Chapter 9 Metal-Semiconductor Contacts

Two kinds of metal-semiconductor contacts:

- metal on lightly doped silicon –
- rectifying Schottky diodes
- metal on heavily doped silicon –
- low-resistance ohmic contacts

9.1 Schottky Barriers

Energy Band Diagram of Schottky Contact

- E_c E_c E_f Schottky barrier height, ϕ_B , is a function of the metal material.
- ϕ_B is the single most important parameter. The sum of $q\phi_{Bn}$ and $q\phi_{Bp}$ is equal to E_g .

Schottky barrier heights for electrons and holes

Metal	Mg	Ti	Cr	W	Mo	Pd	Au	Pt
$\phi_{Bn}(V)$	0.4	0.5	0.61	0.67	0.68	0.77	0.8	0.9
φ Bp (V)		0.61	0.5		0.42		0.3	
Work								
Function	3.7	4.3	4.5	4.6	4.6	5.1	5.1	5.7
$\psi_m(V)$								

$$\phi_{Bn} + \phi_{Bp} \approx 1.1 \text{ V}$$

 ϕ_{Bn} increases with increasing metal work function

ϕ_{Rn} Increases with Increasing Metal Work Function Vacuum level, E_0 $\chi_{Si} = 4.05 \text{ eV}$ Ideally, $q\psi_M$ $q\phi_{Bn} = q\psi_M - \chi_{Si}$ $q\phi_{Bn}$ E_{v}

ϕ_{Bn} is typically 0.4 to 0.9 V

- A high density of energy states in the bandgap at the metalsemiconductor interface pins E_f to a range of 0.4 eV to 0.9 eV below E_c
- *Question*: What is the typical range of ϕ_{Bp} ?

Schottky barrier heights of metal silicide on Si

Silicide	ErSi _{1.7}	HfSi	MoSi ₂	ZrSi ₂	TiSi ₂	CoSi ₂	WSi ₂	NiSi ₂	Pd ₂ Si	PtSi
$\phi_{Bn}(V)$	0.28	0.45	0.55	0.55	0.61	0.65	0.67	0.67	0.75	0.87
$\phi_{Bp}(V)$			0.55	0.49	0.45	0.45	0.43	0.43	0.35	0.23

Silicide-Si interfaces are more stable than metal-silicon interfaces. After metal is deposited on Si, an annealing step is applied to form a silicide-Si contact. The term *metal-silicon contact* includes silicide-Si contacts.

Using CV Data to Determine ϕ_B

$$q \phi_{bi} = q \phi_{Bn} - (E_c - E_f)$$
$$= q \phi_{Bn} - kT \ln \frac{N_c}{N_d}$$

$$W_{dep} = \sqrt{\frac{2\varepsilon_s(\phi_{bi} + V)}{qN_d}}$$

$$C = \frac{\mathcal{E}_s}{W_{dep}} A$$

Question:

How should we plot the CV data to extract ϕ_{bi} ?

Using CV Data to Determine ϕ_B

$$\frac{1}{C^2} = \frac{2(\phi_{bi} + V)}{qN_d \varepsilon_s A^2}$$

V

Once ϕ_{bi} is known, ϕ_B can be determined using

$$q\phi_{bi} = q\phi_{Bn} - (E_c - E_f) = q\phi_{Bn} - kT \ln \frac{N_c}{N_d}$$

9.2 Thermionic Emission Theory

9.3 Schottky Diode

(a)
$$V = 0$$
. $I_{S \to M} = |I_{M \to S}| = I_0$

(b) Forward bias. Metal is positive wrt Si. $I_{S \to M} >> |I_{M \to S}| = I_0$

(c) Reverse bias. Metal is negative wrt Si.

$$I_{S \to M} << |I_{M \to S}| = I_0$$

(d) Schottky diode IV.

9.3 Schottky Diode

$$I_0 = AKT^2 e^{-q\phi_B/kT}$$

$$K = \frac{4\pi q m_n k^2}{h^3} \approx 100 \,\text{A/(cm}^2 \cdot \text{K}^2)$$

$$I = I_{S \to M} + I_{M \to S} = I_0 e^{qV/kT} - I_0 = I_0 (e^{qV/kT} - 1)$$

9.4 Applications of Schottky Diodes

- I_0 of a Schottky diode is 10^3 to 10^8 times larger than a PN junction diode, depending on ϕ_B . A larger I_0 means a smaller forward drop V.
- A Schottky diode is the preferred rectifier in low voltage, high current applications.

Switching Power Supply

Question: What sets the lower limit in a Schottky diode's forward drop?

Synchronous Rectifier: For an even lower forward drop, replace the diode with a wide-W MOSFET which is not bound by the tradeoff between diode V and I_0 : $I = I_0 e^{qV/kT}$

9.4 Applications of Schottky Diodes

There is no minority carrier injection at the Schottky junction. Thus, the CMOS latch-up problem can be eliminated by replacing the source/drain of the NFET with Schottky junctions.

In addition, the Schottky S/D MOSFET would have shallow junctions and low series resistance. So far, Schottky S/D MOSFETs have lower performance.

No excess carrier storage.

What application may benefit from that?

The MESFET has similar IV characteristics as the MOSFET, but does not require a gate oxide.

Question: What is the advantage of GaAs over Si?

9.5 Ohmic Contacts

SALICIDE (Self-Aligned Silicide) Source/Drain

After the spacer is formed, a Ti or Mo film is deposited. Annealing causes the silicide to be formed over the source, drain, and gate. Unreacted metal (over the spacer) is removed by wet etching.

Question:

- What is the purpose of siliciding the source/drain/gate?
- What is self-aligned to what?

9.5 Ohmic Contacts

$$W_{dep} = \sqrt{\frac{2\varepsilon_{s}\phi_{Bn}}{qN_{d}}}$$

Tunneling probability:

$$P = e^{-H\phi_{Bn}/\sqrt{N_d}}$$

$$H = 4\pi \sqrt{\varepsilon_s m_n} / h = 5.4 \times 10^9 \sqrt{m_n / m_o} \text{ cm}^{-3/2} \text{V}^{-1}$$

$$J_{S \to M} \approx \frac{1}{2} q N_d v_{thx} P = q N_d \sqrt{kT / 2\pi m_n} e^{-H(\phi_{Bn} - V) / \sqrt{N_d}}$$

9.5 Ohmic Contacts

$$R_c \equiv \left(\frac{dJ_{S \to M}}{dV}\right)^{-1} = \frac{e^{H\phi_{Bn}/\sqrt{N_d}}}{qv_{thx}H\sqrt{N_d}} \propto e^{H\phi_{Bn}/\sqrt{N_d}} \Omega \cdot \text{cm}^2$$