Submission to the CAESAR Competition

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, Martin Schläffer

Our Team

Christoph Dobraunig

Maria Eichlseder

Florian Mendel

Martin Schläffer

Main Design Goals

- Security
- Efficiency
- Lightweight
- Simplicity

- Online
- Single pass
- Scalability
- Side-Channel Robustness

ASCONGeneral Overview

- Nonce-based AE scheme
- Sponge inspired

	ASCON-128	ASCON-96
Security	128 bits	96 bits
Rate (r)	64 bits	128 bits
Capacity (c)	256 bits	192 bits
State size (b)	320 bits	320 bits

ASCONGeneral Overview

- Nonce-based AE scheme
- Sponge inspired

	ASCON-128	ASCON-96
Security	128 bits	128 bits
Rate (r)	64 bits	128 bits
Capacity (c)	256 bits	192 bits
State size (b)	320 bits	320 bits

ASCONGeneral Overview

- Nonce-based AE scheme
- Sponge inspired

	ASCON-128	ASCON-128a
Security	128 bits	128 bits
Rate (r)	64 bits	128 bits
Capacity (c)	256 bits	192 bits
State size (b)	320 bits	320 bits

ASCONWorking Principle

The encryption process is split into four phases:

- Initialization
- Associated Data Processing
- Plaintext Processing
- Finalization

ASCONInitialization

 Initialization: updates the 320-bit state with the key K and nonce N

Associated Data

 Associated Data Processing: updating the 320-bit state with associated data blocks A_i

Encryption

Plaintext Processing: inject plaintext blocks P_i
 in the state and extract ciphertext blocks C_i

Finalization

Finalization: inject the key K and extracts a tag
 T for authentication

Permutation

• SP-Network:

– S-Layer:

– P-Layer:

Permutation: S-Layer

- Algebraic Degree 2
 - Ease TI (3 shares)

- Branch Number 3
 - Good Diffusion

Bit-sliced Impl.

Permutation: P-Layer

Branch Number 4

$$\Sigma_0(x_0) = x_0 \oplus (x_0 \gg 19) \oplus (x_0 \gg 28)$$
 $\Sigma_1(x_1) = x_1 \oplus (x_1 \gg 61) \oplus (x_1 \gg 39)$
 $\Sigma_2(x_2) = x_2 \oplus (x_2 \gg 1) \oplus (x_2 \gg 6)$
 $\Sigma_3(x_3) = x_3 \oplus (x_3 \gg 10) \oplus (x_3 \gg 17)$
 $\Sigma_4(x_4) = x_4 \oplus (x_4 \gg 7) \oplus (x_4 \gg 41)$

Security Analysis

Differential and Linear Cryptanalysis

Rounds	Differential	Linear
1	1	1
2	4	4
3	15	13
4	44	43
≥ 5	> 64	> 64

ASIACRYPT 2015

ASCONSecurity Analysis

Differential and Linear Cryptanalysis

Rounds	Differential	Linear
1	1	1
2	4	4
3	15	13
4	44	43
≥ 5	> 64	> 64

ASIACRYPT 2015

ASCONSecurity Analysis

Analysis of round-reduced versions

Method	Rounds	Complexity
cube-like	5/12	2 ³⁵
	6/12	2 ⁶⁶
differential-	4/12	2^{18}
linear	5/12	2 ³⁶

CT-RSA 2015

Implementation/Performance

- Software
 - Intel Core2 Duo
 - ARM Cortex-A8

- Hardware
 - High-speed
 - Low-area

Software Implementation

• Intel Core2 Duo

	64	512	1024	4096
ASCON-128 (cycles/byte)	22.0	15.9	15.6	15.2
ASCON-128a (cycles/byte)	17.7	11.0	10.5	10.3

Dobraunig, Schläffer

Software Implementation

• Intel Haswell (four message per core)

	64	512	1024	4096
ASCON-128 (cycles/byte)	10.5	7.3	7.1	6.9
ASCON-128a (cycles/byte)	8.5	5.3	5.0	4.8

Dobraunig, Senfter

Hardware Implementation

Unprotected Implementations

	Variant 1	Variant 2	Variant 3
Area (kGE)	7.1	24.9	2.6
Throughput (Mbps)	5 524	13 218	14

Gross, Wenger, Dobraunig, Ehrenhöfer

Hardware Implementation

Threshold Implementations

	Variant 1	Variant 2	Variant 3
Area (kGE)	28.6	123.5	7.9
Throughput (Mbps)	3 774	9 018	14

Gross, Wenger, Dobraunig, Ehrenhöfer

Thank you!

http://ascon.iaik.tugraz.at

References

- Christoph Dobraunig, Maria Eichlseder, Florian Mendel, Martin Schläffer.
 Cryptanalysis of Ascon.
 CT-RSA 2015.
- Christoph Dobraunig, Maria Eichlseder, Florian Mendel.
 Heuristic Tool for Linear Cryptanalysis with Applications to CAESAR Candidates.
 ASIACRYPT 2015
- Hannes Groß, Erich Wenger, Christoph Dobraunig, Christoph Ehrenhöfer.
 Suit up! Made-to-Measure Hardware Implementations of Ascon.
 DSD 2015
- Philipp Jovanovic, Atul Luykx, Bart Mennink.
 Beyond 2^(c/2) Security in Sponge-Based Authenticated Encryption Modes.
 ASIACRYPT 2014.
- Elena Andreeva, Joan Daemen, Bart Mennink, Gilles Van Assche.
 Security of Keyed Sponge Constructions Using a Modular Proof Approach.
 FSE 2015
- Yosuke Todo.
 Structural Evaluation by Generalized Integral Property.
 FUROCRYPT 2015.