최신 상태추정 이론 및 유도조종 응용

2017-06-13

School of Mechanical and Control Engineering
Prof. Won-Sang Ra

선형 확률 동적 시스템 상태추정

• 문제정의

: 오차가 수반된 시스템 모델과 측정치를 이용하여 실제 시스템의 상태변수를 그 측정가능 여부와 상관없이 유추(probabilistic inference)하는 과정

- 구성요소

■ 시스템모델

- 예) 선형 상태공간 방정식 (Gauss-Markov model)
- 잡음에 관한 확률모델 예) 영평균 백색 정규분포 (white Gaussian distribution)
- 상태추정기 설계 기준 예) 최소분산(MV), 최대사후확률(MAP), 최소자승(LS)

상태추정이론 발달사 (1/2)

정적시스템 상태변수 추정

- 1809 Gauss 최소자승 추정기법(Least Squares Estimation)

- 1912 Fisher 최대우도 추정기법(Maximum Likelihood Estimation)

1941 Kolmogorov 선형최소자승추정기법(Linear Least Mean Squares Estimation)

• 동적시스템 상태변수 추정 : 1960 R.E. Kalman

- 기본가정
 - 완벽한 시스템 모델(불규칙 오차를 제외한 파라미터 불확실성을 포함하지 않음)
 - 사전에 불규칙 오차에 관한 통계적 특성(1,2차 모멘트)이 정확히 알려져 있음

특성

- 통계적 최소자승 기법을 활용하여 선형 동적시스템 상태추정 문제 최초해결
- 칼만필터 추정치 = 해석학적 관점: 측정치에 대한 조건부 평균 대수학적 관점: 측정치 벡터공간 위로의 정사영
- Linear Least Mean Squares Estimation 관점에서 최적 무편향(unbiased) 추정기
- 불규칙 오차가 단봉 확률밀도함수를 갖는 경우, MAP/MV 관점에서도 최적

선형 확률 동적 시스템 (1/4)

• 동적 시스템이란?

- 정의
 - 특정한 기능을 수행하기 위하여 여러 구성요소가 서로 유기적으로 결합되어 서로 영향을 주며 작동되는 통합체
 - 주어진 입력에 대하여 어떤 작용을 하여 출력을 산출
 - 시간에 대한 입출력 관계의 변화(dynamics)를 포함

- 구분

- 선형 동적 시스템
 - : relaxed condition에서 입출력이 선형성(superposition)을 만족
- 확률 동적 시스템
 - : 시스템 모델과 실제 시스템 간의 차이(불확실성 혹은 모델링오차) 반영

 - a) 공정잡음(process noise) 불규칙한 시스템 모델링 오차
 - b) 측정잡음(measurement noise) 불규칙한 측정오차

선형 확률 동적 시스템 (2/4)

• 시스템 상태변수

- 시스템 특성이 집약된 시스템 동작특성 파악을 위한 필수정보
 - 시스템에 인가된 모든 과거 입력의 영향이 농축된 정보
 - 입력이 주어지면 시스템의 미래 거동특성을 유일하게 결정

• 시스템 모델링

- 모델링
 - 시스템 상태변수의 시간에 따른 변화(dynamics)를 개략적으로 모사하는 수학적 결과물(미분 혹은 차분방정식)을 도출하는 과정
 - 시스템의 특성을 정확히 모사하되, 복잡하지 않은 적절한 수준 필요 → 필연적으로 모델링 오차를 포함하게 됨
- 필요성
 - 시스템의 특성해석, 거동예측, 제어기 및 상태추정기 설계에 활용

선형 확률 동적 시스템 (3/4)

- 모델링 사례: 질점운동(1차원)
 - 실제운동 = 근사적인 등속직선운동 + 환경변화에 따른 불규칙 오차(영평균 백색잡음)

$$\dot{x}(t) = Ax(t) + B^{c}u^{c}(t) + Bw(t)$$

$$x = \begin{bmatrix} p \\ v \end{bmatrix}, \quad u^{c} = a, \quad w = \delta a \sim N(0, Q_{w}), \quad Q_{w} = var\{w\} = q,$$

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad B^{c} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

- **이산 선형 확률 동적 시스템** : 상태천이행렬로 표현되는 미분방정식의 해로부터 유도

$$egin{align*} oldsymbol{x}_{k+1} &= oldsymbol{F}_k oldsymbol{x}_k + oldsymbol{G}_k^c oldsymbol{u}_k^c + oldsymbol{u}_k \end{pmatrix} oldsymbol{F}_k = oldsymbol{\Phi}ig((k+1)T,kTig) = egin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix}, & G_k^c &= \int_{kT}^{(k+1)T} oldsymbol{\Phi}ig((k+1)T, auig) B^c(au) d au = iggl[\frac{1}{2}T^2 \\ 2 & T \end{bmatrix} \\ oldsymbol{u}_k &= \int_{kT}^{(k+1)T} oldsymbol{\Phi}ig((k+1)T, auig) B(au) w(au) d au, &: orall B_c &= \mbox{ \text{d}} \mbox{ \t$$

$$E\{u_k u_j^T\} = Q_k \delta_{k,j} = \int_{kT}^{(k+1)T} \Phi((k+1)T, \tau) B(\tau) Q_w(\tau) G^T(\tau) \Phi^T((k+1)T, \tau) d\tau \approx q \begin{bmatrix} \frac{1}{2}T^3 & \frac{1}{2}T^2 \\ \frac{1}{2}T^2 & T \end{bmatrix} \delta_{k,j}$$

: 샘플링 구간 별로 독립적인 영평균 정규분포 프로세스)

선형 확률 동적 시스템 (4/4)

• 모델링 사례: 로봇 위치 측정

• 모델링 사례: 로봇의 초기(k = 0)상태변수 추정치 및 오차

초기상태추정치 = 정규분포의 평균(최대확률): 논리적으로 타당한 방법에 의해 추측(guess) 초기상태추정오차 = 정규분포의 분산 : 추측에 의해 결정된 상태추정치의 부정확도

확률모형

- 정보관리모델: 확률공간 (Ω, \mathcal{F}, P)
 - 확률론
 - 확률현상에 대한 수학적인 모형을 만들고 이에 대한 성질을 규명
 - 확률공간 = 가측(measurable) 사건공간
 - 관심사건들의 집합(정보)에 확률(신뢰도)이 정의된 공간
 - 원소의 개수를 셀 수 없는 비가산 무한집합인 연속표본공간 $oldsymbol{\Omega}$ 에 대한 확률 $oldsymbol{P}$ 지정
 - ightharpoonup 관심사건을 모두 포함하는 최소 완전덧셈꼴 부분집합묶음($oldsymbol{\sigma}$ -algebra) $oldsymbol{\mathcal{F}}$ 도출
 - ightarrow ightarrow에 대해 공리적 확률 정의 (probability measure)

 Ω : 표본공간(sample space)

확률공간의 변환 (1/2)

• 확률변수(RV: random variable)

: 확률실험 \mathcal{E} 의 표본공간 Ω 위에서 정의되는 실가함수 $X:\Omega \to \mathbb{R}^1$.

x

- RV는 표본공간의 모든 원소를 하나도 빠짐없이 하나의 실수에 대응시키는 함수이나, 일대일 대응함수는 아닐 수 있음(예: RV = 동전 3개를 던져 앞면이 나오는 개수)
- RV는 명백한 함수이지만, 함수가 취하는 값이 중요하게 사용되므로 변수로 명명
- RV의 불규칙성(randomness)은 정의역을 구성하는 확률실험의 불규칙성에 기인
- RV의 확률을 이용하여 확률실험에 의한 표본점 혹은 사건에 대한 확률산출 가능
- 구체적인 확률공간 $(\Omega, \mathcal{F}, \mathbf{P})$ 을 기술하는 대신 RV를 도입함으로써 표본공간에 대한 수학적 추상화가 가능해짐

►실선

학률공간의 변환 (2/2)

• (누적) 분포함수(cdf)

: 실선 위에서 정의된 사건 $\{X \le x\}$ 의 확률

$$F_X(x) = P(X \le x)$$

- 반무한구간(semi-infinite interval)의 확률을 실선 상에 지정할 수 있게 됨
- 집합의 원소(실선 위의 한 점)에 대한 확률을 지정하는데 도움을 줌

확률밀도함수(pdf)

: 점 x 에서의 확률밀도

(미소구간에 대한 확률 혹은 확률의 순간 변화율)

$$P(x) = \lim_{dx\to 0} P(x < X \le x + dx)$$

$$= \lim_{dx\to 0} [F_X(x + dx) - F_X(x)] = f_X(x)dx$$

$$= f_X(x)dx$$

학률공간의 축소 (1/2)

• 조건부확률 (conditional probability)

- 정의

: 주어진 확률공간 (Ω,\mathcal{F},P) 에서, $E_1,E_2\in\mathcal{F}$ 이고 $P(E_2)>0$ 이라면, E_2 에 대한 E_1 의 조건부확률 $P(E_1|E_2)=rac{P(E_1\cap E_2)}{P(E_2)}$

- 물리적 의미

- 사건 E_2 가 일어난 조건에서 E_1 도 일어날 확률(E_2 결과가 E_1 의 확률에 영향을 줌)
- 실험결과로 이루어지는 전체 표본공간 Ω 가 E_2 로 국한되는, 즉 E_2 에 의해 새롭게 축소 설정된 표본공간 $\Omega\cap E_2$ 에서 E_1 이 일어날 확률을 의미 (칼만필터의 측정치 갱신과정)

학률공간의 축소 (1/2)

• 조건부확률의 성질

- 곱의 법칙 $P(E_1E_2\cdots E_n)=P(E_1)P(E_2|E_1)\cdots P(E_n|E_1E_2\cdots E_{n-1})$
- 전확률의 법칙(Rule of Total Probability)
 - : $\{E_i\}$ 이 표본공간의 분할, 즉 배반사건이라면, 임의의 사건 $F \in \mathcal{F}$ 에 대하여

$$P(F) = \sum_{i} P(E_i)P(F|E_i)$$

- 베이즈 법칙(Bayesian Rule): 칼만필터의 사후확률밀도함수 산출과 관련

$$P(E_i|F) = \frac{P(E_i)P(F|E_i)}{P(F)} = \frac{P(E_i)P(F|E_i)}{\sum_i P(E_i)P(F|E_i)}$$

- $P(E_i)$ = 사건 F가 일어나기 전에 계산된 사건 E_i 의 확률(사전(a priori) 확률)
- $P(E_i|F)$ = 사건 F가 일어난 후에 계산된 사건 E_i 의 조건부확률(사후(a posteriori) 확률
- 사후확률 $P(E_i|F)$ 은 사건 E_i 가 일어난 원인이 사건 F에 있음을 의미하므로, 베이즈법칙을 '원인의 확률(probability of causes)'을 산출하기 위한 공식으로 해석 가능

적률

• 기대값(expectation) / 평균(mean = first moment)

$$E\{X\} = \int_{\Omega_X} X dP = \int_{\Omega_X} x dF_X(x) = \int_{-\infty}^{+\infty} x f_X(x) dx$$

- 조건부 평균(conditional mean/expectation)

$$E[Y|x] = \int_{-\infty}^{\infty} y f_Y(y|x) dy$$

$$E[E[Y|x]] = \int_{-\infty}^{\infty} E[Y|x] f_X(x) dx = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} y f_Y(y|x) dy \right] f_X(x) dx$$

$$= \int_{-\infty}^{\infty} y \int_{-\infty}^{\infty} \underbrace{f_Y(y|x) f_X(x)}_{=f_{XY}(x,y)} dx dy = \int_{-\infty}^{\infty} y f_Y(y) dy = E[Y]$$

• 중심적률(central moment)

$$E\{|X-E\{X\}|^n\}$$

- 분산(variance = second moment)

: 평균을 중심으로 한 확률변수 값의 변화 크기(mean-squared variation)

$$var\{X\} = E\{(X - E\{X\})^2\} = E\{X^2 - 2E\{X\}X + E\{X\}^2\} = E\{X^2\} - E\{X\}^2$$

정규확률변수

- 정규(Normal or Gaussian) RV $X \sim N(m, P)$
 - 확률밀도함수

$$f_X(x) = \frac{1}{\sqrt{(2\pi)^n |P|}} e^{-\frac{1}{2}(x-m)^T P^{-1}(x-m)}$$

- 특성

- Gaussian RV의 특성은 평균과 분산만으로 모두 표현
- Gaussian RV의 선형변환 역시 Gaussian RV임

$$X \sim N(m, P), \quad Y = AX + b \rightarrow Y \sim N(Am + b, APA^T)$$

- Gaussian RV의 확률밀도함수는 평균에서 최대값을 가짐
- 비상관(uncorrelated)되어 있는 Gaussian RVs는 서로 독립(independent)임

$$E[X^{j}Y^{k}] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{j} y^{k} f_{X,Y}(x,y) dxdy$$

$$f_{X,Y}(x,y) = f_{X}(x) f_{Y}(y)$$

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)} = \frac{f_{X}(x) f_{Y}(y)}{f_{Y}(y)} = f_{X}(x)$$

서로 독립인 RVs는 서로에 대한 정보를 포함하고 있지 않음

Jointly Gaussian RVs

• 결합확률밀도함수

$$f_{X,Y}(x,y) = \frac{1}{\sqrt{(2\pi)^2\Sigma}} e^{-\frac{1}{2}\left(\begin{bmatrix}x\\y\end{bmatrix} - \begin{bmatrix}\overline{x}\\\overline{y}\end{bmatrix}\right)^T \Sigma^{-1}\left(\begin{bmatrix}x\\y\end{bmatrix} - \begin{bmatrix}\overline{x}\\\overline{y}\end{bmatrix}\right)}, \quad \Sigma = \begin{bmatrix}\Sigma_{XX} & \Sigma_{XY}\\\Sigma_{YX} & \Sigma_{YY}\end{bmatrix}$$

■ Jointly Gaussian RVs의 결합 확률밀도함수는 각 RV의 평균/분산과 공분산만으로 표현 가능함

- $f_{X|Y}(x|Y=y)$ 역시 정규분포를 이름
 - 조건부 평균 $E\{X|Y=y\}=\overline{x}+\Sigma_{XY}\Sigma_{YY}^{-1}(y-\overline{y})$
 - 조건부 분산 $var\{X|Y=y\}=\Sigma_{XX}-\Sigma_{XY}\Sigma_{YY}^{-1}\Sigma_{YX}$

학률과정(Random Process) (1/2)

확률과정 X(t)

- 정의 및 특성
 - 모든 사건 ζ 를 함수 $X(\zeta,t)$ 에 대응시키는 방법, 즉 시간에 따라 변화하는 확률변수
 - 고정된 시점에서 확률과정은 확률변수로 간주됨(ensemble analysis)
 - : 확률과정의 특성 역시 시간에 따른 확률변수의 pdf 로 설명될 수 있음
 - : 일반적으로 확률과정의 특성(평균, 분산 등)은 시변함수가 됨

(참고) stationary process : 시간 간격을 이동하여도 확률과정의 특성이 변화하지 않는 경우

wide sense stationary: 기대값이 일정, 확률적 특성이 시간 간격의 함수로 기술

- 확률과정의 예

■ 확률실험 : 동전던지기

■ 확률과정: k 번째 시행까지 앞면이 나온 누적회수 $X_{k+1} = X_k + N_k$ $(X_0 = 0)$

X _k	k=0	k=1	k=2	k=3
0	1	1/2	1/4	1/8
1		1/2	2/4	3/8
2			1/4	3/8
3				1/8

학률과정(Random Process) (2/2)

Markov Process

- 정의
 - If $k_1 < k_2 < \cdots < k_m < k$, and the pdf of x_k conditioned on $x_{k_1}, x_{k_2}, \cdots, x_{k_m}$ is simply the pdf of x_k conditioned on x_{k_m} , then $\{x_k\}$ is a Markov process.
 - Markov process는 ODE의 state 개념을 확률과정에 도입한 것임
- Chapman-Kolmogorov Equation

$$p(x_n|x_k) = \int_{-\infty}^{\infty} p(x_n|x_m)p(x_m|x_k)dx_m \quad where \quad n > m > k$$

$$\begin{array}{lll} (pf) & p(x_n|x_k) & = & \displaystyle \int_{-\infty}^{\infty} p(x_n|x_m,x_k) p(x_m|x_k) dx_m & & & \text{marginal density} \\ & = & \displaystyle \int_{-\infty}^{\infty} p(x_n|x_m) p(x_m|x_k) dx_m & & & \text{Markov process} \end{array}$$

Gauss-Markov 모델 (1/2)

• 이산시간 Gauss-Markov 모델

- 선형 확률 동적시스템

$$x_{k+1} = F_k x_k + G_k w_k$$
$$z_k = y_k + v_k = H_k x_k + v_k$$

- 가정 #1. 모델링 오차 및 측정오차 $\{w_k\}$, $\{v_k\}$ 가 독립인 영평균 Gaussian 백색잡음 분산 = $E\{w_kw_l^T\}=Q_k\delta_{kl}$, $E\{v_kv_l^T\}=R_k\delta_{kl}$
- 가정 #2. 초기 상태변수 x_0 는 Gaussian RV 임 평균 = \bar{x}_0 , 공분산 = $E\left[(x_0 \bar{x}_0)(x_0 \bar{x}_0)^T\right] = P_0$

- 특성

lacktriangle 선형 동적 확률시스템의 상태변수 x_k 는 Gaussian RV 임

$$x_k = \Phi_{k,0} x_0 + \sum_{l=0}^{k-1} \Phi_{k,l+1} G_l w_l \blacktriangleleft \dots \Phi_{k,l} = F_{k-1} F_{k-2} \dots F_l \quad (k > l)$$

- 상태변수열 $\{x_k\}$ 역시 Gauss-Markov process 임 : $x_k = \Phi_{k,k_m} x_{k_m} + \sum_{l=k_m}^{n-1} \Phi_{k,l+1} G_l w_l$
- $\{x_k\}$, $\{z_k\}$ 은 jointly Gaussian

$$\begin{bmatrix} x_k \\ z_k \end{bmatrix} \sim N \left(\begin{bmatrix} \bar{x}_k \\ H_k \bar{x}_k \end{bmatrix}, \begin{bmatrix} P_k & P_k H_k^T \\ H_k P_k & H_k P_k H_k^T + R_k \end{bmatrix} \right)$$

Gauss-Markov 모델 (2/2)

• 선형 확률 동적시스템의 상태변수 = Gauss-Markov 모델

: 상태변수 열 $\{x_k\}$ 이 Gaussian 이므로, 평균과 분산만으로 확률밀도함수 기술 가능

- 평균의 전파
 - 시스템 및 측정방정식의 양변에 expectation을 취하면,

$$\begin{array}{rcl} \bar{x}_{k+1} & = & F_k \bar{x}_k \\ \bar{z}_k & = & H_k \bar{x}_k \end{array}$$

- 분산의 전파

$$\begin{split} \tilde{x}_{k+1} &= x_{k+1} - \bar{x}_{k+1} = F_k \tilde{x}_k + G_k w_k \\ P_{k+1} &= E\{\tilde{x}_{k+1}, \tilde{x}_{k+1}^T\} = F_k E\{\tilde{x}_k \tilde{x}_k^T\} F_k^T + G_k E\{w_k w_k^T\} G_k^T \\ \tilde{z}_k &= z_k - \bar{z}_k = H_k \, \tilde{x}_k + v_k \end{split}$$

$$P_{k+1} = F_k P_k F_k^T + G_k Q_k G_k^T$$

$$S_k = E\{(z_k - \bar{z}_k)(z_k - \bar{z}_k)^T\} = H_k P_k H_k^T + R_k$$

추정문제의 일반 해 - 최소평균자승추정 (1/2)

LLMSE(Linear Least Mean Squares Estimation)

- 측정방정식

$$Z = HX + V, \qquad E\{V\} = 0$$

- 추정문제
 - 가용한 RV(예를 들면 측정치) **Z** 를 이용하여, 미지의 RV **X**를 추정
 - 추정치는 측정치의 선형함수로 표현됨 $\hat{X} = AZ + b$
 - 평균자승 추정오차를 최소화

$$\min_{\widehat{X}} J_{LLMSE} = \min_{\widehat{X}} E\left\{ \left(X - \widehat{X} \right)^T \left(X - \widehat{X} \right) \right\} \\
= \min_{A,b} tr(E\{((X - \overline{X}) - (AZ + b - \overline{X}))((X - \overline{X}) - (AZ + b - \overline{X}))^T \})$$

- 추정치

$$\begin{split} J_{LLMSE} &= tr(\Sigma_{XX} + A(\Sigma_{ZZ} + \overline{Z}\overline{Z}^T)A^T + (b - \overline{X})(b - \overline{X})^T + 2A\overline{Z}(b - \overline{X})^T - 2A\Sigma_{ZX}) \\ &\frac{\partial J_{LLMSE}}{\partial A} = 2A(\Sigma_{ZZ} + \overline{Z}\overline{Z}^T) - 2\Sigma_{XZ} + 2(b - \overline{X})\overline{Z}^T = 0 \\ &\frac{\partial J_{LLMSE}}{\partial b} = 2(b - \overline{X}) + 2A\overline{X} = 0 \\ &\widehat{X} = \overline{X} + \Sigma_{XZ}\Sigma_{ZZ}^{-1}(Z - \overline{Z}) \end{split}$$

추정문제의 일반 해 - 최소평균자승추정 (2/2)

LLMSE(Linear Least Mean Squares Estimation)

- 특성
 - LLMSE는 영평균 추정오차 특성(무편향성; unbiasedness)을 가짐

$$m{E}igl(\widehat{m{X}}igr) = m{E}igl(m{ar{X}}igr) + m{\Sigma}_{m{X}m{Z}}m{\Sigma}_{m{Z}m{Z}}^{-1}(m{Z}m{Z}-m{ar{Z}})igr) = m{E}igl(ar{m{X}}igr) + m{\Sigma}_{m{X}m{Z}}m{\Sigma}_{m{Z}m{Z}}^{-1}(m{E}m{Z}m{Z}-m{ar{Z}}) = m{E}igl(ar{m{X}}m{X}m{Z}m{Z})$$
 (참고) LLMSE의 분사

$$var\{\widehat{X} - X\} = \Sigma_{XX} - \Sigma_{XZ}\Sigma_{ZZ}^{-1}\Sigma_{ZX}$$

■ LMSE 문제를 통계적 최소자승(stochastic least squares) 문제라고 하기도 함: RVs에 대한 어떠한 가정도 필요로 하지 않으므로

RVs가 비선형 관계를 갖더라도 적용 가능한 추정기법임

- RVs가 jointly Gaussian 인 경우, LLMSE는 MLE와 같아짐
- RVs가 jointly Gaussian 인 경우, LMSE는 선형추정기가 됨(LMSE = LLMSE)

추정문제의 일반 해 - 최소분산추정 (1/2)

- MVE(Minimum Variance Estimation)
 - 추정문제
 - 측정치 Z = z가 주어진 경우, 조건부 분산을 최소화하는 추정치 \hat{x} 를 산출
 - 모든 y 에 대해 다음 조건을 만족하여야 함

$$E\{(X-\widehat{X})(X-\widehat{X})|Z=z\} \leq E\{(X-y)(X-y)|Z=z\}$$

- 최소분산 추정치
 - 조건부 평균 $E\{X|Z=z\}$ 이 유일한 최소분산추정치 임

$$E\{(X-y)(X-y)^T|Z=z\}$$

$$= \int (x-y)(x-y)^T p_{X|Z}(x|z) dx$$

$$= \int xx^T p_{X|Z}(x|z) dx - y \int x^T p_{X|Z}(x|z) dx - y^T \int x p_{X|Z}(x|z) dx + yy^T$$

$$= \left[y - \int x p_{X|Z}(x|z) dx\right] \left[y^T - \int x^T p_{X|Z}(x|z) dx\right] + \int xx^T p_{X|Z}(x|z) dx - \left|\int x p_{X|Z}(x|z) dx\right|^2$$

조건부 평균에 의해 산출된 최소분산추정치는 무편향 추정치임

$$E_{X,Z}\{\widehat{X}\} \leq E_Z\{E_{X|Z}(\widehat{X})\} = E_Z\{E_{X|Z}(x|Z)\} = E_X\{x\}$$
 conditional expectation의 속성 (p.13)

추정문제의 일반 해 - 최소분산추정 (2/2)

• 선형 Gaussian 측정모델에 대한 최소분산 추정기

- 측정방정식

$$oldsymbol{z} = oldsymbol{H} oldsymbol{x} + oldsymbol{v}$$
 $oldsymbol{x} \sim oldsymbol{N}(oldsymbol{\overline{x}}, oldsymbol{P}_{oldsymbol{x}}), \ \ oldsymbol{v} \sim oldsymbol{N}(oldsymbol{0}, oldsymbol{R}), \ \ \ oldsymbol{x}, oldsymbol{v} \leftarrow oldsymbol{b}$ 년 상호 비상관

■ 측정치가 정규확률변수의 선형 합으로 표현되므로 측정치도 정규확률변수

$$\mathbf{z} \sim N(\bar{\mathbf{z}}, P_z)$$

$$\bar{\mathbf{z}} = E\{H\mathbf{x} + \mathbf{v}\} = H\bar{\mathbf{x}}, \quad P_z = E\{(\mathbf{z} - \bar{\mathbf{z}})(\mathbf{z} - \bar{\mathbf{z}})^T\} = HP_xH^T + R$$

■ 조건부 평균을 정의하기 위한 공분산행렬

$$P_{xz} = P_{zx}^T = E\{(x - \overline{x})(z - \overline{z})^T\} = HP_x$$

MVE

$$\widehat{x}_{MV} = E\{x|z\} = \overline{x} + P_{xz}P_z^{-1}(z - \overline{z}) = \overline{x} + P_xH^T(HP_xH^T + R)^{-1}(z - H\overline{x}) : 23p
= \overline{x} + P_{x|z}H^TR^{-1}(z - H\overline{x})
P_{x|z} = var\{\widehat{x}_{MV} - x\} = P_x - P_{xz}P_z^{-1}P_{zx} = P_x - P_x(HP_xH^T + R)^{-1}HP_x$$

추정문제의 일반 해 - 최소분산추정 (2/2)

• 선형 Gaussian 측정모델에 대한 최소분산 추정기

- 측정방정식

$$oldsymbol{z} = oldsymbol{H} oldsymbol{x} + oldsymbol{v}$$
 $oldsymbol{x} \sim oldsymbol{N}(oldsymbol{\overline{x}}, oldsymbol{P}_{oldsymbol{x}}), \ \ oldsymbol{v} \sim oldsymbol{N}(oldsymbol{0}, oldsymbol{R}), \ \ \ oldsymbol{x}, oldsymbol{v} \leftarrow oldsymbol{b}$ 년 상호 비상관

■ 측정치가 정규확률변수의 선형 합으로 표현되므로 측정치도 정규확률변수

$$\mathbf{z} \sim N(\overline{\mathbf{z}}, P_{\mathbf{z}})$$

$$\overline{\mathbf{z}} = E\{H\mathbf{x} + \mathbf{v}\} = H\overline{\mathbf{x}}, \quad P_{\mathbf{z}} = E\{(\mathbf{z} - \overline{\mathbf{z}})(\mathbf{z} - \overline{\mathbf{z}})^T\} = HP_{\mathbf{x}}H^T + R$$

■ 조건부 평균을 정의하기 위한 공분산행렬

$$P_{xz} = P_{zx}^T = E\{(x - \overline{x})(z - \overline{z})^T\} = HP_x$$

MVE

$$\widehat{x}_{MV} = E\{x|z\} = \overline{x} + P_{xz}P_z^{-1}(z - \overline{z}) = \overline{x} + P_xH^T(HP_xH^T + R)^{-1}(z - H\overline{x}) : 15p$$

$$= \overline{x} + P_{x|z}H^TR^{-1}(z - H\overline{x})$$

$$P_{x|z} = var\{\hat{x}_{MV} - x\} = P_x - P_{xz}P_z^{-1}P_{zx} = P_x - P_x(HP_xH^T + R)^{-1}HP_x$$

확률 동적시스템 상태추정 문제

• 확률론적 관점에서 바라본 추정문제의 본질

: 불규칙 시스템의 상태변수에 포함되어 있는 정보를 표현하는 확률공간이 시간전파 및 측정치 획득에 따라 어떻게 변화하는 지 알아내는 것 (= 시간에 따라 확률공간을 정의하는 조건부 확률밀도함수의 변화를 추적)

find \hat{x}_k maximizing $p_{X|Z}(x_k|Z^k)$

상태추정을 위한 조건부확률 산출

- 사전 확률밀도함수(a priori probability density) $p(x_k|Z^{k-1})$
 - 시스템전파(system propagation) 혹은 시간갱신(time update)과 관련
 - Chapman-Kolmogorov 방정식(p.17)로부터 유도

$$p(x_k|Z^{k-1}) = \int p(x_k|x_{k-1})p(x_{k-1}|Z^{k-1})dx_{k-1}$$

- 사후 확률밀도함수(a posteriori probability density) $p(x_k|Z^k)$
 - 측정치갱신(measurement update)과 관련
 - Baysian Rule(p.12)를 이용하여 유도

$$\begin{aligned} p(x_{k}|\mathbf{Z}^{k}) &= p(x_{k}|z_{k}, \mathbf{Z}^{k-1}) = \frac{p(z_{k}|x_{k}, \mathbf{Z}^{k-1})p(x_{k}|\mathbf{Z}^{k-1})}{p(z_{k}|\mathbf{Z}^{k-1})} \\ &= \frac{p(z_{k}|x_{k})p(x_{k}|\mathbf{Z}^{k-1})}{p(z_{k}|\mathbf{Z}^{k-1})} \\ &= \frac{p(z_{k}|x_{k})p(x_{k}|\mathbf{Z}^{k-1})}{\int p(z_{k}|x_{k})p(x_{k}|\mathbf{Z}^{k-1})dx_{k}} \end{aligned}$$

이산시간 칼만필터 (1/3)

• 이산시간 칼만필터 순환식 유도과정

- : 칼만필터 = 조건부 확률밀도 함수를 순차적으로 산출하는 과정
 - 조건부 확률밀도함수 산출
 - k=0: 초기화 초기치에 대한 가정 $x(0)\sim N\left(\bar{x}_0,P_0\right)$ 으로부터, $\hat{x}_{0|0}=\bar{x}_0,\,P_{0|0}=P_0$
 - k=1: 시스템전파(사전 확률밀도함수) Gauss-Markov 모델의 성질(p.19)에 의해, $x_1 \sim N\left(\hat{x}_{1|0}, P_{1|0}\right)$ 도 정규분포를 따름 $\hat{x}_{1|0} = F_0\bar{x}_0, \ P_{1|0} = F_0P_0F_0^T + G_0Q_0G_0^T$
 - k = 1: 측정치갱신(사후 확률밀도함수) Gauss-Markov 모델의 성질(p.18)에 의해, 결합확률분포가 정규분포를 따르게 됨

$$\begin{bmatrix} x_{1|0} \\ z_1 \end{bmatrix} \sim N \left(\begin{bmatrix} \hat{x}_{1|0} \\ H \hat{x}_{1|0} \end{bmatrix}, \begin{bmatrix} P_{1|0} & P_{1|0} H_1^T \\ H_1 P_{1|0} & H_1 P_{1|0} H_1^T + R_1 \end{bmatrix} \right)$$

따라서, 누적측정치 $Z^1 = \{z_1\}$ 에 대한 x_1 의 조건부확률분포(p.23) 역시 $N\left(\hat{x}_{1|1}, P_{1|1}\right)$ $\hat{x}_{1|1} = \hat{x}_{1|0} + K_1\left(z_1 - H_1\hat{x}_{1|0}\right), \quad K_1 = P_{1|0}H_1^T\left(H_1P_{1|0}H_1^T + R_1\right)^{-1},$ $P_{1|1} = P_{1|0} - P_{1|0}H_1\left(H_1^TP_{1|0}H_1 + R_1\right)^{-1}H_1^TP_{1|0}$

이산시간 칼만필터 (2/3)

• 이산시간 칼만필터 순환식 (p.27의 일반화)

- 시간 갱신식
 - 사전 확률밀도함수 $p(x_{k+1}|Z^k)$ 의 평균과 분산

$$\hat{x}_{k+1|k} = F_k \hat{x}_{k|k},
P_{k+1|k} = F_k P_{k|k} F_k^T + G_k Q_k G_k^T$$

- 측정치 갱신식
 - 사후 확률밀도함수 $p\left(x_{k+1}|Z^{k+1}\right)$ 의 평균과 분산

$$\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k} + K_{k+1} \left(z_{k+1} - H_{k+1} \hat{x}_{k+1|k} \right),
K_{k+1} = P_{k+1|k} H_{k+1}^T \left(H_{k+1} P_{k+1|k} H_{k+1}^T + R_{k+1} \right)^{-1},
P_{k+1|k+1} = P_{k+1|k} - P_{k+1|k} H_{k+1} \left(H_{k+1}^T P_{k+1|k} H_{k+1} + R_{k+1} \right)^{-1} H_{k+1}^T P_{k+1|k}
= \left(P_{k+1|k}^{-1} + H_{k+1}^T R_{k+1}^{-1} H_{k+1} \right)^{-1}$$

이산시간 칼만필터 (3/3)

• 칼만필터에 의한 조건부 확률밀도함수 산출과정

■ 사전추정오차 분산 > 사후추정오차 분산 : 불규칙 모델링오차로 인해 예측치의 신뢰도가 저하됨을 의미

이산시간 칼만필터의 특성 (1/3)

• 선형 시불변 시스템에 대한 칼만필터 오차특성

사전추정오차 동특성

$$\tilde{x}_{k+1} = x_{k+1} - \hat{x}_{k+1|k}
= Fx_k + Gu_k - F(I - K_k H) \hat{x}_{k|k-1} - FK_k (Hx_k + v_k)
= F(I - K_k H) \tilde{x}_k + Gu_k - FK_k v_k$$

■ 무편향성

 $E\{\tilde{x}_{k+1}\} = F(I - K_k H) E\{\tilde{x}_k\}$ 이므로, 행렬 $F(I - K_k H)$ 가 점근적으로 안정하면 칼만필터는 무편향필터라 할 수 있음

■ 추정오차 공분산 칼만필터 추정오차 공분산은 다음 Riccati 방정식을 만족함

$$P_{k+1|k} = E\{\tilde{x}_{k+1}\tilde{x}_{k+1}^T\}$$

$$= F\left[(I - K_k H) P_{k|k-1} (I - K_k H)^T + K_k R K_k^T \right] F^T + GQG^T$$

$$= F\left[P_{k|k-1} - P_{k|k-1} H^T (H P_{k|k-1} H^T + R)^{-1} H P_{k|k-1} \right] F^T + GQG^T$$

이산시간 칼만필터의 특성 (2/3)

• 선형 시불변 시스템에 대한 칼만필터 오차특성

- 통계적 정상상태
 - 시간이 지남에 따라 칼만필터의 오차공분산이 유한한 값으로 수렴

$$\lim_{k \to \infty} P_{k|k-1} = P$$

■ 대수 리카티 방정식(algebraic Riccati equation)

$$P = F \left[P - PH^T \left(HPH^T + R \right)^{-1} HP \right] F^T + GQG^T$$

■ 정상상태 칼만필터 이득

(F,H)가 detectable(F-LH)를 점근 안정하게 하는 행렬 <math>L이 존재)이면, P_0 와 무관하게 ARE를 만족하는 반양한정 행렬 $P\geq 0$ 이 항상 존재

이 경우, 정상상태에서 추정오차를 0으로 수렴시키는 정상상태 칼만필터 이득 존재

■ 가관측성

시스템이 observable하면 detectable 하므로, 가관측성을 확인함으로써 오차공분산의 유한성 및 칼만필터의 무편향성을 확인할 수 있음 (칼만필터 설계를 위한 필수조건)

Deterministic Least Squares Method (1/3)

Optimal Weighted Least Squares Estimation Problem

measurement equation

$$y = \mathcal{H}x + v$$

 $\begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_k \end{bmatrix} = \begin{bmatrix} H_0 \\ H \\ \vdots \\ H_{\nu} \end{bmatrix} x + \begin{bmatrix} v_0 \\ v_1 \\ \vdots \\ v_k \end{bmatrix}$

 $x \in \mathbf{R}^n$ state vector should be estimated

 $y \in \mathbf{R}^m$ measurement vector

 $v \in \mathbf{R}^m$ zero-mean white additive noise with variance \mathcal{R}

cost function

$$J_{OWLS} = (y - \mathcal{H}x)^T \mathcal{R}^{-1} (y - \mathcal{H}x)$$

OWLS estimation problem is to find the minimizing solution of J_{OWLS}

Optimality Condition

$$\frac{\partial J_{OWLS}}{\partial x} = -\mathcal{H}^T \mathcal{R}^{-1} (y - \mathcal{H}x) = 0$$

$$\hat{x}_{OWLS} = \left(\mathcal{H}^T \mathcal{R}^{-1} \mathcal{H}\right)^{-1} \mathcal{H}^T \mathcal{R}^{-1} y$$

: stationarizing point

Deterministic Least Squares Method (2/3)

Minimum Condition

- existence condition of OWLS estimate
 - OWLS estimate becomes minimizing solution of the given cost function iff

$$\frac{\partial^2 J_{OWLS}}{\partial x^2} = \mathcal{H}^T \mathcal{R}^{-1} \mathcal{H} > 0$$

- in general, if the weighting matrix of measurement error, \mathcal{R} , is chosen as the covariance of measurement noise, the OWLS estimate becomes the minimum variance estimate (equivalently, least mean squares estimate)
- since R > 0, the least squares estimate always exists in Hilbert space

Deterministic Least Squares Method (3/3)

Normal Equation

from the optimality condition of LS estimate

$$\mathcal{H}^T \mathcal{R}^{-1} (y - \mathcal{H} \hat{x}^{OWLS}) = 0$$

Orthogonal Projections

Kalman Filter as a WLS Estimator (1/4)

Stochastic Linear Dynamic System

state-space representation

$$\begin{cases} x_{k+1} &= F_k x_k + G_k u_k \\ y_k &= H_k x_k + v_k \end{cases} \text{ mutually uncorrelated white noises}$$

$$cov < u_k, u_k >= Q_k, \quad cov < v_k, v_k >= R_k$$

vector-valued representation

$$y^k \triangleq \mathcal{H}^k x_k + \epsilon^k = H^k \Phi^k x_k + v^k - H^k F^k G^{k-1} u^{k-1}$$

$$x^{k} \triangleq \begin{bmatrix} x^{k-1} \\ x_{k} \end{bmatrix}, \quad x^{0} = x_{0}, \quad y^{k} \triangleq \begin{bmatrix} y^{k-1} \\ y_{k} \end{bmatrix}, \quad y^{0} = y_{0}, \quad u^{k-1} \triangleq \begin{bmatrix} u^{k-2} \\ u_{k-1} \end{bmatrix}, \quad u^{0} = u_{0}, \quad v^{k} \triangleq \begin{bmatrix} v^{k-1} \\ v_{k} \end{bmatrix}, \quad v^{0} = v_{0},$$

$$Q^{k-1} = \begin{bmatrix} Q_{0} & 0 & \cdots & 0 & 0 \\ 0 & Q_{1} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & Q_{k-2} & 0 \\ 0 & 0 & \cdots & 0 & Q_{k-1} \end{bmatrix} = \begin{bmatrix} Q^{k-2} & 0 \\ 0 & Q_{k-1} \end{bmatrix}, \quad R^{k} = \begin{bmatrix} R_{0} & 0 & \cdots & 0 & 0 \\ 0 & R_{1} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & R_{k-1} & 0 \\ 0 & 0 & \cdots & 0 & R_{k} \end{bmatrix}, \quad H^{k} = \begin{bmatrix} H_{0} & 0 & \cdots & 0 & 0 \\ 0 & H_{1} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & H_{k-1} & 0 \\ 0 & 0 & \cdots & 0 & H_{k} \end{bmatrix} = \begin{bmatrix} H^{k-1} & 0 \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & H_{k} \end{bmatrix},$$

$$\begin{cases} \Phi(j,k) & \triangleq F_{j-1} \times \cdots \times F_{k} & (j>k) \\ \Phi(j,k) & \triangleq I & (j=k) \\ \Phi(j,k) & \triangleq (F_{k-1} \times \cdots \times F_{j})^{-1} & (j$$

Kalman Filter as a WLS Estimator (2/4)

Weighted Least Squares Estimation

minimize
$$J(x_k) = (y^k - \mathcal{H}^k x_k)^T \mathcal{M}_k^{-1} (y^k - \mathcal{H}^k x_k) = \begin{bmatrix} u^{k-1} \\ v^k \end{bmatrix}^T \begin{bmatrix} Q^{k-1} & 0 \\ 0 & R^k \end{bmatrix}^{-1} \begin{bmatrix} u^{k-1} \\ v^k \end{bmatrix}$$

$$y^{k-1} = H^{k-1} \Phi^{k-1} F_{k-1}^{-1} x_k + \epsilon^{k-1} - H^{k-1} \Phi^{k-1} F_{k-1}^{-1} G_{k-1} u_{k-1} = H^{k-1} \Phi^{k-1} F_{k-1}^{-1} x_k + \bar{\epsilon}^{k-1}$$

$$\mathcal{M}_k = cov < \epsilon^k, \epsilon^k > = H^k F^k G^{k-1} Q^{k-1} (H^k F^k G^{k-1})^T + R^k$$

$$\bar{\mathcal{M}}_{k-1} = \mathcal{M}_{k-1} + H^{k-1} \Phi^{k-1} F_{k-1}^{-1} G_{k-1} Q_{k-1} (H^{k-1} \Phi^{k-1} F_{k-1}^{-1} G_{k-1})^T$$

A Posteriori Estimates as a Least Squares Solution

$$\hat{x}_{k|k} = ((\mathcal{H}^k)^T \mathcal{M}_k^{-1} \mathcal{H}^k)^{-1} (\mathcal{H}^k)^T \mathcal{M}_k^{-1} y^k = P_{k|k} (H^k \Phi^k)^T \mathcal{M}_k^{-1} y^k$$

$$P_{k|k} = cov < x_k - \hat{x}_{k|k}, x_k - \hat{x}_{k|k} > = ((\mathcal{H}^k)^T \mathcal{M}_k^{-1} \mathcal{H}^k)^{-1} = ((H^k \Phi^k)^T \mathcal{M}_k^{-1} H^k \Phi^k)^{-1}$$

A Priori Estimates as a Least Squares Solution

$$\hat{x}_{k|k-1} = P_{k|k-1} (H^{k-1} \Phi^{k-1} F_{k-1}^{-1})^T \bar{\mathcal{M}}_{k-1}^{-1} y^{k-1}$$

$$P_{k|k-1} = cov < x_k - \hat{x}_{k|k-1}, x_k - \hat{x}_{k|k-1} > = \left((H^{k-1} \Phi^{k-1} F_{k-1}^{-1})^T \bar{\mathcal{M}}_{k-1}^{-1} H^{k-1} \Phi^{k-1} F_{k-1}^{-1} \right)^{-1}$$

Kalman Filter as a WLS Estimator (3/4)

Time Update

$$\bar{\mathcal{M}}_{k-1}^{-1} = \left(\underbrace{\mathcal{M}_{k-1}}_{A} + \underbrace{H^{k-1}\Phi^{k-1}F_{k-1}^{-1}}_{B}\underbrace{G_{k-1}Q_{k-1}G_{k-1}^{T}}_{C}\underbrace{(H^{k-1}\Phi^{k-1}F_{k-1}^{-1})^{T}}_{D}\right)^{-1}$$

substituting the above equation for a priori estimation error covariance

$$P_{k|k-1}^{-1} = \mathcal{A}_{k-1}^{-1} - \mathcal{A}_{k-1}^{-1} \left(\mathcal{A}_{k-1}^{-1} + \underbrace{(G_{k-1}Q_{k-1}G_{k-1}^T)^{-1}}_{\triangleq \mathcal{C}_{k-1}^{-1}} \right)^{-1} \mathcal{A}_{k-1}^{-1}$$

$$\mathcal{A}_{k-1}^{-1} \triangleq (H^{k-1}\Phi^{k-1}F_{k-1}^{-1})^T \mathcal{M}_{k-1}^{-1} H^{k-1}\Phi^{k-1}F_{k-1}^{-1} = \left(F_{k-1}P_{k-1|k-1}F_{k-1}^T\right)^{-1}$$

matrix inversion lemma

$$P_{k|k-1} = \mathcal{A}_{k-1} + \mathcal{C}_{k-1} = F_{k-1}P_{k-1|k-1}F_{k-1}^T + G_{k-1}Q_{k-1}G_{k-1}^T$$

$$(H^{k-1}\Phi^{k-1}F_{k-1}^{-1})^T\bar{\mathcal{M}}_{k-1}^{-1} = \left(I - A_{k-1}^{-1}(A_{k-1}^{-1} + C_{k-1}^{-1})^{-1}\right)(H^{k-1}\Phi^{k-1}F_{k-1}^{-1})^T\mathcal{M}_{k-1}^{-1}$$

$$\hat{x}_{k|k-1} = P_{k|k-1} (H^{k-1} \Phi^{k-1} F_{k-1}^{-1})^T \bar{\mathcal{M}}_{k-1}^{-1} y^{k-1}
= F_{k-1} P_{k-1|k-1} (H^{k-1} \Phi^{k-1})^T \mathcal{M}_{k-1}^{-1} y^{k-1}
= F_{k-1} \hat{x}_{k-1|k-1}$$

Kalman Filter as a WLS Estimator (4/4)

Measurement Update

$$\mathcal{M}_k = H^k F^k G^{k-1} Q^{k-1} (H^k F^k G^{k-1})^T + R^k = \begin{bmatrix} \bar{\mathcal{M}}_{k-1} & 0 \\ 0 & R_k \end{bmatrix}$$

substituting the above equation for a posteriori estimation error covariance

$$P_{k|k}^{-1} = (H^k \Phi^k)^T \mathcal{M}_k^{-1} H^k \Phi^k$$

$$= \begin{bmatrix} H^{k-1} \Phi^{k-1} F_{k-1}^{-1} \\ H_k \end{bmatrix}^T \begin{bmatrix} \bar{\mathcal{M}}_{k-1}^{-1} & 0 \\ 0 & R_k^{-1} \end{bmatrix} \begin{bmatrix} H^{k-1} \Phi^{k-1} F_{k-1}^{-1} \\ H_k \end{bmatrix}$$

$$= P_{k|k-1}^{-1} + H_k^T R_k^{-1} H_k$$

$$\hat{x}_{k|k} = P_{k|k} (H^k \Phi^k)^T \mathcal{M}_k^{-1} y^k
= P_{k|k} ((H^{k-1} \Phi^{k-1} F_{k-1}^{-1})^T \bar{\mathcal{M}}_{k-1}^{-1} y^{k-1} + H_k^T R_k^{-1} y_k)
= \hat{x}_{k|k-1} + P_{k|k} H_k^T R_k^{-1} (y_k - H_k \hat{x}_{k|k-1})$$

Kalman filter is a special form of recursive least squares estimator for first order Markov system. (Kalman filter is a generalized Gauss/Markov estimator)

소결론

• 칼만필터의 성질

- 확률론적 관점
 - 칼만필터는 상태변수의 조건부 확률밀도를 갱신하는 과정
 - Gaussian 잡음을 가정하면 조건부 확률밀도도 정규분포로 표현
 - : 칼만필터 추정치 = 최소분산 추정치이자, 최대사후확률 추정치 임
- 최소자승 관점
 - Gaussian 잡음을 가정하지 않더라도 칼만필터는 최소자승 관점에서 최적 상태추정 해
 - 잡음의 분산이 정확히 설정되지 않더라도, 칼만필터는 특정 목적함수의 최소화 해 임

강인 칼만필터링 문제

• 연구배경

- 칼만필터
 - : 추정오차 분산을 최소화하는 최적 상태추정기
 - _ 기본 가정
 - 외부잡음의 통계적 속성에 관한 사전정보가 주어짐
 - 시스템 모델에 불확실성이 존재하지 않음
 - → 실제 상황에서는 흔히 위배되는 가정
 - → 이 경우, 칼만필터의 추정성능이 심각하게 저하되거나 심지어는 발산할 수도 있음
- 강인 칼만필터

설계목적

- 모델링 오차에 대한 견실성 확보
- 최악의 경우(worst-case)에 대해서도 acceptable한 추정성능 제공

의사최적 강인 칼만필터링 문제

• 불확정 시스템 모델

$$\begin{cases} x_{k+1} &= F_k x_k + G_k u_k \\ y_k &= H_k x_k + v_k = [\tilde{\mathcal{H}}_k - \Delta H_k] x_k + v_k \end{cases}$$

- 사전 정보

$$cov \left\langle \begin{bmatrix} \tilde{x}_{0|-1} \\ u_k \\ v_k \end{bmatrix}, \begin{bmatrix} \tilde{x}_{0|-1} \\ u_j \\ v_j \end{bmatrix} \right\rangle = \begin{bmatrix} P_{0|-1} & 0 \\ 0 & \begin{bmatrix} Q_k & 0 \\ 0 & R_k \end{bmatrix} \delta_{kj} \end{bmatrix}$$

$$E\{\Delta H_k^T R_k^{-1} \Delta H_k\} = W_k, \quad E\{\Delta H_k^T u_k\} = 0, \quad E\{\Delta H_k^T R_k^{-1} v_k\} = V_k$$

- 의사최적 강인 칼만필터링 문제 IET Control Theory Appl., 3(9),2009, pp.1226~1236
 - 파라미터 불확실성이 없는 경우, 칼만필터는 무편향 최소분산 추정기 임
 - 통계적 파라미터 불확실성이 존재하는 상황에서도 대등한 성능을 얻을 수 있는가?
 - 추정오차평균 관점에서 최적 상태추정기 설계
 - 단, 추정오차 분산의 최소화는 고려하지 않음 (quasi-optimality)

다양한 형태의 강인 상태추정 문제들

filtering scheme	vector-valued system model	uncertainty description	given data
deterministic RKF	$y = [\mathcal{H} + \Delta \mathcal{H}] x + v$	$\parallel \Delta \mathcal{H} \parallel \leq \epsilon$	$y,~\mathcal{H}(deterministic)$
stochastic RKF	$y = [\mathcal{H} + \Delta \mathcal{H}] x + v$	$E\{\Delta\mathcal{H}\} = 0,$ $E\{\Delta\mathcal{H}\Delta\mathcal{H}^T\} = W,$ $E\{\Delta\mathcal{H}v^T\} = 0$	$y,~\mathcal{H}(deterministic)$
TLS	$y = \left[\tilde{\mathcal{H}} - \Delta \mathcal{H}\right] x + v$	singular value deviation	$y,\; ilde{\mathcal{H}}(ext{stochastic})$
robust LS / Non-conservative RKF	$y = \left[\tilde{\mathcal{H}} - \Delta \mathcal{H}\right] x + v$	$E\{\Delta \mathcal{H}\} = 0,$ $E\{\Delta \mathcal{H} \Delta \mathcal{H}^T\} = W,$ $E\{\Delta \mathcal{H} v^T\} = V$	$y,\; ilde{\mathcal{H}}(stochastic)$

In the above table, it has been defined that $\,\tilde{\mathcal{H}} = \mathcal{H} + \Delta \mathcal{H}\,$

기존 강인 칼만필터링 기법의 한계 및 해법(1/2)

Existing Deterministic Robust Kalman Filters

- design scheme
 - model validation based on deterministic descriptions of uncertainties
 - minimization of guaranteed cost: overly conservative
- disadvantages
 - mathematically complex
 - hard to tackle the finite-horizon filtering problem
 - hard to analyze the statistical behavior of the filter such as unbiasedness

Existing Stochastic Robust Kalman Filters

- design scheme
 - model validation based on stochastic descriptions of uncertainties
 - minimization of the estimation error variance
- disadvantages
 - restrictive to the many actual applications especially when the nominal value of a measurement matrix is not deterministic

기존 강인 칼만필터링 기법의 한계 및 해법(2/2)

Total Least Squares Estimator

- design scheme
 - errors-in-variables model
 - minimization of the worst-case statistical distance
- disadvantages
 - heavy computational burden due to the recursive SVD
 - cannot applied for the state estimation problem of time-varying system
 - the estimation performance might be degraded when the noisy measurement matrix is correlated with the additive noise

Non-conservative Robust Kalman Filter(NCRKF)

- design objective
 - guarantee the quasi-optimal performance as close to that of the optimal KF
- advantages
 - possible to handle the quiet large class of LTV systems
 - possible to analyze the statistical properties of the estimator (e.g. weak/strong consistency, limiting distribution)

불확실성에 의해 유발되는 칼만필터 추정오차

	최적 최소자승 추정	공칭 최소자승 추정
회귀모델	$oldsymbol{y}^k = \mathcal{H}^k oldsymbol{x} + oldsymbol{e}^k$	$oldsymbol{y}^k = \mathcal{H}^k oldsymbol{x} + oldsymbol{e}^k \ \widetilde{oldsymbol{\mathcal{H}}}^k = \mathcal{H}^k + \Delta \mathcal{H}^k$
사전정보	$E\{oldsymbol{e}^k\} = 0, \mathcal{H}^k$ is available	$E\{oldsymbol{e}^k\}=0, \widetilde{oldsymbol{\mathcal{H}}}^k$ is available
목적함수	$J_k^{OLS} = (\boldsymbol{y}^k - \boldsymbol{\mathcal{H}}^k \boldsymbol{x})^T (\boldsymbol{y}^k - \boldsymbol{\mathcal{H}}^k \boldsymbol{x})$	$J_k^{NoLS} = (\boldsymbol{y}^k - \widetilde{\boldsymbol{\mathcal{H}}}^k \boldsymbol{x})^T (\boldsymbol{y}^k - \widetilde{\boldsymbol{\mathcal{H}}}^k \boldsymbol{x})$
추정치	$\hat{m{x}}_{ k}^{OLS} = P_{ k}^{OLS} (\mathcal{H}^k)^T m{y}^k$ $P_{ k}^{OLS} = ((\mathcal{H}^k)^T \mathcal{H}^k)^{-1}$	$\hat{m{x}}_{k}^{NoLS} = P_{k}^{NoLS} (\widetilde{m{\mathcal{H}}}^k)^T m{y}^k$ $P_{k}^{NoLS} = ((\widetilde{m{\mathcal{H}}}^k)^T \widetilde{m{\mathcal{H}}}^k)^{-1}$
추정오차	$Eig\{\hat{m{x}}_{ k}^{OLS} - m{x}ig\} = 0$ Unbiased Estimates (but not implementable)	$Eig\{\hat{m{x}}_{k}^{NoLS} - m{x}ig\} = lpha_{k}m{x} + eta_{k}$ Scale Factor Error $lpha_{ k} = Eig\{P_{ k}^{NoLS}(\widetilde{m{\mathcal{H}}}^k)^T(-\Delta m{\mathcal{H}}^k)ig\}$ occurs due to the autocorrelation of $\Delta \mathcal{H}^k$ Bias Error $eta_{ k} = Eig\{P_{ k}^{NoLS}(\widetilde{m{\mathcal{H}}}^k) \mid m{e}^kig\}$
		due to the correlation between $\Delta \mathcal{H}^k$ and $oldsymbol{e}^k$

의사최적 강인 칼만필터(1/2)

설계목적

- 센서 출력으로 구성된 측정행렬 관측치 $\widetilde{\mathcal{H}}^k$ 와 불확실성 행렬 $\Delta\mathcal{H}^k$ 의 통계적 속성을 사용하여 최적 최소자승 추정기법과 오차 평균 관점에서 대등한 성능 획득

• 목적함수

$$J_k^{RoLS} = \begin{pmatrix} \begin{bmatrix} \boldsymbol{y}^k \\ 0 \end{bmatrix} - \begin{bmatrix} \widetilde{\boldsymbol{\mathcal{H}}}^k \\ -I \end{bmatrix} \boldsymbol{x} \end{pmatrix}^T \begin{bmatrix} I & 0 \\ 0 & -(\boldsymbol{\Phi}^k)^T W^k(\boldsymbol{\Phi}^k) \end{bmatrix} \begin{pmatrix} \begin{bmatrix} \boldsymbol{y}^k \\ 0 \end{bmatrix} - \begin{bmatrix} \widetilde{\boldsymbol{\mathcal{H}}}^k \\ -I \end{bmatrix} \boldsymbol{x} \end{pmatrix} + \boldsymbol{x}^T (\boldsymbol{\Phi}^k)^T V^k + (V^k)^T (\boldsymbol{\Phi}^k) \boldsymbol{x}$$
indefinite

의사최적 강인 칼만필터(2/2)

점근특성(Limiting Behavior)

잡음 시계열의 독립동일분포(i.i.d.)를 가정하면,

- 추정오차 점근분포

$$\sqrt{k} (\hat{\boldsymbol{x}}_{|k-1}^{RoLS} - \boldsymbol{x}) \xrightarrow{D} N(0, k \cdot P_{|k-1}^{RoLS})$$

- Gramian 행렬의 점근특성

$$k \cdot P_{|k}^{RoLS} \stackrel{P}{\longrightarrow} k \cdot P_{|k}^{OLS}$$

• 의사최적 강인 칼만필터 순환식

scale-factor error compensation filter gain residual compensation
$$\hat{x}_{k|k} = \left(I + P_{k|k}W_k\right)\hat{x}_{k|k-1} + K_{f,k}\left(y_k - \tilde{H}_k\hat{x}_{k|k-1}\right) - P_{k|k}V_k$$

$$K_{f,k} = P_{k|k}\tilde{H}_k^TR_k^{-1}$$

$$P_{k|k}^{-1} = P_{k|k-1}^{-1} + \tilde{H}_k^TR_k^{-1}\tilde{H}_k - W_k$$

$$\hat{x}_{k+1|k} = F_k\hat{x}_{k|k}$$

$$P_{k+1|k} = F_kP_{k|k}F_k^T + G_kQ_kG_k^T$$

GNC Application #1

Passive Target Tracking Filter for Cooperative Sea-Skimming ASMs

IET Radar, Sonar, and Navigation, 2014.8, pp. 805-814

협력 피동 표적추적 문제

• 교전기하

기본가정

- 다중 유도탄은 일정 고도를 유지하며 함표적으로 호밍
- 탐색기 및 항법장치로부터 피동 표적정보 및 유도탄 항법정보 획득 가능
- Leader 유도탄에서 무선통신을 통해 Follower 유도탄에서 측정된 정보 취합 : Leader 유도탄 내 컴퓨터에 피동 표적추적 필터 구현

협력 피동 표적추적을 위한 시스템 모델링(1/4)

• 불확정 선형 회귀모델 유도

$$(r_j + d_{t,0})^2 = d_{t,j}^2$$

$$r_j^2 - d_{j,0}^2 = h_j \begin{bmatrix} x_t - x_0 \\ y_t - y_0 \\ d_{t,0} \end{bmatrix}, h_j \triangleq -2 \begin{bmatrix} x_j - x_0 & y_j - y_0 & r_j \end{bmatrix}$$

Linear Relation

between the function of range difference and the relative target position

$$\begin{bmatrix} \tilde{x}_j \\ \tilde{y}_j \\ \tilde{r}_j \end{bmatrix} = \begin{bmatrix} x_j \\ y_j \\ r_j \end{bmatrix} + \begin{bmatrix} \delta x_j \\ \delta y_j \\ \delta r_j \end{bmatrix}$$

$$var \left\{ \begin{bmatrix} \delta x_j \\ \delta y_j \\ \delta r_j \end{bmatrix} \right\} = \begin{bmatrix} \sigma_{x_j}^2 & 0 & 0 \\ 0 & \sigma_{y_j}^2 & 0 \\ 0 & 0 & \sigma_{r_j}^2 \end{bmatrix}$$

$$\bar{y}_j = \begin{bmatrix} \tilde{h}_j - \Delta h_j \end{bmatrix} \begin{bmatrix} x_t - x_0 \\ y_t - y_0 \\ d_{t,0} \end{bmatrix} + \bar{v}_j$$

$$\bar{y}_j \triangleq \tilde{r}_j^2 - (\tilde{x}_j - \tilde{x}_0)^2 - (\tilde{y}_j - \tilde{y}_0)^2, \quad \Delta h_j \triangleq -2 \left[\delta x_j - \delta x_0 \quad \delta y_j - \delta y_0 \quad \delta r_j \right],$$

$$\bar{v}_j \triangleq (\delta x_j - \delta x_0)^2 + (\delta y_j - \delta y_0)^2 - 2(\tilde{x}_j - \tilde{x}_0)(\delta x_j - \delta x_0) - 2(\tilde{y}_j - \tilde{y}_0)(\delta y_j - \delta y_0) + 2\tilde{r}_j \delta r_j - \delta r_j^2$$

협력 피동 표적추적을 위한 시스템 모델링(2/4)

• 불확정 선형 회귀모델 유도(continued)

$$b_{j} \triangleq E\{\bar{v}_{j}\} = \sigma_{r_{j}}^{2} - (\sigma_{x_{j}}^{2} + \sigma_{x_{0}}^{2}) - (\sigma_{y_{j}}^{2} + \sigma_{y_{0}}^{2})$$

$$y_{j} \triangleq \bar{y}_{j} - b_{j} \qquad v_{j} \triangleq \bar{v}_{j} - b_{j},$$

$$y_{j} = \left[\tilde{h}_{j} - \Delta h_{j}\right] \begin{bmatrix} x_{t} - x_{0} \\ y_{t} - y_{0} \\ d_{t,0} \end{bmatrix} + v_{j},$$

uncertain linear regression model

$$\mathcal{R}_{j} \triangleq var\{v_{j}\} = 2(2r_{j}^{2} + \sigma_{r_{j}}^{2})\sigma_{r_{j}}^{2} - 2(\sigma_{x_{j}}^{2} + \sigma_{x_{0}}^{2})(\sigma_{y_{j}}^{2} + \sigma_{y_{0}}^{2}) \\
+ 2(\sigma_{x_{j}}^{2} + \sigma_{x_{0}}^{2})(2(x_{j} - x_{0})^{2} + (\sigma_{x_{j}}^{2} + \sigma_{x_{0}}^{2})) \\
+ 2(\sigma_{y_{j}}^{2} + \sigma_{y_{0}}^{2})(2(y_{j} - y_{0})^{2} + (\sigma_{y_{j}}^{2} + \sigma_{y_{0}}^{2}))$$

$$\mathcal{W}_{j} \triangleq E\{\Delta h_{j}^{T}\Delta h_{j}\} = 4\begin{bmatrix} \sigma_{x_{j}}^{2} + \sigma_{x_{0}}^{2} & 0 & 0 \\ 0 & \sigma_{y_{j}}^{2} + \sigma_{y_{0}}^{2} & 0 \\ 0 & 0 & \sigma_{r_{j}}^{2} \end{bmatrix},$$

$$\mathcal{V}_{j} \triangleq E\{\Delta h_{j}^{T}v_{j}\} = 4\begin{bmatrix} (x_{j} - x_{0})(\sigma_{x_{j}}^{2} + \sigma_{x_{0}}^{2}) \\ (y_{j} - y_{0})(\sigma_{y_{j}}^{2} + \sigma_{y_{0}}^{2}) \\ -r_{j}\sigma_{r_{j}}^{2} \end{bmatrix}$$

협력 피동 표적추적을 위한 시스템 모델링(3/4)

불확정 선형 측정방정식

$$\mathbf{x} \triangleq \begin{bmatrix} x_{t} - x_{0} \\ y_{t} - y_{0} \\ d_{t,0} \\ \dot{x}_{t} - \dot{x}_{0} \\ \dot{y}_{t} - \dot{y}_{0} \\ \dot{d}_{t,0} \\ \ddot{x}_{t} - \ddot{x}_{0} \\ \ddot{y}_{t} - \ddot{y}_{0} \\ \ddot{y}_{t} - \ddot{y}_{0} \\ \ddot{y}_{t} - \ddot{y}_{0} \\ \ddot{y}_{t} - \ddot{y}_{0} \\ \ddot{d}_{t,0} \end{bmatrix}, \quad \mathbf{y} \triangleq \begin{bmatrix} \vdots \\ v_{j} \\ \vdots \end{bmatrix}, \quad \mathbf{v} \triangleq \begin{bmatrix} \vdots \\ h_{j} \quad \mathbf{0}^{1 \times 6} \\ \vdots \end{bmatrix}, \quad \ddot{H} \triangleq \begin{bmatrix} \vdots \\ \tilde{h}_{j} \quad \mathbf{0}^{1 \times 6} \\ \vdots \end{bmatrix}, \quad \Delta H \triangleq \begin{bmatrix} \Delta h_{j} \quad \mathbf{0}^{1 \times 6} \\ \vdots \end{bmatrix}$$

$$R \triangleq var\{\mathbf{v}\} = diag([\cdots \mathcal{R}_j \cdots]),$$

$$W \triangleq E\{\Delta H^T R^{-1} \Delta H\} = \begin{bmatrix} \sum_{j=1}^{N} \frac{\mathcal{W}_j}{\mathcal{R}_j} & \mathbf{0}^{3 \times 6} \\ \mathbf{0}^{6 \times 3} & \mathbf{0}^{6 \times 6} \end{bmatrix}, \quad V \triangleq E\{\Delta H^T R^{-1} \mathbf{v}\} = \begin{bmatrix} \sum_{j=1}^{N} \frac{\mathcal{V}_j}{\mathcal{R}_j} \\ \mathbf{0}^{6 \times 1} \end{bmatrix}$$

협력 피동 표적추적을 위한 시스템 모델링(4/4)

• 표적 운동모델

- Leader 유도탄에 대한 표적의 상대운동
- 등가속도 운동모델 (1st-order Gauss-Markov model)로 근사

constant acceleration motion model

$$F = \begin{bmatrix} I^{3\times3} & T \cdot I^{3\times3} & \frac{1}{2}T^2 \cdot I^{3\times3} \\ \mathbf{0}^{3\times3} & I^{3\times3} & T \cdot I^{3\times3} \\ \mathbf{0}^{3\times3} & \mathbf{0}^{3\times3} & I^{3\times3} \end{bmatrix}, \ G^c = \begin{bmatrix} \frac{1}{2}T^2 \cdot I^{3\times3} \\ T \cdot I^{3\times3} \\ \mathbf{0}^{3\times3} \end{bmatrix}, \ G = \begin{bmatrix} \frac{1}{2}T^2 \cdot I^{3\times3} \\ T \cdot I^{3\times3} \\ I^{3\times3} \end{bmatrix},$$

$$\mathbf{u}^c = \begin{bmatrix} -\ddot{x}_0 \\ -\ddot{y}_0 \\ 0 \end{bmatrix}, \ \mathbf{u} = \begin{bmatrix} u_x^t \\ u_y^t \\ u_d \end{bmatrix}$$
 obtained from INS

협력 피동 표적추적필터 구현

• 대칭대형에 대한 추적필터 설계 파라미터 근사

- 가정

- 표적 상대거리 > 유도탄 대형 크기
- 표적 상대거리 > 유도탄 비행고도
- 유사한 센서 잡음 특성

$$\begin{split} r_1 = & L \bigg(\sqrt{1 + \epsilon^2 + \eta^2 - 2\epsilon \cos \lambda} - \sqrt{\eta^2 + 1} \bigg) \approx -d \cos \lambda, \\ r_2 = & L \bigg(\sqrt{1 + \epsilon^2 + \eta^2 - 2\epsilon \sin \lambda} - \sqrt{\eta^2 + 1} \bigg) \approx -d \sin \lambda, \\ r_3 = & L \bigg(\sqrt{1 + \epsilon^2 + \eta^2 + 2\epsilon \cos \lambda} - \sqrt{\eta^2 + 1} \bigg) \approx -d \cos \lambda, \\ r_4 = & L \bigg(\sqrt{1 + \epsilon^2 + \eta^2 + 2\epsilon \sin \lambda} - \sqrt{\eta^2 + 1} \bigg) \approx -d \sin \lambda \end{split}$$

$$\epsilon \triangleq \frac{d}{L} \ll 1$$

$$\eta \triangleq \frac{h}{L} \ll 1$$

$$\bar{\sigma}_r \triangleq \frac{\sigma_{r_j}}{d}, \ \bar{\sigma}_{xy} \triangleq \frac{\sigma_{x_j}}{d} = \frac{\sigma_{y_j}}{d}$$

$$\mathcal{R}_{1} = \mathcal{R}_{3} \approx d^{4} [8\bar{\sigma}_{xy}^{4} + 2\bar{\sigma}_{r}^{4} + 4(\bar{\sigma}_{r}^{2}\cos^{2}\lambda + 2\bar{\sigma}_{xy}^{2})],$$

$$\mathcal{R}_{2} = \mathcal{R}_{4} \approx d^{4} [8\bar{\sigma}_{xy}^{4} + 2\bar{\sigma}_{r}^{4} + 4(\bar{\sigma}_{r}^{2}\sin^{2}\lambda + 2\bar{\sigma}_{xy}^{2})]$$

- 설계변수

$$W \approx \begin{bmatrix} \rho \cdot \mathcal{W} & \mathbf{0}^{3 \times 6} \\ \mathbf{0}^{6 \times 3} & \mathbf{0}^{6 \times 6} \end{bmatrix}, \ V \approx \mathbf{0}^{9 \times 1}$$

$$|\lambda| \ll 1$$

$$\mathcal{W} \triangleq 4d^2 \begin{bmatrix} 2\bar{\sigma}_{xy}^2 & 0 & 0 \\ 0 & 2\bar{\sigma}_{xy}^2 & 0 \\ 0 & 0 & \sigma_r^2 \end{bmatrix}, \quad \rho \approx \frac{1}{d^4} \left(\frac{1}{4\bar{\sigma}_{xy}^2(1 + \bar{\sigma}_{xy}^2) + \bar{\sigma}_r^2(2 + \bar{\sigma}_r^2)} + \frac{1}{4\bar{\sigma}_{xy}^2(1 + \bar{\sigma}_{xy}^2) + \bar{\sigma}_r^4} \right)$$

협력 피동 표적추적 필터 성능분석(1/2)

• 모의 실험 시나리오

$$V_m = 270[m/s], \quad \gamma_m = 30^\circ, \quad d = 300[m],$$
 $\sigma_r = 0.5[m], \quad \sigma_x = 0.5[m], \quad \sigma_y = 0.5[m], \quad T = 20[ms]$

협력 피동 표적추적 필터 성능분석(2/2)

• 시뮬레이션 결과 (200 M/C Trials)

GNC Application #2

Adaptive Missile Bending Frequency Estimation

IEE Electronics Letters, 2005, 41, (5) pp. 228-229

Adaptive Notch Filtering Problem

Design Concern

- time-varying nature of missile bending mode
 - mass variation → bending frequency의 시변특성
 - ground test → bending mode 예측치 존재
 - predicted frequency usually contains a bias error
- reliability
 - abrupt magnitude and phase changes of the bending signal
 - robust filtering scheme is required
- real-time implementation

Observability Issue

Solution to the Observability Problem

- use of the predicted bending mode
 - predicted frequency reflects the time-varying nature of bending mode
 - bending frequency prediction error can be regarded as the slowly-varying bias

Bending Frequency Estimator

Noisy Bending Signal

$$\begin{aligned} d_k &= s_k + \bar{v}_k = Acos(\omega k + \phi) + \bar{v}_k, & \omega &= 2\pi f_b T_s \\ s_k + s_{k-2} &= 2s_{k-1}cos\omega \\ d_k + d_{k-2} &= 2(d_{k-1} - \bar{v}_k)cos\omega + \bar{v}_k + \bar{v}_{k-2} \end{aligned}$$

Uncertain Linear System

$$\begin{cases} x_{k+1} = x_k \\ y_k = (\tilde{H}_k - \Delta H_k)x_k + v_k \end{cases} \hat{\omega}_k = \bar{\omega}_k + \sin^{-1}\hat{x}_k$$

$$x_k = \sin \delta \omega_k \qquad H_k = -2d_{k-1}\sin \bar{\omega}_k,$$

$$y_k = d_k - 2d_{k-1}\cos \bar{\omega}_k + d_{k-2}$$

$$v_k = \bar{v}_k - 2\bar{v}_{k-1}\cos \bar{\omega}_k + \bar{v}_{k-2}$$

$$\Delta H_k = -2\bar{v}_{k-1}\sin \bar{\omega}_k.$$

 $\cos \omega = \cos(\bar{\omega} + \delta\omega) \simeq \cos \bar{\omega} - \sin \bar{\omega} \sin \delta\omega$

known statistics

$$W_k = E \left\{ \Delta H_k^T \cdot \Delta H_k \right\} = 4\bar{R}_{k-1} \sin^2 \bar{\omega}_k,$$

$$V_k = E \left\{ \Delta H_k^T \cdot v_k \right\} = 4\bar{R}_{k-1} \sin \bar{\omega}_k \cos \bar{\omega}_k$$

Bending frequency estimate

$$\hat{\omega}_k = \bar{\omega}_k + \sin^{-1} \hat{x}_k$$

Experimental Results

Flight Test Results

- bending frequency estimation error < 1Hz
- reliable estimation performance under the low observability cond.
- robust to the abrupt phase/amplitude changes of the bending signal
- real-time implementable : 1st order recursive filter structure

GNC Application #3

Range Estimation Using LOS/LOS Rate Information

IEE Electronics Letters, 2006, 42, (22) pp. 1265-1266

Int. J. Control, Automation, Sys., 2005, 3, (3) pp. 486-492

Introduction

Passive Ranging Problem

- range estimation using the LOS angle and/or rate information
- should consider the observability problem
- requirements
 - fast convergence
 - reliable estimation performance regardless of the engagement geometry

Comparison of Range Estimation Schemes

	Previous Method	Proposed Method
Model	indirect nonlinear range kinematics	direct linear range kinematics (uncertain linear model)
Estimator	nonlinear filter(EKF/MGEKF/UKF/PF)	linear filter(NCRKF)
Characteristics	much computations slow convergence	small amount of computation fast convergence
	nonlinear filter structure	linear filter structure

Kinematics for Range Estimation

Relative Geometry

System Model

$$\begin{cases} x_{k+1} = x_k + u_k^c + u_k \\ y_k = [\tilde{H}_k - \Delta H_k] x_k + v_k \end{cases}$$

where

$$x_k = r_k, \quad u_k^d = -\Delta t \cdot \tilde{v}_k^c, \quad u_k = \Delta t \cdot \delta v_k^c,$$
$$y_k = \tilde{v}_k^p, \quad \tilde{H}_k = \tilde{\omega}_k, \quad \Delta H_k = \delta \omega_k, \quad v_k = \delta v_k^p.$$

given noise statistics

$$cov\langle\delta\omega_k,\delta\omega_k\rangle = W_k$$

Simulation Results (1/2)

Simulation Condition

simulation parameters		
fixed position : $[0.0 \ 0.0 \ 0.0]^T (\text{km})$		
initial position : $[-10.0, 0.0, 0.0]^T (\text{km})$		
magnitude of velocity : $ v_{UAV} = 300.0 (\text{m/s})$		
initial heading: 0°		
$a_c = -3.0v_c(k)\omega_z(k) + 20\sin(0.315t_{go})$		
variance of LOS meas. noise : $(0.1^{\circ})^2$		
variance of LOS rate meas. noise : $(0.1^{\circ}/s)^2$		
initial guess of rel. pos. : $\hat{p}_0 = -[-49.9 \ 0.58 \ 0.0]^T (\text{km})$		
initial guess of rel. vel. : $\hat{v}_0 = [250.0 \ 0.0 \ 0.0]^T (\text{m/s})$		
$Q_k = 0.01^2, R_k = \text{diag}((0.1^\circ)^2, (0.1^\circ/s)^2)$		
$\hat{r}_0 = 50.0 \text{(km)}, \mathcal{P}_{k k} = 2 \cdot 10^3, W_k = (0.1^\circ/s)^2$		

0

-2

Simulation Results (2/2)

Range Estimation Performance

