Analysis of Microarray Data with Methods from Machine Learning and Network Theory

Summer Lecture 2015

Prof. Dr. A. B. Cremers

Dr. Jörg Zimmermann

Weighted Network Analysis

- How to construct a weighted gene co-expression network?
- Why use soft thresholding?
- How to detect network modules?
- How to relate modules to an external clinical trait?
- What is intramodular connectivity?
- How to use networks for gene screening?
- How to integrate networks with genetic marker data?
- What is weighted gene co-expression network analysis (WGCNA)?

Book on weighted networks

Also available as E-book.

Standard microarray analyses seek to identify 'differentially expressed' genes

- Each gene is treated as an individual entity
- Often misses the forest for the trees: Fails to recognize that thousands of genes can be organized into relatively few modules

Philosophy of Weighted Gene Co-Expression Network Analysis

- Understand the "system" instead of reporting a list of individual parts
 - Describe the functioning of the engine instead of enumerating individual nuts and bolts
- Focus on modules as opposed to individual genes
 - this greatly alleviates multiple testing problem
- Network terminology is intuitive to biologists

Network=Adjacency Matrix

- A network can be represented by an adjacency matrix, A=[a_{ij}], that encodes whether/how a pair of nodes is connected.
 - A is a symmetric matrix with entries in [0,1]
 - For <u>unweighted</u> network,
 - entries are either 1 or 0
 - Encoding the presence of a link (edge) between nodes
 - For weighted networks,
 - entries are real numbers
 - reports the connection strength between nodes

'Holistic' view of a weighted network

Weighted Network View

- •All nodes are connected
- Connection Widths=Connection strenghts

Unweighted View

Some nodes are connected All connections are equal

Figure 1

Steps for constructing a co-expression network

- A) Microarray gene expression data
- B) Measure concordance of gene expression with a Pearson correlation
- C) The Pearson correlation matrix is either dichotomized to arrive at an adjacency matrix → unweighted network
- Or transformed continuously with the power adjacency function \rightarrow weighted network

Power adjacency function for constructing unsigned and signed weighted gene co-expr. networks

Unsigned network, absolute value

$$a_{ij} = |cor(x_i, x_j)|^{\beta}$$

Signed network preserves sign info

$$a_{ij} = |0.5 + 0.5 \times cor(x_i, x_j)|^{\beta}$$

Default values: beta=6 for unsigned and beta=12 for signed networks.

Comparing adjacency functions for transforming the correlation into a measure of connection strength

Why construct a co-expression network based on the correlation coefficient?

- 1. Intuitive
- 2. Measuring linear relationships avoids the pitfall of overfitting
- Because many studies have limited numbers of arrays → hard to estimate non-linear relationships
- 4. Works well in practice
- 5. Computationally fast
- 6. Leads to reproducible research

Why soft thresholding as opposed to hard thresholding?

- Preserves the continuous information of the co-expression information
- 2. Results tend to be more robust with regard to different threshold choices

But <u>hard thresholding</u> has its own advantages: In particular, graph theoretic algorithms from the computer science community can be applied to the resulting networks Questions:
How should we choose the power
beta or a hard threshold?
Or more generally the parameters of
an adjacency function?

IDEA: use properties of the connectivity distribution

Connectivity (degree) based on the entire network

- Gene connectivity = row sum of the adjacency matrix
 - unweighted networks
 - number of direct neighbors
 - "number of friends"
 - weighted networks
 - sum of connection strengths to other nodes

$$k_i = \sum_{j} a_{ij}$$

Approximate scale free topology is a fundamental property of such networks (Barabasi et al)

- It entails the presence of <u>hub</u> nodes that are connected to a large number of other nodes
- Such networks are robust with respect to the random deletion of nodes but are sensitive to the targeted attack on hub nodes
- It has been demonstrated that metabolic networks exhibit scale free topology at least approximately.

P(k) vs k in scale free networks

Frequency Distribution of Connectivity

How to check Scale Free Topology?

Idea: Log transformation p(k) and k and look at scatter plots

Linear model fitting R^2 index can be used to quantify goodness of fit

How to detect network modules (clusters)?

How to cut branches off a tree?

Module=branch of a cluster tree

Dynamic hybrid branch cutting method combines advantages of hierarchical clustering and pam clustering

Module Definition

- Numerous methods have been developed
- Average linkage hierarchical clustering coupled with the topological overlap dissimilarity measure has proven to be useful.
- Once a dendrogram is obtained from a hierarchical clustering method, choose a height cutoff to arrive at a clustering.
- Modules correspond to branches of the dendrogram

The topological overlap dissimilarity is used as input of hierarchical clustering

$$TOM_{ij} = \frac{\sum_{u} a_{iu} a_{uj} + a_{ij}}{\min(k_i, k_j) + 1 - a_{ij}}$$

$$DistTOM_{ij} = 1 - TOM_{ij}$$

Using the topological overlap matrix (TOM) to cluster genes

Here modules correspond to branches of the dendrogram

TOM plot

Heatmap view of module

Columns= tissue samples

Rows=Genes Color band indicates module membership

Message: characteristic vertical bands indicate tight co-expression of module genes