INFORMATION RETRIEVAL

Week 7 – Ranked Retrieval

Today

1

Exercise Recap

- Discussion
- Questions

2

Theory

- Recap: Heap's / Zipf's Law
- Parametric Search
- Shared inverted index
- Scores / Weights

Kahoot / Exam questions

• Exercise 4: Heap's and Zipf's Law

Gamma code mapping

Recall:

Gamma code mapping

Example: 7

- 1. To binary: 111
- 2. Trim leading 1: 11
- 3. Unary length: 110
- 4. Combine: 11011

Gamma code mapping

Example: 12

- 1. 1100
- 2. 100
- 3. 1110
- 4. 1110100

Variable byte encoding

Recall:

1: ends here

0: does not end here

Variable byte encoding

Example: 356, 8-bit packets

- 1. To binary: 101100100
- 2. Split up into 7-bit segments: 10 1100100
- 3. Add continuation / termination bits: 00000010 1100100

Variable byte encoding

Example: 356, 8-bit packets

- 1. To binary: 101100100
- 2. Split up into 7-bit segments: 10 1100100
- 3. Add continuation / termination bits: 00000010 1100100

Variable byte encoding

Example: 46

1. To binary: 101110

2. Split up into 7-bit segments: Not needed

3. Add continuation / termination bits: 10101110

Variable byte encoding

Example: 767 (Binary: 101111111)

- 1. To binary: 1011111111
- 2. Split up into 7-bit segments: 101 1111111
- 3. Add continuation / termination bits: 00000101 11111111

Ordering encoding methods

Gamma encoding: Always starts with a string of 1s, middle bit is 0, always odd size

Unary encoding: The value of the number + 1

Fix-length encoding: Number in binary rounded up to the next multiple of the packet size

Variable length: If n := Number in binary and p := packet size, then the size is ceil(|n|/(p-1)) * p

Largest code points

Variable length encoding: Check packet size, remove first bit of every segment

Fix-length: Size of maximum encoding

Unary: size – 1

Gamma: If n is the size, the largest number that fits in ceil((n-1)/2)

11.04.2025

Discussion

Lot of exam questions! Practice is key here.

Terminology

N: number of documents

T: number of tokens (positional postings)

M: number of terms

Heap's law

 $M = k\sqrt{T}$ Empirically, $30 \le k \le 100$

Zipf's law

Frequency
$$=\frac{k}{Rank}$$

Compression of the dictionary

- Store pointers
- Words start with number indicating length

Compression of the postings list

Encoding the gaps => What issue arises?

Boolean retrieval

• Until now:

Boolean retrieval

What we want:

Parametric search

• Split index up between metadata

Title: Introduction to Information Retrieval

Authors: Christopher D. Manning and Prabhakar Raghavan and Hinrich Schütze

Hardcover: 506 pages

Publisher: Cambridge University Press; 1 edition (July 7, 2008)

Language: English

ISBN-10: 0521865719

ISBN-13: 978-0521865715

Product Dimensions: 7 x 1.2 x 10 inches

Shipping Weight: 2.2 pounds (View shipping rates and policies)

Average Customer Review: * 27 customer reviews

Parametric search

- One index for each metadata entry (i.e. author, title, etc.)
- Intersect results at the end
- \rightarrow Zone search

Shared inverted index

• Zones in terms vs. Zones in postings

Shared inverted index

• Zones in terms vs. Zones in postings

Single-term query

- g_i : zone weight
- s_i : zone i contains term or does not contain term

 Sort documents based on score, return top-k results

Term frequency

• Number of times a term occurs in a document

Collection frequency

• Number of times a term occurs in the whole collection

Document frequency

- Number of documents where a term occurs
- Inverse document frequency: $idf_t = \ln \frac{N}{m}$, where $N \coloneqq largest \ df_t$, $m \coloneqq df_t$

t	df _t	idf _t						
foo	2	0.41						
bar	3	0						
foobar	1	1.10						
	log 3	3/.						

11.04.2025

• tf- $idf = tf \times idf$

tf	A	В	tf-idf	A	В		
foo	5	1	foo	25	5		
bar	0	4	bar	0	40	7	
foobar	2	1	foobar	6	3	'	

Exercise 6: Heap's law

Questions

- Moodle: Multiple choice
- Coding: Plot Heap's and Zipf's law

Kahoot

https://create.kahoot.it/details/i
nformation-retrieval-ex-06repetitions/7ad1b588-265041bf-a05e-ee7ac16f8b77