Лабораторная работа № 4

" Исследование особенностей использования прикладной объектноориентированной программы"

Постановка задачи:

- 1. Создать класс *Tmas*, основными членами которого должны являться:
 - поле FA двумерный квадратный массив целых чисел,
 - методы:
- о проверки корректности используемого индекса;
- о генерации элементов массива;
- о выполнения операций обработки массива в соответствии с вариантом;
 - о чтения массива из файла;
 - о записи массива в файл.
 - 2. Разработать модульные тесты (unit-тесты) для методов класса *Tmas*.

UML диаграмма вариантов использования проекта приведена на рисунке 1.

Рис. 1. Диаграмма вариантов использования проекта "Обработка квадратного массива"

- 3. Проект должен содержать три формы:
- \Box 1-я форма для задания исходных данных (размерность массива, интервал [A, B] чисел массива, производимая операция (производимые операции) и т.п.),
- \square 2-я форма для генерации массива с помощью датчика случайных чисел и визуализации результатов тестирования класса (показать размерность массива, интервал чисел [A, B], массив, производимую операцию (производимые операции), результат выполнения операции (операций) и т.п.),
- □ 3-я форма для сведений об авторе проекта (модальная форма или диалоговое окно).

Массив, методы его генерации, сохранения в файл, считывания из файла и обработки должны быть реализованы в отдельном классе.

- 4. Исходный массив и результаты его обработки сохранить в файле.
- 5. В соответствии с заданием из таблицы 1 написать методы класса *Ттав*, выполняющие над элементами массива операции из таблицы 2.

Таблица 1 – Варианты заданий

Номер по списку	Задание		Интервал [A, B]	Тип файла	
1	14	12	22	[-100, 200]	json
2	13	1	15	[0, 600]	txt
3	14	2	16	[-100, 500]	xml
4	13	3	17	[0, 100]	json
5	14	4	18	[-200, 200]	txt
6	13	5	19	[0, 400]	xml
7	14	6	20	[100, 200]	json
8	13	7	21	[0, 600]	txt
9	14	8	22	[-100, 500]	xml
10	13	9	23	[0, 100]	json
11	14	10	12	[-200, 200]	txt
12	13	1	23	[-100, 100]	xml
13	14	2	22	[0, 1000]	json
14	13	3	15	[-200, 200]	txt
15	14	4	16	[0, 2000]	xml
16	13	11	17	[-100, 100]	json
17	14	6	18	[0, 500]	txt
18	13	7	19	[-200, 200]	xml
19	14	8	20	[0, 600]	json
20	13	9	21	[-100, 500]	txt
21	14	10	23	[0, 100]	xml
22	13	11	21	[-200, 200]	json

Таблица 2 – Варианты операций

$\mathcal{N}\!\underline{o}$	Операция			
1	Определить минимальный элемент массива			
2	Определить максимальный элемент массива			
3	Определить минимальный элемент среди элементов с четной суммой индексов массива			
4	Определить минимальный элемент среди элементов с нечетной суммой индексов массива			
5	Определить сумму элементов массива			
6	Определить среднее арифметическое элементов массива			
7	Определить элемент массива, находящийся на (i, j) -м месте			
8	Определить какие индексы имеет элемент d			
9	Определить дисперсию элементов массива			
10	Определить медиану элементов массива			
11	Определить сумму отрицательных элементов массива с четной суммой индексов			
12	Определить математическое ожидание положительных элементов массива с нечетных суммой индексов			
13	Отсортировать элементы массива по возрастанию в строках, представить их в квадратном массиве			
14	Отсортировать элементы столбцов массива по убыванию, представить их в квадратном массиве			
15	Отцентрировать элементы массива			
16	Вычесть из всех элементов массива элемент b			
17	Прибавить ко всем элементам массива элемент с			
18	Четные элементы массива умножить на (- t)			
19	Элементы массива с четной суммой индексами умножить на (-k)			
20	Определить методом пробных делителей количество простых чисел среди нечетных чисел массива			
21	Элементы массива с суммой индексов кратной 3 умножить на (-g)			
22	Элементы массива кратные 3 умножить на $(-h)$, а от остальных элементов массива отнять элемент f			
23	Определить методом пробных делителей количество простых чисел квадратного массива с четной суммой индексов			

Письменный отчет по лабораторной работе должен содержать:

- 1. Титульный лист. (Содержащий название лабораторной работы, фамилию, имя, отчество, номер группы исполнителя, дату сдачи.)
- 2. Постановку задачи в соответствии с вариантом задания из таблиц 1, 2.
- 3. Таблицу со списком полей и методов классов проекта и их назначением.

Таблица 1 — Поля и методы класса А и их назначение (Пример)

$\mathcal{N}_{\underline{o}}$	Поле	Назначение
1		
	Метод	

4. Таблицу со списком обработчиков событий проекта и их назначением.

Таблица 2 – Обработчики событий проекта и их назначение (Пример)

$\mathcal{N}\!\underline{o}$	Обработчик события	Назначение
1.		

- 5. Внешний вид трех форм проекта в режиме выполнения.
- 6. Диаграммы классов для всех используемых в проекте классов.
- 7. Распечатку кода обработчиков событий проекта и класса (обязательны комментарии).
 - 8. Диаграмму классов и текст программы для unit-тестов.
- 9. Привести результаты модульного тестирования методов класса *Tmas* в соответствии с вариантом.
- 10.Исследование программной реализации проекта, содержащее следующие материалы:
- тесты (не менее двух) по каждому методу класса для N=5 (N*N- размерность двумерного массива);
 - файл с массивом (N=7);
 - файл с результатами обработки массива (N=7);
 - примеры работы проекта для N=7.
- 11. Экранную копию файла с исходным массивом и результатами обработки массива.
- 12. Выводы по лабораторной работе (в выводах отразить ограничения на работу проекта, пути дальнейшей модернизации проекта и класса массива).

13. В лабораторной работе рекомендуется использовать следующие компоненты: Form, TextBox, Label, Button, Panel, NumericUpDown, SaveFileDialog, OpenFileDialog, DataGridView.

Примечание:

1. Формула для вычисления среднего арифметического значения Sr последовательности из n элементов

$$Sr = \frac{\sum_{i=0}^{i=n-1} a_i}{n}$$

2. Формула для вычисления оценки дисперсии D последовательности из n элементов

$$D = \frac{\sum_{i=0}^{i=n-1} (a_i - Sr)^2}{n-1}$$