Package 'manCULTA'

July 10, 2025

July 10, 2025				
Title Common and Unique Latent Transition Analysis (CULTA) as a Way to Examine the Trait-State Dynamics of Alcohol Intoxication				
Version 0.9.2				
Description Research compendium for the manuscript Pesigan, I. J. A., Russell, M. A., Chow, SM. (Under Review). Common and Unique Latent Transition Analysis (CULTA) as a Way to Examine the Trait-State Dynamics of Alcohol Intoxication. <doi:10.0000 0000000000="">.</doi:10.0000>				
<pre>URL https://github.com/jeksterslab/manCULTA,</pre>				
https://jeksterslab.github.io/manCULTA/,https://osf.io/gtdmr/,				
https://doi.org/10.0000/000000000				
BugReports https://github.com/jeksterslab/manCULTA/issues				
License GPL (>= 3)				
Encoding UTF-8				
Roxygen list(markdown = TRUE)				
Depends R (>= 3.5.0)				
LinkingTo Rcpp, RcppArmadillo				
Imports Rcpp				
Suggests knitr, rmarkdown, testthat, lavaan				
RoxygenNote 7.3.2				
NeedsCompilation yes				
Author Ivan Jacob Agaloos Pesigan [aut, cre, cph] (ORCID: https://orcid.org/0000-0003-4818-8420)				
Maintainer Ivan Jacob Agaloos Pesigan <r.jeksterslab@gmail.com></r.jeksterslab@gmail.com>				
Contents				
AIC.fitculta				

2 AIC.fitculta

	as.data.frame.simculta	7
	as.matrix.simculta	8
	BIC.fitculta	9
	coef.fitculta	11
	confint.fitculta	13
	converged	16
	entropy	18
	FitCULTA1Profile	20
	FitCULTA2Profiles	23
	GenCULTA2Profiles	26
	InputCULTA1Profile	32
	InputCULTA2Profiles	34
	logLik.fitculta	36
	print.fitculta	39
	print.simculta	41
	summary.fitculta	42
	vcov.fitculta	44
	WriteData	47
Index		48

AIC.fitculta

Akaike's Information Criterion

Description

Akaike's Information Criterion

Usage

```
## S3 method for class 'fitculta'
AIC(object, ...)
```

Arguments

objectObject of class fitculta.additional arguments.

Value

Returns Akaike's information criterion (AIC).

Author(s)

Ivan Jacob Agaloos Pesigan

AIC.fitculta 3

```
# complete list of R function arguments -----
# random seed for reproducibility
set.seed(42)
# dimensions
n <- 5000 # number of individuals
m <- 6 # measurement occasions
p <- 4 # number of items
q \leftarrow 1 \# common trait dimension
# covariate parameters
mu_x <- 11.4009
sigma_x <- 24.67566
# profile membership and transition parameters
nu_0 <- -3.563
kappa_0 <- 0.122
alpha_0 <- -3.586
beta_00 <- 2.250
gamma_00 <- 0.063
gamma_10 <- 0.094
# trait parameters
psi_t <- diag(1)</pre>
mu_t <- 0
psi_p <- diag(p)</pre>
mu_p \leftarrow rep(x = 0, times = p)
common_trait_loading <- matrix(</pre>
  data = 1,
  nrow = p,
 ncol = q
# state parameters
common_state_loading <- matrix(</pre>
  data = 1,
  nrow = p,
  ncol = 1
)
beta_0 <- 0.000
beta_1 <- 0.311
psi_s0 <- 0.151
psi_s <- 0.290
theta <- diag(p)
# profile-specific means
mu_profile <- cbind(</pre>
  c(2.253, 1.493, 1.574, 1.117),
  c(-0.278, -0.165, -0.199, -0.148)
```

4 anova.fitculta

```
)
# data generation ------
data <- GenCULTA2Profiles(</pre>
 n = n,
 m = m,
 mu_x = mu_x
 sigma_x = sigma_x,
 nu_0 = nu_0,
 kappa_0 = kappa_0,
 alpha_0 = alpha_0,
 beta_00 = beta_00,
 gamma_00 = gamma_00,
 gamma_10 = gamma_10,
 mu_t = mu_t
 psi_t = psi_t,
 mu_p = mu_p,
 psi_p = psi_p,
 common_trait_loading = common_trait_loading,
 common_state_loading = common_state_loading,
 beta_0 = beta_0,
 beta_1 = beta_1,
 psi_s0 = psi_s0,
 psi_s = psi_s,
 theta = theta,
 mu_profile = mu_profile
# model fitting -------
# NOTE: Model fitting takes time
fit <- FitCULTA2Profiles(data = data, ncores = parallel::detectCores())</pre>
AIC(fit)
## End(Not run)
```

anova.fitculta

Compare Two Nested fitculta Models Using Scaled Chi-Square Difference Test

Description

This function compares two fitculta models using the Satorra-Bentler scaled chi-square difference test based on log-likelihoods, number of free parameters, and scaling correction factors. It also returns model fit indices for both models, including AIC, BIC, adjusted BIC, and entropy.

Usage

```
## S3 method for class 'fitculta'
anova(object, other, ...)
```

anova.fitculta 5

Arguments

```
object Model object of class fitculta.

other Another model object of class fitculta.

... additional arguments.
```

Value

A list with two elements:

fit A matrix summarizing model fit indices for both models, including: logLik, df (number of free parameters), correction (scaling factor), AIC, BIC, aBIC (adjusted BIC), and entropy.

diff A named numeric vector with scaled chi-square difference, degrees of freedom difference, and p-value.

```
## Not run:
# complete list of R function arguments ------
# random seed for reproducibility
set.seed(42)
# dimensions
n <- 5000 # number of individuals
m <- 6 # measurement occasions
p <- 4 # number of items
q <- 1 # common trait dimension
# covariate parameters
mu_x <- 11.4009
sigma_x <- 24.67566
# profile membership and transition parameters
nu_0 <- -3.563
kappa_0 <- 0.122
alpha_0 <- -3.586
beta_00 <- 2.250
gamma_00 <- 0.063
gamma_10 <- 0.094
# trait parameters
psi_t <- diag(1)</pre>
mu_t <- 0
psi_p <- diag(p)</pre>
mu_p \leftarrow rep(x = 0, times = p)
common_trait_loading <- matrix(</pre>
  data = 1,
  nrow = p,
  ncol = q
)
```

6 anova.fitculta

```
# state parameters
common_state_loading <- matrix(</pre>
 data = 1,
 nrow = p,
 ncol = 1
)
beta_0 <- 0.000
beta_1 <- 0.311
psi_s0 <- 0.151
psi_s <- 0.290
theta <- diag(p)
# profile-specific means
mu_profile <- cbind(</pre>
 c(2.253, 1.493, 1.574, 1.117),
 c(-0.278, -0.165, -0.199, -0.148)
)
# data generation ------
data <- GenCULTA2Profiles(</pre>
 n = n,
 m = m,
 mu_x = mu_x,
 sigma_x = sigma_x,
 nu_0 = nu_0,
 kappa_0 = kappa_0,
 alpha_0 = alpha_0,
 beta_00 = beta_00,
 gamma_00 = gamma_00,
 gamma_10 = gamma_10,
 mu_t = mu_t
 psi_t = psi_t,
 mu_p = mu_p
 psi_p = psi_p,
 common_trait_loading = common_trait_loading,
 common_state_loading = common_state_loading,
 beta_0 = beta_0,
 beta_1 = beta_1,
 psi_s0 = psi_s0,
 psi_s = psi_s,
 theta = theta,
 mu_profile = mu_profile
)
# model fitting ------
# NOTE: Model fitting takes time
one_profile <- FitCULTA1Profile(data = data)</pre>
two_profiles <- FitCULTA2Profiles(data = data, ncores = parallel::detectCores())</pre>
anova(one_profile, two_profiles)
## End(Not run)
```

as.data.frame.simculta 7

```
as.data.frame.simculta
```

Coerce an Object of Class simculta to a Data Frame

Description

Coerce an Object of Class simculta to a Data Frame

Usage

```
## S3 method for class 'simculta'
as.data.frame(x, ...)
```

Arguments

x Object of class simculta.

... Additional arguments.

Author(s)

Ivan Jacob Agaloos Pesigan

```
x <- GenCULTA2Profiles(</pre>
  n = 10,
  m = 6,
  common_trait_loading = matrix(
    data = c(1, 1.25, 1.50, 1.75),
    ncol = 1
  common_state_loading = matrix(
    data = c(1, 1.5, 1.75, 2.00),
    ncol = 1
  ),
  mu_t = NULL,
  psi_t = NULL,
  mu_p = NULL,
  psi_p = NULL,
  theta = diag(4),
  mu_profile = cbind(
    c(-3, -3, -3, -3),
    c(3, 3, 3, 3)
  ),
  mu_x = 0,
  sigma_x = 1,
  nu_0 = -3.563,
  kappa_0 = 0.122,
  alpha_0 = -3.586,
```

8 as.matrix.simculta

```
beta_00 = 2.250,
  gamma_00 = 0.063,
  gamma_10 = 0.094,
  beta_0 = 0.311,
  beta_1 = 0,
  psi_s0 = 0.151,
  psi_s = 0.290
)
as.data.frame(x)
```

as.matrix.simculta

Coerce an Object of Class simculta to a Matrix

Description

Coerce an Object of Class simculta to a Matrix

Usage

```
## S3 method for class 'simculta' as.matrix(x, ...)
```

Arguments

x Object of class simculta.... Additional arguments.

Author(s)

Ivan Jacob Agaloos Pesigan

```
x <- GenCULTA2Profiles(
    n = 10,
    m = 6,
    common_trait_loading = matrix(
        data = c(1, 1.25, 1.50, 1.75),
        ncol = 1
    ),
    common_state_loading = matrix(
        data = c(1, 1.5, 1.75, 2.00),
        ncol = 1
    ),
    mu_t = NULL,
    psi_t = NULL,
    mu_p = NULL,
    psi_p = NULL,</pre>
```

BIC.fitculta 9

```
theta = diag(4),
 mu_profile = cbind(
   c(-3, -3, -3, -3),
   c(3, 3, 3, 3)
 ),
 mu_x = 0,
 sigma_x = 1,
 nu_0 = -3.563,
 kappa_0 = 0.122,
 alpha_0 = -3.586,
 beta_00 = 2.250,
 gamma_00 = 0.063,
 gamma_10 = 0.094,
 beta_0 = 0.311,
 beta_1 = 0,
 psi_s0 = 0.151,
 psi_s = 0.290
)
as.matrix(x)
```

BIC.fitculta

Bayesian Information Criterion

Description

Bayesian Information Criterion

Usage

```
## S3 method for class 'fitculta'
BIC(object, adjust = FALSE, ...)
```

Arguments

object Object of class fitculta.

adjust Logical. If adjust = TRUE, return the sample size adjusted BIC.

additional arguments.

Value

Returns Bayesian information criterion (BIC).

Author(s)

Ivan Jacob Agaloos Pesigan

10 BIC.fitculta

```
# complete list of R function arguments -----
# random seed for reproducibility
set.seed(42)
# dimensions
n <- 5000 # number of individuals
m <- 6 # measurement occasions
p <- 4 # number of items
q \leftarrow 1 \# common trait dimension
# covariate parameters
mu_x <- 11.4009
sigma_x <- 24.67566
# profile membership and transition parameters
nu_0 <- -3.563
kappa_0 <- 0.122
alpha_0 <- -3.586
beta_00 <- 2.250
gamma_00 <- 0.063
gamma_10 <- 0.094
# trait parameters
psi_t <- diag(1)</pre>
mu_t <- 0
psi_p <- diag(p)</pre>
mu_p \leftarrow rep(x = 0, times = p)
common_trait_loading <- matrix(</pre>
  data = 1,
  nrow = p,
 ncol = q
# state parameters
common_state_loading <- matrix(</pre>
  data = 1,
  nrow = p,
  ncol = 1
)
beta_0 <- 0.000
beta_1 <- 0.311
psi_s0 <- 0.151
psi_s <- 0.290
theta <- diag(p)
# profile-specific means
mu_profile <- cbind(</pre>
  c(2.253, 1.493, 1.574, 1.117),
  c(-0.278, -0.165, -0.199, -0.148)
```

coef.fitculta 11

```
)
# data generation ------
data <- GenCULTA2Profiles(</pre>
 n = n,
 m = m,
 mu_x = mu_x
 sigma_x = sigma_x,
 nu_0 = nu_0,
 kappa_0 = kappa_0,
 alpha_0 = alpha_0,
 beta_00 = beta_00,
 gamma_00 = gamma_00,
 gamma_10 = gamma_10,
 mu_t = mu_t
 psi_t = psi_t,
 mu_p = mu_p,
 psi_p = psi_p,
 common_trait_loading = common_trait_loading,
 common_state_loading = common_state_loading,
 beta_0 = beta_0,
 beta_1 = beta_1,
 psi_s0 = psi_s0,
 psi_s = psi_s,
 theta = theta,
 mu_profile = mu_profile
# model fitting ------
# NOTE: Model fitting takes time
fit <- FitCULTA2Profiles(data = data, ncores = parallel::detectCores())</pre>
BIC(fit)
BIC(fit, adjust = TRUE)
## End(Not run)
```

coef.fitculta

Parameter Estimates

Description

Parameter Estimates

Usage

```
## S3 method for class 'fitculta'
coef(object, ...)
```

12 coef.fitculta

Arguments

```
object Object of class fitculta.
... additional arguments.
```

Value

Returns a vector of parameter estimates.

Author(s)

Ivan Jacob Agaloos Pesigan

```
## Not run:
# complete list of R function arguments -----
# random seed for reproducibility
set.seed(42)
# dimensions
n <- 5000 # number of individuals
m <- 6 # measurement occasions
p <- 4 # number of items
q <- 1 # common trait dimension
# covariate parameters
mu_x <- 11.4009
sigma_x <- 24.67566
# profile membership and transition parameters
nu_0 <- -3.563
kappa_0 <- 0.122
alpha_0 <- -3.586
beta_00 <- 2.250
gamma_00 <- 0.063
gamma_10 <- 0.094
# trait parameters
psi_t <- diag(1)</pre>
mu_t <- 0
psi_p <- diag(p)</pre>
mu_p \leftarrow rep(x = 0, times = p)
common_trait_loading <- matrix(</pre>
  data = 1,
  nrow = p,
  ncol = q
)
# state parameters
common_state_loading <- matrix(</pre>
```

confint.fitculta 13

```
data = 1,
  nrow = p,
  ncol = 1
)
beta_0 <- 0.000
beta_1 <- 0.311
psi_s0 <- 0.151
psi_s <- 0.290
theta <- diag(p)
# profile-specific means
mu_profile <- cbind(</pre>
  c(2.253, 1.493, 1.574, 1.117),
 c(-0.278, -0.165, -0.199, -0.148)
)
# data generation ------
data <- GenCULTA2Profiles(</pre>
  n = n,
  m = m,
  mu_x = mu_x
  sigma_x = sigma_x,
  nu_0 = nu_0,
  kappa_0 = kappa_0,
  alpha_0 = alpha_0,
  beta_00 = beta_00,
  gamma_00 = gamma_00,
  gamma_10 = gamma_10,
  mu_t = mu_t
  psi_t = psi_t,
  mu_p = mu_p,
  psi_p = psi_p,
  common_trait_loading = common_trait_loading,
  common_state_loading = common_state_loading,
  beta_0 = beta_0,
  beta_1 = beta_1,
  psi_s0 = psi_s0,
  psi_s = psi_s,
  theta = theta,
  mu_profile = mu_profile
# model fitting ------
# NOTE: Model fitting takes time
fit <- FitCULTA2Profiles(data = data, ncores = parallel::detectCores())</pre>
coef(fit)
## End(Not run)
```

14 confint.fitculta

confint.fitculta

Confidence Intervals for Parameter Estimates

Description

Confidence Intervals for Parameter Estimates

Usage

```
## S3 method for class 'fitculta'
confint(object, parm = NULL, level = 0.95, ...)
```

Arguments

object Object of class fitculta.

parm a specification of which parameters are to be given confidence intervals, either

a vector of numbers or a vector of names. If missing, all parameters are consid-

ered.

level the confidence level required.

... additional arguments.

Value

Returns a matrix of confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

```
## Not run:
# complete list of R function arguments ------
# random seed for reproducibility
set.seed(42)

# dimensions
n <- 5000 # number of individuals
m <- 6 # measurement occasions
p <- 4 # number of items
q <- 1 # common trait dimension

# covariate parameters
mu_x <- 11.4009
sigma_x <- 24.67566

# profile membership and transition parameters
nu_0 <- -3.563
kappa_0 <- 0.122</pre>
```

confint.fitculta 15

```
alpha_0 <- -3.586
beta_00 <- 2.250
gamma_00 <- 0.063
gamma_10 <- 0.094
# trait parameters
psi_t <- diag(1)</pre>
mu_t <- 0
psi_p <- diag(p)</pre>
mu_p \leftarrow rep(x = 0, times = p)
common_trait_loading <- matrix(</pre>
 data = 1,
 nrow = p,
 ncol = q
)
# state parameters
common_state_loading <- matrix(</pre>
 data = 1,
 nrow = p,
 ncol = 1
)
beta_0 <- 0.000
beta_1 <- 0.311
psi_s0 <- 0.151
psi_s <- 0.290
theta <- diag(p)
# profile-specific means
mu_profile <- cbind(</pre>
 c(2.253, 1.493, 1.574, 1.117),
 c(-0.278, -0.165, -0.199, -0.148)
)
data <- GenCULTA2Profiles(</pre>
 n = n,
 m = m,
 mu_x = mu_x,
 sigma_x = sigma_x,
 nu_0 = nu_0,
 kappa_0 = kappa_0,
 alpha_0 = alpha_0,
 beta_00 = beta_00,
 gamma_00 = gamma_00,
 gamma_10 = gamma_10,
 mu_t = mu_t
 psi_t = psi_t,
 mu_p = mu_p,
 psi_p = psi_p,
 common_trait_loading = common_trait_loading,
 common_state_loading = common_state_loading,
 beta_0 = beta_0,
```

16 converged

converged

Convergence Status of a Model Fit

Description

Checks whether the model fitting procedure for an object of class fitculta has successfully converged based on the presence of the string "THE BEST LOGLIKELIHOOD VALUE HAS BEEN REPLICATED." in the Mplus output.

Usage

```
converged(object, ...)
```

Arguments

object Object of class fitculta.
... additional arguments.

Value

Logical. TRUE if the model has converged, FALSE otherwise.

Author(s)

Ivan Jacob Agaloos Pesigan

```
## Not run:
# complete list of R function arguments -----
# random seed for reproducibility
set.seed(42)
```

converged 17

```
# dimensions
n <- 5000 # number of individuals
m <- 6 # measurement occasions
p <- 4 \# number of items
q \leftarrow 1 \# common trait dimension
# covariate parameters
mu_x <- 11.4009
sigma_x <- 24.67566
# profile membership and transition parameters
nu_0 <- -3.563
kappa_0 <- 0.122
alpha_0 <- -3.586
beta_00 <- 2.250
gamma_00 <- 0.063
gamma_10 <- 0.094
# trait parameters
psi_t <- diag(1)</pre>
mu_t <- 0
psi_p <- diag(p)</pre>
mu_p \leftarrow rep(x = 0, times = p)
common_trait_loading <- matrix(</pre>
 data = 1,
 nrow = p,
 ncol = q
)
# state parameters
common_state_loading <- matrix(</pre>
 data = 1,
 nrow = p,
 ncol = 1
beta_0 <- 0.000
beta_1 <- 0.311
psi_s0 <- 0.151
psi_s <- 0.290
theta <- diag(p)
# profile-specific means
mu_profile <- cbind(</pre>
 c(2.253, 1.493, 1.574, 1.117),
 c(-0.278, -0.165, -0.199, -0.148)
)
data <- GenCULTA2Profiles(</pre>
 n = n,
 m = m,
 mu_x = mu_x,
 sigma_x = sigma_x,
```

18 entropy

```
nu_0 = nu_0,
 kappa_0 = kappa_0,
 alpha_0 = alpha_0,
 beta_00 = beta_00,
 gamma_00 = gamma_00,
 gamma_10 = gamma_10,
 mu_t = mu_t
 psi_t = psi_t,
 mu_p = mu_p,
 psi_p = psi_p,
 common_trait_loading = common_trait_loading,
 common_state_loading = common_state_loading,
 beta_0 = beta_0,
 beta_1 = beta_1,
 psi_s0 = psi_s0,
 psi_s = psi_s,
 theta = theta,
 mu_profile = mu_profile
)
# model fitting -------
# NOTE: Model fitting takes time
fit <- FitCULTA2Profiles(data = data, ncores = parallel::detectCores())</pre>
converged(fit)
## End(Not run)
```

entropy

Entropy

Description

Entropy

Usage

```
entropy(object, ...)
```

Arguments

object Object of class fitculta.
... additional arguments.

Value

Returns Akaike's information criterion (AIC).

entropy 19

Author(s)

Ivan Jacob Agaloos Pesigan

```
## Not run:
# complete list of R function arguments -----
# random seed for reproducibility
set.seed(42)
# dimensions
n <- 5000 # number of individuals
m <- 6 # measurement occasions
p <- 4 # number of items
q <- 1 # common trait dimension
# covariate parameters
mu_x <- 11.4009
sigma_x <- 24.67566
# profile membership and transition parameters
nu_0 <- -3.563
kappa_0 <- 0.122
alpha_0 <- -3.586
beta_00 <- 2.250
gamma_00 <- 0.063
gamma_10 <- 0.094
# trait parameters
psi_t <- diag(1)</pre>
mu_t <- 0
psi_p <- diag(p)</pre>
mu_p \leftarrow rep(x = 0, times = p)
common_trait_loading <- matrix(</pre>
  data = 1,
 nrow = p,
  ncol = q
)
# state parameters
common_state_loading <- matrix(</pre>
  data = 1,
  nrow = p,
  ncol = 1
beta_0 <- 0.000
beta_1 <- 0.311
psi_s0 <- 0.151
psi_s <- 0.290
theta <- diag(p)
```

20 FitCULTA1Profile

```
# profile-specific means
mu_profile <- cbind(</pre>
 c(2.253, 1.493, 1.574, 1.117),
 c(-0.278, -0.165, -0.199, -0.148)
)
data <- GenCULTA2Profiles(</pre>
 n = n,
 m = m,
 mu_x = mu_x,
 sigma_x = sigma_x,
 nu_0 = nu_0,
 kappa_0 = kappa_0,
 alpha_0 = alpha_0,
 beta_00 = beta_00,
 gamma_00 = gamma_00,
 gamma_10 = gamma_10,
 mu_t = mu_t
 psi_t = psi_t,
 mu_p = mu_p,
 psi_p = psi_p,
 common_trait_loading = common_trait_loading,
 common_state_loading = common_state_loading,
 beta_0 = beta_0,
 beta_1 = beta_1,
 psi_s0 = psi_s0,
 psi_s = psi_s,
 theta = theta,
 mu_profile = mu_profile
)
# model fitting ------
# NOTE: Model fitting takes time
fit <- FitCULTA2Profiles(data = data, ncores = parallel::detectCores())</pre>
entropy(fit)
## End(Not run)
```

FitCULTA1Profile

Fit the One-Profile CULTA Model (CUTS Model with AR)

Description

Fits the one-profile CULTA model using Mplus.

Usage

```
FitCULTA1Profile(data, wd = ".", mplus_bin = NULL, starts = 10)
```

FitCULTA1Profile 21

Arguments

data R object. Object of class simculta. wd Character string. Working directory.

mplus_bin Character string. Path to Mplus binary. If mplus_bin = NULL, the function will

try to find the appropriate binary.

starts Positive integer. Number of initial stage starting values.

Value

Returns an object of class fitculta. which is a list with the following elements:

• call: Function call.

• fun: Function used ("FitCULTA1Profile").

• args: Function arguments.

• output: Mplus output files.

• elapsed: Elapsed time.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Model Fitting Functions: FitCULTA2Profiles(), InputCULTA1Profile(), InputCULTA2Profiles()

```
## Not run:
# complete list of R function arguments -----
# random seed for reproducibility
set.seed(42)
# dimensions
n <- 5000 # number of individuals
m <- 6 # measurement occasions
p <- 4 # number of items
q <- 1 # common trait dimension
# covariate parameters
mu_x <- 11.4009
sigma_x <- 24.67566
# profile membership and transition parameters
nu_0 <- -3.563
kappa_0 <- 0.122
alpha_0 <- -3.586
beta_00 <- 2.250
gamma_00 <- 0.063
```

22 FitCULTA1Profile

```
gamma_10 <- 0.094
# trait parameters
psi_t <- diag(1)</pre>
mu_t <- 0
psi_p <- diag(p)</pre>
mu_p \leftarrow rep(x = 0, times = p)
common_trait_loading <- matrix(</pre>
 data = 1,
 nrow = p,
  ncol = q
# state parameters
common_state_loading <- matrix(</pre>
  data = 1,
 nrow = p,
 ncol = 1
)
beta_0 <- 0.000
beta_1 <- 0.311
psi_s0 <- 0.151
psi_s <- 0.290
theta <- diag(p)</pre>
# profile-specific means
mu_profile <- cbind(</pre>
 c(2.253, 1.493, 1.574, 1.117),
  c(-0.278, -0.165, -0.199, -0.148)
)
# data generation ------
data <- GenCULTA2Profiles(</pre>
  n = n,
  m = m,
  mu_x = mu_x,
  sigma_x = sigma_x,
  nu_0 = nu_0,
  kappa_0 = kappa_0,
  alpha_0 = alpha_0,
  beta_00 = beta_00,
  gamma_00 = gamma_00,
  gamma_10 = gamma_10,
  mu_t = mu_t
  psi_t = psi_t,
  mu_p = mu_p
  psi_p = psi_p,
  common_trait_loading = common_trait_loading,
  common_state_loading = common_state_loading,
  beta_0 = beta_0,
  beta_1 = beta_1,
  psi_s0 = psi_s0,
  psi_s = psi_s,
```

FitCULTA2Profiles 23

```
theta = theta,
  mu_profile = mu_profile
)

# model fitting ------
# NOTE: Model fitting takes time
FitCULTA1Profile(data = data)

## End(Not run)
```

FitCULTA2Profiles

Fit the Two-Profile CULTA Model

Description

Fits the two-profile CULTA model using Mplus.

Usage

```
FitCULTA2Profiles(
  data,
  wd = ".",
  ncores = 1L,
  mplus_bin = NULL,
  starts = c(20, 4),
  stiterations = 10,
  stscale = 5
)
```

Arguments

data	R object. Object of class simculta.
wd	Character string. Working directory.
ncores	Positive integer. Number of cores to use.
mplus_bin	Character string. Path to Mplus binary. If mplus_bin = NULL, the function will try to find the appropriate binary.
starts	Vector of positive integer of length two. Number of initial stage starts and number of final stage optimizations.
stiterations	Positive integer. Number of initial stage iterations.
stscale	Positive integer. Random start scale.

24 FitCULTA2Profiles

Value

Returns an object of class fitculta. which is a list with the following elements:

- call: Function call.
- fun: Function used ("FitCULTA2Profiles").
- args: Function arguments.
- output: Mplus output files.
- elapsed: Elapsed time.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Model Fitting Functions: FitCULTA1Profile(), InputCULTA1Profile(), InputCULTA2Profiles()

```
## Not run:
# complete list of R function arguments -----
# random seed for reproducibility
set.seed(42)
# dimensions
n <- 5000 # number of individuals
m <- 6 # measurement occasions
p <- 4 # number of items
q <- 1 # common trait dimension
# covariate parameters
mu_x <- 11.4009
sigma_x < - 24.67566
# profile membership and transition parameters
nu_0 <- -3.563
kappa_0 <- 0.122
alpha_0 <- -3.586
beta_00 <- 2.250
gamma_00 <- 0.063
gamma_10 <- 0.094
# trait parameters
psi_t <- diag(1)</pre>
mu_t <- 0
psi_p <- diag(p)</pre>
mu_p \leftarrow rep(x = 0, times = p)
common_trait_loading <- matrix(</pre>
  data = 1,
```

FitCULTA2Profiles 25

```
nrow = p,
 ncol = q
)
# state parameters
common_state_loading <- matrix(</pre>
 data = 1,
 nrow = p,
 ncol = 1
beta_0 <- 0.000
beta_1 <- 0.311
psi_s0 <- 0.151
psi_s <- 0.290
theta <- diag(p)
# profile-specific means
mu_profile <- cbind(</pre>
 c(2.253, 1.493, 1.574, 1.117),
 c(-0.278, -0.165, -0.199, -0.148)
)
# data generation ------
data <- GenCULTA2Profiles(</pre>
 n = n,
 m = m,
 mu_x = mu_x
 sigma_x = sigma_x,
 nu_0 = nu_0,
 kappa_0 = kappa_0,
 alpha_0 = alpha_0,
 beta_00 = beta_00,
 gamma_00 = gamma_00,
 gamma_10 = gamma_10,
 mu_t = mu_t
 psi_t = psi_t,
 mu_p = mu_p,
 psi_p = psi_p,
 common_trait_loading = common_trait_loading,
 common_state_loading = common_state_loading,
 beta_0 = beta_0,
 beta_1 = beta_1,
 psi_s0 = psi_s0,
 psi_s = psi_s,
 theta = theta,
 mu_profile = mu_profile
# model fitting ------
# NOTE: Model fitting takes time
FitCULTA2Profiles(data = data, ncores = parallel::detectCores())
## End(Not run)
```

GenCULTA2Profiles

Simulate Observed Data from a Two-Profile CULTA Model

Description

Generates data from a two-profile longitudinal CULTA model where profile membership, trait components, and state dynamics are influenced by an observed covariate. The function produces simulated responses incorporating covariate effects, individual differences, and time-varying fluctuations.

Usage

```
GenCULTA2Profiles(
  n,
 m,
 mu_x,
 sigma_x,
 nu_0,
 kappa_0,
 alpha_0,
 beta_00,
 gamma_00,
 gamma_10,
 mu_t,
 psi_t,
 mu_p,
 psi_p,
  common_trait_loading,
  common_state_loading,
 beta_0,
 beta_1,
 psi_s0,
 psi_s,
  theta,
 mu_profile
)
```

Arguments

n	Positive integer. Number of individuals.
m	Positive integer. Number of measurement occasions.
mu_x	Numeric. Mean of the covariate μ_X .
sigma_x	Numeric. Variance of the covariate σ_X .
nu_0	Numeric. Intercept ν_0 for the logistic model of initial profile membership.

kappa_0	Numeric. Covariate effect κ_0 on initial profile membership.
alpha_0	Numeric. Intercept α_0 for the logistic model of profile transitions across time.
beta_00	Numeric. Effect β_{00} for self-persistence in profile 0 transitions.
gamma_00	Numeric. Covariate effect γ_{00} on remaining in profile 0.
gamma_10	Numeric. Covariate effect γ_{10} on transitioning from profile 1 to profile 0.
mu_t	Numeric or vector of length q . Mean μ_t of the common trait factor. If mu_t = NULL, defaults to zero.
psi_t	Numeric matrix of size $q \times q$. Positive definite covariance matrix Ψ_t for the common trait factor.
mu_p	Numeric vector of length p . Mean vector $\pmb{\mu}_p$ for unique trait components. If mu_p = NULL, defaults to zero.
psi_p	Numeric matrix of size $p \times p$. Positive definite covariance matrix Ψ_p for unique trait components.
common_trait_lc	pading
	Numeric matrix of size $p \times q$. Factor loading matrix specifying the influence of the common trait on each observed item.
common_state_lc	-
	Numeric matrix of size $p \times 1$. Factor loading matrix specifying the influence of the common state on each observed item.
beta_0	Numeric. Autoregressive coefficient β_0 for the common state process in profile 0.
beta_1	Numeric. Autoregressive coefficient β_1 for the common state process in profile 0.
psi_s0	Numeric. Variance ψ_{s0} of the initial common state.
psi_s	Numeric. Innovation variance ψ_s for the common state process.
theta	Numeric matrix of size $p \times p$. Positive definite covariance matrix $\pmb{\Theta}$ for unique state components.
mu_profile	Numeric matrix of size $p\times 2$. Profile-specific means for each observed item across two latent profiles.

Details

The GenCULTA2Profiles() function generates data for a two-profile CULTA model with a covariate. The CULTA model incorporates a covariate, latent categorical variables, trait components, state components, and profile-specific means to simulate longitudinal data with latent profile transitions.

Let $i \in \{1, \dots, n\}$ denote the index for individuals, let $t \in \{0, \dots, m-1\}$ denote the index measurement occasions, let $k \in \{1, \dots, p\}$ denote the index items, and let $c \in \{0, 1\}$ be the index of the two latent profiles (profile 0 and profile 1). Let q be the trait dimension, q = 1 in this context.

Covariate

The covariate is generated from a normal distribution with mean μ_X and variance σ_X .

Latent Categorical Variables

Latent categorical variables represent profile membership for each individual at each measurement occasion. In a two-profile model, profile membership is influenced by a covariate and previous profile status, following a logistic formulation. We distinguish between:

- Initial profile membership (baseline time point)
- Profile transitions across subsequent time points

We describe both components below.

Initial Profile Membership

For the first measurement occasion (t=0), profile membership is determined by the following log-odds for belonging to profile 0 (with profile 1 as the reference category):

$$(\nu_0 + \kappa_0 \times \text{Covariate } 0).$$

The corresponding probability of belonging to each profile is given by:

$$\left(\begin{array}{cc} \frac{\exp(\nu_0 + \kappa_0 \times \text{Covariate})}{\exp(\nu_0 + \kappa_0 \times \text{Covariate}) + 1} & \frac{1}{\exp(\nu_0 + \kappa_0 \times \text{Covariate}) + 1} \end{array}\right).$$

Profile membership at the first occasion is sampled based on these probabilities.

Profile Transitions

For subsequent occasions (t = 1, ..., m-1), profile transitions depend on the profile at the previous occasion and the covariate. The log-odds for transitioning to profile 0 at time t are given by:

$$\begin{pmatrix} \alpha_0 + \beta_{00} + \gamma_{00} \times \text{Covariate} & 0 \\ \alpha_0 + \gamma_{10} \times \text{Covariate} & 0 \end{pmatrix}.$$

The probability of transitioning to each profile is computed as:

$$\left(\begin{array}{c} \frac{\exp(\alpha_0 + \beta_{00} + \gamma_{00} \times \text{Covariate})}{\exp(\alpha_0 + \beta_{00} + \gamma_{00} \times \text{Covariate}) + 1} & \frac{1}{\exp(\alpha_0 + \beta_{00} + \gamma_{00} \times \text{Covariate}) + 1} \\ \frac{\exp(\alpha_0 + \gamma_{10} \times \text{Covariate})}{\exp(\alpha_0 + \gamma_{10} \times \text{Covariate}) + 1} & \frac{1}{\exp(\alpha_0 + \gamma_{10} \times \text{Covariate}) + 1} \end{array} \right).$$

Profile membership for each subsequent time point is sampled using these transition probabilities, based on the individual's covariate value and previous profile.

Trait Components

The trait variate captures between-person differences and is composed of a shared (common) component and item-specific (unique) components. The full decomposition is given by:

$$Trait_i = Common Trait Loading \times Common Trait_i + Unique Trait_i$$
.

We describe each component below.

Common Trait

The common trait Common Trait_i represents shared individual differences that influence all items uniformly. It is drawn from a normal distribution with mean μ_t and variance ψ_t :

Common Trait_i
$$\sim \mathcal{N}\left(\mu_t, \psi_t\right)$$

The influence of the common trait on each item is determined by the $p \times q$ common trait loading,

Unique Traits

The unique trait component $\operatorname{Unique} \operatorname{Trait}_{k,i}$ captures item-specific stable differences and is drawn from a multivariate normal distribution:

Unique
$$\operatorname{Trait}_i \sim \mathcal{N}\left(\boldsymbol{\mu}_p, \boldsymbol{\Psi}_{p \times p}\right)$$

Combined Trait Variate

The trait variate for item k and individual i is obtained by combining the common and unique trait components:

$$\operatorname{Trait}_{k,i} = \operatorname{Common} \operatorname{Trait} \operatorname{Loading}_k \times \operatorname{Common} \operatorname{Trait}_i + \operatorname{Unique} \operatorname{Trait}_{k,i}$$
.

The common trait component introduces shared variance across items, while the unique trait component allows for item-specific differences not explained by the common trait.

State Components

The state variate is composed of two parts: a common state shared across items, and unique states specific to each item. The full decomposition is given by:

$$State_{k,i,t} = Common\ State\ Loading_k \times Common\ State_{i,t} + Unique\ State_{k,i,t}$$
.

We describe each component below.

Common State

The common state $Common\ State_{i,t}$ evolves over time following a first-order autoregressive process:

Common State_{i,t} =
$$\beta_c \times \text{Common State}_{i,t-1} + \zeta_{i,t}$$
.

The initial common state is drawn from a normal distribution:

Common State_{i,0}
$$\sim \mathcal{N}(0, \psi_{s_0})$$
.

The innovation term $\zeta_{i,t}$ is normally distributed:

$$\zeta_{i,t} \sim \mathcal{N}\left(0, \psi_s\right)$$
.

The autoregressive parameter β_c depends on latent profile membership c:

$$\beta_c = \beta_0 + (\beta_1 - \beta_0) c.$$

Here, β_0 and β_1 represent the autoregressive coefficients for profiles coded as 0 and 1, respectively.

Unique State

The unique state $\mathrm{Unique\ State}_{k,i,t}$ captures item-specific deviations and is drawn from a multivariate normal distribution:

Unique State_{i,t}
$$\sim \mathcal{N}\left(0,\boldsymbol{\theta}\right)$$

where θ is the item-level covariance matrix for the unique state component.

Combined State Variate

The state variate for item k, individual i, and time t combines the common and unique state components:

$$\text{State}_{k,i,t} = \text{Common State Loading}_k \times \text{Common State}_{i,t} + \text{Unique State}_{k,i,t}$$

The common state loading parameter Common State Loading k controls the influence of the shared state on each item.

Observed Variables

The observed variable is given by

$$Y_{k,i,t} = \mu_{k,c} + \text{Trait}_{k,i} + \text{State}_{k,i,t}$$

where $\mu_{k,c}$ is the profile specific mean, while $\operatorname{Trait}_{k,i}$ and $\operatorname{State}_{k,i,t}$ correspond to the trait and state components of the model.

Value

Returns an object of class simculta. which is a list with the following elements:

- call: Function call.
- fun: Function used ("GenCULTA2Profiles").
- args: Function arguments.
- id: Vector of ID numbers.
- covariate: Vector of covariate values.
- categorical: Latent profiles.
- common_trait: Common trait.
- unique_trait: Unique trait.
- common_state: Common state.
- trait: Common trait + unique trait.
- state: Common state + unique state.
- data: Generated data which is a matrix of observed variables generated from the CULTA model with two-profiles.

Author(s)

Ivan Jacob Agaloos Pesigan

```
# complete list of R function arguments -----
# random seed for reproducibility
set.seed(42)
# dimensions
n <- 10 # number of individuals
m <- 6 # measurement occasions
p <- 4 # number of items
q <- 1 # common trait dimension
# covariate parameters
mu_x <- 11.4009
sigma_x <- 24.67566
# profile membership and transition parameters
nu_0 <- -3.563
kappa_0 <- 0.122
alpha_0 <- -3.586
beta_00 <- 2.250
gamma_00 <- 0.063
gamma_10 <- 0.094
# trait parameters
```

```
psi_t <- diag(1)</pre>
mu_t <- 0
psi_p <- diag(p)</pre>
mu_p \leftarrow rep(x = 0, times = p)
common_trait_loading <- matrix(</pre>
 data = 1,
 nrow = p,
 ncol = q
)
# state parameters
common_state_loading <- matrix(</pre>
 data = 1,
 nrow = p,
 ncol = 1
)
beta_0 <- 0.000
beta_1 <- 0.311
psi_s0 <- 0.151
psi_s <- 0.290
theta <- diag(p)
# profile-specific means
mu_profile <- cbind(</pre>
 c(2.253, 1.493, 1.574, 1.117),
 c(-0.278, -0.165, -0.199, -0.148)
data <- GenCULTA2Profiles(</pre>
 n = n,
 m = m,
 mu_x = mu_x
 sigma_x = sigma_x,
 nu_0 = nu_0,
 kappa_0 = kappa_0,
 alpha_0 = alpha_0,
 beta_00 = beta_00,
 gamma_00 = gamma_00,
 gamma_10 = gamma_10,
 mu_t = mu_t
 psi_t = psi_t,
 mu_p = mu_p,
 psi_p = psi_p,
 common_trait_loading = common_trait_loading,
 common_state_loading = common_state_loading,
 beta_0 = beta_0,
 beta_1 = beta_1,
 psi_s0 = psi_s0,
 psi_s = psi_s,
 theta = theta,
 mu_profile = mu_profile
```

32 InputCULTA1Profile

InputCULTA1Profile Generate Mplus Inout file for the One-Profile CULTA Model (CUTS Model with AR)

Description

Generates Mplus input file for the one-profile CULTA model.

Usage

```
InputCULTA1Profile(data, wd = ".", starts = 10)
```

Arguments

data R object. Object of class simculta. wd Character string. Working directory.

starts Positive integer. Number of initial stage starting values.

Value

Writes data and input files in wd.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Model Fitting Functions: FitCULTA1Profile(), FitCULTA2Profiles(), InputCULTA2Profiles()

```
## Not run:
# complete list of R function arguments ------
# random seed for reproducibility
set.seed(42)

# dimensions
n <- 5000 # number of individuals
m <- 6 # measurement occasions
p <- 4 # number of items
q <- 1 # common trait dimension

# covariate parameters
mu_x <- 11.4009
sigma_x <- 24.67566</pre>
```

InputCULTA1Profile

33

```
# profile membership and transition parameters
nu_0 <- -3.563
kappa_0 <- 0.122
alpha_0 <- -3.586
beta_00 <- 2.250
gamma_00 <- 0.063
gamma_10 <- 0.094
# trait parameters
psi_t <- diag(1)</pre>
mu_t <- 0
psi_p <- diag(p)</pre>
mu_p \leftarrow rep(x = 0, times = p)
common_trait_loading <- matrix(</pre>
  data = 1,
 nrow = p,
 ncol = q
)
# state parameters
common_state_loading <- matrix(</pre>
  data = 1,
  nrow = p,
 ncol = 1
beta_0 <- 0.000
beta_1 <- 0.311
psi_s0 <- 0.151
psi_s <- 0.290
theta <- diag(p)</pre>
# profile-specific means
mu_profile <- cbind(</pre>
  c(2.253, 1.493, 1.574, 1.117),
  c(-0.278, -0.165, -0.199, -0.148)
)
# data generation ------
data <- GenCULTA2Profiles(</pre>
 n = n,
 m = m,
  mu_x = mu_x,
  sigma_x = sigma_x,
  nu_0 = nu_0,
  kappa_0 = kappa_0,
  alpha_0 = alpha_0,
  beta_00 = beta_00,
  gamma_00 = gamma_00,
  gamma_10 = gamma_10,
  mu_t = mu_t
  psi_t = psi_t,
  mu_p = mu_p,
```

InputCULTA2Profiles Generate Mplus Input file for the Two-Profile CULTA Model

Description

Generates Mplus input file for the two-profile CULTA model.

Usage

```
InputCULTA2Profiles(
  data,
  wd = ".",
  ncores = 1L,
  starts = c(20, 4),
  stiterations = 10,
  stscale = 5
)
```

Arguments

data R object. Object of class simculta.

wd Character string. Working directory.

ncores Positive integer. Number of cores to use.

starts Vector of positive integer of length two. Number of initial stage starts and num-

ber of final stage optimizations.

stiterations Positive integer. Number of initial stage iterations.

stscale Positive integer. Random start scale.

Value

Writes data and input files in wd.

InputCULTA2Profiles 35

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Model Fitting Functions: FitCULTA1Profile(), FitCULTA2Profiles(), InputCULTA1Profile()

```
## Not run:
# complete list of R function arguments -----
# random seed for reproducibility
set.seed(42)
# dimensions
n <- 5000 # number of individuals
m <- 6 # measurement occasions
p <- 4 # number of items
q <- 1 # common trait dimension
# covariate parameters
mu_x <- 11.4009
sigma_x <- 24.67566
# profile membership and transition parameters
nu_0 <- -3.563
kappa_0 <- 0.122
alpha_0 <- -3.586
beta_00 <- 2.250
gamma_00 <- 0.063
gamma_10 <- 0.094
# trait parameters
psi_t <- diag(1)</pre>
mu_t <- 0
psi_p <- diag(p)</pre>
mu_p \leftarrow rep(x = 0, times = p)
common_trait_loading <- matrix(</pre>
 data = 1,
 nrow = p,
 ncol = q
)
# state parameters
common_state_loading <- matrix(</pre>
  data = 1,
 nrow = p,
 ncol = 1
)
beta_0 <- 0.000
beta_1 <- 0.311
```

36 logLik.fitculta

```
psi_s0 <- 0.151
psi_s <- 0.290
theta <- diag(p)</pre>
# profile-specific means
mu_profile <- cbind(</pre>
 c(2.253, 1.493, 1.574, 1.117),
 c(-0.278, -0.165, -0.199, -0.148)
)
# data generation ------
data <- GenCULTA2Profiles(</pre>
 n = n,
 m = m,
 mu_x = mu_x
 sigma_x = sigma_x,
 nu_0 = nu_0,
 kappa_0 = kappa_0,
 alpha_0 = alpha_0,
 beta_00 = beta_00,
 gamma_00 = gamma_00,
 gamma_10 = gamma_10,
 mu_t = mu_t
 psi_t = psi_t,
 mu_p = mu_p,
 psi_p = psi_p,
 common_trait_loading = common_trait_loading,
 common_state_loading = common_state_loading,
 beta_0 = beta_0,
 beta_1 = beta_1,
 psi_s0 = psi_s0,
 psi_s = psi_s,
 theta = theta,
 mu_profile = mu_profile
# generate data and Mplus input files fitting ------
InputCULTA2Profiles(data = data)
## End(Not run)
```

log Lik. fit culta

Extract Log-Likelihood

Description

Extract Log-Likelihood

logLik.fitculta 37

Usage

```
## S3 method for class 'fitculta'
logLik(object, ...)
```

Arguments

```
object Object of class fitculta.
... additional arguments.
```

Value

Returns an object of class logLik. This is a number with at the attribute, "df" (degrees of freedom), giving the number of (estimated) parameters in the model, and "correction" which is the scaling correction factor for MLR.

Author(s)

Ivan Jacob Agaloos Pesigan

```
## Not run:
# complete list of R function arguments -----
# random seed for reproducibility
set.seed(42)
# dimensions
n <- 5000 # number of individuals
m <- 6 # measurement occasions
p <- 4 # number of items
q <- 1 # common trait dimension
# covariate parameters
mu_x <- 11.4009
sigma_x <- 24.67566
# profile membership and transition parameters
nu_0 <- -3.563
kappa_0 <- 0.122
alpha_0 <- -3.586
beta_00 <- 2.250
gamma_00 <- 0.063
gamma_10 <- 0.094
# trait parameters
psi_t <- diag(1)
mu_t <- 0
psi_p <- diag(p)</pre>
mu_p \leftarrow rep(x = 0, times = p)
common_trait_loading <- matrix(</pre>
```

38 logLik.fitculta

```
data = 1,
 nrow = p,
 ncol = q
)
# state parameters
common_state_loading <- matrix(</pre>
 data = 1,
 nrow = p,
 ncol = 1
beta_0 <- 0.000
beta_1 <- 0.311
psi_s0 <- 0.151
psi_s <- 0.290
theta <- diag(p)
# profile-specific means
mu_profile <- cbind(</pre>
 c(2.253, 1.493, 1.574, 1.117),
 c(-0.278, -0.165, -0.199, -0.148)
)
# data generation ------
data <- GenCULTA2Profiles(</pre>
 n = n,
 m = m,
 mu_x = mu_x
 sigma_x = sigma_x,
 nu_0 = nu_0,
 kappa_0 = kappa_0,
 alpha_0 = alpha_0,
 beta_00 = beta_00,
 gamma_00 = gamma_00,
 gamma_10 = gamma_10,
 mu_t = mu_t
 psi_t = psi_t,
 mu_p = mu_p,
 psi_p = psi_p,
 common_trait_loading = common_trait_loading,
 common_state_loading = common_state_loading,
 beta_0 = beta_0,
 beta_1 = beta_1,
 psi_s0 = psi_s0,
 psi_s = psi_s,
 theta = theta,
 mu_profile = mu_profile
)
# model fitting ------
# NOTE: Model fitting takes time
fit <- FitCULTA2Profiles(data = data, ncores = parallel::detectCores())</pre>
logLik(fit, level = 0.95)
```

print.fitculta 39

```
## End(Not run)
```

print.fitculta

Print Method for an Object of Class fitculta

Description

Print Method for an Object of Class fitculta

Usage

```
## S3 method for class 'fitculta'
print(x, alpha = NULL, digits = 4, ...)
```

Arguments

X	Object of class fitculta.
alpha	Numeric vector. Significance level α . If alpha = NULL, use alpha = 0.05.
digits	Digits to print.
	additional arguments.

Value

Prints a matrix of standardized regression slopes, standard errors, test statistics, p-values, and confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

```
## Not run:
# complete list of R function arguments ------
# random seed for reproducibility
set.seed(42)

# dimensions
n <- 5000 # number of individuals
m <- 6 # measurement occasions
p <- 4 # number of items
q <- 1 # common trait dimension

# covariate parameters
mu_x <- 11.4009</pre>
```

40 print.fitculta

```
sigma_x <- 24.67566
# profile membership and transition parameters
nu_0 <- -3.563
kappa_0 <- 0.122
alpha_0 <- -3.586
beta_00 <- 2.250
gamma_00 <- 0.063
gamma_10 <- 0.094
# trait parameters
psi_t <- diag(1)</pre>
mu_t <- 0
psi_p <- diag(p)</pre>
mu_p \leftarrow rep(x = 0, times = p)
common_trait_loading <- matrix(</pre>
 data = 1,
 nrow = p,
 ncol = q
# state parameters
common_state_loading <- matrix(</pre>
 data = 1,
 nrow = p,
 ncol = 1
beta_0 <- 0.000
beta_1 <- 0.311
psi_s0 <- 0.151
psi_s <- 0.290
theta <- diag(p)</pre>
# profile-specific means
mu_profile <- cbind(</pre>
 c(2.253, 1.493, 1.574, 1.117),
 c(-0.278, -0.165, -0.199, -0.148)
)
data <- GenCULTA2Profiles(</pre>
 n = n,
 m = m,
 mu_x = mu_x,
 sigma_x = sigma_x,
 nu_0 = nu_0,
 kappa_0 = kappa_0,
 alpha_0 = alpha_0,
 beta_00 = beta_00,
 gamma_00 = gamma_00,
 gamma_10 = gamma_10,
 mu_t = mu_t
 psi_t = psi_t,
```

print.simculta 41

print.simculta

Print Method for an Object of Class simculta

Description

Print Method for an Object of Class simculta

Usage

```
## S3 method for class 'simculta' print(x, ...)
```

Arguments

x Object of class simculta.... Additional arguments.

Author(s)

Ivan Jacob Agaloos Pesigan

```
x <- GenCULTA2Profiles(
    n = 10,
    m = 6,
    common_trait_loading = matrix(
        data = c(1, 1.25, 1.50, 1.75),
        ncol = 1</pre>
```

42 summary.fitculta

```
),
  common_state_loading = matrix(
   data = c(1, 1.5, 1.75, 2.00),
   ncol = 1
  ),
  mu_t = NULL,
  psi_t = NULL,
  mu_p = NULL,
  psi_p = NULL,
  theta = diag(4),
  mu_profile = cbind(
   c(-3, -3, -3, -3),
   c(3, 3, 3, 3)
  ),
  mu_x = 0,
  sigma_x = 1,
  nu_0 = -3.563,
  kappa_0 = 0.122,
  alpha_0 = -3.586,
  beta_00 = 2.250,
  gamma_00 = 0.063,
  gamma_10 = 0.094,
  beta_0 = 0.311,
  beta_1 = 0,
  psi_s0 = 0.151,
  psi_s = 0.290
print(x)
```

summary.fitculta

Summary Method for an Object of Class fitculta

Description

Summary Method for an Object of Class fitculta

Usage

```
## S3 method for class 'fitculta'
summary(object, alpha = NULL, digits = 4, ...)
```

Arguments

```
object Object of class fitculta.  
alpha Numeric vector. Significance level \alpha. If alpha = NULL, use alpha = 0.05.  
digits Digits to print.  
additional arguments.
```

summary.fitculta 43

Value

Returns a matrix of standardized regression slopes, standard errors, test statistics, p-values, and confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

```
## Not run:
# complete list of R function arguments -----
# random seed for reproducibility
set.seed(42)
# dimensions
n <- 5000 # number of individuals
m <- 6 # measurement occasions
p <- 4 # number of items
q <- 1 # common trait dimension
# covariate parameters
mu_x <- 11.4009
sigma_x < - 24.67566
# profile membership and transition parameters
nu_0 <- -3.563
kappa_0 <- 0.122
alpha_0 <- -3.586
beta_00 <- 2.250
gamma_00 <- 0.063
gamma_10 <- 0.094
# trait parameters
psi_t <- diag(1)</pre>
mu_t <- 0
psi_p <- diag(p)</pre>
mu_p \leftarrow rep(x = 0, times = p)
common_trait_loading <- matrix(</pre>
  data = 1,
  nrow = p,
  ncol = q
)
# state parameters
common_state_loading <- matrix(</pre>
  data = 1,
  nrow = p,
  ncol = 1
beta_0 <- 0.000
```

44 vcov.fitculta

```
beta_1 <- 0.311
psi_s0 <- 0.151
psi_s <- 0.290
theta <- diag(p)
# profile-specific means
mu_profile <- cbind(</pre>
 c(2.253, 1.493, 1.574, 1.117),
 c(-0.278, -0.165, -0.199, -0.148)
# data generation ------
data <- GenCULTA2Profiles(</pre>
 n = n,
 m = m,
 mu_x = mu_x,
 sigma_x = sigma_x,
 nu_0 = nu_0,
 kappa_0 = kappa_0,
 alpha_0 = alpha_0,
 beta_00 = beta_00,
 gamma_00 = gamma_00,
 gamma_10 = gamma_10,
 mu_t = mu_t
 psi_t = psi_t,
 mu_p = mu_p,
 psi_p = psi_p,
 common_trait_loading = common_trait_loading,
 common_state_loading = common_state_loading,
 beta_0 = beta_0,
 beta_1 = beta_1,
 psi_s0 = psi_s0,
 psi_s = psi_s,
 theta = theta,
 mu_profile = mu_profile
)
# model fitting -----
# NOTE: Model fitting takes time
fit <- FitCULTA2Profiles(data = data, ncores = parallel::detectCores())</pre>
summary(fit)
## End(Not run)
```

vcov.fitculta

Sampling Covariance Matrix

Description

Sampling Covariance Matrix

vcov.fitculta 45

Usage

```
## S3 method for class 'fitculta'
vcov(object, ...)
```

Arguments

```
object Object of class fitculta.
... additional arguments.
```

Value

Returns a matrix of the variance-covariance matrix of parameter estimates.

Author(s)

Ivan Jacob Agaloos Pesigan

```
# complete list of R function arguments ------
# random seed for reproducibility
set.seed(42)
# dimensions
n <- 5000 # number of individuals
m <- 6 # measurement occasions
p <- 4 # number of items
q <- 1 # common trait dimension
# covariate parameters
mu_x <- 11.4009
sigma_x <- 24.67566
# profile membership and transition parameters
nu_0 <- -3.563
kappa_0 <- 0.122
alpha_0 <- -3.586
beta_00 <- 2.250
gamma_00 <- 0.063
gamma_10 <- 0.094
# trait parameters
psi_t <- diag(1)</pre>
mu_t <- 0
psi_p <- diag(p)</pre>
mu_p \leftarrow rep(x = 0, times = p)
common_trait_loading <- matrix(</pre>
  data = 1,
  nrow = p,
```

46 vcov.fitculta

```
ncol = q
# state parameters
common_state_loading <- matrix(</pre>
 data = 1,
 nrow = p,
 ncol = 1
)
beta_0 <- 0.000
beta_1 <- 0.311
psi_s0 <- 0.151
psi_s <- 0.290
theta <- diag(p)
# profile-specific means
mu_profile <- cbind(</pre>
 c(2.253, 1.493, 1.574, 1.117),
 c(-0.278, -0.165, -0.199, -0.148)
# data generation ------
data <- GenCULTA2Profiles(</pre>
 n = n,
 m = m,
 mu_x = mu_x,
 sigma_x = sigma_x,
 nu_0 = nu_0,
 kappa_0 = kappa_0,
 alpha_0 = alpha_0,
 beta_00 = beta_00,
 gamma_00 = gamma_00,
 gamma_10 = gamma_10,
 mu_t = mu_t
 psi_t = psi_t,
 mu_p = mu_p,
 psi_p = psi_p,
 common_trait_loading = common_trait_loading,
 common_state_loading = common_state_loading,
 beta_0 = beta_0,
 beta_1 = beta_1,
 psi_s0 = psi_s0,
 psi_s = psi_s,
 theta = theta,
 mu_profile = mu_profile
)
# model fitting ------
# NOTE: Model fitting takes time
fit <- FitCULTA2Profiles(data = data, ncores = parallel::detectCores())</pre>
vcov(fit)
## End(Not run)
```

WriteData 47

WriteData

Write Data to File

Description

Generic function to write data to file.

Usage

```
WriteData(x, file, ...)
## S3 method for class 'simculta'
WriteData(x, file, ...)
```

Arguments

x Object of class simculta.file Character string. File name.... Additional arguments.

Value

Invisibly returns NULL. Writes data to file as a side effect.

Methods (by class)

• WriteData(simculta): Method for objects of class simculta.

Author(s)

Ivan Jacob Agaloos Pesigan

Index

* Model Fitting Functions FitCULTA1Profile, 20	vcov.fitculta,44 WriteData,47
FitCULTA2Profiles, 23	* mixture
InputCULTA1Profile, 32	FitCULTA1Profile, 20
InputCULTATTOTTIE, 32 InputCULTA2Profiles, 34	FitCULTA2Profiles, 23
* Simulation Functions	GenCULTA2Profiles, 26
GenCULTA2Profiles, 26	InputCULTA1Profile, 32
* culta	InputCULTA2Profiles, 34
* cuita FitCULTA1Profile, 20	* sim
	GenCULTA2Profiles, 26
FitCULTA2Profiles, 23	* state
GenCULTA2Profiles, 26	FitCULTA1Profile, 20
InputCULTA1Profile, 32	FitCULTA2Profiles, 23
InputCULTA2Profiles, 34	GenCULTA2Profiles, 26
* fit	InputCULTA1Profile, 32
FitCULTA1Profile, 20	InputCULTA2Profiles, 34
FitCULTA2Profiles, 23	* trait
* input	FitCULTA1Profile, 20
InputCULTA1Profile, 32	FitCULTA2Profiles, 23
InputCULTA2Profiles, 34	GenCULTA2Profiles, 26
* manCULTA	InputCULTA1Profile, 32
FitCULTA1Profile, 20	InputCULTA2Profiles, 34
FitCULTA2Profiles, 23	,
GenCULTA2Profiles, 26	AIC.fitculta,2
InputCULTA1Profile, 32	anova.fitculta,4
InputCULTA2Profiles, 34	as.data.frame.simculta,7
* methods	as.matrix.simculta,8
AIC.fitculta,2	
anova.fitculta,4	BIC.fitculta, 9
as.data.frame.simculta,7	C C:+]+. 11
as.matrix.simculta, 8	coef.fitculta, 11
BIC.fitculta,9	confint.fitculta, 13
coef.fitculta, 11	converged, 16
confint.fitculta, 14	entropy, 18
converged, 16	entropy, 10
entropy, 18	FitCULTA1Profile, 20, 24, 32, 35
logLik.fitculta,36	FitCULTA2Profiles, 21, 23, 32, 35
print.fitculta,39	, , , , , , ,
print.simculta,41	GenCULTA2Profiles, 26
summary.fitculta,42	<pre>GenCULTA2Profiles(), 27</pre>

INDEX 49

```
InputCULTA1Profile, 21, 24, 32, 35
InputCULTA2Profiles, 21, 24, 32, 34
logLik.fitculta, 36
print.fitculta, 39
print.simculta, 41
summary.fitculta, 42
vcov.fitculta, 44
WriteData, 47
```