from google.colab import files
uploaded = files.upload()

Choose Files train.csv

train.csv(text/csv) - 61194 bytes, last modified: 7/5/2025 - 100% done

Saving train csv to train csv

import pandas as pd
import sqlite3

Load the CSV

df = pd.read_csv('train.csv')

df.head()

♦ What can I help you build?

	1 to 5 of 5 entries Filter 🚨 🔞										r 🛭 🔞	
index	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.25	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.925	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.05	NaN	S

Show 25 **∨** per page

Like what you see? Visit the <u>data table notebook</u> to learn more about interactive tables.

Faceted distributions

<string>:5: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend


```
Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend
                            - <string>:5: FutureWarning:
     Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend
                                                                 New interactive sheet
 Next steps: ( Generate code with df )

    View recommended plots

# Create SQL DB
conn = sqlite3.connect('titanic.db')
\# Store data into SQL table
df.to_sql('titanic_data', conn, if_exists='replace', index=False)
→ 891
query = '''
SELECT Sex, COUNT(*) as Total,
SUM(Survived) as Survived,
ROUND(AVG(Survived)*100, 2) as Survival_Rate
FROM titanic_data
GROUP BY Sex
pd.read_sql_query(query, conn)
```


1 to 2 of 2 entries Filter									
index	Sex	Total	Survived	Survival_Rate					
0	female	314	233	74.2					
1	male	577	109	18.89					

Like what you see? Visit the data table notebook to learn more about interactive tables.

Categorical distributions

2-d distributions

Time series

Values

Faceted distributions

<string>:5: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend

```
-- <string>:5: FutureWarning:
```

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend


```
# Fill missing values
df['Age'].fillna(df['Age'].mean(), inplace=True)
```

df['Embarked'].fillna(df['Embarked'].mode()[0], inplace=True)

Convert categorical to numeric

df['Sex'] = df['Sex'].map({'male': 0, 'female': 1})

```
df = pd.get_dummies(df, columns=['Embarked', 'Pclass'], drop_first=True)
```

🛨 /tmp/ipython-input-11-3309191636.py:2: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained ass The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting value For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].me df['Age'].fillna(df['Age'].mean(), inplace=True) /tmp/ipython-input-11-3309191636.py:3: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained ass The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting value For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].me df['Embarked'].fillna(df['Embarked'].mode()[0], inplace=True) df.drop(['Name', 'Ticket', 'Cabin', 'PassengerId'], axis=1, inplace=True) from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score X = df.drop('Survived', axis=1) y = df['Survived'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = RandomForestClassifier() model.fit(X_train, y_train) y_pred = model.predict(X_test) print("Model Accuracy:", accuracy_score(y_test, y_pred)) → Model Accuracy: 0.8100558659217877 def would_you_survive(age, sex, fare, sibsp, parch, embarked_Q, embarked_S, pclass_2, pclass_3): input_data = [[age, sex, fare, sibsp, parch, embarked_Q, embarked_S, pclass_2, pclass_3]] prediction = model.predict(input_data) return "" You would survive!" if prediction[0] == 1 else "♥ You would not survive." # Example: A 22-year-old female, fare 70, 0 siblings, 0 parents, embarked S, class 3 would_you_survive(22, 1, 70, 0, 0, 0, 1, 0, 1)