5. prednáška (prerušenie) ČÍSLICOVÉ POČÍTAČE

Jana Milanová

Fakulta riadenia a informatiky, Katedra technickej kybernetiky

Procesor a obsluha V/V zariadení

- v prípade, že bude komunikáciu riadiť procesor počítača, môže to urobiť spôsobmi:
 - □ priame riadenie komunikácie procesorom,
 - využitie prerušenia procesora pri komunikácii,
 - priamy prístup k pamäti (DMA), ktorý nevyužíva procesor k prenosu dát a používa sa hlavne na komunikáciu s rýchlymi perifériami,

TECHNICKÉ VYBAVENIE PRE PRIAME RIADENIE KOMUNIKÁCIE PROCESOROM – INFORMÁCIE PRE PROGRAMÁTORA - PRÍKLAD

□ Výstup

Adresa	7	6	5	4	3	2	1	0
0xFFFE	d(7)	d(6)	d(5)	d(4)	d(3)	d(2)	d(1)	d(0)
0xFFFF	-	-	-	-	-	-	-	STB

□ Vstup

Adresa	7	6	5	4	3	2	1	0
0xFFFF	-	-	-	-	-	-	-	BUSY

74573 – VYROVNÁVACIA PAMÄŤ

FUNCTION TABLE (each latch)

	INPUTS		OUTPUT
OE	LE	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	X	Q_0
Н	X	X	Z

74125 - TROJSTAVOVÝ ODDEĽOVAČ SIGNÁLU

7474 – VYROVNÁVACIA PAMÄŤ

Table 1 See note 1

	INF	ОИТРИТ			
SD	RD	Q	Q		
L	Н	Х	X	Н	L
Н	L	X	X	L	Н
L	L	X	X	Н	Н

Table 2 See note 1

	INF	OUTPUT			
SD	SD RD CP D				Qn+1
Н	Н	1	L	L	Н
Н	Н	1	Н	Н	L

Note

1. H = HIGH voltage level;

L = LOW voltage level;

X = don't care;

↑ = LOW-to-HIGH CP transition;

Qn+1 = state after the next LOW-to-HIGH CP transition.

VYUŽITIE PRERUŠENIA PROCESORA PRI KOMUNIKÁCII S PERIFÉRIOU

- procesor sa venuje periférii len v tých okamihoch, keď to periféria potrebuje, z toho vyplýva výrazné šetrenie času procesora a možnosť návrhu počítača s vyšším výkonom,
- výkon takého počítača je však silne ovplyvnený vlastnosťami operačného systému a organizáciou vykonávania užívateľských programov,

PRERUŠENIE

- prerušenie mechanizmus, podľa ktorého preruší procesor vykonávanie jedného programu a začne vykonávanie iného programu, ktorý s daným prerušením súvisí – tento program nazveme obslužný program prerušenia (obsluha prerušenia),
- procesor je obvykle vybavený jedným vstupom často označenym "INT", ktorým môže okolie požiadať o prerušenie; Ak sa signál INT nastaví na aktívnu úroveň, procesor reaguje na túto skutočnosť nasledovne: v prípade, ak má zakázané prerušenie (zákaz prerušenia je možne ovládať dvojicou inštrukcií Enable interrupt (EIT) a Disable interrupt (DIT)), žiadosť o prerušenie ignoruje,

- ak je prerušenie povolené, dokončí procesor vykonávanie aktuálnej inštrukcie, uloží do zásobníka obsah registra PC procesora (adresu inštrukcie, ktorú by mal vykonať, keby nebol prerušený), nastaví zákaz prerušenia (aby nebol nekontrolovateľne prerušovaný) a prostredníctvom špeciálneho signálu (najčastejšie IA/ (Interrupt Acknowledge non)) požiada, aby mu zariadenie, riadiace prerušenia počítača poslalo informáciu (takzvaný **vektor prerušenia**) o adrese, kde sa nachádza obsluha prerušenia; tento vektor obvykle nie je priamo adresa, ale procesor z neho adresu známym postupom vypočíta; na túto adresu potom odskočí,
- povoliť a zakázať prerušenie môže programátor,

Signálový sled pri prerušení

- zariadenie, ktoré vektor prerušenia na dátovú zbernicu vysiela, nazývame obvykle radičom prerušenia. Proces, ktorým sa procesoru oznamuje adresa obsluhy prerušenia, sa nazýva identifikáciou zdroja prerušenia,
- zdrojom prerušenia môže byť (a aj býva) viac ako jeden prerušovací signál. Radič prerušenia generuje žiadosť o prerušenie (INT) vždy, keď aspoň jeden z týchto prerušovacích signálov je aktívny,
- v prípade, ak je naraz viac ako jeden aktívny, je treba rozhodnúť o ich dôležitosti (priorite) a odskočiť na obsluhu toho najdôležitejšieho (toho s najvyššou prioritou),
- ak radič prerušenia umožní selektívne blokovanie jednotlivých prerušovacích signálov, býva vybavený takzvaným maskovacím registrom, ktorý dovoľuje zablokovať účinok ktorejkoľvek žiadosti o prerušenie; blokovaciu informáciu budeme nazývať **maskou** prerušenia.; pri štarte počítača sú všetky prerušenia zamaskované (zakázané),
- v závislosti na správaní sa radiča prerušenia, rozoznávame dve rôzne stratégie identifikácie zdroja prerušenia,

IDENTIFIKÁCIA ZDROJA PRERUŠENIA TECHNICKÝMI PROSTRIEDKAMI

- identifikácia zdroja prerušenia technickými
 prostriedkami (takzvane vektorované prerušenie) v
 tomto prípade radič prerušenia vyšle ako odozvu na
 signál IA/ vektor prerušenia, ktorý ukazuje na adresu
 obsluhy aktívneho prerušenia s najvyššou prioritou,
- o priorite prerušovacích signálov musí rozhodnúť už radič prerušenia technickými prostriedkami,
- identifikácia zdroja prerušenia technickými prostriedkami vyžaduje zložitejšie technické vybavenie na strane radiča prerušenia, obvykle nedovoľuje ľubovoľné nastavenie priority prerušovacích signálov, avšak reakcia na žiadosť o prerušenie (tzv. latencia prerušenia) je kratšia ako v prípade identifikácie programovými prostriedkami,

IDENTIFIKÁCIA ZDROJA PRERUŠENIA TECHNICKÝMI PROSTRIEDKAMI

ŠTRUKTÚRA RADIČA PRERUŠENIA PRE IDENTIFIKÁCIU ZDROJA PRERUŠENIA TECHNICKÝMI PROSTRIEDKAMI

IP0

IP1

IP2

IP3

IP4

IP5

IP6

IP7

□ $IPi = Imi \cdot Pi - 1/$ □ $Pi = Imi \cdot VPi - 1$

					D2	D1	D0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	0
0	0	0	0	0	0	1	1
0	0	0	0	0	1	0	0
0	0	0	0	0	1	0	1
0	0	0	0	0	1	1	0
0	0	0	0	0	1	1	1

- □ D0 IP1,IP3,IP5,IP7
- □ D1 IP2,IP3,IP6,IP7
- □ D2 IP4,IP5,IP6,IP7

IDENTIFIKÁCIA ZDROJA PRERUŠENIA PROGRAMOVÝMI PROSTRIEDKAMI

- identifikácia zdroja programovými prostriedkami radič vsúva vektor prerušenia, ktorý nie je od aktívnych prerušovacích signálov a ich priority závislý; vždy je to vektor ukazujúci na identifikačný program zdroja prerušenia; v rámci tohto programu potom procesor prečíta stav všetkých vstupných prerušovacích signálov a môže podľa okamžite platných pravidiel rozhodnúť o ich priorite a odskočiť na obsluhu toho s najvyššou,
- dlhšia latencia prerušenia je jedinou nevýhodou identifikácie zdroja prerušenia programovými prostriedkami; tento spôsob identifikácie vedie na jednoduchšie technické vybavenie radiča prerušenia a možnosť dynamickej zmeny priority prerušovacích signálov,

Identifikácia zdroja prerušenia programovými prostriedkami

ŠTRUKTÚRA RADIČA PRERUŠENIA PRE IDENTIFIKÁCIU ZDROJA PRERUŠENIA PROGRAMOVÝMI PROSTRIEDKAMI

□ ak chceme zamaskovať I3,I5 a I7: mvi a,0x57

7	6	5	4	3	2	1	0
0	1	0	1	0	1	1	1

Radič prerušenia

- □ radič prerušenia:
- 1. maskuje prerušovacie vstupy,
- 2. priorita (nie vždy rozhoduje radič prerušenia),
- identifikácia zdroja prerušenia:
 - technickými prostriedkami:
 - maskuje,
 - rozhodne o priorite (napr. podľa indexu),
 - generuje vektor závislý od prioritného prerušenia,
 - vlastnosti nižšia latencia, systém tvrdší na modifikáciu, hardvérovo zložitejší,
 - programovými prostriedkami:
 - maskuje,
 - generuje vždy rovnaký vektor,
 - dovolí procesoru vyčítať stav prerušovacích vstupov,
 - vlastnosti pomalšie, l'ahšie modifikovatel'né, jednoduchší hardvér,

- pre efektívnosť
 prerušenia potrebné
 zmeniť spôsob
 odovzdávania dát
 obslužnému
 programu periférie,
- aplikácia, ktorá chce s tlačiarňou spolupracovať, zapíše na systémové adresy nasledujúce informácie:
 - DPOIN smerník na začiatok vyrovnávacej pamäti dát,
 - BUFLE dĺžka vyrovnávacej pamäti dát,

dva obslužné programy,

- prvý iba na štart tlače; nie je to obsluha prerušenia, ale podprogram, ktorý zavolá aplikacia alebo operačný systém po tom, čo vytvoril vyrovnávaciu pamäť dát a zapísal príslušné systémové informácie DPOIN a BUFLE,
- činnosť spočíva hlavne v odmaskovaní úrovne I4 prerušenia, kam je pripojená inverzia signálu BUSY; predtým však odloží obsah tých časti, ktoré môže program štart modifikovať do zásobníka (PUSH), zakáže prerušenie v procesore (DI), po odmaskovaní prerušovacieho vstupu I4 obnoví pôvodný stav procesora a pred návratom z podprogramu povolí prerušenie; zakázanie a povolenie prerušenia plní účel zábrany pred prerušením vo vnútri štartovacieho podprogramu, a teda aj účel udržania kontroly nad dĺžkou zásobníka,

- Obslužný podprogram prerušovacieho signálu I4,
- zabezpečuje obsluhu prerušenia, ktoré vzniká pri činnosti periférie vždy vtedy, keď BUSY = 0,
- uložia sa obsahy tých častí procesora, ktoré sa v priebehu obsluhy môžu zmeniť,
- z aktuálneho miesta vyrovnávacej pamäte zapíše bajt dát do vyrovnávacej pamäte rozhrania,
- zvýši sa hodnota pointra vyrovnávacej pamäte tak, aby ukazovala na nasledujúci aktuálny bajt,
- generovanie impulzu na výstupe STB,
- aktualizácia zostávajúcej dĺžky vyrovnávacej pamäte znížením BUFLE o 1; ak BUFLE = 0, znamená to, že bol vyslaný posledný bajt dát a obsluha zamaskuje prerušovací vstup I4, čím zabráni ďalšiemu volaniu obsluhy,
- obsluha končí obvyklou obnovou stavu procesora a povolením prerušenia pred návratom (RET),

Prerušenie a stavebnica k emulátoru procesora

OPERAČNÝ SYSTÉM - MULTITASKING

- technika obsluhy periférií prostredníctvom prerušenia procesora môže významne zlepšiť využitie času procesora,
- podmienky pre efektívne využitie prerušenia
 - aplikácia (program), ktorá potrebuje vyslať alebo prijať dáta z periférie, nemôže ďalej pokračovať, pokiaľ sa prenos neuskutoční; ak by to bola jediná užitočná činnosť, ktorú počítač vykonáva, musel by procesor čakať na ukončenie komunikácie s perifériou; to by však vzhľadom na využitie času procesora malo zhruba rovnaký efekt, ako keby bola periféria obsluhovaná pod priamym riadením procesora,
 - je doležité, aby operačný systém počítača bol takzvaný viacúlohový (multitasking); v takomto systéme je súčasne niekoľko aplikácií; každá má k dispozícii istý procesorový čas, ktorý jej je cyklicky prideľovaný; zatiaľ čo jedna z aplikácii využíva čas procesora (procesor ju vykonáva, je aktívna), ostatné sú buď čakajúce na pridelenie času procesora (v poradí), alebo sú dočasne mimo poradia z dôvodu čakania na ukončenie udalosti, ktorú znemožňuje ich spustenie; takou udalosťou je typicky V/V komunikácia,
- pri štarte počítača sú všetky prerušenia zamaskované (zakázané),

OPERAČNÝ SYSTÉM

- operačný systém je prvok, ktorý riadi aktiváciu aplikácií a unifikuje prístup k perifériám z dvoch dôvodov:
 - zjednodušenie písania aplikácií, pretože programátor aplikácie nemusí byť oboznámený so spôsobom komunikácie s perifériou, ale stačí, ak využije jednoduché funkcie, ktoré operačný systém ponúka,
 - zásadný dôvod je ten, že komunikácia aplikácie s perifériou zásadne ovplyvní jej "spustiteľnosť", a preto musí mať operačný systém informáciu o každej takejto činnosti,

APLIKÁCIE V OPERAČNOM SYSTÉME

- □ činnosť bežiacej aplikácie sa zastaví, ak:
 - uplynul jej čas procesor nezmení stav aplikácie (zostáva v poradí) a pri ďalšej príležitosti (keď znova na ňu príde rad) ju opäť spustí,
 - obrátila sa na perifériu dočasne presunie mimo poradia a do poradia ju zaradí až po ukončení príslušnej V/V komunikácie,
 - vykonala nedovolenú operáciu (napr. Runtime error) vyradí zo zoznamu a už ju neaktivuje. O tejto skutočnosti oboznámi obsluhu obvykle chybovým hlásením,
- pravidelné striedanie úloh podľa časovača,
- ak nemáme multitaskingový systém, nemá až taký význam trápiť sa s interruptami,

APLIKÁCIE V OPERAČNOM SYSTÉME

- OS operačný systém; A1 , A2, A3 aplikácie,
- □ P1, P2 periférie; DS1, DS2 štart, D1, D2 obsluha,
- □ INT1 prerušenie od periférie P1, INT 2 prerušenie od periférie P2
- □ bežiaca aplikácia sa pozastaví, keď je vygenerovaný impulz od časovača úloh (1),
- ak sa aplikácia obrátila na perifériu, jej činnosť sa pozastaví a spustí sa ďalšia aplikácia (2),
- ak nastane prerušenie (3), činnosť aktuálnej aplikácie sa pozastaví, obslúži sa prerušenie a aplikácia pokračuje vo svojom behu,
- ak aplikácia žiada o perifériu, ktorá je obsadená (4), tá jej bude pridelená až po jej uvoľnení (5).

Ďakujem za pozornosť.

Použité materiály:

Peter Gubiš – Číslicové počítače (podporné učebné texty) Ondrej Karpiš – Prednášky k predmetu Číslicové počítače