (Abb. 73).

$$\begin{aligned} \varphi_0(x) &= c \\ \varphi_1(x) &= \int_a^x f(t, \varphi_0(t)) dt + c \\ \varphi_2(x) &= \int_a^x f(t, \varphi_1(t)) dt + c \end{aligned}$$

 $\varphi_{k+1}(x) = \int_a^x f(t, \varphi_k(t))dt + c$

Man zeigt: Die Funktionen $\varphi_1, \varphi_2, \varphi_3, \dots$ konvergieren gegen eine bestimmte Funktion φ . man zeigt dann: $\varphi(x)$ ist eine Lösung der DGL.

14.7 Beispiel

DGL:
$$y' = 2xy = f(x,y)$$
 mit $\varphi(0) = c$. $\varphi_0(x) = c$ $\varphi_1(x) = \int_a^x f(t,\varphi_0(t))dt + c = \int_0^x 2tc \ dt + c = c + 2c \left[\frac{1}{2}t^2\right]_0^x = c + 2c \cdot \frac{1}{2}x^2 = c + cx^2 = c(1+x^2)$ $\varphi_2(x) = c + \int_0^x f(t,\varphi_1(t))dt = c + \int_0^x f(t,c(1+t^2))dt = c + \int_0^x 2t \cdot c(1+t^2)dt = c + 2c \int_0^x t + t^3 dt = c + 2c \left(\frac{1}{2}x^2 + \frac{1}{4}x^4\right) = c + c\left(x^2 + \frac{x^4}{2}\right) = c\left(1 + x^2 + \frac{x^4}{2}\right)$ Man zeigt: $\varphi_k = c\left(1 + x^2 + \frac{x^4}{2!} + \frac{x^6}{3!} + \frac{x^8}{4!} + \dots + \frac{x^{2k}}{k!}\right)$ $\varphi(x) = \lim_{k \to \infty} \varphi_k(x) = c \cdot \sum_{k=0}^{\infty} \frac{(x^2)^k}{k!} = c \cdot e^{x^2}$ Test: $\varphi(x) = c \cdot e^{x^2}$ $\varphi_0 = c \cdot c^0 = c$ $\varphi'(x) = c \cdot e^{x^2} \cdot 2x = \varphi(x) \cdot 2x \checkmark$

Was bedeutet der Existenz- und Eindeutigkeitssatz?

Abbildung 74: Bedeutung des Existenz- und des Eindeutigkeitssatzes

- 1. normale DGL $f: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \to f(x,y) \end{cases}$ und y' = f(x,y). Bei a darf man den Funktionswert e vorschreiben (links in Abb. 74).
- 2. Zu einem Zeitpunkt a darf man den Raumpunkt a vorschreiben (rechts in Abb. 74).

15 DGL n-ter Ordnung

$$\varphi^{(n)} = f\left(\underbrace{x}_{\text{Zeitpunkt}}, \underbrace{y}_{\varphi_0}, \underbrace{y'}_{\varphi_1}, \dots, \underbrace{y^{(n-1)}}_{\varphi_{n-1}}\right)$$

Ableitungen darf man vorschreiben. An einer Stelle x=a darf man vorschreiben:

 $\varphi(a)$ Dann gibt es genau eine passende Lösung. $\varphi'(a)$

$$\vdots \\ \varphi^{(n-1)}(a)$$

15.1 Beispiel DGL 2. Ordnung

Abbildung 75: DGL 2. Ordnung. Man darf die Stelle und die Ableitung vorgeben.

$$y''=f(x,y,y'), y''=-\varphi=f(x,y,y').$$
Lösungen sind z.B.: $\varphi_1(x)=\sin x, \varphi_2(x)=\cos x$
$$\varphi_1'(x)=\cos x, \varphi_2(x)=-\sin x$$

$$\varphi_1''(x)=-\sin x, \varphi_2(x)=-\cos x\checkmark$$

$$\varphi_1(x) = \cos x, \varphi_2(x) = -\sin x$$

$$\varphi_1''(x) = -\sin x, \varphi_2(x) = -\cos x \checkmark$$

Kombinationen:

$$\varphi(x) = c_1 \sin x + c_2 \cos x$$

$$\varphi'(x) = c_1 \cos x - c_2 \sin x$$

$$\varphi''(x) = -c_1 \sin x - c_2 \cos x \checkmark$$

Viele Lösungen:

$$\varphi(x) = c_1 \sin x + c_2 \cos x \text{ mit } c_1, c_2 \in \mathbb{R}$$

$$\varphi(0) = c_2, \varphi'(0) = c_1$$

An der Stelle 0 darf man $\varphi(0)$ und $\varphi'(0)$ vorschreiben. Alle Lösungen: $[c_1 \sin x + c_2 \cos x : x_1, c_2 \in \mathbb{R}]$ (Abb. 75).

16 Elementare Lösungsmethoden

Satz 16.1.
$$y' = f(x) \cdot g(y)$$
 $f, g : \mathbb{R} \to \mathbb{R}$ $F(x) = \int_{x_0}^x f(t)dt \ und \ G(y) = \int_{y_0}^y \frac{1}{g(t)}dt$ Es sei $\varphi(x)$ eine Lösung mit $\varphi(x_0) = (y_0)$. Dann gilt: $G(\varphi(x)) = F(x)$
$$\int_{y_0}^{\varphi(x)} \frac{1}{g(t)} = \int_{x_0}^x f(t)dt$$
 Beweis. $\varphi(x_0) = y_0$
$$\varphi'(x) = f(x) \cdot g(\varphi(x))$$

$$\Rightarrow f(x) = \frac{\varphi'(x)}{g(\varphi(x))}$$

$$\Rightarrow \int_{x_0}^x f(t)dt = \int_{x_0}^x \frac{1}{g(\varphi(t))} \cdot \varphi'(t)dt = \int_{\varphi(x_0)}^{\varphi(x)} \frac{1}{g(t)}dt \Rightarrow \int_{x_0}^x f(t)dt = \int_{y_0}^{\varphi(x)} \frac{1}{g(t)}dt$$

16.1 Beispiel

$$y' = \underbrace{x^2}_{f(x)} \cdot \underbrace{y}_{g(y)} \text{ Anfangsbedingung: } \underbrace{\varphi(1)}_{x_0} = \underbrace{1}_{y_0}.$$

$$\int_1^{\varphi(x)} \frac{1}{t} dt = \int_1^x t^2 dt$$

$$= [\ln t]_1^{\varphi(x)} = \left[\frac{1}{3}t^3\right]_1^x$$

$$\ln \varphi(x) - \underbrace{\ln 1}_{=0} = \frac{1}{3}x^3 - \frac{1}{3}$$

$$\varphi(x) = e^{\frac{1}{3}x^3 - \frac{1}{3}}$$

Test:

$$\begin{split} \varphi(1) &= e^0 = 1\checkmark \\ \varphi'(x) &= e^{\frac{1}{3}x^3 - \frac{1}{3} \cdot x^2} = \varphi'(x) \cdot x^2 \checkmark \end{split}$$

16.2 Beispiel

$$y' = y^2 \Rightarrow y' = \underbrace{1}_{f(x)} \underbrace{y^2}_{g(y)}$$
 Anfangsbedingung: $\varphi(0) = c$

1. Fall $\underline{c} = 0$ (vgl. rote Linie in Abb. 76)

In diesem Fall erraten wir eine Lösung. An der Stelle 0 soll 0 rauskommen $(\varphi(0) = 0)$. Deswegen machen wir einfach die Nullfunktion $(\varphi(x) = 0)$.

2. Fall c > 0 (vgl. grüne Linie in Abb. 76)

 $\varphi(x)$ muss in diesem Fall großer als Null sein $(\varphi(x) > 0)$.

$$\varphi(x) \text{ muss in diesem Fall großer als Null sein } (\varphi(x) > 0).$$

$$\int_{x_0}^x f(t)dt = \int_{y_0}^{\varphi(x)} \frac{1}{g(t)}dt$$

$$\int_0^x 1dt = \int_c^{\varphi(x)} \frac{1}{t^2}dt = \int_c^{\varphi(x)} t^2dt$$

$$x = \left[(-t^{-1}) \right]_c^{\varphi(x)} = \left(-\frac{1}{\varphi(x)} - \left(-\frac{1}{c} \right) \right) = \frac{1}{c} - \frac{1}{\varphi(x)} \text{ wird aufgelöst nach } \varphi(x) \Rightarrow$$

$$\frac{1}{\varphi(x)} = \frac{1}{c} - x = \frac{1-cx}{c} \Rightarrow \varphi(x) = \frac{c}{1-cx}$$

$$\varphi(x) > 0 \Leftrightarrow \frac{c}{1-cx} > 0, c > 0 \Leftrightarrow 1 - cx > 0 \Leftrightarrow 1 > cx \Leftrightarrow \frac{1}{c} > x \Rightarrow x < \frac{1}{c} \Rightarrow \text{Funktion ist nur definiert für } x < \frac{1}{c}.$$

$$\varphi(x) > 0 \Leftrightarrow \frac{c}{1 - cx} > 0, c > 0 \Leftrightarrow 1 - cx > 0 \Leftrightarrow 1 > cx \Leftrightarrow \frac{1}{c} > x \Rightarrow x < \frac{1}{c} \Rightarrow \text{Funk-}$$

tion ist nur definiert für $x < \frac{1}{c}$.

Abbildung 76: Beispiel für verschiedene Werte von c

3. Fall $\underline{c<0}$ (vgl. blaue Linie in Abb. 76) $\varphi(x)<0,\, \varphi(x)=\frac{c}{1-cx}$

$$\boxed{\frac{c}{1-cx} < 0 \Rightarrow \ldots \Rightarrow x > \frac{1}{c}}$$

16.3 Lineare DGL

 $y' = a(x) \cdot y + b(x)$ homogen, falls b(x) = 0

Satz 16.2.
$$y'a(x) \cdot y$$
. Die Lösung $\varphi(x)$ mit $\varphi(x_0) = c$ ist: $\varphi(x) = c \cdot exp(\int_{x_0}^x a(t)dt)$

"Ich schreibe jetzt exp(a) statt e^{a} "

Beweis. Durch Einsetzen beweisen wir:
$$\varphi(x_0) = c \cdot exp(\int_{x_0}^{x_0} a(t)dt) = c$$

 $\varphi'(x) = c \cdot exp(\int_{x_0}^{x} a(t)dt) \cdot a(x) = \varphi(x) \cdot a(x)$

16.4 Beispiel

$$y' = \underbrace{x^{2}}_{a(x)} \cdot y, \varphi(x_{0}) = c$$

$$\varphi(x) = c \cdot exp(\int_{x_{0}}^{x} t^{2} dt) = c \cdot exp(\left[\frac{1}{3}t^{3}\right]_{x_{0}}^{x}) = c \cdot exp(\frac{1}{3}x^{3} - \frac{1}{3}x_{0}^{3}) = \varphi(x)$$

16.5 Inhomogene DGL

$$y' = a(x) \cdot y + b(x)$$

Sei $\varphi(x)$ eine Lösung der homogenen DGL: $y'=a(x)\cdot y$ und $\psi(x)$ eine Lösung der inhomogenen DGL: $y'=a(x)\cdot y+b(x)$

Ansatz:

with laster
$$\psi(x) = \varphi(x) = u(x) \Rightarrow \psi'(x) = \underline{\varphi' \cdot u + \varphi \cdot u'}$$

$$\psi'(x) = a \cdot \psi + b = \underbrace{a \cdot \varphi}_{\varphi'} \cdot u + b = \underline{\varphi' \cdot a + b}$$

$$\Rightarrow \varphi \cdot u' = b$$

$$\Rightarrow u' = \frac{b}{\varphi}$$

$$\Rightarrow u(x) = \int_{x_0}^x \frac{b(t)}{\varphi(t)} dt + c$$
"Wir lassen jetzt (x) weg. Also φ statt $\varphi(x)$ "
$$\Rightarrow x \mapsto x = b$$

Satz 16.3. Die DGL sieht so aus: $y' = a(x) \cdot y + b(x)$. Die Lösung $\psi(x)$ mit $\psi(x_0) = c$ ist:

$$\psi(x) = \varphi(x) \cdot (c + \int_{x_0}^x \frac{b(t)}{\varphi(t)} dt) \ mit \ \varphi(x) = exp(\int_{x_0}^x a(t) dt)$$

$$Beweis. \ \psi(x_0) = \varphi(x_0) \cdot (c + \int_{x_0}^{x_0} \frac{b(t)}{\varphi(t)} dt) = \varphi(x_0) \cdot c = c\checkmark$$

16.6 Beispiel

$$y' = 2xy + x^3 \text{ mit } \psi(0) = c$$

Zuerst lösen wir den vorderen Teil:
$$\varphi(x)=exp(\int_{x_0}^x 2tdt)=exp(\left[t^2\right]_0^x)=exp(x^2)$$

$$\Rightarrow \psi(x) = exp(x^2) \cdot (c + \int_0^x \frac{t^3}{e^{(t^2)}} dt)$$

Jetzt versuchen wir das Integral auszurechnen: $\int_0^x \frac{t^3}{e^{(t^2)}} dt = \int_0^x t^3 \cdot e^{-t^2} dt =$ $\int_0^x \frac{1}{2}t^2 \cdot e^{-t^2} \cdot 2t dt$

$$\underbrace{=}_{\text{Subst. } s=t^2} \int_0^{x^2} \frac{1}{2} s \cdot e^{-s} ds = \frac{1}{2} \int_0^{x^2} \underbrace{s}_f \cdot \underbrace{e^{-s}}_{g'} ds$$

 $= \frac{1}{2}([-se^{-s}]_0^{x^2} - \int_0^{x^2} -e^{-s}ds) = \frac{1}{2}(-x^2 \cdot e^{-x^2} - (e^{-x^2} - 1)) = \frac{1}{2}(-x^2 \cdot \int_0^{x^2} -e^{-s}ds) = \frac{1}{2}(-x^2 \cdot e^{-x^2} - (e^{-x^2} - 1)) = \frac{1}{2}(-x^2 \cdot \int_0^{x^2} -e^{-s}ds) = \frac{1}{2}(-x^2 \cdot e^{-x^2} - (e^{-x^2} - 1)) = \frac{1}{2}(-x^2 \cdot e^{-x^$

$$e^{-x^2}-e^{-x^2}+1))=-\frac{1}{2}e^{-x^2}(x^2+1)+\frac{1}{2}$$
 Das ausgerechnete Integral setzen wir jetzt ein:

$$\Rightarrow \psi(x) = e^{x^2} \cdot \left(-\frac{1}{2}e^{-x^2}(x^2+1) + \frac{1}{2} \right) = e^{x^2}(c+\frac{1}{2}) - \frac{1}{2}(x^2+1)$$

16.7 DGL vom Typ $y' = f(\frac{y}{x})$

Substituiere: $z = \frac{y}{x} \Rightarrow y = z \cdot x \Rightarrow y' = z' \cdot x + z \Rightarrow z' \cdot x + z = f(z)$

$$z' = \underbrace{\frac{1}{x}}_{} \cdot \underbrace{[f(z) - z]}_{}$$

"Typ getrennte Variable"

Satz 16.4 (Genauer Satz). $y' = f(\frac{y}{x}) *$

$$z' = \frac{1}{x}(f(z) - z) **$$

 φ ist genau dann Lösung von * mit $\varphi(x_0) = y_0$, wenn $\psi(x) = \frac{\varphi(x)}{x}$ Lösung von ** $mit \ \psi(x_0) = \frac{y_0}{x_0} \ ist.$

16.8 Beispiel

$$y' = 1 + \frac{y}{x} + \left(\frac{y}{x}\right)^2$$
, Bedingung: $\varphi(x_0) = y_0$

$$z = \frac{y}{x}, z' = \frac{1}{x}(f(z) - z) = \frac{1}{x}(1 + z + z^2 - z) = \underbrace{\frac{1}{x}(1 + z^2)}_{\text{(getrennte Variable)}}$$
(getrennte Variable),

Bedingung: $\psi(x_0) = \frac{y_0}{x_0}$

$$\int_{\frac{y_0}{x_0}}^{\psi(x)} \frac{1}{1+t^2} dt = \int_{x_0}^{x} \frac{1}{t} dt = \left[\arctan \right]_{\frac{y_0}{x_0}}^{\psi(x)} = \left[\ln |t| \right]_{x_0}^{x} = \arctan \psi(x) - \arctan \frac{y_0}{x_0}$$

$$= \ln |x| - \ln |x_0|$$

 $\arctan \psi(x) = \arctan \frac{y_0}{x_0} + \ln \left| \frac{x}{x_0} \right|$

$$\psi(x) = \tan\left[\arctan\frac{y_0}{x_0} + \ln\left|\frac{x}{x_0}\right|\right]$$

$$\varphi(x) = x \cdot \psi(x) = x \cdot \tan\left[\arctan\frac{y_0}{x_0} + \ln\left|\frac{x}{x_0}\right|\right]$$

16.9 Beispiel

$$y' = (x+y)^2$$
 Substituiere $z = x+y, z' = 1+y', y' = z'-1$
 $z'-1=z^2$
 $z'=\underbrace{(z^2+1)}_{}\cdot\underbrace{1}$

$$\int_{x_0}^{x} 1 dt = \int_{z_0}^{\psi(x)} \frac{1}{t^2 + 1} dt = [t]_{x_0}^{x} = [\arctan t]_{z_0}^{\psi(x)}$$

$$x-x_0=\arctan\psi(x)+\alpha$$
 $\arctan\psi(x)=x+\beta$ $\psi(x)=\tan(x+\beta)$ $\psi(x)=x+\varphi(x)$ $\varphi(x)=\psi(x)-x=\tan(x+\beta)-x$. Aus der Bedingung folgt β bzw. kann ausgerechnet werden.

16.10 Numerische Lösung von DGL

Abbildung 77: Statt der Funktion, die wir nicht haben, nehmen wir die Tangente, die wir kennen.

$$\begin{split} y' &= f(x,y) \text{ (Abb. 77) } \varphi(x_0) = y_0 \\ x_0, y_0 \text{ Start} \\ x_1 &= x_0 + h \\ y_1 &= y_0 + h \cdot y'(x_0) = y_0 + h \cdot f(x_0, y_0) \\ \textbf{allgemein:} \\ x_{n+1} &= x_n + h \ y_{n+1} = y_n + h \cdot f(x_n, y_n) \end{split}$$

16.10.1 Verbesserung: Mittelpunktsregel

Abbildung 78: Numerische Lösung von DGL, Verbesserung: Mittelpunktsregel

$$y_{n+\frac{1}{2}} = y_n + \frac{h}{2} \cdot f(x_n, y_n) \text{ (Abb. 78)}$$

$$y_{n+1} = y_n + h \cdot f(x_n + \frac{h}{2}, y_{n+\frac{1}{2}})$$

16.10.2 Rückwärts

Abbildung 79: Numerische Lösung von DGL, Rückwärts

$$y'=f(x,y)$$

$$y_n=y_{n+1}-h\cdot f(x_{n+1},y_{n+1}).$$
 Nach y_{n+1} auflösen. (Abb. 79)

Abbildung 80: Beispiel

Beispiel
$$y' = f(x, y) = x + y$$
, Schrittweite h: 0.1
Vorwärts: $y_1 = y_0 + h \cdot f(x_0, y_0) = 1 + 0.1(1 + 1) = 1.2$ (Abb. 80)

Rückwärts
$$y_0 = y_1 - hf(x_1, y_1)$$

 $1 = y_1 - 0.1(1.1 + y_1)$
 $1 = 0.9y_1 - 0.11$
 $0.9y_1 = 1.11$
 $y_1 = 1.23$

16.10.3 Hausaufgabe

Das letzte Beispiel mit der Mittelpunktsregel rechnen.

16.11 Runge-Kutta-Verfahren

Abbildung 81: Runge-Kutta-Verfahren

Das Runge-Kutta-Verfahren ist ein Verfahren zur näherungsweisen Lösung von Anfangswertproblemen in der numerischen Mathematik (Abb. 81).

K₁ =
$$f(x_n, y_n)$$
 mit $y' = f(x, y)$ und Schrittweite h

 $K_2 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2} \cdot K_1)$
 $K_3 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2} \cdot K_2)$
 $K_4 = f(x_n + h, y_n + h \cdot K_3)$
 $y_{n+1} = y_n + h(\frac{K_1}{6} + \frac{K_2}{3} + \frac{K_3}{3} + \frac{K_4}{6})$ (gewichtetes Mittel der Steigungen)

17 Lineare DGL-Systeme

Wir haben eine quadratische Matrix A und einen Vektor b. Die Werte von A sind <u>Funktionen</u> von x.

$$A = \overline{\begin{pmatrix} a_{11}, \dots, a_{1n} \\ \vdots \\ a_{n1}, \dots, a_{nn} \end{pmatrix}}, a_{i,j} : \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to a_{i,j}(x) \end{cases}$$

$$b = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} b_i : \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to b_i(x) \end{cases}$$

$$y' = Ay + b$$

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n' \end{pmatrix} = \begin{pmatrix} a_{11}, \dots, a_{1n} \\ \vdots \\ a_{n1}, \dots, a_{nn} \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \Rightarrow \text{ lineares DGL-System}$$

$$\mathbf{L\ddot{o}sung:} \ \varphi : \mathbb{R} \to \mathbb{R}^n, \ \varphi = \begin{pmatrix} \varphi_1 \\ \vdots \\ \varphi_n \end{pmatrix}, \ \varphi' = \begin{pmatrix} \varphi'_1 \\ \vdots \\ \varphi'_n \end{pmatrix},$$

$$\varphi = A\varphi + b \text{ ist homogen, wenn b=0.}$$

Satz 17.1. y' = ay sei ein homogenes DGL-System. L_h sei die Menge aller Lösungen. $L_h = \{ \varphi : \mathbb{R} \to \mathbb{R}^n | \varphi' = A\varphi \}$ L_h ist ein n-dimensionaler Vektorraum über \mathbb{R} . Sind $\varphi_1, ..., \varphi_k$ Lösungen, so sind äquivalent:

- 1. $\varphi_1, ..., \varphi_k$ sind linear unabhängig.
- 2. Es gibt ein $x_0 \in \mathbb{R}$ mit $\varphi_1(x_0),...,\varphi_k(x_0)$ sind linear unabhängig $(\varphi_1(x_0)$ sind k Vektoren aus \mathbb{R}^n).
- 3. Für jedes $x \in \mathbb{R}$ sind $\varphi_1(x), ..., \varphi_k(x)$

ohne Beweis.

Definition 17.1. Seien $\varphi_1, ..., \varphi_n$ linear unabhängige Lösungen (\Rightarrow Alle Lösungen, weil es eine Basis ist: $c_1\varphi_1+...+c_n\varphi_n$, $c_i \in \mathbb{R}$). $\varphi_1,...,\varphi_n$ heißt Lösungsfundamentalsystem.

Lösungsmatrix:

$$\Phi = (\varphi_1, ..., \varphi_n) = \begin{pmatrix} \varphi_{11} & \varphi_{12} & ... & \varphi_{1n} \\ \varphi_{21} & \varphi_{22} & ... & \varphi_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \varphi_{n1} & \varphi_{n2} & ... & \varphi_{nn} \end{pmatrix}$$

$$\Phi \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = c_1 \varphi_1 + \dots c_n \varphi_n$$

$$\Phi' = (\varphi'_1, \dots, \varphi'_n)$$

$$\Phi' = A\Phi$$

17.1 Beispiel

$$y_1' = -\omega y_2, \omega \in \mathbb{R}$$

$$y_1' = \omega y_1$$

$$\begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} 0, -\omega \\ \omega, 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

$$y' = A \cdot y$$

$$\varphi_1(x) = \begin{pmatrix} \cos \omega x \\ \sin \omega x \end{pmatrix}, \varphi_2(x) = \begin{pmatrix} -\sin \omega x \\ \cos \omega x \end{pmatrix} \text{ sind 2 linear unabhängige Lösungen.}$$
Test:

$$\varphi_1'(x) = \begin{pmatrix} -\omega \sin \omega x \\ \omega \cos \omega x \end{pmatrix} \checkmark$$

$$A \cdot \varphi_1 = \begin{pmatrix} 0, -\omega \\ \omega, 0 \end{pmatrix} \begin{pmatrix} \cos \omega x \\ \sin \omega x \end{pmatrix} = \begin{pmatrix} -\omega \sin \omega x \\ \omega \cos \omega x \end{pmatrix} \checkmark$$
analog φ_2
Sind φ_1, φ_2 linear unabhängig?

Setze ein x ein, z.B.
$$x = 0$$

 $\varphi_2(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \varphi_2(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ sind linear unabhängig.

$$c_1\varphi_1 + c_2\varphi_2, c_1, c_2 \in \mathbb{R}$$

Satz 17.2. y' = Ay + b sei ein inhomogenes DGL-System. Sei L_h die Lösungsmenge des zugehörigen homogenen Systems und L_I ide Lösungsmenge des inhomogenen Systems. Für beliebiges $\psi_0 \in L_I$ gilt: $L_I = \psi_0 + L_h$

ohne Beweis

Satz 17.3. y' = Ay + b Sei Φ ein Lösungsfundamentalsystem für y' = ay. Man erhält eine Lösung $\psi(x)$ von y'Ay + b durch den Ansatz $\psi(x) = \Phi \cdot u(x)$. Dieser Ansatz bzw. dieses Verfahren heißt Variation der Konstanten. $\Phi \cdot c$ ist die Gesamtlösung des homogenen Systems.

Damit ergibt sich:

$$\begin{array}{l} \Phi(x) \cdot u'(x) = b(x) \\ u'(x) = \Phi^{-1}(x) \cdot b(x) \\ u(x) = \int_{x_0}^x \Phi^{-1} \cdot b(t) dt + \ konstanter \ \ Vektor. \end{array}$$

"Das von x lassen wir im beweis weg."

Beweis.
$$\psi = \Phi \cdot u$$

 $\psi' = \Phi' \cdot u + \underline{\Phi \cdot u'}$ auch: $\psi' = A\psi + b = \underbrace{A\Phi}_{\Phi'} u + b = \Phi' u + \underline{b}$
 $\Rightarrow \Phi u' = b \Rightarrow u' = \Phi^{-1}b \Rightarrow u = \int_{x_0}^x \Phi^{-1}(t) \cdot b(t)dt + \text{konstanter Vektor.}$

17.2 Beispiel

$$\begin{array}{l} y_1' = -y_2 \\ y_2' = y_1 + x \\ \left(\begin{array}{c} y_1' \\ y_2' \end{array}\right) = \left(\begin{array}{c} 0, -1 \\ 1, 0 \end{array}\right) \left(\begin{array}{c} y_1 \\ y_2 \end{array}\right) + \left(\begin{array}{c} 0 \\ x \end{array}\right) \\ y' = A \cdot y + b \\ \text{Lösungen des homogenen Systems:} \\ \varphi_1(x) = \left(\begin{array}{c} \cos x \\ \sin x \end{array}\right), \varphi_2(x) = \left(\begin{array}{c} -\sin x \\ \cos x \end{array}\right) \\ \text{Test mit } \varphi_1: \\ \varphi_1'(x) = \left(\begin{array}{c} -\sin x \\ \cos x \end{array}\right), A_{\varphi_1} = \left(\begin{array}{c} 0, -1 \\ 1, 0 \end{array}\right) \left(\begin{array}{c} \cos x \\ \sin x \end{array}\right) = \left(\begin{array}{c} -\sin x \\ \cos x \end{array}\right) \\ \varphi_1, \varphi_2 \text{ sind linear unabhängig, bilden also ein Fundamentalsystem.} \\ \Phi(x) = \left(\begin{array}{c} \cos x, -\sin x \\ \sin x, \cos x \end{array}\right). \text{ Was ist } \Phi^{-1}? \Phi \text{ ist orthogonal!} \Rightarrow \Phi^{-1} = \Phi^t = \\ \left(\begin{array}{c} \cos x, \sin x \\ -\sin x, \cos x \end{array}\right) \Rightarrow u(x) = \int_{x_0}^x \left(\begin{array}{c} \cos t, \sin t \\ -\sin t, \cos t \end{array}\right) \left(\begin{array}{c} 0 \\ t \end{array}\right) dt + \left(\begin{array}{c} c_1 \\ c_2 \end{array}\right) = \left(\begin{array}{c} \int_{x_0}^x t \sin t dt + c_1 \\ \int_{x_0}^x t \cos t dt + c_2 \end{array}\right) \\ = \left(\begin{array}{c} \sin x - x \cos x + d_1 \\ \cos x + x \sin x + d_2 \end{array}\right) \\ \text{Wähle ohne die Konstanten } u(x) = \left(\begin{array}{c} \sin x - x \cos x \\ \cos x + x \sin x \end{array}\right) \Rightarrow \Psi(x) = \Phi \cdot u = \\ \left(\begin{array}{c} \cos x, -\sin x \\ \sin x, \cos x \end{array}\right) \cdot \left(\begin{array}{c} \sin x - x \cos x \\ \cos x + x \sin x \end{array}\right) = \dots = \left(\begin{array}{c} -x \\ 1 \end{array}\right) = \Psi(x) \end{array}$$

Alle Lösungen:

$$\Psi(x) + L_h = \begin{pmatrix} -x \\ 1 \end{pmatrix} + c_1 \cdot \begin{pmatrix} \cos x \\ \sin x \end{pmatrix} + c_2 \cdot \begin{pmatrix} -\sin x \\ \cos x \end{pmatrix}, c_1, c_2 \in \mathbb{R}$$

Prüfung in Differentialrechnung im IRⁿ und Differentialgleichungen

Arbeitszeit: 90 Minuten

Hilfsmittel: Alle Prüfer: Hörwick

- 1.) Leiten Sie partiell nach x, y und z ab. $f(x, y, z) = \sin(x \cdot e^{y}) + \sin x \cos z$
- 2.) Gegeben sind die zwei Funktionen f und g

$$f: \mathbb{R}^2 \to \mathbb{R}^3 \qquad g: \mathbb{R}^3 \to \mathbb{R}^2$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} x + y \\ x \cdot y \\ 2x \end{pmatrix} \qquad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \to \begin{pmatrix} x \cdot y \cdot z \\ z \end{pmatrix}$$

- a) Berechnen Sie $(g \circ f) \begin{pmatrix} x \\ y \end{pmatrix} = g \begin{pmatrix} f \begin{pmatrix} x \\ y \end{pmatrix} \end{pmatrix}$ und damit die Ableitungsmatrix $(g \circ f)$.
- b) Berechnen Sie $(g \circ f)'$ mit Hilfe der Kettenregel!
- 3.) Gegeben sind die beiden Funktionen f und g.

$$f(x) = \frac{1}{3}x^2$$

$$g\left(x\right) = -\frac{1}{4}x^2 + 2$$

- a) Berechnen Sie den Schnittpunkt S.
- b) Gegeben ist weiter die Funktion

$$h: \quad |\mathbb{R}^2 \to |\mathbb{R}$$
$$(x, y) \to x^2$$

Berechnen Sie $\int_{\mathbb{R}} h(x, y)$ [Bereich B siehe Skizze]

Hochschule München Fachbereich 07 Prüfung in Differentialrechnung im IRⁿ und Differentialgleichungen WS 2013/14

Seite – 2

4.) Gegeben ist die Differentialgleichung

$$y' = x^2 + (x-1) \cdot y$$
 mit der Bedingung für die Lösung $\varphi : \varphi(0) = 1$

- a) Berechnen Sie $\varphi(0), \varphi'(0), \varphi''(0)$ und $\varphi'''(0)$.
- b) Berechnen Sie mit Hilfe des Taylorpolynoms vom Grad 3 (Entwicklungspunkt 0) einen Näherungswert für $\varphi(0.1)$.
- 5.) Gegeben ist die Differentialgleichung

$$y' = \left(\sin\frac{y}{x}\right) + \frac{y}{x}$$
 mit der Anfangsbedingung $\varphi(1) = 1$

Berechnen Sie die Lösung $\varphi(x)$.

Hinweis:
$$\int \frac{1}{\sin t} dt = \ln \tan \frac{t}{2}$$
 für $0 < t < \pi$

6.) Beweisen Sie: $\sin 2\varphi = 2\cos \varphi \sin \varphi$.

Hinweis: Man verwende die eulersche Formel

$$e^{i\varphi} = \cos\varphi + i\sin\varphi$$

18 Lösung für die Prüfung WS 2013/14

18.1 zu 1)

$$f(x, y, z) = \sin(x \cdot e^y) + \sin x \cos z$$

$$\frac{\delta f}{\delta x} = \cos(x \cdot e^y)e^y + \cos x \cos z$$

$$\frac{\delta f}{\delta y} = \cos(x \cdot e^y)xe^y$$

$$\frac{\delta f}{\delta z} = -\sin x \sin z$$

18.2 zu 2a)

$$(g \circ f) \left(\begin{array}{c} x \\ y \end{array} \right) = g \left(\begin{array}{c} x+y \\ x \cdot y \\ 2x \end{array} \right) = \left(\begin{array}{c} (x+y)xy2x \\ 2x \end{array} \right) = \left(\begin{array}{c} 2x^3y + 2x^2y^2 \\ 2x \end{array} \right)$$
 Ableitungsmatrix:
$$(g \circ f)' \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} 6yx^2 + 4xy^2, 2x^3 + 4x^2y \\ 2, 0 \end{array} \right)$$

18.3 zu 2b)

$$\begin{split} f'\left(\begin{array}{c} x\\ y \end{array}\right) &= \left(\begin{array}{c} 1,1\\ y,x\\ 2,0 \end{array}\right) \\ g'\left(\begin{array}{c} x\\ y\\ z \end{array}\right) &= \left(\begin{array}{c} yz,xz,xy\\ 0,0,1 \end{array}\right) \\ (g\circ f)'\left(\begin{array}{c} x\\ y \end{array}\right) &= g'\left(f\left(\begin{array}{c} x\\ y \end{array}\right)\right) \cdot f'\left(\begin{array}{c} x\\ y \end{array}\right) = g'\left(\begin{array}{c} x+y\\ x\cdot y\\ 2x \end{array}\right) \cdot \left(\begin{array}{c} 1,1\\ y,x\\ 2,0 \end{array}\right) = \\ \left(\begin{array}{c} 2x^2y,2x^2+2xy,x^2y+y^2x\\ 0,0,1 \end{array}\right) \cdot \left(\begin{array}{c} 1,1\\ y,x\\ 2,0 \end{array}\right) = \ldots = \left(\begin{array}{c} 6yx^2+4xy^2,2x^3+4x^2y\\ 2,0 \end{array}\right) \left(\begin{array}{c} 0,0,1\\ 0,0,1 \end{array}\right) = \ldots = \left(\begin{array}{c} 1,1\\ 0,0,1\\ 0,0,1 \end{array}\right) = \ldots = \left(\begin{array}{c} 1,1\\ 0,0\\ 0,0,1 \end{array}\right) = \ldots = \left(\begin{array}{c} 1,1\\ 0,0\\ 0,0,1 \end{array}\right) \left(\begin{array}{c} 1,1\\ 0,0\\ 0,0,1 \end{array}\right) = \ldots = \left(\begin{array}{c} 1,1\\ 0,0\\ 0,0,1 \end{array}\right) \left(\begin{array}{c} 1,1\\ 0,0\\ 0,0,1 \end{array}\right) = \ldots = \left(\begin{array}{c} 1,1\\ 0,0\\ 0,0,1 \end{array}\right) \left(\begin{array}{c} 1,1\\ 0,0\\ 0,0,1 \end{array}\right) = \ldots = \left(\begin{array}{c} 1,1\\ 0,0\\ 0,0,1 \end{array}\right) \left(\begin{array}{c} 1,1\\ 0,0\\ 0,0,1 \end{array}\right) = \ldots = \left(\begin{array}{c} 1,1\\ 0,0\\ 0,0,1 \end{array}\right) \left(\begin{array}{c} 1,1\\ 0,0\\ 0,0,1 \end{array}\right) = \ldots = \left(\begin{array}{c} 1,1\\ 0,0\\ 0,0,1 \end{array}\right) \left(\begin{array}{c} 1,1\\ 0,0\\ 0,0,1 \end{array}\right) \left(\begin{array}{c} 1,1\\ 0,0\\ 0,0 \end{array}\right) = \ldots = \left(\begin{array}{c} 1,1\\ 0,0\\ 0,0 \end{array}\right) = \left(\begin{array}{c} 1,1\\ 0,0\\ 0,0 \end{array}\right) \left(\begin{array}{c} 1,1\\$$

18.4 zu 3a)

$$\begin{split} f(x) &= g(x) \\ \frac{1}{3}x^2 &= -\frac{1}{4}x^2 + 2 \\ x &= 1.85 \Rightarrow y = f(1.85) = 1.14 \Rightarrow S(1.85, 1.14) \end{split}$$

18.5 zu 3b)

$$\begin{split} &\int_{B}h(x,y)=\int_{0}^{1.85}\left(\int_{f(x)}^{g(x)}h(x,y)dy\right)dx=\int_{0}^{1.85}\left(\int_{\frac{1}{3}x^{2}}^{-\frac{1}{4}x^{2}+2}x^{2}dy\right)dx=\int_{0}^{1.85}\left[yx^{2}\right]_{y=\frac{1}{3}x^{2}}^{y=-\frac{1}{4}x^{2}+2}dx=\int_{0}^{1.85}\left(\left(-\frac{1}{4}x^{2}+2\right)x^{2}-\frac{1}{3}x^{2}x^{2}\right)dx=\int_{0}^{1.85}-\frac{1}{4}x^{4}+2x^{2}-\frac{1}{3}x^{4}dx=\int_{0}^{1.85}-\frac{7}{12}x^{4}+2x^{2}dx=\left[-\frac{7}{12}\cdot\frac{1}{5}x^{5}+2\cdot\frac{1}{3}x^{3}\right]_{0}^{1.85}=-\frac{7}{60}\cdot1.85^{5}+\frac{2}{3}\cdot1.85^{3}=1.69 \end{split}$$

18.6 zu 4a)

$$\frac{\varphi(0) = 1}{\varphi'(x) = x^2 + (x - 1) \cdot \varphi(x)}$$

$$\varphi'(0) = -1$$

$$\varphi''(x) = 2x + 1 \cdot \varphi(x) + (x - 1) \cdot \varphi'(x)$$

$$\varphi''(0) = 1 + (-1) \cdot (-1) = 2$$

$$\varphi'''(x) = 2 + \varphi'(x) + \varphi'(x) + (x - 1) \cdot \varphi''(x)$$

$$\varphi'''(0) = 2 - 1 - 1 + (-1) \cdot 2 = -2$$

18.7 zu 4b)

$$\begin{split} & \varphi(h) \approx \varphi(0) + \varphi'(0) \cdot h + \frac{\varphi''(0)}{2!} \cdot h^2 + \frac{\varphi'''(0)}{3!} \cdot h^3 \\ & \varphi(h) \approx 1 + (-1) \cdot h + \frac{2}{2} \cdot h^2 + \frac{-2}{6} \cdot h^3 \\ & \varphi(0.1) \approx 1 - 0.1 + 0.1^2 - \frac{1}{3} \cdot 0.1^3 \\ & \varphi(0.1) \approx 0.9097 \end{split}$$

18.8 EXTRA zu 4)

Löse
$$y' = \underbrace{(x-1)}_a \cdot y + \underbrace{x^2}_b, \varphi(0) = 1$$
. Ist vom Typ lineare DGL.

"Aus dem Skript"

"Produktregel!"

1.
$$\varphi(x) = exp\left(\int_{x_0}^x a(t)dt\right)$$

2.
$$\psi(x) = \varphi(x) \cdot \left[c + \int_{x_0}^x \frac{b(t)}{\varphi(t)} dt \right]$$

$$\varphi(x) = \exp\left(\int_0^x t - 1dt\right) = \exp\left(\left[\frac{1}{2}t^2 - t\right]_0^x\right) = \exp\left(\frac{1}{2}x^2 - x\right)$$

$$\psi(x) = \exp\left(\frac{1}{2}x^2 - x\right) \cdot \left[1 + \underbrace{\int_0^x \frac{t^2}{\exp\left(\left(\frac{1}{2}t^2 - t\right)\right)}}_{f(t)} dt\right] \cdot \varphi(x) \text{ ist die Lösung. N\"{a}herung}$$

für das Integral von 0 bis 0.1:
$$f(0) = 0, f(0.1) = \frac{0.1^2}{exp(\frac{1}{2} \cdot 0.1^2 - 0.1)} = 0.011 \Rightarrow \int_0^{0.1} ...dt = 0.1 \cdot \frac{1}{2}(0 + 0.011) = 0.00055 \Rightarrow \psi(0.1) = exp(\frac{1}{2} \cdot 0.1^2 - 0.1) [1 + 0.00055] = 0.90987$$

18.9 zu 5)

Substituiere:
$$z = \frac{y}{x} \Rightarrow y = xz, y' = 1 \cdot z + x \cdot z'$$

 $\Rightarrow z + x \cdot z' = \sin z + z \Leftrightarrow z' = \underbrace{\frac{1}{x}}_{f(x)} \cdot \underbrace{\sin z}_{g(z)}$ (Typ getrennte Variable).

$$\begin{array}{l} \psi(1) = \frac{\varphi(1)}{1} = \frac{1}{1} = 1 \\ \int_{y_0}^{\psi(x)} \frac{1}{g(t)} dt = \int_{x_0}^x f(t) dt \end{array}$$

Einsetzen der Funktionen: $\int_1^{\psi(x)} \frac{1}{\sin t} dt = \int_1^x \frac{1}{t} dt$

$$\left[\ln \tan \frac{t}{2}\right]_{1}^{\psi(x)} = \left[\ln t\right]_{1}^{x}$$

$$\ln \tan \frac{\psi(x)}{2} - \ln \tan \frac{1}{2} = \ln x - \ln 1$$

Einsetzen der Funktionen.
$$J_1$$

$$\left[\ln\tan\frac{t}{2}\right]_1^{\psi(x)} = \left[\ln t\right]_1^x$$

$$\ln\tan\frac{\psi(x)}{2} - \ln\tan\frac{1}{2} = \ln x - \ln 1$$

$$\ln\tan\frac{\psi(x)}{2} - \ln x = \ln\tan\frac{1}{2}$$

$$\ln \tan \frac{2}{2} \quad \ln x = \ln \cot \frac{2}{2}$$

$$\ln \tan \frac{\psi(x)}{2} - \ln x = \ln 0.546$$

$$\ln \frac{\tan \frac{\psi(x)}{2}}{x} = \ln 0.546$$

$$\ln \frac{\tan \frac{\psi(x)}{2}}{x} = \ln 0.546$$

beide Seiten e"

$$\tan \frac{\psi(x)}{2} = 0.546x$$

$$\frac{\psi(x)}{2} = \arctan 0.546x$$

$$\psi(x) = 2\arctan 0.546x$$

$$\varphi(x) = x \cdot \psi(x) = 2x \cdot \arctan 0.546x$$

18.10 zu 6)

$$\begin{array}{l} e^{i2\varphi} = \frac{\cos^2\varphi + i\sin^2\varphi}{e^{i\varphi} - (\cos\varphi + i\sin\varphi)(\cos\varphi + i\sin\varphi)} = \cos^2\varphi + i\cos\varphi\sin\varphi + i\sin\cos\varphi - \sin^2\varphi = \frac{(\cos^2\varphi - \sin^2\varphi) + i(2\cos\varphi\sin\varphi)}{(\cos\varphi - \sin^2\varphi) + i(2\cos\varphi\sin\varphi)} \\ \Rightarrow \end{array}$$

1.
$$\cos^2 \varphi = \cos^2 \varphi - \sin^2 \varphi$$

2.
$$\sin^2 \varphi = 2\cos \varphi \sin \varphi \checkmark$$

Stichwortverzeichnis

DGL, 57 System, 61 Differenzialgleichung, 57

Eindeutigkeitssatz, 63 Eulersche Formel, 54

Formel Eulersche, 54 Fundamentalsystem, 73

Sätze

Eindeutigkeitssatz, 63