SUITES DE NOMBRES REELS C 2 : Notion de limite.

Suites convergentes. 1

On rappelle la

Définition 1. On dit qu'une suite $(u_n)_{n\in\mathbb{N}}$ vérifie une propriété P à partir d'un certain rang, ou pour n assez **grand**, lorsqu'il existe $n_0 \in \mathbb{N}$ tel que P soit vérifiée par tous les termes u_n pour $n \ge n_0$.

La convergence d'une suite $(u_n)_{n\in\mathbb{N}}$ vers une limite l signifie, d'une manière intuitive, que le terme u_n est aussi près que l'on veut de l à condition de choisir n assez grand.

Définition 2. On dit que $(u_n)_{n\in\mathbb{N}}$ converge vers $l\in\mathbb{R}$, ou tend vers l, ou admet l pour limite, quand n tend vers l'infini, lorsque $(u_n)_n$ vérifie une des conditions équivalentes suivantes :

- 1. tout intervalle ouvert contenant l contient les u_n pour tous les $n \in \mathbb{N}$, sauf un nombre fini,
- 2. pour tout intervalle I ouvert contenant l, on a $u_n \in I$ à partir d'un certain rang,
- 3. $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ tel que si } n \geq N, \text{ alors } |u_n l| < \epsilon.$

Définition 3. Une suite $(u_n)_{n\in\mathbb{N}}$ est dite **convergente** s'il existe un élément $l\in\mathbb{R}$ tel que $(u_n)_{n\in\mathbb{N}}$ converge vers l. Une suite qui n'est pas convergente est dite divergente.

Déterminer la nature d'une suite signifie déterminer si elle converge ou si elle diverge.

lemme 1. Si une suite $(u_n)_{n\in\mathbb{N}}$ est convergente, alors sa limite est unique.

Conséquence Le nombre l est appelé la limite de la suite et on note $\lim_{n\to +\infty} u_n = l$ ou $l = \lim u$ ou $u_n \to l$.

Exemple à retenir : la suite de terme général $u_n = (-1)^n$ est divergente.

Proposition 1. Exemples fondamentaux de suites convergentes

- Toute suite constante converge : si pour tout $n \in \mathbb{N}$, $u_n = a$ alors $u_n \xrightarrow[n \to +\infty]{} a$.
- Soit α un réel strictement positif, alors $\frac{1}{n^{\alpha}} \xrightarrow[n \to +\infty]{} 0$. Soit $a \in]-1,1[$, alors $a^n \xrightarrow[n \to +\infty]{} 0$.

Une conséquence immédiate mais *importante* de la convergence d'une suite est donnée par la proposition suivante :

Proposition 2. Toute suite convergente est bornée.

Proposition 3. Soit $l \in \mathbb{R}$.

- 1. Si $u_n \to l$ alors $|u_n| \to |l|$.
- 2. $(u_n)_n$ tend vers $l \Leftrightarrow (u_n l)_n$ tend vers 0.

Définition 4. Soit $u=(u_n)_n$ une suite convergeant vers un réel l; Si, à partir d'un certain rang, on a $u_n>l$ (resp. $u_n < l$), on dit que u tend vers l par valeurs supérieures (resp. inférieures) et on note $u_n \xrightarrow[n \to +\infty]{} l^+$ (resp. $u_n \xrightarrow[n \to +\infty]{l^-}$.

2 Opérations sur les limites.

Proposition 4. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes vers l et l' respectivement :

- 1. leur somme est une suite convergente dont la limite est la somme des limites $l+l^\prime$
- 2. leur produit est une suite convergente de limite le produit ll'
- 3. soit $\lambda \in \mathbb{R}$, la suite $\lambda(u_n)_{n \in \mathbb{N}}$ est convergente de limite λl ,
- 4. on suppose que tous les v_n sont non nuls et que l' est non nulle, alors la suite quotient de $(u_n)_{n\in\mathbb{N}}$ par $(v_n)_{n\in\mathbb{N}}$ est convergente de limite l/l'

3 Extension de la notion de limite

Définition 5. 1. On dit que $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ quand n tend vers l'infini, lorsque $\forall A \in \mathbb{R}_+^*, \exists N \in \mathbb{N}$ tel que si $n \geqslant N$, alors $u_n > A$.

2. On dit que $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$ quand n tend vers l'infini, lorsque $\forall A \in \mathbb{R}_+^*, \exists N \in \mathbb{N}$ tel que si $n \geq N$, alors $u_n < -A$.

Remarque importante : une suite qui tend vers $+\infty$ n'est pas majorée.

Proposition 5. Si (u_n) tend vers $+\infty$, (u_n) est minorée et non majorée. Si (u_n) tend vers $-\infty$, (u_n) est majorée et non minorée. Les réciproques sont fausses.

Proposition 6. Exemples fondamentaux de suites admettant $+\infty$ pour limite

- Soit α un réel strictement positif, alors $n^{\alpha} \xrightarrow[n \to +\infty]{} +\infty$.
- $\ \textit{Soit} \ a \in]1, +\infty[\ \textit{alors} \ a^n \xrightarrow[n \to +\infty]{} +\infty.$

3.1 Somme

Proposition 7. Soient (u_n) et (v_n) deux suites réelles.

- 1. $Si \lim_{n \to +\infty} u_n = +\infty$ et $si(v_n)$ est minorée, alors la suite $(u_n + v_n)$ tend vers $+\infty$.
- 2. Si $\lim_{n\to+\infty}u_n=-\infty$ et si (v_n) est majorée, alors la suite (u_n+v_n) tend vers $-\infty$

3.2 Produit

Proposition 8. 1. Si $\lim_{n \to +\infty} u_n = +\infty$ et si (v_n) est minorée par un réel strictement positif, à partir d'un certain rang, alors la suite $(u_n v_n)$ tend vers $+\infty$.

2. Si $\lim_{n\to +\infty} u_n = -\infty$ et si (v_n) est minorée par un réel strictement positif, à partir d'un certain rang , alors la suite $(u_n \, v_n)$ tend vers $-\infty$.

3.3 Quotient

Proposition 9. 1. Si $\lim_{n \to +\infty} u_n = 0$ et si ses termes sont strictement positifs, alors la suite $(1/u_n)$ tend vers $+\infty$.

- 2. Si $\lim_{n\to +\infty} u_n = 0$ et si ses termes sont strictement négatifs, alors la suite $(1/u_n)$ tend vers $-\infty$.
- 3. $Si \lim_{n \to +\infty} |u_n| = +\infty \ alors \lim_{n \to +\infty} \frac{1}{u_n} = 0.$

4 Composition de limites

On note $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ la droite réelle achevée.

Théorème 10. Soit $f: \mathcal{D} \subset \mathbb{R} \to \mathbb{R}$ une fonction et (u_n) une suite réelle qui tend vers $a \in \overline{\mathbb{R}}$ telle que $u_n \in \mathcal{D}$ à partir d'un certain rang. Si $\lim_{x \to a} f(x) = l \in \overline{\mathbb{R}}$, alors $\lim_{n \to +\infty} f(u_n) = l$.

Soit (u_n) une suite définie par récurrence, associée à la fonction f :

soit une partie E de \mathbb{R} , $a \in E$, une application f de E dans E. Il existe une et une seule suite (u_n) telle que :

$$u_0 = a, \quad u_{n+1} = f(u_n), \quad n \geqslant 0.$$

Théorème 11. Soit $l \in E$. Si $\lim_{n \to +\infty} u_n = l$ et si f est continue en l, alors f(l) = l.

Le réel l est appelé point fixe de f. On recherche donc les limites réelles éventuelles de (u_n) parmi les points fixes de f.

5 Valeur d'adhérence d'une suite.

Définition 6. On dit qu' un nombre $l \in \mathbb{R}$ est une valeur d'adhérence de (u_n) s'il est limite d'une suite extraite de (u_n) .

Remarque: une suite peut posséder plusieurs valeurs d'adhérence; par exemple pour la suite de terme général $u_n = (-1)^n$ ses valeurs d'adhérence sont 1 et -1.

Proposition 12. Si (u_n) possède une limite, alors toute suite extraite de (u_n) a la même limite.

Conséquences importantes de la proposition précédente.

- Si une suite admet deux sous-suites convergeant vers deux limites distinctes, alors elle diverge.
- Si une suite admet une sous-suite divergente, alors elle diverge.

Proposition 13. Soit $l \in \overline{\mathbb{R}}$. Si les deux sous-suites $(u_{2n})_n$ et $(u_{2n+1})_n$ ont même limite l, alors $(u_n)_n$ a pour limite l.

 $G\'{e}n\'{e}ralisation$

Si p suites extraites de u, (u_{φ_k}) , $1 \leq k \leq p$ converge vers l et si $\bigcup_{1 \leq k \leq p} \varphi_k(\mathbb{N}) = \mathbb{N}$ alors u converge vers l.