

Digital Integrated Circuits A Design Perspective

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Semiconductor Memories

© Digital Integrated Circuits^{2nd}

Memories

Chapter Overview

- Memory Classification
- Memory Architectures
- ☐ The Memory Core
- □ Periphery
- □ Reliability
- □ Case Studies

© Digital Integrated Circuits^{2nd}

Semiconductor Memory Classification

Read-Wri	te Memory	Non-Volatile Read-Write Memory	Read-Only Memory
Random Access	Non-Random Access	EPROM E ² PROM	Mask-Programmed Programmable (PROM)
SRAM DRAM	FIFO LIFO Shift Register CAM	FLASH	

© Digital Integrated Circuits^{2nd}

Equivalent Transient Model for MOS NOR ROM

Model for NOR ROM

- Word line parasitics
 - Wire capacitance and gate capacitance
 - Wire resistance (polysilicon)
- Bit line parasitics
 - Resistance not dominant (metal)
 - Drain and Gate-Drain capacitance

© Digital Integrated Circuits^{2nd}

Memories

Equivalent Transient Model for MOS NAND ROM

Model for NAND ROM

- Word line parasitics
 - Similar to NOR ROM
- □ Bit line parasitics
 - Resistance of cascaded transistors dominates
 - Drain/Source and complete gate capacitance

© Digital Integrated Circuits^{2nd}

Characteristics of State-of-the-art NVM

Table 12-1 Comparison between nonvolatile memories ([Itoh01]). $V_{DD} = 3.3$ or 5 V; $V_{PP} = 12$ or 12.5 V.

	O-II	Cell Area	Mech	anism	External Sup		Dun manut
	Cell— Nr. of Transistors	(ratio wrt EPROM)	Erase	Write	Write	Read	Program/ Erase Cycles
MASK ROM	1 T (NAND)	0.35-5	_	_	_	V_{DD}	0
EPROM	1 T	1	UV Exposure	Hot electrons	V_{PP}	V_{DD}	~100
EEPROM	2 T	3–5	FN Tunneling	FN Tunneling	V_{PP} (int)	V_{DD}	$10^4 - 10^5$
Flash	1 T	1-2	FN Tunneling	Hot electrons	V_{PP}	V_{DD}	$10^4 - 10^5$
Memory			FN Tunneling	FN Tunneling	V_{PP} (int)	V_{DD}	$10^4 - 10^5$

© Digital Integrated Circuits^{2nd}

Memories

Read-Write Memories (RAM)

☐ STATIC (SRAM)

Data stored as long as supply is applied Large (6 transistors/cell)

Fast

Differential

□ DYNAMIC (DRAM)

Periodic refresh required Small (1-3 transistors/cell) Slower Single Ended

© Digital Integrated Circuits^{2nd}

Resistance-load SRAM Cell

Static power dissipation -- Want R $_L$ large Bit lines precharged to V_{DD} to address t_p problem

© Digital Integrated Circuits^{2nd}

Memories

SRAM Characteristics

Table 12-2 Comparison of CMOS SRAM cells used in 1-Mbit memory (from [Takada91])

	Complementary CMOS	Resistive Load	TFT Cell
Number of transistors	6	4	4 (+2 TFT)
Cell size	58.2 μm ² (0.7-μm rule)	40.8 μm ² (0.7-μm rule)	41.1 μm ² (0.8-μm rule)
Standby current (per cell)	10 ⁻¹⁵ A	10 ⁻¹² A	10 ⁻¹³ A

© Digital Integrated Circuits^{2nd}

Write: C_S is charged or discharged by asserting WL and BL. Read: Charge redistribution takes places between bit line and storage capacitance

$$\Delta V \ = \ V_{BL} - V_{PRE} \ = \ V_{BIT} - V_{PRE} \ \frac{C_S}{C_S + C_{BL}} \label{eq:deltaV}$$

Voltage swing is small; typically around 250 mV.

© Digital Integrated Circuits^{2nd}

Memories

DRAM Cell Observations

- □ 1T DRAM requires a sense amplifier for each bit line, due to charge redistribution read-out.
- □ DRAM memory cells are single ended in contrast to SRAM cells.
- ☐ The read-out of the 1T DRAM cell is destructive; read and refresh operations are necessary for correct operation.
- Unlike 3T cell, 1T cell requires presence of an extra capacitance that must be explicitly included in the design.
- □ When writing a "1" into a DRAM cell, a threshold voltage is lost. This charge loss can be circumvented by bootstrapping the word lines to a higher value than V_{DD}

© Digital Integrated Circuits^{2nd}

Periphery

- Decoders
- **☐** Sense Amplifiers
- ☐ Input/Output Buffers
- ☐ Control / Timing Circuitry

© Digital Integrated Circuits^{2nd}

Memories

Row Decoders

Collection of 2^M complex logic gates Organized in regular and dense fashion

(N)AND Decoder

$$WL_0 = A_0 A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8 A_9$$

$$WL_{511} = \bar{A}_{0}A_{1}A_{2}A_{3}A_{4}A_{5}A_{6}A_{7}A_{8}A_{9}$$

NOR Decoder

$$\begin{split} WL_0 &= \overline{A_0 + A_1 + A_2 + A_3 + A_4 + A_5 + A_6 + A_7 + A_8 + A_9} \\ WL_{511} &= \overline{A_0 + \overline{A}_1 + \overline{A}_2 + \overline{A}_3 + \overline{A}_4 + \overline{A}_5 + \overline{A}_6 + \overline{A}_7 + \overline{A}_8 + \overline{A}_9} \end{split}$$

© Digital Integrated Circuits^{2nd}

4-input pass-transistor based column decoder

Advantages: speed (t_{pd} does not add to overall memory access time) Only one extra transistor in signal path

Disadvantage: Large transistor count

© Digital Integrated Circuits^{2nd}

Memories

4-to-1 tree based column decoder

Number of devices drastically reduced

Delay increases quadratically with # of sections; prohibitive for large decoders Solutions: buffers

progressive sizing

combination of tree and pass transistor approaches

© Digital Integrated Circuits^{2nd}

Address Transition Detection

© Digital Integrated Circuits^{2nd}

Memories

Reliability and Yield

• Semiconductor memories trade off noise-margin for density and performance

Highly Sensitive to Noise (Crosstalk, Supply Noise)

• High Density and Large Die size cause Yield Problems

$$\mathbf{Y} = \left[\frac{1 - e^{-AD}}{AD}\right]^2$$

Increase Yield using Error Correction and Redundancy

© Digital Integrated Circuits^{2nd}

Error-Correcting Codes

Example: Hamming Codes

$$P_1 P_2 B_3 P_4 B_5 B_6 B_7$$
 e.g. B3 Wrong

with

$$P_1 \oplus B_3 \oplus B_5 \oplus B_7 = 0$$

$$P_2 \oplus B_3 \oplus B_6 \oplus B_7 = 0$$

$$P_4 \oplus B_5 \oplus B_6 \oplus B_7 = 0$$

0

© Digital Integrated Circuits^{2nd}

Memories

Redundancy and Error Correction

© Digital Integrated Circuits^{2nd}

Case Studies

- □ Programmable Logic Array
- □ SRAM
- □ Flash Memory

© Digital Integrated Circuits^{2nd}

Memories

PLA versus ROM

□ Programmable Logic Array

structured approach to random logic "two level logic implementation" NOR-NOR (product of sums) NAND-NAND (sum of products)

IDENTICAL TO ROM!

■ Main difference

ROM: fully populated

PLA: one element per minterm

Note: Importance of PLA's has drastically reduced

- 1. slow
- 2. better software techniques (mutli-level logic synthesis)

But ...

© Digital Integrated Circuits^{2nd}

125mm² 1Gbit NAND Flash Memory

Technology 0.13μm p-sub CMOS triple-well

1poly, 1polycide, 1W, 2Al

□ Cell size 0.077μm2
 □ Chip size 125.2mm2

□ Organization 2112 x 8b x 64 page x 1k block

□ Power supply 2.7V-3.6V□ Cycle time 50ns

□ Cycle time 50ns□ Read time 25μs

□ Program time 200µs / page□ Erase time 2ms / block

© Digital Integrated Circuits^{2nd}

From [Nakamura02]

Memories

Semiconductor Memory Trends (up to the 90's)

Memory Size as a function of time: x 4 every three years

© Digital Integrated Circuits^{2nd}

