Базовая конфигурация для ZX Evolution. Руководство пользователя.

(версия от 21.10.2012) www.nedopc.com

Оглавление

1 Введение	4
2 Управляющие контакты компьютера.	5
2.1 Hard reset (полный сброс)	5
2.2 Soft reset (мягкий сброс)	
2.3 NMI (подача немаскируемого прерывания на процессор Z80)	5
3 Дополнительные функции PS2 клавиатуры	
3.1 Мягкий сброс компьютера (soft reset)	
3.2 Полный сброс компьютера (hard reset)	
3.3 Переключение режима видеовыхода (TV/VGA)	6
3.4 Переключение режима аудиовыхода (beeper/tapeout)	
3.5 Подача NMI (немаскируемого прерывания) на процессор Z80	7
3.6 Регулировка разрешения PS/2 мыши	7
4 Архитектура: общие положения	8
5 Архитектура: управление памятью	9
6 Архитектура: управление скоростью процессора	13
7 Архитектура: видеорежимы	
7.1 Выбор видеорежимов	
7.2 Палитра	14
7.3 Бордюр	15
7.4 Адресация видеорежимов	15
7.4.1 Стандартный ZX-режим	15
7.4.2 ZX hardware multicolor	15
7.4.3 ZX 256х192 16 цветов	
7.4.4 ATM 640x200 hardware multicolor.	16
7.4.5 АТМ 320х200 16 цветов	16
7.4.6 ATM текстовый режим 80x25	16
7.4.7 АТМ-подобный текстовый режим 80х25 в одной странице	17
7.4.8 Загрузка шрифта для текстового режима	
7.4.9 Считывание шрифта текстового режима	
8 Архитектура: порты чтения конфигурации и NMI	
8.1 Порт #ВГ (чтение)	
8.2 Порт #ххВЕ (чтение)	
8.3 Порт #ВЕ (запись)	21
8.4 Вход в NMI	
8.5 Выход из NMI	
9 Архитектура: порты ввода-вывода	
9.1 Порт #FE	
9.2 Порт COVOX (#xxFB, WO always)	
9.3 Порты АҮ/ҮМ	
9.4 Порт Kempston Joystick	
9.5 Порты Kempston Mouse	
9.6 Порты управления часами и NVRAM	
9.7 Чтение версии базовой конфигурации/бутлоадера	
9.8 Доступ к PS/2 клавиатуре.	27

9.9 Доступ к SD-карте	28
9.10 Доступ к IDE-устройствам	
9.11 Порты контроллера дисковода	31
9.12 Порт RS232 (коммуникационный интерфейс)	32
9.12.1 Регистр данных (DAT)	33
9.12.2 Регистры делителя (DLL,DLM)	33
9.12.3 Регистр управления FIFO (FCR)	34
9.12.4 Регистр управления линией (LCR)	34
9.12.5 Регистр управления модемом (МСR)	35
9.12.6 Регистр статуса линии (LSR)	35
9.12.7 Регистр статуса модема (MSR)	35
9.12.8 Пользовательский регистр (SPR)	35
10 Сводная таблица портов	36
11 История версий базовой конфигурации	39
11.1 Версия 13.02.2012	39
11.2 Версия 29.09.2011	40
11.3 Версия 11.06.2011	40
11.4 Версия 11.05.2011	40
11.5 Версия 26.04.2011	40
11.6 Версия 30.03.2011	
11.7 Версия 07.12.2010	40
11.8 Версия 29.11.2010	41
11.9 Версия 17.10.2010	41
11.10 Версия 30.03.2010	
11.11 Версия 28.03.2010	
11.12 Версия 24.03.2010	41
11.13 Версия 10.03.2010	
11.14 Версия 04.02.2010	42

1 Введение

Под базовой конфигурацией компьютера ZX Evolution подразумевается конфигурация, которая поставляется и поддерживается производителем. Производитель осуществляет поддержку и развитие этой конфигурации и исправление найденных в ней ошибок. Группа NedoPC не поддерживает конфигурации сторонних разработчиков, в случае проблем с такими конфигурациями, обращайтесь непосредственно к их разработчикам.

Базовая конфигурация состоит из следующих компонент:

- Конфигурация для FPGA EP1K50QC208;
- Программа для микроконтроллера ATMEGA128.

Конфигурация поставляется в виде бинарного файла (zxevo_fw.bin), который можно загрузить в микроконтроллер ATMEGA128 с помощью BOOTLOADER¹. Обновление конфигураций, также производится с помощью BOOTLOADER.

Конфигурация FPGA интегрирована в программу микроконтроллера. Конфигурирование FPGA производится при включении или железном сбросе компьютера.

Изменение версии базовой конфигурации подразумевает изменение любой из или обеих компонент.

¹ BOOTLOADER — базовый загрузчик. Неизменяемая часть памяти микроконтроллера ATMEGA128, которая предназначена для загрузки или обновления памяти программ ATMEGA128.

2 Управляющие контакты компьютера

Управляющие группы контактов компьютера, предназначены для управления работой компьютера с помощью подсоединенных к ним элементов управления (например кнопок на корпусе компьютера).

2.1 Hard reset (полный сброс)

Группа контактов «Hard reset» осуществляет полный сброс компьютера (с перезапуском прошивки микроконтроллера и перепрограммированием FPGA) при замыкании контактов. Функционирование не зависит от используемой конфигурации компьютера.

Рекомендуется при использовании стандартного (AT или ATX) корпуса подсоединить к кнопке «Reset» корпуса.

Внимание! Hard Reset *не обеспечивает* сохранность содержимого памяти компьютера (например, RAM-дисков или страничек с исходными текстами в аласме).

2.2 Soft reset (мягкий сброс)

Функции группа контактов «Soft reset» зависят от конфигурации.

В базовой конфигурации на эту группу контактов возложены две функции:

- мягкий сброс компьютера (сброс процессора и внутренних регистров fpga);
- включение/выключение АТХ блока питания.

Рекомендуется при использовании стандартного ATX корпуса подсоединить к кнопке «Power» корпуса. В этом случае включение компьютера осуществляется однократным нажатием кнопки. Отключение компьютера осуществляется долговременным нажатием в течении 5 секунд.

Кратковременное замыкание контактов будет осуществлять мягкий сброс компьютера и установку нулевой страницы ROM.

Мягкий сброс обеспечивает сохранность содержимого памяти компьютера.

2.3 NMI (подача немаскируемого прерывания на процессор Z80)

Функции группы контактов «NMI» зависят от конфигурации.

В базовой конфигурации на эту группу контактов возложены функции подачи немаскируемого прерывания процессор на процессор Z80 (аналогично описанному в 3.5).

Внимание! Для revision A и B плат эта группа контактов называется «Turbo», но используется как контакты для управления NMI.

3 Дополнительные функции PS2 клавиатуры

При использовании PS2 клавиатуры с компьютером ZX Evolution можно использовать дополнительные возможности по управлению компьютером:

- мягкий сброс компьютера;
- полный сброс компьютера;
- переключение режима видеовыхода (TV/VGA);
- переключение режима аудиовыхода (beeper/tapeout);
- подача NMI на процессор Z80.

3.1 Мягкий сброс компьютера (soft reset)

Мягкий сброс компьютера осуществляется с помощью кратковременного (менее 5секунд) нажатия клавиши «F12».

3.2 Полный сброс компьютера (hard reset)

Полный сброс компьютера с клавиатуры можно осуществить двумя способами:

- Длительным нажатием клавиши «F12» (длительностью 5сек), отключение питания в этом случае не производится;
- Нажатием комбинации «Ctrl-Alt-Del», отключение питания в этом случае не производится.

3.3 Переключение режима видеовыхода (TV/VGA)

Так как используется объединенный видеовыход (в связи с ограничением количества ног микросхемы EP1K50QC208), то необходимо установить режим видеовыхода:

- TV скандаблер отключен, видеовыход работает с телевизионной разверткой;
- VGA включен скандаблер, видеовыход работает с VGA разверткой.

Переключение режима видеовыхода (TV/VGA) осуществляется с помощью клавиши «Scroll Lock». Индикация режима осуществляется с помощью светодиода «Scroll Lock» клавиатуры. Светящееся состояние светодиода соответствует VGA режиму компьютера, отсутствие свечения — TV режиму.

Внимание! Чтобы состояние режима сохранялось при выключении компьютера, необходимо установить батарейку.

3.4 Переключение режима аудиовыхода (beeper/tapeout)

Так как используется объединенный аудиовыход (в связи с ограничением количества ног микросхемы EP1K50QC208), то необходимо установить режим аудиовыхода:

• beeper – на аудиовыход подается сигнал соответствующий выходу beeper;

• tapeout – на аудиовыход подается сигнал соответствующий выходу tapeout.

Переключение режима аудиовыхода (beeper/tapeout) осуществляется с помощью клавиши «Num Lock». Индикация режима осуществляется с помощью светодиода «Num Lock» клавиатуры. Светящееся состояние светодиода соответствует tapeout режиму аудиовыхода, отсутствие свечения — beeper режиму.

Внимание! Чтобы состояние режима сохранялось при выключении компьютера, необходимо установить батарейку.

3.5 Подача NMI (немаскируемого прерывания) на процессор Z80

Подача NMI на процессор Z80 осуществляется двумя способами:

- с помощью клавиши «Print Screen» PS/2 клавиатуры
- Переводом бита 3 порта **#xxBF** из 1 в 0 (см. стр. 37)
- Установкой адреса ловушки в портах #00BD/#01BD (см. стр. 21) и разрешения ловушки битом 4 порта #xxBF (см. стр. 37)

3.6 Регулировка разрешения PS/2 мыши

Регулировка разрешения PS/2 мыши возможна только для мышей, которые поддерживают эту функцию. Как правило это оптические и лазерные мыши.

Диапазон поддерживаемых разрешений PS/2 мыши:

Значение	Разрешение		
0	1 отсчет на мм		
1	отсчета на мм		
2	отсчета на мм		
3	8 отсчетов на мм		

Регулировка происходит одновременным нажатием двух клавиш PS/2 мыши (левой и правой) и управляющей клавиши на PS/2 клавиатуре:

- keypad '*' сброс значения разрешения в 0 (по умолчанию);
- keypad '+' увеличение значения разрешения на 1;
- keypad '-' уменьшение значения разрешения на 1.

Внимание! Чтобы значение разрешения сохранялось при выключении компьютера, необходимо установить батарейку.

4 Архитектура: общие положения

ZX Evolution имеет на борту 4 мегабайта ОЗУ и 512 килобайт ПЗУ, которые доступны через следующие модели управления памятью: ZX Spectrum 48k, ZX Spectrum 128k (порт #7FFD), pentagon 1024k (адресация через порт #7FFD), ATM2 (адресация мегабайта ОЗУ), а также дополнительный режим адресации всех 4 мегабайт ОЗУ. Все 512 килобайт ПЗУ адресуются по модели ATM2, при этом дополнительно существует возможность записи в ПЗУ, которое реализовано на микросхеме flash-памяти.

В архитектуре контроллеров дисковода beta-disk появляется понятие теневых портов, доступных только при определённых условиях. В компьютере ATM2 появляются дополнительный набор теневых портов (используемых, в частности, для управления памятью) и дополнительные способы включения таких портов (в частности, режим удержания теневого режима при выполнении из ОЗУ). Однако, в ATM2 остаётся однозначная связь между теневым режимом и включением ПЗУ TR-DOS. В архитектуре ZX Evolution при полной поддержке режимов ATM2 появляется возможность удержания теневого режима портов без включения ПЗУ TR-DOS.

Концепция портов ввода-вывода для ZX Evolution существенно отличается от оной в других спектрум-совместимых компьютеров. Прежде всего, дешифрация всегда происходит как минимум по 8 младшим битам. Качественно отличается логика блокирования портов картами ZX-Bus: если в других спектрум-совместимых компьютерах карты блокируют порты материнской платы (и друг друга, при наличии нескольких слотов), то в ZX Evolution, наоборот, все порты, присутствующие на материнской плате, не 'доходят' до карт ZX-Bus. Механизм IORQGE используется картами лишь для блокирования друг друга (в порядке расположения в слотах). Отсюда следует важный вывод — любые карты, дублирующие какую-либо функциональность материнской платы (имеющие порты, совпадающие с существующими в ZX Evolution), такие как контроллеры клавиатуры, мышки, IDE, SD-карт и т. д., работать не будут.

В дальнейшем для каждого порта указываются режим его видимости (теневой доступен всегда: «shadow», «noshad», «always»), доступность его для чтения или записи (только чтение, только запись, чтение и запись: «RO», «WO», «RW»). Также указывается адрес порта либо в виде «#xxFE» (дешифрация только по младшим 8 битам), либо в виде «#7FFD» (дешифрация не только по младшим 8 битам). Первый вариант указания адреса порта применяется также и в случае, если какие-либо адресные линии A8..A15 используются как информационные входы (например, набор портов для переключения страниц в 16k окнах процессора: #3FF7, #7FF7, #BFF7, #FFF7), при этом в описании порта указываются конкретные значения старшего байта адреса, которые только и следует использовать. В случае указания 16-битного адреса порта, конкретные биты старшего адресного байта, используемые при дешифрации, намеренно не указываются и могут изменяться от прошивки к прошивке.

5 Архитектура: управление памятью

Управление памятью в ZX Evolution во многом схоже с управлением памятью в ATM2. Принципиальные изменения касаются возможности адресации мегабайта ОЗУ через порт #7FFD (модель pentagon 1024k) и адресации 4 мегабайт ОЗУ.

В каждое 16k окно процессора можно произвольно включать любую из 16k страниц ОЗУ или ПЗУ. Существует 2 независимых карты памяти, которые переключаются битом 4 в порте #7FFD. В режиме совместимости с ZX Spectrum 128k или pentagon 1024k эти две карты памяти программируются идентично за исключением номера включенной страницы ПЗУ в нулевом окне процессора, чтобы данный бит работал, как в ZX Spectrum 128k. Отображение страниц памяти в каждом окне процессора программируется независимо через специальные теневые порты. Кроме того, для каждого такого окна существует опция подмены младших 3 или 6 бит номера включённой страницы ОЗУ данными из соответствующих бит порта #7FFD: таким образом обеспечивается совместимость с режимами ZX Spectrum 128k и pentagon 1024k. При отображении же страницы ПЗУ существует опция подмены младшего бита номера страницы на сигнал DOSEN (сигнал включения TRDOS). Включение данного сигнала («переход в TR-DOS») происходит при исполнении кода из ПЗУ в каком-либо окне процессора по смещению #3Dxx в этом окне при установленном бите D4 в порте #7FFD. Выключение происходит при выполнении кода из ОЗУ («выход из TR-DOS»). Кроме того, при помощи соответствующего теневого порта можно запретить выключение сигнала DOS, таким образом оставляя теневые порты доступными при исполнении из ОЗУ. Вдобавок, существует возможность включения теневых портов безотносительно сигнала DOS.

Порт	Описание
#xxBF RW always	Включение теневого режима портов; разрешение записи в ПЗУ. 1: если 1, то запись в ПЗУ разрешена. 0 после сброса. 0: если 1, то включены теневые порты. 0 после сброса. Бит 0 этого порта имеет приоритет над другими способами включения теневых портов: теневой режим включается безусловно при записи 1 в этот бит. При записи 0 включение теневого режима управляется другими способами, например портом #xx77 или переходом в TR-DOS. Данный бит не включает TR-DOS. Данный порт отсутствует в АТМ2. При чтении: биты 1:0 — последнее записанное значение. Остальные биты — см. стр. 37.

Порт	Описание		
#xx77 WO shadow	Включение теневого режима портов; разрешение работы диспетчера памяти. А8: если 0, то выключение диспетчера памяти. В каждое окно процессора устанавливается последняя страница ПЗУ. 0 после сброса.		
	Внимание! Остальные биты (как биты данных, так и биты старшего байта адреса) этого write-only порта используются для других целей. См. стр. 37. Включение TR-DOS и теневых портов битом A9 имеет приоритет над включением TR-DOS и теневых портов исполнением со смещения #3Dxx страницы ПЗУ при установленном бите D4 порта #7FFD («переход в TR-DOS»). Когда A9=0, то теневые порты и TR-DOS включены независимо от места исполнения процессора (в т.ч. и из ОЗУ).		

Порт	Описание
#xFF7	Управление диспетчером страниц.
WO shadow	50: <i>инверсные</i> биты номера страницы, включаемого в окно процессора. Доступны 16k страницы с номерами 063 ОЗУ (всего 1 мегабайт) и страницы 031 ПЗУ (всего 512 килобайт, бит 5 игнорируется).
	6: бит «гатпгот»: если 0, то в данном окне процессора включается ПЗУ, если 1 — ОЗУ.
	7: бит «dos7ffd»: если 1, то: для O3У — в данном окне происходит подмена младших 3 или 6 бит (в зависимости от режима ZX Spectrum 128k или pentagon 1024k) номера страницы неинверсными битами из порта #7FFD. Для ПЗУ — происходит подмена младшего бита номера страницы сигналом включения TR-DOS (1 если TR-DOS включен). Кроме того, происходит включение теневых портов и TR-DOS («вход в TR-DOS»), если в данном окне произойдёт выполнение кода со смещения #3Dxx. Биты A14, A15 определяют окно процессора, для которого происходит включение
	требуемой страницы. Следует использовать следующие адреса этого порта: #3FF7 — для окна #0000#3FFF, #7FF7 — для окна #4000#7FFF, #BFF7 — для окна #8000#BFFF, #FFF7 — для окна #C000#FFFF. Запись в данный порт меняет страницу в каком либо окне текущей (активной) карты памяти. При этом неактивная карта памяти остаётся неизменной. Какая карта памяти активна, задаёт бит 4 порта #7FFD.

Порт	Описание
#x7F7	Управление диспетчером страниц.
WO shadow	70: <i>инверсные</i> биты номера страницы ОЗУ, включаемого в окно процессора. Доступны 16k страницы с номерами 0255 (всего 4 мегабайта).
	Биты A14, A15 определяют окно процессора, для которого происходит включение требуемой страницы. Следует использовать следующие адреса этого порта: #37F7 – для окна #0000#3FFF, #7FF7 – для окна #4000#7FFF, #B7F7 – для окна #8000#BFFF, #F7F7 – для окна #C000#FFFF. Запись в данный порт меняет страницу в каком либо окне текущей (активной) карты памяти. При этом неактивная карта памяти остаётся неизменной. Какая карта памяти активна, задаёт бит 4 порта #7FFD. Внимание! При записи в этот порт остаётся неизменным режим подмены младших бит номера страницы ОЗУ (бит «dos7ffd» порта #xFF7). Однако, запись в #x7F7 безусловно включает ОЗУ в окне (очищает бит «гаmпгот» порта #xFF7). Данный порт <i>отсутствует</i> в ATM2.

Порт	Описание					
#7FFD	В режиме ZX Sp	В режиме ZX Spectrum 128k:				
WO always	67: не исп.	5: при записи полокируется дальнейшая запись в порт #7FFD, до перехода в режим репtagon 1024k или до сброса. 0 после сброса	памяти (см. описание портов #xxF7). О после сброса.	3: выб экрана сброса	. 0 после	20: замещают младшие 3 бита номера страницы, если такое замещение разрешено для какого-либо окна (см. описание портов #xxF7). О после сброса.
	В режиме pentagon 1024k:					
	75, 20: замещают при необходимости младшие 6 бит номера страницы.		4: выбор карты па	мяти.	3: выбор	экрана.

Программой начальной загрузки, хранящейся в ПЗУ ZX Evolution (reset service) производится настройка карт памяти таким образом, что бит 4 порта #7FFD работает как выбор страницы ПЗУ в окне #0000..#3FFF (basic128/basic48), биты 2..0 (режим ZX Spectrum 128k) или 7..5,2..0 (режим pentagon 1024k) — замещают соответствующие биты номера страницы в окне #C000..#FFFF (более старшие биты номера страницы при этом — 0), в остальных двух окнах выставлены страницы, соответствующие конфигурации памяти ZX Spectrum 128k.

Порт	Описание	
#EFF7 WO noshad	2: при выставлении в 1 — режим ZX Spectrum 128k, иначе — режим pentagon 1024k. Значение после сброса — 0.	3: При выставлении в 1 в окно #0000#3FFF принудительно включается нулевая страница ОЗУ. Этот бит <i>имеет приоритет</i> над всеми другими способами переключать страницы памяти в данном окне. Значение после сброса — 0.
	Внимание! Остальные биты этого write-or См. стр. 37.	nly порта используются для других целей.

6 Архитектура: управление скоростью процессора

Реализованы следующие скорости процессора:

- 3.5 МГц (nowait)
- 7.0 MΓ_Ц (nowait)
- 14.0 MΓ_Ц (with wait)

В режиме 14 М Γ ц эффективная скорость процессора в 1.66 раз больше, чем в режиме 7.0 М Γ ц (по замерам программы turbotest v1.0).

Для переключения скорости процессора используются биты в портах:

Порт # xx77 , бит 3	Порт # EFF7 , бит 4	Частота процессора, МГц
0	1	3.5
0	0	7.0
1	X	14.0

После сброса процессор работает на частоте 7.0 МГц.

7 Архитектура: видеорежимы

ZX Evolution поддерживает следующие видеорежимы:

- Стандартный ZX-режим 6912 байт
- ZX hardware multicolor, отличающийся от стандартного ZX-режима наличием отдельного байта атрибута на каждый байт пикселей
- 256х192 16 цветов по стандарту Alone Coder'а
- 320х200 16 цветов по стандарту ATM
- 640x200 hardware multicolor по стандарту ATM
- Текстовый режим 80х25 по стандарту АТМ

Кроме того, поддерживается палитра по стандарту АТМ.

7.1 Выбор видеорежимов

Выбор видеорежима осуществляется комбинацией бит в портах #EFF7 (noshad, WO) и #xx77 (shadow, WO) в соответствии с таблицей:

Порт #EFF7 , бит 0	Порт #EFF7 , бит 5	Порт #xx77 , биты 20	Видеорежим
0	0	011	Стандартный ZX-режим
0	1	011	ZX hardware multicolor
1	0	011	ZX 256x192 16 цветов

0	0	010	ATM 640x200 hardware multicolor
0	0	000	ATM 320x200 16 цветов
0	0	110	АТМ Текстовый режим 80х25
0	0	111	АТМ-подобный текстовый режим 80х25 в одной
			странице

Все другие комбинации указанных бит являются невалидными, поведение компьютера при установке таких комбинаций не определено и может измениться в последующих версиях прошивки FPGA.

7.2 Палитра

Палитра задаёт отображение 16 доступных для каждого видеорежима и бордюра цветов в 64 аппаратных цвета (каждая из компонент R,G и B имеет 2-битные градации яркости, от чёрного до максимально насыщенного). При сбросе компьютера ПО в ПЗУ устанавливает палитру в режим совместимости с ZX-Spectum, т. е. цвета, отображаемые в стандартном ZX-режиме, соответствуют цветам ZX-Spectrum.

Программное изменение палитры осуществляется следующим образом. Текущий отображаемый цвет определяет элемент палитры, который будет изменён. Для разрешения изменения палитры необходимо произвести запись в порт **#xx77** (**WO**, **shadow**) с очищенным битом адреса A14 (*Внимание* — остальные биты (как биты данных, так и биты старшего байта адреса) этого порта используются для других целей — см. стр. 37). Новое значение элемента палитры устанавливается записью в порт **#FF** (**WO**, **shadow**), который при очищенном бите A14 порта **#xx77** начинает *одновременно* выполнять функции порта контроллера дисковода и порта установки палитры.

Интерпретация записываемого в порт **#FF** значения:

Бит записываемого байта	Значение
0	В
1	R
2	Устанавливать в 1 для корректной работы контроллера дисководов
3	Устанавливать в 1 для корректной работы контроллера дисководов
4	G
5	b
6	r
7	g

Градации яркости компонент R, G и B для устанавливаемого цвета: \sim {Rr}. \sim {Gg}, \sim {Bb}, где \sim обозначает побитовую инверсию.

Примечание: удобно изменять палитру в момент отображения бордюра: в этом случае текущий отображаемый цвет является цветом бордюра. Для того, чтобы процесс изменения палитры не был виден на экране, его следует проводить в процедуре обработки кадрового

прерывания (вариант — после команды нацт).

7.3 Бордюр

Бордюр — видимая область экрана, находящаяся за пределами пикселей, определяемых каким-либо видеорежимом. Цвет бордюра задаётся битами 2..0 записываемых значений в порты #FE (RW, always) или #F6 (RW, always): при записи в порт #FE возможно установить цвета 0..7, при записи в #F6 — 8..15. См. стр. 37.

7.4 Адресация видеорежимов

Для каждого видеорежима существует по два набора страниц, из которых осуществляется выборка видеоданных. Выбор набора страниц определяет бит 3 порта #7FFD (WO, always). Страницы, соответствующие единичному состоянию этого бита, приведёны в описаниях режимов в скобках.

7.4.1 Стандартный ZX-режим

Выборка из страницы 5(7). Пиксели каждой строки состоят из бит непрерывной байтовой строки (порядок выдачи бит из отдельного байта — от старшего бита к младшему). Начальные смещения байтовых строк вычисляются из номера Y строки (Y=0..191, Y=0 для верхней строки) следующим образом: pixoffset = $\{Y[7:6], Y[2:0], Y[5:3]\} << 5$, где Y[m:n] — выборка соответствующей битовой последовательности из величины Y, $\{\}$ - конкатенация битовых последовательностей в число, << - сдвиг влево на указанное число бит с заполнением младших бит нулями.

Битовая карта режима делится на квадраты 8x8 пикселей, каждый такой квадрат имеет свой байтовый атрибут, расположенный по смещению attroffset = #1800 + Y*32 + X, где X,Y — координаты квадрата 8x8 пикселей (0,0 — верхний левый квадрат, 1,0 — его сосед справа и т.д.).

Цвет пикселя, соответствующего единичному биту, определяется байтом атрибута attr как $\{attr[6]. attr[2:0]\}$. Цвет пикселя, соответствующего нулевому биту — как $\{attr[6], attr[5:3]\}$. Установленный бит attr[7] приводит к аппаратной периодической (с периодом ~ 1 Γ ц) инверсии всех считанных из памяти бит пикселей в пределах квадрата 8x8 пикселей соответствующего атрибута.

7.4.2 ZX hardware multicolor

Данный режим совпадает со стандартным ZX-режимом в части выборки байтов пикселей. Атрибут, в отличие от стандартного ZX-режима, индивидуальный у каждого байта пикселей. Смещение атрибута attroffset = pixoffset + #2000, где pixoffset — смещение соответствующего байта пикселей. Интерпретация байта атрибута такая же, как в стандартном ZX-режиме.

7.4.3 ZX 256х192 16 цветов

В данном режиме для каждого блока пикселей шириной 8 и высотой 1 пиксель приведём в соответствие байт пикселей стандартного ZX-режима, который имеет смещение zxoffset. Для отображения блока пикселей считываются 4 байта:

- byte0 страница 4(6), смещение zxoffset + #0000
- byte1 страница 5(7), смещение zxoffset + #0000
- byte2 страница 4(6), смещение zxoffset + #2000
- byte3 страница 5(7), смещение zxoffset + #2000

Каждый пиксель блока пикселей (слева направо) имеет цвета: {byte0[6], byte0[2:0]}, {byte0[7], byte0[5:3]}, {byte1[6], byte1[2:0]}, {byte1[7], byte1[5:3]}, {byte2[6], byte2[2:0]}, {byte2[7], byte2[5:3]}, {byte3[6], byte3[2:0]}, {byte3[7], byte3[5:3]}.

7.4.4 ATM 640x200 hardware multicolor

Разделим массив пикселей 640x200 на блоки, каждый высотой 1 пиксель и шириной 16 (блоки 16x1). Введём координаты таких блоков X,Y (верхний левый блок — 0,0; его сосед справа — 1,0; сосед снизу — 0,1 и т. д., X=0..39, Y==0..199). Введём смещение offset = X+Y*40. Для отображения блока пикселей считываются 4 байта по следующим адресам:

- byte0 страница 1(3), смещение offset + #0000
- byte1 страница 5(7), смещение offset + #0000
- byte2 страница 1(3), смещение offset + #2000
- byte3 страница 5(7), смещение offset + #2000

В пределах каждого блока есть два байта пикселей и два байта атрибутов. Для левых 8 пикселей блока байт пикселей — byte1, байт атрибутов — byte0; для правых 8 пикселей, соответственно, byte3 и byte 2.

Интерпретация байта атрибутов: $\{attr[6], attr[2:0]\}$ — цвет, соответствующий единичному биту из байта пикселей, $\{attr[7], attr[5:3]\}$ — цвет, соответствующий нулевому биту.

7.4.5 АТМ 320х200 16 цветов

Массив пикселей 320x200 разделяем на блоки 8x1 и вводим их координаты X,Y аналогично режиму 640x200 hardware multicolor. Требуемые для отображения блока 4 байта считываются по тем же адресам, что и в режиме 640x200 hardware multicolor. Составление пикселей из этих 4 байт производится так же, как и в режиме 256x192 16 цветов.

7.4.6 АТМ текстовый режим 80х25

Вводим разбиение массива *символов* на блоки 2x1, вводим координаты таких блоков X,Y (X=0..39, Y=0..24). В пределах блока коды левого и правого символов lsym и rsym, а также соответствующие им байты атрибутов lattr и rattr считываются по адресам:

- lsym страница 5(7), смещение #01C0 + Y*64 + X
- lattr страница 1(3), смещение #21C0 + Y*64 + X
- rsym страница 5(7), смещение #21C0 + Y*64 + X
- rattr страница 1(3), смещение #01С1 + Y*64 + X

На каждый символ байт атрибутов применяется аналогично режиму 640x200 hardware

multicolor.

Стандартная прошивка ПЗУ «EVO Reset Service» может производить загрузку шрифта в fontROM при каждом сбросе. Предусмотрены 2 кодировки: CP866 и ATM-кодировка (приведена на Рис. 1).

Рис. 1: АТМ-кодировка шрифта

7.4.7 АТМ-подобный текстовый режим 80х25 в одной странице

Функционирует аналогично режиму 7.4.6, имея следующую адресацию:

- lsym страница 8(10), смещение #01C0 + Y*64 + X
- lattr страница 8(10), смещение #31C0 + Y*64 + X
- rsym страница 8(10), смещение #11C0 + Y*64 + X
- rattr страница 8(10), смещение #21C1 + Y*64 + X

Пример расчётов адресов символа и атрибута, при условии что видеостраница 8(10) в адресах 0х4000-0х7FFF:

xy2txt			<pre>xy2attr ;input h=x</pre>		_
	output hl=address;			;out	put hl=address
	LD	A,#1C		LD	A,#C7
	SRL	Н		SRL	Н
	RRA			JR	NC,.L1
	RRA			LD	A,#87
	ADD	A,L		INC	н
	LD	L,H	.L1	ADD	A,L
	LD	H,A		LD	L,H
	XOR	A		LD	H,A
	SRL	Н		XOR	A
	RRA			SRL	Н
	SRL	н		RRA	
	RRA			SRL	Н
	ADD	A,L		RRA	
	LD	L,A		ADD	A,L
	SET	6,Н		LD	L,A
	RET			SET	6,Н
				RET	

7.4.8 Загрузка шрифта для текстового режима

Разрешение загрузки шрифта включается битом 2 порта #BF (см. стр. 37). ОЗУ шрифта имеет объём 2 килобайта, каждый символ хранится по адресам n*8..n*8+7, где n — номер символа (0..255). Образ символа 8x8 пикселей хранится построчно сверху вниз, биты в байтах представляют пиксели символа слева направо.

После включения разрешения загрузки шрифта *любая* запись процессором в адресное пространство *памяти* по адресу A (A=0..65535) приводит к записи *также* и в ОЗУ шрифта по адресу A & 2047.

Внимание! В процессе загрузки ОЗУ шрифта рекомендуется выключать прерывания или производить загрузку в определённые моменты относительно сигнала int, так как вход в процедуру обработки прерывания при включенном разрешении загрузки шрифта приведёт к загрузке в ОЗУ шрифта случайных значений по случайным адресам.

7.4.9 Считывание шрифта текстового режима

Считывание производится путём чтения порта **#0EBE** (см. стр. 19), в котором при включённом ткестовом режиме читается текущий отображаемый на экране байт картинки символа. Из этого следует, что для корректного считывания шрифта необходимо применять специальную процедуру с точными задержками относительно начала сигнала прерывания при специально сформированном содержимом текстового экрана. Пример такой процедуры дан в файле *fontread.src*

8 Архитектура: порты чтения конфигурации и NMI

Данный раздел описывает средства, позволяющие программно считать конфигурацию памяти и палитру компьютера. Данные средства предназначены в основном для использования в процедуре обработки NMI.

8.1 Порт **#BF** (чтение)

Порт #ВГ позволяет читать своё содержимое (см. стр. 37).

8.2 Порт #ххВЕ (чтение)

Порт #ххВЕ предназначен для чтения конфигурации памяти и палитры компьютера.

Порт	Описание
#00BE#07BE RO always	Инверсный номер включенной страницы. Распределение: #00BE#03BE — номера страниц для окон #0000#3FFF, #4000#7FFF, #8000#BFFF и #C000#FFFF соответственно для нулевой карты памяти, #04BE#07BE — номера страниц для единичной карты памяти.
#08BE RO always	Биты «гатпгот» (см. стр. 10). Порядок битов: бит 0 – соответствует номеру страницы, считанному из порта #00BE, бит 1 – номеру из порта #01BE и т.д.
#09BE RO always	Биты «dos7ffd» (см. стр. 10). Порядок такой же, как для порта #08BE.
#0ABE RO always	Последнее записанное значение в порт #7FFD.
#0BBE RO always	Последнее записанное значение в порт #EFF7.
#0CBE RO always	Последнее записанное значение в порт #xx77. Распределение бит: биты 3:0 – соответствуют битам данных 3:0 порта #xx77, бит 7 – соответствует биту адреса A14 при записи в #xx77, бит 6 — биту адреса A9, бит 5 – биту адреса A8, бит 4 – индицирует состояние сигнала DOS: если включено ПЗУ TR-DOS стандартным методом (через вход в #3Dxx), то 1, иначе 0. Этот бит предназначен для определения факта, что в NMI произошёл вход из включенного через #3Dxx ПЗУ TR-DOS. Этот бит остаётся в 1, пока исполняется код из включенной по NMI страницы #FF в области #0000#3FFF при условии, что в эту область не включалось ОЗУ через порт #3FF7 или #37F7.
#0DBE RO always	Чтение текущего отображаемого цвета. Предназначен для чтения палитры. Формат считываемого значения совпадает с форматом записываемого значения в порт #FF при установке палитры (см. стр. 14), за исключением битов 2 и 3, которые не определены. Процедура считывания палитры аналогична процедуре записи (см. стр. 14), но производится чтение порта #0DBE вместо записи порта #FF.
#0EBE RO always	Чтение текущего отображаемого байта в текстовом режиме. Предназначен для считывания шрифта. Пример считывания приведён в файле fontread.src
#10BE RO always	Чтение младшей части адреса аппаратной ловушки
#11BE RO always	Чтение старшей части адреса аппаратной ловушки

Алгоритм восстановления состояния диспетчера страниц:

- 1. Записывая в порт **#xFF7**, восстановить биты «dos7ffd».
- 2. Если страница в данном окне данной карты памяти ROM или RAM с номером менее 64, то восстановить её записью в #xFF7 одновременно с пунктом 1.
- 3. Для всех страниц RAM с номером не менее 64 восстановить номер *дополнительной* записью в порт **#x7F7**.

8.3 Порт #ВЕ (запись)

Запись в порт #ВЕ происходит при выходе из обработчика NMI. Подробнее см. стр. 22.

8.4 Порт #xxBD (запись)

Служит для установки адреса аппаратной ловушки: **#00BD** – устанавливает младшую часть адреса, **#01BD** – старшую часть. Разрешается срабатывание ловушки битом 4 порта **#xxBF** (см. стр. 37).

Аппаратная ловушка работает следующим образом: если процессор выполняет цикл М1 с указанного адреса (читает опкод команды), ему незамедлительно приходит сигнал NMI и со следующей команды происходит вход в NMI (см. ниже). При этом, в отличие от других методов входа в NMI, сигнал NMI подаётся сразу же, а не одновременно с сигналом INT.

Примечание: после входа в NMI при срабатывании ловушки она остаётся разрешённой.

8.5 Bxo∂ e NMI

После подачи NMI (см. стр. 7) процессор производит следующие действия:

- 1. Сохраняет адрес следующей команды на стеке.
- 2. Запоминает состояние разрешённости прерываний INT в флаге IFF2, при этом запрещая дальнейшие прерывания INT очисткой флага IFF1.
- 3. Начинает выполнять программу с адреса #0066.

Если в момент подачи NMI процессор выполнял код *не* из ПЗУ, включенного по адресам #0000..#3FFF, то одновременно с подачей NMI на процессор компьютер включает в окно процессора #0000..#3FFF последнюю (с номером #FF) страницу ОЗУ. В ином случае (процессор выполнял код из ПЗУ, включенного по адресам #0000..#3FFF) начало выполнения процедуры NMI происходит из включенного ПЗУ, но сразу же после считывания первого опкода в цикле М1 по адресу #0066 в ПЗУ, это ПЗУ подменяется на страницу ОЗУ с номером #FF.

Таким образом, процедура обработки NMI должна находиться в последней странице ОЗУ по смещению #0066 (для корректного входа при исполнении из ОЗУ) и должна обеспечивать корректный вход в неё как с адреса #0066, так и с адреса #0067. В страницах ПЗУ, из которых должен быть обеспечен корректный вход в NMI, по адресу #0066 должна быть команда, совместимая с приницом считывания первого байта команды по адресу #0066 из данных страниц и продолжения выполнения по адресу #0067 в странице ОЗУ с номером #FF. Рекомендация: во всех нужных страницах ПЗУ и в странице номер #FF ОЗУ по адресу #0066 разместить команду NOP.

Примечание: компьютер узнаёт, откуда выполняется процессор, путём контроля за сигналами процессора M1, MREQ (для определения факта выборки опкода), A14, A15 (для определения факта выборки опкода из адресов #0000..#3FFF) и сигнала CSROM диспечтера памяти (для определения факта выборки из ROM). Если последний опкод перед сигналом NMI был считан из ПЗУ по адресам #0000..#3FFF, то по сигналу NMI переключения ПЗУ не происходит. В противном случае включается последняя страница ОЗУ в адреса #0000..#3FFF. Из этого описания следует, что возможно неверный вход в NMI, если сигнал NMI совпадает с моментом перехода исполения из ОЗУ в ПЗУ или наоборот.

Так как компьютер при необходимости производит подключение последней страницы ОЗУ одновременно с началом сигнала NMI, а вход в обработку происходит только после окончания выполнения текущей команды, то вход будет выполнен некорректно (может разрушиться состояние процессора, содержимое ОЗУ программы и содержимое последней страницы ОЗУ) в случае, если сигнал NMI совпал с одним из следующих случаев:

- Процессор выполнял команду из ОЗУ по адресам #0000...#3FFF.
- Стек был установлен в адреса #0000..#3FFF.
- Команда процессора считывала или записывала память по адресам #0000..#3FFF.
- Запись на стек программы нарушает её функционирование.

Начало сигнала NMI совпадает с началом сигнала INT, таким образом в случае разрешённых прерываний INT, будет выполнен вход в NMI *вместо* входа в INT. При выходе из обработчика NMI следует иметь это в виду и при необходимости продолжать выполнение программы с обработчика INT. В случае подачи NMI через порт #**BF** сигнал NMI также придёт совместно со следующим сигналом INT. *Однако*, при срабатывании аппаратной ловушки сигнал NMI приходит непосредственно в момент срабатывания.

Рекомендуемый алгоритм входа в NMI для случая, когда требуется продолжить выполнение программы:

- 1. Сразу после входа в NMI (команда по смещению #0067 в последней странице ОЗУ) сохранить содержимое регистра стека в предназначенную для этого ячейку последней страницы ОЗУ.
- 2. Переставить стек в место, выделенное в последней странице ОЗУ.
- 3. Сохранить все регистры процессора на стек.
- 4. Узнать состояние разрешённости прерываний путём считывания флага IFF2 командой LD A,R или LD A, I.
- 5. При необходимости считать текущую конфигурацию компьютера из портов #xxBE.

8.6 Выход из NMI

Рекомендуемый алгоритм выхода из обработчика NMI:

- 1. Если обработчик NMI выполнял команды **DI** или **EI**, то следует восстановить флаг IFF2 процессора (теми же командами). При этом надо следить, чтобы до момента выхода из NMI не произошло прерывания INT.
- 2. Восстановить регистры процессора.

- 3. Переставить указатель стека на стек программы.
- 4. Выполнить команду **OUT** (**#BE**) , **A**. Данная команда не влияет на содержимое флагов и регистров процессора. Записываемое значение игнорируется. Данный шаг указывает компьютеру, что после выполнения следующей команды **RETN** следует отключить маппинг последней страницы O3У в область #0000...#3FFF с целью продолжения нормального выполнения программы.
- 5. Сразу же после команды **OUT (#BE)** , **A** выполнить команду **RETN**. В процессе выполнения этой команды в окне процессора #0000..#3FFF включится вместо последней страницы O3У заданная диспетчером страница и процессор продолжит выполнять прерванную программу.

Примечание: выключение подстановки последней страницы ОЗУ происходит на 2ой по порядку сигнал $\overline{M1}$ процессора после записи в порт **#BE** независимо от того, какие команды выполняются в этот момент.

В момент выполнения команды **RETN** происходит копирования состояния разрешённости прерываний INT из флага IFF2 в флаг IFF1.

Команды **DI** и **EI** устанавливают флаги IFF1 и IFF2 в одинаковое состояние, таким образом в случае выполнения этих команд в обработчике NMI, последующая команда **RETN** не изменит состояние разрешённости прерываний.

9 Архитектура: порты ввода-вывода

9.1 Порт #FE

Порт считывания состояния клавиатуры и магнитофонного входа, порт установки бита бипера, бита магнитофонного выхода, цвета бордюра.

Порт	Описание						
#xxFE	Чтение:						
RW	7: 1	6: tape_in	40: keyboard				
always							
	Запись:						
	75: не исп.	4: beeper	3: tape_out	20: цвет бордюра			

Чтение клавиатуры происходит стандартным для ZX-Spectrum способом — установкой в 0 адресных бит A15..A8, соответствующих требуемым рядам, данные всех выбранных рядов складываются по AND, результат возвращается в битах 4..0. Чтение происходит без wait'oв. Магнитофонный вход — отдельный вход ZX Evolution.

9.2 Порт COVOX (#xxFB, WO always)

Порт предназначен для вывода 8-битного звука. Звук выводится на биперный выход при помощи широтно-импульсной модуляции с частотой около 218 кГц. Записываемые значения — беззнаковые отсчёты от 0 до 255. После записи в порт **#xxFB** биперный выход начинает работать в режиме COVOX'а вплоть до последующей записи в порт **#FE**, после чего биперный выход начинает работать в обычном режиме.

9.3 Порты АҮ/ҮМ

Порт	Описание
#FFFD RW always	Запись – выбор номера регистра АУ/YM Чтение – чтение содержимого регистра АУ/YM
#BFFD WO always	Запись – запись в регистр АУ/ҮМ

9.4 Порт Kempston Joystick

Kempston Joystick — пятикнопочный манипулятор. Позволяет управлять программами, в которых реализована поддержка этого манипулятора. Обращение к порту манипулятора происходит в безвайтовом режиме.

Порт	Описание						
#xx1F RO	Чтение значения из порта позволяет получить состояние игрового манипулятора. Формат байта полученного значения:						
noshad	7: 0 6: 0 5: 0 4: Fire 3: Up 2: Down 1: Left 0: Right						
	•	• Fire – 1: нажата кнопка «Огонь» на манипуляторе, 0: не нажата;					
	•	• Up – 1: нажата кнопка «Вверх» на манипуляторе, 0: не нажата;					
	• Down – 1: нажата кнопка «Вниз» на манипуляторе, 0: не нажата;						
	• Left – 1: нажата кнопка «Влево» на манипуляторе, 0: не нажата;						
ı	•	• Right – 1: нажата кнопка «Вправо» на манипуляторе, 0: не нажата.					

9.5 Порты Kempston Mouse

Kempston Mouse — интерфейс манипулятора типа «мышь». Позволяет управлять программами, в которых реализована поддержка этого манипулятора. Обращение к порту манипулятора происходит в безвайтовом режиме.

Поддерживаются трехкнопочные мыши, а так же мышь с колесом.

Порт	Описание				
#FADF RO always	Чтение порта позволяет определить состояние кнопок и получить счетчик поворота колеса. Формат байта полученного значения:				
	74: Wheel counter 3: 1 2: MMB 1: RMB 0: LMB				
	 Wheel counter – счетчик поворота колеса; MMB – 0: нажата средняя кнопка мыши, 1: не нажата; RMB – 0: нажата правая кнопка мыши, 1: не нажата; LMB – 0: нажата левая кнопка мыши, 1: не нажата; 				
#FBDF RO always	Чтение порта позволяет определить значение счетчика координаты X положения мыши.				
#FFDF RO always	Чтение порта позволяет определить значение счетчика координаты Y положения мыши.				

В случае если мышь не обнаружена, из портов считывается значение 0xFF.

9.6 Порты управления часами и NVRAM

Доступ и управление часами и NVRAM программно совместим с широкой распространенной в экс-СССР схемой Gluk Clock (основанной на микросхеме К512ВИ1 или DALLAS 12877, 12877A).

Порт	Описание
#EFF7 WO noshad	 7ой бит этого порта управляет доступом к ячейкам часов в нетеневом режиме: установка бита 7 — разрешает доступ; снятие бита 7 — запрещает доступ. Значение после сброса — 0.
	Внимание! Остальные биты этого write-only порта используются для других целей. См. стр. 37.
#DFF7 WO	Запись в порт устанавливает адрес ячейки (0х000хЕГ).
noshad	Примечание: в теневом режиме порт #DEF7 доступен независимо от состояния бита 7 порта #EFF7 .
#DEF7 WO shadow	
#BFF7	Чтение/запись ячейки.
noshad	Примечание: в теневом режиме порт #BEF7 доступен независимо от состояния бита 7 порта #EFF7 .
#BEF7 RW shadow	

Так как часы компьютера ZX Evolution основаны на микросхеме PCF8583, то совместимость обеспечивается путем эмуляции.

Особенности эмуляции:

- Поддерживается запись/чтение всех ячеек NVRAM (0x0E...0x3F), добавлена возможность доступа к дополнительным пользовательским ячейкам (0x40..0xEF);
- Поддерживается чтение всех ячеек, несущих дополнительные функции (0x00..0x0D);
- Поддерживается запись ячеек, управляющих временем:
 - 1. 0x00 регистр секунд;
 - 2. 0x02 -регистр минут;
 - 3. 0х04 регистр часов;
 - 4. 0х06 регистр дня недели;
 - 5. 0x07 регистр дня месяца;
 - 6. 0x08 регистр месяца;
 - 7. 0x09 регистр года.
- Статусные ячейки возвращают следующие значения:
 - 1. 0x0A возвращает значение 0x00;
 - 2. 0x0B возвращает значение 0x02 (доступен на запись установка бита data mode);
 - 3. 0x0C возвращает значение 0x00 (поддерживается состояние update flag), смотри ниже дополнительные функции регистра 0x0C;
 - 4. 0х0D возвращает значение 0х80.
- Статусная ячейка 0x0С имеет дополнительный функционал. При записи в эту ячейку доступны следующие функции.
 - 1. 0-ой бит управляет сбросом буфера кодов PS/2 клавиатуры. В случае если бит установлен в 1, происходит сброс буфера кодов PS/2 клавиатуры (см. п9.8);
 - 2. 1-ый бит управляет состоянием Caps Lock Led на PS/2 клавиатуре (значение сохраняется). В случае если бит установлен в 0 Caps Lock Led не активен, если установлен в 1 Caps Lock Led активен.

При чтении из этой ячейки можно получить следующие статусы:

- 1. 2-ой бит статус Write Protect SD карты. Если бит установлен в 0 запись на SD карту невозможен. Если бит установлен в 1 запись на SD карту разрешена;
- 2. 3-ий бит статус нахождения SD карты в разъеме. Если бит установлен в 0 SD карта не установлена. Если бит установлен в 1 SD карта находится в разъеме.
- Операция чтения значения ячейки является вайтовой и занимает небольшое кол-во тактов (чтение происходит из внутренних регистров ATMEGA128, дублирующих

значения в РСF8583);

• Операции записи значения ячейки является вайтовой и занимает достаточно большое кол-во тактов (цикл записи в ячейку включает этап записи значения в PCF8583).

9.7 Чтение версии базовой конфигурации/бутлоадера.

Прикладное ПО имеет возможность считывать версию/название базовой конфигурации и бутлоадера ZX Evolution. Обращение к этому функционалу происходит через порты управления часами и NVRAM (см. п9.6) так, как будто это расширение функционала эмулируемой м/сх 12877.

Записью значения в любую из ячеек с адресами 0xF0..0xFF можно выбрать, что будет считываться. Допустимы следующие значения:

- 0 версия базовой конфигурации;
- 1 версия бутлоадера.

Длина данных версии составляет 16 байт (соответственно ячейки 0xF0..0xFF) и имеет следующий формат:

- 0xF0..0xFB 12 байт, название версии в кодировке ASCII (если название короче 12 байт, то дополняется нулями);
- 0xFC..0xFD 2 байт (little endian), дата и бит релиза (если бит не установлен, то считается, что версия тестовая beta);
- 0xFE..0xFF 2 байт (little endian), CRC значение прошивки. CRC считается для файла прошивки AVR (zxevo fw.bin) и не имеет практического смысла для Z80.

Формат упаковки даты и бита релиза:

- 7 бит 0xFD 0: тестовая версия; 1: официальный релиз;
- 6..1 биты 0xFD год выпуска релиза, значения 0..63 соответствуют 2000..2063 годам;
- 0 бит 0xFD и 7..5 биты 0xFC месяц выпуска релиза (допустимые значения: 1..12);
- 4..0 биты 0xFC день выпуска релиза (допустимые значения: 1..31).

Пример:

```
50 65 6E 74 31 6D 00 00 00 00 00 7B 14 3C B1 50 65 6E 74 31 6D 00 00 00 00 — строка «Pent1m»; 7В 14 — число #147В или %0001_0100_0111_1011: beta, 10 год, 03 месяц, 27 день (27.03.2010); 3С В1 — число #В13С, СКС.
```

9.8 Доступ к PS/2 клавиатуре.

Прикладное ПО имеет возможность считывать коды PS/2 клавиатуры напрямую. Обращение к этому функционалу происходит через порты управления часами и NVRAM (см. п9.6) так, как будто это расширение функционала эмулируемой м/сх 12877.

Записью значения 2 в любую из ячеек с адресами 0xF0..0xFF включает режим доступа к

буферу кодов PS/2 клавиатуры.

Путем чтения с адресами 0xF0..0xFF можно получить значения из буфера кодов PS/2 клавиатуры, при этом считанное значение удаляется из буфера. Если буфер кодов PS/2 клавиатуры пуст, то возвращается значение 0. Если буфер кодов PS/2 клавиатуры переполнен, то возвращается значение 0xFF. В случае переполнения буфера рекомендуется его сбросить (путем записи значения 1 в ячейку с адресом 0x0C).

Внимание! В буфер кодов PS/2 клавиатуры записываются коды клавиш не длиннее двух байт (трех байт, если с префиксом отпускания клавиш).

9.9 Доступ к SD-карте.

Происходит аналогично доступу в Z-контроллере от КОЕ. В обычном режиме:

Порт	Описание					
#xx77	Запись: управление сигналом CS на SD-карту:					
RW noshad	Биты 72: устанавливайте в 1 сброса, устанавливать в 0 для совместимости с Z-для выбора SD-карты Бит 0: устанавливайте в 1 для совместимости с Z-контроллером					
	- в соответствии с следует проверять					
#xx57 RW noshad	Запись: отсылка байта в SD-карту по SPI, одновременно принятый байт можно в дальнейшем считать из этого же порта.					
	Чтение: считать ранее принятый байт, отослать #FF в карту. Вновь принятый байт доступен при повторном чтении.					

Примечание: в цикле обмена по SPI, инициируемом *записью или чтением* порта **#xx57**, происходит *одновременно* отсылка байта в SD-карту и приём байта от неё. Отсылаемый байт тот же, что записан в этот порт (если цикл обмена инициирован записью), или #FF, если цикл обмена инициирован чтением порта.

Принятый байт запоминается во внутреннем буфере и доступен для последующего чтения из этого же порта. Данное чтение вновь инициирует цикл обмена и т. д.

Допускается читать/писать порт #xx57 командами INIR и OTIR. Пример чтения сектора:

LD C,#57 LD B,0 INIR INIR

SD-карта также доступна в shadow-режиме. В этом режиме порт **#xx77** используется для других целей, потому остаётся только порт **#xx57** и адресация меняется следующим образом.

Порт	Описание
#xx57 RW shadow	Запись: если A15=0, то отсылка байта в SD-карту по SPI, одновременно принятый байт можно в дальнейшем считать из этого же порта — аналогично записи в #xx57 в noshad-режиме. Если A15=1 — управление сигналом CS, аналогично записи в #xx77 в noshad-режиме.
	Чтение: считать ранее принятый байт, отослать #FF в карту. Вновь принятый байт доступен при повторном чтении. Чтение полностью аналогично noshad-режиму.

Таким образом полноценный доступ к SD-карте сохраняется и в shadow-режиме. Запись командой **OTIR** 512 байт выглядит так (**OTIR** работает с предекрементом **B**):

LD C, #57

```
LD B,#80
OTIR
LD B,#80
OTIR
LD B,#80
OTIR
LD B,#80
OTIR
```

Внимание! Статусы состояния SD карты доступны через функционал доступа к часам (см. п9.6).

9.10 Доступ к IDE-устройствам.

IDE-интерфейс сделан по стандарту nemo-ide с некоторыми расширениями. В отличие от оригинала (и Z-контроллера), IDE-порты доступны и в shadow-режиме. Однако, в отличие от оригинала, поддерживаются лишь порты #10, #11, #30, #50, #70, #90, #B0, #D0, #F0 и #C8, при этом осуществляется полная дешифрация (по 8 младшим битам адреса). Расширенный режим передачи данных по сравнению с оригиналом заключается в возможности читать и писать сектора полностью через порт #10 командами INIR и OTIR, причём в последнем случае нет надобности переставлять старший и младший байты. Расширенный режим не требует какого-либо специального включения, т. е. работает одновременно со старым (nemo-ide).

Порт	Описание
#xx10 RW always	Порт для записи или чтения данных, читается/пишется как младшая часть 16-битного слова (режим совместимости с nemo-ide), так и старшая тоже (расширенный режим).
#xx11 RW always	Чтение и запись старшей части 16-битного слова (режим совместимости с nemoide). Чтение происходит после чтения #10, запись сюда — до записи в #10. Обращение к этому порту не приводит к физическому обращению в IDE-устройства.
#xx30 RW always	Порт ошибок/свойств. Этот и дальнейшие порты см. в документации на протокол ATA. Биты ША Z80 75 мапятся на биты адреса шины ATA 20, порты #10, #30,, #F0 мапятся на CS0 шины ATA, порт #C8 — на CS1.
#xx50 RW always	Счётчик секторов
#xx70 RW always	Номер сектора (CHS) или биты 70 LBA-адреса
#xx90 RW always	Биты номера цилиндра 70 (CHS) или биты 158 LBA-адреса
#xxB0 RW always	Биты номера цилиндра 158 (CHS) или биты 2316 LBA-адреса
#xxD0 RW always	Номер головки (CHS) или биты 2724 LBA-адреса, выбор устройства (master/slave), выбор режима (LBA/CHS)
#xxF0 RW always	Регистр состояния/регистр команд
#xxC8 RW always	Регистр состояния/управления

Чтение данных в режиме nemo-ide выглядит так:

```
IN A, (#10) ; читаем младший байт, одновременно старший ; защёлкивается в #11

LD (HL), A

INC HL

IN A, (#11) ; читаем ранее защёлкнутый старший байт

LD (HL), A

INC HL
```

Запись данных в режиме nemo-ide:

```
LD D, (HL)
INC HL
LD A, (HL)
INC HL
OUT (#11), A ; пишем в защёлку старший байт
LD A,D
OUT (#10), A ; пишем младший байт одновременно со старшим
; из защёлки
```

Чтение и запись в расширенном режиме:

```
LD C,#10
LD B,0
INIR ;Читаем сектор из #10 (2 раза по 256 байт)
INIR
...
LD C,#10
LD B,0
OTIR ;пишем сектор в #10 (2 раза по 256 байт)
OTIR
```

Внимание! В расширенном режиме синхронизация выдачи младшего или старшего байтов (а также записи сначала младшего, а потом старшего байта) в начале чтения или записи сектора осуществляется в момент доступа в порты #30, #50 и т.д. (любые IDE-порты кроме #10 и #11).

9.11 Порты контроллера дисковода

Порт	Описание
#xx1F RW shadow	Регистр команд/состояния ВГ93
#xx3F RW shadow	Регистр трека ВГ93
#xx5F RW shadow	Регистр сектора ВГ93
#xx7F RW shadow	Регистр данных ВГ93
#xxFF RW shadow	«Системный» регистр. Чтение: бит 7 — состояние сигнала INTRQ от ВГ93 бит 6 — состояние сигнала DRQ от ВГ93 биты 50 — единичные

	Запись: Биты 10: выбор одного из 4 дисководов бит 2: сигнал RESET на ВГ93, 0 после сброса бит 3: сигнал HRDY на ВГ93 бит 4: выбор стороны дискеты
#xx2F, #xx4F, #xx6F, #xx8F RW shadow	Дополнительные порты, использующиеся для эмуляции ВГ93 при работе с рамдиском. Представляют из себя обычные ячейки памяти: считывается последнее записанное состояние, после сброса не определены.

9.12 Порт RS232 (коммуникационный интерфейс)

Работа с коммуникационный интерфейсом RS232C на ZX Evolution реализована по стандарту предложенным Кондратьевым без использования прерываний. В этом стандарте использовался стандартный PC совместимый ISA-модем, базировавшийся на микросхеме 16550 или совместимой. Соответственно внутренние регистры интерфейса соответствуют регистрам вышеуказанной микросхемы. В связи с тем, что не весь функционал 16550 используется в нашей реализации, часть регистров или битов регистров не используется. Поэтому рекомендуется перед программированием ознакомится с ограничениями реализации (в документации описаны только используемые регистры и биты).

Особенности реализации:

- отсутствует поддержка прерываний;
- поддерживаются только следующие дополнительные сигналы коммуникационного интерфейса: CTS, RTS;
- FIFO всегда используется.

Порт	Описание
#F8EF RW always	<lcr&0x80==0> DAT – регистр данных <lcr&0x80==1> DLL – младший регистр делителя</lcr&0x80==1></lcr&0x80==0>
#F9EF RW always	<lcr&0x80==0> IER – регистр разрешения прерываний (не используется) <lcr&0x80==1> DLM – старший регистр делителя</lcr&0x80==1></lcr&0x80==0>
#FAEF RW always	Запись: FCR – регистр управления FIFO Чтение: ISR – регистр статуса прерываний (не используется)
#FBEF RW always	LCR – регистр управления линией
#FCEF RW always	МСR – регистр управления модемом
#FDEF RO always	LSR – регистр статуса линии
#FEEF RO always	MSR – регистр статуса модема
#FFEF RW always	SPR – пользовательский регистр

9.12.1 Регистр данных (DAT)

Регистр используется для передачи/приема данных.

9.12.2 Регистры делителя (DLL,DLM)

Регистр используется для установки скорости передачи порта.

Существует два режима работы делителя:

- стандартный режим (старший бит **DLM** установлен в 0);
- нативный режим (старший бит **DLM** установлен в 1);

Для стандартного режима скорость рассчитывается, как для микросхемы 16550, по формуле: <скорость в бодах> = 115200/((DLM)*256) + DLL)

Для нативного режима значения **DLL** и **DLM** (без учета старшего бита) напрямую записываются в регистры **UBRRL** и **UBRRH** микросхемы ATMEGA128. В этом случае значения **DLL** и **DLM** рассчитывается по формуле:

```
(uint16) ((DLM\&0x7F) *256+DLL) = ((F_CPU/16)/<скорость в бодах>) -1 где F CPU = 11059200 (для ZXEvo)
```

Пример: Рассчитаем значения **DLL** и **DLM** для скорости 31250 бод (скорость MIDI интерфейса) при использовании нативного режима.

- 1. Рассчитаем значение делителя ((11059200/16)/31250)-1 = 21 [0x15];
- 2. Устанавливаем значения **DLL** = 0x15, **DLM** = 0x80 (старший бит включает нативный режим).

Внимание! ZX Evolution поддерживает дополнительную скорость передачи 256000, для этого нужно установить **DLM** и **DLL** в значение 0.

9.12.3 Регистр управления FIFO (FCR)

Регистр используется для управления FIFO.

- 7..3 биты: не используются;
- 2 бит (XMIT FIFO reset): сброс FIFO отправки, если установлена 1;
- 1 бит (RCVR FIFO reset): сброс FIFO приема, если установлена 1;
- 0 бит (**enable FIFO**): включает FIFO, если установлена **1**. Так как FIFO всегда включено, то этот бит должен быть установлен в случае подачи команд на сброс FIFO. В случае **0**, команды сброса FIFO игнорируются.

9.12.4 Регистр управления линией (LCR)

Регистр используется для установки формата передачи данных по коммуникационному интерфейсу.

- 7 бит (**DL enable**): запись **1** устанавливает видимым по портам **#F8EF**, **#F9EF** соответствующие части регистра делителя **DLL**, **DLM**;
- 6 бит: не используется;
- 5...3 бит: задает алгоритм расчета бита четности данных. Поддерживаются только следующие значения:

```
001 — odd parity;
```

011 – even parity;

все остальные значения — четность не используется.

- 2 бит (stop bits): кол-во стопбит. Кол-во "стоп-битов": при $\mathbf{0} = 1$, при $\mathbf{1} = 1,5$ в режиме 5 бит данных, иначе = 2.
- 1,0 биты (word length): длина слова данных. Возможны следующие значения:

```
00 — 5 бит;
```

01 — 6 бит;

10 — 7 бит;

11 — 8 бит.

9.12.5 Регистр управления модемом (MCR)

Регистр используется для установки режима интерфейса и управления дополнительными сигналами.

- 7..2 биты: не используются;
- 1 бит (RTS): управление сигналом RTS интерфейса;
- 0 бит: не используется.

9.12.6 Регистр статуса линии (LSR)

Регистр для получения состояния линии и FIFO.

- 7 бит: не используется;
- 6 бит (transmit empty): если установлена 1, то передатчик и FIFO отправки пустые;
- 5 бит (**THR empty**):если установлена **1**, то FIFO отправки данных пустое;
- 4 бит: не используется;
- 3 бит (**framing error**): если установлена **1**, то произошла ошибка кадра;
- 2 бит (parity error): если установлена 1, то произошла ошибка четности;
- 1 бит (**overrun error**): если установлена **1**, то FIFO приема данных переполнено;
- 0 бит (data received): если установлена 1, то FIFO приема данных не пустое;

9.12.7 Регистр статуса модема (MSR)

Регистр для получения состояния дополнительных сигналов интерфейса.

- 7 бит (CD status): всегда 1:
- 6 бит (**RI status**): всегда **0**;
- 5 бит (DSR status): всегда 1;
- 4 бит (CTS status): отображает состояние линии CTS интерфейса;
- 1..3 биты: не используется, всегда **0**;
- 0 бит (**CTS change**): устанавливается в **1**, если произошло изменение состояния сигнала CTS (сбрасывается в **0** после чтения регистра).

9.12.8 Пользовательский регистр (SPR)

Регистр служит для хранения пользовательских данных. Сбрасывается в случае выключения питания или полного сброса компьютера.

10 Сводная таблица портов

Адрес порта, режим доступа	Старшие адреса порта	Описание					
#xxBF RW always	_	Включение теневого режима портов; разрешение записи в ПЗУ, генерация NMI, разрешение записи в fontROM.					
		75: устанавливайте в 0 для совместимости					
		4: если 1, разрешено срабатывание аппаратной ловушки. 0 после сброса. См. стр. 21.					
		3: Генерация NMI для процессора. NMI выдаётся при переходе бита из 1 в 0. 0 после сброса.					
		2: если 1, то разрешается загрузка в font rom. 0 после сброса. См. стр. 18.					
		1: если 1, то запись в ПЗУ разрешена. 0 после сброса.					
		0: если 1, то включены теневые порты. 0 после сброса.					
		Бит 0 этого порта имеет приоритет над другими способами включения теневых портов: теневой режим включается безусловно при записи 1 в этот бит. При записи 0 включение теневого режима управляется другими способами, например портом #xx77 или переходом в TR-DOS. Данный бит не включает TR-DOS. Данный порт отсутствует в АТМ2. При чтении: биты 3:0 — последнее записанное значение, биты 7:4 — не определены.					
#xx77 WO shadow	#FD, #BD, #BF, #FF, #FC, #BC,	Включение теневого режима портов; разрешение работы диспетчера памяти, разрешение записи палитры, управление турбо-режимом, управление видеорежимами.					
		20: управление видеорежимами, 011 после сброса. См. стр. 13.					
		3: управление турбо-режимом. 0 после сброса. См. стр. 13.					
	#BE,	А8: 0 — выключение диспетчера памяти. 0 после сброса. См. стр. 9.					
	#FE	A9: 0 – удержание режима включения TR-DOS и теневых портов. 0 после сброса. См. стр. 9.					
		А14: 0 – разрешение записи палитры. 1 после сброса. См. стр. 14.					
#xxF7 WO shadow	#3F, #7F, #BF, #FF, #37, #77, #B7, #F7	Управление диспетчером страниц. Порты #3xF7 , #7xF7 , #BxF7 и #FxF7 относятся, соответственно, к окнам #0000#3FFF, #4000#7FFF, #8000#BFFF и #C000#FFFF. Формат портов #xFF7 :					
		50: <i>инверсные</i> биты номера страницы, включаемого в окно процессора. Доступны 16k страницы с номерами 063 ОЗУ (всего 1 мегабайт) и страницы 031 ПЗУ (всего 512 килобайт, бит 5 игнорируется).					
		6: бит «гатпгот»: если 0, то в данном окне процессора включается ПЗУ, если 1 — ОЗУ.					
		7: бит «dos7ffd»: если 1, то: для ОЗУ — в данном окне происходит подмена младших 3 или 6 бит (в зависимости от режима ZX Spectrum 128k или pentagon 1024k) номера страницы неинверсными битами из порта #7FFD. Для ПЗУ — происходит подмена младшего бита номера страницы сигналом включения TR-DOS (1 если TR-DOS включен). Кроме того, происходит включение теневых портов и TR-DOS («вход в TR-DOS»), если в данном окне произойдёт выполнение кода со смещения #3Dxx. Формат портов #x7F7:					

Адрес порта, режим доступа	Старшие адреса порта	Описание 70: <i>инверсные</i> биты номера страницы ОЗУ, включаемого в окно процессора. Доступны 16k страницы с номерами 0255 (всего 4 мегабайта). См. стр. 9.							
#7FFD WO always	_	Переключение страниц в окне #C000#FFFF для режимов pentagon 1024k и ZX-Spectrum 128k, переключение экранов, блокировка 128k для режима ZX-Spectrum 128k, выбор карты памяти. В режиме ZX Spectrum 128k:							
		67: не исп.	5: при записи 1 блокируется дальнейшая запись в порт #7FFD, до перехода в режим pentagon 1024k или до сброса. 0 после сброса.	4: выбор карты памяти. 0 после сброса.	3: выбор экрана. 0 и сброса.	20: замещают младшие 3 бита номера страницы, если такое замещение разрешено для какого-либо окна (см. описание портов #xxF7). О после сброса.			
		В режиме рег 75, 20: зам необходимос номера стран См. стр. 9, 15	иещают при сти младшие 6 би ницы.	4: выбор карті	ы памяти.	3: выбор экрана.			
#EFF7 WO noshad	_	Spectrum 128 #0000#3FFF	правление турбо-режимом, управление видеорежимами, управление режимами ZX-ectrum 128k / pentagon 1024k, включение нулевой страницы ОЗУ в окно 000#3FFF, управление доступом к портам энергонезависимой памяти и часов.						
		7: 1 разрешает доступ к портам энергонезависимой памяти и часов в нетеневом режим. См. стр. 25.							
			т в окно #0000#: и диспетчера памя		ницу ОЗУ. И	Имеет приоритет над			
		2: 1 включае	т режим ZX Spec	trum 128k. 0 – режі	им pentagon	1024k. См. стр. 9.			
		4: управлени	не турбо-режимом	п. См. стр. 13.					
			ение видеорежима						
			х бит порта после						
#DFF7 WO noshad #DEF7 WO shadow	_	Установка адреса ячейки энергонезависимой памяти и часов. <i>Примечание:</i> в нетеневом режиме порт #DFF7 доступен в зависимости от бита 7 порта #EFF7 . В теневом режиме порт #DEF7 доступен всегда. См. стр. 25.							
#BFF7 RW noshad	_	Чтение/запись ячейки энергонезависимой памяти и часов. Примечание: в нетеневом режиме порт #BFF7 доступен в зависимости от бита 7 порта #EFF7. В теневом режиме порт #BEF7 доступен всегда. См. стр. 25.							

Адрес порта, режим доступа	Старшие адреса порта	Описание							
#BEF7 RW shadow									
#xxBE RO always	#00, #01, #02, #03, #04, #05, #06, #07, #08, #09, #0A, #0B, #0C, #0D, #0E, #10,	Порты чтения конфигурации компьютера. См. стр. 19.							
#xxBE WO always	_	Порт восстановления маппинга окна #0000#3FFF при выходе из NMI. См. стр. 21.							
#xxBD WO always	#00, #01	Установка младшей и старшей части адреса аппаратной ловушки. См. стр. 21.							
#xxFE	_	Чтение:						1	
RW always		7: 1		6: tape_in		5: 0		40: keybo	ard
		Запись:							
		75: не ис	П.	4: beeper		3: tape	out	20: цвет	бордюра
		Устанавлин См. стр. 23	вливает цвета бордюра 07.						
#xxF6 RW always	_	Полностью дублирует функционал порта #xxFE , за исключением того, что устанавливает цвета бордюра 815. См. стр. 23, 15.							
#xxFB WO always	_	Порт вывода 8-битного звука (covox). См. стр. 23.							
#FFFD RW always	_	Запись – выбор номера регистра АУ/YM Чтение – чтение содержимого регистра АУ/YM							
#BFFD WO always	_	Запись – запись в регистр АУ/ҮМ							
#xx1F	_	Чтение состояния игрового манипулятора (kempston-джойстика).							
RO noshad		7: 0	6: 0	5: 0	4: Fire	3: Up	2: Down	1: Left	0: Right
#FADF		См. стр. 24		naton sa					
RO always	_	Кнопки и колесо kempston-мышки.3: 12: MMB1: RMB0: LN						0: LMB	
		Cm. ctp. 24.						1. 10.115	v. 2
#FBDF RO always	_	X-координата kempston-мышки. См. стр. 24.							
#FFDF RO always	_	Ү-координата kempston-мышки. См. стр. 24.							
#xx77 RW noshad	_	Управление сигналом CS на SD-карту. См. стр. 29.							

Адрес порта, режим доступа	Старшие адреса порта	Описание			
#xx57 RW noshad, shadow	_	Обмен данными с SD-картой, управление сигналом CS на SD-карту в shadow- режиме. См. стр. 29.			
#xx10, #xx11, #xx30, #xx50, #xx70, #xx90, #xxB0, #xxD0, #xxC8 RW always	_	Работа с IDE-шиной. См. стр. 30.			
#xx1F, #xx3F, #xx5F, #xx7F, #xxFF RW shadow	_	Порты контроллера дисковода. См. стр. 32.			
#xxFF WO shadow	_	Порт контроллера дисковода и <i>одновременно</i> порт записи палитры. Выполняет функцию записи палитры при установленном A14=0 в порте #xx77 (WO, shadow). См. стр. 14, 32.			
#xx2F, #xx4F, #xx6F, #xx8F RW shadow	_	Дополнитльные порты для эмуляции ВГ93. Сохраняют и читают последнее записанное значение. См. стр. 32.			
#xxEF RW always	#F8, #F9, #FA, #FB, #FC, #FD (RO), #FE, #FF	Порты RS232. См. стр. 33.			

11 История версий базовой конфигурации

11.1 Версия 21.10.2012

• Добавлено описание аппаратной ловушки;

11.2 Версия 13.02.2012

- Добавлен доступ к PS2 клавиатуре;
- Исправлена ошибка клавиатуры проявляющаяся при нажатии нескольких клавиш;
- Скорректирована работа IDE контроллера;

- Добавлен текстовый видеорежим в одной странице;
- Изменено описание входа в NMI в соответствии с изменениями в прошивке FPGA;
- Добавлена в описание сводная таблица портов.

11.3 Версия 29.09.2011

- Добавлен ФАПЧ для ВГ93;
- Скорректирована обработка линии RTS коммуникационного порта;
- Добавлен выбор BCD/HEX в эмуляции работы GLUK часов;
- Изменен алгоритм обработки NMI.

11.4 Версия 11.06.2011

- Добавлен обработчик NMI;
- Добавлена работа с текстовым режимом и поддержка шрифтов;
- Скорректирована процедура инициализации PS/2 мыши;
- Добавлено управление NMI с внешних контактов (для плат revision A и B замыканием контактов "Turbo").

11.5 Версия 11.05.2011

- Добавлена поддержка нативного режим для делителя скорости RS232;
- Учитывается управление умножителем частоты ICS501M (для плат revision C).

11.6 Версия 26.04.2011

- Добавлена поддержка коммуникационного интерфейса (RS232);
- Повышена надежность загрузки FPGA;
- Повышена надежность работы с RTC (исправлена ошибка, проявляющаяся на некоторых платах).

11.7 Версия 30.03.2011

- Поправлено описание портов кемпстон-мышки.
- Добавлено описание ковокса.
- Поправлены рекомендуемые значения старшего байта адреса для порта #xx77.
- Добавлено описание поддерживаемых видеорежимов.
- Добавлен доступ к дополнительным ячейкам NVRAM (0x40..0xEF).

11.8 Версия 07.12.2010

- Добавлена регулировка разрешения PS/2 мыши.
- Маппер клавиатуры PS/2 в ZX реализован без использования RAM микроконтроллера.

11.9 Версия 29.11.2010

- Реализован выбор («Num Lock») и индикация (Num Lock led) режима аудиовыхода (beeper/tapeout).
- Поддержан маппер клавиатуры PS/2 в ZX для всех дополнительных кодов клавиатуры (E0 xx).
- Скорректирован менеджер памяти и видимость портов в различных режимах.

11.10 Версия 17.10.2010

- Поддержка загрузки с магнитофонного входа.
- Скорректировано управление ресетами с PS/2 клавиатуры («F12» и «CTRL-ALT-DEL»).
- Реализован менеджер для всей памяти (ROM и RAM).
- Оптимизирована работа с PS/2 устройствами.
- Поддержан маппер PS/2 в ZX клавиатуру (пока без возможности редактирования).
- Реализованы расширения nemo-ide.

11.11 Версия 30.03.2010

• Исправлена ошибка загрузки FPGA.

11.12 Версия 28.03.2010

- Исправлена обработка ошибок PS/2 мыши. Реинициализация мыши в случае ошибок обмена.
- Поддержка получения версии базовой конфигурации и бутлоадера.
- Исправлена обработка ошибок тайм аута обмена с PS/2 устройствами.

11.13 Версия 24.03.2010

- Исправлено поведение светодиода питания (Pwr Led), теперь выключается если основное питание отключено.
- Управление сигналом NMI на ZX с помощью кнопки «Print Screen» PS2 клавиатуры.
- Мягкий сброс компьютера (без перезагрузки fpga) при замыкании контактов «soft reset» на плате.

11.14 Версия 10.03.2010

- Добавлена индикация режима TV/VGA на индикаторе «Scroll Lock» PS2 клавиатуры (горящий светодиод VGA, не горящий TV).
- Исправлена ошибка отображения NVRAM, используемой в GLUK, в NVRAM PCF8583.
- Исправлена ошибка в эмуляции часов GLUK, реализована эмуляция Update flag в регистре C.
- Реализовано сохранение режима компьютера в NVRAM.
- Добавлена поддержка механической ZX клавиатуры.
- Добавлена поддержка Kempston джойстика.

11.15 Версия 04.02.2010

Базовая версия (1.00 в SVN).