Why does so few of you solve state minimization tasks?

We're just showing that there exists state minimization, and present a simple method that can be applied to small state diagram.

State table

Present	Next state		Output
state	w = 0	w = 1	Z
A	В	С	1
В	D	F	1
C	F	E	0
D	В	G	1 $ $
E	F	C	0
F	Е	D	0
G	F	G	0

Initial state diagram

Initial state table

Is state minimization difficult?

Kindergarten version ...

William Sandqvist william@kth.se

() () () () () () () () Done!

William Sandqvist william@kth.se

Minimal number of states.

William Sandqvist william@kth.se

Minimized state diagram

Present	Nextstate		Output
state	w = 0	w = 1	z
A'	В	C'	1
В	A'	F	1
C,	F	C,	0
F	C,	A'	0

4 states needs 2 flip-flops $(2^2 = 4)$.

More on state minimization in "Data Structures and Computer Algorithms"

- This method, (Moore 1956). State minimization of n states **runtime** on computer is $\propto n^2$
- Hopcroft's algorithm (1971) runtime on computer ∞
 n·log₂(n)

numerical Example: 100 states.

 $100^2 = 10000$

 $100 \cdot \log_2(100) = 650$

Computer programs on the Internet must be scalable, they can "overnight" become very popular - and run the risk of overloading the servers!