Matrices

Dans ce chapitre $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$; n et p sont des entiers non nuls.

I. Définition et structure d'espace vectoriel

Définition. On appelle matrice à n lignes et p colonnes à coefficient dans \mathbb{K} , tout élément de $\mathbb{K}[1,n] \times [1,p]$.

On la représente sous forme d'un tableau à n lignes et p colonnes.

L'élément à l'intersection de la ième ligne et de la j ème colonne, c'est-à-dire l'image de (i,j) est noté $A_{i,j}$ ou $a_{i,j}$, et appelé coefficient d'indice (i,j).

On utilise une notation indicée plutôt qu'une notation fonctionnelle. Si A est une matrice à n lignes et p colonnes, on écrit :

$$A = (a_{i,j})_{(i,j) \in \llbracket 1,n \rrbracket \times \llbracket 1,p \rrbracket} \text{ ou } A = (a_{i,j})_{1 \le i \le n; 1 \le j \le p} \text{ ou } A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,j} & \dots & a_{1,p} \\ a_{2,1} & a_{2,2} & \dots & a_{2,j} & \dots & a_{2,p} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i,1} & a_{i,2} & \dots & a_{i,j} & \dots & a_{i,p} \\ \vdots & \vdots & & & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,j} & \dots & a_{n,p} \end{pmatrix}$$

L'ensemble des matrices à n lignes et p colonnes est noté $\mathcal{M}_{n,p}(\mathbb{K})$.

Définition. Si p = 1, alors on parle de matrice colonne.

 $Si \ n = 1$, alors on parle de matrice ligne.

Si n=p, alors on parle de matrice carrée. L'ensemble $\mathcal{M}_{n,p}(\mathbb{K})$ est alors noté $\mathcal{M}_n(\mathbb{K})$.

Définition. Soit $(n,p) \in (\mathbb{N}^*)^2$. Pour tout $(i,j) \in [\![1,n]\!]^2$, on note $E_{i,j}$ la matrice de taille $n \times p$ dont tous les termes sont nuls sauf celui à l'intersection de la i-ème ligne et de la j-ème colonne qui vaut 1. Ainsi, pour tout $(k,\ell) \in [\![1,n]\!]^2$, on a $(E_{i,j})_{k,\ell} = \delta_{i,k}\delta_{j,\ell}$.

Proposition. $\mathcal{M}_{n,p}(\mathbb{K}) = \mathcal{F}(\llbracket 1, n \rrbracket \times \llbracket 1, p \rrbracket, \mathbb{K}) \text{ est } un \mathbb{K}\text{-ev.}$

Proposition. $\mathcal{M}_{n,p}(\mathbb{K})$ est un \mathbb{K} -ev de dimension $n \times p$. La famille $(E_{i,j})_{1 \leq i \leq n, 1 \leq j \leq p}$ est la base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$.

Définition. Une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est dite diagonale si

$$\forall (i,j) \in [1,n]^2, i \neq j \Rightarrow a_{i,j} = 0.$$

L'ensemble des matrices diagonales de taille n est noté $\mathcal{D}_n(\mathbb{K})$

Proposition. $\mathcal{D}_n(\mathbb{K})$ est un \mathbb{K} -ev de dimension n. La famille $(E_{i,i})_{1 \leq i \leq n}$ en est une base.

Définition. Une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est dite triangulaire supérieure si

$$\forall (i,j) \in [1,n]^2, i > j \Rightarrow a_{i,j} = 0.$$

L'ensemble des matrices triangulaires supérieures de taille n sera noté $\mathcal{T}_n^+(\mathbb{K})$

Définition. Une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est dite triangulaire inférieure si

$$\forall (i,j) \in [1,n]^2, i < j \Rightarrow a_{i,j} = 0.$$

L'ensemble des matrices triangulaires supérieures de taille n sera noté $\mathcal{T}_n^-(\mathbb{K})$

Définition. Une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est dite triangulaire supérieure stricte si

$$\forall (i,j) \in [1,n]^2, i \ge j \Rightarrow a_{i,j} = 0.$$

L'ensemble des matrices triangulaires supérieures de taille n sera noté $\mathcal{T}_n^{++}(\mathbb{K})$

Définition. Une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est dite triangulaire inférieure stricte si

$$\forall (i,j) \in [1,n]^2, i \leq j \Rightarrow a_{i,j} = 0.$$

L'ensemble des matrices triangulaires supérieures de taille n sera noté $\mathcal{T}_n^{--}(\mathbb{K})$

Proposition.

 $\mathcal{T}_n^+(\mathbb{K})$ est un \mathbb{K} -ev de dimension n(n+1)/2. La famille $(E_{i,j})_{1\leq j\leq i\leq n}$ en est une base. $\mathcal{T}_n^-(\mathbb{K})$ est un \mathbb{K} -ev de dimension n(n+1)/2. La famille $(E_{i,j})_{1\leq i\leq j\leq n}$ en est une base. $\mathcal{T}_n^{++}(\mathbb{K})$ est un \mathbb{K} -ev de dimension n(n-1)/2. La famille $(E_{i,j})_{1\leq j< i\leq n}$ en est une base. $\mathcal{T}_n^{--}(\mathbb{K})$ est un \mathbb{K} -ev de dimension n(n-1)/2. La famille $(E_{i,j})_{1\leq i< j\leq n}$ en est une base.

Définition. Une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est dite symétrique si

$$\forall (i,j) \in [1,n]^2, \ a_{i,j} = a_{j,i}.$$

L'ensemble des matrices symétriques de taille n sera noté $S_n(\mathbb{K})$

Théorème. $S_n(\mathbb{K})$ est un \mathbb{K} -ev de dimension n(n+1)/2. La famille $(E_{i,j} + E_{j,i})_{1 < j < i < n}$ en est une base.

Définition. Une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est dite antisymétrique si

$$\forall (i,j) \in [1,n]^2, \ a_{i,j} = -a_{j,i}.$$

L'ensemble des matrices antisymétriques de taille n sera noté $\mathcal{A}_n(\mathbb{K})$

Théorème. $A_n(\mathbb{K})$ est un \mathbb{K} -ev de dimension n(n-1)/2. La famille $(E_{i,j}-E_{j,i})_{1 \leq j \leq i \leq n}$ en est une base.

Proposition. $\mathcal{A}_n(\mathbb{K})$ et $\mathcal{S}_n(\mathbb{K})$ sont supplémentaires dans $\mathcal{M}_n(\mathbb{K})$.

Définition. On appelle transposé d'une matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$, la matrice $^tA \in \mathcal{M}_{p,n}(\mathbb{K})$ telle que $\forall (i,j) \in [\![1,p]\!] \times [\![1,n]\!]$, $(^tA)_{i,j} = a_{j,i}$.

Proposition. Pour tout $A \in \mathcal{M}_{n,p}(\mathbb{K})$, t(tA) = A.

Proposition. Pour tout $A \in \mathcal{M}_n(\mathbb{K})$,

$$A \in \mathcal{T}_n^+(\mathbb{K}) \Leftrightarrow {}^t A \in \mathcal{T}_n^-(\mathbb{K}).$$

$$A \in \mathcal{S}_n(\mathbb{K}) \Leftrightarrow {}^t A = A.$$

$$A \in \mathcal{A}_n(\mathbb{K}) \Leftrightarrow {}^t A = -A.$$

Proposition. L'application $\mathcal{M}_{n,p}(\mathbb{K}) \to \mathcal{M}_{p,n}(\mathbb{K})$, $A \mapsto {}^t A$ est un isomorphisme.

Corollaire. L'application $\mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K})$, $A \mapsto {}^t A$ est une symétrie vectorielle. On retrouve $\mathcal{M}_n(\mathbb{K}) = \mathcal{S}_n(\mathbb{K}) \oplus \mathcal{A}_n(\mathbb{K})$.

II. Produit matriciel

Définition. Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,q}(\mathbb{K})$. On définit la matrice $AB \in \mathcal{M}_{n,q}(\mathbb{K})$ par :

$$\forall (i,j) \in [\![1,p]\!] \times [\![1,q]\!], \quad (AB)_{i,j} = \sum_{k=1}^p a_{i,k} b_{k,j}$$

Proposition. Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,q}(\mathbb{K})$. On a ${}^t(AB) = {}^tB^{\,t}A$

Proposition. $\forall (i,j) \in [1,n]^2$, $E_{i,j}E_{k,\ell} = \delta_{j,k}E_{i,\ell}$

Proposition. $(\mathcal{M}_n(\mathbb{K}), +, \times)$ est un anneau (non commutatif si $n \geq 2$ et non intègre).

Proposition. Formule du binôme de Newton

Soient $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$ telles que AB = BA alors pour tout entier r,

$$(A+B)^r = \sum_{k=0}^r \binom{r}{k} A^k B^{r-k}$$

Proposition. Formule de Bernoulli

Soient $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$ telles que AB = BA alors pour tout entier r,

$$A^{r} - B^{r} = (A - B) \left(\sum_{k=0}^{r-1} A^{k} B^{r-1-k} \right)$$

Proposition. $\mathcal{D}_n(\mathbb{K}), \mathcal{T}_n^+(\mathbb{K}), \mathcal{T}_n^-(\mathbb{K}), \mathcal{T}_n^{++}(\mathbb{K})$ et $\mathcal{T}_n^{--}(\mathbb{K})$ sont stables par produit.

Corollaire. $\mathcal{D}_n(\mathbb{K})$, $\mathcal{T}_n^+(\mathbb{K})$ et $\mathcal{T}_n^-(\mathbb{K})$ sont des sous-anneaux de $\mathcal{M}_n(\mathbb{K})$.

Définition. L'ensemble des matrices inversibles de $(\mathcal{M}_n(\mathbb{K}), +, \times)$ est noté $\mathcal{GL}_n(\mathbb{K})$.

Proposition. $(\mathcal{GL}_n(\mathbb{K}), \times)$ est un groupe.

Corollaire. Soit $(A, B) \in \mathcal{GL}_n(\mathbb{K})^2$. On a $(AB)^{-1} = B^{-1}A^{-1}$

Proposition. Si $A \in \mathcal{GL}_n(\mathbb{K})$, alors ${}^t(A^{-1}) = ({}^tA)^{-1}$

Proposition.

L'opération élémentaire $C_i \leftarrow \lambda C_i$ revient à multiplier à droite par $I_n + (\lambda - 1)E_{i,i}$. L'opération élémentaire $C_i \leftrightarrow C_j$ revient à multiplier à droite par $I_n - E_{i,i} - E_{j,j} + E_{i,j} + E_{j,i}$. L'opération élémentaire $C_i \leftarrow C_i - \lambda C_j$ revient à multiplier à droite par $I_n - \lambda E_{j,i}$.

Proposition.

L'opération élémentaire $L_i \leftarrow \lambda L_i$ revient à multiplier à gauche par $I_n + (\lambda - 1)E_{i,i}$. L'opération élémentaire $L_i \leftrightarrow L_j$ revient à multiplier à droite par $I_n - E_{i,i} - E_{j,j} + E_{i,j} + E_{j,i}$. L'opération élémentaire $L_i \leftarrow L_i - \lambda L_j$ revient à multiplier à droite par $I_n - \lambda E_{i,j}$.

Savoir-faire: Utilisation pour trouver l'inverse d'une matrice.

III. Matrices et applications linéaires

1. Représentation matricielle.

Définition. Soit $(v_1, ..., v_p) \in E^p$ et $\mathcal{B} = (e_1, ..., e_n)$ une base de E. On définit la matrice de la famille de vecteurs $(v_1, ..., v_p)$ dans une base \mathcal{B} par

$$Mat_{\mathcal{B}}(v_1,...,v_p) = (a_{i,j})_{1 \le i \le n, 1 \le j \le n} \in M_{n,p}(\mathbb{K}) \quad où \quad \forall j \in [1,p], \ v_j = \sum_{i=1}^n a_{i,j} e_i$$

Proposition. Soit E de dimension finie n de base \mathcal{B}_E . L'application $E \to \mathcal{M}_{n,1}(K), x \mapsto Mat_{\mathcal{B}_E}x$ est un isomorphisme.

Définition. Soit $f \in \mathcal{L}(E, F)$, $\mathcal{B}_E = (e_1, ..., e_p)$ une base de E et $\mathcal{B}_F = (f_1, ..., f_n)$ une base de F On définit la matrice de f dans les bases \mathcal{B}_E , \mathcal{B}_F par

$$Mat_{\mathcal{B}_{E},\mathcal{B}_{F}}f = (a_{i,j})_{1 \leq i \leq n, 1 \leq j \leq n} \in M_{n,p}(\mathbb{K}) \quad où \quad \forall j \in [1,p], \ f(e_{j}) = \sum_{i=1}^{n} a_{i,j}f_{i}$$

Ainsi, pour tout $j \in [1, p]$, la j-ème colonne de $Mat_{\mathcal{B}_E, \mathcal{B}_F} f$ est $Mat_{\mathcal{B}_F} f(e_j)$.

Proposition. Soit E et F de bases respectives \mathcal{B}_E et \mathcal{B}_F . L'application $\mathcal{L}(E,F) \to \mathcal{M}_{n,p}(K), f \mapsto Mat_{\mathcal{B}_E,\mathcal{B}_E}f$ est un isomorphisme.

Définition. Soit $f \in \mathcal{L}(E)$, $\mathcal{B} = (e_1, ..., e_n)$ une base de E. On définit la matrice de l'endomorphisme f dans la base \mathcal{B} par

$$Mat_{\mathcal{B}}f = (a_{i,j})_{1 \le i \le n, 1 \le j \le n} \in M_{n,p}(\mathbb{K}) \quad o\dot{u} \quad \forall j \in [1, p], \ f(e_j) = \sum_{i=1}^{n} a_{i,j}e_i$$

2. Propriétés

Proposition. Coordonnées de l'image d'un vecteur

Soit $f \in \mathcal{L}(E, F)$, $\mathcal{B}_E = (e_1, ..., e_p)$ une base de E et $\mathcal{B}_F = (f_1, ..., f_n)$ une base de F. Pour tout $x \in E$, $Mat_{\mathcal{B}_E, \mathcal{B}_F} f \times Mat_{\mathcal{B}_E} x = Mat_{\mathcal{B}_F} (f(x))$

Proposition. Matrice d'une composée

Soit $f \in \mathcal{L}(E,F)$, $g \in \mathcal{L}(F,G)$, \mathcal{B}_E une base de E, \mathcal{B}_F une base de F et \mathcal{B}_G une base de G. On a:

$$Mat_{\mathcal{B}_E,\mathcal{B}_G}(g \circ f) = Mat_{\mathcal{B}_F,\mathcal{B}_G}g \times Mat_{\mathcal{B}_E,\mathcal{B}_F}f$$

Proposition. Soit $f \in \mathcal{L}(E, F)$. L'application linéaire f est inversible si, et seulement si, elle est représentée par une matrice inversible.

Dans ce cas, pour toute base \mathcal{B}_E de E et toute base \mathcal{B}_F de F, on a

$$(Mat_{\mathcal{B}_E,\mathcal{B}_F}f)^{-1} = Mat_{\mathcal{B}_F,\mathcal{B}_E}(f^{-1}).$$

Proposition. Soit $f \in \mathcal{L}(E)$, $\mathcal{B} = (e_1, ..., e_n)$ une base de E.

La matrice de f dans la base \mathcal{B} , $Mat_{\mathcal{B}}f$, est diagonale si, et seulement si, pour tout $i \in [1, n]$ f laisse stable $Vect(e_i)$ si, et seulement si, pour tout $i \in [1, n]$, il existe $\lambda_i \in \mathbb{K}$ tel que $f(e_i) = \lambda_i e_i$.

Proposition. Soit $f \in \mathcal{L}(E)$, $\mathcal{B} = (e_1, ..., e_n)$ une base de E.

La matrice de f dans la base \mathcal{B} , $Mat_{\mathcal{B}}f$, est triangulaire supérieure si, et seulement si, si, et seulement si, pour tout $i \in [1, n]$ f laisse stable $Vect(e_1, ..., e_i)$

Proposition. Une matrice diagonale est inversible si, et seulement si, ses termes diagonaux sont tous non nuls. De plus, si D est une matrice diagonale inversible, alors D^{-1} est diagonale et, pour tout $i \in [1, n]$, $(D^{-1})_{i,i} = \frac{1}{D_{i,i}}$.

Proposition. Une matrice triangulaire est inversible si, et seulement si, ses termes diagonaux sont tous non nuls.

De plus, si T est une matrice triangulaire supérieure (resp. inférieure) inversible, alors T^{-1} est triangulaire supérieure (resp. inférieure) et, pour tout $i \in [1, n]$, $(T^{-1})_{i,i} = \frac{1}{T_{i,i}}$.

3. Application linéaire canoniquement associée à une matrice

Définition. Soit $A \in M_{n,p}(\mathbb{K})$, on appelle application linéaire canoniquement associée à A l'unique $f_A \in \mathcal{L}(M_{p,1}(\mathbb{K}), M_{n,1}(\mathbb{K}))$ tel que $Mat_{\mathcal{B}_{c,p},\mathcal{B}_{c,n}}f_A = A$ où $\mathcal{B}_{c,p}$ est la base canonique $de\ M_{p,1}(\mathbb{K})\ et\ \mathcal{B}_{c,n}\ celle\ de\ M_{n,1}(\mathbb{K}).$

On a
$$f_A: M_{p,1}(\mathbb{K}) \to M_{n,1}(\mathbb{K}), X \mapsto AX$$

Remarque: On identifie souvent $M_{n,1}(\mathbb{K})$ et \mathbb{K}^p .

Définition. On appelle noyau de A, le noyau de l'application linéaire canoniquement associée à A. Ainsi

$$Ker A = \{ X \in M_{p,1}(\mathbb{K}) : AX = 0 \}$$

Définition. On appelle image de A, l'image de l'application linéaire canoniquement associée à A. Ainsi

$$ImA = \{AX, X \in M_{p,1}(\mathbb{K})\} \subset M_{n,1}(\mathbb{K})$$

On appelle rang de A la dimension de son image.

Proposition. L'image de A est engendrée par ses matrices colonnes.

Proposition. Soit $A \in M_{n,p}(\mathbb{K})$.

$$Si \ B \in Gl_p(\mathbb{K}), \ alors \ rg(AB) = rg(A);$$

Si
$$C \in Gl_n(\mathbb{K})$$
, alors $rg(CA) = rg(A)$;

Corollaire. Le rang d'une matrice est invariant par les opérations élémentaires suivantes :

 $\bullet C_i \leftrightarrow C_j$

• $L_i \leftrightarrow L_j$

• $C_i \leftarrow \lambda C_i \ avec \ \lambda \neq 0$

• $L_i \leftarrow \lambda L_i \ avec \ \lambda \neq 0$

• $C_i \leftarrow C_i - \lambda C_j \ avec \ j \neq i$

• $L_i \leftarrow L_i - \lambda L_i \ avec \ j \neq i$

Savoir-faire : calcul effectif du rang d'une matrice

Proposition. Soit $A \in M_{n,p}(\mathbb{K})$ et f une application linéaire représentée par A, alors :

- f est surjective si, et seulement si, rgA = n;
- f est injective si, et seulement si, rgA = p;
- f est bijective si, et seulement si, rgA = n = p.

Corollaire. Une matrice carrée de taille n est inversible si, et seulement si, son noyau est réduit au vecteur nul si, et seulement si, ses colonnes engendrent $M_{n,1}(\mathbb{K})$ si, et seulement si, son rang vaut n.

Proposition. Soit A et B deux matrices carrées de taille n telles que $AB = I_n$, alors les matrices A et B sont inversibles et $B = A^{-1}$.

4. Changement de bases

Définition. Soient \mathcal{B} et $\mathcal{B}' = (e'_1, ..., e'_n)$ deux bases de E.

On appelle matrice de passage de \mathcal{B} à \mathcal{B}' la matrice

$$P_{\mathcal{B},\mathcal{B}'} = Mat_{\mathcal{B}}(e'_1,...,e'_n) = Mat_{\mathcal{B}',\mathcal{B}}Id_E$$

Il s'agit donc de la matrice dont les colonnes sont les coordonnées des vecteurs de la base \mathcal{B}' dans la base \mathcal{B} .

Proposition. Soient \mathcal{B} et $\mathcal{B}' = (e'_1, ..., e'_n)$ deux bases de E. Alors $P_{\mathcal{B}}^{\mathcal{B}'} \in GL_n(\mathbb{K})$ et $\left(P_{\mathcal{B}}^{\mathcal{B}'}\right)^{-1} = P_{\mathcal{B}'}^{\mathcal{B}}$.

Alors
$$P_{\mathcal{B}}^{\mathcal{B}'} \in GL_n(\mathbb{K})$$
 et $\left(P_{\mathcal{B}}^{\mathcal{B}'}\right)^{-1} = P_{\mathcal{B}'}^{\mathcal{B}}$.

Proposition. Soient \mathcal{B} et $\mathcal{B}' = (e'_1, ..., e'_n)$ deux bases de E et $x \in E$. $Si \ X = Mat_{\mathcal{B}}x \ et \ X' = Mat_{\mathcal{B}'}x, \ alors \ X = P_{\mathcal{B}}^{\mathcal{B}'}X'$

Théorème. Théorème de changement de bases.

Soient $f \in \mathcal{L}(E,F)$, \mathcal{B}_E et \mathcal{B}'_E deux bases de E, \mathcal{B}_F et \mathcal{B}'_F deux bases de F. Alors

$$Mat_{\mathcal{B}'_{E},\mathcal{B}'_{F}}f = \left(P_{\mathcal{B}_{F},\mathcal{B}'_{F}}\right)^{-1} \times Mat_{\mathcal{B}_{E},\mathcal{B}_{F}}f \times P_{\mathcal{B}_{E},\mathcal{B}'_{E}}$$

formule que l'on retiendra sous la forme $M' = Q^{-1}MP$ où

$$M' = Mat_{\mathcal{B}'_E, \mathcal{B}'_F} f, M = Mat_{\mathcal{B}_E, \mathcal{B}_F} f, Q = P_{\mathcal{B}_F, \mathcal{B}'_F} \text{ et } P = P_{\mathcal{B}_E, \mathcal{B}'_E}.$$

Proposition. Théorème de changement de bases pour les endomorphismes. Soient $f \in \mathcal{L}(E)$, \mathcal{B} et \mathcal{B}' deux bases de E, Alors

$$Mat_{\mathcal{B}'}f = (P_{\mathcal{B},\mathcal{B}'})^{-1} \times Mat_{\mathcal{B}}f \times P_{\mathcal{B},\mathcal{B}'};$$

formule que l'on retiendra sous la forme $M' = P^{-1}MP$ où

$$M' = Mat_{\mathcal{B}'}f, M = Mat_{\mathcal{B}}f \text{ et } P = P_{\mathcal{B},\mathcal{B}'}.$$

IV. Matrices équivalentes. Matrices semblables

1. Matrices équivalentes

Définition. Soit $(A, B) \in M_{n,p}(\mathbb{K})^2$. On dit que la matrice B est équivalente à la matrice A si, et seulement s'il existe $P \in GL_p$ et $Q \in GL_n$ telles que $B = Q^{-1}AP$.

Proposition. La relation \mathcal{R} définie sur $M_{n,p}(\mathbb{K})$ par $B\mathcal{R}A$ si, et seulement si, B est équivalente à la matrice A est une relation d'équivalence.

Proposition. Deux matrices sont équivalentes si, et seulement si, elles représentent une même application linéaire.

Théorème. Soit $M \in M_{n,p}(\mathbb{K})$.

La matrice M est de rang r si, et seulement si, elle est équivalente à $J_r = \begin{pmatrix} I_r & 0_{r,p-r} \\ 0_{n-r,r} & 0_{n-r,p-r} \end{pmatrix}$

Proposition. Deux matrices de même taille sont équivalentes si, et seulement si, elles sont de même rang.

Proposition. Soit $A \in M_{n,p}(\mathbb{K})$. On a $rg({}^tA) = rgA$

Corollaire. Le rang d'une matrice est égal à la dimension de l'espace vectoriel engendré par les lignes de la matrice.

2. Matrices semblables

Définition. Soit $(A, B) \in M_n(\mathbb{K})^2$. On dit que la matrice B est semblable à la matrice A si, et seulement s'il existe $P \in GL_n$ telle que $B = P^{-1}AP$.

Proposition. La relation \mathcal{R} définie sur $M_n(\mathbb{K})$ par $B\mathcal{R}A$ si, et seulement si, B est semblable à la matrice A est une relation d'équivalence.

Proposition. Deux matrices sont semblables si, et seulement si, elles représentent un même endomorphisme.

Proposition. Calcul de puissance

Si
$$B = P^{-1}AP$$
, alors pour tout entier k, on a $B^k = P^{-1}A^kP$

Définition. On définit la trace d'une matrice carrée comme la somme de ses coefficients diagonaux

Proposition. Soit $(A, B) \in M_n(\mathbb{K})^2$, on a Tr(AB) = Tr(BA)

Corollaire. Deux matrices semblables ont même trace

Définition. On peut donc définir la trace d'un endomorphisme comme la trace de n'importe quelle matrice le représentant.

Ainsi, si $f \in \mathcal{L}(E)$, et si \mathcal{B} est une base de E, alors $Tr f = Tr Mat_{\mathcal{B}} f$.

Proposition. Soit $(f,g) \in \mathcal{L}(E)$. On a $Tr(g \circ f) = Tr(f \circ g)$.

Proposition. La trace d'un projecteur est égale à son rang.

V. Système linéaires

Soit $A \in M_{n,p(\mathbb{K})}$ et $B \in M_{n,1}(\mathbb{K})$. On considère le système AX = B i.e. on recherche les vecteurs $X \in M_{p,1}(\mathbb{K})$ tels que AX = B.

On peut voir l'ensemble des solution comme l'intersection de n hyperplans affines de $M_{p,1}(\mathbb{K})$

Proposition. L'ensemble des solutions du système AX = B est soit vide soit un sous-espace affine de direction KerA.

Lorsqu'il existe une solution, on dit que le système est compatible.

Proposition. Le système AX = B admet des solutions si, et seulement si, $B \in ImA$

Corollaire. $Si\ rg(A) = n$, alors le système AX = B admet une solution. La réciproque est fausse.

Proposition. Si le système est compatible, alors il y a unicité de la solution si, et seulement si, $KerA = \{0\}$ donc si, et seulement si, rgA = p.

Lorsque le système admet une unique solution, alors le système est dit de Cramer.

Corollaire. Si n = p, alors le système AX = B est de Cramer si, et seulement si, $A \in GL_n(\mathbb{R})$.

VI. Matrices par blocs

1. Matrices par blocs

Proposition. Soit $f \in \mathcal{L}(E)$ et $\mathcal{B} = (e_1, ..., e_n)$ une base de E.

La matrice de f dans la base \mathcal{B} est de la forme $\begin{pmatrix} A & B \\ 0_{q,n-q} & C \end{pmatrix}$ si, et seulement si, le sous-espace vectoriel $F = Vect(e_1, ..., e_q)$ est stable par f.

Dans ce cas, $A = Mat_{(e_1,\dots,e_q)} f_F$ où $f_{|F|}: F \to F, \ x \mapsto f(x)$ est l'endomorphisme induit par f sur F.

Proposition. Soit $f \in \mathcal{L}(E)$ et $\mathcal{B} = (e_1, ..., e_n)$ une base de E.

La matrice de f dans la base \mathcal{B} est de la forme $\begin{pmatrix} A & 0_{q,n-q} \\ B & C \end{pmatrix}$ si, et seulement si, le sous-espace vectoriel $F = Vect(e_{q+1},...,e_n)$ est stable par f.

Dans ce cas, $A = Mat_{(e_{q+1},...,e_n)}f|_F$

Proposition. Soit $f \in \mathcal{L}(E)$ et $\mathcal{B} = (e_1, ..., e_n)$ une base de E.

La matrice de f dans la base \mathcal{B} est de la forme $\begin{pmatrix} 0_{q,n-r} & A \\ B & C \end{pmatrix}$ si, et seulement si, on a l'inclusion $f(Vect(e_1, ..., e_q)) \subset Vect(e_{r+1}, ..., e_n)$.

2. Matrices extraites

Définition. Une matrice extraite de A est une matrice obtenue en ne conservant que certaines lignes et certaines colonnes de A.

Proposition. Une matrice extraite de A est de rang inférieur ou égal à rg(A).

Théorème. Caractérisation du rang par les matrices carrées extraites. Soit $A \in M_{n,p}(\mathbb{K})$. La matrice A est de rang r si, et seulement si, A admet une matrice carrée extraite de taille r inversible et si aucune matrice carrée extraite de taille > r n'est inversible.

3. Produit par blocs

Proposition. Soit $A \in M_{d,r}$, $B \in M_{d,p-r}$, $C \in M_{n-d,r}$, $D \in M_{n-d,p-r}$, $A' \in M_{r,s}$, $B' \in M_{r,q-s}$, $C' \in M_{p-r,s}$ et $D' \in M_{p-r,q-s}$. Alors

$$\left(\begin{array}{cc} A & B \\ C & D \end{array} \right) \left(\begin{array}{cc} A' & B' \\ C' & D' \end{array} \right) = \left(\begin{array}{cc} AA' + BC' & AB' + BD' \\ CA' + DC' & CB' + DD' \end{array} \right)$$

Plus généralement, tous les produits par blocs, pour peu qu'ils aient un sens en terme de nombre de lignes et de colonnes, fonctionnent sur le même modèle.