# Biçimsel Diller ve Otomata Teorisi

Sunu IV Sonlu Otomata

İZZET FATİH ŞENTÜRK



### Dilleri Tanımlamak İçin Başka Bir Yöntem

- Aşağıdaki tanıma uyan birkaç oyun Taşlar bir oyun tahtasına dizilir • Zarlar atılır ve rastgele bir sayı oluşturulur • Sayıya bağlı olarak taşlar, tamamen kurallar tarafından belirlenmiş bir şekilde yeniden düzenlenir
- Oyuncunun tahtayı değiştirme seçeneği yoktur
  - Her şeyi zar belirler Zarı kim atarsa atsın, hiçbir beceri veya seçim söz konusu değildir • Kazanan tamamen zarı kimin attığına değil, hangi sayı dizisinin üretildiğine bağlıdır.

### eyaletler

• Taşların tahtadaki olası tüm konumları • Durumlar diyelim

- Oyun, girdi ile bir durumdan diğerine değişir belirli sayıda
  - Her sayı için bir ve yalnızca bir sonuç durumu vardır Oyun, bir sayı girildikten sonra aynı durumda olabilir • Zafer anlamına gelen bir durum vardır: son durum • Oyun, ilk durumla başlar (benzersiz)

### Sonlu Otomat

- Sonlu: Alfabedeki olası durumların sayısı ve harflerin sayısı (olası zarlar) sınırlıdır • Otomat: Durumların değişimi tamamen girdi tarafından yönetilir
- Sıradaki durumun belirlenmesi otomatiktir
- Otomat kelimesinin çoğulu otomatadır

### Tanım: Sonlu Otomat

- Sonlu bir otomat, üç şeyden oluşan bir koleksiyondur
  - Sonlu bir durumlar kümesi. Bunlardan biri başlangıç durumudur ve başlangıç olarak adlandırılır.
     durum. Bazıları (belki hiçbiri) nihai durumlardır
  - Olası giriş harflerinden oluşan bir Σ alfabesi
  - Her durumu ve her bir harf için ifade eden sonlu bir geçişler kümesi sonraki gitmek için hangi eyaletin alfabesi
- Tanım, bir FA'nın nasıl çalıştığını açıklamaz
  - Giriş dizesini en soldaki harften başlayarak harf harf okur Başlangıç durumundan başlayarak, harfler bir durum dizisini belirler • Dizi son giriş harfi okunduğunda sona erer

- Giriş alfabesinde a ve b olmak üzere iki harf vardır Üç durum vardır, x, y ve z • Geçiş kuralları
  - Kural 1, x durumundan ve a girişinden y durumuna gidin •
  - Kural 2, x durumundan ve b girişinden z durumuna gidin •
  - Kural 3, y durumundan ve a girişinden x durumuna gidin •
  - Kural 4, Başlangıç y durumu ve b girişi, z durumuna gidin •
  - Kural 5, z durumundan ve herhangi bir girişten, z durumunda kalın
- Başlangıç durumu x'tir ve tek son durum z'dir Bu,
- mükemmel şekilde tanımlanmış bir FA'dır çünkü üç şartı da karşılar: durumlar, alfabe, geçişler
- Giriş dizisi aaa veya abba olduğunda ne olur (kabul edildi mi yoksa reddedildi mi?)

- Bir FA tarafından k<u>abul edilen</u> diziler, bu FA ile ilişkili dildir.
- Giriş dizisinde b ile karşılaşılır karşılaşmaz, FA z durumuna atlar ve z durumundan çıkmak imkansızdır • FA, içinde b harfi bulunan tüm dizileri kabul eder • (a + b)\*b (bir + b)\*

### Geçiş Tablosu

- Kuralları tablo biçiminde özetlemek çok daha basit
  - Her satır, FA'daki durumlardan biridir •

Her sütun, giriş alfabesinin bir harfidir • Girişler, FA'nın taşındığı yeni durumlardır

• FA için geçiş tablosu:

|            |          | b           |
|------------|----------|-------------|
| x'i başlat | Υ        | la britismo |
| Υ          | X        | Solvinos    |
| son z      | In lates | baseline .  |

### FA'nın Soyut Tanımı

- 1. Sonlu bir Q = {q0, q1 q2 ...} durumları kümesi olup , bunların q0'ı başlangıç durumu
- 2. Son durumlar olarak adlandırılan Q'nun bir alt kümesi
- 3. Bir alfabe  $\Sigma = \{x1 \ x2 \ x3 ...\}$
- 4. Her bir durum ve harf çiftini bir durumla ilişkilendiren bir geçiş fonksiyonu  $\delta$

$$\delta(qi,xj) = xk$$

# Geçiş Diyagram

- Her durumu küçük bir daire ile temsil edin
- Her durumdan diğer durumlara oklar çizin
- Okları karşılık gelen alfabe harfleriyle etiketleyin
- Belirli bir harf durumu kendine geri döndürüyorsa: döngü
- Başlangıç durumu "başlangıç" kelimesiyle veya bir eksi işaretiyle gösterilir
- Nihai durumlar şu şekilde etiketlenir: kelime "son" veya artı işaretleri



### Harfler ve Geçiş Yolu

- Her giriş dizisi, bir yolu geçmek olarak yorumlanabilir
  - Başlangıç durumundan
  - başlayın Eyaletler arasında hareket edin (belki bazı eyaletleri birçok kez
  - ziyaret edin) Belirli bir dinlenme durumuna yerleşin Bu bir son durumsa, yol başarıyla sona ermiştir
- Giriş dizisinin harfleri seyahat yönünü belirler Harflerimiz bittiğinde durmalıyız

 aaaabba ve bbaabbbb giriş dizeleri tarafından oluşturulan yollar





Bu makine tarafından kabul edilen dil, Λ • (a + b)(a + b)\*
= (a + b)+ dışındaki tüm dizilerin kümesidir.



 Tüm sözcükleri kabul eden birçok FA'dan biri

Aynı durum hem başlangıç durumu hem de son durumdur

• (a + b)\*



Aşağıdaki FA'lar vardır:
 dil kabul etmeyin • İki tür

#### vardır:

- Nihai durumu olmayan FA'lar
  - Nihai durumu olan FA'lar

başlangıç durumundan erişilemez



### FA'lar ve Dilleri

- Bir dil bir RE tarafından tanımlandığında, dilde bulunan bazı rastgele sözcükleri üretmek kolaydır.
  - Ancak belirli bir harf dizisinin içinde olup olmadığını anlamak daha zordur.
     ifade tarafından tanımlanan dil
- FA ile durum tam tersidir!
  - FA tarafından tanımlanan bir dil verildiğinde, makinenin kabul edeceğini önceden bildiğimiz bir grup kelimeyi yazmak kolay değildir.
- FA'yı iki farklı açıdan çalışma alıştırması yapmalıyız: Bir dil verildiğinde, bunun için bir makine yapabilir miyiz? • Bir makine verildiğinde, onun dilini anlayabilir miyiz?

 Çift sayılı harflerle {ab} alfabesindeki tüm kelimelerin dilini kabul eden bir makine oluşturun • Matematikçi yaklaşım:
 Soldan sağa doğru gidildikçe harflerin sayısını sayın

- Bilgisayar uzmanı: ?
  - Dizinin tam uzunluğuyla ilgilenmiyoruz Bu sayı, gereksiz yere birçok hesaplama pahasına toplanan gereksiz bilgileri temsil ediyor
  - Bir Boole bayrağı kullanın, yalnızca bir depolama konumu kullanın.
     iki farklı değerden yalnızca birini içerebilir

Harf sayısı çift olan
 {ab} alfabesindeki tüm
 kelimelerin dilini kabul eden
 bir makine oluşturun



- a harfi ile başlayan tüm dizeler olan dildeki tüm sözcükleri kabul eden bir FA oluşturun
- a(a + b)\*
- Belirli bir dil için benzersiz bir makine yoktur.
- Mümkün olan her dili kabul eden her zaman en az bir FA var mı?







- aaa veya bbb gibi üçlü harf içeren tüm sözcükleri ve yalnızca bu sözcükleri kabul eden bir FA oluşturun
- Anlayabiliriz

Bu FA'nın dili ve işleyişi çünkü nasıl inşa edildiğini gördük.

 Son resimden başlayıp anlamını yorumlamaya çalışsaydık..



Bu makinenin hangi dili kabul ettiğini inceleyin
 ababa kabul edilmez
 babbb kabul edilir

- Durum 4'e ulaşmanın iki yolu vardır Durum 2'den (sadece a'yı okuyun) • Durum 3'ten (sadece b'yi okuyun)
- Çift harfli dizeler: (a + b)\*(aa + bb) (a + b)\*



- Bu makine tüm kelimeleri kabul edecek üçüncü harf olarak b ile ve diğer tüm kelimeleri reddet
- Bu dili tanımlayan bazı Res'ler: (aab + abb + bab + bbb)(a + b)\* (a + b)(a + b)(b)(a + b)\*



- Yalnızca kelimeyi kabul eden bir FA evet
- L = {baa}



- FA yalnızca iki diziyi kabul eder: baa ve ab
- Büyük makine, küçük dil



- aa\* biçimindeki tüm sözcükler
- a\*(a\*ba\*ba\*ba\*)\*(a + a\*ba\*ba\*ba\*)
- Tek amacı
   Son faktör, Λ'nin bir olasılık
   olmadığını garanti etmektir.



• (a + b)\*a



• (a + b)\*a



### Örnek: Çift-Çift

• [aa + bb + (ab + ba)(aa + bb)\*(ab + ba)]\*

