Réalisabilité classique et ultrafiltres sur N

Davide Barbarossa

davide94barbarossa@gmail.com

26/06/2018

Directeur: Laurent Regnier

Correspondance de Curry-Howard

Logique	Langage de	Exécution
	programmation	
Intuitionniste	λ -calcul $/$	β -réduction/
	preuves	cut-elimination
	intuitionnistes	
Classique	λ_c -calcul	Krivine Abstract
	(+ instruc-	Machine,
	tions),/	
	preuves	
	classiques	
	(+ axiomes)	

"Réaliser" un axiome A= trouver un $(\lambda_c ext{-})$ programme t qui justifie A Notation : $t\Vdash A$

Le but

Axiome de l'ultrafiltre (AU)

Il existe un ultrafiltre non trivial sur N

Définition

Un ensemble $\mathcal{U}\subseteq\mathscr{P}(\mathbb{N})$ est dit ultrafiltre non trivial sur \mathbb{N} ssi $\forall A,B\subseteq\mathbb{N}$,

$$\varnothing \notin \mathcal{U}$$

$$\mathcal{U} \ni A \subseteq B \Rightarrow B \in \mathcal{U}$$

$$A, B \in \mathcal{U} \Rightarrow A \cap B \in \mathcal{U}$$

$$A \in \mathcal{U} \Leftrightarrow \mathbb{N} \setminus A \notin \mathcal{U}$$
.

Théorème

$$AU \vdash A \Rightarrow \exists \theta \text{ programme t.q. } \theta \Vdash A$$

Algèbre de réalisabilité = abstraction de la notion de programme

Programmes de SR_0

```
\Lambda := \Lambda_c, \ \Pi := \Pi_c, \ \Lambda \star \Pi := \Lambda_c \times \Pi_c, \ \text{où}

\Lambda_c ::= x \mid \text{callcc}, \dots \mid \kappa_\pi \mid (t)u \mid \lambda xt, \ \text{avec} \ \pi \in \Pi_c, \ t, u \in \Lambda_c

\Pi_c ::= \alpha \mid t.\pi, \ \text{avec} \ t \in \Lambda_c, \ \pi \in \Pi_c.
```

KAM pour SR_0

```
(push) (t)u \star \pi \succ t \star u.\pi;

(grab) \lambda xt \star u.\pi \succ t[u/x] \star \pi;

(save) callcc \star t.\pi \succ t \star \kappa_{\pi}.\pi;

(restore) \kappa_{\pi} \star t.\rho \succ t \star \pi.
```

Interprétations de réalisabilité

Sémantique de réalisabilité

On se donne un segment initial $\bot \subseteq \Lambda \star \Pi$ et on définit $\Vert . \Vert$ et \Vert par :

$$\begin{split} \|A \to B\| &:= \{ \xi \in \Lambda \text{ t.q. } \xi \Vdash A \}. \|B\| \subseteq \Pi \\ \|\forall x A\| &:= \bigcup_{a \in M} \|A[a/x]\| \subseteq \Pi \\ & \dots \\ \xi \Vdash A \Leftrightarrow \forall \pi \in \|A\|, \ \xi \star \pi \in \mathbb{L}, \text{ pour } \xi \in \Lambda \end{split}$$

Théorème (Lemme d'adéquation)

$$\vdash t : A \Rightarrow t \Vdash A$$

Sémantique de réalisabilité --> Modèles à la Tarski

La théorie $\{A \text{ formule t.q. } \exists \theta \in \mathrm{QP} \subseteq \Lambda \text{ t.q. } \theta \Vdash A\}$ est cohérente.

Donc elle admet des modèles à la Tarski, appelés modèles de réalisabilité .

Le forcing

En théorie des ensembles (P. Cohen, 1960)

- Ensemble partialement ordonné de "conditions de forcing" et un filtre
 G de "bonnes" conditions
- Relation p FA, pour p condition
- Nouveau modèle $\mathfrak{M}[G]$ t.q. $\mathfrak{M}[G] \models A$ ssi $\exists p \in G$ t.q. $p \not\vdash A$
- Le choix approprié des conditions permet de forcer des formules fixées (e.g. négation de l'hypothèse du continu)

En réalisabilité classique

Deux langages formels : \mathscr{F}_0 (qui permet de parler de la relation de forcing) et \mathscr{F}_1 (qui ne le permet pas)

Structure de forcing : P ensemble pré-ordonné de conditions de forcing, $\mathscr C$ ensemble de conditions non triviales

Transformation de forcing : $extit{P} imes\mathscr{F}_1 \longrightarrow \mathscr{F}_0$, $(extit{p}, extit{A}) o extit{p}$ $extit{F}$ $extit{A}$

Jouer avec le forcing

Internaliser le forcing

- on définit l'algèbre SR_1 moralement par " $\mathrm{SR}_1 := P \times \mathrm{SR}_0$ " $(\Lambda_1 := \Lambda_c \times P, \ \Pi_1 := \Pi_c \times P, \ \mathsf{mais} \ \bot_1 \ \mathsf{plus} \ \mathsf{compliqué...})$
- On définit une interprétation de réalisabilité pour \mathscr{F}_0 dans SR_0 et pour \mathscr{F}_1 dans SR_1

Proposition

$$\xi \Vdash_0 \mathscr{C}(p) \to A \implies (\tilde{\xi}, p) \Vdash_1 A$$
$$(\xi, p) \Vdash_1 A \implies \xi' \Vdash_0 \mathscr{C}(p) \to A$$

Observation

À la base il y a une transformation des programmes $(.)^*:\Lambda_c o \Lambda_c$ t.q. t^* s'exécute comme t mais en mode protégée

Une structure de forcing particulière

La condition de chaîne dénombrable

- Une structure de forcing satisfait la CCD quand "toute" suite "décroissante" de conditions non triviales admet un minorant non trivial
- Les structures de forcing qui la satisfont ont de propriétés intéressantes (beaucoup de travail technique...)

Proposition

On peut définit une structure de forcing dont l'ensemble des conditions est l'ensemble $\mathscr{P}(\Pi_c)^{\mathbb{N}}$ qui satisfait la condition de chaîne dénombrable

Théorème

$$\exists (\theta, p) \in \Lambda_1 \text{ t.q. } (\theta, p) \Vdash_1 AU$$

Les preuves en analyse nous donnent des programmes!

Théorème

Soit B = l'axiome de choix dépendant. Alors :

$$AU, B \vdash A \Rightarrow \exists \theta \in QP \subseteq \Lambda_c \text{ t.q. } \theta \Vdash_0 A$$

Idée de la preuve.

$$\text{AU} \vdash B \to A \Rightarrow (\eta, 1) \Vdash_1 B \to A \Rightarrow \eta' \Vdash_0 \mathscr{C}(1) \to B \to A \Rightarrow (\eta') \xi \nu \Vdash_0 A,$$
 pour un $\xi \Vdash_0 \mathscr{C}(1)$ (il existe toujours) et $\nu \Vdash_0 B$ (Krivine).

Observation

- Un ultrafiltre $\mathcal{U} \subseteq \mathscr{P}(\mathbb{N})$ sur \mathbb{N} est dit sélectif ssi pour toute partition $\{\mathcal{P}_i\}_{i\in I}$ de \mathbb{N} t.q. $\forall i\in I$, $\mathcal{P}_i\notin\mathcal{U}$, on a : $\exists U\in\mathcal{U}$ t.q. $\forall i\in I$, $U\cap\mathcal{P}_i$ est un singleton.
- On peut aussi supposer que AU dit qu'il existe un ultrafiltre sélectif

C'est la fin!