3.9 Linear Forms and the Dual Space

We already observed that the field K itself ($K = \mathbb{R}$ or $K = \mathbb{C}$) is a vector space (over itself). The vector space Hom(E,K) of linear maps from E to the field K, the linear forms, plays a particular role. In this section, we only define linear forms and show that every finite-dimensional vector space has a dual basis. A more advanced presentation of dual spaces and duality is given in Chapter 11.

Definition 3.26. Given a vector space E, the vector space $\operatorname{Hom}(E,K)$ of linear maps from E to the field K is called the *dual space (or dual)* of E. The space $\operatorname{Hom}(E,K)$ is also denoted by E^* , and the linear maps in E^* are called *the linear forms*, or *covectors*. The dual space E^{**} of the space E^* is called the *bidual* of E.

As a matter of notation, linear forms $f: E \to K$ will also be denoted by starred symbol, such as u^* , x^* , etc.

If E is a vector space of finite dimension n and (u_1, \ldots, u_n) is a basis of E, for any linear form $f^* \in E^*$, for every $x = x_1u_1 + \cdots + x_nu_n \in E$, by linearity we have

$$f^*(x) = f^*(u_1)x_1 + \dots + f^*(u_n)x_n$$

= $\lambda_1 x_1 + \dots + \lambda_n x_n$,

with $\lambda_i = f^*(u_i) \in K$ for every $i, 1 \leq i \leq n$. Thus, with respect to the basis (u_1, \ldots, u_n) , the linear form f^* is represented by the row vector

$$(\lambda_1 \cdots \lambda_n),$$

we have

$$f^*(x) = \begin{pmatrix} \lambda_1 & \cdots & \lambda_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix},$$

a linear combination of the coordinates of x, and we can view the linear form f^* as a linear equation. If we decide to use a column vector of coefficients

$$c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$

instead of a row vector, then the linear form f^* is defined by

$$f^*(x) = c^{\top} x.$$

The above notation is often used in machine learning.