## CHAPTER 1

## **Exercises**

E1.1 Charge = Current  $\times$  Time =  $(2 A) \times (10 s) = 20 C$ 

E1.2 
$$i(t) = \frac{dq(t)}{dt} = \frac{d}{dt}(0.01\sin(200t) = 0.01 \times 200\cos(200t) = 2\cos(200t) A$$

E1.3 Because  $i_2$  has a positive value, positive charge moves in the same direction as the reference. Thus, positive charge moves downward in element C.

Because  $i_3$  has a negative value, positive charge moves in the opposite direction to the reference. Thus positive charge moves upward in element E.

E1.4 Energy = Charge  $\times$  Voltage =  $(2 C) \times (20 V) = 40 J$ 

Because  $v_{ab}$  is positive, the positive terminal is a and the negative terminal is b. Thus the charge moves from the negative terminal to the positive terminal, and energy is removed from the circuit element.

- E1.5  $i_{ab}$  enters terminal a. Furthermore,  $v_{ab}$  is positive at terminal a. Thus the current enters the positive reference, and we have the passive reference configuration.
- E1.6 (a)  $p_a(t) = v_a(t)i_a(t) = 20t^2$   $w_a = \int_0^{10} p_a(t)dt = \int_0^{10} 20t^2dt = \frac{20t^3}{3}\Big|_0^{10} = \frac{20t^3}{3} = 6667 \text{ J}$

(b) Notice that the references are opposite to the passive sign convention. Thus we have:

$$p_b(t) = -v_b(t)i_b(t) = 20t - 200$$

$$w_b = \int_0^{10} p_b(t)dt = \int_0^{10} (20t - 200)dt = 10t^2 - 200t\Big|_0^{10} = -1000 \text{ J}$$

- E1.7 (a) Sum of currents leaving = Sum of currents entering  $i_a = 1 + 3 = 4$  A
  - (b)  $2 = 1 + 3 + i_b \implies i_b = -2 A$
  - (c)  $0 = 1 + i_c + 4 + 3 \Rightarrow i_c = -8 A$
- E1.8 Elements A and B are in series. Also, elements E, F, and G are in series.
- E1.9 Go clockwise around the loop consisting of elements A, B, and C:  $-3 - 5 + v_c = 0 \implies v_c = 8 \text{ V}$

Then go clockwise around the loop composed of elements C, D and E:
-  $v_c$  - (-10) +  $v_e$  = 0  $\Rightarrow$   $v_e$  = -2 V

- E1.10 Elements E and F are in parallel; elements A and B are in series.
- **E1.11** The resistance of a wire is given by  $R = \frac{\rho L}{A}$ . Using  $A = \pi d^2 / 4$  and substituting values, we have:

$$9.6 = \frac{1.12 \times 10^{-6} \times L}{\pi (1.6 \times 10^{-3})^2 / 4} \implies L = 17.2 \text{ m}$$

- **E1.12**  $P = V^2/R \implies R = V^2/P = 144 \Omega \implies I = V/R = 120/144 = 0.833 A$
- **E1.13**  $P = V^2/R \implies V = \sqrt{PR} = \sqrt{0.25 \times 1000} = 15.8 \text{ V}$ I = V/R = 15.8/1000 = 15.8 mA
- Using KCL at the top node of the circuit, we have  $i_1 = i_2$ . Then, using KVL going clockwise, we have  $-\nu_1 \nu_2 = 0$ ; but  $\nu_1 = 25$  V, so we have  $\nu_2 = -25$  V. Next we have  $i_1 = i_2 = \nu_2/R = -1$  A. Finally, we have  $P_R = \nu_2 i_2 = (-25) \times (-1) = 25$  W and  $P_S = \nu_1 i_1 = (25) \times (-1) = -25$  W.
- E1.15 At the top node we have  $i_R = i_s = 2A$ . By Ohm's law we have  $v_R = Ri_R = 80$  V. By KVL we have  $v_s = v_R = 80$  V. Then  $p_s = -v_s i_s = -160$  W (the minus sign is due to the fact that the references for  $v_s$  and  $i_s$  are opposite to the passive sign configuration). Also we have  $P_R = v_R i_R = 160$  W.

## Answers for Selected Problems

P1.7\* Electrons are moving in the reference direction (i.e., from a to b).

$$Q = 9$$
 C

- **P1.9\*** i(t) = 2 + 2t A
- **P1.12\*** Q = 2 coulombs
- **P1.14\*** (a) h = 17.6 km
  - (b) v = 587.9 m/s
  - (c) The energy density of the battery is  $172.8 \times 10^3$  J/kg which is about 0.384% of the energy density of gasoline.
- **P1.17\***  $Q = 3.6 \times 10^5$  coulombs

Energy = 
$$4.536 \times 10^6$$
 joules

- P1.20\* (a) 30 W absorbed
  - (b) 30 W absorbed
  - (c) 60 W supplied
- P1.22\* Q = 50 C. Electrons move from b to a.
- **P1.24\*** Energy =  $500 \, kWh$

$$P = 694.4 \text{ W}$$
  $I = 5.787 \text{ A}$ 

Reduction = 8.64%

- P1.27\* (a) P = 50 W taken from element A.
  - (b) P = 50 W taken from element A.
  - (c) P = 50 W delivered to element A.

- P1.34\* Elements E and F are in series.
- **P1.36\***  $i_a = -2$  A.  $i_c = 1$  A.  $i_d = 4$  A. Elements A and B are in series.
- P1.37\*  $i_c = 1 A$   $i_e = 5 A$   $i_g = -7 A$
- **P1.41\***  $v_a = -5 \text{ V}.$   $v_c = 10 \text{ V}.$   $v_b = -5 \text{ V}.$
- P1.42\*  $i_c = 1 A \qquad i_b = -2 A$   $v_b = -6 V \qquad v_c = 4 V$   $P_A = -20 W \qquad P_B = 12 W$   $P_C = 4 W \qquad P_D = 4 W$
- P1.52\*



- **P1.58\***  $R = 100 \Omega$ ; 19% reduction in power
- P1.62\* (a) Not contradictory.
  - (b) A 2-A current source in series with a 3-A current source is contradictory.
  - (c) Not contradictory.
  - (d) A 2-A current source in series with an open circuit is contradictory.
  - (e) A 5-V voltage source in parallel with a short circuit is contradictory.

**P1.63\***  $i_{p} = 2A$ 

 $P_{current-source} = -40 \text{ W}$ . Thus, the current source delivers power.

 $P_R = 20 \text{ W}$ . The resistor absorbs power.

 $P_{voltage-source} = 20 \text{ W}$ . The voltage source absorbs power.

- **P1.64\***  $v_x = 17.5 \text{ V}$
- **P1.69\*** (a)  $v_x = 10/6 = 1.667 \text{ V}$ 
  - (b)  $i_{x} = 0.5556 A$
  - (c)  $P_{voltage-source} = -10i_x = -5.556 \,\mathrm{W}$ . (This represents power delivered by the voltage source.)

$$P_R = 3(i_x)^2 = 0.926 \text{ W (absorbed)}$$

 $P_{controlled-source} = 5v_x i_x = 4.63 \text{ W (absorbed)}$ 

**P1.70\*** The circuit contains a voltage-controlled current source.  $v_s = 15 \text{ V}$ 

## **Practice Test**

- **T1.1** (a) 4; (b) 7; (c) 16; (d) 18; (e) 1; (f) 2; (g) 8; (h) 3; (i) 5; (j) 15; (k) 6; (l) 11;
  - (m) 13; (n) 9; (o) 14.
- T1.2 (a) The current  $I_s = 3$  A circulates clockwise through the elements entering the resistance at the negative reference for  $v_R$ . Thus, we have  $v_R = -I_s R = -6$  V.
  - (b) Because  $I_s$  enters the negative reference for  $V_s$ , we have  $P_V = -V_sI_s = -30$  W. Because the result is negative, the voltage source is delivering energy.
  - (c) The circuit has three nodes, one on each of the top corners and one along the bottom of the circuit.
  - (d) First, we must find the voltage  $v_I$  across the current source. We choose the reference shown:



Then, going around the circuit counterclockwise, we have  $-v_{\mathcal{I}}+V_{\mathcal{S}}+v_{\mathcal{R}}=0$ , which yields  $v_{\mathcal{I}}=V_{\mathcal{S}}+v_{\mathcal{R}}=10-6=4$  V. Next, the power for the current source is  $P_{\mathcal{I}}=I_{\mathcal{S}}v_{\mathcal{I}}=12$  W. Because the result is positive, the current source is absorbing energy.

Alternatively, we could compute the power delivered to the resistor as  $P_R = I_s^2 R = 18$  W. Then, because we must have a total power of zero for the entire circuit, we have  $P_I = -P_V - P_R = 30 - 18 = 12$  W.

T1.3 (a) The currents flowing downward through the resistances are  $v_{ab}/R_1$  and  $v_{ab}/R_2$ . Then, the KCL equation for node a (or node b) is

$$I_2 = I_1 + \frac{V_{ab}}{R_1} + \frac{V_{ab}}{R_2}$$

Substituting the values given in the question and solving yields  $v_{ab} = -8 \text{ V}$ .

(b) The power for current source  $I_1$  is  $P_{I1} = v_{ab}I_1 = -8 \times 3 = -24$  W .

Because the result is negative we know that energy is supplied by this current source.

The power for current source  $I_2$  is  $P_{I2} = -v_{ab}I_2 = 8 \times 1 = 8$  W. Because the result is positive, we know that energy is absorbed by this current source.

- (c) The power absorbed by  $R_1$  is  $P_{R1} = v_{ab}^2 / R_1 = (-8)^2 / 12 = 5.33$  W. The power absorbed by  $R_2$  is  $P_{R2} = v_{ab}^2 / R_2 = (-8)^2 / 6 = 10.67$  W.
- **T1.4** (a) Applying KVL, we have  $-V_s + v_1 + v_2 = 0$ . Substituting values given in the problem and solving we find  $v_1 = 8 \text{ V}$ .
  - (b) Then applying Ohm's law, we have  $i = v_1 / R_1 = 8/4 = 2 A$ .
  - (c) Again applying Ohm's law, we have  $R_2 = v_2 / i = 4/2 = 2 \Omega$ .

T1.5 Applying KVL, we have  $-V_s + v_x = 0$ . Thus,  $v_x = V_s = 15$  V. Next Ohm's law gives  $i_x = v_x / R = 15 / 10 = 1.5$  A. Finally, KCL yields  $i_{sc} = i_x - av_x = 1.5 - 0.3 \times 15 = -3$  A.