Fundamentos de Sistemas Computacionias (IC/UFRJ)

Aula 10: Redes de Computadores e a Internet - Arquitetura em Camadas e seus Protocolos

Prof. Silvana Rossetto (IC/CCMN/UFRJ)

Arquitetura da rede - modelo em camadas

- Para reduzir complexidade de implementação e facilitar manutenção do código, o software das redes é modelado em camadas
- Cada camada oferece serviços para as camadas mais altas — de acordo com uma interface definida — escondendo os detalhes de como os serviços são implementados
- Para cada camada é definido um protocolo: acordo entre as partes sobre como a comunicação/interação deve ocorrer

Camadas, interfaces e protocolos

Arquitetura da rede - Pilha de Protocolos

- O conjunto de camadas e protocolos é chamado arquitetura da rede (referência para os desenvolvedores de hardware e software da rede)
- A lista de protocolos usada por uma implementação da rede (um protocolo por camada) é chamada pilha de protocolos

Serviços versus Protocolos

Serviços

Um **serviço** é um conjunto de **primitivas** (operações) que uma camada provê (mas não diz nada sobre como são implementados)

Protocolos

Um **protocolo** é um conjunto de **regras** que govermam o formato e o significado das mensagens trocadas entre pares de entidades da mesma camada (protocolos são usados para **implementar** as definições de serviços)

Serviços versus Protocolos

Figure: Fonte: Computer Networks, Tanenbaum, 4ed., 2003.

Exemplo: interação cliente/servidor com conexão

Figure: Fonte: Computer Networks, Tanenbaum, 4ed., 2003.

Projeto das camadas da rede

Questões gerais que devem ser tratadas

- Toda camada precisa de um mecanismo de endereçamento para indicar emissores e receptores
- 2 Como a comunicação física não é perfeita, é preciso estabelecer um mecanismo de controle de erro
- Ocomo a taxa de transmissão do emissor pode ser superior à capacidade de recebimento do receptor, é preciso estabelecer um mecanismo de controle de fluxo
- Quando é custoso (ou inadequado) configurar uma conexão para cada par de entidades se comunicarem, a camada inferior pode usar uma mesma conexão para várias interações, usando um mecanismo de multiplexação e demultiplexação dos canais

Projeto das camadas da rede

Questões gerais que devem ser tratadas

- Quando há mais de um possível caminho entre fonte e destino, é preciso estabelecer um algoritmo de roteamanto
- Nem todos os canais preservam a ordem das mensagens, para lidar com a possibilidade de perda de sequenciamento é preciso oferecer um mecanismo para (re)ordenação das mensagens
- Nem todos os processos aceitam mensagens de tamanho arbitrário, nesse caso é preciso definir mecanismos para decompor, transmitir e recompor mensagens

Modelos de referência

Figure: Fonte: Computer Networks, Tanenbaum, 4ed., 2003.

Modelo OSI versus Modelo TCP/IP

Modelo OSI (Open Systems Interconnection)

- Criado na década de 70 pela ISO (International Standards Organization), revisado em 1995
- Não define uma arquitetura de rede, mas apenas o que cada camada deve fazer (não especifica os serviços e protocolos) (publica padrões para cada camada separadamente)

Modelo TCP/IP

- Surgiu com a ARPANET (rede criada pelo Dpto de Defesa americano) e foi seguido pela Internet
- Preocupação desde o início em conectar várias redes e atender aplicações com diferentes exigências

Modelo de camadas híbrido

5	Application layer
4	Transport layer
3	Network layer
2	Data link layer
1	Physical layer

Camada de Aplicação

- Contém vários protocolos necessários para os usuários (ex., HTTP, FTP, SMTP, DNS)
- (na Internet) pacotes são normalmente chamados mensagens
- nessa camada, !podemos criar nossos próprios protocolos!

Camada de Transporte

- Transporta pacotes (mensagens) fim-a-fim
- Entre os possíveis serviços dessa camada estão:
 - garantia de entrega sem perdas, e em ordem (estabelece conexão)
 - 2 sem garantia de entrega e de ordem
 - difusão da mensagem para vários destinos (broadcasting)
- Diferente das camadas inferiores, nas quais as interações ocorrem entre vizinhos imediatos, na camada de transporte a interação é entre a máquina fonte e a máquina destino (separadas por vários roteadores)
- (na Internet) pacotes são normalmente chamados segmentos

Outros serviços de transporte

Throughput (vazão)

 Garantir uma taxa de vazão (bits/seg) constante, independente das flutuações na taxa de entrega de bits em função do compartilhamento dos enlaces da rede

Tempo

• Garantias de **tempo de entrega** podem aparecer de várias formas, por ex., todo bit enviado deve ser recebido em um intervalo máximo Δt

Segurança

 O protocolo de transporte pode oferecer para as aplicações um ou mais serviços de segurança, por ex., criptografia, autenticação, garantia de integridade dos dados

Camada de Rede

- Controla a operação da sub-rede, determinando como os pacotes (pedaços de segmentos) são roteados da fonte ao destino
- Rotas podem ser estáticas (definidas, por ex., no início de cada interação), ou dinâmicas (determinadas para cada pacote)
- Protocolo IP (define campos do datagrama e como são tratados) + protocolos de roteamento
- (na Internet) pacotes são normalmente chamados datagramas

Camada de Enlace

- Move um datagrama de uma máquina para outra (próxima máquina na rota)
- (na Internet) o servi
 ço provido por esta camada depende do protocolo usado (ex., Ethernet, PPP, WiFi)
- Deve prover mecanismos de controle de fluxo (regular a interação emissor/receptor) e de controle de erro (devolução de ACKs)
- Redes broadcast devem tratar uma questão adicional: como controlar o acesso a canais compartilhados
- (na Internet) pacotes são chamados frames/quadros

Camada Física

- Move bits individuais dentro de um pacote (frame) de uma máquina para outra
- Deve garantir que quando um lado envia o bit 1 o outro lado recebe o bit 1
- Questões que são tratadas:
 - voltagem usada para representar cada valor de bit e "tempo de vida" de um bit
 - 2 tranmissão half-duplex ou full-duplex
 - 3 como a conexão é estabelecida e como termina
- Os protocolos dessa camada dependem diretamente do meio físico (par-trançado, coaxial, fibra óptica, ondas de rádio)

Protocolos e redes do modelo TCP/IP inicial

Arquitetura em camadas

Arquitetura em camadas

- Cada camada encapsula dois tipos de campos:payload (pacote recebido da camada acima) e cabeçalho (informação adicional para implementação do serviço da camada)
- No emissor, mensagens grandes da camada de aplicação são divididas em segmentos da camada de transporte (que podem ser divididos em vários datagramas da camada de rede)
- No receptor, tais segmentos devem ser reconstruídos a partir de seus datagramas constituintes (e o mesmo deve ser feito com as mensagens)

Comunicação entre processos remotos

- No contexto de Sistemas Operacionais, programas em execução são chamados processos
- Processos localizados em máquinas distintas comunicam-se por meio de trocas de mensagens através da rede:
 - o processo emissor cria e envia uma mensagem
 - o processo receptor recebe a mensagem (e possivelmente cria e envia uma mensagem de resposta)

Comunicação entre processos remotos na arquitetura TCP/IP

- Na arquitetura TCP/IP, a comunicação entre dois processos remotos é implementada usando-se uma interface de software chamada socket
- A interface de socket é a interface entre as camadas de aplicação e de transporte na Internet

Comunicação entre processos remotos na arquitetura TCP/IP

Figure: Fonte: http://www.aw-bc.com/kurose-ross/

Interface de sockets

Figure 3.2 • Transport-layer multiplexing and demultiplexing

Figure: Fonte: http://www.aw-bc.com/kurose-ross/

Socket

Process

Comunicação entre processos remotos na arquitetura TCP/IP

- Para identificar o processo remoto em uma comunicação, duas informações adicionais são requeridas:
 - nome ou endereço da máquina destino (endereço IP)
 - identificador do processo dentro dessa máquina (número da porta)

Endereçamento de processos

Figure 3.5 • Two clients, using the same destination port number (80) to communicate with the same Web server application

Figure: Fonte: http://www.aw-bc.com/kurose-ross/

Exemplo de aplicação distribuída

Ver códigos srv.py e cli.py

Referências bibliográficas

J. Kurose and K. Ross, Computer
 Networking: A Top-Down Approach,
 Addison-Wesley, 5^a ed., 2009