MODEL ASSESSMENT AND SELECTION (PART II)

CS 334: Machine Learning

MODEL ASSESSMENT AND MODEL SELECTION

- Model assessment: evaluating a model's performance
- Model selection: selecting the proper level of flexibility for a model (e.g. K for KNN, tree size for decision tree)

MODEL ASSESSMENT

- Metrics:
 - Classification: Accuracy, precision/recall, AUROC (TPR/FPR),
 AUPRC (precision/recall)
 - Regression: MSE
- Process: training/test split (holdout), K-fold cross-validation,
 Monte Carlo cross validation

TRAINING/TEST SPLITS

What to do when there isn't enough data? Test data wasted?

K-FOLD CROSS VALIDATION

- Use all the data to train / test (but not all at the same time)
- Procedure:
 - Split the training data into K parts or "folds"
 - Train on all but the kth part and validate on the kth part
 - Rotate and report average over K measurements

http://scott.fortmann-roe.com/docs/MeasuringError.html

COMMON VALUES OF K

- K = 2 (two-fold cross validation)
- K = 5, 10 (5-fold, 10-fold cross validation) common practice
- K = N (leave one out cross validation or LOOCV) be cautious

Selection is based on how much data you have

MONTE-CARLO CROSS-VALIDATION

- AKA random sub-sampling
 - Randomly select (without replacement) some fraction of your data to form training set
 - Assign rest to test set
 - Repeat multiple times with new partitions

What are the differences to k-fold cross-validation?

K-FOLD VS MONTE-CARLO

- Cross-validation
 - only explores a few of the possible ways to partition the data
 - Same point is used once as training and test
- Monte-Carlo
 - explores more possible partitions
 - Same point can be used multiple times

ASSESSMENT STRATEGIES

Figures 3.6, 3.7, 3.8 (Remesan & Mathew. Hydrological Data Driven Modeling: A Case Study Approach)

MODEL ASSESSMENT: THE PROCESS

- Holdout
- K-fold CV
- Monte-Carlo cross validation

Report the performance on the "test" data

MODEL ASSESSMENT AND MODEL SELECTION

- Model assessment: evaluating a model's performance
- Model selection: selecting the proper level of flexibility for a model (e.g. K for KNN, tree size for decision tree)

HOW TO CHOSE THE HYPERPARAMETERS?

 $Max_depth = 1$

 $Max_depth = 4$

MODEL SELECTION

- Select hyperparameters of the model parameters of the learning algorithm
 - E.g. k and distance metric in kNN; tree depth in decision tree
- Different from model parameters
 - E.g. splitting point in decision tree
- Meta-optimization of the model

USING K-FOLD FOR PARAMETER TUNING

- Compute performance for specific parameter values
- Average error over all folds

$$CV(\theta) = \frac{1}{n} \sum_{k=1}^{K} \sum_{i \in F_k} (y_i - \hat{f}_{\theta}^{-k}(\mathbf{x}_i))^2$$

 Choose tuning parameter that minimizes CV error

$$\hat{\theta} = \operatorname{argmin}_{\theta \in \{\theta_1, \dots, \theta_m\}} \operatorname{CV}(\theta)$$

USING K-FOLD FOR PARAMETER TUNING

- If two models have almost equal performance, which model to choose?
- How to define "almost equal"?

ONE STANDARD ERROR RULE

Training Test

Test

Test

Test

- For small K << n, we can estimate standard deviation at each parameter
- Average error of kth fold:

$$CV_k(\theta) = \frac{1}{n_k} \sum_{i \in F_k} (y_i - \hat{f}_{\theta}^{-k}(\mathbf{x}_i))^2$$

• Sample standard deviation:

$$SD(\theta) = \sqrt{var(CV_1(\theta), \cdots, CV_K(\theta))}$$

• Standard error:

$$SE(\theta) = SD(\theta)/\sqrt{K}$$

ONE STANDARD ERROR RULE

- Alternative rule for selection of tuning parameter
- Idea: "All else equal (up to one standard error), go for the simpler model" – Occam's razer
- Find usual minimizer as before
- Move parameter in direction of decreasing complexity such that cross-validation error curve is within one standard error

$$CV(\theta) \le CV(\hat{\theta}) + SE(\hat{\theta})$$

MODEL ASSESSMENT AND MODEL SELECTION

- Model assessment: evaluating a model's performance
- Model selection: selecting the proper level of flexibility for a model (e.g. K for KNN, tree size for decision tree)

How to do both model selection and model assessment?

MODEL SELECTION AND ASSESSMENT: THE PROCESS

- Holdout
- K-fold CV
- Monte-Carlo cross validation

Tune the parameters AND report the performance using cross validation - Is this a good idea?

THREE WAY SPLIT

Validation data will NOT be used for training model

Test data will NOT be used for training model or tuning parameters

MODEL SELECTION AND ASSESSMENT: PROCESS

(THREE WAY SPLIT)

https://sebastianraschka.com/blog/2016/model-evaluation-selection-part3.html

K-FOLD CV + HOLDOUT

- Holdout: Test dataset to assess the performance
- Training set: Use k-fold CV to find the optimal parameter
- Use optimal parameters to train on the training data and assess on test

MODEL SELECTION AND ASSESSMENT: PROCESS (CV + HOLDOUT)

NESTED CV

- Outer k-fold loop:
 Assess the performance
- Inner k-fold loop:
 Choose the optimal parameter

ASSESSMENT + SELECTION: TAKEAWAY

Guidelines:

- We cannot use the same samples to estimate both optimal model parameters and test/generalization error
- Choice of methodology will depend on your problem and dataset

MODEL ASSESSMENT AND SELECTION: SKLEARN

- Import the function (see sklearn.model_selection)
 - train_test_split
 - KFold
- Split the data

```
from sklearn.model_selection import train_test_split
train, test = train_test_split(data, test_size=0.3)
```

METRICS: SKLEARN

- Import the function (see metrics)
- Calculate the selected metric on using predicted and ground truth labels

```
from sklearn.metrics import accuracy_score
accuracy_value = accuracy_score(y_test, y_pred)
```

https://scikit-learn.org/stable/modules/model_evaluation.html

CLASSIFICATION/REGRESSION METRICS: SKLEAN

Scoring	Function	Comment
Classification		
'accuracy'	metrics.accuracy_score	
'balanced_accuracy'	metrics.balanced_accuracy_score	
'average_precision'	metrics.average_precision_score	
'neg_brier_score'	metrics.brier_score_loss	
'f1'	metrics.f1_score	for binary targets
'f1_micro'	metrics.f1_score	micro-averaged
'f1_macro'	metrics.f1_score	macro-averaged
'f1_weighted'	metrics.f1_score	weighted average
'f1_samples'	metrics.f1_score	by multilabel sample
'neg_log_loss'	metrics.log_loss	requires predict_proba support
'precision' etc.	metrics.precision_score	suffixes apply as with 'f1'
'recall' etc.	metrics.recall_score	suffixes apply as with 'f1'
'jaccard' etc.	metrics.jaccard_score	suffixes apply as with 'f1'
'roc_auc'	metrics.roc_auc_score	
'roc_auc_ovr'	metrics.roc_auc_score	
'roc_auc_ovo'	metrics.roc_auc_score	
'roc_auc_ovr_weighted'	metrics.roc_auc_score	
'roc_auc_ovo_weighted'	metrics.roc_auc_score	
Regression		
'explained_variance'	metrics.explained_variance_score	
'max_error'	metrics.max_error	
'neg_mean_absolute_error'	metrics.mean_absolute_error	
'neg_mean_squared_error'	metrics.mean_squared_error	
'neg_root_mean_squared_error'	metrics.mean_squared_error	
'neg_mean_squared_log_error'	metrics.mean_squared_log_error	
'neg_median_absolute_error'	metrics.median_absolute_error	
'r2'	metrics.r2_score	
'neg_mean_poisson_deviance'	metrics.mean_poisson_deviance	
'neg_mean_gamma_deviance'	metrics.mean_gamma_deviance	

MODEL SELECTION: SKLEARN

- GridSearchCV: exhaustive search for best parameter values using cross validation
- RandomizedSearchCV: randomized search over parameters

https://scikit-learn.org/stable/modules/grid_search.html
https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation

MS-EXAMPLE.IPYNB

HTTPS://COLAB.RESEARCH.GOOGLE.COM/DRIVE/1_WZYGFCOJ_-HYEBUN9MLIZHBATLO3L5S

BIAS AND VARIANCE TRADEOFF

CS 334: Machine Learning

GROUP ACTIVITY

WHICH MODEL SHOULD WE CHOOSE AND WHY?

WHAT IS A "GOOD" MODEL?

Very Good on Training Set Poor at Predicting

Poor on Training Set Poor at Predicting

http://www.cs.cmu.edu/~10601b/slides/learning_theory.pdf

BIAS-VARIANCE TRADEOFF: INTUITION

 Too "simple" model —> does not fit data well

 Too complex model —> small changes to the data changes the solution a lot

REVIEW: DECISION TREE

BIAS AND VARIANCE

- The expected test error can be decomposed into the sum of
 - Variance of the estimated value
 - Squared bias of the estimated value
 - Variance of irreducible error

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = \operatorname{Var}(\hat{f}(x_0)) + [\operatorname{Bias}(\hat{f}(x_0))]^2 + \operatorname{Var}(\epsilon).$$

BIAS: CONCEPTUALLY

- Difference between expected (or average) prediction of our model and the correct value we are trying to predict
 - Imagine training the model on multiple training datasets
 - Bias is difference in truth and expected prediction
 - Error of approximating a real-life problem by a model

VARIANCE: CONCEPTUALLY

- Amount by which the prediction would change if using a different training dataset
 - Difference between what you learned on a particular dataset versus what you expect to learn

BIAS AND VARIANCE: GRAPHICALLY

Total Error = Bias² + Variance + Irreducible Error

GENERALIZATION & OVERFITTING

- Generalization model performance of a model on independent / future unseen data (data not used in training)
- Underfitting model is unable to capture the relationship between the input and output variables accurately; high error on both training and test data
- Overfitting model is specific to the training set and is learning the noise from the data instead of generalizable rule; low error on training but high error on test data

MODEL GENERALIZATION

Poor at Predicting

Generalizable Very Good on Training
Poor at Predicting

UNDERFITTING VS OVERFITTING

BIAS-VARIANCE TRADE-OFF

BIAS ANALYSIS: SOURCES

- Inability to represent certain decision boundaries
- Classifiers are "too global" (e.g., single linear separator)

High bias —> underfitting

How to reduce bias?

Decision tree (max depth = 1)

BIAS ANALYSIS: REDUCTION

- More complex models
- More features

VARIANCE ANALYSIS: SOURCES

- Noise in labels or features
- Training data too small
- "Too local" algorithms that easily fit data
- Randomness in learning algorithm (i.e., non-convex algorithms)

High variance —> overfitting

How to reduce variance?

VARIANCE ANALYSIS: REDUCTION

- Use more data (increase size of training data)
- Less complex models
- Fewer features (feature selection)

HOW TO USE BIAS-VARIANCE

HOMEWORK #2

- Out 9/13, Due 9/29 @ 11:59 PM ET
- 3 questions
 - Q1: Decision tree implementation
 - Q2: Model assessment
 - Q3: Model selection and robustness of k-nn and decision tree

