Unsupervised Learning Models

Unsupervised learning is used when we don't have labeled data. The algorithm identifies patterns, clusters, or associations within the data without predefined categories.

Here are the most common **unsupervised learning models** with **when to use them** and **code examples**:

1. K-Means Clustering

← When to Use?

- When you want to group similar data points together.
- Useful when you don't know the categories beforehand.
- Examples: Customer segmentation, image compression, document clustering.

Python Code Example

```
print("Cluster Centers:\n", kmeans.cluster_centers_)
print("Labels:", kmeans.labels_)
```

2. Hierarchical Clustering

← When to Use?

- When you want a **tree-like structure** of data grouping (dendrogram).
- Works well for small datasets where you want to analyze how clusters are formed step by step.
- Examples: Gene expression analysis, social network analysis.

Python Code Example

Plot dendrogram

```
plt.figure(figsize=(5, 3))

dendrogram = sch.dendrogram(sch.linkage(X, method='ward'))

plt.show()

# Applying Hierarchical Clustering

hc = AgglomerativeClustering(n_clusters=2, affinity='euclidean', linkage='ward')

y_hc = hc.fit_predict(X)

print("Cluster Labels:", y_hc)
```

3. Principal Component Analysis (PCA)

- When you have **high-dimensional data** and want to reduce its complexity.
- Used for **feature reduction** while preserving essential information.
- Examples: Image compression, noise reduction, speeding up ML models.

Python Code Example

```
# Reducing dimensions to 2
pca = PCA(n_components=2)

X_reduced = pca.fit_transform(X)

print("Reduced Data:\n", X_reduced)
print("Explained Variance Ratio:", pca.explained_variance_ratio_)
```

4. DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

- When data has arbitrary shapes and noise.
- Unlike K-Means, it does **not** require predefining the number of clusters.
- Examples: Anomaly detection, customer segmentation with varying densities.

Python Code Example

```
# Applying DBSCAN
dbscan = DBSCAN(eps=1.5, min_samples=2)
clusters = dbscan.fit_predict(X)
print("Cluster Labels:", clusters)
```

Summary of When to Use Each Model

Model	When to Use?
Mioaci	Wilch to Osc.

K-Means Clustering When you need to **group similar items** into predefined

clusters. Works well when the number of clusters is known.

Hierarchical Clustering When you need to visually understand cluster formation

(dendrogram). Works well for smaller datasets.

PCA (Principal When you want to **reduce dimensionality** while keeping

Component Analysis) important features. Good for speeding up models.

DBSCAN When the data has **irregular shapes** and varying densities.

Best for **anomaly detection** and **data with noise**.