Светашева Юлия ИУ5-64Б

17 вариант РК-1

Номер задачи - 3, номер набора данных -1.

Для студентов группы ИУ5-64Б, ИУ5Ц-84Б - для произвольной колонки данных построить график "Скрипичная диаграмма (violin plot)".

Задача №3.

Для заданного набора данных произведите масштабирование данных (для одного признака) и преобразование категориальных признаков в количественные двумя способами (label encoding, one hot encoding) для одного признака. Какие методы Вы использовали для решения задачи и почему?

Используемый набор данных: FIFA 19 complete player dataset | Kaggle

Подгружаем необходимые библиотеки и датасет:

Выводим информацию о столбцах датасета:

Jupyter Svetasheva_Yuliya_IU5-64B_RK1_Variant_17 Last Edit Cell View Insert Kernel Widgets + % අත | 🖪 ► Run ■ C ▶ | Code In [6]: FIFA_dataset.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 18207 entries, 0 to 18206 Data columns (total 89 columns): Column Non-Null Count Dtype ----------18207 non-null int64 0 18207 non-null int64 1 2 Name 18207 non-null object 18207 non-null int64 3 Age 18207 non-null object 5 Nationality 18207 non-null object

18207 non-null object

18207 non-null int64

18207 non-null int64 17966 non-null object

18207 non-null object

18207 non-null object

18207 non-null object 18207 non-null int64

18159 non-null object

18159 non-null float64

18159 non-null float64 18159 non-null object

18159 non-null object

18159 non-null object

18147 non-null object

18147 non-null float64

16654 non-null object

1264 non-null object

17918 non-null object 18159 non-null object

18159 non-null object

16122 non-null object

16122 non-null object 16122 non-null object

16122 non-null object

16122 non-null object

16122 non-null object 16122 non-null object

16122 non-null object

16122 non-null object

16122 non-null object

16122 non-null object

16122 non-null object

Flag

Club

12 Wage

13 Special

16 Weak Foot

18 Work Rate 19 Body Type

20 Real Face

21 Position

23 Joined

26 Height 27 Weight

28 LS

29 ST

30 RS 31 LW

32 LF

33 CF

34 RF 35 RW

36 LAM

37 CAM

38 RAM

LM

39

22 Jersey Number

24 Loaned From

25 Contract Valid Until

17 Skill Moves

10 Club Logo 11 Value

Overall

Potential

14 Preferred Foot

15 International Reputation 18159 non-null float64

7

Jupyter Svetasheva_Yuliya_IU5-64B_RK1_Variant_17 Last Checkpt

ile	Edit	Vie	w In	sert	Cell	Ker	nel	Wi	dget	ts Help		
+	>€	4	I	•	► Run		C	>>	Cod	le	~	
		39	9 LM					16:	122	non-null	ol	bject
		40	D LCM							non-null		_
		4:	1 CM					16:	122	non-null	. oł	bject
		42	2 RCM					16:	122	non-null	. oł	bject
		4	3 RM					16:	122	non-null	ol	bject
		44	4 LWB					16:	122	non-null	. oł	bject
		45	5 LDM					16:	122	non-null	. oł	bject
		46	5 CDM					16:	122	non-null	. oł	bject
		47	7 RDM					16:	122	non-null	. oł	bject
		48	B RWB					16:	122	non-null	. oł	bject
		49	9 LB					16:	122	non-null	. oł	bject
		50	0 LCB					16:	122	non-null	. oł	bject
		5:	1 CB					16:	122	non-null	. oł	bject
		5	2 RCB					16:	122	non-null	. oł	bject
		5	3 RB					16:	122	non-null	ol	bject
		54	4 Cros	sing				18:	159	non-null	f.	loat64
		55	5 Fini	shing	3			18:	159	non-null	f.	loat64
		5(6 Head	ingAc	curacy			18:	159	non-null	. f.	loat64
		57		tPass	ing			18:	159	non-null	f.	loat64
		58	8 Voll	eys						non-null		
		59	9 Drib	bling	3			18:	159	non-null	f.	loat64
		60						18:	159	non-null	f.	loat64
		6:		curac	•					non-null		
		6	_	Passi	_					non-null		
		6:								non-null		
		64								non-null		
		6		_	ed					non-null		
		60		-						non-null		
		67			;					non-null		
		68								non-null		
		69			•					non-null		
		70		_						non-null		
		7:								non-null		loat64
			2 Stre							non-null		
		7:		Shots						non-null		
			4 Aggr							non-null		
		79			ions					non-null		
			6 Posi 7 Visi		ing					non-null		
										non-null		
		78								non-null		
			9 Comp		•					non-null		
		80		_	Tackla							
		8:			Tackle					non-null		
		82		_	ckle					non-null		
		83		_								
		84		ndlin ckina	_					non-null		
		89		cking								
		8(oning					non-null		
			7 GKRe 3 Rele							non-null		
			voes: f		.iause			10		non-null	. oi	DJect

Кодируем категориальные признаки

Разделяем выборки

```
In [8]: #разделение выборки
from sklearn.model_selection import train_test_split
y = FIFA_dataset_new['Age']
X = FIFA_dataset_new.drop('Age', axis=1)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=3)
x_train
```

Out[8]:

	ID	Overall	Potential	Name_cat	Photo_cat	Nationality_cat	Flag_cat
6291	201138	69	72	17019	4614	55	68
12013	181491	64	64	12081	1814	8	78
9753	241115	66	78	13508	15287	158	131
12705	239523	63	71	11429	14627	59	85
5004	203588	70	70	13466	5134	37	151
6400	195020	69	70	3378	3776	46	40
15288	237818	60	71	12027	14023	6	122
11513	240511	64	77	6537	15041	13	137
1688	214076	75	75	12460	7488	158	131
5994	192611	69	69	15319	3389	97	27

12744 rows × 7 columns

Масштабирование данных

Обучение KNN с производным k

Кросс-валидация

```
Jupyter Svetasheva_Yuliya_IU5-64B_RK1_Variant_17 Last Checkpoint: 8 минут назад (autosaved)
File
       Edit
              View
                      Insert
                              Cell
                                     Kernel
                                              Widgets
P | + | % | 4 | T | ↑ | ↓ | ▶ Run | ■ | C | ▶ | Code
                                                                 2004
    In [12]: #Кросс валидация
              metrics = ['r2', 'neg_mean_squared_error', 'neg_mean_absolute_error']
              cv_values = [5, 10]
              for cv in cv_values:
                  print(f'Peзультаты кросс-валидации при cv={cv}\n')
                  for metric in metrics:
                      params = {'n_neighbors': range(1, 30)}
                      knn_cv = GridSearchCV(KNeighborsRegressor(), params, cv=cv, scoring=metric, n_jobs=-1)
                      knn_cv.fit(x_train, y_train)
                      print_cv_result(knn_cv, x_test, y_test)
              Результаты кросс-валидации при cv=5
              Оптимизация метрики r2: 0.8095840296479139
              Лучший параметр: {'n_neighbors': 6}
              Метрики на тестовом наборе
              R^2: 0.8144504474035854
              MSE: 4.02239306852157
              MAE: 1.4703764720239185
              Оптимизация метрики neg mean squared error: -4.160861419338133
              Лучший параметр: {'n_neighbors': 6}
              Метрики на тестовом наборе
              R^2: 0.8144504474035854
              MSE: 4.02239306852157
              MAE: 1.4703764720239185
              Оптимизация метрики neg_mean_absolute_error: -1.5084448113675264
              Лучший параметр: {'n_neighbors': 6}
              Метрики на тестовом наборе
              R^2: 0.8144504474035854
              MSE: 4.02239306852157
              MAE: 1.4703764720239185
              Результаты кросс-валидации при cv=10
              Оптимизация метрики r2: 0.8125512978309442
              Лучший параметр: {'n_neighbors': 8}
              Метрики на тестовом наборе
              R^2: 0.8162869124407597
              MSE: 3.9825816858868754
              MAE: 1.460781621819513
              Оптимизация метрики neg_mean_squared_error: -4.092533715409241
              Лучший параметр: {'n_neighbors': 8}
              Метрики на тестовом наборе
              R^2: 0.8162869124407597
              MSE: 3.9825816858868754
              MAE: 1.460781621819513
              Оптимизация метрики neg_mean_absolute_error: -1.4938646689445008
              Лучший параметр: {'n_neighbors': 8}
              Метрики на тестовом наборе
              R^2: 0.8162869124407597
              MSE: 3.9825816858868754
              MAE: 1,460781621819513
```

Скрипичная диаграмма по столбцу «Age»

```
In [18]: sns.violinplot(x=FIFA_dataset_new['Age'])
```

Out[18]: <AxesSubplot:xlabel='Age'>

