Série N3: Matrices et Systèmes linéaires

Exercice 1: Soient les matrices suivantes:

$$A = \begin{pmatrix} 1 & 2 \\ -2 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 2 & -3 & 2 \\ 0 & 1 & 1 \end{pmatrix}, \ C = \begin{pmatrix} -2 & -4 \\ 4 & 0 \end{pmatrix}, \ D = \begin{pmatrix} 3 & -2 \\ 1 & 0 \\ 7 & -3 \end{pmatrix} \text{ et } E = \begin{pmatrix} 1 & 1 & -1 \\ -2 & 1 & 2 \\ 3 & -1 & -1 \end{pmatrix}.$$

- 1. Calculer, si cela est possible: A 2C, B + C, $A \times C$, $B \times D$, $D \times E$ et $B \times E$.
- 2. Calculer les matrices: $(2A + C)^T$, $B^T + D$ et $E^2 E + 6I_3$ où $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
- 3. Soit la matrice $G = \begin{pmatrix} 2 & 1 & 0 \\ -3 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$. Montrer que $G^3 = 0_3$ où $0_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
- 4. Soit la matrice $F = E^2 E + 6I_3$.
 - Calculer $E \times F$ et $F \times E$. Que peut-on conclure?
 - En déduire E^{-1} l'inverse de E.

Exercice 2:

1. Calculer le déterminant de chacune des matrices suivantes:

$$A = \begin{pmatrix} 3 & -2 \\ -1 & 0 \end{pmatrix}, B = \begin{pmatrix} -1 & -3 & 1 \\ 0 & 1 & -2 \\ -2 & -1 & 1 \end{pmatrix} \text{ et } C = \begin{pmatrix} -2 & 3 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}.$$

- 2. En déduire $det(B^2)$ et $det(B \times C)$ les déterminants des matrices B^2 et $B \times C$ respectivement.
- 3. Les matrices A, B et C sont inversibles? Justifier votre réponse.
- 4. En utilisant le déterminant, calculer le rang de chacune des matrices A, B et C.
- 5. Mettre les matrices B et C sous leurs forme échelonnée.
- 6. Retrouver rg(B) et rg(C) les rangs des matrices B et C respectivement.

Exercice 3: Soit $A_m = \begin{pmatrix} 1 & -m & 1 \\ 2 & 3 & 3 \\ m & 1 & m \end{pmatrix}$ une matrice avec $m \in \mathbb{R}$.

- 1. En utilisant le déterminant, trouver les valeurs de m pour que A_m soit inversible.
- 2. Vérifier que A_1 est inversible, puis calculer A_1^{-1} par la méthode de cofacteurs.
- 3. Montrer que $A_0^3 4A_0^2 + I_3 = 0_3$, puis en déduire A_0^{-1} l'inverse de A_0 et $det(A_0^{-1})$.

Exercice 4: Soient $\alpha \in \mathbb{R}$ et B_{α} une matrice définie par:

$$B_{\alpha} = \begin{pmatrix} 0 & -1 & 3 \\ -\alpha & 0 & \alpha \\ \alpha & 1 & -5\alpha \end{pmatrix}$$

- 1. Mettre la matrice B_{α} sous leur forme échelonnée, puis en déduire que $|B_{\alpha}|=\alpha(4\alpha-3)$.
- 2. Discuter suivant les valeurs de α , le rang de B_{α} .
- 3. En utilisant le rang, vérifier que la matrice B_{-1} est inversible.
- 4. En utilisant la méthode de Gauss-Jordan, montrer que $B_{-1}^{-1} = \frac{1}{7} \begin{pmatrix} 1 & 8 & 1 \\ -4 & 3 & 3 \\ 1 & 1 & 1 \end{pmatrix}$.

Exercice 5: On considère le système linéaire suivant

$$(S) \begin{cases} x + y + 2z = 3 \\ x + 2y + z = 1 \\ 2x + y + z = 0 \end{cases}$$

- 1. Ecrire (S) sous la forme matricielle: AX = B.
- 2. Résoudre le système homogène (Sh) associé à (S) par l'échelonnement.
- 3. (S) est de Cramer? Justifier votre réponse.
- 4. En déduire que A est inversible, puis calculer A^{-1} par l'échelonnement.
- 5. Résoudre le système (S) par la méthode de l'inverse.
- 6. Retrouver la solution X^* du système (S) par la méthode des déterminants.

Exercice 6:

Soient
$$(S_1)$$
 $\begin{cases} x_1 - x_2 + x_3 = 1 \\ 2x_1 - 2x_2 + 2x_3 = -1 \\ 2x_1 + x_2 + 4x_3 = 3 \end{cases}$ et (S_2) $\begin{cases} x_1 - x_2 + x_3 = -1 \\ -3x_1 + 3x_2 - 3x_3 = 3 \\ x_1 + x_2 - x_3 = 3 \end{cases}$ deux systèmes.

- 1. Calculer $rg(S_1)$ le rang du système (S_1) .
- 2. (S_1) est de cramer? Justifier votre réponse.
- 3. Résoudre les systèmes (S_1) et (S_2) .

Exercice 7:

Soit (S_α) un système linéaire défini par

$$(S_{\alpha}) \left\{ \begin{array}{l} x & + & -y & + & z & = & 1 \\ 2x & + & -\alpha y & + & \alpha z & = & \alpha + 1 \\ \alpha x & + & y & + & 2\alpha z & = & \alpha \end{array} \right., \quad \alpha \in \mathbb{R}$$

- 1. Ecrire le système (S_{α}) sous une forme matricielle $A_{\alpha}X = B_{\alpha}$.
- 2. Pour quelles valeurs de α , A_{α} est inversible?
- 3. Vérifier que A_1 est inversible puis calculer A_1^{-1} l'inverse de A_1 par la méthode de cofacteurs.
- 4. Résoudre les systèmes (S_1) , (S_2) et $(S_{\frac{-1}{2}})$.

Exercice 8: (Examen de rattrapage 2020)

Soit la matrice
$$A = \begin{pmatrix} 3 & 2 & 6 \\ 2 & 1 & 4 \\ -2 & 0 & -3 \end{pmatrix}$$
.

- 1. Calculer A^2 et A^3 puis vérifier que: $-A^3 + A^2 + A I_3 = 0_3$.
- 2. En utilisant la question 1, montrer que A est inversible puis calculer son inverse A^{-1} .
- 3. Retrouver A^{-1} par la méthode des cofacteurs.
- 4. Résoudre le système (S): AX = B où $B = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$.