* Simple Linear Regression *

Supersvised M/c Learning Algorithms: - Algo learns from labelled data.

Value is already known.

Supervised Learning has 2 types-

Ociassification - Predict class of dataset based on independent i/p variable.

Yes/No, O/1 etc.

2 <u>Regression</u> - Predict <u>continuous</u> o/p variable. Ex. House Price Prediction.

used to model the relationship between a dependent variable 4 set of independent variables.

1) Simple Linear Regard

(3) Multiple Linear Regard

- · X: Dependent / Target vorsiable.
- · Y: Independent/ Feature Variables.
- <u>Regression line</u>: Best-fit line of the model, by which we can predict '4' value for new value of 'x'.

- Assumptions of Linear Regression:
 - + Assumptions about data & its relationships.
 - ruiolations can affect validity & reliability of regression results.
 - O <u>Linearity</u> Relation bet dependend & independent variable is linear. Changes in both are constant.
 - 2) Independence of Errors Errors (residuals)
 assumed independent of each other.
 - 3 Homoscedasticity Assume variance of residuals is constant areross all levels of independent variables.
 - @ Normality of FETOTS FETOTS normally distributed.
 - No or Little Multicollinearity 2/more independent variables should not highly correlated. Difficult interpret each var individual effect on target.
- 6 NO Endogeneity Indepent variable should not correlate with error term, can arise due to omitted bias / simultaneous causation 4 lead to biased & inconsistent coefficient estimates.
- No Autocorrelation Auto correlation (Model residuals correlated with each other). expressations Imp in time series data, observan dependent on poerious.
- (B) No Perfect Collinearity Perfect collinearity (one independent var perfectly predicted linearly by other independent variable).

Le Leads to rank-deficient matrix, making it impossible to estimate unique regression coefficients.

O Linear Regression:

Detween 1 dependent & 1 independent variable.

This relationship can be represented as a linear equation.

· Eqn of Simple Linear Regression -

$$Y = \alpha_0 + \alpha_1 \times + \epsilon$$

Y- Dependent (Target) variable.

X - Predictor/Feature/Independent variable.

No - Y-intercept, value of y when x = 0.

X, - Slope of line (Regression coefficient of x).

E - Represents error term.

The equation is similar to equ of line:

- · Applications of Linear Regression:
 - O classification & Regression Capability LR algorate to Regression problems only i.e. it can predict continuous (numeric) values.
- 2 Data Quality Outliers affect performance Less outliers => Best model. Less, data should not contain outliers.
- 3 computational complexity LR algo is computationally less expensive that classification algo.
- 4) comprehensive & Transparent Easy to understand & explain. Represented using simple math expression.

· wooking of Linear Regression:

$$\frac{1}{2} = \frac{1+2+3+4+5}{3} = 3$$

$$\overline{y} = 3+4+2+4+5 = 3.6$$

• Eqⁿ to Find Slope -
$$M = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
2 4 -1 0.4 -0.4 1 3 2 0 -1.6 0 0 4 4 1 0.4 0.4 1 5 5 2 1.4 2.8 4	x	y	(x- \overline{\chi})	(y-J)	(マーマ)(ソーザ)	(2-2)2
2		3	-2	-0.6	and the late of th	4
4 4 1 0.4 0.4 1 5 5 2 1.4 2.8 4	2	4	01 -1 01	0.4	10.4	0
5 5 2 1.4 2.8 4	3	2	0	-1.6	20 10000	10 m
	100 H	4	total shi-	0.4	typinit topa	4
2 3.6		3.6	2	1.4	2.8	10

3 3.6

- 2

10

$$M = \frac{4}{10} = 0.4$$

$$c = \overline{y} - m\overline{z} = 3.6 - 0.4 * 3 = 2.4$$

For
$$m = 0.4$$
 & $c = 2.4$,
Predict y for $x = \{1, 2, 3, 4, 5\}$

x		y_predicted				
1	The second	0.4 *1 + 2.4 = 2.8				
2		0.4 * 2 + 2.4 = 3.2				
3		0.4 * 3 + 2.4 = 3.6				
4		0.4* 4+2.4 = 4.0				
5		0.4* 5+2.4 = 4.4				

· Minimize Foros:

Iteratively
find m, predict y
& find error.

m with min
error => Regro
Line

O Find goodness of fit:-

*R-Square - Statistical measure of how close is data to fitted Regression Line.

Le Also known as coefficient of determination/ coefficient of multiple determination.

$$R^{2} = \left| -\frac{\sum (y_{p} - y_{+})}{\sum (y - y_{+})} \right|$$

$$= Actual$$

n	y	(Y-J)	(y-y)2	УР	(Yp-Y)	(yp-y)2
1	3	-0.6	0.36	2.8	-0.8	0-64
2	4	0.4	0.16	3.2	-0.4	0.16
3	2	-1.6	2.56	3.6	0	0
24	4	0.4	0.16	4.0	0.4	0.16
5	5	1.4	1.96	24.4	0.8	0.64

$$R^2 = 1 - \frac{1.6}{5.2} = 1 - 0.3 = 0.7$$

Closes to 1.

Good fit

- · Examples of Linear Regression: -
- O <u>Evaluate</u> Trends & <u>Sales</u> estimates
 can estimate sales in future.

3 Analyze Impact of Proice change-

Product consumption of product.

Price

3) Risk Assessment in Financial Services -

Sales Market Strategies How oisk management affect business finance.

- · Simple Linear Regression Implementation:
 - 1 Import Libraries pd, np, plt.

3 Import Data set - of = pd. read_csv('_')

1

- 3 EDA Null value treatment.
 - · Remove duplicates
 - · Handle categorical data.

4 Split Dataset - X = df. drop ('target', axis = 1)

Y = af ['target']

x_train, x_test, y_train, y_test = train_test_split (

x, Y, test_size = 0.2, random_state = 42)

5 Training Model -

regressor = Linear Regression()
regressor. fit (x-train, y-train)

1

6 Result Prediction -

y-proed = regressor. proedict(x-test)

From sklearen. metrics => 12_score, mean-squared-errore

(7) Model Evaluation - Find model's goodness of fit.

72 = 72 - score (y-test, y-proed)

sq-eor = mean_squared-error (y-test, y-pred)