Defn: Sample Space

The sample space S is the set of possible attende.

Ex. Flip a coin.

Ex. Poll a six-sided due

Ex. Poll tue dice.

$$S = \{(1,1), (1,2), (1,3), \dots \}$$

$$= \{(i,j) \mid 1 \leq i,j \leq 6\}$$

Ex. Waiting for a bus to arrive.

$$S = [0, \infty)$$

Ex. Look af number of customers arriving in my restaurant.

$$S = N_0 = \{0,1,2,3,4,\ldots\}$$

Types of sample spaces:

Ofinite (IS) < 00)

(2) infinite (|S| > 20)

> (i) contable (e.g. INo)

> (i) un contable (e, [0,00))

Defr! Outcome:

We call elements de S "outcomes"

Soutcome Sample space

Ex. S= {1,2,3,4,5,6} then 1 = S so "I" is an oftene.

Defn: Event

An evert E is a subset of the sample space S.

1....

(ECS)

ex. Roll a die i S= {1,2,3,4,5,6} ad
So E= {1,23 C S 1 rolling a 1 or a 2,
-> Say an event "happers" of the observed ortcome of the experiment is an element
Ex SCS, here S is an event. Levent that something happens focus
Ex. & CS, so & is an event. 1. ???? nothery happens?
Axiomatic Probability Given: an experiment (a sample space S)
want: for any event (ECS) want to assign some measure of the likelihord that E occurs.
Marthaemartically prob-fu.
For each ECS assen a probability P(E)

Check if this is a valid prob. fn.

$$I P(E) \ge 0$$
 $\forall E \in S$
 $I P(S) = I$

(2) $P(S) = I$

(3) $P(S) = I$

(4) $P(E) \ge 0$ f

(5) $P(E) \ge 0$ f

(6) $P(E) \ge 0$ f

(7) $P(E) \ge 0$ f

(8) $P(E) \ge 0$ f

(9) $P(E) \ge 0$ f

(1) $P(E) \ge 0$ f

(1) $P(E) \ge 0$ f

(2) $P(S) = I$

(3) $P(E) \ge 0$ f

(4) f

(5) f

(6) f

(7) f

(8) f

(8) f

(8) f

(9) f

(9) f

(9) f

(1) f

(1) f

(1) f

(2) f

(3) f

(4) f

(4) f

(5) f

(5) f

(6) f

(7) f

(8) f

(8) f

(9) f

(9) f

(9) f

(9) f

(9) f

(1) f

(1) f

(1) f

(1) f

(2) f

(3) f

(4) f

(4) f

(5) f

(6) f

(7) f

(8) f

(9) f

(1) f

(1) f

(1) f

(1) f

(2) f

(3) f

(4) f

(4) f

(5) f

(5) f

(6) f

(7) f

(8) f

(9) f

(9)

$$\begin{cases} 2 \\ 1 \\ 2 \end{cases} = \begin{cases} 1, 2, 3 \end{cases}$$

Theorem: Finite Sample Space Theaeur (f S= 3d, ,dz, A3, --, An3, |S|=n<00 to build up IP choose correspondy P1, P2, P3, --, Pn where [i] $p_i > 0$ and [i] [i] [i] [i]then for ECS:

P(E) = ZPi

valid! EX, P(§A,, so]) = P, +Ps P(5, 42, 4, 4, 3) = P2+P++P11

Then IP is a valid prob. for. Pf. Check that P satisfies the Komgon Axioms. (I) P(E)>O YECS $P(E) = \sum_{m} P_i > 0$ 2P(S)=1 $P(S) = \sum_{i:a_i \in S} P_i = \sum_{i=1}^{n} P_i = 1$ 3) If ECS ad (Ei) partitia E J (Ei) disjoint ad UEi=E) (E then $P(E) = P(VEi) = \sum_{i} P(Ei)$ WIOG assure (E) is cantebly infinite Then E = . O Ei Su if sje Sad sje E then sje DE; sicin

