EMBEDDED SYSTEM DESIGN

Subject Code: (EC734PE)

Regulations: R16 JNTUH

Class : IV Year B. Tech ECE I

Semester-I

Department of Electronics and communication Engineering

BHARAT INSTITUTE OF ENGINEERING AND TECHNOLOGY

Ibrahimpatnam -501 510, Hyderabad

EMBEDDED SYSTEM DESIGN (EC734PE) COURSE PLANNER

I. COURSE OVERVIEW:

Embedded systems course is continuous of the Microprocessor and Microcontrollers, is intended to Designing, Implementation and Test of embedded applications. The topics covered are definition of embedded systems, history, classification, characteristics and major applications, Quality attributes of embedded systems, types of processors, ASICs, PLDs, COTS, Memory Interface, communication interface, embedded firmware design and development, RTC, RTOS, Task, task scheduling ,threads, multitasking, Task communication, Task synchronization techniques, device drivers.

Understand need of microprocessors, microcontrollers in development of various projects and to know complete Operating Systems, RTOS.

II. PREREQUISITES:

- 1. Microprocessor & Microcontroller concepts and applications
- 2. Assembly language concepts
- 3. Operating system concepts
- 4. Computer organization and architecture concepts
- 5. Design analysis of different day to day equipments
- 6. Basics of all electronics components

III. COURSE OBJECTIVES:

1.	Students have knowledge about the basic functions, structure, concepts and applications of embedded systems.
2.	Develop familiarity with 8051 Microcontrollers and their applications in an embedded environment.
3.	To learn the method of designing and program an Embedded Systems for real time applications.
4.	To understand operating system concepts, types and choosing RTOS.
5.	Students have knowledge about the development of embedded software using RTOS and implement small programs to solve well-defined problems on an embedded platform.
6.	Develop familiarity with tools used to develop in an embedded environment.

IV. COURSE OUTCOMES:

S.No	Description	Bloom's Taxonomy Level
1.	Understand basic concept of embedded systems.	Knowledge,
1.		Understand(Level1, Level2)
2.	Apply and analyze the applications in various	Apply, Create(Level 3, Level
۷.	processors and domains of embedded system.	6)
3.	Analyze and develop embedded hardware and software	Analyze (Level 4)
3.	development cycles and tools.	
4.	Analyze to understand what a microcomputer, core of	Analyze (Level 4)
4.	the embedded system.	
5.	Remember the definitions of ASICs, PLDs, memory,	Knowledge,
٥.	memory interface.	Understand(Level1, Level2)
6.	Analyze to understand different concepts of a RTOS,	Analyze (Level 4), Apply
0.	sensors, memory interface, communication interface.	(Level 3)

V. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Level	Proficiency assessed by
PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems related to Electronics & Communication and Engineering.	3	Lectures and problem solving
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems related to Electronics & Communication Engineering and reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	Design Exercises, Assignments
PO3	Design/development of solutions: Design solutions for complex engineering problems related to Electronics & Communication Engineering and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Lectures, Assignments, Exams
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	3	Lectures, Assignments, Exams
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	3	Lectures and Design Exercises
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the Electronics & Communication Engineering professional engineering practice.	3	Lectures, Assignments, Exams
PO7	Environment and sustainability: Understand the impact of the Electronics & Communication Engineering professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	3	Lectures, Assignments, Exams
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	-	-

	Program Outcomes	Level	Proficiency assessed by
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	2	Group discussions
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	3	Document Preparation and Presentation
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	3	Discussions Exams, Seminars
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	3	Development of Mini Projects

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: None VI. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency assessed by
PSO 1	Professional Skills: An ability to understand the basic concepts in Electronics & Communication Engineering and to apply them to various areas, like Electronics, Communications, Signal processing, VLSI, Embedded systems etc., in the design and implementation of complex systems.	1	Lectures, Assignments
PSO 2	Problem-Solving Skills: An ability to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions.	2	Tutorials
PSO 3	Successful Career and Entrepreneurship: An understanding of social-awareness & environmental-wisdom along with ethical responsibility to have a successful career and to sustain passion and zeal for real-world applications using optimal resources as an Entrepreneur.	3	Seminars, Projects

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: None

VII. SYLLABUS:

UNIT -I

Introduction to Embedded Systems: Definition of Embedded System, Embedded Systems Vs General Computing Systems, History of Embedded Systems, Classification, Major Application Areas, Purpose of Embedded Systems, Characteristics and Quality Attributes of Embedded Systems.

UNIT-II:

Typical Embedded System: Core of the Embedded System: General Purpose and Domain Specific Processors, ASICs, PLDs, Commercial Off-The-Shelf Components (COTS), Memory: ROM, RAM, Memory according to the type of Interface, Memory Shadowing, Memory selection for Embedded Systems, Sensors and Actuators, Communication Interface: Onboard and External Communication Interfaces.

UNIT -III:

Embedded Firmware: Reset Circuit, Brown-out Protection Circuit, Oscillator Unit, Real Time Clock, Watchdog Timer, Embedded Firmware Design Approaches and Development Languages.

UNIT-IV:

RTOS Based Embedded System Design: Operating System Basics, Types of Operating Systems, Tasks, Process and Threads, Multi processing and Multi tasking, Task Scheduling.

UNIT-V:

TASK COMMUNICATION: Shared Memory, Message Passing, Remote Procedure Call and Sockets, Task Synchronization: Task Communication/Synchronization Issues, Task Synchronization Techniques, Device Drivers, How to Choose an RTOS.

TEXT BOOKS:

1. Introduction to Embedded Systems - Shibu K.V, Mc Graw Hill.

REFERENCE BOOKS:

- 1. Embedded Systems Raj Kamal, TMH.
- 2. Embedded System Design Frank Vahid, Tony Givargis, John Wiley.
- 3. Embedded Systems Lyla, Pearson, 2013.
- 4. An Embedded Software Primer David E. Simon, Pearson Education.

NPTEL Web Course:

1. http://nptel.ac.in/courses/108102045/

NPTEL Video Course: Embedded Systems

1. http://nptel.ac.in/courses/108102045/

GATE SYLLABUS: Not Applicable IES SYLLABUS: Not Applicable VIII. COURSE PLAN(WEEK-WISE):

Session	Week	Unit	Topics	Course Learning outcomes	Teaching Methodologies	Reference
1			Introduction to embedded systems	Memorize about Embedded systems	Chalk & Talk	T1
2	1	I	Embedded systems vs general computing systems	Describe about embedded systems	Chalk & Talk	T1
3			Embedded systems vs general computing systems	Describe about embedded systems	Chalk & Talk	T1

4			Classification of embedded systems	Classify embedded systems	Chalk & Talk	T1
5	=		Classification of embedded	Classify embedded	PPT	T1
6			systems Major applications area	Describe about major applications area	Chalk & Talk	T1
7			Characteristics and quality attributes of embedded systems.	Analysis of Characteristics and quality attributes of embedded systems.	Chalk & Talk	T1
8	2		Characteristics and quality attributes of embedded systems.	Analysis of Characteristics and quality attributes of embedded systems.	Chalk & Talk	T1
9			Typical embedded systems	Explain the typical embedded systems	Chalk & Talk	T1
10			Typical embedded systems	Explain the typical embedded systems	Chalk & Talk	T1
11			Typical embedded systems	Explain the typical embedded systems	Chalk & Talk	T1
12			General purpose and domain specific processors	Explain the general purpose and domain specific processors	Chalk & Talk	T1
13	3		general purpose and domain specific processors	Explain the general purpose and domain specific processors	Chalk & Talk	T1
14			ASICs, PLDs	Describe about ASICs,PLDs	Chalk & Talk	T1
15		II	ASICs, PLDs	Describe about ASICs,PLDs	PPT	T1
16			Commercial off-the shelf components(COTS),	Analysis of commercial off-the shelf components(COTS),	Chalk & Talk	T1
17			Commercial off-the shelf components(COTS),	Analysis of commercial off-the shelf components(COTS),	Chalk & Talk	T1
18	4		Memory	Classification of Memories	Chalk & Talk	T1
19			Memory according to the types of interface	Explain the Memory according to the types of interface	Chalk & Talk	T1
20			Memory according to the types of interface	Explain the Memory according to the types of interface	Chalk & Talk	T1

21			Sensors and actuators	Explain the sensors and actuators	PPT	T1		
22			Sensors and actuators	Explain the sensors and actuators	Chalk & Talk	T1		
23	5		Communication interface	Explain the communication interface	Chalk & Talk	T1		
24			Embedded Firmware	Describe about Embedded Firmware	Chalk & Talk	T1		
25			Reset circuit	Explain about Reset circuit	Chalk & Talk	T1		
26			Brown-out Protection circuit	Explain about Brown- out Protection circuit	Chalk & Talk	T1		
27			Oscillator Unit	Explain the Oscillator Unit	Chalk & Talk	T1		
28	6		Real time clock	Explain the Real time clock	Chalk & Talk	T1		
29		III	Watchdog Timer	Explain the watchdog Timer	Chalk & Talk	T1		
30			Embedded Firmware Design Approaches	Analysis of Embedded Firmware Design Approaches	Chalk & Talk	T1		
31			Embedded Firmware Design Approaches	Analysis of Embedded Firmware Design Approaches	Chalk & Talk	T1		
32			Developments Languages	Developments Languages	Students's Seminar	T1		
33	7		Developments Languages	Developments Languages	Chalk & Talk	T1		
34					RTOS BAESD EMBEDDED SYSTEM DESIGN	Applying knowledge on RTOS based embedded system design	Chalk & Talk	T1
35			Operating systems basics	Explain the Operating systems basics	Chalk & Talk	T1		
36		IV	Types of operating systems	Different types of operating systems	Chalk & Talk	T1		
37	8		Types of operating systems	Different types of operating systems	PPT	T1		
38			Tasks, Process and Threads	Explain about Tasks, Process and Threads	Chalk & Talk	T1		

39			Tasks, Process and Threads	Explain about Tasks, Process and Threads	Chalk & Talk	T1
40			Multiprocessing and multitasking	Describe the Multiprocessing and multitasking	Chalk & Talk	T1
41			Multiprocessing and multitasking	Describe the Multiprocessing and multitasking	Chalk & Talk	T1
42			Task scheduling	Analysis of Task scheduling	PPT	T1
43	9		Task Communication	Discuss Task Communication	Chalk & Talk	T1
44			Task Communication	Discuss Task Communication	Chalk & Talk	T1
45			Shared memory	Discuss shared memory	Students's Seminar	T1
46			Message passing	Explain the message passing.	Chalk & Talk	T1
47			Remote procedure call	Explain the remote procedure call.	Chalk & Talk	T1
48	10		Sockets	Explain about the sockets.	Chalk & Talk	T1
49		V	Task synchronization issues	Discuss task synchronization issues	Chalk & Talk	T1
50			Task synchronization Techniques	Explain the task synchronization techniques	Chalk & Talk	T1
51			Task synchronization Techniques	Explain the task synchronization techniques	Chalk & Talk	T1
52	11		Device drivers	Explain the device drivers	Chalk & Talk	T1
53	11		Device drivers	Explain the device drivers	Chalk & Talk	T1
54			How to choose an RTOS	Analysis concepts of how to choose an RTOS	Chalk & Talk	Т1

IX. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Outco mes		Program Outcomes										5	rograi Specifi utcom	c	
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	P	PO 12	PS O1	PS O2	PS O3
CO1	2	2	2	2	3	2	2	-	2	2	2	2	1	2	2

CO2	3	3	2	2	2	3	3	-	2	2	2	2	1	2	2
CO3	2	2	3	2	2	3	3	-	3	3	3	3	1	3	3
CO4	2	2	2	3	3	3	2	-	2	2	2	2	1	2	2
CO5	3	3	3	3	2	2	3	-	2	2	2	2	3	1	2
CO6	3	3	3	3	3	2	2	-	3	3	3	3	1	3	3
	1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: None														
X. QUES'	X. QUESTION BANK: (JNTUH)														
UNIT I	UNIT I														
т .	,														

Long Answer Questions:

S. No	Question	Blooms Taxonomy Level	Course Outcome
1	What is an embedded system? Explain the different applications of embedded systems?	Remember	1
2	Explain the various purposes of embedded systems in detail with illustrative examples?	Understand	1
3	Explain the different classifications of embedded systems. Give an example for each?	Evaluate	1
4	Explain the different characteristics of embedded systems in detail?	Understand	1
5	Explain quality attribute in the embedded system development context	Remember	1
6	What are the different qualities attributes to be considered in an embedded system design?	Understand	1
7	What is the operational quality attribute? Explain the important operational quality attributes to be considered in any embedded system design?	Understand	1
8	What is the non-operational quality attribute? Explain the important operational quality attributes to be considered in any embedded system	Understand	1
9	Explain the quality attribute Response in the embedded system design Context?	Evaluate	1
10	Explain the quality attribute Throughput in the embedded system design Context?	Evaluate	1

S. No	Question	Blooms Taxonomy Level	Course Outcome
1	Define a System. With examples	Understand	1
2	Discuss an embedded system	Understand	1
3	Write the advantages of embedded system	Apply	1
4	Write the disadvantages of embedded system	Understand	1
5	Give the applications of an embedded system	Understand	1
6	Describe various classifications of embedded systems?	Remember	1

7	Give two essential units of a processor on an embedded	Apply	1
	system		
8	Analyze the execution unit of a processor in an embedded system do	Apply	1
9	Give the classification of embedded system	Apply	1
10	Discuss the various embedded system requirements	Understand	1

UNIT II

Long Answer Questions:

S. No	Question	Blooms Taxonomy Level	Course Outcome
1	Explain the components of typical embedded systems in detail?	Evaluate	2
2	Which are the components used as the core of an embedded systems? Explain the merits and drawbacks?	Understand	2
3	What is the difference between microprocessor and microcontroller? explain the role of micro processors and micro controller	Understand	2
4	What is digital signal processing (DSP)? Explain the role of DSP in embedded system design?	Evaluate	2
5	What is processor architecture? What is the different processor architectures available processor/controller design? Give an example	Evaluate	2
6	What is programmable logic device? What are different types of PLDs? Explain the role of PLDs in embedded system design?	Understand	2
7	What are the different types of memories used in embedded systems design? Explain the role of each?	Analyze	2
8	What are the different types of memories used for program storage in embedded systems design?	Analyze	2
9	What are the advantages of FLASH over other program storage memory in Embedded system design?	Understand	2
10	What is sensor? Explain its role in embedded system design? Illustrate	Evaluate	2

S. No	Question	Blooms Taxonomy Level	Course Outcome
1	Describe the components used as the core of an embedded system?	Understand	2
2	Give the difference between microprocessor and microcontroller?	Understand	2
3	Define is digital signal processing (DSP)?	Understand	2

4	Define is processor architecture?	Understand	2
5	Define programmable logic device?	Understand	2
6	Write the difference between RISC and CISC processors	Analyze	2
7	Write the difference between PLD and ASIC?	Analyze	2
8	Write the difference between masked ROM and OTP?	Analyze	2
9	Discuss the different types of RAM used for embedded	Apply	2
	system design?		
10	Define SRAM cell?	Understand	2

UNIT III

Long Answer Questions:

S. No	Question	Blooms Taxonomy Level	Course Outcome
1	What is embedded firmware? What are the different approaches available for embedded firmware development?.	Understand	3
2	Explain the role of RESET circuit in embedded system	Analyze	3
3	Explain the role of Real Time Clock in embedded system	Analyze	3
4	Explain the role of Watch dog Timer in embedded system	Evaluate	3
5	Explain the role of Brown out protection circuit in embedded system	Evaluate	3
6	Explain the various steps involved in the assembling of an assembly language program?	Evaluate	3
7	Explain the advantages of Assembly level language based on embedded firmware development?	Evaluate	3
8	Explain the high level language based on embedded firmware development technique?	Apply	3
9	Explain about source file to object file translation in the assembly language based development	Apply	3
10	Explain about library file creation and usage in the assembly language based development?	Evaluate	3

S. No	Question		Course Outcome
1	Define Assembly Level Language?	Remember	3
2	Discuss about format of the assembly level language?	Remember	3
3	What is absolute object file?	Understand	3

4	Write the difference between compiler and cross compiler?	Understand	3
5	Define inline assembly?	Analyze	4
6	Give the limitations of the high level language based	Analyze	4
	development?		
7	Write short notes on Linker and Locater?	Understand	4
8	Discuss about the object to hex file converter?	Understand	4

UNIT IV

Long Answer Questions:

S. No	Question	Blooms Taxonomy Level	Course Outcome
1	What is kernel? What are the different functions handled by a general purpose kernel?	Understand	4
2	What is the difference between a general purpose kernel and real time kernel? Give an example for both?	Understand	4
3	Explain the difference between memory management of general purpose kernel and real time kernel?	Apply	4
4	Explain how accurate time management is achieved in real time kernel	Apply	4
5	Explain the TASK and Process in the operating system context?		4
6	Explain the memory architecture of a process?	Apply	4
7	Explain various activities involved in the creation of process and threads?	Apply	4
8	What is process control block (PCB)? Explain the structure of the PCB	Understand	5
9	What is task control block (TCB)? Explain the structure of the TCB	Understand	5
10	Explain how Threads and process are related? what are the common to process and threads?	Evaluate	5
11	Explain how multithreading can improve the performance of an application with an illustrative example?	Apply	5
12	Explain thread context switch and the various activities performed in thread context switching for user level and kernel level threads	Evaluate	5

S. No	Question		Course Outcome
1	Define is an operating system?	Understand	4
2	Define kernel?	Understand	4

3	Discuss about kernel space and user space	Understand	4
4	Define monolithic and micro kernel?	Understand	4
5	Define task control block?	Understand	4
6	Define virtual memory?	Understand	4
7	Analyze how accurate time management is achieved in real time kernel?	Analyze	4
8	Define process life cycle?	Understand	4
9	Define process control block?	Understand	5
10	Analyze how threads and process are related?	Analyze	5
11	Give the difference between threads and process in detail?	Understand	5
12	Give the comparison between multitasking, multiprogramming, multi processing?	Understand	5
13	Discuss all activates are involved in the context switching?	Evaluate	5
14	Define task scheduling?	Understand	5
15	Explain the different queues are associated with process scheduling?		5

UNIT V

Long Answer Questions:

		Blooms	Course
S.	Question	Taxonomy	Outcome
No		Level	
1	Explain the various process interaction models in detail	Understand	6
1	Explain the various process interaction models in detail	Understand	6
2	What is inter process communication (IPC)? give an overview of different IPC mechanisms adopted by various operating systems?	Understand	6
3	Explain The message passing technique for IPC. What are the merits and demerits of message based IPC?	Apply	6
4	Explain the synchronous and asynchronous messaging mechanisms for IPC under windows kernel?	Remember	6
5	What is priority inversion? What are the different techniques adopted for handling priority inversion?	Remember	6
6	What is mutual exclusion in the process synchronization context? Explain the different mechanisms for mutual exclusion?	Understand	6
7	What is priority inversion? What are the different techniques adopted for handling priority inversion?	Remember	6

8	Explain the interlocked functions for locked based mutual	Understand	6
	under windows OS		
9	What is semaphore? Explain the different types of	Understand	6
	semaphores. Where it is used?		
10	Explain the semaphore based process synchronization under	Understand	6
	windows OS		
11	Explain the event and event object based synchronization	Remember	6
	mechanism for IPC Windows OS		
12	What is critical section? What are the different	Remember	6
	techniques for controlling access to critical section?		
13	Explain the architecture of Device drivers	Remember	6

Short Answer Questions:

		Blooms	Course
S.	Question	Taxonomy	Outcome
No		Level	
1	Define deadlock?	Understand	6
2	Discuss about Coffman conditions	Understand	6
3	Discuss about the different methods of handling deadlocks?	Apply	6
4	Give the difference between buffer over run and buffer under run?	Analyze	6
5	Define task synchronization?	Understand	6
6	Give the difference between mutex and semaphores?	Analyze	6
7	Analyze the critical section problem?	Understand	6
8	Define device driver?	Apply	6
9	Discuss about the sleep and wakeup mechanism for mutual exclusion	Understand	6

OBJECTIVE-TYPE QUESTIONS:

UNIT I

1.	causes the machine to leave a state after a certain amount of time
	a) Call event b) time out c) both d) none
2.	In UML, diagram shows the sequence of events
	a) Sequential diagram b) collaboration diagram c) class diagram d) state diagram
3.	is a type of aggregation in which the owner does not allow access to the
	Components objects
4.	is a type of aggregation in which the owner does not allow access to
5.	The component objects
	a) Composition b) aggregation c) association d) generalization
6.	allows us to define one class in terms of another

	a) Composition b) inheritance c) generalization d) none
	7. In state machine, changes from one state to another are triggered by the occurrence of
	8. Requirements of embedded systems can be divided into categories
	9. An object includes a set of that define its internal states
	IT II
	1. Shift key is also called as
	2. In 8051, two 16 bit registers are,
	3. The difference between port 0 and port 1 is
	4. All counter action is controlled by
	5. What a TCON register consists?
	6. The primary function of the SCON register is
	7. Internal ROM size in the 8031
	8. Execution time of a single cycle instruction for a 6MHz crystal
	9. The flags stored in PSW are 10. Address of the stack when the 8051 is reset
	11. Number of register banks and their address
	12. The baud rate for the serial port in mode 0 for a 6MHz crystal
	13. Address of a subroutine that handles a timer 1 interrupt
	IT III
	Command always ends with return.
	2. A opcode is encountered at the end of the subroutine.
	3. 8051 mnemonic code for NOT Boolean operator is
	4. The 8-bitregister is used to hold internal RAM address.
	5. 8051 mnemonic code for AND Boolean operator is
	is an input/output similar Port to Port1.
	6. In 8051 architecture, is a 16-bit register which holds the address of the
	external data memory address to be accessed.
	7. The 8051 contains general purpose registers.
	8. Name three high level languages
	9. The utility used to test a program
	10. The following rotates the A register one bit position to he left
	a. a)RLA b) RLCA c) RRA d) RRCA
	11. Rotation of nibbles in register A results in operation
TINI	a. a)Swap b) rotate right c) circular rotation d) non
	IT IV
	PSOC is based on architecture.
2.	PSOC stands for
3.	PSOC is inbuilt with and blocks.
4.	PSOC has number of analog blocks.
	PSOC has number of digital blocks.
	PSOC has on chip memory flash of size.
	PSOC has onchip memory of bytes of SRAM.
	It has external programmable clocking of KHZ.
9.	It has and dedicated peripherals.

1() is a key application point in PSOC
11	I. It has number of addressing modes.
12	2. PSOC has number of instruction formats.
13	3. In programming model we have and editors.
	TIT V
1.	The purpose of application generating multiple PWM signals from single PWM generator is
	to demonstrate the of digital system.
2.	Application code is based on a with four states.
	The purpose of application which establishes a point to point remote control channel in the
٠.	2.4 GHz ISM band is
4.	The above application has two components as and
	In the above application transmitter continuously samples the switch connected to
	When pressed the transmitter sends the packet containing to the
	receiver on channel0.
7.	The device editor in PSOC is first used to the transmitter and receiver
	nodes.
8.	The is used next to write the application code for both.
9.	is the drawback in considering such architectures.
	Can PSOC be used for serial communication (Y/N)
XI	I. GATE QUESTIONS: Not Applicable
XI	II. WEBSITES:
1.	www.ARM.org
2.	www.embeddedworld.com
3.	www.iitd.ac.in
4.	www.google.com
XI	V. EXPERT DETAILS:
1.	Sai Pavan Sudha Manager – Ami Tech India Pvt. Ltd.
2.	P. Raghu Sr. Hardware Engineer – Ami Tech India Pvt. Ltd.
	Pratap Reddy Prof. JNTUH
	Dr. E. Venkat Reddy Prof. BIET
XV	. JOURNALS:
	ΓERNATIONAL
	International Journal of Embedded Systems
	International Journal of Embedded Systems and Applications
	American Journal of Embedded Systems and Applications
	TIONAL
	Journal of Embedded Systems
	I-Manager Journal On Embedded System
	Advances In Computer Science & Engineering
4.	Invent Impact : Robotics

- XVI. LIST OF TOPICS FOR STUDENTS SEMINARS:
- Embedded system design process
 GPS system and toy train applications
 Overview of 8051
- 4. Programming of 8051

- 5. Applications using 8051
- 6. Instruction set in 8051
- 7. Assembly language programming process
- 8. Interfacing of display units
- 9. Serial data communication
- 10. Interfacing of key board & stepper motor
- 11. Classification of operating systems
- 12. Overview of RTOS
- 13. Inter task communication tools
- 14. ARM overview
- 15. Advantages and applications of ARM

XVII. CASE STUDIES / SMALL PROJECTS:

- 1. Automization of house hold application
- 2. Industrial atomization system for temperature & pressure monitoring
- 3. Automization of railway signalling system
- 4. GPS monitoring system
- 5. Theft control on motor vehicles using GSM & GPRS
- 6. Digital notice board
- 7. Embedded applications in army application.