Also published as:

DP7014962 (B)

] JP1996643 (C)

PRODUCTION OF CARBOHYDRATE HIGHLY CONTAINING MALTOPENTAOSE

Publication number: JP6184201 (A)

Publication date:

1994-07-05

Inventor(s):

MIYAKE TOSHIO; SAKAI SHUZO; SHIBUYA TAKASHI

Applicant(s):

HAYASHIBARA BIOCHEM LAB

Classification:

- international:

C07H1/08; C07H3/06; C08B30/20; C08B37/00; C12P19/14; C12P19/16; C07H1/00; C07H3/00; C08B30/00; C08B37/00; C12P19/00; (IPC1-7): C07H1/08; C07H3/06; C08B37/00;

C08B30/20; C12P19/14; C12P19/16

- European:

Application number: JP19930232599 19930813

Priority number(s): JP19930232599 19930813; JP19830019550 19830210

Abstract of JP 6184201 (A)

PURPOSE:To obtain a highly pure carbohydrate useful as an additive to various beverages, various foods, cosmetics, etc., as a raw material for chemicals, etc., by treating a starch solution with alphaamylase and a starch branch cutting enzyme, purifying the produced maltopentaose, and collecting the purified product. CONSTITUTION:A saccharide solution containing a highly maltopentaose-containing carbohydrate produced by treating a starch solution with alpha-amylase and a starch branch cutting enzyme (e.g. pullulanase) is flown into a column filled with an alkali metal type or alkaline earth metal type acidic cation exchange resin having a crosslinking degree of <=6%.; Subsequently, the adsorbed substances are eluted with water to successively fractionate a fraction highly containing saccharides having mol.wt. same as or higher than that of maltohexaose, a fraction highly containing oligo saccharides and maltopentaose having mol.wt. some as or higher than that of the maotohexaose, a fraction highly containing the maltopentaose, and a fraction highly containing oligosaccharides having mol.wt. some as or lower than that of maltotetraose, and a fraction highly maltopentaose-containing fraction is collected to provide the objective carbohydrate having a high quality.

Data supplied from the **esp@cenet** database — Worldwide

(19) 日本国特許庁 (JP)

(12) 特 許 公 報 (B2)

(11)特許出願公告番号

特公平7-14962

(24) (44)公告日 平成7年(1995) 2月22日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ	技術表示箇所			
C08B 37/00	G	7433-4C					
30/20		7433-4C					
C 1 2 P 19/14	Z	7432-4B					
19/16		7432-4B					
// C07H 1/08							
				発明の数1(全 5 頁) 最終頁に続く			
(21)出願番号	(21) 出願番号 特願平5 - 232599		(71)出願人	000155908			
(62)分割の表示	特願昭58-19550の分割			株式会社林原生物化学研究所			
(22)出顧日	昭和58年(1983) 2月10日			岡山県岡山市下石井1丁目2番3号			
			(72)発明者	三宅 俊雄			
(65)公開番号	特開平6-184201			岡山県岡山市奥田1丁目7番10-403号			
(43)公開日	平成6年(1994)7月5日		(72)発明者	堺 修造			
				岡山県赤磐郡瀬戸町江尻旭ケ丘1丁目3番			
				地の41			
			(72)発明者	渋谷 孝			
				岡山県総社市下原318番地			
			審査官	弘實議二			

(54) 【発明の名称】 マルトペンタオース高含有糖質の製造方法

1

【特許請求の範囲】

【請求項1】 澱粉溶液にαーアミラーゼと澱粉枝切酵素とを作用させることによりマルトペンタオースを生成させ、これを精製、採取することを特徴とするマルトペンタオース高含有糖質の製造方法。

【請求項2】 澱粉溶液にα-アミラーゼと澱粉枝切酵素とを作用させるのに、酸性側で作用させることを特徴とする請求項1記載のマルトペンタオース高含有糖質の製造方法。

【請求項3】 澱粉溶液にαーアミラーゼと澱粉枝切酵 10素とを作用させることにより得られるマルトペンタオース高含有糖質を含有する糖液を、架橋度が6%以下のアルカリ金属型またはアルカリ土類金属型強酸性カチオン交換樹脂を充填したカラムに流し、次いで水で溶出し、マルトへキサオース以上の高分子オリゴ糖高含有画分、

2

マルトへキサオース以上の高分子オリゴ糖・マルトペンタオース高含有画分、マルトペンタオース高含有画分、マルトペンタオース以下の低分子オリゴ糖高含有画分、マルトテトラオース以下の低分子オリゴ糖高含有画分の順に分画し、このマルトペンタオース高含有画分を採取することを特徴とする請求項1または請求項2記載のマルトペンタオース高含有糖質の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、澱粉からのマルトペンタオース高含有糖質の製造方法に関する。

[0002]

【従来の技術】マルトペンタオースは、通常、水飴に含まれており、その含量は、10w/w%(以下、本明細

40

50

3

書では、特にことわらない限り、「w/w%」を「%」と略記する。)未満と、きわめて低いものである。

【0003】一方、斉藤は、アーカイブス・オブ・バイオケミストリー・アンド・バイオフィジックス(ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS) 第155巻 第290乃至第298頁(1973年)で、パチルス・リケニフォルミス(Bacillus Iicheniformis)からの α -アミラーゼ(マルトペンタオース生成 α -アミラーゼとも云っている。)をアミロースに作用させることにより、マルトペンタオース含量33.3%の反応物を得たことを報告している。

【0004】しかしながら、ここで採用されている方法は、基質濃度0.5万至1.0%の希薄溶液に α -アミラーゼをアルカリ側の β H 8.0で作用させており、反応物が、該酵素の作用中、その後における濃縮中に著しく褐変、着色し、到底、工業的に採用し得ない欠点のあることが知られている。

【0005】その上、マルトペンタオースの特性を利用 しようとする糖質としては、マルトペンタオースの含量 が、なお不充分である。

【0006】このようなことから、マルトペンタオース 含量をより高めた高品質のマルトペンタオース高含有糖 質の工業的製造方法の確立が望まれている。

[0007]

【発明が解決しようとする課題】本発明は、高品質のマルトペンタオース高含有糖質の工業的製造方法を提供しようとするものである。

[0008]

【課題を解決するための手段】本発明者等は、前記課題を解決するために、澱粉からのマルトペンタオース増収方法、とりわけ、澱粉溶液の利用と、これに作用させる酵素、並びに、その作用 p H に着目して鋭意研究した。

【0009】その結果、意外にも、澱粉溶液に α -アミラーゼとイソアミラーゼ、プルラナーゼなどの澱粉枝切酵素とを作用させる方法が、アミロースに α -アミラーゼを作用させる方法よりも高含量のマルトペンタオースを生成できると共に、高濃度で作用できることが判明し、しかも、安定p Hが中性乃至アルカリ性側にある α -アミラーゼを、あえて酸性側p Hで作用させ、得られる反応液を精製、採取することにより、澱粉から高品質のマルトペンタオース高含有糖質が容易に製造できることを見いだし、本発明を完成した。

【0010】また、このようにして得られたマルトペンタオース高含有糖質を含有する糖液から、より高純度のマルトペンタオースを製造するため、樹脂分画法に着目して鋭意研究した。

【0011】その結果、該糖液を、架橋度が6%以下のアルカリ金属型またはアルカリ土類金属型強酸性カチオン交換樹脂を充填したカラムに流し、次いで水で溶出

し、マルトへキサオース以上の高分子オリゴ糖(以下、L糖という。)高含有画分、L糖・マルトペンタオース高含有画分、マルトペンタオース高含有画分、マルトペンタオース・マルトテトラオース以下の低分子オリゴ糖(以下、S糖という。)高含有画分、S糖高含有画分の順に分画し、このマルトペンタオース高含有画分を採取することにより、容易にきわめて高純度のマルトペンタオースが製造でき、工業的製法として好適であることを

【0012】本発明で使用する澱粉は、馬鈴薯澱粉、甘 薯澱粉、タピオカ澱粉などの地下系澱粉であっても、と うもろこし澱粉、米澱粉、小麦澱粉などの地上系澱粉で あってもよい。

見いだし、本発明を完成した。

【0013】澱粉乳の濃度は、澱粉が完全に糊化できればよく、通常、5%以上のものが選ばれる。必要ならば、常法に従って、液化した澱粉溶液、望ましくは、DE 5未満に液化した澱粉溶液を用いることも有利に実施できる。

【0014】次いで、酸性側pH、望ましくは、pH4. 5乃至6. 0に保って、 α -アミラーゼと澱粉枝切酵素とを加え、温度約40乃至60℃に保って作用させればよい。

【0015】本発明で使用するα-アミラーゼは、澱粉からマルトペンタオースを生成するものであればよく、例えば、公知のバチルス・リケニフォルミスなどの細菌由来の酵素、または、酵素剤などが使用される。

【0016】澱粉枝切酵素としては、公知のイソアミラーゼ、プルラナーゼなどが適宜使用できるが、とりわけ、酸性側でよく作用するイソアミラーゼの利用が好適である。

【0017】このようにして反応を終了した糖液は、常法に従って、加熱し、酵素を熱失活させた後、濾過し、次いで、活性炭で脱色し、イオン交換樹脂で脱塩するなどの精製工程を経た後、適宜濃度に濃縮して、マルトペンタオース高含有糖液を採取すればよい。

【0018】このようにして得られるマルトペンタオース高含有糖液は、そのマルトペンタオース含量が、従来から知られているアミロースにαーアミラーゼのみを作用させて得られる糖液よりも高く、約35%以上、とりわけ、澱粉枝切酵素としてイソアミラーゼを用いる場合には、容易に約40%にも達することが判明した。

【0019】その上、本発明においては、 α -アミラーゼを、従来知られている希薄なアミロース溶液にアルカリ側pHで作用させる場合とは違って、高濃度の澱粉溶液に酸性側pHで澱粉枝切酵素とともに作用させるものであることから、反応液の褐変、着色が少なく、微生物汚染も受けにくく、従って、反応液の精製が容易であり、高品質のマルトペンタオース高含有糖質の大量生産方法として好適である。

【0020】次に、前述のマルトペンタオース高含有糖

20

40

質を含有する糖液を原糖液として、さらに高純度のマル トペンタオースを含有するマルトペンタオース高含有糖 質を得るための樹脂分画法について述べる。

5

【0021】本発明で使用されるアルカリ金属型または アルカリ土類金属型強酸性カチオン交換樹脂には、スル ホン基を結合したスチレンージビニルベンゼン架橋共重 合体樹脂のNa型、K型などのアルカリ金属塩型、 または Ca^{++} 、 Mg^{++} 型などのアルカリ土類金属塩 型の1種または2種以上が適宜使用され、市販品として は、例えば、ダウケミカル社製造の商品名グウエツクス 10 50W×1、ダウエツクス50W×2、ダウエツクス5 OW×4、ローム&ハース社製造の商品名アンバーライ ト C G - 1 2 0、東京有機化学工業株式会社製造の商品 名XT-1022E、XT-1007、三菱化成工業株 式会社製造の商品名ダイヤイオンSK1B、ダイヤイオ ンSK 102、ダイヤイオンSK 104などがあ る。なかでも、架橋度6%以下の樹脂が好適であること が判明した。

【0022】本発明でいう架橋度とは、スチレンージビ ニルベンゼン架橋共重台体を製造するに際し、全仕込モ ノマーに対するジビニルベンゼンの重量百分率(%)を いう。

【0023】これらの樹脂は、マルトペンタオース高含 有画分の分画に優れているだけでなく、耐熱性、耐摩耗 性にも優れ、高純度のマルトペンタオースの大量生産に 極めて有利である。

【0024】本発明では、通常0.01~0.5mm程 度の粒径の樹脂をカラムに充填して使用すればよい。カ ラム内に充填する樹脂層の長さは、全長で9m以上が望 ましく、この際1本のカラムで9m以上にしても、また 2本以上のカラムを直列に連結して9m以上にしてもよ い。カラムの材質、形状は、本発明の目的が達成できる 限り自由に選択できる。即ち、その材質は、例えば、ガ ラス、プラスチック、ステンレスなどが利用でき、その 形状は充填した樹脂層内を通す液ができるだけ層流にな る例えば、円筒状、角筒状などが適宜利用できる。

【0025】更に、本発明の実施方法をより具体的に述

【0026】アルカリ金属型またはアルカリ土類金属型 強酸性カチオン交換樹脂を水に懸濁してカラムに充填 し、樹脂層の全長が通常9m以上になるようにする。こ のカラム内の温度を45~85℃に維持しつつ、これに 濃度約40~70%の原糖液を樹脂に対して約1~50 v/v%加え、これに水をSV約0.1~2.0の流速 で上昇法または下降法により流して溶出し、原糖液をL 糖高含有画分、L糖・マルトペンタオース高含有画分、 マルトペンタオース高含有画分、マルトペンタオース・ S糖高含有画分、S糖高含有画分の順に分画し、そのマ ルトペンタオース高含有画分を採取すればよい。

【0027】この際、溶出液の採取は、通常、使用樹脂 50

に対して約1~20 v/v%毎に行なわれるが、これを 自動化し、前記画分に振り分けるようにしてもよい。

【0028】また、原糖液をカラムに流して分画するに 際し、既に得られているL糖・マルトペンタオース高含 有画分及びマルトペンタオース・S糖高含有画分を原糖 液の前後に、または原糖液とともに流すことにより、分 画に要する使用水量を減少させ、原糖液中のマルトペン タオースを高純度、高濃度、高回収率で採取できるので 好都合である。

【0029】一般的には、既に得られているL糖・マル トペンタオース高含有画分を流した後に原糖液を流し、 次いで既に得られているマルトペンタオース・S糖高含 有画分を流すという順序を採用するのが好ましい。ま た、本発明で使用される分画法は、固定床方式、移動床 方式、擬似移動床方式のいずれであってもよい。

【0030】このようにして分画し、採取されたマルト ペンタオース高含有画分を、そのままで用いることもで きるが、必要ならば、常法に従い脱色、脱塩して精製 し、更には、例えば濃縮してシラップとするか、または 乾燥、粉末化して粉末を採取することも自由にできる。

【0031】このようにして製造されたマルトペンタオ ース高含有糖質は、試薬、診断薬、医薬などとしては勿 論のこと、各種飲食品、化粧品などの配合剤、化学品原 料などとしても有利に利用することができる。

【0032】以下、本発明におけるマルトペンタオース 高含有糖質の製造方法を、実施例で説明する。

[0033]

【実施例1】6%馬鈴薯澱粉乳を加熱糊化させた後、p H 4. 5、温度50℃に調整し、これにイソアミラー ゼ(株式会社林原生物化学研究所製造)を澱粉グラム当 り2,500単位の割合になるように加え、20時間反 応させた。その反応液を p H 6. 0 に調整し、オートク レーブ(120℃)を10分間行ない、次いで45℃に 冷却し、これに α - アミラーゼ (ノポ社製造、商品名タ ーマミール60L)を澱粉グラム当り150単位の割合 になるように加え、24時間反応させた。その反応液を オートクレーブ(120℃)に20分間保った後、冷却 し、濾過して得られる濾液を、常法に従って活性炭で脱 色し、H型及びOH型イオン交換樹脂により脱塩して精 製し、更に濃縮して濃度55%の糖液を収率約90%で 得た。

【0034】この糖液の糖組成は、グルコース重合度が 4以下の糖類 47.5%、マルトペンタオース 40.3 %、グルコース重合度が6以上の糖類12.2%であっ た。

【0035】本品は、各種飲食品、化粧品などの配合 剤、化学品原料などとして有利に利用できる。また、使 用目的によっては、更に、濃縮して使用することもでき る。

[0036]

7

【実施例2】実施例1で調製したマルトペンタオース含量40.3%の糖液を、さらに高純度なものとするため、この糖液を原糖液として、樹脂分画法を行なった。樹脂は、アルカリ土類金属型強酸性カチオン交換樹脂(グウケミカル社製造、商品名ダウエックス50W×4、Mg⁺⁺型、架橋度4%)を使用し、内径5.4cmのジャケット付ステンレス製カラムに水懸濁液で充填し、その液が直列に流れるようにカラム6本を連結して樹脂層全長が30mになるように充填した。

【0037】カラム内温度を75℃に維持しつつ、原糖 10 液を樹脂に対して6.6 v / v %加え、これに75℃の温水をSV0.13の流速で流して分画した。

【0038】得られた分画品を、溶出順に再度カラムにかけて分画し、マルトペンタオース含量90%以上のマルトペンタオース高含有画分を採取した。

【0039】マルトペンタオースの回収率は約85%であった。

【0040】本マルトペンタオース高含有画分を、実施*

* 例1の方法に従い、脱色、脱塩して精製することにより、マルトペンタオース高含有糖質を得た。

【0041】さらに、この糖質を、常法に従って乾燥、 粉末化することにより、高純度マルトペンタオース粉末 を得た。

【0042】これらは、何れも、試薬、診断薬、医療などとして使用できることは勿論のこと、各種飲食品、化粧品などの配合剤、化学品原料などとしても有利に利用することができる。

0 [0043]

【実施例3】実施例1で調製したマルトペンタオース含量40.3%の糖液を、さらに高純度なものとするため、この糖液を原糖液として樹脂分画法を行なった。

【0044】樹脂として、架橋度の相違する表 1 に示す市販の強酸性カチオン交換樹脂(Na^{\dagger} 型)を、その平均粒径を $0.1\sim0.3$ mmに調製して使用した。

[0045]

【表1】

架橋度と使用樹脂

架橋度	商品名	製造会社
1 %	ダウエックス50W×1	ダウケミカル
2 %	ダイヤイオンSK102	三菱化成工業
4 %	ダウエックス50W×4	ダウケミカル
6 %	ダイヤイオンSK106	三菱化成工業
8 %	ダウエックス50W×8	ダウケミカル
10%	ダイヤイオンSK110	三菱化成工業
1 2 %	ダイヤイオンSK112	三菱化成工業

【0046】カラムは、内径2.2cmのジャケット付 タオステンレス製で、これに樹脂を樹脂層長が10mになる 画名ように充填した。カラム内温度を70℃に維持しつつ、 高級これに濃度40%とした原糖液を樹脂に対して10v/ 40 た。 v%加え、更に70℃の温水をSV0.4の流速で流 【0、溶出される糖液を溶出順に分画採取した。 ス含

【0047】カラムから糖の溶出が終了に近づいた時点で、カラムへの温水の注入を止め、代わりに、先に分画採取した糖液を溶出順に加え、続いて同様に温水を流した。このような操作を5回繰り返して、L糖高含有画分、L糖・マルトペンタオース高含有画分、マルトペン

タオース高含有画分、マルトペンタオース・S糖高含有画分、S糖高含有画分の順に溶出分画し、90%以上の高純度マルトペンタオースを含有している画分を採取した。

【0048】得られた高純度画分中のマルトペンタオース含量の使用した原糖液中のマルトペンタオース含量に対する百分率をマルトペンタオース回収率とした。その結果を表2に示した。

[0049]

【表2】

架橋度とマルトペンタオース回収率

架橋度	マルトペンタオース 回 収 率			
1 %	82 %	本	発	眀
2 %	93 %	本	発	明
4 %	94 %	本	発	明
6 %	8 1 %	本	発	明
8 %	15 %			
1 0 %	5 % 未満			
1 2 %	5 % 未満		-20-404	

表2の結果から明らかなように、架橋度が6%以下の強酸性カチオン交換樹脂を用いて前記方法で原糖液を溶出分画することにより、90%以上の高純度マルトペンタオースを、原糖液中のマルトペンタオースが80%以上の高回収率で得られた。

【0050】これらを、実施例1の方法に従って、脱色、脱塩して精製することにより、何れも、試薬、診断薬、医薬などとして使用できることは勿論のこと、各種飲食品、化粧品などの配合剤、化学品原料などとしても有利に利用することができる。

[0051]

【発明の効果】本発明は、上記したことから明らかなよ*

*うに、澱粉溶液にαーアミラーゼと澱粉枝切酵素とを酸性側のpHで作用させることにより、高品質のマルトペンタオース高含有糖質を製造し得ると共に、更にこのマルトペンタオース高含有糖質を含有する糖液を架橋度6%以下の塩型強酸性カチオン交換樹脂を充填したカラムに流して分画することにより、更に、高純度のマルトペンタオースを高回収率で製造し得る実益を有する。

【0052】そして、このようにして得られたマルトペンタオース高含有糖質は、試薬、診断薬、医療などとしては勿論のこと、各種飲食品、化粧品などの配合剤、化学品原料などとしても有利に利用できる効果を有する。

フロントページの続き

(51) Int.C1.6

識別記号 庁内整理番号

FΙ

技術表示箇所

CO7H 3/06