# Vector space models

Аксенов Сергей 2019

#### Векторные представления документов: Bag of Words



#### Векторные представления документов: TF-IDF

$$ext{tf}(t,d) = rac{n_t}{\sum_k n_k}$$

$$\operatorname{idf}(t,D) = \log rac{|D|}{|\set{d_i \in D \mid t \in d_i}|}$$

$$\operatorname{tf-idf}(t,d,D) = \operatorname{tf}(t,d) \times \operatorname{idf}(t,D)$$

 $n_i$  — число слов в документе  $d_i$ 

|D| – число документов в корпусе D

## Векторные представления слов





### Векторные представления слов: РРМІ

#### Дано:

- ullet словарь V
- ullet корпус документов D, состоящих из слов  $w \in V$
- ullet множество слов-контекстов C,  $|C|=n_c$

Пусть  $f_{ij}$  – число вхождений слов  $w_i$  в документ  $d_j$ 

F- матрица частот с  $n_r$  строками и  $n_c$  столбцами.

X- матрица PPMI с  $n_r$  строками и  $n_c$  столбцами.

$$p_{kl} = \frac{f_{kl}}{\sum_{i=1}^{n_r} \sum_{j=1}^{n_c} f_{ij}}$$

$$p_{k*} = \frac{\sum_{j=1}^{n_c} f_{kj}}{\sum_{i=1}^{n_r} \sum_{j=1}^{n_c} f_{ij}}$$

$$p_{*l} = \frac{\sum_{i=1}^{n_r} f_{il}}{\sum_{i=1}^{n_r} \sum_{j=1}^{n_c} f_{ij}}$$

$$pmi_{ij} = log \frac{p_{ij}}{p_{i*}p*j}$$

$$x_{ij} = max(pmi_{ij}, 0)$$

#### Word2Vec — CBOW

X – one-hot представление входного слова w

 $w^\prime$  – выходное слово

$$y_i = p(w' = w_i)$$

 $W = |V \times N|$  – матрица весов между входным и скрытым слоем

 $h = x^T W$  – скрытый слой – выбирает одну строку из матрицы W

 $W' = |N \times V|$  – матрица весов между скрытым слоем и выходным

 $u_i = W'h$  – выходной слой

$$p(w_j) = y_j = rac{exp(u_j)}{\sum_i exp(u_i)}$$
 – искомая вероятность



## Word2Vec - skip-gram



## Word2Vec — skip-gram



## Word2Vec — skip-gram



## Word2Vec - skip-gram

