Market Basket Analysis

R Packages required for Market Basket Analysis

- R 3.2.3 or higher version should be installed
- Following Libraries are installed. Check by running the below command;
 If Library is not installed then run the install.packages command

it is okay if you get Warning Message, but you should not get Error Message

```
## install.packages("arules")
## install.packages("arulesViz")

library(arules) ## requires R 3.2.3 or above
library(arulesViz)
```

Market Basket Analysis -Overview

Market Basket Analysis greatlearning

Market basket analysis is the study of items that are purchased (or otherwise grouped) together in a single transaction or multiple, sequential transactions.

Market Basket Analysis is a modelling technique based upon the theory that if you buy a certain group of items, you are more (or less) likely to buy another group of items.

e.g.

- n MBA the objective is to find rules of association
- Examples:
 - {Noodles, Chips} => {Soda}Retail
 - {Mobile Handset} => {Scratch Guard}Electronics
 - {Formal Shirts} => {Formal Trousers}Apparel
 - {Munnar Hill Station} => {Thekkady Hill Station} Travel & Tourism
 - {Rameshwaram Temple} => {Madurai Temple} Travel & Tourism
 - {Writing slate} => {Slate Pencil} Retail Stationary
 - {Comprehensive Motor Insurance} => {Health Insurance}

Applications

 Product recommendation – like Amazon's "customers who bought that, also bought this"

 Grouping products that co-occur in the design of a store's layout to increase the chance of cross-selling

Challenge

major difficulty is that a large number of the rules found may be trivial for anyone familiar with the business

Terminology

- Items are the objects that we are identifying association between
- Association Rules a relation of the form X -> Y
 - If you have the item / items in the items set on the LHS then customer will be interested in the item Y on the RHS
- Support is the fraction of transactions in the dataset that contain the item or item set
- Confidence is the proportion of times the customer has taken the item Y given she has also taken X
- Lift is ratio of Confidence of the Rule divided by support of Product Y alone

MBA Calculations

greatlearning

- Let us assume you have the Transactions for a Retail Outlet
- Transaction Summary

```
# Invoices = 10000
# Invoices has Product A in the item set = 900
# Invoices has Product B in the item set = 500
# Invoice has both Products A & B in the item set = 350
```

Support Computation

```
Support of Product A = 900 / 10000 = 9\%
Support of Product B = 500 / 10000 = 5\%
```

• Rule A -> B (Customer who buy A also buys B)

```
Support of Product A & B = 350 / 10000 = 3.5\%

Confidence of Rule A -> B = 350 / 900 = 38.9\% (%of customers who bought B from those who bought A)

Lift = Confidence / Support of Product B = 38.9 / 5 = 7.77

(Likelihood of customer purchasing product B is 7.77 times higher if the customer has purchased A)
```

Perform Market Basket Analysis in R

Data Import

```
greatlearning
```

```
## Author: Rajesh Jakhotia
## Company Name: K2 Analytics Finishing School Pvt. Ltd
## Email: ar.jakhotia@k2analytics.co.in
## Website: k2analytics.co.in

setwd("D:/K2Analytics/MarketBasketAnalysis")
getwd()

## Let us import the data that we need to perform the Market Basket Analysis
RTxn <- read.table("datafiles/Market_Basket_Analysis.csv", sep = ",", header = T)
nrow(RTxn)</pre>
```

View the Data

greatlearning

Let us view and eye-ball the data

View(RTxn)

str(RTxn)

RTxn\$Invoice_No <- as factor(RTxn\$Invoice_No)

E	אה כ- אל דארו	torí RTxnšlnvo	ICE NOT										
	Store_ID [‡]	Invoice_No [‡]	Till_No [‡]	Item_No [‡]	Txn_Date †	SKU_Code [‡]	Item_Desc	Qty ‡	Unit [‡]	Unit_Price [‡]	Price [‡]	Cust_ID [‡]	Emp_ID
	1	100012	1	1	1-Jan-16	SKU032	Breakfast Cereals	0.25	Kg	55	13.75	23464	EMP001
	1	100012	1	2	1-Jan-16	SKU076	Fruit Juices	0.50	Litre	67	33.50	23464	EMP001
	1	100012	1	3	1-Jan-16	SKU208	Noodles	1.00	Pack	55	55.00	23464	EMP001
	1	100012	1	4	1-Jan-16	SKU048	Cut Vegetables	0.25	Kg	67	16.75	23464	EMP001
	1	100017	1	1	1-Jan-16	SKU004	Apple	0.25	Kg	220	55.00	23469	EMP001
	1	100017	1	2	1-Jan-16	SKU283	Sauces & Salad Dressing	1.00	Pack	33	33.00	23469	EMP001
	1	100018	1	1	1-Jan-16	SKU032	Breakfast Cereals	0.25	Kg	55	13.75	23470	EMP001
	1	100018	1	2	1-Jan-16	SKU037	Buns	12.00	Unit	10	120.00	23470	EMP001
	1	100018	1	3	1-Jan-16	SKU038	Butter	0.25	Kg	300	75.00	23470	EMP001
	1	100018	1	4	1-Jan-16	SKU039	Cakes	0.25	Kg	650	162.50	23470	EMP001
	1	100018	1	5	1-Jan-16	SKU040	Candles	12.00	Unit	10	120.00	23470	EMP001
	1	100018	1	6	1-Jan-16	SKU041	Canned Food	1.00	Pack	35	35.00	23470	EMP001

Structure of Data

Understanding the data structure and data type of various columns
str(RTxn)
RTxn\$Invoice No <- as.factor(RTxn\$Invoice No)</pre>

```
'data.frame': 3867 obs. of 13 variables:
$ Store_ID : int 1111111111...
$ Invoice_No: int 100012 100012 100012 100012 100017 100017 100018 100018 100018 100018 ...
$ Till_No : int 1 1 1 1 1 1 1 1 1 1 ...
$ Item_No : int 1 2 3 4 1 2 1 2 3 4 ...
$ Txn_Date : Factor w/ 1 level "1-Jan-16": 1 1 1 1 1 1 1 1 1 1 ...
$ SKU_Code : Factor w/ 301 levels "SKU001", "SKU002",...: 32 76 208 48 4 283 32 37 38 39 ...
$ Item_Desc : Factor w/ 301 levels "Aerated Drinks",...: 33 80 205 51 5 279 33 39 40 41 ...
            : num 0.25 0.5 1 0.25 0.25 1 0.25 12 0.25 0.25 ...
$ Qty
           : Factor w/ 5 levels "Can", "Kg", "Litre", ...: 2 3 4 2 2 4 2 5 2 2 ...
$ Unit
$ Unit Price: int 55 67 55 67 220 33 55 10 300 650 ...
$ Price : num 13.8 33.5 55 16.8 55 ...
$ Cust_ID : int 23464 23464 23464 23469 23469 23470 23470 23470 23470 ...
$ Emp_ID
            : Factor w/ 9 levels "EMP001", "EMP002",...: 1 1 1 1 1 1 1 1 1 1 1 ...
```

Aggregating data at Transaction Levelreatlearning

```
## Aggregating the Invoices at Transaction Level
## We want one row per transaction.
## The one row should have details of all the products purchased in that transaction
?split
Agg.RTxn <- split(RTxn$Item_Desc,RTxn$Invoice_No)
class(Agg.RTxn)
Agg.RTxn
## To see specific row number transaction
Agg.RTxn [105]</pre>
```


Removing duplicates

```
##install.packages("arules")
library(arules)

## logic to remove duplicate items from the list
Agg.RTxn_DD <- list()
for (i in 1:length(Agg.RTxn)) {
    Agg.RTxn_DD[[i]] <- as.character(Agg.RTxn[[i]][!duplicated(Agg.RTxn[[i]])])
}

## converting transaction items from list format to transaction format
Txns <- as(Agg.RTxn_DD, "transactions")</pre>
```

Summarizing the Transactions

```
summary(Txns)
              transactions as itemMatrix in sparse format with
               415 rows (elements/itemsets/transactions) and
               301 columns (items) and a density of 0.02783493
              most frequent items:
                                  Milk Fruit Juices Potato Chips
                                                                  Rawa Sooii
                                                                                 (Other)
                     Bread
                                                                                    3113
                        90
                                    75
                                                 70
                                                             65
              element (itemset/transaction) length distribution:
              sizes
                                      9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 31
              79 67 36 25 23 21 18 18 16 8 10 9
                                                    6 4 7 5 4 4 5 3 4 4 3 2 3 1 3 2
              32 33 35 36 37 38 40 41 44 46 47 49 50 52 53 65
               2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1
                 Min. 1st Qu. Median Mean 3rd Qu.
                                                       Max.
                               5.000 8.378 10.500 65.000
                1.000 2.000
              includes extended item information - examples:
                           labels
                   Aerated Drinks
                      Agarbatties
              3 Antiseptic Liquid
```

Item Frequency Plot

greatlearning

Item Frequency Plot

itemFrequencyPlot(Txns, topN = 10)

Execute MBA

```
greatlearning
```

```
## install.packages("arulesViz")
 library("arulesViz")
 ?apriori
 arules1 <- apriori(data = Txns)
 summary(arules1)
set of 4 rules
rule length distribution (lhs + rhs):sizes
4
  Min. 1st Qu. Median Mean 3rd Qu.
                                     Max.
summary of quality measures:
                 confidence
                                   lift
   support
Min. :0.1036 Min. :0.8148 Min. :3.757
 Median :0.1120 Median :0.8368 Median :5.391
 Mean :0.1114 Mean :0.8671 Mean :5.358
 3rd Qu.:0.1181 3rd Qu.:0.8774
                              3rd Qu.:6.893
                     :0.9800 Max.
      :0.1181 Max.
                                     :6.893
mining info:
 data intransactions support confidence
 Txns
              415
                     0.1
                              0.8
```

Inspect the rules

greatlearning

See the Association Rules inspect(arules1)

```
lhs rhs support confidence lift
1 {Butter} => {Bread} 0.1036145 0.8431373 3.887800
2 {Breakfast Cereals} => {Bread} 0.1060241 0.8148148 3.757202
3 {Dahi} => {Cut Vegetables} 0.1180723 0.9800000 6.893220
inspect(sort(arule4 {Cut Vegetables}) => {Dahi} 0.1180723 0.8305085 6.893220
```

Execute MBA with parameters

```
arules2 <- apriori(
              data = Txns, parameter = list(
              support = 0.05, confidence = 0.5, maxlen = 2
               Apriori
               Parameter specification:
                confidence minval smax arem aval original Support support minlen maxlen target
                        0.5
                               0.1
                                   1 none FALSE
                                                              TRUE
                                                                      0.05
                                                                                1
                                                                                        2 rules FALSE
               Algorithmic control:
                filter tree heap memopt load sort verbose
                    0.1 TRUE TRUE FALSE TRUE
               Absolute minimum support count: 20
               set item appearances ...[0 item(s)] done [0.00s].
               set transactions ...[301 item(s), 415 transaction(s)] done [0.00s].
               sorting and recoding items ... [45 item(s)] done [0.00s].
               creating transaction tree ... done [0.00s].
               checking subsets of size 1 2 done [0.01s].
               writing ... [152 rule(s)] done [0.00s].
               creating 54 object ... done [0.00s].
```

Graphically seeing the rules

Interactive Plot

Plot Interactivee Graphs

subrules2 <- head(sort(arules2, by="support"), 20)
plot(subrules2, method="grouped", interactive=TRUE)</pre>

Grouped matrix for 20 rules

Exporting Rules to Excel for easy interpretation **greatlearning**

```
rules_df <- as(arules2,"data.frame")
rules_df$lhs_suuport <- rules_df$support / rules_df$confidence;
rules_df$rhs_support <- rules_df$confidence / rules_df$lift;
View(rules_df)
write.table(rules_df, file = "output/mba_output.csv", sep = ",", append = F, row.names = F)
unlink("mba_output.csv")</pre>
```

	rules	support †	confidence $^{\scriptsize \scriptsize $	lift [‡]	Ihs_suuport †	${\sf rhs_support} \ ^{\diamondsuit}$
1	{Butter} => {Bread}	0.10361446	0.8431373	3.887800	0.12289157	0.21686747
2	{Banana} => {Apple}	0.05542169	0.9200000	6.060317	0.06024096	0.15180723
3	{Regular Eggs} => {Raw Chicken}	0.05301205	0.8461538	6.502849	0.06265060	0.13012048
4	{Other Cereals} => {Others}	0.06024096	0.8620690	10.522312	0.06987952	0.08192771
5	{Others} => {Other Cereals}	0.06024096	0.7352941	10.522312	0.08192771	0.06987952
6	{Other Cereals} => {Other Flours}	0.06024096	0.8620690	10.221675	0.06987952	0.08433735
7	{Other Flours} => {Other Cereals}	0.06024096	0.7142857	10.221675	0.08433735	0.06987952
8	{Other Cereals} => {Other Dals}	0.06987952	1.0000000	10.641026	0.06987952	0.09397590
9	{Other Dals} => {Other Cereals}	0.06987952	0.7435897	10.641026	0.09397590	0.06987952
10	{Other Cereals} => {Potato Chips}	0.05060241	0.7241379	4.623342	0.06987952	0.15662651

Thank you