LET'S EXPLORE NEW WORLDS!

Sesión 2 - Sensor de Temperatura y Presión Atmosférica BMP280

Elena Álvarez Castro

Intro sensor BMP

- Temperatura
- Presión atmosférica
- Estimación de la Altitud
- Propiedades
 - Rango de Temperatura: de -40º a 85ºC
 - Para presión atmosférica: de 300h Pa a 1110 hPa
 - Altímetro: de -500m a 9000 m sobre el nivel del mar
 - o Consumo: 2.7 uA
 - Conexión: i2C/SPI

BMP280 - Conexión. Protocolo i2C

El protocolo de comunicación i2C nos permite realizar la comunicación utilizando sólo dos hilos:

SCL: señal de reloj

SDA: señal de datos

Dos direcciones posibles 0x76 y 0x77

En la librería desarrollada por Adafruit, el bus I2C utiliza por defecto la dirección (0x77)

Tabla resumen conexiones de pines	
BMP280	Arduino UNO
Vcc	3V3
GND	GND
SCL	A5
SDA	A4
SDO	3V3 (dirección 0x77)

BMP280 - Conexión. Protocolo i2C

Tabla resumen conexiones de pines	
BMP280	Arduino UNO
Vcc	3V3
GND	GND
SCL	A5
SDA	A4
SDO	3V3 (dirección 0x77)

Programa Ejemplo

Instalar biblioteca

Programa Ejemplo

Pressure = 94912.46 Pa
Approx altitude = 548.12 m

Temperature = 21.61 *C Pressure = 94911.52 Pa Approx altitude = 548.20 m

Temperature = 21.59 *C
Pressure = 94911.47 Pa
Approx altitude = 548.20 m

Temperature = 21.58 *C
Pressure = 94911.92 Pa
Approx altitude = 548.16 m

Retos

- Ejercicio 1: Mostrar los datos separados por comas
- Ejercicio 2: Incluir número de paquete
- Ejercicio 3: Incluir nombre del equipo
- Ejercicio 4: Ejemplo sencillo de análisis de datos

Ejercicio 1

Programa Ejemplo

```
void loop() {
    Serial.print(F("Temperature = "));
    Serial.print(bmp.readTemperature());
    Serial.println(" *C");
    Serial.print(F("Pressure = "));
    Serial.print(bmp.readPressure());
    Serial.println(" Pa");
    Serial.print(F("Approx altitude = "));
    Serial.print(bmp.readAltitude(1013.25));
    Serial.println(" m");
    Serial.println();
    delay(2000);
```

```
Pressure = 94912.46 Pa
Approx altitude = 548.12 m
Temperature = 21.61 *C
Pressure = 94911.52 Pa
Approx altitude = 548.20 m
Temperature = 21.59 *C
Pressure = 94911.47 Pa
Approx altitude = 548.20 m
Temperature = 21.58 *C
Pressure = 94911.92 Pa
Approx altitude = 548.16 m
```

Ejercicio 1

Datos separados por comas para su posterior análisis Enviar una vez por segundo

```
temperatura, presión, altitud
temperatura, presión, altitud
temperatura, presión, altitud
temperatura, presión, altitud
```

Ejercicio 1

Datos separados por comas para su posterior análisis Enviar una vez por segundo

```
void loop() {
    Serial.print(bmp.readTemperature());
    Serial.print(", ");
    Serial.print(bmp.readPressure());
    Serial.print(", ");
    Serial.println(bmp.readAltitude(1013.25));
    delay(1000);
```

```
21.09, 94916.64, 547.75
21.09, 94916.60, 547.75
21.09, 94916.23, 547.78
21.09, 94916.39, 547.77
21.09, 94916.89, 547.73
21.08, 94916.85, 547.73
21.08, 94917.00, 547.72
21.08, 94917.00, 547.72
21.08, 94917.00, 547.72
21.08, 94917.17, 547.70
21.08, 94917.33, 547.69
21.08, 94917.33, 547.69
21.08, 94917.33, 547.69
21.08, 94917.50, 547.67
21.08, 94917.33, 547.69
```

Ejercicio 2 - Número de paquete

```
int paquete = 0;
                                                         TT.TI DIDIO.IO!
                                                   106, 21.14, 94915.43, 547.85
                                                   107, 21.14, 94915.23, 547.87
void setup() {
                                                   108, 21.14, 94915.19, 547.88
 Serial.begin (9600);
                                                   109, 21.14, 94915.35, 547.86
 while ( !Serial ) delay
 Serial.println(F("BMP28
                                                   110, 21.14, 94915.35, 547.86
void loop() {
                                                   111, 21.13, 94915.01, 547.89
                                                   112, 21.13, 94914.64, 547.92
   Serial.print(paquete);
   Serial.print(",");
                                                   113, 21.13, 94914.60, 547.93
   Serial.print(bmp.readTemperature());
                                                   114, 21.13, 94914.39, 547.94
   Serial.print(",");
                                                   115, 21.13, 94914.55, 547.93
   Serial.print(bmp.readPressure());
   Serial.print(",");
                                                   116, 21.12, 94914.19, 547.96
   Serial.print(bmp.readAltitude(1013.25));
                                                   117, 21.12, 94914.52, 547.93
   Serial.print(",");
                                                   118, 21.12, 94914.14, 547.97
   Serial.println("ESERO");
                                                   119, 21.12, 94914.47, 547.94
   paquete++;
                                                   120, 21.12, 94914.47, 547.94
   delay(1000);
```

Ejercicio 3 - ¿Son mis datos?

Incluir nombre del equipo en la la línea de datos

```
ETT EORDOT DIDILLOUT OTORIDA DODINO
                                              28, 20.98, 94911.43, 548.21, ESERO
void loop() {
                                              29, 20.98, 94911.75, 548.18, ESERO
                                              30, 20.98, 94911.55, 548.20, ESERO
   Serial.print(paquete);
                                              31, 20.98, 94911.72, 548.18, ESERO
   Serial.print(", ");
                                              32, 20.97, 94911.71, 548.18, ESERO
    Serial.print(bmp.readTemperature());
                                              33, 20.97, 94911.69, 548.18, ESERO
   Serial.print(", ");
                                              34, 20.97, 94911.82, 548.17, ESERO
    Serial.print(bmp.readPressure());
                                              35, 20.97, 94911.97, 548.16, ESERO
   Serial.print(", ");
                                              36, 20.97, 94912.30, 548.13, ESERO
    Serial.print(bmp.readAltitude(1013.25));
                                              37, 20.97, 94912.30, 548.13, ESERO
   Serial.print(", ");
                                              38, 20.97, 94912.25, 548.13, ESERO
    Serial.println("ESERO");
                                              39, 20.97, 94912.42, 548.12, ESERO
                                              40, 20.97, 94912.59, 548.10, ESERO
   paquete++;
                                              41, 20.97, 94912.42, 548.12, ESERO
                                              42, 20.97, 94912.25, 548.13, ESERO
   delay(1000);
```

Ejemplo de análisis

¿Qué datos tenemos?

- Temperatura
- Presión atmosférica
- Altitud

¿Qué podemos mostrar?

- Altitud frente al tiempo
- Temperatura frente al tiempo
- Presión frente a altitud

Conclusiones

- ¿La temperatura aumenta o disminuye con respecto a la altura?
- ¿La presión atmosférica aumenta o disminuye con la altura?

THANKS!

Alguna pregunta?

elenaalvarezcastro@gmail.com

