CS 383: Machine Learning

Prof Adam Poliak Fall 2024 09/25/2024 Lecture 09

Announcements

HW03 is due Tuesday night

- Reading quiz: Thursday
 - Duame 9.3 (2 pages)

Proposed updated schedule

Midterm 1 was Thursday October 3rd

3 lectures this week

lecture on Wednesday 10/02 but no lecture on Thursday 10/03 (was supposed to be midterm 1)

No lecture Wednesday 10/09

HW02 decision trees due tonight, HW03 polynomial regression due next Tuesday 10/01, HW04 naive Bayes due Tuesday 10/08 (it'll be a shorter assignment)

Midterm 1 on Thursday 10/10

Outline

Normal equations vs SGD

Regularization

Probability

Naive Bayes

Pros and Cons

Gradient Descent

- Requires multiple iterations
- Need to choose η
- Works well when *n* is large
- Can support online learning

Normal Equation

- Non-iterative
- No need to choose η
- Slow if p is large
 - Matrix inversion is $O(p^3)$

iteration: 2, cost: 0.350001

iteration: 12, cost: 0.138047

iteration: 40, cost: 0.014064

iteration: 100, cost: 0.000105

Outline

Normal equations vs SGD

Regularization

Probability

Naive Bayes

Generalization Error

Example: price vs. size (i.e. of a house or car)

Generalization Error

Example: price vs. size (i.e. of a house or car)

underfitting (high bias)

correct fit

overfitting (high variance)

Generalization Error

Structural error:

Hypothesis space cannot model true relationship

- -More data doesn't help
- -Need a more flexible model

Estimation (approximation) error:

Hypothesis space *can* model true relationship, BUT hard to identify correct model due to large hypothesis space, small *n*, or noise Paduce hypothesis space

Size correct fit

Size overfitting (high variance)

Regularization

What if ...

- we have a limited # of training examples (n < p), or
- we want to automatically control the complexity of the learned hypothesis?

Regularization

What if ...

- we have a limited # of training examples (n < p), or
- we want to automatically control the complexity of the learned hypothesis?

Idea: penalize large values of w_i

Why prefer small weights?

- if large weights, small change in feature can result in large change in prediction
- prevent giving too much weight to any one feature
- might prefer zero weight for useless features

Common Regularizers

$$||\vec{w}||_0 = \sum_{j: w_j \neq 0} 1$$

$$||\vec{w}||_1 = \sum_{j=1}^p |w_j|$$

$$||\vec{w}||_2 = \sqrt{\sum_{j=1}^p w_j^2}$$

 L_0 norm

 L_1 norm

 L_2 norm

- Number of non-zero entries
- Minimizing L_0 norm is NP hard
- Sum of magnitude of weights
- Not differentiable

- Sum of squared weights
- Differentiable

Outline

Normal equations vs SGD

Regularization

Probability

Naive Bayes

Probability & Bayes Derivation

Bayes Rule

Conditional Probability

Marginal Probability

Bayes Rule

$$P(A,B) =$$

$$= P(A)P(A|B)$$

$$= P(B)P(B|A)$$

Hence:

$$P(A|B) = \frac{P(A|B)P(A)}{P(B)}$$

Joint & Conditional Probability

```
Joint Probability of Multiple Variables P(A, B, C) =
= P(C)P(A, B | C)
= P(C)P(B | C)P(A | B, C)
```

If A and B are independent:

$$P(A,B) = P(A)P(B)$$

If A and B are conditionally independent given C P(A,B|C) = P(A|C)P(B|C)

If A, B, C are independent:

$$P(A, B, C) = P(A)P(B)P(C)$$