

Scikit-learn and Tour of Classifiers

First ML pipeline with Scikit-learn

- Discuss a selection of popular and powerful machine learning algorithms commonly used in academia and industry
- Learn about the differences between several supervised learning algorithms for classification and their individual strengths and weaknesses
 - Logistic regression
 - Support vector machines
 - Decision trees
 - Random forest
 - K-nearest neighbours
- First steps with the scikit-learn library

- Choosing an appropriate classification algorithm for a particular problem task requires practice
- No Free Lunch theorem: no single classifier works best across all possible scenarios
- "The average performance of any pair of algorithms across all possible problems is identical." (Wolpert, D.H., Macready, W.G. (1997), No Free Lunch Theorems for Optimization, IEEE)
- If a specific algorithm seems to **outperform** another in a certain situation, it is a consequence of its **fit to the particular problem**, **not** the general superiority of the algorithm

- Compare the performance of at least a handful of different learning algorithms to select the best model for the particular problem
- The problem at hand may be influenced by a number of contextual settings
 - Number of features
 - Number of samples
 - Distribution of the data
 - Amount of noise in the data
 - Whether classes are linearly separable or not
 - etc.

- Performance of classifier:
 - Computational performance
 - Predictive power

Summary of five main steps in training a ML algorithm

- 1. Selecting features and collecting training samples
- 2. Choosing a **performance metric**
- 3. Choosing a classifier and optimisation algorithm
- 4. Evaluating the **performance of the model**
- 5. Tuning the algorithm

Training a perceptron with scikit-learn

Training Perceptron on Iris data set

Imports

Training Perceptron on Iris data set

Use two features (easy visualization)

Training Perceptron – class label encoding

- Class labels: Scikit-learn also works with strings as class labels
- Converting to integers is recommended due to memory & runtime performance

Multi-class classification with OvR

Multi-class

We only discussed binary classifier, what about multiple classes?

OvR (One-vs-Rest) also called OvA (One-vs-All)

- a technique that allows us to extend a binary classifier to multi-class problems
- Using OvA, we can train one classifier per class, where a particular class is treated as the positive class and the samples from all other classes are considered negative classes

Classification of a new sample:

- use the *n* trained classifiers, where *n* is the number of class labels
- assign the class label with the highest confidence
- we usually want a classifier for this that can output probabilities (e.g. logistic regression)
- Perceptron: choose the class label that is associated with the largest net input value z

Multi-class

OvR (One-vs-Rest) also called OvA (One-vs-All)

Classifiers in scikit-learn automatically support this

Test/Train split

- Split data into separate training and test datasets
- More details later in "Best practices for evaluation and hyperparameter tuning"
- Using the train_test_split function from scikit-learn's model_selection module
- Randomly split the X and y arrays into 30 percent test data (45 samples) and 70 percent training data (105 samples)

```
# Split data into training and test data (70% training, 30% test)
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.3, random_state=1, stratify=y
)
```


- Properties of the train_test_split function
 - Shuffle training set internally before splitting → we don't need to worry about ordering of the samples prior to splitting
- Provides a random_state parameter for a fixed random seed (default: random_state=0) → «reproducible» shuffling of samples (handy when training multiple times)
- Built-in support for stratification with stratify=y → train_test_split
 method returns training and test subsets that have the same proportions of
 class labels as the input dataset

```
# Split data into training and test data (70% training, 30% test)
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.3, random_state=1, stratify=y
)
```


Checking distribution of classes in training and test set with numpy

```
# Show distribution of classes in input data, training data and test data
print(f"Labels counts in y: {np.bincount(y)}")
print(f"Labels counts in y_train: {np.bincount(y_train)}")
print(f"Labels counts in y_test: {np.bincount(y_test)}")
```

Output:

```
Labels counts in y: [50 50 50]
Labels counts in y_train: [35 35 35]
Labels counts in y_test: [15 15 15]
```


Training Perceptron – feature scaling

- Many machine learning and optimisation algorithms also require feature scaling for optimal performance
- Standardise the features using the StandardScaler class from scikit-learn's preprocessing module

```
# Initialise standard scaler and compute mean and stddev from training data
sc = StandardScaler()
sc.fit(X_train)

# Transform (standardise) both X_train and X_test with mean and stddev from
# training data
X_train_sc = sc.transform(X_train)
X_test_sc = sc.transform(X_test)
```


Training Perceptron – feature scaling

	Person	Height (cm)	Weight (kg)	Shoe size
	Person A	174	55	46
	Person B	188	92	45
	Person C	158	65	42
	Person D	202	110	49
	Person E	171	96	44
	Person F	193	79	48
	Mean	181	82.833333	45.6667
	STD	16.198765	20.507722	2.58199

Mean	0.00	0.00	0.00
Person F	12	-3.8333333	2.33333
Person E	-10	13.166667	-1.66667
Person D	21	27.166667	3.33333
Person C	-23	-17.833333	-3.66667
Person B	7	9.1666667	-0.66667
Person A	-7	-27.833333	0.33333
Person	Height (cm)	Weight (kg)	Shoe size

Person	Height (cm)	Weight (kg)	Shoe size
Person A	-0.4321317	-1.3572123	0.1291
Person B	0.4321317	0.4469861	-0.2582
Person C	-1.4198613	-0.8695911	-1.42009
Person D	1.2963951	1.3247043	1.29099
Person E	-0.617331	0.6420346	-0.6455
Person F	0.7407972	-0.1869215	0.9037
Mean	0.00	0.00	0.00
STD	1	1	1

Original data

Centred data

Standardised (scaled)
data

Training Perceptron – feature scaling

- Important: Scale test and training data with scaling obtained from training data!
- Use fit method, StandardScaler estimated the parameters μ (sample mean) and σ (standard deviation) for **each feature** dimension from the **training data**
- Call transform method: standardises training and test data using estimated the parameters
 μ and σ acquired from training data → values from training and test data are comparable
 to each other

```
# Initialise standard scaler and compute mean and stddev from training data
sc = StandardScaler()
sc.fit(X_train)

# Transform (standardise) both X_train and X_test with mean and stddev from
# training data
X_train_sc = sc.transform(X_train)
X_test_sc = sc.transform(X_test)
```

```
scikit_learn_intro.ipynb
```


Choose model

Training Perceptron

- Load the Perceptron class from the linear_model module
- Initialise a new Perceptron object
 - Parameter eta0 defines learning rate
 Parameter max_i ter defines the number of epochs (passes over the training set)
 - Train the model using the fit method

```
# Initialise the model
ppn = Perceptron(max_iter=40, eta0=0.1, random_state=1)
ppn.fit(X_train_sc, y_train)
```


Training Perceptron

- Finding an appropriate learning rate requires some experimentation
- If the learning rate is too large, the algorithm will overshoot the global cost minimum
- If the learning rate is too small, the algorithm requires more epochs until convergence → can make the learning slow—especially for large datasets
- The random_state parameter ensures the reproducibility of the initial shuffling of the training dataset after each epoch

```
# Initialise the model
ppn = Perceptron(max_iter=40, eta0=0.1, random_state=1)
ppn.fit(X_train_sc, y_train)
```


Evaluation/Prediction Performance metrics: accuracy

Training Perceptron – Predictions

```
# Predict classes for samples in test set and print number of misclassfications
y_pred = ppn.predict(X_test_sc)
print("Misclassified samples: {0}".format((y_test != y_pred).sum()))

Misclassified samples: 3

# Print accuracy computed from predictions on the test set
print("Accuracy: {0:.2f}".format(accuracy_score(y_test, y_pred)))

# Print accuracy computed from predictions on the test set
print("Accuracy: {0:.2f}".format(ppn.score(X_test_sc, y_test)))
```

Misclassification error: 3 out of $45 \rightarrow 3 / 45 \approx 0.067$ or approx. 6.7% Often the **accuracy** is reported instead of misclassification error:

```
1 - error = 0.933 = 93.3\%
```


Training Perceptron – Accuracy

Simple performance metric; method score also outputs accuracy

```
# Print accuracy computed from predictions on the test set
print("Accuracy: {0:.2f}".format(accuracy_score(y_test, y_pred)))

# Print accuracy computed from predictions on the test set
print("Accuracy: {0:.2f}".format(ppn.score(X_test_sc, y_test)))
```


Training Perceptron – Plot decision boundary

- The three flower classes cannot be perfectly separated by a linear decision boundary
- Algorithm would go on forever, scikit-learn has a stopping criterion if no improvement

Training Perceptron – Exercise

- Apply what we saw to Wine data set
- Train a Perceptron on the wine data (datasets.load_wine) that is integrated in scikit-learn
 - Use two features of the dataset: 'alcohol' and 'hue'
 - Train test split: 60 percent of data for training, random state should be set to 5
 - Perceptron: Set maximum number of iterations to 100
 - Perceptron: Set learning rate to 0.05
 - Perceptron: Set random state to 77
 - Plot decision regions for training and test data
 - Extra (look in online documentation of Perceptron): 1. What is the test accuracy? 2. How many epochs for training? 3. How often were the weights updated? 4. What are the final weights?

scikit_learn_wine_solution.ipynb

Training Perceptron – Exercise 2

- Train LogisticRegression on the wine data set (datasets.load_wine)
 - Use two features of the dataset: 'alcohol' and 'hue'
 - Train test split: 60 percent of data for training, random state should be set to 5
 - LogisticRegression: Set maximum number of iterations to 100
 - LogisticRegression: Set random state to 77
 - Plot decision regions for training and test data

