## Market Inefficiency, Insurance Mandate and Welfare: U.S. Health Care Reform 2010

Juergen Jung Towson University, Maryland

Chung Tran Australian National University

**ASHEcon** June 2014

#### Disclaimer

This project was supported by the Agency for Healthcare Research and Quality (AHRQ, Grant No.: R03HS019796), the Australian Research Council (ARC, Grant No.: CE110001029), and funds from the Centers for Medicare & Medicaid Services, Office of the Actuary (CMS/OACT).

The content is solely the responsibility of the authors and does not represent the official views of the Agency for Healthcare Research and Quality.

### The U.S. health insurance system

- Mixed system:
  - Private health insurance for working population
  - Public health insurance for poor (Medicaid) and old (Medicare)
- Main issues in the current system:
  - Low coverage: 47 million uninsured in 2010 ( $\approx 15\%$ )
  - High cost: 16% of GDP on Health in 2010 and close to 20% by 2015
  - Health outcomes: questionable?

# Health expenditures: MEPS 2000-2009





# Insurance take-up rates: MEPS 2000-2009



# Affordable Care Act (2010)

- Private insurance:
  - Health insurance mandate enforced by penalties and subsidies
  - 4 Health insurance exchanges
  - Restrictions on insurance companies
- Public insurance
  - Expansion of Medicaid
  - Cuts in Medicare
  - New taxes
- Focus on reducing the number of uninsured

### This paper

- Develop a stochastic dynamic general equilibrium **OLG model** with
  - endogenous health spending + insurance choice
  - core structure of US health insurance system

#### that accounts for

- life-cycle patterns of health spending + insurance take-up
- distributions of income and health expenditures
- to quantify the long-run effects of the ACA (2010) on
  - insurance coverage and health expenditures
  - macroeconomic aggregates and welfare

### Results preview

#### Coverage

- 76.23% to 90.41% of workers due to ↓ Adverse selection
- IHI ↑, Medicaid ↑, but GHI ↓
- Insurance take-up driven by penalty and not subsidies

#### Medical Spending

- Moral hazard  $\uparrow \rightarrow$  medical services  $M \uparrow$  and health capital  $\uparrow$
- but switch from high to low price types o total spending  $p_m M \downarrow$

#### Aggregates and welfare

- Redistribution from high-income-healthy types
- ullet Capital stock  $\downarrow$  and labor supply  $\downarrow$  ightarrow GDP  $\downarrow$  1.2%
- Welfare ↓ except low income groups

#### Fiscal costs

- $\bigcirc$  Payroll tax of 0.5% on income > \$200,000
- ② Consumption tax ↑ by 1.0%
- Lump-sum tax of 0.36% of household income
- ullet Government spending  $\downarrow$  by 0.5% of GDP

#### Related literature

- 4 Health microeconomics/econometrics
  - Grossman (1972a,1972b), Grossman (2000)
- Quantitative macroeconomics/public finance
  - Ayagari (1994), Imrohoroglu et al (1995), Hugget (1996)
- Macro-health economics:
  - Exogeneous health expenditure shocks: Attanasio, Kitao and Violante (2008), Jeske and Kitao (2009), Pashchenko and Porapakkarm (2010), Janicki (2011)
  - Endogenous health expenditures and insurance: Suen (2006), Feng (2009), Fonseca et al.(2009,2013), Galama and Kapteyn (2011), and Jung and Tran (2008, 2010, 2013)

# **MODEL**

#### The Model: "Workhorse" macro model

Dynamic stochastic overlapping generations model with heterogeneous agents:

- Structure: households, government and production sectors for C
- Markets: consumption, labor and capital
- Households live for multiple-periods as workers and retirees
- Exogenous mortality shocks
- Idiosyncratic labor productivity shocks
- Incomplete financial markets

#### The Model: New features

- Health as a durable good: consumption and investment
- Idiosyncratic health shocks
- Endogenous health spending
- Elements of the US health insurance system
  - Individual health insurance (IHI)
  - Group health insurance (GHI)
  - Medicaid and Medicare
  - Random employer matching
- Endogenous health insurance choice

# The Model: Preferences and technology

• Preferences:

$$u(c_j, l_j, h_j, m_j)$$

Health capital:

$$h_j = i\left(m_j, h_{j-1}, \delta^h, \epsilon_j^h\right)$$

• Human capital ("labor"):

$$e_{j}=e\left(\vartheta,h_{j},\epsilon_{j}^{l}
ight)$$

Shocks:

$$\Pr\left(\epsilon_{j+1}^{h}|\epsilon_{j}^{h}\right)\in\Pi_{j}^{h}\text{ and }\Pr\left(\epsilon_{j+1}^{l}|\epsilon_{j}^{l}\right)\in\Pi_{j}^{l}$$

#### The Model: Health insurance

- A private health insurance market for workers
  - Individual and group plans for prem<sup>IHI</sup>(j, h) and prem<sup>GHI</sup>
  - $\bullet$  Group insurance offer  $\epsilon^{\rm GHI}$  depends on current insurance state and income
  - $\bullet \ \operatorname{Pr}\left(\epsilon_{j+1}^{\operatorname{GHI}}|\epsilon_{j}^{\operatorname{GHI}},\vartheta\right) \in \Pi_{j,\vartheta}^{\operatorname{GHI}}$
  - Health insurance choice:

$$in_j = \left\{ egin{array}{ll} 0 & ext{if no insurance} \\ 1 & ext{if Individual health insurance (IHI)} \\ 2 & ext{if Group health insurance (GHI)} \\ 3 & ext{if Medicaid} \end{array} 
ight.$$

- Income/asset test for Medicaid
- ullet Medicare for retirees for prem $^R o$  no more insurance choice

### The Model: Out-of-Pocket health spending

• Worker's out-of-pocket health expenditures depend on insurance state

$$o(m_j) = \begin{cases} p_m^{in_j} \times m_j, & \text{if } in_j = 0\\ \rho^{in_j} \left( p_m^{in_j} \times m_j \right), & \text{if } in_j > 0 \end{cases}$$

 Retiree's out-of-pocket health expenditures depend on Medicare generosity

### The Model: Technology and firms

• Final goods C production sector for price  $p_C = 1$ :

$$\max_{\{K, L\}} \left\{ F(K, L) - qK - wL \right\}$$

• Medical services M production sector for price  $p_m$ :

$$\max_{\left\{K_{m},\ L_{m}\right\}}\left\{p_{m}F_{m}\left(K_{m},L_{m}\right)-qK_{m}-wL_{m}\right\}$$

- $\bullet$   $p_m$  is a base price for medical services
- Price paid by households depends on insurance state:

$$p_j^{in_j} = \left(1 + 
u^{in_j}\right) p_m$$

- ullet  $u^{in_j}$  is an insurance state dependent markup factor
- Profits are redistributed to all surviving agents

## The Model: Household problem



State vector:  $x_t = \{j, a, i, h, in, \epsilon^h, \epsilon^l, \epsilon^{GHI}\}$ 

 $\rightarrow \text{Choice =}\{c, l, m, a', in'\}$ 

a': savingsin': insurance

 $x_{t+1} = \{j+1, a', i, h', in', \epsilon'^h, \epsilon'^l, \epsilon'^{GHI}\}$ 

# Worker's dynamic optimization problem

$$\begin{array}{ll} V\left(x_{j}\right) & = \max_{\left\{c_{j}, l_{j}, m_{j}, a_{j+1}, in_{j+1}\right\}} \left\{u\left(c_{j}, h_{j}, l_{j}, m_{j}\right) + \beta\pi_{j}E\left[V\left(x_{j+1}\right) \mid \epsilon_{j}^{l}, \epsilon_{j}^{h}, \epsilon_{j}^{GHI}\right]\right\} \\ & \text{s.t.} \\ \\ & \left(1 + \tau^{C}\right)c_{j} + (1 + g)\,a_{j+1} + o\left(m_{j}\right) \\ \\ & + 1_{\left\{in_{j+1} = 1\right\}}\operatorname{prem}^{\operatorname{IHI}}\left(j, h\right) + 1_{\left\{in_{j+1} = 2\right\}}\operatorname{prem}^{\operatorname{GHI}} \\ \\ & = y_{j}^{W} - tax_{j} + t_{j}^{\operatorname{SI}} \\ \\ & 0 \leq a_{j+11} \\ \\ & 0 \leq l_{j} \leq 1 \\ \\ & h_{i} = i\left(m_{i}, h_{i-1}, \delta^{h}, \epsilon_{i}^{h}\right) \end{array}$$

## Worker's dynamic optimization problem

where

$$\begin{array}{rcl} y^W_j & = & e\left(\vartheta,h_j,\epsilon^I_j\right)\times I_j\times w + R\left(a_j+t^{\mathsf{Beq}}\right) + \mathsf{profits} \\ \\ tax_j & = & \tilde{\tau}\left(\tilde{y}^W_j\right) + tax^{\mathsf{SS}}_j + tax^{\mathsf{Med}}_j \\ \\ \tilde{y}^W_j & = & y^W_j - a_j - t^{\mathsf{Beq}} - \mathbf{1}_{[in_{j+1}=2]}\mathsf{prem}^{\mathsf{GHI}} - 0.5\left(tax^{\mathsf{SS}}_j + tax^{\mathsf{Med}}_j\right) \\ \\ tax^{\mathsf{SS}}_j & = & \tau^{\mathsf{Soc}}\times \min\left(\bar{y}_{\mathsf{ss}},\ e\left(\vartheta,h_j,\epsilon^I_j\right)\times I_j\times w - \mathbf{1}_{[in_{j+1}=2]}\mathsf{prem}^{\mathsf{GHI}}\right) \\ \\ tax^{\mathsf{Med}}_j & = & \tau^{\mathsf{Med}}\times\left(e\left(\vartheta,h_j,\epsilon^I_j\right)\times I_j\times w - \mathbf{1}_{[in_{j+1}=2]}\mathsf{prem}^{\mathsf{GHI}}\right) \\ \\ t^{\mathsf{SI}}_j & = & \max\left[0,\ \underline{c} + o\left(m_j\right) + tax_j - y^W_j\right] \end{array}$$

### Retiree's dynamic optimization problem

$$\begin{array}{ll} V\left(x_{j}\right) & = \max\limits_{\left\{c_{j}, m_{j}, a_{j+1}\right\}} \left\{u\left(c_{j}, h_{j}, m_{j}\right) + \beta\pi_{j}E\left[V\left(x_{j+1}\right) \mid \epsilon_{j}^{h}\right]\right\} \\ & s.t. \\ & \left(1+\tau^{C}\right)c_{j} + \left(1+g\right)a_{j+1} + o^{R}\left(m_{j}\right) + \operatorname{prem}^{R} & = \\ & R\left(a_{j} + t_{j}^{\mathsf{Beq}}\right) - tax_{j} + t_{j}^{\mathsf{Soc}} + t_{j}^{\mathsf{SI}} \end{array}$$

where

$$\begin{array}{lll} a_{j+1} & \geq & 0 \\ h_{j} & = & i \left(m_{j}, h_{j-1}, \delta^{h}, \epsilon^{h}_{j}\right) \\ \\ tax_{j} & = & \tilde{\tau}\left(\tilde{y}_{j}^{R}\right) \\ & \tilde{y}_{j}^{R} & = & t_{j}^{\mathsf{Soc}} + r \times \left(a_{j} + t_{j}^{\mathsf{Beq}}\right) + \mathsf{profits} \\ \\ t_{i}^{\mathsf{SI}} & = & \max\left[0, \underline{c} + o^{R}\left(m_{j}\right) + tax_{j} - R\left(a_{j} + t_{i}^{\mathsf{Beq}}\right) - t_{j}^{\mathsf{Soc}}\right] \end{array}$$

#### Insurance sector

$$\begin{split} &\left(1+\omega_{j,h}^{\mathsf{IHI}}\right)\sum_{j=2}^{J_{1}}\mu_{j}\int\left[\mathbf{1}_{\left[in_{j}\left(x_{j}\right)=1\right]}\left(1-\rho^{\mathsf{IHI}}\right)\rho_{m}^{\mathsf{IHI}}m_{j,h}\left(x_{j,h}\right)\right]d\Lambda\left(x_{j,h}\right)\\ &=&R\sum_{j=1}^{J_{1}-1}\mu_{j}\int\left(\mathbf{1}_{\left[in_{j,h}\left(x_{j,h}\right)=1\right]}\mathsf{prem}^{\mathsf{IHI}}\left(j,h\right)\right)d\Lambda\left(x_{j,h}\right)\\ &\left(1+\omega^{\mathsf{GHI}}\right)\sum_{j=2}^{J_{1}}\mu_{j}\int\left[\mathbf{1}_{\left[in_{j}\left(x_{j}\right)=2\right]}\left(1-\rho^{\mathsf{GHI}}\right)\rho_{m}^{\mathsf{GHI}}m_{j}\left(x_{j}\right)\right]d\Lambda\left(x_{j}\right)\\ &=&R\sum_{j=1}^{J_{1}-1}\mu_{j}\int\left(\mathbf{1}_{\left[in_{j}\left(x_{j}\right)=2\right]}\mathsf{prem}^{\mathsf{GHI}}\right)d\Lambda\left(x_{j}\right), \end{split}$$

### Government budget

$$G + \sum_{j=1}^{J} \mu_{j} \int t_{j}^{\mathsf{SI}}(x_{j}) d\Lambda(x_{j}) + \sum_{j=2}^{J_{1}} \mu_{j} \int \left(1 - \rho^{\mathsf{MAid}}\right) p_{m}^{\mathsf{MAid}} m_{j}(x_{j}) d\Lambda(x_{j})$$

$$+ \sum_{j=J_{1}+1}^{J} \mu_{j} \int \left(1 - \rho^{R}\right) p_{m}^{R} m_{j}(x_{j}) d\Lambda(x_{j})$$

$$= \sum_{j=1}^{J} \mu_{j} \int \left[\tau^{C} c(x_{j}) + tax_{j}(x_{j})\right] d\Lambda(x_{j}) + \sum_{j=J_{1}+1}^{J} \mu_{j} \int \mathsf{prem}^{R}(x_{j}) d\Lambda(x_{j})$$

$$+ \sum_{i=1}^{J_{1}} \mu_{j} \int \tau^{\mathsf{Med}}\left(e_{j}(x_{j}) \times l_{j}(x_{j}) \times w - 1_{[in_{j+1}(x_{j})=2]}\mathsf{prem}^{\mathsf{GHI}}(x_{j})\right) d\Lambda(x_{j})$$

### Pensions and bequests

Pensions:

$$\sum_{j=J_{1}+1}^{J} \mu_{j} \int t_{j}^{\mathsf{Soc}}\left(x_{j}\right) d\Lambda\left(x_{j}\right)$$

$$= \sum_{j=1}^{J_{1}} \mu_{j} \int \tau^{\mathsf{Soc}} \times \left(e_{j}\left(x_{j}\right) \times I_{j}\left(x_{j}\right) \times w - 1_{\left[in_{j+1}\left(x_{j}\right)=2\right]}\mathsf{prem}^{\mathsf{GHI}}\right) d\Lambda\left(x_{j}\right)$$

Bequests:

$$\sum_{j=1}^{J_1} \mu_j \int t_j^{\mathsf{Beq}}(x_j) \, d\Lambda(x_j) = \sum_{j=1}^{J} \int \tilde{\mu}_j a_j(x_j) \, d\Lambda(x_j)$$

#### A competitive equilibrium

Given the transition probability matrices and the exogeneous government policies, a competitive equilibrium is a collection of sequences of distributions of household decisions, aggregate capital stocks of physical and human capital, and market prices such that

- Agents solve the consumer problem
- The F.O.Cs of firms hold
- The budget constraints of insurances companies hold
- All markets clear
- All government programs and the general budget clear
- The distribution is stationary

# **CALIBRATION**

#### Parameterization and calibration

- Goal: to match U.S. data pre ACA
- Data sources:
  - MEPS: labor supply, health shocks, health expenditures, coinsurance rates
  - PSID: initial asset distribution
  - CENSUS: demographic profiles
  - Previous studies: income process, labor shocks, aggregates

#### Parameterization

Preferences:

$$u(c, l, h, m) = \frac{\left(\left(c^{\eta} \times \left(\frac{1 - l - 1_{[l > 0]}\overline{l_j}}{(1 + m)^{\eta m}}\right)^{1 - \eta}\right)^{\kappa} \times h^{1 - \kappa}\right)^{1 - \sigma}}{1 - \sigma}$$

Human capital:

$$e = e_{j}\left(\vartheta, h_{j}, \epsilon^{I}\right) = \left(\overline{wage}_{j,\vartheta}\right)^{\chi} \times \left(\exp\left(\frac{h_{j} - \overline{h}_{j,\vartheta}}{\overline{h}_{j,\vartheta}}\right)\right)^{1-\chi} \times \epsilon^{I}$$

- $\overline{wage}_{i,\vartheta}$  from MEPS
- $\bullet$   $\epsilon^{I}$  and  $\Pi^{I}$  from prior studies using Tauchen (1986) procedure

#### **Parameterization**

• Health capital accumulation:

$$h_j = i\left(m_j, h_{j-1}, \delta_j^h, \epsilon_j^h\right) = \overbrace{\phi_j m_j^\xi}^{\text{Investment}} + \overbrace{\left(1 - \delta_j^h\right) h_{j-1}}^{\text{Trend}} + \overbrace{\epsilon_j^h}^{\text{Disturbance}}$$

- ullet  $\phi$  and  $\xi$  calibrated to match health spending
- $\delta^h$  from MEPS using zero medical spenders and  $ar{h}_j = \overbrace{\left(1-\delta_j^H\right)ar{h}_{j-1}}^{\mathsf{Trend}}$
- $\epsilon^h$  and  $\Pi^h$  from MEPS

#### Parameterization: Production function

Final goods production:

$$F(K, L) = AK^{\alpha}L^{1-\alpha}$$

• Medical services production:

$$F_m(K_m, L_m) = A_m K_m^{\alpha_m} L_m^{1-\alpha_m}$$

- Parameters from other studies
- ullet A=1 and  $A_m$  calibrated to match aggregate health spending

#### Calibration: Price of medical services

- Reimbursement rates of Medicare/Medicaid are close to 70% of private health insurance (CMS)
- The national average is a markup of around 60% for the uninsured (Brown (2006))
- Large GHI can negotiate favorable prices (Phelps (2003))
- Price vector:

$$\left[p_m^{\mathsf{noIns}}, p_m^{\mathsf{IHI}}, p_m^{\mathsf{GHI}}, p_m^{\mathsf{Maid}}, p_m^{\mathsf{Mcare}}\right] = \left(1 + [0.70, 0.25, 0.10, 0.0, -0.10]\right) \times p_m$$

# Calibration: External parameters

| Parameters:                                     |                                   | Explanation/Source: |
|-------------------------------------------------|-----------------------------------|---------------------|
| - Periods working                               | $J_1 = 9$                         |                     |
| - Periods retired                               | $J_2 = 6$                         |                     |
| - Population growth rate                        | n = 1.2%                          | CMS 2010            |
| - Years modeled                                 | years = 75                        | from age 20 to 95   |
| - Total factor productivity                     | A = 1                             | Normalization       |
| <ul> <li>Capital share in production</li> </ul> | $\alpha = 0.33$                   | KydlandPescott1982  |
| - Capital in medical services production        | $\alpha_m = 0.26$                 | Donahoe (2000)      |
| - Capital depreciation                          | $\delta=10\%$                     | KydlandPescott1982  |
| - Health depreciation                           | $\delta_{h,j} = [0.6\% - 2.13\%]$ | MEPS 1999/2009      |
| - Survival probabilities                        | $\pi_{i}$                         | CMS 2010            |
| - Health Shocks                                 | see appendix                      | MEPS 1999/2009      |
| - Health transition prob.                       | see appendix                      | MEPS 1999/2009      |
| - Productivity shocks                           | see appendix                      | MEPS 1999/2009      |
| - Productivity transition prob.                 | see appendix                      | MEPS 1999/2009      |
| - Group insurance transition prob.              | see appendix                      | MEPS 1999/2009      |

# Calibration: Calibrated parameters

| Parameters:                                                    |                           | Explanation/Source:                              |
|----------------------------------------------------------------|---------------------------|--------------------------------------------------|
| - Relative risk aversion                                       | $\sigma = 3.0$            | to match $\frac{K}{Y}$ and $R$                   |
| <ul> <li>Preference on consumption<br/>vs. leisure:</li> </ul> | $\eta = 0.43$             | to match labor supply and $\frac{p \times M}{Y}$ |
| <ul> <li>Disutility of health<br/>spending:</li> </ul>         | $\eta_m = 1.5$            | to match health capital profile                  |
| <ul> <li>Preference on c and l</li> <li>vs. health</li> </ul>  | $\kappa = 0.89$           | to match labor supply and $\frac{p \times M}{Y}$ |
| - Discount factor                                              | $\beta = 1.0$             | to match $\frac{K}{Y}$ and $R$                   |
| - Health production productivity                               | $\phi_j \in [0.7 - 0.99]$ | to match spending profile                        |
| - TFP in medical production                                    | $A_m = 0.4$               | to match $\frac{p \times M}{Y}$                  |
| - Production parameter of health                               | $\xi = 0.175$             | to match $\frac{p \times M}{Y}$                  |
| - effective labor services production                          | $\chi = 0.26$             | to match labor supply                            |
| - Health productivity                                          | heta=1                    | used for sensitivity analysis                    |
| - Pension replacement rate                                     | $\Psi = 40\%$             | to match $	au^{soc}$                             |
| - Residual Government spending                                 | $\Delta_{C} = 12.0\%$     | to match size of tax revenue                     |
| - Minimum health state                                         | $h_{\min} = 0.01$         | to match health spending                         |

#### Health Expenditures: Model vs. Data





## Insurance Take Up Rate: Model vs. Data



#### Income distribution SS1 with FPL



#### Calibration: Matched moments

| Moments                                           | Model | Data       | Source                         |
|---------------------------------------------------|-------|------------|--------------------------------|
| - Medical expenses HH income                      | 17.6% | 17.07%     | CMS communication              |
| - Workers IHI                                     | 6.7%  | 7.6%       | MEPS 1999/2009                 |
| - Workers IHI                                     | 62.2% | 63.6%      | MEPS 1999/2009                 |
| - Workers Medicaid                                | 9.0%  | 9.2%       | MEPS 1999/2009                 |
| - Capital output ratio: K/Y                       | 2.9   | 2.6 - 3    | NIPA                           |
| - Interest rate: R                                | 4.2%  | 4%         | NIPA                           |
| - Size of Social Security: SocSec/Y               | 5.9%  | 5%         | OMB 2008                       |
| - Size of Medicare: Medicare/Y                    | 3.1%  | 2.5 - 3.1% | U.S. Department of Health 2007 |
| - Payroll tax Social Security: $	au^{Soc}$        | 9.4%  | 10 - 12%   | IRS                            |
| - Consumption tax: $	au^{C}$                      | 5.0%  | 5.7%       | Mendoza et al. (1994)          |
| - Payroll tax Medicare: $	au^{Med}$               | 2.9%  | 1.5 - 2.9% | Social Security Update 2007    |
| -Total tax revenue/ $Y$                           | 21.8% | 28.3%      | Stephenson (1998) and          |
|                                                   |       |            | Barro and Sahasakul (1986)     |
| - Medical spending profile                        |       | see figure |                                |
| <ul> <li>Medical spending distribution</li> </ul> |       | see figure |                                |
| - Insurance take-up ratios                        |       | see figure |                                |

## **ACA IMPLEMENTATION**

#### Elements of the "Obama reform" in the model

- Penalty: Uninsured pay penalty of 2.5% of income
- **Subsidy and insurance exchanges:** Subsidy to buy IHI if 133% FPL < income < 400% FPL
- Expansion of Medicaid:
  - Income < 133% FPL</li>
  - No more asset tests
- No screening: No price discrimination in IHI markets
- Financing:
  - Payroll tax on the rich (income > 200k)
  - Onsumption tax, or
  - Fixed tax (let exogenous gov't consumption adjust)

#### Elements of the "Obama reform" in the model



# **RESULTS**

#### **OVERALL EFFECTS OF ACA**

## Benchmark vs. Reform: Insurance take-up rates



## Benchmark vs. Reform: Health insurance and expenditures

|                                | Benchmark | The ACA Reform   |                  |  |  |
|--------------------------------|-----------|------------------|------------------|--|--|
|                                |           | (a) Partial eqm. | (b) General eqm. |  |  |
| Workers insured (%):           | 76.23     | 99.00            | 90.41            |  |  |
| + IHI (%)                      | 5.55      | 23.85            | 12.38            |  |  |
| + GHI (%)                      | 61.05     | 57.64            | 60.38            |  |  |
| + Medicaid (%)                 | 9.62      | 17.51            | 17.64            |  |  |
| IHI average premium            | 100       | 100              | 140.20           |  |  |
| GHI premium                    | 100       | 100              | 80.48            |  |  |
| Medical services (M)           | 100       | 100.06           | 100.04           |  |  |
| Med. spending $(p_m \times M)$ | 100       | 95.04            | 96.31            |  |  |
| Med. spending/GDP(%)           | 17.66     | _                | 17.61            |  |  |

## Benchmark vs. Reform: Market aggregates

|                      | Benchmark | The ACA Reform   |                  |  |  |
|----------------------|-----------|------------------|------------------|--|--|
|                      |           | (a) Partial eqm. | (b) General eqm. |  |  |
| :                    | :         | i:               | :                |  |  |
| Med. spending/GDP(%) | 17.66     | _                | 17.61            |  |  |
| ACA payroll tax (%)  | 0         | 0.60             | 0.50             |  |  |
| GDP                  | 100       | _                | 98.51            |  |  |
| Capital $(K_c)$      | 100       | 99.12            | 98.61            |  |  |
| Capital $(K_m)$      | 100       | 101.22           | 100.24           |  |  |
| Weekly hours worked  | 100       | 94.79            | 96.26            |  |  |
| Health $(H)$         | 100       | 100.10           | 100.01           |  |  |
| Consumption (C)      | 100       | 98.33            | 97.85            |  |  |
| Welfare change       |           | +                |                  |  |  |

### The key channels of effects

- **Negative savings effect:** self-insurance vs. market insurance
- **Moral hazard effect:** lower effective price of health services
- Tax effect: higher tax rates for high income earners
- **General equilibrium effect:** wage and interest rates  $\rightarrow$
- Lower income for most
- Lower consumption levels for most

#### Welfare effects

- Negative efficiency effects
  - Capital drops
  - Output drops
  - Household income drops (w decrease)
  - Consumption of C drops
- Positive insurance effects
  - More insured, improved risk sharing, less risk
  - More medical services for some AND overall health spending decreases
  - Increases in health capital H
  - If H is productive, it has a positive effect on output

## Welfare effects by health and skill group

| Health capital   | Skill 1 (low) | Skill 2 | Skill 3 | Skill 4 (high) |
|------------------|---------------|---------|---------|----------------|
| h = 15 (healthy) | 1.40          | -1.03   | -2.60   | -2.30          |
| h = 14           | 1.16          | -1.33   | -2.68   | -2.35          |
| h = 13           | 0.37          | -1.44   | -2.77   | -2.40          |
| h = 12           | 0.12          | -1.56   | -2.83   | -2.45          |
| h = 11           | 0.07          | -1.54   | -2.89   | -2.48          |
| h = 10           | 0.14          | -1.26   | -2.65   | -2.36          |
| h = 9            | 0.38          | -0.55   | -2.14   | -2.29          |
| h = 8            | 0.77          | 0.55    | -1.72   | -2.09          |
| h = 7            | 1.06          | 1.46    | -1.42   | -1.70          |
| h = 6            | 2.22          | 2.40    | -0.92   | -1.31          |
| h = 5            | 3.96          | 3.69    | -0.20   | -0.98          |
| h = 4            | 5.71          | 5.28    | 0.68    | -0.58          |
| h = 3            | 7.58          | 7.31    | 1.73    | 0.01           |
| h = 2            | 10.37         | 9.11    | 2.38    | 0.38           |
| h = 1 (sick)     | 14.14         | 12.89   | 4.86    | 1.06           |

Table: Compensating consumption in percent of lifetime income.

# ISOLATING THE EFFECTS OF PENALTIES, SUBSIDIES, AND MEDICAID EXPANSION

## Only penalties

|                             | Bench | Penalty in % of individual income |            |            |               |
|-----------------------------|-------|-----------------------------------|------------|------------|---------------|
|                             |       | (a) 2.5%                          | (b) 5%     | (c) 10%    | (d) 15%       |
| Workers insured (%):        | 76.23 | 98.72                             | 99.33      | 99.73      | 99.84         |
| + IHI (%)                   | 5.55  | 23.78                             | 24.43      | 25.19      | 25.69         |
| + GHI (%)                   | 61.05 | 66.92                             | 67.41      | 68.10      | 68.85         |
| + Medicaid (%)              | 9.62  | 8.03                              | 7.49       | 6.44       | 5.31          |
| IHI average premium         | 100   | 102.22                            | 101.64     | 101.16     | 101.20        |
| GHI premium                 | 100   | 66.30                             | 65.58      | 64.90      | 64.35         |
| Med. spending               | 100   | 95.53                             | 95.47      | 95.46      | 95.50         |
| Med. spending/GDP(%)        | 17.66 | 17.24                             | 17.21      | 17.17      | 17.14         |
| GDP                         | 100   | 100.55                            | 100.74     | 101.04     | 101.33        |
| Welfare change $(\%\Delta)$ |       |                                   | $\bigcirc$ | $\bigcirc$ | $\overline{}$ |

## Only subsidies

|                             | Bench | IHI Subsidies relative to ACA (%) |          |          |          |  |
|-----------------------------|-------|-----------------------------------|----------|----------|----------|--|
|                             |       | (a) 100%                          | (b) 120% | (c) 135% | (d) 150% |  |
| Workers insured (%):        | 76.23 | 85.13                             | 86.36    | 86.76    | 87.02    |  |
| + IHI (%)                   | 5.55  | 14.40                             | 15.79    | 16.41    | 16.67    |  |
| + GHI (%)                   | 61.05 | 63.99                             | 65.02    | 65.25    | 65.36    |  |
| + Medicaid (%)              | 9.62  | 6.74                              | 5.56     | 5.10     | 4.98     |  |
| IHI average premium         | 100   | 99.14                             | 101.30   | 102.40   | 102.81   |  |
| GHI premium                 | 100   | 88.07                             | 83.16    | 81.64    | 80.93    |  |
| Med. spending               | 100   | 98.57                             | 98.46    | 98.41    | 98.36    |  |
| Med. spending/GDP (%)       | 17.66 | 17.64                             | 17.69    | 17.72    | 17.73    |  |
| ACA payroll tax (%)         | 0.0   | 0.32                              | 0.53     | 0.67     | 0.73     |  |
| GDP                         | 100   | 99.78                             | 99.59    | 99.44    | 99.37    |  |
| Welfare change $(\%\Delta)$ |       | $\oplus$                          | $\oplus$ | $\oplus$ | $\oplus$ |  |

## Only Medicaid

|                             | Bench | Medicaid extension (% of $FPL_{Maid}$ ) |          |          |         |
|-----------------------------|-------|-----------------------------------------|----------|----------|---------|
|                             |       | (a) 133                                 | (b) 150  | (c) 200  | (d) 300 |
| Workers insured (%):        | 76.23 | 79.81                                   | 81.36    | 84.75    | 87.16   |
| + IHI (%)                   | 5.55  | 6.21                                    | 6.61     | 6.43     | 5.72    |
| + GHI (%)                   | 61.05 | 58.51                                   | 56.89    | 54.05    | 49.90   |
| + Medicaid (%)              | 9.62  | 15.09                                   | 17.86    | 24.26    | 31.54   |
| IHI average premium         | 100   | 98.38                                   | 96.71    | 92.33    | 88.07   |
| GHI premium                 | 100   | 98.87                                   | 98.08    | 97.64    | 98.38   |
| Med. spending               | 100   | 99.17                                   | 98.74    | 97.71    | 96.71   |
| Med. spending/GDP(%)        | 17.66 | 17.74                                   | 17.77    | 17.91    | 18.07   |
| ACA payroll tax (%)         | 0.0   | 0.25                                    | 0.40     | 0.83     | 1.35    |
| GDP                         | 100   | 98.93                                   | 98.39    | 96.77    | 94.94   |
| Welfare change $(\%\Delta)$ |       | $\oplus$                                | $\oplus$ | $\oplus$ |         |

## IHI screening off or Medicaid asset test off

|                      | [1] Bench | [2] IHI screen off | [3] Asset test off |
|----------------------|-----------|--------------------|--------------------|
| Workers insured (%): | 76.23     | 65.22              | 77.36              |
| + IHI (%)            | 5.55      | 0                  | 5.87               |
| + GHI (%)            | 61.05     | 56.12              | 59.80              |
| + Medicaid (%)       | 9.62      | 9.10               | 11.70              |
| Med. spend.          | 100       | 101.93             | 99.69              |
| Med. spend./GDP(%)   | 17.66     | 17.84              | 17.67              |
| GDP                  | 100       | 99.96              | 99.80              |
| Welfare $(\%\Delta)$ |           |                    | +                  |

Results

### Summary of separate effects

#### Penalty

- force young and healthy agents to buy insurance
- expand coverage and improve risk sharing
- but distort savings and work incentives and cause of welfare loss

#### Subsidy

- Induce low income agents to buy insurance
- Prevent collapse of IHI caused by NO screening policy and Medicaid expansion
- Redistribute income toward the poor
- Mitigate welfare loss caused by penalty
- Source of tax distortion

#### Medicaid expansion

- Extend coverage of low income agents
- Improve risk pooling and income redistribution
- Cause income loss due to fiscal distortions
- Cost containment (lowest re-imbursement levels)

#### FINANCING THE REFORM

## Financing the ACA

|                                | [1] Benchmark | [2] ACA  | [3] ACA financed by |                    |                   |
|--------------------------------|---------------|----------|---------------------|--------------------|-------------------|
|                                |               | $\tau^V$ | (a) G               | (b) τ <sup>C</sup> | (c) $\tau^{Lump}$ |
| Workers:                       | 76.23         | 90.41    | 90.68               | 90.35              | 90.53             |
| + IHI (%)                      | 5.55          | 12.38    | 12.74               | 12.39              | 13.01             |
| + GHI (%)                      | 61.05         | 60.38    | 60.55               | 60.42              | 61.55             |
| + Medicaid (%)                 | 9.62          | 17.64    | 17.39               | 17.54              | 15.97             |
| Med. Spending                  | 100           | 96.31    | 96.29               | 96.35              | 96.34             |
| Output (GDP)                   | 100           | 98.51    | 98.74               | 98.70              | 99.15             |
| Welfare change $(\%\Delta)$    | 0             | -0.23    | 0.41                | -0.21              | -0.36             |
| Taxes financing the ACA:       |               |          |                     |                    |                   |
| Payroll tax $\tau^V$ (%)       | 0             | 0.50     | _                   | _                  | _                 |
| Gov't consumption $C^G$ (%)    | 11.51         | _        | 11.03               | _                  | _                 |
| Consumption tax $\tau^{C}$ (%) | 5.00          | _        | _                   | 5.94               | _                 |
| Lump-sum tax $\tau^{Lump}$ (%) | 0             | _        | _                   | _                  | 0.36              |

#### Conclusion

- Construct a heterogeneous agents macro-model with health as a durable good
- Account for life-cycle patterns of health expenditures and private insurance take up rates
- Assess the macroeconomic effects of the Obama health care reform 2010

#### Future work on macro-health economics

- More sensitivity analysis
- Health capital and endogenous survival probabilities
- Optimal public health insurance with endogenous health capital
- Life-cycle consumption puzzle: the role of health
- Structural estimation of the health production function