

## 8192-BIT PROGRAMMABLE READ ONLY MEMORY

The MCM7681 and MCM7681A, together with various other 76xx series TTL PROMS, comprise a complete and compatible family having common de electrical characteristics and identical programming requirements. They are fully decoded, high-speed, field-programmable ROMs and are available in commonly used organizations, with three-state outputs. All bits are manufactured storing a logical "1" (outputs high), and can be selectively programmed for logical "0" (outputs low).

The field-programmable PROM can be custom-programmed to any pattern using a simple programming procedure. Schottky bipolar circuitry provides fast access time.

Pinouts are compatible to industry-standard PROMs and ROMs. In addition, the MCM7681 is a pin compatible replacement for the  $512 \times 8$  with Pin 22 connected as A9 on the  $1024 \times 8$ .

In addition to the conventional storage array, extra test rows and columns are included to assure high programmability, and guarantee parametric and ac performance. Fuses in these test rows and columns are blown prior to shipment.

- Common dc Electrical Characteristics and Programming Procedure
- Simple, High-Speed Programming Procedure (1.0 Second per 1024 Bits, Typical)
- Expandable Three-State Outputs and Chip Enable Inputs
- Inputs and Outputs TTL-Compatible
   Low Input Current 250 μA Logic "0", 40 μA Logic "1"
   Full Output Drive 16 mA Sink, 2.0 mA Source
- Fast Access Time Guaranteed for Worst-Case N<sup>2</sup> Sequencing, Over Commercial Temperature Ranges and Voltage Ranges
- Pin-Compatible with Industry-Standard PROMs and ROMs

## ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                                    | Symbol           | Value       | Unit          |
|-------------------------------------------|------------------|-------------|---------------|
| Operating Supply Voltage                  | Vcc              | +7.0        | Vdc           |
| Input Voltage                             | Vin              | +5.5        | Vdc           |
| Operating Output Voltage                  | ∨он              | +7.0        | Vdc           |
| Supply Current                            | lcc l            | 650         | m Adc         |
| Input Current                             | ı <sub>in</sub>  | -20         | m Adc         |
| Output Sink Current                       | 10               | 100         | m <b>A</b> dc |
| Operating Temperature Range<br>MCM7681xxx | TA               | 0 to +75    | °C            |
| Storage Temperature Range                 | T <sub>stg</sub> | -55 to +150 | °C            |
| Maximum Junction Temperature              | Tj               | +175        | °C            |

#### NOTE

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS Exposure to higher than recommended voltages for extended periods of time could affect device reliability (While programming, follow the programming specifications.)

# MCM7681 MCM7681A

TTL

## 8192-BIT PROGRAMMABLE READ ONLY MEMORIES

MCM7681,A - 1024 × 8 THREE-STATE



## GUARANTEED OPERATING RANGE (TA = 0°C to +75°C)

| Parameter          | Symbol | Min  | Nom | Мвх  | Unit |
|--------------------|--------|------|-----|------|------|
| Supply Voltage     | Vcc    | 4.75 | 5.0 | 5.25 | Vdc  |
| Input High Voltage | VIH    | 2.0  |     | _    | Vdc  |
| Input Low Voltage  | VIL    | _    | _   | 0.8  | Vdc  |

| DC OPERATING CONDITIONS AND |                                 | ONDITIONS AND CHARACTERISTICS |                                                                                                 | Three-State Output |             |             |              |
|-----------------------------|---------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------|--------------------|-------------|-------------|--------------|
| Symbol                      | Paramete                        | r                             | Test Conditions                                                                                 | Min                | Тур         | Max         | Unit         |
| ЧН<br>UL                    | Address/Enable<br>Input Current | 1                             | V <sub>IH</sub> = V <sub>CC</sub> Max<br>V <sub>IL</sub> = 0.45 V                               | -                  | _<br>-0.1   | 40<br>-0.25 | μAdc<br>mAdc |
| VOH<br>VOL                  | Output Voltage                  | 1                             | I <sub>OH</sub> = -2.0 mA, V <sub>CC</sub> Min<br>I <sub>OL</sub> = +16 mA, V <sub>CC</sub> Min | 2.4<br>—           | 3.4<br>0.35 | 0.45        | Vdc<br>Vdc   |
| OHE                         | Output Disabled<br>Current      | "1"<br>"0"                    | V <sub>OH</sub> = +5.25 V, V <sub>CC</sub> Max<br>V <sub>OL</sub> = +0.3 V, V <sub>CC</sub> Max | _                  | _           | 40<br>-40   | μAdc<br>μAdc |
| VIK                         | Input Clamp Voltage             |                               | t <sub>in</sub> = -18 mA                                                                        |                    |             | -1.2        | Vdc          |
| los                         | Output Short Circuit            | Current                       | V <sub>CC</sub> Max, V <sub>out</sub> = 0.0 V<br>One Output Only for 1.0 s Max                  | -15                | _           | -70         | mAdc         |
| ¹cc                         | Power Supply Curre              | nt                            | V <sub>CC</sub> Max<br>All Inputs Grounded                                                      | _                  | 110         | 150         | mAdo         |

## CAPACITANCE (f = 1.0 MHz, T<sub>A</sub> = 25°C, periodically sampled rather than 100% tested.)

| Characteristic     | Symbol | Тур | Unit |
|--------------------|--------|-----|------|
| Input Capacitance  | Cin    | 8.0 | pF   |
| Output Capacitance | Cout   | 10  | pF   |

## AC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature)

|                               |        | MCM  | 1/681 | MCM  | /681A |      |
|-------------------------------|--------|------|-------|------|-------|------|
|                               |        | 0 to | -75°C | 0 to | +75°C |      |
| Characteristic                | Symbol | Тур  | Max   | Тур  | Max   | Unit |
| Address to Output Access Time | tAA    |      | 70    | 1    | 50    | ns   |
| Chip Enable Access Time       | tEA.   | 30   | 40    | 30   | 40    | ns   |

NOTE: AC limits guaranteed for worst case N<sup>2</sup> sequential with maximum test frequency of 5.0 MHz.





#### **PROGRAMMING**

The PROMs are manufactured with all bits/outputs Logical "1" (Output High). Any desired bit/output can be programmed to a Logical "0" (Output Low) by following the simple procedure shown below. One may build his own programmer to satisfy the specifications described in Table 1, or buy any of the commercially available programmers which meet these specifications. These PROMs can be programmed automatically or by the manual procedure shown below.

## PROGRAMMING PROCEDURE

- Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL-compatible. An open circuit should not be used to address the PROM.
- Disable the chip by applying input high (V<sub>IH</sub>) to the CS input CS input must remain at V<sub>IH</sub> for programming. The chip select is TTL-compatible. An open circuit should not be used to disable the chip.
- Disable the programming circuitry by applying an Output Voltage Disable of less than VOPD to the output of the PROM. The output may be left open to achieve the disable.
- 4. Raise VCC to VpH with rise time equal to tr.
- After a delay equal to or greater than t<sub>d</sub>, apply a pulse with amplitude of VOPE and duration of t<sub>D</sub> to the output selected

- for programming. Note that the PROM is supplied with fuses intact generating an output high. Programming a fuse will cause the output to go low in the verify mode.
- Other bits in the same word may be programmed while the V<sub>CC</sub> input is raised to VPH by applying output enable pulses to each output which is to be programmed. The output enable pulses must be separated by a minimum interval of t<sub>H</sub>.
- Lower V<sub>CC</sub> to 4.5 Volts following a delay of t<sub>d</sub> from the last programming enable pulse applied to an output.
- Enable the PROM for verification by applying a logic "0" (VIL) to the CS input.
- 9. If any bit does not verify as programmed, repeat Steps 2 through 8 until the bit has received a total of 1.0 ms of programming time. Bits which do not program within 1.0 ms may be considered programming rejects. Multiple pulse of durations shorter than 1.0 ms may be used to enhance programming speed.
- Repeat Steps 1 through 9 for all other bits to be programmed in the PROM.
- 11. Programming rejects returned to the factory must be accompanied by data giving address with desired and actual output data of a location in which a programming failure has occured.

### TABLE 1 — PROGRAMMING SPECIFICATIONS

| Symbol                               | Parameter                                          | Min          | Тур         | Max          | Unit       |
|--------------------------------------|----------------------------------------------------|--------------|-------------|--------------|------------|
| VIH<br>VIL                           | Address Input<br>Voltage (1)                       | 2.4<br>0.0   | 5.0<br>0.4  | 5.0<br>0.8   | V<br>V     |
| VPH<br>VPL                           | Programming/Verify Voltage to VCC                  | 11.75<br>4.5 | 12.0<br>4.5 | 12.25<br>5.5 | V<br>V     |
| ICCP                                 | Programming Voltage Current Limit with VpH Applied | 600          | 600         | 650          | mA         |
| t <sub>r</sub>                       | Voltage Rise and<br>Fall Time                      | 1.0<br>1.0   | 1.0<br>1.0  | 10<br>10     | μS<br>μS   |
| td                                   | Programming Delay                                  | 10           | 10          | 100          | μS         |
| tp                                   | Programming Pulse Width                            | 100          | _           | 1000         | μS         |
| DC                                   | Programming Duty Cycle                             |              | 50          | 90           | %          |
| V <sub>OPE</sub><br>V <sub>OPD</sub> | Output Voltage<br>Enable<br>Disable (2)            | 10.0<br>4.5  | 10.5<br>5.0 | 11.0<br>5.5  | v<br>v     |
| IOPE                                 | Output Voltage Enable Current                      | 2.0          | 4.0         | 10           | m <b>A</b> |
| TA                                   | Ambient Temperature                                | _            | 25          | 75           | °C         |

<sup>(1)</sup> Address and chip select should not be left open for VIH.

<sup>(2)</sup> Disable condition will be met with output open circuit.



