

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
24 December 2008 (24.12.2008)

PCT

(10) International Publication Number
WO 2008/155666 A2(51) International Patent Classification: **Not classified**(21) International Application Number:
PCT/IB2008/002429(22) International Filing Date: **14 May 2008 (14.05.2008)**(25) Filing Language: **English**(26) Publication Language: **English**(30) Priority Data:
07290627.4 16 May 2007 (16.05.2007) EP(71) Applicants (for all designated States except US):
SANOFI-AVENTIS [FR/FR]; 174 avenue de France, F-75013 Paris (FR). MITSUBISHI TANABE PHARMA CORPORATION [JP/JP]; 2-10, Dosho-machi 3-chome, Chuo-ku, Osaka-shi, Osaka 541-8505 (JP).(72) Inventors; and
(75) Inventors/Applicants (for US only): **CHEREZE, Nathalie [FR/FR]; Patent Department, c/o Sanofi-Aventis, 174 Avenue de France, F-75013 Paris (FR). GALLET, Thierry [FR/FR]; Patent Department, c/o Sanofi-Aventis, 174 Avenue de France, F-75013 Paris (FR). LOCHEAD, Alistair [GB/FR]; Patent Department, c/o Sanofi-Aventis, 174 Avenue de France, F-75013 Paris (FR). SAADY, Mourad [FR/FR]; c/o Sanofi-Aventis, Département Brevets, 174 avenue de France, F-75013 Paris (FR). VERONIQUE, Corinne [FR/FR]; c/o Sanofi-Aventis, Département Brevets, 174 avenue de France, F-75013**

Paris (FR). YAICHE, Philippe [FR/FR]; c/o Sanofi-Aventis, Département Brevets, 174 avenue de France, F-75013 Paris (FR).

(74) Agent: **MOREL-PECHEUX, Muriel; Sanofi-Aventis, Patent Department, 174 avenue de France, F-75013 Paris (FR).**

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

(54) Title: HETEROARYLAMIDE PYRIMIDONE DERIVATIVES

WO 2008/155666 A2

alkyl group or an amino group; R1 represents a 2, 4 or 5-pyrimidine ring or a 4-pyridine ring, the ring being optionally substituted by a C₁₋₆ alkyl group, a C₁₋₆ alkoxy group or a halogen atom; R2 represents a 4-15 membered heterocyclic group, this group being optionally substituted by 1 to 4 substituents selected from a C₁₋₆ alkyl group, a halogen atom, a C₁₋₂ perhalogenated alkyl group, a C₁₋₆ halogenated alkyl group, a hydroxyl group, a C₁₋₆ alkoxy group, a C₁₋₂ perhalogenated alkoxy group, a C₁₋₆ halogenated alkoxy group, a nitro, a cyano, an amino, a C₁₋₆ monoalkylamino group, a C₂₋₁₂ dialkylamino group, a S-(C₁₋₆-alkyl) group, an heterocyclic group, an aryl group, an heteroaryl group, a O-aryl group or a S-aryl group, the above-mentioned groups being optionally substituted by 1 to 4 substituents selected from a C₁₋₆ alkyl group, a halogen atom, a C₁₋₆ alcoxy group, a C(O)O (C₁₋₆-alkyl) or a C(O)O (aryl) group, the aryl optionally substituted by 1 to 4 substituents selected from a C₁₋₆ alkyl group, a halogen atom, a C₁₋₆ alkoxy group; R3 represents a hydrogen atom, a C₁₋₆ alkyl group or a halogen atom; R4 represents a hydrogen atom or a C₁₋₆ alkyl group; R5 represents a hydrogen atom, a C₁₋₆ alkyl group; R6 represents a hydrogen atom, a C₁₋₆ alkyl group; R7 represents a hydrogen atom or a C₁₋₆ alkyl group; and n represents 0 to 3 and m represents 0 in the form of a free base or of an addition salt with an acid.

(57) Abstract: A pyrimidone derivative represented by formula (I) or a salt thereof, or a solvate thereof or a hydrate thereof: wherein: X represents two hydrogen atoms, a sulphur atom, an oxygen atom or a C₁₋₂ alkyl group and a hydrogen atom; Z represents a bond, an oxygen atom, a nitrogen atom substituted by a hydrogen atom or a C₁₋₃ alkyl group, a sulphur atom, a methylene group optionally substituted by one or two groups chosen from a C₁₋₆ alkyl group, a hydroxyl group, a C₁₋₆ alkoxy group, a C₁₋₂ perhalogenated

HETEROARYLAMIDE PYRIMIDONE DERIVATIVES

Technical Field

The present invention relates to compounds that are useful as an active ingredient of a medicament for preventive and/or therapeutic treatment of neurodegenerative diseases caused by abnormal activity of GSK3 β .
5

Background Art

GSK3 β (glycogen synthase kinase 3 β) is a proline directed serine, threonine kinase that plays an important role in the control of metabolism, differentiation and survival. It was initially identified as an enzyme able to 10 phosphorylate and hence inhibit glycogen synthase. It was later recognized that GSK3 β was identical to tau protein kinase 1 (TPK1), an enzyme that phosphorylates tau protein in epitopes that are also found to be hyperphosphorylated in Alzheimer's disease and in several taupathies.

Interestingly, protein kinase B (AKT) phosphorylation of GSK3 β results in a loss of 15 its kinase activity, and it has been hypothesized that this inhibition may mediate some of the effects of neurotrophic factors. Moreover, phosphorylation by GSK3 β of β -catenin, a protein involved in cell survival, results in its degradation by an ubiquitination dependent proteasome pathway.

Thus, it appears that inhibition of GSK3 β activity may result in neurotrophic activity. 20 Indeed there is evidence that lithium, an uncompetitive inhibitor of GSK3 β , enhances neuritogenesis in some models and also increases neuronal survival, through the induction of survival factors such as Bcl-2 and the inhibition of the expression of proapoptotic factors such as p53 and Bax.

Recent studies have demonstrated that β -amyloid increases the GSK3 β activity 25 and tau protein phosphorylation. Moreover, this hyperphosphorylation as well as the neurotoxic effects of β -amyloid are blocked by lithium chloride and by a GSK3 β antisense mRNA. These observations strongly suggest that GSK3 β may be the link between the two major pathological processes in Alzheimer's disease: abnormal APP (Amyloid Precursor Protein) processing and tau protein 30 hyperphosphorylation.

Although tau hyperphosphorylation results in a destabilization of the neuronal cytoskeleton, the pathological consequences of abnormal GSK3 β activity are, most likely, not only due to a pathological phosphorylation of tau protein because, as mentioned above, an excessive activity of this kinase may affect survival 35 through the modulation of the expression of apoptotic and antiapoptotic factors.

Moreover, it has been shown that β -amyloid-induced increase in GSK3 β activity results in the phosphorylation and, hence the inhibition of pyruvate dehydrogenase, a pivotal enzyme in energy production and acetylcholine synthesis.

- 5 Altogether these experimental observations indicate that GSK3 β may find application in the treatment of the neuropathological consequences and the cognitive and attention deficits associated with Alzheimer's disease, as well as other acute and chronic neurodegenerative diseases and other pathologies where GSK3 β is deregulated (Nature reviews Vol.3, June 2004, p.479-487; Trends in
10 Pharmacological Sciences Vol. 25 No. 9, Sept. 2004, p. 471-480; Journal of neurochemistry 2004, 89, 1313-1317; Medicinal Research Reviews, Vol. 22, No. 4, 373-384, 2002).

The neurodegenerative diseases include, in a non-limiting manner, Parkinson's disease, tauopathies (e.g. Fronto temporal dementia, corticobasal degeneration,
15 Pick's disease, progressive supranuclear palsy), Wilson's disease, Huntington's disease (The Journal of biological chemistry Vol. 277, No. 37, Issue of September 13, pp. 33791-33798, 2002), Prion disease (Biochem. J. 372, p.129-136, 2003) and other dementia including vascular dementia; acute stroke and other traumatic injuries; cerebrovascular accidents (e.g. age related macular degeneration); brain
20 and spinal cord trauma; amyotrophic lateral sclerosis (European Journal of Neuroscience, Vol. 22, pp. 301-309, 2005) peripheral neuropathies; retinopathies and glaucoma. Recent studies have also shown that inhibition of GSK3 β results in neuronal differentiation of embryonic stem cells (ESC) and support the renewal of human and mouse ESCs and the maintenance of their pluripotency. This suggests
25 that inhibitors of GSK3 β could have applications in regenerative medicine (Nature Medicine 10, p. 55 - 63, 2004).

Inhibitors of GSK3 β may also find application in the treatment of other nervous system disorders, such as bipolar disorders (manic-depressive illness). For example lithium has been used for more than 50 years as a mood stabiliser and
30 the primary treatment for bipolar disorder. The therapeutic actions of lithium are observed at doses (1-2 mM) where it is a direct inhibitor of GSK3 β . Although the mechanism of action of lithium is unclear, inhibitors of GSK3 β could be used to mimic the mood stabilising effects of lithium. Alterations in Akt-GSK3 β signalling have also been implicated in the pathogenesis of schizophrenia.

- 35 In addition, inhibition of GSK3 β could be useful in treating cancers, such as

colorectal, prostate, breast, non-small cell lung carcinoma, thyroid cancer, T or B-cell leukaemia and several virus-induced tumours. For example, the active form of GSK3 β has been shown to be elevated in the tumors of colorectal cancer patients and inhibition of GSK3 β in colorectal cancer cells activates p53-dependent

- 5 apoptosis and antagonises tumor growth. Inhibition of GSK3 β also enhances TRAIL-induced apoptosis in prostate cancer cell lines. GSK3 β also plays a role in the dynamics of the mitotic spindle and inhibitors of GSK3 β prevent chromosome movement and lead to a stabilisation of microtubules and a prometaphase-like 10 arrest that is similar to that observed with low doses of Taxol. Other possible applications for GSK3 β inhibitors include therapy for non-insulin dependent diabetes (such as diabetes type II), obesity and alopecia.

Inhibitors of human GSK3 β may also inhibit pfGSK3, an ortholog of this enzyme found in *Plasmodium falciparum*, as a consequence they could be used for the treatment of malaria (*Biochimica et Biophysica Acta* 1697, 181- 196, 2004).

- 15 Recently, both human genetics and animal studies have pointed out the role of Wnt/LPR5 pathway as a major regulator of bone mass accrual. Inhibition of GSK3 β leads to the consequent activation of canonical Wnt signalling. Because deficient Wnt signalling has been implicated in disorders of reduced bone 20 mass, GSK3 β inhibitors may also be used for treating disorders of reduced bone mass, bone-related pathologies, osteoporosis.

According to recent data, GSK3 β inhibitors might be used in the treatment or prevention of *Pemphigus vulgaris*.

- Recent studies show that GSK3beta inhibitor treatment improves neutrophil and megakaryocyte recovery. Therefore, GSK3beta inhibitors will be useful for the 25 treatment of neutropenia induced by cancer chemotherapy.

- Previous studies have shown that GSK3 activity decreases LTP, a electrophysiological correlate of memory consolidation, suggesting that inhibitor of this enzyme may have procognitive activity. Procognitive effects of the compound could find application for the treatment of memory deficits characteristic of 30 Alzheimer's disease, Parkinson disease, age-associated memory impairment, mild cognitive impairment, brain trauma, schizophrenia and other conditions in which such deficits are observed.

- Inhibitors of GSK3 β may also find application in the treatment of parenchymal renal diseases (Nelson PJ, Kidney International Advance online publication 19 dec 35 2007) and in the prevention or treatment of muscle atrophy (J. Biol. Chem (283) 2008, 358-366)

Disclosure of the Invention

An object of the present invention is to provide compounds useful as an active ingredient of a medicament for preventive and/or therapeutic treatment of a disease caused by abnormal GSK3 β activity, more particularly of neurodegenerative diseases. More specifically, the object is to provide novel compounds useful as an active ingredient of a medicament that enables prevention and/or treatment of neurodegenerative diseases such as Alzheimer's disease.

Thus, the inventors of the present invention have identified compounds possessing inhibitory activity against GSK3 β . As a result, they found that compounds represented by the following formula (I) had the desired activity and were useful as an active ingredient of a medicament for preventive and/or therapeutic treatment of the aforementioned diseases.

The present invention thus provides as an object of the invention the pyrimidone derivatives represented by formula (I) or salts thereof, solvates thereof or hydrates thereof:

(I)

wherein:

- X represents two hydrogen atoms, a sulphur atom, an oxygen atom or a C₁₋₂ alkyl group and a hydrogen atom;
- Z represents a bond, an oxygen atom, a nitrogen atom substituted by a hydrogen atom or a C₁₋₃ alkyl group, a sulphur atom, a methylene group optionally substituted by one or two groups chosen from a C₁₋₆ alkyl group, a hydroxyl group, a C₁₋₆ alkoxy group, a C₁₋₂ perhalogenated alkyl group or an amino group;
- R1 represents a 2, 4 or 5-pyrimidine ring or a 4-pyridine ring, the ring being optionally substituted by a C₁₋₆ alkyl group, a C₁₋₆ alkoxy group or a halogen atom;
- R2 represents a 4-15 membered heterocyclic group, this group being optionally

substituted by 1 to 4 substituents selected from a C₁₋₆ alkyl group, a halogen atom, a C₁₋₂ perhalogenated alkyl group, a C₁₋₆ halogenated alkyl group, a hydroxyl group, a C₁₋₆ alkoxy group, a C₁₋₂ perhalogenated alkoxy group, a C₁₋₆ halogenated alkoxy group, a nitro, a cyano, an amino, a C₁₋₆ monoalkylamino group, a C₂₋₁₂ dialkylamino group, a S-(C₁₋₆-alkyl) group, an heterocyclic group, an aryl group, an heteroaryl group, a O-aryl group or a S-aryl group, the above-mentioned groups being optionally substituted by 1 to 4 substituents selected from a C₁₋₆ alkyl group, a halogen atom, a C₁₋₆ alcoxy group, a C(O)O (C₁₋₆-alkyl) or a C(O)O (aryl) group, the aryl optionally substituted by 1 to 4 substituents selected from a C₁₋₆ alkyl group, a halogen atom, a C₁₋₆ alcoxy group ;

R3 represents a hydrogen atom, a C₁₋₆ alkyl group or a halogen atom;

R4 represents a hydrogen atom or a C₁₋₆ alkyl group;

R5 represents a hydrogen atom, a C₁₋₆ alkyl group;

R6 represents a hydrogen atom, a C₁₋₆ alkyl group;

R7 represents a hydrogen atom or a C₁₋₆ alkyl group; and

n represents 0 to 3 and m represents 0 in the form of a free base or of an addition salt with an acid.

According to another aspect of the present invention, there is provided a medicament comprising as an active ingredient a substance selected from the group consisting of the pyrimidone derivatives represented by formula (I) and the physiologically acceptable salts thereof, and the solvates thereof and the hydrates thereof. As preferred embodiments of the medicament, there are provided the aforementioned medicament which is used for preventive and/or therapeutic treatment of diseases caused by abnormal GSK3 β activity, and the aforementioned medicament which is used for preventive and/or therapeutic treatment of neurodegenerative diseases and in addition other diseases such as:

Non-insulin dependent diabetes (such as diabetes type II) and obesity; malaria, bipolar disorders (manic depressive illness); schizophrenia; alopecia or cancers such as colorectal, prostate, breast cancer, non-small cell lung carcinoma, thyroid cancer, T or B-cell leukaemia, several virus-induced tumours. The medicament could also find an application in regenerative medicine, Pemphigus vulgaris, neutropenia and bone diseases.

As further embodiments of the present invention, there are provided the

aforementioned medicament wherein the diseases are neurodegenerative diseases and are selected from the group consisting of Alzheimer's disease, Parkinson's disease, tauopathies (e.g. Fronto temporal dementia, corticobasal degeneration, Pick's disease, progressive supranuclear palsy), Wilson's disease,
5 Huntington's disease, Prion disease and other dementia including vascular dementia; acute stroke and others traumatic injuries; cerebrovascular accidents (e.g. age related macular degeneration); brain and spinal cord trauma; amyotrophic lateral sclerosis; peripheral neuropathies; retinopathies and glaucoma, and the aforementioned medicament in the form of pharmaceutical
10 composition containing the above substance as an active ingredient together with one or more pharmaceutical additives.

As further embodiments of the present invention, there are provided the aforementioned medicament wherein the bones diseases are osteoporosis.

The present invention further provides an inhibitor of GSK3 β activity comprising as
15 an active ingredient a substance selected from the group consisting of the pyrimidone derivatives of formula (I) and the salts thereof, and the solvates thereof and the hydrates thereof.

According to further aspects of the present invention, there is provided a method for preventive and/or therapeutic treatment of neurodegenerative diseases
20 caused by abnormal GSK3 β activity, which comprises the step of administering to a patient a preventively and/or therapeutically effective amount of a substance selected from the group consisting of pyrimidone derivatives of formula (I) and the physiologically acceptable salts thereof, and the solvates thereof and the hydrates thereof; and a use of a substance selected from the group consisting of the
25 pyrimidone derivatives of formula (I) and the physiologically acceptable salts thereof, and the solvates thereof and the hydrates thereof for the manufacture of the aforementioned medicament.

As used herein, the C₁₋₆ alkyl group represents a straight or branched or cyclo alkyl group having 1 to 6 carbon atoms, for example, methyl group, ethyl
30 group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, 1,1-dimethylpropyl group, n-hexyl group, isoheptyl group, and the like.

The 4-15 membered heterocyclic group represents an unsaturated, fully

saturated or partially saturated mono- or polycyclic group (for example 4 to 15 members) containing carbons atoms and one to seven heteroatoms chosen from N, O, and S. Examples of heterocyclic groups include pyrrole, furane, thiophene, pyrazole, imidazole, triazole, tetrazole, oxazole, isoxazole, oxadiazole, thiazole, 5 isothiazole, thiadiazole, pyridine, pyrimidine, pyrazine, pyridazine, triazine, furofuran, thienothiophen, pyrrolopyrrole, furopyrrole, thienopyrrole, pyrroloimidazole, furoimidazole, thienoimidazole, pyrrolopyrazole, furopyrazole, thienopyrazole, pyrrolotriazole, furotriazole, thienotriazole, imidazoimidazole, furotetrazole, thienotetrazole, imidazopyrazole, pyrrolo-oxazole, pyrrolo-thiazole, 10 imidazotriazole, imidazo-oxazole, imidazo-thiazole, triazolotriazole, pyrazolo-oxazole, pyrazolo-thiazole, pyrrolotetrazole, triazolo-oxazole, triazolo-thiazole, imidazotetrazole, furo-oxazole, furo-thiazole, pyrazolotetrazole, oxazolo-oxazole, oxazolo-thiazole, triazolotetrazole oxazoloisoxazole oxazoloisothiazole, pyrrolo-isoxazole, pyrrolo-isothiazole, imidazo-isoxazole, imidazo-isothiazole, pyrazolo- 15 isoxazole, pyrazolo-isothiazole, triazolo-isoxazole, triazolo-isothiazole, isoxazolo-isoxazole, isoxazolo-isothiazole, furo-isoxazole, furo-isothiazole, isoxazolo-oxadiazole, isoxazolo-thiadiazole, pyrrolo-oxadiazole, pyrrolothiadiazole, imidazo-oxadiazole, imidazo-thiadiazole, pyrazole-oxadiazole, pyrazolothiadiazole, triazolo-oxadiazole, triazolo-thiadiazole, furo-oxadiazole, furo-thiadiazole, isoxazolo- 20 oxadiazole, isoxazolo-thiadiazole, oxazolo-oxadiazole, oxazolo-thiadiazole, isothiazolo-thiadiazole, indole, isoindole, benzimidazole, indazole, indolizine, benzofuran, isobenzofuran, benzothiophene, benzo[c]thiophen, pyrrolopyridine, imidazopyridine, pyrazolopyridine, triazolopyridine, tetrazolopyridine, pyrrolopyrimidine, imidazopyrimidine, pyrazolopyrimidine, triazolopyrimidine, 25 tetrazolopyrimidine, pyrrolopyrazine, imidazopyrazine, pyrazolopyrazine, triazolopyrazine, tetrazolopyrazine, pyrrolopyridazine, imidazopyridazine, pyrazolopyridazine, triazolopyridazine, tetrazolopyridazine, pyrrolotriazine, imidazotriazine, pyrazolotriazine, triazolotriazine, tetrazolotriazine, furopyridine, furopyrimidine, furopyrazine, fuopyridazine, furotriazine, oxazolopyridine, 30 oxazolopyrimidine, oxazolopyrazine, oxazolopyridazine, oxazolotriazine, isoxazolopyridine, isoxazolopyrimidine, isoxazolopyrazine, isoxazolopyridazine, isoxazolotriazine, oxadiazolopyridine, oxadiazolopyrimidine, oxadiazolopyrazine, oxadiazolopyridazine, oxadiazolotriazine, benzoxazole, benzisoxazole,

benzoxadiazole, thienopyridine, thienopyrimidine, thienopyrazine,
thienopyridazine, thienotriazine, thiazolopyridine, thiazolopyrimidine,
thiazolopyrazine, thiazolopyridazine, thiazolotriazine, isothiazolopyridine,
isothiazolopyrimidine, isothiazolopyrazine, isothiazolopyridazine,

5 isothiazolotriazine, thiadiazolopyridine, thiadiazolopyrimidine, thiadiazolopyrazine,
thiadiazolopyridazine, thiadiazolotriazine, benzothiazole, benzoisothiazole,
benzothiadiazole, quinoline, isoquinoline, cinnoline, phthalazine, quinoxaline,
quinazoline, naphthyridine, benzotriazine, pyridopyrimidine, pyridopyrazine,
pyridopyridazine, pyridotriazine, pyrimidopyrimidine, pyrimidopyrazine,
10 pyrimidopyridazine, pyrimidotriazine, pyrazinopyrazine, pyrazinopyridazine,
pyrazinotriazine, pyridazinopyridazine, pyridazinotriazine, triazinotriazine,
benzotriazole, benzodioxepine, benzodioxane, benzodioxine, diazepane. These
heterocycles can exist also in a partially or fully saturated form, for example as an
illustration dihydrobenzofuran, tetrahydroquinoline etc...

15 The heteroaryl group is an insaturated 4-15 membered heterocyclic group;
The heterocyclic group is a saturated or partially saturated 4-15 membered
heterocyclic group;

The 6-10 membered heterocyclic group represents an unsaturated, fully
saturated or partially saturated mono- or polycyclic group (for example 6 to 10
20 members) containing carbons atoms and one to seven heteroatoms chosen from
N, O, and S. Examples of heterocyclic groups include pyridine, pyrimidine,
pyrazine, pyridazine, triazine, indole, isoindole, benzimidazole, indazole,
indolizine, benzofuran, isobenzofuran, benzothiophene, benzo[c]thiophen,
pyrrolopyridine, imidazopyridine, pyrazolopyridine, triazolopyridine,
25 tetrazolopyridine, pyrrolopyrimidine, imidazopyrimidine, pyrazolopyrimidine,
triazolopyrimidine, tetrazolopyrimidine, pyrrolopyrazine, imidazopyrazine,
pyrazolopyrazine, triazolopyrazine, tetrazolopyrazine, pyrrolopyridazine,
imidazopyridazine, pyrazolopyridazine, triazolopyridazine, tetrazolopyridazine,
pyrrolotriazine, imidazotriazine, pyrazolotriazine, triazolotriazine, tetrazolotriazine,
30 furopyridine, fuopyrimidine, fuopyrazine, fuopyridazine, furotriazine,
oxazolopyridine, oxazolopyrimidine, oxazolopyrazine, oxazolopyridazine,
oxazolotriazine, isoxazolopyridine, isoxazolopyrimidine, isoxazolopyrazine,
isoxazolopyridazine, isoxazolotriazine, oxadiazolopyridine, oxadiazolopyrimidine,

oxadiazolopyrazine, oxadiazolopyridazine, oxadiazolotriazine, benzoxazole, benzisoxazole, benzoxadiazole, thienopyridine, thienopyrimidine, thienopyrazine, thienopyridazine, thienotriazine, thiazolopyridine, thiazolopyrimidine, thiazolopyrazine, thiazolopyridazine, thiazolotriazine, isothiazolopyridine, 5 isothiazolopyrimidine, isothiazolopyrazine, isothiazolopyridazine, isothiazolotriazine, thiadiazolopyridine, thiadiazolopyrimidine, thiadiazolopyrazine, thiadiazolopyridazine, thiadiazolotriazine, benzothiazole, benzoisothiazole, benzothiadiazole, quinoline, isoquinoline, cinnoline, phthalazine, quinoxaline, quinazoline, naphthyridine, benzotriazine, pyridopyrimidine, pyridopyrazine, 10 pyridopyridazine, pyridotriazine, pyrimidopyrimidine, pyrimidopyrazine, pyrimidopyridazine, pyrimidotriazine, pyrazinopyrazine, pyrazinopyridazine, pyrazinotriazine, pyridazinopyridazine, pyridazinotriazine, triazinotriazine, benzotriazole, benzodioxepine, benzodioxane, benzodioxine, diazepane. These heterocycles can exist also in a partially or fully saturated form, for example as an 15 illustration dihydrobenzofuran, tetrahydroquinoline etc...

The C₁₋₆ alkoxy group represents an alkyloxy group having 1 to 6 carbon atoms for example, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, and the like;

20 The halogen atom represents a fluorine, chlorine, bromine or iodine atom;

The C₁₋₂ perhalogenated alkyl or alkoxy group represents an alkyl or alkoxy group wherein all the hydrogen atoms have been substituted by a halogeno, for example a CF₃ or C₂F₅; O-CF₃ or O-C₂F₅;

25 The C₁₋₆ halogenated alkyl group represents an alkyl group wherein at least one hydrogen has not been substituted by an halogen atom;

The C₁₋₆ halogenated alkoxy group represents an alkyl group wherein at least one hydrogen has not been substituted by an halogen atom;

30 The C₁₋₆ monoalkylamino group represents an amino group substituted by one C₁₋₆ alkyl group, for example, methylamino group, ethylamino group, propylamino group, isopropylamino group, butylamino group, isobutylamino group, tert-butylamino group, pentylamino group, isopentylamino group and the like;

The C₂₋₁₂ dialkylamino group represents an amino group substituted by two C₁₋₆ alkyl groups, for example, dimethylamino group, ethylmethylamino group,

diethylamino group, methylpropylamino group and diisopropylamino group and the like;

The aryl group represents an aromatic mono or bicyclic ring (for example 6 to 10 members) such as phenyl, naphthyl, pentalene, azulene, heptalene, 5 indacene, acenaphthylene, benzocyclooctatetraene, bicyclo[4.2.0]octa-1,3,5,7-tetraene, bicyclo[5.1.0]octa-1,3,5,7-tetraene, bicyclo[6.2.0]deca-1,3,5,7,9-pentaene.

A leaving group L represents a group which could be easily cleaved and substituted, such a group may be for example a tosyl, a mesyl, a bromide and the 10 like.

The compounds represented by the aforementioned formula (I) may form a salt. Examples of the salt include, when an acidic group exists, salts of alkali metals and alkaline earth metals such as lithium, sodium, potassium, magnesium, and calcium; salts of ammonia and amines such as methylamine, dimethylamine, 15 trimethylamine, dicyclohexylamine, tris(hydroxymethyl)aminomethane, N,N-bis(hydroxyethyl)piperazine, 2-amino-2-methyl-1-propanol, ethanolamine, N-methylglucamine, and L-glucamine; or salts with basic amino acids such as lysine, δ-hydroxylysine, and arginine. The base-addition salts of acidic compounds are prepared by standard procedures well known in the art.

When a basic group exists, examples include salts with mineral acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid; salts with organic acids such as methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, acetic acid, propionic acid, tartaric acid, fumaric acid, maleic acid, malic acid, oxalic acid, succinic acid, citric acid, benzoic acid, mandelic acid, 25 cinnamic acid, lactic acid, glycolic acid, glucuronic acid, ascorbic acid, nicotinic acid, and salicylic acid; or salts with acidic amino acids such as aspartic acid, and glutamic acid.

The acid-addition salts of the basic compounds are prepared by standard procedures well known in the art which include, but are not limited thereto, 30 dissolving the free base in an aqueous alcohol solution containing the appropriate acid and isolating the salt by evaporating the solution, or by reacting the free base and an acid in an organic solvent, in which case the salt separates directly, or is precipitated with a second organic solvent, or can be obtained by concentration of

the solution. The acids which can be used to prepare the acid-addition salts include preferably those which produce, when combined with the free base, pharmaceutically-acceptable salts, that is, salts whose anions are relatively innocuous to the animal organism in pharmaceutical doses of the salts, so that the

- 5 beneficial properties inherent in the free base are not compromised by side effects ascribable to the anions. Although medicinally acceptable salts of the basic compounds are preferred, all acid-addition salts are within the scope of the present invention.

In addition to the pyrimidone derivatives represented by the
10 aforementioned formula (I) and salts thereof, their solvates and hydrates also fall within the scope of the present invention.

The pyrimidone derivatives represented by the aforementioned formula (I)
may have one or more asymmetric carbon atoms. As for the stereochemistry of
such asymmetric carbon atoms, they may independently be in either (R) and (S)
15 configuration, and the derivative may exist as stereoisomers such as optical
isomers, or diastereoisomers. Any stereoisomers in pure form, any mixtures of
stereoisomers, racemates and the like fall within the scope of the present
invention.

An object of the present invention includes also compounds represented by
20 formula (I) with m being 0 and defined by the different subsets (1) to (10) taken
separately or mixed:

- (1) R1 represents a 4- or 5-pyrimidine ring or 4-pyridine ring; the ring being optionally substituted by a C₁₋₂ alkyl group, a C₁₋₂ alkoxy group or a halogen atom; and/or
25 (2) R2 represents a 6-10 membered heterocyclic group, this group being optionally substituted by 1 to 4 substituents selected from a C₁₋₆ alkyl group, a halogen atom, a C₁₋₂ perhalogenated alkyl group, a C₁₋₆ halogenated alkyl group, a hydroxyl group, a C₁₋₆ alkoxy group, a C₁₋₂ perhalogenated alkoxy group, a C₁₋₆ halogenated alkoxy group, a nitro, a cyano, an amino, a C₁₋₆ monoalkylamino group, a C₂₋₁₂ dialkylamino group, a S-(C₁₋₆-alkyl) group, an heterocyclic group, an aryl group, an heteroaryl group, a O-aryl group or a S-aryl group, the above-mentioned groups being optionally substituted by 1 to 4 substituents selected from a C₁₋₆ alkyl group, a halogen atom, a C₁₋₆ alcoxy group, a C(O)O (C₁₋₆-alkyl) or a

C(O)O (phenyl) group, the phenyl optionally substituted by 1 to 4 substituents selected from a C₁₋₆ alkyl group, a halogen atom, a C₁₋₆ alkoxy group;

(3) R3 represents a hydrogen atom, a C₁₋₆ alkyl group or a halogen atom; and/or

(4) R4 represents a hydrogen atom or a C₁₋₆ alkyl group; and/or

5 (5) R5 represents a hydrogen atom, a C₁₋₆ alkyl group; and/or

(6) R6 represents a hydrogen atom, a C₁₋₆ alkyl group; and/or

(7) R7 represents a hydrogen atom or a C₁₋₆ alkyl group; and/or

(8) X represents two hydrogen atoms, an oxygen atom or a C₁₋₂ alkyl group and a hydrogen atom; and/or

10 (9) Z represents a bond, an oxygen atom, a nitrogen atom substituted by a hydrogen atom or a C₁₋₃ alkyl group, a methylene group optionally substituted by one or two groups chosen from a C₁₋₃ alkyl group, a hydroxyl group, a C₁₋₃ alkoxy group, a C₁₋₂ perhalogenated alkyl group or an amino group; and/or

(10) n represents 0 to 3 in the form of a free base or of an addition salt with an acid.

15 Another object of the present invention includes compounds represented by formula (I) with m is 0 and defined by the different subsets (1) to (10) taken separately or mixed:

(1) R1 represents an unsubstituted 4-pyrimidine ring; and/or

20 (2) R2 represents a benzodioxine ring, a pyrimidine ring, a pyridazine ring, naphthyridine ring, pyridine ring, dihydrobenzodioxine, benzofuran, dihydrobenzofuran ring, benzothiazole ring, benzothiophen ring, benzodioxole, dihydrobenzodioxole ring, imidazopyridine ring ; the rings being optionnaly partially or fully saturated and or being optionally substituted by 1 to 4 substituents selected from hydroxyl group, an amino, a C₁₋₆ alkyl group, a S-(C₁₋₆ alkyl) group, a halogen atom, a C₁₋₂ perhalogenated alkyl group, C₁₋₆ alkoxy group, a C₁₋₂ perhalogenated alkoxy group or an aryl group optionally substituted by a halogen atom; and/or

(3) R3 represents a hydrogen atom ; and/or

30 (4) R4 represents a methyl; and/or

(5) R5 represents a hydrogen atom or a methyl; and/or

(6) R6 represents a hydrogen atom; and/or

(7) R7 represents a hydrogen atom; and/or

- (8) X represents an oxygen atom; and/or
(9) Z represents a bond, or a nitrogen atom substituted by a hydrogen atom;
and/or
(10) n and m represent 0, in the form of a free base or of an addition salt with
5 an acid.

Examples of compounds of the present invention are shown in table 1, hereinafter. However, the scope of the present invention is not limited by these compounds. The nomenclature is given according to IUPAC rules.

A further object of the present invention includes the group of compound of
10 table 1 of formula as defined hereunder:

1. 8-Amino-7-chloro-2,3-dihydro-benzo[1,4]dioxine-5-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
2. 5-Chloro-2-methylsulfanyl-pyrimidine-4-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
3. 3,6-Dimethoxy-pyridazine-4-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
4. [1,5]Naphthyridine-2-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
5. 2-Methoxy-N-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-
20 nicotinamide
6. Pyridine-2-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
7. 6-Fluoro-4H-benzo[1,3]dioxine-8-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
8. [1,6]Naphthyridine-5-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
9. N-(1-Methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-nicotinamide
10. 6-Chloro-pyridine-2-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
- 30 11. 2,3-Dihydro-benzofuran-7-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
12. 2,2-Dimethyl-2,3-dihydro-benzofuran-7-carboxylic acid (1-methyl-6-oxo-

- 1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
13. 5-Bromo-benzofuran-2-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
14. Benzothiazole-2-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
- 5 15. Benzo[b]thiophene-2-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
16. 2,2-Difluoro-benzo[1,3]dioxole-4-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
- 10 17. (+/-) [1,5]Naphthyridine-2-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide
18. 3-Hydroxy-pyridine-2-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
19. (+/-) 6-Chloro-pyridine-2-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide
- 15 20. (+/-) 5-Chloro-2-methylsulfanyl-pyrimidine-4-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide
21. 4-Methoxy-pyridine-2-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
- 20 22. (+/-) Pyridine-2-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide
23. (+/-) 6-(2-Fluoro-phenyl)-pyridine-2-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide
24. (+/-) 3-Methoxy-pyridine-2-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide
- 25 25. (+/-) 2-Methoxy-N-[1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-nicotinamide
26. (+/-) Benzo[b]thiophene-2-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide
- 30 27. 3H-Imidazo[4,5-b]pyridine-6-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
28. (+/-) 4-Methoxy-pyridine-2-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide

29. (+)-4-Methoxy-pyridine-2-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide

30. (-)-4-Methoxy-pyridine-2-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide

5 31. 6-Fluoro-4H-benzo[1,3]dioxine-8-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide

32. 8-Amino-7-chloro-2,3-dihydro-benzo[1,4]dioxine-5-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide

10 33. 5-Bromo-2-methylsulfanyl-pyrimidine-4-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide

34. (+)-2-Methoxy-N-[1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-nicotinamide

35. (-)-2-Methoxy-N-[1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-nicotinamide

15 36. 2,6-Dimethoxy-N-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-nicotinamide

As a further object, the present invention concerns also methods for preparing the pyrimidone compounds represented by the aforementioned formula (I).

These compounds can be prepared, for example, according to methods explained
20 below.

Preparation method

Pyrimidone compounds represented by the aforementioned formula (I), may be prepared according to the method described in the scheme 1.

Scheme 1

(In the above scheme the definitions of R1, R2, R3, R4, R5, R6, R7, m, n, X and Z are the same as those already described for compound of formula (I)).

Following this method, the pyrimidone derivative represented by the above formula (III), wherein R₁, R₃, R₄, R₅, R₆ and m are as defined for compound of formula (I), is allowed to react with a base such as triethylamine, sodium carbonate or potassium carbonate in a solvent such as tetrahydrofuran,

- 5 *N*-methylpyrrolidone, *N,N*-dimethylacetamide, dimethylformamide or chloroform at a suitable temperature ranging from 0 to 130°C under ordinary air, then with a compound of formula (II), wherein R₂, X, Z and n are as defined for compound of formula (I) and L represents a leaving group preferably chlorine, bromide, to obtain the compound of the aforementioned formula (I).

10 Alternatively compounds of formula (I) wherein X represents two hydrogen atoms may be prepared by reductive amination of a compound of formula (II) wherein X represents an oxygen atom and L represents a hydrogen atom, by a compound of formula (III) wherein R1, R3, R4, R5, R6 and m are as defined for compound of formula (I) and R7 is a hydrogen, according to well known methods
15 to one skilled in the art.

Compound of formula (II) is commercially available or may be synthesized according to well-known methods to one skilled in the art.

Compound of formula (III) may be prepared according to the method defined in scheme 2.

Scheme 2

(In the above scheme the definitions of R1, R3, R4, R5, R6, and m are the same as already described.)

According to this method, the 3-ketoester of formula (IV), wherein R1 and R3 are as defined for compound of formula (I), R is an alkyl group such as for example methyl or ethyl, is allowed to react with a compound of formula (V) wherein R5, R6, and m are as defined for compound of formula (I) and Pg is a suitable

protecting group such as for example a phthalimido group or an alkoxy carbonyl group. The reaction may be carried out in the presence of a base such as potassium carbonate or sodium hydroxyde, in an alcoholic solvent such as methanol, ethanol and the like or without, at a suitable temperature ranging from

- 5 25° to 140°C under ordinary air, to obtain the compound of the aforementioned formula (VI). Compound of formula (VI) may be alkylated with a compound of formula R4L, wherein R4 is as defined for compound of formula (I), L represents a leaving group preferably chlorine or bromide, in presence of a base such as potassium carbonate or sodium hydride, in a solvent such as dioxane or
10 dimethylformamide, to obtain, after removal of the protecting group (Pg), compound of formula (III).

Additionally compound of formula (III) wherein R3 represents a hydrogen atom may be halogenated in order to give compounds of formula (III) wherein R3 is a halogen atom such as a bromine atom or a chlorine atom. The reaction may be
15 carried out in an acidic medium such as acetic acid or propionic acid, in presence of bromosuccinimide or chlorosuccinimide, or bromine.

In addition, compounds of formula (IV) wherein R3 represents a fluorine atom may be obtained by analogy to the method described in Tetrahedron Letters, Vol.30, No.45, pp 6113-6116, 1989.

- 20 In addition, compounds of formula (IV) wherein R3 represents a hydrogen atom may be obtained by analogy to the method described in patent DE 2705582.

As a further object, the present invention concerns also the compounds of formula (III) as intermediates of compounds of formula (I).

- 25 Compound of formula (IV) is commercially available or may be synthesized according to well-known methods to one skilled in the art.

For example compounds of formula (IV), wherein R1 represents a pyrimidine ring, optionally substituted by a C₁₋₆ alkyl group, C₁₋₆ alkoxy group or a halogen atom, can be prepared by reacting respectively an isonicotinic acid or a pyrimidine-carboxylic acid, optionally substituted by a C₁₋₆ alkyl group, C₁₋₆ alkoxy group or a halogen, with the corresponding malonic acid monoester. The reaction can be carried out using methods well known to one skilled in the art, such as for example in presence of a coupling agent such as 1,1'-carbonylbis-1*H*-imidazole in

a solvent such as tetrahydrofuran at a temperature ranging from 20 to 70°C.

Compound of formula (V) may be synthesized according to well-known methods of one skilled in the art.

- For example compound of formula (V), wherein m, R5 and R6 are as defined for compound of formula (I) and a suitable protecting group Pg such as for example a phthalimido group or alkoxy carbonyl group, may be prepared according to the method defined in scheme 3, starting from compound of formula (VII). The conditions which may be used are given in the chemical examples.

Scheme 3

10

Compound of formula (VII) is commercially available or may be synthesized according to well-known methods of one skilled in the art.

Compound of formula (VIII) may be synthesized according to the methods described in Bulletin of the Chemical Society of Japan (1979), 52(10), 2938-41.

15

- Compound of formula (V) may be synthesized according to the methods described in WO96/14844 and Journal of Organic Chemistry (1981), 46(12), 2455-65. Alternatively compound of formula (III), wherein m represents 0, wherein R5 and R6 are as defined for compound of formula (I), may be prepared according to the method defined in scheme 4.

Scheme 4

(In the above scheme the definitions of R1, R3, R4, R5 and R6 are the same as already described.)

- 5 Compound of formula (IX) is commercially available or may be synthesized according to well-known methods to one skilled in the art.

Compound of formula (XII) may be synthesized by analogy to the method described in Ger. (East) (1986), 3 pp, DD 238974.

In the above reactions protection or deprotection of a functional group may sometimes be necessary. A suitable protecting group Pg can be chosen depending on the type of the functional group, and a method described in the literature may be applied. Examples of protecting groups, of protection and deprotection methods are given for example in Protective groups in Organic Synthesis Greene et al., 3rd Ed. (John Wiley & Sons, Inc., New York) 1999.

15 The compounds of the present invention have inhibitory activity against GSK3 β . Accordingly, the compounds of the present invention are useful as an active ingredient for the preparation of a medicament, which enables preventive and/or therapeutic treatment of a disease caused by abnormal GSK3 β activity and more particularly of neurodegenerative diseases such as Alzheimer's disease. In

addition, the compounds of the present invention are also useful as an active ingredient for the preparation of a medicament for preventive and/or therapeutic treatment of neurodegenerative diseases such as Parkinson's disease, tauopathies (e.g. Fronto temporal dementia, corticobasal degeneration, Pick's disease, progressive supranuclear palsy), Wilson's disease, Huntington's disease, Prion disease and other dementia including vascular dementia; acute stroke and others traumatic injuries; cerebrovascular accidents (e.g. age related macular degeneration); brain and spinal cord trauma; amyotrophic lateral sclerosis, peripheral neuropathies; retinopathies and glaucoma; and other diseases such as non-insulin dependent diabetes (such as diabetes type II) and obesity; malaria, manic depressive illness; schizophrenia; alopecia; cancers such as colorectal, prostate breast cancer, non-small cell lung carcinoma, thyroid cancer, T or B-cell leukemia, several virus-induced tumors and in bone related pathologies. The medicament could also find an application in regenerative medicine.

The present invention further relates to a method for treating neurodegenerative diseases caused by abnormal activity of GSK3 β and of the aforementioned diseases which comprises administering to a mammalian organism in need thereof an effective amount of a compound of the formula (I).

As the active ingredient of the medicament of the present invention, a substance may be used which is selected from the group consisting of the compound represented by the aforementioned formula (I) and pharmacologically acceptable salts thereof, and solvates thereof and hydrates thereof. The substance, per se, may be administered as the medicament of the present invention, however, it is desirable to administer the medicament in a form of a pharmaceutical composition which comprises the aforementioned substance as an active ingredient and one or more pharmaceutical additives. As the active ingredient of the medicament of the present invention, two or more of the aforementioned substances may be used in combination. The above pharmaceutical composition may be supplemented with an active ingredient of another medicament for the treatment of the above mentioned diseases. The type of pharmaceutical composition is not particularly limited, and the composition may be provided as any formulation for oral or parenteral administration. For example, the pharmaceutical composition may be formulated, for example, in the form of

pharmaceutical compositions for oral administration such as granules, fine granules, powders, hard capsules, soft capsules, syrups, emulsions, suspensions, solutions and the like, or in the form of pharmaceutical compositions for parenteral administrations such as injections for intravenous, intramuscular, or subcutaneous

5 administration, drip infusions, transdermal preparations, transmucosal preparations, nasal drops, inhalants, suppositories and the like. Injections or drip infusions may be prepared as powdery preparations such as in the form of lyophilized preparations, and may be used by dissolving just before use in an appropriate aqueous medium such as physiological saline. Sustained-release
10 preparations such as those coated with a polymer may be directly administered intracerebrally.

Types of pharmaceutical additives used for the manufacture of the pharmaceutical composition, content ratios of the pharmaceutical additives relative to the active ingredient, and methods for preparing the pharmaceutical
15 composition may be appropriately chosen by those skilled in the art. Inorganic or organic substances, or solid or liquid substances may be used as pharmaceutical additives. Generally, the pharmaceutical additives may be incorporated in a ratio ranging from 1% by weight to 90% by weight based on the weight of an active ingredient.

20 Examples of excipients used for the preparation of solid pharmaceutical compositions include, for example, lactose, sucrose, starch, talc, cellulose, dextrin, kaolin, calcium carbonate and the like. For the preparation of liquid compositions for oral administration, a conventional inert diluent such as water or a vegetable oil may be used. The liquid composition may contain, in addition to the inert diluent,
25 auxiliaries such as moistening agents, suspension aids, sweeteners, aromatics, colorants, and preservatives. The liquid composition may be filled in capsules made of an absorbable material such as gelatin. Examples of solvents or suspension mediums used for the preparation of compositions for parenteral administration, e.g. injections, suppositories, include water, propylene glycol, polyethylene glycol, benzyl alcohol, ethyl oleate, lecithin and the like. Examples of base materials used for suppositories include, for example, cacao butter, emulsified cacao butter, lauric lipid, witepsol.
30

The dose and frequency of administration of the medicament of the

present invention are not particularly limited, and they may be appropriately chosen depending on conditions such as a purpose of preventive and/or therapeutic treatment, a type of a disease, the body weight or age of a patient, severity of a disease and the like. Generally, a daily dose for oral administration to 5 an adult may be 0.01 to 1,000 mg (the weight of an active ingredient), and the dose may be administered once a day or several times a day as divided portions, or once in several days. When the medicament is used as an injection, administrations may preferably be performed continuously or intermittently in a daily dose of 0.001 to 100 mg (the weight of an active ingredient) to an adult.

Chemical Examples**Example 1 (Compound No. 5 of table 1)**

2-Methoxy-N-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-nicotinamide

5 1.1 2-Methyl-1H-[4,4']bipyrimidinyl-6-one

To a suspension of 200g (2.11 mol) of acetamidine hydrochloride (1 : 1) in 1.2 L of ethanol were added 84g (2.11 mol) of sodium hydroxyde and 410 g (2.11 mol) of ethyl 3-(4-pyrimidinyl)-3-oxopropionate (prepared by analogy to the method described in patent DE 2705582). The resulting mixture was stirred under reflux for 10 12h. The cooled solution was evaporated to remove solvent. The mixture was treated with water and the precipitate was filtered, washed with diethyl ether and ethyl acetate. The precipitate was stirred in a mixture of ethanol/water in the proportions 2/1 for 30 mn to afford 200g (50%) of the desired compound as a brown powder.

15 Mp : 320-322°C.

RMN ¹H (DMSO-d⁶ ; 200 MHz)

δ (ppm) : 12.70 (br s, 1H) ; 9.30 (s, 1H) ; 9.00 (d, 1H) ; 8.20 (d, 1H) ; 7.15 (s, 1H) ; 2.40 (s, 3H).

1.2 1,2-Dimethyl-1H-[4,4']bipyrimidinyl-6-one

20 To a suspension of 96g (0.51 mol) of 2-methyl-1H-[4,4']bipyrimidinyl-6-one in 480 mL of anhydrous dimethylformamide was added 77.55g (0.56 mol) of potassium carbonate. The resulting mixture was allowed to stir at room temperature for 15 mn, cooled at 0°C and 31.78mL (0.51 mol) of methyl iodide were added dropwise. The mixture was warmed at room temperature and stirred for 3h. Cooled water 25 was added and the mixture extracted with a mixture of chloroform/methanol in the proportions 90/10, dried and evaporated. The residue was triturated with diisopropyl ether and filtered to afford 81g (78%) of the pure product as a brown powder.

Mp : 179-181°C.

30 RMN ¹H (DMSO-d⁶ ; 200 MHz)

δ (ppm) : 9.30 (s, 1H) ; 9.00 (d, 1H) ; 8.25 (d, 1H) ; 7.20 (s, 1H) ; 3.55 (s, 3H) ; 2.60 (s, 3H).

1.3 2-Iodomethyl-1-methyl-1H-[4,4']bipyrimidinyl-6-one

To a suspension of 17g (0.084 mol) of 1,2-Dimethyl-1H-[4,4']bipyrimidinyl-6-one in 45 mL of water, were added 8.5mL of sulphuric acid, 25 mL of carbon tetrachloride and 9.6g (0.037 mol) of iodide. The resulting mixture was refluxed and 16.38mL of

5 hydrogen peroxide (35% solution in water) was added dropwise. The mixture was stirred under reflux for 5h and cooled at room temperature, 100 mL of saturated aqueous solution of ammonium chloride and 100 mL of chloroform were added. The resulting precipitate was filtered off, the filtrate extracted with chloroform, dried and evaporated to afford 13.6 g of product which was used as such in the next
10 step.

1.4 2-(1-Methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-isoindole-1,3-dione

To a solution of 14.80g (45.11 mmol) of 2-iodomethyl-1-methyl-1H-[4,4']bipyrimidinyl-6-one in 30 ml of anhydrous dimethylformamide was added

15 16.71g (90.21 mmol) of potassium phthalimide. The resulting mixture was stirred at 130°C for 3h. After cooling, water was added and the resulting mixture was stirred for 12h at 0°C. The precipitate was filtered, heated in ethyl acetate and the precipitate was filtered. The product was dried to give 5.3g (30%) of pure compound as a brown solid.

20 Mp : 273-275°C.

RMN ¹H (DMSO-d⁶ ; 200 MHz)

δ (ppm) : 9.40 (s, 1H) ; 8.85 (d, 1H) ; 8.20 (m, 4H) ; 7.50 (d, 1H) ; 7.40 (s, 1H) ; 5.35 (s, 2H) ; 3.80 (s, 3H) .

1.5 2-Aminomethyl-1-methyl-1H-[4,4']bipyrimidinyl-6-one

25 To a solution of 5.3g (15.26 mmol) of 2-(1-Methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-isoindole-1,3-dione in 40 ml of ethanol was added 2.37mL (76.30 mmol) of hydrazine hydrate and the resulting mixture was heated under reflux for 3h. The mixture was filtered and the solid obtained was triturated with dichloromethane for 24h, filtered, and the resulting filtrates were evaporated
30 to dryness, the residue was triturated with diethyl ether and filtered to give 1.8g of pure compound as a solid.

Mp : 153-155°C

RMN ^1H (DMSO-d 6 ; 200 MHz)

δ (ppm) : 9.40 (s, 1H) ; 9.10 (d, 1H) ; 8.50 (d, 1H) ; 7.30 (s, 1H) ; 3.95 (s, 2H) ; 3.50 (s, 3H) ; 2.15 (br d, 2H).

1.6 2-Methoxy-N-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-

5 nicotinamide

To a solution of 0.08g (0.37 mmol) of 2-aminomethyl-1-methyl-1H-[4,4']bipyrimidinyl-6-one in 7.37mL of dimethylformamid was added 0.056g (0.37 mmol) of 2-methoxy-nicotinic acid and 70 μL (0.44 mmol) of diethyl phosphorocyanide (DEPC). The resulting mixture was cooled at 0°C and 60 μL (0.41 mmol) of triethylamine was added. The reaction mixture was stirred at room temperature for 1h.

Water was added and the mixture extracted with dichloromethane. The extracts were dried and evaporated. The residue was triturated with diethyl ether and filtered to afford 0.088g (68%) of the desired compound as a white powder.

15 Mp : 269-271°C.

RMN ^1H (DMSO-d 6 ; 200 MHz)

δ (ppm) : 9.35 (s, 1H) ; 9.10 (m, 2H) ; 8.50 – 8.20 (m, 3H) ; 7.35 (s, 1H) ; 7.20 (m, 1H) ; 4.80 (d, 2H) ; 4.10 (s, 3H) ; 3.60 (s, 3H).

Example 2 (Compound No. 19 of table 1)

20 (+/-) 6-Chloro-pyridine-2-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide

2.1 2-Ethyl-1H-[4,4']bipyrimidinyl-6-one

By analogy with the method described in example 1 (step 1.1), using propionamidine hydrochloride (1:1) in place of acetamidine hydrochloride (1 : 1), 25 the compound was obtained as a brown powder.

Mp. : 227-229 °C.

RMN ^1H (DMSO-d 6 ; 200MHz)

δ (ppm) : 9.30 (s, 1H) ; 9.10 (d, 1H) ; 8.30 (d, 1H) ; 7.15 (s, 1H) ; 3.50 (brs, 1H) ; 2.70 (q, 2H) ; 1.35 (t, 3H).

30 2.2 2-Ethyl-1-methyl-1H-[4,4']bipyrimidinyl-6-one

By analogy with the method described in example 1 (step 1.2), using 2-ethyl 1H-

[4,4']bipyrimidinyl-6-one in place of 1,2-dimethyl-1H-[4,4']bipyrimidinyl-6-one , the compound was obtained as a brown powder.

Mp. : 150-152 °C.

RMN ^1H (DMSO-d 6 ; 200MHz)

- 5 δ (ppm) : 9.40 (s, 1H) ; 9.10 (d, 1H) ; 8.40 (d, 1H) ; 7.30 (s, 1H) ; 3.60 (s, 3H) ; 3.00 (q, 2H) ; 1.40 (t, 3H).

2.3 (+/-) 2-(1-*Iodo*-ethyl)-1-methyl-1H-[4,4']bipyrimidinyl-6-one

By analogy with the method described in example 1 (step 1.3), using 2-ethyl 1-methyl-1H-[4,4']bipyrimidinyl-6-one

- 10 in place of 1,2-dimethyl-1H-[4,4']bipyrimidinyl-6-one, the compound was used as such for the next step.

2.4 (+/-) 2-[1-(1-Methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-isoindole-1,3-dione

- 15 By analogy with the method described in example 1 (step 1.4), using(+/-) 2-(1-*ido*-ethyl)-1-methyl-1H-[4,4']bipyrimidinyl-6-one in place of 2-*iodomethyl*-1-methyl-1H-[4,4']bipyrimidinyl-6-one, the compound was used as such for the next step.

2.5 (+/-) 2-(1-Amino-ethyl)-1-methyl-1H-[4,4']bipyrimidinyl-6-one

- 20 By analogy with the method described in example 1 (step 1.5), using (+/-) 2-[1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-isoindole-1,3-dione in place of 2-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)methyl)-isoindole-1,3-dione, the compound was obtained as a brown powder.

Mp. : 158-160°C.

RMN ^1H (DMSO-d 6 ; 200MHz)

- 25 δ (ppm) : 9.40 (s, 1H) ; 9.20 (d, 1H) ; 8.70 (d, 1H) ; 8.50 (brs, 2H) ; 7.35 (s, 1H) ; 4.90 (m, 1H) ; 3.60 (s, 3H) ; 1.55 (d, 3H).

2.6 (+/-) 6-Chloro-pyridine-2-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro[4,4']bipyrimidinyl-2-yl)-ethyl]-amide

- 30 By analogy with the method described in example 1 (step 1.6), using (+/-) 2-(1-amino-ethyl)-1-methyl-1H-[4,4']bipyrimidinyl-6-one in place of 2-aminomethyl-1-methyl-1H-[4,4']bipyrimidinyl-6-one, the compound was obtained as a white

powder.

Mp.: 254-256°C.

RMN ^1H (DMSO-d 6 ; 200MHz)

δ (ppm) : 9.50 (d, 1H) ; 9.40 (s, 1H) ; 9.10 (d, 1H) ; 8.50 (m, 1H) ; 8.10 (m, 2H) ; 5 7.80 (m, 1H) ; 7.30 (s, 1H) ; 5.40 (m, 1H) ; 3.60 (s, 3H) ; 1.60 (d, 3H).

Example 3 (Compound No.29 of table 1)

(+)-4-Methoxy-pyridine-2-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide

0.147g (0.40 mmol) of (+/-)-4-methoxy-pyridine-2-carboxylic acid (1-methyl-6-oxo-10 1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide (compound 28 of table1) was separated by chiral preparative HPLC (Daicel CHIRALCEL OD-H 20μm 50x220) eluting with a mixture of isopropanol/n-heptane in the proportions 30/70 to give 0.052g of pure product obtained in the form of free base.

t_R : 29.65 min.

15 Mp. : 178.2°C. $[\alpha]_D^{20} = + 39.02^\circ$ (c=0.174, DMSO).

RMN ^1H (DMSO-d 6 ; 200MHz)

δ (ppm) : 9.35 (d, 1H) ; 9.08 (d, 1H) ; 9.04 (d, 1H) ; 8.42 (d, 1H) ; 8.22 (d, 1H) ; 7.60 (m, 1H) ; 7.50 (m, 1H) ; 7.30 (s, 1H) ; 5.42 (m, 1H) ; 3.85 (s, 3H) ; 3.62 (s, 3H). 1.60 (s, 3H).

20 Example 4 (Compound No. 30 of table 1)

(-)-4-Methoxy-pyridine-2-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide

0.147g (0.40 mmol) of (+/-)-4-methoxy-pyridine-2-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide (compound 28 of table1) was 25 separated by chiral preparative HPLC (Daicel CHIRALCEL OD-H 20μm 50x220) eluting with a mixture of isopropanol/n-heptane in the proportions 30/70 to give 0.058g of pure product obtained in the form of free base.

t_R : 43.18 min.

Mp. : 176.2°C. $[\alpha]_D^{20} = - 44.96^\circ$ (c=0.224, DMSO).

30 RMN ^1H (DMSO-d 6 ; 200MHz)

δ (ppm) : 9.35 (d, 1H) ; 9.08 (d, 1H) ; 9.04 (d, 1H) ; 8.42 (d, 1H) ; 8.22 (d, 1H) ; 7.60 (m, 1H) ; 7.50 (m, 1H) ; 7.30 (s, 1H) ; 5.42 (m, 1H) ; 3.85 (s, 3H) ; 3.62 (s,

3H). 1.60 (s, 3H).

A list of chemical structures and physical data for compounds of the aforementioned formula (I), illustrating the present invention, is given in table 1. The compounds have been prepared according to the methods of the examples.

- 5 In the table 1 Ph represents a phenyl group, (Rot.) indicates the levorotatory or dextrorotatory properties of the enantiomeric compound and m is 0.

(I)

Table 1

No.	Rot	R2	Z	R1	R4	R5	R6	R7	X	R3	n	Mp °C	salt
1			bond		CH ₃	H	H	H	O	H	0	304-306	Free base
2			bond		CH ₃	H	H	H	O	H	0	250-252	Free base
3			bond		CH ₃	H	H	H	O	H	0	249-251	Free base
4			bond		CH ₃	H	H	H	O	H	0	317-319	Free base
5			bond		CH ₃	H	H	H	O	H	0	269-271	Free base

No.	Rot	R2	Z	R1	R4	R5	R6	R7	X	R3	n	Mp °C	salt
6			bond		CH ₃	H	H	H	O	H	0	274-276	Free base
7			NH		CH ₃	H	H	H	O	H	0	273-275	Free base
8			NH		CH ₃	H	H	H	O	H	0	301-303	Free base
9			bond		CH ₃	H	H	H	O	H	0	200-202	Free base
10			bond		CH ₃	H	H	H	O	H	0	317-319	Free base
11			bond		CH ₃	H	H	H	O	H	0	282-284	Free base
12			bond		CH ₃	H	H	H	O	H	0	231-233	Free base
13			bond		CH ₃	H	H	H	O	H	0	287-289	Free base
14			bond		CH ₃	H	H	H	O	H	0	290-292	Free base
15			bond		CH ₃	H	H	H	O	H	0	258-260	Free base

No.	Rot	R2	Z	R1	R4	R5	R6	R7	X	R3	n	Mp °C	salt
16			bond		CH ₃	H	H	H	O	H	0	287-289	Free base
17	(+/-)		bond		CH ₃	CH ₃	H	H	O	H	0	257-258	Free base
18			bond		CH ₃	H	H	H	O	H	0	266-268	Free base
19	(+/-)		bond		CH ₃	CH ₃	H	H	O	H	0	254-256	Free base
20	(+/-)		bond		CH ₃	CH ₃	H	H	O	H	0	249-251	Free base
21			bond		CH ₃	H	H	H	O	H	0	268-270	Free base
22	(+/-)		bond		CH ₃	CH ₃	H	H	O	H	0	258-260	Free base
23	(+/-)		bond		CH ₃	CH ₃	H	H	O	H	0	240-242	Free base
24	(+/-)		bond		CH ₃	CH ₃	H	H	O	H	0	223-225	Free base
25	(+/-)		bond		CH ₃	CH ₃	H	H	O	H	0	197-199	Free base

No.	Rot	R2	Z	R1	R4	R5	R6	R7	X	R3	n	Mp °C	salt
26	(+/-)		bond		CH ₃	CH ₃	H	H	O	H	0	254-256	Free base
27			bond		CH ₃	H	H	H	O	H	0	303-305	Free base
28	(+/-)		bond		CH ₃	CH ₃	H	H	O	H	0	212-214	Free base
29	(+)		bond		CH ₃	CH ₃	H	H	O	H	0	178	Free base
30	(-)		bond		CH ₃	CH ₃	H	H	O	H	0	176	Free base
31	(+/-)		bond		CH ₃	CH ₃	H	H	O	H	0	230-232	Free base
32	(+/-)		bond		CH ₃	CH ₃	H	H	O	H	0	277-279	Free base
33	(+/-)		bond		CH ₃	CH ₃	H	H	O	H	0	244-246	Free base
34	(+)		bond		CH ₃	CH ₃	H	H	O	H	0	201-202	Free base
35	(-)		bond		CH ₃	CH ₃	H	H	O	H	0	201-202	Free base

No.	Rot	R2	Z	R1	R4	R5	R6	R7	X	R3	n	Mp °C	salt
36			bond		CH ₃	H	H	H	O	H	0	284 °C dec.	Free base

Test Example: Inhibitory activity of the medicament of the present invention against GSK3β:

Two different protocols can be used.

In a first protocol : 7.5 µM of prephosphorylated GS1 peptide and 10 µM ATP (containing 300,000 cpm of ³³P-ATP) were incubated in 25 mM Tris-HCl, pH 7.5, 0.6 mM DTT, 6 mM MgCl₂, 0.6 mM EGTA, 0.05 mg/ml BSA buffer for 1 hour at room temperature in the presence of GSK3beta (total reaction volume : 100 microliters).

In a second protocol : 4.1 µM of prephosphorylated GS1 peptide and 42 µM ATP (containing 260,000 cpm ³³P-ATP) were incubated in 80 mM Mes-NaOH, pH 6.5, 1 mM Mg acetate, 0.5 mM EGTA, 5 mM 2-mercaptoethanol, 0.02% Tween 20, 10% glycerol buffer for 2 hours at room temperature in the presence of GSK3beta.

Inhibitors were solubilised in DMSO (final solvent concentration in the reaction medium, 1%).

The reaction was stopped with 100 microliters of a solution made of 25 g polyphosphoric acid (85% P₂O₅), 126 ml 85% H₃PO₄, H₂O to 500 ml and then diluted to 1:100 before use. An aliquot of the reaction mixture was then transferred to Whatman P81 cation exchange filters and rinsed with the solution described above. Incorporated ³³P radioactivity was determined by liquid scintillation spectrometry.

The phosphorylated GS-1 peptide had the following sequence :

NH₂-YRRAAVPPSPSLSRHSSPHQS(P)EDEE-COOH.(Woodgett, J. R. (1989) Analytical Biochemistry 180, 237-241.

The GSK3β inhibitory activity of the compounds of the present invention are expressed in IC₅₀, and as an illustration the range of IC₅₀'s of the compounds in table 1 are between 1 nanomolar to 3 micromolar concentrations.

For example compound No. 4 of table 1 shows an IC₅₀ of 0.005μM.

Formulation Example

(1) Tablets

The ingredients below were mixed by an ordinary method and compressed by
5 using a conventional apparatus.

Compound of Example 1	30 mg
Crystalline cellulose	60 mg
Corn starch	100 mg
Lactose	200 mg
10 Magnesium stearate	4 mg

(2) Soft capsules

The ingredients below were mixed by an ordinary method and filled in soft capsules.

Compound of Example 1	30 mg
15 Olive oil	300 mg
Lecithin	20 mg

(1) Parenteral preparations

The ingredients below were mixed by an ordinary method to prepare injections contained in a 1 ml ampoule.

20 Compound of Example 1	3 mg
Sodium chloride	4 mg
Distilled water for injection	1 ml

Industrial Applicability

The compounds of the present invention have GSK3β inhibitory activity and are
25 useful as an active ingredient of a medicament for preventive and/or therapeutic treatment of diseases caused by abnormal activity of GSK3β and more particularly of neurodegenerative diseases.

What is claimed is:

1. A pyrimidone derivative represented by formula (I) or a salt thereof, or a solvate thereof or a hydrate thereof:

(I)

5 wherein:

X represents two hydrogen atoms, a sulphur atom, an oxygen atom or a C₁₋₂ alkyl group and a hydrogen atom;

Z represents a bond, an oxygen atom, a nitrogen atom substituted by a hydrogen atom or a C₁₋₃ alkyl group, a sulphur atom, a methylene group optionally substituted by one or two groups chosen from a C₁₋₆ alkyl group, a hydroxyl group, a C₁₋₆ alkoxy group, a C₁₋₂ perhalogenated alkyl group or an amino group;

R1 represents a 2, 4 or 5-pyrimidine ring or a 4-pyridine ring, the ring being optionally substituted by a C₁₋₆ alkyl group, a C₁₋₆ alkoxy group or a halogen atom;

R2 represents a 4-15 membered heterocyclic group , this group being optionally substituted by 1 to 4 substituents selected from a C₁₋₆ alkyl group, a halogen atom, a C₁₋₂ perhalogenated alkyl group, a C₁₋₆ halogenated alkyl group, a hydroxyl group, a C₁₋₆ alkoxy group, a C₁₋₂ perhalogenated alkoxy group, a C₁₋₆ halogenated alkoxy group, a nitro, a cyano, an amino, a C₁₋₆ monoalkylamino group, a C₂₋₁₂ dialkylamino group, a S-(C₁₋₆-alkyl) group, an heterocyclic group, an

20 aryl group, an heteroaryl group, a O-aryl group or a S-aryl group, the above-mentioned groups being optionally substituted by 1 to 4 substituents selected from a C₁₋₆ alkyl group, a halogen atom, a C₁₋₆ alcoxy group, a C(O)O (C₁₋₆-alkyl) or a C(O)O (aryl) group, the aryl optionally substituted by 1 to 4 substituents selected from a C₁₋₆ alkyl group, a halogen atom, a C₁₋₆ alcoxy group ;

25 R3 represents a hydrogen atom, a C₁₋₆ alkyl group or a halogen atom;

R4 represents a hydrogen atom or a C₁₋₆ alkyl group;

R5 represents a hydrogen atom, a C₁₋₆ alkyl group;

R6 represents a hydrogen atom, a C₁₋₆ alkyl group;

R7 represents a hydrogen atom or a C₁₋₆ alkyl group; and

n represents 0 to 3 and m represents 0 in the form of a free base or of an addition salt with an acid.

5 2. A pyrimidone derivative or a salt thereof, or a solvate thereof or a hydrate thereof according to claim 1, wherein R1 represents an unsubstituted 4-pyrimidine ring.

3. A pyrimidone derivative or a salt thereof, or a solvate thereof or a hydrate thereof according to claim 1, wherein:

10 R1 represents a 4- or 5-pyrimidine ring or 4-pyridine ring; the ring being optionally substituted by a C₁₋₂ alkyl group, a C₁₋₂ alkoxy group or a halogen atom; and/or R2 represents a 6-10 membered heterocyclic group, this group being optionally substituted by 1 to 4 substituents selected from a C₁₋₆ alkyl group, a halogen atom, a C₁₋₂ perhalogenated alkyl group, a C₁₋₆ halogenated alkyl group, a hydroxyl

15 group, a C₁₋₆ alkoxy group, a C₁₋₂ perhalogenated alkoxy group, a C₁₋₆ halogenated alkoxy group, a nitro, a cyano, an amino, a C₁₋₆ monoalkylamino group, a C₂₋₁₂ dialkylamino group, a S-(C₁₋₆-alkyl) group, an heterocyclic group, an aryl group, an heteroaryl group, a O-aryl group or a S-aryl group, the above-mentioned groups being optionally substituted by 1 to 4 substituents selected from

20 a C₁₋₆ alkyl group, a halogen atom, a C₁₋₆ alcoxy group, a C(O)O (C₁₋₆-alkyl) or a C(O)O (phenyl) group, the phenyl optionally substituted by 1 to 4 substituents selected from a C₁₋₆ alkyl group, a halogen atom, a C₁₋₆ alcoxy group;

R3 represents a hydrogen atom, a C₁₋₆ alkyl group or a halogen atom; and/or

R4 represents a hydrogen atom or a C₁₋₆ alkyl group; and/or

25 R5 represents a hydrogen atom, a C₁₋₆ alkyl group; and/or

R6 represents a hydrogen atom, a C₁₋₆ alkyl group; and/or

R7 represents a hydrogen atom or a C₁₋₆ alkyl group; and/or

X represents two hydrogen atoms, an oxygen atom or a C₁₋₂ alkyl group and a hydrogen atom; and/or

30 Z represents a bond, an oxygen atom, a nitrogen atom substituted by a hydrogen atom or a C₁₋₃ alkyl group, a methylene group optionally substituted by one or two groups chosen from a C₁₋₃ alkyl group, a hydroxyl group, a C₁₋₃ alkoxy group, a C₁₋

2 perhalogenated alkyl group or an amino group; and/or

n represents 0 to 3 in the form of a free base or of an addition salt with an acid.

4. A pyrimidone derivative or a salt thereof, or a solvate thereof or a hydrate thereof according to claim 1, wherein:

5 R1 represents an unsubstituted 4-pyrimidine ring; and/or
R2 represents a benzodioxine ring, a pyrimidine ring, a pyridazine ring, naphthyridine ring, pyridine ring, dihydrobenzodioxine, benzofuran, dihydrobenzofuran ring, benzothiazole ring, benzothiophen ring, benzodioxole, dihydrobenzodioxole ring, imidazopyridine ring ; the rings being optionnaly partially or fully saturated and or being optionally substituted by 1 to 4 substituents selected from hydroxyl group, an amino, a C₁₋₆ alkyl group, a S-(C₁₋₆ alkyl) group, a halogen atom, a C₁₋₂ perhalogenated alkyl group, C₁₋₆ alkoxy group, a C₁₋₂ perhalogenated alkoxy group or an aryl group optionally substituted by a halogen atom; and/or

10 15 R3 represents a hydrogen atom; and/or

R4 represents a methyl; and/or

R5 represents a hydrogen atom or a methyl; and/or

R6 represents a hydrogen atom; and/or

R7 represents a hydrogen atom; and/or

20 X represents an oxygen atom; and/or

Z represents a bond, or a nitrogen atom substituted by a hydrogen atom; and/or

n and m represent 0, in the form of a free base or of an addition salt with an acid.

25 5. A pyrimidone derivative or a salt thereof, or a solvate thereof or a hydrate thereof according to claim 1 which is selected from the group consisting of:

- 8-Amino-7-chloro-2,3-dihydro-benzo[1,4]dioxine-5-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
- 5-Chloro-2-methylsulfanyl-pyrimidine-4-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
- 3,6-Dimethoxy-pyridazine-4-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-

[4,4']bipyrimidinyl-2-ylmethyl)-amide

- [1,5]Naphthyridine-2-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
- 2-Methoxy-N-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-nicotinamide
- 5 • Pyridine-2-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
- 6-Fluoro-4H-benzo[1,3]dioxine-8-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
- 10 • [1,6]Naphthyridine-5-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
- N-(1-Methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-nicotinamide
- 6-Chloro-pyridine-2-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
- 15 • 2,3-Dihydro-benzofuran-7-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
- 2,2-Dimethyl-2,3-dihydro-benzofuran-7-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
- 5-Bromo-benzofuran-2-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
- 20 • Benzothiazole-2-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
- Benzo[b]thiophene-2-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
- 25 • 2,2-Difluoro-benzo[1,3]dioxole-4-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
- (+/-) [1,5]Naphthyridine-2-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide
- 3-Hydroxy-pyridine-2-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
- 30 • (+/-) 6-Chloro-pyridine-2-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide

- (+/-) 5-Chloro-2-methylsulfanyl-pyrimidine-4-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide
- 4-Methoxy-pyridine-2-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
- 5 • (+/-) Pyridine-2-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide
- (+/-) 6-(2-Fluoro-phenyl)-pyridine-2-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide
- (+/-) 3-Methoxy-pyridine-2-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide
- 10 • (+/-) 2-Methoxy-N-[1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-nicotinamide
- (+/-) Benzo[b]thiophene-2-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide
- 15 • 3H-Imidazo[4,5-b]pyridine-6-carboxylic acid (1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-amide
- (+/-) 4-Methoxy-pyridine-2-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide
- (+)-4-Methoxy-pyridine-2-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide
- 20 • (-)-4-Methoxy-pyridine-2-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide
- 6-Fluoro-4H-benzo[1,3]dioxine-8-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide
- 25 • 8-Amino-7-chloro-2,3-dihydro-benzo[1,4]dioxine-5-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide
- 5-Bromo-2-methylsulfanyl-pyrimidine-4-carboxylic acid [1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-amide
- (+)-2-Methoxy-N-[1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-nicotinamide
- 30 • (-)-2-Methoxy-N-[1-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-yl)-ethyl]-nicotinamide

- 2,6-Dimethoxy-N-(1-methyl-6-oxo-1,6-dihydro-[4,4']bipyrimidinyl-2-ylmethyl)-nicotinamide

6. A medicament comprising as an active ingredient a substance selected from the group consisting of pyrimidone derivative represented by formula (I) or
5 salts thereof, or a solvate thereof or a hydrate thereof according to claim 1 to 5.

7. A GSK3 β inhibitor selected from the group of a pyrimidone derivative represented by formula (I) or salts thereof, or a solvate thereof or a hydrate thereof according to claim 1.

8. Compound according to claims 1 to 5 for preventive and/or therapeutic
10 treatment of a disease caused by abnormal GSK3 β activity.

9. Compound according to claims 1 to 5 for preventive and/or therapeutic treatment of a neurodegenerative disease.

10. Compound according to claim 9, wherein the neurodegenerative disease is selected from the group consisting of Alzheimer's disease, Parkinson's
15 disease, tauopathies, vascular dementia; acute stroke, traumatic injuries; cerebrovascular accidents, brain cord trauma, spinal cord trauma; peripheral neuropathies; retinopathies or glaucoma.

11. Compound according to claims 1 to 5 for preventive and/or therapeutic treatment of non-insulin dependent diabetes; obesity; manic depressive illness;
20 schizophrenia; alopecia; cancers; parenchymal renal diseases or muscle atrophy.

12. Compound according to claim 11 wherein cancer is breast cancer, non-small cell lung carcinoma, thyroid cancer, T or B-cell leukemia or virus-induced tumors.

13. Compound according to claims 1 to 5 for preventive and/or therapeutic
25 treatment of malaria.

14. Compound according to claims 1 to 5 for preventive and/or therapeutic treatment of bone diseases.

15. Compound according to claims 1 to 5 for preventive and/or therapeutic treatment of Pemphigus vulgaris.

16. Compound according to claims 1 to 5 for preventive and/or therapeutic treatment of neutropenia induced by cancer chemotherapy.

5 17. Compound according to claims 1 to 5 for therapeutic treatment of a disease characterized by cognitive and memory deficits.

18. A pyrimidone derivative represented by formula (III) wherein

R1, R3, R4, R5, R6 and m are as defined for compound of formula (I) according to
10 claim 1.

19. Process for the synthesis of compound of general formula (I) as defined in claims 1 to 5 with intermediates as defined in claim 18.