. (10 points) Prove that if R is a symmetric, transitive relation on A and the domain of R is A, then R is effective on A.

If $(x,y) \in R$ And $x \in A \land y \in A$ Then $(y,x) \in R$ and $(x,x) \in R$ and $(y,y) \in R$ And $\forall \in A \exists y \in A [(x,y)] \in R$... $\forall x \in A[(x,x) \in R]$ & R is reflexive

12. (10 points) Suppose that R and S are equivalence relations on a set A. Prove that $R \cap S$ is an equivalence relation on A.

Let $a \in A$ be arbitrary

then $(a,a) \in R$ and $(a,a) \in S$ $(R \ge S = reflexive)$ $(a,a) \in R \cap S$ if $(a,b) \in A$ so $(a,b) \in R \cap S$. Then $(a,b) \in R \ni (a,b) \in S$ if $(b,a) \in R$ and $(b,a) \in S$ $(b,a) \in R \cap S \ni R \cap S$ is symmetric

Let $(a,b,c) \in A$ and $(a,b) (b,c) \in R \cap S$ then $(a,b) (b,c) \in R$ and $(a,b) (b,c) \in S$.

A is transitive so $(a,c) \in S$ $(a,c) \in R \cap S = transitive$

Rns is equivalence because its reflexive, symmetrice, of trans