

Naïve Bayes Classifier

Gustavo Teodoro Laureano

gustavo@inf.ufg.br

Programa de Pós-Graduação em Ciência da Computação Instituto de Informática – Universidade Federal de Goiás

Outline

Topics

- Introduction
- **Fundamentals of Statistics**
- The Bayes Theorem

- Conceito chave para a modelagem de sistemas reais é a incerteza.
 - Devido ao ruído presente nas medições
 - Conjunto de dados é de tamanho finito.

- Teoria da Probabilidade
 - Fornece meios para a medição e manipulação de incertezas.
 - Útil para:
 - Modelagem de sistemas reais
 - Estimação
 - Classificação
 - Reconhecimento de padrões
 - Aprendizagem de máquina

• Imagine o seguinte sistema:

- 40% de chances de escolhermos a caixa vermelha.
- 60% de chances de escolhermos a caixa azul.

• Imagine o seguinte sistema:

- Temos 2 variáveis aleatórias:
 - C: caixa
 - F: fruta

• Imagine o seguinte sistema:

- Temos 2 variáveis aleatórias:
 - C: caixa

 \rightarrow 2 possibilidades: C = a e C = v

• F: fruta

 \rightarrow 2 possibilidades: F = I e F = m

• Imagine o seguinte sistema:

- Probabilidade de escolher a caixa vermelha: $p(C=v) = \frac{4}{10} = 0.4$
- Probabilidade de escolher a caixa azul: $p(C=a) = \frac{6}{10} = 0.6$

• Imagine o seguinte sistema:

- "Qual a probabilidade de escolhermos uma maçã?"
- "Dado que pegamos uma laranja, qual a probabilidade dela ter vindo da caixa azul?"

Instituto de Informática

- Variáveis aleatórias:
 - Variável cujo valor depende de fatores aleatórios.

Exemplo:

- No lançamento de um dado, qual é a variável aleatória?
- Em uma cobrança de pênalt, qual é a variável aleatória?

- Variáveis discretas:
- Variáveis contínuas:

Probabilidade:

Instituto de Informática

- Distribuição de probabilidades:
 - Para variáveis discretas (Função de Distribuição de Probabilidades):

Variáveis contínuas (Função Densidade de Probabilidade):

Instituto de Informática

- Esperânça, Espectativa ou Média:
 - Caso disctreto:

$$\mu = \frac{1}{M} \sum_{i=1}^{M} x_i \qquad E(X) = \sum_{x} x P(X = x)$$

Caso contínuo:

$$E(X) = \mu = \int_{-\infty}^{+\infty} x f(x)$$

Variância

Medida de dispersão em relação à média:

$$V(X) = E\{[X - E(X)]^2\}$$

$$\sigma^2 = \frac{1}{M} \sum_{i=1}^{M} (x_i - \mu)^2$$

Desvio Padrão:

$$\sigma = \sqrt{\sigma^2}$$

Considerando um sistema mais genérico:

Temos 2 variáveis aleatórias X e Y.

Instituto de Informática

Considerando um sistema mais genérico:

Temos 2 variáveis aleatórias X e Y.

Instituto de Informática

Considerando um sistema mais genérico:

 n_{ij} - quantidade de vezes que $X = x_i$ e $Y = y_i$ são escolhidos juntos.

 ${\it C}_i\,$ - quantidade de vezes que $X\!=\!arkappa_i\,$ independentemente da escolha de $\,Y\,$

 r_{j} - quantidade de vezes que $\mathit{Y} = \mathit{y}_{j}$ independentemente da escolha de X

Considerando um sistema mais genérico:

- A probabilidade de escolhermos $X = x_i$ e $Y = y_j$ é: $p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$
- A probabilidade de escolhermos $X = x_i$ é: $p(X = x_i) = \frac{C_i}{N}$
- A probabilidade de escolhermos $Y = y_j$ é: $p(Y = y_j) = \frac{r_i}{N}$

Considerando um sistema mais genérico:

- A probabilidade de escolhermos $X = x_i$ e $Y = y_j$ é: $p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$
- A probabilidade de escolhermos $X = x_i$ é: $p(X = x_i) = \frac{C_i}{N}$
- A probabilidade de escolhermos $Y = y_j$ é: $p(Y = y_j) = \frac{r_i}{N}$

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

$$X = x_i, i = 1...M$$

Considerando um sistema mais genérico:

$$Y = y_{j}, j = 1 \dots L$$

$$p(X = x_{i}, Y = y_{j}) = \frac{n_{ij}}{N}$$

$$p(X = x_{i}) = \frac{c_{i}}{N}$$

$$p(Y = y_{j}) = \frac{r_{i}}{N}$$

$$c_i = \sum_{i}^{L} n_{ij} \qquad r_j = \sum_{i}^{M} n_{ij}$$

• Visualmente podemos verificar que:

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

$$X = x_i, i = 1...M$$

Considerando um sistema mais genérico:

$$Y = y_{j}, j = 1 ... L$$

$$p(X = x_{i}, Y = y_{j}) = \frac{n_{ij}}{N}$$

$$p(X = x_{i}) = \frac{c_{i}}{N}$$

$$p(Y = y_{j}) = \frac{r_{i}}{N}$$

$$c_{i} = \sum_{i}^{L} n_{ij} \qquad r_{j} = \sum_{i}^{M} n_{ij}$$

$$p(X=x_i) = \frac{C_i}{N} \longrightarrow p(X=x_i) = \frac{1}{N} \sum_{j=1}^{L} n_{ij} \longrightarrow p(X=x_i) = \sum_{j=1}^{L} p(X=x_i, Y=y_j)$$

• Podemos reescrever:

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

$$X = x_i, i = 1...M$$

Considerando um sistema mais genérico:

Podemos reescrever:

Podemos reescrever:
$$p(X=x_i) = \frac{C_i}{N} \longrightarrow p(X=x_i) = \frac{1}{N} \sum_{j=1}^{L} n_{ij} \longrightarrow p(X=x_i) = \sum_{j=1}^{L} p(X=x_i, Y=y_j)$$

$$p(Y=y_j) = \frac{r_j}{N} \longrightarrow p(Y=y_j) = \sum_{j=1}^{M} p(X=x_i, Y=y_j)$$

$$Y = y_{j}, j = 1 \dots L$$

$$p(X = x_{i}, Y = y_{j}) = \frac{n_{ij}}{N}$$

$$p(X = x_{i}) = \frac{c_{i}}{N}$$

$$p(Y = y_{j}) = \frac{r_{i}}{N}$$

$$c_{i} = \sum_{j=1}^{L} n_{ij} \qquad r_{j} = \sum_{i=1}^{M} n_{ij}$$

$$p(Y=y_j) = \sum_{i}^{m} p(X=x_i, Y=y_j)$$

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

$$X = x_i, i = 1...M$$

Considerando um sistema mais genérico:

 $Y = y_{j}, j = 1...L$

$$p(X=x_{i}, Y=y_{j}) = \frac{n_{ij}}{N}$$

$$p(X=x_{i}) = \frac{c_{i}}{N}$$

$$p(Y=y_{j}) = \frac{r_{i}}{N}$$

$$c_{i} = \sum_{j}^{L} n_{ij} \qquad r_{j} = \sum_{i}^{M} n_{ij}$$

- Podemos reescrever:

$$p(X=x_i) = \frac{c_i}{N}$$

$$p(Y=y_j) = \frac{r_j}{N}$$

Regra da Soma de Probabilidades

$$\rightarrow p(X=x_i) = \sum_{j=1}^{L} p(X=x_i, Y=y_j)$$

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

$$X = x_i, i = 1 \dots M$$

 $Y = y_i, j = 1 ... L$

$$X = x_i, i = 1 \dots M$$

$$p(X=x_{i}, Y=y_{j}) = \frac{n_{ij}}{N}$$

$$p(X=x_{i}) = \frac{c_{i}}{N}$$

$$p(Y=y_{j}) = \frac{r_{i}}{N}$$

$$c_{i} = \sum_{j}^{L} n_{ij} \qquad r_{j} = \sum_{i}^{M} n_{ij}$$

- Considerando somente a instância de $X = x_i$
- A fração de $Y = y_i$ dado que $X = x_i$ é chamada de **probabilidade condicional**.

$$p(Y=y_i|X=x_i)$$

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

$$X = x_i, i = 1...M$$

 $Y = y_{i}, j = 1 ... L$

 r_{j}

 n_{ij}

 x_i

Considerando um sistema mais genérico:

$$p(Y=y_j|X=x_i)=\frac{n_{ij}}{C_i}$$

 y_j

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

$$Y = y_i, j = 1 ... L$$

$$p(X=x_i, Y=y_j) = \frac{n_{ij}}{N}$$

$$p(X=x_i) = \frac{c_i}{N}$$

$$p(Y=y_j)=\frac{r_i}{N}$$

$$c_i = \sum_{j}^{L} n_{ij}$$
 $r_j = \sum_{i}^{M} n_{ij}$

$$N \cdot p(X = x_i)$$

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

$$X = x_i, i = 1...M$$

 $Y = y_i, j = 1 ... L$

Considerando um sistema mais genérico:

 $N \cdot p(X = x_i, Y = y_i)$

$$p(X=x_i, Y=y_j) = \frac{n_{ij}}{N}$$

$$p(X=x_i) = \frac{c_i}{N}$$

$$p(Y=y_j) = \frac{r_i}{N}$$

$$c_i = \sum_{j}^{L} n_{ij} \qquad r_j = \sum_{i}^{M} n_{ij}$$

$$p(Y=y_{j}|X=x_{i}) = \frac{n_{ij}}{c_{i}} \Rightarrow p(Y=y_{j}|X=x_{i}) = \frac{p(X=x_{i},Y=y_{j})}{p(X=x_{i})}$$

$$N \cdot p(X=x_{i})$$

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

$$X = x_i, i = 1...M$$

Considerando um sistema mais genérico:

$$Y = y_j, j = 1 \dots L$$

$$p(X=x_i, Y=y_j) = \frac{n_{ij}}{N}$$

$$p(X=x_i) = \frac{c_i}{N}$$

$$p(Y=y_j) = \frac{r_i}{N}$$

$$c_i = \sum_{j}^{L} n_{ij}$$
 $r_j = \sum_{i}^{M} n_{ij}$

$$p(Y=y_{j}|X=x_{i}) = \frac{n_{ij}}{c_{i}}$$
 \Rightarrow $p(Y=y_{j}|X=x_{i}) = \frac{p(X=x_{i},Y=y_{j})}{p(X=x_{i})}$

Regra do Produto de Probabilidades

lacksquare

 $N \cdot p(X = x_i, Y = y_i)$

 $N \cdot p(X=x_i)$

 $p(X = x_i, Y = y_j) = p(Y = y_j | X = x_i) \cdot p(X = x_i)$

Na forma compacta:

The Rules of Probability

sum rule

$$p(X) = \sum_{Y} p(X, Y)$$

product rule

$$p(X,Y) = p(Y|X)p(X)$$

- -p(X,Y) é a probabilidade de X e Y ocorrerem ao mesmo tempo.
- -p(Y|X) é a probabilidade de Y ocorrer dado que X já ocorreu.
- $\ p(X)$ é a probabilidade de X ocorrer.

Na forma compacta:

The Rules of Probability

sum rule

product rule

O processo de encontrar p(X) pela soma de outras probabilidades é chamado de **Marginalização**.

$$p(X) = \sum_{Y} p(X, Y)$$

$$p(X,Y) = p(Y|X)p(X)$$

- -p(X,Y) é a probabilidade de X e Y ocorrerem ao mesmo tempo.
- -p(Y|X) é a probabilidade de Y ocorrer dado que X já ocorreu.
- $\hspace{0.1cm} p(X) \hspace{0.1cm}$ é a probabilidade de X ocorrer.

• Por uma questão de simetria, podemos escrever: p(X,Y) = p(Y,X)

$$\begin{array}{c} p(X,Y) = p(Y|X). \ p(X) \\ p(Y,X) = p(X|Y). \ p(Y) \end{array}$$

$$p(Y|X) = \frac{p(X|Y). \ p(Y)}{p(X)}$$

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

Por uma questão de simetria, podemos escrever: p(X,Y) = p(Y,X)

$$p(Y|X) = \frac{p(X|Y).p(Y)}{p(X)}$$

Teorema de Bayes

The Bayes Theorem

Instituto de Informática

O Teorema de Bayes

- Mostra a relação entre a probabilidade condicional e sua inversa;
- Modela o ganho de informação em função de probabilidades à priori e as evidências;

Thomas Bayes

Matemático, Estatístico e Ministro Presbiteriano

Universidade de Edinburgh

$$p(C=v)=0.4$$

caixa vermelha

Instituto de Informática

caixa azul

$$p(C=v)=0.4$$

$$p(C=a)=0.6$$

Conceitos Básicos de Probabilidade

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

maçã

laranja

$$p(C=v)=0.4$$

$$p(C=a)=0.6$$

$$p(F=m|C=v)=\frac{2}{8}=\frac{1}{4}$$

maçã

laranja

$$p(C=v)=0.4$$

$$p(C=a)=0.6$$

$$p(F=m|C=v)=\frac{2}{8}=\frac{1}{4}$$

$$p(F=l|C=v)=\frac{6}{8}=\frac{3}{4}$$

maçã

laranja

$$p(C=v)=0.4$$

$$p(C=a)=0.6$$

$$p(F=m|C=v)=\frac{2}{8}=\frac{1}{4}$$

$$p(F=l|C=v)=\frac{6}{8}=\frac{3}{4}$$

$$p(F=m|C=a)=\frac{3}{4}$$

maçã

$$p(C=v)=0.4$$

$$p(C=a)=0.6$$

$$p(F=m|C=v)=\frac{2}{8}=\frac{1}{4}$$

$$p(F=l|C=v)=\frac{6}{8}=\frac{3}{4}$$

$$p(F=m|C=a)=\frac{3}{4}$$

$$p(F=l|C=a)=\frac{1}{4}$$

caixa azul

maçã

laranja

caixa vermelha

$$p(F=m)=?$$

$$p(C=v)=0.4$$

$$p(C=a)=0.6$$

$$p(F=m|C=v)=\frac{2}{8}=\frac{1}{4}$$

$$p(F=l|C=v)=\frac{6}{8}=\frac{3}{4}$$

$$p(F=m|C=a)=\frac{3}{4}$$

$$p(F=l|C=a)=\frac{1}{4}$$

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

caixa vermelha

maçã

$$p(F=m)=\sum p(F=m,C)$$

$$p(C=v)=0.4$$

$$p(C=a)=0.6$$

$$p(F=m|C=v)=\frac{2}{8}=\frac{1}{4}$$

$$p(F=l|C=v)=\frac{6}{8}=\frac{3}{4}$$

$$p(F=m|C=a)=\frac{3}{4}$$

$$p(F=l|C=a)=\frac{1}{4}$$

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

maçã

$$p(F=m)=\sum_{C} p(F=m,C)$$

$$p(F=m)=p(F=m,C=v)+p(F=m,C=a)$$

$$p(C=v)=0.4$$

$$p(C=a)=0.6$$

$$p(F=m|C=v)=\frac{2}{8}=\frac{1}{4}$$

$$p(F=l|C=v)=\frac{6}{8}=\frac{3}{4}$$

$$p(F=m|C=a)=\frac{3}{4}$$

$$p(F=l|C=a)=\frac{1}{4}$$

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

caixa vermelha

maçã

$$p(C=v)=0.4$$

$$p(C=a)=0.6$$

$$p(F=m|C=v)=\frac{2}{8}=\frac{1}{4}$$

$$p(F=l|C=v)=\frac{6}{8}=\frac{3}{4}$$

$$p(F=m|C=a)=\frac{3}{4}$$

$$p(F=l|C=a)=\frac{1}{4}$$

$$p(F=m)=\sum_{c}p(F=m,C)$$

$$p(F=m)=p(F=m,C=v)+p(F=m,C=a)$$

$$p(F=m)=p(F=m|C=v)\cdot p(C=v)+p(F=m|C=a)\cdot p(C=a)$$

$$p(F=m) = \frac{1}{4} \cdot \frac{4}{10} + \frac{3}{4} \cdot \frac{6}{10} = \frac{11}{20}$$

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

caixa vermelha

maçã

$$p(F=m)=\sum p(F=m,C)=\frac{11}{20}$$

$$p(C=v)=0.4$$

$$p(C=a)=0.6$$

$$p(F=m|C=v)=\frac{2}{8}=\frac{1}{4}$$

$$p(F=l|C=v)=\frac{6}{8}=\frac{3}{4}$$

$$p(F=m|C=a)=\frac{3}{4}$$

$$p(F=l|C=a)=\frac{1}{4}$$

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

maçã

laranja

caixa vermelha

$$p(F=m) = \sum_{c} p(F=m,C) = \frac{11}{20}$$

$$p(F=l)=?$$

$$p(C=v)=0.4$$

$$p(C=a)=0.6$$

$$p(F=m|C=v)=\frac{2}{8}=\frac{1}{4}$$

$$p(F=l|C=v)=\frac{6}{8}=\frac{3}{4}$$

$$p(F=m|C=a)=\frac{3}{4}$$

$$p(F=l|C=a)=\frac{1}{4}$$

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

maçã

laranja

)

caixa azul

$$p(F=m) = \sum_{c} p(F=m,C) = \frac{11}{20}$$

 $p(F=l) = 1 - p(F=m)$

$$p(C=v)=0.4$$

$$p(C=a)=0.6$$

$$p(F=m|C=v)=\frac{2}{8}=\frac{1}{4}$$

$$p(F=l|C=v)=\frac{6}{8}=\frac{3}{4}$$

$$p(F=m|C=a)=\frac{3}{4}$$

$$p(F=l|C=a)=\frac{1}{4}$$

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

maçã

larania

caixa vermelha

caixa azul

$$p(F=m) = \sum_{c} p(F=m,C) = \frac{11}{20}$$

$$p(F=l)=1-p(F=m)=1-\frac{11}{20}=\frac{9}{20}$$

$$p(C=v)=0.4$$

$$p(C=a)=0.6$$

$$p(F=m|C=v)=\frac{2}{8}=\frac{1}{4}$$

$$p(F=l|C=v) = \frac{6}{8} = \frac{3}{4}$$

$$p(F=m|C=a)=\frac{3}{4}$$

$$p(F=l|C=a)=\frac{1}{4}$$

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

maçã

$$p(F=m)=\sum_{c} p(F=m,C)=\frac{11}{20}$$

$$p(F=l)=1-p(F=m)=\frac{9}{20}$$

$$p(C=v)=0.4$$

$$p(C=a)=0.6$$

$$p(F=m|C=v)=\frac{2}{8}=\frac{1}{4}$$

$$p(F=l|C=v) = \frac{6}{8} = \frac{3}{4}$$

$$p(F=m|C=a)=\frac{3}{4}$$

$$p(F=l|C=a)=\frac{1}{4}$$

maçã

larania

caixa vermelha

$$p(F=m)=\sum p(F=m,C)=\frac{11}{20}$$

$$p(F=l)=1-p(F=m)=\frac{9}{20}$$

$$p(C=v|F=l)=?$$

$$p(C=v)=0.4$$

$$p(C=a)=0.6$$

$$p(F=m|C=v)=\frac{2}{8}=\frac{1}{4}$$

$$p(F=l|C=v)=\frac{6}{8}=\frac{3}{4}$$

$$p(F=m|C=a)=\frac{3}{4}$$

$$p(F=l|C=a)=\frac{1}{4}$$

maçã

$$p(F=m)=\sum p(F=m,C)=\frac{11}{20}$$

$$p(F=l)=1-p(F=m)=\frac{9}{20}$$

$$p(C=v|F=l) = \frac{p(F=l|C=v) \cdot p(C=v)}{p(F=l)}$$

$$p(C=v)=0.4$$

$$p(C=a)=0.6$$

$$p(F=m|C=v)=\frac{2}{8}=\frac{1}{4}$$

$$p(F=l|C=v) = \frac{6}{8} = \frac{3}{4}$$

$$p(F=m|C=a)=\frac{3}{4}$$

$$p(F=l|C=a)=\frac{1}{4}$$

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

maçã

$$p(F=m) = \sum p(F=m,C) = \frac{11}{20}$$

$$p(F=l)=1-p(F=m)=\frac{9}{20}$$

$$p(C=v|F=l) = \frac{p(F=l|C=v) \cdot p(C=v)}{p(F=l)} = \frac{3}{4} \cdot \frac{4}{10} \cdot \frac{20}{9} = \frac{2}{3}$$

$$p(C=v)=0.4$$

$$p(C=a)=0.6$$

$$p(F=m|C=v)=\frac{2}{8}=\frac{1}{4}$$

$$p(F=l|C=v)=\frac{6}{8}=\frac{3}{4}$$

$$p(F=m|C=a)=\frac{3}{4}$$

$$p(F=l|C=a)=\frac{1}{4}$$

maçã

$$p(F=m)=\sum p(F=m,C)=\frac{11}{20}$$

$$p(F=l)=1-p(F=m)=\frac{9}{20}$$

$$p(C=v|F=l) = \frac{p(F=l|C=v) \cdot p(C=v)}{p(F=l)} = \frac{2}{3}$$

$$p(C=v)=0.4$$

$$p(C=a)=0.6$$

$$p(F=m|C=v)=\frac{2}{8}=\frac{1}{4}$$

$$p(F=l|C=v)=\frac{6}{8}=\frac{3}{4}$$

$$p(F=m|C=a)=\frac{3}{4}$$

$$p(F=l|C=a)=\frac{1}{4}$$

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

maçã

$$p(F=m)=\sum p(F=m,C)=\frac{11}{20}$$

$$p(F=l)=1-p(F=m)=\frac{9}{20}$$

$$p(C=v|F=l) = \frac{p(F=l|C=v) \cdot p(C=v)}{p(F=l)} = \frac{2}{3}$$

$$p(C=a|F=l)=?$$

$$p(C=v)=0.4$$

$$p(C=a)=0.6$$

$$p(F=m|C=v)=\frac{2}{8}=\frac{1}{4}$$

$$p(F=l|C=v)=\frac{6}{8}=\frac{3}{4}$$

$$p(F=m|C=a)=\frac{3}{4}$$

$$p(F=l|C=a)=\frac{1}{4}$$

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

maçã

$$p(F=m)=\sum_{c} p(F=m,C)=\frac{11}{20}$$

$$p(F=l)=1-p(F=m)=\frac{9}{20}$$

$$p(C=v|F=l) = \frac{p(F=l|C=v) \cdot p(C=v)}{p(F=l)} = \frac{2}{3}$$

$$p(C=a|F=l)=1-\frac{2}{3}=\frac{1}{3}$$

$$p(C=v)=0.4$$

$$p(C=a)=0.6$$

$$p(F=m|C=v)=\frac{2}{8}=\frac{1}{4}$$

$$p(F=l|C=v)=\frac{6}{8}=\frac{3}{4}$$

$$p(F=m|C=a)=\frac{3}{4}$$

$$p(F=l|C=a)=\frac{1}{4}$$

 Se queremos saber a probabilidade de ter escolhido uma caixa dado a informação do tipo da fruta.

INF/PRA Pattern Recognition Algorithms

- Se queremos saber a probabilidade de ter escolhido uma caixa dado a informação do tipo da fruta.
 - Melhor suposição inicial: p(C), conhecimento a priori, antes de conhecermos a identidade da fruta.

INF/PRA Pattern Recognition Algorithms

- Se queremos saber a probabilidade de ter escolhido uma caixa dado a informação do tipo da fruta.
 - Melhor suposição inicial: p(C), conhecimento a priori, antes de conhecermos a identidade da fruta.

INF/PRA Pattern Recognition Algorithms

- Se queremos saber a probabilidade de ter escolhido uma caixa dado a informação do tipo da fruta.
 - Melhor suposição inicial: p(C), conhecimento a priori, antes de conhecermos a identidade da fruta.
 - Com o teorema de Bayes podemos calcular p(C|F) após observar a identidade da fruta.

INF/PRA Pattern Recognition Algorithms

- Se queremos saber a probabilidade de ter escolhido uma caixa dado a informação do tipo da fruta.
 - Melhor suposição inicial: p(C), conhecimento a priori, antes de conhecermos a identidade da fruta.
 - Com o teorema de Bayes podemos calcular p(C|F) após observar a identidade da fruta.

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

 Se a fruta for LARANJA, essa informação fornece importante evidência de que a caixa escolhida seja a VERMELHA, apesar dela ser a caixa com menor probabilidade de ser escolhida.

INF/PRA Pattern Recognition Algorithms

Instituto de Informática

Função Densidade de Probabilidade (PDF)

- Do mesmo modo que consideramos probabilidades de eventos discretos (variáveis aleatórias discretas), podemos definir probabilidades sobre variáveis contínuas.
- Ex:
 - Qual a probabilidade de um carro X viajar a 105.01 km/h?

Instituto de Informática

Função Densidade de Probabilidade (PDF)

- Do mesmo modo que consideramos probabilidades de eventos discretos (variáveis aleatórias discretas), podemos definir probabilidades sobre variáveis contínuas.
- Ex:
 - Qual a probabilidade de um carro X viajar a 105.01 km/h?
- Se a probabilidade de uma variável aleatória contínua x estar no intervalo $(x, x + \delta x)$ é dada por $p(x) \cdot \delta x$ quando $\delta x \rightarrow 0$, então p(x) é chamda de **função densidade probabilidade** (pdf) sobre x.

- Função Densidade de Probabilidade (PDF)
 - Propriedades de uma pdf:

$$p(x) \ge 0$$

$$\int_{-\infty}^{+\infty} p(x) dx = 1$$

- A probabilidade de x estar dentro do intervalo (a, b) é dada por:

$$p(a \le x \le b) = \int_{a}^{b} p(x) dx$$

Instituto de Informática

- Função Densidade de Probabilidade (PDF)
 - Propriedades de uma pdf:

$$p(x) \ge 0$$

$$\int_{-\infty}^{+\infty} p(x) dx = 1$$

- A probabilidade de x estar dentro do intervalo (a, b) é dada por:

$$p(a \le x \le b) = \int_{a}^{b} p(x) dx$$

- A probabilidade de estar no intervalo $(-\infty, z)$ é dada pela função distribuição acumulativa (CDF) definida por:

$$P(z) = \int_{-\infty}^{z} p(x) dx$$

Função Densidade de Probabilidade (PDF) e Função Densidade Acumulativa (CDF)

Função Densidade de Probabilidade (PDF)

- As regras da soma e do produto, bem como o teorema de Bayes, se aplicam igualmente para o caso de densidades de probabilidades.
- Sendo x e y variáveis contínuas, temos:
 - Regra da soma: $p(x) = \int p(x, y) dy$

• Regra do produto: $p(x, y) = p(y|x) \cdot p(x)$

Função Gaussiana

- É um das funções de distribuição de probabilidades mais conhecidas;
- Muitos fenômenos seguem essa distribuição;
- Também conhecida como Normal ou Distribuição Gaussiana.
- Para o caso de uma variável:

$$\mathcal{N}(x|\bar{x},\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\bar{x})^2}{2\sigma^2}}$$

onde:
$$\bar{x} = E[X] = \frac{1}{M} \sum_{i=1}^{M} x^{(i)}$$
 e $\sigma^2 = V[X] = E[(X - E[X])^2] = \frac{1}{M} \sum_{i=1}^{M} (x^{(i)} - \sigma)^2$

Conceitos Básicos de Probabilidade

Função Gaussiana

Instituto de Informática

Função Gaussiana

- Supondo que tenhamos um conjunto de dados $\boldsymbol{X} = [x_1, x_2, ..., x_n]^T$ representando N observações da variável x;
- Supondo que as observações são dispostas em um gráfico independentemente da distribuição gaussiana que os representa e sem conhecermos a média e a variância dessa distribuição;
- E se os pontos são ditos: independent and identically distributed (i.i.d.)
- Os parâmetros μ e σ^2 são aqueles que maximizam o produtório acima.

$$p(\mathbf{x}|\mu,\sigma^2) = \prod_{n=1}^{N} \mathcal{N}\left(x_n|\mu,\sigma^2\right)$$

INF/PRA Pattern Recognition Algorithms

- Função Gaussiana Multivariada
 - Supondo $\mathbf{x} = [x_1, x_2, ..., x_n]^T$ uma amostra formada por n características.
 - A probabilidade da amostra x é dada pela probabilidade conjunta de suas características.

Função Gaussiana Multivariada

Supondo $\mathbf{x} = [x_1, x_2, ..., x_n]^T$ uma amostra formada por n variáveis.

$$\mathcal{N}(\mathbf{x}|\bar{\mathbf{x}}, \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x} - \bar{\mathbf{x}})^{\mathsf{T}} \Sigma^{-1} (\mathbf{x} - \bar{\mathbf{x}})}$$

Multivariate Normal Distribution

Naïve Bayes Classifier

 The Naïve Bayes Classifier is a conditional probability model where, given an instance to be classified:

$$\mathbf{x} = [x_1, x_2, \cdots, x_n]^\mathsf{T}, \mathbf{x} \in \mathbb{R}^n$$

- What the probability of a Class C_k , given the instance?

$$P(C_k|\mathbf{x}) = P(C_k|x_1, x_2, \cdots, x_n)$$

Using Bayes's Theorem:

$$P(C_k|\mathbf{x}) = \frac{P(C_k)P(\mathbf{x}|C_k)}{P(\mathbf{x})}$$

Naïve Bayes Classifier

 The Naïve Bayes Classifier is a conditional probability model where, given an instance to be classified:

$$\mathbf{x} = [x_1, x_2, \cdots, x_n]^\mathsf{T}, \mathbf{x} \in \mathbb{R}^n$$

- What the probability of a Class C_k , given the instance?

$$P(C_k|\mathbf{x}) = P(C_k|x_1, x_2, \cdots, x_n)$$

Using Bayes's Theorem:

$$P(C_k|\mathbf{x}) = \frac{P(C_k)P(\mathbf{x}|C_k)}{P(\mathbf{x})}$$

Naïve Bayes Classifier

Using conditional probability:

$$p(C_k|x_1, x_2, \dots, x_n) = p(C_k)p(x_1, x_2, \dots, x_n|C_k)$$

$$= p(C_k)p(x_1|C_k)p(x_2, \dots, x_n|C_k, x_1)$$

$$= p(C_k)p(x_1|C_k)p(x_2|C_k, x_1)p(x_3, \dots, x_n|C_k, x_{1,x}, x_2)$$

$$= p(C_k)p(x_1|C_k)p(x_2|C_k, x_1) \cdots p(x_n, \dots, x_n|C_k, x_{1,x}, x_2, \dots, x_{n-1})$$

Considering Independence of features:

$$p(x_{i}|C_{k}, x_{j}) = p(x_{i}|C_{k})$$

$$p(C_{k}|x_{1}, x_{2}, \cdots, x_{n}) = p(C_{k})p(x_{1}|C_{k})p(x_{2}|C_{k}) \cdots p(x_{n}|C_{k})$$

$$= p(C_{k}) \prod_{i=1}^{n} p(x_{i}|C_{k})$$

• The classifier:

INFORMÁTICA

$$\hat{y} = \underset{k \in \{1, \dots, K\}}{\operatorname{argmax}} p(C_k) \prod_{i=1}^n p(x_i | C_k)$$