# Formale Grundlagen der Informatik I 3. Übungsblatt



Fachbereich Mathematik
Prof. Dr. Ulrich Kohlenbach
Davorin Lešnik, Daniel Günzel, Daniel Körnlein

SoSe 2014 7. Mai 2014

# Gruppenübung

**Aufgabe G7** (Abgeschlossenheit der regulären Sprachen) Gegeben seien die folgenden DFA:



- (a) Geben Sie einen DFA an, der  $L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$  erkennt.
- (b) Geben Sie einen NFA an, der  $L(\mathcal{A}_1) \cdot L(\mathcal{A}_2)$  erkennt. Extra: Was ändert sich an der Lösung, wenn der Zustand 1 in  $\mathcal{A}_1$  auch akzeptierend ist?

## Aufgabe G8 (Abgeschlossenheit der regulären Sprachen)

Beweisen oder widerlegen Sie: Die Menge der regulären Sprachen ist abgeschlossen unter den folgenden Operationen:

- (a) In jedem Wort werden alle Buchstaben a durch b ersetzt und alle b durch a.
- (b) Jedes zweite Vorkommen des Buchstaben a wird durch das Wort aba ersetzt.

Extra: Die Buchstaben in jedem Wort dürfen beliebig umsortiert werden, d.h. ist etwa das Wort *aaba* in der Sprache, so fügen wir auch die Wörter *aaab*, *abaa* und *baaa* hinzu.

### Aufgabe G9 (NFA, DFA Vergleich)

Betrachten Sie den folgenden NFA  $\mathcal{A}_n$ :



- (a) Bestimmen Sie  $L(\mathcal{A}_n)$ .
- (b) Zeigen Sie, dass es keinen äquivalenten DFA gibt mit weniger als  $2^n$  Zuständen.

1

# Hausübung

Aufgabe H7 (Umkehrung regulärer Sprachen)

(12 Punkte)

Für ein Wort  $w = a_1 \dots a_n \in \Sigma^*$  wird  $w^{-1}$  durch  $a_n \dots a_1$  definiert (d.h. w wird rückwärts gelesen). Die Sprache rev(L) ist definiert als

$$rev(L) := \{ w^{-1} \in \Sigma^* \mid w \in L \}.$$

Zeigen Sie, dass für jede reguläre Sprache L auch die Umkehrung rev(L) regulär ist, indem Sie zeigen, wie:

- (a) man aus einem regulären Ausdruck für die Sprache L einen regulären Ausdruck für rev(L) gewinnen kann,
- (b) aus einem NFA, der die Sprache L erkennt, ein NFA, der die Sprache  $\operatorname{rev}(L)$  erkennt, allgemein konstruiert werden kann.

Aufgabe H8 (Myhill-Nerode)

(12 Punkte)

Man betrachte die Sprachen

- $L_1 := \{a^m b^n \mid m, n \in \mathbb{N}\},$
- $L_2 := \{a^m b^n \mid m, n \in \mathbb{N}, m \le n\}.$
- (a) Bestimmen Sie den Index von  $\sim_{L_1}$  und  $\sim_{L_2}$ .
- (b) Begründen Sie, ob  $L_1$  und  $L_2$  reguläre Sprachen sind. Wenn ja, geben Sie einen Automaten (DFA oder NFA), der sie erkennt.

Aufgabe H9 (NFA zu DFA)

(12 Punkte)

Betrachten Sie den NFA A:



- (a) Konstruieren Sie mittels Potenzmengenkonstruktion einen DFA 36, der die gleiche Sprache wie 4 erkennt.
- (b) Konstruieren Sie aus  $\mathcal B$  einen *minimalen* DFA  $\mathcal C$ , der die gleiche Sprache erkennt. Geben Sie dazu die Relationen  $\boldsymbol{\sim}_i$  in tabellarischer Form an.