Property Testing

Property Testing

- Property testing algorithms are algorithms that perform a certain type of approximate decision.
- property testing algorithms are used to decide if some mathematical object (such as a graph or a boolean function) has a "global" property, or is "far" from having this property, using only a small number of "local" queries to the object.
- This task should be performed by inspecting only small part of the whole object.

Property testing

- Need to specify queries that testing algorithm will perform
- Distance measure between objects.

Techniques

- The self-correcting approach
- The enforce and test approach
- Random Walks

Graph Connectivity

- Graph is connected or not ?
- If it is connected then accept it
- If G is "far" from being connected then reject it.

• Graph G is ϵ far from being connected if at least ϵ m edges must be added to establish connectivity (m=|E|)

Algorithm

- If G is $\,\epsilon$ -far from being connected then G contains lots of small Components.
- Perform a BFS on the randomly selected component
- If BFS terminates then Graph is not connected.

Algorithm

- Repeat 4n/εm times
 - Pick any vertex v E V UAR
 - Perform BFS from v visiting at most 2n/εm nodes.
 - If BFS terminates then reject G and Exit
- Accept G

Enforce and Test

Testing whether Graph G is biclique?

 A Graph G is biclique if there exists a partition (V1,V2) of graph Vertices such that E = V1 X V2

Algorithm

- Enforce : Pick a vertex v₀
- Test:
- for i=1 to $2/\epsilon$
 - Pick a pair of vertices u_i, v_i UAR
 - If biclique property is violated then reject
- Accept

Random Walk

- Given a graph and a starting point (node), we select a neighbor of it at random, and move to this neighbor;
- Then we select a neighbor of this node and move to it, and so on;
- The (random) sequence of nodes selected this way is a random walk on the graph

0	1	0
0	0	1
1/2	1/2	0

Adjacency matrix A

Transition matrix P

Random Walks on Undirected Graphs

• A random walk on G is a Markov chain defined by the sequence of moves of a particle between vertices of G. In this process, the place of the particle at a given time step is the state of the system. If the particle is at vertex i and if i has d(i) outgoing edges, then the probability that the particle follows the edge (i, j) and moves to a neighbor j is 1/d(i).

Why are random walks interesting?

 When the underlying data has a natural graph structure, several physical processes can be conceived as a random walk

Data	Process	
WWW	Random surfer	
Internet	Routing	
P2P	Search	
Social network	Information percolation	

The Blum-Luby-Rubinfeld Linearity Test

- BLR Test (Blum, Luby, Rubinfeld). Choose uniformly random points x, $y \in \{0, 1\}^n$. Test if
- $\bullet \ f(x) + f(y) = f(x + y).$

http://nptel.ac.in/courses/106106142/s

Linearity Testing

Linearity Test

- 1) Uniformly and independently select $\Theta(1/\mathcal{E})$ pairs of elements $x,y \in F^n$.
- 2) For every pair x,y selected, verify that f(x)+f(y)=f(x+y).
- 3) If for any of the pairs selected linearity is violated (i.e., $f(x)+f(y) \neq f(x+y)$), then REJECT, otherwise ACCEPT.

Query complexity: $\Theta(1/\mathcal{E})$, i.e., independent of \mathbf{n} . In contrast to learning where need $\Omega(\mathbf{n})$ queries/examples.

Theorem: If f is linear then test accepts w.p. 1., and if f is &-far from linear then with probability at least 2/3 the test rejects it.

Lemma: If f is accepted with probability greater than 1/3, then f is ε -close to linear.

Property Testing

- Is closely related to many areas in theory communication complexity, Probabilistic Checkable Proofs (PCP), learning theory, coding theory (locally decodable codes), approximation theory, and many more.
- Recently property testing is being used for many real life applications
 - Google uses it for storing and recovering emails
 - Twitter uses to understand the network of its users,