

Curso de Engenharia de Computação Linguagens Formais, Autômatos e Compiladores

Lógica de predicados

Slides da disciplina ECM253 – Linguagens Formais, Autômatos e Compiladores
Curso de Engenharia de Computação
Instituto Mauá de Tecnologia – Escola de Engenharia Mauá
Prof. Marco Antonio Furlan de Souza

- Quantificadores e predicados
 - Principal limitação da lógica proposicional: poder de expressão limitado não é possível tratar com sentenças tais como "para todo x, x>0", por exemplo;
 - Assim, uma extensão natural foi a inclusão de variáveis, constantes, quantificadores e predicados:
 - Quantificador: é uma frase como "para todo" e "existe" que indica quantos objetos possuem uma certa propriedade:
 - Quantificador universal
 - Representado pelo símbolo ∀;
 - Lê-se "para todo" ou "para cada" ou "para qualquer".
 - Quantificador existencial
 - Representado pelo símbolo 3;
 - Lê-se "existe um" ou "pelo menos um" ou "para algum".

Lógica de predicados

Quantificadores e predicados

- Predicado: representa uma certa propriedade de um ou mais objetos;
- Pode ser quantificado ou não;
- Notação genérica: P(x);
- Exemplos

O valor verdade de um predicado
P(x) depende do domínio de
interpretação - a coleção de objetos
a partir do qual se escolhe x

- Se P(x) é (x>0), a expressão $(\forall x)(x>0)$ representa "para todo x que seja maior que zero";
- Se P(x) é "o livro x possui capa vermelha" então $(\forall x)P(x)$ representa "todos os livros possuem capa vermelha";
- Se P(x) é "o livro x possui capa vermelha" então $(\exists x)P(x)$ representa "pelo menos um livro possui capa vermelha";

- Interpretação
 - A interpretação de uma expressão envolvendo predicados envolve:
 - Uma coleção de objetos, denominado domínio da interpretação, que deve incluir pelo menos um objeto;
 - Uma atribuição da propriedade dos objetos no domínio para cada predicado na expressão:
 - Para cada P(x), dependendo do domínio de interpretação de x, calcular seu valor verdade (∨ ou F).
 - Uma atribuição de um objeto particular no domínio para cada símbolo constante na expressão:
 - Constantes são interpretados como algum objeto particular.

- Interpretação
 - Exemplo
 - Se Q(x,y) é a propriedade x < y e se a é uma constante à qual foi atribuído o objeto 7 de um **domínio** de **interpretação**, então:
 - $(\forall x)(Q(x,a))$ é falso se o domínio de interpretação for \mathbb{N} ;
 - $(\exists x)(Q(x,a))$ é verdadeiro se o domínio de interpretação for \mathbb{N} .

- Fórmulas bem formadas (fbf)
 - Segue o mesma formulação da lógica proposicional: as expressões podem ser obtidas da combinação de predicados, quantificadores, símbolos de agrupamento (parênteses ou colchetes);
 - Os símbolos de agrupamento ajudam a identificar o escopo de um quantificador:
 - Em $(\forall x)(P(x) \rightarrow Q(x,y))$, o escopo do quantificador $(\forall x)$ é $P(x) \rightarrow Q(x,y)$;
 - Em $(\forall x)((\exists y)[P(x) \land Q(x,y)] \rightarrow R(x))$, o escopo de $(\exists y)$ é $P(x) \land Q(x,y)$;
 - Variável livre é uma variável que ocorre em algum lugar de uma fbf, não sendo nem a variável de um quantificador e nem faz parte do escopo de um quantificador que a envolva;
 - Exemplo
 - Em $(\forall x)[Q(x,y)\rightarrow (\exists y)R(x,y)]$, y é variável livre. Por quê?

Tradução

- Muitas sentenças em português podem ser expressas como fbfs contendo predicados e quantificadores;
- Por **exemplo**, a **sentença** "todo papagaio é feio" está, na verdade, dizendo que qualquer coisa que seja um papagaio é feia. Fazendo P(x) denotar "x é um papagaio" e U(x) denotar "x é feio" tem-se que a sentença pode ser simbolizada como $(\forall x)$ [$P(x) \rightarrow U(x)$];
- Agora, a sentença "existe um papagaio feio" é denotado como $(\exists x)[P(x) \land U(x)]$;
- É importante saber o porque destas duas representações ...

Teste seus conhecimentos

 Considerando o domínio de interpretação como Z, qual o valor-verdade das fbfs a seguir?

$$(\forall x)(\exists y)(x+y=x)$$

$$(\exists x)(\exists y)(x^2 = y)$$

$$(\forall x)[x < 0 \rightarrow (\exists y)(y > 0 \land x + y = 0)]$$

Validade

- Uma fbf proposicional sempre tem valor-verdade (depende dos valores-verdade atribuídos aos símbolos), enquanto que uma fbf predicativa pode não ter valorverdade (depende da interpretação);
- Escolher uma interpretação para uma fbf predicativa é análogo a escolher valoresverdade para fbf proposicionais, exceto por haver um número infinito de interpretações possíveis para as fbfs predicativas e apenas 2º linhas para fbfs proposicionais com n símbolos proposicionais;
- Uma tautologia é uma fbf proposicional que é verdadeira em todas as linhas da tabela-verdade;
- O análogo à tautologia para as fbfs predicativas é a validade uma fbf predicativa é válida se for verdadeira para qualquer interpretação possível;
- Como o número de interpretações é infinito, não há um algoritmo em lógica de predicados para se determinar se uma fbf é válida.

Validade

- Comparação com lógica proposicional

	fbfs proposicionais	fbfs predicativas
Valor-verdade	Verdadeira ou falsa, de acordo com os valores atribuídos aos símbolos proposicionais.	Verdadeira, falsa ou sem valor- verdade, dependendo da interpretação.
Verdade intrínseca	Tautologia – verdadeira para todas as atribuições de valores-verdade.	fbf válida – verdadeira para todas as interpretações.
Metodologia	Algoritmo (tabela-verdade) para determinar se uma fbf é ou não uma tautologia.	Não há algoritmo para determinar se uma fbf é válida ou não.

Validade

- Exemplos
- $(\forall x)P(x)\rightarrow (\exists x)P(x)$ é válida, pois se é verdade que o predicado é verdadeiro para todo x então é também para pelo menos um;
- $(\forall x)P(x)\rightarrow P(a)$ é válida, pois se é verdade que o predicado é verdadeiro para todo x então é também para um caso particular;
- $P(x) \rightarrow [Q(x) \rightarrow P(x)]$ é válida, mesmo contendo variável livre;
- $(\exists x)P(x)\rightarrow (\forall x)P(x)$ não é válida, pois não se pode generalizar que se o predicado é válido para pelo menos um valor ele então será para todos.

Teste seus conhecimentos

1) Decidir se cada uma das fbfs a seguir é válida ou inválida, justificando.

$$(\exists x) A(x) \leftrightarrow \neg ((\forall x) \neg A(x))$$

$$(\forall x) A(x) \leftrightarrow \neg ((\exists x) (\neg A(x)))$$

$$(\forall x) (P(x) \lor Q(x)) \leftrightarrow (\forall x) P(x) \lor (\exists y) Q(y)$$

- Definição da lógica de predicados
 - Os argumentos da lógica de predicados são construídos a partir de fbfs com predicados, quantificadores, conectivos lógicos e símbolos de agrupamento, possuindo a forma genérica:

$$P_1 \wedge P_2 \wedge P_3 \wedge \ldots \wedge P_n \to Q$$

- Para um **argumento válido**, Q (conclusão) deve **seguir logicamente** P_1, P_2, \dots, P_n (hipóteses) em **todas** as **interpretações possíveis**;
- Isto é chamado de preservação da verdade. Este sistema será então:
 - Correto: somente argumentos válidos poderão ser provados;
 - Completo: todo argumento válido deveria ser provado.

Regras de derivação

- São as mesmas da lógica proposicional, mas se acrescentam regras específicas;
- Acrescentar as seguintes equivalências (úteis):

$$(\exists x) A(x) \leftrightarrow \neg((\forall x) \neg A(x))$$
$$(\forall x) A(x) \leftrightarrow \neg((\exists x) (\neg A(x)))$$

 Como de exemplo de aplicação em das regras já vistas (no caso, modus ponens) temse:

1.
$$(\forall x)R(x)$$
 (hipótese)
2. $(\forall x)R(x) \rightarrow (\forall x)S(x)$ (hipótese)
3. $(\forall x)S(x)$ 1,2, mp

Novas regras de derivação

Regras de inferência				
De	Pode derivar	Nome/abreviação	Restrição no uso	
$(\forall x)P(x)$	P(t) onde t é símbolo de variável ou constante.	Instanciação universal/ ui	Se t é uma variável, não pode aparecer no escopo de um quantificador para t .	
$(\exists x)P(x)$	P(a) onde a é um símbolo constante não utilizado antes na sequência de prova.	Instanciação existencial/ ei	Deve ser a primeira regra empregada para introduzir <i>a</i> na sequência.	
P(x)	$(\forall x)P(x)$	Generalização universal/ ug	P(x) não deve ter sido deduzido de qualquer hipótese onde x é livre e nem ter sido deduzido por El de qualquer fbf no qual x é livre.	
P(x) ou $P(a)$, a cte.	$(\exists x)P(x)$	Generalização existencial/ eg	Para sair de $P(a)$ para $(\exists x)P(x)$, x não deve aparecer em $P(a)$.	

Exemplos

Todos os humanos são mortais. Sócrates é humano. Portanto Sócrates é mortal". Se H(x) representa x é humano, M(x) representa x é mortal, e x é um símbolo constante a que foi atribuído Sócrates, então deve-se provar o argumento:

- Derivação: $(\forall x)(H(x) \rightarrow M(x)) \land H(s) \rightarrow M(s)$

1.
$$(\forall x)(H(x) \to M(x))$$
 (hipótese)

$$2. H(s)$$
 (hipótese)

$$3. H(s) \rightarrow M(s)$$
 1,ui

4.
$$M(s)$$
 2,3,mp

Exemplos

- Provar

$$(\forall x)(P(x) \to Q(x)) \land (\forall x)P(x) \to (\forall x)Q(x)$$

Derivação:

$1. (\forall x) (P(x) \to Q(x))$	(hipótese)
$2. (\forall x) P(x)$	(hipótese)
$3. P(x) \rightarrow Q(x)$	1,ui
4. P(x)	2,ui
5. Q(x)	3,4,mp
6. $(\forall x)Q(x)$	5,ug

Teste seus conhecimentos

1) Provar o argumento:

$$(\exists x)P(x) \land (\forall x)(P(x) \rightarrow Q(x)) \rightarrow (\exists x)Q(x)$$

$$(\exists x)R(x) \land \neg((\exists x)(R(x) \land S(x))) \rightarrow (\exists x)(\neg S(x))$$

Referências Bibliográficas

GERSTING, J.L. Fundamentos matemáticos para a ciência da computação. 4.
 ed. Rio de Janeiro, RJ: LTC, 2001. 538 p. ISBN 85-216-1263-X.