Part 1

1.4, Problem 2

$$\frac{dy}{dt} = 2y + 1$$
$$y(0) = 3$$
$$0 \le t \le 2$$
$$\Delta t = 0.5$$

k	t	y	f
0	0	3	7
1	0.5	6.5	14
2	1	13.5	28
3	1.5	27.5	56
4	2	55.5	

Excel was used for calculation and TikZ/PGF was used to graph the coordinate outcomes from Euler's Method.

1.4, Problem 6

$$\frac{dw}{dt} = (3 - w)(w + 1)$$

$$w(0) = 0$$

$$0 \le t \le 2$$

$$\Delta t = 0.5$$

•	k	t	w	f
	1	0	3	3
	2	0.5	1.5	3.75
,	3	1	3.375	-1.641
	4	1.5	2.555	1.583
,	5	2.0	3.346	_

1.4, Problem 11

The equilibrium solutions to $\frac{dw}{dt} = (3 - w)(w + 1)$ occur for w(t) = 3; however, we had our initial condition at w(0) = 0 and yet the solution seemed to oscillate around the equilibrium point (rather than approaching it from below, as we would expect for a solution that started below the equilibrium value).

1.4, Problem 15

• $\Delta t = 1$:

• $\Delta t = 0.5$:

• $\Delta t = 0.25$:

The actual solution to the initial value problem should be some quadratic function.