Module 8: Data Structures for Multi-Dimensional Data

CS 240 - Data Structures and Data Management

Mark Petrick

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2017

Multi-Dimensional Data

- Various applications
 - Attributes of a product (laptop: price, screen size, processor speed, RAM, hard drive,···)
 - ▶ Attributes of an employee (name, age, salary,···)
- Dictionary for multi-dimensional data
 A collection of d-dimensional items
 Each item has d aspects (coordinates): (x₀, x₁, ····, x_{d-1})
 Operations: insert, delete, range-search query
- (Orthogonal) Range-search query: specify a range (interval) for certain aspects, and find all the items whose aspects fall within given ranges.
 - Example: laptops with screen size between 11 and 13 inches, RAM between 8 and 16 GB, price between 1,500 and 2,000 CAD

Multi-Dimensional Data

- Each item has d aspects (coordinates): $(x_0, x_1, \dots, x_{d-1})$
- Aspect values (x_i) are numbers
- Each item corresponds to a point in *d*-dimensional space
- We concentrate on d=2, i.e., points in Euclidean plane

One-Dimensional Range Search

- First solution: ordered arrays
 - ▶ Running time: $O(\log n + k)$, k: number of reported items
 - ▶ Problem: does not generalize to higher dimensions
- Second solution: balanced BST (e.g., AVL tree)

```
BST-RangeSearch(T, k_1, k_2)
T: A balanced search tree, k_1, k_2: search keys
Report keys in T that are in range [k_1, k_2]
      if T = nil then return
2. if key(T) < k_1 then
3.
           BST-RangeSearch(T.right, k_1, k_2)
4. if key(T) > k_2 then
           BST-RangeSearch(T.left, k_1, k_2)
5.
6. if k_1 < key(T) < k_2 then
7.
           BST-RangeSearch(T.left, k_1, k_2)
           report kev(T)
8.
           BST-RangeSearch(T.right, k_1, k_2)
9.
```

Range Search example

BST-RangeSearch(T, 30, 65)

Range Search example

BST-RangeSearch(T, 30, 65)

Nodes either on boundary, inside, or outside.

Range Search example

BST-RangeSearch(T, 30, 65)

Nodes either on boundary, inside, or outside.

Note: Not every boundary node is returned.

One-Dimensional Range Search

- P_1 : path from the root to a leaf that goes right if $k < k_1$ and left otherwise
- P_2 : path from the root to a leaf that goes left if $k > k_2$ and right otherwise
- Partition nodes of T into three groups:
 - **1** boundary nodes: nodes in P_1 or P_2
 - ② inside nodes: non-boundary nodes that belong to either (a subtree rooted at a right child of a node of P_1) or (a subtree rooted at a left child of a node of P_2)
 - **3** outside nodes: non-boundary nodes that belong to either (a subtree rooted at a left child of a node of P_1) or (a subtree rooted at a right child of a node of P_2)

One-Dimensional Range Search

- P_1 : path from the root to a leaf that goes right if $k < k_1$ and left otherwise
- P_2 : path from the root to a leaf that goes left if $k > k_2$ and right otherwise
- k: number of reported items
- Nodes visited during the search:
 - \triangleright $O(\log n)$ boundary nodes
 - \triangleright O(k) inside nodes
 - No outside nodes
- Running time $O(\log n + k)$

2-Dimensional Range Search

- Each item has 2 aspects (coordinates): (x_i, y_i)
- Each item corresponds to a point in Euclidean plane
- Options for implementing *d*-dimensional dictionaries:
 - ▶ Reduce to one-dimensional dictionary: combine the *d*-dimensional key into one key
 - Problem: Range search on one aspect is not straightforward
 - ► Use several dictionaries: one for each dimension Problem: inefficient, wastes space
 - Partition trees
 - ★ A tree with *n* leaves, each leaf corresponds to an item
 - ★ Each internal node corresponds to a region
 - * quadtrees, kd-trees
 - multi-dimensional range trees

- We have *n* points $P = \{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\}$ in the plane
- How to build a quadtree on P:
 - ► Find a square R that contains all the points of P (We can compute minimum and maximum x and y values among n points)
 - Root of the quadtree corresponds to R
 - ▶ Split: Partition *R* into four equal subsquares (quadrants), each correspond to a child of *R*
 - Recursively repeat this process for any node that contains more than one point
 - ▶ Points on split lines belong to left/bottom side
 - Each leaf stores (at most) one point
 - ▶ We can delete a leaf that does not contain any point

• Example: We have 13 points $P = \{(x_0, y_0), (x_1, y_1), \dots, (x_{12}, y_{12})\}$ in the plane

0

Quadtree Operations

- Search: Analogous to binary search trees
- Insert:
 - Search for the point
 - Split the leaf if there are two points
- Delete:
 - Search for the point
 - Remove the point
 - If its parent has only one child left, delete that child and continue the process toward the root.

Quadtree: Range Search

```
QTree-RangeSearch(T,R)T: A quadtree node, R: Query rectangle1. if (T is a leaf) then2. if (T.point ∈ R) then3. report T.point4. for each child C of T do5. if C.region \cap R \neq \emptyset then6. QTree-RangeSearch(C,R)
```

- spread factor of points P: $\beta(P) = d_{max}/d_{min}$
- ullet $d_{max}(d_{min})$: maximum (minimum) distance between two points in P
- ullet height of quadtree: $h \in \Theta(\log_2 rac{d_{max}}{d_{min}})$
- Complexity to build initial tree: $\Theta(nh)$
- Complexity of range search: $\Theta(nh)$ even if the answer is \emptyset

Quadtree Conclusion

- Very easy to compute and handle
- No complicated arithmetic, only divisions by 2 (usually the boundary box is padded to get a power of two).
- Space wasteful
- Major drawback: can have very large height for certain nonuniform distributions of points
- Easily generates to higher dimensions (octrees, etc.).

- We have *n* points $P = \{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\}$ in the plane
- Quadtrees split square into quadrants regardless of where points actually lie
- kd-tree idea: Split the points into two (roughly) equal subsets
- How to build a kd-tree on P:
 - ▶ Split *P* into two equal subsets using a vertical line
 - ► Split each of the two subsets into two equal pieces using horizontal lines
 - ► Continue splitting, alternating vertical and horizontal lines, until every point is in a separate region
- Complexity: $\Theta(n \log n)$, height of the tree: $\Theta(\log n)$

- We have *n* points $P = \{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\}$ in the plane
- Quadtrees split square into quadrants regardless of where points actually lie
- kd-tree idea: Split the points into two (roughly) equal subsets
- More details:
 - ▶ Initially, we sort the *n* points according to their *x*-coordinates.
 - ► The root of the tree is the point with median x coordinate (index [n/2] in the sorted list)
 - ▶ All other points with x coordinate less than or equal to this go into the left subtree; points with larger x-coordinate go in the right subtree.
 - At alternating levels, we sort and split according to y-coordinates instead.
- Complexity: $\Theta(n \log n)$, height of the tree: $\Theta(\log n)$

- kd-tree idea: Split the points into two (roughly) equal subsets
- A balanced binary tree

- kd-tree idea: Split the points into two (roughly) equal subsets
- A balanced binary tree

- kd-tree idea: Split the points into two (roughly) equal subsets
- A balanced binary tree

- kd-tree idea: Split the points into two (roughly) equal subsets
- A balanced binary tree

- kd-tree idea: Split the points into two (roughly) equal subsets
- A balanced binary tree

kd-tree: Range Search

```
kd-rangeSearch(T,R)

T: A kd-tree node, R: Query rectangle

1. if T is empty then return

2. if T.point ∈ R then

3. report T.point

4. for each child C of T do

5. if C.region \cap R ≠ \emptyset then

6. kd-rangeSearch(C,R)
```

kd-tree: Range Search

```
kd-rangeSearch(T, R, split[\leftarrow 'x'])
T: A kd-tree node, R: Query rectangle
      if T is empty then return
2. if T.point \in R then
3.
           report T.point
4.
      if split = 'x' then
           if T.point.x > R.leftSide then
5.
                kd-rangeSearch(T.left, R, 'y')
6
           if T.point.x < R.rightSide then
7.
                kd-rangeSearch(T.right, R, 'y')
8.
9.
      if split = 'y' then
           if T.point.y \ge R.bottomSide then
10.
                kd-rangeSearch(T.left, R, 'x')
11.
          if T.point.y < R.topSide then
12.
                kd-rangeSearch(T.right, R, 'x')
13.
```

kd-tree: Range Search Complexity

- The complexity is O(k + U) where k is the number of keys reported and U is the number of regions we go to but unsuccessfully
- U corresponds to the number of regions which intersect but are not fully in R
- Those regions have to intersect one of the four sides of R
- Q(n): Maximum number of regions in a kd-tree with n points that intersect a vertical (horizontal) line
- Q(n) satisfies the following recurrence relation:

$$Q(n) = 2Q(n/4) + O(1)$$

- It solves to $Q(n) = O(\sqrt{n})$
- Therefore, the complexity of range search in kd-trees is $O(k + \sqrt{n})$

kd-tree: Higher Dimensions

- kd-trees for d-dimensional space
 - ▶ At the root the point set is partitioned based on the first coordinate
 - At the children of the root the partition is based on the second coordinate
 - ightharpoonup At depth d-1 the partition is based on the last coordinate
 - ▶ At depth *d* we start all over again, partitioning on first coordinate
- Storage: O(n)
- Construction time: $O(n \log n)$
- Range query time: $O(n^{1-1/d} + k)$

(Note: d is considered to be a constant.)

Range Trees

- We have *n* points $P = \{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\}$ in the plane
- A range tree is a tree of trees (a multi-level data structure)
- How to build a range tree on P:
 - ▶ Build a balanced binary search tree τ determined by the *x*-coordinates of the *n* points
 - For every node $v \in \tau$, build a balanced binary search tree $\tau_{assoc}(v)$ (associated structure of τ) determined by the *y*-coordinates of the nodes in the subtree of τ with root node v

Range Tree Structure

Range Trees: Operations

- Search: trivially as in a binary search tree
- Insert: insert point in τ by x-coordinate
- From inserted leaf, walk back up to the root and insert the point in all associated trees $\tau_{assoc}(v)$ of nodes v on path to the root
- Delete: analogous to insertion
- Note: re-balancing is a problem!

Range Trees: Range Search

- A two stage process
- To perform a range search query $R = [x_1, x_2] \times [y_1, y_2]$:
 - ▶ Perform a range search (on the *x*-coordinates) for the interval $[x_1, x_2]$ in τ (BST-RangeSearch (τ, x_1, x_2))
 - ► For every outside node, do nothing.
 - ▶ For every "top" inside node v, perform a range search (on the y-coordinates) for the interval $[y_1, y_2]$ in $\tau_{assoc}(v)$. During the range search of $\tau_{assoc}(v)$, do not check any x-coordinates (they are all within range).
 - ► For every boundary node, test to see if the corresponding point is within the region *R*.
- Running time: $O(k + \log^2 n)$
- Range tree space usage: $O(n \log n)$

Range Trees: Higher Dimensions

• Range trees for *d*-dimensional space

▶ Storage: $O(n(\log n)^{d-1})$

▶ Construction time: $O(n(\log n)^{d-1})$

▶ Range query time: $O((\log n)^d + k)$

(Note: d is considered to be a constant.)

Range Trees: Higher Dimensions

Space/time trade-off

► Storage: $O(n(\log n)^{d-1})$

(Note: d is considered to be a constant.)

► Construction time: $O(n(\log n)^{d-1})$ kd-trees: $O(n\log n)$ ► Range query time: $O((\log n)^d + k)$ kd-trees: $O(n^{1-1/d} + k)$

kd-trees: O(n)

