Лабораторна робота 1 Програмування операцій з елементами рядків цілих чисел

Архітектура IA32
Інструментальні засоби - MASM, x32Dbg, OllyDbg
Час виконання — 4 академічних години
Формування звіту
Захист із демонстрацією результатів

Мета роботи і постановка задачі

Мета роботи:

набуття практичних навичок розробки і налагодження програм на мові асемблера для програмування комп'ютерних операцій із цілими числами різної розрядності.

Початкові дані:

- рядки даних (одномірні масиви, вектор);
- кількість елементів у рядках однакова;
- тип елементів даних цілі.

Необхідно: З урахуванням вимог до алгоритму розробити на асемблері програму пересилання і модифікації елементів із початкових рядків та збереження результатів перетворення або аналізу в інших рядках.

Приклад вимог до алгоритму за варіантом

- Кількість початкових рядків 2;
- Кількість рядків результату 2;
- Розрядність елементів (чисел) в початкових рядках 1 байт (8 біт);
- Розрядність елементів (чисел) в рядках результату 2 байти (16 біт);
- Дані для формування елементи початкових рядків;
- Правило формування конкатенація (попарне зчеплення)
 елементів з однаковими індексами;
- Модифікація коду інвертування.

Зміст звіту

- 1. Постановка задачі.
- 2. Вимоги до алгоритму.
- 3. Графічне пояснення послідовності дій.
- 4. Лістинг програми з коментарем та описом роботи.
- 5. Print screen екрана налагоджувача з програмою.
- Графічне і текстове пояснення результатів роботи програми.
- 7. Висновки за результатами виконання лабораторної роботи.

Приклад графічного пояснення дій

Масив початкових даних (8-біт елементи) m0 m3 m4m5 m6 Масив початкових даних (8-біт елементи) 16 15 31 Pericmp EAX AH ALАЛП (ALU) notAX (32-6im) AX.16 Масив інверсних значень 16 notk0 notk1 notk2 notk3 Масив результату (16-біт елементи)

Приклад програми

```
TITLE <Перенесення і модифікація даних>
.686
.model flat, stdcall
option casemap: none
.data
  X1 db 72, 13, 44, 60, 24
  LENX1 EQU $ -X1; визначення довжини масиву X1 (в байтах !!!)
  X2 db 17, 23, 14, 10, 22
  LENX2 EQU $ -X2; визначення довжини масиву X2 (в байтах !!!)
  Y1 dw LENX2 DUP(0FFFFh) ; занесення одиниць до пам'ятті-приймача
  Y2 dw LENX2 DUP(0AAAAh) ; занесення контрольного коду до пам'ятті-приймача
.code
start:
  xor ecx, ecx
  mov cl, LENX2; завантаження кількості чисел в регистр-лічильник
  mov esi,0
  mov edi,0
  mov eax,0
mt1: mov al, [X1+si]; завантаження в регістр числа (8 біт) із масиву X1
  mov ah, [X2+si]; завантаження в регістр числа (8 біт) із масиву X2
  mov [Y1+di], ах ; занесення в масив Y1 числа (16 біт) із регістру
              ; інвертування коду в регістрі (16 біт)
  not ax
  mov [Y2+di], ах ; занесення в масив Y2 числа (16 біт) із регістру
  add si,1 ; зміна індексу для початкових масивів
  add di,2 ; зміна індексу для масиву результату
  loop mt1; зменшення (-1) лічильника і повторення при ECX/=0
ret
end start
```

Стан перед виконанням програми

Вміст пам'яті за результатом виконання програми і контрольні показники

Прямий код = 1148, 170D, 0E2C, 0A3C, 1618 Інверсний код = EEB7, E8F2, F1D3, F5C3, E9E7

Приклад 2 графічного пояснення дій

Приклад програми 2

```
TITLE <Перенесення і модифікація даних>
.686
.model flat, stdcall
option casemap: none
.data
  X1 db 72, 13, 44, 60, 24, 60
  LENX1 EQU $ -X1; визначення довжини масиву X1 (в байтах !!!)
  X2 db 17, 23, 14, 10, 22
  LENX2 EQU $ -X2; визначення довжини масиву X2 (в байтах !!!)
  Y1 dw LENX2 DUP(0FFFFh) ; занесення одиниць до пам'ятті-приймача
  Y2 dw LENX2 DUP(OAAAAh) ; занесення контрольного коду до пам'ятті-приймача
.code
start:
  xor ecx, ecx
  mov cl, LENX2; завантаження кількості чисел в регистр-лічильник
   mov esi.0
   mov edi.0
   mov eax.0
mt1: mov al, [X1+si]; завантаження в регістр числа (8 біт) із масиву X1
  mov ah, [X2+si]; завантаження в регістр числа (8 біт) із масиву X2
   mov [Y1+di], ах ; занесення в масив Y1 числа (16 біт) із регістру
   add si,1 ; зміна індексу для початкових масивів
   add di.2
            ; зміна індексу для масиву результату
  loop mt1; зменшення (-1) лічильника і повторення при ECX/=0
   xor ecx, ecx
  mov cl, LENX2; завантаження кількості чисел в регистр-лічильник
  xor esi, esi
  xor edi. edi
  xor eax, eax
mt2: mov ax, [Y1+si]; завантаження в регістр числа (16 біт) із масиву Y1
                ; інвертування коду в регістрі (16 біт)
  mov [Y2+di], ах ; занесення в масив Y2 числа (16 біт) із регістру
   add si,2 ; зміна індексу
  add di,2 ; зміна індексу
  loop mt2; зменшення (-1) лічильника і повторення при ECX/=0
  ret
end start
```

Вміст пам'яті (програма 2)

До виконання програми:

ı		Hex dump															
1	00402000	48	0D	20	30	18	30	11	17	ØE.	ØA.	16	FF	FF	FF	FF	FF
- 1	00402010	FF	FF	FF	FF	FF	AΑ	AA	AA	AA	AA	AA	AA	AA	AA	AA	00
-	00402020	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
-	00402030	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
1	00402040																

Після виконанння програми:

Address																
00402000	48	0D	20	30	18	30	11	17	0E	ØA	16	48	11	<u>0D</u>	17	20
00402010 00402020	ИE	30	ИH	18	16	87	EE	F2	E8	03	F1	03	F5	E7	E9	90
00402030	00	00	00	00	00	00	00	00	00	00	00	00	00	00	õõ.	00
00402030 00402040	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99

Рекомендації студентам

- 1. Після отримання завдання необхідно, в першу чергу, розробити та узгодити з викладачем «графічне пояснення дій».
- 2. Первинне налагоджування програми виконувати з мінімально необхідною кількістю даних.
- 3. Після отримання первинного робочого варіанта програми (або її частини) бажано остаточно узгодити з викладачем вимоги до завдання.

Література

Навчально-методичні матеріали попередніх лекцій.