- 数据分析统计学基础
 - 1. 统计学概述
 - 1.1 什么是统计学
 - 1.2 统计学在数据分析中的应用
 - 2.数据类型与测量尺度
 - 2.1 数据分类
 - 2.2 测量尺度
 - 3. 描述性统计
 - 3.1 集中趋势度量
 - 3.2 离散程度度量
 - 3.3 分布形态
 - 4. 概率与概率分布
 - 4.1 基本概念
 - 4.2 常见概率分布
 - 4.3 中心极限定理
 - 5. 推断统计
 - 5.1 抽样与估计
 - 5.2 假设检验
 - 5.3 相关与回归

数据分析统计学基础

1. 统计学概述

1.1 什么是统计学

定义:统计学是一门研究如何**收集、整理、分析、解释**数据的科学,通过数学方法揭示数据背后的规律和模式。

核心价值:

- 从数据中提取有价值的信息
- 支持数据驱动的决策制定
- 建立预测模型和验证假设

1.2 统计学在数据分析中的应用

应用领域	具体应用
描述性分析	数据摘要、可视化、基本统计量
诊断性分析	相关性分析、趋势分析、原因探究
预测性分析	回归分析、时间序列预测、机器学习
规范性分析	优化建议、决策支持、方案评估

2. 数据类型与测量尺度

2.1 数据分类

类型	特点	示例	分析方法
定量数据 (数值型)	可测量,有数值意 义	身高、温度、销售 额	均值、标准差、回归
定性数据 (类别型)	表示类别或属性	性别、品牌、颜色	频数、比例、卡方检 验

2.2 测量尺度

尺度类型	特点	示例	允许的运算
定类尺度	分类,无顺序	性别、颜色	=, ≠
定序尺度	分类,有顺序	满意度评级	=, ≠,>,<
定距尺度	数值,无绝对零点	温度、日期	=, ≠, >, <, +, -
定比尺度	数值,有绝对零点	重量、收入	=, ≠, >, <, +, -, ×, ÷

3. 描述性统计

3.1 集中趋势度量

均值 (Mean):

• 算术平均值: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

• 适用场景:数据分布均匀,无极端异常值

中位数 (Median):

• 排序后中间位置的值

• 适用场景:数据有偏或有异常值

众数 (Mode):

• 出现频率最高的值

• 适用场景: 分类数据或寻找典型值

3.2 离散程度度量

方差与标准差:

• 方差: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$

• 标准差: $S = \sqrt{S^2}$ (与原始数据同单位)

四分位距 (IQR):

• Q3(75%分位数) - Q1(25%分位数)

• 抗异常值干扰能力强

极差 (Range):

• 最大值 - 最小值

• 对异常值敏感

3.3 分布形态

偏度 (Skewness):

• 右偏(正偏):均值>中位数,长尾在右侧

• 左偏(负偏):均值 < 中位数,长尾在左侧

峰度 (Kurtosis):

高峰度:分布更陡峭,尾部更重低峰度:分布更平缓,尾部更轻

4. 概率与概率分布

4.1 基本概念

概率:事件发生的可能性,0≤P(A)≤1

• **条件概率**: P(A|B) = P(A∩B)/P(B)

• 贝叶斯定理: $P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$

4.2 常见概率分布

离散分布:

• 二项分布: n次独立伯努利试验的成功次数

• 泊松分布: 单位时间/空间内随机事件发生次数

连续分布:

• 正态分布: $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

t分布: 小样本情况下的均值分布
x²分布: 方差分布和独立性检验

• **F分布**: 方差分析中的分布

4.3 中心极限定理

核心思想:无论总体分布如何,样本均值的抽样分布随样本量增大而趋近正态分布

应用价值:

- justify 使用正态分布进行推断
- 支持大样本下的假设检验

5. 推断统计

5.1 抽样与估计

抽样方法:

- 简单随机抽样
- 分层抽样
- 系统抽样
- 整群抽样

点估计与区间估计:

- 点估计: 用单个值估计参数(如样本均值)
- 区间估计:给出参数可能范围(置信区间)

5.2 假设检验

基本步骤:

- 1. 设立假设: H₀(原假设) vs H₁(备择假设)
- 2. 选择检验统计量
- 3. 确定显著性水平α(通常0.05)
- 4. 计算p值或比较临界值
- 5. 做出统计决策

常见检验方法:

检验类型	适用场景	检验统计量
Z检验	大样本均值检验	$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$
t检验	小样本均值检验	$t = rac{ar{x} - \mu}{s / \sqrt{n}}$
卡方检验	分类变量独立性	$\chi^2 = \sum \frac{(O-E)^2}{E}$
方差分析	多组均值比较	F=组间方差/组内方差

第一类错误与第二类错误:

α错误: 拒绝真H。(假阳性)β错误: 接受假H。(假阴性)功效(1-β): 正确拒绝H。的概率

5.3 相关与回归

相关系数:

• Pearson相关系数:线性相关程度,-1到1

• Spearman秩相关: 单调相关程度

简单线性回归:

模型: y = β₀ + β₁x + ϵ

• 最小二乘法估计参数

多元线性回归:

• 模型: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p + \epsilon$

• 考虑多个预测变量

模型评估:

• R²:解释的变异比例

● 调整R²:考虑变量个数后的R²

● MSE/RMSE: 预测误差大小