Model Question Paper with effect from 2023-24 (CBCS Scheme)

LICNI						
USIN						

Fourth Semester B.E. Degree Examination

Analysis and Designs of Algorithms

TIME: 03 Hours Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module -1	BL	Marks
Q.01	a	Define algorithm. Explain asymptotic notations Big Oh, Big Omega and Big Theta otations		08
	b	Explain the general plan for analyzing the efficiency of a recursive algorithm. Suggest a recursive algorithm to find factorial of number. Derive its efficiency	L2	08
	c	If $t1(n) \in O(g1(n))$ and $t2(n) \in O(g2(n))$, then show that $t1(n) + t2(n) \in O(\max\{g1(n), g2(n)\})$.	L2	04
		OR		
Q.02	a	With neat diagram explain different steps in designing and analyzing an algorithm	L2	08
	b	Explain the general plan for analyzing the efficiency of a non-recursive algorithm. Suggest a non-recursive algorithm to find maximum element in the list of n numbers. Derive its efficiency	L2	08
	С	With the algorithm derive the worst case efficiency for Bubble sort	L2	04
		Module-2		
Q. 03	a	Explain the concept of divide and conquer. Design an algorithm for merge sort and derive its time complexity	L2	10
	b	Design an insertion sort algorithm and obtain its time complexity. Apply insertion sort on these elements. 25,75,40,10,20,	L3	10
0.04	1.	OR	1.2	10
Q.04	a	Explain Strassen's matrix multiplication and derive its time complexity	L2	10
	b	Design an algorithm for quick sort algorithm. Apply quick sort on these elements. 25,75,40,10,20,05,15	L3	10
0.05		Module-3	1.2	10
Q. 05	a	Define AVL Trees. Explain its four rotation types	L2	10
	b	Construct bottom up heap for the list 2,9,7,6,5,8. Obtain its time complexity OR	L3	10
Q. 06	a	Define heap. Explain the properties of heap along with its representation.	L2	10
Q. 00	b	Design Horspools algorithm for string matching. Apply Horspools algorithm to find the pattern BARBER in the text: JIM_SAW_ME_IN_A_BARBERSHOP	L3	10
		Module-4		
Q. 07	a	Construct minimum cost spanning tree using Kruskals algorithm for the following graph.	L3	10
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	b	What are Huffman Trees? Construct the Huffman tree for the following data. Character A B C D E - Probability 0.5 0.35 0.5 0.1 0.4 0.2 Encode DAD-CBE using Huffman Encoding.	L3	10

BCS401

considering S as the source vertex. b Define transitive closure of a graph. Apply Warshalls algorithm to compute transitive closure of a directed graph a 0							
considering S as the source vertex. b Define transitive closure of a graph. Apply Warshalls algorithm to compute transitive closure of a directed graph			OR				
closure of a directed graph a b c d b 0 0 0 1 c 0 0 0 0 d 1 0 1 0 Module-5 Q. 09 a Explain the following with examples ii) P problem iii) NP Problem iii) NP- Complete problem iii) NP- Hard Problems b What is backtracking? Apply backtracking to solve the below instance of sum of subset problem S={5,10,12,13,15,18} d=30 Q. 10 a Illustrate N queen's problem using backtracking to solve 4-Queens problem b Using Branch and Bound technique solve the below instance of knapsack problem. L2 10	Q. 08	a		ce shortest path for the given graph by	L3	10	
Q. 09 a Explain the following with examples i) P problem ii) NP Problem iii) NP- Complete problem iv) NP – Hard Problems b What is backtracking? Apply backtracking to solve the below instance of sum of subset problem S={5,10,12,13,15,18} d=30 OR Q. 10 a Illustrate N queen's problem using backtracking to solve 4-Queens problem b Using Branch and Bound technique solve the below instance of knapsack problem. Item Weight Value 1 2 12 2 1 10 3 3 3 20		b	closure of a directed graph a b c d a 0 1 0 0 b 0 0 0 1 c 0 0 0 0	arshalls algorithm to compute transitive	L3	10	
Q. 09 a Explain the following with examples i) P problem ii) NP Problem iii) NP- Complete problem iv) NP – Hard Problems b What is backtracking? Apply backtracking to solve the below instance of sum of subset problem S={5,10,12,13,15,18} d=30 OR Q. 10 a Illustrate N queen's problem using backtracking to solve 4-Queens problem b Using Branch and Bound technique solve the below instance of knapsack problem. Item Weight Value 1 2 12 2 1 10 3 3 3 20			Module-5				
b What is backtracking? Apply backtracking to solve the below instance of sum of subset L3 problem S={5,10,12,13,15,18} d=30 OR Q. 10 a Illustrate N queen's problem using backtracking to solve 4-Queens problem b Using Branch and Bound technique solve the below instance of knapsack problem. L2 10 Item Weight Value 1 2 12 2 1 10 3 3 3 20	Q. 09	a	Explain the following with examples i) P problem ii) NP Problem iii) NP- Complete problem		L2	10	
problem S={5,10,12,13,15,18} d=30 OR Q. 10 a Illustrate N queen's problem using backtracking to solve 4-Queens problem b Using Branch and Bound technique solve the below instance of knapsack problem. Item Weight Value 1 2 12 2 1 1 10 3 3 3 20		b		L3	10		
Q. 10 a Illustrate N queen's problem using backtracking to solve 4-Queens problem L2 10 b Using Branch and Bound technique solve the below instance of knapsack problem. L3 10 tem Weight Value 1 2 12 2 1 10 3 3 3 20							
b Using Branch and Bound technique solve the below instance of knapsack problem. L3 10 Item Weight Value 1 2 12 2 1 10 3 3 20		ı					
Item Weight Value 1 2 12 2 1 10 3 3 20	Q. 10						
		b	Item Weight Value 1 2 12 2 1 10 3 3 20	below instance of knapsack problem.	L3	10	