ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ»

Факультет безопасности информационных технологий

Дисциплина:

"Операционные системы"

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4

Выполнил:

Студент гр. N3249

Шарифуллин Ильдан Айдарович

Проверил:

Савков С.В.

Задание:

Провести тестирование и найти лучший планировщик ввода-вывода среди других.

Усложнение

Модифицировать существующий планировщик на уровне ядра

Ход работы:

По умолчанию в моей системе стоял планировщик mq-deadline

```
ildan@vb:~$ cat /sys/block/sda/queue/scheduler
[mq-deadline] none
ildan@vb:~$
```

Баш код для перебора и тестирования доступных планировщиков:

```
#!/bin/bash

DISC="sda"; \
cat /sys/block/$DISC/queue/scheduler; \
for T in kyber bfq none mq-deadline; do \
echo $T > /sys/block/$DISC/queue/scheduler; \
cat /sys/block/$DISC/queue/scheduler; \
sync && /sbin/hdparm -tT /dev/$DISC && echo "----"; \
sleep 15; \
done
```

Тестирование с использованием приведенного скрипта показало такие результаты:

```
tldan@vb:-/0S/lab4$ sudo sh log.sh
[sudo] password for ildan:
[none] mq-deadline kyber bfq
mq-deadline [kyber] bfq none
/dev/sda:
Timing cached reads: 9392 MB in 1.99 seconds = 4711.88 MB/sec
 Timing buffered disk reads: 2068 MB in 3.01 seconds = 686.88 MB/sec
mq-deadline kyber [bfq] none
/dev/sda:
 Timing cached reads: 9470 MB in 1.99 seconds = 4750.97 MB/sec
 Timing buffered disk reads: 2244 MB in 3.00 seconds = 747.81 MB/sec
[none] mq-deadline kyber bfq
/dev/sda:
 Timing cached reads: 9542 MB in 1.99 seconds = 4784.79 MB/sec
 Timing buffered disk reads: 2264 MB in 3.00 seconds = 754.10 MB/sec
[mq-deadline] kyber bfq none
/dev/sda:
 Timing cached reads: 9758 MB in 1.99 seconds = 4900.08 MB/sec
 Timing buffered disk reads: 2250 MB in 3.00 seconds = 749.27 MB/sec
```


В скорости кэширования с большим отрывом лидирует mq-deadline, а в буферизации разница между bfq, none, mq-deadline составляет не более 1%. Поэтому mq-deadline определенно является лучшим для моего диска. Описание планировщиков (взять с ресурса хакер.ru):

- NOOP (none) наиболее простой планировщик. Он банально помещает все запросы в очередь FIFO и исполняет их вне зависимости от того, пытаются ли приложения читать или писать. Планировщик этот, тем не менее, пытается объединять однотипные запросы для сокращения операций ввода/вывода.
- Deadline в настоящее время является стандартным планировщиком, был разработан в 2002 году. В основе его работы, как это ясно из названия, лежит предельный срок выполнения то есть планировщик пытается выполнить запрос в указанное время. В дополнение к обычной отсортированной очереди, которая появилась еще в Linus Elevator, в нем есть еще две очереди на чтение и на запись. Чтение опять же более приоритетно, чем запись. Кроме того, запросы объединяются в пакеты. Пакетом называется последовательность запросов на чтение либо на запись, которая идет в сторону больших секторов («алгоритм лифта»). После его обработки планировщик смотрит, есть ли запросы на запись, которые не обслуживались длительное время, и в зависимости от этого решает, создавать ли пакет на чтение либо же на запись.
- BFQ (Budget Fair Queueing) относительно новый планировщик. Базируется на CFQ. Если не вдаваться в технические подробности, каждой очереди (которая, как и в CFQ, назначается попроцессно) выделяется свой «бюджет», и, если процесс интенсивно работает с диском, данный «бюджет» увеличивается.

• Куber был написан для работы с быстрыми устройствами. Используя две очереди — запросы на запись и на чтение, куber отдает приоритет запросам на чтение, перед запросами на запись. Алгоритм измеряет время завершения каждого запроса и корректирует фактический размер очереди для достижения установленных в настройках задержек.

Изменение параметр я тестировал на планировщике mq-deadline. Для увеличения буферизации я решил уменьшить длину дисковой очереди. При этом скорость кэширования уменьшилась. Для коротких промежутков буферизации меньшая длина очереди более оптимальна.

По умолчанию параметр равен:

tldan@vb:~/05/lab4\$ cat /sys/block/sda/queue/nr_requests 64

И действительно, уменьшив длину очереди скорость повысилась. Оптимальный параметр: 32. Ниже привожу результаты тестов:

	8	
1	4499	743
2	4800	624
3	4578	651
4	4651	801
5	4574	750
6	4241	779
Ś	4557,166667	724,6666667
σ	169,2310222	64,95810616
S + 3σ	5064,859733	919,5409851
S - 3σ	4049,4736	529,7923482

	16	
1	4425	725
2	4774	757
3	4571	740
4	4610	771
5	4493	744
6	4537	772
Ś	4568,333333	751,5
σ	108,9673753	16,93861466
Š + 3σ	4895,235459	802,315844
Ś - 3σ	4241,431207	700,684156

	32	
1	4847	756
2	4546	782
3	4529	738
4	4615	740
5	4454	764
6	4421	721
Ś	4568,666667	750,1666667
σ	139,4377599	19,7519338
Š + 3σ	4986,979946	809,4224681
S - 3σ	4150,353387	690,9108653

	64	
1	4484	750
2	4425	749
3	4436	723
4	4473	772
5	4511	734
6	4348	724
Ġ	4446,166667	742
σ	52,50846493	17,13670525
Š + 3σ	4603,692061	793,4101157
Š - 3σ	4288,641272	690,5898843