

INTRO	01	02	PROBLEM STATEMENT
DATA CLEANING	03	04	DATA PRE-PROCESSING
EDA	O5	06	MODELS
COST BENEFIT ANALYSIS	07	08	CONCLUSIONS RECOMMENDATIONS

INTRO

Introduction

The West Nile Virus (WNV) is transmitted to people via infected mosquitos. Around 20% of people who become infected with the virus develop symptoms ranging from a persistent fever, to serious neurological illnesses that can result in death.

The spread of WNV is usually seasonal. Patients usually fall ill around July–September, and no. of patients usually peaks in August

In 2002, the first human cases of West Nile virus were reported in Chicago. By 2004 the City of Chicago and the Chicago Department of Public Health (CDPH) had established a comprehensive surveillance and control program that is still in effect today.

Every week from late spring through the fall, mosquitos in traps across the city are tested for the virus. The results of these tests influence when and where the city will spray airborne pesticides to control adult mosquito populations.

PROBLEM

STATEMENT

PROBLEM STATEMENT

The deadly, mosquito-borne West Nile Virus has long infested the City of Chicago. It is imperative to develop an accurate predictive model that could identify the key contributing factors that leads to proliferation of the virus. The model and the insights drawn could help the authority to predict future outbreaks of West Nile Virus and thus effectively allocate resources to mitigate it.

Logistic Regression, Naive Bayes, Extra Trees and XGboost models will be used to model the data and accuracy and recall score will be used to evaluate and find the best model for production and prediction.

DATA CLEANING

Data Cleaning and Preprocessing

EXPLORATORY DATA ANALYSIS

MODELS

Models

Models	Train Accuracy Score	Test Accuracy Score	Train Recall Score	Test Recall Score	Kaggle Score
Logistic Regression (SMOTE)	0.702	0.702	0.786	0.772	0.731
Logistic Regression with PCA (SMOTE)	0.660	0.649	0.704	0.772	0.695
Extra Trees (Balanced)	0.793	0.783	0.973	0.743	0.688
Naive Bayes (SMOTE)	0.613	0.609	0.769	0.802	0.606
Xgboost (SMOTE)	0.843	0.841	0.701	0.653	0.702

COST BENEFIT ANALYSIS

Cost Benefit Analysis

Cost Benefit Analysis: Spraying					
Costs					
Category	Quantity	Price	Total		
Vector Controls ¹	284.867	\$1471 /sqkm	\$419,039		
TOTAL COSTS			\$418,754		
Benefits					
Medical & Productivity ²	114 ³	\$13,987 /wnv case	\$1,594,518		
TOTAL BENEFITS \$1,594,518					
BENEFIT-COST RATIO 3.8					
¹ Aerial spray by pyrethrins for six nights (sources: Bellini, R., Zeller, H. & Van Bortel, W.) ² Including medical costs to treat cases and patients' productivity loss (sources: Bellini, R., Zeller, H. & Van Bortel, W.) ³ Difference in positive cases in Cook county between 2012 and 2013 (sources: Illinois Department of Public Health)					

CONCLUSION AND RECOMMENDATION

Recommendation

	Neighbourhood	area	WnvPresent	Dependencies
44	Norwood Park	12.195911	0.128205	39.5
39	Morgan Park	9.187734	0.101266	40.3
22	Garfield Ridge	11.789078	0.100000	38.1
1	Ashburn	13.546034	0.090164	36.9
43	North Park	7.028871	0.075269	39.0
6	Belmont Cragin	10.909941	0.070270	37.3
23	Grand Boulevard	4.849250	0.068182	39.5
3	Austin	17.003775	0.066667	37.9
0	Archer Heights	5.592251	0.063380	39.2
50	Riverdale	9.838950	0.058824	51.5
55	South Deering	30.379706	0.058700	39.5

Limitations and other considerations

- Spraying effectiveness limited to areas near roads
- Other reasons for WNV decline:
 - larvicide implementation,
 - varying effectivness of spraying
 - o increased personal protective measures
- Considerations:
 - o Include larvicide data
 - o personal protective measures data

THANKS!

Do you have any questions?

youremail@freepik.com +91 620 421 838 yourcompany.com

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik.

Please keep this slide for attribution.

Additional Slides