PRÁCTICA 3: Funciones Recursivas Primitivas

Dante Zanarini

Denise Marzorati

Alejandro Hernández

Valeria Perez Mogetta

Funciones recursivas primitivas

1. Mostrar que para cada $n \in \mathbb{N}$, la función $g_n(x) = n$ para todo $x \in \mathbb{N}$ es recursiva primitiva.

2. Realizar los siguientes cálculos:

(a)
$$dos^{(2)}(17,3) = \Phi(s^{(1)}, \Phi(s^{(1)}, c^{(2)}))(17,3)$$

(b)
$$Mas2^{(1)}(5) = \Phi(s^{(1)}, s^{(1)})(5)$$

(c)
$$\Sigma^{(2)}(1,3) = R\left(p_1^{(1)}, \Phi\left(s^{(1)}, p_3^{(3)}\right)\right)(1,3)$$

(d)
$$Pd^{(1)}(412) = R\left(c^{(0)}, p_1^{(2)}\right)(412)$$

3. Mostrar que las siguientes funciones son FRP:

- (a) $\Pi(y, x) = y \times x$
- (b) Fac(x) = x!
- (c) $Exp(y,x) = x^y$
- (d) La función diferencia, definida por:

$$\widetilde{d}(y,x) = \begin{cases} 0 & x < y \\ x - y & x \ge y \end{cases}$$

Notamos generalmente $\widetilde{d}(y,x)$ como x-y.

(e) La función distinguidora del cero, definida por:

$$D_0(y) = \begin{cases} 0 & y \neq 0 \\ 1 & y = 0 \end{cases}$$

(f)
$$k(x,y) = |x - y|$$

(g) La función $E^{(2)}$ definida por:

$$E(x,y) = \begin{cases} 1 & x = y \\ 0 & x \neq y \end{cases}$$

(h) La función $\neg E^{(2)}$ definida por:

$$\neg E(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

(i) La función signo, definida por:

$$Sgn(y) = \begin{cases} 0 & y = 0\\ 1 & y \ge 1 \end{cases}$$

4. Definir la siguiente función: $\hat{d}(x,y) = \begin{cases} 0 & x < y \\ x - y & x \ge y \end{cases}$

Sugerencia: utilizar la función \widetilde{d} definida en el ejercicio anterior.

- 5. Sumatorias y productorias:
 - (a) Sea $f^{(2)}$ una FRP de dos variables. Definimos dos nuevas funciones $F^{(2)}$ y $G^{(2)}$ de la siguiente manera:

$$F^{(2)}(y,x) = \sum_{z=0}^{y} f^{(2)}(z,x)$$

$$G^{(2)}(y,x) = \prod_{z=0}^{y} f^{(2)}(z,x)$$

Mostrar que F y G son FRP.

(b) Más generalmente, sea $f^{(k+1)}$ una FRP de k+1 variables. Definimos dos nuevas funciones $F^{(k+1)}$ y $G^{(k+1)}$ de la siguiente manera:

$$F(y,X) = \sum_{z=0}^{y} f(z,X)$$

$$G(y,X) = \prod_{z=0}^{y} f(z,X)$$

donde X representa una k-upla. Mostrar que F y G son FRP.

6. Sea $f^{(1)}: \mathbb{N} \to \mathbb{N}$. Definimos una nueva función $F^{(2)}$ llamada función potencia de f como

$$F(y,x) = \begin{cases} x & y = 0\\ f(F(y-1,x)) & y > 0 \end{cases}$$

Notamos generalmente F(y, x) como $f^{y}(x)$.

- (a) Mostrar que $\Sigma(y, x) = s^y(x)$.
- (b) Mostrar que si f es una FRP, entonces F resulta una FRP.
- (c) Escribir la función diferencia \hat{d} utilizando la función potencia.

Conjuntos recursivos primitivos

- 7. Mostrar que todo subconjunto unitario de \mathbb{N} es un CRP.
- 8. Probar que si $A, B \subseteq \mathbb{N}$ son CRP, entonces $\neg A, A \cup B$ y $A \cap B$ son CRP.
- 9. Mostrar que todos los subconjuntos finitos de \mathbb{N} son CRP.
- 10. Repetir los tres ejercicios anteriores considerando ahora subconjuntos de \mathbb{N}^k con $k \in \mathbb{N}$.
- 11. Mostrar que el conjunto de los números pares es un CRP.
- 12. Mostrar que el conjunto de los múltiplos de 3 es un CRP.

Sugerencia: Probar que la función $r_3: \mathbb{N} \to \mathbb{N}$ que toma un natural y devuelve el resto de la división entera por 3 es una FRP, y usarla para escribir la función característica de los múltiplos de 3.

Relaciones recursivas primitivas

Una relación $R \subseteq \mathbb{N} \times \mathbb{N}$ se dice recursiva primitiva (RRP) si es un CRP.

- 13. Mostrar que $=, \neq, \leq y > \text{son } RRP$.
- 14. Probar que si $R, S \subseteq \mathbb{N} \times \mathbb{N}$ son RRP, entonces también lo son las relaciones T, U y $\neg R$, donde

$$\begin{array}{rcl} xTy & = & xRy \wedge xSy \\ xUy & = & xRy \vee xSy \\ x\left(\neg R\right)y & = & \neg\left(xRy\right) \end{array}$$

- 15. Teniendo en cuenta los resultados del ultimo ítem, ¿cómo podríamos haber probado que \neq y > son RRP?
- 16. Sea $R \subseteq \mathbb{N} \times \mathbb{N}$. Definimos $\bigwedge R$ y $\bigvee R$ de la siguiente manera:

$$x\left(\bigwedge R\right)y\iff \forall k\in\mathbb{N}/0\leq k\leq y \text{ se tiene }xRk$$

$$x\left(\bigvee R\right)y\iff \exists k\in\mathbb{N}/0\leq k\leq y$$
 para el cual xRk

Probar que si R es una RRP, entonces $\bigwedge R$ y $\bigvee R$ también son RRP.

Varios

17. Probar que la relación de divisibilidad entre naturales es una RRP.

Sugerencia: Defina la familia de funciones $r_a^{(1)}$, $a=1,2,\ldots$; donde $r_a^{(1)}$ (n) devuelve el resto de dividir n por a, y escriba la función característica de la relación en términos de estas funciones.

18. Probar que las siguientes funciones son FRP:

(a)
$$f(x) = \begin{cases} x^2 & \text{si } x \text{ es múltiplo de 3} \\ x+3 & \text{si } x \text{ tiene resto 1 en la división por 3} \\ x! & \text{si } x \text{ tiene resto 2 en la división por 3} \end{cases}$$

(b)
$$max(x,y) = \begin{cases} y & x \le y \\ x & y \le x \end{cases}$$