Permutation Matrices and Row Swap

A matrix $P \in \mathbb{R}^{m \times m}$ is called *permutation matrix* if it has exactly one entry of 1 in each row and each column and 0s elsewhere.

1. Sparse representation (CSR Format): A permutation matrix $P=(p_{ij})_{ij}\in\mathbb{R}^{m\times m}$ can be represented by an m-dimensional vector $\mathtt{piv}\in\{1,2,\ldots,m\}^m$ in the following way:

$$piv_i = j :\Leftrightarrow p_{ij} = 1.$$

Given a permutation matrix P with its sparse representation piv. Determine the sparse representation, say pivT \in $\{1,2,\ldots,m\}^m$, of the transpose $P^T=(\widetilde{p}_{ij})_{ij}$, so that

$$\mathsf{pivT}_i = j \quad :\Leftrightarrow \quad \widetilde{p}_{ij} = 1.$$

Hint: Have a look at the routine numpy.argsort().

- 2. **Inverse:** Show that the inverse of a permutation matrix $P \in \mathbb{R}^{m \times m}$ is given by its transpose, i.e., $P^T = P^{-1}$.
- 3. **Row Swap**: Let $P_{jk} \in \mathbb{R}^{m \times m}$ be the permutation matrix which results from interchanging the j-th and k-th column $(k \geq j)$ of the identity matrix in $\mathbb{R}^{m \times m}$. Thus if its applied to a matrix $A \in \mathbb{R}^{m \times n}$ it interchanges the j-th and k-th row of A. Show that

$$P_{jk}^{\top} = P_{jk}.$$

In particular we find $P_{jk} = P_{ik}^{-1}$, i.e., P_{jk} is self-inverse.

Solution:

- 1. $piv_i = j \Leftrightarrow 1 = p_{ij} = \widetilde{p}_{ji} \Leftrightarrow : pivT_j = i$
- 2. By definition, the columns of a permutation matrix are given by the m unit vectors (in potentially permuted order), which are outbornermal
- 3. Let $P_{jk}=(q_{i\ell})_{i\ell}$ and $P_{jk}^T=(\widetilde{q}_{i\ell})_{i\ell}$, then by definition we find

$$q_{i\ell} = \begin{cases} 1: & (i = \ell, k \neq i \neq j) \text{ or } (i = j, \ell = k) \text{ or } (i = k, \ell = j) \\ 0: & \text{else} \end{cases}$$

and therefore

$$\widetilde{q}_{i\ell} = q_{\ell i} = \begin{cases} 1: & (\ell = i, k \neq \ell \neq j) \text{ or } (\ell = j, i = k) \text{ or } (\ell = k, i = j) \\ 0: & \text{else} \end{cases}$$

Thus, we obviously find $q_{i\ell} = \widetilde{q}_{i\ell}$.