Machine learning Part 2

Jérôme Dockès

QLS course 2021-07-30

Recap of part 1

Supervised learning

- Regression: least-squares linear regression
- Classification: logistic regression

Regularization

• ℓ_2 a.k.a. ridge regularization

Model evaluation and selection

- Out-of-sample generalization; independent test set
- · Performance metrics:
 - regression: mean squared error
 - · classification: accuracy, ROC curve
- Cross-validation

Don't remember? watch Part 1 again!

Notation & vocabulary Supervised learning framework

$$Y = f(X) + E$$

• $Y \in \mathbb{R}$: output (a.k.a. target, dependent variable) to predict

• $X \in \mathbb{R}^p$: features (a.k.a. inputs, regressors, descriptors,

- independent variables)
- $E \in \mathbb{R}$: unmodelled noise
- f: the function we try to approximate

Example: linear regression

Example: linear regression
$$V = \beta_0$$
.

$$Y = \beta_0 + \langle X, \beta \rangle + E$$

$$Y = \beta_0 + \langle X, \beta \rangle + E$$

$$Y = \beta_0 + \langle X, \beta \rangle + E$$

$$= \beta_0 + \sum_{i=1}^{p} Y_i \beta_{i+1} + E$$

$$= \beta_0 + \langle X, \beta \rangle + E$$

$$= \beta_0 + \sum_{j=1}^p X_j \beta_j + E$$

"learning" = estimating
$$\beta_0 \in \mathbb{R}$$
 and $\beta \in \mathbb{R}^p$

(2)

(1)

Dimensionality reduction

Problems when the number of features p becomes large

- Bigger errors on test data (larger variance of predictions)
- · Numerical stability issues
- · Computational cost and memory usage

Model complexity: overfitting

- Model complexity increases with dimension.
- Example: a linear model in dimension $\mathfrak p$ can fit exactly (0 training error) any set of $\mathfrak p+1$ points.
- Risk of overfitting: fitting exactly training data but failing on test data

Cost of fitting many parameters

- Many algorithms require polynomial time in p
- Implementations often make copies of the design matrix (e.g. for centering & rescaling)

Univariate feature selection

- a.k.a. feature screening, filtering . . .
- Check features (columns of X) one by one for association with the output y
- Keep only a fixed number or percentage of the features

Simple (linear) association criteria

- for regression: correlation
 - for classification: ANalysis Of VAriance

Read more in the scikit-learn user guide

```
https://scikit-learn.org/stable/modules/feature_selection.html#feature-selection
```

Univariate feature selection

Keeping only the 10 best features (most correlated with y)

Same plot in log scale

Linear decomposition methods

Maybe OK to drop X_2 :

Data low-dimensional but no feature can be dropped:

Find a better referential in which to represent the data

Linear regression: projection on the column space of *X*

Approximate y as a combination of the columns of X

$$\hat{\mathbf{y}} = \mathbf{X}\,\hat{\boldsymbol{\beta}} \in \mathbb{R}^n \tag{4}$$

- The columns of X are a family of p n-dimensional vectors
- When p is high or the columns of X are correlated, we want to use a family of k
- Feature selection: drop some columns, keep only k
- Could we build a better family of k vectors?

Linear regression: projection on the column space of X

Linear decomposition: low-rank approximation of \boldsymbol{X}

Linear regression after dimensionality reduction

Principal Components Regression

- Approximation of X of rank k: find a family of k basis vectors and approximate each column of X as a mixture of these k vectors
- Find the family that gives the best approximation: the one with the smallest Frobenius norm of the reconstruction error.
- This is the same as finding the k orthogonal directions in which X varies the most

Principal Components: feature space

Ridge regression and PCA

- Both ridge regression and PC regression compute the coordinates of y in the basis given by the SVD of X
- ridge shrinks the coefficients of sv d_j by a factor $d_j^2/(d_j^2+\lambda)$
- PC regression sets the coefficient to 0 for all but the ${\tt k}$ largest ${\tt d}_i$

Other decomposition methods

- Take y into account
- Different criteria (sparsity, independence, ...)

Nested cross-validation: setting hyperparameters

How can we choose:

- Number of features or PCA components k?
- The ridge hyperparameter λ?

Try a few and pick the best one... But measure its performance on separate data!

Some common pitfalls with cross-validation

- Ignoring dependencies between samples
- Ignoring dependencies between CV scores
- Over-interpreting good CV scores

Don't use Leave-One-Out Cross-validation

fMRI decoding

Describe data and task

The decoding pipeline

- Masking: extracting voxels that are inside the brain
- Feature selection with ANOVA
- Classifier: logistic regression

Implementation: in class