5.3 Numerical Solutions to PDEs

Differentials expressed as finite differences

From the Taylor series

•
$$u(x + \Delta x) = u(x) + u'(x)\Delta x + O(\Delta x^2)$$

Therefore

•
$$u'(x) = \frac{u(x+\Delta x)-u(x)}{\Delta x} + \frac{O(\Delta x^2)}{\Delta x}$$
On a discrete grid

$$U_{m+1} = \frac{U_{m+1} - U_m}{\Delta x} + O(\Delta x)$$

Discrete 2nd order differentials

Writing Taylor series

•
$$u(x + \Delta x) = u(x) + u'(x)\Delta x + \frac{\Delta x^2}{2!}u''(x) + \frac{\Delta x^3}{3!}u'''(x) + 0(\Delta x^4)$$

• $u(x - \Delta x) = u(x) - u'(x)\Delta x + \frac{\Delta x^2}{2!}u''(x) + \frac{\Delta x^3}{3!}u'''(x) + 0(\Delta x^4)$

Adding these together

$$u''(x) = \frac{u(x+\Delta x)-2u(x)+u(x-\Delta x)}{(\Delta x)^2} + O(\Delta x^2)$$

$$U_{m+1} - 2u_m + 4m-1$$

$$U_{m} = \frac{U_{m+1} - 2u_m + 4m-1}{(\Delta x)^2}$$

Discrete Heat Equation

$$\frac{\partial T}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$$

The heat equation is a parabolic 2nd order PDE, solved by *marching forward in time*

• The continuous function is mapped onto a grid

Using the discrete finite difference forms of the differentials

- This gives the Forward in Time (Explicit) Finite Different Equation
- $T_{m,n+1} = \lambda T_{m+1,n} + T_{m,n}(1-2\lambda) + \lambda T_{m-1,n}$ where $\lambda = D \frac{\Delta t}{(\Delta x)^2}$

Heat Equation Example

• Consider a straight, well insulated metal rod with its ends in good thermal contact with heat reservoirs of temperature T_1 and T_2 with $\lambda=0.2$

• BC: $T(0,t) = 100^{\circ}$ C, $T(d,t) = 0^{\circ}$ C

• IC: $T(x,0) = 0^{\circ}C$, $T(0,0) = 100^{\circ}C$

 $T_{m,n+1} = \lambda T_{m+1,n} + T_{m,n} (1 - 2\lambda) + \lambda T_{m-1,n}$

	<i>m</i> = 0	1	2	3	4
n=0	100.0	$0.0 \times (1-2\lambda)$	0.0 × ×	0.0	0.0
1	100.0	20.0	0.0	0.0	0.0
2	100.0	32.0 _×	$\begin{array}{c c} 4.0 \\ \times (1-2\lambda) \end{array}$	0.0 ××.	0.0
3	100.0	40.0	8.8	0.8	0.0

Backward (Implicit) Finite Difference Method

- Forward (explicit) method is fast and simple but unstable if $\lambda > 0.5$
- Backward in time method is implicitly stable
- 2nd order space derivative is now evaluated at n+1 rather than n

$$\frac{T_{m,n+1}-T_{m,n}}{\Delta t}\approx D\frac{T_{m+1}+1}{(\Delta x)^2} T_{m+1}T_{m-1$$

•
$$T_{m,n} = -\lambda T_{m+1,n+1} + T_{m,n+1}(1+2\lambda) - \lambda T_{m+1,n+1}$$
 where $\lambda = D \frac{\Delta t}{(\Delta x)^2}$

	<i>m</i> = 0	1	2	3	
n=0	100.0	0.0	0,0	0.0	
1	100.0	$\times -\lambda$	$\times (1+2\lambda)$	X-1	
2	100.0		~		
3	100.0				

- Linear algebra algorithms used to solve the resulting simultaneous equations
- Implicit methods slower than explicit but stable

$$\frac{\partial T}{\partial t} = D \frac{\partial T}{\partial x^{2}} \qquad T(x,t) \qquad Tm,n$$

$$\frac{\partial T}{\partial t} = D \frac{\partial T}{\partial x^{2}} \qquad Tm = D \frac{\partial$$

Jan 2021 Paper

C.2 A wire of length L=1 m and density per unit length $\mu=0.01$ kg m⁻¹, is attached rigidly at both ends and placed under tension T=1 N. At a position x along the wire, it is displaced a distance y(x,t) from equilibrium at time t. The motion of the wire is governed by the wave equation

$$\frac{\mu}{T}\frac{\partial^2 y}{\partial t^2} = \frac{\partial^2 y}{\partial x^2}$$

The following is a Taylor expansion to third order for a function u(x)

$$u(x + \Delta x) = u(x) + \Delta x u'(x) + \frac{\Delta x^2}{2!} u''(x) + \frac{\Delta x^3}{3!} u'''(x) + \mathcal{O}\left(\mathcal{D} \chi^{\mathbf{Q}}\right)$$

By considering $u(x + \Delta x)$ and $u(x - \Delta x)$, obtain an approximate expression for the second order derivative u''(x). To what order of Δx does the error in this expression depend?

for the second order derivative
$$u''(x)$$
. To what order of Δx does the error in this expression depend?

$$u(x - Dx) = u(x) - \Delta x u'(x) + \frac{(\Delta x)^2}{2!} u''(x) + \frac{(\Delta x)^2}{3!} u''(x) + O(\Delta x^4)$$

$$u(x + \Delta x) + u(x - \Delta x) = 2u(x) + (\Delta x)^2 u''(x) + O(\Delta x^4)$$

$$u''(x) = \frac{u(x + \Delta x) - 2u(x) + u(x - \Delta x)}{(\Delta x)^2} + \frac{O(\Delta x^4)}{(\Delta x)^2}$$

y(x,t)

To obtain a solution to the wave equation, y(x,t) can be represented on a grid $y_{m,n}$ and solved numerically. Show that the wave equation can be written as the following finite difference equation

$$y(x,t) \longrightarrow y_{m,n}$$

$$y_{m,n+1} = r(y_{m+1,n} + y_{m-1,n}) + 2y_{m,n}(1-r) - y_{m,n-1}$$

where m, n are the grid indices for the variables x, t and

where
$$m, n$$
 are the grid indices for the variables x, t

$$r = \frac{T}{\mu} \left(\frac{\Delta t}{\Delta x} \right)^{2}$$

$$\frac{y_{m,n+1} - 2y_{m,n} + y_{m,n+1}}{(\Delta t)^{2}} - \frac{y_{m+1,n} - 2y_{m,n} + y_{m+n}}{(\Delta x)^{2}}$$

$$y_{m,n+1} - 2y_{m,n} + y_{m,n-1} = \frac{T}{(\Delta x)^{2}} \left(y_{m+1,n} - 2y_{m,n} + y_{m-1,n} \right)$$

The wire is pulled a distance y = 1 from equilibrium at its midpoint and released from rest so that

$$y(x,0) = \begin{cases} 2x & \text{for } 0 < x < 1/2 \\ 2(1-x) & \text{for } 1/2 < x < 1 \end{cases}$$

A numerical solution based on the grid shown below (where $\Delta x = 0.25$, $\Delta t =$ 0.01) can be obtained using these initial conditions by "marching forward in time". Explaining your methodology, fill the first 3 rows of this grid with the values of $y_{m,n}$ for n = 0, 1, 2.

As the wire is originally at rest you may assume that $y_{m,-1} = y_{m,0}$

$$y_{1,1} = 0.16(0+1) + 2(1-0.16)(0.5) + 0.5 \quad 2. \quad y(1,t) = 0$$

$$= 0.5 \quad 1.68$$

$$y_{2,1} = 0.16(0.5) + (1.68)(1) - 1 \quad r = \frac{1}{10.01} \left(\frac{\Delta t}{0.01}\right)^2 = \frac{1}{0.01} \left(\frac{0.01}{0.05}\right)^2$$

$$= 0.84 \quad r = 0.16$$

INITIAL COMPITIONS

$$2. \frac{3y}{3t/t=0} = 0$$

BOUNDARY CONDITION

$$= \frac{T\left(\Delta + \frac{1}{2}\right)^{2}}{\sqrt{25}} = \frac{1}{20.01} \left(\frac{0.01}{0.25}\right)^{2}$$

$$= \frac{T\left(\Delta + \frac{1}{2}\right)^{2}}{\sqrt{25}} = \frac{1}{20.01} \left(\frac{0.01}{0.25}\right)^{2}$$

Stencils

- Stencils show how grid values are determined by surrounding points
- For Parabolic equations such as Heat and Schrodinger Equation

• For **Hyperbolic equations** such as the wave equation

•
$$v^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$$

$$V^{2} \frac{u_{m+1,n} - 2u_{m,n} + u_{n-n}}{(1)^{2}} =$$

$$\frac{U_{m,n+1}-2U_{m,n}+U_{m,n-1}}{(\Delta t)^2}$$

•
$$u_{m,n+1} = r(u_{m+1,n} + u_{m-1,n}) + 2\underline{u_{m,n}}(1-r) - \underline{u_{m,n-1}}$$
 where $r = \left(\frac{v\Delta t}{\Delta x}\right)^2$

Elliptical PDEs – Relaxation Techniques

• E.g. Laplace/Poisson's Equation

$$\bullet \frac{V_{m,n-1} - 2V_{m,n} + V_{m,n+1}}{(\Delta x)^2} + \frac{V_{m+1,n} - 2V_{m,n} + V_{m-1,n}}{(\Delta y)^2} = 0$$

- If $\Delta x = \Delta y$
- $V_{m,n} = \frac{1}{4} (V_{m,n-1} + V_{m,n+1} + V_{m+1,n} + V_{m-1,n})$

Relaxation Techniques

• All grid points are calculated. This is repeated many times (iterations) until convergence Iteration 0 Iteration 1 Iteration 2

	0	0	100	100	100	100	100	100	100	0	0			
	Iteration 20													
	0.00	33.33	100	100	100	100	100	100	100	33.33	0.00			
	-33.33	0.00	39.12	56.51	64.33	66.61	64.33	56.51	39.12	0.00	-33.33			
	-100	-39.12	0.00	22.70	34.40	38.00	34.40	22.70	0.00	-39.12	-100			
	-100	-56.51	-22.70	0.00	12.78	16.89	12.78	0.00	-22.70	-56.51	-100			
	-100	-64.33	-34.40	-12.78	0.00	4.21	0.00	-12.78	-34.40	-64.33	-100			
	-100	-66.61	-38.00	-16.89	-4.21	0.00	-4.21	-16.89	-38.00	-66.61	-100			
	-100	-64.33	-34.40	-12.78	0.00	4.21	0.00	-12.78	-34.40	-64.33	-100			
	-100	-56.51	-22.70	0.00	12.78	16.89	12.78	0.00	-22.70	-56.51	-100			
	-100	-39.12	0.00	22.70	34.40	38.00	34.40	22.70	0.00	-39.12	-100			
Γ	22.22	0.00	20.12	EC E1	64.22	66.61	64.22	EC E1	20.12	0.00	22.22			

	iteration 1											
0	33.3	100	100	100	100	100	100	100	33.3	0		
-33	0	25	25	25	25	25	25	25	0	-33		
-100	-25	0	0	0	0	0	0	0	-25	-100		
-100	-25	0	0	0	0	0	0	0	-25	-100		
-100	-25	0	0	0	0	0	0	0	-25	-100		
-100	-25	0	0	0	0	0	0	0	-25	-100		
-100	-25	0	0	0	0	0	0	0	-25	-100		
-100	-25	0	0	0	0	0	0	0	-25	-100		
-100	-25	0	0	0	0	0	0	0	-25	-100		
-33	0	25	25	25	25	25	25	25	0	-33		
0	33.3	100	100	100	100	100	100	100	33.3	₽		

Iteration 20 – Iteration 19

	iteration 20 Iteration 15											
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
0.00	0.00	0.01	0.03	0.06	0.07	0.06	0.03	0.01	0.00	0.00		
0.00	-0.01	0.00	0.04	0.08	0.09	0.08	0.04	0.00	-0.01	0.00		
0.00	-0.03	-0.04	0.00	0.05	0.07	0.05	0.00	-0.04	-0.03	0.00		
0.00	-0.06	-0.08	-0.05	0.00	0.02	0.00	-0.05	-0.08	-0.06	0.00		
0.00	-0.07	-0.09	-0.07	-0.02	0.00	-0.02	-0.07	-0.09	-0.07	0.00		
0.00	-0.06	-0.08	-0.05	0.00	0.02	0.00	-0.05	-0.08	-0.06	0.00		
0.00	-0.03	-0.04	0.00	0.05	0.07	0.05	0.00	-0.04	-0.03	0.00		
0.00	-0.01	0.00	0.04	0.08	0.09	0.08	0.04	0.00	-0.01	0.00		
0.00	0.00	0.01	0.03	0.06	0.07	0.06	0.03	0.01	0.00	0.00		
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

0 3										
	33.3	100	100	100	100	100	100	100	33.3	0
-33	0	31.3	37.5	37.5	37.5	37.5	37.5	31.3	0	-33
-100	-31	0	6.25	6.25	6.25	6.25	6.25	0	-31	-100
-100	-38	-6.3	0	0	0	0	0	-6.3	-38	-100
-100	-38	-6.3	0	0	0	0	0	-6.3	-38	-100
-100	-38	-6.3	0	0	0	0	0	-6.3	-38	-100
-100	-38	-6.3	0	0	0	0	0	-6.3	-38	-100
-100	-38	-6.3	0	0	0	0	0	-6.3	-38	-100
-100	-31	0	6.25	6.25	6.25	6.25	6.25	0	-31	-100
-33	0	31.3	37.5	37.5	37.5	37.5	37.5	31.3	0	-33
0 3	33.3	100	100	100	100	100	100	100	33.3	0

Laplace Solution for quadrupole field

Faster convergence can be obtained using over-relaxation (see notes)