

Internal Wodels

Gerald E. Loeb, M.D.

Professor of Biomedical Engineering
University of Southern California
Los Angeles, CA 90089 USA

Spinal Circuitry as Optimal Regulator

Spinal Circuitry as Optimizable Regulator

Loeb, Levine and He, Understanding sensorimotor feedback through optimal control, Cold Spring Harbor Symp. Quant. Biol. 55:791-803, 1990

Loeb, Brown and Cheng, A hierarchical foundation for models of sensorimotor control, Exp. Brain Res. 126: 1-18, 1999.

Internal Models for Computing Optimal Control

Pseudo-Internal Models

State & Efference Copy allows negative latency adjustment, giving the appearance of a forward model.

Small Subset of Spinal Interneuronal Circuitry Is this really modeled in the brain?

Modeled Pathways

- 1. Propriospinal
- 2. Monosynaptic la
- 3. Reciprocal la
- 4. Renshaw
- 5. Ib inhibitory

...or does the brain learn by trial-and-error to send commands that result in useful behaviors?

Actual performance Desired performance T-1 ΔC^* Adaptive Controller Extensor Carpi Ulnaris Muscle Extensor Carpi Radialis Muscle

Raphael, G., Tsianos, G.A. and Loeb, G.E. Spinal-Like Regulator Facilitates Control of a Two-Degree-of-Freedom Wrist J. Neuroscience, 30:9431-9444 (2010)

SET the gains of the SLR to resist an impulsive perturbation at the endpoint.

BioSearch™ Corticospinal Learning Algorithm

Hypothesis: Landscape has so many "good enough" local minima that a Random Walk is a viable learning process

BioSearch Learning Curves

perturbing impulse at randomized times

100

Cost (log scale)

Motor Learning ≠ Task Recognition

Take your pick...

System Design	Model-Based	Model-Free
Goal	Globally optimal	Good enough
Real-time control	Computational	Look-up tables
Redundancy	Avoided	Embraced
Synergies	Hardwired	Learned
Learning curve	Steady improvement	Random walk
Storage format	Models of components	Repertoire of programs

Engineers build models to understand complex systems,

e.g. posters at this meeting by Li, Loeb & Levine; Tsianos, Goodner & Loeb.

The brain doesn't build models and it doesn't understand itself.

A Brief History of Theoretical, Motor Neuroscience

Graveyard of the Dismechanically Damned