US Shootings DBMS Final Report

CPS 510 - 032 November 30, 2020

Group Members

Manpreet Rajpal (500874585) Sakshi Padhiar (500903964) Alifiyah Hussain (500778471) Nicolas de la Guardia (500806448)

Table of Contents

Assignment 1 Proposal: DBMS For Shootings in the United States	3
Assignment 2: ER model	4
Assignment 3: Schema design	5
Assignment 4 part 1: Demo of Designing Views/Simple Queries	6
Assignment 4 (Part 2) : Complex Queries	10
Assignment 5: Demonstration of advanced queries By Unix shell Implementation	13
Assignment 6: Normalization of the Database /Functional Dependencies	16
Assignment 7: Normalization / 3rd NF	16
Assignment 8: Normalization 3NF/BCNF	20
Assignment 9 /10: Demonstration of application by	23
Assignment 10: Final Documentations	23

<u>Assignment 1 Proposal: DBMS For Shootings in</u> the United States

Shootings are a growing concern in the world's most dominant economic and military power, the United States. This problem has been around for decades but it has heightened to nearly an uncontrollable level in recent years. In light of recent events, such as the Black Lives Matter movement, it is important for citizens to have access to this information. The primary purpose of this database is to improve transparency and accountability. Although statistics do not capture the full extent of the story, they allow for a better understanding of the situation. For example currently, people are trying to understand whether police are disproportionately targeting people of colour, but simply looking at percentages of victims by race would prove otherwise. However, with a comprehensive database with multiple descriptors such as whether the victim was armed or not provides a whole new dimension to the story.

As a brief overview, our database application would include records of the number of shootings per state, information about the shooter (name, age, gender, race.), date of shooting, type of shooting (police, school etc.), number of deaths caused per year, how the person was killed (shot or tasered), if person was armed (gun, knife, other, none). Users can interact with the database in the following ways: they can contribute to the database (e.g. submit a shooting case, which must be approved by system administrators before being posted), discuss their thoughts with others either anonymously or by creating an account (this would require their full name, age, gender and email address) and subscribe to receive notifications when information is added or updated. Evidently, the database will be handling a large volume of data specifically from 2015 – present.

This application can be used by people who are curious about the correlations between certain individuals and their susceptibility to getting shot. It will bridge the gaps in their knowledge and hopefully lead to educated conclusions.

Assignment 2: ER model

Assignment 3: Schema design

```
DDL Commands
CREATE TABLE US STATE (
       STATE ID INT NOT NULL.
       WEAPONS NUMBER(10),
       POPULATION NUMBER(5),
       POLICE NUMBER(10),
       STATE NAME VARCHAR(50) NOT NULL,
       PRIMARY KEY (STATE_ID)
);
CREATE TABLE VICTIM (
       VICTIM_ID INT NOT NULL,
       FIRST_NAME VARCHAR(50) NOT NULL,
       LAST_NAME VARCHAR(50) NOT NULL,
       GENDER VARCHAR(10),
       AGE NUMBER(3),
       STATE_ID INT NOT NULL,
       PRIMARY KEY (VICTIM_ID),
       FOREIGN KEY (STATE_ID) REFERENCES US_STATE(STATE_ID)
```

```
);
CREATE TABLE SHOOTER (
       SHOOTER ID INT NOT NULL,
       FIRST NAME VARCHAR(50) NOT NULL,
       LAST NAME VARCHAR(50) NOT NULL,
       AGE NUMBER(3),
       GENDER VARCHAR(10).
       RACE VARCHAR(20),
       WEAPON_TYPE VARCHAR(50),
       OCCUPATION VARCHAR(50),
       STATE ID INT NOT NULL,
       PRIMARY KEY (SHOOTER_ID),
       FOREIGN KEY (STATE_ID) REFERENCES US_STATE(STATE_ID)
);
CREATE TABLE RECORD (
       RECORD_ID INT NOT NULL,
       TYPE_OF_SHOOTING VARCHAR(50),
       MONTH_OF_SHOOTING VARCHAR(10),
       YEAR_OR_SHOOTING NUMBER(4),
       VICTIM_ID INT NOT NULL,
       SHOOTER ID INT NOT NULL,
       PRIMARY KEY (RECORD_ID),
       FOREIGN KEY (VICTIM_ID) REFERENCES VICTIM(VICTIM_ID),
       FOREIGN KEY (SHOOTER_ID) REFERENCES SHOOTER(SHOOTER_ID)
);
CREATE TABLE USER ACCOUNT (
       FIRST NAME VARCHAR(50) NOT NULL,
       LAST NAME VARCHAR(50) NOT NULL,
       AGE NUMBER(3),
       EMAIL VARCHAR(50),
       RECORD ID INT NOT NULL,
       PRIMARY KEY (EMAIL),
       FOREIGN KEY (RECORD_ID) REFERENCES RECORD(RECORD_ID)
);
Table Creation Screenshots
 Table US_STATE created.
 Table VICTIM created.
 Table SHOOTER created.
 Table RECORD created.
 Table USER_ACCOUNT created.
```

Assignment 4 part 1: Demo of Designing Views/Simple Queries

Query 1:

SELECT * FROM SHOOTER WHERE AGE <= 30:

Output:

Query 2:

SELECT TYPE_OF_SHOOTING, MONTH_OF_SHOOTING, YEAR_OF_SHOOTING FROM RECORD WHERE YEAR_OF_SHOOTING = 2019;

Output:

Query 3:

SELECT *
FROM US_STATE
WHERE REGISTERED_WEAPONS > 200000;

Output:

Query 4:

SELECT GENDER, AGE, STATE_NAME FROM VICTIM WHERE AGE >=19;

Output:

Query 5:

SELECT *
FROM USER_ACCOUNT
WHERE NOT(GENDER = 'FEMALE');

Output:

Querv 6:

SELECT DISTINCT STATE_NAME AS WEALTHY_STATES FROM US_STATE WHERE POLICE_BUDGET_PER_CAPITA > '300' ORDER BY STATE_NAME;

Output:

Query 7:

SELECT RECORD.RECORD_ID,
VICTIM.STATE_NAME FROM RECORD
INNER JOIN VICTIM ON RECORD.VICTIM_ID = VICTIM.VICTIM_ID;

Output:

Query 8:

SELECT SHOOTER_ID, LAST_NAME, AGE, GENDER, RACE, STATE_NAME FROM SHOOTER
WHERE (RACE = 'BLACK' AND STATE_NAME = 'ARIZONA') OR
(RACE = 'WHITE' AND STATE_NAME = 'ARIZONA');

Output:

Assignment 4 (Part 2): Complex Queries

Query 1:

SELECT CAST(AVG(shooter.age) as int) as avg_age FROM SHOOTER; Output:

Query 2:

SELECT COUNT(shooter_id), race FROM shooter GROUP BY race;

Output:

		♦ RACE
1	3	WHITE
2	2	BLACK

Query 3:

SELECT record_record_id, victim.state_name FROM record INNER JOIN victim ON record.victim_id = victim.victim_id;

Output:

1 RCD1 ARIZONA
2 RCD2 ALABAMA
3 RCD3 ARKANSAS
4 RCD4 CALIFORNIA
5 RCD5 ALASKA

Query 4:

SELECT COUNT(type_of_shooting), type_of_shooting FROM record GROUP BY type_of_shooting ORDER BY COUNT(type_of_shooting) DESC;

Output:

	⊕ COUNT(TYPE_OF_SHOOTING)	↑ TYPE_OF_SHOOTING
1	3	SCH00L
2	1	MASS
3	1	RESIDENTIAL

Query 5:

SELECT *

FROM US_STATE

WHERE POLICE_BUDGET_PER_CAPITA BETWEEN 300 AND 500;

Output:

	\$ STATE_NAME	♦ REGISTERED_WEAPONS	BLACK_POPULATION_BY_PERCENT	POLICE_BUDGET_PER_CAPITA
1	ALASKA	20520	3	494
2	ARIZONA	204817	4	326
3	CALIFORNIA	376666	5	448

Query 6:

SELECT us_state.state_name, us_state.registered_weapons, us_state.police_budget_per_capita, us_state.black_population_by_percent, shooter.race FROM us_state RIGHT JOIN shooter
ON shooter.state_name = us_state.state_name
ORDER BY(registered_weapons) DESC;

Output:

	⊕ STATE_NAME		₱ POLICE_BUDGET_PER_CAPITA	
1	CALIFORNIA	376666	448	5 WHITE
2	ARIZONA	204817	326	4 WHITE
3	ALABAMA	168265	261	26 BLACK
4	ARKANSAS	108801	228	15 BLACK
5	ALASKA	20520	494	3 WHITE

Query 7:

CREATE VIEW male_accounts AS SELECT FIRST_NAME, LAST_NAME FROM USER_ACCOUNT WHERE GENDER = 'MALE';

SELECT * FROM male_accounts;

Output:

	♦ FIRST_NAME	
1	JEREMY	HIGGINS
2	MIHAIL	NOTAH
3	YONAH	RAYW00D

Query 8:

CREATE VIEW teenage_victims AS SELECT FIRST_NAME, LAST_NAME FROM VICTIM WHERE AGE BETWEEN 13 AND 19;

SELECT * FROM teenage_victims;

Output:

	♦ FIRST_NAME	
1	JAMIE	WILLINGER
2	JOHNATHAN	MILLS

Query 9:

CREATE VIEW school_shooting_dates AS SELECT MONTH_OF_SHOOTING, YEAR_OF_SHOOTING FROM RECORD WHERE TYPE_OF_SHOOTING = 'SCHOOL';

SELECT * FROM school_shooting_dates;

Output:

♦ MONTH_OF_SHOOTING	♦ YEAR_OF_SHOOTING
1 NOVEMBER	2018
2 OCTOBER	2018
3 MARCH	2019

Assignment 5: Demonstration of advanced queries By Unix shell Implementation

Unix Shell Script demo:

1) Dropping tables

```
| Oracle All Inclusive Tool|
| Main Menu - Select Desired Operation(s):|
| <CTRL-Z Anytime to Enter Interactive CMD Prompt>|
| M) View Manual
| Drop Tables
| Coreate Tables
| Operation Prompts |
| Coreate Tables
| Operation Prompts |
| Coreate Tables
| Operation Prompts |
| Operation P
```

2) Creating tables

```
Oracle All Inclusive Tool|
Main Menu - Select Desired Operation(s):|
<CTRL-Z Anytime to Enter Interactive CMD Prompt>|
  M) View Manual

    Drop Tables
    Create Tables
    Populate Tables
    Query Tables

   X) Force/Stop/Kill Oracle DB
  E) End/Exit
Choose:
SQL*Plus: Release 12.1.0.2.0 Production on Sat Oct 24 16:34:04 2020
Copyright (c) 1982, 2014, Oracle. All rights reserved.
Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
SQL> SQL> 2
Table created.
Table created.
SQL> SQL> 2
Table created.
                                                 6
                                                               8
                                                                       9
                                                                             10 11 12 13
SQL> SQL> 2
                                                                              10
Table created.
SQL> SQL> 2
Table created.
                                                                             10
```

3) Populating tables

```
Oracle All Inclusive Tool
 Main Menu - Select Desired Operation(s):|
 <CTRL-Z Anytime to Enter Interactive CMD Prompt>|
 M) View Manual
 1) Drop Tables
 2) Create Tables
3) Populate Tables
4) Query Tables
 X) Force/Stop/Kill Oracle DB
 E) End/Exit
Choose:
SQL*Plus: Release 12.1.0.2.0 Production on Sat Oct 24 16:35:09 2020
Copyright (c) 1982, 2014, Oracle. All rights reserved.
Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
1 row created.
SQL>
1 row created.
SOL>
1 row created.
SQL>
1 row created.
1 row created.
SQL> SQL>
1 row created.
SQL>
1 row created.
SOL>
1 row created.
SQL>
1 row created.
SQL>
1 row created.
SQL> SQL>
1 row created.
```

4) Querying (photos only display a small portion of the queries for the sake of conciseness)

Oracle All Inclusive Tool		SHOOTER_ID FIRST_NA	ME
Main Menu - Select Desired Operation(s): <ctrl-z anytime="" cmd="" enter="" interactive="" promp<="" td="" to=""><td>t>l</td><td>LAST_NAME</td><td></td></ctrl-z>	t>l	LAST_NAME	
M) View Manual		RACE	WEAPON_TYPE
1) Drop Tables		OCCUPATION	
2) Create Tables3) Populate Tables		STATE_NAME	
4) Query Tables		SH3 MARIO	
X) Force/Stop/Kill Oracle DB		TONY BLACK	PISTOL
<pre>E) End/Exit Choose:</pre>		SHOOTER_ID FIRST_NA	ME
4		LAST_NAME	
SQL*Plus: Release 12.1.0.2.0 Production on Mon O	28	RACE	WEAPON_TYPE
Copyright (c) 1982, 2014, Oracle. All rights re	served.	OCCUPATION	
Connected to:	12010 Chit Bardontin	STATE_NAME	
Oracle Database 11g Enterprise Edition Release 1 With the Partitioning, OLAP, Data Mining and Rea		STUDENT	
SQL> SQL> 2 SHOOTER_ID FIRST_NAME		ARKANSAS	
LAST_NAME	AGE GENDER	SHOOTER_ID FIRST_NA	ME
RACE WEAPON_TYPE		LAST_NAME	
OCCUPATION		RACE	WEAPON_TYPE
STATE_NAME		OCCUPATION	
SH1 ROBERT BENJAMIN	 18 MALE	STATE_NAME	
WHITE PISTOL	10 PIALL	SH4 JONES	
SHOOTER_ID FIRST_NAME		WHITE	HANDGUN
LAST_NAME	AGE GENDER	SHOOTER_ID FIRST_NA	ME
RACE WEAPON_TYPE		LAST_NAME	
OCCUPATION		RACE	WEAPON_TYPE
STATE_NAME		OCCUPATION	
ARIZONA		STATE_NAME	
SQL> SQL> 2 3 4 5 STATE_NAME	REGISTERED_WEAPONS		
POLICE_BUDGET_PER_CAPITA BLACK_POPULATION_BY_PERCEP	NT RACE		
CALIFORNIA 448	376666 5 WHITE		
ARIZONA	204817		
326	4 WHITE		
ALABAMA 261	168265 26 BLACK		
STATE_NAME	REGISTERED_WEAPONS		
POLICE_BUDGET_PER_CAPITA BLACK_POPULATION_BY_PERCENT RACE			
ARKANSAS	108801		
MACCONOM	15 BLACK		
ALASKA 494	20520		

SQL> SQL> Disconnected from Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit Production With the Partitioning, OLAP, Data Mining and Real Application Testing options
Press ENTER to continue...

AGE GENDER

20 MALE

AGE GENDER

AGE GENDER

23 MALE

AGE GENDER

<u>Assignment 6: Normalization of the Database</u> <u>/Functional Dependencies</u>

Functional Dependencies

State table:

State_name → {registered_weapons, police_budget_per_capita, black_population_by_percent}

Victim table:

```
Victim_id → {first_name, last_name, gender, age}
Victim_id → record_id
Victim_id → shooter_id
Victim_id → state_name
```

Shooter table:

```
Shooter_id \rightarrow {first_name, last_name, age, gender, race, weapon_type, occupation} Shooter_id \rightarrow state_name
```

Record table:

Record_id → {type_of_shooting, month_of_shooting, year_of_shooting, victim_id}

User account table:

```
Email → {first_name, last_name, age}
Email → record id
```

Note:

After careful analysis, we concluded that our previously defined relationship between the entities record and shooter is redundant in the sense that the following functional dependency is partial: victim_id, shooter_id → record_id. To fix this, shooter_id is now a foreign key in the victim table and removed from the record table.

Assignment 7: Normalization / 3rd NF

User Account Table

1NF/2NF:

U = (<u>email</u>, first_name, last_name, age, username)

Functional Dependencies:

Email → first_name, last_name, age, username Username → first_name, last_name

Transitivity: Email → Username → first_name, last_name

3NF:

U_{1.1}(email, first_name, last_name, age)

U_{1.2}(email, username)

Diagram representation:

3NF:

U., (email, first_name, last_name, age)

U1.2 (email, username)

Victim Table

1NF/2NF:

V = (<u>victim_id</u>, <u>state_name</u>, first_name, last_name, gender, age, city)

Functional Dependencies:

Victim_id → first_name, last_name, gender, age, city, state_name

City → State_name

Transitivity: victim_id \rightarrow city \rightarrow state_name

3NF:

V1.1(victim_id_first_name, last_name, gender, age, city)

V1.2(<u>city</u>, state_name)

Diagram Representation:

INF/2NF:

V(victim_id, state -name, first_name, last_name, age, city)

Transitivity: victim - id -> city -> state - name

SNF: V... (victim_id, first_name, last_name, age) first_name (ast_name) victim_id gender Jage V.-2 (state_name, city) city

State_name

Shooter Table:

1NF/2NF:

S = (<u>Shooter_id</u>, first_name, last_name_, age, gender, race, weapon, weapon_type, occupation, city, state_name)

Functional Dependencies:

Shooter_id \rightarrow first_name, last_name, age, gender, race, weapon, weapon_type, occupation, city, state_name

 $We apon \to we apon_type$

City → state_name

Transitivity:

shooter_id → city → state_name

Shooter_id → weapon → weapon_type

3NF:

S1.1(shooter_id, first_name, last_name, gender, age, race, weapon, occupation, city)

S1.2(city, state name)

S1.3(<u>weapon</u>, weapon_type)

Diagram Representation:

INF/2NF:

S=(shooter_id, first_name, last_name, age, gender, race, weapon, weapon-type, occupation, state-name)

snocter_id → city → state - name snocter_id -> weapon -> weapon-type

Si, (shooter_id, first_name, last_name, age, gender, race, neapon, occupation, city)

Note:

State_name

The Record and State tables are already in third normal form for the following reasons:

- 1. They are in second normal form (as per assignment 6)
 - a. Each of their non-prime attributes are fully functionally dependent on their respective primary keys
 - b. There are no partial dependencies
- 2. There are no transitive functional dependencies.

Assignment 8: Normalization 3NF/BCNF

Shooter table:

Shooter_id(I), first_name(F), last_name(L), age(A), gender(G), race(R), weapon(W), weapon type(T), occupation(O), city(C), state_name(S).

Bernstein's Algorithm :- Relation: R(I, F, L, A, G, R, W, T, O, C, S)

1) Functional dependencies

 $FD = \{I \rightarrow F, \, I \rightarrow L, \, I \rightarrow A, \, I \rightarrow G, \, I \rightarrow R, \, I \rightarrow W, \, I \rightarrow T, \, I \rightarrow O, \, I \rightarrow C, \, W \rightarrow T, \, C \rightarrow S, \, I \rightarrow S\}$

2) Find redundancies

$$I \rightarrow F$$
: $I+=\{I, L, A, G, R, W, T, O, C, S\}$ we do not get F, so not redundant $I \rightarrow L$: $I+=\{I, F, A, G, R, W, T, O, C, S\}$ we do not get L, so not redundant $I \rightarrow A$: $I+=\{I, F, L, G, R, W, T, O, C, S\}$ we do not get A, so not redundant $I \rightarrow G$: $I+=\{I, F, L, A, R, W, T, O, C, S\}$ we do not get G, so not redundant $I \rightarrow R$: $I+=\{I, F, L, A, G, W, T, O, C, S\}$ we do not get R, so not redundant $I \rightarrow W$: $I+=\{I, F, L, A, G, R, W, T, O, C, S\}$ we get W, so this FD is redundant $I \rightarrow T$: $I+=\{I, F, L, A, G, R, W, T, C, S\}$ we do not get T, so not redundant $I \rightarrow C$: $I+=\{I, F, L, A, G, R, W, T, O, C, S\}$ we get C, so this FD is redundant $I \rightarrow C$: $I+=\{I, F, L, A, G, R, W, T, O, C, S\}$ we get C, so this FD is redundant $I \rightarrow S$: $I+=\{I, F, L, A, G, R, W, T, O, C, S\}$ we get S, so this FD is redundant

After removing redundancies, FD = $\{I \rightarrow F, L, A, G, R, T, O, W \rightarrow T, C \rightarrow S\}$ Note: there are no partial dependencies.

3) Find keys

 $\{I,W,C\}$ are part of the key since they are in LHS and not in RHS $\{F, L, A, G, R, T, O, S\}$ cannot be part of the key since they are in RHS and not in LHS Thus, $IWC+=\{I, W, C, F, L, A, G, R, T, O, S\}$ is the key since it determines all of the attributes

4) Make tables

We have FD = {I
$$\rightarrow$$
 F, L, A, G, R, T, O, W \rightarrow T, C \rightarrow S} R1(I, F, L, A, G, R, T, O) with FD: I \rightarrow F, L, A, G, R, T, O R2(W,T) with FD: W \rightarrow T R3(C,S) with FD: C \rightarrow S R4(I,W,C) with no FD

User account table:

Email(E) \rightarrow first_name(F), last_name(L), age(A), username(U) Username(U) \rightarrow first_name(F), last_name(L)

$Email(E) \rightarrow record id(R)$

Bernstein's Algorithm :- Relation = {E, F, L, A, U, R}

1) Functional dependencies

$$\mathsf{FD} = \{ \, \mathsf{E} \to \mathsf{F}, \, \mathsf{E} \to \mathsf{L}, \, \mathsf{E} \to \mathsf{A}, \, \mathsf{E} \to \mathsf{U}, \, \mathsf{U} \to \mathsf{F}, \, \mathsf{L}, \, \mathsf{E} \to \mathsf{R}, \, \mathsf{EU} \to \mathsf{F}, \, \mathsf{EU} \to \mathsf{L} \}$$

2) Find redundancies

$$E \rightarrow F$$
: E+= {E, L, A, U, F, R} we get F, so this FD is redundant

$$E \rightarrow L$$
: E+= {E, F, A, U, L, R} we get L, so this FD is redundant

$$E \rightarrow A$$
: E+= {E, F, L, U, R} we did not get A so this FD is not redundant

$$E \rightarrow U$$
: E+= {E, F, L, A, R} we did not get U so this FD is not redundant

$$U \rightarrow F$$
: U+= {U, L} we did not get F so this FD is not redundant

$$U \rightarrow L$$
: U+= {U, F} we did not get L so this FD is not redundant

$$E \rightarrow R$$
: E+= {E, F, L, A, U} we did not get R so this FD is not redundant

$$EU \rightarrow F$$
: $EU+=\{E, U, F, L, A, R\}$ we got F so this FD is redundant

$$EU \rightarrow L$$
: $EU+=\{E, U, F, L, A, R\}$ we got L so this FD is redundant

Removing partial dependencies:

$$EU \rightarrow F$$
: E+={E, F, L, A, U, R}, U+= {U, F, L} we get F, so this FD is not fully dependent

$$EU \rightarrow L$$
: $E+=\{E, F, L, A, U, R\}$, $U+=\{U, F, L\}$ we get L, so this FD is not fully dependent

After removing redundancies: FD= $\{E \rightarrow A, U, R, U \rightarrow F, U \rightarrow L\}$

3) Find keys

{E, U} are part of the key since they are on LHS and not RHS

{A, R, F, L} cannot be part of the key as they are only on RHS and not the LHS

$$EU+ = \{E, U, A, R, F, L\}$$
 is the key

4) Make tables

We have FD=
$$\{E \rightarrow A, U, R, U \rightarrow F, U \rightarrow L\}$$

R1(E, A, U, R) with FD:
$$E \rightarrow A$$
, U, R

R2(U, F) with FD:
$$U \rightarrow F$$

R3(U, L) with FD:
$$U \rightarrow L$$

Victim table:

$$Victim_id(V) \rightarrow first_name(F)$$
, $last_name(L)$, $gender(G)$, $age(A)$, $city(C)$, $state_name(S)$ $City \rightarrow State_name$

$$\begin{aligned} & \text{Victim_id} \rightarrow \text{record_id}(R) \\ & \text{Victim_id} \rightarrow \text{shooter_id}(I) \end{aligned}$$

BCNF Decomposition algorithm

FD's =
$$\{V \rightarrow F L G A C S, C \rightarrow S, V \rightarrow R, V \rightarrow I\}$$

$$\{V \rightarrow F, \, V \rightarrow L, \, V \rightarrow G, \ \, V \rightarrow A, \, V \rightarrow C, \, \underline{V \rightarrow S,} \, \, C \rightarrow S \colon V \rightarrow R, \, V \rightarrow I \}$$

All are minimal cover except $V \rightarrow S$

- All singletons on the RHS
- No extraneous LHS
- No redundant FD

 $V \rightarrow S$ is redundant since S can be found with $C \rightarrow S$.

$$R1 = \{V, F\}$$

$$R2 = \{V, L\}$$

$$R3 = \{V,G\}$$

$$R4 = \{V,A\}$$

$$R5 = \{V,C\}$$

$$R6 = \{C, S\}$$

$$R7 = \{V, R\}$$

$$R8 = \{V, I\}$$

$$S1 = \{V, F, L, G, A, C, S, R, I\}$$

$$S2 = \{C, S\}$$

The following tables are already in 3NF/BCNF for the following reasons:

- 1. Each non-prime attribute is dependent on a prime attribute
- 2. There are no partial dependencies
- 3. There are no transitive functional dependencies
- 4. Each attribute on the RHS is a key

Functional dependencies:

Record table:

Record_id → type_of_shooting, month_of_shooting, year_of_shooting, victim_id

State table:

State_name → registered_weapons, police_budget_per_capita, black_population_by_percent

Assignment 9 /10: Demonstration of User Interface

NOTE: U1 demoed during lab and screen captures included below

Assignment 10: Relational Algebra and Final Documentation

Final ER Diagram

Final Relational Model

User Interface: with Normalized Database

Dropping Tables

```
Oracle All Inclusive Tool|
Main Menu – Select Desired Operation(s):|
<CTRL-Z Anytime to Enter Interactive CMD Prompt>|
  M) View Manual
  1) Drop Tables

    Create Tables
    Populate Tables

  4) Run Existing Queries
  5) Query Database
  X) Force/Stop/Kill Oracle DB
  E) End/Exit
Choose:
SQL*Plus: Release 12.1.0.2.0 Production on Mon Nov 30 15:57:54 2020
Copyright (c) 1982, 2014, Oracle. All rights reserved.
Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit Production With the Partitioning, OLAP, Data Mining and Real Application Testing options
SQL>
Table dropped.
SQL>
Table dropped.
Table dropped.
Table dropped.
Table dropped.
SQL> Disconnected from Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit Production With the Partitioning, OLAP, Data Mining and Real Application Testing options
Press ENTER to continue...
```

Creating Tables

```
Oracle All Inclusive Tool|
Main Menu – Select Desired Operation(s):|
  <CTRL-Z Anytime to Enter Interactive CMD Prompt>|
  M) View Manual
  1) Drop Tables
  2) Create Tables
3) Populate Tables
  4) Run Existing Queries
  5) Query Database
  X) Force/Stop/Kill Oracle DB
  E) End/Exit
Choose:
SQL*Plus: Release 12.1.0.2.0 Production on Mon Nov 30 16:08:07 2020
Copyright (c) 1982, 2014, Oracle. All rights reserved.
Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
SQL> SQL> 2
                   3
                         4
                              5
                                    6
Table created.
S0L> S0L> 2
                               5
                                    6
                                                8
                                                     9
                                                          10
                                                                11
                                                                     12
                                                                           13
                         4
Table created.
SQL> SQL> 2
                                    6
                                                8
                                                     9
                                                          10
                                                                     12
Table created.
SQL> SQL> 2
                                                     9
                         4
                               5
                                    6
                                                8
Table created.
SQL> SQL> 2
                   3
                         4
                              5
                                    6
                                                8
                                                     9
                                                          10
Table created.
SQL> SQL> Disconnected from Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit Production With the Partitioning, OLAP, Data Mining and Real Application Testing options
Press ENTER to continue...
```

Populating Tables

```
Oracle All Inclusive Tool|
Main Menu - Select Desired Operation(s):|
<CTRL-Z Anytime to Enter Interactive CMD Prompt>|
  M) View Manual
  1) Drop Tables
  2) Create Tables
  3) Populate Tables
  4) Run Existing Queries
  5) Query Database
  X) Force/Stop/Kill Oracle DB
  E) End/Exit
Choose:
3
SQL*Plus: Release 12.1.0.2.0 Production on Mon Nov 30 16:08:37 2020
Copyright (c) 1982, 2014, Oracle. All rights reserved.
Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit Production With the Partitioning, OLAP, Data Mining and Real Application Testing options
SQL> SQL>
1 row created.
SOL>
1 row created.
SQL>
1 row created.
SOL>
1 row created.
SOL>
1 row created.
SQL>
1 row created.
SQL>
1 row created.
1 row created.
SQL>
1 row created.
SOL>
1 row created.
```

Running pre-existing queries

		====
Oracle All Inclusive Tool Main Menu - Select Desired Operation(s): <ctrl-z anytime="" cmd="" enter="" interactive="" prompts<="" td="" to=""><td>٠١</td><td></td></ctrl-z>	٠١	
M) View Manual		
 Drop Tables Create Tables Populate Tables Run Existing Queries Query Database 		
X) Force/Stop/Kill Oracle DB		
E) End/Exit Choose: 4		
SQL*Plus: Release 12.1.0.2.0 Production on Mon Nov	/ 30 16:09:0	5 2020
Copyright (c) 1982, 2014, Oracle. All rights rese	erved.	
Connected to: Oracle Database 11g Enterprise Edition Release 11. With the Partitioning, OLAP, Data Mining and Real		
SQL> SQL> 2 SHOOTER_ID FIRST_NAME		
LAST_NAME	AGE	GENDER
RACE WEAPON_TYPE		
OCCUPATION		
STATE_NAME	∯ .v.	
SH1 ROBERT BENJAMIN	-	
SMITH WHITE PISTOL	18	MALE
SHOOTER_ID FIRST_NAME		
LAST_NAME	AGE	GENDER
RACE WEAPON_TYPE		
OCCUPATION		
STATE_NAME		
ARIZONA		
SHOOTER_ID FIRST_NAME		

```
SQL> SQL> 2
                                4
View created.
SQL> SQL>
FIRST_NAME
LAST_NAME
JAMIE
WILLINGER
JOHNATHAN
MILLS
HOLDEN
COOPER
SQL> SQL>
View dropped.
SQL> SQL> 2
View created.
                         3
                                4
SQL> SQL>
MONTH_OF_S YEAR_OF_SHOOTING
NOVEMBER
                                  2018
OCTOBER
                                  2018
MARCH
NOVEMBER
                                  2019
2018
DECEMBER
                                  2017
SQL> SQL>
View dropped.
SQL> SQL> SQL> Disconnected from Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit Production With the Partitioning, OLAP, Data Mining and Real Application Testing options
Press ENTER to continue...
```

Searching/Querying database

```
Oracle All Inclusive Tool|
 Main Menu - Select Desired Operation(s):|
 <CTRL-Z Anytime to Enter Interactive CMD Prompt>|
 M) View Manual
  1) Drop Tables
 2) Create Tables
 3) Populate Tables
  4) Run Existing Queries
 5) Query Database
 X) Force/Stop/Kill Oracle DB
 E) End/Exit
Choose:
SQL*Plus: Release 12.1.0.2.0 Production on Mon Nov 30 16:11:11 2020
Copyright (c) 1982, 2014, Oracle. All rights reserved.
Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
SQL> DELETE FROM USER_ACCOUNT WHERE AGE=52;
1 row deleted.
SQL>
UPDATE USER_ACCOUNT SET FIRST_NAME = 'PAM', LAST_NAME = 'MILLIGNAN' WHERE RECORD_ID = 'RCD8'; SQL>
1 row updated.
SQL> Disconnected from Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
Press ENTER to continue...
```

Relational Algebra

Query 1:

SQL: SELECT CAST(AVG(shooter.age) as int) as avg age

FROM SHOOTER:

Relational: F average age (Shooter)

Query 2:

SQL: SELECT COUNT(shooter id), race

FROM shooter GROUP BY race;

Relational: π_{race}(race^F_{count shooter,id} (Shooter))

Query 3:

SQL: SELECT record_record_id, victim.state_name

FROM record INNER JOIN victim
ON record.victim_id = victim.victim_id;

Relational: $\pi_{record.record\ id,\ victim.state\ name}$ (record \bowtie victim) Query 4: **SQL**: SELECT COUNT(type_of_shooting), type_of_shooting FROM record GROUP BY type of shooting ORDER BY COUNT(type of shooting) DESC; Relational: type of shooting G count(type of shooting) (record) Query 5: **SQL**: SELECT * FROM US STATE WHERE POLICE BUDGET PER CAPITA BETWEEN 300 AND 500; Relational: σ police budget per capita < 300 ^ police budget per capita > 500 (us_state) Query 6: **SQL**: SELECT us_state.state_name, us_state.registered_weapons, us state police budget per capita, us_state.black_population_by_percent, shooter.race FROM us state RIGHT JOIN shooter ON shooter.state name = us state.state name ORDER BY(registered_weapons) DESC; $\textbf{Relational:} \ \pi_{us_state_state_name,\ us_state_registered_weapons,\ us_state_police_budget_per_capita, us_state_black_population_by_percent,}$ shooter race (us_state ⋈ shooter)τ(registered_weapons) Query 7: SQL: CREATE VIEW male_accounts AS SELECT FIRST NAME, LAST NAME FROM USER ACCOUNT WHERE GENDER = 'MALE'; SELECT * FROM male_accounts; **Relational**: $\pi_{FIRST\ NAME\ LAST\ NAME}(\sigma_{gender='male'}(user_account))$ Query 8: **SQL**: CREATE VIEW teenage_victims AS SELECT FIRST NAME, LAST NAME FROM VICTIM WHERE AGE BETWEEN 13 AND 19; SELECT * FROM teenage victims; **Relational**: $\pi_{FIRST\ NAME.\ LAST\ NAME}(\sigma_{age>13^age<19}(victim))$

Query 9:

SQL: CREATE VIEW school_shooting_dates AS

SELECT MONTH_OF_SHOOTING, YEAR_OF_SHOOTING
FROM RECORD

WHERE TYPE_OF_SHOOTING = 'SCHOOL';

SELECT * FROM school_shooting_dates;

Relational: $\pi_{MONTH\ OF\ SHOOTING,\ YEAR\ OF\ SHOOTING}(\sigma_{type\ of\ shooting='school'}(record))$

Design experience

The normalization of 2NF relations to 3NF involves the removal of transitive dependencies, therefore our database is in 3NF because at least one of the following conditions holds for every non-trivial dependency $X \to Y$ in that either X is a super key in the relationship or Y is a prime attribute. The process of doing this was quite interesting because you get a deeper understanding of what each attribute in each relation truly depends on and gives you greater insight into how anomalies are created.