執行畫面

白天漸層

太陽較小

夕陽

Specular 故意開很大

夕陽另一面

避雷針警示燈與探照燈

珍貴畫面(開飛機很難),同時表現了兩種光、材質、光衰弱

使用者手冊

使用按鍵

按鍵作用 (不分大小寫)

		定義
ир	聚光	提高 intensity、exponent
down	散光	降低 intensity、exponent
left	擴大照射範圍	增加 cutoff
right	縮小照射範圍	減少 cutoff
L	切換避雷針	切換為 白光恆亮/紅光閃爍
	發光模式	
Τ	切換時變模式	切換為每秒過 1 小時/10 分鐘
Double- L-Ctrl	關閉引擎	使不按 ctrl 或 space 時升力趨於 0
Double- Space	啟動引擎	使不按 ctrl 或 space 時升力趨於與重力平衡
w	前進(加速)	自動拉動傾斜主旋翼,使機身趨於
		往前傾斜相對天頂 25/40/70 度
s	後退(減速)	自動拉動傾斜主旋翼,使機身趨於
		往後傾斜相對天頂 25/40/40 度
а	左飛、左轉	自動拉動傾斜主旋翼,使機身趨於
		往左傾斜相對天頂 25/40/40 度
d	右飛、右轉	自動拉動傾斜主旋翼,使機身趨於
		往右傾斜相對天頂 25/40/40 度
$w \cdot s + a \cdot d$	以上傾斜組合	自動拉動傾斜主旋翼,使機身趨於
	共八方位	往專設方向傾斜至相對天頂專設度數
q `z	左旋、左轉	加強尾旋翼推力
e · c	右旋、右轉	減弱尾旋翼推力
L-Ctrl	垂降	減弱主旋翼推力
Space	爬升	加強主旋翼推力

L-Shift	全速模式	使傾斜角上限提升至第二段
Double- W	俯衝模式	使傾斜角上限提升至第三段
w·a·s·d	水平回正	自動拉動傾斜主旋翼,使機身趨於水平
都不按	巡航模式	當傾斜小於 25 度則切回第一段(巡航模式)
L-Ctrl · space	高度平衡	在引擎啟動時隨時調整主旋翼推力
都不按		使垂直分立與重力趨向抵銷
V	切換視角	切換為第 一/二/三 人稱視角
f`	鎖定視角	切換 鎖定/自由 視角
滑鼠中鍵		鎖定直升機為視角中央/自行控制視角中央
ир	視點上升	在第三人稱視角使鏡頭位置上升
down	視點下降	在第三人稱視角使鏡頭位置下降
left	視點左移	在第三人稱視角使鏡頭位置左移
right	視點右移	在第三人稱視角使鏡頭位置右移
R-Ctrl	縮小視角倍率	在第二人稱視角使視野拉廣
R-Ctrl	視點前進	在第一三人稱視角使鏡頭位置前進
R-Shift	放大視角倍率	在第二人稱視角使視野縮窄
R-Shift	視點後退	在第一三人稱視角使鏡頭位置後退
滑鼠游標	移動視線	在自由視角控制視線經緯度方向
滾輪上滑	視點前進	在第二人稱視角使鏡頭位置前進
滾輪上滑	放大視角倍率	在第一三人稱視角使視野縮窄
滾輪下滑	視點後退	在第二人稱視角使鏡頭位置後退
滾輪下滑	縮小視角倍率	在第一三人稱視角使視野拉廣
滑鼠右鍵	自由視角	在鎖定視角按住時切為自由視角

你不會發現到方向鍵重複了

特別實作與演算法

光照系統

大氣:以直升機地面位置為中心,半徑 10 公里的天球,用 CULL_FRONT。 diffuse 為灰色, ambient 為偏藍色(介質色偏),使白天漸層至藍,夜晚呈暗藍

太陽: 距離直升機地面位置 9.9 公里的球體, 達到無限遠方向固定的效果, 額色與大氣同步,因大氣光折射,仰角越低會越大顆

陽光:平行光,方向與太陽相同,照射天球使天球產生漸層。設計紅光受仰角減弱最少,綠光較多,藍光最多,來調出適當的大氣顏色變化。在太陽被地面切到時(仰角正負 0.5 度間),會急速將陽光降至 30%後再慢慢降至 0%,達到漸層關燈效果

探照燈自照

我的程式流程為了運算物理向量,本來就先計算好直升機的位置方向後, 才轉換為三次旋轉矩陣來畫直升機。自然能在畫一切物體前,擁有正確的探照 燈方向來先定出光源,照射自己並不會是上一幀的光源

核心迴圈流程: 取得輸入與時間差->時變運算->定光源->繪製不透明物體->透明物體

心得

我之前那些版本算是自己寫的 shading 吧,詳見之前的演算法,只差別在只能有一個白光源、材質只有 diffuse 和 ambient、無法處理曲面法向量(誰會)。當初只是為了不想一個個面上色而猜出來的設計,意外命中了不少呢(算法幾乎相同,也有想到 specular,當然那時後都不知道叫什麼,知道沒辦法自己算)

畫大氣時我覺得應該用定點陽光,從天球裡面照射(就是在太陽的位置),並開啟光衰弱能使太陽周圍天空較亮,又可解決 diffuse 兩半球斷層、夕陽時背半球沒漸層且不夠藍的問題,效果比較正確,畫完天球再將陽光切回平行不衰弱光接著畫其他物體就好。但是期末較忙沒時間改了可惜