Machine Learning Performance - Naive Bayes

Edgar Francisco Roman-Rangel edgar.roman@itam.mx

Digital Systems Department. Instituto Tecnológico Autónomo de México, ITAM.

Diplomado - UAEM

May 1st, 2021.

Outline

•0000

Performance metrics

Confusion matrix

	Actual Value (as confirmed by experiment)				
		positives	negatives		
Predicted Value (predicted by the test)	positives	TP True Positive	FP False Positive		
	negatives	FN False Negative	TN True Negative		

Other metrics, I

Accuracy:

$$a = \frac{TP + TN}{TP + FP + FN + TN}.$$

Precision:

$$p = \frac{TP}{TP + FP}.$$

Sensitivity (recall):

$$r = \frac{TP}{TP + FN}.$$

Specificity (selectivity):

$$s = \frac{TN}{TN + FP}.$$

Other metrics, II

False negative rate (FNR):

$$FNR = \frac{FN}{TP + FN}.$$

False positive rate (FPR):

$$FPR = \frac{FP}{FP + TN}.$$

F1 score:

$$F1 = \frac{2TP}{2TP + FP + FN}.$$

Confusion matrix

Outline

Performance metrics

Naive Bayes Classifier

Bayes Theorem

$$\underbrace{p(A,B)}_{\widehat{\mathbf{j}}^{\text{oin}}} = p(A)p(B|A).$$

$$p(A)p(B|A) = p(B)p(A|B),$$

$$p(B|A) = \frac{p(B)p(A|B)}{p(A)}$$
conditional $p(B|A) = \frac{p(B)p(A|B)}{p(A)}$

Bayes estimator

Classification method based on the Bayes Theorem:

$$p(y|\mathbf{x}) = \frac{p(\mathbf{x}|y)p(y)}{p(\mathbf{x})},$$

- $p(y|\mathbf{x})$: **posterior** (what we are looking for). Probability of class y, given input \mathbf{x} .
 - ▶ $p(\mathbf{x}|y)$: **prior** (observation from data). Probability of observing input \mathbf{x} when data point is of class y.
 - ▶ p(y): **likelihood**. Votosimi Litu I Probability of class y in our data set.
 - p(x): evidence.
 Probability of input pattern x in our data set.

Naive Bayes Classifier

practice.

ightharpoonup Assume independence among features (elements of vector \mathbf{x}).

$$p(\mathbf{x}) = p(x_1)p(x_2)\dots p(x_N).$$
 This is rare in real world scenarios. However, it does work in the production of the

Evidence p(x) is the same for a fixed data set.

Therefore, the naive version becomes:

$$p(y|\mathbf{x}) \propto p(\mathbf{x}|y)p(y),$$

 $\propto \prod_{n=1}^{N} p(x_n|y)p(y).$

Univariate example

Probability of 'dog' (d) if there are '4 legs'.

$$p(\underline{y} = \mathsf{d}|\mathsf{4}) = \frac{p(\mathsf{4}|\mathsf{d})p(\mathsf{d})}{p(\mathsf{4})},$$

suppose from our data we count:

- p(4|d) = 4/5.
- p(d) = 2/3. p(4) = 1/10.

$$p(y = d|4) = \frac{4/5 \cdot 2/3}{1/10} = \frac{8/15}{1/10} = 5.3$$

Let's say it is a dog if all other p(y|4) are less than 5.3.

Multivariate example

I love biking. Should I go biking today?

i love biking. Should I go biking today

Let us use:

$$\mathbf{x} = [x_1 = \mathsf{sky}, x_2 = \mathsf{temperature}, x_3 = \mathsf{wind}]$$

$$\rightarrow$$
 $y = \{0, 1\}$ (biking or not biking).

].	b(=01/0)=/2 b(m119/0)=3/2	+ (mild 1) = 3/9 + (mild 1) = 3/9
.1.	win 2 f(T(0) = 3/5 f(F(0) = 3/5	$f(T I) = \frac{3}{9}$ $f(F I) = \frac{6}{9}$

temp = (hell)= 3/9

n	sky	temp	wind	biking
1	sunny	hot	FALSE	0
2	sunny	hot	TRUE	0
3	cloudy	hot	FALSE	1
4	rainy	mild	FALSE	1
5	rainy	cool	FALSE	1
6	rainy	cool	TRUE	0
7	cloudy	cool	TRUE	1
8	skyunru	mild	FALSE	0
9	skynny	cool	FALSE	1
10	rainy	mild	FALSE	1
11	SKYKNY	mild	TRUE	1
12	cloudy	mild	TRUE	1
13	cloudy	hot	FALSE	1
14	rainy	mild	TRUE	0

$$P(1|X) = P(20|X|1) \cdot P(20|X|1) \cdot P(1) \cdot P(1)$$

$$= \frac{1}{4} \cdot \frac{3}{7} \cdot \frac{3}{4} \cdot \frac{9}{17} = 0.0159$$

$$= \frac{3}{5} \cdot \frac{1}{5} \cdot \frac{3}{5} \cdot \frac{7}{17} = 0.0159$$

$$= 0.0257 \cdot 0.0159$$

$$\Rightarrow 0.0257 \cdot 0.0159$$

$$\Rightarrow 0.0159 \cdot P(1|X)$$

$$\Rightarrow 0.0159 \cdot P(1|X)$$

Notes on Naive Bayes Classifier

- This method exploits probabilities.
- Easy and fast.
- Performs better than other methods (assuming independence).
- ► Zero frequencies might be problematic.

Used for:

- Credit analysis.
- Spam detector.
- Medical analysis.
- Recommendation systems.

Q&A

Thank you!

edgar.roman@itam.mx