UNIVERSIDAD TÉCNICA NACIONAL DE COSTA RICA

•	ΓERCER CUATRIMESTRE, 2020
	Campus: Sede Central
ESCU	 IELA DE INGENIERÍA ELECTRÓNICA

Teoría Electromagnética Segundo Examen Parcial (Tiempo de la prueba: TRES horas)

NOTA: Se permiten hojas blancas/cuaderno de examen, calculadora científica sencilla e instrumentos de dibujo. Para este examen son válidas las instrucciones dadas por el profesor. EL EXAMEN SE ASIGNA DE FORMA VIRTUAL y se debe subir al CLASSROOM. Se debe considerar parte de ese tiempo para escanear/fotografiar/digitar y subir el documento. Disponen hasta el día 15 de diciembre a las 5pm para entregar la prueba. Luego de esa fecha no será calificado.

Puntos: 36, Porcentaje 20%, Puntos Obt.:	Porcentaje Obt.:	Nota:	
Nombre v firma:	Carné	1.	

Problema	Puntos	Puntos
		Obtenidos
1	6	
2	4	
3	6	
4	6	
5	8	
6	6	
TOTAL	36	

INSTRUCCIONES:

- NO OLVIDE LAS UNIDADES.
- Realice los problemas que se le presentan en hojas blancas tamaño carta (**NO** utilice hojas con renglones), **NO** utilice lapicero rojo. Firme y enumera todas las hojas.
- En todos los casos en los que en el enunciado se haga referencia a una figura, se refiere a la figura adjunta abajo o al costado del enunciado del problema.
- Si escribe en lápiz no podrá hacer reclamos posteriores a la calificación. Tampoco si utiliza algún método de corrección de escritura que implica ocultar algo ya escrito, como el conocido "corrector".
- Sea ordenado, dibuje los diagramas intermedios y procedimientos que le permiten llegar a su solución. Resultados sin justificación se consideran inválidos. Sus desarrollos deben mostrar claramente el camino seguido para llegar a los resultados, sean éstos literales o numéricos. Por regla general: lo que no se entiende directamente (por mala letra, desorden o no estar de manera secuencial) se califica con nota mínima según rúbrica.
- Desarrolle en la medida de lo posible y razonable los problemas en LITERALES y al finalizar sustituya los valores numéricos correspondientes.
- No realice soluciones de doble columna (solamente una columna).
- Encierre sus resultados finales en un rectángulo visible y destacado, si no lo hace se presupone que usted admite no haber llegado a la solución final, por lo tanto, es un problema sin respuesta.

Problemas

 (6 puntos) La figura siguiente representa la sección transversal de dos capacitores esféricos.

(a) (3pts.) Determine la capacitancia del capacitor. Sea $a=10mm, b=30mm, c=20mm, \varepsilon_{r1}=2.5$ y $\varepsilon_{r2}=3.5$.

- **(b)** (3pts.) Si los cascarones esféricos con radios a=10mm, b=30mm se mantienen en una diferencia de potencial de 100 V, de modo que V(r=b)=0 V(r=a)=150V. Determine la carga total inducida en los cascarones.
- **2.** (4 puntos)
 - (a) (2pts.) ¿Calcule la conductividad de un alambre de 4mm de diámetro y 5 m de longitud, si su resistencia medida es de $1m\Omega$?
 - (b) (2pts.) ¿Cuál es el nombre del material con esa conductividad?
- 3. (6 puntos) Encuentre el campo magnético H para los tres casos: (a) en el centro de la espira, (b) como una función de la distancia a lo largo del eje de la espira, (c) a una gran distancia de la espira z >> R.
- **4.** (6 puntos) Dado el potencial magnético vectorial $\overrightarrow{A} = \frac{10}{\rho^2} \overrightarrow{a_z} \ Wb/m$, (a) Halle la densidad de corriente **J** para $\rho = 10m$, (b) Halle la expresión \overrightarrow{B} , dado **A**, (c) Calcule el flujo magnético total que cruza la superficie $\varphi = \frac{\pi}{2}$, $1 \le \rho \le 2m$, $0 \le z \le 5m$.
- 5. (8 puntos) Una espira conductora triangular portadora de una corriente de 2 A se sitúa cerca de un conductor recto de longitud infinita con una corriente de 5 A, como se muestra en la figura.

Calcule **(a)** (2 pts.) la fuerza sobre el lado 1 de la espira triangular, **(b)** (3 pts.) la fuerza total sobre la espira, **(c)** (3 pts.) Determine la inductancia mutua entre un alambre recto muy largo y la espira conductora con forma de triángulo.

- **6.** (6 puntos) Un toroide de núcleo de aire con sección cuadrada tiene un radio interno $r_1=80cm, un\ radio\ externo\ r_2=82cm, una\ altura\ a=1.5cm\ y\ 700\ vueltas.$
 - Halle la inductancia L utilizando (a) la fórmula para toroides de sección transversal cuadrada, (b) la fórmula aproximada para un toroide general, que supone un H uniforme a un radio medio. Compare ambos resultados.
 - **(c)** Calcule la energía total guardada en el campo magnético del toroide si conduce una corriente de 15 A.

Tabla de conductividades para el problema 2.

Tabla 2-1 Conductividades†

	Material	Conductividad ℧ m ⁻¹		Material	Conductividad U m ⁻¹
Aislantes	Quarzo fundido Cera de ceresina Poliestireno Sulfuro Parafina Caucho duro Porcelana Vidrio Bakelita	$\sim 10^{-17}$ $\sim 10^{-17}$ $\sim 10^{-16}$ $\sim 10^{-16}$ $\sim 10^{-15}$ $\sim 10^{-15}$ $\sim 10^{-15}$ $\sim 10^{-14}$ $\sim 10^{-12}$	~10 ⁻¹⁷ ~10 ⁻¹⁶ ~10 ⁻¹⁵ ~10 ⁻¹⁵ ~10 ⁻¹⁵ ~10 ⁻¹⁵ ~10 ⁻¹⁵ ~10 ⁻¹⁴ ~10 ⁻¹² ~10 ⁻⁹ ~10 ⁻⁴ ~10 ⁻³ ~10 ⁻² ~10 ⁻² 4 × 10 ⁻² 0.08 0.2 0.35 0.7 ~2 ~4 0 ² 8 2 8 2 8 3 8 4 8 6 8 7 8 7 8 8 6 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	Silicón Carbón Grafito Hierro colado Mercurio Níquel cromo Acero inoxidable Constantan Acero silicón	10^{3} $\sim 3 \times 10^{4}$ $\sim 10^{5}$ $\sim 10^{6}$ 10^{6} 10^{6} 10^{6} 2×10^{6} 2×10^{6}
Conductores Aislantes Conductores pobres	Agua destilada Suelo arenoso, seco Suelo pantanoso Agua fresca Grasa animal‡ Músculo animal (⊥ a la fibra)‡ Animal cuerpo (promedio)‡ Músculo animal (∥ a la fibra)‡ Sangre animal Germanio (semiconductor) Agua de mar Ferrita Telerio			Plata alemana Plomo Estaño Bronce fósforo Latón Zinc Tungsteno Duraluminio Aluminio, moldeado duro Oro Cobre Plata Hg (a <4 1 K) Nb (a <9.2 K) Nb ₃ (Al-Ge) (a <21 K) YBa ₂ Cu ₃ O ₇ (a <80 K)	3×10^{6} 5×10^{6} 9×10^{6} 10^{7} 1×10^{7} 1.7×10^{7} 1.8×10^{7} 3×10^{7} 3.5×10^{7} 4.1×10^{7} 5.7×10^{7} 6.1×10^{7}