

«Московский государственный технический университет имени Н.Э. Баумана»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИНФОР	МАТИКИ И СИСТЕМ УП	РАВЛЕНИЯ
		ОТЕРНЫЕ СИСТЕМЫ И	
		Отчет	
	по домашнем	му заданию № 1 (Вариант	⊤ № 7)
Дисц	иплина: Теој	ретические основы элект	ротехники
Название дом	машней рабо	ты: Анализ линейной эл	ектрической цепи
		постоянного тока	
		0.	
Студент гр.	ИУ6-34	23.09.17 (Подпись, дата)	<u>Габолаев Г.К.</u> (И.О. Фамилия)
		(лежинев, дага)	(II.O. Fullillin)
Преподавате.	ЛЬ	(Полимен пата)	Иванов С.Р.
		(Подпись, дата)	(И.О. Фамилия)

Задание:

Выполнить расчёт узловых потенциалов и токов в ветвях приведенной схемы методом обозначенным рядом с номером варианта задания символами а, b, c... в скобках. Правильность расчёта проверить, составив баланс мощностей. Подтвердить также правильность аналитического расчёта узловых потенциалов и токов ветвей рассматриваемой схемы, смоделировав её поведение с помощью пакета прикладных программ "MultiSIM".

В тексте расчётно-пояснительной записки должно быть представлено полностью задание, схема анализируемой цепи, построенная в пакете "MultiSIM" с обозначениями имен и параметров компонентов цепи, номеров узлов, выбранных направлении токов, аналитический расчет токов элементов цепи и узловых потенциалов, баланс мощностей. также представить распечатки полученных при моделировании токов ветвей, узловых потенциалов, напряжений и рассеиваемых мощностей на элементах цепи.

Решение:

Согласно принципу распределения методов решения, мне, как студенту 4 группы, достался метод контурных токов.

11 R3 R1 R7 1kΩ R8 18 1kΩ **R2** 12 2Ω 1kΩ 11 2 5A 3 V2 R6 *1*6 V1 1kΩ 5.0V 1kΩ 12V R5 4

Этап 1 - произвольный выбор направления токов ветвей (рис. 1)

Рис. 1 - произвольная расстановка токов

Этап 2 - расчет токов

Для начала вычислим количество уравнений в системе: $N = N_B - (N_{\rm y} - 1) - N_I$

В данном случае:

Количество ветвей $(N_B) = 9$; Количество узлов $(N_v) = 5$;

Количество ветвей с идеальным источником тока $(N_I)=1$

Рис. 2 - контурные токи

R5

Составим систему уравнений:

$$\begin{cases} I_{1} = I_{11} = 5A \\ I_{22}(R_{6} + R_{7} + R_{8}) - I_{11}R_{8} - I_{33}R_{7} - I_{55}R_{6} = E_{2} \\ I_{33}(R_{2} + R_{3} + R_{4} + R_{7}) - I_{22}R_{7} - I_{55}R_{4} - I_{44}R_{2} = 0 \end{cases} \implies I_{44}(R_{1} + R_{2}) - I_{33}R_{2} = -E_{1} \\ I_{55}(R_{4} + R_{5} + R_{6}) - I_{22}R_{6} - I_{33}R_{4} = 0$$

Подставим значения:

$$\begin{cases} I_{11} = 5A \\ 2002I_{22} - 1000I_{33} - 1000I_{55} = 15 \\ -1000I_{22} + 4000I_{33} - 1000I_{44} - 1000I_{55} = 0 \\ -1000I_{33} + 2000I_{44} = -12 \\ -1000I_{22} - 1000I_{33} + 2002I_{55} = 0 \end{cases} \implies \begin{cases} I_{11} = 5A \\ I_{22} = 15.9mA \\ I_{33} = 5.96mA \\ I_{44} = -3.02mA \\ I_{55} = 10.9mA \end{cases}$$

Этап 3 - вычисление токов на резисторах

Для выполнения данной части задания, необходимо для каждого резистора рассчитать силу и направление тока, в зависимости от того, какие токи через него проходят.

$$I_8 = I_{11} - I_{22} = 4.98A$$

$$I_7 = I_{22} - I_{33} = 9.97mA$$

$$I_6 = I_{22} - I_{55} = 4.99mA$$

$$I_4 = I_{55} - I_{33} = 4.97mA$$

$$I_3 = I_{33} = 5.96mA$$

$$I_5 = -I_{55} = -10.93mA$$

$$I_2 = I_{33} - I_{44} = 8.98mA$$

$$I_1 = I_{44} = -3.01mA$$

Принимая во внимание тот факт, что на резисторах R1 и R5 значение силы тока получилось отрицательным, направление на них отличается от предположенного на рисунке 1. Для подтверждения рассчитанных выше токов на контурах и резисторах проведем эмуляцию данной электрической цепи средствами пакета MultiSIM. (рис. 3)

Рис. 3 - эмуляция цепи

Этап 4 - вычисление потенциалов

Т.к. узел 3 заземлён, мы считаем потенциал в нём равным 0В. Формула для расчета потенциала:

$$I_{R_1} = \frac{\varphi_1 - \varphi_2}{R_1}$$

При прохождении тока из узла 4 в узел 3 через резистор R5 происходит падение напряжения на величину $dU_5=I_5R_5=-21.86mB$ Следовательно на узле 4 потенциал равен -0.021+0=-0.021B.

При прохождении тока из узла 2 в узел 4 через резистор R6 происходит падение напряжения на величину $dU_6=I_6R_6=4.99B$ Следовательно на узле 2 потенциал равен -0.021+4.99=4.96B

При прохождении тока из узла 5 в узел 2 через резистор R7 происходит падение напряжения на величину $dU_7=I_7R_7=9.97B$ Следовательно на узле 5 потенциал равен 4.96+9.97=14.94B

При прохождении тока из узла 1 в узел 3 через резистор R2 происходит падение напряжения на величину $dU_2=I_2R_2=8.98B$ Следовательно на узле 1 потенциал равен 0+8.98=8.98B

Проверим вычисления в MultiSIM (рис. 4)

DC OP 1					
Signal	Value				
PR2: V(3)	-21.878mV				
PR3: V(4)	4.9748V				
PR5: V(1)	14.946V				
PR4: V(5)	8.9821V				
PR1: V(0)	0.0000V				

Рис. 4 - потенциалы

Этап 5 - баланс мощностей

Перед началом выполнения данного этапа взглянем на текущее состояние цепи с подробным отображением всех на данный момент найденных параметров на рисунке 5. Далее в таблице 1 отображены все расчеты мощностей.

Напряжения			
U_1	- 3B		
$ U_2 $	8.9B		
$ U_3 $	5.9B		
$ U_4 $	4.9B		
$ U_5 $	-0.02B		
U_6	4.9B		
$ U_7 $	9.9B		
$ U_8 $	9.96B		

Токи				
I_1	-0.003A			
I_2	0.0089A			
I_3	0.0059A			
I_4	0.0049A			
I_5	-0.010A			
I_6	0.0049A			
I_7	0.0099A			
$\overline{I_8}$	4.98A			

Рис. 5 - токи и напряжения

Компонент	Формула	Мощность, Вт
R_1	$P_1 = I_1^2 R_1$	-0.00910781934
R_2	$P_2 = I_2^2 R_2$	-0.08067782597
R_3	$P_3 = I_3^2 R_3$	-0.03557129062
R_4	$P_4 = I_4^2 R_4$	-0.02474854521
R_5	$P_5 = I_5^2 R_5$	-0.00023932161
R_6	$P_6 = I_6^2 R_6$	-0.02496669997
R_7	$P_7 = I_7^2 R_7$	-0.09943001171
R_8	$P_8 = I_8^2 R_8$	-49.68179534686
Σ потребление		-49.95653686129
V_1	$P_{V1} = V_1 I_1$	0.03621499668
V_2	$P_{V1} = -V_2 I_8$	-24.92032186461
I_1	$I \times (\varphi_5 - \varphi_4)$	74.84064368
Σ производство		49.95653681207
ПОТЕРИ	$ \sum R_i - \sum V_i + \sum I_j $	0,00000004922