BECA / Dr. Huson / Geometry Unit 9: Dilation and similarity 30 March 2023

Name: Solumins

9.9 Classwork: Similarity ratios, dilation, transformations, symmetry

I can solve problems using similarity criteria.

CCSS.HSG.SRT.B.5

1. Do Now: Given $\triangle PQR \sim \triangle STU$, $m\angle P = 37^{\circ}$, and $m\angle T = 46^{\circ}$. Find $m\angle Q$.

46°

2. Two triangles are shown with P the intersection of \overline{AJ} and \overline{BK} .

(a) Justify $\angle APB \cong \angle JPK$.

Vertical aniles are = A

1K

angle similarity?

3. The diagram below shows $\triangle ABC$, with \overline{AEB} and \overline{ADC} .

LAZLA

(b) What angle must be congruent to $\angle AED$ to prove $\triangle ABC \sim \triangle ADE$ by angle-angle similarity?

- 4. A dilation centered at the origin with scale factor $k = \frac{4}{3}$ maps $\overline{AB} \to \overline{A'B'}$.
 - (a) Draw and label the image.
 - (b) What is the ratio of the length of $\overline{A'B'}$ to \overline{AB} ?

(c) What is the relationship of the slope of $\overline{A'B'}$ and \overline{AB} ?

5. Given $\triangle ABC$, D is the midpoint of \overline{BA} , E is a point on \overline{BC} , and \overline{DE} is drawn. If BD=8 and BE=10, what is the length of \overline{BC} so that $\overline{AC}\parallel \overline{DE}$?

6. In diagram below, each centimeter represents six inches. Find the length of each side in feet. (measure with a metric scale)

6. In diagram below, each centimeter represents six inches. Find the length of each side in feet. (measure with a metric scale)

(a)
$$AB = \frac{1}{2}(4) = 2$$

(d) Find the area of $\triangle ABC$

BECA / Dr. Huson / Geometry Unit 9: Dilation and similarity 30 March 2023

Name:

7. Given $\triangle ABP \sim \triangle JKP$ as shown below. $AB=10.0,\ AP=9.0,\ BP=5,\ {\rm and}\ AJ=27.0.$ Find JK.

$$JP = 27 - 9 = 18$$
 $AP = JP$
 $9 = 2.18$
 $K = \frac{19}{4} = 2$
 $JK = 2(10) = 20$

8. The vertices of $\triangle JKL$ have the coordinates $J(-4,-2),\ K(3,2),\ {\rm and}\ L(-2,4),\ {\rm as}$ shown.

Apply a dilation to $\triangle JKL \to \triangle J'K'L'$, centered at P(-1,2) and with a scale factor k=2. Draw the image $\triangle J'K'L'$ on the set of axes below, labeling the vertices.

What is the ratio of the area of $\triangle JKL$ to $\triangle J'K'L'$?

9. In $\triangle ABC$ shown below, $\angle ACB$ is a right angle, E is a point on \overline{AC} , and \overline{ED} is drawn perpendicular to hypontenuse \overline{AB} .

If AB = 9, BC = 6, and DE = 4, what is the length of \overline{AE} ?

$$AE = 9\left(\frac{2}{3}\right)$$
$$= 6$$

10. In the diagram below, $\angle ABC \cong \angle ADE$, AB = 9, AC = 6, BD = 13.5, and DE = 16. Find AD and the scale factor k. Then find AE and BC.

(a)
$$AD = 9 + 3.5 = 22.5$$

(b)
$$k = \frac{22.5}{9} = 2.5$$

(c)
$$AE = 2.5(6) = 15$$

(d)
$$BC = \frac{16}{2.5} = 6.4$$

11. The line \overrightarrow{AB} has the equation $y = \frac{2}{3}x - 2$. Apply a dilation mapping $\overrightarrow{AB} \to \overrightarrow{A'B'}$ with a factor of k = 3 centered at the origin. Draw and label the image on the grid. Write the equation of the line $\overrightarrow{A'B'}$.

$$y = \frac{2}{3}x - 6$$

12. The diagram below shows $\triangle ABC$. E bisects \overline{AB} , and $\angle ACB \cong \angle AED$. AB = 18, AC = 12, and DE = 7. Find the scale factor k, BC, and AD.

(a)
$$k = \frac{1299}{9} = \frac{2}{3}$$

(c)
$$AD = \frac{18}{(4/3)} = 13\frac{1}{2}$$

13. In the diagram below, the chords \overline{AE} and \overline{BD} intersect at C. Given $\triangle A\underline{BC} \sim \triangle D\underline{EC}$, BC = 6, CD = 12, and CE = 10. Determine the length of \overline{CA} .

BC = CE

$$k = \frac{10}{6} = 1\frac{2}{3}$$

 $cA = \frac{12}{(5/3)} = 7.2$

14. What transformation or series of transformations map $\triangle ABC$ onto $\triangle DEF$, shown

15. Reflect $\triangle ABC$ over the y-axis then dilate the resulting triangle by a factor of 2 centered at the origin.

