# **Big Data Analytics**

Les Algorithmes Non-Supervisés

GIRAUD François-Marie



# **Big Data Analytics**

Données Non-Suppervisées

Problème : détection de variables cachées, de "structures" cachées (clusters, variété topologique (manifold), ...)













## Clustering de Clients



Détection d'anomalie :



**Big Data Analytics** 

Réduction de la dimensionalité

Comment appréhender des données en grande dimension?

$$X = \begin{bmatrix} X_{1,1} & X_{1,2} & \dots & X_{1,D} \\ X_{2,1} & X_{2,2} & \dots & X_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ X_{N,1} & X_{N,2} & \dots & X_{N,D} \end{bmatrix}$$

1

La malédiction des grandes dimensions ! (Curse of dimensionality)

- Séléction de dimensions
- Projections linéaires (ACP, LDA, ...)
- Projections non-linéaires (kernels, neural network embeddings, ...)

#### Sélection de dimensions :

- Random forest
- SVM
- ..

Réduction de la dimensionalité : Projections linéaires

**Big Data Analytics** 

## Réduction de la dimensionalité : Projections linéaires

- Principal Component Analysis (Non-supervisée)
- Linear Discriminant Analysis (Supervisée)





$$X = \begin{bmatrix} X_{1,1} & \dots & X_{1,D} \\ \vdots & \ddots & \vdots \\ X_{N,1} & \dots & X_{N,D} \end{bmatrix}$$

chaque dimension est centrée (et réduite) :

$$\bar{X} = \begin{bmatrix} X_{1,1} - \bar{X}_1 & \dots & X_{1,D} - \bar{X}_D \\ \vdots & \ddots & \vdots \\ X_{N,1} - \bar{X}_1 & \dots & X_{N,D} - \bar{X}_D \end{bmatrix}$$

ou

$$\tilde{X} = \begin{bmatrix} \frac{X_{1,1} - \bar{X}_1}{\sigma(X_1)} & \dots & \frac{X_{1,D} - \bar{X}_D}{\sigma(X_D)} \\ \vdots & \ddots & \vdots \\ \frac{X_{N,1} - \bar{X}_1}{\sigma(X_1)} & \dots & \frac{X_{N,D} - \bar{X}_D}{\sigma(X_D)} \end{bmatrix}$$

Matrice de covariance (resp. corrélation) :

$$\frac{1}{N} * \bar{X}^T * \bar{X} , \ (\frac{1}{N} * \tilde{X}^T * \tilde{X})$$

#### ACP:

Retrouver les valeurs et vecteurs propres de de la matrice de covariance (resp. corrélation), donc diagonaliser la matrice carrée obtenue.

Vecteur propre : vecteur permettant de projeter les données

Valeur propre : "proportion d'information" conservée par la projection

suivant le vecteur propre correspondant

Réduction de dimension : On ne projette que suivant le nombre de

vecteurs propres voulus

### Linear Discriminant Analysis





**Big Data Analytics** 

Analyse en composantes - variantes spécifiques

## **Analyse des Correspondances Multiples (ACM)**

ACP sur des données qualitatives (Ex : enquètes d'opinions avec QCM) Chaque variable qualitative est transformé en vecteur sparse.

On obtient une matrice binaire sur laquelle on procède à l'ACP.

## Analyse Factorielle pour données mixtes (AFDM)

Quand on a des variables qualitative ET quantitatives pour décrires nos échantillons, on discrétise chaque variable quantitative. On peut ainsi procéder à l'Analyse en Composantes Multiples

## **Analyse Factorielle des Correspondances (AFC)**

#### Méthode sur un tableau de contingence :

| Yaourts   | Nantes | Bordeaux | Limoges | Tours | Poitiers | TOTAL |
|-----------|--------|----------|---------|-------|----------|-------|
| Ananas    | 14     | 15       | 9       | 20    | 20       | 78    |
| Banane    | 15     | 10       | 14      | 20    | 21       | 80    |
| Fraise    | 16     | 16       | 26      | 8     | 22       | 88    |
| Framboise | 18     | 14       | 24      | 20    | 17       | 93    |
| Abricot   | 17     | 18       | 20      | 22    | 16       | 93    |
| TOTAL     | 80     | 73       | 93      | 90    | 96       | 432   |

On procède alors à une double ACP (une sur le profil ligne, l'autre sur le profil colonne) en utilisant une métrique particulière : le  $\chi^2$ 

Métriques en Non-Supervisé

**Big Data Analytics** 

## Métriques en Non-Supervisé

$$coût = \sum_{i} \sum_{i} \delta_{i,j} |x_j - \mu_i|$$

où  $\delta_{i,j}$  vaut 1 si le cluster  $\mu_i$  est le plus proche du point  $x_j$ , 0 sinon

1

## Métrique : Silouhette

Points  $x = \{x_1, \dots, x_n\}$ , Clusters  $\mu = \{\mu_1, \dots, \mu_k\}$ .

$$a(x_i) = \frac{1}{\#\mu_i - 1} \sum_j |x_i - x_j|$$

$$b(x_i) = \min_{i \neq j} \frac{1}{\#\mu_j} \sum_j |x_i - x_j|$$

où:

 $\#\mu_i$  est le nombre d'éléments de x dans le cluster  $\mu_i$  L'ensembe d'indice j ne représente que ceux des points appartenant au cluster  $\mu_i$ 

 $a(x_i)$ : distance moyenne aux autres points du cluster contenant  $x_i$ 

 $b(x_i)$ : distance moyenne aux points du cluster le plus proche

## Métrique : Silouhette

$$s_i = \frac{b_i - a_i}{\max\{a_i, b_i\}}$$
 ,  $s_i = \begin{cases} 1 - a_i/b_i & \text{if } a_i < b_i \\ 0 & \text{if } a_i = b_i \\ b_i/a_i - 1 & \text{if } a_i > b_i \end{cases}$ 

donc 
$$s_i \in [-1, 1]$$

 $s_i \approx 1 \iff x_i$  bien clusterisé  $s_i \approx 0 \iff x_i$  au bord de 2 clusters  $s_i \approx -1 \iff x_i$  mal clusterisé

3

## Métrique : etc

- Calinski-Harabaz index
- Davies-Bouldin Index
- ....

#### \_. \_ . . .

**Big Data Analytics** 

Clustering Hiérarchique

## Clustering Hiérarchique

### Deux approches :

- Agglomérantes (bottom-up)
- Divisantes (top-down)

## Classification Ascendante Hiérarchique (CAH)

#### Métode Agglomérante

- Chaque élément est dans une classe distincte
- On itère jusqu'à ce qu'on ait le nombre de classes voulues
- On utilise une mesure de dissimilarité inter-classe comme critère d'aggrégation

A chaque itération, on calcule la dissimilarité entre toutes les classes puis on fusionne les plus similaires.

## Classification Ascendante Hiérarchique (CAH)

Quelques distances de dissimilarités, après avoir défini une distance D dans l'espace :

- saut minimum :  $dissim(C_1, C_2) = \min_{x \in C_1, y \in C_2} D(x, y)$
- saut maximum :  $dissim(C_1, C_2) = \max_{x \in C_1, y \in C_2} D(x, y)$
- saut moyen :  $dissim(C_1, C_2) = moyenne D(x, y)$  $x \in C_1, y \in C_2$
- distance de Ward qui vise à maximiser l'inertie inter-classe
- ..

$$O(n^2) < \text{complexité} < O(n^3)!$$

# **Big Data Analytics**

Expectation-Maximisation

## **Expectation-Maximisation**



## **Expectation-Maximisation**

Input : Données, nombre de clusters, métrique Initialisation Aléatoire Jusqu'à clusters "stables" :

- 1. Calculer les "centres" de chaque cluster
- 2. Réassigner les clusters à tous les points

## **Expectation-Maximisation**

video time

### -- - . . .

**Big Data Analytics** 

K-Means

## **K-Means**

## Algorithme EM



### K-Means

### distance euclidienne, Manhattan, Chebychev

### **Euclidean Distance**



### **Manhattan Distance**



### **Chebyshev Distance**



$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2} |x_1-x_2|+|y_1-y_2| \max(|x_1-x_2|,|y_1-y_2|)$$

### **Gaussian Mixture Model**

Les clusters sont représentés par un centre et une matrice de covariance.



**Big Data Analytics** 

Density-Based Spatial Clustering of Applications with Noise...

Tant qu'il reste des points non-étiquettés :

- 1. Prend un point non-étiquettés au hasard et on regarde son voisinage
- 2. Si (densité > seuil) alors (Nouveau cluster)
  - 2.1 Expansion du cluster de proche en proche dans le voisinage
- 3. Sinon (Bruit)

















Restart



## **Clustering - Conclusions**



1

## **Clustering - Conclusions**

Pas de métrique satisfaisante! ← Théorie de la Décision :

Problème qui se mesure en plusieurs dimensions

 $\Rightarrow$ 

Pas de solution unique!



**Big Data Analytics** 

Classification Hiérarchique sur Composantes Principales

# Classification Hiérarchique sur Composantes Principales (CHCP)

Après réduction de dimension, on procède à un algorithme de classification hiérarchique.



Obtenus à partir de données relatives aux crimes aux États-Unis. Colonnes d'origine : Population Totale, Meurtres, Viols, Agression

### -- - . . .

**Big Data Analytics** 

Clustering par ACP

## Réduction de la dimensionalité : PCA

(Souvenez-vous)

Matrice de covariance (resp. corrélation) :

$$\frac{1}{N}*\bar{X}^T*\bar{X}\;,\;(\frac{1}{N}*\tilde{X}^T*\tilde{X})$$

### ACP:

Retrouver les valeurs et vecteurs propres de de la matrice de covariance (resp. corrélation), donc diagonaliser la matrice carrée obtenue.

Vecteur propre : vecteur permettant de projeter les données

Valeur propre : "proportion d'information" conservée par la projection suivant le vecteur propre correspondant

Réduction de dimension : On ne projette que suivant le nombre de vecteurs propres voulus

1

## **Clustering par ACP**

$$\frac{1}{N} * \bar{X} * \bar{X}^T \; , \; \big(\frac{1}{N} * \tilde{X} * \tilde{X^T}\big)$$

En considérant les individus comme des features et les features comme des individus, les vecteurs propres ayant une grande valeur propre peuvent être considérés comme des centre de cluster d'individus.

# **Big Data Analytics**

Détection d'Anomalies

## **Détection d'Anomalies**

### Détection:

- de Fraude
- d'Intrusion/Fuite (physique ou électronique)
- Santé (biologique, geologique, machine, ...)

### **Définition**

- une anomalie diffère de la norme par ses features
- les anomalies sont rares comparées aux instances normales

### Modes de détection d'anomalie



## Détection d'Anomalies : Supervisé

Problème de classification normal. Réseaux de neurones et SVM très performants.

## Détection d'Anomalies : Semi-Supervisé

Détection de nouveauté.

Pas traité ici.

One-class SVM très utilisé.

## Détection d'Anomalies : Non-Supervisé

### De nombreuses méthodes :

- K-Nearest-Neighbor (KNN)
- Local Outlier Factor (LOF)
- Unweighted Cluster-Based Outlier Factor
- Isolation Forest
- Autoencoder
- ...

## **Détection d'Anomalies**



K-Nearest Neighbor

## Détection d'Anomalies : KNN



# Local Outlier Factor

## **Local Outlier Factor**

anomalies locales



## **Local Outlier Factor**

- anomalies locales
- basé sur les k voisins du point



- anomalies locales
- basé sur les k voisins du point
- définit une « atteignabilité » par les distances de ces voisins



- anomalies locales
- basé sur les k voisins du point
- définit une « atteignabilité » par les distances de ces voisins
- calcule un ratio moyen d'atteignabilité du point et de ses voisins



- anomalies locales
- basé sur les k voisins du point
- définit une « atteignabilité » par les distances de ces voisins
- calcule un ratio moyen d'atteignabilité du point et de ses voisins







## Désavantages

- lent (quadratique)
- a des à priori sur la distribution des données

Isolation forest

#### Isolation tree

- arbre aléatoire (comme random forest mais le split est aléatoire, ExtraTree)
- but : isoler une anomalie plus vite qu'un exemple normal
- petit chemin pour arriver à une feuille : anomalie
- $\rightarrow$  Se sert du fait que les features des anomalies ne sont pas distribuées comme les autres.

#### **Isolation forest**

- forêt d'isolation trees
- construits sur des sous-échantillons sans replacement des données
- sous-échantillons plus petits que dans random forest typiquement, pour mieux isoler les anomalies
- converge souvent vite: 100 arbres souvent suffisants

### **Isolation forest**



**Travaux Pratiques** 

Réduction de dimensions et Clustering

## **Support TP: PCA/LDA**

PCA- iris dataset - Tutoriel
PCA-LDA - Tutoriel

# **Support TP: Clustering**

<u>kmean - Tutoriel</u> <u>dbscan - Tutoriel</u>

## Support TP : Détection d'anomalie

local-outlier-factor - Tutoriel isolation-forest - Tutoriel

## **TP**: Réduction dimension

PCA - TP

# **TP**: Clustering

clustering -  $\mathsf{TP}$