Вывод основных уравнений математической физики

Уравнение поперечных колебаний струны

Под струной понимается тонкая гибкая упругая нить, которая не сопротивляется изгибу, не связанному с изменением её длины.

Пусть что струна длиной l натянута с силой T_0 и находится в прямолинейном положении равновесия.

Пусть ось 0x совпадает с направлением струны, тогда каждую точку струны можно охарактеризовать значением её абсциссы.

Описание процесса колебания струны может быть проведено при помощи задания положения точек струны в различные моменты времени. Будем рассматривать только поперечные колебания, то есть будем предполагать, что смещения струны лежат в одной плоскости и вектор смещения в любой момент времени ортогонален к оси 0x. Обозначим через u(x,t) вертикальное смещение точек струны от положения равновесия в момент времени t.

Величина натяжения, возникающего в струне вследствие упругости, может быть вычислена по закону Гука. Будем рассматривать малые колебания струны. Это значит, что в процессе вывода уравнения мы будем пренебрегать квадратом величины $u_x(x,t)$.

Выделим произвольный участок $(x, x + \Delta x)$ струны, который при колебании струны деформируется в участок AB. Длина S дуги AB равна

$$S = \int_{x}^{x + \Delta x} \sqrt{1 + (u_x)^2} dx \approx \Delta x.$$

Таким образом, при наших предположениях изменением величины натяжения струны, возникающим при её движении, можно пренебречь по сравнению с тем, которому она была уже подвергнута в положении равновесия. Следовательно, в силу закона Γ ука, величина натяжения T в каждой точке не меняется со временем.

Покажем также, что натяжение не зависит и от x, то есть

$$T(x) = T_0 = \text{const.}$$

Гибкость струны означает, что что если мысленно разрезать струну в точке x, то действие одного участка струны на другой (сила натяжения \mathbf{T}) будет направлена по касательной к струне в точке x. Это условие выражает собой то, что струна не сопротивляется изгибу.

На участок AB струны действуют силы натяжения, внешние силы и силы инерции. Сопротивлением среды и действием силы тяжести можно пренебречь. Найдём проекции натяжения на оси x и u.

$$T_x(x) = T(x)\cos\alpha = \frac{T}{\sqrt{1 + (u_x)^2}} \approx T(x),$$

$$T_u(x) = T(x) \sin \alpha \approx T(x) \operatorname{tg} \alpha = T(x) u_x,$$

где α - угол касательной к кривой u = u(x,t) с осью x.

Так как мы рассматриваем только поперечные колебания, силы инерции и внешние силы, по предположению, направлены вдоль оси u и сумма проекций всех сил на ось x должна быть равна нулю. Таким образом,

$$T_x(x + \Delta x) - T_x(x) = 0 \text{ или } T(x + \Delta x) = T(x). \tag{1}$$

Отсюда, ввиду произвольности x и Δx следует, что величина натяжения T не зависит от x Таким образом, можно считать, что

$$T(x) \approx T_0.$$
 (2)

для всех значений x и t.

Перейдём к выводу уравнений колебаний струны. Воспользуемся принципом Д'Аламбера: Если к действующей на тело активной силе и реакции связи приложить дополнительную силу инерции, то тело будет находиться в равновесии (сумма всех сил, действующих в системе, дополненная главным вектором инерции, равна нулю).

Выделим участок струны от x до $x + \Delta x$ и спроектируем все действующие на этот участок силы (включая и силы инерции) на ось u.

Предположим, что функция u дважды непрерывно дифференцируема. Проекция силы натяжения с точностью до бесконечно малых первого порядка равна

$$T_0 \sin \alpha(x + \Delta x) - T_0 \sin \alpha(x) \approx T_0[u_x(x + \Delta x, t) - u_x(x, t)] = T_0 \int_x^{x + \Delta x} u_{xx}(\xi, t) d\xi.$$

Считаем, что внешняя сила непрерывно распределена с плотностью (нагрузкой) F(x,t), рассчитанной на единицу длины. Тогда на участок AB вдоль оси u действует сила

$$\int_{x}^{x+\Delta x} F(\xi,t)d\xi.$$

Для нахождения силы инерции участка АВ воспользуемся выражением

$$-mu_{tt}$$

где m - масса. Пусть $\rho(x)$ - непрерывная линейная плотность струны, тогда проекция на ось u силы инерции равна

$$-\int_{x}^{x+\Delta x} \rho(\xi) u_{tt} d\xi.$$

Таким образом, проекция всех сил на ось u имеет вид

$$-\int_{x}^{x+\Delta x} u_{tt}(\xi,t)\rho(\xi)d\xi + T_0 \int_{x}^{x+\Delta x} u_{xx}(\xi,t)d\xi + \int_{x}^{x+\Delta x} F(\xi,t)d\xi = 0.$$

Применяя теорему о среднем, получаем

$$u_{tt}(x_1, t)\rho(x_1)\Delta x = T_0 u_{xx}(x_2, t)\Delta x + F(x_3, t)\Delta x,$$

где $x_1, x_2, x_3 \in (x, x + \Delta x)$. Разделив обе части равенства на Δx и переходя к пределу при $\Delta x \to 0$, получаем дифференциальное уравнение поперечных колебаний струны

$$T_0 \frac{\partial^2 u}{\partial x^2} = \rho \frac{\partial^2 u}{\partial t^2} - F(x, t). \tag{3}$$

В случае однородной струны (постоянной плотности ρ) этому уравнению обычно придают вид

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x, t),\tag{4}$$

где

$$a = \sqrt{\frac{T_0}{\rho}},$$

$$f(x,t) = \frac{1}{\rho}F(x,t) \tag{5}$$

есть плотность силы, отнесённая к единице массы. При отсутствии внешней силы получим однородное уравнение

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2},$$

описывающее свободные колебания струны.

Уравнение колебаний мембраны

Мембраной называется натянутая пленка, которая свободно изгибается, то есть не сопротивляется изгибу и сдвигу, но сопротивляется растяжению. Пусть в положении равновесия мембрана расположена в плоскости x0y и занимает некоторую область D, ограниченную замкнутой кривой L. Будем изучать поперечные колебания мембраны, в которых смещение перпендикулярно к плоскости мембраны. Обозначим через u(x,y,t) вертикальное смещение точки (x,y) мембраны в момент времени t. Предположим, мембрана нахо-

дится под воздействием равномерного натяжения T, приложенного к краям мембраны. Это означает, что если провести линию по мембране в любом направлении, то сила взаимодействия между двумя частями, разделенными элементами линии, пропорциональна длине элемента и перпендикулярна его направлению. Таким образом, на элемент ds линии действует натяжение, равное $\mathbf{T} ds$. Вектор \mathbf{T} вследствие отсутствия сопротивлению изгибу и сдвигу лежит в касательной плоскости к мгновенной поверхности мембраны и перпендикулярен к элементу ds. Отсутствие сопротивления сдвигу приводит к тому, что величина натяжения не зависит от направления элемента ds, так что вектор натяжения \mathbf{T} является функцией x, y и t.

Считаем колебания мембраны малыми, то есть будем пренебрегать квадратами первых производных функции u, определяющей форму мембраны в момент t.

Выделим на поверхности мембраны элемент площади σ , ограниченный в положении равновесия кривой l. Когда мембрана будет выведена из положения равновесия, этот участок мембраны деформируется в участок σ' поверхности мембраны, ограниченный пространственной кривой l'. Площадь участка σ' в момент времени t равна

$$\iint_{\mathcal{I}} \sqrt{1 + u_x^2 + u_y^2} dx dy \approx \iint_{\mathcal{I}} dx dy.$$

Таким образом, можно пренебречь изменением площади произвольно взятого участка мембраны в процессе колебаний. В силу закона Γ ука вытекает независимость натяжений от времени. Следовательно, можно считать, что любой участок мембраны будет находиться под действием первоначального натяжения T.

На участок σ' мембраны со стороны остальной части мембраны действует направленное по нормали к контуру l' равномерно распределенное натяжение \mathbf{T} , лежащее в касательной плоскости к поверхности мембраны. Найдём проекцию на ось u сил натяжения, приложенных к кривой l'. Обозначим через ds' элемент дуги этой кривой. На этот элемент действует натяжение, равное по величине Tds'.

Пусть ν — направление внешней нормали к кривой l, ограничивающей участок σ мембраны в положении равновесия. Косинус угла, образованного вектором натяжения \mathbf{T} с осью u равен $\partial u/\partial \nu$. Поэтому вертикальная составляющая натяжения равна

$$T\frac{\partial u}{\partial \nu}$$
.

Проекция на ось u сил натяжения, приложенных к контуру l' равна, следовательно,

$$T \int_{l'} \frac{\partial u}{\partial \nu} ds'. \tag{6}$$

Так как при малых колебаниях мембраны можно считать $ds' \approx ds$, можно путь интегрирования l' изменить на l. Предполагаем, что функция u имеет непрерывные вторые производные. Применяя формулу Грина, получим

$$T \int_{I} \frac{\partial u}{\partial \nu} ds = T \iint_{\sigma} \left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial x^{2}} \right) dx dy. \tag{7}$$

Предположим, далее, что на мембрану параллельно оси u действует внешняя сила с поверхностной плотностью p(x,y,t). Проекция на ось u внешней силы, действующей на участок σ' мембраны, равна

$$\iint_{\sigma} p(x, y, t) dx dy. \tag{8}$$

Силы (7) и (8) должны в любой момент времени t уравновешиваться силами инерции участка σ' мембраны

$$-\iint_{\sigma} \rho(x,y) \frac{\partial^2 u}{\partial t^2}(x,y,t) dx dy,$$

где ρ - поверхностная плотность мембраны. Таким образом, получаем равенство

$$\iint_{\sigma} \left[\rho \frac{\partial^2 u}{\partial t^2} - T \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} \right) + p \right] dx dy = 0.$$

Применяя к интегралу в левой части равенства теорему о среднем, получаем, в силу произвольности участка σ дифференциальное уравнение поперечных колебаний мембраны

$$\rho \frac{\partial^2 u}{\partial t^2} = T \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} \right) + p(x, y, t). \tag{9}$$

Для однородной мембраны ($\rho = {
m const}$) уравнение колебаний можно записать в виде

$$\frac{\partial^2 u}{\partial t^2} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} \right) + f, \tag{10}$$

где

$$a^2 = \frac{T}{\rho},$$

f – плотность силы, рассчитанная на единицу массы мембраны,

$$f(x, y, t) = \frac{p(x, y, t)}{\rho}.$$

Если внешняя сила отсутствует, то есть $p \equiv 0$, то из (10) получаем уравнение свободных колебаний однородной мембраны

$$\frac{\partial^2 u}{\partial t^2} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} \right).$$

Распространение тепла в изотропном твердом теле

Рассмотрим твердое тело, температура которого в момент времени t определяется функцией u(x,y,z,t). Если температура в различных точках тела непостоянна, то возникают тепловые потоки, направленные от мест с более высокой температурой к местам с более низкой температурой. Согласно закону Фурье вектор плотности \mathbf{W} теплового потока пропорционален градиенту температуры:

$$\mathbf{W} = -k \operatorname{grad} u,$$

где k > 0 - коэффициент теплопроводности.

Пусть Σ – некоторая поверхность внутри тела, $d\sigma$ - малый элемент этой поверхности с нормалью ν , направленной в направлении движения тепла. Количество тепла, протекающее через $d\sigma$ в единицу времени равно

$$W_{\nu}d\sigma = (\mathbf{W}, \nu)d\sigma = -k\frac{\partial u}{\partial \nu}d\sigma.$$

Будем считать, что тело изотропно в отношении теплопроводности, то есть k является скаляром — зависит от точки (x,y,z) тела, но не зависит от направления нормали поверхности Σ в этой точке. В случае анизотропной среды k — тензор.

Выделим внутри тела некоторый объём V, ограниченный гладкой замкнутой поверхностью S. Через поверхность S за промежуток времени (t_1, t_2) входит количество тепла

$$\int_{t_1}^{t_2} dt \iint_S W_{\nu} d\sigma = -\int_{t_1}^{t_2} dt \iint_S k \frac{\partial u}{\partial \nu} d\sigma,$$

где ν – внутренняя нормаль к поверхности S.

Пусть $\rho(x,y,z)$ – плотность вещества, $\gamma(x,y,z)$ – его теплоёмкость. Рассмотрим элемент объёма dV. На изменение температуры этого объёма за промежуток времени $\Delta t = t_2 - t_1$ нужно затратить количество тепла

$$(u(x, y, z, t_2) - u(x, y, z, t_1))\gamma(x, y, z)\rho(x, y, z)dV.$$

Таким образом, количество тепла, необходимое для изменения температуры всего объёма V, равно

$$\iiint_{V} (u(x,y,z,t_2) - u(x,y,z,t_1))\gamma(x,y,z)\rho(x,y,z)dV.$$

Так как

$$u(x, y, z, t_2) - u(x, y, z, t_1) = \int_{t_1}^{t_2} \frac{\partial u}{\partial t} dt,$$

это количество равно

$$\int_{t_1}^{t_2} dt \iiint_V \gamma \rho \frac{\partial u}{\partial t} dV.$$

Предположим, что внутри рассматриваемого тела имеются источники тепла. Обозначим через F(x,y,z,t) плотность тепловых источников – количество поглощенного или выделяемого тепла в единицу времени в единице объёма. Тогда количество тепла, выделяемого или поглощаемого в объёме V за промежуток времени (t_1,t_2) , будет равно

$$\int_{t_1}^{t_2} dt \iiint_V F(x, y, z, t) dV.$$

Уравнение баланса тепла для объёма V за время t_2-t_1 имеет вид

$$\int_{t_1}^{t_2} dt \iiint_V \gamma \rho \frac{\partial u}{\partial t} dV = -\int_{t_1}^{t_2} dt \iint_S k \frac{\partial u}{\partial \nu} d\sigma + \int_{t_1}^{t_2} dt \iiint_V F(x, y, z, t) dV.$$

Это уравнение выражает закон сохранения тепла: изменение количества тепла в объёме обусловлено потоком тепла через граничную поверхность, а также количеством тепла, выделившимся в результате действия тепловых источников. Предположим, что функция u дважды дифференцируема по x, y, z и один раз по t и что эти производные непрерывны

в рассматриваемой области. Применяя ко второму интегралу формулу Остроградского, получаем

$$\int_{t_1}^{t_2} dt \iiint_V \left[\gamma \rho \frac{\partial u}{\partial t} - \operatorname{div}(k \operatorname{grad} u) - F \right] dV = 0.$$

Применяя теорему о среднем, получаем в силу произвольности объёма V и промежутка времени (t_1, t_2) , что для любой точки рассматриваемого тела в любой момент времени

$$\gamma \rho \frac{\partial u}{\partial t} = \operatorname{div}(k \operatorname{grad} u) + F.$$
 (11)

Получили уравнение теплопроводности неоднородного изотропного тела. Если тело однородно, то γ , ρ и k постоянны и уравнение теплопроводности обычно записывают в виде

$$\frac{\partial u}{\partial t} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + f, \tag{12}$$

где

$$a^2 = \frac{k}{\gamma \rho}, \ f = \frac{F}{\gamma} \rho.$$

Если в рассматриваемом однородном теле нет источников тепла, то получаем однородное уравнение теплопроводности

$$\frac{\partial u}{\partial t} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right). \tag{13}$$

В частном случае, когда температура зависит только от координат x, y и t, что, например, имеет место при распространении тепла в очень тонкой однородной пластинке, уравнение (13) переходит в уравнение

$$\frac{\partial u}{\partial t} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right). \tag{14}$$

Для тела линейного размера, например, для однородного стержня, уравнение теплопроводности принимает вид

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}. (15)$$

При такой форме уравнений (14) и (15) не учитывается тепловой обмен между поверхностью пластинки или стержня с окружающим пространством.

Контрольный вопрос

Запишите уравнение равновесия мембраны и уравнение, которому удовлетворяет установившаяся температура в однородном изотропном теле.

Список литературы

- [1] Владимиров В.С. Уравнения математической физики. М.: Наука, 1988. 512 с.
- [2] Кошляков Н.С., Глинер Э.Б., Смирнов М.М. Основные дифференциальные уравнения математической физики. М.: Высшая школа, 1970. mathematics/pde.htm.
- [3] Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1977.