Exercise 2

Context: given a transactional dataset $\mathbb{T} \in 2^{\{ms:2^{\mathbb{X}} \to \mathbb{N}\}}$ on the universal set of items \mathbb{X} , and a two non-empty disjoint set of items $X, Y \subseteq \mathbb{X}$, a rule-quality function $q: 2^{\{ms:\mathbb{X} \to \mathbb{N}\}} \times 2^{\mathbb{X}} \times 2^{\mathbb{X}} \to \mathbb{R}$, let $rule: X \to Y$ let us define the $cpo_{rule,\mathbb{T},q}$ on the set X as $cpo_{rule,\mathbb{T},q}(X') = q(\mathbb{T},X',Y)$ for any $X' \subseteq X$.

Assignment:

Implement and test a function:

$$2^{\{\textit{ms}:\mathbb{X}\to\mathbb{N}\}}\times \{q:2^{\{\textit{ms}:\mathbb{X}\to\mathbb{N}\}}\times 2^{\mathbb{X}}\times 2^{\mathbb{X}}\to\mathbb{R}\}\times 2^{\mathbb{X}}\times 2^{\mathbb{X}}\to \{f:\mathbb{X}\to\mathbb{R}\}$$

Such that for any transactional dataset \mathbb{T} , any rule-quality function q, any rule $\mathit{rule}:X\to Y$ the value

$$rule-shapley(\mathbb{T},q,X,Y)(x)=s_{x,cpo_{rule},\mathbb{T},q}$$

for each $x \in X$