Economic Significance in Corporate Finance: Todd Mitton (2020)

Discussant: Adarsh Kuthuru Carroll School of Management, Boston College

16th November 2020

Overview

- Summary of the paper
- Comments
- Conclusion

Summary of the paper

Research Question:

• Issues with the reporting economic significance in empirical corporate finance literature and how to address them?

Findings:

The author studies 604 articles published in the top three finance journals between 2000 and 2018 that report 954 regressions.

• He studies different measures of economic significance - $E_{\bar{y}}^S, E_{\bar{y}}^{IQR}, E_S^S, E_S^{IQR}$ by regressing the common outcome variables in corporate finance like profitability, firm value, leverage, investment, payouts, or cash holdings on randomly generated explanatory variables and finds that $E_{\bar{y}}^S, E_{\bar{y}}^{IQR}$ are not reliable despite using control variables.

Results

Table 4 Measures of economic significance for randomly generated explanatory variables

The table reports summany statistics of measures of economic significance or fundonly generated explanatory variables. Definitions of the measures of economic sugarificance are given in Section 2.2.1. Bend A reports result for normally distributed explanatory variables. Definitions of the measures of economic sugarificance are given in Section 2.2.1. Bend A reports results for normally distributed for each cities considerable for each of the section of

		Industry fixed effects					Firm fixed effects								
		Panel A: Randomly generated normally distributed explanatory variables													
Category of dependent variable	Economic significance measure	Min	10th pctile	25th pctile	Median	75th pctile	90th pctile	Max	Min	10th pctile	25th pctile	Median	75th pctile	90th pctile	Max
Profitability	Eş	0.00	0.00	0.01	0.03	0.12	0.23	0.74	0.00	0.00	0.01	0.02	0.08	0.19	0.66
	E_g^{IQR}	0.00	0.00	0.01	0.04	0.16	0.31	1.00	0.00	0.00	0.01	0.03	0.11	0.26	0.89
	E_2^S	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	E_x^{IQR}	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Value	E_g^s	0.00	0.00	0.00	0.00	0.06	0.20	1.59	0.00	0.00	0.00	0.00	0.03	0.07	0.46
	E_g^{IQR}	0.00	0.00	0.00	0.01	0.08	0.27	2.13	0.00	0.00	0.00	0.01	0.04	0.10	0.62
	E ^s	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	E_s^{IQR}	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Leverage	E ^s _g	0.00	0.00	0.00	0.00	0.00	0.05	0.18	0.00	0.00	0.00	0.00	0.00	0.05	0.18
	$E_{\tilde{y}}^{IQR}$	0.00	0.00	0.00	0.00	0.01	0.06	0.24	0.00	0.00	0.00	0.00	0.00	0.06	0.25
	E_s^s	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	E_s^{IQR}	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Investment	Eş	0.00	0.00	0.00	0.00	0.02	0.11	0.48	0.00	0.00	0.00	0.00	0.02	0.12	0.49
	E_g^{IQR}	0.00	0.00	0.00	0.00	0.03	0.15	0.64	0.00	0.00	0.00	0.00	0.03	0.16	0.67
	E_z^z	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	E_x^{IQR}	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Payout	Εğ	0.00	0.00	0.00	0.01	0.09	0.23	0.83	0.00	0.00	0.00	0.01	0.08	0.24	1.33
	E_g^{IQR}	0.00	0.00	0.00	0.01	0.12	0.31	1.12	0.00	0.00	0.00	0.01	0.11	0.32	1.79
	E_z^z	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	E_s^{IQR}	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Cash	Εğ	0.00	0.00	0.00	0.00	0.01	0.07	0.83	0.00	0.00	0.00	0.00	0.01	0.06	0.58
	E_g^{IQR}	0.00	0.00	0.00	0.00	0.01	0.09	1.12	0.00	0.00	0.00	0.00	0.01	0.08	0.78
	E ^s	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	E_s^{IQR}	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01
					1	Panel B: I	Randomly	generated	dummy ex	planatory	variable	5			
ALL	E _g ¹	0.00	0.00	0.00	0.01	0.13	0.39	10.77	0.00	0.00	0.00	0.01	0.08	0.30	8.19
	E_{ϵ}^{1}	0.00	0.00	0.00	0.00	0.01	0.01	0.08	0.00	0.00	0.00	0.00	0.00	0.01	0.07

Results

Table 6 Economic significance of commonly used control variables

The table reports measures of economic significance for commonly used control variables in regressions of the categories shown. Control variables used more than 25% of the time in the literature are reported, based on a survey of 54 regressions reported in the top three finance journals from 2000 to 2018. The most common proxy for the dependent variable is also determined by the literature survey. For each category, one regression is performed with all listed control variables as explanatory variables. All regressions include year fixed effects and either industry fixed effects (2.dejt SIC) or firm fixed effects, as noted. Data come from the Compustat database for the years 1963 to 2018. Definitions of the measures of economic significance are given in Section 2.2.1. Definitions of dependent variables and control variables are given in Appendix Table A.1.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
				Industr	/ FE	Firm l	FΕ
Category	Most common proxy for dependent variable	Most common control variables	Usage rate in literature	E_s^s	E_g^s	E_s^s	E_g^s
Profitability	Return on assets	Firm size	81%	0.27	3.69	0.44	6.07
		Leverage	38%	0.21	2.86	0.19	2.60
		Value	33%	0.51	6.95	0.38	5.12
Value	Tobin's q	Firm size	84%	0.09	0.20	0.40	0.84
		Investment	55%	0.03	0.06	0.03	0.06
		Leverage	53%	0.15	0.33	0.16	0.33
		Profitability	50%	0.60	1.27	0.44	0.94
Leverage	Total debt/Total assets	Firm size	87%	0.06	0.08	0.07	0.10
		Profitability	73%	0.33	0.44	0.28	0.37
		Value	65%	0.23	0.31	0.21	0.28
		Asset tangibility	52%	0.20	0.27	0.19	0.25
		Investment	25%	0.07	0.09	0.05	0.07
Investment	CAPX/Total assets	Firm size	64%	0.03	0.04	0.10	0.13
		Value	58%	0.05	0.06	0.05	0.06
		Profitability	58%	0.01	0.01	0.04	0.04
		Leverage	34%	0.00	0.00	0.03	0.03
Payouts	Dividends/Total assets	Firm size	80%	0.16	0.35	0.03	0.07
		Profitability	66%	0.16	0.35	0.05	0.12
		Value	53%	0.20	0.44	0.07	0.15
		Leverage	44%	0.10	0.22	0.06	0.13
Cash	Cash/Total assets	Firm size	81%	0.20	0.26	0.28	0.37
		Profitability	65%	0.08	0.11	0.02	0.03
		Value	51%	0.16	0.22	0.14	0.18
		Leverage	47%	0.31	0.42	0.18	0.24
		Investment	40%	0.10	0.13	0.08	0.11
		Payouts	33%	0.00	0.00	0.04	0.06

Comments

- Claim-1: Economic significance is stated as an absolute value even though it is necessarily a relative concept.
- Claim-2: Lack of standardization in the measurement of economic significance in the literature and susceptibility to spurious inflation.
- β explains 1% variation in $X \to \beta\%$ variation in Y $\implies S_X\%$ variation in $X \to \beta S_X\%$ variation in Y $\implies 1$ std dev. change in $X \to \left|\frac{\beta S_X}{S_Y}\right|$ std dev. change in Y $\implies E_S^S$ measure is correct and others based on mean are unreliable

Comments

- Claim-3: Lack of benchmarks to compare the measure of economic significance.
- Q: What is the need to compare economic significance? If X1 explains Y and X2 explains Y (X1 and X2 are disjoint), does the author wants us to eliminate one of them and focus on the other?
- Otherwise, include both X1 and X2 in the regression. Even if correlated, find an instrument to eliminate endogeneity issues.
- Author suggests we use standard control variables. But they need not be correlated with both X1 and X2. So what is the need for these?

Conclusion

- Interesting paper pointing out the deficiencies in reporting patterns in Empirical Corporate Finance research
- I strongly recommend reading this paper.

