Muon pair production

Muon pair production is the interaction $e^- + e^+ \rightarrow \mu^- + \mu^+$.

Define the following momentum vectors and spinors. Symbol E is beam energy. Symbol p is electron momentum $p = \sqrt{E^2 - m^2}$ where m is electron mass 0.51 MeV. Symbol ρ is muon mementum $\rho = \sqrt{E^2 - M^2}$ where M is muon mass 106 MeV.

$$p_{1} = \begin{pmatrix} E \\ 0 \\ 0 \\ p \end{pmatrix} \qquad p_{2} = \begin{pmatrix} E \\ 0 \\ 0 \\ -p \end{pmatrix} \qquad p_{3} = \begin{pmatrix} E \\ \rho \sin \theta \cos \phi \\ \rho \sin \theta \sin \phi \\ \rho \cos \theta \\ \text{outbound} \qquad p_{4} = \begin{pmatrix} E \\ -\rho \sin \theta \cos \phi \\ -\rho \sin \theta \sin \phi \\ -\rho \cos \theta \\ \text{outbound anti-muon} \end{pmatrix}$$

$$u_{11} = \begin{pmatrix} E + m \\ 0 \\ p \\ 0 \end{pmatrix} \qquad v_{21} = \begin{pmatrix} -p \\ 0 \\ E + m \\ 0 \end{pmatrix} \qquad u_{31} = \begin{pmatrix} E + M \\ 0 \\ p_{3}^{z} \\ p_{3}^{x} + ip_{3}^{y} \\ p_{3}^{x} + ip_{3}^{y} \end{pmatrix} \qquad v_{41} = \begin{pmatrix} p_{4}^{z} \\ p_{4}^{x} + ip_{4}^{y} \\ E + M \\ 0 \end{pmatrix} \qquad \text{outbound anti-muon}$$

$$u_{12} = \begin{pmatrix} 0 \\ E + m \\ 0 \\ -p \end{pmatrix} \qquad v_{22} = \begin{pmatrix} 0 \\ p \\ 0 \\ E + m \end{pmatrix} \qquad u_{32} = \begin{pmatrix} 0 \\ E + M \\ p_{3}^{x} - ip_{3}^{y} \\ -p_{3}^{z} \end{pmatrix} \qquad v_{42} = \begin{pmatrix} p_{4}^{x} - ip_{4}^{y} \\ -p_{4}^{z} \\ 0 \\ E + M \end{pmatrix} \qquad \text{outbound anti-muon}$$

$$u_{10} = \begin{pmatrix} 0 \\ E + M \\ 0 \\ -p \end{pmatrix} \qquad v_{22} = \begin{pmatrix} 0 \\ p \\ 0 \\ E + m \end{pmatrix} \qquad v_{31} = \begin{pmatrix} 0 \\ E + M \\ p_{3}^{x} - ip_{3}^{y} \\ -p_{3}^{z} \end{pmatrix} \qquad v_{42} = \begin{pmatrix} p_{4}^{x} - ip_{4}^{y} \\ -p_{4}^{z} \\ 0 \\ E + M \end{pmatrix} \qquad \text{outbound anti-muon}$$

$$v_{11} = \begin{pmatrix} 0 \\ E + M \\ 0 \\ -p_{3}^{z} - ip_{3}^{y} \\ 0 \\ -p_{3}^{z} - ip_{3}^{y} \end{pmatrix} \qquad v_{42} = \begin{pmatrix} p_{4}^{x} - ip_{4}^{y} \\ -p_{4}^{z} - ip_{4}^{y} \\ 0 \\ -p_{3}^{z} - ip_{3}^{y} \end{pmatrix} \qquad v_{42} = \begin{pmatrix} p_{4}^{x} - ip_{4}^{y} \\ -p_{4}^{z} - ip_{4}^{y} \\ 0 \\ -p_{3}^{z} - ip_{3}^{y} \end{pmatrix} \qquad v_{42} = \begin{pmatrix} p_{4}^{x} - ip_{4}^{y} \\ -p_{4}^{z} - ip_{4}^{y} \\ 0 \\ -p_{3}^{z} - ip_{4}^{y} - ip_{4}^{y} \end{pmatrix} \qquad v_{43} = \begin{pmatrix} p_{4}^{x} - ip_{4}^{y} \\ -p_{4}^{z} - ip_{4}^{y} \\ 0 \\ -p_{4}^{z} - ip_{4}^{y} - ip_{4}^{y} - ip_{4}^{y} - ip_{4}^{y} \\ 0 \\ -p_{5}^{z} - ip_{5}^{y} -$$

The spinors are not individually normalized. Instead, a combined spinor normalization constant $N = (E + m)^2 (E + M)^2$ will be used.

This is the probability density for spin state *abcd*. The formula is derived from Feynman diagrams for muon pair production.

$$\left| \mathcal{M}_{abcd} \right|^2 = \frac{e^4}{Ns^2} \left| (\bar{u}_{3c} \gamma_{\mu} v_{4d}) (\bar{v}_{2b} \gamma^{\mu} u_{1a}) \right|^2$$

Symbol e is electron charge and

$$s = (p_1 + p_2)^2 = 4E^2$$

The expected probability density $\langle |\mathcal{M}|^2 \rangle$ is computed by summing $|\mathcal{M}_{abcd}|^2$ over all spin states and dividing by the number of inbound states. There are four inbound states.

$$\langle |\mathcal{M}|^2 \rangle = \frac{1}{4} \sum_{a=1}^2 \sum_{b=1}^2 \sum_{c=1}^2 \sum_{d=1}^2 \left| \mathcal{M}_{abcd} \right|^2$$
$$= \frac{e^4}{4Ns^2} \sum_{a=1}^2 \sum_{b=1}^2 \sum_{c=1}^2 \sum_{d=1}^2 \left| (\bar{u}_{3c} \gamma_{\mu} v_{4d}) (\bar{v}_{2b} \gamma^{\mu} u_{1a}) \right|^2$$

The Casimir trick uses matrix arithmetic to compute sums.

$$\langle |\mathcal{M}|^2 \rangle = \frac{e^4}{4s^2} \operatorname{Tr} \left((\not p_3 + M) \gamma^{\mu} (\not p_4 - M) \gamma^{\nu} \right) \operatorname{Tr} \left((\not p_2 - m) \gamma_{\mu} (\not p_1 + m) \gamma_{\nu} \right)$$

The following formula is equivalent to the Casimir trick. (Recall that $a \cdot b = a^{\mu}g_{\mu\nu}b^{\nu}$)

$$\langle |\mathcal{M}|^2 \rangle = \frac{e^4}{4s^2} \left(32(p_1 \cdot p_3)(p_2 \cdot p_4) + 32(p_1 \cdot p_4)(p_2 \cdot p_3) + 32m^2(p_3 \cdot p_4) + 32M^2(p_1 \cdot p_2) + 64m^2M^2 \right)$$

For the momentum vectors given above the result is

$$\langle |\mathcal{M}|^2 \rangle = e^4 \left(1 + \cos^2 \theta + \frac{m^2 + M^2}{E^2} \sin^2 \theta + \frac{m^2 M^2}{E^4} \cos^2 \theta \right)$$

For high energy experiments $E \gg M$ a useful approximation is

$$\langle |\mathcal{M}|^2 \rangle = e^4 \left(1 + \cos^2 \theta \right)$$

Cross section

The differential cross section is

$$\frac{d\sigma}{d\Omega} = \frac{\langle |\mathcal{M}|^2 \rangle}{4(4\pi\varepsilon_0)^2 s}, \quad s = (p_1 + p_2)^2 = 4E^2$$

For high energy experiments we have

$$\langle |\mathcal{M}|^2 \rangle = e^4 \left(1 + \cos^2 \theta \right)$$

Substitute for $\langle |\mathcal{M}|^2 \rangle$.

$$\frac{d\sigma}{d\Omega} = \frac{e^4}{4(4\pi\varepsilon_0)^2 s} \left(1 + \cos^2\theta\right)$$

Noting that

$$e^2 = 4\pi\varepsilon_0 \alpha \hbar c$$

we can also write

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 (\hbar c)^2}{4s} \left(1 + \cos^2 \theta \right)$$

We can integrate $d\sigma$ to obtain a cumulative distribution function. Let $I(\theta)$ be the following integral of $d\sigma$. (The $\sin \theta$ is from $d\Omega = \sin \theta \, d\theta \, d\phi$.)

$$I(\theta) = \int (1 + \cos^2 \theta) \sin \theta \, d\theta$$

The result is

$$I(\theta) = -\frac{\cos^3 \theta}{3} - \cos \theta$$

The cumulative distribution function is

$$F(\theta) = \frac{I(\theta) - I(0)}{I(\pi) - I(0)} = -\frac{\cos^3 \theta}{8} - \frac{3\cos \theta}{8} + \frac{1}{2}, \quad 0 \le \theta \le \pi$$

The probability of observing scattering events in the interval θ_1 to θ_2 is

$$P(\theta_1 \le \theta \le \theta_2) = F(\theta_2) - F(\theta_1)$$

Let N be the number of scattering events from an experiment. Then the number of scattering events in the interval θ_1 to θ_2 is predicted to be

$$N\left(F(\theta_2) - F(\theta_1)\right)$$

The probability density function is

$$f(\theta) = \frac{dF(\theta)}{d\theta} = \frac{3}{8} (1 + \cos^2 \theta) \sin \theta$$

Note that if we had carried through the $\alpha^2(\hbar c)^2/4s$ in $I(\theta)$, it would have cancelled out in $F(\theta)$.

Data from SLAC PEP experiment

See www.hepdata.net/record/ins216031, Table 1, $s = (29.0 \,\text{GeV})^2$.

x	y
-0.925	67.08
-0.85	58.67
-0.75	54.66
-0.65	51.72
-0.55	43.70
-0.45	41.12
-0.35	39.71
-0.25	35.34
-0.15	33.35
-0.05	34.69
0.05	34.05
0.15	34.48
0.25	34.66
0.35	35.23
0.45	35.60
0.55	40.13
0.65	42.56
0.75	46.37
0.85	49.28
0.925	55.70

Data x and y have the following relationship with the differential cross section formula.

$$x = \cos \theta, \quad y = s \frac{d\sigma}{d\cos \theta} = 2\pi s \frac{d\sigma}{d\Omega}$$

The cross section formula is

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4s} \left(1 + \cos^2 \theta \right) \times (\hbar c)^2$$

To compute predicted values \hat{y} , multiply by 10^{37} to convert square meters to nanobarns.

$$\hat{y} = 2\pi s \frac{d\sigma}{d\Omega} = \frac{\pi\alpha^2}{2} (1 + x^2) \times (\hbar c)^2 \times 10^{37}$$

The following table shows predicted values \hat{y} .

\boldsymbol{x}	y	\hat{y}
-0.925	67.08	60.44
-0.85	58.67	56.10
-0.75	54.66	50.89
-0.65	51.72	46.33
-0.55	43.70	42.42
-0.45	41.12	39.17
-0.35	39.71	36.56
-0.25	35.34	34.61
-0.15	33.35	33.30
-0.05	34.69	32.65
0.05	34.05	32.65
0.15	34.48	33.30
0.25	34.66	34.61
0.35	35.23	36.56
0.45	35.60	39.17
0.55	40.13	42.42
0.65	42.56	46.33
0.75	46.37	50.89
0.85	49.28	56.10
0.925	55.70	60.44

The coefficient of determination \mathbb{R}^2 measures how well predicted values fit the data.

$$R^2 = 1 - \frac{\sum (y - \hat{y})^2}{\sum (y - \bar{y})^2} = 0.87$$

The result indicates that the model $d\sigma$ explains 87% of the variance in the data.

Electroweak model

The following differential cross section formula from electroweak theory results in a better fit to the data.¹

$$\frac{d\sigma}{d\Omega} = F(s)(1 + \cos^2\theta) + G(s)\cos\theta$$

where

$$F(s) = \frac{\alpha^2}{4s} \left(1 + \frac{g_V^2}{\sqrt{2}\pi} \left(\frac{m_Z^2}{s - m_Z^2} \right) \left(\frac{sG}{\alpha} \right) + \frac{(g_A^2 + g_V^2)^2}{8\pi^2} \left(\frac{m_Z^2}{s - m_Z^2} \right)^2 \left(\frac{sG}{\alpha} \right)^2 \right)$$

$$G(s) = \frac{\alpha^2}{4s} \left(\frac{\sqrt{2}g_A^2}{\pi} \left(\frac{m_Z^2}{s - m_Z^2} \right) \left(\frac{sG}{\alpha} \right) + \frac{g_A^2 g_V^2}{\pi^2} \left(\frac{m_Z^2}{s - m_Z^2} \right)^2 \left(\frac{sG}{\alpha} \right)^2 \right)$$

¹F. Mandl and G. Shaw, Quantum Field Theory Revised Edition, 316.

and

$$g_A = -0.5$$

 $g_V = -0.0348$
 $m_Z = 91.17 \,\text{GeV}$
 $G = 1.166 \times 10^{-5} \,\text{GeV}^{-2}$

The corresponding formula for \hat{y} is

$$\hat{y} = 2\pi \left[F(s)(1+x^2) + G(s)x \right] \times (\hbar c)^2 \times 10^{37}$$

where $\sqrt{s}=29\,\mathrm{GeV}$ is the center of mass collision energy. Here are the predicted values \hat{y} based on the above formula.

x	y	\hat{y}
-0.925	67.08	65.59
-0.85	58.67	60.84
-0.75	54.66	55.07
-0.65	51.72	49.96
-0.55	43.70	45.49
-0.45	41.12	41.69
-0.35	39.71	38.53
-0.25	35.34	36.02
-0.15	33.35	34.17
-0.05	34.69	32.97
0.05	34.05	32.42
0.15	34.48	32.53
0.25	34.66	33.28
0.35	35.23	34.69
0.45	35.60	36.75
0.55	40.13	39.47
0.65	42.56	42.83
0.75	46.37	46.85
0.85	49.28	51.52
0.925	55.70	55.45

The coefficient of determination \mathbb{R}^2 is

$$R^{2} = 1 - \frac{\sum (y - \hat{y})^{2}}{\sum (y - \bar{y})^{2}} = 0.98$$

The result indicates that electroweak theory explains 98% of the variance in the data.

Notes

Here are a few notes about how the demo script works.

In component notation, traces are sums over a repeated index, in this case α .

$$\operatorname{Tr}\left((p_{3}+M)\gamma^{\mu}(p_{4}-M)\gamma^{\nu}\right) = (p_{3}+M)^{\alpha}{}_{\beta}\gamma^{\mu\beta}{}_{\rho}(p_{4}-M)^{\rho}{}_{\sigma}\gamma^{\nu\sigma}{}_{\alpha}$$
$$\operatorname{Tr}\left((p_{2}-m)\gamma_{\mu}(p_{1}+m)\gamma_{\nu}\right) = (p_{2}-m)^{\alpha}{}_{\beta}\gamma_{\mu}{}^{\beta}{}_{\rho}(p_{1}+m)^{\rho}{}_{\sigma}\gamma_{\nu}{}^{\sigma}{}_{\alpha}$$

To convert the above formulas to Eigenmath code, the γ tensors need to be transposed so that repeated indices are adjacent to each other. Also, multiply γ^{μ} by the metric tensor to lower the index.

$$\gamma^{\beta\mu}_{\rho}$$
 \rightarrow gammaT = transpose(gamma) $\gamma^{\beta}_{\mu\rho}$ \rightarrow gammaL = transpose(dot(gmunu,gamma))

Define the following 4×4 matrices.

Then

$$(\rlap/p_3 + M)^\alpha{}_\beta \gamma^{\mu\beta}{}_\rho (\rlap/p_4 - M)^\rho{}_\sigma \gamma^{\nu\sigma}{}_\alpha \quad \rightarrow \quad \text{T1 = contract(dot(X3,gammaT,X4,gammaT),1,4)} \\ (\rlap/p_2 - m)^\alpha{}_\beta \gamma_\mu{}^\beta{}_\rho (\rlap/p_1 + m)^\rho{}_\sigma \gamma_\nu{}^\sigma{}_\alpha \quad \rightarrow \quad \text{T2 = contract(dot(X2,gammaL,X1,gammaL),1,4)}$$

Next, multiply matrices and sum over repeated indices. The dot function sums over ν then the contract function sums over μ . The transpose makes the ν indices adjacent as required by the dot function.

$$\operatorname{Tr}(\cdots \gamma^{\mu} \cdots \gamma^{\nu}) \operatorname{Tr}(\cdots \gamma_{\mu} \cdots \gamma_{\nu}) \rightarrow \operatorname{contract}(\operatorname{dot}(\mathtt{T1}, \operatorname{transpose}(\mathtt{T2})))$$