Modulos OMMJAL

Emmanuel Buenrostro

5 August 2025

.

§1 Principios

§1.1 Definición

Definition 1.1. $a \equiv b \pmod{n}$ si $n \mid a - b$

Propiedades: Si $a \equiv b \pmod{n}$ y $c \equiv d \pmod{n}$:

- 1. $a + c \equiv b + d \pmod{n}$
- 2. $a c \equiv b d \pmod{n}$
- 3. $ac \equiv bd \pmod{n}$
- 4. $a^x \equiv b^x \pmod{n}$

Y en general cualquier operación con suma, resta, multiplicación se puede hacer.

Remark. Podemos notar que no se menciona la división, más adelante tratamos con esta.

§1.2 Lema de la Division de Euclides

Tomar $a \mod n$ en realidad lo que estamos haciendo es asignarle al entero a algun valor de $\{0,1,\ldots,n-1\}$, este valor es el residuo que deja a al dividirlo entre n, entonces vamos a demostrar que con la definición que tenemos si asignamos **exactamente** un valor de $\{0,1,\ldots,n-1\}$

Vamos a considerarnos el conjunto de multiplos de 5 no negativos.

$$\{0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, \ldots\}$$

Entonces, ¿Qué pasa con los números como 32,33 que no estan en ese conjunto?, pues estan en medio entre 30 y 35, entonces podemos escribirlos como

$$32 = 5 \times 6 + 2$$

$$33 = 5 \times 6 + 3$$

$$34 = 5 \times 6 + 4$$

$$35 = 5 \times 6 + 5$$

$$36 = 5 \times 6 + 6$$

Pero 35 y 36 ya no estan en medio de 30 y 35 entonces mejores formas de escribirlos seria

$$35 = 5 \times 7 + 0$$

$$36 = 5 \times 7 + 1$$

Siguiendo esto obtenemos el lema:

Lemma 1.2 (Lema de la Division de Euclides)

Para cualesquiera enteros a, b podemos encontrar **únicos** enteros q, r tales que

$$b = aq + r$$

con $0 \le r < a$, donde q es el cociente y r el residuo.

Proof. Para ver que existen, unicamente haz este proceso: Inicia con r = b y q = 0, entonces mientras $r \ge a$ restale a a r y sumale 1 a q, esto sigue siendo igual a b:

$$b = aq + r = aq + a + r - a = a(q + 1) + (r - a)$$

Entonces cuando finalmente r < a tienes unos enteros q, r que cumplan.

Ahora para ver que son únicos, haremos contradicción, si asumes que tienes dos parejas (q_1, r_1) y (q_2, r_2) que cumplen, entonces

$$aq_1 + r_1 = b = aq_2 + r_2$$

$$aq_1 - aq_2 = r_2 - r_1$$

$$a(q_1 - q_2) = r_2 - r_1$$

Entonces $r_2 - r_1$ es múltiplo de a, pero como $0 \le r_1, r_2 < a$ entonces $-a < r_2 - r_1 < a$, y la unica posibilidad de que sea multiplo de a es que $r_2 - r_1 = 0$ y $r_1 = r_2$, entonces $aq_1 = aq_2 \Rightarrow q_1 = q_2$ y son la misma pareja, contradicción.

Entonces $b \equiv r \pmod a$ porque $a \mid aq = b - r$, y como r es único, entonces si asignamos exactamente un valor a cada entero positivo b modulo a.

En particular si $x = aq_1 + r_1, y = aq_2 + r_2$ entonces $x \equiv y \pmod{a} \iff r_1 = r_2$.

Exercise 1.3. Prueba que para los negativos tambien sucede.

Remark. Usar modulos negativos suele servir para operaciónes, por ejemplo $n-1 \equiv -1 \pmod{n}$, entonces $(n-1)^2 \equiv (-1)^2 \equiv 1 \pmod{n}$, algo que sin usar el modulo negativo sería bastante mas complejo.

§1.3 ¿Cómo se usa?

Los modulos tienen distintos usos, creo que los dos más usuales es cosas directamente relacionadas con la divisibilidad (o por ejemplo calcular algun modulo), o el poder resolver distintas ecuaciones diofantinas (con enteros) al acotar bastante en que casos se puede y no se puede.

Veamos unos problemas de ejemplo.

Example 1.4

Encuentra que valores de n se tiene que $3 \mid n^2 + 1$.

Solution. Como queremos que $3 \mid n^2 + 1$ entonces queremos que $3 \mid n^2 - (-1)$ y entonces quieres $n^2 \equiv -1 \pmod{3}$.

Otra forma de ver esto, es que si $3 \mid n^2 + 1$ entonces

$$n^2 + 1 \equiv 0 \pmod{3}$$
$$n^2 \equiv -1 \pmod{3}$$

Puedes moverlo como si fuera una ecuación normal.

Entonces ahora vamos a ver todos los posibles casos de $n^2 \pmod{3}$.

$n \pmod{3}$	$n^2 \pmod{3}$
0	0
1	1
2	$4 \equiv 1$

Entonces podemos notar que no hay ningun caso donde $n^2 \equiv -1 \pmod 3$ entonces no hay soluciones.

Example 1.5

¿Cuál es el residuo de 2^{2025} al dividirlo entre 7?

Solution. Vamos a ver los primeros casos de potencias de 2 modulo 7.

$$2^1 \equiv 2, 2^2 \equiv 4, 2^3 \equiv 1, 2^4 \equiv 2$$

Entonces podemos ver que volvemos al 2, pero el residuo de una potencia de 2 depende totalmente del residuo anterior, entonces si se repite una se va a hacer un ciclo, en este caso el ciclo es

$$2 \rightarrow 4 \rightarrow 1$$

Entonces ahora lo que nos importa es ver cuanto es 2025 modulo 3 (porque el ciclo es de tamaño 3), y como $2025 \equiv 0 \pmod{3}$ entonces $2^{2025} \equiv 1 \pmod{7}$.

"Aqui mataron mucha gente"

El lider de Perú en Tiananmen Square

§2 Problemas

§2.1 Calcular mods

- **0** Problema 2.1. Obten tres números que sean congruentes a $a \pmod{m}$ para:
 - a = 2, m = 3
 - a = -1, m = 11
 - a = 52, m = 17
 - a = -16, m = 6
- **0** Problema 2.2. Calcula a donde $a \in \{0, 1, ..., 6\}$ y:

$$11 \cdot 18 \cdot 2322 \cdot 13 \cdot 19 \equiv a \pmod{7}$$

- **Problema 2.3**. Demuestra que si $x \equiv 11 \pmod{24}$ entonces $3x \equiv 1 \pmod{8}$
- **O** Problema 2.4. Si en este momento son las 10 de la mañana, ¿Qué hora sera en 2500 horas?
- **0** Problema 2.5. Encuentra el último digito de $2 \times 325 + 3 \times 8^7 \times 5104 + 123^5$.
- **0** Problema 2.6. Resuelve para x:
 - 1. $12x \equiv 1 \mod 23$
 - $2. \ x^2 \equiv 1 \bmod 23$
 - 3. $x^2 \equiv 1 \mod 8$
 - 4. $x(x+5) \equiv 6 \mod 10$

$\S 2.2$ Usar mods pt 1

- **Problema 2.7.** Para cuáles enteros n se tiene que $4 \mid 3n^3 + 1$?
- **O** Problema 2.8. Demuestra el criterio de divisibilidad del 3, el cual dice que un número es divisible entre 3 si la suma de sus digitos es divisible entre 3.
- **O** Problema 2.9. Demuestra el criterio de divisibilidad del 4, el cual dice que un número es multiplo de 4 si el número formado por sus dos ultimos digitos es multiplo de 4.
- **0** Problema 2.10. Demuestra el criterio de divisibilidad de 2^n , el cual dice que que un numero es divisible por 2^n si el número formado por los ultimos n digitos es multiplo de 2^n .
- **0** Problema 2.11. Demuestra que un numero es divisible por 5^n si el número formado por los ultimos n digitos es multiplo de 5^n .
- **0** Problema 2.12. Encuentra los enteros n tales que $n^2 \equiv 1 \pmod{8}$.
- **0** Problema 2.13. Encuentra los enteros x tales que $12x \equiv 1 \pmod{23}$.
- **O** Problema 2.14. Para un entero positivo n, sea A(n) la suma de los digitos de n, por ejemplo A(24135) = 5 + 3 + 1 + 4 + 2. Prueba que $n \equiv A(n) \pmod{9}$.
- **O** Problema 2.15. Se tienen 2003 tarjetas númeradas del 1 al 2003 y colocadas hacia abajo en orden en un mónton (la tarjeta con el 1 aparece arriba). Sin mirar se quitan tres tarjetas consecutivas hasta que solo quedan dos tarjetas. ¿Es posible que haya quedado la tarjeta con el 1002?
- 1 Problema 2.16. ¿Puede 222222 ser un cuadrado perfecto?

§2.3 Usar mods pt2

1 Problema 2.17. Demuestra que $a - b \mid a^n - b^n$ para n entero no negativo.

1 Problema 2.18. Demuestra que los números primos mayores a 3 son 1 o 5 (mod 6).

1 Problema 2.19. Demuestra que si para x, y enteros entonces si $3 \mid x^2 + y^2$ se tiene que $3 \mid x y 3 \mid y$.

1 Problema 2.20 . Demuestra que si $7 \mid x^3 + y^3 + z^3$ entonces 7 divide a alguno de x, y, z.

Problema 2.21. Demuestra que si $a^2 \equiv b^2 \pmod{p}$ donde p es primo entonces $a \equiv b \pmod{p}$ o $a \equiv -b \pmod{p}$.

1 Problema 2.22. Demuestra que un número es multiplo de 7 si el número formado por los numeros excepto el ultimo digito - el doble de el ultimo digito es multiplo de 7.

1 Problema 2.23. Encuentra todas las tripletas de enteros positivos (k, m, n) tal que $7^k = 9^m + 2^n$.

Problema 2.24. Para un entero positivo n, sea A(n) la suma alternada de los digitos de n, por ejemplo A(24135) = 5 - 3 + 1 - 4 + 2. Prueba que $n \equiv A(n) \pmod{11}$.

1 Problema 2.25 . Prueba que si p y 8p - 1 son ambos primos entonces 8p + 1 es compuesto.

1 Problema 2.26. Prueba que

$$(x-1^2)(x-2^2)(x-3^2)(x-4^2)(x-5^2)(x-6^2) \equiv x^6-1 \mod 13$$

1 Problema 2.27. Sea S la suma siguiente:

$$S = 1 + 2 + 3 + \ldots + 2025$$

Encuentra el residuo cuando S es dividido entre 7.

Problema 2.28 (AIME 2010/1). Encuentra el residuo cuando $9 \times 99 \times ... \times 99 \cdots 9$ con 999 9's al final es dividido entre 1000.

2 Problema 2.29 . Demuestra que

$$2025 \mid 1^{2025} + 2^{2025} + 3^{2025} + \ldots + 2025^{2025}$$

Problema 2.30. Determina todas las soluciones enteras no negativas $(n_1, n_2, \dots, n_{14})$

$$n_1^4 + n_2^4 + \ldots + n_{14}^4 = 1599$$

Problema 2.31 (ORO 2021/3). La secuencia de enteros positivos a_1, a_2, \ldots esta definida de la siguiente forma: $a_1 = 2019, a_2 = 2020, a_3 = 2021$ y para todo $n \ge 1$

$$a_{n+3} = 5a_{n+2}^6 + 3a_{n+1}^3 + a_n^2$$

Prueba que la secuencia no contiene números de la forma m^6 donde m es un entero positivo.

§2.4 Mas problemas

Puede que ocupes mas cosas (Como Fermat o Euler) aqui.

- **1** Problema 2.32. Encuentra todos los primos p tales que $13^{2p-1} + 17$ es divisible por p.
- **3.5** Problema **2.33** (PUMaC 2012 N A3). Definimos la secuencia $\{x_n\}$ de la siguiente forma: $x_1 \in \{5,7\}$ y para todo $k \ge 1, x_{k+1} \in \{5^{x_k}, 7^{x_k}\}$. Por ejemplo los posibles valores de x_3 son: $5^{5^5}, 5^{5^7}, 5^{7^5}, 5^{7^5}, 7^{5^5}, 7^{5^7}, 7^{7^5}$. ¿Cuál es la suma de todos los posibles valores para los ultimos dos digitos de x_{2012} .
- 4 Problema 2.34 (IMOSL 2000 N1). Encuentra todos los enteros positivos $n \ge 2$ que cumplen que para todos los enteros positivos coprimos con n a, b se cumple que

$$a \equiv b \pmod{n}$$
 si y solo si $ab \equiv 1 \pmod{n}$

§3 ¿Y la división?

§3.1 Definición de inverso

Al momento de hacer la división ocupamos la existencia de *inversos*. Al hacer división en los reales, si queremos dividir x entre y, lo que en realidad estamos haciendo es multiplicar x por el *inverso* de y el cual es representado como $\frac{1}{y}$.

$$a \cdot a^{-1} = 1$$

Entonces eso justo coincide con lo que conocemos de $\frac{1}{a}$.

Entonces si estamos trabajando mod n, un entero a tiene inverso si existe un a^{-1} con

$$a \cdot a^{-1} \equiv 1 \pmod{n}$$

Y este existe si y solo si gcd(a, n) = 1.

Podemos ver un ejemplo cuando n = 7.

Número	Inverso mod 7
1	1
2	4
3	5
4	2
5	3
6	6

Mostrandonos que efectivamente en este caso si existen, entonces vamos a demostrar esto.

§3.2 Maquinaria a usar

§4 Teoremitas útiles

Theorem 4.1 (Pequeño Teorema de Fermat)

Si p es primo y $a \in \mathbb{Z}$ entonces

$$a^p \equiv a \mod p$$

Tambien generalmente conocido como

Theorem (Pequeño Teorema de Fermat)

Si p es primo y $a \in \mathbb{Z}$ y (a, p) = 1 entonces

$$a^{p-1} \equiv 1 \mod p$$

Proof. Notemos que para a tal que p|a si cumple porque $a^p \equiv 0 \equiv a \mod p$. Para los a con (p, a) = 1. se tiene que

$$\{a, 2a, 3a, \ldots, (p-1)a\}$$

es una permutación de

$$\{1, 2, 3, \dots p-1\}$$

en mod p.

<u>Prueba.</u> Todos los números $a, 2a, 3a, \ldots, (p-1)a$ tiene distintos modulos p, ya que si hay dos iguales ia y ja con $i \neq j$ entonces

$$ia - ja = a(i - j) \equiv 0 \mod p$$

y como (a, p) = 1 entonces $i - j \equiv 0 \mod p \Rightarrow i \equiv j \mod p$, pero $1 \le i, j \le p - 1$ entonces i = j, una contradicción. Entonces si es una permutación.

Asi que si multiplicamos todos se tiene que

$$a \cdot 2a \cdot 3a \cdots (p-1)a \equiv 1 \cdot 2 \cdots (p-1) \mod p$$

entonces

$$\Rightarrow (p-1)!a^{p-1} \equiv (p-1)! \mod p$$
$$\Rightarrow a^{p-1} \equiv 1 \mod p$$