

AIR FORCE

DUL FILE COPY,

RESOURCES

DIGITAL AVIONICS INFORMATION SYSTEM (DAIS):
RELIABILITY AND MAINTAINABILITY MODEL
USERS GUIDE

By

Andrew J. Czuchry
Robert H. Kistler
John M. Glasier
Marjorie A. Bristol
Dynamics Research Corporation
60 Concord Street
Wilmington, Massachusetts 01887

H. Anthony Baran Duncan L. Dieterly, Major, USAF

ADVANCED SYSTEMS DIVISION Wright-Patterson Air Force Base, Ohio 45433

April 1979 Final Report for Period May 1975 — July 1977

Approved for public release; distribution unlimited

MAY 23 1979

LABORATORY

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE, TEXAS 78235

When U.S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This final report was submitted by Dynamics Research Corporation, 60 Concord Street, Wilmington, Massachusetts 01887, under contract F33615-75-C-5218, project 2051, with Advanced Systems Division, Air Force Human Resources Laboratory (AFSC), Wright-Patterson Air Force Base, Ohio 45433. Mr. H. Anthony Baran was the Contract Monitor for the Laboratory.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

GORDON A. ECKSTRAND, Director Advanced Systems Division

RONALD W. TERRY, Colonel, USAF Commander

Unclassified
CURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

19 REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
AFHRLTR-78-2(II)	ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
DIGITAL AVIONICS INFORMATION SYSTEM (DAIS): RELIABILITY AND MAINTAINABILITY MODEL USERS GUIDE	5. TYPE OF BEROAT A PERIOD COVE Final May 1975 - July 1977 6. PERFORMING ORG. REPORT NUMBER
Andrew J Czuchry Robert H. Kistler John M. Glasier Anthony/Baran Duncan L. Dieterly	6. CONTRACT OR GRANT NUMBER(*) F33615-75-C-5218
9. PERFORMING ORGANIZATION NAME AND ADDRESS Dynamics Research Corporation 60 Concord Street Wilmington, Massachusetts 01887	16. PROGRAM ELEMENT, PROJECT, TAREA & WORK UNIT NUMBERS 63243F 20510001
11. CONTROLLING OFFICE NAME AND ADDRESS HQ Air Force Human Resources Laboratory (AFSC) Brooks Air Force Base, Texas 78235	11 12 REPORT DATE April 1979 13. NUMBER OF PAGES 138
14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Cont Advanced Systems Division Air Force Human Resources Laboratory Wright-Patterson Air Force Base, Ohio 45433	Unclassified 15. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADI SCHEDULE
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20), if different from Report)
The research reported herein was sponsored jointly by Air Laboratory, and Air Force Logistics Command. It was p	Force Human Resources Laboratory, Air Force Avio
Information System Advanced Development Program.	
19. KEY WORDS (Continue on reverse side if necessary and identify	ligital avionics information system
avionics availability l avionics conceptual design configuration	ife cycle cost naintenance analysis eliability and maintainability model

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified D D D D SECURITY CLASSIFICATION OF THIS PAGE (With Date Entered)

Item 20 Continued:

The input data banks contain values for the R&M parameters of avionics hardware configurations, i.e., maintenance action rate, maintenance task event time, task event probability of occurrence, manpower required for each task, skill level requirements, and support equipment (SE) required for each task. The R&M model employs a figure of merit concept to aggregate the values for these R&M parameters to produce manhour and SE requirement estimates. These are point estimates; however, they can be used to (a) make comparisons on a total system, subsystem, or line replaceable unit (LRU) basis, and (b) identify "high drivers" or problem areas in terms of resource requirements. In addition, the R&M model can be used to conduct sensitivity and trade-off analyses in terms of resource requirements after it has identified high driver items. It can perturb combinations of R&M parameters to determine sensitivities. Thus, alternatives for achieving a reduction in resource requirements can be assessed by selectively altering input data and observing the model's outputs indicating the resultant changes in resource requirements.

This document is intended to guide the user of the R&M model. It describes the features of the model, its logical operations, its input data requirements, and its output reports. It also provides a program listing, instructions for preparing input data, and guidance for interpreting and using output reports.

SUMMARY

This report is Volume II of AFHRL-TR-78-2 which describes a reliability and maintainability (R&M) model developed to facilitate the performance of design vs. cost trade-offs within the systems acquisition process. The model can provide timely visibility to relationships between system design and support requirements and a means of using them to avoid unnecessarily high system operation and maintenance cost. Stand-alone operation permits the user to assess potential impacts of design reliability factors on system support factors and operational availability. However, the R&M model was also designed to function as part of a modeling system which includes a training requirements analysis model and a system cost model. Joint operation provides the capability of translating the design impact assessments into estimates of the consequent cost of system operation and maintenance and, ultimately, that of performing design vs. cost trade-offs.

The R&M model operates in conjunction with a computerized data bank containing historical reliability and maintenance data gathered from operational systems. This data is made relevant to new systems by factoring the historical data on the basis of system/subsystem comparability analyses. Inputs to the R&M model include: the frequency of maintenance actions by subsystem and line replaceable unit (LRU) for both aircraft and support equipment (SE); and data concerning the task events within each maintenance action such as type, probability of occurrence, time to complete, manpower type and skill requirements, and SE requirements. The model uses these inputs to compute the manhour resources, SE, and spares consumed, by task event, to satisfy the maintenance requirements of each subsystem and its LRUs for both flight line and shop actions. Outputs are displayed in matrix format.

Capable of extremely rapid operation, the R&M model affords the user a powerful tool for answering a multitude of "what if" questions concerning the implications of system design on support requirements. Its speed facilitates iterative application and should promote trade-off analyses early in the design process when cost avoidance actions are most effective. This operational speed stems from the fact that, unlike simulation models sometimes used in this type of analysis, the R&M model does not attempt to account for peak loads, saturations, queues, or other nonlinear constraints that exist in the actual maintenance environment. Rather, it is an average value model which uses estimates of maintenance task and equipment R&M factor values to compute the average expected values for

resource requirements. Additionally, a figure of merit concept is employed to aggregate the detailed data outputs and generate structured data products which allow comparisons to be made and high resource consumers to be identified on either an LRU, subsystem, or system basis. An example of such a figure of merit is maintenance manhours per 1000 flight hours.

Apart from its ability to facilitate sensitivity and trade-off analyses, the R&M model can aid the user in determining the most acceptable means of avoiding undesirable potential impacts which it has identified. By comparing alternative cause and result situations, trade-off analyses can be employed in a more investigative manner. This entails an iterative model application to determine the differential effects on projected support resource requirements obtainable by changing combinations of R&M parameters. An example of such a trade-off might be the cost to achieve an increased subsystem reliability versus that to obtain a reduced flight line troubleshooting time. The user can determine the various combinations of reliability improvement and reduced flight line troubleshooting time to achieve a specified reduction in support resource requirements for that subsystem. These values would be inputted to training and cost portions of the modeling system to assist in evaluating alternatives on a total cost of ownership basis.

The initial application of the R&M model is directed at the determination of the potential impacts of the digital avionics information system (DAIS) on system support personnel requirements and life cycle cost. Results will be contained in a later technical report within the series of which this is a member. The model is, however, applicable in the development of almost any new system as well as the evaluation of existing systems.

This volume provides a complete guide to the operation of the R&M model in the stand alone mode. It describes the features and structure of the model, its input data requirements, its logical operations, and its output reports. It provides instructions and the format for preparing input data and for selecting output options. Sample output reports are also provided for each option that can be selected. A listing and description of potential error messages are included in the appendix, as well as a listing of the computer program.

PREFACE

This report is one of a series of technical reports, models, and data banks produced under contract no. F33615-75-C-5218, "DAIS Life Cycle Costing Study." Results of this study, in combination with the present Air Force capabilities provide the means to assess the life cycle cost impact of the operational implementation of the Digital Avionics Information System (DAIS).

The study was directed by the Advanced Systems Division, Air Force Human Resources Laboratory, Wright-Patterson Air Force Base, Ohio, and is documented under Work Unit 20510001, "DAIS Life Cycle Costing Study." It was performed under Air Force Avionics Laboratory Program Element 63243F, "Digital Avionics Information System," as Project 2051. Project 2051, "Impact of the DAIS on Life Cycle Costs," is jointly sponsored by the Air Force Human Resources Laboratory, the Air Force Avionics Laboratory, and Air Force Logistics Command. Contract funds were provided by the Air Force Avionics Laboratory. The DAIS Program Manager is Lt. Col. Robert A. Dessert. The Air Force Human Resources Laboratory Project Scientist is Mr. H. Anthony Baran. The Air Force Logistics Command project officer is Capt. Ronald Hahn. The latter two are DAIS deputy directors. The Contractor Program Manager is Mr. John C. Goclowski.

TABLE OF CONTENTS

Section		Page	No.
ı.	INTRODUCTION	9	
	Main Features	9	
	General Description	10	
	Data Structure	10	
II.	MODEL LOGIC	11	
	Model Input	11	
	Calculations	11	
	Model Output	13	
	Program Flow Chart	13	
III.	EXAMPLE RUN	15	
IV.	INPUT FORMATS	17	
	Data File Formats	17	
	Card Type CR - Cross Reference File	18	
	Card Type SF - Support Equipment Flight		
	Line File	22	
	Card Type LF - Air Force Specialty Flight		
	Line File	24	
	Card Type LS - Air Force Specialty Shop File	26	
	Card Type TS - Task Time - Shop File	28	
	Card Type TF - Task Time - Flight Line File	30)
	Card Type PF - Probability - Flight Line File		
	Card Type PS - Probability - Shop File	34	
	Card Type SS - Support Equipment - Shop File		
	Card Type MF - Reliability Mean Values -		
	Flight Line File	38	
	AFSC Cards - AFSC Definition	40	
	SE Cards - Support Equipment Definition	40	
	Option Card Formats	43	
	AFSCs and SEs of Interest	43	
	Subsystem Data Options	45	
v.	OUTPUT REPORTS	48	
	Structure	48	
	Example Run	49	
	ANTONIA PAV AVVAA	10	

Table of Contents (continued)

	Page No.
Appendix A - Description of Input Data Elements	68
Appendix B - Error Messages	74
Appendix C - Acronyms	77
Appendix D - Reliability and Maintainability Model	
(File Name RANDM) Listing of Control	
Data Corporation CDC-6600, Cyber 74	
Version)	79

LIST OF ILLUSTRATIONS

Figure No	o.	Page No
100000	Summary flow chart of R&M model	14
2	Equipment hierarchy structure for the	
	example run	16
3	Printout of CR cards with "title" card and	
	"number of subsystems" card for the example	
	run	19
4	Printout of SF cards for the example run	22
5	Printout of LF cards for the example run	24
6	Printout of LS cards for the example run	26
7	Printout of TS cards for the example run	28
8	Printout of TF cards for the example run	30
9	Printout of PF cards for the example run	32
10	Printout of PS cards for the example run	34
11	Printout of SS cards for the example run	36
12	Printout of MF cards for the example run	38
13a	Printout of AFSC definition cards for example	
	run	40
13b	Printout of SE definition cards for example run	40
14	Printout of input option cards for example run	47
15	Input data records	50
16	Sample availability report	55
17	Sample SE maintenance requirements report	56
18	Sample manpower report	57
19	Sample option 13 report (part 1)	58
20	Sample option 13 report (part 2)	58
21	Sample option 01 report	59
22	Sample option 02 report	60
23	Sample option 03 report	61
24	Sample option 04 report	62
25	Sample option 05 report	63
26	Sample option 06 report	64
27	Sample option 07 report	65
28	Sample option 08 report	65
29	Sample option 09 report	66
30	Sample option 10 report	66
31	Sample option 11 report	67
32	Sample option 12 report	67

LIST OF TABLES

Table N	0.	Page No.
Field F	ormats of Data Elements	
1a	Cross Reference File - Card #1	20=
1b	Cross Reference File - Card #2	21
2	Support Equipment - Flight Line File	23
3	Air Force Specialty - Flight Line File	25
4	Air Force Specialty - Shop File	27
5	Task Time - Shop File	29
6	Task Time - Flight Line File	31
7	P Probability - Flight Line File	33
8	P Probability - Shop File	35
9	Support Equipment - Shop File	37
10	Reliability Mean Values - Flight Line File	39
11	AFSC Definition	41
12	Support Equipment Definition	42
13	AFSC and SE Option Cards	44

DIGITAL AVIONICS INFORMATION SYSTEM (DAIS): RELIABILITY AND MAINTAINABILITY MODEL USERS GUIDE

! INTRODUCTION

The reliability and maintainability (R&M) model, in conjunction with a cost model and a training model, make up a life cycle cost impact model (LCCIM). The R&M model is an analytical type batch process model that computes unique outputs based on a given set of values for R&M input variables. These inputs pertain to avionics subsystems and their line replaceable units (LRU). The principal data input elements consist of average times to complete maintenance task events, the associated probabilities of occurrence of those events, and the frequency of the equipment maintenance. Other R&M inputs include the type of task event; the number, type, and skill level of each manpower specialty needed to perform the task event; and the support equipment required.

The computed outputs of this model are "expected values" since they are based on average input values rather than on peak demands, or other constraints, such as queuing or the nonlinearities inherent in a "real world" type of simulation model. These outputs are principally measures of the maintenance manhour resource requirements which may be expected to result under a given set of conditions. These conditions are determined by system variables such as equipment configuration, equipment design, and/or the system support maintenance concept. The particulars of these conditions are made available to the model in terms of the R&M input variables previously described.

Main Features

The R&M model is available in Fortran IV language for both the Honeywell H-6000 and Control Data Corporation CDC-6600 Cyber 74 computers. It is characterized by the following:

- Unlimited flexibility in the representation of the avionics equipment structure
- Similarly structured output reports for all output parameters
- Selection for analysis of a single subsystem, all subsystems, or a categorical group of subsystems
- Automatic output of short summary reports, optional output of complete reports.

General Description

The primary purpose of the R&M model is to provide data input to the LCCIM cost model and training model. However, in a stand-alone operation, this model provides a means for analyzing the R&M impact of various avionics design and support concept parameters. It employs a figure of merit (FOM) concept to aggregate the data and then to make comparisons of resources required on a total system, subsystem, or LRU basis and to identify "high drivers" or problem areas of high resource requirements. FOM analyses within the model may address, for example, maintenance manhour per 1000 flight hours (measures maintenance manhour resource requirements) and service availability (measures the impact of maintenance on operational availability). The basic parameters used to calculate the FOMs for each subsystem, broken out for each shop and flight line maintenance task event, are:

- Probability of occurrence
- Average time to complete the event
- Air Force specialty and skill level
- Support equipment

The maintenance action rate for each subsystem is input as mean flight hours between maintenance actions.

By making reasonable variations in any of the foregoing input parameters, the model can be used to note the effect on the various outputs. In this way, the R&M model can be used to conduct sensitivity and trade-off analyses. Thus, after high driver items are identified in terms of resource requirements, combinations of R&M parameters can be perturbed to determine the system sensitivities. Alternatives for achieving reduction in the resources required can thus be identified.

Data Structure

The data represented in the R&M model are structured in matrix form permitting all outputs to be displayed in similar fashion. The data elements in each row of an output report convey information (such as mean time to repair (MTTR)) for each maintenance task event leading to a particular outcome that results from a maintenance action. The columns convey the same information for a selected maintenance task event.

A maintenance action is defined as any subsystem malfunction that results in a series of maintenance task events. These events are those principal tasks necessary to restore the subsystem to operational readiness and to accomplish any necessary repairs of removed LRUs. The maintenance task events consist of one or more maintenance functions or major tasks (e.g., adjust, align, calibrate, troubleshoot, inspect, operate, remove/install, repair, service, etc.). Each flight line maintenance task event and each shop maintenance task event are defined in Appendix A under FLIGHT LINE TASKS and SHOP TASKS, respectively. If further explanation of the terms maintenance action and maintenance event are desired, they are explained in detail in volume one of this report.

II. MODEL LOGIC

This section describes the computer program used to implement the R&M model. It will provide the analyst with an indepth view of the workings of the program.

Model Input

Initially, data are read into computer storage from the R&M data base files. Detailed descriptions for each input data element contained on the records that constitute the base files are included in Appendix A. These data files are part of an integrated data bank. Verification of the input data for accuracy or completeness can only be made by a comparison of the input data with its raw data source. However, the program is capable of generating certain error messages. Appendix B provides a list of them. Other data problems will result in an immediate halt of the program, usually following a message from the computer system. The input card which caused this type of problem will normally be the last one displayed on the computer printout.

Calculations

The main body of the R&M model generates two matrices plus an additional matrix for each Air Force specialty code (AFSC) of interest. A support equipment (SE) maintenance requirements matrix is also generated. These matrices represent the following:

 MTTR - mean time to repair for each shop and flight line maintenance event is defined and calculated as follows: the probability of occurrence of the task event, given that there is a failure, multiplied by the maintenance event task time. It should be noted that the maintenance event task time used as the input for this computation is the actual average time it takes to accomplish the event based on historical data; i.e., the input is the mean time to repair per task event without considering the probability of occurrence.

- MMH maintenance manhours for each shop and flight line task event. This is calculated as MTTR multiplied by the total number of AFSCs required for the event.
- SE maintenance for each shop test station a matrix is set up to give values for the MTTR, MMH, MMH/1000 FH, and MTTR/1000 FH consumed in test drawer and test station repair for each LRU tested. The ready time of the test station per 1000 operating hours of test time is also calculated in the model.
- For each AFSC designated for analysis, another matrix is set up that displays the MMH/1000 FH consumed for each LRU and subsystem that is maintained. These values are then multiplied by a constant cost factor to show the manhour cost per 1000 flight hours.

Once the single task event/single outcome elements of each matrix have been computed, the program totals across maintenance events (columns) and outcomes (rows) to complete the matrix. These matrices are intermediate products which are the basis for a series of user selected output options.

The flight line inherent availability (A) of each subsystem is also calculated within the model by dividing the mean flight hours between maintenance actions (MFHBMA) by the total of the MFHBMA and the flight line MTTR. This calculation can also be represented as:

$$A = \frac{1}{1 + (MTTR)(PMA)}$$

where PMA =
$$\frac{1}{\text{MFHBMA}}$$

or the probability of a maintenance action (PMA) per flight hour.

The service flight line availability for the avionics system is then calculated within the model as the product of all of the inherent subsystem availabilities.

Model Output

Subsystem inherent flight line availability is a mandatory output, as is the listing of the input data files which precedes it. All other outputs are user selected as described in Section IV.

Except for the MTTR and MMH matrices (including the MMH/1000 FH required for user selected AFSCs), the remainder of the output is calculated when selected. To display the MTTR as percent of total, each matrix element is divided by one one-hundredth of the total MTTR for that subsystem. MMH as a percent of total is computed in the same manner. MMH per 1000 flight hours (FH) is calculated by dividing each matrix element by one one-thousandth of the MFHBMA. Maintenance index (defined as the MTTR per 1000 FH) is each element of the MTTR matrix divided by one one-thousandth of the MFHBMA, also.

Most outputs can be summed over a group of subsystems for examination at a higher level of aggregation.

Program Flow Chart

The basic flow of execution of the R&M model is shown in Figure 1.

III. EXAMPLE RUN

Subsequent sections describe the input forms and output reports of the model. To facilitate this description, an example run has been constructed and is used to illustrate the ways in which the data are input to the model and results displayed on output reports.

The example run consists of an avionics system containing six subsysystems and 14 LRUs. The arrangement of these items in the equipment hierarchy structure for the system is shown in Figure 2. Dashed line boxes represent equipment not represented in the example run.

All of the input data for the example run are given in the sample input data in the next section. The sample data are generally similar to the type of data prepared for operational use of the model.

IV. INPUT FORMATS

Data File Formats

The operation of the R&M model requires that a variety of special input cards be prepared which precisely describe the equipment being analyzed and its logistics support system. There are 13 record card formats. Each contains a particular category of data. A detailed description of the input data elements contained in each field of the individual record cards is included in Appendix A.

The input record card formats, each of which is identified by a two-character code in columns 1 and 2, are described on the following pages. Tables which immediately follow the card type descriptions provide a listing of the data elements contained on each card along with their field format. Each of the tables is preceded by a figure illustrating the input data cards necessary for execution of the example run.

Two cards must precede the input deck. The first card contains the data base title. The second card must contain the number of subsystems to be described punched in columns 1 and 2. (In the example run, which contains six subsystems, a "06" is provided on the second card preceding the input deck.) Each card type must have at least one card for every subsystem/LRU that is input in the cross reference file. The present program allows a number of cards for subsystems and LRUs of 40 and 120, respectively.

Card Type CR - Cross Reference File

The first card type designates the equipment hierarchy structure. This structure is illustrated in Figure 2. The data used in this cross reference file is allocated to two cards noted as a -1 or -2 in column 12, the card sequence column. The second card is a continuation of the first and, when used, contains specific additional information.

CR card number 1 gives the equipment identification (ID) number, LRU weight in pounds, work unit code (WUC), quantity per aircraft (QPA), and the name of the subsystem or LRU. The subsystem CR card also gives the number of LRUs it contains, whereas the LRU CR card gives the number of SRUs that the LRU contains. Card number 2 contains the LRU national stock number (NSN), the AN/nomenclature of the subsystem and LRU, and the manufacturer's part number for the subsystem and LRU. There must be a #1 card for each subsystem and for each LRU, but a #2 card is not mandatory. As pertinent data required by the #2 card are available, they can be used to provide additional identification or reference information. Each card group begins with a subsystem card and is followed by the cards describing the LRUs which belong to it. The formats for CR cards 1 and 2 are shown in Tables 1a and 1b, respectively, and are further described in Appendix A.

A printout of the cards used for the example run are shown in Figure 3. The 06 in columns 1 and 2 of the second card is the "number of subsystems." Note that the same card format is used for both subsystems and LRUs.

Y MODEL		AN/ASW- 25		CV-2230A/ASW-25			AN/ARC- 51BX	(UHF)	RT-742B/ARC-51BX			ID-1003/ARC	H	5		AM-3624/ARA-50		AS-909/ARA-48		R-1286/ARR-69			æ		AN/ARN- 52	(TACAN)	RT-893/ARN-52		KSTEM	AN/ARN- 58A	& GLIDESLOPE REC	IRN-58		
Y AND MAINTAINABILITY	DATA LINK		CONVERTER/RECEIVER		N	UHF RADIO SET		CEIVER/TRANSMI	821-00-134-623	DIPLEXER	TANDING WAVE	821-00-978-7867	DIRECTION			59-2		5826-00-849-0055	1 RECEIVER	5821-00-999-4590-MA		DE	TRANSMITTE	TACAN SET		RECEIVER/TRANSMITTER	26-00-884-091	ENNA SWITCH	NG S		EACON	30	ANTENNA	
LIT	-		-		-	-		-		-	-		-		-		-		-		-	-	-	-		-		-	-		-		-	
RELIABILITY	63510	63150	63511	63511	63515	63A00	63A00	63AA0	63AA0	63AE0	63AL0	63AL0	63B00	63B00	63BA0	63BA0			63BC0	63BC0	63BF0	71A00	71AD0	71800	71800	71BA0	71BA0	71880	71000	71000	71CA0	71CA	71000	
AL			11.8		2.0			27.7		1.0	1.1				5.4		10.0		8.0		1.1		4.0			43.3		2.3			8.6		4.0	
ETIC	7	-2	7	-2	7	-	-5	7	-5	7	-	-2	7	-2	7	-5	-	-5	-	-5	-	-	7	-	-2	7	-2	7	-	-2	-	-5	7	2
IS THEORETICAL	AC310	AC310	AC311	AC311	AC312	AC320	AC320	AC321	AC321	AC322	AC323	AC323	AC330	AC330	AC331	AC331	AC332	AC332	AC333	AC333	AC334	AN110	AN111											
DAI 06	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR	CR

Figure 3. Printout of CR cards with "title" card and "number of subsystems" card for the example run

Table 1a

Field Format of Data Elements Cross Reference File — Card No. 1

Column	Title	Length	Type*	Justification**	Decimal Placement
1 - 2	Card Type - CR	2	A	F	_
3	Blank	1	_	11. L	_
4	Aircraft System	1	A	F	_
5	Major System	1	A	F	_
6	Functional Group	1	A	F	_
7	Organizational Function	1	N	F	_
8	Subsystem	1	N	F	_
9	Line Replaceable Unit (LRU)	1	X	F	_
10	Shop Replaceable Unit (SRU)	1	N	F	_
11	Dash	1	X	F	_
12	Card Sequence - 1	1	N	F	-
13	Blank	1	_	_	_
14 - 18	LRU Weight-in lbs (col. 17 is a decimal)	5	N	R	1
19	Blank	1	_		_
20 - 24	Work Unit Code	5	X	F	_
25	Blank	1	_		_
26 - 27	Quantity per Aircraft (QPA)	2	N	R	_
28	Blank	1	_	_	_
29 - 68	Equipment Name	40	A	L	_
69 - 74	Blank	6	_	_	-
75 - 76	No. of LRUs in the Subsystem or SRUs per LRU	2	N	R	- 1
77 - 80	Blank	4	-	_	_

^{*}A = alpha, N = numeric, X = alpha/numeric

^{**}F = fixed, R = right, L = left

Table 1b

Cross Reference File — Card No. 2

Column	Title	Length	Type*	Justification**	Decimal Placement
1 . 2	Card Type CR	2	A	F	_
3	Blank	1	_	_	_
4	Aircraft System	1	A	F	_
5	Major System	1	A	F	_
6	Functional Group	1	A	F	
7	Organizational Function	1	N	F	-
8	Subsystem	1	N	F	-
9	Line Replaceable Unit	1	N	F	_
10	Shop Replaceable Unit	1	N	F	_
11	Dash	1	X	F	_
12	Card Sequence - 2	1	N	F	-
13 - 19	Blank	7	_	-	_
20 - 24	Work Unit Code	5	X	F	_
25	Blank	1	_	_	-
26 - 27	Dual Cognizance Code	2	X	F	_
28	Material Control Code	1	X	F	-
29	Dash	1	X	F	-
30 - 33	Federal Supply Classification (NSN)	4	N	F	_
34	Dash	1	X	F	_
35 - 36	Country Code (NSN)	2	N	F	_
37	Blank	1	_	_	_
38 - 40	Federal Item ID No. (NSN)	3	N	F	_
41	Dash	1	X	F	_
42 - 45	Federal Item ID No. cont. (NSN)	4	N	F	_
46	Dash (only when suffix is added)	1	X	F	_
47 - 48	Special Material ID Code (NSN Suffix)	2	A	F	_
49	Blank	1	_	_	_
50 - 52 [†]	AN/	3	X	F	
53 - 55	AN/No. Alpha Code	3	A	F	_
56	Dash	1	X	F	_
57 - 59	AN/No. Numeric Code	3	N	R	_
60 - 61	AN/No. Alpha Suffix Code	2	A	L	_
62 - 64	Blank	1	-	_	_
65 - 80	Manufacturers Stock Number	15	N	R	

^{*}A = alpha, N = numeric, X = alpha/numeric

^{**}F = fixed, R = right, L = left

[†] for LRU part number left justify from column 50

Card Type SF - Support Equipment - Flight Line File

The flight line support equipment cards (SF) identify for the model what special support equipment is needed on the flight line to perform each maintenance task event. One or more SF cards must be supplied for each subsystem, in the format specified in Table 2 and further described in Appendix A.

These cards may be in any order, but placing them in the same order as the CR cards is recommended for more efficient program operation and for ease of editing. If more than one item of support equipment is required for any flight line task event(s) for a particular subsystem, an additional card is used, identifying the additional support equipment in the same field of the second card. Columns 1-11 of the two cards should be the same, with column 12 set at "2" for the second card and "3" for a third. Only the first card of the group requires an entry in columns 56-57, which conveys the total cards for the equipment. If there is only one card, a zero or a one or a blank may be used. The current version of the program allows a maximum of three pieces of support equipment per maintenance event. The cards used for the example run are listed in Figure 4.

	ID#		A	T	CND	R	М	VR	VM
SF SF SF SF SF	AC310 AC320 AC330 AN110 AN120 AN130	-1 -1 -1	D60 D60 D60 D60	D60 D60 D60 D60 D60 D60	D60 D60 D60 D60 D60 D60	D60 D60 D60 D60 D60 D60	D60 D60 D60 D60 D60 D60	D60 D60 D60 D60 D60 D60	D60 D60 D60 D60 D60

Figure 4. Printout of SF cards for the example run

Table 2
Support Equipment -- Flight Line File

Column	Title	Length	Туре	Justification**	Decimal Placement
1 - 2	Card Type - SF	2	A	F	_
3	Blank	1	-	-	_
4	Aircraft System	1	A	F	_
5	Major System	1	A	F	_
6	Functional Group	1	A	F	_
7	Operational Function	1	N	F	_
8	Subsystem	1	N	F	_
9	Line Replaceable Unit	1	X	F	-
10	Shop Replaceable Unit	1	N	F	_
11	Dash	1	x	F	_
12	Card Sequence	1	N	F	_
13	Blank	1	-	_	_
14 - 18	(A) Set Up Support Equipment (SE)	5	N	L	_
19	Blank	1	_	_	_
20 - 24	(T) Troubleshooting SE	5	N	L	_
25	Blank	1	_	-	_
26 - 30	(C) Cannot Duplicate Discrepancy SE	5	N	L	_
31	Blank	1	_	_	_
32 - 36	(R) SE to Remove & Replace (R&R)	5	N	L	_
37	Blank	1	_	_	_
38 - 42	(M) On Aircraft (A/C) Maint. SE	5	N	L	_
43	Blank	1	-	-	_
44 - 48	(VR) R&R Verification SE	5	N	L	_
49	Blank	11	_		-
50 - 54	(VM) On A/C Maint. Verif. SE	5	N	L	-
55	Blank	1	_		_
56 - 57	Maximum No. of SE Per Task	2	N	R	-
58 - 80	Blank	23	-	F 31 - 1	88-8

^{*}A = alpha, N = numeric, X = alpha/numeric

^{**}F = fixed, R = right, L = left

Card Type LF - Air Force Specialty - Flight Line File

The flight line Air Force specialty (LF) cards identify the manpower by specialty type and skill level that is needed to accomplish each maintenance task event. One or more LF cards must be supplied for each subsystem and should be organized in the same order as the CR cards for more efficient program operation and ease of editing. The current version of the program allows assigning up to five Air Force specialty codes (AFSCs) per task event per equipment. Table 3 gives the card format which is further described in Appendix A. The cards for the example run are listed in Figure 5.

	ID#		Α	T	CND	R	М	VR	VM	#
LF LF			43171 42153	32833	32853	32833	32853		32853 32833	2
LF	AC320	-1							32853	2
LF	AC330	-1	43171	32833	32853	32833	32853			2
LF LF			42153 43171						32833 32851	2
LF LF			42153 43171		32831 32851	32831	32831 32851	32851	32851	2
LF	AN 120	-2	42153		32831 32851		32831 32851			2
LF LF			43171 42153	_		32031	32831	32831		2

Figure 5. Printout of LF cards for the example run

Table 3

Air Force Specialty — Flight Line File

Column	Title	Length	Type*	Justification**	Decimal Placement
1 - 2	Card Type - LF	2	A	F	-
3	Blank	1	- 10 m	National Court	10-10
4	Aircraft Sytem	1	A	F	ego <u>a</u> t y
5	Major System	1	A	F	_
6	Functional Group	1	A	F	_
7	Operational Function	1	N	F	-
8	Subsystem	1	N	F	-
9	Line Replaceable Unit	1	x	F	-
10	Shop Replaceable Unit	1	N	F	-
11	Dash	1	X	F	-
12	Card Sequence	1	N	F	-
13	Blank	1	-		-
14 - 18	(A) AFSC to Set Up Support Equipment	5	N	F	-
19	Blank	1	-	_	_
20 - 24	(T) Troubleshooting AFSC	5	N	F	-
25	Blank	1	_		_
26 - 30	(C) Cannot Duplicate Discrepancy AFSC	5	N	F	_
31	Blank	1	-	_	-
32 - 36	(R) AFSC to Remove & Replace (R&R)	5	N	F	_
37	Blank	1	_	_	_
38 - 42	(M) On Aircraft (A/C) Maint. AFSC	5	N	F	-
43	Blank	1	-	- 1	- 1
44 - 48	(VR) R&R Verification AFSC	5	N	F	-
49	Blank	1	-	-	-
50 - 54	(VM) On A/C Maint. Verif. AFSC	5	N	F	5-14
55	Blank	1	-	_	
56 - 57	Maximum No. of AFSCs Per Task	2	N	R	-
58 - 80	Blank	23	-	-	-

^{*}A = alpha, N = numeric, X = alpha/numeric **F = fixed, R = right, L = left

Card Type LS - Air Force Specialty - Shop File

The shop Air Force specialty (LS) cards, like the flight line LF cards, identify the manpower needed to perform the associated shop tasks. One or more LS cards must be supplied for each LRU accounted for by the CR cards. These cards may be in any order, but placing them in the same order as the CR cards is recommended for more efficient program operation and for ease of editing. The format is found in Table 4 and is further described in Appendix A. A printout of the cards used for the example run are listed in Figure 6.

	ID#		W	К	N	TD	TS	#
LS LS	AC311 - AC311 -		32850 32830	32850	32850	3265A 3263A	3265A 3263A	2
LS LS	AC312 -	-1	32850 32830		32850	3203A	3203H	2
LS LS	AC321 -	-1	32850 32830	32850	32850	3265A 3263A	3265A 3263A	2
LS	and the state of t	-1	32850		32850	3265A 3263A	3265A 3263A	2
LS	AC323 -	-1	32850		32850		3265A 3263A	2
LS	AC331 -	-1 -2	32850 32830	32850		3265A 3263A	3265A 3263A	2
LS	AC332 -	-1	32850 32830		32850 ·		3265A 3263A	2
LS LS	The state of the s	-1	32850 32830	32850		3265A 3263A	3265A	2
LS		-1	32850 32830		32850	3203H	3263A	2
LS	AN111 -	-1	32030		32651	3265B 3263B		2
LS	AN121 -	-1	32850 32830	32850	32850	3265A	3265A	2
LS	to the company of	-1	32030		32850	3263A 3265A	3263A 3265A	2
LS	AN131 - AN131 -	-1	32850 32830	32850	32850	3263A 3265A	3263A 3265A	2
LS		-1	32030		32850	3263A	3263A	1

Figure 6. Printout of LS cards for the example run

Table 4

Air Force Specialty — Shop File

Column	Title	Length	Type*	Justification**	Decimal Placement
1 - 2	Card Type - LS	2	A	F	. A +16 m
3	Blank	1	_	e i <u>u</u> mi	
4	Aircraft System	1	A	F	
5	Major System	1	A	F	-
6	Functional Group	1	A	F	-
7	Organizational Function	1	N	F	-
8	Subsystem	1	N	F	-
9	Line Replaceable Unit	1	x	F	-
10	Shop Replaceable Unit	1	N	F	-
11	Dash	1	×	F	-
12	Card Sequence	1	N	F	-
13 - 19	Blank	7	_	-	
20 - 24	(W) Bench Check & Repair AFSC	5	N	F	75-
25	Blank	1	_	- 1-	23-
26 - 30	(K) Bench Check & CND AFSC	5	N	F	-
31	Blank	1	-	-	CO
32 - 36	(N) Bench Check & NRTS AFSC	5	N	F	EE-DA
37 - 39	Blank	13	-	- 1	3604
50 - 54	(TD) Test Drawer Repair AFSC	5	N	F	1 1 T 10 E
55	Blank	1	-	- 1-	55-14
56 - 60	(TS) Test Station Repair AFSC	5	N	F	_
61	Blank	1	_	-	-
62 - 63	Maximum No. of AFSCs Per Task	2	N	R	-
64 - 80	Blank	17	an to Tra	mung Ala	_

^{*}A - alpha, N = numeric, X = alpha/numeric

^{**}F = fixed, R = right, L = left

Card Type TS - Task Time - Shop File

The shop task time (TS) cards provide the model with the average time per worker that it takes to accomplish the associated task event. For each LRU, one card of type TS is required to input the shop task event times. These cards may be in any order, but placing them in the same order as the CR cards is recommended for more efficient program operation and for ease of editing. The card format is found in Table 5 and is further described in Appendix A. The cards used for the example run are listed in Figure 7. The time is input in tenths of an hour; e.g., 50 equals 5.0 hours.

	ID#	W	K	N	TD	TS
TS TS	AC311 -1		14	14	12	50
TS	AC312 -1	50	14	10 13	12	50
TS TS	AC322 -1	59	20	10 07	12 12	50
TS TS	AC331 -1 AC332 -1	45	28	35	12 12	50
TS TS	AC333 -1 AC334 -1	15	14	06	12	50
TS	AN111 -1 AN121 -1	33	11	08 20	12 12	50
TS TS	AN122 -1 AN131 -1	11	07	05 17	12 12	50 50
TS	AN132 -1			02		

Figure 7. Printout of the TS cards for the example run

Table 5

Task Time — Shop File

Column	Title	Length	Type*	Justification**	Decimal Placement
1 - 2	Card Type - TS	2	A	F	g ligative
3	Blank	1	-	<u> -</u>	Lieu Tale
4	Weapon System	1	A	F	-
5	Major System	1	A	F	_
6	Functional Group	1	A	F	-
7	Operational Function	1	N	F	-
8	Subsystem	1	N	F	-
9	Line Replaceable Unit	1	x	F	_
10	Shop Replaceable Unit	1	N	F	-
11	Dash	1	x	F	-
12	Card Sequence	1	N	F	_
13 - 19	Blank	7	-	_	VOIL .
20 - 24	(W) Bench Check & Repair Time	5	N	R	1
25	Blank	1	-	-	_
26 - 30	(K) Bench Check & CND Time	5	N	R	1
31	Blank	1	-	_	_
32 - 36	(N) Bench Check & NRTS Time	5	N	R	1
37 - 49	Blank	13	_	-	_
50 - 54	(TD) Test Drawer Repair Time	5	N	R	1
55	Blank	1		- 4	_
56 - 60	(TS) Test Station Repair Time	5	N	R	1
60 - 80	Blank	20	-	-	_

^{*}A = alpha, N = numeric, X = alpha/numeric **F = fixed, R = right, L = left

Card Type TF - Task Time - Flight Line File

The flight line task time (TF) cards, like the TS cards, provide the average time, by subsystem, to accomplish the flight line maintenance task events. One card must be provided for each subsystem and organized in the same order as the CR cards for efficient program operation and ease of editing. The card format is provided in Table 6 and further described in Appendix A. The cards used for the example run are listed in Figure 8.

	ID#	A	T	CND	R	М	VR	VM
TF	AC310 -1	02	05	20	15	26	01	01
TF	AC320 -1	02	02	08	14	11	05	05
TF	AC330 -1	02	10	10	10	06	05	05
TF	AN110 -1	02	10	16	15	14	09	09
TF	AN120 -1	02	05	18	10	08	05	02
TF	AN130 -1	02	02	27	10	10	04	02

Figure 8. Printout of TF cards for example run

Table 6
Task Time - Flight Line File

Column	Title	Length	Туре*	Justification**	Decimal Placement
1 - 2	Card Type - TF	2	A	F	sin - ne 1
3	Blank	1	4 - 4	and with the	
4	Aircraft System	1	A	one Pis. my	of gross
5	Major System	1	A	F	-
6	Functional Group	1	A	F	_
7	Operational Function	1	N	F	_
8	Subsystem	1	N	F	_
9	Line Replaceable Unit	1	×	F	-
10	Shop Replaceable Unit	1	N	F	_
11	Dash	1	×	F	-
12	Card Sequence	1	N	F	_
13	Blank	1	-	-	-
14 - 18	(A) Time to Set Up Support Equipment	5	N	R	1
19	Blank	1	1988_ 9	3007_;0	_ 1
20 - 24	(T) Troubleshooting Time	5	N	R	1
25	Blank	1	- 6	0001 0	-
26 - 30	(C) Cannot Duplicate Discrepancy Time	5	N	R	1
31	Blank	1	_		35-
32 - 36	(R) Time to Remove & Replace (R&R)	5	N	R	1
37	Blank	1	-		-
38 - 42	(M) On Aircraft (A/C) Maint. Time	5	N	R	1
43	Blank	1	_	_	_
44 - 48	(VR) R&R Verification Time	5	N	R	1
49	Blank	1	_	_	_
50 - 54	(VM) On A/C Maintenance Verif. Time	5	N	R	1
55 - 80	Blank	26	-	-	-

^{*}A = alpha, N = numeric, X = alpha/numeric

^{**}F = fixed, R = right, L = left

Card Type PF - Probability - Flight Line File

The flight line probability (PF) cards provide the probability of occurrence of each flight line maintenance task event. One card of type PF is required for each subsystem. They may be in any order, but placing them in the same order as the CR cards is recommended for more efficient program operation and for ease of editing. The card format is provided in Table 7 and further described in Appendix A. A printout of the cards used in the example run are shown in Figure 9.

	ID#		A	T	CND	R	М	VR	VR
PF	AC310	-1	10000	8800	1200	5280	3520	5280	3520
PF	AC320	-1	10000	8700	1300	7569	1131	7569	1131
	AC330			9300	0700	2790	6510	2790	6510
	AN110			8600	1400	6280	2320	6280	2320
PF	AN120	-1	10000	9600	0400	8256	1344	8256	1344
PF	AN130	-1	10000	9200	0800		2576	6624	2576

Figure 9. Printout of the PF cards for the example run

Table 7
P Probability — Flight Line File

Column	Title	Length	Туре*	Justification**	Decimal Placement
1 - 2	Card Type - PF	2	A	F	_
3	Blank	1	-	_	-
4	Aircraft System	1	A	F	-
5	Major System	1	A	F	-
6	Functional Group	1	A	F	-
7	Operational Function	1	N	F	-
8	Subsystem	1	N	F	-
9	Line Replaceable Unit	1	x	F	_
10	Shop Replaceable Unit	1	N	F	-
11	Dash	1	x	F	-
12	Card Sequence	1	N	F	-
13	Blank	1	-	-	-
14 - 18	PA - Set Up Support Equipment	5	N	R	4
19	Blank	1	-	-	_
20 - 24	PT - Troubleshoot	5	N	R	4
25	Blank	1	-	-	-
26 - 30	PC - Cannot Duplicate Discrepancy	5	N	R	4
31	Blank	1	-	-	-
32 - 36	PR - Remove & Replace (R&R)	5	N	R	4
37	Blank	1	-	- 12	_
38 - 42	PM - On Aircraft (A/C) Maintenance	5	N	R	4
43	Blank	1	-	-	-
44 - 48	PVR - R&R Verification	5	N	R	4
49	Blank	1	-	-	_
50 - 54	PVM - On A/C Maintenance Verification	5	N	R	4
55 - 80	Blank	26	-	-	-

^{*}A = alpha, N = numeric, X = alpha/numeric

^{**}F = fixed, R = right, L = left

Card Type PS - Probability - Shop File

The shop probability (PS) cards, like the PF cards, provide the probability of occurrence of each maintenance task event performed on each LRU received in the shop. One card must be provided for each LRU, preferably in the same order as the CR cards to simplify editing and make program operation more efficient. The card format is listed in Table 8 and further described in Appendix A. A printout of the cards used in the example run are shown in Figure 10.

	ID#		W	K	N	TD	TS
PS PS	AC311 AC312		1126 0880	0423	1971	0317	0188
PS	AC321	-1	6790	0295	0295	1993	0168
PS PS	AC322 AC323		0076		0009	0020	0003
PS	AC331		0052 0272	0189	0052	0016 0125	0002
PS	AC332	-1	0216		0438	0124	0017
PS PS	AC333 AC334		0623	0166	0443	0213	0018
PS	AN111		0445		6280·	1319	0115
PS	AN121		7228	0318	0397	2145	0181
PS PS	AN122 AN131		5503	0842	0313	0059 1748	0008
PS	AN132		2003	0042	0150	1740	0140

Figure 10. Printout of the PS cards used for the example run

Table 8
P Probability - Shop File

Column	Title	Length	Type*	Justification**	Decimal Placement
1 . 2	Card Type - PS	2	A	F	-
3	Blank	1	9715 -	U.S 10	mer - 02
4	Aircraft System	1	A	F	-
5	Major System	1	A	F	_
6	Functional Group	1	A	F	_
7	Organizational Function	1	N	F	-
8	Subsystem	1	N	F	-
9	Line Replaceable Unit	1	×	F	-
10	Shop Replaceable Unit	1	N	F	-
11	Dash	1	X	F	-
12	Card Sequence	1	N	F	-
13 - 19	Blank	7	-	_	-
20 - 24	PW - Bench Check & Repair	5	N	R	4
25	Blank	1	-	_	_
26 - 30	PK - Bench Check & RTOK	5	N	R	4
31	Blank	1	-	-	-
32 - 36	PN - Bench Check & NRTS	5	N	R	4
37 - 49	Blank	13	-	-	-
50 - 54	PTD - Test Drawer Repair	5	N	R	4
55	Blank	1	- 0	- 17	- 32
56 - 60	PTS - Test Station Repair	5	N	R	4
61 - 80	Blank	20	-	-	64 - 18

^{*}A = alpha, N = numeric, X = alpha/numeric

^{**}F = fixed, R = right, L = left

Card Type SS - Support Equipment - Shop File

The shop support equipment (SS) cards identify for the model which test station(s) and what drawer number within the station will be used to test each LRU received by the shop for maintenance. The SS card can also be used to list test equipment that would be used to maintain the test station. The current maximum number of test stations per LRU that the model will recognize is two. When a second station is necessary, the data are assigned to a second card with a -2 sequence. At least one card must be assigned to each LRU, preferably in the same order as the CR cards for more efficient program operation and to simplify editing. The format is provided in Table 9 and further described in Appendix A. A printout of the cards used for the example run are shown in Figure 11.

	ID#		W	K	N	TD#	TD	TS	#
SS	AC311		DTS	DTS	DTS	012	DTS		1
SS	AC312					013			0
SS	AC321	-1	CNITM	CNITM	CNITM	014	CNITM		1
SS	AC322	-1	CNITM		CNITM	015	CNITM		1
SS	AC323	-1	CNITM		CNITM	016	CNITM		1
SS	AC331	-1	CNITM	CNITM		017	CNITM		1
SS	AC332	-1	CNITM		CNITM	018	CNITM		1
SS	AC333	-1	CNITM	CNITM		019	CNITM		1
SS	AC334	-1				020			0
SS	AN111	-1			CMPTS	027	CMPTS		1
SS	AN121	-1	CNITM	CNITM	CNITM	028	CNITM		1
SS	AN122	-1			CNITM	029	CNITM		1
SS	AN131	-1	CNITM	CNITM	CNITM	030	CNITM		1
SS	AN132	-1				031			0

Figure 11. Printout of SS cards for the example rum

Table 9
Support Equipment (SE) - Shop File

Column	Title	Length	Type*	Justification**	Decimal Placement
1 . 2	Card Type - SS	2	A	F	-
3	Blank	1	-	10-10-1	-
4	Aircraft System	1	Α	F	-
5	Major System	1	Α	F	-
6	Functional Group	1	A	F	-
7	Operational Function	1	N	F	-
8	Subsystem	1	N	F	-
9	Line Replaceable Unit	1	×	F	-
10	Shop Replaceable Unit	2	N	F	_
11	Dash	1	×	F	-
12	Card Sequence	1	N	F	-
13 - 19	Blank	7	-	-	-
20 - 24	(W) SE to Bench Check & Repair	5	×	L	-
25	Blank	1	-	-	-
26 - 30	(K) SE to Bench Check & CND	5	X	L	-
31	Blank	1	-	-	-
32 - 36	(N) SE to Bench Check & NRTS	5	X	L	-
37	Blank	1	_	_	-
38 - 40	Test Drawer Number	3	N	R	-
41 - 49	Blank	9	-	-200-000	-
50 - 54	(TD) SE Test Station Under Repair	5	X	L	-
55	Blank	1	-	-	-
56 - 60	(TS) SE to Check Out Test Station	5	X	L	-
61	Blank	1	-	-	-
62 - 63	Maximum No. of SE Per Task	2	N	R	-
64 - 80	Blank	17	-	-	-

^{*}A = alpha, N = numeric, X = alpha/numeric

^{**}F = fixed, R = right, L = left

Card Type MF - Reliability Mean Values - Flight Line File

The flight line reliability mean value (MF) cards contain the mean flight hours between maintenance actions (MFHBMA) for each subsystem. An "H" factor showing the ratio of flight line LRU removals to shop receipts is also provided. The H factor values are input as an additive value greater than unity, and the program adds a one to this value. A further explanation of the H factor is provided in Appendix A for this card type.

There must be one MF card for every subsystem. They may be in any order, but placing them in the same order as the CR cards is recommended for more efficient program operation and for ease of editing. The format is found in Table 10 and further described in Appendix A. A printout of the cards used for the example run are shown in Figure 12. (Note: The example shows zero filled "H" factor" values, but the program does not require this data entry.)

CTOR
00
00
00
00
00
00

Figure 12. Printout of the MF cards used for the example run

Table 10

Reliability Mean Values — Flight Line File

Column	Title	Length	Type*	Justification**	Decimal Placement
1 - 2	Card Type - MF	2	A	F	_
3	Blank	1	_	_	-
4	Aircraft System	1	A	F	-
5	Major System	1	A	F	-
6	Functional Group	1	A	F	_
7	Operational Function	1	N	F	-
8	Subsystem	1	N	F	-
9	Line Replaceable Unit	1	X	F	-
10	Shop Replaceable Unit	1	N	F	-
11	Dash	1	x	F	_
12	Card Sequence	1	N	F	_
13	Blank	1	-	_	-
14 - 19	Mean Flight Hours Between Maintenance Actions by subsystem (column 18 is a decimal)	6	N	R	1
20	Blank	1	-	-	-
21 - 26	H factor (column 22 is a decimal)	6	N	F	1
27 - 80	Blank	55	-	31 0- 40 31	-

^{*}A = alpha, N = numeric, X = alpha/numeric

^{**}F = fixed, R = right, L = left

AFSC Cards - Air Force Specialty Code Definition

All AFSCs which were input in either an "LS" or "LF" input card must be defined here. The first card contains the number of AFSCs punched on the remaining cards. Each succeeding card may contain up to six AFSCs and the respective manhour rates. The AFSCs may be put in any order, and that ordering will be maintained in the AFSC output. If no manhour rate is input, \$1 per hour will be used. The format is provided in Table 11. A printout of the cards used for the example run are shown in Figure 13a.

016				
32251 32632 32853 43171	32231 32850 32833	32651 32830 40451	32631 32851 40431	32652 32831 42153

Figure 13a. Printout of AFSC definition cards for example run

SE Cards - Support Equipment Definition

All support equipments which were input in either an "SF" or "SS" input card must be defined here. The first card contains the number of SEs punched on the remaining cards. Each succeeding card contains up to 13 SEs. They may be put in any order, and that ordering will be maintained in the SE output. The format is provided in Table 12. A printout of the cards used for the example run are shown in Figure 13b.

06
MWTS ARFTS CNITM DTS ICTM CMPTS

Figure 13b. Printout of SE definition cards for the example run

Table 11

AFSC Definition

Column	Title	Length	Type*	Justification**	Decimal Placement
(first card)				
1 - 3	Number of AFSCs	3	N	R	-
(succeeding	g cards)				
1 - 5	AFSC	5	N	L	
6 - 11	AFSC manhour cost	6	N	R	2
13 - 17	AFSC	5	N	L	m - m
18 - 23	AFSC manhour cost	6	N	R	2
25 - 29	AFSC	5	N	L	
30 - 35	AFSC manhour cost	6	N	R	2
37 - 41	AFSC	5	N	L	20 -ou
42 - 47	AFSC manhour cost	6	N	R	2
49 - 53	AFSC	5	N	L	in - 1
54 - 59	AFSC manhour cost	6	N	R	2
61 - 65	AFSC	5	N	L	-
66 - 71	AFSC manhour cost	6	N	R	2
72 - 80	Blank	9	-	_	-

^{*}A = alpha, N = numeric, x = alpha/numeric

^{**}F = fixed, R = right, L = left

Table 12
Support Equipment Definition

Column	Title		Length	Туре*	Justification**	Decimal Placement
(first card						
1 - 2	Number of S	Es	2	N	R	-
(succeedin	g cards)					
1 - 5	SE		5	×	L	_
7 - 11	SE		5	X	Letero	nibite <u>m</u> io)
13 - 17	SE		5	x	L	-
19 - 23	SE		5	X	otolog CERA	-
25 - 29	SE		5	x	LORSE	W _ 4
31 - 35	SE		5	X	L	超二上程
37 - 41	SE		5	×	L	85 _ K
43 - 47	SE		5	X	mann 507A	SE _ 180
49 - 53	SE		5	X	L	10 _ 10
55 - 59	SE		5	×	CONTRACTOR OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO	40 - 40
61 - 65	SE		5	x	L	7 P
67 - 71	SE		5	X	L	田上 4
73 - 77	SE		5	x	L	E _ 10
78 - 80	Blank		3		APERO DESIA	17 _ 36

^{*}A = alpha, N = numeric, X = alpha/numeric

^{**}F = fixed, R = right, L= left

Option Card Formats

Program option cards immediately follow the data file cards of the R&M input deck. These cards are used to generate optional outputs of the model as described below.

AFSCs and SEs of Interest

This option specifies how many Air Force specialty code (AFSC) and support equipment (SE) reports are to be output and then defines them. The first card contains the count and the succeeding cards the AFSC or SE identifications. The format is provided in Table 13. If no AFSC or SE output is desired, a zero is entered in the first card and successive cards are omitted. To reduce the input requirements, the words ALLAF or ALLSE may be used in place of the AFSC or SE identifications to invoke output for all the AFSCs or all of the SEs.

A separate output report will be generated for each AFSC designated. Each report displays, for every subsystem requiring that AFSC, the MMH/1000 FH required for the total shop task events per LRU, the total flight line task events, and the total for the subsystem. An example output matrix is shown in Figure 18. A column of the matrix records the cost/1000 FH for each of these MMH/1000 FH outputs obtained by multiplying by the cost per MMH for that AFSC.

A separate output report of maintenance requirements will be generated for each SE designated. An example output matrix is shown in Figure 17. Each of these reports will provide values for (1) the Test Drawer Repair (TD REP) representing the in-shop repair of the test station drawer (or combination of test equipment) that is needed to test the LRU being checked, (2) the Test Station Repair (TS REP) representing the in-shop repair of the entire test station that is needed to test the LRU being checked and (3) their total. These TD REP, TS REP, and total values are provided for each of the individual LRUs tested on the particular test station and each is given in terms of MTTR, MMH, MMH/1000 FH, and MTTR/1000 FH.

Table 13

AFSC and SE Option Cards

					Decimal
Column	Title	Length	Type*	Justification**	The second secon
(first card	out has sugged as at the firequency				
1 - 3	Number of AFSCs and SEs requested	3	N	R	ant-
(succeedir	ng cards)				
1 - 5		5	x	L	21 200
7 - 11		5	×	L	-
13 - 17		5	×	L	-
19 - 23		5	x	L	_
25 - 29		5	X	L	3 4-
31 - 35	AFSC identification or	5	X	L	itelia pia
37 - 41	SE identification or	5	×	L	-
43 - 47	ALLAF or ALLSE	5	×	L	-
49 - 53		5	×	L	-
55 - 59		5	x	L	-
61 - 65		5	×	L	- 3
67 - 71		5	x	L	
73 - 77		5	×	L	-
78 - 80		3	-	-	-

*A = alpha, N = numeric, X = alpha/numeric **F = fixed, R = right, L = left

Subsystem Data Options

The following 13 option cards may occur in any number (or may be omitted) and in any order, with duplications if desired. They serve to call up optional output reports as described below. If none are included, no optional reports will be output. In every case, the subsystem name, or portion thereof, is punched in columns 1-7 and the option number (right-justified) in columns 9-10.

Option i	# <u>Title</u> - Description
01	MTTR BY TASK PER LRU - displays mean time to repair for each LRU within the subsystem designated. If the sub- system field is left blank and only the option number is specified, one report will be generated for each subsystem and its LRUs.
02	MTTR AS % OF TOTAL - same as 01 except the values displayed are percentages of the total subsystem MTTR. Only the percentages are displayed.
03	MMH BY TASK PER LRU - displays maintenance manhours for each LRU within the subsystem designated. If the subsystem field is left blank and only the option number is specified, one report will be generated for each subsystem and its LRUs.
04	MMH AS % OF TOTAL - same as 03 except the values displayed are percentages of the total subsystem MMH. Only the percentages are displayed.
05	MMH PER 1000 FH - displays maintenance manhours per thousand flight hours reports for each LRU within the subsystem designated. If the subsystem field is left blank and only the option number is specified, one report will be generated for each subsystem and its LRUs.
06	MAINT INDEX x 1000 - displays the equipment maintain-ability index defined as MTTR per 1000 flight hours obtained from the equation (MTTR x 1000)/MFHBMA. If the subsystem field is left blank, one report will be generated for each subsystem and its LRUs.

Options 07 through 12 are similar to options 01 through 06, respectively, with the following two exceptions which apply to each option:

a) Only the bottom line total is given for each report rather than itemizing by LRU

b) Rather than each report representing outcomes of maintenance actions for a single subsystem, each can be stipulated to represent a summation over several subsystems as selected by the portion of the subsystem ID number punched in columns 1-7.

These exceptions can be noted in the example run, whereby "AC3" was used as the operational function group ID for options 07 through 12. All subsystems beginning with "AC3" are then used in the summation. Any number of characters may be used as the portion of the subsystem ID. This makes possible the selection of outputs for any hierarchical grouping of subsystems desired. This relationship of ID number to hierarchical order of the equipment is illustrated in Figure 2.

Option # Title - Description

MTTR for All Subsystems and MMH for All Subsystems - this option requires no entry in the subsystem field (columns 1-7) and produces two reports summing the MTTR and MMH for all subsystems.

Figure 14 shows the input option cards which immediately follow the input data file cards. This set of option cards was used in the example run to generate the sample output reports used in this report.

0	0	2								
A	L	L	A	F		A	L	L	S	E
								1	3	
								0	1	
	A	C	3	2	0			0	2	
								0	3	
	A	C	3	2	0			0	4	
								0	5	
								0	6	
	A	C	3					0	7	
	A	C	3					0	8	
	A	C	3					0	9	
	A	C	3					1	0	
	A	C	3					1	1	
	A	C	3					1	2	

Figure 14. Printout of input options cards for the example run

V. OUTPUT REPORTS

Structure of the Example Run

The R&M model is capable of providing the user with up to 16 output reports. In addition, a complete listing of the R&M input data is printed out for verification by the user. Figure 15 is a print-out of the data used for the example run; complete instructions for its preparation have been provided in Section IV and Appendix A of this volume. Figure 16 displays the first report printed when the R&M model batch program is run. It is the "Subsystem Inherent Flight Line Availability" report which displays this parameter for all subsystems ranked by order of magnitude. This report is always printed first and is not optionally controlled.

Samples of the support equipment (SE) matrices (Figure 17) and AFSC matrices (Figure 18) were selected from the set requested on the option cards previously shown in Figure 14. One report matrix for each requested SE and AFSC is produces when the R&M model is run. Formats for these reports are described on page 43.

Optional output reports 01 through 13 are printed next (Figures 19 through 32) in the order they were requested (Figure 14). The format of these output reports is similarly structured. Briefly, the first line of the report names the value computed and the terms of the computation. The second line provides the subsystem identification (ID) number, work unit code (WUC) in parentheses, equipment name, and the mean flight hours between maintenance action value for the specified subsystem. The third line provides the user with the column headings that describe the data elements contained in the output matrices for each maintenance event.

The column titles are:

AGE F/L	setup support equipment event on the flight line
TS F/L	troubleshooting event on the flight line
R&R	remove and replace event
VR&R	verification event of removal and replacement
CND A/C	troubleshooting event on the aircraft, cannot duplicate the discrepancy

M A/C	minor maintenance on aircraft event
VM A/C	verification event, that the maintenance performed corrected the discrepancy
SHOP	bench check, test, and repair events of units removed to the shop
TOT/OUT	total per outcome

The fourth line provides the line replaceable unit (LRU), ID number, WUC, and equipment name, which is repeated for each set of LRU data displayed.

Descriptions of lines two and four apply only to report options 01 through 06.

The rows of data that follow these headings contain the computed values broken out by task event for each of the following maintenance action outcomes:

W	bench check and repair outcome
К	bench tested and found serviceable outcome (no maintenance required)
N	not repairable this station (NRTS) outcome which is a return to depot for repair
SUB	subtotal for the shop tasks required for the LRU
CND	cannot duplicate the discrepancy outcome
TOT/TSK	total for the task

For detailed descriptions of the output reports, including equations, definitions, and example calculations the user should reference Section IV of AFHRL-TR-78-2(I), the companion technical report to this user's guide.

Figure 15. Input data records

	O																											
	(T)	8 A																					~		2		2	
ď	I W	ARN-5									2		2		2		2		2		2		3265A	63			26	63
EM	20	HHA			9	9	D60	9	9	9	285	283	28		285	32833	285		32851		285	32831	265	263			265	3263A
LANDING ST	ACON	30 F			9	9	D60	9	9	9	285	283	28		285	32833	285		32851		28	83						
	KER B	09-			9	9	D60	9	9	9	2		285	283	32853	283	285	283	285	283	285	283						
STRUMENT	IO MA	-00-9	ENN		9	9	D60	9	9	9	3		32833		32833		32831		32831		32831		32850		32850		32850	
1 INS	A	585	Z		9	9	D60	9	9	9	2		285	283	32853	283	285	283	28	283	285	28	28				32850	
71000	50	10	10		9	9	D60	9	9	9	2		32833		32833		32831		32831		32831		285	32830	285	283	285	283
	8.6		4.0		9	9	9	9	9	9	317	215	317	215	43171	215	317	215	317	215	317	215						
	7 7	-2	7	25		7	7	7	7	7	7				7				7		-			-2	7	-2	7	-2
AN 130	N13	N13	N13	N13	C31	C32	C33	N11	N12	N13	C31	C31	C32	C32	C33	C33	N11	N11	N12	N12	N13	N13	C31	C31	C31	C31	C32	C32
CR	CR	CR	CR	CR	SF	SF	SF	SF	SF	SF	LF	LF	LF	LF	LF	LF	LF	LF	LF	LF	LF	LF	LS	LS	LS	LS	LS	LS

Figure 15. (continued)

2		~		N		2		2		N		2		2		2		2		-									
265	3263A	265	263	265	263	265	263	265	263			265	265	3265A	263	265	263	265	263		90		20	20	20	20	20	20	
265	3263A	265	263	265	263	265	263	265	263			265	263	3265A	263	265	263	265	263		12						12		
32850		32850				32850				32850		32651		32850		32850		32850				10					35		90
				32850				32850						32850				32850			14		14			28		14	
32850		32850		285	283	285	283	285	283	32850	283			32850	83			32850	283		28	25	20	08	59	31	45	25	15
-	-2	-	-2	ī	2	1	2	-	-2	-	-2	-	-2	7	-2	-	-2	7	-2	7	7	7	-	7	7	-	7	7	7
C32	AC322	C35	C35	C33	C33	C33	033	C33	033	C33	C33	N 1 1	N 1 1	N12	N12	N12	N12	N13	N13	N13	231	231	332	332	332	233	333	333	333
S																													

Figure 15. (continued)

Figure 15. (continued)

DIS	CNITM CNITM CNITM	HH BHH	H H Z Z	32652 32831 42153
	NITM OT NITM O	CNITM 018 019 020 CMPTS 027 CNITM 028	17 03 1 03 1 0 03	32631 32851 40431 CMPTS
DTS DTS	CNITM CNITM CNITM CNITM CNITM	HH H	CNITM CNITM 6 0.0000 9 0.0000 1 0.0000 9 0.0000 9 0.0000	32651 32830 40451 DTS ICTM C
0-0	1777	202	404. 1 104. 1 328. 1 1031. 232.	32231 32850 32833 FTS CNITM D
AC31	AC32 AC32 AC32	AC333 AC333 AN12 AN12	AN 13 AN 13 AC 32 AC 33 AN 11 AN 11	32 32 35 71 35 3

-0-----0----0

SUBSYSTEM INHERENT FLIGHT LINE AVAILABILITY

ILITY	-	1	122	2	3	9
AVAILAB	6.	6.	0.99	6.	6.	6.
SUBSYSTEM	N12	C32	AN130	C33	C31	N 1 1

SERVICE FLIGHT LINE AVAILABILITY-0.9132

Figure 16. Sample availability report

1	0.7.4		0259	7687	4678	1767		.4773	2115	0570		.2684	.3263	 0.3263		04.30	7970		.2461	2057	0713	.1053	1:	. 3863	2047	0.2307	8760	6302		. 5368	0.5368	0	.0454		203	. 5310	2011	2707.	216	101		800	0.3647	.4456	-	
H 9 00								, ,	~	0	i	~	0	3 0.	•	, ,	, 0	•	~	0	0	0	1 0	0				0		0		•	- 0			~ 0	0 (~						1 0		
MTTR/1000	15 86						100	1.084		0.0201		0.8556	0.2323				0.0159		1.3752	-	0	0.0274		0.6133	0.0267	0.0200	0.0067	0.0534		0.1081	0.1081	272	0.0166	100	00000	1.4388	0.000	1.5024	0. 8177		0.3177	1.5809	0.1287	1.7096		
•	TD REP		1,6141	0096-0	0.3012	0.3176	10000	3.1464	2.3759	0.0369		2,4128	0.0940	 0,0000	1 6033	0.000	0.0305		3.8709	0.0457	0.0454	0.0779	100		0.2780	0.2107	0.0881	0.5768		0.4287	00	. 1411	0.0288			4.0922	021.00	4.2048	4000	0 1	9006.0	4.5090	0.2360	4.7360		
-#	101 16		4	~	0 0	0	1 2 2 2	0	6.4230	0.1139		6.5369	0.6527	0.6527	10 375,	0-1260	0.0928		10.4922			0.5			0.6093	0.4614	0.1896	1.2603		1.0736	1.0736	1007	0.0908	7000	9000	11.0620	55555	11.4143	2.4.148		2.4368	12.1618	0.7294	12.8912		
MMH/1000	TS REP		0.8235	1.0588	0.3333	0.3529	2 5484	00000	1.6711	0.0401		1.7112	0.4647	0.4647	2 4700	0.0477	0.0318		2.7504	0,3200	0,0518	0.0549	1777		0.0534	0.0401	0.0134			0.2161	0.2161	0 6877	0.0331	0 7208		2.8776		3,00.8	0.6355		0.6355	3.1618	0.2574	4.1		
•	TD REP		3.2282	1.9200	0.6024	0.6333	1000	. 202	4.7519	0.0738		4.8257	0.1880	 0.1880	3707 2	0.0763	0.00.0		7.7418	0.0914	0.0907	0.1558	0444		0.5559	0.4214	0.1762	153		0.8574	0.8574		0.0577	2 7708		8.1844		8.4095	1.8013	:	1.8013	00000.6	0.4721	9.4721	-	
	TOTAL	1	0.2066	0.1519	0.0477	0.000	1 4547		7087-0	0.0085		0.4890	0.2641	 0.2641	444	0.0078	.005		0.0000 p	0.1350	0.0468	0.0691	0.2500		0.0013	0.0691	0.0284	0.1888	1307 0	70.00		0.4116	0.0110	0.4225		0.6958		0.7180	0.5675			0.6616	0.0397	C.7013		
H H H	TS REP		0.0420	0.050.0	0.01	0.0.0	0 1110		0.1250	0.0030	-	0.1280	0.1880	 0.1880	0.1680	0.0030	0.0020		0.1750	0.1050	0.0170	0.0180	0.1400		0.0080	0.0000	02000	0.0160		0 1	0.1400	0.0830	0.00.0	0.0870		0.1810		0.1890	0.1480		0.1480	0.1720	0.0140	186		
	TD 86P		0.1646	5260.0	0.0307	0.036	0.3257		0.3554	0.0055		0.3610	0.0761	 0.0761	0.4783	8 700 0	0.0038	1 0	0.870	0.0300	0.0298	6.0511	6-1109		0.0833	0.0631	10000	0.1728	7333 1		0.5554		0	0.3355		0.5148		0.5290	0.4195		0.4195	0.4896	0.0257			
	101 AL						0.2283		0.2402	0.0043		0.2445	0.1320	 0.1320	0.3232	0.0039	0.000.0		0.5500	2.0675	0.0234	7.0346	0.1254		0.0456	0.0346	2.0.0	7760-0	2273 0		0.3477	0.2058	5	0.2113		0.3479		0.3590	0.2838		0.2838	0.3308	0.0198	0.3506		
- # 7 7 8 -	TS REP		0.0210	0.0270	0000	0 1	0		0.0625	.001	-	0.000	0.0940	0.0940	•	0.0015	0.0010		. 080	0.0525	0.0085	0.0000	0.0700		0.00.0	0.0030	0 1	0.0080	00200	0 1	0.0700		200	0.0435		0.0000		5760.0	0.0740	:	0.0740	0.0860	0,0000	093		
	10 REP	1 1	0.0823	0.000	0.013		0.1628		0.1777	0.0028			0.0380	 0.0380	0.2392	0.0024	0.0019	27.50	66.3.0	0.0150	0.0169	0.0236	.055		0.0416	0.03	0 !	7980-0	0.2777		0.2777	0.1643	0.0035	0.1678		0.0071		0.2645	0.2098	-	0.2098	0.2448	27.0.0	0.2576		
	101	:			0				10	-			15		1,4	15	10			17	000				21	22	,		34			52	56			200			30			32	**			
SE-CNITH			ACTIT	2000	AC114		AC110		AC 211	AC 2 1 2	0.000	46610	AC311	AC 310	AC321	AC322	AC323	46.830	2000	AC 3 3 1	AC 3 3 2	4(333)	AC 330		AC411	AC412		AC410	AC 5 1 1		ACS10	AC611	AC612	AC610		AN122		AN120	AN131		AN130	AN211	SIZNE	AN210		

Figure 17. Sample SE maintenance requirements report

AFSC-32830	\$ 1.00	
	MMH/KFH	COST/KFH
AC111	13.43961	13.43961
AC112	18.18980	18.18980
AC113 AC114	3.96471 6.00549	6.00549
FL	0.	0.
AC110	41.59961	41.59961
AC211	23.18182	23.18182
ACZ12	0.26310	0.26310
fL	0.	0.
46740	77 ///03	27
AC210	23.44492	23.44492
AC311	0.77924	0.77924
AC312	0.54375	0.54375
FL	0.	0.
AC310	1.32299	1.32299
AC321	53.97456	53.97456
FL	0.	0.
AC350	53.97456	53.97456
AC331	0.25699	0.25699
AC 332	0.29625	0.29625
AC333	0.47470	0.47470
AC334	0.20253	0.20253
FL	0.	0.
*****	4 27040	
AC330	1.23048	1.23048
AC411	1.93565	1.93565
FL	D.	0.
AC410	1.93565	1.93565
46410	1.93505	1.43767
AC511	2.03008	2.03008
FL	0.	0.
AC 51 0	2.03008	2.03008
AC612	0.12759	0.12759
FL	0.	0.
AC 610	0.12759	0.12759
AN121	37.92114	37.92114
FL	0.	0.
AN120	37.92114	37.92114
AN131	2.59910	2.59910
FL	0.	0.
AN130	2.59910	2.59910
AN211	39.04779	39.04779
FL	0.	0.
AN210	39.04779	39.04779
TOTAL	205.23391	205.23391

Figure 18. Sample manpower report

SURSES	AGE FAL	TS FAL	*	V R + B	CND A/C	* A/C	VF A/C	SHOP	
			:						
AC 310	0.2000	0.4460	0.7919	0.0528	0.2400	0.9152	0.0352	0.9583	
AC 320	0.2000	0-1740	1.0599	0.3785	0.1040	0.1244	0.0566	3.5306	
AC330	0.2000	0.9200	0.2790	0.1395	0.0700	0.3906	0.3255	0.6598	
AN110	0.2000	0 - 86 0 0	0.9420	0.5652	0.2240	0.3248	0.2000	0.5024	
AN 120	0.2000	0.4600	0.8256	6.4128	0.0720	0.1075	0.0269	2.5153	
AN130	0.2000	0.1840	0.2000 0.1840 0.6624 0.2650 0.2160 0.2576 0.0515 0.6892	0.2650	0.2160	0.2576	0.0515	0.6892	

TOTAL	1.2000	3.0680	4.5608	1.8138	0.9560	2.1201	0.7045	8.8555	

101/0UT 3.6.333 5.6.333 5.6.333 5.6.6.01 2.9.994 2.9.501 23.24.67

Figure 19. Sample option 13 report (part 1)

	101/101		4.4565	9.3842	4.5237	4.9760	7.4048	4.1211		34.4663
	SHOF		1.4936	6.9261	1.0635	0.5024	4.9005	1.2945	******	16.1806
	V# #/C		0.0704	0.1131	0.6510	0.2086	0.0269	0.1030		1.1732
	H A/C		0.9152	0.1244	0.7812	9649.0	0.2150	0.5152		3.2007
	CN0 01C		0.2400	0.2080	0.1400	0.4480	0.1440	0.4320		2.4000 3.8680 4.5608 2.2711 1.6120 3.2007 1.1732 16.1806 34.4663
	4 4 4 4	•	0.1056	0.3785	0.2790	0.5652	0.4128	0.5249		2.2711
	*	:	0.7919	1.0599	0.2790	0.9420	0.8256	0.6624		4.5608
SUBSTSTEMS	TS FAL		0.4400	0-1740	0.9360	0.8600	0.4800	0.1840		3.0680
1	AGE FAL		0.4000	0.4001	0.4000	0305.0	0.4000	0304.0		2.4000
HHH FCR			AC310							TOTAL

Figure 20. Sample option 13 report (part 2)

	65.9						
	MFHBMA=						
		SHOP TOT/OUT		3.39500 4.95670 0.04130 0.10915 0.03835 0.10620	3.47465 5.17205		0.00632 0.02449 0.00090 0.00297 0.00722 0.02746
		S 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3.39500 0.04130 0.03835	3.47465 5.17205		0.00632
		VM A/C					
		# A/C	(UHF)				
	UHF RADIO SET	VR+R CND A/C M A/C	RECEIVER/TRANSMITTER (UHF)				
	UHF	× 1	IVER/TRA	0.33950	0.36900	DIPLEXER	0.00158 0.00158 0.01106 0.00395 0.000018 0.00018 0.00126 0.00045 0.00176 0.00176 0.01232 0.00440
	(63400)	œ ! œ !	RECE	0.95060	1.03320	DIPL	00158 0.01106 0.00018 0.00126 00176 0.01232
R LRU		15 5/1	(63AA0)	0.13580	0.14760	(63AE0)	0.00158
MITR BY TASK PER L	SUBSYSTEM- AC320	AGE F/L		W 0.13580 0.13580 0.95060 0.33950 K 0.00590 0.00590 0.04130 0.01475 N 0.00590 0.00590 0.04130 0.01475	SUB 0.14760 0.14760 1.03320 0.36900		N 0.00158 0.00158 0.01106 0.00395 N 0.00018 0.00018 0.00126 0.00045 SUB 0.00176 0.00176 0.01232 0.00440
MITR BY	SUBSYST		LRU- AC321	3×2	SUB	LRU- AC322	N C C S S S S S S S S S S S S S S S S S

0.03068 0.04264 0. 0.00364 0.01560	CND 0.02600 M 0.02262 0.02262 TOT/TSK 0.20006 0.17406 1.06008 0.37860 0.10400 0.12441 0.05655 3.51619 5.61395
0.030	655
	0.12441 0.05655
	0.10400
.00260	37860 0-
N 0.00104 0.00104 0.00728 0.00260 N 0.00104 0.00104 0.00728 0.00260 SUB 0.00208 0.00208 0.01456 0.00520	1.06008
0.00104	0.02262
0.00104	CND 0.02600 M 0.02262 0.02262 TSK 0.20006 0.17406
3 4 2 8	CND M T01/15K

STANDING WAVE RATIO INDICATOR

(33AL0)

LRU- AC323

Figure 21. Sample option 01 report

TAL
101
OF
×
AS
×
ATTR
-

AGE FIL IS FIL R*R VRRR CND A/C M A/C SHOP TOT/OUT LRU- AC321 (63AA0) RECEIVER/TRANSMITTER (UHF) K 0.105 0.105 0.736 0.263 SUB 2.629 2.629 18.404 6.573 LRU- AC322 (63AE0) DIPLEXER W 0.0028 0.0028 0.197 0.070 N 0.003 0.003 0.002 0.006 K 0.003 0.003 0.006 K 0.009 0.007 0.009 K 0.009 0.007 0.006 K 0.009 0.007 0.006 K 0.009 0.007 0.006 K 0.009 0.007 0.009 K 0.009 0.007 0.006 K 0.009 0.007 0.006 K 0.009 0.007 0.009 K 0.009 0.007 0.006 K 0.009 0.007 0.009 K 0.000 0.007 0.0000 K 0.000 0.000 0.0000 K 0.0000 0.0	SUBSYSTEM	- AC320		(63400)	UHE RA	UHF RADIO SET				MFHBMA
2.419 2.419 16.933 6.047 0.105 0.736 0.263 0.105 0.736 0.263 0.105 0.105 0.736 0.263 0.105 0.105 0.736 0.263 0.105 0.105 0.736 0.263 0.105 0.105 0.736 0.263 0.105 0.105 0.736 0.263 0.028 0.028 0.197 0.070 0.038 0.028 0.197 0.070 0.003 0.003 0.022 0.008 0.019 0.019 0.130 0.046 0.019 0.019 0.130 0.046 0.037 0.259 0.093 0.463 0.403 0.403 0.259 0.093 3.564 3.100 18.883 6.744 1.853 2.216 1.007 62.653 1	* 9	95 F/L	TS FIL	* ! * ! & !		CND A/C	A A / C	VM A/C	SHOP	TOT/0UT
2.419 2.419 16.933 6.047 0.105 0.105 0.736 0.263 0.105 0.105 0.736 0.263 0.105 0.105 0.736 0.263 2.629 2.629 18.404 6.573 (63AE0) DIPLEXER 0.028 0.028 0.197 0.070 0.031 0.031 0.022 0.008 (63AL0) STANDING WAVE RATIO INDICATOR 0.019 0.019 0.130 0.046 0.019 0.019 0.130 0.046 0.037 0.037 0.259 0.093 0.463 0.403 0.259 0.093 3.564 3.100 18.883 6.744 1.853 2.216 1.007 62.633 1	LRU- AC321		(63440)	RECEI	VER/TRAN	SMITTER	(UHF)			
0.105 0.105 0.736 0.263 2.629 2.629 18.404 6.573 (63AE0)	3 5	2.419	2.419	16.933	6.047				60.474	88.293
2.629 2.629 18.404 6.573 61.893 (63AE0) DIPLEXER 0.028 0.028 0.197 0.070 0.031 0.031 0.219 0.078 (63AL0) STANDING WAVE RATIO INDICATOR 0.019 0.019 0.130 0.046 0.019 0.019 0.130 0.046 0.037 0.037 0.259 0.093 1.853 2.216 1.007 3.564 3.100 18.883 6.744 1.853 2.216 1.007 62.633 11	2	0.105	0.105	0.736	0.263				0.683	1.892
0.028 0.028 0.197 0.070 0.031 0.031 0.219 0.078 0.031 0.031 0.219 0.078 0.019 0.019 0.130 0.046 0.037 0.037 0.259 0.093 0.463 0.403 0.463	SUB	2.629	2.629	18.404	6.573				61.893	92.129
0.028 0.028 0.197 0.070 0.031 0.032 0.008 0.031 0.0219 0.078 0.031 0.031 0.219 0.078 0.019 0.019 0.130 0.046 0.019 0.019 0.130 0.046 0.037 0.037 0.259 0.093 0.463 0.463 0.403 0.403 3.564 3.100 18.883 6.744 1.853 2.216 1.007 62.653 11	LRU- AC322		(63AE0)	DIPLE	ox Ex					
0.003 0.003 0.022 0.008 0.031 0.031 0.219 0.078 0.019 0.019 0.130 0.046 0.019 0.019 0.130 0.046 0.037 0.037 0.259 0.093 0.463 0.463 0.403 0.403 0.403 0.744 1.853 2.216 1.007 62.653 11	3 5	0.028		0.197	0.070				0.113	0.436
0.031 0.031 0.219 0.078 (63AL0) STANDING WAVE RATIO INDICATOR 0.019 0.019 0.130 0.046 0.037 0.037 0.259 0.093 0.463 0.463 0.463 3.564 3.100 18.883 6.744 1.853 2.216 1.007 62.653 11	Z	0.003		0.022	0.008				0.016	0.053
0.019 0.019 0.130 0.046 0.019 0.019 0.130 0.046 0.037 0.037 0.259 0.093 0.463 0.403 0.744 1.853 2.216 1.007 62.633 11	SUB	0.031	0.031	0.219	0.078				0.129	0.489
0.019 0.019 0.130 0.046 0.019 0.019 0.130 0.046 0.019 0.019 0.130 0.046 0.057 0.037 0.259 0.093 0.463 0.403 0.403 3.564 3.100 18.883 6.744 1.853 2.216 1.007 62.633 11	LRU- AC323		(03410)	STAND	ING WAVE		NDICATOR			
0.463 0.403 0.403 0.744 1.853 2.216 1.007 62.633 11	3	0.019		0.130	970.0				0.546	0.760
0.463 0.463 0.403		0.019		0.130	0.046				0.065	0.278
0.463 0.403 0.403 3.564 3.100 18.883 6.744 1.853 2.216 1.007 62.633 10		0.037	0.037	0.259	0.093				0.611	1.037
3.564 3.100 18.883 6.744 1.853 2.216 1.007		0.463	0.403			1.853		1.007		2.316
		3.564	3,100	18.883	6.744	1.853	1	1.007	62.633	100.000

Figure 22. Sample option 02 report

3
œ
_
_
~
ER
ā
-
×
Y S
<
-
>
8
_
-
Ŧ
-

65.9									
MFHBMA=			0,001,0		~ 		m	0.50	
	101/001		6.79000 8.48750 0.04130 0.11505 0.03835 0.11210 6.86965 8.71465		0.00632 0.02607 0.000090 0.00315		0.0368 0.04368 0.00364 0.01664 0.03432 0.06032		9.43742
	SHOP		6.79000 0.04130 0.03835 6.86965		0.00632		0.0368		6.91119
	V × V					~		0.05655	0.05655 6.91119 9.43742
	A .	(UHF)				STANDING WAVE RATIO INDICATOR		0.24882	0.24882
UHF RADIO SET	CND A/C	RECEIVER/TRANSMITTER (UHF)				RATIO I		0.20800	0.20800
UHF RA	α ! + ! α ! > !	VER/TRAN	0.33950 0.01475 0.01475 0.36900	XER	0.00395	ING WAVE	0.00260		0.37860
(63A00)	α ! α !	RECEI	0.95060 0.04130 0.04130 1.03320	DIPLEXER	0.01106 0.00395 0.00126 0.00045 0.01232 0.00440	STAND	0.00728		1.06008
	TS F/L	(63AAD)	3580 0590 0590 4760	(63AED)	0.00316 0.00158 0.01106 0.00395 0.000036 0.00018 0.00126 0.00045 0.00352 0.00176 0.01232 0.00440	(63AL0)	0.00104		0.17406
SUBSYSTEM- AC320	AGE FIL		0.27160 0.1 0.01180 0.0 0.01180 0.0		0.00316 0.00158 0.01106 0.00395 0.00036 0.00018 0.00126 0.00045 0.00352 0.00176 0.01232 0.00440		0.00208 0.00104 0.00728 0.00260 0.00208 0.00104 0.00728 0.00260 0.00416 0.00208 0.01456 0.00520	0.05200	0.40012 0.17406 1.06008 0.37860 0.20800 0.24882
SUBSYSTE		LRU- AC321	S Z Z G	LRU- AC322	61	LRU- AC323	3 × 2 0	O E	T01/15K

Figure 23. Sample option 03 report

¥
=
5
10
4
0 F
×
S
•
I
E

A/C M A/C VM A/C SHOP TOT/OUT	TER (UHF)		72.792 92.341		0.067 0.276 0.0 0.010 0.033	0.077 0.310	RATIO INDICATOR	0.325 0.463 0.039 0.176 0.364 0.639	2.204 2.637 0.599 3.955
R VR+R CND A/C	RECEIVER/TRANSMITTER (UHF)		48 3.910	DIPLEXER		31 0.047	STANDING WAVE RAT	77 0.028 77 0.028 	12
TS F/L R+R	(63AAD) RE	0.5	1.564 10.948	(63AE0) DI		0.019 0.131	(63ALO) ST	0.011 0.077	0.240
AGE F/L	3	2.878 0.125 0.125	3.128	3	0.0033	0.037	LRU- AC323 (6	0.022	0.551

Figure 24. Sample option 04 report

MEHBMAE 02.5									
101/01			138.548		0.414	0.465		0.694	4.134
SHOP		107.949 0.657 0.610	109.215		0.100	0.115		0.488	
VM A/C									0
3/4 H	(UHF)						NDICATOR		730 2
UHF RADIO SET VR+R CND A/C							STANDING WAVE RATIO INDICATOR		3.307
VR+ RA	RECEIVER/TRANSMITTER	5.397 0.234 0.234	5.866	ER	0.063	0.070	ING WAVE	0.041	
(63A00)	RECEIV	15.113 0.657 0.657	16.426	DIPLEXER	0.176	0.196	STAND	0.116	
15 6/			2.347	(63AE0)	0.025	0.028	\$3AL0)	0.017	0 3 2 0
M- AC320	9) 1	4.318 0.188 0.188	4.693		0.050	0.056	9)	0.033	0.827
SUBSYSTEM- AC320 AGE F/L	LRU- AC321	3 x z	su8	LRU- AC322	3 2 2	808	LRU- AC323	3 2 2 0	CND

Figure 25. Sample option 05 report

	-	
•	-	,
(ì
-)
ľ	100	
	×	
•	~	
3	×	
1	Y	ı
4	0	٠
-	2	i
1	-	•
•	_	•
	1	۰
	_	
1	,	,
1		
1	_ X X W	7
	•	•
1	×	٢

65.9

SUBSYSTEM-	TEM- AC320		(63ADD)	UHF RA	UHF RADIO SET				MFHBMA=
	AGE F/L	TS F/L	* !	× 1 + 1	CND A/C	A A/C	V# A/C	S + 0 P	T01/0UT
LRU- AC321		(63AA0)	RECEI	VER/TRAN	RECEIVER/TRANSMITTER (UHF)	(UHF)			
3 x z	2.1590 0.0938 0.0938		15.1129 0.6566 0.6566	5.3975 0.2345 0.2345				53.9746 0.6566 0.6097	78.8029 1.7353 1.6884
SUB	2.	•	2.3466 16.4261	5.8665				55.2409	82.2265
LRU- AC322		(63AED)	DIPLEXER	XER					
3 ¥ Z	0.0251			0.0628				0.1005	
SUB	0.0280	0.0280	0.1959	0.0700				0.1148	0.4366
LRU- AC323		(63AL0)	STAND	STANDING WAVE	RATIO I	RATIO INDICATOR			
S	0.0165	0.0165	0.1157	0.0413				0.4878	0.2480
CND M T01/15K	0.4134	1	16.8534	6.0191	1.6534	1.9779	0.8990	55.9013	2.0668 3.5962 89.2520

Figure 26. Sample option 06 report

MTTR OVER SUBSYSTEMS AC3

	AGE FIL	TS F/L	8 + 8	VR+R	CND A/C M A/C	M A/C	VM A/C	SHOP	101/001	
			* * * *		1					
T01/15K	0.6001	1.5441	2,1311	0.5709	0.4140	1.4302	0.4173	5.1344	5.1344 12.2419	

Figure 27. Sample option 07 report

MITR & OF TOTAL PER ACS

T01/00T		4.663 3.382 11.683 3.408 41.941 100.000
SHOP	1	41.941
VM A/C		3.408
M A/C	1 1 1	11.683
CND A/C		3.382
VR+R		4.663
R + R		17.408
TS F/L		902 12.613 17.408
AGE FIL		4.902
		T01/15K

Figure 28. Sample option 08 report

MMH OVER SUBSYSTEMS AC3

	101/001		2.1311 0.7632 0.5880 1.9452 0.7780 9.4684 18 4180
	SHOP		9-4684
27.4	VA AVC	*****	0.7780
N A / C	,		1.9452
CND A/C			0.5880
VR+R	-		0.7632
x + x			2.1311
F/L TS F/L		4 5114	1 * 56 %
AGE F/L		1 2001	000
		TOT/15K	

Figure 29. Sample option 09 report

MMH % OF TOTAL PER ACS

	ACC CA									
	7/1 304	17 4 51	×+×	VR+R	CND A/C	M A / C	VM AV	0000		
							200	SHOP	100/101	
OTITER	4 512									
4	0.210	.210 8.383 11.571	11.571	4.144	4.144 3.193 10.562 4.224 51.408 100 000	10.562	4.224	51,408	1000000	

Figure 30. Sample option 10 report

MMH PER 1000 FH PER ACS

TS F/L R+R	VR+R CND A/C M A/C VM A/C SHOP TOT/OUT
39242 0.12755 0	0-07183 0 09262 0 12755 0 06568 0 03510 0 11673 0 07656 0 56671 1 10227

Figure 31. Sample option 11 report

MAINT IND X 1000 PER AC3

OT/OUT		.73272
VM A/C SHOP TOT/OUT		592 0.09242 0.12755 0.03417 0.02478 0.08560 0.02497 0.30731 0.73272
VM A/C	1 1 1 1	0.02497
		0.08560
VR+R CND A/C M A/C		0.02478
VR+R		0.03417
α + α		0.12755
11 TS F/L		0.09242
AGE FIL		0.03592
		T01/15K

Figure 32, Sample option 12 report

Appendix A. DESCRIPTION OF INPUT DATA ELEMENTS

Appendix A. DESCRIPTION OF INPUT DATA ELEMENTS

KEY FIELDS - Columns 1-11 are used as the key fields, and therefore, the format is common to all the card types.

Columns Identifier - Definition

1-2 <u>Card Type</u> - (1) indicates the type of data to be found on the record, and (2) indicates whether they reflect flight line, shop, or reference data

CR - cross reference

LF - AFSC with skill level - F/L

LS - AFSC with skill level - shop

MF - reliability mean values - F/L

PF - P probability - F/L

PS - P probability - shop

SF - support equipment - F/L

SS - support equipment - shop

TF - task time - F/L

TS - task time - shop

Equipment Identification (ID) Number - defines the equipment in a series of codes showing as follows: (4) type of weapon system; (5) major system within the weapon system; (6) functional grouping of the major system; and (7-10) a numerical breakdown by operational function (e.g., radar navigation, radio navigation, or bombing navigation), subsystem, line replaceable unit, and shop replaceable unit. These codes are determined by the user since they are configuration dependent. The codes used in the DAIS data banks are listed in Appendix A to volume one of this report. Example of data card encoding format used in DAIS R&M model for equipment specifications:

Column 4 - weapon system
none assigned in DAIS data banks

Column 5 - major system
A - avionics

Column 6 - functional group

A - air-ground-attack

C - communications

I - instruments

M - miscellaneous

N - navigation

Z - core

Columns Identifier - Definition

Column 7 - operational function

Column 8 - subsystem

Column 9 - line replaceable unit

Column 10 - shop replaceable unit

none assigned in DAIS data banks

11-12 Card Sequence - the sequential number of each record for a particular subsystem or line replaceable unit within a particular card type.

FLIGHT LINE TASKS - Common to LF, PF, SF, and TF card types.

	(Task	
Columns	Code)	Task Name - Definition
1-12		See key fields
14-18	(A)	Set up the support equipment and maintenance stands - that will be used by the technician to provide the power and the accessibility necessary to troubleshoot and repair the equipment that has failed.
20-24	(T)	Troubleshoot - the reported discrepancy to isolate the cause and to determine whether the repair action is to be a remove and replace or the repair can be accomplished on the aircraft.
26-30	(C)	Cannot Duplicate - a troubleshooting action that cannot duplicate (CND) the reported discrepancy.
32-36	(R)	Remove & Replace - once the discrepancy has been isolated to a particular LRU and a determination has been made that the repair is to be made in the shop, the faulty unit is removed and replaced by a spare.
38-42	(M)	On A/C Maintenance - if the discrepancy is minor and does not need shop repair, the equipment is maintained on the aircraft (A/C). This includes, as examples, adjustments, replacement of bulbs, knobs, fuses, and aircraft wiring problems.

	(Task	
Columns	Code)	Task Name - Definition
44-48	(V _R)	R&R Verification - after the removal and replacement of the faulty LRU is completed, a functional check is performed to verify the operational condition of the subsystem.
50-54	$(V_{ m M})$	On A/C Maintenance Verification - upon completion of any on aircraft maintenance, a functional check is performed to verify the repair and operational condition of the subsystem.
SHOP TAS	SKS - Comr	mon to LS, SS, PS, and TS card types.
1-12		See key fields
20-24	(W)	Bench Check & Repair - in-shop bench check and complete repair of a bad LRU, including cleaning, inspection, disassembly, adjust- ment, part replacement, reassembly, and lubrication of the complete LRU and any minor components.
26-30	(K)	Bench Check & CND - in-shop bench check is performed, any discrepancy cannot be duplicated in the testing, the LRU is serviceable, and no repair is required.
32-36	(N)	Bench Check & NRTS - in-shop bench check or inspection shows that the LRU is not repairable this station (NRTS) because the shop is not authorized to accomplish the repair or the shop lacks the proper tools, equipment, facilities, technical skills, spare parts, time, or technical data to perform repair.
50-54	(TD)	Test Drawer Repair - in-shop repair of the test station drawer (or combination of test equipment) that is needed to test the LRU being checked.
56-60	(TS)	Test Station Repair - in-shop repair of the entire test station that is needed to test the LRU being checked.

CROSS REFERENCE FILE - Card #1

Columns	Identifier - Definition
1-9	See key field
11-12	Card sequence always - 1
14-18	Weight - in pounds of the LRU.
20-24	(WUC) work unit code used to identify each subsystem and LRU in the aircraft system (found on cards #1 and 2).
26-27	(QPA) the quantity per aircraft of a particular subsystem or LRU in the aircraft system (found on cards #1 and 2).
29-67	Equipment name or description of the operational function assigned to a subsystem or LRU.
75-76	The number of LRUs in the subsystem for which input data has been provided, and the number of SRUs per LRU on LRU input cards. Input data are provided for those LRUs requiring a significant amount of unscheduled maintenance.
CROSS RE	FERENCE FILE - Card #2
1-9	See key field
11-12	Card sequence always - 2
20-24	(WUC) - work unit code used to identify each subsystem and LRU in the aircraft system
26-48	(NSN) - national stock number assigned to the LRU
50-59	$\overline{\text{AN}}/\text{nomenclature}$ of the particular subsystem or LRU described on card #1
65-80	Manufacturer's Stock Number - when available
RELIABIL	TTY MEAN VALUES - Flight Line
1-12	See key field
14-19	Mean flight hours between maintenance actions - (MFHBMAj) shows the frequency of unscheduled maintenance activities required by a subsystem (j).

Columns

Identifier - Definition

21-26

H factor - is the ratio of the number of LRUs tested in the shop to the number of flight line removal actions; only the value greater than unity of the ratio is input whereby the model automatically adds the integer "1" to the given value. The resultant portion that is greater than one accounts for any mulitple LRU removals resulting from single flight line repair actions (i.e., two or more LRUs removed for one reported aircraft maintenance action). This factor is used as a multiplier of the shop probability of occurrences to obtain the actual number of shop maintenance actions eminating from flight line removal(s).

Appendix B. ERROR MESSAGES

Appendix B. ERROR MESSAGES

The following is a list of input error messages which are printed by the R&M model. The messages are described and the attributable cause or causes are listed.

Invalid Option

The user has selected an option outside the range of 1 to 13. The option number might not be punched properly in column 9 and 10.

Current Max Subsystems at 40

User has exceeded the program's present capacity for subsystem data input. The first card in front of the base data files contains the number of subsystems to be described. The maximum allowed is 40. The number punched in columns 1 and 2 does not fall within this range.

Preceding Subsystem Card Sequence Error

The subsystem listed just prior to this message has an error in the card sequence number, or the card type identification is invalid. The sequence number should be one in column 12 and the card type should be CR in columns 1 and 2.

Card where	Card	Belongs

This message appears whenever the program reads a card other than the type it expected to read. It specifies in the blanks the two card types involved. Either a card(s) is misplaced in the base data files, or one or more errors were made in punching the identification type(s), or when a card is missing.

Card Sequence Error

Some card types may allow for more than one card per equipment. In these cases, the second card must have a '2' punched in the "card sequence" field in column 12. In all cases, the first or only card for an equipment must have a '1' in this field. This error indicates a card sequencing problem that could be caused by an omission of a card 1, a mispunch in columns 1-11, or a card out of sequence.

Subsystem Equip ID Invalid

The CR cards designate the subsystem identification which consists of seven characters (columns 4-10) describing the equipment. All other card types refer to the identification as first listed in the CR card. This message declares that the subsystem identification on the card last printed did not match any which were previously entered on CR cards.

Current Max SEs Set at

Though the model is designed to accept several support equipments for each task, currently the maximum is set at three for the SF cards and at two for the SS cards. The user must discard the remaining support equipments for this task or the computer program must be modified to accept a higher limit.

Current Max AFSCs Set at

Though the model is designed to accept several AFSCs for each task, currently the maximum is set at five. The user must discard the remaining AFSCs for this task or modify the computer program to accept a higher limit.

Invalid Equipment ID

For the subsystems (equipment) with more than one card for any card type, the equipment ID on successive cards within that set must match that of the first. This message points out a violation on the preceding card.

LRU Equipment ID Invalid

Each LRU is identified by a unique seven-character designation which must be initially inputted to the program on a CR card. Any other input card type pertaining to that LRU must contain this same identification. This message indicates that either: (1) the last printed LRU card contained an identification for which the program has no previous CR card record; or (2) a mismatch exists.

Appendix C. ACRONYMS

Appendix C - ACRONYMS

A	inherent availability
AC	avionics communication subsystems
A/C	aircraft
AFSC	Air Force specialty code
AN	avionics navigation subsystems
CDC	Control Data Corporation
CND	cannot duplicate the discrepancy
CR	cross reference file
DAIS	digital avionics information system
FH	flight hours
F/L	flight line
FOM	figure of merit
ID	identification number of a subsystem on an LRU
KFH	1000 flight hours
LCC	life cycle cost
LCCIM	life cycle cost impact model
LF	manpower specialty - flight line file
LRU	line replaceable unit
LS	manpower specialty - shop file
MF	reliability mean values - flight line file
MFHBMA	mean flight hours between maintenance actions
MMH	maintenance man hours
MTTR	mean time to repair
NRTS	not repairable this station
NSN	national stock number
PF	P probability - flight line file
PMA	probability of a maintenance action
PS	P probability - shop file
QPA	quantity per aircraft
R&M	reliability and maintainability
R&R	remove and replace maintenance action
RTOK	retest okay
SE	support equipment
SF	support equipment - flight line file
SRU	shop replaceable unit
SS	support equipment - shop file
TF	task time - flight line file
TS	task time - shop file
WUC	work unit code

Appendix D

DAIS RELIABILITY AND MAINTAINABILITY MODEL (File Name RANDM)

Listing of Control Data Corporation CDC-6600, Cyber 74 Version

	<pre>PROGRAM RM2(INPUT, TAPE5=INPUT, OUTPUT, TAPE6=OUTPUT, * TAPE4.TAPE8)</pre>
10	C MAIN ROUTINE OF THE R&M MODEL.
	DIMENSION TITLE(5,13), WANT(100), ROW(13), T(4), NUM(4) DIMENSION ARRAY(6), RATE(50), ARATE(6), AF(50), JSFLAG(7)
0	
2	C TO THE DESIRED MAXIMUM. TO ALLOW FOR MORE AFSC'S PER SUBSYSTEM C TASK, CHANGE EACH 3 IN THE LEFTMOST SUBSCRIPT TO THE DESIRET NUMBER. C ALSO CHANGE THESE COMMENTS TO REFLECT THE NEW VALUES.
15	
	* NSAFSC(7,40),FHBMA(40),JNAC(40),NSFSE(7,40),AVAIL(40) DIMENSION SWUC(40),SFSE(2,7,40),SFAFSC(5,7,40) DIMENSION SNAME(5,40)
20	*
52	C DESTRED NUMBER. TO ALLOW FOR MORE AFSC'S PER TASK, CHANGE EACH 3 C IN THE LEFTMOST SUBSCRIPT TO THE DESTRED NUMBER. CHANGE BCTH THE 20 C AND THE 3 IN THESE COMMENTS.
30	DIMENSION LDRAW(120), LNAC(120), TLSHOP(5,120), NLAFSC(5,120) DIMENSION PLRR(5,120), NLSE(5,120) REAL LSAFSC.LSF
	DIMENSION LWUC(120), LSAFSC(5,5,120), LSE(2,5,120) DIMENSION LNAME(5,120) REAL LEGID
35	DIMENSION LEGIDOLOGI

COMMON/LRUS/LNAME, TLSHOP, PLRR, LWUC, LSAFSC, * LSE, NLAFSC, NLSE, LDRAW, LNAC C COMMON/SIZES/NSUB, NLRU, KLRU, NUML COMMON/EQIDS/SEQID, LEQID	C IN THE FOLLOWING STATEMENTS, CHANGE THE 40 TO THE MAXIMUM SJBSYSTEMS, C THE 120 TO MAXIMUM LRUS IN THE 1ST AND 2ND CARD RESPECTIVELY (AND IN C THESE COMMENTS). CHANGE THE 7440 TO THE SUM OF THE PRODUCTS OF THE NEW C DIMENSIONS.	DIMENSION TTR(21,40), EMMH(21,40) DIMENSION TTRL(6,4,120), EMMHL(6,4,120) DATA TTR, EMMH, TTRL, EMMHL/7440*0.0/ DATA BLANK, ALLMP/5H ,5HALLMP/	000	DATA TITLE/4HMTTR, 4H BY , 4HTASK, 4H PER, 4H LRU, * 4HMTTR, 4H AS , 4H% OF, 4H AL.	* 4HMMH ,4HBY T,4HASK ,4HPER ,4HLRU ,	
0 #	45	20	55		09	65

```
C NEXT CALCULATE THE MTTR FOR THE SHOP ACTIVITIES (BACK THRU FLIGHTLINE)
C FOR EACH LRU.
C FOR EACH LRU.
C FOR EACH LRU.
C FIRST SET SUBSYSTEM FLIGHTLINE TASK TIMES AND # OF AFSCS.
DO 50 JSUBS
T(3)=TSFL(1,JSUB)
T(3)=TSFL(2,JSUB)
T(3)=TSFL(4,JSUB)
T(4)=TSFL(6,JSUB)
NUM(1) = NSAFSC(1,JSUB)
NUM(2) = NSAFSC(2,JSUB)
NUM(3) = NSAFSC(4,JSUB)
NUM(4) = NSAFSC(6,JSUB)
* 4HMMH ,4HREQU,4HIRIN,4HG MP,4HSC- /
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 C NOW FILL IN THE SPECIAL FLIGHTLINE ARRAY.
            C READ IN AFSC AND SE OUTPUTS DESIRED.
READ(5,1) NWANT
1 FORMAT(13)
IF (NWANT.EQ.0) GO TO 9
                                                                                                                                                     J=J+1

IF·(J.GT.13) GO TO 2

IF (ROW(J).EQ.BLANK) GO TO 4

I=I+1

WANT(I)=ROW(J)

IF (I.LT.NWANT) GO TO 4
                                                                                                                                                                                                                                                C FIRST READ IN THE BASE FILE DATA. 9 CALL READ
                                                                                                         READ(5,3) ROW
FORMAT(13(A5,1X))
J=0
                                                                                                            NM
                                                                            15
                                                                                                                                                      80
 70
                                                                                                                                                                                                                                    85
                                                                                                                                                                                                                                                                                                               06
                                                                                                                                                                                                                                                                                                                                                                                         95
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     100
```

TTR(7, JSUB) = PSM(3, JSUB) * TSFL(1, JSUB) TTR(10, JSUB) = PSM(3, JSUB) * TSFL(3, JSUB) P = PSM(5, JSUB) TTR(8, JSUB) = P*TSFL(1, JSUB) TTR(9, JSUB) = P*TSFL(2, JSUB) TTR(11, JSUB) = P*TSFL(5, JSUB) TTR(11, JSUB) = P*TSFL(7, JSUB)	C FILL IN MMH TABLE BASED ON # AFSCS REQUIRED. EMMH(7, JSUB) = TTR(7, JSUB) * NSAFSC(1, JSUB) EMMH(10, JSUB) = TTR(10, JSUB) * NSAFSC(3, JSUB) EMMH(8, JSUB) = TTR(8, JSUB) * NSAFSC(1, JSUB) EMMH(9, JSUB) = TTR(9, JSUB) * NSAFSC(2, JSUB) EMMH(11, JSUB) = TTR(11, JSUB) * NSAFSC(5, JSUB) EMMH(12, JSUB) = TTR(12, JSUB) * NSAFSC(7, JSUB)	C NOW FIND THE STARTING LRU FOR THIS SUBSYSTEM AND THE NUMBER OF LRUS. JERU=KLRU(JSUB) NR=NUML(JSUB)	C NOW FOR EACH LRU IN THIS SUBSYSTEM, LOOP THROUGH DO 40 K=1,NR	C NOW LOOP THROUGH EACH SHOP TASK, PICKING OUT THE LRU PROBABILITY. DO 30 M=1,3 P=PLRR(M.JLRU)	C NOW FOR EACH FLIGHTLINE TASK, COMPUTE THE MITR AND MMH. DO 20 N=1,4 TTRL(N,M,JLRU) = T(N) * P FMMHI(N,M,JLRU) = TTRI(N,M, 11R1) * NIM(N)	C COMPUTE MITH FOR SHOP TASK. C COMPUTE MITH FOR SHOP TASK. TTRL(5.M.JLRU) = TLSHOP(M.JLRU) * P * HFAC(JSUB)
110	115	120	125		130	135

```
READ(4,60) NAF

1=0
I=0
IF (NAF.EQ.0) GO TO 154
IF (NAF.LT.51) GO TO 62
WRITE(6,61) NAF
61 FORMAT (1XI4,37H AFSC"S IS MORE THAN CURRENT LIMIT OF, 23)
STOP
WRITE(6,64) (ARRAY(K), ARATE(K), K=1,6)
WRITE(6,64) (ARRAY(K), ARATE(K), K=1,6)
63 FORMAT(1X6(A5,F6.2,1X))
64 FORMAT(1X6(A5,F6.2,1X))
EMMHL(5, M, JLRU) = TTRL(5, M, JLRU) * NLAFSC(M, JLRU) CONTINUE
                                                                                                                                                                         READ IN THE AFSC"S OF INTEREST. MAX=50
                               PREPARE FOR NEXT LRU IN THIS SUBSYSTEM JLRU=JLRU+1
                                                                                                                              TOTAL UP THE VARIOUS COLUMNS
CALL ADDUP (TTR(1,1), TTRL(1,1))
CALL ADDUP (EMMH(1,1), EMMHL(1,1))
                                                                                                                                                                                                                                                                                                                                         J=0
J=J+1
IF(J.GT.6) GO TO 62
                                                              CONTINUE
                 C NOW PP
                                                                NOW 7
                                                                                                                                                              MON O
                                                              20
                                                                                                                                                                                                         09
                                                                                                                                                                                                                                                                                  63
                                                                                                                                                                                                                                                                                                                                                  9
                                                                                                                                                                                                                                                               61
                                                O
                                                                                                                                                                                                                                                                                                                              U
                                                                                                                              150
                     140
                                                                                                                                                                                                                                        160
                                                                                                                                                                                                                                                                                            165
                                                                                                                                                                                                                                                                                                                                                 170
                                                                                                                                                                                    155
```

IF(ARRAY(J).EQ.BLANK) GO TO 65 I=I+1 AF(I)=ARRAY(J)		C NOW READ AND PRINT SUPPORT EQUIPMENT RESULTS CALL SEDUMP(TTR, TTR, NWANT, WANT)	C LOOP THROUGH EACH AFSC OF INTEREST COPYING MTTR ARRAY FOR TASKS FOR C WHICH THIS AFSC IS REQUIRED. DO 152 N=1,NAF	AFSC=AF(N) RAT=RATE(N) TOTM=0.0 TOTC=0.0	DO 66 LL=1, NWANT IF (WANT(LL). EQ. ALLMP) GO TO 67		68 FORMAT(6H1MPSC-, A5, 2X1H\$, F5.2, 10X8A10/6X5H//, * 14X20HMMH/KFH 69 FORMAT(1XA5)	C LOOP THROUGH SUBSYSTEMS. 691 DO 150 JSUB=1,NSUB TOTSM=0.0 TOTSC=0.0	JLRU=KLRU(JSUB) NR=NUML(JSUB)
	175	180		185	190	195		200	205

COF

SEE IF EITHER THE W,K, OR N TASKS NEED THIS AFSC. IF SO,

```
SCC=SCL*RAT
TOTSM=TOTSM+SCL
TOTSC=TOTSC+SCC
IF (SCL.GT.0.0.AND.LPR.Eq.1) WRITE(6,120) LEQID(JLRU), SCL, SCC
FORMAT(1XA7,2F13.5)
JLRU=JLRU+1
                                                                                                                                                                                                                                                                                                                                                                                                                IF (SC(9).EQ.0.0) GO TO 150
SCC=SC(9)*RAT
TOTSM=SC(9)-TOTSM
TOTSC=SCC_TOTSC
TOTSC=SCC_TOTSC
IF(LPR.EQ.1)WRITE(6,149) TOTSM,TOTSC,SEQID(JSUB),SC(9),SCC
FORMAT(4X2HFL,2X2F13.5/8X2(6X7H-----)/1XA7,2F13.5//)
               NLMJ=NLAFSC(M,JLRU)
DO 100 KK=1,NLMJ
IF (AFSC.NE.LSAFSC(KK,M,JLRU)) GO TO 100
SCL=SCL+TTRL(5,M,JLRU)
SC(8) = TTRL(5,M,JLRU) + SC(8)
CONTINUE
                                                                                                                                     FOR THE FOUR FLIGHLINE PORTIONS, SC(1)=SC(1)+TTRL(1,M,JLRU) * JSFLAG(1) SC(2)=SC(2)+TTRL(2,M,JLRU) * JSFLAG(2) SC(3)=SC(3)+TTRL(3,M,JLRU) * JSFLAG(4) SC(4)=SC(4)+TTRL(4,M,JLRU) * JSFLAG(6) SCL=SCL*FAC
                                                                                                                                                                                                                                                                                                                                                DO 145 J=1,8
SC(J)=SC(J)*FAC
SC(9)=SC(9)+SC(J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           TOTC=TOTC+SCC
CONTINUE
FORMAT(1XF10.4)
 C THE MITR ENTRY.
                                                                                                      100
                                                                                                                     C NOW
                                                                                                                                                                                                           110
                                                                                                                                                                                                                                                                                                              120
                                                                                                                                                                                                                                                                                                                                                                                   145
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            150
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         149
240
                                                                                     542
                                                                                                                                                                        250
                                                                                                                                                                                                                                                                                                                                                  260
                                                                                                                                                                                                                                                                                                                                                                                                                                    265
```

```
OP THROUGH SUBSYSTEMS FOR FIRST 5 OPTIONS.
5 DO 187 J=1,21
7 TOT(J)=0.0
TOTFL=0.0
IF (JOPT.GT.12) GO TO 470
DO 400 J=1,NSUB
JSUB=J
IF (JOPT.GT.6) GO TO 250
IF (EQ.NE.BLANK.AND.EQ.NE.SEQID(JSUB)) GO TO 400
GO TO (190,200,210,220,230,240),JOPT
                                                                CALCULATE AND PRINT AVAILABILITIES
154 DO 155 JSUB=1,NSUB
155 AVAIL(JSUB)=1.0/(1.0+TTR(21,JSUB)/FHBMA(JSUB))
CALL AOUT(AVAIL,SEQID,NSUB)
            NOW PRINT AFSC TOTALS
152 IF(LPR.EQ.1) WRITE(6,153) TOTM,TOTC
153 FORMAT(8X2(6X7H-----)/1X5HTOTAL,2X2F13.5)
                                                                                                                                    AD OUTPUT REQUESTS

READ(5,170) EQ, JOPT

IF (EOF(5).NE.0) GO TO 999

FORMAT(A7,1X12)

IF (JOPT.GT.0) GO TO 185

WRITE(6,180) EQ, JOPT

OFORMAT(1H1,A7,13,2X15HINVALID OPTION.)

GO TO 160
                                                                                                                                                                                                                                                                                                                                                                                                                                 READ
160
                                                                                                                                                                                                                                                 C LOOP 185
                                                                                                                                                                              170
                                                                                                                                                                                                        175
00
                                                    00
                                                                                                                         00
                                                                                                                                                                                                                                                                                                                                                                                                        00
            275
                                                                              280
                                                                                                                                                    285
                                                                                                                                                                                                                      290
                                                                                                                                                                                                                                                                                                                                                               300
```

```
CALL DUMP(TITLE(1,6),BLANK,JSUB,1000./FHBMA(JSUB),
TTR(1,JSUB),TTRL(1,1,1))
GO TO 400
                                                                                                                                   CALL DUMP(TITLE(1,4),BLANK,JSUB,
100./EMMH(15,JSUB),EMMH(1,JSUB),EMMHL(1,1,1))
GO TO 400
                                                                                                                                                                                                      CALL DUMP(TITLE(1,5),BLANK,JSUB,
1000./FHBMA(JSUB),EMMH(1,JSUB),EMMHL(1,1,1))
GO TO 400
                      CALL DUMP(TITLE(1,2), BLANK, JSUB,
100./TTR(15, JSUB), TTR(1, JSUB), TTRL(1,1,1))
GO TO 400
CALL DUMP(TITLE(1,3), BLANK, JSUB, 1.0,
EMMH(1, JSUB), EMMHL(1,1))
GO TO 400
                                                                                                                                                                                                                                                                                                                                  C TOTAL UP APPROPRIATE SUBSYSTEMS
250 CALL EQUALS(EQ, SEQID(JSUB), IN)
IF (IN.EQ.0) GO TO 400
IF (JOPT.GE.9.AND.JOPT.LE.11) IN=2
DO 260 K=1,21
IF (IN.EQ.1) TOT(K)=TOT(K)+TTR(K,JSUB)
IF (IN.EQ.1) TOT(K)=TOT(K)+EMMH(K,JSUB)
400 CONTINUE
                                                                                                                                                                                                                                                                                240 (
                            $000
                                                                                                                                      $20 (
                                                                                                                                                                                                           230 (
                                                                     210
                                                                                                                                                                                                                                                                                                                        00
                                                                                                              00
00
                                                                                                                                                                                UU
                                                                                                                                                                                                                                                     00
                            310
                                                                                               315
                                                                                                                                                                   320
                                                                                                                                                                                                                                      325
                                                                                                                                                                                                                                                                                                         330
                                                                                                                                                                                                                                                                                                                                                                            335
                                                                                                                                                                                                                                                                                                                                                                                                                                                340
```

DUMP OUT TOTALS ACROSS SUBSYST IF (JOPT.LE.6.OR.JOPT.GE. IN=JOPT-6 GO TO (410,420,430,440,45) 410 CALL DUMP(TITLE(1,7),EQ,0 GO TO 160 GO TO 160 H40 CALL DUMP(TITLE(1,9),EQ,0 GO TO 160 GO TO 160 H50 CALL DUMP(TITLE(1,10),EQ,0 GO TO 160 H50 CALL DUMP(TITLE(1,11),EQ,0 GO TO 160 GO TO 160 H50 CALL DUMP(TITLE(1,11),EQ,0 GO TO 160 CALL DUMP(TITLE(1,11),EQ,0 GO TO 160 CALL DUMP(TITLE(1,11),EQ,0 GO TO 160 CALL DUMP(TITLE(1,11),EQ,0 GO TO 160 CALL DUMP(TITLE(1,11),EQ,0 GO TO 160 GO TO 160 GO TO 160 CALL DUMP2(1,TTR(1,1)) CALL DUMP2(1,TTR(1,1)) CALL DUMP2(1,TTR(1,1)) CALL DUMP2(1,TTR(1,1)) GO TO 160
C DUMP OUT TOTALS ACROSS SUBSYSTEMS IF (JOPT_LE.6.OR.JOPT.GE.13) IN=JOPT_6 GO TO (410,420,430,440,450,4 410 CALL DUMP(TITLE(1,7),EQ,0,1). GO TO 160 420 CALL DUMP(TITLE(1,8),EQ,0,1). GO TO 160 TO 160 440 CALL DUMP(TITLE(1,9),EQ,0,1). GO TO 160 450 CALL DUMP(TITLE(1,11),EQ,0,1). GO TO 160 450 CALL DUMP(TITLE(1,11)). GO TO 160 60 TO 160 CALL DUMP2(1,TR(1,1)) CALL DUMP2(2,EMMH(1,1)) CALL DUMP2(2,EMMH(1,1)) CALL DUMP2(2,EMMH(1,1)) GO TO 160 CALL DUMP2(2,EMMH(1,1)) CALL DUMP2(2,EMMH(1,1)) CALL DUMP2(2,EMMH(1,1)) CALL DUMP2(2,EMMH(1,1)) CALL DUMP2(2,EMMH(1,1)) CALL DUMP2(2,EMMH(1,1))
345 350 355 360 0 365 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SYMBOLIC REFERENCE MAP (R=1)

SYMBOLIC REFERENCE MAP (R=1)

ENTRY POINTS 10270 RM2

						SUBS			SUBS			SIZES	LRUS		LRUS	LRUS	LRUS				LRUS	SIZES		SUBS			LRUS	
	ARRAY	ARRAY		ARRAY		ARRAY			ARRAY	ARRAY		æ	ARRAY		RRA	ARRAY	RRA				ARRAY			ARRAY	ARRAY		ARRAY	
REAL	REAL	REAL	REAL	REAL	REAL	REAL	INTEGER	REAL	INTEGER		INTEGER	REAL	HFAL															
AFSC	ARATE	AVAIL	DUMMY	EMMHL	FAC	HFAC	IN	11	JNAC	JSFLAG	×	KLRU				LSAFSC	LWUC		Z	NBASIC	NLAFSC	NLRU	NR	NSFSE	NUM	NWANT	PLRR	RAT
11636	12244	12401	11661	23371	11646	6510	11660	11647	0449	12334	11632	2	16230	11643	0	3600	3410		11634	11407	13750	1	11631	5740	12150	11623	2260	11637
CECCALLON						SUBS							LABL	EQIDS	LRUS		LRUS	ELOCATION					LRUS	SUBS	SIZES	SIZES		Salla
ARRAY		ARRAY		ARRAY		ARRAY							ARRAY	ARRAY	ARRAY		ARRAY	R					CC.	ARRAY		ARRAY		ARRAY
REAL	REAL	REAL	REAL	REAL	REAL	REAL	INTEGER	REAL	INTEGER	INTEGER	REAL	SN TYPE	INTEGER	REAL	RFAL													
7 14	ALLMP	ARRAY	BLANK	EMMH	EQ	FHBMA	H	7	JLRU	JOPT	JSUB	KK	LABEL	LEGID	LNAC	LPR	LSE		×	NAF	NJJS	NLMJ	NLSE	NSAFSC	NSUB	NUML	0-	MSd
12252 A	1406	2154	1405	14161	11655	6370	11624	11625	11630	11656	11626	11651	0	90	16420	11642	11470	VARIAB	11633	11635	11650	11653	15100	5310	0	55	11627	740

		F.			
		O TAPES		E E	F FF
EQIDS SUBS SUBS	SUBS			2000	880 120 152
ARRAY ARRAY ARRAY ARRAY ARRAY	ARRAY	FMT	ฑญฑ≉	11424	
R R R R R R R R R R R R R R R R R R R	田田	TAPE4			ξt. SO
ROW SCC SEQID SFSE SWUC TITLE TOT TOTFL	TSFL	4130	AOUT DUMP2 EQUALS SEDUMP	E E	MT NO RE
12127 11654 1370 112354 11657 11657	310			0 6 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	67 70 110 145 151
SUBS SUBS LRUS		OUTPUT		N - + N	10566
ARRAY ARRAY ARRAY ARRAY ARRAY	ARRAY	2054	ARGS 2 0		υ) [L.
REAL REAL REAL REAL REAL REAL REAL	EAL	MODE	TYPE REAL	ST FF E E E	MT NO RE
12162 RATE 12343 SC 11652 SCL 2520 SFAFSC 0 SNAME 12144 I 11640 TOTM	1644 TO 2451 TT	FILE NAMES 0 INPUT 2054 TAPE6	EXTERNALS ADDUP DUMP EOF READ	STATEMENT LABELS 11415 1 10300 4 11434 60 FF	

155 175 175 175 175 175 175 175 175 175			
0770 11043 11066 11131 11167			
		INNER INNER INNER	INNER
		NOT	TON
	HHH LL	REF INN INN INN	R F F S
Ε	NOT NOT NOT EXT	EXT EXT NOT NOT	EXT
554 870 870 870 870 870 870 91	ROPERTIES	OPT INSTACK INSTACK INSTACK INSTACK INSTACK INSTACK INSTACK	Tdo
00000000000000000000000000000000000000	۵.		
115747	117B 117B 40B 33B 5B 10B	23-00 2008 2008 2008 448 448 448 448 448 448 448 448 448	1279
		00000000000000000000000000000000000000	
	FROM- 1255 1285 132	2000 2000 2000 2000 2000 2000 2000 200	336
T M T M T T T T T T T T T T T T T T T T	INDEX SUBBRANCE	T T T T T T T T T T T T T T T T T T T	* J K LENGTH 3440 7560
153 160 180 190 220 220 410 4410 1700	LABEL 50 40 330 20	152 665 150 150 770 1110 1145 1145 1145	400 260 BLOCKS SUBS LRUS
		10522 10532 10547 10547 10615 10615 10712	_

SIZES 82
EQIDS 160
LABL 8

STATISTICS
PROGRAM LENGTH 25762B 11250
52000B CM USED

```
FORMAT(1H1,8A10//1X42HSUBSYSTEM INHERENT FLIGHTLINE A:: LABILITY/
                                                                                                                                                                                                                                                                                                                                                                                                                      C PRINT OVERALL
WRITE(6,60) ATOT
60 FORMAT(33HOSERVICE FLIGHTLINE AVAILABILITY-/14XF10.4)
END
                            THIS ROUTINE PRINTS OUT THE AVAIL ARRAY SORTED INCREASING.
                                                                                                                                                                           C SORT AND PRINT
ATOT=1.0
DO 50 J=1,NSUB
WORST=2.0
DO 30 K=1,NSUB
IF (AVAIL(K).LT.0.0) GO TO 30
IF (AVAIL(K).GT.WORST) GO TO 30
WORST=AVAIL(K)
                                                                                                                                                                                                                                                                                                                                                   NOW CONTAINS NEXT IN LIST
ATOT=ATOT*AVAIL(JSUB)
WRITE(6,40) SEQID(JSUB), AVAIL(JSUB)
FORMAT(2XA7,5XF10.4)
AVAIL(JSUB)=-WORST
SUBROUTINE AOUT (AVAIL, SEQID, NSUB)
                                                        DIMENSION AVAIL(NSUB), SEQID(NSUB)
                                                                                                                                                                    5X12H-----/)
                                                                                 DIMENSION LABEL(8)
COMMON/LABL/LABEL
                                                                                                                         WRITE(6,10) LABEL
                                                                                                                                                                                                                                                                                                                                       c JSUB
                                                                                                                                          10
                                                                                                                                                                                                                                                                                                                                                                                              20
               000
                                                                    U
                                                                                                             U
```

30

35

52

15

26

2

10

SYMBOLIC REFERENCE MAP (R=1)

ENTRY POINTS
3 AOUT

	Α Σ			
1. 8. P.	C #			
ARRAY ARRAY ARRAY	102			
REAL INTEGER INTEGER REAL		EXT REFS NOT INNER		
0 AVAIL 125 JSUB 0 LABEL 0 SEQID	R T M	FIES EXT REFS		
2	30	PROPERTIES INSTACK		
RELOCATION F.P.	33	LENGTH 27B 58		96
REL		FROM-TO 17 30 19 24		140B
SN TYPE REAL INTEGER INTEGER REAL	MODE FMT FMT	INDEX INDEX K	LENGTH 8	LENGTH LED COMMON LENGTH
VARIABLES 122 J ATOT 122 J ATOT 124 K 0 NSUB 123 WORST	FILE NAMES TAPE6 STATEMENT LABELS 57 10 F1	LOOPS LABEL 22 50 27 30	COMMON BLOCKS LABL	STATISTICS PROGRAM LENGTH CM LABELED COMMON LENGTH 52000R CM 112FD
	u. v	7	0	67

THROUGH EACH OF THE SEVEN CHARACTERS. A MISMATCH IS A FAILURE.
A BLANK IS FOUND IN THE KEY (AFTER A NON-BLANK), THE TEST PASSES.
DO 10 K=1,7
IF (KEY1(K).EQ.BLANK) IF(JSTART) 10,10,15
IF (KEY1(K).NE.TEST1(K)) RETURN
JSTART=1
CONTINUE THIS ROUTINE TESTS AN INPUT STRING (TEST) AGAINST A KEY STRING(KEY) TO FIND IF THE TEST WORD CONTAINS THE SAME CHARACTERS AS THE KEY WORD UP TO BUT NOT INCLUDING THE FIRST BLANK OF THE KEY STRING FOLLOWING THE FIRST NON-BLANK. FOR EXAMPLE, IF THE KEY STRING WAS "AC1" AND THE TEST STRING WAS "AC130", THIS ROUTINE WOULD RETURN A POSITIVE RESPONSE OF "1" IN "IN" INSTEAD OF "0". INITIALIZE "IN". JSTART IS SET WHEN THE FIRST NON-BLANK OF THE KEY IS FOUND. A LATER BLANK DENOTES THE END OF THE KEY. IN=0 THE STRINGS INTO SINGLE CHARACTER ARRAYS.
DECODE(7, 1, KEY)
DECODE(7, 1, TEST) TEST1
FORMAT(7A1) SUBROUTINE EQUALS (KEY, TEST, IN) REAL KEY, KEY1 DIMENSION KEY1(7), TEST1(7) DATA BLANK/1H / JSTART=0 IN=1 RETURN END LOOP PUT 10 00000000 000 00 000 5 10 15 20 25 30

1

SYMBOLIC REFERENCE MAP (R=1)

YPE RELOCATION TEGES TERES TERES TERES TEGES TEGES TERES TER
RELOCATION O F.P. F.P. 51
RELOCATION O F.P. F.P. 51 52 61
RELOCATION F.P
VARIABLES VARIABLES SN TYPE 32 BLANK FRAL 50 JSTART REAL 0 KEY 0 TEST REAL STATEMENT LABELS 45 1 FMT
ENTRY POINTS 3 EQUALS 3 EQUALS 32 BLANK 50 JSTART 0 KEY 0 TEST 7 STATEMENT LABELS 45 1 FM
ENTRY 3 VARIAB 52 50 0 0 STATEM

F. P.

C THIS ROUTINE READS IN THE BASE FILES. 99 STATISTICS
PROGRAW LENGTH
520003 CM USED
SUBROUTINE READ

5

FOLLOWING IS DATA ASSOCIATED WITH LRU'S. IN A MANNER SIMILAR
TO THE ABOVE FOR SUBSYSTEMS, TO ALLOW FOR MORE, CHANGE EACH 120 TO THE
DESIRED NUMBER. TO ALLOW FOR MORE AFSC'S PER TASK, CHANGE EACH 3
IN THE LEFTMOST SUBSCRIPT OF LSAFSC TO THE DESIRED NUMBER. TO CHANGE
MAX NUMBER OF SUPPORT EQUIPMENT PER TASK, CHANGE THE 1 IN LSE
TO THE DESIRED NUMBER. CHANGE THE 1 AND
THE SIRED NUMBER. CHANGE THE 1 AND FOLLOWING IS DATA ASSOCIATED WITH SUBSYSTEMS. TO ALLOW FOR WORE, CHANGE EACH 40 IN THE RIGHTMOST SUBSCRIPT OF THE FOLLOWING SUBSYSTEM ARRAYS TO THE DESIRED MAXIMUM. TO ALLOW FOR MORE AFSC'S PER SUBSYSTEM TASK, CHANGE THE FIRST 3 IN THE SFAFSC ARRAY TO THE DESIRED NUMBER. TO ALLOW FOR MORE SUPPORT EQUIPMENT PER SUBSYSTEM TASK, CHANGE THE 1 IN THE LEFTMOST SUBSCRIPT OF SFSE TO THE DESIRED VALUE. ALSO CHANGE THE 40,5, AND 1 IN THE FIRST CARD BELOW AND THESE COMMENTS. DIMENSION NUML(40), KLRU(40), TSFL(7, 40), PSM(7, 40), NSAFSC(7, 40), JNAC(40), FHBMA(40), NSFSE(7, 40), HFAC(40) DIMENSION SWUC(40), SFSE(2,7,40), SFAFSC(5,7,40) DIMENSION SNAME(5,40) DIMENSION SNAME(5,40) COMMON/SUBS/SNAME, TSFL, PSM, SWUC, SFSE, SFAFSC, NSAFSC, NSFSE, FHBMA, JNAC, HFAC THIS ROUTINE READS IN THE BASE FILES DIMENSION ARRAY(8), LABEL(8) SUBROUTINE READ 0000000000000 0000000000 2 10 15 20 25 30

REAL LF, LS, MF COMMON/LABL/LABEL DIMENSION TLSHOP(5, 120), NLAFSC(5, 120), PLRR(5, 120), LDRAW(120), NLSE(5, 120), LNAC(120)

CROSS REFERENCE CARDS FOR EACH LRU IN THIS SUBSYSTEM (LOOP 90).

DO 90 LDUMMY=1,NR

IF (NLRU.LT.MAXLRU) GO TO 80

WRITE(6,70) MAXLRU
FORMAT(21HOCURRENT MAX LRUS AT ,13) READ AND WRITE THE CR CARD. POINTER FOR THIS SUBSYSTEM TO FIRST LRU IN LRU TABLES. KLRU(JSUB)=NLRU+1 FORMAT(40HPRECEDING SUBSYSTEM CARD SEQUENCE ERROR.) # SWUC(JSUB), JNAC(JSUB), DASH1, JSEQ1,

* SWUC(JSUB), JNAC(JSUB), (SNAME(K, JSUB), K=1,5), NR

* SWUC(JSUB), JNAC(JSUB), (SNAME(K, JSUB), K=1,5), NR

* SWUC(JSUB), JNAC(JSUB), DASH1, JSEQ1,

* SWUC(JSUB), JNAC(JSUB), (SNAME(K, JSUB), K=1,5), NR

* SWUC(JSUB), JNAC(JSUB), (SNAME(K, JSUB), K=1,5), NR

* SWUC(JSUB), JNAC(JSUB), (SNAME(K, JSUB), K=1,5), NR

* SWUC(JSUB), NAC(JSUB), (SNAME(K, JSUB), K=1,5), NR

IF (JSEQ1.EQ.2) GO TO 35

NUML(JSUB)=NR

IF (JSEQ1.EQ.1.AND.TYPE.EQ.CR) GO TO 60

WRITE(6,50) WRITE(6,86)
FORMAT(34HPRECEDING LRU CARD SEQUENCE ERROR.)
CONTINUE READ(4,40) TYPE, LEQID(NLRU), DASH1, JSEQ1, LWUC(NLRU), LNAC(NLRU), (LNAME(K, NLRU), K=1,5) WRITE(6,41) TYPE, LEQID(NLRU), DASH1, JSEQ1, LWUC(NLRU), LNAC(NLRU), (LNAME(K, NLRU), K=1,5) IF (JSEQ1.EQ.2) GO TO 35 IF (JSEQ1.EQ.2) GO TO 99 EACH SUBSYSTEM IN LOOP 100. NLRU=NLRU+1 30 135 READ READ 04 SET 60 10 880 20 98 UU UU UU 20 15 80 06 85 36 100

C IF CARDS ARE NOT IN SEQUENCE, WE ADVANCE JSUB UP TO THE CORRECT SUBSYSTEM JSUB=JSUB+1
JSUB=JSUB+1
JFIRST=JSUB+1
JFORTS=JSUB+1
JSUB=JSUB+1
IF(G.EQ.SEQID(JSUB)) GO TO 130
JSUB=JSUB+1
IF(JSUB-GT.NSUB) JSUB=1
IF(JSUB-GT.NSUB) JSUB=1
IF(JSUB-GT.NSUB) JSUB=1
IF(JSUB-GT.NSUB) JSUB=1
IF(JSUB-GT.NSUB) JSUB=1
IF(JSUB-GT.NSUB) JSUB=1
IF(JSUB-GT.NSUB) JSUB-IFIRED GO TO THE NEXT.
IF(JSUB-GO TO 126)
126 FORMAT(28H SUBSYSTEM EQUIP ID INVALID.)
GO TO 150 SF CARDS. THERE MAY BE FROM 1 TO MAXSE CARDS PER SUBSYSTEM C ASSIGN TO THE PROPER SUBSYSTEM. FIRST 1 SE, THEN THE 2ND, ETC. JSUB-00

JSUB-00

JSUB-00

DO 150 K=1,NSUB

READ(4,110) TYPE,EQ,DASH,JSEQ,DATA,NUM
WRITE(6,111)TYPE,EQ,DASH,JSEQ,DATA,NUM
WRITE(6,111)TYPE,EQ,DASH,JSEQ,DATA,NUM
FORMAT(1XA2,1XA7,A1,11,7(1XA5),13)

IF (TYPE.NE.SF) WRITE(6,115) TYPE,SF

IF (TYPE.NE.SF) WRITE(6,115) TYPE,SF

IF (JSEQ.GT.1) WRITE(6,116)

IF (JSEQ.GT.1) WRITE(6,116)

IF (NUM.GT.MAXSE) WRITE(6,117) MAXSE

IF (NUM.GT.MAXSE) WRITE(6,117) MAXSE MANDATORY SECOND CR CARD FOR LAST LRU READ(4,5) ARRAY WRITE(6,105) ARRAY FORMAT(1X8A10) C READ C READ 105 1110 116 1.17 110 125 135 105 120 130

CONTINUE

```
C READ LF CARDS. THERE MAY BE FROM ONE TO MAXSA CARDS FOR EACH SUBSYSTEM.

JSUB=0

DO 200 K=1,NSUB
READ(4,110) TYPE,EQ,DASH,JSEQ,DATA,NUM
WRITE(6,111)TYPE,EQ,DASH,JSEQ,DATA,NUM
WRITE(6,111)TYPE,EQ,DASH,JSEQ,DATA,NUM
IF (TYPE.NE.LF) WRITE(6,115) TYPE,LF
IF (JSEQ.GT.1) WRITE(6,116)
IF (JSEQ.GT.1) WRITE(6,115)
IF (NUM.GT.MAXSA) WRITE(6,155)
AXSA
155 FORMAT(26H CURRENT MAX MPSC'S SET AT,12)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         C IF CARDS ARE NOT IN SEQUENCE BY SUBSYSTEM, WE INCREMENT JSUB TO IT.
JSUB=JSUB+1
JFIRST=JSUB
                                                                                                                                                                                                        C READ ADDITIONAL SE'S. THEN STORE ABOVE.

NSEQ=NSEQ+1

READ(4,110) TYPE, EQ, DASH, JSEQ, DATA
WRITE(6,111) TYPE, EQ, DASH, JSEQ, DATA
IF (EQ.NE:SEQID(JSUB)) WRITE(6,190)
IF (TYPE.NE.SF) WRITE(6,115) TYPE, SF
GO TO 137
              DO 135 L=1,7

NSFSE(L, JSUB)=0

DO 140 L=1,7

IF (DATA(L).Eq.BLANK) GD TO 14D

NPOS=NSFSE(L, JSUB)+1

NSFSE(L, JSUB)+1

SFSE(NPOS, L, JSUB)=DATA(L)

CONTINUE

IF (NSEQ.GE.NUM) GD TO 150
                                                                                                                                                                                                                                                                                                                                                                                                          CONTINUE
                                                                                                                                                                     140
130
                                                                               140
                                                                                                                                                                                          145
                                                                                                                                                                                                                                                                                                150
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                160
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        165
                                                                                                                                                                                                                                                                                                                                                                                                          155
```

170	160	IF (Eq.Eq.SEQID(JSUB)) GO TO 170 JSUB=JSUB+1 IF(JSUB.CT.NSUB) JSUB=1 IF (JSUB.ME.JFIRST) GO TO 160
271		WRITE(6,126) GO TO 200
	ASSIC 170	C ASSIGN TO PROPER SUBSYSTEM, INITIALLY THE FIRST AFSC, THEN SECOND, ETC. 170 NSEQ=1
180	173	NSAFSC(L, JSUR) = 0 DO 180 L=1,7
		IF (DATA(L).EQ.BLANK) GO TO 180 NPOS=NSAFSC(L,JSUB)+1 NSAFSC(L,JSUB)=NPOS
185	180	SFAFSC(NPOS, L, JSUB) = DATA(L) CONTINUE IF (NSEQ.GE.NUM) GO TO 200
200	C READ	
		READ(4,110) TYPE, EQ, DASH, JSEQ, DATA WRITE(6,111)TYPE, EQ, DASH, JSEQ, , DATA IF (EQ.NE.SEQID(JSUB)) WRITE(6,190)
195	190	FORMAT(22H INVALID EQUIPMENT ID.) IF (TYPE.NE.LF) WRITE(6,115) TYPE, LF IF (JSEQ.NE.NSEQ) WRITE(6,116)
000	200	CONTINUE
	READ	READ LS CARDS. THERE MAY BE FROM ONE TO MAXLA CARDS PER LRU. JLRU=0 DO 260 K=1,NLRU

```
C IF CARDS ARE NOT IN SEQUENCE BY LRU, WE INCREMENT JLRU UP TO IT.
JLRU=JLRU+T
IF (JLRU-GT.MLRU) JLRU=1
IF (JLRU-EQ.JFIRST) GO TO 255
GO TO 220
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ADDITIONAL AFSC'S, THEN STORE SIMILARLY ABOVE. NSEQ=NSEQ+1
READ(4,210) TYPE, EQ, DASH, JSEQ, DATA, NUM
WRITE(6,211)TYPE, EQ, DASH, JSEQ, DATA, NUM
FORMAT(1XA2,1XA7, A1,11,6X7(1XA5),13)
D FORMAT(A2,1XA7, A1,11,6X7(1XA5),13)
IF (TYPE.NE.LS) WRITE(6,115) TYPE, LS
IF (JSEQ,GT.1) WRITE(6,115) TYPE, LS
JLRU=JLRU+1
JFIRST=JLRU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  C ASSIGN TO PROPER LRU
230 NSEQ=1
D0 235 L=1,5
266 FORMAT(1XA2,1XA7,A1,I1,6X7(1XF5.1))
235 NLAFSC(L,JLRU)=0
240 D0 250 L=1,5
LX=L
IF (L.GT.3) LX=L+2
IF (L.GT.3) LX=L+2
IF (DATA(LX).Eq.BLANK) GO TO 250
NPOS=NLAFSC(L,JLRU)+1
NLAFSC(L,JLRU)+1
NLAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C READ
                                                                                                                             211
                                                                   205
                                                                                                                                                                                                                                                                                                                                                       210
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            215
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           220
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     225
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        230
```

```
H
                                                                                                                                                                                                                                                                                                                                      CARDS ARE NOT IN SEQUENCE BY LRU, WE INCREMENT JLRU UP 3 JLRU=JLRU+1
JFIRST=JLRU
O IF (EQ.EQ.LEQID(JLRU)) GO TO 280
JLRU=JLRU+1
IF (JLRU-GT.NLRU)JLRU=1
IF (JLRU-ME.JFIRST) GO TO 270
WRITE(6,256)
GO TO 300
                                                                                                              UNABLE TO IDENTIFY EQUIPMENT ID, GO TO THE NEXT. S WRITE(6,256)
6 FORMAT(22H LRU EQUIP ID INVALID.)
0 CONTINUE
                                                                                                                                                                                         AD TS CARDS, ONE PER LRU IN ANY ORDER
JLRU=0
DO 300 K=1,NLRU
READ(4,265) TYPE,EQ, DASH,JSEQ,TIMES
WRITE(6,265)TYPE,EQ, DASH,JSEQ,TIMES
FORMAT(A2,1XA7,A1,11,6X7(1XF5.1))
IF (TYPE.NE.TS) WRITE(6,115) TYPE,TS
IF (JSEQ.GT.1) WRITE(6,116)
READ(4,210) TYPE, EQ, DASH, JSEQ, DATA WRITE(6,211)TYPE, EQ, DASH, JSEQ, DATA IF (EQ.NE.LEQID(JLRU)) WRITE(6,190) IF (TYPE.NE.LS) WRITE(6,115) TYPE, LS GO TO 240
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ASSIGN TO PROPER LRU
280 DO 290 L=1,3
290 TLSHOP(L,JLRU)=TIMES(L)
                                                                                                                                                                                             READ
                                                                                                               255
255
256
260
                                                                                                                                                                                                                                                                           592
                                                                                                                                                                                                                                                                                                                                                                                         270
                                                                                                                                                                                                                                                                                                                           C IF
                                                                                                00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         00
                                                                                                                                                                             00
                                240
                                                                                                                                                                                                                                                                           255
                                                                                                                                                                                             250
                                                                                                                                                                                                                                                                                                                                                          260
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       270
```

```
CARDS ARE NOT IN SEQUENCE, WE INCREMENT JSUB UP TO IT. JSUB=JSUB+1
JFIRST=JSUB
J IF (EQ.EQ.SEQID(JSUB)) GO TO 370
JSUB=JSUB+1
IF (JSUB.GT.NSUB) JSUB=1
IF (JSUB.GT.NSUB) JSUB=1
IF (JSUB.GT.NSUB) JSUB=1
GO TO 390
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C IF CARDS ARE NOT IN SEQUENCE, WE INCREMENT JLRU TO IT.
                                                                                                                                                                                                                                                                                                                                                       JLRU=0
DO 440 K=1,NLRU
READ(4,400) TYPE,EQ,DASH,JSEQ,PEAS
WRITE(6,401)TYPE,EQ,DASH,JSEQ,PEAS
1 FORMAT(1XA2,1XA7,A1,11,6X7(F6.4))
D FORMAT(A2,1XA7,A1,11,6X7(F6.4))
IF (TYPE.NE.PS) WRITE(6,115) TYPE,PS
IF (JSEQ.GT.1) WRITE(6,116)
FORMAT(1XA2, 1XA7, A1, 11, 7(F6.4))
FORMAT(A2, 1XA7, A1, 11, 7(F6.4))
IF (TYPE.NE.PF) WRITE(6, 115) TYPE, PF
IF (JSEQ.GT.1) WRITE(6, 116)
                                                                                                                                                                                                                                                                                                                                         PS CARDS, ONE PER LRU IN ANY ORDER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                JLRU=JLRU+1
JFIRST=JLRU
IF (EQ.EQ.LEQID(JLRU)) GO TO #20
                                                                                                                                                                                                                                    C ASSIGN TO PROPER SUBSYSTEM 370 DO 380 L=1,6 380 PSM(L,JSUB)=PEAS(L) 390 CONTINUE
                                                                                                                                                                                                                                                                                                                       C READ
  351
                                                                                                                                                                                                                                                                                                                                                                                                                             400
                                                                                                                                    360
                                                                                    IF
                                                                     00
                                                                   310
                                                                                                                                                                                                                                       320
                                                                                                                                                                                                                                                                                                                        325
                                                                                                                                                                                                                                                                                                                                                                                                           330
```

```
**READ(4,441) TYPE, EQ, DASH, JSEQ, (DATA(J), J=1,3), ND, DATA(U), **
***RIEG(4,441) TYPE, EQ, DASH, JSEQ, (DATA(J), J=1,3), ND, DATA(U), **
***PATA(5), NUM**
***PATA(5), NUM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         SS CARDS, ONE PER LRU. ADDITIONAL SE'S ON FOLLOWING CARDS. JLRU=0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C IF CARDS ARE NOT IN SEQUENCE, WE INCREMENT JLRU UP TO IT.
    JLRU=JLRU+1

IF (JLRU.GT.NLRU) JLRU=1

IF (JLRU.NE.JFIRST) GO TO 410

WRITE(6,256)

GO TO 440
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                JLRU=JLRU+1
IF (JLRU.GT.NLRU) JLRU=1
IF (JLRU.EQ.JFIRST) GO TO 447
GO TO 442
                                                                                                                                                                                                                                                                                                                   C ASSIGN TO PROPER LRU

420 DO 430 L=1,3

430 PLRR(L,JLRU)=PEAS(L)

PLRR(4,JLRU)=PEAS(6)

440 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C READ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              4411
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                144
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               244
                                                                                                                                                                                                                                                                 UU
340
                                                                                                                                                                                                                                                             345
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     360
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   365
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   350
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            355
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           370
```

```
NSEQ=NSEQ+1
READ(4,441) TYPE, EQ, DASH, JSEQ, (DATA(J), J=1,3), ND, DATA(4), DATA(5)
WRITE(6,4411)TYPE, EQ, DASH, JSEQ, (DATA(J), J=1,3), ND, DATA(4), DATA(5)
IF (EQ.NE.LEGID(JLRU)) WRITE(6,190)
IF (TYPE.NE.SS) WRITE(6,115) TYPE, SS
GO TO 445
                                                                                                                                                                                                                                                                                                                                                                              IF UNABLE TO IDENTIFY EQUIPMENT, GO TO THE NEXT. 447 WRITE(6,256)
                                                                                                                                                                                                                                                                                                                                                                                                                                                             READ MF CARDS, 1 PER SUBSYSTEM IN ANY ORDER JSUB=0
DO 480 K=1,NSUB
READ(4,450) TYPE,EQ,DASH,JSEQ,VAL,H
450 FORMAT(A2,1XA7,A1,I1,1XF6.1,1XF6.4)
WRITE(5,451) TYPE,EQ,DASH,JSEQ,VAL,H
                                                                                                                                                                                                                                READ ADDITIONAL SE'S, THEN STORE ABOVE.
                                         DO 444 L=1,5

NLSE(L,JLRU)=0

LDRAW(JLRU)=ND

DO 446 L=1,5

IF (DATA(L).EQ.BLANK) GO TO 446

NPOS=NLSE(L,JLRU)+1

NLSE(L,JLRU)=NPOS

LSE(NPOS,L,JLRU)=DATA(L)

CONTINUE.
                                                                                                                                                                                                 IF (NSEQ.GE.NUM) GO TO 449
C ASSIGN TO PROPER LRU
                                   NSEO=1
                                   2443
                                                                 1111
                                                                                                 9445
                                                                                                                                                                                   944
                                                                                                                                                                                                                  UU
                                                                                                                                                                                                                                                                                                                                                                 00
                                                                                                                                                                                                                                                                                                                                                                                                                               000
                                                                                                                                                                                385
                 375
                                                                                                                                                                                                                                                                 390
                                                                                                                                                                                                                                                                                                                                               395
                                                                                                 380
                                                                                                                                                                                                                                                                                                                                                                                                                                004
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               405
```

#51 FORMAT(1XA2, 1XA7, A1, I1, 1XF6.4)

IF (TYPE.NE.MF) WRITE(6, 115) TYPE, MF

IF (JSEQ.GT.1) WRITE(6, 115) TYPE, MF

C IF CARDS ARE NOT IN SEQUENCE, INCREMENT JSUB UP TO IT.

JSUB=JSUB+1
JFIRST=JSUB

#60 IF (EQ.EQ.EQ.EQID(JSUB)) GO TO 470
JSUB=JSUB+1
IF (JSUB-GT.NSUB) JSUB=1
IF (JSUB-GT.NSUB) JSUB=1
IF (JSUB-GT.NSUB) JSUB=1
IF (JSUB-HEST) GO TO 460

GO TO 480

C ASSIGN TO PROPER SUBSYSTEM
420
C ASSIGN TO PROPER SUBSYSTEM
470 FHBMA(JSUB)=VAL
HFAC(JSUB)=H+1.0

RETURN
END

SYMBOLIC REFERENCE MAP (R=1)

ENTRY POINTS 1 READ

				SUBS	SUBS		SUBS				LRUS	EQIDS	LRUS		LRUS							SIZES		SUBS	SUBS		
			ARRAY	ARRAY	ARRAY		ARRAY				ARRAY	ARRAY	ARRAY		ARRAY									ARRAY	ARRAY		
	REAL	REAL	REAL	REAL	REAL	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	REAL	INTEGER	REAL	REAL	INTEGER	INTEGER		INTEGER								
	BLANK	DASH	DATA	FHBMA	HFAC	JFIRST	JNAC	JSEQ1	Y	L	LDRAW	LEGID	LNAC	LS	LSE	LX	MAXLE		MAXSA	MAXSUB	ND	NLRU	NPOS	NSAFSC	NSFSE	NUM	
	1131	2343	9042	6370	6510	2345	0449	2336	2337	2350	15230	20	16420	1135	11470	2353	1146		1150	1147	2355	1	2351	5310	5740	2345	
LOCATION	ARRAY									SIZES	LABL			LRUS	LRUS	LRUS		LOCATION				LRUS	LRUS			SIZES	
RE	ARRAY													ARRAY				~				ARRAY	ARRAY				
N TYPE	REAL	REAL	REAL	REAL	REAL	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	REAL	INTEGER	REAL	INTEGER	INTEGER	V TYPE	INTEGER	INTEGER	REAL	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	
ES SI	ARKAY	CR	DASHI	50	н	2354 J	JLRU	JSEQ	JSUB	KLRU	LABEL	LDUMMY	LF	LNAME	LSAFSC	LWUC	MAXLA	ES S	MAXLRU	MAXSE	外下	NLAFSC	NLSE	W. W.	MSEQ	NSUB	
VARIABL.	2360	1132	2335	2342	2357	2354	2352	2344	2333	~	0	2341	1134	0	3600	3410	1145	IARIABL	1144	1151	1142	13750	15100	2340	2347	0	

				INACTIVE	
		FMT	FMT FMT	E E	Α Σ
SUBERUE SUBER		10	50 80 90 110	125 135 170 180	230 250 250 300 310
ARRAY ARRAY ARRAY ARRAY ARRAY		1174	1253 67 127 1370	1412 0 252 313 342	1631 4627 461 512 535 563 563
REAL REAL REAL REAL REAL REAL REAL					
PEAS PLRR PSM SF SS SS SS TF TLSHOP TSFL		TW	FMT FMT FMT	Η	EE E
2377 2260 740 1133 1144 1130 310		(L.	لقد لقد لقد لف	(L .	le le le
	F	30	41 70 86 105	120 130 140 160 175	250 250 250 250 300 300
S 12 ES EQ 1 DS S UBS S UBS S UBS	TAPE6	1165	1243 1265 1321 1337	1401 164 176 176 324	370 417 440 1714 1651 0
ARRAY ARRAY ARRAY ARRAY ARRAY ARRAY					
INTEGER REAL REAL REAL REAL REAL REAL REAL	MODE	FMT	F F	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
NUML PF PS SEQID SFAFSC SNAME SWUC TIMES	AMES TAPE4	STATEMENT LABELS 1163 5 F 1202 20 F	60 100	117 126 137 155	190 235 255 265 280 305
52 1140 1141 0 2520 1370 2370 1136 2334	FILE NAMES TAP	STATEM 1163 1202	1223	1422 1432 207 1532 0	1566 1625 0 510 1741 547 2005

34	36	39	7	77 77	77	7	45			
630	653	675	720	246	1005	1034	2274	1121		
										INNER
										TON
										REFS

E E E

MY 87 101 50B 113B FROPERTIE: FROM 102 113B 114B 114B 114B 114B 114B 114B 1179 180 226 233 226 233 226 233 14B 0PT 278 299 298 28 1NSTACK 278 299 43B 28 1NSTACK 335 399 114B 28 1NSTACK 355 399 114B 28 1NSTACK 355 399 114B	INFX	FROM-TO	FNCTH	PROPERTIES				
The color of the	LB	70 10	115	FX	RFF	TON	Lx	
Thi 155 113B	DUMMY	7 10	50	: ×	REF		1	
STATES		11 15	3	×	REF	NOT	NNE	
37 138 2B INSTACK 39 144 7B INSTACK 39 144 7B INSTACK 67 180 2B INSTACK 63 248 120B INSTACK 62 23 14B OPT EXTREFS NOT INNE 62 23 24 47B INSTACK 62 23 24 47B INSTACK 63 324 47B INSTACK 63 324 43B INSTACK 64 34B INSTACK 65 399 114B INSTACK 65 399 114B EXTREFS NOT INNE 65 399 114B EXTREFS NOT INNE 65 399 114B EXTREFS NOT INNE 65 399 114B INSTACK	DEX	ROM-TO	ENGT	ROPERTIES				
39 144 7B INSTACK EXT REFS NOT INNE NOT 28 198 198 198 198 198 198 198 198 198 19		37 13	2B	NSTACK				
59 198 114B EXT REFS NOT INNE 79 180 2B INSTACK EXT REFS NOT INNE 23 225 23 14B OPT EXT REFS NOT INNE 26 233 14B INSTACK EXT REFS NOT INNE 52 274 47B INSTACK EXT REFS NOT INNE 78 29B 2B INSTACK EXT REFS NOT INNE 97 29B 13B INSTACK EXT REFS NOT INNE 22 323 47B INSTACK EXT REFS NOT INNE 55 399 114B EXT REFS NOT INNE		39 14	78	NSTAC				
79 180 2B INSTACK 81 186 10B OPT 03 248 120B INSTACK 26 234 44B OPT 70 271 44B OPT 77 271 2B INSTACK 97 299 2B INSTACK 22 323 324 47B INSTACK 22 323 32		59 19	7	EX	REF	NOT	NNE	
81 186 10B OPT 03 248 120B INSTACK 23 225 2B INSTACK 26 233 14B OPT 26 234 47B INSTACK 27 29B 2B INSTACK 28 INSTACK EXT REFS NOT INNE 3 324 43B INSTACK EXT REFS NOT INNE 28 353 2B INSTACK EXT REFS NOT INNE 28 351 47B INSTACK EXT REFS NOT INNE 47 34B 2B INSTACK EXT REFS NOT INNE 55 399 114B EXT REFS NOT INNE		79 18	N	NSTACK				
03 248 120B INSTACK EXT REFS NOT INNE 28 225 24 PR OPT OPT 26 23 14B OPT EXT REFS NOT INNE 70 271 47B INSTACK EXT REFS NOT INNE 78 299 2B INSTACK EXT REFS NOT INNE 80 3 224 43B INSTACK EXT REFS NOT INNE 87 3 43 47B INSTACK EXT REFS NOT INNE 85 3 49 114B EXT REFS NOT INNE		81 18	0	OPT				
23 225 2B INSTACK 26 233 144B OPT 52 274 47B INSTACK 78 299 2B INSTACK 6XT REFS NOT INNE 97 298 2B INSTACK 6XT REFS NOT INNE 22 323 324 43B INSTACK 6XT REFS NOT INNE 47 348 2B INSTACK 55 399 114B ENSTACK 6XT REFS NOT INNE		03 24	20		REF	NOT	NNE	
26 233 14B OPT EXT REFS NOT INNE 22 274 47B EXT REFS NOT INNE 22 323 24 43B INSTACK EXT REFS NOT INNE 22 323 47B INSTACK EXT REFS NOT INNE 47 347 399 114B INSTACK EXT REFS NOT INNE 55 399 114B		23 22	28	STACK				
52 274 47B 70 271 28 INSTACK 78 299 43B INSTACK 97 298 2B INSTACK 22 323 2B INSTACK 28 114B INSTACK 47 348 INSTACK 55 399 114B 114B INSTACK EXT REFS NOT INNE 2B INSTACK EXT REFS NOT INNE 55 399 114B		26 23	7	OPT				
70 271 28 INSTACK EXT REFS NOT INNE 97 298 438 INSTACK EXT REFS NOT INNE 22 323 324 478 INSTACK EXT REFS NOT INNE 47 348 28 INSTACK EXT REFS NOT INNE 55 399 1148 EXT REFS NOT INNE		52 27	1	EX	REF	NOT	NNE	
78 299 43B EXT REFS NOT INNE 97 298 28 INSTACK EXT REFS NOT INNE 22 323 324 47B INSTACK EXT REFS NOT INNE 47 348 28 INSTACK EXT REFS NOT INNE 55 399 1148 EXT REFS NOT INNE		70 27	28	NSTA				
97 298 2B INSTACK EXT REFS NOT INNE 22 323 4 47B INSTACK EXT REFS NOT INNE 47 348 2B INSTACK EXT REFS NOT INNE 55 399 114B EXT REFS NOT INNE		78 29	3	EX	REF	TON	NNE	
03 324 43B ENSTACK EXT REFS NOT INNE 22 323 47B ENSTACK EXT REFS NOT INNE 47 349 114B INSTACK EXT REFS NOT INNE 55 399 114B		97 29	28	NSTA				
22 323 2B INSTACK 28 351 47B EXT REFS NOT INNE 47 348 2B INSTACK EXT REFS NOT INNE 55 399 114B EXT REFS NOT INNE		03 32	3	EX	REF	NOT	NNE	
28 351 47B EXT REFS NOT INNE 47 348 28 INSTACK EXT REFS NOT INNE 55 399 114B EXT REFS NOT INNE		22 32	2B	STA				
47 348 2B INSTACK EXT REFS NOT INNE 55 399 114B		28 35	1	(T)	REF	NOT	NNE	
55 399 114B EXT REFS NOT INNE		47 34	28	NSTA				
		55 39	#	EX	REF	NOT	INNER	

1026	08n 9nn 180	* *		377	378 385 425	2B 7B 37B	INSTACK	EXT	REFS
СОММОИ	BLOCKS SUBS LABL LRUS SIZES EQIDS	LENGTH 3440 8 7560 160	#080NO						
STATISTICS PROGRAM CM LABEL	PROGRAM LENGTH CM LABELED COMMON 52000B CM	LENGTH ED COMMON LE 52000B CM US	LENGTH		2415B 25762B	1293			

THIS ROUTINE ADDS UP THE VARIOUS COLUMNS AND ROWS OF THE DATA ROW PASSED TO ARRAYS ASUB AND ALRU, WHICH ARE EITHER ARRAYS TTR AND TTRL OR EMMH AND EMMHL. WHEN ADDING SUBSYSTEMS OR LRUS, CHANGE THE 40'S IN THE FIRST CARD BELOW TO THE NEW NUMBER OF SUBSYSTEMS. CHANGE THE 120 IN THE 2ND CARD BELOW TO THE NEW MAXIMUM NUMBER OF LRU'S. ALSO CHANGE THE NUMBERS IN THESE COMMENTS. DO 100 N=1,5 ALRU(6,4,JLRU) = ALRU(6,4,JLRU) + ALRU(N,4,JLRU) DO 120 K=1,NR DO 110 N=1,5 ASUB(N,JSUB) = ASUB(N,JSUB) + ALRU(N,4,JLRU) ASUB(15,JSUB)=ASUB(15,JSUB)+ALRU(6,4,JLRU) DD UP LRU TOTALS DO 100 JLRU=1, NLRU DO 90 M=1,3 DO 80 N=1,5 VAL = ALRU(N, M, JLRU) ALRU(6, M, JLRU) = ALRU(6, M, JLRU) + VAL 30 CONTINUE DIMENSION ASUB(21,40), KLRU(40), NUML(40) DIMENSION ALRU(6,4,120) COMMON/SIZES/NSUB, NLRU, KLRU, NUML SUBROUTINE ADDUP(ASUB, ALRU) UP SUBSYSTEM TOTALS DO 140 JSUB=1,NSUB JLRU=KLRU(JSUB) NR=NUML(JSUB) ADD ADD 110 100 80 00 000000000 00 0 U 5 10 15 20 25 30 35

DO 115 M=1,3

115 ASUB(M+15, JSUB) = ASUB(M+15, JSUB) + ALRU(5,M, JLRU)

120 JLRU-JLRU+1

DO 130 N=1,4

130 ASUB(6, JSUB) = ASUB(6, JSUB) + ASUB(N, JSUB)

ASUB(13, JSUB) = ASUB(7, JSUB) + ASUB(8, JSUB) + ASUB(14, JSUB)

ASUB(14, JSUB) = ASUB(7, JSUB) + ASUB(2, JSUB)

ASUB(19, JSUB) = ASUB(7, JSUB) + ASUB(2, JSUB) + ASUB(20, JSUB) + ASUB(11, JSUB) + ASUB(11, JSUB) + ASUB(12, JSUB)

C

DO 135 K=1,6

135 ASUB(15, JSUB) = ASUB(15, JSUB) + ASUB(K+6, JSUB)

C

RETURN

END

SYMBOLIC REFERENCE MAP (R=11)

ENTRY POINTS
3 ADDUP

S 12 E S S S 12 E S S S S S S S S S S S S S S S S S S	120	
ARRAY ARRAY ARRAY	000	
REAL INTEGER INTEGER INTEGER INTEGER		
		INNER INNER INNER
A SUB JSUB KLRU N NUML		TON TON TON
174 2 172 175 52	90 115 135	PROPERTIES INSTACK INSTACK INSTACK INSTACK INSTACK INSTACK INSTACK INSTACK
	000	
RELOCATION F.P. SIZES SIZES		LENGTH 25B 21B 4B
AY AY		804 ±899 500 500 500 500 500 500 500 500 500 5
ARRAY		F ROM - 170 250 21 20 22 22 22 23 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25
SN TYPE REAL INTEGER INTEGER INTEGER INTEGER REAL	TS	INDEX
JES JLRU JLRU K M M NLRU NSUB VAL	STATEMENT LABELS 0 80 0 110 0 130	LABEL 100 90 80 100 110 115 115 135
VARIABLES 0 AL 170 JL 176 K 171 M 171 M 171 M	STATEME 0 0	LOOPS 16 17 17 17 17 17 17 17 17 17 17 17 17 17

COMMON BLOCKS LENGTH
SIZES 82
STATISTICS
PROGRAM LENGTH
CM LABELED COMMON LENGTH
52000B CM USED
148

```
SUBROUTINE SEDUMP(TTRL,TTR,NWANT,WANT)
THIS ROUTINE DUMPS TO THE PRINTER ALL THE SUPPORT EQUIPMENT REPORTS
AFTER READING IN THE SUPPORT EQUIPMENTS OF INTEREST.
                                                                                     DIMENSION NUML(40), KLRU(40), TSFL(7,40), PSM(7,40), HFAC(40),

NSAFSC(7,40), FHBMA(40), JNAC(40), NSFSE(7,40), AVAIL(40)

DIMENSION SWUC(40), SFSE(2,7,40), SFAFSC(5,7,40)

DIMENSION SNAME(5,40)

DIMENSION SCQID(40)

COMMON/SUBS/SNAME, TSFL, PSM, SWUC, SFSE,

SFAFSC,NSFSE, FHBMA, JNAC, HFAC
                                                                                                                                                                                                                                                                     DIMENSION LDRAW(120), LNAC(120), TLSHOP(5, 120), NLAFSC(5, 120)
DIMENSION PLRR(5, 120), NLSE(5, 120)
REAL LSAFSC, LSE
DIMENSION LWUC(120), LSAFSC(5, 5, 120), LSE(2, 5, 120)
DIMENSION LNAME(5, 120)
                                                                                                                                                                                                                                                                                                                                                                                     REAL LEQID
DIMENSION LEQID(120)
COMMON/LRUS/LNAME, TLSHOP, PLRR, LWUC, LSAFSC,
LSE, NLAFSC, NLSE, LDRAW, LNAC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       COMMON/SIZES/NSUB, NLRU, KLRU, NUML
COMMON/EQIDS/SEQID, LEQID
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   DIMENSION WANT (100)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DIMENSION LABEL(8)
COMMON/LABL/LABEL
                     000
                                                                                                                                                                                                                                                   O
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 U
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   U
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     UU
                                                                                       5
                                                                                                                                                                                                       10
                                                                                                                                                                                                                                                                                                                     15
                                                                                                                                                                                                                                                                                                                                                                                                                                   20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 30
```

DIMENSION ESSE(3,4),GT(3,4),TOTSE(3,4) DIMENSION SES(50),ARRAY(13)

```
THROUGH SE"S OF INTEREST
DO 160 N=1,NSES
SE=SES(N)
DO 41 LL=1,NWANT
IF (WANT(LL).EQ.SE.OR.WANT(LL).EQ.ALLSE) GO TO 411
CO TINUE
DO 42 II=1,4
DO 42 JJ=1,3
DIMENSION TTRL(6,4,120),TTR(21,40)
DATA BLANK,ALLSE/5H
IANY=0
                                                                                                                       J=0
J=J+1
IF (J.GT.13) GO TO 20
IF (ARRAY(J).EQ.BLANK) GO TO 40
I=I+1
SES(I)=ARRAY(J)
IF (I.LT.NSES) GO TO 40
                                                                                                                                                                           C L00P
                                                                      15
                                                                                    30
                                                                                                          31
                                                                                                                                                                                                                                   411
                                    10
                                                                                                                                04
                                                                                                                                                                                                                     41
                      O
                                                                                                                  U
       35
                                           04
                                                                             45
                                                                                                                  20
                                                                                                                                                                                         09
```

```
----, 4X), 6X6H-----
                                                              TOTAL, 4X), 6X6HUP/KFH,
OUT TOTAL ARRAY FOR EACH SUBSYSTEM.

DO 45 II=1,3

DO 45 JJ=1,4

TOTSE(II,JJ)=0.0

TIRX=0.0
                                                                                                                                                                                                                                    THROUGH EACH LRU IN THIS SUBSYSTEM.
DO 140 K=1,NR
NL4J=NLSE(4,JLRU)
DO 47 KK=1,NL4J
IF (SE.EQ.LSE(KK,4,JLRU)) GO TO 60
                                                                                                      DO 150 JSUB=1,NSUB
JLRU=KLRU(JSUB)
NR=NUML(JSUB)
IF (LINE+NR.LE.58) GO TO 444
WRITE(6,443)
FORMAT(141)
WRITE(6,444)
LINE=7
                                                                                                                                                                   C ZERO C 444
                                                                                                                                                                                                                             C LOOP
                         #3
  45
                                                                                                                                              443
                                                                                                                                                                                                     54
                                                                                                U
                                                       75
                 10
                                                                                                                                                                                                                     96
                                                                                                                                                                                                                                                             100
                                                                                               80
                                                                                                                                      85
                                                                                                                                                                              90
```

```
PRINT LRU LINE

TTRLX=TTRL(5,4,JLRU)*FACT

TTRX=TTRX+TTRLX

WRITE(6,70) LEQID(JLRU),LDRAW(JLRU),ESSE,TTRLX

70 FORMAT(1XA7,13,4(3F8.4,3X),F13.5)
                                      C COMPUTE FOMS

60 ESSE(1, 1)=PLRR(4, JLRU)*TLSHOP(4, JLRU)

ESSE(2, 1)=PLRR(5, JLRU)*TLSHOP(5, JLRU)

ESSE(2, 1)=ESSE(1, 1)+ESSE(2, 1)

ESSE(3, 1)=ESSE(1, 1)*NLAFSC(4, JLRU)

ESSE(2, 2)=ESSE(1, 1)*NLAFSC(5, JLRU)

ESSE(3, 2)=ESSE(1, 2)+ESSE(2, 2)

FACT=1000./FHBMA(JSUB)

D0 65 II=1, 3

ESSE(II, 3)=ESSE(II, 2)*FACT

65 ESSE(II, 4)=ESSE(II, 1)*FACT
                                                                                                                                                                                                                    UP SUBSYSTEM TOTAL ARRAY
DO 68 II=1,3
DO 68 JJ=1,4
TOTSE(II,JJ)=TOTSE(II,JJ)+ESSE(II,JJ)
                                                                                                                                                                                                                                                                                                                                                                                                                              JLRU=JLRU+1
IF (IP.EQ.0) GO TO 150
                                                                                                                                                                                                                                                                                                                                                                                                                                                        C PRINT TOTALS
UPGT=UPGT+TTRX
                                                                                                                                                                                                                                                                                                                                                                                                   LINE=LINE+1
CONTINUE
GO TO 140
                                                                                                                                                                                                                                                                                                                                                                                     IANY=1
                                                                                                                                                                                                                     SET
                                                                                                                                                                                                                                                                 89
                                                                                                                                                                                                                                                                                                                                                                                                                              140
                                                                                                                                                                                                                                                                               00
                            UU
                                                                                                                                                                                                        OO
                                                                                                                                                                                                                                                                                                                                                                                                                 U
                                                                                                                110
                                          105
                                                                                                                                                                                                                                                              120
                                                                                                                                                                                                                                                                                                                                                                                                               130
                                                                                                                                                                                                                                                                                                                                       125
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     135
```

WRITE(6,145) SEQID(JSUB), TOTSE, TTRX

* 1AA7,3X4(3F8.4,3X),F13.5//)

* LINE=LINE+3

DO 147 II=1,3

DO 147 JJ=1,4

TQT(II,JJ)=GT(II,JJ)+TOTSE(II,JJ)

150 CONTINUE
160 IF (MAY (170) GT, UPGT)
170 FORMAT(//IX4(3Cx6H----),3X),6X7H----
* / IX5HTOTAL,5X4(3F8.4,3X),F13.5)

RETURN

END

SYMBOLIC REFERENCE MAP (R=1)

ENTRY POINTS
3 SEDUMP

											LABL	EQIDS			LRUS	LRUS		SIZES		SUBS	SUBS	SIZES	LRUS			SUBS	SUBS	
	ARRAY			ARRAY							ARRAY	ARRAY			ARRAY	ARRAY				ARRAY	ARRAY	ARRAY	ARRAY		ARRAY	ARRAY	ARRAY	ARRAY
	REAL	REAL	REAL	REAL	INTEGER	REAL		INTEGER	INTEGER	REAL	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	REAL	REAL	REAL	REAL	REAL	REAL						
	ARRAY	BLANK	FACT	GT	I	11	J	JLRU	JSUB	KK	LABEL	LEGID		LL	LNAME	LSE	N	NLRU	NL4J	NSAFSC	NSFSE	NUML	PLRR	SE	SES	SFSE	SWUC	TOTSE
	673	271	473	561	452	457	453	11911	463	472	0	50		456	0	11470	454	-	471	5310	5740	52	2260	455	611	1440	1370	575
SLOCATION				SUBS	SUBS				SUBS		SIZES	LRUS	CLOCATION		LRUS	LRUS	LRUS	LRUS	LRUS			SIZES	F. P.	SUBS	EQIDS	SUBS	SUBS	LRUS
R		*UNDEF	ARRAY	ARRAY	ARRAY				ARRAY		ARRAY	ARRAY	R		ARRAY	ARRAY	ARRAY	ARRAY	ARRAY					ARRAY	ARRAY	ARRAY	ARRAY	ARRAY
SN TYPE	REAL	REAL	REAL	REAL	REAL	INTEGER	SN TYPE	INTEGER	INTEGER	REAL	INTEGER	REAL	REAL	REAL	REAL	REAL												
LES	272 ALLSE	AVAIL	ESSE	FHBMA	HFAC	IANY	IP	13	JNAC	×	KLRU	LDRAW	LES	LINE	LNAC	LSAFSC	LWUC	NLAFSC	NLSE	NR	NSES	NSUB	NWANT	PSM	SEQID	SFAFSC	SNAME	TLSHOP
VARIAB	272	475	545	6370	6510	450	194	160	0449	470	2	16230	VARIAB	462	16420	3600	3410	13750	15100	465	451	0	0	740	0	2520	0	1130

		A F	FAT	
о. С.		200	145 160 443	
ARRAY		33 340 340	. 422 261 374	
REAL REAL REAL				NOT INNER NOT INNER
TTR TTRLX UPGT		FMT TMT		EXT REFS NOT INNER EXT REFS NOT INNER EXT REFS EXT REFS EXITS NOT INNER
0 474 461	FMT	15 42 15 17 17	140	PROPERTIES OPT INSTACK INSTACK INSTACK INSTACK INSTACK INSTACK
SUBS F.P.	TAPE6	3306	224 256 61	LENGTH 223B 108 128 1578 1578 768 768 148 38
ARRAY ARRAY ARRAY				FROM_TO 62 64 65 68 65 68 67 68 81 143 92 93 131 115 116 120 117 118 120 142 141 142
REAL REAL REAL REAL	MODE	LS FMT FMT	FMT	INDEX
TSFL TTRL TTRX WANT	AMES TAPE4	STATEMENT LABELS 300 10 FMT 321 30 FMT 0 41 347 44 FMT	70 147 170 444	LABEL 160 41-160 42-17-17-17-17-17-17-17-17-17-17-17-17-17-
310 466 0	FILE NAMES TAPE4	STATEM 300 321 0 0 347 145	410 436 114	L000PS 45 62 62 115 115 136 136 173 242 242

COMMON BLOCKS LENGTH
SUBS 3440
LRUS 7560
SIZES 82
EQIDS 160
LABL 8
STATISTICS
PROGRAM LENGTH
CM LABELED COMMON LENGTH 25762B 11250
52000B CM USED

SUBROUTINE DUMP(TITLE, HEADER, JSUB, FACTOR, ASUB, ALRU)	C THIS ROUTINE DUMPS THE VARIOUS COLUMNS AND ROWS OF THE DATA C ELEMENTS ASUB AND ALRU PASSED AS ARGUMENTS, WHICH ARE EITHER ARRAYS C TTR AND TTRL OR EMMH AND EMMHL. WHEN ADDING SUBSYSTEMS OR C LRU'S, CHANGE THE 40'S IN THE 1ST CARD BELOW TO THE NEW NUMBER OF C SUBSYSTEMS. CHANGE THE 120'S IN THE SECOND CARD BELOW TO THE NEW C MAXIMUM NUMBER OF LRU'S. ALSO CHANGE THE NUMBERS IN THESE COMMENTS.	DIMENSION NUML(40), KLRU(40), TSFL(7,40), PSM(7,40), HFAC(40), * NSAFSC(7,40), FHBMA(40), JNAC(40), NSFSE(7,40), AVAIL(40) DIMENSION SWUC(40), SFSE(2,7,40), SFAFSC(5,7,40) DIMENSION SNAME(5,40)	COMMON/SUBS/SNAME, TSFL, PSM, SWUC, SFSE, SFAFSC, NSAFSC, NSFSE, FHBMA, JNAC, HFAC DIMENSION LDRAW(120), LNAC(120), TLSHOP(5, 120), NLAFSC(5, 120) DIMENSION PLRR(5, 120), NLSE(5, 120) REAL LSAFSC, LSE	DIMENSION LWUC(120), LSAFSC(5,5,120), LSE(2,5,120) DIMENSION LNAME(5,120) COMMON/LRUS/LNAME(5,120) * LSE, NLAFSC, NLSE, LDRAW, LNAC DIMENSION ASUB(21), SEQID(40)	DIMENSION ALRU(6, 4, 120) DIMENSION LEQID(120) REAL LEQID DIMENSION X(6, 4), Y(21)	COMMON/SIZES/NSUB, NLRU, KLRU, NUML COMMON/EQIDS/SEQID, LEQID	DIMENSION WKN(4)	DIMENSION FLRU(14), FFL(14), FTOT(5), ALL(33), FIELD(6) EQUIVALENCE (ALL(1), FLRU(1)), (ALL(29), FTOT(1)), (ALL(15), FFL(1))
-	'n	10	15	50	25	30		35

```
DIMENSION TITLE(5), IND(10)

DATA WKN/3H W,3H K,3H N,3HSUB/

DATA FLRU/SH(3(7,8H4XA3,1X4,4HF8.4,5H,24X2,4HF8.4,8H)/8X4(1X,8H7(1H-)), 8H24X2(1X7,7H(1H-))/,

BH4XA3,1X4,4HF8.4,5H,24X2,4HF8.4,1H)/

DATA FEL/5H(/Y4X,8H3HCND,1X,4HF8.4,6H,2(24X,4HF8.4,8H)/6X1HM,,

3H1X2,4HF8.4,5H,24X2,4HF8.4,3H,8X,4HF8.4,8H/8X9(1X7,4H,1H)/

DATA FIOT/4H(1X7,8HHTOT/TSK,4H,1X9,4HF8.4,1H)/
                                                                                                                                                                                                                                                      DATA FIELD/8H(1XF7.5), 8H(1XF7.4), 8H(1XF7.3), 8H(1XF7.2)
8H(1XF7.1), 8H(1XF7.0)/
                                                                                                                                                                                                                                                                                                                                                                                                       COPY ARRAYS, MULTIPLYING BY REQUIRED FACTOR DO 5 K=1,21 5 Y(K)=ASUB(K)*FACTOR
                                                                                                                                                                                                                                                                                                              DATA IND/3,5,11,13,17,19,22,24,26,32/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            JF-ALOGIO(Y(15))+1

IF (JF.LT.1) JF=1

IF (JF.GT.6) JF=6

DO 8 K=1,10

I=IND(K)

8 ALL(I)=FIELD(JF)
                                                                                                                                                                                                                                                                                                                                                  IF (ASUB(15).EQ.0.0) RETURN
                 COMMON/LABL/LABEL DIMENSION LABEL(8)
                                                                                                                                                                                                                                                                          *
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               SET
U
                                                      U
                                                                                                                                                                                                                                         U
                                                                                                                                                                                                                                                                                                                          O
                                                                                                                                                                                                                                                                                                                                                                  000
                                                                                                                                                                                                                                                                                                                                                                                                                                                              00
                                                                       0 4
                                                                                                                                                               45
                                                                                                                                                                                                                                                       20
```

00

09

(L)	WRITE(6,14) FORMAT(/9X31HAGE F/L TS F/L R+R VR+R, 40H CND A/C M A/C VM A/C SHOP TOT/OUT/) GO TO 40	INCKEO DO 30 K=1,NR IF (ALRU(6,4,JLRU).EQ.0.0) GO TO 30 KICK=KICK+1 IF (KICK.LE.6) GO TO 18			WRITE(6, FLRU) (WKN(M), (X(M, M), N=1,6), M=1,4) JLRU=JLRU+1 WRITE(6, FFL) Y(7), Y(10), Y(19), Y(8), Y(9), Y(11), Y(12), Y(20) WRITE(6, FTOT) Y(13), Y(14), Y(3), Y(4), Y(10), Y(11), Y(12), Y(5), Y(15) RETURN END
C WRITT	71	C BYPA		16	2 20 25 25 25 25 25 25	30
70		80	85	06	95	00

													-														
RELOCATION				SUBS		F. P.				٦.		AB	EQIDS	RU	RU		RU	RU	UB	21	LRUS	IO	UB	UB	RU		
RE	RRAY	ARRAY		RRA	ARRAY							PRA	ARRAY	RRA	RRA		RRA	ARRAY	RR		RRA	RRA	RRA	RRA	RRA	ARRAY	RRA
TY	REAL	EA	EA	EA	EA	EA	NTEGE	NTEGE	NT	NTEGE	NTEGE	NTEGE	EA	NT	EA	NTEGE	NT	NTEGE	NTEGE	NTEGE	EA	EA	EA	EA	EA	A	EA
LES SN	ALL	SU	ACT	I	LRU	EA	I	7	LR	SU	IC	ABE	LEQID	NAM	S	Σ	LA	LS	SA	SU	1	EO	FS	PM	CS	WKN	¥
IAB	327	0	0	~	327		N	N	32		324	0	90		-	326	25	0	31	0	2260	0	#	1	m	515	~
									13	1																	

SYMBOLIC REFERENCE MAP (R=1)
ENTRY POINTS
3 DUMP

	172 10 243 1 253 25	INER		
		NOT INNER		
		REFS INNER REFS		
	£ E Ls-	EXT NOT EXT		
	8 114 20 40	PROPERTIES INSTACK INSTACK INSTACK		
	216	LENGTH 3B 4B 63B 17B 3B 12B		367
ARGS 1 LIBRARY		FROM-TO 59 60 66 68 86 101 95 97 100 100		557B 25762B
MODE FMT TYPE A	S FM T	INDEX K K K K K M M	LENGTH 3440 7560 82 160 LENGTH	H MMON LENGTH
FILE NAMES TAPE6 EXTERNALS ALOG10	STATEMENT LABELS 0 5 204 12 102 18 151 30	0PS LABEL 22 5 41 8 72 30 ** 114 20 ** 136	COMMON BLOCKS SUBS LRUS SIZES EQIDS COMMON BLOCKS	STATISTICS PROGRAM LENGTH CM LABELED COMMON
FILE	STA	135 135 114 1114 1103	000	STA

FMT

SUBROUTINE DUMP2(M,ASUB) THIS ROUTINE DUMPS OT ALL THE MTTR AND MMH TOTALS ACROSS ALL SUBSYSTEMS. WHEN INCREASING THE NUMBER OF SUBSYSTEMS, CHANGE THE 40'S IN THE RIGHT SUBSCRIPTS BELOW TO THE NEW NUMBER. ALSO CHANGE THE DIMENSION OF "DUM" TO THE NEW NUMBER OF LRU'S.	DIMENSION NUML(40), KLRU(40), TSFL(7,40), PSM(7,40), * NSAFSC(7,40), JNAC(40), FHBMA(40), NSFSE(7,40), HFAC(40)	DIMENSION LABEL(8) COMMON/LABL/LABEL	DIMENSION ASUB(21,40) DIMENSION SWUC(40), SFSE(2,7,40), SFAFSC(5,7,40) DIMENSION SWUC(40), SFSE(2,7,40) DIMENSION SEQID(40) COMMON/SUBS/SNAME, TSFL, PSM, SWUC, SFSE, * SFAFSC, NSAFSC, NSFSF, FHRMA, INAC, HFAC	COMMON/SIZES/NSUB, NLRU, KLRU, NUML COMMON/EQIDS/SEQID, DUM	DIMENSION DUM(120) DIMENSION TOT(21), TITLE(2), FORMAT(4), FIELD(6) DATA TITLE/4HMTTR, 3HMMH/ DATA TOTAL/5HTOTAL/ DATA FIELD/4HF8.5, 4HF8.3, 4HF8.2, 4HF8.1, 4HF8.0/ DATA FORMAT/6H(1xA7.3H1x9.4HF8.4, 1H)/	WRITE(6,10) TITLE(M), LABEL 10 FORMAT(1H1, A4, 1X18HFOR ALL SUBSYSTEMS, 5X8A10/ * 40HOSUBSYS AGE F/L TS F/L R+R VR+R, * 40H CND A/C M A/C SHOP TOT/OUT/
00000	U	U		00		00
- 10		10	15	20	55	30

```
DO 35 J=1,21

TOT(J)=TOT(J)+ASUB(J,JSUB)

CONTINUE

WRITE(6,49)

WRITE(6,FORMAT) TOTAL,TOT(13),TOT(14),TOT(3),TOT(4),TOT(10),

TOT(11),TOT(12),TOT(5),TOT(5),

END
                                                                                                                                                                                        DO 40 JSUB=1,NSUB
WRITE(6,FORMAT) SEQID(JSUB),ASUB(13,JSUB),ASUB(14,JSUB),
ASUB(3,JSUB),ASUB(4,JSUB),ASUB(10,JSUB),
ASUB(11,JSUB),ASUB(12,JSUB),ASUB(5,JSUB),
ASUB(15,JSUB)
                                                                   D FORMAT

115=0.0

DO 25 J=1,NSUB

175=115+ASUB(15,J)

JF=ALOG10(T15)+1

IF (JF.LT.1) JF=1

IF (JF.CT.6) JF=6

FORMAT(3)=FIELD(JF)
                                   DO 20 J=1,21
TOT(J)=0.0
 1X39H-----
                                                                      FIND
                                                 20
                                                                                                        25
                                                                                                                                                                                                                                                                            35
                                                                                                                                                                                                                                                                                                               64
                                                           00
                         U
                                                                                                                                                                   00
                                                                                                                                                                                                                                                    U
35
                                                           04
                                                                                                                                                                               20
                                                                                                                   45
                                                                                                                                                                                                                                                                                                   09
                                                                                                                                                                                                                                                                                                                                                           9
```

SYMBOLIC REFERENCE MAP (R=1)

ENTRY POINTS
3 DUMP2

																		FMT	
	EQIDS		SUBS			LABL	SIZES	SUBS	SIZES	EQIDS	SUBS	SUBS		SUBS			25	43	
	ARRAY	ARRAY	ARRAY			ARRAY		ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY	ARRAY			0	176	
	REAL	REAL	REAL	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	REAL	REAL	REAL	REAL	REAL					
	DUM	FIELD	HFAC	JF	JSUB	LABEL	NLRU	NSFSE	NUML	SEQID	SFSE	SWUC	TOT	TSFL					10
	50	256	65.10	221	222	0	-	5740	52	0	1440	1370	223	310			20	0.4	PROPERTIES INSTACK
																	0	0	
CATION	Y F.P.	SUBS			SUBS	SIZES	ч. Р.	SUBS	SIZES	SUBS	SUBS	SUBS							LENGTH 2B
RELO	ARRAY	ARRAY	ARRAY					ARRAY								ARGS 1 LIBRARY			FROM-TO 38 39
SN TYPE	REAL	REAL	REAL	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	INTEGER	REAL	REAL	REAL	REAL	REAL	MODE	TYPE	FMT		INDEX
	ASUB	FHBMA	FORMAT	7									TITLE	TOTAL T15	NAMES TAPE6	VALS ALOG10	STATEMENT LABELS	35	LABEL 20
VARIABLES	0	6370	252	217	0119	2	0	5310	0	740	2520	0	250	121	FILE N	EXTERNALS	STATEM 127	0	L00PS 25
									1	3	5								

NOT INNER								
NOT								
REFS								
EXT								
INSTACK								
38 378 38						101	3690	2000
43 44 51 59 57 58						300B	7152B	
J JSUB J	LENGTH					TH	OMMON LENGTH	OB CM HSED
35 25 53 40 104 35	COMMON BLOCKS	SUBS	SIZES	EQIDS	STATISTICS	PROGRAM LENG	CM LABELED COMMON LENGTH	5200
					0			