HOW POWERFUL
ARE K-HOP
MESSAGE PASSING
GRAPH NEURAL
NETWORKS

Present: Qianqiu Zhang

Author: Feng et al.

OUTLINE

- Message Passing
 - 1-hop
 - K-hop
 - shortest path distance (spd) kernel
 - graph diffusion (gd) kernel
- Expressive power of K-hop
- Limitation of K-hop
- KP-GNN
- Experiment
- Issues

GRAPH NOTATIONS

- Q: denotes the set of nodes in G that are exactly the k-th hop neighbors of v
 - \circ 1-hop neighbors: $\mathcal{N}_{v,G}^{1}=Q_{v,G}^{1}\cup\{v\}$
 - o k-hop neighbors: ALL the neighbors that have distance from node v less than or equal to K
 - o k-th hop neighbors: neighbors with EXACTLY distance k from node v
- Regular graph: In graph theory, a regular graph is a graph where each vertex has the same number of neighbors; i.e. every vertex has the same degree.

OVERVIEW

- The paper raise the issue that existing literatures are upper bound by 3-WL test
 - 1-hop GNN is upper bound by 1-WL test
 - K-hop upper bound by 3-WL test
- They propose a new feature added to the k-hop GNN to increase the power of the model

WHAT IS THE PROBLEM

• 1-hop Message Passing

$$m_v^l = \mathrm{MES}^l(\{\!\!\{(h_u^{l-1}, e_{uv}) | u \in Q_{v,G}^1\}\!\!\}), \quad h_v^l = \mathrm{UPD}^l(m_v^l, h_v^{l-1}),$$

- Expressive power of 1-hop GNN
 - 1-hop GNN Upper bounded by 1-WL
 - Mimic higher-order WL-test increase time complexity exponentially

NEIGHBORHOOD DEFINITION

- K-hop
 - shortest path distance (spd) kernel
 - The set of nodes from node v that have the shortest path distance less than or equal to K
 - graph diffusion (gd) kernel
 - The set of nodes that can diffuse information to node v within the number of random walk diffusion steps K

NEIGHBORHOOD DEFINITION

Rooted subtree of $v\mathbf{1}$ with 2-layer 2-hop message passing (Graph Diffusion Kernel)

RANDOM WALK VS SHORTEST PATH

- Random walk kernel can increase the number of neighbors at each iteration
- Node repetition can be harmful
- Higher time complexity

K-HOP

• K-hop Message Passing

$$\begin{split} m_v^{l,k} = & \ \mathrm{MES}_k^l(\{\!\!\{(h_u^{l-1},e_{uv})|u\in Q_{v,G}^{k,t})\}\!\!\}), \ \ h_v^{l,k} = & \ \mathrm{UPD}_k^l(m_v^{l,k},h_v^{l-1}), \\ h_v^l = & \ \mathrm{COMBINE}^l(\{\!\!\{h_v^{l,k}|k=1,2,...,K\}\!\!\}), \end{split}$$

 $Q_{v,G}^{k,t}$ denotes neighbors of node v in graph G within K hops under t kernel

- K-hop Message Passing GNN
 - Message, update, and combine functions are all injective

FEATURE CONSTRUCTION

- Assume all node features only depends on the graph structure
- node configuration:

$$A_{v,G}^{K,t} = (a_{v,G}^{1,t}, a_{v,G}^{2,t}, ..., a_{v,G}^{K,t})$$
, where $a_{v,G}^{i,t} = |Q_{v,G}^{i,t}|$

EXISTING STATE-OF-THE-ART

• K-hop message passing GNN is strictly more powerful than 1-hop message passing GNNs when K > 1.

Theorem 1. Consider all pairs of n-sized r-regular graphs, let $3 \le r < (2log 2n)^{1/2}$ and ϵ be a fixed constant. With at most $K = \lfloor (\frac{1}{2} + \epsilon) \frac{\log 2n}{\log (r-1)} \rfloor$, there exists a 1 layer K-hop message passing GNN using the shortest path distance kernel that distinguishes almost all $1 - o(n^{-1/2})$ such pairs of graphs.

EXISTING STATE-OF-THE-ART

- N-sized r-regular graph $3 \le r < (2log2n)^{1/2}$
- K-hop distance $K = \lfloor (\frac{1}{2} + \epsilon) \frac{\log 2n}{\log (r-1)} \rfloor$
- High chance $1 o(n^{-1/2})$ GNN can distinguish non-isomorphic graphs

EXISTING STATE-OF-THE-ART

Node level

Graph level

WHY DON'T PREVIOUS METHODS WORK ON THAT PROBLEM?

- K-hop message passing GNN limitation
 - the expressive power of K-hop message passing is bounded by 3-WL.
 - cannot distinguish any non-isomorphic distance regular graphs

WHAT IS THE SOLUTION TO THE PROBLEM THE AUTHORS DRODOSE?

Add peripheral edge into message passing can help distinguish between regular graphs even in 1-hop

- K setting!
 - peripheral edge: edges connect nodes within set $Q_{v,G}^{k,t}$
 - peripheral subgraph is a graph constituted by peripheral edges

• K-hop Message Passing

$$\begin{split} m_v^{l,k} = \ \mathrm{MES}_k^l(\{\!\!\{(h_u^{l-1},e_{uv})|u\in Q_{v,G}^{k,t})\}\!\!\}), \ \ h_v^{l,k} = \ \mathrm{UPD}_k^l(m_v^{l,k},h_v^{l-1}), \\ h_v^l = \ \mathrm{COMBINE}^l(\{\!\!\{h_v^{l,k}|k=1,2,...,K\}\!\!\}), \end{split}$$

KP-GNN Message passing

$$\begin{split} m_v^{l,k} &= \mathrm{MES}_k^l(\{\!\!\{(h_u^{l-1},\ e_{uv})|u\in Q_{v,G}^{k,t}\}\!\!\},\ G_{v,G}^{k,t}).\\ \mathrm{MES}_k^l &= \mathrm{MES}_k^{l,normal}(\{\!\!\{(h_u^{l-1},e_{uv})|u\in Q_{v,G}^{k,t}\}\!\!\}) + f(G_{v,G}^{k,t}),\\ f(G_{v,G}^{k,t}) &= \mathrm{EMB}((E(Q_{v,G}^{k,t}),C_k^{k'}))\ , \end{split}$$

$$\begin{split} \text{MES}_k^l &= \text{MES}_k^{l,normal}(\{\!\!\{(h_u^{l-1},e_{uv})|u \in Q_{v,G}^{k,t}\}\!\!\}) + f(G_{v,G}^{k,t}), \\ &f(G_{v,G}^{k,t}) = \text{EMB}((E(Q_{v,G}^{k,t}), C_k^{k'})) \;, \end{split}$$

 $C_k^{k'}$ Encode both node configuration and number of peripheral edges of all nodes in the peripheral subgraph

After obtaining message

$$h_v^{l,k} = \text{UPD}_k^l(m_v^{l,k}, h_v^{l-1})$$

Combining node representation from different hops

$$h_v^l = \text{COMBINE}^l(\{\!\{h_v^{l,k}|k=1,2,...,K\}\!\})$$

Compute graph representation

$$h_G = \text{READOUT}(\{\!\!\{h_v^L | v \in V\}\!\!\})$$

- K-hop GNNs cannot distinguish any non-isomorphic distance regular graphs
- Analyze KP-GNN's ability of distinguishing distance regular graphs

WHY KP-GNN

Proposition 2. For two non-isomorphic distance regular graphs $G^{(1)} = (V^{(1)}, E^{(1)})$ and $G^{(2)} = (V^{(2)}, E^{(2)})$ with the same diameter d and intersection array $(b_0, b_1, ..., b_{d-1}; c_1, c_2, ..., c_d)$. Given a proper 1-layer d-hop KP-GNN with message functions defined in Equation (5), it can distinguish $G^{(1)}$ and $G^{(2)}$ if $C_{j,G^{(1)}}^{k'} \neq C_{j,G^{(2)}}^{k'}$ for some $0 < j \le d$.

TIME COMPLEXITY

- o K-hop message passing GNNs: $O(n^2)$
- oKP-GNN: extra time complexity comes from counting the peripheral edges and k'-configuration (can be preprocessed)

 $O(n^2)$

EXPERIMENT

- Datasets
 - o Determine isomorphism
 - EXP datasets: contains 600 pairs of non-isomorphic graphs (1-WL failed).
 - SR25 dataset: 15 non-isomorphic strongly regular graphs (3- WL failed)
 - CSL dataset, which contains 150 4-regular graphs (1-WL failed) divided into 10 isomorphism classes

DETERMINE ISOMORPHISM

• Use encoder of GIN

Method	$ _{\mathbf{K}}$	EXP (ACC)		SR (ACC)		CSL (ACC)	
212002200		SPD	GD	SPD	GD	SPD	GD
K-GIN	K=1	50	50	6.67	6.67	12	12
	K=2	50	50	6.67	6.67	32	22.7
	K=3	100	66.9	6.67	6.67	62	42
	K=4	100	100	6.67	6.67	92.7	62.7
	K=1	50	50	100	100	22	22
KP-GIN	K=2	100	100	100	100	52.7	52.7
	K=3	100	100	100	100	90	90
	K=4	100	100	100	100	100	100

GRAPH/NODE PROPERTY REGRESSION

• Regression test

Method Node Prope		perties (log	perties $(\log_{10}(MSE))$		Graph Properties ($log_{10}(MSE)$)			Counting Substructures (MAE)			
	SSSP	Ecc.	Lap.	Connect.	Diameter	Radius	Tri.	Tailed Tri.	Star	4-Cycle	
GIN	-2.0000	-1.9000	-1.6000	-1.9239	-3.3079	-4.7584	0.3569	0.2373	0.0224	0.2185	
PNA	-2.8900	-2.8900	-3.7700	-1.9395	3.4382	-4.9470	0.3532	0.2648	0.1278	0.2430	
PPGN	-	-	-	-1.9804	-3.6147	-5.0878	0.0089	0.0096	0.0148	0.0090	
GIN-AK+	-	-	-	-2.7513	-3.9687	-5.1846	0.0123	0.0112	0.0150	0.0126	
K-GIN+	-2.7919	-2.5938	-4.6360	-2.1782	-3.9695	-5.3088	0.2593	0.1930	0.0165	0.2079	
KP-GIN+	-2.7969	-2.6169	-4.7687	-4.4322	-3.9361	-5.3345	0.0060	0.0073	0.0151	0.0395	

REAL-WORLD EXPERIMENT

Method	MUTAG	D&D	PTC-MR	PROTEINS	IMDB-B
WL	90.4±5.7	79.4±0.3	59.9±4.3	75.0±3.1	73.8±3.9
GIN	89.4±5.6	79.3 ±0.9	64.6±7.0	$75.9{\pm}2.8$	75.1±5.1
DGCNN	85.8±1.7		58.6 ±2.5	$75.5{\pm}0.9$	70.0±0.9
GraphSNN	91.24±2.5	82.46±2.7	66.96±3.5	76.51±2.5	76.93±3.3
GIN-AK+	91.30±7.0		68.20±5.6	77.10±5.7	75.60±3.7
KP-GCN	$91.7{\pm}6.0$	79.0 ± 4.7 78.1 ± 2.6 79.4 ± 3.8	67.1 ± 6.3	75.8±3.5	75.9±3.8
KP-GraphSAGE	$91.7{\pm}6.5$		66.5 ± 4.0	76.5±4.6	76.4±2.7
KP-GIN	$92.2{\pm}6.5$		66.8 ± 6.8	75.8±4.6	76.6±4.2
GIN-AK+* GraphSNN* KP-GCN* KP-GraphSAGE* KP-GIN*	95.0±6.1 94.70±1.9 96.1 ± 4.6 96.1 ± 4.6 95.6±4.4	OOM 83.93±2.3 83.2±2.2 83.6±2.4 83.5±2.2	74.1 ± 5.9 70.58 ± 3.1 77.1 ± 4.1 76.2 ± 4.5 76.2 ± 4.5	78.9±5.4 78.42±2.7 80.3±4.2 80.4 ± 4.3 79.5±4.4	77.3 ± 3.1 78.51 ± 2.8 79.6 ± 2.5 80.3 ± 2.4 80.7 ± 2.6

REAL-WORLD EXPERIMENT

• Molecule prediction test

Method	# param.	test MAE
MPNN	480805	0.145 ± 0.007
PNA	387155	0.142 ± 0.010
Graphormer	489321	0.122 ± 0.006
GSN	~500000	0.101 ± 0.010
GIN-AK+	_	0.080 ± 0.001
CIN	_	0.079 ± 0.006
KP-GIN+	499099	0.111±0.006
KP-GIN'	488649	0.093 ± 0.007

ISSUE

- The experiment on synthetic graph prove the theorem
- It does not consistently improve in real world applications
- Using k-hop will increase the receptive field of a node w.r.t K \circ After L layer, the receptive field of a node is K \times L
 - KP-GNN' at the first layer but 1-hop message passing at the rest of the layers.

THANK YOU

