Unicidad de la realización geométrica

Rafael Villarroel

2021-01-26 15:00 -0500

Homeomorfismo

Dos espacios métricos X, Y son homeomorfos si existen funciones $f: X \to Y$, $g: Y \to X$ continuas, tales que $g \circ f = 1_X$ y $f \circ g = 1_Y$. Esto se denota como $X \cong Y$.

Teorema

Sea Δ un complejo simplicial. Sean $\phi \colon \Delta_0 \to \mathbb{R}^n$ y $\psi \colon \Delta_0 \to \mathbb{R}^m$ dos encajes afines. Entonces $|\Delta|_{\phi}$ es homeomorfo a $|\Delta|_{\psi}$.

Demostración

Sea $\Delta_0 = \{x_0, x_1, \ldots, x_k\}$. Sea $\alpha \in |\Delta|_{\phi}$. Entonces $\alpha \in |\sigma|_{\phi}$. Supongamos que $\sigma = \{x_{i_0}, x_{i_i}, \ldots, x_{i_s}\}$. Supongamos $\alpha = \sum_{j=0}^s t_{i_j} \phi(x_{i_j})$. Definimos $f(\alpha)$ como $f(\alpha) = \sum_{j=0}^s t_{i_j} \psi(x_{i_j})$. Para demostrar que la función $f : |\Delta|_{\phi} \to |\Delta|_{\psi} \subseteq \mathbb{R}^m$ es continua, basta con demostrar que para cada simplejo $\sigma \in \Delta$ se tiene que la función que extrae las coordenadas baricéntricas de $|\sigma|_{\phi}$ es continua.