### Imperial College London

[E 2.9 (Maths 4) 2009]

B.ENG. AND M.ENG. EXAMINATIONS 2009

PART II Paper 4: MATHEMATICS (ELECTRICAL ENGINEERING)

Date Thursday 4th June 2009 2.00 - 4.00 pm

DO NOT OPEN THIS PAPER UNTIL THE INVIGILATOR TELLS YOU TO.

Answer FOUR questions.

Please answer question from Section A and Section B in separate answerbooks.

A mathematical formulae sheet is provided.

Statistical data sheets are provided.

[Before starting, please make sure that the paper is complete; there should be 5 pages, with a total of 6 questions. Ask the invigilator for a replacement if your copy is faulty.]

© 2009 Imperial College London

### SECTION A

1. Find the eigenvalues and normalized eigenvectors of the matrix

$$A = \begin{pmatrix} 2 & \sqrt{12} & 0 \\ \sqrt{12} & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

Using these, or otherwise, show that the matrix

$$P = \begin{pmatrix} \sqrt{4/7} & \sqrt{3/7} & 0\\ \sqrt{3/7} & -\sqrt{4/7} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

diagonalizes A such that

$$P^T A P = \text{diag}(5, -2, 3)$$
.

2. Show that the quadratic form

$$Q = x_1^2 + 2\sqrt{6} x_1 x_2 + 2x_2^2 + 6x_3^2$$

can be written as

$$Q = \mathbf{x}^T A \mathbf{x}$$

where  $x = (x_1, x_2, x_3)^T$  and A is a real symmetric matrix, which is to be found.

Hence show that Q can be re-expressed in the diagonal form

$$Q = 4y_1^2 - y_2^2 + 6y_3^2,$$

by finding a matrix P that satisfies

$$\boldsymbol{x} = P \boldsymbol{y}$$
 where  $\boldsymbol{y} = (y_1, y_2, y_3)^T$ .

Find  $y_1$ ,  $y_2$  and  $y_3$  in terms of  $x_1$ ,  $x_2$  and  $x_3$  from the matrix P.

PLEASE TURN OVER

### SECTION B

3. Consider the discrete random variables X and Y with joint probability mass function p(x, y) = P(X = x, Y = y) given by the table below.

|                  |       | 3    | y    |
|------------------|-------|------|------|
| p(x)             | (x,y) | 0    | 1    |
|                  | 0     | 0.4k | 0.2k |
| $\boldsymbol{x}$ | 1     | 0.2k | 0.4k |
|                  | 2     | 0.6k | 0.2k |

- (i) Show that k = 1/2.
- (ii) Find the marginal distribution of X and the marginal distribution of Y.
- (iii) Find E(X) and E(Y).
- (iv) Find Var(X).
- (v) Find cov(X, Y).
- (vi) Are X and Y uncorrelated? Give your reasoning.
- (vii) Are X and Y independent? Give your reasoning.
- (i) Let X be Exponential (1).
   Find the cumulative distribution function (cdf) of the random variable X<sup>2</sup>.
  - (ii) Let  $X_1, X_2, X_3, X_4$  be independent  $Exponential(\lambda)$  distributed random variables.

Find the cdf of  $min(X_1, X_2, X_3, X_4)$ .

- (iii) Let X and Y be independent  $Exponential(\lambda)$  distributed random variables.
  - (a) Find cov(X, Y).
  - (b) Find E(X Y).
  - (c) Find Var(X Y).
  - (d) Find the probability density function (pdf) of X + Y.

- 5. (i) Suppose that a system consists of k components in series, i.e. it functions as long as all components function. Suppose that the states of the components are independent and that each component functions with probability 0.999.
  - (a) What is the probability that the system functions?
  - (b) It is required that the system will fail with a probability of less than 0.01. What is the maximal number of components that can be used?
  - (ii) Consider a system in which there are three components with component 3 in series to the parallel components 1 and 2 as in the sketch.



Suppose that the failure times of the components are independent and follow an exponential distribution with parameters  $\lambda_1=1,\ \lambda_2=2$  and  $\lambda_3=3$ , respectively.

What is the probability that the system fails before a specified time t?

(iii) Let T be a nonnegative random variable with hazard rate

$$h(t) = at^b$$

for some a > 0, b > -1.

- (a) Find the cumulative distribution function F of T.
- (b) Find the probability density function f of T.

- 6. (i) Let  $X_1, \ldots, X_n$  be a random sample from an  $N(\mu, 1)$  distribution, where  $\mu$  is unknown.
  - (a) Find the maximum likelihood estimator  $\hat{\mu}$  of  $\mu$ .
  - (b) What is the distribution of  $\hat{\mu}$ ? Find  $P(\hat{\mu} > \mu + 2/\sqrt{n})$ .
  - (ii) The random variable Y has density function

$$f(y) = \frac{1}{6}\lambda^4 y^3 e^{-\lambda y}$$
 on  $(0, \infty)$ , with  $\lambda > 0$ .

- (a) Find E(Y^{-1}). You may use that  $\int_0^\infty y^k e^{-\lambda y} dy = \frac{k!}{\lambda^{k+1}}$  for integers  $k \ge 0$ .
- (b) A random sample  $(y_1, \ldots, y_n)$  is obtained from the Y-distribution. Show that the estimator

$$T = \frac{3}{n} \sum_{i=1}^{n} y_i^{-1}$$

is unbiased for  $\lambda$  and find the mean-square error of T. You may use that  $\mathrm{Var}(Y^{-1}) = \lambda^2/18$ .

## MATHEMATICS DEPARTMENT

### MATHEMATICAL FORMULAE

### 1. VECTOR ALGEBRA

$$a = a_1i + a_2j + a_3k = (a_1, a_2, a_3)$$

Scalar (dot) product: a.  $b = a_1b_1 + a_2b_2 + a_3b_3$ 

Vector (cross) product:

$$a \times b = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Scalar triple product:

[a, b, c] = a.bxc = b.cxa = c.axb = 
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Vector triple product:

 $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} - (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$ 

### 2. SERIES

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 + \dots \quad (\alpha \text{ arbitrary, } |x| < 1)$$

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots,$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

$$\sin x = x - \frac{x^3}{3!} \div \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots,$$

 $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^{n+1}}{(n+1)} + \dots (-1 < x \le 1)$ 

# 3. TRIGONOMETRIC IDENTITIES AND HYPERBOLIC FUNCTIONS

 $\sin(a+b) = \sin a \cos b + \cos a \sin b$ ;

 $\cos(a+b) = \cos a \cos b - \sin a \sin b$ .

 $\cos iz = \cosh z$ ;  $\cosh iz = \cos z$ ;  $\sin iz = i \sinh z$ ;  $\sinh iz = i \sin z$ .

### 4. DIFFERENTIAL CALCULUS

(a) Leibniz's formula:

$$D^{n}(fg) = f D^{n}g + \binom{n}{1} D f D^{n-1}g + \ldots + \binom{n}{r} D^{r} f D^{n-r}g + \ldots + D^{n}fg.$$

(b) Taylor's expansion of f(x) about x = a:

$$f(a+h) = f(a) + hf'(a) + h^2f''(a)/2! + \ldots + h^nf^{(n)}(a)/n! + \epsilon_n(h),$$

(c) Taylor's expansion of f(x, y) about (a, b):

where  $c_n(h) = h^{n+1} f^{(n+1)} (u + \theta h) / (n+1)!$ ,  $0 < \theta < 1$ .

$$f(a+h,b+k) = f(a,b) + [hf_x + kf_y]_{a,b} + 1/2! \left[ h^2 f_{xx} + 2hk f_{xy} + k^2 f_{yy} \right]_{a,b} + \dots$$

(d) Partial differentiation of f(x, y):

i. If 
$$y = y(x)$$
, then  $f = F(x)$ , and  $\frac{dF}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx}$ .

ii. If 
$$x = x(t)$$
,  $y = y(t)$ , then  $f = F(t)$ , and  $\frac{dF}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$ 

iii. If 
$$x = x(u, v)$$
,  $y = y(u, v)$ , then  $f = F(u, v)$ , and

$$\frac{\partial F}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}, \quad \frac{\partial F}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}.$$

(e) Stationary points of f(x, y) occur where  $f_x = 0$ ,  $f_y = 0$  simultaneously. Let (u, b) be a stationary point: examine  $D = [f_{xx}f_{yy} - (f_{xy})^2]_{a,b}$ . If D > 0 and  $f_{xx}(a, b) < 0$ , then (a, b) is a maximum; If D > 0 and  $f_{xx}(a, b) > 0$ , then (a, b) is a minimum; If D < 0 then (a, b) is a saddle-point.

### (f) Differential equations:

- i. The first order linear equation dy/dx + P(x)y = Q(x) has an integrating factor  $I(x) = \exp[\int P(x)(dx)]$ , so that  $\frac{d}{dx}(Iy) = IQ$ .
  - ii. P(x, y)dx + Q(x, y)dy = 0 is exact if  $\partial Q/\partial x = \partial P/\partial y$ .

### 5. INTEGRAL CALCULUS

- $\sin \theta = 2l/(1+l^2)$ ,  $\cos \theta = (1-l^2)/(1+l^2)$ ,  $d\theta = 2dl/(1+l^2)$ . (a) An important substitution:  $tan(\theta/2) = t$ :
  - (b) Some indefinite integrals:

$$\int (a^2 - x_i^2)^{-1/2} dx = \sin^{-1} \left(\frac{x}{a}\right), |x| < a.$$

$$\int (a^2 + x^2)^{-1/2} dx = \sinh^{-1} \left(\frac{x}{a}\right) = \ln \left\{\frac{x}{a} + \left(1 + \frac{x^2}{a^2}\right)^{1/2}\right\}.$$

$$\int (x^2 - a^2)^{-1/2} dx = \cosh^{-1} \left( \frac{x}{a} \right) = \ln \left| \frac{x}{a} + \left( \frac{x^2}{a^2} - 1 \right)^{1/2} \right|.$$

$$\int (a^2 + x^2)^{-1} dx = \left(\frac{1}{a}\right) \tan^{-1} \left(\frac{x}{a}\right).$$

### 6. NUMERICAL METHODS

(a) Approximate solution of an algebraic equation:

If a root of f(x)=0 occurs near  $x=a_i$  take  $x_0=a$  and  $x_{n+1}=x_n-[f(x_n)/f'(x_n)], \quad n=0,1,2\dots$ 

(Newton Raphson method).

- (b) Formulae for numerical integration: Write  $x_n = x_0 + nh$ ,  $y_n = y(x_n)$ .
  - i. Trapezium rule (1-strip):  $\int_{x_0}^{x_1} y(x) dx \approx (h/2) \left[ y_0 + y_1 \right]$  .
- ii. Simpson's rule (2-strip):  $\int_{z_0}^{x_J} y(x) dx \approx (h/3) \left[y_0 + 4y_1 + y_2\right]$ .
- (c) Richardson's extrapolation method: Let  $I=\int_a^b f(x)dx$  and let  $I_1$ ,  $I_2$  be two estimates of I obtained by using Simpson's rule with intervals h and h/2. Then, provided h is small enough,

is a better estimate of I.

### 7. LAPLACE TRANSFORMS

| Transform | aF(s) + bG(s)                          | $s^{2}F(s) - sf(0) - f'(0)$ | -dF(s)/ds  | F(s)/s                                 |                         | $n!/s^{n+1}$ , $(s>0)$ | $\omega/(s^2+\omega^2), \ (s>0)$ | $e^{-sT}/s$ , $(s, T>0)$                                                                      |
|-----------|----------------------------------------|-----------------------------|------------|----------------------------------------|-------------------------|------------------------|----------------------------------|-----------------------------------------------------------------------------------------------|
| Function  | af(t) + bg(t)                          | 43 1/413                    | (1)(1)     | 16 5(1) 41                             |                         | $l^n(n=1,2)$           | sinut                            | $s/(s^2 + \omega^2), (s > 0)$ $H(t - T) = \begin{cases} 0, & t < T \\ 1, & t > T \end{cases}$ |
| Transform | $F(s) = \int_0^\infty e^{-st} f(t) dt$ | sF(s)-f(0)                  | F(s-a)     | $(\partial/\partial\alpha)F(s,\alpha)$ | F(s)G(s)                | 1/8                    | 1/(s-a), $(s>a)$                 | $s/(s^2 + \omega^2), \ (s > 0)$                                                               |
| Function  | (1)                                    | 1p/fp                       | e at f (t) | $(\theta/\theta\alpha)/(t,\alpha)$     | $\int_0^t f(u)g(t-u)du$ | -                      | , o                              | lu soo                                                                                        |

### 8. FOURIER SERIES

If f(x) is periodic of period 2L, then f(x+2L)=f(x), and

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}, \text{ where}$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$
,  $n = 0, 1, 2, ..., and$ 

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} dx, \quad n = 1, 2, 3, \dots$$

Parseval's theorem

$$\frac{1}{L} \int_{-L}^{L} [f(z)]^2 dz = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} \left( a_n^2 + b_n^2 \right) .$$

### 1. Probabilities for events

For events 
$$A$$
,  $B$ , and  $C$  
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
More generally 
$$P(\bigcup A_i) = \sum P(A_i) - \sum P(A_i \cap A_j) + \sum P(A_i \cap A_j \cap A_k) - \cdots$$
The odds in favour of  $A$  
$$P(A) / P(\overline{A})$$
Conditional probability 
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \quad \text{provided that } P(B) > 0$$
Chain rule 
$$P(A \cap B \cap C) = P(A) P(B \mid A) P(C \mid A \cap B)$$
Bayes' rule 
$$P(A \mid B) = \frac{P(A) P(B \mid A)}{P(A) P(B \mid A) + P(\overline{A}) P(B \mid \overline{A})}$$
A and  $B$  are independent if 
$$P(B \mid A) = P(B)$$

$$A, B, \text{ and } C \text{ are independent} \quad P(A \cap B \cap C) = P(A) P(B) P(C), \quad \text{and}$$

$$P(A \cap B) = P(A) P(B), \quad P(B \cap C) = P(B) P(C), \quad P(C \cap A) = P(C) P(A)$$

### 2. Probability distribution, expectation and variance

The probability distribution for a discrete random variable X is called the probability mass function (pmf) and is the complete set of probabilities  $\{p_x\} = \{P(X = x)\}$ 

$$\overline{\text{Expectation}} \quad E(X) = \mu = \sum_{x} x p_x$$

For function 
$$g(x)$$
 of  $x$ ,  $E\{g(X)\} = \sum_x g(x)p_x$ , so  $E(X^2) = \sum_x x^2 p_x$ 

Sample mean  $\overline{x}=rac{1}{n}\sum_k x_k$  estimates  $\mu$  from random sample  $x_1,x_2,\ldots,x_n$ 

Variance 
$$var(X) = \sigma^2 = E\{(X - \mu)^2\} = E(X^2) - \mu^2$$

Sample variance 
$$s^2 = \frac{1}{n-1} \left\{ \sum_k x_k^2 - \frac{1}{n} \left( \sum_j x_j \right)^2 \right\}$$
 estimates  $\sigma^2$ 

Standard deviation  $sd(X) = \sigma$ 

If value y is observed with frequency  $n_y$ 

$$n = \sum_y n_y$$
,  $\sum_k x_k = \sum_y y n_y$ ,  $\sum_k x_k^2 = \sum_y y^2 n_y$ 

Skewness 
$$\beta_1 = E\left(\frac{X-\mu}{\sigma}\right)^3$$
 is estimated by  $\frac{1}{n-1}\sum\left(\frac{x_i-\overline{x}}{s}\right)^3$ 

Kurtosis 
$$\beta_2 = E\left(\frac{X-\mu}{\sigma}\right)^4 - 3$$
 is estimated by  $\frac{1}{n-1} \sum \left(\frac{x_i - \overline{x}}{s}\right)^4 - 3$ 

Sample median  $\widetilde{x}$  or  $x_{\text{med}}$ . Half the sample values are smaller and half larger lf the sample values  $x_1,\ldots,x_n$  are ordered as  $x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$ ,

 $\alpha$ -quantile  $Q(\alpha)$  is such that  $P(X \leq Q(\alpha)) = \alpha$ 

Sample  $\alpha$ -quantile  $\widehat{Q}(\alpha)$  Proportion  $\alpha$  of the data values are smaller

Lower quartile  $Q1 = \widehat{Q}(0.25)$  one quarter are smaller

Upper quartile Q3 =  $\widehat{Q}(0.75)$  three quarters are smaller

Sample median  $\widetilde{x}=\widehat{Q}(0.5)$  estimates the population median Q(0.5)

3. Probability distribution for a continuous random variable

The <u>cumulative distribution function</u> (cdf)  $F(x) = P(X \le x) = \int_{x_0 = -\infty}^x f(x_0) \mathrm{d}x_0$ 

The probability density function (pdf)  $f(x) = \frac{\mathrm{d}F(x)}{\mathrm{d}x}$ 

$$f(x) = \frac{\mathrm{d}F(x)}{\mathrm{d}x}$$

 $E(X) = \mu = \int_{-\infty}^{\infty} x \, f(x) \mathrm{d}x \,, \quad \mathrm{var}(X) = \sigma^2 = E(X^2) - \mu^2, \quad \mathrm{where} \quad E(X^2) = \int_{-\infty}^{\infty} x^2 \, f(x) \mathrm{d}x$ 

Discrete probability distributions

Discrete Uniform Uniform (n)

$$p_x = \frac{1}{n} \quad (x = 1, 2, \dots, n)$$

$$\mu = (n+1)/2$$
,  $\sigma^2 = (n^2-1)/12$ 

Binomial distribution  $Binomial(n, \theta)$ 

$$p_x = \binom{n}{x} \theta^x (1-\theta)^{n-x} \quad (x=0,1,2,\ldots,n) \qquad \qquad \mu = n\theta \,, \quad \sigma^2 = n\theta(1-\theta)$$

$$\mu = n\theta$$
 ,  $\sigma^2 = n\theta(1-\theta)$ 

Poisson distribution  $Poisson(\lambda)$ 

$$p_x = \frac{\lambda^x e^{-\lambda}}{x!}$$
  $(x = 0, 1, 2, ...)$  (with  $\lambda > 0$ )  $\mu = \lambda$ ,  $\sigma^2 = \lambda$ 

$$\mu = \lambda$$
,  $\sigma^2 = \lambda$ 

Geometric distribution  $Geometric(\theta)$ 

$$p_x = (1-\theta)^{x-1}\theta$$
  $(x = 1, 2, 3, ...)$ 

$$\mu = \frac{1}{\theta}$$
,  $\sigma^2 = \frac{1-\theta}{\theta^2}$ 

5. Continuous probability distributions

Uniform distribution  $Uniform(\alpha, \beta)$ 

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & (\alpha < x < \beta), \\ 0 & \text{(otherwise)}. \end{cases} \mu = (\alpha + \beta)/2, \quad \sigma^2 = (\beta - \alpha)^2/12$$

$$\mu = (\alpha + \beta)/2, \quad \sigma^2 = (\beta - \alpha)^2/12$$

Exponential distribution  $Exponential(\lambda)$ 

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & (0 < x < \infty), & \mu = 1/\lambda, \ \sigma^2 = 1/\lambda^2 \\ 0 & (-\infty < x \le 0). \end{cases}$$

Normal distribution  $N(\mu, \sigma^2)$ 

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\} \quad (-\infty < x < \infty), \quad E(X) = \mu, \quad \operatorname{var}(X) = \sigma^2$$

Standard normal distribution N(0,1)

If 
$$X$$
 is  $N(\mu, \sigma^2)$ , then  $Y = \frac{X - \mu}{\sigma}$  is  $N(0,1)$ 

### 6. Reliability

For a device in continuous operation with failure time random variable T having pdf  $f(t) \ (t>0)$ 

The reliability function at time t R(t) = P(T > t)

The failure rate or hazard function h(t) = f(t)/R(t)

The <u>cumulative hazard function</u>  $H(t) = \int_0^t h(t_0) dt_0 = -\ln\{R(t)\}$ 

The Weibull $(\alpha, \beta)$  distribution has  $H(t) = \beta t^{\alpha}$ 

### 7. System reliability

For a system of k devices, which operate independently, let

$$R_i = P(D_i) = P(\text{"device } i \text{ operates"})$$

The system reliability, R, is the probability of a path of operating devices

A system of devices in series operates only if every device operates

$$R = P(D_1 \cap D_2 \cap \cdots \cap D_k) = R_1 R_2 \cdots R_k$$

A system of devices in parallel operates if any device operates

$$R = P(D_1 \cup D_2 \cup \cdots \cup D_k) = 1 - (1 - R_1)(1 - R_2) \cdots (1 - R_k)$$

### 8. Covariance and correlation

The covariance of X and Y  $cov(X,Y) = E(XY) - \{E(X)\}\{E(Y)\}$ 

From pairs of observations  $(x_1, y_1), \ldots, (x_n, y_n)$   $S_{xy} = \sum_k x_k y_k - \frac{1}{n} (\sum_i x_i) (\sum_j y_j)$ 

$$S_{xx} = \sum_{k} x_k^2 - \frac{1}{n} (\sum_{i} x_i)^2, \qquad S_{yy} = \sum_{k} y_k^2 - \frac{1}{n} (\sum_{j} y_j)^2$$

Sample covariance  $s_{xy} = \frac{1}{n-1} S_{xy}$  estimates cov(X,Y)

Correlation coefficient  $\rho = \operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\operatorname{sd}(X) \cdot \operatorname{sd}(Y)}$ 

Sample correlation coefficient  $r=\frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$  estimates ho

### 9. Sums of random variables

$$\begin{split} E(X+Y) &= E(X) + E(Y) \\ \text{var}\,(X+Y) &= \text{var}\,(X) + \text{var}\,(Y) + 2 \operatorname{cov}\,(X,Y) \\ \text{cov}\,(aX+bY,\,cX+dY) &= (ac) \operatorname{var}\,(X) + (bd) \operatorname{var}\,(Y) + (ad+bc) \operatorname{cov}\,(X,Y) \\ \text{If}\,X \text{ is } N(\mu_1,\sigma_1^2),\,Y \text{ is } N(\mu_2,\sigma_2^2),\,\text{and } \operatorname{cov}\,(X,Y) = c,\,\,\text{then }\,X+Y \text{ is } N(\mu_1+\mu_2,\,\,\sigma_1^2+\sigma_2^2+2c) \end{split}$$

### 10. Bias, standard error, mean square error

Standard error of t

If t estimates  $\theta$  (with random variable T giving t)

Bias of 
$$t$$
 bias  $(t) = E(T) - \theta$   
Standard error of  $t$  se  $(t) = \operatorname{sd}(T)$ 

Mean square error of 
$$t$$
 MSE $(t)$  =  $E\{(T-\theta)^2\}$  =  $\{\operatorname{se}(t)\}^2 + \{\operatorname{bias}(t)\}^2$ 

If  $\overline{x}$  estimates  $\mu$ , then bias  $(\overline{x}) = 0$ , se  $(\overline{x}) = \sigma/\sqrt{n}$ , MSE $(\overline{x}) = \sigma^2/n$ , se  $(\overline{x}) = s/\sqrt{n}$ If n is fairly large,  $\overline{x}$  is from  $N(\mu, \sigma^2/n)$  approximately Central limit property

### 11. Likelihood

The likelihood is the joint probability as a function of the unknown parameter  $\theta$ .

For a random sample  $x_1, x_2, \ldots, x_n$ 

$$\ell(\theta; x_1, x_2, \dots, x_n) = P(X_1 = x_1 \mid \theta) \cdots P(X_n = x_n \mid \theta)$$
 (discrete distribution)

$$\ell(\theta; x_1, x_2, \dots, x_n) = f(x_1 \mid \theta) f(x_2 \mid \theta) \cdots f(x_n \mid \theta)$$
 (continuous distribution)

The maximum likelihood estimator (MLE) is  $\widehat{\theta}$  for which the likelihood is a maximum

### 12. Confidence intervals

If  $x_1, x_2, \ldots, x_n$  are a random sample from  $N(\mu, \sigma^2)$  and  $\sigma^2$  is known, then the 95% confidence interval for  $\mu$  is  $(\bar{x}-1.96\frac{\sigma}{\sqrt{n}}, \bar{x}+1.96\frac{\sigma}{\sqrt{n}})$ 

If  $\sigma^2$  is estimated, then from the Student t table for  $t_{n-1}$  we find  $t_0=t_{n-1,0.05}$ 

The 95% confidence interval for  $\mu$  is  $(\overline{x} - t_0 \frac{s}{\sqrt{n}}, \ \overline{x} + t_0 \frac{s}{\sqrt{n}})$ 

13. Standard normal table Values of pdf  $\phi(y)=f(y)$  and cdf  $\Phi(y)=F(y)$ 

| y  | $\phi(y)$ | $\Phi(y)$ | y   | $\phi(y)$ | $\Phi(y)$ | y   | $\phi(y)$ | $\Phi(y)$ | y     | $\Phi(y)$ |
|----|-----------|-----------|-----|-----------|-----------|-----|-----------|-----------|-------|-----------|
| 0  | .399      | .5        | .9  | .266      | .816      | 1.8 | .079      | .964      | 2.8   | .997      |
| .1 | .397      | .540      | 1.0 | .242      | .841      | 1.9 | .066      | .971      | 3.0   | .999      |
| .2 | .391      | .579      | 1.1 | .218      | .864      | 2.0 | .054      | .977      | 0.841 | .8        |
| .3 | .381      | .618      | 1.2 | .194      | .885      | 2.1 | .044      | .982      | 1.282 | .9        |
| .4 | .368      | .655      | 1.3 | .171      | .903      | 2.2 | .035      | .986      | 1.645 | .95       |
| .5 | .352      | .691      | 1.4 | .150      | .919      | 2.3 | .028      | .989      | 1.96  | .975      |
| .6 | .333      | .726      | 1.5 | .130      | .933      | 2.4 | .022      | .992      | 2.326 | .99       |
| .7 | .312      | .758      | 1.6 | .111      | .945      | 2.5 | .018      | .994      | 2.576 | .995      |
| .8 | .290      | .788      | 1.7 | .094      | .955      | 2.6 | .014      | .995      | 3.09  | .999      |

14. Student t table Values  $t_{m,p}$  of x for which P(|X|>x)=p, when X is  $t_m$ 

| m | p = 0.10 | 0.05  | 0.02  | 0.01  | m        | p = 0.10 | 0.05 | 0.02  | 0.01  |
|---|----------|-------|-------|-------|----------|----------|------|-------|-------|
| 1 | 6.31     | 12.71 | 31.82 | 63.66 | 9        | 1.83     | 2.26 | 2.82  | 3.25  |
| 2 | 2.92     | 4.30  | 6.96  | 9.92  | 10       | 1.81     | 2.23 | 2.76  | 3.17  |
| 3 | 2.35     | 3.18  | 4.54  | 5.84  | 12       | 1.78     | 2.18 | 2.68  | 3.05  |
| 4 | 2.13     | 2.78  | 3.75  | 4.60  | 15       | 1.75     | 2.13 | 2.60  | 2.95  |
| 5 | 2.02     | 2.57  | 3.36  | 4.03  | 20       | 1.72     | 2.09 | 2.53  | 2.85  |
| 6 | 1.94     | 2.45  | 3.14  | 3.71  | 25       | 1.71     | 2.06 | 2.48  | 2.78  |
| 7 | 1.89     | 2.36  | 3.00  | 3.50  | 40       | 1.68     | 2.02 | 2.42  | 2.70  |
| 8 | 1.86     | 2.31  | 2.90  | 3.36  | $\infty$ | 1.645    | 1.96 | 2.326 | 2.576 |

15. Chi-squared table Values  $\chi^2_{k,p}$  of x for which P(X>x)=p, when X is  $\chi^2_k$  and p=.995, .975, etc

|      |                                                                                              |                                                                                                                                                          |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .995 | .975                                                                                         | .05                                                                                                                                                      | .025                                                                                                                                                                                                                         | .01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| .000 | .001                                                                                         | 3.84                                                                                                                                                     | 5.02                                                                                                                                                                                                                         | 6.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| .010 | .051                                                                                         | 5.99                                                                                                                                                     | 7.38                                                                                                                                                                                                                         | 9.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| .072 | .216                                                                                         | 7.81                                                                                                                                                     | 9.35                                                                                                                                                                                                                         | 11.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| .207 | .484                                                                                         | 9.49                                                                                                                                                     | 11.14                                                                                                                                                                                                                        | 13.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| .412 | .831                                                                                         | 11.07                                                                                                                                                    | 12.83                                                                                                                                                                                                                        | 15.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| .676 | 1.24                                                                                         | 12.59                                                                                                                                                    | 14.45                                                                                                                                                                                                                        | 16.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| .990 | 1.69                                                                                         | 14.07                                                                                                                                                    | 16.01                                                                                                                                                                                                                        | 18.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.34 | 2.18                                                                                         | 15.51                                                                                                                                                    | 17.53                                                                                                                                                                                                                        | 20.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 66.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.73 | 2.70                                                                                         | 16.92                                                                                                                                                    | 19.02                                                                                                                                                                                                                        | 21.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 71.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.16 | 3.25                                                                                         | 13.31                                                                                                                                                    | 20.48                                                                                                                                                                                                                        | 23.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 83.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 91.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.07 | 4.40                                                                                         | 21.03                                                                                                                                                    | 23.34                                                                                                                                                                                                                        | 26.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.07 | 5.63                                                                                         | 23.68                                                                                                                                                    | 26.12                                                                                                                                                                                                                        | 29.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 101.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 106.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 116.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.14 | 6.91                                                                                         | 26.30                                                                                                                                                    | 28.85                                                                                                                                                                                                                        | 32.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 124.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 129.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 135.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 140.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | .000<br>.010<br>.072<br>.207<br>.412<br>.676<br>.990<br>1.34<br>1.73<br>2.16<br>3.07<br>4.07 | .000 .001<br>.010 .051<br>.072 .216<br>.207 .484<br>.412 .831<br>.676 1.24<br>.990 1.69<br>1.34 2.18<br>1.73 2.70<br>2.16 3.25<br>3.07 4.40<br>4.07 5.63 | .000 .001 3.84<br>.010 .051 5.99<br>.072 .216 7.81<br>.207 .484 9.49<br>.412 .831 11.07<br>.676 1.24 12.59<br>.990 1.69 14.07<br>1.34 2.18 15.51<br>1.73 2.70 16.92<br>2.16 3.25 13.31<br>3.07 4.40 21.03<br>4.07 5.63 23.68 | .000         .001         3.84         5.02           .010         .051         5.99         7.38           .072         .216         7.81         9.35           .207         .484         9.49         11.14           .412         .831         11.07         12.83           .676         1.24         12.59         14.45           .990         1.69         14.07         16.01           1.34         2.18         15.51         17.53           1.73         2.70         16.92         19.02           2.16         3.25         13.31         20.48           3.07         4.40         21.03         23.34           4.07         5.63         23.68         26.12 | .000     .001     3.84     5.02     6.63       .010     .051     5.99     7.38     9.21       .072     .216     7.81     9.35     11.34       .207     .484     9.49     11.14     13.28       .412     .831     11.07     12.83     15.09       .676     1.24     12.59     14.45     16.81       .990     1.69     14.07     16.01     18.48       1.34     2.18     15.51     17.53     20.09       1.73     2.70     16.92     19.02     21.67       2.16     3.25     13.31     20.48     23.21       3.07     4.40     21.03     23.34     26.22       4.07     5.63     23.68     26.12     29.14 | .000     .001     3.84     5.02     6.63     7.88       .010     .051     5.99     7.38     9.21     10.60       .072     .216     7.81     9.35     11.34     12.84       .207     .484     9.49     11.14     13.28     14.86       .412     .831     11.07     12.83     15.09     16.75       .676     1.24     12.59     14.45     16.81     18.55       .990     1.69     14.07     16.01     18.48     20.28       1.34     2.18     15.51     17.53     20.09     21.95       1.73     2.70     16.92     19.02     21.67     23.59       2.16     3.25     13.31     20.48     23.21     25.19       3.07     4.40     21.03     23.34     26.22     28.30       4.07     5.63     23.68     26.12     29.14     31.32 | .000         .001         3.84         5.02         6.63         7.88         18           .010         .051         5.99         7.38         9.21         10.60         20           .072         .216         7.81         9.35         11.34         12.84         22           .207         .484         9.49         11.14         13.28         14.86         24           .412         .831         11.07         12.83         15.09         16.75         26           .676         1.24         12.59         14.45         16.81         18.55         28           .990         1.69         14.07         16.01         18.48         20.28         30           1.34         2.18         15.51         17.53         20.09         21.95         40           1.73         2.70         16.92         19.02         21.67         23.59         50           2.16         3.25         13.31         20.48         23.21         25.19         60           3.07         4.40         21.03         23.34         26.22         28.30         70           4.07         5.63         23.68         26.12         29.14 | .000         .001         3.84         5.02         6.63         7.88         18         6.26           .010         .051         5.99         7.38         9.21         10.60         20         7.43           .072         .216         7.81         9.35         11.34         12.84         22         8.64           .207         .484         9.49         11.14         13.28         14.86         24         9.89           .412         .831         11.07         12.83         15.09         16.75         26         11.16           .676         1.24         12.59         14.45         16.81         18.55         28         12.46           .990         1.69         14.07         16.01         18.48         20.28         30         13.79           1.34         2.18         15.51         17.53         20.09         21.95         40         20.71           1.73         2.70         16.92         19.02         21.67         23.59         50         27.99           2.16         3.25         13.31         20.48         23.21         25.19         60         35.53           3.07         4.40         21.03 | .000         .001         3.84         5.02         6.63         7.88         18         6.26         8.23           .010         .051         5.99         7.38         9.21         10.60         20         7.43         9.59           .072         .216         7.81         9.35         11.34         12.84         22         8.64         10.98           .207         .484         9.49         11.14         13.28         14.86         24         9.89         12.40           .412         .831         11.07         12.83         15.09         16.75         26         11.16         13.84           .676         1.24         12.59         14.45         16.81         18.55         28         12.46         15.31           .990         1.69         14.07         16.01         18.48         20.28         30         13.79         16.79           1.34         2.18         15.51         17.53         20.09         21.95         40         20.71         24.43           1.73         2.70         16.92         19.02         21.67         23.59         50         27.99         32.36           2.16         3.25         13.31< | .000         .001         3.84         5.02         6.63         7.88         18         6.26         8.23         28.87           .010         .051         5.99         7.38         9.21         10.60         20         7.43         9.59         31.42           .072         .216         7.81         9.35         11.34         12.84         22         8.64         10.98         33.92           .207         .484         9.49         11.14         13.28         14.86         24         9.89         12.40         36.42           .412         .831         11.07         12.83         15.09         16.75         26         11.16         13.84         38.89           .676         1.24         12.59         14.45         16.81         18.55         28         12.46         15.31         41.34           .990         1.69         14.07         16.01         18.48         20.28         30         13.79         16.79         43.77           1.34         2.18         15.51         17.53         20.09         21.95         40         20.71         24.43         55.76           1.73         2.70         16.92         19.02         < | .000         .001         3.84         5.02         6.63         7.88         18         6.26         8.23         28.87         31.53           .010         .051         5.99         7.38         9.21         10.60         20         7.43         9.59         31.42         34.17           .072         .216         7.81         9.35         11.34         12.84         22         8.64         10.98         33.92         36.78           .207         .484         9.49         11.14         13.28         14.86         24         9.89         12.40         36.42         39.36           .412         .831         11.07         12.83         15.09         16.75         26         11.16         13.84         38.89         41.92           .676         1.24         12.59         14.45         16.81         18.55         28         12.46         15.31         41.34         44.46           .990         1.69         14.07         16.01         18.48         20.28         30         13.79         16.79         43.77         46.98           1.73         2.70         16.92         19.02         21.67         23.59         50         27.99 | .000         .001         3.84         5.02         6.63         7.88         18         6.26         8.23         28.87         31.53         34.81           .010         .051         5.99         7.38         9.21         10.60         20         7.43         9.59         31.42         34.17         37.57           .072         .216         7.81         9.35         11.34         12.84         22         8.64         10.98         33.92         36.78         40.29           .207         .484         9.49         11.14         13.28         14.86         24         9.89         12.40         36.42         39.36         42.98           .412         .831         11.07         12.83         15.09         16.75         26         11.16         13.84         38.89         41.92         45.64           .676         1.24         12.59         14.45         16.81         18.55         28         12.46         15.31         41.34         44.46         48.28           .990         1.69         14.07         16.01         18.48         20.28         30         13.79         16.79         43.77         46.98         50.89           1.73 |

### 16. The chi-squared goodness-of-fit test

The frequencies  $n_y$  are grouped so that the fitted frequency  $\hat{n}_y$  for every group exceeds about 5.

$$X^2 = \sum_y \frac{(n_y - \widehat{n}_y)^2}{\widehat{n}_y}$$
 is referred to the table of  $\chi_k^2$  with significance point  $p$ ,

where k is the number of terms summed, less one for each constraint, eg matching total frequency, and matching  $\overline{x}$  with  $\mu$ 

### 17. Joint probability distributions

Discrete distribution  $\{p_{xy}\}$ , where  $p_{xy} = P(\{X = x\} \cap \{Y = y\})$ .

Let 
$$p_{x \circ} = P(X = x)$$
, and  $p_{\circ y} = P(Y = y)$ , then

$$p_{x \circ} = \sum_{y} p_{xy}$$
 and  $P(X = x \mid Y = y) = \frac{p_{xy}}{p_{\circ y}}$ 

### Continuous distribution

$$f(x,y) = \frac{\mathrm{d}^2 F(x,y)}{\mathrm{d} x \, \mathrm{d} y}$$

Marginal pdf of 
$$X$$

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y_0) \, \mathrm{d}y_0$$

Conditional pdf of 
$$X$$
 given  $Y = y$ 

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$
 (provided  $f_Y(y) > 0$ )

### 18. Linear regression

To fit the linear regression model  $y=\alpha+\beta x$  by  $\widehat{y}_x=\widehat{\alpha}+\widehat{\beta} x$  from observations

$$(x_1,y_1),\ldots,(x_n,y_n)$$
 , the least squares fit is  $\widehat{lpha}=\overline{y}-\overline{x}\widehat{eta}\,, \quad \widehat{eta}=rac{S_{xy}}{S_{xx}}$ 

$$\widehat{\alpha} = \overline{y} - \overline{x}\widehat{\beta}, \quad \widehat{\beta} = \frac{S_{xy}}{S_{xx}}$$

The residual sum of squares RSS =  $S_{yy} - \frac{S_{xy}^2}{S}$ 

$$\widehat{\sigma^2} = \frac{\text{RSS}}{n-2} \qquad \frac{n-2}{\sigma^2} \ \widehat{\sigma^2} \ \text{is from} \ \chi^2_{n-2}$$

$$E(\widehat{\alpha}) = \alpha, \quad E(\widehat{\beta}) = \beta,$$

$$\operatorname{var}\left(\widehat{\alpha}\right) = \frac{\sum x_i^2}{n \, S_{xx}} \sigma^2 , \quad \operatorname{var}\left(\widehat{\beta}\right) = \frac{\sigma^2}{S_{xx}} , \quad \operatorname{cov}\left(\widehat{\alpha}, \widehat{\beta}\right) = -\frac{\overline{x}}{S_{xx}} \sigma^2$$

$$\widehat{y}_x = \widehat{lpha} + \widehat{eta}x$$
,  $E(\widehat{y}_x) = lpha + eta x$ ,  $\operatorname{var}(\widehat{y}_x) = \left\{ rac{1}{n} + rac{(x - \overline{x})^2}{S_{xx}} 
ight\} \sigma^2$ 

$$\frac{\widehat{lpha}-lpha}{\widehat{\operatorname{se}}\;(\widehat{lpha})}\;,\qquad \frac{\widehat{eta}-eta}{\widehat{\operatorname{se}}\;(\widehat{eta})}\;,\qquad \frac{\widehat{y}_x-lpha-eta\,x}{\widehat{\operatorname{se}}\;(\widehat{y}_x)}\quad \text{are each from }\;t_{n-2}$$

|          | EXAMINATION QUESTIONS/SOLUTIONS 2008-09                                                                                                                                                                                                                    | Course              |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|          | E2.9 (math, 4)                                                                                                                                                                                                                                             | (4)                 |
|          | Solutions 2009                                                                                                                                                                                                                                             | EE2                 |
| Question |                                                                                                                                                                                                                                                            |                     |
| 1        |                                                                                                                                                                                                                                                            | Marks & seen/unseen |
| Parts    | $A = \begin{pmatrix} 2 & \sqrt{12} & 0 \\ \sqrt{12} & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} \lambda - 1 \end{pmatrix} (\lambda - 2) - 12 = \lambda^2 - 3\lambda - 10 = 0$                                                                       |                     |
|          | $\begin{pmatrix} 0 & 0 & 3 \end{pmatrix} (\lambda - 1)(\lambda - 2) - 12 = \lambda^2 - 3\lambda - 10 = 0$                                                                                                                                                  |                     |
|          | $\lambda_1 = 5,  \lambda_2 = -2,  \lambda_3 = 3.  (\lambda + 2)(\lambda - 5) = 0$                                                                                                                                                                          | 2                   |
|          | $\lambda_{1}=5$ ; $\begin{pmatrix} -3 & \sqrt{12} \\ \sqrt{12} & -4 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = 0$ , $b=a\sqrt{\frac{2}{4}}$ , $a_{1}=(1,\sqrt{\frac{2}{4}},0)^{T}$<br>$a_{1,norm}=(\sqrt{\frac{2}{4}},\sqrt{\frac{2}{4}},0)^{T}$ | 4                   |
|          | $\lambda_{2} = -2 \left( \frac{4}{\sqrt{12}} \frac{\sqrt{12}}{3} \right) \left( \frac{a}{b} \right) = 0, \ b = -a \sqrt{\frac{4}{3}}, \ \alpha_{2,non} = \left( \sqrt{\frac{2}{3}}, \sqrt{\frac{1}{3}}, 0 \right) $                                        | 4                   |
|          | $\lambda_3 = 3 \qquad \qquad \underline{\alpha}_3 = (0, 0, 1)^T$                                                                                                                                                                                           | 2                   |
|          | Now AT=A so a; orthugonal. Define the mx                                                                                                                                                                                                                   |                     |
|          | P = ( a, uz a3) which has the properties                                                                                                                                                                                                                   |                     |
|          | i) PTP= I => P-1 = PT                                                                                                                                                                                                                                      |                     |
|          | ii) AP=PA where A = diag (A,, A, A)                                                                                                                                                                                                                        | 4                   |
|          | :- p-1AP = A = PTAP                                                                                                                                                                                                                                        | 8                   |
|          | Thus P is                                                                                                                                                                                                                                                  |                     |
|          | $P = \begin{pmatrix} \sqrt{3} & \sqrt{3} & 0 \\ \sqrt{3} & -\sqrt{4} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $Con Check Hour$ $P^{TP} = I.$                                                                                                                        |                     |
|          | ).4                                                                                                                                                                                                                                                        | 4                   |
|          | $\Lambda = \begin{pmatrix} 5 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{pmatrix}.$                                                                                                                                                                           | •                   |
|          | If the student wishes to back out PTAP                                                                                                                                                                                                                     | (20)                |
|          | long-hand, then that is O.K.                                                                                                                                                                                                                               | 0                   |
|          | Setter's initials  To G  Checker's initials  A0G                                                                                                                                                                                                           | Page number         |

. .

|            | EXAMINATION QUESTIONS/SOLUTIONS 2008-09                                                                                                                                                                                                                                                                                       | Course      |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|            |                                                                                                                                                                                                                                                                                                                               | (4)         |
|            |                                                                                                                                                                                                                                                                                                                               | EE 2        |
| 0 1        |                                                                                                                                                                                                                                                                                                                               |             |
| Question 2 | a v                                                                                                                                                                                                                                                                                                                           | Marks &     |
|            |                                                                                                                                                                                                                                                                                                                               | seen/unseen |
| Parts      | Write a a a= x TAx A= (1 16 0)                                                                                                                                                                                                                                                                                                |             |
|            | EVS ere 23=6 9 roch of (1-1/2-21-6=22-32-4=0                                                                                                                                                                                                                                                                                  |             |
|            | $\lambda_1 = 4, \lambda_2 = -1.$                                                                                                                                                                                                                                                                                              | 2           |
|            | 1=4 =(1, 12,0)→(厚,厚,0) Normalized                                                                                                                                                                                                                                                                                             | 3           |
|            | $\lambda_1 = -1  \underline{\alpha}_2 = \left(1, -\sqrt{\frac{2}{3}}, 0\right) \rightarrow \left(\sqrt{\frac{2}{5}}, -\sqrt{\frac{2}{5}}, 0\right)  .$                                                                                                                                                                        | 3           |
|            | $A_3 = 6$ $a_3 = (0,0,1)$ . Note: $a_i^T a_j = \delta_{ij}^T$ .                                                                                                                                                                                                                                                               | ı           |
|            | Construct P = (a1 a2 a3), so we have.                                                                                                                                                                                                                                                                                         | ~           |
|            | PT=P-1 (orthog. property)                                                                                                                                                                                                                                                                                                     |             |
|            | With 1 = Py or y = PTX                                                                                                                                                                                                                                                                                                        | 4           |
|            | Q = MTAP = yT(10TAP)y                                                                                                                                                                                                                                                                                                         |             |
|            | However, became AP=PA => PTAP=A                                                                                                                                                                                                                                                                                               |             |
|            | Q = y T A y = 1, y, 2 + 2, y, 2 + 2, y, 2                                                                                                                                                                                                                                                                                     | 4           |
|            | $= 4y_1^2 - y_2^2 + 6y_3^2.$                                                                                                                                                                                                                                                                                                  |             |
|            | Because y = PTM = (a, a, a,) TM                                                                                                                                                                                                                                                                                               | -           |
|            | Because $y = P^T N = (\underline{\alpha}_1 \underline{\alpha}_2 \underline{\alpha}_1)^T N$ $P = \begin{pmatrix} \sqrt{3}_{1} & \sqrt{3}_{1} & 0 \\ \sqrt{3}_{2} & -\sqrt{2}_{1} & 0 \\ 0 & 0 \end{pmatrix}  P^T = \begin{pmatrix} \sqrt{2}_{1} & \sqrt{3}_{1} & 0 \\ \sqrt{3}_{2} & -\sqrt{2}_{2} & 0 \\ 0 & 0 \end{pmatrix}$ | 3           |
|            | - y = n 1 8 + x 2 1 5                                                                                                                                                                                                                                                                                                         |             |
|            | y2 = 2, 13/5 -22/3/5                                                                                                                                                                                                                                                                                                          |             |
|            | $y_3 = x_3$                                                                                                                                                                                                                                                                                                                   | (20)        |
|            | Setter's initials  Checker's initials                                                                                                                                                                                                                                                                                         | Page number |
|            | JAG AOG                                                                                                                                                                                                                                                                                                                       |             |

, <sup>12</sup>,



|            | EXAMINATION SOLUTIONS 2008-09                                                                                                      | Course      |
|------------|------------------------------------------------------------------------------------------------------------------------------------|-------------|
|            |                                                                                                                                    | EE2(4)      |
| Question 3 |                                                                                                                                    | Marks &     |
|            |                                                                                                                                    | seen/unseen |
| Parts      |                                                                                                                                    | sim. seen ↓ |
| (i)        | Since $1 = \sum_{x,y} p(x,y) = 2k$ , we have $k = 1/2$ .                                                                           | 2           |
| (ii)       | P(X = 0) = 0.4k + 0.2k = 0.3 $P(X = 1) = 0.2k + 0.4k = 0.3$ $P(X = 2) = 0.6k + 0.2k = 0.4$                                         |             |
|            | P(Y = 0) = 0.4k + 0.2k + 0.6k = 0.6<br>P(Y = 1) = 0.2k + 0.4k + 0.2k = 0.4                                                         | 5           |
| (iii)      | $E(X) = 0 \cdot 0.3 + 1 \cdot 0.3 + 2 \cdot 0.4 = 1.1$<br>$E(Y) = 0 \cdot 0.6 + 1 \cdot 0.4 = 0.4$                                 | 3           |
| (iv)       | $E(X^2) = 0^2 \cdot 0.3 + 1^2 \cdot 0.3 + 2^2 \cdot 0.4 = 1.9$ Hence, $Var(X) = E(X^2) - E(X)^2 = 1.9 - 1.1^2 = 1.9 - 1.21 = 0.69$ | 3           |
| (v)        | $E(XY) = 0 + 1 \cdot 0.4k + 2 \cdot 0.2k = 0.8k = 0.4$<br>$cov(X, Y) = E(XY) - E(X)E(Y) = 0.4 - 1.1 \cdot 0.4 = -0.04$             | 3           |
| (vi)       | No, they are not uncorrelated since $cov(X, Y) \neq 0$ .                                                                           | 2           |
| (vii)      | No, they are not independent since they are not uncorrelated.                                                                      | 2           |
|            |                                                                                                                                    |             |
|            |                                                                                                                                    |             |
|            |                                                                                                                                    |             |
|            |                                                                                                                                    |             |
|            |                                                                                                                                    |             |
|            |                                                                                                                                    |             |
|            | Setter's initials AG Checker's initials AM                                                                                         | Page number |
|            |                                                                                                                                    |             |



|          | EXAMINATION SOLUTIONS 2008-09                                                                                                                                                 | Course              |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|          |                                                                                                                                                                               | EE2(4)              |
| Question |                                                                                                                                                                               | Marks 9             |
| 4        |                                                                                                                                                                               | Marks & seen/unseen |
| Parts    |                                                                                                                                                                               | sim. seen ↓         |
| (i)      | For $x \geq 0$ :                                                                                                                                                              |                     |
|          | $F_{X^2}(x) = P(X^2 \le x) = P(X \le \sqrt{x}) = 1 - e^{-\sqrt{x}}$                                                                                                           |                     |
| Ī        | $F_{X^2}(x) = 0 \text{ for } x < 0.$                                                                                                                                          | 4                   |
| (ii)     | For $x \ge 0$ :                                                                                                                                                               | ·                   |
|          | $F_{\min_{i} X_{i}}(x) = P(\min_{i} X_{i} \le x) = 1 - P(X_{i} > x, i = 1, \dots, 4)$                                                                                         |                     |
| .0       | $= 1 - \prod_{i=1}^{4} e^{-\lambda x} = 1 - e^{-4\lambda x}$                                                                                                                  |                     |
|          | For $x < 0$ : $F_{\min_i X_i}(x) = 0$ .                                                                                                                                       | 4                   |
| (iii)    | (a) $cov(X,Y)=0$ since $X$ and $Y$ are independent.                                                                                                                           | 2                   |
|          | (b) From the formula sheet: $E(X) = 1/\lambda = E(Y)$ .<br>Hence, $E(X - Y) = E(X) - E(Y) = 0$ .                                                                              | 2                   |
|          | (c) From the formula sheet: $Var(X) = Var(Y) = 1/\lambda^2$ .                                                                                                                 |                     |
|          | Var(X - Y) = Var(X + (-Y))                                                                                                                                                    |                     |
|          | $= \operatorname{Var}(X) + \operatorname{Var}(-Y) + \operatorname{cov}(X, -Y)$<br>= $\operatorname{Var}(X) + \operatorname{Var}(Y) = 1/\lambda^2 + 1/\lambda^2 = 2/\lambda^2$ |                     |
|          |                                                                                                                                                                               | 3                   |
|          | (d) For $t \geq 0$ :                                                                                                                                                          |                     |
|          | $f_{X+Y}(t) = \int_{-\infty}^{\infty} f_X(x) f_Y(t-x) dx = \int_0^t f_X(x) f_Y(t-x) dx$                                                                                       |                     |
|          | $= \int_0^t \lambda e^{-\lambda x} \lambda e^{-\lambda(t-x)} dx$                                                                                                              |                     |
|          | $=\lambda^2 \int_0^t e^{-\lambda t} dx = \lambda^2 t e^{-\lambda t}$                                                                                                          |                     |
|          | For $t < 0$ : $f_{X+Y}(t) = 0$                                                                                                                                                | 5                   |
|          |                                                                                                                                                                               |                     |
|          | Setter's initials AC Checker's initials                                                                                                                                       | Page number         |
|          | Setter's initials AG Checker's initials GM                                                                                                                                    | rage number         |



|               | EXAMINATION SOLUTIONS 2008-09                                                                                                                                                                        | Course              |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 3             |                                                                                                                                                                                                      | EE2(4)              |
| Question<br>5 |                                                                                                                                                                                                      | Marks & seen/unseen |
| Parts         |                                                                                                                                                                                                      | sim. seen ↓         |
| (i)           | (a)                                                                                                                                                                                                  |                     |
|               | P(system functions) = P(all components function)                                                                                                                                                     |                     |
|               | $= \prod_{i=1}^{k} P(\text{component } i \text{ functions}) = 0.999^{k}$                                                                                                                             |                     |
|               |                                                                                                                                                                                                      | 3                   |
|               | (b) Want: $P(\text{system fails}) = 1 - P(\text{system functions}) = 1 - 0.999^k \le 0.01.$ This is equivalent to $0.999^k \ge 0.99$ .                                                               | 2                   |
|               | Hence, $k \log 0.999 \ge \log 0.99$ and $k \le \log 0.99 / \log 0.999 \approx 10.05$ .<br>Since $k$ needs to be a natural number, at most 10 components can                                          | 3                   |
|               | be used.                                                                                                                                                                                             | 1                   |
| (ii)          | Let $C_i$ denote the event "component $i$ fails before time $t$ ". From the formula sheet: $\mathrm{P}(C_i) = 1 - \exp(-\lambda_i t)$ . Using the system structure and the independence we get       | 2                   |
|               | P(system fails before time $t$ ) = P( $(C_1 \cap C_2) \cup C_3$ )<br>= 1 - P( $[(C_1 \cap C_2) \cup C_3]^c$ ) = 1 - P( $[C_1 \cap C_2]^c \cap C_3^c$ )<br>= 1 - P( $[C_1 \cap C_2]^c$ ) P( $C_3^c$ ) |                     |
|               | $= 1 - (1 - P(C_1 \cap C_2))(1 - P(C_3))$                                                                                                                                                            |                     |
|               | $= 1 - (1 - P(C_1) P(C_2))(1 - P(C_3))$<br>= 1 - [1 - (1 - e <sup>-t</sup> )(1 - e <sup>-2t</sup> )]e <sup>-3t</sup>                                                                                 |                     |
|               | $= 1 - (e^{-t} + e^{-2t} - e^{-3t})e^{-3t}$<br>= 1 - e^{-4t} - e^{-5t} + e^{-6t}                                                                                                                     |                     |
|               |                                                                                                                                                                                                      | 4                   |
| (iii)         | (a) $H(t) = \int_0^t h(s) ds = \frac{a}{b+1} t^{b+1}$ .                                                                                                                                              |                     |
|               | From the formula sheet, $H(t) = -\log(\mathrm{P}(T>t))$ . Thus, for $t \geq 0$ ,                                                                                                                     |                     |
|               | $F(t) = P(T \le t) = 1 - P(T > t)$ $= 1 - \exp(-H(t)) = 1 - \exp(-\frac{a}{b+1}t^{b+1})$                                                                                                             |                     |
|               | b+1                                                                                                                                                                                                  | 3                   |
|               | (b) $f(t) = \frac{d}{dt}F(t) = at^b \exp(-\frac{a}{b+1}t^{b+1})$ for $t \ge 0$                                                                                                                       | 2                   |
|               | Setter's initials AG Checker's initials                                                                                                                                                              | Page number         |

|              | EXAMINATION COLUTIONS 2000 00                                                                                                                                                                                                                                                                                                                      |                                        |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|              | EXAMINATION SOLUTIONS 2008-09                                                                                                                                                                                                                                                                                                                      | Course                                 |
|              |                                                                                                                                                                                                                                                                                                                                                    | EE2(4)                                 |
| Question     |                                                                                                                                                                                                                                                                                                                                                    | Marks &                                |
| 6            |                                                                                                                                                                                                                                                                                                                                                    | seen/unseen                            |
| Parts<br>(i) | (a) The likelihood function is                                                                                                                                                                                                                                                                                                                     |                                        |
|              | $L(\mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x_i - \mu)^2}{2}}.$                                                                                                                                                                                                                                                                     |                                        |
|              | and its logarithm is                                                                                                                                                                                                                                                                                                                               | sim. seen ↓                            |
|              | $\log L(\mu) = -\sum_{i=1}^{n} (x_i - \mu)^2 / 2 - n/2 \log(2\pi).$                                                                                                                                                                                                                                                                                |                                        |
|              | Taking derivatives yields                                                                                                                                                                                                                                                                                                                          |                                        |
|              | $\log L(\mu) = \sum_{i=1}^{n} (x_i - \mu) = \sum_{i=1}^{n} x_i - n\mu.$                                                                                                                                                                                                                                                                            |                                        |
|              | Equating this to 0 gives the candidate $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$ for the maximum likelihood estimator.                                                                                                                                                                                                                          | 3                                      |
|              | $\hat{\mu}$ is indeed a maximum since $\left(rac{d}{d\mu} ight)^2 \log L(\mu) = -n < 0.$                                                                                                                                                                                                                                                          | 1                                      |
|              | (b) First note that $\mathrm{E}(\hat{\mu}) = \frac{1}{n} \sum_{i=1}^n \mathrm{E}(X_i) = \mu$ and $\mathrm{Var}(\hat{\mu}) = \frac{1}{n^2} \sum_{i=1}^n \mathrm{Var}(X_i) = \frac{1}{n}$ . Since $X_1, \ldots, X_n$ are independent normal random variables (and thus jointly normal) this implies that $\hat{\mu}$ is $N(\mu, \frac{1}{n})$ . Thus | 3                                      |
|              | $P(\hat{\mu} > \mu + 2/\sqrt{n}) = P(\sqrt{n}(\hat{\mu} - \mu) > 2) = 1 - P(\sqrt{n}(\hat{\mu} - \mu) \le 2)$ $= 1 - \Phi(2) = 1 - 0.977 = 0.023$                                                                                                                                                                                                  |                                        |
|              |                                                                                                                                                                                                                                                                                                                                                    | 2                                      |
| (ii)         | (a)                                                                                                                                                                                                                                                                                                                                                |                                        |
|              | $E(Y^{-1}) = \int_0^\infty y^{-1} \frac{1}{6} \lambda^4 y^3 e^{-\lambda y} dy = \frac{1}{6} \lambda^4 \int_0^\infty y^2 e^{-\lambda y} dy$                                                                                                                                                                                                         |                                        |
|              | $=\frac{1}{6}\lambda^4 2/\lambda^3 = \lambda/3$                                                                                                                                                                                                                                                                                                    |                                        |
|              | (b) $E(T) = \frac{3}{n} \sum_{i=1}^{n} E(y_i^{-1}) = \frac{3}{n} \sum_{i=1}^{n} \frac{\lambda}{3} = \lambda$ . Thus $T$ is unbiased.                                                                                                                                                                                                               | $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ |
|              | In general, $MSE(T) = Var(T) + bias^2(T)$ .                                                                                                                                                                                                                                                                                                        | 2                                      |
|              | Since $T$ is unbiased, bias $(T) = 0$ .                                                                                                                                                                                                                                                                                                            |                                        |
|              | Thus, $MSE(T) = Var(T) = \frac{9}{n^2} \sum_{i=1}^{n} Var(Y_i^{-1}) = \frac{9}{n} \lambda^2 / 18 = \frac{\lambda^2}{2n}$ .                                                                                                                                                                                                                         | 3                                      |
|              | Setter's initials AG Checker's initials GM                                                                                                                                                                                                                                                                                                         | Page number                            |