

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

Институт №7 «Робототехнические и интеллектуальные системы»

Кафедра 704 «Информационно-управляющие комплексы летательных аппаратов»

Отчёт по лабораторной работе №1

по дисциплине «Бортовое оборудование летательных аппаратов»

на тему: «Моделирование движения спутника в невозмущённом поле Земли»

Выполнил: студент группы М/О-408С-21	
М.А. Артёмова	
Принял: ассистент кафедры 704	
принял. ассистент кафедры 704	

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
ТЕОРЕТИЧЕСКИЕ ОСНОВЫ	3
МЕТОДИКА ВЫЧИСЛЕНИЙ	4
РЕЗУЛЬТАТЫ ВЫЧИСЛЕНИЙ	5
ВЫВОДЫ	7
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ	7

ВВЕДЕНИЕ

В данной лабораторной работе исследуется движение искусственного спутника Земли (ИСЗ) в невозмущённом гравитационном поле. Основной задачей является вычисление и построение орбиты спутника на основе параметров эфемеридного навигационного сообщения (RINEX-файл). Моделирование осуществляется на основе кеплеровских элементов орбиты.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ

Движение спутника в центральном гравитационном поле описывается уравнениями небесной механики. Основой для расчётов служит уравнение Кеплера, описывающее зависимость между средней, эксцентрической и истинной аномалиями:

$$M = E - e \sin E$$
,

где:

- М средняя аномалия;
- E эксцентрическая аномалия;
- е эксцентриситет орбиты.

Для расчёта орбиты используются основные элементы орбиты:

- большая полуось а,
- эксцентриситет е,
- наклонение і,
- аргумент перигея ω.
- долгота восходящего узла Ω ,
- средняя аномалия в момент эпохи M_0 .

Третий закон Кеплера позволяет определить период обращения:

$$T=2\pi\sqrt{\frac{a^3}{\mu}},$$

где µ — гравитационный параметр Земли.

Преобразование из орбитальной системы координат в геоцентрическую (ECEF) выполняется с учётом вращения Земли.

МЕТОДИКА ВЫЧИСЛЕНИЙ

Программа на Python выполняет следующие этапы:

- 1. Парсинг RINEX-файла, извлечение элементов орбиты.
- 2. Решение уравнения Кеплера численными методами для нахождения эксцентрической и истинной аномалий.
 - 3. Расчёт положения спутника в орбитальной системе координат.
 - 4. Преобразование координат в систему ЕСЕГ с учётом вращения Земли.
 - 5. Вывод полного списка координат спутника в системе ЕСЕГ в табличном виде.
- 6. Визуализация эволюции орбиты в 3D- и в 2D-проекциях на плоскости (XY, XZ, YZ).
 - 7. Визуализация эволюции орбитальных параметров.

РЕЗУЛЬТАТЫ ВЫЧИСЛЕНИЙ

На основе эфемеридных данных были рассчитаны координаты спутника во времени. Графики (Рисунок 1) отображают пространственное положение орбиты:

- Верхний левый график: трёхмерная орбита в геоцентрической системе координат.
 - Остальные три графика: проекции на плоскости XY, XZ, YZ.

Pисунок 1 - Эволюция орбиты в разных плоскостях

Выведена таблица координат спутника в системе ЕСЕГ:

		FCFF	
		ика в системе ЕСЕГ	
Время (с)		Координата Ү (м)	
345600.0	1.608920e+07		2.095645e+07
345600.0	1.608920e+07		
345660.0	1.612935e+07		
345720.0	1.616993e+07	3.090250e+06	2.085089e+07
345780.0	1.621091e+07	3.243510e+06	2.079571e+07
345840.0	1.625231e+07	3.396225e+06	2.073894e+07
345900.0	1.629411e+07	3.548380e+06	2.068059e+07
345960.0	1.633630e+07	3.699964e+06	2.062065e+07
346020.0	1.637888e+07	3.850965e+06	2.055913e+07
346080.0	1.642184e+07	4.001371e+06	2.049604e+07
346140.0	1.646517e+07	4.151170e+06	2.043138e+07
346200.0	1.650886e+07	4.300350e+06	2.036516e+07
346260.0	1.655291e+07	4.448899e+06	2.029738e+07
346320.0	1.659731e+07	4.596806e+06	2.022805e+07
346380.0	1.664204e+07	4.744060e+06	2.015716e+07
346440.0	1.668711e+07	4.890648e+06	2.008474e+07
346500.0	1.673250e+07	5.036560e+06	2.001078e+07
346560.0	1.677820e+07	5.181784e+06	1.993528e+07
346620.0	1.682421e+07	5.326310e+06	1.985826e+07
346680.0	1.687051e+07	5.470126e+06	1.977972e+07
346740.0	1.691710e+07	5.613222e+06	1.969967e+07
346800.0	1.696397e+07	5.755587e+06	1.961811e+07

Рисунок 2 – Часть вывода полного списка координат спутника в консоли

Рассчитаны основные элементы орбиты:

Параметр	Значение
Большая полуось а (м)	26 561 188.86
Эксцентриситет е	0.0002100209
Наклонение орбиты і (градусы)	54.98
Аргумент перигея ω (градусы)	-74.34
Долгота восходящего узла Ω (градусы)	-102.19
Истинная аномалия v (градусы)	181.45

Построены эволюции орбитальных параметров (средняя аномалия, эксцентрическая аномалия, истинная аномалия, аргумент широты, радиус орбиты, наклонение, долгота восходящего узла, корректирующие поправки):

Эволюция орбитальных параметров

Рисунок 3 – Эволюция орбитальных параметров

Все вычисленные параметры соответствуют кеплеровской модели движения и подтверждают корректность полученных результатов.

выводы

- Полученные результаты подтверждают соответствие движения спутника кеплеровским законам.
 - Визуализация позволила наглядно оценить параметры орбиты.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1. IGS/RTCM RINEX Committee. RINEX The Receiver Independent Exchange Format. Version 4.02 / Ed. Francesco Gini. 1 October 2024. 131 p.
- 2. Карлащук В.И., Карлащук С.В. Спутниковая навигация. Методы и средства. М.: СОЛОН-Пресс, 2006. 176 с. (Библиотека инженера). ISBN 5-98003-251-7.
- 3. Куприянов А.О. Глобальные навигационные спутниковые системы: Учебное пособие. М.: МИИГАиК, 2017. 76 с.