

Kiểm tra 15 phút

- Dự đoán các bit nhớ của phép cộng 2 số sau bằng cách tính toán các giá trị g_i và p_i
 - $\square 101011 + 011001$
- Thiết kế mạch dựa trên bảng chân trị sau

E	I_1	$\mathbf{I_0}$	O_3	O_2	O_1	O_0
0	X	X	1	1	1	1
1	0	0	1	1	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	1	1

NHẬP MÔN MẠCH SỐ

CHƯƠNG 5: MẠCH TỔ HỢP – CÁC MẠCH KHÁC

Nội dung

- Mạch giải mã (Decoder)/ Mạch mã hoá (Encoder)
- Mạch dồn kênh (Multiplexer) Mạch chia kênh (Demultiplexer)
- Thiết kế mạch logic sử dụng Mux
- Mạch tạo Parity/ Mạch kiểm tra Parity
- Mạch so sánh (Comparator)

COMPUTER ENGINEERING

Mạch giải mã (Decoder)

- Nhiều ngõ vào/ nhiều ngõ ra
- Ngõ vào (n) thông thường <u>ít hơn</u> ngõ ra (m)
- Chuyển mã ngõ vào thành mã ngõ ra
- Ánh xạ 1-1:
 - ☐ Mỗi mã ngõ vào chỉ tạo ra một mã ngõ ra
- Các mã ngô vào:
 - ■Mã nhị phân
 - ☐ Your Code!
- Các mã ngô ra:
 - □ 1-trong-m
 - ☐ Gray Code
 - ☐ BCD Code

Mạch giải mã nhị phân (Binary Decoders)

- Mạch giải mã **n-ra-2**ⁿ: n ngõ vào và 2ⁿ ngõ ra
 - ☐ Mã đầu vào: n bit nhị phân
 - ■Mã đầu ra: 1-trong-2ⁿ
- Ví dụ: n=2, mạch giải mã 2-ra-4

lı	nputs	1		Out	puts	
EN	11	10	YЗ	Y2	Y1	Υo
0	Х	х	0	0	0	O
1	O	O	O	O	O	1
1	O	1	O	O	1	O
1	1	O	0	1	O	O
1	1	1	1	O	O	O

Chú ý "x" (kí hiệu ngỗ vào don't care)

Chip 74x139: Giải mã nhị phân 2-to-4

Chip 74x139: Giải mã nhị phân 2-to-4

Chip 74x138: Giải mã nhị phân 3-to-8

		Inputs							Out	puts			
G1	G2A_L	G2B_L	С	В	Α	Y7_L	Y6_L	Y5_L	Y4_L	Y3_L	Y2_L	Y1_L	Y0_L
0	х	х	X	х	x	1	1	1	1	1	1	1	1
X	1	x	X	X	X	1	1	1	1	1	1	1	1
X	x	1	X	X	X	1	1	1	1	1	1	1	1
1	0	0	0	0	0	1	1	1	1	1	1	1	0
1	0	0	0	0	1	1	1	1	1	1	1	0	1
1	0	0	0	1	0	1	1	1	1	1	0	1	1
1	0	0	0	1	1	1	1	1	1	0	1	1	1
1	0	0	1	0	0	1	1	1	0	1	1	1	1
1	0	0	1	0	1	1	1	0	1	1	1	1	1
1	0	0	1	1	0	1	0	1	1	1	1	1	1
1	0	0	1	1	1	0	1	1	1	1	1	1	1

Bảng sự thật

Chip 74x138: Giải mã nhị phân 3-to-8

Ghép mạch giải mã

Kiểm tra 20 phút

1. Sử dụng 2 cổng Decoder 2-to-4 và một số cổng logic cơ bản để thực hiện mạch Decoder 3-to-8.

Ι	1		10		Se 1	Out		I1		10		Se 1	Out	
0)	0	0	0	0	0	0	1	0	0	0	0		
0)	0	0	0	1	0	0	1	0	0	0	1		
0)	0	0	1	0	0	1	1	0	0	1	0		
0)	0	0	1	1	0	0	1	0	0	1	1		
0)	0	1	0	0	1	0	1	0	1	0	0		
0)	0	1	0	1	0	0	1	0	1	0	1		
0)	0	1	1	0	1	1	1	0	1	1	0		
0)	0	1	1	1	0	0	1	0	1	1	1		
0)	1	0	0	0	0	0	1	1	0	0	0		
0)	1	0	0	1	0	1	1	1	0	0	1		Ш
0)	1	0	1	0	0	1	1	1	0	1	0		A I
0)	1	0	1	1	0	1	1	1	0	1	1		
0)	1	1	0	0	1	0	1	1	1	0	0		
0)	1	1	0	1	0	1	1	1	1	0	1		
0)	1	1	1	0	1	1	1	1	1	1	0		
$\begin{vmatrix} 2 \\ 0 \end{vmatrix}$)	1	1	1	1	0	1	1	1	1	1	1		ved.

2. Hoàn thiện bảng bên trái

Úng dụng của mạch giải mã

Một ứng dụng phổ biến là giải mã địa chỉ cho các chip nhớ

LED 7 đoạn (7-segment display)

- LED 7 đoạn là cách phổ biến để hiển thị số thập phân hoặc số thập lục phân
 - ☐ Sử dụng LED cho mỗi đoạn
 - Bằng cách điều khiển dòng điện qua mỗi LED, một số đoạn sẽ sáng và một số tắt, từ đó tạo nên số mong muốn

Giải mã BCD ra LED 7 đoạn

Chuyển số BCD sang thông tin thích hợp để hiển thị trên

Mạch mã hoá (Encoder)

- Nhiều ngõ vào/ nhiều ngõ ra
- Chức năng ngược lại với mạch giải mã
- Outputs (m) it hon inputs (n)
- Chuyển mã ngõ vào thành mã ngõ ra

Mạch giải mã Vs Mạch mã hóa

Mạch giải mã nhị phân

Mạch mã hóa nhị phân

■ n-ra-2ⁿ

 2^n -ra-n

■ Input code: Mã nhị phân

■ Input code: 1-trong-2ⁿ

■ Output code:1-trong-2ⁿ

Output code: Mã nhị phân

Mạch mã hoá nhị phân (Binary Encoder)

- **2**ⁿ-ra-n encoder: 2ⁿ ngõ vào và n ngõ ra
 - □Input code: 1-trong-2ⁿ
 - Output code: Mã nhị phân
- Úng dụng:
 - ☐ Mạch mã hóa tín hiệu
 - ☐ Mạch mã hóa ưu tiên

COMPUTER ENGINEERING

Mạch mã hoá tín hiệu nhị phân (Binary Encoder)

■ Mạch mã hóa 8-to-3

		Input	S					Outpu	ts	I0
IO 1	I1	I2	I3	I 4	I 5	I 6	I7	Y2 Y1	Y0	
1 0 0 0 0 0 0	0 1 0 0 0 0 0	0 0 1 0 0 0	0 0 0 1 0 0 0	0 0 0 0 1 0 0	0 0 0 0 0 1 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 1 0 1 1 0 1 0 1 1	0 1 0 1 0 1 0	12 13 14 15 16
									_	17

Bảng sự thật Mạch logic

Nội dung

- Mạch giải mã (Decoder)/ Mạch mã hoá (Encoder)
- Mạch dồn kênh (Multiplexer)/ Mạch chia kênh (Demultiplexer)
- Thiết kế mạch logic sử dụng Mux
- Mạch tạo Parity/ Mạch kiểm tra Parity
- Mạch so sánh (Comparator)

COMPUTER ENGINEERING

Multiplexer (MUX)

■ Một MUX truyền một trong những ngõ vào của nó ra ngõ ra dựa trên tín hiệu Select

2-to-1 Multiplexer

Ký hiệu

Sel	Out
0	I_0
1	$C(\overline{I_1})$

Out =
$$\overline{\text{Sel}} * I_0 + \text{Sel} * I_1$$

Biểu thức đại số

Mach logic

MUX 4-to-1

■ 4-to-1 Mux xuất ra một trong bốn ngõ vào dựa trên giá trị của 2 tín hiệu select

Thiết kế mạch MUX 4-to-1 từ MUX 2-to-1

MUX 8-to-1: Chip 74x151

Bảng sự thật

	Inp	Outputs			
EN_L	S2	S1	SO	Y	Y_L
1	х	х	x	0	1
O	0	0	0	DO	Do'
0	0	0	1	D1	D1
0	0	1	0	D2	D2'
0	0	1	1	DЗ	D3'
0	1	0	0	D4	D4'
0	1	0	1	D5	D5'
0	1	1	0	D6	D6'
0	1	1	1	D7	D7'

Mạch thiết kế luận lý

Demultiplexer

- **Demultiplexer (DEMUX)** lấy ngõ vào duy nhất và phân phối nó ra một ngõ ra.
 - ■Mã ngô vào SELECT sẽ xác định ngô ra nào sẽ được kết nối với ngô vào

DEMUX 1-to-8

Tóm tắt nội dung chương học

- Qua Phần 2 Chương 5, sinh viên cần nắm những nội dung chính sau:
 - ☐ Chức năng, ứng dụng và thiết kế của mạch mã hóa và giải mã trong các hệ thống máy tính
 - ☐ Chức năng, ứng dụng và thiết kế của mạch chọn kênh và phân kênh trong các hệ thống máy tính

COMPUTER ENGINEERING

Any question?

