BSFI CASE STUDY

Author Shreyas Patil

Problem Statement

 Home Credit in deciding which loan applications should be disbursed, and which should be rejected, based on the applicant's past behaviour and application information.

Tech Stack

- Python
- Excel
- SQL

 The pie chart illustrates a clear imbalance in the distribution of the dependent variable TARGET: The critical class 1 appears significantly less frequently than class 0.

1. Influential Predictors:

- External information sources (EXT_SOURCE_1, EXT_SOURCE_2, EXT_SOURCE_3) and key financial variables are identified as primary influencers.
- Borrower age emerges as a significant factor shaping the predictive strength of the model.

2. Model Performance:

- Our CatBoost model is evaluated against the validation set using the AUC metric.
- The model's ability to differentiate between approved and rejected applicants is effectively measured, providing insights into its overall performance.

- Higher education (NAME_EDUCATION_TYPE) and advanced occupational (OCCUPATION_TYPE) correlate with lower default rates, whereas lesser education and basic occupations are linked to higher defaults.
- Male applicants (CODE_GENDER) show a higher tendency to default than females.
- Loan type matters; cash loans exhibit a higher default risk than revolving loans (NAME_CONTRACT_TYPE).
- Family status (NAME_FAMILY_STATUS) shows no significant variation in default rates.
- Rare categories like XNA in CODE_GENDER and UNKNOWN in NAME_FAMILY_STATUS may be omitted from models to streamline the feature set.

- EXT_SOURCE features, which likely represent external credit scores, show a noticeable negative correlation with default risk. Higher values of EXT_SOURCE_1, EXT_SOURCE_2, and EXT_SOURCE_3 are associated with lower probabilities of defaulting.
- DAYS_BIRTH, representing the age of the applicant in days, exhibits that younger applicants are more prone to defaulting. There is a trend suggesting that the risk of default decreases with age.
- AMT_GOODS_PRICE, indicating the value of the goods for which the loan is taken, suggests that lower-priced goods correlate with a higher likelihood of default.
- Similarly, AMT_CREDIT, the total credit amount borrowed, is observed to have a relationship with default rates, with smaller loans having a tendency towards higher default frequencies.

• The new features have noticeably improved the performance of our latest CatBoost model. Feature engineering can be the key to improving model performance. In a sense, our most important variables ext_source_* are also the result of (external) feature engineering.

- As previously observed in the CatBoost internal feature importance plot in Section 1, SHAP also identifies key features such as EXT_SOURCE_1, EXT_SOURCE_2, EXT_SOURCE_3, and DAYS_BIRTH as crucial determinants for the predictions of our CatBoost model. This underscores their significance in the classification task we are examining.
- SHAP Feature Importance Plot:
 - o Provides a global overview of feature impact on model predictions.
 - Ranks features by mean absolute SHAP scores, indicating their general influence across all predictions.
- SHAP Summary Plot:
 - Offers a detailed perspective on feature impact distribution across all dataset instances.
 - Unmasks relationships between feature values and their impact on model predictions, emphasizing variations from one instance to another.

Test Data Performance:

 Surprisingly, all models exhibit improved performance on the test data, potentially attributed to differences in samples and TARGET distribution, as discussed in Subsection 1.3.

Model Evaluation and Comparison:

- XGB_tuned demonstrates the best prediction quality, with faster hyperparameter tuning compared to LGB tuned.
- Top-performing models, including CB5_subsample (untuned), LGB_tuned, and XGB_tuned, benefit from effective feature engineering, outperforming the base model CB1_guick.

Cumulative Lift Chart Analysis:

- The cumulative lift chart illustrates the model's ability to enhance the "hit rate" and influence credit defaults.
- Notably, focusing on the 6% of applications with the highest default probability, with a lift score of 4.2, could impact 25% of all credit defaults.

Model Comparison for Top Decile:

- No clear winner emerges among gradient tree boosting models in the top decile, indicating similar lift scores.
- The baseline model CB1_quick is considered for defining the top risk area, and the focus shifts to creating a list of the riskiest loan applications, comparing predicted and true values using test data.