Teoremi

Agostino Cesarano

January 2024

Part II

Funzioni continue

1 Permanenza del segno

Sia f(x) una funzione, e sia $x_0 \in \mathbb{R}$. Se f è continua in x_0 , e se $f(x_0)$ è diverso da zero (e quindi ha un segno), allora la funzione mantiene lo stesso segno di $f(x_0)$ in tutto un intorno di x_0 .

In altre parole, se il limite di una funzione in un punto è positivo, allora la funzione sarà positiva in un intorno di quel punto. Analogamente, se il limite è negativo, la funzione sarà negativa in un intorno del punto.

Attenzione

È importante notare che questo teorema si applica solo quando il limite della funzione è diverso da zero. Se il limite è zero, la funzione può assumere valori sia positivi che negativi in un intorno del punto.

2 Teorema dell'esistenza degli zeri (Teorema di Bolzano)

Sia f(x) una funzione continua su un intervallo chiuso [a,b], e supponiamo che f(a) e f(b) abbiano segni opposti, cioè $f(a) \cdot f(b) < 0$. Allora esiste almeno un numero $c \in (a,b)$ tale che f(c) = 0.

<u>Metodo di bisezione</u> Possiamo supporre che f(a)<0 e che f(b)>0 abbiamo un intervallo $I_0:=[a,b],$ e troviamo il punto medio quindi

$$c = \frac{a+b}{2}$$

Se f(c) è maggiore di zero f(c) > 0 allora la funzione ha segno discorde rispetto a f(a), quindi prendo in considerazione l'intervallo [a, c].

$$[a_1, b_1] = [a, c]$$

Troviamo il nuovo punto medio

$$c_1 = \frac{a_1 + b_1}{2}$$

e ripetiamo il procedimento.

Se f(c) < 0 allora prendo in considerazione l'intervallo [c, b] poi cerco il punto medio e ripeto il procedimento.

Ripeto il procedimento finché non trovo un punto c tale che f(c) = 0. Ad ogni passo le **dimensioni dell'intervallo si dimezzano**

$$b_n - a_n = \frac{b - a}{2^n}$$

cosi abbiamo due successioni:

- (a_n) $n \in \mathbb{N}$ crescente e superiormente limitata da b.
- $(b_n)n \in \mathbb{N}$ decrescente e inferiormente limitata da a.

Essendo crescente e limitata, per il <u>teorema del limite delle successioni monotone</u>, la successione a_n ha un limite finito che chiamo x_0 .

$$\lim_{n \to \infty} a_n = x_0$$

La successione b_n ha un limite che ricaviamo dall'espressione precedente:

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} a_n + \frac{b - a}{2^n} = x_0 + 0 = x_0$$

Quindi il valore di $f(x_0)$ è uguale al limite:

$$f(x_0) = \lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} f(b_n) = 0$$

Sapendo che $f(a_n) \leq 0$ e $f(b_n) \geq 0$ possiamo conculdere che $f(x_0) = 0$.

3 (Primo)Teorema dell'iesistenza dei valori intermedi

Una funzione continua in un intervallo [a,b] assume tutti i valori compresi tra f(a) e f(b). Conseguenza del teorema dell'esistenza degli zeri

4 Teorema di Weierstrass

Sia f(x) una funzione continua in un intervallo chiuso e limitato [a,b]. Allora f(x) assume massimo e minimo in [a,b], cioè esistono in [a,b] x_1,x_2 tali che

$$f(x_1) \le f(x) \le f(x_2), \forall x \in [a, b]$$

I numeri x_1, x_2 sono detti rispettamente punti di minimo e massimo per f(x) nell' intervallo [a, b].

5 (Secondo)Teorema dell'esistenza dei valori intermedi

Una funzione continua in un intervallo [a,b] assume tutti i valori compresi tra il minimo e il massimo. $Conseguenza\ del\ teorema\ di\ Weierstrass$

6 Teorema di continuità delle funzioni inverse

Sia f(x) una funzione strettamente monotona¹ in [a,b]. Se f(x) è continua, anche la funzione f^{-1} è continua.

 $^{^1\}mathrm{Strettamente}$ crescente o Strettamente decrescente