

# OKAN ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ

03.01.2013

MAT 371 – Diferansiyel Denklemler – Final Sınavı

N. Course

| Adi: ÖRNEKTİR       | Süre: <b>120</b> dk.                |  |
|---------------------|-------------------------------------|--|
| SOYADI: S A M P L E | 5410. <b>120</b> 41.                |  |
| ÖĞRENCİ NO:         | Bu sorulardan 4<br>tanesini seçerek |  |
| İMZA:               | cevaplayınız.                       |  |

## Do not open the exam until you are told that you may begin. Sınavın başladığı yüksek sesle söylenene kadar sayfayı çevirmeyin.

- 1. You will have 120 minutes to answer 4 questions from a choice of 5. If you choose to answer more than 4 questions, then only your best 4 answers will be counted.
- The points awarded for each part, of each question, are stated next to it.
- All of the questions are in English. You may answer in English or in Turkish.
- You must show your working for all questions.
- Write your student number on every page
- This exam contains 12 pages. Check to see if any pages are missing.
- 7. If you wish to leave before the end of the exam, give your exam script to an invigilator and leave the room quietly. You may not leave in the first 20 minutes, or in the final 10 minutes, of the exam.
- 8. Calculators, mobile phones and any digital means of communication are forbidden. The sharing of pens, erasers or any other item between students is forbid-
- All bags, coats, books, notes, etc. must be placed away from your desks and away from the seats next to you. You may not access these during the exam. Take out everything that you will need before the exam starts.
- 10. Any student found cheating or attempting to cheat will receive a mark of zero (0), and will be investigated according to the regulations of Yükseköğretim Kurumları Öğrenci Disiplin Yönetmeliği.

- 1. Sınav süresi toplam 120 dakikadır. Sınavda 5 soru sorulmuştur. Bu sorulardan 4 tanesini seçerek cevap-4'den fazla soruyu cevaplarsanız, en yüksek puanı aldığınız 4 sorunun cevapları geçerli olacaktır.
- Soruların her bölümünün kaç puan olduğu yanlarında
- Tüm sorular İngilizce'dir. Cevaplarınızı İngilizce yada Türkce verebilirsiniz.
- Sonuca ulaşmak için yaptığınız işlemleri ayrıntılarıyla
- Öğrenci numaranızı her savfava vazınız.
- 6. Sınav 12 sayfadan oluşmaktadır. Lütfen eksik sayfa olup olmadığını kontrol edin.
- 7. Sınav süresi sona ermeden sınavınızı teslim edip çıkmak isterseniz, sınav kağıdınızı gözetmenlerden birine veriniz ve sınav salonundan sessizce çıkınız. Sınavın ilk 20 dakikası ve son 10 dakikası içinde sınav salonundan çıkmanız yasaktır.
- Sınav esnasında hesap makinesi, cep telefonu ve dijital bilgi alışverişi yapılan her türlü malzemelerin kullanımı ile diğer silgi, kalem, vb. alışverişlerin yapılması kesinlikle yasaktır.
- 9. Çanta, palto, kitap ve ders notlarınız gibi eşyalarınız yanınızdaki sandalyeden üzerinden ve kaldırılmalıdır. Sınav süresince bu tür eşyaları kullanmanız yasaktır, bu nedenle ihtiyacınız olacak herşeyi sınav başlamadan yanınıza alınız.
- 10. Her türlü sınav, ve diğer çalışmada, kopya çeken veya kopya çekme girişiminde bulunan bir öğrenci, o sınav ya da çalışmadan sıfır (0) not almış sayılır, ve o öğrenci hakkında Yükseköğretim Kurumları Öğrenci Disiplin Yönetmeliği hükümleri uyarınca disiplin kovuşturması yapılır.

| 1 | 2 | 3 | 4 | 5 | TOPLAM |
|---|---|---|---|---|--------|
|   |   |   |   |   |        |
|   |   |   |   |   |        |

#### Formula Page

$$\cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$$

$$\cos^2 \theta + \sin^2 \theta = 1$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\sin(A + B) = \sin A \cos B + \cos A \sin B$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$\sin 2\theta = 2\sin \theta \cos \theta$$

$$\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)$$

$$\sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta)$$

$$c^2 = a^2 + b^2 - 2ab \cos \theta$$

$$\cos 0 = \cos 0^{\circ} = 1$$

$$\sin 0 = \sin 0^{\circ} = 0$$

$$\cos \frac{\pi}{4} = \cos 45^{\circ} = \frac{1}{\sqrt{2}}$$

$$\sin \frac{\pi}{4} = \sin 45^{\circ} = \frac{1}{\sqrt{2}}$$

$$\cos \frac{\pi}{3} = \cos 60^{\circ} = \frac{1}{2}$$

$$\sin \frac{\pi}{3} = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$$

$$\cos \frac{\pi}{2} = \cos 90^{\circ} = 0$$

$$\sin \frac{\pi}{2} = \sin 90^{\circ} = 1$$

$$(uv)' = uv' + u'v$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(f \circ g)'(x) = f'(g(x))g'(x)$$

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

$$\int u \ dv = uv - \int v \ du$$

$$\frac{d}{dt}f(x(t), y(t)) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

$$\frac{d}{dx}x^n = nx^{n-1}$$

$$\frac{d}{dx}\sin x = \cos x$$

$$\frac{d}{dx}\cos x = -\sin x$$

$$\tan x = \frac{\sin x}{\cos x} \qquad \frac{d}{dx} \tan x = \sec^2 x$$
$$\int \tan x \, dx = \log|\sec x| + C$$

$$\cot x = \frac{\cos x}{\sin x}$$

$$\frac{d}{dx} \cot x = -\csc^2 x$$

$$\int \cot x \ dx = \log|\sin x| + C$$

$$\csc x = \frac{1}{\sin x} \qquad \frac{d}{dx} \csc x = - \csc x \cot x$$
 
$$\int \csc x \ dx = - \log|\csc x + \cot x| + C$$

$$\frac{d}{dx}\sin^{-1}\frac{x}{a} = \frac{1}{\sqrt{a^2 - x^2}}$$

$$\frac{d}{dx}\tan^{-1}\frac{x}{a} = \frac{a}{a^2 + x^2}$$

$$\frac{d}{dx}\sec^{-1}\frac{x}{a} = \frac{a}{|x|\sqrt{x^2 - a^2}}$$

$$\sinh x = \frac{e^x - e^{-x}}{2} \quad \frac{d}{dx} \sinh x = \cosh x$$

$$\cosh x = \frac{e^x + e^{-x}}{2} \quad \frac{d}{dx} \cosh x = \sinh x$$

$$\frac{d}{dx}e^x = e^x$$

$$\frac{d}{dx}\log|x| = \frac{1}{x}$$



#### Soru 1 (Green Dye in a Swimming Pool).

#### English

Your swimming pool contains 150,000 litres of water. It has been contaminated by 5 kg of a dye that leaves a swimmer's skin an unattractive green.

The swimming pool's filtering system can take water from the pool, remove the dye, and return the water to the pool at a rate of 500 litres/minute.

You have invited your friends to a pool party that is scheduled to begin 4 hours later. If the concentration of the dye is less than 0.005 grams/litre, then the swimming pool is safe to swim in.

[25p] Is your swimming pool's filtering system capable of reducing the dye concentration to this level within 4 hours? (Justify your an-

### $T\ddot{u}rkce$

Yüzme havuzunuz 150.000 litre su almaktadır. Havuza, 5 kg boya karışmış ve havuza girenlerin cildini itici bir yeşile boyamaktadır.

Yüzme havuzunun filtre sistemi litre/dakika hızla havuzdan suyu alıp boyadan temizleyerek suyu havuza geri vermektedir.

Arkadaşlarınızı havuz partisine etmiştiniz ve parti 4 saat sonra başlayacak. Eğer boyanın yoğunluğu 0,005 gram/litre'den azsa havuz suyu, içinde yüzmeye elverişli demektir.

Havuzunuzun filtre sistemi, boya [25p]yoğunluğunu 4 saat içinde bu seviyeye indirebilir mi? (Çözümünüzü ispatlayın.)



| $\approx$ |
|-----------|
| 20        |
| 22        |
| 25        |
| 27        |
| 30        |
| 33        |
| 36        |
| 40        |
| 45        |
| 50        |
| 55        |
| 61        |
| 67        |
| 74        |
| 82        |
| 90        |
| 1         |
| 11        |
| 22        |
| 35        |
| 49        |
| 65        |
| 82        |
| 01        |
| 23        |
| 46        |
| 72        |
| 00        |
| 32        |
| 67        |
| 06        |
| 48        |
| 95        |
|           |

**Soru 2** (Fundamental Sets of Solutions and the Wronskian). Suppose that  $p:\mathbb{R}\to\mathbb{R}$  and  $q:\mathbb{R}\to\mathbb{R}$  are continuous functions. Let

$$L[y] = y'' + p(t)y' + q(t)y.$$

(a) [8p] Suppose that  $y_1(t)$  and  $y_2(t)$  are both solutions of L[y]=0. Let  $c_1,c_2\in\mathbb{R}$ . Show that

$$y(t) := c_1 y_1(t) + c_2 y_2(t)$$

is also a solution of L[y] = 0.

(b) [8p] Now suppose that  $y_1(t) = e^{r_1 t}$  and  $y_2(t) = e^{r_2 t}$  are both solutions of L[y] = 0. Show that  $y_1$  and  $y_2$  form a fundamental set of solutions of L[y] = 0

[HINT: Start by calculating the Wronskian of  $y_1$  and  $y_2$ .]

Now let  $v_1(x) = x$  and  $v_2(x) = xe^x$ .

(c) [4p] Show that  $v_1$  and  $v_2$  are both solutions of

$$x^{2}v'' - x(x+2)v' + (x+2)v = 0$$
(1)

for t > 0.

(d) [1p] Do  $v_1$  and  $v_2$  form a fundamental set of solutions of (1)?

Yes, No.

(e) [4p] Justify (explain) your answer to part (d).

**Soru 3** (Second Order Linear Differential Equations). Find the general solution  $y: \mathbb{R} \to \mathbb{R}$  of

$$y'' - 2y' + y = t^2 - 2t + 1 + e^{2t}\cos t \tag{2}$$

You will be given points for the following:

- [8p] Finding the general solution of the homogeneous equation y'' 2y' + y = 0. [7p] Finding a particular solution to  $y'' 2y' + y = t^2 2t + 1$ . [7p] Finding a particular solution to  $y'' 2y' + y = e^{2t} \cos t$ . [3p] Giving the general solution of (2).

$$y'' - 2y' + y = t^2 - 2t + 1 + e^{2t}\cos t \tag{2}$$

Therefore, the general solution of (2) is

$$y(t) =$$

Soru 4 (Reduction of Order). Consider

$$x^{2}\frac{d^{2}y}{dx^{2}} + 2x\frac{dy}{dx} - 2y = 0, \qquad x > 0.$$
 (3)

(a) [2p] Show that  $y_1(x) = x$  is a solution of (3).

(b) [17p] Using the method of reduction of order, find a second solution  $y_2(x)$  of (3). [HINT: Start with  $y_2(x) = v(x)y_1(x)$ .]

(c) [2p] Check that the function  $y_2(x)$ , that you found in part (b), is a solution of (3).

(d) [4p] Solve

$$\begin{cases} x^2y'' + 2xy' - 2y = 0, & x > 0 \\ y(1) = 7 \\ y'(1) = -2. \end{cases}$$

Soru 5 (Systems of Equations).

(a) [13p] Solve

$$\mathbf{x}' = \begin{pmatrix} 1 & -5 \\ 1 & -3 \end{pmatrix} \mathbf{x}, \qquad \mathbf{x}(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$



Let  $A = \begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix}$ . The eigenvalues of A are  $r_1 = 4$  and  $r_2 = 2$ . The corresponding eigenvectors of A are  $\xi^{(1)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$  and  $\xi^{(2)} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$  respectively.

- (b) [2p] Which of the graphs (above) is the phase plot of the equation  $\mathbf{x}' = A\mathbf{x}$ ? [Mark  $\overline{\mathbf{A}}$  one box only.]
  - ] (i)
- (ii)
- (iii)
- (iv)
- (vi)

(c) [10p] Justify (explain) your answer to part (c).