

VU Machine Learning Summer 2020

Exercise 2: Classification Experiments

Exercise "Classification"

- Groups of 3 students (exact)
 - Can (should ©) use the same groups as last time
- Perform experiments in machine learning
- Write a report paper
 - 10-15 pages
 - Including tables & diagrams
 - And analysis
 - Prepare a presentation
 - Actually present (either exercise 2, or exercise 3)

Exercise "Classification" - details

Use 4 data sets

kaggle

- 2 from our very own Kaggle competition
- 1 you already chose keep it, unless you encounter issues
- 1 that you shall still use
 - Must have different characteristics!!
 - number of samples small vs. large
 - number of dimensions low vs. high dimensional
 - number of classes few vs. many classes
 - pre-processing needed...
 - Choice of diverse data sets important for grading!
- Need to register your chosen datasets in TUWEL
 - You can reuse the ones from Exercise 0
 - If they are classification data sets
- Chose 3 different classifiers, from at least 3 different types of learning algorithms
 - Argue & justify choice (part of grading...)
 - I.e. 4x3 combinations of dataset & classifier

Exercise "Classification" - details

- Experiment with the datasets and classifiers, by evaluating their performance
 - Chose a number of performance measures. Argue why you chose them, what they measure, and whether they are sufficient.
- Experiment with different parameter settings
 - And report on it report not only one (best/random) result from a classifier on a specific dataset, but several results!
- Compare results among classifiers and datasets
 - Aggregated comparison, e.g. pick best settings for each combination
 - Significance testing against at least one baseline
- Evaluate effect of pre-processing (mostly scaling)
 - Compare results w/o pre-processing vs. applied pre-processing methods (be careful about built-in pre-processing in some implementation!)
- Compare holdout with cross-validation
- Record (approximate) runtimes of the classifiers
- Summarise your results tables or figures

Exercise "Classification" - details

Qualitative Analysis

- Are there any patterns to be identified across the datasets and classifiers?
 - E.g. which methods worked generally good/bad, is there one outperforming?
 - How can you compare results on different datasets?
- Analyse e.g. how sensitive an algorithm is to parameter settings
 - Are there any differences over the datasets?
- How is the runtime behaviour changing with the dataset size (number of samples/features)
- Does the pre-processing affect your results? Is there any trend?

Exercise "Classification": Software

- Python / scikit
- WEKA (http://www.cs.waikato.ac.nz/ml/weka/)
 - easy to use (GUI), also powerful API
- R (http://www.r-project.org/)
 - advanced & powerful software
 - if you know R already, or you want to learn it
- Rapid Miner
- Matlab

Exercise "Classification": Written Report

- Report should be 10-15 pages
- Full report of your work
 - Experiments, parameters tried
 - Characteristics of data sets & pre-processing (i.e. handling of missing values, scaling etc.)
 - Characteristics of classifiers
 - Explanation of choice for data sets & classifiers
 - Discuss experimental results, compare them in regard of the different datasets & classifiers (tables, figures)
 - Do not include code in report, but include code & scripts in submission package
 - Analysis

Exercise "Classification": Presentation slides

- Presentation shall be <= 10 minutes
- Focus on the essentials of your findings
 - Only a short overview on datasets & algorithms
 - No code, ..

Rather:

- What was interesting, what worked, what didn't work
- What are your conclusions regarding the usefulness of the algorithms, on your specific datasets
- How do the classifiers compare

Exercise "Classification": competition

- Competition-style evaluation
 - We will use Kaggle in-class (https://inclass.kaggle.com) for a competition
 - Submission requires a simple CSV file
 - For each sample in the test set: <id>,,<predicted class>
 - Pick two of the datasets provided in TUWEL
 - Number of uploads to Kaggle per day is limited → start early!
 - Also so that you have an early feedback on your results compared to other groups!

 Data
 - First try locally what works
 → only then upload to Kaggle
- 15% Bonus points for the top 3 teams!
 - +5% Bonus if you also have your notebook running in Kaggle
 - See https://www.kaggle.com/notebooks
 - Keep it private, share it with mayer@ifs.tuwien.ac.at

Training

Test -

Test -

Exercise "Classification": step-by-step

- Get your data sets
 - Your existing ones & from Kaggle
- Import data file, scale/encode data, other preprocessing
- Run classifiers (with different parameters)
 - Select most interesting ones, ...
 - Document any problems/findings
 - Upload results from good algorithms to Kaggle
 - Not necessary to implement algorithms
 - Rely on libraries, modules etc.
 - Code just for loading data, pre-processing, running configurations, processing/aggregating results, ...
- Write your report

Questions?