CARDIOVASCULAR DISEASE DETECTION USING OPTIMAL FEATURE SELECTION

K. NEHAS REDDY - 21951A04B6

N. MANISH - 21951A0492

B. SNEHA - 21951A04K4

CARDIOVASCULAR DISEASE DETECTION USING OPTIMAL FEATURE SELECTION

A Project Report submitted in partial fulfillment of the requirements for the award of the degree of

BACHELOR OF TECHNOLOGY IN

ELECTRONICS AND COMMUNICATION ENGINEERING

bv

K. NEHAS REDDY (21951A04B6)

N. MANISHKUMAR (21951A0492)

B. SNEHA (21951A04K4)

Under the guidance of

Dr. G MARY SWARNALATHA

Assistant Professor

Department of Electronics and Communication Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad – 500 043, Telangana

May 2025

© 2025,K. Nehas Reddy ,N. Manish Kumar,B.Sneha. All rights reserved **DECLARATION**

We certify that

a) The work contained in this report is original and has been done by us under the

guidance of my supervisor(s).

b) The work has not been submitted to any other Institute for any degree or diploma.

c) We have followed the guidelines provided by the Institute in preparing the

report.

d) We have conformed to the norms and guidelines given in the Ethical Code of

Conduct of the Institute.

e) Whenever we have used materials (data, theoretical analysis, figures, and text)

from other sources, we have given due credit to them by citing them in the text of

the report and giving their details in the references. Further, we have taken

permission from the copyright owners of the sources, wherever necessary.

Place: HYDERABAD Signature of the Student

21951A04B6

Date: 21951A04K4

21951A0492

CERTIFICATE

This is to certify that the project report entitled CARDIOVASCULAR DISEASE DETECTION USING OPTIMAL FEATURE SELECTION submitted by team K. NEHAS REDDY (21951A04B6), N. MANISH KUMAR (21951A0492) and ,B. SNEHA (21951A04K4) to the Institute of Aeronautical Engineering, Hyderabad in partial fulfilment of the requirements for the award of the Degree Bachelor of Technology in Electronics and Communication Engineering is a bonafide record of work carried out by them under the guidance and supervision. The contents of this report, in full or in parts, have not been submitted to any other Institute for the award of any Degree.

Supervisor
Dr. G. Mary Swarnalatha
Assistant Professor

Head of the Department

Dr. P Munaswamy

Professor

Date:

APPROVAL SHEET

This project report done CARDIOVASCULAR DISEASE DETECTION USING OPTIMAL FEATURE SELECTION by K. NEHAS REDDY (21951A04B6), N.MANISH KUMAR (21951A0492), B. SNEHA (21951A04K4) is approved for the award of the Degree Bachelor of Technology in ELECTRONICS AND COMMUNICATION ENGINEERING

Examiner(s) Supervisor

Dr. G. Mary Swarnalatha Assistant Professor

Principal

Dr. L V Narasimha Prasad

Date:

Place: HYDERABAD

ACKNOWLEDGEMENT

We wish to take this opportunity to express a deep gratitude to all those who helped, encouraged, motivated and have extended their cooperation in various ways during my project work. It is our pleasure to acknowledge the help of all those individuals and our family support responsible for foreseeing the successful completion of my project.

We would like to thank my project guide **Dr. G MARY SWARNALATHA**, **Assistant Professor of Electronics and Communication Engineering** and express my gratitude to **Dr. P MUNASWAMY**, **Head of the Department** with great administration and respect for their valuable advice and help throughout the development of this project by providing with required information without whose guidance, cooperation and encouragement, this project couldn't have been materialized.

We express our sincere gratitude to **Dr. L. V. Narasimha Prasad, Professor** and **Principal** who has been a great source of information for our work.

We thank our college management and respected **Sri M. Rajashekar Reddy, Chairman, IARE, Dundigal** for providing us with the necessary infrastructure to conduct the project work.

We take this opportunity to express our deepest gratitude to one and all who directly or indirectly helped me in bringing this effort to present form.

ABSTRACT

Cardiovascular disease (CVD) continues to be a cause of death underscoring the pressing need, for effective early detection methods. This study presents a machine learning driven framework for CVD detection focusing on enhancing feature selection from electrocardiogram (ECG) signals. The new system utilizes a range of feature selection techniques, including Fast Correlation Based Filter (FCBF) Minimum Redundancy Maximum Relevance (mRMR) Relief and Particle Swarm Optimization (PSO). These combined techniques are aimed at identifying features for precise classification thereby improving the efficiency of the diagnostic process. The key strength of this framework lies in its feature selection approach. FCBF is employed to eliminate redundant features from the dataset. MRMR further enhances this process by selecting features with relevance to the target variable while minimizing redundancy among them. Relief, a method for weighting features evaluates feature importance based on their ability to differentiate values, between related instances. Finally, PSO optimization fine tunes the feature set by mimicking social behavior patterns like bird flocking to determine the subset of features. The architecture uses Extra Trees (Trees) and Random Forest classifiers to categorize the optimized features. These ensemble learning methods are recognized for their reliability and precision, in managing datasets. The Extra Trees classifier, with its randomized selection of splits and averaging of outcomes is beneficial, for decreasing variability and preventing overfitting. Random Forest, which comprises decision trees, enhances prediction accuracy by combining the results of multiple trees and mitigating the risk of overfitting. The combination of these classifiers within the proposed system achieves remarkable accuracy rates of 100%, demonstrating its efficacy in early CVD detection. Such high accuracy is indicative of the system's potential to significantly improve diagnostic processes in healthcare settings. A comprehensive comparative analysis with state-of-the-art methods was conducted to validate the effectiveness of the proposed approach. This analysis involved diverse datasets to ensure that the system is versatile and generalizable across different types of ECG data. The results consistently showed that the proposed architecture outperforms existing methods, confirming its superiority in feature selection and classification accuracy.

Keywords: Cardiovascular Disease(CVD), Decision trees, random forest.

CONTENTS

Table of Cont	tents	Page No
Title Page		I
Declaration		II
Certificate		III
Approval Sheet		IV
Acknowledgement		V
Abstract		VI
Contents		VII
List of Figur	res	IX
List of Table	es	X
Chapter 1 -	Introduction	1
	1.1 Introduction	1
	1.2 Objectives	2 3
	1.3 Feasibility	3
	1.4 Existing Methodologies	4
	1.5 Proposed Methodology	6
	1.5.1 Data Preprocessing	6
	1.5.2 Feature Selection Techniques	6
	1.5.3 Classifier Training and Testing	7
	1.5.4 Evaluation Metrics	7
	1.6 Implementation Details	7
	1.7 Analysis and Discussion	8
	1.8 Significance of study	8
	1.8.1 Advancement of Non-Invasive Diagnostics	8
	1.8.2 Enhanced Predictive Accuracy and Reliability	
	1.8.3 Optimization of Clinical Decision Support	10
	1.8.4Cost-Effective Screening Solutions	10
	1.8.5 Empowering Healthcare in Resource-Limited	
	1.8.6 Data Collection	12
	1.8.7 Data Preprocessing	12
	1.8.8 Feature Selection	13
	1.9 Model Building	14
	1.9.1 Model Training	14
	1.9.2 Scope of the Study	15
	1.9.3 System Requirements	16
_	- Review of Relevant Literature	18
Chapter 3 -	- Methodology	24
	3.1 Project Structure	25
	3.2 Statistical Feature	30
	3.3 Numerical Distribution	32 35
	4 /LRT II 11PV/AC	4.3

Chapter 4 - Results and Discussions	37
4.1 MRMR Model Results	37
4.2 ANOVA Model Results	38
4.3 FCBF Model Results	39
4.4 LASSO Model Results	40
4.5 RELIEF Model Results	41
4.6 Accuracy of Each Model	42
4.7 Accuracy Table	42
4.8 Confusion Matrix Table	43
4.9 Pearson Correlation and Confusion Matrix	44
Chapter 5 - Conclusions and Future Scope	
5.1 Conclusion	45
5.2 Future Scope	45
References	46

LIST OF FIGURES

Figure No.	Figure Name	Page No.
3.1	METHODOLOGY	24
3.2	PROJECT WORKFLOW	25
3.3	STATISTICAL PROPERTIES	32
3.4	DENSITY DISTRIBUTION	33-34
3.5	ROC CURVES	36
4.1	MRMR	37
4.2	ANOVA	38
4.3	FCBF	39
4.4	LASSO	40
4.5	RELIEF	41
4.6	ACCURACY OF EACH MODEL	42
4.7	ACCURACY TABLE	42
4.8	CONFUSION MATRICES	43
4.9	PEARSON CORRELATION COEFFICIENT MATRIX	44

LIST OF TABLES

Table No.	Table Name	Page No.
1	STATISTICS TABLE	32
2	ACCURACY TABLE	42
3	CONFUSION MATRIX TABLE	43