Homework: 4.2

Monroe Stephenson Math 202: Vector Calculus

Due September 22nd, 2020

4.2.2

a.

We can simply evaluate and see that since $\varphi(x) = |x|^e \implies |\varphi_e(h)| = ||h|^e| \le ||c^{\frac{1}{e}}|^e| = c$ (since c > 0). Thus by definition, for all c > 0, $|\varphi(h)| \le c$ for all small enough h, or φ_e is o(1).

b.

 $\varphi_1 \implies \varphi(x) = |x|$. Thus we see, $|\varphi(h)| = |h| \le c|h|$, where $c \ge 1$. Hence, this satisfies the condition for $\mathcal{O}(h)$

c.

 φ_{e-1} is o(1), and φ_1 is $\mathcal{O}(h)$ and thus by the product property for Landau functions we see that $\varphi_e = \varphi_{e-1}\varphi_1$ is o(h). $\varphi_{e-1}\varphi_1 = |x|^{e-1}|x| = |x|^e$. Thus we have shown φ_e , such that e > 1, is o(h).

d.

This problem has shown that φ_e is $\mathcal{O}(h)$ when e = 1 and is o(h) when e > 1. We also showed that φ is o(1). Thus, since $o(h) \subset \mathcal{O}(h) \subset o(1)$, we see, φ is o(1) if e > 0 (as we showed all e for this are o(1)), φ is $\mathcal{O}(h)$ if $e \ge 1$ (as we showed 1 to be $\mathcal{O}(h)$ and $\mathcal{O}(h) \subset o(h)$), and finally φ is o(h) if e > 1 (which we showed in part c.)

4.2.4

First note φ is o(h) if and only if $|\varphi|$ is. Let φ have components $\varphi_1, \varphi_2, ..., \varphi_m$. For all h and each $j \in \{1, 2, ..., m\}$, by the size bounds,

$$|\varphi_j(h)| \le |\varphi(h)| \le \sum_{i=1}^m |\varphi_i(h)|.$$

Using the dominance principal of Landau spaces with the left hand side of size bounds for the implication $(|\varphi_j(h)| \leq |\varphi(h)|)$, we see that if $|\varphi|$ is o(h) then each component, $|\varphi_i|$ is o(h). For the implied by, using the dominance principal with the vector space properties with the right hand side

of the size bounds ($|\varphi(h)| \leq \sum_{i=1}^{m} |\varphi_i(h)|$ and o(h) + o(h) = o(h)), we see that if each component $|\varphi_i|$ is o(h) then so is $|\varphi|$. In total we get,

$$|\varphi|$$
 is $o(h) \implies \text{each } |\varphi_j|$ is $o(h) \implies \sum_{j=1}^m$ is $o(h) \implies |\varphi|$ is $o(h)$.

Thus $|\varphi|$ is o(h) if and only if each $|\varphi_i|$ is. As we noted above, we can drop the absolute values and we have the desired componentwise nature of o(h)

4.2.5

We will prove $\mathcal{O}(o(h)) = o(h)$. Suppose $\varphi : B(\mathbf{0}_n, \varepsilon) \to \mathbb{R}^m$ is o(h) and $\psi : B(\mathbf{0}_m, \rho) \to \mathbb{R}^l$ is $\mathcal{O}(k)$. Then,

for all
$$c > 0$$
, $|\varphi(h)| \le c|h|$ for all small enough h

Thus if h is small then so is $\varphi(h)$, we see

for some
$$d > 0$$
, $|\psi(\varphi(h))| \le d|\varphi(h)| \le cd|h|$ for all small enough h

Since c can be any positive number, and d can be some positive number, then cd can be any positive number. Thus multiplying the two to creates a new positive number that can be any number, let it be e. Thus, combining we see

for all
$$e > 0$$
, $|(\psi \circ \varphi)(h)| \le e|h|$ for all small enough h

Thus $\psi \circ \varphi$ is o(h).