空气比热容比的测量 实验报告

November 15, 2020

1 实验目的

- 1. 学习测定空气比热容比的一种方法
- 2. 观察和分析热力学系统的状态和过程特征,掌握实现等值过程的方法。
- 3. 了解压力传感器和电流型集成温度传感器的工作原理并掌握其使用方法。

2 实验原理

2.1 测量比热容比的原理

理想气体在准静态绝热过程中满足绝热方程: $PV^{\gamma}=Const$ 。其中 $\gamma=\frac{C_p}{C_V}$ 为气体的比热容比(也称为绝热指数)。

本实验用如下装置通过测量三个状态来求解分。

Figure 1: 实验装置简图

- 1. 打开放气阀A, 储气瓶与大气联通, 再关闭A。此时, 瓶内气体与周围空气同温同压。
- 2. 打开充气阀B,向瓶内充气,使瓶内压强增大1000-2000Pa,然后关闭B。之后等待内部气体与外界达到温度平衡。于是得到状态 $I(p_1,V_1,T_0)$ 。
- 3. 迅速打开放气阀A。当瓶内要强降至 p_0 时,立刻关闭A。由于过程较快,可将其视为绝热膨胀。于是得到状态 $II(p_0,V_2,T_1)$ 。
- 4. 之后,瓶内气体缓慢从外界吸热,直至达到室温 T_0 ,压强也随之增大。令 V_2 表示贮气瓶体积, V_1 为保留在瓶中的这部分气体在状态I中的体积。于是得到稳定后的气体状态 $III(P_2,V_2,T_0)$ 。(II至III可视为等容吸热。)

综上,由整个过程: $I(p_1,V_1,T_0) \to$ (绝热膨胀) $II(p_0,V_2,T_1) \to$ (等容吸热) $III(p_2,V_2,T_0)$,可以列出方程:

$$p_1 V_1^{\gamma} = p_0 V_2^{\gamma} \tag{1}$$

$$p_1 V_1 = p_2 V_2 (2)$$

解之得:

$$\gamma = \frac{\ln \frac{p_1}{p_0}}{\ln \frac{p_1}{p_2}} \tag{3}$$

由因此, 只要测得 p_0, p_1, p_2 就能求出空气的 γ 。

2.2 AD590集成温度传感器的原理

对AD590施加激励电压, 其表现为恒流源, 输出电流与传感器所处的热力学温度成正比, 即:

$$I = K_c t_c + 273.15(\mu A) \tag{4}$$

其中转换系数 $K_c = 1\mu A/K$, t_c 为摄氏温度。 利用AD590搭建的测温线路如下图:

Figure 2: AD590测温线路

根据简单的电路知识可知,数字电压表上的读数(单位为mV)即传感器所处的摄氏温度值。

2.3 扩散硅压阻式差压传感器的原理

Figure 3: 压差传感器示意图

将上图所示的传感器的C端与瓶内气体相连, D端与大气连通。给传感器一恒定的输入电压, 当瓶内压强变化时, 输出电压变化, 且输出电压和压强的变化成线性关系:

$$U_i = U_0 + K_p(p_i - p_c) \tag{5}$$

$$K_p = \frac{U_m - U_0}{p_c} \tag{6}$$

其中, p_i 为被测气体压强, p_c 为大气压强, U_m 对应两端压差为 p_c 时的输出电压, U_0 对应两端压差为0时的输出电压。于是可求出待测气体的压强:

$$p_i = p_c + \frac{U_i - U_0}{K_p} \tag{7}$$

3 实验仪器

Figure 4: 实验装置示意图

实验装置如图所示。温度测量借助AD590(测温电路输入12V电压),压强测量借助上述的压差传感器(输入电压5V)。它们均输出mV电压,可以用数字电压表通过双刀双掷开关进行交替测量。

4 实验步骤

- 1. 在面包板上搭接相关电路,接通电源并调校好温度传感器。
- 2. 标定压差传感器。主要分为两步。

先打开放气阀A,D与机械泵相连,抽气。当压差传感器输出电压最大且保持不变时,D口气压可视为0,此时C端为大气压,得到 p_c 对应的 U_m 。

再关掉机械泵,断开泵与D的连接,然后C、D两端均为大气压。于是得到 $\Delta p=0$ 的电压 U_0 。用式(6)可求得 K_p 。

- 3. 测量比热容比 γ 。 主要步骤在2.1中已经有所体现,一共是四步,不再重复。以下为每步需要测量的数据。
 - I: U_{p_1}, U_{T_0}
 - II: U_{p_0}, U_{T_1}
 - III: U_{p_2}, U_{T_0}

每次测出一组 p_0, p_1, p_2 ,求 γ 。重复6-10次,计算其平均值和不确定度。

在进行充气操作前,需要估算瓶内压强增大1000-2000Pa时电压的范围,避免充气过少或者充气过多循环设备。通过求解方程101000 = $10^5 + \frac{U_1 - U_0}{K_p}$ 与102000 = $10^5 + \frac{U_1 - U_0}{K_p}$,得到电压的范围大致为3.52-4.77mV,之后以此为参考向瓶内充气。

5 数据处理

标定压力传感器、测量的8组数据如下表。将式(3)输入Excel可立即得到每组相应的 γ 值。

U_0 / mV	2.27	U_m / mV	127.66	p_c / Pa	100000	t/°C	24.7	К_р	0.0012539			
测量次数	测量值 (mV)							计算值				
	状态		状态II		状态Ⅲ		р					
	U_{p_1}	U_{T_0}	U_{p_0}	U_{T_1}	U_{p_2}	U_{T_0}	p_0	p_1	P_2	γ		
1	4.17	24.95	2.29	24.80	2.73	24.96	100015.95	101515.27	100366.86	1.3078		
2	4.07	25.10	2.28	24.92	2.72	25.10	100007.98	101435.52	100358.88	1.3282		
3	4.45	25.13	2.30	24.95	2.81	25.13	100023.93	101738.58	100430.66	1.3136		
4	4.14	25.17	2.32	24.93	2.75	25.14	100039.88	101491.35	100382.81	1.3116		
5	4.22	25.14	2.35	25.02	2.90	25.13	100063.8	101555.15	100502.43	1.4198		
6	4.40	25.16	2.40	25.08	2.88	25.13	100103.68	101698.7	100486.48	1.3183		
7	4.07	25.17	2.42	25.04	2.81	25.13	100119.63	101435.52	100430.66	1.3116		
8	4.15	25.18	2.35	25.04	2.77	25.12	100063.8	101499.32	100398.76	1.3065		

借助Excel可求得 $\overline{\gamma}=1.3272, S_{\gamma}=\sqrt{\frac{\Sigma(x_i-\overline{x})^2}{n-1}}=0.038028139$ 。 只考虑A类不确定度, $\Delta_{\gamma}=t_p(\nu)S_{\overline{\gamma}}=\frac{t_p(n-1)}{\sqrt{n}}S_{\gamma}=3.2\times 10^{-2}$ 。 故 $\gamma=1.327\pm0.032$

6 思考题

- 1. 本实验研究的热力学系统,是指哪部分气体? 本实验研究的是2.1中第3步放气操作之后留在瓶中的这部分空气。
- 2. 实验时 p_1 的取值大小对于测量 γ 来说是大些好还是小些好? 为什么?

实验时 p_1 的取值不能太大,否则放气就需要较长的时间。而放气时间越长,瓶内气体与外界交换的热量(吸热)就越多,2.1中的步骤3就偏离真正的绝热膨胀越远,从而导致实验结果偏差较大。

本次实验中,老师已经要求充气时使瓶内压强增大1000-2000Pa。在实际操作中,可以发现这个范围内的 p_1 在放气阶段的时间几乎一样。而值得注意的是如果 p_1 过小,放气时速度过快并且放气效果(比如声音)不明显,会导致人难以判断放气是否快要结束,或者来不及关上放气阀。因此,综合考虑, p_1 控制在比外界压强大1000-2000Pa范围的中间值左右即可。

3. 如果用抽气的方测量γ, 是否可行? 原公式是否适用?

抽气的方法可行, 但计算\\gamma的式子需要重新求。

抽气测量γ可以采用如下流程:

 $I(p_0, V_1, T_0) \rightarrow ($ 绝热膨胀 $) \rightarrow II(p_1, V_2, T_1) \rightarrow ($ 等容吸热 $) \rightarrow III(p_2, V_2, T_0) \circ$

I 为瓶中装有与外界等温等压的气体的状态。II 为随后快速抽出一部分气体(用泵抽气,时间短,可视为绝热过程)后瓶中气体的状态。III 为之后等待瓶中气体升温到室温后瓶中气体的状态。可以列出方程:

$$p_0 V_1^{\gamma} = p_1 V_2^{\gamma} \tag{8}$$

$$p_0 V_1 = p_2 V_2 (9)$$

解之得:

$$\gamma = \frac{\ln \frac{p_1}{p_0}}{\ln \frac{p_2}{p_0}} \tag{10}$$

4. 空气中混有1%水蒸气, 试分析如何影响γ值。

空气中氮气与氧气两种双原子分子为主要成分。双原子分子的自由度i=5, $\gamma=\frac{i+2}{i}=1.4$ 。因此空气的理论比热容比应该很接近1.4。水蒸气为三原子分子,其自由度大于5(如果看作刚体则为6)。因此实际的空气由于i的增大 γ 有所减小

此外,潮湿空气在等容吸热一步中会吸收一部分热量(水的比热较大,升高相同的温度吸收的热量比空气多),导致瓶内温度的升高达不到原来的室温,压强增长变小, p_2 变小,也导致 γ 减小。

5. (自行思考) 水蒸气导致的误差能否改进?

可以仿照一些化学实验中获得干燥气体的方法,在容器中放置生石灰或者CaCl2等吸水物质。

6. (自行思考) 实验中还有哪些误差?

实验中发现,用电压表读取温度、压强存在一定的延时。放气操作要求速度较快,压强值更新慢会导致停止放气时压强值的读数相比真实值偏大,导致最后 γ 偏小。

由于气体导热较慢,因此温度值的更新会偏慢,因此需要足够的耐心等待其稳定,但这又对容器的气密性提出了更高的要求。

读数存在延时的问题可以借助摄像机解决人反应慢的问题。如果有条件也可以进一步提高测量仪器(传感器、电压表)的性能,使用延时更短的仪器进行测量。

7 实验小结

本次实验中,我学习了如何设计电路使用温度、压强传感器,将温度、压强转化为电压表的示数进行读取。在实验操作中,放气操作要求迅速而准确,需要反复尝试几次掌握技巧之后才能得到较为理想的数据。这让我意识到做物理实验最好提前预估出理想值,并在前期尝试中反复训练,分析误差,逐步接近理想值,以便使最后的结果最佳。

原始数据

3 数据记录

U_0/mV	2.27	U_m / mV	127.66	p_c/Pa	105	t/°C	24.7		e per com o construction	
			and the second of the second of			a Samuelan and a marine a mice	productiva ili variatti verta de de de	onimumidantuutuutuutuu	A some in the source of the so	
测量次数		[(mV)	计算值							
	秋恋		状态川		状态川		P			Ý
	U_{p_1}	U_(T_0)	U_{p_0}	U_(T_1)	U_{p_2}	U_{T_0}	p_0	P_1	P_2	
1	4.17	24.95	229	24.80	2.73	24.96		er er an kan de kriste er er er er er	ganda'an masar a la sana	1.30
2	4.07	25.10		24.92	2.72	25.10				1.32
3	4.45	25.13	2.30	24.95	2.81	25.13				1.3
4	4.14	25.17	2.32	24.93	2.75	25.14				1.3
5	4.72	25.14	2.35	25.02	2.90	25.13				1,4
6	4.40	25.16	2.40	25.08	2.88	25.13				1.3
7	4.07	25.17	2.42	25.04	\$ 2.8					1.3/
8	4.15	25.18		25.04	2077	25.12				1.300
9										
10										

をある

CS Scanned with CamScanne