Classical Mech Main Points

Qualifier

Winter 2012

1 Newtonian Mechanics

- Set $F_N = 0$ to find the point when two objects separate (ex. ball rolls off hemisphere)
- Momentum $(p = mv, L = I\omega)$ is conserved for all collisions; energy is conserved for elastic collisions
- Force = $-\nabla U$
- For periodic motion, if the equation of motion is $\ddot{x} + \xi x = 0$, the frequency is $\omega = \sqrt{\xi}$. If the equation has a term linear in \dot{x} , that is a damping term.
- Power: $P = \frac{dE}{dt} = \frac{\Delta W}{\delta t} = \vec{F} \cdot \vec{v} = \vec{\tau} \cdot \vec{\omega}$

1.1 Angular Motion

- Use $v = \omega r$, $x = \theta r$, $a = \alpha r$ for basic angular motion
- Circular motion: $ma = \frac{mv^2}{r} = m\omega^2 r$
- Torque: $\frac{dL}{dt} = \tau = \vec{r} \times \vec{F} = I\alpha = Fd\sin\theta$
- Period $T = \frac{2\pi}{\omega}$
- Remember: it's often easier to find $d \sin \theta$ than to find d and θ separately
- To derive moment of inertia: $I = \int r^2 dm$; solve for dm in terms of dr
- Can still also use $\Sigma F = ma$ if it helps. Consider all forces acting at same point (point particle)
- Orbits: $\frac{\partial^2 V_{eff}}{\partial r^2} > 0$ for stable orbits. Use $\frac{\partial V}{\partial r} = 0$ for circular orbits
- Parallel Axis Theorem: $I_{new} = I_{original} + MR^2$

Helpful moments of inertia:

- sphere: $I = \frac{2}{5}MR^2$
- disc: $I = \frac{1}{2}MR^2$

Rocket Ships: Use m = mass of ship, dm' = ejected mass, v = velocity of ship, -u = ejected mass velocity relative to ship. Then we have:

$$p_i = p_f \to 0 = (m - dm')(v + dv) + dm'(v - u) \tag{1}$$

Set v=0 for simplicity, and dm=-dm'. After that it's mostly algebra/calculus.

2 Virtual Work

The principle of virtual work presents an alternative to Newtonian solutions for force problems. This method uses the equations:

$$\delta W = \sum_{i} \vec{F}_{i}^{a} \cdot \delta \vec{r}_{i} = 0 \qquad \delta W = \sum_{i} Q_{i}^{a} \delta q_{i} = 0 \tag{2}$$

In these equations, \vec{F}_i^a represent the net applied forces, and Q_i^a represent the differentiated constraint equations. Transform the Q_i^a equation into the generalized (simplest) coordinates, and solve the resulting equations.

For example, if the constraint equation is for two blocks connected by a massless rod: $x^2 + y^2 - l^2 = 0$, with $x = l \cos \theta$ and $y = l \sin \theta$:

$$\delta W = \sum_{i} Q_{i}^{a} \delta q_{i} = 0 \to 2x \delta x + 2y \delta y = 0 \to \delta x \cos \theta + \delta y \sin \theta = 0$$
 (3)

2.1 D'Alembert's Principle

The virtual work method given previously works for systems in static equilibrium. To generalize this method to dynamic systems, D'Alembert introduced a new "force of inertia" that modifies the virtual work equation that governs forces:

$$\delta W = \sum_{i} \left[\vec{F}_{i}^{a} - m_{i} \ddot{r}_{i} \right] \cdot \delta \vec{r}_{i} = 0 \tag{4}$$

3 Lagrangian & Hamiltonian

3.1 Lagrangian

- L = T U
- Euler Lagrange Equation:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = 0 \tag{5}$$

• We can always add a total time derivative of a function to the Lagrangian for free (without changing equations of motion):

$$L' = L + \frac{dF(q, \dot{q}, t)}{dt} \tag{6}$$

This kind of trick can give a simplified Hamiltonian, even making it a constant of the motion.

• A variable q_i is **cyclic** if it does not appear in the Lagrangian. In that case, the associated momentum p_i is conserved/constant, and subtracting the associated $p_i\dot{q}_i$ transforms the Lagrangian into the Routhian:

$$p_i = \frac{\partial L}{\partial \dot{q}_i} = \alpha_i \quad \to \quad R = L - \alpha_i \dot{q}_i \tag{7}$$

3.2 Hamiltonian

- Legendre Transformation: $H = p\dot{q} L$
- $p_q = \frac{\partial L}{\partial \dot{q}}$
- \bullet Hamilton's equations of motion: $\dot{p}_q=-\frac{\partial H}{\partial q}$ and $\dot{q}=\frac{\partial H}{\partial p_q}$
- Solve for q(t) using the E-L equation or Hamilton's equations of motion (take $\frac{d\dot{q}}{dt}$ and plug in for \dot{p}_q)
- We can see that H is conserved (thus representing the total energy) if $\frac{\partial H}{\partial t} = 0$ and if it includes no terms that depend *linearly* on a momentum variable (only quadratically).

- We can go farther, and write a momentum-space "Lagrangian", similar to how we did the first Legendre transform: $K(p, \dot{p}, t) = q_i \dot{p}_i + H(q, p, t)$
- $KE_{cylindrical} = \frac{1}{2}m\left(\dot{r}^2 + r^2\dot{\phi}^2 + \dot{z}^2\right)$
- $KE_{spherical} = \frac{1}{2}m\left(\dot{r}^2 + r^2\dot{\theta}^2 + r^2\sin^2\theta\dot{\phi}^2\right)$

3.3 Undetermined Multipliers

If we can't include some constraints when writing the Lagrangian, we have to take these constraints into account in the Euler-Lagrange equation as undetermined multipliers:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i^a + \sum_{j=1}^m \lambda_j a_{ji}$$
(8)

Each λ_j corresponds to each constraint equation f_j , and each a_{ji} corresponds to $\frac{\partial f_j}{\partial q_i}$. Each Q_i^a corresponds to applied forces that cannot be written as part of the potential energy:

$$Q_i = \frac{\partial \vec{r_j}}{\partial g_i} \cdot \vec{F_j} \tag{9}$$

A constraint is holonomic if:

$$\frac{\partial}{\partial y}\frac{\partial f}{\partial x} = \frac{\partial}{\partial x}\frac{\partial f}{\partial y} \tag{10}$$

3.4 Canonical Transformations

"Guess" the Q & P to transform into in order to make $\frac{\partial H}{\partial t}=0$. Show canonical by $[Q,P]_{q,p}=1$

Use existing p and q definitions to find generating functions:

$$p = \frac{\partial F_1(q, Q)}{\partial q} \qquad P = -\frac{\partial F_1(q, Q)}{\partial P} \tag{11}$$

$$p = \frac{\partial F_2(q, P)}{\partial q} \qquad Q = \frac{\partial F_2(q, P)}{\partial P} \tag{12}$$

$$q = -\frac{\partial F_3(Q, p)}{\partial p} \qquad P = -\frac{\partial F_3(Q, p)}{\partial Q} \tag{13}$$

$$q = -\frac{\partial F_4(p, P)}{\partial q} \qquad Q = \frac{\partial F_4(p, P)}{\partial P} \tag{14}$$

The generating function(s) result in a new Hamiltonian:

$$K(Q, P, t) = H(q, p, t) + \frac{\partial F_2}{\partial t}$$
(15)

The new Hamiltonian results in corresponding new equations of motion:

$$\dot{P} = -\frac{\partial K}{\partial Q} \qquad \dot{Q} = \frac{\partial K}{\partial P} \tag{16}$$

H=T+U if $\frac{\partial H}{\partial t}=0$, no explicit time dependence, AND no terms linear in momentum/velocity

3.5 Small Oscillations with Effective Potentials

To find frequency of small oscillations:

- 1. Write the Hamiltonian and find the effective potential, V_{eff} (all terms that depend on q)
- 2. Find $\frac{\partial^2 V_{eff}}{\partial q^2}|_{q=qmin}$ where q represents the variable with small oscillations
- 3. Write the V matrix as:

$$V = \frac{1}{2}\tilde{V}q^2 = \frac{1}{2}\frac{\partial^2 V_{eff}}{\partial q^2}|_{qmin}q^2 \tag{17}$$

4. Write the T matrix as:

$$T = \frac{1}{2}\tilde{T}\dot{q}^2\tag{18}$$

5. Solve for the frequency using \tilde{V} and \tilde{T} :

$$\tilde{V} - \omega^2 \tilde{T} = 0 \tag{19}$$

Quick way to get frequency: Make the Lagrangian look like: $L = \frac{1}{2}m'\dot{\eta}^2 - \frac{1}{2}k'\eta^2$. Then $\omega = \sqrt{\frac{k'}{m'}}$

3.6 Variational Calculus

The Euler-Lagrange equation can also solve other physics of path minimization, such as the brachistone problem of minimizing time for a particle in a force field to travel between two points. To use the E-L for this type of problem:

- 1. Write an equation that describes the motion and the element to minimize, such as $dt = \frac{ds}{v}$. The element to minimize should be alone on the LHS.
- 2. Add an integration symbol on both sides: $t = \int \frac{ds}{v}$
- 3. Write the RHS differential in terms of path variables, such as dx and dy, in order to evaluate the integral, such as: $t = \int \frac{\sqrt{1+x'^2}}{\sqrt{2gy}} dy$
- 4. Use the E-L equation on the integrand, using the appropriate variables, such as: $\frac{\partial F}{\partial x} \frac{d}{dy} \frac{\partial F}{\partial x'} = 0$
- 5. Solve the resulting equation by separation of variables, such as $x(y) = \int \sqrt{\frac{y}{(c^2/2g)-y}} dy$

4 Vector Potentials

Remember that the vector potential due to a particle in a magnetic field is:

$$\vec{A} = -\frac{1}{2}B_0(y\hat{x} - x\hat{y}) \tag{20}$$

And to find the potential, use:

$$U = q\phi - q\vec{A} \cdot \vec{v} \tag{21}$$

where ϕ represents the electric potential.

5 Small Oscillations

Standard coordinates define how the blocks are displaced relative to each other, while small coordinates (usually η) define how the blocks are displaced relative to their original equilibrium position. Start by writing the Lagrangian in standard coordinates, then transform to small coordinates. Then use these notations:

$$L = \frac{1}{2} \mathbf{T} \dot{\eta}_i \dot{\eta}_j - \frac{1}{2} \mathbf{V} \eta_i \eta_j \tag{22}$$

Use $\frac{\partial V}{\partial q_i}|_{q0i} = 0$ to find the minimum point q_{0i} , and $\mathbf{V} = \frac{\partial^2 V_{eff}}{\partial q_i^2}|_{q0i} = \frac{\partial^2 V_{eff}}{\partial \eta_i \eta_j}|_0$ to find \mathbf{V} .

Then use T and V to solve for the frequency(s):

$$|\mathbf{V} - \lambda \mathbf{T}| = 0 \tag{23}$$

where $\lambda = \omega^2$, to solve for the frequencies ω_i . To find the eigenvectors:

$$(\mathbf{V} - \lambda_i \mathbf{T}) \, \vec{c}_i = 0 \tag{24}$$

these $\vec{c_i}$ also make up the amplitude ratios for λ_i , $\frac{A_1}{A_2}$:

$$(\mathbf{V} - \lambda_i \mathbf{T}) \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} = 0 \tag{25}$$

To normalize the eigenvectors:

$$\vec{C}_i = N_i \vec{c}_i \to \vec{C}_i^T \mathbf{T} \vec{C}_i = 1 \tag{26}$$

Solve for N_i . Finally, to write the displacement of the system as a function of time:

$$A_i = \vec{C}_i^T \mathbf{T} \eta(0) \tag{27}$$

$$\omega_i^2 > 0 \to \omega_i B_i = \vec{C}_i^T \mathbf{T} \dot{\eta}(0)$$
 (28)

$$\omega_i = 0 \to B_i = \vec{C}_i^T \mathbf{T} \dot{\eta}(0) \tag{29}$$

The general solution can now be written as:

$$\vec{\eta}(t) = \sum_{\omega_i^2 > 0} \vec{C}_i (A_i \cos \omega_i t + B_i \sin \omega_i t) + \sum_{\omega_i^2 = 0} \vec{C}_i (A_i + B_i t)$$
(30)

Smaller ω 's correspond to more symmetry in the oscillation mode.

6 Central Forces & the Hamilton Jacobi Equation

Whenever we have two masses exerting a force on each other, we can move into the center of mass reference frame and consider the reduced mass combination acted on by a central force, since the center of mass of the system does not move.

Orbits & Stability

- A circular orbit is stable if $\frac{\partial^2 V_{eff}}{\partial r^2}>0$
- To find the radius for circular orbit, set $\frac{\partial V}{\partial r} = 0$ and solve for r (can also use Hamilton's equations)
- To find the condition on the radius for circular orbit, find $\frac{\partial^2 V_{eff}}{\partial r^2} > 0$ and substitute in the radius for circular orbit

Steps for Solving Motion with the Hamilton-Jacobi

1. Background: We can transform H without loss of generality to $K = H + \frac{\partial S}{\partial t} = 0$. Assuming then that S, Hamilton's principle/generating function is separable $(S(q,t) = S_1(t) + S_2(q))$ and $p = \frac{\partial S}{\partial q}$, we can rearrange K to be:

$$\frac{1}{2m} \left(\frac{\partial S_2}{\partial q} \right)^2 + V(q) = -\frac{\partial S_1}{\partial t} \tag{31}$$

Now the variables are separated, and we can set both sides equal to a constant, E. This makes solving for S_1 and S_2 a matter of maths.

- 2. Write Hamilton's equation, and substitute $\frac{\partial S_2}{\partial q}$ for each p_q term. (S_2 is sometimes referred to as W)
- 3. Separate variables this usually entails writing everything not dependent on r inside a bracket, and setting that bracket equal to α_3 . (This is usually the total angular momentum, which we can see is a constant of the motion by finding [L, H] = 0). Or solve so that r is on one side of the equation, and θ and ϕ are on the other side, then set both sides equal to α_3 .
- 4. Assuming W is separable (example $W(r, \theta, \phi) = W_r + W_\theta + W_\phi$), find integrals defining each component of W.
- 5. Use $p_q = \frac{\partial W}{\partial q}$ to find the meaning of α_2 and α_3 .
- 6. Use the form $\frac{\partial W}{\partial E} = t + \beta$ to solve for the motion of r depending on E and α 's.
- 7. Additional: It may be useful to also remember that $Q = \frac{\partial S_2}{\partial P} = \frac{\partial S_2}{\partial E}$ and $\dot{Q} = \frac{\partial H}{\partial P} = \frac{\partial H}{\partial E}$.

The "action", J is equivalent to $S_2(q)$ as long as S(q,t) is separable:

$$J = \int pdq = \int PdQ \tag{32}$$

Given this J, the frequency of motion is:

$$\nu_i = \frac{\partial E}{\partial J_i} \tag{33}$$

where E came from integrating the action J and solving for E(J).

7 The Poisson Bracket

The poisson bracket is a good method of determining which elements associated with a Hamiltonian are constants of motion:

$$\frac{du}{dt} = [u, H]_{qi,pi} + \frac{\partial u}{\partial t} \tag{34}$$

$$[u, H]_{qi,pi} = \sum_{i}^{n} \left(\frac{\partial u}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial u}{\partial p_i} \frac{\partial H}{\partial q_i} \right)$$
(35)

For example, given angular momentum $J = q_1p_2 - q_2p_1$, the poisson bracket of J with H quickly shows that the angular momentum is conserved:

$$\frac{dJ}{dt} = [J, H]_{qi,pi} = 0 \tag{36}$$

In general, to find whether an element is a constant of motion:

- 1. Write the element A in terms of q_i and p_i
- 2. Write the Hamiltonian according to the physical description
- 3. Find $\frac{dA}{dt} = [A, H]_{qi,pi} + \frac{\partial A}{\partial t}$

For canonical variables:

$$[q_i, q_j] = 0 \quad [q_i, p_j] = \delta_{ij} \quad [p_i, p_j] = 0$$
 (37)

The poisson bracket also helps verify that transformations are properly canonical:

$$[Q, P]_{q,p} = 1 \tag{38}$$

8 Extra

8.1 Conservative Forces

A force is conservative if $\vec{\nabla} \times \vec{F} = 0$. In Cartesian coordinates, can find this as: $\frac{\partial F_i}{\partial j} = \frac{\partial F_j}{\partial i}$

8.2 Nonhomogeneous Equations

Solving a non-homogeneous equation requires the combination of a particular and a complementary solution:

$$\dot{y} + ay = b \qquad \rightarrow \qquad y(t) = y_p(t) + y_c(t) \tag{39}$$

- 1. The particular solution should be of the form $y_p(t) = At^2 + Bt + C$, keeping only the terms so that $y_p(t)$ is a polynomial of the same order as the right hand side of the original equation. So in this example, $y_p(t) = C$.
- 2. The complementary solution solves y(t) for the right hand side equalling zero: $\dot{y} + ay = 0$. Solve this the usual way, including the constant of integration.
- 3. Write $y(t) = y_p(t) + y_c(t)$, and substitute these results back into the original equation. Use the original equation and initial conditions to solve for the constants of integration.

Remember that a second derivative equation of motion can be handled as a first derivative equation by writing it in terms of velocity instead of position: $\ddot{y} + a\dot{y} = b \rightarrow \dot{v}_y + av_y = b$

9 Coordinate Systems

9.1 Cartesian

Convert to spherical: $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$

Convert to cylindrical: $x = \rho \cos \phi$, $y = \rho \sin \phi$, z = z

9.2 Spherical

$$\hat{r} = \sin\theta\cos\phi\hat{x} + \sin\theta\sin\phi\hat{y} + \cos\theta\hat{z} \tag{40}$$

$$\hat{\theta} = \frac{\partial \hat{r}}{\partial \theta} \& \hat{\phi} = \frac{\partial \hat{r}}{\partial \phi} \tag{41}$$

Derivation of a small chunk of circular area (such as in Kepler's law for orbits):

$$S = r\theta \to dS = rd\theta \to dA = R^2 d\theta \tag{42}$$

9.3 Cylindrical

$$\hat{r} = \cos\theta \hat{x} + \sin\theta \hat{y} \tag{43}$$

$$\hat{\theta} = \frac{\partial \hat{r}}{\partial \theta} \tag{44}$$