## Quantum chaos meets quantum channels

September 10, 2024

#### 4 1 Model

<sup>5</sup> The spin chain we are interested in studying first is that studied by Mirkin and Wisniacki in Ref. [1]:

$$H = \sum_{i=1}^{L} (h_x \sigma_i^x + h_z \sigma_i^z) - \sum_{i=1}^{L-1} J_z \sigma_i^z \sigma_{i+1}^z.$$
 eq:H:wisniacki:ising:chain (1)

#### <sub>7</sub> 2 Mean level spacing ratio

8 The level spacing ratio  $\tilde{r}_n$  is defined as:

$$\tilde{r}_n = \frac{\min(s_n, s_{n-1})}{\max(s_n, s_{n-1})},$$
eq:level:spacing:ratio
(2)

where  $s_n = E_{n+1} - E_n$ . The mean level spacing ratio  $\langle \tilde{r}_n \rangle$  is known to attain the value  $\langle \tilde{r}_n \rangle \approx 0.5207$  when the level spacing distribution P(s) is Wigner-Dyson and  $\langle \tilde{r}_n \rangle \approx 0.386$  when it is Poisson.

### $_{\scriptscriptstyle 12}$ 3 Spectral form factor

13 The spectral form factor K(t) is defined as:

$$K(t) = \frac{1}{2^L} \left\langle \left| \operatorname{Tr} U(t) \right|^2 \right\rangle = \frac{1}{2^L} \left\langle \sum_{i,j} e^{i(E_i - E_j)t} \right\rangle, \tag{3}$$

where  $\langle \cdot \rangle$  denotes the ensemble-average over statistically-similar systems.

### <sup>16</sup> 4 Chaometer's quantum channel

17 The reduced dyanmics of the chaometer is described by the quantum channel:

$$\mathcal{E}(\rho) = \text{Tr}_E \left( e^{-iHt} \rho \otimes \left| \psi_0^{(E)} \right\rangle \! \left\langle \psi_0^{(E)} \right| e^{iHt} \right), \tag{4}$$

where H is that of eq. (1),  $|\psi_0^{(E)}\rangle$  the initial state of all spins except the chaometer, and  $\rho$  the initial state of the chaometer.

- The chaometer's quantum channel  $\mathcal{E}$ , in general, is divisible into:
- 1. A unitary operation rotating the Bloch's sphere.
- 2. A quantum channel that deforms the Bloch's sphere and translates its origin.
- 24 Both operations do not commute.



Figure 1: Mean level spacing ratio  $\langle \tilde{r}_n \rangle$  [c.f. eq. (2)] of the Ising chain with Hamiltonian (1) as a function of ratios  $h_z/h_x$  and  $J/h_x$ . We assume  $J_z = J \, \forall \, k$ .



Figure 2: Spectral form factor (SFF) [c.f. (3)] in regular region:  $h_z/h_x = 2.5$  and  $J/h_x = 1$ . (a) Whole spectrum. (b) Even-parity subspace spectrum.



Figure 3: Spectral form factor (SFF) [c.f. (3)] in chaotic region:  $h_z/h_x = 0.5$  and  $J/h_x = 1$ . (a) Whole spectrum. (b) Even-parity subspace spectrum.

#### 5 Purity of the chaometer

<sup>26</sup> Averaged purity  $\mathcal P$  is defined in Ref. [1] as:

$$\overline{\mathcal{P}} = \frac{1}{N} \sum_{i=1}^{N} \left( \frac{1}{T} \int_{0}^{T} \operatorname{Tr} \left[ \rho_{i}^{2}(t) \right] \right)$$
 eq:avg:purity (5)

28 where:

31

- $\rho_i(t)$ : chaometer's density matrix.
  - N: number of different random initial states of the whole chain. N=50 in Mirkin and Wisniacki [1].
- T: maximum time. T = 50 in Mirkin and Wisniacki [1].

Also, the normalized averaged purity is defined as

$$\overline{P}_{Norm} = \frac{\overline{P} - \min(\overline{P})}{\max(\overline{P}) - \min(\overline{P})},$$
 eq:avg:norm:purity (6)

where  $\max(\overline{P})$  and  $\min(\overline{P})$  are the minimum and maximum value obtained when sweeping the parameter range  $(h_z$  in their case).

In Fig. 4 we plot one realization of the dynamics of purity of the chaometer. We compare in Fig. 5 our results and those of Mirkin and Wisniacki [1].

# <sub>39</sub> 6 Purity of Choi matrix

40 We investigate the purity of Choi matrix of the quantum channel  $\mathcal{E}(t)$  of the chaometer in Fig. 6.

$$\operatorname{Tr}\left\{\left[\mathcal{E}^{R}(t)/2\right]^{2}\right\} \tag{7}$$

JA: Comentar el problema de la normalización de Mirkin y Wisniacki y que parece que se resuelve aquí

## <sup>43</sup> 7 Non complete positiveness of $\Lambda(t,s)$

Any quantum channel  $\mathcal{E}(t)$  can composed as

eq:Lambda

$$\mathcal{E}(t) = \Lambda(t,s) \circ \mathcal{E}(s,0), \tag{8}$$



Figure 4: Dynamics of chaometer's purity of a single realization with the same initial state of the environment of the first chaometer's quantum channel of the videos.

fig:purity:one:realization

46 nonetheless,  $\Lambda(t,s)$  is not in general completely positive. A way to quantify how far is  $\Lambda(t,s)$  from being completely positive is through  $\tilde{\lambda}$ :

•q:lambda:tilde

 $\tilde{\lambda} = |\min(0, \lambda_{\text{smallest}})|, \tag{9}$ 

where  $\lambda_{\text{smallest}}$  is the smallest eigenvalue of  $\Lambda^R(t,s)/2$ . We have added the factor 1/2 just so  $\text{Tr}\left[\Lambda^R(t,s)/2\right]=1$ . Let us fix s=0.1 and investigate the complete positiviness of  $\Lambda(t,s)$ , see Fig. 7.

### 51 References

Nicolás Mirkin and Diego Wisniacki. Quantum chaos, equilibration, and control in extremely short spin chains. *Phys. Rev. E*, 103:L020201, Feb 2021.



Figure 5: Averaged  $\overline{P}$  and averaged normalized purities  $\overline{P}_{Norm}$  [c.f. eqs. (5) and (6).] for N=50 random initial states of the chaometer for each quantum channel showed in the videos. JA: Tendría más sentido sacar la pureza del canal. Lo pienso Taken and modified from Ref. [1].



Figure 6: Purity of Choi matrix in (a) regular ( $h_z = 2.5$ ) and (b) chaotic ( $h_z = 0.5$ ) for the three random initial states showed in the video.



Figure 7: Most negative eigenvalue  $\tilde{\lambda}$  of map  $\Lambda(t,s)/2$ , with s=0.1 [c.f. eqs. (8) figure 7: Most negative eigenvalue  $\tilde{\lambda}$  of map  $\Lambda(t,s)/2$ , with s=0.1 [c.f. eqs. (8) figure 7: Most negative eigenvalue  $\tilde{\lambda}$  of map  $\Lambda(t,s)/2$ , with s=0.1 [c.f. eqs. (8) figure 7: Most negative eigenvalue  $\tilde{\lambda}$  of map  $\tilde{\lambda}$  (10)  $\tilde{\lambda}$  (11)  $\tilde{\lambda}$  (12)  $\tilde{\lambda}$  (13)  $\tilde{\lambda}$  (14)  $\tilde{\lambda}$  (13)  $\tilde{\lambda}$  (13)  $\tilde{\lambda}$  (14)  $\tilde{\lambda}$  (15)  $\tilde{\lambda}$  (15)



Figure 8: Burst of the Bloch sphere at  $t=0.5~\mathrm{s}.$ 

fig:burst