Census Income Study

Data Cleaning and Predictive Modeling Andrew Graham – Fall 2022

Summary and Goals

Purpose

The purpose of this data is to create a prediction model to determine the income of an individual based on given census data. The goal of this data has been binned into having a salary of > 50k and < 50k. The data is from the US census bureau. Logistic Regression, Random Forest and XGBoost modeling will be Evaluated

Data Overview - Meta

- 2 Files were provided containing data split into training and testing data
- A meta file was provided containing column information, such as: name, description, and types (nominal/continuous)
 - This file contained a few tables which were combined using a fuzzy matching algorithm and then the resulting information allowed the data to be labeled
 - The meta document also contained the unique values from the data which was used to assist in data cleaning efforts
- Instructions were given in the document to drop a column (Instance Weight), so those instructions were followed.
- Data consist of 41 features (40 input and 1 output) with 299,285 records

Data Overview

- 40 Input features
 - 7 numerical/continuous
 - 33 nominal
- The 7 continuous feature did not have missing data although a majority had 0 values
- 14 nominal features had complete data
- 19 features were incomplete
 - 14 features were dropped for having over 30% missing data that could not be imputed
- 6% of the data was dropped for having missing values
- Target(Salary) is unbalance with more than 90% in the <50k category

Data Cleaning

	number_missing	percent_missin
state	0	0.000000
votetrump	0	0.000000
age	0	0.000000
female	0	0.000000
collegeed	0	0.000000
racef	0	0.000000
famincr	4717	10.506036
ideo	1501	3.343133
pid7na	611	1.360862
bornagain	22	0.049000
religimp	20	0.044545
churchatd	322	0.717181
prayerfreq	904	2.013453
angryracism	47	0.104682
whiteadv	52	0.115818
fearraces	100	0.222727
racerare	86	0.191545

- No misspellings or formatting issues
- No duplicates
- Removed NAs for Target
- 7337 NA
- 16% rows with NAs
 - No dependencies
 - Randomly Distributed between outputs
- NAs Removed
- 37,561 Data Points Remaining

NA Correlation

- From this and the prior chartwe see that most columns look to be MCAR/MAR with the following exceptions...
- -AMJOCC and AMJIND (Major Industry Code and Major Occupation Code)
- This makes sense as they seem to be referencing the same thing
- -GRINREG and GRINST (region and state of previous residence)
- This makes sense as one is dependent of the other.
- -MIGMTR1,MIGMTR3,MIGMTR4 (Migration code Data)
- -PEFNTVTY and PEMNTVTY (Birth pace of Parents) UNIVERSITY

NA Feature Dropping

Since the missingness looks to be random and using a threshold of 30%. The following features should be dropped:

- Feature	# Missing	Missingness
- AMJIND	84080	0.362789
- ACLSWKR	83508	0.360321
- AMJOCC	84080	0.362789
- MIGSAME	114346	0.493381
- MIGMTR4	114346	0.493381
- MIGMTR3	114346	0.493381
- MIGMTR1	114346	0.493381
- AUNMEM	203225	0.876877
- PARENT	203808	0.879392
- GRINREG	208751	0.900721
- MIGSUN	208751	0.900721
- GRINST	209776	0.905143
- AHSCOL	215546	0.930040
- AUNTYPE	222633	0.960619
- VETQVA	228779	0.987138

With the following to be kept:

- Feature	# Missing	Missingness
- AREORGN	1672	0.007214
- PENATVTY	5057	0.021820
- PEMNTVTY	8779	0.037880
- PEFNTVTY	9690	0.041810

Target Variable

- Target Feature is binned at <50k and >50k
- This was converted to 1 for >50 and 0 for <50
- Data was clean and had no missing values

The target variable is highly unbalanced, and this will have to be considered for model creation.

Numerical Features

	mean	median		min	max	var	std	skew
AAGE	34.5389 98	33.0	0.0		90.0	4.98114 0e+02	22.3184 68	0.37278 5
AHRSPAY	55.1050 27	0.0	0.0		9999.0	7.47151 5e+04	273.340 729	8.87878 0
CAPGAIN	431.742 176	0.0	0.0		99999.0	2.18160 8e+07	4670.76 8536	19.0905 69
CAPLOSS	36.8490 10	0.0	0.0		4608.0	7.27865 2e+04	269.789 771	7.68592 4
DIVVAL	195.851 259	0.0	0.0		99999.0	3.75525 1e+06	1937.84 7082	27.1442 87
NOEMP	1.95617 2	1.0	0.0		6.0	5.59254 8e+00	2.36485 7	0.75231 7
WKSWO RK	23.1783 75	8.0	0.0		52.0	5.95556 0e+02	24.4040 16	0.21001 8

- 7 continuous numerical features.
- AHRSPAY (Wage per hour), CAPGAIN, CAPLOSS, and DIVAL are all highly right skewed.
- AHRSPAY, CAPGAIN and DIVAL all have ceiling of 9999

Numerical Features

- Low correlations between most of the variables
- NOEMP and WKSWORK have high correlation
 - This is understandable as someone who has employees likely works a higher amount of weeks

Nominal Features Summary

- Most features can be left as is
- The features with larger number of categories can have them consolidated as many categories only show <50k
- Country of organ for mother, father, and self may consider changing to USA not USA if performance looks to be ian issue
- Year could possibly be deleted
- Education should be updated to Ordinal

Model Evaluation

Test Train Split

```
train = df[df['ZZ_SPLIT'] == 'train'].reset_index()

train = train.drop(columns=['ZA_TARGET','ZZ_SPLIT'])

y_train = train['ZA_TARGET']

test = df[df['ZZ_SPLIT'] == 'test'].reset_index()

X_test = test.drop(columns=['ZA_TARGET','ZZ_SPLIT'])

y_test = test['ZA_TARGET']
```

- Train Test split 80:20
- Split was given by files
- Data was converted into ordinal, numerical, and nominal features converted into 1 hot encoding
- Data scaled using MinMax Scaler

Model Evaluation

Logistic Regression, Random Forest, XGBoost

```
logR = LogisticRegression(max iter= 10000)
param grid logR = \{'C' : [0.001, 0.01, 0.1, 1, 10, 100]\}
grid logR = GridSearchCV(estimator=logR, param grid=param grid logR,cv=8)
grid logR = grid logR.fit(X train,y train)
rf = RandomForestClassifier(n jobs=14)
param grid rf = {'max depth': [1,2,4,8,16],
          'n estimators':[100,150,200],
          'max features':['sqrt',1,5,10,20],
          'min_samples_split': [1,2,4,6]}
grid rf = GridSearchCV(estimator=rf, param grid=param grid rf,scoring='None',cv=8)
grid_rf = grid_rf.fit(X_train,y_train)
xg = xgb.XGBClassifier()
param grid xg = \{ \text{"gamma"}: [0.1, 0.2, 0.3, 0.4, 0.5], 
                  "max depth": [1,2,3,4,5], # default 3
                  "n estimators": [100,150,200]}
grid xg = GridSearchCV(estimator=xg, param grid=param grid xg,cv=8)
grid xg = grid xg.fit(X train,y train)
```

```
----- Logistic Regression ----
Accuracy: 0.9203716314816617
f1: 0.1982788777723361
Testing
Accuracy: 0.9222181823078685
f1: 0.06928778601353529
```

```
---- Random Forest ----
Accuracy: 0.9305310410962712
f1: 0.31145395688408295
Testing
Accuracy: 0.9318466448511291
f1: 0.2971809470906819
```

```
F1 : 0.2971809470906819
---- XGBoost ----
Accuracy : 0.9342904395925118
f1 : 0.4463700234192038
Testing
Accuracy : 0.9365060127391966
f1 : 0.44821533060269164
```

JNIVERSITY of

ANIEL FELIX RITCHIE SCHOOL

OF ENGINEERING & COMPUTER SCIENCE

Important Features

Logistic Regression

Logistic Regression							
	Feature	Coef	Coef_abs	Coef_odds	Coef_prob		
3	AHGA	4.293125	4.293125	73.194849	0.986522		
0	AAGE	2.461090	2.461090	11.717576	0.921369		
12	WKSWORK	1.863244	1.863244	6.444612	0.865675		
5	CAPGAIN	1.133288	1.133288	3.105851	0.756445		
6	CAPLOSS	1.068971	1.068971	2.912380	0.744401		

2	XGBo	ost				
		Feature	Coef	Coef_abs	Coef_odds	Coef_prob
	3	AHGA	4.59835	4.59835	99.320302	0.990032
	0	AAGE	2.73568	2.73568	15.420226	0.939099
	12	WKSWORK	1.90952	1.90952	6.749848	0.870965
	5	CAPGAIN	1.14659	1.14659	3.147442	0.758888
	6	CAPLOSS	1.09426	1.09426	2.986972	0.749183

- Most Important Feature for both Models: AHGA (Education)
- Logistic Regression
 - If Education increases by 1 odds of an income >50k increase be 73
- XGBoost
 - If Education increases by 1 odds of an income >50k increase be 99

Conclusion

- XGBoost Performed the best on the test set with 93.6% accuracy
- Test and Train set Accuracy were dimilar, so did not suffer from Over/Under fitting
- F1 score low, so mostly guessed with the majority result (income<50k)
- XGBoost best model to move forward

