Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Компьютерных сетей и систем

Кафедра Информатики

ИНТЕЛЛЕКТУАЛЬНЫЕ ИНТЕРНЕТ-ТЕХНОЛОГИИ

ЛАБОРАТОРНАЯ РАБОТА №1 «Изучение модели гипертекста»

БГУИР 1-40 81 04

Магистрант: гр. 858641 Кукареко А.В. Проверил: Захаров В. В.

ХОД РАБОТЫ

Задание.

В рамках работы необходимо описать язык разметки (10-15 тегов) и реализовать средство просмотра данной разметки в виде форматированного текста. Не допускается использование тегов других распространенных языков разметки, таких как HTML, XML-подобных языков разметки mediawiki, разметки, используемой на форумах. Затем на базе построенной модели реализовать один из теоретико-графовых алгоритмов согласно варианту.

Дополнительное задание:

Вариант 3: Реализация должна позволять рассчитать кратчайшие пути между всеми парами страниц.

Результат выполнения:

В ходе выполнения работы мной был разработан новый язык гипертекстовой разметки «akml». Он состоит из 10 тегов. Их можно увидеть в таблице 1.

Таблица 1 – сравнение тегов «akml» и HTML

$\mathcal{N}_{\underline{o}}$	Akml тег	HTML тег
1	#head	<h1></h1>
2	#block	<div></div>
3	#paragraph	
4	#list	
5	#item	< i><
6	#link	<a>>
7	#picture	
8	#newline	 br>
9	#bold	>
10	#italic	<i>>i></i>
11	#underscore	<u> <<s> </s> </s></s></s></s></s></s></s></s></s></s></s></s></s></u>
12	#strike	< _S >

Для работы с новой разметок, был написан парсер. Парсер перебирает все теги и строит «дерево». С деревом очень удобно работать как в целях конвертирования в другой формат, так и для построения графа.

На рисунке 1 можно увидеть язык «akml» в действии.

```
#block
   #block
       #head First block head#
       #paragraph Some text in paragraph #bold bold-text bold# and #italic italic-text italic# paragraph#
       one line #newline new line #newline
       #link TuT website link | https://tut.by link#
   hlock#
   #block
       #head Second block head#
       #list
           #item List item first item#
           #item List item #underscore underscored underscore# item#
           #item List item #strike striked strike# item#
           #item picture of bird #picture https://img.icons8.com/carbon-copy/2x/bird.png picture# item#
       list#
   block#
block#
```

Рисунок 1 – пример документа написанного на языке «akml».

Для отображения разметки «akml» мной был написан конвертер из формата «akml» в формат HTML. На рисунке 2 можно увидеть отображение файла из рисунка 1.

First block

Some text in paragraph bold-text and italic-text

one line new line TuT website link

Second block

- List item first
- List item underscored
- List item striked

· picture of bird

Рисунок 2 – отображение документа «akml».

Для реализации расчета кратчайшего пусти между всеми парами страниц был использован алгоритм «Флойда-Уоршела». Для реализации поиска кратчайшего пути, все документы были преобразованы в граф. В качестве вершин графа выступают «документы». В качестве ребер – ссылки на документы.

Для выполнения этого задания было подготовлено несколько документов в формате «akml», которые внутри имею ссылки друг на друга.

Список документов:

- charlie_hunnam.akml краткая биография актера;
- guy_ritchie.akml краткая биография режиссера;
- king_Arthur_legend_of_the_sword.akml краткое описание фильма;
- the gentlemen.akml краткое описание фильма.

Документы — это страницы из википедии, переформатированные в формат «akml».

Реализация алгоритма позволяет найти не просто число, которое показывает за сколько шагов мы можем перейти с одной страницы на другую, но также сами пути между страницами. Пример можно увидеть на рисунке 3.

```
Path from the_gentlemen.akml to guy_ritchie.akml = ['the_gentlemen.akml', 'guy_ritchie.akml']

Path from the_gentlemen.akml to charlie_hunnam.akml = ['the_gentlemen.akml', 'charlie_hunnam.akml']

Path from the_gentlemen.akml to king_Arthur_legend_of_the_sword.akml = ['the_gentlemen.akml', 'guy_ritchie.akml', 'king_Arthur_legend_of_the_sword.akml']

Path from guy_ritchie.akml to the_gentlemen.akml = ['guy_ritchie.akml', 'the_gentlemen.akml', 'charlie_hunnam.akml']

Path from guy_ritchie.akml to charlie_hunnam.akml = ['guy_ritchie.akml', 'the_gentlemen.akml', 'king_Arthur_legend_of_the_sword.akml']

Path from guy_ritchie.akml to king_Arthur_legend_of_the_sword.akml' | 'guy_ritchie.akml', 'king_Arthur_legend_of_the_sword.akml', 'the_gentlemen.akml']

Path from king_Arthur_legend_of_the_sword.akml to guy_ritchie.akml = ['king_Arthur_legend_of_the_sword.akml', 'guy_ritchie.akml']

Path from king_Arthur_legend_of_the_sword.akml to guy_ritchie.akml = ['king_Arthur_legend_of_the_sword.akml', 'charlie_hunnam.akml']

Path from king_Arthur_legend_of_the_sword.akml to charlie_hunnam.akml = ['king_Arthur_legend_of_the_sword.akml', 'charlie_hunnam.akml']
```

Рисунок 3 – результат поиска кратчайшие пути между всеми парами страниц.

Вывод.

В ходе выполнения лабораторной, я изучил модели гипертекста, реализовал своя модель с количеством тегов равным 12. Также реализовал парсер, который позволяет построить дерево на основе составленной модели разметки. Чтобы иметь возможность посмотреть текст в форматированном виде, мной было реализовано средство просмотра данной разметки, которое интерпретирует данную разметку в разметку HTML. Для нахождения кратчайших путей между всеми парами страниц, я реализовал алгоритм Флойда-Уоршела.