NLP Final Presentation

Abdelrahman Khaled

May 19, 2024

Outline

- Introduction
- 2 Simple Model Development
- 3 Pre-trained Model Fine-tuning
- Discussion
- Conclusion

Project Overview

- The aim of the project is to predict product prices based on various attributes.
- Understanding price dynamics aids in market analysis and decision-making.

Introduction to Dataset and Features

- Origin: The dataset originates from Amazon and comprises top-selling laptop accessories.
- Features: Title, description, brand, price, stars, reviews count, etc.
- Size: The dataset includes 500 rows.

Simple Model Development

Preprocessing Steps

- Cleaning and Tokenization
 - Remove special characters
 - Tokenize text into words
- Lemmatization
 - Normalize tokens to their base form
 - ► Reduces dimensionality
- Concatenation of Title and Description
 - Combine title and description into a single sequence
- Encoding and Padding
 - Convert words to numerical representations
 - ▶ Pad sequences to a fixed length of 150 tokens

Model Architecture

- Input Layer: Receives tokenized text sequences
- Embedding Layer: Converts tokens to dense vectors (100 dimenstions)
- LSTM Layer: Bidirectional LSTM units capture long-range dependencies (128 units)
- Dense Layer: Applies ReLU activation for non-linearity (64 units)
- Output Layer: Single neuron for price prediction (1 unit)

Training Process

Dataset Split:

Training set: 80%Validation set: 10%

► Test set: 10%

Batch Size:

Set to 32, balancing computational efficiency and training stability.

• Epochs:

Trained for 10 epochs, allowing iterative refinement of model weights.

Optimizer Settings:

- ▶ Adam optimizer with a learning rate of 0.001.
- Chosen for its effectiveness in training deep neural networks.

Loss Function:

- Mean Squared Error (MSE) loss function.
- Measures the average squared difference between predicted and actual prices.

Training and Testing Results: Simple Model

• Training Results:

Epoch	Training Loss	Validation Loss
1	3941.1536	2769.0745
2	3058.5154	1872.2606
3	2730.6440	1620.5831
4	2676.9148	1635.8971
5	2665.6924	1654.4270
6	2671.7400	1688.1238
7	2662.6802	1660.9471
8	2666.4351	1626.2347
9	2611.1729	1580.2756
10	2437.9158	1486.4126

Testing Results:

► Test Loss: 2644.9639

Residual Plots

Figure: Residual Plot for Validation Dataset

Figure: Residual Plot for Test Dataset

Pre-trained Model Fine-tuning

Fine-tuning with Pretrained Model

Choice of Pretrained Model:

- Utilized BERT (Bidirectional Encoder Representations from Transformers) as the pretrained model.
- ▶ BERT is suitable for prediction tasks as it provides contextualized embeddings without the need for a decoder.

• Preprocessing Steps:

- Concatenate product titles and descriptions.
- ▶ Tokenize text using the BERT tokenizer.
- ▶ Pad or truncate sequences for uniform length.
- ▶ Encode tokens into numerical IDs and attention masks.
- Encode brand information using label encoding.

Bert Integration

- Input data into BERT model consists of:
 - ► Token IDs: Numerical representations of tokens.
 - Attention Masks: Indicate valid tokens vs. padding.
- After BERT processing, pass BERT outputs combined with the encoded brand through two fully connected layers:
 - The First layer combines BERT output with encoded brand information
 - ▶ The Second layer performs regression prediction with a single neuron.
- Mean Squared Error (MSE) is used as a loss function.

Training and Evaluation Results

Training Loss:

Epoch	Training Loss	Validation Loss
1	4191.5744	4418.9487
2	4011.9904	4201.7373
3	3843.6064	4000.6934
4	3686.5248	3807.8892
5	3541.4464	3625.7041
6	3404.0112	3457.5764
7	3285.9200	3305.0376
8	3163.2736	3119.1428
9	3018.6064	2964.7173
10	2920.6848	2830.8445

Table: Training and Validation Losses for Pretrained Model

Test Loss: 2758.7461

Residual Plots

Figure: Residual Plot for Validation Dataset (Pretrained Model)

Figure: Residual Plot for Test Dataset (Pretrained Model)

Discussion _____

Discussion

- Comparison of Results:
 - The pretrained model achieved higher training and testing loss compared to the basic model.
 - While the basic model's plot showed predictions concentrated within narrow ranges, the pretrained model's plot exhibited a wider spectrum of predicted prices.
- Limitations and Future Direction:
 - The relatively small dataset size might have limited the pretrained model's ability to learn complex patterns effectively.
 - Limited computational resources.
 - ► Further optimization of hyperparameters such as learning rate and batch size could potentially improve the performance of both models.
 - ▶ Exploring more sophisticated architectures might lead to better results.

Conclusions

- Training differences emphasize the trade-offs between basic and pretrained models.
- Pretrained models offer richer semantic information but pose training challenges.
- The pretrained model's higher training losses underscore the need for thorough experimentation.
- Future iterations may explore alternative architectures, optimization, or preprocessing techniques.

