UNIVERSIDAD PERUANA LOS ANDES FACULTAD DE INGENIERÍA

"ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS Y COMPUTACIÓN"

Base de datos II

DISEÑO Y ARQUITECTUR A DE BASE DE DATOS

Alumno: SORIANO TIMOTEO Joel Kevin

Catedrático: RAUL FERNANDEZ Bejarano

Ciclo: V

Arquitectura para una Startup de SoftWare Educativo:

La elección arquitectónica de un startup EdTech (Software Educativo) es crítica, ya que debe equilibrar la rapidez de desarrollo, la minimización de costos y la capacidad de manejar un crecimiento masivo e impredecible de usuarios (estudiantes y profesores).

Criterios de Selección y Profundización:

Modelo de Infraestructura: Priorizar OPEX sobre CAPEX

Criterio Clave	Detalle de la Elección	Implicación Técnica y de Negocio
Costo Inicial	Debe ser cercano a cero . Se debe optar por un modelo de Nube Pública (Cloud), usando laaS (Infraestructura como Servicio) o PaaS (Plataforma como Servicio).	Una startup debe conservar su capital. Evitar la compra de servidores y la contratación de personal de infraestructura pesada. Se paga por el consumo (OPEX) y no por la inversión (CAPEX).
Modelo de Pago	Pago por Uso (Pay-as-you-go).	Permite que los gastos de infraestructura crezcan solo a medida que crecen los ingresos y la base de usuarios.
Tecnologías	Aprovechar los créditos de startups que ofrecen los principales proveedores (AWS Activate, Google Cloud for Startups, Azure Startup Program).	Permite operar con costos muy bajos o nulos durante la fase inicial de desarrollo y prueba.

Estructura y Escalabilidad: Agilidad y Resiliencia

Criterio Clave	Detalle de la Elección	Implicación Técnica y de Negocio
Estilo Arquitectónico	Microservicios o, al menos, un Monolito Modular en sus inicios.	Los microservicios permiten que diferentes equipos trabajen en diferentes módulos (ej. Módulo de Lecciones, Módulo de Evaluaciones) de forma independiente y se escalen de manera individual.
Despliegue	Uso de Contenedores (Docker) y orquestación con Kubernetes (K8s) o servicios gestionados como AWS ECS/EKS.	Facilita la Integración y Despliegue Continuo (CI/CD). Permite a la startup lanzar nuevas funciones varias veces al día sin interrupciones.
Escalabilidad	Escalabilidad Horizontal y Autoscaling.	Vital para picos de uso (ej. aforo masivo de estudiantes al inicio de un examen o clase en vivo) y para reducir costos automáticamente cuando la demanda cae.

Persistencia de Datos: Velocidad y Flexibilidad

Criterio Clave	Detalle de la Elección	Implicación Técnica y de Negocio
Tipo de Base de Datos	Bases de Datos Políglotas. Usar bases de datos NoSQL (ej. MongoDB, DynamoDB) para contenidos de lecciones y perfiles de usuario, y SQL (PostgreSQL o MySQL) para transacciones críticas (pagos, calificaciones).	La flexibilidad de NoSQL soporta esquemas de datos que cambian constantemente mientras la startup itera su producto. SQL garantiza la integridad transaccional donde es necesaria.
Servicios de Base de Datos	Usar Bases de Datos como Servicio (DBaaS).	Reduce drásticamente la complejidad de administración, patching y backups.

Seguridad, Privacidad y Cumplimiento:

Criterio Clave	Detalle de la Elección	Implicación Técnica y de Negocio
Privacidad de Datos	Debe cumplir con regulaciones educativas y de privacidad de datos, como COPPA (en EE. UU.), GDPR (en Europa) o leyes locales equivalentes para el manejo de datos de menores.	El incumplimiento puede resultar en multas masivas que pondrían fin a la startup. La arquitectura debe aplicar cifrado en tránsito y en reposo.
Autenticación	Implementar Autenticación Multi-Factor (MFA) y utilizar servicios de identidad gestionados (ej. Cognito, AuthO) en lugar de construir un sistema de autenticación propio.	Garantiza un alto estándar de seguridad sin invertir tiempo de desarrollo en algo que ya existe de forma robusta.