Bipolar Junction Transistors

Peng Mei Department of Electronic Systems

Email: mei@es.aau.dk

Learning objectives:

• Physical structure of a NPN transistor

• Three basic circuit types of a NPN transistor

• Current components of a NPN transistor

• I-V characteristic

First BJT in 1948 at the Bell Telephone Lab

John Bardeen William Schockley Walter Brattain

First BJT in 1948 at the Bell Telephone Lab

John Bardeen William Schockley Walter Brattain

Depletion region

$$v_D < 0$$

$$v_D = 0$$

$$v_{D} > 0$$

3 areas, each with its own contact:

- N-doped area: "Emitter (E or e)"
- P-doped area: "Base (B or b)"
- N-doped area: "Collector (C or c)"

PNP

NPN

Emitter area: highly doped density

Collector area: low doped density and large area

Base area: thin, around 1 - 2 *um*, lowest doped

density

Quite similar

Emitter: Emits electrons;

Collector: Collects electrons;

What is forward biased and reverse biased?

Current components:

- Electrons E \longrightarrow B \longrightarrow C => Collector current (i_C) (BE voltage controls the current)
- Electrons E \longrightarrow B => Base current (i_B)
- Holes B \longrightarrow E => Base current $(i_{\rm B})$

How about emitter current (i_F) ?

Mode	EBJ	СВЈ
Cutoff	Reverse	Reverse
Active	Forward	Reverse
Saturation	Forward	Forward

$i_{\rm C} \sim v_{\rm RE}$ curve:

At active mode

$$i_C = I_S \left(e^{(\upsilon_{BE}/V_T)} - 1 \right) \approx I_S e^{(\upsilon_{BE}/V_T)}$$

$$V_T = \frac{kT}{q} \approx 26mV$$

 $A_{\rm E}$: cross-sectional area of emitter area

q: electron charge = 1.6 * 10 -19 C

 D_n : diffusivity of electrons

 n_i : number of thermally generated electrons

 N_B : doping density in base

 W_R : the width of base

T: absolute temperature

 $I_S = \frac{A_E q D_n n_i^2}{N_B W_B}$

Could be controlled by manufacturing.

Temperature dependent

How much does $i_{\rm C}$ change if $v_{\rm BE}$ increases by 60mv?

$$i_C = I_S \left(e^{(\upsilon_{BE}/V_T)} - 1 \right) \approx I_S e^{(\upsilon_{BE}/V_T)}$$
$$I_S = 5 \times 10^{-16} \text{ A}$$

$i_{\rm B} \sim v_{\rm BE}$ curve:

Active mode:

- Emitter forward biased;
- Collector reverse biased;
- $v_{\rm CE} > v_{\rm BE}$

*U*on Si: 0.5 – 0.7 V Ge: 0.1 – 0.3 V

The analytical relationship between $v_{\rm RE}$ and $i_{\rm R}$

- Holes from
 - B to E

$$i_C = I_S \left(e^{(v_{BE}/V_T)} - 1 \right)$$

$$\beta = \frac{i_C}{i_B} = \frac{1}{\frac{D_p N_A W}{D_n N_D L_P} + \frac{W^2}{2D_n \tau_B}}$$
 (forget details)

- Electrons E \longrightarrow B => Base current (i_B)
- Holes B \longrightarrow E => Base current (i_B)
- Big β , if:
 - W is small
 - $N_{\Delta} \ll N_{D}$
- Typically: $10 < \beta < 1000$

Electrons from

Temperature effects on I-V curves

$$i_{B} = \left(\frac{A_{E}qD_{p}n_{i}^{2}}{N_{D}L_{p}} + \frac{A_{E}qWn_{i}^{2}}{2\tau_{b}N_{A}}\right)\left(e^{(v_{BE}/V_{T})} - 1\right)$$

$$i_C = \frac{A_E q D_n n_i^2}{N_B W_B} \left(e^{(v_{BE}/V_T)} - 1 \right)$$

Thanks