Лекция 4: Байесовский классификатор

Евгений Борисов

четверг, 11 октября 2018 г.

Классификатор: с чего все начинается?

хорошие и плохие коты

извлекаем признаки

→ [0.14, 12, ..., 345]

→ [78.0, 20, ..., 177]

Классификатор

разделения объектов на классы

Детектор котов:

→ вектор-признак → есть/нет

Классификатор: о задаче

разделение данных на части (классы) обучение «с учителем»

Учебный набор: [объект, ответ]

Задача: классификатор *объект* → *вектор-признак* → *результат*

Обучение: минимизация ошибки ошибка = результат - правильный ответ

Критерий остановки:

достигнут порог значения ошибки, и/или порог количества циклов

Классификатор: данные

$$\begin{bmatrix} x_1^{(1)} & x_2^{(1)} & \dots & x_n^{(1)} & y^{(1)} \\ x_1^{(2)} & x_2^{(2)} & \dots & x_n^{(2)} & y^{(2)} \\ \vdots & \vdots & & \vdots & \vdots \\ x_1^{(m)} & x_2^{(m)} & \dots & x_n^{(m)} & y^{(m)} \end{bmatrix}$$

- х вектор-признак
- у метка класса
- n размер пространства признаков
- т количество примеров

Х - объекты Ү - ответы

ХхҮ-вероятностное пространство с плотностью р(х,у)

(x_i,y_i) - выборка

Задача:

найти ф-цию (классификатор)

а: X → Y с минимальной ошибкой

Х - объекты Ү - ответы

ХхҮ-вероятностное пространство с плотностью р(х,у)

(x_i,y_i) - выборка

Задача:

найти ф-цию (классификатор)

а: X → Y с минимальной ошибкой

принцип максимума апостериорной вероятности

$$a(x) = \underset{y \in Y}{argmax} P(y|x)$$

принцип максимума апостериорной вероятности

$$a(x) = \underset{y \in Y}{\operatorname{argmax}} P(y|x) = \underset{y \in Y}{\operatorname{argmax}} P(y) p(x|y)$$

Р(у) - априорная вероятность класса у

р(х|у) - ф-ция правдоподобия класса у

Р(у|х) - апостериорная вероятность класса у

формула Байеса :
$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

о функционале среднего риска:

а: Х → Ү - классификатор

 $A_y = \{ x \in X \mid a(x) = y \}, y \in Y -$ разбиение X на части

Ошибка: объект *x* класса *y* попал в класс **s** A_s , **s**≠**y**

о функционале среднего риска:

а: X → Y - классификатор

$$A_y = \{ x \in X \mid a(x) = y \}, y \in Y -$$
разбиение X на части

Ошибка: объект \boldsymbol{x} класса \boldsymbol{y} попал в класс \boldsymbol{s}

Вероятность ошибки:
$$P(A_s, y) = \int p(x, y) dx$$

про функционал среднего риска:

Потеря от ошибки: зададим $\lambda_{ys} \ge 0$ для всех пар (y,s) \in YxY

Средний риск: мат.ожидание потери классификатора

$$R(a) = \sum_{y \in Y} \sum_{s \in Y} \lambda_{ys} P(A_s, y)$$

Теорема про оптимальный байесовский классификатор

пусть заданы:

- априорные вероятности классов P(y),
- плотности их распределений р(х|у)
- λ_{ys}≥0 потери от ошибки

тогда минимум среднего риска R(a) достигается классификатором

$$a(x) = \underset{s \in Y}{\operatorname{argmin}} \sum_{y \in Y} \lambda_{ys} P(y) p(x|y)$$

Теорема про оптимальный байесовский классификатор

пусть заданы:

- априорные вероятности классов P(y),
- плотности их распределений р(х|у)
- λ_{ys}≥0 потери от ошибки

тогда минимум среднего риска R(a) достигается классификатором

$$a(x) = \underset{s \in Y}{\operatorname{argmin}} \sum_{y \in Y} \lambda_{ys} P(y) p(x|y)$$

Дополнение:

если
$$\lambda_{yy}$$
=0 и λ_{ys} = λ_y для всех y,s∈Y то

$$a(x) = \underset{y \in Y}{\operatorname{argmax}} \lambda_{y} P(y) p(x|y)$$

$$a(x) = \underset{y \in Y}{\operatorname{argmax}} \lambda_{y} P(y) p(x|y)$$

 $\lambda_{_{V}}$ - потеря для объектов у

P(y) - априорная вероятность класса у (доля примеров класса у, пропорция классов должна соответствовать)

p(x|y) - ф-ция правдоподобия класса у (плотность)

подходы к оценке плотности распределения:

- непараметрический
- параметрический
- смеси распределений

параметрический подход к оцениванию плотности

$$\hat{p}(x) = \varphi(x, \theta)$$

параметрический подход к оценке плотности

$$\hat{p}(x) = \varphi(x, \theta)$$

смеси распределений

$$\hat{p}(x) = \sum_{j=1}^{k} w_j \varphi_j(x, \theta_j)$$

параметрический подход к оцениванию плотности

$$\hat{p}(x) = \varphi(x, \theta)$$

смеси распределений

$$\hat{p}(x) = \sum_{j=1}^{k} w_j \varphi_j(x, \theta_j)$$

НЕпараметрический подход к оцениванию плотности

$$\hat{p}(x) = \sum_{j=1}^{m} \frac{1}{mV(h)} K\left(\frac{\rho(x, x_j)}{h}\right)$$

«наивный Байес»

допущение: признаки X - независимы друг от друга

тогда многомерную плотность можно представить как произведение одномерных плотностей

$$p(x|y) = p_1(x_1|y) \dots p_n(x_n|y)$$

непараметрические методы

оценка плотности распределения

дискретный случай (гистограмма) :

$$\hat{p}(x) = \frac{1}{m} \sum_{i=1}^{m} [x = x_i]$$

пример: распределение повторов слов в тексте

непараметрические методы

оценка плотности распределения

непрерывный случай: эмпирическая оценка, окно ширины h (доля объектов попавших в отрезок)

$$\hat{p}(x) = \frac{1}{2hm} \sum_{i=1}^{m} [|x - x_i| < h]$$

непараметрические методы

оценка плотности распределения

непрерывный случай: эмпирическая оценка, окно ширины h (доля объектов попавших в отрезок)

$$\hat{p}(x) = \frac{1}{2hm} \sum_{i=1}^{m} [|x - x_i| < h]$$

$$\hat{p}(x) = \frac{1}{mh} \sum_{i=1}^{m} \frac{1}{2} \left[\frac{|x - x_i|}{h} < 1 \right]$$

оценка плотности Парзона-Розенблата

$$\hat{p}(x) = \frac{1}{mh} \sum_{i=1}^{m} \frac{1}{2} \left[\frac{|x - x_i|}{h} < 1 \right]$$

$$\hat{p}(x) = \frac{1}{mh} \sum_{i=1}^{m} K\left(\frac{x - x_i}{h}\right)$$

K(r) - ядро

чётная ф-ция K(r)=K(-r)

нормированная $\int K(r)dr=1$

невозрастающая при r>0, неотрицательная ф-ция

оценка Парзона-Розенблата для класса у

$$\hat{p}(x) = \frac{1}{mh} \sum_{i=1}^{m} K\left(\frac{x - x_i}{h}\right)$$

$$\hat{p}(x|y) = \frac{1}{l_y V(h)} \sum_{i:y=y_i} K\left(\frac{\rho(x,x_i)}{h}\right)$$

 I_y - количество объектов у

ρ() - мера на Х

V(h) - нормирующий множитель

$$a(x) = \underset{y \in Y}{\operatorname{argmax}} \lambda_{y} P(y) p(x|y)$$

метод Парзоновского окна

$$a(x, X^{l}, h) = \underset{y \in Y}{\operatorname{argmax}} \lambda_{y} P(y) \frac{1}{l_{y}} \sum_{i: y = y_{i}} K\left(\frac{\rho(x, x_{i})}{h}\right)$$

ядро Епанечникова

$$K(r) = \frac{3}{4}(1-r^2); |r| \le 1$$

выбор оптимального размера окна h

метод скользящего контроля (Leave One Out, LOO)

параметр h выбираем перебором

проверяем суммарную ошибку на учебном множестве

из учебного набора удаляется текущий (проверяемый) пример.

$$LOO(h, X) = \sum_{i=1}^{l} \left[a(x_i, \{X \setminus x_i\}, h) \neq y_i \right] \rightarrow \min_{h}$$

оценка плотности - параметрический подход

$$\hat{p}(x) = \varphi(x, \theta)$$

оценка плотности - параметрический подход

$$\hat{p}(x) = \varphi(x, \theta)$$

принцип максимума правдоподобия

$$L(\theta, X) = \sum_{i=1}^{m} \ln \varphi(x_i, \theta) \rightarrow \max_{\theta}$$

оценка плотности - параметрический подход

$$\hat{p}(x) = \varphi(x, \theta)$$

принцип максимума правдоподобия

$$L(\theta, X) = \sum_{i=1}^{m} \ln \varphi(x_i, \theta) \rightarrow \max_{\theta}$$

условие оптимума

$$\frac{\partial}{\partial \theta} L(\theta, X) = \sum_{i=1}^{m} \frac{\partial}{\partial \theta} \ln \varphi(x_i, \theta) = 0$$

допущение: классы имеют n-мерную нормальную плотность

$$p(x|y) = \frac{\exp\left(-\frac{1}{2}(x - \mu_y)^T \Sigma_y^{-1}(x - \mu_y)\right)}{\sqrt{(2\pi)^n \det \Sigma_y}}; y \in Y$$

Теорема: параметры оценки максимального правдоподобия для n-мерных гауссовских плотностей классов у имеют следующий вид

$$\hat{\mu}_{y} = \frac{1}{l_{y}} \sum_{i:y=y_{i}} x_{i} \qquad \hat{\Sigma}_{y} = \frac{1}{l_{y}} \sum_{i:y=y_{i}} (x_{i} - \hat{\mu}_{y}) (x_{i} - \hat{\mu}_{y})^{T}$$

Теорема: параметры оценки максимального правдоподобия для n-мерных гауссовских плотностей классов у имеют следующий вид

$$\hat{\mu}_{y} = \frac{1}{l_{y}} \sum_{i:y=y_{i}} x_{i} \qquad \hat{\Sigma}_{y} = \frac{1}{l_{y}} \sum_{i:y=y_{i}} (x_{i} - \hat{\mu}_{y}) (x_{i} - \hat{\mu}_{y})^{T}$$

классификатор: квадратичный дискриминант

$$a(x) = \underset{y \in Y}{argmax} \left(\ln(\lambda_{y} P_{y}) - (x - \hat{\mu}_{y})^{T} \hat{\Sigma}_{y}^{-1} (x - \hat{\mu}_{y}) - \frac{1}{2} \ln(\det \hat{\Sigma}_{y}) \right)$$

Дополнение:

если матрицы ковариаций классов равны то параметры оценки плотности имеют следующий вид

$$\hat{\mu}_{y} = \frac{1}{l_{y}} \sum_{i:y=y_{i}} x_{i} \qquad \hat{\Sigma} = \frac{1}{l} \sum_{i=1}^{l} (x_{i} - \hat{\mu}_{yi}) (x_{i} - \hat{\mu}_{yi})^{T}$$

Дополнение:

если матрицы ковариаций классов равны то параметры оценки плотности имеют следующий вид

$$\hat{\mu}_{y} = \frac{1}{l_{y}} \sum_{i:y=y_{i}} x_{i} \qquad \hat{\Sigma} = \frac{1}{l} \sum_{i=1}^{l} (x_{i} - \hat{\mu}_{yi}) (x_{i} - \hat{\mu}_{yi})^{T}$$

классификатор: линейный дискриминант Фишера

$$a(x) = \underset{y \in Y}{argmax} \left(\ln(\lambda_{y} P_{y}) - \frac{1}{2} \hat{\mu}_{y}^{T} \hat{\Sigma}^{-1} \hat{\mu}_{y} + x^{T} \hat{\Sigma}^{-1} \hat{\mu}_{y} \right)$$

разделяем набор данных

- учебный
- тестовый

недообучение (underfitting) большая ошибка на учебном наборе

переобучение (overfitting) малая ошибка на учебном наборе большая ошибка на тестовом наборе

метрики качества на тестовом наборе

- погрешность (accuracy)
- матрица ошибок (confusion matrix)
- точность (precision)
- полнота (recall)
- F-мера
- ROC/AUC

погрешность (accuracy)

правильные ответы / всего примеров

оценка для сбалансированного набора, т.е. количество примеров в классах +- одинаковое

матрица ошибок (confusion matrix)

два класса — четыре группы

- ТР истинно положительные
- TN истинно отрицательные
- FP ложно положительные
- FN ложно отрицательные

точность (precision)

TP/(TP + FP)

(метрики для отдельного класса)

доля объектов действительно принадлежащих данному классу относительно всех объектов, которые классификатор отнес к этому классу

полнота (recall)

TP/(TP + FN)

доля объектов, найденных классификатором, относительно всех объектов этого класса

F-мера

(precision*recall) / (precision+recall)

усреднение точности и полноты

Пример classification_report

р	recision	recall	f1-score	support
0 1		0.90 0.90	0.90 0.91	2835 2927
avg / total	0.90	0.90	0.90	5762

ROC - receiver operating characteristic, рабочая характеристика приёмника

TPR=TP/(TP+FN)

полнота(recall), доля объектов, найденных классификатором, относительно всех объектов этого класса

FPR=FP/(FP+TN)

доля объектов negative класса алгоритм предсказал неверно

ROC - показывает зависимость полноты **TPR**

от доли ложно-негативных **FPR** при изменении порога скора

AUC - area under ROC curve, площадь под ROC-кривой характеристика качества классификации

Классификатор: литература

К.В. Воронцов Байесовская теория классификации и методы восстановления плотности. - Курс "Машинное обучение" ШАД Яндекс 2014

Борисов Е.С. Байесовский классификатор. http://mechanoid.kiev.ua/ml-bayes.html

git clone https://github.com/mechanoid5/ml_lectorium.git

Классификатор: почти последний слайд...

Вопросы?

Классификатор: практика

источники данных для экспериментов

sklearn.datasets

UCI Repository

kaggle

