Trabalho parcial 02: diagrama de atividades

Gustavo Guerreiro, João Martinho

 1° de outubro de 2025

1 Resumo

O nosso trabalho usa técnicas clássicas de pré-processamento e segmentação para distinguir e contar os núcleos celulares dos neutrófilos da base de imagens fornecida. A *pipeline* do processamento consiste em:

- Isolamento da célula:
 - conversão da imagem original para escala de cinza;
 - limiarização para distinguir a região celular do fundo;
 - remoção do fundo, mantendo apenas a célula visível.
- Segmentação do núcelo:
 - aplicação de um novo limiar para isolar o núcleo do citoplasma;
 - obtenção da imagem binária com os núcleos evidenciados.

2 Tabelas

Abaixo estão duas tabelas mostrando a quantidade de núcleos encontradas pela nossa solução em cada imagem. A primeira tabela mostra os resultados obtidos com os linfócitos (3 imagems), e a segunda, com os neutrófilos (10 imagens).

Linfócitos	
linfocito00.png	3
linfocito01.png	2
linfocito02.png	4

Neutrófilos	
neutrofilo00.png	4
neutrofilo01.png	3
neutrofilo02.png	2
neutrofilo03.png	4
neutrofilo04.png	3
neutrofilo05.png	2
neutrofilo06.png	4
neutrofilo07.png	3
neutrofilo08.png	2
neutrofilo09.png	4

3 Isolamento das células

Inicialmente, importamos as bibliotecas necessárias, nomeadamento o OpenCV, o NumPy e o Matplotlib, responsáveis, respectivamente, pelas operações de visão computacional, manipulação numérica e visualização gráfica.

Considerando que as imagens têm fundo escuro e o citoplasma e núcleos das células estão em tons de púrpura, aplicamos um limiar para converter o fundo branco em preto, isolando a célula no processo. Como o citplasma é mais claro que os núcleos, pode-se aplicar um segundo limiar para separá-los sem que o fundo atrapalhe o processo. O resultado desta etapa pode ser visto abaixo.