Trade under Imperfect Competition

YUAN ZI1

¹Graduate Institute of International Studies (yuan.zi@graduateinstitute.ch)

International Trade A, Chapter 5, Spring 2022

Introduction

- A large (and growing) part of world trade (1) occurs between very similar countries and (2) takes place intra-industry
- Neoclassical theories unable to explain these facts
- Need for new theories with
 - 1 Product differentiation (which also implies...)
 - 2 Imperfect competition
 - Increasing returns

The Krugman (1980) model

Basic Ingredients

- CES preferences (love of variety)
- Monopolistic competition
- Increasing returns to scale (IRS) due to fixed production cost
- Trade cost (iceberg)
- Note that IRS is equivalent to AC>MC, which implies imperfect competition

The Krugman (1980) Model

Predictions

- Trade Lindt for Ferrero story
- Two identical countries, from autarky to trade:
 - GDP does not change
 - Wages do not change
 - Both enjoy double varieties → gains from trade!

This Lecture

- Intra-industry trade: definition and general data patterns (Grubel and Lloyd, 1975; Brülhart, 2009)
- Early empirical test of the Krugman model (Head and Ries, 1999)
- Model details are provided in the Appendix

Inter- or intra-industry trade?

Decomposition of trade (% total)

Source: Fontagné L., Freudenberg M., Gaulier G. (2006). Definitions: Intra-industry trade is identified as simultaneous exports and imports within the same industry. Distinction of vertical and horizontal relies on price differences.

Inter- or intra-industry trade?

Top-10 country pairs (% of bilateral trade, 2000)

Germany	France	86.20
Netherlands	Belgium and	85.01
	Luxembourg	
France	Belgium and	80.42
	Luxembourg	
France	United King-	77.08
	dom	
Germany	Switzerland	76.99
Germany	Belgium and	76.83
	Luxembourg	
Austria	Germany	76.63
France	Spain	76.55
Germany	Netherlands	76.01
Canada	United States	73.55

Source : Fontagné, Freudenberg & Gaulier (2006)

- How to quantify intra-industry trade?
- Grubel and Lloyd (1975) propose the following index:

$$GL_{ijkt} = 1 - \frac{|X_{ijkt} - M_{ijkt}|}{X_{ijkt} + M_{ijkt}}$$

- Measures for given countries i and j, the proportion of non-overlapping trade flows in total bilateral trade of good k
- Ranges from 0 (perfect inter-industry trade) to 1 (perfect intra-industry trade)
- Issue: what is a "good"?

- Brulhart (2009)
- UN-COMTRADE, 1962-2005
- SITC Rev. 1 / 5 digit
- 1,161 products, up to 214 countries

Richer countries do more IIT

IIT between low income countries is almost inexistent

IIT between middle income countries is large: probably due to processing trade within vertically fragmented industries.

IIT concerns mainly intermediate goods (processing trade) and a priori sophisticated and differentiated goods.

IIT concerns mainly sophisticated and differentiated

goods.

Global IIT by SITC 1-Digit Sector, 1962 and 2006

Notes:

'wide coverage' dataset; SITC 1-digit sectors: 0 – Food and Live Animals, 1 – Beverages and Tobacco, 2 – Crude Materials Excluding Fuels, 3 – Mineral Fuels Etc., 4 – Animal & Vegetable Oils & Fats, 5 – Chemicals, 6 – Basic Manufactures, 7 – Machines & Transport Equipment, 8 – Misc. Manufactures, 9 – Goods Not Classified by Kind.

• IIT is larger between richer countries

Cross-Country Determinants of IIT, 1965, 1990 and 2006 (Dependent variable = log transformed GL index, estimation by OLS)

	1965				1990				2006			
	All Sectors	Primary	Intermed.	Final	All Sectors	Primary	Intermed.	Final	All Sectors	Primary	Intermed.	Final
log mean per-cap. GDP	1.753*** (0.09)	1.322*** (0.11)	1.944*** (0.11)	1.854*** (0.12)	2.193*** (0.09)	1.855*** (0.10)	2.378*** (0.10)	2.045*** (0.10)	1.617*** (0.08)	1.534*** (0.10)	1.918*** (0.08)	1.513*** (0.08)
log diff per-cap. GDP	-0.0811 (0.08)	0.018 (0.09)	-0.133 (0.09)	-0.210** (0.09)	0.0890 (0.08)	0.00854 (0.08)	0.140* (0.08)	-0.132 (0.09)	0.0444 (0.07)	-0.097 (0.09)	0.189*** (0.07)	-0.0668 (0.07)
log distance	-1.464*** (0.10)	-1.092*** (0.11)	-1.231*** (0.11)	-1.754*** (0.11)	-1.163*** (0.10)	-1.019*** (0.10)	-1.021*** (0.11)	-1.285*** (0.11)	-0.700*** (0.09)	-1.161*** (0.11)	-0.622*** (0.09)	-0.923*** (0.09)
contiguity constant	1.330*** (0.47) -9.555*** (1.23)	1.827*** (0.50) -10.500*** (1.35)	1.464*** (0.51) -13.500*** (1.35)	0.890* (0.53) -7.902*** (1.43)	1.486*** (0.48) -14.730*** (1.26)	1.801*** (0.50) -15.180*** (1.34)	1.812*** (0.51) -17.591*** (1.36)	0.969* (0.52) -12.263*** (1.40)	1.571*** (0.41) -12.570*** (1.12)	1.672*** (0.53) -10.361*** (1.44)	2.006*** (0.45) -16.150*** (1.21)	1.327*** (0.44) -9.665*** (1.20)
Observations \mathbb{R}^2	1,196 0.41	1,090 0.27	1,101 0.37	1,069 0.39	1,411 0.41	1,340 0.32	1,373 0.39	1,354 0.36	1,375 0.33	1,354 0.28	1,374 0.34	1,373 0.31

^{***, **} and * indicate statistical significance at the 1 per cent, 5 per cent and 10 per cent levels, respectively. Numbers in parentheses are standard errors.

• IIT is (not really) larger between more similar countries

Cross-Country Determinants of IIT, 1965, 1990 and 2006 (Dependent variable = log transformed GL index, estimation by OLS)

	1965				1990				2006					
	All Sectors	Primary	Intermed.	Final	All Sectors	Primary	Intermed.	Final	All Sectors	Primary	Intermed.	Final		
log mean per-cap. GDP	1.753*** (0.09)	1.322*** (0.11)	1.944*** (0.11)	1.854*** (0.12)	2.193*** (0.09)	1.855*** (0.10)	2.378*** (0.10)	2.045*** (0.10)	1.617*** (0.08)	1.534*** (0.10)	1.918*** (0.08)	1.513*** (0.08)		
log diff per-cap. GDP	-0.0811 (0.08)	0.018 (0.09)	-0.133 (0.09)	-0.210** (0.09)	0.0890 (0.08)	0.00854 (0.08)	0.140* (0.08)	-0.132 (0.09)	0.0444 (0.07)	-0.097 (0.09)	0.189*** (0.07)	-0.0668 (0.07)		
log distance	-1.464***	-1.092***	-1.231***	-1.754***	-1.163***	-1.019***	-1.021***	-1.285***	-0.700***	-1.161***	-0.622***	-0.923**		
contiguity	(0.10) 1.330*** (0.47)	(0.11) 1.827*** (0.50)	(0.11) 1.464*** (0.51)	(0.11) 0.890* (0.53)	(0.10) 1.486*** (0.48)	(0.10) 1.801*** (0.50)	(0.11) 1.812*** (0.51)	(0.11) 0.969* (0.52)	(0.09) 1.571*** (0.41)	(0.11) 1.672*** (0.53)	(0.09) 2.006*** (0.45)	(0.09) 1.327*** (0.44)		
constant	-9.555*** (1.23)	-10.500*** (1.35)	-13.500*** (1.35)	-7.902*** (1.43)	-14.730*** (1.26)	-15.180*** (1.34)	-17.591*** (1.36)	-12.263*** (1.40)	-12.570*** (1.12)	-10.361*** (1.44)	-16.150*** (1.21)	-9.665*** (1.20)		
Observations \mathbb{R}^2	1,196 0.41	1,090 0.27	1,101 0.37	1,069 0.39	1,411 0.41	1,340 0.32	1,373 0.39	1,354 0.36	1,375 0.33	1,354 0.28	1,374 0.34	1,373 0.31		

^{***, **} and * indicate statistical significance at the 1 per cent, 5 per cent and 10 per cent levels, respectively. Numbers in parentheses are standard errors.

• IIT is larger between closer countries

Cross-Country Determinants of IIT, 1965, 1990 and 2006 (Dependent variable = log transformed GL index, estimation by OLS)

	1965				1990				2006			
	All Sectors	Primary	Intermed.	Final	All Sectors	Primary	Intermed.	Final	All Sectors	Primary	Intermed.	Final
log mean per-cap. GDP	1.753*** (0.09)	1.322*** (0.11)	1.944*** (0.11)	1.854*** (0.12)	2.193*** (0.09)	1.855*** (0.10)	2.378*** (0.10)	2.045*** (0.10)	1.617*** (0.08)	1.534*** (0.10)	1.918*** (0.08)	1.513***
log diff	-0.0811	0.018	-0.133	-0.210**	0.0890	0.00854	0.140*	-0.132	0.0444	-0.097	0.189***	-0.0668
per-cap.	(0.08)	(0.09)	(0.09)	(0.09)	(0.08)	(0.08)	(0.08)	(0.09)	(0.07)	(0.09)	(0.07)	(0.07)
log distance	-1.464***	-1.092***	-1.231***	-1.754***	-1.163***	-1.019***	-1.021***	-1.285***	-0.700***	-1.161***	-0.622***	-0.923***
	(0.10)	(0.11)	(0.11)	(0.11)	(0.10)	(0.10)	(0.11)	(0.11)	(0.09)	(0.11)	(0.09)	(0.09)
	1.330***	1.827***	1.464***	0.890*	1.486***	1.801***	1.812***	0.969*	1.571***	1.672***	2.006***	1.327***
constant	(0.47)	(0.50)	(0.51)	(0.53)	(0.48)	(0.50)	(0.51)	(0.52)	(0.41)	(0.53)	(0.45)	(0.44)
	-9.555***	-10.500***	-13.500***	-7.902***	-14.730***	-15.180***	-17.591***	-12.263***	-12.570***	-10.361***	-16.150***	-9.665***
	(1.23)	(1.35)	(1.35)	(1.43)	(1.26)	(1.34)	(1.36)	(1.40)	(1.12)	(1.44)	(1.21)	(1.20)
Observations	1,196	1,090	1,101	1,069	1,411	1,340	1,373	1,354	1,375	1,354	1,374	1,373
R ²	0.41	0.27	0.37	0.39	0.41	0.32	0.39	0.36	0.33	0.28	0.34	0.31

^{***, **} and * indicate statistical significance at the 1 per cent, 5 per cent and 10 per cent levels, respectively. Numbers in parentheses are standard errors.

Empirical Evidence

Head and Ries (1999) Overview

- Head and Ries (1999), "Rationalization Effects of Tariff Reductions", Journal of International Economics
- Focuses on model selection rather than directly testing the Krugman model
- Confirms economies of scale; does not address gains from trade (increased variety)
- Among the first papers to use firm-level regressions

Model Comparison

Table 1 Predicted effects of tariffs on output per plant (q) and the number of plants (n)

Main Assumptions of Model	Canadiar	n Tariffs		US Tariffs			
(Authors)	Fixed n, n^* Δq	Free Entry Δq	Δn	Fixed n, n^* Δq	Free Entry Δq	Δn	
Segmented-markets Cournot	+	+	+	-	-	-	
(Venables, 1985)							
Unified-markets Cournot	NA	0	+	NA	+	_	
(Horstmann and Markusen, 1986)							
Monopolistic competition	+	0	+	_	0	_	
(Helpman and Krugman, 1985)							
Tariff-limit pricing	-	-	+	NA	NA	NA	
(Cox and Harris, 1985							
Muller and Rawana, 1990)							

Data and Specification

- Exploiting the US-Canada Free Trade Agreement (1988)
- 230 Canadian manufacturing industries, 1981 and 1994
- They use the following specification:

$$\ln y_{it} = \alpha_i + \beta_t + \gamma_t \tau_{it} + \gamma_t \tau_{it} + \epsilon_{it}$$
 (1)

where y_{it} is either output per establishment (q_{it}) or the number of establishments (n_{it}) , α_i are industry fixed effects, β_t are year effects, and τ_{it} are industry tariffs.

Fig. 1. Scale of Canadian manufacturing, 1981-1994.

Table 3 Effects of tariffs on log output per plant ($\ln q$)

	Sample:				
	All	Imp. Com.	IC+Free	IC+Fixed	All
Canadian Tariff	1.134ª	1.247ª	0.279	3.824ª	4.928ª
	(0.368)	(0.411)	(0.455)	(0.925)	(1.135)
U.S. Tariff	-1.638^{a}	-2.227^{a}	-0.937	-5.632^{a}	-6.371^{a}
	(0.596)	(0.716)	(0.828)	(1.403)	(2.078)
Cdn. Tariff					-17.952^{a}
× Turnover					(5.489)
U.S. Tariff					20.131°
× Turnover					(10.289)
1994	0.179 ^a	0.172 ^a	0.117 ^a	0.301 ^a	0.186ª
	(0.020)	(0.022)	(0.025)	(0.040)	(0.021)
R^2 (within)	0.175	0.173	0.129	0.338	0.191
Root MSE	0.149	0.152	0.149	0.154	0.149
No. of Obs.	1828	1628	1183	445	1693

Note: Fixed industry year effects are not reported except for 1994 which approximates the percent change from 1988. Standard errors in parentheses. ^{a, b, c} indicate significance in a two-tail test at the 1, 5 and 10 percent levels.

Results on output are consistent with the Krugman model

Table 4 Effects of tariffs on log # of plants (ln n)

	Sample: All	Imp. Com.	IC+Free	IC+Fixed	All
- II - II - II					
Canadian Tariff	1.352 ^a	1.629 ^a	1.957 ^a	-0.384	-2.015^{t}
	(0.264)	(0.286)	(0.305)	(0.719)	(0.783)
U.S. Tariff	1.218 ^a	0.953°	1.143 ^b	1.781	2.579°
	(0.428)	(0.499)	(0.554)	(1.090)	(1.433)
Cdn. Tariff					14.634°
× Turnover					(3.786)
U.S. Tariff					-2.195
× Turnover					(7.097)
1994	-0.111^{a}	-0.099^{a}	-0.087^{a}	-0.14^{a}	-0.142^{a}
	(0.014)	(0.015)	(0.017)	(0.031)	(0.014)
R^2 (within)	0.438	0.436	0.506	0.290	0.498
Root MSE	0.107	0.106	0.100	0.119	0.103
No. of Obs.	1828	1628	1183	445	1693

Note: Fixed industry and year effects are not reported except for 1994 which approximates the percent change from 1988. Standard errors in parentheses. ^a, ^b, ^c indicate significance in a two-tail test at the 1, 5 and 10 percent levels.

• But strange results on the number of plants

Conclusion

- Problems of the Krugman model: homogeneous firms, factors are immobile across countries
- Next: economic geography and heterogeneous firms to relax these assumptions

Appendix: The Krugman model

The Krugman (1980) model: ingredients

- Increasing returns to scale (IRS) due to fixed production cost
- Monopolistic competition
- Trade cost (iceberg)
- CES preferences
- Note that IRS is equivalent to AC>MC, which implies imperfect competition

The Krugman (1980) model: demand side

- One factor, one sector which include a potentially infinite number of varieties of differentiated products ($\omega \in \Omega$)
- CES demand: $\max_{q(\omega)} U = \max_{q(\omega)} \left(\int_{\Omega} q(\omega)^{\frac{\sigma-1}{\sigma}} d\omega \right)^{\frac{\sigma}{\sigma-1}}$
- $\sigma > 1$ is the elasticity of substitution between varieties
- Budget constraint: $\int_{\Omega} p(\omega) q(\omega) d\omega = wL$ (no K, no profit in equilibrium)
- Yields **demand function**: $q(\omega) = \left(\frac{p(\omega)}{P}\right)^{-\sigma} \frac{\textit{wL}}{P}$ where $P = \left(\int_{\Omega} p(\omega)^{1-\sigma} d\omega\right)^{\frac{1}{1-\sigma}}$ Proof

The Krugman (1980) model: price index and utility

- Interpretation of P: ideal price index
- Can show that with $P = \left(\int_{\Omega} p(\omega)^{1-\sigma} d\omega \right)^{\frac{1}{1-\sigma}}, \ U = \frac{wL}{P}$
- Implies that the utility of the real income is the same regardless of the general level of prices
- We can show that there is preference for diversity: utility increases with the number of varieties
- For a given wL, P varies inversely with utility. P is the price of a unit of utility
- Trade raises utility through an increase in product diversity

The Krugman (1980) model: supply side

- Each firm is a monopolist on a given variety (why?)
- **Fixed cost**. Cost function is $I(q(\omega)) = F + \frac{q(\omega)}{\varphi}$
- Optimal price. $p = \frac{\sigma}{\sigma 1} \frac{w}{\omega}$ (constant mark-up) Proof
- Profit. $\pi(\omega) \equiv p(\omega)q(\omega) w(F + \frac{q(\omega)}{\varphi}) = w(\frac{q(\omega)}{\varphi(\sigma-1)} F)$
- Free entry. $\pi=0 \Rightarrow q(\omega)=(\sigma-1)\varphi F$ (all firms produce the same quantity at the same price)
- **Number of firms**. Solve $L = n(F + \frac{q}{\varphi}) \Rightarrow n = \frac{L}{\sigma F}$ (interpretation?)

The Krugman (1980) model: supply side

- Recall optimal price. $p = \frac{\sigma}{\sigma 1} \frac{w}{\omega}$ (constant mark-up)
- Plugging into P we can show that $P = \frac{\sigma}{\sigma 1} \frac{W}{\omega} n^{\frac{1}{1 \sigma}} = \frac{\sigma}{\sigma 1} \frac{W}{\omega} (\frac{L}{\sigma F})^{\frac{1}{1 \sigma}}$
- Lower price index, and therefore higher welfare, in larger economies
- What happens under trade? (so far, this is Dixit-Stiglitz 77)

The Krugman (1980) model: trade

- Assume two countries, identical in everything but their size (L, L^*)
- Assume iceberg trade costs, τ > 1
- Price on the foreign market is $p^X = \tau \frac{\sigma}{\sigma 1} \frac{w}{\psi} = \tau p$
- Note that domestic price is the same in both markets (why?). Also, there is complete tariff pass-through

The Krugman (1980) model: trade

- Total production. $q = q^D + \tau q^X$
- Total profit. $\pi = pq w(F + \frac{q}{\psi}) = \frac{wq}{\psi(\sigma 1)} wF$
- Free entry. $\pi = 0 \Rightarrow q = (\sigma 1)\psi F$
- Number of firms. n such that $n(F + \frac{q}{\psi}) = L \Rightarrow n = \frac{L}{\sigma F}$
- Comparative static of equilibrium q and n, and the intuition?
- No change in price, no change in output per firm, no change in number of firms. Why?

The Krugman (1980) model: trade and welfare

Autarky:

$$P = pn^{\frac{1}{1-\sigma}}$$
 and $P^* = p^*n^{*\frac{1}{1-\sigma}}$

Open to trade:

$$P = (p^{1-\sigma}n + (\tau p^*)^{1-\sigma}n^*)^{\frac{1}{1-\sigma}}$$
 and $P^* = ((\tau p)^{1-\sigma}n + (p^*)^{1-\sigma}n^*)^{\frac{1}{1-\sigma}}$

• If trade is costless and countries are symmetric:

$$P = p^* = (2np^{1-\sigma})^{\frac{1}{1-\sigma}} < (np^{1-\sigma})^{\frac{1}{1-\sigma}},$$

as $\sigma > 1$

→ Welfare gains due to diversity

Appendix: derivation of the demand function (1/2)

- Lagrangian: $L = (\int_{\Omega} q(\omega)^{\frac{\sigma-1}{\sigma}} d\omega)^{\frac{\sigma}{\sigma-1}} \mu(\int_{\Omega} p(\omega)q(\omega) wL)$
- First order conditions:

$$\frac{\partial L}{\partial q(\omega)} = q(\omega)^{\frac{-1}{\sigma}} (\int_{\Omega} q(\omega)^{\frac{\sigma-1}{\sigma}} d\omega)^{1/(\sigma-1)} - \mu p(\omega) = 0$$

$$\Leftrightarrow q(\omega)^{\frac{-1}{\sigma}} U^{\frac{1}{\sigma}} = \mu p(\omega)$$

$$\Leftrightarrow p(\omega) q(\omega) = U \mu^{-\sigma} p(\omega)^{1-\sigma}$$

Now take the ratio of demands for two distinct varieties:

$$\frac{q(\omega)}{q(\omega')} = (\frac{p(\omega)}{p(\omega')})^{-\sigma}$$
 (A)

- \rightarrow relative consumption is a function of relative price.
- σ is the (constant) elasticity of substitution $\frac{\frac{\partial [q(\omega)/q(\omega')]}{q(\omega)/q(\omega')}}{\frac{\partial [p(\omega)/p(\omega')]}{p(\omega)/p(\omega')}}$

Appendix: derivation of the demand function (2/2)

Now $\int_{\Omega} q(\omega)p(\omega)d\omega = \int_{\Omega} p(\omega)q(\omega')(\frac{p(\omega)}{p(\omega')})^{-\sigma}d\omega = q(\omega')p(\omega')^{\sigma}\int_{\Omega} p(\omega)^{1-\sigma}d\omega$

This equals wL (budget constraint) which leads: $q(\omega') = \frac{wL}{p(\omega')^{\sigma} \int_{\Gamma} p(\omega)^{1-\sigma} d\omega}$ (B)

Plugging (B) in (A) and rearranging:

$$q(\omega) = rac{p(\omega)^{-\sigma} wL}{\int_{\Omega} p(\omega)^{1-\sigma} d\omega}$$

Now, defining the price index:

$$P = (\int_{\Omega} p(\omega)^{1-\sigma})^{\frac{1}{1-\sigma}}$$

We finally get:

$$q(\omega) = \frac{p(\omega)^{-\sigma}}{P^{-\sigma}} \frac{wL}{P}$$

 \longrightarrow A percentage rise in $p(\omega)$ reduces demand by σ percent: σ is the price elasticity of demand. Pack

Appendix: derivation of the optimal price

- Start from the firms' profit function: $\pi(\omega) = p(\omega)q(\omega) w(f + \frac{q(\omega)}{\varphi})$
- Maximize w.r. to price given the demand function from the previous slide (the price index is taken as given by the firm as this is monopolistic competition)

• FOC:
$$\frac{\partial \pi(\omega)}{\rho(\omega)} = P^{\sigma-1} wL[(1-\sigma)p^{-\sigma} + \frac{w}{\varphi}\sigma p^{-\sigma-1}] = 0$$

• Rearranging we get: $p = \frac{\sigma}{\sigma - 1} \frac{w}{\varphi}$: constant mark-up \times marginal cost

Appendix: price indexes in the two-country model

- The price index is now: $P = (\sum_{\Omega \in H} p(\omega)^{1-\sigma} + \sum_{\Omega \in F} (\tau p^*(\omega))^{1-\sigma})^{\frac{1}{1-\sigma}}$
- In the symmetric equilibrium, $p(\omega) = p \ \forall \omega \in H$ and $p^*(\omega) = p^* \ \forall \omega \in F$, so

$$P = (np^{1-\sigma} + n^*(\tau p^*)^{1-\sigma})^{\frac{1}{1-\sigma}}$$
 and $P^* = (n^*(p^*)^{1-\sigma} + n(\tau p)^{1-\sigma})^{\frac{1}{1-\sigma}}$

- With zero transportation cost ($\tau = 1$), the two indexes are equal to $P = P^* = (2n)^{\frac{1}{1-\sigma}}p$. Note that both indices are lower than under autarky ($P = n^{\frac{1}{1-\sigma}}p$)
- Trade is welfare improving because of preference for diversity

Appendix: wages in the Krugman model

- L is exogenous but w is endogenous
- In order to give the wage level we need the last equation: the goods market equilibrium. Due to Walras law it's equivalent to look at the domestic market, the foreign market or at trade balance
- We use trade balance:

$$X = \lambda \times L \times L^* \times (\frac{\tau w}{P^*})^{1-\sigma} \times w^* = \lambda \times L \times L^* \times (\frac{\tau w^*}{P})^{1-\sigma} \times w = X^*$$

- Which implies $\frac{w}{w^*} = \left(\frac{P}{P^*}\right)^{\frac{1-\sigma}{\sigma}}$ with $\left(\frac{P}{P^*}\right)^{1-\sigma} = \frac{np^{1-\sigma} + n^*(\tau p^*)^{1-\sigma}}{n(\tau p)^{1-\sigma} + n^*(p^*)^{1-\sigma}}$
- So $\frac{w}{w^*} = (\frac{Lw^{1-\sigma} + L^*(\tau w^*)^{1-\sigma}}{L(\tau w)^{1-\sigma} + L^*(w^*)^{1-\sigma}})^{\frac{1}{\sigma}}$

Appendix: specialization (Helpman and Krugman, 1985)

 All manufacturing firms produce the same quantity q that they sell at the same price p:

$$q = q^D + \tau q^X = \mu(\frac{p}{P})^{-\sigma} \frac{wL}{P} + \tau \mu(\frac{\tau p}{P^*})^{-\sigma} \frac{w^*L^*}{P^*}$$

Replace price indexes by their open economy expressions:

$$q = \mu \frac{p^{-\sigma}}{np^{1-\sigma} + n^*(\tau p^*)^{1-\sigma}} wL + \tau \mu \frac{(\tau p)^{1-\sigma}}{n(\tau p)^{1-\sigma} + n^*(p^*)^{1-\sigma}} w^*L^*$$

 Perfect labor mobility across sectors + trade in homogenous goods: same wage. Assume φ = σ/(σ - 1) so that w = p = 1. The production of differentiated goods for each variety is:

$$q = \mu\left(\frac{L}{n + n^* \tau^{1-\sigma}} + \frac{\tau^{1-\sigma} L^*}{n \tau^{1-\sigma} + n^*}\right) \qquad q^* = \mu\left(\frac{\tau^{1-\sigma} L}{n + n^* \tau^{1-\sigma}} + \frac{L^*}{n \tau^{1-\sigma} + n^*}\right)$$

• Since $q = q^*$ we have $\frac{L}{n + n^* \tau^{1-\sigma}} + \frac{\tau^{1-\sigma} L^*}{n \tau^{1-\sigma} + n^*} = \frac{\tau^{1-\sigma} L}{n + n^* \tau^{1-\sigma}} + \frac{L^*}{n \tau^{1-\sigma} + n^*}$ Or $n(1 - \frac{L}{L^*} \tau^{1-\sigma}) = n^* (\frac{L}{L^*} - \tau^{1-\sigma})$

Acknowledgment

Slides of this course are inspired by those taught by N. Berman, T. Chaney, M. Crozet, D. Donaldson, T. Mayer, I. Mejean