Modelling CS u: control input, y: plant output State variable CS is in state variable form if State variable CS is in state variable form if $x_1 = f_1(t, x_1, \dots, x_n, u), \dots, x_n = f_n(t, x_1, \dots, x_n, u) \\ y = h(t, x_1, \dots, x_n, u) \text{ is a collection of } n \text{ 1st order ODEs.} \\ \text{Time-Invariant (TI) CS is TI if } f_i(\cdot) \text{ does not depend on } t. \\ \text{State space (SS) TI CS is in SS form if } x = f(x, u), y = h(x, u) \\ \text{where } x(t) \in \mathbb{R}^n \text{ is called the state.} \\ \text{Single-input-single-output (SISO) CS is SISO if } u(t), y(t) \in \mathbb{R}. \\ \text{LTI CS in SS form is LTI if } x = Ax + Bu, \ y = Cx + Du \\ A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}, \ C \in \mathbb{R}^{p \times n}, \ D \in \mathbb{R}^{p \times m} \\ \text{where } x(t) \in \mathbb{R}^n, \ u(t) \in \mathbb{R}^m, \ y(t) \in \mathbb{R}^p. \\ \text{Input-Output (IO) LTI CS is in IO form if} \\ \frac{d^ny}{dt^n} + a_{n-1} \frac{d^{n-1}}{dt^{n-1}} + +a_1 \frac{dy}{dt} + a_0 y = bm \frac{d^mu}{dt^m} + +b_1 \frac{du}{dt} + b_0 u \\ \text{where } m \leq n \text{ (causality)} \\ \text{IO to SS Model 1. Define } x \text{ s.t. highest order derivative in } x \\ \end{cases}$ IO to SS Model 1. Define x s.t. highest order derivative in \dot{x} 2. Write x=Ax+Bu=f(x,u) by isolating for components of x 3. Write y=Cx+Du=h(x,u) by setting measurement output y to component of xg to component of x . Equilibria y_d (steady state) b/c if $y(0)=y_d$ at t=0, then $y(t)=y_d \ \forall t\geq 0.$

Equilibrium pair Consider the system x=f(x,u). The pair (\bar{x},\bar{u}) is an equilibrium pair if $f(\bar{x},\bar{u})=0$. Equilibrium point \bar{x} is an equilibrium point w/ control $u=\bar{u}$. If $u=\bar{u}$ and $x(0)=\bar{x}$ then $x(t)=\bar{x}$ $\forall t\geq 0$ (i.e. a system that starts at equilibrium remains at equilibrium). Find Equilibrium Pair/Point 1. Set f(x,u)=0 2. Solve f(x,u)=0 to find $(x,u)=(\bar{x},\bar{u})$. 3. If specific $u=\bar{u}$, then find $x=\bar{x}$ by solving $f(x,\bar{u})=0$.

Linearization of Nonlinear System Consider system x = f(x, u) w/ equ. pair (\bar{x}, \bar{u}) , then error coordinates around equ. pair $\delta x = x - \bar{x}$, $\delta u = u - \bar{u}$, $\delta y = y - h(\bar{x}, \bar{u})$ w/ $\delta \dot{x} = A\delta x + B\delta u$, $A = \frac{\partial f(\bar{x}, \bar{u})}{\partial x} \in \mathbb{R}^{n+1} \times n^{-1}$, $B = \frac{\partial f(\bar{x}, \bar{u})}{\partial u} \in \mathbb{R}^{n+1}$,

 $0 \xrightarrow{\text{Plant}} y \xrightarrow{\text{Approximat}} 0 \xrightarrow{\gamma} \underbrace{0}_{\text{total}} \underbrace{S \times \text{lond}}_{\text{blant}} \underbrace{S \times \text{lond}}_{\text{blant}} \underbrace{S}_{\text{total}} \underbrace{0}_{\text{blant}} \underbrace{0}_{\text{blant}}$

Linear Approx. Given a diff. fcn. $f: \mathbb{R} \to \mathbb{R}$, its linear approx at \bar{x} is $f_{\text{lin}} = f(\bar{x}) + f'(\bar{x})(x - \bar{x})$. *Remainder Thm: $f(x) = f_{\text{lin}} + r(x)$ where $\lim_{x \to \bar{x}} \frac{r(x)}{x - \bar{x}} = 0$.

Ť(%)

*Note: Can provide a good approx. near \bar{x} but not globally.

*Note: Can provide a good approx. near x but not globally. *Gen. $f: \mathbb{R}^{n} 1 \to \mathbb{R}^{n} 2$, $f(x) = f(\bar{x}) + \frac{\partial f}{\partial x}(\bar{x})(x - \bar{x}) + R(x)$ *Jacobian: $\frac{\partial f}{\partial x}(\bar{x}) = \left[\frac{\partial f}{\partial x_1}(\bar{x}) \cdots \frac{\partial f}{\partial x_{n_1}}(\bar{x})\right] \in \mathbb{R}^{n_2 \times n_1}$ Linearization Steps 1. Find equ. pair (\bar{x}, \bar{u}) 2. Derive A, B, C, D and then evaluate at (\bar{x}, \bar{u})

Laplace Transform Given a fcn $f: \mathbb{R}_+ \to \mathbb{R}^n$, its Laplace transform is $F(s) = \mathcal{L}\{f(t)\} := \int_{0^{-}}^{\infty} f(t)e^{-st} dt, s \in \mathbb{C}.$ * $\mathcal{L}: f(t) \mapsto F(s), t \in \mathbb{R}_{+}$ (time domain) & $s \in \mathbb{C}$ (Laplace

domain). **P.W. CTS:** A for $f: \mathbb{R}_+ \to \mathbb{R}^n$ is **p.w. cts** if on every finite interval of \mathbb{R} , $f(\cdot)$ has at most a finite # of discontinuity points (t_i) and the limits $\lim_{t \to t_i^+} f(t)$, $\lim_{t \to t_i^-} f(t)$ are finite.

Exp. Order A function $f: \mathbb{R}_+ \to \mathbb{R}^n$ is of exp. order if \exists constants $K, \rho, T > 0$ s.t. $||f(t)|| \le Ke^{\rho t}, \forall t \ge T$. **Existence of LT Thm** If $f(\cdot)$ is p.w. cts and of exp. order w/ constants $K, \rho, T > 0$, then $F(\cdot)$ exists and is defined $\forall s \in D := \{s \in \mathbb{C} : Re(s) > \rho\}$ and $F(\cdot)$ is analytic on D. *D: Region of convergence (ROC), open half plane.

Unit Step 1(t) := $\begin{cases} 1, & \text{if } t \geq 0 \\ 0, & \text{otherwise} \end{cases}$ Table of Common Laplace Transforms: $f(t) \mid F(s)$ $1(t) \mapsto \frac{1}{s} \quad t1(t) \mapsto \frac{1}{s^2} \quad t^k \ 1(t) \mapsto \frac{k!}{s^{k+1}} \quad e^{at} \ 1(t) \mapsto \frac{1}{s-a}$ $t^n e^{at} \ 1(t) \mapsto \frac{n!}{(s-a)^{n+1}} \quad \sin(at) \ 1(t) \mapsto \frac{a}{s^2+a^2}$ $\cos(at) \ 1(t) \mapsto \frac{n!}{s^2+a^2}$ Prop. of Laplace Transform Linearity: $\mathcal{L}\{cf(t) + g(t)\} = c\mathcal{L}\{f(t)\} + \mathcal{L}\{g(t)\}, c \sim \text{constant}.$ Differentiation: If the Laplace transform of f'(t) exists, then $\mathcal{L}\{f'(t)\} = s\mathcal{L}\{f(t)\} - f(0^-).$

If the Laplace transform of $f^{(n)}(t) := \frac{d^n f}{dt^n}(t)$ exists, then $\mathcal{L}\{f^{(n)}(t)\} = s^n \mathcal{L}\{f(t)\} - \sum_{i=1}^n s^{n-i} f^{(i-1)}(0^-).$ Integration: $\mathcal{L}\left\{\int_0^t f(\tau) d\tau\right\} = \frac{1}{s} \mathcal{L}\{f(t)\}.$

Convolution: Let $(f*g)(t) := \int_0^t f(\tau)g(t-\tau)d\tau$, then $\mathcal{L}\{(f*g)(t)\} = \mathcal{L}\{f(t)\}\mathcal{L}\{g(t)\}$. Time Delay: $\mathcal{L}\{f(t-T)\mathbf{1}(t-T)\}=e^{-Ts}\mathcal{L}\{f(t)\}, t\geq 0.$ Multiplication by t: $\mathcal{L}\{tf(t)\} = -\frac{d}{ds}[\mathcal{L}\{f(t)\}].$

Shift in s: $\mathcal{L}\lbrace e^{at}f(t)\rbrace = F(s-a) = \mathcal{L}\lbrace f(t)\rbrace \big|_{s\to s-a}$, where

Inverse Laplace Transform Given F(s), its inverse LT is f(t) =Inverse Laplace Transform Given F(s), its inverse LT is $f(t) = \mathcal{L}^{-1}\{F(s)\} := \frac{1}{2\pi} \int_{c-j\infty}^{c+j\infty} F(s) e^{st} ds$ $= \lim_{w \to \infty} \frac{1}{2\pi} \int_{c-jw}^{c+jw} F(s) e^{st} ds, \ c \in \mathbb{C} \text{ is selected s.t. the line } L := \{s \in \mathbb{C} : s = c + j\omega, \omega \in \mathbb{R}\} \text{ is inside the ROC of } F(s).$ Zero: $z \in \mathbb{C}$ is a zero of F(s) if F(z) = 0.

 $\mathcal{L}\{f'(t)\} = s\mathcal{L}\{f(t)\} - f(0^{-}).$

 $F(s) = \mathcal{L}\{f(t)\} \& a \text{ const.}$

Pole: $p \in \mathbb{C}$ is a pole of F(s) if $\frac{1}{F(p)} = 0$.

3. Write $\delta \dot{x} = A \delta x + B \delta u$ and $\delta y = C \delta x + D \delta u$

 $\delta y = C\delta x + D\delta u, \ C = \frac{\partial L}{\partial \underline{x}}(\bar{x}, \bar{u}) \in \mathbb{R}^{1 \times n_1}, \ D = \frac{\partial h(\bar{x}, \bar{u})}{\partial u} \in \mathbb{R}$

*Only valid at equ. pairs.

Cauchy's Residue THM If F(s) is analytic (complex diff.) everywhere except at isolated poles $\{p_1,\ldots,p_N\}$, then $\mathcal{L}^{-1}\{F(s)\} = \sum_{i=1}^N \operatorname{Res}\left[F(s)e^{st}, s = p_i\right] \mathbf{1}(t),$ $\mathcal{L}^{-1}\{F(s)\} = \sum_{i=1}^{N} \operatorname{Res} \left[F(s)e^{st}, s = p_i\right] \mathbf{1}(t),$ $\operatorname{*Res}[F(s)e^{st}, s = p_i]: \operatorname{Residue} \text{ of } F(s)e^{st} \text{ at } s = p_i.$ $\operatorname{Residue} \text{ Computation Let } G(s) \text{ be a complex analytic fcn w/}$ $\text{a pole at } s = p, \ r \text{ be the multiplicity of the pole } p. \text{ Then }$ $\operatorname{Res}[G(s), s = p] = \frac{1}{(r-1)!} \lim_{m \to p} \frac{d^{r-1}}{d^{r-1}} \left[G(s)(s-p)^r\right].$ $\operatorname{Transfer Function:} \text{ Consider a CS in IO form. Assume zero initial conds. } y(0) = \dots = y^{(n-1)}(0) = 0 \text{ and}$ $u(0) = \dots = u^{(m-1)}(0) = 0. \text{ Then the TF from } u \text{ to } y \text{ is}$ $G(s) := \frac{y(s)}{u(s)} = \frac{b_m s^m + \dots + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_0}.$ ${}^*0 \text{ Ini. Conds.: } y_0(s) = G(s)u(s)$ ${}^*0 \text{ Ini. Conds.: } y_0(s) = y_0(s) + \operatorname{Poly. based on initial conds.}$

* \emptyset Ini. Conds.: $y_{\emptyset}(s) = y_{0}(s) + \frac{\text{poly. based on initial conds.}}{s^{n} + a_{n-1} s^{n-1} + \cdots + a_{0}}$ Impulse Response: Given CS modeled by TF G(s), its IR is $\begin{array}{l} g(t) \coloneqq \mathcal{L}^{-1}\{G(s)\}, \\ *y(t) = \mathcal{L}^{-1}\{Y(s)\} = \mathcal{L}^{-1}\{G(s)U(s)\} = (g*u)(t), \\ *\text{If } u(t) = \delta(t), \text{ then } y(t) = (g*u)(t) = g(t) \text{ and } \mathcal{L}\{\delta(t)\} = 1. \end{array}$