Thème 1 : Types de bases

Char	Dec	Oct	Hex	Char	Dec	Oct	Hex	Char	Dec	Oct	Hex
(sp)	32	0040	0x20	I @	64	0100	0x40	Ι,	96	0140	0x6
ì''	33	0041	0x21	Ā	65	0101	0x41	a	97	0141	0x6
	34	0042	0x22	В	66	0102	0x42	b	98	0142	0x6
#	35	0043	0x23	C	67	0103	0x43	C	99	0143	0x6
\$	36	0044	0x24	D	68	0104	0x44	d	100	0144	0x6
96	37	0045	0x25	E	69	0105	0x45	e	101	0145	0x6
&	38	0046	0x26	F	70	0106	0x46	f	102	0146	0x6
	39	0047	0x27	G	71	0107	0x47	l g	103	0147	0x6
(40	0050	0x28	H	72	0110	0x48	Ň	104	0150	0x6
)	41	0051	0x29		73	0111	0x49	l i	105	0151	0x6
*	42	0052	0x2a	J	74	0112	0x4a	l j	106	0152	0x6
+	43	0053	0x2b	K	75	0113	0x4b	k	107	0153	0x6
	44	0054	0x2c	L	76	0114	0x4c		108	0154	0x6
-	45	0055	0x2d	M	77	0115	0x4d	m	109	0155	0x6
	46	0056	0x2e	N	78	0116	0x4e	n	110	0156	0x6
1	47	0057	0x2f	0	79	0117	0x4f	0	111	0157	0x6
0	48	0060	0x30	P	80	0120	0x50	p	112	0160	0x7
1	49	0061	0x31	l Q	81	0121	0x51	l q	113	0161	0x7
2	50	0062	0x32	R	82	0122	0x52	l r	114	0162	0x7
3	51	0063	0x33	S	83	0123	0x53	S	115	0163	0x7
4	52	0064	0x34	T	84	0124	0x54	t	116	0164	0x7
5	53	0065	0x35	U	85	0125	0x55	u	117	0165	0x7
6	54	0066	0x36	V	86	0126	0x56	V	118	0166	0x7
7	55	0067	0x37	W	87	0127	0x57	w	119	0167	0x7
8	56	0070	0x38	X	88	0130	0x58	X	120	0170	0x7
9	57	0071	0x39	Y	89	0131	0x59	l y	121	0171	0x7
:	58	0072	0x3a	Z	90	0132	0x5a	Z	122	0172	0x7
;	59	0073	0x3b	l [91	0133	0x5b	{	123	0173	0x7
<	60	0074	0x3c	١ ١	92	0134	0x5c	11	124	0174	0x7
=	61	0075	0x3d]	93	0135	0x5d	}	125	0175	0x7
>	62	0076	0x3e	^	94	0136	0x5e	~	126	0176	0x7
?	63	0077	0x3f	l _	95	0137	0x5f				

{:.center

width=400px}
Table ASCII

!!!exo "Exercice 1 :" Décoder l'expression suivante, écrite en ASCII :

??? tip "Correction"

HASTA LA VISTA, BABY !

		ISO/CEI 8859-15														
	x0	x1	x2	хЗ	х4	х5	х6	x7	х8	х9	xΑ	хВ	хC	хD	хE	хF
0 x								non i	utilic	á						
1x	Trest democ															
2x		1	"	#	\$	%	&	1	()	*	+	,	-		/
3x	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4x	@	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	О
5x	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z	[١]	^	_
6x	`	a	b	С	d	е	f	g	h	i	j	k	1	m	n	0
7x	р	q	r	s	t	u	v	w	х	у	z	{		}	~	
8x								non i	utilic	á						
9x							,	1011	uuiis	C						
Ax		i	¢	£	€	¥	Š	§	š	©	a	«	_		®	-
Вх	0	±	2	3	Ž	μ	1		ž	1	0	»	Œ	œ	Ÿ	į
Сх	À	Á	Â	Ā	Ä	Å	Æ	Ç	È	É	Ê	Ë	Ì	ĺ	î	Ϊ
Dx	Đ	Ñ	Ò	Ó	ô	Ō	Ö	×	Ø	Ù	Ú	Û	Ü	Ý	Þ	ß
Ex	à	á	â	ã	ä	å	æ	ç	è	é	ê	ë	ì	í	î	ï
Fx	ð	ñ	ò	ó	ô	õ	ö	÷	Ø	ù	ú	û	ü	ý	þ	ÿ

{:.center

width=300px} Latin-9

!!!exo "Exercice 2 : " ${f Q.1.}$ Le mot représenté par les octets ci-dessous est-il codé en ASCII ou en Latin

9 ? Donner ce mot : 000000000<mark>6</mark>4 C3 A9 C3 A7 75 65 73 0A

Q.2. Représenter goûté en Latin-9

??? tip "Correction" Q.1. déçues

Q.2. goûté : 67 6F FB 74 E9

Définition du nombre d'octets utilisés dans le codage (uniquement les séquences valides)

Caractères codés	Représentation binaire UTF-8	Premier octet valide (hexadécimal)	Signification
U+0000 à U+007F	<mark>∂</mark> xxxxx	00 à 7F	1 octet, codant 7 bits
U+0080 à U+07FF	I10xxxxx 10xxxxx	C2 à DF	2 octets, codant 11 bits
U+0800 à U+0FFF	11 10 0000 10 1xxxxx 10 xxxxx	E0 (le 2 ^e octet est restreint de A0 à BF)	
U+1000 à U+1FFF	11 10 0001 10 xxxxxx 10 xxxxx	E1	
U+2000 à U+3FFF	11 10 001x 10 xxxxxx 10 xxxxx	E2 à E3	
U+4000 à U+7FFF	<pre>111001xx 10xxxxxx 10xxxxxx</pre>	E4 à E7	2 octots codant 16 hits
U+8000 à U+BFFF	11 10 10xx 10 xxxxxx 10 xxxxx	E8 à EB	3 octets, codant 16 bits
U+C000 à U+CFFF	11101100 10xxxxxx 10xxxxx	EC EC	
U+D000 à U+D7FF	11101101 100xxxxx 10xxxxx	ED (le 2 ^e octet est restreint de 80 à 9F)	
U+E000 à U+FFFF	11 10 111x 10 xxxxxx 10 xxxxx	EE à EF	
U+10000 à U+1FFFF	111110000 1001xxxx 10xxxxxx 10xxxxx	F0 (le 2 ^e octet est restreint de 90 à BF)	
U+20000 à U+3FFFF	111110000 101xxxxx 10xxxxxx 10xxxxx		
U+40000 à U+7FFFF	111110001 10xxxxxx 10xxxxxx 10xxxxx	F1	4 octets, codant 21 bits
U+80000 à U+FFFFF	11111001x 10xxxxxx 10xxxxxx 10xxxxx	F2 à F3	
U+100000 à U+10FFFF	11110100 1000xxxx 10xxxxxx 10xxxxx	F4 (le 2 ^e octet est restreint de 80 à 8F)	

{:.center

width=800px

Latin étendu B

		_		_	_		_	_	_	_	_	_	_		_	_	_
HEX		0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
	DEC	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
180	384	ħ	В	Б	Б	Ъ	b	Э	Ç	ď	Đ	D	а	đ	9	3	ə
190	400	3	F	f	ď	¥	h	ι	ł	К	ƙ	ŧ	λ	ш	И	η	θ
1A0	416	Q	σ	9	aı	P	þ	Ŗ	S	s	Σ	١	ţ	Т	t	τ	Ç
1B0	432	ŭ	Ω	С	Υ	У	Z	Z	3	3	3	3	2	5	5	5	р
1C0	448	_	I	ŧ	!	DŽ	Dž	dž	IJ	Lj	lj	NJ	Nj	nj	Ă	ă	Ĭ
1D0	464	ĭ	Ŏ	ŏ	Ŭ	ŭ	Ü	ü	Ú	ú	Ŭ	ŭ	Ù	ù	ә	Ä	ä
1E0	480	Ā	ā	Æ	æ	G	g	Ğ	ğ	K	Ř	Q	Q	Ō	Ō	ž	ž
1F0	496	j	DZ	Dz	dz	Ġ	ģ	н	р	Ň	'n	Å	á	Æ	ǽ	Ø	ø
200	512	Ä	ä	Â	â	È	è	Ê	ê	ĩ	ĩ	î	î	ő	ő	ô	ô
210	528	Ř	ř	Ř	î	Ű	ű	Û	û	Ş	ş	Ţ	ţ	3	3	Ĥ	ň
220	544	η	d,	8	8	ζ	3	À	à	Ę	ę	Ö	ö	Õ	õ	Ò	ò
230	560	Ō	ō	Ÿ	ÿ	L	ቢ	t	J	ф	ф	Æ	Ø	Ø	Ł	7	ş
240	576	ζ	?	2	B	₩	٨	£	ø	ł	j	q	q	R	f	*	¥

!!! exo "Exercice 3 :"

Donnée le codage Unicode la lettre H puis son codage en UTF-8

??? tip "Correction" H - -> Unicode: +U021E

```
- -> sur 11 bits :
```

- E en bianire -> 1110 (4 bits)
- 1 en binaire -> 0001 (4 bits)
- 2 en binaire -> 010 (3 bits restants)

- -> on remplie les 2 octects :

- 11001000
- 10011110
- -> en repassant à l'hexadécimal :
 - 12 soit C et 8
 - 9 et E

- donc en UTF-8, on obtient C8 9E

!!! exo "Exercice 4" Décoder le message suivant :

 $width{=}600px\}$

??? tip "Correction"

!!! exo "Exercice 5" Le défi du cours : codage UTF-8 (Latin-9), décoder le texte ci-dessous :

`56 65 72 73 20 6C 27 69 6E 66 69 6E 69 20 65 74 20 6C 27 61 75 2D 64 65 6C C3 A0``

??? tip "Correction"

Vers l'infin et l'au-delÃ

!!! exo "Exercice 4 :" Codage XOR :

Q.1. Le nombre 65, donné ici en écriture décimale, s'écrit 01000001 en notation binaire. En détaillant la méthode utilisée, donner l'écriture binaire du nombre 97.

????tip "Correction" 97 en binaire : 01100001

Q.2. La fonction logique OU EXCLUSIF, appelée XOR et représentée par le symbole , fournit une sortie égale à 1 si l'une ou l'autre des deux entrées vaut 1 mais pas les deux.

On donne ci-dessous la table de vérité de la fonction XOR

A	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

Poser et calculer l'opération : 11011101 01101011

??? tip "Correction" 11011101 01101011

10110110

On donne, ci-dessous, un extrait de la table ASCII qui permet d'encoder les caractères de A à Z. On peut alors considérer l'opération XOR entre deux caractères en effectuant le XOR entre les codes ASCII des deux caractères.

Par exemple : 'F' XOR 'S' sera le résultat de 01000110 01010011.

Code	Code	
ASCII Décimal	ASCII Binaire	Caractère
65	01000001	A
66	01000010	В
67	01000011	С
68	01000100	D
69	01000101	E
70	01000110	F
71	01000111	G
72	01001000	Н
73	01001001	1
74	01001010	J
75	01001011	K
76	01001100	L
77	01001101	M

Code ASCII	Code ASCII	
Décimal	Binaire	Caractère
78	01001110	N
79	01001111	0
80	01010000	Р
81	01010001	Q
82	01010010	R
83	01010011	S
84	01010100	Т
85	01010101	U
86	01010110	V
87	01010111	W
88	01011000	Χ
89	01011001	Υ
90	01011010	Z

{:.center

width=350px

On souhaite mettre au point une méthode de cryptage à l'aide de la fonction XOR.

Pour cela, on dispose d'un message à crypter et d'une clé de cryptage de même longueur que ce message. Le message et la clé sont composés uniquement des caractères du tableau ci-dessus et on applique la fonction XOR caractère par caractère entre les lettres du message à crypter et les lettres de la clé de cryptage.

Question 3. Chiffrer INFORMATIQUE avec la clé NSI. Pour cela recopier et compléter le tableau ci-dessous :

LETTRE	I	N	F	0	R	М	Α	Т	I	Q	U	E
ASCII												
BINAIRE												
CLE	N	S	I	N	S	I	N					
ASCII												
BINAIRE												
XOR												
ASCII												

??? tip "Correction"

LETTRE	I	N	F	0	М	А	R	Т	I	Q	U	E
ASCII	73	78	70	79	77	65	82	84	73	81	85	69
BINAIRE	1001001	1001110	1000110	1001111	1001101	1000001	1010010	1010100	1001001	1010001	1010101	1000101
CLE	N	S	I	Ν	S	_	Ν	S	_	Ν	S	I
ASCII	78	83	73	78	83	73	78	83	73	78	83	73
BINAIRE	1001110	1010011	1001001	1001110	1010011	1001001	1001110	1010011	1001001	1001110	1010011	1001001
XOR	0000111	0011101	0001111	0000001	0011110	0001000	0001001	0011010	0011010	0011000	0011011	0010110
ASCII	7	29	15	1	30	8	9	26	26	24	27	22

Q.4. Recopier et compléter la table de vérité de ()

$\boldsymbol{E_1}$	$\boldsymbol{E_2}$	$E_1 \oplus E_2$	$(E_1 \oplus E_2) \oplus E_2$
0	0	0	
0	1	1	
1	0	1	
1	1	0	

{:.center

 $width{=}300px\}$

??? tip "Correction"

up correction			
E1	E2	E1 ⊕ E2	(E1⊕E2)⊕E2
0	0	0	0
0	1	1	0
1	0	1	1
1	1	0	1

{:.center

 $width{=}300px\}$

A l'aide de ce résultat, proposer une démarche pour décrypter un message crypté.

??? tip "Correction"

Pour décoder le message, on a juste à refaire la fonction XOR sur le message codé avec la clé.

 $\mathbf{Q.5}$ Décoder le message suivant : 12 1 8 24 28 105 15 115 29 1 6 26

??? tip "Correction"

Bravo à tous