669 31 64 06

9. Un campo de fútbol de dimensiones a y b tiene la portería de anchura c, en el centro del lado b. Un jugador avanza con la pelota pegado a la banda sobre el lado a. ¿A qué distancia del córner (vértice del rectángulo) ve la portería con un ángulo máximo?

Este problema figura resuelto en la página 473 del volumen 2 de Problemas de Oposiciones de Editorial Deimos y también aparece publicado en las páginas 647 del volumen 2 y 7 del volumen 3.

SOLUCIÓN: Llámese $x=AB\in[0,a]$ la distancia del jugador al córner. Si α es el ángulo bajo el que ve la portería, y llamamos $\beta=\angle BAD$ y $\gamma=\angle BAC$, entonces:

$$\tan \alpha = \tan(\beta - \gamma) = \frac{\tan \beta - \tan \gamma}{1 + \tan \beta \tan \gamma} = \frac{\frac{b+c}{2x} - \frac{b-c}{2x}}{1 + \frac{b+c}{2x} \cdot \frac{b-c}{2x}} = \frac{\frac{c}{x}}{1 + \frac{b^2-c^2}{4x^2}} = \frac{4cx}{4x^2 + (b^2 - c^2)}$$

Como $\alpha \in [0,\frac{\pi}{2})$ y la tangente es creciente en dicho intervalo, el ángulo α

es máximo cuando lo es $\tan \alpha$. Sea $f(x) = \tan \alpha = \frac{4cx}{4x^2 + (b^2 - c^2)}$. Como es f(0) = 0, f(x) > 0 si $x \in (0, +\infty)$, pues

b>c, y $\lim_{x\to +\infty} f(x)=0$, se tiene que de existir un único $x_0\in (0,+\infty)$ tal que $f'(x_0)=0$, habrá un máximo absoluto de f(x) en $[0,+\infty)$ para ese valor X_0 .

Dado que es:

$$f'(x) = \frac{4c \cdot (4x^2 + b^2 - c^2) - 32cx^2}{(4x^2 + b^2 - c^2)^2} = 4c \frac{b^2 - c^2 - 4x^2}{(4x^2 + b^2 - c^2)^2}$$

resulta que f'(x) = 0 cuando $4x^2 = b^2 - c^2$, esto es, cuando $x = \frac{\sqrt{b^2 - c^2}}{2} > 0$. Resulta así que el ángulo bajo el que el jugador ve la portería es el máximo posible cuando está a distancia:

del córner. Dicho ángulo máximo es:

$$\alpha = \arctan \frac{4cx_{\text{max}}}{4x_{\text{max}} + (b^2 - c^2)} = \arctan \frac{4c\left(\frac{\sqrt{b^2 - c^2}}{2}\right)}{4\left(\frac{b^2 - c^2}{4}\right) + (b^2 - c^2)} = \arctan \frac{2c\sqrt{b^2 - c^2}}{2(b^2 - c^2)} = \arctan \frac{c}{\sqrt{b^2 - c^2}}$$

Por último comprobemos que el máximo se alcanza dentro del terreno de juego, esto es, que $x_{\text{max}} = \frac{\sqrt{b^2 - c^2}}{2} < a$. En efecto, por ser b<a, se tiene la siguiente cadena de desigualdades:

$$b < a \Rightarrow b^2 < a^2 \Rightarrow b^2 - c^2 < a^2 \Rightarrow \frac{b^2 - c^2}{4} < a^2 \Rightarrow \sqrt{\frac{b^2 - c^2}{4}} < a$$