

Report No.: EED32L00127301 Page 1 of 96

TEST REPORT

Product : WIFI+BT Module

Trade mark : GSD

Model/Type reference : WCT3TM2311

Serial Number : N/A

Report Number : EED32L00127301

FCC ID : 2AC23-WCT3T

Date of Issue : Aug. 16, 2019

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Hui Zhou Gaoshengda Technology Co., LTD NO.75 Zhongkai Development Area Huizhou, Guangdong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By: Jay Zheng C

Compiled by:

Alex Wi

Reviewed by:

Mare Xin

Ware Xin

Jay Zheng

Kevin Yang

Date:

Aug. 16, 2019

Check No.: 3096342577

2 Version

Version No.	Date	Description
00	Aug. 16, 2019	Original
	/%	

Page 3 of 96

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested samples and the sample information are provided by the client.

Page 4 of 96

4 Content

1 COVER PAGE	
2 VERSION	
3 TEST SUMMARY	
4 CONTENT	4
5 TEST REQUIREMENT	
5.1 Test setup	6
6 GENERAL INFORMATION	
6.1 CLIENT INFORMATION	
7 EQUIPMENT LIST	10
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	14
EUT Duty Cycle	
Appendix K): Restricted bands around fundamental frequency (Radiated)	
PHOTOGRAPHS OF TEST SETUP	
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	

Report No. : EED32L00127301 Page 5 of 96

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

Report No.: EED32L00127301 Page 6 of 96

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:	(0)	(6)
Temperature:	24°C	
Humidity:	58 % RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

RF Channel				
L	Low(L)	>	Middle(M)	High(H)
Ch	nannel 1	(e	Channel 40	Channel79
24	402MHz	37	2441MHz	2480MHz
		│ ⊢at th	_	specific char

6 General Information

6.1 Client Information

Applicant:	Hui Zhou Gaoshengda Technology Co., LTD
· · ·	
Address of Applicant:	NO.75 Zhongkai Development Area Huizhou, Guangdong, China
Manufacturer:	Hui Zhou Gaoshengda Technology Co., LTD
Address of Manufacturer:	NO.75 Zhongkai Development Area Huizhou, Guangdong, China
Factory:	Hui Zhou Gaoshengda Technology Co., LTD
Adress of Factory:	NO.75 Zhongkai Development Area Huizhou, Guangdong, China

6.2 General Description of EUT

Product Name:	WIFI+BT Module		(000)	
Model No.(EUT):	WCT3TM2311			
Trade mark:	GSD			
EUT Supports Radios application:	BT 4.2 Dual mode, 2402-2480MHz			(30)
Power Supply:	5V	0		0
Sample Received Date:	May. 23, 2019			
Sample tested Date:	May. 23, 2019 to Aug. 15, 2019		13	

Page 8 of 96 Report No.: EED32L00127301

6.3 Product Specification subjective to this standard

Operation	Frequency:	2402MH	z~2480MHz	130	[4	(30)	
Bluetooth	Version:	2.1+EDR					
Modulatio	n Technique:	Frequen	cy Hopping Sp	read Spectru	ım(FHSS)		
Modulatio	n Type:	GFSK, π/4DQPSK, 8DPSK					
Number o	Channel: 79						(3)
Hopping (Channel Type:	Type: Adaptive Frequency Hopping systems					
Test Power	er Grade:	7					
Test Softv	vare of EUT:	MT7662	& V1.0.3.14				
Antenna 1	уре:	PIFA An	tenna	128		13	\
Antenna C	Gain:	4.2dBi	9	100)	(0,0))
Test Volta	ige:	DC 5V					
Operation	Frequency ea	ch of channe	el				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Report No. : EED32L00127301 Page 9 of 96

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2	DE newer conducted	0.46dB (30MHz-1GHz)		
2	RF power, conducted	0.55dB (1GHz-18GHz)		
3	Redicted Spurious emission test	4.3dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)		
4	Conduction aminging	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		

Report No. : EED32L00127301 Page 10 of 96

7 Equipment List

RF test system							
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020		
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020		
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020		
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002	(C)	01-09-2019	01-08-2020		
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020		
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020		
PC-1	Lenovo	R4960d		03-01-2019	02-28-2020		
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020		
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020		
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020		
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020		
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-28-2020		
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019		

Page 11 of 96

		Semi/full-anecho	Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-22-2020
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-24-2020
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 1	07-26-2019	07-24-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-26-2020
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/107 11112		01-09-2019	01-08-2020
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-28-2020
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-28-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106 SF106	5220/6A	01-09-2019 01-09-2019	01-08-2020
Cable line Cable line	Fulai(3M) Fulai(3M)	SF106 SF106	5216/6A 5217/6A	01-09-2019	01-08-2020 01-08-2020
Communication test set	R&S	CMW500	104466	01-18-2019	01-08-2020
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001	<u>-</u>	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020

Page 12 of 96

	3M full-a	nechoic Cham			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-17-2020
Receiver	Keysight	N9038A	MY5729013 6	03-27-2019	03-25-2020
Spectrum Analyzer	Keysight	N9020B	MY5711111 2	03-27-2019	03-25-2020
Spectrum Analyzer	Keysight	N9030B	MY5714087 1	03-27-2019	03-25-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-23-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-23-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-23-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-23-2021
		CLSA			
Communication Antenna Biconical	Schwarzbeck	0110L	1014	02-14-2019	02-13-2020
antenna	Schwarzbeck ETS-	VUBA 9117	9117-381	04-25-2018	04-23-2021
Horn Antenna	LINDGREN	3117	00057407	07-10-2018	07-08-2021
Preamplifier	EMCI	EMC18405 5SE	980596	05-22-2019	05-20-2020
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
Preamplifier	EMCI	EMC00133 0	980563	05-08-2019	05-06-2020
Preamplifier	Agilent	8449B	3008A0242 5	08-21-2018	08-20-2019
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-01-2019	04-30-2020
Signal Generator	KEYSIGHT	E8257D	MY5340110 6	03-01-2019	02-28-2020
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-15-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-08-2021
Cable line	Times	SFT205- NMSM- 2.50M	394812- 0001	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM- 2.50M	394812- 0002	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM- 2.50M	394812- 0003	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM- 2.50M	393495- 0001	01-09-2019	01-08-2020
Cable line	Times	EMC104- NMNM- 1000	SN160710	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020
Cable line	Times	HF160- KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020

Page 13 of 96

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020		
Temperature/ Humidity Indicator	Defu	TH128	/	06-14-2019	06-12-2020		
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020		
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020		
LISN	R&S	ENV216	100098	05-08-2019	05-06-2020		
LISN	schwarzbeck	NNLK8121	8121-529	05-08-2019	05-06-2020		
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020		
Current Probe	R&S	EZ-17 816.2063.03	100106	05-20-2019	05-18-2020		
ISN	TESEQ	ISN T800	30297	01-16-2019	01-15-2020		
Barometer	changchun	DYM3	1188	06-20-2019	06-18-2020		

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)

Page 15 of 96

EUT Duty Cycle

	Duty Cy	/cle	
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)
BDR-1Mbps	1.0000	1.0000	100.00%
EDR-3Mbps	1.0000	1.0000	100.00%

Report No. : EED32L00127301 Page 16 of 96

Appendix A): 20dB Occupied Bandwidth

Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
GFSK	LCH	1.025	0.90078	PASS
GFSK	MCH	1.035	0.90017	PASS
GFSK	HCH	1.035	0.89450	PASS
π /4DQPSK	LCH	1.292	1.1763	PASS
π /4DQPSK	MCH	1.285	1.1729	PASS
π /4DQPSK	HCH	1.289	1.1715	PASS
8DPSK	LCH	1.300	1.1825	PASS
8DPSK	MCH	1.295	1.1802	PASS
8DPSK	HCH	1.297	1.1784	PASS

Report No. : EED32L00127301 Page 17 of 96

Test Graph

Page 18 of 96

Page 19 of 96

Page 20 of 96

Appendix B): Carrier Frequency Separation

Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.036	PASS
GFSK	MCH	1.168	PASS
GFSK	HCH	1.056	PASS
π/4DQPSK	LCH	1.000	PASS
π/4DQPSK	MCH	1.000	PASS
π/4DQPSK	HCH	1.154	PASS
8DPSK	LCH	0.990	PASS
8DPSK	MCH	0.988	PASS
8DPSK	HCH	1.018	PASS

Page 21 of 96

Test Graph

Page 22 of 96

Page 23 of 96

Page 24 of 96

Appendix C): Dwell Time

Result Table

Mode	Packet	Chann el	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdi ct
GFSK	DH1	LCH	0.369863	320	0.118	0.15	PAS S
GFSK	DH1	мсн	0.369866	320	0.118	0.15	PAS S
GFSK	DH1	НСН	0.36986	320	0.118	0.15	PAS S
GFSK	DH3	LCH	1.62513	160	0.26	0.65	PAS S
GFSK	DH3	МСН	1.62513	160	0.26	0.65	PAS S
GFSK	DH3	НСН	1.62514	160	0.26	0.65	PAS S
GFSK	DH5	LCH	2.8612	106.7	0.305	0.57	PAS S
GFSK	DH5	МСН	2.852	106.7	0.304	0.57	PAS S
GFSK	DH5	HCH	2.8612	106.7	0.305	0.57	PAS S

Page 25 of 96

Test Graph

Page 26 of 96

Page 27 of 96

Page 28 of 96

Appendix D): Hopping Channel Number

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS

Page 29 of 96

Test Graph

Page 30 of 96

Appendix E): Conducted Peak Output Power

Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	4.264	PASS
GFSK	MCH	3.744	PASS
GFSK	HCH	3.414	PASS
π/4DQPSK	LCH	5.013	PASS
π/4DQPSK	MCH	4.559	PASS
π/4DQPSK	HCH	4.292	PASS
8DPSK	LCH	5.214	PASS
8DPSK	MCH	4.696	PASS
8DPSK	HCH	4.404	PASS

Page 31 of 96

Test Graph

Page 32 of 96

Page 33 of 96

Page 34 of 96

Appendix F): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequenc y Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict	
CESK	LCH	2402	3.942	Off	-58.555	-16.06	PASS	
GFSK	GFSK LCH	2402	3.822	On	-58.691	-16.18	PASS	
GFSK	HCH	2480	2.955	Off	-55.005	-17.05	PASS	
GFSK	псп		3.158	On	-56.181	-16.84	PASS	
π/4DQPSK	LCH	H 2402	4.057	Off	-58.560	-15.94	PASS	
II/4DQPSK	LCH		0.222	On	-60.245	-19.78	PASS	
π/4DQPSK	HCH	2490	3.142	Off	-56.655	-16.86	PASS	
II/4DQPSK	псп	2480	0.186	On	-56.887	-19.81	PASS	
8DPSK	1.011	ODDCK LOU	2402	3.940	Off	-58.846	-16.06	PASS
8DP3K	LCH	2402	1.656	On	-59.737	-18.34	PASS	
8DPSK	HCH	2490	3.063	Off	-56.110	-16.94	PASS	
ODPSK	поп	HCH 2480	2.328	On	-58.026	-17.67	PASS	

Report No. : EED32L00127301 Page 35 of 96

Test Graph

Page 36 of 96

Page 37 of 96

Page 38 of 96

Appendix G): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	3.874	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	3.353	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	HCH	2.928	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	3.861	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	3.507	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	HCH	3.057	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	4.003	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	3.406	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	HCH	3.079	<limit< td=""><td>PASS</td></limit<>	PASS

Page 40 of 96

Test Graph

Page 41 of 96

Page 42 of 96

Page 43 of 96

Page 44 of 96

Page 45 of 96

Page 46 of 96

Page 47 of 96

Page 48 of 96

Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No. : EED32L00127301 Page 50 of 96

Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PIFA Antenna and no consideration of replacement. The best case gain of the antenna is 4.2dBi.

Report No. : EED32L00127301 Page 51 of 96

Appendix J): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz- 1)The mains terminal disturban 2) The EUT was connected to Stabilization Network) which power cables of all other unwhich was bonded to the gradient for the unit being measured multiple power cables to a sexceeded. 3)The tabletop EUT was place reference plane. And for flow horizontal ground reference 4) The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT at LISN 2.	ce voltage test was co AC power source three provides a 50Ω/50 points of the EUT were cound reference planed. A multiple socket of the LISN provided the cound a non-metall por-standing arrangement plane, the vertical ground reference to the horizontal ground r	ough a LISN 1 (Line at H + 5Ω linear imponented to a sect in the same way a putlet strip was use the rating of the LIS ic table 0.8m above ent, the EUT was preference plane. The rence plane. The verbund reference plane into pof the groundints of the LISN 1 at	e Impedance edance. The cond LISN 2, is the LISN 1 d to connect N was not e the ground placed on the ercar of the ercical ground he. The LISN bonded to and reference and the EUT.
(20)	 In order to find the maximum of the interface cables must conducted measurement. 			
Limit:		0		
	Farmer (Add In)	Limit (c	dΒμV)	
	Frequency range (MHz)	Quasi-peak	Average	-
(9)	0.15-0.5	66 to 56*	56 to 46*	(20)
1	0.5-5	56	46	
	5-30	60	50	
(3)	* The limit decreases linearly with MHz to 0.50 MHz. NOTE: The lower limit is application.	100	(30)	e range 0.15

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 52 of 96

Model/Type reference Product : WIFI+BT Module

Temperature : 21°C Humidity

Live line:

Limit: FCC Class B CE(QP)

Phase: L1 AC120/60Hz Power.

Temperature:

Humidity:

EUT: M/N: Mode: ON Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	52.48	9.97	62.45	66.00	-3.55	peak	
2		0.1500	37.92	9.97	47.89	56.00	-8.11	AVG	
3		0.2220	41.36	10.04	51.40	62.74	-11.34	peak	
4		0.2310	29.21	10.04	39.25	52.41	-13.16	AVG	
5		0.3030	31.87	10.10	41.97	60.16	-18.19	peak	
6		0.3030	18.14	10.10	28.24	50.16	-21.92	AVG	
7		0.4650	8.29	10.00	18.29	46.60	-28.31	AVG	
8		0.5685	21.04	10.08	31.12	56.00	-24.88	peak	
9		4.2945	31.20	9.83	41.03	56.00	-14.97	peak	
10		4.8210	20.34	9.83	30.17	46.00	-15.83	AVG	
11		17.2455	16.61	9.96	26.57	50.00	-23.43	AVG	
12		17.5605	28.43	9.95	38.38	60.00	-21.62	peak	

*:Maximum data x:Over limit !:over margin Reference Only

File: 0820\Data:#1

Page: 1

Engineer Signature:

Page 53 of 96

Neutral line:

EUT: M/N: Mode: ON Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	51.88	9.97	61.85	66.00	-4.15	peak	
2		0.1635	37.28	9.99	47.27	55.28	-8.01	AVG	
3		0.2175	25.86	10.03	35.89	52.91	-17.02	AVG	la disconnection of the control of t
4		0.2220	41.12	10.04	51.16	62.74	-11.58	peak	
5		0.2895	32.16	10.09	42.25	60.54	-18.29	peak	
6		0.2895	17.05	10.09	27.14	50.54	-23.40	AVG	
7		5.2215	30,33	9.83	40.16	60.00	-19.84	peak	
8		5.7525	20.05	9.84	29.89	50.00	-20.11	AVG	
9		7.9980	28.36	9.89	38.25	60.00	-21.75	peak	
10		8.1555	17.28	9.89	27.17	50.00	-22.83	AVG	
11		17.3220	18.05	9.96	28.01	50.00	-21.99	AVG	
12		17.4435	28.31	9.96	38,27	60.00	-21.73	peak	

*:Maximum data	x:Over limit	!:over margin			Reference Only
File :0820\Data :#2	2		Page: 1	Engineer Signature:	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Page 54 of 96

Appendix K): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak				
	Ah 4011-	Peak	1MHz	3MHz	Peak				
	Above 1GHz	Peak	1MHz	10Hz	Average				
Test Procedure:	Below 1GHz test procedu	ure as below:	6		160				
	 a. The EUT was placed of at a 3 meter semi-ane determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximula polarizations of the and d. For each suspected er 	choic camber. The of the highest rate of the highest rate of the highest rate of a variable-hours of the fixed from one of the fixed from a reset to	he table wand adiation. The interfer neight anter meter to found the make the neter to make the neter to four make the make the neter to four make the neter to four make the neter the ne	ence-receinna tower. ur meters n. Both horneasureme	360 degrees to ving antenna, wh above the ground rizontal and verticent.				
	 d. For each suspected emission, the EUT was arranged to its worst can the antenna was tuned to heights from 1 meter to 4 meters and the relation table was turned from 0 degrees to 360 degrees to find the maximum e. The test-receiver system was set to Peak Detect Function and Spece Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmarker frequency to show compliance. Also measure any emissions in the rebands. Save the spectrum analyzer plot. Repeat for each power and for lowest and highest channel 								
	Above 1GHz test procedure as below:								
	g. Different between abo to fully Anechoic Chan meter(Above 18GHz the bull of the EUT in the i. The radiation measure Transmitting mode, and j. Repeat above procedure.	ve is the test site of the distance is 1 lowest channel ements are perford found the X ax	e form table meter and , the Highe rmed in X, kis positioni	0.8 meter table is 1.5 st channel Y, Z axis p ng which i	to 1.5 meter). positioning for t is worse case.				
Limit:	 g. Different between about to fully Anechoic Chanmeter (Above 18GHz) h. b. Test the EUT in the i. The radiation measure Transmitting mode, an 	ve is the test site of the distance is 1 lowest channel ements are perford found the X ax	e form table meter and , the Highermed in X, kis positioni uencies me	0.8 meter table is 1.5 st channel Y, Z axis p ng which i	to 1.5 meter). positioning for t is worse case.				
Limit:	g. Different between abo to fully Anechoic Chan meter(Above 18GHz h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu	ve is the test site of the distance is 1 lowest channel ements are performed found the X averse until all frequence.	e form table meter and , the Highermed in X, kis position uencies me	0.8 meter table is 1.5 st channel Y, Z axis p ng which i easured wa	to 1.5 meter). positioning for tis worse case. as complete.				
Limit:	g. Different between abo to fully Anechoic Chan meter(Above 18GHz i h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu	ve is the test site of the distance is 1 lowest channel aments are performed found the X avares until all frequency Limit (dBµV).	e form table meter and , the Highermed in X, kis position uencies me /m @3m)	0.8 meter table is 1.5 st channel Y, Z axis p ng which i easured wa	to 1.5 meter). positioning for t is worse case. as complete. mark				
Limit:	g. Different between abo to fully Anechoic Chan meter(Above 18GHz h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz	ve is the test site of the distance is 1 lowest channel aments are performents are performent in the X avers until all frequents (dBµV).	e form table meter and , the Highermed in X, kis positioni uencies me /m @3m)	0.8 meter table is 1.5 st channel Y, Z axis p ng which i easured wa Rer Quasi-pe	to 1.5 meter). positioning for t is worse case. as complete. mark eak Value				
Limit:	g. Different between abo to fully Anechoic Chan meter(Above 18GHz i h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	ve is the test site of the distance is 1 lowest channel aments are performed found the X avaires until all frequents (dBµV) 40.0	e form table meter and the Higher med in X, kis position uencies med/m @3m)	0.8 meter table is 1.5 st channel Y, Z axis p ng which i easured ware Quasi-pe Quasi-pe Quasi-pe	to 1.5 meter). cositioning for tis worse case. as complete. mark eak Value eak Value				
Limit:	g. Different between abo to fully Anechoic Chan meter(Above 18GHz i h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	ve is the test site of the distance is 1 lowest channel tements are performed found the X axoures until all frequency 40.0 43.5 46.0	e form table meter and the Higher med in X, kis position wencies med	O.8 meter table is 1.5 st channel Y, Z axis page massis page as the Cartes of the Cart	to 1.5 meter). positioning for tis worse case. as complete. mark eak Value eak Value eak Value				

Page 55 of 96

Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

	(20)					120		10	100	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	57.32	60.50	74.00	13.50	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	98.95	102.09	74.00	-28.09	Pass	Horizontal

Page	56	of	96
raue	JU	OI.	30

Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK	-	

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.94	54.12	74.00	19.88	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	88.84	91.98	74.00	-17.98	Pass	Vertical

Page	57	of	96
Page	\circ	OI	90

Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV	<u></u>	

Test Graph

N	10	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	39.00	42.18	54.00	11.82	Pass	Horizontal
	2	2402.0275	32.26	13.31	-42.43	69.79	72.93	54.00	-18.93	Pass	Horizontal

Daa	~ 50	of OG
rau	မ ၁၀	of 96

Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV	-	

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.66	41.84	54.00	12.16	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	66.90	70.04	54.00	-16.04	Pass	Vertical

Page 59 of 96

Mode:	GFSK Transmitting	Channel:	2480	
Remark:	PK	0		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8185	32.37	13.39	-42.39	93.79	97.16	74.00	-23.16	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	63.55	66.91	74.00	7.09	Pass	Horizontal

Dogo	60	of	06
Page	υu	OI	90

Mode:	GFSK Transmitting	Channel:	2480	
Remark:	PK	0		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9499	32.37	13.39	-42.39	86.99	90.36	74.00	-16.36	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	56.15	59.51	74.00	14.49	Pass	Vertical

Page	61	of	96
raue	UΙ	OI	90

Mode:	GFSK Transmitting	Channel:	2480	
Remark:	AV	-		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0814	32.37	13.39	-42.40	70.94	74.30	54.00	-20.30	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	37.27	40.63	54.00	13.37	Pass	Horizontal
3	2484.9875	32.38	13.37	-42.40	39.69	43.04	54.00	10.96	Pass	Horizontal

Page	62	of	96
Paue	OZ	OI	90

Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV	0	

Test Graph

N	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.993	37 32.37	13.39	-42.39	66.70	70.07	54.00	-16.07	Pass	Vertical
2	2483.500	00 32.38	13.38	-42.40	36.93	40.29	54.00	13.71	Pass	Vertical

Page	62	of	06
Page	03	OI	90

Mode:			2402	
Remark:	PK	~		

Test Graph

N	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	54.67	57.85	74.00	16.15	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	96.62	99.76	74.00	-25.76	Pass	Horizontal

Page	64	of	96
Page	04	OI	90

Mode:			2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2402.2653	32.26	13.31	-42.43	87.28	90.42	74.00	-16.42	Pass	Vertical

Page 65 of 96

Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

Page 66 of 96

Mode:	π/4DQPSK Transmitting	Channel:	2402	
Remark:	AV	-		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2402.0275	32.26	13.31	-42.43	65.05	68.19	54.00	-14.19	Pass	Vertical

Page 67 of 96

Mode:	π/4DQPSK Transmitting	Channel:	2480	
Remark:	PK			

Test Graph

1	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2479.8623	32.37	13.39	-42.39	91.89	95.26	74.00	-21.26	Pass	Horizontal
	2	2483.5000	32.38	13.38	-42.40	59.30	62.66	74.00	11.34	Pass	Horizontal

Page	68	of	06
Page	סס	OI	90

Mode:	π/4DQPSK Transmitting	Channel:	2480	
Remark:	PK	~		

Test Graph

N	Ю	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2479.8623	32.37	13.39	-42.39	93.11	96.48	74.00	-22.48	Pass	Vertical
2	2	2483.5000	32.38	13.38	-42.40	62.43	65.79	74.00	8.21	Pass	Vertical

Page	60	of	06
Page	69	OI	90

Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

N	0	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
•	1	2479.9499	32.37	13.39	-42.39	68.14	71.51	54.00	-17.51	Pass	Horizontal
2	2	2483.5000	32.38	13.38	-42.40	37.16	40.52	54.00	13.48	Pass	Horizontal

Page	70	of	96
Paue	70	OI	90

Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

N	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0375	32.37	13.39	-42.39	68.73	72.10	54.00	-18.10	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	37.45	40.81	54.00	13.19	Pass	Vertical

Dage	71	of	06
Page	; / I	OI	90

Mode:	8DPSK Transmitting	Channel:	2402	
Remark:	PK			

Test Graph

N	10	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	50.49	53.67	74.00	20.33	Pass	Horizontal
	2	2402.0275	32.26	13.31	-42.43	93.73	96.87	74.00	-22.87	Pass	Horizontal

Dogo	72	of	06
Page	12	OI	90

Mode:	8DPSK Transmitting	Channel:	2402	
Remark:	PK	-		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	53.11	56.29	74.00	17.71	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	95.23	98.37	74.00	-24.37	Pass	Vertical

Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.58	41.76	54.00	12.24	Pass	Horizontal
2	2402.1464	32.26	13.31	-42.43	68.55	71.69	54.00	-17.69	Pass	Horizontal

Doa	~ 71	of	06
Pag	e /4	OI	90

Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.63	41.81	54.00	12.19	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	68.94	72.08	54.00	-18.08	Pass	Vertical

Page	75	of	96
rage	10	OI	90

Mode:	8DPSK Transmitting	Channel:	2480	
Remark:	PK			

Test Graph

N	10	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2480.0814	32.37	13.39	-42.40	92.20	95.56	74.00	-21.56	Pass	Horizontal
	2	2483.5000	32.38	13.38	-42.40	59.35	62.71	74.00	11.29	Pass	Horizontal

Page	76	of	96
raye	70	UI	90

Mode:	8DPSK Transmitting	Channel:	2480	
Remark:	PK			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.1690	32.37	13.39	-42.40	93.25	96.61	74.00	-22.61	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	61.97	65.33	74.00	8.67	Pass	Vertical

_			~ ~
Page	11	ot	96

Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV	-	

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0375	32.37	13.39	-42.39	68.16	71.53	54.00	-17.53	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	37.16	40.52	54.00	13.48	Pass	Horizontal

Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

N	0	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	1	2480.0375	32.37	13.39	-42.39	68.83	72.20	54.00	-18.20	Pass	Vertical
2	2	2483.5000	32.38	13.38	-42.40	37.50	40.86	54.00	13.14	Pass	Vertical

Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSK modulation type in charge + transmitter mode.
- 2) As shown in this section, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak values are measured.
- 3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. : EED32L00127301 Page 79 of 96

Appendix L): Radiated Spurious Emissions

Receiver Setup:	(34)	(3	(2)		(20)	
(0.)	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	7
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	V
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
(3)	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(3)	A h 4 O L l -	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Pook	11/14	10⊔-	Avorago	1

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Limit:	Frequency	Field strength Limit (microvolt/meter) (dBµV/m)		Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	- /	- 0%	30
	1.705MHz-30MHz	30	- 4	3	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
1	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No.: EED32L00127301 Page 80 of 96

Radiated Spurious Emissions test Data:

Product : WIFI+BT Module Model/Type reference : WCT3TM2311

1) Radiated Emission below 1GHz

Mode) :	GFSK T	ransmitt	ing		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	133.5094	7.52	1.35	-32.00	54.76	31.63	43.50	11.87	Pass	Н
2	247.3017	12.13	1.87	-31.90	59.93	42.03	46.00	3.97	Pass	Н
3	372.0562	14.79	2.30	-31.88	45.79	31.00	46.00	15.00	Pass	Н
4	480.0280	16.68	2.61	-31.90	45.60	32.99	46.00	13.01	Pass	Н
5	721.0971	20.03	3.23	-32.07	47.96	39.15	46.00	6.85	Pass	Н
6	896.0056	22.05	3.59	-31.59	40.06	34.11	46.00	11.89	Pass	Н
7	240.0260	11.94	1.84	-31.90	57.00	38.88	46.00	7.12	Pass	V
8	260.8831	12.42	1.92	-31.87	54.55	37.02	46.00	8.98	Pass	V
9	598.0888	18.96	2.95	-31.98	40.87	30.80	46.00	15.20	Pass	V
10	720.0300	20.02	3.22	-32.07	46.27	37.44	46.00	8.56	Pass	V
11	908.0348	22.15	3.60	-31.50	39.28	33.53	46.00	12.47	Pass	V
12	997.4777	22.68	3.79	-30.69	40.53	36.31	54.00	17.69	Pass	V

1/4		(4)			100		100			12.
Mode) :	GFSK T	ransmitt	ing		Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	136.1286	7.39	1.37	-32.00	55.28	32.04	43.50	11.46	Pass	Н
2	245.8466	12.09	1.86	-31.89	60.11	42.17	46.00	3.83	Pass	Н
3	260.1070	12.40	1.92	-31.87	59.19	41.64	46.00	4.36	Pass	Н
4	479.6400	16.67	2.61	-31.90	45.37	32.75	46.00	13.25	Pass	Н
5	719.2539	20.01	3.22	-32.08	48.06	39.21	46.00	6.79	Pass	Н
6	996.8957	22.68	3.79	-30.70	40.56	36.33	54.00	17.67	Pass	Н
7	245.5556	12.08	1.86	-31.89	56.62	38.67	46.00	7.33	Pass	V
8	260.1070	12.40	1.92	-31.87	55.01	37.46	46.00	8.54	Pass	V
9	479.6400	16.67	2.61	-31.90	39.90	27.28	46.00	18.72	Pass	V
10	721.0971	20.03	3.23	-32.07	46.32	37.51	46.00	8.49	Pass	V
11	798.8989	20.89	3.39	-32.03	40.31	32.56	46.00	13.44	Pass	V
12	907.9378	22.15	3.60	-31.50	42.29	36.54	46.00	9.46	Pass	V

Page 81 of 96

Mode) :	GFSK T	ransmitt	ing		Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	133.8974	7.51	1.35	-32.01	54.67	31.52	43.50	11.98	Pass	Н
2	241.8692	11.99	1.85	-31.90	59.90	41.84	46.00	4.16	Pass	Н
3	399.1219	15.38	2.38	-31.77	47.67	33.66	46.00	12.34	Pass	Н
4	478.9609	16.66	2.61	-31.90	45.55	32.92	46.00	13.08	Pass	Н
5	719.2539	20.01	3.22	-32.08	48.06	39.21	46.00	6.79	Pass	Н
6	906.4826	22.14	3.60	-31.52	43.44	37.66	46.00	8.34	Pass	Н
7	199.7670	10.88	1.67	-31.94	49.87	30.48	43.50	13.02	Pass	V
8	246.2346	12.10	1.86	-31.89	56.73	38.80	46.00	7.20	Pass	V
9	398.4428	15.37	2.38	-31.78	42.82	28.79	46.00	17.21	Pass	V
10	478.5729	16.66	2.61	-31.90	39.59	26.96	46.00	19.04	Pass	V
11	599.3499	18.99	2.96	-31.99	40.22	30.18	46.00	15.82	Pass	V
12	723.3283	20.06	3.25	-32.09	46.26	37.48	46.00	8.52	Pass	V

Mode	e:	π/4DQPSK Transmitting				Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	132.4422	7.58	1.34	-32.01	55.29	32.20	43.50	11.30	Pass	Н
2	210.7291	11.18	1.72	-31.95	52.81	33.76	43.50	9.74	Pass	Н
3	243.3243	12.03	1.85	-31.90	59.84	41.82	46.00	4.18	Pass	Н
4	399.6070	15.39	2.38	-31.76	46.68	32.69	46.00	13.31	Pass	Н
5	480.0280	16.68	2.61	-31.90	45.52	32.91	46.00	13.09	Pass	Н
6	718.4778	20.00	3.21	-32.07	48.54	39.68	46.00	6.32	Pass	Н
7	240.4140	11.95	1.84	-31.90	56.77	38.66	46.00	7.34	Pass	V
8	260.4951	12.41	1.92	-31.87	54.53	36.99	46.00	9.01	Pass	V
9	398.6369	15.37	2.38	-31.77	43.92	29.90	46.00	16.10	Pass	V
10	479.6400	16.67	2.61	-31.90	39.99	27.37	46.00	18.63	Pass	V
11	720.0300	20.02	3.22	-32.07	46.97	38.14	46.00	7.86	Pass	V
12	999.3209	22.70	3.80	-30.68	40.54	36.36	54.00	17.64	Pass	V

Page 82 of 96

Mode) :	π/4DQF	PSK Trar	smitting		Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	135.7406	7.41	1.36	-32.00	55.03	31.80	43.50	11.70	Pass	Н
2	209.4679	11.15	1.72	-31.96	51.51	32.42	43.50	11.08	Pass	Н
3	246.6227	12.11	1.87	-31.90	59.90	41.98	46.00	4.02	Pass	Н
4	260.8831	12.42	1.92	-31.87	58.84	41.31	46.00	4.69	Pass	Н
5	480.0280	16.68	2.61	-31.90	45.55	32.94	46.00	13.06	Pass	Н
6	722.1642	20.04	3.24	-32.08	48.84	40.04	46.00	5.96	Pass	Н
7	245.8466	12.09	1.86	-31.89	56.77	38.83	46.00	7.17	Pass	V
8	260.1070	12.40	1.92	-31.87	54.48	36.93	46.00	9.07	Pass	V
9	399.9950	15.40	2.38	-31.76	45.45	31.47	46.00	14.53	Pass	V
10	480.0280	16.68	2.61	-31.90	40.28	27.67	46.00	18.33	Pass	V
11	598.7679	18.98	2.95	-31.98	41.73	31.68	46.00	14.32	Pass	V
12	720.4180	20.02	3.22	-32.06	46.40	37.58	46.00	8.42	Pass	V

Mode) :	π/4DQF	PSK Trar	smitting		Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	133.5094	7.52	1.35	-32.00	54.81	31.68	43.50	11.82	Pass	Н
2	245.5556	12.08	1.86	-31.89	59.75	41.80	46.00	4.20	Pass	Н
3	261.2711	12.43	1.93	-31.88	58.79	41.27	46.00	4.73	Pass	Н
4	354.8855	14.41	2.25	-31.86	47.06	31.86	46.00	14.14	Pass	Н
5	478.1848	16.65	2.61	-31.90	45.70	33.06	46.00	12.94	Pass	Н
6	721.8732	20.04	3.23	-32.07	48.26	39.46	46.00	6.54	Pass	Н
7	240.0260	11.94	1.84	-31.90	57.11	38.99	46.00	7.01	Pass	V
8	260.1070	12.40	1.92	-31.87	54.62	37.07	46.00	8.93	Pass	V
9	399.7040	15.39	2.38	-31.76	43.43	29.44	46.00	16.56	Pass	V
10	478.5729	16.66	2.61	-31.90	39.97	27.34	46.00	18.66	Pass	V
11	600.0290	19.00	2.96	-31.99	38.33	28.30	46.00	17.70	Pass	V
12	723.3283	20.06	3.25	-32.09	46.47	37.69	46.00	8.31	Pass	V

Page 83 of 96

Mode) :	8DPSK	Transmi	tting		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	133.8974	7.51	1.35	-32.01	55.83	32.68	43.50	10.82	Pass	Н
2	245.8466	12.09	1.86	-31.89	59.79	41.85	46.00	4.15	Pass	Н
3	260.4951	12.41	1.92	-31.87	58.93	41.39	46.00	4.61	Pass	Н
4	355.2735	14.42	2.25	-31.86	46.80	31.61	46.00	14.39	Pass	Н
5	480.0280	16.68	2.61	-31.90	45.73	33.12	46.00	12.88	Pass	Н
6	717.4107	19.99	3.21	-32.08	48.28	39.40	46.00	6.60	Pass	Н
7	208.8859	11.13	1.71	-31.94	48.85	29.75	43.50	13.75	Pass	V
8	247.3987	12.13	1.87	-31.90	56.46	38.56	46.00	7.44	Pass	V
9	260.1070	12.40	1.92	-31.87	54.23	36.68	46.00	9.32	Pass	V
10	375.0635	14.85	2.31	-31.88	41.54	26.82	46.00	19.18	Pass	V
11	479.2519	16.67	2.61	-31.90	40.28	27.66	46.00	18.34	Pass	V
12	721.0971	20.03	3.23	-32.07	46.29	37.48	46.00	8.52	Pass	V

Mode	: :	8DPSK	Transmi	tting		Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	135.7406	7.41	1.36	-32.00	54.95	31.72	43.50	11.78	Pass	Н
2	240.7051	11.96	1.84	-31.90	60.18	42.08	46.00	3.92	Pass	Н
3	260.4951	12.41	1.92	-31.87	59.16	41.62	46.00	4.38	Pass	Н
4	354.9825	14.41	2.25	-31.86	46.67	31.47	46.00	14.53	Pass	Н
5	480.0280	16.68	2.61	-31.90	45.77	33.16	46.00	12.84	Pass	Н
6	721.0971	20.03	3.23	-32.07	48.17	39.36	46.00	6.64	Pass	Н
7	240.0260	11.94	1.84	-31.90	57.14	39.02	46.00	6.98	Pass	V
8	260.4951	12.41	1.92	-31.87	55.23	37.69	46.00	8.31	Pass	V
9	398.7339	15.37	2.38	-31.77	42.26	28.24	46.00	17.76	Pass	V
10	477.1177	16.63	2.60	-31.89	39.60	26.94	46.00	19.06	Pass	V
11	598.0888	18.96	2.95	-31.98	40.41	30.34	46.00	15.66	Pass	V
12	720.4180	20.02	3.22	-32.06	46.73	37.91	46.00	8.09	Pass	V

Page 84 of 96

Mode) :	8DPSK	Transmi	tting		Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	133.8004	7.51	1.35	-32.01	55.06	31.91	43.50	11.59	Pass	Н
2	247.3017	12.13	1.87	-31.90	59.85	41.95	46.00	4.05	Pass	Н
3	260.8831	12.42	1.92	-31.87	59.31	41.78	46.00	4.22	Pass	Н
4	354.8855	14.41	2.25	-31.86	46.84	31.64	46.00	14.36	Pass	Н
5	479.6400	16.67	2.61	-31.90	45.41	32.79	46.00	13.21	Pass	Н
6	718.5749	20.00	3.21	-32.07	48.49	39.63	46.00	6.37	Pass	Н
7	247.3017	12.13	1.87	-31.90	56.83	38.93	46.00	7.07	Pass	V
8	261.2711	12.43	1.93	-31.88	55.12	37.60	46.00	8.40	Pass	V
9	399.2189	15.38	2.38	-31.76	43.32	29.32	46.00	16.68	Pass	V
10	477.1177	16.63	2.60	-31.89	40.13	27.47	46.00	18.53	Pass	V
11	720.0300	20.02	3.22	-32.07	47.27	38.44	46.00	7.56	Pass	V
12	799.7720	20.90	3.39	-32.03	40.20	32.46	46.00	13.54	Pass	V

Report No. : EED32L00127301 Page 85 of 96

2) Radiated Emission above 1GHz

Mode	e:	GFSK T	ransmitt	ing			Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1794.2794	30.34	3.31	-42.71	55.96	46.90	74.00	27.10	Pass	Н	PK
2	3603.0402	33.48	4.34	-41.60	54.15	50.37	74.00	23.63	Pass	Н	PK
3	4804.1203	34.50	4.55	-40.66	49.94	48.33	74.00	25.67	Pass	Н	PK
4	7206.2804	36.31	5.81	-41.02	54.98	56.08	74.00	17.92	Pass	Н	PK
5	9607.4405	37.64	6.63	-40.76	53.66	57.17	74.00	16.83	Pass	Н	PK
6	12010.6007	39.31	7.60	-41.21	47.71	53.41	74.00	20.59	Pass	Н	PK
7	7205.4204	36.31	5.82	-41.02	41.84	42.95	54.00	11.05	Pass	Н	AV
8	9607.4405	37.64	6.63	-40.76	42.28	45.79	54.00	8.21	Pass	Н	AV
9	1837.8838	30.63	3.37	-42.70	57.18	48.48	74.00	25.52	Pass	V	PK
10	2597.1597	32.56	4.10	-42.34	54.97	49.29	74.00	24.71	Pass	V	PK
11	4804.1203	34.50	4.55	-40.66	49.79	48.18	74.00	25.82	Pass	V	PK
12	7206.2804	36.31	5.81	-41.02	58.22	59.32	74.00	14.68	Pass	V	PK
13	9608.4406	37.64	6.63	-40.76	57.18	60.69	74.00	13.31	Pass	V	PK
14	12009.6006	39.31	7.60	-41.21	46.31	52.01	74.00	21.99	Pass	V	PK
15	7205.4604	36.31	5.82	-41.02	44.16	45.27	54.00	8.73	Pass	V	AV
16	9607.3906	37.64	6.63	-40.76	43.24	46.75	54.00	7.25	Pass	V	AV

Mode	e:	GFSK T	ransmitt	ing			Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1995.8996	31.67	3.47	-42.61	58.24	50.77	74.00	23.23	Pass	Н	PK
2	3661.0441	33.53	4.32	-41.49	51.02	47.38	74.00	26.62	Pass	Н	PK
3	4882.1255	34.50	4.81	-40.60	49.79	48.50	74.00	25.50	Pass	Н	PK
4	7323.2882	36.42	5.85	-40.92	52.46	53.81	74.00	20.19	Pass	Н	PK
5	9764.4510	37.71	6.71	-40.62	53.54	57.34	74.00	16.66	Pass	Н	PK
6	12205.6137	39.42	7.67	-41.16	49.73	55.66	74.00	18.34	Pass	Н	PK
7	9763.2610	37.71	6.72	-40.62	40.88	44.69	54.00	9.31	Pass	Н	AV
8	12204.2537	39.42	7.67	-41.17	33.49	39.41	54.00	14.59	Pass	Н	AV
9	2195.1195	31.97	3.65	-42.52	57.91	51.01	74.00	22.99	Pass	V	PK
10	3662.0441	33.53	4.32	-41.49	55.18	51.54	74.00	22.46	Pass	V	PK
11	6102.2068	35.82	5.26	-41.11	49.51	49.48	74.00	24.52	Pass	V	PK
12	7323.2882	36.42	5.85	-40.92	55.55	56.90	74.00	17.10	Pass	V	PK
13	9763.4509	37.71	6.72	-40.63	52.48	56.28	74.00	17.72	Pass	V	PK
14	12204.6136	39.42	7.67	-41.16	49.94	55.87	74.00	18.13	Pass	V	PK
15	7322.4882	36.42	5.85	-40.92	43.66	45.01	54.00	8.99	Pass	V	AV
16	9763.4309	37.71	6.72	-40.62	44.30	48.11	54.00	5.89	Pass	V	AV
17	12204.3636	39.42	7.67	-41.17	36.39	42.31	54.00	11.69	Pass	V	AV

Page 86 of 96

Mode	e:	GFSK T	ransmitt	ing			Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1791.0791	30.32	3.30	-42.70	54.20	45.12	74.00	28.88	Pass	Н	PK
2	2843.3843	32.95	4.23	-42.20	54.57	49.55	74.00	24.45	Pass	Н	PK
3	4960.1307	34.50	4.82	-40.53	50.56	49.35	74.00	24.65	Pass	Н	PK
4	7440.2960	36.54	5.85	-40.82	54.68	56.25	74.00	17.75	Pass	Н	PK
5	9920.4614	37.77	6.79	-40.48	49.14	53.22	74.00	20.78	Pass	Н	PK
6	12399.6266	39.54	7.86	-41.12	47.89	54.17	74.00	19.83	Pass	Н	PK
7	7439.3260	36.54	5.85	-40.82	40.43	42.00	54.00	12.00	Pass	Н	AV
8	1981.6982	31.58	3.45	-42.62	54.72	47.13	74.00	26.87	Pass	V	PK
9	3193.0129	33.28	4.64	-42.01	53.12	49.03	74.00	24.97	Pass	V	PK
10	4960.1307	34.50	4.82	-40.53	49.94	48.73	74.00	25.27	Pass	V	PK
11	7440.2960	36.54	5.85	-40.82	56.25	57.82	74.00	16.18	Pass	V	PK
12	9920.4614	37.77	6.79	-40.48	54.83	58.91	74.00	15.09	Pass	V	PK
13	12399.6266	39.54	7.86	-41.12	45.57	51.85	74.00	22.15	Pass	V	PK
14	7439.4060	36.54	5.85	-40.82	44.10	45.67	54.00	8.33	Pass	V	AV
15	9919.4514	37.77	6.79	-40.47	43.10	47.19	54.00	6.81	Pass	V	AV

Mode) :	π/4DQF	SK Trar	smitting			Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3603.0402	33.48	4.34	-41.60	51.99	48.21	74.00	25.79	Pass	Н	PK
2	4804.0000	34.50	4.55	-40.66	48.14	46.53	74.00	27.47	Pass	Н	PK
3	7206.0000	36.31	5.81	-41.02	48.59	49.69	74.00	24.31	Pass	Н	PK
4	9608.4406	37.64	6.63	-40.76	52.59	56.10	74.00	17.90	Pass	Н	PK
5	12010.0000	39.31	7.60	-41.21	43.91	49.61	74.00	24.39	Pass	Н	PK
6	15044.8030	40.44	9.42	-42.37	45.99	53.48	74.00	20.52	Pass	Н	PK
7	9607.2662	37.64	6.63	-40.76	43.62	47.13	54.00	6.87	Pass	Н	AV
8	1593.2593	29.02	3.06	-42.88	55.20	44.40	74.00	29.60	Pass	V	PK
9	3199.0133	33.28	4.65	-42.00	52.68	48.61	74.00	25.39	Pass	V	PK
10	4804.0000	34.50	4.55	-40.66	45.14	43.53	74.00	30.47	Pass	V	PK
11	7206.0000	36.31	5.81	-41.02	45.97	47.07	74.00	26.93	Pass	V	PK
12	9608.4406	37.64	6.63	-40.76	48.29	51.80	74.00	22.20	Pass	V	PK
13	12268.6179	39.46	7.72	-41.15	45.26	51.29	74.00	22.71	Pass	V	PK
14	9608.1862	37.64	6.63	-40.76	43.96	47.47	54.00	6.53	Pass	V	AV

Page 87 of 96

Mode):	π/4DQF	PSK Tran	smitting			Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2124.7125	31.87	3.61	-42.55	51.64	44.57	74.00	29.43	Pass	Н	PK
2	3018.0012	33.21	4.89	-42.11	50.28	46.27	74.00	27.73	Pass	Н	PK
3	4882.0000	34.50	4.81	-40.60	49.12	47.83	74.00	26.17	Pass	Н	PK
4	7322.2882	36.42	5.85	-40.92	49.04	50.39	74.00	23.61	Pass	Н	PK
5	9764.4510	37.71	6.71	-40.62	52.94	56.74	74.00	17.26	Pass	Н	PK
6	12205.0000	39.42	7.67	-41.16	46.33	52.26	74.00	21.74	Pass	Н	PK
7	7323.0366	36.42	5.85	-40.92	43.14	44.49	54.00	9.51	Pass	Н	AV
8	9764.0726	37.71	6.71	-40.62	44.23	48.03	54.00	5.97	Pass	Н	AV
9	1400.0400	28.30	2.90	-42.68	60.17	48.69	74.00	25.31	Pass	V	PK
10	3661.0441	33.53	4.32	-41.49	51.34	47.70	74.00	26.30	Pass	V	PK
11	4882.0000	34.50	4.81	-40.60	48.26	46.97	74.00	27.03	Pass	V	PK
12	7323.2882	36.42	5.85	-40.92	50.28	51.63	74.00	22.37	Pass	V	PK
13	9764.4510	37.71	6.71	-40.62	53.93	57.73	74.00	16.27	Pass	V	PK
14	12205.0000	39.42	7.67	-41.16	45.36	51.29	74.00	22.71	Pass	V	PK
15	7323.0172	36.42	5.85	-40.92	45.10	46.45	54.00	7.55	Pass	V	AV
16	9764.0206	37.71	6.71	-40.62	43.62	47.42	54.00	6.58	Pass	V	AV
	(20)	1		(10)	Y	73	(9)		(10)		

Mode		π//DΩE	OSK Tran	smitting			Channel:		2480		
Wiode	, .						Offatilief.		2400		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1200.0200	28.10	2.66	-42.89	55.17	43.04	74.00	30.96	Pass	Н	PK
2	3022.0015	33.21	4.89	-42.11	50.72	46.71	74.00	27.29	Pass	Н	PK
3	4960.1307	34.50	4.82	-40.53	52.80	51.59	74.00	22.41	Pass	Н	PK
4	7440.2960	36.54	5.85	-40.82	50.17	51.74	74.00	22.26	Pass	Н	PK
5	9919.4613	37.77	6.79	-40.48	50.73	54.81	74.00	19.19	Pass	Н	PK
6	12399.6266	39.54	7.86	-41.12	49.75	56.03	74.00	17.97	Pass	Н	PK
7	4959.9970	34.50	4.82	-40.53	42.98	41.77	54.00	12.23	Pass	Н	AV
8	7440.0517	36.54	5.85	-40.82	43.64	45.21	54.00	8.79	Pass	Н	AV
9	9920.0477	37.77	6.79	-40.47	43.67	47.76	54.00	6.24	Pass	V	AV
10	12399.7829	39.54	7.86	-41.12	41.60	47.88	54.00	6.12	Pass	V	AV
11	1973.6974	31.53	3.44	-42.62	56.16	48.51	74.00	25.49	Pass	V	PK
12	3196.0131	33.28	4.64	-42.00	50.38	46.30	74.00	27.70	Pass	V	PK
13	4960.1307	34.50	4.82	-40.53	52.25	51.04	74.00	22.96	Pass	V	PK
14	7440.2960	36.54	5.85	-40.82	50.87	52.44	74.00	21.56	Pass	V	PK
15	9920.4614	37.77	6.79	-40.48	51.28	55.36	74.00	18.64	Pass	V	PK
16	12399.6266	39.54	7.86	-41.12	47.55	53.83	74.00	20.17	Pass	V	PK
17	4960.0690	34.50	4.82	-40.53	41.62	40.41	54.00	13.59	Pass	V	AV
18	7439.9643	36.54	5.85	-40.82	47.25	48.82	54.00	5.18	Pass	V	AV
19	9920.1090	37.77	6.79	-40.47	44.17	48.26	54.00	5.74	Pass	V	AV

Mode):	8DPSK	Transmi	tting			Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1395.4395	28.30	2.89	-42.69	55.02	43.52	74.00	30.48	Pass	Н	PK
2	3000.0000	33.20	4.93	-42.12	50.35	46.36	74.00	27.64	Pass	Н	PK
3	4804.1203	34.50	4.55	-40.66	49.07	47.46	74.00	26.54	Pass	Н	PK
4	7206.2804	36.31	5.81	-41.02	49.75	50.85	74.00	23.15	Pass	Н	PK
5	9608.4406	37.64	6.63	-40.76	52.86	56.37	74.00	17.63	Pass	Н	PK
6	12009.6006	39.31	7.60	-41.21	48.17	53.87	74.00	20.13	Pass	Н	PK
7	7206.0260	36.31	5.82	-41.02	43.15	44.26	54.00	9.74	Pass	Н	AV
8	9607.9949	37.64	6.63	-40.76	45.09	48.60	54.00	5.40	Pass	Н	AV
9	12010.1583	39.31	7.60	-41.21	39.28	44.98	54.00	9.02	Pass	Н	AV
10	2173.3173	31.94	3.65	-42.53	56.44	49.50	74.00	24.50	Pass	V	PK
11	3603.0402	33.48	4.34	-41.60	51.48	47.70	74.00	26.30	Pass	V	PK
12	4804.0000	34.50	4.55	-40.66	46.32	44.71	74.00	29.29	Pass	V	PK
13	7206.2804	36.31	5.81	-41.02	50.43	51.53	74.00	22.47	Pass	V	PK
14	9608.4406	37.64	6.63	-40.76	54.85	58.36	74.00	15.64	Pass	V	PK
15	12010.0000	39.31	7.60	-41.21	44.27	49.97	74.00	24.03	Pass	V	PK
16	7206.1141	36.31	5.82	-41.02	45.75	46.86	54.00	7.14	Pass	V	AV
17	9608.0676	37.64	6.63	-40.76	45.45	48.96	54.00	5.04	Pass	V	AV

Mode:		8DPSK	Transmi	tting			Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2937.3937	33.10	4.39	-42.15	51.36	46.70	74.00	27.30	Pass	Н	PK
2	3661.0441	33.53	4.32	-41.49	51.55	47.91	74.00	26.09	Pass	Н	PK
3	4882.0000	34.50	4.81	-40.60	50.89	49.60	74.00	24.40	Pass	Н	PK
4	7323.0000	36.42	5.85	-40.92	46.94	48.29	74.00	25.71	Pass	Н	PK
5	9764.4510	37.71	6.71	-40.62	53.62	57.42	74.00	16.58	Pass	Н	PK
6	12205.0000	39.42	7.67	-41.16	47.01	52.94	74.00	21.06	Pass	Н	PK
7	9764.0606	37.71	6.71	-40.62	44.12	47.92	54.00	6.08	Pass	Н	AV
8	1972.4973	31.52	3.44	-42.62	57.71	50.05	74.00	23.95	Pass	V	PK
9	3662.0441	33.53	4.32	-41.49	52.26	48.62	74.00	25.38	Pass	V	PK
10	4882.0000	34.50	4.81	-40.60	50.49	49.20	74.00	24.80	Pass	V	PK
11	7323.2882	36.42	5.85	-40.92	50.90	52.25	74.00	21.75	Pass	V	PK
12	9764.4510	37.71	6.71	-40.62	53.28	57.08	74.00	16.92	Pass	V	PK
13	12205.0000	39.42	7.67	-41.16	44.79	50.72	74.00	23.28	Pass	V	PK
14	7323.0178	36.42	5.85	-40.92	44.92	46.27	54.00	7.73	Pass	V	AV
15	9764.0760	37.71	6.71	-40.62	44.08	47.88	54.00	6.12	Pass	V	AV

Mode:		8DPSK Transmitting					Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1596.8597	29.04	3.07	-42.90	53.69	42.90	74.00	31.10	Pass	Н	PK
2	2889.3889	33.02	4.35	-42.18	51.20	46.39	74.00	27.61	Pass	Н	PK
3	4960.0000	34.50	4.82	-40.53	52.13	50.92	74.00	23.08	Pass	Н	PK
4	7440.0000	36.54	5.85	-40.82	48.92	50.49	74.00	23.51	Pass	Н	PK
5	9920.4614	37.77	6.79	-40.48	50.76	54.84	74.00	19.16	Pass	Н	PK
6	12399.6266	39.54	7.86	-41.12	48.43	54.71	74.00	19.29	Pass	Н	PK
7	9920.0877	37.77	6.79	-40.47	35.77	39.86	54.00	14.14	Pass	Н	AV
8	12399.8036	39.54	7.86	-41.12	41.47	47.75	54.00	6.25	Pass	Н	AV
9	1963.2963	31.46	3.43	-42.63	58.00	50.26	74.00	23.74	Pass	V	PK
10	3201.0134	33.28	4.65	-42.00	50.24	46.17	74.00	27.83	Pass	V	PK
11	4960.0000	34.50	4.82	-40.53	51.77	50.56	74.00	23.44	Pass	V	PK
12	7440.2960	36.54	5.85	-40.82	51.06	52.63	74.00	21.37	Pass	V	PK
13	9920.4614	37.77	6.79	-40.48	51.41	55.49	74.00	18.51	Pass	V	PK
14	12400.0000	39.54	7.86	-41.12	46.01	52.29	74.00	21.71	Pass	V	PK
15	7440.0303	36.54	5.85	-40.82	47.10	48.67	54.00	5.33	Pass	V	AV
16	9920.0530	37.77	6.79	-40.47	43.66	47.75	54.00	6.25	Pass	V	AV

Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, he 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.
- 2) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. H owever, the peak field strength of any emission shall not exceed the maximum permitted average limits specifie d above by more than 20 dB under any condition of modulation. So, only the peak values are measured.
- 3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

4) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 90 of 96

PHOTOGRAPHS OF TEST SETUP

Test model No.: WCT3TM2311

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2 (Below 1GHz)

Radiated spurious emission Test Setup-3 (Above 1GHz)

Conducted Emissions Test Setup

