Optimization vs Privacy in Machine Learning

Vianney Perchet

Séminaire Palaisien Saclay, January 2020

Crest, ENSAE & Criteo Al Lab, Paris

Introduction

• Typical learning pb. Dataset $\mathcal{D} = \{X_1, \dots, X_n\}$, metric U(x, a)

```
Learn/compute/optimize \alpha^*: \max_{\alpha} \mathbb{E}_{\mathcal{P}}[U(X, \alpha(X))]
```

• Assumption: X_n iid $\sim \mathcal{P}$ unknown, $a = \alpha(X)$ is algo's decisions Examples Classification, ERM, etc. output some α^*

Learning α^* irrelevant, its implementation/rolling-out matters

- \cdot The Dataset $\mathcal D$ might be sensitive; **protect** it!
- Competitors/clients do the same concurrently. $\text{Implementing } \alpha^* \text{ reveals } \textbf{private/valuable} \text{ information}.$

"Re-identification" - no privacy

The 'Re-Identification' of Governor William Weld's Medical Information: A Critical Re-Examination of Health Data Identification Risks and Privacy Protections, Then and Now

```
19 Pages · Posted: 4 Jun 2012 · Last revised: 3 Sep 2015
```

Daniel Barth-Jones

Columbia University - Mailman School of Public Health, Department of Epidemiology

Date Written: July 2012

Abstract

The 1997 re-identification of Massachusetts Governor William Weld's medical data within an insurance data set which had been stripped of direct identifiers has had a profound impact on the development of deidentification provisions within the 2003 Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule. Weld's re-identification, purportedly achieved through the use of a voter registration list from Cambridge, MA is frequently cited as an example that computer scientists can re-identify individuals within de-identified data with "astonishing ease". However, a careful re-examination of the population demographics in Cambridge indicates that Weld was most likely re-identifiable only because he was a public figure who experienced a highly publicized hospitalization rather than there being any certainty underlying his re-identification using the Cambridge voter data, which had missing data for a large proportion of the population.

User/Local Differential Privacy

Dataset $\mathcal{D} = \{X_1, \dots, X_n\}$ iid Bernoulli param. p

- Construct public dataset $\widetilde{\mathcal{D}} = \{\widetilde{X}_1, \dots, \widetilde{X}_n\}$
 - Estimate \widehat{p} from \mathcal{D} (with some accuracy)
 - without revealing X_i (with high proba)

$$\widetilde{X}_i = \left\{ egin{array}{ll} {
m random} & {
m w.p.} \ 1-arepsilon \ X_i & {
m w.p.} \ arepsilon \end{array}
ight.$$

· Simple computations

$$\frac{1}{n}\sum_{i=1}^{n}\widetilde{X}_{i} = \frac{1-\varepsilon}{2} + \varepsilon p \pm \sqrt{\frac{1-\varepsilon}{n}} \pm \sqrt{\frac{p}{n}}$$

- Accuracy: estimate p if $n \gg \frac{1}{\varepsilon^2 p^2}$
- Privacy: $\mathbb{P}\{X_i = 1 | \widetilde{X}_i = 1\} \simeq p(1 + \varepsilon)$

4

ε -Differential Privacy

Dataset
$$\mathcal{D} = \{X_1, \dots, X_n\}$$
, query $f : \mathcal{D} \to \mathbb{R}^d$, but privately

· Examples of query functions

$$f(\mathcal{D}) = (X_1, \dots, X_n)$$

= $(X_1, \frac{X_1 + X_2}{2}, \dots, \overline{X}_n)$

 $m{\cdot}\ arepsilon$ -diff private random query $\mathcal{A}:\mathcal{D}
ightarrow\mathbb{R}^d$

$$e^{-\varepsilon}\mathbb{P}\{\mathcal{A}(\mathcal{D}_1)\in\mathfrak{E}\}\,\leq\,\mathbb{P}\{\mathcal{A}(\mathcal{D}_0)\in\mathfrak{E}\}\,\leq\,e^{\varepsilon}\mathbb{P}\{\mathcal{A}(\mathcal{D}_1)\in\mathfrak{E}\}$$

where \mathcal{D}_0 and \mathcal{D}_1 differ by 1 datapoint

- "easy" solution: Additive Laplace Noise.
 - $A(\mathcal{D}) = f(\mathcal{D}) + Y$ with Y_i independent Laplace(λ)
 - Optimal choice $\lambda = \frac{\max \|f(\mathcal{D}_0 \mathcal{D}_1)\|_1}{\varepsilon}$

Privacy for users

- I want to visit websites I like without Google knowing how deprayed sophisticated I am
- I want to watch Netflix without being classified as white/male/(sadly in the end of his) 30's

It happens!

Film fans see red over Netflix 'targeted' posters for black viewers

The streaming service's customers say they are being duped by marketing that shows minor cast members as leading characters

▲ Set It Up is made to look like a two-hander between Taye Diggs and Lucy Liu, rather than the white couple. Photograph: Twitter Kelly Quantrill @codetrill

A concrete Example

Figure 1: Online advertisement auction system

Criteo is **both** a client and a **competitor** of Google.

Want to "exploit" good clients
 Without revealing their quality (as in poker)

A simple model

$$\mathsf{max}_{\mathsf{X} \in \mathcal{X} \subset \mathbb{R}^d} \, \mathsf{X}^\top C_k; \qquad C_k \in \mathbb{R}^d$$

- $k \in \{1, ..., K\}$ is the **private type** (known only to agent)

 public prior $\pi_0 \in \Delta_K$, i.e., $k \sim \pi_0$
- Privacy "value" is the **amount of info leaked** on k example. $\mathit{KL}(\pi_0, \pi_1)$, with π_1 posterior on k
- (Vectors c_1, \ldots, c_K publicly known)

What is the posterior π_1 ?

$$\max_{\mathbf{x} \in \mathcal{X} \subset \mathbb{R}^d} \mathbf{x}^{\mathsf{T}} \mathbf{c}_k; \qquad k \sim \pi_0$$

- Given $k \in \{1, ..., K\}$, choose $x \sim \mu_k \in \mathcal{P}(\mathcal{X})$
- $\pi_1 \in \Delta_K$ posterior knowing x

$$\pi_{1_{|_{\mathbf{X}}}}^{k} = \frac{\pi_{0}^{k}\mu_{k}(\mathbf{X})}{\sum_{j}\pi_{0}^{j}\mu_{j}(\mathbf{X})}$$
 Bayes

Private Learning Objective

$$\max_{\mu_1, \dots, \mu_K} \sum_{k} \pi_0^k \mathbb{E}_{\mathbf{X} \sim \boldsymbol{\mu}_k} \Big[\mathbf{X}^\top \boldsymbol{c}_k - \lambda \mathit{KL}(\boldsymbol{\pi}_{\mathbf{1}_{|_{\mathbf{X}}}}, \boldsymbol{\pi}_0) \Big]$$

or more generally

$$\inf\nolimits_{\gamma \in \mathcal{P}(\mathcal{X} \times [K]); p_1 \sharp \gamma = \pi_0} \int c(\mathbf{X}, \mathbf{k}) + \lambda D(\pi_{\mathbf{X}}, \pi_0) d\gamma(\mathbf{X}, \mathbf{k})$$

The f-divergence case

$$f$$
 convex, $f(1) = 0$

$$D(P,Q) = \mathbb{E}_{x \sim Q} \left[f(\frac{p(x)}{q(x)}) \right]$$

•
$$KL(Q, P) = \mathbb{E}_{x \sim Q} \left[-\log(\frac{p(x)}{q(x)}) \right]$$

•
$$KL(P,Q) = \mathbb{E}_{x \sim Q} \left[\frac{p(x)}{q(x)} \log(\frac{p(x)}{q(x)}) \right]$$

•
$$TV(P,Q) = \mathbb{E}_{x \sim Q} \left[\frac{1}{2} \left| \frac{p(x)}{q(x)} - 1 \right| \right]$$

Convexity Result

• f convex, f(1) = 0

$$\inf\nolimits_{\gamma \in \mathcal{P}(\mathcal{X} \times [K]); p_1 \sharp \gamma = \pi_0} \int c(x, k) d\gamma + \lambda \int \mathbb{E} f(\frac{d\pi_{1_{|x|}}}{d\pi_0}) d\gamma$$

- Convex program in γ !
 - → solvable in theory
- · But in infinite dimension
 - \rightarrow not in **practice**

Finiteness Result

If *K* is **finite**, finiteness Theorems.

- $\forall \varepsilon > 0$, exists ε -optimal γ with finite support of size K(K+2)
- \mathcal{X} compact and $c(\cdot, k)$ lsc true for $\varepsilon = 0$
- · Finite Reformulation

inf
$$\sum_{i,k} \gamma_{i,k} c(x^i,k) + \lambda \sum_{i,k,j} \gamma_{i,k} \pi_0^j f(\frac{\gamma_{i,j}}{\pi_0^i \sum_{\ell} \gamma_{i,\ell}})$$

where $\gamma \in \mathbb{R}^{(K+2)K}$, $X \in \mathbb{R}^{K+2}$ and the constraint $\sum_i \gamma_{i,j} = \pi_0^j$.

Finite but no longer convex!

Ex: the linear case; Difference of Convex

$$c(x, k) = x^{\mathsf{T}} c_k + \beta_k, \qquad \mathcal{X} = [-1, 1]^d$$

$$\inf_{\gamma} - \sum_{i} \| \sum_{k} \frac{\mathbf{\gamma}_{i,k}}{\mathbf{c}_{k}} \|_{1} + \sum_{k} \pi_{0}^{k} \beta_{k} + \lambda \sum_{i,k,j} \frac{\mathbf{\gamma}_{i,k}}{\mathbf{\gamma}_{i,k}} \pi_{0}^{j} f(\frac{\mathbf{\gamma}_{i,j}}{\pi_{0}^{j} \sum_{\ell} \mathbf{\gamma}_{i,\ell}})$$

$$= -G(\gamma) + F(\gamma)$$

can be solved with DC solver

(F and G are convex)

The special case of KL-divergence and Optimal Transport

$$\inf_{\gamma \in \mathcal{P}(\mathcal{X} \times [K]); p_1 \sharp \gamma = \nu} \int c(x, k) d\gamma + \lambda \mathbb{E} \log(\frac{d\pi_{\mathsf{X}}}{d\nu}) d\gamma$$

I renamed the prior ν so that equivalent to

$$\inf_{\mu \in \mathcal{P}(\mathcal{X})} \left\{ \inf_{\pi \in \mathcal{T}(\mu, \nu)} \int c d\pi + \lambda \int \log \left(\frac{d\pi}{d\mu d\nu} \right) d\pi \right\}$$

$$\inf_{\boldsymbol{\mu}\in\mathcal{P}(\mathcal{X})} OT_{c,\lambda}(\boldsymbol{\mu},\nu)$$

Regularized Optimal Transport

$$\mathsf{OT}_{\mathsf{C},\lambda}(\pmb{\mu},\nu) = \inf_{\pi \in \mathsf{T}(\pmb{\mu},\nu)} \int c d\pi + \lambda \int \log \left(\frac{d\pi}{d\mu d\nu} \right) d\pi$$

- 1. Solve with Sinkhorn algo (in π)
 - \rightarrow highly parallelisable
 - \rightarrow closed form iteration
 - ⇒ works **very well** in practice

2. Optimize (in μ)!

Parametric Family

$$\min_{\pmb{\mu}} \mathit{OT}_{c,\lambda}(\pmb{\mu}, \pmb{
u})$$

- 1. Look for $\mu_{\theta} = \sum_{j=1}^{n} \alpha_{j}(\theta) \delta_{X_{j}(\theta)}$
- 2. Compute $\frac{\partial}{\partial \alpha} OT_{c,\lambda}(\mu,\nu)$ and $\frac{\partial}{\partial x} OT_{c,\lambda}(\mu,\nu)$ either by automatic diff, or solve the dual.

Experiments

Expe 1: Toy, linear example

$$c(x,y) = x^{T}y$$
, $\mathcal{X} = [-1,1]^{d}$, $K = 100$ and D=KL.

Figure 2: Comparison of optimization schemes

- DC \succ Sink \succ Des
- Adaptation to problem structure is primordial

Expe 2: online repeated auctions

- Auctions: value $v \sim \mu_{y_j} = \operatorname{Exp}(\frac{1}{y_j})$
- · Bid strategy $\beta_i^j(v)$ induces fake distribution $\mathbf{x}_i = \beta_i^j \# \mu_{y_j}$
- With $\operatorname{Exp}(\frac{1}{y_j})$ reduce to strategies $\beta_i^j(v) = \beta_i(v/y_j)$ (those $\beta_i(\cdot)$ parametrized by a NN)
- · Cost functions $c(\beta_i^j, y_j)$ can be computed [previous paper]

Expe 2: online repeated auctions

Figure 3: Joint distribution heat-map, with $\lambda=0.01$

Expe 2: online repeated auctions

Figure 4: Evolution of the most used β_i with the type and the regularization constant

So many open questions

- Statistical guarantees
- · Computational issues
- Private optimization algo (query AWS repeatedly)
- · General f-divergence...

Alternative concepts/valuations of privacy, fairness?