AIR QUALITY - ZINDI

Timorsha Rafiq-Dost, Aljoscha Wilhelm and Lina Willing

Background

PM2.5 Air Quality Index

Data

Features

Statistics	Weather Indicators
maximum	Temperature
minimum	Precipitation
mean	Relative Humidity
standard deviation	Wind Direction
variance	Wind Speed
median	Atmospheric Pressure
ptp (max-min)	
percentile	

- Data from 5 sensors
- 15539 time series over 5 days in train set
- hourly weather readings

Target PM2.5

Health Concern	PM _{2.5} (μgm ⁻³)	Precautions
Good	0 - 12	None
Moderate	13 - 35	Unusually sensitive people should consider reducing prolonged or heavy exertion
Unhealthy for Sensitive Groups	36 - 55	Sensitive groups should reduce prolonged or heavy exertion
Unhealthy	56 - 150	Everyone should reduce prolonged or heavy exertion, take more breaks during outdoor activities
Very Unhealthy	151 - 250	Everyone should avoid prolonged or heavy exertion, move activities indoors or reschedule
Hazardous	250 +	Everyone should avoid all physical activities outdoors.

Imputing

- To each case the location is known
- At what time the data was taken is not known
- No relations between the cases can be made

an,nan,nan,nan,nan,nan,nan,nan,nan ,nan,nan,nan,nan,nan,nan,nan,nan,nan,n an,nan,nan,nan,nan,nan,nan,nan,nan ,nan,nan,nan,nan,nan,nan,nan,nan,nan,n an,nan,nan,nan,nan,nan,nan,nan,nan .nan.nan.nan.nan.nan.nan.nan.nan.nan.n an,nan,nan,nan,nan,nan,nan,nan,nan ,nan,nan,nan,nan,nan,nan,nan,nan,nan,n an,nan,nan,nan,nan,nan,nan,nan,nan ,26.90909091,27.208333333,26.18333333, 24.7,23.658333333,22.74166667,22.15833 333,21.55,21.16666667,21.0,20.925,20.35 833333,19.84166667,19.275,19.53333333 .19.583333333

Imputing: Precipitation

- Most values are 0
- If there is no data it is assumed that no rain has fallen
- NaN's will be set to 0

 All features show a periodic progression or at least a signal-shaped progression

Approaches:

- 1. NaN's filled with mean's
- NaN's calculated by Fourrier Transformation

$$X_{k} = \sum_{n=0}^{N-1} x_{n} e^{-\frac{j2\pi}{N}kn}$$

$$Y_{n} = \frac{1}{N} \sum_{k=0}^{N-1} X_{k} e^{j\frac{2\pi}{N}kn}$$

Applying Models

Both imputing strategies give mostly the same Results!

Applying Models

Error Ranges:

```
LGBM = 26.1
```

XGB = 26.2

CATB = 27.5

KNN = 32.0

Applying Models

Health Concern	PM _{2.5} (μgm ⁻³)	Precautions
Good	0 - 12	None
Moderate	13 - 35	Unusually sensitive people should consider reducing prolonged or heavy exertion
Unhealthy for Sensitive Groups	36 - 55	Sensitive groups should reduce prolonged or heavy exertion
Unhealthy	56 - 150	Everyone should reduce prolonged or heavy exertion, take more breaks during outdoor activities
Very Unhealthy	151 - 250	Everyone should avoid prolonged or heavy exertion, move activities indoors or reschedule
Hazardous	250 +	Everyone should avoid all physical activities outdoors.

Accuracy: 0.8Recall: 0.81

12

Conclusion

- Results enable prediction of Healthy vs Unhealthy
- Imputing with FFT did not improve the results
- All models produce similar results
- Gridsearch and feature importance improved results only marginally

Outlook

- Data scaling and the use of other models
- Classification instead of regression and then handling of imbalance
- More complex models e.g. Arima Model for time series

Questions?

