

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУ «Информатика и системы управления»
КАФЕДРА	ИУ-7 «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

по дисциплине «Моделирование»

«Изучение функций распределения и плотности

распределения»

Вариант N $^{\underline{o}}1$

 Студент группы ИУ7-74Б
 Разин А. В. (Фамилия И.О.)

 Преподаватель
 Рудаков И. В. (Фамилия И.О.)

СОДЕРЖАНИЕ

1	Теоретическая часть		3
	1.1	Условие лабораторной	3
	1.2	Равномерное распределение	3
	1.3	Пуассоновское распределение	4
2	Пра	актическая часть	5

1 Теоретическая часть

1.1 Условие лабораторной

Разработать программу для построения графиков функции распределения и функции плотности распределения для следующих распределений:

- равномерное распределение;
- пуассоновское распределение (вариант 1).

1.2 Равномерное распределение

Случайная величина X имеет pавномерное pacnpedenenue на отрезке [a, b], если ее плотность распределения f(x) равна:

$$p(x) = \begin{cases} \frac{1}{b-a}, & \text{если } a \le x \le b; \\ 0, & \text{иначе.} \end{cases}$$
 (1.1)

При этом функция распределения F(x) равна:

$$F(x) = \begin{cases} 0, & x < a; \\ \frac{x - a}{b - a}, & a \le x \le b; \\ 1, & x > b. \end{cases}$$
 (1.2)

Обозначение: $X \sim R[a, b]$.

1.3 Пуассоновское распределение

Дискретная случайная величина X, возможными значениями которой являются X=m, где (m=0,1,2...), а вероятности соответствующих значений определяются по формуле Пуассона

$$P(x=m) = \frac{\lambda^{(m)}e^{(-\lambda)}}{m!} \tag{1.3}$$

называется пуассоновской случайной величиной с параметром $\lambda.$

При этом функция распределения F(k) равна:

$$F(k;\lambda) = \frac{\Gamma(k+1,\lambda)}{k!} \tag{1.4}$$

Обозначение: $X \sim P(\lambda)$.

2 Практическая часть

На рисунках 2.1–2.2 представлены построенные графики по заданным параметрам для равномерного распределения.

Рисунок 2.1 – Равномерное распределение при а = -5 и b = 8

Рисунок 2.2 – Равномерное распределение при а = 3 и b = 5 $\,$

На рисунках 2.3–2.5 представлены построенные графики по заданным параметрам для пуассоновского распределения.

Рисунок 2.3 – Пуассоновское распределение при $\lambda=8$

Рисунок 2.4 – Пуассоновское распределение при $\lambda=70$

Рисунок 2.5 – Пуассоновское распределение при $\lambda=4$