Задача 4. Да се намери минималният краен детерминиран автомат, еквивалентен на автомата

Решение.

Детерминираме.

	преход с 0	преход с 1
A	$\{B,D\}$ ново	$\{D\}$ ново
$\{B,D\}$	$\{C,D,E,F\}$	$\{D\}$
$\{D\}$	$\{D,E,F\}$	$\{D\}$
$\{C, D, E, F\}$	$\{C, D, E, F, G\}$	$\{C,D\}$ ново
$\{D, E, F\}$	$\{D,E,F,G\}$	$\{D,G\}$ ново
$\{C, D, E, F, G\}$	$\{C, D, E, F, G\}$	$\{C,D,G\}$
$\{C,D\}$	$\{C,D,E,F\}$	$\{C,D\}$
$\{D, E, F, G\}$	$\{D, E, F, G\}$	$\{D,G\}$
$\{D,G\}$	$\{D, E, F\}$	$\{D\}$
$\{C,D,G\}$	$\{C, D, E, F, G\}$	$\{C,D\}$

Преименуваме.

Минимизираме.

$$P_1 = \{A, B, C, D, I\}$$

 $P_2 = \{E, F, G, H, J\}$

	преход с 0	преход с 1
\boldsymbol{A}	P_1	P_1
В	P_1	P_1
C	P_2	P_1
D	P_2	P_2
E	P_1	P_1
F	P_2	P_2
G	P_2	P_2
H	P_2	P_1
Ι	P_2	P_2
J	P_2	P_2

Разбиваме множествата $P_1=\{A,B\}\cup\{C\}\cup\{D,I\}=P_3\cup P_4\cup P_5$ и $P_2=\{E\}\cup\{F,G,J\}\cup\{H\}=P_6\cup P_7\cup P_8$. Очевидно множествата P_4 , P_6 и P_8 не могат да се разбият повече, тъй като са сингълтони.

До тук имаме:

$P_3 =$	$\{A,B\}$,
$P_4 =$	$\{C\}$,
$P_5 =$	$\{D,I\}$,
$P_6 =$	$\{E\}$,
$P_7 =$	$\{F,G,J\},$
$P_8 =$	$\{H\}$

	преход с 0	преход с 1
A	P_4	P_3
В	P_5	P_3
C	P_7	P_3
D	P_7	P_6
E	P_5	P_3
F	P_8	P_7
G	P_7	P_6
Н	P_8	P_5
I	P_8	P_7
J	P_7	P_7

Разбиваме $P_3=\{A\}\cup\{B\}=P_9\cup P_{10}$, $P_5=\{D\}\cup\{I\}=P_{11}\cup P_{12}$ и $P_7=\{F\}\cup\{G\}\cup\{J\}=P_{13}\cup P_{14}\cup P_{15}.$

До тук имаме:

$$\begin{split} P_4 &= \{C\}, \\ P_6 &= \{E\}, \\ P_8 &= \{H\}, \\ P_9 &= \{A\}, \\ P_{10} &= \{B\}, \\ P_{11} &= \{D\}, \\ P_{12} &= \{I\}, \\ P_{13} &= \{F\}, \\ P_{14} &= \{G\}, \\ P_{15} &= \{J\} \end{split}$$

	преход с 0	преход с 1
A	P_4	P_{10}
В	P_{11}	P_{10}
C	P_{13}	P_{10}
D	P_{14}	P_6
E	P_{11}	P_{10}
F	P_8	P_{15}
G	P_{14}	P_6
Н	P_8	P_{12}
I	P_8	P_{15}
J	P_{13}	P_{15}

Тъй като разбихме всяко едно множество на сингълтони, то получения детерминиран минимален автомат ще е изоморфен на автомата преди минимизацията (тоест не е обходима минимизация). Следователно след детерминизацията сме получили минималния автомат и може да спрем до тук. Последният автомат е търсеният с точност до преименуване (изоморфен на детерминирания).

Окончателно:

