1. (20 points) Show that the following the epigraph problem form is equivalent to the standard problem by using KKT conditions.

(Standard problem) minimize
$$f_0(x)$$

(Epigraph problem) minimize t subject to $f_0(x) \le t$

(sol)

The Lagrangian of epigraph problem is $L(x,t) = t + \lambda (f_0(x) - t)$. By KKT condition,

$$\frac{\partial L}{\partial t} = 1 - \lambda = 0$$
$$\lambda (f_0(x) - t) = 0$$

Then, $\lambda = 1$ and $f_0(x) = t$. Hence, the optimal solutions of these two problems are the same, i.e., they are equivalent problems.

2. (40 points) We have the following norm approximation problem: minimize ||Ax - b||

(a) For $||Ax - b|| = ||Ax - b||_{\infty}$, show that the following LP is an equivalent problem. minimize t subject to $-t\mathbf{1} \le Ax - b \le t\mathbf{1}$

where
$$x \in \mathbb{R}^n$$
, $t \in \mathbb{R}$, $A \in \mathbb{R}^{m \times n}$, and $\mathbf{1} = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$.

(sol)

From the solution of Problem 1, we know that $||Ax - b||_{\infty} = \max_{i} \{|a_i^Tx - b_i|\} \le t$ where a_i^T is the i-th row of A. Since $\max_{i} \{|a_i^Tx - b_i|\} \le t$ is equivalent to $-t\mathbf{1} \le Ax - b \le t\mathbf{1}$, the LP problem is equivalent to the ℓ_{∞} -norm approximation problem.

(b) For $||Ax - b|| = ||Ax - b||_1$, show that the following LP is an equivalent problem. minimize $\mathbf{1}^T y$ subject to $-y \le Ax - b \le y$

where
$$x \in \mathbb{R}^n$$
, $y \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$, and $\mathbf{1} = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$.

(sol)

The Lagrangian is given by

$$L(x, y, \lambda, \nu) = \sum_{i=1}^{m} y_i - \sum_{i=1}^{m} \lambda_i (a_i^T x - b_i + y_i) + \sum_{i=1}^{m} \nu_i (a_i^T x - b_i - y_i)$$

From KKT conditions,

$$\frac{\partial L}{\partial y_i} = 1 - \lambda_i - \nu_i = 0,$$

$$\lambda_i (a_i^T x - b_i + y_i) = 0,$$

$$\nu_i (a_i^T x - b_i - y_i) = 0.$$

First, we will show that $a_i^T x - b_i = -y_i$ or $a_i^T x - b_i = y_i$ (i.e., $\left| a_i^T x - b_i \right| = y_i$). If $\left| a_i^T x - b_i \right| \neq y_i$, then $\lambda_i = \nu_i = 0$ because of complementary slackness. However, $\lambda_i = \nu_i = 0$ cannot satisfy $1 - \lambda_i - \nu_i = 0$. Hence, $\left| a_i^T x - b_i \right| = y_i$ for any i.

The objective function $\mathbf{1}^T y = \sum_{i=1}^m |a_i^T x - b_i| = ||Ax - b||_1$, the LP problem is equivalent to the ℓ_1 -norm approximation problem.

3. (20 points) Suppose that f(x) is *concave* of $x = (x_1, ..., x_k)$ when x is a probability vector (probability mass function). Consider the following optimization problem.

$$\underset{x}{\text{maximize}} f(x)$$

subject to
$$\sum_{i=1}^{k} x_i = 1$$
, $x_i \ge 0$ for $1 \le i \le k$

Then, derive the following condition for the optimal x^* by using KKT conditions:

$$\frac{\partial f(x)}{\partial x_i} = v$$
 for i such that $x_i > 0$;

$$\frac{\partial f(x)}{\partial x_i} \le v$$
 for i such that $x_i = 0$;

(sol)

The Lagrangian is $L(x, \lambda, \nu) = -f(x) - \sum_{i=1}^k \lambda_i x_i + \nu(\sum_{i=1}^k x_i - 1)$. KKT conditions are as follows:

$$\frac{\partial L}{\partial x_i} = -\frac{\partial f}{\partial x_i} - \lambda_i + \nu = 0$$

$$\lambda_i \ge 0, \ \lambda_i x_i = 0.$$

If $x_i > 0$, then $\lambda_i = 0$, which results in $\frac{\partial f}{\partial x_i} = \nu$. If $x_i = 0$, then $\lambda_i \ge 0$. Hence, $\frac{\partial f(x)}{\partial x_i} \le \nu$.

4. (20 points) For an underdetermined linear equation: Ax = b where $A \in \mathbb{R}^{p \times n}$ where p < n and rank(A) = p. In order to transform an equality-constrained optimization problem into an unconstrained optimization problem, we parametrize the affine feasible set: $\{x \mid Ax = b\} = \{Fz + \hat{x} \mid z \in \mathbb{R}^{n-p}\}$.

Suppose that the first p columns of A are independent, i.e., $A = [A_1 \ A_2]$ where $A_1 \in R^{p \times p}$ is nonsingular. Then, show that $F = \begin{bmatrix} -A_1^{-1}A_2 \\ I \end{bmatrix}$ and $\hat{x} = \begin{bmatrix} A_1^{-1}b \\ 0 \end{bmatrix}$.

(sol)

 $Ax = \begin{bmatrix} A_1 & A_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A_1x_1 + A_2x_2 = b. \text{ Then, } x_1 = A_1^{-1}b - A_1^{-1}A_2x_2 \text{ since } A_1 \text{ is nonsingular. For a particular solution } \hat{x} = \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix}, \text{ we can set } \hat{x}_2 = 0. \text{ Then } \hat{x}_1 = A_1^{-1}b, \text{ i.e., } \hat{x} = \begin{bmatrix} A_1^{-1}b \\ 0 \end{bmatrix}.$

$$Az = [A_1 \ A_2] \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = A_1 z_1 + A_2 z_2 = 0$$
. Then, $z_1 = -A_1^{-1} A_2 z_2$. Hence, $\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} -A_1^{-1} A_2 \\ I \end{bmatrix} z_2$ where $z_2 \in R^{n-p}$.

Then,
$$x = Fz + \hat{x} = \begin{bmatrix} -A_1^{-1}A_2 \\ I \end{bmatrix} z + \begin{bmatrix} A_1^{-1}b \\ 0 \end{bmatrix}$$
, where $z = z_2$.

Convex Optimization: Fall 2021, Homework #2 (Due: 12/17)

5. (Optional) Boyd 10.1 (a) (p. 557) [Nonsingularity of the KKT matrix] (sol)

The second and third are clearly equivalent. To see this, if Ax = 0, $x \neq 0$, then x must have the form x = Fz, where $z \neq 0$. Then we have $x^T P x = z^T F^T P F z$.

Similarly, the first and second are equivalent. To see this, if $x \in \mathcal{N}(A) \cap \mathcal{N}(P)$, $x \neq 0$, then Ax = 0, $x \neq 0$, but $x^T P x = 0$, contradicting the second statement. Conversely, suppose the second statement fails to hold, *i.e.*, there is an x with Ax = 0, $x \neq 0$, but $x^T P x = 0$. Since $P \succeq 0$, we conclude P x = 0, *i.e.*, $x \in \mathcal{N}(P)$, which contradicts the first statement.

Finally, the second and fourth statements are equivalent. If the second holds then the last statement holds with Q = I. If the last statement holds for some $Q \succeq 0$ then it holds for all $Q \succ 0$, and therefore the second statement holds.

Now let's show that the four statements are equivalent to nonsingularity of the KKT matrix. First suppose that x satisfies Ax = 0, Px = 0, and $x \neq 0$. Then

$$\left[\begin{array}{cc} P & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} x \\ 0 \end{array}\right] = 0,$$

which shows that the KKT matrix is singular.

Now suppose the KKT matrix is singular, i.e., there are x, z, not both zero, such that

$$\left[\begin{array}{cc} P & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} x \\ z \end{array}\right] = 0.$$

This means that $Px + A^Tz = 0$ and Ax = 0, so multiplying the first equation on the left by x^T , we find $x^TPx + x^TA^Tz = 0$. Using Ax = 0, this reduces to $x^TPx = 0$, so we have Px = 0 (using $P \succeq 0$). This contradicts (a), unless x = 0. In this case, we must have $z \neq 0$. But then $A^Tz = 0$ contradicts rank A = p.