

University of Central Florida

UCF Catalan

Sathvik Kuthuru, Natalie Longtin, Brian Barak

```
1 Contest
                                                                troubleshoot.txt
                                                                Pre-submit:
2 Mathematics
                                                                Write a few simple test cases if sample is not enough.
                                                                Are time limits close? If so, generate max cases.
                                                                Is the memory usage fine?
3 Data structures
                                                                Could anything overflow?
                                                                Make sure to submit the right file.
4 Numerical
                                                                Wrong answer:
                                                                Print your solution! Print debug output, as well.
                                                                Are you clearing all data structures between test cases?
5 Number theory
                                                                Can your algorithm handle the whole range of input?
                                                                Read the full problem statement again.
6 Combinatorial
                                                                Do you handle all corner cases correctly?
                                                                Have you understood the problem correctly?
                                                                Any uninitialized variables?
  Graph
                                                           16
                                                                Any overflows?
                                                                Confusing N and M, i and i, etc.?
                                                                Are you sure your algorithm works?
8 Geometry
                                                                What special cases have you not thought of?
                                                                Are you sure the STL functions you use work as you think?
9 Strings
                                                                Add some assertions, maybe resubmit.
                                                                Create some testcases to run your algorithm on.
                                                                Go through the algorithm for a simple case.
10 Various
                                                                Go through this list again.
                                                                Explain your algorithm to a teammate.
                                                                Ask the teammate to look at your code.
Contest (1)
                                                                Go for a small walk, e.g. to the toilet.
                                                                Is your output format correct? (including whitespace)
                                                                Rewrite your solution from the start or let a teammate do it.
template.cpp
                                                                Runtime error:
#include <bits/stdc++.h>
                                                                Have you tested all corner cases locally?
using namespace std;
                                                                Any uninitialized variables?
                                                                Are you reading or writing outside the range of any vector?
#define rep(i, a, b) for(int i = a; i < (b); ++i)
                                                                Any assertions that might fail?
#define all(x) begin(x), end(x)
                                                                Any possible division by 0? (mod 0 for example)
#define sz(x) (int)(x).size()
                                                                Any possible infinite recursion?
typedef long long 11;
                                                                Invalidated pointers or iterators?
typedef pair<int, int> pii;
                                                                Are you using too much memory?
typedef vector<int> vi;
                                                                Debug with resubmits (e.g. remapped signals, see Various).
int main() {
                                                                Time limit exceeded:
 cin.tie(0)->sync_with_stdio(0);
                                                                Do you have any possible infinite loops?
  cin.exceptions(cin.failbit);
                                                                What is the complexity of your algorithm?
                                                                Are you copying a lot of unnecessary data? (References)
                                                                How big is the input and output? (consider scanf)
                                                                Avoid vector, map. (use arrays/unordered_map)
.bashrc
                                                                What do your teammates think about your algorithm?
                                                         3 lines
alias c='q++ -Wall -Wconversion -Wfatal-errors -q -std=c++14 \
                                                                 Memory limit exceeded:
 -fsanitize=undefined,address'
                                                                 What is the max amount of memory your algorithm should need?
xmodmap -e 'clear lock' -e 'keycode 66=less greater' \#caps = \Leftrightarrow
                                                                Are you clearing all data structures between test cases?
.vimrc
set cin aw ai is ts=4 sw=4 tm=50 nu noeb bg=dark ru cul
sy on | im jk <esc> | im kj <esc> | no;:
```

" Select region and then type : Hash to hash your selection.

ca Hash w !cpp -dD -P -fpreprocessed \| tr -d '[:space:]' \

Hashes a file, ignoring all whitespace and comments. Use for

cpp -dD -P -fpreprocessed | tr -d '[:space:]' | md5sum |cut -c-6

" Useful for verifying that there aren't mistypes.

verifying that code was correctly typed.

\| md5sum \| cut -c-6

hash.sh

Mathematics (2)

2.1 Fraction Structs

Fraction.h

3 lines

Description: Struct for representing fractions/rationals. All ops are $O(\log N)$ due to GCD in constructor. Uses cross multiplication class 26 lines

```
template<class T> struct 0 {
 T a, b;
 Q(T p, T q = 1)  {
   T g = gcd(p, q);
   a = p / q;
   b = q / g;
```

```
if (b < 0) a = -a, b = -b;
 T gcd(T x, T y) const { return __gcd(x, y); }
 Q operator+(const Q& o) const {
   return {a * o.b + o.a * b, b * o.b};
 Q operator-(const Q& o) const {
    return *this + Q(-o.a, o.b);
 Q operator*(const Q& o) const { return {a * o.a, b * o.b}; }
 Q operator/(const Q& o) const { return *this * Q(o.b, o.a); }
 Q recip() const { return {b, a}; }
 int signum() const { return (a > 0) - (a < 0); }</pre>
 bool operator<(const Q& o) const {
   return a * o.b < o.a * b;
 friend ostream& operator<<(ostream& cout, const Q& o) {</pre>
    return cout << o.a << "/" << o.b;
};
```

FractionOverflow.h

};

52 lines

Description: Safer struct for representing fractions/rationals. Comparison is 100% overflow safe; other ops are safer but can still overflow. All ops are $O(\log N)$.

```
template<class T> struct QO {
 T a, b;
  00(T p, T q = 1) {
   T q = gcd(p, q);
    a = p / g;
    b = q / q;
    if (b < 0) a = -a, b = -b;
 T gcd(T x, T y) const { return __gcd(x, y); }
  00 operator+(const 00% o) const {
    T q = qcd(b, o.b), bb = b / g, obb = o.b / g;
    return {a * obb + o.a * bb, b * obb};
  OO operator-(const OO& O) const {
    return *this + 00(-o.a, o.b);
  QO operator* (const QO& o) const {
    T g1 = gcd(a, o.b), g2 = gcd(o.a, b);
    return { (a / g1) * (o.a / g2), (b / g2) * (o.b / g1) };
  OO operator/(const OO& O) const {
    return *this * 00(o.b, o.a);
  00 recip() const { return {b, a}; }
  int signum() const { return (a > 0) - (a < 0); }</pre>
  static bool lessThan(T a, T b, T x, T y) {
    if (a / b != x / y) return a / b < x / y;</pre>
    if (x % y == 0) return false;
    if (a % b == 0) return true;
    return lessThan(y, x % y, b, a % b);
  bool operator<(const QO& o) const {
    if (this->signum() != o.signum() || a == 0) return a < o.a;</pre>
    if (a < 0) return lessThan(abs(o.a), o.b, abs(a), b);</pre>
    else return lessThan(a, b, o.a, o.b);
 friend ostream& operator<<(ostream& cout, const QO& o) {</pre>
    return cout << o.a << "/" << o.b;</pre>
```

2.2 Equations

$$ax^{2} + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

The extremum is given by x = -b/2a.

$$ax + by = e$$

$$cx + dy = f$$

$$\Rightarrow x = \frac{ed - bf}{ad - bc}$$

$$y = \frac{af - ec}{ad - bc}$$

In general, given an equation Ax = b, the solution to a variable x_i is given by

$$x_i = \frac{\det A_i'}{\det A}$$

where A'_i is A with the *i*'th column replaced by b.

2.3 Recurrences

If $a_n = c_1 a_{n-1} + \dots + c_k a_{n-k}$, and r_1, \dots, r_k are distinct roots of $x^k - c_1 x^{k-1} - \dots - c_k$, there are d_1, \dots, d_k s.t.

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

Non-distinct roots r become polynomial factors, e.g. $a_n = (d_1n + d_2)r^n$.

2.4 Trigonometry

$$\sin(v + w) = \sin v \cos w + \cos v \sin w$$
$$\cos(v + w) = \cos v \cos w - \sin v \sin w$$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$
$$\sin v + \sin w = 2\sin\frac{v+w}{2}\cos\frac{v-w}{2}$$
$$\cos v + \cos w = 2\cos\frac{v+w}{2}\cos\frac{v-w}{2}$$

$$(V+W)\tan(v-w)/2 = (V-W)\tan(v+w)/2$$

where V, W are lengths of sides opposite angles v, w.

$$a\cos x + b\sin x = r\cos(x - \phi)$$

$$a\sin x + b\cos x = r\sin(x + \phi)$$

where $r = \sqrt{a^2 + b^2}$, $\phi = \text{atan2}(b, a)$.

2.5 Geometry

2.5.1 Triangles

Side lengths: a, b, c

Semiperimeter: $p = \frac{a+b+c}{2}$

Area: $A = \sqrt{p(p-a)(p-b)(p-c)}$

Circumradius: $R = \frac{abc}{4A}$

Inradius: $r = \frac{A}{n}$

Length of median (divides triangle into two equal-area triangles): $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$

Length of bisector (divides angles in two):

$$s_a = \sqrt{bc \left[1 - \left(\frac{a}{b+c} \right)^2 \right]}$$

Law of sines: $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} = \frac{1}{2R}$ Law of cosines: $a^2 = b^2 + c^2 - 2bc \cos \alpha$

2.5.2 Quadrilaterals $\tan \frac{\alpha + \beta}{2}$

With of the registric $\frac{a+b}{a,b,b}$, \overline{d} , \overline{d} and magic flux $F=b^2+t^2$, t^2 , $t^$

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2f^2 - F^2}$$

2.5.3 Spherical coordinates

For cyclic quadrilaterals the sum of opposite angles is 180° , ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}$.

$$x = r \sin \theta \cos \phi \qquad r = \sqrt{x^2 + y^2 + z^2}$$

$$y = r \sin \theta \sin \phi \qquad \theta = a\cos(z/\sqrt{x^2 + y^2 + z^2})$$

$$z = r \cos \theta \qquad \phi = a\tan(y, x)$$

| 2.6 Derivatives/Integrals

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \qquad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x\sin ax = \frac{\sin ax - ax\cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) \qquad \int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

2.7 Sums

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c - 1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

2.8 Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots, (-\infty < x < \infty)$$

OrderStatisticTree HashMap SegmentTree

Probability theory 2.9

Let X be a discrete random variable with probability $p_X(x)$ of assuming the value x. It will then have an expected value (mean) $\mu = \mathbb{E}(X) = \sum_{x} x p_X(x)$ and variance $\sigma^2 = V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \sum_x (x - \mathbb{E}(X))^2 p_X(x)$ where σ is the standard deviation. If X is instead continuous it will have a probability density function $f_X(x)$ and the sums above will instead be integrals with $p_X(x)$ replaced by $f_X(x)$.

Expectation is linear:

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

For independent X and Y,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

2.9.1 Discrete distributions Binomial distribution

The number of successes in n independent yes/no experiments, each which yields success with probability p is $Bin(n, p), n = 1, 2, ..., 0 \le p \le 1.$

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mu = np, \, \sigma^2 = np(1-p)$$

Bin(n, p) is approximately Po(np) for small p.

First success distribution

The number of trials needed to get the first success in independent yes/no experiments, each which yields success with probability p is Fs(p), 0 .

$$p(k) = p(1-p)^{k-1}, k = 1, 2, \dots$$

$$\mu = \frac{1}{n}, \, \sigma^2 = \frac{1-p}{n^2}$$

Poisson distribution

The number of events occurring in a fixed period of time t if these events occur with a known average rate κ and independently of the time since the last event is $Po(\lambda)$, $\lambda = t\kappa$.

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots$$

$$\mu = \lambda, \, \sigma^2 = \lambda$$

2.9.2 Continuous distributions Uniform distribution

If the probability density function is constant between a and band 0 elsewhere it is U(a, b), a < b.

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$\mu = \frac{a+b}{2}, \, \sigma^2 = \frac{(b-a)^2}{12}$$

Exponential distribution

The time between events in a Poisson process is $\operatorname{Exp}(\lambda), \lambda > 0.$

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$
$$\mu = \frac{1}{\lambda}, \, \sigma^2 = \frac{1}{\lambda^2}$$

Normal distribution

Most real random values with mean μ and variance σ^2 are well described by $\mathcal{N}(\mu, \sigma^2)$, $\sigma > 0$.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ then

$$aX_1 + bX_2 + c \sim \mathcal{N}(\mu_1 + \mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$$

2.10 Markov chains

A Markov chain is a discrete random process with the property that the next state depends only on the current state. Let X_1, X_2, \dots be a sequence of random variables generated by the Markov process. Then there is a transition matrix $\mathbf{P} = (p_{ij})$, with $p_{ij} = \Pr(X_n = i | X_{n-1} = j)$, and $\mathbf{p}^{(n)} = \mathbf{P}^n \mathbf{p}^{(0)}$ is the probability distribution for X_n (i.e., $p_i^{(n)} = \Pr(X_n = i)$), where $\mathbf{p}^{(0)}$ is the initial distribution.

 π is a stationary distribution if $\pi = \pi \mathbf{P}$. If the Markov chain is irreducible (it is possible to get to any state from any state), then $\pi_i = \frac{1}{\mathbb{E}(T_i)}$ where $\mathbb{E}(T_i)$ is the expected time between two visits in state i. π_i/π_i is the expected number of visits in state j between two visits in state i.

For a connected, undirected and non-bipartite graph, where the transition probability is uniform among all neighbors, π_i is proportional to node i's degree.

A Markov chain is *ergodic* if the asymptotic distribution is independent of the initial distribution. A finite Markov chain is ergodic iff it is irreducible and aperiodic (i.e., the gcd of cycle lengths is 1). $\lim_{k\to\infty} \mathbf{P}^k = \mathbf{1}\pi$.

A Markov chain is an A-chain if the states can be partitioned into two sets A and G, such that all states in A are absorbing $(p_{ii}=1)$, and all states in **G** leads to an absorbing state in **A**. The probability for absorption in state $i \in \mathbf{A}$, when the initial state is j, is $a_{ij} = p_{ij} + \sum_{k \in \mathbf{G}} a_{ik} p_{kj}$. The expected time until absorption, when the initial state is i, is $t_i = 1 + \sum_{k \in \mathbf{C}} p_{ki} t_k$.

Data structures (3)

OrderStatisticTree.h

Description: A set (not multiset!) with support for finding the n'th element, and finding the index of an element. To get a map, change null_type. Time: $\mathcal{O}(\log N)$

```
#include <bits/extc++.h>
using namespace __gnu_pbds;
template<class T>
using Tree = tree<T, null_type, less<T>, rb_tree_tag,
    tree_order_statistics_node_update>;
void example() {
 Tree<int> t, t2; t.insert(8);
  auto it = t.insert(10).first;
  assert(it == t.lower_bound(9));
  assert(t.order_of_key(10) == 1);
  assert (t.order of key(11) == 2);
  assert(*t.find_by_order(0) == 8);
 t.join(t2); // assuming T < T2 or T > T2, merge t2 into t
```

HashMap.h

Description: Hash map with mostly the same API as unordered_map, but ~3x faster. Uses 1.5x memory. Initial capacity must be a power of 2 (if provided).

```
#include <bits/extc++.h>
// To use most bits rather than just the lowest ones:
{f struct} chash { // large odd number for C
 const uint64_t C = 11(4e18 * acos(0)) | 71;
 11 operator()(11 x) const { return __builtin_bswap64(x*C); }
__qnu_pbds::qp_hash_table<11, int, chash> h({}, {}, {}, {}, {1<<16});
```

SegmentTree.h

Description: Zero-indexed max-tree. Bounds are inclusive to the left and exclusive to the right. Can be changed by modifying T, f and unit.

Time: $\mathcal{O}(\log N)$ 0f4bdb, 19 lines

```
struct Tree {
 typedef int T;
  static constexpr T unit = INT_MIN;
 T f(T a, T b) { return max(a, b); } // (any associative fn)
 vector<T> s; int n;
 Tree (int n = 0, T def = unit) : s(2*n, def), n(n) {}
 void update(int pos, T val) {
    for (s[pos += n] = val; pos /= 2;)
      s[pos] = f(s[pos * 2], s[pos * 2 + 1]);
 T query (int b, int e) { // query [b, e)
    T ra = unit, rb = unit;
    for (b += n, e += n; b < e; b /= 2, e /= 2) {
      if (b % 2) ra = f(ra, s[b++]);
      if (e % 2) rb = f(s[--e], rb);
```

```
return f(ra, rb);
};
LazySegmentTree.h
Description: Segment tree with ability to add or set values of large inter-
vals, and compute max of intervals. Can be changed to other things. Use
with a bump allocator for better performance, and SmallPtr or implicit in-
dices to save memory.
Usage: Node* tr = new Node(v, 0, sz(v));
Time: \mathcal{O}(\log N).
"../various/BumpAllocator.h"
                                                         34ecf5, 50 lines
const int inf = 1e9;
struct Node {
 Node *1 = 0, *r = 0;
  int lo, hi, mset = inf, madd = 0, val = -inf;
  Node (int lo, int hi):lo(lo), hi(hi) {} // Large interval of -inf
  Node (vi& v, int lo, int hi) : lo(lo), hi(hi) {
    if (lo + 1 < hi) {
      int mid = lo + (hi - lo)/2;
      1 = new Node(v, lo, mid); r = new Node(v, mid, hi);
      val = max(1->val, r->val);
    else val = v[lo];
  int query(int L, int R) {
    if (R <= lo || hi <= L) return -inf;</pre>
    if (L <= lo && hi <= R) return val;</pre>
    return max(l->query(L, R), r->query(L, R));
  void set(int L, int R, int x) {
    if (R <= lo || hi <= L) return;</pre>
    if (L <= lo && hi <= R) mset = val = x, madd = 0;</pre>
      push(), l\rightarrow set(L, R, x), r\rightarrow set(L, R, x);
      val = max(1->val, r->val);
  void add(int L, int R, int x) {
    if (R <= lo || hi <= L) return;</pre>
    if (L <= lo && hi <= R) {
      if (mset != inf) mset += x;
      else madd += x;
      val += x;
    else {
      push(), 1->add(L, R, x), r->add(L, R, x);
      val = max(1->val, r->val);
  void push() {
    if (!1) {
      int mid = 10 + (hi - 10)/2;
      1 = new Node(lo, mid); r = new Node(mid, hi);
    if (mset != inf)
      1->set(lo,hi,mset), r->set(lo,hi,mset), mset = inf;
    else if (madd)
      1- add (lo, hi, madd), r- add (lo, hi, madd), madd = 0;
};
UnionFind.h
Description: Disjoint-set data structure.
Time: \mathcal{O}\left(\alpha(N)\right)
                                                         7aa27c, 14 lines
```

 $vec = (A^N) * vec;$

```
struct UF {
  vi e;
```

```
UF (int n) : e(n, -1) {}
  bool sameSet(int a, int b) { return find(a) == find(b); }
  int size(int x) { return -e[find(x)]; }
  int find(int x) { return e[x] < 0 ? x : e[x] = find(e[x]); }
  bool join(int a, int b) {
    a = find(a), b = find(b);
    if (a == b) return false;
    if (e[a] > e[b]) swap(a, b);
    e[a] += e[b]; e[b] = a;
    return true:
};
UnionFindRollback.h.
Description: Disjoint-set data structure with undo. If undo is not needed,
skip st, time() and rollback().
Usage: int t = uf.time(); ...; uf.rollback(t);
Time: \mathcal{O}(\log(N))
                                                       de4ad0, 21 lines
struct RollbackUF {
 vi e; vector<pii> st;
 RollbackUF(int n) : e(n, -1) {}
  int size(int x) { return -e[find(x)]; }
  int find(int x) { return e[x] < 0 ? x : find(e[x]); }</pre>
  int time() { return sz(st); }
  void rollback(int t) {
    for (int i = time(); i --> t;)
      e[st[i].first] = st[i].second;
    st.resize(t);
  bool join(int a, int b) {
    a = find(a), b = find(b);
    if (a == b) return false;
    if (e[a] > e[b]) swap(a, b);
    st.push_back({a, e[a]});
    st.push back({b, e[b]});
    e[a] += e[b]; e[b] = a;
    return true;
};
SubMatrix.h
Description: Calculate submatrix sums quickly, given upper-left and lower-
right corners (half-open).
Usage: SubMatrix<int> m(matrix);
m.sum(0, 0, 2, 2); // top left 4 elements
Time: \mathcal{O}\left(N^2+Q\right)
                                                       c59ada, 13 lines
template<class T>
struct SubMatrix {
  vector<vector<T>> p;
  SubMatrix(vector<vector<T>>& v) {
    int R = sz(v), C = sz(v[0]);
    p.assign(R+1, vector<T>(C+1));
    rep(r, 0, R) rep(c, 0, C)
      p[r+1][c+1] = v[r][c] + p[r][c+1] + p[r+1][c] - p[r][c];
 T sum(int u, int 1, int d, int r) {
    return p[d][r] - p[d][l] - p[u][r] + p[u][l];
};
Matrix.h
Description: Basic operations on square matrices.
Usage: Matrix<int, 3> A;
A.d = \{\{\{\{1,2,3\}\}\}, \{\{4,5,6\}\}, \{\{7,8,9\}\}\}\};
vector<int> vec = \{1,2,3\};
```

```
template<class T, int N> struct Matrix {
  typedef Matrix M;
  array<array<T, N>, N> d{};
  M operator*(const M& m) const {
    rep(i,0,N) rep(j,0,N)
      rep(k, 0, N) \ a.d[i][j] += d[i][k]*m.d[k][j];
    return a:
  vector<T> operator*(const vector<T>& vec) const {
    vector<T> ret(N);
    rep(i, 0, N) rep(j, 0, N) ret[i] += d[i][j] * vec[j];
    return ret:
  M operator^(ll p) const {
    assert (p >= 0);
    M a, b(*this);
    rep(i, 0, N) \ a.d[i][i] = 1;
    while (p) {
      if (p&1) a = a*b;
      b = b*b;
      p >>= 1;
    return a;
};
LineContainer.h
Description: Container where you can add lines of the form kx+m, and
```

query maximum values at points x. Useful for dynamic programming ("convex hull trick"). Time: $\mathcal{O}(\log N)$

```
8ec1c7, 30 lines
struct Line {
  mutable 11 k, m, p;
  bool operator<(const Line& o) const { return k < o.k; }</pre>
  bool operator<(11 x) const { return p < x; }</pre>
struct LineContainer : multiset<Line, less<>>> {
  // (for doubles, use inf = 1/.0, div(a,b) = a/b)
  static const ll inf = LLONG_MAX;
  ll div(ll a, ll b) { // floored division
    return a / b - ((a ^ b) < 0 && a % b); }
  bool isect(iterator x, iterator y) {
    if (y == end()) return x \rightarrow p = inf, 0;
    if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
    else x->p = div(y->m - x->m, x->k - y->k);
    return x->p >= y->p;
  void add(ll k, ll m) {
    auto z = insert(\{k, m, 0\}), y = z++, x = y;
    while (isect(y, z)) z = erase(z);
    if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
    while ((y = x) != begin() && (--x)->p >= y->p)
      isect(x, erase(v));
  ll query(ll x) {
    assert(!empty());
    auto 1 = *lower_bound(x);
    return 1.k * x + 1.m;
};
```

Treap.h

c43c7d, 26 lines

Description: A short self-balancing tree. It acts as a sequential container with log-time splits/joins, and is easy to augment with additional data. Time: $\mathcal{O}(\log N)$ 9556fc, 55 lines

FenwickTree FenwickTree2d RMQ MoQueries ArithTree

```
struct Node {
 Node *1 = 0, *r = 0;
  int val, y, c = 1;
 Node(int val) : val(val), y(rand()) {}
  void recalc();
int cnt(Node* n) { return n ? n->c : 0; }
void Node::recalc() { c = cnt(1) + cnt(r) + 1; }
template < class F > void each (Node * n, F f) {
 if (n) { each(n->1, f); f(n->val); each(n->r, f); }
pair<Node*, Node*> split(Node* n, int k) {
  if (!n) return {};
   \textbf{if} (cnt(n->1) >= k) \{ /\!/ "n-> val >= k" for lower\_bound(k) \\ 
    auto pa = split(n->1, k);
   n->1 = pa.second;
   n->recalc();
    return {pa.first, n};
    auto pa = split(n->r, k - cnt(n->l) - 1); // and just "k"
   n->r = pa.first;
   n->recalc();
   return {n, pa.second};
Node* merge(Node* 1, Node* r) {
 if (!1) return r;
  if (!r) return 1;
  if (1->y > r->y) {
   1->r = merge(1->r, r);
   1->recalc();
    return 1;
  } else {
    r->1 = merge(1, r->1);
    r->recalc();
    return r;
Node* ins(Node* t, Node* n, int pos) {
 auto pa = split(t, pos);
  return merge (merge (pa.first, n), pa.second);
// Example application: move the range (l, r) to index k
void move(Node*& t, int 1, int r, int k) {
 Node *a, *b, *c;
  tie(a,b) = split(t, 1); tie(b,c) = split(b, r - 1);
 if (k \le 1) t = merge(ins(a, b, k), c);
  else t = merge(a, ins(c, b, k - r));
FenwickTree.h
Description: Computes partial sums a[0] + a[1] + ... + a[pos - 1], and
```

updates single elements a[i], taking the difference between the old and new

Time: Both operations are $\mathcal{O}(\log N)$.

e62fac, 22 lines

```
struct FT {
  vector<11> s;
  FT(int n) : s(n) {}
  void update(int pos, 11 dif) { // a[pos] \neq = dif
    for (; pos < sz(s); pos |= pos + 1) s[pos] += dif;</pre>
  11 query(int pos) { // sum of values in [0, pos)
```

```
11 \text{ res} = 0;
    for (; pos > 0; pos &= pos - 1) res += s[pos-1];
    return res;
  int lower_bound(ll sum) \{// min \ pos \ st \ sum \ of \ [0, \ pos] >= sum
    // Returns n if no sum is >= sum, or -1 if empty sum is.
    if (sum \le 0) return -1;
                                                                       void add(int ind, int end) { ... } // add a[ind] (end = 0 or 1)
    int pos = 0;
    for (int pw = 1 << 25; pw; pw >>= 1) {
      if (pos + pw <= sz(s) && s[pos + pw-1] < sum)</pre>
        pos += pw, sum -= s[pos-1];
    return pos;
};
FenwickTree2d.h
Description: Computes sums a[i,j] for all i<I, j<J, and increases single ele-
ments a[i,j]. Requires that the elements to be updated are known in advance
(call fakeUpdate() before init()).
Time: \mathcal{O}(\log^2 N). (Use persistent segment trees for \mathcal{O}(\log N).)
struct FT2 {
  vector<vi> ys; vector<FT> ft;
  FT2(int limx) : vs(limx) {}
  void fakeUpdate(int x, int y) {
    for (; x < sz(ys); x = x + 1) ys[x].push_back(y);
 void init() {
    for (vi& v : ys) sort(all(v)), ft.emplace_back(sz(v));
 int ind(int x, int y) {
    return (int) (lower_bound(all(ys[x]), y) - ys[x].begin()); }
  void update(int x, int y, ll dif) {
    for (; x < sz(ys); x | = x + 1)
      ft[x].update(ind(x, y), dif);
 11 query(int x, int y) {
   11 sum = 0:
    for (; x; x &= x - 1)
      sum += ft[x-1].query(ind(x-1, y));
    return sum;
};
RMQ.h
Description: Range Minimum Queries on an array. Returns min(V[a], V[a
```

+ 1], ... V[b - 1]) in constant time.

Usage: RMQ rmq(values);

rmq.query(inclusive, exclusive); Time: $\mathcal{O}(|V|\log|V|+Q)$

```
template<class T>
struct RMQ {
 vector<vector<T>> jmp;
 RMO(const vector<T>& V) : jmp(1, V) {
    for (int pw = 1, k = 1; pw * 2 <= sz(V); pw *= 2, ++k) {
      jmp.emplace_back(sz(V) - pw * 2 + 1);
      rep(j, 0, sz(jmp[k]))
        jmp[k][j] = min(jmp[k - 1][j], jmp[k - 1][j + pw]);
 T query(int a, int b) {
   assert (a < b); // or return inf if a == b
    int dep = 31 - __builtin_clz(b - a);
    return min(jmp[dep][a], jmp[dep][b - (1 << dep)]);</pre>
};
```

MoQueries.h

Description: Answer interval or tree path queries by finding an approximate TSP through the queries, and moving from one query to the next by adding/removing points at the ends. If values are on tree edges, change step to add/remove the edge (a, c) and remove the initial add call (but keep in). Time: $\mathcal{O}\left(N\sqrt{Q}\right)$

```
void del(int ind, int end) { ... } // remove a[ind]
int calc() { ... } // compute current answer
vi mo(vector<pii> 0) {
 int L = 0, R = 0, blk = 350; // \sim N/sqrt(Q)
 vi s(sz(Q)), res = s;
#define K(x) pii(x.first/blk, x.second ^ -(x.first/blk & 1))
  iota(all(s), 0);
  sort(all(s), [\&](int s, int t){ return K(Q[s]) < K(Q[t]); });
  for (int qi : s) {
    pii q = Q[qi];
    while (L > q.first) add(--L, 0);
    while (R < q.second) add(R++, 1);</pre>
    while (L < q.first) del(L++, 0);
    while (R > g.second) del(--R, 1);
    res[qi] = calc();
 return res:
vi moTree(vector<array<int, 2>> Q, vector<vi>& ed, int root=0) {
 int N = sz(ed), pos[2] = {}, blk = 350; // \sim N/sqrt(Q)
 vi s(sz(Q)), res = s, I(N), L(N), R(N), in(N), par(N);
  add(0, 0), in[0] = 1;
  auto dfs = [&](int x, int p, int dep, auto& f) -> void {
    par[x] = p;
    L[x] = N;
    if (dep) I[x] = N++;
    for (int y : ed[x]) if (y != p) f(y, x, !dep, f);
    if (!dep) I[x] = N++;
   R[x] = N;
 };
 dfs(root, -1, 0, dfs);
#define K(x) pii(I[x[0]] / blk, I[x[1]] ^ -(I[x[0]] / blk & 1))
 iota(all(s), 0);
 sort(all(s), [\&](int s, int t){ return K(Q[s]) < K(Q[t]); });
 for (int qi : s) rep(end, 0, 2) {
    int &a = pos[end], b = Q[qi][end], i = 0;
#define step(c) { if (in[c]) { del(a, end); in[a] = 0; } \
                  else { add(c, end); in[c] = 1; } a = c; }
    while (!(L[b] \le L[a] \&\& R[a] \le R[b]))
     I[i++] = b, b = par[b];
    while (a != b) step(par[a]);
    while (i--) step(I[i]);
    if (end) res[qi] = calc();
  return res;
```

ArithTree.h

510c32, 16 lines

Description: Add arithmetic progression to a range: b, b + d, b + 2d... and query sum

Time: $\mathcal{O}(\log N)$ query and update

1745f0, 58 lines

```
struct ArithTree {
    ll base = 0, diff = 0, val = 0;
   ArithTree *1 = nullptr;
   ArithTree *r = nullptr;
    int tl, tr;
   ArithTree(int ll, int rr) : tl(ll), tr(rr) {
       if(tl != tr) {
```

int mid = (t1 + tr) / 2;

KDBit LazyIterativeSegTree LiChaoTree MinMaxSumTree

for (i++; i; i -= i & -i) ans += bit[i].guery(args...);

```
1 = new ArithTree(tl, mid);
            r = new ArithTree (mid + 1, tr);
    inline 11 sum(11 x) {
        return x * (x + 1) / 2;
    void apply(ll b, ll d) {
       base += b;
        diff += d;
        val += (tr - tl + 1) * b + sum(tr - tl) * d;
    void push() {
        int mid = (tl + tr) / 2;
        1->apply(base, diff);
        r->apply(base + (mid + 1 - tl) * diff, diff);
        base = 0;
        diff = 0;
    void pull() {
        val = 1->val + r->val;
    void update(int ql, int qr, ll& b, ll d) {
        if(tr < ql || tl > qr) return;
        if (ql <= tl && tr <= qr) {
            apply(b, d);
            b += d * (tr - tl + 1);
        push();
        1->update(ql, qr, b, d);
        r->update(gl, gr, b, d);
        pull();
   11 query(int ql, int qr) {
        if(tr < ql || tl > qr) return 0;
        if(gl <= tl && tr <= gr) return val;</pre>
        11 ret = 1->query(q1, qr) + r->query(q1, qr);
        pull();
        return ret;
};
KDBit.h
Description: k-dimensional BIT. BIT<int, N, M> gives an N \times M BIT.
Query bit.query(x1, x2, y1, y2) Update bit.update(x, y, delta)
Time: \mathcal{O}\left(\log^k n\right)
                                                      3b9692, 23 lines
template<class T, int... Ns> struct BIT {
 T val = 0;
  void update(T v) { val += v; }
  T query() { return val; }
template<class T, int N, int... Ns> struct BIT<T, N, Ns...> {
  BIT<T, Ns...> bit[N + 1];
  // map<int, BIT<T, Ns...>> bit; // if the mem use is too high
  template < class... Args > void update(int i, Args... args) {
    for (i++; i <= N; i += i & -i) bit[i].update(args...);</pre>
  template < class... Args > T query (int i, Args... args) {
   T ans = 0;
```

```
return ans:
 template < class... Args,
   enable_if_t<(sizeof...(Args) == 2 * sizeof...(Ns))>* =
     nullptr>
 T query(int 1, int r, Args... args) {
   return query(r, args...) - query(1 - 1, args...);
};
LazyIterativeSegTree.h
Description: Lazy Iterative Segment Tree
                                                     fcc5f1, 56 lines
template < class T, T (*e)(), T (*op)(T, T), class F, F (*id)(),
 T (*onto)(F, T), F (*comp)(F, F) >
struct lazy_segtree {
 int N, log, S;
 vector<T> d:
 vector<F> lz;
 lazy segtree (const vector<T>& v):
   N(sz(v)), log(_1g(2 * N - 1)), S(1 << log), d(2 * S, e()),
   for (int i = 0; i < N; i++) d[S + i] = v[i];</pre>
    for (int i = S - 1; i >= 1; i--) pull(i);
 void apply(int k, F f) {
   d[k] = onto(f, d[k]);
   if (k < S) lz[k] = comp(f, lz[k]);
 void push(int k) {
   apply(2 * k, lz[k]), apply(2 * k + 1, lz[k]), lz[k] = id();
 void push(int 1, int r) {
    int zl = __builtin_ctz(l), zr = __builtin_ctz(r);
   for (int i = log; i > min(zl, zr); i--) {
     if (i > zl) push(l >> i);
     if (i > zr) push((r - 1) >> i);
 void pull(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
 void set(int p, T x) {
   p += S;
   for (int i = log; i >= 1; i--) push(p >> i);
   for (d[p] = x; p /= 2;) pull(p);
 T query(int 1, int r) {
   if (1 == r) return T{};
   push(1 += S, r += S);
   T vl = e(), vr = e();
   for (; 1 < r; 1 /= 2, r /= 2) {
     if (1 & 1) v1 = op(v1, d[1++]);
     if (r \& 1) vr = op(d[--r], vr);
    return op(vl, vr);
 void update(int 1, int r, F f) {
   if (1 == r) return;
   push(1 += S, r += S);
    for (int a = 1, b = r; a < b; a /= 2, b /= 2) {
     if (a & 1) apply(a++, f);
     if (b & 1) apply (--b, f);
    int zl = __builtin_ctz(l), zr = __builtin_ctz(r);
    for (int i = min(zl, zr) + 1; i <= log; i++) {</pre>
     if (i > zl) pull(l >> i);
     if (i > zr) pull((r - 1) >> i);
```

```
LiChaoTree.h
```

Description: You're given a set S containing function of the same "type" (ex. lines, y=ax+b). The type of function need to have the transcending property (will be explained later). You need to handle two type of queries: Add a function to S Answer the maximum/minimum value at x=t considering all functions in S

Transcending Property: Given two functions f(x),g(x) of that type, if f(t) is greater than/smaller than g(t) for some x=t, then f(x) will be greater than/smaller than g(x) for x>t. In other words, once f(x) "win/lose" g(x), f(x) will continue to "win/lose" g(x).

```
const int MAXN = (int) (1e5 + 5);
struct Line {
 ld m, b;
 ld operator()(ld x) { return m * x + b; }
} a[MAXN * 4];
// Insert and query are inclusive-exclusive: [L, R]
void insert(int 1, int r, Line seg, int o=0) {
 if(1 + 1 == r) {
    if(seg(1) > a[o](1)) a[o] = seg;
 int mid= (1 + r) >> 1, 1 son = 0 * 2 + 1, r son = 0 * 2 + 2;
 if(a[o].m > seg.m) swap(a[o], seg);
 if(a[0](mid) < seg(mid)) {</pre>
   swap(a[o], seg);
    insert(1, mid, seg, lson);
  else insert (mid, r, seg, rson);
ld query(int 1, int r, int x, int o=0) {
 if(1 + 1 == r) return a[o](x);
 int mid = (1 + r) >> 1, 1son = 0 * 2 + 1, rson = 0 * 2 + 2;
 if(x < mid) return max(a[o](x), query(1, mid, x, lson));</pre>
 else return max(a[o](x), query(mid, r, x, rson));
```

MinMaxSumTree.h

11 min2; // Second Min value

11 minc; // Min value count

11 lazy; // Lazy tag

} T[MAXN * 4];

 $\bf Description:$ Segment Tree Beats: Range min with, max with, add, and sum query

```
<br/>dits/stdc++.h>
                                                    434c19, 223 lines
using namespace std;
using 11 = long long;
const int MAXN = 200001; // 1-based
int N;
11 A[MAXN];
// O(nlog^2n)
// If just range min with (or max with) can be reduced to O(
     nlogn)
// Inclusive - Inclusive
struct Node {
 11 sum; // Sum tag
 11 max1; // Max value
  11 max2; // Second Max value
  11 maxc; // Max value count
  ll min1; // Min value
```

```
void merge(int t) {
  // sum
 T[t].sum = T[t << 1].sum + T[t << 1 | 1].sum;
  // max
  if (T[t << 1].max1 == T[t << 1 | 1].max1) {
   T[t].max1 = T[t << 1].max1;
    T[t].max2 = max(T[t << 1].max2, T[t << 1 | 1].max2);
   T[t].maxc = T[t << 1].maxc + T[t << 1 | 1].maxc;
  } else {
    if (T[t << 1].max1 > T[t << 1 | 1].max1) {</pre>
     T[t].max1 = T[t << 1].max1;
     T[t].max2 = max(T[t << 1].max2, T[t << 1 | 1].max1);
     T[t].maxc = T[t << 1].maxc;
    } else {
     T[t].max1 = T[t << 1 | 1].max1;
     T[t].max2 = max(T[t << 1].max1, T[t << 1 | 1].max2);
     T[t].maxc = T[t << 1 | 1].maxc;
  // min
  if (T[t << 1].min1 == T[t << 1 | 1].min1) {</pre>
   T[t].min1 = T[t << 1].min1;
    T[t].min2 = min(T[t << 1].min2, T[t << 1 | 1].min2);
   T[t].minc = T[t << 1].minc + T[t << 1 | 1].minc;
  } else {
    if (T[t << 1].min1 < T[t << 1 | 1].min1) {</pre>
     T[t].min1 = T[t << 1].min1;
     T[t].min2 = min(T[t << 1].min2, T[t << 1 | 1].min1);
     T[t].minc = T[t << 1].minc;
     T[t].min1 = T[t << 1 | 1].min1;
     T[t].min2 = min(T[t << 1].min1, T[t << 1 | 1].min2);
     T[t].minc = T[t << 1 | 1].minc;
void push_add(int t, int t1, int tr, l1 v) {
 if (v == 0) { return; }
 T[t].sum += (tr - tl + 1) * v;
 T[t].max1 += v;
 if (T[t].max2 != -11INF) { T[t].max2 += v; }
 T[t].min1 += v;
 if (T[t].min2 != llINF) { T[t].min2 += v; }
 T[t].lazy += v;
// corresponds to a chmin update
void push max(int t, ll v, bool l) {
 if (v >= T[t].max1) { return; }
 T[t].sum -= T[t].max1 * T[t].maxc;
 T[t].max1 = v;
 T[t].sum += T[t].max1 * T[t].maxc;
  if (1) {
   T[t].min1 = T[t].max1;
  } else {
   if (v <= T[t].min1) {
     T[t].min1 = v;
   } else if (v < T[t].min2) {</pre>
     T[t].min2 = v;
// corresponds to a chmax update
void push min(int t, ll v, bool l) {
```

```
if (v <= T[t].min1) { return; }</pre>
  T[t].sum -= T[t].min1 * T[t].minc;
 T[t].min1 = v;
 T[t].sum += T[t].min1 * T[t].minc;
 if (1) {
   T[t].max1 = T[t].min1;
 } else {
    if (v >= T[t].max1) {
     T[t].max1 = v;
    } else if (v > T[t].max2) {
     T[t].max2 = v;
void pushdown(int t, int tl, int tr) {
 if (tl == tr) return;
  // sum
  int tm = (t1 + tr) >> 1;
  push_add(t << 1, t1, tm, T[t].lazy);</pre>
  push_add(t << 1 | 1, tm + 1, tr, T[t].lazy);</pre>
 T[t].lazy = 0;
  // max
  push_max(t << 1, T[t].max1, tl == tm);</pre>
  push_max(t << 1 | 1, T[t].max1, tm + 1 == tr);
 //min
  push_min(t << 1, T[t].min1, tl == tm);
  push_min(t << 1 | 1, T[t].min1, tm + 1 == tr);
void build(int t = 1, int tl = 0, int tr = N - 1) {
 T[t].lazy = 0;
 if (tl == tr) {
    T[t].sum = T[t].max1 = T[t].min1 = A[t1];
    T[t].maxc = T[t].minc = 1;
    T[t].max2 = -11INF;
   T[t].min2 = 11INF;
    return:
  int tm = (tl + tr) >> 1;
 build(t << 1, t1, tm);
 build(t << 1 | 1, tm + 1, tr);
 merge(t);
void update add(int 1, int r, 11 v, int t = 1, int t1 = 0, int
    tr = N - 1) {
  if (r < tl || tr < l) { return; }</pre>
 if (1 <= t1 && tr <= r) {
   push add(t, tl, tr, v);
   return:
 pushdown(t, tl, tr);
 int tm = (tl + tr) >> 1;
 update_add(1, r, v, t << 1, t1, tm);
 update add(1, r, v, t << 1 | 1, tm + 1, tr);
 merge(t);
void update_chmin(int 1, int r, 11 v, int t = 1, int t1 = 0,
    int tr = N - 1) {
 if (r < tl || tr < l || v >= T[t].max1) { return; }
 if (1 <= t1 && tr <= r && v > T[t].max2) {
    push_max(t, v, tl == tr);
    return;
```

```
pushdown(t, tl, tr);
 int tm = (tl + tr) >> 1;
 update_chmin(1, r, v, t << 1, t1, tm);
 update_chmin(1, r, v, t << 1 | 1, tm + 1, tr);
 merge(t);
void update chmax(int 1, int r, 11 v, int t = 1, int t1 = 0,
    int tr = N - 1) {
 if (r < tl || tr < l || v <= T[t].min1) { return; }</pre>
 if (1 <= t1 && tr <= r && v < T[t].min2) {</pre>
    push min(t, v, tl == tr);
   return;
 pushdown(t, tl, tr);
 int tm = (t1 + tr) >> 1;
 update_chmax(1, r, v, t << 1, t1, tm);
 update_chmax(1, r, v, t << 1 | 1, tm + 1, tr);
 merge(t);
11 query_sum(int 1, int r, int t = 1, int t1 = 0, int tr = N -
  if (r < tl || tr < l) { return 0; }</pre>
 if (1 <= t1 && tr <= r) { return T[t].sum; }</pre>
 pushdown(t, tl, tr);
 int tm = (tl + tr) >> 1;
  return query_sum(1, r, t << 1, t1, tm) +
         query_sum(1, r, t << 1 | 1, tm + 1, tr);
int main() {
 int Q;
 cin >> N >> O;
 for (int i = 0; i < N; i++) { cin >> A[i]; }
 build();
  for (int q = 0; q < Q; q++) {</pre>
   int t:
    cin >> t;
   if (t == 0) {
      int 1, r;
      cin >> 1 >> r >> x;
      update chmin(1, r - 1, x);
    } else if (t == 1) {
      int 1, r;
      11 x;
      cin >> 1 >> r >> x;
      update chmax(1, r - 1, x);
    } else if (t == 2) {
      int 1, r;
      11 x:
      cin >> 1 >> r >> x;
      update_add(1, r - 1, x);
    } else if (t == 3) {
      int 1, r;
      cin >> 1 >> r;
      cout << query_sum(1, r - 1) << '\n';
```

```
MonotonicQueue.h
```

```
Usage: Works exactly like std::queue;
monotonic_queue<T> gives a min queue,
and monotonic_queue<T, greater<T>> gives a max queue.
Time: Amortized \mathcal{O}(1) for push(), true \mathcal{O}(1) for pop()/min(\frac{1}{46cb6}, 23 lines
template < class T, class Compare = less < T>>
struct monotonic_queue: queue<T> {
  using q = queue<T>;
  deque<T> mq;
  Compare cmp;
  const T& min() { return assert(!q::empty()), mq.front(); }
  void update() {
    while (!mq.empty() && cmp(q::back(), mq.back()))
     mq.pop_back();
    mq.push_back(q::back());
  } () gog biov
    assert(!q::empty());
    if (!mq.empty() && !cmp(mq.front(), q::front()))
     mq.pop_front();
    q::pop();
  void push(const T& val) { queue<T>::push(val), update(); }
  void push(T&& val) { gueue<T>::push(val), update(); }
  template < class... Args > void emplace (Args&&... args) {
    q::emplace(args...), update();
};
PST.h
Description: Persistent segment tree with laziness
```

Description: Queue that maintains its minimum/maximum element.

```
Time: \mathcal{O}(\log N) per query, \mathcal{O}((n+q)\log n) memory
                                                        3656e8, 39 lines
struct PST {
 PST *1 = 0. *r = 0;
  int lo, hi;
 11 \text{ val} = 0. 1zadd = 0;
  PST(vl& v, int lo, int hi) : lo(lo), hi(hi) {
    if (lo + 1 < hi) {
     int mid = 10 + (hi - 10)/2;
     1 = new PST(v, lo, mid); r = new PST(v, mid, hi);
    else val = v[lo];
  11 query(int L, int R) {
   if (R < lo || hi < L) return 0; // idempotent</pre>
   if (L <= lo && hi <= R) return val;</pre>
   push();
    return 1->query(L, R) + r->query(L, R);
  PST * add(int L, int R, ll v) {
   if (R <= lo || hi <= L) return this;</pre>
    if (L <= lo && hi <= R) {
     n = new PST(*this);
     n->val += v;
     n->1 zadd += v;
    } else {
      push();
      n = new PST(*this);
     n->1 = 1->add(L, R, v);
      n->r = r->add(L, R, v);
   return n;
  void push() {
   if(lzadd == 0) return;
   l = l \rightarrow add(lo, hi, lzadd);
```

```
r = r -> add(lo, hi, lzadd);
    lzadd = 0:
};
Splay.h
Description: An implicit balanced BST. You only need to change update ()
If used for link-cut tree, code everything up to splay(). Time: amortized
O(\log n) for all operations
                                                      0d0cee, 75 lines
struct node {
  node *ch[2] = \{0\}, *p = 0;
  int cnt = 1, val;
  node(int val, node* l = 0, node* r = 0):
    ch{1, r}, val(val) {}
int cnt(node* x) { return x ? x->cnt : 0; }
int dir(node* p, node* x) { return p && p->ch[0] != x; }
void setLink(node* p, node* x, int d) {
  if (p) p\rightarrow ch[d] = x;
  if (x) x->p = p;
node* update(node* x) {
  if (!x) return 0;
  x->cnt = 1 + cnt(x->ch[0]) + cnt(x->ch[1]);
  setLink(x, x->ch[0], 0);
  setLink(x, x->ch[1], 1);
  return x;
void prop(node* x) {
  if (!x) return;
  // update(x); // needed if prop() can change subtree sizes
void rotate(node* x, int d) {
  if (!x || !x->ch[d]) return;
  node *y = x - > ch[d], *z = x - > p;
  setLink(x, y->ch[d^1], d);
  setLink(y, x, d^1);
  setLink(z, y, dir(z, x));
  update(x);
  update(y);
node* splay(node* x) {
  while (x && x->p) {
    node *y = x->p, *z = y->p;
    // prop(z), prop(y), prop(x); // needed for LCT
    int dy = dir(y, x), dz = dir(z, y);
    if (!z) rotate(y, dy);
    else if (dy == dz) rotate(z, dz), rotate(y, dy);
    else rotate(y, dy), rotate(z, dz);
  return x;
// the returned node becomes the new root, update the root
// pointer!
node* nodeAt (node* x, int pos) {
  if (!x) return 0;
  while (prop(x), cnt(x->ch[0]) != pos)
    if (pos < cnt(x \rightarrow ch[0])) x = x \rightarrow ch[0];
    else pos -= cnt(x->ch[0]) + 1, x = x->ch[1];
  return splay(x);
node* merge(node* 1, node* r) {
 if (!1 || !r) return 1 ?: r;
 l = nodeAt(l, cnt(l) - 1);
  setLink(l, r, 1);
  return update(1);
```

```
// first is everything < pos, second is >= pos
pair<node*, node*> split(node* t, int pos) {
  if (pos <= 0 || !t) return {0, t};</pre>
  if (pos > cnt(t)) return {t, 0};
  node *l = nodeAt(t, pos - 1), *r = l->ch[1];
  if (r) 1->ch[1] = r->p = 0;
  return {update(1), update(r)};
// insert a new node between pos-1 and pos
node* insert(node* t, int pos, int val) {
  auto [l, r] = split(t, pos);
  return update(new node(val, 1, r));
// apply lambda to all nodes in an inorder traversal
template<class F> void each(node* x, F f) {
  if (x) \text{ prop}(x), \text{ each}(x->\text{ch}[0], f), f(x), \text{ each}(x->\text{ch}[1], f);
KineticTree.h
Description: Query A[i] * T + B on a range, with updates
<br/>
<br/>
dits/stdc++.h>
                                                     ea1f15, 123 lines
// kinetic_tournament.cpp
// Eric K. Zhang; Aug. 29, 2020
// Suppose that you have an array containing pairs of
     nonnegative integers,
//A[i] and B[i]. You also have a global parameter T,
     corresponding to the
// "temperature" of the data structure. Your goal is to support
      the following
// queries on this data:
    -update(i, a, b): set A[i] = a and B[i] = b
    - query(s, e): return min\{s \le i \le e\} A[i] * T + B[i]
    - heaten(new_temp): set T = new_temp
         [precondition: new_temp >= current value of T]
// Time complexity:
    - query: O(log n)
    - update: O(log n)
    - heaten: O(\log^2 n) [amortized]
// Verification: FBHC 2020, Round 2, Problem D "Log Drivin"
     Hirin '"
using namespace std;
template <typename T = int64_t>
class kinetic tournament {
  const T INF = numeric_limits<T>::max();
  typedef pair<T, T> line;
                     // size of the underlying array
  size t n;
                     // current temperature
  T temp:
  vector<line> st; // tournament tree
  vector<T> melt; // melting temperature of each subtree
  inline T eval(const line& ln, T t) {
    return ln.first * t + ln.second;
  inline bool cmp(const line& line1, const line& line2) {
    auto x = eval(line1, temp);
    auto v = eval(line2, temp);
    if (x != y) return x < y;
    return line1.first < line2.first;</pre>
  T next_isect(const line& line1, const line& line2) {
```

```
if (line1.first > line2.first) {
   T delta = eval(line2, temp) - eval(line1, temp);
   T delta slope = line1.first - line2.first;
   assert(delta > 0);
   T mint = temp + (delta - 1) / delta_slope + 1;
   return mint > temp ? mint : INF; // prevent overflow
 return INF;
void recompute(size_t lo, size_t hi, size_t node) {
 if (lo == hi || melt[node] > temp) return;
  size t mid = (lo + hi) / 2;
  recompute(lo, mid, 2 * node + 1);
  recompute (mid + 1, hi, 2 * node + 2);
 auto line1 = st[2 * node + 1];
 auto line2 = st[2 * node + 2];
 if (!cmp(line1, line2))
   swap(line1, line2);
 st[node] = line1;
  melt[node] = min(melt[2 * node + 1], melt[2 * node + 2]);
  if (line1 != line2) {
   T t = next_isect(line1, line2);
   assert(t > temp);
   melt[node] = min(melt[node], t);
void update(size_t i, T a, T b, size_t lo, size_t hi, size_t
  if (i < lo || i > hi) return;
 if (lo == hi) {
   st[node] = \{a, b\};
   return;
  size t mid = (lo + hi) / 2;
 update(i, a, b, lo, mid, 2 * node + 1);
 update(i, a, b, mid + 1, hi, 2 * node + 2);
 melt[node] = 0;
  recompute(lo, hi, node);
T query(size_t s, size_t e, size_t lo, size_t hi, size_t node
  if (hi < s || lo > e) return INF;
 if (s <= lo && hi <= e) return eval(st[node], temp);</pre>
 size t mid = (lo + hi) / 2;
 return min(query(s, e, lo, mid, 2 * node + 1),
   query(s, e, mid + 1, hi, 2 * node + 2));
// Constructor for a kinetic tournament, takes in the size n
// underlying arrays a[...], b[...] as input.
kinetic_tournament(size_t size) : n(size), temp(0) {
  assert(size > 0);
  size_t seg_size = ((size_t) 2) << (64 - __builtin_clzll(n -</pre>
 st.resize(seg_size, {0, INF});
 melt.resize(seg_size, INF);
// Sets A[i] = a, B[i] = b.
void update(size_t i, T a, T b) {
 update(i, a, b, 0, n - 1, 0);
```

```
// Returns min{s <= i <= e} A[i] * T + B[i].
T query(size_t s, size_t e) {
  return query(s, e, 0, n - 1, 0);
}

// Increases the internal temperature to new_temp.
void heaten(T new_temp) {
  assert(new_temp >= temp);
  temp = new_temp;
  recompute(0, n - 1, 0);
};

};
```

Numerical (4)

4.1 Polynomials and recurrences

Polynomial.h

c9b7b0, 17 lines

b00bfe, 23 lines

```
struct Poly {
  vector<double> a;
  double operator() (double x) const {
    double val = 0;
    for (int i = sz(a); i--;) (val *= x) += a[i];
    return val;
  }
  void diff() {
    rep(i,1,sz(a)) a[i-1] = i*a[i];
    a.pop_back();
  }
  void divroot(double x0) {
    double b = a.back(), c; a.back() = 0;
    for(int i=sz(a)-1; i--;) c = a[i], a[i] = a[i+1]*x0+b, b=c;
    a.pop_back();
  }
};
```

PolyRoots.h

"Polynomial.h"

Description: Finds the real roots to a polynomial. **Usage:** polyRoots ($\{\{2,-3,1\}\},-1e9,1e9\}$ // solve $x^2-3x+2=0$ **Time:** $\mathcal{O}(n^2\log(1/\epsilon))$

```
vector<double> polyRoots(Poly p, double xmin, double xmax) {
 if (sz(p.a) == 2) { return {-p.a[0]/p.a[1]}; }
 vector<double> ret;
 Poly der = p;
 der.diff();
 auto dr = polyRoots(der, xmin, xmax);
 dr.push back(xmin-1);
 dr.push_back(xmax+1);
 sort (all (dr));
 rep(i, 0, sz(dr) - 1) {
   double l = dr[i], h = dr[i+1];
   bool sign = p(1) > 0;
   if (sign ^{(p(h) > 0)}) {
     rep(it,0,60) { // while (h - l > 1e-8)
       double m = (1 + h) / 2, f = p(m);
       if ((f \le 0) ^ sign) 1 = m;
       else h = m;
     ret.push_back((1 + h) / 2);
 return ret;
```

PolyInterpolate.h

Description: Given n points $(\mathbf{x}[\mathbf{i}], \mathbf{y}[\mathbf{i}])$, computes an n-1-degree polynomial p that passes through them: $p(x) = a[0] * x^0 + \ldots + a[n-1] * x^{n-1}$. For numerical precision, pick $x[k] = c * \cos(k/(n-1) * \pi), k = 0 \ldots n-1$. **Time:** $\mathcal{O}(n^2)$

```
typedef vector<double> vd;
vd interpolate(vd x, vd y, int n) {
  vd res(n), temp(n);
  rep(k,0,n-1) rep(i,k+1,n)
    y[i] = (y[i] - y[k]) / (x[i] - x[k]);
  double last = 0; temp[0] = 1;
  rep(k,0,n) rep(i,0,n) {
    res[i] += y[k] * temp[i];
    swap(last, temp[i]);
    temp[i] -= last * x[k];
  }
  return res;
}
```

BerlekampMassey.h

Description: Recovers any n-order linear recurrence relation from the first 2n terms of the recurrence. Useful for guessing linear recurrences after brute-forcing the first terms. Should work on any field, but numerical stability for floats is not guaranteed. Output will have size $\leq n$.

```
Usage: berlekampMassey(\{0, 1, 1, 3, 5, 11\}) // \{1, 2\}
Time: \mathcal{O}(N^2)
```

```
"../number-theory/ModPow.h"
                                                     96548b, 20 lines
vector<ll> berlekampMassey(vector<ll> s) {
 int n = sz(s), L = 0, m = 0;
 vector<ll> C(n), B(n), T;
 C[0] = B[0] = 1;
 11 b = 1;
 rep(i, 0, n) \{ ++m;
   11 d = s[i] % mod;
   rep(j, 1, L+1) d = (d + C[j] * s[i - j]) % mod;
   if (!d) continue;
   T = C; 11 coef = d * modpow(b, mod-2) % mod;
   rep(j, m, n) C[j] = (C[j] - coef * B[j - m]) % mod;
   if (2 * L > i) continue;
   L = i + 1 - L; B = T; b = d; m = 0;
 C.resize(L + 1); C.erase(C.begin());
 for (11& x : C) x = (mod - x) % mod;
 return C:
```

LinearRecurrence.h

Description: Generates the k'th term of an n-order linear recurrence $S[i] = \sum_j S[i-j-1]tr[j]$, given $S[0... \ge n-1]$ and tr[0...n-1]. Faster than matrix multiplication. Useful together with Berlekamp-Massey. **Usage:** linearRec($\{0, 1\}, \{1, 1\}, k \}$ // k'th Fibonacci number

```
Usage: linearRec({0, 1}, {1, 1}, k) // k'th Fibonacci number Time: \mathcal{O}(n^2 \log k)
```

```
typedef vector<ll> Poly;
ll linearRec(Poly S, Poly tr, ll k) {
  int n = sz(tr);

auto combine = [&](Poly a, Poly b) {
   Poly res(n * 2 + 1);
   rep(i,0,n+1) rep(j,0,n+1)
      res[i + j] = (res[i + j] + a[i] * b[j]) % mod;
  for (int i = 2 * n; i > n; --i) rep(j,0,n)
      res[i - 1 - j] = (res[i - 1 - j] + res[i] * tr[j]) % mod;
  res.resize(n + 1);
  return res;
```

```
Poly pol(n + 1), e(pol);
pol[0] = e[1] = 1;

for (++k; k; k /= 2) {
   if (k % 2) pol = combine(pol, e);
      e = combine(e, e);
}

ll res = 0;
rep(i,0,n) res = (res + pol[i + 1] * S[i]) % mod;
return res;
```

4.2 Optimization

GoldenSectionSearch.h

Description: Finds the argument minimizing the function f in the interval [a,b] assuming f is unimodal on the interval, i.e. has only one local minimum and no local maximum. The maximum error in the result is eps. Works equally well for maximization with a small change in the code. See Ternary-Search, in the Various chapter for a discrete version.

```
 \begin{array}{ll} \textbf{Usage: double func (double x) } \left\{ \text{ return } 4\text{+x+.}3\text{+x*x*x; } \right\} \\ \text{double xmin = gss}(-1000,1000,\text{func);} \\ \textbf{Time: } \mathcal{O}\left(\log((b-a)/\epsilon)\right) & 31\text{d}45\text{b}, 14 \text{ lines} \\ \textbf{double gss}(\textbf{double a, double b, double (*f) (double)}) \end{array}
```

```
double gss(double a, double b, double (*f) (double)) {
   double r = (sqrt(5)-1)/2, eps = 1e-7;
   double x1 = b - r*(b-a), x2 = a + r*(b-a);
   double f1 = f(x1), f2 = f(x2);
   while (b-a > eps)
    if (f1 < f2) { //change to > to find maximum
       b = x2; x2 = x1; f2 = f1;
       x1 = b - r*(b-a); f1 = f(x1);
   } else {
       a = x1; x1 = x2; f1 = f2;
       x2 = a + r*(b-a); f2 = f(x2);
   }
   return a;
}
```

HillClimbing.h

Description: Poor man's optimization for unimodal functions_{8eeeaf, 14 lines}

```
typedef array<double, 2> P;

template<class F> pair<double, P> hillClimb(P start, F f) {
   pair<double, P> cur(f(start), start);
   for (double jmp = 1e9; jmp > 1e-20; jmp /= 2) {
     rep(j,0,100) rep(dx,-1,2) rep(dy,-1,2) {
      P p = cur.second;
      p[0] += dx*jmp;
      p[1] += dy*jmp;
      cur = min(cur, make_pair(f(p), p));
   }
   return cur;
}
```

Integrate.h

Description: Simple integration of a function over an interval using Simpson's rule. The error should be proportional to h^4 , although in practice you will want to verify that the result is stable to desired precision when epsilon changes.

```
template < class F >
double quad (double a, double b, F f, const int n = 1000) {
   double h = (b - a) / 2 / n, v = f(a) + f(b);
   rep(i,1,n*2)
   v += f(a + i*h) * (i&1 ? 4 : 2);
```

```
return v * h / 3;
IntegrateAdaptive.h
Description: Fast integration using an adaptive Simpson's rule.
Usage: double sphereVolume = quad(-1, 1, [](double x) {
return quad(-1, 1, [&](double y)
return quad(-1, 1, [&] (double z)
return x*x + y*y + z*z < 1; }); }); }); }
                                                         92dd79, 15 lines
typedef double d;
#define S(a,b) (f(a) + 4*f((a+b) / 2) + f(b)) * (b-a) / 6
template <class F>
d rec(F& f, d a, d b, d eps, d S) {
 dc = (a + b) / 2;
 d S1 = S(a, c), S2 = S(c, b), T = S1 + S2;
 if (abs(T - S) <= 15 * eps || b - a < 1e-10)</pre>
    return T + (T - S) / 15;
  return rec(f, a, c, eps / 2, S1) + rec(f, c, b, eps / 2, S2);
template<class F>
d \text{ quad}(d \text{ a, } d \text{ b, } F \text{ f, } d \text{ eps} = 1e-8)  {
 return rec(f, a, b, eps, S(a, b));
```

Simplex.h

Description: Solves a general linear maximization problem: maximize c^Tx subject to $Ax \leq b$, $x \geq 0$. Returns -inf if there is no solution, inf if there are arbitrarily good solutions, or the maximum value of c^Tx otherwise. The input vector is set to an optimal x (or in the unbounded case, an arbitrary solution fulfilling the constraints). Numerical stability is not guaranteed. For better performance, define variables such that x = 0 is viable.

```
Usage: vvd A = \{\{1,-1\}, \{-1,1\}, \{-1,-2\}\}; vd b = \{1,1,-4\}, c = \{-1,-1\}, x; T val = LPSolver(A, b, c).solve(x);
```

Time: $\mathcal{O}(NM*\#pivots)$, where a pivot may be e.g. an edge relaxation. $\mathcal{O}(2^n)$ in the general case.

```
aa8530, 68 lines
typedef double T; // long double, Rational, double + mod<P>...
typedef vector<T> vd;
typedef vector<vd> vvd;
const T eps = 1e-8, inf = 1/.0;
#define MP make pair
#define ltj(X) if(s == -1 || MP(X[j], N[j]) < MP(X[s], N[s])) s=j
struct LPSolver {
 int m, n;
 vi N, B;
 vvd D:
 LPSolver (const vvd& A, const vd& b, const vd& c) :
    m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2), vd(n+2)) {
      rep(i, 0, m) rep(j, 0, n) D[i][j] = A[i][j];
      rep(i,0,m) { B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i];}
     rep(j,0,n) \{ N[j] = j; D[m][j] = -c[j]; \}
     N[n] = -1; D[m+1][n] = 1;
  void pivot(int r, int s) {
    T *a = D[r].data(), inv = 1 / a[s];
    rep(i, 0, m+2) if (i != r \&\& abs(D[i][s]) > eps) {
     T *b = D[i].data(), inv2 = b[s] * inv;
      rep(j, 0, n+2) b[j] -= a[j] * inv2;
     b[s] = a[s] * inv2;
```

rep(j, 0, n+2) **if** (j != s) D[r][j] *= inv;

rep(i,0,m+2) **if** (i != r) D[i][s] *= -inv;

```
D[r][s] = inv;
    swap(B[r], N[s]);
  bool simplex(int phase) {
    int x = m + phase - 1;
    for (;;) {
      int s = -1;
      rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);
      if (D[x][s] >= -eps) return true;
      int r = -1;
      rep(i,0,m) {
        if (D[i][s] <= eps) continue;</pre>
        if (r == -1 \mid | MP(D[i][n+1] / D[i][s], B[i])
                      < MP(D[r][n+1] / D[r][s], B[r])) r = i;
      if (r == -1) return false;
      pivot(r, s);
  T solve(vd &x) {
    int r = 0;
    rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
    if (D[r][n+1] < -eps) {
      pivot(r, n);
      if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;</pre>
      rep(i, 0, m) if (B[i] == -1) {
        int s = 0;
        rep(j,1,n+1) ltj(D[i]);
        pivot(i, s);
    bool ok = simplex(1); x = vd(n);
    rep(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
    return ok ? D[m][n+1] : inf;
};
```

4.3 Matrices

Determinant.h

Description: Calculates determinant of a matrix. Destroys the matrix. Time: $\mathcal{O}\left(N^3\right)$

```
double det(vector<vector<double>>& a) {
   int n = sz(a); double res = 1;
   rep(i,0,n) {
    int b = i;
   rep(j,i+1,n) if (fabs(a[j][i]) > fabs(a[b][i])) b = j;
   if (i != b) swap(a[i], a[b]), res *= -1;
   res *= a[i][i];
   if (res == 0) return 0;
   rep(j,i+1,n) {
       double v = a[j][i] / a[i][i];
       if (v != 0) rep(k,i+1,n) a[j][k] -= v * a[i][k];
   }
   }
  return res;
}
```

IntDeterminant.h

Description: Calculates determinant using modular arithmetics. Modulos can also be removed to get a pure-integer version. **Time:** $\mathcal{O}(N^3)$

```
const 11 mod = 12345;
11 det (vector<vector<11>>& a) {
  int n = sz(a); 11 ans = 1;
  rep(i,0,n) {
```

```
rep(j,i+1,n) {
    while (a[j][i] != 0) { // gcd step
        ll t = a[i][i] / a[j][i];
        if (t) rep(k,i,n)
            a[i][k] = (a[i][k] - a[j][k] * t) % mod;
        swap(a[i], a[j]);
        ans *= -1;
    }
} ans = ans * a[i][i] % mod;
    if (!ans) return 0;
}
return (ans + mod) % mod;
```

SolveLinear.h

Description: Solves A*x=b. If there are multiple solutions, an arbitrary one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost. **Time:** $\mathcal{O}\left(n^2m\right)$

```
typedef vector<double> vd;
const double eps = 1e-12;
int solveLinear(vector<vd>& A, vd& b, vd& x) {
  int n = sz(A), m = sz(x), rank = 0, br, bc;
  if (n) assert(sz(A[0]) == m);
  vi col(m); iota(all(col), 0);
  rep(i,0,n) {
    double v, bv = 0;
    rep(r,i,n) rep(c,i,m)
     if ((v = fabs(A[r][c])) > bv)
       br = r, bc = c, bv = v;
    if (bv <= eps) {
      rep(j,i,n) if (fabs(b[j]) > eps) return -1;
    swap(A[i], A[br]);
    swap(b[i], b[br]);
    swap(col[i], col[bc]);
    rep(j,0,n) swap(A[j][i], A[j][bc]);
    bv = 1/A[i][i];
    rep(j,i+1,n) {
     double fac = A[i][i] * bv;
     b[j] = fac * b[i];
     rep(k,i+1,m) A[j][k] = fac*A[i][k];
    rank++;
  x.assign(m, 0);
  for (int i = rank; i--;) {
   b[i] /= A[i][i];
   x[col[i]] = b[i];
    rep(j, 0, i) b[j] -= A[j][i] * b[i];
  return rank; // (multiple solutions if rank < m)
```

SolveLinear2.h

Description: To get all uniquely determined values of x back from Solve-Linear, make the following changes:

```
fail:; }
```

SolveLinearBinary.h

Description: Solves Ax = b over \mathbb{F}_2 . If there are multiple solutions, one is returned arbitrarily. Returns rank, or -1 if no solutions. Destroys A and b. **Time:** $\mathcal{O}\left(n^2m\right)$

```
typedef bitset<1000> bs;
int solveLinear(vector<bs>& A, vi& b, bs& x, int m) {
 int n = sz(A), rank = 0, br;
 assert(m \le sz(x));
 vi col(m); iota(all(col), 0);
 rep(i,0,n) {
   for (br=i; br<n; ++br) if (A[br].any()) break;</pre>
    if (br == n) {
      rep(j,i,n) if(b[j]) return -1;
     break;
    int bc = (int)A[br]._Find_next(i-1);
    swap(A[i], A[br]);
    swap(b[i], b[br]);
    swap(col[i], col[bc]);
    rep(j, 0, n) if (A[j][i] != A[j][bc]) {
     A[j].flip(i); A[j].flip(bc);
   rep(j,i+1,n) if (A[j][i]) {
     b[j] ^= b[i];
     A[j] ^= A[i];
   rank++;
 x = bs();
 for (int i = rank; i--;) {
   if (!b[i]) continue;
   x[col[i]] = 1;
   rep(j,0,i) b[j] ^= A[j][i];
 return rank; // (multiple solutions if rank < m)
```

MatrixInverse.h

Description: Invert matrix A. Returns rank; result is stored in A unless singular (rank < n). Can easily be extended to prime moduli; for prime powers, repeatedly set $A^{-1} = A^{-1}(2I - AA^{-1}) \pmod{p^k}$ where A^{-1} starts as the inverse of A mod p, and k is doubled in each step.

```
Time: \mathcal{O}(n^3)
                                                        ebfff6, 35 lines
int matInv(vector<vector<double>>& A) {
 int n = sz(A); vi col(n);
 vector<vector<double>> tmp(n, vector<double>(n));
 rep(i, 0, n) tmp[i][i] = 1, col[i] = i;
 rep(i,0,n) {
    int r = i, c = i;
    rep(j,i,n) rep(k,i,n)
     if (fabs(A[j][k]) > fabs(A[r][c]))
        r = j, c = k;
    if (fabs(A[r][c]) < 1e-12) return i;</pre>
    A[i].swap(A[r]); tmp[i].swap(tmp[r]);
      swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]);
    swap(col[i], col[c]);
    double v = A[i][i];
    rep(j, i+1, n) {
      double f = A[j][i] / v;
      A[j][i] = 0;
      rep(k, i+1, n) A[j][k] -= f*A[i][k];
```

```
rep(k,0,n) tmp[j][k] -= f*tmp[i][k];
}
rep(j,i+1,n) A[i][j] /= v;
rep(j,0,n) tmp[i][j] /= v;
A[i][i] = 1;
}

for (int i = n-1; i > 0; --i) rep(j,0,i) {
   double v = A[j][i];
   rep(k,0,n) tmp[j][k] -= v*tmp[i][k];
}

rep(i,0,n) rep(j,0,n) A[col[i]][col[j]] = tmp[i][j];
return n;
}
```

MatrixInverse-mod.h

Description: Invert matrix A modulo a prime. Returns rank; result is stored in A unless singular (rank < n). For prime powers, repeatedly set $A^{-1} = A^{-1}(2I - AA^{-1})$ (mod p^k) where A^{-1} starts as the inverse of A mod p, and k is doubled in each step.

```
Time: \mathcal{O}\left(n^3\right)
```

```
"../number-theory/ModPow.h"
                                                      a6f68f, 36 lines
int matInv(vector<vector<11>>& A) {
  int n = sz(A); vi col(n);
  vector<vector<ll>> tmp(n, vector<ll>(n));
  rep(i,0,n) tmp[i][i] = 1, col[i] = i;
  rep(i,0,n) {
    int r = i, c = i;
    rep(j,i,n) rep(k,i,n) if (A[j][k]) {
      r = j; c = k; goto found;
    return i;
found:
    A[i].swap(A[r]); tmp[i].swap(tmp[r]);
    rep(j,0,n) swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]
    swap(col[i], col[c]);
    11 v = modpow(A[i][i], mod - 2);
    rep(j,i+1,n)
      11 f = A[j][i] * v % mod;
      A[j][i] = 0;
      rep(k, i+1, n) A[j][k] = (A[j][k] - f*A[i][k]) % mod;
      rep(k, 0, n) tmp[j][k] = (tmp[j][k] - f*tmp[i][k]) % mod;
    rep(j, i+1, n) A[i][j] = A[i][j] * v % mod;
    rep(j, 0, n) tmp[i][j] = tmp[i][j] * v % mod;
    A[i][i] = 1;
  for (int i = n-1; i > 0; --i) rep(j, 0, i) {
    11 v = A[j][i];
    rep(k, 0, n) tmp[j][k] = (tmp[j][k] - v*tmp[i][k]) % mod;
  rep(i,0,n) rep(i,0,n)
    A[col[i]][col[j]] = tmp[i][j] % mod + (tmp[i][j] < 0 ? mod
  return n;
```

Tridiagonal.h

464cf3, 16 lines

e7beba, 17 lines

Description: x = tridiagonal(d, p, q, b) solves the equation system

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_{n-1} \end{pmatrix} = \begin{pmatrix} d_0 & p_0 & 0 & 0 & \cdots & 0 \\ q_0 & d_1 & p_1 & 0 & \cdots & 0 \\ 0 & q_1 & d_2 & p_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & q_{n-3} & d_{n-2} & p_{n-2} \\ 0 & 0 & \cdots & 0 & q_{n-2} & d_{n-1} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \end{pmatrix}$$

This is useful for solving problems on the type

```
a_i = b_i a_{i-1} + c_i a_{i+1} + d_i, \ 1 \le i \le n,
```

where a_0, a_{n+1}, b_i, c_i and d_i are known. a can then be obtained from

```
\begin{aligned} \{a_i\} &= \operatorname{tridiagonal}(\{1,-1,-1,...,-1,1\},\{0,c_1,c_2,...,c_n\},\\ \{b_1,b_2,...,b_n,0\},\{a_0,d_1,d_2,...,d_n,a_{n+1}\}). \end{aligned}
```

Fails if the solution is not unique.

If $|d_i| > |p_i| + |q_{i-1}|$ for all i, or $|d_i| > |p_{i-1}| + |q_i|$, or the matrix is positive definite, the algorithm is numerically stable and neither tr nor the check for diag[i] == 0 is needed.

Time: $\mathcal{O}\left(N\right)$

8f9fa8, 26 lines

```
typedef double T;
vector<T> tridiagonal(vector<T> diag, const vector<T>& super,
   const vector<T>& sub, vector<T> b) {
  int n = sz(b); vi tr(n);
  rep(i, 0, n-1) {
   if (abs(diag[i]) < 1e-9 * abs(super[i])) { // diag[i] = 0
     b[i+1] -= b[i] * diag[i+1] / super[i];
     if (i+2 < n) b[i+2] -= b[i] * sub[i+1] / super[i];</pre>
     diag[i+1] = sub[i]; tr[++i] = 1;
    } else {
     diag[i+1] -= super[i]*sub[i]/diag[i];
     b[i+1] -= b[i] * sub[i] / diag[i];
  for (int i = n; i--;) {
   if (tr[i]) {
     swap(b[i], b[i-1]);
     diag[i-1] = diag[i];
     b[i] /= super[i-1];
    } else {
     b[i] /= diag[i];
     if (i) b[i-1] -= b[i] * super[i-1];
  return b;
```

4.4 Fourier transforms

FastFourierTransform.h

Description: fft(a) computes $\hat{f}(k) = \sum_x a[x] \exp(2\pi i \cdot kx/N)$ for all k. N must be a power of 2. Useful for convolution: conv(a, b) = c, where $c[x] = \sum_x a[i]b[x-i]$. For convolution of complex numbers or more than two vectors: FFT, multiply pointwise, divide by n, reverse(start+1, end), FFT back. Rounding is safe if $(\sum_i a_i^2 + \sum_i b_i^2) \log_2 N < 9 \cdot 10^{14}$ (in practice 10^{16} ; higher for random inputs). Otherwise, use NTT/FFTMod. **Time:** $\mathcal{O}(N \log N)$ with N = |A| + |B| (~1s for $N = 2^{22}$)

```
typedef complex<double> C;
typedef vector<double> vd;
void fft(vector<C>& a) {
   int n = sz(a), L = 31 - __builtin_clz(n);
   static vector<complex<long double>> R(2, 1);
   static vector<C> rt(2, 1); // (^ 10% faster if double)
   for (static int k = 2; k < n; k *= 2) {
     R.resize(n); rt.resize(n);
   auto x = polar(1.0L, acos(-1.0L) / k);</pre>
```

rep(i,k,2*k) rt[i] = R[i] = i&1 ? R[i/2] * x : R[i/2];

```
vi rev(n);
  rep(i, 0, n) \ rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
  for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
     Cz = rt[j+k] * a[i+j+k]; // (25\% faster if hand-rolled)
     a[i + j + k] = a[i + j] - z;
     a[i + j] += z;
vd conv(const vd& a, const vd& b) {
 if (a.empty() || b.empty()) return {};
  vd res(sz(a) + sz(b) - 1);
 int L = 32 - __builtin_clz(sz(res)), n = 1 << L;</pre>
  vector<C> in(n), out(n);
 copy(all(a), begin(in));
  rep(i,0,sz(b)) in[i].imag(b[i]);
  fft(in);
  for (C& x : in) x *= x;
  rep(i, 0, n) out[i] = in[-i & (n - 1)] - conj(in[i]);
  rep(i, 0, sz(res)) res[i] = imag(out[i]) / (4 * n);
  return res;
```

FastFourierTransformMod.h

Description: Higher precision FFT, can be used for convolutions modulo arbitrary integers as long as $N \log_2 N \cdot \text{mod} < 8.6 \cdot 10^{14}$ (in practice 10^{16} or higher). Inputs must be in [0, mod).

Time: $\mathcal{O}(N \log N)$, where N = |A| + |B| (twice as slow as NTT or FFT)

"FastFourierTransform.h"

b82773, 22 lin

```
typedef vector<ll> v1;
template<int M> v1 convMod(const v1 &a, const v1 &b) {
 if (a.empty() || b.empty()) return {};
 vl res(sz(a) + sz(b) - 1);
 int B=32-__builtin_clz(sz(res)), n=1<<B, cut=int(sqrt(M));</pre>
 vector<C> L(n), R(n), outs(n), outl(n);
  rep(i,0,sz(a)) L[i] = C((int)a[i] / cut, (int)a[i] % cut);
 rep(i,0,sz(b)) R[i] = C((int)b[i] / cut, (int)b[i] % cut);
 fft(L), fft(R);
 rep(i,0,n) {
    int j = -i \& (n - 1);
    outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);
    outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;
 fft(outl), fft(outs);
  rep(i,0,sz(res)) {
    11 \text{ av} = 11(\text{real}(\text{outl}[i]) + .5), \text{ cv} = 11(\text{imag}(\text{outs}[i]) + .5);
    11 \text{ bv} = 11(\text{imag}(\text{outl}[i]) + .5) + 11(\text{real}(\text{outs}[i]) + .5);
    res[i] = ((av % M * cut + bv) % M * cut + cv) % M;
  return res;
```

NumberTheoreticTransform.h

Description: ntt(a) computes $\hat{f}(k) = \sum_{x} a[x]g^{xk}$ for all k, where $g = \operatorname{root}^{(mod-1)/N}$. N must be a power of 2. Useful for convolution modulo specific nice primes of the form 2^ab+1 , where the convolution result has size at most 2^a . For arbitrary modulo, see FFTMod. $\operatorname{conv}(a, b) = c$, where $c[x] = \sum_{x} a[i]b[x-i]$. For manual convolution: NTT the inputs, multiply pointwise, divide by n, reverse(start+1, end), NTT back. Inputs must be in [0, mod).

```
Time: \mathcal{O}(N \log N)
```

```
"../number-theory/ModPow.h" ced03d, 33 lines const 11 mod = (119 << 23) + 1, root = 62; // = 998244353 // For p < 2^30 there is also e.g. 5 << 25, 7 << 26, 479 << 21 // and 483 << 21 (same root). The last two are > 10^59.
```

```
typedef vector<ll> v1;
void ntt(vl &a) {
 int n = sz(a), L = 31 - __builtin_clz(n);
 static v1 rt(2, 1);
 for (static int k = 2, s = 2; k < n; k *= 2, s++) {
   rt.resize(n);
   11 z[] = \{1, modpow(root, mod >> s)\};
   rep(i,k,2*k) rt[i] = rt[i / 2] * z[i & 1] % mod;
 vi rev(n):
 rep(i, 0, n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
 rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
 for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
     11 z = rt[j + k] * a[i + j + k] % mod, &ai = a[i + j];
     a[i + j + k] = ai - z + (z > ai ? mod : 0);
     ai += (ai + z >= mod ? z - mod : z);
vl conv(const vl &a, const vl &b) {
 if (a.empty() || b.empty()) return {};
 int s = sz(a) + sz(b) - 1, B = 32 - _builtin_clz(s), n = 1
       << B;
 int inv = modpow(n, mod - 2);
 vl L(a), R(b), out(n);
 L.resize(n), R.resize(n);
 ntt(L), ntt(R);
 rep(i,0,n) out[-i \& (n-1)] = (ll)L[i] * R[i] % mod * inv %
 ntt(out);
 return {out.begin(), out.begin() + s};
```

FastSubsetTransform.h

Description: Transform to a basis with fast convolutions of the form $c[z] = \sum_{z=x \oplus y} a[x] \cdot b[y]$, where \oplus is one of AND, OR, XOR. The size of a must be a power of two.

```
Time: \mathcal{O}(N \log N)
```

4.5 Numerical Extra

IntegrateAdaptiveTyler.h

FST(a, 1); return a;

```
Description: Gets area under a curve
```

```
return A;
    ld left = adapt(f, a, m, A1, max(iters-1, 0));
    ld right = adapt(f, m, b, A2, max(iters-1, 0));
    return left + right;
template < class F>
ld integrate(F f, ld a, ld b, int iters = 0) {
    return adapt(f, a, b, approx(a, b), iters);
```

NewtonsMethod.h

Description: Solves a system on non-linear equations jacobianMatrix.h

6af945, 10 lines template<class F, class T> void solveNonlinear(F f, vector<T> &x) { int n = sz(x);rep(iter, 0, 100) { vector<vector<T>> J = makeJacobian(f, x); matInv(J); vector < T > dx = J * f(x);x = x - dx;

RungeKutta4.h

Description: Numerically approximates the solution to a system of Differential Equations 25c1ac, 12 lines

```
template < class F, class T>
T solveSystem(F f, T x, ld time, int iters) {
    double h = time / iters;
    for(int iter = 0; iter < iters; iter++) {</pre>
       T k1 = f(x);
       A k2 = f(x + 0.5 * h * k1);
       A k3 = f(x + 0.5 * h * k2);
       A k4 = f(x + h * k3);
       x = x + h / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4);
    return x;
```

Number theory (5)

5.1 Modular arithmetic

Modular Arithmetic.h

Description: Operators for modular arithmetic. You need to set mod to some number first and then you can use the structure.

```
35bfea, 18 lines
const 11 mod = 17; // change to something else
struct Mod {
 11 x;
 Mod(ll xx) : x(xx) \{ \}
  Mod operator+(Mod b) { return Mod((x + b.x) % mod); }
  Mod operator-(Mod b) { return Mod((x - b.x + mod) % mod); }
  Mod operator*(Mod b) { return Mod((x * b.x) % mod); }
  Mod operator/(Mod b) { return *this * invert(b); }
  Mod invert (Mod a) {
   ll x, y, q = euclid(a.x, mod, x, y);
   assert(q == 1); return Mod((x + mod) % mod);
  Mod operator^(ll e) {
   if (!e) return Mod(1);
   Mod r = *this ^ (e / 2); r = r * r;
   return e&1 ? *this * r : r;
```

ModInverse.h

Description: Pre-computation of modular inverses. Assumes LIM < mod and that mod is a prime. 6f684f, 3 lines

```
const 11 mod = 1000000007, LIM = 200000;
11* inv = new 11[LIM] - 1; inv[1] = 1;
rep(i,2,LIM) inv[i] = mod - (mod / i) * inv[mod % i] % mod;
```

ModPow.h

b83e45, 8 lines

c040b8, 11 lines

```
const 11 mod = 1000000007; // faster if const
ll modpow(ll b, ll e) {
 11 \text{ ans} = 1;
 for (; e; b = b * b % mod, e /= 2)
   if (e & 1) ans = ans * b % mod;
 return ans;
```

ModLog.h

Description: Returns the smallest x > 0 s.t. $a^x = b \pmod{m}$, or -1 if no such x exists. modLog(a,1,m) can be used to calculate the order of a. Time: $\mathcal{O}\left(\sqrt{m}\right)$

```
11 modLog(ll a, ll b, ll m) {
 unordered map<11, 11> A:
 while (i \le n \& \& (e = f = e * a % m) != b % m)
  A[e * b % m] = i++;
 if (e == b % m) return j;
 if (__gcd(m, e) == __gcd(m, b))
   rep(i, 2, n+2) if (A.count(e = e * f % m))
    return n * i - A[e];
 return -1:
```

ModSum.h

Description: Sums of mod'ed arithmetic progressions.

modsum(to, c, k, m) = $\sum_{i=0}^{\text{to}-1} (ki+c)\%m$. divsum is similar but for floored division.

Time: $\log(m)$, with a large constant.

```
typedef unsigned long long ull;
ull sumsq(ull to) { return to /2 * ((to-1) | 1); }
ull divsum(ull to, ull c, ull k, ull m) {
 ull res = k / m * sumsq(to) + c / m * to;
 k %= m; c %= m;
 if (!k) return res;
 ull to2 = (to * k + c) / m;
 return res + (to - 1) * to2 - divsum(to2, m-1 - c, m, k);
ll modsum(ull to, ll c, ll k, ll m) {
 c = ((c % m) + m) % m;
 k = ((k \% m) + m) \% m;
 return to * c + k * sumsq(to) - m * divsum(to, c, k, m);
```

ModMulLL.h

Description: Calculate $a \cdot b \mod c$ (or $a^b \mod c$) for $0 < a, b < c < 7.2 \cdot 10^{18}$. Time: $\mathcal{O}(1)$ for modmul, $\mathcal{O}(\log b)$ for modpow bbbd8f, 11 lines

```
typedef unsigned long long ull;
ull modmul(ull a, ull b, ull M) {
 ll ret = a * b - M * ull(1.L / M * a * b);
 return ret + M * (ret < 0) - M * (ret >= (11)M);
```

```
ull modpow(ull b, ull e, ull mod) {
 ull ans = 1;
 for (; e; b = modmul(b, b, mod), e /= 2)
   if (e & 1) ans = modmul(ans, b, mod);
```

ModSart.h

Description: Tonelli-Shanks algorithm for modular square roots. Finds xs.t. $x^2 = a \pmod{p}$ (-x gives the other solution).

Time: $\mathcal{O}(\log^2 p)$ worst case, $\mathcal{O}(\log p)$ for most p "ModPow.h"

```
19a793, 24 lines
ll sgrt(ll a, ll p) {
 a %= p; if (a < 0) a += p;
 if (a == 0) return 0;
 assert (modpow(a, (p-1)/2, p) == 1); // else no solution
 if (p % 4 == 3) return modpow(a, (p+1)/4, p);
  // a^{(n+3)/8} \text{ or } 2^{(n+3)/8} * 2^{(n-1)/4} \text{ works if } p \% 8 == 5
  11 s = p - 1, n = 2;
 int r = 0, m;
  while (s % 2 == 0)
   ++r, s /= 2;
  while (modpow(n, (p-1) / 2, p) != p-1) ++n;
  11 x = modpow(a, (s + 1) / 2, p);
  ll b = modpow(a, s, p), g = modpow(n, s, p);
  for (;; r = m) {
   11 t = b:
    for (m = 0; m < r && t != 1; ++m)
     t = t * t % p;
    if (m == 0) return x;
    11 qs = modpow(q, 1LL \ll (r - m - 1), p);
    g = gs * gs % p;
   x = x * qs % p;
    b = b * q % p;
```

5.2 Primality

FastEratosthenes.h

Description: Prime sieve for generating all primes smaller than LIM. Time: LIM=1e9 $\approx 1.5s$

```
const int LIM = 1e6;
bitset<LIM> isPrime;
vi eratosthenes() {
  const int S = (int)round(sqrt(LIM)), R = LIM / 2;
  vi pr = \{2\}, sieve(S+1); pr.reserve(int(LIM/log(LIM) *1.1));
  vector<pii> cp;
  for (int i = 3; i <= S; i += 2) if (!sieve[i]) {</pre>
    cp.push_back(\{i, i * i / 2\});
    for (int j = i * i; j <= S; j += 2 * i) sieve[j] = 1;</pre>
  for (int L = 1; L <= R; L += S) {
    array<bool, S> block{};
    for (auto &[p, idx] : cp)
      for (int i=idx; i < S+L; idx = (i+=p)) block[i-L] = 1;</pre>
    rep(i, 0, min(S, R - L))
      if (!block[i]) pr.push back((L + i) * 2 + 1);
  for (int i : pr) isPrime[i] = 1;
  return pr;
```

MillerRabin.h

Description: Deterministic Miller-Rabin primality test. Guaranteed to work for numbers up to $7 \cdot 10^{18}$; for larger numbers, use Python and extend A randomly.

Time: 7 times the complexity of $a^b \mod c$.

```
"ModMullL.h" 60dcd1, 12 lines
bool isPrime(ull n) {
   if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;
   ull A[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022},
        s = __builtin_ctzll(n-1), d = n >> s;
   for (ull a : A) { // ^ count trailing zeroes
        ull p = modpow(a%n, d, n), i = s;
        while (p != 1 && p != n - 1 && a % n && i--)
        p = modmul(p, p, n);
        if (p != n-1 && i != s) return 0;
   }
   return 1;
}
```

Factor.h

Description: Pollard-rho randomized factorization algorithm. Returns prime factors of a number, in arbitrary order (e.g. 2299 -> {11, 19, 11}).

Time: $\mathcal{O}\left(n^{1/4}\right)$, less for numbers with small factors.

```
"ModMulLL.h", "MillerRabin.h"
                                                      a33cf6, 18 lines
ull pollard(ull n) {
  auto f = [n] (ull x) { return modmul(x, x, n) + 1; };
  ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
  while (t++ % 40 || __gcd(prd, n) == 1) {
   if (x == y) x = ++i, y = f(x);
   if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q;
   x = f(x), y = f(f(y));
 return __gcd(prd, n);
vector<ull> factor(ull n) {
 if (n == 1) return {};
  if (isPrime(n)) return {n};
  ull x = pollard(n);
  auto l = factor(x), r = factor(n / x);
 1.insert(l.end(), all(r));
 return 1:
```

5.3 Divisibility

x = (x % m + m) % m;

return x;

euclid.h

Description: Finds two integers x and y, such that $ax + by = \gcd(a, b)$. If you just need gcd, use the built in agcd instead. If a and b are coprime, then a is the inverse of a (mod b).

x is the inverse of a (mod b).

11 euclid(11 a, 11 b, 11 &x, 11 &y) {
 if (!b) return x = 1, y = 0, a;
 11 d = euclid(b, a % b, y, x);
 return y -= a / b * x, d;
}

// a and m are coprime

11 mod_inverse(11 a, 11 m) {
 11 x, y;
 11 g = euclid(a, m, x, y);

 // No solution
 if (g != 1) {
 return -1;
 }
 else {

CRT.h

```
Ort. If Description: Chinese Remainder Theorem. crt (a, m, b, n) computes x such that x \equiv a \pmod{m}, x \equiv b \pmod{n}. If |a| < m and |b| < n, x will obey 0 \le x < \operatorname{lcm}(m,n). Assumes mn < 2^{62}. Time: \log(n)

"euclid.h"

O4d93a, 7 lines

11 crt (11 a, 11 m, 11 b, 11 n) {

if (n > m) swap (a, b), swap (m, n);

11 x, y, g = euclid (m, n, x, y);

assert ((a - b) % g = 0); // else no solution

x = (b - a) % n * x % n / g * m + a;

return x < 0? x + m*n/g: x;
```

5.3.1 Bézout's identity

For $a \neq b \neq 0$, then d = gcd(a, b) is the smallest positive integer for which there are integer solutions to

$$ax + by = d$$

If (x, y) is one solution, then all solutions are given by

$$\left(x + \frac{kb}{\gcd(a,b)}, y - \frac{ka}{\gcd(a,b)}\right), \quad k \in \mathbb{Z}$$

phiFunction.h

Description: Euler's ϕ function is defined as $\phi(n) := \#$ of positive integers $\leq n$ that are coprime with n. $\phi(1) = 1$, p prime $\Rightarrow \phi(p^k) = (p-1)p^{k-1}$, m, n coprime $\Rightarrow \phi(mn) = \phi(m)\phi(n)$. If $n = p_1^{k_1}p_2^{k_2}...p_r^{k_r}$ then $\phi(n) = (p_1-1)p_1^{k_1-1}...(p_r-1)p_r^{k_r-1}$. $\phi(n) = n \cdot \prod_{p|n} (1-1/p)$. $\sum_{d|n} \phi(d) = n$, $\sum_{1 \leq k \leq n, \gcd(k,n)=1} k = n\phi(n)/2, n > 1$ **Euler's thm**: a, n coprime $\Rightarrow a^{\phi(n)} \equiv 1 \pmod{n}$.

Fermat's little thm: $p \text{ prime } \Rightarrow a^{p-1} \equiv 1 \pmod{p} \ \forall a.$

cf7d6d, 8 lines

```
const int LIM = 5000000;
int phi[LIM];

void calculatePhi() {
  rep(i,0,LIM) phi[i] = i&1 ? i : i/2;
  for (int i = 3; i < LIM; i += 2) if(phi[i] == i)
     for (int j = i; j < LIM; j += i) phi[j] -= phi[j] / i;
}</pre>
```

5.4 Fractions

ContinuedFractions.h

Description: Given N and a real number $x \ge 0$, finds the closest rational approximation p/q with $p,q \le N$. It will obey $|p/q - x| \le 1/qN$.

For consecutive convergents, $p_{k+1}q_k - q_{k+1}p_k = (-1)^k$. $(p_k/q_k$ alternates between > x and < x.) If x is rational, y eventually becomes ∞ ; if x is the root of a degree 2 polynomial the a's eventually become cyclic.

Time: $\mathcal{O}(\log N)$ dd6c5e, 21 lines

```
make_pair(NP, NQ) : make_pair(P, Q);
}
if (abs(y = 1/(y - (d)a)) > 3*N) {
    return {NP, NQ};
}
LP = P; P = NP;
LQ = Q; Q = NQ;
}
```

FracBinarySearch.h

Description: Given f and N, finds the smallest fraction $p/q \in [0,1]$ such that f(p/q) is true, and $p,q \leq N$. You may want to throw an exception from f if it finds an exact solution, in which case N can be removed.

Usage: fracBS([](Frac f) { return f.p>=3*f.q; }, 10); // $\{1,3\}$ Time: $\mathcal{O}(\log(N))$

```
struct Frac { 11 p, q; };
template<class F>
Frac fracBS(F f, 11 N) {
 bool dir = 1, A = 1, B = 1;
 Frac lo{0, 1}, hi{1, 1}; // Set hi to 1/0 to search (0, N]
  if (f(lo)) return lo;
  assert(f(hi));
  while (A | | B) {
   11 adv = 0, step = 1; // move hi if dir, else lo
    for (int si = 0; step; (step *= 2) >>= si) {
      adv += step;
      Frac mid{lo.p * adv + hi.p, lo.q * adv + hi.q};
      if (abs(mid.p) > N || mid.q > N || dir == !f(mid)) {
        adv -= step; si = 2;
    hi.p += lo.p * adv;
    hi.q += lo.q * adv;
    dir = !dir;
    swap(lo, hi);
    A = B; B = !!adv;
 return dir ? hi : lo;
```

5.5 Pythagorean Triples

The Pythagorean triples are uniquely generated by

$$a = k \cdot (m^2 - n^2), \ b = k \cdot (2mn), \ c = k \cdot (m^2 + n^2),$$

with m > n > 0, k > 0, $m \perp n$, and either m or n even.

5.6 Primes

p=962592769 is such that $2^{21}\mid p-1$, which may be useful. For hashing use 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52-bit). There are 78498 primes less than 1 000 000.

Primitive roots exist modulo any prime power p^a , except for p=2, a>2, and there are $\phi(\phi(p^a))$ many. For p=2, a>2, the group $\mathbb{Z}_{2^a}^{\times}$ is instead isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2^{a-2}}$.

5.7 Estimates

 $\sum_{d|n} d = O(n \log \log n).$

The number of divisors of n is at most around 100 for n < 5e4, 500 for n < 1e7, 2000 for n < 1e10, 200 000 for n < 1e19.

5.8 Mobius Function

$$\mu(n) = \begin{cases} 0 & n \text{ is not square free} \\ 1 & n \text{ has even number of prime factors} \\ -1 & n \text{ has odd number of prime factors} \end{cases}$$

Mobius Inversion:

$$g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d)g(n/d)$$

Other useful formulas/forms:

```
\begin{split} &\sum_{d|n} \mu(d) = [n=1] \text{ (very useful)} \\ &g(n) = \sum_{n|d} f(d) \Leftrightarrow f(n) = \sum_{n|d} \mu(d/n) g(d) \\ &g(n) = \sum_{1 \leq m \leq n} f(\left\lfloor \frac{n}{m} \right\rfloor) \Leftrightarrow f(n) = \sum_{1 \leq m \leq n} \mu(m) g(\left\lfloor \frac{n}{m} \right\rfloor) \end{split}
```

5.9 Number Theory Extra

BinomialCoefficient.h

Description: Binomial Coefficient under mod

Time: $\mathcal{O}\left(MAXN\right)$

30d614, 19 lines

```
const int MAXN = (int) (1e6 + 5);
const int MOD = (int) (1e9 + 7);

ll fact[MAXN], inv_fact[MAXN], inv[MAXN];

void precomp() {
    for(int i = 0; i <= 1; i++) {
        fact[i] = inv_fact[i] = inv[i] = 1;
    }
    for(int i = 2; i < MAXN; i++) {
        fact[i] = (fact[i - 1] * i) % MOD;
        inv[i] = inv[MOD % i] * (MOD - MOD / i) % MOD;
        inv_fact[i] = (inv_fact[i - 1] * inv[i]) % MOD;
    }
}

ll binomial(int n, int k) {
    return fact[n] * inv_fact[k] % MOD * inv_fact[n - k] % MOD;
}</pre>
```

CountPrimes.h

Description: Count primes in $O(N^{\frac{3}{4}})$.

85fe69, 27 lines

```
const int SON = 320'000;
bool notPrime[SON];
11 countprimes(11 n) {
  vector<ll> divs;
  for (ll i = 1; i * i <= n; i++) {
    divs.push_back(i);
    divs.push_back(n / i);
  sort (all (divs));
  divs.erase(unique(all(divs)), end(divs));
  vector<ll> dp(sz(divs));
  for (int i = 0; i < sz(divs); i++) dp[i] = divs[i] - 1;
  11 \text{ sq} = \text{sqrt}(n), \text{ sum} = 0;
  auto idx = [\&](ll x) \rightarrow int {
   return x \le sq ? x - 1 : (sz(divs) - n / x);
  for (11 p = 2; p * p \le n; p++)
    if (!notPrime[p]) {
      11 p2 = p * p;
      for (ll i = sz(divs) - 1; i \ge 0 && divs[i] \ge p2; i--)
```

```
dp[i] -= dp[idx(divs[i] / p)] - sum;
sum += 1;
for (11 i = p * p; i < SQN && i * i <= n; i += p)
    notPrime[i] = 1;
}
return dp.back();
}</pre>
```

Eratosthenes.h

Description: Prime sieve for generating all primes up to a certain limit. is prime [i] is true iff i is a prime.

Time: $\lim_{n\to\infty} 100'000'000 \approx 0.8$ s. Runs 30% faster if only odd indices are stored.

```
const int MAX_PR = 5'000'000;
bitset<MAX_PR> isprime;
vi eratosthenesSieve(int lim) {
  isprime.set(); isprime[0] = isprime[1] = 0;
  for (int i = 4; i < lim; i += 2) isprime[i] = 0;
  for (int i = 3; i*i < lim; i += 2) if (isprime[i])
    for (int j = i*i; j < lim; j += i*2) isprime[j] = 0;
  vi pr;
  rep(i,2,lim) if (isprime[i]) pr.push_back(i);
  return pr;
}
```

Josephus.h

Description: Computes answer for the josephus problem for large n and small k in klogn $$_{\rm 7a212b,\ 10\ lines}$$

```
int josephus(int n, int k) {
    if(n == 1)    return 0;
    if(k == 1)    return n - 1;
    if(k > n)    return (josephus(n-1, k) + k) % n;
    int cnt = n / k, res = josephus(n - cnt, k);
    res -= n % k;
    if(res < 0)    res += n;
    else res += res / (k - 1);
    return res;
}</pre>
```

Combinatorial (6)

binomialModPrime.h

Description: Lucas' thm: Let n, m be non-negative integers and p a prime. Write $n = n_k p^k + ... + n_1 p + n_0$ and $m = m_k p^k + ... + m_1 p + m_0$. Then $\binom{n}{m} \equiv \prod_{i=0}^k \binom{n_i}{m_i} \pmod{p}$. fact and invfact must hold pre-computed factorials / inverse factorials, e.g. from ModInverse.h.

```
Time: O(\log_p n) c16cde, 10 lines

11 chooseModP(11 n, 11 m, int p, vi& fact, vi& invfact) {
   11 c = 1;
   while (n || m) {
    11 a = n % p, b = m % p;
    if (a < b) return 0;
    c = c * fact[a] % p * invfact[b] % p * invfact[a - b] % p;
    n /= p, m /= p;
}
return c;
}
```

schreier-sims.h

Description: Check group membership of permutation groups_{949a6e}, 54 lines

```
struct Perm {
  int a[N];
  Perm() {
    for (int i = 1; i <= n; ++i) a[i] = i;
}</pre>
```

```
friend Perm operator* (const Perm &lhs, const Perm &rhs) {
    static Perm res;
    for (int i = 1; i <= n; ++i) res.a[i] = lhs.a[rhs.a[i]];</pre>
    return res;
  friend Perm inv(const Perm &cur) {
    static Perm res:
    for (int i = 1; i <= n; ++i) res.a[cur.a[i]] = i;</pre>
    return res:
class Group {
 bool flag[N];
 Perm w[N];
 std::vector<Perm> x;
public:
  void clear(int p) {
    memset(flag, 0, sizeof flag);
    for (int i = 1; i <= n; ++i) w[i] = Perm();</pre>
    flag[p] = true;
    x.clear();
 friend bool check (const Perm &, int);
  friend void insert(const Perm &, int);
 friend void updateX(const Perm &, int);
bool check(const Perm &cur, int k) {
 if (!k) return true;
 int t = cur.a[k];
  return g[k].flag[t] ? check(g[k].w[t] * cur, k - 1) : false;
void updateX(const Perm &, int);
void insert(const Perm &cur, int k) {
 if (check(cur, k)) return;
 g[k].x.push_back(cur);
 for (int i = 1; i <= n; ++i)</pre>
    if (q[k].flaq[i]) updateX(cur * inv(q[k].w[i]), k);
void updateX(const Perm &cur, int k) {
 int t = cur.a[k];
 if (g[k].flag[t]) {
    insert(q[k].w[t] * cur, k - 1);
    q[k].w[t] = inv(cur);
    g[k].flag[t] = true;
    for (int i = 0; i < g[k].x.size(); ++i)</pre>
      updateX(g[k].x[i] * cur, k);
```

6.1 Permutations

6.1.1 Factorial

IntPerm.h

int permToInt(vi& v) {

Description: Permutation -> integer conversion. (Not order preserving.) Integer -> permutation can use a lookup table.

```
Time: \mathcal{O}(n) 044568, 6 lines
```

```
int use = 0, i = 0, r = 0; for (int x:v) r = r * ++i + _builtin_popcount (use & -(1<<x)), use |= 1 << x; // (note: minus, not \sim!) return r;
```

6.1.2 Cycles

Let $g_S(n)$ be the number of *n*-permutations whose cycle lengths all belong to the set S. Then

$$\sum_{n=0}^{\infty} g_S(n) \frac{x^n}{n!} = \exp\left(\sum_{n \in S} \frac{x^n}{n}\right)$$

6.1.3 Derangements

Permutations of a set such that none of the elements appear in their original position.

$$D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n = \left\lfloor \frac{n!}{e} \right\rfloor$$

6.1.4 Burnside's lemma

Given a group G of symmetries and a set X, the number of elements of X up to symmetry equals

$$\frac{1}{|G|} \sum_{g \in G} |X^g|,$$

where X^g are the elements fixed by g (g.x = x).

If f(n) counts "configurations" (of some sort) of length n, we can ignore rotational symmetry using $G = \mathbb{Z}_n$ to get

$$g(n) = \frac{1}{n} \sum_{k=0}^{n-1} f(\gcd(n,k)) = \frac{1}{n} \sum_{k|n} f(k)\phi(n/k).$$

6.2 Partitions and subsets

6.2.1 Partition function

Number of ways of writing n as a sum of positive integers, disregarding the order of the summands.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$

$$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$$

6.2.2 Lucas' Theorem

Let n, m be non-negative integers and p a prime. Write $n=n_kp^k+\ldots+n_1p+n_0$ and $m=m_kp^k+\ldots+m_1p+m_0$. Then $\binom{n}{m}\equiv\prod_{i=0}^k\binom{n_i}{m_i}\pmod{p}$.

6.2.3 Binomials

multinomial.h

6.3 General purpose numbers

6.3.1 Bernoulli numbers

EGF of Bernoulli numbers is $B(t) = \frac{t}{e^t - 1}$ (FFT-able). $B[0, ...] = [1, -\frac{1}{2}, \frac{1}{6}, 0, -\frac{1}{20}, 0, \frac{1}{42}, ...]$

Sums of powers:

$$\sum_{i=1}^{n} n^{m} = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_{k} \cdot (n+1)^{m+1-k}$$

Euler-Maclaurin formula for infinite sums:

$$\sum_{i=m}^{\infty} f(i) = \int_{m}^{\infty} f(x)dx - \sum_{k=1}^{\infty} \frac{B_{k}}{k!} f^{(k-1)}(m)$$

$$\approx \int_{m}^{\infty} f(x)dx + \frac{f(m)}{2} - \frac{f'(m)}{12} + \frac{f'''(m)}{720} + O(f^{(5)}(m))$$

6.3.2 Stirling numbers of the first kind

Number of permutations on n items with k cycles.

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k), \ c(0,0) = 1$$

$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1)\dots(x+n-1)$$

c(8,k) = 8,0,5040,13068,13132,6769,1960,322,28,1c(n,2) = 0,0,1,3,11,50,274,1764,13068,109584,...

6.3.3 Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) \geq j$, k j:s s.t. $\pi(j) > j$.

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n,n-1) = 1$$

$$E(n,k) = \sum_{j=0}^{k} (-1)^{j} \binom{n+1}{j} (k+1-j)^{n}$$

6.3.4 Stirling numbers of the second kind

Partitions of n distinct elements into exactly k groups.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

$$S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^{n}$$

6.3.5 Bell numbers

Total number of partitions of n distinct elements. B(n) = 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, For <math>p prime,

$$B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$$

6.3.6 Labeled unrooted trees

```
# on n vertices: n^{n-2}
# on k existing trees of size n_i: n_1 n_2 \cdots n_k n^{k-2}
# with degrees d_i: (n-2)!/((d_1-1)!\cdots(d_n-1)!)
```

6.3.7 Catalan numbers

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, \ C_{n+1} = \frac{2(2n+1)}{n+2} C_n, \ C_{n+1} = \sum_{n=1}^{\infty} C_n C_{n-n}$$

 $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$

- sub-diagonal monotone paths in an $n \times n$ grid.
- strings with n pairs of parenthesis, correctly nested.
- binary trees with with n+1 leaves (0 or 2 children).
- ordered trees with n+1 vertices.
- ways a convex polygon with n + 2 sides can be cut into triangles by connecting vertices with straight lines.
- \bullet permutations of [n] with no 3-term increasing subseq.

$\underline{\text{Graph}}$ (7)

7.1 Fundamentals

BellmanFord.h

Description: Calculates shortest paths from s in a graph that might have negative edge weights. Unreachable nodes get dist = inf; nodes reachable through negative-weight cycles get dist = -inf. Assumes $V^2 \max |w_i| < \sim 2^{63}$. Time: $\mathcal{O}(VE)$

```
const 11 inf = LLONG MAX;
struct Ed { int a, b, w, s() { return a < b ? a : -a; }};</pre>
struct Node { ll dist = inf; int prev = -1; };
void bellmanFord(vector<Node>& nodes, vector<Ed>& eds, int s) {
  nodes[s].dist = 0;
 sort(all(eds), [](Ed a, Ed b) { return a.s() < b.s(); });
  int lim = sz(nodes) / 2 + 2; // /3+100 with shuffled vertices
  rep(i,0,lim) for (Ed ed : eds) {
    Node cur = nodes[ed.a], &dest = nodes[ed.b];
    if (abs(cur.dist) == inf) continue;
    11 d = cur.dist + ed.w;
    if (d < dest.dist) {</pre>
      dest.prev = ed.a;
      dest.dist = (i < lim-1 ? d : -inf);
 rep(i,0,lim) for (Ed e : eds) {
    if (nodes[e.a].dist == -inf)
      nodes[e.b].dist = -inf;
```

FlovdWarshall.h

Description: Calculates all-pairs shortest path in a directed graph that might have negative edge weights. Input is an distance matrix m, where $m[i][j] = \inf$ if i and j are not adjacent. As output, m[i][j] is set to the shortest distance between i and j, inf if no path, or -inf if the path goes through a negative-weight cycle.

```
Time: \mathcal{O}\left(N^3\right) 531245, 12 lines const 11 inf = 1LL << 62; void floydWarshall (vector<vector<11>>& m) {
   int n = sz(m);
   rep(i,0,n) m[i][i] = min(m[i][i], 0LL);
   rep(k,0,n) rep(i,0,n) rep(j,0,n)
   if (m[i][k] != inf && m[k][j] != inf) {
     auto newDist = max(m[i][k] + m[k][j], -inf);
     m[i][j] = min(m[i][j], newDist);
   }
   rep(k,0,n) if (m[k][k] < 0) rep(i,0,n) rep(j,0,n)
   if (m[i][k] != inf && m[k][j] != inf) m[i][j] = -inf;
```

TopoSort.h

Description: Topological sorting. Given is an oriented graph. Output is an ordering of vertices, such that there are edges only from left to right. If there are cycles, the returned list will have size smaller than n – nodes reachable from cycles will not be returned.

```
\begin{aligned} & \textbf{Time: } \mathcal{O}\left(|V| + |E|\right) & & & & & & & & \\ & \text{vi topoSort}\left(\textbf{const} \text{ vector} < \text{vi>$\&$ gr) } \{ \\ & \text{vi indeg}\left(\text{sz}\left(\text{gr}\right)\right), \text{ ret}; \\ & \text{for } \left(\textbf{auto}\&\text{ li: gr) } \text{ for } \left(\textbf{int } \text{ x: li) } \text{ indeg}[\text{x}]^{++}; \\ & & & & & & & \\ & \text{queue} < \textbf{int} > \text{q; } \middle/ \text{ use } \text{ priority\_queue } \text{ for } \text{ lexic. largest } \text{ ans.} \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &
```

7.2 Network flow

PushRelabel.h

Description: Push-relabel using the highest label selection rule and the gap heuristic. Quite fast in practice. To obtain the actual flow, look at positive values only.

```
Time: \mathcal{O}\left(V^2\sqrt{E}\right)
```

0ae1d4, 48 lines

```
struct PushRelabel {
  struct Edge {
   int dest, back;
   11 f, c;
  };
  vector<vector<Edge>> g;
  vector<ll> ec;
  vector<Edge*> cur;
  vector<vi> hs; vi H;
  PushRelabel(int n) : g(n), ec(n), cur(n), hs(2*n), H(n) {}
  void addEdge(int s, int t, ll cap, ll rcap=0) {
   if (s == t) return;
   g[s].push_back({t, sz(g[t]), 0, cap});
   g[t].push_back({s, sz(g[s])-1, 0, rcap});
  void addFlow(Edge& e, ll f) {
   Edge &back = g[e.dest][e.back];
```

```
if (!ec[e.dest] && f) hs[H[e.dest]].push_back(e.dest);
   e.f += f; e.c -= f; ec[e.dest] += f;
   back.f -= f; back.c += f; ec[back.dest] -= f;
 11 calc(int s, int t) {
    int v = sz(g); H[s] = v; ec[t] = 1;
   vi co(2*v); co[0] = v-1;
    rep(i,0,v) cur[i] = g[i].data();
    for (Edge& e : g[s]) addFlow(e, e.c);
    for (int hi = 0;;) {
     while (hs[hi].empty()) if (!hi--) return -ec[s];
     int u = hs[hi].back(); hs[hi].pop_back();
      while (ec[u] > 0) // discharge u
       if (cur[u] == g[u].data() + sz(g[u])) {
         H[u] = 1e9;
         for (Edge& e : g[u]) if (e.c && H[u] > H[e.dest]+1)
           H[u] = H[e.dest]+1, cur[u] = &e;
         if (++co[H[u]], !--co[hi] && hi < v)</pre>
            rep(i, 0, v) if (hi < H[i] && H[i] < v)
              --co[H[i]], H[i] = v + 1;
          hi = H[u];
        } else if (cur[u]->c && H[u] == H[cur[u]->dest]+1)
         addFlow(*cur[u], min(ec[u], cur[u]->c));
        else ++cur[u];
 bool leftOfMinCut(int a) { return H[a] >= sz(g); }
};
```

MinCostMaxFlow.h

Description: Min-cost max-flow. If costs can be negative, call setpi before maxflow, but note that negative cost cycles are not supported. To obtain the actual flow, look at positive values only.

Time: $\mathcal{O}(FE\log(V))$ where F is max flow. $\mathcal{O}(VE)$ for setpi. _{58385b}, 79 lines

```
#include <bits/extc++.h>
const 11 INF = numeric limits<11>::max() / 4;
struct MCMF {
  struct edge {
    int from, to, rev;
    11 cap, cost, flow;
  };
 int N;
  vector<vector<edge>> ed;
  vi seen;
  vector<ll> dist, pi;
  vector<edge*> par;
  MCMF(int N) : N(N), ed(N), seen(N), dist(N), pi(N), par(N) {}
  void addEdge(int from, int to, ll cap, ll cost) {
    if (from == to) return;
    ed[from].push_back(edge{ from,to,sz(ed[to]),cap,cost,0 });
    ed[to].push_back(edge{ to,from,sz(ed[from])-1,0,-cost,0 });
  void path(int s) {
    fill(all(seen), 0);
    fill(all(dist), INF);
    dist[s] = 0; ll di;
    __gnu_pbds::priority_queue<pair<ll, int>> q;
    vector<decltype(q)::point_iterator> its(N);
    q.push({ 0, s });
    while (!q.empty()) {
```

```
s = q.top().second; q.pop();
      seen[s] = 1; di = dist[s] + pi[s];
      for (edge& e : ed[s]) if (!seen[e.to]) {
       11 val = di - pi[e.to] + e.cost;
        if (e.cap - e.flow > 0 && val < dist[e.to]) {</pre>
          dist[e.to] = val;
          par[e.to] = &e;
          if (its[e.to] == q.end())
            its[e.to] = q.push({ -dist[e.to], e.to });
          else
            q.modify(its[e.to], { -dist[e.to], e.to });
    rep(i, 0, N) pi[i] = min(pi[i] + dist[i], INF);
  pair<11, 11> maxflow(int s, int t) {
    11 totflow = 0, totcost = 0;
    while (path(s), seen[t]) {
     11 fl = INF;
      for (edge* x = par[t]; x; x = par[x->from])
       fl = min(fl, x->cap - x->flow);
      totflow += fl;
      for (edge * x = par[t]; x; x = par[x->from]) {
        x->flow += fl;
        ed[x->to][x->rev].flow -= fl;
    rep(i,0,N) for(edge& e : ed[i]) totcost += e.cost * e.flow;
    return {totflow, totcost/2};
  // If some costs can be negative, call this before maxflow:
  void setpi(int s) { // (otherwise, leave this out)
    fill(all(pi), INF); pi[s] = 0;
    int it = N, ch = 1; 11 v;
    while (ch-- && it--)
      rep(i,0,N) if (pi[i] != INF)
        for (edge& e : ed[i]) if (e.cap)
          if ((v = pi[i] + e.cost) < pi[e.to])
            pi[e.to] = v, ch = 1;
    assert(it >= 0); // negative cost cycle
};
```

EdmondsKarp.h

Description: Flow algorithm with guaranteed complexity $O(VE^2)$. To get edge flow values, compare capacities before and after, and take the positive values only.

```
q[ptr++] = e.first;
    if (e.first == sink) goto out;
}

}

return flow;

out:

T inc = numeric_limits<T>::max();
    for (int y = sink; y != source; y = par[y])
        inc = min(inc, graph[par[y]][y]);

flow += inc;
    for (int y = sink; y != source; y = par[y]) {
        int p = par[y];
        if ((graph[p][y] -= inc) <= 0) graph[p].erase(y);
        graph[y][p] += inc;
}
}</pre>
```

Dinic.h

Description: Flow algorithm with complexity $O(VE \log U)$ where $U = \max |\text{cap}|$. $O(\min(E^{1/2}, V^{2/3})E)$ if U = 1; $O(\sqrt{V}E)$ for bipartite matching.

```
struct Dinic {
  struct Edge {
   int to, rev;
   11 flow() { return max(oc - c, OLL); } // if you need flows
  vi lvl, ptr, q;
  vector<vector<Edge>> adi;
  Dinic(int n) : lvl(n), ptr(n), q(n), adj(n) {}
  void addEdge(int a, int b, ll c, ll rcap = 0) {
    adj[a].push_back({b, sz(adj[b]), c, c});
    adi[b].push_back({a, sz(adj[a]) - 1, rcap, rcap});
  11 dfs(int v, int t, ll f) {
    if (v == t || !f) return f;
    for (int& i = ptr[v]; i < sz(adj[v]); i++) {</pre>
     Edge& e = adi[v][i];
     if (lvl[e.to] == lvl[v] + 1)
       if (ll p = dfs(e.to, t, min(f, e.c))) {
          e.c -= p, adj[e.to][e.rev].c += p;
          return p;
    return 0;
  11 calc(int s, int t) {
    11 flow = 0; q[0] = s;
    rep(L,0,31) do { // 'int L=30' maybe faster for random data
     lvl = ptr = vi(sz(q));
     int qi = 0, qe = lvl[s] = 1;
      while (qi < qe && !lvl[t]) {
       int v = q[qi++];
       for (Edge e : adi[v])
          if (!lvl[e.to] && e.c >> (30 - L))
            q[qe++] = e.to, lvl[e.to] = lvl[v] + 1;
      while (ll p = dfs(s, t, LLONG_MAX)) flow += p;
    } while (lvl[t]);
    return flow;
 bool leftOfMinCut(int a) { return lvl[a] != 0; }
```

MinCut.h

Description: After running max-flow, the left side of a min-cut from s to t is given by all vertices reachable from s, only traversing edges with positive residual capacity.

GlobalMinCut.h

Description: Find a global minimum cut in an undirected graph, as represented by an adjacency matrix. **Time:** $\mathcal{O}\left(V^3\right)$

```
8b0e19, 21 lines
pair<int, vi> globalMinCut(vector<vi> mat) {
 pair<int, vi> best = {INT MAX, {}};
 int n = sz(mat);
 vector<vi> co(n);
 rep(i,0,n) co[i] = {i};
 rep(ph,1,n) {
   vi w = mat[0];
   size_t s = 0, t = 0;
   rep(it,0,n-ph) { //O(V^2) \rightarrow O(E log V) with prio. queue}
     w[t] = INT_MIN;
     s = t, t = max_element(all(w)) - w.begin();
     rep(i, 0, n) w[i] += mat[t][i];
   best = min(best, \{w[t] - mat[t][t], co[t]\});
   co[s].insert(co[s].end(), all(co[t]));
   rep(i,0,n) mat[s][i] += mat[t][i];
   rep(i, 0, n) mat[i][s] = mat[s][i];
   mat[0][t] = INT_MIN;
 return best;
```

GomorvHu.h

Description: Given a list of edges representing an undirected flow graph, returns edges of the Gomory-Hu tree. The max flow between any pair of vertices is given by minimum edge weight along the Gomory-Hu tree path. **Time:** $\mathcal{O}(V)$ Flow Computations

7.3 Matching

hopcroftKarp.h

Description: Fast bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i] will be the match for vertex i on the right side, or -1 if it's not matched. Usage: vi btoa(m, -1); hopcroftKarp(q, btoa);

```
Time: \mathcal{O}\left(\sqrt{V}E\right)
```

```
bool dfs(int a, int L, vector<vi>& g, vi& btoa, vi& A, vi& B) {
   if (A[a] != L) return 0;
   A[a] = -1;
   for (int b : g[a]) if (B[b] == L + 1) {
      B[b] = 0;
   if (btoa[b] == -1 || dfs(btoa[b], L + 1, g, btoa, A, B))
```

```
return btoa[b] = a, 1;
 return 0;
int hopcroftKarp(vector<vi>& q, vi& btoa) {
 int res = 0;
 vi A(q.size()), B(btoa.size()), cur, next;
  for (;;) {
    fill(all(A), 0);
    fill(all(B), 0);
    cur.clear();
    for (int a : btoa) if (a != -1) A[a] = -1;
    rep(a, 0, sz(g)) if(A[a] == 0) cur.push_back(a);
    for (int lay = 1;; lay++) {
     bool islast = 0;
      next.clear();
      for (int a : cur) for (int b : q[a]) {
        if (btoa[b] == -1) {
         B[b] = lay;
          islast = 1;
        else if (btoa[b] != a && !B[b]) {
         B[b] = lay;
          next.push_back(btoa[b]);
      if (islast) break;
      if (next.empty()) return res;
      for (int a : next) A[a] = lay;
      cur.swap(next);
    rep(a,0,sz(g))
      res += dfs(a, 0, g, btoa, A, B);
```

DFSMatching.h

Description: Simple bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i] will be the match for vertex i on the right side, or -1 if it's not matched.

```
Usage: vi btoa(m, -1); dfsMatching(g, btoa);
```

```
Time: \mathcal{O}(VE)
bool find(int j, vector<vi>& g, vi& btoa, vi& vis) {
 if (btoa[j] == -1) return 1;
 vis[j] = 1; int di = btoa[j];
  for (int e : q[di])
    if (!vis[e] && find(e, q, btoa, vis)) {
      btoa[e] = di;
      return 1;
 return 0;
int dfsMatching(vector<vi>& q, vi& btoa) {
  vi vis;
  rep(i, 0, sz(q)) {
    vis.assign(sz(btoa), 0);
    for (int j : g[i])
      if (find(j, g, btoa, vis)) {
        btoa[j] = i;
        break:
 return sz(btoa) - (int)count(all(btoa), -1);
```

MinimumVertexCover.h

Description: Finds a minimum vertex cover in a bipartite graph. The size is the same as the size of a maximum matching, and the complement is a maximum independent set.

"DFSMatching.h" da4196, 20 lines vi cover(vector<vi>& q, int n, int m) { vi match (m, -1); int res = dfsMatching(g, match); vector<bool> lfound(n, true), seen(m); for (int it : match) if (it != -1) lfound[it] = false; vi q, cover; rep(i,0,n) if (lfound[i]) q.push_back(i); while (!q.empty()) { int i = q.back(); q.pop_back(); lfound[i] = 1;for (int e : g[i]) if (!seen[e] && match[e] != -1) { seen[e] = true; q.push_back(match[e]); rep(i,0,n) if (!lfound[i]) cover.push_back(i); rep(i,0,m) if (seen[i]) cover.push back(n+i); assert(sz(cover) == res); return cover;

WeightedMatching.h

Description: Given a weighted bipartite graph, matches every node on the left with a node on the right such that no nodes are in two matchings and the sum of the edge weights is minimal. Takes cost[N][M], where cost[i][j] = cost for L[i] to be matched with R[j] and returns (min cost, match), where L[i] is matched with R[match[i]]. Negate costs for max cost. Requires $N \leq M$. Time: $\mathcal{O}(N^2M)$

```
1e0fe9, 31 lines
pair<int, vi> hungarian(const vector<vi> &a) {
  if (a.emptv()) return {0, {}};
  int n = sz(a) + 1, m = sz(a[0]) + 1;
  vi u(n), v(m), p(m), ans(n-1);
  rep(i,1,n) {
   p[0] = i;
    int j0 = 0; // add "dummy" worker 0
    vi dist(m, INT_MAX), pre(m, -1);
    vector<bool> done(m + 1);
    do { // dijkstra
     done[i0] = true;
      int i0 = p[j0], j1, delta = INT_MAX;
      rep(j,1,m) if (!done[j]) {
       auto cur = a[i0 - 1][j - 1] - u[i0] - v[j];
       if (cur < dist[j]) dist[j] = cur, pre[j] = j0;</pre>
       if (dist[j] < delta) delta = dist[j], j1 = j;</pre>
      rep(j,0,m) {
       if (done[j]) u[p[j]] += delta, v[j] -= delta;
        else dist[j] -= delta;
      i0 = j1;
    } while (p[j0]);
    while (j0) { // update alternating path
     int j1 = pre[j0];
     p[j0] = p[j1], j0 = j1;
  rep(j,1,m) if (p[j]) ans[p[j] - 1] = j - 1;
  return {-v[0], ans}; // min cost
```

GeneralMatching.h

Description: Matching for general graphs. Fails with probability N/mod. Time: $\mathcal{O}(N^3)$

```
"../numerical/MatrixInverse-mod.h"
                                                     cb1912, 40 lines
vector<pii> generalMatching(int N, vector<pii>& ed) {
 vector<vector<ll>> mat(N, vector<ll>(N)), A;
 for (pii pa : ed) {
   int a = pa.first, b = pa.second, r = rand() % mod;
   mat[a][b] = r, mat[b][a] = (mod - r) % mod;
 int r = matInv(A = mat), M = 2*N - r, fi, fj;
 assert (r % 2 == 0);
 if (M != N) do {
   mat.resize(M, vector<11>(M));
   rep(i,0,N) {
     mat[i].resize(M);
     rep(j,N,M) {
       int r = rand() % mod;
       mat[i][j] = r, mat[j][i] = (mod - r) % mod;
 } while (matInv(A = mat) != M);
 vi has(M, 1); vector<pii> ret;
 rep(it,0,M/2) {
   rep(i,0,M) if (has[i])
     rep(j,i+1,M) if (A[i][j] && mat[i][j]) {
       fi = i; fj = j; goto done;
    } assert(0); done:
    if (fj < N) ret.emplace_back(fi, fj);</pre>
   has[fi] = has[fj] = 0;
    rep(sw, 0, 2) {
     11 a = modpow(A[fi][fj], mod-2);
     rep(i,0,M) if (has[i] && A[i][fj]) {
       ll b = A[i][fj] * a % mod;
       rep(j, 0, M) A[i][j] = (A[i][j] - A[fi][j] * b) % mod;
     swap(fi,fj);
 return ret;
```

7.4 DFS algorithms

SCC.h

Description: Finds strongly connected components in a directed graph. If vertices u, v belong to the same component, we can reach u from v and vice

Usage: $scc(graph, [\&](vi\&v) \{ \dots \})$ visits all components in reverse topological order. comp[i] holds the component index of a node (a component only has edges to components with lower index). ncomps will contain the number of components. **Time:** $\mathcal{O}(E+V)$

```
f(cont); cont.clear();
ncomps++;
}
return val[j] = low;
}
template < class G, class F > void scc(G& g, F f) {
   int n = sz(g);
   val.assign(n, 0); comp.assign(n, -1);
   Time = ncomps = 0;
   rep(i,0,n) if (comp[i] < 0) dfs(i, g, f);
}</pre>
```

BiconnectedComponents.h

Description: Finds all biconnected components in an undirected graph, and runs a callback for the edges in each. In a biconnected component there are at least two distinct paths between any two nodes. Note that a node can be in several components. An edge which is not in a component is a bridge, i.e., not part of any cycle.

```
Usage: int eid = 0; ed.resize(N); for each edge (a,b) { ed[a].emplace.back(b, eid); ed[b].emplace.back(a, eid++); } bicomps([&] (const vi& edgelist) \{...\}); Time: \mathcal{O}(E+V)
```

2965e5, 33 lines

```
vi num, st;
vector<vector<pii>> ed;
int Time:
template<class F>
int dfs(int at, int par, F& f) {
  int me = num[at] = ++Time, e, y, top = me;
  for (auto pa : ed[at]) if (pa.second != par) {
    tie(y, e) = pa;
    if (num[y]) {
      top = min(top, num[y]);
      if (num[y] < me)
        st.push back(e);
    } else {
      int si = sz(st);
      int up = dfs(y, e, f);
      top = min(top, up);
      if (up == me) {
        st.push_back(e);
        f(vi(st.begin() + si, st.end()));
        st.resize(si);
      else if (up < me) st.push_back(e);</pre>
      else { /* e is a bridge */ }
  return top;
template<class F>
void bicomps(F f) {
  num.assign(sz(ed), 0);
  rep(i,0,sz(ed)) if (!num[i]) dfs(i, -1, f);
```

2sat.h

Description: Calculates a valid assignment to boolean variables a, b, c,... to a 2-SAT problem, so that an expression of the type (a||b)&&(!a||c)&&(d||!b)&&... becomes true, or reports that it is unsatisfiable. Negated variables are represented by bit-inversions (-x).

EulerWalk.h

b0d5b1, 12 lines

```
ts.values[0..N-1] holds the assigned values to the vars
Time: \mathcal{O}(N+E), where N is the number of boolean variables, and E is the
number of clauses.
struct TwoSat {
 int N;
  vector<vi> gr;
 vi values; // 0 = false, 1 = true
 TwoSat(int n = 0) : N(n), gr(2*n) {}
  int addVar() { // (optional)
   gr.emplace_back();
   gr.emplace back();
   return N++;
  void either(int f, int j) {
   f = max(2*f, -1-2*f);
   j = \max(2*j, -1-2*j);
   gr[f].push back(j^1);
   gr[j].push_back(f^1);
  void setValue(int x) { either(x, x); }
  void atMostOne(const vi& li) { // (optional)
   if (sz(li) <= 1) return;</pre>
   int cur = \simli[0];
   rep(i,2,sz(li)) {
     int next = addVar();
     either(cur, ~li[i]);
     either(cur, next);
     either(~li[i], next);
     cur = ~next;
    either(cur, ~li[1]);
  vi val, comp, z; int time = 0;
  int dfs(int i) {
    int low = val[i] = ++time, x; z.push_back(i);
   for(int e : gr[i]) if (!comp[e])
     low = min(low, val[e] ?: dfs(e));
   if (low == val[i]) do {
     x = z.back(); z.pop_back();
     comp[x] = low;
     if (values[x>>1] == -1)
       values[x>>1] = x&1;
    } while (x != i);
    return val[i] = low;
  bool solve() {
   values.assign(N, -1);
   val.assign(2*N, 0); comp = val;
   rep(i,0,2*N) if (!comp[i]) dfs(i);
   rep(i,0,N) if (comp[2*i] == comp[2*i+1]) return 0;
    return 1;
};
```

Usage: TwoSat ts(number of boolean variables);

ts.solve(); // Returns true iff it is solvable

ts.setValue(2); // Var 2 is true

ts.either(0, \sim 3); // Var 0 is true or var 3 is false

ts.atMostOne($\{0, \sim 1, 2\}$); // <= 1 of vars 0, ~ 1 and 2 are true

Description: Eulerian undirected/directed path/cycle algorithm. Input should be a vector of (dest, global edge index), where for undirected graphs, forward/backward edges have the same index. Returns a list of nodes in the Eulerian path/cycle with src at both start and end, or empty list if no cycle/path exists. To get edge indices back, add .second to s and ret. Time: $\mathcal{O}(V+E)$

```
vi eulerWalk (vector<vector<pii>>& gr, int nedges, int src=0) {
 int n = sz(qr);
 vi D(n), its(n), eu(nedges), ret, s = {src};
 D[src]++; // to allow Euler paths, not just cycles
 while (!s.empty()) {
   int x = s.back(), y, e, &it = its[x], end = sz(gr[x]);
   if (it == end) { ret.push_back(x); s.pop_back(); continue; }
   tie(v, e) = qr[x][it++];
   if (!eu[e]) {
     D[x]--, D[y]++;
     eu[e] = 1; s.push_back(y);
 for (int x : D) if (x < 0 \mid \mid sz(ret) != nedges+1) return \{\};
 return {ret.rbegin(), ret.rend()};
```

7.5 Coloring

EdgeColoring.h

Description: Given a simple, undirected graph with max degree D, computes a (D+1)-coloring of the edges such that no neighboring edges share a color. (D-coloring is NP-hard, but can be done for bipartite graphs by repeated matchings of max-degree nodes.)

```
Time: \mathcal{O}(NM)
                                                     e210e2, 31 lines
vi edgeColoring(int N, vector<pii> eds) {
  vi cc(N + 1), ret(sz(eds)), fan(N), free(N), loc;
  for (pii e : eds) ++cc[e.first], ++cc[e.second];
  int u, v, ncols = *max_element(all(cc)) + 1;
  vector<vi> adj(N, vi(ncols, -1));
  for (pii e : eds) {
    tie(u, v) = e;
    fan[0] = v;
    loc.assign(ncols, 0);
    int at = u, end = u, d, c = free[u], ind = 0, i = 0;
    while (d = free[v], !loc[d] && (v = adj[u][d]) != -1)
     loc[d] = ++ind, cc[ind] = d, fan[ind] = v;
    cc[loc[d]] = c;
    for (int cd = d; at != -1; cd ^= c ^ d, at = adj[at][cd])
      swap(adj[at][cd], adj[end = at][cd ^ c ^ d]);
    while (adj[fan[i]][d] != -1) {
      int left = fan[i], right = fan[++i], e = cc[i];
      adj[u][e] = left;
      adj[left][e] = u;
      adj[right][e] = -1;
      free[right] = e;
    adj[u][d] = fan[i];
    adj[fan[i]][d] = u;
    for (int y : {fan[0], u, end})
      for (int& z = free[y] = 0; adj[y][z] != -1; z++);
  rep(i, 0, sz(eds))
    for (tie(u, v) = eds[i]; adj[u][ret[i]] != v;) ++ret[i];
  return ret;
```

7.6 Heuristics

MaximalCliques.h

Description: Runs a callback for all maximal cliques in a graph (given as a symmetric bitset matrix; self-edges not allowed). Callback is given a bitset representing the maximal clique.

```
Time: \mathcal{O}\left(3^{n/3}\right), much faster for sparse graphs
typedef bitset<128> B;
```

```
template<class F>
void cliques(vector<B>& eds, F f, B P = \simB(), B X={}, B R={}) {
 if (!P.any()) { if (!X.any()) f(R); return; }
  auto q = (P | X)._Find_first();
  auto cands = P & ~eds[q];
  rep(i,0,sz(eds)) if (cands[i]) {
    R[i] = 1;
    cliques(eds, f, P & eds[i], X & eds[i], R);
    R[i] = P[i] = 0; X[i] = 1;
```

MaximumClique.h

Description: Quickly finds a maximum clique of a graph (given as symmetric bitset matrix; self-edges not allowed). Can be used to find a maximum independent set by finding a clique of the complement graph.

Time: Runs in about 1s for n=155 and worst case random graphs (p=.90). Runs faster for sparse graphs.

```
typedef vector<br/>bitset<200>> vb;
struct Maxclique {
  double limit=0.025, pk=0;
  struct Vertex { int i, d=0; };
  typedef vector<Vertex> vv;
  vv V;
  vector<vi> C:
  vi gmax, g, S, old;
  void init(vv& r) {
    for (auto \& v : r) v.d = 0;
    for (auto@ v : r) for (auto j : r) v.d += e[v.i][j.i];
    sort(all(r), [](auto a, auto b) { return a.d > b.d; });
    int mxD = r[0].d;
    rep(i, 0, sz(r)) r[i].d = min(i, mxD) + 1;
 void expand(vv& R, int lev = 1) {
    S[lev] += S[lev - 1] - old[lev];
    old[lev] = S[lev - 1];
    while (sz(R)) {
      if (sz(q) + R.back().d <= sz(qmax)) return;</pre>
      q.push_back(R.back().i);
      vv T:
      for(auto v:R) if (e[R.back().i][v.i]) T.push_back({v.i});
      if (sz(T)) {
        if (S[lev]++ / ++pk < limit) init(T);</pre>
        int j = 0, mxk = 1, mnk = max(sz(qmax) - sz(q) + 1, 1);
        C[1].clear(), C[2].clear();
        for (auto v : T) {
          int k = 1:
          auto f = [&](int i) { return e[v.i][i]; };
          while (any_of(all(C[k]), f)) k++;
          if (k > mxk) mxk = k, C[mxk + 1].clear();
          if (k < mnk) T[j++].i = v.i;
          C[k].push_back(v.i);
        if (j > 0) T[j - 1].d = 0;
        rep(k, mnk, mxk + 1) for (int i : C[k])
         T[j].i = i, T[j++].d = k;
        expand(T, lev + 1);
      } else if (sz(q) > sz(qmax)) qmax = q;
      q.pop_back(), R.pop_back();
  vi maxClique() { init(V), expand(V); return qmax; }
  Maxclique(vb conn) : e(conn), C(sz(e)+1), S(sz(C)), old(S) {
```

rep(i,0,sz(e)) V.push_back({i});

MaximumIndependentSet.h

Description: To obtain a maximum independent set of a graph, find a max clique of the complement. If the graph is bipartite, see MinimumVertex-

7.7 Trees

BinaryLifting.h

Description: Calculate power of two jumps in a tree, to support fast upward jumps and LCAs. Assumes the root node points to itself.

Time: construction $\mathcal{O}(N \log N)$, queries $\mathcal{O}(\log N)$

bfce85, 25 lines

```
vector<vi> treeJump(vi& P) {
  int on = 1, d = 1;
  while (on < sz(P)) on *= 2, d++;
  vector<vi> jmp(d, P);
  rep(i,1,d) rep(j,0,sz(P))
    jmp[i][j] = jmp[i-1][jmp[i-1][j]];
  return jmp;
int jmp(vector<vi>& tbl, int nod, int steps){
  rep(i,0,sz(tbl))
    if(steps&(1<<i)) nod = tbl[i][nod];
  return nod;
int lca(vector<vi>& tbl, vi& depth, int a, int b) {
  if (depth[a] < depth[b]) swap(a, b);</pre>
  a = jmp(tbl, a, depth[a] - depth[b]);
  if (a == b) return a;
  for (int i = sz(tbl); i--;) {
   int c = tbl[i][a], d = tbl[i][b];
    if (c != d) a = c, b = d;
  return tbl[0][a];
```

Description: Data structure for computing lowest common ancestors in a tree (with 0 as root). C should be an adjacency list of the tree, either directed or undirected.

```
Time: \mathcal{O}(N \log N + Q)
```

```
"../data-structures/RMQ.h"
                                                       0f62fb, 21 lines
struct LCA {
  int T = 0;
 vi time, path, ret;
  RMQ<int> rmq;
  LCA(vector < vi > \& C) : time(sz(C)), rmq((dfs(C, 0, -1), ret)) {}
  void dfs(vector<vi>& C, int v, int par) {
   time[v] = T++;
   for (int y : C[v]) if (y != par) {
     path.push_back(v), ret.push_back(time[v]);
      dfs(C, y, v);
  int lca(int a, int b) {
   if (a == b) return a;
   tie(a, b) = minmax(time[a], time[b]);
    return path[rmq.query(a, b)];
  //dist(a,b){return depth[a] + depth[b] - 2*depth[lca(a,b)];}
```

CompressTree.h

Description: Given a rooted tree and a subset S of nodes, compute the minimal subtree that contains all the nodes by adding all (at most |S|-1) pairwise LCA's and compressing edges. Returns a list of (par, orig_index) representing a tree rooted at 0. The root points to itself.

```
Time: \mathcal{O}(|S| \log |S|)
"LCA.h"
```

```
typedef vector<pair<int, int>> vpi;
vpi compressTree (LCA& lca, const vi& subset) {
 static vi rev; rev.resize(sz(lca.time));
 vi li = subset, &T = lca.time;
 auto cmp = [&](int a, int b) { return T[a] < T[b]; };</pre>
 sort(all(li), cmp);
 int m = sz(li)-1;
 rep(i,0,m) {
   int a = li[i], b = li[i+1];
   li.push_back(lca.lca(a, b));
 sort(all(li), cmp);
 li.erase(unique(all(li)), li.end());
 rep(i, 0, sz(li)) rev[li[i]] = i;
 vpi ret = {pii(0, li[0])};
 rep(i, 0, sz(li) - 1) {
   int a = li[i], b = li[i+1];
   ret.emplace_back(rev[lca.lca(a, b)], b);
 return ret;
```

HLD.h

Description: Decomposes a tree into vertex disjoint heavy paths and light edges such that the path from any leaf to the root contains at most log(n) light edges. Code does additive modifications and max queries, but can support commutative segtree modifications/queries on paths and subtrees. Takes as input the full adjacency list. VALS_EDGES being true means that values are stored in the edges, as opposed to the nodes. All values initialized to the segtree default. Root must be 0.

```
Time: \mathcal{O}\left((\log N)^2\right)
```

```
"../data-structures/LazySegmentTree.h"
                                                     6f34db, 46 lines
template <bool VALS_EDGES> struct HLD {
 int N, tim = 0;
 vector<vi> adj;
 vi par, siz, depth, rt, pos;
 Node *tree:
 HLD(vector<vi> adj_)
    : N(sz(adj_)), adj(adj_), par(N, -1), siz(N, 1), depth(N),
     rt(N), pos(N), tree(new Node(0, N)) { dfsSz(0); dfsHld(0); }
 void dfsSz(int v) {
    if (par[v] != -1) adj[v].erase(find(all(adj[v]), par[v]));
   for (int& u : adj[v]) {
     par[u] = v, depth[u] = depth[v] + 1;
     dfsSz(u);
     siz[v] += siz[u];
     if (siz[u] > siz[adj[v][0]]) swap(u, adj[v][0]);
 void dfsHld(int v) {
   pos[v] = tim++;
   for (int u : adj[v]) {
     rt[u] = (u == adj[v][0] ? rt[v] : u);
     dfsHld(u);
 template <class B> void process(int u, int v, B op) {
   for (; rt[u] != rt[v]; v = par[rt[v]]) {
     if (depth[rt[u]] > depth[rt[v]]) swap(u, v);
      op(pos[rt[v]], pos[v] + 1);
```

```
if (depth[u] > depth[v]) swap(u, v);
    op(pos[u] + VALS_EDGES, pos[v] + 1);
 void modifyPath(int u, int v, int val) {
   process(u, v, [&](int 1, int r) { tree->add(1, r, val); });
 int queryPath(int u, int v) { // Modify depending on problem
   int res = -1e9;
   process(u, v, [&](int l, int r) {
       res = max(res, tree->query(1, r));
   return res;
 int querySubtree(int v) { // modifySubtree is similar
    return tree->query(pos[v] + VALS_EDGES, pos[v] + siz[v]);
};
```

LinkCutTree.h

9775a0, 21 lines

Description: Represents a forest of unrooted trees. You can add and remove edges (as long as the result is still a forest), and check whether two nodes are in the same tree.

21

```
Time: All operations take amortized \mathcal{O}(\log N).
                                                      0fb462, 90 lines
struct Node { // Splay tree. Root's pp contains tree's parent.
 Node *p = 0, *pp = 0, *c[2];
 bool flip = 0;
 Node() { c[0] = c[1] = 0; fix(); }
  void fix() {
    if (c[0]) c[0]->p = this;
    if (c[1]) c[1]->p = this;
    // (+ update sum of subtree elements etc. if wanted)
  void pushFlip() {
    if (!flip) return;
    flip = 0; swap(c[0], c[1]);
    if (c[0]) c[0]->flip ^= 1;
    if (c[1]) c[1]->flip ^= 1;
  int up() { return p ? p->c[1] == this : -1; }
  void rot(int i, int b) {
    int h = i ^ b;
    Node *x = c[i], *y = b == 2 ? x : x -> c[h], *z = b ? y : x;
    if ((y->p = p)) p->c[up()] = y;
    c[i] = z -> c[i ^ 1];
    if (b < 2) {
      x->c[h] = y->c[h ^ 1];
      y - > c[h ^ 1] = x;
    z \rightarrow c[i ^1] = this;
    fix(); x->fix(); y->fix();
    if (p) p->fix();
    swap(pp, y->pp);
 void splay() {
    for (pushFlip(); p; ) {
      if (p->p) p->p->pushFlip();
      p->pushFlip(); pushFlip();
      int c1 = up(), c2 = p->up();
      if (c2 == -1) p->rot(c1, 2);
      else p->p->rot(c2, c1 != c2);
 Node* first() {
    pushFlip();
    return c[0] ? c[0]->first() : (splay(), this);
};
```

```
struct LinkCut {
  vector<Node> node;
  LinkCut(int N) : node(N) {}
  void link(int u, int v) { // add an edge (u, v)
    assert(!connected(u, v));
    makeRoot(&node[u]);
   node[u].pp = &node[v];
  void cut (int u, int v) { // remove \ an \ edge \ (u, \ v)
   Node *x = &node[u], *top = &node[v];
    makeRoot(top); x->splay();
    assert(top == (x->pp ?: x->c[0]));
    if (x->pp) x->pp = 0;
     x->c[0] = top->p = 0;
     x \rightarrow fix();
  bool connected(int u, int v) { // are u, v in the same tree?
   Node* nu = access(&node[u])->first();
    return nu == access(&node[v])->first();
  void makeRoot(Node* u) {
    access(u);
    u->splay();
    if(u->c[0]) {
     u - c[0] - p = 0;
     u - c[0] - flip ^= 1;
     u - c[0] - pp = u;
     u - > c[0] = 0;
     u \rightarrow fix();
  Node* access(Node* u) {
    u->splay();
    while (Node* pp = u->pp) {
     pp->splay(); u->pp = 0;
     if (pp->c[1]) {
       pp - c[1] - p = 0; pp - c[1] - pp = pp; 
     pp - c[1] = u; pp - fix(); u = pp;
    return u;
};
```

DirectedMST.h

Description: Finds a minimum spanning tree/arborescence of a directed graph, given a root node. If no MST exists, returns -1.

Time: $\mathcal{O}\left(E\log V\right)$

```
"../data-structures/UnionFindRollback.h"
                                                       39e620, 60 lines
struct Edge { int a, b; ll w; };
struct Node {
  Edge key;
  Node *1, *r;
  11 delta;
  void prop() {
    key.w += delta;
    if (1) 1->delta += delta;
    if (r) r->delta += delta;
    delta = 0;
  Edge top() { prop(); return key; }
Node *merge(Node *a, Node *b) {
  if (!a || !b) return a ?: b;
  a->prop(), b->prop();
  if (a->key.w > b->key.w) swap(a, b);
  swap(a->1, (a->r = merge(b, a->r)));
```

```
return a;
void pop(Node*& a) { a->prop(); a = merge(a->1, a->r); }
pair<11, vi> dmst(int n, int r, vector<Edge>& g) {
 RollbackUF uf(n);
 vector<Node*> heap(n);
 for (Edge e : g) heap[e.b] = merge(heap[e.b], new Node{e});
 11 \text{ res} = 0;
 vi seen(n, -1), path(n), par(n);
 seen[r] = r;
 vector<Edge> Q(n), in(n, \{-1,-1\}), comp;
 deque<tuple<int, int, vector<Edge>>> cycs;
 rep(s,0,n) {
   int u = s, qi = 0, w;
   while (seen[u] < 0) {</pre>
     if (!heap[u]) return {-1,{}};
     Edge e = heap[u]->top();
     heap[u]->delta -= e.w, pop(heap[u]);
      Q[qi] = e, path[qi++] = u, seen[u] = s;
      res += e.w, u = uf.find(e.a);
      if (seen[u] == s) {
       Node \star cvc = 0;
       int end = qi, time = uf.time();
       do cyc = merge(cyc, heap[w = path[--qi]]);
       while (uf.join(u, w));
       u = uf.find(u), heap[u] = cyc, seen[u] = -1;
       cycs.push_front({u, time, {&Q[qi], &Q[end]}});
    rep(i, 0, qi) in[uf.find(Q[i].b)] = Q[i];
 for (auto& [u,t,comp] : cycs) { // restore sol (optional)
   uf.rollback(t);
   Edge inEdge = in[u];
    for (auto& e : comp) in[uf.find(e.b)] = e;
    in[uf.find(inEdge.b)] = inEdge;
 rep(i,0,n) par[i] = in[i].a;
 return {res, par};
```

7.8 Graph Extra

CentroidDecomp.h

Description: Computes centroid decomposition on connected tree, and runs callback function

```
Usage: centroidDecomp(adj, [&] (int root, vector<int>& isIn) {
all nodes with isIn[i] = 1 connected to root are part of root's
centroid
```

fffdc2, 19 lines

Time: $\mathcal{O}(n \log n)$

```
template < class G, class F>
void centroidDecomp(G g, F f) {
 vi s(sz(g), 1), par(sz(g)), is(s);
 auto go = [&] (int u, int p, auto& go) -> void {
   if ((par[u] = p) != -1) g[u].erase(find(all(g[u]), p));
    for (int v : g[u]) go(v, u, go), s[u] += s[v];
 go(0, -1, go); queue<int> q({0});
 while (sz(q)) {
   int x = q.front(), b = x, ss, c; q.pop();
    do for(int v : g[c = b]) if(s[v] > s[x]/2) b = v;
     while(c != b);
    f(c, is);
    is[c] = 0, ss = s[c];
    for (int v : g[c]) if (s[v] > 0) q.push(v);
    if (c != x) q.push(x);
```

```
do s[c] -= ss; while ((c = par[c]) != par[x]);
```

example below finds the maximum xor of some subset of cycles_{02fc1c, 69 lines}

```
CvcleBasis.h
Description: Xor basis of cycles on an undirected weighted graph. The
struct edge {
 11 u, v, w;
int n, m;
vector<edge> edges:
vector<vector<ll>>> treeAdjList, treeAdjWeights;
vector<11> parents, depths, xors;
void dfs(ll at, ll par, ll depth, ll prefixXor) {
  parents[at] = par;
  depths[at] = depth;
  xors[at] = prefixXor;
  auto &curr = treeAdjList[at];
  for(ll i = 0; i < curr.size(); ++i) {</pre>
        ll neigh = curr[i];
    if (neigh == par) continue;
    dfs(neigh, at, depth + 1, prefixXor ^ treeAdjWeights[at][i
bool addToBasis(vector<11> &basis, 11 x) {
  for(11 i = 62; i >= 0; --i)
    if (x & 1LL << i) x ^= basis[i];</pre>
  if (x == 0) return false;
  basis[63 - \underline{builtin_clzll(x)}] = x;
  return true;
ll solve() {
  cin >> n >> m;
    edges = vector<edge>();
    for (ll i = 0; i < m; ++i) {</pre>
        edge e; cin >> e.u >> e.v >> e.w;
        e.u--, e.v--;
        edges.push_back(e);
    treeAdjList = vector<vector<ll>>(n);
    treeAdjWeights = vector<vector<ll>>>(n);
    DSU dsu(n);
    vector<edge> leftovers;
    for (edge &e : edges) {
        if (dsu.join(e.u, e.v)) {
            treeAdjList[e.u].push_back(e.v);
            treeAdjWeights[e.u].push_back(e.w);
            treeAdjList[e.v].push_back(e.u);
            treeAdjWeights[e.v].push_back(e.w);
        else {
            leftovers.push_back(e);
    parents = vector<11>(n);
    depths = vector<11>(n);
    xors = vector<11>(n);
    dfs(0, -1, 0, 0);
    vector<ll> basis(64);
```

DominatorTree SPFA SebaDinic VirtualTree

```
for (edge &e : leftovers) {
   ll xr = xors[e.u] ^ xors[e.v] ^ e.w;
    addToBasis(basis, xr);
11 ans = 0:
for (11 i = 62; i >= 0; --i)
   ans = max(ans, ans ^ basis[i]);
```

DominatorTree.h

Description: Given a digraph, return the edges of the dominator tree given as an adj. list (directed tree downwards from the root)

Time: $\mathcal{O}((n+m)*logn)$ where n is the number of vertices in the graph and m is the number of edges 36a500, 39 lines

```
vector<vi> dominator_tree(const vector<vi>& adj, int root) {
  int n = sz(adj) + 1, co = 0;
  vector<vi> ans(n), radj(n), child(n), sdomChild(n);
  vi label(n), rlabel(n), sdom(n), dom(n), par(n), bes(n);
  auto get = [&] (auto self, int x) -> int {
   if (par[x] != x) {
     int t = self(self, par[x]);
     par[x] = par[par[x]];
     if (sdom[t] < sdom[bes[x]]) bes[x] = t;</pre>
   return bes[x];
  auto dfs = [&](auto self, int x) -> void {
   label[x] = ++co, rlabel[co] = x;
    sdom[co] = par[co] = bes[co] = co;
   for (auto y : adj[x]) {
     if (!label[y])
       self(self, v), child[label[x]].push back(label[v]);
     radj[label[y]].push_back(label[x]);
  };
  dfs(dfs, root);
  for (int i = co; i >= 1; --i) {
   for (auto j : radj[i])
     sdom[i] = min(sdom[i], sdom[get(get, j)]);
    if (i > 1) sdomChild[sdom[i]].push_back(i);
    for (auto j : sdomChild[i]) {
     int k = get(get, j);
     if (sdom[j] == sdom[k]) dom[j] = sdom[j];
     else dom[i] = k;
    for (auto j : child[i]) par[j] = i;
  for (int i = 2; i < co + 1; ++i) {
   if (dom[i] != sdom[i]) dom[i] = dom[dom[i]];
   ans[rlabel[dom[i]]].push_back(rlabel[i]);
 return ans:
```

SPFA.h

Description: Faster Shortest Path Algorithm Detects negative cycles as 03ab94, 36 lines

```
const int INF = 1000000000;
vector<vector<pair<int, int>>> adj;
bool spfa(int s, vector<int>& d) {
    int n = adj.size();
    d.assign(n, INF);
    vector<int> cnt(n, 0);
    vector<bool> inqueue(n, false);
    queue<int> q;
```

```
d[s] = 0;
   q.push(s);
   inqueue[s] = true;
   while (!q.empty()) {
       int v = q.front();
       q.pop();
       inqueue[v] = false;
       for (auto edge : adj[v]) {
            int to = edge.first;
            int len = edge.second;
            if (d[v] + len < d[to]) {
                d[to] = d[v] + len;
                if (!inqueue[to]) {
                    q.push(to);
                    inqueue[to] = true;
                    cnt[to]++;
                    if (cnt[to] > n)
                        return false; // negative cycle
   return true;
SebaDinic.h
Description: Max flow algorithm. Can find a valid circulation given vertex
and/or edge demands. Time: O(VE \log U)
```

```
// disable scaling when max flow/capacity is small, or
// sometimes on random data
template < bool SCALING = true > struct Dinic {
 struct Edge {
   int v, dual;
   11 cap, res;
    constexpr ll flow() { return max(cap - res, OLL); }
 };
 int n, s, t;
 vi lvl, q, ptr;
 vector<vector<Edge>> adj;
 vector<pii> edges:
 Dinic(int n): n(n + 2), s(n++), t(n++), q(n), adj(n) {}
 int add(int u, int v, ll cap, ll flow = 0) {
   adj[u].push_back({v, sz(adj[v]), cap, cap - flow});
   adj[v].push back({u, sz(adj[u]) - 1, 0, 0});
   edges.emplace_back(u, adj[u].size() - 1);
   return edges.size() - 1; // this Edge's ID
 ll dfs(int u, ll in) {
   if (u == t || !in) return in;
   11 \text{ flow} = 0;
   for (int& i = ptr[u]; i < sz(adj[u]); i++) {</pre>
      auto& e = adj[u][i];
     if (e.res && lvl[e.v] == lvl[u] - 1)
       if (ll out = dfs(e.v, min(in, e.res))) {
          flow += out, in -= out, e.res -= out;
         adj[e.v][e.dual].res += out;
         if (!in) return flow;
    return flow;
 ll flow() {
   11 \text{ flow} = 0;
   q[0] = t;
```

for (int $B = SCALING * 30; B >= 0; B--) do {$

```
lvl = ptr = vi(n);
        int gi = 0, ge = lvl[t] = 1;
        while (gi < ge && !lvl[s]) {
         int u = q[qi++];
          for (auto& e : adj[u])
            if (!lvl[e.v] && adj[e.v][e.dual].res >> B)
              q[qe++] = e.v, lvl[e.v] = lvl[u] + 1;
        if (lvl[s]) flow += dfs(s, LLONG_MAX);
      } while (lvl[s]);
    return flow:
 Edge& get(int id) { // get Edge object from its ID
   return adj[edges[id].first][edges[id].second];
 void clear() {
    for (auto& it : adj)
      for (auto& e : it) e.res = e.cap;
 bool leftOfMinCut(int u) { return lvl[u] == 0; }
  // d is a list of vertex demands, d[u] = flow in - flow out
  // negative if u is a source, positive if u is a sink
 bool circulation(vector<ll> d = {}) {
    d.resize(n);
    vector<int> circEdges;
    Dinic q(n);
    for (int u = 0; u < n; u++)
      for (auto& e : adj[u]) {
        d[u] += e.flow(), d[e.v] -= e.flow();
        if (e.res) circEdges.push_back(g.add(u, e.v, e.res));
    int tylerEdge = g.add(t, s, LLONG_MAX, 0);
    11 \text{ flow} = 0;
    for (int u = 0; u < n; u++)</pre>
     if (d[u] < 0) g.add(g.s, u, -d[u]);</pre>
      else if (d[u] > 0) g.add(u, g.t, d[u]), flow += d[u];
    if (flow != q.flow()) return false;
    int i = 0; // reconstruct the flow into this graph
    for (int u = 0; u < n; u++)
      for (auto& e : adj[u])
        if (e.res) e.res -= g.get(circEdges[i++]).flow();
};
```

VirtualTree.h

Description: Given a list of query nodes, it will construct the virtual tree with the query nodes and pairwise lca's. Need to compute euler tour beforehand (not shown)

```
bool cmp(int u, int v) { return st[u] < st[v]; }</pre>
int virtual tree(vi vert) {
    sort(all(vert), cmp);
    int k = sz(vert);
    for(int i = 0; i < k - 1; i++) {
        int new_vertex = lca(vert[i], vert[i + 1]);
        vert.pb(new_vertex);
    sort(all(vert), cmp);
    vert.erase(unique(all(vert)), vert.end());
    for(int v : vert) {
        adj_vt[v].clear();
    vi stk;
    stk.pb(vert[0]);
    for(int i = 1; i < sz(vert); i++) {</pre>
        int u = vert[i];
        while(sz(stk) >= 2 && !upper(stk.back(), u)) {
```

```
adj_vt[stk[sz(stk) - 2]].pb(stk.back());
       stk.pop_back();
   stk.pb(u);
while (sz(stk) >= 2) {
   adj_vt[stk[sz(stk) - 2]].pb(stk.back());
   stk.pop_back();
return stk[0];
```

DvnamicConnectivity.h

```
Description: Offline Dynamic Connectivity We essentially do an inorder
traversal on time on a segment tree
struct dsu save {
   int u, v, subU, subV;
    dsu_save() {}
    dsu save(int u, int v, int subU, int subV)
        : u(_u), v(_v), subU(_subU), subV(_subV) {}
};
struct dsu_with_rollbacks {
    vector<int> p, sub;
    int comps;
    deque<dsu save> op;
    dsu with rollbacks() {}
    dsu_with_rollbacks(int n) {
       p.resize(n);
    sub.resize(n);
    iota(all(p), 0);
    fill(all(sub), 1);
        comps = n;
    int root(int v) {
        return (v == p[v]) ? v : root(p[v]);
   bool unite(int u, int v) {
   u = root(u), v = root(v);
   if(u == v) return false;
    if(sub[u] < sub[v]) swap(u, v);</pre>
        op.push_back(dsu_save(u, v, sub[u], sub[v]));
       p[v] = u, sub[u] += sub[v];
        comps--:
        return true;
    void rollback() {
       if(op.empty()) return;
       dsu_save x = op.back();
        op.pop_back();
    p[x.u] = x.u, p[x.v] = x.v;
    sub[x.u] = x.subU, sub[x.v] = x.subV;
        comps++;
struct query {
    int v, u;
   bool united;
    query(int _v, int _u) : v(_v), u(_u) {}
```

```
struct OueryTree {
   vector<vector<querv>> t;
   dsu with rollbacks dsu;
   int T;
   OuervTree() {}
   QueryTree(int _T, int n) : T(_T) {
       dsu = dsu_with_rollbacks(n);
       t.resize(4 * T + 4);
   void add_to_tree(int v, int 1, int r, int u1, int ur, query
       if (ul > ur)
           return;
       if (1 == u1 && r == ur) {
           t[v].push_back(q);
           return;
       int mid = (1 + r) / 2;
       add_to_tree(2 * v, 1, mid, ul, min(ur, mid), q);
       add to tree (2 * v + 1, mid + 1, r, max(ul, mid + 1), ur
   void add_query(query q, int 1, int r) {
       add to tree(1, 0, T - 1, 1, r, q);
   void dfs(int v, int 1, int r, vector<int>& ans) {
       for (query& q : t[v]) {
           q.united = dsu.unite(q.v, q.u);
       if (1 == r)
           ans[1] = dsu.comps;
           int mid = (1 + r) / 2;
           dfs(2 * v, 1, mid, ans);
           dfs(2 * v + 1, mid + 1, r, ans);
       for (query q : t[v]) {
            if (q.united)
               dsu.rollback();
   vector<int> solve() {
       vector<int> ans(T);
       dfs(1, 0, T - 1, ans);
       return ans;
};
```

7.9 Math

7.9.1 Number of Spanning Trees

Create an $N \times N$ matrix mat, and for each edge $a \to b \in G$, do mat[a][b]--, mat[b][b]++ (and mat[b][a]--, mat [a] [a] ++ if G is undirected). Remove the *i*th row and column and take the determinant; this yields the number of directed spanning trees rooted at i (if G is undirected, remove any row/column).

7.9.2 Erdős–Gallai theorem

A simple graph with node degrees $d_1 \ge \cdots \ge d_n$ exists iff $d_1 + \cdots + d_n$ is even and for every $k = 1 \dots n$,

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k).$$

Geometry (8)

8.1 Geometric primitives

Point.h

Description: Class to handle points in the plane. T can be e.g. double or long long. (Avoid int.)

```
template \langle class T \rangle int sgn(T x) \{ return (x > 0) - (x < 0); \}
template<class T>
struct Point {
 typedef Point P;
  T x, y;
  explicit Point (T x=0, T y=0) : x(x), y(y) {}
 bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }</pre>
  bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
  P operator+(P p) const { return P(x+p.x, y+p.y); }
  P operator-(P p) const { return P(x-p.x, y-p.y); }
  P operator*(T d) const { return P(x*d, y*d); }
  P operator/(T d) const { return P(x/d, y/d); }
  T dot(P p) const { return x*p.x + y*p.y; }
  T cross(P p) const { return x*p.y - y*p.x; }
  T cross(P a, P b) const { return (a-*this).cross(b-*this); }
 T dist2() const { return x*x + v*v; }
  double dist() const { return sgrt((double)dist2()); }
  // angle to x-axis in interval [-pi, pi]
  double angle() const { return atan2(y, x); }
  P unit() const { return *this/dist(); } // makes dist()=1
  P perp() const { return P(-y, x); } // rotates +90 degrees
 P normal() const { return perp().unit(); }
  // returns point rotated 'a' radians ccw around the origin
 P rotate (double a) const {
   return P(x*cos(a)-v*sin(a),x*sin(a)+v*cos(a)); }
 friend ostream& operator<<(ostream& os, P p) {</pre>
    return os << "(" << p.x << "," << p.v << ")"; }
```

lineDistance.h

Description:

Returns the signed distance between point p and the line containing points a and b. Positive value on left side and negative on right as seen from a towards b. a==b gives nan. P is supposed to be Point<T> or Point3D<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long. Using Point3D will always give a non-negative distance. For Point3D, call .dist /S on the result of the cross product.

f6bf6b, 4 lines

```
template<class P>
double lineDist(const P& a, const P& b, const P& p) {
 return (double) (b-a).cross(p-a)/(b-a).dist();
```

SegmentDistance.h

Description:

Returns the shortest distance between point p and the line segment from point s to e.

Usage: Point < double > a, b(2,2), p(1,1);

SegmentIntersection.h

Description:


```
Usage: vector<P> inter = segInter(s1,e1,s2,e2);
if (sz(inter)==1)
cout << "segments intersect at " << inter[0] << endl;
"Point.h", "OnSegment.h" 9d57f2, 13 lines
```

```
template < class P > vector < P > segInter(P a, P b, P c, P d) {
  auto oa = c.cross(d, a), ob = c.cross(d, b),
            oc = a.cross(b, c), od = a.cross(b, d);
  // Checks if intersection is single non-endpoint point.
  if (sgn(oa) * sgn(ob) < 0 && sgn(oc) * sgn(od) < 0)
    return {(a * ob - b * oa) / (ob - oa)};
  set < P > s;
  if (onSegment(c, d, a)) s.insert(a);
  if (onSegment(a, b, c)) s.insert(b);
  if (onSegment(a, b, d)) s.insert(d);
  return {all(s)};
}
```

lineIntersection.h

Description:


```
cout << "intersection point at " << res.second << endl;

"Point.h" a01f81, 8 lines
```

```
template < class P>
pair < int, P > lineInter(P s1, P e1, P s2, P e2) {
   auto d = (e1 - s1).cross(e2 - s2);
   if (d == 0) // if parallel
      return {-(s1.cross(e1, s2) == 0), P(0, 0)};
   auto p = s2.cross(e1, e2), q = s2.cross(e2, s1);
   return {1, (s1 * p + e1 * q) / d};
}
```

sideOf.h

Description: Returns where p is as seen from s towards e. $1/0/-1 \Leftrightarrow left/on$ line/right. If the optional argument eps is given 0 is returned if p is within distance eps from the line. P is supposed to be Point<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long.

OnSegment.h

Description: Returns true iff p lies on the line segment from s to e. Use (segDist (s,e,p) <= epsilon) instead when using Point < double >.

```
template<class P> bool onSegment(P s, P e, P p) {
   return p.cross(s, e) == 0 && (s - p).dot(e - p) <= 0;
}</pre>
```

linearTransformation.h Description:

Apply the linear transformation (translation, rotation and scaling) which takes line p0-p1 to line q0-q1 to point r.

LineProjectionReflection.h

Description: Projects point p onto line ab. Set refl=true to get reflection of point p across line ab instead. The wrong point will be returned if P is an integer point and the desired point doesn't have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow.

Angle.h

Description: A class for ordering angles (as represented by int points and a number of rotations around the origin). Useful for rotational sweeping. Sometimes also represents points or vectors.

```
Usage: vector<Angle> v = {w[0], w[0].t360() ...}; // sorted int j = 0; rep(i,0,n) { while (v[j] < v[i].t180()) ++j; } // sweeps j such that (j-i) represents the number of positively oriented triangles with vertices at 0 and i 00002, 35 \text{ lines}
```

```
struct Angle {
   int x, y;
   int t;
   Angle(int x, int y, int t=0) : x(x), y(y), t(t) {}
   Angle operator-(Angle b) const { return {x-b.x, y-b.y, t}; }
   int half() const {
      assert(x || y);
      return y < 0 || (y == 0 && x < 0);
   }
   Angle t90() const { return {-y, x, t + (half() && x >= 0)}; }
   Angle t180() const { return {-x, -y, t + half()}; }
   Angle t360() const { return {x, y, t + 1}; }
```

```
bool operator<(Angle a, Angle b) {</pre>
  // add a. dist2() and b. dist2() to also compare distances
  return make tuple(a.t, a.half(), a.v * (11)b.x) <
         make_tuple(b.t, b.half(), a.x * (ll)b.y);
// Given two points, this calculates the smallest angle between
// them, i.e., the angle that covers the defined line segment.
pair<Angle, Angle> segmentAngles(Angle a, Angle b) {
 if (b < a) swap(a, b);
 return (b < a.t180() ?
         make_pair(a, b) : make_pair(b, a.t360()));
Angle operator+(Angle a, Angle b) { // point a + vector b
 Angle r(a.x + b.x, a.y + b.y, a.t);
 if (a.t180() < r) r.t--;
 return r.t180() < a ? r.t360() : r;</pre>
Angle angleDiff(Angle a, Angle b) { // angle \ b - angle \ a}
 int tu = b.t - a.t; a.t = b.t;
 return \{a.x*b.x + a.y*b.y, a.x*b.y - a.y*b.x, tu - (b < a)\};
```

8.2 Circles

CircleIntersection.h

Description: Computes the pair of points at which two circles intersect. Returns false in case of no intersection.

CircleTangents.h

Description: Finds the external tangents of two circles, or internal if r2 is negated. Can return 0, 1, or 2 tangents -0 if one circle contains the other (or overlaps it, in the internal case, or if the circles are the same); 1 if the circles are tangent to each other (in which case .first = .second and the tangent line is perpendicular to the line between the centers). .first and .second give the tangency points at circle 1 and 2 respectively. To find the tangents of a circle with a point set r2 to 0.

"Point.h" b0153d, 13 lines

```
template<class P>
vector<pair<P, P>> tangents(P c1, double r1, P c2, double r2) {
  P d = c2 - c1;
  double dr = r1 - r2, d2 = d.dist2(), h2 = d2 - dr * dr;
  if (d2 == 0 || h2 < 0) return {};
  vector<pair<P, P>> out;
  for (double sign : {-1, 1}) {
    P v = (d * dr + d.perp() * sqrt(h2) * sign) / d2;
    out.push_back({c1 + v * r1, c2 + v * r2});
  }
  if (h2 == 0) out.pop_back();
  return out;
}
```

CircleLine.h

Description: Finds the intersection between a circle and a line. Returns a vector of either 0, 1, or 2 intersection points. P is intended to be Point<double>.

"Point.h" e0cfba, 9 lines template<class P> vector<P> circleLine(P c, double r, P a, P b) { $P \ ab = b - a, \ p = a + ab * (c-a).dot(ab) / ab.dist2();$ **double** s = a.cross(b, c), h2 = r*r - s*s / ab.dist2();if (h2 < 0) return {};</pre> **if** (h2 == 0) **return** {p}; P h = ab.unit() * sqrt(h2);**return** {p - h, p + h};

CirclePolygonIntersection.h

Description: Returns the area of the intersection of a circle with a ccw polygon.

Time: $\mathcal{O}(n)$

```
a1ee63, 19 lines
"../../content/geometry/Point.h"
typedef Point < double > P;
#define arg(p, q) atan2(p.cross(q), p.dot(q))
double circlePoly(P c, double r, vector<P> ps) {
  auto tri = [&] (P p, P q) {
    auto r2 = r * r / 2;
   P d = q - p;
    auto a = d.dot(p)/d.dist2(), b = (p.dist2()-r*r)/d.dist2();
    auto det = a * a - b;
    if (det <= 0) return arg(p, q) * r2;</pre>
    auto s = max(0., -a-sqrt(det)), t = min(1., -a+sqrt(det));
    if (t < 0 || 1 <= s) return arg(p, g) * r2;</pre>
   P u = p + d * s, v = p + d * t;
   return arg(p,u) * r2 + u.cross(v)/2 + arg(v,q) * r2;
  };
  auto sum = 0.0;
  rep(i, 0, sz(ps))
   sum += tri(ps[i] - c, ps[(i + 1) % sz(ps)] - c);
  return sum;
```

circumcircle.h

Description:

The circumcirle of a triangle is the circle intersecting all three vertices. ccRadius returns the radius of the circle going through points A, B and C and ccCenter returns the center of the same circle.


```
"Point.h"
                                                        1caa3a, 9 lines
typedef Point < double > P;
double ccRadius (const P& A, const P& B, const P& C) {
  return (B-A).dist() * (C-B).dist() * (A-C).dist() /
      abs ((B-A).cross(C-A))/2;
P ccCenter (const P& A, const P& B, const P& C) {
 P b = C-A, c = B-A;
  return A + (b*c.dist2()-c*b.dist2()).perp()/b.cross(c)/2;
```

MinimumEnclosingCircle.h

Description: Computes the minimum circle that encloses a set of points. **Time:** expected $\mathcal{O}(n)$

"circumcircle.h" 09dd0a, 17 lines pair<P, double> mec(vector<P> ps) { shuffle(all(ps), mt19937(time(0))); $P \circ = ps[0];$ **double** r = 0, EPS = 1 + 1e-8; rep(i, 0, sz(ps)) if ((o - ps[i]).dist() > r * EPS) { o = ps[i], r = 0;rep(j, 0, i) **if** $((o - ps[j]).dist() > r * EPS) {$

```
o = (ps[i] + ps[j]) / 2;
    r = (o - ps[i]).dist();
    rep(k, 0, j) if ((o - ps[k]).dist() > r * EPS) {
      o = ccCenter(ps[i], ps[j], ps[k]);
      r = (o - ps[i]).dist();
return {o, r};
```

Usage: $vector < P > v = \{P\{4,4\}, P\{1,2\}, P\{2,1\}\};$

bool in = inPolygon(v, $P{3, 3}$, false);

8.3 Polygons

InsidePolygon.h

Description: Returns true if p lies within the polygon. If strict is true, it returns false for points on the boundary. The algorithm uses products in intermediate steps so watch out for overflow.

```
Time: \mathcal{O}(n)
                                                          2bf<u>504</u>, 11 lines
"Point.h", "OnSegment.h", "SegmentDistance.h"
template<class P>
bool inPolygon(vector<P> &p, P a, bool strict = true) {
  int cnt = 0, n = sz(p);
  rep(i,0,n) {
    P q = p((i + 1) % n);
    if (onSegment(p[i], q, a)) return !strict;
    //or: if (segDist(p[i], q, a) \le eps) return ! strict;
    cnt ^= ((a.y<p[i].y) - (a.y<q.y)) * a.cross(p[i], q) > 0;
  return cnt;
```

PolygonArea.h

Description: Returns twice the signed area of a polygon. Clockwise enumeration gives negative area. Watch out for overflow if using int as T! "Point.h"

```
template<class T>
T polygonArea2(vector<Point<T>>& v) {
 T = v.back().cross(v[0]);
 rep(i, 0, sz(v) -1) a += v[i].cross(v[i+1]);
 return a;
```

PolygonCenter.h

Description: Returns the center of mass for a polygon.

Time: $\mathcal{O}(n)$

```
"Point.h"
                                                        9<u>706dc</u>, 9 lines
typedef Point < double > P;
P polygonCenter(const vector<P>& v) {
 P res(0, 0); double A = 0;
  for (int i = 0, j = sz(v) - 1; i < sz(v); j = i++) {
    res = res + (v[i] + v[j]) * v[j].cross(v[i]);
    A += v[j].cross(v[i]);
 return res / A / 3;
```

PolygonCut.h Description:

Returns a vector with the vertices of a polygon with everything to the left of the line going from s to e cut away.

```
Usage: vector<P> p = ...;
p = polygonCut(p, P(0,0), P(1,0));
"Point.h", "lineIntersection.h"
```

f2b7d4, 13 lines

```
typedef Point<double> P;
vector<P> polygonCut (const vector<P>& poly, P s, P e) {
```

```
vector<P> res;
rep(i, 0, sz(poly)) {
  P cur = poly[i], prev = i ? poly[i-1] : poly.back();
  bool side = s.cross(e, cur) < 0;</pre>
  if (side != (s.cross(e, prev) < 0))</pre>
    res.push_back(lineInter(s, e, cur, prev).second);
  if (side)
    res.push_back(cur);
return res;
```

PolygonUnion.h

Description: Calculates the area of the union of n polygons (not necessarily convex). The points within each polygon must be given in CCW order. (Epsilon checks may optionally be added to sideOf/sgn, but shouldn't be

Time: $\mathcal{O}(N^2)$, where N is the total number of points

"Point.h", "sideOf.h" 3931c6, 33 lines

```
typedef Point<double> P;
double rat(P a, P b) { return sgn(b.x) ? a.x/b.x : a.y/b.y; }
double polyUnion(vector<vector<P>>& poly) {
 double ret = 0;
 rep(i,0,sz(poly)) rep(v,0,sz(poly[i])) {
   P A = poly[i][v], B = poly[i][(v + 1) % sz(poly[i])];
    vector<pair<double, int>> segs = {{0, 0}, {1, 0}};
    rep(j,0,sz(poly)) if (i != j) {
      rep(u, 0, sz(poly[j])) {
       P C = poly[j][u], D = poly[j][(u + 1) % sz(poly[j])];
        int sc = sideOf(A, B, C), sd = sideOf(A, B, D);
       if (sc != sd) {
          double sa = C.cross(D, A), sb = C.cross(D, B);
         if (\min(sc, sd) < 0)
            segs.emplace_back(sa / (sa - sb), sgn(sc - sd));
        } else if (!sc && !sd && j<i && sqn((B-A).dot(D-C))>0){
          segs.emplace_back(rat(C - A, B - A), 1);
          segs.emplace_back(rat(D - A, B - A), -1);
    sort (all (segs));
    for (auto& s : segs) s.first = min(max(s.first, 0.0), 1.0);
    double sum = 0;
    int cnt = seqs[0].second;
   rep(j,1,sz(segs)) {
     if (!cnt) sum += seqs[j].first - seqs[j - 1].first;
     cnt += segs[j].second;
   ret += A.cross(B) * sum;
 return ret / 2;
```

ConvexHull.h

for (P p : pts) {

Description:

"Point.h"

Returns a vector of the points of the convex hull in counterclockwise order. Points on the edge of the hull between two other points are not considered part of the hull. Time: $\mathcal{O}(n \log n)$

typedef Point<ll> P; vector<P> convexHull(vector<P> pts) { if (sz(pts) <= 1) return pts;</pre> sort(all(pts)); vector<P> h(sz(pts)+1); **int** s = 0, t = 0; for (int it = 2; it--; s = --t, reverse(all(pts)))

```
while (t \ge s + 2 \&\& h[t-2].cross(h[t-1], p) \le 0) t--;
   h[t++] = p;
return {h.begin(), h.begin() + t - (t == 2 && h[0] == h[1])};
```

HullDiameter.h

Description: Returns the two points with max distance on a convex hull (ccw, no duplicate/collinear points).

Time: $\mathcal{O}(n)$

```
"Point.h"
                                                     c571b8, 12 lines
typedef Point<11> P;
array<P, 2> hullDiameter(vector<P> S) {
  int n = sz(S), j = n < 2 ? 0 : 1;
  pair<11, array<P, 2>> res({0, {S[0], S[0]}});
  rep(i,0,j)
    for (;; j = (j + 1) % n) {
      res = max(res, {(S[i] - S[j]).dist2(), {S[i], S[j]}});
      if ((S[(j+1) % n] - S[j]).cross(S[i+1] - S[i]) >= 0)
  return res.second:
```

PointInsideHull.h

Description: Determine whether a point t lies inside a convex hull (CCW order, with no collinear points). Returns true if point lies within the hull. If strict is true, points on the boundary aren't included.

Time: $\mathcal{O}(\log N)$

```
"Point.h", "sideOf.h", "OnSegment.h"
typedef Point<11> P;
```

71446b, 14 lines

```
bool inHull(const vector<P>& 1, P p, bool strict = true) {
  int a = 1, b = sz(1) - 1, r = !strict;
  if (sz(1) < 3) return r && onSegment(1[0], 1.back(), p);</pre>
  if (sideOf(1[0], 1[a], 1[b]) > 0) swap(a, b);
  if (sideOf(1[0], 1[a], p) >= r || sideOf(1[0], 1[b], p) <= -r)</pre>
   return false;
  while (abs(a - b) > 1) {
   int c = (a + b) / 2;
    (sideOf(1[0], 1[c], p) > 0 ? b : a) = c;
  return sqn(l[a].cross(l[b], p)) < r;</pre>
```

LineHullIntersection.h

Description: Line-convex polygon intersection. The polygon must be ccw and have no collinear points. lineHull(line, poly) returns a pair describing the intersection of a line with the polygon: \bullet (-1,-1) if no collision, \bullet (i,-1)if touching the corner i, \bullet (i, i) if along side (i, i+1), \bullet (i, j) if crossing sides (i, i+1) and (j, j+1). In the last case, if a corner i is crossed, this is treated as happening on side (i, i+1). The points are returned in the same order as the line hits the polygon. extrVertex returns the point of a hull with the max projection onto a line.

Time: $\mathcal{O}(\log n)$

```
"Point.h"
                                                     7cf45b, 39 lines
#define cmp(i,j) sgn(dir.perp().cross(poly[(i)%n]-poly[(j)%n]))
#define extr(i) cmp(i + 1, i) >= 0 && cmp(i, i - 1 + n) < 0
template <class P> int extrVertex(vector<P>& poly, P dir) {
 int n = sz(poly), lo = 0, hi = n;
 if (extr(0)) return 0;
  while (lo + 1 < hi) {
   int m = (lo + hi) / 2;
   if (extr(m)) return m;
   int 1s = cmp(1o + 1, 1o), ms = cmp(m + 1, m);
    (1s < ms \mid | (1s == ms \&\& 1s == cmp(1o, m)) ? hi : 1o) = m;
```

```
return lo;
#define cmpL(i) sgn(a.cross(poly[i], b))
template <class P>
array<int, 2> lineHull(P a, P b, vector<P>& poly) {
 int endA = extrVertex(poly, (a - b).perp());
 int endB = extrVertex(poly, (b - a).perp());
 if (cmpL(endA) < 0 || cmpL(endB) > 0)
   return {-1, -1};
 array<int, 2> res;
 rep(i,0,2) {
   int lo = endB, hi = endA, n = sz(poly);
   while ((lo + 1) % n != hi) {
     int m = ((lo + hi + (lo < hi ? 0 : n)) / 2) % n;</pre>
      (cmpL(m) == cmpL(endB) ? lo : hi) = m;
    res[i] = (lo + !cmpL(hi)) % n;
    swap (endA, endB);
 if (res[0] == res[1]) return {res[0], -1};
 if (!cmpL(res[0]) && !cmpL(res[1]))
    switch ((res[0] - res[1] + sz(poly) + 1) % sz(poly)) {
     case 0: return {res[0], res[0]};
     case 2: return {res[1], res[1]};
 return res;
```

8.4 Misc. Point Set Problems

ClosestPair.h

Description: Finds the closest pair of points.

Time: $\mathcal{O}(n \log n)$

```
"Point.h"
                                                      ac41a6, 17 lines
typedef Point<11> P;
pair<P, P> closest(vector<P> v) {
 assert (sz(v) > 1);
 sort(all(v), [](P a, P b) { return a.y < b.y; });</pre>
 pair<ll, pair<P, P>> ret{LLONG_MAX, {P(), P()}};
 int i = 0;
 for (P p : v) {
   P d{1 + (ll)sgrt(ret.first), 0};
   while (v[j].y \le p.y - d.x) S.erase(v[j++]);
   auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d);
   for (; lo != hi; ++lo)
     ret = min(ret, \{(*lo - p).dist2(), \{*lo, p\}\});
   S.insert(p);
 return ret.second;
```

ManhattanMST.h

"Point.h"

Description: Given N points, returns up to 4*N edges, which are guaranteed to contain a minimum spanning tree for the graph with edge weights w(p, q) = -p.x - q.x - + -p.y - q.y. Edges are in the form (distance, src, dst). Use a standard MST algorithm on the result to find the final MST. Time: $\mathcal{O}(N \log N)$

```
df6f59, 23 lines
typedef Point<int> P;
vector<array<int, 3>> manhattanMST(vector<P> ps) {
 vi id(sz(ps));
 iota(all(id), 0);
 vector<array<int, 3>> edges;
 rep(k,0,4) {
   sort(all(id), [&](int i, int j) {
        return (ps[i]-ps[j]).x < (ps[j]-ps[i]).y;});
   map<int, int> sweep;
```

```
for (int i : id) {
      for (auto it = sweep.lower_bound(-ps[i].y);
                it != sweep.end(); sweep.erase(it++)) {
        int j = it->second;
        P d = ps[i] - ps[j];
        if (d.y > d.x) break;
        edges.push_back({d.y + d.x, i, j});
      sweep[-ps[i].y] = i;
    for (P& p : ps) if (k & 1) p.x = -p.x; else swap(p.x, p.y);
  return edges;
kdTree.h
Description: KD-tree (2d, can be extended to 3d)
                                                     bac5b0, 63 lines
typedef long long T;
typedef Point<T> P;
const T INF = numeric limits<T>::max();
bool on x(const P& a, const P& b) { return a.x < b.x; }
bool on_y(const P& a, const P& b) { return a.y < b.y; }
struct Node {
  P pt; // if this is a leaf, the single point in it
 T x0 = INF, x1 = -INF, y0 = INF, y1 = -INF; // bounds
  Node *first = 0, *second = 0;
  T distance (const P& p) { // min squared distance to a point
    T x = (p.x < x0 ? x0 : p.x > x1 ? x1 : p.x);
    T y = (p.y < y0 ? y0 : p.y > y1 ? y1 : p.y);
    return (P(x,y) - p).dist2();
  Node (vector<P>&& vp) : pt(vp[0]) {
    for (P p : vp) {
      x0 = min(x0, p.x); x1 = max(x1, p.x);
      y0 = min(y0, p.y); y1 = max(y1, p.y);
    if (vp.size() > 1) {
      // split on x if width >= height (not ideal...)
      sort(all(vp), x1 - x0 >= y1 - y0 ? on_x : on_y);
      // divide by taking half the array for each child (not
      // best performance with many duplicates in the middle)
      int half = sz(vp)/2:
      first = new Node({vp.begin(), vp.begin() + half});
      second = new Node({vp.begin() + half, vp.end()});
};
struct KDTree {
  Node* root:
  KDTree(const vector<P>& vp) : root(new Node({all(vp)})) {}
  pair<T, P> search(Node *node, const P& p) {
    if (!node->first) {
      // uncomment if we should not find the point itself:
      // if (p = node \rightarrow pt) return \{INF, P()\};
      return make_pair((p - node->pt).dist2(), node->pt);
    Node *f = node->first, *s = node->second;
    T bfirst = f->distance(p), bsec = s->distance(p);
    if (bfirst > bsec) swap(bsec, bfirst), swap(f, s);
    // search closest side first, other side if needed
```

```
auto best = search(f, p);
if (bsec < best.first)
   best = min(best, search(s, p));
return best;
}

// find nearest point to a point, and its squared distance
// (requires an arbitrary operator< for Point)
pair<T, P> nearest(const P& p) {
   return search(root, p);
};
```

DelaunayTriangulation.h

Description: Computes the Delaunay triangulation of a set of points. Each circumcircle contains none of the input points. If any three points are collinear or any four are on the same circle, behavior is undefined.

Time: $\mathcal{O}\left(n^2\right)$

FastDelaunay.h

Description: Fast Delaunay triangulation. Each circumcircle contains none of the input points. There must be no duplicate points. If all points are on a line, no triangles will be returned. Should work for doubles as well, though there may be precision issues in 'circ'. Returns triangles in order $\{t[0][0], t[0][1], t[0][2], t[1][0], \ldots\}$, all counter-clockwise.

```
Time: \mathcal{O}(n \log n)
"Point.h"
                                                         eefdf5, 88 lines
typedef Point<11> P;
typedef struct Quad* Q;
typedef __int128_t ll1; // (can be ll if coords are < 2e4)
P arb(LLONG_MAX, LLONG_MAX); // not equal to any other point
struct Ouad {
  Q rot, o; P p = arb; bool mark;
  P& F() { return r()->p; }
  O& r() { return rot->rot; }
  Q prev() { return rot->o->rot; }
  Q next() { return r()->prev(); }
bool circ(P p, P a, P b, P c) { // is p in the circumcircle?
  111 p2 = p.dist2(), A = a.dist2()-p2,
      B = b.dist2()-p2, C = c.dist2()-p2;
  return p.cross(a,b) \starC + p.cross(b,c) \starA + p.cross(c,a) \starB > 0;
Q makeEdge(P orig, P dest) {
  Q r = H ? H : new Quad{new Quad{new Quad{0}}}};
  H = r->0; r->r()->r() = r;
  rep(i,0,4) r = r \rightarrow rot, r \rightarrow p = arb, r \rightarrow o = i & 1 ? <math>r : r \rightarrow r();
  r->p = orig; r->F() = dest;
  return r;
void splice(Q a, Q b) {
  swap(a->o->rot->o, b->o->rot->o); swap(a->o, b->o);
Q connect(Q a, Q b) {
  Q = makeEdge(a->F(), b->p);
```

```
splice(q, a->next());
 splice(q->r(), b);
 return q;
pair<Q,Q> rec(const vector<P>& s) {
 if (sz(s) <= 3) {
    Q = makeEdge(s[0], s[1]), b = makeEdge(s[1], s.back());
    if (sz(s) == 2) return { a, a->r() };
   splice(a->r(), b);
   auto side = s[0].cross(s[1], s[2]);
   Q c = side ? connect(b, a) : 0;
   return {side < 0 ? c->r() : a, side < 0 ? c : b->r() };
#define H(e) e->F(), e->p
#define valid(e) (e->F().cross(H(base)) > 0)
 Q A, B, ra, rb;
 int half = sz(s) / 2;
 tie(ra, A) = rec({all(s) - half});
 tie(B, rb) = rec(\{sz(s) - half + all(s)\});
 while ((B->p.cross(H(A)) < 0 \&& (A = A->next())) | |
         (A->p.cross(H(B)) > 0 && (B = B->r()->o)));
 Q base = connect (B->r(), A);
 if (A->p == ra->p) ra = base->r();
 if (B->p == rb->p) rb = base;
#define DEL(e, init, dir) Q e = init->dir; if (valid(e)) \
   while (circ(e->dir->F(), H(base), e->F())) { \
     Q t = e->dir; \
     splice(e, e->prev()); \
     splice(e->r(), e->r()->prev()); \
     e->o = H; H = e; e = t; \setminus
   DEL(LC, base->r(), o); DEL(RC, base, prev());
    if (!valid(LC) && !valid(RC)) break;
   if (!valid(LC) || (valid(RC) && circ(H(RC), H(LC))))
     base = connect(RC, base->r());
    else
     base = connect(base->r(), LC->r());
 return { ra, rb };
vector<P> triangulate(vector<P> pts) {
 sort(all(pts)); assert(unique(all(pts)) == pts.end());
 if (sz(pts) < 2) return {};
 O e = rec(pts).first;
 vector<0> q = {e};
 int qi = 0;
 while (e->o->F().cross(e->F(), e->p) < 0) e = e->o;
#define ADD { O c = e; do { c->mark = 1; pts.push back(c->p); \setminus
 q.push_back(c->r()); c = c->next(); } while (c != e); }
 ADD; pts.clear();
 while (qi < sz(q)) if (!(e = q[qi++]) -> mark) ADD;
 return pts;
8.5 Geometry Extra
```

AngleSort.h

Description: Angular Sort with Cross-product **Time:** $\mathcal{O}(N \log N)$

```
sort(pts.begin(), pts.end(), [](const P& p1, const P& p2)->bool
{
  int s1 = p1.y < 0 || (p1.y == 0 && p1.x < 0);
  int s2 = p2.y < 0 || (p2.y == 0 && p2.x < 0);
  if(s1 != s2) return s1 < s2;</pre>
```

```
return p1.cross(p2) > 0;
});
```

Point3D.h

Description: Class to handle points in 3D space. T can be e.g. double or long long.

```
template<class T> struct Point3D {
 typedef Point3D P;
 typedef const P& R;
 T x, y, z;
 explicit Point3D(T x=0, T y=0, T z=0) : x(x), y(y), z(z) {}
 bool operator<(R p) const {</pre>
   return tie(x, y, z) < tie(p.x, p.y, p.z); }
 bool operator==(R p) const {
   return tie(x, y, z) == tie(p.x, p.y, p.z); }
 P operator+(R p) const { return P(x+p.x, y+p.y, z+p.z); }
 P operator-(R p) const { return P(x-p.x, y-p.y, z-p.z); }
 P operator*(T d) const { return P(x*d, y*d, z*d); }
 P operator/(T d) const { return P(x/d, y/d, z/d); }
 T dot(R p) const { return x*p.x + y*p.y + z*p.z; }
 P cross(R p) const {
    return P(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x);
 T dist2() const { return x*x + y*y + z*z; }
 double dist() const { return sqrt((double)dist2()); }
  //Azimuthal angle (longitude) to x-axis in interval [-pi, pi]
  double phi() const { return atan2(y, x); }
  //Zenith angle (latitude) to the z-axis in interval [0, pi]
  double theta() const { return atan2(sqrt(x*x+y*y),z); }
 P unit() const { return *this/(T) dist(); } //makes dist()=1
 //returns unit vector normal to *this and p
 P normal(P p) const { return cross(p).unit(); }
 //returns point rotated 'angle' radians ccw around axis
 P rotate (double angle, P axis) const {
    double s = sin(angle), c = cos(angle); P u = axis.unit();
    return u*dot(u)*(1-c) + (*this)*c - cross(u)*s;
};
```

3dHull.h

Description: Computes all faces of the 3-dimension hull of a point set. *No four points must be coplanar*, or else random results will be returned. All faces will point outwards.

Time: $\mathcal{O}\left(n^2\right)$

"Point3D.h" 5b45fc, 49 lines typedef Point3D<double> P3; struct PR { **void** ins(**int** x) { $(a == -1 ? a : b) = x; }$ **void** rem(**int** x) { $(a == x ? a : b) = -1; }$ int cnt() { return (a != -1) + (b != -1); } int a, b; **struct** F { P3 q; **int** a, b, c; }; vector<F> hull3d(const vector<P3>& A) { assert(sz(A) >= 4); vector<vector<PR>> $E(sz(A), vector<PR>(sz(A), {-1, -1}));$ #define E(x,y) E[f.x][f.y] vector<F> FS; auto $mf = [\&] (int i, int j, int k, int l) {$ P3 q = (A[j] - A[i]).cross((A[k] - A[i]));if (q.dot(A[1]) > q.dot(A[i])) q = q * -1; $F f{q, i, j, k};$ E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);FS.push back(f);

```
rep(i,0,4) rep(j,i+1,4) rep(k,j+1,4)
   mf(i, j, k, 6 - i - j - k);
  rep(i, 4, sz(A)) {
    rep(j,0,sz(FS)) {
     F f = FS[i];
     if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
       E(a,b).rem(f.c);
       E(a,c).rem(f.b);
       E(b,c).rem(f.a);
       swap(FS[j--], FS.back());
       FS.pop_back();
    int nw = sz(FS);
    rep(j,0,nw) {
     F f = FS[\dot{j}];
#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i, f.c);
     C(a, b, c); C(a, c, b); C(b, c, a);
  for (F& it : FS) if ((A[it.b] - A[it.a]).cross(
   A[it.c] - A[it.a]).dot(it.q) <= 0) swap(it.c, it.b);
  return FS:
};
```

sphericalDistance.h

Description: Returns the shortest distance on the sphere with radius radius between the points with azimuthal angles (longitude) f1 (ϕ_1) and f2 (ϕ_2) from x axis and zenith angles (latitude) t1 (θ_1) and t2 (θ_2) from z axis (0 = 1) north pole). All angles measured in radians. The algorithm starts by converting the spherical coordinates to cartesian coordinates so if that is what you have you can use only the two last rows. dx*radius is then the difference between the two points in the x direction and d*radius is the total distance between the points.

```
double sphericalDistance(double f1, double t1,
    double f2, double t2, double radius) {
    double dx = sin(t2)*cos(f2) - sin(t1)*cos(f1);
    double dy = sin(t2)*sin(f2) - sin(t1)*sin(f1);
    double dz = cos(t2) - cos(t1);
    double d = sqrt(dx*dx + dy*dy + dz*dz);
    return radius*2*asin(d/2);
}
```

EcnerwalaHalfplane.h

Description: Halfplane Intersection polygon

Time: $\mathcal{O}(N \log N)$

```
"Point.h", "lineIntersection.h"
                                                       17fc46, 71 lines
#define eps 1e-8
typedef Point<double> P;
struct Line {
 P P1, P2;
  // Right hand side of the ray P1 -> P2
  explicit Line(P a = P(), P b = P()) : P1(a), P2(b) {};
  P intpo(Line y) {
   Pr;
   assert (lineIntersection (P1, P2, y.P1, y.P2, r) == 1);
   return r;
 P dir() {
    return P2 - P1;
  bool contains (P x) {
   return (P2 - P1).cross(x - P1) < eps;
 bool out (P x) {
```

```
return !contains(x);
};
template<class T>
bool mycmp(Point<T> a, Point<T> b) {
  // return atan2(a.y, a.x) < atan2(b.y, b.x);
  if (a.x * b.x < 0) return a.x < 0;</pre>
  if (abs(a.x) < eps) {
    if (abs(b.x) < eps) return a.y > 0 && b.y < 0;</pre>
    if (b.x < 0) return a.y > 0;
    if (b.x > 0) return true;
  if (abs(b.x) < eps) {
    if (a.x < 0) return b.y < 0;
    if (a.x > 0) return false;
  return a.cross(b) > 0;
bool cmp (Line a, Line b) {
 return mycmp(a.dir(), b.dir());
vector<P> halfplaneIntersection(vector <Line> b) {
  sort(b.begin(), b.end(), cmp);
  int n = b.size();
  int q = 1, h = 0, i;
  vector <Line> c(b.size() + 10);
  for (i = 0; i < n; i++) {
    while (q < h && b[i].out(c[h].intpo(c[h - 1]))) h--;</pre>
    while (q < h \&\& b[i].out(c[q].intpo(c[q + 1]))) q++;
    if (q < h \&\& abs(c[h].dir().cross(c[h - 1].dir())) < eps) {
      if (c[h].dir().dot(c[h-1].dir()) > 0) {
        if (b[i].out(c[h].P1)) c[h] = b[i];
      }else {
        // The area is either 0 or infinite.
        // If you have a bounding box, then the area is
             definitely 0.
        return {};
    }
  while (q < h - 1 \&\& c[q].out(c[h].intpo(c[h - 1]))) h--;
  while (q < h - 1 \&\& c[h].out(c[q].intpo(c[q + 1]))) q++;
  if (h - q <= 1) return {};</pre>
  c[h + 1] = c[q];
  vector <P> s;
  for (i = q; i <= h; i++) s.push_back(c[i].intpo(c[i + 1]));</pre>
```

HullTangents.h

Description: Finds the left and right, respectively, tangent points on convex hull from a point. If the point is colinear to $\operatorname{side}(s)$ of the polygon, the point further away is returned. Requires ccw, $n \geq 3$, and the point be on or outside the polygon.

Time: $\mathcal{O}(\log n)$

```
a < R&& b >= 0 ? lo = md : hi = md - 1;
else a < R || b <= 0 ? lo = md : hi = md - 1;
}
return -1; // point strictly inside hull
}
template < class P > pii hullTangents (vector < P > & h, P p) {
    return {getTangent < 0 > (h, p), getTangent < 1 > (h, p)};
}
```

PickTheorem.h

Description: Given a certain lattice polygon with non-zero area. We denote its area by S, the number of points with integer coordinates lying strictly inside the polygon by I and the number of points lying on poylgons by B. Then, Pick's formula states: S = I + B / 2 - 1

PlanarFace.h

Description: Takes a bunch of points and adjacency array. No lines formed by adjacent points can cross! Returns an array list of polygons formed by these points and adjs No two points can be the same. Points will be assigned IDs in order given. Will not form polygons with holes (there may be nested polygons you need to check for)

"Point.h" 72d650, 74 lines

```
template<class P> struct Edge {
  int id;
  P a, b, ab;
  Edge *rev, *prev;
  bool used, isBorder;
  Edge (P a, P b):
    id(0), a(a), b(b), ab(b-a), rev(NULL), prev(NULL),
    used(0), isBorder(0) {}
  friend ostream &operator<<(ostream &os, Edge e) {</pre>
    return os << e.id;
// Takes a bunch of points and adjacency array. No lines formed
      by adjacent points can cross!
// Returns an array list of polygons formed by these points and
// No two points can be the same. Points will be assigned IDs
     in order given.
// Will not form polygons with holes (there may be nested
     polygons you need to check for)
//O(v + m \log m)
template<class P>
vector<vector<Edge<P> *>> extractPolygons(vector<P> &points,
  vector<vi> &adjs) {
  using Edge = Edge<P>;
  int n = sz(points),
      curEId = 0; // # of poly-poly edges; can keep global
  vector<vector<Edge *>> edges(n);
  vi idxs(n);
  rep(i, 0, n) edges[i].resize(sz(adjs[i]));
  for (int i = 0; i < n; i++) {</pre>
    P p = points[i];
    for (int next : adjs[i]) {
      if (next < i) continue;</pre>
      P q = points[next];
      Edge *a = new Edge(p, q), *b = new Edge(q, p);
      a->id = b->id = curEId++;
      edges[i][idxs[i]++] = b->rev = a;
      edges[next][idxs[next]++] = a->rev = b;
  rep(i, 0, n) {
    int len = sz(edges[i]);
    sort(all(edges[i]), [&](auto ea, auto eb) {
      // or another more stable radial sort of your choosing
```

SweepLine TriangleUnionArea

```
return atan21(ea->ab.y, ea->ab.x) <
     atan21(eb->ab.y, eb->ab.x);
 rep(j, 0, len) edges[i][(j + 1) % len]->prev = edges[i][j];
vector<vector<Edge *>> polys;
for (int i = 0; i < n; i++) {</pre>
 P cur = points[i];
  for (Edge *e : edges[i]) {
   if (e->used) continue;
   e->used = true;
   vector<Edge *> edgeList{e};
    cur = e->b;
    while (true) {
     e = e->rev->prev;
     if (e->used) break;
     e->used = true;
     edgeList.pb(e);
     cur = e->b;
   polys.pb({edgeList});
vector<vector<Edge *>> res;
for (vector<Edge *> &p : polys) {
 1d a = 0;
 for (Edge *e : p) a = a + e->a.cross(e->b);
 if (a >= 0) res.pb(p); // Normal polygon (maybe 0 area)
 else // Else, this the border polygon (vs in reverse order)
   for (Edge *e : p) e->isBorder = true;
return res;
```

SweepLine.h

Description: Given n line segments on the plane. It is required to check whether at least two of them intersect with each other. If the answer is yes, then print this pair of intersecting segments; it is enough to choose any of them among several answers.

```
const double EPS = 1E-9;
struct pt {
                    double x, y;
struct sea {
                   pt p, q;
                  int id:
                   double get_y (double x) const {
                                      if (abs(p.x - q.x) < EPS)
                                                            return p.y;
                                        return p.y + (q.y - p.y) * (x - p.x) / (q.x - p.x);
bool intersect1d(double 11, double r1, double 12, double r2) {
                    if (11 > r1)
                                        swap(11, r1);
                    if (12 > r2)
                                        swap(12, r2);
                    return max(11, 12) <= min(r1, r2) + EPS;
int vec(const pt& a, const pt& b, const pt& c) {
                    double s = (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.y) * (
                    return abs(s) < EPS ? 0 : s > 0 ? +1 : -1;
```

```
bool intersect (const seg& a, const seg& b)
    return intersect1d(a.p.x, a.q.x, b.p.x, b.q.x) &&
           intersect1d(a.p.y, a.q.y, b.p.y, b.q.y) &&
           vec(a.p, a.q, b.p) * vec(a.p, a.q, b.q) <= 0 &&
           vec(b.p, b.q, a.p) * vec(b.p, b.q, a.q) <= 0;
bool operator<(const seg& a, const seg& b)
    double x = max(min(a.p.x, a.q.x), min(b.p.x, b.q.x));
    return a.get_y(x) < b.get_y(x) - EPS;</pre>
struct event {
    double x;
    int tp, id;
    event() {}
    event (double x, int tp, int id) : x(x), tp(tp), id(id) {}
    bool operator<(const event& e) const {</pre>
        if (abs(x - e.x) > EPS)
            return x < e.x;</pre>
        return tp > e.tp;
vector<set<seg>::iterator> where;
set<seg>::iterator prev(set<seg>::iterator it) {
    return it == s.begin() ? s.end() : --it;
set<seg>::iterator next(set<seg>::iterator it) {
    return ++it;
pair<int, int> solve(const vector<seg>& a) {
    int n = (int)a.size();
    vector<event> e;
    for (int i = 0; i < n; ++i) {</pre>
        e.push_back(event(min(a[i].p.x, a[i].q.x), +1, i));
        e.push_back(event(max(a[i].p.x, a[i].q.x), -1, i));
    sort(e.begin(), e.end());
    s.clear();
    where.resize(a.size());
    for (size_t i = 0; i < e.size(); ++i) {</pre>
        int id = e[i].id;
        if (e[i].tp == +1) {
            set<seg>::iterator nxt = s.lower_bound(a[id]), prv
                 = prev(nxt);
            if (nxt != s.end() && intersect(*nxt, a[id]))
                return make_pair(nxt->id, id);
            if (prv != s.end() && intersect(*prv, a[id]))
                return make_pair(prv->id, id);
            where[id] = s.insert(nxt, a[id]);
        } else {
            set<seg>::iterator nxt = next(where[id]), prv =
                 prev(where[id]);
            if (nxt != s.end() && prv != s.end() && intersect(*
                 nxt, *prv))
                return make_pair(prv->id, nxt->id);
            s.erase(where[id]);
```

```
return make_pair(-1, -1);
TriangleUnionArea.h
Description: Finds union area of a set of triangles
                                                     a85ce3, 178 lines
typedef double dbl;
const dbl eps = 1e-9;
inline bool eq(dbl x, dbl y) {
    return fabs(x - y) < eps;
inline bool lt(dbl x, dbl y) {
    return x < y - eps;
inline bool gt(dbl x, dbl y) {
    return x > y + eps;
inline bool le(dbl x, dbl y) {
    return x < y + eps;
inline bool ge(dbl x, dbl v) {
    return x > y - eps;
struct pt{
    dbl x, v;
    inline pt operator - (const pt & p) const{
        return pt{x - p.x, y - p.y};
    inline pt operator + (const pt & p)const{
        return pt{x + p.x, y + p.y};
    inline pt operator * (dbl a)const{
        return pt{x * a, y * a};
    inline dbl cross(const pt & p)const{
        return x * p.y - y * p.x;
    inline dbl dot(const pt & p)const{
        return x * p.x + y * p.y;
    inline bool operator == (const pt & p)const{
        return eq(x, p.x) && eq(y, p.y);
};
struct Line {
    pt p[2];
    Line(){}
    Line(pt a, pt b):p{a, b}{}
    pt vec() const{
        return p[1] - p[0];
    pt& operator [](size_t i){
        return p[i];
inline bool lexComp(const pt & 1, const pt & r) {
    if(fabs(l.x - r.x) > eps){
```

1ff9f1, 11 lines

```
return 1.x < r.x;</pre>
    else return 1.y < r.y;</pre>
vector<pt> interSegSeg(Line 11, Line 12){
    if(eq(11.vec().cross(12.vec()), 0)){
        if(!eq(11.vec().cross(12[0] - 11[0]), 0))
            return {};
        if(!lexComp(11[0], 11[1]))
            swap(11[0], 11[1]);
        if(!lexComp(12[0], 12[1]))
            swap(12[0], 12[1]);
       pt 1 = lexComp(11[0], 12[0]) ? 12[0] : 11[0];
        pt r = lexComp(11[1], 12[1]) ? 11[1] : 12[1];
        if(1 == r)
            return {1};
        else return lexComp(1, r) ? vector<pt>{1, r} : vector<</pre>
    else{
        dbl s = (12[0] - 11[0]).cross(12.vec()) / 11.vec().
             cross(12.vec());
        pt inter = 11[0] + 11.vec() * s;
        if (ge(s, 0) && le(s, 1) && le((12[0] - inter).dot(12[1]
              - inter), 0))
            return {inter};
        else
            return {};
inline char get_segtype(Line segment, pt other_point){
    if(eq(segment[0].x, segment[1].x))
        return 0;
    if(!lexComp(segment[0], segment[1]))
        swap(segment[0], segment[1]);
    return (segment[1] - segment[0]).cross(other_point -
         segment[0]) > 0 ? 1 : -1;
dbl union_area(vector<tuple<pt, pt, pt> > triangles){
    vector<Line> segments(3 * triangles.size());
    vector<char> segtype(segments.size());
    for(size t i = 0; i < triangles.size(); i++){</pre>
        pt a, b, c;
        tie(a, b, c) = triangles[i];
        segments[3 * i] = lexComp(a, b) ? Line(a, b) : Line(b, a)
        segtype[3 * i] = get_segtype(segments[3 * i], c);
        segments[3 * i + 1] = lexComp(b, c) ? Line(b, c) : Line
             (c, b);
        segtype[3 * i + 1] = get\_segtype(segments[3 * i + 1], a
        segments[3 * i + 2] = lexComp(c, a) ? Line(c, a) : Line
             (a, c);
        segtype[3 * i + 2] = get_segtype(segments[3 * i + 2], b
             );
    vector<dbl> k(segments.size()), b(segments.size());
    for(size t i = 0; i < segments.size(); i++){</pre>
        if(segtype[i]){
            k[i] = (segments[i][1].y - segments[i][0].y) / (
                 segments[i][1].x - segments[i][0].x);
            b[i] = segments[i][0].y - k[i] * segments[i][0].x;
    dbl ans = 0;
    for(size_t i = 0; i < segments.size(); i++) {</pre>
       if(!segtype[i])
```

```
continue:
    dbl l = segments[i][0].x, r = segments[i][1].x;
    vector<pair<dbl, int> > evts;
    for(size_t j = 0; j < segments.size(); j++){</pre>
        if(!segtype[j] || i == j)
            continue;
        dbl 11 = segments[j][0].x, r1 = segments[j][1].x;
        if(ge(l1, r) || ge(l, r1))
            continue:
        dbl common_l = max(l, l1), common_r = min(r, r1);
        auto pts = interSeqSeq(segments[i], segments[j]);
        if(pts.empty()){
            dbl yl1 = k[j] * common_l + b[j];
            dbl yl = k[i] * common_l + b[i];
            if(lt(yl1, yl) == (segtype[i] == 1)){
                int evt_type = -seqtype[i] * seqtype[j];
                evts.emplace_back(common_l, evt_type);
                evts.emplace_back(common_r, -evt_type);
        else if(pts.size() == 1u) {
            dbl yl = k[i] * common_l + b[i], yll = k[j] *
                 common_l + b[j];
            int evt_type = -segtype[i] * segtype[j];
            if(lt(yl1, yl) == (segtype[i] == 1)){
                evts.emplace_back(common_l, evt_type);
                evts.emplace_back(pts[0].x, -evt_type);
            yl = k[i] * common_r + b[i], yll = k[j] *
                 common_r + b[j];
            if(lt(yl1, yl) == (segtype[i] == 1)){
                evts.emplace_back(pts[0].x, evt_type);
                evts.emplace_back(common_r, -evt_type);
        else{
            if(segtype[j] != segtype[i] || j > i){
                evts.emplace_back(common_1, -2);
                evts.emplace back(common r, 2);
    evts.emplace_back(1, 0);
    sort(evts.begin(), evts.end());
    size_t j = 0;
    int balance = 0;
    while(j < evts.size()){</pre>
        size_t ptr = j;
        while(ptr < evts.size() && eq(evts[i].first, evts[</pre>
             ptr].first)){
            balance += evts[ptr].second;
            ++pt.r:
        if(!balance && !eq(evts[j].first, r)){
            dbl next_x = ptr == evts.size() ? r : evts[ptr
                1.first:
            ans -= segtype[i] * (k[i] * (next_x + evts[j].
                 first) + 2 * b[i]) * (next_x - evts[j].
                 first);
        j = ptr;
return ans/2;
```

```
centerOfMass.h
```

```
Description: Returns the center of mass for a polygon.
```

```
Memory: \mathcal{O}(1)
Time: \mathcal{O}(n)
```

```
ccce20, 8 lines
template<class P> P polygonCenter(const vector<P>& v) {
 P res(0, 0); double A = 0;
 for (int i = 0, j = sz(v) - 1; i < sz(v); j = i++) {
    res = res + (v[i] + v[j]) * v[j].cross(v[i]);
   A += v[j].cross(v[i]);
 return res / A / 3;
```

doSegIntersection.h

Description: Checks if two segments intersect (inclusive of intersections at

```
template < class P > bool doSeqInter(P s1, P e1, P s2, P e2) {
    return sideOf(s1, e1, s2) != sideOf(s1, e1, e2) &&
           sideOf(s2, e2, s1) != sideOf(s2, e2, e1);
```

inPolygon.h

Description: Uses the cutting-ray test to see if a point is inside a polygon. Usage: Returns 0 if outside, 1 if strictly inside, and 2 if on. Memory: $\mathcal{O}(1)$ Time: $\mathcal{O}(n)$

```
template<class P> int inPoly(vector<P> poly, P p) {
    bool good = false; int n = sz(polv);
    auto crosses = [](P s, P e, P p) {
        return ((e.y >= p.y) - (s.y >= p.y)) * p.cross(s, e) >
    for (int i = 0; i < n; i++) {
       if(onSeg(poly[i], poly[(i+1)%n], p)) return 2;
       good ^= crosses(poly[i], poly[(i+1)%n], p);
   return good;
```

MinkowskiSum.h

Description: returns the minkowski sum of several polygons 13cd02, 30 lines

```
template<class P> vector<P> minkSum(vector<vector<P>> &polys) {
    P init(0, 0);
    vector<P> dir;
    for(auto poly: polys) {
        int n = sz(poly);
        if(n == 0)
            continue:
        init = init + poly[0];
        if(n == 1)
            continue;
        rep(i, 0, n)
            dir.push_back(poly[(i+1)%n] - poly[i]);
    if(size(dir) == 0)
        return {init};
    sort(all(dir), [&](P a, P b)->bool {
        bool sideA = a.x > 0 \mid \mid (a.x == 0 \&\& a.y > 0);
        bool sideB = b.x > 0 \mid \mid (b.x == 0 \&\& b.y > 0);
        if(sideA != sideB)
            return sideA;
        return a.cross(b) > 0;
    vector<P> sum;
    P cur = init;
    rep(i, 0, sz(dir)) {
```

```
sum.push_back(cur);
        cur = cur + dir[i];
    return sum;
halfplaneIntersection.h
Description: Returns the intersection of halfplanes as a polygon
Time: \mathcal{O}(n \log n)
                                                      d08058, 43 lines
const double eps = 1e-8;
typedef Point < double > P;
struct HalfPlane {
   P s, e, d;
   HalfPlane(P s = P(), P e = P()): s(s), e(e), d(e - s) {}
   bool contains(P p) { return d.cross(p - s) > -eps; }
   bool operator<(HalfPlane hp) {</pre>
        if(abs(d.x) < eps && abs(hp.d.x) < eps)
            return d.y > 0 && hp.d.y < 0;
        bool side = d.x < eps \mid \mid (abs(d.x) <= eps && d.y > 0);
        bool sideHp = hp.d.x < eps || (abs(hp.d.x) <= eps && hp
             .d.y > 0);
        if(side != sideHp) return side;
        return d.cross(hp.d) > 0;
   P inter(HalfPlane hp) {
        auto p = hp.s.cross(e, hp.e), q = hp.s.cross(hp.e, s);
      return (s * p + e * q) / d.cross(hp.d);
};
vector<P> hpIntersection(vector<HalfPlane> hps) {
    sort (all (hps));
    int n = sz(hps), l = 1, r = 0;
    vector<HalfPlane> dq(n+1);
    rep(i, 0, n) {
        while (1 < r \&\& !hps[i].contains(dq[r].inter(dq[r-1])))
        while (1 < r \&\& !hps[i].contains(dq[l].inter(dq[l+1])))
        dq[++r] = hps[i];
        if(1 < r \&\& abs(dq[r].d.cross(dq[r-1].d)) < eps) {
            if(dq[r].d.dot(dq[r-1].d) < 0) return {};</pre>
            if (dq[r].contains(hps[i].s)) dq[r] = hps[i];
    while (1 < r - 1 \&\& !dq[1].contains(dq[r].inter(dq[r-1]))) r
    while (1 < r - 1 \&\& !dq[r].contains(dq[l].inter(dq[l+1]))) 1
    if(1 > r - 2) return {};
    vector<P> polv;
    rep(i, 1, r)
       poly.push_back(dq[i].inter(dq[i+1]));
    poly.push_back(dq[r].inter(dq[1]));
    return poly;
8.6
      3D
PolyhedronVolume.h
point outwards.
                                                       3058c3, 6 lines
template<class V, class L>
double signedPolyVolume(const V& p, const L& trilist) {
```

Description: Magic formula for the volume of a polyhedron. Faces should

```
double v = 0;
for (auto i : trilist) v += p[i.a].cross(p[i.b]).dot(p[i.c]);
return v / 6;
```

```
Point3D.h
```

Description: Class to handle points in 3D space. T can be e.g. double or long long. 8058ae, 32 lines

```
template < class T > struct Point 3D {
 typedef Point3D P;
 typedef const P& R;
 T x, y, z;
 explicit Point3D(T x=0, T y=0, T z=0) : x(x), y(y), z(z) {}
 bool operator<(R p) const {</pre>
   return tie(x, y, z) < tie(p.x, p.y, p.z); }</pre>
 bool operator==(R p) const {
   return tie(x, y, z) == tie(p.x, p.y, p.z); }
 P operator+(R p) const { return P(x+p.x, y+p.y, z+p.z); }
 P operator-(R p) const { return P(x-p.x, y-p.y, z-p.z); }
 P operator*(T d) const { return P(x*d, y*d, z*d); }
 P operator/(T d) const { return P(x/d, y/d, z/d); }
 T dot(R p) const { return x*p.x + y*p.y + z*p.z; }
 P cross(R p) const {
    return P(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x);
 T dist2() const { return x*x + y*y + z*z; }
 double dist() const { return sqrt((double)dist2()); }
  //Azimuthal angle (longitude) to x-axis in interval [-pi, pi]
 double phi() const { return atan2(y, x); }
  //Zenith angle (latitude) to the z-axis in interval [0, pi]
 double theta() const { return atan2(sqrt(x*x+y*y),z); }
 P unit() const { return *this/(T)dist(); } //makes dist()=1
 //returns unit vector normal to *this and p
 P normal(P p) const { return cross(p).unit(); }
 //returns point rotated 'angle' radians ccw around axis
 P rotate (double angle, P axis) const {
    double s = sin(angle), c = cos(angle); P u = axis.unit();
    return u*dot(u)*(1-c) + (*this)*c - cross(u)*s;
};
3dHull.h
```

Description: Computes all faces of the 3-dimension hull of a point set. *No four points must be coplanar*, or else random results will be returned. All faces will point outwards.

```
Time: \mathcal{O}\left(n^2\right)
"Point3D.h"
```

q = q * -1;

 $F f{q, i, j, k};$

FS.push_back(f);

```
typedef Point3D<double> P3;
 void ins(int x) { (a == -1 ? a : b) = x; }
 void rem(int x) { (a == x ? a : b) = -1; }
 int cnt() { return (a != -1) + (b != -1); }
 int a, b;
};
struct F { P3 q; int a, b, c; };
vector<F> hull3d(const vector<P3>& A) {
 assert (sz(A) >= 4);
 vector<vector<PR>> E(sz(A), vector<PR>(sz(A), {-1, -1}));
#define E(x,y) E[f.x][f.y]
 vector<F> FS;
 auto mf = [\&] (int i, int j, int k, int l) {
   P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
   if (q.dot(A[1]) > q.dot(A[i]))
```

E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);

```
rep(i,0,4) rep(j,i+1,4) rep(k,j+1,4)
    mf(i, j, k, 6 - i - j - k);
  rep(i,4,sz(A)) {
    rep(j, 0, sz(FS)) {
     F f = FS[j];
      if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
       E(a,b).rem(f.c);
        E(a,c).rem(f.b);
        E(b,c).rem(f.a);
        swap(FS[j--], FS.back());
        FS.pop_back();
    int nw = sz(FS);
    rep(j,0,nw) {
     F f = FS[j];
#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i, f.c);
      C(a, b, c); C(a, c, b); C(b, c, a);
  for (F& it : FS) if ((A[it.b] - A[it.a]).cross(
   A[it.c] - A[it.a]).dot(it.q) \ll 0) swap(it.c, it.b);
 return FS:
};
```

sphericalDistance.h

Description: Returns the shortest distance on the sphere with radius radius between the points with azimuthal angles (longitude) f1 (ϕ_1) and f2 (ϕ_2) from x axis and zenith angles (latitude) t1 (θ_1) and t2 (θ_2) from z axis (0 =north pole). All angles measured in radians. The algorithm starts by converting the spherical coordinates to cartesian coordinates so if that is what you have you can use only the two last rows. dx*radius is then the difference between the two points in the x direction and d*radius is the total distance between the points. 611f07, 8 lines

```
double sphericalDistance(double f1, double t1,
    double f2, double t2, double radius) {
 double dx = \sin(t2) \cdot \cos(f2) - \sin(t1) \cdot \cos(f1);
 double dy = sin(t2) * sin(f2) - sin(t1) * sin(f1);
 double dz = cos(t2) - cos(t1);
  double d = sqrt(dx*dx + dy*dy + dz*dz);
 return radius*2*asin(d/2);
```

Strings (9)

return res;

KMP.h

5b45fc, 49 lines

Description: pi[x] computes the length of the longest prefix of s that ends at x, other than s[0...x] itself (abacaba -> 0010123). Can be used to find all occurrences of a string.

```
Time: \mathcal{O}(n)
                                                        d4375c, 16 lines
vi pi(const string& s) {
 vi p(sz(s));
 rep(i,1,sz(s)) {
    int g = p[i-1];
    while (g \&\& s[i] != s[g]) g = p[g-1];
    p[i] = g + (s[i] == s[g]);
 return p;
vi match (const string& s, const string& pat) {
 vi p = pi(pat + ' \setminus 0' + s), res;
 rep(i,sz(p)-sz(s),sz(p))
   if (p[i] == sz(pat)) res.push_back(i - 2 * sz(pat));
```

```
Zfunc.h
```

Description: z[x] computes the length of the longest common prefix of s[i:] and s, except z[0] = 0. (abacaba -> 0010301) Time: $\mathcal{O}(n)$

vi Z(const string& S) { vi z(sz(S)); int 1 = -1, r = -1; rep(i,1,sz(S)) { z[i] = i >= r ? 0 : min(r - i, z[i - 1]);**while** (i + z[i] < sz(S) && S[i + z[i]] == S[z[i]])z[i]++; **if** (i + z[i] > r)

Manacher.h

return z;

1 = i, r = i + z[i];

Description: For each position in a string, computes p[0][i] = half length of longest even palindrome around pos i, p[1][i] = longest odd (half rounded

```
Time: \mathcal{O}(N)
```

e7ad79, 13 lines

```
array<vi, 2> manacher(const string& s) {
  int n = sz(s);
  array < vi, 2 > p = {vi(n+1), vi(n)};
  rep(z,0,2) for (int i=0,1=0,r=0; i < n; i++) {
   int t = r-i+!z;
   if (i<r) p[z][i] = min(t, p[z][l+t]);</pre>
   int L = i-p[z][i], R = i+p[z][i]-!z;
    while (L>=1 && R+1<n && s[L-1] == s[R+1])
     p[z][i]++, L--, R++;
   if (R>r) l=L, r=R;
 return p;
```

MinRotation.h

Description: Finds the lexicographically smallest rotation of a string. Usage: rotate(v.begin(), v.begin()+minRotation(v), v.end()); Time: $\mathcal{O}(N)$ d07a42, 8 lines

```
int minRotation(string s) {
 int a=0, N=sz(s); s += s;
  rep(b, 0, N) rep(k, 0, N) {
   if (a+k == b \mid | s[a+k] < s[b+k]) \{b += max(0, k-1); break; \}
   if (s[a+k] > s[b+k]) { a = b; break; }
 return a;
```

SuffixArray.h

Description: Builds suffix array for a string. sa[i] is the starting index of the suffix which is i'th in the sorted suffix array. The returned vector is of size n+1, and sa[0] = n. The lcp array contains longest common prefixes for neighbouring strings in the suffix array: lcp[i] = lcp(sa[i], sa[i-1]), lcp[0] = 0. The input string must not contain any zero bytes. Time: $\mathcal{O}(n \log n)$

```
struct SuffixArray {
  SuffixArray(string& s, int lim=256) { // or basic_string<int>
   int n = sz(s) + 1, k = 0, a, b;
   vi x(all(s)+1), y(n), ws(max(n, lim)), rank(n);
   sa = lcp = y, iota(all(sa), 0);
   for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim = p) {
```

```
p = j, iota(all(y), n - j);
      rep(i,0,n) if (sa[i] >= j) y[p++] = sa[i] - j;
      fill(all(ws), 0);
      rep(i, 0, n) ws[x[i]] ++;
      rep(i, 1, lim) ws[i] += ws[i - 1];
      for (int i = n; i--;) sa[--ws[x[y[i]]]] = y[i];
      swap(x, y), p = 1, x[sa[0]] = 0;
      rep(i,1,n) = sa[i-1], b = sa[i], x[b] =
        (y[a] == y[b] && y[a + j] == y[b + j]) ? p - 1 : p++;
    rep(i,1,n) rank[sa[i]] = i;
    for (int i = 0, j; i < n - 1; lcp[rank[i++]] = k)</pre>
      for (k \& \& k--, j = sa[rank[i] - 1];
          s[i + k] == s[j + k]; k++);
};
```

SuffixTree.h

Description: Ukkonen's algorithm for online suffix tree construction. Each node contains indices [l, r) into the string, and a list of child nodes. Suffixes are given by traversals of this tree, joining [l, r) substrings. The root is 0 (has l = -1, r = 0), non-existent children are -1. To get a complete tree, append a dummy symbol – otherwise it may contain an incomplete path (still useful for substring matching, though).

Time: $\mathcal{O}\left(26N\right)$

```
struct SuffixTree {
 enum { N = 200010, ALPHA = 26 }; //N \sim 2*maxlen+10
 int toi(char c) { return c - 'a'; }
 string a: //v = cur \ node, q = cur \ position
 int t[N][ALPHA], 1[N], r[N], p[N], s[N], v=0, q=0, m=2;
 void ukkadd(int i, int c) { suff:
    if (r[v]<=q) {
     if (t[v][c]==-1) { t[v][c]=m; l[m]=i;
       p[m++]=v; v=s[v]; q=r[v]; goto suff; }
     v=t[v][c]; q=l[v];
   if (q==-1 || c==toi(a[q])) q++; else {
     l[m+1]=i; p[m+1]=m; l[m]=l[v]; r[m]=q;
     p[m]=p[v]; t[m][c]=m+1; t[m][toi(a[q])]=v;
     l[v]=q; p[v]=m; t[p[m]][toi(a[l[m]])]=m;
     v=s[p[m]]; q=l[m];
     while (q<r[m]) { v=t[v][toi(a[q])]; q+=r[v]-l[v]; }</pre>
     if (q==r[m]) s[m]=v; else s[m]=m+2;
     q=r[v]-(q-r[m]); m+=2; qoto suff;
 SuffixTree(string a) : a(a) {
   fill(r,r+N,sz(a));
   memset(s, 0, sizeof s);
   memset(t, -1, sizeof t);
   fill(t[1],t[1]+ALPHA,0);
   s[0] = 1; 1[0] = 1[1] = -1; r[0] = r[1] = p[0] = p[1] = 0;
   rep(i,0,sz(a)) ukkadd(i, toi(a[i]));
  // example: find longest common substring (uses ALPHA = 28)
 pii best:
 int lcs(int node, int i1, int i2, int olen) {
   if (l[node] <= i1 && i1 < r[node]) return 1;</pre>
   if (1[node] <= i2 && i2 < r[node]) return 2;</pre>
    int mask = 0, len = node ? olen + (r[node] - l[node]) : 0;
   rep(c, 0, ALPHA) if (t[node][c] != -1)
     mask |= lcs(t[node][c], i1, i2, len);
    if (mask == 3)
     best = max(best, {len, r[node] - len});
    return mask;
```

```
static pii LCS(string s, string t) {
    SuffixTree st(s + (char) ('z' + 1) + t + (char) ('z' + 2));
    st.lcs(0, sz(s), sz(s) + 1 + sz(t), 0);
    return st.best;
};
```

Suffix Automaton.h

Description: Builds suffix automaton for a string. Time: $\mathcal{O}(n)$

```
1914a9, 22 lines
struct st { int len, pos, term; st *link; map<char, st*> next;
st *suffixAutomaton(string &str) {
    st *last = new st(), *root = last;
    for(auto c : str) {
        st *p = last, *cur = last = new st{last->len + 1, last
            ->len};
        while(p && !p->next.count(c))
            p->next[c] = cur, p = p->link;
        if (!p) cur->link = root;
        else {
            st *q = p->next[c];
            if (p->len + 1 == q->len) cur->link = q;
                st *clone = new st{p->len+1, q->pos, 0, q->link
                     , q->next};
                for (; p && p->next[c] == q; p = p->link)
                    p->next[c] = clone;
                q->link = cur->link = clone;
    while(last) last->term = 1, last = last->link;
    return root;
```

Hashing.h

Description: Self-explanatory methods for string hashing.

```
// Arithmetic mod 2^64-1. 2x slower than mod 2^64 and more
// code, but works on evil test data (e.g. Thue-Morse, where
// ABBA... and BAAB... of length 2^10 hash the same mod 2^64).
// "typedef ull H;" instead if you think test data is random,
// or work mod 10^9+7 if the Birthday paradox is not a problem.
typedef uint64_t ull;
struct H {
  ull x; H(ull x=0) : x(x) {}
  H operator+(H o) { return x + o.x + (x + o.x < x); }
  H operator-(H o) { return *this + ~o.x; }
  H operator* (H o) { auto m = (\underline{uint128\_t}) \times * o.x;
    return H((ull)m) + (ull)(m >> 64); }
  ull get() const { return x + !~x; }
  bool operator==(H o) const { return get() == o.get(); }
  bool operator<(H o) const { return get() < o.get(); }</pre>
static const H C = (11)1e11+3; // (order \sim 3e9; random also ok)
struct HashInterval {
  vector<H> ha, pw;
  HashInterval(string& str) : ha(sz(str)+1), pw(ha) {
    pw[0] = 1;
    rep(i, 0, sz(str))
      ha[i+1] = ha[i] * C + str[i],
      pw[i+1] = pw[i] * C;
  H hashInterval(int a, int b) { // hash (a, b)
```

return ha[b] - ha[a] * pw[b - a];

```
UCF
};
vector<H> getHashes(string& str, int length) {
 if (sz(str) < length) return {};</pre>
  H h = 0, pw = 1;
  rep(i,0,length)
  h = h * C + str[i], pw = pw * C;
  vector<H> ret = {h};
  rep(i,length,sz(str)) {
   ret.push_back(h = h * C + str[i] - pw * str[i-length]);
 return ret:
H hashString(string& s){H h{}; for(char c:s) h=h*C+c;return h;}
AhoCorasick.h
Description: Aho-Corasick automaton, used for multiple pattern matching
const int K = 26;
struct Vertex {
   int next[K];
   bool output = false;
    int p = -1;
    char pch;
    int link = -1;
    int go[K];
    Vertex(int p=-1, char ch='$') : p(p), pch(ch) {
        fill (begin (next), end (next), -1);
        fill (begin (go), end (go), -1);
};
vector<Vertex> t(1);
void add string(string const& s) {
    int v = 0:
    for (char ch : s) {
```

else

```
int c = ch - 'a';
       if (t[v].next[c] == -1) {
            t[v].next[c] = t.size();
            t.emplace_back(v, ch);
        v = t[v].next[c];
    t[v].output = true;
int go (int v, char ch);
int get_link(int v) {
    if (t[v].link == -1) {
        if (v == 0 | | t[v].p == 0)
            t[v].link = 0;
            t[v].link = go(get_link(t[v].p), t[v].pch);
    return t[v].link;
int go (int v, char ch) {
    int c = ch - 'a';
    if (t[v].go[c] == -1) {
        if (t[v].next[c] != -1)
            t[v].qo[c] = t[v].next[c];
```

```
t[v].qo[c] = v == 0 ? 0 : qo(qet link(v), ch);
    return t[v].go[c];
EerTree.h
Description: Generates an eertree on str. cur is accurate at the end of the
main loop before the final assignment to t.
Time: \hat{\mathcal{O}}(|S|)
                                                       e1fb21, 19 lines
vector < int > slink = {0, 0}, len = {-1, 0};
vector<vector<int>> down(2, vector<int>(26, -1));
int cur = 0, t = 0;
for(int i = 0; i < str.size(); i++) {</pre>
  char c = str[i]; int ci = c - 'a';
  while (t \le 0 \mid | str[t-1] != c) t = i - len[cur = slink[cur]];
  if(down[cur][ci] == -1) {
    down[cur][ci] = slink.size();
    down.emplace_back(26, -1);
    len.push_back(len[cur] + 2);
    if(len.back() > 1){
        do t = i - len[cur = slink[cur]];
        while(t <= 0 || str[t-1] != c);
        slink.push_back(down[cur][ci]);
    } else slink.push_back(1);
    cur = slink.size() - 1;
 } else cur = down[cur][ci];
 t = i - len[cur] + 1;
```

EerTree.h

Description: Generates an eertree on str. *cur* is accurate at the end of the main loop before the final assignment to t.

```
Time: \mathcal{O}(|S|)
                                                       e1fb21, 19 lines
vector<int> slink = \{0, 0\}, len = \{-1, 0\};
vector<vector<int>> down(2, vector<int>(26, -1));
int cur = 0, t = 0;
for(int i = 0; i < str.size(); i++) {</pre>
  char c = str[i]; int ci = c - 'a';
  while(t <= 0 || str[t-1] != c) t = i - len[cur = slink[cur]];</pre>
  if(down[cur][ci] == -1) {
    down[cur][ci] = slink.size();
    down.emplace_back(26, -1);
    len.push_back(len[cur] + 2);
    if(len.back() > 1){
        do t = i - len[cur = slink[cur]];
        while(t <= 0 || str[t-1] != c);
        slink.push_back(down[cur][ci]);
    } else slink.push_back(1);
    cur = slink.size() - 1;
  } else cur = down[cur][ci];
 t = i - len[cur] + 1;
```

LyndonFactorization.h

Description: A string is called simple (or a Lyndon word), if it is strictly smaller than any of its own nontrivial suffixes. Examples of simple strings are: a, b, ab, aab, abb, ababb, abcd. It can be shown that a string is simple, if and only if it is strictly smaller than all its nontrivial cyclic shifts. Next, let there be a given string s. The Lyndon factorization of the string sis a factorization $s = w_1 w_2 \dots w_k$, where all strings w_i are simple, and they are in non-increasing order $w_1 > w_2 > \cdots > w_k$. It can be shown, that for any string such a factorization exists and that it is unique. Time: $\mathcal{O}(n)$

```
0e6ce6, 20 lines
vector<string> duval(string const& s) {
    int n = s.size();
    int i = 0;
```

```
vector<string> factorization;
while (i < n) {
   int j = i + 1, k = i;
    while (j < n \&\& s[k] \le s[j]) {
        if (s[k] < s[j])
           k = i;
        else
            k++;
        j++;
    while (i <= k) {
        factorization.push_back(s.substr(i, j - k));
        i += j - k;
return factorization;
```

Various (10)

10.1 Intervals

IntervalContainer.h

Description: Add and remove intervals from a set of disjoint intervals. Will merge the added interval with any overlapping intervals in the set when adding. Intervals are [inclusive, exclusive). Time: $\mathcal{O}(\log N)$

```
set<pii>::iterator addInterval(set<pii>& is, int L, int R) {
 if (L == R) return is.end():
  auto it = is.lower_bound({L, R}), before = it;
  while (it != is.end() && it->first <= R) {</pre>
    R = max(R, it->second);
    before = it = is.erase(it);
  if (it != is.begin() && (--it)->second >= L) {
   L = min(L, it->first);
    R = max(R, it->second);
   is.erase(it);
 return is.insert(before, {L,R});
void removeInterval(set<pii>& is, int L, int R) {
 if (L == R) return;
 auto it = addInterval(is, L, R);
 auto r2 = it->second;
 if (it->first == L) is.erase(it);
 else (int&)it->second = L;
 if (R != r2) is.emplace(R, r2);
```

IntervalCover.h

Description: Compute indices of smallest set of intervals covering another interval. Intervals should be [inclusive, exclusive). To support [inclusive, inclusive, change (A) to add | R.empty(). Returns empty set on failure (or if G is empty).

```
Time: \mathcal{O}(N \log N)
```

9e9d8d, 19 lines

```
template<class T>
vi cover(pair<T, T> G, vector<pair<T, T>> I) {
 vi S(sz(I)), R;
 iota(all(S), 0);
  sort(all(S), [&](int a, int b) { return I[a] < I[b]; });</pre>
 T cur = G.first;
 int at = 0;
 while (cur < G.second) { // (A)
    pair<T, int> mx = make pair(cur, -1);
```

```
while (at < sz(I) && I[S[at]].first <= cur) {</pre>
   mx = max(mx, make_pair(I[S[at]].second, S[at]));
  if (mx.second == -1) return {};
  cur = mx.first:
 R.push back (mx.second);
return R;
```

ConstantIntervals.h

Description: Split a monotone function on [from, to) into a minimal set of half-open intervals on which it has the same value. Runs a callback g for each such interval.

```
Usage: constantIntervals(0, sz(v), [&](int x){return v[x];},
[&] (int lo, int hi, T val)\{...\});
Time: \mathcal{O}\left(k\log\frac{n}{L}\right)
                                                                   753a4c, 19 lines
```

```
template<class F, class G, class T>
void rec(int from, int to, F& f, G& q, int& i, T& p, T q) {
 if (p == q) return;
  if (from == to) {
   g(i, to, p);
   i = to; p = q;
  } else {
   int mid = (from + to) >> 1;
    rec(from, mid, f, g, i, p, f(mid));
    rec(mid+1, to, f, g, i, p, q);
template < class F, class G>
void constantIntervals(int from, int to, F f, G g) {
 if (to <= from) return;</pre>
 int i = from; auto p = f(i), q = f(to-1);
 rec(from, to-1, f, g, i, p, q);
 q(i, to, q);
```

10.2 Misc. algorithms

TernarySearch.h

Description: Find the smallest i in [a,b] that maximizes f(i), assuming that $f(a) < \ldots < f(i) > \cdots > f(b)$. To reverse which of the sides allows non-strict inequalities, change the < marked with (A) to <=, and reverse the loop at (B). To minimize f, change it to >, also at (B).

```
Usage: int ind = ternSearch(0, n-1, [&](int i){return a[i];});
Time: \mathcal{O}(\log(b-a))
                                                             9155b4, 11 lines
```

```
template<class F>
int ternSearch(int a, int b, F f) {
  assert (a <= b);
  while (b - a >= 5) {
   int mid = (a + b) / 2;
   if (f(mid) < f(mid+1)) a = mid; //(A)
   else b = mid+1;
  rep(i,a+1,b+1) if (f(a) < f(i)) a = i; // (B)
 return a;
```

LIS.h

Description: Compute indices for the longest increasing subsequence. Time: $\mathcal{O}(N \log N)$ 2932a0, 17 lines

```
template<class I> vi lis(const vector<I>& S) {
 if (S.empty()) return {};
 vi prev(sz(S));
 typedef pair<I, int> p;
 vector res;
```

```
rep(i,0,sz(S)) {
  // change 0 \rightarrow i for longest non-decreasing subsequence
  auto it = lower bound(all(res), p{S[i], 0});
  if (it == res.end()) res.emplace_back(), it = res.end()-1;
  *it = {S[i], i};
  prev[i] = it == res.begin() ? 0 : (it-1) -> second;
int L = sz(res), cur = res.back().second;
while (L--) ans[L] = cur, cur = prev[cur];
return ans;
```

FastKnapsack.h

Description: Given N non-negative integer weights w and a non-negative target t, computes the maximum S <= t such that S is the sum of some subset of the weights. Time: $\mathcal{O}(N \max(w_i))$

```
b20ccc, 16 lines
int knapsack(vi w, int t) {
 int a = 0, b = 0, x;
 while (b < sz(w) & & a + w[b] <= t) a += w[b++];
 if (b == sz(w)) return a;
 int m = *max_element(all(w));
 vi u, v(2*m, -1);
 v[a+m-t] = b;
 rep(i,b,sz(w)) {
   11 = V:
   rep(x,0,m) v[x+w[i]] = max(v[x+w[i]], u[x]);
   for (x = 2*m; --x > m;) rep(i, max(0, u[x]), v[x])
     v[x-w[j]] = max(v[x-w[j]], j);
 for (a = t; v[a+m-t] < 0; a--);
 return a;
```

10.3 Dynamic programming

KnuthDP.h

Description: When doing DP on intervals: $a[i][j] = \min_{i < k < j} (a[i][k] + a[i][j])$ a[k][j]) + f(i,j), where the (minimal) optimal k increases with both i and j, one can solve intervals in increasing order of length, and search k = p[i][j] for a[i][j] only between p[i][j-1] and p[i+1][j]. This is known as Knuth DP. Sufficient criteria for this are if $f(b,c) \leq f(a,d)$ and $f(a,c) + f(b,d) \le f(a,d) + f(b,c)$ for all $a \le b \le c \le d$. Example of a Knuth Division code is given Consider also: LineContainer (ch. Data structures), monotone queues, ternary search.

```
Time: \mathcal{O}(N^2)
                                                                                 3d4571, 38 lines
```

```
const int MAXN = 5005;
const 11 INF = (11) (1e15);
11 cost[MAXN], pref[MAXN];
11 dp[MAXN][MAXN];
int opt[MAXN][MAXN];
void solve() {
    cin >> n;
    for(int i = 1; i <= n; i++) cin >> cost[i];
    for(int i = 1; i <= n; i++) {</pre>
        pref[i] = cost[i] + pref[i - 1];
    for(int i = 1; i <= n; i++) {</pre>
        for(int j = i; j \le n; j++) {
            dp[i][j] = INF;
    for(int i = 1; i <= n; i++) {</pre>
        opt[i][i] = i;
```

```
dp[i][i] = 0;
for(int j = 1; j \le n; j++) {
    for(int i = j - 1; i >= 1; i--) {
        for(int k = opt[i][j - 1]; k <= opt[i + 1][j] && k</pre>
             < j; k++) {
            11 \text{ curr} = dp[i][k] + dp[k + 1][j] + pref[j] -
                 pref[i - 1];
            if(curr < dp[i][j]) {
                dp[i][j] = curr;
                opt[i][j] = k;
cout << dp[1][n] << '\n';
```

DivideAndConquerDP.h

Description: Given $a[i] = \min_{lo(i) < k < hi(i)} (f(i, k))$ where the (minimal) optimal k increases with i, computes $\overline{a}[i]$ for i = L..R - 1.

```
Time: \mathcal{O}((N + (hi - lo)) \log N)
struct DP { // Modify at will:
  int lo(int ind) { return 0; }
  int hi(int ind) { return ind; }
  11 f(int ind, int k) { return dp[ind][k]; }
  void store(int ind, int k, ll v) { res[ind] = pii(k, v); }
  void rec(int L, int R, int LO, int HI) {
    if (L >= R) return;
    int mid = (L + R) >> 1;
    pair<11, int> best (LLONG MAX, LO);
    rep(k, max(LO,lo(mid)), min(HI,hi(mid)))
      best = min(best, make pair(f(mid, k), k));
    store(mid, best.second, best.first);
    rec(L, mid, LO, best.second+1);
    rec(mid+1, R, best.second, HI);
  void solve(int L, int R) { rec(L, R, INT_MIN, INT_MAX); }
// Alternate Implementation Example: Modify at will
const int MAXN = 3000;
vl dp_before(MAXN), dp_cur(MAXN);
vl pre(MAXN);
int m, n;
11 C(int i, int j) {
    11 ret = pre[j];
    if(i) ret -= pre[i - 1];
    return ret * ret;
void compute(int 1, int r, int opt1, int optr) {
    if (1 > r)
        return:
    int mid = (1 + r) >> 1;
    pair<long long, int> best = {LLONG_MAX, -1};
    for (int k = optl; k <= min(mid, optr); k++) {</pre>
        best = min(best, \{(k ? dp\_before[k - 1] : 0) + C(k, mid)\}
             ), k});
```

```
dp_cur[mid] = best.first;
int opt = best.second;

compute(1, mid - 1, opt1, opt);
compute(mid + 1, r, opt, optr);
}

void solve() {
    cin >> n >> m;

    for(int i = 0; i < n; i++) {
        cin >> pre[i];
        if(i) pre[i] += pre[i - 1];
        dp_before[i] = C(0, i);
}

for(int i = 1; i < m; i++) {
        compute(0, n - 1, 0, n - 1);
        swap(dp_before, dp_cur);
}

cout << dp_before[n - 1] << '\n';</pre>
```

10.4 Debugging tricks

- signal (SIGSEGV, [] (int) { _Exit(0); }); converts segfaults into Wrong Answers. Similarly one can catch SIGABRT (assertion failures) and SIGFPE (zero divisions). _GLIBCXX_DEBUG failures generate SIGABRT (or SIGSEGV on gcc 5.4.0 apparently).
- feenableexcept (29); kills the program on NaNs (1), 0-divs (4), infinities (8) and denormals (16).

10.5 Optimization tricks

__builtin_ia32_ldmxcsr(40896); disables denormals (which make floats 20x slower near their minimum value).

10.5.1 Bit hacks

- x & -x is the least bit in x.
- for (int x = m; x;) { --x &= m; ... } loops over all subset masks of m (except m itself).
- c = x&-x, r = x+c; $(((r^x) >> 2)/c) | r$ is the next number after x with the same number of bits set.
- rep(b,0,K) rep(i,0,(1 << K))
 if (i & 1 << b) D[i] += D[i^(1 << b)];
 computes all sums of subsets.</pre>

10.5.2 Pragmas

- #pragma GCC optimize ("Ofast") will make GCC auto-vectorize loops and optimizes floating points better.
- #pragma GCC target ("avx2") can double performance of vectorized code, but causes crashes on old machines.
- #pragma GCC optimize ("trapv") kills the program on integer overflows (but is really slow).

HilbertMos.h

Description: Maps points on a $2^k \times 2^k$ matrix to their index on the Hilbert curve

```
const int logn = 21, maxn = 1 << logn;
l1 hilbert(int x, int y) {
    l1 d = 0;
    for (int s = 1 << (logn - 1); s > 0; s >>= 1) {
        int rx = x & s, ry = y & s;
        d = d << 2 | rx * 3 ^ ry;
        if (ry == 0) {
            x = maxn - x;
            y = maxn - y;
        }
        swap(x, y);
    }
} return d;
}</pre>
```

FastMod.h

Description: Compute a%b about 5 times faster than usual, where b is constant but not known at compile time. Returns a value congruent to $a \pmod{b}$ in the range [0,2b).

```
typedef unsigned long long ull;
struct FastMod {
  ull b, m;
  FastMod(ull b) : b(b), m(-1ULL / b) {}
  ull reduce(ull a) { // a % b + (0 or b)
    return a - (ull)((__uint128_t(m) * a) >> 64) * b;
  }
};
```

FastInput.h

Description: Read an integer from stdin. Usage requires your program to pipe in input from file.

Usage: ./a.out < input.txt

Time: About 5x as fast as cin/scanf.

7b3c70, 17 lines

```
inline char gc() { // like getchar()
    static char buf[1 << 16];
    static size_t bc, be;
    if (bc >= be) {
        buf[0] = 0, bc = 0;
        be = fread(buf, 1, sizeof(buf), stdin);
    }
    return buf[bc++]; // returns 0 on EOF
}

int readInt() {
    int a, c;
    while ((a = gc()) < 40);
    if (a == '-') return -readInt();
    while ((c = gc()) >= 48) a = a * 10 + c - 480;
    return a - 48;
}
```

BumpAllocator.h

Description: When you need to dynamically allocate many objects and don't care about freeing them. "new X" otherwise has an overhead of something like 0.05us + 16 bytes per allocation.

```
// Either globally or in a single class:
static char buf[450 << 20];
void* operator new(size_t s) {
    static size_t i = sizeof buf;
    assert(s < i);
    return (void*) &buf[i -= s];</pre>
```

```
void operator delete(void*) {}
```

SmallPtr.h

Description: A 32-bit pointer that points into BumpAllocator memory.

```
template<class T> struct ptr {
  unsigned ind;
  ptr(T* p = 0) : ind(p ? unsigned((char*)p - buf) : 0) {
    assert(ind < sizeof buf);
  }
  T& operator*() const { return *(T*) (buf + ind); }
  T* operator->() const { return &**this; }
  T& operator[(int a) const { return (&**this)[a]; }
  explicit operator bool() const { return ind; }
};
```

BumpAllocatorSTL.h

Description: BumpAllocator for STL containers.

Usage: vector<vector<int, small<int>>> ed(N); $_{
m bb66d4,\ 14\ lines}$

```
char buf[450 << 20] alignas(16);
size_t buf_ind = sizeof buf;

template<class T> struct small {
    typedef T value_type;
    small() {}
    template<class U> small(const U&) {}
    T* allocate(size_t n) {
        buf_ind -= n * sizeof(T);
        buf_ind &= 0 - alignof(T);
        return (T*) (buf + buf_ind);
    }
    void deallocate(T*, size_t) {}
```

Unrolling.h

520e76, 5 lines

```
#define F {...; ++i;}
int i = from;
while (i&3 && i < to) F // for alignment, if needed
while (i + 4 <= to) { F F F F }
while (i < to) F
```

SIMD.h

Description: Cheat sheet of SSE/AVX intrinsics, for doing arithmetic on several numbers at once. Can provide a constant factor improvement of about 4, orthogonal to loop unrolling. Operations follow the pattern "_mm(256)?_name_(si(128|256)|epi(8|16|32|64)|pd|ps)". Not all are described here; grep for _mm_ in /usr/lib/gcc/*/4.9/include/ for more. If AVX is unsupported, try 128-bit operations, "emmintrin.h" and #define __SSE__ and _MMX__ before including it. For aligned memory use _mm_malloc(size, 32) or int buf[N] alignas(32), but prefer loadu/storeu.

```
#pragma GCC target ("avx2") // or sse4.1
#include "immintrin.h"

typedef __m256i mi;
#define L(x) __mm256_loadu_si256((mi*)&(x))

// High-level/specific methods:
// load(u)?_si256, store(u)?_si256, setzero_si256, _mm_malloc
// blendv_(epi8|ps|pd) (z?y:x), movemask_epi8 (hibits of bytes)
// i32gather_epi32(addr, x, 4): map addr[] over 32-b parts of x
// sad_epu8: sum of absolute differences of u8, outputs 4xi64
// maddubs_epi16: dot product of unsigned i7's, outputs 16xi15
// madd_epi16: dot product of signed i16's, outputs 8xi32
// extractf128_si256(, i) (256->128), cvtsi128_si32 (128->lo32)
```

```
UCF
//\ permute2f128\_si256(x,x,1)\ swaps\ 128-bit\ lanes
// shuffle_epi32(x, 3*64+2*16+1*4+0) = x for each lane
// shuffle_epi8(x, y) takes a vector instead of an imm
// Methods that work with most data types (append e.g. _epi32):
// set1, blend (i8?x:y), add, adds (sat.), mullo, sub, and/or,
// and not, abs, min, max, sign(1,x), cmp(gt|eq), unpack(lo|hi)
int sumi32(mi m) { union {int v[8]; mi m;} u; u.m = m;
 int ret = 0; rep(i,0,8) ret += u.v[i]; return ret; }
mi zero() { return _mm256_setzero_si256(); }
mi one() { return _mm256_set1_epi32(-1); }
bool all_zero(mi m) { return _mm256_testz_si256(m, m); }
bool all_one(mi m) { return _mm256_testc_si256(m, one()); }
11 example_filteredDotProduct(int n, short* a, short* b) {
 int i = 0; 11 r = 0;
  mi zero = _mm256_setzero_si256(), acc = zero;
  while (i + 16 <= n) {
   mi va = L(a[i]), vb = L(b[i]); i += 16;
    va = _mm256_and_si256(_mm256_cmpgt_epi16(vb, va), va);
   mi vp = _mm256_madd_epi16(va, vb);
    acc = _mm256_add_epi64(_mm256_unpacklo_epi32(vp, zero),
      _mm256_add_epi64(acc, _mm256_unpackhi_epi32(vp, zero)));
  union {ll v[4]; mi m;} u; u.m = acc; rep(i,0,4) r += u.v[i];
  for (;i < n; ++i) if (a[i] < b[i]) r += a[i] *b[i]; // <- equiv
  return r;
```

37

Techniques (A)

techniques.txt

Combinatorics

159 lines

Recursion Divide and conquer Finding interesting points in N log N Algorithm analysis Master theorem Amortized time complexity Greedy algorithm Scheduling Max contiquous subvector sum Invariants Huffman encoding Graph theory Dynamic graphs (extra book-keeping) Breadth first search Depth first search * Normal trees / DFS trees Dijkstra's algorithm MST: Prim's algorithm Bellman-Ford Konig's theorem and vertex cover Min-cost max flow Lovasz toggle Matrix tree theorem Maximal matching, general graphs Hopcroft-Karp Hall's marriage theorem Graphical sequences Floyd-Warshall Euler cycles Flow networks * Augmenting paths * Edmonds-Karp Bipartite matching Min. path cover Topological sorting Strongly connected components Cut vertices, cut-edges and biconnected components Edge coloring * Trees Vertex coloring * Bipartite graphs (=> trees) * 3^n (special case of set cover) Diameter and centroid K'th shortest path Shortest cycle Dynamic programming Knapsack Coin change Longest common subsequence Longest increasing subsequence Number of paths in a dag Shortest path in a dag Dynprog over intervals Dynprog over subsets Dynprog over probabilities Dynprog over trees 3^n set cover Divide and conquer Knuth optimization Convex hull optimizations RMQ (sparse table a.k.a 2^k-jumps) Bitonic cycle Log partitioning (loop over most restricted)

Computation of binomial coefficients Pigeon-hole principle Inclusion/exclusion Catalan number Pick's theorem Number theory Integer parts Divisibility Euclidean algorithm Modular arithmetic * Modular multiplication * Modular inverses * Modular exponentiation by squaring Chinese remainder theorem Fermat's little theorem Euler's theorem Phi function Frobenius number Ouadratic reciprocity Pollard-Rho Miller-Rabin Hensel lifting Vieta root jumping Game theory Combinatorial games Game trees Mini-max Nim Games on graphs Games on graphs with loops Grundy numbers Bipartite games without repetition General games without repetition Alpha-beta pruning Probability theory Optimization Binary search Ternary search Unimodality and convex functions Binary search on derivative Numerical methods Numeric integration Newton's method Root-finding with binary/ternary search Golden section search Matrices Gaussian elimination Exponentiation by squaring Sorting Radix sort Geometry Coordinates and vectors * Cross product * Scalar product Convex hull Polygon cut Closest pair Coordinate-compression Ouadtrees KD-trees All segment-segment intersection Sweeping Discretization (convert to events and sweep) Angle sweeping Line sweeping Discrete second derivatives Strings Longest common substring Palindrome subsequences

Knuth-Morris-Pratt Tries Rolling polynomial hashes Suffix array Suffix tree Aho-Corasick Manacher's algorithm Letter position lists Combinatorial search Meet in the middle Brute-force with pruning Best-first (A*) Bidirectional search Iterative deepening DFS / A* Data structures LCA (2^k-jumps in trees in general) Pull/push-technique on trees Heavy-light decomposition Centroid decomposition Lazy propagation Self-balancing trees Convex hull trick (wcipeg.com/wiki/Convex_hull_trick) Monotone queues / monotone stacks / sliding queues Sliding queue using 2 stacks Persistent segment tree

38