HAUST 2016

ÞÝÐENDUR T-603-THYD

Homework 2

Nemandi:

Steinn Elliði Pétursson

Kennitala:

250594-2759

13. október 2016

Kennari:

Friðjón Guðjohnsen

1

Consider the following grammar:

$$\begin{split} S &\rightarrow \mathbf{a} A | \mathbf{a} B | \mathbf{a} \mathbf{c} A | \mathbf{a} \mathbf{c} C \\ A &\rightarrow A \mathbf{a} | B C \\ B &\rightarrow B \mathbf{b} | \epsilon \\ C &\rightarrow \mathbf{c} C | \mathbf{c} \end{split}$$

\mathbf{a}

Construct a left-most derivation of the string **acbcca**. Show each step in the derivation.

Solution.

$$S \to \mathbf{ac} A \to \mathbf{ac} A \mathbf{a} \to \mathbf{ac} B C \mathbf{a} \to \mathbf{ac} B \mathbf{b} C \mathbf{a} \to \mathbf{acb} C \mathbf{a} \to \mathbf{acb} \mathbf{c} C \mathbf{a} \to \mathbf{acb} \mathbf{c} \mathbf{c} \mathbf{a}$$

b

Is the grammar ambiguous? If you think that the grammar is ambiguous, then provide an example of a string for which two (or more) parse trees exist and show the parse trees. If you think that the grammar in unambiguous, then provide a convincing justification for your answer.

Solution.

This grammar is ambiguous. Following is an example of two parse trees for the string \mathbf{acc}

 \mathbf{c}

Eliminate left-recursion from the grammar

Solution.

```
\begin{split} S &\rightarrow \mathbf{a}A|\mathbf{a}B|\mathbf{a}\mathbf{c}A|\mathbf{a}\mathbf{c}C\\ A &\rightarrow BCA'\\ A' &\rightarrow \mathbf{a}A'|\epsilon\\ B &\rightarrow B'\\ B' &\rightarrow \mathbf{b}B'|\epsilon\\ C &\rightarrow \mathbf{c}C|\mathbf{c} \end{split}
```

\mathbf{d}

Left factor the grammar you created in the previous step (c).

Solution.

$$\begin{split} S &\rightarrow \mathbf{a}|S' \\ S' &\rightarrow A|B|\mathbf{c}S'' \\ S'' &\rightarrow A|C \\ A &\rightarrow BCA' \\ A' &\rightarrow \mathbf{a}A'|\epsilon \\ B &\rightarrow B' \ B' \rightarrow \mathbf{b}B'|\epsilon \\ C &\rightarrow \mathbf{c}C' \\ C' &\rightarrow C|\epsilon \end{split}$$

 \mathbf{e}

Construct a left-most derivation of the string acbcca, now using the grammar you created in the previous step (d).

Solution.

$$S \to \mathbf{a}S' \to \mathbf{ac}S'' \to \mathbf{ac}A \to \mathbf{ac}BCA' \to \mathbf{acb}BCA' \to \mathbf{acb}CCA' \to \mathbf{acbc}C'A' \to \mathbf{acbcc}C'A' \to \mathbf{acbcc}A' \to \mathbf{acbcc$$

2

```
Consider the following grammar: bexpr \rightarrow bexpr or bterm|bterm bterm \rightarrow bterm and bfactor|bfactor bfactor \rightarrow \mathbf{not} bfactor|(bexpr)|\mathbf{true}|\mathbf{false} where the set of terminals is \{\mathbf{not}, \mathbf{or}, \mathbf{and}, (,), \mathbf{true}, \mathbf{false}, \}.
```

a

Eliminate left-recursion from this grammar

Solution.

```
bexpr 	o bterm \ bexpr'

bexpr' 	o \mathbf{or} \ bterm \ bexpr' | \epsilon

bterm 	o bfactor \ bterm'

bterm' 	o \mathbf{and} \ bfactor \ bterm' | \epsilon

bfactor 	o \mathbf{not} \ bfactor | ( \ bexpr \ ) | \mathbf{true} | \mathbf{false}
```

b

Give the FIRST and FOLLOW sets for all non-terminal symbols in the grammar you created in the previous step (a).

Solution.

NON-TERMINAL	FIRST	FOLLOW
bexpr	{ not, (, true, false }	{), \$ }
bexpr'	$\{ \text{ or, } \epsilon \}$	{), \$ }
bterm	{ not, (, true, false }	{ or,), \$ }
bterm'	$\{ \text{ and, } \epsilon \}$	{ or,), \$ }
bfactor	{ not, (, true, false }	{ or,), \$, and }

3

Consider the following LL(1) grammar:

 $S \to \mathbf{a} A C$

 $A \to BD$

 $B \to \mathbf{bc}B|\epsilon$

 $C \to \mathbf{c} | \epsilon$

 $D \to \mathbf{d}$

 \mathbf{a}

Show the FIRST and FOLLOW sets for the non-terminals S, A, B, C and D.

Solution.

NON-TERMINAL	FIRST	FOLLOW
S	{ a }	{ \$ }
A	{ b, d }	{ c, \$ }
В	$\{ b, \epsilon \}$	{ d }
С	$\{ c, \epsilon \}$	{ \$ }
D	{ d }	{ c, \$ }

b

Construct a predictive parsing table for the given grammar.

Solution.

	a	b	c	d	\$
S	$S \to \mathbf{a}AC$				
A		$A \to BD$		$A \to BD$	
В		$B \to \mathbf{bc}B$		$B \to \epsilon$	
С			$C \to \mathbf{c}$		$C \to \epsilon$
D				$D \to \mathbf{d}$	

C

Show the moves of a non-recursive predictive parser on the input **abcd**. Show each step, as done on page 228 in the textbook.

Solution.

Matched	Stack	Input	Action
	S\$	abcd\$	
	aAC\$	abcd\$	output $S \to aAC$
a	AC\$	bcd\$	match a
a	BDC\$	bcd\$	output $A \to BD$
a	bcBDC\$	bcd\$	output $B \to bcB$
ab	cBDC\$	cd\$	match b
abc	BDC\$	d\$	match c
abc	DC\$	d\$	output $B \to \epsilon$
abc	dC\$	d\$	output $D \to d$
abcd	C\$	\$	match d
abcd	\$	\$	output $C \to \epsilon$

4

Consider the grammar G given below:

 $E \to E + E$

 $E \to E*E$

 $E \to (E)$

 $E \rightarrow id$

a

Construct the collection of sets of LR(0) items for G, together with the DFA for viable prefixes that can appear on the stack of a shift/reduce parser.

Solution.

- $E \rightarrow .E + E$
- $E \rightarrow E. + E$
- $E \rightarrow E + .E$
- $E \to E + E$.
- $E \to .E * E$
- $E \to E.*E$
- $E \to E * .E$
- $E \to E * E$.
- $E \rightarrow .(E)$
- $E \rightarrow (.E)$
- $E \rightarrow (E.)$
- $E \to (E)$.
- $E \rightarrow .id$
- $E \to id.$

\mathbf{b}

Show the FIRST and FOLLOW sets for the nonterminal E.

Solution.

NON-TERMINAL	FIRST	FOLLOW
Е	{ (, id }	{ \$, +, *,) }