Subsequences: (an) $\in \mathbb{R}^N$. $g: N \to N$ is a strictly charactery func $(m > n) \neq g(m) > g(n)$

Exercise: if $g: N \to N$ is strictly increasing then g is one-one.

Pf: \exists m, n \in N, m \neq n s.t. g(m) = g(n). WLOG m \nearrow n. So $g(m) \nearrow g(n) = g(m)$ This contradick trichotomy.

Then (aga) ERN is said to be a subseq of (an).

CONVERGENCE OF SEQUENCES in IRM:

Def: Let $A = (a_n) \in \mathbb{R}^N$ be a sequence. We say

A converges in \mathbb{R} (or simply "converges") if $\exists a \in \mathbb{R}$ P1 $\begin{cases} S.t. & \forall \epsilon > 0 \end{cases}$ there are only finitely many $\begin{cases} a_i's & \text{which are not in } (a-\epsilon, a+\epsilon) \end{cases}$ Or,

P2 { $\forall \epsilon 70 \exists N \in \mathbb{N} \text{ s.t. } a_n \in (a-\epsilon, a+\epsilon)$

In that case we say afk is a limit of the seq, A.

Let $(a_n) \in \mathbb{R}^N$ be a sequence. $a \in \mathbb{R}$. It has $P1 \Leftrightarrow it$ has P2.

Pf: Suppose a has P1. Let E > 0 given. Then

I can find finitely many points $a_{i_1}, a_{i_2}, ..., a_{i_k}$ for which $a_{i_j} \notin (a-E, a+E)$ $(\forall j=1,...,k)$.

Choose $N = 1 + \max \{i_1, ..., i_k\}$. So $n \geqslant N$

 \Rightarrow $a_n \in (\alpha - \varepsilon, \alpha + \varepsilon)$. (a_n) has P2.

(an) has P2. Ut E>0. $\exists N \in \mathbb{N}$ for which $a_1 \in (a-\epsilon, a+\epsilon) \quad \forall n \geq N$. $\therefore \exists f \text{ some } a_1 \notin (a-\epsilon, a+\epsilon)$ then i < N. $\therefore \begin{cases} i \in \mathbb{N} : a_i \notin (a-\epsilon, a+\epsilon) \end{cases} \subseteq \begin{cases} 1, \dots, N-1 \end{cases}$. Only finitely many terms are outside $(a-\epsilon, a+\epsilon)$. $\therefore (a_n)$ has P1.

Examples: (i) $(an) = (\frac{1}{n})$. This converges to a = 0. Why? $\xi > 0$ given. Then choose $N = \lceil \frac{1}{\xi} \rceil + 100 > \frac{1}{\xi}$ Then $n > N \Rightarrow n > \frac{1}{\xi} \Rightarrow \frac{1}{\eta} < \xi \Rightarrow \left\lfloor \frac{1}{\eta} - 0 \right\rfloor < \xi$

(2) $(a_n) = \left(\frac{1}{2^n}\right)$. Converges to 0. Why? Let $2 \ge 0$ given. Can find $N \le -t \cdot 2^N \ge \ge N \ge \ge 1$ $\therefore n \ge N \Rightarrow 2^n \cdot \ge > 1 \Rightarrow \ge > \frac{1}{2^n} = \left|\frac{1}{2^n} - 0\right|$.

(3) $(a_n) = (-1)^n$. Does not converge.

Why? Suppose $x \in \mathbb{R}$ is a limit of the given seq. Let $d = \max \{|x-1|, |x-ED|\}$.

WLOG $|x-1| \gg |x-ED|$. So $d = |x-1| \geq 0$.

Clearly d > 0. Let $\epsilon = \frac{d}{2}$. Then $\exists N \in \mathbb{N}$ s.L. $n \geqslant N \Rightarrow |ED^n - \alpha| < \epsilon$

.. This must also be true for $n=2N \gtrsim N$ i.e., $|x-1| = \left| (-1)^{2N} - x \right| < \xi = \frac{|x-1|}{2}$ $\Rightarrow 1 < \frac{1}{2}$

Let A = (an) be a sequence. And (agin) is a subseq. Say an cgs to a ER. Then agen cgs to a. q is inc. Ut &>0 be given. JN s.t. Pf: $a_n \in (a-\epsilon, a+\epsilon) \quad \forall \quad n \geq N$ $(a_{n}) = a_{n} = a_{n} \in (a - \varepsilon, a + \varepsilon)$ $(a_{n}) = a_{n} \in (a - \varepsilon, a + \varepsilon)$ => (ag(n)) converges to a. \square demma: Say (an) ERN is a convergent seg s.t. it converges to $a \in \mathbb{R}$, $b \in \mathbb{R}$. Then a = b. Suppose $a \neq b$. Choose $\varepsilon = \frac{|a-b|}{2} > 0$. $\exists N_1 \text{ s.t.} \quad |a_n-a| < \varepsilon \quad \forall n > N_1.$ $\exists N_2 s.t. |a_n-b| < \varepsilon \forall n > N_2.$ Take N = max {N,, N2 }. $(a - a_n + a_n - b) = |a - a_n + a_n - b|$ $\leq |a_n-a|+|a_n-b|$ \Rightarrow ϵ < ϵ (contradiction)

!. Limit (if exists) is unique.