Contrôle Final Théorie de la programmation 3^{ème} année Cycle commun

Durée: 2H.

Tous Documents Interdits

EXERCICE 1: (6 pts)

Soit G<X{a, b, c}, V, P, S_G> la grammaire où P est défini comme suit : $\{ \\ S_G \to AA \text{ abb / D b C} \\ A \to AbA / D / S_G B \\ B \to a B / b C \\ C \to B / D \\ D \to DAa / c/ aD / BD \}$

- 1. Donner l'automate à pile A_p reconnaissant L(G) en passant la grammaire,
- 2. les mots cbccabb, bebab appartiennent-t-ils à $L(A_n)$ (justifier),
- 3. donner la grammaire G'équivalente à G sous forme FNG (Donner toutes les étapes).

EXERCICE 2: (5 Pts)

Soit $G < X\{a, b\}$, V, P, S > la grammaire où P est défini comme suit :

$S \rightarrow b b A B / b C D / E$	$D \rightarrow c D / B / \epsilon$
$A \rightarrow A A / D$	$E \rightarrow D / b$
$B \rightarrow a B / b S / ab F / A / aC$	$F \rightarrow DF / ab F$
$C \rightarrow B / D / E a C$	$G \rightarrow SG/\epsilon$

Donner la grammaire G' équivalente à G sous forme FNC (Donner toutes les étapes).

EXERCICE 3: (6 pts)

- **1.** Donner l'automate le plus adéquat reconnaissant $L_1 = \{w \in \{a, b, c\} * tq | w|_a \equiv 0[2] \text{ et } |w|_c \equiv 1[2]\}.$
- 2. Donner l'automate reconnaissant $L_2 = \{a^i b^j c^k tq \ j \ge i + k \}$
- 3. Donnez l'automate le plus adéquat reconnaissant $L_3 = L_1 \cap L_2$. Que peut-on conclure (justifier).
- **4.** Donnez l'automate reconnaissant le complément de L₃. Que peut-on conclure ?

EXERCICE 4: (3 pts)

A quelle classe appartient le langage $L = \{w \in \{a, b\}^* \text{ tq } w = w_1 \text{ } w_2 \text{ et } |w_1| = |w_2|\}$ (justifier).