

Advancing healthcare through material innovations

DrugDelivery Systems

GINAS:

Industry perspective on polymer specifications/registration

Katherine Ulman
Associate Scientist & Global Regulatory
Compliance Manager
Dow Corning Healthcare
Katherine.l.ulman@dowcorning.com

DOW CORNING

Silicone

nomenclature

SILICA

Silica or SiO2, an oxide

A common mineral: sand, quartz, ...
Only natural source of silicon is as silica or silicates in the magma and in minerals

SILICON

Si

Silicon or Si, a metal

Second most common element on earth after oxygen

Element	Rank	Abundance (%)
Oxygen	1	49.2
Silicon	2	25.7
Carbon	14	0.1

DOW CORNING

Silicones

nomenclature

- The name of Silic......
 - Silica -Sand, naturally occurring, oxide of silicon (SiO₂)
 - Silicate -Si & O and other metals, inorganic material
 - Silicon -The pure element Si, made by reduction of sand with carbon
 - Silicone -A wide range of polymeric materials containing Si-O-Si bond
- Described by Kipping in 1908 as "Me₂SiO" where Me = CH₃
- Today, Commercial Name for numerous products
- Actually, Polymers: polydimethylsiloxanes (PDMS)

Me₃SiO(SiMe₂O)₃SiMe₃

DOW CORNING

Silicone

building blocks

 \mathbf{M}

D

T

0

 $Me_3SiO_{1/2}$

3

End block

Me₂SiO_{2/2}

2

Siloxane polymer

MeSiO_{3/2}

1

Silicone resins

SiO_{4/2}

0

Silica

Organic

Soft & Flexible

Inorganic

Hard & Brittle

Siloxane

most common ... PDMS

Trimethylsilyloxy endblocked polydimethylsiloxane!

Other names:

Dimethicone

 α -(Trimethylsilyl)- ω -methylpoly[oxy(dimethylsilylene)] [9006-65-9]

e.g. Me₃SiO(SiMe₂O)₄SiMe₃

The siloxane chain is polar, but shielded by hydrophobic low interacting methyl groups.

DOW CORNING

DOW CORNING

PDMS polymer synthesis

2. Chlorosilanes hydrolysis:

3. Polymerization:

Condensation Polymerization:

```
y HO(SiMe<sub>2</sub>O)<sub>x</sub> H \rightarrow HO(SiMe<sub>2</sub>O)<sub>n</sub>H 
linear oligomers PDMS polymer
```

Ring Opening Polymerization:

DOW CORNING

Silicone polymer

Physico-chemistry - polydispersity

PDMS is comprised of polydispersed polymers containing some low MW species which are typically reduced during manufacturing

The presence of low MW species is part of the pharmacopoeia monograph test requirements

	Dimethicone NF	Dimeticone EP	Silicone oil EP
Gravimetric loss	< 2 %	< 0.3 %	< 2 %
	15 g / 4 h / 200 °C	1 g / 2h / 150 °C	2 g / 24 h /150 °C

DOW CORNING

Typical Physical Properties

DOW CORNING 360 Medical Fluids
DOW CORNING Q7-9120 Silicone Fluids

USP NF Dimethicone Ph.Eur. - Dimeticone Ph. Eur. - Silicone Oil used as lubricant

$$H_3C$$
 H_3C
 Si
 CH_3
 $Si-CH_3$
 CH_3
 CH_3

Physical Form @ 25°C	Liquid
Color @ 25°C	Colorless

Viscosity (cSt)	Specific Gravity	Refractive Index (RI)	GPC Mn	Me ₃ SiO[Me ₂ SiO] _x SiMe ₃ Value for "x"
20	0.951	1.4018	2310	24
100	0.967	1.4032	6530	72
350	0.972	1.4042	11600	146
500	0.972	1.4043	13300	174
1000	0.972	1.4046	15500	208
12500	0.972	1.4047	28700	487

DOW CORNING

Pharmacopeia Specifications	Dimethicone USP NF	Dimeticone Ph.Eur.
	20, 100, 350, 1000 cSt	20, 100, 350, 1000 cSt
Refractive Index	X	
Viscosity, capillary (cSt)	X	X
Specific Gravity	X	
Acid No., BPB (mg KOH/g)	X	X
UV Spec. For phenyl		X
IR Identification	Х	X
Volatile Content, %	X	
PDMS Spectrum 368	Х	
Bacterial Endotoxins, LAL, < 10 EU/mL	X	
Mineral Oil – no Fluorescence		X
Heavy metals, Dithizone =/< 5 ppm of the standard	Х	X
Colorimetric, Silicone Present		X
Silicate, Silicone present		X

defining properties

product specifications

DOW CORNING

We help you invent the future.[™]

Dimethicone Fluids

US FDA IID Listings for Dimethicone

Ingredient	Route of Delivery	Form	CAS#	UNII code	Max use	unit
DIMETHICONE 1000	ORAL	CAPSULE, ENTERIC COATED PELLETS	9006659	MCU2324216	2.5	MG
DIMETHICONE 350	ORAL	CAPSULE	9006659	2Y53S6ATLU	3.7	MG
DIMETHICONE 350	ORAL	CAPSULE, SUSTAINED ACTION	9006659	2Y53S6ATLU	0.114	MG
DIMETHICONE 350	TOPICAL	EMULSION, CREAM	9006659	2Y53S6ATLU	1	%
DIMETHICONE 350	TOPICAL	SOLUTION	9006659	2Y53S6ATLU	0.5	%
DIMETHICONE MEDICAL FLUID 360	DENTAL	INJECTION		92RU3N3Y1O		
DIMETHICONE MEDICAL FLUID 360	INTRAVENOUS	INJECTABLE		92RU3N3Y1O		
DIMETHICONE MEDICAL FLUID 360	TOPICAL	EMULSION, CREAM		92RU3N3Y1O	5	%
DIMETHICONE MEDICAL FLUID 360	TOPICAL	LOTION		92RU3N3Y1O	1	%
DIMETHICONE MEDICAL FLUID 360	TRANSDERMAL	FILM, CONTROLLED RELEASE		92RU3N3Y1O	564	MG

NOTE: IID shows a "generic" UNII for dimethicone, however, the intent is for GInAS not to include this "generic" UNII code

DOW CORNING

GInAS Names (domain, language, jurisdiction)

June 11, 2014

Monomers (not defining)

June 11, 2014

Polymer topology: fragments and connections

Annotate defining properties

$$\begin{array}{c|c}
H_3C \\
H_3C-Si
\\
H_3C
\end{array}$$

$$\begin{array}{c|c}
CH_3 \\
Si
\\
CH_3
\\
CH_3
\end{array}$$

$$\begin{array}{c|c}
CH_3 \\
Si-CH_3 \\
CH_3
\end{array}$$

defining properties
Refractive Index
Viscosity, capillary (cSt)
Specific Gravity

June 11, 2014

Review and submit

June 11, 2014

Silicone Fluids vs Silicone Elastomers

- ➤ Silicone polymers are easily converted into elastomers by creating covalent bonds between adjacent macromolecules to form three-dimensional networks
- Silicone elastomers differ from linear silicone fluids in three ways

Linear Polymers	Elastomers
Physical properties determined by chain length	Physical properties determined by degree of crosslinking
Linear polymers are liquids, viscosity increases with increases in molecular weight	Elastomers are solids with indefinite molecular weight
Soluble in solvents	Swell in solvents

SILASTIC® Medical Adhesive Silicone, Type A

Formulation

Polymer (SiOH terminated PDMS)

Crosslinker (triacetoxysilane)

Silica

Catalyst (sn)

Note: Sn catalyst used for Medical Adhesive Silicone, Type A is bovine free

SILASTIC® Medical Adhesive Silicone, Type A

Vulcanization of Acetoxy Elastomer

DOW CORNING

SILASTIC® Medical Adhesive Silicone, Type A US FDA IID Listing

Ingredient	Route of Delivery	Form	CAS#	UNII code	Max use	unit
SILASTIC MEDICAL ADHESIVE, SILICONE TYPE A	IMPLANTATION	PELLET, IMPLANT		PENDING	13	MG

DOW CORNING

Typical Physical Properties as supplied

Property	SILASTIC Medical Adhesive, Type A
Appearance, uncured	Translucent paste
Skin-over time, @ 55% RH	7 – 8 minutes
Specific Gravity @ 25 °C	1.06
Durometer, hardness, Shore A	35
Tensile Strength	3.3 MPa / 480 psi
Elongation at break	450 %

defining properties

product specifications

DOW CORNING

SILASTIC® Medical Adhesive Silicone, Type A (Med A) Starting Materials

Starting materials are not always required, and are not directly definitional. However, they are helpful for searching, indexing, and for broad information.

DOW CORNING

(Med A) Topology: fragments and connections

DOW CORNING

Example of dimethylsiloxane/ methylvinylsiloxane copolymer formulation

Polymer(s)

$$\begin{array}{c} \text{CH2=CH} \xrightarrow{\text{H}_3\text{C}} \text{Si} \xrightarrow{\text{O}} \\ \text{H}_3\text{C} \end{array} \begin{array}{c} \text{CH}_3 \\ \text{Si} \\ \text{CH}_3 \end{array} \begin{array}{c} \text{CH}_3 \\ \text{Si} \\ \text{CH=CH2} \end{array} \begin{array}{c} \text{CH}_3 \\ \text{Si-CH=CH2} \\ \text{CH}_3 \end{array}$$

dimethyl, methylvinyl siloxane, dimethylvinylsiloxy-terminated

Filler (SiO₂)

Catalyst

bis-(2, 4-dichlorobenzoyl) peroxide

DOW CORNING

Peroxide Cure (vinyl present)

Reactions continue to form crosslinked network

DOW CORNING

Facts about peroxide cure HCRs

- Heat-activated cure
- Peroxide crosslinks organic groups via free-radical addition
- Physical properties vary with gum (polymer) type, filler level and peroxide type
- Cure rate can be varied by temperature, peroxide type and concentration
- Forms peroxide by-products which typically require post cure to remove

Dimethylsiloxane/methylvinylsiloxane copolymer US FDA IID Listings

Ingredient	Route of Delivery	Form	CAS#	UNII code	Max use	unit
DIMETHYLSILOXANE/ METHYLVINYLSILOXANE COPOLYMER	IMPLANTATION	PELLET, IMPLANT		Pending	142	MG
DIMETHYLSILOXANE/ METHYLVINYLSILOXANE COPOLYMER	IMPLANTATION	ROD		Pending	142	MG
DIMETHYLSILOXANE/ METHYLVINYLSILOXANE COPOLYMER	INTRAUTERINE	INTRAUTER INE DEVICE		Pending	121	MG
POLY(DIMETHYLSILOXANE/ METHYLVINYLSILOXANE/ METHYLHYDROGENSILOXANE) DIMETHYLVINYL OR DIMETHYLHYDROXY OR TRIMETHYL ENDBLOCKED	VAGINAL	DRUG DELIVERY SYSTEM		Pending	9980	MG

Typical Physical Properties of Cured Silicone Elastomer

Property	Cured Elastomer	
Physical Form	Rubber	
Color	Color of the cured article (e.g. translucent gray)	
Specific Gravity @ 25 °C	Ratio of the weight of a given volume of material to the weight of an equal volume of water.	
Durometer, hardness, Shore A	Measure of cured elastomer (rubber) hardness.	
Tensile Strength	Force required to extend a known dimension of a cured rubber article.	
Elongation at break	Length a sample can be stretched before it breaks.	
defining properties product specifications		

DOW CORNING

 Will the database differentiate between different "grades" of product based on some physical modification (e.g. fluid that has been depyrogenated)?

$$\begin{array}{c|c} H_3C \\ H_3C-Si \\ H_3C \end{array} \begin{array}{c} CH_3 \\ Si \\ CH_3 \\ \end{array} \begin{array}{c} CH_3 \\ Si-CH_3 \\ CH_3 \end{array} \begin{array}{c} VS \end{array} \begin{array}{c} H_3C \\ H_3C-Si \\ \end{array} \begin{array}{c} O \\ H_3C \end{array}$$

- If so, how?
- How far back in the synthesis /chemistry will be necessary/appropriate?
 - from sand? silicon? chlorosilanes? dimethyl cyclics and/or oligomers?

DOW CORNING

- What basis will be used to determine when a range for a defined polymer property (MW, degree of substitution, etc) is outside an established UNII?
 - How will different ratios of copolymers be handled?
 - What about different polymer end-groups or level of backbone functionality?

$$\begin{array}{c} H_3C \\ H_3C \\ Si \\ H_3C \end{array} \begin{array}{c} CH_3 \\ Si \\ CH_3 \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ Si-CH_3 \\ CH_3 \end{array}$$

$$H_3C$$
 $HO-Si$
 H_3C
 CH_3
 $Si-OH$
 CH_3
 CH_3

$$\begin{array}{c|c} CH_3 & CH_3 \\ H_2C = CH - Si \\ CH_3 & CH_3 \end{array} \begin{array}{c} CH_3 \\ Si \\ CH_3 \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ Si - CH = CH_2 \\ CH_3 \end{array}$$

Viscosity (cSt)	Me ₃ SiO[Me ₂ SiO] _x SiMe ₃ Value for "x"
20	24
100	72
350	146
500	174
1000	208
12500	487

DOW CORNING

- How will "formulations" be handled
 - uncured elastomers

 H₃C
 HO Si
 H₃C
 CH₃
 Si
 O
 CH₃
 Si OH
 CH₃
 CH₃
 Si
 O
 CH₃
 - simethicone / simethicone emulsions

$$H_3C$$
 H_3C
 H_3C
 Si
 Si
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

- What about when different ingredients and/or additives are used to produce the same monograph product?
 - simethicone / simethicone emulsions
- How will ingredients that are chemically modified during use be handled?
 - Cured elastomers / rubbers / adhesive
 - Acrylic pressure sensitive adhesives

DOW CORNING

- What about substances that could be produced differently?
 - Fumed silica,
 - precipitated silica,
 - ground silica (quartz)?
- What about polymers sold in solvent where the solvent is removed during processing?

DOW CORNING

We help you invent the future.™

June 11, 2014

34

Bibliography:

Silicones chemistry and properties:

- Noll, W., "Chemistry and technology of silicones", Academic Press (1968)
- Owen, M.J., "Why silicones behaves funny", Chemtech, <u>11</u>, 288 (1981) (revised and reprinted in Chimie Nouvelle, <u>85</u>, 27 (2004))
- Hardman, B. and Torkelson, A., "Silicon compounds (Silicones)", 20, 922, Encyclopedia of Chemical Technology, Kirk-Othmer, Wiley-Interscience publ. (1982)
- Colas, A., "Silicones: Preparation, Properties and Performance", Chimie Nouvelle, <u>8</u> (30), 847 (1990) (revised 2004)
- Silicones in Industrial Applications, *Inorganic Polymers*, Nova Publishers, Edited by Roger De Jaeger and Mario Gleria, 2007.

DOW CORNING

