1.

Clock tick

	ook tiok		b_gob.		P_cpu		P_dob.		P_opu		P_dop		P_opu		P_dop		P_opu	
Starting point		t	60				60					60	0			60		C
1				60		1		60		0		60		0		60		C
99 100 101		60		99		60		0			60	0			60		(
			60+50/4=73				60					60		0		60		(
		73									60				60		(
10	99			73		50		60		99		60		0		60		(
	00		60+25/		50/2=2				100/2=			60		0		60		(
	01		00.237	66		25		73	100/2	50		60		1		60		
	1		60		1		60		0		60		0		60		0	
	9		60		9		60		0		60		0		60		0	
	10		60		10		60		0		60		0		60		0	
	19		60		10		60		9		60		0		60		0	
	20		60		10		60		10		60		0		60		0	
	30		60		10		60		10		60		10		60		0	
	40		60		10		60		10		60		10		60		10	
	50		60		20		60		10		60		10		60		10	
	60		60		20		60		20		60		10		60		10	
	70		60		20		60		20		60		20		60		10	
	80		60		20		60		20		60		20		60		20	
	90		60		30		60		20		60		20		60		20	
	99		60		30		60		29		60		20		60		20	
	100		60		30		60		24		60		20		60		20	
	110		60		30		60		24		60		24		60		20	
	120		60		30		60		24		60		24		60		24	
	130		60		34		60		24		60		24		60		24	
	140		60		34		60		34		60		24		60		24	
	150		60		34		60		34		60		34		60		24	
	160		60		34		60		34		60		34		60		34	
	170		60		44		60		34		60		34		60		34	
_	180		60		44		60		44		60		34		60		34	
_	190		60		44		60		44		60		44		60		34	
\vdash	200		60		44		60		44		60		44		60		44	
\vdash																		
	201		60		45		60		45		60		45		60		45	

B process

p_uspri p_cpu

C process

p_uspri p_cpu

D process

p_cpu

p_uspri

A process

p_uspri p_cpu

- a. Open ()
 - Ezzel nyitjuk meg a fájlt. Mivel egész értéket visszaadó függvény, ezért érdemes beletenni egy egész típusú változóba. Jelen esetben fdescriptor lesz.
 - ii. Két argumentuma van:
 - 1. Fájl elérési útja.
 - 2. Nyitás módja.
- b. Hibakezelés
 - i. Ha az fdescriptor -1 értékkel tér vissza, akkor hibás a fájlolvasás. Ezt használjuk ki az ellenőrzésnél.
- c. Read ()
 - i. Bit szinten tudjuk beolvasni vele a fájlt.
 - ii. Három argumentuma van:
 - 1. Bitszinten beolvasott fájl (fdescriptor).
 - 2. Egy string, ami C-ben karaktertömb, ez fog a bufferként funkcionálni.
 - 3. Egy egész szám érték, ami meghatározza, hány byte-ot szeretnénk olvasni.
- d. Lseek()
 - i. A kurzort pozícionálja a fájlban.
 - ii. Ismért három argumentuma van:
 - 1. fdescriptor
 - 2. offset, amivel be tudjuk állítani a kurzor pozícióját. Egész szám típusú.
 - 3. Egy egész szám, ami a működést definiálja. (SEEK_SET, SEEK_CUR, SEEK_END)
- e. Write ()
 - i. Bit szinten tudunk fájlba írni
 - ii. Három argumentum:
 - 1. Szokásos fdescriptor.
 - 2. Ismét egy buffer, aminek a tartalmát szeretnénk beírni a fájlba.
 - 3. Egész szám, ami megmutatja, hány byte-ot szeretnénk írni a fájlba.