שם: איל שטיין

February 21, 2024

לוגיקה | תרגול 5

שם: איל שטיין

February 21, 2024

נושא השיעור: משפט הנאותות

תרגיל 1 - תרגיל בסיסי בנאותות

- נקבל מערכת ואנחנו צריכים להגיד האם היא נאותה ואם כן, האם במובן הצר או הרחב.
 - $WFF_{\{\neg,\lor\}}$ עבור עבור הוכחה אנגדיר מערכת •
 - $B = \{ \alpha \lor (\beta \lor \neg \alpha) \mid \alpha, \beta \in \} WFF_{\{\neg, \lor\}} :$ אקסיומות •

 $.\mathrm{WFF}_{\{\neg,\lor\}}$ נגדיר מערכת הוכחה חדשה עבור נגדיר מערכת תרגיל ו

$$B=\left\{lphaee(etaee
u,lpha,eta\in\mathrm{WFF}_{\{\lnot,\lor\}}
ight\}:$$
אקסיומות: לכל לכל ההיסק: לכל לכל לכל לכל לכל לכל החיסק: לכל

- $MV_1(\alpha,\beta) = \alpha \vee \beta \bullet$
- $MV_2(\alpha, (\neg \alpha) \lor \beta) = \beta \bullet$

נסמן באופן דומה באופן הפסוקים הפסוקים אז נסמן $\varphi\in Ded_{N}\left(\emptyset\right)$ אז נסמן ביכיחים היכיחים היכיחים את $Ded_{N}\left(\emptyset\right)$ $.\Sigma$ הנחות מקבוצת החדשה במערכת היכיחים פסוקים עבור צבור בחדשה ב $\Sigma \ {\displaystyle \mathop{\vdash} \limits_{N}} \ \varphi$ ו- $Ded_{N}\left(\Sigma \right)$

- .1 הוכיחו כי מערכת ההוכחה החדשה נאותה במובן הצר (כלומר, לכל פסוק ישר : $\varphi\in \mathrm{WFF}_{\{\neg,\lor\}}$ אז או הוכיחו .1
- .($\Sigma \vDash \varphi$ אז או $\Sigma \vdash_N \varphi$ אם ישם כי מערכת הוכחה במובן הרחב (כלומר, לכל הוכיחו כי מערכת ההוכחה החדשה נאותה במובן הרחב.

. בה. אנחנו לא נוגעים לב שעבור לא נביעה לא מוסיפים את את מוסיפים את אנחנו לא נוגעים לב שעבור רסת (\sum) אנחנו לא נוגעים הי

סעיף א' - להוכיח שהמערכת נאותה במובן הצר.

- $.Ded_{N}\left(\emptyset\right)\subseteq Con\left(\emptyset\right)$ ש להוכיח צריך להוכיח
 - $\vdash_N \varphi$ כלומר –
 - נעשה זאת בהוכחה של אינדקוציית מבנה.

:בסיס:

- ניקח איבר בבסיס ונראה שהוא טאוטולוגיה.
- .|= $\alpha \lor (\beta \lor \neg \alpha)$ נראה כי $\alpha, \beta \in WFF$ יהיו
- :1ונראה שכל הפסוק תמיד מקבל ערך ו- β ונראה שבר הפסוק נכתוב עבור $-\alpha$, α

α	β	$\neg \alpha$	$\beta \vee \neg \alpha$	$\alpha \vee (\beta \vee \neg \alpha)$
0	0	1		
0	1	1		
1	0	0		
1	1	0		

:צעד

- $\models \gamma$ בד ש α כך ש α, β וגם -
- $\pm MV$ ינם ועם MV1 ועם בדוק מה קורה עם
 - :MV1 עבור *
 - $\delta = MV1\left({lpha ,\gamma } \right)$ נסמן .
 - \cdot תהי השמה z. אזי מתקיים

$$\overline{z}\left(\alpha\right) = 1 = \overline{z}\left(\gamma\right)$$

$$\Rightarrow \overline{z}(\delta) = \overline{z}(\alpha \vee \gamma) \stackrel{Because \ of \ TT_{\vee}}{=} 1$$

- :MV2 עבור *
- $.\delta = MV2\left(lpha, (
 eglpha) \lor eta
 ight)$ נסמן .
- . אם הביאו לנו פסוק שלא מהצורה של $(\neg \alpha) \lor \beta$ אז הפונקציה תחזיר את .
 - \cdot תהי השמה z אזי

$$\overline{z}(\alpha) = 1$$

$$\Rightarrow \overline{z} \left(\neg \alpha \right) \stackrel{TT_{\neg}}{=} 0$$

$$\Rightarrow \overline{z}\left((\neg \alpha) \vee \beta\right) \stackrel{TT_{\vee}}{=} 1, \quad \overline{z}\left(\neg \alpha\right) = 0$$

$$\Rightarrow \overline{z}(\beta) = 1$$

סעיף ב': נאותות במובן הרחב.

- $.\Sigma \models \varphi$ אז $\Sigma \vdash_N \varphi$ אם $,\varphi \in WFF$ שלכל להראות צריך צריך
 - $.Ded_{N}\left(\Sigma\right) \subseteq Con\left(\Sigma\right)$ כלומר
 - הוכחה באינדוקציית מבנה:
 - : בסיס:
 - $.\varphi \models \Sigma$ יקח להראות צריך $.\varphi \in A \cup \Sigma$ יקח
 - : מתקיים
 - $.\varphi \in A$ או \cdot
- φ היא הנחנו את סדרת כלומר קי $\Sigma \vdash \varphi$ כלומר את המבוקש. או הנחנו או $\varphi \in \Sigma$ או $\varphi \in \Sigma$

:צעד

- $.\Sigma \models \gamma$ וגם ב $\Sigma \models \alpha$ המקיימים α, γ וגם
 - :MV1 עבור –
 - $\delta = MV1(\alpha, \gamma) = \alpha \vee \gamma \star$
 - z ואז . Σ ואז + מספקת את את .

$$\overline{z}(\alpha) = \overline{z}(\gamma) = 1$$

- ואז כמו בסעיף הקודם אפשר להמשיך.
- . מחשבה, תהליך את ונקבל את ונקבל z שמספקת עבור MV2, גם עבור MV2