1. 교과목 수강인원

 수업년도	수업학기	계열구분	수강인원	이수인원
2021	1	자연과학	2	2
2021	1	공학	17	15
2022	1	자연과학	2	2
2022	1	공학	19	16
2023	1	자연과학	3	3
2023	1	공학	11	9
2024	1	자연과학	3	3
2024	1	공학	6	6
2025	1	자연과학	4	0
2025	1	공학	13	0

2. 평균 수강인원

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2018	1	39.54	61.09	35.36	18	
2017	2	37.26	63.09	32.32		
2017	1	38.26	65.82	33.5	28	
2016	2	37.24	72.07	31.53		
2016	1	37.88	73.25	32.17	17	

3. 성적부여현황(평점)

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2017	1	3.44	3.02	3.58	3.29	
2016	1	3.52	3.29	3.61	3.35	
2015	1	3.49	2.94	3.64	3.33	

4. 성적부여현황(등급)

수업년도	수업학기	등급	인원	비율
2021	1	Α+	4	23.53
2021	1	Α0	4	23.53
2021	1	B+	4	23.53
2021	1	ВО	4	23.53
2021	1	C+	1	5.88
2022	1	Α+	3	16.67
2022	1	Α0	3	16.67
2022	1	B+	4	22.22
2022	1	В0	5	27.78
2022	1	C+	3	16.67
2023	1	Д+	3	25
2023	1	Α0	2	16.67
2023	1	B+	3	25
2023	1	В0	3	25
2023	1	C+	1	8.33
2024	1	Д+	6	66.67
2024	1	Α0	2	22.22
2024	1	C+	1	11.11

5. 강의평가점수

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2024	1	91.5	93.79	91.1	90	
2023	2	91.8	93.15	91.56		
2023	1	91.47	93.45	91.13	84	
2022	2	90.98	92.48	90.7		
2022	1	90.98	92.29	90.75	93	

6. 강의평가 문항별 현황

		HOITH		점수별 인원분포					
번호	평가문항	본인평 균 (가중 치적용)	차	ዘ학평균과의 ·이 ,-:미달)	매우 그렇 치않 다	그렇 치않 다	보통 이다	그렇 다	매우 그렇 다
		5점	학과	대학	- 1점	2점	3점	4점	디
	교강사:	미만	차이 평균	차이 평균	12	22	2.5	42	5점

No data have been found.

7. 개설학과 현황

학과	2025/1	2024/1	2023/1	2022/1	2021/1
생명공학과	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)

8. 강좌유형별 현황

강좌유형	2021/1	2022/1	2023/1	2024/1	2025/1
일반	1강좌(19)	1강좌(21)	1강좌(14)	1강좌(9)	1강좌(17)

9. 교과목개요

교육과정	관장학과	국문개요	영문개요	수업목표
학부 2024 - 2027 교육과 정		약물의 유효성과 안정성을 높일 수 있는 제제설 계를 위한 효율적인 약물전달기구에 관하여 강 의한다. 또한 의약품 신제제의 설계 및 이에 따 른 제조방법과 체내에서의 방출특성, 흡수, 배설 기전 등 생물학적 이용률의 평가에 대하여 강의 한다.	Design and evaluation of drug delivery systems that can enhance the efficacy and increase the stability of therapeutic drugs including small molecules and macromoleculese in the body will be lectured.	
학부 2020 - 2023 교육과 정	서울 공과대학 생명공학과	약물의 유효성과 안정성을 높일 수 있는 제제설 계를 위한 효율적인 약물전달기구에 관하여 강 의한다. 또한 의약품 신제제의 설계 및 이에 따 른 제조방법과 체내에서의 방출특성, 흡수, 배설 기전 등 생물학적 이용률의 평가에 대하여 강의 한다.	Design and evaluation of drug delivery systems that can enhance the efficacy and increase the stability of therapeutic drugs including small molecules and macromoleculese in the body will be lectured.	
학부 2016 - 2019 교육과 정	서울 공과대학 생명공학과	약물의 유효성과 안정성을 높일 수 있는 제제설 계를 위한 효율적인 약물전달기구에 관하여 강 의한다. 또한 의약품 신제제의 설계 및 이에 따른 제조방법과 체내에서의 방출특성, 흡수, 배설 기전 등 생물학적 이용률의 평가에 대하여 강의 한다.	Design and evaluation of drug delivery systems that can enhance the efficacy and increase the stability of therapeutic drugs including small molecules and macromoleculese in the body will be lectured.	

교육과정	관장학과	국문개요	영문개요	수업목표
학부 2013 - 2015 교육과 정	서울 공과대학 화공생명공학 부 생명공학전 공	의한다. 또한 의약품 신제제의 설계 및 이에 따	Design and evaluation of drug delivery systems that can enhance the efficacy and increase the stability of therapeutic drugs including small molecules and macromoleculese in the body will be lectured.	
학부 2013 - 2015 교육과 정	서울 공과대학 생명공학과	약물의 유효성과 안정성을 높일 수 있는 제제설 계를 위한 효율적인 약물전달기구에 관하여 강 의한다. 또한 의약품 신제제의 설계 및 이에 따 른 제조방법과 체내에서의 방출특성, 흡수, 배설 기전 등 생물학적 이용률의 평가에 대하여 강의 한다.	Design and evaluation of drug delivery systems that can enhance the efficacy and increase the stability of therapeutic drugs including small molecules and macromoleculese in the body will be lectured.	
학부 2009 - 2012 교육과 정	서울 공과대학 화공생명공학 부 생명공학전 공	새로운 약물을 개발하는 데는 수천억에 해당하는 큰 돈과 10-12년에 해당하는 많은 시간이 소요된다. 우리나라의 실정상 신약개발은 어려우나, 대신 제약생명공학산업에서 유망하게 연구개발할 수 있는 분야는 기존의 혹은 새로이 개발된 약물을 효율적으로 안전하게 전달하는 기술을 개발하는 것이다. 약물전달기술은 장기간 병소부위에 전신적, 국소적 약물전달로 약물의 효능을 증대시키고 부작용을 크게 줄일 수 있다. 이 분야는 미래 제약생명공학산업에서 빠르게성장할 각광받는 분야이다. 본 교과목에서는 제약생명공학 개요, 약물동태학 및 약력학(PK&PD) 개요, 의학용어, 약물학 기초, 약물전달의 개념, 원리, 분류, 제품 및 생명공학 유래의약품 약물전달시스템의 연구개발 동향에 대해강의함.		제약 생명공학, 의약 용어, 신약개발과정, 약물전달시스템, 바 이오의약전달시스템 에 대한 포괄적 이해 와 지식습득을 목표 로 함
학부 2009 - 2012 교육과 정	서울 공과대학 응용화공생명 공학부 생명공 학전공	약물의 유효성과 안정성을 높일 수 있는 제제설 계를 위한 효율적인 약물전달기구에 관하여 강 의한다. 또한 의약품 신제제의 설계 및 이에 따 른 제조방법과 체내에서의 방출특성, 흡수, 배설 기전 등 생물학적 이용률의 평가에 대하여 강의 한다.	Design and evaluation of drug delivery systems that can enhance the efficacy and increase the stability of therapeutic drugs including small molecules and macromoleculese in the body will be lectured.	
학부 2005 - 2008 교육과 정	서울 공과대학 응용화공생명 공학부 생명공 학전공	약물의 유효성과 안정성을 높일 수 있는 제제설 계를 위한 효율적인 약물전달기구에 관하여 강 의한다. 또한 의약품 신제제의 설계 및 이에 따 른 제조방법과 체내에서의 방출특성, 흡수, 배설 기전 등 생물학적 이용률의 평가에 대하여 강의 한다.	Design and evaluation of drug delivery systems that can enhance the efficacy and increase the stability of therapeutic drugs including small molecules and macromoleculese in the body will be lectured.	

No data have been found
No data have been found.

