Machine Learning

A Practical Overview

Emma Peng Aug. 03. 2015

Example

 Predict the price of a stock in 6 months from now, on the basis of company performance measures and economic data

Example

 Classify an email as spam/not spam, base on the frequencies of words appeared in the email

And many more...

Self driving cars:

Digit Recognition:

Recommending System:

Agenda

- Overview: Supervised Learning
- Classification
- Common Classifiers

Overview

- · Labeled data
- · Direct feedback
- · Predict outcome/future

- · No labels
- No feedback
- · "Find hidden structure"

- · Decision process
- Reward system
- · Learn series of actions

Overview

Unsupervised Learning

Supervised Learning

Today's topic

Classification: 2 steps

1) Learn from training data

2) Map unseen (new) data

Common Classifiers

Neural Networks

Decision Tree

Naive Bayes

Logistic Regression

K-Nearest Neighbors

Support Vector Machines

Ensemble Methods: Random Forest, Boosted Trees, etc.

Logistic Regression

Model (Input X -> Output Y) directly: 2-class case

$$\Pr(G = 1 | X = x) = \frac{\exp(\beta_0 + \beta^T x)}{1 + \exp(\beta_0 + \beta^T x)},$$

$$\Pr(G = 2 | X = x) = \frac{1}{1 + \exp(\beta_0 + \beta^T x)}.$$

Assumption: Linear decision boundary

$$\log \frac{\Pr(G=1|X=x)}{\Pr(G=2|X=x)} = \beta_0 + \beta^T x.$$

Logistic Regression

- Fitting Logistic Regression Models:
 - Log Likelihood:

$$\ell(heta) = \sum_{i=1}^N \log p_{g_i}(x_i; heta)$$

where
$$p_k(x_i; \theta) = \Pr(G = k | X = x_i; \theta)$$
.

Maximize Log Likelihood: e.g. gradient descent

Logistic Regression

- Pros:
 - Simple and fast to train
 - Low variance, robust to noise, less prone to over-fitting
- Cons:
 - Assume linear decision boundary, high bias, can hardly handle categorical features
- Used as our baseline model

Decision Tree

 One of the most widely used technique for classification:

Decision Tree

- Best known algorithm: C4.5 by Ross Quinlan
 - Check for base cases
 - 2. For each attribute a
 - Find the normalized information gain ratio from splitting on a
 - 3. Let a_best be the attribute with the highest normalized information gain
 - 4. Create a decision node that splits on a_best
 - 5. Recur on the sublists obtained by splitting on a_best, and add those nodes as children of node

Implicit feature selection

Entropy =
$$\sum_{i} -p_{i} \log_{k} p_{i}$$

e.g.,
$$2(-0.5 \log_2(0.5)) = 1$$

Information Gain = entropy(parent) – [avg entropy(children)]

C4.5

Pros:

- Simple to understand and interpret, implicit feature selection
- Require little data preparation

Can deal with categorical/ continuous attributes

 Avoid over-fitting: pre-pruning/ post-pruning

Cons:

 Assume decision surfaces are parallel to axis

Play tennis?

- Rational: the combination of learning models increases the classification accuracy (Bagging)
- Bagging: to average noisy and unbiased models to create a model with low variance (bias-variance tradeoff)

 $\ln \lambda = -0.31$

Works as a large collection of un-correlated decision trees

• Input: $S = \begin{bmatrix} f_{A1} & f_{B1} & f_{C1} & C_1 \\ \vdots & & \vdots \\ f_{AN} & f_{BN} & f_{CN} & C_N \end{bmatrix}$

Create random subsets

$$S_{1} = \begin{bmatrix} f_{A12} & f_{B12} & f_{C12} & C_{12} \\ f_{A15} & f_{B15} & f_{C15} & C_{15} \\ \vdots & & \vdots & & \vdots \\ f_{A35} & f_{B35} & f_{C35} & C_{35} \end{bmatrix} S_{2} = \begin{bmatrix} f_{A2} & f_{B2} & f_{C2} & C_{2} \\ f_{A6} & f_{B6} & f_{C6} & C_{6} \\ \vdots & & \vdots & & \vdots \\ f_{A20} & f_{B20} & f_{C20} & C_{20} \end{bmatrix}$$

$$\begin{array}{c} \text{Decision} \\ \text{tree 1} \\ S_{M} = \begin{bmatrix} f_{A4} & f_{B4} & f_{C4} & C_{4} \\ f_{A9} & f_{B9} & f_{C9} & C_{9} \\ \vdots & & & \vdots \\ f_{A12} & f_{B12} & f_{C12} & C_{12} \end{bmatrix} \qquad \begin{array}{c} \text{Decision} \\ \text{tree 2} \end{array}$$

Decision tree M

- Pros:
 - Good empirical results
 - Fast to train: decision trees in a forest can be trained in parallel
- Cons:
 - Generally require deep trees

Gradient Boosted Trees

Boosting:

- Sequentially add new models to the ensemble
- At each iteration, a new weak, base-learner model is trained with respect to the error of the whole ensemble learned so far

e.g. Decision trees/ Stumps

Reduce bias of weak models (bias-variance tradeoff)

Algorithm 1

Friedman's Gradient Boost algorithm.

Inputs:

- input data $(x, y)^{N}_{i=1}$
- number of iterations M
- choice of the loss-function Ψ(y, f)
- choice of the base-learner model $h(x, \theta)$

Algorithm:

1: initialize \widehat{f}_0 with a constant

2: **for** t = 1 to M**do**

3: compute the negative gradient $g_t(x)$

4: fit a new base-learner function $h(x, \theta_t)$

5: find the best gradient descent step-size ρ_t:

$$ho_t = rg \min_{
ho} \sum_{i=1}^N \varPsi \left[y_i, \; \widehat{f}_{t-1}(x_i) +
ho h(x_i, \; heta_t)
ight]$$

6: update the function estimate:

$$\widehat{f}_t \leftarrow \widehat{f}_{t-1} + \rho_t h(x, \; \theta_t)$$

Gradient Boosted Trees

- Pros:
 - Good empirical results
 - Require shallower trees
- Cons:
 - Can overfit with too many trees
 - Slower to train

Thank you!