

Overview of the Dataset

date	season	temp	feeltemp	humidity	wind_speed	weather	is_holiday	is_weekend	is_restday	total
04/01/2015	winter	2.5	0.6	94.3	7.5	cloudy	0	1	1	9234
05/01/2015	winter	8	6.7	80.3	8.9	cloudy	0	0	0	20372
06/01/2015	winter	7.9	5.3	78.9	16	clear	0	0	0	20613
07/01/2015	winter	7.5	4.5	78.1	19.8	clear	0	0	0	21064
08/01/2015	winter	9.8	7.8	79.3	20.5	rain	0	0	0	15601
09/01/2015	winter	12.7	12.3	74.9	32.9	cloudy	0	0	0	22104
10/01/2015	winter	10.5	8.7	66.1	34.3	cloudy	0	1	1	14709
11/01/2015	winter	6.6	2.5	67.6	26.6	clear	0	1	1	14575
12/01/2015	winter	11.1	9.8	76.6	28.2	rain	0	0	0	17199
13/01/2015	winter	8.6	6.1	75.8	21.2	rain	0	0	0	24697
14/01/2015	winter	6.5	2.5	67.1	25.8	clear	0	0	0	23565

728 lines

date	season	temp	feeltemp	humidity	wind_speed	weather	is_holiday	is_weekend	is_restday	total
Length:728	winter:177	Min. : 1.30	Min. :-2.400	Min. :46.90	Min. : 2.80	clear :438	Min. :0.00000	Min. :0.0000	Min. :0.0000	Min. : 4869
Class :character	spring:186	1st Qu.: 8.60	1st Qu.: 6.475	1st Qu.:65.50	1st Qu.:11.20	cloudy:203	1st Qu.:0.00000	1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.:21922
Mode :character	summer:185	Median :12.50	Median :12.400	Median :72.55	Median :15.20	rain : 87	Median :0.00000	Median :0.0000	Median :0.0000	Median :26968
	autumn:180	Mean :12.47	Mean :11.516	Mean :72.35	Mean :15.96		Mean :0.02198	Mean :0.2871	Mean :0.3091	Mean :27157
		3rd Qu.:16.20	3rd Qu.:16.200	3rd Qu.:79.22	3rd Qu.:19.90		3rd Qu.:0.00000	3rd Qu.:1.0000	3rd Qu.:1.0000	3rd Qu.:33362
		Max. :27.40	Max. :27.400	Max. :98.70	Max. :41.90		Max. :1.00000	Max. :1.0000	Max. :1.0000	Max. :46021

Presentation structure

- Qualitative analysis of the dataset
- Construction of a predictive linear model
- Testing of normality assumptions and outliers' removal
- Assessment of the model performance
- ANOVA test on the number of rentals across different seasons

Qualitative analysis of the dataset

Qualitative analysis of the dataset

Linear model

We divide the dataset randomly in two parts: train-set with 600 lines and test-set with 128 lines.

We train the first linear model on the train-set

```
> g = lm(total ~ temp + humidity + wind speed + is restday + weather, data = train)
> summary(g)
Call:
lm(formula = total ~ temp + humidity + wind speed + is restday +
   weather, data = train)
Residuals:
             10 Median
    Min
                               3Q
                                      Max
-19247.8 -2317.3
                   127.3
                          2411.7 19202.8
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
             45421.13
                      1897.55 23.937 < 2e-16 ***
(Intercept)
               893.23
                      33.31 26.813 < 2e-16 ***
temp
humidity
             -296.08 22.25 -13.309 < 2e-16 ***
wind speed
             -352.69
                          26.53 -13.294 < 2e-16 ***
             -5398.56 346.49 -15.581 < 2e-16 ***
is restday
weathercloudy -459.66
                         417.34 -1.101
                                          0.271
                         566.37 -8.297 7.19e-16 ***
weatherrain -4699.37
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3841 on 593 degrees of freedom
Multiple R-squared: 0.7817,
                                    Adjusted R-squared: 0.7795
F-statistic: 353.9 on 6 and 593 DF, p-value: < 2.2e-16
```

We notice that

- The P-value of the F-test is 2.2e-16, indicating that there is at least one significant covariate.
- $R_{adj}^2 = 0.7795$
- The dummy covariate weathercloudy is the only nonsignificant variable
- All other covariates appear to be significant

Linear model

We train another linear model removing the covariate weathercloudy

```
> train$weatherrain = ifelse(train$weather == "rain",1,0)
> g = lm(total ~ temp + humidity + wind speed + is restday + weatherrain, data = train)
> summary(g)
Call:
lm(formula = total ~ temp + humidity + wind_speed + is_restday +
   weatherrain, data = train)
Residuals:
    Min
             1Q Median
                                      Max
-19203.8 -2293.3 80.4 2411.8 19059.5
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 46279.05 1730.61 26.741 <2e-16 ***
                     33.06 26.880 <2e-16 ***
            888.66
temp
humidity
          -308.20
                     19.34 -15.939 <2e-16 ***
wind_speed -357.21
                     26.22 -13.626 <2e-16 ***
                     345.52 -15.710 <2e-16 ***
is_restday -5427.98
weatherrain -4442.19
                     516.09 -8.607 <2e-16 ***
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
Residual standard error: 3841 on 594 degrees of freedom
Multiple R-squared: 0.7812, Adjusted R-squared: 0.7794
F-statistic: 424.3 on 5 and 594 DF, p-value: < 2.2e-16
```

We notice that

- $R_{adj}^2 = 0.7794$ (it remains more or less the same)
- All remaing covariates are highly significant

Normality test of the residuals

By performing the Shapiro test on the residuals of the linear model, a p-value of 8.899e-09 is obtained.

Removal of critical datapoints

The standardized residuals and the studentized residuals coincide

Removal of critical datapoints

Criteria	AIC	R _{adj}		
Whole dataset	11614.97	0.779		
Leverages	11333.14	0.772		
Standardized residuals	10923.21	0.840		
Cook's distance	10611.24	0.842		
Leverage points + standardized residuals	10643.85	0.835		
Standardized residuals + Cook's distance	10472.59	0.852		
Leverages + Cook's distance	10193.02	0.836		
Leverages + standardized residuals + Cook's distance	10213.75	0.847		

The best model turns out to be the one obtained by removing the leverage points and the critical points according to the Cook's distance

New normality test of the residuals

By removing the leverage points and the critical points according to the Cook's distance, we re-train the model and obtain a p-value for the Shapiro test of 0.1387. Then, we do not reject the normality hypotesis.

Model interpretation

	Intercept	temp	humidity	wind_speed	is_restday	weatherrain
Coefficients eta	43241	916.2	-275.5	-325.7	-5801.6	-4995.1
Coefficients eta after normalization	30503	21713	-14269	-10160.4	-5801.6	-4995.1

Covariate's normalization formula: $\frac{x - \min x}{}$

$$\frac{x - \min x}{\max x - \min x}$$

Assessment of the model performance

To asses the model performance, we validated it on the test-set we created at the beginning.

The red dots are the datapoints that fall outside the 90% confidence interval.

$$R_{testset}^2 = 0.8027$$

$$\rho_{real,pred} = 0.896$$

Percentage of points in the CI: 84%

P-value for the Shapiro test: 0.3371

ANOVA

By observing the boxplots divided by season, we wonder if there is statistical evidence to claim that there is a difference in the average number of bikes rented in each season. We work on the entire dataset.

We limit our analysis to the Spring, Summer, and Autumn seasons. The average for Winter is visibly lower compared to the others. Moreover, the distribution of total for winter is not suitable for this analysis.

Testing of the hypoteses

By performing the Shapiro test on the total variable divided by seasons, we obtain

and, therefore, we reject the hypothesis of normality.

Box-Cox transformation

We try applying a Box-Cox transformation to achieve normality of total in the different seasons.

We obtain $\lambda = 1.52$

By performing the Shapiro test after the transformation, we obtain

```
> tapply( (dataset$total^best_lambda-1)/best_lambda,
dataset$season, function( x ) ( shapiro.test( x )$p ) )
spring    summer    autumn
0.81151870 0.07278747 0.10100644
```

Moreover, by performing the Bartlett test and the Levene test, we obtain

ANOVA

Given that the assumptions of normality and homoscedasticity are met, we can perform the ANOVA test on the groups

We reject the hypothesis that the means of the 3 groups are equal because the p-value is very low.

Finally, we perform t-tests to verify that there is a difference in the average number of bikes rented in each season.

t = -3.4691, df = 359, p-value = 0.0005858