Teil 2 - Elektrotechnik

Basics

Ohmsches Gesetz

Widerstand =
$$\frac{Spannung}{Stromstärke}$$
 $R = \frac{U}{I}$ $[R] = \frac{V}{A} = \Omega(Ohm)$

• Leistung: $P = U \cdot I$

$$[P] = Watt$$

Schaltsymbole

Komponente	Schaltsymbol	Wert
Spannungsquelle	U U	Spannung U
Stromquelle	I	Stromstärke I
Verbraucher	R	Ohm'scher Widerstand R
	R	Potentiometer

Komponente	Schaltsymbol
Leiter	—
Schalter	
Voltmeter	— ✓ V
Amperemeter	<u> </u>

Knotenregel

- Knotenregel:
- "Die Summe aller Ströme an einem Knoten (zufließende Ströme sind positiv, abfließende Ströme sind negativ zu zählen) ist gleich null."

$$\sum_{i} \pm I_i = 0$$

• Beispiel:

$$\sum_{i} I_{i} = 0 \Rightarrow I_{1} + I_{2} - I_{3} + I_{4} - I_{5} = 0$$

Maschenregel

- Maschenregel:
- "Die Summe aller Spannungen eines Maschenumlaufs (gleichsinnige Spannungen sind positiv, ungleichsinnige Spannungen sind negativ zu zählen) ist gleich null."

$$\sum_{i} \pm U_i = 0$$

• Beispiel:

$$\sum_{i} U_{i} = 0 \Rightarrow -U_{1} + U_{2} + U_{3} - U_{4} = 0$$

Reihenschaltung / Parallelschaltung

Reihenschaltung

Gesamtwiderstand:

$$R_{ges} = R_1 + R_2 + \dots$$

Spannungsteilerregel:

$$\frac{U_1}{U_0} = \frac{R_1}{R_{ges}}$$

Parallelschaltung

• Gesamtwiderstand:

$$\frac{1}{R_{ges}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$$

Stromteilerregel:

$$\frac{I_1}{I} = \frac{R_{ges}}{R_1}$$

Ideale Quellen

• Eine ideale <u>Spannung</u>squelle erzeugt eine vom Strom unabhängige, konstante Spannung

Ideale Spannungsquellen dürfen <u>nicht</u> parallel geschaltet oder kurzgeschlossen werden.

Reihenschaltungen mehrerer Quellen oder Leerlauf sind möglich.

• Eine ideale Stromquelle erzeugt einen von der Spannung unabhängigen, konstanten Strom

Ideale Stromquellen dürfen <u>nicht</u> in Reihe geschaltet oder im Leerlauf betrieben werden.

Parallelschaltungen mehrerer Quellen oder Kurzschluss sind möglich.

Reale Spannungsquelle

- Reale Spannungsquelle
 - Reihenschaltung aus Spannungsquelle und Widerstand
 - Leerlaufspannung U_L
 - Innenwiderstand R_i

Reale Stromquelle

- Reale Stromquelle
 - Parallelschaltung aus Stromquelle und Widerstand
 - Kurzschlussstrom I_K
 - Innenwiderstand R_i

Analyse von Schaltungen

- Ziel: Berechnung von Strömen und Spannungen in einem gegebenen Netzwerk
- Zunächst: Zählpfeile für Strom und Spannung festlegen
 - Richtungen beliebig wählbar
 - Aber: Am Verbraucher (Widerstand) müssen Strom und Spannung gleichsinnig sein
- Anwendung der Kirchhoff'schen Regeln und des Ohm'schen Gesetzes liefert notwendiges
 Gleichungssystem
- Systematische Vorgehen durch:
 - Maschenstromverfahren
 - Knotenpotentialverfahren
 - Ersatzspannungsquelle / Ersatzstromquelle
 - Überlagerungssatz

Ersatzquellen

- Anwendung:
 - Es werden Strom und Spannung in einem bestimmten Zweig gesucht
- Methode:
 - Berechnung von Leerlaufspannung, Kurzschlussstrom und Innenwiderstand des verbleibenden Netzwerkes

ODER:

- Das gesamte Netzwerk außerhalb des relevanten Zweiges wird durch eine Ersatzquelle dargestellt
- Schrittweise Umwandlung und Zusammenfassung einzelner Netzwerkteile zu realen Strom-/Spannungsquellen

Kondensator

Mit der Kapazität C

$$C = \frac{\varepsilon_0 \cdot \varepsilon_r \cdot A}{d} [C] = \frac{As}{V} = F(Farad)$$

Kondensator im Netzwerk mit sprungförmiger Spannungsänderung (z.B. durch Schalter)

$$U_C(t) = \left(U_{anfang} - U_{ende}\right) \cdot e^{-\frac{t}{T}} + U_{ende}$$

- Zeitkonstante $T = R \cdot C$
- Anfangs- und Endwert $U_{anfang} = U_C(t=0)$ $U_{ende} = U_C(t \to \infty) = U_0$

"Kochrezept" Ausgleichsvorgang

Schritt	Kondensator C		
1. Ersatzquelle für $t \le 0$ auswerten: Anfangswert U_{anfang}	U_{anfang} aus Ersatzspannungsquelle entnehmen C entfernen, U_{anfang} = Spannung an den Klemmen von C U_{anfang} = aktuelle Spannung des vorherigen Ausgleichsvorganges		
2. Ersatzquelle für $t > 0$ auswerten: Endwert U_{ende}	U_{ende} aus Ersatzspannungsquelle entnehmen $oder$ $C \text{ entfernen, } U_{ende} = \text{ Spannung an den Klemmen von } C$		
Innenwiderstand $R_{i,ende}$	Innenwiderstand $R_{i,ende}$ aus Ersatzspannungs- bzw. Ersatzstromquelle entnehmen oder Spannungsquellen entfernen, Stromquellen kurzschliessen. Dann: $R_{i,ende}$ = Gesamtwiderstand des verbleibenden Netzwerkes an den Klemmen von C		
3. Ggf. Fehlende Anfangs- und Endwerte bestimmen			
	$I_{ende} = 0$		
4. Zeitkonstante <i>T</i> bestimmen	$T = R_{i,ende} \bullet C$		

U und I am Kondensator

	Spannung	Strom
	$u_{\scriptscriptstyle X}(t) \; = \; U_{\scriptscriptstyle ende} \; - \; \left(U_{\scriptscriptstyle ende} \; - \; U_{\scriptscriptstyle anfang} ight) \cdot e^{-rac{t}{T_1}}$	$i_{_{X}}(t) = I_{_{\mathit{ende}}} - (I_{_{\mathit{ende}}} - I_{_{\mathit{anfang}}}) \cdot e^{-rac{t}{T_{_{1}}}}$
Kondensator C	U _{ende} 0,63 · (U _{ende} - U _{anfang}) T ₁	$I_{max} = \frac{1}{R} (U_{ende} - U_{anfang})$ T_{1} T_{1}

Diode

- Diode = pn-Übergang
- Anschlüsse

- Anode (p-Schicht)
- Kathode (n-Schicht)
- Schaltzeichen

https://www.leifiphysik.de/elektronik/halbleiterdiode/grundwissen/p-n-uebergang-halbleiterdiode/

Diode - Kennlinie

Kennlinie

- Ohm'sches Gesetz gilt hier nicht mehr!
- Durchlassrichtung:
 - Oberhalb der Schleusenspannung \mathbf{U}_{S} annähernd lineare Zunahme des Stroms, Diode ist niederohmig
- Sperrrichtung:
 - Diode ist hochohmig, es fließt nur ein sehr kleiner Sperrstrom ${\rm I_S}$
- Durchbruchspannung
 - . Starke Zunahme der Stromstärke
 - Führt bei normalen Dioden zur Zerstörung
 - Wird bei der Zener-Diode genutzt, U_{BR} in weiten Bereichen einstellbar

Diode - Kennlinie

 Idealisierung der Dioden-Kennlinie durch lineare Bauteile

Weitere Vereinfachung:

Durchlass-

geschlossener Schalter = Kurzschluss