Sequence modeling and design from molecular to genome scale with Evo

March 4th, Deep Learning Reading Group

Outline

- 1. Introduction
 - a. Previous work
 - b. Why LLMs in genomics?
 - c. Evo
- 2. Data Collection
- 3. Methods
 - a. Model architecture
- 4. Results
- 5. Discussion
 - a. Limitations and challenges
 - b. Ethical considerations
 - c. Evo 2
- 6. Questions

Introduction

Previous work

Previous work in the field has been:

- → Focused on <u>modality-specific models</u> specialized to proteins, coding sequences, RNA, or regulatory DNA
- → Limited to the design of <u>single molecules</u>, <u>simple complexes</u>, <u>or short DNA sequences</u>
- → Due to Transformer architecture, constrained to <u>short context lengths</u> and <u>tokens without single-nucleotide resolution</u>

Why LLMs in genomics?

LLMs can uncover patterns in DNA, enabling <u>functional predictions</u>

They can analyze <u>large datasets and complex interactions</u>

Future opportunities involving LLMs:

- → Gene-editing
- → Disease diagnostics
- → Synthetic biology

Evo

Evo is a <u>foundation LLM</u> designed to interpret and generate DNA sequences at various biological scales (from nucleotide to genome level)

- → Predicts molecular interactions
- → Generates genetic sequences
- → Analyzes genomic variation

Created by researchers at the Arc Institute, an independent non-profit organization focused on biomedical research

→ Collaborators include Stanford, UC Berkeley, and UCSF

Data Collection

Data Collection

The OpenGenome pre-training dataset was compiled from three sources:

- 1. Bacterial and archaeal genomes from the Genome Taxonomy Database
- 2. Curated prokaryotic viruses from the IMG/VR v4 database
- 3. Plasmid sequences from the IMG/PR database

300 billion nucleotide tokens in total, 100x more data than HyenaDNA

Excluded viral genomes that infect eukaryotes

Methods

Model architecture

More than 300 models were trained across four architectures:

- → Transformer++
- → Mamba
- → Hyena
- → StripedHyena

Perplexity: a measure of

next token prediction quality

Model architecture

StripedHyena architecture:

→ 32 blocks at a model width of 4096 dimensions

The model is a hybrid of:

- → 29 layers of data-controlled convolutional operators (hyena layers), interleaved with
- → 3 layers (10%) of multihead attention equipped with rotary position embeddings (RoPEs)

Model architecture

Final Evo model:

- → StripedHyena architecture
- → 7 billion parameters
- → Context length: <u>131,072 tokens</u> (single nucleotide tokenization)
- → 1000x larger than HyenaDNA

Results

Evo learns across DNA, RNA, and protein modalities

First, the zero-shot performance of the model was evaluated on several biologically relevant tasks:

- 1. Predicting mutational effects on protein function
- 2. Predicting mutational effects on ncRNA function
- 3. Predicting activity of regulatory DNA

E	LM likelihood of regulatory DNA sequence	Predict	mRNA expression	Protein expression
	p()	\longrightarrow	8.0	0.7
	p()	\longrightarrow	0.0	0.1
	p()	\longrightarrow	0.7	0.6
	p(\longrightarrow	0.1	0.3

Generative design of CRISPR-Cas molecular complexes

Evo was fine-tuned on a dataset of <u>82,430 genomic loci</u> with <u>8 kb-length</u> genomic sequences containing CRISPR-Cas systems

→ CRISPR-Cas systems comprise >=1 CRISPR ncRNAs and >=1 Cas proteins

Generative design of CRISPR-Cas molecular complexes

To evaluate the quality of Cas generation:

- → Compared generated Cas proteins to canonical proteins
- → Evaluated AlphaFold2 structure predictions against canonical structures

Generative design of CRISPR-Cas molecular complexes

To evaluate the quality of Cas generation:

- → Tested viable systems experimentally, focusing on Cas9 as metric
- → ~2 million Evo-generated sequences for Cas9 loci
- → Filtered to 11 systems with robust test scores

Generating DNA sequences at genome scale

The model generated bacterial genomes using species-level tokens:

- → The smallest "minimal" bacterial genomes are ~580 kb in length
- → To evaluate similarity between the generated sequences and natural genomes, CheckM was used
 - ◆ CheckM: a tool designed to assess the quality of bacterial DNA sequenced from nature

Discussion

Limitations and challenges

Evo was only trained on prokaryotic and phage genomes

→ <u>A larger model and more computing power</u> would be required to include eukaryotic genomes

Generated sequences are to some extent "hallucinated"

- → Requires that large outputs are <u>filtered computationally</u>
- → "[Evo generated samples] represent a "blurry image" of a genome that contains key characteristics but lacks the finer-grained details typical of natural genomes"

Chatbot LLMs can be easily corrected, but this can't be

Ethical considerations

The ethical considerations for genomic LLMs are potentially even greater than those for classic LLMs like ChatGPT

Competent genomic LLMs could enable:

- → Advances in gene-editing technology
- → Creation of biohazards using synthetic biology
- → Development of bioweapons

Summary

Evo is a genomic foundation model with:

- → Prokaryotic, phage, and plasmid data; StripedHyena architecture
- → 131k context width, single-nucleotide resolution
- → 100x more data, 1000x larger than HyenaDNA

The model was evaluated using:

- → Zero-shot functional predictions
- → Generative design of CRISPR-Cas molecular complexes
- → DNA sequence generation at genome scale

Evo 2

- → Preprint was released Feb. 19, 2025
- → Includes human, animal, plant, and other eukaryotic genomes

Questions?