Universidade Federal de Goiás

SCAPS

Sistema de Controle de Acesso de Pessoas em um Shopping

Bruna Michelly de O. S. Cordeiro Thalia Santos de Santana

2020

SCAPS

- O trabalho consiste no desenvolvimento de um Sistema de Controle de Acesso de Pessoas em um Shopping SCAPS;
- O código fonte, imagens e relatórios estão disponíveis em: https://github.com/brunacordeiro/SCAPS
- Quatro etapas foram definidas:
 - Núcleo funcional do sistema composto pelos componentes e suas interações;
 - o Coordenação, consenso e controle de concorrência;
 - o Tolerância a falhas e replicação (confiabilidade, disponibilidade, performance);
 - Aspectos de segurança da interação entre os componentes e apresentação final.

Cenário

Passeio das Águas Shopping

- 78 mil m²
- 283 lojas
- 1 hipermercado
- 7 salas de cinema

Cenário

Passeio das Águas Shopping

- 78 mil m²
- 283 lojas
- 1 hipermercado
- 7 salas de cinema

Dispositivo

Passeio das Águas Shopping

- Raspberry Pi Câmera ângulo 60°

Núcleo funcional do sistema composto pelos componentes e suas interações

- Middleware RabbitMQ;
- Protocolo AMQP;
- Padrão publish/subscribe;
- Dados de entrada sendo as informações das câmeras (de modo simulado);
- Sequência de números binários, "0" para saída e "1" para entrada;
- Linguagem de programação Python, versão 3;
- Elementos:
 - Portas;
 - Escadas;
 - o Elevadores.

Arquitetura

SCAPS

Acesso ao primeiro piso

- 3 portas
- 5 escadas
- 5 elevadores

Coordenação, consenso e controle de concorrência

• Manter consistência e coerência do estado de todos os componentes do sistema;

Senders

- SenderDoor1, SenderDoor2, SenderDoor3;
- SenderElevator1, SenderElevator2, SenderElevator3, SenderElevator4 e SenderElevator5;
- o SenderLadder1, SenderLadder2, SenderLadder3, SenderLadder4 e SenderLadder5;

Consumers

- ConsumerDoors;
- ConsumerElevators;
- o ConsumerLadders.

Coordenação, consenso e controle de concorrência

Arquitetura

SCAPS

Acesso ao primeiro piso

- 3 portas
- 5 escadas
- 5 elevadores

Aplicação

exchange='contagem', queue="routing_key='contagem'

Tolerância a falhas e replicação (confiabilidade, disponibilidade, performance)

- Quando uma conexão falha, as mensagens podem estar em trânsito entre o cliente e servidor. Em tais eventos, as mensagens precisarão ser retransmitidas. Os Acknowledgements - Acks permitem que o servidor e os clientes saibam quando fazer isso.
- Os Acks podem ser usados em ambas as direções: para permitir que um consumidor indique ao servidor que recebeu e/ou processou uma entrega e para permitir que o servidor indique a mesma coisa ao consumidor. O uso de Ack garante pelo menos uma entrega.
- Do ponto de vista de balanceamento de cargas, ao utilizar o AMQP dentro do RabbitMQ, o balanceamento já é efetuado naturalmente entre os consumidores.

```
channel.basic_qos(prefetch_count=1)
channel.basic_consume(queue=queue_door, on_message_callback=callback, auto_ack=True)
channel.start_consuming()
```


Aspectos de segurança da interação entre os componentes e apresentação final

No RabbitMQ, as filas têm propriedades que definem o comportamento e a segurança. No trabalho foram usadas:

- Nome
- Durável (a fila sobreviverá a uma reinicialização do corretor)
- Exclusivo (usado por apenas uma conexão e a fila será excluída quando a conexão for fechada)
- Tipo (fanout)
- Ligação (routing_key chave de ligação)

Usuário e senha configurado para acesso ao RabbitMQ

```
sudo rabbitmqctl add_user scaps 123456789
sudo rabbitmqctl set_user_tags scaps administrator
sudo rabbitmqctl set permissions -p / scaps "." ".*"
```


AWS

Detalhes

- Características da máquina
 - Ubuntu Server 18.04 LTS (HVM), SSD Volume Type ami-0bcc094591f354be2 (64-bit x86) / ami-0bc556e0c71e1b467 (64-bit Arm)
 - Currently selected: t2.micro (Variable ECUs, 1 vCPUs, 2.5 GHz, Intel Xeon Family, 1 GiB memory, EBS only)
- Grupo de segurança
 - ScapsSecurityGroup
 - Protocolo TCP, Intervalo de Portas 5672

Universidade Federal de Goiás

SCAPS

Sistema de Controle de Acesso de Pessoas em um Shopping

Bruna Michelly de O. S. Cordeiro Thalia Santos de Santana

2020

