[Aula 13] Pipeline do MIPS 3: Solucionando hazards de controle.

Prof. João F. Mari joaof.mari@ufv.br

Roteiro

- Hazards de controle
- Reduzindo o atraso de desvios
- Previsão dinâmica de desvios
 - Buffer de 1 bit.
 - Buffer de 2 bits.

Hazards de controle

- Uma instrução precisa ser buscada a cada ciclo de clock para sustentar o pipeline
 - A decisão sobre o desvio não ocorrerá até o estágio MEM do pipeline.
 - O atraso para determinar a instrução apropriada a ser buscada é chamada de hazard de controle ou hazard de desvio
- Fazer um stall até que o desvio seja tomado.
 - Diminui o desempenho, pois é muito lento.
- Considerar que o desvio não será tomado
 - Continuar o fluxo normal de execução.
 - Se o desvio for tomado, as instruções que estão sendo buscadas e decodificadas são descartadas.
 - Para descartar as instruções nos estágios IF, ID e EX alteramos os valores de controle para 0 e descartamos as instruções no pipeline nos estágios IF, ID e EX (flush).

Hazards de controle

Reduzindo o atraso de desvios

- Muitos desvios contam apenas com testes simples:
 - Igualdade ou sinal;
- É possível reduzir o número de instruções que precisam sofrer flush, movendo a execução do desvio para um estágio anterior do pipeline.
 - Mover o calculo do desvio do estágio EX para o estágio ID:
 - Computar o endereço de desvio (Fácil)
 - Já temos o valor do PC + 4 e o endereço de destino em IF/ID
 - Decisão do desvio:
 - Comparar os dois registradores lidos no próprio estágio ID
 - Implica em hardware adicional para detecção de hazard e encaminhamento
 - Um dos valores testador pode não estar disponível no momento.

Reduzindo o atraso de desvios

Previsão dinâmica de desvios

- A forma mais simples de previsão de desvios é supor que o desvio não é tomado.
 - Adequada para pipeline simples: Até cinco estágios (MIPS).
 - Em pipelines muito agressivos o desempenho desperdiçado será muito grande.
- Previsão dinâmica de desvios.
 - Decidir se o desvio será ou não tomado com base na ultima vez que a instrução foi executada
 - Buffer de previsão de desvios ou tabela de histórico de desvios (BHT –buffer history table)
 - Buffer de 1 bit: O bit menos significativo do endereço do PC da instrução de desvio é
 utilizado como uma memória de desvios e diz se um desvio foi tomado recentemente
 - 1 desvio será tomado
 - 0 desvio não será tomado.
 - Mesmo que um desvio quase sempre seja tomado, provavelmente faremos uma previsão incorreta duas vezes.

Previsão de desvio com 1 bit de história

Previsão de desvio com 2 bit de história

- Uma solução melhor é um esquema de previsão com 2 bits:
 - O bit MAIS significativo armazena a previsão
 - O bit MENOS significativo o resultado da última escolha.

[EXEMPLO]

Loop: beq \$s0, \$s1, Exit1

- Considere o código em assembly do MIPS:
 - Considere também que os registradores \$s0, \$s1 e \$s2
 armazenam os valores 0, 5 e 7, respectivamente.

```
addi $s0, $s0, 1

j Loop

Exit1: bne $s0, $s1, Else
    add $s0, $s1, $s2

j Exit

Else: sub $s0, $s1, $s2

Exit: # o código continua...

1 bit

2 bits
```

[EXEMPLO]

- Considere o código em assembly do MIPS:
 - Considere também que os registradores \$s0, \$s1 e \$s2
 armazenam os valores 0, 5 e 7, respectivamente.

```
Loop: beq $s0, $s1, Exit1
addi $s0, $s0, 1
j Loop

Exit1: bne $s0, $s1, Else
add $s0, $s1, $s2
j Exit
```

\$s0	\$s1										
0	5	1	5	2	5	3	5	4	5	5	5

\$s0	\$s1
5	5

Else: sub \$s0, \$s1, \$s2

Exit: # o código continua...

1 bit

2 bits

Р	Ν	Ζ	N	N	N	Ν	Т	Ν		N	N	N	N	N	N	N	Ν	
D	N	Z	N	N	N	Т	N			N	N	N	N	N	Т	N	•••	

Bibliografia

- PATTERSON, D.A; HENNESSY, J.L. Organização e Projeto de Computadores: A Interface Hardware/Software. 3a. Ed. Elsevier, 2005.
 - Capítulo 5.
- 2. Notas de aula do prof. Luciano J. Senger:
 - http://www.ljsenger.net/classroom.html
- 3. Notas de aula da Profa. Mary Jane Irwin
 - CSE 331 Computer Organization and Design
 - http://www.cse.psu.edu/research/mdl/mji/mjicourses

FIM

- FIM:
 - Aula 13 Pipeline do MIPS 3 Solucionando hazards de controle.
- Próxima aula:
 - Aula 14 Hierarquia de memória.