Final Project Report

Knowledge Distillation-Based Image Sharpening Using Teacher-Student CNN Architecture (with Ground Truth as Teacher)

1. Objective

The aim of this project is to develop a lightweight student CNN model to perform image sharpening, where the supervision comes directly from ground truth sharp images. This approach avoids the need for pretrained models and instead leverages self-supervised learning using ground truth as a 'fake teacher'.

2. Learning Framework: Teacher-Student (Ground Truth Supervised)

Teacher: Ground truth sharp images, not a trained or pretrained network.

Student: StudentCNN_v3, trained to mimic the sharp output.

3. Workflow

Dataset: GoPro Dataset

Structure:

E:/image/data/GOPRxxxx_xx_xx/{blur, sharp, blur_gamma}

Training Input: blur_gamma

Target/Teacher (Supervision): sharp

4. Architecture: StudentCNN v3

A deeper CNN with skip connections and dilation, designed for sharpening with reduced artifacts.

Key Layers:

Input \rightarrow Conv(3 \rightarrow 64) \rightarrow ReLU

- \rightarrow Conv(64 \rightarrow 128) \rightarrow ReLU
- \rightarrow Conv(128 \rightarrow 128, dilation=2) \rightarrow ReLU
- → Residual connection
- \rightarrow Conv(128 \rightarrow 64) \rightarrow ReLU
- \rightarrow Conv(64 \rightarrow 3) \rightarrow Sigmoid

Skip Connection: Improves gradient flow

Dilation: Enlarges receptive field Sigmoid: Normalizes output to [0, 1]

5. Loss Function: Combined Perceptual and Edge Loss

combined_loss = α * MSE + $(1 - \alpha)$ * (1 - MS-SSIM) + edge_weight * Edge_Loss

MSE (Mean Squared Error) – pixel-level fidelity
MS-SSIM (Multi-Scale SSIM) – perceptual quality
Edge Loss – L1 loss between Sobel edge maps (captures texture)

Hyperparameters:

 $\alpha = 0.8$

 $edge_weight = 1.0$

6. Training Details

Epochs	30
Batch Size	2
Optimizer	Adam (lr=1e-4)
Loss Function	Combined (MSE + MS-SSIM + Edge)
Framework	PyTorch
Hardware	CUDA (GPU)

Output Model: sharpen_model.pth

7. Evaluation

Training Loss (final): ~ 0.1198

Test Loss: ~0.1234

PSNR (estimated): \sim 29.2 dB SSIM (estimated): \sim 0.87

Visual Quality:

- Noticeable sharpening over blur_gamma
- Edges are more defined
- Structural similarity maintained well

8. Inference & Output

Script: run_inference.py

Functionality:

- Loads trained model
- Runs inference on blur_gamma images
- Saves side-by-side comparisons of:
- Input (Blur Gamma)
- Output (Sharpened)
- Target (Ground Truth Sharp)

Output directory: outputs_sharpen/

9. Advantages

- Lightweight and fast model
- Doesn't rely on any pretrained external models
- Enhanced edge sharpness using edge-aware loss
- Good perceptual quality (thanks to MS-SSIM)
- Ideal for real-time or resource-constrained environments

10. Limitations

- Not trained on diverse datasets—may not generalize to all blur types
- No adversarial component (e.g., GANs) for realism
- Slight loss in fine detail on extreme blur cases

11. Tools & Libraries Used

- PyTorch Training, model definition
- torchvision Data transforms, image saving
- PIL / matplotlib Image visualization
- pytorch-msssim MS-SSIM loss computation
- tqdm Training progress bar

12. Project Status: Finalized

- [x] Training Completed
- [x] Loss Curve and Evaluation Visualized
- [x] Inference Utility Implemented
- [x] Final Outputs Saved for Presentation
- [x] No pretrained teacher used Ground truth supervision only

13. Team Members & Contributions

Team Name: True Sight

Team Member 1: Sabilah S. (RRN: 230171601159)

- Designed the project pipeline and overall workflow
- Implemented the CNN architecture (StudentCNN_v3)
- Integrated perceptual and edge loss formulations
- Led report writing and structuring

Team Member 2: Viswanathan (RRN: 2301701196)

- Implemented data loading, preprocessing and model training loop
- Set up GPU memory management and optimization techniques
- Handled training visualization and logging
- Structured the complete PyTorch pipeline and architecture integration

Team Member 3: Syed Thufel Syed Wahid (RRN: 230171601189)

- Built the inference module for visual comparison
- Automated output saving and testing interface

- Reported evaluation metrics like PSNR, SSIM
- Managed final result curation and demo setup