### Exercises 2.5

## Exercise 2.5.1

- a. Show that the logistic function  $\sigma$  satisfies the inequality  $0 < \sigma'(x) \le \frac{1}{4}$ , for all  $x \in \mathbb{R}$ .
- b. How does the inequality changes in the case of the functions  $\sigma_c$ ?

## Exercise 2.5.2

Let S(x) and H(x) denote the bipolar step function and the Heaviside function, respectively. Show that:

- a. S(x) = 2H(x) 1
- b.  $ReLU(x) = \frac{1}{2}x(S(x) + 1)$

## Exercise 2.5.3

Show that the softplus function, sp(x), satisfies the following properties:

- a.  $sp'(x) = \sigma(x)$ , where  $\frac{1}{1+e^{-x}}$
- b. Show that sp(x) is invertible with inverse  $sp^{-1}(x) = \ln(e^x 1)$
- c. Use the softplus function to show teh formula  $\sigma(x) = 1 \sigma(-x)$

## Exercise 2.5.4

Show that  $tanh(x) = 2\sigma(2x) - 1$ 

### Exercise 2.5.5

Show that the softsign function, so(x), satisfies the following properties:

- a. Its sctrictly increasing;
- b. Its is onto (-1,1), with the inverse  $so^{-1}(x) = \frac{1}{1-|x|}$ , for |x| < 1.
- c. so(|x|) is subadditive, i.e.,  $so(|x+y|) \le so(|x|) + so(|y|)$ .

#### Exercise 2.5.6

Show that the softmax function is invariant with respect to the addition of constant vectors  $\mathbf{c} = (c_1 \dots c_n)^T$ , i.e.,

$$softmax(y + \mathbf{c}) = softmax(y).$$

This property is used in practice by replacing  $\mathbf{c} = -\max_i y_i$ , fact that leads to a more stable numerically variant of this function.

# Exercise 2.5.7

Let  $\rho: \mathbb{R}^n \to \mathbb{R}^n$  defined by  $\rho(y) \in \mathbb{R}^n$ , with  $\rho(y)_i = \frac{y_i^2}{\|y\|}$ . Show that:

a. 
$$0 \le \rho(y)_i \le 1$$
 and  $\sum_i \rho(y)_i = 1$ .

b. The function  $\rho$  is invariant with to multiplication by nonzero constant, i.e.,  $\rho(\lambda y) = \rho(y)$  for any  $\lambda \in \mathbb{R}/0$ . Taking  $\lambda = \frac{1}{\max_i y_i}$  leads in practice to a more stable version of this function.

# Exercise 2.5.8 (cosine squasher)

Show that the function  $\varphi(x) = \frac{1}{2}(1 + \cos(x + \frac{3\pi}{2}))1_{[-\frac{\pi}{2},\frac{\pi}{2}]}(x) + 1_{(\frac{\pi}{2},\infty)}(x)$  is a squashing function.

# Exercise 2.5.9

- a. Show that any squashinf function is a sigmoidal function.
- b. Give an example of a sigmoidal function which is not a squashing function.

### SOLUTIONS

# 2.5.1 (a)

Computing the derivative of  $\sigma$  we find:  $\sigma'(x) = \frac{d}{dx} \frac{1}{1+e^{-x}} = \frac{d}{dx} \frac{e^x}{1+e^x} = \frac{e^x}{(1+e^x)^2}$ . From the inequality  $1 \le (1+e^x)^2$  and the non-negativeness of the exponential function follows that  $0 \le \frac{e^x}{(1+e^x)^2}$ .

Now lets prove that in x=0 the function has a local maximum in [-1,1], this will imply  $0 \le \frac{e^x}{(1+e^x)^2} \le \sigma'(0)$ ,  $\sigma'(0) = \frac{1}{4}$ . By computing the first derivative of  $\sigma'$  we find:  $\sigma''(x) = e^x \frac{1-e^x}{(1+e^x)^3}$ . The critical will be found by solving the equation  $\sigma''(x) = 0$ .

From  $\sigma''(x) = e^x \frac{1-e^x}{(1+e^x)^3} = 0$  follows that  $1-e^x = 0$ , is straigth-forward to check that the solution is x = 0. It rests to determine the nature of the extremizing point. To achieve this goal is necessary to calculate the second derivative of  $\sigma'$ .

$$\sigma'''(x) = \frac{d}{dx} \frac{e^x - e^{2x}}{(1 + e^x)^3} = \frac{(e^x - 2e^{2x})(1 + e^x)^3 - 3(1 + e^x)^2 e^x (e^x - e^{2x})}{(1 + e^x)^6}$$
$$= \frac{e^x \{1 - 4e^x + e^{2x}\}(1 + e^x)^2}{(1 + e^x)^6} = \frac{e^x \{1 - 4e^x + e^{2x}\}}{(1 + e^x)^4}$$

We clearly have  $\sigma'''(0) < 0$ , then x = 0 is a local maximum for  $\sigma'$ , i.e  $\forall x \in [-1, 1], \ \sigma'(x) \le \frac{1}{4}$ . On the other hand, the function  $\sigma'$  decreases on the intervals  $(-\infty, -1)$  and  $(1, \infty)$  this implies that:

$$\sup_{x \in (1,\infty)} \sigma'(x) = \frac{e}{(1+e)^2} = \frac{e^{-1}}{(1+e^{-1})^2} = \sup_{x \in (-\infty,-1)} \sigma'(x).$$
 From the fact that  $\frac{e}{(1+e)^2} < \frac{1}{4}$  follows that  $0 \le \sigma'(x) \le \frac{1}{4}$  is valid  $\forall x \in \mathbb{R}$ .  $\square$ 

# 2.5.1 (b)

The inequality changes to:  $0 \le \sigma'_c(x) \le \frac{c}{4}$ ,  $\forall x \in \mathbb{R}$ . From the expression  $\sigma_c(x) = \frac{1}{1+e^{-cx}}$ , c > 0 one finds that  $\sigma'_c(x) = \frac{d}{dx} \frac{e^{cx}}{1+e^{cx}} = c \frac{e^{cx}}{(1+e^{cx})^2}$ . By the chain rule it can be easily verified that all the computations made for  $\sigma'(x)$  in 2.5.1.a, can by applied to  $\sigma'_c(x)$ , having in mind the relationship  $\sigma'_c(x) = c\sigma'(cx)$ .

Then, one finds:  $\sigma_c''(x) = c^2 e^{cx} \frac{1 - e^{cx}}{(1 + e^{cx})^3}$ , this implies that x = 0 is a critical point. Using the same relationship is clear that  $\sigma_c'''(x)\Big|_{x=0} = c^3 \frac{e^{cx}\{1 - 4e^{cx} + e^{2cx}\}}{(1 + e^{cx})^4}\Big|_{x=0} < 0$ . Then, x = 0 is a maximum.

Arguing like in 2.5.1.a that on the interval [-1,1],  $\sigma'_c(0) = \frac{c}{4}$  is a local maximum. More over, the function  $\sigma'_c$  decreases on the intervals  $(-\infty, -1)$  and  $(1, \infty)$ , implying:

$$\sup_{x \in (1,\infty)} \sigma'_c(x) = \frac{ce^c}{(1+e^c)^2} = \frac{ce^{-c}}{(1+e^{-c})^2} = \sup_{x \in (-\infty, -1)} \sigma'_c(x)$$

Lets now prove the inequality  $\frac{ce^c}{(1+e^c)^2} < \frac{c}{4}$ . We have:

$$\frac{ce^{c}}{(1+e^{c})^{2}} = \frac{c}{\frac{(1+e^{c})^{2}}{e^{\frac{2c}{2}}}} = \frac{c}{(\frac{1+e^{c}}{e^{\frac{c}{2}}})^{2}}$$
$$= \frac{c}{(e^{-\frac{c}{2}} + e^{\frac{c}{2}})^{2}} < \frac{c}{(1-\frac{c}{2} + 1 + \frac{c}{2})^{2}} = \frac{c}{4}$$

Where we have used the inequality  $1 + x \le e^x$ ,  $\forall x \in \mathbb{R}$ . The later shows  $\sigma'_c(0)$  is a global maximum, i.e  $0 \le \sigma'_c(x) \le \frac{c}{4}$  is valid  $\forall x \in \mathbb{R}$ .  $\square$