5/27/14

- ON THURSDAY WE ARE HAVING THE FINAL TEST

- CAN USE ALL YOUR NOTES & PAST ASSIGNMENTS

SPEED SPEED = DISTANCE (M)
$$V = \frac{d}{t}$$

VELOCITY VELOCITY = DISPLACEMENT
$$V = \frac{d}{t}$$

VECTOR

	M ₂	
ACCELERATION	ACCELERATION = TIME (S)	$a = \frac{v - v_0}{t}$
	m/52 m/5/5	No = INITIAL VELOCITY
Newton's 1st Law	IT TAKES A NET FURCE TO CHANGE AN OBJECT'S MOTION.	
NEWTON'S 200 LAW	FORCE = MASS X ACCEL N kg M/s ²	F=m×a
Newton's 3ed Law	EVERY FORCE ACTING ON SOMETHING HAS AN EQUAL FORCE ACTING BACK	
FREEBODY DIAGRMS	- ARROWS SHOW FORCES - LABEL FORCES - ARROW LENGTH = FORCE 512E	

MOMENTUM	MOMENTUM = MASS X VELOCITY kg m SEC Kg SEC	P=MXV CASE
WORK	WORK = FORCE X DISPLACE MENT N	W=F×&
POWER	POWER = WORK (J) TIME (S)	$P = \frac{W}{t}$ $CAPITAL$

May 27, 2014

Now, finish the assignment from Friday and turn it in. After this, you may go to the shop and work on either your project or data collection.