第16次作业

§ $3.3.4 \ 0.\infty$ 型与 $\infty-\infty$ 型 § $3.3.5 \ 1^{\infty}$ 型, ∞^{0} 型及 0^{0} 型 **教学内容:** § 3.3.3 几点注意 § 3.3.6 洛必达法则在求数列极限中的应用

1. 填空颢

** (1)
$$\lim_{x \to 0} x^{100} e^{\frac{1}{x^2}} =$$
_____;

解: ³√*abc*

*** (3)
$$\lim_{x \to +\infty} (a^x + b^x + c^x)^{\frac{1}{x}} = ______$$
 ,其中 a , b , c 为正的常数;

解: $\max(a,b,c)$

*** (4) 若
$$\lim_{x \to 1} \left(\frac{a+x}{1+ax} \right)^{\frac{1}{x-1}} = e^{-3}$$
,则 $a = \underline{\qquad}$

2. 选择题

** (1)
$$\lim_{x \to +\infty} x \sqrt{\sin \frac{2}{x^2}}$$
 (B)

- (A) 等于0 (B) 等于 $\sqrt{2}$ (C) 为无穷大 (D) 不存在,也不为无穷大.

*** (2) 求极限
$$\lim_{x\to 0} \frac{x^2 \sin \frac{1}{x}}{x + \sin x}$$
 时,下列各种解法中正确的是 (C)

(A) 因为
$$\lim_{x\to 0} \frac{x^2 \sin \frac{1}{x}}{x + \sin x} = \lim_{x\to 0} \frac{2x \sin \frac{1}{x} - \cos \frac{1}{x}}{1 + \cos x}$$
不存在,所以原极限不存在;

(B) 因为
$$\lim_{x\to 0} \frac{x^2 \sin \frac{1}{x}}{x + \sin x} = \lim_{x\to 0} \frac{x^2}{x + \sin x} \lim_{x\to 0} \sin \frac{1}{x}$$
,而其中 $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在,所以原极限不存在;

(C) 因为
$$\lim_{x\to 0} \frac{x^2}{x+\sin x} = 0$$
,而 $x\to 0$ 时($x \ne 0$) $\sin \frac{1}{x}$ 是有界量,所以原极限为 0;

(D) 因为 $x \to 0$ 时,分子是二阶无穷小,而分母是一阶无穷小,所以原极限为 0.

*** (1)
$$\lim_{x \to +\infty} \ln(1 + e^{ax}) \ln(1 + \frac{b}{x})$$
 (a, b 为常数, a > 0);

解法一:
$$\lim_{x \to +\infty} \ln(1 + e^{ax}) \ln(1 + \frac{b}{x}) = \lim_{x \to +\infty} \ln(1 + e^{ax}) \frac{b}{x} = b \lim_{x \to +\infty} \frac{ae^{ax}}{(1 + e^{ax})} = b \lim_{x \to +\infty} \frac{a^2 e^{ax}}{ae^{ax}} = ab$$
.

解法二: 原式 =
$$\lim_{x \to +\infty} \ln \left[e^{ax} (1 + e^{-ax}) \right] \frac{b}{x} = \lim_{x \to +\infty} (ax + \ln(1 + e^{-ax})) \frac{b}{x}$$

$$= \lim_{x \to +\infty} (ab + \frac{b \ln(1 + e^{-ax})}{a}) = ab + \lim_{x \to +\infty} \frac{b \ln(1 + e^{-ax})}{a} = ab + \lim_{x \to +\infty} \frac{be^{-ax}}{a} = ab$$

注:解法二没有用到洛必达法则

*** (2)
$$\lim_{x\to\infty} (x^2 - \csc^2 \frac{1}{x});$$

解: 原式
$$=\frac{1}{t}\lim_{t\to 0} \left(\frac{1}{t^2} - \frac{1}{\sin^2 t}\right) = \lim_{t\to 0} \frac{\sin^2 t - t^2}{t^2 \sin^2 t} = \lim_{t\to 0} \frac{\frac{1}{2}(1 - \cos 2t) - t^2}{t^4}$$

$$= \lim_{t\to 0} \frac{\sin 2t - 2t}{4t^3} = \lim_{t\to 0} \frac{2\cos 2t - 2}{12t^2} = 2\lim_{t\to 0} \frac{-\frac{(2t)^2}{2}}{12t^2} = -\frac{1}{3}.$$

** (3)
$$\lim_{x\to 0} \left(\frac{1}{\ln(1-x)} + \frac{1}{x}\right)$$
.

解: 原式=
$$\lim_{x\to 0} \frac{x+\ln(1-x)}{x\ln(1-x)} = \lim_{x\to 0} \frac{x+\ln(1-x)}{-x^2} = \lim_{x\to 0} \frac{1-\frac{1}{1-x}}{-2x} = \lim_{x\to 0} \frac{x}{2x(1-x)} = \frac{1}{2}.$$

** (1)
$$\lim_{x\to 0^+} (\cos\sqrt{x})^{\frac{1}{x}};$$

解法一:
$$\lim_{x\to 0^+} (\cos\sqrt{x})^{\frac{1}{x}} = \exp\left[\lim_{x\to 0^+} (\frac{1}{x} \ln\cos\sqrt{x})\right] = \exp\left[\lim_{x\to 0^+} (\frac{-\sin\sqrt{x}}{\cos\sqrt{x}} \cdot \frac{1}{2\sqrt{x}})\right]$$

$$= \exp\left(-\frac{1}{2}\lim_{x\to 0^+} \frac{\sin\sqrt{x}}{\sqrt{x}}\right) = e^{-\frac{1}{2}}.$$

解法二:
$$\lim_{x\to 0^+} (\cos\sqrt{x})^{\frac{1}{x}} = \exp\left[\lim_{x\to 0^+} (\frac{1}{x} \ln\cos\sqrt{x})\right] = \exp\left[\lim_{x\to 0^+} \frac{\ln(1+\cos\sqrt{x}-1)}{x}\right]$$

$$= \exp \left[\lim_{x \to 0^{+}} \frac{(\cos \sqrt{x} - 1)}{x} \right] = \exp \left[\lim_{x \to 0^{+}} \frac{-\frac{x}{2}}{x} \right] = e^{-\frac{1}{2}}$$

*** (2)
$$\lim_{\varphi \to 0} \left(\frac{\sin \varphi}{\varphi} \right)^{\csc^2 \varphi};$$

解法一:
$$\lim_{\varphi \to 0} \left(\frac{\sin \varphi}{\varphi} \right)^{\csc^2 \varphi} = \exp \left[\lim_{\varphi \to 0} \left(\frac{\ln \frac{\sin \varphi}{\varphi}}{\sin^2 \varphi} \right) \right] = \exp \left[\lim_{\varphi \to 0} \frac{\ln \sin \varphi - \ln \varphi}{\varphi^2} \right]$$
$$= \exp \left[\lim_{\varphi \to 0} \frac{\frac{\cos \varphi}{\sin \varphi} - \frac{1}{\varphi}}{2\varphi} \right] = \exp \left(\frac{1}{2} \lim_{\varphi \to 0} \frac{\varphi \cos \varphi - \sin \varphi}{\varphi^2 \sin \varphi} \right) = \exp \left(\frac{1}{2} \lim_{\varphi \to 0} \frac{\varphi \cos \varphi - \sin \varphi}{\varphi^3} \right)$$
$$= \exp \left(\frac{1}{2} \lim_{\varphi \to 0} \frac{\cos \varphi - \cos \varphi - \varphi \sin \varphi}{3\varphi^2} \right) = e^{-\frac{1}{6}}.$$

解法二:
$$\lim_{\varphi \to 0} \left(\frac{\sin \varphi}{\varphi} \right)^{\csc^2 \varphi} = \exp \left(\lim_{\varphi \to 0} \left(\frac{\ln \frac{\sin \varphi}{\varphi}}{\sin^2 \varphi} \right) \right) = \exp \left(\lim_{\varphi \to 0} \frac{\ln(1 + \frac{\sin \varphi}{\varphi} - 1)}{\varphi^2} \right)$$

$$= \exp \left(\lim_{\varphi \to 0} \frac{\frac{\sin \varphi}{\varphi} - 1}{\varphi^2} \right) = \exp \left(\lim_{\varphi \to 0} \frac{\sin \varphi - \varphi}{\varphi^3} \right) = \exp \left(\lim_{\varphi \to 0} \frac{\cos \varphi - 1}{3\varphi^2} \right)$$

$$= \exp\left(\lim_{\varphi \to 0} \frac{-\frac{1}{2}\varphi^2}{3\varphi^2}\right) = e^{-\frac{1}{6}}.$$

** (3)
$$\lim_{x\to 1^-} \left(\frac{2}{\pi}\arcsin x\right)^{\frac{1}{\arccos x}}$$
;

解:
$$\lim_{x \to 1^{-}} \left(\frac{2}{\pi} \arcsin x \right)^{\frac{1}{\arccos x}} = \exp \left(\lim_{x \to 1^{-}} \frac{\ln(\frac{2}{\pi} \arcsin x)}{\arccos x} \right)$$

$$= \exp\left(\lim_{x \to 1^{-}} \frac{\ln \frac{2}{\pi} + \ln \arcsin x}{\arccos x}\right) \stackrel{\frac{0}{0}}{=} \exp\left(\lim_{x \to 1^{-}} \frac{\frac{1}{\arcsin x} \cdot \frac{1}{\sqrt{1 - x^{2}}}}{-\frac{1}{\sqrt{1 - x^{2}}}}\right) = e^{-\frac{2}{\pi}}$$

** (1)
$$\lim_{x\to 0^+} x^{\frac{1}{1+\ln\sqrt{x}}}$$
;

$$\text{#F: } \lim_{x \to 0^{+}} x^{\frac{1}{1 + \ln \sqrt{x}}} = \exp\left[\lim_{x \to 0^{+}} \frac{\ln x}{1 + \ln \sqrt{x}}\right] = \exp\left[\lim_{x \to 0^{+}} \frac{\ln x}{1 + \frac{1}{2} \ln x}\right] = \exp\left[\lim_{x \to 0^{+}} \frac{\frac{1}{x}}{\frac{1}{2x}}\right] = e^{2};$$

*** (2)
$$\lim_{x\to 1+} (\ln x)^{x-1}$$
.

解: 原式
$$\underline{\underline{0}}^0 \exp[\lim_{x \to 1+} (x-1) \ln(\ln x)] = \exp[\lim_{x \to 1+} \frac{\ln(\ln x)}{(x-1)^{-1}}]$$

$$= \exp\left[\lim_{x \to 1^{+}} \frac{\frac{1}{x \ln x}}{-(x-1)^{-2}}\right] = \exp\left[-\lim_{x \to 1^{+}} \frac{(x-1)^{2}}{x \ln x}\right] = \exp\left[-\lim_{x \to 1^{+}} \frac{(x-1)^{2}}{x \ln(1+x-1)}\right]$$
$$= \exp\left[-\lim_{x \to 1^{+}} \frac{(x-1)^{2}}{x(x-1)}\right] = \exp\left[-\lim_{x \to 1^{+}} \frac{(x-1)^{2}}{x}\right] = e^{0} = 1.$$

6. 求下列极限:

** (1)
$$\lim_{x \to +\infty} (2 + e^x)^{-\frac{1}{x}}$$
;

解: 原式 =
$$\exp\left[\lim_{x \to +\infty} -\frac{1}{x}\ln(2+e^x)\right] = \exp\left[\lim_{x \to +\infty} -\frac{e^x}{2+e^x}\right] = e^{-1}$$
.

*** (2)
$$\lim_{x \to \frac{\pi}{2}^{-}} (\tan x)^{\frac{3}{\ln(\pi - 2x)}}$$
.

解: 原式
$$\underline{\underline{\infty}}^0 \exp \left[\lim_{x \to \frac{\pi}{2}} \frac{3 \ln \tan x}{\ln(\pi - 2x)} \right] = \exp \left[\lim_{x \to \frac{\pi}{2}} \frac{3 \sec^2 x}{\tan x} \cdot \frac{\pi - 2x}{-2} \right]$$
$$= e^{-3}.$$

** (1)
$$\lim_{x\to 0} \left(\frac{1+xa^x}{1+xb^x}\right)^{\frac{1}{x^2}}$$
 $(a>0,b>0,a\neq 1,b\neq 1,a\neq b);$
#: $\lim_{x\to 0} \left(\frac{1+xa^x}{1+xb^x}\right)^{\frac{1}{x^2}} = \exp(\lim_{x\to 0} \frac{1}{x^2} \ln \frac{1+xa^x}{1+xb^x})$

$$= \exp(\lim_{x\to 0} \frac{1}{x^2} \ln(1 + \frac{x(a^x - b^x)}{1 + xb^x}))$$

$$= \exp(\lim_{x \to 0} \frac{1}{x^2} \frac{x(a^x - b^x)}{1 + xb^x}) = \exp(\lim_{x \to 0} \frac{(a^x - b^x)}{x(1 + xb^x)})$$

$$= \exp(\lim_{x \to 0} \frac{(a^x - b^x)}{x} \lim_{x \to 0} \frac{1}{(1 + xb^x)}) = \exp(\lim_{x \to 0} \frac{a^x \ln a - b^x \ln b}{1}) = \frac{a}{b}$$

** (2)
$$\lim_{x \to +\infty} x^{\frac{2}{\ln(1+x^3)}}.$$

解: 原式
$$\underline{\underline{\infty}}^0 \exp \left[\lim_{x \to +\infty} \frac{2 \ln x}{\ln(1+x^3)} \right] = \exp \left[\lim_{x \to +\infty} \frac{2}{x} \cdot \frac{1+x^3}{3x^2} \right] = e^{\frac{2}{3}}.$$

****8. 求极限
$$\lim_{x\to\infty} x^2 \left[\left(\frac{x+1}{x-1} \right)^{\frac{1}{x}} - 1 \right]$$
.

解: 原式 =
$$\lim_{x \to \infty} x^2 \left[e^{\frac{1}{x} \ln \frac{x+1}{x-1}} - 1 \right] = \lim_{x \to \infty} x^2 \left[\frac{1}{x} \ln \frac{x+1}{x-1} \right]$$

$$= \lim_{x \to \infty} \frac{\ln(1+\frac{1}{x}) - \ln(1-\frac{1}{x})}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\ln(1+\frac{1}{x})}{\frac{1}{x}} - \lim_{x \to \infty} \frac{\ln(1-\frac{1}{x})}{\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{1}{\frac{1}{x}} - \lim_{x \to \infty} \frac{x}{\frac{1}{x}} = 1 - (-1) = 2.$$

解二: 原式 =
$$\lim_{x \to \infty} x^2 \left[e^{\frac{1}{x} \ln \frac{x+1}{x-1}} - 1 \right] = \lim_{x \to \infty} x^2 \left[\frac{1}{x} \ln \frac{x+1}{x-1} \right] = \lim_{x \to \infty} x \left[\ln(1 + \frac{2}{x-1}) \right]$$

$$= \lim_{x \to \infty} x \left[\frac{2}{x-1} \right] = 2.$$

***9.
$$\lim_{x \to +\infty} x^2 (a^{\frac{1}{x}} - a^{\frac{1}{x+1}}) \quad (a > 0, a \neq 1).$$

解: 原式 =
$$\lim_{x \to +\infty} x^2 \cdot a^{\frac{1}{x+1}} (a^{\frac{1}{x(x+1)}} - 1)$$

$$= \lim_{x \to +\infty} a^{\frac{1}{x+1}} \cdot \lim_{x \to +\infty} x^2 \left(a^{\frac{1}{x(x+1)}} - 1 \right) = \lim_{x \to +\infty} x^2 \left(e^{\frac{\ln a - 1}{x(x+1)}} - 1 \right) = \lim_{x \to +\infty} x^2 \frac{1}{x(x+1)} \ln a$$

$$= \ln a.$$

****10.
$$\lim_{x\to 0} \frac{e^{\sin x} \sin x - e^{x\cos x} x \cos x}{x^3}$$
.

解: 令
$$f(u) = ue^{u}$$
, $f'(u) = (u+1)e^{u}$, $u_1 = x\cos x$, $u_2 = \sin x$,
$$f(u_2) - f(u_1) = (\xi+1)e^{\xi}(u_2 - u_1)$$
, ξ 介于 u_1 与 u_2 之间

$$\lim_{x \to 0} \frac{\sin x e^{\sin x} - x \cos x e^{x \cos x}}{x^3}$$

$$= \lim_{x \to 0} (\xi + 1) e^{\xi} \lim_{x \to 0} \frac{\sin x - x \cos x}{x^3} (\stackrel{\text{M}}{=} x \to 0, \xi \to 0)$$

$$= 1 \cdot \lim_{x \to 0} \frac{x \sin x}{3x^2} = \frac{1}{3}.$$

***11. 求极限 $\lim_{n\to\infty} (n\sin\frac{1}{n})^{n^2}$.

解: 首先可求:
$$\lim_{x \to +\infty} (x \sin \frac{1}{x})^{x^2} = \lim_{t \to 0^+} (\frac{\sin t}{t})^{\frac{1}{t^2}}$$

$$= \exp\left[\lim_{t \to 0^+} \frac{1}{t^2} \ln \frac{\sin t}{t}\right] = \exp\left[\lim_{t \to 0^+} \frac{\ln \sin t - \ln t}{t^2}\right] = \exp\left[\lim_{t \to 0^+} \frac{\frac{\cos t}{\sin t} - \frac{1}{t}}{2t}\right]$$

$$= \exp\left[\lim_{t \to 0^+} \frac{t \cos t - \sin t}{2t^2 \sin t}\right] = \exp\left[\lim_{t \to 0^+} \frac{t \cos t - \sin t}{2t^3}\right]$$

$$= \exp\left[\lim_{t \to 0^+} \frac{\cos t - t \sin t - \cos t}{6t^2}\right] = \exp\left[\lim_{t \to 0^+} \frac{-t \sin t}{6t^2}\right] = e^{-\frac{1}{6}},$$

$$\therefore \lim_{n \to \infty} (n \sin \frac{1}{n})^{n^2} = e^{-\frac{1}{6}}.$$

第3章 (之5) 第17次作业

教学内容: 3.4.1 泰勒公式

*1.
$$\cos x = 1 - \frac{x^2}{2} + R_3(x)$$
, \mathbb{M} $R_3(x) =$

(A) $\frac{\sin \xi}{3!} x^3$ (B) $\frac{-\sin \xi}{3!} x^3$

(C) $\frac{\cos \xi}{4!} x^4$ (D) $\frac{-\cos \xi}{4!} x^4$
($\mathbb{R} + \xi + \mathbb{C} = 0$

答: (

**2. 设
$$f(x)$$
的泰勒展开式 $f(x) = \sum_{k=0}^{n} a_k (x - x_0)^k + R_n(x)$ 中拉格朗日型余项 $R_n(x) =$

(A)
$$\frac{f^{(n+1)}(\theta x)}{(n+1)!}(x-x_0)^{n+1} \quad (0 < \theta < 1);$$

(B)
$$\frac{f^{(n+1)}(x_0 + \theta x)}{(n+1)!} (x - x_0)^{n+1} \quad (0 < \theta < 1);$$

(C)
$$\frac{f^{(n)}[x_0 + \theta(x - x_0)]}{n!}(x - x_0)^n \quad (0 < \theta < 1);$$

(D)
$$\frac{f^{(n+1)}[x_0 + \theta(x - x_0)]}{(n+1)!} (x - x_0)^{n+1} (0 < \theta < 1)_{\circ}$$

答: D

**3. 求 $f(x) = \arctan x$ 的 3 阶麦克劳林展开式(带皮亚诺余项).

解:
$$f(x) = \arctan x$$
, $f(0) = 0$,
 $f'(x) = \frac{1}{1+x^2}$, $f'(0) = 1$,
 $f''(x) = \frac{-2x}{(1+x^2)^2}$, $f''(0) = 0$,
 $f'''(x) = \frac{-2(1+x^2)^2 + 2x \cdot 2(1+x^2)2x}{(1+x^2)^4} = \frac{-2+6x^2}{(1+x^2)^3}$, $f'''(0) = -2$,
 $f(x) = x - \frac{2}{3!}x^3 + o(x^3) = x - \frac{1}{3}x^3 + o(x^3)$.

**4. 求函数 $f(x) = xe^x$ 的 n 阶麦克劳林公式 (带拉格朗日型余项).

解: 由
$$f'(x) = e^x(1+x)$$
, $f''(x) = e^x(2+x)$, ..., $f^{(n+1)}(x) = e^x(n+1+x)$, 知

$$f(x) = f(0) + f'(0)(x-0) + \frac{f''(0)}{2!}(x-0)^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}x^{n+1}$$

$$= x + x^2 + \frac{1}{2!}x^3 + \dots + \frac{1}{(n-1)!}x^n + \frac{e^{\xi}(n+1+\xi)}{(n+1)!}x^{n+1}, \quad (\xi \pm 0, x \ge |\overline{n}|).$$

说明:其中 ξ 也可以表示为 $\theta x(0 < \theta < 1)$.

**5. 求函数 $f(x) = \frac{1}{x}$ 在基点 $x_0 = 3$ 处带拉格朗日型余项的四阶泰勒公式.

解:
$$f(x) = \frac{1}{x}$$
, $f(3) = \frac{1}{3}$, $f'(x) = -\frac{1}{x^2}$, $f'(3) = -\frac{1}{9}$, $f''(x) = \frac{2}{x^3}$, $f''(3) = \frac{2}{27}$, $f'''(x) = -\frac{3!}{x^4}$, $f'''(3) = -\frac{3!}{81}$, $f^{(4)}(x) = \frac{4!}{x^5}$, $f^{(4)}(3) = \frac{4!}{243}$, $f^{(5)}(x) = -\frac{5!}{x^6}$

$$f(x) = \frac{1}{x} = \frac{1}{3} - \frac{1}{9}(x-3) + \frac{1}{27}(x-3)^2 - \frac{1}{81}(x-3)^3 + \frac{1}{243}(x-1)^4 - \frac{1}{\xi^6}(x-3)^5, 其中 \xi 在 3$$
 与 x 之间.

第3章 (之6)

第18次作业

教学内容: 3.4.2 几个常用函数的泰勒公式 3.4.3 泰勒公式的应用

**1. 求 a_0, a_1, a_2, a_3 , 使当 $x \to 1$ 时, 有

$$10^{x} = a_0 + a_1(x-1) + a_2(x-1)^2 + a_3(x-1)^3 + o((x-1)^3).$$

解: 设 $f(x) = 10^x$,则上式即为函数 f(x) 在基点 $x_0 = 1$ 处带皮亚诺余项的三阶泰勒公式. 因为 f(x) 在基点 $x_0 = 1$ 处带皮亚诺余项的三阶泰勒公式为

$$10^{x} = 10e^{(x-1)\ln 10}$$

$$10^{x} = 10e^{(x-1)\ln 10}$$

 $= 10[1 + (x-1)\ln 10 + \frac{1}{2!}(x-1)^2 \ln^2 10 + \frac{1}{3!}(x-1)^3 \ln^3 10 + o((x-1)^3)],$

由带皮亚诺余项的泰勒公式的唯一性知

$$a_0 = 10, a_1 = 10\ln 10, a_2 = 5\ln^2 10, a_3 = \frac{5}{3}\ln^3 10.$$

**2. 求函数 $f(x) = xe^{1+x^2}$ 的带皮亚诺型余项的 2n+1 阶的麦克劳林公式.

解: 因为
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n)$$
,

在上式中令 $x=x^2$, 得

$$e^{x^2} = 1 + x^2 + \frac{(x^2)^2}{2!} + \dots + \frac{(x^2)^n}{n!} + o(x^{2n}) = 1 + x^2 + \frac{x^4}{2!} + \dots + \frac{x^{2n}}{n!} + o(x^{2n}).$$

所以,f(x)的带皮亚诺型余项的2n+1阶的泰勒公式

$$f(x) = xe^{1+x^2} = exe^{x^2} = ex[1 + x^2 + \frac{x^4}{2!} + \dots + \frac{x^{2n}}{n!} + o(x^{2n})]$$
$$= ex + ex^3 + \frac{e}{2!}x^5 + \dots + \frac{e}{n!}x^{2n+1} + o(x^{2n+1}).$$

**3. 求函数 $f(x) = \frac{1}{x+2}$ 在基点 $x_0 = 1$ 处的带皮亚诺型余项的 n 阶泰勒公式.

解: 由于
$$f(x) = \frac{1}{x+2} = \frac{1}{3+(x-1)} = \frac{1}{3(1+\frac{x-1}{3})}$$

$$\frac{1}{1+x} = 1 + \sum_{k=1}^{n} \frac{(-1)(-1-1)(-1-2)\cdots(-1-k+1)}{k!} x^{k} + o(x^{n}) = 1 + \sum_{k=1}^{n} (-1)^{k} x^{k} + o(x^{n}) = 0$$

在上式中令 $\frac{x-1}{3}$ 代 x , 得 f(x) 在基点 $x_0 = 1$ 处的带皮亚诺型余项的 n 阶泰勒公式

$$f(x) = \frac{1}{x+2} = \frac{1}{3(1+\frac{x-1}{3})} = \frac{1}{3} \left[1 + \sum_{k=1}^{n} (-1)^k (\frac{x-1}{3})^k + o((\frac{x-1}{3})^n) \right]$$
$$= \frac{1}{3} - \frac{x-1}{3^2} + \frac{(x-1)^2}{3^3} + \dots + (-1)^n \frac{(x-1)^n}{3^{n+1}} + o((x-1)^n)$$

***4. 利用泰勒公式计算 ln 1.05 的近似值, 使其绝对误差不超过 0.001.

解: 由于
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + (-1)^n \frac{1}{(n+1)(1+\xi)^{n+1}} x^{n+1}$$
, $0 < \xi < x$.
取 $x = 0.05$, 要使 $\left| R_n(0.05) \right| = \left| \frac{(-1)^n}{(n+1)(1+\xi)^{n+1}} (0.05)^{n+1} \right| < \frac{(0.05)^{n+1}}{n+1} < (0.05)^{n+1} < 0.001$, 只需 $n \ge 2$ 。所以

$$\ln 1.05 = \ln(1+0.05) \approx 0.05 - \frac{(0.05)^2}{2} = 0.049.$$

5. 利用泰勒公式求下列极限:

**** (1)
$$\lim_{x \to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^4};$$

$$\text{#: } \cos x = 1 - \frac{x^2}{2} + \frac{1}{24}x^4 + o(x^4)$$

$$e^{-\frac{x^2}{2}} = 1 - \frac{x^2}{2} + \frac{1}{2!}(-\frac{x^2}{2})^2 + o(x^4)$$

$$\text{#: } \sin \left[1 - \frac{x^2}{2} + \frac{1}{24}x^4 + o(x^4) \right] - \left[1 - \frac{x^2}{2} + \frac{1}{8}x^4 + o(x^4) \right]$$

$$\left(\frac{1}{x^4} - \frac{1}{x^4} \right) x^4 + o(x^4)$$

$$= \lim_{x \to 0} \frac{\left(\frac{1}{24} - \frac{1}{8}\right)x^4 + o(x^4)}{x^4} = -\frac{1}{12}.$$

*** (2)
$$\lim_{x\to 0} \frac{e^x \sin x - x(1+x)}{x^3}$$
;

$$\widetilde{H}: \lim_{x \to 0} \frac{e^x \sin x - x(1+x)}{x^3} = \lim_{x \to 0} \frac{\left[1 + x + \frac{x^2}{2!} + o(x^2)\right] \left[x - \frac{x^3}{3!} + o(x^3)\right] - (x+x^2)}{x^3} \\
= \lim_{x \to 0} \frac{\left[x + x^2 + \frac{x^3}{2} - \frac{x^3}{3!} + o(x^3)\right] - (x+x^2)}{x^3} = \lim_{x \to 0} \frac{\frac{1}{3}x^3 + o(x^3)}{x^3} = \frac{1}{3}.$$

**** (3)
$$\lim_{x \to 0} \frac{\frac{x^2}{2} - \sqrt{1 + x^2} + 1}{x^2 \left(\cos x - e^{x^2}\right)};$$

$$\text{#}: \quad \text{\mathbb{R}} : \quad \text$$

原式 $= \lim_{t \to 0} \frac{1}{t} \left[\frac{2}{t} - 1 - \frac{2}{t^2} \ln(1+t) \right] = \lim_{t \to 0} \frac{2t - t^2 - 2\ln(1+t)}{t^3}$ $= \lim_{t \to 0} \frac{2t - t^2 - 2\left[t - \frac{1}{2}t^2 + \frac{1}{3}t^3 + o(t^3)\right]}{t^3}$

$$=-\frac{2}{3}$$

解: 原式 =
$$\exp\left\{\lim_{x \to a} \left[\frac{f(x)}{f'(a)(x-a)} - 1\right] \frac{1}{x-a}\right\} = \exp\left[\lim_{x \to a} \left[\frac{f(x) - f'(a)(x-a)}{f'(a)(x-a)^2}\right]\right]$$

= $\exp\left[\lim_{x \to a} \left[\frac{f'(x) - f'(a)}{f'(a)2(x-a)}\right] = e^{\frac{f''(a)}{2f'(a)}}.$

***7. 设 f(x) 在 x_0 的某邻域内有 (n-1) 阶导数, 在 x_0 处有连续的 n 阶导数,

且
$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$$
, 求 $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{(x - x_0)^n}$.

解:
$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{(x - x_0)^n} = \lim_{x \to x_0} \frac{f(x_0) + \frac{1}{n!} \cdot f^{(n)}(\xi) \cdot (x - x_0)^n - f(x_0)}{(x - x_0)^n} (\xi \, \text{在}x = x_0 \, \text{之问})$$
$$= \lim_{x \to x_0} \frac{f^{(n)}(\xi)}{n!} = \frac{1}{n!} f^{(n)}(x_0).$$

****8. 设 f(x)在 [a,b]上具有 1 阶连续导数, f''(x)在 (a,b)内存在,且 f(a)=f(b)=0. 又 存在常数 $c \in (a,b)$,使 f(c)>0. 试证,至少存在一点 $\xi \in (a,b)$,使 $f''(\xi)<0$.

解法一: (多次利用拉格朗日定理) 依题意, f(x)在[a,c]及[c,b]上均满足拉格朗日中值定理的条件,所以存在 $\xi_1 \in (a,c)$, $\xi_2 \in (c,b)$,使得

$$f'(\xi_1) = \frac{f(c) - f(a)}{c - a} > 0, f'(\xi_2) = \frac{f(b) - f(c)}{b - c} < 0.$$

又 f(x)在 [a,b]上具有一阶连续导数,且 f'(x)在 (a,b)内可导,所以, f'(x)在 $[\xi_1,\xi_2]$ 上也满足拉格朗日中值定理的条件. 所以,存在 $\xi \in (\xi_1,\xi_2) \subseteq (a,b)$,使得

$$f''(\xi) = \frac{f'(\xi_2) - f'(\xi_1)}{\xi_2 - \xi_1} < 0.$$

解法二: (泰勒公式) 反证法, 假设对一切 $\xi \in (a,b)$, 有 $f''(\xi) \ge 0$. 将f(a)和f(b)在c处展开为一阶泰勒公式:

$$f(a) = f(c) + f'(c)(a-c) + \frac{f''(\xi_1)}{2}(a-c)^2,$$

$$f(b) = f(c) + f'(c)(b-c) + \frac{f''(\xi_2)}{2}(b-c)^2, \quad 其中\xi_1, \xi_2 \in (a,b).$$
由于 $f(a) = f(b) = 0$, 所以
$$0 = f(c) + f'(c)(a-c) + \frac{f''(\xi_1)}{2}(a-c)^2$$

$$0 = f(c) + f'(c)(b-c) + \frac{f''(\xi_2)}{2}(b-c)^2$$

再注意到 f(c)>0,有 f'(c)(a-c)<0 且 f'(c)(b-c)<0,这是个矛盾! 因此结论成立.