Aplicações de Modelos Multiestados Markovianos em Análise de Sobrevivência

Aplicações

Henrique Aparecido Laureano

ce063 - Tópicos em Análise de Sobrevivência Graduação em Estatística UFPR - Universidade Federal do Paraná

05 de outubro de 2016

Aplicações

Roteiro

Contextualizando

Representações por estados

Conceitos e definições

Modelos multiestados de sobrevivência markovianos

Aplicações

MASS II

Inoculação em frutos

Considerações finais

Representações por estados

Contextualizando ○●	Conceitos e definições	Aplicações 00000000 000000	Considerações finais
Representações por estados			
Aplicações de Modelos Multiestad	dos Markovianos em Análise de Sobrevivê	ncia	ce063

Contextualizando

 Representação usual de um dado de sobrevivência:

Aplicações

 Representação usual de um dado de sobrevivência:

Aplicações

Abordagens multiestados:

Representação usual de um dado de sobrevivência:

Abordagens multiestados:

Riscos competitivos:

Representação usual de um dado de sobrevivência:

Abordagens multiestados:

Riscos competitivos:

Multiestados:

ESTADO ABSORVENTE

Modelos multiestados de sobrevivência markovianos

Modelo usual

Modelo usual

$$q_{rs}(\mathbf{Z}) = q_{rs}^0 \mathrm{exp}(oldsymbol{eta}^ op \mathbf{Z})$$

Modelo usual

$$q_{rs}(\mathbf{Z}) = q_{rs}^0 \mathrm{exp}(oldsymbol{eta}^ op \mathbf{Z})$$

▶ **Z** é um vetor de covariáveis em que é assumido efeito comum a todas as transições

Modelo usual

$$q_{rs}(\mathbf{Z}) = q_{rs}^0 \mathrm{exp}(oldsymbol{eta}^ op \mathbf{Z})$$

- Z é um vetor de covariáveis em que é assumido efeito comum a todas as transições
- q_{rs}⁰ é a intensidade de transição ou taxa de falha de base para a transição do estado r para o estado s,

Modelo usual

$$q_{rs}(\mathbf{Z}) = q_{rs}^0 \exp(oldsymbol{eta}^ op \mathbf{Z})$$

- ➤ Z é um vetor de covariáveis em que é assumido efeito comum a todas as transições
- q_{rs}⁰ é a intensidade de transição ou taxa de falha de base para a transição do estado r para o estado s,

$$q_{rs}(t) = \lim_{\delta t \to 0} \frac{P(X(t + \delta t) = s | X(t) = r)}{\delta t}$$

Um modelo multiestado pode ser:

Um modelo multiestado pode ser:

► Não markoviano

Considerações finais

Modelos multiestados de sobrevivência markovianos

Um modelo multiestado pode ser:

▶ Não markoviano
▶ Semimarkoviano

Contextualizando

Um modelo multiestado pode ser:

- ► Não markoviano
- ► Semimarkoviano
- Markoviano

Um modelo multiestado pode ser:

- Não markoviano
- Semimarkoviano
- Markoviano

Pressuposto markoviano:

Um modelo multiestado pode ser:

- Não markoviano
- Semimarkoviano
- Markoviano

Pressuposto markoviano:

Uma futura transição depende apenas do estado atual

Um modelo multiestado pode ser:

- Não markoviano
- Semimarkoviano
- Markoviano

Pressuposto markoviano:

Uma futura transição depende apenas do estado atual

Um modelo multiestado markoviano pode ser de três tipos:

Um modelo multiestado pode ser:

- ► Não markoviano
- Semimarkoviano
- Markoviano

Pressuposto markoviano:

Uma futura transição depende apenas do estado atual

Um modelo multiestado markoviano pode ser de três tipos:

Paramétrico

Um modelo multiestado pode ser:

- ► Não markoviano
- Semimarkoviano
- Markoviano

Pressuposto markoviano:

Uma futura transição depende apenas do estado atual

Um modelo multiestado markoviano pode ser de três tipos:

Paramétrico

Não paramétrico

Um modelo multiestado pode ser:

- ► Não markoviano
- Semimarkoviano
- Markoviano

Pressuposto markoviano:

Uma futura transição depende apenas do estado atual

Um modelo multiestado markoviano pode ser de três tipos:

Paramétrico

- Não paramétrico
- Semiparamétrico

Modelo paramétrico (package msm do R)

Modelo paramétrico (package msm do R)

 Distribuição de probabilidade assumida para o tempo médio de permanência em cada estado transiente r, comumente exponencial

Modelo paramétrico (package msm do R)

 Distribuição de probabilidade assumida para o tempo médio de permanência em cada estado transiente r, comumente exponencial

Dois tipos:

Modelo paramétrico (package msm do R)

 Distribuição de probabilidade assumida para o tempo médio de permanência em cada estado transiente r, comumente exponencial

Dois tipos:

Tempo homogêneo: intensidades de transição constantes ao longo do tempo (independentes de t)

Aplicações

Modelo paramétrico (package msm do R)

000000

 Distribuição de probabilidade assumida para o tempo médio de permanência em cada estado transiente r, comumente exponencial

Dois tipos:

Tempo homogêneo: intensidades de transição constantes ao longo do tempo (independentes de t)

Tempo não homogêneo: intensidades de transição variáveis ao longo do tempo, constantes sob segmentos

Contextualizando

Modelo (não e) semiparamétrico (package mstate do R)

Modelo (não e) semiparamétrico (package mstate do R)

▶ Modelo de Cox estratificado por transição

Modelo (não e) semiparamétrico (package mstate do R)

- ▶ Modelo de Cox estratificado por transição
- ▶ Na ausência de covariáveis temos um modelo não paramétrico

Contextualizando

Modelo (não e) semiparamétrico (package mstate do R)

- Modelo de Cox estratificado por transição
- ▶ Na ausência de covariáveis temos um modelo não paramétrico

Além do modelo usual, permite a especificação de modelos mais elaborados com:

Modelo (não e) semiparamétrico (package mstate do R)

- ► Modelo de Cox estratificado por transição
- ▶ Na ausência de covariáveis temos um modelo não paramétrico

Além do modelo usual, permite a especificação de modelos mais elaborados com:

Diferentes efeitos das covariáveis em cada transição

Modelo (não e) semiparamétrico (package mstate do R)

- ► Modelo de Cox estratificado por transição
- ▶ Na ausência de covariáveis temos um modelo não paramétrico

Além do modelo usual, permite a especificação de modelos mais elaborados com:

- Diferentes efeitos das covariáveis em cada transição
- Intensidades de transição proporcionais

Modelo (não e) semiparamétrico (package mstate do R)

- ► Modelo de Cox estratificado por transição
- ▶ Na ausência de covariáveis temos um modelo não paramétrico

Além do modelo usual, permite a especificação de modelos mais elaborados com:

- Diferentes efeitos das covariáveis em cada transição
- Intensidades de transição proporcionais
- Covariáveis que aparecem apenas em algumas transições

Inferências

Inferências

▶ Probabilidades de transição e de sobrevivência

Inferências

- ▶ Probabilidades de transição e de sobrevivência
- ▶ Tempos médios esperados de permanência em estados e para transição entre estados

Inferências

- ▶ Probabilidades de transição e de sobrevivência
- ► Tempos médios esperados de permanência em estados e para transição entre estados

Qualidade do ajuste

Inferências

- ▶ Probabilidades de transição e de sobrevivência
- ► Tempos médios esperados de permanência em estados e para transição entre estados

Qualidade do ajuste

Modelo paramétrico: métodos formais e informais

00000

Inferências

- Probabilidades de transição e de sobrevivência
- ► Tempos médios esperados de permanência em estados e para transição entre estados

Qualidade do ajuste

Modelo paramétrico: métodos formais e informais

Modelo (não e) semiparamétrico: verificação usual

00000

Inferências

- Probabilidades de transição e de sobrevivência
- ► Tempos médios esperados de permanência em estados e para transição entre estados

Aplicações

Qualidade do ajuste

Modelo paramétrico: métodos formais e informais

Modelo (não e) semiparamétrico: verificação usual

 Análise gráfica de resíduos e verificação da suposição de taxas de falha proporcionais (na presença de covariáveis)

Considerações finais

Aplicações

MASS II

MASS II

Pacientes com doença arterial coronariana multiarterial, angina estável e função ventricular preservada

Contextualizando

Pacientes com doença arterial coronariana multiarterial, angina estável e função ventricular preservada

Aplicações

Contextualizando

Pacientes que não entraram em óbito (448)

Aplicações

00000000

Pacientes que entraram em óbito (163)

Tempo até a primeira falha • Tempo de sobrevivência *

Modelo multiestado markoviano paramétrico

Modelo multiestado markoviano paramétrico

As covariáveis grupo de risco e histórico de IAM não são significativas

000000000

MASS II

Modelo multiestado markoviano paramétrico

As covariáveis grupo de risco e histórico de IAM não são significativas

Tempos médios de permanência, em anos, para cada estado transiente Erro padrão Estimativa pontual Mínimo - IC de 95% Máximo - IC de 95% 1: TM 7.98 0.66 6.71 9.27 2: ICP 10.26 0.91 8.38 11.99 **ESTADO** 3: CRM 19.25 2.13 14.99 23.59 4: CRM 21.43 4.59 13.51 31.13 5: ICP 16.41 3.09 11.7 23.98 11.46 1.9 8.27 16.15 6: IAM 7: AVC 10.09 5.91 3.9 26.23

Contextualizando

Modelo multiestado markoviano paramétrico

As covariáveis grupo de risco e histórico de IAM não são significativas

Aplicações

	PROBABILIDADES DE TRANSIÇÃO ENTRE ESTADOS PARA O PERÍODO DE 1 ANO										
						DESTINO					
		1	2	3	4	5	6	7	8	9	
		(TM)	(ICP)	(CRM)	(CRM)	(ICP)	(IAM)	(AVC)	(ANGINA)	(MORTE)	
	1	0.882	0	0	0.041	0.022	0.032	0.004	0.0008	0.018	
	(TM)	[0.86 - 0.897]	U	U	[0.03 - 0.053]	[0.015 - 0.031]	[0.024 - 0.043]	[0.001 - 0.009]	[0 - 0.005]	[0.012 - 0.026]	
	2	0	0.907	0	0.019	0.041	0.019	0.003	0.002	0.007	
[(ICP)	Ü	[0.886 - 0.92]		[0.014 - 0.028]	[0.031 - 0.053]	[0.013 - 0.028]	[0.001 - 0.008]	[0 - 0.007]	[0.005 - 0.013]	
	3	0	0	0.949	0.002	0.007	0.01	0.003	0.002	0.026	
	(CRM)	U	Ü	[0.935 - 0.958]	[0 - 0.005]	[0.004 - 0.012]	[0.006 - 0.016]	[0.001 - 0.007]	[0 - 0.006]	[0.02 - 0.035]	
	4 (CRM)	0	0	0	0.954	0	0	0.002	0	0.044	
-					[0.929 - 0.968]	Ü		[0 - 0.013]	v	[0.03 - 0.065]	
ORIGEM	5	0	0	0	0	0.941	0	0	0	0.059	
8	(ICP)	Ü			Ü	[0.918 - 0.958]	Ů	v		[0.042 - 0.081]	
-	6	0	0	0	0	0	0.916	0	0	0.083	
	(IAM)				Ü		[0.885 - 0.939]	Ü		[0.06 - 0.115]	
	7	0	0 0	0	0	0	0	0.905	0	0.094	
	(AVC)	Ü	Ü		Ü			[0.769 - 0.964]		[0.035 - 0.23]	
	8	0	0	0	0	0	0	0	1	0	
	(ANGINA)	-	-	-	-			3			
	9	0	0	0	0	0	0	0	0	1	
\Box	(MORTE)	,		,	,				-		

Contextualizando

Curvas de sobrevivência para os estados transientes

Aplicações

Contextualizando

Modelo multiestado markoviano (não e) semiparamétrico

Aplicações

000000000

As covariáveis grupo de risco e histórico de IAM não são significativas

		1	empos espera	ados de perma	nência, em ar	nos, para cada	transição ent	re estados		
						DESTINO				
		1: TM	2: ICP	3: CRM	4: CRM	5: ICP	6: IAM	7: AVC	8: ANGINA	9: MORTE
	1: TM	6.38	0	0	2.11	1.14	1.31	0.14	0.04	2.64
	2: ICP	0	7.28	0	1.07	1.97	0.92	0.1	0.09	2.33
IGEM	3: CRM	0	0	9.65	0.13	0.43	0.59	0.14	0.09	2.73
	4: CRM	0	0	0	9.04	0	0	0.05	0	4.67
	5: ICP	0	0	0	0	10.05	0	0	0	3.72
OR	6: IAM	0	0	0	0	0	3.89	0	0	9.88
	7: AVC	0	0	0	0	0	0	10.44	0	3.33
	8: ANGINA	0	0	0	0	0	0	0	13.77	0
	9- MORTE	0	0	0	0	0	0	0	0	13.77

Contextualizando

Modelo multiestado markoviano (não e) semiparamétrico

As covariáveis grupo de risco e histórico de IAM não são significativas

Aplicações

Contextualizando

- 1 TM
- 2 ICP
- 3 CRM
 - 4 CRM
 - 5 ICP
 - 6 IAM
 - 7 AVC
 - 8 ANGINA

 - 9 MORTE

Inoculação em frutos

	000000	
Inoculação em frutos		
		050
Aplicações de Modelos Multiestados Markovianos em Análise de Sobrevivêno	cia	ce063

Considerações finais

Conceitos e definições

Contextualizando

Objetivo

Verificar possíveis diferenças entre gêneros de Colletotrichum em relação ao tempo com que a lesão progride nos frutos de maçã, e se existe diferença entre frutos com e sem ferimento

Aplicações

Contextualizando

Objetivo

Verificar possíveis diferenças entre gêneros de Colletotrichum em relação ao tempo com que a lesão progride nos frutos de maçã, e se existe diferença entre frutos com e sem ferimento

Aplicações

0000000

Colletotrichum?

Contextualizando

Objetivo

Verificar possíveis diferenças entre gêneros de Colletotrichum em relação ao tempo com que a lesão progride nos frutos de maçã, e se existe diferença entre frutos com e sem ferimento

Colletotrichum?

 O fungo Colletotrichum é o principal causador da doença Mancha Foliar de Glomerella (MFG), muito severa em pomares de macieira do estado do Paraná

Aplicações ○○○○○○○ ○○●○○○

Representação dos estados

Contextualizando

Modelo multiestado markoviano paramétrico

- Diferença significativa entre frutos com e sem ferimento
- Sem diferença significativa entre os gêneros de Colletotrichum

Aplicações

Contextualizando

Modelo multiestado markoviano paramétrico

- Diferença significativa entre frutos com e sem ferimento
- Sem diferença significativa entre os gêneros de Colletotrichum

Aplicações

Modelo multiestado markoviano paramétrico

- Diferença significativa entre frutos com e sem ferimento
- Sem diferença significativa entre os gêneros de Colletotrichum

Aplicações

	Tempos médios de permanência, em dias, para cada estado transiente											
Frutos sem ferimento Frutos com ferimento												
		Estimativa	Erro padrão	Mínimo *	Máximo *	Estimativa	Erro padrão	Mínimo *	Máximo *			
	1 (Inoculação)	68.87	24.35	34.44	137.71	8.65	1.7	5.89	12.71			
OQ	2 ((0, 10] mm)	1	0.38	0.48	2.1	2.32	0.49	1.53	3.52			
ESTADO	3 ((10, 30] mm)	9.17	3.74	4.12	20.4	5	1.04	3.32	7.52			
	4 ((30, 50] mm)	4.6	2.06	1.91	11.05	4.65	0.97	3.09	7			
	* Mínimo e máximo de um intervalo de 95% de confianca											

Contextualizando

Modelo multiestado markoviano (não e) semiparamétrico

- Diferença significativa entre frutos com e sem ferimento
- Sem diferença significativa entre os gêneros de Colletotrichum

Aplicações

0000000

Inoculação em frutos

Modelo multiestado markoviano (não e) semiparamétrico

- Diferença significativa entre frutos com e sem ferimento
- ▶ Sem diferença significativa entre os gêneros de *Colletotrichum*

	Tempos esperados de permanência, em dias, para cada transição entre estados												
	Frutos sem ferimento							Frutos com ferimento					
	DESTINO							DESTINO					
		1	2	3	4	5	1	2	3	4	5		
		(Inoculação)	((0, 10] mm)	((10, 30] mm)	((30, 50] mm)	((50, máx.] mm)	(Inoculação)	((0, 10] mm)	((10, 30] mm)	((30, 50] mm)	((50, máx.] mm)		
ORIGEM	1 (Inoculação)	15.61	1.86	2.44	1.29	0.8	9.04	1.29	3.24	3.21	5.2		
	2 ((0, 10] mm)	0	8.93	7.09	3.66	2.31	0	5.59	5.04	4.33	7.04		
	3 ((10, 30] mm)	0	0	14.8	4.43	2.77	0	0	10.62	4.33	7.04		
	4 ((30, 50] mm)	0	0	0	17.44	4.56	0	0	0	14.61	7.39		
	5 ((50, máx.] mm)	0	0	0	0	22	0	0	0	0	22		

Modelo multiestado markoviano (não e) semiparamétrico

- Diferença significativa entre frutos com e sem ferimento
- Sem diferença significativa entre os gêneros de Colletotrichum

Aplicações

Considerações finais

Considerações finais

▶ Ambos os modelos geraram inferências muito similares

Considerações finais

- ▶ Ambos os modelos geraram inferências muito similares
- ▶ Modelo (não e) semiparamétrico se mostrou mais robusto

Considerações finais

- Ambos os modelos geraram inferências muito similares
- Modelo (não e) semiparamétrico se mostrou mais robusto
- Ambos os modelos se mostraram altamente dependentes do tamanho amostral

▶ Ambos os modelos geraram inferências muito similares

Conceitos e definições

- ▶ Modelo (não e) semiparamétrico se mostrou mais robusto
- ► Ambos os modelos se mostraram altamente dependentes do tamanho amostral
 - O Grande amostra
 - ⊗ Grande amostra em cada transição

00000000

Obrigado por seu tempo!