Monitor Lucas Machado Moschen

Lista Espaços com Produto Interno

Exercício 1 Prove os exercícios dados em sala de aula.

Exercício 2 Prove o Teorema de Cauchy-Schwarz. Seja X um espaço com produto interno. Então, para todo $x, y \in X$,

$$|\langle x, y \rangle| \le ||x|| ||y||.$$

Além do mais a igualdade vale se, e somente se, x e y são linearmente dependentes.

Exercício 3 Sejam X um espaço com produto interno e $A: X \to X$ uma transformação linear. Mostre que se ||Ax|| = ||x|| para todo $x \in X$, então $\langle Ax, Ay \rangle = \langle x, y \rangle$ para todo $x, y \in X$. Além do mais, se $\langle Ax, Ay \rangle = \langle x, y \rangle$ para todo $x, y \in X$ e A é sobrejetiva, então

$$A(U^{\perp}) = A(U)^{\perp}, \forall U \subset X.$$

Exercício 4 Mostre que todo espaço vetorial possui uma base. Com esse resultado, conclua que um produto interno pode ser introduzido em qualquer espaço vetorial real ou complexo. *Dica: Use o Lema de Zorn*.

Exercício 5 Considere o espaço C(-1,1) das funções contínuas com imagem real definidas no intervalo [-1,1] e defina o produto interno

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx.$$

Determine o complemento ortogonal do subespaço das funções ímpares, isto é, das funções $f(x) = -f(-x), \forall x \in [-1, 1].$

Exercício 6 (Completamento de espaços com produto interno) Seja X um espaço com produto interno. Mostre que X pode ser completado, formando um espaço de Hilbert. Para isso, use os resultados já demonstrados para espaços normados, introduzindo o produto interno

$$\langle x^*, y^* \rangle = \lim_n \langle x_n, y_n \rangle,$$

em que $x^*, y^* \in X^*$ e X^* é o espaço das classes de equivalência de sequências de Cauchy. Prove que esse é de fato um produto interno e que

$$||x^*|| = \lim_n ||x_n|| = \sqrt{\langle x^*, x^* \rangle}.$$

Exercício 7 Considere $L^1[0,1]$ o espaço das funções integráveis entre [0,1] (iguais exceto em um conjunto de medida nula) com a norma

$$||f|| = \int_0^1 |f(x)| dx.$$

Mostre que não é possível introduzir um produto interno nesse espaço que concorde com essa norma, isto é,

$$\langle f, f \rangle = ||f||^2, \quad \forall f \in L_1[0, 1].$$

Exercício 8 Vamos terminar a prova do seguinte Teorema discutido em sala.

Teorema. Seja X um espaço de Hilbert com campo escalar F e considere um conjunto ortonormal $(x_n)_{n\in\mathbb{N}}$. Então se $\alpha_n\in F$, temos os seguintes resultados.

- (a) $\sum_{n\in\mathbb{N}} \alpha_n x_n$ converge se e somente se $\sum_{n\in\mathbb{N}} |\alpha_n|^2$ converge.
- (b) Se a série $\sum_{n\in\mathbb{N}} \alpha_n x_n$ converge para x, então $\alpha_n = \langle x, x_n \rangle$.

O item (a) foi discutido em sala. Prove o item (b).

Exercício 9 Seja M subespaço do espaço de Hilbert X. Mostre que M é denso em X se, e somente se, $M^{\perp} = \{0\}$.

Exercício 10 Seja f um funcional linear definido em X espaço de Hilbert. Mostre que se f não é contínua, então $\bar{N} = X$.

Exercício 11 Seja $L_2(0, 2\pi)$ o espaço das funções com valores reais quadrado integráveis. Defina o conjunto $A = \{x_n\}_{n>0}$, em que

$$x_n = \begin{cases} \frac{1}{\sqrt{2\pi}}, & \text{se } n = 0.\\ \frac{1}{\sqrt{\pi}} \cos\left(\frac{n}{2}t\right), & \text{se } n|2 = 0,\\ \frac{1}{\sqrt{\pi}} \cos\left(\frac{n+1}{2}t\right), & \text{se } n|2 = 1, \end{cases}$$

- (a) Prove que A é um conjunto ortonormal.
- (b) Defina os seguintes valores

$$a_0 = \frac{1}{\pi} \int_0^{2\pi} f \, dt, \, a_{2n} = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos\left(\frac{n}{2}t\right) \, dt, \, b_{2n-1} = \frac{1}{\pi} \int_0^{2\pi} f(t) \sin\left(\frac{n+1}{2}t\right) \, dt,$$

em que $n \in \mathbb{N}$. Mostre que $\lim a_n = \lim b_n = 0$.

(c) Seja $c_0, d_1, c_2, d_3, \ldots$ uma coleção de reais tais que

$$\left(c_0^2 + \sum_{n \text{ impar}} c_n^2 + \sum_{n \text{ par}} d_n^2\right) < +\infty.$$

Então existe $f \in L_2(0, 2\pi)$ tal que

$$c_0 = \frac{1}{\pi} \int_0^{2\pi} f(t) dt,$$

e para $n \in \mathbb{N}$,

$$c_{2n} = \frac{1}{\pi} \int_0^{\pi} f(t) \cos\left(\frac{n}{2}t\right) dt, d_{2n-1} = \frac{1}{\pi} \int_0^{\pi} f(t) \sin\left(\frac{n+1}{2}t\right) dt.$$

Exercício 12 Considere X o espaço das sequências de números reais quase nulas, isto é, para cada $x \in X$, existe $N \in \mathbb{N}$ tal que $x_n = 0$ para $n \geq N$.

(a) Mostre que X é um subespaço de l^2 e que

$$\langle x, y \rangle = \sum_{n=1}^{\infty} x_n y_n$$

 \acute{e} um produto interno em X.

- (b) Seja $M \subseteq X$ tal que $x \in M$ se $\sum_{n=1}^{\infty} n^{-1} x_n = 0$. Mostre que M é subespaço fechado de X.
- (c) Mostre que $X \neq M \oplus M^{\perp}$. Isso contradiz o Teorema 10.8 do Bachman?

Exercício 13 Seja X um espaço com produto interno e $S \subseteq X$. Mostre que $\overline{[S]}^{\perp} = S^{\perp}$.

Exercício 14 Seja X um espaço de Hilbert e M um subespaço fechado de X. Assim, $y \in M$ satisfaz $||y - x|| = \inf_{z \in M} ||z - x||$ se, e somente se $x - y \in M^{\perp}$.

Exercício 15 Mostre que todo espaço pre-Hilbert com dimensão finita é espaço de Hilbert.