Анализ производительности криптографических расширений PostgreSQL

Забелкин Андрей M8O-310Б-22 18 апреля 2025 г.

База данных содержит более 7 млн записей компаний.

1 Анализ нечёткого поиска

1.1 Временные характеристики

```
--
2 EXPLAIN ANALYZE SELECT name
3 FROM companies
4 WHERE name % 'Microsft'
5 LIMIT 10;
```

Таблица 1: Сравнение времени выполнения запросов (мс)

Метод	Холодный кэш	Горячий кэш	Прирост
	2683 ± 120	262 ± 15	10.2×
pg_bigm	1987 ± 95	215 ± 12	9.2×
LIKE	4521 ± 210	4400 ± 185	1.03×

Пояснения:

- Холодный кэш: первый запуск после перезагрузки сервера.
- Горячий кэш: повторный запуск, когда данные уже в памяти.
- pg_bigm показывает лучшее время благодаря оптимизированной работе с биграммами.
- Ускорение при повторных запросах связано с использованием кэша PostgreSQL.

2 Криптографические операции

2.1 Шифрование данных

Таблица 2: Время шифрования 1 млн записей (сек)

Алгоритм	Шифрование	Дешифровка	Накладные расходы
AES-256	14.2 ± 0.8	12.7 ± 0.6	18 %
Blowfish	16.8 ± 0.9	15.3 ± 0.7	22%
3DES	31.5 ± 1.2	28.4 ± 1.1	35 %

Пояснения:

- Накладные расходы увеличение времени по сравнению с незашифрованными данными.
- AES демонстрирует лучшую производительность благодаря аппаратной поддержке в современных CPU.
- 3DES устарел и не рекомендуется для новых систем.

2.2 Хеширование паролей

Таблица 3: Скорость хеширования (100 000 операций)

Алгоритм	Время (сек)	Итераций/сек
bcrypt ($cost = 8$)	9.8 ± 0.4	10 200
bcrypt ($cost = 10$)	38.2 ± 1.1	2620
bcrypt ($cost = 12$)	152.7 ± 3.5	655
MD5	0.9 ± 0.05	111 100

Пояснения:

- \bullet bcrypt c cost = 8 разумный баланс безопасности и скорости.
- Увеличение cost фактора экспоненциально замедляет вычисления.
- MD5 крайне быстр, но небезопасен для хранения паролей.

3 Выводы

- Нечёткий поиск: pg_bigm на $26\,\%$ быстрее pg_trgm при холодном кэше; разница сокращается до $8\,\%$ при горячем.
- Шифрование: AES-256 добавляет 18 % накладных расходов против 35 % у 3DES.
- **Хеширование**: bcrypt c cost = 10 замедляет перебор паролей в 38 раз по сравнению c cost = 8.

•	Кэширование:	ускоряет	повторные	запросы	в 9–10 ра	з для н	нечёткого п	оиска.