ні теория сложности

literature:

- Arora Barak "Complexity Modern Approach" (1st part)
- Garry Johnson "Трудно разрешенные задачи"
- site: compendium of NP-complete problems

outline:

- NP-полнота
 - Концепция недетерминированных вычислений
- Сведения
 - Теорема Кука-Левина
- язык CNFSAT
 - $\underline{\text{Теорема}}CNFSAT \in NPC$
 - $\underline{\text{Теорема}}CNFSAT \rightarrow 3SAT$
- Теорема $IND \in NPC$
- диагональный метод
 - теоремы об иерархии
 - Теорема о ёмкости иерархии
 - Теорема о временной иерархии
 - <u>Теорема Бэйкера-Гилла-Соловэя (BGS)</u>
 - Теорема Ладнера

н₂ NP-полнота

Характеристики сложности вычисления.

Есть распознователи ($\Sigma^* o B$) и преобразователи ($\Sigma^* o \Sigma^*$)

```
• время: T(n) = O(f(n))
```

• память: S(n)

• random:
$$R(n)$$
 $DTIME(f) = \{L \mid \exists \ program \ p: 1. \ x \in L \implies p(X) = 1, x \not\in L \implies p(x) = 0$ $2. \ n = |x| \implies T(p,x) = O(f(n))\}$ $h = (01)^* \in DTIME(n)$ $DT\widetilde{IME}(f) = \{h \mid \dots\}$ палинромы: $Pal \in DTIME_{RAM}(n)$ $Pal \not\in DTIME_{TM}(n)$ $P = \cup_{f-polynom} DTIME(f) = \cup_{i=0}^{\infty} DTIME(n^i)$ $p(n)q(n): p+q, p*q, p(q(n))$ $L_1L_2 \in P: L_1 \cup L_2 \in P, L_1 \cap L_2 \in P, \overline{L_1} \in P, L_1L_2 \in P, L_1^* \in P$

Н3 концепция недетрминированных вычислений

Допускается $\iff \exists$ последовательность переходов, которая приводит к допуску недетерминировання программа p(x) допускает $\iff \exists$ последовательность недетерминированных выборов, приводящая к допуску p(x) не допускает $\iff \forall$ последовательности выборов не допуск

```
egin{aligned} 	extbf{def} & 	extbf{NTIME(f)} = \{L \mid \exists \ \text{недетерминированная программа р} \ 1) \ p(x) - acc \iff x \in L; \ 2) \ T(p,x) = O(f(n)) \} \end{aligned}
```

ех задача о гамильтоновом цикле

```
p(G)
vis[1..n]: arr of bool
s = 1
for i = 1..n
    u = ?{1..n}
    if (vis[u]) return false
    if (su not in EG) return false
    vis[u] = true
    s = u
if (s ≠ 1) return false
return true
```

 $ex[isComposite(z)], n = \lceil \log_B z \rceil$, где B - это основание системы счисления

```
a = ?{2..z-1} // T = logn
if z % a = 0 // poly(logn)
return true
return false
```

Hельзя свопнуть бранчи и сделать проверку на простоту, потому что это true и false не симметричны в недетерминированных вычислениях (нельзя даже isPrime(n): return !isComposite(n))

```
\label{eq:np} \begin{array}{l} \textbf{def} \  \, \frac{NP}{NP} = \cup_{f-polynome} \  \, NTIME(f) \text{, nondeterministic polynomial} \\ \textbf{stat} \  \, P \subset NP \\ \textbf{?} \  \, P = NP \end{array}
```

неформально: класс P - класс задач, которые можно решить за полином, класс NP - класс задач, решение которых можно проверить за полином

 Σ_1 - класс языков, в которых можно формализовать класс решения, которое можно проверить за полином

 $\Sigma_1 = \{L \mid \exists \$ полином р, работающая за полином программа R(x, y) - детерминированная

```
x\in L\iff\exists\ y (называют сертификат): |y|\le p(|x|) and R(x,y)=1 x
otin L\iff\forall\ y\ (|y|\le p(|x|))\ R(x,y)=0\}
```

 ${f ex}$ гамильтонов цикл $Ham \in \Sigma_1$

```
R(G, y):
    y as arr[1..n] of int
    // we can add: y = ?arr[i..n] of {1..n} // O(n)
    vis = arr[1..n] of bool
    for i = 1..n
        if (y[i] y[i mod n+1] not in EG) return false
        if vis[y[i]] return false
        vis[y[i]] = true
    return true
```

Th $NP=\Sigma_1$ $L\in NP,\,L\in\Sigma_1$

 μ неформально: NP - определение на языке недетерминированных формат, Σ_1 - определение на языке сертификатов

Н2 СВЕДЕНИЯ

def сводим В к А *по Тьюрингу*: A, B – языки, C – сложностный класс, $B \in C^A$ (C с *оракулом* A). не считая вызова функции [isInA(x): Bool], остальные ограничения класса С учитываются.

 def сведение по Куку-Левину (Тьюрингу за полином) $B \in P^A$

def сведене по Карпу (*m*-сведение): язык В сводится к А ($B \le A$), если \exists вычислимая за полином функция f такая, что $x \in B \iff f(x) \in A$

 $egin{align*} \mathbf{ex} \ IND &= \{\langle G, k
angle | \ \mathbf{B} \ G \ d \ \ \mathbf{H}$ езависимое множество размера $\mathbf{k} \ \}$ $CLIQUE &= \{\langle G, k
angle | \ \mathbf{B} \ G \ \exists \ \ \mathbf{K}$ имка размера $\mathbf{k} \ \}$ $IND \leq CLIQUE$ $f(\langle G, k
angle) &= \langle \overline{G}, k
angle \ //$ за полином $\mathbf{B} \ \mathbf{G} \ \mathbf{G} \ \mathbf{G} \ \mathbf{K}$ и множестве размера $\mathbf{K} \iff \mathbf{B} \ \overline{G} \ \exists \ \mathbf{K}$ имка размера $\mathbf{K} \ \mathbf{V} \ \mathbf{C} \ \mathbf{G} \ \mathbf{G}$

ex $SUBSETSUM=\{\langle [x_1,x_2,\ldots,x_n],s\rangle\mid\exists I\subset\{1,2,\ldots,n\},\sum_{i\in I}=s,x_i\in\mathbb{N}\}$ dp [i] [w] - можно ли первые і $\Sigma=w$ // w - $2^{|s|}$ VCOVER< SUBSETSUM

пронумеруем вершины с единицы, рёбра – с нуля, битовыми масками каждой вершине сопоставляем рёбра

	6	5	4	3	2	1	0
x_1	1	0	0	0	0	1	1
x_2	1	0	0	0	1	1	0
x_3	1	0	1	1	1	0	0
x_4	1	1	1	0	0	0	0
x_5	1	1	0	1	0	0	1

	6	5	4	3	2	1	0
S	3	2	2	2	2	2	2

$$x_e = 1$$

$$x_7 = 10$$

$$x_8 = 100$$

$$x_9 = 1000$$

$$x_{10} = 10000$$

$$x_{11} = 100000$$

 $f(\langle G,k
angle)$, n - число вершин, m - число рёбер, s=k22...2, m двоек

f сводит VCOVER к SUBSETSUM

 \Rightarrow : в G \exists вершинное погрытие размера k

 $\Leftarrow: [x_1 \ldots, x_{n+n}], s \; \exists \;$ решение \Rightarrow в $G \; \exists \;$ вершинное покрытие размера k

def язык называется *NP-hard* (*NP-трудный*), если выполнены следующие условия:

$$\forall B \in NP : B \leq A$$

def A называется NP-complete (NP-полный), если:

1)
$$A \in NPH$$

2)
$$A \in NP$$

$$//NPC = NPH \cap NP$$

 $\mathbf{ex}\ BH_{1N}$ (bounded halting unary nondeterministic)

 $BH_{1N} = \{ \angle m, x, 1^t \rangle \mid m$ – недетрминировання машина тьюринга, x – вход, t – ограничение времени: \exists последоватеьность недетерминировання выборов машины Тьюринга m, что она допускается за t шагов: m(x) = 1

Th $BH_{1N} \leq NPC$

1.
$$BH_{1N} \in NPH$$

$$A \in NP$$

// <u>def по Карпу</u>

 m_A - недетерминировання машина Тьюринга, решающая ${\sf A}$ за полином

$$p(n) = cn^k$$

$$f(x) = \langle m_A, x, q^{p(|x|)}
angle$$

 $x \in A \iff \exists$ последовательность выборов $m_A(x) = 1$ (за p(|x|))

2. $BH_{1N} \in NP$

$$\mathsf{L}\ A \leqslant^k B, B \leqslant^k C \implies A \leqslant^k C$$

$$x\stackrel{t}{
ightarrow} f(x)\stackrel{t}{
ightarrow} q(f(x))$$

$$con A \in NPH, A \leqslant B \implies B \in NPH$$

 stat если $B \leqslant A$, $A \in NPH$

$$NP \stackrel{t}{\rightarrow} BH_{1N} \stackrel{t}{\rightarrow} SAT$$

$$\mathsf{def} \; \frac{SAT}{} = \{ \phi(x_q \dots x_n) \mid \exists x_1 \dots x_n \; \phi(x_1 \dots x_n) = 1, \phi - \mathsf{6} \, \phi \, \}$$

Н3 Th (Кук, Левин) SAT in NPC

$$SAT \in NPC$$

$$BH_{1N} \leqslant SAT$$

$$\langle m, x, 1^t \rangle \stackrel{f}{\mapsto} \phi$$

 ϕ удовлетворяет $\iff \exists$ последовательность недетерминированных выборов m(x)=1, за время t

больше t шагов не будет, есть мгновенные описания машины $\alpha \#_q \beta$ дополним описания до длины t + 1

$$q_0 \vdash q_1 \vdash \ldots \vdash q_t$$

табло вычислений: первая строка - стартовое состояние, $i \to i+1, q_i \vdash q_{i+1}$, допуск: последовательность до $\#_{acc}$

$$\langle m,x,1^t
angle \in BH_{1N} \iff \exists$$
 допускающее табло вычислений

количество состояний |Q|=z, множество ленточного алфавита $|PT|=y,\,z+y=k$ заведём $(t+1)^2k$ переменных, x_{ijc} - верно ли, что в табло в і-й ј-й ячейке записан символ 'c'

$$\phi(x_{ijc})=C\wedge S\wedge T\wedge N$$
 $C=\wedge i,j=0..t\vee_C((\wedge \neg X_{ijlpha})\wedge X_{ijc})$ $S=X_{00\#_s}\wedge X_{01x_1}\wedge X_{02x_2}\wedge\ldots\wedge X_{0nx_n}\wedge X_{0(n+1)B}\wedge\ldots$ $T=X_{t0\#x}\vee X_{t1\#_y}\vee\ldots\vee X_{tt\#_y}$ $N=(\wedge_{i,j}\wedge_{c_1c_2c_3c_3
ot\in Q}X_{i-1,j-1,c_1}\wedge X_{i-1,j,c_2}\wedge X_{i,j+1,c_3}\wedge X_{i,j,c_4} o c_1=c_4)\wedge_{ijx}\wedge_{c_1...c_6...}$ допустимы qed \square

H₂ язык CNFSAT

$$\begin{array}{l} \textbf{def} \ \underline{CNFSAT} = \{\phi \ | \phi \ \mathsf{B} \ \mathsf{KH\Phi}, \phi \in SAT \} \\ (x_i \lor \neg \ x_i \ldots) \land (\lor \lor \lor) \land (\lor) \end{array}$$

clause (клоз)

ex 2-SAT (ровно две) HornSAT (не более одной без отрицания)

H₃ Th CNFSAT in NPC

- 1. $CNFSAT \in NP$
- 2. $CNFSAT \in NPH$

$$egin{aligned} SAT \leqslant CNFSAT \ \phi & \stackrel{f \ (polynomial \ time)}{\longrightarrow} \psi \ \phi \in SAT \iff \psi = f(\psi) \in CNFSAT \end{aligned}$$

базис: ∧, ∨, ¬

строим дерево разбора нашей формулы ϕ :

- если у neg сын neg, то можем удалить
- neg -> and/or => neg <- and/or -> neg neg

каждому поддереву соответствует преобразованная подформула $\phi_i(x_{i_1}\dots x_{i_k})$, хотим построить следующее: $\psi_i(x_{i_1}\dots x_{i_k},y_1\dots y_{i_t})$

$$\phi(\overline{X}) = 1 \implies \exists \overline{y} \psi(\overline{x}, \overline{y}) = 1$$

 $\phi(\overline{X}) = 0 \implies \forall \overline{y} \psi(\overline{x}, \overline{y}) = 0$

вершина	brand new ψ
X	$\phi=X,\psi=X$
neg X	$\phi = \neg X, \psi = \neg X$
and	$\phi_1 \wedge \phi_2, \psi_1 \wedge \psi_2$

вершина	brand new ψ				
	$\psi_1 ee \psi_2$ не можем написать, потому что это не будет в КНФ				
or	новая переменная z:				
	$(\psi_1 ee z) \wedge (\psi_2 ee eg z)$				

получается, что число клозов равно числу листьев внутри каждого клоза число вхождений равно число переменных + или

#clauses = #leaves
#entries = #vars + #or
poly
□ qed

H₃ Th CNFSAT to 3SAT

 $3SAT = CNFSAT \wedge 3CNF$

1. $3SAT \in NP$

2. $3SAT \in NPH$ $CNFSAT \leqslant 3SAT$

ψ	X
$(xee yee u)\wedge (xee yee eg u)$	$x \lor y$
ok	$x \lor y \lor z$
вспомогательные переменные k - 3 новые перменные: $(x_1 \vee x_2 \vee t_1) \wedge (\neg t_1 \vee x_3 \vee t_2) \wedge (\neg t_2 \vee x_2 \vee t_3) \wedge \ldots \wedge (\neg t_{k-3} \vee x_{k-1} \vee x_k)$	$x_1 \lor x_2 \lor \ldots \lor x_k,$
1)

 \square qed

3SAT - superstar

H₂ Th IND in NPC

дана формула ϕ в ЗКНФ, мы хотим вывести граф G и число k, такие что ϕ удовлетворима тогда и только тогда, когда в графе есть независимое множество размера k

$$\phi \in 3SAT \iff \langle G,k \rangle \in IND$$

в ϕ k clauses, граф построим из k triangles в вершинах переменные, соответствующие claus'ам соединим переменные с их отрицанием

 $HAM=\{G\mid G$ — ориентированный граф, содержит Гамильтонов цикл $\}$ $HAM\in NP$ $HAM\in NPH$ $\phi(x_1x_2\dots x_n)$ k clauses $x_i\to 2k+2$ вершины

где X - это компонента предыдущего вида

Н2 диагональный метод

Нз теоремы об иерахии

$$DSPACE(f)=\{L\mid\exists$$
 программа p: $x\in L\implies p(x)=1$ $S(p,x)=O(f(n))\}$ $x\not\in L\implies p(x)=0$ $PSACE=\cup_{p-polynom}DSPACE(p)$

Th NP subset PS subset EXP

thesis если р запускает q, q использует O(f) памяти, то р может тоже для этого использоватьO(f) памяти

H4 Th о ёмкости иерархии

$$\frac{f}{g} \to 0 \ \text{тогда} \ \exists L: L \in DSPACE(g) \backslash DSPACE(f)$$

$$h = \sqrt{fg}, \ \ \frac{h}{g} \to 0, \ \ \frac{f}{h} \to 0$$

$$n = |\langle p, x \rangle|$$

$$L = \{\langle p, x \rangle \mid \text{неверно, что } (p(\langle p, x \rangle) = 1, \text{использовав } h(n) \text{ памяти })\}$$

$$L \in DSPACE(g)$$
 Пусть $L \not\in DSPACE(f)$, q - разрешает L, используя $\leqslant cf(n)$, рассмотрим
$$n_0: h(n_0) > cf(n_0), \ n_0 > |q|$$
 рассмотрим $x: |\langle q, x \rangle| = n_0$
$$q(\langle q, x \rangle) = ?$$

$$q(\langle q, x \rangle) = q \implies \langle q, x \rangle \in L \implies !(q(\langle q, x \rangle) = 1 \ and \ S(q, \langle q, x \rangle) \leqslant cf(n) \langle h(n_0)) \implies q(\langle q, x \rangle) = 0$$

$$q(\langle q, x \rangle) = 0 \implies \langle q, x \rangle \not\in L \implies !(q(\langle q, x \rangle) = 1)$$

H4 Th о временной иерархии

DSPACE -> DTIME, память -> время

ломается немного первая часть, так что новое условие:

 $rac{f}{g} o 0, \exists h:rac{f}{h} o 0,rac{sim(h)}{g} o 0. \ (sim(h)=O(g))$ (где sim(f) - за сколько можно просимулировать программу, работающую за f) тогда

 $\exists L : L \in DTIME(g) \backslash DTIME(f)$

$$h=\sqrt{fg},~rac{h}{g}
ightarrow 0,~rac{f}{h}
ightarrow 0$$

$$n=|\langle p,x
angle |$$

 $L = \{l \angle p, x \rangle \mid$ неверно, что $(p(\langle p, x \rangle) = 1,$ использовав h(n) времени $)\}$

 $L \in DTIME(q)$

Пусть $L \notin DTIME(f)$, q - разрешает L, используя $\leqslant cf(n)$, рассмотрим

$$n_0: h(n_0) > cf(n_0), \, n_0 > |q|$$

рассмотрим $x: |\langle q, x \rangle| = n_0$

Implies $P \neq EXP$

$$f = n^{\log_2 n} = 2^{(\log_2 n)^2}$$

$$g=2^r$$

 $f=n^{\log_2 n}=2^{(\log_2 n)^2}$ $g=2^n$ $rac{f}{g} o 0 \implies \exists L\in DTIME(g)ackslash DTIME(f)$ (первая часть $\implies L\in EXP$, вторая

Нз Th (Бейкер, Гилл, Соловэй) BGS

$$u = \{\langle p, x \rangle | p(x) = 1\}$$

 $uni(p,x)
ightarrow { t octahabливается ли p на x}$

Вычисления с оракулом p^A - р с оракулом А

$$\exists$$
 оракул $A:p^A=NP^A$

$$\exists$$
 оракул $B:p^B
eq NP^B$

// релятивизуется, если доказательство остаётся верным, если всему фиксированному в программе добавить оракул

рассмотрим $A \in PSC$

$$p^A \stackrel{1}{\subset} NP^A \stackrel{2}{\subset} PS^A \stackrel{3}{\subset} PS \stackrel{4}{\subset} P^A$$
:

- 1. любая недетерминировання программа частный случай детерминированной
- 2. релятивизуется
- 3. можем заменить вызов оракула на процедуру проверки
- 4. потому что взяли PSpace полный, любой сводится за полином и спросим у оракула

$$\mathsf{B} \quad U_B = \{x \mid \exists y \in B \quad |x| = |y|\}$$

$$\mathbf{L} \ \forall B \ U_b \in NP^B$$

Придумаем $B:U_B
otin P^B$

Теперь рассмотрим часть \exists оракул $B: p^B \neq NP^B$:

Построим последовательность программ q_1, q_2, q_3, \dots

 $T(q_i)$ - полином

 $orall L \in P: \exists i: q_i$ разрешает L

Рассмотрим все коды исходных программ, упорядочим их лексикографически и запустим

// n - это длина входа

	n	$2n^2$	$3n^3$	•••	kn^k	•••
p_1						
p_2						
p_m					$p_m \mid TL = kn^k$	

каждая из этих программ работает за полином

нумеруем эту табличку по диагонали

получим счётное множество пронумерованных программ

если программа не успела завершиться за TL, то говорим, что q_i возвращает 0

так же можем занумировать все программы с оракулами: $q_1^{ullet}, q_2^{ullet}, \dots, q_n^{ullet}, \dots$

должны сделать $B:p^B
eq NP^B$

рассмотрим $B:U_B=\{x\mid \exists y:|x|=|y|,y\in B\}$

 $\mathsf{L} \ \forall B : U_B \in NP^B$

ub(x)

 $y \leftarrow$ недетерминированно Sigma^|x| return check(y)

Построить $B:U_B
otin p^B$ (если построим такое B, то теорема БГС доказана)

 $B_1:q_1^{B_1}$ не распознавала U_{B_1}

запустим q_1 с оракулом и будем выступать в роли оракула

 $q_1^ullet(x_1)$: спрашивает оракула $?y_1 o NO$ (пишем в тар наши ответы)

 $?y_2 o NO \ldots ?y_k o NO$

// выберем $x_{^{\epsilon}}: T(q_1,x_1) < 2^{|x_1|}$

если результат программы $YES: \ \forall z \ |z| = |x_1|: z
otin B_1$

 $NO:\ \exists z_1:q_1^ullet(x_1)$ не задала вопрос про $z_1,\ |z_1|=|x_1|;\ z_1\in B_1$

 $B_1 o B_2 \; q_1^{B_2}$ не распознаёт $U_{B_2}, q_2^{B_2}$ не распознаёт U_{B_2}

 $T(q_2^ullet, x_2) < 2^{|x_2|}, |x_2| >$ максимальной длины, для которого известно принадлежность B_1

теперь запускаем $q_2(x_2)$: спрашивает у нас: если спрашивали уже про это слово, то я то же самое и отвечаю, если нет, отвечаю NO и записываю

 $B_k \ orall i \leqslant k : q_i^{B_k}$ не распознаёт U_{B_k}

опять находим x_k и запускаем

тот же самый подход, что и выше, при запуске

этот процесс продолжается до бесконечности

для ответа БГС возьмём $B = \cup_{k=1}^{\infty} B_k$

// релятивизация - это барьер доказательства P
eq NP

H₃ Th Ладнера

$$P \neq NP \implies \exists L : L \notin P, L \notin NPC, L \in NP$$

иллюстрация, не доказательство

Blowing Holes in SAT

координатная ось с итерированным логарифмом

$$1 \to 10 \to 10^{10} \to 10^{10^{10}}$$

выбираем нечётные промежутки

$$SAT0 = SAT \cap EVEN$$

$$EVEN = \{x \mid log_{10}^*|x|$$
 чётен $\}$

к нему сводится SAT:

$$\exists f: x \in SAT \iff f(x) \in SAT0$$