TP5 – Estructuras Algebraicas - Teoría de Grupos

Agustina Sol Rojas

Ejercicio 1.

Determinar cuáles de las siguientes operaciones están bien definidas sobre el conjunto A dado. Analizar las propiedades en los casos afirmativos

a)
$$A = N, a * b = 3ab$$

Dado que el producto es una operación cerrada en N, para todo $a,b\in N$, se cumple que $ab\in N$. Además, como $3\in N$, al multiplicarlo por otro número natural (nuevamente porque el producto es una operación cerrada) el resultado sigue siendo un número natural. Por lo tanto, la operación a*b=3ab está bien definida en N.

Conmutativa:

Como el producto es conmutativo en N se cumple para todo $a,b \in N$ que a*b=3ab=3ba=b*a

Asociativa:

Como el producto es asociativo y conmutativo en N se cumple para todo $a,b,c \in N$ que (a*b)*c = (3ab)*c = 3(3ab)c = 3a(3bc) = a*(3bc) = a*(b*c)

Elemento neutro:

Se debe probar que existe en N un elemento e tal que para todo a en N valga que a*e=e*a=a:

1. Teniendo en cuenta lo siguiente:

i.
$$a * e = 3ae$$

ii.
$$e * a = 3ea$$

2. Se debe encontrar un $e \in N$ tal que

i.
$$3ae = a$$

ii.
$$3ea = a$$

3. Despejando las ecuaciones queda:

i.
$$3e = 1$$

ii.
$$3e = 1$$

4. Como ningún número natural multiplicado por 3 da como resultado 1, no existe un $e \in N$ tal que a*e=e*a=a. Por lo tanto * no tiene un elemento neutro.

Elemento inverso:

Como * no tiene elemento neutro, no tiene elemento inverso.

b)
$$A = Z, a * b = \frac{a+b}{3+ab}$$

Contraejemplo:

1. Dados $a, b \in Z$ tal que a = -3 y b = 1:

$$-3*1 = \frac{-3+1}{3+(-3)\cdot 1} = -\frac{2}{3-3} = \frac{2}{0}$$

2. $\frac{2}{0} \notin Z$, por lo tanto la operación a * b no está bien definida en Z.

c)
$$A = R, x * y = x + y - xy$$

Dado que la suma y el producto son operaciones cerradas en N, para todo $x,y \in R$, se cumple que $x+y-xy \in N$. Por lo tanto, la operación x*y=x+y-xy está bien definida en R.

Conmutativa:

Como el producto es conmutativo en R se cumple para todo $x,y \in R$ que x*y = x + y - xy = y + x - yx = y*x

Asociativa:

Como la suma y producto son asociativos y conmutativos en R, y además se cumple la propiedad distributiva se cumple para todo $x, y, z \in R$ que

$$x * (y * z) = x * (y + z - yz) =$$

= $x + (y + z - yz) - x(y + z - yz) =$
= $x + y + z - yz - xy - xz + xyz =$

$$= x + y - xy + z - xz - yz + xyz = = (x + y - xy) + z - (xz + yz - xyz) = (x + y - xy) + z - (xz + yz - xyz) = (x + yz -$$

$$= (x + y - xy) + z - (x + y - xy)z$$

$$= (x + y - xy) * z = (x * y) * z$$

Elemento neutro:

Se debe probar que existe en R un elemento e tal que para todo x en R valga que

$$x * e = e * x = x$$
:

1. Teniendo en cuenta lo siguiente:

i.
$$x * e = x + e - xe$$

ii.
$$e * x = e + x - ex$$

2. Se debe encontrar un $e \in N$ tal que

i.
$$x + e - xe = x$$

ii.
$$e + x - ex = x$$

3. Despejando las ecuaciones queda:

i.
$$x + e - xe = x$$

$$e - ex = 0$$

$$e(1-x) = 0$$

$$e = 0$$

ii.
$$e + x - ex = x$$

$$e - ex = 0$$

$$e(1-x)=0$$

$$e = 0$$

4. Reemplazando en la expresión de 2. por e verificamos que se cumple lo

siguiente para cualquier $x \in R$

i.
$$x + 0 - x$$
. $0 = x + 0 = x$

ii.
$$0 + x - 0 \cdot x = 0 + x = x$$

5. Por lo tanto existe en R un elemento e tal que para todo x en R vale que x * e = 0

$$e * x = x$$
 y ese $e = 0$

Elemento inverso:

Un elemento x de R se tiene inverso si existe x' en R tal que x*x'=x'*x=e

1. Teniendo en cuenta lo siguiente

i.
$$x * x' = x + x' - x \cdot x'$$

ii.
$$x' * x = x' + x - x'$$
. x

2. Se debe encontrar un $e \in N$ tal que

i.
$$x + x' - x \cdot x' = e$$

ii.
$$x' + x - x'$$
. $x = e$

3. Despejando las ecuaciones y teniendo en cuenta que e=0 queda:

i.
$$x + x' - x \cdot x' = 0$$

$$x'-x$$
 . $x'=-x$

$$x'(1-x) = -x$$

$$x' = \frac{-x}{1 - x}$$

ii.
$$x' + x - x'$$
. $x = 0$

$$x' - x' \cdot x = -x$$

$$x'(1-x) = -x$$

$$x' = \frac{-x}{1 - x}$$

- 4. El inverso existe y es $\frac{-x}{1-x}$ para todo $x \neq 1 \in R$. Cuando x = 1 el denominador se hace cero y la expresión no puede resolverse, por lo que no existe inverso para x = 1.
 - i. Esto último es válido.
- d) $A = \{0, 1, 2, 3\}$

*	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	1	2	0	2
3	2	3	1	1

Se puede observar en el cuadro que para todo $a,b\in A$ se cumple que el resultado de $a*b\in A$.

Conmutativa:

La operación * sobre A es conmutativa si, para todo a y b en A, resulta a*b=b*a

Contraejemplo:

$$2 * 0 = 1$$

$$0 * 2 = 0$$

Se puede observar como $2 * 0 \neq 0 * 2$, por lo tanto, no es conmutativa.

Asociativa:

La operación * sobre A es asociativa si, cualesquiera sean a, b y c en A, resulta a * (b*c) = (a*b)*c

Contraejemplo:

$$(3*3)*1=1*1=1$$

$$3*(3*2) = 3*1 = 3$$

Se puede observar como $(3*3)*1 \neq 3*(3*2)$, por lo tanto, no es asociativa.

Elemento neutro:

Existe en A un elemento e tal que para todo x en R vale que x*e=e*x=x. Se puede observar en el grafico que ese elemento es 1, puesto que para todo $x \in A$ vale que x*1=1*x=x

Elemento inverso:

Un elemento x de R se tiene inverso si existe x' en R tal que x * x' = x' * x = e

1. x = 0

0 no tiene inverso puesto que nunca sucede que para cualquier $x' \in A$ vale que 0*x'=x'*0=1

2. x = 1

1 tiene inverso y ese es 1 dado que 1 * 1 = 1 * 1 = 1

3. x = 2

0 no tiene inverso puesto que nunca sucede que para cualquier $x' \in A$ vale

que
$$2 * x' = x' * 2 = 1$$

$$2 * 0 = 1$$
, pero $0 * 2 = 0$.

$$3 * 2 = 1$$
, pero $2 * 3 = 2$

4. x = 3

3 tiene inverso y ese es 3 dado que 3 * 3 = 3 * 3 = 1

Ejercicio 2.

Demostrar que:

a) Dado $M = \{m \in \mathbb{N} : m > 0\}, (M, +)$ es un semigrupo pero no es un monoide

Asociativa:

La operación + sobre M es asociativa si, cualesquiera sean a, b y c en A, resulta a + (b + c) = (a + b) + c.

Como la operación + es asociativa en N, (N, +) es un semigrupo. Debido a que $M \subset N$, por definición 2.7, (M, +) es un semigrupo (se puede pensar como que la asociatividad se "hereda" de N).

Elemento neutro

No existe en M un elemento e tal que para todo a en M vale que a*e=e*a=a. El elemento neutro de (N,+) es el 0 y este es único. Por definición del conjunto M, $0 \notin M$ por lo tanto no existe un elemento neutro para la operación + sobre el conjunto M.

Como no existe en M elemento neutro para +, (M, +) no es un monoide.

b) El conjunto de un solo elemento $M=\{e\}$ con la operación definida por e*e=e es un monoide

Asociativa

La operación * sobre M es asociativa si, cualesquiera sean a,b y c en M, resulta a*(b*c)=(a*b)*c

1. Sean $a, b y c \in M$

i.
$$a * (b * c) = a * e = e$$

ii.
$$(a * b) * c = e * c = e$$

2. Como a * (b * c) = (a * b) * c, la operación * sobre M es asociativa

Elemento neutro:

Se debe demostrar que existe en M un elemento e tal que para todo a en M valga que a*e=e*a=a.

1. Sea $a \in M$

i.
$$a * e = e$$

- ii. e * a = e
- 2. Como $a \in M$ y el unico elemento de M es e, necesariamente a = e
- 3. Por lo tanto existe en M un elemento neutro para *

Como * es asociativa y existe un elemento neutro, (M,*) es un monoide.

c) Dado un conjunto no vacío A, el conjunto de las partes de AP(A) con la operación intersección de conjuntos es un monoide conmutativo

Asociativa:

La operación \cap sobre P(A) es asociativa si, cualesquiera sean X,Y y Z en P(A), resulta $X \cap (Y \cap Z) = (X \cap Y) \cap Z$

1. Sean $X,Y,Z\in P(A)$, como la \cap entre conjuntos es asociativa se cumple que $X\cap (Y\cap Z)=(X\cap Y)\cap Z$

Elemento neutro:

Se debe demostrar que existe en P(A) un elemento E tal que para todo X en P(A) valga que $X \cap E = E \cap X = X$.

- 1. Sea X un elemento cualquiera de P(A). Para que se cumpla $X \cap E = E \cap X = X$, a E deben pertenecer los mismos elementos que pertenecen a X. Los únicos conjuntos que cumplen con esto son el propio X y A. Si se toma como elemento neutro a X siendo X cualquier elemento de P(A), este no va a ser único, puesto que va a haber un elemento neutro distinto para cada elemento de P(A) por lo que se toma como elemento neutro a A.
- 2. Para cualquier $X \in P(A)$, al ser $X \subseteq A$ se cumple que:
 - i. $X \cap A = X$
 - La intersección entre un conjunto y su subconjunto da el subconjunto.
 - ii. $A \cap X = X$
 - a. La intersección entre un conjunto y su subconjunto da el subconjunto.

Conmutativa

La operación \cap sobre P(A) es conmutativa si, cualesquiera sean X y Y en P(A), resulta $X \cap Y = Y \cap X$

1. Sean $X,Y\in P(A)$, como la \cap entre conjuntos es conmutativa se cumple que $X\cap Y=Y\cap X$

Como \cap es asociativa, existe un elemento neutro y es conmutativa $(P(A), \cap)$ es un monoide conmutativo.

Ejercicio 3.

Demostrar que si para una operación asociativa * en A existe un elemento neutro e un elemento del conjunto, a, tiene inverso entonces este es único.

1. Sean $a, b, c \in A$, suponiendo que $b \neq c$ y ambos son inversos de a se cumple:

i.
$$a * b = b * a = e$$

ii.
$$a * c = c * a = e$$
.

2. Como e es el elemento neutro del conjunto se cumple:

i.
$$b = b * e$$

3. Como por 1.i. e = a * c:

i.
$$b * e = b * (a * c)$$

4. Por asociatividad:

i.
$$b * (a * c) = (b * a) * c$$

5. Por hipótesis (b * a) = e

i.
$$(b*a)*c = e*c$$

6. Como *e* es el elemento neutro del conjunto se cumple:

i.
$$e * c = c$$

7. Se llego a que b=c, por lo tanto si para una operación asociativa * en A existe un elemento neutro e un elemento del conjunto y a tiene inverso entonces este es único.

Ejercicio 4.

Sea R una relación de congruencia sobre un semigrupo (S,*) demostrar que $(S/R,\circledast)$ (el conjunto cociente y la operación inducida por * sobre las clases de equivalencia) es un semigrupo llamado Semigrupo Cociente

- 1. Teniendo en cuenta que $S/R = \{\bar{s} \in S\}$ y siendo $a, b \in S$, $\bar{a} \in S/R$ y $\bar{b} \in S/R$
 - i. $\bar{a} \circledast \bar{b} = \overline{a * b}$
- 2. * es una operación bien definida puesto que al ser (S, *) un semigrupo, $a * b \in S$, y por lo tanto $\overline{a * b} \in S/R$.
- 3. * es asociativa. Sean $\overline{a}, \overline{b}, \overline{c} \in S/R$ y teniendo en cuenta que (S, *) es un semigrupo (asociatividad de *):

i.
$$\bar{a} \circledast (\bar{b} \circledast \bar{c}) = \bar{a} \circledast (\bar{b} * \bar{c}) = \bar{a} \circledast (\bar{b} * \bar{c}) = \bar{a} \circledast (\bar{b} * \bar{c}) = \overline{a * (b * \bar{c})} = \overline{(a * b) * \bar{c}} = (\bar{a} * \bar{b}) \circledast \bar{c} = (\bar{a} \circledast \bar{b}) \circledast \bar{c}$$

- ii. Como se llega a que $\bar{a} \circledast (\bar{b} \circledast \bar{c}) = (\bar{a} \circledast \bar{b}) \circledast \bar{c}, \circledast$ es asociativa.
- 4. Como \circledast es una operación bien definida y \circledast es asociativa, $(S/R,\circledast)$ es un semigrupo llamado Semigrupo Cociente.

Ejercicio 5.

Analizar si las siguientes son estructuras de grupo:

- a) (Z, +), los enteros con la suma usual
- b) (Z,\cdot) , los enteros con el producto usual
- c) $(R^2, +)$, los pares ordenados de reales con la suma usual
- d) $(M_{2x2}, +)$, las matrices de 2x2 con la suma usual de matrices
- e) $(P(A), \cup)$, A cualquier conjunto y P(A) indica el conjunto de partes de A