

Lecture 8.2 Structure from Motion

Thomas Opsahl

More-than-two-view geometry

Correspondences (matching)

- More views enables us to reveal and remove more mismatches than we can do in the two-view case
- More views also enables us to predict correspondences that can be tested with or without the use of descriptors

Scene geometry (structure)

 Effect of more views on determining the 3D structure of the scene?

Camera geometry (motion)

Effect of more views on determining camera poses?

Structure from Motion

Problem

Given m images of n fixed 3D points, estimate the m projection matrices P_j and the n points X_j from the $m \cdot n$ correspondences $u_{ij} \leftrightarrow u_{kj}$

Structure from Motion

Problem

Given m images of n fixed 3D points, estimate the m projection matrices P_j and the n points X_j from the $m \cdot n$ correspondences $u_{ij} \leftrightarrow u_{kj}$

- We can solve for structure and motion when 2mn > 11m + 3n 15
- In the general/uncalibrated case, cameras and points can only be recovered up to a projective ambiguity $(\widetilde{u}_{ij} = P_i Q^{-1} Q \widetilde{X}_i)$
- In the calibrated case, they can be recovered up to a similarity (scale)
 - Known as Euclidean/metric reconstruction

Structure from motion

Problem

Given m images of n fixed 3D points, estimate the m projection matrices P_j and the n points X_j from the $m \cdot n$ correspondences $u_{ij} \leftrightarrow u_{kj}$

- We can solve for structure and motion when 2mn > 11m + 3n 15
- In the general/uncalibrated case, cameras and points can only be recovered up to a projective ambiguity $(\widetilde{\boldsymbol{u}}_{ij} = P_i Q^{-1} Q \widetilde{\boldsymbol{X}}_j)$
- In the calibrated case, they can be recovered up to a similarity (scale)
 - Known as Euclidean/metric reconstruction

Projective reconstruction

Metric reconstruction

Images courtesy of Hartley & Zisserman http://www.robots.ox.ac.uk/~vgg/hzbook/

Structure from motion

Problem

Given m images of n fixed 3D points, estimate the m projection matrices P_j and the n points X_j from the $m \cdot n$ correspondences $u_{ij} \leftrightarrow u_{kj}$

- We can solve for structure and motion when 2mn > 11m + 3n 15
- In the general/uncalibrated case, cameras and points can only be recovered up to a projective ambiguity $(\widetilde{u}_{ij} = P_i Q^{-1} Q \widetilde{X}_i)$
- In the calibrated case, they can be recovered up to a similarity (scale)
 - Known as Euclidean/metric reconstruction

- This problem has been studied extensively and several different approaches have been suggested
- We will take a look at a couple of these
 - Sequential structure from motion
 - Bundle adjustment

Initialize motion from two images

-
$$F \to (P_1, P_2)$$

- $E \to (P_1, P_2) = (K_1[I \quad \mathbf{0}], K_2[{}^1R_2 \quad {}^1\mathbf{t}_2])$

• Initialize the 3D structure by triangulation

- Initialize motion from two images
 - $F \to (P_1, P_2)$ - $E \to (P_1, P_2) = (K_1[I \quad \mathbf{0}], K_2[{}^{1}R_2 \quad {}^{1}\mathbf{t}_2])$
- Initialize the 3D structure by triangulation
- For each additional view
 - Determine the projection matrix P_i , e.g. from 2D-3D correspondences $u_{ij} \leftrightarrow X_j$
 - Refine and extend the 3D structure by triangulation

- Initialize motion from two images
 - $F \to (P_1, P_2)$ - $E \to (P_1, P_2) = (K_1[I \quad \mathbf{0}], K_2[{}^1R_2 \quad {}^1\mathbf{t}_2])$
- Initialize the 3D structure by triangulation
- For each additional view
 - Determine the projection matrix P_i , e.g. from 2D-3D correspondences $u_{ij} \leftrightarrow X_j$
 - Refine and extend the 3D structure by triangulation

- Initialize motion from two images
 - $F \to (P_1, P_2)$ - $E \to (P_1, P_2) = (K_1[I \quad \mathbf{0}], K_2[{}^{1}R_2 \quad {}^{1}\mathbf{t}_2])$
- Initialize the 3D structure by triangulation
- For each additional view
 - Determine the projection matrix P_i , e.g. from 2D-3D correspondences $u_{ij} \leftrightarrow X_j$
 - Refine and extend the 3D structure by triangulation

- Initialize motion from two images
 - $F \to (P_1, P_2)$ - $E \to (P_1, P_2) = (K_1[I \quad \mathbf{0}], K_2[{}^{1}R_2 \quad {}^{1}\mathbf{t}_2])$
- Initialize the 3D structure by triangulation
- For each additional view
 - Determine the projection matrix P_i , e.g. from 2D-3D correspondences $u_{ij} \leftrightarrow X_j$
 - Refine and extend the 3D structure by triangulation

- Initialize motion from two images
 - $F \to (P_1, P_2)$ - $E \to (P_1, P_2) = (K_1[I \quad \mathbf{0}], K_2[{}^1R_2 \quad {}^1\mathbf{t}_2])$
- Initialize the 3D structure by triangulation
- For each additional view
 - Determine the projection matrix P_i , e.g. from 2D-3D correspondences $u_{ij} \leftrightarrow X_j$
 - Refine and extend the 3D structure by triangulation

- Initialize motion from two images
 - $F \to (P_1, P_2)$ - $E \to (P_1, P_2) = (K_1[I \quad \mathbf{0}], K_2[{}^1R_2 \quad {}^1\mathbf{t}_2])$
- Initialize the 3D structure by triangulation
- For each additional view
 - Determine the projection matrix P_i , e.g. from 2D-3D correspondences $u_{ij} \leftrightarrow X_j$
 - Refine and extend the 3D structure by triangulation

- Initialize motion from two images
 - $F \to (P_1, P_2)$ - $E \to (P_1, P_2) = (K_1[I \quad \mathbf{0}], K_2[{}^1R_2 \quad {}^1\mathbf{t}_2])$
- Initialize the 3D structure by triangulation
- For each additional view
 - Determine the projection matrix P_i , e.g. from 2D-3D correspondences $u_{ij} \leftrightarrow X_j$
 - Refine and extend the 3D structure by triangulation
- The resulting structure and motion can be refined in a process known as bundle adjustment

 Non-linear method that refines structure and motion by minimizing the sum of squared reprojection errors

$$\epsilon = \sum_{i=1}^{m} \sum_{j=1}^{n} d(\widetilde{\boldsymbol{u}}_{ij}, P_i \widetilde{\boldsymbol{X}}_j)^2$$

- Camera calibration can be solved as part of bundle adjustment by including intrinsic parameters and skew parameters in the cost function
- Need initial estimates for all parameters!
 - 3 per 3D point
 - ~12 per camera depending on parameterization
 - Some intrinsic parameters, like the focal length, can be initialized from image EXIF data

- There are several strategies that deals with the potentially extreme number of parameters
- Reduce the number of parameters by not including all the views and/or all the points
 - Perform bundle adjustment only on a subset and compute missing views/points based on the result
 - Divide views/points into several subsets which are bundle adjusted independently and merge the results
- Interleaved bundle adjustment
 - Alternate minimizing the reprojection error by varying only the cameras or only the points
 - This is viable since each point is estimated independently given fixed cameras, and similarly each camera is estimated independently from fixed points

- Sparse bundle adjustment
 - For each iteration, iterative minimization methods need to determine a vector Δ of changes to be made in the parameter vector
 - In Levenberg-Marquardt each such step is determined from the equation

$$(J^T J + \lambda I) \Delta = -J^T \epsilon$$

where J is the Jacobian matrix of the cost function and ϵ is the vector of errors

 For the bundle adjustment problem the Jacobian matrix has a sparse structure that can be exploited in computations

The sparse structure of the Jacobian matrix for a bundle adjustment problem with 3 cameras and 4 3D points

- Sparse bundle adjustment
 - For each iteration, iterative minimization methods need to determine a vector Δ of changes to be made in the parameter vector
 - In Levenberg-Marquardt each such step is determined from the equation

$$(J^T J + \lambda I) \Delta = -J^T \epsilon$$

where J is the Jacobian matrix of the cost function and ϵ is the vector of errors

- For the bundle adjustment problem the Jacobian matrix has a sparse structure that can be exploited in computations
- Combined with parallel processing the before mentioned strategies has made it possible to solve extremely large SfM problems

- Sparse bundle adjustment
 - For each iteration, iterative minimization methods need to determine a vector Δ of changes to be made in the parameter vector
 - In Levenberg-Marquardt each such step is determined from the equation

$$(J^T J + \lambda I) \Delta = -J^T \epsilon$$

where J is the Jacobian matrix of the cost function and ϵ is the vector of errors

- For the bundle adjustment problem the Jacobian matrix has a sparse structure that can be exploited in computations
- Combined with parallel processing the before mentioned strategies has made it possible to solve extremely large SfM problems

- S. Agarwal et al, Building Rome in a Day, 2011
 - Cluster of 62-computers
 - 150 000 unorganized images from Rome
 - ~37 000 image registered
 - Total processing time ~21 hours
 - SfM time ~7 hours
- J. Heinly et al, Reconstructing the World in Six Days, 2015
 - 1 dual processor PC with 5 GPU's (CUDA)
 - ~96 000 000 unordered images spanning the globe
 - ~1.5 000 000 images registered
 - Total processing time ~5 days
 - SfM time ~17 hours

- SBA Sparse Bundle Adjustment
 - A generic sparse bundle adjustment C/C++
 package based on the Levenberg-Marquardt
 algorithm
 - Code (C and Matlab mex) available at http://www.ics.forth.gr/~lourakis/sba/
 - CVSBA is an OpenCV wrapper for SBA www.uco.es/investiga/grupos/ava/node/39/
- Ceres
 - By Google (used in production since 2010)
 - A C++ library for modeling and solving large, complicated optimization problems like SfM
 - Homepage: <u>www.ceres-solver.org</u>
 - Code available on GitHub https://github.com/ceres-solver/ceres-solver/

- GTSAM Georgia Tech Smoothing and Mapping
 - A C++ library based on factor graphs that is well suited for SfM ++
 - Code (C++ library and Matlab toolbox) available at https://borg.cc.gatech.edu/borg/download
- g²o General Graph Optimization
 - Open source C++ framework for optimizing graphbased nonlinear error functions
 - Homepage: https://openslam.org/g2o.html
 - Code available on GitHub <u>https://github.com/RainerKuemmerle/g2o</u>

Bundler

- A structure from motion system for unordered image collections written in C and C++
- SfM based on a modified version SBA (default) or Ceres
- Homepage:http://www.cs.cornell.edu/~snavely/bundler/
- Code available on GitHub https://github.com/snavely/bundler_sfm

VisualSfM

- A GUI application for 3D reconstruction using structure from motion
- Output works with other tools that performs dense 3D reconstruction
- Homepage: http://ccwu.me/vsfm/

RealityCapture

- A state-of-the-art photogrammetry software that automatically extracts accurate 3D models from images, laser-scans and other input
- Homepage: https://www.capturingreality.com/

Holmenkollen 2-view SfM

Holmenkollen 2-view SfM

Holmenkollen 2-view SfM

Holmenkollen 3-view SfM

Holmenkollen 4-view SfM

Holmenkollen 110-view SfM

Holmenkollen 110-view SfM

Summary

- Structure from motion
 - Sequential SfM
 - Bundle adjustment
- Additional reading:
 - Szeliski: 7.3-7.5
- Optional reading:
 - Snavely N. Seitz S. M., Szeliski R., Modeling the World from Internet Photo Collections, 2007
 - S. Agarwal et al, Building Rome in a Day, 2011
 - J. Heinly et al, Reconstructing the World in Six Days, 2015

