

中华人民共和国公共安全行业标准

GA 467-2013 代替 GA 467-2004

居民身份证验证安全控制模块 接口技术规范

Technical specifications for interfaces of the resident ID card secure access module for authentication

2013-01-09 发布 2013-01-09 实施

中华人民共和国公安部 发布

目 次

前	官
1	范围
2	规范性引用文件
3	术语和定义
4	缩略语
5	SAM_A 接口概述 ······
6	射頻模块接口
7	业务终端接口
附	表 A (规范性附录) 34 针插座 ······ 18
断	录 B (规范性附录) 业务终端接口

前言

本标准的全部技术内容为强制性。

- 本标准按照 GB/T 1.1-2009 给出的规则起草。
- 本标准代替 GA 467-2004《居民身份证验证安全控制模块接口技术规范》。
- 本标准与 GA 467-2004 相比,除编辑性修改外主要技术变化如下:
- ——修改了英文译名,正文内的"SAM_V"改为"SAM_A"(见封面,2004 年版的封面);
- ——删除了规范性引用文件中的"通用串行总线规范"和"EIA-RS-232C 通信协议 串行通信接口的信号线功能、电器特性(EIA-RS-232C:1969)"(2004 年版的第 2 章);
- 删除了"验证安全控制模块"、"固定信息"、"追加信息"、"业务终端接口"和"射频模块接口"等 术语(2004 年版的第3章);
- ---增加了术语"射频模块"(见 3.2);
- ---增加了"缩略语"(见第 4 章);
- ---增加了"SAM_A 接口概述"(见第 5 章);
- 一修改了表 2 和表 3 的部分参数,表 2 的参数 t_{RR} A 的最大值改为 150 ns,参数 t_{RR} F 的最大值改为 3 μs;表 3 的 t_{MAIC} 的最小值和最大值分别改为 10 ns 和 100 ns, t_{RA} R 的最大值改为 100 ns; (见 6.2.4.2,2004 年版的 4.2.4.3);
- 一修改了表 6 的部分参数、 t_{SU_STO} 和 t_{SU_END} 的 100 kHz、200 kHz 的指标都修改为 1.5 μs(见 6.2.5.4,2004 年版的 4.2.5.5);
- 增加了RESET信号的时序说明(见 6.2.6);
- 一增加了安全控制模块上电复位后应如何选择通信方式,以及工作期间两种通信方式能否相互 切换等问题的描述(见 7.2.1);
- ——增加了 USB 传输通道二、USB 传输通道三的说明(见 7.2.3 和 7.3.2);
- 一一增加了"读机读文字信息、相片信息和指纹信息"命令(见 7.4.1 和 7.5.10);
- ——增加了 SW3 为"0x37"、"0x3F"的应答码(见 7,4.2);
- 修改了"寻找身份证命令"、"选取身份证命令"应答码的 Data 内容(见 7.5.7 和 7.5.8,2004 年版的 5.5.7 和 5.5.8);
- ——删除了附录 C"证/卡验证应用举例"(2004 年版的附录 C)。
- 请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别这些专利的责任。
- 本标准由公安部治安管理局提出。
- 本标准由公安部计算机与信息处理标准化技术委员会归口。
- 本标准起草单位:数据通信科学技术研究所、公安部第一研究所、公安部居民身份证密钥管理中心。 本标准主要起草人:苏桂亭、周东平、王俊峰、吴丛明、张文直、张治安、刘丽娜、张知恒。

居民身份证验证安全控制模块 接口技术规范

1 范围

本标准规定了居民身份证验证安全控制模块的接口、接口信号时序、传输协议及操作命令。本标准适用于居民身份证验证安全控制模块的使用。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GA 449 居民身份证术语

3 术语和定义

GA 449 界定的以及下列术语和定义适用于本文件。

3.1

业务终端 application terminal

与 SAM_A 连接,能向 SAM_A 发送操作命令,接收并处理 SAM_A 返回结果的实体。

3.2

射频模块 RF module

内嵌于居民身份证阅读器中、与居民身份证专用芯片进行射频通信的电子电路。

4 缩略语

下列缩略语适用于本文件。

SAM_A:验证安全控制模块(Secure Access Module for Authentication)

RF:射频(Radio Frequency)

UART:通用异步收发器(Universal Asynchronous Receiver/Transmitter)

USB:通用串行总线(Universal Serial Bus)

5 SAM A接口概述

SAM_A 的物理接口包括射频模块接口和业务终端接口,如图 1 所示。

图 1 SAM_A接口示意图

6 射频模块接口

6.1 物理接口

采用 IDC 标准 34 针 MALE 插座,插座的引脚说明、结构等见附录 A。

6.2 数据传输

6.2.1 数据传输方式

射频模块接口具有并行和串行两种数据传输方式,通过"射频模块接口的传输方式选择信号"(即RF_TYPE)选择,高电平为并行传输方式,低电平为串行传输方式。

6.2.2 数据传输顺序

在并行传输方式下,数据按字节传输,低字节在前,高字节在后。 在串行传输方式下,数据按位传输,高位在前,低位在后。

6.2.3 射頻校验标识

射頻校验标识由射频模块发给 SAM_A 的最后一个字节表示,0x00 表示校验正确,非 0x00 表示校验错误。

6.2.4 数据并行传输方式

6.2.4.1 端口说明

端口说明见表1。

表 1 数据并行传输方式端口说明

信号名称	信号流向*	功能描述
$D_0\!\sim\!D_7$	I/O/Z	8 比特数据总线,不进行读、写数据时,为高阻状态
TX_REQ	0	发送请求信号。平时为低电平。上升沿表示 SAM_A 发送数据准备好,在设定时间内、TX_ACK 信号有效前,保持高电平。当 TX_ACK 信号有效(低电平),或超时后,设置为低电平
TX_ACK /RATE0	I	在数据并行传输方式下为 TX_REQ 的应答信号 TX_ACK,平时为高电平。在 TX_REQ 发送请求有效后、射频模块接收数据完成前,保持为低电平
TX_ACK I		发送数据帧的帧标识信号,平时为低电平。当 SAM_A 开始发送一帧数据时,为高电平,这一帧所有数据发送结束后,重置为低电平
	I	在数据并行传输方式下为接收请求信号 RX_REQ,平时为低电平。上升沿表示射频模块准备好数据,在 RX_ACK 变为低电平时,由射频模块清除
RX_ACK	O	RX_REQ的应答信号,平时为高电平。在 RX_REQ接收请求有效后、SAM_A接收数据完成前,保持为低电平
RX_FRAME	I	接收数据帧的帧标识信号,平时为低电平。当射频模块向 SAM_A 转发一帧数 据时,变为高电平;在所有数据字节转发完,给出校验结果后,变为低电平
R/\overline{W}	0	SAM_A 读、写信号,CS低电平时,高电平表示读,低电平表示写

表 1(续)

信号名称	信号流向*	功能描述
cs	0	射频模块片选信号,低电平有效
RESET	0	对射频模块的复位信号,低电平有效,时序说明见 6.2.6
RF_TYPE	I	射頻模块接口的传输方式选择信号。高电平表示选择数据并行传输方式

6.2.4.2 端口信号时序

6.2.4.2.1 SAM_A 发送时序

SAM_A 将 TX_FRAME 信号置为高电平开始一帧数据的发送。在 TX_FRAME 保持高电平期间,SAM_A 首先产生 TX_REQ 信号,待接收到 TX_ACK 信号后开始发送数据,直到一帧数据发送完毕,SAM_A 将 TX_FRAME 信号设置为低电平。

SAM_A 发送时序如图 2 所示,发送时序参数见表 2。

图 2 数据并行传输方式发送时序

表 2 数据并行传输方式发送时序参数

参数	说明	最小值	最大值	单位
t _{es(D)} w	在 R/W 变高前 Data 的建立时间	40	100	ns
th(D)W	在 R/W 变高后 Data 的维持时间	20	60	ns
t _{I(RW)}	R/W 保持低电平的时间	48	105	ns

表 2 (续)

说明	最小值	最大值	单位
CS保持低电平的时间	85	155	ns
CS变为高电平后,产生 TX_REQ 的时间(SAM_A 发出数据到发出请求的时间)	_	65	ns
TX_ACK 变为低电平后,TX_REQ 保持高电平的时间(SAM_A 获得应答到清除请求的时间)	20	150	ns
TX_REQ 变为高电平后,等待 TX_ACK 变为低电平的时间(SAM_A发出请求到等待应答的时间)	-	200	μ5
TX_ACK 低电平保持时间	_	200	μş
TX_ACK 恢复后,SAM_A 发出下一个 TX_REQ 的时间	400	870	ns
TX_FRAME 有效后,产生第一个 TX_REQ(变为高电平)的时间	1	3	μs
最后一个 TX_ACK 变为高电平后,TX_FRAME 变为低电平的时间 (SAM_A 确认最后一个字节发完后,取消发送帧标识)	0,5	5	μs
	CS保持低电平的时间 CS变为高电平后,产生 TX_REQ 的时间(SAM_A 发出数据到发出请求的时间) TX_ACK 变为低电平后,TX_REQ 保持高电平的时间(SAM_A 获得应答到清除请求的时间) TX_REQ 变为高电平后,等待 TX_ACK 变为低电平的时间(SAM_A 发出请求到等待应答的时间) TX_ACK 低电平保持时间 TX_ACK 低电平保持时间 TX_ACK 恢复后,SAM_A 发出下一个 TX_REQ 的时间 TX_FRAME 有效后,产生第一个 TX_REQ(变为高电平)的时间 最后一个 TX_ACK 变为高电平后,TX_FRAME 变为低电平的时间	CS保持低电平的时间 85 CS变为高电平后,产生 TX_REQ 的时间(SAM_A 发出数据到发出请求的时间)	CS保持低电平的时间 85 155 CS变为高电平后,产生 TX_REQ 的时间(SAM_A 发出数据到发出请求的时间) 65 TX_ACK 变为低电平后,TX_REQ 保持高电平的时间(SAM_A 获得应答到清除请求的时间) 20 TX_REQ 变为高电平后,等待 TX_ACK 变为低电平的时间(SAM_A 发出请求到等待应答的时间) 200 TX_ACK 低电平保持时间 200 TX_ACK 恢复后,SAM_A 发出下一个 TX_REQ 的时间 400 870 TX_FRAME 有效后,产生第一个 TX_REQ(变为高电平)的时间 1 3 最后一个 TX_ACK 变为高电平后,TX_FRAME 变为低电平的时间 0.5 5

6.2.4.2.2 SAM_A 接收时序

SAM_A 在发送完一帧数据后,如果射频模块收到居民身份证应答数据,应在等待时间内将应答数据发送给 SAM_A,SAM_A 最大等待时间为 90 ms。

SAM_A 检测到 RX_FRAME 信号变为高电平开始一帧数据的接收,在 RX_FRAME 保持高电平期间,SAM_A 等待 RX_REQ 信号,收到 RX_REQ 后,SAM_A 产生 RX_ACK 信号并读取数据,直到 RX_FRAME 信号变为低电平,一帧数据接收完毕。

SAM_A 接收时序如图 3 所示,接收时序参数见表 3。

图 3 数据并行传输方式接收时序

表 3 数据并行传输方式接收时序参数

参数	说明	最小值	最大值	单位
t switter	在CS变为高电平前 Data 的建立时间	40	-	ns
t _{b(D)C}	在CS变为高电平后 Data 的维持时间	15	-	ns
$t_{\rm sl(C)}$	CS保持低电平的时间	48	105	ns
t _{ICC)R}	RX_REQ 有效后产生CS的时间	350	650	ns
t _{H(A)C}	CS变为高电平后,RX_ACK 变为高电平的时间(SAM_A 读数据后 清除应答的时间)	10	100	ns
t _{3(A)R}	RX_REQ 有效后,RX_ACK 的产生时间	25	100	ns
t _{I(R)A}	RX_ACK产生低电平后,RX_REQ 变为无效的时间(SAM_A 可以接收下一个请求时,前一个请求应被清除)	-	400	ns
•	NV 100 NM = 1 0112 1 m 1 = 1 01 01 01 01	5	727	ns
t _{MANR}	RX_ACK 清除后,向 SAM_A 发出下一个 RX_REQ 的时间		200	μs
t _{h(R)F}	RX_FRAME 有效后,产生第一个 RX_REQ(变为高电平)的时间		200	μs
ti(F)R	最后一个 RX_REQ 变为低电平后, RX_FRAME 变为低电平的时间	0	50	μs

6.2.5 数据串行传输方式

6.2.5.1 端口说明

端口说明见表 4。

表 4 数据串行传输方式端口说明

信号名称	信号流向*	功能描述
TX_ACK/RATE0	1	接口速率选择信号,速率选择编码见 6.2.5.2
TX_FRAME	O	发送数据帧的帧标识信号,平时为低电平。当 SAM_A 开始发送一帧数据时,为高电平,该帧数据发送结束后,重置为低电平
RX_REQ/RATE1	1	接口速率选择信号,速率选择编码见 6.2.5.2
RX_FRAME	1	接收数据帧的帧标识信号,平时为低电平,当射频模块向 SAM_A 转 发一帧数据时,变为高电平;在所有数据字节转发完,给出校验结果 后,变为低电平
RF_TYPE	I	射频模块接口的传输方式选择信号。低电平表示数据串行传输方式
SDATA	I/O	数据线。发送和产生应答信号时为输出方式,接收和等待应答信号时 为输入方式
SCLK	I/O	时钟信号。发送时为输出方式、接收时为输入方式
RESET	0	对射频模块的复位信号,低电平有效,时序说明见 6.2.6

6.2.5.2 速率选择

通过设置 TX_ACK/RATE0、RX_REQ/RATE1 信号的电平,选择数据串行传输方式速率,见表5。

TX_ACK/RATE0	RX_REQ/RATE1	串行传输总线速率
L	L	100 kbps
L	н	200 kbps
Н	L	300 kbps
Н	н	預留

表 5 数据串行传输方式速率选择

6.2.5.3 端口信号

6.2.5.3.1 开始通信信号

SCLK 信号为高电平时,在 SDATA 线上的一个由高电平到低电平的变化表示通信开始。该信号应在一帧数据发送开始时由发送方产生,开始通信信号时序如图 4 所示。

6.2.5.3.2 停止通信信号

SCLK 信号为高电平时,在 SDATA 线上的一个由低电平到高电平的变化表示通信停止。该信号应在一帧数据发送结束时由发送方产生,停止通信信号时序如图 4 所示。

图 4 数据串行传输方式开始通信和停止通信时序

6.2.5.3.3 确认信号

在通信过程中,数据位为 8 位,高位在前。每发送 8 位数据后,发送方设置 SDATA 信号为输入状态;接收方应在确认信号时钟周期内产生确认信号(将 SDATA 信号置为低电平),并在确认信号时钟周期结束时,接收方将 SDATA 信号置为输入状态。确认信号时序如图 5 所示。

图 5 数据串行传输方式数据格式与确认信号

6

6.2.5.4 端口信号时序

6.2.5.4.1 数据传输方向

在通信过程中,SAM_A 发送数据时,SAM_A 为发送方,射频模块为接收方;在 SAM_A 接收时,SAM_A 为接收方,射频模块为发送方。

6.2.5.4.2 SAM_A 发送时序

SAM_A 将 TX_FRAME 信号置为高电平,表示一帧数据发送开始。此时,射频模块应保持 SDATA 和 SCLK 信号为输入状态。

在 TX_FRAME 保持高电平期间,SAM_A 首先产生起始通信信号,并按照设定的速率依次发送数据和等待确认信号。待一帧数据发送结束后,SAM_A 产生停止通信信号,将 SDATA 信号和 SCLK 信号设置为输入状态,并将 TX_FRAME 信号设置为低电平。SAM_A 发送时序如图 6 所示。

图 6 数据串行传输方式发送时序

6.2.5.4.3 SAM_A 接收时序

SAM_A 在发送完一帧数据后,如果射频模块收到居民身份证应答数据,应在等待时间内将应答数据发送给 SAM_A,SAM_A 最大等待时间为 90 ms。

从 RX_FRAME 为高电平开始,到 RX_FRAME 信号为低电平之前,SAM_A 接收起始通信信号,并依次接收数据和产生应答信号,直至收到停止通信信号。SAM_A 的接收时序如图 7 所示。

图 7 数据串行传输方式接收时序

6.2.5.4.4 数据串行传输方式通信时间参数

数据串行传输方式通信的具体时序如图 8 所示,时间参数规定见表 6。

GA 467-2013

图 8 串行接口通信时序时间参数图

表 6 数据串行传输方式通信时间参数

参数	说明	100 kHz	200 kHz	300 kHz	单位
t _{LOW}	SCLK 为低的时间	5	2.5	1,66	μз
t _{HIGH}	SCLK 为高的时间	5	2,5	1.66	μs
t _{SU_STA}	开始通信信号建立前保持时间	5	2,5	1.66	μs
t _{HD_STA}	开始通信信号建立后保持时间	5	2.5	1.66	μs
t _{SU_STO}	结束通信信号建立后的保持时间	1,5	1.5	1	μs
t _{su_end}	SDATA 信号变为高到 TX _ FRAME /RX_FRAME 保持高电 平的时间	1.5	1.5	1	μs
•	数据保持时间	最小 50	最小 50	最小 50	ns
t HD_DAT		最大 4.95	最大 2,45	最大 1.61	μs
• 201 (1955)	新提动 交配荷	最小 50	最小 50	最小 50	ns
t _{SU_DAT}	数据建立时间	最大 4.95	最大 2,45	最大 1.61	μs

6.2.6 RESET信号的时序

RESET信号在 SAM_A 上电复位阶段产生,也可以通过给 SAM_A 发送"复位 SAM_A"命令产生。上电后,RESET信号保持低电平一段时间后变为高电平,并在延迟 t_{high} 时间后产生一个持续时间为 $t_{rat.r}$ 的低电平复位信号。在 SAM_A 工作期间发送"复位 SAM_A"命令,也会产生一个持续时间为 $t_{rat.r}$ 的低电平复位信号。

RESET信号的时序图如图 9 所示,时间参数见表 7。

图 9 RESET信号时序图

表 7 RESET信号时间参数说明

参数	说明	最小值	最大值	单位
E low	上电后RESET信号保持低电平的时间	16	360	ms
t high	上电后RESET信号变高到产生 tm_ri的时间	8	210	ms
$t_{m_{\rm off}}$	RESET信号保持低电平的时间	0.8	1.2	ms
t _{rat_SAM}	SAM_A 响应复位命令到产生 tm_n 的时间	_	2	s

7 业务终端接口

7.1 物理接口

物理接口包括 34 针插座和业务终端接口,34 针插座见附录 A,业务终端接口见附录 B。

7.2 通信方式

7.2.1 接口选择

业务终端可选择 UART 或 USB 接口进行通信,SAM_A 在上电后第一次从哪个端口接收到业务 终端的命令,则在本次断电前一直采用该端口与业务终端进行通信,不能切换。

7.2.2 UART

UART 包括 5V CMOS 电平和 RS-232C 电平两种信号接口,5V CMOS 电平接口形式见附录 A, RS-232C 电平接口形式见附录 B。同一时刻只允许选用其中的一种。参数说明见表 8。

表 8 UART接口参数说明

起始位	1位
数据位	8 位
停止位	1位
校验位	无
波特率	默认为 115 200 bps,也可设置为 57 600 bps,38 400 bps,19 200 bps,9 600 bps

7.2.3 USB

USB采用 USB1.1 协议, USB 物理接口采用 USB A 型插座, 参数说明见表 9。

表 9 USB接口参数说明

项目	传输通道—	传输通道二	传输通道三
速度	全速(12 Mbps)	全速(12 Mbps)	全速(12 Mbps)
输入管道	0x02(以下称 Pipe2)、0x06(以下称 Pipe6)	0x01 (以下称 Pipel)	0x02(以下称 Pipe2)
輸出管道	0x81(以下称 Pipe81),0x85(以下称 Pipe85)	0x81 (以下称 Pipe81)	0x81(以下称 Pipe81)
供电模式	自供电	自供电	自供电

7.3 数据传输格式

7.3.1 UART 通信方式下的数据传输格式

使用 UART 业务终端接口时,以命令/应答方式进行数据交换。业务终端以输入数据帧格式向 SAM_A 发送命令,SAM_A 以输出数据帧格式应答业务终端。

数据输入传输格式见表 10,数据输出传输格式见表 11。

表 10 数据输入传输帧格式

Preamble	Lenl	Len	2 0	CMD	Para	Data	CHK_SUM
			表 11 数据	居输出传输	帧格式		
Preamble	Lenl	Len2	SW1	SW2	SW3	Data	CHK_SUM

7.3.2 USB 通信方式下的数据传输格式

7.3.2.1 USB 传输通道一

USB 传输通道一通过 Pipe2、Pipe6 实现 SAM_A 的数据输入,通过 Pipe81、Pipe85 实现 SAM_A 的数据输出。Pipe2 的数据传输格式见表 12, Pipe6 的数据传输格式见表 13, Pipe81 的数据传输格式见表 14, Pipe85 的数据传输格式见表 15。

表 12 Pipe2 数据传输格式

Preamble	Le	nl	Len2
	表 13 Pipe6	数据传输格式	
CMD	Para	Data	CHK_SUM
	表 14 Pipe81	数据传输格式	
Preamble	Le	nl	Len2

表 15 Pipe85 数据传输格式

SW1	SW2	SW3	Data	CHK_SUM
	CC - CCCCCCC		C3578734.75	200 200 mm -

7.3.2.2 USB 传输通道二

USB 传输通道二通过 Pipel 实现 SAM_A 的数据输入,通过 Pipe81 实现 SAM_A 的数据输出。 Pipel 的数据传输格式见表 16, Pipe81 的数据传输格式见表 17。

表 16 Pipel 数据传输格式

Preamble	Lenl	Len2	CMD	Para	Data	CHK_SUM
		表 17	Pipe81数据·	传输格式		

Preamble Lenl Len2 SW1 SW2 SW3 Data CHK_SUM

7.3.2.3 USB 传输通道三

USB 传输通道三通过 Pipe2 实现 SAM_A 的数据输入,通过 Pipe81 实现 SAM_A 的数据输出。 Pipe2 的数据传输格式见表 18, Pipe81 的数据传输格式见表 19。

表 18 Pipe2 数据传输格式

Preamble	Len1	Len2	CMD	Para	Data	CHK_SUM

表 19 Pipe81 数据传输格式

	Preamble	Lenl	Len2	SW1	SW2	SW3	Data	CHK_SUM
--	----------	------	------	-----	-----	-----	------	---------

7.3.3 数据传输格式中各字段的含义

数据传输格式中各字段的含义如下:

- a) Preamble:本帧数据的帧头,5字节,为0xAA,0xAA,0xAA,0x96,0x69。
- b) Len1、Len2:数据帧的有效数据长度,各为1字节,Len1为数据长度高字节;Len2为数据长度低字节:
 - 1) 输入数据长度为 CMD、Para、Data、CHK_SUM 字段字节数之和;
 - 2) 输出数据长度为 SW1、SW2、SW3、Data、CHK_SUM 字段字节数之和。
- c) CMD:命令码,1字节,见表 20。
- d) Para:命令参数,1字节,见表 20。
- e) Data: 帧数据内容,最大不超过3000字节,可以为0字节。
- f) SW1、SW2、SW3:状态字段,各为1字节。
 - 1) SW1、SW2表示居民身份证返回的状态参数;
 - 2) SW3 表示 SAM_A 操作状态。SW1、SW2、SW3 的定义见表 21。
- g) CHK_SUM:校验和,1字节。计算方法为数据帧中除帧头和校验和之外的数据逐字节按位 异或。

GA 467-2013

7.4 命令集及应答码

7.4.1 命令集

业务终端通过业务终端接口发送的命令集见表 20。

表 20 命令集

命令码(CMD)	命令参数(Para)
0x10	0xFF
0x11	0xFF
0x12	0xFF
0x20	0x01
0×20	0x02
0x30	0x01
0x30	0x10
0 x 30	0x03
0x60	0x00~0x04, 见表 28
0x61	0xFF
	0x10 0x11 0x12 0x20 0x20 0x30 0x30 0x30 0x30

7.4.2 应答码

 SAM_A 通过业务终端接口响应的应答码见表 21。状态字 SW1、SW2 是居民身份证返回的状态参数,SW3 是 SAM_A 的操作状态。若命令是针对 SAM_A 操作的,则 SW1、SW2 为 0x00、0x00。

表 21 SAM_A 的应答码

状态字 1(SW1)	状态字 2(SW2)	状态字 3(SW3)	帧数据内容(Data)	意义
0x00	0x00	0x90	和具体命令有关,可能为空	操作成功
0 x 00	0x00	0x9F	4 字节 0x00	寻找居民身份证成功
0x00	0 x00	0x10	-	接收业务终端数据的校验和错误
0x00	0x00	0x11	-	接收业务终端数据的长度错误
0 x 00	0x00	0x21	=	接收业务终端的命令错误,包括命令中的各种数值或逻辑搭配错误
0x00	0x00	0x23		越权操作
0 x 00	0x00	0x24	-	无法识别的错误
××	××	0x31		居民身份证认证 SAM_A 失败
××	××	0x32	5 41	SAM_A 认证居民身份证失败
0×00	0x00	0x33		信息验证错误
0x00	0x00	0x37	_	指纹信息验证错误

表 21 (续)

状态字 1(SW1)	状态字 2(SW2)	状态字 3(SW3)	帧数据内容(Data)	意义
0x00	0×00	0x3F	-	指纹信息长度错误
××	××	0x40	-	无法识别的居民身份证卡类型
××	××	0x41		读居民身份证操作失败
××	××	0x47	-	取随机数失败
0x00	0x00	0x60	_	SAM_A 自检失败,不能接收命令
0×00	0x00	0x66	-	SAM_A 没经过授权,无法使用
0 x00	0x00	0x80	_	寻找居民身份证失败
××	××	0x81	-	选取居民身份证失败
0x00	0x00	0x91	-	居民身份证中此项无内容

7.5 命令及应答码说明

7.5.1 命令说明

以下描述中,省略对输入、输出数据中的帧头、数据长度、数据包校验码的说明,只给出操作正确的应答码,其他应答码见表 21。

7.5.2 复位 SAM_A 命令

对 SAM_A 复位。命令码见表 22,应答码见表 23。

表 22 复位 SAM_A 命令

命令码(CMD)	命令参数(Para)
0×10	0xFF

表 23 复位 SAM_A 命令应答码

状态字 1(SW1)	状态字 2(SW2)	状态字 3(SW3)
0x00	0×00	0x90

7.5.3 SAM_A 状态检测命令

查询 SAM_A 当前的工作状态。命令码见表 24,应答码见表 25。

表 24 状态检测命令

命令码(CMD)	命令参数(Para)
0x11	0×FF

GA 467-2013

表 25 状态检测命令应答码

状态字 1(SW1)	状态字 2(SW2)	状态字 3(SW3)
0x00	0x00	0x90

7.5.4 读 SAM_A 管理信息命令

读取 SAM_A 的编号。命令码见表 26,应答码见表 27。

表 26 读管理信息命令

命令码(CMD)	命令参数(Para)
0x12	0xFF

表 27 读管理信息命令应答码

状态字 1(SW1)	状态字 2(SW2)	状态字 3(SW3)	帧数据内容(Data)
0x00	0x00	0×90	SAM_A 編号(16 字节)

7.5.5 设置 UART 接口的通信速率命令

设置 UART 接口的通信速率。初始默认值为 115 200 bps,设置成功后一直有效,断电后仍能保持。命令码见表 28,应答码见表 29。

表 28 设置速率命令

命令码(CMD)	命令参数(Para)
0x60	0x00
0x60	0x01
0x60	0x02
0 x 60	0x03
0x60	0x04

注: Para 值表示设置的速率,具体如下:

Para=0x00:速率为 115 200 bps;

Para=0x01:速率为 57 600 bps;

Para=0x02:速率为 38 400 bps;

Para=0x03:速率为 19 200 bps;

Para=0x04:速率为 9 600 bps.

表 29 设置速率命令应答码

状态字 1(SW1)	状态字 2(SW2)	状态字 3(SW3)
0x00	0x00	0x90

7.5.6 设置 SAM_A 与射频模块一帧通信数据的最大字节数命令

设置 SAM_A 与射频模块之间一帧通信数据的最大字节数,取值范围为 0x18~0xFF,初始默认值为 0x58。设置成功后一直有效,断电后仍能保持。命令码见表 30,应答码见表 31。

表 30 设置与射频模块一帧通信数据的最大字节数命令

命令码(CMD)	命令参数(Para)	帧数据内容(Data)
0x61	0xFF	最大字节数(1字节)

表 31 设置与射频模块一帧通信数据的最大字节数命令应答码

状态字 1(SW1)	状态字 2(SW2)	状态字 3(SW3)
0x00	0×00	0x90

7.5.7 寻找居民身份证命令

命令 SAM_A 寻找居民身份证。命令码见表 32,应答码见表 33。

表 32 寻找居民身份证命令

命令码(CMD)	命令参数(Para)	
0 x20	0x01	

表 33 寻找居民身份证命令应答码

状态字 1(SW1)	状态字 2(SW2)	状态字 3(SW3)	幀数据内容(Data)
0x00	0x00	0x9F	4 字节 0x00

7.5.8 选取居民身份证命令

命令 SAM_A 读居民身份证芯片序列号。命令码见表 34,应答码见表 35。

表 34 选取居民身份证命令

命令码(CMD)	命令参数(Para)
0×20	0x02

表 35 选取居民身份证命令应答码

状态字 1(SW1)	状态字 2(SW2)	状态字 3(SW3)	幀数据内容(Data)
0x00	0x00	0x90	8 字节 0x00

7.5.9 读机读文字信息和相片信息命令

命令 SAM_A 读取并验证机读文字信息和相片信息,验证正确后返回。命令码见表 36,应答码见表 37。

GA 467-2013

表 36 读机读文字信息和相片信息命令

命令码(CMD)	命令参数(Para)
0x30	0x01

表 37 读机读文字信息和相片信息令应答码

状态字 1(SW1)	状态字 2(SW2)	状态字 3(SW3)	帧数据内容(Data)
0x00	0x00	0x90	机读文字信息和相片信息(见表 38)

表 38 读机读文字信息和相片信息应答码中 Data 字段的信息格式

文字信息长度 高字节 (1 字节)	文字信息长度 低字节 (1字节)	相片信息长度 高字节 (1字节)	相片信息长度 低字节 (1字节)	文字信息 (不大于 256 字节)	相片信息 (不大于 1 024 字节)
-------------------------	------------------------	------------------------	------------------------	----------------------	------------------------

7.5.10 读机读文字信息、相片信息和指纹信息命令

命令 SAM_A 读取并验证居民身份证的机读文字信息、相片信息和指纹信息,验证正确后返回,命令码见表 39,应答码见表 40。

表 39 读机读文字信息、相片信息和指纹信息命令

命令码(CMD)	命令参数(Para)
0x30	0x10

表 40 读机读文字信息、相片信息和指纹信息命令应答码

状态字 1(SW1)	状态字 2(SW2)	状态字 3(SW3)	帧数据内容(Data)
0×00	0x00	0×90	机读文字信息、相片信息和指数 信息(见表 41)

表 41 读机读文字信息、相片信息和指纹信息应答码中 Data 字段的信息格式

文字信息长	文字信息长	相片信息长	相片信息长	指纹信息长	指纹信息长	文字信息	相片信息	指纹信息
度高字节	度低字节	度高字节	度低字节	度高字节	度低字节	(不大于	(不大于	(不大于
(1字节)	(1字节)	(1字节)	(1字节)	(1字节)	(1字节)	256 字节)	1 024 字节)	1 024 字节)

7.5.11 读追加住址信息命令

命令 SAM_A 读取并验证居民身份证的追加住址信息,验证正确返回最后一次追加住址信息。命令码见表 42,应答码见表 43。

表 42 读追加住址信息命令

命令码(CMD)	命令参数(Para)
0x30	0 x 03

表 43 读追加住址信息命令应答码

状态字 1(SW1)	状态字 2(SW2)	状态字 3(SW3)	帧数据内容(Data)
0x00	0x00	0×90	追加住址信息(70字节)

附 录 A (规范性附录) 34 针插座

A.1 34 针插座示意图及引脚说明

插座示意图如图 A.1 所示,引脚说明见表 A.1。

图 A.1 34 针插座结构图

聚 A.1 34 针插座的引脚说明

引脚号	信号名称	连接对象
1.2	VCC	电源
5.6	GND	电源
7~14	$D_6 \sim D_7$	射频模块
15	TX_REQ	射频模块
16	TX_ACK	射频模块
17	TX_FRAME	射频模块
18	RX_REQ	射頻模块
19	RX_ACK	射頻模块
20	RX_FRAME	射频模块
21	R/W	射頻模块
22	cs	射頻模块
23	SDATA	射频模块
24	SCLK	射频模块
25	RF_TYPE	射频模块
26	RESET	射频模块
29	UART_RX*	业务终端
31	UART_TX	业务终端
30	USB_D+	业务终端
32	USB_D-	业务终端
33	USB_GND	业务终端

表 A.1 (续)

引脚号	信号名称	连接对象
34	USB_VCC	业务终端
3,4,27,28	保留	悬空

A.2 电气特性

电气特性见表 A.2。

表 A.2 电气特性

参数	测试条件	最小值	典型值	最大值	单位
供电电压 VCC		4.75	5	5.25	V
高电平输出电压 V _{OH}	$I_{OH} = -100 \text{ uA}$	4.2	-	-	V
低电平输出电压 Vot.	I _{OL} == 100 uA	-	-	0.4	V
低电平输入电压 V _E .	-	-	_	0.8	v
高电平输入电压 V _H		2	-	_	V
高电平输出电流 Ion		144	14-21	6	mA
低电平输出电流 Ion		_	-	12	mA
输入电流 I ₁		-	_	±1	u.A
电源电流 I _{cc}	-	-	105	120	mA
上电复位时间 T _{sst}	_	-	-	2	s
工作温度 T _A		0	_	55	€
存储温度 Tug		45		65	°C

附 录 B (规范性附录) 业务终端接口

B.1 UART接口插座结构图及引脚说明

USB A 型插座和 UART 插座结构见图 B.1, UART 插头(3.5 mm 双音频插头)示意图见图 B.2。 UART 接口插座引脚说明见表 B.1。

图 B.1 USB A 型插座和 UART 插座结构图

图 B.2 UART 插头示意图

表 B.1 UART接口插座的引脚说明

引脚	信号
1	GND
2	RX
3	TX

用户可根据业务终端的 RS-232C 的物理接口类型选择,制作与 SAM_A 的 UART 连接的电缆(如 采用 DB9、DB25 等与业务终端连接),制作的电缆长度不应超过 1.5 m。

20

中华人民共和国公共安全 行业标准 居民身份证验证安全控制模块 接口技术规范

GA 467-2013

中国标准出版社出版发行 北京市朝阳区和平里西街甲2号(100029) 北京市西城区三里河北街16号(100045)

阿扯 www.spc.net.cn 总编室:(010)64275323 发行中心;(010)51780235 读者服务部:(010)68523946

中国标准出版社秦皇岛印刷厂印刷 各地新华书店经销

开本 880×1230 1/16 印张 1.75 字数 40 千字 2014 年 12 月第一版 2014 年 12 月第一次印刷

书号: 155066 • 2-27391 定价 27.00 元

如有印装差错 由本社发行中心调换 版权专有 侵权必究 举报电话:(010)68510107

