

Authorization

Segurança Informática em Redes e Sistemas 2022/23

Ricardo Chaves

Ack: Miguel Pardal, Carlos Ribeiro, Miguel P. Correia

Roadmap

- Authorization / access control
- Access control models

Roadmap

- Authorization / access control
- Access control models

Access control

- Subjects
 - People, processes
 - Active entities
- Objects
 - Files, processes
 - Passive entities
- Accesses
 - Operations on objects
- Reference Monitor
 - Small and verifiable
 - Total mediation

Access actions

- There are several options; they can be:
 - Specific
 - Each object has a set of specific operations
 - Large policy size ☺
 - Generic
 - Only <u>write</u> and <u>read</u> (change or not the object's state)
 - Mixed
 - (next slide)

Mixed access actions

Mixed

- Bell LaPadula (BLP): <u>execute</u>, <u>append</u>, <u>read</u>, <u>write</u>
- Different objects, different meanings;
 example from Unix:

Operation	Meaning for directories	Meaning for files
Read	List content	Read content
<u>Write</u>	Create / rename	Create / rename
<u>Execute</u>	Enter (cd) and access files/dirs	Run program in the file

Specific access actions example: Google Drive

Actions: edit, comment, view

Specific access actions example: Android

- Actions: access, record, send/view, ...
- Many objects: calendar, contacts, audio, SMSs, location,...

Management and Ownership

- Owner
 - Usually the creator of the object
- Discretionary access control systems (DAC)
 - Management made by the owner
- Mandatory access control systems (MAC)
 - Management made by a global policy,
 - Less susceptible to malware

Caution: unrelated to Message Authentication Codes, Medium Access Control

Roadmap

- Authorization / access control
- Access control models

Model goals

Trustworthiness

Expressivity

Performance

Administration

Discretionary Access Control Access matrix

- Access control matrix
 - Theoretical model, very sparse
- Access Control List (ACL)
 - Matrix columns
- Capability
 - Matrix rows

	Obj 1	Obj 2	Obj 3
Suj 1	{read}		{read, write}
Suj 2		{read, write}	
Suj 3	{read,write}		

Access Control List

- One ACL for each object
 - ACL non-empty element of each column in the matrix
 - ACE (Access Control Entry) a cell of the matrix
- Can be assigned to groups of subjects
 - Minimize policy
 - Negative permissions may be required
- Hard to manage individual subject permissions

Capabilities

- One list of capabilities for each subject
 - Each capability is a non-empty element in a matrix row
- It is hard to:
 - Know who can access an object
 - Revoke a capability
- Use:
 - Traditionally less used than ACLs
 - In distributed systems
 - Example: access document with link (URL)
 - Whoever knows the link, can access the object

Roadmap

- Authorization / access control
- Access control models
 - Role-Based Access Control

Role-Based Access Control (RBAC)

- Performs access control based on roles
- Allows the description of complex policies
 - Segregation of duties (static and dynamic)
 - Static: allows role memberships that are mutually exclusive
 - Dynamic: allows same subject having 2 roles but not using both in same operation
 - Least privilege:
 - possible to assign the least privileges the subject needs to the role
 - Delegation:
 - possible to transfer privileges
 - Restrictions based on: time, context, history

RBAC mechanism

- Users are associated with roles
- Roles are associated with permissions
 - A user has a permission if he has an association with a role that has an association with a permission
- Reduces size of policy
 - Better scalability
 - Reduces error probability
 - Simplifies administration

RBAC administration benefits

- Associations between roles and permissions are more stable than associations between users and permissions
 - So easier to administrate: just associate users to roles
- May be associated with different types of concept
 - Position
 - Authority
 - Skill
 - Responsibility
- Allows propagating rights across hierarchies
 - Similar to inheritance in object oriented programming

RBAC overall assessment

- RBAC models categorize users based on similar needs and groups them into roles
 - The role concept uses approximations for the sake of simplicity
 - There is a never-ending struggle to refine the definition of a role
 - and to maintain a sound segregation of duties

Roadmap

- Authorization / access control
- Access control models
 - Attribute Based Access Control

Attribute-Based Access Control (ABAC)

 Permissions are granted or denied depending on the values of named attributes

ABAC assessment

- Dynamic permissions
 - Current business rules
 - Risk mitigating precautions
 - Context-related security measures
- Fine-grained authorization
- Major disadvantages:
 - Complex model big attack surfaces
 - Lower performance (higher delay)

XACML

- eXtensible Access Control Markup Language
- Language that allows implementing ABAC
- Standard proposed by OASIS
 - Processing model
 - Policy format
 - Request/response formats

XACML Processing Model

Components

- PAP Policy Administration Point
- PEP Policy Enforcement Point
- PDP Policy Decision Point
- PIP Policy Information Point

Obligations

- Actions that must be executed when the request is processed
 - Typically used to write audit logs

XACML processing model

Roadmap

- Authorization / access control
- Access control models
 - Bell-LaPadula model

Bell-LaPadula (BLP) model

- Mandatory Access Control (MAC)
- State machine

Is – clearance of <u>subject</u> s

lo – classification of <u>object</u> o

- Simple Security Property
 - No read up: access granted iff lo <= ls</p>
- Confinement Property (★-Property)
 - No write down: access granted iff Is <= Io</p>

Bell-LaPadula (BLP)

© selfless security

BLP: file access example

Bell-LaPadula (BLP) overall assessment

- Confidentiality only
 - No integrity
- Data changes only through specific programs
- There are covert channels
 - e.g. file names
- Does not allow management (rights are fixed)
 - Nor delegation

Summary

- Authorization / access control
- Access control models