Relations d'ordre (Applications)

Exercice 1. 1. Montrer que pour tout entier $n \ge 4$, on a $2^n < n!$.

- 2. Montrer que pour tout entier $n \ge 0$, on a $n^3 + 2n$ divisible par 3.
- 3. Montrer que $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- 4. Montrer que $\sum_{i=1}^{n} q^i = \frac{q^{n+1}-1}{q-1}$ avec $q \neq 1$.
- 5. Montrer que pour deux mots $u, v \in \mathcal{A}^*$ tels que |uv| = n et uv = vu alors il existe $w \in \mathcal{A}^*, \exists p, q \in \mathbb{N}$ tels que $u = w^p$ et $v = w^q$.

Exercice 2. Pour n entier non nul, soit P(n) la propriété "dans un groupe de n chevaux, tous ont la même couleur". Qu'y-a-t-il de faux dans la démonstration suivante :

- Pour n = 1, il n'y a qu'un cheval, donc P(1) est vraie.
- Supposons que P(n) est vraie. Soient n+1 chevaux et prenons les n premiers chevaux. Par hypothèse de récurrence, ils ont la même couleur, et il en est de même pour les n derniers. Comme il y a des chevaux qui sont à la fois dans les n premiers et dans les n derniers, ils ont tous la même couleur. Donc P(n+1) est vraie.
- Par récurrence, pour tout $n \in \mathbb{N}$, la propriété P(n) est vraie : tous les chevaux ont la même couleur!

Exercice 3. Montrer que les algorithmes suivants terminent en exhibant un variant de boucle.

Algorithme d'Euclide	Algorithme Mystère 1	Drapeau Hollandais
Entrée : $(x,y) \in \mathbb{N}^2$	Entrée : $(n, p) \in \mathbb{N}^2$	Entrée : Un tableau T de N
		éléments pris dans {1,2,3}
		
$a \leftarrow x$	while $n \neq 0$ <i>et</i> $p \neq 0$ do	
$b \leftarrow y$	$\mid $ if $n < p$ then	$i_1 \leftarrow 1; i_2 \leftarrow N; i_3 \leftarrow N$
while $b \neq 0$ do	$p \leftarrow p - n$	while $i_1 \leq i_2$ do
$tmp \leftarrow a$	else	if $T[i_1] = 1$ then
$a \leftarrow b$	$ \mid \mid \mid \mid n \leftarrow n - p $	$\lfloor i_1 \leftarrow i_1 + 1$
$b \leftarrow tmp[\text{mod } b]$		else if $T[i_1] = 2$ then
Retourner a		$ tmp \leftarrow T[i_1]$
		$T[i_2] \leftarrow tmp$
		$\lfloor i_2 \leftarrow i_2 - 1$
		else
		$ tmp \leftarrow T[i_3]$
		$T[i_2] \leftarrow tmp$
		$ \begin{vmatrix} i_2 \leftarrow i_2 - 1 \\ i_3 \leftarrow i_3 - 1 \end{vmatrix} $
		$\lfloor i_3 \leftarrow i_3 - 1$
		=

Exercice 4. On considère la fonction d'Ackermann définit de la manière suivante :

$$A(m,n) = \begin{cases} n+1 & \text{si } m = 0\\ A(m-1,1) & \text{si } m > 0 \text{ et } n = 0\\ A(m-1,A(m,n-1)) & \text{si } m > 0 \text{ et } n > 0 \end{cases}$$

1. Calculer A(1,0), A(0,1), A(1,1), A(2,2).

2. Montrer que pour $n \in \mathbb{N}$ on a

$$A(1,n) = 2 + (n+3) - 3$$
 $A(2,n) = 2 * (n+3) - 3$ $A(3,n) = 2^{(n+3)} - 3$.

3. Sur \mathbb{N}^2 on définit la relation suivante :

$$(a,b) \leq_{lex} (c,d)$$
 si et seulement si $a < c$ ou bien $(a = c \text{ et } b \leq d)$.

Montrer que (\mathbb{N}^2 , \leq_{lex}) est un ordre bien fondé.

4. Prouver la terminaison de la fonction d'Ackermann.

Exercice 5. Dans un future proche, la Banque Centrale européenne veut retirer du marché tous les billets d'argent de 20, 10 et 5 Euros (après avoir liquidé les plus grosses coupures) parce qu'ils servent uniquement au trafic de drogue, et ne garder que des monnaies de métal. Pour inciter les gens à échanger leurs billets, on propose un système d'échange généreux :

- un billet de 20 Euros est échangé contre 3 billets de 10 Euros ou contre 5 billets de 5 Euros
- un billet de 10 Euros est échangé contre 3 billets de 5 Euros ou contre 6 pièces de 2 Euros
- un billet de 5 Euros est échangé contre 3 pièces de 2 Euros
- 1. Si vous commencez avec 35 Euros (20 + 10 + 5 Euros), il y a plusieurs stratégies d'échange. Modélisez la somme d'argent que vous possédez avec un quadruplet (*V*, *D*, *C*, *M*), où *V*, *D*, *C*, *M* sont le nombre de billets de vingt, dix, cinq Euros, respectivement le nombre de pièces de deux Euros. Quel est le maximum que vous pouvez gagner en échangeant? Est-ce que le nombre de billets que vous possédez décroît strictement?
- 2. Supposez que (*V*, *D*, *C*, *M*) est la somme d'argent qui circule en Europe. Écrivez les opérations d'échange comme un système de réécriture. Voici la règle pour l'échange de 5 Euros : (*V*, *D*, *C* + 1, *M*) → (*V*, *D*, *C*, *M* + 3). Écrivez les règles pour les autres opérations.
- 3. Montrez formellement que la Banque Centrale arrive à ses fins d'éliminer tous les billets du marché tant que les citoyens sont prêts à échanger pour gagner de l'argent; et ceci indépendamment de la stratégie d'échange choisie.

Exercice 6. 1. Caractériser le sous-ensemble de $\mathbb N$ défini inductivement par :

Base : $B = \{1\}$

Induction l'opération $f: x \longrightarrow 2x$.

- 2. Que se passe t'il si on prend pour base $B = \{0\}$?
- 3. Que se passe t'il si on prend pour base *B* l'ensemble des nombres impairs?

Exercice 7. Soit $\mathcal{L} \subset \{0,1\}^*$ le langage définit comme fermeture inductive de B par φ_0 et φ_1 où :

Base : $B = \{\varepsilon, 0, 1\}$;

Induction : si $u \in \mathcal{L}$, on a $\varphi_0(u) \in \mathcal{L}$ et $\varphi_1(u) \in \mathcal{L}$ où

Montrer que \mathcal{L} est l'ensemble des mots binaires palindromiques.

Exercice 8. Soit \mathcal{L} le langage sur l'alphabet $A = \{(,)\}$ définit comme fermeture inductive de B par φ où :

Base :
$$B = \{ \epsilon \}$$
 ;

Induction : si
$$u, v \in \mathcal{L}$$
, on a $\varphi(u, v) \in \mathcal{L}$ où $\varphi: A^* \times A^* \longrightarrow A^*$ $(u, v) \longmapsto (u)v$.

- 1. Les mots suivants sont-ils dans $\mathcal{L}:(()(()())),(^k)^k$ pour $k\in\mathbb{N}$.
- 2. Montrer que les mots de \mathcal{L} ont exactement autant de (que de).

Exercice 9. L'ensemble des arbres binaires, noté AB est défini inductivement par :

Base :
$$B = \{\varepsilon\}$$
;

Induction : si
$$g \in AB$$
 et $d \in AB$ alors $x = (., g, d) \in AB$.

Soient h, n et f les fonctions donnant respectivement la hauteur (ici le nombre de niveaux), le nombre de nœuds et le nombre de feuilles d'un arbre binaire.

- 1. Définir inductivement chacune des fonctions h, n et f.
- 2. Montrer que pour tout arbre binaire $x \in AB$, $n(x) \le 2^{h(x)} 1$ et f(x) = n(x) + 1.