supplemental exercise 2.

1.	The is defined on (-00,+00) for the (-00,+00) t/x2/st(x)
	fix) is continuous at x=0 x=1
,	prove: fly is a constant on (-00 +00)
2.	THY is continuous on [a, b], for \$xe[a,b] = y+[a,b] and
	prove: 3 3 = [a, b] +(3) =0
	1 - 1 - (2, 4) 113) 20
3.	JIH is continuous on [a,b]. MIX) = Jup f(t) MIX) = inf f(t)
	prove: Mix) mix) are continuous astex astex
	on (a, b)
4.	JIX) is continuous on [9, 6]. HXXX tx (-[9,6].
	prove by definition: I ; fix) is continuous on [a, b]
	1x) is cont on (0,1) +(0)= +(1)
<i>J</i> •	
	prove: for \(\tau_{72}, \text{n} = \(\frac{1}{3}, \text{Tor} \) = \(\frac{1}{3}, \text{Tor} \) = \(\frac{1}{3}, \text{Tor} \)
6.	Jn/x) = x+x++ x n (n=2,3,)
	prove: (1). talk)=1 has only one real solution on [0,+00)
	prove: (1). $f_n(x) = 1$ has only one real solution on $[0, +\infty)$. (2). denote the solution as x_n , $f_n(x) = 1$ in x_n .
	, , , , , , , , , , , , , , , , , , , ,
7.	thy is differentiable in (a, b) prove: for 4x. 6 (9, 6)
	$\exists \ X_n \in (q, b) \ n=12, \dots \ \lim_{n\to\infty} X_n = X_o \ \text{and} \ \lim_{n\to\infty} f(X_n) = f(X_o)$
▽	
0.	J(x) cont on [a, b] diff in (a, b) 4>0 prove that:
	(1). $\exists \beta \in (q, b)$. $f(b) - f(a) = \beta + (3) / n - \frac{5}{9}$.
	(2) $\lim_{n\to\infty} h\left(\sqrt[n]{n}-1\right) = \ln x (x>0)$
	•

9.	f(x) cont on [0,1], diff in (0,1). $f(x)=f(x)=0$. $f(x')=1$.
0.	J(x) cont on [0,1]. diff in (0,1). f(0)= f(1)= 0. prove: tor \(\times \times (0,1) \). \(\frac{1}{3} \) = f(\times).
11.	JIX) cont on [0,1] diff in (0,1) f(x) < f(0)=f(1) prove: \(\forall \forall X_1, X_2 \in (0,1) f(x) - f(x_2) \right) < \forall \forall .
12.	$f(x) g(x)$ (ont on $[a, b]$, diff in (a, b) . $g(a) = 0$ $f(b) = 0$ $f(x) g(x) \neq 0$ for $\forall x \in (a, b)$. prove: $\exists 3 \in (a, b)$. s.t. $f(3) = \frac{g(3)}{g(3)}$.
13.	$f(x)$. diff on (a,b) $f'(a)=f'(b)=0$. prove $\exists c \in (a,b)$. $f(c)-f(a)=(c-a)f'(c)$.
14.	$f(x)$ diff on $[a, b]$ twice diff in (a, b) . $f(a) = f(b) = 0$. $f(a) \cdot f'(b) > 0$. prove. $\exists 3 \in (a, b)$ $f(3) = 0$, $\exists n \in (a, b)$ $f''(n) = f(n)$.
15.	$f(x)$ cont on $[a,b]$, $diff$ in (a,b) . $f(a) = f(b)$ $f(x) \neq constant$ prove. $\exists \beta \in (a,b)$ $f(\beta) > 0$.
16.	J(x) cont on [0,1], diff (0,1) f(0)=0, prove. f(x) ≠0 in (0,1) prove. ∃3 ∈ [0,1). f(3) >0.
17.	tix) diff in (a,b), f(x) monotone prove the cont in (a,b)
18.	$f(x)$ [a, $+\infty$] $f(x)$ exists $f(x) = b$ prove $b=a$

19.	TIX) diff. J'/xo) exists prove:
	$\lim_{h\to 0} \frac{f(x_0+2h)-2f(x_0+h)}{h^2} = f'(x_0).$
20	$f(x)$ twice diff on $[0,1]$. $ f(x) \leq q$. $ f'(x) \leq b$. $ f(x) \leq 2q + \frac{b}{2}$.
21.	flx) diff at $X=X_0$ $X_n < X_0 < \beta_n$ $(n=1,2,)$ $\lim_{n\to\infty} x_n = \lim_{n\to\infty} \beta_n = X_0$ prove $\lim_{n\to\infty} \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n} = f(x_0)$
22.	the cont of x=0, lim tizx)-the prove the exists and the =A
23.	J(x) defined in a neighbourhood of Xo. $f(x)$ diff at Xo. prove. $\lim_{h\to 0} f(x_0 - h) = f(x_0)$ If the limit exists can you prove $f(x)$ is diff at Xo? If not, give a counter-example.
24	fix) diff on $[0,+\infty)$ fo)=0. $\exists A>0$. $ f'(x) \leq A f(x) $ prove $f(x) \equiv 0$ for $X \in [0,+\infty)$.
zt.	prove. Darboux Theorem f diff on $[a, b]$, $f'(a) < f'(b)$ for $\forall c: f'(a) < (< f'(b)) \exists \beta \in (q,b) f'(\beta) = c$.
26.	f(x) (ont on [a, b], diff in [a, b], $f(a) < 0$, $f(b) < 0$. f(c) > 0, $f(c) > 0$, prove $f(a, b)$, $f(a) + f'(a) = 0$

27.	fix) diff in (a, b). prove (1): If f'(x) 3dd in (a, 5). Then f(x) 3dd in (a, 5).
-	(2) If flx) is not bdd in (a, b) then flx) is not bdd in (a, b).
28.	$f(x)$ cont in $(0, +\infty)$ $f(0)=0$ prove that: (1) If $f(x)$ $f(x)$ $f(x)$ then $f(x)$ $f(x)$ in $(0, +\infty)$ (2) If $f(x)$ $f(x)$, then $f(x)$ $f(x)$ in $f(0, +\infty)$
29.	the 1 x = 0 prove flx) can't be a derivative function.
30.	$f(x)$ twice diff on $[a,b]$, $f'(a) = f'(b) = 0$. prove $\exists f \in (a,b)$ $ f''(3) > \frac{4}{(b-a)^2} f(b) - f(a) $
31.	Ht) twice diff to)= f(1)=0. max f(x) = 2. prove. min. osxs1 f'(x) <-16.
32.	JIX) twice diff on [0,1] 0≤x≤1, f x) ≤1 f"(x) ≤2. prove f x) ≤3 when 0≤x≤1.
33.	Jix) twhen diff on $(0, +\infty)$ If $\lim_{x \to +\infty} f(x)$ exists. $f''(x) bdd$ on $(0, +\infty)$. prove. $\lim_{x \to +\infty} f'(x) = 0$.
34	July twice diff on [0,1], Ho)= J(1)= 0, min J(x) =-/ prove max J"(x) 7,8

55.	TIX) two diff on [0,1] _ f(1)= f(0) _ f"(x) < m m>0
	prove. fin < M.
36	fits twice diff on [0,1] $f(1)=f(0)=f(\frac{1}{2})=0$. $ f'(x) \le m$.
37.	$f(0)=0$ $f'(0)$ exists $X_n = f(\frac{1}{n^2}) + f(\frac{2}{n^2}) + \dots + f(\frac{n}{n^2})$
	find $\lim_{n\to\infty} \ln \left[\lim_{n\to\infty} \left(\frac{1}{n^2} + \lim_{n\to\infty} \frac{1}{n^2} + \dots + \lim_{n\to\infty} \frac{1}{n^2} \right) \right]$ $\lim_{n\to\infty} \left[\left(\frac{1}{n^2} \right) \left(\frac{1}{n^2} \right) \dots \left(\frac{1}{n^2} \right) \right]$
38.	There is no point satisfies $f(x) = f'(x) = 0$ prove. $\{x \in T_{91} \mid f(x) = 0\}$ is finite
39.	the diff in (0,+00) lim they = +00, prove. they is not uniformly continuous in (0,+00)
40.	f(x) cont in (0, a) lim Tx f(x) exists. prove. f(x) is uniformly continuous in (0, a)
41.	TIX) cont on [a, b], twice diff in (a, b). f(a)=f(b)=0. ICE (a, b). f(c) (0), prove = 3 ((a, b)). f'(3) > 0.
42.	the two diff in R. Mr = Sup (+(k)(x)) <+ > k=0,1,2. prove M, SM, Mo
43	find min B and max & so that fine W. (H) ntx <e (h)="" <="" n+13<="" td=""></e>
44.	the cont on [a, b] max the = M min the = m. prove.] [a, b] = [a, b]
	So that 11). f(x)=m f(p)=m or f(x)=m f(p)=m." (2). m <f(x)<m (x,="" b)<="" td="" tx="" ∈=""></f(x)<m>

-

45.	TIX) is not bdd on [a, b] prove 3 c (-[a, b], for \$ 8>0 TIX) is not bdd on. (c-d, c+d) N [a, b].
46.	$f. g. diff in (a, +\infty) g'(x) < f'(x) prone. If lim f(x) $ $exists$, then. $lim g(x) exists$.
47.	$f(x)$ diff in. $(q, t\infty)$. $ f(x) $ $ f(x) $ $ f(x) $ exists. prove. $\lim_{x\to +\infty} xf(x) = 0$.
	thy ront on [a, b] has I only one max point Xa [Xn] C [a, b] /im HXn) = HXo) prove. /im Xn = Xa n>00
49.	tix) diff on To, c], fix) I, flo)=o, prove. Ho < a < b < a t b < a < b.
50.	J(X) twice diff in a neighbourhood of X_0 . $J(X_0 + 0X) = J(X_0) + J'(X_0 + 0X_0) \Delta X$. $J''(X_0) \neq 0$. $J''(X)$ cont at $X = X_0$. proof. $\lim_{\delta X \to 0} \theta = \frac{1}{2}$
51.	fix) diff in (0, +00). lim (f/x) + f/x) = 0 prove. lim f(x)=0.
52.	1(x) diff on [0,1], f(λx) = f(x) x(-(0,1), ο<λ(.). f(0)=0. prove f(x) = 0.
53.	The cont on [0,1] flx) 70. M(x)= max H+) (0(x51), (x)= lim (Hx) n ostsx prove (x) cont => Hx) 1

54.	118) uniformly cont on (q, too) (1x) cont on (q, too)
	lim (tix) - (tix) = 0 prove (tix) unitorally cont
55.	prove cauchy theorem. for function.
	/im flx) exists &. YEDO. 3 &DO. When. 0< 1x-x0 < 6
	$0< x''-x_0 <\delta$, we have. $ f(x')-f(x'') <\epsilon$.
5-6.	$f(x)$ cont. on $[a, b]$, $f(a) < 0$ $f(b) > 0$ prove $\exists 3 \in (a, b)$. $f(3) = 0$ and $f(x) > 0$ for $x \in (3, b]$
57.	fly is bdd and diff on R. Ifly + flx) <1. prove flx < 1.
58.	fix) twice diff on [9,6] f'[x) (ont on [9,6], f(a)=f(6)=0. prove !!) max f(x) < \frac{1}{8} (6-a)^2 . max f'[x)
	(2). max f'(x) \(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right(\frac{1}{2} \right) \right) \right) \right\left(\frac{1}{2} \right) \right) \right\left(\frac{1}{2} \right) \right\left\left(\frac{1}{2} \right) \right\left\left
59.	flx). twhee diff on R and bodd prove 3 xo ER. J"(xo)=0.
60.	The is defined in (0,1). $\lim_{X\to 0} \frac{f(x)}{f(x)} = 0$. $\lim_{X\to 0} \frac{f(x)}{f(x)} = 0$. $\lim_{X\to 0} \frac{f(x)}{f(x)} = 0$.
	,