MATH 239 — LECTURE 16

Bartosz Antczak Instructor: Luke Postle February 8, 2017

Review of Last Lecture

When we **subdivide** an edge e = uv, we delete e and add a new vertex w adjacent to only u and v.

An H-subdivision is a graph obtained from H by subdividing edges.

We also covered an if-and-only-if theorem about planar graphs:

G is planar \iff G has no K_5 -substitution and $K_{3,3}$ -substitution

To decide if G is planar, either give an embedding or give a K_5 -subdivision or $K_{3,3}$ -subdivision. So deciding planarity is in NP and co-NP, and actually it's in P. There is a linear-time algorithm (but it's complicated so we won't cover it).

16.1 Colouring

Prof. Postle wrote it as "coloring" because he's American, and he refuses to include a 'u' because "screw you".

Let's begin with a question:

Is there a natural generalization of a bipartite graph? (e.g., a tripartite graph?)

Recall that if G is bipartite if there exists a bipartition of V(G) into two parts A and B such that no edge has both ends in the same partition.

Definition — Independent Set

An **independent set** I of G is a set of vertices with no edge with both ends in I. From this, we can construct another (but equivalent) definition of a bipartition:

G is bipartite if there exists a partition of G into two parts, each of which is an independent set.

From this, we can define a *tripartite* using the previous definition, except we swap the word "two" with "three". However, instead of this definition, we'll use different terminology:

Definition — K-colouring

A **k-colouring** of a graph G is a partition of V(G) into k independent sets.

Why do we use this terminology? We can attribute each independent set with a unique colour. This results in no edge having two ends of the same colour.

Definition — K-colourable

A graph G is k-colourable if there is a k-colouring of G.

From this, we create another theorem:

 $G \ is \ bipartite \iff G \ is \ 2\text{-}colourable$

Example 16.1.1. A 3-colourable graph, with partitions 1, 2, and 3

Remark

If G is k-colourable, then G is m-colourable for all $m \ge k$ (because the independent sets may be empty).

Definition — Chromatic number

The **chromatic number** of a graph G denoted, $\chi(G)$, is the minimum k such that G is k-colourable.

16.1.1 Proposition 1

If H is a subgraph of G, then $\chi(H) \leq \chi(G)$

Proof of Proposition 1

Let $k = \chi(G)$ and consider a k-colouring of G, then that induces a k-colouring of H, so $\chi(H) \leq k$.

16.1.2 Proposition 2

If G contains k_n as a subgraph, then $\chi(G) \geq n$

Definition — Clique Number

Denoted w(G), is the size of a largest complete subgraph of G. $\chi(G) \geq w(G)$. This is the *lower bound* on determining the chromatic number of a graph G (recall that this is a greater-than-or-equal-to sign, so the clique number isn't always the chromatic number of a graph G).

Example 16.1.2. For this graph, $\chi(G) = 4$. Can you match each vertex into their respective partition?

Is deciding if G is k-colourable in NP? P? co-NP? It's actually in all three!

Definition — Maximum Degree

The **maximum degree** of a graph G, denoted $\Delta(G)$, equals $\max_{v \in V(G)} \deg(v)$

16.1.3 Theorem 1

$$\chi(G) \leq \Delta(G) + 1$$
 for all graphs G

Proof of Theorem 1

Let v_1, v_2, \dots, v_n be an arbitrary ordering of V(G). Now colour the vertices in order, where we colour v_i with the lowest colour in $\{1, \dots, \Delta(G) + 1\}$ that's not used by any neighbours. Such a colour exists because $\deg(G) \leq \Delta(G)$ but there are $\Delta(G) + 1$ colours.