Преобразуем выражения и оцениваем делители

- 1. Наибольший собственный делитель натурального числа n равен d. Может ли наибольший собственный делитель числа n+2 быть равен d+2?
- 2. Найдите все пары (n, d) натуральных чисел, таких что $d \mid n$ и $nd + 1 \mid n^2 + d^2$.
- 3. Пусть n и d натуральные числа, такие что d>n>1 и $d\mid n^2+1$. Докажите, что $d>n+\sqrt{n}$.
- 4. Натуральные числа a>b>1 таковы, что $b^2+a-1\mid a^2+b-1$. Докажите, что b^2+a-1 не представимо в виде степени простого числа.
- 5. Найдите все простые числа p > 2, такие что оба числа $\frac{p+1}{2}$ и $\frac{p^2+1}{2}$ являются полными квадратами.
- 6. Натуральное число a таково, что для каждого $n \in \mathbb{N}$ у числа n^2a-1 есть делитель вида $nx+1, x \in \mathbb{N}$. Докажите, что число a является полны квадратом.
- 7. Натуральное число n называется совершенным, если $\sigma(n) = 2n$. Докажите, что чётные совершенные числа представимы в виде $2^{k-1}(2^k-1)$, где число 2^k-1 простое.
- 8. Для каждого $n \in \mathbb{N}$ через f(n) обозначим наименьшее натуральное число m, такое что $\tau(m) = n$. Докажите, что для любого $k \in \mathbb{N}$ число $f(2^k)$ делит $f(2^{k+1})$.
- 9. Найдите все пары (x,y) различных рациональных чисел, таких что $x^y = y^x$.
- 10. Найдите все пары (m, n) натуральных чисел, таких что $mn 1 \mid n^3 + 1$.
- 11. Найдите все целые числа x и y, такие что $x^2 + x = y^3 + y^2 + y$.
- 12. Найдите все натуральные числа n и k, такие что $(n-1)! + 1 = n^k$.
- 13. О натуральных числах m и n известно, что $m > n^{n-1}$ и все числа m+1, m+2, ..., m+n составные. Докажите, что существуют такие попарно различные простые числа p_1, p_2, \ldots, p_n , что $p_k \mid m+k$ для всех $k=\overline{1,n}$.
- 14. Даны натуральные числа a_1, a_2, \ldots, a_n и a > 1 такие, что a делится на произведение $a_1 a_2 \ldots a_n$. Докажите, что $a^{n+1} + a 1$ не делится на $(a + a_1 1)(a + a_2 1) \ldots (a + a_n 1)$.
- 15. Натуральные числа x и y таковы, что $2x^2-1=y^{15}$. Докажите, что, если x>1, то x делится на 5.
- 16. Найдите все такие нечётные натуральные n>1, что для любых взаимно простых делителей a и b числа n число a+b-1 также является делителем n.
- 17. Натуральные числа $x>2,\ y>1$ и z таковы, что $x^y+1=z^2$. Обозначим через p количество различных простых делителей числа x, а через q количество различных простых делителей числа y. Докажите, что $p\geqslant q+2$.
- 18. Найдите все такие составные числа n, что для любого разложения n=xy на два натуральных множителя x и y сумма x+y является степенью двойки.