A. [10] Design an algorithm that can identify cycles in a *directed* graph.

B. Coin denomination problem

You have large amount of coins of each denominations: 1 cent, 5-cent, 10-cent, 25-cent, and 1 dollar. The optimal denomination problem is defined as:

PROBLEM: a total amount *x* cents to be made up in coins.

SOLUTION: Generate N_1 , N_5 , N_{10} , N_{25} , N_{100} such that

- 1. We minimize $N_1 + N_5 + N_{10} + N_{25} + N_{100}$
- 2. while subject to the constraint $N_1 + 5*N_2 + 10*N_{10} + 25*N_{25} + 100*N_{100} = x$.

Devise an algorithm that solves the optimal denomination problem using dynamic programming by following the these steps.

- 1. [10] How do you generate sub-problems?
- 2. [10] How do you synthesize the solution of a larger problem based on the solutions of the subproblems.
- 3. [10] Write down the recursive solution.
- 4. [10] What is the runtime of the recursive solution?
- 5. [20] Formulate the bottom-up computation so that it runs in polynomial time complexity.
- 6. [10] Formulate the memoization version of the recursive solution so that it runs in polynomial time complexity.
- C. Solve the optimal denomination problem using a greedy algorithm.
- 1. [10] What is the complexity of the greedy algorithm.

2. [10] For the following values of x, compute the optimal number of coins used by both dynamic programming and the greedy algorithm.

X	by dynamic programming	by greedy
104		
122		
141		
156		
157		
167		
188		
189		
200		

Submission:

• Report.pdf