Ch.12.2: Truth Tables Worksheet

Fill out the following truth tables and determine which statements are tautologies, contradictions, or neither.

STATEMENT: $(p \land q) \lor \sim p$

p	q	$p \wedge q$	~p	$(p \land q) \lor \sim p$
T	T			
T	F			
F	T			
F	F			

STATEMENT: $\sim p \rightarrow (\sim p \lor q)$

p	q	~q	~p	$\sim p \vee q$	$\sim q \rightarrow (\sim p \lor q)$

STATEMENT: $(\sim p \rightarrow q) \lor (\sim p \land \sim q)$

p	q			

STATEMENT: $[p \land (q \lor \sim r)] \rightarrow (\sim p \land q)$

Hint: list the nine columns left to right as follows

$$p, q, r, \sim r, q \vee \sim r, p \wedge (q \vee \sim r), \sim p, \sim p \wedge q,$$
 and finally $[p \wedge (q \vee \sim r)] \rightarrow (\sim p \wedge q)$