

# Naïve Bayes

#### **Prostate Cancer dataset – One field/class**

# It's useful to know: P(cancer = Y)

| P34 level | Prostate |
|-----------|----------|
|           | cancer   |
| High      | Y        |
| Medium    | Y        |
| Low       | Y        |
| Low       | N        |
| Low       | N        |
| Medium    | N        |
| High      | Y        |
| High      | N        |
| Low       | N        |
| Medium    | Y        |

#### **Prostate Cancer dataset - One field/class**

$$P(C = Y)$$
 is  $5/10 = 0.5$ 

| P34 level | Prostate |
|-----------|----------|
|           | cancer   |
| High      | Y        |
| Medium    | Y        |
| Low       | Y        |
| Low       | N        |
| Low       | N        |
| Medium    | N        |
| High      | Y        |
| High      | N        |
| Low       | N        |
| Medium    | Y        |

So, with **no other info** you'd expect P(cancer=Y) to be 0.5

#### **Prostate Cancer dataset - One field/class**

But we know that P34 =H, so actually we want:

$$P(cancer=Y \mid P34 = H)$$

- the probability that cancer is Y, given that P34 is high

2/3 = 0.67

| P34 level | Prostate cancer |
|-----------|-----------------|
| High      | Y               |
| Medium    | Y               |
| Low       | Y               |
| Low       | N               |
| Low       | N               |
| Medium    | N               |
| High      | Y               |
| High      | N               |
| Low       | N               |
| Medium    | Y               |

#### **Prostate Cancer dataset**

Suppose again we know that P34 is High;

$$P (c=Y | P34 = H) = 0.5$$
  
 $P (c=N | P34 = H) = 0.25$   
 $P(c=Maybe | H) = 0.25$ 

| P34 level | Prostate |  |
|-----------|----------|--|
|           | cancer   |  |
| High      | Y        |  |
| Medium    | Y        |  |
| Low       | Y        |  |
| Low       | N        |  |
| Low       | N        |  |
| Medium    | N        |  |
| High      | Y        |  |
| High      | N        |  |
| High      | Maybe    |  |
| Medium    | Y        |  |

#### **Naive Bayes**

$$P(\text{cancer} = Y \mid P34 = H)$$

| P34 level | Prostate |
|-----------|----------|
|           | cancer   |
| High      | Y        |
| Medium    | Y        |
| Low       | Y        |
| Low       | N        |
| Low       | N        |
| Medium    | N        |
| High      | Y        |
| High      | N        |
| Low       | N        |
| Medium    | Y        |

#### **Naive Bayes**

And now we are illustrating

$$P(P34 = H \mid cancer = Y)$$

$$2/5 = 0.4$$

| P34 level | Prostate |
|-----------|----------|
|           | cancer   |
| High      | Y        |
| Medium    | Y        |
| Low       | Y        |
| Low       | N        |
| Low       | N        |
| Medium    | N        |
| High      | Y        |
| High      | N        |
| Low       | N        |
| Medium    | Y        |

# That is the essence of Naive Bayes, but:

the probability calculations are much trickier when there are >1 fields

so we make a 'Naive' assumption that makes it simpler

#### Probabilistic Classification Principle

- Establishing a probabilistic model for classification
  - Generative model (must be probabilistic)

$$P(\mathbf{x}/y)$$
  $\mathbf{y} = y_1, \dots, y_L, \mathbf{x} = (x_1, \dots, x_n)$ 





- •*L* probabilistic models have to be trained independently
- Output L probabilities for a given input with L models
- Based on joint probability distribution

- Assume some functional form for P(X|Y), P(Y)
- Estimate parameters of P(X|Y), P(Y) directly from training data
- Use Bayes rule to calculate P(Y|X= x)

#### Probabilistic Classification Principle

- Establishing a probabilistic model for classification
  - Discriminative (informative) model

$$P(y/\mathbf{x})$$
  $y = y_1, \dots, y_L, \mathbf{x} = (x_1, \dots, x_n)$ 





$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$

- •To train a discriminative classifier regardless its probabilistic or non-probabilistic nature, all training examples of different classes must be jointly used to build up a single discriminative classifier.
- •Directly assume some functional form for P(Y|X)
- •Estimate parameters of P(Y|X) directly from training data



#### **Discriminative Model**

#### **■**Logistic Regression

$$P(y = 1|\mathbf{x}) = \frac{1}{1 + \exp(yf(\mathbf{x}))}$$

$$f^*(\mathbf{x}) = \begin{cases} +\infty & \Pr(y = 1|\mathbf{x}) > \frac{1}{2}, \\ -\infty & \Pr(y = -1|\mathbf{x}) < \frac{1}{2}, \\ \text{arbitrary otherwise.} \end{cases}$$

- Color
- Size
- Texture
- Weight
- •



#### **Bayes Formula**

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, **53:370-418** 



Likelihood of seeing the evidence if the hypothesis is correct

Posterior probability 
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} - \text{Prior probability}$$

Normalizing constant – the likelihood of the evidence under any circumstances

#### **Bayes Theorem – Additional Info**

- Prior, conditional and joint probability for random variables
  - Prior probability: P(X)
  - Conditional probability:  $P(X_1 | X_2), P(X_2 | X_1)$
  - Joint probability:  $\mathbf{X} = (X_1, X_2), P(\mathbf{X}) = P(X_1, X_2)$
  - Relationship:  $P(X_1, X_2) = P(X_2 | X_1)P(X_1) = P(X_1 | X_2)P(X_2)$
  - Independence:  $P(X_2 \mid X_1) = P(X_2)$ ,  $P(X_1 \mid X_2) = P(X_1)$ ,  $P(X_1, X_2) = P(X_1)$

#### **Bayes Theorem**

Bayes theorem deals with **sequential events**, whereby **new** additional information is obtained for a subsequent event, and that new information is used to revise the probability of the initial event.

**Prior probability** - is an initial probability value originally obtained before any additional information is obtained.

**Posterior probability** - is a probability value that has been revised by using additional information that is later obtained.

#### **Bayes Theorem – Example #1**

An organization randomly selects an adult for a survey about credit card usage. Use subjective probabilities to estimate the following.

- a. What is the probability that the selected subject is a male?
- b. After selecting a subject, it is later learned that this person was smoking a cigar during the interview. What is the probability that the selected subject is a male?
- c. Which of the preceding two results is a prior probability? Which is a posterior probability?

#### **Bayes Theorem - Example**

Roughly half of all population are males, so we estimate the probability of selecting a male subject to be 0.5. Denoting a male by M, we can express this probability as follows: P(M) = 0.5.

- b. Although some women smoke cigars, the vast majority of cigar smokers are males. A reasonable guess is that 85% of cigar smokers are males. Based on this additional subsequent information that the survey respondent was smoking a cigar, we estimate the probability of this person being a male as 0.85. Denoting a male by M and denoting a cigar smoker by C, we can express this result as follows:  $P(M \mid C) = 0.85$ .
- c. In part (a), the value of 0.5 is the initial probability, so we refer to it as the prior probability. Because the probability of 0.85 in part (b) is a revised probability based on the additional information that the survey subject was smoking a cigar, this value of 0.85 is referred to a posterior probability.

#### **Bayes Theorem – Example #2**

Now assume that in District A, 51% of the adults are males. One adult is randomly selected for a survey involving credit card usage.

- a. Find the prior probability that the selected person is a male.
- b. It is later learned that the selected survey subject was smoking a cigar. Also, 9.5% of males smoke cigars, whereas 1.7% of females smoke cigars.

Use this additional information to find the **probability that the** selected subject is a male.

#### **Bayes Theorem - Example**

Let's use the following notation:

M = male M' = female (or not male)

C = cigar smoker C'= not a cigar smoker.

- a. The probability of randomly selecting an adult and getting a male is given by P(M) = 0.51.
- b. Based on the additional given information, we have the following:

P(M) = 0.51 because 51% of the adults are males

P(M') = 0.49 because 49% of the adults are females (not males)

P(C|M) = 0.095 because 9.5% of the males smoke cigars

P(C|M') = 0.017. because 1.7% of the females smoke cigars

#### **Bayes Theorem - Example**

$$P(M \mid C) = \frac{P(M) \cdot P(C \mid M)}{[P(M) \cdot P(C \mid M)] + [P(\overline{M}) \cdot P(C \mid \overline{M})]}$$

$$= \frac{0.51 \cdot 0.095}{[0.51 \cdot 0.095] + [0.49 \cdot 0.017]}$$

$$= 0.85329341$$

$$= 0.853 \text{ (rounded)}$$

Initially we knew that the survey subject smoked a cigar, there is a 0.51 probability that the survey subject is male, however, after learning that the subject smoked a cigar, we revised the probability to 0.853.

#### #Checkpoint

#### • Given:

- A doctor knows that meningitis (M) causes stiff neck (S) 50% of the time
- Prior probability of any patient having meningitis is 1/50,000
- Prior probability of any patient having stiff neck is 1/20
- If a patient has stiff neck, what's the probability he/she has meningitis?

#### **#Checkpoint**

There is a school with 60% boys and 40% girls. The girls wear trousers or skirts in equal numbers; all the boys wear trousers. An observer sees a student wearing trousers. What is the probability this student is a girl?

#### #Checkpoint

While watching a game of football in a cafe, you observe someone who is clearly supporting Manchester United in the game. What is the probability that they were actually born within 25 miles of Manchester? Assume that:

- the probability that a randomly selected person is born within 25 miles of Manchester is 1/20;
- the chance that a person born within 25 miles of Manchester actually supports United is 7/10;
- the probability that a person not born within 25 miles of Manchester supports United with probability 1/10

New patient:

P34=M, P61=M, BMI=H

Best guess at cancer field?

| P34 level | P61 level | BMI    | Prostate cancer |
|-----------|-----------|--------|-----------------|
| High      | Low       | Medium | Y               |
| Medium    | Low       | Medium | Y               |
| Low       | Low       | High   | Y               |
| Low       | High      | Low    | N               |
| Low       | Low       | Low    | N               |
| Medium    | Medium    | Low    | N               |
| High      | Low       | Medium | Y               |
| High      | Medium    | Low    | N               |
| Low       | Low       | High   | N               |
| Medium    | High      | High   | Y               |

```
P(p34=M \mid Y) \times P(p61=M \mid Y) \times P(BMI=H \mid Y) \times P(cancer = Y)

P(p34=M \mid N) \times P(p61=M \mid N) \times P(BMI=H \mid N) \times P(cancer = N)
```

| P34 level | P61 level | BMI    | Prostate cancer |
|-----------|-----------|--------|-----------------|
| High      | Low       | Medium | Y               |
| Medium    | Low       | Medium | Y               |
| Low       | Low       | High   | Y               |
| Low       | High      | Low    | N               |
| Low       | Low       | Low    | N               |
| Medium    | Medium    | Low    | N               |
| High      | Low       | Medium | Y               |
| High      | Medium    | Low    | N               |
| Low       | Low       | High   | N               |
| Medium    | High      | High   | Y               |

| P34 level | P61 level | BMI    | Prostate |
|-----------|-----------|--------|----------|
|           |           |        | cancer   |
| High      | Low       | Medium | Y        |
| Medium    | Low       | Medium | Y        |
| Low       | Low       | High   | Y        |
| Low       | High      | Low    | N        |
| Low       | Low       | Low    | N        |
| Medium    | Medium    | Low    | N        |
| High      | Low       | Medium | Y        |
| High      | Medium    | Low    | N        |
| Low       | Low       | High   | N        |
| Medium    | High      | High   | Y        |

0.4

**×** 0

**×** 0.4

 $\times$  0.5 = 0

0.2

**x** 0.4

**×** 0.2

 $\times$   $0.5^{\circ} = 0.008$ 

```
In practice, we finesse the zeroes and use logs:

(note: log(A \times B \times C \times D \times ...) = log(A) + log(B) + ...)
```

```
\log(0.4) + \log(0.001) + \log(0.4) + \log(0.5) = -4.09
\log(0.2) + \log(0.4) + \log(0.2) + \log(0.5) = -2.09
```

#### **Naïve Bayes in General**

Essence of Naive Bayes, with 1 non-class field, is to calculate this for each class value, given some new instance with field = F:

$$P(class = C \mid Field = F)$$

For many fields, our new instance is (e.g.) (F1, F2, ...Fn), and the 'essence of Naive Bayes' is to calculate *this* for each class:

$$P(class = C | F1,F2,F3,...,Fn)$$

i.e. What is probability of class C, given all these field values together?

#### **Naïve Bayes in General**

- Naïve Bayes Algorithm (for discrete input attributes)
  - Learning Phase: Given a training set S,

```
For each target value of c_i (c_i = c_1, \dots, c_L)
\hat{P}(C = c_i) \leftarrow \text{estimate} P(C = c_i) \text{ with example sin } \mathbf{S};
For every attribute value x_{jk} of each attribute X_j (j = 1, \dots, n; k = 1, \dots, N_j)
\hat{P}(X_j = x_{jk} \mid C = c_i) \leftarrow \text{estimate} P(X_j = x_{jk} \mid C = c_i) \text{ with example sin } \mathbf{S};
```

Output: conditional probability tables; for  $X_j$ ,  $N_j \times L$  elements

- Test Phase: Given an unknown instance  $\mathbf{X}' = (a_1', \dots, a_n')$ Look up tables to assign the label  $c^*$  to  $\mathbf{X}'$  if

$$[\hat{P}(a'_1 \mid c^*) \cdots \hat{P}(a'_n \mid c^*)] \hat{P}(c^*) > [\hat{P}(a'_1 \mid c) \cdots \hat{P}(a'_n \mid c)] \hat{P}(c), \quad c \neq c^*, c = c_1, \dots, c_L$$

### **Naïve Bayes - Example**

| TO 1        |        |         |          | 1         | 1  |
|-------------|--------|---------|----------|-----------|----|
| Dia         | 110111 | 11100   | training | OVAMA     | OC |
| - I- I.II.I | ı reni | 11.1.5. | training | ехания    | 25 |
|             | 7      |         |          | C/CCLILLO |    |
|             | ,      |         | O        |           |    |

| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |
|-----|----------|-------------|----------|--------|------------|
| D1  | Sunny    | Hot         | High     | Weak   | No         |
| D2  | Sunny    | Hot         | High     | Strong | No         |
| D3  | Overcast | Hot         | High     | Weak   | Yes        |
| D4  | Rain     | Mild        | High     | Weak   | Yes        |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes        |
| D6  | Rain     | Cool        | Normal   | Strong | No         |
| D7  | Overcast | Cool        | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild        | High     | Weak   | No         |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |
| D10 | Rain     | Mild        | Normal   | Weak   | Yes        |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes        |
| D12 | Overcast | Mild        | High     | Strong | Yes        |
| D13 | Overcast | Hot         | Normal   | Weak   | Yes        |
| D14 | Rain     | Mild        | High     | Strong | No         |

#### **Naïve Bayes - Example**

## Learning Phase

| Outlook  | Play=Yes | Play=No |
|----------|----------|---------|
| Sunny    | 2/9      | 3/5     |
| Overcast | 4/9      | 0/5     |
| Rain     | 3/9      | 2/5     |

| Temperature | Play=Yes | Play=No |
|-------------|----------|---------|
|             |          |         |
| Hot         | 2/9      | 2/5     |
| Mild        | 4/9      | 2/5     |
| Cool        | 3/9      | 1/5     |

| Humidity | Play=Yes | Play=No |
|----------|----------|---------|
| High     | 3/9      | 4/5     |
| Normal   | 6/9      | 1/5     |

| Wind   | Play=Yes | Play=No |
|--------|----------|---------|
| Strong | 3/9      | 3/5     |
| Weak   | 6/9      | 2/5     |

$$P(\text{Play=}Yes) = 9/14$$
  $P(\text{Play=}No) = 5/14$ 

#### **Naïve Bayes – Continuous Features**

- Algorithm: Continuous-valued Features
  - Numberless values taken by a continuous-valued feature
  - Conditional probability often modeled with the normal distribution

$$\hat{P}(x_j \mid y_i) = \frac{1}{\sqrt{2\pi\sigma_{ji}}} \exp\left(-\frac{(x_j - \mu_{ji})^2}{2\sigma_{ji}^2}\right)$$

 $\mu_{ji}$ : mean (average) of feature values  $x_j$  of examples for which  $y = y_i$   $\sigma_{ji}$ : standard deviation of feature values  $x_j$  of examples for which  $y = y_i$ 

- Learning Phase: for  $\mathbf{X}=(X_1,\cdots,X_F), \quad Y=y_1,\cdots,y_L$ Output:  $F\times L$  normal distributions and  $P(Y=y_i)$   $i=1,\cdots,L$
- Test Phase: Given an unknown instance  $\mathbf{X}' = (a'_1, \dots, a'_n)$ 
  - Instead of looking-up tables, calculate conditional probabilities with all the normal distributions achieved in the learning phrase
  - Apply the Maximum A Posteriori rule to assign a label2 (the same as done for the discrete case)

#### Naïve Bayes – Continuous Features

- Example: Continuous-valued Features
  - Temperature is naturally of continuous value.

**Yes**: 25.2, 19.3, 18.5, 21.7, 20.1, 24.3, 22.8, 23.1, 19.8

**No**: 27.3, 30.1, 17.4, 29.5, 15.1

Estimate mean and variance for each class

$$\mu = \frac{1}{N} \sum_{n=1}^{N} x_n, \quad \sigma^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu)^2 \qquad \frac{\mu_{Yes} = 21.64, \quad \sigma_{Yes} = 2.35}{\mu_{No} = 23.88, \quad \sigma_{No} = 7.09}$$

Learning Phase: output two Gaussian models for P(temp|Y)

$$\hat{P}(x \mid Yes) = \frac{1}{2.35\sqrt{2\pi}} \exp\left(-\frac{(x-21.64)^2}{2\times2.35^2}\right) = \frac{1}{2.35\sqrt{2\pi}} \exp\left(-\frac{(x-21.64)^2}{11.09}\right)$$

$$\hat{P}(x \mid No) = \frac{1}{7.09\sqrt{2\pi}} \exp\left(-\frac{(x-23.88)^2}{2\times7.09^2}\right) = \frac{1}{7.09\sqrt{2\pi}} \exp\left(-\frac{(x-23.88)^2}{50.25}\right)$$

#### Conclusion

- Probabilistic Classification Principle
   Discriminative vs. Generative models: learning P(y|x) vs. P(x|y)
- Naïve Bayes: the conditional independence assumption Working well sometimes for data violating the assumption!
- A popular generative model
   Performance competitive to most of state-of-the-art classifiers even in presence of violating independence assumption
   Many successful applications, e.g., spam mail filtering
   A good candidate of a base learner in ensemble learning