

planetmath.org

Math for the people, by the people.

proof of finite inseparable extensions of Dedekind domains are Dedekind

 $Canonical\ name \qquad Proof Of Finite Inseparable Extensions Of Dedekind Domains Are Dedekind$

Date of creation 2013-03-22 18:35:42 Last modified on 2013-03-22 18:35:42

 $\begin{array}{ll} \text{Owner} & \text{gel (22282)} \\ \text{Last modified by} & \text{gel (22282)} \end{array}$

Numerical id 5

Author gel (22282)

Entry type Proof

Classification msc 13A15 Classification msc 13F05 Let R be a Dedekind domain with field of fractions K and L/K be a field extension. We suppose that K has http://planetmath.org/characteristiccharacteristic p > 0 and that there is a $q = p^r$ such that $x^q \in K$ for all $x \in L$. In particular, this is satisfied if it is a purely inseparable and finite extension.

We show that the integral closure A of R in L is a Dedekind domain.

We cannot apply the same method of proof as for the proof of finite separable extensions of Dedekind domains are Dedekind, because here A does not have to be finitely generated as an R-module.

We use the characterization of Dedekind domains as integral domains in which all nonzero ideals are invertible (see proof that a domain is Dedekind if its ideals are invertible). Note that for any $x \in A$, x^q is in K and is integral over R so, by integral closure, $x^q \in R$.

So, let \mathfrak{a} be a nonzero ideal in A, and let \mathfrak{b} be the ideal of R generated by terms of the form a^q for $a \in \mathfrak{a}$,

$$\mathfrak{b} = (a^q : a \in \mathfrak{a})_R.$$

Then, as R is a Dedekind domain, there is a fractional ideal \mathfrak{b}^{-1} of R such that $\mathfrak{b}\mathfrak{b}^{-1}=R$, and write \mathfrak{b}_A^{-1} for the fractional ideal of A generated by \mathfrak{b}^{-1} . Then,

$$1 \in R = \mathfrak{bb}^{-1} \subseteq \mathfrak{a}^q \mathfrak{b}_A^{-1}. \tag{1}$$

On the other hand, if $a_1, \ldots, a_q \in \mathfrak{a}$ and $b \in \mathfrak{b}^{-1}$ then

$$(a_1 \cdots a_q b)^q = (a_1^q b) \cdots (a_q^q b) \in R,$$

so $a_1 \cdots a_q b$ is integral over R and is in A. Therefore, $\mathfrak{a}^q \mathfrak{b}_A^{-1} \subseteq A$. Combining with $(\ref{eq:alpha})$ gives $\mathfrak{a}^q \mathfrak{b}_A^{-1} = A$, so \mathfrak{a} is invertible with inverse $\mathfrak{a}^{q-1} \mathfrak{b}_A^{-1}$.