초산알데히드로부터 디에틸아민의 합성

박용성, 윤혁, 김승철

디에틸아민은 SAPO-34합성용결정화제, 의약품합성의 중간체, 유기합성중간체로 여러분야에서 널리 리용되고있다.[2-4]

우리는 Ni/Cu촉매를 리용하여 초산알데히드, 암모니아, 수소를 반응시켜 디에틸아민을 합성하고 합성에 미치는 여러가지 인자들의 영향을 고찰하였다.

실 험 방 법

기구로는 가압반응기(25MPa), 감압증류장치, 푸리에변환적외선분광기(《FTIR-8101》), 기체크로마토그라프를, 시약으로는 초산알데히드(CH₃CHO, 화학순), 암모니아(기체), 수소, 질산니켈(Ni(NO₃)₂·6H₂O, 분석순), 질산동(Cu(NO₃)₂·6H₂O, 분석순), 가성소다(NaOH, 분석순), 탄산소다(Na₂CO₃, 분석순)를 리용하였다.

초산알데히드로부터 디에틸아민을 합성하는 반응식은 다음과 같다. 2CH₃CHO + NH₃ + 2H₂ → (C₂H₅)₂NH + 2H₂O

먼저 2L 가압반응기에 초산알데히드 300mL를 넣고 촉매(선행연구[1]에서와 같은 방법으로 합성한것)를 넣은 다음 암모니아로 1.0MPa, 수소로 5.0MPa을 조성하여 150℃에서 교반하면서 6h동안 반응시켰다. 감압분별증류하여 생성물을 얻고 거둠률을 측정하였다.

실험결과 및 해석

암모니아/초산알데히드의 물질량비의 영향 수소/초산알데히드의 물질량비 1, 반응온도 125℃, 반응시간 6h의 조건에서 암모니아/초산알데히드의 물질량비에 따르는 생성물의 거둠률변화는 그림 1과 같다.

그림 1. 암모니아/초산알데히드의 물질량비에 따르는 생성물의 거둠률변화

그림 1에서 보는바와 같이 암모니아/초산알데히드의 물질량비가 증가함에 따라 디에틸아민의 거둠률은 증가하다가 3이상에서는 거의 변화가 없었다. 그러므로 합리적인 물질량비를 3으로 하였다.

수소/초산알데히드의 물질량비의 영향 암모니아/초산알데히드의 물질량비 3, 반응온도 125℃, 반응시간 6h의 조 건에서 수소/초산알데히드의 물질량비 에 따르는 생성물의 거둠률변화는 그 림 2와 같다.

그림 2. 수소/초산알데히드의 물질량비에 따르는 생성물의 거둠률변화

그림 2에서 보는바와 같이 수소/초산알데히드의 물질량비가 증가함에 따라 디에틸아민의 거둠률이 증가하다가 4이상에서는 거의 변화가 없었다. 따라서 합리적인 물질량비는 4이다.

반응온도의 영향 암모니아/초산알데히드의 물질량비 3, 수소/초산알데히드의 물질량비 4, 반응시간 6h의 조건에서 반응온도를 변화시키면서 디에틸아민의 거둠률변화를 고찰한 결 과는 그림 3과 같다.

그림 3. 반응온도에 따르는 디에틸아민의 거둠률변화

그림 3에서 보는바와 같이 반응온도가 높아짐에 따라 디에틸아민의 거둠률이 증가하다가 130℃이상에서는 급격히 감소하였다. 그것은 초산알데히드로부터 디에틸아민의 합성반응이 발열반응이므로 일정한 온도이상에서는 반응기내부의 온도가 급격히 상승하여 여러가지 부생성물이 많이 생성되기때문이라고 볼수 있다. 그러므로 반응온도를 120~130℃로 하는것이 합리적이다.

반응시간의 영향 암모니아/초산알데히드의 물질량비 3, 수소/초산알데히드의 물질량비 4, 반응온도 130℃의 조건에서 반응시간에 100+

따르는 디에틸아민의 거둠률변화는 그 림 4와 같다.

그림 4에서 보는바와 같이 반응시 간 5h이상에서는 거둠률변화가 거의 없 었다. 그러므로 초산알데히드로부터 디 에릴아민을 합성하는 반응시간을 5h로 하는것이 합리적이다.

그림 4. 반응시간에 따르는 디에틸아민의 거둠률변화

맺 는 말

Ni/Cu촉매를 리용하여 초산알데히드로부터 디에틸아민을 합성하는데 적합한 반응조건 은 암모니아/초산알데히드의 물질량비 3, 수소/초산알데히드의 물질량비 4, 반응온도 130℃, 반응시간 5h이며 이때 거둠률은 75%정도이다.

참 고 문 헌

- [1] Karl Klager et al.; US 3038939, 1982.
- [2] A. Skita et al.; US 1417274, 1973.
- [3] Yi Kung Lin et al.; Journal of Food and Drug Analysis, 23, 130, 2015.
- [4] Xiao Zhu et al.; Journal of Molecular Liquids, 213, 139, 2016.

주체108(2019)년 4월 5일 원고접수

Synthesis of Diethylamine from Acetealdehyde

Pak Yong Song, Yun Hyok and Kim Sung Chol

The suitable reaction conditions of synthesis of diethylamine from acetealdehyde by using Ni/Cu catalyst are as follows: the molar ratio of NH₃ and CH₃CHO is 3, the molar ratio of H₂ and CH₃CHO is 4, the reaction temperature is 130° C and the reaction time is 5h, and then the yield is about 75%.

Key words: acetealdehyde, diethylamine