PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-157754

(43)Date of publication of application: 20.06.1995

(51)Int.CI.

CO9K 11/06 HO5B 33/14

(21)Application number: 05-338934

(71)Applicant: RICOH CO LTD

(22) Date of filing:

02.12.1993

(72)Inventor: TAMOTO NOZOMI

NAGAI KAZUKIYO ADACHI CHIHAYA SAKON HIROTA

(30)Priority

Priority number: 05280541

Priority date: 14.10.1993

Priority country: JP

(54) ELECTROLUMINESCENT DEVICE

(57)Abstract:

PURPOSE: To obtain the device having an organic compound layer with the constituent being a pyrene compound having specific structure, capable of sustaining both sufficient luminance and luminescent performance for a long time, and excellent in durability. CONSTITUTION: This device can be obtained by sandwiching an organic compound layer with the constituent being a compound of formula I [R1 and R2 are each H, halogen, alkyl, etc.; Ar1 and Ar2 are each (substituted) aryl]. The compound of formula I is pref. used as a luminescent layer or positive hole transport layer. Specifically, this device is obtained, for example, by the following processes: a hole transport layer consisting of a triphenylamine derivative of formula II, a luminescent layer consisting of a compound of formula I, an electron transport layer consisting of an oxadiazole compound of formula III and the anode consisting of Mg:Ag alloy with the atom ratio of (10:1) are formed successively in this order by vacuum deposition on a tin oxide-indium anode-bearing glass substrate.

TT

Ш

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

[Date of final disposal for application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-157754

(43)公開日 平成7年(1995)6月20日

(51) Int.Cl.6

識別記号 庁内整理番号

Z 9159-4H

FΙ

技術表示箇所

C 0 9 K 11/06 H 0 5 B 33/14

審査請求 未請求 請求項の数3 FD (全 14 頁)

(21)出願番号

特願平5-338934

(22)出願日

平成5年(1993)12月2日

(31)優先権主張番号 特願平5-280541

(32)優先日

平5(1993)10月14日

(33)優先権主張国

日本(JP)

(71)出願人 000006747

株式会社リコー

東京都大田区中馬込1丁目3番6号

(72) 発明者 田元 望

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(72)発明者 永井 一清

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(72)発明者 安達 千波矢

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(74)代理人 介理士 池浦 敏明 (外1名)

最終頁に続く

(54) 【発明の名称】 電界発光素子

(57)【要約】

【構成】 陽極及び陰極と、これらの間に狭持された一 層または複数層の有機化合物より構成される電界発光素 子において、前記有機化合物層のうち少なくとも一層 * *が、下記一般式(I)(化1)で表わされる有機化合物 を構成成分とする層であることを特徴とする電界発光素 子。

化1】

(T)

(式中、R¹、R²は、それぞれ一つまたは複数の水素原 子、ハロゲン原子、置換もしくは無置換のアルキル基、 アルコキシ基、あるいはアリール基を表し、各々が同一 でも異なっていても良い。また、Arι、Ar2は、置換 もしくは無置換のアリール基を表し、各々が同一でも異

なっていても良い。)

【効果】 有機化合物の構成材料として、前記一般式 (I) 化1で表わされる化合物を用いた事から、発光性 能が長期間にわたって持続し、耐久性に優れたものであ る。

1

【特許請求の範囲】

【請求項1】 陽極及び陰極と、これらの間に挟持された一層または複数層の有機化合物層より構成される電界発光素子において、前記有機化合物層のうち少なくとも*

(式中、 R^1 、 R^2 は、それぞれ一つまたは複数の水素原子、ハロゲン原子、置換もしくは無置換のアルキル基、アルコキシ基、あるいはアリール基を表し、各々が同一でも異なっていても良い。また、 Ar_1 、 Ar_2 は、置換もしくは無置換のアりール基を表し、各々が同一でも異なっていても良い。)

【請求項2】 陽極及び陰極の間に、一層以上の発光層及び一層以上の正孔輸送層を構成要素として含有する電界発光素子、あるいは陽極及び陰極の間に一層以上の正孔輸送層及び一層以上の発光層及び一層以上の電子輸送層を構成要素として含有する電界発光素子において、前記正孔輸送層のうち少なくとも一層が、請求項1に記載の一般式(I)で表される有機化合物を構成成分とする層であることを特徴とする電界発光素子。

【請求項3】 陽極及び陰極の間に、一層以上の正孔輸送層及び一層以上の発光層を構成要素として含有する電界発光素子、あるいは陽極及び陰極の間に一層以上の発光層及び一層以上の電子輸送層を構成要素として含有する電界発光素子、あるいは陽極及び陰極の間に一層以上の電子輸送層を構成要素として含有する電界発光素子、あるいは陽極及び陰極の間に発光層が形成された有機単層素子構造を有する電界発光素子において、前配発光層のうち少なくとも一層が、請求項1に記載の一般式(I)で表される有機化合物を構成成分とする層であることを特徴とする電界発光素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、発光性物質からなる発光層を有し、電界を印加することにより電気エネルギーを直接光エネルギーに変換でき、従来の白熱灯、蛍光灯あるいは発光ダイオード等とは異なり、低消費電力発光体、微小体積発光体、軽量発光体あるいは大面積の面状発光体の実現を可能にする電界発光素子に関する。

[0002]

【従来の技術】近年、情報機器の多様化及び省スペース 化に伴い、CRTよりも低消費電力で空間占有面積の少 ない平面表示素子へのニーズが高まっている。このよう な平面表示素子としては、液晶、プラズマディスプレイ *一層が、下記一般式(I) (化1)で表される有機化合物を構成成分とする層であることを特徴とする電界発光素子。

2

【化1】

(1)

などがあるが、特に最近は自己発光型で表示が鮮明な、 また直流低電圧駆動が可能な有機電界発光素子への期待 が高まっている。有機電界発光素子の素子構造として は、これまで2層構造(ホール注入電極と電子注入電極 の間に、ホール輸送層と発光層が形成された構造(SH -A構造) (特開昭59-194393号, Appl. Phys. Lett. 51, 913 (1987), また は、ホール注入電極と電子注入電極の間に発光層と電子 輸送層とが形成された構造 (SH-B構造) (USP No. 5, 085947、特開平2-25092号, A ppl. Phys. Lett. 55, 1489 (198 9))、あるいは3層構造(ホール注入電極と電子注入 電極との間にホール輸送層と発光層と電子輸送層とが形 成された構造 (DH構造) (Appl. Phys. Le t t. 57, 531 (1990)) の素子構造が報告さ れている。

【0003】上記ホール注入電極としては、AuやIT O (酸化錫インジウム) などの様な仕事関数の大きな電 極材料を用い、電子注入電極としては、Ca、Mg、A 1 等及びそれらの合金等の仕事関数の小さな電極材料を 用いる。また、現在まで、上記ホール輸送層、発光層、 電子輸送層に使用可能な材料として様々な有機化合物が 報告されている。これらに使用される有機材料として は、例えば、ホール輸送層としては芳香族第3級アミン が、発光層材料としてはアルミニウムトリスオキシン (特開昭59-194393, 特開昭63-29569 5)、スチリルアミン誘導体、スチリルペンゼン誘導体 等(特開平2-209988)が、また、電子輸送層と しては、オキサジアゾール誘導体等(日本化学会誌N o. 11, p1540 (1991) が報告されている。 現在まで、様々な素子構造及び有機材料を用いることに より、初期的には1000cd/m²以上の高輝度発 光、駆動電圧10V程度の案子が得られているが、連続 駆動を行った場合、従来の有機材料では数時間で光出力 の低下、駆動電圧の上昇が観測され、EL素子の長期耐 久性には大きな問題を抱えている。特に青色発光素子に おいては、まだ材料の探索が十分に行われておらず、発 光効率の向上など多くの課題が残されている。これらの 50 例を含め有機化合物を発光体とするキャリア注入型電界

発光素子はその研究開発の歴史も浅く、未だその材料研 究やデバイス化への研究が十分になされているとは言え ず、現状では更なる輝度の向上、発光波長のコントロー ルあるいは耐久性の向上など多くの課題を抱えているの が実状である。

[0004]

【発明が解決しようとする課題】本発明は、上記従来技 術の実情に鑑みて成されたものであり、その目的は十分 な輝度と発光性能が長時間に亘って持続する耐久性に優 れた有機電界発光素子(有機EL素子)を提供すること 10 層以上の正孔輪送層及び一層以上の発光層及び一層以上

[0 0 0 5 1

【課題を解決するための手段】本発明者らは、上記課題 を解決するための有機EL素子の構成要素について鋭意 検討した結果、陽極及び陰極と、これらの間に挟持され た一層または複数層の有機化合物層より構成される電界 発光層素子において、前記有機化合物層のうち少なくと も一層を、特定なピレン系化合物を構成成分とする層と することにより、上記課題に対し有効な電界発光素子を 提供できることを見いだした。

【0006】また、陽極及び陰極の間に、一層以上の発 光層及び一層以上の正孔輸送層を構成要素として含有す る電界発光索子、あるいは陽極及び陰極の間に一層以上 の正孔輸送層及び一層以上の発光層及び一層以上の電子*

(式中、R¹、R²は、それぞれ一つまたは複数の水素原 子、ハロゲン原子、置換もしくは無置換のアルキル基、 アルコキシ基、あるいはアリール基を表し、各々が同一 でも異なっていても良い。また、Aェι、Aェ2は、置換 もしくは無置換のアり一ル基を表し、各々が同一でも異 なっていても良い。)また、本発明によれば、陽極及び 陰極の間に、一層以上の発光層及び一層以上の正孔輸送 層を構成要素として含有する電界発光素子、あるいは陽 極及び陰極の間に、一層以上の正孔輸送層及び一層以上 40 であるが、かかる前記一般式 (I) (化1)で表される の発光層及び一層以上の電子輸送層を構成要素として含 有する電界発光素子において、前記正孔輸送層のうち少 なくとも一層が、上記一般式(I)(化1)で表される 有機化合物を構成成分とする層であることを特徴とする 電界発光素子が提供され、更には、陽極及び陰極の間 に、一層以上の正孔輸送層及び一層以上の発光層を構成 要素として含有する電界発光素子、あるいは陽極及び陰 極の間に一層以上の発光層及び一層以上の電子輸送層を 構成要素として含有する電界発光素子、あるいは陽極及

*輸送層を構成要素として含有する電界発光素子におい て、前記正孔輸送層のうち少なくとも一層を、特定なビ レン系化合物を構成成分とする層とすることによって更 に有効な電界発光素子を提供できることを見いだした。

【0007】更に、陽極及び陰極の間に、一層以上の正 孔輸送層及び一層以上の発光層を構成要素として含有す る電界発光素子、あるいは陽極及び陰極の間に一層以上 の発光層及び一層以上の電子輸送層を構成要素として含 有する電界発光素子、あるいは陽極及び陰極の間に、一 の電子輸送層を構成要素として含有する電界発光素子、 あるいは陽極及び陰極の間に発光層が形成された有機単 **圏素了構造を有する電界発光素了において、前記発光層** のうち少なくとも一層を、特定なピレン系化合物を構成 成分とする層とすることによっても同様に有効な電界発 光索子を提供できることを見いだした。

【0008】すなわち、本発明によれば、陽極及び陰極 と、これらの間に挟持された一層または複数層の有機化 合物層より構成される電界発光素子において、前記有機 20 化合物層のうち少なくとも一層が、下記一般式 (I)

(化1) で表される有機化合物を構成成分とする層であ ることを特徴とする電界発光素子が提供される。

(化11

(I)

光層及び一層以上の電子輸送層を構成要素として含有す る電界発光素子、あるいは陽極及び陰極の間に発光層が 形成された有機単層素子構造を有する電界発光素子にお いて、前記発光層のうち少なくとも一層が、上記一般式 (I) (化1)で表される有機化合物を構成成分とする 層であることを特徴とする電界発光素子が提供される。

【0009】本発明は前記したように有機化合物層の少 なくとも一層に特定なピレン系化合物を含有させたもの 化合物について以下に具体例を挙げて説明する。ただ し、本発明はこれらに限定されるものではない。

【0010】前記一般式(I)におけるR1、R2として は具体的に次のような基を挙げることができる。

- (1) ハロゲン原子、水素原子、トリフルオロメチル 基、シアノ基、ニトロ基、
- (2)アルキル基;好ましくはCı~C。とりわけCı~ C₄の直鎖または分岐鎖のアルキル基である。
- (3) アリール基;炭素環式あるいは複素環式芳香環で び陰極の間に、一層以上の正孔輸送層及び一層以上の発 50 あり、フェニル、ピフェニル、ターフェニル、ナフチ

ル、アントリル、アセナフテニル、フルオレニル、フェ ナントリル、インデニル、ピレニル、ピリジル、ピリミ ジル、フラニル、ピロニル、チオフェニル、キノリル、 ベンゾフラニル、ベンゾチオフェニル、インドリル、カ ルバゾリル、ベンゾオキサゾリル、キノキサリル、ベン ゾイミダゾリル、ピラゾリル、ジベンゾフラニル、ジベ ンゾチオフェニル等を示し、これらのアリール基は更に ハロゲン原子、水酸基、シアノ基、ニトロ基、アルキル*

R4

- ***基、アリール基、アルコキシ基、アミノ基等で置換され** ていてもよい。
 - (4) アルコキシ基(-OR³): R³は(2) で定義し たアルキル基を表わす。
 - (5) アリールオキシ基; アリール基として(3) で定 義した基を示す。
 - (6) アルキルチオ基 (-SR3): R3は(2) で定義 した基を示す。

;式中R⁴及びR⁶は各々独立に水素原子、(2)で定義したア

ルキル基、アセチル基、ペンゾイル基等のアシル基、ま たは(3)で定義したアリール基を表わし、またピペリ ジル基、モルホリル基のように、R1とR5が窒素原子と 共同で環を形成しても良い。またユロリジル基のように アリール基上の炭素原子と共同で環を形成しても良い。 ※

- ※(8)アルコキシカルボニル基(-COOR⁶):R⁸は (2) で定義したアルキル基、または(3) で定義した アリール基を表わす。
 - (9) アシル基 (-COR⁶)、スルホニル基 (-SO₂ R⁶)、カルバモイル基

R4)またはスルファモイル基 (-SO₂N):式中R⁴、R⁵ \mathbb{R}^5

及びR⁶は上記で定義した意味を表わす。但しR⁴及びR 5においてアリール基上の炭素原子と共同で環を形成す る場合を除く。

- (10)メチレンジオキシ基またはメチレンジチオ基等 のアルキレンジオキシ基またはアルキレンジチオ基。
- (11) スチリル基 (-CH=CH-C₆H₅-R') R^7 は (1) ~ (10) で定義した置換基又は水素原子 30 ~ (11) で表わされる置換基を有していても良い。 を表わす。また、前記一般式(I)(化1)におけるA r:及びAr2の具体例としては、スチリル、フェニル、 ナフチル、アントリル、アセナフテニル、フルオレニ ル、フェナントリル、インデニル、ピレニル、ピリジ

ル、ピリミジル、フラニル、ピロニル、チオフェニル、 キノリル、ペンゾフラニル、ペンゾチオフェニル、イン ドリル、カルバゾリル、ベンゾオキサゾリル、キノキサ リル、ペンゾイミダゾリル、ピラゾリル、ジベンゾフラ ニル、ジベンゾチオフェニル基等を表わし、更にこれら のアリール基は、それぞれ前記R1、R2と同様の(1)

【0012】次に、本発明で使用される前記一般式 (I) で表わされるピレン系化合物の具体例を以下に示 す。

【表1-(1)】

Ar. N - N - N - N - Ar.
R'

ft	t合物No.	Ar ₁	Ar.	R ₁	R,
	ı		-🔘	-н	-н
	2	Сн.	-©	-н	-н
	3	-{○}−сн,	-{○}-сн,	-н	-н
	4	-©	-©	-н	-н
	5	-₩,	- ◎	-н	-н
	6	-Œ,	-Ø	-н	-н
	7	-(C, H,		-н	-н
	8	-C,Hc	-⟨◯⟩сн,	-н	-н
	9	-(C, H,	-C, H,	-н	-н
	10	-О-осн,	-⊘	-н	-н
	1 1	-Ю−осн,	-{○}-сн.	-н	-н
	1 2	-О-осн.	-(C, H,	-н	-н
1- (2)]		,	•		'

化合物No.	Ar ₁	Ar ₂	R,	R ₂
13	-Ю−осн,	√ О−осн,	-н	-н
14	-⊙-ос.н.	-Ю−сн,	-н	-H
15	-(C, H,	-(C, H,	-н	-н
16	-(C4H,	-⟨O⟩-t-C.H.	-н	~ H
17	√ ⊙≻cı	- ⊘ -cı	-н	-н
18	-О−сғ,	-(○)-cf.	-н	-н
10		-Ю-си	-н	-н
20	→O≻ NII.	-Ю− мн.	-н	-н
2 1	-O-N (CH ₁) ₂	-(CH ₃) 2	-н	-н
22	-00	-⊚	-н	-н
23			-11	-11
2 4	-Ю-Ю-сн,	-Ю-сн,	-н	-н
2 5		-⟨ <u></u> −c11°	-н	-н
26	сн. Сн.	-©	-н	-н
27	-©>	-©	-н	1,4,1',4' ジCH.

【表1-(3)】

化合物No.	Arı	Αrε	R,	R.
28	-Ю-сн.	-Ю-сн,	-н	1,4,1',4' ジCH,
29	-{○}-сн,	-Ю-сн,	-н	1,4,1',4' ジCH,
30	-©- oc11,	-O-0011	-н	1,4,1',4' ジCH。
31	-(C,H,	-{(C)-t-C.H.	-н	1.4.1'.4' ジCH,
3 2	-©	<u> </u>	-н	2,3,2',3' ジC1
3 3	-©	-©	9-CH,	-н
34	-©	-©	6,9,11- FUCH:	-н
35	-{○}-сн,	-(О)-сн,	6,9,11- FUCH,	-н
36	-⊘ сн.	- ⊘-сн•	18- N(CH ₃);	-11
3 7	-⊙-сн₄		и ((О) -сн.)	-н

【0013】本発明における電界発光素子は、以上で説 20 の導電性ポリマーなどを用いることができる。金属と導 明した有機化合物を真空蒸着法、溶液塗布法等により、 有機化合物層全体で0.5μmより小さい厚み、さらに 好ましくは、各有機化合物層を10nm~100nmの 厚みに薄膜化することにより有機化合物層を形成し、陽 極及び陰極で直接または間接的に挟持することにより構 富む場合、10 nm以下の膜厚において層を形成するこ とも可能である。また、別の有機化合物層中やポリマー 半導体層中に添加剤としてドーピングさせることも有効 である。また逆に本発明で説明される各有機化合物層中 30 に添加物として他の物質を複数種でも添加することもで きる。

【0014】本発明の電界発光素子は発光層に電気的に パイアスを印加し発光させるものであるが、わずかなピ ンホールによって短絡をおこし、素子として機能しなく なる場合もあるので、有機化合物層の形成には皮膜形成 性に優れた化合物を併用することが望ましい。さらにこ のような皮膜形成性に優れた化合物とポリマー結合剤を 組み合わせて有機化合物層を形成することもできる。こ の場合に使用できるポリマー結合剤としては、ポリスチ 40 層である。図1は、基板上に電極2を設け、電極2上に レン、ポリビニルトルエン、ポリーN-ピニルカルパゾ ール、ポリメチルメタクリレート、ポリメチルアクリレ ート、ポリエステル、ポリカーポネート、ポリアミド等 を挙げることができる。

【0015】陽極材料としては、ニッケル、金、白金、 パラジウムやこれらの合金あるいは酸化スズ (Sn O2))、酸化スズ-インジウム(ITO)、ヨウ化銅 などの仕事関数の大きな金属やそれらの合金、化合物、 更にはポリ(3-メチルチオフェン)等のポリアルキル 電性ポリマーの積層体としても良い。一方、陰極材料と しては、仕事関数の小さな銀、錫、鉛、カルシウム、マ グネシウム、マンガン、インジウム、アルミニウム、或 はこれらの合金が用いられる。陽極及び陰極として使用 する材料のうち少なくとも一方は、素子の発光波長領域 において十分透明であることが望ましい。 具体的には8 0%以上の光透過率を有することが望ましい。しかし、 端面発光の素子形態をとるときにはむしろ両極とも光反 射率が大きい方が望ましい。

【0016】本発明の電界発光素子は以上の各層をガラ ス、プラスチックフィルム等の透明基板上に順次積層さ れて素子として構成されるわけであるが、素子の安定性 の向上、特に大気中の水分、酸素に対する保護のため に、別に保護層を設けたり、素子全体をセル中にいれ、 シリコンオイルや乾燥剤等を封入、もしくは、真空セル 中に封入してもよい。

【0017】以下、図面に沿って本発明をさらに詳細に 説明する。図1~7においては、1は基板、2、4は電 極、3 a は発光層、3 b は電子輸送層、3 c は正孔輸送 発光層3aを単独で設け、その上に電極を設けた構成の ものである。図2は、図1において電極2と発光層3a の間に正孔輸送層3cを設けたものである。図3は、図 1において発光層3aと電極4の間に電子輸送層3bを 設けたものである。図4は、図3において電極2と発光 層3aとの間に正孔輸送層3cを設けたものである。以 上代表的な構成例について図示したがこれらは最も基本 的な構成例であり、さらに電荷輸送性を向上させるため の層等が各所に挿入されていても良い。例えば、図5 チオフェンやポリピロール、ポリアリーレンビニレン等 50 は、図2においてIF.孔輸送層3cが少なくとも2層以上

の層からなる場合であり、図6は、図3において電子輸 送層3bが少なくとも2層以上の層からなる場合であ る。また、図7は、図4において、正孔輸送層と電子輸 送層の何れかもしくは両層が少なくとも2層以上の層か らなる場合である。これら複数の有機化合物層はその役 割によって異なる名称で呼ばれることがある。例えば、 正孔輸送層が正孔注入層であったり、電子パリヤー層で あったり、励起子パリヤー層であったりする。本発明に おいては正孔輸送層とは発光層と陽極電極の間の全ての 有機化合物層を意味し、電子輸送層とは発光層と陰極電 10 極の間の全ての有機化合物層を意味する。また、発光層 が複数存在するようなタンデム型積層構成をとる場合に も適用される。また、本発明においては、透明陽極を透 明基板上に形成し、図1~図7のような構成とすること が望ましいが、場合によっては、その逆構成をとっても 良い。

【0018】本発明の中で組み合わせて使用される各種材料については正孔輸送性、電子輸送性、発光性等の機能を有するものであればいずれのものも使用できるが、例えば以下に示す従来公知のものが使用できる。

【0019】発光層材料としては、固体において強い蛍光を有し50nm以下の薄膜において緻密な膜を形成する物質が好ましい。これまで有機EL素子の発光層に用いられてきた従来公知の材料はすべて本発明の有機EL素子に適用することができる。たとえば、金属キレート化オキシノイド化合物(8-ヒドロキシキノリン金属錯体)(特開昭49-194393,特開昭63-295695)、1,4ジフェニルブタジエンおよびテトラフェニルブタジエンのようなブタジエンおよびテトラフェニルブタジエンのようなブタジエン誘導体、クマリン誘導体、ベンズオキサゾール誘導体、オキサジアゾール 30誘導体、オキサゾール誘導体、デアジアゾール誘導体、スチリルアミン誘導体、ビススチリルベンゼン誘導体(特開平2-24727)、トリススチリルベンゼン誘導体(特開平3-296595)、ピススチリルアントラセン誘導体(特開平3-163186)、ベリノン

誘導体、アミノピレン誘導体等は優れた発光層材料である。以下に本発明で有用な発光層材料の具体例について示す。

[0020]

【表2-(1)】

【0021】 【表2-(2)】

B - 8

B - 8

B-10

B-11

B-12

[0022]

【0023】正孔翰送層材料としては、これまで正孔翰送層材料として用いられてきた材料をすべて利用することができるが、少なくとも2つの芳香族3級アミンを含み、かつ芳香族3級アミンがモノアリールアミン、ジア30リールアミン、トリアリールアミンである化合物が好ましい。代表的な有用な芳香族3級アミンとして、USPNo.4,175,960、USPNo.4,539,507、昭63-264692によって開示されている化合物を利用することができる。また、USPNo.4,720,432に開示されているポルフィリン誘導体(フタロシアニン類)も有用な化合物である。以下に有用な正孔翰送層材料の具体例を示す。

[0024]

【表3-(1)】

40

【0026】電子輸送層材料としては、これまで電子輸 送局材料として使用されてきた公知の材料をすべて利用 することができる。1つの好ましい電子輸送材料は、電 子輸送能の発現ユニットであるオキサジアゾール環を少 なくとも1つ以上含む化合物である。代表的な有用なオ キザジアゾール化合物は、Appl. Phys. Let t 5 5, 1 4 8 9 (1 9 8 9) および日本化学会誌 1 5 40 (1991) に開示されている。さらに、本発明の 積層電界発光素子の電子輸送層に使用するために好まし い有機物質は8-ヒドロキシキノリンのキレートを含め 40 た金属キレート化オキシノイド化合物である。さらに、 他の好ましい電子輸送層材料としては、1,4-ジフェ ニルブタジエンおよびテトラフェニルブタジエンのよう なプタジエン誘導体、クマリン誘導体、ピススチリルベ ンゼン誘導体、ピススチリルアントラセン誘導体、ペン ズオキサゾール誘導体、オキサジアゾール誘導体、オキ サゾール誘導体、チアジアゾール誘導体、ナフタルイミ ド誘導体、ペリレンテトラカルボン酸ジイミド誘導体、 キナクリドン誘導体等を挙げることができる。以下にこ れらの具体例を示す。

50 [0027]

21

【表4】

[0028]

【実施例】以下、実施例により本発明を更に詳細に説明 する。

【0029】実施例1

表面抵抗200/口の酸化錫インジウム(ITO)陽極 を有するガラス基板上に前記表2-1中のC-12で示 されるトリフェニルアミン誘導体より成る厚さ40nm のホール輸送層、前記表1で示される化合物No. 3よ り成る厚さ15nmの発光層、前記D-8で示されるオ キサジアゾール化合物より成る厚さ20 nmの電子輸送 層、前記D-5に示されるAlq:よりなる厚さ25n mの電子注入層、原子比10:1のMgAg合金より成 る厚さ200nmの陰極を順次真空蒸着により積層して 図7に示すような電界発光素子を作製した。蒸着時の真 空度は約0. 7×10-6 torrであり基板温度は室温 である。この様にして作製した素子の陽極及び陰極にリ ード線を介して直流電圧を接続したところ、電流密度1 00mA/cm²において印加電圧が9.7Vであり、 緑色の明瞭な発光が長時間にわたって確認された。この 時の発光波長は502nmにピークを有し、輝度は11

30 保存後においても明瞭な発光が認められた。

【0030】実施例2

表面抵抗200/□の酸化錫インジウム(ITO)陽極を有するガラス基板上に前記表1に示される化合物No.3より成る厚さ50nmのホール輸送層、前記D-5で示されるAlq。よりなる厚さ50nmの発光層、原子比10:1のMgAg合金より成る厚さ200nmの陰極を順次真空蒸着法により積層して図2に示すような電界発光素子を作製した。蒸着時の真空度は0.7×10-6torrであり基板温度は室温である。この様にして作製した素子の陽極及び陰極にリード線を介して直流電源を接続したところ、電流密度30mA/cm²において印加電圧が8.9Vであり、緑色の明瞭な発光が長時間にわたって確認された。この時の発光波長は520nmにピークを有し、輝度は760cd/m²であった。なお、この素子は1ヶ月室温保存後においても明瞭な発光が認められた。

【0031】 実施例3

緑色の明瞭な発光が長時間にわたって確認された。この 表面抵抗 20Ω / \square の酸化錫インジウム(ITO)陽極時の発光波長は502nmにピークを有し、輝度は11 を有するガラス基板上に、前記C-12に示されるトリ50 c d M^2 であった。なお、この素子は1ヶ月室温 M フェニルアミン誘導体より成る厚さ40nmのホール輸

送層、前記表1に示される化合物No. 3よりなる厚さ 15 nmの発光層、前記D-5で示されるAIqsより 成る電子輸送層、原子比10:1のMgAg合金より成 る厚さ200nmの陰極を順次真空蒸着により積層して 図4に示すような電界発光素子を作製した。蒸혊時の真 空度は0.7×10°torrであり基板温度は室温で ある。この様にして作製した素子の陽極及び陰極にリー ド線を介して直流電圧を接続したところ、電流密度10 0mA/cm²において印加電圧が12.3Vであり、 緑色の明瞭な発光が長時間にわたって確認された。この 10 かった。 時の発光波長は506nmにピークを有し、輝度は10 60cd/m2であった。なお、この素子は1ヶ月室温 保存後においても明瞭な発光が認められた。

【0032】実施例4

表面抵抗200/□の酸化錫インジウム(ITO) 陽極 を有するガラス基板上に前記表 C-12で示されるトリ フェニルアミン誘導体より成る厚さ40nmのホール輸 送層、前記表1で示される化合物No. 2に示されるピ レン化合物よりなる厚さ15nmの発光層、前配D-8 で示されるオキサジアゾール化合物より成る厚さ20 n mの電子輸送層、前記D-5に示されるAlq3より成 る厚さ25 nmの電子注入層、原子比10:1のMgA g合金より成る厚さ200nmの陰極を順次真空蒸着に より積層して図7に示すような電界発光素子を作製し た。 蒸着時の真空度は約0. 7×10⁻⁶ torrであり 基板温度は室温である。この様にして作製した素子の陽 極及び陰極にリード線を介して直流電源を接続し電圧を 印加したところ、電流密度100mA/cm²において 印加電圧が9.0 Vであり、緑色の明瞭な発光が長時間 にわたって確認された。この時の発光波長は500nm 30 にピークを有し、輝度は1700cd/m²であった。 なお、この素了は1ヶ月室温保存後においても明瞭な発 光が認められた。

【0033】 実施例5

発光層に前記表1に示される化合物No. 10より成る 厚さ15nmのピレン化合物及び電子輸送層に前記D-9より成る厚さ20nmのオキサジアゾール化合物を用 いた以外は、前記実施例1と同様にして図7に示すよう な電解発光素子を作製した。この様にして作製した素子 を駆動させたところ、電流密度100mA/cm²にお 40 いて印加電圧が12.3 Vであり、緑色の明瞭な発光が 長時間にわたって確認された。この時の発光波長は52

1 nmにピークを有し、輝度は1000cd/m2であ った。なお、この素子は1ヶ月室温保存後においても明 瞭な発光が認められた.

【0034】比較例1

発光層に下記化合物(化2)で表されるアミノピレン誘 導体を用いた以外は、実施例1と同様にして図7に示す ような電界発光素子を作製した。この素子を同様に発光 させたところ青緑色の発光が認められた。しかし、この 素子は、1カ月室温保存後においては発光は認められな

化21

[0035]

【発明の効果】本発明の電界発光素子は、有機化合物の 構成材料として前記一般式(I)(化1)で表される化 合物を用いたことから、発光性能が長期間にわたって持 続し、耐久性に優れたものである。

【図面の簡単な説明】

【図1】2枚の電極間に発光層単独を挾持する電界発光 第子の模式断面図である。

【図2】2枚の電極間に発光層と正孔輸送層を挟持する 電界発光素子の模式断面図である。

【図3】2枚の電極間に発光層と電子輸送層を挟持する 電界発光素子の模式断面図である。

【図4】2枚の電極間に正孔輸送層、発光層及び電子輸 送層をその順序で挟持する電界発光素子の模式断面図で ある。

【図5】図2において正孔輸送層が2層以上からなる電 界発光素子の模式断面図である。

【図6】図3において電子輸送層が2層以上からなる電 界発光素子の模式断面図である。

【図7】図4において正孔輸送層と電子輸送層の何れか もしくは両層が少なくとも2層以上からなる電界発光素 子の模式断面図である。

【符号の説明】

1 ······基板、2、4 ······ 電極、3 a ······発光層、3 b ··· …電子輸送層、3c……正孔輸送層。

【図1】 [図2] 【図3】 [図4]

BEST AVAILABLE COPY

【図5】

[図6]

【図7】

フロントページの続き

(72)発明者 左近 洋太 東京都大田区中馬込1丁目3番6号 株式 会社リコー内