Химический факультет, МГУ им. М.В. Ломоносова Кафедра физической химии Лаборатория строения и квантовой механики молекул

Моделирование спектров столкновительно-индуцированного поглощения в дальней ИК области методом классических траекторий

<u>Д</u>окладчик: Финенко Артем Андреевич

Научные руководители: с.н.с. к.ф.-м.н. Петров С.В. м.н.с. Локштанов С.Е.

Столкновительно-индуцированное поглощение

Вращательный переход запрещен в мономере

$$N_2(j_A) + h\nu \rightarrow N_2(j_B)$$

Переход разрешен в столкновительном комплексе

$$\{N_2 + N_2\} (J) + h\nu \rightarrow \{N_2 + N_2\} (J')$$

Состояния молекулярных пар

- Связанные состояния
- 2 Континуальные свободные состояния
- Метастабильные состояния

Приложения CIA

- $0 N_2 N_2$: атмосферы Земли, древнего Марса¹ и Титана
- \bigcirc CO₂—Ar: атмосферы Марса и Венеры²

Рис. 1: ?

Pис. 2: NASA/Cassini

¹Robin Wordsworth et al. (2017). "Transient reducing greenhouse warming on early Mars". In: *Geophysical Research Letters* 44.2, pp. 665–671.

²Kenneth Fox and Sang J Kim (1988). "Spectra of van der Waals complexes (dimers) with applications to planetary atmospheres". In: *Journal of Quantitative*

^{3/18} Spectroscopy and Radiative Transfer 40.3, pp. 177–184.

Временная теория возмущений

$$i\hbar \frac{\partial \psi}{\partial t} = \hat{H}\psi, \quad \hat{H} = \hat{H}_0 + \lambda \hat{V}(t)$$
$$\lambda \hat{V}(t) = -\frac{E_0(\boldsymbol{\mu} \cdot \boldsymbol{\varepsilon})}{2} \left(\exp\left(i\omega t\right) + \exp\left(-i\omega t\right) \right)$$

Коэффициент поглощения

$$\frac{\alpha(\nu)}{\rho_1 \rho_2} = \frac{(2\pi)^3 N_L^2}{3\hbar c} \nu \left[1 - \exp\left(-\frac{hc\nu}{kT}\right) \right] V J(\nu)$$
$$J(\omega) = \frac{1}{4\pi\varepsilon_0} \sum_{|i\rangle,|f\rangle} \rho_i \left| \langle f | \hat{\boldsymbol{\mu}} | i \rangle \right|^2 \delta\left(\omega_{fi} - \omega\right)$$

Спектральная функция и ее симметрия

Замена переменных с внедрением времени

$$J(\omega) = \frac{1}{2\pi} \hat{F} \left[\langle \boldsymbol{\mu}(0) \boldsymbol{\mu}(t) \rangle \right] \to \frac{1}{2\pi\Gamma_0} \int_0^\infty \frac{p_r}{\mu} dp_r \int \exp\left(-\frac{H}{k_B T}\right) \left| \hat{F} \left[\boldsymbol{\mu}(t) \right] \right|^2 d\boldsymbol{\Gamma}'$$

Схема расчетной методики

Предварительная работа

- Аналитические аппроксимации ab initio ППЭ и ПДМ
- Введение обобщенных координат и вывод точного классического лагранжиана
- 3 Распределение начальных условий

Компоненты расчета методом классических траекторий

- Интегрирование уравнений движения для получения столкновительных траекторий
- Преобразование Фурье функции дипольного момента вдоль каждой стокновительной траектории
- Расчет классической спектральной функции усреднением по ансамблю траекторий рассеяния
- Десимметризация спектральной функции и расчет бинарного коэффициента поглощения

Поверхности PES и IDS

Рис. 3: Сечения ППЭ систем CO_2 -Ar (слева) и N_2 - N_2 (справа)

- ППЭ: CCSD(T)/aug-cc-pVQZ, BSSE-коррекция
- ПДМ: Метод конечного поля, CCSD(T)/aug-cc-pVTZ (CO₂-Ar), CCSD(T)/aug-cc-pVQZ (N₂-N₂)³, BSSE-коррекция

 $^{^3}$ Tijs Karman et al. (2015). "Quantum mechanical calculation of the collision-induced absorption spectra of N_2-N_2 with anisotropic interactions". In:

Классический формализм?

Рис. 4: Обобщенные координаты для систем атом—линейная молекула (слева) и линейная молекула—линейная молекула (справа)

Кинетическая энергия в форме Лагранжа и Гамильтона

$$T_{L} = \frac{1}{2}\dot{\mathbf{q}}^{+}a\dot{\mathbf{q}} + \mathbf{\Omega}^{+}\mathbf{A}\dot{\mathbf{q}} + \frac{1}{2}\mathbf{\Omega}^{+}\mathbf{I}\mathbf{\Omega} \qquad G_{11} = (\mathbf{I} - \mathbf{A}a^{-1}\mathbf{A}^{+})^{-1}$$

$$T_{H} = \frac{1}{2}\mathbf{J}^{+}G_{11}\mathbf{J} + \mathbf{J}^{+}G_{12}\mathbf{p} + \frac{1}{2}\mathbf{p}^{+}G_{22}\mathbf{p} \qquad G_{22} = (a - \mathbf{A}^{+}\mathbf{I}^{-1}\mathbf{A})^{-1}$$

Метастабильные состояния

Рис. 5: Зависимости R(t) для прямой и обратной траекторий образования метастабильного комплекса $N_2 - N_2$

Распределение начальных условий

Метод Метрополиса-Хастингса для сэмплирования случайной величины с плотностью

$$\pi(\mathbf{q}, \mathbf{p}) = \frac{1}{\Gamma_0} \exp\left(-\frac{H(\mathbf{q}, \mathbf{p})}{kT}\right) \bigg|_{r=r_{\text{fixed}}}$$

Рис. 6: Распределения импульсов, сопряженных угловым координатам системы $N_2 - N_2$

Приближения и неучитываемые эффекты

- 🕕 Приближение Борна-Оппенгеймера
- Описание взаимодействия молекулярных систем с излучением в первом порядке ТВ
- Приближение "жестких мономеров": неучет низших колебательных состояний
- Вольюнтаризм процедуры десимметризации
- 6 Неучет связанных состояний
- ⑥ Рассмотрение взаимодействия мономеров в рамках классической механики ⇒ квантовые эффекты

Спектр СИП N_2-N_2 в рототрансляционной полосе

Спектр СИП N_2-N_2 в рототрансляционной полосе

Спектр СИП CO₂—Ar в рототрансляционной полосе

Спектр СИП CO₂—Ar в рототрансляционной полосе

Спектральные моменты: контроль сходимости расчета

Интегралы по спектральной функции и по фазовому пространству

$$M_{n} = \int_{-\infty}^{+\infty} \nu^{n} V J(\nu) d\nu \iff M_{0} = \frac{\int \boldsymbol{\mu}^{2} \exp\left[-H\left(\mathbf{q}, \mathbf{p}\right) / k_{B} T\right] d\mathbf{q} d\mathbf{p}}{\int \exp\left[-H\left(\mathbf{q}, \mathbf{p}\right) / k_{B} T\right] d\mathbf{q} d\mathbf{p}}$$
$$M_{2} = \frac{\int \dot{\boldsymbol{\mu}}^{2} \exp\left[-H\left(\mathbf{q}, \mathbf{p}\right) / k_{B} T\right] d\mathbf{q} d\mathbf{p}}{\int \exp\left[-H\left(\mathbf{q}, \mathbf{p}\right) / k_{B} T\right] d\mathbf{q} d\mathbf{p}}$$

T, K	$M_0^{\Phi\Pi}(H>0)/M_2^{\Phi\Pi}(H>0)$	$M_0^{\rm traj}/M_2^{\rm traj}$	Δ
129.0	$4.444 \cdot 10^{-5} \\ 1.227 \cdot 10^{-1}$	$4.414 \cdot 10^{-5} \\ 1.232 \cdot 10^{-1}$	$^{+0.7~\%}_{-0.4~\%}$
228.3	$3.756 \cdot 10^{-5} \\ 1.848 \cdot 10^{-1}$	$3.768 \cdot 10^{-5} \\ 1.859 \cdot 10^{-1}$	+0.3 % +0.6 %

Таблица 1: Сравнение спектральных моментов, рассчитанных по фазовому пространству, с моментами по траекторным спектрам системы $N_2 - N_2$

Спасибо за внимание!