4.1 Divisibility and Modular ARITHMETIC 19.) $f(x) = \begin{cases} x \mod m & \text{if } x \mod m \leq \lceil m/2 \rceil \\ (x \mod m) - m & \text{if } x \mod m > \lceil m/2 \rceil \end{cases}$ (37) a) if $ac = bc \pmod{m}$, where a, b, C and m are integers with $m \ge 2$, then $a = b \pmod{m} - 1$ show that this does not hold, we need to find an example in which $ac = bc \pmod{m}$, but $a = b \pmod{m}$. Let m = 4 and C = 2. Let a = 0, and b = 2 then ac = 0 and bc = 4, So $ac = bc \pmod{4}$, but $0 \neq 2 \pmod{9}$ b) if a = b (mod m) and $c = d \pmod{m}$, where a, b, c, d and m are integers with c and d positive and $m \ge 2$, then $a' = b' \pmod{m}$ this will not hold, we need c and c example where $a = b \pmod{m}$ and $c = d \pmod{m}$, but $a' \ne b' \pmod{m}$. Let m = 5, a = 3, b = 3, C = 1, d = 6, a = 3, $b = 729 = 4 \pmod{5}$ so $3 \neq 3 \pmod{5}$, even though $3 = 3 \pmod{5}$ and $1 = 6 \pmod{5}$. Since $a \equiv b \pmod{m}$, then $a \cdot a \equiv b \cdot b \pmod{m}$ i.e. $a^2 \equiv b^2 \pmod{m}$. Since $a \equiv b \pmod{m}$ and $a \equiv b^2 \pmod{m}$, then $a^3 \equiv b^3 \pmod{m}$. After k-1 applications, we will obtain $a \equiv b \pmod{m}$