• Actively Loaded DA:

BJT Implementation

MOS Implementation

- ➤ Absolutely *similar topologies* for *both BJT* and *MOS implementations*
- > Produces double-ended to single-ended conversion, i.e., from two inputs to a single output
- $\geq Q_1 Q_2/M_1 M_2/Q_3 Q_4/M_3 M_4$ perfectly matched
- \triangleright Output should never be taken from collector/drain of Q_1/M_1 (Why?)
- \triangleright DC biasing is absolutely straightforward with all branch currents equal to $I_{EE}/2$ or $I_{SS}/2$

- \succ Caution: Half-circuit technique can't be used for this circuit, since collector/drain circuits of the two sides are coupled, i.e., $i_3 = i_4$ (always)
- This circuit can be *analyzed by inspection*
- \triangleright Define $v_{id} = v_{i1} v_{i2}$
- > Apply + $v_{id}/2$ at the base of Q_1 /gate of M_1
- $ightharpoonup Apply -v_{id}/2$ at the base of Q_2 /gate of M_2
- From symmetry of the circuit around the BE/GS loops, the common emitter/source node is at ac ground (i.e., $v_e = v_s = 0$)

- Since $v_s = 0$, M_1 - M_2 won't have any body effect issue
- Now, $i_3 = i_4$ (mirror), $i_3 = i_1$ (same branch), and $i_2 = -i_1$ (symmetry)
- Also, $i_1 = g_m v_{id}/2$ and $i_2 = -g_m v_{id}/2$ $g_m = I_{EE}/(2V_T)$ (BJT Implementation) $= (k_N I_{SS})^{1/2}$ (MOS Implementation)
- ➤ Hence, the *short-circuit output current* (with the *output terminal shorted to ground*):

$$i_o = i_4 - i_2 = i_1 - i_2 = 2i_1 = g_m v_{id}$$

- To find the *output voltage*, we need to use the *Thevenin technique*:
 - Open-Circuit Voltage = Short-Circuit Current ×
 Thevenin Resistance
- > Thevenin Resistance (looking from the output):

$$R_0 = r_{02} / |r_{04}|$$

> Thus, the *output voltage*:

$$v_o = i_o R_0 = g_m(r_{02}/|r_{04})v_{id}$$

➤ Hence, the *differential-mode gain*:

$$A_{dm} = v_o/v_{id} = +g_m(r_{02}//r_{04})$$

 $> R_i = 2r_{\pi}(BJT\ Implementation)$

- \triangleright Ex.: Prove the expressions for A_{dm} and R_i from the hybrid- π model
- \triangleright A_{cm} for this circuit is a little difficult to evaluate
- ➤ However, the *CMRR* can be safely approximated as:

 $CMRR \approx 20log_{10}(2g_mR_{EE})$

 R_{EE} : Output resistance of the bias current source I_{EE}/I_{SS}

➤ In order to *improve CMRR*, various *current* source topologies can be used

- Example: Simple npn CM
 - > One of the simpler choices
 - $> Q_5$ - Q_6 perfectly matched
 - > Neglecting base currents:

$$I_{REF} = I_{EE} = I_{C6}$$
$$= (V_{CC} - V_{BE} - V_{EE})/R$$

- $ightharpoonup R_{EE} = r_{06} = V_A/I_{EE}$
- Acts as a *current source* of magnitude I_{EE} with a shunt resistance R_{EE}

• Insights:

- \succ Recall: A_{dm} independent of R_{EE} , but A_{cm} and CMRR strongly depend on R_{EE}
- \succ To maximize CMRR, R_{EE} should be increased as much as possible
- To increase R_{EE} , other current sources discussed in class, e.g., ratioed mirror, cascode, Widlar, etc., can be used
- Note that with *more advanced architectures*, $V_0(min)$ increases, and may become a *limiting* factor!