

分析学技巧积累

作者: 邹文杰

组织:无

时间:2024/10/25

版本:ElegantBook-4.5

自定义:信息

宠辱不惊,闲看庭前花开花落; 去留无意,漫随天外云卷云舒.

目录

第一	-章	想法	1
	1.1	分段估计	1
	1.2	分部积分	1
	- *	光和上光和效 早	•
		求和与求积符号	2
	2.1	求和符号	
		2.1.1 求和号交换顺序	
		2.1.2 裂项求和	
	2.2	求积符号	8
第=	音	实数基本定理与上下极限	9
		实数基本定理	9
•	J.1	3.1.1 定理介绍	9
		3.1.2 综合应用	9
,	3 2	上下极限	
•	3.2	工 [*1及pR	13
第四	章	极限与渐近分析方法	19
4	4.1	基本的渐进估计与求极限方法	19
		4.1.1 Taylor 公式	19
		4.1.2 利用 Lagrange 中值定理求极限	22
		4.1.3 强行替换 (拟合法) 和凑定积分	23
		4.1.4 L'Hospital'rules	24
		4.1.5 与方程的根有关的渐近估计	
		4.1.5.1 可以解出 n 的类型	
4	4.2	Toeplitz 定理	
		Abel 变换	
		Stolz 定理	
		4.4.1 数列 Stolz 定理	
			38
	4.5		42
	т.Э	4.5.1 " 折线图" 分析法 (图未完成, 但已学会)	
			42
			43
			43
			44
		4.5.6 强求通项和强行裂项	49
			49
			51
			57
			58
		欧拉麦克劳林公式 (E-M 公式)	
4	4.9	Riemann 引理	78

第五章	不等式	84
第六章	积分	89
	积分常用结论	
6.2	积分性态分析	90
	函数性态分析	92
7.1	连续函数	92
	小技巧	93
8.1	长除法	93
8.2	将多项式分式分解为其部分因式的和	94

第一章 想法

1.1 分段估计

结论 分段估计和式

分段的方式: 将和式分成两部分, 一部分是和式的前充分多项 (前有限项/前 N 项), 另一部分是余项 (从 N+1 项开始包括后面的所有项).(黎曼积分本质就是和式的极限, 直接细分成每一小段, 估计每一小段的被积函数值, 进而区分积分 (和式) 的主体部分和余项部分)

拿 笔记 如果和式的极限存在,则由 Cauchy 收敛准则,可知和式的余项的极限一般会趋于 0.

1.2 分部积分

分部积分转换导数

分部积分能够将两个被积函数的导数交换.

第二章 求和与求积符号

2.1 求和符号

定义 2.1 (空和 (Empty sum))

$$\sum_{i=b+1}^{b} f(i) \stackrel{\triangle}{=} 0, b \in \mathbb{Z}. \tag{2.1}$$

定理 2.1 (关于求和号下限大于上限的计算)

$$\sum_{i=a}^{c} f(i) \equiv -\sum_{i=c+1}^{a-1} f(i), a, c \in \mathbb{Z} \mathbb{H} a > c.$$
 (2.2)

笔记 上述空和的定义与关于求和号下限大于上限的计算定理都来自论文:Interpreting the summation notation when the lower limit is greater than the upper limit(Kunle Adegoke).

定理 2.2 (求和号基本性质)

1. 当 n 为非负整数时, 有

$$\sum_{k=1}^{n} a_k = \sum_{k=1}^{n} a_{n-k+1}.$$

2.1.1 求和号交换顺序

定理 2.3 (基本结论)

1. 当 n, m 均为非负整数时, 有

$$\sum_{\substack{1 \le i \le n \\ 1 \le j \le m}} a_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} = \sum_{j=1}^{m} \sum_{i=1}^{n} a_{ij}.$$

2. 当 n, m 均为非负整数, $p \le n, q \le m \perp p, q \in \mathbb{N}_+$ 时,有

$$\sum_{\substack{p \le i \le n \\ a < j < m}} a_{ij} = \sum_{i=p}^{n} \sum_{j=q}^{m} a_{ij} = \sum_{j=q}^{m} \sum_{i=p}^{n} a_{ij}.$$

3. 当 n 为非负整数时, 有

$$\sum_{1 \le i \le n} a_{ij} = \sum_{i=1}^{n} \sum_{j=i}^{n} a_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{j} a_{ij}.$$

4. 当 n 为非负整数时, 有

$$\sum_{1 \le i < j \le n} a_{ij} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_{ij} = \sum_{j=2}^{n} \sum_{i=1}^{j-1} a_{ij}.$$

5. 当 n 为非负整数时, 有

$$\sum_{i=1}^{n} a_i \cdot \sum_{j=1}^{n} b_j = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_j.$$

6. 当 n 为非负整数时, 有

$$\left(\sum_{i=1}^{n} a_i\right)^2 = \sum_{i=1}^{n} a_i \cdot \sum_{j=1}^{n} a_j \geqslant 0, \forall a_1, a_2, \cdots, a_n \in \mathbb{R} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j.$$

笔记 如果上述命题第1条中的 n 或 m 取到无穷, 第2条中的 n 取到无穷,则求和号不能直接交换顺序.此时,往往要添加一个条件,相应的交换和号的结论才能成立.比如,著名的 Fubini 定理(见关于无限和的 Fubinin 定理).证明 1.利用矩阵证明该结论.

设一个m行n列的矩阵A为

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix}.$$

则矩阵 A 的第i 行的和记为

$$r_i = \sum_{i=1}^m a_{ij} (i = 1, 2, \dots, n).$$

矩阵 A 的第 j 列的和记为

$$c_j = \sum_{i=1}^n a_{ij} (j = 1, 2, \dots, m).$$

易知,矩阵所有元素的和等于所有行和 r_i , $i=1,2,\cdots,n$ 求和也等于所有列和 c_j , $j=1,2,\cdots,m$ 求和,即

$$\sum_{\substack{1\leq i\leq n\\1\leq j\leq n}}a_{ij}=\sum_{i=1}^nr_i=\sum_{i=1}^n\sum_{j=1}^ma_{ij},$$

$$\sum_{\substack{1 \le i \le n \\ 1 \le i \le n}} a_{ij} = \sum_{j=1}^m c_j = \sum_{j=1}^m \sum_{i=1}^n a_{ij}.$$

故

$$\sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} = \sum_{j=1}^{m} \sum_{i=1}^{n} a_{ij} = \sum_{\substack{1 \le i \le n \\ 1 \le i \le n}} a_{ij}.$$

2. 同理利用矩阵证明该结论.

设一个m行n列的矩阵A为

$$A = \begin{bmatrix} a_{pq} & a_{p,q+1} & \cdots & a_{pm} \\ a_{p+1,q} & a_{p+1,q+1} & \cdots & a_{p+1,m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{nq} & a_{n,q+1} & \cdots & a_{nm} \end{bmatrix}.$$

则矩阵 A 的第i 行的和记为

$$r_i = \sum_{i=0}^{m} a_{ij} (i = p, p + 1, \dots, n).$$

矩阵 A 的第 i 列的和记为

$$c_j = \sum_{i=p}^n a_{ij} (j = q, q+1, \cdots, m).$$

易知,矩阵所有元素的和等于所有行和 r_i , $i=p,p+1,\cdots,n$ 求和也等于所有列和 c_j , $j=q,q+1,\cdots,m$ 求和,即

$$\sum_{\substack{p\leq i\leq n\\q\leq j\leq n}}a_{ij}=\sum_{i=p}^nr_i=\sum_{i=p}^n\sum_{j=q}^ma_{ij},$$

$$\sum_{\substack{p \le i \le n \\ a < i < n}} a_{ij} = \sum_{j=q}^{m} c_j = \sum_{j=q}^{m} \sum_{i=p}^{n} a_{ij}.$$

故

$$\sum_{i=p}^{n} \sum_{j=q}^{m} a_{ij} = \sum_{j=q}^{m} \sum_{i=p}^{n} a_{ij} = \sum_{\substack{p \le i \le n \\ a \le i \le n}} a_{ij}.$$

3. 根据 (1) 的结论可得

$$\sum_{j=1}^{n} \sum_{i=1}^{j} a_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} \chi_{i \le j} (i) \xrightarrow{\underline{1.05 \pm 0}} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \chi_{i \le j} (i) = \sum_{i=1}^{n} \sum_{j=i}^{n} a_{ij}.$$

4. 根据 (1) 的结论可得

$$\sum_{j=2}^{n}\sum_{i=1}^{j-1}a_{ij}=\sum_{j=2}^{n}\sum_{i=1}^{n-1}a_{ij}\chi_{i< j}\left(i\right)\xrightarrow{\underline{1.0488}}\sum_{i=1}^{n-1}\sum_{j=2}^{n}a_{ij}\chi_{i< j}\left(i\right)=\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}a_{ij}.$$

- 5. 结论是显然的.
- 6. 结论是显然的.

注 设 X 是全集, 对任意集合 $A \subset X$, 把函数

$$\chi_A(x) = \begin{cases} 1, x \in A \\ 0, x \notin A \end{cases}.$$

称为集合 A 的示性函数.

例题 2.1 计算

$$\sum_{i=1}^{n} \sum_{i=1}^{n} \frac{i}{2^{i+j} (i+j)}.$$

解 令
$$I = \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{i}{2^{i+j} (i+j)}$$
,则
$$I = \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{i}{2^{i+j} (i+j)} \frac{\frac{i}{4^{i} \frac{1}{2^{i} \frac$$

例题 2.2 记

$$T = \{(a, b, c) \in \mathbb{N}^3 : a, b, c$$
可以构成某个三角形的三边长 $\}$.

证明:

$$\sum_{(a,b,c)\in T} A_{a,b,c} = \sum_{(x,y,z)\in\mathbb{N}^3 \text{ 目有相同的奇偶性}} A_{\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}}.$$

筆记 核心想法: 两个集合间可以建立一一映射.

结论 若 $x, y, z \in \mathbb{N}_+, x, y, z$ 具有相同奇偶性的充要条件为

$$x + y = 2a, y + z = 2b, x + z = 2c, \not = a, b, \in \mathbb{N}_{+}.$$

证明 必要性显然. 下面证明充分性. 假设 x,y,z 具有不同的奇偶性, 则不妨设 x,z 为奇数,y 为偶数. 从而 x+y 一定为奇数, 这与 x+y=2a 矛盾. 故 x,y,z 具有相同奇偶性.

证明 设 $T = \{(a, b, c) \in \mathbb{N}^3 : a, b, c \text{ 可以构成某个三角形的三边长}\}$.

记 $S = \{(x, y, z) \in \mathbb{N}^3 : x, y, z \text{ 有相同的奇偶性}\}$,则对 $\forall (x, y, z) \in S$, 取 $a = \frac{x + y}{2}$, $b = \frac{y + z}{2}$, $c = \frac{z + x}{2}$.此时我们有

$$a + b = \frac{x + 2y + z}{2} > \frac{z + x}{2} = c,$$

$$b + c = \frac{x + y + 2z}{2} > \frac{x + y}{2} = a,$$

$$a + c = \frac{2x + y + z}{2} > \frac{y + z}{2} = b.$$

从而 a,b,c 可以构成某个三角形的三边长, 即此时 $(a,b,c)=(\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2})\in T$. 于是我们可以构造映射

$$\tau:S\to T, (x,y,z)\mapsto (a,b,c)=(\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}).$$

反之, 对 $\forall (a,b,c) \in T$, 取 x = a+c-b, y = a+b-c, z = b+c-a. 此时我们有

$$x + y = 2a, y + z = 2b, x + z = 2c.$$

从而 x, y, z 具有相同的奇偶性, 即此时 $(x, y, z) = (a + c - b, a + b - c, b + c - a) \in S$.

于是我们可以构造映射

$$\tau': T \to S, (a, b, c) \mapsto (x, y, z) = (a + c - b, a + b - c, b + c - a).$$

因此对 $\forall (x, y, z) \in S$, 都有 $\tau \tau'(x, y, z) = \tau' \tau(x, y, z) = (x, y, z)$. 即 $\tau \tau' = I$. 故映射 τ 存在逆映射 τ' . 从而映射 τ 是 双射.

因此集合 S 中的每一个元素都能在集合 T 中找到与之一一对应的元素. 于是两和式 $\sum_{(x,y,z)\in S}A_{\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}}$ 和

 $\sum_{(a,b,c)\in T} A_{a,b,c}$ 的项数一定相同. 并且任取 $\sum_{(x,y,z)\in S} A_{\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}} + (x,y,z)$ 所对应的一项 $A_{\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}}, \sum_{(a,b,c)\in T} A_{a,b,c}$ 中一定存在与之一一对应的 $\tau(x,y,z)$ 所对应的一项 $A_{\tau(x,y,z)}$ 而 $\tau(x,y,z) = (\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2})$,因此 $A_{\tau(x,y,z)} = A_{xy,yz}$

 $A_{\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}}. \ \ \ \ \ \ \ \sum_{(x,y,z)\in S} A_{\frac{x+y}{2},\frac{y+z}{2},\frac{z+x}{2}} = \sum_{(a,b,c)\in T} A_{a,b,c}.$

注 上述证明中逆映射的构造可以通过联立方程 $a = \frac{x+y}{2}, b = \frac{y+z}{2}, c = \frac{z+x}{2}$ 解出 x = a+c-b, y = a+b-c, z = b+c-a 得到.

定理 2.4 (关于无限和的 Fubinin 定理)

设 $f: \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ 是一个使得 $\sum_{(n,m) \in \mathbb{N} \times \mathbb{N}} f(n,m)$ 绝对收敛的函数. 那么

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} f(n,m) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} f(n,m).$$

2.

1.

$$\sum_{n=1}^{\infty} \sum_{m=1}^{n} f(n,m) = \sum_{m=1}^{\infty} \sum_{n=m}^{\infty} f(n,m).$$

 \Diamond

Ŷ 笔记 这个命题是关于求和号换序的基本结论的推广.

证明

例题 **2.3** (PutnamA3) 已知 a_0, a_1, \ldots, a_n, x 是实数, 且 0 < x < 1, 并且满足

$$\frac{a_0}{1-x} + \frac{a_1}{1-x^2} + \dots + \frac{a_n}{1-x^{n+1}} = 0.$$

证明:存在一个0< y < 1,使得

$$a_0 + a_1 y + \dots + a_n y^n = 0$$

证明 由题意可知,将 $\frac{1}{1-r^{k+1}}$ $(k=0,1,\cdots,n)$ 根据幂级数展开可得

$$\sum_{k=0}^{n} \frac{a_k}{1 - x^{k+1}} = \sum_{k=0}^{n} a_k \sum_{i=0}^{+\infty} x^{(k+1)i} = \sum_{k=0}^{n} \sum_{i=0}^{+\infty} a_k x^{(k+1)i}.$$

又因为0 < x < 1,所以几何级数 $\sum_{i=0}^{+\infty} x^{(k+1)i}$ 是绝对收敛的. 从而有限个绝对收敛的级数的线性组合 $\sum_{k=0}^{n} a_k \sum_{i=0}^{+\infty} x^{(k+1)i}$ 也是绝对收敛的. 于是根据关于无限和的 Fubinin 定理可得

$$\sum_{k=0}^{n} \frac{a_k}{1 - x^{k+1}} = \sum_{k=0}^{n} \sum_{i=0}^{+\infty} a_k x^{(k+1)i} = \sum_{i=0}^{+\infty} \sum_{k=0}^{n} a_k x^{(k+1)i} = \sum_{i=0}^{+\infty} x^i \sum_{k=0}^{n} a_k x^{ki}.$$

设 $f(y) = a_0 + a_1 y + \dots + a_n y^n = 0$, $y \in (0,1)$, 则 $f \in \mathbb{C}(0,1)$. 假设对任意的 $y \in (0,1)$, 有 $f(y) \neq 0$. 则 f 要么恒为正数,要么恒为负数. 否则,存在 $y_1, y_2 \in (0,1)$,使得 $f(y_1) > 0$, $f(y_2) < 0$. 那么由连续函数介值定理可知,一定存在 $y_0 \in (0,1)$,使得 $f(y_0) = 0$. 这与假设矛盾. 因此不失一般性,我们假设 f(y) > 0, $\forall y \in (0,1)$. 又由 0 < x < 1 可知, $x^i \in (0,1)$. 从而

$$\sum_{k=0}^{n} \frac{a_k}{1 - x^{k+1}} = \sum_{i=0}^{+\infty} x^i \sum_{k=0}^{n} a_k x^{ki} = \sum_{i=0}^{+\infty} x^i f(x^i) > 0.$$

这与题设矛盾. 故原结论成立.

2.1.2 裂项求和

定理 2.5 (基本结论)

(1) 当 $a,b \in \mathbb{Z}$ 且 $a \leq b$ 时,有

$$\sum_{n=a}^{b} [f(n) - f(n+1)] = f(a) - f(b+1);$$

$$\sum_{n=a}^{b} [f(n+1) - f(n)] = f(b+1) - f(a);$$

$$\sum_{n=a}^{b} [f(n) - f(n-1)] = f(b) - f(a-1);$$

$$\sum_{n=a}^{b} [f(n-1) - f(n)] = f(a-1) - f(b).$$

(2) 当 $a,b,m \in \mathbb{Z}$ 且 $a \leq b$ 时,有

$$\sum_{n=a}^{b} [f(n+m) - f(n)] = \sum_{n=b+1}^{b+m} f(n) - \sum_{n=a}^{a+m-1} f(n);$$
 (2.3)

$$\sum_{n=a}^{b} [f(n) - f(n+m)] = \sum_{n=a}^{a+m-1} f(n) - \sum_{n=b+1}^{b+m} f(n).$$
 (2.4)

证明 (1) 将求和展开后很容易得到证明.

(2) 因为(2) 中上下两个式子(2.3)(2.4) 互为相反数, 所以我们只证明(2.3)即可.

当 $m \ge 0$ 时, 若 $m \le b - a$, 则

$$\sum_{n=a}^{b} [f(n+m) - f(n)]$$

$$= f(a+m) + \dots + f(b) + f(b+1) + \dots + f(b+m) - f(a) - \dots - f(a+m-1) - f(a+m) - \dots - f(b)$$

$$= f(b+1) + \dots + f(b+m) - f(a) - \dots - f(a+m-1)$$

$$= \sum_{n=b+1}^{b+m} f(n) - \sum_{n=a}^{a+m-1} f(n)$$

若m > b - a,则

$$\sum_{n=b+1}^{b+m} f(n) - \sum_{n=a}^{a+m-1} f(n)$$

$$= f(b+1) + \dots + f(a+m-1) + f(a+m) + \dots + f(b+m) - f(a) - \dots - f(b) - f(b+1) - \dots - f(a+m-1)$$

$$= f(a+m) + \dots + f(b+m) - f(a) - \dots - f(b)$$

$$= \sum_{n=a}^{b} [f(n+m) - f(n)]$$

综上, 当
$$m \ge 0$$
时, 有 $\sum_{n=a}^{b} [f(n+m) - f(n)] = \sum_{n=b+1}^{b+m} f(n) - \sum_{n=a}^{a+m-1} f(n)$.

$$\sum_{n=a}^{b} [f(n+m) - f(n)] = \sum_{n=a+m}^{b+m} [f(n) - f(n-m)] = -\sum_{n=a+m}^{b+m} [f(n-m) - f(n)]$$

$$= -\left(\sum_{n=b+m+1}^{b+m-m} f(n) - \sum_{n=a+m}^{a+m-m-1} f(n)\right) = \sum_{n=a+m}^{a-1} f(n) - \sum_{n=b+m+1}^{b} f(n)$$

$$\frac{*^{\frac{b}{7}}}{} + \frac{b}{7} +$$

综上所述,结论得证.

例题 2.4 1. 对 $m \in \mathbb{N}$, 计算 $\sum_{n=1}^{m} \left(\sin n^2 \cdot \sin n \right)$. 2. 对 $n, m \in \mathbb{N}$, 计算 $\sum_{k=1}^{n} \frac{1}{k(k+m)}$.

解 1.

$$\begin{split} &\sum_{n=1}^{m} \left(\sin n^{2} \cdot \sin n \right) = \frac{\Re \ell \ln \frac{1}{2} \Delta \Delta}{m} - \frac{1}{2} \sum_{n=1}^{m} \left[\cos \left(n^{2} + n \right) - \cos \left(n^{2} - n \right) \right] \\ &= -\frac{1}{2} \sum_{n=1}^{m} \left[\cos \left(n \left(n + 1 \right) \right) - \cos \left(n \left(n - 1 \right) \right) \right] \\ &= -\frac{1}{2} \left[\cos \left(m \left(m + 1 \right) \right) - 1 \right] \end{split}$$

2.

$$\sum_{k=1}^{n} \frac{1}{k(k+m)} = \frac{1}{m} \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+m} \right)$$
$$= \frac{1}{m} \left(1 + \frac{1}{2} + \dots + \frac{1}{m} - \frac{1}{n+1} - \frac{1}{n+2} - \dots - \frac{1}{n+m} \right)$$

2.2 求积符号

定义 2.2 (求积符号)

$$\prod_{k=1}^n a_k \stackrel{\triangle}{=\!\!\!=\!\!\!=} a_1 a_2 \cdots a_n.$$

定理 2.6 (基本结论)

当 $p,q \in \mathbb{Z}$ 且 $p \leq q$ 时,有

$$\prod_{n=p}^{q} \frac{a_{n+1}}{a_n} = \frac{a_{q+1}}{a_p};$$

$$\prod_{n=p}^{q} \frac{a_n}{a_{n+1}} = \frac{a_p}{a_{q+1}}.$$

证明 由求积符号定义很容易得到证明.

注 对于正数列的乘积, 我们可以通过取对数的方式, 将其转化为 $\ln \prod_{k=1}^{n} a_k = \sum_{k=1}^{n} \ln a_k$ 来研究.

例题 **2.5** 计算: $\prod_{k=2}^{n} \frac{k^3 - 1}{k^3 + 1}$.

解

$$\prod_{k=2}^{n} \frac{k^3 - 1}{k^3 + 1} = \prod_{k=2}^{n} \left(\frac{k - 1}{k + 1} \cdot \frac{k^2 + k + 1}{k^2 - k + 1} \right) = \prod_{k=2}^{n} \frac{k - 1}{k + 1} \cdot \prod_{k=2}^{n} \frac{k (k + 1) + 1}{k (k - 1) + 1}$$

$$= \frac{1 \cdot 2 \cdot \dots n - 1}{3 \cdot 4 \cdot \dots n + 1} \cdot \frac{n (n + 1) + 1}{2 + 1} = \frac{2}{n + 1} \cdot \frac{n (n + 1) + 1}{3}$$

$$= \frac{2n^2 + 2n + 2}{3n + 3}$$

例题 2.6 证明:

$$\frac{(2n-1)!!}{2n!!}<\frac{1}{\sqrt{2n+1}}, \forall n\in\mathbb{N}.$$

拿 笔记 利用"糖水"不等式: 对任意真分数 $\frac{b}{a}$, a, b, c > 0, 都有 $\frac{b}{a} < \frac{b+c}{a+c}$ 成立. 证明 根据"糖水"不等式, 对 $\forall n \in \mathbb{N}_+$, 我们有

$$\left[\frac{(2n-1)!!}{2n!!}\right]^2 = \left(\prod_{k=1}^n \frac{2k-1}{2k}\right)^2 = \prod_{k=1}^n \frac{2k-1}{2k} \cdot \prod_{k=1}^n \frac{2k-1}{2k}$$

$$< \prod_{k=1}^n \frac{2k-1}{2k} \cdot \prod_{k=1}^n \frac{2k}{2k+1} = \prod_{k=1}^n \frac{2k-1}{2k+1} = \frac{1}{2n+1}$$

故对 $\forall n \in \mathbb{N}_+$, 都有 $\frac{(2n-1)!!}{2n!!} < \frac{1}{\sqrt{2n+1}}, \forall n \in \mathbb{N}$ 成立.

第三章 实数基本定理与上下极限

3.1 实数基本定理

3.1.1 定理介绍

定理 3.1 (实数基本定理)

- 1. 确界存在定理: 有上界的非空数集一定有上确界.
- 2. 单调有界原理: 单调有界数列一定收敛.
- 3. 柯西收敛准则: 数列 $\{x_n\}$ 收敛当且仅当任意 $\varepsilon > 0$, 存在 N 使得任意 m, n > N 都有 $|x_m x_n| < \varepsilon$.
- 4. 闭区间套定理: 闭区间套 $I_n = [a_n, b_n]$ 满足 $I_{n+1} \subset I_n$ 并且 $\lim_{n \to \infty} (a_n b_n) = 0$, 则存在唯一的 ξ , 使得 ξ 属于每一个 I_n .
- 5. 聚点定理: 有界数列必有收敛子列.
- 6. 有限覆盖定理: 有界闭集的任意一族开覆盖, 都存在有限子覆盖.

定义 3.1 (点集相关概念)

- 1. 如果存在 r > 0 使得 $(a r, a + r) \subset A$, 则称 a 是集合 A 的内点 (高维改为开球即可).
- 2. 如果一个集合 A 中的每一个点都是内点, 则称 A 是开集.
- 3. 如果集合 A 中的任意一个收敛序列 x_n 的极限点 x, 都有 $x \in A$, 则称 A 是闭集.
- 4. 设 $B \subset A$, 如果对任意 r > 0 和任意 $x \in A$, 都有 $(x r, x + r) \cap B \neq \emptyset$, 则称 B 在 A 中稠密.

3.1.2 综合应用

例题 3.1 设 $f(x):[0,1] \to [0,1]$ 单调递增且 f(0) > 0, f(1) < 1, 证明: 存在 x 使得 f(x) = x.

管记 因为题目条件中的函数 f 只是一个实值函数,并没有其他更进一步的性质 (连续性、可微性、凸性等). 所以我们只能利用最基本的实数基本定理证明. 证明存在性,考虑反证法会更加简便.

注 f 并不是连续函数, 不能用介值定理.

证明 (反证法) 假设对 $\forall x \in [0,1]$, 都有 $f(x) \neq x$. 将闭区间 [0,1] 记作 $[a_1,b_1]$, 且由条件可知 $f(a_1) > a_1,f(b_1) < b_1$. 令 $c_1 = \frac{a_1 + b_1}{2}$, 若 $f(c_1) > c_1$, 则取 $[a_2,b_2] = [c_1,b_1]$; 若 $f(c_1) < c_1$, 则取 $[a_2,b_2] = [a_1,c_1]$. 从而得到闭区间 $[a_2,b_2] \subset [a_1,b_1]$,并且 $f(a_2) > a_2,f(b_2) < b_2$. 以此类推, 可得到一列闭区间 $\{[a_n,b_n]\}$,并且 $[a_n,b_n] \subset [a_{n+1},b_{n+1}],f(a_n) > a_n,f(b_n) < b_n,\forall n \in \mathbb{N}_+$.

根据闭区间套定理, 可知存在唯一 $\xi = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$, 且 $\xi \in [a_n, b_n]$, $\forall n \in \mathbb{N}_+$. 又由 f(x) 在 [0,1] 上单调递增及 $f(a_n) > a_n$, $f(b_n) < b_n$, $\forall n \in \mathbb{N}_+$, 可知 $a_n < f(a_n) \le f(\xi) \le f(b_n) < b_n$. 令 $n \to \infty$ 可得 $\xi \le f(\xi) \le \xi$, 即 $f(\xi) = \xi$. 这与假设矛盾.

引理 3.1 (Lebesgue 数引理)

如果 $\{O_{\alpha}\}$ 是区间 [a,b] 的一个开覆盖,则存在一个正数 $\delta > 0$,使得对于区间 [a,b] 中的任何两个点 x',x'',只要 $|x'-x''| < \delta$,就存在开覆盖中的一个开区间,它覆盖 x',x''.(称这个数 δ 为开覆盖的 Lebesgue 数.)

管记 本题谢惠民上的证明是利用有限覆盖定理, 而 CMC 红宝书上通过直接构造出 δ 进行证明. 这里我们采用的是聚点定理进行证明.

证明 (反证法) 假设对 $\forall n \in \mathbb{N}_+$, 取 $\delta = \frac{1}{n} > 0$, 都存在相应的 $x_n, y_n \in [a, b]$ 且 $|x_n - y_n| < \delta$, 使得对 $\forall I \in \{O_\alpha\}$, 要 $\Delta x_n \notin I$, 要么 $y_n \notin I$. 由聚点定理可知, 有界数列 $\{x_n\}$, $\{y_n\}$ 一定存在收敛子列. 设 $\{x_{n_k}\}$, $\{y_{m_k}\}$ 为相应的收敛子列,则由 $|x_n - y_n| < \delta = \frac{1}{n}$, $\forall n \in \mathbb{N}_+$ 可知 x_{n_k} , y_{m_k} 收敛于同一个极限点. 故设 $\lim_{k \to \infty} x_{n_k} = \lim_{k \to \infty} y_{m_k} = x_0 \in [a, b]$.

因为 $\{O_{\alpha}\}$ 是区间 [a,b] 的一个开覆盖, 所以存在 $I_0 \in \{O_{\alpha}\}$, 使得 $x_0 \in I_0$. 又由于 I_0 是开集, 因此存在 $\eta > 0$, 使得 $(x_0 - \eta, x_0 + \eta) \subset I_0$. 从而由 $\lim_{k \to \infty} x_{n_k} = \lim_{k \to \infty} y_{m_k} = x_0 \in [a,b]$ 可知, 存在充分大的 K, 使得 $|x_{n_K} - x_0| < \eta$, $|y_{m_K} - x_0| < \eta$. 于是 $x_{n_K}, y_{m_K} \in (x_0 - \eta, x_0 + \eta) \subset I_0$. 即开区间 $I_0 \in \{O_{\alpha}\}$ 同时覆盖了 x_{n_K}, y_{m_K} 这两个点,与假设矛盾.

注 注意对于两个收敛子列 $\{x_{n_k}\}$, $\{y_{m_k}\}$, 此时 $n_k = m_k$ 并不一定对 $\forall k \in \mathbb{N}_+$ 都成立, 即这两个收敛子列的指标集 $\{n_k\}_{k=1}^{\infty}$, $\{m_k\}_{k=1}^{\infty}$, 不相同也不一定有交集, 故无法利用聚点定理反复取子列的方法取到两个指标相同且同时收敛 的子列 $\{x_{n_k}\}_{k=1}^{\infty}$, $\{y_{n_k}\}_{k=1}^{\infty}$ (取 $\{x_n\}$ 为一个奇子列收敛, 偶子列发散的数列; 取 $\{y_n\}$ 为一个奇子列发散, 偶子列收敛的数列就能得到反例。).

例题 3.2

- 1. 设 f(x) 定义在 \mathbb{R} 中且对任意 x, 都存在与 x 有关的 r > 0, 使得 f(x) 在区间 (x r, x + r) 中为常值函数, 证明: f(x) 是常值函数.
- 2. 设 f(x) 是定义在 [a,b] 中的实值函数, 如果对任意 $x \in [a,b]$, 均存在 $\delta_x > 0$ 以及 M_x , 使得 $|f(y)| \le M_x$, $\forall y \in (x \delta_x, x + \delta_x) \cap [a,b]$, 证明: f(x) 是有界的.
- 3. 设 f(x) 定义在 \mathbb{R} 上, 对任意 $x_0 \in \mathbb{R}$ 均存在与 x_0 有关的 $\delta > 0$, 使得 f(x) 在 $(x_0 \delta, x_0 + \delta)$ 是单调递增的, 证明: f 在整个 \mathbb{R} 上也是单调递增的.

证明

1. 证法一 (有限覆盖定理)(不建议使用):对任意 $x \in [a,b]$, 存在 $r_x > 0$ 使得 f(t) 在区间 $(x - r_x, x + r_x)$ 为常值函数,则 $\bigcup_{x \in [a,b]} (x - r_x, x + r_x) \supset [a,b]$, 故存在其中有限个区间 $(x_k - r_k, x_k + r_k)$, $1 \le k \le n$ 使得他们的并集包含 [a,b].

直观来看只需要将这些区间"从小到大"排列,就可以依次推出每一个区间上都是相同的一个常值函数,但是所谓"从小到大"排列目前是无法准确定义的,所以这样说不清楚,优化如下:

方案 1: 选择其中个数尽可能少的区间, 使得它们的并集可以覆盖 [a,b] 但是任意删去一个都不可以 (这是能够准确定义的一个操作), 此时区间具备性质 "任意一个不能被其余的并集盖住", 接下来将这些区间按照左端点的大小关系来排序, 去论证它们确实是如你所想的那样 "从小到大"排列的 (关注右端点), 进而得证.

方案 2: 利用Lebesgue 数引理, 将区间 [a,b] 分为有限个 $[a,a+\delta]$, $[a+\delta,a+2\delta]$, \cdots , $[a+n\delta,b]$, 其中 δ 是 Lebesgue 数. 则每一个闭区间都可以被开覆盖中的某一个开区间覆盖住, 于是分段常值函数, 并且还能拼接 起来, 所以是常值函数.

证法二 (确界存在定理):(反证法) 假设存在 $a,b \in \mathbb{R}$, 使得 $f(a) \neq f(b)$. 构造数集

$$E = \left\{x \in [a, b] \mid f(t) = f(a), \forall t \in [a, x]\right\}.$$

从而 $E \neq \emptyset$ 且 $E \in [a,b]$. 于是由确界存在定理, 可知数集 E 存在上确界, 设 $x_0 = \sup E$.

如果 $f(a) \neq f(x_0)$, 则由条件可知, 存在 $r_0 > 0$, 使得 $f(t) = f(x_0), \forall t \in (x_0 - r_0, x_0 + r_0)$. 由 $x_0 = \sup E$ 可知, 存在 $x_1 \in (x_0 - r_0, x_0)$ 且 $x_1 \in E$. 于是 $f(t) = f(a), \forall t \in [a, x_1]$. 从而 $f(t) = f(a) = f(x_0), \forall t \in (x_0 - r_0, x_1)$. 这 与 $f(x_0) \neq f(a)$ 矛盾.

如果 $f(a) = f(x_0)$, 则由条件可知, 存在 $r_1 > 0$, 使得 $f(t) = f(x_0) = f(a)$, $\forall t \in (x_0 - r_1, x_0 + r_1)$. 又由 $x_0 = \sup E$ 可知, 存在 $x_2 \in (x_0 - r_1, x_0)$ 且 $x_2 \in E$. 于是 f(t) = f(a), $\forall t \in [a, x_2]$. 进而对 $\forall t \in [a, x_2] \cup (x_0 - r_1, x_0 + \frac{r_1}{2}] = [a, x_0 + \frac{r_1}{2}]$, 有 f(t) = f(a). 从而 $x_0 + \frac{r_1}{2} \in E$, 这与 $x_0 = \sup E$ 矛盾. 故假设不成立,命题得证.

证法三 (闭区间套定理):(反证法) 假设存在 $a,b \in \mathbb{R}$, 使得 $f(a) \neq f(b)$. 不妨设 f(a) < f(b), 则记闭区间 $[a,b] = [a_1,b_1]$. 若 $f(\frac{a_1+b_1}{2}) > f(a_1)$, 则记闭区间 $[a_1,\frac{a_1+b_1}{2}] = [a_2,b_2]$; 若 $f(\frac{a_1+b_1}{2}) < f(b_1)$, 则记闭区间 $[\frac{a_1+b_1}{2},b_1] = [a_2,b_2]$. 以此类推, 可以得到一列闭区间 $\{[a_n,b_n]\}$, 满足 $[a_n,b_n] \subset [a_{n+1},b_{n+1}]$, $f(a_n) < [a_n,b_n]$

 $f(b_n), \forall n \in \mathbb{N}_+$. 由闭区间套定理, 可知存在唯一 $\xi = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$, 且 $\xi \in [a_n, b_n]$. 又由条件可知, 存在 r > 0, 使得 $f(t) = f(\xi), \forall t \in (\xi - r, \xi + r)$. 从而存在充分大的 $N \in \mathbb{N}_+$, 使得 $|a_N - \xi| < r, |b_N - \xi| < r$, 即 $a_N, b_N \in (\xi - r, \xi + r)$. 于是 $f(a_N) = f(b_N)$, 这与 $f(a_N) < f(b_N)$ 矛盾.

- 2. (聚点定理):(反证法) 假设 f(x) 在 [a,b] 上无界,则对 $\forall n > 0$,都存在 $x_n \in [a,b]$,使得 $|f(x_n)| > n$.从而得到一个有界数列 $\{x_n\}$.由聚点定理,可知其存在收敛子列 $\{x_{n_k}\}$,设 $\lim_{k \to \infty} x_{n_k} = x_0$.由条件可知,存在 $\delta_{x_0} > 0$ 以及 M_{x_0} ,使得 $|f(y)| \leq M_{x_0}$, $\forall y \in (x_0 \delta_{x_0}, x_0 + \delta_{x_0})$.又由 $\lim_{k \to \infty} x_{n_k} = x_0$ 可知,存在 $K > M_{x_0}$,使得 $|x_{n_K} x_0| < \delta_{x_0}$,即 $x_{n_K} \in (x_0 \delta_{x_0}, x_0 + \delta_{x_0})$.于是 $|f(x_{n_K})| \leq M_{x_0}$.而 $|f(x_{n_K})| > n_K \geq K > M_{x_0}$ 矛盾.
- 3. (闭区间套定理):(反证法) 假设存在 $a,b \in \mathbb{R}$, 使得 $f(a) \geq f(b)$. 记闭区间 $[a,b] = [a_1,b_1]$, 若 $f\left(\frac{a_1+b_1}{2}\right) \leqslant f(a_1)$, 则记闭区间 $\left[a_1,\frac{a_1+b_1}{2}\right] = [a_2,b_2]$; 若 $f\left(\frac{a_1+b_1}{2}\right) \geqslant f(b_1)$, 则记闭区间 $\left[\frac{a_1+b_1}{2},b_1\right] = [a_2,b_2]$. 以此类推, 可以得到一列闭区间 $\{[a_n,b_n]\}$, 满足 $[a_n,b_n] \subset [a_{n+1},b_{n+1}]$, $f(a_n) \geqslant f(b_n)$, $\forall n \in \mathbb{N}_+$. 由闭区间 套定理, 可知存在唯一 $\xi = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$, 且 $\xi \in [a_n,b_n]$. 由条件可知, 存在 $\delta > 0$, 使得 f(x) 在区间 $(\xi-\delta,\xi+\delta)$ 上单调递增. 又由 $\xi = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$ 可知, 存在 N > 0, 使得 $|a_N-\xi| < \delta$, 即 $a_N,b_N \in (\xi-\delta,\xi+\delta)$, 且 $a_N < b_N$. 于是 $f(a_N) \leqslant f(b_N)$. 而 $f(a_N) \geqslant f(b_N)$, 这就产生了矛盾.

引理 3.2

设 f(x) 定义在区间 I 中, 则 f(x) 的全体极值构成的集合是至多可数集.

证明 极值只有极大值和极小值,因此只要证明极大值全体与极小值全体都是至多可数的即可.

设 f(x) 的全体极小值构成的集合为 A,则

$$A = \{ f(x) | \exists \delta > 0, \forall t \in (x - \delta, x + \delta), f(t) \ge f(x) \}.$$

故对 $\forall y \in A$, 都存在 $x \in I$, 使得 y = f(x), 并且 $\exists \delta > 0$, $\forall t \in (x - \delta, x + \delta)$, $f(t) \geqslant f(x)$. 由有理数的稠密性可知, 存在 $r \in (x - \delta, x) \cap \mathbb{Q}$, $s \in (x, x + \delta) \cap \mathbb{Q}$. 从而 $(r, s) \subset (x - \delta, x + \delta)$, 于是对 $\forall t \in (r, s)$, 同样有 $f(t) \geqslant f(x)$.

再设全体有理开区间构成的集合为 B, 现在定义一个映射

$$\varphi: A \longrightarrow B; \quad y \longmapsto (r, s).$$

任取 $y_1, y_2 \in A$ 且 $y_1 \neq y_2$, 则存在 $x_1, x_2 \in I$, 使得 $f(x_1) = y_1, f(x_2) = y_2$. 假设 $\varphi(y_1) = \varphi(y_2) = (r_0, s_0)$, 则 对 $\forall t \in (r_0, s_0)$, 都有 $f(t) \geq y_1, y_2$. 于是 $y_1 = f(x_1) \geq y_2, y_2 = f(x_2) \geq y_1$, 从而 $y_1 = y_2$, 这产生了矛盾. 故 $\varphi(y_1) \neq \varphi(y_2)$, 因此 φ 是单射.

而由全体有理开区间构成的集合 B 是至多可数的,因此 f(x) 的全体极小值构成的集合 A 也是至多可数的. 同理, f(x) 的全体极大值构成的集合也是至多可数的.

注 由全体有理开区间构成的集合 B 是可数集的原因:

构造一个映射

$$\phi: B \longrightarrow \mathbb{Q} \times \mathbb{Q}; \quad (r,s) \longmapsto (r,s) \, .$$

显然 ϕ 是一个双射, 而 $\mathbb{Q} \times \mathbb{Q}$ 是可数集, 故 B 也是可数集.

例题 3.3 设 f(x) 在区间 I 中连续, 并且在每一点 $x \in I$ 处都取到极值, 证明: f(x) 是常值函数.

注 连续这一条件不可删去, 也不可减弱为至多在可数个点不连续. 反例: 考虑黎曼函数即可, 它处处取极值, 并且在有理点不连续, 无理点连续.

证明 证法一(引理 3.2):(反证) 假设 f(x) 不是常值函数,则存在 $a,b \in I$,使得 $f(a) \neq f(b)$.由 f 的连续性及连续函数的介值性可知,f(x) 可以取到 f(a),f(b) 中的一切值.故 f(x) 的值域是不可数集(区间都是不可数集).又由条件可知,f(x) 的值域就是由 f(x) 的全体极值构成的.于是根据引理 3.2可得,f(x) 的值域是至多可数集.这与 f(x) 的值域是不可数集矛盾.

证法二(闭区间套定理):假设 f(x) 不是常值函数,则存在 $a_1,b_1 \in I$,使得 $f(a_1) \neq f(b_1)$. 不妨设 $f(a_1) < f(b_1)$. 因为 f 在 I 上连续, 所以由介值定理可知,存在 $c_1 \in [a_1,b_1]$,使得 $f(a_1) < f(c_1) = \frac{f(a_1) + f(b_1)}{2} < f(b_1)$. 若

 $b_1 - c_1 \leqslant \frac{b_1 - a_1}{2}$, 则令 $[a_2, b_2] = [c_1, b_1]$; 若 $c_1 - a_1 \leqslant \frac{b_1 - a_1}{2}$, 则令 $[a_2, b_2] = [a_1, c_1]$. 无论哪种情况, 都有 $f(a_2) < f(b_2)$.

在 $[a_2,b_2]$ 上重复上述操作, 并依次类推下去, 得到一列闭区间套 $\{[a_n,b_n]\}$ 满足

$$[a_n, b_n] \subset [a_{n+1}, b_{n+1}], f(a_n) < f(b_n), \forall n \in \mathbb{N}_+.$$

由闭区间套定理可知, 存在唯一 $x_0 \in \bigcap_{n=1}^{\infty} [a_n, b_n]$, 使得 $x_0 = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$. 再由 f 的连续性以及 Heine 归结原则可知, $f(a_n)$ 严格递增收敛于 $f(x_0)$, $f(b_n)$ 严格递减收敛于 $f(x_0)$. 故 $f(a_n) < f(x_0) < f(b_n)$, $\forall n \in \mathbb{N}_+$. 因此对 $\forall \delta > 0$, 都存在 N > 0, 使得 $|a_N - x_0| < \delta$, $|b_N - x_0| < \delta$, 并且 $f(a_N) < f(x_0) < f(b_N)$. 从而 $x_0 \in I$ 不是 f(x) 的极值点, 这与 f 在 I 上处处取极值矛盾.

定理 3.2 (Baire 纲定理)

- 1. 设 $A_n \subset \mathbb{R}$ 是一列没有内点的闭集,则 $\bigcup_{n=1}^{\infty} A_n$ 也没有内点.
- 2. 设 $A_n \subset \mathbb{R}$ 是一列开集并且都在 \mathbb{R} 稠密, 则 $\bigcap_{n=1}^{\infty} A_n$ 也在 \mathbb{R} 中稠密.
- 3. 设 $A_n \subset \mathbb{R}$ 是一列闭集, 并且 $A = \bigcup_{n=1}^{\infty} A_n$ 也是闭集, 则存在开区间 (a,b)(可以无穷区间) 和正整数 N 使得 $(a,b) \cap A \subset A_N$.
- 4. 设 A_n 是一列无处稠密集 (闭包没有内点), 则 $\bigcup_{n=1}^{\infty} A_n$ 也没有内点.

证明

1. 用反证法. 设 $x_0 \in A = \bigcup_{n=1}^{\infty} A_n$ 为内点,则存在 $\delta_0 > 0$,使得 $[x_0 - \delta_0, x_0 + \delta_0] \subset A$. 因为 A_1 没有内点,故存在 $x_1 \in (x_0 - \delta_0, x_0 + \delta_0) - A_1$.由于 A_1 为闭集,故存在 $\delta_1 > 0$,使得

$$[x_1 - \delta_1, x_1 + \delta_1] \subset (x_0 - \delta_0, x_0 + \delta_0), \quad [x_1 - \delta_1, x_1 + \delta_1] \cap A_1 = \emptyset$$

不妨设 $\delta_1 < 1$. 因为 A_2 没有内点, 故存在 $x_2 \in (x_1 - \delta_1, x_1 + \delta_1) - A_2$. 由于 A_2 为闭集, 故存在 $\delta_2 > 0$, 使得

$$[x_2 - \delta_2, x_2 + \delta_2] \subset (x_1 - \delta_1, x_1 + \delta_1), \quad [x_2 - \delta_2, x_2 + \delta_2] \cap A_2 = \emptyset$$

不妨设 $\delta_2 < \frac{1}{2}$. 如此继续, 我们得到闭区间套

$$[x_1 - \delta_1, x_1 + \delta_1] \supset [x_2 - \delta_2, x_2 + \delta_2] \supset \cdots \supset [x_n - \delta_n, x_n + \delta_n] \supset \cdots,$$

使得 $[x_n - \delta_n, x_n + \delta_n] \cap A_n = \emptyset$, $\delta_n < \frac{1}{n} (n \ge 1)$. 根据闭区间套原理, 存在 $\xi \in [x_n - \delta_n, x_n + \delta_n]$, $\forall n \ge 1$. 因此 $\xi \notin \bigcup_{n \ge 1} A_n = A$, 这和 $\xi \in [x_1 - \delta_1, x_1 + \delta_1] \subset (x_0 - \delta_0, x_0 + \delta_0) \subset A$ 相矛盾.

2.

3.

4

例题 3.4 设数列 a_n 单调递增趋于正无穷, 并且 $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}\leqslant 1$, 函数 f(x) 定义在 $(0,+\infty)$ 中且对任意 $x\geq 1$ 都有 $\lim_{n\to\infty}f(a_nx)=0$.

- 1. 若 f(x) 是连续函数,证明: $\lim_{x\to+\infty} f(x) = 0$;
- 2. 若删去连续这一条件, 或者虽然连续, 但是 $\overline{\lim}_{n\to\infty} \frac{a_{n+1}}{a_n} > 1$, 则上述结论均不成立.

证明

1. 对任意 $\varepsilon > 0$, 定义 $E_n = \{x \ge 1 | \forall k \ge n, |f(a_k x)| \le \varepsilon\}$, 则 E_n 是一列闭集, 根据条件有 $\bigcup_{n=1}^{\infty} E_n = [1, +\infty)$. 于是根据 baire 纲定理可知存在正整数 N 和区间 (u, v) 使得 $(u, v) \subset E_N$, 也就是说, 任意 $x \in (u, v)$, 任意 $n \ge N$ 都有 $|f(a_n x)| \le \varepsilon$, 换句话说我们得到了一个一致的 N. 因此 |f(x)| 在区间 $(a_N u, a_N v)$, $(a_{N+1} u, a_{N+1} v)$, …

中都是不超过 ε 的,只要这些区间在n很大之后能够相互有重叠,一个接着下一个,全覆盖就行了.换句话 说, 我们要证明: 存在 N_0 使得任意 $n \ge N_0$ 都有 $a_{n+1}u < a_nv$, 这等价于 $\frac{a_{n+1}}{a_n} < \frac{v}{u}$, 注意条件: 极限等于 1 并 且右端 $\frac{\nu}{\mu}>1$, 所以上式成立. 将前面推导的东西梳理一下, 就是说: 任意 $\varepsilon>0$, 存在 M 使得 x>M 时恒有 $|f(x)| < \varepsilon$, 结论得证.

2. 例如考虑 $a_n = n$, 定义 f(x) 为: 当 $x = m \cdot 2^{\frac{1}{k}}, m \in \mathbb{N}^+$ 时候取 1, 其余情况都取 0, 则对任意的 x > 0, 数列 f(nx) 中都至多只有一项为 1, 因此极限总是 0, 但是很明显 f(x) 的极限并不存在. 另外一个反例, 可以考虑 $a_n = e^n$, 现在有连续性, 条件为

$$\lim_{n \to \infty} f(e^n) = \lim_{n \to \infty} f(e^{n + \ln x}) = 0$$

将 $\ln x \in \mathbb{R}$ 看成一个变量, 相应的考虑 $g(x) = f(e^x)$, 则连续函数 g(x) 定义在 \mathbb{R} 上且满足 $\lim_{x \to \infty} g(y+n) = g(x)$ $\lim_{x \to \infty} f(e^{y+n}) = 0, \forall y \in \mathbb{R}$, 我们构造一个例子使得 g(x) 在无穷处极限非零或者不存在即可. 这与经典的命题 有关: 设 f(x) 一致连续且 $f(x+n) \to 0$ 对任意 x 成立, 则 $f(x) \to 0$, 现在删去了一致连续性命题自然是错 的,具体构造留作习题.

<u>注</u> 通常, 点态收敛 (上题) 或者数列极限 (本题) 这种非一致性的条件, 描述起来是"任意 $x \in (0,1)$, 任意 $\varepsilon > 0$, 存在 N 使得任意 n>N 都有 $|f_n(x)-f(x)|<\varepsilon$ " 或者"任意 x>0, 任意 $\varepsilon>0$, 存在 N 使得任意 n>N 都有 $|f(a_nx)| < \varepsilon$ ", 很明显这里的 N 是与 x, ε 都有关系的, 如果我们事先取定 $\varepsilon > 0$, 那么这个过程可以说是"给定 x, 去找对应的 N". 而 baire 纲定理的想法就是反过来找: 不同的 x 对应的 N 确实可以不一样, 那就先取好 N, 我们 看都有哪些 x 对应到这一个 N, 也就是说事先取定 $\varepsilon > 0$, 然后对每一个 n 去定义集合, 反找 x. 所有 baire 纲定理 相关的问题, 思想都是如此, 根据定理便能得到一个一致的东西, 拿来做事情.

例题 3.5 设 f(x) 在区间 (0,1) 中可导, 证明: f'(x) 在 (0,1) 中的一个稠密子集中连续.

证明

引理 3.3

有界数列 x_n 如果满足 $\lim_{n\to\infty} (x_{n+1}-x_n)=0$, 则 x_n 的全体聚点构成一个闭区间.

证明

例题 3.6 设连续函数 $f(x):[0,1] \to [0,1], x_1 \in [0,1], x_{n+1} = f(x_n)$, 证明: 数列 $\{x_n\}$ 收敛的充要条件是 $\lim_{x \to \infty} (x_{n+1} - x_n)$

证明 必要性 (⇒): 若 $\{x_n\}$ 收敛, 则 $\lim_{n \to \infty} (x_{n+1} - x_n) = 0$ 显然成立. 充分性 (←):

3.2 上下极限

命题 3.1 (子列极限命题)

(a): 给定 $x \in \mathbb{R} \cup \{+\infty, -\infty\}$, $\lim_{n \to \infty} x_n = x$ 的充分必要条件是对任何广义存在的 $\lim_{k \to \infty} x_{n_k}$, 都有 $\lim_{k \to \infty} x_{n_k} = x$. (b): 设 $m \in \mathbb{N}$, 若 $\lim_{n \to \infty} x_{mn+r}$, $\forall r = 0, 1, 2, \cdots, m-1$ 相同, 则 $\lim_{n \to \infty} x_n$ 存在且 $\lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{mn}$.

笔记 当 m = 2, 上述命题是在说如果序列奇偶子列极限存在且为同一个值, 则序列的极限存在且极限和偶子 列极限值相同. 所谓奇偶. 就是看除以 2 的余数是 1 还是 0. 对一般的 m ∈ ≥, 我们也可以看除以 m 的余数是 $\{0,1,2,\cdots,m-1\}$ 中的哪一个来对整数进行分类, 即 $\operatorname{mod} m$ 分类. 严格的说, 我们有无交并

$$\mathbb{Z} = \bigcup_{r=0}^{m-1} \{ mk + r : k \in \mathbb{Z} \}.$$

证明 对 (a): 考虑上下极限即可.

对 (b): 记 $A riangleq \lim_{n \to \infty} x_{mn}$. 事实上对任何 $\varepsilon > 0$, 存在 $N \in \mathbb{N}$, 使得当 k > N 时, 我们有

$$|x_{mk+r} - A| < \varepsilon, \forall r \in \{0, 1, 2, \cdots, m - 1\}.$$
 (3.1)

我们知道对任何正整数 n > mN + m - 1, 存在唯一的 $r \in \{0, 1, 2, \cdots, m - 1\}$ 和 k > N, 使得 n = km + r, 于是运用(3.1)我们有 $|x_n - A| < \varepsilon$, 因此我们证明了

$$\lim_{n\to\infty} x_n = A = \lim_{n\to\infty} x_{mn}.$$

定义 3.2 (上下极限的定义)

我们定义

$$\overline{\lim}_{n \to \infty} a_n \triangleq \lim_{n \to \infty} \sup_{k \ge n} a_k, \underline{\lim}_{n \to \infty} a_n \triangleq \lim_{n \to \infty} \inf_{k \ge n} a_k. \tag{3.2}$$

� 笔记 注意到由定义, $\sup_{k\geq n}a_k$ 是单调递减的, $\inf_{k\geq n}a_k$ 是单调递增的. 因此(3.2)式的极限存在或为确定符号的 ∞.

命题 3.2 (上下极限的等价定义)

假定 $\{a_n\}$ 是个实数列,则有

- (1): 设 A 是某个实数,则 $\overline{\lim}_{n\to\infty} a_n = A$ 的充分必要条件是对任何 $\varepsilon > 0$,存在无穷多个 n,使得 $a_n > A \varepsilon$ 且 存在 $N \in \mathbb{N}$,使得 $a_n \le A + \varepsilon$, $\forall n \ge N$.
- (2): $\overline{\lim} a_n = +\infty$ 的充分必要条件是对任何 A > 0, 存在 n, 使得 $a_n > A$.
- (3): 设 A 是某个实数,则 $\lim_{n\to\infty} a_n = A$ 的充分必要条件是对任何 $\varepsilon > 0$,存在无穷多个 n,使得 $a_n < A + \varepsilon$ 且存在 $N \in \mathbb{N}$,使得 $a_n \geq A \varepsilon$, $\forall n \geq N$.
- (4): $\lim_{n \to \infty} a_n = -\infty$ 的充分必要条件是对任何 A < 0, 存在 n, 使得 $a_n < A$.

命题 3.3 (上下极限的性质)

我们有如下的

- 1. $\overline{\lim}_{n\to\infty}(a_n+b_n) \leq \overline{\lim}_{n\to\infty}a_n+\overline{\lim}_{n\to\infty}b_n$.
- $2. \overline{\lim}_{n \to \infty} a_n = \underline{\lim}_{n \to \infty} (-a_n).$
- 3. $\underline{\lim}_{n\to\infty}(a_n+b_n)\geq \underline{\lim}_{n\to\infty}a_n+\underline{\lim}_{n\to\infty}b_n$.
- 4. 若 $\lim_{n \to +\infty} b_n = b$, $\overline{\lim}_{n \to +\infty} a_n = a$, 则 $\overline{\lim}_{n \to +\infty} a_n b_n = ab$.

笔记 上下极限的性质都可以通过考虑其子列的极限快速得到证明. 因此我们一般不需要额外记忆上下极限的性质,只需要熟悉通过考虑子列极限直观地得到结论即可. 并且因为上下极限就是(最大/最小)子列极限,所以一般极限的性质对于上下极限都成立.

证明 1.

- 2.
- 3.
- 4. 由于 $\overline{\lim_{n\to +\infty}} a_n = a$,因此我们可设 $\lim_{k\to +\infty} a_{n_k} = a$. 根据极限的四则运算法则,可知 $\lim_{n\to +\infty} a_{n_k} b_{n_k} = ab$. 从而 $\overline{\lim_{n\to +\infty}} a_n b_n \geqslant \lim_{n\to +\infty} a_{n_k} b_{n_k} = ab$. 又由上下极限的性质,可知 $\overline{\lim_{n\to +\infty}} a_n b_n \leqslant \overline{\lim_{n\to +\infty}} a_n \cdot \overline{\lim_{n\to +\infty}} b_n = ab$. 故 $\overline{\lim_{n\to +\infty}} a_n b_n = ab$.

例题 3.7 求上极限

$$\overline{\lim}_{n \to +\infty} n \sin \left(\pi \sqrt{n^2 + 1} \right)$$
.

解 注意到

$$n\sin\left(\pi\sqrt{n^2+1}\right) = n\sin\left(\pi\sqrt{n^2+1} - n\pi + n\pi\right) = (-1)^n n\sin\left(\pi\sqrt{n^2+1} - n\pi\right) = (-1)^n n\sin\frac{\pi}{\sqrt{n^2+1} + n}$$

又因为

$$\lim_{n\to+\infty} n\sin\frac{\pi}{\sqrt{n^2+1}+n} = \lim_{n\to+\infty} \frac{n\pi}{\sqrt{n^2+1}+n} = \lim_{n\to+\infty} \frac{\pi}{\sqrt{1+\frac{1}{n^2}+1}} = \frac{\pi}{2}.$$

所以

$$\overline{\lim}_{n \to +\infty} n \sin\left(\pi \sqrt{n^2 + 1}\right) = \overline{\lim}_{n \to +\infty} (-1)^n n \sin\frac{\pi}{\sqrt{n^2 + 1} + n} = \frac{\pi}{2}.$$

注 本题最后一个等号其实是直接套用了一个上极限的性质得到的.

命题 3.4

对任何 $\varepsilon > 0$, 存在 $N \in \mathbb{N}$, 使得

$$f_1(n,\varepsilon) \le a_n \le f_2(n,\varepsilon), \forall n \ge N,$$

这里

$$\lim_{\varepsilon \to 0^+} \lim_{n \to \infty} f_2(n, \varepsilon) = \lim_{\varepsilon \to 0^+} \lim_{n \to \infty} f_1(n, \varepsilon) = A \in \mathbb{R}.$$

证明 $\lim a_n = A$.

室 笔记 以后可以直接使用这个命题. 但是要按照证法一的格式书写.

证明 证法一(利用上下极限)(也是实际做题中直接使用这个命题的书写步骤):

已知对 $\forall \varepsilon > 0$, 存在 $N \in \mathbb{N}$, 使得

$$f_1(n,\varepsilon) \le a_n \le f_2(n,\varepsilon), \forall n \ge N,$$

上式两边 $\circ n \to +\infty$. 则有

$$\underline{\lim_{n \to +\infty}} f_1(n, \varepsilon) \le \underline{\lim_{n \to +\infty}} a_n, \overline{\lim_{n \to +\infty}} a_n \le \overline{\lim_{n \to +\infty}} f_2(n, \varepsilon), \forall \varepsilon > 0.$$

由 ε 的任意性, 两边 $\varphi \varepsilon \to 0^+$, 可得

$$A = \lim_{\varepsilon \to 0^+} \underline{\lim}_{n \to +\infty} f_1(n, \varepsilon) \le \underline{\lim}_{n \to +\infty} a_n, \overline{\lim}_{n \to +\infty} a_n \le \lim_{\varepsilon \to 0^+} \overline{\lim}_{n \to +\infty} f_2(n, \varepsilon) = A.$$

又显然有 $\underline{\lim} a_n \leq \overline{\lim}_{n \to +\infty} a_n$, 于是

$$A = \lim_{\varepsilon \to 0^+} \lim_{n \to +\infty} f_1(n, \varepsilon) \le \lim_{n \to +\infty} a_n \le \lim_{n \to +\infty} a_n \le \lim_{\varepsilon \to 0^+} \overline{\lim}_{n \to +\infty} f_2(n, \varepsilon) = A.$$

故由夹逼准则可得 $\lim_{n\to\infty} a_n = A$.

证法二 $(\varepsilon - \delta$ 语言):

 $\forall \varepsilon > 0$, 记 $g_1(\varepsilon) = \lim_{n \to +\infty} f_1(n, \varepsilon), g_2(\varepsilon) = \lim_{n \to +\infty} f_2(n, \varepsilon)$. 由 $\lim_{\varepsilon \to 0^+} g_1(\varepsilon) = \lim_{\varepsilon \to 0^+} g_2(\varepsilon) = A$, 可知对 $\forall \eta > 0$, 存在 $\delta > 0$, 使得

$$g_1(\delta) > A - \frac{\eta}{2}, g_2(\delta) < A + \frac{\eta}{2}.$$

由于 $g_1(\delta) = \lim_{n \to +\infty} f_1(n, \delta), g_2(\delta) = \lim_{n \to +\infty} f_2(n, \delta),$ 因此存在 $N' \in \mathbb{N}$, 使得

$$f_1(n,\delta) > g_1(\delta) - \frac{\eta}{2}, f_2(n,\delta) < g_2(\delta) + \frac{\eta}{2}, \forall n > N'.$$

又由条件可知,存在 $N \in \mathbb{N}$,使得

$$f_1(n,\delta) \leqslant a_n \leqslant f_2(n,\delta), \forall n > N.$$

于是当 $n > \max\{N, N'\}$ 时, 对 $\forall \eta > 0$, 我们都有

$$A-\eta < g_1(\delta) - \frac{\eta}{2} < f_1(n,\delta) \leqslant a_n \leqslant f_2(n,\delta) < g_2(\delta) + \frac{\eta}{2} < A + \eta.$$

故由夹逼准则可知 $\lim_{n\to+\infty} a_n = A$. 例题 3.8 设 $\lim_{n\to\infty} x_n = x$, 证明:

$$\lim_{n \to \infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k = x.$$

笔记 可以不妨设 x=0 的原因: 假设当 x=0 时, 结论成立, 则当 $x\neq 0$ 时, 令 $y_n=x_n-x$, 则 $\lim_{n\to +\infty}y_n=0$. 从而由假

$$0 = \lim_{n \to +\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k y_k = \lim_{n \to +\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k (x_k - x) = \lim_{n \to +\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k - x \lim_{n \to +\infty} \frac{$$

于是
$$\lim_{n\to+\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k = x$$
.

证明 不妨设 x = 0. 则对 $\forall N > 0$, 当 n > N 时, 我们有

$$\begin{split} 0 &\leqslant \left| \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k \right| = \left| \frac{1}{2^n} \sum_{k=0}^N C_n^k x_k \right| + \left| \frac{1}{2^n} \sum_{k=N+1}^n C_n^k x_k \right| \\ &\leqslant \left| \frac{1}{2^n} \sum_{k=0}^N C_n^k x_k \right| + \frac{1}{2^n} \sum_{k=N+1}^n C_n^k \sup_{k \geqslant N+1} |x_k| \leqslant \left| \frac{1}{2^n} \sum_{k=0}^N C_n^k x_k \right| + \frac{1}{2^n} \sum_{k=0}^n C_n^k \sup_{k \geqslant N+1} |x_k| \\ &= \left| \frac{1}{2^n} \sum_{k=0}^N C_n^k x_k \right| + \sup_{k \geqslant N+1} |x_k| \end{split}$$

上式两边同时令 $n \to +\infty$, 则结合 $\lim_{n \to +\infty} \left| \frac{1}{2^n} \sum_{k=0}^{N} C_n^k x_k \right| = \frac{\mathbb{E}[X]}{\mathbb{E}[X]} \left| \frac{\mathbb{E}[X]}{\mathbb{E}[X]} \left| \frac{\mathbb{E}[X]}{\mathbb{E}[X]} \right| = \mathbb{E}[X]$ 0, 可得 $\overline{\lim_{n \to +\infty}} \left| \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k \right| \leqslant \sup_{k \geqslant N+1} |x_k|, \forall N > 0.$

由 N 的任意性, 上式两边令 $N \to +\infty$, 则

$$\overline{\lim_{n \to +\infty}} \left| \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k \right| \leqslant \overline{\lim}_{N \to +\infty} \sup_{k \geqslant N+1} |x_k|.$$

又根据上极限的定义, 可知 $\lim_{N\to +\infty} \sup_{k>N+1} |x_k| = \overline{\lim}_{n\to +\infty} |x_n| = \lim_{n\to +\infty} x_n = 0.$ 从而

$$0 \leqslant \underline{\lim}_{n \to +\infty} \left| \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k \right| \leqslant \overline{\lim}_{n \to +\infty} \left| \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k \right| \leqslant 0.$$

故
$$\lim_{n \to +\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k = \lim_{n \to +\infty} \left| \frac{1}{2^n} \sum_{k=0}^n C_n^k x_k \right| = 0$$
. 原命题得证.

例题 3.9 求极限

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{\cos \sqrt{\frac{k}{n}}}{2^{k}}.$$

笔记 求这种前 n 项和关于 n 的极限 (n 既和求和号上限有关, 又和通项有关) 的思路是: 先假设极限存在 (这里极 限号内是数列不是级数, 所以这里是数列收敛). 于是由数列收敛的柯西收敛准则可知, 对 $\forall \varepsilon > 0$, 存在 $N_0 \in \mathbb{N}_+$, 使得对 $\forall n > N_0$, 都有

$$\varepsilon > \left| \sum_{k=0}^{n} \frac{\cos \sqrt{\frac{k}{n}}}{2^k} - \sum_{k=0}^{N_0+1} \frac{\cos \sqrt{\frac{k}{N_0+1}}}{2^k} \right| = \left| \sum_{k>N_0}^{n} \frac{\cos \sqrt{\frac{k}{n}}}{2^k} + \sum_{k=0}^{N_0+1} \frac{\cos \sqrt{\frac{k}{n}} - \cos \sqrt{\frac{k}{N_0+1}}}{2^k} \right| > \sum_{k>N_0}^{n} \frac{\cos \sqrt{\frac{k}{n}}}{2^k}.$$

从而由数列极限的定义, 可知对 $\forall N > N_0$, 都有 $\lim_{n \to +\infty} \sum_{k>N}^n \frac{\cos \sqrt{\frac{k}{n}}}{2^k} = 0$.

因此对 $\forall N > N_0$, 我们有

$$\lim_{n \to +\infty} \sum_{k=0}^n \frac{\cos \sqrt{\frac{k}{n}}}{2^k} = \lim_{n \to +\infty} \sum_{k=0}^N \frac{\cos \sqrt{\frac{k}{n}}}{2^k} + \lim_{n \to +\infty} \sum_{k>N}^n \frac{\cos \sqrt{\frac{k}{n}}}{2^k} = \lim_{n \to +\infty} \sum_{k=0}^N \frac{\cos \sqrt{\frac{k}{n}}}{2^k} = \sum_{k=0}^N \lim_{n \to +\infty} \frac{\cos \sqrt{\frac{k}{n}}}{2^k} = \sum_{k=0}^N \frac{1}{2^k}.$$

再令
$$N \to +\infty$$
, 得到 $\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{\cos \sqrt{\frac{k}{n}}}{2^k} = \lim_{N \to +\infty} \sum_{k=0}^{N} \frac{1}{2^k} = 2$.

综上所述, 我们在假设原极限收敛的前提下能够得到原极限就是 2, 因此我们可以凭借直觉不严谨地断言原极限实际上就是 2(如果原极限不是 2, 那么原极限只能发散, 否则与上述证明矛盾. 而出题人要我们求解的极限一般都不发散, 并且凭借直觉也能感觉到这个极限不发散).

注意: 因为这里我们并不能严谨地证明原数列收敛, 所以只凭借上述论证并不能严谨地得到原极限等于 2. (上述论证实际上就是一种"猜测"这种极限的值的方法)

虽然只凭借上述论证我们并不能直接得到原极限等于 2 的证明, 但是我们可以得到一个重要的结果: 原极限的值就是 2. 我们后续只需要证明这个结果是正确的即可. 后续证明只需要适当放缩原本数列, 再利用上下极限和夹逼定理即可 (因为我们已经知道极限的值, 放缩的时候就能更容易地把握放缩的"度"). 并且我们根据上述论证可知 (放缩的时候我们可以利用下述想法, 即将不影响整体的阶的余项通过放缩去掉), 原和式的极限等于其前 N 项的极限, 原和式除前 N 项外的余项的极限趋于 0, 即余项并不影响原数列的极限, 可以通过放缩将其忽略. 我们只需要考虑前 N 项的极限即可.

后续证明的套路一般都是: 放大: 可以直接通过一些常用不等式得到; 放小: 将原级数直接放缩成有限项再取下极限.

注: 关键是如何利用上述想法直接计算出极限的值, 后续的放缩证明只是为了保证其严谨性的形式上的证明. 注 上述思路只是我的一点个人拙见, 也可以使用 *Toplitz* 定理的分段估计想法解决本题. 于是我们今后遇到类似问题可以分别采取这两种思路解决.

这里我们可以采取两种方法去证明这个极限(夹逼定理和 Toplitz 定理).

解 解法一(夹逼定理):

例题 3.10 计算 $\lim_{n\to+\infty}\sum_{i=1}^{n}\left(\frac{k}{n}\right)^{n}$.

 $\stackrel{ ext{$\stackrel{\circ}{=}$}}{=}$ 笔记 我们利用上一题的想法计算 $\lim_{n\to+\infty}\sum_{k=1}^n e^{n\ln\left(1-\frac{k-1}{n}\right)}$. 先假设级数 $\sum_{k=1}^n\left(\frac{k}{n}\right)^n$ 收敛, 则由 Cauchy 收敛准则可知,

存在 N' > 0, 使得

$$\lim_{n \to +\infty} \sum_{k=1}^{n} e^{n \ln \left(1 - \frac{k-1}{n}\right)} = \lim_{n \to +\infty} \sum_{k=1}^{N} e^{n \ln \left(1 - \frac{k-1}{n}\right)} = \sum_{k=1}^{N} \lim_{n \to +\infty} e^{n \ln \left(1 - \frac{k-1}{n}\right)} = \sum_{k=1}^{N} e^{1 - k}, \forall N > N'.$$

令 $N \to +\infty$,则 $\lim_{n \to +\infty} \sum_{k=1}^n e^{n \ln \left(1 - \frac{k-1}{n}\right)} = \lim_{N \to +\infty} \sum_{k=1}^N e^{1-k} = \frac{e}{e-1}$. 然后再根据计算出来的结果对原级数进行适当放缩,最后利用上下极限和夹逼准则得到完整的证明.

解 注意到

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^n = \sum_{k=1}^{n} \left(\frac{n-k+1}{n}\right)^n = \sum_{k=1}^{n} \left(1 - \frac{k-1}{n}\right)^n = \sum_{k=1}^{n} e^{n \ln\left(1 - \frac{k-1}{n}\right)}, \forall n \in \mathbb{N}_+.$$

一方面, 利用 $\ln(1+x) \le x, \forall x \in \mathbb{R}$, 我们有

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^n = \sum_{k=1}^{n} e^{n \ln \left(1 - \frac{k-1}{n}\right)} \le \sum_{k=1}^{n} e^{n \cdot \left(-\frac{k-1}{n}\right)} = \sum_{k=1}^{n} e^{1-k}, \forall n \in \mathbb{N}_+.$$

$$\Leftrightarrow n \to +\infty$$
,则 $\overline{\lim}_{n \to +\infty} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^n \le \overline{\lim}_{n \to +\infty} \sum_{k=1}^{n} e^{1-k} = \frac{e}{e-1}$.

另一方面, 注意到
$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^n = \sum_{k=1}^{n} e^{n \ln \left(1 - \frac{k-1}{n}\right)} \ge \sum_{k=1}^{N} e^{n \ln \left(1 - \frac{k-1}{n}\right)}, \forall N \in \mathbb{N}_+.$$
 两边同时对 n 取下极限, 可得对

 $\forall N \in \mathbb{N}_+$,都有

$$\begin{split} & \underbrace{\lim_{n \to +\infty} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{n}}_{n \to +\infty} \geqslant \underbrace{\lim_{n \to +\infty} \sum_{k=1}^{N} e^{n \ln\left(1 - \frac{k-1}{n}\right)}}_{n \to +\infty} = \lim_{n \to +\infty} \sum_{k=1}^{N} e^{n \ln\left(1 - \frac{k-1}{n}\right)} \\ & = \sum_{k=1}^{N} \lim_{n \to +\infty} e^{n \ln\left(1 - \frac{k-1}{n}\right)} = \sum_{k=1}^{N} \lim_{n \to +\infty} e^{n \cdot \left(-\frac{k-1}{n}\right)} = \sum_{k=1}^{N} e^{1-k} \end{split}$$

$$\diamondsuit N \to +\infty, \ \mathbb{M} \lim_{n \to +\infty} \sum_{k=1}^n \left(\frac{k}{n}\right)^n \ge \lim_{N \to +\infty} \sum_{k=1}^N e^{1-k} = \frac{e}{e-1}. \ \ \ \ \ \lim_{n \to +\infty} \sum_{k=1}^n \left(\frac{k}{n}\right)^n = \frac{e}{e-1}.$$

第四章 极限与渐近分析方法

4.1 基本的渐进估计与求极限方法

4.1.1 Taylor 公式

定理 4.1 (带 Peano 余项的 Taylor 公式)

设f在x = a是n阶右可微的,则

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k + o((x - a)^n), x \to a^+.$$
(4.1)

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x - a)^k + O((x - a)^n), x \to a^+.$$
 (4.2)

证明 (1) 要证明(4.1)式等价于证明

$$\lim_{x \to a^{+}} \frac{f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k}}{(x - a)^{n}} = 0.$$

对上式左边反复使用 n-1 次 L'Hospital'rules, 可得

$$\lim_{x \to a^{+}} \frac{f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k}}{(x - a)^{n}} \frac{\underline{L'Hospital'rules}}{\sum_{x \to a^{+}}} \lim_{x \to a^{+}} \frac{f'(x) - \sum_{k=1}^{n} \frac{f^{(k)}(a)}{(k - 1)!} (x - a)^{k - 1}}{n (x - a)^{n - 1}}$$

$$\frac{\underline{L'Hospital'rules}}{\sum_{x \to a^{+}}} \lim_{x \to a^{+}} \frac{f''(x) - \sum_{k=2}^{n} \frac{f^{(k)}(a)}{(k - 2)!} (x - a)^{k - 2}}{n (n - 1) (x - a)^{n - 2}}$$

$$\frac{\underline{L'Hospital'rules}}{\sum_{x \to a^{+}}} \dots \frac{\underline{L'Hospital'rules}}{\sum_{x \to a^{+}}} \lim_{x \to a^{+}} \frac{f^{(n - 1)}(x) - f^{(n - 1)}(a) - f^{(n)}(a) (x - a)}{n! (x - a)}$$

$$= \frac{1}{n!} \lim_{x \to a^{+}} \frac{f^{(n - 1)}(x) - f^{(n - 1)}(a)}{x - a} - \frac{f^{(n)}(a)}{n!} \underbrace{\frac{n \text{ in } \text{ physical}}{n!}}_{n!} 0$$

故(4.1)式成立.

(2) 要证明(4.2)式等价于证明: 存在 C > 0 和 $\delta > 0$, 使得

$$\left| \frac{f(x) - \sum\limits_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k}{(x - a)^n} \right| \leqslant C, \forall x \in [a, a + \delta].$$

例题 **4.1** 设 $\lim_{n\to+\infty} \frac{f(n)}{n} = 1$, 计算

$$\lim_{n \to +\infty} \left(1 + \frac{1}{f(n)} \right)^n.$$

奎记 由 $\frac{f(n)}{n} = 1 + o(1), n \to +\infty$, 可得 $f(n) = n + o(n), n \to +\infty$. 这个等式的意思是: f(n) = n + o(n) 对 $\forall n \in \mathbb{N}_+$ 都成立. 并且当 $n \to +\infty$ 时,有 $\lim_{n \to +\infty} \frac{f(n)}{n} = \lim_{n \to +\infty} \frac{n + o(n)}{n} = 1 + \lim_{n \to +\infty} \frac{o(n)}{n} = 1$. 其中 o(n) 表示一个(类) 数列,只不过这个(类) 数列具有 $\lim_{n \to +\infty} \frac{o(n)}{n} = 0$ 的性质. 解 解法一(一般解法):

$$\lim_{n \to +\infty} \left(1 + \frac{1}{f(n)} \right)^n = \lim_{n \to +\infty} e^{n \ln\left(1 + \frac{1}{f(n)}\right)} = e^{\lim_{n \to +\infty} n \ln\left(1 + \frac{1}{f(n)}\right)} = e^{\lim_{n \to +\infty} \frac{n}{f(n)}} = e.$$

解法二(渐进估计):

由
$$\lim_{n \to +\infty} \frac{f(n)}{n} = 1$$
, 可知

$$\frac{f(n)}{n} = 1 + o(1), n \to +\infty.$$

从而

$$\left(1 + \frac{1}{f(n)}\right)^n = \left[1 + \frac{1}{n} \cdot \frac{1}{1 + o(1)}\right]^n = \left[1 + \frac{1}{n}(1 + o(1))\right]^n = \left[1 + \frac{1}{n} + o\left(\frac{1}{n}\right)\right]^n = e^{n\ln\left[1 + \frac{1}{n} + o\left(\frac{1}{n}\right)\right]}, n \to +\infty.$$

$$\lim_{n\to+\infty} \left(1 + \frac{1}{f(n)}\right)^n = \lim_{n\to+\infty} e^{n\ln\left[1 + \frac{1}{n} + o\left(\frac{1}{n}\right)\right]} = \lim_{n\to+\infty} e^{n\left[\frac{1}{n} + o\left(\frac{1}{n}\right)\right]} = \lim_{n\to+\infty} e^{1 + o(1)} = e.$$

例题 4.2 计算

1.
$$\lim_{x \to 0} \frac{\cos \sin x - \cos x}{x^4}$$
.
2. $\lim_{x \to +\infty} \left[\left(x^3 - x^2 + \frac{x}{2} \right) e^{\frac{1}{x}} - \sqrt{1 + x^6} \right]$.

例题 4.3 计算 $(1+\frac{1}{x})^x$, $x \to +\infty$ 的渐进估计. 解 由带 Peano 余项的 Taylor 公式, 可得

$$\left(1 + \frac{1}{x}\right)^{x} = e^{x \ln(1 + \frac{1}{x})} = e^{x \left[\frac{1}{x} - \frac{1}{2x^{2}} + \frac{1}{3x^{3}} + o\left(\frac{1}{x^{3}}\right)\right]} = e^{1 - \frac{1}{2x} + \frac{1}{3x^{2}} + o\left(\frac{1}{x^{2}}\right)} = e \cdot e^{-\frac{1}{2x} + \frac{1}{3x^{2}} + o\left(\frac{1}{x^{2}}\right)}$$

$$= e \left[1 - \frac{1}{2x} + \frac{1}{3x^{2}} + o\left(\frac{1}{x^{2}}\right) + \frac{1}{2}\left(-\frac{1}{2x} + \frac{1}{3x^{2}} + o\left(\frac{1}{x^{2}}\right)\right)^{2} + o\left(-\frac{1}{2x} + \frac{1}{3x^{2}} + o\left(\frac{1}{x^{2}}\right)\right)^{2}\right]$$

$$= e \left[1 - \frac{1}{2x} + \frac{1}{3x^{2}} + \frac{1}{8x^{2}} + o\left(\frac{1}{x^{2}}\right)\right]$$

$$e - \frac{e}{2x} + \frac{11e}{24x^{2}} + o\left(\frac{1}{x^{2}}\right)$$

故

$$\left(1+\frac{1}{x}\right)^x = e - \frac{e}{2x} + \frac{11e}{24x^2} + o\left(\frac{1}{x^2}\right), x \to +\infty.$$

于是

$$\lim_{x \to +\infty} x \left[e - \left(1 + \frac{1}{x} \right)^x \right] = \frac{e}{2}, \lim_{x \to +\infty} x \left[x \left(e - \left(1 + \frac{1}{x} \right)^x \right) - \frac{e}{2} \right] = -\frac{11e}{24}. \tag{4.3}$$

注 反复利用上述(4.3)式构造极限的方法, 再求出相应极限, 就能得到 e 的更精确的渐进估计. 这也是计算渐进估 计的一般方法.

例题 4.4 设 f 在 0 处可微, f(0) = 0, 证明:

$$\lim_{n\to\infty}\sum_{i=1}^n f\left(\frac{i}{n^2}\right) = \frac{f'(0)}{2}.$$

笔记 本题如果使用例题 3.9的方法求极限, 那么我们将得到

$$\lim_{n\to\infty}\sum_{i=1}^n f\left(\frac{i}{n^2}\right) = \lim_{N\to\infty}\lim_{n\to\infty}\sum_{i=1}^N f\left(\frac{i}{n^2}\right) = \lim_{N\to\infty}\sum_{i=1}^N\lim_{n\to\infty} f\left(\frac{i}{n^2}\right) = \lim_{N\to\infty}\sum_{i=1}^N f\left(0\right) = \lim_{N\to\infty}\left(N\cdot 0\right) = +\infty\cdot 0.$$

而 +∞·0 我们是无法确定其结果的, 故本题并不适用这种方法. 不过, 我们也从上述论述结果发现我们需要更加精 细地估计原级数的阶, 才能确定出上述" $+\infty\cdot0$ "的值, 进而得到原级数的极限, 因此我们引入余项方法和 $\varepsilon-\delta$ 方 法更加精细地估计原级数的阶.

注 虽然使用余项证明这类问题并不严谨, 但是在实际解题中, 我们仍使用这种余项方法解决这类问题. 因为严谨 的 $\varepsilon - \delta$ 语言证明比较繁琐. 我们只在需要书写严谨证明的时候才使用严谨的 $\varepsilon - \delta$ 语言进行证明.

证明 证法一(不严谨的余项方法): 由 f 在 0 处可微且 f(0) = 0 和带 Peano 余项的 Taylor 公式, 可知

$$f(x) = f'(0)x + o(x), x \to 0.$$

于是

$$\sum_{i=1}^{n} f\left(\frac{i}{n^{2}}\right) = \sum_{i=1}^{n} \left[f'(0) \cdot \frac{i}{n^{2}} + o\left(\frac{i}{n^{2}}\right)\right] = \frac{f'(0)(n+1)}{2n} + \sum_{i=1}^{n} o\left(\frac{i}{n^{2}}\right)$$

$$= \frac{f'(0)(n+1)}{2n} + \sum_{i=1}^{n} o\left(\frac{1}{n}\right) = \frac{f'(0)(n+1)}{2n} + n \cdot o\left(\frac{1}{n}\right) \to \frac{f'(0)}{2}, n \to +\infty.$$

证法二 $(\varepsilon - \delta)$ 严谨的证明): 由 Taylor 定理,可知对 $\forall \varepsilon \in (0,1), \exists \delta > 0$,当 $|x| \le \delta$ 时,有 $|f(x) - f'(0)x| \le \varepsilon |x|$. 只要 $n > \frac{1}{\delta}$,有 $\left|\frac{i}{n^2}\right| \le \delta$, $\forall i = 1, 2, \cdots, n$,故 $\left|f\left(\frac{i}{n^2}\right) - f'(0)\frac{i}{n^2}\right| \le \varepsilon \frac{i}{n^2}, i = 1, 2, \cdots, n$. 从而

$$f'(0)(1-\varepsilon)\frac{i}{n^2} \le f\left(\frac{i}{n^2}\right) \le f'(0)(1+\varepsilon)\frac{i}{n^2}.$$

进而

$$\frac{f'(0)}{2}(1-\varepsilon)\cdot\frac{n+1}{n}=f'(0)(1-\varepsilon)\sum_{i=1}^n\frac{i}{n^2}\leq \sum_{i=1}^nf\left(\frac{i}{n^2}\right)\leq f'(0)(1+\varepsilon)\sum_{i=1}^n\frac{i}{n^2}=\frac{f'(0)}{2}(1+\varepsilon)\cdot\frac{n+1}{n}.$$

于是

$$-\frac{\varepsilon f'(0)}{2} \le \frac{n}{n+1} \sum_{i=1}^{n} f\left(\frac{i}{n^2}\right) - \frac{f'(0)}{2} \le \frac{f'(0)\varepsilon}{2}.$$

即

$$\left| \frac{n}{n+1} \sum_{i=1}^{n} f\left(\frac{i}{n^2}\right) - \frac{f'(0)}{2} \right| \le \frac{|f'(0)|}{2} \varepsilon.$$

因此
$$\lim_{n\to\infty} \frac{n}{n+1} \sum_{i=1}^{n} f\left(\frac{i}{n^2}\right) = \frac{f'(0)}{2}$$
, 故 $\lim_{n\to\infty} \sum_{i=1}^{n} f\left(\frac{i}{n^2}\right) = \frac{\lim_{n\to\infty} \frac{n}{n+1} \sum_{i=1}^{n} f\left(\frac{i}{n^2}\right)}{\lim_{n\to\infty} \frac{n}{n+1}} = \frac{f'(0)}{2}$.

例题 4.5 计算 $\lim_{n\to\infty} \left(\sum_{k=1}^n \frac{1}{\sqrt{n^2+k}}\right)^n$.

 \dot{z} 这种余项方法并不是严谨证明, 如果需要严谨地证明, 就需要用 $\varepsilon - \delta$ 语言书写证明. 虽然使用余项方法估计和式的阶并不严谨, 但是在实际解题中为了快速解决问题, 我们仍旧先使用余项方法进行估阶.

解 注意到

$$\lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}} \right)^n = \lim_{n \to \infty} e^{n \ln \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}}} = \lim_{n \to \infty} e^{n \ln \left(\sum_{k=1}^{n} \frac{1}{n} \frac{1}{\sqrt{1 + \frac{k}{n^2}}} \right)}.$$

由带 Peano 余项的 Taylor 公式, 可知

$$\sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\sqrt{1 + \frac{k}{n^2}}} = \frac{1}{n} \sum_{k=1}^{n} \left[1 - \frac{k}{2n^2} + O\left(\frac{k^2}{n^4}\right) \right] = \frac{1}{n} \left[n - \frac{\sum_{k=1}^{n} k}{2n^2} + \sum_{k=1}^{n} O\left(\frac{1}{n^2}\right) \right]$$

$$= 1 - \frac{n+1}{4n^2} + O\left(\frac{1}{n^2}\right) = 1 - \frac{1}{4n} - \frac{1}{4n^2} + O\left(\frac{1}{n^2}\right) = 1 - \frac{1}{4n} + O\left(\frac{1}{n^2}\right), n \to +\infty.$$

从而

$$\lim_{n \to \infty} \left(\sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}} \right)^n = \lim_{n \to \infty} e^{n \ln \left(\sum_{k=1}^n \frac{1}{n} \frac{1}{\sqrt{1 + \frac{k}{n^2}}} \right)} = \lim_{n \to \infty} e^{n \ln \left(1 - \frac{1}{4n} + O\left(\frac{1}{n^2}\right) \right)} = \lim_{n \to \infty} e^{n \cdot \left(-\frac{1}{4n} + O\left(\frac{1}{n^2}\right) \right)} = \lim_{n \to \infty} e^{-\frac{1}{4} + O\left(\frac{1}{n}\right)} = e^{-\frac{1}{4}}.$$

例题 4.6 计算

$$\lim_{x \to 0} \frac{1 - \cos x \cos(2x) \cdots \cos(nx)}{x^2}$$

解 记
$$I = \lim_{x \to 0} \frac{1 - \cos x \cos(2x) \cdots \cos(nx)}{x^2}$$
,则由带 $Peano$ 余项的 $Taylor$ 公式,可得
$$\cos x \cos(2x) \cdots \cos(nx) = \left[1 - \frac{1}{2}x^2 + o(x^2)\right] \left[1 - \frac{(2x)^2}{2} + o(x^2)\right] \cdots \left[1 - \frac{(nx)^2}{2} + o(x^2)\right]$$

$$= 1 - \frac{1^2 + 2^2 + \cdots + n^2}{2}x^2 + o(x^2) = 1 - \frac{n(n+1)(2n+1)}{2 \cdot 6}x^2 + o(x^2), x \to 0.$$

故 $I = \frac{n(n+1)(2n+1)}{12}$. 例题 **4.7** 计算

$$\lim_{x\to 0} \frac{x - \overline{\sin \sin \cdots \sin x}}{x^3}.$$

解 先证明 $\underbrace{\sin(\sin(\sin(\cdots(\sin x))\cdots))}_{=x-\frac{n}{6}x^3+o(x^3),x\to 0}$.

n次复合 当 n=1 时, 由 Taylor 公式结论显然成立. 假设 n=k 时, 结论成立. 则当 n=k+1 时, 我们有

$$\sin\left(x - \frac{n}{6}x^3 + o(x^3)\right)$$

$$= x - \frac{n}{6}x^3 + o(x^3) - \frac{1}{6}\left(x - \frac{n}{6}x^3 + o(x^3)\right)^3 + o\left(\left(x - \frac{n}{6}x^3 + o(x^3)\right)^3\right)$$

$$= x - \frac{n+1}{6}x^3 + o(x^3), x \to 0.$$

由数学归纳法得 $\underline{\sin(\sin(\sin(\cdots(\sin x))\cdots))} = x - \frac{n}{6}x^3 + o(x^3), x \to 0.$ 故 $\lim_{x \to 0} \frac{x - \overline{\sin\sin\cdots\sin x}}{x^3} = \frac{n}{6}$.

4.1.2 利用 Lagrange 中值定理求极限

Lagrange 中值定理不会改变原数列或函数的阶, 但是可以更加精细地估计原数列或函数的阶. 以后利用 Lagrange 中值定理处理数列或函数的阶的过程都会直接省略.

例题 4.8 计算

$$\lim_{n \to \infty} \left[\sin(\sqrt{n+1}) - \sin(\sqrt{n}) \right].$$

解 由 Lagrange 中值定理, 可知对 $\forall n \in \mathbb{N}_+$, 存在 $\theta_n \in (\sqrt{n+1}, \sqrt{n})$, 使得

$$\sin(\sqrt{n+1}) - \sin(\sqrt{n}) = (\sqrt{n+1} - \sqrt{n})\cos\theta_n = \frac{1}{\sqrt{n+1} + \sqrt{n}} \cdot \cos\theta_n.$$

从而当 $n \to +\infty$ 时, 有 $\theta_n \to +\infty$. 于是

$$\lim_{n \to \infty} \left[\sin(\sqrt{n+1}) - \sin(\sqrt{n}) \right] = \lim_{n \to \infty} \left[\frac{1}{\sqrt{n+1} + \sqrt{n}} \cdot \cos \theta_n \right] = 0.$$

例题 4.9 计算

$$\lim_{n\to\infty} n^2 \left(\arctan \frac{2024}{n} - \arctan \frac{2024}{n+1}\right).$$

证明 由 Lagrange 中值定理, 可知对 $\forall n \in \mathbb{N}$, 存在 $\theta_n \in (\frac{2024}{n}, \frac{2024}{n+1})$, 使得

$$\arctan \frac{2024}{n} - \arctan \frac{2024}{n+1} = \frac{1}{1+\theta_n^2} \cdot \left(\frac{2024}{n} - \frac{2024}{n+1}\right).$$

并且 $\lim_{n\to+\infty} \theta_n = 0$. 故

$$\lim_{n \to \infty} n^2 \left(\arctan \frac{2024}{n} - \arctan \frac{2024}{n+1} \right) = \lim_{n \to \infty} \frac{n^2}{1+\theta_n^2} \cdot \left(\frac{2024}{n} - \frac{2024}{n+1} \right) = 2024 \lim_{n \to \infty} \frac{n^2}{n(n+1)} = 2024.$$

例题 4.10

- 1. 对 $\alpha \neq 0$, 求 $(n+1)^{\alpha} n^{\alpha}$, $n \rightarrow \infty$ 的等价量;
- 2. 求 $n \ln n (n-1) \ln (n-1), n \to \infty$ 的等价量.

笔记 熟练这种利用 Lagrange 中值定理求极限的方法以后,这类数列或函数的等价量我们应该做到能够快速口算出来.因此,以后利用 Lagrange 中值定理计算数列或函数的等价量的具体过程我们不再书写,而是直接写出相应的等价量.

注 不难发现利用 Lagrange 中值定理计算数列或函数的等价量,并不改变原数列或函数的阶.

解 1. 根据 Lagrange 中值定理, 可知对 $n \in \mathbb{N}$, 都有

$$(n+1)^{\alpha} - n^{\alpha} = \alpha \cdot \theta_n^{\alpha-1}, \theta_n \in (n, n+1).$$

不妨设 $\alpha>1$, 则有 $\alpha n^{\alpha-1}\leqslant \alpha \theta_n^{\alpha-1}\leqslant \alpha \left(n+1\right)^{\alpha-1} (若 \alpha\leq 1,$ 则有 $\alpha \left(n+1\right)^{\alpha-1}\leqslant \alpha \theta_n^{\alpha-1}\leqslant \alpha n^{\alpha-1}).$ 故

$$\alpha = \lim_{n \to \infty} \frac{\alpha n^{\alpha - 1}}{n^{\alpha - 1}} \leqslant \lim_{n \to \infty} \frac{\alpha \theta_n^{\alpha - 1}}{n^{\alpha - 1}} \leqslant \lim_{n \to \infty} \frac{\alpha (n + 1)^{\alpha - 1}}{n^{\alpha - 1}} = \alpha.$$

因此 $(n+1)^{\alpha} - n^{\alpha} \sim \alpha n^{\alpha-1}, n \to \infty$

2. 由 Lagrange 中值定理, 可知对 $n \in \mathbb{N}$, 都有

$$\lim_{n\to\infty}\frac{n\ln n-(n-1)\ln(n-1)}{\ln n}=\lim_{n\to\infty}\frac{(n-(n-1))\cdot(1+\ln\theta_n)}{\ln n}=\lim_{n\to\infty}\frac{1}{\ln n}+\lim_{n\to\infty}\frac{\ln\theta_n}{\ln n}=\lim_{n\to\infty}\frac{\ln\theta_n}{\ln n}, n-1<\theta_n< n.$$

$$\mathbb{X}\cdot\frac{\ln(n-1)}{\ln n}<\frac{\ln\theta_n}{\ln n}=1, \text{ in } \frac{\ln\theta_n}{\ln n}=1$$

$$\lim_{n\to\infty}\frac{n\ln n-(n-1)\ln(n-1)}{\ln n}=\lim_{n\to\infty}\frac{\ln\theta_n}{\ln n}=1.$$

于是 $n \ln n - (n-1) \ln (n-1) \sim \ln n, n \rightarrow +\infty$.

例题 4.11 计算

$$\lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{(1 - \cos x)\sin^2 x}.$$

证明 由 Lagrange 中值定理, 可知对 $\forall x \in U(0)$, 都有

$$\cos(\sin x) - \cos x = (x - \sin x)\sin\theta, \theta \in (\sin x, x)$$
.

从而

$$\lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{(1 - \cos x)\sin^2 x} = \lim_{x \to 0} \frac{(x - \sin x)\sin\theta}{\frac{1}{2}x^2 \cdot x^2} = \lim_{x \to 0} \frac{\frac{1}{6}x^3 \cdot \sin\theta}{\frac{1}{2}x^4} = \frac{1}{3}\lim_{x \to 0} \frac{\sin\theta}{x}.$$

又由 $\sin x < \theta < x, \forall x \in U(0)$ 可知

$$1 = \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\sin \left(\sin x\right)}{x} < \lim_{x \to 0} \frac{\sin \theta}{x} \leqslant \lim_{x \to 0} \frac{\theta}{x} < \lim_{x \to 0} \frac{x}{x} = 1.$$

故 $\sin \theta \sim \theta \sim x, x \to 0$. 因此 $\lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{(1 - \cos x)\sin^2 x} = \frac{1}{3} \lim_{x \to 0} \frac{\sin \theta}{x} = \frac{1}{3} \lim_{x \to 0} \frac{x}{x} = \frac{1}{3}$.

4.1.3 强行替换(拟合法)和凑定积分

例题 4.12 计算

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n + \frac{i^2 + 1}{n}}.$$

笔记 证明的想法要么是凑定积分定义.要么强行替换为自己熟悉的结构(拟合法),无需猜测放缩手段. 注 注意定积分定义是任意划分任意取点,而不只是等分取端点.

解 解法一:注意到

$$\frac{i}{n} < \frac{\sqrt{i^2 + 1}}{n} < \frac{i + 1}{n}, i = 1, 2, \dots, n,$$

于是由定积分定义有

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n + \frac{i^2 + 1}{n}} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + \left(\frac{\sqrt{i^2 + 1}}{n}\right)^2} = \int_0^1 \frac{1}{1 + x^2} dx = \frac{\pi}{4}.$$

解法二:注意到

$$0 \leq \left| \sum_{i=1}^n \frac{1}{n + \frac{i^2 + 1}{n}} - \sum_{i=1}^n \frac{1}{n + \frac{i^2}{n}} \right| \leq \sum_{i=1}^n \frac{1}{n \left(n + \frac{i^2 + 1}{n}\right) \left(n + \frac{i^2}{n}\right)} \leq \sum_{i=1}^n \frac{1}{n^3} = \frac{1}{n^2} \to 0, n \to \infty,$$

故

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n + \frac{i^2 + 1}{n}} = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n + \frac{i^2}{n}} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + \frac{i^2}{n^2}} = \int_{0}^{1} \frac{1}{1 + x^2} dx = \frac{\pi}{4}.$$

例题 4.13 计算

$$\lim_{n \to \infty} \sum_{i=1}^{2n} \frac{i+4}{n^2 + \frac{1}{i}} \sin^4 \frac{\pi i}{n}.$$

证明 注意到

$$\left| \sum_{i=1}^{2n} \frac{i+4}{n^2 + \frac{1}{i}} \sin^4 \frac{\pi i}{n} - \sum_{i=1}^{2n} \frac{i}{n^2} \sin^4 \frac{\pi i}{n} \right| = \left| \sum_{i=1}^{2n} \left(\frac{i+4}{n^2 + \frac{1}{i}} - \frac{i}{n^2} \right) \sin^4 \frac{\pi i}{n} \right|$$

$$\leq \sum_{i=1}^{2n} \frac{4n^2 - 1}{n^2 \left(n^2 + \frac{1}{i} \right)} \leq \sum_{i=1}^{2n} \frac{4n^2 - 1}{n^4} = \frac{2n(4n^2 - 1)}{n^4},$$

于是

$$0 \leqslant \lim_{n \to \infty} \left| \sum_{i=1}^{2n} \frac{i+4}{n^2 + \frac{1}{i}} \sin^4 \frac{\pi i}{n} - \sum_{i=1}^{2n} \frac{i}{n^2} \sin^4 \frac{\pi i}{n} \right| \leqslant \lim_{n \to \infty} \frac{2n(4n^2 - 1)}{n^4} = 0.$$

因此

$$\lim_{n \to \infty} \sum_{i=1}^{2n} \frac{i+4}{n^2 + \frac{1}{i}} \sin^4 \frac{\pi i}{n} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{2n} \frac{i}{n} \sin^4 \frac{\pi i}{n}$$

$$= \int_0^2 x \sin^4 \pi x dx \frac{\text{Kinff}}{\text{Fig. 2}} \int_0^2 (2-y) \sin^4 \pi (2-y) dy$$

$$= \int_0^2 (2-y) \sin^4 \pi y dy = \int_0^2 \sin^4 \pi x dx = \frac{1}{\pi} \int_0^{2\pi} \sin^4 x dx$$

$$= \frac{4}{\pi} \int_0^{\frac{\pi}{2}} \sin^4 x dx = \frac{4}{\pi} \cdot \frac{3!!}{4!!} \cdot \frac{\pi}{2} = \frac{3}{4}.$$

4.1.4 L'Hospital'rules

例题 **4.14** 若 $f \in D^1[0, +\infty)$.

(1) 设

$$\lim_{x \to +\infty} [f(x) + f'(x)] = s \in \mathbb{R},$$

证明 $\lim_{x \to +\infty} f(x) = s$.

(2) 设

$$\lim_{x \to +\infty} \left[f'(x) + \frac{2x}{\sqrt[3]{1+x^3}} f(x) \right] = s \in \mathbb{R},$$

证明
$$\lim_{x \to +\infty} f(x) = \frac{s}{2}$$
.

笔记 (2) 中的构造思路: 根据条件构造相应的微分方程, 然后求解这个微分方程, 再常数变易得到我们需要构造的 函数. 具体步骤如下:

构造微分方程: $y' + \frac{2x}{\sqrt[3]{1+x^3}}y = 0$,整理可得 $\frac{y'}{y} = -\frac{2x}{\sqrt[3]{1+x^3}}$, 再对其两边同时积分得到 $\ln y = -\int_0^x \frac{2x}{\sqrt[3]{1+x^3}}dx + \frac{2x}{\sqrt[3]{1+x^3}}dx$ C_0 . 从而 $y = Ce^{-\int_0^x \frac{2x}{\sqrt[3]{1+x^3}}dx}$,于是 $C = ye^{\int_0^x \frac{2x}{\sqrt[3]{1+x^3}}dx}$. 故我们要构造的函数就是 $C(x) = f(x)e^{\int_0^x \frac{2x}{\sqrt[3]{1+x^3}}dx}$. 并且此时 C(x) 满足 $C'(x) = f'(x) + \frac{2x}{\sqrt[3]{1+x^3}}f(x)$.

(1)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{e^x f(x)}{e^x} = \lim_{x \to +\infty} \frac{e^x [f(x) + f'(x)]}{e^x} = \lim_{x \to +\infty} [f + f'] = s.$$
(2) 注意到
$$\lim_{x \to +\infty} e^{\int_0^x \frac{2t}{\sqrt[3]{1+3}} dt} = +\infty, \, \text{从而由 L'Hospital'rules} \, \text{可得}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{f(x) \cdot e^{\int_0^x \frac{2t}{\sqrt[3]{1+t^3}} dt}}{e^{\int_0^x \frac{2t}{\sqrt[3]{1+t^3}} dt}} \xrightarrow{\text{L'Hospital'rules}} \lim_{x \to +\infty} \frac{\left[f'(x) + \frac{2x}{\sqrt[3]{1+x^3}} f(x)\right] e^{\int_0^x \frac{2t}{\sqrt[3]{1+t^3}} dt}}{\frac{2x}{\sqrt[3]{1+x^3}} e^{\int_0^x \frac{2t}{\sqrt[3]{1+t^3}} dt}}$$

$$= \lim_{x \to +\infty} \frac{\sqrt[3]{1+x^3}}{2x} \left[f(x) + \frac{2x}{\sqrt[3]{1+x^3}} f'(x)\right] = \frac{s}{2}.$$

4.1.5 与方程的根有关的渐近估计

4.1.5.1 可以解出 n 的类型

例题 **4.15** 设 $x^{2n+1} + e^x = 0$ 的根记为 x_n , 计算

$$\lim_{n\to\infty} x_n, \lim_{n\to\infty} n(1+x_n).$$

解 注意到 $0^{2n+1} + e^0 > 0$, $(-1)^{2n+1} + e^{-1} < 0$ 且 $x^{2n+1} + e^x$ 严格单调递增, 所以由零点存在定理可知, 对每个 $n \in \mathbb{N}$, 存在唯一的 $x_n \in (-1,0)$, 使得

$$x_n^{2n+1} + e^{x_n} = 0 \Rightarrow \frac{x_n}{\ln(-x_n)} = 2n + 1 \to +\infty, n \to +\infty.$$

任取 $\{x_n\}$ 的一个收敛子列 $\{x_{n_k}\}$, 又 $x_n \in (-1,0)$, 因此可设 $\lim_{k \to \infty} x_{n_k} = c \in [-1,0]$, 则 $\lim_{k \to +\infty} \frac{x_{n_k}}{\ln(-x_{n_k})} = \frac{c}{\ln(-c)}$. 又 因为 $\lim_{n\to+\infty}\frac{x_n}{\ln(-x_n)}=+\infty$, 所以由 Heine 归结原则可知 $\lim_{k\to+\infty}\frac{x_{n_k}}{\ln(-x_{n_k})}=+\infty$. 从而

$$\lim_{k \to +\infty} \frac{x_{n_k}}{\ln\left(-x_{n_k}\right)} = \frac{c}{\ln(-c)} = +\infty,$$

故 c=-1. 于是由子列极限命题 (a)知 $\lim_{n\to\infty} x_n=-1$. 因此

$$\lim_{n \to \infty} n(1+x_n) = \frac{1}{2} \lim_{n \to \infty} (2n+1)(1+x_n) = \frac{1}{2} \lim_{n \to \infty} \frac{x_n(1+x_n)}{\ln(-x_n)} = \frac{1}{2} \lim_{x \to -1^+} \frac{x(1+x)}{\ln(-x)} = \frac{1}{2}.$$

例题 **4.16** 设 $a_n \in (0,1)$ 是 $x^n + x = 1$ 的根, 证明

$$a_n = 1 - \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right).$$

证明 注意到 $0^n + 0 - 1 < 0, 1^n + 1 - 1 > 0$, 且 $x^n + x - 1$ 在 (0, 1) 上严格单调递增, 所以由零点存在定理可知, 对 $\forall n \in \mathbb{N}_+$, 存在唯一的 $a_n \in (0,1)$, 使得

$$a_n^n + a_n = 1 \Rightarrow \frac{\ln(1 - a_n)}{\ln a_n} = n \to +\infty, n \to +\infty.$$
 (4.4)

任取 $\{a_n\}$ 的一个收敛子列 $\{a_{n_k}\}$,又 $a_n \in (0,1)$,因此可设 $\lim_{k \to +\infty} a_{n_k} = c \in [0,1]$,则 $\lim_{k \to +\infty} \frac{\ln(1-a_{n_k})}{\ln a_{n_k}} = \frac{\ln(1-c)}{\ln c}$.

又由 (1.1) 式可知 $\lim_{n\to+\infty} \frac{\ln(1-a_n)}{\ln a_n} = +\infty$, 所以由 Heine 归结原则可知 $\lim_{k\to+\infty} \frac{\ln(1-a_{n_k})}{\ln a_{n_k}} = +\infty$. 从而

$$\lim_{k\to+\infty}\frac{\ln(1-a_{n_k})}{\ln a_{n_k}}=\frac{\ln(1-c)}{\ln c}=+\infty.$$

故 c=1, 于是由子列极限命题 (a)可知

$$\lim_{n \to +\infty} a_n = c = 1. \tag{4.5}$$

而要证 $a_n=1-\frac{\ln n}{n}+o\left(\frac{\ln n}{n}\right), n\to +\infty$,等价于证明 $\lim_{n\to +\infty}\frac{a_n-1+\frac{\ln n}{n}}{\frac{\ln n}{n}}=\lim_{n\to +\infty}\frac{na_n-n+\ln n}{\ln n}=0$. 利用(4.4)(4.5)式可得

$$\lim_{n \to +\infty} \frac{na_n - n + \ln n}{\ln n} = \lim_{n \to +\infty} \left[\frac{\frac{\ln(1 - a_n)}{\ln a_n} \cdot a_n - \frac{\ln(1 - a_n)}{\ln a_n}}{\ln \frac{\ln(1 - a_n)}{\ln a_n}} + 1 \right] = \lim_{n \to +\infty} \left[\frac{(a_n - 1) \ln (1 - a_n)}{\ln a_n \left(\ln \frac{\ln(1 - a_n)}{\ln a_n} \right)} + 1 \right]$$

$$= \lim_{x \to 1^-} \left[\frac{(x - 1) \ln (1 - x)}{\ln x \left(\ln \frac{\ln(1 - x)}{\ln x} \right)} + 1 \right] = \lim_{x \to 0^-} \left[\frac{x \ln (-x)}{\ln (1 + x) \left(\ln \frac{\ln(-x)}{\ln (1 + x)} \right)} + 1 \right]. \tag{4.6}$$

由 L'Hospital's rules 可得

$$\lim_{x \to 0^{-}} \frac{x \ln(-x)}{\ln(1+x) \left(\ln \frac{\ln(-x)}{\ln(1+x)}\right)} = \lim_{x \to 0^{-}} \frac{\ln(-x)}{\ln \frac{\ln(-x)}{\ln(1+x)}} \xrightarrow{\frac{\text{L'Hospital's rules}}{\text{L'Hospital's rules}}} \lim_{x \to 0^{-}} \frac{\frac{1}{x}}{\frac{\ln(1+x)}{\ln(1+x)} \cdot \frac{\frac{1}{x} \ln(1+x) - \frac{1}{1+x} \ln(-x)}}{\frac{1}{\ln^{2}(1+x)}}$$

$$= \lim_{x \to 0^{-}} \frac{\ln(-x) \cdot \ln(1+x)}{\ln(1+x) - \frac{x}{1+x} \ln(-x)} = \lim_{x \to 0^{-}} \frac{x \ln(-x)}{\ln(1+x) - \frac{x}{1+x} \ln(-x)}$$

$$= \lim_{x \to 0^{-}} \frac{x}{\frac{\ln(1+x)}{\ln(-x)} - \frac{x}{1+x}} = \lim_{x \to 0^{-}} \frac{x}{\frac{x}{1+x}} = -1. \tag{4.7}$$

于是结合(4.6)(4.7)式可得

$$\lim_{n \to +\infty} \frac{na_n - n + \ln n}{\ln n} = \lim_{x \to 0^-} \left[\frac{x \ln(-x)}{\ln(1+x) \left(\ln \frac{\ln(-x)}{\ln(1+x)} \right)} + 1 \right] = -1 + 1 = 0.$$

故
$$a_n = 1 - \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right), n \to +\infty.$$

4.2 Toeplitz 定理

定理 4.2 (Toeplitz 定理)

(a): 设
$$\{t_{nk}\}_{1 \leq k \leq n} \subset [0, +\infty)$$
 满足 $\lim_{n \to \infty} \sum_{k=1}^{n} t_{nk} = 1$ 和 $\lim_{n \to \infty} t_{nk} = 0$. 若 $\lim_{n \to \infty} a_n = a \in \mathbb{R}$. 证明

$$\lim_{n \to \infty} \sum_{k=1}^{n} t_{nk} a_k = a. \tag{4.8}$$

(b): 设
$$\{t_{nk}\}_{n,k=1}^{\infty} \subset [0,+\infty)$$
 满足 $\lim_{n\to\infty} \sum_{k=1}^{\infty} t_{nk} = 1$ 和 $\lim_{n\to\infty} t_{nk} = 0$. 若 $\lim_{n\to\infty} a_n = a \in \mathbb{R}$. 证明

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} t_{nk} a_k = a. \tag{4.9}$$

 $\widehat{\mathbf{Y}}$ 笔记 无需记忆 Toeplitz 定理的叙述, 其证明的思想更为重要. 一句话证明 Toeplitz 定理, 即当 n 比较小的时候, 用 t_{nk} 趋于 0 来控制, 当 n 比较大的时候, 用 a_n 趋于 a 来控制.

我们需要熟悉蕴含在Toeplitz定理当中的一个关键想法:分段估计(分段的方式要合理才行).

Toeplitz 定理只是先对和式进行分段处理, 将和式分成两部分, 一部分是和式的前充分多项 (前有限项/前 N项), 另一部分是余项 (从 N+1 项开始包括后面的所有项). 然后在这种分段估计的基础上, 利用已知的极限条件, 分别控制 (放缩) 和式的前充分多项 (前有限项/前 N 项) 和余项 (从 N+1 项开始包括后面的所有项).

注 注意区分 (a),(b) 两者的条件:
$$\lim_{n\to+\infty}\sum_{k=1}^{\infty}t_{nk}=\lim_{n\to+\infty}\lim_{n\to+\infty}\sum_{k=1}^{m}t_{nk}\neq\lim_{n\to+\infty}\sum_{k=1}^{n}t_{nk}$$
.

证明 (a): 事实上, 不妨设 a=0, 否则用 a_n-a 代替 a_n 即可.

对 $\forall N \in \mathbb{N}$, 当 n > N 时, 我们有

$$\left| \sum_{k=1}^{n} t_{nk} a_k \right| = \left| \sum_{k=1}^{N} t_{nk} a_k + \sum_{k=N+1}^{n} t_{nk} a_k \right| \leqslant \left| \sum_{k=1}^{N} t_{nk} a_k \right| + \sum_{k=N+1}^{n} |t_{nk} a_k|.$$

$$\overline{\lim_{n\to+\infty}}\left|\sum_{k=1}^{n}t_{nk}a_{k}\right|\leqslant\overline{\lim_{n\to+\infty}}\left|\sum_{k=1}^{N}t_{nk}a_{k}\right|+\overline{\lim_{n\to+\infty}}\sum_{k=N+1}^{n}\left|t_{nk}a_{k}\right|\leqslant\sup_{k\geqslant N+1}\left|a_{k}\right|\cdot\overline{\lim_{n\to+\infty}}\sum_{k=1}^{n}t_{nk}=\sup_{k\geqslant N+1}\left|a_{k}\right|,\forall N\in\mathbb{N}.$$

由 N 的任意性, 再令 N → + ∞ , 可得

$$\overline{\lim_{n \to +\infty}} \left| \sum_{k=1}^{n} t_{nk} a_k \right| \leq \lim_{N \to +\infty} \sup_{k \geqslant N+1} |a_k| = \overline{\lim_{n \to +\infty}} |a_n| = \overline{\lim_{n \to +\infty}} a_n = \lim_{n \to +\infty} a_n = 0.$$

故(4.8)式成立

(b): 事实上, 不妨设 a = 0, 否则用 $a_n - a$ 代替 a_n 即可

对 $\forall N \in \mathbb{N}$, 我们有

$$\left|\sum_{k=1}^{\infty} t_{nk} a_k\right| = \left|\sum_{k=1}^{N} t_{nk} a_k + \sum_{k=N+1}^{\infty} t_{nk} a_k\right| \leqslant \left|\sum_{k=1}^{N} t_{nk} a_k\right| + \sum_{k=N+1}^{\infty} |t_{nk} a_k|.$$

$$\overline{\lim_{n\to+\infty}} \left| \sum_{k=1}^{\infty} t_{nk} a_k \right| \leqslant \overline{\lim_{n\to+\infty}} \left| \sum_{k=1}^{N} t_{nk} a_k \right| + \overline{\lim_{n\to+\infty}} \sum_{k=N+1}^{\infty} |t_{nk} a_k| \leqslant \sup_{k\geqslant N+1} |a_k| \cdot \overline{\lim_{n\to+\infty}} \sum_{k=1}^{\infty} t_{nk} = \sup_{k\geqslant N+1} |a_k|, \forall N \in \mathbb{N}.$$

由 N 的任意性, 再令 N → + ∞ , 可得

$$\overline{\lim_{n \to +\infty}} \left| \sum_{k=1}^{\infty} t_{nk} a_k \right| \leqslant \lim_{N \to +\infty} \sup_{k \geqslant N+1} |a_k| = \overline{\lim_{n \to +\infty}} |a_n| = \overline{\lim_{n \to +\infty}} a_n = \lim_{n \to +\infty} a_n = 0.$$

故(4.9)式成立.

例题 **4.17** 设 $p_k > 0, k = 1, 2, \dots, n$ 且

$$\lim_{n\to\infty}\frac{p_n}{p_1+p_2+\cdots+p_n}=0, \lim_{n\to\infty}a_n=a.$$

证明

$$\lim_{n\to\infty}\frac{p_na_1+\cdots+p_1a_n}{p_1+p_2+\cdots+p_n}=a.$$

笔记 理解到本质之后不需要记忆Toeplitz 定理, 但是这里可以直接套用 Toeplitz 定理我们就引用了. 今后我们不再直接套用 Toeplitz 定理, 而是利用 Toeplitz 定理的证明方法解决问题.

证明 记
$$t_{nk} = \frac{p_{n-k+1}}{p_1 + p_2 + \dots + p_n} \ge 0, k = 1, 2, \dots, n.$$
 则 $\sum_{k=1}^{n} t_{nk} = \frac{\sum_{k=1}^{n} p_{n-k+1}}{p_1 + p_2 + \dots + p_n} = 1.$ 又因为
$$0 \le \lim_{n \to \infty} t_{nk} \le \lim_{n \to \infty} \frac{p_{n-k+1}}{p_1 + p_2 + \dots + p_{n+k+1}} = 0.$$

所以由夹逼准则可知, $\lim_{t_{nk}} t_{nk} = 0$. 故由Toeplitz 定理得

$$\lim_{n\to\infty}\frac{p_na_1+\cdots+p_1a_n}{p_1+p_2+\cdots+p_n}=\lim_{n\to\infty}\sum_{k=1}^nt_{nk}a_k=a.$$

例题 **4.18** 设
$$\lim_{n\to\infty} a_n = a$$
 且 $b_n \geqslant 0$. 记 $S_n = \sum_{k=1}^n b_k$,若 $\lim_{n\to\infty} S_n = S$. 证明

$$\lim_{n \to \infty} (a_n b_1 + a_{n-1} b_2 + \dots + a_1 b_n) = aS.$$

证明
$$(i)$$
 若 $S=0$, 则 $b_n\equiv 0$. 此时结论显然成立.
 (ii) 若 $S>0$, 则令 $t_{nk}=\frac{1}{S}b_{n-k+1}, k=1,2,\cdots,n$. 从而

$$\sum_{k=1}^{\infty} t_{nk} = \lim_{n \to +\infty} \sum_{k=1}^{n} t_{nk} = \frac{1}{S} \lim_{n \to +\infty} \sum_{k=1}^{n} b_{n-k+1} = \frac{1}{S} \lim_{n \to +\infty} S_n = 1.$$

又因为 $\lim_{n\to+\infty} S_n$ 存在, 所以 $\lim_{n\to+\infty} b_n = \lim_{n\to+\infty} (S_n - S_{n-1}) = 0$. 故 $\lim_{n\to+\infty} t_{nk} = 0$. 于是

$$\lim_{n \to \infty} (a_n b_1 + a_{n-1} b_2 + \dots + a_1 b_n) = \lim_{n \to \infty} \sum_{k=1}^n a_k b_{n-k+1} = S \cdot \lim_{n \to \infty} \sum_{k=1}^n a_k t_{nk}.$$

不妨设 a=0, 则对 $\forall N \in \mathbb{N}$, 当 n > N 时, 有

$$0 \leqslant \left| \sum_{k=1}^{n} a_k t_{nk} \right| \leqslant \left| \sum_{k=1}^{N} a_k t_{nk} \right| + \left| \sum_{k=N+1}^{n} a_k t_{nk} \right| \leqslant \left| \sum_{k=1}^{N} a_k t_{nk} \right| + \sup_{k \geq N+1} |a_k| \sum_{k=N+1}^{n} t_{nk} \leqslant \left| \sum_{k=1}^{N} a_k t_{nk} \right| + \sup_{k \geq N+1} |a_k| \sum_{k=1}^{n} t_{nk}.$$

$$\overline{\lim_{n\to+\infty}}\left|\sum_{k=1}^{n}a_{k}t_{nk}\right|\leqslant \lim_{n\to+\infty}\left(\sup_{k\geq N+1}\left|a_{k}\right|\sum_{k=1}^{n}t_{nk}\right)=\sup_{k\geq N+1}\left|a_{k}\right|,\forall N\in\mathbb{N}.$$

再令 $N \to +\infty$, 可得

$$\overline{\lim_{n \to +\infty}} \left| \sum_{k=1}^{n} a_k t_{nk} \right| \leq \lim_{N \to +\infty} \sup_{k \geq N+1} |a_k| = \overline{\lim_{n \to +\infty}} |a_k| = \lim_{n \to +\infty} |a_k| = \lim_{n \to +\infty} |a_k| = 0.$$

于是
$$\lim_{n \to +\infty} \sum_{k=1}^{n} a_k t_{nk} = a$$
. 故 $\lim_{n \to \infty} (a_n b_1 + a_{n-1} b_2 + \dots + a_1 b_n) = S \cdot \lim_{n \to \infty} \sum_{k=1}^{n} a_k t_{nk} = aS$.

例题 4.19 设 $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = 0$. 且存在常数 K > 0, 使得 $\sum_{i=0}^n |y_i| \le K, \forall n \in \mathbb{N}$, 证明

$$\lim_{n \to \infty} \sum_{i=1}^{n} x_i y_{n-i} = 0.$$

证明 对 $\forall N \in \mathbb{N}, \exists n > N$ 时,有

$$\lim_{n\to\infty}\sum_{i=1}^n x_i y_{n-i} = \lim_{N\to\infty}\sup_{i\geq N+1}|x_i| = \overline{\lim_{n\to\infty}}|x_n| = \lim_{n\to\infty}x_n = 0.$$

例题 **4.20** 设 $\lim_{n\to\infty} a_n = a, \lim_{n\to\infty} b_n = b$, 证明

$$\lim_{n\to\infty}\frac{a_1b_n+a_2b_{n-1}+\cdots+a_nb_1}{n}=ab.$$

笔记 可以不妨设 a = b = 0 的原因: 假设当 a = b = 0 时, 结论成立. 则当 a, b 至少有一个不为零时, 我们有 $\lim_{n\to\infty} (a_n - a) = 0$, $\lim_{n\to\infty} (b_n - b) = 0$. 从而由假设可知

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} (a_k - a) (b_{n-k+1} - b)}{n} = 0.$$

$$\Leftrightarrow \lim_{n \to \infty} \frac{\sum_{k=1}^{n} a_k b_{n-k+1}}{n} + ab - a \cdot \lim_{n \to \infty} \frac{\sum_{k=1}^{n} b_{n-k+1}}{n} - b \cdot \lim_{n \to \infty} \frac{\sum_{k=1}^{n} a_k}{n} = 0$$

又由Stolz 定理可知

$$\lim_{n\to\infty}\frac{\sum\limits_{k=1}^na_k}{n}=\lim_{n\to\infty}a_n=a,\lim_{n\to\infty}\frac{\sum\limits_{k=1}^nb_{n-k+1}}{n}=\lim_{n\to\infty}b_n=b.$$

故
$$\lim_{n \to \infty} \frac{\sum\limits_{k=1}^n a_k b_{n-k+1}}{n} = a \cdot \lim_{n \to \infty} \frac{\sum\limits_{k=1}^n b_{n-k+1}}{n} + b \cdot \lim_{n \to \infty} \frac{\sum\limits_{k=1}^n a_k}{n} - ab = ab.$$
证明 不妨设 $a = b = 0$, 否则用 $a_n - a$ 代替 a_n , 用 $b_n - b$ 代替 b_n . 对 $\forall N \in \mathbb{N}$, 当 $n > N$ 时,有

$$\left| \frac{\sum_{k=1}^{n} a_k b_{n-k+1}}{n} \right| \le \frac{\left| \sum_{k=1}^{N} a_k b_{n-k+1} \right|}{n} + \frac{\left| \sum_{k=N+1}^{n} a_k b_{n-k+1} \right|}{n}$$

$$\le \frac{1}{n} \left| \sum_{k=1}^{N} a_k b_{n-k+1} \right| + \sup_{k \ge N+1} |a_k| \cdot \frac{1}{n} \sum_{k=N+1}^{n} |b_{n-k+1}|$$

$$\le \frac{1}{n} \left| \sum_{k=1}^{N} a_k b_{n-k+1} \right| + \sup_{k \ge N+1} |a_k| \cdot \frac{1}{n} \sum_{k=1}^{n} |b_k|.$$

 $\oint n \to +\infty$, \emptyset

$$\overline{\lim_{n\to\infty}}\left|\frac{1}{n}\sum_{k=1}^n a_k b_{n-k+1}\right|\leqslant \sup_{k\geq N+1}|a_k|\cdot \overline{\lim_{n\to\infty}}\frac{\sum\limits_{k=1}^n|b_k|}{n}\leqslant \sup_{k\geq N+1}|a_k|\cdot \overline{\lim_{n\to\infty}}b_n=0.$$

故
$$\overline{\lim}_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} a_k b_{n-k+1} = 0.$$

4.3 Abel 变换

定理 4.3 (Abel 变换) 设 $\{a_n\}_{n=1}^N$, $\{b_n\}_{n=1}^N$ 是数列,则有恒等式

$$\sum_{k=1}^{N} a_k b_k = (a_1 - a_2)b_1 + \dots + (a_{N-1} - a_N)(b_1 + b_2 + \dots + b_{N-1}) + a_N(b_1 + b_2 + \dots + b_N)$$

$$= \sum_{i=1}^{N-1} (a_i - a_{i+1}) \sum_{i=1}^{j} b_i + a_N \sum_{i=1}^{N} b_i.$$

笔记 Abel 变换的证明想法"强行裂项"是一种很重要的思想. 证明 为了计算 $\sum_{i=1}^{N-1} (a_j - a_{j+1}) \sum_{i=1}^{j} b_i + a_N \sum_{i=1}^{N} b_i$,我们来强行构造裂项,差什么就给他补上去再补回来,即:

$$\sum_{j=1}^{N-1} (a_j - a_{j+1}) \sum_{i=1}^{j} b_i + a_N \sum_{i=1}^{N} b_i = \sum_{j=1}^{N-1} \left(a_j \sum_{i=1}^{j} b_i - a_{j+1} \sum_{i=1}^{j} b_i \right) + a_N \sum_{i=1}^{N} b_i$$

$$= \sum_{j=1}^{N-1} \left(a_j \sum_{i=1}^{j} b_i - a_{j+1} \sum_{i=1}^{j+1} b_i \right) + \sum_{j=1}^{N-1} \left(a_{j+1} \sum_{i=1}^{j+1} b_i - a_{j+1} \sum_{i=1}^{j} b_i \right) + a_N \sum_{i=1}^{N} b_i$$

$$= a_1 b_1 - a_N \sum_{i=1}^{N} b_i + \sum_{j=1}^{N-1} a_{j+1} b_{j+1} + a_N \sum_{i=1}^{N} b_i = \sum_{j=1}^{N} a_j b_j.$$

命题 4.1 (经典乘积极限结论)

设
$$a_1\geqslant a_2\geqslant \cdots \geqslant a_n\geqslant 0$$
 且 $\lim_{n\to\infty}a_n=0$,极限 $\lim_{n\to\infty}\sum_{k=1}^na_kb_k$ 存在. 证明
$$\lim_{n\to\infty}(b_1+b_2+\cdots+b_n)a_n=0.$$

拿 笔记 为了估计 $\sum_{j=1}^n b_j$,前面的有限项不影响. 而要用上极限 $\sum_{n=1}^\infty a_n b_n$ 收敛,自然想到 $\sum_{j=1}^n b_j = \sum_{j=1}^n \frac{b_j a_j}{a_j}$ 和Abel 变换. 而 a_j 的单调性能用在Abel 变换之后去绝对值.

证明 不妨设 $a_1 \geqslant a_2 \geqslant \cdots \geqslant a_n > 0$. 则由于级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛, 存在 $N \in \mathbb{N}$, 使得

$$\left| \sum_{i=N+1}^{m} a_i b_i \right| \leqslant \varepsilon, \forall m \geqslant N+1.$$

当 $n \ge N + 1$, 由Abel 变换, 我们有

$$\begin{split} \left| \sum_{j=N+1}^{n} b_{j} \right| &= \left| \sum_{j=N+1}^{n} \frac{a_{j} b_{j}}{a_{j}} \right| = \left| \sum_{j=N+1}^{n-1} \left(\frac{1}{a_{j}} - \frac{1}{a_{j+1}} \right) \sum_{i=N+1}^{j} a_{i} b_{i} + \frac{1}{a_{n}} \sum_{i=N+1}^{n} a_{i} b_{i} \right| \\ &\leq \sum_{j=N+1}^{n-1} \left(\left| \frac{1}{a_{j}} - \frac{1}{a_{j+1}} \right| \cdot \left| \sum_{i=N+1}^{j} a_{i} b_{i} \right| \right) + \frac{1}{|a_{n}|} \left| \sum_{i=N+1}^{n} a_{i} b_{i} \right| \\ &\leq \left| \sum_{i=N+1}^{n} a_{i} b_{i} \right| \cdot \sum_{j=N+1}^{n-1} \left(\left| \frac{1}{a_{j}} - \frac{1}{a_{j+1}} \right| \right) + \frac{1}{|a_{n}|} \left| \sum_{i=N+1}^{n} a_{i} b_{i} \right| \\ &\leq \varepsilon \left| \sum_{j=N+1}^{n-1} \left(\frac{1}{a_{j+1}} - \frac{1}{a_{j}} \right) + \frac{1}{a_{n}} \right| = \varepsilon \left(\frac{2}{a_{n}} - \frac{1}{a_{N+1}} \right). \end{split}$$

因此我们有

$$\overline{\lim_{n\to\infty}}\left|a_n\sum_{j=1}^nb_j\right|\leqslant\overline{\lim_{n\to\infty}}\left|a_n\sum_{j=1}^Nb_j\right|+\overline{\lim_{n\to\infty}}\left|a_n\sum_{j=N+1}^nb_j\right|\leqslant\overline{\lim_{n\to\infty}}\left|a_n\sum_{j=1}^Nb_j\right|+\varepsilon\overline{\lim_{n\to\infty}}\left(2-\frac{a_n}{a_{N+1}}\right)=2\varepsilon.$$

由 ε 任意性即可得 $\overline{\lim}_{n\to\infty} \left| a_n \sum_{j=1}^n b_j \right| = 0$, 于是就证明了 $\lim_{n\to\infty} (b_1 + b_2 + \dots + b_n) a_n = 0$.

4.4 Stolz 定理

4.4.1 数列 Stolz 定理

定理 4.4 (Stolz 定理)

(a): 设 x_n 是严格递增数 列且满足 $\lim_{n\to\infty} x_n = +\infty$, 则

$$\underbrace{\lim_{n \to \infty} \frac{y_{n+1} - y_n}{x_{n+1} - x_n}}_{x_{n+1} - x_n} \leqslant \underbrace{\lim_{n \to \infty} \frac{y_n}{x_n}}_{x_n} \leqslant \underbrace{\lim_{n \to \infty} \frac{y_n}{x_n}}_{x_n} \leqslant \underbrace{\lim_{n \to \infty} \frac{y_{n+1} - y_n}{x_{n+1} - x_n}}_{x_{n+1} - x_n}$$

(b): 设 x_n 是严格递减数列且满足 $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = 0$, 则

$$\underline{\lim_{n\to\infty}} \frac{y_{n+1}-y_n}{x_{n+1}-x_n} \leqslant \underline{\lim_{n\to\infty}} \frac{y_n}{x_n} \leqslant \overline{\lim_{n\to\infty}} \frac{y_n}{x_n} \leqslant \overline{\lim_{n\to\infty}} \frac{y_{n+1}-y_n}{x_{n+1}-x_n}$$

(c): 分别在 (a),(b) 的条件基础上, 若还有
$$\lim_{n\to\infty} \frac{y_{n+1}-y_n}{x_{n+1}-x_n}$$
 存在或者为确定符号的 ∞ , 则
$$\lim_{n\to\infty} \frac{y_n}{x_n} = \lim_{n\to\infty} \frac{y_{n+1}-y_n}{x_{n+1}-x_n}.$$
 (4.10)

必达法则有一定的相似程度.即Stolz 定理是离散的洛必达法则

证明 我们仅证明 x_n 是严格递增数列且满足 $\lim_{n\to\infty} x_n = +\infty$ 和 $\lim_{n\to\infty} \frac{y_{n+1}-y_n}{x_{n+1}-x_n} < \infty$ 时有

$$\overline{\lim}_{n \to \infty} \frac{y_n}{x_n} \leqslant \overline{\lim}_{n \to \infty} \frac{y_{n+1} - y_n}{x_{n+1} - x_n}.$$
(4.11)

 $\overline{\lim}_{n\to\infty}\frac{y_n}{x_n}\leqslant\overline{\lim}_{n\to\infty}\frac{y_{n+1}-y_n}{x_{n+1}-x_n}. \tag{4}.$ 记 $A\triangleq\overline{\lim}_{n\to\infty}\frac{y_{n+1}-y_n}{x_{n+1}-x_n}$,由上极限定义我们知道对任何 $\varepsilon>0$,存在 $N\in\mathbb{N}$,使得 $\frac{y_{n+1}-y_n}{x_{n+1}-x_n}\leqslant A+\varepsilon, \forall n\geqslant N.$ 利用 x_n 严格递增时,成立 $y_{n+1}-y_n\leqslant (A+\varepsilon)(x_{n+1}-x_n), n\geqslant N$,然后求和得

$$\sum_{j=N}^{n-1}(y_{j+1}-y_j)\leqslant (A+\varepsilon)\sum_{j=N}^{n-1}(x_{j+1}-x_j), \forall n\geqslant N+1.$$

即

$$y_n - y_N \le (A + \varepsilon)(x_n - x_N), \forall n \ge N + 1.$$

$$\overline{\lim_{n\to\infty}} \frac{y_n}{x_n} = \overline{\lim_{n\to\infty}} \frac{\frac{y_n}{x_n} - \frac{y_N}{x_n}}{1 - \frac{x_N}{x_n}} = \overline{\lim_{n\to\infty}} \frac{y_n - y_N}{x_n - x_N} \leqslant A + \varepsilon.$$

由 ε 任意性得到式(4.11).

命题 4.2 (Cauchy 命题)

若 $\lim_{n\to\infty} y_n$ 存在或者为确定符号的 ∞,则有

$$\lim_{n\to\infty}\frac{y_1+y_2+\cdots+y_n}{n}=\lim_{n\to\infty}y_n.$$

笔记 这个命题说明Stolz 定理是一种有效的把求和消去的降阶方法.

证明 容易由Stolz 定理的 (a)直接得出.

例题 4.21 计算

$$\lim_{n \to \infty} \frac{\ln n}{\ln \sum_{k=1}^{n} k^{2020}}.$$

笔记 本题计算过程中使用了 Lagrange 中值定理, 只是过程省略了而已 (以后这种过程都会省略). 证明 由Stolz 定理可得

$$\lim_{n \to \infty} \frac{\ln n}{\ln \sum_{k=1}^{n} k^{2020}} = \lim_{n \to \infty} \frac{\ln (n+1) - \ln n}{\ln \sum_{k=1}^{n+1} k^{2020} - \ln \sum_{k=1}^{n} k^{2020}} = \lim_{n \to \infty} \frac{\ln (1 + \frac{1}{n})}{\ln \sum_{k=1}^{n+1} k^{2020}} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\ln (1 + \frac{(n+1)^{2020}}{\sum_{k=1}^{n} k^{2020}})}.$$

又由Stolz 定理可知

$$\lim_{n \to \infty} \frac{(n+1)^{2020}}{\sum_{k=1}^{n} k^{2020}} = \lim_{n \to \infty} \frac{(n+2)^{2020} - (n+1)^{2020}}{(n+1)^{2020}} = \lim_{n \to \infty} \frac{2020 \cdot n^{2019}}{(n+1)^{2020}} = 0.$$

于是再利用Stolz 定理可得

$$\lim_{n \to \infty} \frac{\frac{1}{n}}{\ln\left(1 + \frac{(n+1)^{2020}}{\sum\limits_{k=1}^{n} k^{2020}}\right)} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\sum\limits_{k=1}^{(n+1)^{2020}} e^{-1}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} k^{2020}}{n \cdot (n+1)^{2020}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} k^{$$

命题 4.3 (数列收敛的级数形式)

$$\{a_n\}_{n=1}^{\infty}$$
 收敛的充要条件: $\sum_{n=1}^{\infty} (a_{n+1} - a_n)$ 收敛.

证明 必要性 (⇒) 和充分性 (⇐) 都可由 $\lim_{n\to\infty}\sum_{k=1}^n (a_{k+1}-a_k) = \lim_{n\to\infty} (a_{n+1}-a_1)$ 直接得到.

例题 4.22

- 1. 计算极限 $\lim_{n\to\infty} \frac{\sum_{k=1}^{n} \frac{1}{k}}{\ln n}$.
- 2. 证明下述极限存在 $\lim_{n\to\infty} \left(\sum_{k=1}^{n} \frac{1}{k} \ln n\right)$.
- 3. 计算 $\lim_{n\to\infty} n \left(\sum_{k=1}^n \frac{1}{k} \ln n \gamma \right)$.

解

1. 直接由Stolz 定理可得

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} \frac{1}{k}}{\ln n} = \lim_{n \to \infty} \frac{\frac{1}{n+1}}{\ln(n+1) - \ln n} = \lim_{n \to \infty} \frac{\frac{1}{n+1}}{\frac{1}{n}} = 1.$$

2. 记 $c_n = \sum_{k=1}^n \frac{1}{k} - \ln n$, 则

$$c_{n+1} - c_n = \frac{1}{n+1} + \ln n - \ln(n+1) = \frac{1}{n+1} - \ln\left(1 + \frac{1}{n}\right)$$
$$= \frac{1}{n+1} - \left[\frac{1}{n} + O\left(\frac{1}{n^2}\right)\right] = -\frac{1}{n(n+1)} + O\left(\frac{1}{n^2}\right)$$
$$= O\left(\frac{1}{n^2}\right), n \to +\infty.$$

从而存在常数 C > 0, 使得 $|c_{n+1} - c_n| \le \frac{C}{n^2}$, 又因为 $\sum_{n=1}^{\infty} \frac{C}{n^2}$ 收敛, 所以由比较原则可知 $\sum_{n=1}^{\infty} |c_{n+1} - c_n|$ 也收敛. 由于数列级数绝对收敛一定条件收敛, 因此 $\sum_{n=1}^{\infty} (c_{n+1} - c_n)$ 也收敛, 即 $\lim_{n \to \infty} \sum_{k=1}^{n} (c_{k+1} - c_k) = \lim_{n \to \infty} (c_{n+1} - c_1)$ 存在. 故 $\lim_{n \to \infty} c_n = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right)$ 也存在.

3. 由Stolz 定理可得

$$\lim_{n \to \infty} n \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n - \gamma \right) = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \frac{1}{k} - \ln n - \gamma}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\frac{1}{n+1} - \ln \left(1 + \frac{1}{n}\right)}{\frac{1}{n+1} - \frac{1}{n}}$$

$$\lim_{n \to \infty} \frac{1}{\left(\frac{1}{n+1} - \frac{1}{n}\right) n^2} \cdot \lim_{n \to \infty} n^2 \left[\frac{1}{n+1} - \ln \left(1 + \frac{1}{n}\right) \right] = \lim_{n \to \infty} \frac{1}{-\frac{1}{n(n+1)} \cdot n^2} \cdot \lim_{n \to \infty} n^2 \left[\frac{1}{n+1} - \ln \left(1 + \frac{1}{n}\right) \right]$$

$$= -\lim_{n \to \infty} n^2 \left[\frac{1}{n+1} - \left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right) \right] = \frac{1}{2}.$$

因此我们得到了调和级数的渐进估计

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right), n \to \infty.$$

例题 4.23 计算

- 1. $\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n!}$;
- 2. $\lim_{n \to \infty} (\sqrt[n+1]{(n+1)!} \sqrt[n]{n!})$

证明

1. 由Stolz 定理可得

$$\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n} = \lim_{n \to \infty} \frac{e^{\sum_{k=1}^{n} \ln k}}{n} = \lim_{n \to \infty} e^{\sum_{k=1}^{n} \ln k} - \ln n = e^{\lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln k - n \ln n}{n}}$$

$$= e^{\lim_{n \to \infty} \frac{\ln(n+1) - (n+1) \ln(n+1) + n \ln n}{1}} = e^{\lim_{n \to \infty} n \ln \frac{n+1}{n}}$$

$$= e^{\lim_{n \to \infty} n \left(\frac{n}{n+1} - 1\right)} = e^{-1}.$$

2. 注意到

$$\lim_{n \to \infty} \binom{n+1}{\sqrt[n]{(n+1)!}} - \sqrt[n]{n!} = \lim_{n \to \infty} \binom{\sum_{k=1}^{n+1} \ln k}{e^{\frac{k-1}{n+1}}} - e^{\frac{\sum_{k=1}^{n} \ln k}{n}} = \lim_{n \to \infty} e^{\frac{\sum_{k=1}^{n} \ln k}{n}} \binom{\sum_{k=1}^{n+1} \ln k}{e^{\frac{k-1}{n+1}} - \frac{\sum_{k=1}^{n} \ln k}{n}} - 1$$

由上一小题可知

$$\lim_{n\to\infty}\frac{\sqrt[n]{n!}}{n}=\lim_{n\to\infty}\frac{e^{\sum\limits_{k=1}^{n}\ln k}}{n}=e^{-1}.$$

故
$$e^{\sum_{k=1}^{n} \ln k} \sim \frac{n}{e}, n \to \infty$$
. 并且

$$\lim_{n \to \infty} \left(\frac{\sum_{k=1}^{n+1} \ln k}{n+1} - \frac{\sum_{k=1}^{n} \ln k}{n} \right) = \lim_{n \to \infty} \frac{n \sum_{k=1}^{n+1} \ln k - (n+1) \sum_{k=1}^{n} \ln k}{n (n+1)} = \lim_{n \to \infty} \frac{n \ln (n+1) - \sum_{k=1}^{n} \ln k}{n (n+1)}$$

$$=-\lim_{n\to\infty}\frac{\sum_{k=1}^{n}\ln k}{n(n+1)}\frac{\text{Stolz }\mathbb{Z}^{\underline{H}}}{n(n+1)}-\lim_{n\to\infty}\frac{\ln n}{2(n+1)}=0.$$

因此

$$\lim_{n \to \infty} \binom{n+1}{\sqrt[n]{(n+1)!}} - \sqrt[n]{n!} = \lim_{n \to \infty} e^{\sum_{k=1}^{n} \ln k} \left(e^{\sum_{k=1}^{n+1} \ln k} - \sum_{k=1}^{n} \ln k - 1 \right) = \lim_{n \to \infty} \frac{n}{e} \cdot \left(\sum_{k=1}^{n+1} \ln k - \sum_{k=1}^{n} \ln k - 1 \right) = \lim_{n \to \infty} \frac{n}{e} \cdot \left(\sum_{k=1}^{n+1} \ln k - \sum_{k=1}^{n} \ln k - 1 \right) = \lim_{n \to \infty} \frac{n}{n} \cdot \frac{n \ln (n+1) - \sum_{k=1}^{n} \ln k}{n + 1} - \frac{1}{n} = \lim_{n \to \infty} \frac{n \ln (n+1) - \sum_{k=1}^{n} \ln k}{n + 1} = \lim_{n \to \infty} \frac{n \ln (n+1) - \sum_{k=1}^{n} \ln k}{n + 1}$$

$$\frac{\text{Stolz } \cancel{\cancel{\mathbb{E}}} \cancel{\cancel{\mathbb{E}}}}{e} \frac{1}{e} \lim_{n \to \infty} \left[(n+1) \ln (n+2) - \sum_{k=1}^{n+1} \ln k - n \ln (n+1) + \sum_{k=1}^{n} \ln k \right]$$

$$= \frac{1}{e} \lim_{n \to \infty} \left[(n+1) \ln (n+2) - (n+1) \ln (n+1) \right] = \frac{1}{e} \lim_{n \to \infty} (n+1) \ln \left(1 + \frac{1}{n+1} \right)$$

$$= \frac{1}{e} \lim_{n \to \infty} (n+1) \left[\frac{1}{n+1} + o \left(\frac{1}{n+1} \right) \right] = \frac{1}{e}.$$

例题 4.24 计算

$$\lim_{n\to\infty} \frac{\sum_{k=1}^n \ln C_n^k}{n^2}.$$

拿 笔记 注意到,分子求和时,不是单纯的 $\sum_{k=0}^{n+1} \ln C_n^k - \sum_{k=0}^n \ln C_n^k$, 而是 $\sum_{k=0}^{n+1} \ln C_{n+1}^k - \sum_{k=0}^n \ln C_n^k$.

组合数的定义和性质可以参考 Binomial Coeffi 结论 $C_a^b = \frac{a}{b}C_{a-1}^{b-1}$. 解 由Stolz 定理可得

结论
$$C_a^b = \frac{a}{b} C_{a-1}^{b-1}$$
.

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln C_{n}^{k}}{n^{2}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n+1} \ln C_{n+1}^{k} - \sum_{k=1}^{n} \ln C_{n}^{k}}{n^{2} - (n-1)^{2}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n+1} \ln C_{n+1}^{k} - \sum_{k=1}^{n} \ln C_{n}^{k}}{2n}$$

$$= \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln C_{n+1}^{k} - \sum_{k=1}^{n} \ln C_{n}^{k}}{2n} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln \left(\frac{n+1}{k}C_{n}^{k-1}\right) - \sum_{k=1}^{n} \ln C_{n}^{k}}{2n}$$

$$= \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln (n+1) - \sum_{k=1}^{n} \ln k + \sum_{k=1}^{n} \left(\ln C_{n}^{k-1} - \ln C_{n}^{k}\right)}{2n} = \lim_{n \to \infty} \frac{n \ln (n+1) - \sum_{k=1}^{n} \ln k - \left(\ln C_{n}^{0} - \ln C_{n}^{n}\right)}{2n}$$

$$= \lim_{n \to \infty} \frac{n \ln (n+1) - \sum_{k=1}^{n} \ln k}{2n} = \frac{1}{2} \lim_{n \to \infty} \frac{(n+1) \ln (n+2) - n \ln (n+1) - \ln (n+1)}{1}$$

$$= \frac{1}{2} \lim_{n \to \infty} (n+1) \ln \frac{n+2}{n+1} = \frac{1}{2} \lim_{n \to \infty} (n+1) \left(\frac{n+2}{n+1} - 1\right) = \frac{1}{2}.$$

例题 4.25 设 $\lim_{n\to\infty} a_n \sum_{k=1}^n a_k^2 = 1$, 计算 $\lim_{n\to\infty} \sqrt[3]{n} a_n$.

解 因为 $\left\{\sum_{k=1}^{n}a_{k}^{2}\right\}$ 单调递增,故由单调有界定理可知, $\left\{\sum_{k=1}^{n}a_{k}^{2}\right\}$ 的极限要么为有限数,要么为 $+\infty$. 假设 $\lim_{n\to\infty}a_{n}\neq0$

或不存在,则此时
$$\lim_{n \to \infty} \sum_{k=1}^n a_k^2 = +\infty$$
. 否则,设 $\lim_{n \to \infty} \sum_{k=1}^n a_k^2 = c < \infty$,则 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\sum_{k=1}^n a_k^2 - \sum_{k=1}^{n-1} a_k^2 \right) = c - c = 0$

矛盾. 又由 $\lim_{n\to\infty} a_n \sum_{k=1}^n a_k^2 = 1$ 可得 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} a_n \sum_{k=1}^n a_k^2 \cdot \lim_{n\to\infty} \frac{1}{\sum\limits_{n\to\infty}^n a_k^2} = 0$, 这与 $\lim_{n\to\infty} a_n \neq 0$ 或不存在矛盾. 故

$$\lim_{n\to\infty}a_n=0. \text{ 并且由 }\lim_{n\to\infty}a_n\sum_{k=1}^na_k^2=1\text{ 可知 }a_n\sim\frac{1}{\sum\limits_{k=1}^na_k^2},n\to\infty.\text{ 于是}$$

$$\lim_{n \to \infty} \frac{1}{n a_n^3} = \lim_{n \to \infty} \frac{\left(\sum_{k=1}^n a_k^2\right)^3}{n} = \lim_{n \to \infty} \left[\left(\sum_{k=1}^{n+1} a_k^2\right)^3 - \left(\sum_{k=1}^n a_k^2\right)^3 \right]$$
$$= \lim_{n \to \infty} \left[\left(a_{n+1}^2 + \sum_{k=1}^n a_k^2\right)^3 - \left(\sum_{k=1}^n a_k^2\right)^3 \right]$$

$$= \lim_{n \to \infty} \left(\sum_{k=1}^{n} a_k^2 \right)^3 \left[\left(\frac{a_{n+1}^2}{\sum_{k=1}^{n} a_k^2} + 1 \right)^3 - 1 \right]$$
 又由于 $\lim_{n \to \infty} \frac{a_{n+1}^2}{\sum_{k=1}^{n} a_k^2} = \lim_{n \to \infty} a_{n+1}^2 a_n = 0$,因此 $\left(\frac{a_{n+1}^2}{\sum_{k=1}^{n} a_k^2} + 1 \right)^3 - 1 \sim \frac{3a_{n+1}^2}{\sum_{k=1}^{n} a_k^2}, n \to \infty$.从而上式可化为
$$\lim_{n \to \infty} \frac{1}{na_n^3} = \lim_{n \to \infty} \left(\sum_{k=1}^{n} a_k^2 \right)^3 \left[\left(\frac{a_{n+1}^2}{\sum_{k=1}^{n} a_k^2} + 1 \right)^3 - 1 \right]$$

$$= \lim_{n \to \infty} \left(\sum_{k=1}^{n} a_k^2 \right)^3 \frac{3a_{n+1}^2}{\sum_{k=1}^{n} a_k^2} = 3 \lim_{n \to \infty} a_{n+1}^2 \left(\sum_{k=1}^{n} a_k^2 \right)^2$$

$$= 3 \lim_{n \to \infty} a_{n+1}^2 \left(\sum_{k=1}^{n+1} a_k^2 - a_{n+1} \right)^2 = 3 \lim_{n \to \infty} a_{n+1}^2 \left(\sum_{k=1}^{n+1} a_k^2 - a_{n+1}^2 \right)^2$$

$$= 3 \lim_{n \to \infty} \left[a_{n+1}^2 \left(\sum_{k=1}^{n+1} a_k^2 \right)^2 - 2a_{n+1}^4 \sum_{k=1}^{n+1} a_k^2 + a_{n+1}^6 \right) = 3 + 0 + 0 = 3.$$
 图此 $\lim_{n \to \infty} \sqrt[3]{n} a_n = \frac{1}{\sqrt[3]{\lim -\frac{1}{3}}} = \frac{1}{\sqrt[3]{3}}$.

例题 4.26

解

1. 由 $\ln(1+x) \le x, \forall x \in \mathbb{R}$ 可知 $x_{n+1} \le x_n, \forall n \in \mathbb{N}$. 并且 $x_1 > 0$, 假设 $x_n > 0$, 则 $x_{n+1} = \ln(1+x_n) > 0$. 从而由数学归纳法, 可知 $x_n > 0, \forall n \in \mathbb{N}$. 于是由单调有界定理, 可知数列 $\{x_n\}$ 收敛. 设 $\lim_{n \to \infty} x_n = a \ge 0$. 对 $x_{n+1} = \ln(1+x_n)$ 两边同时令 $n \to \infty$, 可得

$$a = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \ln(1 + x_n) = \ln(1 + a).$$

故 $\lim_{n \to \infty} x_n = a = 0$. 进而, 由 Stolz 定理可得

$$\lim_{n \to \infty} \frac{1}{nx_n} = \lim_{n \to \infty} \frac{\frac{1}{x_n}}{n} = \lim_{n \to \infty} \left(\frac{1}{x_{n+1}} - \frac{1}{x_n} \right)$$

$$= \lim_{n \to \infty} \left(\frac{1}{\ln(1+x_n)} - \frac{1}{x_n} \right) = \lim_{x \to 0} \left(\frac{1}{\ln(1+x)} - \frac{1}{x} \right)$$

$$= \lim_{x \to 0} \frac{x - \ln(1+x)}{x \ln(1+x)} = \lim_{x \to 0} \frac{x - \left(x - \frac{x^2}{2} + o(x^2)\right)}{x^2} = \frac{1}{2}.$$

因此 $\lim_{n\to\infty} nx_n = 2$. 即 $x_n \sim \frac{2}{n}, n\to\infty$. 因而, 再结合 Stolz 定理可得

$$\lim_{n \to \infty} \frac{n(nx_n - 2)}{\ln n} = \lim_{n \to \infty} \frac{nx_n \left(n - \frac{2}{x_n}\right)}{\ln n} = 2 \lim_{n \to \infty} \frac{n - \frac{2}{x_n}}{\ln n}$$

$$= 2 \lim_{n \to \infty} \frac{1 + \frac{2}{x_n} - \frac{2}{x_{n+1}}}{\ln\left(1 + \frac{1}{n}\right)} = 2 \lim_{n \to \infty} \frac{1 + \frac{2}{x_n} - \frac{2}{x_{n+1}}}{\frac{1}{n}}$$

$$= 2 \lim_{n \to \infty} \frac{1 + \frac{2}{x_n} - \frac{2}{\ln(1+x_n)}}{\frac{x_n}{2}} = 4 \lim_{x \to 0} \frac{1 + \frac{2}{x} - \frac{2}{\ln(1+x)}}{x}$$

$$= 4 \lim_{x \to 0} \frac{(x+2)\ln(1+x) - 2x}{x^2\ln(1+x)} = 4 \lim_{x \to 0} \frac{(x+2)\left(x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)\right) - 2x}{x^3}$$

$$= 4 \lim_{x \to 0} \frac{-\frac{x^3}{2} + \frac{2x^3}{3} + o(x^3)}{x^3} = \frac{2}{3}.$$

实际上, 由上述计算我们可以得到 x_n 在 $n \to \infty$ 时的渐进估计

$$\frac{n(nx_n - 2)}{\ln n} = \frac{2}{3} + o(1) \Rightarrow nx_n - 2 = \frac{2\ln n}{3n} + o\left(\frac{\ln n}{n}\right)$$
$$\Rightarrow x_n = \frac{2}{n} + \frac{2\ln n}{3n^2} + o\left(\frac{\ln n}{n^2}\right), n \to \infty.$$

2. 由 $\sin x \leq x, \forall x \in \mathbb{R}$ 可知 $x_{n+1} \leq x_n, \forall n \in \mathbb{N}$. 又由于 $0 < x_1 < \pi$ 及 $0 < x_{n+1} = \sin x_n < 1, \forall n \in \mathbb{N}_+$,故归纳可得 $0 \leq x_n \leq 1, \forall n \geq 2$. 因此 $\{x_n\}$ 极限存在,设 $\lim_{n \to \infty} x_n = a < \infty$. 从而对 $x_{n+1} = \sin x_n$ 两边同时令 $n \to \infty$ 可得

$$a = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \sin x_n = \sin a.$$

故 $\lim_{n\to\infty} x_n = a = 0$. 于是由 Stolz 定理可得

$$\lim_{n \to \infty} \frac{3}{nx_n^2} = 3 \lim_{n \to \infty} \frac{\frac{1}{x_n^2}}{n} = 3 \lim_{n \to \infty} \left(\frac{1}{x_{n+1}^2} - \frac{1}{x_n^2} \right) = 3 \lim_{n \to \infty} \left(\frac{1}{\sin^2 x_n} - \frac{1}{x_n^2} \right)$$

$$= 3 \lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^2 \sin^2 x} = 3 \lim_{x \to 0} \frac{x^2 - \left(x - \frac{x^3}{3!} + o(x^3)\right)^2}{x^4}$$

$$= 3 \lim_{x \to 0} \frac{\frac{x^4}{3} + o(x^4)}{x^4} = 1.$$

因此 $\lim_{n\to\infty}\sqrt{\frac{n}{3}}x_n=\lim_{n\to\infty}\sqrt{\frac{1}{\frac{3}{nx_n^2}}}=1,\lim_{n\to\infty}nx_n^2=3.$ 即 $x_n\sim\sqrt{\frac{3}{n}},n\to\infty$. 进而, 再结合 Stolz 定理可得

$$\lim_{n \to \infty} \frac{n}{\ln n} \left(1 - \sqrt{\frac{n}{3}} x_n \right) \xrightarrow{\frac{\pi}{3}} \frac{\pi}{2} \frac{1}{\ln n} \lim_{n \to \infty} \frac{n \left(1 - \frac{n}{3} x_n^2 \right)}{\ln n \left(1 + \sqrt{\frac{n}{3}} x_n \right)} = \lim_{n \to \infty} \frac{n x_n^2 \left(\frac{1}{x_n^2} - \frac{n}{3} \right)}{\ln n \left(1 + \sqrt{\frac{n}{3}} x_n \right)}$$

$$= \frac{3}{2} \lim_{n \to \infty} \frac{\frac{1}{x_n^2} - \frac{n}{3}}{\ln n} = \frac{3}{2} \lim_{n \to \infty} \frac{\frac{1}{x_{n+1}^2} - \frac{1}{x_n^2} - \frac{1}{3}}{\ln \left(1 + \frac{1}{n} \right)}$$

$$= \frac{3}{2} \lim_{n \to \infty} \frac{\frac{1}{\sin^2 x_n} - \frac{1}{x_n^2} - \frac{1}{3}}{\frac{1}{n}} = \frac{3}{2} \lim_{n \to \infty} \frac{\frac{1}{\sin^2 x_n} - \frac{1}{x_n^2} - \frac{1}{3}}{\frac{x_n^2}{3}}$$

$$= \frac{9}{2} \lim_{n \to \infty} \frac{\frac{1}{\sin^2 x_n} - \frac{1}{x_n^2} - \frac{1}{3}}{x^2} = \frac{9}{2} \lim_{n \to \infty} \frac{x^2 - \sin^2 x - \frac{1}{3} x^2 \sin^2 x}{x^4 \sin^2 x}$$

$$= \frac{9}{2} \lim_{n \to \infty} \frac{x^2 - \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5) \right)^2 - \frac{1}{3} x^2 \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5) \right)^2}{x^6}$$

$$= \frac{9}{2} \lim_{n \to \infty} \frac{-\frac{x^6}{36} - \frac{x^6}{60} + \frac{x^6}{9} + o(x^6)}{x^6} = \frac{3}{10}.$$

(最几步的计算除了用 Taylor 展开也可以用洛朗展开计算, 即先用长除法算出 $\frac{1}{\sin^2 x} = \frac{1}{x^2} + \frac{1}{3} + \frac{1}{15}x^2 + o\left(x^2\right)$, 再直接带入计算得到结果, 实际上利用洛朗展开计算更加简便.)

3. 由条件可知 $x_{n+1} = x_n + \frac{1}{x_n} \ge x_n, \forall n \in \mathbb{N}_+$. 又 $x_1 = 1 > 0$, 故归纳可得 $x_n > 0, \forall n \in \mathbb{N}_+$. 由单调有界定理可知数

列 $\{x_n\}$ 的极限要么是 $+\infty$, 要么是有限数. 假设 $\lim_{n\to\infty} x_n = a < \infty$, 则对 $x_{n+1} = x_n + \frac{1}{x_n}$ 两边同时令 $n\to\infty$, 可得 $a = a + \frac{1}{a} \Rightarrow \frac{1}{a} = 0$ 矛盾. 故 $\lim_{n\to\infty} x_n = +\infty$. 于是由 Stolz 定理可得

$$\lim_{n \to \infty} \frac{x_n}{\sqrt{n}} = \sqrt{\lim_{n \to \infty} \frac{x_n^2}{n}} = \sqrt{\lim_{n \to \infty} \frac{x_{n+1}^2 - x_n^2}{n+1-n}} = \sqrt{\lim_{n \to \infty} \left(\left(x_n + \frac{1}{x_n}\right)^2 - x_n^2\right)}$$
$$= \sqrt{\lim_{n \to \infty} \left(2 + \frac{1}{x_n^2}\right)} = \sqrt{2}.$$

因此 $x_n \sim \sqrt{2n}, n \to \infty$. 从而 $x_n + \sqrt{2n} \sim 2\sqrt{2n}, n \to \infty$. 再结合 Stolz 定理可得

$$\lim_{n \to \infty} \frac{\sqrt{2n}(x_n - \sqrt{2n})}{\ln n} \xrightarrow{\frac{\pi}{2}} \frac{\frac{\pi}{2}}{\ln n} \lim_{n \to \infty} \frac{\sqrt{2n}(x_n^2 - 2n)}{(x_n + \sqrt{2n})\ln n} = \lim_{n \to \infty} \frac{\sqrt{2n}(x_n^2 - 2n)}{2\sqrt{2n}\ln n}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x_n^2 - 2n}{\ln n} = \frac{1}{2} \lim_{n \to \infty} \frac{x_{n+1}^2 - x_n^2 - 2}{\ln(n+1) - \ln n}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{\left(x_n + \frac{1}{x_n}\right)^2 - x_n^2 - 2}{\frac{1}{n}} = \frac{1}{2} \lim_{n \to \infty} \frac{\left(x_n + \frac{1}{x_n}\right)^2 - x_n^2 - 2}{\frac{2}{x_n^2}}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{\frac{2}{x_n^2}}{\frac{2}{x_n^2}} = \frac{1}{2}.$$

例题 4.27 设 $a_1 = 1, a_{n+1} = a_n + \frac{1}{S_n}, S_n = \sum_{k=1}^n a_k$, 计算 $\lim_{n \to \infty} \frac{a_n}{\sqrt{\ln n}}$.

解 由于 $a_{n+1} = a_n + \frac{1}{S_n}$, $\forall n \in \mathbb{N}_+$, 并且 $a_1 > 0$, 故由数学归纳法可知 $a_n > 0$, $\forall n \in \mathbb{N}_+$. 又 $a_2 = a_1 + a_1 > a_1$, 再根据 递推式,可以归纳得到数列 $\{a_n\}$ 单调递增. 因此, 数列 $\{a_n\}$ 要么 $\lim_{n \to \infty} a_n = a < \infty$, 要么 $\lim_{n \to \infty} a_n = +\infty$. 由条件可知 $a_{n+1} - a_n = \frac{1}{S_n} \geqslant \frac{1}{na_1} = \frac{1}{n}$, $\forall n \in \mathbb{N}_+$. 从而对 $\forall n \in \mathbb{N}_+$, 都有

$$a_n = a_n - a_{n-1} + a_{n-1} - a_{n-2} + \dots + a_2 - a_1 \geqslant \frac{1}{n-1} + \frac{1}{n-2} + \dots + 1 = \sum_{k=1}^{n-1} \frac{1}{k}$$

而 $\lim_{n\to\infty}\sum_{k=1}^{n-1}\frac{1}{k}=+\infty$, 故 $\lim_{n\to\infty}a_n=+\infty$. 于是由 Stolz 定理, 可知

$$\lim_{n \to \infty} \frac{a_n^2}{\ln n} = \lim_{n \to \infty} \frac{a_{n+1}^2 - a_n^2}{\ln(1 + \frac{1}{n})} = \lim_{n \to \infty} n(a_{n+1}^2 - a_n^2)$$

$$= \lim_{n \to \infty} n \left[\left(a_n + \frac{1}{S_n} \right)^2 - a_n^2 \right] = \lim_{n \to \infty} n \left(\frac{2a_n}{S_n} + \frac{1}{S_n^2} \right).$$

根据 Stolz 定理, 可得

$$\lim_{n \to \infty} \frac{n}{S_n^2} = \lim_{n \to \infty} \frac{1}{a_{n+1}^2} = 0;$$

$$\lim_{n \to \infty} \frac{na_n}{S_n} = \lim_{n \to \infty} \frac{(n+1)a_{n+1} - na_n}{a_{n+1}} = \lim_{n \to \infty} \left[n + 1 - \frac{na_n}{a_{n+1}} \right].$$

由递推公式, 可得对 $\forall n \in \mathbb{N}_+$, 有

$$1 = n + 1 - n \le n + 1 - \frac{na_n}{a_{n+1}} = n + 1 - \frac{na_n}{a_n + \frac{1}{S_n}} = 1 + \frac{\frac{n}{a_n S_n}}{1 + \frac{1}{a_n S_n}}$$
$$= 1 + \frac{n}{1 + a_n S_n} \le 1 + \frac{n}{1 + a_1 S_n} = 1 + \frac{n}{1 + S_n}.$$

又由
$$Stolz$$
 定理, 可得 $\lim_{n\to\infty}\frac{n}{1+S_n}=\lim_{n\to\infty}\frac{1}{a_{n+1}}=0$. 故由夹逼准则可知, $\lim_{n\to\infty}\frac{na_n}{S_n}=\lim_{n\to\infty}\left[n+1-\frac{na_n}{a_{n+1}}\right]=1$. 于是
$$\lim_{n\to\infty}\frac{a_n^2}{\ln n}=\lim_{n\to\infty}n\left(\frac{2a_n}{S_n}+\frac{1}{S_n^2}\right)=2\lim_{n\to\infty}\frac{na_n}{S_n}+\lim_{n\to\infty}\frac{n}{S_n^2}=2+0=2.$$

因此
$$\lim_{n\to\infty} \frac{a_n}{\sqrt{\ln n}} = \sqrt{2}$$
.

4.4.2 函数 Stolz 定理

定理 4.5 (函数 Stolz 定理)

设 $T > 0, f, g: [0, +\infty) \to \mathbb{R}$ 是内闭有界函数.

(1) 设 g(x+T) > g(x), 若有 $\lim_{x \to +\infty} g(x) = +\infty$ 且

$$\lim_{x \to +\infty} \frac{f(x+T) - f(x)}{g(x+T) - g(x)} = A \in \mathbb{R} \bigcup \{-\infty, +\infty\}.$$

则有

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = A.$$

(2) 设 0 < g(x+T) < g(x), 若有

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0,$$

且

$$\lim_{x \to +\infty} \frac{f(x+T) - f(x)}{g(x+T) - g(x)} = A \in \mathbb{R} \bigcup \{-\infty, +\infty\}.$$

则有

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = A.$$

注 考试中, 如果要用函数 Stolz 定理, 不要直接证明这个抽象的版本 (直接证明这个定理太繁琐). 而是根据具体问题, 证明具体函数的函数 Stolz 定理. 具体可见例题 4.28.

Ŷ 笔记

- (1) 不妨设 A = 0 的原因:
- (2) 不妨设T = 1的原因:

证明 我们仅考虑 $A \in \mathbb{R}$, 其余情况类似, 为了书写方便, 我们不妨设 A = 0, 否则用 f - Ag 代替 f 即可. 不妨设 T = 1, 否则用 f(Tx) 代替 f 即可.

(1) 对任何 $\varepsilon > 0$, 由条件知存在某个 $X \in \mathbb{N}$, 使得对任何 x > X 都有

$$|f(x+1) - f(x)| < \varepsilon [g(x+1) - g(x)], g(x) > 0.$$
(4.12)

于是对 $\forall x > X$, 利用(4.12)式, 我们有

$$\left| \frac{f(x)}{g(x)} \right| = \left| \frac{\sum_{k=1}^{[x]-X} [f(x-k+1) - f(x-k)]}{g(x)} + \frac{f(x-[x]+X)}{g(x)} \right|$$

$$\leq \left| \frac{\sum_{k=1}^{[x]-X} [f(x-k+1) - f(x-k)]}{g(x)} \right| + \left| \frac{f(x-[x]+X)}{g(x)} \right|$$

$$\stackrel{(4.12) \neq 1}{\leq} \varepsilon \frac{\sum_{k=1}^{[x]-X} [g(x-k+1) - g(x-k)]}{|g(x)|} + \left| \frac{f(x-[x]+X)}{g(x)} \right|$$

$$= \varepsilon \frac{g(x) - g(x - [x] + X)}{|g(x)|} + \left| \frac{f(x - [x] + X)}{g(x)} \right|$$

$$\stackrel{(4.12) \neq g>0}{\leqslant} \varepsilon + \left| \frac{f(x - [x] + X)}{g(x)} \right|.$$

于是利用 f 在 [X, X+1] 有界及 $X \leq x - [x] + X < X + 1$, 我们有

$$\overline{\lim}_{x \to +\infty} \left| \frac{f(x)}{g(x)} \right| \leqslant \varepsilon,$$

由ε任意性即得

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 0.$$

这就完成了证明.

(2) 任何 $\varepsilon > 0$, 由条件可知存在某个 $X \in \mathbb{N}$, 使得对任何 x > X 都有

$$|f(x+1) - f(x)| < \varepsilon [g(x) - g(x+1)].$$
 (4.13)

于是对 $\forall x > X, \forall n \in \mathbb{N},$ 利用(4.13)可得

$$\left| \frac{f(x)}{g(x)} \right| = \left| \frac{\sum\limits_{k=1}^{n} \left[f(x+k-1) - f(x+k) \right] + f(x+n)}{g(x)} \right|$$

$$\leqslant \frac{\sum\limits_{k=1}^{n} \left| f(x+k-1) - f(x+k) \right|}{g(x)} + \frac{\left| f(x+n) \right|}{g(x)}$$

$$\leqslant \varepsilon \frac{\sum\limits_{k=1}^{n} \left[g(x+k-1) - g(x+k) \right]}{g(x)} + \frac{\left| f(x+n) \right|}{g(x)}$$

$$= \varepsilon \frac{g(x) - g(x+n)}{g(x)} + \frac{\left| f(x+n) \right|}{g(x)}$$

$$\leqslant \varepsilon + \frac{\left| f(x+n) \right|}{g(x)}.$$

再利用 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0$ 得

$$\lim_{n \to \infty} \frac{|f(x+n)|}{g(x)} = 0 \Rightarrow \left| \frac{f(x)}{g(x)} \right| \leqslant \varepsilon, \forall x > X.$$

从而结论得证.

例题 4.28

- (1) 设 $\alpha > -1$, 计算 $\lim_{x \to +\infty} \frac{\int_0^x t^{\alpha} |\sin t| dt}{x^{\alpha+1}}$.
- (2) 不直接使用函数 Stolz 定理, 计算 $\lim_{x\to +\infty} \frac{\int_0^x \frac{|\sin t|}{t} dt}{\ln x}$.
 (3) 不直接使用函数 Stolz 定理, 计算 $\lim_{x\to +\infty} \frac{1}{x} \int_0^x (t-[t]) dt$, 这里 [·] 表示向下取整函数.
- 笔记 虽然这个几个问题的思路都是函数 Stolz 定理, 但是注意在考试中我们不能直接使用这个定理, 需要我们结 合具体问题给出这个定理的证明. 具体可见本题第 (2)(3) 问的证明.
 - 注 第 (1) 题如果直接洛必达得

$$\lim_{x \to +\infty} \frac{\int_0^x t^{\alpha} |\sin t| dt}{x^{\alpha+1}} = \lim_{x \to +\infty} \frac{|\sin x|}{\alpha+1}$$
 不存在,

因此无法运用洛必达, 但也无法判断原本的极限, 而需要其他方法确定其极限.

第 (2) 题中, 求和号上限取
$$n = \left[\frac{x-X}{\pi}\right]$$
 是因为我们要保证 $x-n\pi > X$, 从而使得求和号内每一项 $\int_0^{x-k\pi+\pi} \frac{|\sin t|}{\ln t} dt - \int_0^{x-k\pi} \frac{|\sin t|}{\ln t} dt$ 都满足(4.16)式.

第 (3) 题中, 求和号上限取 n = [x] - X 是因为我们要保证 x - n > X, 从而使得求和号内每一项 $\int_0^{x-k+1} (t - [t]) dt - \int_0^{x-k} (t - [t]) dt$ 都满足(4.20)式.

第 (1) 题直接使用函数 Stolz 定理进行证明, 但是考试中不能直接使用函数 Stolz 定理, 需要我们给出这个定理的证明. 第 (2)(3) 题没有直接使用函数 Stolz 定理进行证明, 而是结合具体的问题重新证明了函数 Stolz 定理. 考试中的证明过程应该按照这样书写.

证明

(1) 由函数 Stolz 定理和积分中值定理可知

其中 $x \le \theta_x \le x + \pi$. 从而 $\theta_x \sim x, x \to +\infty$. 于是

$$\lim_{x \to +\infty} \frac{\int_0^x t^\alpha \left| \sin t \right| dt}{x^{\alpha+1}} = \lim_{x \to +\infty} \frac{\theta_x^\alpha \int_x^{x+\pi} \left| \sin t \right| dt}{\pi \left(\alpha + 1 \right) x^\alpha} = \frac{1}{\pi \left(\alpha + 1 \right)} \lim_{x \to +\infty} \int_x^{x+\pi} \left| \sin t \right| dt = \frac{1}{\pi \left(\alpha + 1 \right)} \lim_{x \to +\infty} \int_0^\pi \left| \sin t \right| dt = \frac{2}{\pi \left(\alpha + 1 \right)}.$$

(2) 由 Lagrange 中值定理及积分中值定理可知

$$\lim_{x \to +\infty} \frac{\int_{0}^{x+\pi} \frac{|\sin t|}{t} dt - \int_{0}^{x} \frac{|\sin t|}{t} dt}{\ln(x+\pi) - \ln x} \xrightarrow{\text{Lagrange } + \text{dig} \frac{\pi}{2}} \lim_{x \to +\infty} \frac{\int_{x}^{x+\pi} \frac{|\sin t|}{t} dt}{\frac{\pi}{x}}$$

$$\frac{\pi}{\pi} \lim_{x \to +\infty} \frac{1}{\theta_{x}} \lim_{x \to +\infty} \frac{x}{\theta_{x}} \int_{x}^{x+\pi} |\sin t| dt = \frac{1}{\pi} \lim_{x \to +\infty} \frac{x}{\theta_{x}} \int_{0}^{\pi} |\sin t| dt = \frac{2}{\pi} \lim_{x \to +\infty} \frac{x}{\theta_{x}}.$$
(4.14)

其中 $x \le \theta_x \le x + \pi$. 从而 $\theta_x \sim x, x \to +\infty$. 再结合(4.14)式可得

$$\lim_{x \to +\infty} \frac{\int_0^{x+\pi} \frac{|\sin t|}{\ln t} dt - \int_0^x \frac{|\sin t|}{\ln t} dt}{\ln(x+\pi) - \ln x} = \frac{2}{\pi} \lim_{x \to +\infty} \frac{x}{\theta_x} = \frac{2}{\pi}.$$
 (4.15)

下面证明 $\lim_{x \to +\infty} \frac{\int_0^x \frac{|\sin t|}{\ln t} dt}{\ln x} = \frac{2}{\pi}$. 由(4.15)式可知, $\forall \varepsilon > 0, \exists X \in \mathbb{N}_+$, 使得当 x > X 时, 有

$$\left(\frac{2}{\pi} - \varepsilon\right) \left[\ln\left(x + \pi\right) - \ln x\right] < \left| \int_{0}^{x + \pi} \frac{|\sin t|}{\ln t} dt - \int_{0}^{x} \frac{|\sin t|}{\ln t} dt \right| < \left(\frac{2}{\pi} + \varepsilon\right) \left[\ln\left(x + \pi\right) - \ln x\right]. \tag{4.16}$$

于是对上述 $M, \forall x > X, \forall n \in \mathbb{N}_+,$ 利用(4.16)式, 一方面, 我们有

$$\frac{\int_{0}^{x} \frac{|\sin t|}{\ln t} dt}{\ln x} = \frac{\sum_{k=1}^{\left[\frac{x-X}{\pi}\right]} \left[\int_{0}^{x-k\pi+\pi} \frac{|\sin t|}{\ln t} dt - \int_{0}^{x-k\pi} \frac{|\sin t|}{\ln t} dt\right] + \int_{0}^{x-\left[\frac{x-X}{\pi}\right]} \frac{|\sin t|}{\ln t} dt}{\ln x}$$

$$\leq \frac{\sum_{k=1}^{\left[\frac{x-X}{\pi}\right]} \left[\int_{0}^{x-k\pi+\pi} \frac{|\sin t|}{\ln t} dt - \int_{0}^{x-k\pi} \frac{|\sin t|}{\ln t} dt\right]}{\ln x} + \frac{\int_{0}^{x-\left[\frac{x-X}{\pi}\right]} \pi \frac{|\sin t|}{\ln t} dt}{\ln x}$$

$$\frac{\left[\frac{x-X}{\pi}\right]}{\ln x} \left(\frac{2}{\pi} + \varepsilon\right) \left[\ln (x - k\pi + \pi) - \ln (x - k\pi)\right]}{\ln x} + \frac{\int_{0}^{x+\pi} \frac{|\sin t|}{\ln t} dt}{\ln x}$$

$$= \frac{\left(\frac{2}{\pi} + \varepsilon\right) \left[\ln x - \ln \left(x - \left[\frac{x-X}{\pi}\right]\pi\right)\right]}{\ln x} + \frac{\int_{0}^{x+\pi} \frac{|\sin t|}{\ln t} dt}{\ln x}.$$

$$(4.17)$$

另一方面, 我们有

$$\frac{\int_{0}^{x} \frac{|\sin t|}{\ln t} dt}{\ln x} = \frac{\sum_{k=1}^{\left[\frac{x-X}{\pi}\right]} \left[\int_{0}^{x-k\pi+\pi} \frac{|\sin t|}{\ln t} dt - \int_{0}^{x-k\pi} \frac{|\sin t|}{\ln t} dt\right] + \int_{0}^{x-\left[\frac{x-X}{\pi}\right]\pi} \frac{|\sin t|}{\ln t} dt}{\ln x} dt}{\ln x}$$

$$\geqslant \frac{\sum_{k=1}^{\left[\frac{x-X}{\pi}\right]} \left[\int_{0}^{x-k\pi+\pi} \frac{|\sin t|}{\ln t} dt - \int_{0}^{x-k\pi} \frac{|\sin t|}{\ln t} dt\right]}{\ln x} + \frac{\int_{0}^{x-\left[\frac{x-X}{\pi}\right]\pi} \frac{|\sin t|}{\ln t} dt}{\ln x}$$

$$\frac{(4.16)^{\frac{x}{|x|}}}{\sum_{k=1}^{\infty}} \left(\frac{\frac{2}{\pi} - \varepsilon}{\frac{2}{\pi}}\right) \left[\ln\left(x - k\pi + \pi\right) - \ln\left(x - k\pi\right)\right]}{\ln x} + \frac{\int_{0}^{X} \frac{|\sin t|}{\ln t} dt}{\ln x} \\
= \frac{\left(\frac{2}{\pi} - \varepsilon\right) \left[\ln x - \ln\left(x - \left[\frac{x - X}{\pi}\right]\pi\right)\right]}{\ln x} + \frac{\int_{0}^{X} \frac{|\sin t|}{\ln t} dt}{\ln x}.$$
(4.18)

又因为 $\ln x$ 在 $[X, X + \pi]$ 上有界, 并且 $X \leqslant x - \left\lceil \frac{x - X}{\pi} \right\rceil \pi < X + \pi, \forall x \in \mathbb{R}$, 所以 $\ln \left(x - \left\lceil \frac{x - X}{\pi} \right\rceil \pi \right)$ 在 \mathbb{R} 上有 界. 从而对(4.17)(4.18)式两边同时令 $x \to +\infty$,

$$\frac{2}{\pi} - \varepsilon \leqslant \lim_{x \to +\infty} \frac{\int_0^x \frac{|\sin t|}{\ln t} dt}{\ln x} \leqslant \lim_{x \to +\infty} \frac{\int_0^x \frac{|\sin t|}{\ln t} dt}{\ln x} \leqslant \frac{2}{\pi} + \varepsilon.$$

由 ε 的任意性即得 $\lim_{x\to+\infty} \frac{\int_0^x \frac{|\sin t|}{\ln t} dt}{\ln x} = \frac{2}{\pi}$. (3) 注意到 t-[t] 是 \mathbb{R} 上周期为 1 的非负函

$$\lim_{x \to +\infty} \frac{\int_0^{x+1} (t - [t]) dt - \int_0^x (t - [t]) dt}{x + 1 - x} = \lim_{x \to +\infty} \int_x^{x+1} (t - [t]) dt = \lim_{x \to +\infty} \int_x^{x+1} (t - [t]) dt$$
$$= \lim_{x \to +\infty} \int_0^1 (t - [t]) dt = \lim_{x \to +\infty} \int_0^1 t dt = \frac{1}{2}. \tag{4.19}$$

下面证明 $\lim_{x \to +\infty} \frac{1}{r} \int_{0}^{x} (t - [t]) dt = \frac{1}{2}$.

由(4.19)式可知, 对 $\forall \varepsilon > 0$, 存在 $X \in \mathbb{N}_+$, 使得当 $x \geqslant X$ 时, 有

$$\frac{1}{2} - \varepsilon < \int_0^{x+1} (t - [t]) dt - \int_0^x (t - [t]) dt < \frac{1}{2} + \varepsilon.$$
 (4.20)

从而对 $\forall x > X$, 利用(4.20)式, 一方面, 我们有

$$\frac{\int_{0}^{x} (t - [t]) dt}{x} = \frac{\sum_{k=1}^{[x]-X} \left[\int_{0}^{x-k+1} (t - [t]) dt - \int_{0}^{x-k} (t - [t]) dt \right]}{x} + \frac{\int_{0}^{x-([x]-X)} (t - [t]) dt}{x}
\frac{(4.20) \stackrel{!}{\nearrow} \sum_{k=1}^{[x]-X} (\frac{1}{2} + \varepsilon)}{x} + \frac{\int_{0}^{X+1} (t - [t]) dt}{x}
= \frac{(\frac{1}{2} + \varepsilon)([x] - X)}{x} + \frac{\int_{0}^{X+1} (t - [t]) dt}{x}.$$
(4.21)

另一方面,有

$$\frac{\int_{0}^{x} (t - [t]) dt}{x} = \frac{\sum_{k=1}^{[x]-X} \left[\int_{0}^{x-k+1} (t - [t]) dt - \int_{0}^{x-k} (t - [t]) dt \right]}{x} + \frac{\int_{0}^{x-([x]-X)} (t - [t]) dt}{x}
\frac{(4.20) \stackrel{?}{\nearrow}}{} \sum_{k=1}^{[x]-X} (\frac{1}{2} - \varepsilon)}{x} + \frac{\int_{0}^{X+1} (t - [t]) dt}{x}
= \frac{(\frac{1}{2} - \varepsilon)([x] - X)}{x} + \frac{\int_{0}^{X+1} (t - [t]) dt}{x}.$$
(4.22)

于是利用 $\int_{0}^{X+1} (t-[t]) dt < \infty, (4.21)(4.22)$ 式两边同时令 $x \to +\infty$, 得到

$$\frac{1}{2} - \varepsilon \leqslant \lim_{x \to +\infty} \frac{\int_0^x (t - [t]) dt}{x} \leqslant \lim_{x \to +\infty} \frac{\int_0^x (t - [t]) dt}{x} \leqslant \frac{1}{2} + \varepsilon.$$

由 ε 的任意性即得

$$\lim_{x \to +\infty} \frac{\int_0^x (t - [t]) dt}{x} = \frac{1}{2}.$$

4.5 递推数列求极限和估阶

4.5.1 " 折线图" 分析法 (图未完成, 但已学会)

关于递推数列求极限的问题,可以先画出相应的"折线图",然后根据"折线图"的性质来判断数列的极限.这种方法可以帮助我们快速得到数列的极限,但是对于数列的估阶问题,这种方法并不适用.

注 这种方法只能用来分析问题,严谨的证明还是需要用单调性分析法或压缩映像法书写.

例题 **4.29** 设 $u_1 = b, u_{n+1} = u_n^2 + (1 - 2a)u_n + a^2$, 判断 u_n 的收敛性.

解

例题 **4.30** 定义数列 $a_0=x,a_{n+1}=\frac{a_n^2+y^2}{2},n=0,1,2,\cdots$,求 $D\triangleq\{(x,y)\in\mathbb{R}^2:$ 数列 a_n 收敛} 的面积.

解

例题 4.31

解

4.5.2 单调性分析法

关于递推数列求极限和估阶的问题,单调性分析法只适用于

$$x_{n+1} = f(x_n), n \in \mathbb{N}.$$

f 是递增或者递减的类型,且大多数情况只适用于 f 递增情况,其余情况不如压缩映像思想方便快捷.显然递推数列 $x_{n+1} = f(x_n)$ 确定的 x_n 如果收敛于 $x \in \mathbb{R}$,则当 f 连续时一定有 f(x) = x,此时我们也把这个 x 称为 f 的不动点.因此 f(x) = x 是 x_n 收敛于 $x \in \mathbb{R}$ 的必要条件.

命题 4.4 (递增函数递推数列)

设 f 是递增函数, 则递推

$$x_{n+1} = f(x_n), n \in \mathbb{N}. \tag{4.23}$$

确定的 x_n 一定单调,且和不动点大小关系恒定.

堂 笔记 本结论表明由递增递推(4.23)确定的数列的单调性和有界性, 完全由其 $x_2 - x_1$ 和 x_1 与不动点 x_0 的大小关系确定. 即 $x_2 > x_1 \Rightarrow x_{n+1} > x_n$, $\forall n \in \mathbb{N}_+$. $x_1 > x_0 \Rightarrow x_n > x_0$, $\forall n \in \mathbb{N}_+$.

证明 我们只证一种情况, 其余情况是完全类似的. 设 x_0 是 f 的不动点且 $x_1 \le x_0, x_2 \ge x_1$, 则若 $x_n \le x_{n+1}, x_n \le x_0, n \in \mathbb{N}$, 运用 f 递增性有

$$x_{n+1} = f(x_n) \le f(x_0) = x_0, x_{n+2} = f(x_{n+1}) \ge f(x_n) = x_{n+1}.$$

由数学归纳法即证明了命题 4.4

命题 4.5 (递减函数递推数列)

设 f 是递减函数,则递推

$$x_{n+1} = f(x_n), n \in \mathbb{N}. \tag{4.24}$$

确定的 x_n 一定不单调, 且和不动点大小关系交错.

笔记 我们注意到 $f \circ f$ 递增就能把 f 递减转化为递增的情况, 本结论无需记忆或证明, 只记得思想即可. x_n 和不动点关系交错, 即若 x_0 为数列 x_n 的不动点, 且 $x_1 \ge x_0, x_2 \le x_0$, 则 $x_3 \ge x_0, \cdots, x_{2n} \le x_0, x_{2n-1} \ge x_0, \cdots$; 并且 $x_2 \le x_1, x_3 \ge x_1, x_4 \le x_2, x_5 \ge x_3, \cdots, x_{2n} \le x_{2n-2}, x_{2n-1} \ge x_{2n-3}, \cdots$.

证明 由命题 4.4类似证明即可.

例题 4.32 递增/递减递推数列

- 1. $\forall x_1 > -6, x_{n+1} = \sqrt{6+x_n}, n = 1, 2, \dots, \text{ if } \lim_{n \to \infty} x_n.$
- 3. 设 $x_1 = 2, x_n + (x_n 4)x_{n-1} = 3, (n = 2, 3, \dots)$, 求极限 $\lim_{n \to \infty} x_n$.
- 4. $\[\psi x_1 > 0, x_n e^{x_{n+1}} = e^{x_n} 1, n = 1, 2, \dots, \] \[\text{x} \[\psi x_n > 0, x_n e^{x_{n+1}} = e^{x_n} 1, n = 1, 2, \dots, \] \]$

Ŷ 笔记

1. 不妨设 $x_1 \ge 0$ 的原因: 我们只去掉原数列 $\{x_n\}$ 的第一项,得到一个新数列,并且此时新数列是从原数列 $\{x_n\}$ 的第二项 x_2 开始的. 对于原数列 $\{x_n\}$ 而言,有 $x_{n+1} = \sqrt{6+x_n} \ge 0$, $\forall n \in \mathbb{N}_+$. 故新数列的每一项都大于等于 0. 将新数列重新记为 $\{x_n\}$,则 $x_1 \ge 0$. 若此时能够证得新数列收敛到 x_0 ,则由于数列去掉有限项不会影响数列的敛散性以及极限值,可知原数列也收敛到 x_0 . 故不妨设 $x_1 \ge 0$ 是合理地.

(简单地说, 就是原数列用 x_2 代替 x_1 , 用 x_{n+1} 代替 x_n , $\forall n \in \mathbb{N}_+$, 而由 $x_1 > -6$, 可知 $x_2 = \sqrt{6 + x_1} \ge 0$.) 注 这种不妨设的技巧在数列中很常用, 能减少一些不必要的讨论. 实际上就是去掉数列中有限个有问题的项, 而去掉这些项后对数列的极限没有影响.

解

1. 不妨设 $x_1 \ge 0$, 则设 $f(x) = \sqrt{6+x}$, 则 f(x) 单调递增.

当 $x_1 < 3$ 时,由条件可知

$$x_2 - x_1 = \sqrt{6 + x_1} - x_1 = \frac{(3 - x_1)(2 + x_1)}{\sqrt{6 + x_1} + x_1}.$$
 (4.25)

从而此时 $x_2 > x_1$. 假设当 n = k 时, 有 $x_k < 3$. 则当 n = k + 1 时, 就有

$$x_{k+1} = f(x_k) = \sqrt{6 + x_k} < \sqrt{6 + 3} = 3.$$

故由数学归纳法, 可知 $x_n < 3, \forall n \in \mathbb{N}_+$.

假设当n=k时,有 $x_{k+1} \ge x_k$.则当n=k+1时,就有

$$x_{k+2} = f(x_{k+1}) \geqslant f(x_k) = x_{k+1}.$$

故由数学归纳法, 可知 $\{x_n\}$ 单调递增. 于是由单调有界定理, 可得数列 $\{x_n\}$ 收敛.

当 $x_1 \ge 3$ 时, 由(4.25)式可知, 此时 $x_2 \le x_1$. 假设当 n = k 时, 有 $x_k \ge 3$. 则当 n = k + 1 时, 就有

$$x_{k+1} = f(x_k) = \sqrt{6 + x_k} \ge \sqrt{6 + 3} = 3.$$

故由数学归纳法, 可知 $x_n \ge 3, \forall n \in \mathbb{N}_+$.

假设当n=k时,有 $x_{k+1} \leq x_k$.则当n=k+1时,就有

$$x_{k+2} = f(x_{k+1}) \le f(x_k) = x_{k+1}$$
.

故由数学归纳法, 可知 $\{x_n\}$ 单调递减. 于是由单调有界定理, 可得数列 $\{x_n\}$ 收敛.

综上, 无论 $x_1>3$ 还是 $x_1\leqslant 3$, 都有数列 $\{x_n\}$ 收敛. 设 $\lim_{n\to\infty}x_n=a$. 则对 $x_{n+1}=\sqrt{6+x_n}$ 两边同时令 $n\to\infty$ 可得 $a=\sqrt{6+a}$, 解得 $\lim_{n\to\infty}x_n=a=3$.

- 2.
- 3.
- 4.

4.5.3 利用上下极限求递推数列极限

例题 **4.33** 设 $A, B > 0, a_1 > A$ 以及 $a_{n+1} = A + \frac{B}{a_n}, n \in \mathbb{N}_+$, 计算 $\lim_{n \to \infty} a_n$.

证明 显然 $a_n > A > 0, \forall n \in \mathbb{N}_+$. 从而 $a_{n+1} = A + \frac{B}{a_n} \le A + \frac{B}{A}, \forall n \in \mathbb{N}_+$. 故数列 $\{a_n\}$ 有界. 于是可设 $a = \overline{\lim_{n \to \infty}} a_n < 0$

$$\infty, b = \underline{\lim}_{n \to \infty} a_n < \infty$$
. 对等式 $a_{n+1} = A + \frac{B}{a_n}$ 两边同时关于 $n \to +\infty$ 取上下极限得到

$$a = \overline{\lim_{n \to \infty}} a_{n+1} = A + \overline{\lim_{n \to \infty}} \frac{B}{a_n} = A + \frac{B}{\underline{\lim}} a_n = A + \frac{B}{b},$$

$$b = \underline{\lim}_{n \to \infty} a_{n+1} = A + \underline{\lim}_{n \to \infty} \frac{B}{a_n} = A + \frac{B}{\overline{\lim} a_n} = A + \frac{B}{a}.$$

于是我们有
$$\begin{cases} ab = Ab + B \\ ab = Aa + B \end{cases}$$
 ,解得 $a = b0 = \frac{A \pm \sqrt{A^2 - 4B}}{2}$. 又由 $a_n > A > 0$,可知 $a = b = \frac{A + \sqrt{A^2 - 4B}}{2}$. 故 $\lim a_n = \frac{A + \sqrt{A^2 - 4B}}{2}$.

4.5.4 类递增/类递减递推数列

例题 4.34 类递增模型

- 2. 设 $a_k \in (0,1), 1 \le k \le 2021$ 且 $(a_{n+2021})^{2022} = a_n + a_{n+1} + \dots + a_{n+2020}, n = 1, 2, \dots$, 这里 $a_n > 0, \forall n \in \mathbb{N}$ 证明 $\lim_{n \to \infty} a_n$ 存在.
- $\stackrel{ extbf{Q}}{ extbf{Q}}$ 笔记 解决此类问题一般先定界 (即确定 c_n 的上下界的具体数值), 再对等式两边同时取上下极限即可.

注

- 1. 记 $b ext{ = max}\{c_1, c_2, 4\}$ 的原因: 为了证明数列 c_n 有界, 我们需要先定界 (即确定 c_n 的上下界的具体数值), 然后再利用数学归纳法证得数列 c_n 有界. 显然 c_n 有一个下界 0, 但上界无法直接观察出来. 为了确定出数列 c_n 的一个上界, 我们可以先假设 c_n 有一个上界 b(此时 b 是待定常数). 则 $c_{n+1} = \sqrt{c_n} + \sqrt{c_{n-1}} \le \sqrt{b} + \sqrt{b} = 2\sqrt{b} \le b$, 由此解得 $b \ge 4$. 又由数学归纳法的原理, 可知需要保证 b 同时也是 c_1, c_2 的上界. 故只要取 $b \ge 4, c_1, c_2$ 就一定能归纳出 b 是 c_n 的一个上界. 而我们取 $b \triangleq \max\{c_1, c_2, 4\}$ 满足这个条件.
- 2. 记 M = 的原因: 同上一问, 假设数列 a_n 有一个上界 M(此时 M 是待定常数), 则

$$a_{n+2021} = \sqrt[2022]{a_n + a_{n+1} + \dots + a_{n+2020}} \le \sqrt[2022]{M + M + \dots + M} = \sqrt[2022]{2021} \le M.$$

由此解得 $M \ge (2021)^{\frac{1}{2021}}$. 又由数学归纳法的原理,可知需要保证 M 同时也是 $a_1, a_2, \cdots, a_{2020}$ 的上界. 故只要取 $M \ge (2021)^{\frac{1}{2021}}$, $a_1, a_2, \cdots, a_{2020}$ 就一定能归纳出 M 是 a_n 的一个上界. 而我们取 $M = \max \left\{ (2021)^{\frac{1}{2021}}, a_1, a_2, \cdots, a_{2020} \right\}$ 满足这个条件.

解

1. 记 $b \triangleq \max\{c_1, c_2, 4\}$, 则 $0 < c_1, c_2 \le b$. 假设 $0 < c_n \le b$, 则

$$0 < c_{n+1} = \sqrt{c_n} + \sqrt{c_{n-1}} \leqslant \sqrt{b} + \sqrt{b} = 2\sqrt{b} \leqslant b.$$

由数学归纳法, 可知对 $\forall n \in \mathbb{N}_+$, 都有 $0 < c_n \le b$ 成立. 即数列 $\{c_n\}$ 有界.

因此可设 $L = \overline{\lim_{n \to \infty}} c_n < \infty, l = \underline{\lim_{n \to \infty}} c_n < \infty.$ 令 $c_{n+1} = \sqrt{c_n} + \sqrt{c_{n-1}}$ 两边同时对 $n \to \infty$ 取上下极限, 可得

$$L = \varlimsup_{n \to \infty} c_{n+1} = \varlimsup_{n \to \infty} (\sqrt{c_n} + \sqrt{c_{n-1}}) \leqslant \varlimsup_{n \to \infty} \sqrt{c_n} + \varlimsup_{n \to \infty} \sqrt{c_{n-1}} = 2\sqrt{L} \Rightarrow L \leqslant 4,$$

$$l = \underline{\lim}_{n \to \infty} c_{n+1} = \underline{\lim}_{n \to \infty} (\sqrt{c_n} + \sqrt{c_{n-1}}) \geqslant \underline{\lim}_{n \to \infty} \sqrt{c_n} + \underline{\lim}_{n \to \infty} \sqrt{c_{n-1}} = 2\sqrt{l} \Rightarrow l \geqslant 4.$$

又 $l = \underset{n \to \infty}{\underline{\lim}} c_n \leqslant \overline{\underset{n \to \infty}{\overline{\lim}}} c_n = L$, 故 L = l = 4. 即 $\underset{n \to \infty}{\underline{\lim}} c_n = 4$.

2. 取 $M = \max\left\{(2021)^{\frac{1}{2021}}, a_1, a_2, \cdots, a_{2020}\right\}$, 显然 $a_n > 0$ 且 $a_1, a_2, \cdots, a_{2020} \le M$. 假设 $a_k \le M, k = 1, 2, \cdots, n$ 则由条件可得

$$a_{n+1} = \sqrt[2022]{a_{n-2020} + a_{n-2019} + \dots + a_n} \le \sqrt[2022]{M + M + \dots + M} = \sqrt[2022]{2021M} \le M.$$

由数学归纳法, 可知 $0 < a_n \le M, \forall n \in \mathbb{N}_+$. 即数列 a_n 有界. 因此可设 $A = \overline{\lim_{n \to \infty}} a_n < \infty, a = \underline{\lim_{n \to \infty}} a_n < \infty$. 由条 件可得

$$a_{n+2021} = \sqrt[2022]{a_n + a_{n+1} + \dots + a_{n+2020}}.$$

上式两边同时对 $n \to \infty$ 取上下极限得到

$$A = \overline{\lim}_{n \to \infty} a_{n+2021} = \overline{\lim}_{n \to \infty} {}^{2022}\sqrt{a_n + a_{n+1} + \dots + a_{n+2020}} = {}^{2022}\sqrt{\overline{\lim}_{n \to \infty}} (a_n + a_{n+1} + \dots + a_{n+2020})$$

$$\leqslant {}^{2022}\sqrt{\overline{\lim}_{n \to \infty}} a_n + \overline{\lim}_{n \to \infty} a_{n+1} + \dots + \overline{\lim}_{n \to \infty} a_{n+2020} = {}^{2022}\sqrt{A + A + \dots + A} \Rightarrow A \leqslant (2021)^{\frac{1}{2021}},$$

$$a = \underline{\lim}_{n \to \infty} a_{n+2021} = \underline{\lim}_{n \to \infty} {}^{2022}\sqrt{a_n + a_{n+1} + \dots + a_{n+2020}} = {}^{2022}\sqrt{\underline{\lim}_{n \to \infty}} (a_n + a_{n+1} + \dots + a_{n+2020})$$

$$\geqslant {}^{2022}\sqrt{\underline{\lim}_{n \to \infty}} a_n + \underline{\lim}_{n \to \infty} a_{n+1} + \dots + \underline{\lim}_{n \to \infty} a_{n+2020} = {}^{2022}\sqrt{a_n + a_{n+1} + \dots + a_{n+2020}}$$

 $\mathbb{X} \ a = \underline{\lim}_{n \to \infty} a_n \leqslant \overline{\lim}_{n \to \infty} a_n = A, \ \text{if} \ A = a = (2021)^{\frac{1}{2021}}. \ \text{Pr} \ \lim_{n \to \infty} a_n = (2021)^{\frac{1}{2021}}.$

- 例题 4.35 类递减模型

 1. 设 $a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n}, a_1, a_2 > 0, n = 1, 2, \cdots$ 证明 $\lim_{n \to \infty} a_n$ 存在.

 2. 设 $x_1 = \frac{1}{2}, x_2 = \frac{1}{3}, x_{n+2} = 3 + \frac{1}{x_{n+1}^2} + \frac{1}{x_n^2}, n = 1, 2, \cdots$ 证明 $\lim_{n \to \infty} x_n$ 存在.

笔记 此类问题一定要记住, 隔项抽子列. 如果不记住做题时会难以想到. 与类递增模型一样, 一开始要定界.

1. 取
$$a = \min\left\{a_1, a_2, \frac{2}{a_1}, \frac{2}{a_2}\right\} > 0$$
,则有 $0 < a \le a_1, a_2 \le \frac{2}{a}$ 成立. 假设 $0 < a \le a_n \le \frac{2}{a}$,则由条件可得
$$a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n} \le \frac{1}{a} + \frac{1}{a} = \frac{2}{a}.$$

由数学归纳法, 可知 $0 < a \le a_n \le \frac{2}{a}, \forall n \in \mathbb{N}_+$. 即数列 a_n 有界. 于是可设 $A = \overline{\lim_{n \to \infty}} a_n < \infty, B = \underline{\lim_{n \to \infty}} a_n < \infty$ ∞ .由致密性定理, 可知存在一个子列 $\{a_{n_k}\}$, 使得 $\lim_{k\to\infty}a_{n_k+2}=A$, $\lim_{k\to\infty}a_{n_k+1}=l_1<\infty$, $\lim_{k\to\infty}a_{n_k}=l_2<\infty$ ∞ , $\lim_{k \to \infty} a_{n_k-1} = l_3 < \infty$. 并且根据上下极限的定义, 可知 $B \le l_1, l_2, l_3 \le A$. 对等式 $a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n}$ 两

$$A = \overline{\lim}_{n \to \infty} a_{n+2} = \overline{\lim}_{n \to \infty} \left(\frac{1}{a_{n+1}} + \frac{1}{a_n} \right) \leqslant \overline{\lim}_{n \to \infty} \frac{1}{a_{n+1}} + \overline{\lim}_{n \to \infty} \frac{1}{a_n}$$
$$= \frac{1}{\underline{\lim}_{n \to \infty} a_{n+1}} + \frac{1}{\underline{\lim}_{n \to \infty} a_n} = \frac{1}{B} + \frac{1}{B} = \frac{2}{B} \Rightarrow AB \leqslant 2.$$

$$B = \underbrace{\lim_{n \to \infty} a_{n+2}}_{n \to \infty} = \underbrace{\lim_{n \to \infty}}_{n \to \infty} \left(\frac{1}{a_{n+1}} + \frac{1}{a_n} \right) \geqslant \underbrace{\lim_{n \to \infty}}_{n \to \infty} \frac{1}{a_{n+1}} + \underbrace{\lim_{n \to \infty}}_{n \to \infty} \frac{1}{a_n}$$
$$= \underbrace{\frac{1}{\lim_{n \to \infty}} a_{n+1}}_{n \to \infty} + \underbrace{\frac{1}{\lim_{n \to \infty}} a_n}_{n \to \infty} = \frac{1}{A} + \underbrace{\frac{1}{A}}_{A} = \frac{2}{A} \Rightarrow AB \geqslant 2.$$

故 AB=2. 因为 $\{a_{n_k}\}$ 是数列 a_n 的一个子列, 所以 $\{a_{n_k}\}$ 也满足 $a_{n_k+2}=\frac{1}{a_{n_k+1}}+\frac{1}{a_{n_k}}, \forall k\in\mathbb{N}_+$. 并且子列 $\{a_{n_k-1}\},\{a_{n_k}\},\{a_{n_k+1}\},\{a_{n_k+2}\}$ 的极限都存在,于是对 $a_{n_k+2}=\frac{1}{a_{n_k+1}}+\frac{1}{a_{n_k}}$ 等式两边同时关于 $k\to +\infty$ 取极 限, 再结合 $B \le l_1, l_2, l_3 \le A$ 得到

$$A = \lim_{k \to \infty} a_{n_k+2} = \lim_{k \to \infty} \frac{1}{a_{n_k+1}} + \lim_{k \to \infty} \frac{1}{a_{n_k}}$$
$$= \frac{1}{l_1} + \frac{1}{l_2} \leqslant \frac{1}{B} + \frac{1}{B} = \frac{2}{B} = A \Rightarrow l_1 = l_2 = B.$$

同理再对 $a_{n_k+1}=\frac{1}{a_{n_k}}+\frac{1}{a_{n_k-1}}$ 等式两边同时关于 $k\to +\infty$ 取极限, 再结合 $B\le l_1,l_2,l_3\le A$ 得到

$$\begin{split} B &= l_1 = \lim_{k \to \infty} a_{n_k + 1} = \lim_{k \to \infty} \frac{1}{a_{n_k}} + \lim_{k \to \infty} \frac{1}{a_{n_k - 1}} \\ &= \frac{1}{l_2} + \frac{1}{l_3} \geqslant \frac{1}{A} + \frac{1}{A} = \frac{2}{A} = B \Rightarrow l_2 = l_3 = A. \end{split}$$

故 $A=B=l_1=l_2=l_3$, 又由于 AB=2, 因此 $\overline{\lim_{n\to\infty}}a_n=\underline{\lim_{n\to\infty}}a_n=A=B=\sqrt{2}$. 即 $\lim_{n\to\infty}a_n=\sqrt{2}$.

2.

注

1. (1) 取 $a = \min \left\{ a_1, a_2, \frac{2}{a_1}, \frac{2}{a_2} \right\}$ 的原因: 为了证明数列 a_n 有界, 我们需要先定界, 然后再利用数学归纳法证得数列 a_n 有界. 显然 a_n 有一个下界 0, 但上界无法直接观察出来. 为了确定出数列 a_n 的上下界, 我们可以先假设 b 为数列 a_n 的一个上界 (此时 b 是待定常数), 但是我们根据 $a_n > 0$ 和 $a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n}$ 只能得到 $a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n} < +\infty$,无法归纳法出 $a_n \leq b$,故我们无法归纳出 $0 < a_n < b$, $\forall n \in \mathbb{N}_+$. 因此仅待定一个上界并不够,下界并不能简单的取为 0, 我们还需要找到一个更接近下确界的大于零的下界,不妨先假设这个下界为 a > 0(此时 a 也是待定常数). 利用这个下界和递推式 $a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n}$ 归纳出 $0 < a \leq a_n \leq b$, $\forall n \in \mathbb{N}_+$ (此时 a,b 都是待定常数). 于是由已知条件可得

$$a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n} \leqslant \frac{1}{a} + \frac{1}{a} = \frac{2}{a} \leqslant b \Rightarrow ab \geqslant 2,$$

$$a_{n+2} = \frac{1}{a_{n+1}} + \frac{1}{a_n} \geqslant \frac{1}{b} + \frac{1}{b} = \frac{2}{b} \geqslant a \Rightarrow ab \leqslant 2.$$

从而 ab=2,即 $b=\frac{2}{a}$. 进而 $0< a\leq a_n\leq \frac{2}{a}$. 又由数学归纳法的原理,可知我们需要同时保证 $0< a\leq a_1, a_2\leq \frac{2}{a}$. 因此找到一个合适的 a,使得 $0< a\leq a_1, a_2\leq \frac{2}{a}$ 成立就一定能归纳出 $0< a\leq a_1, a_2\leq \frac{2}{a}$ 成立就一定能归纳出 $0< a\leq a_1, a_2\leq \frac{2}{a}$ 成立就一定能归纳出 $0< a\leq a_1, a_2\leq \frac{2}{a}$, $\forall n\in\mathbb{N}_+$,即数列 $\{a_n\}$ 有界. 而当我们取 $a=\min\left\{a_1,a_2,\frac{2}{a_1},\frac{2}{a_2}\right\}$ 时,有 $a_1,a_2\leqslant a$, $\frac{2}{a}\geq \frac{2}{\frac{2}{a_1}}=a_1,\frac{2}{a}\geq \frac{2}{2}=a_2$. 恰好满足这个条件.

(2) 能取到一个子列 a_{n_k} ,使得 $\lim_{k\to\infty} a_{n_k+2} = A$, $\lim_{k\to\infty} a_{n_k+1} = l_1 < \infty$, $\lim_{k\to\infty} a_{n_k} = l_2 < \infty$, $\lim_{k\to\infty} a_{n_k-1} = l_3 < \infty$ 成立的原因: 由 $A = \lim_{k\to\infty} a_n$ 和上极限的定义 (上极限就是最大的子列极限),可知存在一个子列 $\{a_{n_k}\}$,使得 $\lim_{k\to\infty} a_{n_k+2} = A$. 因为数列 $\{a_{n_k+1}\}$ 有界 (因为数列 $\{a_n\}$ 有界),所以由致密性定理可知 $\{a_{n_k+1}\}$ 一定存在一个收敛的子列 $\{a_{n_k+1}\}$,并记 $\lim_{j\to\infty} a_{n_{k_j}+1} = l_1 < \infty$. 又因为 $\{a_{n_{k_j}+2}\}$ 是 $\{a_{n_k+2}\}$ 的子列,所以 $\lim_{k\to\infty} a_{n_{k_j}+2} = A$. 由于 $\{a_{n_k}\}$ 仍是 $\{a_n\}$ 的一个子列,因此不妨将 $\{a_{n_k}\}$ 记作 $\{a_{n_k}\}$,则此时有 $\lim_{k\to\infty} a_{n_k+2} = A$, $\lim_{k\to\infty} a_{n_k+1} = l_1 < \infty$. 同理由于数列 $\{a_{n_k}\}$ 有界,所以由致密性定理可知 $\{a_{n_k}\}$ 存在一个收敛的子列 $\{a_{n_k}\}$,并记 $\lim_{l\to\infty} a_{n_{k_l}} = l_2$. 又因为 $\{a_{n_{k_l}+2}\}$ 的子列, $\{a_{n_{k_l}+2}\}$ 的子列,所以 $\lim_{l\to\infty} a_{n_{k_l}+2} = A$, $\lim_{l\to\infty} a_{n_{k_l}+1} = l_1$. 由于 $\{a_{n_{k_l}}\}$ 仍是 $\{a_n\}$ 的一个子列,因此不妨将 $\{a_{n_{k_l}}\}$ 记作 $\{a_{n_k}\}$,则此时有 $\lim_{k\to\infty} a_{n_{k_l}+2} = A$, $\lim_{k\to\infty} a_{n_{k_l}+1} = l_1$ ∞ , $\lim_{k\to\infty} a_{n_k} = l_2 < \infty$. 再同理由于数 列 $\{a_{n_k}\}$ 有界,所以由致密性定理可知 $\{a_{n_k}\}$ 存在一个收敛的子列 $\{a_{n_k}\}$,并记 $\lim_{s\to\infty} a_{n_{k_s}} = l_3$. 又因为 $\{a_{n_k}\}$ 有界,所以由致密性定理可知 $\{a_{n_k}\}$ 存在一个收敛的子列 $\{a_{n_{k_s}}\}$,并记 $\lim_{s\to\infty} a_{n_{k_s}} = l_3$. 又因为 $\{a_{n_k}\}$ 有界,所以由致密性定理可知 $\{a_{n_k}\}$ 存在一个收敛的子列 $\{a_{n_k}\}$,并记 $\lim_{s\to\infty} a_{n_{k_s}} = l_3$. 又因为 $\{a_{n_k}\}$ 有界,所以由致密性定理可知 $\{a_{n_k}\}$ 存在一个收敛的子列 $\{a_{n_k}\}$,并记 $\lim_{s\to\infty} a_{n_{k_s}} = l_3$. 又因为 $\{a_{n_k}\}$ 有界,所以由致密性定理可知 $\{a_{n_k}\}$ 存在一个收敛的子列 $\{a_{n_k}\}$,并记 $\lim_{s\to\infty} a_{n_{k_s}} = l_3$. 又因为 $\{a_{n_k}\}$ 有界,所以由致密性定理可知 $\{a_{n_k}\}$ 存在一个收敛的子列 $\{a_{n_k}\}$,并记 $\lim_{s\to\infty} a_{n_{k_s}} = l_3$ 、 又因为 $\{a_{n_k}\}$ 有界,所以由致密性定理可知 $\{a_{n_k}\}$ 存在一个收敛的子列 $\{a_{n_k}\}$,并记 $\lim_{s\to\infty} a_{n_{k_s}} = l_3$ 、 又因为 $\{a_{n_k}\}$ 有界,所以由致密性定理可知 $\{a_{n_k}\}$ 存在一个收敛的子列 $\{a_{n_k}\}$,并记 $\{a_{n_k}\}$,是 $\{a_{n_k}\}$,是 $\{a_{n_k}\}$ 的子列,,则以 $\{a_{n_k}\}$,是 $\{a_{n_k}\}$,是 $\{a_{n_k}\}$,是 $\{a_{n_k}\}$,则以 $\{a_{n_k}\}$,是

2.

4.5.5 压缩映像

我们来看一种重要的处理模型, 压缩映像方法, 它是我们以后解决基础题的重要方法. 其思想内核有两种, 一种是找到不动点 x_0 , 然后得到某个 $L \in (0,1)$, 使得

$$|x_n - x_0| \le L|x_{n-1} - x_0| \le \dots \le L^{n-1}|x_1 - x_0|.$$

还有一种是得到某个 $L \in (0,1)$, 使得

$$|x_n - x_{n-1}| \le L|x_{n-1} - x_{n-2}| \le \dots \le L^{n-2}|x_2 - x_1|.$$

当数列由递推确定时,我们有

$$|x_n - x_0| = |f(x_{n-1}) - f(x_0)|, |x_n - x_{n-1}| = |f(x_{n-1}) - f(x_{n-2})|,$$

因此往往可适用中值定理或者直接放缩法来得到渴望的 $L \in (0,1)$, 特别强调 L=1 是不对的.

笔记 常规的递减递推数列求极限问题我们一般使用压缩映像证明.压缩映像的书写过程往往比用递推函数的二次复合和数学归纳法的书写要简便的多.

例题 4.36

- 1. $\forall x_1 > -1, x_{n+1} = \frac{1}{1+x_n}, n = 1, 2, \dots, \text{ \mathbb{R} } \text{ \mathbb{R} } \lim_{n \to \infty} x_n.$
- 2. 求数列 $\sqrt{7}$, $\sqrt{7} \sqrt{7}$, $\sqrt{7} \sqrt{7} + \sqrt{7}$, ... 极限.

解

1. 解法一 (递减递推归纳法): 不妨设 $x_1 > 0$ (因为 $x_2 = \frac{1}{1+x_1} > 0$), 归纳可知 $x_n > 0$. 由于原递推函数是递减函数, 因此考虑递推函数的二次复合 $x_{n+2} = \frac{1}{1+\frac{1}{1+x_n}} = \frac{1+x_n}{2+n}$, 这个递推函数一定是单调递增的. 进而考虑

$$\frac{1+x}{2+x} - x = \frac{\left(x + \frac{\sqrt{5}+1}{2}\right) \left(\frac{\sqrt{5}-1}{2} - x\right)}{2+x}.$$

于是当 $x_1 \geq \frac{\sqrt{5}-1}{2}$ 时,有 $x_3-x_1 = \frac{1+x_1}{2+x_1}-x_1 \leqslant 0$,即 $x_3 \leqslant x_1$.从而由递增递推结论可知, $\{x_{2n-1}\}$ 单调递减且 $x_{2n-1} > \frac{\sqrt{5}-1}{2}$, $\forall n \in \mathbb{N}_+$.此时 $x_2 < \frac{\sqrt{5}-1}{2}$ (由 $x = \frac{1}{1+x}$ 以及 $x_n > 0$ 可以解得不动点 $x_0 = \frac{\sqrt{5}-1}{2}$,又因为原数列是递减递推,所以 $x_n = \frac{1}{2}$, 大小关系交错.而 $x_1 \geq \frac{\sqrt{5}-1}{2}$,故 $x_2 < \frac{\sqrt{5}-1}{2}$).于是 $x_4-x_2 = \frac{1+x_2}{2+x_2}-x_2 > 0$,

即 $x_4 > x_2$. 从而由递增递推结论可知, $\{x_{2n}\}$ 单调递增且 $x_{2n} > \frac{\sqrt{5}-1}{2}$, $\forall n \in \mathbb{N}_+$.

因此由单调有界定理可知, $\{x_{2n}\}$, $\{x_{2n-1}\}$ 收敛. 设 $\lim_{n\to\infty}x_{2n}=a>0$, $\lim_{n\to\infty}x_{2n-1}=b>0$. 又由 $x_{2n}=\frac{1}{1+x_{2n}}$, $x_{2n-1}=b>0$.

$$\frac{1}{1+x_{2n-1}}$$
, $\forall n \in \mathbb{N}_+$, 再令 $n \to \infty$, 可得 $a = \frac{1}{1+a}$, $b = \frac{1}{1+b}$, 进而解得 $a = b = \frac{\sqrt{5}-1}{2}$. 故 $\lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{2n} = \lim_{n \to \infty} x_{2n-1} = \frac{\sqrt{5}-1}{2}$. 同理, 当 $x_1 < \frac{\sqrt{5}-1}{2}$ 时, 也有 $\lim_{n \to \infty} x_n = \frac{\sqrt{5}-1}{2}$.

解法二 (压缩映像):不妨设 $x_1 > 0$ (用 $x_2 = \frac{1}{1+x_1} > 0$ 代替 x_1), 归纳可知 $x_n > 0$. 设 $x = \frac{\sqrt{5}-1}{2}$, 则

$$|x_{n+1} - x| = \left| \frac{1}{1 + x_n} - x \right| = \left| \frac{1}{1 + x_n} - \frac{1}{1 + x} \right| = \frac{|x_n - x|}{(1 + x_n)(1 + x)} \leqslant \frac{1}{1 + x} |x_n - x|.$$

从而

$$|x_{n+1} - x| \le \frac{1}{1+x} |x_n - x| \le \frac{1}{(1+x)^2} |x_{n-1} - x| \le \dots \le \frac{1}{(1+x)^n} |x_1 - x|.$$

于是令 $n \to \infty$, 得到 $\lim_{n \to \infty} |x_{n+1} - x| = 0$, 因此 $\lim_{n \to \infty} x_n = x = \frac{\sqrt{5} - 1}{2}$.

2. 由条件可知, $x_{n+2} = \sqrt{7 - \sqrt{7 + x_n}}, \forall n \in \mathbb{N}_+$ (由此可解得 x = 2 为不动点). 于是

$$|x_{n+2} - 2| = |\sqrt{7 - \sqrt{7 + x_n}} - 2|$$

$$= \frac{|3 - \sqrt{7 + x_n}|}{\sqrt{7 - \sqrt{7 + x_n}} + 2}$$

$$= \frac{|2 - x_n|}{(\sqrt{7 - \sqrt{7 + x_n}} + 2)(3 + \sqrt{7 + x_n})}$$

$$\leq \frac{1}{6}|x_n - 2|.$$

从而对 $\forall n \in \mathbb{N}_+$, 都有

$$|x_{2n} - 2| \leqslant \frac{1}{6} |x_{2n-2} - 2| \leqslant \frac{1}{6^2} |x_{2n-4} - 2| \leqslant \dots \leqslant \frac{1}{6^{n-1}} |x_2 - 2|;$$

$$|x_{2n+1} - 2| \leqslant \frac{1}{6} |x_{2n-1} - 2| \leqslant \frac{1}{6^2} |x_{2n-3} - 2| \leqslant \dots \leqslant \frac{1}{6^n} |x_1 - 2|.$$

上式两边同时令 $n \to \infty$, 得到 $\lim_{n \to \infty} |x_{2n} - 2| = \lim_{n \to \infty} |x_{2n+1} - 2| = 0$. 因此 $\lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{2n} = \lim_{n \to \infty} x_{2n+1} = 2$. 例题 4.37 设数列 $x_1 \in \mathbb{R}, x_{n+1} = \cos x_n, n \in \mathbb{N},$ 求 $\lim x_n$.

解 令 $g(x) = x - \cos x$, 则 $g'(x) = 1 + \sin x \ge 0$, 且 g'(x) 不恒等于 0. 又 g(0) = -1 < 0, $g(1) = 1 - \cos 1 > 0$, 因此由零 点存在定理可知,g 存在唯一零点 $x_0 \in (0,1)$. 不妨设 $x_1 \in [-1,1]$ (用 x_2 代替 x_1), 则 $x_n \in [-1,1]$. 再令 $f(x) = \cos x$, 则 $f'(x) = -\sin x$. 于是记 $C \triangleq \max_{x \in [-1,1]} |f'(x)| \in (0,1)$.

故由 Lagrange 中值定理, 可得存在 $\theta_n \in (\min\{x_n, x_0\}, \max\{x_n, x_0\})$, 使得对 $\forall n \in \mathbb{N}_+$, 都有

$$|x_{n+1} - x_0| = |f(x_n) - f(x_0)| = |f'(\theta_n)||x_n - x_0| \le C|x_n - x_0|.$$

进而对 $\forall n \in \mathbb{N}_+$, 都有

$$|x_{n+1} - x_0| \le C|x_n - x_0| \le C^2|x_{n-1} - x_0| \le \dots \le C^n|x_1 - x_0|.$$

上式两边同时令 $n \to \infty$, 再结合 $C \in (0,1)$, 可得 $\lim_{n \to \infty} |x_{n+1} - x_0| = 0$. 即 $\lim_{n \to \infty} x_n = x_0$.

命题 4.6 (加强的压缩映像)

设可微函数 $f:[a,b] \to [a,b]$ 满足 $|f'(x)| < 1, \forall x \in [a,b]$. 证明: 对

$$x_1\in [a,b], x_{n+1}=f(x_n), n\in \mathbb{N},$$

必有 $\lim_{n\to\infty} x_n$ 存在.

注 注意到 f' 未必是连续函数, 所以 sup |f'(x)| 未必可以严格小于 1.

笔记 实际上, 用压缩映像证明 $\{x_n\}$ 的极限是 x_0 , 也同时蕴含了 x_0 就是这个递推数列的唯一不动点 (反证易得). 证明 令 g(x) = x - f(x), 则 $g(a) = a - f(a) \le 0$, $g(b) = b - f(b) \ge 0$. 由零点存在定理可知, 存在 $x_0 \in [a, b]$, 使得 证明 $\forall g(x) = x$ $f(x_0) = \begin{cases} \frac{f(x) - f(x_0)}{x - x_0}, & x \neq x_0 \\ f'(x_0), & x = x_0 \end{cases}$,则由导数定义可知 $h \in C[a, b]$. 又由 $|f'(x)| < 1, \forall x \in [a, b]$,可知

$$|h(x)| = \left| \frac{f(x) - f(x_0)}{x - x_0} \right| = |f'(\theta_x)| < 1, \quad \theta_x \in (\min\{x, x_0\}, \max\{x, x_0\})$$

故 $|h(x)| < 1, \forall x \in [a,b]$. 于是记 $L \triangleq \max_{x \in [a,b]} |h(x)| \in (0,1)$. 因此再由 Lagrange 中值定理可得, 对 $\forall n \in \mathbb{N}_+$, 都有

$$|x_{n+1} - x_0| = |f(x_n) - f(x_0)| = |f'(\xi_n)| |x_n - x_0|, \quad \xi_n \in (\min\{x_n, x_0\}, \max\{x_n, x_0\})$$

从而对 $\forall n \in \mathbb{N}_{+}$. 都有

$$|f'(\xi_n)| = \left| \frac{f(x_n) - f(x_0)}{x_n - x_0} \right| = |h(x_n)| \leqslant L$$

进而对 $\forall n \in \mathbb{N}_+$, 都有

$$|x_{n+1} - x_0| = |f'(\xi_n)||x_n - x_0| \le L|x_n - x_0| \le L^2|x_{n-1} - x_0| \le \dots \le L^n|x_1 - x_0|$$

上式两边同时令 $n \to \infty$, 则 $\lim_{n \to \infty} |x_{n+1} - x_0| = 0$. 即 $\lim_{n \to \infty} x_n = x_0$.

命题 4.7 (反向压缩映像)

设 $x_{n+1} = f(x_n), n \in \mathbb{N}$ 满足

$$\lim_{n\to\infty}x_n=a\in\mathbb{R}, x_n\neq a, \forall n\in\mathbb{N},$$

证明: 若 f 在 x = a 可导, 则 $|f'(a)| \le 1$.

证明 (反证法) 假设 |f'(a)| > 1, 由导数定义及极限保号性可知, 存在 $r > 1, \delta > 0$, 使得

$$\left| \frac{f(x) - f(a)}{x - a} \right| \geqslant r > 1, \quad \forall x \in [a - \delta, a + \delta].$$

即

$$|f(x) - f(a)| \ge r|x - a|, \quad \forall x \in [a - \delta, a + \delta].$$

因为 f 在 x=a 可导以及 $\lim_{n\to\infty} x_n=a$,所以由 Heine 归结原则可知 $\lim_{n\to\infty} f(x_n)=f(a)$. 又 $x_{n+1}=f(x_n)$, $\forall n\in\mathbb{N}_+$,从 而等式两边同时令 $n\to\infty$,可得 a=f(a). 由于 $\lim_{n\to\infty} |x_n-a|=0$,因此存在 $N\in\mathbb{N}$,使得对 $\forall n\geqslant N$,有

$$|x_{n+1} - a| = |f(x_n) - f(a)| \ge r|x_n - a|$$
.

故对 $\forall n \ge N$, 有

$$|x_{n+1} - a| \ge r|x_n - a| \ge r^2|x_{n-1} - a| \ge \cdots \ge r^n|x_1 - x_0|$$
.

上式两边同时令 $n \to \infty$, 得到 $\lim_{n \to \infty} |x_{n+1} - a| = +\infty$, 矛盾.

4.5.6 强求通项和强行裂项

4.5.6.1 直接构造通项

先来看能够直接构造出数列通项的例子. 这类问题只能靠记忆积累. 找不到递推数列通项就很难处理. 一般我们可以猜递推数列通项就是三角函数或双曲三角函数的形式, 再利用三角函数或双曲三角函数的性质递推归纳.

例题 **4.38** 设
$$a_1 \in (0,1), a_{n+1} = \sqrt{\frac{1+a_n}{2}}, n = 1, 2, \dots,$$
求 $\lim_{n \to \infty} a_1 a_2 \cdots a_n$.

笔记 本题是经典的例子,注意此类问题如果不能求出通项就无法求出具体值,本题便是一个能求出通项从而算出 极限值的经典例子.

注 这类问题只能靠记忆积累.

解 利用

$$\cos\frac{\theta}{2} = \sqrt{\frac{1+\cos\theta}{2}}, \theta \in \mathbb{R},$$

因为 $a_1 \in (0,1)$, 所以一定存在 $\theta \in (0,\frac{\pi}{2})$, 使得 $a_1 = \cos\theta$. 则 $\theta = \arccos a_1, \sin\theta = \sqrt{1-a_1^2}$. 并且由 $a_{n+1} = \sqrt{\frac{1+a_n}{2}}, n=1,2,\cdots$ 可得

$$a_2 = \cos \frac{\theta}{2}, a_3 = \cos \frac{\theta}{2^2}, \dots, a_n = \cos \frac{\theta}{2^{n-1}}.$$

因此

$$\lim_{n \to \infty} a_1 a_2 \cdots a_n = \lim_{n \to \infty} \prod_{k=0}^{n-1} \cos \frac{\theta}{2^k} = \lim_{n \to \infty} \frac{\sin \frac{\theta}{2^{n-1}}}{\sin \frac{\theta}{2^{n-1}}} \prod_{k=0}^{n-1} \cos \frac{\theta}{2^k} = \lim_{n \to \infty} \frac{\sin \frac{\theta}{2^{n-2}}}{2 \sin \frac{\theta}{2^{n-1}}} \prod_{k=0}^{n-2} \cos \frac{\theta}{2^k}$$

$$= \dots = \lim_{n \to \infty} \frac{\sin 2\theta}{2^n \sin \frac{\theta}{2^{n-1}}} = \frac{\sin 2\theta}{2\theta} = \frac{\sin(2 \arccos a_1)}{2 \arccos a_1} = \frac{a_1 \sqrt{1 - a_1^2}}{\arccos a_1}.$$

例题 **4.39** 设 $x_1 = \sqrt{5}, x_{n+1} = x_n^2 - 2$, 计算

$$\lim_{n\to\infty}\frac{x_1x_2\cdots x_n}{x_{n+1}}.$$

輸完 这类问题只能靠记忆积累. 找不到递推数列通项就很难处理. 一般我们可以猜递推数列通项就是三角函数/双曲三角函数的形式, 再利用三角函数/双曲三角函数的性质递推归纳.

解 注意到 $\cos x = \frac{\sqrt{5}}{2}$ 在 \mathbb{R} 上无解, 因此推测类似的双曲三角函数可以做到. 设 $x_1 = 2\cosh\theta, \theta \in (0, +\infty)$. 利用

$$\cosh x = 2\cosh^2\frac{x}{2} - 1, \forall x \in \mathbb{R},$$

我们归纳可证

$$x_n = 2\cosh(2^{n-1}\theta), n = 1, 2, \cdots$$

于是利用 $sinh(2x) = 2 sinh x cosh x, \forall x \in \mathbb{R},$ 我们有

$$\lim_{n\to\infty}\frac{x_1x_2\cdots x_n}{x_{n+1}}=\lim_{n\to\infty}\frac{2^n\prod\limits_{k=0}^{n-1}\cosh(2^k\theta)}{2\cosh(2^n\theta)}=\lim_{n\to\infty}\frac{2^n\sinh\theta\prod\limits_{k=0}^{n-1}\cosh(2^k\theta)}{2\sinh\theta\cosh(2^n\theta)}=\lim_{n\to\infty}\frac{2^{n-1}\sinh(2\theta)\prod\limits_{k=1}^{n-1}\cosh(2^k\theta)}{2\sinh\theta\cosh(2^n\theta)}$$

$$=\lim_{n\to\infty}\frac{2^{n-2}\sinh(2^2\theta)\prod\limits_{k=2}^{n-1}\cosh(2^k\theta)}{2\sinh\theta\cosh(2^n\theta)}=\lim_{n\to\infty}\frac{\sinh 2^n\theta}{2\sinh\theta\cosh(2^n\theta)}=\lim_{n\to\infty}\frac{\tanh 2^n\theta}{2\sinh\theta}=\frac{1}{2\sinh\theta}=1,$$

这里倒数第二个等号来自 $\lim_{x \to \infty} \tanh x = 1$.

例题 **4.40** 设 $a_1 = 3$, $a_n = 2a_{n-1}^2 - 1$, $n = 2, 3, \dots$, 则计算

$$\lim_{n\to\infty}\frac{a_n}{2^n a_1 a_2 \cdots a_{n-1}}.$$

注 因为双曲三角函数 $\cosh x$ 在 $(0, +\infty)$ 上的值域为 $(1, +\infty)$, 并且 $\cosh x$ 在 $(0, +\infty)$ 上严格递增, 所以一定存在唯一的 $\theta \in (0, +\infty)$, 使得 $a_1 = \cosh \theta = 3$.

证明 设 $a_1 = \cosh \theta = 3, \theta \in (0, +\infty)$. 则利用 $\cosh 2\theta = 2 \cosh^2 \theta - 1$, 再结合条件归纳可得

$$a_n = 2a_{n-1}^2 - 1 = \cosh 2^{n-1}\theta, \quad n = 2, 3, \dots$$

于是

$$\lim_{n \to \infty} \frac{a_n}{2^n a_1 a_2 \cdots a_{n-1}} = \lim_{n \to \infty} \frac{\cosh 2^{n-1} \theta}{2^n \prod_{k=1}^{n-1} \cosh 2^{k-1} \theta} = \lim_{n \to \infty} \frac{\sinh \theta \cosh 2^{n-1} \theta}{2^n \sinh \theta \prod_{k=1}^{n-1} \cosh 2^{k-1} \theta}$$

$$= \lim_{n \to \infty} \frac{\sinh \theta \cosh 2^{n-1} \theta}{2^{n-1} \sinh 2\theta \prod_{k=2}^{n-1} \cosh 2^{k-1} \theta} = \cdots = \lim_{n \to \infty} \frac{\sinh \theta \cosh 2^{n-1} \theta}{2 \sinh 2^{n-1} \theta}$$

$$= \lim_{n \to \infty} \frac{\sinh \theta}{2 \tanh 2^{n-1} \theta} \frac{\lim_{n \to \infty} \tanh 2^{n-1} \theta = 1}{2} \frac{\sinh \theta}{2} = \frac{\sqrt{\cosh^2 \theta - 1}}{2} = \sqrt{2}.$$

例题 4.41 设 $y_0 \ge 2$, $y_n = y_{n-1}^2 - 2$, $n \in \mathbb{N}$, 计算 $\sum_{n=0}^{\infty} \frac{1}{y_0 y_1 \cdots y_n}$.

笔记 关于求和的问题,要注意求和的通项能否凑成相邻两项相减的形式,从而就能直接求和消去中间项,进而将求和号去掉.

注 因为双曲三角函数 $2\cosh x$ 在 (0, +∞) 上的值域为 (1, +∞), 并且 $2\cosh x$ 在 (0, +∞) 上严格递增, 所以一定存在 唯一的 $\theta \in (0, +∞)$, 使得 $y_0 = 2\cosh \theta \ge 2$.

证明 设 $y_0 = 2\cosh\theta, \theta \in (0, +\infty)$, 则利用 $\cosh 2\theta = 2\cosh^2\theta - 1$, 再结合条件归纳可得

$$y_1 = y_0^2 - 2 = 4\cosh^2\theta - 2 = 2(2\cosh^2\theta - 1) = 2\cosh 2\theta,$$

$$y_2 = y_1^2 - 2 = 4\cosh^2 2\theta - 2 = 2(2\cosh^2 2\theta - 1) = 2\cosh 2^2\theta,$$
.....
$$y_n = y_{n-1}^2 - 2 = 4\cosh^2 2^{n-1}\theta - 2 = 2(2\cosh^2 2^{n-1}\theta - 1) = 2\cosh 2^n\theta,$$
.....

于是

$$\sum_{n=0}^{\infty} \frac{1}{y_0 y_1 \cdots y_n} = \sum_{n=0}^{\infty} \frac{1}{\prod_{k=0}^{n} 2^{n+1} \cosh 2^k \theta} = \sum_{n=0}^{\infty} \frac{\sinh \theta}{2^{n+1} \sinh \theta} \prod_{k=0}^{n} \cosh 2^k \theta$$

$$= \sum_{n=0}^{\infty} \frac{\sinh \theta}{2^n \sinh 2\theta} \prod_{k=1}^{n} \cosh 2^k \theta = \cdots = \sum_{n=0}^{\infty} \frac{\sinh \theta}{\sinh 2^{n+1} \theta}$$

$$= 2 \sinh \theta \sum_{n=0}^{\infty} \frac{1}{e^{2^{n+1} \theta} - e^{-2^{n+1} \theta}} = 2 \sinh \theta \sum_{n=0}^{\infty} \frac{e^{2^{n+1} \theta}}{e^{2^{n+2} \theta} - 1}$$

$$= 2 \sinh \theta \sum_{n=0}^{\infty} \left(\frac{1}{e^{2^{n+1} \theta} - 1} - \frac{1}{e^{2^{n+2} \theta} - 1} \right) = \frac{2 \sinh \theta}{e^{2\theta} - 1}$$

$$= \frac{e^{\theta} - e^{-\theta}}{e^{\theta} \left(e^{\theta} - e^{-\theta} \right)} = e^{-\theta} = \cosh \theta - \sinh \theta$$

$$= \frac{y_0}{2} - \sqrt{\cosh^2 \theta - 1} = \frac{y_0}{2} - \sqrt{\frac{y_0^2}{4} - 1}.$$

例题 4.42 设
$$y_0 > 2$$
, $y_n = y_{n-1}^2 - 2$, $n \in \mathbb{N}$, 计算 $\prod_{n=0}^{\infty} (1 - \frac{1}{y_n})$.

笔记 关于累乘的问题,要注意累乘的通项能否凑成相邻两项相除的形式,从而就能直接累乘消去中间项,进而将累乘号去掉。

本题是利用已知条件和平方差公式将累乘的通项能否凑成相邻两项相除的形式.

证明 一方面

$$y_n + 1 = y_{n-1}^2 - 1 = (y_{n-1} - 1)(y_{n-1} + 1) \Rightarrow y_{n-1} - 1 = \frac{y_n + 1}{y_{n-1} + 1} \Rightarrow y_n - 1 = \frac{y_{n+1} + 1}{y_n + 1}.$$

另外一方面

$$y_n - 2 = y_{n-1}^2 - 4 = (y_{n-1} - 2)(y_{n-1} + 2) \Rightarrow y_n - 2 = (y_{n-1} - 2)y_{n-2}^2 \Rightarrow y_n = \sqrt{\frac{y_{n+2} - 2}{y_{n+1} - 2}}.$$

于是结合 $\lim_{m\to\infty} y_m = +\infty$ 我们有

$$\begin{split} \prod_{n=0}^{\infty} \left(1 - \frac{1}{y_n} \right) &= \prod_{n=0}^{\infty} \frac{y_n - 1}{y_n} = \prod_{n=0}^{\infty} \left(\frac{y_{n+1} + 1}{y_n + 1} \cdot \sqrt{\frac{y_{n+1} - 2}{y_{n+2} - 2}} \right) = \lim_{m \to \infty} \prod_{n=0}^{m} \left(\frac{y_{n+1} + 1}{y_n + 1} \cdot \sqrt{\frac{y_{n+1} - 2}{y_{n+2} - 2}} \right) \\ &= \lim_{m \to \infty} \frac{y_{m+1} + 1}{y_0 + 1} \cdot \sqrt{\frac{y_1 - 2}{y_{m+2} - 2}} = \lim_{m \to \infty} \frac{y_{m+1} + 1}{\sqrt{y_{m+1}^2 - 4}} \cdot \frac{\sqrt{y_0^2 - 4}}{y_0 + 1} = \frac{\sqrt{y_0^2 - 4}}{y_0 + 1}. \end{split}$$

4.5.6.2 强求通项和强行裂项

若数列 $\{a_n\}_{n=0}^{\infty}, \{b_n\}_{n=0}^{\infty}, \{d_n\}_{n=0}^{\infty}$ 满足下列递推条件之一:

- 1. $a_n = d_n a_{n-1} + b_n, n = 1, 2, \dots;$
- 2. $\lim (a_n d_n a_{n-1}) = A$.

则我们都可以考虑对 a_n 进行强行裂项和强求通项,从而可以将 a_n 写成关于 b_n, d_n 或 A, d_n 的形式,进而将题目

条件和要求进行转化.

命题 4.8 (强求通项和强行裂项)

(1) 若数列 $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$, $\{d_n\}_{n=0}^{\infty}$ 满足递推条件:

$$a_n = d_n a_{n-1} + b_n, n = 1, 2, \cdots,$$
 (4.26)

则令
$$c_n = \prod_{k=1}^n \frac{1}{d_k}, n = 0, 1, \dots, -定有$$

$$a_n = \frac{1}{c_n} \sum_{k=1}^n c_k b_k + a_0, n = 0, 1, \cdots$$

(2) 若数列 $\{a_n\}_{n=0}^{\infty}$, $\{d_n\}_{n=0}^{\infty}$ 满足递推条件:

$$\lim_{n \to \infty} (a_n - d_n a_{n-1}) = A,\tag{4.27}$$

则令
$$c_n = \prod_{k=1}^n \frac{1}{d_k}$$
, $n = 0, 1, \dots$, 再令 $b_0 = 1$, $b_n = a_n - \frac{c_{n-1}a_{n-1}}{c_n}$, $n = 1, 2, \dots$, 一定有

$$\lim_{n\to\infty}b_n=A,$$

$$a_n = \frac{1}{c_n} \sum_{k=1}^n c_k b_k + a_0, n = 0, 1, \cdots$$

 $\dot{\mathbf{L}}$ 此时**只能都对** a_n 进行强行裂项和强求通项, b_n 和 d_n 都无法通过这种方法强行裂项和强求通项!

笔记 也可以通过观察原数列 an 的递推条件直接得到需要构造的数列,从而将 an 强行裂项和强求通项.具体可见例题 4.43 解法一. (1) 的具体应用可见例题 4.44 笔记; (2) 的具体应用可见例题 4.43 笔记. 证明 (强行裂项和强求通项的具体步骤)

(1) 若数列 $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$, $\{d_n\}_{n=0}^{\infty}$ 满足递推条件(4.26)式, 则令 $c_0=1$, 待定 $\{c_n\}_{n=0}^{\infty}$, 由递推条件(4.26)式可得

$$c_n a_n = c_n d_n a_{n-1} + c_n b_n, n = 1, 2, \cdots$$
 (4.28)

我们希望
$$c_n d_n = c_{n-1}, n = 2, 3, \dots$$
, 即 $\frac{c_n}{c_{n-1}} = \frac{1}{d_n}, n = 2, 3, \dots$ 从而 $c_n = c_0 \prod_{k=1}^n \frac{c_k}{c_{k-1}} = \prod_{k=1}^n \frac{1}{d_k}, n = 1, 2, \dots$, 且

该式对 n=0 也成立. 因此, 令 $c_n=\prod_{k=1}^n\frac{1}{d_k}, n=0,1,\cdots$, 则由(4.28)式可知

$$c_n a_n = c_n d_n a_{n-1} + c_n b_n \Rightarrow c_n a_n - c_{n-1} a_{n-1} = c_n b_n, n = 1, 2, \cdots$$

于是

$$a_n = \frac{1}{c_n}(c_n a_n - c_0 a_0 + c_0 a_0) = \frac{1}{c_n} \left[\sum_{k=1}^n (c_k a_k - c_{k-1} a_{k-1}) + c_0 a_0 \right] = \frac{1}{c_n} \sum_{k=1}^n c_k b_k + a_0, n = 0, 1, \cdots$$

这样就完成了对 a_n 的强行裂项和强求通项,并将 a_n 写成了关于 b_n,d_n 的形式.

(2) 若数列 $\{a_n\}_{n=0}^{\infty}$, $\{d_n\}_{n=0}^{\infty}$ 满足递推条件(4.27)式, 则令 $c_0=1$, 待定 $\{c_n\}_{n=0}^{\infty}$, 由递推条件(4.27)式可得

$$\lim_{n \to \infty} (a_n - d_n a_{n-1}) = \lim_{n \to \infty} \frac{c_n a_n - c_n d_n a_{n-1}}{c_n} = A.$$
 (4.29)

我们希望
$$c_n d_n = c_{n-1}, n = 2, 3, \dots$$
, 即 $\frac{c_n}{c_{n-1}} = \frac{1}{d_n}, n = 2, 3, \dots$ 从而 $c_n = c_0 \prod_{k=1}^n \frac{c_k}{c_{k-1}} = \prod_{k=1}^n \frac{1}{d_k}, n = 1, 2, \dots$, 且

该式对 n=0 也成立. 因此, 令 $c_n=\prod_{k=1}^n\frac{1}{d_k}, n=0,1,\cdots$, 则由(4.29)式可知

$$\lim_{n \to \infty} (a_n - d_n a_{n-1}) = \lim_{n \to \infty} \frac{c_n a_n - c_n d_n a_{n-1}}{c_n} = \lim_{n \to \infty} \frac{c_n a_n - c_{n-1} a_{n-1}}{c_n} = A. \tag{4.30}$$

于是令 $b_0=1$, 待定 $\{b_n\}_{n=0}^{\infty}$, 希望 b_n 满足 $c_nb_n=c_na_n-c_{n-1}a_{n-1}, n=1,2,\cdots$, 即 $b_n=\frac{c_na_n-c_{n-1}a_{n-1}}{c_n}$

$$a_n - \frac{c_{n-1}a_{n-1}}{c_n}, n = 1, 2, \cdots$$
. 因此, 令 $b_0 = 1, b_n = a_n - \frac{c_{n-1}a_{n-1}}{c_n}, n = 1, 2, \cdots$, 则 b_n 满足
$$c_n b_n = c_n a_n - c_{n-1}a_{n-1}, n = 1, 2, \cdots.$$
 (4.31)

并且由(4.30)式可知

$$\lim_{n\to\infty}b_n=\lim_{n\to\infty}\frac{c_na_n-c_{n-1}a_{n-1}}{c_n}=A.$$

从而由(4.31)式可得

$$a_n = \frac{1}{c_n}(c_n a_n - c_0 a_0 + c_0 a_0) = \frac{1}{c_n} \left[\sum_{k=1}^n (c_k a_k - c_{k-1} a_{k-1}) + c_0 a_0 \right] = \frac{1}{c_n} \sum_{k=1}^n c_k b_k + a_0, n = 0, 1, \dots$$

这样就完成了对 a_n 的强行裂项和强求通项

例题 4.43 设 $\{a_n\}_{n=0}^{\infty}$ 满足 $\lim_{n\to\infty}(a_n-\lambda a_{n-1})=a, |\lambda|<1$, 计算 $\lim_{n\to\infty}a_n$.

 $\stackrel{\diamondsuit}{\mathbf{c}}$ 笔记 解法二构造数列 c_n, b_n 的思路: 待定数列 c_n 且 $c_0 = 1$, 由条件可得 $\lim_{n \to \infty} \frac{c_n a_n - \lambda c_n a_{n-1}}{c_n} = a$. 希望 $c_{n-1} = \lambda c_n$,

即 $\frac{c_n}{c_{n-1}} = \frac{1}{\lambda}$, 等价于 $c_n = c_0 \prod_{k=1}^n \frac{c_k}{c_{k-1}} = \frac{1}{\lambda^n}$. 该式对 n = 0 也成立. 于是令 $c_n = \frac{1}{\lambda^n}$, 则由条件可知

$$a = \lim_{n \to \infty} \frac{c_n a_n - \lambda c_n a_{n-1}}{c_n} = \lim_{n \to \infty} \frac{c_n a_n - c_{n-1} a_{n-1}}{c_n}$$

从而待定 b_n , 希望 b_n 满足 $c_n b_n = c_n a_n - c_{n-1} a_{n-1}$, 即 $\frac{b_n}{\lambda^n} = \frac{a_n}{\lambda^n} - \frac{a_{n-1}}{\lambda^{n-1}} = \frac{a_n - \lambda a_{n-1}}{\lambda^n}$. 于是令 $b_n = a_n - \lambda a_{n-1}$, 则由条件可知 $\lim_{n \to \infty} b_n = \lim_{n \to \infty} (a_n - \lambda a_{n-1}) = a_n c_n b_n = c_n a_n - c_{n-1} a_{n-1}$. 因此

$$a_n = \frac{1}{c_n} (c_n a_n - c_0 a_0 + c_0 a_0) = \frac{1}{c_n} \left[\sum_{k=1}^n (c_k a_k - c_{k-1} a_{k-1}) + c_0 a_0 \right]$$
$$= \frac{1}{c_n} \left(\sum_{k=1}^n c_k b_k + c_0 a_0 \right) = \lambda^n \sum_{k=1}^n \frac{b_k}{\lambda^k} + a_0 \lambda^n.$$

这样就完成了对 a_n 的强行裂项和强求通项.后续计算极限的方法与解法一相同.

解 解法一 (通过观察直接构造出裂项数列 b_n): 当 $\lambda=0$ 问题时显然的, 当 $\lambda\neq 0$, 记 $b_n=a_n-\lambda a_{n-1}, n=1,2,\cdots$, 我们有

$$\frac{b_n}{\lambda^n} = \frac{a_n - \lambda a_{n-1}}{\lambda^n} = \frac{a_n}{\lambda^n} - \frac{a_{n-1}}{\lambda^{n-1}}, n = 1, 2, \cdots.$$

上式对 $n = 1, 2, \dots$ 求和得

$$a_n = \lambda^n \sum_{k=1}^n \frac{b_k}{\lambda^k} + a_0 \lambda^n, n = 1, 2, \cdots$$
 (4.32)

由于 $|\lambda| < 1$, 我们知道 $\lim_{n \to \infty} a_0 \lambda^n = 0$. 于是由 Stolz 定理, 可知当 $\lambda > 0$ 时, 我们有

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} \frac{b_k}{\lambda^k}}{\frac{1}{\lambda^n}} = \lim_{n \to \infty} \frac{\frac{b_{n+1}}{\lambda^{n+1}}}{\frac{1}{\lambda^{n+1}} - \frac{1}{\lambda^n}} = \lim_{n \to \infty} \frac{b_{n+1}}{1 - \lambda} = \frac{a}{1 - \lambda}.$$

当 $\lambda < 0$ 时 (此时分母 $\frac{1}{\lambda^n}$ 不再严格单调递增趋于 $+\infty$, 不满足 Stolz 定理条件. 但是不难发现其奇偶子列严格单调递增趋于 $+\infty$ 满足 Stolz 定理条件, 因此需要分奇偶子列讨论), 对于(4.32)式的偶子列, 由 Stolz 定理, 我们有

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{2n} \frac{b_k}{\lambda^k}}{\frac{1}{12n}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{2n+2} \frac{b_k}{\lambda^k} - \sum_{k=1}^{2n} \frac{b_k}{\lambda^k}}{\frac{1}{12n+2} - \frac{1}{12n}} = \lim_{n \to \infty} \frac{\frac{b_{2n+2}}{\lambda^{2n+2}} + \frac{b_{2n+1}}{\lambda^{2n+1}}}{\frac{1}{12n+2} - \frac{1}{12n}} = \lim_{n \to \infty} \frac{b_{2n+2} + \lambda b_{2n+1}}{1 - \lambda^2} = \frac{a + \lambda a}{1 - \lambda^2} = \frac{a}{1 - \lambda}.$$

对于(4.32)式的奇子列, 由 Stolz 定理, 我们有

$$\lim_{n\to\infty}\frac{\sum\limits_{k=1}^{2n-1}\frac{b_k}{\lambda^k}}{(\frac{1}{\lambda})^{2n-1}}=\frac{1}{\lambda}\lim_{n\to\infty}\frac{\sum\limits_{k=1}^{2n-1}\frac{b_k}{\lambda^k}}{\frac{1}{\lambda^{2n}}}=\frac{1}{\lambda}\lim_{n\to\infty}\frac{\sum\limits_{k=1}^{2n}\frac{b_k}{\lambda^k}}{\frac{1}{\lambda^{2n}}}-\frac{1}{\lambda}\lim_{n\to\infty}\frac{\frac{b_{2n}}{\lambda^{2n}}}{\frac{1}{\lambda^{2n}}}=\frac{1}{\lambda}\lim_{n\to\infty}\frac{a}{\lambda(1-\lambda)}-\frac{a}{\lambda}=\frac{a}{1-\lambda}.$$

因此无论如何我们都有 $\lim_{n\to\infty} a_n = \frac{a}{1-\lambda}$.

解法二 (强求通项和强行裂项的标准解法): 令 $c_n = \frac{1}{\lambda^n}, n = 0, 1, \cdots, b_n = a_n - \lambda a_{n-1}, n = 1, 2, \cdots$,则由条件可知 $\lim_{n \to \infty} b_n = \lim_{n \to \infty} (a_n - \lambda a_{n-1}) = a, c_n b_n = c_n a_n - c_{n-1} a_{n-1}$. 从而对 $\forall n \in \mathbb{N}$,都有

$$a_{n} = \frac{1}{c_{n}} \left(c_{n} a_{n} - c_{0} a_{0} + c_{0} a_{0} \right) = \frac{1}{c_{n}} \left[\sum_{k=1}^{n} \left(c_{k} a_{k} - c_{k-1} a_{k-1} \right) + c_{0} a_{0} \right]$$

$$= \frac{1}{c_{n}} \left(\sum_{k=1}^{n} c_{k} b_{k} + c_{0} a_{0} \right) = \lambda^{n} \sum_{k=1}^{n} \frac{b_{k}}{\lambda^{k}} + a_{0} \lambda^{n}.$$

$$(4.33)$$

由于 $|\lambda| < 1$, 我们知道 $\lim_{n \to \infty} a_0 \lambda^n = 0$. 于是由 Stolz 定理, 可知当 $\lambda > 0$ 时, 我们有

$$\lim_{n\to\infty} \frac{\sum\limits_{k=1}^n \frac{b_k}{\lambda^k}}{\frac{1}{\lambda^n}} = \lim_{n\to\infty} \frac{\frac{b_{n+1}}{\lambda^{n+1}}}{\frac{1}{\lambda^{n+1}} - \frac{1}{\lambda^n}} = \lim_{n\to\infty} \frac{b_{n+1}}{1 - \lambda} = \frac{a}{1 - \lambda}.$$

当 $\lambda < 0$ 时 (分母 $\frac{1}{\lambda^n}$ 不再严格单调递增趋于 $+\infty$, 不满足 Stolz 定理条件. 而我们发现其奇偶子列恰好严格单调递增趋于 $+\infty$ 满足 Stolz 定理条件, 因此需要分奇偶子列讨论), 对于(4.33)式的偶子列, 由 Stolz 定理, 我们有

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{2n} \frac{b_k}{\lambda^k}}{\frac{1}{\lambda^{2n}}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{2n+2} \frac{b_k}{\lambda^k} - \sum_{k=1}^{2n} \frac{b_k}{\lambda^k}}{\frac{1}{\lambda^{2n+2}} - \frac{1}{\lambda^{2n}}} = \lim_{n \to \infty} \frac{\frac{b_{2n+2}}{\lambda^{2n+2}} + \frac{b_{2n+1}}{\lambda^{2n+1}}}{\frac{1}{\lambda^{2n+2}} - \frac{1}{\lambda^{2n}}} = \lim_{n \to \infty} \frac{b_{2n+2} + \lambda b_{2n+1}}{1 - \lambda^2} = \frac{a + \lambda a}{1 - \lambda^2} = \frac{a}{1 - \lambda}.$$

对于(4.33)式的奇子列, 由 Stolz 定理, 我们有

因此无论如何我们都有 $\lim_{n\to\infty} a_n = \frac{a}{1-\lambda}$.

例题 4.44 设 $a_1 = 2$, $a_n = \frac{1 + \frac{1}{n}}{2} a_{n-1} + \frac{1}{n}$, $n \ge 2$, 证明: $\lim_{n \to \infty} n a_n$ 存在.

笔记 构造数列 c_n, b_n 的思路: 待定数列 c_n 且 $c_1 = 1$, 由条件可得 $c_n a_n = \frac{n+1}{2n} c_n a_{n-1} + \frac{c_n}{n}$, 希望 c_n 满足 $\frac{n+1}{2n} c_n = \frac{n+1}{2n} c_n$ $c_{n-1}, n=2,3,\cdots$,即 $\frac{c_n}{c_{n-1}}=\frac{n+1}{n}$,等价于 $c_n=\prod_{k=0}^n\frac{2k}{k+1}=\frac{(2n)!!}{(n+1)!}$ 且该式对 n=1 也成立. 于是令 $c_n=\frac{(2n)!!}{(n+1)!}$ 则由条件可知

$$c_n a_n = \frac{n+1}{2n} c_{n-1} + \frac{c_n}{n} = c_{n-1} a_{n-1} + \frac{c_n}{n}, n = 2, 3, \cdots$$

于是待定 b_n , 希望 b_n 满足 $c_n b_n = c_n a_n - c_{n-1} a_{n-1}$, 即 $c_n b_n = \frac{1}{n}$. 从而令 $b_n = \frac{1}{n}$, 则 $c_n b_n = c_n a_n - c_{n-1} a_{n-1}$. 因此 对 $\forall m \in \mathbb{N}_+$, 都有

$$a_{m} = \frac{1}{c_{m}} \left(c_{m} a_{m} - c_{1} a_{1} + c_{1} a_{1} \right) = \frac{1}{c_{m}} \left[\sum_{n=1}^{m} \left(c_{n} a_{n} - c_{n-1} a_{n-1} \right) + c_{1} a_{1} \right]$$

$$= \frac{1}{c_{m}} \left(\sum_{n=1}^{m} c_{n} b_{n} + c_{1} a_{1} \right) = \frac{(m+1)!}{(2m)!!} \left(\sum_{n=1}^{m} \frac{(2n)!!}{n(n+1)!} + 2 \right).$$

这样就完成了对 a_n 的强行裂项和强求通项. 后续再利用 Stolz 定理计算极限即可. 证明 令 $c_n=\frac{(2n)!!}{(n+1)!}, b_n=\frac{1}{n}, n=1,2,\cdots$,则由条件可知 $c_nb_n=c_na_n-c_{n-1}a_{n-1}$. 从而对 $\forall m\in\mathbb{N}$,都有

$$c_m a_m - 2 = c_m a_m - c_1 a_1 = \sum_{n=2}^m (c_n a_n - c_{n-1} a_{n-1}) = \sum_{n=1}^m \frac{c_n}{n} = \sum_{n=1}^m \frac{(2n)!!}{n(n+1)!},$$

从而

$$a_m = \frac{1}{c_m} \left(2 + \sum_{n=1}^m \frac{(2n)!!}{n(n+1)!} \right) = \frac{(m+1)!}{(2m)!!} \left(2 + \sum_{n=1}^m \frac{(2n)!!}{n(n+1)!} \right).$$

再由 Stolz 定理可得

$$\lim_{m \to \infty} m a_m = \lim_{m \to \infty} m \frac{(m+1)!}{(2m)!!} \left(2 + \sum_{n=1}^m \frac{(2n)!!}{n(n+1)!} \right) = \lim_{m \to \infty} \frac{2 + \sum_{n=1}^m \frac{(2n)!!}{n(n+1)!}}{\frac{(2m)!!}{m(m+1)!}}$$

$$= \lim_{m \to \infty} \frac{\frac{(2m+2)!!}{(m+1)(m+2)!}}{\frac{(2m+2)!!}{(m+1)(m+2)!}} = \lim_{m \to \infty} \frac{\frac{2m+2}{m+1}}{\frac{2m+2}{m+1}} = \frac{2}{2-1} = 2.$$

例题 4.45 设 $\lim_{n\to\infty} b_n = b$ 存在, 令

$$a_{n+1} = b_n - \frac{na_n}{2n+1},$$

证明 $\lim_{n\to\infty} a_n$ 存在.

拿 笔记 构造数列 c_n 的思路: 令 $c_1 = 1$, 待定 $\{c_n\}_{n=1}^{+\infty}$, 由条件可知 $c_{n+1}a_{n+1} = c_{n+1}b_n - \frac{n}{2n+1}c_{n+1}a_n$. 希望 $-\frac{n}{2n+1}c_{n+1} = c_{n+1}a_n$. c_n , 则 $\frac{c_{n+1}}{c_n} = -\frac{2n+1}{n}$, 从而

$$c_n = \prod_{k=1}^{n-1} \frac{c_{k+1}}{c_k} = \prod_{k=1}^{n-1} \left(-\frac{2k+1}{k} \right) = (-1)^{n-1} \frac{(2n-1)!!}{(n-1)!}$$

该式对 n=1 也成立. 因此令 $c_n=(-1)^{n-1}\frac{(2n-1)!!}{(n-1)!}$, 则由条件可知

$$c_{n+1}a_{n+1} = c_{n+1}b_n + c_na_n \Rightarrow c_{n+1}a_{n+1} - c_na_n = c_{n+1}b_n$$

从而

$$a_n = \frac{1}{c_n} \left[\sum_{k=2}^n \left(c_k a_k - c_{k-1} a_{k-1} \right) + c_1 a_1 \right] = \frac{1}{c_n} \left[\sum_{k=2}^n c_k b_{k-1} + c_1 a_1 \right]$$

这样就完成了对 a_n 的强行裂项和强求通项.

注 计算 $\lim_{n\to\infty} a_n$ 的思路分析: 如果此时我们将(4.34)中的 $\frac{(2n+1)!!}{n!}$ 看作分母,将 $(-1)^n$ 放到分子上,那么由Wallis 公式可知分母严格单调递增趋于 $+\infty$,此时 a_n 满足 Stolz 定理条件. 但是使用一次 Stolz 定理后我们并不能直接得 到结果,并且此时 (-1)" 仍未消去. 因此我们不采用这种处理方式.

如果此时我们将(4.34)中的 $\frac{(-1)^n(2n+1)!!}{n!}$ 看作分母,则由于 $(-1)^n$ 的振荡性,导致这个分母不再严格单调递增趋于 $+\infty$,不满足 Stolz 定理条件,但是不难发现其奇偶子列严格单调递增趋于 $+\infty$ 满足 Stolz 定理条件,因此

我们可以分奇偶子列进行讨论. 证明 令 $c_n = (-1)^{n-1} \frac{(2n-1)!!}{(n-1)!}, n=1,2,\cdots$,则由条件可知

$$c_{n+1}a_{n+1} = c_{n+1}b_n - \frac{n}{2n+1}c_{n+1}a_n = c_{n+1}b_n + c_na_n, \quad \forall n \in \mathbb{N}_+.$$

从而 $c_{n+1}a_{n+1}-c_na_n=c_{n+1}b_n$, $\forall n \in \mathbb{N}_+$. 于是

$$a_{n+1} = \frac{1}{c_{n+1}} \left[\sum_{k=1}^{n} \left(c_{k+1} a_{k+1} - c_k a_k \right) + c_1 a_1 \right] = \frac{1}{c_{n+1}} \left[\sum_{k=1}^{n} c_{k+1} b_k + c_1 a_1 \right]$$

$$= \frac{1}{c_{n+1}} \left[\sum_{k=1}^{n} c_{k+1} b_k + a_1 \right] = \frac{(-1)^n n!}{(2n+1)!!} \left[\sum_{k=1}^{n} (-1)^k \frac{(2k+1)!!}{k!} b_k + a_1 \right], n \in \mathbb{N}_+. \tag{4.34}$$

下面计算 $\lim_{n\to\infty} a_n$. 由Wallis 公式可知

$$\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\pi n}, n \to \infty.$$

从而我们有

$$\frac{n!}{(2n+1)!!} = \frac{n!}{(2n+1)(2n-1)!!} = \frac{(2n)!!}{(2n+1)2^n(2n-1)!!} \sim \frac{\sqrt{\pi n}}{n2^{n+1}} = \frac{\sqrt{\pi}}{2^{n+1}\sqrt{n}}, n \to \infty.$$
 (4.35)

于是由(4.34)(4.35)式以及 Stolz 定理和 $\lim_{n\to\infty} b_n = b$ 可知, 一方面, 考虑 $\{a_n\}$ 的奇子列, 我们有

$$\lim_{n \to \infty} a_{2n+1} = \lim_{n \to \infty} \frac{(-1)^{2n} (2n)!}{(4n+1)!!} \left[\sum_{k=1}^{2n} (-1)^k \frac{(2k+1)!!}{k!} b_k + a_1 \right] = \lim_{n \to \infty} \frac{\sqrt{\pi} \left[\sum_{k=1}^n \frac{(4k+1)!!}{(2k)!} b_{2k} - \sum_{k=1}^n \frac{(4k-1)!!}{(2k-1)!} b_{2k-1} + a_1 \right]}{2^{2n+1} \sqrt{2n}}$$

$$= \lim_{n \to \infty} \frac{\sqrt{\pi} \left[\sum_{k=1}^n \frac{(4k+1)!!}{(2k)!} b_{2k} - \sum_{k=1}^n \frac{(4k-1)!!}{(2k-1)!} b_{2k-1} \right]}{2^{2n+1} \sqrt{2n}} \xrightarrow{\frac{\text{Stolz } \not{\mathbb{Z}} \not{\mathbb{H}}}{n \to \infty}} \frac{\sqrt{\pi} \left[\frac{(4n+1)!!}{(2n)!} b_{2n} - \frac{(4n-1)!!}{(2n-1)!} b_{2n-1} \right]}{2^{2n+1} \sqrt{2n} - 2^{2n-1} \sqrt{2n} - 2}$$

$$= \frac{\sqrt{\pi}}{\sqrt{2}} \lim_{n \to \infty} \frac{\frac{(4n-1)!!}{(2n-1)!} \left(\frac{4n+1}{2n} b_{2n} - b_{2n-1} \right)}{2^{2n+1} \sqrt{n} - 2^{2n-1} \sqrt{n-1}} = \frac{1}{\sqrt{2}} \lim_{n \to \infty} \frac{2^{2n} \sqrt{2n-1} \left(\frac{4n+1}{2n} b_{2n} - b_{2n-1} \right)}{2^{2n+1} \sqrt{n} - 2^{2n-1} \sqrt{n-1}}$$

$$= \frac{2}{\sqrt{2}} \lim_{n \to \infty} \frac{\sqrt{2n-1} \left(\frac{4n+1}{2n} b_{2n} - b_{2n-1} \right)}{4\sqrt{n} - \sqrt{n-1}} = \frac{2}{\sqrt{2}} \lim_{n \to \infty} \frac{\sqrt{2n-1}}{4\sqrt{n} - \sqrt{n-1}} \cdot \lim_{n \to \infty} \left(\frac{4n+1}{2n} b_{2n} - b_{2n-1} \right)$$

$$= \frac{2}{\sqrt{2}} \lim_{n \to \infty} \frac{\sqrt{2-\frac{1}{n}}}{4 - \sqrt{1-\frac{1}{n}}} \cdot (2b-b) = \frac{2}{\sqrt{2}} \cdot \frac{\sqrt{2}}{3} \cdot b = \frac{2}{3}b. \tag{4.36}$$

另一方面,考虑 $\{a_n\}$ 的偶子列,我们有

$$\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} \frac{(-1)^{2n-1} (2n-1)!}{(4n-1)!!} \left[\sum_{k=1}^{2n-1} (-1)^k \frac{(2k+1)!!}{k!} b_k + a_1 \right] = -\lim_{n \to \infty} \frac{\sqrt{\pi} \left[\sum_{k=1}^{n-1} \frac{(4k+1)!!}{(2k)!} b_{2k} - \sum_{k=1}^{n} \frac{(4k-1)!!}{(2k-1)!} b_{2k-1} + a_1 \right]}{2^{2n} \sqrt{2n-1}}$$

$$= -\lim_{n \to \infty} \frac{\sqrt{\pi} \left[\sum_{k=1}^{n-1} \frac{(4k+1)!!}{(2k)!} b_{2k} - \sum_{k=1}^{n} \frac{(4k-1)!!}{(2k-1)!} b_{2k-1} \right]}{2^{2n} \sqrt{2n-1}} \frac{\frac{1}{2^{2n} \sqrt{2n-1}} - \lim_{n \to \infty} \frac{\sqrt{\pi} \left[\frac{(4n-3)!!}{(2n-2)!} b_{2n-2} - \frac{(4n-1)!!}{(2n-1)!} b_{2n-1} \right]}{2^{2n} \sqrt{2n-1} - 2^{2n-2} \sqrt{2n-3}}$$

$$= -\sqrt{\pi} \lim_{n \to \infty} \frac{\frac{(4n-3)!!}{(2n-2)!} \left(b_{2n-2} - \frac{4n-1}{2n-1} b_{2n-1} \right)}{2^{2n} \sqrt{2n-1} - 2^{2n-2} \sqrt{2n-3}} = -\lim_{n \to \infty} \frac{2^{2n-1} \sqrt{2n-2} \left(b_{2n-2} - \frac{4n-1}{2n-1} b_{2n-1} \right)}{2^{2n} \sqrt{2n-1} - 2^{2n-2} \sqrt{2n-3}}$$

$$= -2 \lim_{n \to \infty} \frac{\sqrt{2n-2} \left(b_{2n-2} - \frac{4n-1}{2n-1} b_{2n-1} \right)}{4\sqrt{2n-1} - \sqrt{2n-3}} = -2 \lim_{n \to \infty} \frac{\sqrt{2n-2}}{4\sqrt{2n-1} - \sqrt{2n-3}} \cdot \lim_{n \to \infty} \left(b_{2n-2} - \frac{4n-1}{2n-1} b_{2n-1} \right)$$

$$= -2 \lim_{n \to \infty} \frac{\sqrt{2-\frac{2}{n}}}{4\sqrt{2-\frac{1}{n}} - \sqrt{2-\frac{3}{n}}}} = -2 \cdot \frac{\sqrt{2}}{3\sqrt{2}} \cdot (-b) = \frac{2}{3}b.$$

$$(4.37)$$

故由(4.36)(4.37)式, 再结合子列极限命题 (b)可知

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} a_{2n+1} = \frac{2}{3}b.$$

例题 **4.46** 设 $a_n, b_n > 0, a_1 = b_1 = 1, b_n = a_n b_{n-1} - 2, n \ge 2$ 且 b_n 有界, 求 $\lim_{n \to \infty} \sum_{k=1}^n \frac{1}{a_1 a_2 \cdots a_k}$.

笔记 构造数列 c_n 的思路: 观察已知的数列递推条件: $b_n = a_n b_{n-1} - 2$, 可知我们只能对 b_n 进行强行裂项和强求通项. 于是令 $c_1 = 1$, 待定 $\{c_n\}_{n=1}^{+\infty}$, 则由条件可知 $c_n b_n = a_n c_n b_{n-1} - 2c_n$, $n \ge 2$. 希望 $a_n c_n = c_{n-1}$, 则 $\frac{c_n}{c_{n-1}} = \frac{1}{a_n}$,

从而
$$c_n = \prod_{k=2}^n \frac{1}{a_k} = \prod_{k=1}^n \frac{1}{a_k}$$
. 该式对 $n=1$ 也成立. 因此, 令 $c_n = \prod_{k=1}^n \frac{1}{a_k}$, 则由条件可知

$$c_n b_n = a_n c_n b_{n-1} - 2c_n = c_{n-1} b_{n-1} - 2c_n, n > 2.$$

于是

$$c_n b_n - c_{n-1} b_{n-1} = -2c_n, n \ge 2.$$

故

$$b_{n+1} = \frac{1}{c_{n+1}} \left[\sum_{k=1}^{n} \left(c_{k+1} b_{k+1} - c_k b_k \right) + c_1 b_1 \right] = \frac{1}{c_n} \left(1 - 2 \sum_{k=1}^{n} c_k \right).$$

这样就完成了对 b_n 的强行裂项和强求通项, 而我们发现 $\sum_{k=1}^n c_k = \sum_{k=1}^n \frac{1}{a_1 a_2 \cdots a_k}$ 恰好就是题目要求的数列极限.

证明 令
$$c_n = \prod_{k=1}^n \frac{1}{a_k}$$
,则由条件可知 $c_n > 0$,且

$$c_n b_n = a_n c_n b_{n-1} - 2c_n = c_{n-1} b_{n-1} - 2c_n, n \ge 2.$$

于是

$$c_n b_n - c_{n-1} b_{n-1} = -2c_n, n \ge 2.$$

故

$$b_{n+1} = \frac{1}{c_{n+1}} \left[\sum_{k=1}^{n} \left(c_{k+1} b_{k+1} - c_k b_k \right) + c_1 b_1 \right] = \frac{1}{c_n} \left(1 - 2 \sum_{k=1}^{n} c_{k+1} \right) . \forall n \in \mathbb{N}_+.$$

由此可得

$$\sum_{k=1}^{n} \frac{1}{a_1 a_2 \cdots a_k} = \sum_{k=1}^{n} c_k = 1 + \sum_{k=1}^{n} c_{k+1} = 1 + \frac{1 - b_{n+1} c_n}{2} = \frac{3}{2} - \frac{c_n b_{n+1}}{2}, \forall n \in \mathbb{N}_+.$$
 (4.38)

由于 $a_n,b_n,c_n>0$, 再结合(4.38)式, 可知 $\sum_{k=1}^n \frac{1}{a_1a_2\cdots a_k}$ 单调递增且 $\sum_{k=1}^n \frac{1}{a_1a_2\cdots a_k}=\frac{3}{2}-\frac{c_nb_{n+1}}{2}\leq \frac{3}{2}$, 因此

 $\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{a_1a_2\cdots a_k}$ 一定存在. 故 $\lim_{n\to\infty}\frac{1}{a_1a_2\cdots a_n}=\lim_{n\to\infty}c_n=0$. 从而再结合(4.38)式和 b_n 有界可得

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{a_1 a_2 \cdots a_k} = \lim_{n \to \infty} \left(\frac{3}{2} - \frac{c_n b_{n+1}}{2} \right) = \frac{3}{2}.$$

4.6 分部积分

分析学里流传着一句话:"遇事不决分部积分".

分部积分在渐近分析中的用法:

- (1) 有时候分部积分不能计算出某一积分的具体值, 但是我们可以利用分部积分去估计原积分 (或原含参积分)的范围. 并且我们可以通过不断分部积分来提高估计的精确程度.
- (2) 分部积分也可以转移被积函数的导数.
- (3) 分部积分可以改善阶. 通过分部积分提高分母的次方从而增加收敛速度方便估计.

例题 4.47

$$f(x) = \int_{x}^{x+1} \sin(t^2) dt.$$

证明 $|f(x)| \leq \frac{1}{x}, x > 0.$

笔记 证明的想法是利用分部积分在渐近分析中的用法 (1).

证明 由分部积分可得, 对 $\forall x > 0$, 都有

$$|f(x)| = \left| \int_{x}^{x+1} \sin\left(t^{2}\right) dt \right| = \left| \int_{x^{2}}^{(x+1)^{2}} \frac{\sin u}{2\sqrt{u}} du \right| = \left| -\frac{1}{4} \int_{x^{2}}^{(x+1)^{2}} u^{-\frac{3}{2}} \cos u du - \frac{\cos u}{2\sqrt{u}} \right|_{x^{2}}^{(x+1)^{2}}$$

$$\leq \left| \frac{1}{4} \int_{x^{2}}^{(x+1)^{2}} u^{-\frac{3}{2}} du \right| + \left| \frac{\cos x}{2x} - \frac{\cos(x+1)}{2(x+1)} \right| = \frac{1}{2} \left| \frac{1}{x} - \frac{1}{x+1} \right| + \frac{1}{2} \left| \frac{\cos x}{x} - \frac{\cos(x+1)}{(x+1)} \right|$$

$$= \frac{1}{2x(x+1)} + \frac{x\left[\cos x - \cos(x+1)\right] + \cos x}{2x(x+1)} = \frac{1}{2x(x+1)} + \frac{2\sin\frac{1}{2}x\sin\frac{2x+1}{2} + \cos x}{2x(x+1)}$$

$$\leq \frac{1}{2x(x+1)} + \frac{x+1}{2x(x+1)} = \frac{1}{2x(x+1)} + \frac{1}{2x} \leq \frac{1}{x}.$$

例题 4.48

证明

例题 4.49

证明

例题 4.50

证明

例题 4.51

证明

4.7 Laplace 方法

Laplace 方法适用于估计形如 $\int_a^b \left[f(x)\right]^n g(x) dx, n \to \infty$ 的渐近展开式, 其中 $f,g \in C[a,b]$ 且 g 在 [a,b] 上 有界; 或者 $\int_a^b e^{f(x,y)}g(y)dy, x \to +\infty$ 的渐近展开式, 其中 $f,g \in C[a,b]$ 且 g 在 [a,b] 上有界. 实际上, 若要估计的 是前者,我们可以将其转化为后者的形式如下:

$$\int_{a}^{b} [f(x)]^{n} g(x) dx = \int_{a}^{b} e^{n \ln f(x)} g(x) dx.$$

若参变量 n,x 在积分区间上,或者估计的不是 $n,x\to +\infty$ 处的渐近展开式,而是其他点处 $(x\to x_0)$ 处的渐近展开式. 我们都可以通过积分换元将其转化为标准形式 $\int_a^b e^{f(x,y)}g(y)dy,x\to +\infty$, 其中 $f,g\in C[a,b]$. 思路分析: 首先,由含参量积分的计算规律(若被积函数含有 $e^{f(x)}$,则积分得到的结果中一定仍含有 $e^{f(x)}$),我们可以大致估计积分 $\int_a^b e^{f(x,y)}g(y)dy,x\to +\infty$ 的结果是 $C_1h_1(x)e^{f(x,b)}-C_2h_2(x)e^{f(x,b)}e^{f(x,a)}$,其中 C 为 常数. 因为指数函数的阶远大于一般初等函数的阶, 这个结果的阶的主体部分就是 $e^{f(x,b)}$ 和 $e^{f(x,a)}$. 而我们注意 到到改变指数函数 e^{px+q} 的幂指数部分的常数 p 会对这个指数函数的阶 $(x \to +\infty)$ 产生较大影响, 而改变 q 不 会影响这个指数函数的阶. 比如, e^{2x} 比 e^x 高阶 $(x \to +\infty)$. 由此我们可以发现 $e^{f(x,b)}$ 和 $e^{f(x,a)}$ 中的幂指数部分 中 f(x,a), f(x,b) 中除常数项外的含 x 项的系数 (暂时叫作指数系数) 对这个函数的阶影响较大. 然而这些系数 都是由被积函数中的 f(x,y) 和积分区间决定的, 但是在实际问题中 f(x,y) 的形式已经确定, 因此这些系数仅仅 由积分区间决定. 于是当我们只计算某些不同点附近 (充分小的邻域内) 的含参量积分时, 得到的这些系数一般不 同,从而导致这些积分的阶不同. 故我们可以断言这类问题的含参量积分在每一小段上的阶都是不同的. 因此我 们只要找到这些不同的阶中最大的阶 (此时最大阶就是主体部分) 就相当于估计出了积分在整个区间 [a,b] 上的 阶. 由定积分的几何意义, 我们不难发现当参变量 x 固定时, 并且当积分区间为某一点 y_0 附近时, 只要被积函数的 $e^{f(x,y)}$ 在 v_0 处 (关于 v_0) 的取值越大, 积分后得到的 (值/充分小邻域内函数与 x 轴围成的面积) 指数系数就会越大, 从而在 y_0 附近的积分的阶也就越大. 综上所述, 当参变量 x 固定时, f(x,y)(关于 y) 的最大值点附近的积分就是原 积分的主体部分,在其他区间上的积分全都是余项部分.

然后,我们将原积分按照上述的积分区间分段,划分为主体部分和余项部分.我们知道余项部分一定可以通过 放缩、取上下极限等操作变成 0(余项部分的放缩一般需要结合具体问题,并使用一些放缩技巧来实现. 但是我们 其实只要心里清楚余项部分一定能够通过放缩、取上下极限变成0即可),关键是估计主体部分的阶. 我们注意到 主体部分的积分区间都包含在某一点的邻域内,而一般估计在某个点附近的函数的阶,我们都会想到利用 Taylor 定理将其在这个点附近展开. 因此我们利用 Taylor 定理将主体部分的被积函数的指数部分 f(x,y) 在最大值点附 近 (关于 y) 展开 (注意: 此时最多展开到 x^2 项, 如果展开项的次数超过二次, 那么后续要么就无法计算积分, 要么 计算就无法得到有效结果, 比如最后积分、取极限得到 $\infty + \infty$ 或 $0 \cdot \infty$ 等这一类无效的结果). *Taylor* 展开之后, 我们只需要利用欧拉积分和定积分,直接计算得到结果即可.

事实上, 原积分中的有界连续函数 g(x) 只会影响渐进展开式中的系数, 对整体的阶并不造成影响. 在实际估 计中处理 g(x) 的方法:(i) 在余项部分, 直接将 g(x) 放缩成其在相应区间上的上界或下界即可.(ii) 在主体部分, 因 为主体部分都包含在 f(x, y)(关于 y) 的某些最大值点 y_i 的邻域内, 所以结合 g(x) 的连续性, 直接将 g(x) 用 $g(y_i)$ 代替即可 (将 g(x) 放缩成 $g(y_i) \pm \varepsilon$ 即可). 即相应的主体部分 (y_i 点附近) 乘以 g(x) 相应的函数值 $g(y_i)$. 具体例题 见例题 4.58. 也可以采取拟合法处理 g(x), 具体例题见例题 4.59.

严谨的证明过程最好用上下极限和 ε – δ 语言书写. 具体严谨的证明书写见例题:例题 4.55,例题 4.56,例题 4.57,例题 4.58.

 $\stackrel{
htage}{f \Sigma}$ 笔记 Laplace 方法的思路蕴含了一些常用的想法: 分段估计、Taylor 定理估阶. 而严谨的证明书写也使用一些常用方法: 上下极限、 $m \varepsilon$ = $m \delta$ 语言、拟合法.

注上述 Laplace 方法得到的渐近估计其实比较粗糙, 想要得到更加精细的渐近估计需要用到更加深刻的想法和技巧(比如 Puiseux 级数展开(见清疏讲义)等).

例题 **4.52** 设 $a_1, a_2, \dots, a_m > 0, m \in \mathbb{N}$, 则

$$\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} = \max_{1 \le i \le m} a_j.$$

注 熟知, 极限蕴含在 a_1, a_2, \cdots, a_m 的最大值中.

证明 显然

$$\max_{1 \le j \le m} a_j = \lim_{n \to \infty} \sqrt[n]{\max_{1 \le j \le m} a_j^n} \le \lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} \le \max_{1 \le j \le m} a_j \cdot \lim_{n \to \infty} \sqrt[n]{m} = \max_{1 \le j \le m} a_j, \tag{4.39}$$

从而我们证明了(4.39).

例题 4.53 设非负函数 $f \in C[a,b]$, 则

$$\lim_{n \to \infty} \sqrt[n]{\int_a^b f^n(x)dx} = \max_{x \in [a,b]} f(x).$$

注 熟知, 极限蕴含在 f 的最大值中.

笔记 这两个基本例子也暗示了离散和连续之间有时候存在某种类似的联系.

证明 事实上记 $f(x_0) = \max_{x \in [a,b]} f(x), x_0 \in [a,b]$, 不失一般性我们假设 $x_0 \in (a,b)$. 那么对充分大的 $n \in \mathbb{N}$, 我们由积分中值定理知道存在 $\theta_n \in (x_0 - \frac{1}{2n}, x_0 + \frac{1}{2n})$, 使得

$$f(\theta_n) \sqrt[n]{\frac{1}{n}} = \sqrt[n]{\int_{x_0 - \frac{1}{a}}^{x_0 + \frac{1}{2n}} f^n(x) dx} \le \sqrt[n]{\int_a^b f^n(x) dx} \le \sqrt[n]{\int_a^b f^n(x_0) dx} = f(x_0) \sqrt[n]{b - a}. \tag{4.40}$$

两边取极限即得(4.40).

例题 4.54 设非负严格递增函数 $f \in C[a,b]$, 由积分中值定理我们知道存在 $x_n \in [a,b]$, 使得

$$f^{n}(x_{n}) = \frac{1}{b-a} \int_{a}^{b} f^{n}(x) dx.$$

计算 $\lim_{n\to\infty} x_n$.

证明 由(上一题) 例题 4.53. 我们知道

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \sqrt[n]{\frac{1}{b-a}} \cdot \lim_{n \to \infty} \sqrt[n]{\int_a^b f^n(x)dx} = f(b).$$

注意到 $\{x_n\}_{n=1}^{\infty} \subset [a,b]$,我们知道对任何 $\lim_{k\to\infty} x_{n_k} = c \in [a,b]$,都有 $\lim_{k\to\infty} f(x_{n_k}) = f(c) = f(b)$. 又由于 f 为严格 递增函数,因此只能有 c = b,利用命题 3.1 的 (a)(Heine 归结原理),我们知道 $\lim_{n\to\infty} x_n = b$. 证毕!

定理 4.6 (Wallis 公式)

$$\frac{(2n)!!}{(2n-1)!!} = \sqrt{\pi n} + \frac{\sqrt{\pi}}{8} \cdot \frac{1}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right). \tag{4.41}$$

注 我们只需要记住 $\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\pi n}, n \to +\infty$ 及其证明即可, 更精细的渐近表达式一般用不到.

Ŷ 笔记 (4.41)式等价于

$$\lim_{n \to \infty} \sqrt{n} \left[\frac{(2n)!!}{(2n-1)!!} - \sqrt{\pi n} \right] = \frac{\sqrt{\pi}}{8}.$$
 (4.42)

证明的想法是把(4.42)式用积分表示并运用 Laplace 方法进行估计.

证明 我们只证明 $\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\pi n}, n \to +\infty$, 更精细的渐近表达式一般不会被考察, 故在此不给出证明.(更精细的渐近表达式的证明可见清疏讲义)

注意到经典积分公式

$$\int_0^{\frac{\pi}{2}} \sin^{2n} x dx = \frac{\pi}{2} \cdot \frac{(2n-1)!!}{(2n)!!}.$$
(4.43)

利用 Taylor 公式的 Peano 余项, 我们知道

$$\ln \sin^2 x = -\left(x - \frac{\pi}{2}\right)^2 + o\left[\left(x - \frac{\pi}{2}\right)^2\right],\tag{4.44}$$

即 $\lim_{x\to(\frac{\pi}{2})}\frac{\ln\sin^2 x}{-(x-\frac{\pi}{2})^2}=-1$. 于是利用(4.44), 对任何 $\varepsilon\in(0,1)$, 我们知道存在 $\delta\in(0,1)$, 使得对任何 $x\in[\frac{\pi}{2}-\delta,\frac{\pi}{2}]$, 都有

$$-(1+\varepsilon)\left(x-\frac{\pi}{2}\right)^2 \leqslant \ln\sin^2 x \leqslant -(1-\varepsilon)\left(x-\frac{\pi}{2}\right)^2. \tag{4.45}$$

利用(4.45)式,现在一方面,我们有

$$\int_0^{\frac{\pi}{2}} \sin^{2n} x dx = \int_0^{\frac{\pi}{2}} e^{n \ln \sin^2 x} dx \leqslant \int_0^{\frac{\pi}{2} - \delta} e^{n \ln \sin^2(\frac{\pi}{2} - \delta)} dx + \int_{\frac{\pi}{2} - \delta}^{\frac{\pi}{2}} e^{-n(1 - \varepsilon)(x - \frac{\pi}{2})^2} dx$$

$$= (\frac{\pi}{2} - \delta) \sin^{2n}(\frac{\pi}{2} - \delta) + \int_0^{\delta} e^{-n(1 - \varepsilon)y^2} dy$$

$$= (\frac{\pi}{2} - \delta) \sin^{2n}(\frac{\pi}{2} - \delta) + \frac{1}{\sqrt{(1 - \varepsilon)n}} \int_0^{\delta \sqrt{(1 - \varepsilon)n}} e^{-z^2} dz$$

$$\leqslant (\frac{\pi}{2} - \delta) \sin^{2n}(\frac{\pi}{2} - \delta) + \frac{1}{\sqrt{(1 - \varepsilon)n}} \int_0^{\infty} e^{-z^2} dz.$$

另外一方面, 我们有

$$\int_0^{\frac{\pi}{2}} \sin^{2n}x dx \geqslant \int_{\frac{\pi}{2}-\delta}^{\frac{\pi}{2}} e^{-n(1+\varepsilon)(x-\frac{\pi}{2})^2} dx = \int_0^{\delta} e^{-n(1+\varepsilon)y^2} dy = \frac{1}{\sqrt{n(1+\varepsilon)}} \int_0^{\delta\sqrt{n(1+\varepsilon)}} e^{-z^2} dz.$$

因此我们有

$$\frac{1}{\sqrt{1+\varepsilon}} \int_0^\infty e^{-z^2} dz \leqslant \lim_{n \to \infty} \sqrt{n} \int_0^{\frac{\pi}{2}} \sin^{2n} x dx \leqslant \frac{1}{\sqrt{1-\varepsilon}} \int_0^\infty e^{-z^2} dz,$$

由ε任意性即可得

$$\lim_{n \to \infty} \sqrt{n} \int_0^{\frac{\pi}{2}} \sin^{2n} x dx = \int_0^{\infty} e^{-z^2} dz = \frac{\sqrt{\pi}}{2}.$$

再结合(4.43)式可得

$$\lim_{n \to \infty} \frac{\pi \sqrt{n}}{2} \frac{(2n-1)!!}{(2n)!!} = \frac{\sqrt{\pi}}{2}.$$

即

$$\lim_{n\to\infty} \sqrt{\pi n} \cdot \frac{(2n-1)!!}{(2n)!!} = 1.$$

故
$$\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\pi n}, n \to +\infty.$$

例题 **4.55** 求 $\int_{0}^{\infty} \frac{1}{(2+x^2)^n} dx, n \to \infty$ 的等价无穷小.

解 由 Taylor 定理可知, 对 $\forall \varepsilon \in (0,1)$, 存在 $\delta > 0$, 使得当 $x \in [0,\delta]$ 时, 有

$$\frac{x^2}{2} - \varepsilon x^2 \leqslant \ln\left(1 + \frac{x^2}{2}\right) \leqslant \frac{x^2}{2} + \varepsilon x^2.$$

现在,一方面我们有

$$\begin{split} \int_{0}^{\infty} \frac{1}{(2+x^{2})^{n}} dx &= \frac{1}{2^{n}} \int_{0}^{\infty} \frac{1}{\left(1+\frac{x^{2}}{2}\right)^{n}} dx = \frac{1}{2^{n}} \left(\int_{0}^{\delta} \frac{1}{\left(1+\frac{x^{2}}{2}\right)^{n}} dx + \int_{\delta}^{\infty} \frac{1}{\left(1+\frac{x^{2}}{2}\right)^{n}} dx \right) \\ &= \frac{1}{2^{n}} \left(\int_{0}^{\delta} e^{-n \ln\left(1+\frac{x^{2}}{2}\right)} dx + \int_{\delta}^{\infty} \frac{1}{\left(1+\frac{x^{2}}{2}\right)^{n}} dx \right) \\ &\leqslant \frac{1}{2^{n}} \left(\int_{0}^{\delta} e^{-n\left(\frac{x^{2}}{2}-\varepsilon x^{2}\right)} dx + \int_{\delta}^{\infty} \frac{1}{1+\frac{x^{2}}{2}} \cdot \frac{1}{\left(1+\frac{\delta^{2}}{2}\right)^{n-1}} dx \right) \\ &\stackrel{\Rightarrow y=x\sqrt{n(\frac{1}{2}-\varepsilon)}}{=} \frac{1}{2^{n}} \left(\frac{1}{\sqrt{n\left(\frac{1}{2}-\varepsilon\right)}} \int_{0}^{\delta\sqrt{n\left(\frac{1}{2}-\varepsilon\right)}} e^{-y^{2}} dy + \frac{\sqrt{2}}{\left(1+\frac{\delta^{2}}{2}\right)^{n-1}} \left(\frac{\pi}{2} - \arctan\frac{\delta}{\sqrt{2}} \right) \right) \\ &\leqslant \frac{1}{2^{n}} \left(\frac{1}{\sqrt{n\left(\frac{1}{2}-\varepsilon\right)}} \int_{0}^{\infty} e^{-y^{2}} dy + \frac{\pi\sqrt{2}}{2\left(1+\frac{\delta^{2}}{2}\right)^{n-1}} \right) = \frac{1}{2^{n}} \left(\frac{\sqrt{\pi}}{2\sqrt{n\left(\frac{1}{2}-\varepsilon\right)}} + \frac{\pi\sqrt{2}}{2\left(1+\frac{\delta^{2}}{2}\right)^{n-1}} \right) . \\ &\int_{0}^{\infty} \frac{2^{n}\sqrt{n}}{(2+x^{2})^{n}} dx \leqslant \frac{\sqrt{\pi}}{2\sqrt{\left(\frac{1}{2}-\varepsilon\right)}} + \frac{\pi\sqrt{2n}}{2\left(1+\frac{\delta^{2}}{2}\right)^{n-1}} . \end{split}$$

于是

上式两边同时令 $n \to \infty$ 并取上极限得到

$$\overline{\lim_{n\to\infty}} \int_0^\infty \frac{2^n \sqrt{n}}{(2+x^2)^n} dx \leqslant \overline{\lim_{n\to\infty}} \left(\frac{\sqrt{\pi}}{2\sqrt{\left(\frac{1}{2}-\varepsilon\right)}} + \frac{\pi\sqrt{2n}}{2\left(1+\frac{\delta^2}{2}\right)^{n-1}} \right) = \frac{\sqrt{\pi}}{2\sqrt{\left(\frac{1}{2}-\varepsilon\right)}}.$$

再由 ε 的任意性可得 $\overline{\lim}_{n\to\infty}\int_0^\infty \frac{2^n\sqrt{n}}{(2+x^2)^n}dx \leqslant \frac{\sqrt{\pi}}{2\sqrt{\frac{1}{2}}} = \sqrt{\frac{\pi}{2}}.$

另外一方面, 我们有

$$\begin{split} \int_0^\infty \frac{1}{(2+x^2)^n} dx &= \frac{1}{2^n} \int_0^\infty \frac{1}{\left(1+\frac{x^2}{2}\right)^n} dx \geqslant \frac{1}{2^n} \int_0^\delta \frac{1}{\left(1+\frac{x^2}{2}\right)^n} dx \\ &= \frac{1}{2^n} \int_0^\delta e^{-n\ln\left(1+\frac{x^2}{2}\right)} dx \geqslant \frac{1}{2^n} \int_0^\delta e^{-n\left(\frac{x^2}{2}+\varepsilon x^2\right)} dx \\ &= \frac{\frac{1}{2^n} \int_0^\delta e^{-n\ln\left(1+\frac{x^2}{2}\right)} dx \geqslant \frac{1}{2^n} \int_0^\delta e^{-n\left(\frac{x^2}{2}+\varepsilon x^2\right)} e^{-y^2} dy. \end{split}$$

于是

$$\int_0^\infty \frac{2^n \sqrt{n}}{(2+x^2)^n} dx \geqslant \frac{1}{\sqrt{\left(\frac{1}{2}+\varepsilon\right)}} \int_0^{\delta \sqrt{n\left(\frac{1}{2}+\varepsilon\right)}} e^{-y^2} dy.$$

上式两边同时令 $n \to \infty$ 并取下极限得到

$$\underline{\lim_{n\to\infty}} \int_0^\infty \frac{2^n \sqrt{n}}{(2+x^2)^n} dx \geqslant \underline{\lim_{n\to\infty}} \frac{1}{\sqrt{\left(\frac{1}{2}+\varepsilon\right)}} \int_0^{\delta\sqrt{n\left(\frac{1}{2}+\varepsilon\right)}} e^{-y^2} dy = \underline{\lim_{n\to\infty}} \frac{1}{\sqrt{\left(\frac{1}{2}+\varepsilon\right)}} \int_0^\infty e^{-y^2} dy = \frac{\sqrt{\pi}}{2\sqrt{\left(\frac{1}{2}+\varepsilon\right)}}.$$

再由ε的任意性可得
$$\lim_{n\to\infty}\int_0^\infty \frac{2^n\sqrt{n}}{(2+x^2)^n}dx\geqslant \frac{\sqrt{\pi}}{2\sqrt{\frac{1}{2}}}=\sqrt{\frac{\pi}{2}}.$$

因此, 再结合
$$\lim_{n\to\infty}\int_0^\infty \frac{2^n\sqrt{n}}{(2+x^2)^n}dx \leqslant \overline{\lim}_{n\to\infty}\int_0^\infty \frac{2^n\sqrt{n}}{(2+x^2)^n}dx$$
, 我们就有

$$\sqrt{\frac{\pi}{2}} \leqslant \lim_{n \to \infty} \int_0^\infty \frac{2^n \sqrt{n}}{(2+x^2)^n} dx \leqslant \overline{\lim}_{n \to \infty} \int_0^\infty \frac{2^n \sqrt{n}}{(2+x^2)^n} dx \leqslant \sqrt{\frac{\pi}{2}}.$$

例题 4.56 求 $\int_0^x e^{-y^2} dy, x \to +\infty$ 的渐近估计 (仅两项).

拿 笔记 因为 $\lim_{x\to+\infty}\int_0^x e^{-y^2}dy = \frac{\sqrt{\pi}}{2}$, 所以实际上只需要估计

$$\frac{\sqrt{\pi}}{2} - \int_0^x e^{-y^2} dy = \int_0^\infty e^{-y^2} dy - \int_0^x e^{-y^2} dy = \int_x^\infty e^{-y^2} dy, x \to +\infty.$$

 \mathbf{H} 由 Taylor 定理可知, 对 $\forall \varepsilon > 0$, 存在 $\delta > 0$, 使得当 $x \in [0, \delta]$ 时, 有

$$2x - \varepsilon x \le x^2 + 2x \le 2x + \varepsilon x$$
.

现在,一方面我们有

$$\int_{x}^{\infty} e^{-y^{2}} dy \xrightarrow{\frac{4}{5}y = xu}} x \int_{1}^{\infty} e^{-(xu)^{2}} du \xrightarrow{\frac{4}{5}t = u - 1}} x \int_{0}^{\infty} e^{-(xt + x)^{2}} dt$$

$$= x \int_{0}^{\infty} e^{-(xt)^{2} - 2x^{2}t - x^{2}} dt = xe^{-x^{2}} \int_{0}^{\infty} e^{-x^{2}(t^{2} + 2t)} dt$$

$$= xe^{-x^{2}} \left(\int_{0}^{\delta} e^{-x^{2}(t^{2} + 2t)} dt + \int_{\delta}^{\infty} e^{-x^{2}(t^{2} + 2t)} dt \right)$$

$$\leq xe^{-x^{2}} \left(\int_{0}^{\delta} e^{-x^{2}(2t + \varepsilon t)} dt + \int_{\delta}^{\infty} e^{-x^{2}(t + 2t)} e^{-x^{2}\delta} dt \right)$$

$$= xe^{-x^{2}} \left(\frac{1 - e^{-(2+\varepsilon)x^{2}\delta}}{(2+\varepsilon)x^{2}} + \frac{e^{-2x^{2}(\delta + 1)}}{x^{2}} \right)$$

$$= \frac{e^{-x^{2}}}{x} \left(\frac{1 - e^{-(2+\varepsilon)x^{2}\delta}}{2 + \varepsilon} + e^{-2x^{2}(\delta + 1)} \right).$$

于是就有

$$xe^{x^2}\int_x^\infty e^{-y^2}dy\leqslant \frac{1-e^{-(2+\varepsilon)x^2\delta}}{2+\varepsilon}+e^{-2x^2(\delta+1)}.$$

上式两边同时令 $x \to +\infty$ 并取上极限得到

$$\overline{\lim}_{x\to +\infty} x e^{x^2} \int_x^\infty e^{-y^2} dy \leqslant \overline{\lim}_{x\to +\infty} \left(\frac{1-e^{-(2+\varepsilon)x^2\delta}}{2+\varepsilon} + e^{-2x^2(\delta+1)} \right) = \frac{1}{2+\varepsilon}.$$

再由 ε 的任意性可得 $\overline{\lim}_{x\to +\infty} xe^{x^2} \int_{x}^{\infty} e^{-y^2} dy \leqslant \frac{1}{2}$.

另外一方面, 我们有

$$\int_{x}^{\infty} e^{-y^{2}} dy \xrightarrow{\frac{c}{2}y = xu} x \int_{1}^{\infty} e^{-(xu)^{2}} du \xrightarrow{\frac{c}{2}t = u - 1} x \int_{0}^{\infty} e^{-(xt + x)^{2}} dt$$
$$= x \int_{0}^{\infty} e^{-(xt)^{2} - 2x^{2}t - x^{2}} dt = x e^{-x^{2}} \int_{0}^{\infty} e^{-x^{2}(t^{2} + 2t)} dt$$

$$\geqslant xe^{-x^2} \int_0^{\delta} e^{-x^2(t^2+2t)} dt \geqslant xe^{-x^2} \int_0^{\delta} e^{-x^2(2t-\varepsilon t)} dt$$

$$= xe^{-x^2} \cdot \frac{1 - e^{-(2-\varepsilon)x^2\delta}}{(2-\varepsilon)x^2}.$$

于是就有

$$xe^{x^2}\int_x^\infty e^{-y^2}dy\geqslant \frac{1-e^{-(2-\varepsilon)x^2\delta}}{(2-\varepsilon)x^2}.$$

上式两边同时令 $x \to +\infty$ 并取下极限得到

$$\underline{\lim}_{x \to +\infty} x e^{x^2} \int_x^\infty e^{-y^2} dy \geqslant \underline{\lim}_{x \to +\infty} \frac{1 - e^{-(2-\varepsilon)x^2} \delta}{(2-\varepsilon)x^2} = \frac{1}{2-\varepsilon}.$$

再由
$$\varepsilon$$
 的任意性可得 $\lim_{x \to +\infty} xe^{x^2} \int_x^\infty e^{-y^2} dy \geqslant \frac{1}{2}$.

因此, 再结合
$$\lim_{x \to +\infty} x e^{x^2} \int_x^{\infty} e^{-y^2} dy \leqslant \overline{\lim}_{x \to +\infty} x e^{x^2} \int_x^{\infty} e^{-y^2} dy$$
, 我们就有
$$\frac{1}{2} \leqslant \underline{\lim}_{x \to +\infty} x e^{x^2} \int_x^{\infty} e^{-y^2} dy \leqslant \overline{\lim}_{x \to +\infty} x e^{x^2} \int_x^{\infty} e^{-y^2} dy \leqslant \frac{1}{2}.$$

故
$$\lim_{x \to +\infty} x e^{x^2} \int_x^{\infty} e^{-y^2} dy = \frac{1}{2}$$
,即 $\int_x^{\infty} e^{-y^2} dy = \frac{e^{-x^2}}{2x} + o\left(\frac{e^{-x^2}}{x}\right), x \to +\infty$.

因此 $\int_0^x e^{-y^2} dy = \frac{\sqrt{\pi}}{2} - \int_x^{\infty} e^{-y^2} dy = \frac{\sqrt{\pi}}{2} - \frac{e^{-x^2}}{2x} + o\left(\frac{e^{-x^2}}{x}\right), x \to +\infty$.

例题 **4.57** 计算 $\lim_{n\to\infty}\int_0^{10n}\left(1-\left|\sin\left(\frac{x}{n}\right)\right|\right)^ndx$.

解 由 Taylor 定理可知, 对 $\forall \varepsilon \in (0,1)$, 存在 $\delta \in (0,\frac{\pi}{4})$, 使得当 $x \in [0,\delta]$ 时, 有

$$-t - \varepsilon t \leq \ln(1 - \sin t) \leq -t + \varepsilon t.$$

此时, 我们有

$$\int_{0}^{10n} (1 - |\sin(\frac{x}{n})|)^{n} dx \xrightarrow{\frac{1}{2}x = nt} n \int_{0}^{10} (1 - |\sin t|)^{n} dt = n \int_{0}^{10} e^{n \ln(1 - |\sin t|)} dt
= n \int_{0}^{\delta} e^{n \ln(1 - |\sin t|)} dt + n \int_{\delta}^{\pi - \delta} e^{n \ln(1 - |\sin t|)} dt + n \int_{\pi - \delta}^{\pi + \delta} e^{n \ln(1 - |\sin t|)} dt + n \int_{\pi + \delta}^{2\pi - \delta} e^{n \ln(1 - |\sin t|)} dt
+ n \int_{2\pi - \delta}^{2\pi + \delta} e^{n \ln(1 - |\sin t|)} dt + n \int_{2\pi + \delta}^{3\pi - \delta} e^{n \ln(1 - |\sin t|)} dt + n \int_{3\pi - \delta}^{3\pi + \delta} e^{n \ln(1 - |\sin t|)} dt
= n \int_{0}^{\delta} e^{n \ln(1 - \sin t)} dt + n \int_{\delta}^{\pi - \delta} e^{n \ln(1 - \sin t)} dt + n \int_{\pi - \delta}^{\pi + \delta} e^{n \ln(1 - |\sin t|)} dt + n \int_{\pi + \delta}^{2\pi - \delta} e^{n \ln(1 - |\sin t|)} dt
+ n \int_{2\pi - \delta}^{2\pi + \delta} e^{n \ln(1 - |\sin t|)} dt + n \int_{2\pi + \delta}^{3\pi - \delta} e^{n \ln(1 - \sin t)} dt + n \int_{3\pi - \delta}^{3\pi + \delta} e^{n \ln(1 - |\sin t|)} dt. \tag{4.46}$$

由积分换元可得

$$n\int_{\pi-\delta}^{\pi}e^{n\ln(1-\sin t)}dt \stackrel{\frac{\diamondsuit u=\pi-t}{=}}{=} -n\int_{\delta}^{0}e^{n\ln(1-\sin(\pi-u))}du = n\int_{0}^{\delta}e^{n\ln(1-\sin u)}du,$$

$$n\int_{\pi}^{\pi+\delta}e^{n\ln(1+\sin t)}dt \stackrel{\frac{\diamondsuit u=t-\pi}{=}}{=} n\int_{0}^{\delta}e^{n\ln(1+\sin(\pi+u))}du = n\int_{0}^{\delta}e^{n\ln(1-\sin u)}du,$$

$$n\int_{\pi+\delta}^{2\pi-\delta}e^{n\ln(1+\sin t)}dt \stackrel{\frac{\diamondsuit u=t-\pi}{=}}{=} \int_{\delta}^{\pi-\delta}e^{n\ln(1+\sin(\pi+u))}du = \int_{\delta}^{\pi-\delta}e^{n\ln(1-\sin u)}du,$$

$$n\int_{2\pi+\delta}^{3\pi-\delta}e^{n\ln(1-\sin t)}dt \stackrel{\frac{\diamondsuit u=t-\pi}{=}}{=} \int_{\delta}^{\pi-\delta}e^{n\ln(1-\sin(2\pi+u))}du = \int_{\delta}^{\pi-\delta}e^{n\ln(1-\sin u)}du.$$

从而

$$n \int_{\pi-\delta}^{\pi+\delta} e^{n \ln(1-|\sin t|)} dt = n \int_{\pi-\delta}^{\pi} e^{n \ln(1-\sin t)} dt + n \int_{\pi}^{\pi+\delta} e^{n \ln(1-\sin t)} dt = 2n \int_{0}^{\delta} e^{n \ln(1-\sin t)} dt.$$

同理,
$$n\int_{2\pi-\delta}^{2\pi+\delta}e^{n\ln(1-|\sin t|)}dt = n\int_{3\pi-\delta}^{3\pi+\delta}e^{n\ln(1-|\sin t|)}dt = 2n\int_{0}^{\delta}e^{n\ln(1-\sin t)}dt$$
. 于是原积分(4.46)式可化为
$$\int_{0}^{10n}(1-|\sin(\frac{x}{n})|)^{n}dx = 7n\int_{0}^{\delta}e^{n\ln(1-\sin t)}dt + 3\int_{\delta}^{\pi-\delta}e^{n\ln(1-\sin t)}dt.$$

进而,一方面我们有

$$\int_0^{10n} (1 - |\sin(\frac{x}{n})|)^n dx = 7n \int_0^{\delta} e^{n\ln(1-\sin t)} dt + 3 \int_{\delta}^{\pi-\delta} e^{n\ln(1-\sin t)} dt$$

$$\leq 7n \int_0^{\delta} e^{n(-t+\varepsilon t)} dt + 3n \int_{\delta}^{\pi-\delta} e^{n\ln(1-\sin \delta)} dt$$

$$= 7 \cdot \frac{e^{(\varepsilon-1)n\delta} - 1}{\varepsilon - 1} + 3ne^{n\ln(1-\sin \delta)} (\pi - 2\delta).$$

上式两边同时令 $n \to \infty$ 并取上极限得到

$$\overline{\lim_{n\to\infty}} \int_0^{10n} (1-|\sin(\frac{x}{n})|)^n dx \leqslant \overline{\lim_{n\to\infty}} \left[7 \cdot \frac{e^{(\varepsilon-1)n\delta} - 1}{\varepsilon-1} + 3ne^{n\ln(1-\sin\delta)} (\pi - 2\delta) \right] = \frac{7}{1-\varepsilon}.$$

再由 ε 的任意性可得 $\overline{\lim_{n\to\infty}}\int_0^{10n}(1-|\sin(\frac{x}{n})|)^ndx\leqslant 7.$

$$\int_0^{10n} (1 - |\sin(\frac{x}{n})|)^n dx = 7n \int_0^{\delta} e^{n\ln(1-\sin t)} dt + 3 \int_{\delta}^{\pi-\delta} e^{n\ln(1-\sin t)} dt$$

$$\geqslant 7n \int_0^{\delta} e^{n\ln(1-\sin t)} dt \geqslant 7n \int_0^{\delta} e^{n(-t-\varepsilon t)} dt = 7 \cdot \frac{1 - e^{-(\varepsilon + 1)n\delta}}{\varepsilon + 1}$$

上式两边同时令 $n \to \infty$ 并取下极限得到

$$\underline{\lim}_{n \to \infty} \int_0^{10n} (1 - |\sin(\frac{x}{n})|)^n dx \geqslant \underline{\lim}_{n \to \infty} 7 \cdot \frac{1 - e^{-(\varepsilon + 1)n\delta}}{\varepsilon + 1} = \frac{7}{\varepsilon + 1}.$$

再由
$$\varepsilon$$
 的任意性可得 $\lim_{n\to\infty}\int_0^{10n}(1-|\sin(\frac{x}{n})|)^ndx\geqslant \frac{7}{\varepsilon+1}$

因此, 再结合
$$\lim_{n\to\infty}\int_0^{10n}(1-|\sin(\frac{x}{n})|)^ndx \leq \overline{\lim}_{n\to\infty}\int_0^{10n}(1-|\sin(\frac{x}{n})|)^ndx$$
, 我们就有

$$7 \leqslant \underline{\lim}_{n \to \infty} \int_0^{10n} (1 - |\sin(\frac{x}{n})|)^n dx \leqslant \overline{\lim}_{n \to \infty} \int_0^{10n} (1 - |\sin(\frac{x}{n})|)^n dx \leqslant 7.$$

故
$$\lim_{n\to\infty} \int_0^{10n} (1-|\sin(\frac{x}{n})|)^n dx = 7.$$

例题 **4.58** 计算
$$\lim_{n\to\infty} \frac{\int_0^1 (1-x^2+x^3)^n \ln(x+2) dx}{\int_0^1 (1-x^2+x^3)^n dx}$$
.

奎记 我们首先可以求解出被积函数带 n 次幂部分的最大值点即 $1-x^2+x^3$ 的最大值点为 x=0,1. 于是被积函数的阶一定集中在这两个最大值点附近.

注 注意由 $\ln(1-x^2+x^3)=x-1+o(x-1),x\to 1$. 得到的是 $\ln(1-x^2+x^3)=x-1+o(x-1),x\to 1$. 而不是. 证明 由 Taylor 定理可知,

$$\ln(1 - x^2 + x^3) = -x^2 + o(x^2), x \to 0;$$

$$\ln(1 - x^2 + x^3) = x - 1 + o(x - 1), x \to 1.$$

从而对 $\forall \varepsilon \in (0, \frac{1}{2})$, 存在 $\delta_1 \in (0, \frac{1}{10})$, 使得

$$-x^{2} - \varepsilon x^{2} \leq \ln(1 - x^{2} + x^{3}) \leq -x^{2} + \varepsilon x^{2}, \forall x \in (0, \delta_{1});$$

$$x - 1 - \varepsilon(x - 1) \leq \ln(1 - x^{2} + x^{3}) \leq x - 1 + \varepsilon(x - 1), \forall x \in (1 - \delta_{1}, 1).$$

设 $f \in C[0,1]$, 则由连续函数最大值、最小值定理可知, f 在闭区间 $[0,\frac{1}{2}]$ 和 $[\frac{1}{2},1]$ 上都存在最大值和最小值. 设

 $M_1 = \sup_{x \in [0,\frac12]} f(x), M_2 = \sup_{x \in [\frac12,1]} f(x)$. 又由连续性可知, 对上述 ε , 存在 $\delta_2 > 0$, 使得

$$f(0) - \varepsilon < f(x) < f(0) + \varepsilon, \forall x \in [0, \delta_2];$$

$$f(1) - \varepsilon < f(x) < f(1) + \varepsilon, \forall x \in [1 - \delta_2, 1].$$

取 $\delta = \min\{\delta_1, \delta_2\}$,则一方面我们有

$$\int_{0}^{\frac{1}{2}} (1 - x^{2} + x^{3})^{n} f(x) dx = \int_{0}^{\delta} (1 - x^{2} + x^{3})^{n} f(x) dx + \int_{\delta}^{\frac{1}{2}} (1 - x^{2} + x^{3})^{n} f(x) dx$$

$$= \int_{0}^{\delta} e^{n \ln(1 - x^{2} + x^{3})} f(x) dx + \int_{\delta}^{\frac{1}{2}} (1 - x^{2} + x^{3})^{n} f(x) dx$$

$$\leq (f(0) + \varepsilon) \int_{0}^{\delta} e^{n(-x^{2} + \varepsilon x^{2})} dx + \int_{\delta}^{\frac{1}{2}} M_{1} \left(\frac{7}{8} - \delta^{2}\right)^{n} dx$$

$$= \frac{f(0) + \varepsilon}{\sqrt{n(1 - \varepsilon)}} \int_{0}^{\delta \sqrt{n(1 - \varepsilon)}} e^{-y^{2}} dy + M_{1} \left(\frac{7}{8} - \delta^{2}\right)^{n} \left(\frac{1}{2} - \delta\right),$$

又易知 $1-x^2+x^3$ 在 $[0,\frac{2}{3}]$ 上单调递减,在 $(\frac{2}{3},1]$ 上单调递增. 再结合 $\delta < \frac{1}{10}$ 可知, $1-(\frac{1}{2})^2+(\frac{1}{2})^3 < 1-(\frac{1}{10})^2+(\frac{1}{10})^3 < 1-(1-\delta)^2+(1-\delta)^3$. 从而当 $x \in (\frac{1}{2},1-\delta)$ 时,我们就有 $1-x^2+x^3 < 1-(1-\delta)^2+(1-\delta)^3 < 1$. 进而可得

$$\begin{split} \int_{\frac{1}{2}}^{1} (1-x^2+x^3)^n f(x) dx &= \int_{\frac{1}{2}}^{1-\delta} (1-x^2+x^3)^n f(x) dx + \int_{1-\delta}^{1} (1-x^2+x^3)^n f(x) dx \\ &= \int_{\frac{1}{2}}^{1-\delta} (1-x^2+x^3)^n f(x) dx + \int_{1-\delta}^{1} e^{n \ln(1-x^2+x^3)} f(x) dx \\ &\leq \int_{\frac{1}{2}}^{1-\delta} M_2 \left(1-(1-\delta)^2+(1-\delta)^3\right)^n dx + (f(1)+\varepsilon) \int_{1-\delta}^{1} e^{n[x-1+\varepsilon(x-1)]} dx \\ &= M_2 \left(1-(1-\delta)^2+(1-\delta)^3\right)^n \left(\frac{1}{2}-\delta\right) + \frac{f(1)+\varepsilon}{n(1+\varepsilon)} \left(1-e^{-n\delta(1+\varepsilon)}\right). \end{split}$$

于是就有

$$\begin{split} & \sqrt{n} \int_{0}^{\frac{1}{2}} (1 - x^{2} + x^{3})^{n} f(x) dx \leqslant \frac{f(0) + \varepsilon}{\sqrt{1 - \varepsilon}} \int_{0}^{\delta \sqrt{n(1 - \varepsilon)}} e^{-y^{2}} dy + \sqrt{n} M_{1} \left(\frac{7}{8} - \delta^{2}\right)^{n} \left(\frac{1}{2} - \delta\right), \\ & n \int_{\frac{1}{2}}^{1} (1 - x^{2} + x^{3})^{n} f(x) dx \leqslant n M_{2} \left(\frac{3}{4} + (1 - \delta)^{3}\right)^{n} \left(\frac{1}{2} - \delta\right) + \frac{f(1) + \varepsilon}{1 + \varepsilon} \left(1 - e^{-n\delta(1 + \varepsilon)}\right). \end{split}$$

上式两边同时令 $n \to \infty$ 并取上极限得到

$$\overline{\lim}_{n\to\infty} \sqrt{n} \int_0^{\frac{1}{2}} (1-x^2+x^3)^n f(x) dx \leqslant \frac{f(0)+\varepsilon}{\sqrt{1-\varepsilon}} \int_0^\infty e^{-y^2} dy = \frac{\sqrt{\pi}}{2\sqrt{1-\varepsilon}} (f(0)+\varepsilon),$$

$$\overline{\lim}_{n\to\infty} n \int_{\frac{1}{2}}^1 (1-x^2+x^3)^n f(x) dx \leqslant \frac{f(1)+\varepsilon}{1+\varepsilon}.$$

再由 ε 的任意性可得 $\overline{\lim}_{n\to\infty} \sqrt{n} \int_0^{\frac{1}{2}} (1-x^2+x^3)^n f(x) dx \leqslant \frac{\sqrt{\pi}}{2} f(0), \overline{\lim}_{n\to\infty} n \int_{\frac{1}{2}}^1 (1-x^2+x^3)^n f(x) dx \leqslant f(1).$ 另外一方面 我们有

$$\int_{0}^{\frac{1}{2}} (1 - x^{2} + x^{3})^{n} f(x) dx \geqslant \int_{0}^{\delta} (1 - x^{2} + x^{3})^{n} f(x) dx = \int_{0}^{\delta} e^{n \ln(1 - x^{2} + x^{3})} f(x) dx$$

$$\geqslant (f(0) - \varepsilon) \int_{0}^{\delta} e^{n(-x^{2} - \varepsilon x^{2})} dx = \frac{f(0) - \varepsilon}{\sqrt{n(1 + \varepsilon)}} \int_{0}^{\delta \sqrt{n(1 + \varepsilon)}} e^{-y^{2}} dy,$$

$$\int_{\frac{1}{2}}^{1} (1 - x^{2} + x^{3})^{n} f(x) dx \geqslant \int_{1 - \delta}^{1} (1 - x^{2} + x^{3})^{n} f(x) dx = \int_{1 - \delta}^{1} e^{n \ln(1 - x^{2} + x^{3})} f(x) dx$$

$$\geqslant (f(1) - \varepsilon) \int_{1-\delta}^{1} e^{n[x-1-\varepsilon(x-1)]} dx = \frac{f(1) - \varepsilon}{n(1+\varepsilon)} \left(1 - e^{-n\delta(1-\varepsilon)}\right).$$

于是就有

$$\sqrt{n} \int_0^{\frac{1}{2}} (1 - x^2 + x^3)^n f(x) dx \geqslant \frac{f(0) - \varepsilon}{\sqrt{1 + \varepsilon}} \int_0^{\delta \sqrt{n(1 + \varepsilon)}} e^{-y^2} dy,$$

$$n \int_{\frac{1}{2}}^1 (1 - x^2 + x^3)^n f(x) dx \geqslant \frac{f(1) - \varepsilon}{1 + \varepsilon} \left(1 - e^{-n\delta(1 - \varepsilon)} \right).$$

上式两边同时令 $n \to \infty$ 并取下极限得到

$$\underbrace{\lim_{n \to \infty} \sqrt{n} \int_{0}^{\frac{1}{2}} (1 - x^{2} + x^{3})^{n} f(x) dx}_{n \to \infty} \geqslant \underbrace{\frac{f(0) - \varepsilon}{\sqrt{1 + \varepsilon}}}_{0} \int_{0}^{\infty} e^{-y^{2}} dy = \underbrace{\frac{\sqrt{\pi}}{2\sqrt{1 + \varepsilon}}}_{0} (f(0) - \varepsilon),$$

$$\underbrace{\lim_{n \to \infty} n \int_{\frac{1}{2}}^{1} (1 - x^{2} + x^{3})^{n} f(x) dx}_{n \to \infty} \geqslant \underbrace{\frac{f(1) - \varepsilon}{1 + \varepsilon}}_{1 + \varepsilon}.$$

再由 ε 的任意性可得 $\lim_{n\to\infty} \sqrt{n} \int_0^{\frac{1}{2}} (1-x^2+x^3)^n f(x) dx \geqslant \frac{\sqrt{\pi}}{2} f(0), \lim_{n\to\infty} n \int_{\frac{1}{2}}^1 (1-x^2+x^3)^n f(x) dx \geqslant f(1).$ 因此, 我们就有

$$\frac{\sqrt{\pi}}{2}f(0) \leqslant \lim_{n \to \infty} \sqrt{n} \int_{0}^{\frac{1}{2}} (1 - x^{2} + x^{3})^{n} f(x) dx \leqslant \overline{\lim}_{n \to \infty} \sqrt{n} \int_{0}^{\frac{1}{2}} (1 - x^{2} + x^{3})^{n} f(x) dx \leqslant \frac{\sqrt{\pi}}{2} f(0),$$

$$f(1) \leqslant \lim_{n \to \infty} n \int_{\frac{1}{2}}^{1} (1 - x^{2} + x^{3})^{n} f(x) dx \leqslant \overline{\lim}_{n \to \infty} n \int_{\frac{1}{2}}^{1} (1 - x^{2} + x^{3})^{n} f(x) dx \leqslant f(1).$$

故
$$\lim_{n\to\infty} \sqrt{n} \int_0^{\frac{1}{2}} (1-x^2+x^3)^n f(x) dx = \frac{\sqrt{\pi}}{2} f(0), \lim_{n\to\infty} n \int_{\frac{1}{2}}^1 (1-x^2+x^3)^n f(x) dx = f(1).$$
 从而

$$\int_0^{\frac{1}{2}} (1 - x^2 + x^3)^n f(x) dx = \frac{f(0)\sqrt{\pi}}{2\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right), n \to \infty;$$

$$\int_{\frac{1}{2}}^1 (1 - x^2 + x^3)^n f(x) dx = \frac{f(1)}{n} + o\left(\frac{1}{n}\right), n \to \infty.$$

故
$$\int_0^1 (1-x^2+x^3)^n f(x) dx = \int_0^{\frac{1}{2}} (1-x^2+x^3)^n f(x) dx + \int_{\frac{1}{2}}^1 (1-x^2+x^3)^n f(x) dx = \frac{f(0)\sqrt{\pi}}{2\sqrt{n}} + \frac{f(1)}{n} + o\left(\frac{1}{n}\right), n \to \infty.$$
从而 当 $f \equiv 1$ 时,上式等价于 $\int_0^1 (1-x^2+x^3)^n dx = \frac{\sqrt{\pi}}{2\sqrt{n}} + \frac{1}{n} + o\left(\frac{1}{n}\right), n \to \infty;$ 当 $f(x) = \ln(x+2)$ 时,上式等价于
$$\int_0^1 (1-x^2+x^3)^n \ln(x+2) dx = \frac{\sqrt{\pi}\ln 2}{2\sqrt{n}} + \frac{\ln 3}{n} + o\left(\frac{1}{n}\right), n \to \infty.$$
 于是

$$\lim_{n \to \infty} \frac{\int_0^1 (1 - x^2 + x^3)^n \ln(x + 2) dx}{\int_0^1 (1 - x^2 + x^3)^n dx} = \lim_{n \to \infty} \frac{\frac{\sqrt{\pi \ln 2}}{2\sqrt{n}} + \frac{\ln 3}{n} + o\left(\frac{1}{n}\right)}{\frac{\sqrt{\pi}}{2\sqrt{n}} + \frac{1}{n} + o\left(\frac{1}{n}\right)} = \ln 2.$$

例题 **4.59** 设 $f \in R[0,1]$ 且 f 在 x = 1 连续, 证明

$$\lim_{n \to \infty} n \int_0^1 f(x) x^n dx = f(1).$$

笔记 这种运用 Laplace 方法估阶的题目,如果要求解/证明的是极限值,而不是估计函数或数列的阶,那么也可以用拟合法进行书写.

证明 由于 $f \in R[0,1]$, 因此存在 M > 0, 使得 $|f(x)| \leq M, \forall x \in [0,1]$. 于是对 $\forall n \in \mathbb{N}_+, \forall \delta \in (0,1)$, 有

$$\left| n \int_0^1 f(x) x^n dx - n \int_0^1 f(1) x^n dx \right| = \left| n \int_0^1 [f(x) - f(1)] x^n dx \right|$$

$$\leq n \int_0^1 |[f(x) - f(1)] x^n | dx = n \int_0^\delta |f(x) - f(1)| x^n dx + n \int_\delta^1 |f(x) - f(1)| x^n dx$$

$$\leq n \int_0^{\delta} |M + f(1)| \delta^n dx + n \sup_{x \in [\delta, 1]} |f(x) - f(1)| \int_{\delta}^1 x^n dx$$

$$\leq n |M + f(1)| \delta^{n+1} + n \sup_{x \in [\delta, 1]} |f(x) - f(1)| \int_0^1 x^n dx$$

$$= n |M + f(1)| \delta^{n+1} + \frac{n}{n+1} \sup_{x \in [\delta, 1]} |f(x) - f(1)|.$$

上式两边同时令 $n \to \infty$,并取上极限可得

$$\overline{\lim_{n\to\infty}} \left| n \int_0^1 f(x) x^n dx - n \int_0^1 f(1) x^n dx \right| \leqslant \sup_{x\in[\delta,1]} |f(x) - f(1)|, \quad \forall \delta \in (0,1).$$

再根据 δ 的任意性, φ $\delta \rightarrow 1^-$ 可

$$\overline{\lim_{n \to \infty}} \left| n \int_0^1 f(x) x^n dx - n \int_0^1 f(1) x^n dx \right| \leqslant \lim_{\delta \to 1^-} \sup_{x \in [\delta, 1]} |f(x) - f(1)| = \overline{\lim_{\delta \to 1^-}} |f(x) - f(1)|.$$

又因为 f 在 x = 1 处连续, 所以 $\overline{\lim}_{x \to 1^-} |f(x) - f(1)| = 0$. 故

$$0 \leqslant \lim_{n \to \infty} \left| n \int_0^1 f(x) x^n dx - n \int_0^1 f(1) x^n dx \right| \leqslant \overline{\lim}_{n \to \infty} \left| n \int_0^1 f(x) x^n dx - n \int_0^1 f(1) x^n dx \right| \leqslant 0.$$

因此 $\lim_{n\to\infty} n \int_0^1 f(x) x^n dx = \lim_{n\to\infty} n \int_0^1 f(1) x^n dx = f(1) \lim_{n\to\infty} \frac{n}{n+1} = f(1).$ 例题 4.60 Possion 核 设 $f \in R[0,1]$ 且 f 在 x=0 连续, 证明

$$\lim_{t \to 0^+} \int_0^1 \frac{t}{x^2 + t^2} f(x) dx = \frac{\pi}{2} f(0).$$

证明 因为 $f \in R[0,1]$, 所以存在 M>0, 使得 $|f(x)| \leq M, \forall x \in [0,1]$. 于是对 $\forall \delta \in (0,1)$, 固定 δ , 再对 $\forall t>0$, 我们

$$\left| \int_{0}^{1} \frac{t}{x^{2} + t^{2}} f(x) dx - \int_{0}^{1} \frac{t}{x^{2} + t^{2}} f(0) dx \right| \leq \int_{0}^{1} \frac{t}{x^{2} + t^{2}} |f(x) - f(0)| dx$$

$$= \int_{0}^{\delta} \frac{t}{x^{2} + t^{2}} |f(x) - f(0)| dx + \int_{\delta}^{1} \frac{t}{x^{2} + t^{2}} |f(x) - f(0)| dx$$

$$\leq \sup_{x \in [0, \delta]} |f(x) - f(0)| \int_{0}^{\delta} \frac{t}{x^{2} + t^{2}} dx + \int_{0}^{1} \frac{t}{\delta^{2} + t^{2}} |M + f(0)| dx$$

$$= \sup_{x \in [0, \delta]} |f(x) - f(0)| \arctan \frac{x}{t} \Big|_{0}^{\delta} + \frac{t}{\delta^{2} + t^{2}} |M + f(0)|$$

$$= \sup_{x \in [0, \delta]} |f(x) - f(0)| \cdot \arctan \frac{\delta}{t} + \frac{t}{\delta^{2} + t^{2}} |M + f(0)|.$$

上式两边同时令 $t \to 0^+$ 并取上极限, 可得

$$\overline{\lim_{t \to 0^+}} \left| \int_0^1 \frac{t}{x^2 + t^2} f(x) dx - \int_0^1 \frac{t}{x^2 + t^2} f(0) dx \right| \leqslant \frac{\pi}{2} \sup_{x \in [0, \delta]} |f(x) - f(0)|, \forall \delta \in (0, 1).$$

再根据 δ 的任意性, φ δ \rightarrow 0⁺ 可得

$$\overline{\lim_{t \to 0^+}} \left| \int_0^1 \frac{t}{x^2 + t^2} f(x) dx - \int_0^1 \frac{t}{x^2 + t^2} f(0) dx \right| \leqslant \frac{\pi}{2} \lim_{\delta \to 0^+} \sup_{x \in [0, \delta]} |f(x) - f(0)| = \frac{\pi}{2} \overline{\lim_{x \to 0^+}} |f(x) - f(0)|.$$

又由于 f 在 x = 0 处连续, 从而 $\overline{\lim}_{x \to 0^+} |f(x) - f(0)| = 0$. 故

$$0 \leqslant \lim_{t \to 0^+} \left| \int_0^1 \frac{t}{x^2 + t^2} f(x) dx - \int_0^1 \frac{t}{x^2 + t^2} f(0) dx \right| \leqslant \overline{\lim}_{t \to 0^+} \left| \int_0^1 \frac{t}{x^2 + t^2} f(x) dx - \int_0^1 \frac{t}{x^2 + t^2} f(0) dx \right| \leqslant 0.$$

因此 $\lim_{t\to 0^+} \int_0^1 \frac{t}{x^2+t^2} f(x) dx = \lim_{t\to 0^+} \int_0^1 \frac{t}{x^2+t^2} f(0) dx = f(0) \lim_{t\to 0^+} \arctan \frac{1}{t} = \frac{\pi}{2} f(0).$

例题 **4.61 Fejer** 核 设 f 在 x = 0 连续且在 $\left[-\frac{1}{2}, \frac{1}{2}\right]$ 可积,则

$$\lim_{N \to +\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(x) \, dx = f(0) \, .$$

证明 因为 $f \in R\left[-\frac{1}{2},\frac{1}{2}\right]$, 所以存在 M>0, 使得 $|f(x)| \leq M, \forall x \in \left[-\frac{1}{2},\frac{1}{2}\right]$. 又因为 $\sin x \sim x, x \to 0$, 所以对 $\forall \varepsilon \in (0,1)$, 存在 $\delta_0 > 0$, 使得当 $|x| \leq \delta_0$ 时, 有 $\sin x \geq (1-\varepsilon)x$. 于是对 $\forall \delta \in \min\left\{\frac{1}{2},\delta_0\right\}$, 我们有

$$\left| \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^{2}(\pi N x)}{\sin^{2}(\pi x)} [f(x) - f(0)] dx \right| \leq \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^{2}(\pi N x)}{\sin^{2}(\pi x)} |f(x) - f(0)| dx$$

$$= \int_{|x| \leq \delta} \frac{1}{N} \frac{\sin^{2}(\pi N x)}{\sin^{2}(\pi x)} |f(x) - f(0)| dx + \int_{\delta \leq |x| \leq \frac{1}{2}} \frac{1}{N} \frac{\sin^{2}(\pi N x)}{\sin^{2}(\pi x)} |f(x) - f(0)| dx$$

$$\leq \sup_{|x| \leq \delta} |f(x) - f(0)| \int_{|x| \leq \delta} \frac{1}{N} \frac{\sin^{2}(\pi N x)}{\sin^{2}(\pi x)} dx + \int_{\delta \leq |x| \leq \frac{1}{2}} \frac{1}{N} \frac{1}{\sin^{2}(\pi \delta)} |M + f(0)| dx$$

$$\leq \frac{\sup_{|x| \leq \delta} |f(x) - f(0)|}{1 - \varepsilon} \int_{|x| \leq \delta} \frac{1}{N} \frac{\sin^{2}(\pi N x)}{(\pi x)^{2}} dx + \frac{1}{N} \int_{\delta \leq |x| \leq \frac{1}{2}} \frac{|M + f(0)|}{\sin^{2}(\pi \delta)} dx$$

$$= \frac{\sup_{|x| \leq \delta} |f(x) - f(0)|}{1 - \varepsilon} \int_{-\infty} \frac{\sin^{2}(\pi y)}{(\pi y)^{2}} dy + \frac{1}{N} \int_{\delta \leq |x| \leq \frac{1}{2}} \frac{|M + f(0)|}{\sin^{2}(\pi \delta)} dx$$

$$= \frac{\sup_{|x| \leq \delta} |f(x) - f(0)|}{1 - \varepsilon} \int_{-\infty} \frac{\sin^{2}(\pi y)}{(\pi y)^{2}} dy + \frac{1}{N} \int_{\delta \leq |x| \leq \frac{1}{2}} \frac{|M + f(0)|}{\sin^{2}(\pi \delta)} dx$$

上式两边同时令 $N \to +\infty$ 并取上极限,得到

$$\overline{\lim_{N\to+\infty}}\left|\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} [f(x) - f(0)] dx\right| \leqslant \frac{\sup_{|x| \leqslant \delta} |f(x) - f(0)|}{1-\varepsilon} \int_{-\infty}^{+\infty} \frac{\sin^2(\pi y)}{(\pi y)^2} dy.$$

又由 Dirichlet 判别法, 可知 $\int_{-\infty}^{+\infty} \frac{\sin^2(\pi y)}{(\pi y)^2} dy$ 收敛. 从而根据 δ 的任意性, 上式两边同时令 $\delta \to 0^+$, 再结合 f 在 x = 0 处连续, 可得

$$\begin{split} & \overline{\lim}_{N \to +\infty} \left| \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} [f(x) - f(0)] dx \right| \\ & \leqslant \lim_{\delta \to 0^+} \frac{\sup_{|x| \leqslant \delta} |f(x) - f(0)|}{1 - \varepsilon} \int_{-\infty}^{+\infty} \frac{\sin^2(\pi y)}{(\pi y)^2} dy \\ & = \frac{\int_{-\infty}^{+\infty} \frac{\sin^2(\pi y)}{(\pi y)^2} dy}{1 - \varepsilon} \lim_{x \to 0^+} |f(x) - f(0)| = 0. \end{split}$$

从而

$$0 \leqslant \lim_{N \to +\infty} \left| \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} [f(x) - f(0)] dx \right| \leqslant \lim_{N \to +\infty} \left| \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} [f(x) - f(0)] dx \right| \leqslant 0.$$

故 $\lim_{N \to +\infty} \left| \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} [f(x) - f(0)] dx \right| = 0.$ 即 $\lim_{N \to +\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(x) dx = \lim_{N \to +\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(0) dx.$ 而 一方面,我们有

$$\lim_{N \to +\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(0) dx \geqslant \lim_{N \to +\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{(\pi x)^2} f(0) dx$$

$$\xrightarrow{\frac{4}{2} y = N x} \lim_{N \to +\infty} \int_{-\frac{N}{2}}^{\frac{N}{2}} \frac{\sin^2(\pi y)}{(\pi y)^2} f(0) dy = \int_{-\infty}^{+\infty} \frac{\sin^2(\pi y)}{(\pi y)^2} f(0) dy = f(0).$$

另一方面, 对 $\forall \varepsilon \in (0,1)$ 我们有

$$\lim_{N \to +\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(0) dx = \lim_{N \to +\infty} \int_{|x| \leqslant \delta} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(0) dx + \lim_{N \to +\infty} \int_{\delta \leqslant |x| \leqslant \frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(0) dx$$

$$\leqslant f(0) \lim_{N \to +\infty} \int_{|x| \leqslant \delta} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} dx + \lim_{N \to +\infty} \int_{\delta \leqslant |x| \leqslant \frac{1}{2}} \frac{1}{N} \frac{1}{\sin^2(\pi \delta)} f(0) dx \leqslant \frac{f(0)}{1 - \varepsilon} \lim_{N \to +\infty} \int_{|x| \leqslant \delta} \frac{1}{N} \frac{\sin^2(\pi N x)}{(\pi x)^2} dx$$

$$\frac{\Leftrightarrow y = Nx}{1 - \varepsilon} \frac{f(0)}{1 - \varepsilon} \lim_{N \to +\infty} \int_{|y| \leqslant N\delta} \frac{\sin^2(\pi y)}{(\pi y)^2} dy = \frac{f(0)}{1 - \varepsilon} \int_{-\infty}^{+\infty} \frac{\sin^2(\pi y)}{(\pi y)^2} dy = \frac{f(0)}{1 - \varepsilon}.$$

$$\lim_{N \to +\infty} \int_{-\frac{1}{3}}^{\frac{1}{2}} \frac{1}{N} \frac{\sin^2(\pi N x)}{\sin^2(\pi x)} f(0) dx \leqslant f(0).$$

因此, 由夹逼准则, 可知 $\lim_{N\to +\infty}\int_{-\frac{1}{2}}^{\frac{1}{2}}\frac{1}{N}\frac{\sin^2(\pi Nx)}{\sin^2(\pi x)}f(0)dx=f(0).$ **例题 4.62** 设 $\varphi_n(x)=\frac{n}{\sqrt{\pi}}e^{-n^2x^2}, n=1,2,\cdots,f$ 是 $\mathbb R$ 上的有界实值连续函数, 证明:

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}f(y)\varphi_n(x-y)dy=f(x).$$

证明 由条件可知, 存在 M>0, 使得 $|f(x)| \leq M, \forall x \in \mathbb{R}$. 于是对 $\forall x \in \mathbb{R}$, 固定 x, 再对 $\forall \delta > 0$, 我们有

$$\begin{split} & \overline{\lim}_{n \to \infty} \left| \int_{-\infty}^{\infty} |f(y) - f(x)| \frac{n}{\sqrt{\pi}} e^{-n^2(x-y)^2} dy \right| \leqslant \overline{\lim}_{n \to \infty} \int_{-\infty}^{\infty} |f(y) - f(x)| \frac{n}{\sqrt{\pi}} e^{-n^2(x-y)^2} dy \\ & \leqslant \overline{\lim}_{n \to \infty} \int_{|x-y| \leqslant \delta} |f(y) - f(x)| \frac{n}{\sqrt{\pi}} e^{-n^2(x-y)^2} dy + \overline{\lim}_{n \to \infty} \int_{|x-y| \geqslant \delta} |f(y) - f(x)| \frac{n}{\sqrt{\pi}} e^{-n^2(x-y)^2} dy \\ & \leqslant \sup_{|x-y| \leqslant \delta} |f(y) - f(x)| \overline{\lim}_{n \to \infty} \int_{|x-y| \leqslant \delta} \frac{n}{\sqrt{\pi}} e^{-n^2(x-y)^2} dy + \overline{\lim}_{n \to \infty} \int_{|x-y| \geqslant \delta} 2M \frac{n}{\sqrt{\pi}} e^{-n^2 \delta^2} dy \\ & \stackrel{\frac{4}{\sqrt{\pi}} = n(x-y)}{= |x-y| \leqslant \delta} \sup_{|x-y| \leqslant \delta} |f(y) - f(x)| \overline{\lim}_{n \to \infty} \int_{|z| \leqslant n \delta} \frac{1}{\sqrt{\pi}} e^{-z^2} dz \\ & = \sup_{|x-y| \leqslant \delta} |f(y) - f(x)| \int_{-\infty}^{+\infty} \frac{1}{\sqrt{\pi}} e^{-z^2} dz = \sup_{|x-y| \leqslant \delta} |f(y) - f(x)|. \end{split}$$

$$\overline{\lim_{n\to\infty}} \left| \int_{-\infty}^{\infty} |f(y) - f(x)| \frac{n}{\sqrt{\pi}} e^{-n^2(x-y)^2} dy \right| \leqslant \lim_{\delta \to 0^+} \sup_{|x-y| \leqslant \delta} |f(y) - f(x)| = \lim_{y \to x} |f(y) - f(x)| = 0.$$

故

$$\begin{split} &\lim_{n \to \infty} \int_{-\infty}^{\infty} f(y) \frac{n}{\sqrt{\pi}} e^{-n^2(x-y)^2} dy = \lim_{n \to \infty} \int_{-\infty}^{\infty} f(x) \frac{n}{\sqrt{\pi}} e^{-n^2(x-y)^2} dy \\ &= f(x) \lim_{n \to \infty} \int_{-\infty}^{\infty} \frac{n}{\sqrt{\pi}} e^{-n^2(x-y)^2} dy \xrightarrow{\frac{\Delta}{2} = n(x-y)} f(x) \lim_{n \to \infty} \int_{|z| \leqslant n\delta} \frac{1}{\sqrt{\pi}} e^{-z^2} dz \\ &= f(x) \int_{-\infty}^{+\infty} \frac{1}{\sqrt{\pi}} e^{-z^2} dz = f(x). \end{split}$$

4.8 欧拉麦克劳林公式 (E-M 公式)

命题 4.9 (0 阶欧拉麦克劳林公式 (0 阶 E-M 公式))

设 $a, b \in \mathbb{Z}$, $f \in D[a, b]$, $f' \in L^1[a, b]$, 让我们有

$$\sum_{k=a}^{b} f(k) = \int_{a}^{b} f(x)dx + \frac{f(a) + f(b)}{2} + \int_{a}^{b} \left(x - [x] - \frac{1}{2}\right) f'(x)dx.$$

注 如果考试中要使用 0 阶欧拉麦克劳林公式,则一定要先证明 0 阶欧拉麦克劳林公式 (按照下面的证明书写即

可), 再使用.

笔记 在 [0,1) 上 $x-[x]-\frac{1}{2}=x-\frac{1}{2}$, 它也是 $x-\frac{1}{2}$ 做周期 1 延拓得到的函数. 故 $-\frac{1}{2}\leqslant x-[x]-\frac{1}{2}\leqslant \frac{1}{2}$, $\forall x\in\mathbb{R}$. 证明

$$\int_{a}^{b} \left(x - [x] - \frac{1}{2}\right) f'(x) dx = \sum_{k=a}^{b-1} \int_{k}^{k+1} \left(x - [x] - \frac{1}{2}\right) f'(x) dx$$

$$= \sum_{k=a}^{b-1} \int_{k}^{k+1} \left(x - k - \frac{1}{2}\right) f'(x) dx = \sum_{k=a}^{b-1} \int_{0}^{1} \left(x - \frac{1}{2}\right) f'(x+k) dx$$

$$= \sum_{k=a}^{b-1} \left[\frac{1}{2} f(1+k) + \frac{1}{2} f(k) - \int_{0}^{1} f(x+k) dx \right]$$

$$= \sum_{k=a}^{b-1} \left[\frac{f(k) + f(k+1)}{2} - \int_{k}^{k+1} f(x) dx \right]$$

$$= \frac{1}{2} \sum_{k=a}^{b-1} \left[f(k) + f(k+1) \right] - \int_{a}^{b} f(x) dx$$

$$= -\frac{f(a) + f(b)}{2} + \sum_{k=a}^{b} f(k) - \int_{a}^{b} f(x) dx.$$

注 假设已知 f'(x) 在 \mathbb{R} 上连续,记 $b_1(x) = x - [x] - \frac{1}{2}$,使用 0 阶 E-M 公式后,由于 $-\frac{1}{2} \leqslant x - [x] - \frac{1}{2} \leqslant \frac{1}{2}$, $\forall x \in \mathbb{R}$,因此直接将 $b_1(x)$ 放大成 $\frac{1}{2}$ 就可以得到原级数的一个较为粗略的估计. 具体例题见<mark>例题 4.63</mark>. 但是如果我们想要得到原级数更加精确的估计,就需要对 $b_1(x)$ 使用分部积分. 但是由于 b_1 并非连续函数,

但是如果我们想要得到原级数更加精确的估计, 就需要对 $b_1(x)$ 使用分部积分. 但是由于 b_1 并非连续函数为了把 $\int_a^b (x-[x]-\frac{1}{2})f'(x)dx$ 继续分部积分, 我们需要寻求 b_1 的原函数 b_2 使得

$$\int_{a}^{b} b_{1}(x)f'(x)dx = \int_{a}^{b} f'(x)db_{2}(x),$$

即期望 $b_2(x)$ 是 $b_1(x)$ 的一个原函数并且仍然有周期 1(因为求导不改变周期性, 又由于 $b_1(x)$ 周期为 1, 故原函数 $b_2(x)$ 的周期也必须为 1). 相当于需要

$$b_2(x) = \int_0^x b_1(y)dy, b_2(x+1) = b_2(x), \forall x \in \mathbb{R}.$$

(构造 $b_2(x)$ 的想法: 先找到 $x \in [0,1)$ 这个特殊情况下的 $b_2(x)$, 再由此构造出 $x \in \mathbb{R}$ 这个一般情况下的 $b_2(x)$, 即由特殊推广到一般)

先考虑 $x \in [0,1)$ 的情况 (因为此时 $[x] \equiv 0$, 方便后续计算得到原函数 $b_2(x)$), 于是就需要 $\int_0^1 b_1(x) dx = b_2(1) = b_2(0) = 0$. 显然

$$b_2(1) = \int_0^1 b_1(x)dx = \int_0^1 \left(x - \frac{1}{2}\right)dx = 0 = b_2(0)$$

是自带条件. 并且还需要 $b_2(x)=\int_0^x b_1(y)\,dy=\int_0^x \left(y-\frac{1}{2}\right)dy=\frac{1}{2}x^2-\frac{1}{2}x+c$ (其中c为任意常数), $x\in[0,1)$. 又因为我们需要 $b_2(x)$ 在 $\mathbb R$ 上连续且周期为 1, 所以再将 $\frac{1}{2}x^2-\frac{1}{2}x+c$ 做周期 1 延拓到 $\mathbb R$ 上,得到在 $\mathbb R$ 上连续且周期为 1 的 $b_2(x)$ (易知此时 $b_2(x)$ 在 $\mathbb R$ 上只有至多可数个不可导点). 由此我们可以得到 $b_2(x)$ 在 $\mathbb R$ 上的表达式为

$$b_2(x) = b_2(x - [x]) = \int_0^{x - [x]} b_1(y) \, dy = \int_0^{x - [x]} \left(y - \frac{1}{2} \right) dy = \frac{1}{2} (x - [x])^2 - \frac{1}{2} (x - [x]) + c, \forall x \in \mathbb{R}.$$

此时又由 $\int_{0}^{1} b_{1}(y) dy = 0$ 可得

$$b_2(x) = b_2(x - [x]) = \int_0^{x - [x]} b_1(y) \, dy = \int_{[x]}^x b_1(y - [x]) \, dy = \int_{[x]}^x b_1(y) \, dy$$

$$\begin{split} &= \sum_{k=0}^{\lfloor x \rfloor - 1} \int_0^1 b_1(y) \, dy + \int_{\lfloor x \rfloor}^x b_1(y) \, dy = \sum_{k=0}^{\lfloor x \rfloor - 1} \int_0^1 b_1(y+k) \, dy + \int_{\lfloor x \rfloor}^x b_1(y) \, dy \\ &= \sum_{k=0}^{\lfloor x \rfloor - 1} \int_k^{k+1} b_1(y) \, dy + \int_{\lfloor x \rfloor}^x b_1(y) \, dy = \int_0^{\lfloor x \rfloor} b_1(y) \, dy + \int_{\lfloor x \rfloor}^x b_1(y) \, dy \\ &= \int_0^x b_1(y) \, dy, \forall x \in \mathbb{R}. \end{split}$$

故此时周期延拓得到的 $b_2(x)$ 恰好就是 $b_1(x)$ 的一个原函数. 即 $b_1(x)$ 在 \mathbb{R} 上有连续且周期为1的原函数 $b_2(x)$,f'(x)在 \mathbb{R} 上连续. 因此我们可以对 $b_1(x)$ 进行分部积分. 即此时

$$\int_a^b b_1(x)f'(x)dx = \int_a^b f'(x)db_2(x)$$

成立. 并且此时 $b_2(x) = \frac{1}{2}(x - [x])^2 - \frac{1}{2}(x - [x]) + c$, $\forall x \in \mathbb{R}$. 其中 c 为任意常数. 如果我们想要继续分部积分, 就需要 $b_3(x)$ 是 $b_2(x)$ 的一个原函数. 按照上述构造的想法, 实际上, 我们只需期 望 $b_3(1) = b_3(0)$ 和 $b_3(x) = \int_0^x b_2(y) dy, \forall x \in [0, 1)$. 即

$$\int_0^1 b_2(x)dx = b_3(1) = b_3(0) = 0,$$

$$b_3(x) = \int_0^x b_2(y) dy, \forall x \in [0, 1).$$

然后以此构造出 [0,1) 上的 $b_3(x)$, 再对其做周期 1 延拓, 就能得到 \mathbb{R} 上的 $b_3(x)$, 并且 $b_3(x)$ 满足在 \mathbb{R} 上连续且周 期为 1. 进而可以利用这个 $b_3(x)$ 继续对原积分进行分部积分, 得到更加精细的估计.

而由
$$\int_0^1 b_2(x)dx = b_3(1) = b_3(0) = 0$$
 可知

$$\int_0^1 b_2(x) dx = \int_0^1 \left(\frac{1}{2} x^2 - \frac{1}{2} x + c \right) dx = 0 \Rightarrow c = \frac{1}{12}.$$

于是如果我们还需要继续分部积分的话, 此时 $b_1(x)$ 的原函数 $b_2(x)$ 就被唯一确定了 (如果只进行一次分部积分, 那么 c 可以任取. 但是一般情况下, 无论是否还需要继续分部积分, 我们都会先取定这里的 $c = \frac{1}{12}$). 此时这个唯一 确定的 $b_2(x)$ 在 \mathbb{R} 上连续且周期为 1,并且

$$b_2(x) = \frac{1}{2}x^2 - \frac{1}{2}x + \frac{1}{12}, x \in [0, 1);$$

$$b_2(x) = \frac{1}{2}(x - [x])^2 - \frac{1}{2}(x - [x]) + \frac{1}{12}, b_2(x) = \int_0^x b_1(y) \, dy, |b_2(x)| \le \frac{1}{12}, \forall x \in \mathbb{R}.$$

依次下去我们给出计算 $b_n, n \in \mathbb{N}$ 的算法.

定义 $4.1(b_n(x)$ 定义和算法)

我们令 $b_1(x)$ 为 $x-\frac{1}{2},x\in[0,1)$ 的周期 1 延拓. 对所有 $n=2,3,\cdots,b_n(x)$ 是 $b_{n-1}(x)$ 的一个原函数.

笔记 $b_n(x)$ 的算法:

根据上述构造 $b_2(x), b_3(x)$ 的想法可知, 我们只需期望 $b_n(1) = b_n(0)$ 和 $b_n(x) = \int_0^x b_{n-1}(y) dy, \forall x \in [0,1).$ 即

$$\int_0^1 b_{n-1}(x) dx = b_n(1) = b_n(0) = 0,$$

$$b_n(x) = \int_0^x b_{n-1}(y) dy, \forall x \in [0, 1).$$

然后以此构造出 [0,1) 上的 $b_n(x)$, 再对其做周期 1 延拓, 就能得到 $\mathbb R$ 上的 $b_n(x)$, 并且 $b_n(x)$ 满足在 $\mathbb R$ 上连续且周 期为 1. 并且根据 $\int_0^1 b_{n-1}(x) dx = b_n(1) = b_n(0) = 0$ 我们可唯一确定 $b_{n-1}(x)$ 在 [0,1) 上的表达式. 从而可以唯一 确定 $b_n(x)$ 之前的所有 $b_{n-1}(x)$ 在 \mathbb{R} 上的表达式. 又因为这个过程可以无限地进行下去, 所以我们其实可以唯一 确定所有的 $b_n(x)$ 在 \mathbb{R} 上的表达式, 方便我们后续可按照我们的需要对原积分进行多次分部积分.

根据上述 $b_n(x)$ 的定义和算法, 可知 $b_n(x)$ 是连续且周期为 1 的函数. 而连续的周期函数一定有界, 故一定存在 $M_n > 0$, 使得对 $\forall x \in \mathbb{R}$, 有 $|b_n(x)| \leq M_n$.

注 我们可以利用这些 $b_n(x)$ 不断地对原积分进行分部积分,得到更加精细的估计,而且这个过程可以一直进行下去.因此无论我们需要多么精确的估计,都可以通过这样的分部积分方式来得到.具体例题见例题 4.10,例题 4.63. 结论 我们计算一些 $b_n(x)$ 以备用:

$$b_1(x) = x - \frac{1}{2}, x \in [0, 1).$$

$$b_1(x) = x - [x] - \frac{1}{2}, |b_1(x)| \le \frac{1}{2}, x \in \mathbb{R}.$$

$$b_2(x) = \frac{1}{2}x^2 - \frac{1}{2}x + \frac{1}{12}, x \in [0, 1).$$

$$b_2(x) = \frac{1}{2}(x - [x])^2 - \frac{1}{2}(x - [x]) + \frac{1}{12}, |b_2(x)| \le \frac{1}{12}, x \in \mathbb{R}.$$

$$b_3(x) = \frac{x^3}{6} - \frac{x^2}{4} + \frac{x}{12}, x \in [0, 1).$$

$$b_3(x) = \frac{(x - [x])^3}{6} - \frac{(x - [x])^2}{4} + \frac{(x - [x])}{12}, |b_3(x)| \leqslant \frac{2\sqrt{3} - 3}{36}, x \in \mathbb{R}.$$

$$b_4\left(x\right) = \frac{x^4}{24} - \frac{x^3}{12} + \frac{x^2}{24} - \frac{1}{720}, x \in [0, 1].$$

$$b_4\left(x\right) = \frac{\left(x - [x]\right)^4}{24} - \frac{\left(x - [x]\right)^3}{12} + \frac{\left(x - [x]\right)^2}{24} - \frac{1}{720}, |b_4\left(x\right)| \leqslant \frac{1}{720}, x \in \mathbb{R}.$$

例题 4.63 估计 $\sum_{k=1}^{n} \frac{1}{k}, n \to \infty$.

解解法一:一方面,对 $\forall n \in \mathbb{N}$ 我们有

$$\sum_{k=1}^{n} \frac{1}{k} = \sum_{k=1}^{n} \int_{k}^{k+1} \frac{1}{k} dx \geqslant \sum_{k=1}^{n} \int_{k}^{k+1} \frac{1}{x} dx = \int_{1}^{n+1} \frac{1}{x} dx = \ln(n+1).$$

另一方面, 对 $\forall n \in \mathbb{N}$ 我们也有

$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \sum_{k=2}^{n} \int_{k-1}^{k} \frac{1}{k} dx \le 1 + \sum_{k=2}^{n} \int_{k-1}^{k} \frac{1}{x} dx = 1 + \int_{1}^{n} \frac{1}{x} dx = 1 + \ln n.$$

于是对 $\forall n \in \mathbb{N}$ 都有

$$\ln(n+1) \leqslant \sum_{k=1}^{n} \frac{1}{k} \leqslant 1 + \ln n.$$

从而对 $\forall n \in \mathbb{N}$ 都有

$$\frac{\ln(n+1)}{\ln n} \leqslant \frac{\sum\limits_{k=1}^{n} \frac{1}{k}}{\ln n} \leqslant \frac{1}{\ln n} + 1.$$

令 $n \to \infty$, 由夹逼准则可知 $\lim_{n \to \infty} \frac{\sum_{k=1}^{n} \frac{1}{k}}{\ln n} = 1.$ 即 $\sum_{k=1}^{n} \frac{1}{k} \sim \ln n, n \to \infty.$

解法二(E-M公式): 由E-M公式可得

$$\sum_{k=1}^{n} \frac{1}{k} = \int_{1}^{n} \frac{1}{x} dx + \frac{1 + \frac{1}{n}}{2} - \int_{1}^{n} \left(x - [x] - \frac{1}{2} \right) \frac{1}{x^{2}} dx = \ln n + \frac{1}{2n} + \frac{1}{2} - \int_{1}^{n} \left(x - [x] - \frac{1}{2} \right) \frac{1}{x^{2}} dx. \tag{4.47}$$

因为
$$\int_{1}^{n} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^{2}} dx \leqslant \int_{1}^{n} \frac{1}{2x^{2}} dx$$
,而 $\lim_{n \to \infty} \int_{1}^{n} \frac{1}{2x^{2}} dx$ 存在,所以可设
$$\lim_{n \to \infty} \int_{1}^{n} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^{2}} dx = \int_{1}^{+\infty} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^{2}} dx \triangleq C < \infty.$$
于是 $\int_{1}^{n} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^{2}} dx = C - \int_{n}^{+\infty} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^{2}} dx$. 从 而
$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \frac{1}{2n} + \frac{1}{2} - \int_{1}^{n} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^{2}} dx$$

$$= \ln n + \frac{1}{2n} + \frac{1}{2} - C + \int_{n}^{+\infty} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^{2}} dx$$

$$\leqslant \ln n + \frac{1}{2n} + \frac{1}{2} - C + \int_{n}^{+\infty} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^{2}} dx$$

$$= \ln n + \frac{1}{2n} + \frac{1}{2} - C + \int_{n}^{+\infty} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^{2}} dx$$

$$= \ln n + \frac{1}{2n} + \frac{1}{2} - C + \int_{n}^{+\infty} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^{2}} dx$$

$$= \ln n + \frac{1}{2n} + \frac{1}{2} - C + \frac{1}{2n}.$$

故 $\sum_{k=1}^{n} \frac{1}{k} = \ln n + \frac{1}{2} - C + \frac{1}{2n} + O\left(\frac{1}{n}\right) = \ln n + \frac{1}{2} - C + +O\left(\frac{1}{n}\right), \forall n \in \mathbb{N}.$ 此 时令 $\frac{1}{2} - C = \frac{1}{2} - \int_{1}^{+\infty} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x^2} dx \triangleq \gamma$ (欧 拉常教). 则

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + O\left(\frac{1}{n}\right), \forall n \in \mathbb{N}.$$
(4.48)

由 $b_n(x)$ 的构造和分部积分可知,上述结果只是对 $\sum_{k=1}^n \frac{1}{k}$ 的一个最粗糙的估计。实际上,我们可以利用分部积分得到更加精细的估计。记 $b_1(x) = x - [x] - \frac{1}{2}$, $b_2(x) = \frac{1}{2}(x - [x])^2 - \frac{1}{2}(x - [x]) + \frac{1}{12}$. 则不难发现 $b_2(x)$ 是连续且周期为 1 的函数, $b_2(x)$ 是 $b_1(x)$ 在 \mathbb{R} 上的一个原函数,并且 $|b_2(x)| \leq \frac{1}{12}$, $x \in \mathbb{R}$. 而由 Dirichlet 判别法可知 $\int_1^{+\infty} \frac{b_1(x)}{x^2} dx$ 收敛,于是设 $\int_1^{+\infty} \frac{b_1(x)}{x^2} dx \triangleq C$. 从而再对(4.47)分部积分得到

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \frac{1}{2n} + \frac{1}{2} - \int_{1}^{n} \frac{b_{1}(x)}{x^{2}} dx = \ln n + \frac{1}{2n} + \frac{1}{2} - \left(\int_{1}^{+\infty} \frac{b_{1}(x)}{x^{2}} dx - \int_{n}^{+\infty} \frac{b_{1}(x)}{x^{2}} dx \right)$$

$$= \ln n + \frac{1}{2n} + \frac{1}{2} - C + \int_{n}^{+\infty} \frac{b_{1}(x)}{x^{2}} dx = \ln n + \frac{1}{2n} + \frac{1}{2} - C + \int_{n}^{+\infty} \frac{1}{x^{2}} db_{2}(x)$$

$$= \ln n + \frac{1}{2n} + \frac{1}{2} - C + \frac{b_{2}(x)}{x^{2}} \Big|_{n}^{+\infty} + 2 \int_{n}^{+\infty} \frac{b_{2}(x)}{x^{3}} dx$$

$$= \ln n + \frac{1}{2n} + \frac{1}{2} - C + 2 \int_{n}^{+\infty} \frac{b_{2}(x)}{x^{3}} dx - \frac{b_{2}(n)}{n^{2}} . (4.47)$$

$$(4.49)$$

又由 $|b_2(x)| \leqslant \frac{1}{12}, \forall x \in \mathbb{R}$ 可知

$$\left| 2 \int_{n}^{+\infty} \frac{b_{2}(x)}{x^{3}} dx - \frac{b_{2}(n)}{n^{2}} \right| \leq 2 \left| \int_{n}^{+\infty} \frac{b_{2}(x)}{x^{3}} dx \right| + \frac{|b_{2}(n)|}{n^{2}} \leq \frac{1}{6} \left| \int_{n}^{+\infty} \frac{1}{x^{3}} dx \right| + \frac{1}{12n^{2}} = \frac{1}{6n^{2}}, \forall n \in \mathbb{N}.$$

即

$$2\int_{n}^{+\infty} \frac{b_{2}(x)}{x^{3}} dx - \frac{b_{2}(n)}{n^{2}} = O\left(\frac{1}{n^{2}}\right), \forall n \in \mathbb{N}.$$
 (4.50)

再结合(4.49)和(4.50)式可得

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \frac{1}{2n} + \frac{1}{2} - C + O\left(\frac{1}{n^2}\right), \forall n \in \mathbb{N}.$$

记 $\gamma \triangleq \frac{1}{2} - C(\gamma)$ 为欧拉常数), 则我们就得到了比(4.48)式更加精细的估计:

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \frac{1}{2n} + O\left(\frac{1}{n^2}\right), \forall n \in \mathbb{N}.$$

例题 4.64 计算

$$\lim_{m\to\infty}\sum_{n=1}^m (-1)^{n-1}\,\frac{\ln n}{n}.$$

笔记 估计交错级数的想法:将原交错级数分奇偶子列,观察奇偶子列的关系(一般奇偶子列的阶相同),再估计奇子列或偶子列,进而得到原级数的估计。

解 注意到原级数的奇子列有

$$\sum_{n=1}^{2m-1} (-1)^{n-1} \frac{\ln n}{n} = \sum_{n=1}^{2m-2} (-1)^{n-1} \frac{\ln n}{n} + (-1)^{2m-2} \frac{\ln (2m-1)}{2m-1} = \sum_{n=1}^{2m-2} (-1)^{n-1} \frac{\ln n}{n} + \frac{\ln (2m-1)}{2m-1}, \forall m \in \mathbb{N}.$$

从而

$$\sum_{n=1}^{2m-1} (-1)^{n-1} \frac{\ln n}{n} = \sum_{n=1}^{2m-2} (-1)^{n-1} \frac{\ln n}{n} + o(1), m \to +\infty.$$
 (4.51)

因此我们只需要估计原级数的偶子列 $\sum_{n=1}^{2m} (-1)^{n-1} \frac{\ln n}{n}$ 即可. 又注意到

$$\sum_{n=1}^{2m} (-1)^{n-1} \frac{\ln n}{n} = \sum_{n=1}^{m} \left[(-1)^{2n-2} \frac{\ln(2n-1)}{2n-1} + (-1)^{2n-1} \frac{\ln 2n}{2n} \right] = \sum_{n=1}^{m} \left[\frac{\ln(2n-1)}{2n-1} - \frac{\ln 2n}{2n} \right]$$

$$= \sum_{n=1}^{2m} \frac{\ln n}{n} - \sum_{n=1}^{m} \frac{\ln 2n}{2n} - \sum_{n=1}^{m} \frac{\ln 2n}{2n} = \sum_{n=1}^{2m} \frac{\ln n}{n} - \sum_{n=1}^{m} \frac{\ln 2n}{n}$$

$$= \sum_{n=1}^{2m} \frac{\ln n}{n} - \sum_{n=1}^{m} \frac{\ln 2 + \ln n}{n}.$$
(4.52)

由例题例题 4.63可知

$$\sum_{m=1}^{m} \frac{\ln 2}{n} = \ln 2(\ln m + \gamma + o(1)) = \ln 2 \cdot \ln m + \gamma \ln 2 + o(1), m \to +\infty.$$
 (4.53)

又由E-M 公式可知

$$\sum_{n=1}^{m} \frac{\ln n}{n} = \frac{\ln m}{2m} + \int_{1}^{m} \frac{\ln x}{x} dx + \int_{1}^{m} \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^{2}} dx$$

$$= \frac{\ln m}{2m} + \frac{1}{2} \ln^{2} m + \int_{1}^{m} \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^{2}} dx. \tag{4.54}$$

因为

$$\left| \int_1^m \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^2} dx \right| \leqslant \frac{1}{2} \left| \int_1^m \frac{1 - \ln x}{x^2} dx \right|, \forall m \in \mathbb{N}.$$

并且
$$\int_{1}^{m} \frac{1 - \ln x}{x^{2}} dx$$
 收敛, 所以 $\lim_{m \to +\infty} \int_{1}^{m} \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^{2}} dx = \int_{1}^{+\infty} \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^{2}} dx = C < \infty.$ 即
$$\int_{1}^{m} \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^{2}} dx = C + o(1), m \to +\infty. \tag{4.55}$$

于是结合(4.54)(4.55)式可得

$$\sum_{n=1}^{m} \frac{\ln n}{n} = \frac{\ln m}{2m} + \frac{1}{2} \ln^2 m + \int_{1}^{m} \left(x - [x] - \frac{1}{2} \right) \frac{1 - \ln x}{x^2} dx$$
$$= o(1) + \frac{1}{2} \ln^2 m + C + o(1)$$

$$= \frac{1}{2} \ln^2 m + C + o(1), m \to +\infty. \tag{4.56}$$

因此由(4.52)(4.53)(4.56)式可得

$$\begin{split} \sum_{n=1}^{2m} (-1)^{n-1} \frac{\ln n}{n} &= \sum_{n=1}^{2m} \frac{\ln n}{n} - \sum_{n=1}^{m} \frac{\ln 2 + \ln n}{n} = \frac{1}{2} \ln^2 2m + C + o(1) - \left[\ln 2 \cdot \ln m + \gamma \ln 2 + o(1) + \frac{1}{2} \ln^2 m + C + o(1) \right] \\ &= \frac{1}{2} \ln^2 2m - \frac{1}{2} \ln^2 m - \ln 2 \cdot \ln m - \gamma \ln 2 + o(1) = \frac{1}{2} (\ln 2 + \ln m)^2 - \frac{1}{2} \ln^2 m - \ln 2 \cdot \ln m - \gamma \ln 2 + o(1) \\ &= \frac{\ln^2 2}{2} - \gamma \ln 2 + o(1), m \to +\infty. \end{split}$$

即 $\lim_{m \to +\infty} \sum_{n=1}^{2m} (-1)^{n-1} \frac{\ln n}{n} = \frac{\ln^2 2}{2} - \gamma \ln 2$. 再结合(4.51)式可得

$$\lim_{m \to +\infty} \sum_{n=1}^{2m-1} (-1)^{n-1} \frac{\ln n}{n} = \lim_{m \to +\infty} \sum_{n=1}^{2m-2} (-1)^{n-1} \frac{\ln n}{n} = \frac{\ln^2 2}{2} - \gamma \ln 2.$$

故 $\lim_{m \to +\infty} \sum_{n=1}^{m} (-1)^{n-1} \frac{\ln n}{n} = \frac{\ln^2 2}{2} - \gamma \ln 2.$

例题 4.65 设 $f \in C^1[1, +\infty)$ 且 $\int_1^\infty |f'(x)| dx < \infty$, 证明 $\int_1^\infty f(x) dx$ 收敛等价于 $\lim_{n \to \infty} \sum_{k=1}^n f(k)$ 存在.

Ŷ 笔记 关键想法参考:E-M 公式和命题 6.1.

证明 由E-M 公式可知

$$\sum_{k=1}^{n} f(k) = \frac{f(1) + f(n)}{2} + \int_{1}^{n} f(x)dx + \int_{1}^{n} \left(x - [x] - \frac{1}{2}\right) f'(x)dx. \tag{4.57}$$

注意到 $0 \leqslant \left| \left(x - [x] - \frac{1}{2} \right) f'(x) \right| \leqslant \frac{1}{2} |f'(x)|$,并且 $\int_1^\infty |f'(x)| dx$ 收敛,因此 $\int_1^\infty \left| \left(x - [x] - \frac{1}{2} \right) f'(x) \right| dx$ 也收敛. 从 而 $\int_1^\infty \left(x - [x] - \frac{1}{2} \right) f'(x) dx$ 也收敛,故由 Henie 归结原则可知 $\lim_{\substack{n \to +\infty \\ f^n}} \int_1^n \left(x - [x] - \frac{1}{2} \right) f'(x) dx$ 存在.

(1) 若 $\int_1^\infty f(x)dx$ 存在, 则由 Henie 归结原则可知 $\lim_{n\to+\infty}\int_1^n f(x)dx$ 存在. 又由 $\int_1^\infty |f'(x)|dx < \infty$ 可知 $\int_1^\infty f'(x)dx$ 收敛. 于是

$$\lim_{x \to +\infty} [f(x) - f(1)] = \lim_{x \to +\infty} \int_{1}^{x} f'(y) dy = \int_{1}^{\infty} f'(x) dx < \infty.$$

由此可知 $\lim_{x\to +\infty} f(x)$ 存在. 从而由 Henie 归结原则可知 $\lim_{n\to +\infty} f(n)$ 也存在. 又由 $\lim_{n\to +\infty} \int_1^n \left(x-[x]-\frac{1}{2}\right) f'(x) dx$ 存在, 再结合(4.57)式可知 $\lim_{n\to +\infty} \sum_{i=1}^n f(k)$ 存在.

(2) 若 $\lim_{n \to +\infty} \sum_{k=1}^{n} f(k)$ 存在,则 $\lim_{x \to +\infty} f(x) = \lim_{n \to +\infty} f(n) = 0$. 又由 $\lim_{n \to +\infty} \int_{1}^{n} \left(x - [x] - \frac{1}{2}\right) f'(x) dx$ 存在,再结合(4.57)式可知 $\lim_{n \to +\infty} \int_{1}^{n} f(x) dx$ 也存在. 于是对 $\forall x \geq 1$, 一定存在 $n \in \mathbb{N}$, 使得 $n \leq x < n+1$. 从而可得

$$\int_{1}^{x} f(x)dx = \int_{1}^{n} f(x)dx + \int_{x}^{x} f(x)dx.$$
 (4.58)

并且

$$\int_{n}^{x} f(x)dx \le \int_{n}^{x} |f(x)| dx \le \int_{n}^{n+1} |f(x)| dx \le \sup_{y \ge n} |f(y)|.$$
 (4.59)

对(4.59)式两边同时令 $x \to +\infty$, 则 $n \to +\infty$. 进而可得

$$\lim_{x \to +\infty} \int_{n}^{x} f(x) dx \leqslant \lim_{n \to +\infty} \sup_{y \geqslant n} |f(y)| = \overline{\lim}_{x \to +\infty} |f(x)|.$$

由于此时 $\lim_{x \to +\infty} f(x) = 0$, 因此 $\overline{\lim}_{x \to +\infty} |f(x)| = \lim_{x \to +\infty} |f(x)| = \lim_{x \to +\infty} f(x) = 0$. 从而

$$\lim_{x \to +\infty} \int_{n}^{x} f(x) dx \leqslant \overline{\lim}_{x \to +\infty} |f(x)| = 0.$$

故 $\lim_{x\to +\infty}\int_n^x f(x)dx=0$. 于是再对(4.58)式两边同时令 $x\to +\infty$, 则 $n\to +\infty$. 从而可得

$$\int_{1}^{\infty} f(x)dx = \lim_{x \to +\infty} \int_{1}^{x} f(x)dx = \lim_{n \to +\infty} \int_{1}^{n} f(x)dx + \lim_{x \to +\infty} \int_{n}^{x} f(x)dx = \lim_{n \to +\infty} \int_{1}^{n} f(x)dx.$$

又因为此时 $\lim_{n\to+\infty} \int_{1}^{n} f(x)dx$ 存在, 所以 $\int_{1}^{\infty} f(x)dx$ 也存在.

例题 4.66 用积分放缩法得到 $\sum_{k=2}^{n} \frac{1}{k \ln k}, n \to \infty$ 的等价无穷大.

证明 注意到对 $\forall n \geq 2$ 且 $n \in \mathbb{N}$. 都有

$$\sum_{k=2}^{n} \frac{1}{k \ln k} = \sum_{k=2}^{n} \int_{k}^{k+1} \frac{1}{k \ln k} dx \geqslant \sum_{k=2}^{n} \int_{k}^{k+1} \frac{1}{x \ln x} dx = \int_{2}^{n+1} \frac{1}{x \ln x} dx = \ln \ln(n+1) - \ln \ln 2. \tag{4.60}$$

同时,也有

$$\sum_{k=2}^{n} \frac{1}{k \ln k} = \sum_{k=2}^{n} \int_{k-1}^{k} \frac{1}{k \ln k} dx \le \sum_{k=2}^{n} \int_{k-1}^{k} \frac{1}{x \ln x} dx = \int_{1}^{n} \frac{1}{x \ln x} dx = \ln \ln n.$$
 (4.61)

从而对 $\forall n \geq 2$ 且 $n \in \mathbb{N}$, 由(4.60)(4.61)式可得

$$\ln \ln (n+1) - \ln \ln 2 \leqslant \sum_{k=2}^{n} \frac{1}{k \ln k} \leqslant \ln \ln n.$$

于是对 $\forall n \geq 2$ 且 $n \in \mathbb{N}$, 我们有

$$\frac{\ln \ln (n+1) - \ln \ln 2}{\ln \ln \ln n} \leqslant \frac{\sum\limits_{k=2}^{n} \frac{1}{k \ln k}}{\ln \ln \ln n} \leqslant 1.$$

令 $n \to \infty$, 由夹逼准则可得 $\lim_{n \to \infty} \frac{\sum\limits_{k=2}^{n} \frac{1}{k \ln k}}{\ln \ln n} = 1.$ 即 $\sum\limits_{k=2}^{n} \frac{1}{k \ln k} \sim \ln \ln n, n \to \infty.$

例题 4.67 用积分放缩法得到 $\sum_{n=1}^{\infty} x^{n^2}, x \to 1^-$ 的等价无穷大.

证明 注意到对 $\forall x \in (0,1)$, 固定 x, 都有

$$\sum_{n=1}^{\infty} x^{n^2} = -1 + \sum_{n=0}^{\infty} x^{n^2} = -1 + \sum_{n=0}^{\infty} \int_{n}^{n+1} x^{n^2} dt \geqslant -1 + \sum_{n=0}^{\infty} \int_{n}^{n+1} x^{t^2} dt = -1 + \lim_{n \to \infty} \int_{0}^{n} x^{t^2} dt. \tag{4.62}$$

同时也有

$$\sum_{n=1}^{\infty} x^{n^2} = \sum_{n=1}^{\infty} \int_{n-1}^{n} x^{n^2} dt \leqslant \sum_{n=1}^{\infty} \int_{n-1}^{n} x^{t^2} dt = \lim_{n \to \infty} \int_{0}^{n} x^{t^2} dt.$$
 (4.63)

又由于 $x \in (0,1)$, 因此 $\ln x \in (-\infty,0)$. 从而

$$\int_0^\infty x^{t^2} dt = \int_0^\infty e^{t^2 \ln x} dt \, \frac{\frac{2}{2} y = t \sqrt{-\ln x}}{\sqrt{-\ln x}} \, \frac{1}{\sqrt{-\ln x}} \int_0^\infty e^{-y^2} dy = \frac{\sqrt{\pi}}{2 \sqrt{-\ln x}}.$$

故 $\int_0^\infty x^{t^2} dt = \frac{\sqrt{\pi}}{2\sqrt{-\ln x}}$ 收敛. 于是由 Henie 归结原则可知

$$\lim_{n \to \infty} \int_0^n x^{t^2} dt = \int_0^\infty x^{t^2} dt = \frac{\sqrt{\pi}}{2\sqrt{-\ln x}}.$$
 (4.64)

从而对 $\forall x \in (0,1)$, 结合(4.62)(4.63)(4.64)式可得

$$-1 + \frac{\sqrt{\pi}}{2\sqrt{-\ln x}} = -1 + \lim_{n \to \infty} \int_{1}^{n} x^{t^{2}} dt \leqslant \sum_{n=1}^{\infty} x^{n^{2}} \leqslant \lim_{n \to \infty} \int_{0}^{n} x^{t^{2}} dt = \frac{\sqrt{\pi}}{2\sqrt{-\ln x}}.$$

即

$$-\sqrt{-\ln x} + \frac{\sqrt{\pi}}{2} \leqslant \sqrt{-\ln x} \sum_{n=1}^{\infty} x^{n^2} \leqslant \frac{\sqrt{\pi}}{2}, \forall x \in (0,1).$$

$$\sum_{n=1}^{\infty} x^{n^2} \sim \frac{\sqrt{\pi}}{2\sqrt{-\ln x}} \sim \frac{\sqrt{\pi}}{2\sqrt{1-x}}, x \to 1^{-}.$$

用欧拉麦克劳林公式估计 $\sum_{k=1}^n \ln k, n \to \infty$ 的渐近展开式, 以此结合 Wallis 公式: $\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\pi n}, n \to \infty$

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n, n \to \infty.$$

$$\sum_{k=1}^{n} \ln k = \frac{\ln n}{2} + \int_{1}^{n} \ln x \, dx + \int_{1}^{n} \left(x - [x] - \frac{1}{2} \right) \frac{1}{x} \, dx = \frac{\ln n}{2} + n \ln n - n + 1 + \int_{1}^{n} \left(x - [x] - \frac{1}{2} \right) \frac{1}{x} \, dx. \tag{4.65}$$

由 Dirichlet 判别法可知, $\int_{1}^{+\infty} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x} dx$ 收敛. 则可设 $\lim_{n \to \infty} \int_{1}^{n} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x} dx = \int_{1}^{+\infty} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x} dx \triangleq \int_{1}^{+\infty} \left(x - [x] - \frac{1}{2}\right) \frac{1}{x} dx$ $C_0 < \infty$. 记 $b_1(x) = x - [x] - \frac{1}{2}$, 再令 $b_2(x) = \frac{1}{2}(x - [x])^2 - \frac{1}{2}(x - [x]) + \frac{1}{12}x \in \mathbb{R}$. 则不难发现 $b_2(x)$ 在 \mathbb{R} 上连续且 周期为1,并且

$$b_2(x) = \int_0^x b_1(y)dy, \quad |b_2(x)| \le \frac{1}{12}, \forall x \in \mathbb{R}.$$

从而对(4.65)式使用分部积分可得

$$\sum_{k=1}^{n} \ln k = \frac{\ln n}{2} + n \ln n - n + 1 + \int_{1}^{n} \frac{b_{1}(x)}{x} dx = \frac{\ln n}{2} + n \ln n - n + 1 + \int_{1}^{+\infty} \frac{b_{1}(x)}{x} dx - \int_{n}^{+\infty} \frac{b_{1}(x)}{x} dx$$

$$= \frac{\ln n}{2} + n \ln n - n + 1 + C_{0} - \int_{n}^{+\infty} \frac{1}{x} db_{2}(x) = \frac{\ln n}{2} + n \ln n - n + 1 + C_{0} - \frac{b_{2}(x)}{x} \Big|_{n}^{+\infty} - \int_{n}^{+\infty} \frac{b_{2}(x)}{x^{2}} dx$$

$$= \left(n + \frac{1}{2}\right) \ln n - n + 1 + C_{0} + \frac{b_{2}(n)}{n} - \int_{n}^{+\infty} \frac{b_{2}(x)}{x^{2}} dx, \forall n \in \mathbb{N}.$$

又因为 $|b_2(x)| \leq \frac{1}{12}, \forall x \in \mathbb{R}$. 所以对 $\forall n \in \mathbb{N}$, 我们有

$$\left| \frac{b_2(n)}{n} - \int_n^{+\infty} \frac{b_2(x)}{x^2} dx \right| \leqslant \frac{1}{12} \left(\frac{1}{n} + \int_n^{+\infty} \frac{1}{x^2} dx \right) = \frac{1}{6n}.$$

故 $\frac{b_2(n)}{n} - \int_{n}^{+\infty} \frac{b_2(x)}{x^2} dx = O\left(\frac{1}{n}\right), \forall n \in \mathbb{N}.$ 于是再记 $C = 1 + C_0$, 则

$$\sum_{k=1}^{n} \ln k = \left(n + \frac{1}{2}\right) \ln n - n + C + O\left(\frac{1}{n}\right), \forall n \in \mathbb{N}.$$

$$(4.66)$$

注意到

$$(2n)!! = 2^n n!, n = 0, 1, 2, \cdots$$
 (4.67)

于是由 Wallis 公式:
$$\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\pi n}, n \to \infty$$
. 再结合(4.66)(4.67)可得

$$\sqrt{\pi} = \lim_{n \to \infty} \frac{(2n)!!}{(2n-1)!!\sqrt{n}} = \lim_{n \to \infty} \frac{[(2n)!!]^2}{(2n)!\sqrt{n}} = \lim_{n \to \infty} \frac{(2^n n!)^2}{(2n)!\sqrt{n}} = \lim_{n \to \infty} \frac{4^n n! \cdot n!}{(2n)!\sqrt{n}}$$

$$= \lim_{n \to \infty} \frac{4^n n! \prod_{k=1}^n k}{\sqrt{n} \prod_{k=n+1}^{2n} k} = \lim_{n \to \infty} \frac{4^n n! e^{\sum_{k=1}^n \ln k}}{\sqrt{n} e^{\sum_{k=1}^n \ln k}} = \lim_{n \to \infty} \frac{4^n n! e^{(n+\frac{1}{2}) \ln n - n + C + O(\frac{1}{n})}}{\sqrt{n} e^{(2n+\frac{1}{2}) \ln 2n - 2n + C + O(\frac{1}{n})}}$$

$$= \lim_{n \to \infty} \frac{4^n n! e^{(n+\frac{1}{2}) \ln n - n + C + O(\frac{1}{n}) - [(2n+\frac{1}{2}) \ln 2n - 2n + C + O(\frac{1}{n})]}}{\sqrt{n}} = \lim_{n \to \infty} \frac{4^n n! e^{-n \ln n + n - (2n+\frac{1}{2}) \ln 2 + O(\frac{1}{n})}}{\sqrt{n}}$$

$$= \lim_{n \to \infty} \frac{4^n n! 2^{-2n - \frac{1}{2}} e^n}{n^n \sqrt{n}} e^{O(\frac{1}{n})} = \lim_{n \to \infty} \frac{n! e^n}{n^n \sqrt{2n}} e^{O(\frac{1}{n})}.$$

$$\mathbb{M} \text{ Iim } \frac{n! e^n}{n^n \sqrt{n}} = \frac{\sqrt{\pi}}{n^n \sqrt{n}} = \sqrt{\pi}. \text{ But lim } \frac{n!}{n^n \sqrt{n}} = \lim_{n \to \infty} \frac{n! e^n}{n^n \sqrt{n}} = \sqrt{2\pi}. \text{ if } n! \sim \sqrt{2\pi n} \binom{n}{n}^n, n \to \infty.$$

从而
$$\lim_{n\to\infty} \frac{n!e^n}{n^n\sqrt{2n}} = \frac{\sqrt{\pi}}{\lim_{n\to\infty} e^{O\left(\frac{1}{n}\right)}} = \sqrt{\pi}$$
. 因此 $\lim_{n\to\infty} \frac{n!}{\sqrt{n}\left(\frac{n}{e}\right)^n} = \lim_{n\to\infty} \frac{n!e^n}{n^n\sqrt{n}} = \sqrt{2\pi}$. 故 $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n, n\to\infty$.

4.9 Riemann 引理

引理 4.1 (Riemann 引理)

设 $E \subset \mathbb{R}$ 是区间且 f 在 E 上绝对可积. g 是定义在 \mathbb{R} 的周期 T > 0 函数, 且在任何有界闭区间上 Riemann

$$\lim_{x \to +\infty} \int_E f(y)g(xy)dy = \frac{1}{T} \int_E f(y)dy \int_0^T g(y)dy. \tag{4.68}$$

注 f 在 E 上绝对可积包含 f 为反常积分的情况.

考试中,Riemann 引理不能直接使用, 需要我们根据具体问题给出证明. 具体可见例题 4.68.

(1) 不妨设 $E=\mathbb{R}$ 的原因: 若 (1.1) 式在 $E=\mathbb{R}$ 时已得证明, 则当 $E\subseteq\mathbb{R}$ 时, 令 $\widetilde{f}(y)=f(y)\cdot X_E,y\in\mathbb{R}$, 则由 f(y)在 E 上绝对可积, 可得 $\widetilde{f}(y)$ 在 \mathbb{R} 上也绝对可积. 从而由假设可知

$$\lim_{x \to +\infty} \int_{\mathbb{R}} \widetilde{f}(y) g(xy) dy = \frac{1}{T} \int_{\mathbb{R}} \widetilde{f}(y) dy \int_{0}^{T} g(y) dy.$$

于是

$$\lim_{x \to +\infty} \int_{E} f(y)g(xy)dy = \lim_{x \to +\infty} \int_{\mathbb{R}} \widetilde{f}(y)g(xy)dy = \frac{1}{T} \int_{\mathbb{R}} \widetilde{f}(y)dy \int_{0}^{T} g(y)dy = \frac{1}{T} \int_{E} f(y)dy \int_{0}^{T} g(y)dy$$
T 以不妨误 $E = \mathbb{R}$.

- (2) 不妨设 $\sup |g|>0$ 的原因: 若 $\sup |g|=0$,则 $g(x)\equiv 0$,此时结论显然成立. 因此我们只需要考虑当 $\sup |g|>0$
- (3) 不妨设 T=1 的原因: 若 (4.68) 式在 T=1 时已得证明, 则当 $T \neq 1$ 时, 有

$$\frac{1}{T} \int_{E} f(y) dy \int_{0}^{T} g(y) dy \xrightarrow{\frac{x}{2} = Tx} \int_{E} f(y) dy \int_{0}^{1} g(Tx) dx = \int_{E} f(y) dy \int_{0}^{1} g(Ty) dy. \tag{4.69}$$

由于 g(y) 是 \mathbb{R} 上周期为 $T \neq 1$ 的函数, 因此 g(Ty) 就是 \mathbb{R} 上周期为 1 的函数. 从而由假设可知

$$\lim_{x \to +\infty} \int_{E} f(y)g(Txy)dy = \int_{E} f(y)dy \int_{0}^{1} g(Ty)dy. \tag{4.70}$$

又由(4.69) 式及T > 0 可得

$$\int_{E} f(y)dy \int_{0}^{1} g(Ty)dy = \frac{1}{T} \int_{E} f(y)dy \int_{0}^{T} g(y)dy$$

$$\lim_{x \to +\infty} \int_{E} f(y)g(Txy)dy \xrightarrow{\frac{c}{2}t = Tx} \lim_{t \to +\infty} \int_{E} f(y)g(ty)dy = \lim_{x \to +\infty} \int_{E} f(y)g(xy)dy$$

再结合(4.70)式可得 $\lim_{x\to+\infty}\int_E f(y)g(xy)dy = \frac{1}{T}\int_E f(y)dy\int_0^T g(y)dy$. 故可以不妨设 T=1.

(4) 不妨设 $\int_0^1 g(y)dy = 0$ 的原因: 若 (4.68) 式在 $\int_0^1 g(y)dy = 0$ 时已得证明, 则当 $\int_0^1 g(y)dy \neq 0$ 时, 令 $G(y) = g(y) - \int_0^1 g(t)dt$, 则 G(y) 是 \mathbb{R} 上周期为 1 的函数, 并且 $\int_0^1 G(y)dy = 0$. 于是由假设可知

$$\lim_{x \to +\infty} \int_{E} f(y)G(xy)dy = \int_{E} f(y)dy \int_{0}^{1} G(y)dy$$

$$\Leftrightarrow \lim_{x \to +\infty} \int_{E} f(y) \left[g(xy) - \int_{0}^{1} g(t)dt \right] dy = \int_{E} f(y)dy \int_{0}^{1} \left[g(y) - \int_{0}^{1} g(t)dt \right] dy$$

$$\Leftrightarrow \lim_{x \to +\infty} \left(\int_{E} f(y)g(xy)dy - \int_{E} f(y) \int_{0}^{1} g(t)dtdy \right) = \int_{E} f(y)dy \int_{0}^{1} g(y)dy - \int_{E} f(y)dy \int_{0}^{1} g(t)dt = 0$$

$$\Leftrightarrow \lim_{x \to +\infty} \int_{E} f(y)g(xy)dy = \int_{E} f(y) \int_{0}^{1} g(t)dtdy$$

再结合(2)可知, 此时原结论成立. 故可以不妨设 $\int_0^1 g(y)dy = 0$.

证明 不妨设 $E = \mathbb{R}, \sup_{\mathbb{R}} |g| > 0, T = 1$,再不妨设 $\int_{0}^{1} g(y) dy = 0$. 因此只需证 $\lim_{x \to +\infty} \int_{\mathbb{R}} f(y) g(xy) dy = 0$. 由 g 的周期为 1 及 $\int_{0}^{1} g(y) dy = 0$ 可得, 对 $\forall n \in \mathbb{N}$, 都有

$$\int_{-n}^{0} g(t)dt \xrightarrow{\frac{4}{2}x = t + n} \int_{0}^{n} g(x - n)dx \xrightarrow{\underline{g} \text{ in } \underline{g} \underline{g} \underline{h} \underline{g} \underline{h} \underline{g} \underline{h}} \int_{0}^{n} g(x)dx = \int_{0}^{n} g(t)dt$$

$$= \sum_{k=0}^{n-1} \int_{k}^{k+1} g(t)dt \xrightarrow{\frac{4}{2}y = t - k} \sum_{k=0}^{n-1} \int_{0}^{1} g(y + k)dy \xrightarrow{\underline{g} \text{ in } \underline{g} \underline{h} \underline{h} \underline{h} \underline{h}} \sum_{k=0}^{n-1} \int_{0}^{1} g(y)dy$$

$$= (n-1) \cdot 0 = 0.$$

从而对 $\forall \beta > \alpha > 0$, 我们有

$$\left| \int_{\alpha}^{\beta} g(t)dt \right| = \left| \int_{0}^{\beta} g(t)dt - \int_{0}^{\alpha} g(t)dt \right| = \left| \int_{-[\beta]}^{\beta - [\beta]} g(t + [\beta])dt - \int_{-[\alpha]}^{\alpha - [\alpha]} g(t + [\alpha])dt \right|$$

$$= \left| \int_{-[\beta]}^{\beta - [\beta]} g(t)dt - \int_{-[\alpha]}^{\alpha - [\alpha]} g(t)dt \right| = \left| \int_{0}^{\beta - [\beta]} g(t)dt - \int_{0}^{\alpha - [\alpha]} g(t)dt \right|$$

$$= \left| \int_{\alpha - [\alpha]}^{\beta - [\beta]} g(t)dt \right| \leqslant \sup_{\mathbb{R}} |g|.$$

故

$$\left| \int_{\alpha}^{\beta} g(xy) dy \right| \xrightarrow{\frac{c}{2} t = xy} \frac{1}{x} \left| \int_{x\alpha}^{x\beta} g(t) dt \right| \leqslant \frac{\sup_{\mathbb{R}} |g|}{x}, \quad \forall x > 0, \forall \beta > \alpha > 0.$$
 (4.71)

因为 f 在 \mathbb{R} 上绝对可积, 所以由 Cauchy 收敛准则可知, 对 $\forall \varepsilon > 0$, 存在 $N \in \mathbb{N}$, 使得

$$\left| \int_{|y| > N} f(y) dy \right| < \frac{\varepsilon}{3 \sup_{\mathbb{D}} |g|}. \tag{4.72}$$

由于 f 在 \mathbb{R} 上绝对可积, 从而 f 在 \mathbb{R} 上也 Riemann 可积, 因此由可积的充要条件可知, 存在划分

$$-N = t_0 < t_1 < t_2 < \cdots < t_n = N$$
,

使得

$$\sum_{i=1}^{n} \left(\sup_{[t_{i-1}, t_i]} f - \inf_{[t_{i-1}, t_i]} f \right) (t_i - t_{i-1}) \leqslant \frac{\varepsilon}{3 \sup_{\mathbb{R}} |g|}.$$
 (4.73)

于是当
$$x > \frac{3\sum\limits_{j=1}^{n}|\inf\limits_{[t_{j-1},t_{j}]}f|\cdot\sup\limits_{\mathbb{R}}|g|}{\varepsilon}$$
 时,结合(4.71)(4.72)(4.73)可得

$$\begin{split} \left| \int_{-\infty}^{+\infty} f(y)g(xy) dy \right| &\leqslant \left| \int_{-N}^{N} f(y)g(xy) dy \right| + \left| \int_{|y| > N} f(y)g(xy) dy \right|^{\frac{4,72}{3}} \int_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} f(y)g(xy) dy \right| + \frac{\varepsilon}{3} \sup_{\mathbb{R}} |g| \\ &\leqslant \sum_{j=1}^{n} \left| \int_{t_{j-1}}^{t_{j}} [f(y) - \inf_{[t_{j-1},t_{j}]} f]g(xy) dy \right| + \sum_{j=1}^{n} \left| \int_{t_{j-1}}^{t_{j}} \inf_{[t_{j-1},t_{j}]} f \cdot g(xy) dy \right| + \frac{\varepsilon}{3} \\ &\stackrel{(4,71)}{\leqslant} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} [f(y) - \inf_{[t_{j-1},t_{j}]} f] dy \cdot \sup_{\mathbb{R}} |g| + \frac{\sup_{\mathbb{R}} |g|}{x} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} |\inf_{[t_{j-1},t_{j}]} f| dy + \frac{\varepsilon}{3} \\ &\leqslant \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} (\sup_{[t_{i-1},t_{i}]} f - \inf_{[t_{j-1},t_{j}]} f) dy \cdot \sup_{\mathbb{R}} |g| + \frac{\sup_{\mathbb{R}} |g|}{x} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} |\inf_{[t_{j-1},t_{j}]} f| dy + \frac{\varepsilon}{3} \\ &= \sum_{j=1}^{n} (\sup_{[t_{i-1},t_{i}]} f - \inf_{[t_{j-1},t_{j}]} f) (t_{j} - t_{j-1}) \cdot \sup_{\mathbb{R}} |g| + \frac{\sup_{\mathbb{R}} |g|}{x} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} |\inf_{[t_{j-1},t_{j}]} f| dy + \frac{\varepsilon}{3} \\ &\stackrel{(4,73)}{\leqslant} \frac{\varepsilon}{3} \sup_{\mathbb{R}} |g| \cdot \sup_{\mathbb{R}} |g| + \frac{\mathbb{R}}{x} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} |\inf_{[t_{j-1},t_{j}]} f| dy + \frac{\varepsilon}{3} \\ &\stackrel{(4,73)}{\leqslant} \frac{\varepsilon}{3} \sup_{\mathbb{R}} |g| \cdot \sup_{\mathbb{R}} |g| + \frac{\mathbb{R}}{x} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} |\inf_{[t_{j-1},t_{j}]} f| dy + \frac{\varepsilon}{3} \\ &\stackrel{(4,73)}{\leqslant} \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \end{split}$$

因此 $\lim_{x\to +\infty}\int_{\mathbb{R}}f(y)g(xy)dy=0$. 结论得证. 例题 **4.68** 设 $f\in R[0,2\pi]$,不直接使用Riemann 引理计算

$$\lim_{n\to\infty} \int_0^{2\pi} f(x) |\sin(nx)| dx.$$

证明 对 $\forall n \in \mathbb{N}_+$, 固定 n. 将 $[0, 2\pi]$ 等分成 2n 段, 记这个划分为

$$T: 0 = t_0 < t_1 < \cdots < t_{2n} = 2\pi$$

其中 $t_i = \frac{i\pi}{n}, i = 0, 1, \dots, n$. 此时我们有

$$\int_{t_{i-1}}^{t_i} |\sin(nx)| dx = \int_{\frac{(i-1)\pi}{n}}^{\frac{i\pi}{n}} |\sin(nx)| dx = \frac{1}{n} \int_{(i-1)\pi}^{i\pi} |\sin x| dx = \frac{2}{n}.$$
 (4.74)

由 $f \in R[0, 2\pi]$ 可知, $f \in [0, 2\pi]$ 上有界也内闭有界. 从而利用(4.74)式可知, 对 $\forall n \in \mathbb{N}_+$, 一方面, 我们有

$$\int_{0}^{2\pi} f(x) |\sin(nx)| dx = \sum_{i=1}^{2n} \int_{t_{i-1}}^{t_{i}} f(x) |\sin(nx)| dx \leqslant \sum_{i=1}^{2n} \int_{t_{i-1}}^{t_{i}} \sup_{[t_{i-1},t_{i}]} f \cdot |\sin(nx)| dx \xrightarrow{\underline{(4.74)^{\frac{n}{2}}}} \frac{2}{n} \sum_{i=1}^{2n} \sup_{[t_{i-1},t_{i}]} f$$

$$= \frac{2}{n} \sum_{i=1}^{2n} \sup_{[t_{i-1},t_{i}]} f = \frac{2}{n} \sum_{i=1}^{2n} \sup_{[t_{i-1},t_{i}]} f \cdot \frac{\pi}{n} = \frac{2}{n} \sum_{i=1}^{2n} \sup_{[t_{i-1},t_{i}]} f \cdot (t_{i} - t_{i-1}). \tag{4.75}$$

另一方面, 我们有

$$\int_{0}^{2\pi} f(x) |\sin(nx)| dx = \sum_{i=1}^{2n} \int_{t_{i-1}}^{t_{i}} f(x) |\sin(nx)| dx \geqslant \sum_{i=1}^{2n} \int_{t_{i-1}}^{t_{i}} \inf_{[t_{i-1},t_{i}]} f \cdot |\sin(nx)| dx \xrightarrow{\underline{(4.74)^{\frac{n}{2}}}} \frac{2}{n} \sum_{i=1}^{2n} \inf_{[t_{i-1},t_{i}]} f$$

$$= \frac{2}{\pi} \sum_{i=1}^{2n} \inf_{[t_{i-1},t_{i}]} f \cdot \frac{\pi}{n} = \frac{2}{\pi} \sum_{i=1}^{2n} \inf_{[t_{i-1},t_{i}]} f \cdot (t_{i} - t_{i-1}). \tag{4.76}$$

由 $f \in R[0, 2\pi]$ 和 Riemann 可积的充要条件可知

$$\int_0^{2\pi} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{2n} \sup_{[t_{i-1}, t_i]} f \cdot (t_i - t_{i-1}) = \lim_{n \to \infty} \sum_{i=1}^{2n} \inf_{[t_{i-1}, t_i]} f \cdot (t_i - t_{i-1}).$$

于是对(4.75)(4.76)式两边同时令 $n \to \infty$,得到

$$\lim_{n \to \infty} \int_{0}^{2\pi} f(x) |\sin(nx)| dx = \frac{2}{\pi} \int_{0}^{2\pi} f(x) dx.$$

例题 4.69 设 f 是 \mathbb{R} 上周期 2π 函数且在 $[-\pi,\pi]$ 上 Riemann 可积, 设

$$S_n(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{f(x+t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt, n = 1, 2, \cdots$$

若 $x_0 \in (-\pi,\pi)$ 是 f 在 $[-\pi,\pi]$ 唯一间断点且存在下述极限

$$A = \lim_{x \to x_0^+} f(x), B = \lim_{x \to x_0^-} f(x), \lim_{x \to x_0^+} \frac{f(x) - A}{x - x_0}, \lim_{x \to x_0^-} \frac{f(x) - B}{x - x_0}.$$

证明:

$$\lim_{n \to \infty} S_n(x_0) = \frac{\lim_{x \to x_0^+} f(x) + \lim_{x \to x_0^-} f(x)}{2}.$$

全 笔记

(1) 计算 $I_1 = \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 + t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$ 的思路: 由于 $\frac{f(x_0 + t)}{2\sin\frac{t}{2}}$ 在 $[0,\pi]$ 上只可能有奇点 t = 0,因此 $\frac{f(x_0 + t)}{2\sin\frac{t}{2}}$ 在 $[0,\pi]$ 上不一定绝对可积. 从而不能直接利用 Riemann 引理. 于是我们需要将 $\frac{f(x_0 + t)}{2\sin\frac{t}{2}}$ 转化 为在 $[0,\pi]$ 上无奇点的函数 (排除 t = 0 这个奇点,即证明 t = 0 不再是奇点),只要被积函数在积分区间上无 奇点且 Riemann 可积,就一定绝对可积. 进而满足 Riemann 引理的条件,再利用 Riemann 引理就能求解出 I_1 . 具体处理方式见下述证明.

具体处理方式见下述证明. 计算 $I_2=\frac{1}{\pi}\int_0^\pi \frac{f(x_0-t)}{2\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)\mathrm{d}t$ 的思路同理, 也是要排除 t=0 这个可能的奇点, 再利用 Riemann 引理进行求解. 具体计算方式见下述证明.

引理进行求解. 具体计算方式见下述证明. (2) 计算 $\lim_{n\to\infty}\int_0^\pi \frac{1}{2\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)\mathrm{d}t$ 的思路: 注意由于 $\frac{1}{2\sin\frac{t}{2}}$ 在 $[0,\pi]$ 上有一个奇点 t=0,并且对 $\forall t\in(0,\pi]$,都有

$$\left|\frac{1}{2\sin\frac{t}{2}}\right| \geqslant \left|\frac{1}{2\cdot\frac{2}{\pi}\cdot\frac{t}{2}}\right| = \frac{\pi}{2t} > 0.$$

而 $\int_0^\pi \frac{\pi}{2t} dt$ 是发散的,故 $\int_0^\pi \left| \frac{1}{2\sin\frac{t}{2}} \right| dt$ 也发散. 因此 $\frac{1}{2\sin\frac{t}{2}}$ 在 $[0,\pi]$ 上一定不是绝对可积的,从而不能利用 Riemann 引理计算 $\lim_{n\to\infty} \int_0^\pi \frac{1}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$. 真正能计算 $\lim_{n\to\infty} \int_0^\pi \frac{1}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$ 的方法有多种,下述证明利用的是强行替换/拟合法.

证明 注意到

$$S_{n}(x_{0}) = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{f(x_{0} + t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x_{0} + t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt + \frac{1}{\pi} \int_{-\pi}^{0} \frac{f(x_{0} + t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$$

$$= \frac{2\pi}{\pi} \int_{0}^{\pi} \frac{f(x_{0} + t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt + \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x_{0} - t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$$

$$(4.77)$$

记
$$I_1 = \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 + t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt, I_2 = \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 - t)}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$$
,则由(4.77)式可得

$$\lim_{n \to \infty} S_n(x_0) = \lim_{n \to \infty} (I_1 + I_2). \tag{4.78}$$

于是

$$I_{1} = \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x_{0} + t) - A}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt + \frac{A}{\pi} \int_{0}^{\pi} \frac{1}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt, \tag{4.79}$$

$$I_2 = \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 - t) - B}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt + \frac{B}{\pi} \int_0^{\pi} \frac{1}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt. \tag{4.80}$$

由条件可知
$$\lim_{t\to 0^+} \frac{f(x_0+t)-A}{2\sin\frac{t}{2}} = \lim_{t\to 0^+} \frac{f(x_0+t)-A}{t} = \lim_{x\to x_0^+} \frac{f(x)-A}{x-x_0}$$
 存在, $\lim_{t\to 0^-} \frac{f(x_0-t)-B}{2\sin\frac{t}{2}} = \lim_{t\to 0^-} \frac{f(x_0-t)-B}{t} = \lim_{t\to 0^+} \frac{f(x_0-t)-B}{t} = \lim_{t\to$

$$\lim_{n \to \infty} \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 + t) - A}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt = 0, \quad \lim_{n \to \infty} \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 - t) - B}{2\sin\frac{t}{2}} \sin\left(\frac{2n + 1}{2}t\right) dt = 0. \tag{4.81}$$

下面计算 $\lim_{n\to\infty} \int_0^{\pi} \frac{1}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt$.

$$\left| \int_0^{\pi} \frac{1}{2\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt - \int_0^{\pi} \frac{1}{t} \sin\left(\frac{2n+1}{2}t\right) dt \right| = \left| \int_0^{\pi} \frac{t-2\sin\frac{t}{2}}{2t\sin\frac{t}{2}} \sin\left(\frac{2n+1}{2}t\right) dt \right|. \tag{4.82}$$

而 $\lim_{t\to 0} \frac{t-2\sin\frac{t}{2}}{2t\sin\frac{t}{2}} = \lim_{t\to 0} \frac{t-2\sin\frac{t}{2}}{t^2} = \lim_{t\to 0} \frac{t-2\sin\frac{t}{2}}{t^2} = \lim_{t\to 0} \frac{1-\cos\frac{t}{2}}{2t} = 0$,因此 $\frac{t-2\sin\frac{t}{2}}{2t\sin\frac{t}{2}}$ 在 $[0,\pi]$ 上无奇点且 Riemann 可

积, 从而由 Riemann 引理可知 $\lim_{n\to\infty}\int_0^{\pi}\frac{t-2\sin\frac{t}{2}}{2t\sin\frac{t}{2}}\sin\left(\frac{2n+1}{2}t\right)\mathrm{d}t=0$. 于是再结合 (4.82) 式可得

$$\lim_{n \to \infty} \int_0^{\pi} \frac{1}{2 \sin \frac{t}{2}} \sin \left(\frac{2n+1}{2} t \right) dt = \lim_{n \to \infty} \int_0^{\pi} \frac{1}{t} \sin \left(\frac{2n+1}{2} t \right) dt = \lim_{n \to \infty} \int_0^{\frac{2n+1}{2} \pi} \frac{\sin t}{t} dt = \int_0^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}. \tag{4.83}$$

$$\lim_{n \to \infty} I_1 = \lim_{n \to \infty} \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 + t) - A}{2 \sin \frac{t}{2}} \sin \left(\frac{2n + 1}{2} t \right) dt + \lim_{n \to \infty} \frac{A}{\pi} \int_0^{\pi} \frac{1}{2 \sin \frac{t}{2}} \sin \left(\frac{2n + 1}{2} t \right) dt = 0 + \frac{A}{\pi} \cdot \frac{\pi}{2} = \frac{A}{2},$$

$$\lim_{n \to \infty} I_2 = \lim_{n \to \infty} \frac{1}{\pi} \int_0^{\pi} \frac{f(x_0 - t) - B}{2 \sin \frac{t}{2}} \sin \left(\frac{2n + 1}{2} t \right) dt + \lim_{n \to \infty} \frac{B}{\pi} \int_0^{\pi} \frac{1}{2 \sin \frac{t}{2}} \sin \left(\frac{2n + 1}{2} t \right) dt = 0 + \frac{B}{\pi} \cdot \frac{\pi}{2} = \frac{B}{2}.$$

再结合 (4.78)式可得

$$\lim_{n \to \infty} S_n(x_0) = \lim_{n \to \infty} (I_1 + I_2) = \lim_{n \to \infty} I_1 + \lim_{n \to \infty} I_2 = \frac{A + B}{2}.$$

例题 **4.70** 设 $f \in C^1[0, \frac{\pi}{2}], f(0) = 0$, 计算

$$\lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{\sin^2(nx)}{\sin^2 x} f(x) dx.$$

注 由于 x = 0 可能是 $\frac{f(x)}{\sin^2 x}$ 在 $\left[0, \frac{\pi}{2}\right]$ 上的奇点, 因此我们需要将其转化为在 $\left[0, \frac{\pi}{2}\right]$ 上不含奇点的函数, 才能利

证明 注意到

$$\frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x)}{\sin^2 x} \sin^2(nx) dx = \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) dx + \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)x}{\sin^2 x} \sin^2(nx) dx. \tag{4.84}$$

先计算 $\lim_{n\to\infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) dx$. 由 $f \in C^1\left[0, \frac{\pi}{2}\right]$ 可知, $f \in D^2\left[0, \frac{\pi}{2}\right]$. 从而由 L'Hospital 法则可知

$$\lim_{x \to 0^+} \frac{f(x) - f'(0)x}{\sin^2 x} = \lim_{x \to 0^+} \frac{f'(x) - f'(0)}{2 \sin x \cos x} = \frac{1}{2} \lim_{x \to 0^+} \frac{f'(x) - f'(0)}{x} = \frac{f''(0)}{2}.$$

于是 $\frac{f(x)-f'(0)x}{\sin^2 x}$ 在 $\left[0,\frac{\pi}{2}\right]$ 上无奇点且 Riemann 可积, 从而绝对可积. 故由Riemann 引理可得

$$\lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) dx = \lim_{n \to \infty} \frac{1}{\pi} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} dx \int_0^{\pi} \sin^2 x dx$$

$$= \lim_{n \to \infty} \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} dx < \infty. \tag{4.85}$$

利用(4.85)式可得

$$\lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) dx = \lim_{n \to \infty} \frac{1}{\ln n} \cdot \lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) dx = 0.$$
 (4.86)

下面计算 $\lim_{n\to\infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)x}{\sin^2 x} \sin^2(nx) dx$. 对 $\forall n \in \mathbb{N}_+$, 我们有

$$\left| \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)x}{\sin^2 x} \sin^2(nx) dx - \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)}{x} \sin^2(nx) dx \right| = \left| \frac{f'(0)}{\ln n} \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} \cdot \sin^2(nx) dx \right|. \tag{4.87}$$

又
$$\lim_{x \to 0^+} \frac{x^2 - \sin^2 x}{x \sin^2 x} = \lim_{x \to 0^+} \frac{x^2 - \left(x - \frac{x^3}{6} + o(x^3)\right)^2}{x^3} = \lim_{x \to 0^+} \frac{-\frac{x^3}{3} + o(x^3)}{x^3} = -\frac{1}{3}$$
,故 $\frac{x^2 - \sin^2 x}{x \sin^2 x}$ 在 $\left[0, \frac{\pi}{2}\right]$ 上无奇点且 Riemann 可积,从而绝对可积.于是由Riemann 引理可得

$$\lim_{n \to \infty} f'(0) \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} \cdot \sin^2(nx) dx = \frac{1}{\pi} \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} dx \int_0^{\pi} \sin^2 x dx = \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} dx < \infty. \tag{4.88}$$

利用(4.88)式可得

$$\lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} \cdot \sin^2(nx) dx = \lim_{n \to \infty} \frac{1}{\ln n} \cdot \lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \frac{x^2 - \sin^2 x}{x \sin^2 x} \cdot \sin^2(nx) dx = 0.$$
 (4.89)

因此, 对(4.87)式两边同时令 $n \rightarrow \infty$, 利用(4.89)式可得

$$\lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)x}{\sin^2 x} \sin^2(nx) dx = \lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)}{x} \sin^2(nx) dx$$

$$= \lim_{n \to \infty} \frac{f'(0)}{\ln n} \int_0^{\frac{n\pi}{2}} \frac{\sin^2 x}{x} dx = \lim_{n \to \infty} \frac{f'(0) \int_0^{\frac{n\pi}{2}} \frac{\sin^2 x}{x} dx}{\ln \frac{n\pi}{2} - \ln \frac{\pi}{2}}.$$
(4.90)

而由函数 Stolz 定理可知

$$\lim_{x \to \infty} \frac{f'(0) \int_0^x \frac{\sin^2 t}{t} dt}{\ln x - \ln \frac{\pi}{2}} = f'(0) \lim_{n \to \infty} \frac{\int_x^{x+\pi} \frac{\sin^2 t}{t} dt}{\ln (x+\pi) - \ln x} = \frac{f'(0)}{\pi} \lim_{n \to \infty} x \int_x^{x+\pi} \frac{\sin^2 t}{t} dt. \tag{4.91}$$

由积分中值定理可知, 对 $\forall x > 0$, 存在 $\theta_x \in [x, x + \pi]$, 使得

$$\int_{x}^{x+\pi} \frac{\sin^2 t}{t} dt = \frac{1}{\theta_x} \int_{x}^{x+\pi} \sin^2 t dt = \frac{1}{\theta_x} \int_{0}^{\pi} \sin^2 t dt = \frac{\pi}{2\theta_x}$$

又由 $\theta_x \in [x, x + \pi]$ 可知, $\theta_x \sim x, x \to +\infty$. 从而(4.91)式可化为

$$\lim_{x \to \infty} \frac{f'(0) \int_0^x \frac{\sin^2 t}{t} dt}{\ln x - \ln \frac{\pi}{2}} = \frac{f'(0)}{\pi} \lim_{n \to \infty} x \int_x^{x + \pi} \frac{\sin^2 t}{t} dt = \frac{f'(0)}{\pi} \lim_{n \to \infty} \frac{\pi x}{2\theta_x} = \frac{f'(0)}{2}.$$

于是由 Heine 归结原则可得

$$\lim_{n \to \infty} \frac{f'(0) \int_0^{\frac{n\pi}{2}} \frac{\sin^2 x}{x} dx}{\ln \frac{n\pi}{2} - \ln \frac{\pi}{2}} = \lim_{x \to \infty} \frac{f'(0) \int_0^x \frac{\sin^2 t}{t} dt}{\ln x - \ln \frac{\pi}{2}} = \frac{f'(0)}{2}.$$
 (4.92)

利用(4.86)(4.92)式,对(4.84)式两边同时令 $n \to \infty$,可得

$$\lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x)}{\sin^2 x} \sin^2(nx) \, \mathrm{d}x = \lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f(x) - f'(0)x}{\sin^2 x} \sin^2(nx) \, \mathrm{d}x + \lim_{n \to \infty} \frac{1}{\ln n} \int_0^{\frac{\pi}{2}} \frac{f'(0)x}{\sin^2 x} \sin^2(nx) \, \mathrm{d}x = \frac{f'(0)}{2}.$$

第五章 不等式

定理 5.1 (Cauchy 不等式)

对任何 $n \in \mathbb{N}$, (a_1, a_2, \dots, a_n) , $(b_1, b_2, \dots, b_n) \in \mathbb{R}^n$, 有

$$\sum_{i=1}^{n} a_i^2 \cdot \sum_{i=1}^{n} b_i^2 \geqslant \left(\sum_{i=1}^{n} a_i b_i\right)^2.$$
 (5.1)

且等号成立条件为 (a_1, a_2, \cdots, a_n) , (b_1, b_2, \cdots, b_n) 线性相关.

证明 (i) 当 b_i 全为零时,(5.1)式左右两边均为零,结论显然成立.

(ii) 当
$$b_i$$
 不全为零时, 注意到 $\left(\sum_{i=1}^n (a_i + tb_i)\right)^2 \geqslant 0, \forall t \in \mathbb{R}$. 等价于
$$t^2 \sum_{i=1}^n b_i^2 + 2t \sum_{i=1}^n a_i b_i + \sum_{i=1}^n a_i^2 \geqslant 0, \forall t \in \mathbb{R}.$$

根据一元二次方程根的存在性定理, 可知 $\Delta = \left(\sum_{i=1}^n a_i b_i\right)^2 - \sum_{i=1}^n a_i^2 \cdot \sum_{i=1}^n b_i^2 \leqslant 0.$

从而
$$\sum_{i=1}^{n} a_i^2 \cdot \sum_{i=1}^{n} b_i^2 \geqslant \left(\sum_{i=1}^{n} a_i b_i\right)^2$$
. 下证(5.1)式等号成立的充要条件.

若(5.1)式等号成立,则

(i) 当 b_i 全为零时,因为零向量与任意向量均线性相关,所以此时 $(a_1,a_2,\cdots,a_n),(b_1,b_2,\cdots,b_n)$ 线性相关.

(ii) 当
$$b_i$$
 不全为零时, 此时我们有 $\Delta = \left(\sum_{i=1}^n a_i b_i\right)^2 - \sum_{i=1}^n a_i^2 \cdot \sum_{i=1}^n b_i^2 = 0$. 根据一元二次方程根的存在性定理, 可知存在 $t_0 \in \mathbb{R}$, 使得

$$\left(\sum_{i=1}^{n} (a_i + tb_i)\right)^2 = t_0^2 \sum_{i=1}^{n} b_i^2 + 2t_0 \sum_{i=1}^{n} a_i b_i + \sum_{i=1}^{n} a_i^2 = 0.$$

于是 $a_i + t_0 b_i = 0, i = 1, 2, \cdots, n$. 即 $(a_1, a_2, \cdots, a_n), (b_1, b_2, \cdots, b_n)$ 线性相关. 反之, 若 $(a_1, a_2, \cdots, a_n), (b_1, b_2, \cdots, b_n)$ 线性相关,则存在不全为零的 $\lambda, \mu \in \mathbb{R}$, 使得

$$\lambda a_i + \mu b_i = 0, i = 1, 2, \dots, n.$$

不妨设
$$\lambda \neq 0$$
, 则 $a_i = -\frac{\mu}{\lambda} b_i, i = 1, 2, \cdots, n$. 从而当 $t = \frac{\mu}{\lambda}$ 时, $\left(\sum_{i=1}^n (a_i + tb_i)\right)^2 = 0$. 即一元二次方程 $\left(\sum_{i=1}^n (a_i + tb_i)\right)^2 = t_0^2 \sum_{i=1}^n b_i^2 + 2t_0 \sum_{i=1}^n a_i b_i + \sum_{i=1}^n a_i^2 = 0$ 有实根 $\frac{\mu}{\lambda}$. 因此 $\Delta = \left(\sum_{i=1}^n a_i b_i\right)^2 - \sum_{i=1}^n a_i^2 \cdot \sum_{i=1}^n b_i^2 = 0$. 即(5.1)式等号成立.

例题 5.1 证明:

$$\sum_{i=1}^n \frac{1}{x_i} \geqslant \frac{n^2}{\sum\limits_{i=1}^n x_i}, \forall n \in \mathbb{N}, x_1, x_2, \cdots, x_n > 0.$$

证明 对 $\forall n \in \mathbb{N}, x_1, x_2, \dots, x_n > 0$, 由Cauchy 不等式可得

$$\sum_{i=1}^{n} \frac{1}{x_i} \cdot \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} \left(\frac{1}{\sqrt{x_i}}\right)^2 \cdot \sum_{i=1}^{n} \left(\sqrt{x_i}\right)^2 \geqslant \left(\sum_{i=1}^{n} \sqrt{x_i} \cdot \frac{1}{\sqrt{x_i}}\right)^2 = n^2.$$

故
$$\sum_{i=1}^{n} \frac{1}{x_i} \geqslant \frac{n^2}{\sum_{i=1}^{n} x_i}, \forall n \in \mathbb{N}, x_1, x_2, \cdots, x_n > 0.$$

例题 5.2 求函数 $y = \sqrt{x + 27} + \sqrt{13 - x} + \sqrt{x}$ 在定义域内的最大值和最小值.

笔记 首先我们猜测定义域的端点处可能存在最值, 然后我们通过简单的放缩就能得到 y(0) 就是最小值. 再利用Cauchy 不等式我们可以得到函数的最大值. 构造 Cauchy 不等式的思路是: 利用待定系数法构造相应的 Cauchy 不等式. 具体步骤如下:

设 A, B, C > 0, 则由 Cauchy 不等式可得

$$\left(\frac{1}{\sqrt{A}}\sqrt{Ax + 27A} + \frac{1}{\sqrt{B}}\sqrt{13B - Bx} + \frac{1}{\sqrt{C}}\sqrt{Cx}\right)^{2} \leqslant \left(\frac{1}{A} + \frac{1}{B} + \frac{1}{C}\right)\left[(A + C - B)x + 27A + 13B\right]$$

并且当且仅当 $\sqrt{A} \cdot \sqrt{Ax + 27A} = \sqrt{B} \cdot \sqrt{13B - Bx} = \sqrt{C} \cdot \sqrt{Cx}$ 时, 等号成立.

令A+C-B=0(因为要求解y的最大值,我们需要将y放大成一个不含x的常数),从而与上式联立得到方程组

$$\begin{cases} \sqrt{A} \cdot \sqrt{Ax + 27A} = \sqrt{B} \cdot \sqrt{13B - Bx} = \sqrt{C} \cdot \sqrt{Cx} \\ A + C - B = 0 \end{cases}$$

解得:A = 1,B = 3,C = 2,x = 9.

从而得到我们需要构造的 Cauchy 不等式为

$$\left(\sqrt{x+27} + \frac{1}{\sqrt{3}}\sqrt{39-3x} + \frac{1}{\sqrt{2}}\sqrt{2x}\right)^2 \leqslant \left(1 + \frac{1}{3} + \frac{1}{2}\right)(x+27+39-3x+2x)$$

并且当且仅当 $\sqrt{x+27} = \sqrt{3} \cdot \sqrt{39-3x} = \sqrt{2} \cdot \sqrt{2x}$, 即 x=9 时, 等号成立.

解 由题可知,函数 y 的定义域就是: $0 \le x \le 13$. 而

$$y(x) = \sqrt{x + 27} + \sqrt{[\sqrt{13 - x} + \sqrt{x}]^2}$$
$$= \sqrt{x + 27} + \sqrt{13 + 2\sqrt{x(13 - x)}}$$
$$\geqslant \sqrt{27} + \sqrt{13} = 3\sqrt{3} + \sqrt{13} = y(0)$$

于是 ν 的最小值为 $3\sqrt{3} + \sqrt{13}$. 由 Cauchy 不等式可得

$$y^{2}(x) = (\sqrt{x+27} + \sqrt{13-x} + \sqrt{x})^{2}$$

$$= (\sqrt{x+27} + \frac{1}{\sqrt{3}}\sqrt{39-3x} + \frac{1}{\sqrt{2}}\sqrt{2x})^{2}$$

$$\leq (1 + \frac{1}{3} + \frac{1}{2})(x+27+39-3x+2x)$$

$$= 121 = y^{2}(9)$$

即 $y(x) \leq y(9) = 11$. 并且当且仅当 $\sqrt{x+27} = \sqrt{3} \cdot \sqrt{39-3x} = \sqrt{2} \cdot \sqrt{2x}$, 即 x = 9 时, 等号成立. 故 y 的最大值为 11.

定理 5.2 (均值不等式)

设 $a_1, a_2, \cdots, a_n > 0$, 则下述函数是连续递增函数

$$f(r) = \begin{cases} \left(\frac{a_1^r + a_2^r + \dots + a_n^r}{n}\right)^{\frac{1}{r}}, r \neq 0\\ \sqrt[q]{a_1 a_2 \dots a_n}, \qquad r = 0 \end{cases}$$
 (5.2)

其中若 $r_1 \neq r_2$, 则 $f(r_1) = f(r_2)$ 的充要条件是 $a_1 = a_2 = \cdots = a_n$.

室记均值不等式最重要的特例是下面的均值不等式常用形式。

定理 5.3 (均值不等式常用形式)

设 $a_1, a_2, \dots, a_n > 0$, 则

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \leqslant \sqrt[n]{a_1 a_2 \cdots a_n} \le \frac{a_1 + a_2 + \dots + a_n}{n} \leqslant \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}}.$$

例题 **5.3** 设 $f(x) = 4x(x-1)^2, x \in (0,1)$, 求 f 的最大值.

解 由均值不等式常用形式可得

$$f(x) = 4x (x - 1)^{2} = 2 \cdot 2x (1 - x) (1 - x)$$

$$= 2 \cdot \left[\sqrt[3]{2x (1 - x) (1 - x)} \right]^{3}$$

$$\leq 2 \cdot \left[\frac{2x + 1 - x + 1 - x}{3} \right]^{3}$$

$$= 2 \cdot \left(\frac{2}{3} \right)^{3} = \frac{16}{27}$$

并且当且仅当 2x = 1 - x, 即 $x = \frac{1}{3}$ 时等号成立.

定理 5.4 (Bernoulli 不等式)

设 $x_1, x_2, \cdots, x_n \geq -1$ 且两两同号,则

$$(1+x_1)(1+x_2)\cdots(1+x_n) \geqslant 1+x_1+x_2+\cdots+x_n.$$

证明 当 n=1 时, 我们有 $1+x_1 \ge 1+x_1$, 结论显然成立.

假设当n=k时,结论成立.则当n=k+1时,由归纳假设可得

$$(1+x_1)(1+x_2)\cdots(1+x_{k+1}) \ge (1+x_1+x_2+\cdots+x_k)(1+x_{k+1})$$

$$= 1+x_1+x_2+\cdots+x_k+x_{k+1}+x_1x_{k+1}+x_2x_{k+1}+\cdots+x_kx_{k+1}$$

$$\ge 1+x_1+x_2+\cdots+x_k+x_{k+1}$$

故由数学归纳法可知,结论成立.

定理 5.5 (Bernoulli 不等式特殊形式)

设 $x \ge -1$,则

$$(1+x)^n \geqslant 1 + nx.$$

定理 5.6 (Jesen 不等式)

设
$$\lambda_i \geq 0, i = 1, 2, \dots, n, \sum_{i=1}^n \lambda_i = 1$$
, 则对下凸函数 f , 有

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \le \sum_{i=1}^{n} \lambda_i f(x_i).$$

对上凸函数 f, 有

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \ge \sum_{i=1}^{n} \lambda_i f(x_i).$$

定理 5.7 (Young 不等式)

对任何 $a, b \ge 0, \frac{1}{p} + \frac{1}{a} = 1, p > 1$ 有

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}.$$

全 笔记 若 $\frac{1}{p} + \frac{1}{q} = 1$, 则我们称 $p \neq q$ 共轭. 证明 (i) 当 a, b 至少有一个为零时, 结论显然成立.

(ii) 当 a, b 均不为零时, 我们有

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}$$
$$\Leftrightarrow \ln a + \ln b \leqslant \ln \left(\frac{a^p}{p} + \frac{b^q}{q}\right)$$
$$\Leftrightarrow \frac{1}{p} \ln a^p + \frac{1}{q} \ln b^q \leqslant \ln \left(\frac{a^p}{p} + \frac{b^q}{q}\right)$$

由Jesen 不等式和 $f(x) = \ln x$ 函数的上凸性可知,上述不等式成立. 故原结论也成立.

定理 5.8 (Hold 不等式)

设 $\frac{1}{p} + \frac{1}{a} = 1, p > 1, a_1, a_2, \dots, a_n \ge 0, b_1, b_2, \dots, b_n \ge 0,$ 则有

$$\sum_{k=1}^n a_k b_k \le \sqrt[p]{\sum_{k=1}^n a_k^p} \cdot \sqrt[q]{\sum_{k=1}^n b_k^q}.$$

证明 (i) 当 a_1, a_2, \dots, a_n 全为零时, 结论显然成立.

(ii) 当 a_1, a_2, \cdots, a_n 不全为零时,令

$$a'_{k} = \frac{a_{k}}{\sqrt[p]{\sum_{k=1}^{n} a_{k}^{p}}}, b'_{k} = \frac{b_{k}}{\sqrt[q]{\sum_{k=1}^{n} b_{k}^{q}}}, k = 1, 2, \dots, n.$$

从而只需证明 $\sum_{k=1}^{n} a'_k b'_k \le 1$. 由Young 不等式可得

$$\sum_{k=1}^{n} a'_k b'_k \leqslant \sum_{k=1}^{n} \left[\frac{(a'_k)^p}{p} + \frac{(b'_k)^q}{q} \right] = \sum_{k=1}^{n} \left(\frac{a_k^p}{p \sum_{k=1}^{n} a_k^p} + \frac{b_k^p}{q \sum_{k=1}^{n} b_k^q} \right)$$

$$= \frac{\sum\limits_{k=1}^{n} a_{k}^{p}}{p \sum\limits_{k=1}^{n} a_{k}^{p}} + \frac{\sum\limits_{k=1}^{n} b_{k}^{p}}{q \sum\limits_{k=1}^{n} b_{k}^{q}} = \frac{1}{p} + \frac{1}{q} = 1.$$

故原结论成立.

定理 5.9 (排序和不等式)

设 $\{a_1, a_2, \cdots, a_n\} \subset \mathbb{R}, \{b_1, b_2, \cdots, b_n\} \subset \mathbb{R}$ 满足

$$a_1 \le a_2 \le \cdots \le a_n, b_1 \le b_2 \le \cdots \le b_n.$$

 $\{c_1, c_2, \dots, c_n\}$ 是 $\{b_1, b_2, \dots, b_n\}$ 的一个排列,则有

$$\sum_{i=1}^{n} a_i b_{n+1-i} \le \sum_{i=1}^{n} a_i c_i \le \sum_{i=1}^{n} a_i b_i,$$

且等号成立的充要条件是 $a_i = a_j$, $1 \le i < j \le n$ 或者 $b_i = b_j$, $1 \le i < j \le n$.

拿 笔记 简单记为倒序和≤乱序和≤同序和.

定理 5.10 (Chebeshev 不等式)

设 $\{a_1, a_2, \cdots, a_n\} \subset \mathbb{R}, \{b_1, b_2, \cdots, b_n\} \subset \mathbb{R}$ 满足

$$a_1 \le a_2 \le \cdots \le a_n, b_1 \le b_2 \le \cdots \le b_n.$$

 $\{c_1, c_2, \dots, c_n\}$ 是 $\{b_1, b_2, \dots, b_n\}$ 的一个排列,则有

$$\sum_{i=1}^{n} a_i b_{n+1-i} \le \frac{1}{n} \sum_{i=1}^{n} a_i \sum_{i=1}^{n} b_i \le \sum_{i=1}^{n} a_i b_i.$$

且等号成立的充要条件是 $a_i = a_j, 1 \le i < j \le n$ 或者 $b_i = b_j, 1 \le i < j \le n$.

定理 5.11 (Chebeshev 不等式积分形式)

设 $p \in R[a,b]$ 且非负f,g在[a,b]上是单调函数,则

$$\left(\int_{a}^{b}p(x)f(x)\,dx\right)\left(\int_{a}^{b}p(x)g(x)\,dx\right)\geq\left(\int_{a}^{b}p(x)\,dx\right)\left(\int_{a}^{b}p(x)f(x)g(x)\,dx\right),f,g\,\dot{\mathbb{P}}\,dt$$

证明

$$\left(\int_{a}^{b} p(x)f(x)dx\right)\left(\int_{a}^{b} p(x)g(x)dx\right) - \left(\int_{a}^{b} p(x)dx\right)\left(\int_{a}^{b} p(x)f(x)g(x)dx\right)$$

$$= \left(\int_{a}^{b} p(x)f(x)dx\right)\left(\int_{a}^{b} p(y)g(y)dy\right) - \left(\int_{a}^{b} p(x)dx\right)\left(\int_{a}^{b} p(y)f(y)g(y)dy\right)$$

$$= \iint_{[a,b]^{2}} p(x)p(y)g(y)[f(x) - f(y)]dxdy$$

$$= \iint_{[a,b]^{2}} p(y)p(x)g(x)[f(y) - f(x)]dxdy$$

$$= \frac{1}{2}\iint_{[a,b]^{2}} p(x)p(y)[g(y) - g(x)][f(x) - f(y)]dxdy,$$

第六章 积分

6.1 积分常用结论

定理 6.1 (基本结论)

$$\sum_{n=1}^{m} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} \sum_{n=1}^{m} f_{n}(x) dx.$$

$$\sum_{n=1}^{m} \int_{a_{n-1}}^{a_{n}} f(x) dx = \int_{a_{0}}^{a_{m}} f(x) dx, \sum_{n=1}^{m} \int_{a_{n}}^{a_{n-1}} f(x) dx = \int_{a_{m}}^{a_{0}} f(x) dx.$$

证明 由定积分的性质易证.

命题 6.1

$$\ddot{\mathcal{H}} \ f \in R[a,+\infty), \lim_{n \to +\infty} \int_a^n |f(x)| dx \ \dot{\mathcal{F}}$$
在且 $\overline{\lim}_{x \to +\infty} |f(x)| = 0$,则 $\int_a^\infty f(x) dx$ 一定存在.

章 笔记 若已知 $\int_a^\infty f(x)dx$ 存在,则由 Heine 归结原则可知 $\lim_{n \to +\infty} \int_a^n f(x)dx$ 一定存在. 但是反过来, $\lim_{n \to +\infty} \int_a^n f(x)dx$ 只是 $\int_a^\infty f(x)dx$ 的一个子列极限,故 $\int_a^\infty f(x)dx$ 不一定存在. 还需要额外的条件才能使得 $\int_a^\infty f(x)dx$ 存在. 证明 对 $\forall x \geqslant a$,一定存在 $n \in \mathbb{N}$,使得 $n \leqslant x < n+1$. 从而可得

$$\int_{a}^{x} f(x)dx = \int_{a}^{n} f(x)dx + \int_{n}^{x} f(x)dx.$$

$$(6.1)$$

并且

$$\int_{n}^{x} f(x)dx \leqslant \int_{n}^{x} |f(x)| dx \leqslant \int_{n}^{n+1} |f(x)| dx \leqslant \sup_{y \ge n} |f(y)|.$$
 (6.2)

对(6.2)式两边同时令 $x \to +\infty$,则 $n \to +\infty$. 进而可得

$$\lim_{x \to +\infty} \int_{n}^{x} f(x) dx \leqslant \lim_{n \to +\infty} \sup_{y \geqslant n} |f(y)| = \overline{\lim}_{x \to +\infty} |f(x)|.$$

由于此时 $\lim_{x \to +\infty} f(x) = 0$, 因此 $\overline{\lim}_{x \to +\infty} |f(x)| = \lim_{x \to +\infty} |f(x)| = \lim_{x \to +\infty} f(x) = 0$. 从而

$$\lim_{x \to +\infty} \int_{n}^{x} f(x) dx \leqslant \overline{\lim}_{x \to +\infty} |f(x)| = 0.$$

故 $\lim_{x\to+\infty}\int_{n}^{x}f(x)dx=0$. 于是再对(6.1)式两边同时令 $x\to+\infty$, 则 $n\to+\infty$. 从而可得

$$\int_a^\infty f(x)dx = \lim_{x \to +\infty} \int_a^x f(x)dx = \lim_{n \to +\infty} \int_a^n f(x)dx + \lim_{x \to +\infty} \int_n^x f(x)dx = \lim_{n \to +\infty} \int_a^n f(x)dx.$$

又因为此时 $\lim_{n\to+\infty} \int_a^n f(x)dx$ 存在, 所以 $\int_a^\infty f(x)dx$ 也存在.

定理 6.2

设 f(x) 在 [a,b] 上可积,则 |f(x)| 在 [a,b] 上也可积 (即绝对可积),且成立

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx.$$

6.2 积分性态分析

例题 6.1 已知 $f(x) \in C[a,b]$, 且

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} x f(x) dx = 0.$$

证明: f(x) 在 (a,b) 上至少 2 个零点.

证明 设 $F_1(x) = \int_a^x f(t)dt$, 则 $F_1(a) = F_1(b) = 0$. 再设 $F_2(x) = \int_a^x F_1(t)dt = \int_a^x \left[\int_a^t f(s)ds \right] dt$, 则 $F_2(a) = 0$, $F_2'(x) = F_1(x)$, $F_2''(x) = F_1'(x) = f(x)$. 由条件可知

$$0 = \int_{a}^{b} x f(x) dx = \int_{a}^{b} x F_{1}'(x) dx = \int_{a}^{b} x dF_{1}(x) = x F_{1}(x) \Big|_{a}^{b} - \int_{a}^{b} F_{1}(x) dx = -F_{2}(b).$$

于是由 Rolle 中值定理可知, 存在 $\xi \in (a,b)$, 使得 $F_2'(\xi) = F_1(\xi) = 0$. 从而再由 Rolle 中值定理可知, 存在 $\eta_1 \in (a,\xi), \eta_2 \in (\xi,b)$, 使得 $F_1'(\eta_1) = F_1'(\eta_2) = 0$. 即 $f(\eta_1) = f(\eta_2) = 0$.

例题 6.2 已知 $f(x) \in C[a,b]$, 且

$$\int_{a}^{b} x^{k} f(x) dx = 0, k = 0, 1, 2, \dots, n.$$

证明: f(x) 在 (a,b) 上至少 n+1 个零点.

🔮 笔记 利用分部积分转换导数的技巧.

证明 令 $F(x) = \int_a^x \int_a^{x_n} \cdots \int_a^{x_3} \left[\int_a^{x_2} f(x_1) dx_1 \right] dx_2 \cdots dx_n$. 则 $F(a) = F'(a) = \cdots = F^{(n)}(a) = 0, F^{(n+1)}(x) = f(x)$. 由已知条件,再反复分部积分,可得当 $1 \le k \le n$ 且 $k \in \mathbb{N}$ 时,有

$$0 = \int_{a}^{b} f(x) dx = \int_{a}^{b} F^{(n+1)}(x) dx = F^{(n)}(x) \Big|_{a}^{b} = F^{(n)}(b),$$

$$0 = \int_{a}^{b} x f(x) dx = \int_{a}^{b} x F^{(n+1)}(x) dx = \int_{a}^{b} x dF^{(n)}(x) = x F^{(n)}(x) \Big|_{a}^{b} - \int_{a}^{b} F^{(n)}(x) dx = -F^{(n-1)}(b),$$

.

$$0 = \int_{a}^{b} x^{n} f(x) dx = \int_{a}^{b} x^{n} F^{(n+1)}(x) dx = \int_{a}^{b} x^{n} dF^{(n)}(x) = x^{n} F^{(n)}(x) \Big|_{a}^{b} - n \int_{a}^{b} x^{n-1} F^{(n)}(x) dx$$
$$= -n \int_{a}^{b} x^{n-1} F^{(n)}(x) dx = \dots = (-1)^{n} n! \int_{a}^{b} F_{\prime}(x) dx = (-1)^{n} n! F(b).$$

从而 $F(b) = F'(b) = \cdots = F^{(n)}(b) = 0$. 于是由 Rolle 中值定理可知, 存在 $\xi_1^1 \in (a,b)$, 使得 $F'(\xi_1^1) = 0$. 再利用 Rolle 中值定理可知存在 $\xi_1^2, \xi_2^2 \in (a,b)$, 使得 $F''(\xi_1^2) = F''(\xi_2^2) = 0$. 反复利用 Rolle 中值定理可得, 存在 $\xi_1^{n+1}, \xi_2^{n+1}, \cdots, \xi_{n+1}^{n+1} \in (a,b)$, 使得 $F^{(n+1)}(\xi_1^{n+1}) = F^{(n+1)}(\xi_2^{n+1}) = \cdots = F^{(n+1)}(\xi_{n+1}^{n+1}) = 0$. 即 $f(\xi_1^{n+1}) = f(\xi_2^{n+1}) = \cdots = f(\xi_{n+1}^{n+1}) = 0$.

例题 6.3 己知 $f(x) \in D^2[0,1]$, 且

$$\int_0^1 f(x) \, dx = \frac{1}{6}, \int_0^1 x f(x) \, dx = 0, \int_0^1 x^2 f(x) \, dx = \frac{1}{60}.$$

证明: 存在 $\xi \in (0,1)$, 使得 $f''(\xi) = 16$.

笔记 构造 $g(x) = f(x) - (8x^2 - 9x + 2)$ 的原因: 受到上一题的启发, 我们希望找到一个 g(x) = f(x) - p(x), 使得

$$\int_0^1 x^k g(x) dx = \int_0^1 x^k [f(x) - p(x)] dx = 0, \quad k = 0, 1, 2.$$

成立.即

$$\int_0^1 x^k f(x) dx = \int_0^1 x^k p(x) dx, \quad k = 0, 1, 2.$$

待定 $p(x) = ax^2 + bx + c$, 则代入上述公式, 再结合已知条件可得

$$\frac{1}{6} = \int_0^1 p(x)dx = \int_0^1 \left(ax^2 + bx + c\right)dx = \frac{a}{3} + \frac{b}{2} + c,$$

$$0 = \int_0^1 x p(x) dx = \int_0^1 \left(ax^3 + bx^2 + cx \right) dx = \frac{a}{4} + \frac{b}{3} + \frac{c}{2},$$

$$\frac{1}{60} = \int_0^1 x^2 p(x) dx = \int_0^1 \left(ax^4 + bx^3 + cx^2 \right) dx = \frac{a}{5} + \frac{b}{4} + \frac{c}{3}.$$

解得:a = 8, b = -9, c = 2. 于是就得到 $g(x) = f(x) - (8x^2 - 9x + 2)$.

$$\int_0^1 x^k g(x) dx = 0, \quad k = 0, 1, 2.$$

再令
$$G(x) = \int_0^x \left[\int_0^t \left(\int_0^s g(y) dy \right) ds \right] dt$$
, 则 $G(0) = G'(0) = G''(0) = 0$, $G'''(x) = g(x)$. 利用分部积分可得
$$0 = \int_0^1 g(x) dx = \int_0^1 G'''(x) dx = G''(1),$$

$$0 = \int_0^1 xg(x) dx = \int_0^1 xG'''(x) dx = \int_0^1 xdG''(x) = xG''(x) \Big|_0^1 - \int_0^1 G''(x) dx = -G'(1),$$

$$0 = \int_0^1 x^2g(x) dx = \int_0^1 x^2G'''(x) dx = \int_0^1 x^2dG''(x) = x^2G''(x) \Big|_0^1 - 2\int_0^1 xG''(x) dx$$

$$= -2\int_0^1 xdG'(x) = 2\int_0^1 G'(x) dx - 2xG'(x) \Big|_0^1 = 2G(1).$$

从而 G(1) = G'(1) = G''(1) = 0. 于是由 Rolle 中值定理可知, 存在 $\xi_1^1 \in (0,1)$, 使得 $G'(\xi_1^1) = 0$. 再利用 Rolle 中值定理可知, 存在 $\xi_1^2, \xi_2^2 \in (0,1)$, 使得 $G''(\xi_1^2) = G''(\xi_2^2) = 0$. 反复利用 Rolle 中值定理可得, 存在 $\xi_1^3, \xi_2^3, \xi_3^3 \in (0,1)$, 使得 $G'''(\xi_1^3) = G'''(\xi_2^3) = G'''(\xi_3^3) = 0$. 即 $g(\xi_1^3) = g(\xi_2^3) = g(\xi_3^3) = 0$. 再反复利用 Rolle 中值定理可得, 存在 $\xi \in (0,1)$, 使得 $g''(\xi) = 0$. 即 $f''(\xi) = 16$.

例题 6.4

证明

例题 6.5

证明

例题 6.6

证明

例题 6.7

证明

第七章 函数性态分析

7.1 连续函数

命题 7.1

若f是区间I上处处不为零的连续函数,则f在区间I上要么恒大于零,要么恒小于零.

证明 用反证法, 若存在 $x_1, x_2 \in I$, 使得 $f(x_1) = f(x_2) = 0$, 则由零点存在定理可知, 存在 $\xi \in (\min x_1, x_2, \max x_1, x_2)$, 使得 $f(\xi) = 0$ 矛盾.

第八章 小技巧

8.1 长除法

例题 8.1 利用多项式除法计算 Taylor 级数和 Laurent 级数
已知
$$\sin x = x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + \cdots$$
, $\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 - \cdots$.
1. 求 $\tan x$. 2. 求 $\frac{1}{\sin^2 x}$.

笔记 实际问题中需要多展开几项,展开得越多,得到的结果也越多.

解 1. 根据多项式除法可得

因此
$$\tan x = \frac{\sin x}{\cos x} = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \cdots$$
.

2. 根据多项式乘法可得

$$\sin^2 x = \left(x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + \dots\right) \left(x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + \dots\right) = x^2 - \frac{1}{3}x^4 + \dots$$

再根据多项式除法可得

因此
$$\frac{1}{\sin^2 r} = \frac{1}{r^2} - \frac{1}{3} + \cdots$$
.

8.2 将多项式分式分解为其部分因式的和

例题 **8.2** 1. 分解 a > 0, $\frac{1}{(1+x^2)(1+ax)}$.

2. 分解
$$\frac{1}{(1+x^2)(1+x)^2}$$
3. 分解
$$\frac{1}{(1+x^2)^2(1+x)}$$

3. 分解
$$\frac{1}{(1+x^2)^2(1+x)}$$
.

4. 分解
$$\frac{1}{(1+x^2)^2(1+x)^2}$$
.

$$\frac{1}{(1+x^2)(1+ax)} = \frac{Ax+B}{1+x^2} + \frac{C}{1+ax}.$$
 (8.1)

其中 A, B, C 均为常数.

解法一(待定系数法):

将(8.1)式右边通分得到

$$\frac{Ax+B}{1+x^2} + \frac{C}{1+ax} = \frac{(Ax+B)(1+ax) + C(1+x^2)}{(1+x^2)(1+ax)} = \frac{(Aa+C)x^2 + (A+Ba)x + B + C}{(1+x^2)(1+ax)}.$$

比较上式左右两边分子各项系数可行

$$\begin{cases} Aa + C = 0 \\ A + Ba = 0 \\ B + C = 1 \end{cases}$$

解得: $A = -\frac{a}{1+a^2}$, $B = \frac{1}{1+a^2}$, $C = \frac{a^2}{1+a^2}$. 于是原式可分解为

$$\frac{1}{(1+x^2)(1+ax)} = \frac{-\frac{a}{1+a^2}x + \frac{1}{1+a^2}}{1+x^2} + \frac{\frac{a^2}{1+a^2}}{1+ax}$$

解法二(留数法):

(8.1) 式两边同时乘
$$1 + ax$$
, 得到 $\frac{1}{1+x^2} = \frac{Ax+B}{1+x^2} \cdot (1+ax) + C$. 再令 $x \to -\frac{1}{a}$, 得 $C = \frac{1}{1+\frac{1}{a^2}} = \frac{a^2}{1+a^2}$.

(8.1) 式两边同时乘
$$1 + x^2$$
, 得到 $\frac{1}{1 + ax} = Ax + B + \frac{C}{1 + ax} \cdot (1 + x^2)$. 再分别令 $x \to \pm i$, 可得

$$\begin{cases} A\mathbf{i} + B = \frac{1}{1 + a\mathbf{i}} \\ -A\mathbf{i} + B = \frac{1}{1 - a\mathbf{i}} \end{cases}$$

解得: $A = -\frac{a}{1+a^2}$, $B = \frac{1}{1+a^2}$. 于是原式可分解为

$$\frac{1}{(1+x^2)(1+ax)} = \frac{-\frac{a}{1+a^2}x + \frac{1}{1+a^2}}{1+x^2} + \frac{\frac{a^2}{1+a^2}}{1+ax}.$$

解法三(留数法+待定系数法):

(8.1) 式两边同时乘
$$1 + ax$$
, 得到 $\frac{1}{1+x^2} = \frac{Ax+B}{1+x^2} \cdot (1+ax) + C$. 再令 $x \to -\frac{1}{a}$, 得 $C = \frac{1}{1+\frac{1}{a}} = \frac{a^2}{1+a^2}$.

容易直接观察出(8.1)式右边通分后分子的最高次项系数为 Aa+C, 常数项为 B+C. 并将其与(8.1)式左边的分 子对比, 可以得到

$$\begin{cases} Aa + C = 0 \\ B + C = 1 \end{cases}$$

解得: $A = -\frac{a}{1+a^2}$, $B = \frac{1}{1+a^2}$. 于是原式可分解为

$$\frac{1}{(1+x^2)(1+ax)} = \frac{-\frac{a}{1+a^2}x + \frac{1}{1+a^2}}{1+x^2} + \frac{\frac{a^2}{1+a^2}}{1+ax}.$$

2. 根据代数学知识我们可以设

$$\frac{1}{(1+x^2)(1+x)^2} = \frac{Ax+B}{1+x^2} + \frac{C}{1+x} + \frac{D}{(1+x)^2}.$$
 (8.2)

其中 A, B, C, D 均为常数.

(8.2)式两边同时乘 $(1+x)^2$, 得到

$$\frac{1}{1+x^2} = \frac{Ax+B}{1+x^2} \cdot (1+x)^2 + C(1+x) + D. \tag{8.3}$$

再令 $x \to -1$, 可得 $D = \frac{1}{2}$. 对(8.3)式两边同时求导得到

$$\left. \frac{-2x}{\left(1+x^2\right)^2} \right|_{x \to -1} = \left[\frac{Ax+B}{1+x^2} \cdot (1+x)^2 \right]' \Big|_{x \to -1} + C = C.$$

从而 $C = \frac{1}{2}$. 令(8.2)中的 x = 0, 得到 1 = B + C + D, 将 $C = D = \frac{1}{2}$ 代入解得:B = 0. 再令(8.2)中的 x = 1, 得到 $\frac{1}{8} = \frac{A + B}{2} + \frac{C}{2} + \frac{D}{4}$, 将 $C = D = \frac{1}{2}$, B = 0 代入解得: $A = -\frac{1}{2}$. 于是原式可分解为

$$\frac{1}{\left(1+x^2\right)\left(1+x\right)^2} = \frac{-x}{2\left(1+x^2\right)} + \frac{1}{2+2x} + \frac{1}{2\left(1+x\right)^2}.$$

例题 **8.3** 分解 $\frac{1}{1+x^4}$. 解 首先我们注意到

$$\frac{1}{1+x^4} = \frac{1}{(1+x^2) - 2x^2} = \frac{1}{\left(x^2 - \sqrt{2}x + 1\right)\left(x^2 + \sqrt{2}x + 1\right)}.$$

然后根据代数学知识我们可以设

$$\frac{1}{1+x^4} = \frac{1}{\left(x^2 - \sqrt{2}x + 1\right)\left(x^2 + \sqrt{2}x + 1\right)} = \frac{Ax + B}{x^2 - \sqrt{2}x + 1} + \frac{Cx + D}{x^2 + \sqrt{2}x + 1}.$$
 (8.4)

其中 A, B, C, D 均为常数. 将上式右边通分可得

$$\frac{1}{\left(x^2 - \sqrt{2}x + 1\right)\left(x^2 + \sqrt{2}x + 1\right)} = \frac{(Ax + B)\left(x^2 + \sqrt{2}x + 1\right) + (Cx + D)\left(x^2 - \sqrt{2}x + 1\right)}{\left(x^2 - \sqrt{2}x + 1\right)\left(x^2 + \sqrt{2}x + 1\right)}.$$

比较上式左右两边分子各项系数可得

$$\begin{cases} B+D=1\\ A+\sqrt{2}B+C-\sqrt{2}D=0\\ A\sqrt{2}+B-C\sqrt{2}+D=0\\ A+C=0 \end{cases}$$

解得: $A = -\frac{\sqrt{2}}{4}, B = \frac{1}{2}, C = \frac{\sqrt{2}}{4}, D = \frac{1}{2}.$ 于是原式可分解为

$$\frac{1}{1+x^4} = \frac{-\frac{\sqrt{2}}{4}x + \frac{1}{2}}{x^2 - \sqrt{2}x + 1} + \frac{\frac{\sqrt{2}}{4}x + \frac{1}{2}}{x^2 + \sqrt{2}x + 1}.$$

例题 **8.4** 分解 $\frac{x^4}{(1+x)(1+x^2)}$.

解 先利用多项式除法用 x^4 除以 $(1+x)(1+x^2)$ 得到 $x^4=(x-1)(1+x)\left(1+x^2\right)+1$. 从而

$$\frac{x^4}{(1+x)\left(1+x^2\right)} = \frac{(x-1)\left(1+x\right)\left(1+x^2\right)+1}{(1+x)\left(1+x^2\right)} = x-1+\frac{1}{(1+x)\left(1+x^2\right)}.$$

然后再利用多项式分式的分解方法 (待定系数法和留数法) 将 $\frac{1}{(1+x)\left(1+x^2\right)}$ 分解为部分因式的和. 最后我们可将原式分解为

$$\frac{x^4}{(1+x)(1+x^2)} = x - 1 + \frac{1}{2+2x} + \frac{-x+1}{2+2x^2}.$$