1. Let u'(t) = 2t(1+u), u(0) = 0.

$$u_1(t) = \int_0^t f(s, u(0))ds$$
$$= \int_0^t f(s, 0)ds$$
$$= \int_0^t 2sds$$
$$= t^2$$

We can then derive u_2 and u_3 :

$$u_{2}(t) = \int_{0}^{t} f(s, u_{1}(s))ds$$

$$= \int_{0}^{t} f(s, s^{2})ds$$

$$= \int_{0}^{t} 2s(1 + s^{2})ds$$

$$= \int_{0}^{t} 2s + \int_{0}^{t} 2s^{3}ds$$

$$= t^{2} + \frac{t^{4}}{2}$$

$$u_{3}(t) = \int_{0}^{t} f(s, u_{2}(s))ds$$

$$= \int_{0}^{t} f(s, s^{2} + \frac{s^{4}}{2})ds$$

$$= \int_{0}^{t} 2s(1 + s^{2} + \frac{s^{4}}{2})ds$$

$$= \int_{0}^{t} 2s + \int_{0}^{t} 2s^{3}ds + \int_{0}^{t} s^{5}ds$$

$$= t^{2} + \frac{t^{4}}{2} + \frac{t^{6}}{6}$$

It seems that the Picard iteration for this function takes the following pattern:

$$u_k(t) = \sum_{i=1}^k \frac{t^{2i}}{i!}$$

Let $x = t^2$. Then the expanded series looks like a Taylor series:

$$\lim_{k \to \infty} u_k(t) = t^2 + \frac{t^4}{2!} + \frac{t^6}{3!} + \dots$$
$$\lim_{k \to \infty} u_k(x) = x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

It is known that $\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$, so this sum converges to $u_{\infty} = e^{t^2} - 1$.

2. Let
$$x'(t) = f(t,x) = 1 + t - x(t)$$
, $x(0) = 0$, $t_0 = 0$. Then,
$$x_0(t) = x(0) = 0$$

$$x_1(t) = x_0 + hf(t_0, x_0)$$

$$= 0 + h(1 + 0 - 0)$$

$$= h$$

$$x_2(t) = x_1 + hf(t_1, x_1)$$

$$= h + hf(h, h)$$

$$= h + h(1 + h - h)$$

$$= 2h$$

$$x_3(t) = x_2 + hf(t_2, x_2)$$

$$= 2h + hf(2h, 2h)$$

$$= 2h + h(1 + 2h - 2h)$$

$$= 3h$$

The series follows the pattern $x_n(t) = t_n$, so the original IVP is x(t) = t.

- 3.
- 4. See the source code at https://github.com/codeandkey/math481-iastate-sp2020.
- 5. Here is the data collected from the program:

k	U^N	E^K	E^{2K}/E^K
5e-2	38.093	15.505	_
2.5e-2	44.846	8.752	1.771
1.25e-2	48.927	4.671	1.873
6.25e-3	51.182	2.417	1.933
3.125e-3	52.369	1.230	1.965
1.5625e-3	52.978	0.620	1.982
7.8125e-4	53.287	0.311	1.991
3.90625e-4	53.442	0.156	1.995
1.953125e-4	53.520	0.078	1.997
9.765625e-5	53.559	0.039	1.998

Looking at the data it is clear that as k tends towards infinity the error E^N tends to 0. It appears that the ratio of E^{2K}/E^K tends to 2, indicating that as k increases the error will halve on every increment. However, that improvement in error will quickly tend towards 0 as well.

6. See the graph:

