

Index

- 1. INTRODUCTION
- 2. DATA UNDERSTANDING AND PREPARATION
- 2.1 Data Understanding
- 2.1.1 Data quality assessment
- 2.1.2 Distribution of variables
- 2.1.3 Pairwise correlation
- 2.2 Data preparation
- 3. CLUSTERING ANALYSIS
- 3.1 K-Means clustering
- 3.1.1 Identification of the best k value
- 3.1.2 Cluster generation
- 3.1.3 Cluster evaluation
- 3.2 Density-based clustering
- 3.2.1 Study of clustering parameters

- 3.2.2 Characterization and interpretation of obtained clusters
- 3.3 Hierarchical clustering
- 3.4 Evaluation of clustering approaches
- 4. PREDICTIVE ANALYSIS
- 4.1 New feature definition
- **4.2 Preprocessing**
- 4.3 Model selection and evaluation
- **5. TIME SERIES ANALYSIS**
- **5.1 Clustering**
- 5.2 Motif and anomalies extraction
- **5.3 Shapelet extraction**

1. INTRODUCTION

3

2. DATA UNDERSTANDING AND PREPARATION

Datasets:

- Incidents Dataset
- Poverty rates dataset
- Congressional elections dataset

```
state,year,povertyPercentage
United States,2020,11.5
Alabama,2020,14.8
Alaska,2020,11.5
Arizona,2020,12.1
Arkansas,2020,15.8
```

```
1    year,state,congressional_district,party,candidatevotes,totalvotes
2    1976,ALABAMA,1,REPUBLICAN,98257,157170
3    1976,ALABAMA,2,REPUBLICAN,90069,156362
4    1976,ALABAMA,3,DEMOCRAT,106935,108048
5    1976,ALABAMA,4,DEMOCRAT,141490,176022
6    1976,ALABAMA,5,DEMOCRAT,113553,113560
7    1976,ALABAMA,6,REPUBLICAN,92113,162518
```

2.1 Data Understanding

info()
describe()
head()

Datetime format Numeric format

Dataset 1	
date	datetime64[ns]
state	object
city_or_county	object
address	object
latitude	float64
longitude	float64
congressional_district	float64
state_house_district	float64
state_senate_district	float64
participant_age1	float64
participant_age_group1	object
participant_gender1	object
min_age_participants	float64
avg_age_participants	float64
max_age_participants	float64
n_participants_child	Int64
n_participants_teen	Int64
n_participants_adult	Int64
n_males	float64
n_females	float64
n_killed	int64
n_injured	int64

2.1.1 Data quality assessment

Evaluation of poverty percentages dataset

Evaluation of elections dataset

Evaluation of elections dataset

Evaluation of elections dataset

	year	state	totalvotes	republican_votes	democrat_votes	party
0	1976	ALABAMA	984181	315740	666129	DEMOCRAT
1	1976	ALASKA	118208	83722	34141	REPUBLICAN
2	1976	ARIZONA	729002	362192	363365	DEMOCRAT
3	1976	ARKANSAS	336389	74638	260997	DEMOCRAT
4	1976	CALIFORNIA	7442501	3266248	4150218	DEMOCRAT

Evaluation of incidents over time

Geographical distribution of incidents

Distribution of participant age

2.1.3 Pairwise correlation

2.2 Data preparation

18/01/2024

15

2.2 Data preparation

Incident Type city_or_county

Las Vegas

Orlando

San Francisco incident_characteristics1

── Non-Shooting Incident

-•- Shot - Wounded/Injured

3. CLUSTERING ANALYSIS

3.1 K-Means clustering

3.1.1 Identification of the best k value

3.1.2 Cluster generation

3.1.3 Cluster evaluation

Evaluation techniques:

- Silhouette Score: Well separate clusters. Score = 0.160
- Inertia: Clusters compactness. Lower inertia values = more compact clusters. Inertia value = 817536 (relatively high)

Silhouette Score: 0.16025499669156135

Inertia: 817536.6037626411

3.2 Density-based clustering

3.2.1 Study of clustering parameters

3.2.2 Characterization and interpretation of obtained clusters

3.3 Hierarchical clustering

Single Linkage: Shortest distance between points in two clusters. Complete Linkage: Longest distance between points in two clusters. Average Linkage: Average distance between points in two clusters. Ward Linkage: Minimizes the variance within clusters.

Single Linkage has the highest Silhouette Score with 0.314

3.3 Hierarchical clustering

3.4 Evaluation of clustering approaches

Clustering Method	Silhouette Score	Number of Clusters
K-means	7	3
Density-Based	28	1
Hierarchical - (Single)	0.314	7
Hierarchical - (Complete)	0.164	28
Hierarchical - (Average)	0.186	19
Hierarchical - (Ward)	0.155	34

Table 3.1: Silhouette scores of clustering methods

3.4 Evaluation of clustering approaches

4. PREDICTIVE ANALYSIS

4.1 New feature definition

season	is_weekend	year	day_of_week	month	date
spring	1	2015	5	5	0 2015-05-02
spring	0	2017	0	4	1 2017-04-03
winter	1	2014	5	1	2 2014-01-18
winter	0	2018	3	1	3 2018-01-25
summer	0	2016	0	8	4 2016-08-01

4.2 Preprocessing

Create a binary variable to predict if in an incident there have been at least a killed person or not in the incidents dataset, obtained from the variable *n_killed*. The name of the new variable is *people_killed*.

Encode categorical columns with get_dummies function.

Feature scaling using StandardScaler, and set people_killed as target variable and the rest of variables as features X.

4.3 Model selection and evaluation

Classifier	Accuracy	Precision	Recall	F1 Score	AUC- ROC	Cross- Validation AUC-ROC	Mean Cross- Validation AUC-ROC
K-Nearest Neighbors	0.9350	0.9471	0.8456	0.8935	0.9116	0.9606	0.9602
Naive Bayes	0.6816	0.5030	0.9884	0.6667	0.7620	0.7762	0.7706
Support Vector Machines	0.9811	0.9861	0.9549	0.9703	0.9743	0.9979	0.9980
Logistic Regression	0.9888	0.9796	0.9857	0.9826	0.9880	0.9975	0.9974
Random Forest	0.9845	0.9926	0.9591	0.9756	0.9779	0.9993	0.9991

4.3 Model selection and evaluation

5. TIME SERIES ANALYSIS

	city_or_county	week	city_severity_index
20480	Knoxville	00-2014	0.008403
11015	Des Moines	00-2014	0.003802
28964	North Charleston	00-2014	0.004717
35642	Saint Paul	00-2014	0.012270
11184	Detroit	00-2014	0.001704

5.1 Clustering

5.1 Clustering

5.2 Motif and anomalies extraction

5.2 Motif and anomalies extraction

5.2 Motif and anomalies extraction

5.3 Shapelet extraction

18/01/2024

40

