

UNITED STATES PATENT AND TRADEMARK OFFICE

A of
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/052,034	01/16/2002	Todd Sarnstrom	6740-520	1251
32300	7590	02/22/2005		EXAMINER
BRIGGS AND MORGAN, P.A. 2200 IDS CENTER MINNEAPOLIS, MN 55402			HINZE, LEO T	
			ART UNIT	PAPER NUMBER
			2854	

DATE MAILED: 02/22/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)
	10/052,034	SARNSTROM, TODD
	Examiner	Art Unit
	Leo T. Hinze	2854

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 02 December 2004.
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 1-5,7,9-22 and 24 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1-5,7,9-22 and 24 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on 02 December 2004 is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) <input type="checkbox"/> Notice of References Cited (PTO-892)	4) <input type="checkbox"/> Interview Summary (PTO-413)
2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/Mail Date. _____
3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) Paper No(s)/Mail Date _____	5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152)
	6) <input type="checkbox"/> Other: _____

Art Unit: 2854

DETAILED ACTION

Claim Rejections - 35 USC § 103

1. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

2. Claims 1-5, 7, 9, and 24 are rejected under 35 U.S.C. 103(a) as being unpatentable over Ginsburg, US 921,974 (Ginsburg) in view of Gerson, US 3,150,582 (Gerson).

a. Regarding claim 1:

Ginsburg teaches an interchangeable die apparatus, including: an apparatus for adjusting a die of a printing press, comprising: a chase (A, Fig. 1) defining a vertical axis and a horizontal axis; a die frame (B, Fig. 1) slidably secured to the chase to allow the adjustment of the die frame in the vertical axis and the horizontal axis of the chase ("frame may be adjusted to its proper central position", p. 1 lines 62-63); it is desirable to be able to quickly reset-up new dies (page 1, lines 17-18).

Ginsburg does not teach at least one of a coarse vertical adjustment and a coarse horizontal adjustment; and at least one of a fine vertical adjustment and a fine horizontal adjustment.

Art Unit: 2854

Gerson teaches: an apparatus for adjusting a die comprising: a vertical axis and a horizontal axis; a small frame for holding the image creating elements (28, 36, Fig. 1) slidably secured to a machine frame (24, 26, 47, 48, 58, Fig. 1) to allow the adjustment of the small frame in the vertical axis and the horizontal axis; at least one of a coarse vertical adjustment ("coarse adjustment in vertical displacement", col. 3, lines 39-40) and a coarse horizontal adjustment ("approximate or coarse adjustment", col. 4, lines 7-8); and at least one of a fine vertical adjustment and a fine horizontal adjustment ("precise selection of fine space intervals both vertically and horizontally", col. 1, lines 55-56); that such an apparatus provides very rapid and convenient shifting and positioning (col. 1, lines 53-56), and precise alignment and the ability to return to predetermined positions as selected by the user (col. 1, lines 45-50).

It would have been obvious to one having ordinary skill in the art at the time the invention was made to modify Ginsburg to include at least one of a coarse vertical adjustment and a coarse horizontal adjustment and at least one of a fine vertical adjustment and a fine horizontal adjustment, because Gerson teaches that coarse and fine adjustment in the vertical and horizontal direction is advantageous for providing very rapid and convenient shifting and positioning as well as precise alignment and the ability to return to predetermined positions as selected by the user.

b. Regarding claim 2, the combination of Ginsburg and Gerson substantially teaches all that is claimed as discussed in the rejection of claim 1 above. Gerson also teaches at least one horizontal guide (80, Fig. 1); and at least one vertical guide (59, Fig. 1), the at least one horizontal guide and the at least one vertical guide slidably connected to the frame (36, Fig. 1) to

Art Unit: 2854

slidably secure the frame to the chase and to permit the frame to be slidably positioned along both the at least one horizontal guide and the at least one vertical guide (col. 1, lines 45-50).

c. Regarding claim 3, the combination of Ginsburg and Gerson substantially teaches all that is claimed as discussed in the rejection of claim 2 above. Ginsburg also teaches the chase comprising an upper horizontal member, a lower horizontal member, a left vertical member secured to the upper horizontal member and the lower horizontal member and a right vertical member secured to the upper horizontal member and the lower horizontal member (A, Fig. 1).

d. Regarding claim 4, the combination of Ginsburg and Gerson substantially teaches all that is claimed as discussed in the rejection of claim 3 above. Gerson also teaches a vertical mount (51, Fig. 1) movably secured to the at least one vertical guide, with the frame secured to the vertical slidable mount to slidably connect the frame to the at least one vertical guide; a horizontal mount (61, Fig. 1) movably secured to the at least one horizontal guide and secured to a first end of the at least one vertical guide; and a second end of the at least one vertical guide slidably secured to one of the upper horizontal member and the lower horizontal member of the chase to permit the horizontal movement of the second end the at least one vertical guide along one of the upper horizontal member and the lower horizontal member.

e. Regarding claim 5:

The combination of Ginsburg and Gerson substantially teaches all that is claimed as discussed in the rejection of claim 4 above, except the second end of the at least one vertical guide secured to a sliding element to slidably secure the second end of the at least one vertical guide to one of the upper horizontal member and the lower horizontal member of the chase, the

Art Unit: 2854

sliding element securely attached to the second end of the at least one vertical guide and slidably attached to one of the upper horizontal member and the lower horizontal member.

Gerson also teaches the second end (61, Fig. 1) of the at least one horizontal guide (80, Fig. 1) secured to a sliding element (61, Fig. 1) to slidably secure the second end of the at least one horizontal guide to the left vertical member (59, Fig. 5) of the machine frame (24, 26, 47, 48, 58, Fig. 1), the sliding element securely attached to the second end of the at least one vertical guide and slidably attached to the left vertical member (Figs. 1, 5).

It has been held that mere rearrangement of parts is not sufficient to patentably distinguish over the prior art. See MPEP § 2144.04 (VI).

It would have been obvious to one having ordinary skill in the art at the time the invention was made to additionally modify Ginsburg wherein the second end of the at least one horizontal guide secured to a sliding element to slidably secure the second end of the at least one horizontal guide to the left vertical member of the machine frame, the sliding element securely attached to the second end of the at least one vertical guide and slidably attached to the left vertical member, and to juxtapose the horizontal and vertical axis, because one having ordinary skill in the art would recognize that while in a machine of vertical orientation taught by Gerson, having the horizontal and vertical axis disposed as taught by Gerson would be advantageous for ease of adjustment, but in a machine of apparent horizontal orientation as taught by Ginsburg, one having ordinary skill in the art would recognize that the machine would function equally as well with the horizontal and vertical axis disposed as required for each particular job.

Art Unit: 2854

f. Regarding claim 7, the combination of Ginsburg and Gerson substantially teaches all that is claimed as discussed in the rejection of claim 5 above. Gerson also teaches at least one of a coarse vertical adjustment and a coarse horizontal adjustment (“coarse adjustment in vertical displacement”, col. 3, lines 39-40).

g. Regarding claim 9, the combination of Ginsburg and Gerson substantially teaches all that is claimed as discussed in the rejection of claim 5 above. Gerson also teaches at least one of a fine vertical adjustment and a fine horizontal adjustment (“precise selection of fine space intervals both vertically and horizontally”, col. 1, lines 55-56).

h. Regarding claim 24:

Ginsburg teaches an interchangeable die apparatus, including: a method for adjusting a die of a printing press, comprising: providing a die; providing a die fixture including a chase defining a vertical and a horizontal axis, and a die frame slidably secured to the chase to allow the die frame to slide along the vertical axis and to be slid along the horizontal axis of the chase; mounting the die in the die frame; mounting the die fixture in the printing press (p. 1, lines 46-79); it is desirable to be able to quickly reset-up new dies (page 1, lines 17-18).

Ginsburg does not teach coarsely adjusting the position of the die by sliding the die along at least one of the vertical axis and the horizontal axis; and refining the position of the die by sliding the die along at least one of the vertical axis and the horizontal axis.

Gerson teaches: coarsely adjusting the position of a image creating elements (28, 36, Fig. 1) by sliding the image creating elements along at least one of the vertical axis and the horizontal axis (“coarse adjustment in vertical displacement”, col. 3, lines 39-40); and refining the position

Art Unit: 2854

of the image creating elements by sliding the image creating elements along at least one of the vertical axis and the horizontal axis (“precise selection of fine space intervals both vertically and horizontally”, col. 1, lines 55-56); that such an apparatus provides very rapid and convenient shifting and positioning (col. 1, lines 53-56), and precise alignment and the ability to return to predetermined positions as selected by the user (col. 1, lines 45-50).

It would have been obvious to one having ordinary skill in the art at the time the invention was made to modify Ginsburg by coarsely adjusting the position of the die by sliding the die along at least one of the vertical axis and the horizontal axis; and refining the position of the die by sliding the die along at least one of the vertical axis and the horizontal axis, because Gerson teaches that coarse and fine adjustment in the vertical and horizontal direction is advantageous for providing very rapid and convenient shifting and positioning as well as precise alignment and the ability to return to predetermined positions as selected by the user.

3. Claims 10, 12, 17, and 18 are rejected under 35 U.S.C. 103(a) as being unpatentable over Ginsburg in view of Gerson as applied to claim 4 above, and further in view of Leibovich et al., US 4,723,086 (Leibovich).

a. Regarding claim 10:

The combination of Ginsburg and Gerson substantially teaches all that is claimed as discussed in the rejection of claim 4 above, except at least one of the vertical guides comprising a spirally threaded vertical guide.

Leibovich teaches a mechanism allowing coarse and fine positioning (col. 1, lines 17-18) of a frame (65, Fig. 6) in X-Y directions, including: at least one of the vertical (58b, Fig. 6) and

Art Unit: 2854

horizontal (58a, Fig. 6) guides comprising a spirally threaded vertical guide; that such a mechanism is advantageous for reducing complexity and subsequent cost, and provides better stability and better repeatability of the chosen position (col. 1, line 62 through column 2, line 1).

It would have been obvious to one having ordinary skill in the art at the time the invention was made to further modify Ginsburg wherein at least one of the vertical guides comprises a spirally threaded guide, because Leibovich teaches that a spirally threaded guide is advantageous for reducing complexity and subsequent cost, and provides better stability and better repeatability of the chosen position.

b. Regarding claim 12, the combination of Ginsburg, Gerson and Leibovich substantially teaches all that is claimed as discussed in the rejection of claim 10 above. Leibovich also teaches the spirally threaded vertical guide received in a vertical bore of the vertical mount in a gearing relationship such that when the vertical spirally threaded rod is rotated the vertical mount moves along the vertical axis of the chase (col. 4, lines 55-67).

c. Regarding claim 17:

The combination of Ginsburg and Gerson substantially teaches all that is claimed as discussed in the rejection of claim 4 above, except at least one of the at least one horizontal guides comprising a spirally threaded horizontal guide.

Leibovich teaches a mechanism allowing coarse and fine positioning (col. 1, lines 17-18) of a frame (65, Fig. 6) in X-Y directions, including: at least one of the vertical (58b, Fig. 6) and horizontal (58a, Fig. 6) guides comprising a spirally threaded guide; that such a mechanism is

Art Unit: 2854

advantageous for reducing complexity and subsequent cost, and provides better stability and better repeatability of the chosen position (col. 1, line 62 through column 2, line 1).

It would have been obvious to one having ordinary skill in the art at the time the invention was made to further modify Ginsburg wherein at least one of the horizontal guides comprises a spirally threaded guide, because Leibovich teaches that a spirally threaded guide is advantageous for reducing complexity and subsequent cost, and provides better stability and better repeatability of the chosen position.

d. Regarding claim 18, the combination of Ginsburg, Gerson and Leibovich substantially teaches all that is claimed as discussed in the rejection of claim 17 above. Leibovich also teaches the spirally threaded horizontal guide received in a horizontal bore of the horizontal mount in a gearing relationship such that when the spirally threaded horizontal guide is rotated, the horizontal mount moves along the horizontal axis of the chase (col. 4, lines 55-67).

4. Claims 11, 13, and 19 are rejected under 35 U.S.C. 103(a) as being unpatentable over Ginsburg in view of Gerson and Leibovich et al. as applied to claims 10, 12, and 18 above, and further in view of Posh, US 3,449,971 (Posh).

a. Regarding claims 11 and 13:

The combination of Ginsburg and Gerson substantially teaches all that is claimed as discussed in the rejection of claims 10 and 12 above, except a vertical fine adjustment, the vertical fine adjustment including a spur gear and a worm gear, the spur gear attached to the spirally threaded vertical guide and the worm gear meshing with the spur gear such that the spur gear rotates the spirally threaded vertical rod when the worm gear is rotated.

Art Unit: 2854

Posh teaches a linear actuator (10, Fig. 1) with a worm gear (32, Fig. 2) meshing with a pair of spur gears (18, 20, Fig. 1), such that when the worm gear is rotated, the spur gear rotates a spirally threaded shaft (12, Fig. 1), to cause relative motion between the rod and the housing (14, Fig. 1). Posh teaches that such an actuator is advantageous for very precise movements (col. 3, lines 30-32) and is very compact (col. 1, line 32).

It would have been obvious to one having ordinary skill in the art at the time the invention was made to further modify Ginsburg to use for the fine horizontal and vertical adjustments an actuator with a worm gear and a spur gear and a shaft attached to the spur gear and movable when the worm gear is rotated, because Posh teaches that such an actuator is advantageous for generating very precise movements and is very compact.

b. Regarding claim 19:

The combination of Ginsburg and Gerson substantially teaches all that is claimed as discussed in the rejection of claim 17 above, except a fine horizontal adjustment, the fine horizontal adjustment including a spur gear attached to the spirally threaded horizontal guide, and a worm gear, with the worm gear meshing with the spur gear such that, when the worm gear is rotated, the spur gear rotates the spirally threaded horizontal guide to move the horizontal mount along the horizontal axis of the chase.

Posh teaches a linear actuator (10, Fig. 1) with a worm gear (32, Fig. 2) meshing with a pair of spur gears (18, 20, Fig. 1), such that when the worm gear is rotated, the spur gear rotates a spirally threaded shaft (12, Fig. 1), to cause relative motion between the rod and the housing (14,

Art Unit: 2854

Fig. 1). Posh teaches that such an actuator is advantageous for very precise movements (col. 3, lines 30-32) and is very compact (col. 1, line 32).

It would have been obvious to one having ordinary skill in the art at the time the invention was made to further modify Ginsburg to use for the fine horizontal and vertical adjustments an actuator with a worm gear and a spur gear and a shaft attached to the spur gear and movable when the worm gear is rotated, because Posh teaches that such an actuator is advantageous for generating very precise movements and is very compact.

5. Claims 14-16 are rejected under 35 U.S.C. 103(a) as being unpatentable over Ginsburg and Gerson in view of Leibovich as applied to claim 12 above, and further in view of Gortner, US 6,598,868 (Gortner).

a. Regarding claim 14:

The combination of Ginsburg, Gerson and Leibovich teaches all that is claimed as discussed in the rejection of claim 12 above, except: a coarse vertical adjustment, the coarse adjustment including a vertical actuator movably received within a vertical actuator receiving cavity in the vertical mount and having an at least partially threaded bore extending through the vertical actuator, the at least partially threaded bore including receiving threads and being coextensive with the vertical bore of the vertical mount, the at least partially threaded bore providing the gearing relationship with the spirally threaded vertical guide, and the at least partially threaded bore being sized to release the spirally threaded vertical guide when the vertical actuator is displaced relative to the vertical mount.

Art Unit: 2854

Gortner teaches a method of coarsely adjusting a device on a threaded rod, including: a coarse adjustment, the coarse adjustment including an actuator (115, Fig. 17) movably received within an actuator receiving cavity (117, Fig. 17) in the mount (118, Fig. 17) and having an at least partially threaded bore (122, Fig. 17) extending through the actuator, the at least partially threaded bore including receiving threads (Figs. 17 and 18) and being coextensive with the bore of the mount, the at least partially threaded bore providing the gearing relationship with the spirally threaded guide (121, Fig. 17), and the at least partially threaded bore being sized to release the spirally threaded guide when the actuator is displaced relative to the mount.

It would have been obvious to one having ordinary skill in the art at the time the invention was made to further modify Ginsburg to include a coarse adjustment actuator as taught by Gortner, because Gortner teaches that such an actuator mechanism is advantageous for freeing a mount for displacement along the length of a threaded rod, and that such a mechanism is well known in the art, and one having ordinary skill in the art would recognize that such a mechanism is a suitable alternative to the actuating mechanism of Ginsburg.

b. Regarding claim 15, the combination of Ginsburg, Gerson, Leibovich, and Gortner teaches all that is claimed as discussed in the rejection of claim 14 above. Gortner also teaches the receiving threads of the partially threaded bore biased in a gearing relationship with the spirally threaded guide by a compressible element (123, Fig. 17) biased between a bottom surface of the actuator and a bottom of the cavity in the mount.

Art Unit: 2854

c. Regarding claim 16, the combination of Ginsburg, Gerson, Leibovich, and Gortner teaches all that is claimed as discussed in the rejection of claim 15 above. Gortner also teaches the compressible element comprising a coiled spring (123, Fig. 17).

6. Claims 20-22 are rejected under 35 U.S.C. 103(a) as being unpatentable over Ginsburg, Gerson and Leibovich in view of Leibovich and Posh as applied to claim 19 above, and further in view of Gortner.

a. Regarding claim 20:

The combination of Ginsburg, Gerson, Leibovich and Posh teaches all that is claimed as discussed in the rejection of claim 19 above, except: a coarse horizontal adjustment, the coarse adjustment including a horizontal actuator movably received within a horizontal actuator receiving cavity in the horizontal mount and having an at least partially threaded bore extending through the actuator, the at least partially threaded bore including receiving threads and being coextensive with the horizontal bore of the horizontal mount, the at least partially threaded bore providing the gearing relationship with the spirally threaded horizontal guide, and the at least partially threaded bore being sized to release the spirally threaded vertical guide when the horizontal actuator is displaced relative to the horizontal mount.

Gortner teaches a method of coarsely adjusting a device on a threaded rod, including a coarse adjustment, the coarse adjustment including an actuator (115, Fig. 17) movably received within an actuator receiving cavity (117, Fig. 17) in the mount (118, Fig. 17) and having an at least partially threaded bore (122, Fig. 17) extending through the actuator, the at least partially threaded bore including receiving threads (Figs. 17 and 18) and being coextensive with the bore

Art Unit: 2854

of the mount, the at least partially threaded bore providing the gearing relationship with the spirally threaded guide (121, Fig. 17), and the at least partially threaded bore being sized to release the spirally threaded guide when the actuator is displaced relative to the mount.

It would have been obvious to one having ordinary skill in the art at the time the invention was made to further modify Ginsburg to include a coarse adjustment actuator as taught by Gortner, because Gortner teaches that such an actuator mechanism is advantageous for freeing a mount for displacement along the length of a threaded rod, and that such a mechanism is well known in the art, and one having ordinary skill in the art would recognize that such a mechanism is a suitable alternative to the actuating mechanism of Ginsburg.

b. Regarding claim 21, the combination of Ginsburg, Gerson, Leibovich, Posh and Gortner teaches all that is claimed as discussed in the rejection of claim 20 above. Gortner also teaches the receiving threads of the partially threaded bore biased in a gearing relationship with the spirally threaded guide by a compressible element (123, Fig. 17) biased between a bottom surface of the actuator and a bottom of the cavity in the mount.

c. Regarding claim 21, the combination of Ginsburg, Gerson, Leibovich, Posh and Gortner teaches all that is claimed as discussed in the rejection of claim 20 above. Gortner also teaches the compressible element comprising a coiled spring (123, Fig. 17).

Double Patenting

7. Applicant is advised that should claims 1, 7, and 9 be found allowable, claims 7 and 9 will be objected to under 37 CFR 1.75 as being a substantial duplicate thereof. When two claims in an application are duplicates or else are so close in content that they both cover the same

Art Unit: 2854

thing, despite a slight difference in wording, it is proper after allowing one claim to object to the other as being a substantial duplicate of the allowed claim. See MPEP § 706.03(k).

Response to Arguments

8. Applicant's arguments filed 2 December 2004 have been fully considered but they are not persuasive.

9. In response to applicant's arguments that reference 36 of Gerson is not a frame but is instead a "chase" (page 4), the examiner recognizes that the nomenclature used in Gerson calls reference 36 a "chase". This does not affect the propriety of the combination of Ginsburg and Gerson, however, because despite the discrepancies in the use of the term "chase" between the applied references of Ginsburg and Gerson and the instant application, both Ginsburg and Gerson are reasonably pertinent to the particular problem with which the applicant was concerned. The "chase" of Gerson is analogous to the die frame 90 of the instant application, in that both are used to hold the means which is used to create the readable impression. The frame 20, 24, 26, 47 and 48 of Gerson is analogous to the chase 20 of the instant application.

10. In response to applicant's argument that there is no disclosure of fine adjustments (page 4), the applicant incorrectly identifies the "negative carrier support" as reference 22 in Gerson. Gerson teaches that reference 28 (Fig. 1) is the negative carrier support (col. 2, lines 63-64), and 28 is shown connected to the frame 36 in Fig. 1. Therefore, fine adjustment of item 28 would also cause fine adjustment of item 36.

Art Unit: 2854

Conclusion

11. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.

12. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Leo T. Hinze whose telephone number is (571) 272-2167. The examiner can normally be reached on M-F 8:00-4:30.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Andrew Hirshfeld can be reached on (571) 272-2168. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Leo T. Hinze
Patent Examiner
AU 2854
17 February 2005

ANDREW H. HIRSHFELD
SUPERVISORY PATENT EXAMINER
TECHNOLOGY CENTER 2800