Luna Likes Love

Име на задачата	Luna Likes Love
Входен файл	стандартен вход
Изходен файл	стандартен изход
Ограничение по време	1.5 секунди
Ограничение по памет	256 мегабайта

На Луна ѝ хрумнала следната луда идея. Тя наредила своите 2n приятели в една дълга редица и на всеки дала едно цяло число между 1 и n, включително. Всяко число използвала по два пъти. Всеки двама от приятелите ѝ, които имали едно и също число, били двойка.

Луна искала да изпрати всяка от n-те двойки на среща. Но това се оказало, че не е толкова просто. За да се изпрати една двойка на среща, двамата приятели, които формират двойката, трябва да седят един до друг в редицата, т.е. между тях не трябва да има някой друг.

Има две различни действия, които Луна може да предприеме:

- Тя може да размени двама приятели, които се намират един до друг в редицата.
- Ако приятели от една и съща двойка седят един до друг в редицата, Луна може да ги изпрати на среща. По този начин те напускат редицата. Останалите приятели се приближават един до друг, за да запълнят празното пространство.

Действията могат да бъдат изпълнени в какъвто и да е ред - тя може да прави размени, след това да изпрати част от двойките на среща, отново да прави размени и т.н.

Намерете и съобщете минималния брой действия, които са нужни, за да се изпратят всички приятели на среща.

Вход

От първия ред на стандартния вход ще се въвежда едно цяло число n.

От втория ред на стандартния вход ще се въвеждат 2n числа, разделени с интервал, a_i ($1 \le a_i \le n$): поредицата от числа, които са дадени на приятелите в дългата редица, спазвайки реда от първия към последния.

Изход

На единствения ред на стандартния изход отпечатайте минималния брой действия, които Луна трябва да извърши, за да изпрати всеки на среща.

Оценяване

Подзадача 1 (7 точки): За всяка двойка, няма нито един човек между двамата приятели, които я образуват, и $1 \le n \le 100$.

Подзадача 2 (8 точки): За всяка двойка, има най-много един човек между двамата приятели, които я образуват, и $1 \le n \le 100$.

Подзадача 3 (11 точки): Първите n приятели в редицата са получили числата от 1 до n (всяко число се среща точно веднъж сред тях), но не е задължително, в този ред. Освен това: $1 \le n \le 3\,000$.

Подзадача 4 (16 точки): Първите n приятели в редицата са получили числата от 1 до n (всяко число се среща точно веднъж сред тях), но не е задължително, в този ред. Освен това: $1 \le n \le 500\,000$.

Подзадача 5 (22 точки): $1 \le n \le 3\,000$.

Подзадача 6 (36 точки): $1 \le n \le 500\,000$.

Примери

примерен вход	примерен изход
3 3 1 2 1 2 3	4
5 5 1 2 3 2 3 1 4 5 4	7

Обяснение

В първия пример Луна трябва да размени третия и четвъртия си приятел. След тази размяна, редицата изглежда така: 3 1 1 2 2 3.

Тогава, тя може да изпрати двойката с номер 1 и двойката с номер 2 на среща (няма значение в какъв ред). След като го направи, двамата приятели с номер 3

вече са съседни в редицата и Луна може да изпрати и тях на среща.

В крайна сметка, това решение използва 4 действия: една размяна и три срещи.