Introduction to K-means Clustering

K-means clustering: Algorithm

- Pre-requisites
 - 1. Get points in multi-dimensional space.
 - table, matrix, rectangular dataset
 - 2. Specify the number of clusters
 - Weakest point in algorithm (makes algorithm non-deterministic)
 - 3. Get a random center for each cluster
 - Another weak point in the algorithm
- Repeat until convergence:
 - 1. For each point, determine its closest cluster center and assign that point to that cluster
 - 2. Determine the centroid (mean) for each cluster of points

K-Means Clustering (0)

- Clustering starts by getting the data and representing the data as points in space. In this example the space is 2-dimensional.
- Each point describes an observation. An observation is an individual item.
- The dimensions are attributes that describe the item.

K-Means Clustering (1)

- Clustering continues by guessing, presuming, or specifying a number of clusters.
- Each centroid represents a cluster.
- The centroid positions are determined randomly. The centroids should be within the bounds of the points.

K-Means Clustering (2)

- Clustering continues by assigning each point to a cluster.
- For each point, the algorithm measures the distance to each centroid.
- For each point, the smallest distance to a centroid indicates the assignment.

K-Means Clustering (2)

Clustering continues by moving each centroid to the center of its cluster.

K-Means Clustering (3)

Clustering continues by moving each centroid to the center of its cluster.

K-Means Clustering (4)

- Clustering continues by assigning each point to a cluster.
- For each point, the algorithm measures the distance to each centroid.
- For each point, the smallest distance to a centroid indicates the assignment.

K-Means Clustering (4)

- Clustering continues by assigning each point to a cluster.
- For each point, the algorithm measures the distance to each centroid.
- For each point, the smallest distance to a centroid indicates the assignment.

K-Means Clustering (5)

K-Means Clustering (6)

K-Means Clustering (7)

K-Means Clustering (8)

K-Means Clustering (9)

K-Means Clustering (10)

K-Means Clustering (11)

K-Means Clustering (12)

K-Means Clustering (13)

K-means Demo

KMeansDemo

K-means

- Lessons learned:
 - Normalizations are important to put data on equal terms
 - Initial centroid number and placement is an art.
 - Categorical Data must be binarized
 - K-means is unsupervised because we do not tell the algorithm what outcome was observed or what outcome is desired.

Introduction to K-means Clustering