UGANDA MARTYRS UNIVERSITY

UNIVERSITY EXAMINATIONS

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

END OF SEMESTER FINAL ASSESSMENT

SEMESTER I 2021/22

FIRST YEAR EXAMINATIONS FOR BACHELOR OF BUSINESS ADMINISTRATION AND MANAGEMENT (BAM I, BSc.ENM, BSc. Acc.& Fin. I)

Business Statistics

STA 1101

DATE: 11th Mar. 2022

TIME: 9:30 AM - 12:30 PM

DURATION: 3 Hrs

Margar Police

Instructions

- 1. Carefully read through ALL the questions before attempting.
- 2. ANSWER FOUR (4) Questions (All questions carry equal marks).
- 3. Ensure that your Reg. number is indicated on all pages of your work.
- 4. Ensure that your work is clear and readable. Untidy work will be penalized.
- 5. Any type of examination Malpractice will lead to automatic disqualification.
- 6. Do not write anything on the question paper.

QUESTION ONE

- (a) (i) Why should you employ sampling than making an attempt to cover the entire population while collecting data. [2 Marks]
 - (ii) Suppose you are assigned to collect information relating to online teaching and learning at Nkozi University. Briefly explain how you could use systematic sampling to select a sample of 15 students from the 75 third year students at your campus and outline the major methods you would use to get the information.

 [6 Marks]
- (b) Distinguish between

(i) Element and Subject.

[2 Marks]

(ii) Statistic and parameter.

[2 Marks]

(iii) Cluster sampling and Stratified random sampling.

[2 Marks]

(iv) Descriptive statistics and Inferential statistics.

[2 Marks]

(c) The table below shows the weight of 42 bunches of matooke

(i) Construct a frequency table starting with classes 40 - < 50, 50 - < 60.

[3 Marks]

(ii) Present this data on a histogram. Hence estimate the mode.

[6 Marks]

QUESTION TWO

The table below shows coffee production by a group of farmers in Kayunga District in the year 2021

Bags produced	20.04	05.00	20.01					
Dags produced	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59
Number of farmers	2	6	0	1.0	1.4	10	00 01	00-03
		U	0	10	14	12	4	2

Calculate the

(a) mean using 32 as the assumed average,

[6 Marks]

(b) mode,

[4 Marks]

(c) median,

[4 Marks]

(d) upper quartile,

[5 Marks]

(e) standard deviation.

[6 Marks]

QUESTION THREE

- (a) Write TRUE or FALSE.
 - (i) The average number of factory accidents can be used to model a Poisson distribution. [2 Mark]
 - (ii) If X is a continuous random variable then $\int_{-\infty}^{\infty} f(x) \leq 1$.

[2 Mark]

(iii) The standard normal distribution has the variance as 1.

[2 Mark]

(iv) The Variance of a discrete random variable 3Y is $9E(Y^2) - 9[E(Y)]^2$.

[2 Mark]

(v) If a fair coin is tossed 20 times, it is most likely that the tail will show up 10 times.

[2 Marks]

(b) A discrete random variable X has a probability mass function defined by

$$P(X) = \begin{cases} (2^x)c, & x=0,1,2,3,4,5,6; \\ 0, & \text{elsewhere.} \end{cases}$$

Determine the value of c.

[5 Marks]

(c) A discrete random variable X has a distribution given by

X	-1	0	1	2	3	4	5	6
P(X=x)	$\frac{1}{20}$	$\frac{1}{20}$	m	$\frac{3}{20}$	$\frac{6}{20}$	$\frac{2}{20}$	$\frac{3}{20}$	$\frac{1}{20}$

Find (i) E(X), (ii) Var(X), (iii) E(2X+3) and (iv) Var(3X-4). [10 Marks]

QUESTION FOUR

(a) (i) State any three axioms of probability.

[3Marks]

- (ii) MAZIMA Property Masters Ltd sells 3 houses on average per week. What is the probability that they will sell exactly 4 houses this week? [4 Marks]
- (b) It is known that 8 out of every 40 people that visit MTN Service Centre at Masaka buy data bundles. Find the probability that 2 out of the 5 people planning to visit the centre will not buy data bundles. [5 Marks]
 - (c) The weight of maize flour bags in a store is normally distributed with mean weight 125 kg and Variance 25 kg. Find the probability that a bag picked at random from the store weighs between 114 and 139 kg. [5 Marks]
 - (d) A bag contains 5 red and 7 yellow apples. If three apples are picked from the bag without replacement, find the probability that they are of the same colour. [8 Marks]

QUESTION FIVE

The table below shows sales records in two business outlets X and Y over a period of 11 weeks.

Outlet (X)	28	20	40	28	21	31	36	29	33	24	45
Outlet (A)	20			20	00	25	25	27	31	23	47
Outlet (X)	30	20	40	28	22	33	30	21	0.1		

(a) (i) Plot a scatter diagram for the given data.

[3 Marks]

(ii) Find the equation of the regression line in the form y = mx + c.

[8 Marks]

(iii) Fit the regression line in (ii) to the scatter plot in (i).

[4 Marks]

(iv) Estimate the sales by Outlet X for a recorded sales of 50 by Outlet Y.

[2 Marks]

(b) Calculate the Spearmann's rank correlation coefficient for the data and comment on your result.

CUMULATIVE NORMAL DISTRIBUTION TABLE

	1 0	1	2		RIBUT	The second	1.(5)				1	-	-	_			2		
I.	0.000	0010	0000	C124	4	5	6		-	- 1	13				ADE)		1	
g å	00-48	0438	0471	0120	0160	0199	0239	1		9	1	2	3	1	5	-		-	-
1	0 0791	de 32	0071	C517	0:57	0:96	0635	0279	0373	0339	1	8	12	16	10	5	-	3	-3
1,2	OILA	1217	The second	0910	0548	0:87	1026	0575	0714	2753	4	6	12	16	70	74	28	22	II II
1,3		1591	1235	1793	1231	1368	1406	1004	1101	1141	4	8	12	15	19	72	27	31	36
,4	0.1554	1391	1629	1564	1700	1736		1443	1680	1517	4	8	11	15	19	72	76	30	34
					1		1777	1508	1944	1579	4	7	11	14	18	22	25	79	3
.\$	0 1915	1950	1985	2019	2051	2098	1177	6.					•		10	1.	**		-
.6	0.2257	5501	2324	2357	2389	2422	2123	2157	2150	2224	3	1	10	14	17	21	74	77	3
.7	0.2583	2611	2842	2673	9.	2,55	2454	2436	2517	2543	13	6	10	13	16	19	23	16	7
					2704	3114		4		2.7	3	6	9	12	15	19	77	75	;
.5	0.2831	2910	2919	2967	2935	2734	2764	2794	2923	2952	1	6	9	17	15	IR	21	74	2
				13	Tal	3023	E.AF	5 m	118 4 7		3	6	8	11	14	17	70	77	1
9	0 3159	3186	3212	3210	3.	3 10 2	3051	3078	3106	3133	3	5	8	11	13	16	10	72	2
	dr 54-1			5 4 3 D	3264	3289	表 李丁	证据为		3	3	-	8	10	17	16	18	71	*
7							3315	3340	3355	3189	2	5	7	10	17	15	17	70	- 7
^	0.3413	3438	7461	3 40 5				1 36			-	-	1	14	14	1-	11	10	•
0	0.3413	2,470	3461	3485	3509	4.600	25.00				,	5	7	10	17	14	17	19	7
- 8	4.3541	2645	7.07			- 3531	3554	3577	3599	3621	2	3	7	9	11	13	15	:8	2
1.	0.3643	3665	3696	3708				21.5		-anki		1	6	8	11	13	15	17	
	77.7	1.49			3729	3749	3770	3790	3810	3930	2	7	100	8	13	12	14	16	1
.7	0.3849	3869	3838	3907	3975			3.50	2010	1175	2		6	8	13	11	13	15	1
						3914	3952	3932	3997	4015	2	4	5	-	9	11	13	14	1
.3	0.4037	4049	4066	4032	4000	4115	4131	4147	4162	41.77	2	3	5	6		10	12	13	1
4	0.4192	4207	4222	4236	4251	4265	4279	4292	4306	4317	1	3	4	6	•	8	10	11	1
100	400.404								1310							ď	100		3 %
.5	0.4332	4345	4357	4370	4332	4394	4406	4418	4429	4141		,	4	5	ò	7	8	10	A :
.6	0.4452	4463	4474	4434	4435	4505	4515	4525	4535	4545	i	2	3	4	5	6	7	9	
7	0.4554	4554	4573	4582	4591	4599	4608	4616	4625	4633	•	2	3	3		5	ő	7	
5	0.4641	4649	4656	4664	4671	4678	1686	4693	4599	4706		1	2	3		4	5	6	
9	0.4713	4719	4725	4732	4733	4744	4750	4756	571 Caro C C C	4707			1	1	3	4	4	5	
0	0.4772	4778	4783	4788	4793	4798	4603	4908	4817	4817	0	1	•	2		3	3	4	
1	0.4821	4825	4830	4834	4538	4942	4845	4850	4854	4957	0	i		2	•	2	3	3	
2	0.4861	4961	1869	4671	4875	4978	4031	4384	4687	4690	0	1		1	•	2	2	3	
1			4898	4901	4904	4906	4909	4911	4913	4915	0	ō		1		1	12	2	
3	0.4893	4895		4925	4917	4929	4931	4932	4934	4935	13 3	0	ì	1			li	2	
4	0.4918	4920	4922	7723	7727	7313	4331	1334	1751	1220			•	1					
1	1938	1010	4044	4047	40745	4046	403B	4040	ACEI	4952									
5	0.4938	4940	4941	4943	4945	4946	4948	4949	4951					18.8			-		
6	0.4953	1955	4956	4957	4959	4960	4961	4962	4963	4954									
7	0.4965	4966	4967	4968	4969	4970	4971	4025	4973	4974	1								
8	0.4974	4975	4975	4977	4977	4978	4979	4979	1980	4931	1								
9	0.4981	4982	4982	4983	4984	4984	4965	4985	4986	4935									
								12.8		F4.33									
3	0.4987	4930	1993	4995	4997	4998	4958	4999	4999	5000	1	14	4	4.7					

- 1. Population Variance: $\sigma^2 = \left(\frac{\Sigma f x^2}{\Sigma f}\right) \left(\frac{\Sigma f x}{\Sigma f}\right)^2$.
- 2. Random variables: Expected value of X is given by

$$E(X) = \sum x.P(x)$$

$$Var(X) = \sigma^2 = E(X^2) - [E(X)]^2$$

3. Binomial distribution:

$$P(X=r) = {}^{n}C_{r}p^{r}q^{n-r}.$$

- 4. Poisson distribution: $P(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}$ $x = 0, 1, 2, 3, 4..., \lambda > 0.$
- 5. The regression line of y on x is given by y = mx + c where

$$m = \frac{S_{xy}}{S_{xx}}$$

$$S_{xy} = \Sigma xy - \frac{\Sigma x \Sigma y}{n}$$

$$S_{xx} = \Sigma x^2 - \frac{(\Sigma x)^2}{n}$$

and

$$c = \frac{\Sigma y - m\Sigma x}{n}$$

6. Spearmann's rank correlation coefficient is

$$\rho = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)}.$$

7. Confidence interval for the population mean is

$$\overline{x} \pm z_* \frac{\sigma}{\sqrt{n}}$$
.

