

Cardio Disease Prediction

Presented by Diandra MELO

 \bigcirc \bigcirc \bigcirc

Presentation Outline

Today's Topics

01. Context	>
02. Dataset Description	>
03. Exploratory Data Analysis	>
04. Machine Learning Modelling	>
05. Conclusion	>
Thanks & References	>

1

CONTEXT

Cardiovascular Disease dataset

Predictive Analysis of the presence or absence of cardiovascular disease using a dataset of the patients features (objective, subjective and examination).

Objective:

create a tool that generates a significant and stable diagnostic accuracy.

DATASET DESCRIPTION

\longrightarrow

Provided Data

OBJECTIVE FEATURES

Age, Height, Weight, Gender

SUBJECTIVE FEATURES

Smoking, Alcohol intake, Physical activity

EXAMINATION FEATURES

Systolic & Diastolic blood pressures, Cholesterol, Glucose

Added Features

BODY MASS INDEX (BMI)

 $BMI = weight / (height)^2$

WEIGHT STATUS

'underweight', 'normal',
 'overweight', 'obese'

DATASET DESCRIPTION

<u>Descriptive Statistics</u>

	mean	median	std	min	max	range	skew	kurtosis
id	49972.419900	50001.5	28851.302323	0.0	99999.0	99999.0	-0.001278	-1.198374
age	19468.865814	19703.0	2467.251667	10798.0	23713.0	12915.0	-0.307055	-0.823447
height	164.359229	165.0	8.210126	55.0	250.0	195.0	-0.642187	7.943653
weight	74.205690	72.0	14.395757	10.0	200.0	190.0	1.012070	2.586825
systolic_bp	128.817286	120.0	154.011419	-150.0	16020.0	16170.0	85.296214	7580.074738
diastolic_bp	96.630414	80.0	188.472530	-70.0	11000.0	11070.0	32.114083	1425.914585

EXPLORATORY DATA ANALYSIS

3.1. Univariate Analysis

Numerical Attributes

EXPLORATORY DATA ANALYSIS

3.1. Univariate Analysis

Categorical Attributes

EXPLORATORY DATA ANALYSIS

3.2. Bivariate Analysis

Hypothesis Mind Map

 σ

An

Φ

--

 σ

 \mathbf{m}

 \sim

EXPLORATORY DATA ANALYSIS

<u>Hypothesis Development</u>

- H1. Men are most likely to present cardiovascular diseases
- **H2.** People with **obesity** are **most likely** to present cardiovascular diseases
- H3. Older people are most likely to present cardiovascular diseases
- H4. People who drink alcohol are most likely to present cardiovascular diseases
- H5. People who practice regular physical activities are less likely to present cardiovascular diseases
- **H6.** People who **smoke** are **most likely** to present cardiovascular diseases
- H7. People who present high cholesterol levels are most likely to present cardiovascular diseases
- H8. High glucose levels people are most likely to present cardiovascular diseases
- H9. People with hypertension are most likely to present cardiovascular diseases

--

S

 \blacksquare

Ana

ate

• [

Var

 \mathbf{m}

 ∞

EXPLORATORY DATA ANALYSIS

<u>Hypothesis Validation: H3</u>

"Older people are most likely to present cardiovascular diseases".

 This hypothesis turned to be TRUE.

The linear regression slope exhibits well this tendency.

• [

S

 $\overline{}$

Ana

ate

• [

Var

 \mathbf{m}

 \mathfrak{O}

EXPLORATORY DATA ANALYSIS

<u>Hypothesis Validation: H6</u>

"People who smoke are most likely to present cardiovascular diseases".

This hypothesis turned to be FALSE.

ALthough this
feature does not
show a strong
correlation with the
Target Variable.

•—

S

Ana

ate

Var

 \mathbf{m}

 ∞

EXPLORATORY DATA ANALYSIS

<u>Hypothesis Validation: H7</u>

"People who present high cholesterol levels are most likely to present cardiovascular diseases".

This hypothesis turned to be TRUE.

Plus, this feature shows a strong correlation with the Target Variable.

MACHINE LEARNING MODELLING

01

LOGISTIC REGRESSION

Single Performance Accuracy:

72.34 %

Cross-Validation Accuracy:

72.05 %

02

RANDOM FOREST CLASSIFIER

Single Performance Accuracy:

72.22 %

Cross-Validation Accuracy:

72.05 %

03

SVM CLASSIFIER

Single Performance Accuracy:

72.52 %

Cross-Validation Accuracy:

72.53 %

5 CONCLUSION

01. DIAGNOSIS	The models used were capable of predict well a cardiovascular disease in patients, even with Cross-Validation analysis.
02. ACCURACY	Not much improvement with the use of fine tuning techniques (less than 0.2 %).
03. FURTHER STEPS	More data would have to be required to test accuracy's improvement.

THANK YOU!

Diandra Melo

GITHUB

https://github.com/diandramelo

Dataset
"Cardiovascular
Diseases"
available at
Kaggle