BEHRT - Transformer for Electronic Health Records

Nova Search Reading Group

Context

Electronic Health Records

Context

Electronic Health Records

Data:

- 1. Diagnostics
- 2. Procedures
- 3. Lab results
- 4. Medication
- 5. Medical notes

Context - Research Tasks in EHRs

General tasks:

- 1. Medical Concept Extraction
- 2. Patient Trajectory Modeling
- 3. Disease Inference

Tasks in Clinical Notes:

- 1. Single concept extraction (e.g. tagging)
- 2. Temporal Event Extraction
- 3. Relation Extraction
- 4. Abbreviation Expansion

Context - Research Tasks in EHRs

General tasks:

- 1. Medical Concept Extraction
- 2. Patient Trajectory Modeling
- 3. Disease Inference

1. Complex and nonlinear interactions among past, present and future concepts.

- 1. Complex and nonlinear interactions among past, present and future concepts.
- 2. Long-term dependencies among concepts

- 1. Complex and nonlinear interactions among past, present and future concepts.
- 2. Long-term dependencies among concepts
- 3. Difficulties of representing multiple heterogeneous concepts of variable sizes to the model

- 1. Complex and nonlinear interactions among past, present and future concepts.
- 2. Long-term dependencies among concepts
- 3. Difficulties of representing multiple heterogeneous concepts of variable sizes to the model
- 4. Irregular intervals between consecutive visits.

BEHRT - Introduction

Let each diagnose be a word, each visit a sentence, and a patient's entire medical history a document.

Data Source: Clinical Practice Research Datalink (CPRD)

1. Encode diagnosis along the hospital visits

- 1. Encode diagnosis along the hospital visits
- Add patient age: encodes time + relation between diseases and age

- 1. Encode diagnosis along the hospital visits
- 2. Add patient age: encodes time + relation between diseases and age
- 3. Add Position: catch positional interactions among diseases

- Encode diagnosis along the hospital visits
- Add patient age: encodes time + relation between diseases and age
- 3. Add Position: catch positional interactions among diseases
- 4. Add Segment: give extra information about separation between visits

- Encode diagnosis along the hospital visits
- Add patient age: encodes time + relation between diseases and age
- 3. Add Position: catch positional interactions among diseases
- 4. Add Segment: give extra information about separation between visits
- 5. Final Embedding

Advantage of Bidirectional self awareness:

- 1. Order which diseases appear can be reversed
- 2. Time interval between two diagnoses can vary

Advantage of Bidirectional self awareness:

- 1. Order which diseases appear can be reversed
- 2. Time interval between two diagnoses can vary

These are caused by:

- A. Variabilities in individuals' health
- B. Practice of care
- C. Random events

Advantage of Bidirectional self awareness:

- 1. Order which diseases appear can be reversed
- 2. Time interval between two diagnoses can vary

These are caused by:

- A. Variabilities in individuals' health
- B. Practice of care
- C. Random events

Also, BERT architecture is suited for the challenges we mentioned earlier

Advantage of Bidirectional self awareness:

- 1. Order which diseases appear can be reversed
- 2. Time interval between two diagnoses can vary

These are caused by:

- A. Variabilities in individuals' health
- B. Practice of care
- C. Random events

Also, BERT architecture is suited for the challenges we mentioned earlier:

Complex and nonlinear interactions in time.

Advantage of Bidirectional self awareness:

- 1. Order which diseases appear can be reversed
- 2. Time interval between two diagnoses can vary

These are caused by:

- A. Variabilities in individuals' health
- B. Practice of care
- C. Random events

Also, BERT architecture is suited for the challenges we mentioned earlier:

- Complex and nonlinear interactions in time.
- Long-term dependencies among concepts

Advantage of Bidirectional self awareness:

- 1. Order which diseases appear can be reversed
- 2. Time interval between two diagnoses can vary

These are caused by:

- A. Variabilities in individuals' health
- B. Practice of care
- C. Random events

Also, BERT architecture is suited for the challenges we mentioned earlier:

- Complex and nonlinear interactions in time.
- Long-term dependencies among concepts
- 3. Difficulties of representing multiple heterogeneous concepts of variable sizes

Advantage of Bidirectional self awareness:

- 1. Order which diseases appear can be reversed
- 2. Time interval between two diagnoses can vary

These are caused by:

- A. Variabilities in individuals' health
- B. Practice of care
- C. Random events

Also, BERT architecture is suited for the challenges we mentioned earlier:

- Complex and nonlinear interactions in time.
- 2. Long-term dependencies among concepts
- Difficulties of representing multiple heterogeneous concepts of variable sizes
- 4. Irregular intervals between consecutive visits.

BEHRT - Training

Standard BERT training:

- 1. Mask 12% of words
- 2. Replace 1.5% of words with noise
- Perform Masked LM and update parameters

BEHRT - Learning

3 tasks, predict:

- 1. Next visit's diseases
- 2. Diseases in next 6 months
- 3. Diseases in next 12 months

BEHRT - Learning

3 tasks, predict:

- 1. Next visit's diseases
- 2. Diseases in next 6 months
- 3. Diseases in next 12 months

Data selection:

- 1. train test split (80-20) at patient level
- Task 2 and 3 must have 6/12 months of visits after the 4th visit.

BEHRT - Learning

3 tasks, predict:

- 1. Next visit's diseases (699k patients)
- 2. Diseases in next 6 months (391k patients)
- 3. Diseases in next 12 months (342 patients)

Data selection:

- 1. train test split (80-20) at patient level
- 2. Task 2 and 3 must have visits 6/12 months after the 4th visit.

BEHRT - Results

Model Name	Next Visit (APS AUROC)	Next 6 M (APS AUROC)	Next 12 M (APS AUROC)
BEHRT	0.462 0.954	0.525 0.958	0.506 0.955
Deepr	0.360 0.942	0.393 0.943	0.393 0.943
RETAIN	0.382 0.921	0.417 0.927	0.413 0.928

BEHRT - Results (Average Precision vs AUC-ROC)

BEHRT - Results (Average Precision vs AUC-ROC)

Model Name	Next Visit (APS AUROC)	Next 6 M (APS AUROC)	Next 12 M (APS AUROC)
BEHRT	0.462 0.954	0.525 0.958	0.506 0.955
Deepr	0.360 0.942	0.393 0.943	0.393 0.943
RETAIN	0.382 0.921	0.417 0.927	0.413 0.928

BEHRT - Interpretability

BEHRT - Interpretability

In A, BEHRT shows strong relationships between:

- Rheumatoid Arthritis and Menorrhagia and polymenorrhoea
- Rheumatoid Arthritis and Enthesopathies & synovial Disorders
- Gastro-oesophageal reflux disease and Rheumatoid Arthritis (not shown[‡])
- Gastro-oesophageal reflux disease and Enthesopathies & synovial Disorders (not shown*)

In B, BEHRT shows strong relationships between:

- Hypo or Hyperthyroidism and Hypertension
- Hypo or Hyperthyroidism and Gastrooesophageal reflux disease
- Hypertension and Dyslipidaemia (not shown[‡])
- Abdominal Hernia and Irritable Bowel Syndrome (not shown*)

BEHRT -Interpretability (gender)

Table S7. Predictions of Gender-Specific Diseases (Test Predictions from Next 6 Months)

Disease Name	Disease Gender	Male Predictions	Female Predictions
Hyperplasia of Prostate	M	384	0
Hydrocoele (incl infected)	M	36	0
Male Infertility	M	1	24
Primary Malignancy Prostate	M	557	0
Erectile Dysfunction	M	425	1
Menorrhagia and Polymenorrhoea	F	0	697
Endometriosis	F	0	47
Female Genital Prolapse	F	0	865
Female Infertility	F	2	36
Benign Neoplasm of Ovary	F	0	69
Postmenopausal Bleeding	F	0	140
Primary Malignancy Breast	F	0	11
Primary Malignancy Ovarian	F	1	193

Male (M) and Female (F) Predictions imply label predictions >0.5

BEHRT - Interpretability

Population Statistics

Table S1: Statistics of Cohorts Selected Prediction Tasks

Characteristics		Next Visit	Next 6 M	Next 12M
Gender	Male	41.80%	42.30%	41.70%
	Female	58.20%	57.70%	58.30%
Ethnicity	White	46.40%	48.30%	47.40%
	Unknown	43.80%	44.00%	44.50%
	Indian	0.40%	0.50%	0.50%
	Other	0.30%	0.30%	0.30%
	Pakistani	0.20%	0.30%	0.20%
	Black Carib	0.20%	0.30%	0.20%
	Other Asian	0.10%	0.10%	0.10%
	Black African	0.10%	0.10%	0.10%
	Mixed	0.10%	0.10%	0.10%
	Bangladeshi	0.08%	0.07%	0.07%
	Black Other	0.07%	0.06%	0.06%
	Chinese	0.06%	0.06%	0.05%
Age Start	0.25 Quantile	45	46	46
	0.5 Quantile	58	60	59
	0.75 Quantile	70	71	70
Age End	0.25 Quantile	56	58	58
	0.5 Quantile	70	71	71
	0.75 Quantile	81	82	82
Unique Codes	0.25 Quantile	7	8	8

Takes and future steps

- 1. Shows potential to provide value for health
- 2. Treatments, prescriptions, notes not used here
- 3. The vectors and attention weights can be used for research
- 4. These datasets are difficult to access and there aren't a lot of them