姓名

铋

犯
律
如
考
试
作
弊
此
答
卷
无
效

华州

东 南 大 学 考 试 卷 (A 卷)

适用专:	₩	6系	考ì	式形式	— 半	开卷	 考试时	 相形度	120 分年
		可 带		统统				式	纸)
题目	_	=	Ξ	四	五	六	七	八	总分
得分									
批阅人									
2、(5分)测得放	, ^太 大电路中 是锗管,	放大电路 晶体管的	\$的噪声不 直流电位	有什么影响 立如图 1-2	向? 所示,ā	益稳定性 生圈中画出	出管子,	。 并分别说
		o- 3.7	V 12V	72	⊙- 12. <i>:</i>	2V 12V			
		(a)					(b)		
				图	1-2				
3、(4分)电路如	图 1-3 所	示,试用	相位平衡	7条件判断	哪个电影	路能振荡,	哪个电	路不能振
荡 , i	兑 明 ³		(a)	0		R. C	T = 13 \[\begin{align*}	, o+V _{cc}	(b)

图 1-3

(a)

(b)

图 1-5

6、(3 分) 设图 1-6(a)电路的输入电压波形如图 1-6(b)所示,且 t=0 时集成运放 A_2 的输出电压 U_{o2} =0。图中的控制电压 U_{C} =+4.5V,试画出 U_{o1} 、 U_{o2} 和 U_{o} 的波形。

(b)

图 1-6

二、分析计算题(80分)

- 1、(20 分) 在图示电路中,设图中 $T_1 \sim T_7$ 管的 $U_{BE} = 0.7 \text{V}$, β 》 1,当 $u_s = 0$ 时, $u_o = 0$ 。
- (1) 若想降低电路的输出电阻,说明应引入何种反馈,并在图中画出;
- (2) 设电路满足深度负反馈条件,估算满足(1)条件电路的电压增益 \dot{A}_{uf} =? 并判断电路的两个输入端中,哪个是同相输入端,哪个是反相输入端;
- (3) 若想提高电路的输入电阻、降低电路的输出电阻,说明应引入何种反馈,并说明电路应做何种改动才能引入这种反馈;
- (4) 在 (3) 要求引入的反馈情况下,估算电路的电压增益 \dot{A}_{usf} =?
- (5) 求 T_1 、 T_2 、 T_5 、 T_7 管的静态工作点 I_{CQ} 。

- 2、(15分)文氏桥振荡电路如下图(a)所示,请回答下列问题:
- (1) 判断电路能否振荡,并说明原因;如不能振荡,请修改使其振荡。
- (2) 图中 R_t 是具有负温度系数的热敏电阻,这个电路能否正常工作,说明理由;如不能请改正。
- (3) 计算该振荡电路的振荡频率 f_o 及满足起振条件的 R_t 值。
- (4)请利用文氏桥振荡电路和555定时器,设计出矩形波振荡电路,假设文氏桥振荡电路输出的正弦波幅度大于2/3Vcc。

- (a) 文氏桥振荡电路
- (b) 555 定时器引脚排列
- (c) 555 定时器电路框图

(d) 555 定时器功能表

	输入		输出		
复位 R	TH	\overline{TR}	VT 放电管状态	u ₀ (Q输出)	
0	X	X	导通	0	
1	$<\frac{2}{3}V_{\rm CC}$	$<\frac{1}{3}V_{\rm CC}$	截止	1	
1	$>\frac{2}{3}V_{CC}$	$>\frac{1}{3}V_{CC}$	导通	0	
1	$<\frac{2}{3}V_{\rm CC}$	$>\frac{1}{3}V_{CC}$	不变	不变	

- 3、(12 分) 直流稳压电源如图所示,已知稳压管 D_2 的稳压值 U_z =6V,试回答下列问题:
- (1) 求 U。的可调范围;
- (2) 设流过调整管 T_1 发射极的电流 I=0.1A,且 $U_3=24V$,求 T_1 管的最大管耗;
- (3) 设 T_1 管的管压降 U_{CE1} =4V, 求当 U_o =18V 时所需 U_2 的值;
- (4) 设 U_2 =20V, 测得 U_3 =18V, 且波动较大, 试分析电路故障。

- 4、(18 分)共射-共基两级放大电路如图所示,已知:三极管的 $r_{\rm bb}$ =200 Ω , β_1 = β_2 =50, $R_{\rm L}$ =250 Ω 。试计算:
- (1) 各级的静态工作点;
- (2) 动态性能指标 $R_{\rm i}$ 、 $R_{\rm o}$ 和 \dot{A}_{u} 。

- 5、(15 分) OTL 电路如图所示,已知各三极管的导通压降 $\left|U_{\mathit{BE}}\right|$ =0.7V,输入电压足够大。
- (1) A、B、C、D 点的静态电位各为多少?
- (2) R₃、D₁、D₂的作用是什么?
- (3)为了保证 T_3 和 T_5 管工作在放大状态,管压降 $\left|U_{CE}\right| \geqslant 3V$,电路的最大输出功率 P_{om} 和效率 η 各为多少?

