AE6114 - Fundamentals of Solid Mechanics

Fall 2020

Homework 2: Kinematics

Due at the indicated time on Canvas, on Tuesday, Sep 15^{th} 2020

Problem 1

Consider a body occupying a cylinder of radius R and length L, $\Omega = \{(X_1, X_2, X_3) : X_1^2 + X_2^2 < R, 0 < X_3 < L\}$ in the reference configuration. It undergoes a deformation:

$$x_1 = X_1 \cos(\tau X_3) - X_2 \sin(\tau X_3)$$

 $x_2 = X_1 \sin(\tau X_3) + X_2 \cos(\tau X_3)$
 $x_3 = X_3$

where τ is a constant parameter with unit [1/length].

- 1. Describe the deformation. What is the meaning of τ ?
- 2. Find the deformation gradient F and compute the right Cauchy-Green stretch tensor $C = F^T F$.
- 3. Calculate the stretch λ for a fiber that, in the reference configuration, is oriented parallel to the plane defined by the basis vectors $\{e_1, e_2\}$.
- 4. Calculate the local change in area for differential elements of oriented area with normal along the e_3 basis vector.
- 5. Calculate the local change of differential volume.

Problem 2

Let dX and dY be two differential vectors in the reference configuration along the directions of the unit vectors M and N correspondingly. If the body undergoes a motion defined by the action of the deformation mapping φ , we can compute the angle θ between the corresponding deformed differential vectors dx and dy by means of the expression

$$\cos\theta = \frac{\mathbf{N} \cdot \mathbf{C} \cdot \mathbf{M}}{\lambda_{\mathbf{N}} \lambda_{\mathbf{M}}}$$

where C is the Cauchy-Green stretch tensor, and λ_N and λ_M the stretches in the directions of N and M. For the particular case when $N \perp M$, we have $\cos \theta = \sin \gamma$ where γ is the *change in angle* between the differential elements, see Figure 1.

Figure 1: Schematics for Problem 2.

Show that, under the assumptions of infinitesimal deformations, the expression for γ reduces to $\gamma = 2\epsilon_{ij}N_iM_j$ where ϵ_{ij} are the components of the infinitesimal strain tensor.

Problem 3

Consider a body occupying a cube of length L, $\Omega = \{(X_1, X_2, X_3) : 0 < X_1 < L, 0 < X_2 < L, 0 < X_3 < L\}$ in the reference configuration. It undergoes a deformation:

$$x_1 = AX_1 + BX_2 + CX_3$$

 $x_2 = CX_1 + AX_2 + BX_3$
 $x_3 = BX_1 + CX_2 + AX_3$

with:

$$A = \left(\frac{1}{3} + \frac{2}{3}\cos\left(\theta\right)\right), \qquad B = \left(\frac{1}{3} - \frac{1}{3}\cos\left(\theta\right) - \frac{1}{3}\sqrt{3}\sin\left(\theta\right)\right), \qquad C = \left(\frac{1}{3} - \frac{1}{3}\cos\left(\theta\right) + \frac{1}{3}\sqrt{3}\sin\left(\theta\right)\right)$$

- 1. Find the deformation gradient F and compute the Lagrangian strain tensor E.
- 2. Show the expression for the displacement field ${\bf u}$ and compute the infinitesimal strain tensor ϵ .
- 3. Using both finite and infinitesimal deformations, calculate the *stretch* λ for fibers that, in the reference configuration, are oriented along the basis vectors $\{e_1, e_2, e_3\}$.
- 4. Using both finite and infinitesimal deformations, calculate the *change in angle* γ between fibers that, in the reference configuration, are oriented along the basis vectors $\{e_1, e_2, e_3\}$.
- 5. Using results from previous sections, discuss: what kind of deformation is taking place under the prescribed mapping? Why are results different? What can be inferred about infinitesimal deformations for this kind of mapping?

Problem 4

Consider a right Cauchy-Green stretch tensor \mathbf{C} . It has a spectral representation $\mathbf{C} = \sum_{i=1}^{3} \lambda_i^2 \mathbf{v_i} \mathbf{v_i}$, where $\lambda_i > 0$ are the principal stretches, $|\mathbf{v}_i| = 1$, and \mathbf{v}_i are mutually orthogonal. Let $\lambda_1 = \lambda_{\text{max}}$, $\lambda_2 = \lambda_{\text{min}}$, and $\lambda_{\text{max}} > \lambda_3 > \lambda_{\text{min}}$:

- 1. Show that the stretch λ_{max} in the direction \mathbf{v}_1 is larger than the stretch λ_N in any other direction \mathbf{N} .
- 2. Show that the stretch λ_{\min} in the direction \mathbf{v}_2 is smaller than the stretch λ_N in any other direction \mathbf{N} .

Problem 5

A rubber block is reinforced by two sets of inextensible cables as shown in Figure 2. The block is subject to a deformation with stretching λ in the direction of e_2 . Assuming plane strain deformation in the plane defined by e_1 and e_2 , compute all components of the right Cauhy-Green deformation tensor C.

Figure 2: Schematics of reinforced rubber block. Two sets of inextensible fibers are denoted by the red and blue lines.