

By Sana Iqbal 26th October, 2017

## **Review**

In the last lecture we discussed:

- Goal of NLP:
  - Understand the meaning of the text that is get to semantic level analysis
- We looked at bag of words model, which just keeps the count of words in a document.
  - They lose the ordering of the words.
  - ☐ They also ignore semantics of the words.
  - ☐ We know order and context of words is important to understand the document.

## **Discrete Representation Of Words**

- We represent words in our corpus as atomic symbols i.e each word is independent.
- □ Eg: 1. 'I love knitting' 2. 'I love dogs'
  - Vocabulary, V = [ i, love, knitting, dogs]
  - ☐ If we want to represent them as numbers in our machine we either assign them an id say I=1, love=2, knitting=3, dogs=4

### Discrete Representation Of Text cntd...

- One-hot-Encode
  - ☐ We can represent these words as vectors we can say in the vocabulary space V = [ i, love, knitting, dogs]
  - $\Box$  i= [1,0,0,0]
  - **□** love= [0,1,0,0]
  - $\Box$  knitting= [0,0,1,0]
  - $\Box$  dogs= [0,0,0,1]
- So size of One-hot-Encoded word vectors will depend on the corpus vocabulary size.

### <u>Discrete Representation Of Text cntd...</u>

- But we want you use NLP on large corpuses eg the Imdb reviews, the yelp reviews, wikipedia articles etc

- Google corpus: a vocabulary of 3 million words Google News dataset

## **Problems:**

- 1. We will end up having very very large sized sparse vectors.

2. We are not able to capture any semantic relations between words.

Eg: To capture similarity between **good & nice** vectors:

Cosine similarity= Dot(good,nice) = 0

## <u>Distributional Representation of Words</u>

☐ We want to represent words as vectors that encodes its meaning.

- To do that we rely on **Distributional similarity** concept.
  - The idea is that if we look at the different contexts in which a word appears or is used in a language, we will be able to infer its meaning.

### <u>Distributional Representation of Words cntd ...</u>

### Example:

**Eating** healthy is a key to fitness.

Junk **eating** causes obesity.

If you stop **eating**, you will die.

Too much **eating** will make you obese.

Not all cultures use spoons for **eating** food.

Eating seen in context of healthy, junk, food, fitness, spoons, die etc. gives the idea of its meaning.



### <u>Distributional Representation of Words cntd</u> ...

JR Firth, a British linguist: "You shall know a word by the company it keeps."

- So in **Distributional Representation**, we want to represent words as vectors that capture the *context* of these words in the corpus.
- The most intuitive way would be to construct **co-occurrence matrix** of the corpus vocabulary.

# <u>Distributional Representation of Words cntd ...</u> <u>Co-Occurrence Matrix</u>

#### Corpus:

I like deep learning. I like NLP. I enjoy flying.

| counts   |   | like | enjoy | deep | learning | NLP | flying |   |
|----------|---|------|-------|------|----------|-----|--------|---|
| 1        | 0 | 2    | 1     | 0    | 0        | 0   | 0      | 0 |
| like     | 2 | 0    | 0     | 1    | 0        | 1   | 0      | 0 |
| enjoy    | 1 | 0    | 0     | 0    | 0        | 0   | 1      | 0 |
| deep     | 0 | 1    | 0     | 0    | 1        | 0   | 0      | 0 |
| learning | 0 | 0    | 0     | 1    | 0        | 0   | 0      | 1 |
| NLP      | 0 | 1    | 0     | 0    | 0        | 0   | 0      | 1 |
| flying   | 0 | 0    | 1     | 0    | 0        | 0   | 0      | 1 |
|          | 0 | 0    | 0     | 0    | 1        | 1   | 1      | 0 |

#### Issue:

 High dimensional vectors for large corpus

#### Solution:

 Use SVD decomposition on Co-occurrence matrix

#### Issue with SVD:

 High computational cost for large matrices.

Ref: http://mysite.science.uottawa.ca/phofstra/MAT2342/SVDproblems.pdf

## **WORD2VEC**

By Mikolov etal.

- WORD2VEC is a method of creating distributional representations of words called word embeddings, using backpropagation.
- $\Box$  Eg: an =[0.2, 0.35, 0.1, -0.2, 0.15, 0.4]

## **WORD2VEC**

Models that aim to predict between a center word or words that appear in it's context.

#### Like any other model:

- Model is parametrized. Here parameters are 'word vector representations' of words.
- 2. Trained using a loss/objective function
- 3. Word Vectors readjusted to minimize loss.

## **WORD2VEC cntd ...**

☐ Two algorithms of word2vec:

1. Skip-gram 2. Continuous Bag of words (Cbow)

Skip-gram:

the task is "predicting the context given a word".

p(context|wt)

CBOW:

the task as "predicting the word given its context"

p(context|wt)

## **WORD2VEC cntd** ...

If we have:

**n** = Vocabulary in the corpus

**d** = Word vector dimension

w= Window size on each side

## **WORD2VEC - Skip Gram Model**

- ☐ Input: One hot encoded word, c
- Weight Matrix V and W which is a matrix of word vectors.
- □ Objective Function= maximize p(context | c )
- $\Box$  probability(x,|c) = softmax(x,c)

n X 1 n X d 1 X d



Figure 3: The skip-gram model.



Χn

## Skip gram example data:

```
n=11
d= 3
w= 2, 1 on each side
```

**Corpus:** the quick brown fox jumped over the lazy dog and killed it

| Output          | input |
|-----------------|-------|
| [the, brown]    | quick |
| [quick, fox]    | brown |
| [brown, jumped] | fox   |
|                 |       |

### Results with word2vec in the original paper trained on Google news dataset

| FRANCE      | JESUS   | XBOX        | REDDISH   | SCRATCHED | MEGABITS   |
|-------------|---------|-------------|-----------|-----------|------------|
| AUSTRIA     | GOD     | AMIGA       | GREENISH  | NAILED    | OCTETS     |
| BELGIUM     | SATI    | PLAYSTATION | BLUISH    | SMASHED   | MB/S       |
| GERMANY     | CHRIST  | MSX         | PINKISH   | PUNCHED   | BIT/S      |
| ITALY       | SATAN   | IPOD        | PURPLISH  | POPPED    | BAUD       |
| GREECE      | KALI    | SEGA        | BROWNISH  | CRIMPED   | CARATS     |
| SWEDEN      | INDRA   | PSNUMBER    | GREYISH   | SCRAPED   | KBIT/S     |
| NORWAY      | VISHNU  | HD          | GRAYISH   | SCREWED   | MEGAHERTZ  |
| EUROPE      | ANANDA  | DREAMCAST   | WHITISH   | SECTIONED | MEGAPIXELS |
| HUNGARY     | PARVATI | GEFORCE     | SILVERY   | SLASHED   | GBIT/S     |
| SWITZERLAND | GRACE   | CAPCOM      | YELLOWISH | RIPPED    | AMPERES    |
|             |         |             |           |           |            |

### Results with word2vec in the original paper trained on Google news dataset



From Mikolov *et al.* (2013a)

### Results with word2vec in the original paper trained on Google news dataset

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skipgram model trained on 783M words with 300 dimensionality).

| Relationship                    | Example 1                     | Example 2                    | Example 3                              |
|---------------------------------|-------------------------------|------------------------------|----------------------------------------|
| France - Paris<br>big - bigger  | Italy: Rome<br>small: larger  | Japan: Tokyo<br>cold: colder | Florida: Tallahassee<br>quick: quicker |
| Miami - Florida                 | Baltimore: Maryland           | Dallas: Texas                | Kona: Hawaii                           |
| Einstein - scientist            | Messi: midfielder             | Mozart: violinist            | Picasso: painter                       |
| Sarkozy - France<br>copper - Cu | Berlusconi: Italy<br>zinc: Zn | Merkel: Germany<br>gold: Au  | Koizumi: Japan<br>uranium: plutonium   |
| Berlusconi - Silvio             | Sarkozy: Nicolas              | Putin: Medvedev              | Obama: Barack                          |
| Microsoft - Windows             | Google: Android               | IBM: Linux                   | Apple: iPhone                          |
| Microsoft - Ballmer             | Google: Yahoo                 | IBM: McNealy                 | Apple: Jobs                            |
| Japan - sushi                   | Germany: bratwurst            | France: tapas                | USA: pizza                             |