Tutorial 2: Bisection method and rate of convergence

COMP5930M Scientific Computation

Today

Further examples

Bisection method

Example: Cantilever beam

Consider a cantilever beam of length *L* which bends under its own weight (a model civil engineering problem).

The beam's maximum deflection δ_{max} is at the unsupported end, and the deflection δ at a point αL ($0 \le \alpha \le 1$) along the beam is given by the nonlinear equation $f(\alpha) = 0$ where

$$f(\alpha) = \alpha^4 - 4\alpha^3 + 6\alpha^2 - 3\frac{\delta}{\delta_{\text{max}}}$$

Find the point αL where the beam deflection δ is $0.6 \, \delta_{\rm max}$

Cantilever beam example

```
cantilever.m
function y = cantilever(x,def)
y = x^4 - 4*x^3 + 6*x^2 - 3*def;
```

- ▶ We know $\alpha \in [0,1]$ by definition which sets a range for the initial guess
- ► For def=0.6, fzero() converges to a root at 0.6979 from any point in [0,1] or with bracket [0,1]
- Note that basic Newton will fail if $x_0 = 0$ due to zero derivative at that point.

Example: Airfoil modelling

Consider the NACA0012 prototype wing section, which is often used for testing computational methods for simulating flows in aerodynamics: see, for example,

http://www2.icfd.co.jp/examples/naca0012_2d/na3.htm Its profile is given by

$$y(x) = \pm (0.2969\sqrt{x} - 0.126x - 0.3516x^2 + 0.2843x^3 - 0.1015x^4)$$

in which + gives the upper surface and - the lower surface.

Find the point x at which the thickness t of the aerofoil is 0.1

Airfoil example

naca0012.m

- ▶ We know $x \in [0,1]$ by definition which sets a range for the initial guess
- But, there are 2 roots and also regions of small derivative which will cause problems for the basic algorithms
- **fzero()** converges to 0.0339 from $x_0 = 0$ and to 0.7652 from $x_0 = 1$
- Easier to use a single start point in this case

Bisection method

bisection.m (basic algorithm):

```
% Bisection method for zero finding
%
% function [ x,f ] = bisection( fnon, xL, xR, tol, maxit )
%
  Input:
%
     fnon - function handle for nonlinear equation
     xL - left endpoint of initial bracket
     xR - left endpoint of initial bracket
     tol - convergence tolerance
     maxIt - maximum allowed number of iterations
 Output:
     x - final point
     f - final function value
```

Bisection method

```
fL = feval(fnon,xL);
fR = feval(fnon,xR);

% Test whether the sign of f changes within the bracket
if(fL * fR > 0)
    error('Sign change within interval not guaranteed!')
end

k=0;
fprintf(' i x_i |F(x_i)|\n')
```

Bisection method

```
while ((xR - xL) > tol \&\& k < maxit)
   xC = (xL + xR) / 2:
   fC = feval(fnon,xC);
   if (fL * fC < 0)
      xR = xC;
   else
      xL = xC:
   end
   k=k+1;
   x(k) = xC;
   f(k) = feval(fnon,xC);
end
xC = (xL + xR) / 2:
x(k) = xC;
f(k) = feval(fnon,xC);
```

Example

Test the bisection method on the same function as before:

$$F(x) = x^2 - 2.$$

We can plot the convergence of the error $|x^* - x_i|$:

```
% Plot the convergence history
semilogy(abs(sqrt(2) - x),'o-','LineWidth',2)
xlabel('Iteration i')
ylabel('Error |x^* - x_i|')
```

Comparison with Newton's method

► To estimate the convergence order of a method, we compute

$$\alpha_i := \frac{|x^* - x_i|}{|x^* - x_{i-1}|^q}$$

numerically for different q = 1, 2, ...

▶ If $\lim_{i\to\infty} \alpha_i = \alpha > 0$, the method is convergent of order q.

Observations

- Convergence of bisection method is not monotone
- ▶ Linear convergence at roughly rate $\alpha = 1/2$
- Newton converges quadratically to $tol = 10^{-12}$ in 8 iterations, while bisection takes 41 iterations

Issues with Newton's method

Recall before we noted that Newton's method runs into trouble if $F'(x_i) = 0$. It can be shown that Newton's method iterates satisfy:

$$|x^* - x_i| \le M|x^* - x_{i-1}|^2$$

for $M > \frac{|F''(x^*)|}{|F'(x^*)|}$. Therefore the method converges quadratically if

$$F'(x^*) \neq 0.$$

If $F'(x^*) = 0$ Newton's method may converge but does so slower than quadratically. Example function: $F(x) = x^3$.

Issues with Newton's method

Recall before we noted that Newton's method runs into trouble if $\underline{F'(x_i)} = 0$. It can be shown that Newton's method iterates satisfy:

$$|x^* - x_i| \le M|x^* - x_{i-1}|^2$$

for $M > \frac{|F''(x^*)|}{|F'(x^*)|}$. Therefore the method converges quadratically if

$$F'(x^*) \neq 0.$$

If $F'(x^*) = 0$ Newton's method may converge but does so slower than quadratically. Example function: $F(x) = x^3$.

Further work...

Self study...

- Solve the beam and airfoil examples (Tutorial 1) using the bisection method
- ► Compare with Newton's method from different initial guesses

Next...

Lecture

Improvements on Newton and bisection methods