Computação Natural Gisele L. Pappa

Como aprendemos?

Inspiração...

	Brain	Computer
No. of processing units	$\approx 10^{11}$	$\approx 10^9$
Type of processing units	Neurons	Transistors
Type of calculation	massively parallel	usually serial
Data storage	associative	address-based
Switching time	$pprox 10^{-3} \mathrm{s}$	$\approx 10^{-9} \text{s}$
Possible switching operations	$\approx 10^{13} \frac{1}{s}$	$\approx 10^{18} \frac{1}{s}$
Actual switching operations	$pprox 10^{12} rac{1}{s}$	$pprox 10^{10} rac{1}{s}$

Table 1.1: The (flawed) comparison between brain and computer at a glance. Inspired by: [Zel94]

Definição

"Redes Neurais Artificiais são dispositivos de computação paralela que consistem de muitos processadores interconectados. Esses processadores são simples... Cada processador está ciente apenas dos sinais que manda para e recebe de outros processadores periodicamente" (Callan, "The Essence of Neural Networks")

De onde veio a inspiração?

- O processamento que ocorre no cérebro é altamente paralelo
 - Paralelismo é uma das características de arquitetura mais difíceis de serem computacionalmente bem exploradas
 - Entender como o cérebro "computa" pode nos ajudar

De onde veio a inspiração?

- Os "processadores" do cérebro (neurônios) são muito lentos se comparados com dispositivos eletrônicos.
 - Mesmo assim, o sistema nervoso pode produzir resultados para problemas difíceis muito mais rápido que um computador
- A ideia é produzir neurônios artificiais que usem a mesma arquitetura de processamento do cérebro, mas que sejam mais rápidos que os neurônios naturais

O Sistema Nervoso (SN)

• O sistema nervoso traz informações para o organismo sobre o ambiente ao seu redor através de entradas sensoriais, processa a informação de entrada, compara com experiências anteriores, e transforma essas entradas em ações ou memória

Níveis de Organização do SN

Neurônios

- Processamento de sinal
- Dependendo das condições do ambiente, neurônios geram sinais (potenciais elétricos) que são utilizados para transmitir "informações" a outros neurônios aos quais ele está conectado.

Estrutura de um Neurônio

Redes, Camadas e Mapas

- Neurônios podem ter conexões "para frente" (forward) ou "por realimentação" (feedback) com outros neurônios
- Essas interconexões dão origem às redes neurais (neuronais)
- Representação da informação é feita de maneira distribuída, e seu processamento é paralelo

Redes, Camadas e Mapas

- Em algumas regiões do cérebro, os neurônios estão organizados em camadas
 - Camada de entrada, camadas escondidas e camada de saída
- Em outras regiões (sistemas sensorial e motor), a organização dos neurônios é como uma mapa topográfico
 - Ex: neurônios de áreas visuais são adjacentes a neurônios do campo de recepção da visão, e juntos eles formam o mapa da retina

Aprendizagem

- O SN está continuamente se modificando e se adaptando
- Aprendizagem global é resultado de mudanças locais nos neurônios
 - Sinapses
- 2 tipos de mecanismo de aprendizagem e memória:
 - Potenciação de longa duração
 - Depressão de longa duração

Aprendizagem

- Sinapses e neurotransmissores
 - Quando o impulso de um neurônio chega ao axônio, causa a liberação de neurotransmissores (substâncias químicas), que passam para os receptores dos dendritos de um outro neurônio
- A chegada desses neurotransmissores causa mudanças no potencial elétrico de um dendrito, e eles são propagados para o corpo da célula
- No corpo da célula, esses sinais (neurotransmissores) são integrados (somados) e o potencial de membrana gerado determinará se o neurônio vai excitar os outros na rede ou não

Memória

- Também é produto da adaptação das conexões das sinapses
- 3 tipos de memória
 - Curto prazo
 - Médio prazo
 - Longo prazo
 - Depende de mudanças estruturais das sinapses

- Processamento da informação ocorre nos neurônios
- Neurônios recebem e enviam estímulos do/ para outros neurônios e de/para o ambiente
- Neurônios podem ser conectados formando redes neurais

- Informação é transmitida através de sinapses
- A eficiência de uma sinapse é representada por um peso, que corresponde a informação armazenada no neurônio
- Conhecimento é adquirido através de aprendizagem
 - Adaptação dos pesos das sinapses de acordo com a informação do ambiente

- Caracterizadas por 3 elementos:
 - Conjunto de neurônios artificiais
 - Um padrão de conexão entre os neurônios
 - Arquitetura ou estrutura da rede
 - Método que determina o valor dos pesos
 - Algoritmo de treinamento ou aprendizagem

Neurônios Artificiais

- Alto nível de abstração a relação a neurônios biológicos
- 2 modelos de neurônios
 - McCulloch-Pitts (1943) função lógica
 - Modelo conexionista genérico

Neurônio de McCulloch-Pitts (1943)

- Neurônio de 2 estados
 - Comportamento de um neurônio é um processo binário
- Cada neurônio tem um limiar fixo *l*
 - função de ativação
- Os valores dos pesos da entrada são sempre iguais

Neurônio de McCulloch-Pitts (1943)

- Neurônio de 2 estados
- Cada neurônio tem um limiar fixo *l*
- Os valores dos pesos da entrada são sempre iguais

Neurônio de McCulloch-Pitts (1943)

- Considere um neurônio com 2 entradas binárias x₁ e x2
- O que acontece quando o limiar:

a b	a OR b	a	b	a AND b
0 0	0	0	0	0
0 1	1	0	1	0
1 0	1	1	0	0
1 1	1	1	1	1

Modelo Conexionista Genérico

• Bias do neurônio

- Aumenta ou diminui a entrada da rede para a função de ativação
- Ele substitui o limiar

Diferenças entre os 2 neurônios

• McCulloch-Pitts

$$y = f(u) = \begin{cases} 1 & \text{se } u > = l \\ 0 & \text{caso contrário} \end{cases}$$

onde
$$u = x_1 + x_2$$

Modelo Conexionista Genérico

$$y = f(u) = \begin{cases} 1 & \text{se } u > = 0 \\ 0 & \text{caso contrário} \end{cases}$$
onde
$$u = w_1 x_1 + w_2 x_2 + b_k$$

Qual o papel do peso e do bias?

Qual o papel do peso e do bias?

Modelo Conexionista Genérico

- Funções de ativação
 - Introduzem não linearidade

- (a) Linear
- (b) Limiar
- (c) Sigmoid (logistica)
- (d) Gaussiana
- A sigmoide é a função mais utilizada na literatura
- A Gaussiana é muito utilizada em redes RBF

Arquiteturas de Rede

- Interação entre agentes
 - Leva a um comportamente emergente
- Sistemas naturais
 - Comportamento de um neurônio pode afetar o comportamento de outros
 - Individualmente, o comportamente de um neurônio não leva a nenhuma conclusão
 - Não se conhece muito sobre como os neurônios estão conectados no cérebro (temos informações sobre áreas específicas)

Arquiteturas de Rede

- Existe uma arquitetura padrão para redes
 - Uma camada de entrada
 - Uma ou mais camadas intermediárias (oculta)
 - Uma camada de saída
- A maneira como os neurônios estão conectados é fortemente dependente do algoritmo de aprendizagem utilizado para treinar a rede

Arquiteturas de Rede

- Existem 3 tipos principais de arquitetura:
 - Redes feedfoward de uma camada
 - Redes *feedfoward* de multi-camadas
 - Redes recorrentes

Redes feedfoward

 Propagação do sinal ocorre sempre da entrada para saída

Redes feedfoward

- Redes de uma camada
 - Normalmente as funções de entrada são lineares
 - Simplesmente propagam sinal para próxima camada
- Redes multi-camada
 - Insere-se funções não lineares na camada oculta
 - O algoritmo de treinamento para este tipo de rede envolve a retropropagação (backpropagation) do erro entre a saída da rede e uma saída desejada conhecida.
- O que acontece se as funções de ativação das unidades intermediárias forem lineares?

Redes Recorrentes

 Possuem pelo menos um laço realimentando a saída de neurônios para outros neurônios da rede.

O que uma rede faz?

Figure 4.3: Example of function approximation with a feedforward network. Top left: The original learning samples; Top right: The approximation with the network; Bottom left: The function which generated the learning samples; Bottom right: The error in the approximation.

O que uma camada a mais faz?

Structure	Types of decision regions	Exclusive OR problem	Classes with meshed regions	Most general region shapes	
Single-layer	Half Plane (Bounded by hyperplane)	A B B A	B		(a)
Two-layer	Convex (Open or closed regions)	A B A	B		(b)
Three-layer	Arbitrary (Complexity limited by number of neurons)	B A	B		(c)

Aprendizagem

• Aprendizagem (treinamento) corresponde ao processo de ajuste dos parâmetros livres da rede através de padrões (ou dados) de entrada ou de treinamento:

estímulo adaptação novo comportamento da rede

Aprendizagem

• Seja w(t) um peso sináptico de um dado neurônio, no instante de tempo t. O ajuste $\Delta w(t)$ é aplicado ao peso sináptico w(t) no instante t, gerando o valor corrigido w(t+1), na forma:

$$w(t+1) = w(t) + \Delta w(t)$$

- Várias maneira de obter $\Delta w(t)$:
 - regra de Hebb, regra Delta, algoritmo de backpropagation, estratégias de competição, máquina de Boltzmann

Regra de Hebb

• As mudanças nos pesos das conexões são dadas pelo produto da atividade pre e pós sinaptica, ou seja:

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \alpha y_i \mathbf{x}_i$$

$$\alpha \text{ \'e a taxa de aprendizagem}$$

$$\mathbf{x/y \text{ correspondem a entrada/sa\'ida do neurônio i}}$$

- Se α é pequeno, rede aprende muito devagar
- Se α é alto, os pesos acabam divergindo

Aprendizagem

Supervisionado

- Existe uma resposta de saída esperada para rede
- Não-supervisionado
 - Resposta esperada é desconhecida
- Por reforço
 - Existe apenas um valor escalar que indica a qualidade do desempenho da RNA.

Aprendizagem Supervisionada

• Capacidade de Generalização da rede

Aprendizagem Supervisionada

- Saída esperada não é conhecida
 - Não é possível propagar o erro para atualizar os pesos da rede
- A rede se adapta a regularidades estatísticas nos dados de entrada
 - Cria representações internas que codificam as características dos dados de entrada, tornandose capaz de identificar a quais classes novos padrões pertencem.

- Utiliza algoritmos de aprendizagem competitiva
 - Os neurônios de saída da rede competem entre si para se tornarem ativos, com um único neurônio sendo o vencedor da competição
 - Neurônios individuais aprendem a se especializar a conjuntos (grupos ou clusters) de padrões similares. Eles se tornam detectores ou extratores de características para diferentes classes dos dados de entrada

- Para que um neurônio i seja o vencedor
 - A distância entre o vetor de pesos w_i deste neurônio e um determinado padrão de entrada x deve ser a menor dentre todos os outros neurônios da rede, dada uma métrica de distância ||·|| (geralmente utiliza-se a distância Euclidiana).

Adaptação dos pesos

 $\Delta\omega = \begin{cases} 0 & \text{se perde a competição} \\ \alpha(x\text{-}w_i) & \text{se ganha a competição} \end{cases}$ onde α indica o tamanho do passo a ser dado na direção de x. O parâmetro α é conhecido como taxa de aprendizagem.

Aprendizagem por Reforço

- Durante o processo de aprendizagem, a rede "tenta" algumas ações (saídas) e recebe um sinal de reforço (estímulo) do ambiente que permite avaliar a qualidade de sua ação.
- O sistema em aprendizagem seletivamente retem as ações que levam a uma maximização dos sinais de reforço.

Aprendizagem por Reforço

- A cada iteração t, o sistema em aprendizagem recebe uma entrada $\mathbf{x}(t)$, fornece uma saída y(t), e no próximo passo recebe um escalar de reforço r(t+1) e um novo estado do ambiente $\mathbf{x}(t+1)$.
- Um dos conceitos básicos por trás da aprendizagem por reforço é a busca por tentativa e erro

Tipos de Redes Neurais

- Supervisionadas
 - Backpropagation
 - RBF (Radial Basis Function)
 - Redes de memória associativa
 - Boltzmamm
 - Hopfield
 - Ensina a rede a aprender associações entre os padrões de entrada e saída

Tipos de Redes Neurais

- Não-supervisionadas
 - ART e variações
 - Resolve um dos maiores problemas de RNA: incapacidade de aprender material novo preservando o material antigo
 - Trabalha em dois estados:
 - De aprendizagem
 - De estabilidade
 - Auto-organizável
 - SOM (Self-Organization Maps) ou Redes de Kohonen

Velhas histórias sobre redes neurais...

• Exército americano usou redes neurais para identificar tanques inimigos escondidos entre árvores

Reconhecimento de Tanques em Imagens

 Idéia: acoplar uma câmera a cada tanque, que scaneava o ambiente continuamente.
 Quando algo suspeito era encontrado, avisar os soldados. Usar uma rede neural para realizar tal tarefa.

Reconhecimento de Tanques em Imagens

- Dados de entrada
 - 100 fotos de tanques escondidos atrás de árvores e 100 fotos de árvores.
 - Metade das fotos de cada grupo utilizado para treinar uma rede
- Teste acerto de 100%
- Teste independente: outras 100 fotos de tanques... As respostas da rede foram aleatórias.. Por que?

Reconhecimento de Tanques em Imagens

- Todas as fotos dos tanques haviam sido tiradas em um dia nublado, e todas as fotos das árvores em um dia ensolarado
- A rede aprendeu a distinguir os dois grupos utilizando a cor do céu!
- Moral da história: em certas aplicações, redes podem não ser a melhor opção, dado que o modelo gerado dificilmente pode ser compreendido

Leitura Recomendada

• ftp://ftp.sas.com/pub/neural/FAQ.html#questions