Regressão Linear

Bioestatística em R

André M Ribeiro-dos-Santos

10 de Abr, 2017

Objetivos

- · Modelar relação entre variáveis através de uma regressão linear.
- · Compreender os principais modelos de regressão linear.
- · Compreender os coeficientes e seu significado.
- · Ilustrar a regressão e resíduos.
- · Comparar diferente modelos de regressão.

Regressão Linear

Imagine...

Em um estudo sobre diabetes, pesquisadores observaram uma relação entre a variação da sensibilidade à insulina e o percentual de ácido graxos entre os pacientes.

Como qual intensidade o percentual de ácidos graxos afeta a sensibilidade à insulina?

Table 1: Medidas de sensibilidade à insulina e composição de ácido graxos em diabéticos

Sensibilidade à Insulina	Ácidos Graxos (%)	Sensibilidade à Insulina	Ácidos Graxos (%)
183	15.91	246	18.12
232	17.04	256	17.90
166	16.22	372	17.89
258	18.93	367	18.55
213	17.36	301	17.15

Avaliando o problema

- · As medidas em questão são categóricas ou quantitativas?
- · Qual a informação deseja-se obter?
- · Qual a distribuição das medidas?
- · Qual a relação entre as variáveis?

Avaliando o problema

- As medidas em questão são categóricas ou quantitativas? Ambas são medidas quantitativas
- Qual a informação deseja-se obter? A intensidade que a variação do percentual de ácidos graxos afeta a sensibilidade à insulina altera

- · Qual a distribuição das medidas? **Distribuição Aproximadamente Normal**
- · Qual a relação entre as variáveis? Relação linear

Regressão linear

Pode-se *modelar* a relação entre duas variáveis numéricas através da equação a seguir:

$$y = \alpha + \beta x + \epsilon$$
 ou $Y = X\beta + \epsilon$

- α : o valor basal de y, quando x apresenta valor 0.
- β : a mudança em y para cada unidade de x.
- \cdot ϵ : o erro da predição ou variação aleatória.

Quando não existe relação entre as variáveis, β segue uma distribuição t e podemos utilizar isso para testar a associação das variáveis x e y.

$$Ho: \beta = 0; Ha: \beta \neq 0$$

8

Como identificar os coeficientes (α e β) na relação:

$$y = \alpha + \beta * x + \epsilon$$

O objetivo é minimizar a soma dos erros ou resíduos (ϵ), para tanto existem várias técnicas (e.g. least-squares, ordinal least-square, gradiente descendente, ...).

Para regressões lineares, usamos a função lm.

```
> ?1m
> ## Fitting Linear Models
> ## Description:
          'lm' is used to fit linear models. It can be used to carry
> ##
> ##
          out regression, single stratum analysis of variance and
> ##
          analysis of covariance (although 'aov' may provide a more
         convenient interface for these).
> ##
> ## Usage:
> ##
          lm(formula, data, subset, weights, na.action,
> ##
             method = "qr", model = TRUE, x = FALSE, y = FALSE,
> ##
             qr = TRUE, singular.ok = TRUE, contrasts = NULL,
            offset, ...)
> ##
```

Portanto, modelando a relação entre sensibilidade à insulina e o percentual de ácidos graxos. Obtemos:

```
> (model <- lm(sen_ins~fat_acid))</pre>
```

```
##
## Call:
## lm(formula = sen_ins ~ fat_acid)
##
## Coefficients:
## (Intercept) fat_acid
## -558.62 46.73
```

Corresponde a equação:

```
sensibilidade insulina = -558.62 + 46.73 * acido graxo
```

Indicando que o aumento de 1% do percentual de ácidos graxos resulta no aumento de 46,73 da sensibilidade à insulina.

```
> par(mfrow = c(1,3))
> plot(sen_ins~fat_acid, main = "Sensibilidade vs Ácidos Graxos")
> abline(model, col='red')  ## ou abline(-558.62, 46.73)
> plot(predict(model), resid(model), main="Resíduos vs Predito")
> abline(0, 0, col='red')
> qqnorm(resid(model))  ## qqnorm
> qqline(resid(model), col='red') ## ou plot(model, which=1:2)
```


Para avaliar se a relação obtida é estatisticamente significante ou espúria, utilizamos a função summary(model).

```
> ?summary
> ## Summarizing Linear Model Fits
> ## Description:
          'summary' method for class '"lm"'.
> ##
> ## Usage:
          ## S3 method for class 'lm'
> ##
> ##
          summary(object, correlation = FALSE, symbolic.cor = FALSE,
> ##
                  ...)
> ##
          ## S3 method for class 'summary.lm'
> ##
          print(x, digits = max(3, getOption("digits") - 3),
> ##
                symbolic.cor = x$symbolic.cor,
                signif.stars = getOption("show.signif.stars"), ...)
> ##
```

> summary(model)

```
##
## Call:
## lm(formula = sen_ins ~ fat_acid)
##
## Residuals:
## Min 10 Median 30 Max
## -67.89 -37.97 -13.67 43.27 94.70
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -558.62 341.47 -1.636 0.1405
## fat acid 46.73 19.48 2.399 0.0433 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 56.33 on 8 degrees of freedom
## Multiple R-squared: 0.4184, Adjusted R-squared: 0.3457
## F-statistic: 5.755 on 1 and 8 DF. p-value: 0.04325
```

Funções exploratórias

Table 2: Funções exploratórias

Função	Retorno
coef	Tabela com os coeficientes e resultados do teste quando summary.lm
resid	Vetor dos resíduos (y $ \hat{y}$) para da valor
predict	Vetor dos valores preditos (ŷ) para cada valor

Exercício - Regressão Linear Simples

Pesquisadores buscando entender a elevada variação da sensibilidade à insulina (sen_ins) observada numa amostra de 50 diabéticos. Trabalhos anteriores relacionaram esta variação ao teor de colesterol (chl) e ao percentual de lipídios (fat_acid) no tecido muscular.

- 1. Ilustre a relação entre sen_ins com chl e fat_acid.
- Aplique uma regressão linear e explique como as variáveis chl e fat_acid se relacionam com sen_ins. Avalie se a relação entre as medidas é real ou aleatória.
- Faça os principais gráficos de diagnóstico (scatter, resíduos e qqplot) para as regressões anteriores. Para alguma das regressões não seria recomendado o modelo utilizado? Justifique.
- 4. Existe alguma estratégia que você recomendaria para tratar deste caso?

```
> db <- read.table('db.tsv', header=T)</pre>
```

1. Ilustre a relação entre sen_ins com chl e fat_acid .

```
> par(mfrow = c(1,2))
> plot(sen_ins~chl, data=db)
> abline(model_chl <- lm(sen_ins~chl, data=db), lty=2)</pre>
> plot(sen ins~fat acid, data=db)
> abline(model_fat <- lm(sen_ins~fat_acid, data=db), lty=2)</pre>
                                                 320
    320
                                                                    0
                                                         0
    300
                                                 300
    280
                                                 280
sen_ins
    260
                                                 260
    240
                                                 240
                                     0
         115
                   117
                             119
                                                         16
                                                                17
                                                                       18
                                                                              19
                      chl
                                                                 fat_acid
```

 Aplique uma regressão linear e explique como as variáveis chl e fat_acid se relacionam com sen_ins. Avalie se a relação entre as medidas é real ou aleatória.

```
> coef(summary(model_chl))
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 2453.76745 175.342711 13.99412 1.458882e-18
## chl
              -18.35297 1.479988 -12.40076 1.406545e-16
> coef(summary(model_fat))
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 89.14280 64.79262 1.375817 0.175264336
## fat acid 10.73416 3.64859 2.942003 0.005008373
```

 Faça os principais gráficos de diagnóstico (scatter, resíduos e qqplot) para as regressões anteriores. Para alguma das regressões não seria recomendado o modelo utilizado? Justifique.

```
> par(mfrow = c(2,2), mar=rep(2,4))
> plot(model_chl, which = c(1,2))
> plot(model_fat, which = c(1,2))
```


4. Existe alguma estratégia que você recomendaria para tratar deste caso?

```
> par(mfrow = c(1,3))
> hist(db$chl)
> hist(log(db$chl))
> plot(sen_ins~chl, data=db)
```


Regressão Múltipla

Outro fator de risco para diabetes é a pressão sanguínea, a qual é relacionada a fatores como índice de massa corpórea (IMC ou BMI) e o teor de colesterol.

Qual o efeito dessas variáveis sobre a pressão sanguínea?

Table 3: IMC, Teor de Colesterol e Pressão Sanguínea em Diabeticos

Colesterol	Pressão Sanguínea	IMC	Colesterol	Pressão Sanguínea
117	124	21.80	119	103
120	111	23.69	117	110
119	105	24.72	115	107
112	90	26.25	115	105
112	105	25.27	115	106
_	117 120 119 112	117 124 120 111 119 105 112 90	117 124 21.80 120 111 23.69 119 105 24.72 112 90 26.25	117 124 21.80 119 120 111 23.69 117 119 105 24.72 115 112 90 26.25 115

Continuamos avaliando a **relação entre variáveis quantitativas** de forma a **modelar seus efeitos**, falta verificar se existe uma relação linear entre as medidas.

Os modelos são estatisticamente significativos?

[1] 0.09534757

```
> coef(summary(model bmi))
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 64.645050 29.332219 2.203892 0.05863691
              1.696863 1.182011 1.435574 0.18904513
## bmi
> summary(model bmi)$adj.r.squared
## [1] 0.1054453
> coef(summary(model chl))
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -39.631242 104.7869674 -0.3782077 0.7151147
         1.257362 0.9007457 1.3959127 0.2002616
## chl
> summary(model chl)$adj.r.squared
```

```
##
## Call:
## lm(formula = bp ~ bmi + chl)
##
## Residuals:
##
      Min 10 Median 30
                                    Max
## -5.6104 -2.2335 -1.0212 0.6937 9.2192
##
## Coefficients:
##
      Estimate Std. Error t value Pr(>|t|)
## (Intercept) -239.3843 83.5265 -2.866 0.02413 *
## bmi
                3.0859 0.8206 3.760 0.00707 **
## chl
                2.3189 0.6219 3.729 0.00737 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.897 on 7 degrees of freedom
## Multiple R-squared: 0.7337, Adjusted R-squared: 0.6577
## F-statistic: 9.645 on 2 and 7 DF, p-value: 0.00974
```

> summary(model both <- lm(bp ~ bmi + chl))

```
> par(mfrow = c(1, 3))
> plot(predict(model_both), bp, main="Predicted vs Fitted")
> abline(0, 1)
> plot(model_both, which = 1:2)
```


Usando apenas BMI, o modelo obteve um R^2 ajustado de ~ 10%, no entanto quando consideramos ambos BMI e colesterol obteve-se ~ 67%. Podemos assumir que o modelo utilizando ambas variáveis é melhor do que o modelo com apenas BMI? Para responder essa pergunta, devemos primeiro avaliar se a diferença entre os modelos é significativa ou aleatória.

> anova(model bmi, model both)

```
## Analysis of Variance Table
##
## Model 1: bp ~ bmi
## Model 2: bp ~ bmi + chl
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 8 501.27
## 2 7 167.85 1 333.42 13.905 0.007369 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Como podemos comparar o impacto de cada medida para identificar o fator mais importante na regulação da pressão sanguínea? Uma vez que as variáveis estão em escalas diferentes, precisamos equalizar elas numa escala única (e.g. z-scale).

```
> model_scaled <- lm(bp~scale(bmi) + scale(chl))
> coef(summary(model_scaled))
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 106.600000 1.548488 68.841326 3.587867e-11
## scale(bmi) 6.888660 1.831858 3.760478 7.070462e-03
## scale(chl) 6.830942 1.831858 3.728970 7.368697e-03
```

E só para provar que essa transformação não afeta o modelo em si.

```
## Analysis of Variance Table
##
## Model 1: bp ~ bmi + chl
## Model 2: bp ~ scale(bmi) + scale(chl)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 7 167.85
## 2 7 167.85 0 -1.7053e-12
```

> anova(model both, model scaled)

Regressão com Interação de Variáveis Discretas

Sabendo que o sexo do paciente (feminino ou masculino) afeta a pressão sanguínea média.

A inclusão do sexo melhora a predição do modelo?

Table 4: Pressão Sanguínea e Sexo em diabeticos

Pressão Sanguínea	Sexo	Pressão Sanguínea	Sexo
124	Μ	103	М
111	F	110	Μ
105	Μ	107	Μ
90	F	105	F
105	F	106	Μ

A primeira questão é avaliar se a pressão sangúinea difere entre os grupos (sexo masculino e feminino). Como estamos comparando a distribuição de uma variável quantitativa entre dois grupos, utilizamos um *teste t*.

```
> sex <- c('M', 'F', 'M', 'F', 'M', 'M', 'M', 'F', 'M')
> t.test(bp~sex)$p.value
```

[1] 0.2855744

> boxplot(bp~sex)

Já tendo observado a associação entre pressão sanguínea, BMI e Colesterol.

Será o efeito do sexo mediado pelo BMI?

```
> model_add <- lm(bp ~ bmi + sex)
> coef(summary(model_add))
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 40.374916 26.329642 1.533440 0.16903533
## bmi 2.439385 1.021906 2.387093 0.04837505
## sexM 9.852134 4.417477 2.230263 0.06094724
```

```
> summary(model_add)$adj.r.squared
```

```
## [1] 0.4023389
```

```
> cf <- coef(model add)</pre>
> plot(bp~bmi, col = c(F='red', M='blue')[sex])
> abline(cf[1], cf[2], col='red')
> abline(cf[1] + cf[3], cf[2], col='blue')
> arrows(25, predict(model add, data.frame(bmi=25, sex='F')),
         25, predict(model add, data.frame(bmi=25, sex='M')),
         length=.1)
> legend("bottomright", c('F', 'M'), pch = 1, lty=1, col=c('red', 'blue'))
   120
    110
                                       0
                                                                      0
   100
    8
           22
                   23
                            24
                                    25
                                             26
                                                     27
                                                             28
                                                                      29
```

bmi

```
> summary(model_int <- lm(bp~bmi*sex))</pre>
```

```
##
## Call:
## lm(formula = bp ~ bmi * sex)
##
## Residuals:
##
     Min
          1Q Median 3Q
                                  Max
## -6.9778 -3.9998 0.9333 2.1966 9.9381
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 56.336 35.870 1.571 0.167
## bmi
             1.815 1.397 1.300 0.241
## sexM -26.840 53.472 -0.502 0.634
## bmi:sexM 1.482 2.152 0.689
                                       0.517
##
## Residual standard error: 6.728 on 6 degrees of freedom
## Multiple R-squared: 0.5692, Adjusted R-squared: 0.3538
## F-statistic: 2.643 on 3 and 6 DF, p-value: 0.1436
```

```
> cf <- coef(model int)</pre>
> plot(bp~bmi, col = c(F='red', M='blue')[sex])
> abline(cf[1], cf[2], col='red')
> abline(cf[1] + cf[3], cf[2] + cf[4], col='blue')
> legend("bottomright", c('F', 'M'), pch = 1, lty=1, col=c('red', 'blue'))
    120
    110
                                        0
                                                                        0
    100
    90
           22
                    23
                            24
                                     25
                                                                        29
                                              26
                                                      27
                                                               28
                                        bmi
```

```
> anova(model bmi, model add, model int)
## Analysis of Variance Table
##
## Model 1: bp ~ bmi
## Model 2: bp ~ bmi + sex
## Model 3: bp ~ bmi * sex
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 8 501.27
## 2 7 293.04 1 208.23 4.6006 0.07564 .
## 3 6 271.57 1 21.47 0.4743 0.51673
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

BONUS - Outras relações e fórmulas

Table 5: Principais Modelos de Regressão Linear

Modelo	Equação	Formula
Nula	$y = \alpha + \epsilon$	y~1
Linear	$y = \alpha + \beta x + \epsilon$	y ~ 1 + x ou y ~ x
Discreto	$y = \alpha + \beta x + \epsilon; \ x \in 0, 1$	y ~ 1 + x ou y ~ x
Polinomial	$y = \alpha + \beta_1 x + \beta_2 x^2 + \dots + \beta_k x^k + \epsilon$	$y \sim poly(x, k)$
Múltipla	$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon$	$y \sim x1 + x2 + x3$
Iteração	$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 * x_2 + \epsilon$	y ~ x1+x2+x1:x2 ou
		y ~ x1*x2

Exercícios - Regressão Linear

Agora utilizando a amostra de 50 pacientes investigados, desenvolva um modelo estatístico relacionando a pressão sanguínea (bp) com o índice de massa corpórea (bmi), taxa de colesterol (chl) e o sexo (sexo).

- 1. Ilustre a relação das variáveis investigadas e a pressão sanguínea.
- Considerando um modelo de efeito apenas additivo (sem interações), descreva o efeito das variáveis sobre a pressão sanguínea, avalie se a relação é significativa ou espúria e ilustre e avalie os principais gráficos de diagnóstico.
- 3. Considerando um modelo onde o efeito do BMI depende do sexo, descreva o efeito das variáveis sobre a pressão sanguínea, avalie se a relação é significativa ou espúria e ilustre e avalie os principais gráficos de diagnóstico.
- 4. Compare o modelo aditivo ao com interações. Qual prevê melhor a pressão sanguínea nessa amostra? Justifique

```
> db <- read.table('db.tsv', header=T)</pre>
```

 Ilustre a relação das variáveis investigadas e a pressão sanguínea.
i. Itustre a retação das variaveis investigadas e a pressão sanguinea.

```
> par(mfrow = c(1, 3))
> plot(bp~bmi, data=db); abline(lm(bp~bmi, data=db))
> plot(bp~chl, data=db); abline(lm(bp~chl, data=db))
> plot(bp~sex, data=db); abline(lm(bp~sex, data=db))
```


 Considerando um modelo de efeito apenas additivo (sem interações), descreva o efeito das variáveis sobre a pressão sanguínea, avalie se a relação é significativa ou espúria e ilustre e avalie os principais gráficos de diagnóstico.

```
##
## Call:
## lm(formula = bp ~ bmi + chl + sex. data = db)
##
## Residuals:
##
     Min 10 Median 30
                                 Max
## -5.0745 -1.8502 0.0071 1.6322 5.7203
##
## Coefficients:
##
         Estimate Std. Error t value Pr(>|t|)
## bmi
              2.8780 0.1262 22.81 < 2e-16 ***
## chl
               4.9794 0.3293 15.12 < 2e-16 ***
               9.8891 0.8195 12.07 7.46e-16 ***
## sexM
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.789 on 46 degrees of freedom
## Multiple R-squared: 0.9416, Adjusted R-squared: 0.9377
## F-statistic: 247 on 3 and 46 DF, p-value: < 2.2e-16
```

> summary(model add <- lm(bp~bmi+chl+sex, data=db))</pre>

```
> par(mfrow = c(1,3))
> plot(db$bp~predict(model_add))
> abline(0, 1)
> plot(model_add, which = 1:2)
```


3. Considerando um modelo onde o efeito do eNOS interage com BMI, descreva o efeito das variáveis sobre a pressão sanguínea, avalie se a relação é significativa ou espúria e ilustre e avalie os principais gráficos de diagnóstico.

```
##
## Call:
## lm(formula = bp ~ bmi * sex + chl, data = db)
##
## Residuals:
##
      Min 10 Median 30
                                   Max
## -4.4414 -1.2784 0.0318 1.0547 4.1842
##
## Coefficients:
##
           Estimate Std. Error t value Pr(>|t|)
## (Intercept) -524.3073 31.8531 -16.460 < 2e-16 ***
## bmi
          2.1935 0.1595 13.756 < 2e-16 ***
## sexM -17.8531 5.1116 -3.493 0.00108 **
               4.8050 0.2600 18.483 < 2e-16 ***
## chl
## bmi:sexM 1.1045 0.2019 5.471 1.89e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.186 on 45 degrees of freedom
## Multiple R-squared: 0.9649, Adjusted R-squared: 0.9618
## F-statistic: 309.2 on 4 and 45 DF, p-value: < 2.2e-16
```

> summary(model int <- lm(bp~bmi*sex+chl, data=db))</pre>

```
> par(mfrow = c(1,3))
> plot(db$bp~predict(model_int))
> abline(0, 1)
> plot(model_int, which = 1:2)
```


4. Compare o modelo aditivo ao com interações. Qual prevê melhor a pressão sanguínea nessa amostra? Justifique

> anova(model add, model int)

```
## Analysis of Variance Table
##
## Model 1: bp ~ bmi + chl + sex
## Model 2: bp ~ bmi * sex + chl
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1     46 357.93
## 2     45 214.96 1     142.96 29.928 1.893e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Ao final

O que vimos?

- · Modelar relação entre variáveis através de uma regressão linear.
- · Compreender os principais modelos de regressão linear.
- · Compreender os coeficientes e seu significado.
- · Ilustrar a regressão e resíduos.
- · Comparar diferente modelos de regressão.

Até a próxima