Armenian (ARM)

Վեցանկյուն տարածք

Պակ Դենգկլեկը կանգնած է անվերջ վեցանկյուն ծածկույթի մի վանդակում, որն անվանենք սկզբնական վանդակ։ Երկու վանդակ վեցանկյունների ծածկույթում կոչվում են հարևան, եթե նրանք ընդհանուր կողմ ունեն։ Մեկ քայլով Պակ Դենգկլեկը կարող է շարժվել վեց հարևան վանդակներից մեկը, որոնք համարակալված են 1-ից 6 թվերով այնպես, ինչպես ցույց է տրված հետևյալ նկարում։

Պակ Դենգկլեկը տարածք կստեղծի կատարելով N տեղափոխություն և անցնելով մի ճանապարհով, որը բաղկացած է իր այցելած վանդակների հաջորդականությունից։ i-րդ տեղափոխությունը կատարվում է D[i] ուղղության ընտրությամբ և ընտրված ուղղությամբ L[i] քայլ անելով։ Ճանապարհը բավարարում է հետևյալ պայմաններին.

- Ճանապարը *փակ է*, այսինքն հաջորդականության վերջին վանդակը և առաջին վանդակը նույնն են։
- Ճանապարհըը *պարզ է*, այսինքն յուրաքանչյուր վանդակ այցելվում է առավելագույնը մեկ անգամ, բացի սկզբնական վանդակից, որն այցելվում է ճիշտ երկու անգամ (սկզբում և վերջում)։
- Ճանապարհը *տեսանելի է*, այսինքն ճանապարհին պատկանող յուրաքանչյուր վադակ ունի առնվազն մեկ հարևան վանդակ, որը ճանապարհին չի պատկանում և *ներսում* չէ։
 - Կասենք վանդակը ներսում է, եթե այն ընկած չէ ճանապարհի վրա և նրանից կարելի է ճանապարհին չպատկանող վերջավոր թվով վանդակներ այցելել։

Հետևյալը ճանապարհի օրինակ է, որով կարող է անցնել Պակ Դենգկլեկը։

• 1 համարի վանդակը (ներկված է վարդագույն) սկզբնական (և վերջնական) վանդակն է։

- Համարակալված վանդակները (ներկված են բաց կապույտ) ճանապարհին պատկանող վանդակներն են։ Համարակալումն արված է այդ վանդկներով անցնելու հերթականությամբ։
- Խաչով նշված վանդակները (ներկված են մուգ կապույտ) ներսում գտնվող վանդակներն են։

Ձևավորված տարածքը բաղկացած է ճանապարհին պատկանող և ներսում ընկած վանդակներից։ Տարածքին պատկանող c վանդկի հեռավորությունը սկզբնական վանդակից այդ վանդակ հասնելու համար մինիմալ քայլերի քանակն է, ընդորում պետք է անցնել միայն տարածքին պատկանող վանդակներով։ Տարածքին պատկանող վանդակի միավորը հաշվվում է որպես $A+d\times B$, որտեղ A-ն և B-ն Պակ Դենգկլեկի կողմից սահմանված հաստատուններ են, իսկ d-ն այդ վանդակի հեռավորությունն է։ Հետևյալ նկարում նշված են վերևում բերված օրինակում տարածքին պատկանող բոլոր վանդակների հեռավորությունները։

Օգնեք Պակ Դենգկլեկին պարզելու, թե իր կողմից N տեղափոխություններ կատարելու արդյունքում ձևավորված տարածքի վանդակների միավորների գումարը որքան կկազմի։ Քանի որ այդ ընդհանուր գումարը կարող է շատ մեծ լինել, հաշվեք այն 10^9+7 -ի բաժանելուց մնացորդը։

Իրականացման մանրամասներ

Դուք պետք է իրականացնեք հետևյալ ենթածրագիրը.

```
int draw_territory(int N, int A, int B, int[] D, int[] L)
```

- *N*: տեղափոխությունների քանակը։
- A, B: միավորները հաշվելու համարա անհրաժեշտ հաստատունները։
- D: N երկարության զանգված, որտեղ D[i]-ն i-րդ տեղափոխության ուղղությունն է։
- L: N երկարության զանգված, որտեղ L[i]-ն i-րդ տեղափոխության ժամանակ քայլերի քանակն է։
- ullet Այս ենթածրագիրը պետք է վերադարձնի տարածքի վանդակների միավորների ընդհանուր գումարը 10^9+7 -ի բաժանելուց մնացորդը։
- Այս ենթածրագիրը կանչվում է ճիշտ մեկ անգամ։

Օրինակներ

Դիտարկենք հետևյալ կանչը.

```
draw_territory(17, 2, 3,

[1, 2, 3, 4, 5, 4, 3, 2, 1, 6, 2, 3, 4, 5, 6, 6, 1],

[1, 2, 2, 1, 1, 1, 2, 3, 2, 3, 1, 6, 3, 3, 2, 1])
```

Տեղափոխությունները համապատասխանում են խնդրում բերված օրինակին։ Հետևյալ աղյուսակում տրված են տարածքում առկա հեռավորությունների դեպքում միավորները։

Հեռավորություն	Վանդակների քանակ	Յուրաքանչյուր վանդակի միավորը	Ընդամենը
0	1	2+0 imes 3=2	1 imes 2 = 2
1	4	2+1 imes 3=5	4 imes5=20
2	5	2+2 imes 3=8	5 imes 8 = 40
3	6	$2+3\times 3=11$	$6 \times 11 = 66$
4	4	2+4 imes 3=14	4 imes 14 = 56
5	3	2+5 imes 3=17	3 imes 17 = 51
6	4	2+6 imes 3=20	$4 \times 20 = 80$
7	4	2+7 imes 3=23	4 imes23=92
8	5	2+8 imes 3=26	5 imes26=130
9	3	2+9 imes 3=29	3 imes 29 = 87
10	4	2+10 imes 3=32	4 imes 32 = 128
11	5	2+11 imes 3=35	5 imes 35 = 175
12	2	2+12 imes 3=38	2 imes 38 = 76

Գումարային միավորը ստացվում է 2+20+40+66+56+51+80+92+130+87+128+175+76=1003։ Հետևաբար, draw_territory եկթածրագիրը պետք է վերադարձկի 1003։

Սահմանափակումներ

- 3 < N < 200000
- $0 \le A, B \le 10^9$
- $1 \le D[i] \le 6$ (for all $0 \le i \le N-1$)
- $1 \leq L[i]$ (for all $0 \leq i \leq N-1$)
- L-ի բոլոր տարրերի գումարը չի գերազանցում 10^9 -ը։
- Ճանապարհը փակ, պարզ և տեսանելի է։

ենթախնդիրներ

- 1. (3 միավոր) N=3, B=0
- 2. (6 միավոր) N=3
- 3. (11 միավոր) L-ի բոլոր տարրերի գումարը չի գերազանցում 2000-ը։
- 4. (12 միավոր) B=0, L-ի բոլոր տարրերի գումարը չի գերազանցում 200000-ը։
- 5. (15 միավոր) B=0
- 6. (19 միավոր) L-ի բոլոր տարրերի գումարը չի գերազանցում 200000-ը։
- 7. (18 միավոր) L[i] = L[i+1] (բոլոր $0 \le i \le N-2$ համար)
- 8. (16 միավոր) Լրացուցիչ սահմանափակումներ չկան։

Գրեյդերի նմուշ

Գրեյդերի նմուշը կարդում է մուտքային տվյալները հետևյալ ձևաչափով.

- $\mathsf{unn}\, 1: N A B$
- $\operatorname{unn} 2 + i \ (0 \le i \le N 1)$: $D[i] \ L[i]$

Գրեյդերի նմուշը ձեր պատասխանը տպում է հետևյալ ձևաչափով.

• տող 1: draw_territory-ի վերադարձրած արժեքը։