Théorie et codage de l'information

Les codes de Hamming et les codes cycliques

- Chapitre 6 (suite et fin)-

LES CODES DE HAMMING

Principe

La distance minimale d'un code linéaire \mathcal{L} est le plus petit nombre de colonnes linéairement dépendantes dans sa matrice de test \mathbf{H} . Pour un [n,k,3]-code, aucune colonne de \mathbf{H} n'est multiple d'une autre.

Construction

Les codes de Hamming sont des [n, k, 3]-codes construits ainsi :

- 1. choix d'un vecteur-colonne c_1 non-nul dans $(\mathbf{F}_q)^r$
- 2. choix d'un vecteur-colonne c_2 dans $(\mathbf{F}_q)^r \{\alpha.c_1 : \alpha \in \mathbf{F}_q^*\}$
- 3. réitération jusqu'à ce qu'il n'y ait plus de c_i non-nul

LES CODES DE HAMMING

Intérêts

Notations

Un [n, k, d]-code de Hamming q-aire d'ordre r, noté $\mathcal{H}_q(r)$, est tel que :

$$n = (q^r - 1)/(q - 1)$$
 ; $k = n - r$; $d = 3$

Décodage des codes de Hamming

On constate que (q-1)n représente aussi le nombre d'erreurs possibles de poids 1!

 \triangleright le syndrome de e_i est donc égal à la $i^{\text{ème}}$ colonne de \mathbf{H} .

DÉCODAGE DES CODES DE HAMMING $\mathcal{H}_2(r)$

Exemple

Les colonnes de la matrice de contrôle \mathbf{H} sont simplement les représentations binaires des 2^r-1 premiers nombres positifs non-nuls.

⊳ syndrome = position de l'erreur à corriger

Exemple: $\mathcal{H}_2(3)$

$$\mathbf{H} = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

En supposant qu'une unique erreur s'est produite à la position 3, ce qui correspond au vecteur d'erreur donné par $e_3 = 0010000$, le syndrome du mot reçu est égal à $e_3 \mathbf{H}^{\top} = 011$. Ce nombre donne la position de l'erreur.

DÉCODAGE DES CODES DE HAMMING $\mathcal{H}_3(r)$

Exemple

Comme pour $\mathcal{H}_2(r)$, on choisit les colonnes de **H** comme l'expression des premiers nombres dans une base ternaire, en s'assurant que la première composante non-nulle de ces nombres est 1.

Exemple : $\mathcal{H}_3(3)$

Si une erreur apparaît à la position i, le vecteur d'erreur est de la forme α e_i , avec $\alpha \in \{1, 2\}$. Le syndrome résultant α e_i \mathbf{H}^{\top} .

> on détermine la position de l'erreur et la correction à apporter.

Principe des codes cycliques

Définition

Les codes cycliques $\mathcal C$ constituent l'une des classes les plus importantes parmi les codes linéaires.

Définition 1. Un code C est dit cyclique s'il est linéaire et s'il vérifie la propriété suivante :

$$(c_0 \dots c_{n-1}) \in \mathcal{C} \iff (c_{n-1}c_0 \dots c_{n-2}) \in \mathcal{C}.$$

La permutation circulaire des composantes est appelée *shift*. On peut dire que $(c_{n-1}c_0 \ldots c_{n-2})$ est le shift de $(c_0 \ldots c_{n-1})$.

Principe des codes cycliques

Exemples

Les codes suivants sont des exemples de codes cycliques, qui ne présentent pas tous un intérêt pratique :

$$-\{0\} \text{ et } (\mathbf{F}_q)^n$$

$$- \mathcal{C} = \{000, 101, 011, 110\}$$

- Soit \mathcal{C} le code dont la matrice génératrice est définie par

$$\mathbf{G} = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\longrightarrow} \mathbf{G}^{(1)}$$

$$\mathbf{G}^{(2)} \longrightarrow \mathbf{G}^{(3)}$$

REPRÉSENTATION POLYNÔMIALE

Intérêt

Il est commode d'utiliser la représentation polynômiale suivante :

$$(c_0c_1...c_{n-1}) \longleftrightarrow m(x) = c_0 + c_1x + ... + c_{n-1}x^{n-1}.$$

En effet, le polynôme associé au mot shifté $(c_{n-1}c_0 \dots c_{n-2})$ est celui que l'on obtient en évaluant x.m(x) modulo (x^n-1) :

$$c_{n-1} + c_0 x + \ldots + c_{n-2} x^{n-1} = x(c_0 + \cdots + c_{n-1} x^{n-1}) - c_{n-1} (x^n - 1)$$
$$\equiv x \cdot m(x) \text{ modulo } (x^n - 1).$$

REPRÉSENTATION POLYNÔMIALE

Cadre algébrique

Définition 2. Soit \mathbf{F}_q un corps fini et soit n un entier non-nul. On appelle représentation polynômiale de $(\mathbf{F}_q)^n$ l'application

$$\theta: (\mathbf{F}_q)^n \longrightarrow \mathbf{F}_q[x]/ < x^n - 1 >$$

telle que $\theta(c_0c_1...c_{n-1}) = c_0 + c_1x + ... + c_{n-1}x^{n-1}$.

Définition 3. On appelle représentation polynômiale de C l'ensemble des représentations polynômiales des mots de C, que l'on note $\theta(C)$.

Exemple

Si $C = \{000, 101, 011, 110\}$, alors $\theta(C) = \{0, 1 + x^2, x + x^2, 1 + x\}$ où 0 désigne ici le polynôme nul.

Structure algébrique de $\theta(C)$

Codes cycliques et idéaux

La définition d'un code cyclique nous amène directement à :

Théorème 1. Le code C est cyclique si et seulement si C est un sous-espace vectoriel de $(\mathbf{F}_q)^n$ et si tout multiple modulo $(x^n - 1)$ d'un polynôme de $\theta(C)$ est aussi un polynôme de $\theta(C)$.

En se rappelant de la définition d'un idéal bilatère, on obtient :

Théorème 2. Soit C un code linéaire de longueur n sur \mathbf{F}_q . Alors C est un code cyclique si et seulement si sa représentation polynômiale est un idéal bilatère de l'anneau $\mathbf{F}_q[x]/< x^n-1>$.

Structure algébrique de $\theta(C)$

Polynôme générateur

Après avoir montré que tout idéal de l'anneau $\mathbf{F}_q[x]/< x^n-1>$ est engendré par un même polynôme, dit polynôme générateur, on montre :

Théorème 3. Chaque code cyclique C de longueur n sur \mathbf{F}_q , et non réduit à l'élément nul, possède un polynôme générateur unitaire et un seul qui est diviseur de (x^n-1) dans $\mathbf{F}_q[x]$.

Exemple

Soit \mathcal{C} le code cyclique tel que :

$$\theta(\mathcal{C}) = \{0, 1 + x, x + x^2, 1 + x^2\}.$$

On constate que le polynôme (1+x) est le polynôme générateur de \mathcal{C} .

Structure algébrique de $\theta(C)$

Polynôme générateur

Il est maintenant possible d'exhiber tous les codes cycliques de longueur n grâce à la recherche de tous les diviseurs de $(x^n - 1)$.

Le résultat suivant permet ensuite de trouver les mots du codes :

Théorème 4. Soit C un code cyclique de longueur n et g(x) son polynôme générateur tel que $d^{\circ}(g) = t$. La famille suivante

$$\{g(x), x.g(x), \dots, x^{n-t-1}.g(x)\}$$

est une base de $\theta(C)$ et la dimension du code est n-t.

CONSTRUCTION D'UN CODE CYCLIQUE

Exemple

On veut construire un code cyclique de longueur 7 sur \mathbf{F}_2 . On montre que $(x^7-1)=(x-1)(x^3+x+1)(x^3+x^2+1)$, ce qui nous conduit à :

$$\mathcal{C}_0: \quad g_0(x) \quad = x^7 - 1 \equiv 0$$

$$\mathcal{C}_1: \quad g_1(x) \quad = x - 1$$

$$C_2: g_2(x) = x^3 + x + 1$$

$$C_3: g_3(x) = x^3 + x^2 + 1$$

$$C_4: g_4(x) = g_1(x).g_2(x) = x^4 + x^3 + x^2 + 1$$

$$C_5: g_5(x) = g_1(x).g_3(x) = x^4 + x^2 + x + 1$$

$$C_6: g_6(x) = g_2(x).g_3(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$$

Matrice génératrice

Construction à partir du polynôme générateur

La famille $\{g(x), x.g(x), \dots, x^{n-t-1}.g(x)\}$ est une base de $\theta(\mathcal{C})$. Il suffit donc de choisir les mots associés à cette base pour construire \mathbf{G} .

Théorème 5. Soit $g(x) = g_0 + g_1x + \ldots + g_tx^t$ le polynôme générateur d'un code cyclique C de longueur n sur \mathbf{F}_q . La matrice \mathbf{G} constituée de n-t lignes et n colonnes suivante est génératrice.

$$\mathbf{G} = \begin{pmatrix} g_0 & g_1 & \dots & g_t & 0 & \dots & 0 \\ 0 & g_0 & g_1 & 0 & g_t & \dots & 0 \\ & & & & & & \\ 0 & \dots & 0 & g_0 & g_1 & \dots & g_t \end{pmatrix}.$$

Matrice génératrice

Exemple

Considérons le code cyclique C de $(\mathbf{F}_2)^7$ engendré par le polynôme générateur $g(x) = 1 + x^2 + x^3$. D'après le théorème précédent, une matrice génératrice de ce code est donnée par :

Chaque ligne de G peut être obtenue par un shift de la précédente.

Matrice de contrôle

Définition du polynôme de contrôle

On définit un polynôme de contrôle ainsi :

Définition 4. Soit C un [n,k]-code cyclique de polynôme générateur g(x). Le polynôme h(x) vérifiant $g(x).h(x) = (x^n - 1)$ est dit polynôme de contrôle.

On peut montrer le résultat suivant :

Théorème 6. Soit C un [n,k]-code cyclique dont le polynôme de contrôle est h(x). On a la relation suivante :

$$p(x) \in \theta(\mathcal{C}) \Leftrightarrow p(x).h(x) = 0.$$

Matrice de contrôle

Construction à partir du polynôme de contrôle

Déterminons maintenant l'expression de la matrice de contrôle à partir du polynôme de contrôle.

Théorème 7. Soit C un [n, k, d]-code cyclique de polynôme de contrôle $h(x) = h_0 + h_1 x + \ldots + h_k x^k$. La matrice \mathbf{H} suivante est une matrice de test de C:

$$\mathbf{H} = \begin{pmatrix} h_k & h_{k-1} & \dots & h_0 & 0 & \dots & 0 \\ 0 & h_k & h_{k-1} & \dots & h_0 & \dots & 0 \\ & & & & & & & \\ 0 & \dots & & & & & \\ 0 & \dots & 0 & h_k & h_{k-1} & \dots & h_0 \end{pmatrix}.$$