

CS 380 - GPU and GPGPU Programming Lecture 26: GPU Texturing, Pt. 3

Markus Hadwiger, KAUST

Reading Assignment #10 (until Nov 11)

Read (required):

Interpolation for Polygon Texture Mapping and Shading,
 Paul Heckbert and Henry Moreton

https://www.ri.cmu.edu/publications/interpolation-for-polygon-texture-mapping-and-shading/

Homogeneous Coordinates

https://en.wikipedia.org/wiki/Homogeneous_coordinates

Read (optional; highly recommended!):

MIP-Map Level Selection for Texture Mapping

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=765326

Next Lectures

Lecture 27: Thu, Nov 7: Vulkan tutorial #2

Lecture 28: Mon, Nov 11: 10:00-11:30 (on Zoom)

Lecture 29: Thu, Nov 14: 10:00-11:30 (on Zoom)

Lecture 30: Mon, Nov 18: Quiz #3

GPU Texturing

Texturing: General Approach

Texture Mapping

```
2D (3D) Texture Space
         Texture Transformation
2D Object Parameters
         Parameterization
3D Object Space
         Model Transformation
3D World Space
         Viewing Transformation
3D Camera Space
                                             S
         Projection
                                     y
2D Image Space
                                       X
```

Kurt Akeley, Pat Hanrahan

Texture Mapping Polygons

Forward transformation: linear projective map

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} s \\ t \\ r \end{bmatrix}$$

Backward transformation: linear projective map

$$\begin{bmatrix} s \\ t \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Perspective Texture Mapping

linear interpolation in object space

$$\frac{ax_1 + bx_2}{aw_1 + bw_2} \neq a \frac{x_1}{w_1} + b \frac{x_2}{w_2}$$
 linear interpolation in screen space

$$a = b_8 = 0.5$$

Perspective-correct linear interpolation

Only projected values interpolate correctly, so project A

■ Linearly interpolate A_1/w_1 and A_2/w_2

Also interpolate 1/w₁ and 1/w₂

These also interpolate linearly in screen space

Divide interpolants at each sample point to recover A

- \blacksquare (A/w) / (1/w) = A
- Division is expensive (more than add or multiply), so
 - Recover w for the sample point (reciprocate), and
 - Multiply each projected attribute by w

Barycentric triangle parameterization:

$$A = \frac{aA_1/w_1 + bA_2/w_2 + cA_3/w_3}{a/w_1 + b/w_2 + c/w_3}$$

$$a + b + c = 1$$

Perspective-Correct Interpolation Recipe

$$r_i(x,y) = \frac{r_i(x,y)/w(x,y)}{1/w(x,y)}$$

- (1) Associate a record containing the n parameters of interest (r_1, r_2, \dots, r_n) with each vertex of the polygon.
- (2) For each vertex, transform object space coordinates to homogeneous screen space using 4×4 object to screen matrix, yielding the values (xw, yw, zw, w).
- (3) Clip the polygon against plane equations for each of the six sides of the viewing frustum, linearly interpolating all the parameters when new vertices are created.
- (4) At each vertex, divide the homogeneous screen coordinates, the parameters r_i , and the number 1 by w to construct the variable list $(x, y, z, s_1, s_2, \dots, s_{n+1})$, where $s_i = r_i/w$ for $i \leq n$, $s_{n+1} = 1/w$.
- (5) Scan convert in screen space by linear interpolation of all parameters, at each pixel computing $r_i = s_i/s_{n+1}$ for each of the *n* parameters; use these values for shading.

Heckbert and Moreton

Projective Texture Mapping

- Want to simulate a beamer
 - or a flashlight, or a slide projector
- Precursor to shadows
- Interesting mathematics:2 perspectiveprojections involved!
- Easy to program!

Projective Texture Mapping

Projective Shadows in Doom 3

Projective Texturing

- What about homogeneous texture coords?
- Need to do perspective divide also for projector!
 - \bullet (s, t, q) \rightarrow (s/q, t/q) for every fragment
- How does OpenGL do that?
 - Needs to be perspective correct as well!
 - Trick: interpolate (s/w, t/w, r/w, q/w)
 - (s/w) / (q/w) = s/q etc. at every fragment
- Remember: s,t,r,q are equivalent to x,y,z,w in projector space! → r/q = projector depth!

Multitexturing

- Apply multiple textures in one pass
- Integral part of programmable shading
 - e.g. diffuse texture map + gloss map
 - e.g. diffuse texture map + light map
- Performance issues
 - How many textures are free?
 - How many are available

Example: Light Mapping

- Used in virtually every commercial game
- Precalculate diffuse lighting on static objects
 - Only low resolution necessary
 - Diffuse lighting is view independent!
- Advantages:
 - No runtime lighting necessary
 - VERY fast!
 - Can take global effects (shadows, color bleeds) into account

Light Mapping

Original LM texels

Bilinear Filtering

Light Mapping Issues

Why premultiplication is bad...

Full Size Texture (with Lightmap)

use tileable surface textures and low resolution lightmaps

Light Mapping

Original scene

Light-mapped

Example: Light Mapping

- Precomputation based on non-realtime methods
 - Radiosity
 - Ray tracing
 - Monte Carlo Integration
 - Path tracing
 - Photon mapping

Light Mapping

Lightmap

mapped

Light Mapping

Original scene

Light-mapped

Interpolation #2

Interpolation Type + Purpose #2:

Interpolation of Samples in Texture Space

(Multi-Linear Interpolation)

Types of Textures

- Spatial layout
 - Cartesian grids: 1D, 2D, 3D, 2D_ARRAY, ...
 - Cube maps, ...

for Vulkan, see vkImageView

- Formats (too many), e.g. OpenGL
 - GL_LUMINANCE16_ALPHA16
 - GL_RGB8, GL_RGBA8, ...: integer texture formats
 - GL_RGB16F, GL_RGBA32F, ...: float texture formats
 - compressed formats, high dynamic range formats, ...
- External (CPU) format vs. internal (GPU) format
 - OpenGL driver converts from external to internal

for Vulkan, see vklmage
and vkImageView

use VK_IMAGE_TILING_OPTIMAL
for VkImageCreateInfo::tiling

Magnification (Bi-linear Filtering Example)

Original image

Nearest neighbor

Bi-linear filtering

Nearest-Neighbor vs. Bi-Linear Interpolation

Markus Hadwiger 27

Consider area between 2x2 adjacent samples (e.g., pixel centers)

Example #2: 1 at top-left and bottom-right, 0 at bottom-left, 0.5 at top-right

Consider area between 2x2 adjacent samples (e.g., pixel centers):

Given any (fractional) position

$$\alpha_1 := x_1 - \lfloor x_1 \rfloor \quad \alpha_1 \in [0.0, 1.0)$$

$$\alpha_2 := x_2 - |x_2| \quad \alpha_2 \in [0.0, 1.0)$$

and 2x2 sample values

$$\begin{bmatrix} v_{01} & v_{11} \\ v_{00} & v_{10} \end{bmatrix}$$

Compute: $f(\alpha_1, \alpha_2)$

Consider area between 2x2 adjacent samples (e.g., pixel centers):

Given any (fractional) position

$$\alpha_1 := x_1 - \lfloor x_1 \rfloor \quad \alpha_1 \in [0.0, 1.0)$$

$$\alpha_2 := x_2 - |x_2| \quad \alpha_2 \in [0.0, 1.0)$$

and 2x2 sample values

$$\begin{bmatrix} v_{01} & v_{11} \\ v_{00} & v_{10} \end{bmatrix}$$

Compute: $f(\alpha_1, \alpha_2)$

Weights in 2x2 format:

$$\begin{bmatrix} \alpha_2 \\ (1-\alpha_2) \end{bmatrix} \begin{bmatrix} (1-\alpha_1) & \alpha_1 \end{bmatrix} = \begin{bmatrix} (1-\alpha_1)\alpha_2 & \alpha_1\alpha_2 \\ (1-\alpha_1)(1-\alpha_2) & \alpha_1(1-\alpha_2) \end{bmatrix}$$

Interpolate function at (fractional) position (α_1, α_2) :

$$f(\alpha_1, \alpha_2) = \begin{bmatrix} \alpha_2 & (1 - \alpha_2) \end{bmatrix} \begin{bmatrix} v_{01} & v_{11} \\ v_{00} & v_{10} \end{bmatrix} \begin{bmatrix} (1 - \alpha_1) \\ \alpha_1 \end{bmatrix}$$

Interpolate function at (fractional) position (α_1, α_2) :

$$f(\alpha_1, \alpha_2) = \begin{bmatrix} \alpha_2 & (1 - \alpha_2) \end{bmatrix} \begin{bmatrix} v_{01} & v_{11} \\ v_{00} & v_{10} \end{bmatrix} \begin{bmatrix} (1 - \alpha_1) \\ \alpha_1 \end{bmatrix}$$

$$= [\alpha_2 \quad (1-\alpha_2)] \begin{bmatrix} (1-\alpha_1)v_{01} + \alpha_1v_{11} \\ (1-\alpha_1)v_{00} + \alpha_1v_{10} \end{bmatrix}$$

$$= \begin{bmatrix} \alpha_2 v_{01} + (1 - \alpha_2) v_{00} & \alpha_2 v_{11} + (1 - \alpha_2) v_{10} \end{bmatrix} \begin{bmatrix} (1 - \alpha_1) \\ \alpha_1 \end{bmatrix}$$

Interpolate function at (fractional) position (α_1, α_2) :

$$f(\alpha_1, \alpha_2) = \begin{bmatrix} \alpha_2 & (1 - \alpha_2) \end{bmatrix} \begin{bmatrix} v_{01} & v_{11} \\ v_{00} & v_{10} \end{bmatrix} \begin{bmatrix} (1 - \alpha_1) \\ \alpha_1 \end{bmatrix}$$

$$= (1 - \alpha_1)(1 - \alpha_2)v_{00} + \alpha_1(1 - \alpha_2)v_{10} + (1 - \alpha_1)\alpha_2v_{01} + \alpha_1\alpha_2v_{11}$$

$$= v_{00} + \alpha_1(v_{10} - v_{00}) + \alpha_2(v_{01} - v_{00}) + \alpha_1\alpha_2(v_{00} + v_{11} - v_{10} - v_{01})$$

REALLY IMPORTANT:

this is a different thing (for a different purpose) than the linear (or, in perspective, rational-linear) interpolation of texture coordinates!!

Texture Minification

Texture Aliasing: Minification

Problem: One pixel in image space covers many texels

Texture Aliasing: Minification

Caused by undersampling: texture information is lost

Image space

Texture Anti-Aliasing: Minification

A good pixel value is the weighted mean of the pixel area projected into texture space

- MIP Mapping ("Multum In Parvo")
 - Texture size is reduced by factors of 2 (downsampling = "many things in a small place")
 - Simple (4 pixel average) and memory efficient
 - Last image is only ONE texel

- MIP Mapping ("Multum In Parvo")
 - Texture size is reduced by factors of 2 (downsampling = "many things in a small place")
 - Simple (4 pixel average) and memory efficient
 - Last image is only ONE texel

geometric series:

$$a + ar + ar^2 + ar^3 + \dots + ar^{n-1} = \ = \sum_{k=0}^{n-1} ar^k = a\left(rac{1-r^n}{1-r}
ight)$$

- MIP Mapping Algorithm
- $D := ld(max(d_1, d_2))$

"Mip Map level"

- $T_0 := value from texture <math>\vec{D_0} = trunc (D)$
 - Use bilinear interpolation

MIP-Map Level Computation

- Use the partial derivatives of texture coordinates with respect to screen space coordinates
- This is the Jacobian matrix

$$\begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix} = \begin{pmatrix} s_x & s_y \\ t_x & t_y \end{pmatrix}$$

 Area of parallelogram is the absolute value of the Jacobian determinant (the Jacobian)

MIP-Map Level Computation (OpenGL)

OpenGL 4.6 core specification, pp. 251-264

(3D tex coords!)

$$\lambda_{base}(x,y) = \log_2[\rho(x,y)]$$

$$\rho = \max \left\{ \sqrt{\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial w}{\partial x}\right)^2}, \sqrt{\left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2 + \left(\frac{\partial w}{\partial y}\right)^2} \right\}$$

Does not use area of parallelogram but greater hypotenuse [Heckbert, 1983]

Approximation without square-roots

$$m_u = \max\left\{ \left| \frac{\partial u}{\partial x} \right|, \left| \frac{\partial u}{\partial y} \right| \right\} \ m_v = \max\left\{ \left| \frac{\partial v}{\partial x} \right|, \left| \frac{\partial v}{\partial y} \right| \right\} \ m_w = \max\left\{ \left| \frac{\partial w}{\partial x} \right|, \left| \frac{\partial w}{\partial y} \right| \right\}$$

$$\max\{m_u, m_v, m_w\} \le f(x, y) \le m_u + m_v + m_w$$

MIP-Map Level Interpolation

- Level of detail value is fractional!
- Use fractional part to blend (lin.) between two adjacent mipmap levels

- Trilinear interpolation:
 - T₁ := value from texture $D_1 = D_0 + 1$ (bilin.interpolation)
 - Pixel value := $(D_1-D)\cdot T_0 + (D-D_0)\cdot T_1$
 - Linear interpolation between successive MIP Maps
 - Avoids "Mip banding" (but doubles texture lookups)

Other example for bilinear vs. trilinear filtering

Anti-Aliasing: Anisotropic Filtering

- Anisotropic filtering
 - View-dependent filter kernel
 - Implementation: summed area table, "RIP Mapping", footprint assembly, elliptical weighted average (EWA)

Texture space

Anisotropic Filtering: Footprint Assembly

Anti-Aliasing: Anisotropic Filtering

Example

Texture Anti-aliasing

- Basically, everything done in hardware
- gluBuild2DMipmaps() generates MIPmaps
- Set parameters in glTexParameter()
 - GL TEXTURE MAG FILTER: GL NEAREST, GL LINEAR, ...
 - GL TEXTURE MIN FILTER: GL LINEAR MIPMAP NEAREST
- Anisotropic filtering is an extension:
 - GL EXT texture filter anisotropic
 - Number of samples can be varied (4x,8x,16x)
 - Vendor specific support and extensions

```
for Vulkan, see vkSampler,
VkSamplerCreateInfo::magFilter, VkSamplerCreateInfo::minFilter,
VK_FILTER_NEAREST, VK_FILTER_LINEAR,
VkSamplerCreateInfo::mipmapMode,
VK_SAMPLER_MIPMAP_MODE_NEAREST, VK_SAMPLER_MIPMAP_MODE_LINEAR, ...
```


