Hands_on_Activity_7_1

Technological Institute of the

Philippines Quezon City - Computer Engineering

Course Code: CPE 019

Code Title: Emerging Technologies in CpE 2

Summer AY 2024 - 2025

Name Calvadores, Kelly Joseph

Section CPE32S1

Date Performed: June 28, 2024 **Date Submitted**: June , 2024

Instructor: Engr. Roman M. Richard

Choose any dataset applicable to the classification problem, and also, choose any dataset applicable to the regression problem.¶

Explain your datasets and the problem being addressed.¶

• The problem that is currently being addressed is the quality of the 2 wines, the goal for this, is to model the wine quality based on the tests that has been made. To approach the quality of the wine based on the physicochemical properties that is given, the model can help to predict the aiding quality control of the wine and decision making in the wine industry

For classification, do the following:¶

```
In [2]:
```

!pip install scikeras

Collecting scikeras

Downloading scikeras-0.13.0-py3-none-any.whl (26 kB)

Collecting keras>=3.2.0 (from scikeras)

Downloading keras-3.4.1-py3-none-any.whl (1.1 MB)

```
1.1/1.1 MB 6.9 MB/s eta 0:00:00
Collecting scikit-learn>=1.4.2 (from scikeras)
  Downloading
scikit learn-1.5.0-cp310-cp310-manylinux 2 17 x86 64.manylinux2014 x86 64.whl
(13.3 MB)
13.3/13.3 MB 50.9 MB/s eta 0:00:00
Requirement already satisfied: absl-py in
/usr/local/lib/python3.10/dist-packages (from keras>=3.2.0->scikeras) (1.4.0)
Requirement already satisfied: numpy in
/usr/local/lib/python3.10/dist-packages (from keras>=3.2.0->scikeras)
(1.25.2)
Requirement already satisfied: rich in
/usr/local/lib/python3.10/dist-packages (from keras>=3.2.0->scikeras)
Collecting namex (from keras>=3.2.0->scikeras)
  Downloading namex-0.0.8-py3-none-any.whl (5.8 kB)
Requirement already satisfied: h5py in
/usr/local/lib/python3.10/dist-packages (from keras>=3.2.0->scikeras) (3.9.0)
Collecting optree (from keras>=3.2.0->scikeras)
  Downloading
optree-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (311
kB)
311.2/311.2 kB 28.3 MB/s eta 0:00:00
Requirement already satisfied: ml-dtypes in
/usr/local/lib/python3.10/dist-packages (from keras>=3.2.0->scikeras) (0.2.0)
Requirement already satisfied: packaging in
/usr/local/lib/python3.10/dist-packages (from keras>=3.2.0->scikeras) (24.1)
Requirement already satisfied: scipy>=1.6.0 in
/usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.4.2->scikeras)
(1.11.4)
Requirement already satisfied: joblib>=1.2.0 in
/usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.4.2->scikeras)
Requirement already satisfied: threadpoolctl>=3.1.0 in
/usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.4.2->scikeras)
Requirement already satisfied: typing-extensions>=4.0.0 in
/usr/local/lib/python3.10/dist-packages (from optree->keras>=3.2.0->scikeras)
(4.12.2)
Requirement already satisfied: markdown-it-py>=2.2.0 in
/usr/local/lib/python3.10/dist-packages (from rich->keras>=3.2.0->scikeras)
(3.0.0)
Requirement already satisfied: pygments<3.0.0,>=2.13.0 in
/usr/local/lib/python3.10/dist-packages (from rich->keras>=3.2.0->scikeras)
(2.16.1)
Requirement already satisfied: mdurl~=0.1 in
```

```
/usr/local/lib/python3.10/dist-packages (from
markdown-it-py>=2.2.0->rich->keras>=3.2.0->scikeras) (0.1.2)
Installing collected packages: namex, optree, scikit-learn, keras, scikeras
  Attempting uninstall: scikit-learn
    Found existing installation: scikit-learn 1.2.2
    Uninstalling scikit-learn-1.2.2:
      Successfully uninstalled scikit-learn-1.2.2
  Attempting uninstall: keras
    Found existing installation: keras 2.15.0
    Uninstalling keras-2.15.0:
      Successfully uninstalled keras-2.15.0
ERROR: pip's dependency resolver does not currently take into account all the
packages that are installed. This behaviour is the source of the following
dependency conflicts.
tensorflow 2.15.0 requires keras<2.16,>=2.15.0, but you have keras 3.4.1
which is incompatible.
Successfully installed keras-3.4.1 namex-0.0.8 optree-0.11.0 scikeras-0.13.0
scikit-learn-1.5.0
In [1]:
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense
from scikeras.wrappers import KerasClassifier
from tensorflow.keras.utils import to categorical
from sklearn.model selection import cross val score
from sklearn.model selection import KFold
from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train_test_split
Resource: https://archive.ics.uci.edu/dataset/186/wine+quality
In [9]:
CData = pd.read csv('/content/drive/MyDrive/CPE 019 (Retake)/HOA
7.1/WineQualityData/winequality-white.csv', sep = ';')
CData
Out[9]:
                                    free
                                           total
            volat
                        resi
                                    sulfu sulfu
      fixed ile
                  citri
                        dual
                              chlo
                                                             sulp
                                    dioxi dioxi dens
      acidi acidi
                  С
                        suga
                              ride
                                                             hate
                                                                   alco
                                                                         qual
                  acid
                              S
                                    de
                                           de
                                                       рН
                                                                   hol
                                                                         ity
      ty
            ty
                        r
                                                 ity
                                                             S
0
      7.0
            0.27
                  0.36
                        20.7
                              0.04
                                    45.0
                                           170.
                                                 1.00
                                                       3.00
                                                             0.45
                                                                   8.8
                                                                         6
                              5
                                           0
                                                 100
```

1	6.3	0.30	0.34	1.6	0.04 9	14.0	132. 0	0.99 400	3.30	0.49	9.5	6
2	8.1	0.28	0.40	6.9	0.05 0	30.0	97.0	0.99 510	3.26	0.44	10.1	6
3	7.2	0.23	0.32	8.5	0.05 8	47.0	186. 0	0.99 560	3.19	0.40	9.9	6
4	7.2	0.23	0.32	8.5	0.05 8	47.0	186. 0	0.99 560	3.19	0.40	9.9	6
489 3	6.2	0.21	0.29	1.6	0.03 9	24.0	92.0	0.99 114	3.27	0.50	11.2	6
489 4	6.6	0.32	0.36	8.0	0.04 7	57.0	168. 0	0.99 490	3.15	0.46	9.6	5
489 5	6.5	0.24	0.19	1.2	0.04 1	30.0	111. 0	0.99 254	2.99	0.46	9.4	6
489 6	5.5	0.29	0.30	1.1	0.02 2	20.0	110. 0	0.98 869	3.34	0.38	12.8	7
489 7	6.0	0.21	0.38	8.0	0.02 0	22.0	98.0	0.98 941	3.26	0.32	11.8	6

4898 rows × 12 columns

In [10]:

CData.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4898 entries, 0 to 4897
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	4898 non-null	float64
1	volatile acidity	4898 non-null	float64
2	citric acid	4898 non-null	float64
3	residual sugar	4898 non-null	float64
4	chlorides	4898 non-null	float64
5	free sulfur dioxide	4898 non-null	float64
6	total sulfur dioxide	4898 non-null	float64
7	density	4898 non-null	float64
8	рН	4898 non-null	float64
9	sulphates	4898 non-null	float64
10	alcohol	4898 non-null	float64
11	quality	4898 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 459.3 KB

In [11]:
CData.corr()
Out[11]:

fixed acidi ty volat ile acidi ty	fixed acidi ty 1.00 000 0 -0.0 226 97	volat ile acidi ty -0.0 226 97 1.00 000 0	citri c acid 0.28 918 1 -0.1 494 72	resi dual suga r 0.08 902 1 0.06 428 6	chlo ride s 0.02 308 6 0.07 051 2	free sulfu r dioxi de -0.0 493 96 -0.0 970 12	total sulfu r dioxi de 0.09 107 0 0.08 926 1	dens ity 0.26 533 1 0.02 711 4	pH -0.4 258 58 -0.0 319 15	sulp hate s -0.0 171 43 -0.0 357 28	alco hol -0.1 208 81 0.06 771	qual ity -0.1 136 63 -0.1 947 23
citri c acid resi dual suga	0.28 918 1 0.08 902 1	-0.1 494 72 0.06 428 6	1.00 000 0 0.09 421 2	0.09 421 2 1.00 000 0	0.11 436 4 0.08 868 5	0.09 407 7 0.29 909 8	0.12 113 1 0.40 143 9	0.14 950 3 0.83 896 6	-0.1 637 48 -0.1 941 33	0.06 233 1 -0.0 266 64	-0.0 757 29 -0.4 506 31	-0.0 092 09 -0.0 975 77
r chlo ride s free sulfu r dioxi de	0.02 308 6 -0.0 493 96	0.07 051 2 -0.0 970 12	0.11 436 4 0.09 407 7	0.08 868 5 0.29 909 8	1.00 000 0 0.10 139 2	0.10 139 2 1.00 000 0	0.19 891 0 0.61 550	0.25 721 1 0.29 421 0	-0.0 904 39 -0.0 006 18	0.01 676 3 0.05 921	-0.3 601 89 -0.2 501 04	-0.2 099 34 0.00 815 8
total sulfu r dioxi de	0.09 107 0	0.08 926 1	0.12 113 1	0.40 143 9	0.19 891 0	0.61 550 1	1.00 000 0	0.52 988 1	0.00 232 1	0.13 456 2	-0.4 488 92	-0.1 747 37
dens ity pH	0.26 533 1 -0.4 258 58	0.02 711 4 -0.0 319 15	0.14 950 3 -0.1 637 48	0.83 896 6 -0.1 941 33	0.25 721 1 -0.0 904 39	0.29 421 0 -0.0 006 18	0.52 988 1 0.00 232 1	1.00 000 0 -0.0 935 91	-0.0 935 91 1.00 000 0	0.07 449 3 0.15 595 1	-0.7 801 38 0.12 143 2	-0.3 071 23 0.09 942 7

sulp	-0.0	-0.0	0.06	-0.0	0.01	0.05	0.13	0.07	0.15	1.00	-0.0	0.05
hate	171	357	233	266	676	921	456	449	595	000	174	367
S	43	28	1	64	3	7	2	3	1	0	33	8
alco	-0.1	0.06	-0.0	-0.4	-0.3	-0.2	-0.4	-0.7	0.12	-0.0	1.00	0.43
hol	208	771	757	506	601	501	488	801	143	174	000	557
	81	8	29	31	89	04	92	38	2	33	0	5
qual	-0.1	-0.1	-0.0	-0.0	-0.2	0.00	-0.1	-0.3	0.09	0.05	0.43	1.00
ity	136	947	092	975	099	815	747	071	942	367	557	000
	63	23	09	77	34	8	37	23	7	8	5	0

In [12]:

CorrMatr = CData.corr()

TargCorr = CorrMatr['quality'] AbsTarCorr = TargCorr.abs()

LowCorrFeat = AbsTarCorr[AbsTarCorr < 0.01]</pre>

print(LowCorrFeat)

citric acid 0.009209 free sulfur dioxide 0.008158 Name: quality, dtype: float64

In [13]:

CData = CData.drop(columns = LowCorrFeat.index) CData

Out[13]:

	fixed	volatil e	resid		total sulfur					
	acidit	acidit	ual	chlori	dioxid	densit		sulph	alcoh	qualit
	y	y	sugar	des	e	У	рН	ates	ol	У
0	7.0	0.27	20.7	0.045	170.0	1.001 00	3.00	0.45	8.8	6
1	6.3	0.30	1.6	0.049	132.0	0.994 00	3.30	0.49	9.5	6
2	8.1	0.28	6.9	0.050	97.0	0.995 10	3.26	0.44	10.1	6
3	7.2	0.23	8.5	0.058	186.0	0.995 60	3.19	0.40	9.9	6
4	7.2	0.23	8.5	0.058	186.0	0.995 60	3.19	0.40	9.9	6
4893	6.2	0.21	1.6	0.039	92.0	0.991 14	3.27	0.50	11.2	6

4894	6.6	0.32	8.0	0.047	168.0	0.994 90	3.15	0.46	9.6	5			
4895	6.5	0.24	1.2	0.041	111.0	0.992 54	2.99	0.46	9.4	6			
4896	5.5	0.29	1.1	0.022	110.0	0.988 69	3.34	0.38	12.8	7			
4897	6.0	0.21	0.8	0.020	98.0	0.989 41	3.26	0.32	11.8	6			
4898 rows × 10 columns													
In [21]:													
CData.info()													
Range I I Data co # Co	ndex: 48 columns column ixed accolatile esidual hloridecotal successity H ulphatecotal uality : floate	898 enti (total 1 idity acidity sugar s lfur did	ries, 0 10 colur 10 c	Non-Null 1898 nor 1898 nor 1898 nor 1898 nor 1898 nor 1898 nor 1898 nor 1898 nor	Count	Dtype float6 float6 float6 float6 float6 float6 float6 float6 int64	64 64 64 64 64						
In [14]:													
		oc[:, :· oc[:, -:	_										
In [15]:													
		Scaler()											
In [16]:													
		test, Cy state =		, Cy_tes	st = tra	in_test	_split(CX, Cy,	test_s	ize =			

In [17]:

```
LE = LabelEncoder()
Cy train = LE.fit transform(Cy train)
Cy test = LE.fit transform(Cy test)
Cy train = to categorical(Cy train)
Cy_test = to_categorical(Cy_test)
In [18]:
Cy train.shape
Out[18]:
(3673, 7)
Create a base model¶
In [22]:
def Cbaseline model():
  model = Sequential()
  model.add(Dense(32, input dim = 9, activation = 'relu'))
  model.add(Dense(7, activation = 'softmax'))
  model.compile(loss = 'categorical_crossentropy', optimizer = 'adam',
metrics = ['accuracy'])
  return model
Evaluate the model with k-fold cross validation¶
In [24]:
CEstimator = KerasClassifier(model = Cbaseline model, epochs = 500,
batch size = 5000, verbose = 0)
Ckfold = KFold(n splits = 10, shuffle = True)
CResults = cross val score(CEstimator, CX train, Cy train, cv = Ckfold)
print("Baseline: %.2f%% (%.2f%%)" % (CResults.mean()*100,
CResults.std()*100))
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input shape`/`input dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
```

```
super(). init (activity regularizer=activity regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input shape`/`input dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
Baseline: 54.91% (2.19%)
Improve the accuracy of your model by applying additional hidden layers¶
In [27]:
def Cbaseline model():
  model = Sequential()
  model.add(Dense(128, input dim = 9, activation = 'relu'))
  model.add(Dense(64, activation = 'relu'))
  model.add(Dense(32, activation = 'relu'))
  model.add(Dense(7, activation = 'softmax'))
```

```
model.compile(loss = 'categorical crossentropy', optimizer = 'adam',
metrics = ['accuracy'])
  return model
In [28]:
CEstimator = KerasClassifier(model = Cbaseline model, epochs = 500,
batch size = 5000, verbose = 0)
Ckfold = KFold(n splits = 10, shuffle = True)
CResults = cross val score(CEstimator, CX train, Cy train, cv = Ckfold)
print("Baseline: %.2f%% (%.2f%%)" % (CResults.mean()*100,
CResults.std()*100))
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input shape`/`input dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input shape`/`input dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input shape`/`input dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
```

UserWarning: Do not pass an `input shape`/`input dim` argument to a layer.

```
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
Baseline: 56.25% (2.74%)
For regression, do the following:¶
In [2]:
!pip install scikeras
Collecting scikeras
  Downloading scikeras-0.13.0-py3-none-any.whl (26 kB)
Collecting keras>=3.2.0 (from scikeras)
  Downloading keras-3.4.1-py3-none-any.whl (1.1 MB)
1.1/1.1 MB 6.1 MB/s eta 0:00:00
Collecting scikit-learn>=1.4.2 (from scikeras)
  Downloading
scikit_learn-1.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
(13.3 MB)
13.3/13.3 MB 44.0 MB/s eta 0:00:00
Requirement already satisfied: absl-py in
/usr/local/lib/python3.10/dist-packages (from keras>=3.2.0->scikeras) (1.4.0)
Requirement already satisfied: numpy in
/usr/local/lib/python3.10/dist-packages (from keras>=3.2.0->scikeras)
(1.25.2)
Requirement already satisfied: rich in
/usr/local/lib/python3.10/dist-packages (from keras>=3.2.0->scikeras)
(13.7.1)
Collecting namex (from keras>=3.2.0->scikeras)
  Downloading namex-0.0.8-py3-none-any.whl (5.8 kB)
Requirement already satisfied: h5py in
/usr/local/lib/python3.10/dist-packages (from keras>=3.2.0->scikeras) (3.9.0)
Collecting optree (from keras>=3.2.0->scikeras)
```

```
Downloading
optree-0.11.0-cp310-cp310-manylinux 2 17 x86 64.manylinux2014 x86 64.whl (311
kB)
311.2/311.2 kB 30.0 MB/s eta 0:00:00
Requirement already satisfied: ml-dtypes in
/usr/local/lib/python3.10/dist-packages (from keras>=3.2.0->scikeras) (0.2.0)
Requirement already satisfied: packaging in
/usr/local/lib/python3.10/dist-packages (from keras>=3.2.0->scikeras) (24.1)
Requirement already satisfied: scipy>=1.6.0 in
/usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.4.2->scikeras)
(1.11.4)
Requirement already satisfied: joblib>=1.2.0 in
/usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.4.2->scikeras)
Requirement already satisfied: threadpoolctl>=3.1.0 in
/usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.4.2->scikeras)
Requirement already satisfied: typing-extensions>=4.0.0 in
/usr/local/lib/python3.10/dist-packages (from optree->keras>=3.2.0->scikeras)
(4.12.2)
Requirement already satisfied: markdown-it-py>=2.2.0 in
/usr/local/lib/python3.10/dist-packages (from rich->keras>=3.2.0->scikeras)
(3.0.0)
Requirement already satisfied: pygments<3.0.0,>=2.13.0 in
/usr/local/lib/python3.10/dist-packages (from rich->keras>=3.2.0->scikeras)
(2.16.1)
Requirement already satisfied: mdurl~=0.1 in
/usr/local/lib/python3.10/dist-packages (from
markdown-it-py>=2.2.0->rich->keras>=3.2.0->scikeras) (0.1.2)
Installing collected packages: namex, optree, scikit-learn, keras, scikeras
  Attempting uninstall: scikit-learn
    Found existing installation: scikit-learn 1.2.2
    Uninstalling scikit-learn-1.2.2:
      Successfully uninstalled scikit-learn-1.2.2
  Attempting uninstall: keras
    Found existing installation: keras 2.15.0
    Uninstalling keras-2.15.0:
      Successfully uninstalled keras-2.15.0
ERROR: pip's dependency resolver does not currently take into account all the
packages that are installed. This behaviour is the source of the following
dependency conflicts.
```

tensorflow 2.15.0 requires keras<2.16,>=2.15.0, but you have keras 3.4.1

Successfully installed keras-3.4.1 namex-0.0.8 optree-0.11.0 scikeras-0.13.0

In [1]:

which is incompatible.

scikit-learn-1.5.0

import pandas as pd
from keras.models import Sequential
from keras.layers import Dense
from scikeras.wrappers import KerasRegressor
from tensorflow.keras.utils import to_categorical
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

In [2]:

RData = pd.read_csv('/content/drive/MyDrive/CPE 019 (Retake)/HOA
7.1/WineQualityData/winequality-red.csv', sep = ';')
RData

Out[2]:

	fixed acidi	volat ile acidi	citri c	resi dual suga	chlo ride	free sulfu r dioxi	total sulfu r dioxi	dens		sulp hate	alco	qual
	ty	ty	acid	r	S	de	de	ity	рН	S	hol	ity
0	7.4	0.70 0	0.00	1.9	0.07 6	11.0	34.0	0.99 780	3.51	0.56	9.4	5
1	7.8	0.88 0	0.00	2.6	0.09 8	25.0	67.0	0.99 680	3.20	0.68	9.8	5
2	7.8	0.76 0	0.04	2.3	0.09 2	15.0	54.0	0.99 700	3.26	0.65	9.8	5
3	11.2	0.28 0	0.56	1.9	0.07 5	17.0	60.0	0.99 800	3.16	0.58	9.8	6
4	7.4	0.70 0	0.00	1.9	0.07 6	11.0	34.0	0.99 780	3.51	0.56	9.4	5
159 4	6.2	0.60 0	80.0	2.0	0.09 0	32.0	44.0	0.99 490	3.45	0.58	10.5	5
159 5	5.9	0.55 0	0.10	2.2	0.06 2	39.0	51.0	0.99 512	3.52	0.76	11.2	6
159 6	6.3	0.51 0	0.13	2.3	0.07 6	29.0	40.0	0.99 574	3.42	0.75	11.0	6
159 7	5.9	0.64 5	0.12	2.0	0.07 5	32.0	44.0	0.99 547	3.57	0.71	10.2	5

```
159
      6.0
            0.31
                  0.47
                        3.6
                              0.06
                                     18.0
                                           42.0
                                                 0.99
                                                       3.39
                                                             0.66 11.0 6
                                                 549
1599 rows × 12 columns
In [3]:
RData.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):
     Column
                            Non-Null Count
                                            Dtype
---
     _____
                            _____
                                            ----
     fixed acidity
 0
                            1599 non-null
                                            float64
 1
     volatile acidity
                            1599 non-null
                                            float64
 2
     citric acid
                                            float64
                            1599 non-null
 3
     residual sugar
                            1599 non-null
                                            float64
 4
     chlorides
                            1599 non-null
                                            float64
 5
     free sulfur dioxide
                            1599 non-null
                                            float64
 6
     total sulfur dioxide
                           1599 non-null
                                            float64
 7
     density
                            1599 non-null
                                            float64
 8
     рΗ
                            1599 non-null
                                            float64
 9
                                            float64
     sulphates
                            1599 non-null
 10
    alcohol
                            1599 non-null
                                            float64
 11 quality
                            1599 non-null
                                            int64
dtypes: float64(11), int64(1)
memory usage: 150.0 KB
In [4]:
RX = RData.iloc[:, :-1]
Ry = RData.iloc[:, -1]
In [5]:
#RX.shape
Ry.shape
Out[5]:
(1599,)
Create a base model¶
In [6]:
def Rbaseline_model():
  model = Sequential()
  model.add(Dense(16, input_dim = 11, kernel_initializer = 'normal',
activation = 'relu'))
  model.add(Dense(1, activation = 'linear'))
```

```
model.compile(loss = 'mean_squared_error', optimizer = 'adam')
 return model
In [7]:
REstimator = KerasRegressor(model = Rbaseline model, epochs = 100, batch size
= 5000, verbose = 0)
Rkfold = KFold(n splits = 10)
RResults = cross_val_score(REstimator, RX, Ry, cv = Rkfold, scoring =
'neg_mean_squared error')
print("Baseline: %.2f (%.2f)" % (RResults.mean(), RResults.std()))
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input shape`/`input dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super().__init__(activity_regularizer=activity_regularizer, **kwargs)
WARNING:tensorflow:5 out of the last 5 calls to <function
TensorFlowTrainer.make predict function.<locals>.one step on data distributed
at 0x7fbbdee68280> triggered tf.function retracing. Tracing is expensive and
the excessive number of tracings could be due to (1) creating @tf.function
repeatedly in a loop, (2) passing tensors with different shapes, (3) passing
Python objects instead of tensors. For (1), please define your @tf.function
outside of the loop. For (2), @tf.function has reduce retracing=True option
that can avoid unnecessary retracing. For (3), please refer to
https://www.tensorflow.org/guide/function#controlling retracing and
https://www.tensorflow.org/api_docs/python/tf/function for more details.
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
```

```
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super().__init__(activity_regularizer=activity regularizer, **kwargs)
WARNING:tensorflow:6 out of the last 6 calls to <function
TensorFlowTrainer.make_predict_function.<locals>.one_step_on_data_distributed
at 0x7fbbded70ca0> triggered tf.function retracing. Tracing is expensive and
the excessive number of tracings could be due to (1) creating @tf.function
repeatedly in a loop, (2) passing tensors with different shapes, (3) passing
Python objects instead of tensors. For (1), please define your @tf.function
outside of the loop. For (2), @tf.function has reduce retracing=True option
that can avoid unnecessary retracing. For (3), please refer to
https://www.tensorflow.org/guide/function#controlling retracing and
https://www.tensorflow.org/api docs/python/tf/function for more details.
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input shape`/`input dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input shape`/`input dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
Baseline: -1.37 (1.03)
Improve the model by standardizing the dataset¶
In [8]:
REstimator = []
REstimator.append(('standardize', StandardScaler()))
REstimator.append(('mlp', KerasRegressor(model = Rbaseline_model, epochs =
100, batch_size = 5000, verbose = 0)))
pipeline = Pipeline(REstimator)
Rkfold = KFold(n splits = 10)
RResults = cross_val_score(pipeline, RX, Ry, cv = Rkfold, scoring =
'neg_mean_squared_error')
print("Baseline: %.2f (%.2f)" % (RResults.mean(), RResults.std()))
```

/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)

Baseline: -21.86 (3.47)

Show tuning of layers and neurons (see evaluating small and larger networks)¶

Smaller Network and Wider¶

```
In [9]:
def Rbaseline model():
  model = Sequential()
  model.add(Dense(32, input dim = 11, kernel initializer = 'normal',
activation = 'relu'))
  model.add(Dense(1, activation = 'linear'))
  model.compile(loss = 'mean squared error', optimizer = 'adam')
  return model
In [10]:
REstimator = []
REstimator.append(('standardize', StandardScaler()))
REstimator.append(('mlp', KerasRegressor(model = Rbaseline_model, epochs =
100, batch size = 5000, verbose = 0)))
pipeline = Pipeline(REstimator)
Rkfold = KFold(n splits = 10)
RResults = cross val score(pipeline, RX, Ry, cv = Rkfold, scoring =
'neg mean squared error')
print("Baseline: %.2f (%.2f)" % (RResults.mean(), RResults.std()))
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input shape`/`input dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input shape`/`input dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
```

```
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input shape`/`input dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
  super().__init__(activity_regularizer=activity_regularizer, **kwargs)
Baseline: -17.52 (2.71)
Larger Network¶
In [11]:
def Rbaseline model():
  model = Sequential()
  model.add(Dense(16, input_dim = 11, kernel_initializer = 'normal',
activation = 'relu'))
  model.add(Dense(8, kernel_initializer = 'normal', activation = 'relu'))
  model.add(Dense(1, activation = 'linear'))
  model.compile(loss = 'mean_squared_error', optimizer = 'adam')
  return model
In [12]:
REstimator = []
REstimator.append(('standardize', StandardScaler()))
REstimator.append(('mlp', KerasRegressor(model = Rbaseline_model, epochs =
100, batch_size = 5000, verbose = 0)))
```

```
pipeline = Pipeline(REstimator)
Rkfold = KFold(n_splits = 10)
RResults = cross_val_score(pipeline, RX, Ry, cv = Rkfold, scoring = 'neg_mean_squared_error')
print("Baseline: %.2f (%.2f)" % (RResults.mean(), RResults.std()))
```

/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.

```
super().__init__(activity_regularizer=activity_regularizer, **kwargs)
/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer.
When using Sequential models, prefer using an `Input(shape)` object as the
first layer in the model instead.
    super().__init__(activity_regularizer=activity_regularizer, **kwargs)

Baseline: -18.43 (4.20)

In []:
```