Amendments to the Claims

Please amend the claims as follows:

- 1. (currently amended) A method for estimating the occurrence of a specific tire pressure deviation between actual and nominal pressure values for one or a plurality of wheels (i), comprising the following steps:
 - subsequently obtaining one or more wheel radius analysis measurement values (ΔR) from a wheel radius analysis component (104), wherein the wheel radius analysis measurement values (ΔR) are related to single wheel radius values (Δr_i) of which each is indicative of the wheel radius of a particular wheel (i);
 - b) subsequently obtaining one or more wheel vibration data values (Δf_i) from a wheel vibration analysis component (102), wherein each of the wheel vibration data values (Δf_i) is indicative of a vibration phenomena in the time dependent behavior of the rotational velocity of a particular wheel (i); and
 - calculating one or more tire pressure output values $(\eta_i, \Delta p_i)$ on the basis of both the wheel radius analysis measurement values (ΔR) and the wheel vibration data values (Δf_i) wherein each tire pressure output value $(\eta_i, \Delta p_i)$ is indicative of the specific tire pressure deviation for a particular wheel (i).
- 2. (original) The method of claim 1, wherein the calculation of the tire pressure output value (η_i) for each wheel (i) comprises the following:
 - calculating a first probability value (P_i^f) from the wheel vibration data value (Δf_i) which is indicative of the statistical significance of the deviation of the wheel vibration data value (Δf_i) from a nominal wheel vibration value;
 - calculating a second probability value (P_i^r) from the wheel radius analysis measurement values (ΔR) which is indicative of the statistical significance of the deviation of the single wheel radius values (Δr_i) from a nominal wheel radius value; and

- calculating the tire pressure output value (η_i) from the first and second probability values (P_i^f, P_i^r) .
- (original) The method of claim 2, wherein the first and second probability values (P_i^f, P_i^r) are cumulative probability distribution function values; and the tire pressure output value (η_i) is based on the product of the first and second cumulative probability distribution function values (P_i^f, P_i^r) .
- 4. (original) The method of claim 3, wherein the first and second cumulative probability distribution function values (P_i^f , P_i^r) are Gaussian cumulative probability distribution function values; and the calculation of the first and second probability values (P_i^f , P_i^r) is further based on a first and a second standard deviation parameter (σ_f , σ_r), respectively.
- 5. (currently amended) The method of claim 3 or 4, wherein the product of the first and second cumulative probability distribution function value (P_i^f, P_i^r) is further multiplied with a weight factor (W_i^{fr}) , which is calculated on the basis of the wheel vibration data value (Δf_i) , the wheel radius analysis measurement values (ΔR) or the single wheel radius values (Δr_i) , and of standard deviation parameters (σ_f, σ_r) .
- 6. (original) The method of claim 5, wherein the weight factor W_i^{fr} is calculated as follows:

$$W_i^{fr} = \exp\left(\sigma_1 \left| \frac{\Delta f_i}{\sigma_f} - \frac{\Delta r_i}{\sigma_r} \right| \right) \cdot \exp\left(\sigma_2 \left| \frac{\Delta f_i \Delta r_i}{\sigma_f \sigma_r} \right| \right),$$

wherein Δf_i is the wheel vibration data value, Δr_i is the single wheel radius value, σ_f and σ_r are standard deviation parameters, and σ_1 and σ_2 are tuning parameters.

7. (original) The method of claim 5, wherein the weight factor W_i^{fr} is calculated as follows:

$$W_i^{fr} = \exp\left(\sigma \left| \frac{\Delta f_i \Delta r_i}{\sigma_f \sigma_r} \right| \right),$$

wherein Δf_i is the wheel vibration data value, Δr_i is the single wheel radius value, σ_f and σ_r are standard deviation parameters, and σ is a tuning parameters.

- 8. (original) The method of claim 1, wherein the calculation of the tire pressure output value (Δp_i) is based on a model assuming a linear relationship between on the one hand the wheel vibration data and the wheel radius analysis measurement values $(\Delta f_i, \Delta R)$ and on the other hand the tire pressure output value (Δp_i) .
- 9. (original) The method of claim 8, wherein the tire pressure output value (Δp_i) is calculated from the wheel vibration data and the wheel radius analysis measurement values (Δf_i , ΔR) by a Least Mean Square method (516).
- 10. (original) The method of claim 8, wherein the pressure deviation value (Δp_i) is calculated from the wheel vibration data and the wheel radius analysis measurement values (Δf_i , ΔR) by an adaptive filter (716).
- 11. (original) The method of claim 10, wherein the adaptive filter (716) is a Kalman filter.
- 12. (currently amended) The method of any of the preceding claims claim 1, wherein the wheel radius analysis measurement values (ΔR) are transformed to modified wheel radius values ($\Delta \widetilde{R}$) which are less sensitive to load changes on the plurality of wheels (*i*).

- 13. (currently amended) The method of any of the preceding claims claim 1, which comprises the following steps:
 - calculating a load balance value (l) on the basis of the wheel vibration data and the wheel radius analysis measurement values (Δf_i , ΔR) which is indicative of a load balance on the plurality of wheels (i);
 - calculating load balance corrected wheel radius analysis measurement values $(\Delta \widetilde{R})$ on the basis of the wheel radius analysis measurement values (ΔR) and the estimated load balance value (l).
- 14. (original) The method of claim 13, wherein the calculation of the load balance value (l) is based on a model assuming a linear relationship between on the one hand the wheel vibration data and the wheel radius analysis measurement values $(\Delta f_i, \Delta R)$ and on the other hand the tire pressure output values (Δp_i) and the load balance value (l).
- 15. (currently amended) The method of claim 14, wherein the load balance value (l) is calculated from the wheel vibration data and the wheel radius analysis measurement values (Δf_i , ΔR) by a Least Mean Square method (1014) (104).
- 16. (original) The method of claim 14, wherein the load balance value (l) is calculated from the wheel vibration data and the wheel radius analysis measurement values (Δf_i , ΔR) by an adaptive filter (1014).
- 17. (original) The method of claim 16, wherein the adaptive filter (1014) is a Kalman filter.
- 18. (original) The method of claim 1, which comprises the following steps:
 - collecting data value pairs consisting of a single wheel radius data value (Δr_i) and a wheel vibration data value (Δf_i) during test drives,
 - defining an area which comprises the collected data value pairs, and

- calculating the tire pressure output value by testing whether an actual data value pair obtained during normal drives lies within the defined area or not.
- 19. (original) The method of claim 1, wherein the tire pressure output value is calculated on the basis of a χ^2 -test from the single wheel radius data values (Δr_i) and the wheel vibration data values (Δf_i).
- 20. (original) The method of claim 1, wherein the calculation of the tire pressure output value (Δp_i) is based on a model assuming a linear relationship between on the one hand the wheel vibration data and the wheel radius analysis measurement values $(\Delta f_i, \Delta R)$ and on the other hand the tire pressure output value (Δp_i) and a load balance value (l), wherein the load balance value (l) is treated as a random variable and the tire pressure output value (Δp_i) is calculated by a Least Square method from the model.
- 21. (original) The method of claim 1, wherein the calculation of the tire pressure output value (Δp_i) is based on a specific function relating the tire pressure output value (Δp_i) with the wheel vibration data values (Δf_i) , the wheel radius analysis measurement values (ΔR) and further parameters, wherein the further parameters are determined during test drives by a Least Square method on the basis of the specific function, obtained tire pressure output values (Δp_i) , obtained wheel vibration data values (Δf_i) and corresponding tire pressure values.
- 22. (original) The method of claim 21, wherein the specific function is a series expansion in the wheel vibration data values (Δf_i) and the wheel radius analysis measurement values (ΔR).
- 23. (original) The method of claim 21, wherein the series expansion is established by a neural network or a radial basis function network.

- 24. (currently amended) The method of any of the preceding claims claim 1, wherein each of the wheel radius analysis measurement values either corresponds to a single wheel radius value or to a linear combination of single wheel radius values.
- 25. (currently amended) The method of any of the preceding claims claim 1, wherein the vibration phenomena comprises spectral properties in the time dependent behavior of the rotational velocity of a particular wheel (i).
- 26. (currently amended) A system for estimating the occurrence of a specific tire pressure deviation between actual and nominal pressure values for one or a plurality of wheels (i), comprising:
 - a) a first component for subsequently obtaining one or more wheel radius analysis measurement values (ΔR) from a wheel radius analysis component (104), wherein the wheel radius analysis measurement values (ΔR) are related to single wheel radius values (Δr_i) of which each is indicative of the wheel radius of a particular wheel (i);
 - b) a second component for subsequently obtaining one or more wheel vibration data values (Δf_i) from a wheel vibration analysis component (102), wherein each of the wheel vibration data values (Δf_i) is indicative of a vibration phenomena in the time dependent behavior of the rotational velocity of a particular wheel (i); and
 - c) a third component for calculating one or more tire pressure output values $(\eta_i, \Delta p_i)$ on the basis of both the wheel radius analysis measurement values (ΔR) and the wheel vibration data values (Δf_i) wherein each tire pressure output value $(\eta_i, \Delta p_i)$ is indicative of the specific tire pressure deviation for a particular wheel (i).
- 27. (currently amended) A computer program product including program code for carrying out a digital signal processing method, when executed on a computer system, for estimating the occurrence of a specific tire pressure deviation between actual and

nominal pressure values for one or a plurality of wheels (i), comprising the following steps:

- a) subsequently obtaining one or more wheel radius analysis measurement values (ΔR) from a wheel radius analysis component (104), wherein the wheel radius analysis measurement values (ΔR) are related to single wheel radius values (Δr_i) of which each is indicative of the wheel radius of a particular wheel (i);
- subsequently obtaining one or more wheel vibration data values (Δf_i) from a wheel vibration analysis component (102), wherein each of the wheel vibration data values (Δf_i) is indicative of a vibration phenomena in the time dependent behavior of the rotational velocity of a particular wheel (i); and
- calculating one or more tire pressure output values $(\eta_i, \Delta p_i)$ on the basis of both the wheel radius analysis measurement values (ΔR) and the wheel vibration data values (Δf_i) wherein each tire pressure output value $(\eta_i, \Delta p_i)$ is indicative of the specific tire pressure deviation for a particular wheel (i).