CSE 306: Computer Architecture Sessional

Submission Date: December 19, 2022

Assignment-1: 4-bit ALU Simulation

Section: A1

Group: 2

Group Members:

- 1. 1905017
- 2. 1905028
- 3. 1905003
- 4. 1905023
- 5. 1805066

1 Introduction

An Arithmatic Logic Unit(ALU) is a multi-operation, combinational-logic digital function. It can perform a set of basic arithmatic operations and a set of logic operations. The ALU has a number of selection lines to select particular operation in the unit. The selection lines are decoded within the ALU so that k selection variables can specify up to 2^k distinct operations.

In our experiment, we have three selection variables which can enable us to perform $2^3 = 8$ distinct operations. The four data inputs from A are combined with the four inputs from B to generate an operation at the F outputs. A combination circuit is used to modify data inputs. A and B to produce the inputs for the parallel adders to get the desired F outputs.

In our ALU design, we use a 4-bit status register. This status register contains 4 status bits that are denoted by C(Carry), S(Sign), V(Overflow) and Z(Zero). These status buts change during arithmatic operations. They indicate the following changes:

- CF: Bit C is set 1 when the output carry of the ALU is 1, otherwise it is set to 0.
- **SF**: Bit S is set 1 when the highest order bit of the output of the ALU is 1, it is set 0 when the highest order bit is 0.
- OF: Bit V is set 1 if the X-OR of carries C_4 and C_5 is 1. Otherwise it is set 0.
- **ZF**: Bit Z is set 1 if the result is zero, otherwise the Z bit is set 0.

2 Problem Specification

Design a 4-bit ALU with three selection bits cs0,cs1 and cs2 for performing the following operations:

cs2	cs1	cs0	Functions
0	X	0	OR
0	0	1	Complement A
0	1	1	Sub
1	0	0	Increment A
1	0	1	Sub with borrow
1	1	X	Transfer A

Table 1: Operation Table

3 Required K-Maps:

4 Truth tables:

cs2	cs1	cs0	Functions	X_i	Y_i	Carry
0	X	0	A v B	$A_i \vee B_i$	0	0
0	0	1	Complement A	A^{\prime}	0	0
0	1	1	Sub	A	$B^{'}$	1
1	0	0	Increment	A	0	1
1	0	1	Sub with borrow	A	$B^{'}$	0
1	1	X	Transfer A	A	0	0

Table 2: Operation Table

5 Block Diagram:

6 Equations:

$$X_{i} = C'_{0}C'_{1}A'_{i} + C_{1}A_{i} + C_{0}A_{i}$$

$$Y_{i} = C_{0}C'_{1}C_{2}B'_{i} + C'_{0}C_{1}B'_{i}$$

$$Z = C'_{0}C_{1} + C'_{1}C'_{2}$$

7 Complete Circuit Diagram

Figure 1: ALU

Figure 2: Arithmetic Unit

Figure 3: Logical Unit

8 Required ICs:

IC Name	Count		
IC 7432	2		
IC 7404	3		
IC 74157	3		
IC 74151	3		
IC 7483	1		
IC 7486	1		
IC 7408	1		

Table 3: Required IC Table

9 Simulator Used:

 ${\bf Logisim\text{-}Win\text{-}}2.7.1$

10 Discussion:

In this experiment, we were tasked to implement an ALU that can perform four arithmetic operations and two logical operations. We implemented ALU in such a way that it can perform both arithmetic and logica operations in a single circuit, instead of requiring two different circuits. Number of IC that was used was kept as minimal as possible. Logisim-Win-2.7.1 simulation software was used to simulate the circuit.