Sufficient condition by local minimizer

Let I be a trice continuously differentiable function from IRM to IR. Suppose that X* ERM satisfies

(a)
$$\neg f(x^*) = 0$$

(b) $H(x^*)$ is positive definite

Then x* is a local minimizer at f.

Example Let f(x) = a,2 + a22. Find points Satisfying FONC. Check that these points one local minimum point on not.

$$\mathcal{N}_{00} = \mathcal{N}_{1} = \mathcal{N}_{2} = 0$$

1. (0,0) satisfy the FONC.

$$H(x) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
 $\therefore H(0,0) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$

Now let de 122 , then dT H (0,0) d

=)
$$[d_1 \ d_2]$$
 $[2d_1]$ =) $2d_1^2 + 2d_2$ > 0 if

... H (0,0) ù a positive delinte mateux. Hence by sufficient condition, $x^* = (0,0)$ is a local orinimum

$\nabla F(x^*) = 0 = 2^* = (1,1)$

Forom now onwards we consider the unconstrained optimization problem $f: \mathbb{R}^n \to \mathbb{R}$ and the problem is $\min f(x)$

Descent direction Let $x \in \mathbb{R}^n$. If there exists a direction $d \in \mathbb{R}^n$ and $\epsilon > 0$ such that

fratad) z fra) x $\alpha \in (0, E)$, then dù said to be a descent direction.

Lemma Let f: Mn - n be differentiable and for any de 12n, stra). d Lo, then d is a descent direction.

Note $\nabla f(x)^T d$ with ||d|| = 1, is the male at increase at f along the direction det the point x.

Thus the distriction in which \$710) indicated is the distriction of maximum grate of incarease. The distriction in which - \$760) indicates is the distriction of maximum grate of decrease.

Usually an optimization method is an iterative method for finding the optimism point. The basic idea is given an initial point $x^{(c)}$ $\in \mathbb{R}^n$, one have to generate the iterative segn f_{xx} f_{xz} by means at some iterative multiplication.

Algorithm (1) Initialize x (0), N=0

- 3 stopping chiteria
- 3 of the stoping cruteria i not satisfied at x^k
 - @ Frnd 2(K+1) such that f(xK+1) 4 b(xK)
 - (b) K = K+1

end if output $x^{\mu} = x^{\kappa}$ is the local minimum point,

Stopping cruiteria !- In general, the most well stopping cruiteria i 11 Trans 11 LE where E>0 is the tolerance

Gradient Descent method

Since — This) gives the direction in which the rate of decrease for the function is maximum, hence the direction of negative gradient is a good direction for minimizing a function.

To bonomulate the elgorithm, suppose me one given a point x(K). To find the next point x(M), we start moving by an amount $-\alpha_N > f(x(M))$, where α_N is very small positive scalar. Thus the iterative algorithm is

SCHI = S(K) - OK STIZK)

we refer this as a gradient descend method or gradient method.

The method of steepest descent

The method of steepest descent is a gradient method above the step size α_{K} is choosen to achieve the maximum amount of decrease of the cost function at each individual step. specially, α_{K} is chosen

to (monimize) $\phi_{\kappa}(\alpha) \cong f(x^{\kappa} - \alpha \nabla f(x^{\kappa}))$.

In otherwoods $\alpha_{K} = \alpha_{K} =$

Example Apply method it steepest descent to the function fox, y) = 4x2 - 4xy + 2x2 with the initial point x (0) = (2,3) $\Rightarrow f(x_1y) = (8x - 4y, 4y - 4x)$ Swy ~ (π°) = (4,4) $\phi(\alpha) = f(\alpha^{\circ} - \alpha \Rightarrow f(\alpha^{\circ}))$ = f(2-4x, 3-4x) $=) \quad \phi_0(\alpha) = \neg f(2-4\alpha, 3-4\alpha) \cdot (-4, -4)$ $= 64 \alpha - 32$ hence $\phi_{0}(\alpha) = 0$ = $\alpha = \frac{1}{2}$. Again, $\phi_{0}(\alpha) = 64$ x= 12 grong the minimum value at \$0 one all a ? O $\chi^{(1)} = \chi^{(0)} - \frac{1}{2} = \chi^{(n)}$ = (0,1) $\sim f(\chi^{(1)}) = (-4,4)$ $\phi_{l}(\alpha) = \phi(x^{(l)} - \alpha = \phi(\alpha^{l})$ $= f(4\alpha, 1-4\alpha)$ $\phi_1^{-1}(\alpha) = \nabla f(4\alpha, (1-4\alpha)) \cdot (4, -4)$ = 3200 - 32

$$\oint_{1}^{1}(\alpha) = 0 = 0 = \frac{1}{10}$$

$$2(2) = 2(1) - \frac{1}{10} = (-4, 4)$$

$$= (\frac{2}{5}, \frac{3}{5})$$

Repeating this process, me get $x(3) = (0, \frac{2}{10})$. we can see that the method of Steepert descent produces a sean that is converging towards the minimum point $x^* = (0,0)$ of the function.

Steepest descent algoriethm

Step 0: Let $0 \angle E \angle I$ be the tolerance on stopping threshold. Given infial point $\chi(0)$, Let K=0

Step 1 of $11 > f(xk) | 1 \le E$ then $11 > f(xk) | 1 \le E$ then stop. Otherwise choose dk = - > f(xk)

Step2 Find the step size α_{K} such that $f(x^{K} + \alpha_{K} d^{K}) = min f(x^{K} + \alpha d^{K})$ $\alpha \ge 0$

Step3 $\alpha(n+1) = \pi^{k} + \alpha_{k} d^{k}$

Step 4: K = K+1, return to Step 1 Output $x^{K} = x^{*}$.