Supplementary materials

From the article 'Extinction drives recent thermophilization but does not trigger homogenization in forest understory'

Jeremy Borderieux, Jean-Claude Gégout, Josep M. Serra-Diaz

Table S1: Thermophilization (°C/decades⁻¹) and $\Delta\beta$ -diversity and their component mean value (Value) and standard deviation (s.d) across 80 forest ecoregions. The value from the original dataset (14,167 pairs of plots) and the randomized thermal optimum null model (see methods) are displayed. The P-value were obtained with a Wilcoxon one sample test against 0.

Variable	Original dataset			Null thermophilization model			
	Value	s.d	P-value	Value	s.d	P-value	
Thermophilization	0,122	0,11	<0.001	-4,13e-04	0,0054	0.583	
Extinction	0,118	0,089	<0.001	-2,05e-04	0,0047	0.31	
Colonization	0,00346	0,065	0.664	-2,08e-04	0,0037	0.522	
Cold-adapted extinction	0,25	0,14	<0.001	0,185	0,096	<0.001	
Cold-adapted colonization	-0,132	0,087	<0.001	-0,186	0,096	< 0.001	
Warm-adapted extinction	-0,123	0,061	<0.001	-0,122	0,055	< 0.001	
Warm-adapted colonization	0,126	0,061	<0.001	0,121	0,055	<0.001	
Δβ-diversity	0,291	1,4	0.107	0,291	1,4	0.107	
Extinction	-0,785	0,91	<0.001	-0,785	0,91	<0.001	
Colonization	1,08	0,97	<0.001	1,08	0,97	< 0.001	
Cold-adapted extinction	-0,744	0,82	<0.001	-0,396	0,48	<0.001	
Cold-adapted colonization	-0,0417	0,46	0.397	-0,39	0,44	< 0.001	
Warm-adapted extinction	0,877	0,72	<0.001	0,542	0,49	< 0.001	
Warm-adapted colonization	0,199	0,45	0.000159	0,534	0,49	<0.001	

Table S2: Thermophilization (°C/decades⁻¹) and $\Delta\beta$ -diversity and their component mean value (Value) and standard deviation (s.d) across 80 forest ecoregions. The value from the original dataset (14,167 pairs of plots) and the randomized original dataset where occurrences are rarefied so that each time period have an equal number of occurrences. The *P*-value were obtained with a Wilcoxon one sample test against 0.

Variable	Original dataset			Rarefaction null model			
	Value	s.d	P-value	Value	s.d	P-value	
Thermophilization	0,122	0,11	<0.001	0,121	0,011	<0.001	
Extinction	0,118	0,089	<0.001	0,104	0,0071	<0.001	
Colonization	0,00346	0,065	0.664	0,0167	0,0072	0.049	
Cold-adapted extinction	0,25	0,14	<0.001	0,205	0,0085	< 0.001	
Cold-adapted colonization	-0,132	0,087	<0.001	-0,101	0,0053	<0.001	
Warm-adapted extinction	-0,123	0,061	<0.001	-0,144	0,006	<0.001	
Warm-adapted colonization	0,126	0,061	<0.001	0,161	0,007	<0.001	
$\Delta \beta$ -diversity	0,291	1,4	0.107	-0,314	1,5	0.0855	
Extinction	-0,785	0,91	<0.001	-1,01	0,9	<0.001	
Colonization	1,08	0,97	<0.001	0,696	1	<0.001	
Cold-adapted extinction	-0,744	0,82	<0.001	-0,825	0,77	< 0.001	
Cold-adapted colonization	-0,0417	0,46	0.397	-0,185	0,4	0.000141	
Warm-adapted extinction	0,877	0,72	<0.001	0,771	0,75	< 0.001	
Warm-adapted colonization	0,199	0,45	0.000159	-0,0752	0,55	0.253	

Table S3: Thermophilization (°C/decades⁻¹) and $\Delta\beta$ -diversity and their component mean value (Value) and standard deviation (s.d) across 80 forest ecoregions. The analysis was performed with two other thermal optimum value, from the original 2005 and a 2019 analysis of the EcoPlant database¹. The P-value were obtained with a Wilcoxon one sample test against 0.

Variable	EcoPlant Thermal optimum 2005			EcoPlant thermal optimum 2019			
	Value	s.d	P-value	Value	s.d	P-value	
Thermophilization	0,111	0,15	<0.001	0,061	0,2	0.0038	
Extinction	0,0965	0,085	<0.001	0,072	0,12	<0.001	
Colonization	0,0147	0,11	0.11	-0,011	0,15	0.212	
Cold-adapted extinction	0,273	0,16	<0.001	0,31	0,18	<0.001	
Cold-adapted colonization	-0,177	0,12	<0.001	-0,238	0,18	<0.001	
Warm-adapted extinction	-0,165	0,09	<0.001	-0,208	0,12	<0.001	
Warm-adapted colonization	0,18	0,11	<0.001	0,197	0,16	<0.001	
$\Delta \beta$ -diversity	0,0511	1,2	0.941	0,0401	1,1	0.772	
Extinction	-0,715	0,74	<0.001	-0,136	0,61	0.012	
Colonization	0,766	0,83	<0.001	0,176	0,68	0.0422	
Cold-adapted extinction	-0,628	0,68	<0.001	-0,307	0,49	<0.001	
Cold-adapted colonization	-0,0868	0,47	0.0709	0,172	0,43	0.00206	
Warm-adapted extinction	0,578	0,55	<0.001	0,24	0,48	<0.001	
Warm-adapted colonization	0,188	0,48	0.00178	-0,0637	0,37	0.166	

Figure S1: a) Species occurrences (presence in a plot, log scale) in the entire dataset (n= 25,528 plots) in relation to their thermal optimum. The blue line is a fitted linear model log(occurrences) ~ thermal optimum and its uncertainty. b) Proportion of all the species occurrences recorded in the past period (>50% species gained in occurrences, <50% species lost occurrences) as function of the occurrence (log scale). The blue line is a fitted linear model Prop ~ log(occurrences) and its uncertainty

Supplementary equations.

We define the weighted thermal optimum of an ecoregion of the past period as follow:

$$Topt_{eco\;past} = \frac{\sum_{i}topt_{i}*occ_{i\;past}}{\sum_{occ_{past}}}$$
 (1)

Where Topt_i and occ_{i past} are the thermal optimum and occurrences in the "past" period of the species i, respectively.

 Σ occ_{past} is the sum of past occurrences of every species, can also be written Σ_i occ_{i past}.

We define the weighted thermal optimum of an ecoregion of the recent period as follow:

$$Topt_{eco\ recent} = \frac{\sum_{i} topt_{i}*occ_{i\ recent}}{\sum_{occ_{recent}}}$$
 (2)

Where occirecent is the occurrences of the species I in the "recent" period.

Thus, thermophilization is defined as follow:

$$Thermophilization = Topt_{eco\ recent} - Topt_{eco\ past}$$
 (3)

We defined the species i contribution to thermophilization with the equation:

$$Contrib_{i} = \frac{(Topt_{i} - Topt_{eco\ past}) \cdot (occ_{i\ recent} - occ_{i\ past})}{\sum occ_{recent}}$$
(4)

And we want to demonstrate that

 $\sum_{i} contrib_{i} = Thermophilization (5)$

We first develop (4)

$$Contrib_i =$$

$$\frac{Topt_i * occ_{i\,recent} - Topt_{eco\,past} * occ_{i\,recent} + Topt_{eco\,past} * occ_{i\,past} - topt_i * occ_{i\,past}}{\sum occ_{recent}}$$
(6)

Then the sum of (6) is written as follow:

$$\frac{\sum_{i} contrib_{i} = \frac{\sum_{i} topt_{i} * occ_{i} \cdot recent}{Topt_{eco} \cdot past} * \sum_{i} occ_{i} \cdot recent}{\sum_{i} occ_{i} \cdot recent} + Topt_{eco} \cdot past} * \sum_{i} occ_{i} \cdot past} \times \sum_{i} occ_{i} \cdot past} (7)$$

We can then simply (7) to

$$\sum_{i} contrib_{i} = \frac{\sum_{i} topt_{i} * occ_{i} recent}{\sum occ_{recent}} - \frac{Topt_{eco \ past} * \sum_{i} occ_{i} recent}{\sum occ_{recent}} + \frac{Topt_{eco \ past} * \sum_{i} occ_{i} past}{\sum occ_{recent}} (8)$$

We can further simplify (8) to

$$\sum_{i} contrib_{i} = Topt_{eco\ recent} - Topt_{eco\ nast} + \Phi$$
 (9)

With:

$$\Phi = \frac{Topt_{eco\ past} * \sum_{i} occ_{i\ past} - \sum_{i} topt_{i} * occ_{i\ past}}{\sum_{occ_{recent}}}$$
(10)

We thus need to prove that $\Phi=0$, however:

$$Topt_{eco\;past} * \sum_{i} occ_{i\;past} = \sum_{i} topt_{i} * occ_{i\;past}$$
 (11)

Thus:

$$\Phi = \frac{\sum_{i} topt_{i}*occ_{i} past - \sum_{i} topt_{i}*occ_{i} past}{\sum_{occ_{recent}}} = 0$$
 (12)

Which leads to

$$\Sigma_{i} contrib_{i} = Topt_{eco\ recent} - Topt_{eco\ past} = \textit{Thermophilization}$$
 (13)

References

1. Gégout, J.-C., Coudun, C., Bailly, G. & Jabiol, B. EcoPlant: A forest site database linking floristic data with soil and climate variables. *J. Veg. Sci.* **16**, 257–260 (2005).