Advanced Machine Learning

Boosting

Boosting, AdaBoost, Gradient Boosting

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://tinyurl.com/bddhrhcw

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Boosting

• In boosting we make a **strong learner** by using a weighted sum of weak learners

$$C_n(\boldsymbol{x}) = \sum_{i=1}^n \alpha_i \hat{h}_i(\boldsymbol{x})$$

- Weak learners, $\hat{h}_i(x)$, are learning machine that do a little better than chance
- The trick is to choose the weights, α_i
- Because the weak learners do little better than chance we (miraculously) don't overfit that much

1. Boosting

- 2. AdaBoost
- 3. Gradient Boosting
- 4. Dropout

Outline

https://tinyurl.com/bddhrhcw

Shallow Trees

- One of the most effective type of weak learner are very shallow trees
- Sometimes we just use one variable (the stump) although usually we would use slightly deeper trees
- There are different algorithms for choosing the weights
 - adaboost—a classic algorithm for binary classification
 - ★ gradient boosting—used for regression, trains a weak learner on the residual errors

Outline

Boosting a Binary Classifier

• Suppose we have a binary classification task with data

ullet Our i^{th} weak learner provides a prediction $\hat{h}_i(oldsymbol{x}^\mu) \in \{-1,1\}$

 $C_n(\mathbf{x}) = \alpha_1 \hat{h}_1(\mathbf{x}) + \alpha_2 \hat{h}_2(\mathbf{x}) + \dots + \alpha_n \hat{h}_n(\mathbf{x})$

 $\mathcal{D} = \{(\boldsymbol{x}^{\mu}, y^{\mu}) | \mu = 1, 2, ..., m\} \text{ with } y^{\mu} \in \{-1, 1\}$

• We ask, can we find a linear combination

• So that $\operatorname{sgn}(C_n(x))$ is a strong learner?

• Note we want $y^{\mu}C_n(\boldsymbol{x}^{\mu}) > 0$

- 1. Boosting
- 2. AdaBoost
- 3. Gradient Boosting
- 4. Dropout

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://tinyurl.com/bddhrhcw

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://tinyurl.com/bddhrhcw

AdaBoost

- AdaBoost is a classic solution to this problem!
- It assigns an "loss function"

$$L_n = \sum_{\mu=1}^m \mathrm{e}^{-y^{\mu} C_n(\boldsymbol{x}^{\mu})}$$

• This punishes examples where there is an errors more than correct classifications

Iterative Learning

• We build up a strong learner iteratively (greedily)

$$C_n(\boldsymbol{x}) = C_{n-1}(\boldsymbol{x}) + \alpha_n \hat{h}_n(\boldsymbol{x})$$

• Defining $w_1^{\mu}=1$ and $w_n^{\mu}=\mathrm{e}^{-y^{\mu}C_{n-1}(\boldsymbol{x}^{\mu})}$ then

$$L_{n}(\alpha_{n}) = \sum_{\mu=1}^{m} e^{-y^{\mu}C_{n}(\boldsymbol{x}^{\mu})} = \sum_{\mu=1}^{m} e^{-y^{\mu}(C_{n-1}(\boldsymbol{x}^{\mu}) + \alpha_{n}\hat{h}_{n}(\boldsymbol{x}^{\mu}))}$$

$$= \sum_{\mu=1}^{m} w_{n}^{\mu} e^{-\alpha_{n}y^{\mu}\hat{h}_{n}(\boldsymbol{x}^{\mu})} = \mathbb{E}^{\alpha_{n}} \sum_{\mu:y^{\mu} \neq \hat{h}_{n}(\boldsymbol{x}^{\mu})} w_{n}^{\mu} \mathbb{E}^{\alpha_{n}} \sum_{\mu:y^{\mu} = \hat{h}_{n}(\boldsymbol{x}^{\mu})} w_{n}^{\mu} \mathbb{E}^{-\alpha_{n}}$$

$$= e^{-\alpha_{n}} \sum_{\mu=1}^{m} w_{n}^{\mu} + (e^{\alpha_{n}} - e^{-\alpha_{n}}) \sum_{\mu:y^{\mu} \neq \hat{h}_{n}(\boldsymbol{x}^{\mu})} w_{n}^{\mu} \mathbb{E}^{-\alpha_{n}}$$

$$= e^{-\alpha_{n}} \sum_{\mu=1}^{m} w_{n}^{\mu} + (e^{\alpha_{n}} - e^{-\alpha_{n}}) \sum_{\mu:y^{\mu} \neq \hat{h}_{n}(\boldsymbol{x}^{\mu})} w_{n}^{\mu} \mathbb{E}^{-\alpha_{n}} \mathbb{E}$$

Choosing a Weak Classifier

• To minimise the loss

$$L_n(\alpha_n) = e^{-\alpha_n} \sum_{\mu=1}^m w_n^{\mu} + (e^{\alpha_n} - e^{-\alpha_n}) \sum_{\mu: y^{\mu} \neq \hat{h}_n(\boldsymbol{x}^{\mu})} w_n^{\mu}$$

• We choose the weak learner with the lowest value of

$$\sum_{\mu:y^{\mu}\neq \hat{h}_{n}(\boldsymbol{x}^{\mu})}w_{n}^{\mu}=\sum_{\mu:y^{\mu}\neq \hat{h}_{n}(\boldsymbol{x}^{\mu})}e^{-y^{\mu}C_{n-1}(\boldsymbol{x}^{\mu})}$$

$$v_{n}^{\mu}=e^{-y^{\mu}C_{n-1}(\boldsymbol{x}^{\mu})}$$

$$correct$$

$$y^{\mu}C_{n-1}(\boldsymbol{x}^{\mu})$$

• That is, it misclassifies only where the other learners classify well

Choosing Weights

• We now choose the weight α_n to minimise the loss $L_n(\alpha_n)$

$$\frac{\partial L_n(\alpha_n)}{\partial \alpha_n} = e^{\alpha_n} \sum_{\mu: y^{\mu} \neq \hat{h}_n(\mathbf{x}^{\mu})} w_n^{\mu} - e^{-\alpha_n} \sum_{\mu: y^{\mu} = \hat{h}_n(\mathbf{x}^{\mu})} w_n^{\mu} = 0$$

• That is

$$\mathrm{e}^{2\alpha_n} = \frac{\displaystyle\sum_{\mu:y^\mu = \hat{h}_n(\boldsymbol{x}^\mu)} w_n^\mu}{\displaystyle\sum_{\mu:y^\mu \neq \hat{h}_n(\boldsymbol{x}^\mu)} w_n^\mu} \qquad \text{or} \qquad \alpha_n = \frac{1}{2} \log \left(\frac{\displaystyle\sum_{\mu:y^\mu = \hat{h}_n(\boldsymbol{x}^\mu)} w_n^\mu}{\displaystyle\sum_{\mu:y^\mu \neq \hat{h}_n(\boldsymbol{x}^\mu)} w_n^\mu} \right) \blacksquare$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://tinyurl.com/bddhrhcw

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://tinvurl.com/bddhrhcw

Algorithm

- 1. Start with a set of weak learners \mathcal{W}
- 2. Associate a weight, w_n^μ , with every data point $(\boldsymbol{x}^\mu, y^\mu)$, $\mu = 1, 2, ..., m$
- 3. Initially $w_1^\mu=1$ (large weight, w_n^μ , means (x^μ,y^μ) is poorly classified)
- 4. Choose the weak learning, $\hat{h}_n(x)\in\mathcal{W}$, that minimises $\sum\limits_{\mu:y^\mu\neq\hat{h}_n(x^\mu)}w_n^\mu$
- 5. Update predictor $C_n(\boldsymbol{x}) = C_{n-1}(\boldsymbol{x}) + \alpha_n \hat{h}_n(\boldsymbol{x})$ where $\alpha_n = \frac{1}{2} \log \left(\frac{\sum\limits_{\mu:y^{\mu} = \hat{h}_n(\boldsymbol{x}^{\mu})} w_n^{\mu}}{\sum\limits_{\mu:y^{\mu} \neq \hat{h}_n(\boldsymbol{x}^{\mu})} w_n^{\mu}} \right) \blacksquare$
- 6. Update $w_{n+1}^{\mu} = w_n^{\mu} e^{-y^{\mu} \alpha_n \hat{h}_n(x^{\mu})}$
- 7. Go to 4

Performance

- Adaboost works well with weak learners, usually out-performing bagging
- It doesn't work well with strong learners (tends to over-fit)
- It is limited to binary classification (there are generalisation, but they are difficult to get to work)
- It has fallen from fashion
- In contrast gradient boosting used for regression is very popular

11

Outline

Gradient Boosting

• In gradient boosting we again build a strong learner as a linear

 $C_n(\boldsymbol{x}) = C_{n-1}(\boldsymbol{x}) + \hat{h}_n(\boldsymbol{x})$

• Gradient boosting used on regression (again using decision trees)

• At each step $\hat{h}_n(x)$ is trained to predict the **residual error**,

 $\Delta_{n-1} = y - C_{n-1}(x)$, (i.e. the target minus the current

• (This difference looks a bit like a gradient hence the rather

combination of weak learners

- 1. Boosting
- 2. AdaBoost
- 3. **Gradient Boosting**
- 4. Dropout

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://tinyurl.com/bddhrhcw

Adam Prügel-Bennett

prediction)

confusing name)

COMP6208 Advanced Machine Learning

https://tinyurl.com/bddhrhcw

1.4

Fitting a Sin Wave

Residuals and tree predictions

OB

Residuals and tree predictions

OB

Training set $h_1(x_1)$ $h(x_1) = h_1(x_1)$ $h(x_1) = h_1(x_1) + h_2(x_1)$ $h_2(x_1)$ $h_3(x_1)$ $h_3(x_1)$ $h_4(x_1) = h_1(x_1) + h_2(x_1) + h_3(x_1)$ $h_4(x_1) = h$

Keep On Going

Early Stopping

• We can keep on going

• But we will over-fit eventually

Adam Prügel-Bennett COMP6208

COMP6208 Advanced Machine Learning

https://tinyurl.com/bddhrhcw

• Like many algorithms we often get better results by early stopping

 Use cross-validation against a validation set to decide when to stop!

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://tinyurl.com/bddhrhcw

XGBoost

- XGBoost is an implementation of gradient boosting that won the Higg's Boson challenge and regularly wins Kaggle competitions
- XGBoost stands for eXtreme Gradient Boosting
- It uses a cleverly chosen regularisation term to favour simple trees
- Finds a clever way to approximately minimise error plus regulariser very fast!
- Rather a bodge of optimisation hacks
- It was much faster than most gradient boosting algorithms and scales to billions of training data points—although GBM is often better

Outline

- 1. Boosting
- 2. AdaBoost
- 3. Gradient Boosting
- 4. Dropout

Ensembling in Deep Learning

- For most machine learning ensembling different machines usually gives a reasonable improvement in performance
- The machines should have roughly the same performance
- Of course, this comes at the price of having to train multiple machines
- One can try to train a machine to decide how to combine different machines (stacking) but beware, it is very easy to overfit
- Usually better to average predictions for regression or do majority voting for classification problems

COMP6208 Advanced Machine Learning

https://tinvurl.com/bddhrhcw

COMP6208 Advanced Machine Learning

Dropout

• For deep learning we can control for over-fitting using dropout

• This can be seen as ensembling lots of much simpler machines

Adam Prügel-Bennett

Adam Prügel-Bennett

https://tinyurl.com/bddhrhcw

Conclusion

- Ensemble methods have proved themselves to be very powerful
- Tend to work best with very simple models (true of random forest and boosting) seems to reduce over-fitting
- XGBoost or GBM are currently the best methods for tabular data (particular for large training sets)

 —probably

 ■
- For images, signal and speech deep learning can give very significant advantage
- Probabilistic models can be better if you have a good model