PT Assignment 8

1. Consider the following table:

X	0	1	2	p _X (x)
0	0.1	а	b	0.45
1	С	0.25	d	е
p _Y (y)	0.3	f	0.15	

Find

(a) the values of a, b, c, d, e and f.

(b) P(X = Y) and P(X < Y)

(c) Marginal distributions of X alone and Y alone.

2. Consider two random variables X and Y with joint PMF given in below table.

	Y = 0	Y = 1	Y = 2
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{8}$
X = 1	1/8	<u>1</u>	$\frac{1}{6}$

(a) Find $P(X = 0, Y \le 1)$

(b) Find the marginal PMFs of X and Y.

(c) Find P(Y = 1 | X = 0).

(d) Are X and Y independent?

3. Let

$$f(x,y) = \begin{cases} cx^2y & \text{if } x^2 \le y \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Determine

- (a) the constant c,
- (b) $P(X \ge Y)$,
- (c) P(X = Y),
- (d) P(X = 2Y).
- 4. The joint density of (X, Y) is given by

$$\begin{cases} f(x,y) = 3x & \text{if } 0 \le y \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

- (a) Compute the conditional density of Y given X = x.
- (b) Are X and Y independent?
- 5. Let X, Y be independent random variables taking values in $\mathbb N$ with

$$P(X = i) = P(Y = i) = \frac{1}{2^i}$$
 $(i = 1, 2, ...).$

Find the following probabilities:

- (a) $P(\min(X, Y) \le i)$
- (b) P(X = Y)
- (c) P(Y > X)
- (d) P(X divides Y)
- (e) $P(X \ge kY)$ for a given positive integer k.
- 6. Let X,Y be independent geometric random variables with parameters λ and μ . Let $Z=\min(X,Y)$. Show Z is geometric and find its parameter.