

For a standard linear model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p$$

• If $N \gg p$ where,

N = No. of observations

p = No. of predictor variables

 \checkmark estimates for β coefficients are unbiased.

- As $N \to p$, overfitting occurs and models have less and less predictive power.
- If N < p, coefficient estimates have very high variance and cannot be trusted

Do we really need all p predictors?

Why bother?

Alternatives?

Fits models to a subset of p predictors.

e.g. Forward/Backward selection

Unsupervised, computationally intensive
Biased towards small coefficient estimates
and small p-values
Perform poorly out of sample

Ridge regression

Fit a full model and shrink (regularize) estimates close to zero.

Prevents overfitting
Robust to correlated variables

Lasso Regression

Fit a full model and regularize coefficients but shrink some to exactly zero

Achieves both regularization and variable selection

Ridge Regression (Also known as L2 Regularization)

Recall that residual sum of squares is

$$RSS = \sum_{i=1}^{N} (y_i - \hat{y})^2$$

Where \hat{y} is the linear model/ line through the data.

Simple linear models try to minimise RSS.

In Ridge regression, we try to minimise a slightly different quantity:

$$\sum_{i=1}^{N} (y_i - \hat{y})^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Shrinkage penalty

(Also known as L2 Regularization)

This might also be written as:

$$\hat{\beta}_{ridge} = \min_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \hat{y})^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$

Tuning parameter

Shrinkage penalty

Or alternatively

$$\hat{\beta}_{ridge} = \min_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \hat{y})^2 \right\}$$

$$subject \ to \ \sum_{i=1}^{p} \beta_j^2 \le t$$

for every value of λ , there is some t such that will give the same lasso coefficient estimates (and vice-versa)

Squaring in shrinkage penalty amplifies extreme values \rightarrow Need to scale and standardize all predictors beforehand

This might also be written as:

$$\hat{\beta}_{ridge} = \min_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \hat{y})^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$

Tuning parameter

Shrinkage penalty

Or alternatively

$$\hat{\beta}_{ridge} = \min_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \hat{y})^2 \right\}$$
subject to
$$\sum_{i=1}^{p} \beta_j^2 \le t$$

for every value of λ , there is some t such that will give the same lasso coefficient estimates (and vice-versa)

Squaring in shrinkage penalty amplifies extreme values \rightarrow Need to scale and standardize all predictors beforehand

- The ridge shrinkage penalty $\sum_{j=1}^{p} \beta_{j}^{2}$, pulls coefficient estimates closer to zero
- Shrinks together the coefficients of correlated predictors
- For smaller values of λ , the constraint region relaxes and the ridge solution tends towards the least squares solution. $\hat{\beta}_{ridge} \approx \hat{\beta}_{least\ squares}$


```
install.packages("glmnet", "glmnetUtils")
library(glmnet); library(glmnetUtils)
ridgefit1 <- glmnet(log(DensAbund_N_Sqkm) ~ .,
    data=numd.sc, alpha=0, family="gaussian")
plot.glmnet(ridgefit1, "lambda")</pre>
```


It is critical to pick a good value of λ for the right coefficients

- Implement Cross Validation to pick the right tuning parameter, λ .
- Glmnet comes with an inbuilt function but we still need to iterate it lots of times as the results are random.

- Implement Cross Validation to pick the right tuning parameter, λ .
- Glmnet comes with an inbuilt function but we still need to iterate it lots of times as the results are random.

Log(λ)=-0.39 In one iteration

Lasso Regression

(least absolute shrinkage and selection operator)

Ridge regression leaves us with large, complex models (no matter the value of λ) with potentially many noisy variables.

In Lasso, rather than minimising:

$$\hat{\beta}_{ridge} = \min_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \hat{y})^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$

Lasso minimises:

$$\hat{\beta}_{lasso} = \min_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \hat{y})^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

Ridge Shrinkage penalty, l_2 penalty

Tuning parameter ≥0

Lasso Shrinkage penalty, $l_1 penalty$

$$\hat{\beta}_{lasso} = \min_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \hat{y})^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

Tuning parameter

Shrinkage penalty

Or alternatively

$$\hat{\beta}_{lasso} = \min_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \hat{y})^2 \right\}$$

$$subject \ to \ \sum_{j=1}^{p} |\beta_j| \le t$$

Consistent shrinkage and variable selection by Lasso
Methods are widely applicable across statistics and machine learning

Ridge Shrinkage penalty, $l_2penalty$

Lasso Shrinkage penalty, $l_1penalty$

Linear model with L1 regularization (Lasso)

Linear mixed-effects model with L1 regularization (Lasso)

References

Flom & Cassell (2007) Stopping stepwise: Why stepwise and similar selection methods are bad, and what you should use. *Statistics and Data Analysis*, NESUG https://www.lexjansen.com/pnwsug/2008/DavidCassell-StoppingStepwise.pdf

Hastie, Tibshirani, and Friedman (2009) The elements of statistical learning: Data Mining, Inference, and Prediction. 2nd Edition, Springer Science. Free copy here: https://web.stanford.edu/~hastie/ElemStatLearn//

Dr Google:

https://developers.google.com/machine-learning/crash-course/regularization-for-sparsity/ll-regularization

Python Users:

from sklearn.linear_model import Ridge

from sklearn.linear_model import Lasso