Systemtheorie und Regelungstechnik – Abschlussklausur

Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg, und ESAT-STADIUS, KU Leuven 17. März 2015, 9:00-11:30, Freiburg, Georges-Koehler-Allee 101, HS 026 und HS 036

page	0	1	2	3	4	5	6	7	8	9
points on page (max)	3	10	9	9	9	5	6	7	5	0
points obtained										
intermediate sum										

Unterschrift des Prüfers:

Note:

Klausur eingesehen am:

Nachname:	Vorname:	Matrikelnummer:	
Fach:	Studiengang: Bache	elor Master Lehramt Sor	nstiges
Unterschrift:			
die Antworten direkt unter leere Seite am Ende) für E Seite. Sie können zudem vist neben Schreibmaterial ufinden sich in einer Fußnot die Ihnen einfach fallender	den Fragen an oder nutzen Sie bei Bedarf na rgebnisse, die in die Korrektur einfliessen so veiteres weißes Papier für Zwischenrechnund einem Taschenrechner auch ein doppels	ch Möglichkeit die Rückseite desselb ollen; verweisen Sie zudem direkt bei ngen verwenden, aber bitte geben Si eitiges Blatt mit Formelsammlung ur agen jeweils genau ein Kreuz bei der Zeit rechnen, sind Sie nach ca. 2 Stu	
(a) e^{-t}	(b) $e^{-t} - te^{-t}$	(c) $\delta(t) + e^{-t} - te$	$-t$ (d) $\delta(t) + e^{-t}$
			1
2. Die Übertragungs	funktion der Parallelschaltung von $G_1(s)$	$G_{s}(s) = \frac{1}{s+1} \text{ und } G_{2}(s) = \frac{s+1}{s-1} \text{ ist:}$	
(a) $\frac{1}{s-1}$		(c) $\frac{s+1}{s^2-1}$	
			1
3. Sie haben in MAT damit definiert?	TLAB ein System mit dem Kommando	"sys=tf([1 1],[1 0 2])" definiert.	Welche Übertragungsfunktion haben Si
(a) $\frac{s+1}{s^2+2}$	(b) $\frac{s^2+2}{s+1}$	(c) $\frac{2s+1}{s+1}$	(d) $\frac{s+1}{s^2+2s}$

¹PRÜFUNGSUNFÄHIGKEIT: Durch den Antritt dieser Prüfung erklaren Sie sich für prüfungsfähig. Sollten Sie sich während der Prüfung nicht prüfungsfähig fühlen, können Sie aus gesundheitlichen Gründen auch während der Prüfung von dieser zurücktreten. Gemäß den Prüfungsordnungen sind Sie verpflichtet, die für den Rücktritt oder das Versäumnis geltend gemachten Gründe unverzüglich (innerhalb von 3 Tagen) dem Prüfungsamt durch ein Attest mit der Angabe der Symptome schriftlich anzuzeigen und glaubhaft zu machen. Weitere Informationen: https://www.tf.uni-freiburg.de/studium/pruefungen/pruefungsunfaehigkeit.html.

TÄUSCHUNG/STÖRUNG: Sofern Sie versuchen, während der Prüfung das Ergebnis ihrer Prüfungsleistung durch Täuschung (Abschreiben von Kommilitonen ...) oder Benutzung nicht zugelassener Hilfsmittel (Skript, Buch, Mobiltelefon, ...) zu beeinflussen, wird die betreffende Prüfungsleistung mit "nicht ausreichend" (5,0) und dem Vermerk "Täuschung" bewertet. Als Versuch gilt bei schriftlichen Prüfungen und Studienleistungen bereits der Besitz nicht zugelassener Hilfsmittel während und nach der Ausgabe der Prüfungsaufgaben. Sollten Sie den ordnungsgemäßen Ablauf der Prüfung stören, werden Sie vom Prüfer/Aufsichtsführenden von der Fortsetzung der Prüfung ausgeschlossen. Die Prüfung wird mit "nicht ausreichend" (5,0) mit dem Vermerk "Störung" bewertet.

4.	Ein L	TI-S A =	system wird durch die $\begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	Zustandsgleichung $\dot{x} = Ax + B$, und $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$.	Bu, y = C	Cx	beschrieben,				
	(a)	Was	ist das charakteristisc	he Polynom $p_A(\lambda)$?							
		I	$ ho_A(\lambda) =$							2	
	(b)	Was	ist die Übertragungsf	unktion $G(s)$ des Systems?						'	
			G(s) =							2	
5.	Ein S entsp	Syste richt	m in Eingangs-Ausgar es?	ngsform ist durch die Darstellung	$g 2\ddot{y} + 2\ddot{y}$	$2\dot{y}$ -	$+y = \dot{u} - u$ beschrie	ben. Welc	her Übertra	gungsfu	ınktion
	(a)		$\frac{s-1}{s^2+2s+1}$	$(b) \qquad \frac{s-1}{2s^2+2s+1}$	(c)]	$\frac{-1}{2s^2+2s+1}$	(d)	$\frac{2s^2+2s+1}{s-1}$		
6.			m ist durch die Gewöh	nnliche Differentialgleichung $\dot{y}($	$t) = \cos(t)$	u	(t)) beschrieben. Ist c	las Systen	n <i>linear</i> und	/oder ze	eitinva-
	riant (a)		nur linear		(b)	1	nur zeitinvariant				
	(c)		linear und zeitinvaria		(d)	_	keines von beiden				
	(c)		inical und zeitinvaria	<u> </u>	(u)		kemes von beiden				
7.	Ein S	Syste: wari	m in Eingangs-Ausgan ant ?	ngsform ist durch die Darstellung	y(t) = t	$t \int_{0}^{\infty}$	$\int_{0}^{\infty} u(t-\tau) \mathrm{d}\tau$ beschrie	eben. Ist d	las System <i>l</i>	inear ui	nd/oder
	(a)		nur linear		(b)]	nur zeitinvariant				
	(c)		linear und zeitinvaria	nt	(d)	1	keines von beiden				
										1	
8.				ngsform ist durch die Darstellung	$g 2\ddot{y} + 4$	$4\ddot{y}$	$-3\dot{y} + 6y = u \text{ besch}$	rieben. B	erechnen Si	e die M	atrizen
	A, B	, C, I	D einer äquivalenten Z	ustandsdarstellung.							
										3	

9.	9. Ein LTI-System hat die Sprungantwort $h(t) = \log(t+1)$ für $t \ge 0$. Ist das System BIBO Stabil? Begründen Sie.										
						1					
10.	Welches System wird durch die	Übertragungsfunktion $G(s) = \frac{1}{2}$	$\frac{s+5}{2s^2-s+4}$ be	eschrieben ?							
	(a) $y+5y = 2\ddot{u}-\dot{u}+4u$	(b) $\boxed{} 2\ddot{y} - \dot{y} + 4y = \dot{u} + 5u$	(c) :	$2\dot{y} - y + 4 = u + 5$	$(\mathbf{d}) \boxed{} 2\ddot{y} + 4y = \ddot{u} - 3\ddot{y} + 3\ddot{y}$	+5u					
		() 1 .~ () 3				1					
11.		$G_1(s) = \frac{1}{s-2} \text{ und } G_2(s) = \frac{3}{s^2 - 2s + 1}$			I						
	(a) $ \frac{3}{s^2 - s - 1} $	(b) $\frac{s^2 + s - 5}{s^3 - 4s^2 + 5s - 2}$	(c)	$\frac{3}{s^3 - 4s^2 + 5s - 2}$	$(d) \qquad \frac{s-2}{s^2-2s+1}$						
						1					
12.	Bei Systemen mit Eingangssatu	ration gilt die folgende Aussage:	Der PID-	Regler							
	(a) ist der beste Regler, d	er man benutzen kann.	(b)	darf nie benutzt werd	en.						
	(c) garantiert, keinen Ste	ady-State Fehler zu haben.	(d)	sollte mit Anti-Wind-	-Up benutzt werden.						
			Ш			1					
13.	Das Kalman Filter ist:										
	(a) ein Tiefpassfilter zwe	_	(b)	ster Ordnung							
	(c) ein optimaler Beobac	hter	(d)	ein nichtlineares Tief	passfilter						
14	Welches der folgenden Systeme	ist stabil?				1					
11.	(a) $\frac{s+3}{(s-1)(s+2)}$	(b) $\frac{s+1}{s^2+s+2}$	(c)	$\frac{s-1}{s^2-s+2}$	$(d) \qquad \frac{s^2 + s + 2}{s^3 + s^2}$						
	(8-1)(8+2)	s ² +s+2		s ² -s+2	s ³ +s ²	1					
15.	Der Bode-Phasenplot des System	$\operatorname{ms} G(s) = \frac{s+2}{s^2 - 3s + 5} \text{ ist für hohe}$	Frequenz	en konstant und hat de	n folgenden Wert:						
	(a)90 Grad	(b) 0 Grad	(c)	90 Grad	(d)180 Grad						
						1					
16.	Der Bode-Amplitudenplot des S	Systems $G(s) = \frac{s-2}{s+4}$ hat für hohe	e Frequen	zen die folgende Steig	ung:						
	(a) 20 dB/Dek	(b) 0 dB/Dek	(c)	-40 dB/Dek	(d)20 dB/Dek						
						1					
17.	Die statische Verstärkung des S	ystems $G(s) = \frac{2s-15}{s^4+5s^3+8s^2+6s+3}$	ist:								
	(a) 2	(b)5	(c)	3	(d) 5						
						1					
					points on page	: 9					

18.	18. Betrachten Sie das System $G(s) = \frac{2}{(s+3)(s-2)(s+1)}$. Ist das System stabil? Ist es eine gute Idee, den Regleransatz $K(s) = 100 \frac{s-1}{s+1}$ zu benutzen (in einem Standardregelkreis mit negativem Einheitsfeedback)? Begründen Sie.									
								2		
19.	Ein LTI-	System hat die Sprunga	П		П	santwort $g(t)$	I			
	(a)	$-4\sin(t)$	(b) $4\delta(t)$	$-4\sin(t)$	(c) $4\sin(t)$		(d) $4\delta(t) + 4\delta(t)$	$\frac{4\cos(t)}{2}$		
20.	Wie viel	Information enthält da	s Bode-Diagramı	n im Vergleich	zum Nyquist-Diagi	ramm?		1		
	(a)	mehr	(b) wenig	ger	(c) gleich		(d) nicht ver	gleichbar		
21.	Welche Ü	Übertragungsfunktion h	nat das System $\dot{x}($	f(t) = -3x(t) +	-2u(t), u(t) = x(t)	+u(t)?		1		
	(a)	$\frac{3}{s-2}$					$(d) \qquad \frac{s+5}{s+3}$			
		3 2					373	1		
22.	Betrachte Einheitst	en Sie die offene Kett Geedback). Was ist der S	e $G_0(s) = \frac{1}{s^4 + 1}$ Steady-State Fehl	$\frac{s+38}{5s^3+4s^2+10s+2}$ er des geschlos	und den daraus res ssenen Kreises?	ultierenden g	eschlossenen Kreis	(mit negativem		
	(a)	5 %	(b) 19 %		(c) 95 %		(d) 81 %			
23	Skizziora	en Sie das Bode-Diagra	amm des folgende	an Systems:	s+10			1		
23.	SKIZZICIO	ili Sie das Bode-Diagia	illilli des folgelide)				
	0	<u> </u>		<u> </u>	Bode Diagram	:::::::	<u> </u>	<u> </u>		
	-10									
	-20	- : : : : : : : : : : : : : : : : : : :						: : : : : : : :		
	(db) -30 -40									
	Magnituc -50									
	-60 -70									
	-80							1 1 1 1 1 1 1		
	0	: : : : : : : : : : : : : : : : : : : :		: : : : : : : : :	!!!!!!!!!!!!!!!!!!!!!!!!!!	: : : : : : : : : : : : : : : : : : : :	: : : : : : : : : : :			
	-30									
	Phase (deg)									
	-eo Phas									
	00			: : : : : : : - : : : : : : : - : : : : : : :						
	-90 1	0 ⁻³ 10 ⁻²	10 ⁻¹	10 ⁰	10 ¹ equency (rad/s)	10 ²	10 ³	10 ⁴		
								3		
							points on p	page: 9		

Bild 1: Ein Bode-Diagramm:

24. Was ist der relative Grad (Polüberschuss) des Systems mit dem Bode-Diagramm aus Bild 1?

	(a) 0	(b) 1	(c) 2	(d) 3	
					1
25.	Was ist die statische Verstärkun	g (DC-Gain) des Systems mit de	m Bode-Diagramm aus Bild 1?		
	(a) 10	(b) 40	(c) 100	(d) <u></u> ∞	
					1

26. Welche Amplituden- und Phasen-reserve hat das System mit dem Bode-Diagramm aus Bild 1 (in etwa)?

2

27. Das System mit dem Bode-Diagramm aus Bild 1 hat mindestens die folgende Ordnung: (Tipp: Schauen Sie an den Frequenzen zwischen 1 und 10 rad/s)

1

28. Welche der folgenden Nyquistdiagramme entspricht dem Bodediagramm aus Bild 1?

Bild 3: Ein Nyquist-Diagramm (mit dem Einheitskreis in Rot):

Bild 4: Eine Sprungantwort:

Betrachten Sie das System mit dem Nyquist-Diagramm aus Bild 3, und entscheiden Sie, ob es das Nyquist Stabilitätskriterium erfüllt und wenn ja, mit welcher Amplituden- und Phasenreserve.

29.	Welche	Amplitudenreserve	hat das Sys	stem aus Bild 3	(in etwa)?
-----	--------	-------------------	-------------	-----------------	------------

	(a) keine	(b) 0.5	(c) 10	(d) 2	
					1
30.	Welche Phasenreserve hat das S	System aus Bild 3 (in etwa)?			

(a) keine	(b) 10 Grad	(c) 45 Grad	(d) 80 Grad	
				1

31. Betrachten Sie das System mit der Sprungantwort aus Bild 4. Welcher Übertragungsfunktion G(s) entspricht es? Begründen Sie Ihre Antwort mit 3 Argumenten.

(a) $\frac{s+10}{s^2+s+5}e^{-s}$ (b) $\frac{s+10}{s+5}e^{-s}$	(c) $\frac{s+1}{s+2}e^{-2s}$	(d) $\frac{s+5}{s^2+s+5}e^{-2s}$
---	------------------------------	----------------------------------

1.

2.

3.

Bild 5: Bode-Diagramme der Sensitivitätsfunktion S(s) (Blau) und der komplementären Sensitivitätsfuntion T(s) (Rot).

Ein System G(s) wurde durch den Ansatz K(s) geregelt. Die Sensitivitätsfunktion $S(s)=\frac{1}{1+K(s)G(s)}$ und die komplementäre Sensitivitätsfuntion T(s)=1-S(s) sind in Bild 5 dargestellt.

- 33. Erklären Sie die Bedeutung der Sensitivitätsfunktion S(s) und der komplementäre Sensitivitätsfuntion T(s).
- 34. Ist der geschlossene Kreis für Referenzsignale mit einer Frequenz von 10 rad/s geeignet? Begründen Sie Ihre Antwort.
- 35. Ist der geschlossene Kreis für Messrauschen mit einer Frequenz von 0.1 rad/s geeignet? Begründen Sie Ihre Antwort.
- 36. Ist der geschlossene Kreis für Störungen mit einer Frequenz von 0.1 rad/s geeignet? Begründen Sie Ihre Antwort.

1

2

27	Datusahtan	Cia da	a falaanda	nichtlineare	Creatama	i. 7	atam dafamm
7/.	Derrachten	Sie da	s ioigende	піспишеате	System	10 7.0	standstorm
		~10 000	0 101501100	************	2 3 5 5 5 1 1 1		O COLLEGE OF THE

$$\dot{x} = \begin{bmatrix} x_1(x_2 + x_3) + u \\ x_1^2 - 1 \\ x_1 x_2 \end{bmatrix}$$

(a) Berechnen Sie die zwei Gleichgewichtzustände $x^{\mathrm{ss},1}$ und $x^{\mathrm{ss},2}$ für $u^{\mathrm{ss}}=0.$

2

(b) Nehmen Sie den Gleichgewichtzustand, dessen erste Komponente positiv ist. Linearisieren Sie das System im Punkt $(x^{\rm ss},u^{\rm ss})$ um das LTI-System $\frac{{\rm d}\Delta x}{{\rm d}t}=A\Delta x+B\Delta u$ in den Variablen $\Delta x(t)=x(t)-x^{\rm ss}$, $\Delta u(t)=u(t)-u^{\rm ss}$ zu erhalten.

A =

B =

2

(c) Definieren Sie, wann man ein LTI-System $\dot{x} = Ax + Bu$, steuerbar nennt. Ist das linearisierte System steuerbar?

2

(d) Wir wollen einen Zustandsregler entwerfen. Finden Sie (durch Rechnung auf Papier) eine Matrix K, so dass die Closed-Loop Systemmatrix $A_{\rm CL} = A - BK$ die drei (stabilen) Eigenwerte -1, -2 und -5 hat.

3

38	Modellieren	Sie ein	Modellflugzeng	Renutzen (مناه منا	folgenden	Vereinfachungen:
20.	Modelliefell	Sie ein i	wiodeiiiiugzeug.	Denutzen i	sie die	rorgenaen	vereimachungen.

- der Auftrieb (lift) L [N] ist immer vertikal (z-Richtung) und durch die folgende Formel gegeben: $L = c_{\rm L} \alpha v^2$, wo v die Geschwindigkeit des Flugzeugs, α der Anstellwinkel in rad (der erste Eingang unseres Systems) und $c_{\rm L} = 1 \, {\rm N} \, {\rm m}^2 \, {\rm ein}$ Koeffizient sind
- der Luftwiderstand (drag) D [N] ist immer horizontal und durch die folgende Formel gegeben: $D = c_{\rm D} \alpha^2 v^2$, wo $c_{\rm D} = 1~{\rm N} {{\rm m}^2 \over {\rm s}^2}$ ein Koeffizient ist
- die Geschwindigkeit des Flugzeugs v wird nur durch den Schub (thrust) T [N] und den Luftwiderstand D beeinflusst. Der Schub ist der zweite Eingang unseres Systems.
- ullet die vertikale Geschwindigkeit w ist vernachlässigbar im Vergleich zur Horizontalgeschwindigkeit v.
- un die Rechnungen zu vereinfachen, nehmen wir an, dass die Erdbeschleunigung $g=10~\frac{\rm m}{\rm s^2}$ ist (statt 9.81 $\frac{\rm m}{\rm s^2}$)
- die Masse des Flugzeugs ist m = 1 kg
- (a) Schreiben Sie das Modell als eine Differentialgleichung erster Ordnung. Tipp: benutzen Sie $x = [w, z, v]^{\top}$ als Zustand und $u = [\alpha, T]^{\top}$ als Eingang.

3

(b) Berechnen Sie das Gleichgewicht (x^{ss}, u^{ss}) für v = 10 m/s und z = 10 m.

 $x^{\mathrm{ss}} =$ $u^{\mathrm{ss}} =$

(c) Linearisieren Sie das System im Punkt $(x^{\rm ss}, u^{\rm ss})$, um das LTI-System $\frac{{\rm d}\Delta x}{{\rm d}t} = A\Delta x + B\Delta u$ in den Variablen $\Delta x(t) = x(t) - x^{\rm ss}$, $\Delta u(t) = u(t) - u^{\rm ss}$ zu erhalten. Da wir SI-Einheiten verwenden, können Sie die Einheitssymbole weglassen.

A = B = 2

(d) Definieren Sie, wann man ein LTI-System $\dot{x} = Ax + Bu, y = Cx$, beobachtbar nennt. Der Ausgang des Systems ist durch y(t) = z(t) gegeben. Ist das linearisierte System beobachtbar?

2.

Leeres Blatt für Zwischenrechnungen