

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

ГОСУДАРСТВЕННЫЙ КОМИТЕТ
ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ
ПРИ ГКНТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

1

(21) 4764621/26
 (22) 20.04.89
 (46) 23.11.91. Бюл. № 43
 (71) Институт полупроводников АН УССР
 (72) И.Н.Гейфман и Б.К.Круниковский
 (53) 621.315.592(088.8)
 (56) Van der Klink I.I., Rytz D. Growth of
 $K_{1-x}Li_xTaO_3$ crystals by a slow-cooling
 method. -J.Cryst.Growth, 1982, 56, p. 673-
 676.

(54) МОНОКРИСТАЛЛИЧЕСКИЙ МАТЕРИ-
 АЛ НА ОСНОВЕ ТАНТАЛА КАЛИЯ-ЛИ-
 ТИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
 (57) Изобретение относится к химическому
 синтезу монокристаллов на основе тантала-
 та калия-лития и может быть использовано

2

в оптических затворах и модуляторах, а так-
 же в СВЧ-резонаторах. Обеспечивает рас-
 ширение температурного диапазона
 двулучепреломления при снижении диэлек-
 трических потерь $tg \delta$ и низком температур-
 ном коэффициенте диэлектрической
 проницаемости T_{KE} . Материал имеет
 тетрагональную структуру и формулу
 $K_{0.5-0.73}Li_{0.27-0.5}TaO_3$. Кристаллы выращива-
 ют из расплава шихты, содержащей исход-
 ные компоненты, при его охлаждении и
 вытягивании на вращающуюся затравку.
 Шихта имеет следующий состав, мас. %:
 K_2CO_3 18,0-22,8; Li_2CO_3 4,5-6,9; Ta_2O_5 72,3-
 75,5. Монокристалл имеет $T_{KE} 10^3$ град $^{-1}$,
 $tg \delta < 10^{-3}$ при $T=300$ К. 2 с.п.ф-лы, 3 ил.

Изобретение относится к области хими-
 ческого синтеза монокристаллов на основе
 тантала калия-лития и может быть исполь-
 зовано в оптических затворах и модулято-
 рах, а также в СВЧ-резонаторах.

Цель изобретения – расширение темпе-
 ратурного диапазона двулучепреломления
 при снижении диэлектрических потерь и
 низком температурном коэффициенте диэ-
 лектрической проницаемости.

На фиг.1-3 приведены дифрактограммы
 составов $K_{0.75}$: $Li_{0.25}TaO_3$, $K_{0.3}:Li_{0.7}TaO_3$ и
 стехиометрического $K_{0.6}:Li_{0.4}TaO_3$ соот-
 ветственно.

На фиг.1 и 2 видны дополнительные ре-
 флексы, соответствующие выпадению дру-
 гой фазы.

При м е р. Для получения монокристал-
 ла берут шихту, содержащую, мас.: карбонат
 калия K_2CO_3 20,4; карбонат лития Li_2CO_3 5,7;

пятиокись тантала Ta_2O_5 73,9, тщательно
 перемешивают и заключают в платиновый
 тигель. Расплавляют шихту и путем сниже-
 ния температуры выращивают кристалл на
 затравку, вращающуюся со скоростью 10
 об./мин. Стехиометрический состав содер-
 жания в монокристалле следующий, мас. %:

Калий К	9,2
Литий Li	1,1
Тантал Ta	70,9
Кислород O	18,8

Полученный монокристалл предназна-
 чен для использования в качестве электро-
 оптического модулятора. Он содержит все
 известные компоненты, но их концентрации
 отличаются, особенно существенно отлича-
 ются концентрации калия и лития. Возмож-
 но значительное отклонение содержания
 карбонатов калия и лития в шихте. Однако