化学实验・二・「实验过程」

实验基本过程

实验前: ①仪器选择与组装; ②仪器的检验; ③通入气体; ④试剂的填装; ⑤点火

实验后: ①先移走液面内部导管(防止倒吸液体进入装置); ②关闭热源,停止反应; ③再停止通气(最后停止通气的常考目的: 防止产物与空气接触) ④仪器的洗涤

五个考察点

1. 仪器选择与组装: ①仪器规格选择、②仪器组装

2. 仪器的检验: ①检验是否漏水、②气密性检验

3. 通入气体: ①通气到何时停止、②通气的作用

4. 试剂的填装: ①试剂的取用、②试剂的存放

5. 仪器的洗涤: ①洗涤方法、②洗涤完成标志、③常见洗涤方法

仪器选择和组装

仪器规格的选择

1. 各类瓶瓶罐罐中液体体积范围:

1. 仪器不需加热时: 占容积的 $\left[\frac{1}{3}, \frac{2}{3}\right]$

2. 仪器需要加热时:占容积的 $\left[\frac{1}{3}, \frac{1}{2}\right]$

2. 量筒量取一定量的液体: 应选取略大于所需液体体积的量筒。

仪器的组装

仪器组装:方向为"先下后上,从左到右"

模块化装置的安装放在第三节

仪器的检验

1. 检验是否漏水(检漏)

检漏方法:向分液漏斗中加入少量水,检查旋塞处是否漏水; 将漏斗倒转过来,检查 玻璃塞是否漏水

(补充: 在玻璃旋塞两端涂一薄层凡士林, 插入塞窝转动, 使之均匀, 以防漏水)

2. 气密性检验

无论采用哪种装置制取气体.在成套装置组装完毕、装入反应物之前,必须检验装置的气密性,以确保实验的顺利进行。装置气密性的检验,其原理通常是设法造成装置的不同部位有压强差,并产生某种明显的现象。在叙述上要注意细节描述的严密性

步骤	具体方法		
Step1:形成密闭/封闭的体 系 (活塞、弹簧夹、液封)	关闭:止水夹夹住导管/关闭活塞;液封:导管末端浸入水中,加水至浸没导管		
Step2:①制造压强差;②描 述产生的现象	①微热法:用手焐热/酒精灯微热现象:加热气泡冒出,停止后倒吸水柱 ②注水法:向漏斗注水现象:形成液柱不动/液滴 无法滴下		
Step3:一段时间后,现象保持不变			

通入气体

- 1. 通气到什么时候为止
 - 1. 水面下的导管,产生稳定气泡时;
 - 2. xx 装置中充满 xx 气体 (描述气体颜色特点)
- 2. 通气的作用: 本质是各种方式去 "赶跑" 装置内原有气体

阶段	通气作用			
实验前	排除装置中的空气,以免与空气中的 xx 发生反应 $(\mathrm{H_2O/CO_2/O_2})$			
实验中	①减小气体浓度,防止出现倒吸现象(特别是极易溶于水的气体) ②将 xx 气体充分排净/将气体赶入 xx 装置 ③提供惰性气体环境,防止反应物与空气反应 ④减少定量实验误差 ⑤增大压强,加快反应速率			
实验后	将气体全部吹入 xx 中充分吸收 ①防止残留装置中造成污染 ②减小定量实验的误差			

填装物质

试剂取用

	固体药物			液体药物		
药瓶取 用	粉末	块状	定量	少量滴加	定量	大量倾倒
使用仪 器	药匙	镊子	托盘天平	胶头滴 管	量筒或滴定管	直接倾倒
注意事项	固体加入试管时:一横二放三慢 竖			竖直悬滴		倾倒口对 口 标签对手 心

试剂存放

仪器洗涤

- 1. 基本方法:
 - 1. 注入少量水振荡倒掉, 冲洗外壁
 - 2. 若仍有污迹, 用洗涤液处理后刷洗 (洗涤液)
 - 3. 最后用蒸馏水冲洗。 (滴定管还要润洗)
- 2. 洗净的标准: 内壁附着一层均匀的水膜, 既不聚成水滴, 也不成股流下
- 3. 常考污渍的洗涤方法

附着	油污	银 镜	硫磺、碘、 磷	CuO	乙酸乙酯
选择 齐	碱 液	硝 酸	CS_2	HNO_3	NaOH (水解) 或 酒精 (互 溶)