

# Aula 7: Máquinas de Vetores de Suporte

André C. P. L. F de Carvalho ICMC/USP andre@icmc.usp.br







### **Tópicos**

- Introdução
- Risco empírico e risco estrutural
- Margens
- Margens suaves
- SVMs
- Kernels
- Multiclasses







### Teoria de Aprendizado Estatístico

- Algoritmos de AM
  - Estimam um função (modelo) a partir de um conjunto finito de objetos (exemplos)
  - o Função preditiva (classificador ou regressor)
- TAE estabelece princípios para induzir uma função com boa capacidade de generalização
  - Vapnik e Chervonenkis em 1968
  - Base das máquinas de vetores de suporte







#### TAE

- Sejam
  - h: classificador (hipótese, modelo, função)
  - H: conjunto de todos os classificadores que um algoritmo de AM pode induzir
- Algoritmo de AM utiliza conjunto de dados de treinamento para:
  - Induzir um classificador ĥ ∈ H
- Assume que dados são gerados de forma i.i.d. de acordo com P(x,y)







#### TAE

- TAE define condições matemáticas para auxiliar na escolha de uma boa função ĥ
  - A partir de um conjunto de dados de treinamento
  - Permite escolher **h** com menor risco esperado
    - Para manter bom desempenho com novos dados, avalia:
      - Desempenho preditivo de  $\hat{h}$  para dados do conjunto de treinamento
      - Complexidade de ĥ







#### Risco esperado (funcional)

Erro esperado de um classificador para todos os dados de um domínio

$$R(h) = \int c(h(x), y) dP(x, y)$$

 $R(h) = \int c(h(x), y) dP(x, y)$  C(h(x),y): função de custo relacionando a previsão h(x) à saída deseiada y, y  $\in \{-1, -1\}$ previsão h(x) à saída desejada y, y  $\in$  {-1,+1}

$$c(h(x), y) = \frac{1}{2} |y - h(x)|$$
 Tipo de função muito empregada em problemas de classificação é a 0-1

- Não é possível minimizar diretamente
  - P(x,y) real é desconhecida
  - Alternativa: minimizar risco empírico





### Risco empírico

- Algoritmos de AM supervisionado induzem n
   que minimize erro de treinamento
  - Esperando poucos erros para novos dados
- Minimização do risco empírico

$$R_{emp}(h) = \frac{1}{n} \sum_{i=1}^{n} c(h(x_i), y_i)$$

- o n: número de exemplos de treinamento
  - Quando  $n \rightarrow infinito$ ,  $R_{emp} \rightarrow R$  (risco esperado)





### Minimização de risco empírico

- Minimização convencional do risco empírico sobre conjunto de treinamento
  - o Não implica em boa generalização
  - o Diferentes funções podem aproximar bem os dados de treinamento
    - Difícil determinar a função que melhor captura a distribuição real dos dados









### Minimização de risco empírico

- Hipótese ĥ pode levar a uma boa estimativa da hipótese verdadeira
  - Mas nem sempre isso ocorre
    - Ex.: Overfitting
- Teoria do aprendizado estatístico provê limites para o risco esperado (funcional)
  - Que podem ser utilizados na escolha de uma hipótese com melhor generalização







Limite estabelecido pela TAE para SVMs



- $\circ$  VC: dimensão Vapnik-Chervonenkis da classe de funções H ( $\hat{\mathbf{h}} \in \mathbf{H}$ )
  - Mede a capacidade do conjunto de funções H
- o n: número de exemplos de treinamento
- Garantido com probabilidade 1-  $\theta$  ( $\theta \in [0,1]$ )





#### **Dimensão VC**

- Mede a capacidade de um conjunto de funções H
  - Quanto maior seu valor, maior a complexidade das funções que podem ser induzidas
    - Maior chance de overfitting
  - Limite estabelecido pela TAE que define o princípio de indução chamado minimização do risco estrutural
    - Busca ĥ de menor complexidade possível com baixo erro para os dados de treinamento







#### **Problemas**

- Não é fácil computar dimensão VC de uma classe de funções
  - Valor pode ser desconhecido ou infinito
  - Existem resultados alternativos para funções de decisão lineares (h(x) = w.x)
    - Vetor w é o vetor normal a h (w é perpendicular ao hiperplano de separação)
    - Relacionam o risco estrutural ao conceito de margens de exemplos





### Conceito de margens

- Margem de um exemplo:
  - Relacionada à sua distância à fronteira de decisão induzida no processo de aprendizado
  - o Medida de confiança da previsão de um classificador
- Risco (erro) marginal  $R_{
  ho}$ 
  - $\circ$  Proporção de exemplos de treinamento com margem de confiança inferior a uma constante  $\rho > 0$







### **Risco marginal**

$$R_{\rho}(h) = \frac{1}{n} \sum_{i=1}^{n} I(y_i h(x_i) < \rho)$$

- Onde
  - o I(q) = 1 (0) se q for verdadeiro (falso)





$$R(h) \le R_{\rho}(h) + \sqrt{\frac{c}{n}(\frac{r^2}{\rho^2}\log^2(\frac{n}{\rho}) + \log(\frac{1}{\theta}))}$$
 Termo de capacidade

- Onde:
  - $\circ$  r: raio de uma esfera que engloba as funções de H
  - o c: constante que determina a influência do limite (termo de capacidade)





- Valor de ρ influencia generalização
  - o Define a margem
  - o Alto, leva a aumento do erro marginal
    - Undefitting
  - o Baixo, reduz erro marginal, mas aumenta termo de capacidade (complexidade)
    - Overfitting
- Objetivo: encontrar hiperplano com margem  $\rho$  alta, mas com poucos erros marginais







- Isso é feito pelas máquinas de vetores de suporte (SVMs)
- Estratégia básica
  - Encontrar um hiperplano que maximize margem de separação (margem larga)
    - Distância da fronteira de decisão a um conjunto de "vetores de suporte"
    - Com erro marginal baixo
      - Número mínimo de objetos entre as margens







## Máquinas de Vetores de Suporte (SVMs)









## Máquinas de Vetores de Suporte (SVMs)







#### **Margens suaves**

- Não permitir exemplos entre as margens reduz tamanho da margem
  - Reduz generalização
- SVMs podem ser estendidas para tolerar exemplos dentro das margens
  - o Relaxamento de restrições impostas ao problema de otimização
    - Introdução de variáveis de folga







## Variáveis de folga

Slack variables







#### Linearmente separáveis

- SVMs apresentam bons desempenhos para problemas linearmente separáveis
  - o Não conseguem lidar com problemas não linearmente separáveis
- Alguns conjuntos de dados exigem fronteiras mais complexas que lineares
  - o Para isso foram propostas alterações baseadas no teorema de Cover







#### **Teorema de Cover**

Conjunto de dados não linearmente separáveis em um espaço pode ser transformado para outro espaço em que, com alta probabilidade, se tornam linearmente separáveis

- Condições:
  - Transformação seja não linear
  - o Dimensão do novo espaço seja suficientemente alta







#### Problemas não linearmente separáveis

- Generalização para problemas não lineares
- Mapeamento de dados de entrada para um espaço de maior dimensão







#### **Exemplo**

- Supor conjunto de dados X com 2 atributos preditivos
- Definir 3 pontos de localização no conjunto original
- Usar esses pontos para transformar 2 atributos originais em 3 outros atributos
  - $\circ$  Ex. Distância entre cada exemplo  $x_i$  e cada um dos 3 pontos de localização







#### Fronteiras mais complexas

- ullet Computação da função  $oldsymbol{arPhi}$  pode ter custo computacional elevado
  - o Informação necessária: cálculo do produto escalar entre objetos
  - Pode simplificada usando funções kernel (K)
    - Rcebem 2 pontos no espaço de entradas e calculam produto escalar deles no espaço de características
    - $\blacksquare \quad K(X_i, X_i) \leftrightarrow \Phi(X_i).\Phi(X_i)$





- Diversas
  - Gaussiana
  - Polinomial
    - Linear
  - Sigmoidal
  - Para aplicações específicas
- Seguem condições estabelecidas pelo teorema de Mercer
- Híper-parâmetros ajustáveis







- Em geral, K é menos complexa que  $\Phi$ 
  - $\circ$  É comum definir-se a função K sem conhecer-se explicitamente  $\Phi$

| Tipos de Kernel | Função $K(x_i, x_j)$ correspondente   |
|-----------------|---------------------------------------|
| Polinomial      | $(x_i^T.x_j + 1)^p (p = 1, linear)$   |
| Gaussiano       | $exp(-1/(2\sigma^2)   x_i - x_j  ^2)$ |
| Sigmoidal       | $tanh(\beta_0 x_i.x_j + \beta_l)$     |





- Mede similaridade entre objetos
- Kernel linear:
  - Indicado quando #atributos > #objetos
  - o Processamento mais rápido
- Kernel Gaussiano
  - Indicado quando #objetos > #atributos
- Kernels específicos são propostos para algumas aplicações













### Classificação multiclasses

- SVMs podem induzir apenas classificadores binários
  - o Outros algoritmos de AM têm a mesma limitação
- Existe um grande número de problemas reais com mais que 2 classes
  - Necessidade de estratégias multiclasses







### Estratégias multiclasses

- Duas abordagens têm sido utilizadas:
  - Algoritmo de classificação é internamente adaptado
    - Modificação de parte de suas operações internas
  - o Decomposição do problema multiclasses em vários problemas binários
    - Estratégias decomposicionais







### Estratégias decomposicionais

- Etapas
  - o Decomposição da tarefa
  - o Reconstrução
- Decomposição
  - o Geralmente reduz a complexidade da tarefa
  - o Permite processamento paralelo
  - o Alternativas:
    - Matrizes de códigos (MC)
    - Hierarquias de classificadores







### Matrizes de códigos

- Um-contra-todos (OAA)
  - o Um classificador para cada classe
    - k classificadores para k classes
- Todos contra todos (AAA)
  - o Um classificador para cada par de classes
    - k(k-1)/2 classificadores para k classes
- Error Correcting Output Codes (ECOC)
  - o Um código de correção de erro representando cada classe







### Matrizes de códigos









### Matrizes de códigos

Reconstrução = decodificação



- Função de decodificação d
- Hamming
- Baseada em margens





### Estratégias Hierárquicas

Organizam os preditores hierarquicamente







## Estratégias Hierárquicas

Reconstrução









#### Conclusão

- Teoria de Aprendizado Estatístico
- SVMs
- Problemas não linearmente separáveis
- Classificação binária e multiclasses
- Regressão







Fim do apresentação





