Esercizi vari

Alberto Carraro

December 20, 2009

Esercizio 1. Si consideri l'alfabeto di tre simboli $L = \{a, b, c\}$ e sia L^* l'insieme di tutte le stringhe finite costruite sull'alfabeto L. Definire induttivamente una funzione $| \bot | : L^* \to \mathbb{N}$ tale che |s| sia la lunghezza della stringa $s \in L^*$.

Soluzione 1. Indichiamo con ε la stringa vuota. Le lettere s, s', \cdots variano sull'insieme L^* , mentre l, l', \cdots variano su L. Poniamo induttivamente:

- $|\varepsilon| = 0$
- |ls| = 1 + |s|

Esercizio 2. Si considerino gli alfabeti di tre simboli $N = \{0, 1, 2\}$ e $L = \{a, b, c\}$. Definire induttivamente una funzione biiettiva $f: L^* \to N^*$.

Soluzione 2. Indichiamo con ε la stringa vuota. Le lettere $s, s', r, r' \cdots$ variano sull'insieme L^* , mentre l, l', \cdots variano su L. Le lettere t, t', \cdots variano sull'insieme N^* , mentre n, n', \cdots variano su N. Usiamo la notazione |t| per indicare anche la lunghezza di una stringa $t \in N^*$. Poniamo induttivamente:

•
$$f(\varepsilon) = \varepsilon$$

$$\bullet \ f(ls) = \left\{ \begin{array}{ll} 0f(s) & \textit{se } l = a \\ 1f(s) & \textit{se } l = b \\ 2f(s) & \textit{se } l = c \end{array} \right.$$

Come prima cosa osserviamo che |s|=|f(s)| per ogni $s\in L^*$. Quindi se $|s|\neq |s'|$ allora $f(s)\neq f(s')$. Questo vuol dire che per mostrare l'iniettività di f basta controllare che

per ogni
$$s, s'$$
 tali che $|s| = |s'|$ se $s \neq s'$ allora $f(s) \neq f(s')$

Inoltre osserviamo che f(ls)=f(l)f(s), per ogni $l\in L$ ed $s\in L^*$. Procediamo per induzione sulla lunghezza delle stringhe. Il caso base è immediato dato che ε è la sola stringa di lunghezza 0 e $f(\varepsilon)=\varepsilon$. Supponiamo ora che $s,s'\in L^*$ siano tali che $s\neq s'$ e |s|=|s'|=k+1 e che f mappi in maniera iniettiva tutte le stringhe di lunghezza fino a k. Essendo di lunghezza k+1, avremo che s=lr e s'=l'r', per qualche $l,l'\in L$ e $r,r'\in L^*$. Abbiamo quindi

$$f(s) = f(lr) = f(l)f(r) e f(s') = f(l'r') = f(l')f(r')$$

Abbiamo quindi due casi:

l = l': In questo caso si deve avere $r \neq r'$. Quindi

$$f(s) = f(l)f(r)$$

 $\neq f(l)f(r') \text{ per l'ipotesi induttiva,}$
 $= f(s')$

 $l \neq l'$: In questo caso chiaramente $f(s) = f(l)f(r) \neq f(l')f(r') = f(s')$, poiché $f(l) \neq f(l')$.