CS 170 DIS 02

Released on 2019-01-28

1 Squaring vs multiplying: matrices

The square of a matrix A is its product with itself, AA.

- (a) Show that five multiplications are sufficient to compute the square of a 2×2 matrix.
- (b) What is wrong with the following algorithm for computing the square of an $n \times n$ matrix? "Use a divide-and-conquer approach as in Strassen's algorithm, except that instead of getting 7 subproblems of size n/2, we now get 5 subproblems of size n/2 thanks to part (a). Using the same analysis as in Strassen's algorithm, we can conclude that the algorithm runs in $\Theta(n^{\log_2 5})$ time."
- (c) In fact, squaring matrices is no easier than multiplying them. Show that if $n \times n$ matrices can be squared in $\Theta(n^c)$ time, then any $n \times n$ matrices can be multiplied in $\Theta(n^c)$ time.

2 Recurrence Relations

Solve the following recurrence relations and give a Θ bound for each of them.

- (a) (i) T(n) = 3T(n/4) + 4n
 - (ii) $T(n) = 45T(n/3) + .1n^3$
 - (iii) $T(n) = T(n-1) + c^n$, where c is a constant.
- (b) $T(n) = 2T(\sqrt{n}) + 3$, and T(2) = 3. (Hint: this means the recursion tree stops when the problem size is 2)

3 Complex numbers review

- (a) Write each of the following numbers in the form $\rho(\cos\theta + i\sin\theta)$ (for real ρ and θ):
 - (i) $-\sqrt{3} + i$
 - (ii) The three third roots of unity
 - (iii) The sum of your answers to the previous item
- (b) Let $\operatorname{sqrt}(x)$ represent one of the complex square roots of x, so that $(\operatorname{sqrt}(x))^2 = x$. What are the possible values of $\operatorname{sqrt}(\operatorname{sqrt}(-1))$?

You can use any notation for complex numbers, e.g., rectangular, polar, or complex exponential notation.

4 Practice with Polynomial Multiplication with FFT

- (a) Suppose that you want to multiply the two polynomials x + 1 and $x^2 + 1$ using the FFT. Choose an appropriate power of two, find the FFT of the two sequences, multiply the results componentwise, and compute the inverse FFT to get the final result.
- (b) Repeat for the pair of polynomials $1 + x + 2x^2$ and 2 + 3x.