Lecture 6 - Logistic Regression

ECE597ML-697ML

Mario Parente

Logistic Regression

- Classification
- ► Model
- Cost function
- ► Gradient descent
- Linear classifiers and decision boundaries

Classification

- ▶ Input: $\mathbf{x} \in \mathbb{R}^n$
- $\blacktriangleright \ \, \mathsf{Output} \colon \, y \in \{0,1\}$

Example: Hand-Written Digits

Input: 20×20 grayscale image

$$\begin{bmatrix} x_1 & x_{21} & \dots & x_{381} \\ x_2 & x_{22} & \dots & x_{382} \\ & & \vdots & & \\ x_{20} & x_{40} & \dots & x_{400} \end{bmatrix}$$

Unroll image into a feature vector $\mathbf{x} \in \mathbb{R}^{400}$

$$\mathbf{x} = (x_1, \dots, x_{400})^T$$

Output:

$$y = \begin{cases} 0 & \text{digit is "four"} \\ 1 & \text{digit is "nine"} \end{cases}$$

Example: Spam Classification

feature vector is composed by the frequency of occurrence of words

cla	ass_label	message
2	spam	Free entry in 2 a wkly comp to win FA Cup fina
5	spam	FreeMsg Hey there darling it's been 3 week's n
8	spam	WINNER!! As a valued network customer you have
9	spam	Had your mobile 11 months or more? U R entitle
11	spam	SIX chances to win CASHI From 100 to 20,000 po
5537	spam	Want explicit SEX in 30 secs? Ring 02073162414
5540	spam	ASKED 3MOBILE IF 0870 CHATLINES INCLU IN FREE \dots
5547	spam	Had your contract mobile 11 Mnths? Latest Moto
5566	spam	REMINDER FROM O2: To get 2.50 pounds free call
5567	spam	This is the 2nd time we have tried 2 contact u

ham word cloud

spam word cloud

The Learning Problem

- ▶ Input: $\mathbf{x} \in \mathbb{R}^n$
- ▶ Output: $y \in \{0, 1\}$
- ► Model (hypothesis class): ?
- ► Cost function: ?

Classification as regression?

We could approach the classification problem ignoring the fact that y is discrete-valued, and use our old linear regression algorithm to try to predict y given \mathbf{x} . However, it is easy to construct examples where this method performs very poorly. Intuitively, it also doesn't make sense for $h_{\theta}(\mathbf{x})$ to take values larger than 1 or smaller than 0 when we know that $y \in 0, 1$.

The Model

Exercise: fix the linear regression model

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = g(\boldsymbol{\theta}^T \mathbf{x}), \qquad g: \mathbb{R} \to [0, 1].$$

where
$$\boldsymbol{\theta}^T \mathbf{x} = \theta_0 + \sum_{j=1}^n \theta_j x_j$$
.

What should g look like?

Logistic Function

► This is called the *logistic* or *sigmoid* function

$$g(z) = \operatorname{logistic}(z) = \operatorname{sigmoid}(z)$$

The Model

Put it together

$$h_{\theta}(\mathbf{x}) = \text{logistic}(\boldsymbol{\theta}^T \mathbf{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^T \mathbf{x}}}$$

Nuance:

- ightharpoonup Output is in [0,1], not $\{0,1\}$.
- ► Interpret as probability

Hypothesis vs. Prediction Rule

Hypothesis (for learning, or when probability is useful)

Hypothesis vs. Prediction Rule

Hypothesis (for learning, or when probability is useful)

Prediction rule (when you need to commit!)

Prediction Rule

Rule

$$y = \begin{cases} 0 & \text{if } h_{\theta}(\mathbf{x}) < 1/2\\ 1 & \text{if } h_{\theta}(\mathbf{x}) \ge 1/2 \end{cases}$$

Prediction Rule

Rule

$$y = \begin{cases} 0 & \text{if } h_{\theta}(\mathbf{x}) < 1/2\\ 1 & \text{if } h_{\theta}(\mathbf{x}) \ge 1/2 \end{cases}$$

Equivalent rule

$$y = \begin{cases} 0 & \text{if } \boldsymbol{\theta}^T \mathbf{x} < 0 \\ 1 & \text{if } \boldsymbol{\theta}^T \mathbf{x} \ge 0. \end{cases}$$

Prediction Rule

Rule

$$y = \begin{cases} 0 & \text{if } h_{\theta}(\mathbf{x}) < 1/2\\ 1 & \text{if } h_{\theta}(\mathbf{x}) \ge 1/2 \end{cases}$$

Equivalent rule

$$y = \begin{cases} 0 & \text{if } \boldsymbol{\theta}^T \mathbf{x} < 0 \\ 1 & \text{if } \boldsymbol{\theta}^T \mathbf{x} \ge 0. \end{cases}$$

Points \mathbf{x} such that $\boldsymbol{\theta}^T \mathbf{x} = 0$ compose the boundary of the classification (hyperplane !!)

The Model—Big Picture

Illustrate on board: $\mathbf{x} \to z \to p \to y$

MATLAB visualization

Can we used squared error?

$$J(\boldsymbol{\theta}) = \sum_{i} (h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) - y^{(i)})^{2}$$

Can we used squared error?

$$J(\boldsymbol{\theta}) = \sum_{i} (h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) - y^{(i)})^{2}$$

This is sometimes done. But we want to do better.

Let's explore further. For squared error, we can write:

$$J(\boldsymbol{\theta}) = \sum_{i=1}^{m} \cot(h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}), y^{(i)})$$
$$\cot(p, y) = (p - y)^{2}$$

 $\mathrm{cost}(p,y)$ is cost of predicting $h_{m{ heta}}(\mathbf{x})=p$ when the true value is y

Suppose y=1. For squared error, $cost(p,1)=(p-1)^2$ looks like this

If we undo the logistic transform,

$$\cos(p,1)=(h_{\theta}(\mathbf{x})-1)^2=\left(\frac{1}{1+e^{-\theta^T\mathbf{x}}}-1\right)^2$$
 looks like this

ightharpoonup Recall that y=1 is the correct answer

- ightharpoonup Recall that y=1 is the correct answer
- As $z = \boldsymbol{\theta}^T \mathbf{x} \to \infty$, then $p \to 1$, so the prediction is better and better. The cost approaches zero.

- ightharpoonup Recall that y=1 is the correct answer
- As $z = \boldsymbol{\theta}^T \mathbf{x} \to \infty$, then $p \to 1$, so the prediction is better and better. The cost approaches zero.
- As $z = \theta^T \mathbf{x} \to -\infty$, then $p \to 0$, so the prediction is worse and worse. The cost...

$\mathsf{Log}\;\mathsf{Loss}\;(y=1)$

Log Loss

$$cost(p, y) = \begin{cases} -\log p & y = 1\\ -\log(1 - p) & y = 0 \end{cases}$$

Equivalent Expression for Log-Loss

$$cost(p, y) = \begin{cases} -\log p & y = 1\\ -\log(1 - p) & y = 0 \end{cases}$$

$$cost(p, y) = -y \log p - (1 - y) \log(1 - p)$$

Equivalent Expression for Log-Loss

$$\mathsf{cost}(p,y) = \begin{cases} -\log p & y = 1 \\ -\log(1-p) & y = 0 \end{cases}$$

$$cost(p, y) = -y \log p - (1 - y) \log(1 - p)$$

$$cost(h_{\theta}(\mathbf{x}), y) = -y \log h_{\theta}(\mathbf{x}) - (1 - y) \log(1 - h_{\theta}(\mathbf{x}))$$

Review so far

- ▶ Input: $\mathbf{x} \in \mathbb{R}^n$
- ▶ Output: $y \in \{0, 1\}$
- ► Model (hypothesis class)

$$h_{\theta}(\mathbf{x}) = \mathsf{logistic}(\boldsymbol{\theta}^T \mathbf{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^T \mathbf{x}}}$$

Cost function:

$$J(\boldsymbol{\theta}) = \sum_{i=1}^{m} \left(-y^{(i)} \log h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) - (1 - y^{(i)}) \log(1 - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)})) \right)$$

TODO: optimize $J(\theta)$

Gradient Descent for Logistic Regression

- 1. Initialize $\theta_0, \theta_1, \dots, \theta_d$ arbitrarily
- 2. Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\boldsymbol{\theta}), \qquad j = 0, \dots, d.$$

Gradient Descent for Logistic Regression

- 1. Initialize $heta_0, heta_1, \dots, heta_d$ arbitrarily
- 2. Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}), \qquad j = 0, \dots, d.$$

Partial derivatives for logistic regression (exercise):

$$\frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}) = \sum_{i=1}^m (h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) - y^{(i)}) x_j^{(i)}$$

(Same as linear regression! But $h_{\theta}(\mathbf{x})$ is different)

Decision Boundaries

Example from R&N (Fig. 18.15).

Figure 1: Earthquakes (white circles) vs. nuclear explosions (black circles) by body wave magnitude (x1) and surface wave magnitude (x2)

Decision Boundaries

E.g., suppose hypothesis is

$$h(x_1, x_2) = \mathsf{logistic}(1.7x_1 - x_2 - 4.9)$$

Decision Boundaries

E.g., suppose hypothesis is

$$h(x_1, x_2) = \text{logistic}(1.7x_1 - x_2 - 4.9)$$

Predict nuclear explosion if:

$$1.7x_1 - x_2 - 4.9 \ge 0$$
$$x_2 \le 1.7x_1 - 4.9$$

Linear Classifiers

Predict

$$y = \begin{cases} 0 & \text{if } \boldsymbol{\theta}^T \mathbf{x} < 0, \\ 1 & \text{if } \boldsymbol{\theta}^T \mathbf{x} \ge 0. \end{cases}$$

Watch out! Hyperplane!

Many other learning algorithms use linear classification rules

- Perceptron
- ► Support vector machines (SVMs)
- Linear discriminants

Nonlinear Decision Boundaries by Feature Expansion

Example (Ng)

$$(x_1, x_2) \mapsto (1, x_1, x_2, x_1^2, x_2^2, x_1 x_2),$$

$$\boldsymbol{\theta} = \begin{bmatrix} -1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}^T$$

Exercise: what does decision boundary look like in (x_1, x_2) plane?

Nonlinear Decision Boundaries by Feature Expansion

Example (Ng)

$$(x_1, x_2) \mapsto (1, x_1, x_2, x_1^2, x_2^2, x_1 x_2),$$

$$\boldsymbol{\theta} = \begin{bmatrix} -1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}^T$$

Exercise: what does decision boundary look like in (x_1, x_2) plane?

$$\boldsymbol{\theta}^T \mathbf{x} = -1 + x_1^2 + x_2^2 = 0$$

Nonlinear Decision Boundaries by Feature Expansion

Example (Ng)

$$(x_1, x_2) \mapsto (1, x_1, x_2, x_1^2, x_2^2, x_1 x_2),$$

$$\boldsymbol{\theta} = \begin{bmatrix} -1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}^T$$

Exercise: what does decision boundary look like in (x_1, x_2) plane?

$$m{ heta}^T \mathbf{x} = -1 + x_1^2 + x_2^2 = 0$$
 $x_1^2 + x_2^2 \le 1$ class $x_1^2 + x_2^2 > 1$

Note: Where Does Log Loss Come From?

Arises naturally from the probabilistic interpretation of logistic regression