

DAYANANDA SAGAR COLLEGE OF ENGINEERING

(An Autonomous Institute Affiliated to VTV, Belagavi)
Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560078

DEPARTMENT OF MATHEMATICS

MATHEMATICAL STRUCTURES

COURSE CODE: 21MAT41A

Module-5: Graph Theory and Its Applications Question Bank

O No	Overetions
Q.No 1.	Questions O Define with an example in Craph
1.	a) Define with an example i) Graph
	ii) Multi graph
	iii) Simple Graph
	b) Define the following terms with a suitable example:
	i) Directed graph.
	ii) Undirected graph.
2.	a) Define with an example
	i) Degree of vertex
	ii) Isolated vertex
	b) Define with an example
	i) Bipartite graph
	ii) Complete bipartite Graph
3.	a)Define with an Example
	i) Pseudographs
	ii) Cycle Graph
	iii) Wheel Graph
	b) Verify $\sum_{i=1}^{n} deg^+(v_i) = \sum_{i=1}^{n} deg^-(v_i) = E = e$ in the following graph.
	e ₁
4.	a) Draw the Graphs $i) K_n \text{ for } 1 \le n \le 4$ $ii) a) C_3 b) C_4 c) C_5 d) C_6 e) C_8$
	b) Is C ₃ and C ₆ bipartite? Explain

The state of the s

DAYANANDA SAGAR COLLEGE OF ENGINEERING

(An Autonomous Institute Affiliated to VTV, Belagavi)
Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560078

DEPARTMENT OF MATHEMATICS

5.	a) Draw the complete bipartite graphs $K_{2,3}$, $K_{3,3}$, $K_{3,5}$ and $K_{2,6}$
	b) Draw the Graphs of a) W_3 b) W_4 c) W_5 d) W_6 e) W_7
6.	a) Define Complement Graph and if the simple graph G has v vertices and edges, how many edges
	does \bar{G} have?
	b) State Handshaking property. Show that every simple graph has two vertices of the same degree
7.	a) Define Adjacency matrix and incidence matrix
	b) Write the Adjacency Matrix of C_4 and W_4
8.	a) Draw a graph of the given adjacency matrix
	i) $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ ii) $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$
	b) Find the adjacency matrix of the given directed multigraph
9.	a) Draw Petersen graph.
	b) Is there a simple graph with 1,1,3,3,3,4,6,7 as the degree of its vertices?

DAYANANDA SAGAR COLLEGE OF ENGINEERING

(An Autonomous Institute Affiliated to VTV, Belagavi)
Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560078

DEPARTMENT OF MATHEMATICS

10. a) Explain a Regular graph with example

b) How many vertices does a Regular graph of degree 4 with 10 edges have?

a) Define isomorphism of graphs. Show that the graphs G=(V,E) and H=(W,F) shown in the figures are isomorphic.

b) Show that the two graphs shown in the figure are isomorphic.

12. a) Show that the graphs G and \overline{G} shown in the figure are isomorphic.

b) Show that the Digraphs are isomorphic.

DSI PAREALURA

DAYANANDA SAGAR COLLEGE OF ENGINEERING

(An Autonomous Institute Affiliated to VTV, Belagavi)
Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560078

DEPARTMENT OF MATHEMATICS

 a) Define with an example each (i) Euler Circuit (ii) Euler path (iii) Euler Trail b) Define with an example each (i) A Hamiltonian path (ii) A Hamiltonian Circuit 14. a) Define with an example : (a) Subgraph of a graph (b) spanning sub graph 	
(ii) Euler path (iii) Euler Trail b) Define with an example each (i) A Hamiltonian path (ii) A Hamiltonian Circuit	
b) Define with an example each (i) A Hamiltonian path (ii) A Hamiltonian Circuit	
(i) A Hamiltonian path (ii) A Hamiltonian Circuit	
(i) A Hamiltonian path (ii) A Hamiltonian Circuit	
(ii) A Hamiltonian Circuit 14.	
14.	
b) Show that the complement of a bipartite graph need not be a bipartite graph.	
15. Which of the following graphs are Eulerian?	
i) The complete graph K_5	
ii) The complete bipartite graph $K_{2,3}$	
iii) The graph of the Octahedron	
iv) The Petersen graph	
16.	
Prove that a simple graph with n vertices and k components can have at most (n-k)(n-k+1)/2 edges.	
17. a) i) Give an example of a graph which has a Hamiltonian circuit but not an Euler circuit.	
ii) Give an example of a graph which has an Euler circuit but not a Hamiltonian circuit.	
b) Show that K_n has a Hamilton circuit whenever $n \ge 3$	
18. a) Define Graph coloring of a graph with an example.	
h)Define abnormatic number of a great with an array la	
b)Define chromatic number of a graph with an example.	
19. a) Find the chromatic number of the graph shown below	
, v2	
v1 v5	
v4 .	

DAYANANDA SAGAR COLLEGE OF ENGINEERING

(An Autonomous Institute Affiliated to VTV, Belagavi)
Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560078

DEPARTMENT OF MATHEMATICS

b) Find the chromatic number of the graph shown below

20.

- a) Prove that a graph of order $(n \ge 2)$ consisting of a single cycle is 2- chromatic if n is even, and 3-chromatic if n is odd.
- b) Prove that a graph G is 2-chromatic if and only if it is a non-null bipartite graph.