西条 - オキシダント予測の分析

Model Parameters: Prefecture code: 38 Station code: 38206050 Station name: 西条 Target item: Ox(ppm) Number of data points in the train set: 13685 Number of data points in the test set: 5866 Forecast horizon (hours): 24 Model: XGBoost Objective: reg:squarederror Booster: None Number of estimators: 400 Learning rate: 0.04 Elapsed time: 1 min 15 sec Number of used features: 141 Features: Ox(ppm), NO(ppm), NO2(ppm), U, V Ox(ppm) lag1, Ox(ppm) lag2, Ox(ppm) lag3, Ox(ppm) lag4, Ox(ppm) lag5 Ox(ppm)_lag6, Ox(ppm)_lag7, Ox(ppm)_lag8, Ox(ppm)_lag9, Ox(ppm)_lag10 Ox(ppm) lag11, Ox(ppm) lag12, Ox(ppm) lag13, Ox(ppm) lag14, Ox(ppm) lag15 Ox(ppm)_lag16, Ox(ppm)_lag17, Ox(ppm)_lag18, Ox(ppm)_lag19, Ox(ppm)_lag20 Ox(ppm)_lag21, Ox(ppm)_lag22, Ox(ppm)_lag23, NO(ppm)_lag1, NO(ppm)_lag2 NO(ppm)_lag3, NO(ppm)_lag4, NO(ppm)_lag5, NO(ppm)_lag6, NO(ppm)_lag7 NO(ppm)_lag8, NO(ppm)_lag9, NO(ppm)_lag10, NO(ppm)_lag11, NO(ppm)_lag12 NO(ppm)_lag13, NO(ppm)_lag14, NO(ppm)_lag15, NO(ppm)_lag16, NO(ppm)_lag17 NO(ppm)_lag18, NO(ppm)_lag19, NO(ppm)_lag20, NO(ppm)_lag21, NO(ppm)_lag22 NO(ppm)_lag23, NO2(ppm)_lag1, NO2(ppm)_lag2, NO2(ppm)_lag3, NO2(ppm)_lag4 NO2(ppm) lag5, NO2(ppm) lag6, NO2(ppm) lag7, NO2(ppm) lag8, NO2(ppm) lag9 NO2(ppm)_lag10, NO2(ppm)_lag11, NO2(ppm)_lag12, NO2(ppm)_lag13, NO2(ppm)_lag14 NO2(ppm)_lag15, NO2(ppm)_lag16, NO2(ppm)_lag17, NO2(ppm)_lag18, NO2(ppm)_lag19 NO2(ppm)_lag20, NO2(ppm)_lag21, NO2(ppm)_lag22, NO2(ppm)_lag23, U_lag1 NO2(ppm)_lag20, NO2(ppm)_lag21, NO2(ppm)_lag21, NO2(ppm)_lag21, Vlag6 U_lag2, U_lag3, U_lag4, U_lag5, U_lag6 U_lag7, U_lag8, U_lag9, U_lag10, U_lag11 U_lag12, U_lag13, U_lag14, U_lag15, U_lag16 U_lag27, U_lag18, U_lag19, U_lag20, U_lag21 U_lag22, U_lag23, V_lag1, V_lag2, V_lag3 V_lag4, V_lag5, V_lag6, V_lag7, V_lag8 V_lag9, V_lag10, V_lag11, V_lag12, V_lag13 V_lag14, V_lag15, V_lag16, V_lag17, V_lag18 V_lag19, V_lag20, V_lag21, V_lag22, V_lag23 $Ox(ppm)_roll_mean_3,\ Ox(ppm)_roll_std_6,\ NO(ppm)_roll_mean_3,\ NO(ppm)_roll_std_6,\ NO2(ppm)_roll_mean_3,\ Ox(ppm)_roll_mean_3,\ Ox(ppm)_roll_mean_4,\ Ox(ppm)_roll_mean_4,\ Ox(ppm)_roll_mean_4,\ Ox(ppm)_roll_mean_4,\ Ox(ppm)_roll_mean_4,\$ NO2(ppm)_roll_std_6, U_roll_mean_3, U_roll_std_6, V_roll_mean_3, V_roll_std_6 Ox(ppm) diff 1, Ox(ppm) diff 2, Ox(ppm) diff 3, NO(ppm) diff 3, NO2(ppm) diff 3 U_diff_3, V_diff_3, hour_sin, hour_cos, dayofweek is weekend Metrics per Forecast Step: Ox(ppm)_t+01 - R²: 0.9420, MAE: 0.0027, RMSE: 0.0038 Ox(ppm)_t+02 - R²: 0.8730, MAE: 0.0041, RMSE: 0.0057 Ox(ppm)_t+03 - R²: 0.8180, MAE: 0.0049, RMSE: 0.0068 Ox(ppm) t+04 - R²: 0.7722, MAE: 0.0056, RMSE: 0.0076 Ox(ppm)_t+05 - R²: 0.7229, MAE: 0.0062, RMSE: 0.0084 Ox(ppm)_t+06 - R²: 0.6784, MAE: 0.0066, RMSE: 0.0091 Ox(ppm)_t+07 - R²: 0.6478, MAE: 0.0070, RMSE: 0.0095 Ox(ppm)_t+08 - R²: 0.6092, MAE: 0.0073, RMSE: 0.0100 Ox(ppm)_t+09 - R²: 0.5930, MAE: 0.0075, RMSE: 0.0102 Ox(ppm)_t+10 - R²: 0.5643, MAE: 0.0077, RMSE: 0.0105 Ox(ppm) t+11 - R²: 0.5561, MAE: 0.0079, RMSE: 0.0106 Ox(ppm)_t+12 - R²: 0.5262, MAE: 0.0081, RMSE: 0.0110 Ox(ppm) t+13 - R2: 0.5165, MAE: 0.0082, RMSE: 0.0111 Ox(ppm)_t+14 - R²: 0.4978, MAE: 0.0084, RMSE: 0.0113 Ox(ppm)_t+15 - R²: 0.4869, MAE: 0.0084, RMSE: 0.0115 Ox(ppm) t+16 - R²: 0.4716, MAE: 0.0086, RMSE: 0.0116 Ox(ppm)_t+17 - R²: 0.4648, MAE: 0.0086, RMSE: 0.0117 Ox(ppm)_t+18 - R²: 0.4570, MAE: 0.0087, RMSE: 0.0118 Ox(ppm)_t+19 - R²: 0.4508, MAE: 0.0088, RMSE: 0.0119 Ox(ppm)_t+20 - R²: 0.4418, MAE: 0.0088, RMSE: 0.0120 Ox(ppm) t+21 - R²: 0.4304, MAE: 0.0089, RMSE: 0.0121 Ox(ppm)_t+22 - R²: 0.4362, MAE: 0.0089, RMSE: 0.0120 Ox(ppm)_t+23 - R2: 0.4315, MAE: 0.0089, RMSE: 0.0121

Ox(ppm)_t+24 - R²: 0.4344, MAE: 0.0090, RMSE: 0.0120

