

Stochastic Processes

Primer on Probability: Random Variables, Some Basic Facts about Borel σ -Algebra, Random Variables, Random Vectors, Sequences of Random Variables

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

10 January 2025

Dedication

Figure: Henri Lebesgue (1875-1941).

Random Variables

Random Variable - Definition

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Random Variables)

A function $X: \Omega \to \mathbb{R}$ is called a random variable with respect to \mathscr{F} if

$$X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathscr{F} \qquad \forall B \in \mathscr{B}(\mathbb{R}).$$

$$orall B\in \mathscr{B}(\mathbb{R}), \quad X^{-1}(B)\in \mathscr{F}$$

• Let
$$\mathscr{D}_1=\Big\{(-\infty,x]:x\in\mathbb{R}\Big\}.$$
 Then, $\mathscr{B}(\mathbb{R})=\sigma(\mathscr{D}_1).$

• Let
$$\mathscr{D}_1=\Big\{(-\infty,x]:x\in\mathbb{R}\Big\}.$$
 Then, $\mathscr{B}(\mathbb{R})=\sigma(\mathscr{D}_1).$

• Let
$$\mathscr{D}_2=\left\{(-\infty,x):x\in\mathbb{R}\right\}$$
. Then, $\mathscr{B}(\mathbb{R})=\sigma(\mathscr{D}_2)$.

- Let $\mathscr{D}_1=\left\{(-\infty,x]:x\in\mathbb{R}\right\}$. Then, $\mathscr{B}(\mathbb{R})=\sigma(\mathscr{D}_1)$.
- Let $\mathscr{D}_2=\left\{(-\infty,x):x\in\mathbb{R}\right\}$. Then, $\mathscr{B}(\mathbb{R})=\sigma(\mathscr{D}_2)$.
- Let $\mathscr{D}_3=\left\{[x,\infty):x\in\mathbb{R}\right\}$. Then, $\mathscr{B}(\mathbb{R})=\sigma(\mathscr{D}_3)$.

• Let
$$\mathscr{D}_1=\Big\{(-\infty,x]:x\in\mathbb{R}\Big\}.$$
 Then, $\mathscr{B}(\mathbb{R})=\sigma(\mathscr{D}_1).$

• Let
$$\mathscr{D}_2=\left\{(-\infty,x):x\in\mathbb{R}\right\}$$
. Then, $\mathscr{B}(\mathbb{R})=\sigma(\mathscr{D}_2)$.

• Let
$$\mathscr{D}_3=\Big\{[x,\infty):x\in\mathbb{R}\Big\}.$$
 Then, $\mathscr{B}(\mathbb{R})=\sigma(\mathscr{D}_3).$

• Let
$$\mathscr{D}_4=\Big\{(x,\infty):x\in\mathbb{R}\Big\}.$$
 Then, $\mathscr{B}(\mathbb{R})=\sigma(\mathscr{D}_4).$

• Let
$$\mathscr{D}_1=\Big\{(-\infty,x]:x\in\mathbb{R}\Big\}.$$
 Then, $\mathscr{B}(\mathbb{R})=\sigma(\mathscr{D}_1).$

• Let
$$\mathscr{D}_2=\left\{(-\infty,x):x\in\mathbb{R}\right\}$$
. Then, $\mathscr{B}(\mathbb{R})=\sigma(\mathscr{D}_2)$.

• Let
$$\mathscr{D}_3=\Big\{[x,\infty):x\in\mathbb{R}\Big\}.$$
 Then, $\mathscr{B}(\mathbb{R})=\sigma(\mathscr{D}_3).$

• Let
$$\mathscr{D}_4=\Big\{(x,\infty):x\in\mathbb{R}\Big\}.$$
 Then, $\mathscr{B}(\mathbb{R})=\sigma(\mathscr{D}_4).$

• Let
$$\mathscr{D}_1=\Big\{(-\infty,x]:x\in\mathbb{R}\Big\}.$$
 Then, $\mathscr{B}(\mathbb{R})=\sigma(\mathscr{D}_1).$

• Let
$$\mathscr{D}_2=\left\{(-\infty,x):x\in\mathbb{R}\right\}$$
. Then, $\mathscr{B}(\mathbb{R})=\sigma(\mathscr{D}_2)$.

• Let
$$\mathscr{D}_3=\Big\{[x,\infty):x\in\mathbb{R}\Big\}.$$
 Then, $\mathscr{B}(\mathbb{R})=\sigma(\mathscr{D}_3).$

• Let
$$\mathscr{D}_4=\Big\{(x,\infty):x\in\mathbb{R}\Big\}.$$
 Then, $\mathscr{B}(\mathbb{R})=\sigma(\mathscr{D}_4).$

IMPORTANT

Every set in $\mathscr{B}(\mathbb{R})$ can be expressed exclusively in terms of countable unions, complements, and countable intersections of sets from any one of \mathscr{D}_1 or \mathscr{D}_2 or \mathscr{D}_3 or \mathscr{D}_4 .

• Express (2,3) in terms of sets from \mathcal{D}_1

- Express (2,3) in terms of sets from \mathcal{D}_1
- Express $\{5.5\}$ in terms of sets from \mathcal{D}_2

- Express (2,3) in terms of sets from \mathcal{D}_1
- Express $\{5.5\}$ in terms of sets from \mathcal{D}_2
- Express (-3,-2] in terms of sets from \mathcal{D}_3

- Express (2,3) in terms of sets from \mathcal{D}_1
- Express $\{5.5\}$ in terms of sets from \mathcal{D}_2
- Express (-3,-2] in terms of sets from \mathcal{D}_3
- Express [-6, 5] in terms of sets from \mathcal{D}_4

Equivalent Definitions of Random Variable

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$, and a function $X : \Omega \to \mathbb{R}$.

Theorem (Equivalent Definitions of Random Variable)

The following statements are equivalent.

1.
$$X^{-1}(B) \in \mathscr{F}$$
 for all $B \in \mathscr{B}(\mathbb{R})$.

2.
$$X^{-1}(B) \in \mathscr{F}$$
 for all $B \in \mathscr{D}_1$.

3.
$$X^{-1}(B) \in \mathscr{F}$$
 for all $B \in \mathscr{D}_2$.

4.
$$X^{-1}(B) \in \mathscr{F}$$
 for all $B \in \mathscr{D}_3$.

5.
$$X^{-1}(B) \in \mathscr{F}$$
 for all $B \in \mathscr{D}_4$.

Proof follows by noting that
$$X^{-1}(B^c) = (X^{-1}(B))^c$$
 and $X^{-1}(\bigcup_{n=1}^{\infty} B_n) = \bigcup_{n=1}^{\infty} X^{-1}(B_n)$

Random Variable Simplified

$$orall B\in \mathscr{B}(\mathbb{R}), \quad X^{-1}(B)\in \mathscr{F}$$

$$orall x \in \mathbb{R}, \quad X^{-1}((-\infty,x]) \in \mathscr{F}$$

•
$$\Omega = \{1, 2, \dots, 6\}, \qquad \mathscr{F} = \{\emptyset, \Omega\}, \qquad X(\omega) = \omega$$

Is X a RV?
What functions X are RVs?

- $\Omega = \{1, 2, ..., 6\}, \qquad \mathscr{F} = \{\emptyset, \Omega\}, \qquad X(\omega) = \omega$ Is X a RV? What functions X are RVs?
- $\Omega = [0, 1]$, $\mathscr{F} = \left\{\emptyset, \Omega, A, A^c\right\}$ for a fixed $A \subseteq \Omega$ What functions X are RVs?

- $\Omega = \{1, 2, \dots, 6\}, \qquad \mathscr{F} = \{\emptyset, \Omega\}, \qquad X(\omega) = \omega$ Is X a RV? What functions X are RVs?
- $\Omega = [0, 1], \qquad \mathscr{F} = \left\{\emptyset, \Omega, A, A^c\right\}$ for a fixed $A \subseteq \Omega$ What functions X are RVs?
- $\Omega = \{1, 2, 3, 4, 5\}, \qquad \mathscr{F} = \sigma\left(\left\{\{1\}, \{2, 3\}\right\}\right)$ What functions X are RVs?

- $\Omega = \{1, 2, ..., 6\}, \qquad \mathscr{F} = \{\emptyset, \Omega\}, \qquad X(\omega) = \omega$ Is X a RV? What functions X are RVs?
- $\Omega = [0, 1]$, $\mathscr{F} = \left\{\emptyset, \Omega, A, A^c\right\}$ for a fixed $A \subseteq \Omega$ What functions X are RVs?
- $\Omega = \{1, 2, 3, 4, 5\}, \qquad \mathscr{F} = \sigma\left(\left\{\{1\}, \{2, 3\}\right\}\right)$ What functions X are RVs?
- $\Omega = \mathbb{N}$, $\mathscr{F} = 2^{\Omega}$ What functions X are RVs?

Probability Law and CDF

Probability Law of a Random Variable

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$

Definition (Probability Law)

Given a random variable $X: \Omega \to \mathbb{R}$ with respect to \mathscr{F} , its probability law \mathbb{P}_X is a probability measure on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ defined as

$$\mathbb{P}_X(B) = \mathbb{P}(X^{-1}(B)) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \in B\}) \quad \forall B \in \mathscr{B}(\mathbb{R}).$$

$$\mathbb{P}_{X}(B) = \mathbb{P} \circ X^{-1}(B) = \mathbb{P}(X^{-1}(B)) \quad \forall B \in \mathscr{B}(\mathbb{R})$$

Cumulative Distribution Function (CDF)

$$F_X(x)=\mathbb{P}_X((-\infty,x])=\mathbb{P}(X^{-1}((-\infty,x])),\quad x\in\mathbb{R}$$

Definition (Cumulative Distribution Function)

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Given a random variable $X:\Omega\to\mathbb{R}$ with respect to \mathscr{F} , its cumulative distribution function (CDF) $F_X:\mathbb{R}\to[0,1]$ is defined as

$$F_X(x) = \mathbb{P}_X((-\infty, x]) = \mathbb{P}(X^{-1}(\infty, x]), \qquad x \in \mathbb{R}.$$

Properties of CDF

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$

Let $X:\Omega\to\mathbb{R}$ be a random variable with respect to \mathscr{F} with CDF F_X

• $\lim_{x\to-\infty} F_X(x) = 0$, $\lim_{x\to+\infty} F_X(x) = 1$

• (Monotonicity) If $x \le y$, then $F_X(x) \le F_X(y)$

• (Right-Continuity) F_X is right-continuous, i.e., for all $x \in \mathbb{R}$,

$$\lim_{\varepsilon\downarrow 0}F_X(x+\varepsilon)=F_X(x).$$

CDF ←→ **Probability Law**

• If we know $\mathbb{P}_X = \{ \mathbb{P}_X(B) : B \in \mathscr{B}(\mathbb{R}) \}$, then we can extract the CDF $F_X : \mathbb{R} \to [0,1]$ by using the formula

$$F_X(x) = \mathbb{P}_X((-\infty, x]), \qquad x \in \mathbb{R}.$$

• Given the CDF $F_X : \mathbb{R} \to [0, 1]$, let

$$\mathbb{P}_X((-\infty,x]) = F_X(x), \qquad x \in \mathbb{R}.$$

Then, there exists a unique extension of \mathbb{P}_X to all Borel subsets of \mathbb{R} For a proof of this, see [Folland, 1999, Theorem 1.16]

Notation

- $\{\omega \in \Omega : X(\omega) \le x\} = \{X \le x\}$
- $\mathbb{P}_X((-\infty, \mathbf{x}]) = \mathbb{P}(X^{-1}((-\infty, \mathbf{x}])) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \le \mathbf{x}\}) = \mathbb{P}(X \le \mathbf{x})$

Question

Question

Question

• Consider
$$\mathscr{D}_1 = \Big\{ (-\infty, x] : x \in \mathbb{R} \Big\}.$$

Question

- Consider $\mathscr{D}_1 = \Big\{ (-\infty, x] : x \in \mathbb{R} \Big\}.$
- Consider a function $G: \mathbb{R} \to [0,1]$ such that:

Question

- Consider $\mathscr{D}_1 = \Big\{ (-\infty, x] : x \in \mathbb{R} \Big\}.$
- Consider a function $G: \mathbb{R} \to [0,1]$ such that:

$$-\lim_{x\to-\infty} G(x) = 0, \qquad \lim_{x\to+\infty} G(x) = 1.$$

Question

- Consider $\mathscr{D}_1 = \Big\{ (-\infty, x] : x \in \mathbb{R} \Big\}.$
- Consider a function $G: \mathbb{R} \to [0,1]$ such that:
 - $-\lim_{x\to-\infty} G(x) = 0, \qquad \lim_{x\to+\infty} G(x) = 1.$
 - G is non-decreasing.

Question

- Consider $\mathscr{D}_1 = \Big\{ (-\infty, x] : x \in \mathbb{R} \Big\}.$
- Consider a function $G: \mathbb{R} \to [0,1]$ such that:
 - $\lim_{x\to-\infty} G(x) = 0$, $\lim_{x\to+\infty} G(x) = 1$.
 - G is non-decreasing.
 - *G* is right-continuous.

Question

- Consider $\mathscr{D}_1 = \Big\{ (-\infty, x] : x \in \mathbb{R} \Big\}.$
- Consider a function $G: \mathbb{R} \to [0,1]$ such that:
 - $-\lim_{x\to-\infty} G(x) = 0, \qquad \lim_{x\to+\infty} G(x) = 1.$
 - G is non-decreasing.
 - − *G* is right-continuous.
- Set $\mathbb{Q}((-\infty,x]) = G(x)$ for all $x \in \mathbb{R}$.

Question

- Consider $\mathscr{D}_1 = \Big\{ (-\infty, x] : x \in \mathbb{R} \Big\}.$
- Consider a function $G: \mathbb{R} \to [0,1]$ such that:
 - $-\lim_{x\to-\infty} G(x) = 0, \qquad \lim_{x\to+\infty} G(x) = 1.$
 - G is non-decreasing.
 - − *G* is right-continuous.
- Set $\mathbb{Q}((-\infty,x]) = G(x)$ for all $x \in \mathbb{R}$.
- Using Caratheodory's extension theorem, get $\mathbb{Q}(B)$ for all $B \in \mathcal{B}(\mathbb{R})$.

Random Vectors and Sequences of Random Variables

Random Vectors

Fix a measurable space (Ω, \mathscr{F}) . Fix $n \in \mathbb{N}$.

Definition (Random Vector)

Given random variables X_1, \ldots, X_n defined with respect to \mathscr{F} , we say

 $(X_1,\ldots,X_n):\Omega\to\mathbb{R}^n$ is a random vector with respect to \mathscr{F} if

$$(X_1,\ldots,X_n)^{-1}(B)=\{\omega\in\Omega: \big(X_1(\omega),\ldots,X_n(\omega)\big)\in B\}\in\mathscr{F}\qquad \forall B\in\mathscr{B}(\mathbb{R}^n).$$

Sequence of Random Variables

Fix a measurable space (Ω, \mathscr{F}) .

Definition (Sequence of Random Variables)

A sequence of random variables is a collection $\{X_n\}_{n=1}^{\infty}$ such that

$$\forall n \in \mathbb{N}, \ \forall k_1, \dots, k_n \in \mathbb{N}, \qquad (X_{k_1}, \dots, X_{k_n}) \text{ is a random vector.}$$

References

Folland, G. B. (1999).

Real analysis: modern techniques and their applications, volume 40. John Wiley & Sons.