1

Assignment 12

Pulkit Saxena

1 Problem ugcjune2017 Q75

Which of the following 3x3 matrices are diagonizable over \mathbb{R} ?

$$1.\begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix} \quad 2.\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad 3.\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 4 & 1 \end{pmatrix} \quad 4.\begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

2 Explanation

Test for diagonalizability	Let \mathbf{W}_i be the eigenspace corresponding to eigenvalue λ_i of \mathbf{A}
	1) A is diagonalizable
	2) characteristic polynomial of A is $f = (\mathbf{x} - \lambda_1)^{d_1} (\mathbf{x} - \lambda_k)^{d_k}$ and $dim(\mathbf{W}_i) = d_i$ 3) $\sum_{i=1}^k \mathbf{W}_i = n$
Concept	A linear operator A on a n -dimensional space \mathbb{V} is
for diagonalization	diagonalizable, if and only if A has n distinct
	characteristic vectors or null spaces corresponding to the characteristic values

TABLE 1: Illustration of theorem.

3 Solution

Option A	Given matrix is $ \mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix} $
Finding Characteristics polynomial	Characteristics polynomial of the matrix A is $det(xI - A)$ $det(xI - A) = \begin{vmatrix} (x-1) & -3 & -2 \\ 0 & (x-4) & -5 \\ 0 & 0 & x-6 \end{vmatrix}$ Characteristic Polynomial = $(x-1)(x-4)(x-6)$
Testing diagonalizability over $\mathbb R$	1) As the characteristics polynomial is product of linear factors over \mathbb{R} . 2) To find characteristic values of the operator $\det(xI-A)=0$ which gives $\lambda_1=1, \lambda_2=4, \lambda_3=6$ Thus over \mathbb{R} matrix \mathbf{A} has three distinct characteristic values. There will be at least one characteristics vector i.e., one dimension with each characteristics value . Thus $\dim W_i=d_i$ 3) $\sum_i \mathbf{W_i}=n=3$, which is equal to $\dim A$.
Conclusion on Option A	Option A satisfy all three condition of Diagonalizability over \mathbb{R} .
Option B	Given matrix is $\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
Finding Characteristics polynomial	Characteristics polynomial of the matrix A is $det(xI - A)$ $det(xI - A) = \begin{vmatrix} x & -1 & 0 \\ 1 & x & 0 \\ 0 & 0 & x - 1 \end{vmatrix}$ Characteristic Polynomial = $(x - 1)(x + i)(x - i)$

Testing diagonalizability over $\mathbb R$	1) As the characteristics polynomial is not the product of linear factors over $\mathbb R$. Thus $\mathbf A$ is not diagonalizable over $\mathbb R$.
Conclusion on Option B	Option B does not satisfy condition 1.
Option C	Given matrix is $ \mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 4 & 1 \end{pmatrix} $
Finding Characteristics polynomial	Characteristics polynomial of the matrix A is $det(xI - A)$ $det(xI - A) = \begin{vmatrix} (x - 1) & -2 & -3 \\ -2 & (x - 1) & -4 \\ -3 & -4 & x - 1 \end{vmatrix}$ Characteristic Polynomial = $(x + 3.19)(x + 0.877)(x - 7.07)$
Testing diagonalizability over $\mathbb R$	1) As the characteristics polynomial is product of linear factors over \mathbb{R} . 2) To find characteristic values of the operator $\det(xI-A)=0$ which gives $\lambda_1=-3.19, \lambda_2=-0.887, \lambda_3=7.07$ Thus over \mathbb{R} matrix \mathbf{A} has three distinct characteristic values. There will be atleast one characteristics vector i.e., one dimension with each characteristics value . Thus $\dim W_i=d_i$ 3) $\sum_i \mathbf{W_i}=n=3$, which is equal to $\dim A$.
Conclusion on Option C	Option C satisfy all three condition of Diagonalizability over \mathbb{R} .
Option D	Given matrix is $ \mathbf{A} = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} $
Finding Characteristics	Characteristics polynomial of the matrix A is $det(xI - A)$

polynomial	$\det(xI - A) = \begin{vmatrix} x & -1 & -2 \\ 0 & x & -1 \\ 0 & 0 & x \end{vmatrix}$ Characteristic Polynomial = $(x)(x)(x) = x^3$
Testing diagonalizability over $\mathbb R$	1) As the characteristics polynomial is product of linear factors over \mathbb{R} . 2) To find characteristic values of the operator $\det(xI - A) = 0$ $\lambda_1 = 0$ $d_1 = 3$ $\mathbf{W}_1 = \mathbf{A} - \lambda_1 \mathbf{I} \implies \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} - 0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ $dimW_1 = 2$ $dimW_i \neq d_i$ Algebric Multiplicity is not equal to Geometric Multiplicity.
Conclusion on Option D	Option D does not satisfy second condition of Diagonalizability.
Answer	Option A and Option C are Diagonalizable over \mathbb{R} .