Corrigé du devoir maison du 3 Novembre 2009 Exercice 1

1) L'équation 11x+7y=1 admet comme couple d'entiers solution évident u=2, v=-3. Pour trouver la solution générale on pose x=u+2, y=v-3, et on obtient 11x+7y=11u+7v+1. L'équation 11x+7y=1 donne 11u+7v=0, soit 11u=-7v. Comme 11 est premier avec 7, 11 divise v, d'après le théorème de Gauss, donc v=11p, avec $p\in\mathbb{Z}$, et u=-7p. Réciproquement il est clair que si v=11p et u=-7p, avec $p\in\mathbb{Z}$, alors 11u=-7p. Finalement les points à coordonnées entières de la droite d'équation 11x+7y=0 sont les points de coordonnées (2-7p,-3+11p), avec $p\in\mathbb{Z}$.

La condition $0 \le x \le 20$ donne $-2 \le -7p \le 18$, $-18 \le 7p \le 2$, $-\frac{18}{7} \le p \le \frac{2}{7}$. Les seules possibilités sont p = 0, p = -1 et p = -2, et les solutions sont le point de coordonnées (2, -3), le point de coordonnées (9, -14) et le point de coordonnées (16, -25).

2) Comme 7, 11 et 8 sont premiers entre eux deux à deux, le système a des solutions. Les deux premières équations donnent

x=1+7p=3+11q, soit 7p-11q=2, avec $p,q\in\mathbb{Z}$. On peut voir ici la solution évidente $p=5,\,q=3,$ et x=36 est solution des deux premières équations. La solution générale des deux premières équations s'écrit x=36+77u, avec $u\in\mathbb{Z}$, et en reportant dans la troisième on obtient x=36+77u=5+8v, avec $u,v\in\mathbb{Z}$. En posant v=w+4, on obtient 36+77u=37+8w, ce qui donne 77u-8w=1.

On utilise l'algorithme d'Euclide étendu pour trouver une solution à l'équation 77u-8w=1.

	q_n	u_n	v_n
		1	0
		0	1
$77 = 8 \times 9 + 5$	9	1	-9
$8 = 5 \times 1 + 3$	1	-1	10
$5 = 3 \times 1 + 2$	1	2	-19
$3 = 2 \times 1 + 1$	1	-3	29
$2 = 1 \times 2 + 0$			

On peut donc prendre u=-3, et $36-3\times 77=-195$ est solution du système proposé. Comme $7\times 11\times 8=616$, la solution générale du système est de la forme

$$x = -195 + 616n$$
,

avec $n \in \mathbf{Z}$. La condition $0 \le x \le 1200$ donne $195 \le 616n \le 1395, \frac{195}{616} \le n \le \frac{1395}{616}$, et on obtient n=1 ou n=2. On a donc deux solutions, x=421 et x=1037.

Exercice 2

1) On a, en posant $g = \mathcal{W}_4(f)$,

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
f[k]	1	2	3	4	4	3	2	1	1	2	3	4	4	3	2	1
étape 1	3	-1	7	-1	7	1	3	1	3	-1	7	-1	7	1	3	1
étape 2	10	-2	-4	0	10	2	4	0	10	-2	-4	0	10	2	4	0
	20	0	0	0	0	-4	-8	0	20	0	0	0	0	-4	-8	0
g[k]	40	0	0	0	0	-8	-16	0	0	0	0	0	0	0	0	0

Donc $W_4(f) = [40, 0, 0, 0, 0, -8, -16, 0, 0, 0, 0, 0, 0, 0, 0, 0].$

2) On utilise la machine pour faire apparaître W_4 .

```
M:=Dom::Matrix();
W:=proc(n) begin
if n=0 then M([[1]]) else
linalg::stackMatrix(linalg::concatMatrix(W(n-1),W(n-1)),
linalg::concatMatrix(W(n-1),-W(n-1)));
end_if
end_proc:
W(n) $n=0..3
```

Dom::Matrix()

W(4)

On peut alors faire le tableau du nombre n(i) de changements de signes de la ligne L_i d'indice i de la matrice de Walsh W_4 .

ĺ	i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ì	n(i)	0	15	7	8	3	12	4	11	1	14	6	9	2	13	5	10

Dans la compression à 50%, on annule les termes de $g = W_2(f)$ correspondant aux changements de signe dans la tranche des 50% les plus élevés. On va donc remplacer g par $g_{0.5}$ défini par la formule $g_{0.5}(i) = 0$ pour $i = 1, 3, 5, 7, 9, 11, 13, 15, g_{0.5}(i) = g(i)$ sinon. On calcule alors la compression à 50% de f, notée $f_{0.5}$, en appliquant à $g_{0.5}$ la transformation de Walsh inverse. On obtient

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
g[k]	40	0	0	0	0	-8	-16	0	0	0	0	0	0	0	0	0
$g_{0.5}[k]$	40	0	0	0	0	0	-16	0	0	0	0	0	0	0	0	0
étape 1	40	40	0	0	0	0	-16	-16	0	0	0	0	0	0	0	0
étape 2	40	40	40	40	-16	-16	16	16	0	0	0	0	0	0	0	0
étape 3	24	24	56	56	56	56	24	24	0	0	0	0	0	0	0	0
$16f_{0.5}[k]$	24	24	56	56	56	56	24	24	24	24	56	56	56	56	24	24
$f_{0.5}[k]$	3/2	3/2	7/2	7/2	7/2	7/2	3/2	3/2	3/2	3/2	7/2	7/2	7/2	7/2	3/2	3/2

On a

$$||f - f_{0.5}||_2 = \frac{1}{4 \times 16} ||\mathcal{W}_4(g) - \mathcal{W}_4(g_{0.5})||_2 = \frac{1}{4} ||g - g_{0.5}||_2 = 2.$$

Dans la compression à 25% on garde les coefficients de g correspondant aux 25% de changements de signe les moins élevés, c'est à dire g[0], g[2], g[4] et g[12], et on annule tous les autres. On calcule alors la compression à 25% de f, notée $f_{0.25}$, en appliquant à $g_{0.25}$ la transformation de Walsh inverse. On obtient

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
g[k]	40	0	0	0	0	-8	-16	0	0	0	0	0	0	0	0	0
$g_{0.25}[k]$	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	40	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	40	40	40	40	0	0	0	0	0	0	0	0	0	0	0	0
	40	40	40	40	40	40	40	40	0	0	0	0	0	0	0	0
$16f_{0.25}[k]$	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
$f_{0.25}[k]$	5/2	5/2	5/2	5/2	5/2	5/2	5/2	5/2	5/2	5/2	5/2	5/2	5/2	5/2	5/2	5/2

On a

$$||f - f_{0.25}||_2 = \frac{1}{4 \times 16} ||\mathcal{W}_4(g) - \mathcal{W}_4(g_{0.25})||_2 = \frac{1}{4} ||g - g_{0.25}||_2 = \frac{1}{4} \sqrt{(-8)^2 + (-16)^2}^2 = \sqrt{20}.$$

Exercice 3

1) On va calculer la transformée de Walsh de A en utilisant l'algorithme rapide, appliqué aux colonnes et ensuite aux lignes.

$$A = \left[\begin{array}{cccc} 2 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 \\ 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 \end{array} \right].$$

1e étape, lignes,

$$\left[\begin{array}{cccccc}
4 & 0 & 4 & 0 \\
3 & -1 & 4 & 0 \\
2 & 0 & 4 & 0 \\
2 & 0 & 3 & -1
\end{array}\right]$$

2e étape, lignes,

$$\begin{bmatrix} 8 & 0 & 0 & 0 \\ 7 & -1 & -1 & -1 \\ 6 & 0 & -2 & 0 \\ 5 & -1 & -1 & 1 \end{bmatrix}$$

1e étape, colonnes

2e étape, colonnes, on obtient

$$\mathcal{W}_2(A) = \begin{bmatrix} 26 & -2 & -4 & 0 \\ 2 & 2 & 0 & 0 \\ 4 & 0 & 2 & -2 \\ 0 & 0 & 2 & 2 \end{bmatrix}$$

2) On a

On numérote les lignes de W_2 de 0 à 3. Le nombre de changements de signe n(i) de la ligne d'indice i est alors donné par le tableau suivant.

i	0	1	2	3
n(i)	0	3	1	2

On ordonne les pixels (i,j) selon la règle $(i_1,j_1) \prec (i_2,j_2)$ si $n(i_1) + n(j_1) < n(i_2) + n(j_2)$ ou si $n(i_1) + n(j_1) = n(i_2) + n(j_2)$ et $n(i_1) < n(i_2)$. On numérote alors les 16 pixels considérés ici du plus petit au plus grand pour l'ordre ci-dessus. On obtient le tableau suivant.

(i,j)	n(i)	n(j)	n(i) + n(j)	rang[(i,j)]
(0,0)	0	0	0	1
(0,1)	0	3	3	7
(0,2)	0	1	1	2
(0,3)	0	2	2	4
$\boxed{(1,0)}$	3	0	3	10
(1,1)	3	3	6	16
(1,2)	3	1	4	13
(1,3)	3	2	5	15
(2,0)	1	0	1	3
(2,1)	1	3	4	11
(2,2)	1	1	2	5
(2,3)	1	2	3	8
(3,0)	2	0	2	6
(3,1)	2	3	5	14
(3,2)	2	1	3	9
(3,3)	2	2	4	12

Pour la compression à 50% de A, on annule les coefficients d'indice (1,0),(1,1),(1,2),(1,3),(2,1),(3,1),(3,2),(3,3) de la transformée de Walsh et on effectue une transformée de Walsh inverse. Ceci donne

$$\mathcal{W}_2(A)_{0.5} = \begin{bmatrix} 26 & -2 & -4 & 0\\ 0 & 0 & 0 & 0\\ 4 & 0 & 2 & -2\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

1e étape, colonnes,

$$\begin{bmatrix} 26 & -2 & -4 & 0 \\ 26 & -2 & -4 & 0 \\ 4 & 0 & 2 & -2 \\ 4 & 0 & 2 & -2 \end{bmatrix}$$

2e étape, colonnes,

$$\begin{bmatrix}
30 & -2 & -2 & -2 \\
30 & -2 & -2 & -2 \\
22 & -2 & -6 & 2 \\
22 & -2 & -6 & 2
\end{bmatrix}$$

1e étape, lignes,

$$\begin{bmatrix} 28 & 32 & -4 & 0 \\ 28 & 32 & -4 & 0 \\ 20 & 24 & -4 & -8 \\ 20 & 24 & -4 & -8 \end{bmatrix}$$

2e étape, lignes,

$$\begin{bmatrix} 24 & 32 & 32 & 32 \\ 24 & 32 & 32 & 32 \\ 16 & 16 & 24 & 32 \\ 16 & 16 & 24 & 32 \end{bmatrix}.$$

Il ne reste plus qu'à diviser par 16 pour obtenir la compression à 50% de A, ce qui donne

$$A_{50\%} = \left[\begin{array}{cccc} 3/2 & 2 & 2 & 2 \\ 3/2 & 2 & 2 & 2 \\ 1 & 1 & 3/2 & 2 \\ 1 & 1 & 3/2 & 2 \end{array} \right].$$

Exercice 4

1) $\int_{\mathbf{R}} |f(t)| dt = \int_{-\pi}^{\pi} \cos^2(t/2) dt = < +\infty \text{ donc } f \in L^1(\mathbf{R}).$ De même $\int_{\mathbf{R}} |f(t)|^2 dt = \int_{-\pi}^{\pi} \cos^4(t/2) dt = < +\infty.$

Pour tout $x \in \mathbf{R} \setminus \{-1, 0, 1\}$, on a, en utilisant les identités

$$cos^2(a) = \frac{1+cos(2a)}{2}, cos(a)cos(b) = \frac{cos(a+b)+cos(a-b)}{2},$$

et le fait que $\int_{-\pi}^{\pi} \cos^2(t/2) \sin(tx) dt = 0$,

$$\begin{split} \hat{f}(x) &= \int_{\mathbf{R}} f(t)e^{-itx}dt = \int_{-\pi}^{\pi} \cos^2(t/2)(\cos(tx) + i\sin(tx))dt = \int_{-\pi}^{\pi} \cos^2(t/2)\cos(tx)dt \\ &= \frac{1}{2} \int_{-\pi}^{\pi} (1 + \cos(t))\cos(tx)dt \\ &= \frac{1}{2} \int_{-\pi}^{\pi} \cos(tx)dt + \frac{1}{4} \int_{-\pi}^{\pi} (\cos(t(x+1)) + \cos(t(x-1)))dt \\ &= \left[\frac{\sin(tx)}{2x} + \frac{\sin(t(x+1))}{4(x+1)} + \frac{\sin(t(x-1))}{4(x-1)} \right]_{-\pi}^{\pi} \\ &= \frac{\sin(\pi x)}{x} - \frac{\sin(\pi x)}{2(x+1)} - \frac{\sin(\pi x)}{2(x-1)} \\ &= \left(\frac{1}{x} - \frac{x}{x^2 - 1} \right) \sin(\pi x) \\ &= -\frac{\sin(\pi x)}{x(x^2 - 1)}. \end{split}$$

Les trois valeurs manquantes, à savoir $\hat{f}(-1)$, $\hat{f}(0)$ et $\hat{f}(1)$ s'obtiennent par passage à la limite, puisque \hat{f} est continue, ou par calcul direct. Par exemple on a

$$\hat{f}(0) = \lim_{x \to 0} \frac{\sin(\pi x)}{x(1 - x^2)} = \pi.$$

De même on a

$$\hat{f}(1) = -\lim_{x \to 1} \frac{\sin(\pi x)}{x(x+1)(x-1)} = \lim_{x \to 1} \frac{\sin(\pi(x-1))}{x(x+1)(x-1)} = \frac{\pi}{2},$$
 et $\hat{f}(-1) = \hat{f}(1) = \frac{\pi}{2}$ puisque \hat{f} est paire.

On trace les graphes de f et \hat{f} sous Matlab.

x1=[-pi:pi/50:pi]; y1=cos(x1/2); z1=y1.^2; u=[0];

```
x2=[-3*pi:pi/50:-pi];
z2=polyval(u,x2);
x3=[pi:pi/50:3*pi];
z3=polyval(u,x3);
x4=[-3*pi:pi/50:3*pi];
u4=sin(pi*x4);
p=[1 \ 0];
q=[-1 \ 0 \ 1];
r=conv(p,q);
y4=polyval(r,x4);
z4=u4./y4;
axis equal;
plot(x1,z1,'red');
hold on;
plot(x4,z4, 'green');
hold on;
plot(x2,z2,'red');
hold on;
plot(x3,z3,'red');
hold on;
legend('y=f(t)','y=F(t)');
title('La fonction f, exercice 6, et sa transformŽe de Fourier F');
print exo6;
```

On inclut ensuite le fichier pdf obtenu dans le texte.

2) On a $f\in L^2({\bf R}),$ donc la formule de Parseval est applicable à

f,ce qui signifie que $\hat{f}\in L^2(\mathbf{R}),$ et que l'on a

$$\int_{\mathbf{R}} |f(t)|^2 dt = \frac{1}{2\pi} \int_{\mathbf{R}} |\hat{f}(t)|^2 dt.$$

Ici

$$\begin{split} &\int_{\mathbf{R}} |f(t)|^2 dt = \int_{-\pi}^{\pi} \cos^4(t/2) dt = \frac{1}{4} \int_{-\pi}^{\pi} (1 + \cos(2t))^2 dt = \frac{1}{4} \int_{-\pi}^{\pi} (1 + 2\cos(2t) + \cos^2(2t)) dt \\ &= \frac{1}{8} \int_{-\pi}^{\pi} (3 + 4\cos(2t) + \cos(4t)) dt = \frac{1}{8} \left[3t - 2\sin(2t) - \frac{\sin(4t)}{4} \right]_{\pi}^{\pi} = \frac{3\pi}{4}. \\ &\quad \text{D'où,} \end{split}$$

$$\int_{-\infty}^{+\infty} \frac{\sin^2(\pi x)}{x^2 (x^2 - 1)^2} dx = \int_{\mathbf{R}} |\hat{f}(t)|^2 dt = 2\pi \int_{\mathbf{R}} |f(t)|^2 dt$$
$$= \frac{3\pi^2}{2}.$$

4) La fonction \hat{f} est continue sur \mathbf{R} et paire, donc pour vérifier qu'elle est intégrable sur \mathbf{R} il suffit de vérifier que $\int_2^{+\infty} |\hat{f}(x)| dx < +\infty$. On a $|x^2\hat{f}(x)| \leq \frac{1}{|x^2-1|}$, donc $\lim_{x\to\infty} x^2 |\hat{f}(x)| = 0$. On déduit alors du critère de Cauchy que $\int_2^{+\infty} |\hat{f}(x)| dx < +\infty$, et $\hat{f} \in L^1(\mathbf{R})$.

On peut donc appliquer la formule d'inversion de Fourier, qui montre que $\int_{-\infty}^{+\infty} \hat{f}(x)e^{itx}dx = f(t)$ presque partout. Comme f est continue, cette égalité est vraie partout et on obtient, puisque \hat{f} est paire,

$$\int_{-\infty}^{+\infty} \frac{\sin(\pi x)\cos(tx)}{x(1-x^2)} dx = \int_{-\infty}^{+\infty} \frac{\sin(\pi x)}{x(1-x^2)} e^{itx} dx \begin{cases} = 0 \text{ si } t < -\pi \\ = \cos^2(t/2) \text{ si } -\pi \le t \le \pi \\ = 0 \text{ si } t > \pi \end{cases}$$

Exercice 5

1) Comme ($\mathbb{Z}/2\mathbb{Z}$) possède 4 éléments et que $\mathbb{Z}/2\mathbb{Z}$ en possède 2, il y a en tout 16 fonctions boolénnes sur ($\mathbb{Z}/2\mathbb{Z}$)².

Les fonctions affines sont les fonctions de la forme $f_{a,b,c}:(x,y) \to ax + by + c$, avec $a, b, c \in \mathbf{Z}/2\mathbf{Z}$. On a $f_{a,b,c}(\bar{1},\bar{0}) = a, f_{a,b,c}(\bar{0},\bar{1}) = b, f_{a,b,c}(\bar{0},\bar{0}) = c, f_{a,b,c}(\bar{1},\bar{1}) = a + b + c$, donc l'application $(a,b,c) \to a$

 $f_{a,b,c}$ est une bijection de $(\mathbf{Z}/3\mathbf{Z})^3$ sur l'ensemble Aff des fonctions affines sur $(\mathbf{Z}/2\mathbf{Z})^2$. On peut donc énumérer les 8 fonctions affines $f_{a,b,c} = [c, a, b, a+b+c]$:

$$f_{000} = [\bar{0}, \bar{0}, \bar{0}, \bar{0}], f_{001} = [\bar{1}, \bar{1}, \bar{1}, \bar{1}], f_{010} = [\bar{0}, \bar{1}, \bar{0}, \bar{1}], f_{011} = [\bar{1}, \bar{0}, \bar{1}, \bar{0}], f_{100} = [\bar{0}, \bar{0}, \bar{1}, \bar{1}],$$
$$f_{101} = [\bar{1}, \bar{1}, \bar{0}, \bar{0}], f_{110} = [\bar{0}, \bar{1}, \bar{1}, \bar{0}], f_{111} = [\bar{1}, \bar{0}, \bar{0}, \bar{1}].$$

2) On a par définition $f^*(x) = (-1)^{f(x)}$, et on obtient

u	00	01	10	11
$f^*(u)$	1	1	1	-1

3) En appliquant la définition de la distance de Hammings, on obtient

$$d(f, f_{000}) = 1, d(f, f_{001}) = 3, d(f, f_{010}) = 1, d(f, f_{011}) = 3, d(f, f_{100}) = 1, d(f, f_{101}) = 3,$$
$$d(f, f_{110}) = 3, d(f, f_{111}) = 1.$$

Comme $2^{2-1}-2^{\frac{2}{2}-1}=2-1=1$, on a $d(g,Aff)\leq 1=d(f,Aff)$ pour toute fonction booléenne g, et f est une fonction courbe.

On va maintenant vérifier que $2-\frac{1}{2}\mathcal{W}(f^*)(u)=d(f,\phi_u)$ pour tout $u \in (\mathbf{Z}/2\mathbf{Z})^2$, où $\phi_{a,b}(x,y)=ax+by$ pour $u=(a,b)\in (\mathbf{Z}/2\mathbf{Z})^2$. On donne ces vérifications sous forme de tableau

u	00	01	10	11
$f^*(u)$	1	1	1	-1
papillon 0 à 2	2	0	0	2
$\mathcal{W}(f^*)(u)$	2	2	2	-2
$2 - \frac{1}{2}\mathcal{W}(f^*)(u)$	1	1	1	3
ϕ_u	f_{000}	f_{010}	f_{100}	f_{110}
$d(f,\phi_u)$	1	1	1	3

et on a bien la propriété cherchée.

4) On a vu que si g est une foncton booléenne quelconque sur $(\mathbf{Z}/2\mathbf{Z})^2$, on a $d(g,Aff) \leq 1$. Comme $d(g,Aff) \geq 1$ pour toute fonction booléenne non affine on voit que **toute fonction booléenne non affine sur** $(\mathbf{Z}/2\mathbf{Z})^2$ est une fonction courbe.

Le recours à la transformée de Walsh est donc inutile, et on obtient les 8 fonctions courbes

$$[0,0,0,1],[0,1,0,0],[0,0,1,0],[0,1,1,1],\\ [1,1,1,0],[1,0,1,1],[1,1,0,1],[1,0,0,0].$$