REPORT ON DRILLED SHAFT LOAD TESTING (OSTERBERG METHOD)

Dedicated Test Shaft - I-235 over Des Moines River Des Moines, IA (LT-8854)

Prepared for:

Jensen Construction Company

5550 NE 22nd Street

Des Moines, IA

Attention:

Mr. Dan Timmons

PROJECT NUMBER: LT-8854, November 18, 2002

Head Office: 2631-D NW 41st Street Gainesville FL 32606 Telephone: 352-378-3717 800-368-1138

Fax:

352-378-3934

Regional Offices:

785 The Kingsway Peterborough, Ontario, Canada K9J 6W7 5740 Executive Drive, Suite 108, Baltimore, MD 21228

705-749-0076 410-788-4180 800-436-2355 705-743-6854 410-788-4182

November 18, 2002

Jensen Construction Company 5550 NE 22nd Street Des Moines, IA

Attention: Mr. Dan Timmons

Load Test Report: Dedicated Test Shaft - I-235 over Des Moines River

Location: Des Moines, IA (LT-8854)

Dear Mr. Timmons,

The enclosed report contains the data and analysis summary for the O-cell™ test performed on Dedicated Test Shaft - I-235 over Des Moines River, on November 8, 2002. For your convenience, we have included an executive summary of the test results in addition to our standard detailed data report.

We would like to express our gratitude for the on-site and off-site assistance provided by your team and we look forward to working with you on future projects.

We trust that the information contained herein will suit your current project needs. If you have any questions or require further technical assistance, please do not hesitate to contact us at 800-368-1138.

Best Regards,

Michael D. Ahrens, P.E. For LOADTEST, Inc.

EXECUTIVE SUMMARY

On November 8, 2002, we tested a 1060-mm (42-inch) dedicated test shaft constructed by Jensen Construction Company. Mr. Robert C. Simpson and Mr. Denton A. Kort of LOADTEST, Inc. carried out the test. Jensen Construction Company completed excavation and concreting of the 22.70-meter (74.5-foot) deep shaft socketed in clay shale under water on October 25, 2002. Sub-surface conditions at the test shaft location consist of overburden soils underlain by clay shale. Representatives of the lowa Department of Transportation observed construction and testing of the shaft.

The maximum bi-directional load applied to the shaft was 19.01 MN (4,273 kips). At the maximum load, the displacements above and below the O-cell™ were 46.31 mm (1.823 inches) and 38.21 mm (1.504 inches), respectively. Unit shear data calculated from strain gages indicated an average net unit side shear of 671 kPa (14.0 ksf) between the O-cell™ and the tip of the outer isolation casing. Using this average side shear data, we calculate a maximum applied end bearing pressure of 18,083 kPa (378 ksf).

Using the procedures described in the report text and in <u>Appendix C</u>, we constructed an equivalent top load curve for the test shaft. For a top loading of 18.0 MN (4,038 kips), the adjusted test data indicate this shaft would settle approximately 12.7 mm (0.50 inches) of which 10.8 mm (0.42 inches) is estimated elastic compression.

LIMITATIONS OF EXECUTIVE SUMMARY

We include this executive summary to provide a very brief presentation of some of the key elements of this O-cellTM test. It is by no means intended to be a comprehensive or stand-alone representation of the test results. The full text of the report and the attached appendices contain important information which the engineer can use to come to more informed conclusions about the data presented herein.

TABLE OF CONTENTS

Site Conditions And Shaft Construction	
Site Sub-surface ConditionsTest Shaft Construction	1
Osterberg Cell Testing	1
Shaft Instrumentation Test Arrangement Data Acquisition Testing Procedures	1 2 2
Test Results and Analyses	3
General Side Shear Resistance Combined End Bearing And Lower Side Shear Resistance Creep Limit. Equivalent Top Load Shaft Compression Comparison	4 4 5
Limitations and Standard of Care	

- Average Net Unit Side Shear Values, Table A.
- Summary of Dimensions, Elevations & Shaft Properties, <u>Table B.</u>
- Schematic Section of Test Shaft, Figure A.
- Osterberg Cell Load-Movement Curves, Figure 1.
- Equivalent Top Load Curve, Figure 2.
- Strain Gage Load Distribution Curves, Figure 3.
- Combined End Bearing and Lower Side Shear Creep Limit, <u>Figure 4</u>
- Upper Side Shear Creep Limit, <u>Figure 5</u>.
- Field Data & Data Reduction, <u>Appendix A</u>.
- O-cell™ and Instrumentation Calibration Sheets, Appendix B.
- Construction of the Equivalent Top-Loaded Load-Settlement Curve, Appendix C.
- O-cell™ Method for Determining Creep Limit Loading, <u>Appendix D.</u>
- Soil Boring Log, <u>Appendix E</u>.
- Reference Beam Monitoring, Appendix F.
- Net Unit Shear Curves and Unit End Bearing Curve, Appendix G.
- Shaft Stiffness Estimation, <u>Appendix H.</u>

SITE CONDITIONS AND SHAFT CONSTRUCTION

Site Sub-surface Conditions: The sub-surface stratigraphy at the general location of the test shaft is reported to consist of overburden soils underlain by clay shale. The generalized subsurface profile is included in <u>Figure A</u> and a boring log indicating conditions near the shaft are presented in <u>Appendix E</u>. More detailed geologic information can be obtained from the lowa Department of Transportation.

Test Shaft Construction: Jensen Construction Company began excavation of the dedicated test shaft socketed in clay shale on October 21, 2002 and performed the final cleanout and concreting on October 25, 2002. We understand that the 1,060-mm (42-inch) test shaft was excavated to a tip elevation of +222.75 meters (+730.8 feet) under water. The shaft was started with a 1549-mm (61-inch) O.D. temporary casing and a 1245-mm (49-inch) O.D. permanent casing was inserted as the drilling progressed. An auger and core barrel were used for drilling the shaft. The bottom of the shaft was cleaned with a bucket and airlift after drilling. After cleaning the base, approximately 2.7 meters (9 feet) of the concrete was pumped in the base of the excavation and the reinforcing cage with attached O-cell™ assembly was lowered into the fluid concrete. The remainder of the concrete was then delivered by pump until reaching the cutoff elevation of +244.90 meters (+803.5 feet). No unusual problems occurred during construction of the shaft. Representatives of the lowa Department of Transportation observed construction of the shaft.

OSTERBERG CELL TESTING

Shaft Instrumentation: Test shaft instrumentation and assembly was carried out under the direction of Mr. John Graman of LOADTEST, Inc. on October 21 and 22, 2002. The loading assembly consisted of one 870-mm O-cell™ located 1.39 meters (4.6 feet) above the tip of shaft. The Osterberg cell was calibrated to 13.8 MN (3,090 kips) and then welded closed prior to shipping by American Equipment and Fabricating Corporation. Calibrations of O-cell™ and instrumentation used for this test are included in Appendix B.

Standard O-cell™ testing instrumentation included three Linear Vibrating Wire Displacement Transducers (LVWDTs) – (Geokon Model 4450 series) positioned between the lower and upper plates of the O-cell™ assembly to measure expansion (Appendix A, Page 3). Compression of the rock socket was measured by four pairs of Embedded Compression Telltales (ECTs), consisting of telltale rods in ½-inch steel casings, with an LVWDT attached (Appendix A, Pages 1 and 2). One pair was positioned below the O-cell™ and three pairs above. One telltale casing was also installed extending between the top of the O-cell™ assembly and the top of concrete.

Strain gages were used to assess the side shear load transfer of the shaft above and below the Osterberg cell assembly. One level of two sister bar vibrating wire strain gages (Geokon Model 4911 Series) were installed, 180 degrees apart, in the shaft below the base of the O-cell™ assembly and four levels of two were installed in the shaft above it. Details concerning the strain gage placement appear in <u>Table</u> B and <u>Figure A</u>. The strain gages were positioned as directed by the Iowa Department of Transportation.

One length of steel pipe was also installed, extending from the top of the shaft to the top of the bottom plate, to vent the break in the shaft formed by the expansion of the O-cell™.

Test Arrangement: Throughout the load test, key elements of shaft response were monitored using the equipment and instruments described herein. Shaft compression was measured using telltales (described under Shaft Instrumentation) monitored by LVWDTs. Two LVWDTs attached to a reference system were used to monitor the top of shaft movement (Appendix A, Page 1).

The reference system consisted of steel wide flange section supported on wooden dunnage. The supports were located approximately three shaft diameters from the center of the test shaft. The beam was fully shaded for the duration of the test. An automated digital survey level (Leica NA 3003) was used to monitor the reference beam for movement during testing from a distance of approximately 10.6 meters (34.6 feet) (Appendix F). A maximum movement range of 0.38 mm (0.015 inches) was observed for the reference beam. The top of shaft movements have been corrected for movement of the reference system (Appendix A, Page 1).

Both a Bourdon pressure gage and a vibrating wire pressure transducer were used to measure the pressure applied to the O-cellTM at each load interval. We used the Bourdon pressure gage for setting and maintaining loads and for data analysis. The transducer readings were used for real time plotting and as a check on the Bourdon gage. There was close agreement between the Bourdon gage and the pressure transducer.

Data Acquisition: All instrumentation were connected through a data logger (Data Electronics - Model 615 Datataker®), to a laptop computer, allowing data to be recorded and stored automatically at 30 second intervals and displayed in real time. A separate laptop computer synchronized to the data logging system was used to acquire the Leica NA3003 data

Testing Procedures: As with all of our tests, we begin by pressurizing the O-cell[™] in order to break the tack welds that hold it closed (for handling and for placement in the shaft) and to form the fracture plane in the concrete surrounding the base of the O-cell[™]. After the break occurs, we immediately release the pressure and then begin the loading procedure. Zero readings for all instrumentation are taken prior to

the preliminary weld-breaking load-unload cycle, which in this case involved a maximum applied pressure of 4.14 MPa (600 psi) to the O-cell™.

The Osterberg cell load test was conducted as follows: We pressurized the 870-mm (34-inch) diameter O-cell™, with its base located 1.39 meters (4.6 feet) above the base of shaft to assess the combined end bearing and lower side shear below the O-cell™ and the upper side shear above. We pressurized the O-cell™ in 14 loading increments to 47.78 MPa (6,930 psi) resulting in a bi-directional gross O-cell™ load of 19.01 MN (4,273 kips). The loading was halted after load interval 1L-14 because the upper side shear was approaching ultimate capacity. The O-cell™ was depressurized in four decrements. The O-cell™ was then repressurized in five loading increments to a bi-directional gross O-cell™ load of 18.19 MN (4,089 kips) at 2L-5. At that point, the nominal 150 mm stroke of the O-cell™ was exceeded. The O-cell™ was depressurized in one decrement and the test was concluded.

We applied the load increments using the Quick Load Test Method for Individual Piles (ASTM D1143 Standard Test Method for Piles Under Static Axial Load), holding each successive load increment constant for four minutes by manually adjusting the O-cell™ pressure. We typically used up to several minutes to move between increments. The data logger automatically recorded the instrument readings every 30 seconds, but herein we report only the 1, 2, and 4-minute readings during each increment of maintained load.

TEST RESULTS AND ANALYSES

General: The loads applied by the O-cell™ act in two opposing directions, resisted by the capacity of the shaft above and below. Theoretically, the O-cell™ does not impose an additional upward load until its expansion force exceeds the buoyant weight of the shaft above the O-cell™. Therefore, *net load*, which is defined as gross O-cell™ load minus the buoyant weight of the shaft above, is used to determine side shear resistance above the O-cell™ and to construct the equivalent top-loaded load-settlement curve. For this test we calculated a buoyant weight of shaft of 0.43 MN (97 kips) above the O-cell.

Side Shear Resistance: The maximum upward applied *net load* to the upper side shear was 18.58 MN (4,177 kips) which occurred at load interval 1L-14 (<u>Appendix A, Page 4</u>, <u>Figure 1</u>). At this loading, the upward movement of the O-cell™ top was 46.31 mm (1.823 inches).

In order to assess the side shear resistance of the test shaft, loads are calculated based on the strain gage data (Appendix A, Pages 5 and 6) and estimates of shaft stiffness (AE), which are presented below and in Appendix H. We used the ACI formula ($E_c=57000\sqrt{f'_c}$) to calculate an elastic modulus for the concrete, where f'_c on

the day of the test was reported to be 23.72 MPa (3,440 psi) above the O-cell™ and 34.41 MPa (4,990 psi) below. This, combined with the area of reinforcing steel and nominal shaft diameter, provided an average shaft stiffness (AE) of 39,300 MN (8,830,000 kips) in the permanently cased section above the O-cell™, 22,700 MN (5,090,000 kips) in the uncased section above the O-cell™ and 26,700 MN (6,010,000 kips) below the O-cell™. The calculated value for the uncased section above the O-cell™ agrees with our tangent stiffness analysis in Appendix H. Net unit shear curves are presented in Appendix G. Net unit shear values for loading increment 1L-14 follow in Table A:

TABLE A: Average Net Unit Side Shear Values for 1L-14

Load Transfer Zone	Load Direction	Net Unit Side Shear *
Average Upper Side Shear	<u>↑</u>	671 kPa (14.0 ksf)
Zero Shear to Strain Gage Level 5	<u> </u>	448 kPa (9.4 ksf)
Strain Gage Level 5 to Strain Gage Level 4	1	899 kPa (18.8 ksf)
Strain Gage Level 4 to Strain Gage Level 3	1	851 kPa (17.8 ksf)
Strain Gage Level 3 to Strain Gage Level 2	<u> </u>	178 kPa (3.7 ksf)
Strain Gage Level 2 to O-cell™ **	↑	1297 kPa (27.1 ksf)
O-cell™ to Strain Gage Level 1 **	\	3940 kPa (82.3 ksf)

^{*} For upward-loaded shear, the buoyant weight of shaft in each zone has been subtracted from the load shed in the respective zone above the O-cell. An additional correction is made for the weight of the permanently cased, unsupported length of shaft.

Combined End Bearing And Lower Side Shear Resistance: The maximum Ocell™ load applied to the combined end bearing and lower side shear was 19.01 MN (4,273 kips) which occurred at load interval 1L-14 (Appendix A, Page 4, Figure 1). At this loading, the average downward movement of the O-cell™ base was 38.21 mm (1.504 inches). The load taken in shear by the 1.39 meters (4.6 feet) shaft section below the O-cell™ is calculated to be 3.05 MN (686 kips) assuming an unit side shear value of 659 kPa (13.8 ksf) and a nominal 1,060-mm (42-inch) shaft diameter. Note that the average upper side shear is used in this analysis to estimate the shear below the O-cell™. The applied load to end bearing is then 15.96 MN (3,588 kips) and the unit end bearing at the base of the shaft is calculated to be 18,083 kPa (378 ksf) at the above noted displacement. A unit end bearing curve is presented in Appendix G.

Creep Limit: See Appendix D for our O-cell™ method for determining creep limit. The combined end bearing and lower side shear creep data (Appendix A, Page 4) indicate that a creep limit of 10.5 MN (2,361 kips) was reached at a movement of 5.9 mm (0.23 inches) (Figure 4). The upper side shear creep data (Appendix A, Page 4) indicate that a creep limit of 12.4 MN (2,788 kips) was reached at a movement of 6.1

^{**} Note that due to the proximity of SG levels 1 and 2 to the O-cell™, the unit side shear values indicated by the analysis of strain gage data in theses zones yielded unusually high unit values. In the analyses that follow, we have assumed a constant unit shear distribution (average shear) in the clay shale socket.

mm (0.24 inches) (Figure 5). A top-loaded shaft will not begin significant creep until both components begin creep movement. This will occur at the maximum of the movements required to reach the creep limit for each component. We believe that significant creep for this shaft will not begin until a top loading exceeds 22.8 MN (5,119 kips).

Equivalent Top Load: Figure 2 presents the equivalent top-loaded load-settlement curves for the shaft as constructed and tested. The lighter curve, described in Procedure Part I of Appendix C, was generated by using the measured upward top of O-cell™ and downward base of O-cell™ data. Because it is often an important component of the settlements involved, the equivalent top load curve requires an adjustment for the additional elastic compression that would occur in a top-load test. The darker curve as described in Procedure Part II of Appendix C includes this adjustment.

The test shaft was loaded to a combined side shear and end-bearing load of 37.6 MN (8,450 kips). For a top loading of 18.0 MN (4,038 kips), the adjusted test data indicate this shaft would settle approximately 12.7 mm (0.50 inches) of which 10.8 mm (0.42 inches) is estimated elastic compression. For a top loading of 28.1 MN (6,310 kips) the adjusted test data indicate this shaft would settle approximately 25.4 mm (1.00 inches) of which 16.9 mm (0.67 inches) is estimated elastic compression.

Note that, as explained previously, the equivalent top load curve applies to incremental loading durations of four minutes. Creep effects will reduce the ultimate resistance of both components and increase shaft top movement for a given loading over longer times. The Engineer can estimate such additional creep effects by suitable extrapolation of time effects using the creep data presented herein. However, our experience suggests that such corrections are small and perhaps negligible for top loadings below the creep limit indicated in Figure 2.

Shaft Compression Comparison: The measured shaft compression from ECT levels 2, 3 and 4 (averaged from side A & B) is 3.14 mm (0.124 inches) at 1L-14 (Appendix A, Pages 1 and 2). Using a shaft stiffness of 39,300 MN (8,830,000 kips) and an assumed constant shear distribution, we calculated an elastic compression of 3.15 mm (0.124 inches) over the length of the compression telltales. We believe this excellent agreement provides good evidence that the values of the estimated shaft stiffness are reasonable and that the O-cell™ loaded the shaft in accord with its calibration.

LIMITATIONS AND STANDARD OF CARE

The instrumentation, testing services and data analysis provided by LOADTEST, Inc., outlined in this report, were performed in accordance with the accepted standards of care recognized by professionals in the drilled shaft and foundation engineering industry.

Please note that some of the information contained in this report is based on data (i.e. shaft diameter, elevations and concrete strength) provided by others. The engineer, therefore, should come to his or her own conclusions with regard to the analyses as they depend on this information. In particular, LOADTEST, Inc. typically does not observe and record drilled shaft construction details to the level of precision that the project engineer may require. In many cases, we may not be present for the entire duration of shaft construction. Since construction technique can play a significant role in determining the load bearing capacity of a drilled shaft, the engineer should pay close attention to the drilled shaft construction details that were recorded elsewhere.

We trust that this information will meet your current project needs. If you have any questions, please do not hesitate to contact us at 800-368-1138.

Prepared for LOADTEST, Inc. by

Michael D. Ahrens, P.E. Geotechnical Engineer, LOADTEST, Inc.

Reviewed by

Denton A. Kort, P.E. Geotechnical Engineer, LOADTEST, Inc.

TABLE B: SUMMARY OF DIMENSIONS, ELEVATIONS & SHAFT PROPERTIES

				······································
	Shaft:			•
	Nominal shaft diameter (EL +246 45 m to +231.51 m)	=	1245 mm	49 in
	Nominal shaft diameter (EL +231.51 m to +222.75 m)	=	1060 mm	42 in
	O-cell™: 2005-1	=	870 mm	34 in
	Bouyant weight of pile above base of O-cell™	=	0 43 MN	97 kips
٠.	Estimated shaft stiffness, AE (EL +244 90 m to +231 51 m)	=	39 300 MN	8 830 000 kips
	Estimated shaft stiffness. AE (EL +231 51 m to +224 14 m)	=	22 700 MN	5,090,000 kips
	Estimated shaft stiffness. AE (EL +224 14 m to +222 75 m)	=	26 700 MN	6,010.000 kips
	Elevation of ground surface	=	+245.45 m	+805 3 ft
	Elevation of top of shaft concrete	=	+244.90 m	+803 5 ft
	Elevation of water table	=	+240.13 m	+787.8 ft
	Elevation of base of O-cell™ (The break between upward and downward movement)	=	+224.14 m	+735.4 ft
	Elevation of shaft tip	=	+222 75 m	+730.8 ft
	Casings:			.000 0 4
	Elevation of top of permanent casing (1245 mm O D., 1220 mm I.D.)	=	+246 45 m	+808 6 ft
	Elevation of bottom of permanent casing (1245 mm O.D., 1220 mm I D)	=	+231.51 m	+759 6 ft
	Elevation of top of outer temporary casing (1549 mm O.D.)	=	+246.45 m	+808 6 ft
	Elevation of bottom of outer temporary casing (1549 mm O D)	-	+232 31 m	+762 2 ft
	Compression Sections:	=	+244 90 m	+803 5 ft
	Elevation of top of telltale used for upper shaft compression Elevation of top of telltale used for upper shaft compression	=	+244 90 m +224 48 m	+736 5 ft
	Elevation of top of ECT used for level 4 shaft compression	=	+231 51 m	+750 5 ft
	Elevation of bottom of ECT used for level 4 shaft compression	=	+230 09 m	+754.9 ft
	Elevation of top of ECT used for level 3 shaft compression	=	+230 09 m	+754 9 ft
	Elevation of bottom of ECT used for level 3 shaft compression	=	+228 09 m	+748 3 ft
	Elevation of top of ECT used for level 2 shaft compression	=	+228 09 m	+748 3 ft
	Elevation of bottom of ECT used for level 2 shaft compression	=	+224 48 m	+736 5 ft
	Elevation of top of ECT used for level 1 shaft compression	=	+224 12 m	+735 3 ft
	Elevation of bottom of ECT used for level 1 shaft compression	=	+223 31 m	+732 6 ft
	Strain Gages:			
	Elevation of strain gage Level 5	=	+231 51 m	+759 5 ft
	Elevation of strain gage Level 4	=	+230 09 m	+754 9 ft
	Elevation of strain gage Level 3	= .	+228 09 m	+748 3 ft
	Elevation of strain gage Level 2	=	+225 46 m	+739.7 ft
	Elevation of strain gage Level 1	=	+223 31 m	+732.6 ft
	Miscellaneous:			
	Top plate diameter (1 in thickness)	=	870 mm	34 3 in
	Bottom plate diameter (1 in thickness)	=	914 mm	36 0 in
	ReBar size (16 No)		M 32	# 10
	Spiral size (305 mm spacing)	=	M 13	#4
	ReBar cage diameter	=	914 mm	36 in
	Unconfined compressive concrete strength above O-cell™	=	23.72 MPa	3440 psi
	Unconfined compressive concrete strength below O-cell™	=	34.41 MPa	4990 psi
	O-cell™ LVWDTs @ 0° 180° and 270° with radius	=	460 mm	18 1 in

Figure 1 of 5

LOADTEST, Inc. Project No. LT-8854

35 Dedicated Test Shaft - I-235 over Des Moines River - Des Moines, IA Creep Limit 22.8 MN **Equivalent Top Load Load-Movement Curve** 30 25 Thick Line - Rigid Curve Adjusted for Additional Elastic Compression Equivalent Top Load (MN) Thin Line - Rigid Curve 10 2 0 0 Oisplacement (mm) $\frac{1}{2}$ 9 -50 -10

40

LOADTEST, Inc. Project No. LT-8854

Figure 3 of 5

22

-- Bottom of Shaft Ground Surface Tip of Outer Temporary Casing - -O-cellTM Points 20 11-14 <u>\$</u> Dedicated Test Shaft - I-235 over Des Moines River - Des Moines, IA 1L-12 16 S. G. Level 2 Strain Gage Load Distribution Curves 4 1**L-1**0 S. G. Level 3 O-cellTM Load (MN 12 11-8 10 11-6 S. G. Level 4 ω 9 11-4 S. G. Level 5 \sim S. G. Level 1 Elevation (m) 220 245 240 225 250 230

LOADTEST, Inc. Project No. LT-8854

Combined End Bearing and Lower Side Shear Creep Limit Dedicated Test Shaft - I-235 over Des Moines River - Des Moines, IA

LOADTEST, Inc. Project No. LT-8854

Figure 4 of 5

Figure 5 of 5 22 20

Upper Side Shear Creep Limit

LOADTEST, Inc. Project No. LT-8854

APPENDIX A

FIELD DATA & DATA REDUCTION

Upward Top of Shaft Movement and Shaft Compression

							er Des	Moines	River -	Des Mo	ines, ia	071	,
	oad	Hold	Time	O-ce Pressure	lt™ Load	Ref. Beam	A	op of Shaft B	Average	Tell Tale A	22903	CT Level 4 22904	Average
	fest rement	Time (minutes)	(ħ;m:s)	(MPa)	(MN)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
_	L-0		11:28:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	L-1	1	11:34:00	3.45	1 42	0.01	0 03	0.01	0.03	0.06	0.00	7 0.00	0.00
	L 1	2	11:35:00	3.45	1 42	0 02	0 04	0 01	0.05	0.07	0.00	0 00	0.00
	ե-1	4	11:37:00	3.45	1.42	0.04	0 04	0 00	0 0 6	0 07	0 00	0 00	0 00
	L 2	1 1	11:38:00	6.89	2 79	0 04 0 06	0 11 0 12	0 06 0 07	0 13 0 16	0 19 0.20	0 01 0 01	001	0.01
	L-2	2	11:39:00 11:41:00	6.89 6.89	2 79 2 79	0 06	0 12	0 10	0 10	0.21	0 01	0 01	0 01
	L-3	1	11:41:00	10 34	4 15	0 08	0 28	0 19	0 31	0 34	0 02	0 02	0 02
	L-3	2	11:43:00	10.34	4 15	0 09	0 30	0 21	0 34	0 35	0 02	0 02	0 02
	1 3	~	11:45:00	10.34	4 15	0 12	0 31	0 22	0 39	0 35	0 02	0 02	0 02
	L-4	1	11:46:00	13.79	5 52	0 13	0 51	0 39	0 58	0.49	0 03	0 03	0 03
	L-4	2	11:47:00	13.79	5 52	0 13	0 52	0 40	0 59	0.49	0 03	0 03	0 03
	L-4	4	11:49:00	13.79	5 52	0 15	0 55	0.43	0 63 0 87	0 49 0 63	0 03 0 04	0 03 0 04	0 03 0 04
	L 5	1 1	11:50:00	17 24	6.89 6.89	0 15 0 15	0.80 0.84	0.64	0 92	0 64	0 04	0 04	0 04
	L-5	2	11:51:00 11:53:00	17 24 17 24	6.89	0 15	0.88	074	0 97	0 65	0 04	0.04	0.04
	L-6	1	11:54:00	20 68	8.26	0.16	1 18	103	1 26	0.78	0.05	0.05	0.05
	L-6	2	11:55:00	20 68	8.26	0 16	1.25	1 10	1 34	0.79	0.06	0.05	0.05
	L-6	4	11:57:00	20 68	8 26	0.17	1 32	1 17	1.42	0.81	0 06	0.05	0.05
1	L-7	1	11:58:30	24.13	9 63	0 18	174	1 60	1 85	0 95	0 07	0 06	0.06
	L-7	2	11:59:30	24.13	9 63	0 18	1 83	1 68	194	0 96	0 07	0 06	0 06
	L-7	4	12:01:30	24 13	9 63	0 22	191	1 78 2 31	2 06 2 63	0 98	0 07 0 08	0 06 0 07	0 08
	L-8	1 2	12:03:00 12:04:00	27.58 27.58	10 99 10 99	0 24 0 25	2 48 2 63	2 43	2 77	115	0 08	0 07	0 08
	L 8	4	12:04:00	27 58	10 99	0 23	2.76	2 52	2 87	1 16	80 0	0 07	0 08
	L-9	1	12:00:00	31.03	12 36	0 21	3.42	3 29	3.56	1 33	0 10	0 08	0 09
	L-9	2	12:08:30	31 03	12 36	0 22	3.64	3 50	3.78	1 34	0.10	0 09	0 09
	L-9	4	12:10:30	31 03	12 36	0 21	3.85	3 70	3,99	1 36	0 10	0 09	0 09
	L - 10	1	12:12:30	34 47	13 73	0.20	4 74	4.61	4 88	1 53	0 12	0 10	0 11
	L - 10	2	12:13:30	34 47	13 73	0 21	5.05	4 91	5.19	1 55 1 58	0 12 0 13	0 10 0 10	0 11 0 11
	L - 10	4	12:15:30	34 47 37 92	13 73 15 10	0.20 0.19	5.43 6.67	5.27 6.51	5.56 6.78	1 74	0 15	0 10	0 13
	L 11 L 11	1 2	12:18:30 12:19:30	37 92	15.10	0.19	7 21	7.05	7 31	178	0.15	0 12	0 13
	L - 11	4	12:21:30	37 92	15 10	0 18	7 87	770	7 96	1.80	0.16	0 12	0 14
	L - 12	1 1	12:26:00	41 37	16.46	0 18	10 88	10.45	10 85	2.07	0 19	0 14	0 16
	L - 12	2	12:27:00	41 37	16 46	0 18	11 54	11 37	11 64	2 14	0 19	0 14	0 17
	L - 12	4	12:29:00	41 37.	16 46	0 19	12 54	12 34	12 63	2 15	0 20	0 15	
	L - 13	1	12:36:00	44 82	17 83	0 19	18 87	18 63	18 94	2 46	0 25	0 18	
	L - 13	2	12:37:00	44 82	17 83	0 20		19 44	19 75 21 05	2 47 2 49	0 25 0 25	0 18 0 18	0 22 0 22
	L - 13	4	12:39:00	44 82 47 78	17 83 19 01	0 19 0 27	20 97 38 90	20 74 38 56	39 00	2 49	0 23	0 25	0 28
	L - 14 L - 14	1 2	12:54:00 12:55:00	47 78	19.01	0 26	40 28	39 95	40 37	2 90	0 30	0 26	
	L - 14	4	12:57:00	47.78	19,01	0.26	43.08	42.75	43.17	2.94	0.30	0.27	0.28
	U-1	1	13:01:00	34.47	13.73	0.26	44.58	44 40	44.75	2 48	0.24	0 22	0.23
	U-1	2	13:02:00	34 47	13 73	0 26	44 53	44 36		2 47	0 24	0 22	0 23
	U-1	4	13:04:00	34 47	13 73	0 25	44 52	44 34	44 68	2 47	0 24	0 22 0 14	0 23
	U-2	1 1	13:05:00	20 68	8 26	0 24 0 22	42 85	42 67 42 43	43.00 42.73	1 76 1 75	0 18 0 18	0 14	0 16
	U-2	2	13:06:00 13:08:00	20 68 20 68	8 26 8 26	0 19	42 58 42 53	42.43	42 64	175	0 18	0 14	0 16
	U-2 U-3	1 1	13:08:00	6.89	2 79	0 13	37 00	36 92	37 10	0.85	0 10	0 03	
	U-3	2	13:12:00	6.89	2 79	0 11	36 52	36 46		0 82	0 10	0 03	0.06
	U-3	4	13:14:00	6.89	2 79	0 08	36 05	36 01	36 11	079	0 10	0 03	
1	U - 4	1 1	13:16:30	0 00	0.00	0 06		31 06			0 07	-0 01	
	U - 4	2	13:17:30	0 00	0 00	0 04	30 71	30 69		0 42	0 07	-0 01	0.03
	U - 4	4	13:19:30	0.00	0.00	0.01	30.31	30.31 30.17	30.32 30.16	0.42 0.42	0.06	-0.01 -0.01	0.03
	L-0		13:21:00 13:24:00	0.00 10.34	0 00 4 15	0 00 0 01	30,14 30,70	30 17	30,16	0 42	0.00	0 02	
	L-1 L-1	1 2	13:24:00		4 15						0 09		
	L-1	4	13:27:00	10 34	4 15			30 60			0 09		
	L-2	7	13:30:00		8.26		32 94	32 75	32 85	1 30	0 14	0.06	0.10
	L-2	2	13:31:00	20 68	8 26	0 00				1 32	0.14		
2	2L-2	4	13:33:00	20 68	8 26						0 14		
	L-3	1	13:39:00	31 03	12 36						0 20		
	2L-3	2	13:40:00	31 03	12 36					199	0 20 0 20		
	2L-3	4	13:42:00		12 36 16 46			38 47 47 07			0 20		
	L-4 L-4	1 2	13:52:00 13:53:00		16 46						0 25		
1 2	2L-4	4	13:55:00		16 46						0 25		
	2L-5] 7	14:09:00		18 19						0 25		0.29
	2L-5	2	14:10:00		18 19		69 37	69.07	69 39	3 03	0 24	0 34	0.29
2	2 เ 5	. 4	14;12:00	45.71	18 19	0 20	72 69	72 32					
	L-5	8	14:16:00		18 19						0 22		
2	2L-5	16	14:24:00		18 19								
	215	20	14:28:00		18.19						-0.19		
	2U-1	1	14:31:00		0 00								
	!U-1 !U-1	2 4	14:32:00										

^{*} Positive values indicate upward reference beam movement.

"Top of shaft gages went out of range for the 16 and 20-minute holds of 2L-5 Reported values are estimated.

Shaft Compression

Dedicated Test Shaft - 1-235 over Des Moines River - Des Moines, IA

			licated									-OT 1 1	
Load	Hold	Time	0-00			CT Level			CT Level 2			CT Level	
Test	Time	/h	Pressure	Load	22901	22902	Average	22899	22900	Average (mm)	22897 (mm)	22898 (mm)	Average (mm)
Increment	(minutes)	(h:m:s)	(MPa) 0.00	(MN) 0.00	(mm) 0.00	(mm) 0.00	(mm) 0.00	(mm) 0.00	(mm) 0.00	0.00	0.00	0.00	0.00
1L-0 1L-1	1	11:28:30 11:34:00	3.45	1 42	0.00	0.00	0.00	0.05	0.05	0.00	0.00	0.00	0.02
1 L-1	2	11:35:00	3.45	1 42	0 01	0.01	0.01	0.05	0.06	0 06	0.02	0 02	0.02
1 1 1	4	11:37:00	3.45	1 42	0 01	0.01	0.01	0 05	0.06	0 06	0 02	0 02	
1 L - 2	1	11:38:00	6.89	2 79	0 03	0.04	0.03	0 14	0.16	0 15	0 05	0 06	
1 L - 2	2	11:39:00	6.89	2 79	0 03	0.04	0.04	0 15	0 16	0 16	0 05	0 06	
1L-2	4	11:41:00	6,89	2 79	0 04	0 04	0 04	0 16	0 17	0 16	0 06	0 07	0.06
1L-3	1	11:42:00	10 34	4 15	0 06	0 06	0 06	0 25	0.28	0 26	0 08	0 11	0.09
1 L - 3	2	11:43:00	10 34	4 15	0 06	0 07	0 06	0.25	0 29	0 27	0 08	0 11	
1 L - 3	4	11:45:00	10 34	4 15	0 06	0 07	0 06	0.25	0 29	0 27	0 08	0 11	0 10
1L-4	1	11:46:00	13 79	5.52	0 09	0 09	0 09	0.35	0 40	0 37	0 10	0 15	0 13
1L-4	2	11:47:00	13 79	5 52	0 09	0 09	0 09	0.35	0.40	0 38	0 10	0 15	0 13
1 L-4	4	11:49:00	13 79	5.52	0.09	0 09	0 09 0 12	0.35 0.45	0 41 0 52	0 38 0 49	0 10	0 16 0 20	0 13 0 16
1L-5	1 2	11:50:00 11:51:00	17 24 17 24	6.89 6.89	0.12 0.12	0 12 0 13	0 12	0 45	0 52	0 49	0 13 0 12	0 20	0 16
1L-5	4	11:51:00	17 24	6.89	0 12	0 13	0 12	0 47	0 54	0.50	0 12	0 20	0 16
1L-6	1	11:54:00	20.68	8 26	0 15	0 16	0 15	0 56	0 66	0.61	0 14	0 23	0 19
1 L-6	2	11:55:00	20.68	8 26	0 15	0 16	0 16	0 57	0 68	0 62	0.15	0 23	0 19
1 L - 6	4	11:57:00	20.68	8 26	0 15	0 17	0 16	0 58	0.69	0.63	0 14	0 24	0 19
1 L - 7	1	11:58:30	24 13	9 63	0 18	0 20	0 19	0 68	0.82	0 75	0.16	0 27	0 22
1 L - 7	2	11:59:30	24 13	9 63	0 19	0 20	0 19	0 68	0.83	0 76	0.16	0 27	0.22
1L-7	4	12:01:30	24 13	9 63	0 19	0.21	0.20	0 70	0.85	0 77	0.16	0 27	0 22
1L-8	1	12:03:00	27 58	10 99	0 22	0.25	0.23	0 83	0 99	0.91	0.19	0 30	0 24
1 L - 8	2	12:04:00	27 58	10 99	0 22	0.25	0.24	0.83	1.00	0 92	0 19	0 30	0.24
1 L - 8	4	12:06:00	27 58	10 99 12 36	0 23 0 27	0.25 0.30	0.24 0.28	0 84 0 95	1.01 1.16	0 92 1 06	0 19 0.21	0 30 0 34	0.24 0.27
1L-9 1L-9	1 2	12:07:30 12:08:30	31 03 31 03	12 36	0 27	0 30	0.28 0.29	0 95	1.17	1 07	0.21	0 34	0.27
14-9	4	12:10:30	31 03	12 36	0 28	0.30	0 29	0 98	1 20	1 09	0.22	0 34	0.28
1 L - 10	1	12:12:30	34 47	13 73	0 32	0 36	0 34	1 09	1 35	1 22	0 24	0 38	0 31
1 L - 10	2	12:13:30	34 47	13 73	0 32	0 36	0 34	1 10	1 37	1 23	0 25	0 38	0 31
1 L - 10	4	12:15:30	34 47	13 73	0 33	0 37	0 35	1 11	1 39	† 25	0 25	0 38	0 32
1 L - 11	1	12:18:30	37 92	15 10	0 38	0.43	0.40	1 19	1 58	1 38	0 28	0.42	0 35
1 L - 11	2	12:19:30	37 92	15 10	0 39	0 44	0 41	1 28	1 59	1.43	0 28	0 43	0 35
1 L - 11	4	12:21:30	37 92	. 15 10	0 40	0 45	0 43	1 29	1 61	1 45	0 29	0.43	
1 L - 12	1	12:26:00	41 37	16 46	0 47	0 53	0 50	1 42	1 80	1 61	0 33	0 48	0 40
1 L - 12	2	12:27:00	41 37	16 46	0 48	0 54	0.51	1 44	1 83	1 64	0 33	0 49	0 41
1 L - 12	4	12:29:00	41 37	16 46	0.49	0 55	0 52	1 45 1 62	1 84 2 09	1 65 1 86	0 33 0 38	0 49 0 56	
1 L - 13 1 L - 13	1 2	12:36:00 12:37:00	44 82 44 82	17 83 17 83	0 58 0 58	0 66 0 67	0 62 0 62	1 63	2 10	1 86	0 38	0 56	0 47
1 L - 13	4	12:37:00	44 82	17 83	0 58	0 68	0 63	1 63	2 11	1 87	0 39	0.56	0 47
1 L - 14	1	12:54:00	47 78	19 01	0 63	0 85	074	1 83	2 35	2 09	0 44	0 63	0 53
1 L - 14	2	12:55:00	47 78	19 01	0 63	0 86	0 75	1 84	2 35	2 10	0 44	0 63	0 54
1 L - 14	4	12:57:00	47.78	19.01	0.63	0.88	0.75	1.86	2.35	2.11	0.44	0.63	0.54
10-1	1	13:01:00	34.47	13.73	0 49	0 74	0 62	1 50	1 94	1 72	0.35	0.50	0.43
10-1	2	13:02:00	34 47	13 73	0 49	0 74	0 61	1 49	1 93	1 71	0 35	0 50	0 43
10-1	4	13:04:00	34 47	13 73	0 49	0 74	0 62	1 49	1 93	1 71	0 35	0 50	0 43
1U-2	1	13;05:00	20 68	8 26	0 32	0 56	0 44	1 00	1 41	1 21	0 23	0 33	0 28
1U-2	2	13:06:00	20 68	8 26	0 33	0 56	0 44	1 01	1 42	1 22	0 24	0 34	0 29
10-2	- 4 1	13:08:00	20 68	8 26 2 79	0 33 0 10	0 57 0 29	0 45 0 20	1 02 0 41	1 44 0 74	1 23 0 57	0 24	0 34 0 12	0 29 0 11
10-3	1 2	13:11:00 13:12:00	6.89 6.89	2 79	0 10	0 29	0 20	0 41	0 74	0.57	0 09	0 12	0 10
10.3	4	13:14:00	6.89	2 79	0 09	0 28	0 18	0 33	0 69	0 53	0 08	0 11	0 09
10-4	1	13:16:30	0.00	0 00	0 01	0 15	0 08	0 13	0 35	0.24	0 02	0 02	0 02
1U-4	2	13:17:30	0 00	0 00	0 01	0 15	0 08	0 13	0 34	0.23	0 02	0 01	0 02
1 U - 4	4	13:19:30	0.00	0.00	0.01	0.15	0.08	0.12	0.34	0.23	0.02	0.01	0.02
2L-0	-	13:21:00	0.00	0 00	0 01	0 14	0 08	0 12	0 33	0.23	0.02	0.01	0.02
2 L - 1	1	13:24:00	10 34	4 15	0 09	0 23	0 16	0 43	0 67	0 55	0 11	0 14	0 13
2 L - 1	2	13:25:00	10 34	4 15	0 09	0 23	0 16	0 43	0 68	0 55	0 12	0 14	0 13
2L-1	4	13:27:00	10 34 20 68	4 15 8 26	0 09 0 22	0.23 0.37	0 16 0 30	0 43 0 83	0 67 1 13	0 55 0 98	0 12 0 21	0 14 0 29	0 13 0 25
2L-2 2L-2	2	13:30:00 13:31:00	20 68	8 26	0 22	0 37	0 30	0 83	113	0 98	0 21	0 29	0 25
212	4	13:33:00	20 68	8 26	0 22	0 38	0 30	0 84	1 13	0 99	0 22	0 29	0.25
213	1	13:39:00	31 03	12 36	0 38	0 58	0.48	1 28	1.62	1 45	0 31	0 42	0.23
2 L - 3	2	13:40:00	31 03	12 36	0 37	0 57	0.47	1 27	1.61	1.44	0 31	0 42	0 36
2 L - 3	4	13:42:00	31 03	12 36	0 38	0 58	0 48	1 29	1.62	1 46	0 31	0 42	0 36
214	1	13:52:00	41 37	16 46	0 53	0 80	0.66	1 69	2.05	1.87	0 41	0 56	0 48
2L-4	2	13:53:00	41 37	16 46	0 53	0 80	0 66	1 69	2 05	1.87	0 40	0 56	0 48
2 L - 4	4	13:55:00	41 37	16 46	0 53	0 80	0 67	1 70	2 06	1.88	0 41	0 56	0 48
2L-5	1	14:09:00	45 71	18 19	0 59	0 91	0 75	1 96	2 19	2 07	0 45	0 64	0 54
2L-5	2	14:10:00	45 71	18 19	0 59	0 91	0 75	1 97	2 18	2 08	0 45	0 64	0 55
2L-5	4	14:12:00	45 71	18 19 18 19	0 59 0 60	0 91 0 91	0 75 0 75	1 99 2 02	2 17	2 08 2 09	0 45 0 45	0.64 0.65	0 55 0 55
2L-5	8 16	14:16:00 14:24:00	45 71 45 71	18 19	0 60	0 90	0 75	2 02	2 15 2 11	2 10	0 45	0.65	0 55
2L-5 2L-5	20	14:24:00	45.71	18.19	0.61	0.88	0.75	2.10	2.10	2.10	0.45	0.66	0.55
2U-1	1	14:28:00	0 00	0 00	-0.02	0.86	0.73	0.36	0.20	0 28	0.43	0.04	0.33
20-1	2	14:32:00	0 00	0 00	-0.02	0 21	0 09	0.35	0.18		0 02	0.03	0 02
20-1	4	14:34:00	0.00	0.00	-0.03	0.20	0.09	0.33	0.17	0.25	0.02	0.03	0.02
						-							

O-cell™ Expansion

Total Time Pressure Load Numbra Numb	Load	Hold	Time	O-ce		er Des Moi	O-cell™ E		,
			11110			LVWDT 22894			Average
			(h:m:s)						
11-1		-							0.00
11-1		1	11:34:00	3 45		0.21	0.23	0.30	0.22
11-2		2	11:35:00	3 45	1.42	0 24	0 27	0 34	0 25
1	16-1	4	11:37:00	3 45	1 42	0.25	0.27	0 35	0.26
11-2	1L-2	1	11:38:00	6 89					0.80
11-3	1L-2								0.87
11-3									0.93
113									1 69
114									1 79
114									1.85
115									2 70
11-5									2 78
115									2 89
116									3.87 4.07
116									4 27
11_6 2 11_5500 20 68 8_26 5 69 5 64 6_13 5_1 11_7 1 11_5830 24_13 9_63 7_42 7_55 7_97 7_7 11_7 2 11_5830 24_13 9_63 7_721 7_56 8_27 7_7 7_7 14_7 14 11_2030 24_13 9_63 8_05 7_97 8_27 7_7 14_7 14 12_20300 2_58 10_89 10_18 10_13 10_46 9_9 10_18 10_13 10_46 9_9 10_18 10_13 10_46 9_9 10_18 10_13 10_46 9_9 10_18 10_13 10_46 9_9 10_18 10_13 10_46 9_9 10_18 10_13 10_46 9_9 10_18 10_13 10_46 9_9 10_18 10_13 10_46 9_9 10_18 10_13 10_14 9_9 10_18 10_13 10_14 9_9 10_24 10_24_9 10_24_9									5.40
116									5.67
117									5.93
117									7 39
117 4 12:01:30 24 13 9 63 8 05 7 97 8.62 8.1 1.8 1 12:03:00 27 58 10 99 10 18 10 13 10 87 10 68 9 11 12 10 13 10 87 10 10 13 10 87 10 10 13 10 87 10 10 13 10 87 10 10 13 10 87 10 10 13 10 87 10 10 13 10 87 10 10 13 10 87 10 10 13 10 87 10 11 12 12 12 10 11 12 12 12 10 11 12 12 12 10 11 12 12 12 10 11 12 12 12 10 11 12 12 12 10 11 12 12 12 10 11 12 12 12 10 11 12 12 12 12 11 12 12 12 12 13 14 12 12 12 11 11 12 12 12 12 12 13 14 12 12 12 12 12 12 12 12 12 12 12 12 12									7 67
1 L - 8 1 12:03:00 27:58 10:99 9:79 9:73 10:46 9:75 10:46 9:75 10:46 9:75 10:46 9:75 10:46 10:16 10:16 10:16 10:16 10:16 10:16 11:16 10:16 10:16 11:16 10:16 11:16 10:16 11:16 10:16 11:16 10:16 11:16 10:16 11:16 10:16 11:16 10:16 11:16 10:16 11:16 10:16 11:16 10:16 11:16 10:16 11:16 10:16 11:16 11:16 10:16 11:16 10:16 11:16 10:16 11:16 11:16 10:16 11:16 10:16 11:16 10:16 11:16 10:16 11:16 10:16 11:16 10:16 10:16 11:16 10:16 10:16 10:16 10:16 10:16 10:16 10:16 10:16 10:16 10:16 10:16 10:16 10:16 10:16 10:16 10:16 10:16 10:1									8.01
1 L - 8 2 12:04:00 27:58 10:99 10:18 10:13 10:87 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>9.76</td></t<>									9.76
1 L - 8 4 1 2:06:00 27 58 10 99 10 62 10 66 11 32 10 11 32 10 11 12:07:30 31 03 12 36 12 71 12 25 13 54 12 11 12 25 13 54 12 11 12 25 13 54 12 14 09 14 20 13 11 - 10 12 12:13:03 34 47 13 73 16 81 16 78 17 84 16 14 10 14 20 13 11 10 12 12:13:30 34 47 13 73 17 71 17 69 18 77 17 14 60 14 20 13 73 17 71 17 69 18 77 17 17 69 18 77 17 71 17 69 18 77 17 71 17 69 18 77 17 71 17 69 18 77 17 71 17 69 18 77 17 71 17 69 18 77 17 71 17 69 18 77 17 71 17 69 18 77 17 71 17 69 18 77 17 71 17 69 18 74 18 74 18 74 18 74 18 74 18 74 18 74 1									10 16
11_9 1 1207:30 3103 12 36 1271 12 25 13.54 12.1 12.9 14 20 13 14 20 13 14 20 13 14 20 13 14 20 13 14 20 14 20 13 14 20 14 20 13 14 20 14 37 15 10 23 76 23 62 25 507 23 11 14 14 14 21 21 30 37 92 15 10 25 37 6 23 62 25 507 25 11 14 12 14 22 200 41 37 71 16 46 32 42 32 26 33 10 32 21 22 25 07 23 25 15 77 22 25 15 14 14 12 20 14 20 14 37 71 16 46 33 82 33 39 35 53 33 35 15 34 10 32									10 59
11L-9						12 71		13.54	12 68
119	1L-9			31.03		13 36	13.29	14 20	13 33
1L - 10	1L-9		12:10:30	31.03	12 36	14 09	14 03	14 96	14 06
1L - 10	1 L - 10								16 79
1L - 11	1 L - 10	2	12:13:30						17 70
1L - 11									18 81
1L - 11									22 43
1 L - 12 1 12:28:00 41 37 16:46 32 42 32:56 34:10 32 1 L - 12 4 12:27:00 41 37 16:46 33:82 33:92 35:53 33 1 L - 13 1 12:36:00 44:82 17:83 48:08 48:19 50:37 48 1 L - 13 2 12:37:00 44:82 17:83 49:50 49:57 51:84 49 1 L - 13 4 12:39:00 44:82 17:83 51:70 51:80 54:15 51 1 L - 14 1 12:54:00 47:78 19:01 78:96 78:98 82:33 78:11 1 L - 14 4 12:57:00 47:78 19:01 84:64 84:41 88:04 84:1 1 U - 1 1 13:01:00 34:47 13:73 84:69 84:36 87:86 84:1 1 U - 1 1 13:06:00 20:68 8:26 79:47 79:23 82:41 79:9									23 69
1 L - 12 2 12:27:00 41 37 16:46 33 82 33 92 35:53 33 1 L - 12 4 12:29:00 41 37 16:46 35 79 35 87 37 55 36 1 L - 13 1 12:36:00 44 82 17 83 48 08 48 19 50 37 48 1 L - 13 2 12:37:00 44 82 17 83 49 50 49 57 5184 49 1 L - 14 1 12:36:00 47 78 19.01 78 96 78 98 82 33 78 1 L - 14 2 12:55:00 47 78 19.01 84.64 80.4 84 26 80 1 L - 14 4 12:57:00 47 78 19.01 84.64 84.41 87 97 84 1 U - 1 1 13:01:00 34 47 13.73 84 69 84 41 87 97 84 1 U - 1 2 13:05:00 20 68 8 26 79 47 79 23 82 41 79 10 -3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>25 31</td></td<>									25 31
1L-12 4 12:29:00 41 37 16 46 35 79 35 87 37 55 35 1L-13 1 12:36:00 44 82 17 83 48 08 48 19 50 37 48 1L-13 4 12:39:00 44 82 17 83 67 0 51 80 54 15 51 1L-14 1 12:55:00 47 78 19.01 78 96 78 98 82 33 78 1L-14 2 12:55:00 47 78 19.01 80 84 80 84 82 23 78 1L-14 4 12:57:00 47,78 19.01 84.64 84.41 88.04 84 1U-1 1 13:01:00 34 47 13.73 84 69 84 36 87 86 84 1U-1 4 13:04:00 34 47 13.73 84 69 84 36 87 86 84 1U-2 1 13:06:00 20 68 8 26 80 10 79 78 82 93 79 1U-2 1									32 49
1L-13 1 12:96:00 44 82 17 83 48 08 48 19 50 37 48 1L-13 2 12:37:00 44 82 17 83 49 50 49 57 51 84 49 1L-13 4 12:39:00 44 82 17 83 51 70 51 80 54 15 51 1L-14 1 12:54:00 47 78 19.01 78 96 78 98 82 33 78 1L-14 4 12:55:00 47 78 19.01 80 84 80 84 84 26 80 1U-1 1 13:01:00 34 47 13.73 84 80 84 41 87 97 84 1U-1 4 13:00:00 34 47 13.73 84 69 84 36 87 86 84 1U-2 1 13:05:00 20 88 826 80 10 79 78 82 93 79 1U-2 1 13:05:00 20 88 826 79 37 79 23 82 41 79 79 19 82 38 79 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>33 87</td>									33 87
1 L - 13 2 12:37:00 44 82 17 83 49 50 49 57 51 84 49 1 L - 13 4 12:39:00 44 82 17 83 51 70 51 80 54 15 51 1 L - 14 1 12:55:00 47 78 19:01 78 96 78 98 82 33 78 1 L - 14 2 12:55:00 47 78 19:01 80 64 80 84 84 26 80 1 L - 14 4 12:57:00 47 78 19:01 84.64 84.41 88.04 84 1 U - 1 1 13:00:00 34 47 13.73 84 69 84 36 87 86 84 1 U - 2 1 13:05:00 34 47 13.73 84 65 84 36 87 84 84 1 U - 2 1 13:06:00 20:68 8 26 79:47 79:23 82:41 79 1 U - 2 4 13:06:00 20:68 8 26 79:37 79:19 82:38 79 1 U									35 83
1 L - 13 4 12:39:00 44 82 17 83 51 70 51 80 54 15 51 1 L - 14 1 12:56:00 47 78 19:01 78 96 78 98 82 33 78:11 1 L - 14 4 12:55:00 47.78 19:01 84.64 84.41 88.04 84. 1 U - 1 1 13:01:00 34.47 13.73 84.80 84.41 87.97 84 1 U - 1 2 13:02:00 34.47 13.73 84.65 84.41 87.97 84 1 U - 1 4 13:04:00 34.47 13.73 84.65 84.36 87.84 84 1 U - 2 1 13:06:00 20.68 8.26 79.47 79.23 82.41 79.9 1 U - 2 4 13:06:00 20.68 8.26 79.37 79.19 82.38 79.9 1 U - 3 1 13:14:00 6.89 2.79 66.46 67.34 69.93 66.9 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
1L-14 1 12:54:00 47 78 19.01 78 96 78.98 82 33 78:11-14 2 12:55:00 47 78 19.01 80 84 80 84 88 426 80.04 84.1 80.04 84.1 80.04 84.1 80.04 84.1 80.04 84.1 10-1 1 13:01:00 34 47 13:73 84 80 84 41 87 97 84 1 U-1 2 13:02:00 34 47 13:73 84 69 84 36 87 86 84 1 U-1 4 13:04:00 34 47 13:73 84 69 84 36 87 86 84 1 U-2 1 13:06:00 20:68 8:26 79 47 79:23 82:41 79:79 1 U-2 4 13:08:00 20:68 8:26 79:37 79:19 82:38 79:11 1 U-3 1 13:11:00 6:89 2:79 66:46 67:34 69:93 66:10 1 U-3 1 13:14:00 6:89 2:									
1 L - 14 2 12:55:00 47.78 19.01 80.84 80.84 84.26 80.1 1 L - 14 4 12:57:00 47.78 19.01 84.64 84.41 87.97 84.1 1 U - 1 1 13:01:00 34.47 13.73 84.69 84.36 87.86 84.1 1 U - 1 4 13:06:00 34.47 13.73 84.65 84.36 87.84 84.1 1 U - 2 1 13:06:00 20.68 8.26 79.47 79.23 82.41 79.1 1 U - 2 1 13:06:00 20.68 8.26 79.97 79.19 82.38 79.1 1 U - 2 4 13:06:00 20.68 8.26 79.97 79.19 82.38 79.1 1 U - 3 1 13:11:00 6.89 2.79 66.18 66.50 69.07 65.1 1 U - 3 4 13:14:00 6.89 2.79 65.18 66.50 69.07 65.1									78 97
1 L - 14 4 12:67:00 47.78 19:01 84.64 84.41 88.04 84. 1 U - 1 1 13:01:00 34.47 13:73 84.69 84.36 87.86 84. 1 U - 1 4 13:02:00 34.47 13:73 84.65 84.36 87.84 84. 1 U - 2 1 13:06:00 20.68 8.26 80.10 79.78 82.93 79. 1 U - 2 2 13:06:00 20.68 8.26 79.47 79.23 82.41 79. 1 U - 2 4 13:06:00 20.68 8.26 79.37 79.19 82.28 79. 1 U - 3 1 13:11:00 6.89 2.79 66.46 67.34 69.93 66. 1 U - 3 4 13:14:00 6.89 2.79 65.55 65.69 68.22 65. 1 U - 4 1 13:16:30 0.00 0.00 55.57 56.06 58.10 55. 1 U -									80 84
1 U - 1									84.52
1 U - 1 2 13:02:00 34 47 13 73 84 69 84 36 87 86 84 1 U - 2 1 13:06:00 20 68 8 26 80 10 79 78 82 93 79 1 U - 2 2 13:06:00 20 68 8 26 79 47 79 23 82 41 79 1 U - 2 4 13:08:00 20 68 8 26 79 37 79 19 82 38 79 1 U - 3 1 13:11:00 6.89 2 79 66 46 67 34 69 93 66 1 U - 3 2 13:12:00 6.89 2 79 66 55 65.69 68 22 65 1 U - 3 4 13:14:00 6.89 2 79 66 55 66.69 68 22 65 1 U - 4 1 13:16:30 0 00 0 00 55 57 56 06 58 10 55 1 U - 4 2 13:21:00 0 00 0 00 56.50 54.80 56.81 55 2 L - 0									84 61
1 U - 1 4 13:04:00 34 47 13:73 84 65 84 36 87 84 84 1 U - 2 1 13:06:00 20 68 8.26 80 10 79 78 82 93 79 1 U - 2 2 13:06:00 20 68 8.26 79 37 79 19 82 38 79 1 U - 3 1 13:11:00 6.89 2.79 66 46 67 34 69 93 66 1 U - 3 2 13:12:00 6.89 2.79 65 18 66.50 69 07 65 1 U - 3 4 13:16:00 6.89 2.79 65 55 65.69 68 22 655 1 U - 4 1 13:16:30 0.00 0.00 55 57 56.06 58 10 55 1 U - 4 1 13:19:30 0.00 0.00 55 50 54.80 56.81 55 2 L - 0 - 13:21:00 0.00 55.50 54.80 56.81 55 2 L - 1 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>84 53</td></t<>									84 53
1 U - 2 1 13:05:00 20:68 8.26 80:10 79:78 82:93 79:10 1 U - 2 2 13:06:00 20:68 8.26 79:47 79:23 82:41 79:31 82:38 79:79 19:82:38 79:79 19:82:38 79:79 19:82:38 79:79 19:82:38 79:79 19:82:38 79:79 19:82:38 79:79 10:34 69:93 66:60 69:93 66:60 69:93 66:60 10:34 69:93 66:50 10:34 69:93 66:50 10:34 69:93 66:50 10:34 69:93 66:50 69:07 65:50 65:50 65:50 65:50 65:50 65:50 65:50 65:50 65:50 65:50 65:50 65:50 55:50 55:44 57:47 55:50 55:50 55:45 55:50 55:45 55:50 55:50 55:50 55:50 55:50 55:50 55:50 55:50 55:50 55:50 55:50 55:50 55:50 55:50 55:50 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>84 51</td>									84 51
1 U - 2 2 13:06:00 20:68 8 26 79:47 79:23 82:41 79:10:20 10:20 4 13:08:00 20:68 8 26 79:37 79:19 82:38 79:10:30 79:10:30 68:99 279:66:46 67:34 69:93 66:10:10:34 69:93 66:10:10:30 68:90:70:65 68:90:70:65 68:90:70:70:70 65:50:70:70:70 65:50:70:70:70 65:50:70:70:70 65:50:70:70:70 65:50:70:70:70 65:50:70:70:70 65:50:70:70:70 66:50:70:70:70 65:50:70:70:70 66:50:70:70:70 65:50:70:70:70 66:50:70:70:70 65:50:70:70:70 65:50:70:70:70 66:50:70:70:70 65:50:70:70:70 66:50:70:70:70 66:50:70:70:70 66:50:70:70:70 66:50:70:70:70 66:50:70:70:70 66:50:70:70:70 66:50:70:70:70 66:50:70:70:70 66:50:70:70:70 66:50:70:70:70 66:50:70:70:70 66:50:70:70:70 66:50:70:70:70 66:50:70:70:70 66:50:70:70:70 66:50:70:70:70 66:50:70:70:70 66:70:70:70 66:70:70:70:70 66:70:70:70:70 66:70:70:70:70 66:70:70:70:70 66:70:70:70:70 66:70:70:70:70 66:70:70:70:70 66:									79 94
1 U - 2 4 13:08:00 20:68 8:26 79:37 79:19 82:38 79:10 1 U - 3 1 13:11:00 6:89 2:79 66:46 66:50 69:07 65:5 1 U - 3 4 13:14:00 6:89 2:79 66:55 65:69 68:22 65:10 1 U - 4 1 13:16:30 0:00 0:00 55:57 56:06 58:10 55:10 1 U - 4 2 13:17:30 0:00 0:00 55:50 55:44 57:47 55:10 1 U - 4 4 13:19:30 0:00 0:00 55:50 54:48 56:81 55:50 2 L - 0 - 13:24:00 0:00 0:00 55:50 54:80 56:81 55:50 2 L - 1 1 13:26:00 10:34 4:15 55:50 56:88 59:01 56:22 56:15 56:15 59:05 56:15 59:05 56:15 59:05 56:01 59:06 56:06 56:06									79 35
1 U - 3 1 13:11:00 6.89 2.79 66.46 67.34 69.93 66.1 1 U - 3 2 13:12:00 6.89 2.79 65.18 66.50 69.07 65.1 1 U - 3 4 13:14:00 6.89 2.79 65.55 65.69 68.22 65.1 1 U - 4 1 13:16:30 0.00 0.00 55.57 56.06 58.10 55.1 1 U - 4 2 13:17:30 0.00 0.00 55.50 54.80 56.81 55.5 2 L - 0 - 13:21:00 0.00 0.00 55.50 54.80 56.81 55.5 2 L - 1 1 13:24:00 10.34 4.15 56.50 56.88 59.01 56.2 2 L - 1 1 13:29:00 10.34 4.15 55.50 56.93 59.07 56.2 2 L - 2 1 13:30:00 20.68 8.26 60.98 62.25 64.70 61 2 L -					8.26		79.19	82 38	79 28
1 U - 3 4 13:14:00 6.89 2.79 66.55 65.69 68.22 65.10 1 U - 4 1 13:16:30 0.00 0.00 55.57 56.06 58.10 55.10 1 U - 4 2 13:17:30 0.00 0.00 55.50 55.44 57.47 55.51 1 U - 4 4 13:19:30 0.00 0.00 56.50 54.80 56.81 55.51 2 L - 0 - 13:24:00 10.34 4.15 56.50 56.85 59.01 56.52 2 L - 1 1 13:24:00 10.34 4.15 56.50 56.88 59.01 56.52 2 L - 1 1 13:25:00 10.34 4.15 55.50 56.91 59.06 56.52 2 L - 2 1 13:30:00 20.68 8.26 60.98 62.25 64.70 64.61 2 L - 2 1 13:39:00 31.03 12.36 72.58 71.14 76.69 71.	1U-3	1			2 79				66 90
1 U - 3 4 13:14:00 6.89 2 79 65 55 65.69 68 22 65 1 U - 4 1 13:16:30 0.00 0.00 55 57 56 06 58 10 55 1 U - 4 2 13:17:30 0.00 0.00 55 55 55 44 57 47 55 1 U - 4 4 13:19:30 0.00 0.00 55.50 54.80 56.81 55 2 L - 0 - 13:24:00 10 34 4 15 56 50 56.85 59 01 56 2 L - 1 1 13:24:00 10 34 4 15 55 50 56.91 59 06 56 2 L - 1 4 13:27:00 10 34 4 15 55 50 56.91 59 06 56 2 L - 2 1 13:30:00 20 68 8 26 60 98 62 25 64 70 61 2 L - 2 2 13:30:00 20 68 8 26 61 87 62 76 65 23 62 2 L - 3	1U-3								65 84
1 U - 4 2 13.17:30 0 00 0 00 55.50 55.44 57.47 56.10 - 4.80 56.81 55.10 - 55.50 55.48 57.47 56.50 - 55.50 55.50 55.50 55.50 - 55.57 56.56 - 55.50 55.57 56.56 - 55.50 55.57 56.56 - 55.50 56.81 55.50 56.87 56.81 55.50 56.81 59.01 56.20 56.81 59.01 56.20 56.88 59.01 56.20 56.88 59.01 56.20 56.88 59.01 56.20 56.88 59.01 56.20 56.89 59.01 56.20 56.89 59.01 56.20 56.89 59.01 56.20 56.20 56.89 59.01 56.20	10-3								65 62
1 U - 4 4 13:19:30 0.00 0.00 56:50 54:80 56.81 55. 2 L - 0 - 13:21:00 0.00 0.00 56:50 54:57 56:56 55. 2 L - 1 1 13:24:00 10:34 4:15 55:50 56:88 59:01 56:00 2 L - 1 2 13:25:00 10:34 4:15 55:50 56:91 59:06 56:00 2 L - 2 1 13:30:00 20:68 8:26 60:98 62:25 64:70 61:00 2 L - 2 2 13:31:00 20:68 8:26 60:97 62:26 65:08 61:0 2 L - 2 4 13:39:00 31:03 12:36 72:58 71:14 75:69 71:0 2 L - 3 1 13:39:00 31:03 12:36 72:83 73:00 75:92 72:2 2 L - 3 1 13:40:00 31:03 12:36 72:83 73:00 75:92 72:2									55 81
2 L - 0 - 13:21:00 0 00 0 00 56:50 54:57 56:56 55 2 L - 1 1 13:24:00 10 34 4 15 55 50 56:88 59 01 56 2 L - 1 2 13:25:00 10 34 4 15 55 50 56:91 59 06 56 2 L - 2 1 13:30:00 20 68 8 26 60 98 62:25 64:70 61 2 L - 2 1 13:30:00 20 68 8 26 60 72 62:62 65:08 61 2 L - 2 4 13:39:00 20 68 8 26 61 87 62:76 65:23 62 2 L - 3 1 13:39:00 31:03 12:36 72:58 71:14 76:69 71 2 L - 3 2 13:40:00 31:03 12:36 72:58 71:14 76:69 72 2 L - 3 4 13:42:00 31:03 12:36 72:83 73:00 75:92 72 2 L - 4									55 47
2 L - 1 1 13:24:00 10 34 4 15 56 50 56.88 59 01 56 2 L - 1 2 13:25:00 10 34 4 15 55 50 56.91 59 06 56 2 L - 1 4 13:27:00 10 34 4 15 55 50 56.93 59 07 56 2 L - 2 1 13:30:00 20 68 8 26 60 98 62 25 64 70 61 2 L - 2 2 13:31:00 20 68 8 26 60 72 62 62 65 08 61 2 L - 3 1 13:39:00 31 03 12 36 72 58 71 14 76 69 71 2 L - 3 1 13:40:00 31 03 12 36 72 83 73 00 76 92 72 2 L - 3 4 13:42:00 31 03 12 36 72 83 73 00 76 92 72 2 L - 4 1 13:52:00 41 37 16 46 89 44 89 02 92 72 89 2 L - 4									55.15
2 L - 1 2 13:25:00 10 34 4 15 55 50 56.91 59 06 56.2 2 L - 2 4 13:27:00 10 34 4 15 55 50 56.93 59 07 56. 2 L - 2 1 13:30:00 20 68 8 26 60 98 62 25 64 70 641 2 L - 2 2 13:31:00 20 68 8 26 60 72 62 62 65 08 61 2 L - 3 1 13:39:00 31 03 12 36 72 58 71 14 76 69 71 2 L - 3 2 13:40:00 31 03 12 36 72 83 73 00 76 92 72 2 L - 3 4 13:42:00 31 03 12 36 72 83 73 00 76 92 72 2 L - 3 4 13:40:00 31 03 12 36 73 24 73 44 76 37 73 2 L - 4 1 13:52:00 41 37 16 46 89 14 89 02 92 72 89 2 L - 4									55 03
2 L - 1 4 13:27:00 10 34 4 15 55 50 56.93 59 07 56:02 2 L - 2 1 13:30:00 20 68 8 26 60 98 62 25 64 70 61:02 2 L - 2 2 13:31:00 20 68 8 26 61 87 62 76 65 23 62:02 2 L - 3 1 13:39:00 31 03 12 36 72 58 71 14 76 69 71. 2 L - 3 2 13:40:00 31 03 12 36 72 83 73 00 75 92 72. 2 L - 3 4 13:42:00 31 03 12 36 73 24 73 44 76 97 73 2 L - 4 1 13:52:00 41 37 16 46 89 14 89 02 92 72 89 2 L - 4 2 13:53:00 41 37 16 46 89 94 89 88 89 88 93 57 89 2 L - 4 4 13:55:00 45 71 18 19 116 88 116 61 119 13 116									56 19
2 L - 2 1 13:30:00 20 68 8 26 60 98 62 25 64 70 61 12 12 12 12 12 12 12 12 12 12 12 12 12									56 20 56 21
2 L - 2 2 13:31:00 20 68 8 26 60 72 62 62 65 08 61 2 L - 2 4 13:33:00 20 68 8 26 61 87 62 76 65 23 62 2 L - 3 1 13:39:00 31 03 12 36 72 58 71 14 76 69 71 2 L - 3 2 13:40:00 31 03 12 36 72 83 73 00 75 92 72 2 L - 3 4 13:42:00 31 03 12 36 73 24 73 44 76.37 73 2 L - 4 1 13:52:00 41 37 16 46 89 14 89 02 92 72 89 2 L - 4 2 13:53:00 41 37 16 46 89 14 89 02 92 72 89 2 L - 4 2 13:53:00 41 37 16 46 91 26 91 10 94 91 91 2 L - 5 1 14:09:00 45 71 18 19 116 88 116 61 119 13 116 2 L -									56 21 64 64
2 L - 2 4 13:33:00 20:68 8.26 61:87 62:76 65:23 62:2 2 L - 3 1 13:39:00 31:03 12:36 72:58 71:14 75:69 71:2 2 L - 3 2 13:40:00 31:03 12:36 72:83 73:00 75:92 72:2 2 L - 4 1 13:52:00 41:37 16:46 89:14 89:02 92:72 89:02 2 L - 4 2 13:53:00 41:37 16:46 89:94 89:88 93:57 89:02 2 L - 4 4 13:55:00 41:37 16:46 89:94 89:88 93:57 89:02 2 L - 5 1 14:09:00 45:71 18:19 116:88 116:61 119:13 116:01 2 L - 5 2 14:10:00 45:71 18:19 118:70 118:50 122:64 118:02 2 L - 5 3 14:16:00 45:71 18:19 122:43 122:28 126:22 122:28 2 L - 5 8 14:16:00 45:71 18:19 129:98 129:80 134:55 129:02 2 L - 5 8 14:16:00 45:71 18:19 129:98 129:80 134:55									61 67
2 L - 3 1 13:39:00 31 03 12 36 72 58 71 14 76 69 71 2 L - 3 2 13:40:00 31 03 12 36 72 83 73 00 75 92 72 2 L - 3 4 13:42:00 31 03 12 36 73 24 73 44 76 37 73 2 L - 4 1 13:52:00 41 37 16 46 89 14 89 02 92 72 89 2 L - 4 2 13:53:00 41 37 16 46 89 94 89 88 93 57 89 2 L - 5 1 14:09:00 45 71 18 19 116 88 116 61 119 13 116 2 L - 5 2 14:10:00 45 71 18 19 118 70 118 50 122 64 118 2 L - 5 4 14:12:00 45 71 18 19 122 43 122 28 126 22 122 2 L - 5 8 14:16:00 45 71 18 19 129 43 122 28 126 22 122									62 31
2 L - 3 2 13:40:00 31 03 12 36 72 83 73 00 76 92 72 2 1 3 4 13:42:00 31 03 12 36 73 24 73 44 76 37 73 73 73 73 73 73 74 75 75 75 75 75 75 75 75 75 75 75 75 75									71 86
2 L - 3 4 13:42:00 31 03 12 36 73 24 73 44 76.37 73 2 L - 4 1 13:52:00 41 37 16.46 89 14 89 02 92 72 89 2 L - 4 2 13:53:00 41 37 16.46 89 94 89 88 93 57 89 2 L - 4 4 13:55:00 41 37 16.46 91 26 91 10 94 91 91 2 L - 5 1 14:09:00 45.71 18 19 116.88 116.61 119 13 116 2 L - 5 2 14:10:00 45.71 18 19 118 70 118 50 122 64 118 2 L - 5 4 14:12:00 45.71 18 19 122 43 122 28 126 22 122 2 L - 5 8 14:16:00 45.71 18 19 129 98 129.80 134 55 129 2 L - 5 16 14:24:00 45.71 18 19 145 39 144 92 149 61 145 2 L - 5 20 14:28:00 45.71 18 19 153.76 152.51 157.53 163 2 U - 1 1 14:31:00 0 0 0 0 122 58 123 398 126									72 91
2 L - 4 1 13:52:00 41 37 16.46 89 14 89 02 92 72 89 2 L - 4 2 13:53:00 41 37 16.46 89 94 89 88 93 57 89 2 L - 4 4 13:55:00 41 37 16.46 91 2E 91 10 94 91 91 2 L - 5 1 14:09:00 45 71 18 19 116 88 116.61 119 13 116 2 L - 5 2 14:10:00 45 71 18 19 118 70 118 50 122 64 118: 2 L - 5 4 14:12:00 45 71 18 19 122 43 122 28 126 22 122: 2 L - 5 8 14:16:00 45 71 18 19 129 98 129 80 134 55 129 2 L - 5 16 14:24:00 45 71 18 19 145 39 144 92 149 61 145 2 L - 5 20 14:28:00 45.71 18 19 145 39 144 92 149 61 145									73 34
2 L - 4 2 13:53:00 41 37 16.46 89 94 89 88 93 57 89 2 L - 5 4 13:55:00 41 37 16.46 91 26 91 10 94 91 91 2 L - 5 1 14:09:00 45 71 18 19 116 88 116 61 119 13 116 2 L - 5 2 14:10:00 45 71 18 19 118 70 118 50 122 64 118 2 L - 5 8 14:16:00 45 71 18 19 122 43 122 28 126 22 122 2 L - 5 8 14:16:00 45 71 18 19 129 98 129 80 134 55 129 2 L - 5 16 14:24:00 45 71 18 19 145 39 144 92 149 61 145 2 L - 5 20 14:28:00 45.71 18.19 153.76 152.51 157.53 153 2 U - 1 1 14:31:00 0 00 0 00 122 58 123.98 126.23 123									89 08
2 L - 4 4 13:55:00 41 37 16.46 91 26 91 10 94 91 91 2 L - 5 1 14:09:00 45 71 18 19 116 88 116 61 119 13 116 2 L - 5 2 14:10:00 45 71 18 19 118 70 118 50 122 64 118 2 L - 5 4 14:12:00 45 71 18 19 122 43 122 28 126 22 122 2 L - 5 8 14:16:00 45 71 18 19 129 98 129 80 134 55 129 2 L - 5 16 14:24:00 45 71 18 19 145 39 144 92 149 61 145 2 L - 5 20 14:28:00 45.71 18.19 153.76 152.51 157.53 153 2 U - 1 1 14:31:00 0 00 0 00 122 58 123.98 126.23 123 2 U - 1 2 14:32:00 0 00 0 00 122 79 122 55 125 94 122									89 91
2 L - 5 1 14:09:00 45.71 18.19 116.88 116.61 119.13 116. 2 L - 5 2 14:10:00 45.71 18.19 118.70 118.50 122.64 118. 2 L - 5 4 14:12:00 45.71 18.19 122.43 122.28 126.22 122. 2 L - 5 8 14:16:00 45.71 18.19 129.98 129.80 134.55 129. 2 L - 5 16 14:24:00 45.71 18.19 145.39 144.92 149.61 145. 2 L - 5 20 14:28:00 45.71 18.19 153.76 152.51 157.53 153. 2 U - 1 1 14:31:00 0.00 0.00 122.58 123.398 126.23 123. 2 U - 1 2 14:32:00 0.00 0.00 122.79 122.55 125.94 122.									91 18
2 L - 5 2 14:10:00 45 71 18 19 118 70 118 50 122 64 118 19 2 L - 5 4 14:12:00 45 71 18 19 122 43 122 28 126 22 122 125 2 L - 5 8 14:16:00 45 71 18 19 129 98 129 80 134 55 129 125 2 L - 5 16 14:24:00 45 71 18 19 145 39 144 92 149 61 145 145 2 L - 5 20 14:28:00 45.71 18.19 153.76 152.51 157.53 153. 2 U - 1 1 14:31:00 0 00 0 00 122 58 123.98 126.23 123 2 U - 1 2 14:32:00 0 00 0 00 122 78 122 55 125 59 125									116 74
2 L - 5 4 14:12:00 45 71 18 19 122 43 122 28 126 22 122 28 2 L - 5 8 14:16:00 45 71 18 19 129 98 129 80 134 55 129 129 129 129 129 129 129 129 129 129									118 60
2 L - 5 8 14:16:00 45 71 18 19 129 98 129 80 134 55 129 129 129 129 129 129 129 129 129 129									122 36
2 L - 5 16 14:24:00 45.71 18.19 145.39 144.92 149.61 145.20 2 L - 5 20 14:28:00 45.71 18.19 153.76 152.51 157.53 153. 2 U - 1 1 14:31:00 0.00 0.00 122.58 123.398 126.23 123.3 2 U - 1 2 14:32:00 0.00 0.00 122.79 122.55 125.94 122.55									129 89
2L-5 20 14:28:00 45.71 18.19 153.76 152.51 157.53 153. 2U-1 1 14:31:00 0 00 0 00 122 58 123.98 126.23 123. 2U-1 2 14:32:00 0 00 0 00 122 79 122 55 125 94 122.									145 15
2 U - 1 1 14:31:00 0 00 0 00 122 58 123.98 126.23 123 2 U - 1 2 14:32:00 0 00 0 00 122 79 122 55 125 94 122									153.13
2 U - 1 2 14:32:00 0 00 0 00 122 79 122 55 125 94 122						122 58			123 28
							122 55	125 94	122 67
* LVWDT 22896 is not included in the average due to its orientation.								124.75	121.65

*LVWDT 22896 is not included in the average due to its orientation. LVWDTs 22894 and 22895 are oriented 180° opposed

Upward and Downward O-cell™ Plate Movement and Creep (calculated)
Dedicated Test Shaft - I-235 over Des Moines River - Des Moines, IA

		Dedic					loines Riv	/er - Des	Moines, I	A	Crear Dr
Load	Hold	Time	O-ce		Top of	Total	Top Plate	O-cell TM	Bot. Plate Movement	Creep Up Per Hold	Creep Dn Per Hold
Test	Time	,,,,,,,	Pressure (MPa)	Load (MN)	Shaft (mm)	Comp. " (mm)	Movement (mm)	Expansion (mm)	(mm)	(mm)	(mm)
Increment 1 L - 0	(minutes)	(h:m:s) 11:28:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
1L-1	1	11:34:00	3.45	1.42	0.03	0 07	0 10	0 22	-0.12		
1L-1	2	11:35:00	3.45	1.42	0 05	0 07	0 12	0 25	-0 14	0.02	0.02
1 L - 1	4	11:37:00	3 45	1.42	0.06	0 07	0 13	0 26	-0 13	0.02	-0 01
1L-2	1	11:38:00	6.89	2 79	0 13	0 19	0.32 0.36	0.80 0.87	-0 47 -0.51	0 04	0 03
1L-2	2	11:39:00	6.89	2 79	0 16 0 19	0 20 0 21	0.36	0.57	-0.53	0 04	0 02
1L-2	4	11:41:00 11:42:00	6.89 10.34	2 79 4 15	0 19	0.35	0 66	1.69	-1 03	• • •	
1L-3 1L-3	1 2	11:42:00	10.34	4 15	0 34	0 36	0.70	179	-1 08	0 04	0.05
1L-3	4	11:45:00	10.34	4 15	0 39	0 36	0 75	1 85	-1 10	0.05	0.02
1L-4	1	11:46:00	13 79	5.52	0.58	0.50	1 07	2 70	-1 63		
1 L - 4	2	11:47:00	13.79	5 52	0 59	0 50	1 09	2 78	-1 69	0 02	0.07
1 L 4	4	11:49:00	13.79	5 52	0.63	0 50	1 14	2.89 3.87	-1 76 -2 36	0 05	0 06
1 L - 5	1	11:50:00	17 24	6 89	0 87 0 92	0 65 0 66	1 52 1 58	4 07	-2 49	0 06	0.14
1 L - 5	2	11:51:00	17 24 17 24	6 89 6 89	0 92	0.67	1 64	427	-2 63	0 06	0.13
1L-5 1L-6	1	11:53:00 11:54:00	20.68	8 26	1 26	0.82	2 08	5 40	-3 32		i l
1L-6	2	11:55:00	20 68	8.26	1 34	0.83	2 17	5 67	-3 50	0.09	0 17
116	4	11:57:00	20 68	8 26	1 42	0 85	2 27	5.93	-3,66	0 09	0 17
1 L - 7	1 1	11:58:30	24.13	9 63	1.85	1 01	286	7 39	-4 53	2.40	
1 L = 7	2	11:59:30	24.13	9 63	1 94	1 02	2 96	7 67	-4 71 4 01	0 10 0 14	0 19 0 20
1L-7	4	12:01:30	24 13	9.63	2 06	1 04	3 10 3.85	8 01 9 76	-4 91 -5 91	U 14	V 20
1L-8	1 1	12:03:00	27 58	10.99	2 63 2 77	1 22 1 23	3.85 4.00	10 16	-6 15	0 15	0.24
1 L - 8	2	12:04:00 12:06:00	27 58 27 58	10 99 10 99	2.87	1 23		10 10	-6.48	0 11	
1 L - 8	4 1	12:00:00	31 03	12 36	3 56	1 43		12 68	-7 69		1
1 L - 9 1 L - 9	2 .	12:08:30	31 03	12 36	3 78	1 45	5 23	13.33	-8 10	0 23	
1L-9	4	12:10:30	31 03	12 36	3 99	1 47		14 06	-8.60	0 23	0 50
1 L - 10	1	12:12:30	34.47	13.73	4 88	1.66		16.79	-10.25	ا	0.53
1 L - 10	2	12:13:30	34 47	13.73	5 19	1 69		17 70	-10 83 -11 54	0.34 0.40	
1 L 10	4	12:15:30	34 47	13.73	5.56	171		18 81 22 43		0.40	"
1 L - 11	1 1	12:18:30	37 92	15 10 15 10	6.78 7.31	1 92 1 98		23 69		0 60	0 66
1 L - 11	2	12:19:30 12:21:30	37 92 37 92	15 10	7 96	2 02		25.31	-15 34		
1 L - 11 1 L - 12	4	12:26:00		16 46	10 85	2 28		32 49	-19 37		ł l
1 L - 12	2	12:27:00		16.46	11 64	2 32	13 96		-19 91	0 83	
1 L - 12	4	12:29:00		16.46	12 63	2 34		35 83			0 95
1 L - 13	1 1	12:36:00	44 82	17 83	18 94	2 69		48 13			0 58
1 L - 13	2	12:37:00		17 83	19 75	2 70		49 53 51 75	-27 08 -27 98		
1 L - 13	4	12:39:00		17 83	21 05 39 00	2 72 3 11		78 97	-36.86		"
1 L - 14	1 1	12:54:00		19 01 19 01	40 37	3.12					0 48
1 L - 14	2	12:55:00 12:57:00		19.01	43.17	3.14		84.52			0.87
10-1	1	13:01:00		13 73	44 75	2 56	47 31	84 61			
10-1	2	13:02:00		13 73	44 70						
10-1	4	13:04:00		13 73	44 68						
10-2	1	13:05:00		8 26	43 00	1 80					1
1U-2	2	13:06:00		8 26	42 73	1 82 1 84					1
1U-2	4	13:08:00		8 26 2 79	42 64 37 10			66 90			
10-3	1 2	13:11:00 13:12:00			36.60						
10-3	4	13:14:00			36.11			65 62	-28 74		1
10-4	1 7	13:16:30	0.00	0.00	31 13	0.35	31 48				
1U-4	2	13:17:30	0 00		30 73						ļ
1U-4	4	13:19:30			30.32						1
2L-0		13:21:00			30 16 30 65						i
2L-1	1 1	13:24:00									
2L-1	2	13:25:00 13:27:00							t	-1	
2L-1 2L-2	1	13:27:00							-27 39	9Í	1
2L-2	2	13:31:00			33 02	1 38	34 40	61 67			1
212	4	13:33:00	20 68	8.26	33 06	1 39					1
2 L - 3	1	13:39:00	31 03			2 10					
2L-3	2	13:40:00									
213	4	13:42:00									
21-4	1 1	13,52:00									
2L-4	2 4	13:53:00 13:55:00									i
2L-4 2L-5	1 1	14:09:00						116 74			1
21.5	2	14:10:00				3 12	2 72.5	1 118 60	-4609		
2L-5	4	14:12:00		18 19	72.70	3 1:					
2L-5	8	14:16:00	45.71	18 19							1
2L-5	16	14:24:00	45.71								
2L-5		14:28:00									
2 U - 1		14:31:00									
20-1		14:32:00 14:34:00									
20-1			2. 3 and 4		11.00	0.0				•	

* Sum of ECT levels 2, 3 and 4

Strain Gage Readings and Loads at Levels 1, 2 and 3 at Levels 1, 2 and 3

	Dedicated Test Shaft - I-235 over Des Moines River - Des Moines, IA													
	Load	Hold	Time	O-ce		04046	Level 1	Av Lond	24219	24220	Av. Load	24217	24218	Av. Load
١.	Test	Time	/h	Pressure (MPa)	Load (MN)	24215 (με)	24216 (με)	Av. Load (MN)	(με)	(με)	(MN)	(us)	(με)	(MN)
	crement 1 L - 0	(minutes)	(h:m:s) 11:28:30	0.00	0.00	0.0	0.0	0,00	0.0	0.0	0.00	0.0	0.0	0.00
	1L-1	1	11:34:00	3.45	1 42	9.0	11.4	0 27	9.0	82	0 20	16.5	17 0	0 38
	1 L - 1	2	11:35:00	3.45	1 42	88	11 3	0 27	89	8 1	0.19	16.4	17 0 17 0	0.38 0.38
	1L-1	4	11:37:00	3.45	1 42	8 5	11 3	0 26	90	8 2 23 2	0.20 0.55	16 4 43 8	47 3	1 03
	1L-2	1 1	11:38:00	6 89	2 79	19 2	34 8	0 72 0 74	25 4 26 5	23 Z 24 2	0 58	45 4	49 1	1.07
	1 L - 2	2	11:39:00	6 89	2 79	19 2 19 2	36 4 38 5	077	27.7	25.3	0 60	47.0	51 1	1 11
	1L-2	4	11:41:00 11:42:00	6.89 10.34	2 79 4 15	27 5	69.1	1 29	47 1	42.4	1 02	75.0	85.1	1 82
	1L-3 1L-3	1 2	11:42:00	10.34	4 15	26 2	69.9	1 28	47 8	42 8	1 03	760	85 6	1 83
	1L-3	4	11:45:00	10.34	4 15	25 7	71 5	1 30	48 7	43 5	1.05	77 2	867	1 86
	1L-4	1	11:46:00	13 79	5.52	32.0	96 4	1 71	68.4	60 0	1.46	105 1	117 1	2 52
	1L-4	2	11:47:00	13 79	5 52	31 7	98 8	174	697	61 1	1 48	107 3 108 1	119 3 119.7	2 57 2 59
ı	14	4	11:49:00	13.79	5 52	30 4	998	1 74 2 18	70 5 92 6	61 4 79 8	1 50 1 96	139.0	153.8	3 32
	1 L - 5	1	11:50:00	17 24	6.89 6.89	37 8 36 6	125 5 127 3	2 19	94.5	81 1	1 99	141 5	156 0	3 38
	1L-5	2	11:51:00	17 24 17 24	6.89	34 9	128 8	2 19	96.1	820	2.02	143 5	157 5	3 42
1	1L-5	4	11:53:00 11:54:00	20 68	8 26	415	152 8	2 59	120 5	101 5	2 52	175 0	192 5	4 17
ı	1L-6 1L-6	2	11:55:00	20 68	8 26	40.2	154 5	2 60	122 8	103 1	2 56	177.4	195.4	4 23
ı	1L-6	4	11:57:00	20.68	8 26	38 9	156 3	2 61	125 1	104 7	2 61	180 3	198.3	4 30
1	1L-7	1	11:58:30	24 13	9.63	45 8	181 3	3 03	154 1	127 0	3 19	214 9	238.6	5 15 5 17
1	1L-7	2	11:59:30	24 13	9.63	44 1	180 9	3.00	155.8	127 6	3 22 3 28	216 0 219 6	239 6 243 5	5 26
1	1 L - 7	4	12:01:30	24 13	9.63	43 2	182 7	3 02 3 43	159.3 192.0	130 0 153 6	3 28	253.8	283 8	6 10
1	1L-8	1	12:03:00	27 58	10 99 10 99	50 5 48.8	206 4 206 0	3.43	194.4	154.6	3 96	254 3	284.6	6.12
1	1 L - 8	2	12:04:00 12:06:00	27.58 27.58	10 99	47.4	206.8	3.39	197 8	156.4		256.6	286.7	6 17
1	1L-8 1L-9	1	12:06:00	31 03	12 36	57 1	232 8	3.87	235 9	182 8	4 75	293 9	329 4	7 08
1	1L-9	2	12:08:30	31 03	12 36	55.6	234 2	3 87	241.2	185 2	4 84	296 2	331 8	7 13
	1L-9	4	12:10:30	31 03	12 36	558	239 1	3 94		189 5		301.5	337 3	7 25
	1 L - 10	1	12:12:30	34 47	13 73	63 4	267 6			215 5		335.0 338.7	378 2 383.5	8 09 8 20
	1 L - 10	2	12:13:30	34 47	13 73	63 0	272 1	4 47		219 1 221 8	5 83 5 93	340 8	387.0	8 26
	1 L - 10	4	12:15:30	34.47	13 73	620	276.7 312.7	4 52 5 15			6.73	376 3	431 2	9 16
	1 L - 11	1	12:18:30	37 92 37 92	15.10 15.10	73 2 72 5	317 3					379 2	436.5	9 26
	1 L - 11 1 L - 11	2 4	12:19:30 12:21:30	37 92 37 92	15 10	730	322 8			259.0		383.2		9 37
	1 L - 12	1	12:26:00	41 37	16,46	860	366 9			295 9	8 17	420 8	496.1	10 41
	1 L - 12	2	12:27:00	41 37	16.46	87 2	372 6					425 1	503 2	10 54
	1 L - 12		12:29:00	41 37	16.46	84 9	374 8			302 9			505 2	10 56 11 86
	1 L - 13	1	12:36:00	44 82	17 83	100 4	427 8					472 1 472 1	572.4 573.6	
	1 L - 13	2	12:37:00	44 82	17 83	98 4	428 5							
	1 L - 13		12:39:00		17 83	97 3 110 3	431 9 491 8						640 1	13 17
-1	1 L - 14	1	12:54:00		19 01 19 01	110.0	494 1							13 20
ı	1 L - 14 1 L - 14	2 4	12:55:00 12:57:00		19.01	109.6	498.4			1		523.7		
F	10-1	1	13:01:00		13 73	49 4	394 9	5 93						
	10-1	2	13:02:00		13 73	490								
-	1U-1	4	13:04:00		13 73	49 6								
- 1	1 U - 2	1	13:05:00		8.26	118								
ı	1 U - 2	2	13:06:00		8 26 8 26	13 0 15 0								
	1 U - 2	4	13:08:00		279	-35							t .	
	1U-3 1U-3	1 2	13:11:00		279	-32					3 58	109 6	185.5	
1	10-3	4	13:14:00			-33		1 07	235 7	70 :				
	10-3	1	13:16:30	0 00	0 00	-02	24 4							
	1 U - 4	2	13:17:30	0 00										
Į.	1U-4	4	13:19:30		0.00								-	
Γ	2L-0		13:21:00		0.00			-					1	
	2 L · 1	1 2	13:24:00		4 15 4 15									3.51
	2L-1	1	13:25:00								3 3 2	123 9	185.3	3 51
	2L-1 2L-2		13:30:00					1 30	315	2 153 1	5 3			
-	2 L 2		13:31:00			22 0	207	7 30						
ļ	2 L - 2		13:33:00	20 68	8 26	215								
	2 L - 3	1	13:39:00											
	2 L - 3	2	13:40:00											
-	2L-3		13:42:00											
- [2 L - 4		13:52:00											
J	2L-4		13:53:00									2 468	567 5	11 76
	2L-4 2L-5		14:09:00						2 673	5 355.				
- [2L-5		14:10:00				517	8 8.2						
- [2 L - 5		14:12:0	45 71	18 19	99 (
J	2L-5	8	14:16:0	45 71										
- [2 L - 5		14:24:0											
-	2L-5		14:28:0											
١	20-1		14:31:0 14:32:0										3 79	5 1 37
١	2U-1 2U-1		14:32:0										9 76.	5 1.30
- 1	20-1	· +	14.54.0	0.00	-1			* ***						

Strain Gage Readings and Loads at Levels 4 and 5 Dedicated Test Shaft - I-235 over Des Moines River - Des Moines, IA

Dedicated Test Shaft - I-235 over Des Moines River - Des Moines, IA												
Load	Hold	Time	0-06		04004	Level 4 24222	Ass Cond	24223	Level 5 24224	No. Cond	 · · · · · ·	
Test Increment	Time (minutes)	(h:m:s)	Pressure (MPa)	Load (MN)	24221 (με)	(µe)	Av. Load (MN)	24223 (με)	24224 (με)	Av. Load (MN)		
1L-0	(minacos)	11:28:30	0.00	0.00	0.0	0.0	0.00	0.0	0.0	0.00	 ·	
1L-1	1	11:34:00	3.45	1.42	32	4.0	0.08	21	20	0.08	1	
1 L-1	2	11:35:00	3.45	1 42	3 2	4.0	0.08	21	. 20	80 0	1	
11.1	4	11:37:00	3.45	1.42	32	40	80.0	21	21	0 08		l
1 L-2	1	11:38:00	6.89	2 79	87	11 4	0.23	5.4	57	0 22		1
1L-2	2	11:39:00	6.89 6.89	2 79 2 79	8 9 9 2	11 7 12 2	0.23 0.24	56 60	5.9 6.3	0 23 0 24		İ
1L-2 1L-3	4	11:41:00 11:42:00	10 34	4.15	152	203	0 40	9.3	9.5	0 24		
1 -3	2	11:43:00	10 34	4 15	15 3	20 5	0 41	94	94	0 37		l .
1 L - 3	4	11:45:00	10.34	4.15	15 5	20 8	0 41	96	9 5	0 38		
1L-4	1	11:46:00	13.79	5 52	21 4	28 6	0 57	12 5	10 9	0 46	l.	:
14-4	2	11:47:00	13.79	5 52	217	29 2	0 58	12 4	10 7	0 46		
1 L - 4	4	11:49:00	13.79	5 52	21 9	29 4	0 58	12 4	107	0 45	1	
1 L - 5	1	11:50:00	17 24	6 89	29 0	38 4	0 76	150	12 0	0 53	1	
1 L - 5	2 4	11:51:00 11:53:00	17 24 17 24	6 89 6 89	29 5 30.0	39.0 39.5	0 78 0 79	15 0 15.2	12 0 12 0	0.53 0.53	i	
16-6	1	11:54:00	20.68	8 26	37.5	49.1	0 98	17 0	12 7	0.58	ŀ	
11.6	2	11:55:00	20 68	8 26	38.2	497	1 00	16.8	12 5	0.58		
1L-6	4	11:57:00	20.68	8.26	38 9	50 4	1 01	16.7	12 6	0 58		
1L-7	1	11:58:30	24 13	9.63	47.8	60.9	1.23	18 1	12 9	0.61	[
1 L - 7	2	11:59:30	24 13	9.63	48 2	61 1	1,24	17 9	128	0.60	1	
1 L - 7	4	12:01:30	24.13	9.63	49.5	62 2	1.27	18.0	13.0	0.61	1	
1L-8 1L-8	1 2	12:03:00	27 58 27 58	10 99 10 99	59 4 60 1	73.1 73.4	1 50 1 52	18.9 18.8	13.2 13.3	0 63 0 63		•
1L-8	4	12:04:00 12:06:00	27 58	10 99	61 3	74.2	1 52	18.8	13.4	0 63		
119	1	12:07:30	31 03	12 36	73 2	86.3	1.81	19.8	13.4	0 65		
1L-9	2	12:08:30	31 03	12 36	74 8	87 1	1.84	19 5	13.7	0 65		
1L-9	4	12:10:30	31 03	12 36	77 8	88 9	1.89	19 5	14.0	0 66		
1 L - 10	1	12:12:30	34.47	13 73	92 1	101 2	2 19	19 7	14 4	0 67		
1 L - 10	2	12:13:30	34.47	13 73	95 4	102 8	2 25	19 6	14 7	0 67		:
1 L - 10	4	12:15:30	34.47	13 73 15 10	98 9	104 4 120 1	2 31	19 5 20 4	14 7 14 5	0 67 0 69		
1 L - 11 1 L - 11	1 2	12:18:30 12:19:30	37 92 37 92	15 10	117 9 122 6	121 3	2 70 2 77	193	15.1	0 68		
1 11	4	12:21:30	37 92	15 10	129 2	123 8	2.87	19 2	15.7	0 69		
1 L - 12	i	12:26:00	41 37	16 46	161 8	142 1	3 45	18 7	20 3	0 77		l
1 L - 12	2	12:27:00	41 37	16 46	167 5	145 0	3 55	19 0	20 2	0 77		
1 L - 12	4	12:29:00	41 37	16 46	172 4	146 2	3 62	19 6	197	0 77	1	
1 L - 13	1	12:36:00	44 82	17 83	219 9	172 0	4 45	24 3	17 1	0.81	1	
1 L - 13	2	12:37:00	44 82	17 83	222 3	172 6	4 48	24 8	169	0 82		
1 L - 13 1 L - 14	4 1	12:39:00 12:54:00	44 82 47 78	17 83 19 01	227 1 290 3	173 7 206 3	4 55 5 64	25 5 45 6	17 0 24 0	0 83 1 37		
1 L - 14	2	12:55:00	47 78	19 01	293 4	207 7	5 69	45 7	25 5	1 40	}	
1 L - 14	4	12:57:00	47.78	19.01	297.8	211.1	5.78	46.2	27.7	1.45		
10-1	1	13:01:00	34 47	13 73	250.4	160 4	4 66	32.7	20.3	1.04		
10-1	2	13:02:00	34 47	13 73	249 4	159 4	4 64	33 2	20 6	1 06	l .	
1 U - 1	4	13:04:00	34 47	13 73	249 5	159 7	4 64	34 5	21 5	1 10		
10-2	1	13:05:00	20 68	8 26 8 26	187 9 190 1	95 1 97 4	3 21 3 26	20 2 21 9	10 4 10 6	0 60 0 64		
1U-2 1U-2	2 4	13:06:00 13:08:00	20 68 20 68	8 26	192 0	99 4	3 31	23.2	11 1	0 67		
10-2	1	13:11:00	6 89	2 79	100 9	14 2	1 31	93	12	0 21		
10-3	2	13:12:00	6 89	2 79	98 3	12 7	1.26	91	10	0 20		
10-3	4	13:14:00	6 89	2 79	95.7	11 2	1 21	92	07	0 19		
10-4	1	13:16:30	0.00	0 00	55.7	-12 6	0 49	57	-27	0 06		
10-4	2	13:17:30	0.00	0 00	55 0	-11 9	0.49	5 8 5 7	-2 6	0 06		
1U-4	4	13:19:30 13:21:00	0.00	0.00	54.1 54.0	-11.7 -11.4	0.48 0.48	5.7 5.6	•2.6 •2.7	0.06 0.06		
2L-0	1	13:21:00	10 34	4 15	77.4	13.1	1 03	14 6	46	0 38		
2L-1	2	13:25:00	10 34	4 15	77.6	13.5	1 03	14 8	47	0 38		
21-1	4	13:27:00	10 34	4.15	77 7	13.5	1 03	14 7	4 5	0 38		
2L-2	1	13:30:00	20 68	8 26	121 1	52 9	1 97	21 9	11 5	0 66		
2L-2	2	13:31:00	20 68	8 26	121 8	53.1	1 98	22 1	117	0 66		
2L-2	4	13:33:00	20 68	8 26	122 1	53.2	1 99	22 3	119	0 67		
2L-3	1	13:39:00	31 03	12 36	189 5 189 1	109.8	3 40	30 2 30 3	19 5 19 8	0 98 0 98		
2L-3 2L-3	2 4	13:40:00 13:42:00	31 03 31 03	12 36 12 36	189 1 190 7	110 2 112 2	3.40 3.44	30 3	19 8 20 6	101		
2L-4	7	13:52:00	41 37	16 46	265 5	183 2	5.09	40 9	30 0	1 39		
21.4	2	13:53:00	41 37	16 46	265 6	183 4	5 10	41 5	30 3	141	1	
2L-4	4	13:55:00	41 37	. 16 46	267.0	185 4	5 13	42 2	316	1 45		
2L-5	1	14:09:00	45.71	18 19	299 4	230 5	6.01	52 3	47 3	1 96		
2L-5	2	14:10:00	45.71	18 19	299 2	232 4	6.03	53 5	48 1	2 00		
2L-5	4	14:12:00	45.71	18 19	296 1	236 0	6.04	55 0	49 0	2 04		
2L-5	8	14:16:00	45.71	18 19	293 2	242 4	6.08	56 5	511	211		
2L-5 2L-5	16 20	14:24:00 14:28:00	45.71 45.71	18 19 18.19	285 7 282.7	253 3 256.9	6.12 6.12	60 7 61.3	45 2 42.9	2 08 2.05		
20-1	1	14:28:00	0.00	0.00	54.3	12.7	0.12	-57	17	-0.08	 	
20-1	2	14:32:00	0 00	0 00	53.6	12 2	0 75	-6.2	19	-0 08		
2 Ų - 1	4	14:34:00	0.00	0.00	53.1	12.0	0.74	-6.7	2.1	-0.09	 <u> </u>	

APPENDIX B

O-CELL™ AND INSTRUMENTATION CALIBRATION SHEETS

STROKE:	1 INCH	3 INCH	5 INCH		
				34" O-CELL, SERI	AL # 2005-1
PRESSURE PSI	LOAD KIPS	LOAD KIPS	LOAD KIPS		
0	0	. 0	¢	LOAD CONVERSI	<u>ON FORMULA</u>
500	314	313	311	LOAD = PRESSUR	RE * 0.615 + (11.6)
1000	621	621	621	{KIPS} {PSI}	•
1500	942	937	935		
2000	1248	1245	1239	Regression Output:	
2500	1561	1557	1548	Constant	11.582
3000	1871	1864	1852	X Coefficient	0.615
3500	2180	2168	2154	R Squared	1.000
4000	2483	2477	2455	No. of Observations	30
4500	2787	2783	2758	Degrees of Freedom	28
5000	3092	3087	3061	Std Err of Y Est	10 088
				Std Err of X Coef	0 001

CALIBRATION STANDARDS:

All data presented is derived from 6" dia. certified hydraulic pressure gauges and electronic load transducer, manufactured and calibrated by the University of Illinois at Champaign, Illinois. All calibrations and certifications are traceable through the Laboratory Master Deadweight Gauges directly to the National Institute of Standards and Technology. No Specific guidelines exist for calibration of load test jacks and equipment but procedures comply with similar guidelines for calibration of gauges, ANSI specifications B40.1.

*AE & FC CUSTOMER: LOADTEST INC *AE & FC JOB NO.: 3641 *CUSTOMER P.O. NO.: LT-8854 *CONTRACTOR: JENSEN CONSTRUCTION *JOB LOCATION: DES MOINES, IA

*DATED: 10/04/02

SERVICE ENGINEER: HOPael

DATE: 7 OCT 2007

48 Spencer St. Lebanon, N.H. 03766 USA

Model Number:	4450-3-6			Range:	6"
Serial Number:	22894		N	Ifg. Number:	02-2847
	Loadtest Inc.		-	[emperature:	23 °C
Cust I D #:	n/a		Cal. Std. Contr	rol Numbers:	124, 213, 506, 524, 529
Job Number:	19578		Cali	bration Date:	October 04, 2002
			Technician:	DH	
				•	
Displacement		01 Reading Po		,	O/ Time with
(inches)	Cycle 1	-	Average	Change	% Linearity
0.000	2273	2278	2276		-0.28
1 200	3488	3494	3491	1216	0 16
2.400	4679	4680	4680	1189	0 14
3 600	5871	5869	5870	1191	0 16
4 800	7053	7051	7052	1182	0 03
6 000	8226	8227	8227	1175	-0 22
	Calibration	n Factor (C):	0,0010089	(Inches/ Dig	git)
	Reg	ression Zero:	2292		
	Refer to manu	al for temper	ature correction	n informatio	n.
	Functio	n Test at Ship:	ment (GK-401 P	Reading)	
Position "B":	5303	_		Date:	October 10, 2002
or Position "F":		_	,	Temp	erature: 24.2 °C
Wiring Code:		Red and Black	c: Gage	Whit	te and Green: Thermistor
	The above instrum	ent was found to	be in tolerance in a	all operating ran	nges
	nt has been calibrated report shall not be rep	by comparison w	ith standards tracea	ible to the NIST	, in compliance with ANSI Z540-1

Position "B": or Position "F":		-	,	Tempe	Statute.	
or:			,	1 empe	Statute.	_
Position "B":				Tomno	erature:	0
	5329	-		Date:		_
	Function	n Test at Shipn	nent (GK-401 R	Leading)		
	Refer to manu	al for tempera	ture correction	n informatior		-
		ression Zero:				
	Calibration	Factor (C):_	0.0010083	(Inches/ Dig	it)	
				-		
4 800 6 000	7091 8268	8270	8269	1178	-0 20	
3 600	5908 7091	5911 7092	7092	1182	0.01	
2.400	4720	4723	4722 5910	1195 1188	0 15	
1.200	3527	3526 4723	3527 4722	1212	0 10 0 18	
0.000	2315	2315	2315	1010	-0.26	
Displacement (inches)	Cycle 1	01 Reading Po Cycle 2	Average	Change	% Linearity	
			1 COMMORALI.	D/ K-		
Job Number:			Technician:	$\mathcal{O}(1)$		
,	19578	•	Calil	bration Date:	October 04, 2002	
Cust ID #:	n/a		Cal. Std. Cont.	rol Numbers:	124, 213, 506, 524, 529	
Customer:	Loadtest Inc.		·	[emperature: _	23 °C	
Serial Number:	22895		M	Ifg Number:	02-2848	
Aodel Number:				Range: _	6"	

48 Spencer St Lebanon, N H 03766 USA

2291 3505 4705 5898 7084 8266	Ca Techniciai	Change 1215 1199 1193 1187 1182	23 °C 124, 213, 506, 524, 52 October 04, 2002 % Linearity -0.25 0.10 0.17 0.15 0.01 -0.19	
Cycle 2 2291 3505 4705 5898 7084 8266	Technician Tosition B Average 2292 3507 4705 5898 7085 8267	Change 1215 1199 1193 1187 1182	% Linearity -0.25 0 10 0 17 0 15 0 01 -0 19	
Cycle 2 2291 3505 4705 5898 7084 8266	Technician Tosition B Average 2292 3507 4705 5898 7085 8267	Change 1215 1199 1193 1187 1182	% Linearity -0.25 0.10 0.17 0.15 0.01 -0.19	
Cycle 2 2291 3505 4705 5898 7084 8266	Technician Position B Average 2292 3507 4705 5898 7085 8267	Change 1215 1199 1193 1187 1182	% Linearity -0.25 0.10 0.17 0.15 0.01 -0.19	
Cycle 2 2291 3505 4705 5898 7084 8266	Position B Average 2292 3507 4705 5898 7085 8267	Change 1215 1199 1193 1187 1182	-0.25 0.10 0.17 0.15 0.01 -0.19	
Cycle 2 2291 3505 4705 5898 7084 8266	Average 2292 3507 4705 5898 7085 8267	1215 1199 1193 1187 1182	-0.25 0.10 0.17 0.15 0.01 -0.19	
2291 3505 4705 5898 7084 8266	2292 3507 4705 5898 7085 8267	1215 1199 1193 1187 1182	-0.25 0.10 0.17 0.15 0.01 -0.19	
3505 4705 5898 7084 8266	3507 4705 5898 7085 8267	1199 1193 1187 1182	0 10 0 17 0 15 0 01 -0 19	
4705 5898 7084 8266	4705 5898 7085 8267	1199 1193 1187 1182	0 17 0 15 0 01 -0 19	
5898 7084 8266 Factor (C):	5898 7085 8267	1193 1187 1182	0 15 0 01 -0 19	
7084 8266 Factor (C):	7085 8267	1187 1182	0 01 -0 19	
8266 Factor (C):	8267	1182	-0 19	
factor (C):	·			
	0.0010047	(Inches/ Digit		
-* <i>17</i>		(.)	
sion Zero:	2306			
for temper	ature correcti	on information.		
	-		A Marian	
est at Shipr	ment (GK-401	Reading)		
		Date: _	October 10, 2002	
		Temper	24.8 ature:	°(
	·			,
d and Black	:: Gage	White :	and Green: Thermist	or
-	d and Black was found to	d and Black: Gage was found to be in tolerance in	d and Black: Gage White was found to be in tolerance in all operating range	Date: October 10, 2002 Temperature: 24.8

48 Spencer St. Lebanon, N H. 03766 USA

Model Number:	4450-3-1			Range: _	1"
· ·	22897	•	N	Mfg. Number: _	02-2815
. •	Loadtest Inc			Temperature: _	22.2 °C
Cust I D #:	n/a 19578		Cal Std Cont	trol Numbers:	338, 249, 406, 524, 529
Job Number:	19578		Cal	ibration Date:	October 03, 2002
			Technician	PAR	
Displacement	 GK4	01 Reading Po	osition B		
(inches)	Cycle 1	_	Average	Change	% Linearity
0.000	2250	2245			-0.26
0 200	3441	3437	3439	1192	0.08
0.400	4620	4616	4618	1179	0 21
0 600	5789	5784		1169	0 16
0.800	6953	6949	6951	1165	0.04
1 000	8107	8107	8107	1156	-0 23
	Calibration	n Factor (C):	0.0001707	_(Inches/ Digi	it)
	Regi	ression Zero:	2263		
	Refer to manu	al for temper	ature correction	on information	1.
		n Test at Shipi	nent (GK-401	Reading)	October 10, 2002
Position "B":	4906			Date:	
or		<u> </u>			26.3
Position "F":				Tempe	erature:°C
Wiring Code:		Red and Black	:: Gage	White	e and Green: Thermistor
e above named instrume	The above instrument has been calibrated sreport shall not be rep	by comparison w	ith standards trace	eable to the NIST,	in compliance with ANSI Z540

48 Spencer St. Lebanon, N.H. 03766 USA

Vibrating Wire Displacement Transducer Calibration Report

Serial Number:	Position "F": _		a signa di samura				
Serial Number:	Position "F": _					· · · · · · · · · · · · · · · · · · ·	
Serial Number:			_		Tempe	erature:	_°C
Serial Number: Loadtest Inc			•		•		
Customer: Loadtest Inc Temperature: 22.2 °C	Position "B":				Date:		
Customer: Loadtest Inc Temperature:			n Test at Shipn	nent (GK-401 R	(eading)	October 10, 2002	
Serial Number: Loadtest Inc Loadtest Inc Temperature: 22.2 °C		Refer to manus	al for tempera	ture correction	n information	ı.	
Serial Number: Loadtest Inc		Regr	ession Zero: _	2296			
Customer: Loadtest Inc Temperature: 22.2 °C		Calibration	Factor (C):	0.0001699	(Inches/ Digi	it)	
Customer: Loadtest Inc Temperature: 22.2 °C	1 000	8170	8170	8170	1165	-021	
Serial Number: Loadtest Inc Temperature: 22.2 °C	0 800						
Serial Number:		5839	5836	5838	1174		
Serial Number:					1185	0.22	
Serial Number: 22898 Customer: Loadtest Inc Temperature: 22.2 °C					1199	0.09	
Serial Number: Displacement	` '	•	-		Change	•	
22898 Mfg Number: 02-2816	-		_		Change	% Linearity	•
22898 Mfg Number: 02-2816				Technician:	XXX		
22898 Mfg Number: 02-2816	Job Number:		•	Cam		00,000	•
22898 Serial Number:		19578		Cali	bration Date:	October 03 2002	
22898 Mfg Number: 02-2816	Cust I.D. #:	n/a		Cal. Std Contr	rol Numbers:	338, 249, 406, 524, 529	
22898 Serial Number: 02-2816	Customer:				remperature:	22.2 °C	-
22898	Serial Number:	<u> </u>		M	Ifg Number:	02-2816	-
fodel Number: Range: 1"	lodel Number:	22898				····	•

48 Spencer St. Lebanon, N.H. 03766 USA

Vibrating Wire Displacement Transducer Calibration Report

lodel Number:	4450-3-1			Range: _	1"
	22899	·			00.0017
Serial Number:	14 6		Ŋ	Mfg. Number: _	02-2817
Customer:	Loadtest Inc.			Temperature:	22.2 °C
· . 	n/a	-	Cal Std Cont	trol Numbers	338, 249, 406, 524, 529
Cust I.D. #:	19578	-	Car Std Com	LIOI INGINOCIS.	550, 247, 400, 02 1, 525
Job Number:	19376	_	Cali	ibration Date:	October 03, 2002
			Technician:	DH	
Displacement	GK-4	101 Reading Po	sition B		
(inches)	Cycle 1	Cycle 2		Change	% Linearity
0.000	2221	2219	2220	. –	-0 26
0 200	3414	3412	3413	1193	0.07
0 400	4595	4593	4594	1181	0 20
0.600	5768	5766	5767	1173	0 18
0.800	6932	6931	6932	1165	0.03
1.000	8090	8090	8090	1159	-0 23
1 mgg sharen 1 mgg sagar ngar nga mga mga mga mga mga mga mga mga mga m	Calibration	n Factor (C):	0.0001704	_(Inches/ Digi	t)
	Reg	ression Zero: _	2235		
	Refer to manu	al for tempera	ture correctio	on information	o
	Functio	n Test at Shipn	nent (GK-401 I	Reading)	
	4908			~ .	October 10, 2002
Position "B": _		_		Date:	27.0
OI.				Тамия	
Position "F":		_ .		Tempe	rature:
Wiring Code:		Red and Black	Gage	White	and Green: Thermistor

Vibrating Wire Displacement Transducer Calibration Report

	4450-3-1					
Model Number:				Range: _	. 1"	
	22900					
Serial Number:	Loadtest Inc.		N	/ifg Number: _	02-2818	
	Loadtest Inc.					
Customer:			,	Temperature: _	22.2 °C	
	n/a				200 040 404 504 500	
Cust ID #:	19578		Cal Std Cont	roi Numbers:	338, 249, 406, 524, 529	
			Call:	heation Data:	Oatobar 02 2002	
Job Number:			Can	oration Date: _	October 03, 2002	
	22222		Technician:	DH		
		•				
Displacement	GK-4	01 Reading Po	sition B			
(inches)	Cycle 1	Cycle 2	Average	Change	% Linearity	
0 000	2231	2226	2229		-0.29	
0 200	3441	3433	3437	1209	0.11	
0 400	4632	4626	4629	1192	0 23	
0.600	5814	5806	5810	1181	0 17	
0.800	6990	6980	6985	1175	0.00	
1000	8160	8153	8157	1172	-0 22	
-	Calibration	Factor (C):	0.0001688	(Inches/ Digi	t)	
	Regr	ession Zero:	2246			
	Refer to manua	al for tempera	ture correction	n information)Al	
	T. matia	. Cost at China	oont (CV 401 D	eading)		
		i test at Smpn	nent (GK-401 R	ceaunig)	Ostober 10, 2002	
Desire IIII	4895			Date:	October 10, 2002	
Position "B":	- M	•		Date.	26 4	
Of Desition "T":		•		Temper		°C
Position "F":				i viii pu	<u></u>	
Wiring Code:	<u> </u>	Red and Black	Gage	White	and Green: Thermistor	

48 Spencer St. Lebanon, N.H. 03766 USA

Vibrating Wire Displacement Transducer Calibration Report

	4450-3-1			70	1 11	
Model Number:	22901			Range:	1"	_
				60 37 1	00.0010	
Serial Number:		•	N	Ifg Number:_	02-2819	
	Loadtest Inc.		_			
Customer:				Femperature: _	22.6 °C	_
	n/a					_
Cust. I.D #:	19578		Cal Std. Cont	rol Numbers:	338, 249, 406, 524, 529)
Job Number:			Cali	bration Date: _	October 04, 2002	
			Technician:	DAL		- 1 v
	·					
Displacement		01 Reading Po		C1	0/ * !====!	
(inches)	Cycle 1	Cycle 2		Change	% Linearity	
0 000	2219	2218	2219		-0.32	
0 200	3430	3429		1211	0.11	
0.400	4623	4622	4623	1193	0 23	
0.600	5805	5805	5805	1183	0.18	
0 800	6983	6983	6983	1178	0.05	
1.000	8150	8149	8150	1167	-0 27	
	Calibration	Factor (C):_	0.0001687	(Inches/ Digi	t)	
	Regr	ession Zero: _	2237			
	Refer to manu	al for tempera	ture correction	n information		
	1101 -			<u> </u>		
	Function	n Test at Shipm	nent (GK-401 R	eading)		
	4985			_	October 10, 2002	
Position "B":		-		Date:		_
or					24.2	^~
Position "F":		-		Tempe	rature:	_°C
rosidon r						
Wiring Code:	· · · · · · · · · · · · · · · · · · ·	Red and Black:	Gage	White	and Green: Thermisto	

Vibrating Wire Displacement Transducer Calibration Report

	4450-3-1			D ~~ ~~	1.8	
Model Number:	22902			Range: _	1	
Corial Number			ל	Mfg. Number:	02-2820	
Serial Number:	Loadtest Inc.		1	vilg. Indiliber	0 <i>D</i> -2020	
Customer:				Temperature:	22.6 °C	i
	n/a					
Cust ID #:			Cal. Std. Cont	trol Numbers: 3	38, 249, 406, 524, 529	
	19578					
Job Number:			Cal	ibration Date: _	October 04, 2002	
			Technician	DIL		
Displacement		01 Reading Po				
(inches)	Cycle 1	Cycle 2	_	Change	% Linearity	
0.000	2311	2307	2309		-0 25	
0.200	3563	3560	3562	1253	0.08	
0.400	4802	4798	4800	1239	0.19	
0.600	6031	6029	6030	1230	0.15	
0 800	7256	7255	7256	1226	0 04	
1 000	8473	8470	8472	1216	-0.22	
·····	Calibration	Factor (C): _	0.0001623	_(Inches/ Digit)	
	Regr	ession Zero: _	2324			
	Refer to manua	ıl for tempera	iture correctio	n information.		
	Function	Test at Shipm	nent (GK-401 F	Reading)		į
	5205				October 10, 2002	
Position "B":	AND THE RESERVE OF TH			Date:		
OI.				· .	27.2	00
Position "F":				Tempera	ature:	°C
Wiring Code:	P	ked and Black:	Gage	White	and Green: Thermistor	
	The above instrumen	nt was found to b	e in tolerance in a	all operating range	S	-
1					compliance with ANSI Z	540-1

48 Spencer St. Lebanon, N.H. 03766 USA

	4450-3-1			Dancas	111
Model Number:	22002	i e		Kange.	1"
a taba matam	22903		N	Afo Number:	02-2821
Serial Number:	Loadtest Inc.		14	216.110.2200	
Customer	Loadiest Me.		r	Temperature:	22.6 °C
	n/a				
Cust I D. #:	19578		Cal Std Cont	rol Numbers:	338, 249, 406, 524, 529
Job Number:	19578		Cali	bration Date:	October 04, 2002
			Technician:	DH	
Displacement	GK-4	01 Reading Po	sition B	•	
(inches)	Cycle 1	Cycle 2		Change	% Linearity
0 000	2404	2400	2402		-0.25
0.200	3608	3605	3607	1205	0.10
0.400	4797	4794	4796	1189	0 19
0.600	5976	5975	597.6	1180	0.12
0.800	7155	7153	7154	1179	0 03
1 000	8324	8324	8324	1170	-0,20
	Calibration	Factor (C):	0.0001689	_(Inches/ Dig	it)
	Regr	ression Zero: _	2417		
	Refer to manu	al for tempera	nture correctio	n informatio	n.
Position "B":	5258	_	nent (GK-401 I	Date:	October 10, 2002 24.4 erature:°C
Position "F": _					
Wiring Code:		Red and Black	: Gage	Whit	e and Green: Thermistor
	The above instrument has been calibrated to report shall not be represented.	by comparison wi	th standards trace	able to the NIST	, in compliance with ANSI Z540

Vibrating Wire Displacement Transducer Calibration Report

	4450-3-1			Dange.	1"
Model Number:	22904			Kange.	<u> </u>
Carried Nivershow	22904		M	Ifa Number:	02-2822
Serial Number:	Loadtest Inc.				
Customer:			r	emperature:	22.6 °C
	n/a		Cal Std Contr	al Numbers	338, 249, 406, 524, 529
Cust I.D. #:	19578		Cal. Stu. Conti	Of Indifficers.	330, 210, 100, 02., 02.
Job Number:	19378		Calib	oration Date:	October 04, 2002
			Technician:	PH	
Displacement	GK-4	01 Reading Po	sition B		
Displacement (inches)	Cycle 1	Cycle 2		Change	% Linearity
0.000	2293	2292	2293	J	-0 27
0.000	3501	3499	3500	1208	010
0.400	4691	4690	4691	1191	0 19
0.600	5875	5873	5874	1184	0.16
	7052	7051	7052	1178	0 03
0 800 1 000	8223	8221	8222	1171	-0.22
1 000		<u> </u>	<u> </u>	<u> </u>	
	Calibration	Factor (C): _	0.0001687	(Inches/ Dig	git)
	Regi	ression Zero: _	2309		
	Refer to manu	al for tempera	ture correction	n informatio	n.
	4921		nent (GK-401 R		October 10, 2002
Position "B": _		_		2	27.0
or Position "F": _		_		Temp	erature:°C
			·		
Wiring Code:		Red and Black	: Gage	Whit	te and Green: Thermistor
The above named instrume	The above instrument has been calibrated by report shall not be represented.	by comparison wi	th standards traces	able to the NIST	, in compliance with ANSI Z540-
This	s report shah not de tep	roduced except in	AMAN TITUDONG TITUDO		

Sister Bar Calibration Report

Model Number: 4911-4

Calibration Date: October 09, 2002

Serial Number: 24215

Cal Std Control Numbers: 85888-1, 398

Customer: Loadtest Inc.

Cable Length: 100 ft.

Job Number: 19578

Factory Zero Reading: 7263

Cust. I.D. #: n/a

Prestress: 35,000 psi

Regression Zero: 7284

Temperature: 24.8 °C

Technician: KOB

Applied Load: [Readings			Linearity	
	Cycle #1	Cycle #2	Average	Change	% Max.Load
100 1,500 3,000 4,500 6,000 100	7333 8004 8737 9467 10200 7342	7342 8015 8742 9479 10208	7338 8010 8740 9473 10204	672 730 734 731	-0.13 -0.11 0.03 0.08

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor: 0.347 Microstrain/Digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max Applied Load) X 100 percent

The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1

This report shall not be reproduced except in full without written permission of Geokon Inc.

Sister Bar Calibration Report

Model	Number		4911-4
IVIOUCI	Manner	•	サフェルーサ

Calibration Date: October 09, 2002

Serial Number: 24216

Cal. Std. Control Numbers: 85888-1, 398

Customer: Loadtest Inc.

Cable Length: 100 ft.

Job Number: 19578

Factory Zero Reading: 6999

Cust. I.D. #: n/a

Regression Zero: 7042

Prestress: 35,000 psi

Technician: KOB

Temperature: 23.2 °C

Applied Load:		Linearity			
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	7090	7089	7090		
1,500	7776	7777	7777	687	-0.03
3,000	8519	8515	8517	741	0.14
4,500	9249	9252	9251	734	0 07
6,000	9981	9981	9981	731	-0.10
100	7090				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor: ___0.345__ Microstrain/Digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1

This report shall not be reproduced except in full without written permission of Geokon Inc.

Sister Bar Calibration Report

Model Number:	4911-4
---------------	--------

Calibration Date: October 09, 2002

Serial Number: 24217

Cal. Std. Control Numbers: 85888-1, 398

Customer: Loadtest Inc.

Cable Length: _____ 85 ft.

Job Number: 19578

Factory Zero Reading: 6892

Cust. I.D. #: _____n/a

Regression Zero: 6905

Prestress: 35,000 psi

Technician: KB

Temperature: 24.8

Applied Load:		Readings			
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	6956	6961	6959		
1,500	7628	7634	7631	673	-0.14
3,000	8362	8364	8363	732	-0.07
4,500	9095	9099	9097	734	0.07
6,000	9822	9831	9827	730	0.06
100	6961				·

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor: 0.347 Microstrain/Digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1

This report shall not be reproduced except in full without written permission of Geokon Inc.

Sister Bar Calibration Report

Model Number:	4911-4
MIGGET LITTINGS.	サンスエード・

Calibration Date: October 09, 2002

Serial Number: 24218

Cal. Std. Control Numbers: 85888-1, 398

Customer: Loadtest Inc.

Cable Length: 85 ft.

Job Number: 19578

Factory Zero Reading: 6801

Cust I.D #: ______

Prestress: 35,000 ___psi

Regression Zero: 6841

Temperature: 23.1 °C

Technician: HOB

Applied Load: (pounds)	Readings			Linearity	
	Cycle #1	Cycle #2	Average	Change	% Max.Load
100 1,500 3,000 4,500 6,000 100	6897 7577 8321 9070 9805 6893	6893 7579 8322 9068 9807	6895 7578 8322 9069 9806	683 744 748 737	-0.14 -0.07 0.15 0.00

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.343 Microstrain/Digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1

This report shall not be reproduced except in full without written permission of Geokon Inc

Sister Bar Calibration Report

-	
Model Number:	4911-4

Calibration Date: October 09, 2002

Serial Number: 24219

Cal. Std. Control Numbers: 85888-1, 398

Customer: Loadtest Inc.

Cable Length: 80 ft.

Job Number: 19578

Factory Zero Reading: 7145

Cust I.D. #: n/a

Regression Zero: 7185

Prestress: 35,000

Technician: KM

Temperature: 22.7

Applied Load: (pounds)	Readings			Linearity	
	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	7245	7242	7244		
1,500	7916	7919	7918	674	-0.22
3,000	8654	8659	8657	739	-0.21
4,500	9405	9403	9404	748	0.08
6,000	10145	10145	10145	741	0.15
100	7243		·		

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.344 Microstrain/Digit (GK-401 Pos."B")

Calculated Strain = Gage Factor (Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges. The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1. This report shall not be reproduced except in full without written permission of Geokon Inc.

Sister Bar Calibration Report

Model Number:	4911-4
---------------	--------

Calibration Date: October 09, 2002

Serial Number: 24220

Cal. Std. Control Numbers: 85888-1, 398

Customer: Loadtest Inc.

Cable Length: 80 ft.

Job Number: 19578

Factory Zero Reading: 6997

Cust. I.D. #: n/a

Regression Zero: 7048

Prestress: 35,000 psi

Technician:

Temperature: 23.0

°C

C

Applied Load:	Readings				Linearity
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	7104	7102	7103		
1,500	7793	7803	7798	695	-0.15
3,000	8555	8551	8553	755	-0.13
4,500	9315	9319	9317	764	0.19
6,000	10065	10065	10065	748	-0.02
100	7102				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor: 0.339 Microstrain/Digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max Applied Load) X 100 percent

The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1

This report shall not be reproduced except in full without written permission of Geokon Inc.

Sister Bar Calibration Report

Madal Number	/Q11 /	
Model Number:	4911-4	

Calibration Date: October 09, 2002

Serial Number: 24221

Cal. Std. Control Numbers: 85888-1, 398

Customer: Loadtest Inc.

Cable Length: 75 ft.

Job Number: 19578

Factory Zero Reading: 6808

Cust. I.D. #: n/a

-

Prestress: 35,000 psi

Regression Zero: 6851

Temperature: 23.3 °C

Technician: HOB

Applied Load:		Readings				
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load	
100	6900	6898	6899			
1,500	7587	7578	7583	684	-0.01	
3,000	8315	8318	8317	734	0.07	
4,500	9051	9050	9051	734	0 14	
6,000	9766	9784	9775	725	-0 10	
100	6898					

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.346 Microstrain/Digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc.

Sister Bar Calibration Report

Model Number: 4911-4

Calibration Date: October 09, 2002

Serial Number: 24222

Cal. Std. Control Numbers: 85888-1, 398

Customer: Loadtest Inc.

Cable Length: 75 ft.

Job Number: 19578

Factory Zero Reading: 6950

Cust. I.D. #: ____n/a

Prestress: 35,000 psi

Regression Zero: 6986

Temperature: 23.2 °C

Technician: KOB

Applied Load:		Reading	gs		Linearity
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	7036	7040	7038		
1,500	7713	7721	7717	679	-0.12
3,000	8452	8456	8454	737	-003
4,500	9193	9190	9192	738	0.07
6,000	9925	9923	9924	733	000
100	7040				
•					a to to spanner

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.345 Microstrain/Digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max Applied Load) X 100 percent
The above instrument was found to be In Tolerance in all operating ranges

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1

This report shall not be reproduced except in full without written permission of Geokon Inc

Sister Bar Calibration Report

Model Number:	4911-4
---------------	--------

Calibration Date: October 09, 2002

Serial Number: 24223

Cal. Std. Control Numbers: 85888-1, 398

Customer: Loadtest Inc.

Cable Length: 70 ft.____

Job Number: 19578

Factory Zero Reading: 6928

Cust. I.D. #: n/a

Regression Zero: 6976

Prestress: 35,000 psi

Technician: KOB

Temperature: 23.1 °C

Applied Load:		Reading	gs	Linear			
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load		
100	7029	7026	7028				
1,500	771 7	7714	7 716	688	-0.13		
3,000	8465	8463	8464	749	0.05		
4,500	9210	9210	9210	746	0.14		
6,000	9946	9948	9947	737	-0.07		
100	7027						

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.342 Microstrain/Digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc

Sister Bar Calibration Report

Model Number:	4911-4	Calibration Date:	October 09, 2002
	· · · · · · · · · · · · · · · · · · ·	-10	

Serial Number: 24224 Cal. Std. Control Numbers: 85888-1, 398

Customer: Loadtest Inc. Cable Length: 70 ft.

Job Number: 19578 Factory Zero Reading: 6981

Cust I.D. #: n/a Regression Zero: 7032

Prestress: 35,000 psi
Technician: HOB

Temperature: 23.1 °C

Applied Load:		Reading	Readings Li			
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load	
100	7088	7086	7087			
1,500	7759	7756	7758	671	-0.26	
3,000	8498	8495	8497	739	-006	
4,500	9236	9232	9234	738	0.09	
6,000	9964	9966	9965	731	002	
100	7087					

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor: 0.346 Microstrain/Digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max Applied Load) X 100 percent
The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1

This report shall not be reproduced except in full without written permission of Geokon Inc.

APPENDIX C

CONSTRUCTION OF THE EQUIVALENT TOP-LOADED LOAD-SETTLEMENT CURVE

CONSTRUCTION OF THE EQUIVALENT TOP-LOADED LOAD-SETTLEMENT CURVE FROM THE RESULTS OF AN O-CELL™ TEST (August, 2000)

Introduction: Some engineers find it useful to see the results of an O-cell™ load test in the form of a curve showing the load versus settlement of a top-loaded driven or bored pile (drilled shaft). We believe that an O-cell™ test can provide a good estimate of this curve when using the method described herein.

<u>Assumptions</u>: We make the following assumptions, which we consider both reasonable and usually conservative:

- 1 The end bearing load-movement curve in a top-loaded shaft has the same loads for a given movement as the net (subtract buoyant weight of pile above O-cell™) end bearing load-movement curve developed by the bottom of the O-cell™ when placed at or near the bottom of the shaft.
- 2. The side shear load-movement curve in a top-loaded shaft has the same net shear, multiplied by an adjustment factor 'F', for a given downward movement as occurred in the O-cell™ test for that same movement at the top of the cell in the upward direction. The same applies to the upward movement in a top-loaded tension test. Unless noted otherwise, we use the following adjustment factors:

 (a) F = 1.00 in all rock sockets and for primarily cohesive soils in compression (b) F = 0.95 in primarily cohesionless soils (c) F = 0.80 for all soils in top load tension tests.
- 3. We initially assume the pile behaves as a rigid body, but include the elastic compressions that are part of the movement data obtained from an O-cell™ test (OLT). Using this assumption, we construct an equivalent top-load test (TLT) movement curve by the method described below in <u>Procedure Part I</u>. We then use the following <u>Procedure Part II</u> to correct for the effects of the additional elastic compressions in a TLT.
- 4. Consider the case with the O-cell™, or the bottom O-cell™ of more than one level of cells, placed some distance above the bottom of the shaft. We assume the part of the shaft below the cell, now top-loaded, has the same load-movement behavior as when top-loading the entire shaft. For this case the subsequent "end bearing movement curve" refers to the movement of the entire length of shaft below the cell

Procedure Part I: Please refer to the attached Figure A showing O-cell™ test results and to Figure B, the constructed equivalent top loaded settlement curve. Note that each of the curves shown has points numbered from 1 to 12 such that the same point number on each curve has the same magnitude of movement. For example, point 4 has an upward and downward movement of 0.40 inches in Figure A and the same 0.40 inches downward in Figure B.

Note: This report shows the O-cell movement data in a Figure similar to Fig. A, but uses the gross loads as obtained in the field. Fig. A uses net loads to make it easier for the reader to convert Fig. A into Fig. B without the complication of the first converting gross to net loads. For our conservative reconstruction of the top loaded settlement curve we first convert both of the O-cell components to net load.

Using the above assumptions, construct the equivalent curve as follows: Select an arbitrary movement such as the 0.40 inches to give point 4 on the shaft side shear load movement curve in Figure A and record the 2,090 ton load in shear at that movement. Because we have initially assumed a rigid pile, the top of pile moves downward the same as the bottom. Therefore, find point 4 with 0.40 inches of upward movement on the end bearing load movement curve and record the corresponding load of 1,060 tons. Adding these two loads will give the total load of 3,150 tons due to side shear plus end bearing at the same movement and thus gives point 4 on the Figure B load settlement curve for an equivalent top-loaded test.

One can use the above procedure to obtain all the points in <u>Figure B</u> up to the component that moved the least at the end of the test, in this case point 5 in side shear. To take advantage of the fact that the test produced end bearing movement data up to point 12, we need to make an extrapolation of the side shear curve. We usually use a convenient and suitable hyperbolic curve fitting technique for this extrapolation. Deciding on the maximum number of data points to provide a good fit (a high r 2 correlation coefficient) requires some judgment. In this case we omitted point 1 to give an $r^2 = 0.999$ (including point 1 gave an $r^2 = 0.966$) with the result shown as points 6 to 12 on the dotted extension of the measured side shear curve. Using the same movement matching procedure described earlier we can then extend the equivalent curve to points 6 to 12. The results, shown in <u>Figure B</u> as a dashed line, signify that this part of the equivalent curve depends partly on extrapolated data.

Sometimes, if the data warrants, we will use extrapolations of both side shear and end bearing to extend the equivalent curve to a greater movement than the maximum measured (point 12). An appendix in this report gives the details of the extrapolation(s) used with the present O-cell™ test and shows the fit with the actual data.

Procedure Part II: The elastic compression in the equivalent top load test always exceeds that in the O-cellTM test. It not only produces more top movement, but also additional side shear movement, which then generates more side shear, which produces more compression, etc. An exact solution of this load transfer problem requires knowing the side shear vs. vertical movement (t-y) curves for a large number of pile length increments and solving the resulting set of simultaneous equations or using finite element or finite difference simulations to obtain an approximate solution for these equations. We usually do not have the data to obtain the many accurate t-y curves required. Fortunately, the approximate solution described below usually suffices.

The attached analysis p. 6 gives the equations for the elastic compressions that occur in the OLT with one or two levels of O-cells Analysis p. 7 gives the equations for the elastic compressions that occur in the equivalent TLT. Both sets of equations do not include the elastic compression below the O-cell because the same compression takes place in both the OLT and the TLT. This is equivalent to taking $l_3 = 0$. Subtracting the OLT from the TLT compression gives the desired additional elastic compression at the top of the TLT. We then add the additional elastic compression to the 'rigid' equivalent curve obtained from Part I to obtain the final, corrected equivalent load-settlement curve for the TLT on the same pile as the actual OLT.

Note that the above pp. 6 and 7 give equations for each of three assumed patterns of developed side shear stress along the pile. The pattern shown in the center of the three applies to any approximately determined side shear distribution. Experience has

shown the initial solution for the additional elastic compression, as described above, gives an adequate and slightly conservative (high) estimate of the additional compression versus more sophisticated load-transfer analyses as described in the first paragraph of this Part II.

The analysis p. 8 provides an example of calculated results in English units on a hypothetical 1-stage, single level OLT using the simplified method in Part II with the centriod of the side shear distribution 44.1% above the base of the O-cell™. Figure C compares the corrected with the rigid curve of Figure B. Page 9 contains an example equivalent to that above in SI units.

The final analysis p. 10 provides an example of calculated results in English units on a hypothetical 3-stage, multi level OLT using the simplified method in Part II with the centriod of the combined upper and middle side shear distribution 44.1% above the base of the bottom O-cell™. The individual centroids of the upper and middle side shear distributions lie 39.6% and 57.9% above and below the middle O-cell™, respectively. Figure E compares the corrected with the rigid curve. Page 11 contains an example equivalent to that above in SI units.

Other Tests: The example illustrated in Figure A has the maximum component movement in end bearing. The procedures remain the same if the maximum test movement occurred in side shear. Then we would have extrapolated end bearing to produce the dashed-line part of the reconstructed top-load settlement curve.

The example illustrated also assumes a pile top-loaded in compression. For a pile top-loaded in tension we would, based on Assumptions 2. and 3., use the upward side shear load curve in Figure A, multiplied by the F = 0.80 noted in Assumption 2., for the equivalent top-loaded displacement curve.

Expected Accuracy: We know of only five series of tests that provide the data needed to make a direct comparison between actual, full scale, top-loaded pile movement behavior and the equivalent behavior obtained from an O-cell™ test by the method described herein. These involve three sites in Japan and one in Singapore, in a variety of soils, with three compression tests on bored piles (drilled shafts), one compression test on a driven pile and one tension test on a bored pile. The largest bored pile had a 1.2 m diameter and a 37 m length. The driven pile had a 1-m increment modular construction and a 9 m length. The largest top loading = 28 MN (3,150 tons).

The following references detail the aforementioned Japanese tests and the results therefrom:

Kishida H. et al., 1992, "Pile Loading Tests at Osaka Amenity Park Project," Paper by Mitsubishi Co., also briefly described in Schmertmann (1993, see bibliography). Compares one drilled shaft in tension and another in compression.

Ogura, H. et al., 1995, "Application of Pile Toe Load Test to Cast-in-place Concrete Pile and Precast Pile," special volume 'Tsuchi-to-Kiso' on Pile Loading Test, Japanese Geotechnical Society, Vol. 3, No. 5, Ser. No. 448. Original in Japanese. Translated by M. B. Karkee, GEOTOP Corporation. Compares one drilled shaft and one driven pile, both in compression.

We compared the predicted equivalent and measured top load at three top movements in each of the above four Japanese comparisons. The top movements ranged from ¼ inch (6 mm) to 40 mm, depending on the data available. The (equiv./meas.) ratios of the top load averaged 1.03 in the 15 comparisons with a coefficient of variation of less than 10%. We believe that these available comparisons help support the practical validity of the equivalent top load method described herein.

- L. S. Peng, A. M. Koon, R. Page and C. W. Lee report the results of a class-A prediction by others of the TLT curve from an Osterberg cell test on a 1.2 m diameter, 37.2 m long bored pile in Singapore, compared to an adjacent pile with the same dimensions actually top-loaded by kentledge. They report about a 4% difference in ultimate capacity and less than 8% difference in settlements over the 1.0 to 1.5 times working load range -- comparable to the accuracy noted above. Their paper has the title "OSTERBERG CELL TESTING OF PILES", and was published in March 1999 in the Proceedings of the International Conference on Rail Transit, held in Singapore and published by the Association of Consulting Engineers Singapore.
- B. H. Fellenius has made several finite element method (FEM) studies of an OLT in which he adjusted the parameters to produce good load-deflection matches with the OLT up and down load-deflection curves. He then used the same parameters to predict the TLT deflection curve. We compared the FEM-predicted curve with the equivalent load-deflection predicted by the previously described Part I and II procedures, with the results again comparable to the accuracy noted above. The ASCE has published a paper by Fellenius et. al. titled "O-Cell Testing and FE Analysis of 28-m-Deep Barrette in Manila, Philippines" in the Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 7, July 1999, p. 566. It details one of his comparison studies.

<u>Limitations</u>: The engineer using these results should judge the conservatism, or lack thereof, of the aforementioned assumptions and extrapolation(s) before utilizing the results for design purposes. For example, brittle failure behavior may produce movement curves with abrupt changes in curvature (not hyperbolic). However, we believe the hyperbolic fit method and our assumptions used usually produce reasonable equivalent top load settlement curves.

Example of the Construction of an Equivalent Top-Loaded Settlement Curve (<u>Figure B</u>) From Osterberg Cell Test Results (<u>Figure A</u>)

Theoretical Elastic Compression in O-cell™ Test Based on Pattern of Developed Side Shear Stress

1-Stage Single Level Test (Q'_A only): $\delta_{\text{OLT}} = \delta_{\uparrow(l_1+l_2)}$

$C_1 = \frac{1}{3}$	Centroid Factor = C ₁	$C_1 = \frac{1}{2}$
$\delta_{\uparrow(I_1+I_2)} = \frac{1}{3} \frac{Q_{\uparrow_A}(I_1+I_2)}{AE}$	$\delta_{\uparrow(I_1+I_2)} = C_1 \frac{Q_{\uparrowA}(I_1+I_2)}{AE}$	$\delta_{\uparrow(\mathbf{l}_1+\mathbf{l}_2)} = \frac{1}{2} \frac{\mathbf{Q'}_{\uparrow A}(\mathbf{l}_1+\mathbf{l}_2)}{AE}$

3-Stage Multi Level Test (Q'_A and Q'_B): $\delta_{OLT} = \delta_{\uparrow \downarrow_1} + \delta_{\downarrow \downarrow_2}$

$C_3 = \frac{1}{3}$	Centroid Factor = C ₃	$C_3 = \frac{1}{2}$
$\delta_{\uparrow I_1} = \frac{1}{3} \frac{Q_{\uparrow B}^{\prime} I_1}{AE}$	$\delta_{1I_1} = C_3 \frac{Q_{1B} I_1}{AE}$	$\delta_{1I_1} = \frac{1}{3} \frac{Q'_{1B} I_1}{AE}$
$C_2 = \frac{1}{3} \left(\frac{3I_1 + 2I_2}{2I_1 + I_2} \right)$	Centroid Factor = C ₂	$C_2 = \frac{1}{2}$
$\delta_{\downarrow I_{2}} = \frac{1}{3} \left(\frac{3I_{1} + 2I_{2}}{2I_{1} + I_{2}} \right) \frac{Q'_{\downarrow B}I_{2}}{AE}$	$\delta_{\downarrow_{I_2}} = C_2 \frac{Q_{\downarrow B}^{\uparrow} I_2}{AE}$	$\delta_{l_{l_{2}}} = \frac{1}{2} \frac{Q'_{l_{B}} l_{2}}{AE}$

Net Loads:

$$Q_{\uparrow_{A}}^{'} = Q_{\uparrow_{A}} - W_{I_{0}+I_{1}+I_{2}}^{'} \qquad \qquad Q_{\uparrow_{B}}^{'} = Q_{\uparrow_{B}} - W_{I_{0}+I_{1}}^{'} \qquad \qquad Q_{\downarrow_{B}}^{'} = Q_{\downarrow_{B}}^{'} + W_{I_{2}}^{'}$$

w = pile weight, bouyant where below water table

Theoretical Elastic Compression in Top Loaded Test Based on Pattern of Developed Side Shear Stress

Top Loaded Test: $\delta_{\text{TLT}} = \delta_{1_{1_0}} + \delta_{1_{1_1+1_2}}$

$\delta_{\downarrow_{I_0}} = \frac{PI_0}{AE}$	$\delta_{li_0} = \frac{PI_0}{AE}$	$\delta_{\downarrow_{i_0}} = \frac{PI_0}{AE}$
$C_1 = \frac{1}{3}$	Centroid Factor = C ₁	$C_1 = \frac{1}{2}$
$\delta_{\downarrow l_1 + l_2} = \frac{(Q_{\downarrow A} + 2P)}{3} \frac{(l_2 + l_2)}{AE}$	$\delta_{\downarrow l_1 + l_2} = [(C_1)Q_{\downarrow A}^{\dagger} + (1 - C_1)P] \frac{(l_1 + l_2)}{AE}$	$\delta_{1_{1_1+1_2}} = \frac{(Q_{1_1A}^T + P)}{2} \frac{(I_1 + I_2)}{AE}$

Net and Equivalent Loads:

$$Q_{\downarrow A}^{\scriptscriptstyle \perp} = Q_{\downarrow A}^{\scriptscriptstyle \perp} - W_{\mid_{I_0+I_1+I_2}^{\scriptscriptstyle \perp}}^{\scriptscriptstyle \perp}$$

$$P_{\text{single}} = Q^{\cdot}_{\downarrow A} + Q^{\cdot}_{\uparrow A}$$

$$P_{multi} = Q^{'}_{\downarrow A} + Q^{'}_{\uparrow B} + Q^{'}_{\downarrow B}$$

Component loads Q selected at the same (±) Δ_{OLT}

Example Calcuation for the Additional Elastic Compression Correction for Single Level Test (English Units)

Given:

 $C_1 = 0.441$

AE = 3820000 kips (assumed constant throughout test)

 $l_0 = 5.9$ ft

i₁ = 48.2 ft (embedded length of shaft above O-cell™)

 $l_2 = 0.0$ ft

 $i_3 = 0.0$ ft

Shear reduction factor = 1.00 (cohesive soil)

Δ _{OLT} (in)	Q' _{↓A} (kips)	Q' _{↑A} (kips)	P (kips)	δ _{TLT} (in)	δ _{OLT} (in)	Δ _δ (in)	Δ_{OLT} + Δ_{δ} (in)
0.000	0	0	0	0.000	0.000	0.000	0.000
0.100	352	706	1058	0.133	,0.047	0.086	0.186
0.200	635	1445	2080	0.257	0.096	0.160	0.360
0.300	867	1858	2725	0.339	0.124	0.215	0.515
0.400	1061	2088	3149	0.396	0.139	0.256	0.656
0.600	1367	2382	3749	0.478	0.159	0.319	
0.800	1597	2563	4160	0.536	0.171	0.365	1.165
1.000	1777	2685	4462	0.579	0.179	0.400	1.400
1.200	1921	2773	4694	0.613	0.185	0.427	1.627
1.500	2091	2867	4958	0.651	0.191	0.460	1.960
1.800	2221	2933	5155	0.680	0.196	0.484	2.284
2.100	2325	2983	5308	0.703	0.199	0.504	2.604
2.500	2434	3032	5466	0.726	0.202	0.524	3.024

Example Calcuation for the Additional Elastic Compression Correction for Single Level Test (SI Units)

Given:

 $C_1 = 0.441$

AE = 17000

MN (assumed constant throughout test)

 $I_0 = 1.80 \text{ m}$

I₁ = 14.69

m (embedded length of shaft above O-cell™)

 $I_2 = 0.00$

 $l_3 = 0.00$ n

Shear reduction factor = 1.00 (cohesive soil)

Δ _{OLT} (mm)	Qʻ _{↓A} (MN)	Q' _{↑A} (MN)	P (MN)	δ _{TLT} (mm)	δ _{οι.τ} (mm)	Δ _δ (mm)	$\Delta_{OLT} + \Delta_{\delta}$ (mm)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.54	1.57	3.14	4.71	3.37	1.20	2.17	4.71
5.08	2.82	6.43	9.25	6.52	2.45	4.07	9.15
7.62	3.86	8.27	12.12	8.61	3.15	5.46	13.08
10.16	4.72	9.29	14.01	10.05	3.54	6.51	16.67
15.24	6.08	10.60	16.68	12.14	4.04	8.10	23.34
20.32	7.11	11.40	18.50	13.60	4.34	9.26	29.58
25.40	7.90	11.94	19.85	14.70	4.55	10.15	35.55
30.48	8.55	12.33	20.88	15.55	4.70	10.85	41.33
38.10	9.30	12.75	22.05	16.53	4.86	11.67	49.77
45.72	9.88	13.05	22.93	17.27	4.97	12.29	58.01
53.34	10.34	13.27	23.61	17.84	5.06	12.79	66.13
63.50	10.83	13.48	24.31	18.44	5.14	13.30	76.80

Example Calcuation for the Additional Elastic Compression Correction for Multi Level Test (English Units)

Given:

 $C_1 = 0.441$

C₂ = 0.579

 $C_3 = 0.396$

AE = 3820000 kips (assumed constant throughout test)

 $I_0 = 5.9$ ft

I₁ = 30.0 **ft** (embedded length of shaft above mid-cell)

 $I_2 = 18.2$ ft (embedded length of shaft between O-cellsTM)

 $I_3 = 0.0$ ft

Shear reduction factor = 1.00 (cohesive soil)

Δ _{OLT} (in)	Q' _{↓A} (kips)	Q' _{↓B} (kips)	Q' _{↑B} (kips)	P (kips)	δ _{τLT} (in)	δ _{OLT} (in)	Δ _δ (in)	$\Delta_{\text{OLT}} + \Delta_{\delta}$ (in)
0.000	0	0	.0.	0	0.000	0.000	0.000	0.000
0.100	352	247	459	1058	0.133	0.025	0.107	0.207
0.200	635	506	939	2080	0.257	0.052	0.205	0.405
0.300	867	650	1208	2725	0.339	0.067	0.272	0.572
0.400	1061	731	1357	3149	0.396	0.075	0.321	0.721
0.600	1367	834	1548	3749	0.478	0.085	0.393	0.993
0.800	1597	897	1666	4160	0.536	0.092	0.444	1.244
1.000	1777	940	1745	4462	0.579	0.096	0.483	1.483
1.200	1921	971	1802	4694	0.613	0.099	0.513	1.713
1.500	2091	1003	1864	4958	0.651	0.103	0.548	2.048
1.800	2221	1027	1907	5155	0.680	0.105	0.575	2.375
2.100	2325	1044	1939	5308	0.703	0.107	0.596	2.696
2.500	2434	1061	1971	5466	0.726	0.109	0.618	3.118

Figure E

Example Calcuation for the Additional Elastic Compression Correction for Multi Level Test (SI Units)

Given: C₁:

 $C_2 = 0.579$

 $C_3 = 0.396$

AE = 17000 MN (assumed constant throughout test)

 $I_0 = 1.80 \text{ m}$

0.441

 $I_1 = 9.14$ m (embedded length of shaft above mid-cell)

₂ = 5.55 **m** (embedded length of shaft between O-cells™)

 $l_3 = 0.00 \text{ m}$

Shear reduction factor = 1.00 (cohesive soil)

$\Delta_{ m OLT}$ (in)	Q' _{↓A} (kips)	Q' _{↓B} (kips)	Q' _{↑B} (kips)	P (kips)	δ _{TLT} (in)	δ _{OLT} (in)	Δ _δ (in)	Δ_{OLT} + Δ_{δ} (in)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.54	1.57	1.10	2.04	4.71	3.37	0.64	2.73	5.27
5.08	2.82	2.25	4.18	9.25	6.52	1.31	5.21	10.29
7.62	3.86	2.89	5.37	12.12	8.61	1.69	6.92	14.54
10.16	4.72	3.25	6.04	14.01	10.05	1.90	8.15	18.31
15.24	6.08	3.71	6.89	16.68	12.14	2.17	9.97	25.21
20.32	7.11	3.99	7.41	18.50	13.60	2.33	11.27	31.59
25.40	7.90	4.18	7.76	19.85	14.70	2.44	12.26	37.66
30.48	8.55	4.32	8.02	20.88	15.55	2.52	13.03	43.51
38.10	9.30	4.46	8.29	22.05	16.53	2.61	13.92	52.02
45.72	9.88	4.57	8.48	22.93	17.27	2.67	14.60	60.32
53.34	10.34	4.64	8.62	23.61	17.84	2.71	15.13	68.47
63.50	10.83	4.72	8.76	24.31	18.44	2.76	15.68	79.18

Figure F

APPENDIX D

O-CELL™ METHOD FOR DETERMINING CREEP LIMIT LOADING

O-CELL METHOD FOR DETERMINING A CREEP LIMIT LOADING ON THE EQUIVALENT TOP-LOADED SHAFT

<u>Background</u>: O-cell testing provides a sometimes useful method for evaluating that load beyond which a top-loaded drilled shaft might experience significant unwanted creep behavior. We refer to this load as the "creep limit," also sometimes known as the "yield limit" or "yield load".

To our knowledge, Housel (1959) first proposed the method described below for determining the creep limit. Stoll (1961), Bourges and Levillian (1988), and Fellenius (1996) provide additional references. This method also follows from long experience with the pressuremeter test (PMT). Figure 8 and section 9.4 from ASTM D4719, reproduced below, show and describe the creep curve routinely determined from the PMT. The creep curve shows how the movement or strain obtained over a fixed time interval, 30 to 60 seconds, changes versus the applied pressure. One can often detect a distinct break in the curve at the pressure P_e in Figure 8. Plastic deformations become significant beyond this break loading and progressively more severe creep can occur.

<u>Definition</u>: Similarly with O-cell testing using the ASTM Quick Method, one can conveniently measure the additional movement occurring over the final time interval at each constant load step, typically 2 to 4 minutes. A break in the curve of load vs. movement (as at P_e with the PMT) indicates the creep limit.

We usually indicate such a creep limit in the O-cell test for either one, or both, of the side shear and end bearing components, and herein designate the corresponding movements as M_{CL1} and M_{CL2} . We then combine the creep limit data to predict a creep limit load for the equivalent top loaded shaft.

Procedure if both M_{CL1} and M_{CL2} available: Creep cannot begin until the shaft movement exceeds the M_{CL} values. A conservative approach would assume that creep begins when movements exceed the lesser of the M_{CL} values. However, creep can occur freely only when the shaft has moved the greater of the two M_{CL} values. Although less conservative, we believe the latter to match behavior better and therefore set the creep limit as that load on the equivalent top-loaded movement curve that matches the greater M_{CL} .

<u>Procedure if only M_{CL1} available</u>: If we cannot determine a creep limit in the second component before it reaches its maximum movement M_x , we treat M_x as M_{CL2} . From the above method one can say that the creep limit load exceeds, by some unknown amount, that obtained when using $M_{CL2} = M_x$.

<u>Procedure if no creep limit observed</u>: Then, according to the above, the creep limit for the equivalent top-loaded shaft will exceed, again by some unknown amount, that load on the equivalent curve that matches the movement of the component with the maximum movement.

<u>Limitations</u>: The accuracy in estimating creep limits depends, in part, on the scatter of the data in the creep limit plots. The more scatter, the more difficult to define a limit. The user should make his or her own interpretation if he or she intends to make important use of the creep limit interpretations. Sometimes we obtain excessive scatter of the data and do not attempt an interpretation for a creep limit and will indicate this in the report.

Excerpts from ASTM D4719 "Standard Test Method for Pressuremeter Testing in Soils"

9.4 For Procedure A, plot the volume increase readings (V_{60}) between the 30 s and 60 s reading on a separate graph. Generally, a part of the same graph is used, see Fig. 8. For Procedure B, plot the pressure decrease reading between the 30 s and 60 s reading on a separate graph. The test curve shows an almost straight line section within the range of either low volume increase readings (V_{60}) for Procedure A or low pressure decrease for Procedure B. In this range, a constant soil deformation modulus can be measured. Past the so-called creep pressure, plastic deformations become prevalent.

FIG. 8 Pressuremeter Test Curves for Procedure A

References

Housel, W.S. (1959), "Dynamic & Static Resistance of Coshesive Soils" 1846-1959, <u>ASTM STP 254</u>, pp. 22-23 Stoll, M.U.W. (1961, Discussion, Proc. 3rd ICSMFE, Paris, Vol. III, pp. 279-281.

Bourges, F. and Levillian, J-P (1988), "force portante des rideaux plans metalliques charges verticalmement," Bull. No. 158, Nov -Dec., des laboratoires des ponts et chaussees, p. 24.

Fellenius, Bengt H. (1966), Basics of Foundation Design, BiTech Publishers Ltd., p.79.

<u>APPENDIX E</u>

SOIL BORING LOG

							rest Sna		manus Carrentalis	er i Salvani.	Parketti ess	(YONGER)	samani wani	
NAME OF THE PERSON NAMED IN			MEOCATION OF B		245.769		DATUM SOCIETY DOT 1-235	MARKARA	DAH	Daken nika	erum der 1998	MTL	ATTENDED TO	
	Test Shaft	_ [R LEVEL OBSERV		240.709		PARTITYPE OF	SURFAC			G that makes		adirection Sur	
i www.	LE COLET		24 HOUF			Š.	Gra	ass				B-57	•	
DRILL	ING: DR	ILLING	AFTER DRIL		a de la company de la comp	(1) 有限的成功	LA SEEDRILLING	METHO	DINIMINES	鐵線	A STATE	TALDERT	H的影響	
5,64		NA				0m to 14.6	63m 83mm HSA, 1	4.63m to	25.15m NQ	2 Core				
1003114		MPLE DAT	Ά			DESCRIPT				ŁA	BORATOR	RY DATA		
DEP.	SAMPLE	連訳Ni 音	30%	CO	LOR MOISTURE	E, CONSIST	ENCY		uscs		DRY DENS	- Qu	DEP	
M	NO:&	BLOWS	REC	GEOLOG	IC DESCRIPTIO	N & OTHER	RREMARKS		CLASS.	MC	kg/m3			
经共產的政治	State It ditables 1980	NO SORE	7//	Dark brown, D)ry,							KPs		
			<i> </i> ///	STIFF SAND	Y GLACIAL CLAY	′			ĺ	İ	į		1	
]		1					ł				<u> </u>	
·	S-1	22							•					
			<i> </i> ///	1					CL			1	2.2	
2.2		1.		1					, ·-				-	
	S-2	21]										
		}										1	<u> </u>	
			I ///	1		. •		. 1				Ì		
			er ar test	Light gray, Dry		<u>Li</u>		4.1					4.4	
4.4	S-3	26	11.11	FINE MEDIUN								ł		
	•		0.010]]	
		j	មិន្រីកំពុំ ព្រះប៉ូត្											
٠ [S-4	4	0.44.0	i e										
6.6			rit (tr	Į.									6.6	
<u></u>														
		12	10,11	Dark gray with	silt in S-5							[]	
	S-5	12		.)									 	
			rh.in:		•		4	- 1					1	
8.8			4.00									l	8.8	
	S-6 .	8	1.01 t 2.0 4.01 t 3.0	3					SP-SM	}				
ĺ			11:11:13						į					
		:	73.00]				į						
	S-7	7							i					
_11		Í	្តី ស្ត្រី ស	4				İ	Į			i I	11	
			919 63										1 1	
}	S-8	16	(1)(4)	Í				1						
	3-0	'`	1 1111							1				
			\$ \$40 6 4 4 45 16 6 6 6					ļ	İ	ı				
13.2			i in ci i					1]	İ			13.2	
· [S-9	26	4 4 4 10 10		ALLU	AZILENA			j					
	S-10	50/06	\$7X.4	Light gray, Moi		V10141		14.0		1	l			
				CLAY SHALE	1 DEC-100 DC	ND++100			ł		2284	10314	1 1	
.	NO			NQ Core Run NQ Core Run	1 REC=100 RC 2 REC=100 RC	D=100 D=100			ļ		2320	179 1	15.4	
15.4	'NQ								l				,,,,,	
				NQ Core Run	3 REC=100 RC	<u>າ</u> ນ≃100			ļ					
<u>_</u>	NQ			j				ļ		1	2257	448	 	
		†		1				- !	l		2015	400-		
47,7		<u> </u>		NQ Core Run	4 REC=100 RC	D=82			Į	Į	2349	10087	17.6	
17.6		ļ		Black Coal he	tween 18 4m to 1	8.8m	•				2288	4037		
	NQ			Black Coal De	moon to anto t	0 0.11		1						
]		NO Core Pun	5 REC=100 RC	D=83		ŀ	- 1	ŀ	1582	4037		
				NG Cole Roll	3 NEO-100 N	4D-00		ł	1	1	,502	4001		
19.8	NQ			á				ŀ	l		2240	1791	19.8	
15.0		}		7				l	1	- 1				
		1		NQ Core Run	6 REC=100 RC	QD=92			1	ļ				
<u> </u>				Ž				į	j		2288	3362	} 	
	NQ			\$						}	2288	3362	1 1	
22		4		NQ Core Run	7 REC=100 RC	QD=88		İ	1				22	
				<u> </u>		-				<u> </u>	- 		<u></u>	
	T	7	Geotechni				Des Moines						ार	
1			Geolechni	C7i	LOCAT	TION: I	I-235 and W	/est Ri	iver Driv	re, De	es Moir	nes, IA	ŀ	

JOB NO.: 026162

DATE: 10/14-15/02

2853 99th Street Dec Moines, IA 50322-3858 (515) 270-6542 * FAX (515) 270-1911

						RING I	.OG	No. Tes	st Sh	aft		áesnicou Si h	an recognists	MACCED	etrale Salesia
	ORING NO Test Shaft	200 an 10		ON OF B 9 + 08.023,	DRING(1995) 10.753R	245.769		DATUI	35]	DAH	- [MTL	
		WAT		OBSERV. 24 HOUR		les estates	i de la composición dela composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición dela composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la compos		G	rass		· ·		B-57	
(WHILL DRILL	NG DF			TER DRILL					DRIEM	G METHO!			TO	TALEDERT	1903/201
5.64i		NA MPLE DA	TA	 -		<u> </u>		n to 14.63m 83 SCRIPTION	mm HSA,	, 14.63m to	25, TSIII NQ	LA	BORATOR	Y DATA	
DEP:	SAMPLE NO & TYPE	BLOW	, .			COLOR MOIS		30 Gay 10 63			USCS CLASS	W.	DRY JDENS Kg/m³	Qu Cu	DEPA V
20.5	NQ												2270	4485	
		-			NQ Core i	Run 8 REC=9	5 RQD=1	00					2362	4485	24.2
24.2	NQ														
	NQ	-		K/289	NQ Core F		LVANIAN	BEDROCK				 	2390	4485	=
26,4						вопот	or Boring	@ 25.15m							26.4
															20.5
28.6															28.6
			- [İ				•							
30.8															30,8
33															33
35,2															35.2
JJ,Z															
37.4															37.4
39.6															39.8
41.8															41.8
71.0															
44_															44
		Y 7				P	ROJE	CT: Des	Moine	s Rive	r and I-2	235 E	ridge T	est Sha	aft

PROJECT: Des Moines River and I-235 Bridge Test Shaft LOCATION: I-235 and West River Drive, Des Moines, IA

JOB NO.: 026162

DATE: 10/14-15/02

APPENDIX F

REFERENCE BEAM MONITORING

LOADTEST, Inc. Project No. LT-8854

APPENDIX G

NET UNIT SHEAR CURVES AND UNIT END BEARING CURVE

Net Unit Side Shear Curves

LOADTEST, Inc. Project No. LT-8854

APPENDIX H

SHAFT STIFFNESS ESTIMATION

Table H-1: Tangent Stiffness Analysis for Strain Gage Levels 1, 2 and 3

Т		_															<u> </u>
AE *	(MN)		•	•	90,120	71,549	65,597	59,628	52,114	46,592	39,505	35,218	30,758	26,872	22,779	19,748	
Δ μ Strain	(au)	,		,	46.1	57.3	62.6	68.8	78.7	88.1	103.9	116.5	133.4	152.7	180.1	198.1	
μ Strain	(µE)	0.0	8.6	26.5	46.1	62.9	89.1	114.9	144.7	177.1	218.8	261.2	310.5	371.5	441.3	508.6	
AE *	(MN)	•		,	50,715	42,227	40,452	38,215	34,879	33,874	31,535	31,000	29,097	28,119	25,367	22,946	
Δ μ Strain	(mc)	•	•		81.9	97.2	101.4	107.4	117.6	121.1	130.1	132.4	141.0	145.9	161.8	170.5	
μ Strain	(ж)	0.0	16.7	49.1	81.9	113.9	150.5	189.3	231.5	271.6	319.4	363.9	412.7	465.3	525.7	583.1	
AE *	(WN)	ı	1	,	85,492	74,294	77,389	83,690	85,712	90,646	82,311	72,783	57,955	49,795	43,069	36,872	
Δ μ Strain	(3rf)	•	,	,	48.6	55.2	53.0	49.0	47.9	45.3	49.8	56.4	70.8	82.4	95.3	106.1	
μ Strain	(3π)	0.0	6.6	28.8	48.6	65.1	81.8	97.6	113.0	127.1	147.5	169.4	197.9	229.9	264.6	304.0	
Δ Load	(WN)	ı	•	ı	4.15	4.10	4.10	4.10	4.10	4.10	4.10	4.10	4.10	4.10	4.10	3.91	
Load	(WN)	0.00	1.42	2.79	4.15	5.52	6.89	8.26	9.63	10.99	12.36	13.73	15.10	16.46	17.83	19.01	
	Δ Load μ Strain Δμ Strain ΑΕ* μ Strain Δμ Strain Δμ Strain Δμ Strain	Δ Load μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain Δ μ Strain (με) (με) (με) (με) (με) (με)	Δ Load μ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δ	Δ Load μ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δ	Δ Load μ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δ	Δ Load μ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δ	Δ Load μ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δ	Δ Load μ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δ	Δ Load μ Strain Δμ Strain AE* μ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain (μc) <	Δ Load μ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δ	Δ Load μ Strain Δμ Strain AE* μ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strai	Δ Load μ Strain Δμ Strain AE* μ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strai	Δ Load μ Strain Δμ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain	Δ Load μ Strain Δμ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain $Aμ$ Strain	Δ Load μ Strain Δμ Strain AE^* μ Strain AE^* μ Strain AE^* μ Strain AE^* μ Strain AE^* μ Strain AE^* μ Strain AE^* μ Strain AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* AE^* <th>Δ Load μ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain</th> <th>Δ Load μ Strain Δμ Strain AE* μ Strain Δμ Strain Aμ Strain Aμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strai</th>	Δ Load μ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain $\Delta \mu$ Strain	Δ Load μ Strain Δμ Strain AE* μ Strain Δμ Strain Aμ Strain Aμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strain Δμ Strai

^{*} Tangent Pile Stiffness Calculation: AE = Δ Load / Δ μ Strain

Table H-1: Tangent Stiffness Analysis for Strain Gage Levels 4 and 5

		_				_												
		۱																
.		l																
		1																
		4																
L		4		_														
П	. <u>.</u>	-			9	480	635	658	94	,865	,930	,245	,054	,553	,075	980	200	
	AE*		•	'	' ;	434,480	431,635	546,658	805,094	1,048,865	1,660,930	1,943,245	2,484,054	2,933,553	1,429,075	1,005,036	201,007	
Strain Gage Level 5		+						_		_		_	_			_		·
Je Le	Δ μ Strain	۵			. (ဖွ	ιŲ	ιú	Ψ.	O)	ιĊ	_	۲.	4	o.	4.1	19.5	
Gaç	s n v	(आ)	•	'	٠,	9.6	တ်	7	ιĊ	က	2.5	αi	1.7	1.4	S.	4	0	
itrair	\vdash	+																
ľ	μ Strain	(3rd)) . C	- ·	6.1	9	11.6	13.6	<u></u>	5.5	16.1	16.8	17.1	17.5	9.6	21.2	36.9	
	15 1 15 1	₹Ĭ	5 (7	، م	න .		₩	7	#	#	7	7	Ξ	¥	Š	ĕ	
H		+					_											
П	AE *	≩Ì		,		228,886	186,041	170,666	154,762	135,743	124,431	988	89,586	69,782	54,049	41,550	30,573	
	8 3	-			0	228	186	170	2	135	124	105	8	69	%	4	9	
Strain Gage Level 4	_	╁														_		
ge L	Δμ Strain	(mc)	ı		. (18.2	22.1	24.0	26.5	0.2	33.0	38.7	45.8	58.8	75.9	98.8	127.9	
n Ga	λμΔ .,	1			•	Ξ,	N	Ñ	Ñ	m	'n	m	4	ίÒ	7	Ō	12	
Strai		\dagger											*****					
	μ Strain	(ant)	2. 9	ا و	7.0	8.2	2.6	8.	4.7	5.9	7.7	3.4	7.1	56.5	59.3	0.4	7.5	
	S 11	7	, ر	٠, ,		_	7	'n	4	വ	ဖ	∞	7	7	#	×	2	
H	\vdash	\dagger	-															
	A Load	ξĺ		,	. !	4.15	10	4.10	2	9	10	9	4.10	6	9	4.10	191	
<u> </u>	۱۷,	1			•	4	4	4	4	4	4	4	4	4	4	4	(T)	
Mrleo-O	<u> </u>	+						····-							·····			
ľ	Load	NW.	3 5	74.	ۍ <u>ا</u>	. 12	2.52	98.	3.26	.63	0.99	2.36	13.73	5.10	6.46	7.83	9.01	
	ָרן 	亅	، ر	- (ν,	4	(2)	Ψ	Φ	ψ	7		÷	Ť	Ť	τ-		
ш	_				_					-						-		

^{*} Tangent Pile Stiffness Calculation: AE = Δ Load / $\Delta\,\mu$ Strain

LOADTEST, Inc. Project No. LT-8854

