AQI分析与预测

ト Hi果吧 koikebo.com

背景信息

AQI(Air Quality Index),指空气质量指数,用来衡量空气清洁或污染的程度。值越小,表示空气质量越好。近年来,因为环境问题,空气质量也越来越受到人们的重视。

任务说明与知识要点

我们期望能够运用数据分析的相关技术,对全国城市空气质量进行研究与分析,希望能够解决如下疑问:

- 哪些城市的空气质量较好/较差?【描述性统计分析】
- 空气质量在地理位置分布上,是否具有一定的规律性?【描述性统计分析】
- 临海城市的空气质量是否有别于内陆城市?【推断统计分析】
- 空气质量主要受哪些因素影响?【相关系数分析】
- 全国城市空气质量普遍处于何种水平?【区间估计】
- 怎样预测一个城市的空气质量?【统计建模】

数据集描述

我们现在获取了2015年空气质量指数集。该数据集包含全国主要城市的相关数据以及空气质量指数。

含义	列名
城市名	City
空气质量指数	AQI
降雨量	Precipitation
城市生产总值	GDP
温度	Temperature
经度	Longitude
纬度	Latitude
海拔高度	Altitude
人口密度	PopulationDensity
是否沿海	Coastal
绿化覆盖率	GreenCoverageRate
焚烧量(10000吨)	Incineration(10,000ton)

程序实现

导入相关的库

导入需要的库,同时,进行一些初始化的设置。

```
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import warnings
import seaborn as sns

sns.set(style="darkgrid", font="SimHei", rc={"axes.unicode_minus": False})
# mpl.rcParams["font.family"] = "SimHei"
# mpl.rcParams["axes.unicode_minus"] = False

warnings.filterwarnings("ignore")
```

加载相关的数据集

- 加载相关的数据集。
- 可以使用head / tail / sample查看数据的大致情况。

In [2]: data = pd.read_csv("data.csv")
 print(data.shape)
 data.head()

(325, 12)

		E o T	
·V	ut.	L2J	

	City	AQI	Precipitation	GDP	Temperature	Longitude	Latitude	Altitude	PopulationDensity	Coastal	GreenCoverageRate	Incineration(10,000ton)
0	Ngawa Prefecture	23	665.1	271.13	8.200000	102.224650	31.899410	2617.0	11	0	36.00	23.00
1	Aksu City	137	80.4	610.00	12.276712	80.263380	41.167540	1108.0	6547	0	33.94	23.00
2	Alxa League	85	150.0	322.58	24.200000	105.728950	38.851920	1673.0	1	0	36.00	23.00
3	Ngari	28	74.2	37.40	1.000000	80.105800	32.501110	4280.0	1	0	36.00	23.00
4	Anqin City	79	2127.8	1613.20	17.291781	117.034431	30.512646	13.0	2271	0	45.80	27.48
4												•

数据清洗

缺失值处理

我们可以使用如下方法查看缺失值:

- info
- isnull

```
In [3]: data.info()
# data.isnull().sum(axis=0)
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 325 entries, 0 to 324
Data columns (total 12 columns):
                           325 non-null object
City
                           325 non-null int64
AQI
Precipitation
                           321 non-null float64
GDP
                           325 non-null float64
                           325 non-null float64
Temperature
Longitude
                           325 non-null float64
Latitude
                           325 non-null float64
```

Altitude 325 non-null float64
PopulationDensity 325 non-null int64
Coastal 325 non-null int64
GreenCoverageRate 325 non-null float64
Incineration(10,000ton) 325 non-null float64

dtypes: float64(8), int64(3), object(1)

memory usage: 30.5+ KB

如果降雨量这一列中,有100条记录存在缺失值,我们如何处理会更好些?

- A 删除缺失值所在的行(记录)。
- B 使用均值进行填充。
- C 使用中值进行填充。
- D B或C。
- E暂时还无法判断。

In [4]: print(data["Precipitation"].skew())
sns.distplot(data["Precipitation"].dropna())

0.27360760671177387

Out[4]: <matplotlib.axes._subplots.AxesSubplot at Ox58d8b70>

In [5]: data.fillna({"Precipitation": data["Precipitation"].median()}, inplace=True)

开课吧

异常值处理

- 通过describe查看数值信息。
- 可配合箱线图辅助。

```
In [6]: # data.describe()
    plt.figure(figsize=(15, 10))
    plt.xticks(rotation=45, fontsize=15)
    sns.boxplot(data=data)
```

Out[6]: <matplotlib.axes._subplots.AxesSubplot at Oxb800ef0>


```
In [8]: plt.figure(figsize=(15, 4))
   plt.xticks(rotation=45, fontsize=15)
   sns.boxplot(data=t)
```

Out[8]: <matplotlib.axes._subplots.AxesSubplot at Oxbc5de48>

重复值处理

- 使用duplicate检查重复值。可配合keep参数进行调整。
- 使用drop_duplicate删除重复值。


```
In [9]: # 发现重复值。
data.duplicated().sum()
# 查看哪些记录出现了重复值。
# data[data.duplicated()]
# 删除重复值。
data.drop_duplicates(inplace=True)
```

数据分析

空气质量最好/最差的5个城市。

空气质量的好坏可以为我们以后选择工作,旅游等地提供参考。

最好的5个城市

	City	AQI
204	Shaoguan City	12
163	Nanping City	12
154	Meizhou City	12
91	Keelung City	13
195	Sanming City	13

Out[10]: <matplotlib.axes._subplots.AxesSubplot at Oxb924ef0>

我们发现,空气质量最好的5个城市为:

- 1. 韶关市
- 2. 南平市
- 3. 梅州市
- 4. 基隆市
- 5. 三明市

最差的5个城市

In [11]: display(t.iloc[-5:])
 plt.xticks(rotation=45)
 sns.barplot(x="City", y="AQI", data=t.iloc[-5:])

	City	AQI
105	Jiaozuo City	199
112	Jinzhou City	202
13	Baoding City	220
26	Chaoyang City	224
16	Beijing City	296

Out[11]: <matplotlib.axes._subplots.AxesSubplot at Oxbaa3198>

我们得出空气质量最差的5个城市为:

- 1. 北京市
- 2. 朝阳市
- 3. 保定市
- 4. 锦州市
- 5. 焦作市

全国城市的空气质量

城市空气质量等级统计

国家对空气质量进行等级划分,划分标准如下表所示:

描述	等级	AQI指数
仂	一級	0-50
良	二级	51-100
轻度污染	三级	101-150
中度污染	四级	151-200
重度污染	五级	201-300
严重污染	六级	>300

根据该标准,我们来统计下,全国空气质量每个等级的数量。

```
In [12]: #編写函数,將AQI結換为对应的等級。

def value_to_level(AQI):
    if AQI >= 0 and AQI <= 50:
        return "一级"
    elif AQI >= 51 and AQI <= 100:
        return "三级"
    elif AQI >= 101 and AQI <= 150:
        return "三级"
```

```
elif AQI >= 151 and AQI <= 200:
    return "四级"
elif AQI >= 201 and AQI <= 300:
    return "五级"
else:
    return "六级"

level = data["AQI"].apply(value_to_level)
display(level.value_counts())
sns.countplot(x=level, order=["一级", "三级", "三级", "四级", "五级", "六级"])
```



```
二级 136
一级 103
三级 66
四级 14
五级 4
Name: AQI, dtype: int64
```

Out[12]: <matplotlib.axes._subplots.AxesSubplot at Oxbb1a7b8>

可见,我们城市的空气质量主要以一级(优)与二级(良)为主,三级(轻度污染)占一部分,更高污染的城市占少数。

空气质量指数分布

我们来绘制一下全国各城市的空气质量指数分布图。

```
In [13]: sns.scatterplot(x="Longitude", y="Latitude", hue="AQI", palette=plt.cm.RdYlGn_r, data=data)
Out[13]: <matplotlib.axes._subplots.AxesSubplot at Oxbbd8e10>
```


从结果我们可以发现,从大致的地理位置上看,西部城市好于东部城市,南部城市好于北部城市。

关于空气质量的验证

江湖传闻,全国所有城市的空气质量指数均值在72左右,请问,这个消息可靠吗?

城市平均空气质量指数,我们可以很容易的进行计算。

In [14]: data["AQI"].mean()

Out[14]: 75.3343653250774

我们计算的值大于传闻值72,因此,我们认为,江湖传闻实属一派胡言,不可尽信。请问这样认为正确吗? A 正确

B 不正确

首先,我们要清楚,江湖传闻的,是全国所有城市的平均空气质量指数,而我们统计的,只是所有城市中的一部分抽样而已。因此,我们一次抽样统计的均值,并不能代表总体(所有城市)的均值。

要弄清江湖传闻是否可靠,最直接有效的方式,就是将全国所有的城市的空气质量指数都测量一下,然后进行求均值。然而,这是非常繁重且不现实的任务。因此,可行的方案是,我们从全国所有城市中进行抽样,使用抽样的均值来估计总体的均值。

中心极限定理

如果总体(分布不重要)均值为 μ ,方差为 σ^2 ,我们进行随机抽样,样本容量为n,当n增大时,则样本均值逐渐趋近服从正态分布: $\tilde{X} \sim N(\mu, \sigma^2 l n)$ 。 我们可以得到如下结论:

- 1. 进行多次抽样,则每次抽样会得到一个均值,这些均值会围绕在总体均值左右,呈正态分布。
- 2. 当样本容量n足够大时,样本均值服从正态分布。
 - 样本均值构成的正态分布,其均值等于总体均值μ。
 - 样本均值构成的正态分布 , 其标准差等于总体标准差 σ 除以 \sqrt{n} 。

说明:样本均值分布的标准差,我们称为标准误差,简称标准误。

样本均值: 31.351438228008604 样本标准差: 9.87330575446937 偏度: -0.08290430384690746

Out[15]: <matplotlib.axes._subplots.AxesSubplot at Oxbad1cf8>

在正态分布中,数据的分布比例如下:

- 以均值为中心,在一倍标准差内 $(\bar{x}-\sigma,\bar{x}+\sigma)$,包含约68%的样本数据。
- 以均值为中心,在二倍标准差内 $(\bar{x}-2\sigma,\bar{x}+2\sigma)$,包含约95%的样本数据。
- 以均值为中心,在三倍标准差内 $(\bar{x}-3\sigma,\bar{x}+3\sigma)$,包含约99.7%的样本数据。

```
In [16]: # 定义标准差
scale = 50
# 定义数据。
x = np.random.normal(0, scale, size=100000)
# 定义标准差的倍数、倍数从1到3。
for times in range(1, 4):
    y = x[(x >= -times * scale) & (x <= times * scale)]
    print(f { times } 告标准差: ")
    print(f { len(y) * 100 / len(x) } %")
```

1倍标准差: 68.051% 2倍标准差: 95.468% 3倍标准差: 99.76%

根据中心极限定理,如果多次抽样,则样本均值构成的正态分布。如果我们对总体进行一次抽样,则本次抽样个体的均值有95%的概率会在二倍标准差内,仅有 5%的概率会在二倍标准差外。根据小概率事件(很小的概率在一次抽样中基本不会发生),如果抽样的个体均值落在二倍标准差之外,我们就可以认为,本次抽 样来自的总体,该总体的均值并非是我们所期望的均值。

通常,我们以二倍标准差作为判定依据,则以均值为中心,正负二倍标准差构成的区间,就是置信区间。而二倍标准差包含了95%的数据,因此,此时的置信度为95%。换言之,我们有信心认为,总体的均值有95%的概率会在置信区间之内。

假设检验——t检验

假设检验,其目的是通过收集到的数据,来验证某个假设是否成立。在假设检验中,我们会建立两个完全对立的假设,分别为原假设(零假设) H_0 与备则假设(对立假设) H_1 。然后根据样本信息进行分析判断,得出P值(概率值)。

假设检验基于小概率反证法,即我们认为小概率事件在一次试验中是不会发生的。如果小概率事件发生,则我们就拒绝原假设,而接受备择假设。否则,我们就没有充分的理由推翻原假设,此时,我们选择去接受原假设。

正态分布
 t-自由度1
 t-自由度5
 t-自由度10
 t-自由度50

t检验,就是假设检验的一种,可以用来检验一次抽样中样本均值与总体均值的比较(二者差异是否显著)。其计算方式如下:

$$t = \frac{\bar{x} - \mu_0}{S_{\bar{x}}} = \frac{\bar{x} - \mu_0}{S/\sqrt{n}}$$

- \bar{x} 为一次抽样中,所有个体的均值。
- μ₀为待检验的均值。
- $S_{\bar{x}}$ 为样本均值的标准差(标准误差)。
- S为一次抽样中,个体的标准差。
- n为样本容量。

t统计量服从t分布,当自由度(样本容量-1)逐渐增大时,t分布近似于正态分布。


```
In [17]: from scipy import stats

r = stats.ttest_1samp(data["AQI"], 72)
print("t值: ", r.statistic)
print("p值: ", r.pvalue)

t值: 1.393763441074581
p值: 0.16435019471704654
```

我们可以看到,P值大于0.05,故在显著度水平为0.05检验下,我们无法拒绝原假设,因此接受原假设。同样,我们现在可以来计算下,全国所有城市平均空气质量指数的置信区间。

```
In [18]: 
    n = len(data)
    df = n - 1
    left = stats.t.ppf(0.025, df=df)
    right = stats.t.ppf(0.975, df=df)
    print(left, right)
    mean = data["AQI"].mean()
    std = data["AQI"].std()
    mean + left * (std / np.sqrt(n)), mean + right * (std / np.sqrt(n))
```

-1.9673585853224684 1.967358585322468

Out[18]: (70.6277615675309, 80.0409690826239)

由此,我们就计算出全国所有城市平均空气质量指数所在的置信区间,大致在70.63~80.04之间,置信度为95%。

临海城市是否空气质量优于内陆城市?

我们首先来统计下临海城市与内陆城市的数量

In [19]: display(data["Coastal"].value_counts())
sns.countplot(x="Coastal", data=data)

0 243 1 80

Name: Coastal, dtype: int64

Out[19]: <matplotlib.axes._subplots.AxesSubplot at Oxc15e048>

然后,我们来观察一下临海城市与内陆城市的散点分布。

In [20]: sns.swarmplot(x="Coastal", y="AQI", data=data)

Out[20]: <matplotlib.axes._subplots.AxesSubplot at Oxcla7a58>

然后,我们再来分组计算空气质量的均值。

Coastal

0 79.045267 1 64.062500

Name: AQI, dtype: float64

Out[21]: <matplotlib.axes._subplots.AxesSubplot at Oxc201cf8>

在柱形图中,仅显示了内陆城市与临海城市空气质量指数(AQI)的均值对比,我们可以使用箱线图来显示更多的信息。

In [22]: sns.boxplot(x="Coastal", y="AQI", data=data)

Out[22]: <matplotlib.axes._subplots.AxesSubplot at Oxc255860>

我们也可以绘制小提琴图,除了能够展示箱线图的信息外,还能呈现出分布的密度。

```
In [23]: sns.violinplot(x="Coastal", y="AQI", data=data)
```

Out[23]: <matplotlib.axes._subplots.AxesSubplot at Oxc2cee80>

我们可以将散点与箱线图或小提琴图结合在一起进行绘制,下面以小提琴图为例。

```
In [24]: sns.violinplot(x="Coastal", y="AQI", data=data, inner=None)
    sns.swarmplot(x="Coastal", y="AQI", color="g", data=data)
```

Out[24]: <matplotlib.axes._subplots.AxesSubplot at Oxc31aa58>

至此,我们可以得出什么结论?

- A 沿海城市的空气质量普遍好于内陆城市。
- B 内陆城市的空气质量普遍好于沿海城市。
- C 沿海城市与内陆城市空气质量差不多。
- D 暂时无法得出结论。

这里,我们可以进行两样本1检验,来查看临海城市与内陆城市的均值差异是否显著。

In [25]: coastal = data[data["Coastal"] == 1]["AQI"]
inland = data[data["Coastal"] == 0]["AQI"]

进行方差齐性检验。为后续的两样本t检验服务。

stats.levene(coastal, inland)

Out[25]: LeveneResult(statistic=0.08825036641952543, pvalue=0.7666054880248168)

In [26]: # 进行两样本t检验。注意,两样本的方差相同与不相同,取得的结果是不同的。

stats.ttest_ind(coastal, inland, equal_var=True)

Out[26]: Ttest indResult(statistic=-2.7303827520948905, pvalue=0.006675422541012958)

至此,我们是否可以认为,沿海城市的空气质量普遍好于内陆城市?

A 完全可以。

- B 还不可以。
- C 有超过99%的几率,可以这样认为。
- D 有超过99%的几率,不可以这样认为。

我们很可能会关注某些问题,例如,我们可能会产生类似如下的疑问:

- 人口密度大,是否会对空气质量造成负面影响?
- 绿化率高,是否会提高空气质量?

开课吧

绘制散点图矩阵

通过散点图矩阵,可以显示任意两个变量之间的散点图,我们可以通过散点图,观察两个变量之间的关系。

In [27]: sns.pairplot(data[["AQI", "PopulationDensity", "GreenCoverageRate"]])

Out[27]: <seaborn.axisgrid.PairGrid at Oxc372a90>

相关系数

相关系数,可以用来体现两个连续变量之间的相关性,最为常用的为皮尔逊相关系数。其定义公式为:

$$r(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)*Var(Y)}}$$

其中,Cov(X,Y)为变量X与Y的协方差,Var(X)为X的方差,Var(Y)为Y的方差。

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

我们以空气质量(AQI)与降雨量(Precipitation)为例,计算二者的相关系数。

```
In [28]: x = data["AQI"]
y = data["Precipitation"]
# 计算AQI与Precipitation的协方差。
a = (x - x.mean()) * (y - y.mean())
cov = np.sum(a) / (len(a) - 1)
print(cov)
# 计算AQI与Precipitation的相关系数。
corr = cov / np.sqrt(x.var() * y.var())
print(corr)
```

-10098.209013903044

-0.40184407003013883

In [29]: print(x.cov(y)) print(x.corr(y))

-10098.209013903044 -0.40184407003013917

In [30]: data.corr()

Out[30]:

	AQI	Precipitation	GDP	Temperature	Longitude	Latitude	Altitude	PopulationDensity	Coastal	GreenCoverageRate	Inci
AQI	1.000000	-0.401844	0.160341	-0.283956	0.093900	0.552652	-0.204753	-0.026496	-0.150656	-0.097734	
Precipitation	-0.401844	1.000000	0.176665	0.685447	0.223211	-0.656175	-0.324124	0.067047	0.259783	0.153291	
GDP	0.160341	0.176665	1.000000	0.145780	0.173041	-0.010124	-0.208952	0.229402	0.174241	-0.039220	
Temperature	-0.283956	0.685447	0.145780	1.000000	0.141277	-0.807119	-0.459426	0.144923	0.305894	0.216575	
Longitude	0.093900	0.223211	0.173041	0.141277	1.000000	0.173585	-0.737548	-0.121986	0.374889	0.156439	
Latitude	0.552652	-0.656175	-0.010124	-0.807119	0.173585	1.000000	0.002571	-0.167384	-0.204199	-0.142776	
Altitude	-0.204753	-0.324124	-0.208952	-0.459426	-0.737548	0.002571	1.000000	-0.031408	-0.271570	-0.182449	
PopulationDensity	-0.026496	0.067047	0.229402	0.144923	-0.121986	-0.167384	-0.031408	1.000000	-0.034158	0.021197	
Coastal	-0.150656	0.259783	0.174241	0.305894	0.374889	-0.204199	-0.271570	-0.034158	1.000000	0.264419	

 GreenCoverageRate
 -0.097734
 0.153291
 -0.039220
 0.216575
 0.156439
 -0.142776
 -0.182449
 0.021197
 0.264419
 1.000000

 Incineration(10,000ton)
 0.106898
 0.201174
 0.899550
 0.173590
 0.072068
 -0.081412
 -0.122192
 0.283563
 0.158850
 -0.029088

为了能够更清晰的呈现相关系数值,我们可以使用热图来展示相关系数。

In [43]: plt.figure(figsize=(15, 8))
 sns.heatmap(data.corr(), cmap=plt.cm.RdYlGn, annot=True, fmt=".2f")

Out[43]: <matplotlib.axes._subplots.AxesSubplot at Ox121cf470>

观察上图显示的结果,综合来讲,是南方城市空气质量好,还是北方城市空气质量好?

- A 南方城市空气好。
- B 北方城市空气好。
- C 南北方空气质量差不多。
- D 无法判断。

结果统计

从结果中可知,空气质量指数主要受降雨量(-0.40)与纬度(0.55)影响。

- 降雨量越多,空气质量越好。
- 纬度越低,空气质量越好。

此外,我们还能够发现其他一些明显的细节:

- GDP (城市生产总值)与Incineration (焚烧量)正相关(0.90)。
- Temperature (温度)与Precipitation (降雨量)正相关 (0.69)。
- Temperature (温度)与Latitude (纬度)负相关(-0.81)。
- Longitude (经度)与Altitude (海拔) 负相关 (-0.74)。
- Latitude (纬度)与Precipitation (降雨量)负相关(-0.66)。
- Temperature (温度)与Altitude (海拔)负相关(-0.46)。
- Altitude (海拔)与Precipitation (降雨量)负相关(-0.32)。

可疑的相关系数值

通过之前的分析,我们得知,临海城市的空气质量,确实好于内陆城市,可是,为什么临海(Coastal)与空气质量指数(AQI)的相关系数(-0.15)并不高呢?

对空气质量指数进行预测

In [37]: from sklearn.linear_model import LinearRegression

对于某城市,如果我们已知降雨量,温度,经纬度等指标,我们是否能够预测该城市的空气质量指数呢?

答案是肯定的。我们可以通过对以往的数据,去建立一种模式,然后将这种模式去应用于未知的数据,进而预测结果。

```
from sklearn.model_selection import train_test_split
          X = data.drop(["City", "AQI"], axis=1)
          y = data["AQI"]
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)
          lr = LinearRegression()
          lr.fit(X_train, y_train)
          y_hat = lr.predict(X_test)
          print(lr.score(X_train, y_train))
          print(lr.score(X test, y test))
          0.4685357478390665
          0.3075998035417721
In [38]: plt.figure(figsize=(15, 5))
          plt.plot(y_test.values, "-r", label="真实值", marker="o")
          plt.plot(y_hat, "-g", label="预测值", marker="D")
          plt.legend()
          plt.title("线性回归预测结果", fontsize=20)
```

Out[38]: Text(0.5, 1.0, '线性回归预测结果')

线性回归预测结果

之所以线性回归模型拟合的效果不好,是因为数据在高维空间中,并没有呈现线性关系,我们从相关系数中,就可以清楚的看到这点。

In [39]: from sklearn.ensemble import RandomForestRegressor

```
rf = RandomForestRegressor(n_estimators=500, random_state=0)
rf.fit(X_train, y_train)
y_hat = rf.predict(X_test)
print(rf.score(X_train, y_train))
print(rf.score(X_test, y_test))

0.9375592254941046
0.6106531491491578

In [45]: plt.figure(figsize=(15, 5))
plt.plot(y_test.values, "r", label="真实值", marker="o")
plt.plot(y_hat, "-g", label="预测值", marker="o")
plt.legend()
plt.title("随机森林预测结果", fontsize=20)

Out[45]: Text(0.5, 1.0, '随机森林预测结果')
```


总结

- 1. 空气质量总体分布上来说,南部城市优于北部城市,西部城市优于东部城市。
- 2. 临海城市的空气质量整体上好于内陆城市。
- 3. 是否临海,降雨量与纬度对空气质量指数的影响较大。
- 4. 我国城市平均空气质量指数大致在(70.63~80.04)这个区间内,在该区间的可能性概率为95%。
- 5. 通过历史数据,我们可以对空气质量指数进行预测。