

: 1 of 186 Page

: YR7AERODRP5 FCC ID **Issued date** : August 19, 2014 : September 2, 2014

Revised date

SAR TEST REPORT

Test Report No.: 10279740H-A-R1

Applicant

: KONICA MINOLTA, Inc.

Type of Equipment

AeroDR SYSTEM 2

Model No.

AeroDR P-51

FCC ID

YR7AERODRP5

Test regulation

FCC47CFR 2.1093

Test Result

: Complied

Reported SAR(1g) Value

The highest reported SAR(1g)

WLAN 11b/g/n

Body : 0.374W/kg

WLAN 11a/n

Body : 1.127W/kg

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc. 1.
- The results in this report apply only to the sample tested. 2.
- This sample tested is in compliance with the limits of the above regulation. 3.
- The test results in this report are traceable to the national or international standards. 4.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- This report is a revised version of 10279740H-A. 10279740H-A is replaced with this report. 6.

Date of test:

July 24 to August 1, 2014

Representative test engineer:

Hisayoshi Sato

Engineer

Consumer Technology Division

Approved by:

Takahiro Hatakeda

Leader

Consumer Technology Division

NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://www.ul.com/japan/jpn/pages/services/emc/about/m ark1/index.jsp#nvlap

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 $Test\ report\ No.\ :\ 10279740H\text{-}A\text{-}R1$

Page : 2 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

REVISION HISTORY

Original Test Report No.: 10279740H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	10279740H-A	August 19, 2014	-	-
1	10279740H-A-R1	September 2, 2014	P. 179, 180	Correction of Appendix 4 clause 1 and 2
	_			

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 3 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

CONTENTS PAGE SECTION 1: Customer information......4 Identification of E.U.T......4 2.1 2.2 SECTION 3: Test standard information......5 3.1 Test Specification ______5 3.2 Procedure 5 3.3 Exposure limit 6 3 4 Test Location 6 Stand-alone SAR result. 7 4 1 SECTION 5: Description of the operating mode......8 Output power operating modes 8 5.1 5.2 Output power measurement results 9 5.3 5.4 SECTION 6 Standalone SAR test exclusion considerations 20 **SECTION 8:** Test surrounding _______27 Measurement uncertainty 27 8.1 9 1 9.2 APPENDIX 1: 1. **APPENDIX2:** 3. System check result Body 5300MHz 118 4. 5 6. 8. **APPENDIX 3:** 2. 3. Photographs of test setup179 **APPENDIX 4:** 1. 2. 3.

Page : 4 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

SECTION 1: Customer information

Company Name : KONICA MINOLTA, Inc.

Address : 1, Sakura-machi, Hino-shi, Tokyo, Japan

Telephone Number : +81-42-589-8429 Facsimile Number : +81-42-589-8053 Contact Person : Masayoshi Inoue

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : AeroDR SYSTEM 2

Model No. : AeroDR_P-51

Serial No. : A6CA-S0016

Rating : Li-ion capacitor (Installed in Aero DR P-51)

DC 3.3V

Receipt Date of Sample : July 21, 2014

Country of Mass-production : Japan

Condition of EUT : Engineering prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product description

General Specification

Clock frequency(ies) in the system : 532MHz

Radio Specification

Radio Type : Transceiver
Method of Frequency Generation : Synthesizer
Power Supply (inner) : DC3.3V

Specification of Wireless LAN (IEEE802.11b/g/a/n-20)

Type of radio	IEEE802.11b	IEEE802.11g	IEEE802.11a	IEEE802.11n
				(20 M band)
Frequency	2412-2462MHz	2412-2462MHz	5180-5320MHz	2412-2462MHz
of operation			5500-5700MHz	5180-5320MHz
-			5745-5825MHz	5500-5700MHz
				5745-5825MHz
Type of modulation	DSSS	OFDM-CCK	OFDM	
	(CCK, DQPSK, DBPSK)	(64QAM, 16QAM, QPSK, BPSK)	AM, QPSK, (64QAM, 16QAM, QPSK, BPSK)	
Channel spacing	5MHz		20MHz	2.4GHz band
				5MHz
				5GHz band
				20MHz
Antenna type	PIFA Type			
Antenna Gain	2.4GHz band			
	-Main Antenna: -2.27dBi			
	-Sub Antenna: -1.99dBi			
	5GHz band			
	-Main Antenna: -2.39dBi			
	-Sub Antenna: -1.41dBi			
Antenna Connector	U.FL Type			
type				

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 5 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

SECTION 3: Test standard information

3.1 Test Specification

Title : FCC47CFR 2.1093

Radiofrequency radiation exposure evaluation: portable devices.

IEEE Std 1528-2003:

: Published RF exposure KDB procedures

Ø K	KDB447498D01(v05r02)	Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies
\square K	KDB447498D02(v02)	SAR Measurement Procedures for USB Dongle Transmitters
	KDB648474D04(v01r02) KDB941225D01(v02)	SAR Evaluation Considerations for Wireless Handsets SAR Measurement Procedures for 3G Devices
\square K	XDB941225D02(v02r02)	3GPP R6 HSPA and R7 HSPA+ SAR Guidance
\square K	XDB941225D03(v01)	Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE
\square K	XDB941225D04(v01)	Evaluating SAR for GSM/(E)GPRS Dual Transfer Mode
\square K	XDB941225D05(v02r03)	SAR for LTE Devices
□к	KDB941225D06(v01r01)	SAR test procedures for devices incorporating SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities (Hot Spot SAR)
\square K	XDB941225D07(v01r01)	SAR Evaluation Procedures for UMPC Mini-Tablet Devices
□к	XDB616217D04(v01r01)	SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers
∠ K	KDB865664D01(v01r03)	SAR Measurement Requirements for 100MHz to 6 GHz
Ø K	XDB248227D01(v01r02)	SAR Measurement Procedures for 802.11a//b/g Transmitters

Reference

[1]ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.

[2]SPEAG uncertainty document (AN 15-7/AN19-17) for DASY 5 System from SPEAG (Schmid & Partner Engineering AG).

[3] IEEE Std 1528-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

(The reference for Uncertainty in SAR correction for deviations in permittivity and conductivity, in clause E.3.2.)

3.2 Procedure

Transmitter	WLAN		
Test Procedure	Published RF exposure KDB procedures		
	SAR		
Category	FCC47CFR 2.1093		
Note: UL Japan, Inc. 's SAR Work Procedures 13-EM-W0429 and 13-EM-W0430			

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 6 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

3.3 Exposure limit

(A) Limits for Occupational/Controlled Exposure (W/kg)

Spatial Average (averaged over the whole body)	Spatial Peak (averaged over any 1g of tissue)	Spatial Peak (hands/wrists/feet/ankles averaged over 10g)
0.4	8.0	20.0

(B) Limits for General population/Uncontrolled Exposure (W/kg)

Spatial Average (averaged over the whole body	Spatial Peak (averaged over any 1g of tissue)	Spatial Peak (hands/wrists/feet/ankles averaged over 10g)
0.08	1.6	4.0

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE:GENERAL POPULATION/UNCONTROLLED EXPOSURE SPATIAL PEAK(averaged over any 1g of tissue) LIMIT 1.6 W/kg

3.4 Test Location

*Shielded room for SAR testings

UL Japan, Inc. Ise HQ EMC Lab. *NVLAP Lab. code: 200572-0 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999 Facsimile: +81 596 24 8124

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 7 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

SECTION 4: Test result

4.1 Stand-alone SAR result

Reported SAR

Measured SAR is scaled to the maximum tune-up tolerance limit by the following formulas. Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg] Maximum tune-up tolerance limit is by the specification from a customer.

Mode	Frequency	Measured power [mW]*1	Maximum tune-up tolerance limit [mW]	Measured SAR [W/kg]	Reported SAR [W/kg]
WLAN 11n-20	2462MHz	9.33	12.59	0.277	0.374
WLAN 11n-20	5640MHz	7.80	10.00	0.879	1.127

Note

WLAN Maximum tune-up tolerance limit

Mode	Maximum tune-up tolerance limit [dBm]	Maximum tune-up tolerance limit [mW]
WLAN 11b	11	12.59
WLAN 11g	11	12.59
WLAN 11n (2.4G)	11	12.59
WLAN 11a 5.2GHz and 5.3GHz Band	11	12.59
WLAN 11a 5.6GHz and 5.8GHz Band	10	10.00
WLAN 11n (5G) 5.2GHz and 5.3GHz Band	11	12.59
W LAN 11n (5G) 5.6GHz and 5.8GHz Band	10	10.00

^{*1} The sample used by the SAR test is within the tune-up tolerance but not more than 2 dB lower than the maximum tune-up tolerance limit. That is, measured power is included the tune-up tolerance range.

Page : 8 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

SECTION 5: Description of the operating mode

5.1 Output power operating modes

Mode	Frequency	Test Frequency	Modulation
	Band	•	
IEEE802.11b	2412-2462MHz	2412MHz (1ch)	DSSS
		2437MHz(6ch)	(DBPSK.DQPSK.CCK)
		2462MHz(11ch)	
IEEE802.11g	2412-2462MHz	2412MHz (1ch)	
IEEE802.11n20 (2.4G)		2437MHz(6ch)	
		2462MHz(11ch)	
IEEE802.11a	5180-5240MHz	5180MHz (36ch)	
IEEE802.11n20 (5G)		5200MHz (40ch)	
		5220MHz (44ch)	
		5240MHz (48ch)	
	5260-5320MHz	5260MHz (52ch)	
		5280MHz (56ch)	
		5300MHz (60ch)	
		5320MHz (64ch)	
	5500-5700MHz	5500MHz (100ch)	
		5520MHz (104ch)	OFDM
		5540MHz (108ch)	(BPSK.QPSK.16QAM,64QAM)
		5560MHz (112ch)	
		5580MHz (116ch)	
		5600MHz (120ch)	
		5620MHz (124ch)	
		5640MHz (128ch)	
		5660MHz (132ch)	
		5680MHz (136ch)	
		5700MHz (140ch)	
	5745-5825MHz	5745MHz (149ch)	
		5765MHz (153ch)	
		5785MHz (157ch)	
		5805MHz (161ch)	
WIAN		5825MHz (165ch)	

WLAN

*Power of the EUT was set by the software as follows;

Software / version: Wireless authentication test tool / 1.0.0.0

Power setting: 10dBm

*The above setting is the worst case. Any conditions under the normal use do not exceed the condition of setting. In addition, end users cannot change the settings of the output power of the product.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 9 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

5.2 Output power measurement results

Output power measurement for WLAN

1) WLAN (11b/g/n (2.4G))

Main Antenna

[IEEE802.11b] Rate Check

[
Rate	Freq.	Reading	Cable	Atten.	Result		
		[dBm]	Loss		[dBm]	[mW]	
[Mbps]	[MHz]	AVG	[dB]	[dB]	AVG	AVG	
1.0	2412	-2.27	2.00	9.90	9.63	9.18	
2.0	2412	-2.29	2.00	9.90	9.61	9.14	
5.5	2412	-2.33	2.00	9.90	9.57	9.06	
11.0	2412	-2.36	2.00	9.90	9.54	8.99	

:Worst data rate

IEEE802.11b 1Mbps

TEEE002:110 TW1003								
Ch	Frequency	P/M	Cable	Atten.	Result			
		Reading	Loss		[dBm]	[mW]		
	[MHz]	AVG	[dB]	[dB]	AVG	AVG		
1	2412	-2.27	2.00	9.90	9.63	9.18		
6	2437	-2.22	2.00	9.90	9.68	9.29		
11	2462	-1.90	2.00	9.90	10.00	10.00		

:SAR test channel

[IEEE802.11g] Rate Check

Rate	Freq.	Reading	Cable	Atten.	Res	sult
		[dBm]	Loss		[dBm]	[mW]
[Mbps]	[MHz]	AVG	[dB]	[dB]	AVG	AVG
6.0	2412	-2.45	2.00	9.90	9.45	8.81
9.0	2412	-2.54	2.00	9.90	9.36	8.63
12.0	2412	-2.58	2.00	9.90	9.32	8.55
18.0	2412	-2.62	2.00	9.90	9.28	8.47
24.0	2412	-2.68	2.00	9.90	9.22	8.36
36.0	2412	-2.76	2.00	9.90	9.14	8.20
48.0	2412	-2.91	2.00	9.90	8.99	7.93
54.0	2412	-2.94	2.00	9.90	8.96	7.87

:Worst data rate

[IEEE802.11n-20] Rate Check

Rate	Freq.	Reading	Cable	Atten.	Res	sult
		[dBm]	Loss		[dBm]	[mW]
[Mbps]	[MHz]	AVG	[dB]	[dB]	AVG	AVG
MCS0	2412	-2.57	2.00	9.90	9.33	8.57
MCS1	2412	-2.65	2.00	9.90	9.25	8.41
MCS2	2412	-2.73	2.00	9.90	9.17	8.26
MCS3	2412	-2.79	2.00	9.90	9.11	8.15
MCS4	2412	-2.89	2.00	9.90	9.01	7.96
MCS5	2412	-3.00	2.00	9.90	8.90	7.76
MCS6	2412	-3.06	2.00	9.90	8.84	7.66
MCS7	2412	-3.09	2.00	9.90	8.81	7.60
	:Worst data	rate	•			

IEEE802.11n-20 MCS0

Ch	Frequency	Reading	Cable	Atten.	Res	sult
	. 4	[dBm]	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
1	2412	-2.57	2.00	9.90	9.33	8.57
6	2437	-2.33	2.00	9.90	9.57	9.06
11	2462	-2.23	2.00	9.90	9.67	9.27

:SAR test channel

Sample Calculation:

Result = Reading + Cable Loss + Attenuator

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 10 of 186

FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

Sub Antenna

[IEEE802.11b] Rate Check

_	IEEE0021110 Tutte Cheek							
	Rate	Freq.	Reading	Cable	Atten.	Res	sult	
			[dBm]	Loss		[dBm]	[mW]	
	[Mbps]	[MHz]	AVG	[dB]	[dB]	AVG	AVG	
Γ	1.0	2412	-2.24	2.00	9.90	9.66	9.25	
Γ	2.0	2412	-2.27	2.00	9.90	9.63	9.18	
L	5.5	2412	-2.29	2.00	9.90	9.61	9.14	
L	11.0	2412	-2.33	2.00	9.90	9.57	9.06	

:Worst data rate

IEEE802.11b 1Mbps

Ch	Frequency	P/M	Cable	Atten.	Res	Result	
		Reading	Loss		[dBm]	[mW]	
	[MHz]	AVG	[dB]	[dB]	AVG	AVG	
1	2412	-2.24	2.00	9.90	9.66	9.25	
6	2437	-2.12	2.00	9.90	9.78	9.51	
11	2462	-1.88	2.00	9.90	10.02	10.05	

:SAR test channel

[IEEE802.11g] Rate Check

TEEBOOTI	IEEE002:11g Rate Check								
Rate	Freq.	Reading [dBm]	Cable Loss	Atten.	Res [dBm]	sult [mW]			
[Mbps]	[MHz]	AVG	[dB]	[dB]	AVG	AVG			
6.0	2412	-2.43	2.00	9.90	9.47	8.85			
9.0	2412	-2.49	2.00	9.90	9.41	8.73			
12.0	2412	-2.51	2.00	9.90	9.39	8.69			
18.0	2412	-2.58	2.00	9.90	9.32	8.55			
24.0	2412	-2.64	2.00	9.90	9.26	8.43			
36.0	2412	-2.76	2.00	9.90	9.14	8.20			
48.0	2412	-2.88	2.00	9.90	9.02	7.98			
54.0	2412	-2.92	2.00	9.90	8.98	7.91			

:Worst data rate

[IEEE802.11n-20] Rate Check

W]
/G
53
17
6
20
00
32
'3
4
2

:Worst data rate

IEEE802.11n-20 MCS0

	ELECTRICS OF THE STATE OF THE S							
I	Ch	Frequency	Reading	Cable	Atten.	Res	Result	
ı			[dBm]	Loss		[dBm]	[mW]	
Į		[MHz]	AVG	[dB]	[dB]	AVG	AVG	
ĺ	1	2412	-2.57	2.00	9.90	9.33	8.56	
I	6	2437	-2.22	2.00	9.90	9.68	9.29	
ĺ	11	2462	-2.20	2.00	9.90	9.70	9.33	

:SAR test channel

Sample Calculation:

Result = Reading + Cable Loss + Attenuator

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 11 of 186

FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

2) WLAN (11a/n (5G))

5.2GHz

Main Antenna

[IEEE802.11a] Rate Check

THEE	TEEE002.11aj Rate Check							
Rate	Freq.	Reading	Cable	Atten.	Res	sult		
		[dBm]	Loss		[dBm]	[mW]		
[Mbps]	[MHz]	AVG	[dB]	[dB]	AVG	AVG		
6.0	5180	-3.17	3.21	9.98	10.02	10.05		
9.0	5180	-3.25	3.21	9.98	9.94	9.86		
12.0	5180	-3.27	3.21	9.98	9.92	9.82		
18.0	5180	-3.32	3.21	9.98	9.87	9.71		
24.0	5180	-3.83	3.21	9.98	9.36	8.63		
36.0	5180	-3.97	3.21	9.98	9.22	8.36		
48.0	5180	-3.97	3.21	9.98	9.22	8.36		
54.0	5180	-4.01	3.21	9.98	9.18	8.28		

:Worst data rate

IEEE802.11a 6Mbps

Ch	Frequency	P/M	Cable	Atten.	Res	sult
		Reading	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
36	5180	-3.17	3.21	9.98	10.02	10.05
40	5200	-3.50	3.22	9.98	9.70	9.33
44	5220	-3.14	3.22	9.97	10.05	10.12
48	5240	-2.88	3.22	9.97	10.31	10.74

:SAR test channel

[IEEE802.11n-20] Rate Check

Rate	Freq.	Reading	Cable	Atten.	Res	sult
		[dBm]	Loss		[dBm]	[mW]
[Mbps]	[MHz]	AVG	[dB]	[dB]	AVG	AVG
MCS0	5180	-3.40	3.21	9.98	9.79	9.53
MCS1	5180	-3.49	3.21	9.98	9.70	9.33
MCS2	5180	-3.53	3.21	9.98	9.66	9.25
MCS3	5180	-4.05	3.21	9.98	9.14	8.20
MCS4	5180	-4.18	3.21	9.98	9.01	7.96
MCS5	5180	-4.28	3.21	9.98	8.91	7.78
MCS6	5180	-4.31	3.21	9.98	8.88	7.73
MCS7	5180	-4.33	3.21	9.98	8.86	7.69

:Worst data rate

IEEE802.11n-20 MCS0

CI	Б	D 11	0.11	A	D	Tr.
Ch	Frequency	Reading	Cable	Atten.	Res	sult
		[dBm]	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
36	5180	-3.40	3.21	9.98	9.79	9.53
40	5200	-3.65	3.22	9.98	9.55	9.02
44	5220	-3.38	3.22	9.97	9.81	9.57
48	5240	-3.10	3.22	9.97	10.09	10.21

:SAR test channel

Sample Calculation:

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 12 of 186

FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

Sub Antenna

[IEEE802.11a] Rate Check

Rate	Freq.	Reading	Cable	Atten.	Res	sult
		[dBm]	Loss		[dBm]	[mW]
[Mbps]	[MHz]	AVG	[dB]	[dB]	AVG	AVG
6.0	5180	-3.16	3.21	9.98	10.03	10.07
9.0	5180	-3.21	3.21	9.98	9.98	9.95
12.0	5180	-3.24	3.21	9.98	9.95	9.89
18.0	5180	-3.32	3.21	9.98	9.87	9.71
24.0	5180	-3.85	3.21	9.98	9.34	8.59
36.0	5180	-3.97	3.21	9.98	9.22	8.36
48.0	5180	-4.02	3.21	9.98	9.17	8.26
54.0	5180	-4.06	3.21	9.98	9.13	8.18

:Worst data rate

IEEE802.11a 6Mbps

-	TEEE002.11u 01/15ps									
ĺ	Ch	Frequency	P/M	Cable	Atten.	Result				
ı			Reading	Loss		[dBm]	[mW]			
l		[MHz]	AVG	[dB]	[dB]	AVG	AVG			
ľ	36	5180	-3.16	3.21	9.98	10.03	10.07			
ĺ	40	5200	-3.54	3.22	9.98	9.66	9.25			
Ī	44	5220	-3.41	3.22	9.97	9.78	9.51			
I	48	5240	-3.22	3.22	9.97	9.97	9.93			

:SAR test channel

[IEEE802.11n-20] Rate Check

Rate	Freq.	Reading	Cable	Atten.	Res	sult
		[dBm]	Loss		[dBm]	[mW]
[Mbps]	[MHz]	AVG	[dB]	[dB]	AVG	AVG
MCS0	5180	-3.39	3.21	9.98	9.80	9.55
MCS1	5180	-3.48	3.21	9.98	9.71	9.35
MCS2	5180	-3.56	3.21	9.98	9.63	9.18
MCS3	5180	-4.09	3.21	9.98	9.10	8.13
MCS4	5180	-4.20	3.21	9.98	8.99	7.93
MCS5	5180	-4.29	3.21	9.98	8.90	7.76
MCS6	5180	-4.33	3.21	9.98	8.86	7.69
MCS7	5180	-4.37	3.21	9.98	8.82	7.62

:Worst data rate

IEEE802.11n-20 MCS0

Ch	Frequency	Reading	Cable	Atten.	Res	sult
		[dBm]	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
36	5180	-3.39	3.21	9.98	9.80	9.55
40	5200	-3.74	3.22	9.98	9.46	8.83
44	5220	-3.65	3.22	9.97	9.54	8.99
48	5240	-3.52	3.22	9.97	9.67	9.27

Sample Calculation:

Result = Reading + Cable Loss + Attenuator

:SAR test channel

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 13 of 186

FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

5.3GHz

Main Antenna

IEEE802.11a 6Mbps

Frequency	P/M	Cable	Atten.	Result					
	Reading	Loss		[dBm]	[mW]				
[MHz]	AVG	[dB]	[dB]	AVG	AVG				
5260	-3.09	3.23	9.96	10.10	10.23				
5280	-2.81	3.23	9.96	10.38	10.91				
5300	-2.47	3.23	9.95	10.71	11.78				
5320	-2.34	3.24	9.95	10.85	12.16				
	[MHz] 5260 5280 5300	Reading Reading AVG 5260 -3.09 5280 -2.81 5300 -2.47	Reading Loss [MHz] AVG [dB] 5260 -3.09 3.23 5280 -2.81 3.23 5300 -2.47 3.23	Reading [MHz] Loss [dB] IdB] 5260 -3.09 3.23 9.96 5280 -2.81 3.23 9.96 5300 -2.47 3.23 9.95	Reading Loss [dBm] AVG [dB] AVG S260 -3.09 3.23 9.96 10.10 5280 -2.81 3.23 9.95 10.71				

:SAR test channel

IEEE802.11n-20 MCS0

Ch	Frequency	Reading	Cable	Atten.	Res	sult
		[dBm]	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
52	5260	-3.33	3.23	9.96	9.86	9.68
56	5280	-2.99	3.23	9.96	10.20	10.47
60	5300	-2.65	3.23	9.95	10.53	11.30
64	5320	-2.52	3.24	9.95	10.67	11.67

:SAR test channel

Sample Calculation:

Result = Reading + Cable Loss + Attenuator

Sub Antenna

IEEE802.11a 6Mbps

1220021111 0111000									
Ch	Frequency	P/M	Cable	Atten.	Res	sult			
		Reading	Loss		[dBm]	[mW]			
	[MHz]	AVG	[dB]	[dB]	AVG	AVG			
52	5260	-3.54	3.23	9.96	9.65	9.23			
56	5280	-3.32	3.23	9.96	9.87	9.71			
60	5300	-3.12	3.23	9.95	10.06	10.14			
64	5320	-2.98	3.24	9.95	10.21	10.50			

:SAR test channel

IEEE802.11n-20 MCS0

Ch	Frequency	Reading	Cable	Atten.	Res	sult
		[dBm]	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
52	5260	-3.82	3.23	9.96	9.37	8.65
56	5280	-3.61	3.23	9.96	9.58	9.08
60	5300	-3.44	3.23	9.95	9.74	9.42
64	5320	-3.25	3.24	9.95	9.94	9.86

Sample Calculation:

Result = Reading + Cable Loss + Attenuator

:SAR test channel

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 14 of 186

FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

5.6GHz

Main Antenna

IEEE802.11a 6Mbps

Ch	Frequency	P/M	Cable	Atten.	Res	sult
		Reading [dBm]	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
100	5500	-3.95	3.27	9.91	9.23	8.38
104	5520	-3.97	3.27	9.92	9.22	8.36
108	5540	-4.07	3.27	9.92	9.12	8.17
112	5560	-4.19	3.27	9.93	9.01	7.96
116	5580	-4.35	3.26	9.94	8.85	7.67
120	5600	-4.44	3.26	9.94	8.76	7.52
124	5620	-4.60	3.26	9.95	8.61	7.26
128	5640	-4.32	3.26	9.95	8.89	7.74
132	5660	-4.59	3.26	9.95	8.62	7.28
136	5680	-4.48	3.26	9.97	8.75	7.50
140	5700	-4.50	3.25	9.97	8.72	7.45

:SAR test channel

IEEE802.11n-20 MCS0

Ch	Frequency	P/M	Cable	Atten.	Res	sult
		Reading [dBm]	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
100	5500	-3.70	3.27	9.91	9.48	8.87
104	5520	-4.24	3.27	9.92	8.95	7.85
108	5540	-4.25	3.27	9.92	8.94	7.83
112	5560	-4.37	3.27	9.93	8.83	7.64
116	5580	-4.51	3.26	9.94	8.69	7.40
120	5600	-4.61	3.26	9.94	8.59	7.23
124	5620	-4.70	3.26	9.95	8.51	7.10
128	5640	-4.49	3.26	9.95	8.72	7.45
132	5660	-4.77	3.26	9.95	8.44	6.98
136	5680	-4.67	3.26	9.97	8.56	7.18
140	5700	-5.11	3.25	9.97	8.11	6.47

:SAR test channel

Sample Calculation:

 $Result = Reading + Cable \ Loss + Attenuator$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 15 of 186

FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

Sub Antenna

IEEE802.11a 6Mbps

Ch	Frequency	P/M	Cable	Atten.	Res	sult
		Reading [dBm]	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
100	5500	-3.54	3.27	9.91	9.64	9.20
104	5520	-3.52	3.27	9.92	9.67	9.27
108	5540	-3.55	3.27	9.92	9.64	9.20
112	5560	-3.72	3.27	9.93	9.48	8.87
116	5580	-3.92	3.26	9.94	9.28	8.47
120	5600	-4.03	3.26	9.94	9.17	8.26
124	5620	-4.25	3.26	9.95	8.96	7.87
128	5640	-4.01	3.26	9.95	9.20	8.32
132	5660	-4.36	3.26	9.95	8.85	7.67
136	5680	-4.23	3.26	9.97	9.00	7.94
140	5700	-4.19	3.25	9.97	9.03	8.00

:SAR test channel

IEEE802.11n-20 MCS0

Ch	Frequency	P/M	Cable	Atten.	Res	sult
		Reading [dBm]	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
100	5500	-3.33	3.27	9.91	9.85	9.66
104	5520	-3.80	3.27	9.92	9.39	8.69
108	5540	-3.85	3.27	9.92	9.34	8.59
112	5560	-4.02	3.27	9.93	9.18	8.28
116	5580	-4.18	3.26	9.94	9.02	7.98
120	5600	-4.34	3.26	9.94	8.86	7.69
124	5620	-4.53	3.26	9.95	8.68	7.38
128	5640	-4.29	3.26	9.95	8.92	7.80
132	5660	-4.66	3.26	9.95	8.55	7.16
136	5680	-4.49	3.26	9.97	8.74	7.48
140	5700	-5.01	3.25	9.97	8.21	6.62

:SAR test channel

Sample Calculation:

Result = Reading + Cable Loss + Attenuator

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 16 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

5.8GHz

Main Antenna

IEEE802.11a 6Mbps

Ch	Frequency	P/M	Cable	Atten.	Res	sult
		Reading	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
149	5745	-5.18	3.25	9.99	8.06	6.40
153	5765	-5.21	3.25	9.99	8.03	6.35
157	5785	-5.06	3.25	10.00	8.19	6.59
161	5805	-5.01	3.25	10.01	8.25	6.68
165	5825	-4.88	3.24	10.01	8.37	6.87

:SAR test channel

IEEE802.11n-20 MCS0

Ch	Frequency	P/M	Cable	Atten.	Res	sult
		Reading	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
149	5745	-5.34	3.25	9.99	7.90	6.17
153	5765	-5.36	3.25	9.99	7.88	6.14
157	5785	-5.24	3.25	10.00	8.01	6.32
161	5805	-5.23	3.25	10.01	8.03	6.35
165	5825	-5.05	3.24	10.01	8.20	6.61

:SAR test channel

Sample Calculation:

Result = Reading + Cable Loss + Attenuator

Sub Antenna

IEEE802.11a 6Mbps

Ch	Frequency	P/M	Cable	Atten.	Result	
		Reading	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
149	5745	-4.96	3.25	9.99	8.28	6.73
153	5765	-4.98	3.25	9.99	8.26	6.70
157	5785	-4.95	3.25	10.00	8.30	6.76
161	5805	-4.85	3.25	10.01	8.41	6.93
165	5825	-4.68	3.24	10.01	8.57	7.19

:SAR test channel

IEEE802.11n-20 MCS0

Ch	Frequency	P/M	Cable	Atten.	Res	sult
		Reading	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
149	5745	-5.26	3.25	9.99	7.98	6.28
153	5765	-5.21	3.25	9.99	8.03	6.35
157	5785	-5.16	3.25	10.00	8.09	6.44
161	5805	-5.03	3.25	10.01	8.23	6.65
165	5825	-4.92	3.24	10.01	8.33	6.81

:SAR test channel

Sample Calculation:

Result = Reading + Cable Loss + Attenuator

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 17 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

5.3 SAR testing operating modes

The operating mode for SAR testing was decided by the output power

1) SAR measurement for WLAN

Decision of SAR test channel

The operating mode for SAR testing was decided by the output power

Mode		GHz	Channel	"Default T	est Channe	l''	
				FCC 15.24		UNII	
				802.11b	802.11g	1	
		2.412	1		Δ		
802.11 b/g/n20		2.437	6		Δ		
		2.462	11	$\sqrt{}$	Δ		
		5.18	36			$\sqrt{}$	
		5.20	40				*
		5.22	44				*
		5.24	48			$\sqrt{}$	
		5.26	52			$\sqrt{}$	
		5.28	56				*
		5.30	60				*
		5.32	64			$\sqrt{}$	
		5.50	100				*
	UNII	5.52	104			$\sqrt{}$	
		5.54	108				*
802.11a/n20		5.56	112				*
802.11a/n20		5.58	116			$\sqrt{}$	
		5.60	120				*
		5.62	124			$\sqrt{}$	
		5.64	128				*
		5.66	132				*
		5.68	136			$\sqrt{}$	
		5.70	140				*
	UNII	5.745	149	$\sqrt{}$		1	
	or	5.765	153		*		*
	FCC 15.247	5.785	157	$\sqrt{}$			*
		5.805	161		*	$\sqrt{}$	
	FCC 15.247	5.825	165	V			

 $[\]sqrt{}$ = "default test channels"

^{* =} Possible 802.11a channels with maximum average output > the "default test channels"

 $[\]Delta$ = Possible 802.11g channels with maximum average output $\frac{1}{4}$ dB \geq the "default test channels"

^{# =} when output power is reduced for channel 1 and/or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested

Page : 18 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

Mode	Test Frequency	Modulation	Crest factor	Note
IEEE802.11b	2462MHz(11ch)	DBPSK(1Mbps)	1	*2
IEEE802.11g	Not required			*1
IEEE802.11n20 (2.4G)	2462MHz(11ch)	BPSK(MCS0)	1	*2
IEEE802.11a	5180MHz(36ch)	BPSK(6Mbps)	1	
	5240MHz(48ch)			
	5280MHz(56ch)	BPSK(6Mbps)	1	
	5320MHz(64ch)			
	5500MHz(100ch)	BPSK(6Mbps)	1	
	5520MHz(104ch)			
	5560MHz(112ch)			
	5640MHz(128ch)			
	5680MHz(136ch)			
	5700MHz(140ch)			
	5745MHz(149ch)	BPSK(6Mbps)	1	
	5805MHz(161ch)			
	5825MHz(165ch)			
IEEE802.11n20 (5G)	5180MHz(36ch)	BPSK(MCS0)	1	
	5240MHz(48ch)			
	5320MHz(64ch)	BPSK(MCS0)	1	*2
	5500MHz(100ch)	BPSK(MCS0)	1	
	5560MHz(112ch)			
	5640MHz(128ch)			
	5680MHz(136ch)			
	5745MHz(149ch)	BPSK(MCS0)	1	
	5805MHz(161ch)			
	5825MHz(165ch)			

WLAN

*Power of the EUT was set by the software as follows;

Software / version: Wireless authentication test tool / 1.0.0.0

Power setting: 10dBm

*The above setting is the worst case. Any conditions under the normal use do not exceed the condition of setting. In addition, end users cannot change the settings of the output power of the product.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The 11b mode was maximum average power. According to KDB248227D01, the 11g SAR is not required for other mode because the maximum average output power for other mode is less than 1/4dB higher than that measured 11b mode.

^{*2} The other channel was not required since maximum average output power channel SAR value is less than 0.8W/kg.

 $Test\ report\ No.\ :\ 10279740H\text{-}A\text{-}R1$

Page : 19 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

5.4 Confirmation after SAR testing

It was checked that the power drift [W] is within +/-5%. The verification of power drift during the SAR test is that DASY5 system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position.

DASY5 system calculation Power drift value[dB] =20log(Ea)/(Eb)

Before SAR testing : Eb[V/m]

After SAR testing : Ea[V/m]

Limit of power drift[W] =+/-5%

X[dB]=10log[P]=10log(1.05/1)=10log(1.05)-10log(1)=0.212dB

from E-filed relations with power.

 $p=E^2/\eta=E^2/$

Therefore, The correlation of power and the E-filed

 $XdB=10log(P)=10log(E)^2=20log(E)$

Therefore,

The calculated power drift of DASY5 System must be the less than +/-0.212dB.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 20 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

SECTION 6 SAR test exclusion considerations

.

6.1 Standalone SAR test exclusion considerations

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is ≤ 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

WLAN 2.4GHz Main Antenna

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *5	Min distance *2	Calculation of exclusion *3
WLAN (2.4GHz band)	Ø	Bottom	11b DBPSK(1Mbps)	2462 [MHz] (11ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	5 [mm]	4.1
WLAN (2.4GHz band)	Ø	Front	11b DBPSK(1Mbps)	2462 [MHz] (11ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	5 [mm]	4.1
WLAN (2.4GHz band)	Ø	Rear	11b DBPSK(1Mbps)	2462 [MHz] (11ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	5 [mm]	4.1
WLAN (2.4GHz band)		Left	11b DBPSK(1Mbps)	2462 [MHz] (11ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	43 [mm]	0.5

Sub Antenna

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *5	Min distance *2	Calculation of exclusion *3
WLAN (2.4GHz band)	Ø	Тор	11b DBPSK(1Mbps)	2462 [MHz] (11ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	5 [mm]	4.1
WLAN (2.4GHz band)	Ø	Front	11b DBPSK(1Mbps)	2462 [MHz] (11ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	5 [mm]	4.1
WLAN (2.4GHz band)	Ø	Rear	11b DBPSK(1Mbps)	2462 [MHz] (11ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	5 [mm]	4.1

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 21 of 186

FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

WLAN 5.2GHz

Main Antenna

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *5	Min distance *2	Calculation of exclusion *3
WLAN (5GHz band)	Ø	Bottom	11a BPSK(6Mbps)	5240 [MHz] (48ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	5 [mm]	6.0
WLAN (5GHz band)	Ø	Front	11a BPSK(6Mbps)	5240 [MHz] (48ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	5 [mm]	6.0
WLAN (5GHz band)	Ø	Rear	11a BPSK(6Mbps)	5240 [MHz] (48ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	5 [mm]	6.0
WLAN (5GHz band)		Left	11a BPSK(6Mbps)	5240 [MHz] (48ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	43 [mm]	0.7

Sub Antenna

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *5	Min distance *2	Calculation of exclusion *3
WLAN (5GHz band)	Ø	Тор	11a BPSK(6Mbps)	5240 [MHz] (48ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	5 [mm]	6.0
WLAN (5GHz band)	Ø	Front	11a BPSK(6Mbps)	5240 [MHz] (48ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	5 [mm]	6.0
WLAN (5GHz band)	Ø	Rear	11a BPSK(6Mbps)	5240 [MHz] (48ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	5 [mm]	6.0

WLAN 5.3GHz

Main Antenna

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *5	Min distance *2	Calculation of exclusion *3
WLAN (5GHz band)	Ø	Bottom	11a BPSK(6Mbps)	5320 [MHz] (64ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	5 [mm]	6.0
WLAN (5GHz band)	Ø	Front	11a BPSK(6Mbps)	5320 [MHz] (64ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	5 [mm]	6.0
WLAN (5GHz band)	Ø	Rear	11a BPSK(6Mbps)	5320 [MHz] (64ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	5 [mm]	6.0
WLAN (5GHz band)		Left	11a BPSK(6Mbps)	5320 [MHz] (64ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	43 [mm]	0.7

Sub Antenna

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *5	Min distance *2	Calculation of exclusion *3
WLAN (5GHz band)	Ø	Тор	11a BPSK(6Mbps)	5320 [MHz] (64ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	5 [mm]	6.0
WLAN (5GHz band)	Ø	Front	11a BPSK(6Mbps)	5320 [MHz] (64ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	5 [mm]	6.0
WLAN (5GHz band)	Ø	Rear	11a BPSK(6Mbps)	5320 [MHz] (64ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	5 [mm]	6.0

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 22 of 186

FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

WLAN 5.6GHz

Main Antenna

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *5	Min distance *2	Calculation of exclusion *3
WLAN (5GHz band)	Ø	Bottom	11a BPSK(6Mbps)	5700 [MHz] (140ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	5 [mm]	4.8
WLAN (5GHz band)	Ø	Front	11a BPSK(6Mbps)	5700 [MHz] (140ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	5 [mm]	4.8
WLAN (5GHz band)	Ø	Rear	11a BPSK(6Mbps)	5700 [MHz] (140ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	5 [mm]	4.8
WLAN (5GHz band)		Left	11a BPSK(6Mbps)	5700 [MHz] (140ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	43 [mm]	0.6

Sub Antenna

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *5	Min distance *2	Calculation of exclusion *3
WLAN (5GHz band)	Ø	Тор	11a BPSK(6Mbps)	5700 [MHz] (140ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	5 [mm]	4.8
WLAN (5GHz band)	Ŋ	Front	11a BPSK(6Mbps)	5700 [MHz] (140ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	5 [mm]	4.8
WLAN (5GHz band)	Ŋ	Rear	11a BPSK(6Mbps)	5700 [MHz] (140ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	5 [mm]	4.8

WLAN 5.8GHz

Main Antenna

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *5	Min distance *2	Calculation of exclusion *3
WLAN (5GHz band)	Ŋ	Bottom	11a BPSK(6Mbps)	5825 [MHz] (165ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	5 [mm]	4.8
WLAN (5GHz band)	Ŋ	Front	11a BPSK(6Mbps)	5825 [MHz] (165ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	5 [mm]	4.8
WLAN (5GHz band)	Ŋ	Rear	11a BPSK(6Mbps)	5825 [MHz] (165ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	5 [mm]	4.8
WLAN (5GHz band)		left	11a BPSK(6Mbps)	5825 [MHz] (165ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	43 [mm]	0.6

Sub Antenna

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *5	Min distance *2	Calculation of exclusion *3
WLAN (5GHz band)	Ø	Тор	11a BPSK(6Mbps)	5825 [MHz] (165ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	5 [mm]	4.8
WLAN (5GHz band)	Ø	Front	11a BPSK(6Mbps)	5825 [MHz] (165ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	5 [mm]	4.8
WLAN (5GHz band)	Ø	Rear	11a BPSK(6Mbps)	5825 [MHz] (165ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	5 [mm]	4.8

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 23 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

2) At 100 MHz to 6 GHz and for *test separation distances* > 50 mm, the SAR test exclusion threshold is determined according to the following.

- a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz
- b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm) \cdot 10] mW at > 1500 MHz and \leq 6 GHz

WLAN 2.4GHz Main Antenna

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *5	Min distance *2	Calculation of threshold*4
WLAN (2.4GHz band)		Ton	11b DBPSK(1Mbps)	2462 [MHz] (11ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	380 [mm]	3396 [mW]
WLAN (2.4GHz band)		Right	11b DBPSK(1Mbps)	2462 [MHz] (11ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	381 [mm]	3406 [mW]

Sub Antenna

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *5	Min distance *2	Calculation of threshold*4
WLAN (2.4GHz band)		Bottom	11b DBPSK(1Mbps)	2462 [MHz] (11ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	379 [mm]	3386 [mW]
WLAN (2.4GHz band)		Left	11b DBPSK(1Mbps)	2462 [MHz] (11ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	206 [mm]	1656 [mW]
WLAN (2.4GHz band)		Right	11b DBPSK(1Mbps)	2462 [MHz] (11ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	218 [mm]	1776 [mW]

WLAN 5.2GHz Main Antenna

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *5	Min distance *2	Calculation of threshold*4
WLAN (5GHz band)		Ton	11a BPSK(6Mbps)	5240 [MHz] (48ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	380 [mm]	3366 [mW]
WLAN (5GHz band)		Right	11a BPSK(6Mbps)	5240 [MHz] (48ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	381 [mm]	3376 [mW]

Sub Antenna

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *5	Min distance *2	Calculation of threshold*4
WLAN (5GHz band)		Bottom	11a BPSK(6Mbps)	5240 [MHz] (48ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	379 [mm]	3356 [mW]
WLAN (5GHz band)		Left	11a BPSK(6Mbps)	5240 [MHz] (48ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	206 [mm]	1626 [mW]
WLAN (5GHz band)		Right	11a BPSK(6Mbps)	5240 [MHz] (48ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	218 [mm]	1746 [mW]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 $Test\ report\ No.\ :\ 10279740H\text{-}A\text{-}R1$

Page : 24 of 186

FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

WLAN 5.3GHz Main Antenna

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *5	Min distance *2	Calculation of threshold*4
WLAN (5GHz band)		Тор	11a BPSK(6Mbps)	5320 [MHz] (64ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	380 [mm]	3365 [mW]
WLAN (5GHz band)		Right	11a BPSK(6Mbps)	5320 [MHz] (64ch)	11 [dBm] 12.59 [mW] 13 [mW]*6	381 [mm]	3375 [mW]

Sub Antenna

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *5	Min distance *2	Calculation of threshold*4
WLAN]	D. #	11a	5320 [MHz]	11 [dBm]	270 []	2255 5 377
(5GHz band)		Bottom	BPSK(6Mbps)	(64ch)	12.59 [mW] 13 [mW]*6	379 [mm]	3355 [mW]
WLAN			11a	5320 [MHz]	11 [dBm]		
(5GHz		Left	BPSK(6Mbps)	(64ch)	12.59 [mW]	206 [mm]	1625 [mW]
band)			Вт вп (вптерв)		13 [mW]*6		
WLAN		D:-L	11a	5320 [MHz]	11 [dBm]	210 []	1745 FXVI
(5GHz band)		Righ	BPSK(6Mbps)	(64ch)	12.59 [mW] 13 [mW]*6	218 [mm]	1745 [mW]

WLAN 5.6GHz Main Antenna

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *5	Min distance *2	Calculation of threshold*4
WLAN(5G Hz band)		Тор	11a BPSK(6Mbps)	5700 [MHz] (140ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	380 [mm]	3363 [mW]
WLAN(5G Hz band)		Right	11a BPSK(6Mbps)	5700 [MHz] (140ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	381 [mm]	3373 [mW]

Sub Antenna

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *5	Min distance *2	Calculation of threshold*4
WLAN(5G Hz band)		Bottom	11a BPSK(6Mbps)	5700 [MHz] (140ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	379 [mm]	3353 [mW]
WLAN(5G Hz band)		Left	11a BPSK(6Mbps)	5700 [MHz] (140ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	206 [mm]	1623 [mW]
WLAN(5G Hz band)		Right	11a BPSK(6Mbps)	5700 [MHz] (140ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	218 [mm]	1743 [mW]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 25 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 5.8GHz Main Antenna

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *5	Min distance *2	Calculation of threshold*4
WLAN (5GHz band)		Тор	11a BPSK(6Mbps)	5825 [MHz] (165ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	380 [mm]	3362 [mW]
WLAN (5GHz band)		Right	11a BPSK(6Mbps)	5825 [MHz] (165ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	381 [mm]	3372 [mW]

Sub Antenna

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1			Calculation of threshold*4
WLAN (5GHz band)		Тор	11a BPSK(6Mbps)	5825 [MHz] (165ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	379 [mm]	3352 [mW]
WLAN (5GHz band)		Right	11a BPSK(6Mbps)	5825 [MHz] (165ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	206 [mm]	1622 [mW]
WLAN (5GHz band)		Right	11a BPSK(6Mbps)	5825 [MHz] (165ch)	10 [dBm] 10.00 [mW] 10 [mW]*6	218 [mm]	1742 [mW]

^{*1} The upper frequency of the frequency band was used in order to calculate standalone SAR test exclusion considerations.

*5 Maximum tune-up tolerance limit is by the specification from a customer.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2} When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. Refer to Appendix 4.

^{*3 [(}max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \leq 3.0$ If it is Calculation of exclusion ≤ 3.0 standalone SAR test is excluded.

^{*4 [(3·50)/(} $\sqrt{f_{(GHz)}}$)) + (test separation distance - 50 mm)·(f(MHz)/150)] mW at > 100 MHz and \leq 1500 MHz [(3·50)/($\sqrt{f_{(GHz)}}$)) + (test separation distance - 50 mm)·10] mW at > 1500 MHz and \leq 6 GHz If it is maximum tune-up tolerance limit < Threshold, standalone SAR test is excluded.

^{*6} Maximum tune-up tolerance limit(mW) is rounded to one decimal place.

Page : 26 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

SECTION 7: Description of the Body setup

7.1 Test position for Body setup

i) Procedure for SAR testing

-The tested procedure was performed according to the KDB447498 D01 (Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies)

ii) Test mode

WLAN 2.4G	Data transmission mode (11b/n-20)
WLAN 5G	Data transmission mode (11a/n-20)

iii) Test position

111) 1	est position									
No.	Position	Test	WLAN							
		distance	Tested	Antenna	Separation					
					from user					
1	Bottom	0mm		Main	2.0mm					
2	Front	0mm	\square	Main	3.5mm					
3	Rear	0mm		Main	3.5mm					

No.	Position	Test	WLAN		
		distance	Tested	Antenna	Separation
					from user
1	Тор	0mm	\square	Sub	3.4mm
2	Front	0mm	\square	Sub	3.5mm
3	Rear	0mm	$ \overline{\mathbf{Z}} $	Sub	3.5mm

Page : 27 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

SECTION 8: Test surrounding

8.1 Measurement uncertainty

This measurement uncertainty budget is suggested by IEEE Std 1528(2013)[3] and determined by Schmid & Partner Engineering AG (DASY5 Uncertainty Budget[2]). Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r01 Section 2.8.1., when the highest measured SAR(1g) within a frequency band is < 1.5W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std.1528 (2013) is not required in SAR reports submitted for equipment approval.

<0.3 – 3GHz range Body>

	Uncertai	Probability		(ci)	Standard	vi
Error Description	value ±	distribution	divisor	1g	(1g)	or
						veff
Measurement System		•			<u>'</u>	
Probe calibration	± 6.00	Normal	1	1	± 6.00	∞
Axial isotropy of the probe	± 4.7	Rectangular	√3	0.7	± 1.9	∞
Spherical isotropy of the probe	± 9.6	Rectangular	√3	0.7	± 3.9	∞
Boundary effects	± 1.0	Rectangular	$\sqrt{3}$	1	± 0.6	∞
Probe linearity	± 4.7	Rectangular	√3	1	± 2.7	∞
Detection limit	± 1.0	Rectangular	√3	1	± 0.6	∞
Modulation response	± 2.4	Rectangular	√3	1	± 1.4	∞
Readout electronics	± 0.3	Normal	1	1	± 0.3	∞
Response time	± 0.8	Rectangular	√3	1	± 0.5	∞
Integration time	± 2.6	Rectangular	√3	1	± 1.5	∞
RF ambient Noise	± 3.0	Rectangular	√3	1	± 1.7	∞
RF ambient Reflections	± 3.0	Rectangular	√3	1	± 1.7	∞
Probe Positioner	± 0.4	Rectangular	√3	1	± 0.2	∞
Probe positioning	± 2.9	Rectangular	√3	1	± 1.7	∞
Max.SAR Eval.	± 2.0	Rectangular	$\sqrt{3}$	1	± 1.2	∞
Test Sample Related		•				
Device positioning	± 2.9	Normal	1	1	± 2.9	7
Device holder uncertainty	± 3.6	Normal	1	1	± 3.6	5
Power drift	± 5.0	Rectangular	$\sqrt{3}$	1	± 2.9	∞
Power Scaling	+ 0.0	Rectangular	√3	1	± 0.0	∞
Phantom and Setup	•				•	
Phantom uncertainty	± 6.1	Rectangular	$\sqrt{3}$	1	± 3.5	∞
Algorithm for correcting SAR for deviations in permittivity and conductivity	± 1.9	Normal	1	1	± 1.9	∞
Liquid conductivity (meas.)	+ 4.0	Rectangular	1	0.78	+ 3.1	∞
Liquid permittivity (meas.)	- 3.9	Rectangular	1	0.23	- 0.9	∞
Liquid conductivity	± 5.2	Rectangular	√3	0.78	± 2.3	_∞
- temp.unc (below 2deg.C.)	± 3.2	Rectangular	٧3	0.78	± 2.3	$\frac{\omega}{\omega}$
Liquid permittivity		Doctor cula:	$\sqrt{3}$	0.23	± 0.1	oc .
- temp.unc (below 2deg.C.)	± 0.8	Rectangular	\\\ 3	0.23	± 0.1	∞
Combined Standard Uncertainty					± 11.719	+
Expanded Uncertainty (k=2)		1			± 11./19 ± 23.4	+

^{*.} Table of uncertainties are listed for ISO/IEC 17025.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 28 of 186

FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

<3 – 6GHz range Body>

	Un	certai	Probability		(ci)	St	andard	vi
Error Description	val	lue ±	distribution	divisor	1g	(1	g)	or
								veff
Measurement System	•					•		
Probe calibration	± (6.55	Normal	1	1	±	6.55	∞
Axial isotropy of the probe	± 4	4.7	Rectangular	$\sqrt{3}$	0.7	±	1.9	∞
Spherical isotropy of the probe	± 9	9.6	Rectangular	$\sqrt{3}$	0.7	±	3.9	∞
Boundary effects	± 2	2.0	Rectangular	$\sqrt{3}$	1	±	1.2	∞
Probe linearity	± 4	4.7	Rectangular	$\sqrt{3}$	1	±	2.7	∞
Detection limit	±	1.0	Rectangular	$\sqrt{3}$	1	±	0.6	∞
Modulation response	± 2	2.4	Rectangular	$\sqrt{3}$	1	±	1.4	∞
Readout electronics	± (0.3	Normal	1	1	±	0.3	∞
Response time	± (0.8	Rectangular	√3	1	±	0.5	∞
Integration time	± 2	2.6	Rectangular	$\sqrt{3}$	1	±	1.5	∞
RF ambient Noise	± .	3.0	Rectangular	√3	1	±	1.7	∞
RF ambient Reflections	± .	3.0	Rectangular	√3	1	±	1.7	∞
Probe Positioner	± (0.8	Rectangular	√3	1	±	0.5	∞
Probe positioning	± (6.7	Rectangular	√3	1	±	3.9	∞
Max.SAR Eval.	± 4	4.0	Rectangular	$\sqrt{3}$	1	±	2.3	∞
Test Sample Related	•		•	•	·	•		
Device positioning	± 2	2.9	Normal	1	1	±	2.9	52
Device holder uncertainty	± (3.6	Normal	1	1	±	3.6	5
Power drift	± :	5.0	Rectangular	√3	1	±	2.9	∞
Power Scaling	+ (0.0	Rectangular	√3	1	±	0.0	∞
Phantom and Setup			_		•			
Phantom uncertainty	± (6.6	Rectangular	√3	1	±	3.8	∞
Algorithm for correcting SAR for deviations in permittivity and conductivity	±	1.9	Normal	1	1	±	1.9	∞
Liquid conductivity (meas.)	- 4	4.4	Rectangular	1	0.78	+	3.4	∞
Liquid permittivity (meas.)	- 4	4.0	Rectangular	1	0.23	-	0.9	∞
Liquid conductivity - temp.unc (below 2deg.C.)	±	2.4	Rectangular	√3	0.78	±	1.1	8
Liquid permittivity - temp.unc (below 2deg.C.)	± (0.8	Rectangular	√3	0.23	±	0.1	∞
					-			
Combined Standard Uncertainty							12.708	
Expanded Uncertainty (k=2)						±	25.4	

^{*.} Table of uncertainties are listed for ISO/IEC 17025.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 29 of 186

FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

SECTION 9: Measurement results

9.1 WLAN Body SAR (2.4G)

(1) Method of measurement

Step.1 The searching for the worst position.

The test was performed at the worst transmit rate and channel.

Step2. The changing to 11n-20 mode

The test was performed at the worst position of Step.1

Note:

1)The other channel was not required since maximum average output power channel SAR value is less than 0.8W/kg.

2) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg.

When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.

Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is ≥ 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the HP85070D dielectric probe kit.

The dielectric parameters measurement is reported in each correspondent section.

	DIELECTRIC PARAMETERS MEASUREMENT RESULTS													
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark			
1-Aug	24	42	MSL	23.5	2450	εr	52.7	50.7	-3.8	+/-5	*1			
1-Aug	24	42	2450	23.3	2430	σ [mho/m]	1.95	2.02	3.6	+/-5	1			
1-Aug	24	42	MSL	23.5	2462	er	52.7	50.6	-3.9	+/-5	*2			
1-Aug	24	42	2450	23.3	2402	σ [mho/m]	1.97	2.05	4.0	+/-5	. 2			
					3000	er	52.0	-	-	1	*1			
_	_	-		-	3000	σ [mho/m]	2.73	-	-	ı	. 1			

εr: Relative Permittivity / σ : Coductivity

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Page : 30 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

(3)SAR correction for deviations of complex permittivity from target

$$\begin{split} \Delta SAR &= c\epsilon \ \Delta \epsilon r + c\sigma \ \Delta \sigma \\ &< 1g> \\ C\epsilon &= -7.854 x 10^{-4} f^3 + 9.402 x 10^{-3} f^2 - 2.742 x 10^{-2} f - 0.2026 \\ C\sigma &= 9.804 x 10^{-3} f^3 - 8.661 x 10^{-2} f^2 + 2.981 x 10^{-2} f + 0.7829 \\ &< 10g> \\ C\epsilon &= 3.456 x 10^{-3} f^3 - 3.531 x 10^{-2} f^2 + 7.675 x 10^{-2} f - 0.1860 \\ C\sigma &= 4.479 x 10^{-3} f^3 - 1.586 x 10^{-2} f^2 - 0.1972 f + 0.7717 \\ `f` is the frequency in GHz. \end{split}$$

The measured SAR results are not corrected because \angle SAR has a positive sign. When \angle SAR is positive sign, SAR value will become small if corrected calculation of SAR is performed. Therefore, corrected calculation is not performed.

Date	•	1-Aug
	f(GHz)=	2.462
	∠ εr(%)=	-3.90
	⊿ σ(%)=	4.00
1g	Сε=	-0.2248
	Сσ=	0.4776
	△ SAR(%)=	2.79
10g	Ce=	-0.1595
	Сσ=	0.2569
	∠ SAR(%)=	1.65

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 31 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

(4)Result of Body SAR

2.4GHz Band

Main Antenna

	BODY SAR MEASUREMENT RESULTS													
Frequency		Modulation	Measured power		Maximum tune- up tolerance limit		Phantom Section	EUT Set-up Conditions			Measured SAR(1g) [W/kg]	Measured SAR(1g) ✓SAR correct	Reported SAR(1g) *2 [W/kg]	
Channel	[MHz]		[dBm] [mW]		[dBm]	[mW]		Antenna	Position	Separation [mm]		[W/kg] *1		
Step.1 P	Step.1 Position searching													
11	2462	11b 1Mbps	10.00	10.00	11.00	12.59	Flat	Main	Front	0	0.179	N/A	0.225	
11	2462	11b 1Mbps	10.00	10.00	11.00	12.59	Flat	Main	Rear	0	0.056	N/A	0.070	
11	2462	11b 1Mbps	10.00	10.00	11.00	12.59	Flat	Main	Bottom	0	0.196	N/A	0.247	
Step.2 N	tep.2 Mode change at the worst position													
11	2462	11n20 MCS0	9.67	9.27	11.00	12.59	Flat	Main	Bottom	0	0.206	N/A	0.280	

^{*1} Refer to clause 9.2 (3).

Sub Antenna

Sub A	Suo Antenna													
	BODY SAR MEASUREMENT RESULTS													
Fre	equency	Measured power			*		Phantom Section		JT Set-up Condi	itions	Measured SAR(1g) [W/kg]	Measured SAR(1g) SAR correct	Reported SAR(1g) *2 [W/kg]	
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]		[W/kg] *1		
Step.1 P	Step.1 Position searching													
11	2462	11b 1Mbps	10.02	10.05	11.00	12.59	Flat	Sub	Front	0	0.129	N/A	0.162	
11	2462	11b 1Mbps	10.02	10.05	11.00	12.59	Flat	Sub	Rear	0	0.082	N/A	0.103	
11	2462	11b 1Mbps	10.02	10.05	11.00	12.59	Flat	Sub	Тор	0	0.268	N/A	0.336	
Step.2 N	tep.2 Mode change at the worst position													
11	11 2462 11n20 MCS0 9.70 9.33 11.00							Sub	Тор	0	0.277	N/A	0.374	

^{*1} Refer to clause 9.2 (3).

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR(\(\subseteq SAR \) correct) [W/kg]

^{*2} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR(\(\subseteq SAR \) correct) [W/kg]

 $Test\ report\ No.\ :\ 10279740H\text{-}A\text{-}R1$

Page : 32 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

9.2 WLAN Body SAR (5G)

(1)Method of measurement

Step.1 The searching for the worst position.

The test was performed at the worst transmit rate and channel of 11a mode.

Step2. The changing to 11n-20 mode

The test was performed at the worst position of Step.1

Step.3 The changing to the other channels

The test was performed at the worst condition of Step1 to 2

Step.4 Repeat Measurement

The test was performed at the worst condition with measured SAR level in Step1 to 3 > 0.8W/kg

Note:

1)

a) In case of 5180-5240MHz, 5260-5320MHz and 5745-5825MHz frequency range.

The other channel was not required since maximum average output power channel SAR value is less than 0.8W/kg.

b) In case of 5500-5700MHz frequency range.

The other channel was not required since maximum average output power channel SAR value is less than 0.4W/kg

2) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg.

When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.

Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is ≥ 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 33 of 186

FCC ID : YR7AERODRP5 **Issued date** : August 19, 2014 Revised date : September 2, 2014

(2)Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the HP85070D dielectric probe kit. The dielectric parameters measurement is reported in each correspondent section.

i ile diele	cure para	meters m				n correspond ΓERS MEA			LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
_	_	-	-	-	3000	er	52.0	-	-	-	*1
						σ [mho/m]	2.73	-	-	-	
24-Jul	24	50	MBBL 3.5-5.8	23.5	5180	εr σ [mho/m]	49.0 5.28	48.3 5.12	-1.5 -3.0	+/-5 +/-5	*2
24-Jul	24	50	MBBL 3.5-5.8	23.5	5200	εr σ [mho/m]	49.0 5.30	48.0 5.19	-2.0 -2.0	+/-5 +/-5	*2
24-Jul	24	50	MBBL	23.5	5240	er	49.0	48.2	-1.5	+/-5	*2
			3.5-5.8			σ [mho/m]	5.35	5.36 47.7	0.2	+/-5	
25-Jul	24	50	MBBL 3.5-5.8	23.5	5280	εr σ [mho/m]	48.9 5.40	5.23	-2.5 -3.1	+/-5 +/-5	*2
25-Jul	24	50	MBBL 3.5-5.8	23.5	5300	εr σ [mho/m]	48.9 5.42	48.0 5.46	-1.8 0.8	+/-5 +/-5	*2
25-Jul	24	50	MBBL 3.5-5.8	23.5	5320	εr σ [mho/m]	48.9	46.9	-4.0 -3.0	+/-5	*2
25-Jul	24	50	MBBL 3.5-5.8	23.5	5500	εr	48.6	47.6 5.46	-2.1	+/-5	*2
27-Jul	24	61	MBBL	23.5	5500	σ [mho/m] εr	5.65 48.6	47.7	-3.4 -1.9	+/-5 +/-5	*2
28-Jul	24	57	3.5-5.8 MBBL	23.5	5500	σ [mho/m] εr	5.65 48.6	5.61 47.7	-0.8 -1.9	+/-5 +/-5	*2
20-Jul	24	31	3.5-5.8	23.3	3300	σ [mho/m]	5.65	5.56	-1.6	+/-5	2
25-Jul	24	50	MBBL 3.5-5.8	23.5	5520	εr σ [mho/m]	48.6 5.67	47.8 5.55	-1.7 -2.2	+/-5 +/-5	*2
27-Jul	24	61	MBBL 3.5-5.8	23.5	5560	εr σ [mho/m]	48.5 5.72	47.5 5.74	-2.2 0.3	+/-5 +/-5	*2
28-Jul	24	57	MBBL 3.5-5.8	23.5	5560	εr σ [mho/m]	48.5	47.8 5.64	-1.5 -1.5	+/-5	*2
25-Jul	24	50	MBBL 3.5-5.8	23.5	5600	εr σ [mho/m]	48.5	47.3 5.67	-2.5 -1.7	+/-5	*2
27-Jul	24	61	MBBL	23.5	5600	εr	48.5	47.5	-2.1	+/-5	*2
28-Jul	24	57	3.5-5.8 MBBL	23.5	5600	σ [mho/m] εr	5.77 48.5	5.87 47.4	1.7 -2.2	+/-5 +/-5	*2
	l - ·		3.5-5.8	-5.0		σ [mho/m]	5.77	5.73	-0.7	+/-5	l ~

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 34 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

27-Jul	24	61	MBBL	23.5	5640	εr	48.4	46.9	-3.3	+/-5	*2
_, , , ,,,,		¥ -	3.5-5.8			σ [mho/m]	5.82	5.86	0.7	+/-5	_
28-Jul	24	61	MBBL	23.5	5640	εr	48.4	47.0	-2.9	+/-5	*2
20-Jul	24	01	3.5-5.8	23.3	2040	σ [mho/m]	5.82	5.84	0.4	+/-5	2
27-Jul	24	61	MBBL	23.5	5680	εr	48.4	47.3	-2.3	+/-5	*2
2/-Jul	24	01	3.5-5.8	23.3	3080	σ [mho/m]	5.86	6.02	2.6	+/-5	٠ ک
28-Jul	24	57	MBBL	23.5	5680	εr	48.4	47.3	-2.2	+/-5	*2
28-Jul	24	37	3.5-5.8	23.3	3080	σ [mho/m]	5.86	5.85	-0.2	+/-5	. 2
28-Jul	24	57	MBBL	23.5	5700	εr	48.4	47.4	-2.0	+/-5	*2
28-Jul	24	37	3.5-5.8	23.3	3700	σ [mho/m]	5.89	5.82	-1.0	+/-5	٠. ۷
20 11	24	60	MBBL	23.5	5715	εr	48.3	46.8	-3.1	+/-5	*2
30-Jul	24	60	3.5-5.8	23.3	5745	σ [mho/m]	5.94	6.09	2.5	+/-5	*2
31-Jul	24	59	MBBL	23.5	5745	εr	48.3	47.2	-2.2	+/-5	*2
31-Jul	24	39	3.5-5.8	23.3	3743	σ [mho/m]	5.94	6.00	1.0	+/-5	*2
30-Jul	24	60	MBBL	23.5	5800	εr	48.2	47.1	-2.3	+/-5	*1
30-Jul	24	00	3.5-5.8	23.3	3800	σ [mho/m]	6.00	5.99	-0.2	+/-5	.1
21 []	24	59	MBBL	23.5	5000	εr	48.2	46.9	-2.7	+/-5	*1
31-Jul	24	39	3.5-5.8	23.3	5800	σ [mho/m]	6.00	5.90	-1.7	+/-5	*1
20 11	24	60	MBBL	23.5	5805	εr	48.2	47.1	-2.3	+/-5	*2
30-Jul	24	60	3.5-5.8	23.3	3803	σ [mho/m]	6.01	6.07	1.0	+/-5	٠. ۷
21 []	24	50	MBBL	22.5	5005	εr	48.2	46.7	-3.1	+/-5	*2
31-Jul	24	59	3.5-5.8	23.5	5805	σ [mho/m]	6.01	5.74	-4.4	+/-5	*2
20 Iul	24	60	MBBL	22.5	5925	εr	48.2	46.6	-3.3	+/-5	*2
30-Jul	24	60	3.5-5.8	23.5	5825	σ [mho/m]	6.03	5.82	-3.4	+/-5	*2
21 Jul	24	59	MBBL	22.5	5025	εr	48.2	47.5	-1.3	+/-5	*2
31-Jul	24	39	3.5-5.8	23.5	5825	σ [mho/m]	6.03	5 96	-1.1	+/-5	*2

 $[\]epsilon$ r: Relative Permittivity / σ : Coductivity

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Page : 35 of 186

FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

(3)SAR correction for deviations of complex permittivity from target

$$\begin{split} \Delta SAR &= c\epsilon \, \Delta \epsilon r + \, c\sigma \, \Delta \sigma \\ &< 1g> \\ C\epsilon &= -7.854 x 10^{-4} f^3 + 9.402 x 10^{-3} f^2 - 2.742 x 10^{-2} f - 0.2026 \\ C\sigma &= 9.804 x 10^{-3} f^3 - 8.661 x 10^{-2} f^2 + 2.981 x 10^{-2} f + 0.7829 \\ &< 10g> \\ C\epsilon &= 3.456 x 10^{-3} f^3 - 3.531 x 10^{-2} f^2 + 7.675 x 10^{-2} f - 0.1860 \\ C\sigma &= 4.479 x 10^{-3} f^3 - 1.586 x 10^{-2} f^2 - 0.1972 f + 0.7717 \\ `f ` is the frequency in GHz. \end{split}$$

The measured SAR results are not corrected because \triangle SAR has a positive sign. When \triangle SAR is positive sign, SAR value will become small if corrected calculation of SAR is performed. Therefore, corrected calculation is not performed.

Date		24-Jul	24-Jul Date		24-Jul Da		;	25-Jul
	f(GHz)=	5.18		f(GHz)=	5.24		f(GHz)=	5.28
	∠ er(%)=	-1.50		∠ er(%)=	-1.50		∠ er(%)=	-2.50
	⊿ σ(%)=	-3.00		⊿ σ(%)=	0.20		⊿ σ(%)=	-3.10
1g	Ce=	-0.2015	1g	Ce=	-0.2011	1g	Ce=	-0.2009
	Сσ=	-0.0240		Сσ=	-0.0284		Сσ=	-0.0311
	∠ SAR(%)=	0.37		∠ SAR(%)=	0.30		△ SAR(%)=	0.60
10g	Сε=	-0.2555	10g	Сε=	-0.2561	10g		-0.2564
	Сσ=	-0.0528		Сσ=	-0.0527		Сσ=	-0.0524
	△ SAR(%)=	0.54		∠ SAR(%)=	0.37		△ SAR(%)=	0.80
Date		25-Jul	Date		25-Jul	Date		27-Jul
	f(GHz)=	5.32		f(GHz)=	5.5		f(GHz)=	5.5
	∠ er(%)=	-4.00		∠ er(%)=	-2.10		∠ er(%)=	-1.90
	⊿ σ(%)=	-3.00		⊿ σ(%)=	-3.40		⊿ σ(%)=	-0.80
1g	Сε=	-0.2006	1g	Сε=	-0.1997	1g	Cε=	-0.1997
	Сσ=	-0.0336		Сσ=	-0.0420		Сσ=	-0.0420
	△ SAR(%)=	0.90		∠ SAR(%)=	0.56		△ SAR(%)=	0.41
10g	Ce=	-0.2567	10g	Ce=	-0.2570	10g	Ce=	-0.2570
	Сσ=	-0.0519		Сσ=	-0.0475		Сσ=	-0.0475
	∠ SAR(%)=	1.18		∠ SAR(%)=	0.70		△ SAR(%)=	0.53
Date 28-J		28-Jul	Date		25-Jul	Date		27-Jul
	f(GHz)=	5.5		f(GHz)=	5.52		f(GHz)=	5.56
	∠ er(%)=	-1.90		∠ er(%)=	-1.70		∠ er(%)=	-2.20
	⊿ σ(%)=	-1.60		⊿ σ(%)=	-2.20		⊿ σ(%)=	0.30
1g	Cε=	-0.1997	1g	Сε=	-0.1996	1g	Cε=	-0.1994
	Сσ=	-0.0420		Сσ=	-0.0426		Сσ=	-0.0437
	△ SAR(%)=	0.45		△ SAR(%)=	0.43		△ SAR(%)=	0.43
10g	Сε=	-0.2570	10g	Сε=	-0.2570	10g	Сε=	-0.2568
	Сσ=	-0.0475		Сσ=	-0.0468		Сσ=	-0.0452
	∠ SAR(%)=	0.56		∠ SAR(%)=	0.54		∠ SAR(%)=	0.55

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 36 of 186

FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

Data		28-Jul Date			27-Jul	D .		28-Jul
Date f(GHz)=		5.56	Date	f(GHz)=	5.64	Date	f(GHz)=	5.64
								-2.90
	$\angle \operatorname{er}(\%) =$	-1.50		<u></u>	-3.30		$\angle \operatorname{er}(\%) =$	
1	⊿ σ(%)=	-1.50	1	⊿ σ(%)=	0.70	1	∠ σ(%)=	0.40
1g	Cε=	-0.1994	1g	Cε=	-0.1991	1g	Cε=	-0.1991
	Cσ=	-0.0437		Cσ=	-0.0451		Cσ=	-0.0451
	△ SAR(%)=	0.36		△ SAR(%)=	0.63		∠ SAR(%)=	0.56
10g	CE=	-0.2568	10g	Сε=	-0.2563	10g	Сε=	-0.2563
	Сσ=	-0.0452		Сσ=	-0.0414		Сσ=	-0.0414
	△ SAR(%)=	0.45		∠ SAR(%)=	0.82		∠ SAR(%)=	0.73
					1			1
Date		27-Jul	Date		28-Jul	Date		28-Jul
	f(GHz)=	5.68		f(GHz)=	5.7		f(GHz)=	5.68
	∠ er(%)=	-2.30		∠ εr(%)=	-2.00		∠ er(%)=	-2.20
	⊿ σ(%)=	2.60		⊿ σ(%)=	-1.00		⊿ σ(%)=	-0.20
1g	Сε=	-0.1989	1g	Сε=	-0.1989	1g	Cε=	-0.1989
	Сσ=	-0.0454		Сσ=	-0.0455		Сσ=	-0.0454
	△ SAR(%)=	0.34		∠ SAR(%)=	0.44		∠ SAR(%)=	0.45
10g	Сε=	-0.2559	10g	Сε=	-0.2557	10g	Сε=	-0.2559
	Сσ=	-0.0393		Сσ=	-0.0382		Сσ=	-0.0393
	∠ SAR(%)=	0.49		∠ SAR(%)=	0.55		∠ SAR(%)=	0.57
Date		30-Jul Date		31-Jul	Date		30-Jul	
	f(GHz)=	5.745		f(GHz)=	5.745		f(GHz)=	5.805
	∠ er(%)=	-3.10		∠ er(%)=	-2.20		∠ er(%)=	-2.30
	⊿ σ(%)=	2.50		⊿ σ(%)=	1.00		⊿ σ(%)=	1.00
1g	Ce=	-0.1987	1g	Ce=	-0.1987	1g	Cε=	-0.1986
	Сσ=	-0.0454		Сσ=	-0.0454		Сσ=	-0.0448
	∠ SAR(%)=	0.50		∠ SAR(%)=	0.39		∠ SAR(%)=	0.41
10g	Сε=	-0.2552	10g	Сε=	-0.2552	10g	Сε=	-0.2543
	Сσ=	-0.0354		Сσ=	-0.0354		Сσ=	-0.0313
	∠ SAR(%)=	0.70		∠ SAR(%)=	0.53		∠ SAR(%)=	0.55
,								
Date		31-Jul	Date		30-Jul	Date	;	31-Jul
	f(GHz)=	5.805		f(GHz)=	5.825		f(GHz)=	5.825
	∠ \(\(\frac{6}{6}\)=	-3.10		∠ εr(%)=	-3.30		∠ \(\(\frac{6}{6}\)=	-1.30
	⊿ σ(%)=	-4.40		⊿ σ(%)=	-3.40		⊿ σ(%)=	-1.10
1g	Сε=	-0.1986	1g	Cε=	-0.1985	1g	Сε=	-0.1985
	Сσ=	-0.0448		Сσ=	-0.0445		Сσ=	-0.0445
	△ SAR(%)=	0.81		∠ SAR(%)=	0.81		∠ SAR(%)=	0.31
						4.0	ã	0.2540
10g	Сε=	-0.2543	10g	Сε=	-0.2540	10g	Ce=	-0.2540
10g	Cε= Cσ=	-0.2543 -0.0313	10g	Cε= Cσ=	-0.2540 -0.0299	10g	Cε= Cσ=	-0.2540

Page : 37 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

(4)Result of Body SAR

5.2GHz Band

Main Antenna

IVIUIII 1	vium / Michina														
	BODY SAR MEASUREMENT RESULTS														
Fre	Frequency Modulation		Measured power		Maximum tune- up tolerance limit		Phantom Section	EUT Set-up Conditions		Measured SAR(1g) [W/kg]	Measured SAR(1g) //SAR correct	Reported SAR(1g) *2 [W/kg]			
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]		[W/kg] *1			
Step.1 P	Step.1 Position searching														
48	5240	11a 6Mbps	10.31	10.74	11.00	12.59	Flat	Main	Front	0	0.314	N/A	0.368		
48	5240	11a 6Mbps	10.31	10.74	11.00	12.59	Flat	Main	Rear	0	0.175	N/A	0.205		
48	5240	11a 6Mbps	10.31	10.74	11.00	12.59	Flat	Main	Bottom	0	0.677	N/A	0.794		
Step.2 N	Iode change	at the worst	position												
48	5240	11n20 MCS0	10.09	10.21	11.00	12.59	Flat	Main	Bottom	0	0.510	N/A	0.629		

^{*1} Refer to clause 9.2 (3).

Sub Antenna

Sub Ai	do Antenna													
						BODY S	SAR MEA	SUREME	ENT RESULTS					
Fre	quency	Modulation		sured wer	Maximum tune- up tolerance limit		Phantom Section	EUT Set-up Conditions			Measured SAR(1g) [W/kg]	Measured SAR(1g) △SAR correct	Reported SAR(1g) *2 [W/kg]	
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]		[W/kg] *1		
Step.1 P	Step.1 Position searching													
36	5180	11a 6Mbps	10.03	10.07	11.00	12.59	Flat	Sub	Front	0	0.398	N/A	0.498	
36	5180	11a 6Mbps	10.03	10.07	11.00	12.59	Flat	Sub	Rear	0	0.199	N/A	0.249	
36	5180	11a 6Mbps	10.03	10.07	11.00	12.59	Flat	Sub	Тор	0	0.821	N/A	1.026	
Step.2 M	Iode change	at the worst p	osition											
36	5180	11n20 MCS0	9.8	9.55	11.00	12.59	Flat	Sub	Тор	0	0.755	N/A	0.995	
Step.3 C	hannel chan	ge (SAR leve	l in Step	.1 to 2 >	0.8 W/k	g)								
48	5240	11a 6Mbps	9.97	9.93	11.00	12.59	Flat	Sub	Тор	0	0.679	N/A	0.861	
48	5240	11n20 MCS0	9.67	9.27	11.00	12.59	Flat	Sub	Тор	0	0.642	N/A	0.872	
Step.4 R	epeat measu	rement of wo	rst mod	e (Meas	ured SA	R level i	n Step.1 to	0.3 > 0.8 v	v/kg)					
36	5180	11a 6Mbps	10.03	10.07	11.00	12.59	Flat	Sub	Тор	0	0.769	N/A	0.961	

^{*1} Refer to clause 9.2 (3).

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR(\(\subseteq SAR \) correct) [W/kg]

^{*2} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR(\(\subseteq SAR \) correct) [W/kg]

Page : 38 of 186

FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

5.3GHz Band Main Antenna

						BODY S	SAR MEA	SUREMI	ENT RESULTS				
Fre	equency	Modulation	Measured power		Maximum tune- up tolerance limit		Phantom Section	EUT Set-up Conditions			Measured SAR(1g) [W/kg]	Measured SAR(1g) △SAR correct	Reported SAR(1g) *2 [W/kg]
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]		[W/kg] *1	
Step.1 P	osition searc	hing											
64	5320	11a 6Mbps	10.85	12.16	11.00	12.59	Flat	Main	Front	0	0.326	N/A	0.337
64	5320	11a 6Mbps	10.85	12.16	11.00	12.59	Flat	Main	Rear	0	0.155	N/A	0.160
64	5320	11a 6Mbps	10.85	12.16	11.00	12.59	Flat	Main	Bottom	0	0.744	N/A	0.770
Step.2 N	ep.2 Mode change at the worst position												
64	5320	11n20 MCS0	10.67	11.67	11.00	12.59	Flat	Main	Bottom	0	0.740	N/A	0.798

Sub Antenna

						BODY S	SAR MEA	SUREME	ENT RESULTS				
Frequency		Modulation		sured wer	Maximum tune- up tolerance limit		Phantom Section		JT Set-up Cond	itions	Measured SAR(1g) [W/kg]	Measured SAR(1g) /SAR correct	Reported SAR(1g) *2 [W/kg]
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]		[W/kg] *1	
Step.1 P	osition searc	hing											
64	5320	11a 6Mbps	10.21	10.50	11.00	12.59	Flat	Sub	Front	0	0.276	N/A	0.331
64	5320	11a 6Mbps	10.21	10.50	11.00	12.59	Flat	Sub	Rear	0	0.168	N/A	0.202
64	5320	11a 6Mbps	10.21	10.50	11.00	12.59	Flat	Sub	Тор	0	0.698	N/A	0.837
Step.2 N	Iode change	at the worst	position										
64	5320	11n20 MCS0	9.94	9.86	11.00	12.59	Flat	Sub	Тор	0	0.622	N/A	0.794
Step.3 C	hannel chan	ge (SAR leve	l in Ster	o.1 to 2 >	0.8 W/I	kg)							
56	5280	11a 6Mbps	9.87	9.71	11.00	12.59	Flat	Sub	Тор	0	0.542	N/A	0.703

^{*1} Refer to clause 9.2 (3).

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR(\(\subseteq SAR \) correct) [W/kg]

Page : 39 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

5.6GHz Band Main Antenna

	BODY SAR MEASUREMENT RESULTS													
Fre	equency	Modulation		sured wer	Maximu up tol		Phantom Section	EUT Set-up Conditions			Measured SAR(1g) [W/kg]	Measured SAR(1g)	Reported SAR(1g) *2 [W/kg]	
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]		[W/kg] *1		
Step.1 P	osition searc	hing												
100	5500	11a 6Mbps	9.23	8.38	10.00	10.00	Flat	Main	Front	0	0.312	N/A	0.373	
100	5500	11a 6Mbps	9.23	8.38	10.00	10.00	Flat	Main	Rear	0	0.105	N/A	0.125	
100	5500	11a 6Mbps	9.23	8.38	10.00	10.00	Flat	Main	Bottom	0	0.498	N/A	0.595	
Step.2 M	Tode change	at the worst	position											
100	5500	11n20 MCS0	9.48	8.87	10.00	10.00	Flat	Main	Bottom	0	0.552	N/A	0.622	
Step.3 C	hannel chan	ge (SAR leve	l in Step	.1 to 2 >	0.4 W/l	kg)								
112	5560	11a 6Mbps	9.01	7.96	10.00	10.00	Flat	Main	Bottom	0	0.571	N/A	0.717	
128	5640	11a 6Mbps	8.89	7.74	10.00	10.00	Flat	Main	Bottom	0	0.651	N/A	0.841	
136	5680	11a 6Mbps	8.75	7.50	10.00	10.00	Flat	Main	Bottom	0	0.520	N/A	0.693	
112	5560	11n20 MCS0	8.83	7.64	10.00	10.00	Flat	Main	Bottom	0	0.497	N/A	0.651	
128	5640	11n20 MCS0	8.72	7.45	10.00	10.00	Flat	Main	Bottom	0	0.629	N/A	0.845	
136	5680	11n20 MCS0	8.56	7.18	10.00	10.00	Flat	Main	Bottom	0	0.440	N/A	0.613	

Sub Antenna

	BODY SAR MEASUREMENT RESULTS													
	equency	Modulation	Measured power		Maximum tune- up tolerance limit		Phantom Section	EU	JT Set-up Condi	itions Separation	Measured SAR(1g) [W/kg]	Measured SAR(1g) ∠SAR correct [W/kg] *1	Reported SAR(1g) *2 [W/kg]	
Channel Stop 1 P	[MHz] osition searc	hing	[dBm]	mW	[dBm]	mW		Antenna	Position	[mm]				
104	5520		9.67	9.27	10.00	10.00	Flat	Sub	Front	0	0.263	N/A	0.284	
104	5520	11a 6Mbps	9.67	9.27	10.00	10.00	Flat	Sub	Rear	0	0.205	N/A	0.221	
104	5520	11a 6Mbps	9.67	9.27	10.00	10.00	Flat	Sub	Тор	0	0.886	N/A	0.956	
Step.2 M	Iode change	at the worst	position											
100	5500	11n20 MCS0	9.85	9.66	10.00	10.00	Flat	Sub	Тор	0	0.943	N/A	0.976	
Step.3 C	hannel chan	ge (SAR leve	el in Ster	o.1 to 2 >	0.4 W/l	kg)								
112	5560	11a 6Mbps	9.48	8.87	10.00	10.00	Flat	Sub	Тор	0	0.887	N/A	1.000	
128	5640	11a 6Mbps	9.20	8.32	10.00	10.00	Flat	Sub	Тор	0	0.929	N/A	1.117	
140	5700	11a 6Mbps	9.03	8.00	10.00	10.00	Flat	Sub	Тор	0	0.654	N/A	0.818	
112	5560	11n20 MCS0	9.18	8.28	10.00	10.00	Flat	Sub	Тор	0	0.857	N/A	1.035	
128	5640	11n20 MCS0	8.92	7.80	10.00	10.00	Flat	Sub	Тор	0	0.879	N/A	1.127	
136	5680	11n20 MCS0	8.74	7.48	10.00	10.00	Flat	Sub	Тор	0	0.772	N/A	1.032	
Step.4 R	Step.4 Repeat measurement of worst mode (Measured SAR level in Step.1 to Step.2 > 0.8 w/kg)													
100	5500	11n20 MCS0	9.85	9.66	10.00	10.00	Flat	Sub	Тор	0	0.979	N/A	1.013	

^{*1} Refer to clause 9.2 (3).

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 $^{*2 \} Reported \ SAR = Maximum \ tune-up \ tolerance \ limit \ [mW] \ / \ Measured \ power \ [mW] \cdot \ Measured \ SAR \ (\triangle SAR \ correct) \ [W/kg]$

Page : 40 of 186

FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

5.8GHz Band Main Antenna

IVIaiii I	viani Antenna														
	BODY SAR MEASUREMENT RESULTS														
Fre	quency	Modulation		sured wer	Maximum tune- up tolerance limit		Phantom Section	EUT Set-up Conditions			Measured SAR(1g) [W/kg]	Measured SAR(1g) ⊿SAR correct	Reported SAR(1g) *2 [W/kg]		
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]		[W/kg] *1			
Step.1 Po	tep.1 Position searching														
165	5825	11a 6Mbps	8.37	6.87	10.00	10.00	Flat	Main	Front	0	0.437	N/A	0.636		
165	5825	11a 6Mbps	8.37	6.87	10.00	10.00	Flat	Main	Rear	0	0.090	N/A	0.131		
165	5825	11a 6Mbps	8.37	6.87	10.00	10.00	Flat	Main	Bottom	0	0.688	N/A	1.001		
Step.2 Mo	ode change at t	he worst positi	on												
165	5825	11n20 MCS0	8.20	6.61	10.00	10.00	Flat	Main	Bottom	0	0.689	N/A	1.043		
Step.3 Ch	annel change	(SAR level in	Step.1 to	2 > 0.8 W	/kg)										
149	5745	11a 6Mbps	8.06	6.40	10.00	10.00	Flat	Main	Bottom	0	0.369	N/A	0.577		
161	5805	11a 6Mbps	8.25	6.68	10.00	10.00	Flat	Main	Bottom	0	0.616	N/A	0.922		
149	5745	11n20 MCS0	7.90	6.17	10.00	10.00	Flat	Main	Bottom	0	0.374	N/A	0.607		
161	5805	11n20 MCS0	8.03	6.35	10.00	10.00	Flat	Main	Bottom	0	0.639	N/A	1.006		

^{*1} Refer to clause 9.2 (3).

Sub Antenna

					BOD	Y SAR MEA	SUREME	NT RESULTS				
Frequency Modulat		Measured power		Maximum tune- up tolerance limit		Phantom Section	Е	EUT Set-up Conditions		Measured SAR(1g) [W/kg]	Measured SAR(1g) ∠SAR correct	Reported SAR(1g) *2 [W/kg]
[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]		[W/kg] *1	
Channel [MHz] [dBm] [mW] [mW] Antenna Position [mm] [mm] Step.1 Position searching												
5825	11a 6Mbps	8.57	7.19	10.00	10.00	Flat	Sub	Front	0	0.106	N/A	0.147
5825	11a 6Mbps	8.57	7.19	10.00	10.00	Flat	Sub	Rear	0	0.177	N/A	0.246
5825	11a 6Mbps	8.57	7.19	10.00	10.00	Flat	Sub	Тор	0	0.512	N/A	0.712
ep.2 Mode change at the worst position												
5825	11n20 MCS0	8.33	6.81	10.00	10.00	Flat	Sub	Тор	0	0.489	N/A	0.718
	[MHz] sition searchin 5825 5825 5825 de change at t	[MHz	Modulation	Modulation power	Modulation	Measured power Maximum tune- multiple mw mw mw mw mw mw mw	Measured power Maximum tune- up tolerance limit Phantom Section	Measured Maximum tune Phantom Section Maximum tune Phantom Modulation Measured Imwall Maximum tune Imwall Maximum tune Phantom Maximum tune Imwall Imwall Imwall Maximum tune Imwall Imwall		Measured power Maximum tune-up tolerance limit Phantom Section EUT Set-up Conditions	Measured power Maximum tune-up tolerance limit Phantom Section EUT Set-up Conditions SaR(1g) [W/kg]	Measured Modulation Measured power Maximum tune-up tolerance limit Phantom Section Position Position Position Separation Sep

^{*1} Refer to clause 9.2 (3).

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR(\(\subseteq SAR \) correct) [W/kg]

^{*2} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR(\(\subseteq SAR \) correct) [W/kg]

Page : 41 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

SECTION 10 Test instruments

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MDAE-03	Data Acquisition Electronics	Schmid&Partner Engineering AG	DAE4	1372	SAR	2014/06/18 * 12
MPB-09	Dosimetric E-Field Probe	Schmid&Partner Engineering AG	EX3DV4	3922	SAR	2014/06/13 * 12
MPF-03	2mm Oval Flat Phantom	Schmid&Partner Engineering AG	QDOVA001BB	1203	SAR	2014/06/03 * 12
MOS-31	Thermo-Hygrometer	Custom	CTH-201	3101	SAR	2014/07/06 * 12
COTS-MSAR- 03	Dasy5	Schmid&Partner Engineering AG	DASY5	-	SAR	-
MRBT-04	SAR robot	Schmid&Partner Engineering AG	TX60 Lspeag	F13/5PP1A1/A/ 01	SAR	2014/06/23 * 12
MDPK-03	Dielectric assessment kit	Schmid&Partner Engineering AG	DAK-3.5 Probe	0008	SAR	2014/03/04 * 12
COTS-MSAR- 04	Dielectric assessment kit	Schmid&Partner Engineering AG	DAK		SAR	-
MVNA-01	Vector Network Analyzer	Schmid&Partner Engineering AG	PLANAR R140	0030913	SAR	2014/01/09 * 12
MPM-15	Power Meter	Agilent	N1914A	MY53060017	SAR	2014/06/20 * 12
MPSE-20	Power sensor	Agilent	N8482H	MY53050001	SAR	2014/06/20 * 12
MPSE-21	Power sensor	Agilent	N8482H	MY52460010	SAR	2014/07/02 * 12
MHDC-22	Directional Coupler	Agilent	87300B	14893A	SAR(2- 18GHz)	Pre Check
MRFA-24	Pre Amplifier	R&K	R&K CGA020M602- 2633R	B30550	SAR	2014/06/19 * 12
MSG-13	Signal Generator	Rohde & Schwarz	SMA 100A	103764	SAR	2014/06/19 * 12
MDA-07	Dipole Antenna	Schmid&Partner Engineering AG	D2450V2	713	SAR(D2450)	2013/09/10 * 12
MDA-08	Dipole Antenna	Schmid&Partner Engineering AG	D5GHzV2	1020	SAR(D5G)	2014/01/17 * 12
MRENT-120	Data Acquisition Electronics	Schmid&Partner Engineering AG	DAE4	518	SAR	2013/10/14 * 12
MPB-07	Dosimetric E-Field Probe	Schmid&Partner Engineering AG	EX3DV4	3825	SAR	2013/12/13 * 12
MPF-02	2mm Oval Flat Phantom	Schmid&Partner Engineering AG	QDOVA001BB	1045	SAR	2014/05/30 * 12
MDH-01	Device holder	Schmid&Partner Engineering AG	Mounting device for transmitter	-	SAR	Pre Check
MOS-10	Digtal thermometer	HANNA	Checktemp-2	MOS-10	SAR	2013/08/23 * 12
MOS-26	Thermo-Hygrometer	CUSTOM	CTH-201	A08Q29	SAR	2014/05/20 * 12
MRBT-02	SAR robot	Schmid&Partner Engineering AG	TX60 Lspeag	F10/5E3LA1/A/ 01	SAR	2014/05/09 * 12
MSL2450					Daily check	Target value ± 5%
MBBL3.5-5.8					Daily check	Target value ± 5%
SAR Room					Daily check	e<0.012W/kg

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 42 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

APPENDIX 1: SAR Measurement data

1. Evaluation procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the E-field at a fixed location above the ear point or central position of flat phantom was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the antenna of EUT and the horizontal grid spacing was 15 mm x 15 mm, 12 mm x 12 mm or 10mm x 10mm. Based on these data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Around this point found in the Step 2 (area scan), a volume of 30mm x 30mm x 30mm or more was assessed by measuring 7 x 7 x 7 points at least for below 3GHz and a volume of 28 mm x 28mm x 22.5mm or more was assessed by measuring 8 x 8 x 6(ratio step method (*1)) points at least for 5GHz band.

And for any secondary peaks found in the Step2 which are within 2dB of maximum peak and not with this Step3 (Zoom scan) is repeated. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

- (1). The data at the surface were extrapolated, since the center of the dipoles is 1mm(EX3DV4) away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm [4]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
- (2). The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x, y and z-directions) [4], [5]. The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
- (3). All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the E-field at the same location as in Step 1.

The first measurement point: 2mm from the phantom surface, the initial grid separation: 2mm, subsequent graded grid ratio: 1.5 These parameters comply with the requirement of the KDB 865664D01.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1.} Ratio step method parameters used;

Page : 43 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

2. Measurement data

i) WLAN Body 2.4GHz Band

WLAN 11b 1Mbps Main Ant Front 0mm 2462MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2462 MHz; Duty Cycle:

1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2.048 \text{ S/m}$; $\varepsilon_r = 50.622$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.36, 7.36, 7.36); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207; Type: QDOVA001BB; Serial: TP:1207

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (51x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.274 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.946 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.442 W/kg

SAR(1 g) = 0.179 W/kg; SAR(10 g) = 0.067 W/kg

Maximum value of SAR (measured) = 0.289 W/kg

Date: 2014/08/01

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 44 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11b 1Mbps Main Ant Rear 0mm 2462MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2462 MHz; Duty Cycle:

1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2.048 \text{ S/m}$; $\varepsilon_r = 50.622$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.36, 7.36, 7.36); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207; Type: QDOVA001BB; Serial: TP:1207

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (51x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0943 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.849 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.126 W/kg

SAR(1 g) = 0.056 W/kg; SAR(10 g) = 0.022 W/kgMaximum value of SAR (measured) = 0.0920 W/kg

Date: 2014/08/01

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1 Page: 45 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11b 1Mbps Main Ant Bottom 0mm 2462MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2462 MHz; Duty Cycle:

1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2.048$ S/m; $\varepsilon_r = 50.622$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.36, 7.36, 7.36); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207; Type: QDOVA001BB; Serial: TP:1207

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (51x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.347 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.33 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.578 W/kg

SAR(1 g) = 0.196 W/kg; SAR(10 g) = 0.071 W/kgMaximum value of SAR (measured) = 0.359 W/kg

Date: 2014/08/01

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1 Page: 46 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11n20 MCS0 Main Ant Bottom 0mm 2462MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2462 MHz; Duty Cycle:

1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2.048 \text{ S/m}$; $\varepsilon_r = 50.622$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.36, 7.36, 7.36); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm

(Mechanical Surface Detection)

Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207; Type: QDOVA001BB; Serial: TP:1207

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (51x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.345 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.23 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.632 W/kg

SAR(1 g) = 0.206 W/kg; SAR(10 g) = 0.076 W/kg

Maximum value of SAR (measured) = 0.404 W/kg

Date: 2014/08/01

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1 Page: 47 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11b 1Mbps Sub Ant Front 0mm 2462MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2462 MHz; Duty Cycle:

1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2.048 \text{ S/m}$; $\varepsilon_r = 50.622$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.36, 7.36, 7.36); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207; Type: QDOVA001BB; Serial: TP:1207

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.192 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.11 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.292 W/kg

SAR(1 g) = 0.129 W/kg; SAR(10 g) = 0.053 W/kgMaximum value of SAR (measured) = 0.207 W/kg

Date: 2014/08/01

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1 Page: 48 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11b 1Mbps Sub Ant Rear 0mm 2462MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2462 MHz; Duty Cycle:

1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2.048 \text{ S/m}$; $\varepsilon_r = 50.622$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.36, 7.36, 7.36); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm

(Mechanical Surface Detection)

Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207; Type: QDOVA001BB; Serial: TP:1207

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.114 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.150 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.214 W/kg

SAR(1 g) = 0.082 W/kg; SAR(10 g) = 0.037 W/kg

Maximum value of SAR (measured) = 0.125 W/kg

Date: 2014/08/01

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 49 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11b 1Mbps Sub Ant Top 0mm 2462MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2462 MHz; Duty Cycle:

1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2.048 \text{ S/m}$; $\varepsilon_r = 50.622$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.36, 7.36, 7.36); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207; Type: QDOVA001BB; Serial: TP:1207

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (51x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.345 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.522 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.781 W/kg

SAR(1 g) = 0.268 W/kg; SAR(10 g) = 0.090 W/kgMaximum value of SAR (measured) = 0.504 W/kg

Date: 2014/08/01

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1 Page: 50 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11n20 MCS0 Sub Ant Top 0mm 2462MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2462 MHz; Duty Cycle:

1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2.048 \text{ S/m}$; $\varepsilon_r = 50.622$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.36, 7.36, 7.36); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm

(Mechanical Surface Detection)

Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207; Type: QDOVA001BB; Serial: TP:1207

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (51x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.445 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.53 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.837 W/kg

SAR(1 g) = 0.277 W/kg; SAR(10 g) = 0.097 W/kg

Maximum value of SAR (measured) = 0.481 W/kg

Date: 2014/08/01

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 51 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014
Revised date : September 2, 2014

ii) WLAN Body 5.2GHz Band

WLAN 11a 6Mbps Main Ant Front 0mm 5240MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W52 53); Frequency: 5240

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5240 MHz; $\sigma = 5.36$ S/m; $\varepsilon_r = 48.212$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.38, 4.38, 4.38); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.481 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 11.577 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 0.314 W/kg; SAR(10 g) = 0.144 W/kg

Maximum value of SAR (measured) = 0.592 W/kg

Date: 2014/07/24

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1
Page : 52 of 186
FCC ID : YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11a 6Mbps Main Ant Rear 0mm 5240MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W52 53); Frequency: 5240

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5240 MHz; $\sigma = 5.36$ S/m; $\varepsilon_r = 48.212$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.38, 4.38, 4.38); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.285 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 7.823 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.529 W/kg

SAR(1 g) = 0.175 W/kg; SAR(10 g) = 0.105 W/kgMaximum value of SAR (measured) = 0.260 W/kg

Date: 2014/07/24

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1
Page : 53 of 186
FCC ID : YR7AERODRP5
Issued date : August 19 2014

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11a 6Mbps Main Ant Bottom 0mm 5240MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W52 53); Frequency: 5240

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5240 MHz; $\sigma = 5.36$ S/m; $\varepsilon_r = 48.212$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.38, 4.38, 4.38); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.30 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 18.147 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 3.28 W/kg

SAR(1 g) = 0.677 W/kg; SAR(10 g) = 0.198 W/kgMaximum value of SAR (measured) = 1.55 W/kg

Date: 2014/07/24

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 54 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014
Revised date : September 2, 2014

WLAN 11n20 MCS0 Main Ant Bottom 0mm 5240MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W52 53); Frequency: 5240

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5240 MHz; $\sigma = 5.36$ S/m; $\varepsilon_r = 48.212$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.38, 4.38, 4.38); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.16 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 16.75 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 2.69 W/kg

SAR(1 g) = 0.510 W/kg; SAR(10 g) = 0.121 W/kgMaximum value of SAR (measured) = 1.15 W/kg

Date: 2014/07/24

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1
Page : 55 of 186
FCC ID : YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11a 6Mbps Sub Ant Front 0mm 5180MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W52 53); Frequency: 5180

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5180 MHz; $\sigma = 5.119$ S/m; $\varepsilon_r = 48.295$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.38, 4.38, 4.38); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.958 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 14.535 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.83 W/kg

SAR(1 g) = 0.398 W/kg; SAR(10 g) = 0.109 W/kgMaximum value of SAR (measured) = 0.921 W/kg

Date: 2014/07/24

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 56 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014
Revised date : September 2, 2014

WLAN 11a 6Mbps Sub Ant Rear 0mm 5180MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W52 53); Frequency: 5180

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5180 MHz; $\sigma = 5.119 \text{ S/m}$; $\varepsilon_r = 48.295$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.38, 4.38, 4.38); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.402 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 10.031 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.740 W/kg

SAR(1 g) = 0.199 W/kg; SAR(10 g) = 0.071 W/kgMaximum value of SAR (measured) = 0.421 W/kg

Date: 2014/07/24

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page : 57 of 186
FCC ID : YR7AERODRP5
Issued date : August 19, 2014

: September 2, 2014

Revised date

WLAN 11a 6Mbps Sub Ant Top 0mm 5180MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W52 53); Frequency: 5180

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5180 MHz; $\sigma = 5.119 \text{ S/m}$; $\varepsilon_r = 48.295$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.38, 4.38, 4.38); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2.97 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 18.801 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 3.48 W/kg

SAR(1 g) = 0.821 W/kg; SAR(10 g) = 0.289 W/kgMaximum value of SAR (measured) = 1.67 W/kg

Date: 2014/07/24

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 58 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11n20 MCS0 Sub Ant Top 0mm 5180MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W52 53); Frequency: 5180

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5180 MHz; $\sigma = 5.119 \text{ S/m}$; $\varepsilon_r = 48.295$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.38, 4.38, 4.38); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.92 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 19.28 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 3.37 W/kg

SAR(1 g) = 0.755 W/kg; SAR(10 g) = 0.224 W/kgMaximum value of SAR (measured) = 1.66 W/kg

Date: 2014/07/24

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1
Page : 59 of 186
FCC ID : YR7AERODRP5

Issued date : August 19, 2014
Revised date : September 2, 2014

WLAN 11a 6Mbps Sub Ant Top 0mm 5240MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W52 53); Frequency: 5240

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5240 MHz; $\sigma = 5.36$ S/m; $\varepsilon_r = 48.212$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.38, 4.38, 4.38); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.86 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 16.187 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 3.10 W/kg

SAR(1 g) = 0.679 W/kg; SAR(10 g) = 0.201 W/kgMaximum value of SAR (measured) = 1.47 W/kg

Date: 2014/07/24

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 60 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11n20 MCS0 Sub Ant Top 0mm 5240MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W52 53); Frequency: 5240

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5240 MHz; $\sigma = 5.36 \text{ S/m}$; $\varepsilon_r = 48.212$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.38, 4.38, 4.38); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.84 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 16.47 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 3.02 W/kg

SAR(1 g) = 0.642 W/kg; SAR(10 g) = 0.196 W/kgMaximum value of SAR (measured) = 1.39 W/kg

Date: 2014/07/24

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 61 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11a 6Mbps Sub Ant Top 0mm 5180MHz - Repeat -

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W52 53); Frequency: 5180

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5180 MHz; $\sigma = 5.119 \text{ S/m}$; $\varepsilon_r = 48.295$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.38, 4.38, 4.38); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.99 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 18.759 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 3.40 W/kg

SAR(1 g) = 0.769 W/kg; SAR(10 g) = 0.225 W/kgMaximum value of SAR (measured) = 1.63 W/kg

Date: 2014/07/24

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 62 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

iii) WLAN Body 5.3GHz Band

WLAN 11a 6Mbps Main Ant Front 0mm 5320MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W52 53); Frequency: 5320

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5320 MHz; $\sigma = 5.279$ S/m; $\varepsilon_r = 46.911$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.23, 4.23, 4.23); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.614 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 13.232 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.54 W/kg

SAR(1 g) = 0.326 W/kg; SAR(10 g) = 0.098 W/kg

Maximum value of SAR (measured) = 0.685 W/kg

Date: 2014/07/25

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1
Page : 63 of 186
FCC ID : YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11a 6Mbps Main Ant Rear 0mm 5320MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W52 53); Frequency: 5320

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5320 MHz; $\sigma = 5.279$ S/m; $\varepsilon_r = 46.911$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.23, 4.23, 4.23); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.288 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 8.312 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.578 W/kg

SAR(1 g) = 0.155 W/kg; SAR(10 g) = 0.062 W/kgMaximum value of SAR (measured) = 0.288 W/kg

Date: 2014/07/25

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 64 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014
Revised date : September 2, 2014

WLAN 11a 6Mbps Main Ant Bottom 0mm 5320MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W52 53); Frequency: 5320

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5320 MHz; $\sigma = 5.279 \text{ S/m}$; $\varepsilon_r = 46.911$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.23, 4.23, 4.23); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.58 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 20.046 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.76 W/kg

SAR(1 g) = 0.744 W/kg; SAR(10 g) = 0.170 W/kgMaximum value of SAR (measured) = 1.74 W/kg

Date: 2014/07/25

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 65 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014
Revised date : September 2, 2014

WLAN 11n20 MCS0 Main Ant Bottom 0mm 5320MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W52 53); Frequency: 5320

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5320 MHz; $\sigma = 5.279$ S/m; $\varepsilon_r = 46.911$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.23, 4.23, 4.23); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.84 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 20.49 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 3.95 W/kg

SAR(1 g) = 0.740 W/kg; SAR(10 g) = 0.171 W/kgMaximum value of SAR (measured) = 1.64 W/kg

Date: 2014/07/25

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1
Page : 66 of 186
FCC ID : YR7AERODRP5

Issued date : August 19, 2014
Revised date : September 2, 2014

WLAN 11a 6Mbps Sub Ant Front 0mm 5320MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W52 53); Frequency: 5320

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5320 MHz; $\sigma = 5.279 \text{ S/m}$; $\varepsilon_r = 46.911$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.23, 4.23, 4.23); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.632 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 12.285 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 0.276 W/kg; SAR(10 g) = 0.081 W/kg Maximum value of SAR (measured) = 0.596 W/kg

Date: 2014/07/25

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 67 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11a 6Mbps Sub Ant Rear 0mm 5320MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W52 53); Frequency: 5320

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5320 MHz; $\sigma = 5.279 \text{ S/m}$; $\varepsilon_r = 46.911$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.23, 4.23, 4.23); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.310 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 9.013 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.652 W/kg

SAR(1 g) = 0.168 W/kg; SAR(10 g) = 0.068 W/kgMaximum value of SAR (measured) = 0.337 W/kg

Date: 2014/07/25

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 68 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11a 6Mbps Sub Ant Top 0mm 5320MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W52 53); Frequency: 5320

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5320 MHz; $\sigma = 5.279 \text{ S/m}$; $\varepsilon_r = 46.911$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.23, 4.23, 4.23); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2.31 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 17.529 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 3.33 W/kg

SAR(1 g) = 0.698 W/kg; SAR(10 g) = 0.213 W/kgMaximum value of SAR (measured) = 1.53 W/kg

Date: 2014/07/25

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1
Page : 69 of 186
FCC ID : YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11n20 MCS0 Sub Ant Top 0mm 5320MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W52 53); Frequency: 5320

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5320 MHz; $\sigma = 5.279$ S/m; $\varepsilon_r = 46.911$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.23, 4.23, 4.23); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.80 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 17.08 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 2.98 W/kg

SAR(1 g) = 0.622 W/kg; SAR(10 g) = 0.192 W/kgMaximum value of SAR (measured) = 1.37 W/kg

Date: 2014/07/25

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 70 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014
Revised date : September 2, 2014

WLAN 11a 6Mbps Sub Ant Top 0mm 5280MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W52 53); Frequency: 5280

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5280 MHz; $\sigma = 5.229$ S/m; $\varepsilon_r = 47.705$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.23, 4.23, 4.23); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.52 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 16.322 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 2.51 W/kg

SAR(1 g) = 0.542 W/kg; SAR(10 g) = 0.155 W/kgMaximum value of SAR (measured) = 1.13 W/kg

Date: 2014/07/25

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 71 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

iv) WLAN Body 5.6GHz Band

WLAN 11a 6Mbps Main Ant Front 0mm 5500MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W56); Frequency: 5500

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz; $\sigma = 5.607$ S/m; $\varepsilon_r = 47.668$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF (3.92, 3.92, 3.92); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.599 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 12.332 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.24 W/kg

SAR(1 g) = 0.312 W/kg; SAR(10 g) = 0.112 W/kg

Maximum value of SAR (measured) = 0.651 W/kg

Date: 2014/07/27

Ambient Temp.: 24.0 degree.C. Liquid Temp.: 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 72 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014
Revised date : September 2, 2014

WLAN 11a 6Mbps Main Ant Rear 0mm 5500MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W56); Frequency: 5500

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz; $\sigma = 5.607$ S/m; $\varepsilon_r = 47.668$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(3.92, 3.92, 3.92); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.336 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 7.081 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.407 W/kg

SAR(1 g) = 0.105 W/kg; SAR(10 g) = 0.032 W/kgMaximum value of SAR (measured) = 0.212 W/kg

Date: 2014/07/27

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 73 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11a 6Mbps Main Ant Bottom 0mm 5500MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W56); Frequency: 5500

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz; $\sigma = 5.607$ S/m; $\varepsilon_r = 47.668$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.89, 3.89, 3.89); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.41 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 16.715 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 6.15 W/kg

SAR(1 g) = 0.498 W/kg; SAR(10 g) = 0.102 W/kgMaximum value of SAR (measured) = 1.27 W/kg

Date: 2014/07/27

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 74 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11n20 MCS0 Main Ant Bottom 0mm 5500MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W56); Frequency: 5500

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz; $\sigma = 5.607$ S/m; $\varepsilon_r = 47.668$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.89, 3.89, 3.89); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.51 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 17.565 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 3.66 W/kg

SAR(1 g) = 0.552 W/kg; SAR(10 g) = 0.112 W/kgMaximum value of SAR (measured) = 1.47 W/kg

Date: 2014/07/27

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 75 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014
Revised date : September 2, 2014

WLAN 11a 6Mbps Main Ant Bottom 0mm 5560MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W56); Frequency: 5560

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5560 MHz; $\sigma = 5.741$ S/m; $\varepsilon_r = 47.461$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.85, 3.85, 3.85); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.873 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 17.62 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 2.84 W/kg

SAR(1 g) = 0.571 W/kg; SAR(10 g) = 0.115 W/kgMaximum value of SAR (measured) = 1.55 W/kg

Date: 2014/07/27

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1
Page : 76 of 186
FCC ID : YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11a 6Mbps Main Ant Bottom 0mm 5640MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W56); Frequency: 5640

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5640 MHz; $\sigma = 5.855 \text{ S/m}$; $\varepsilon_r = 46.858$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.85, 3.85, 3.85); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.56 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 18.72 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.45 W/kg

SAR(1 g) = 0.651 W/kg; SAR(10 g) = 0.135 W/kgMaximum value of SAR (measured) = 1.65 W/kg

Date: 2014/07/27

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 77 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11a 6Mbps Main Ant Bottom 0mm 5680MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W56); Frequency: 5680

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5680 MHz; $\sigma = 6.016$ S/m; $\varepsilon_r = 47.255$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.85, 3.85, 3.85); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.97 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 17.07 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 2.58 W/kg

SAR(1 g) = 0.520 W/kg; SAR(10 g) = 0.106 W/kgMaximum value of SAR (measured) = 1.29 W/kg

Date: 2014/07/27

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 78 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11n20 MCS0 Main Ant Bottom 0mm 5560MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W56); Frequency: 5560

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5560 MHz; $\sigma = 5.741$ S/m; $\varepsilon_r = 47.461$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.85, 3.85, 3.85); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.40 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 16.060 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 2.51 W/kg

SAR(1 g) = 0.497 W/kg; SAR(10 g) = 0.103 W/kgMaximum value of SAR (measured) = 1.27 W/kg

Date: 2014/07/27

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 79 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11n20 MCS0 Main Ant Bottom 0mm 5640MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W56); Frequency: 5640

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5640 MHz; $\sigma = 5.855$ S/m; $\varepsilon_r = 46.858$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.85, 3.85, 3.85); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.52 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 18.608 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 3.19 W/kg

SAR(1 g) = 0.629 W/kg; SAR(10 g) = 0.128 W/kgMaximum value of SAR (measured) = 1.55 W/kg

Date: 2014/07/27

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 80 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11n20 MCS0 Main Ant Bottom 0mm 5680MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W56); Frequency: 5680

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5680 MHz; $\sigma = 6.016$ S/m; $\varepsilon_r = 47.255$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.85, 3.85, 3.85); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.58 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 15.285 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 2.23 W/kg

SAR(1 g) = 0.440 W/kg; SAR(10 g) = 0.088 W/kgMaximum value of SAR (measured) = 1.20 W/kg

Date: 2014/07/27

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1
Page : 81 of 186
FCC ID : YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11a 6Mbps Sub Ant Front 0mm 5520MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W56); Frequency: 5520

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5520 MHz; $\sigma = 5.552$ S/m; $\varepsilon_r = 47.764$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(3.92, 3.92, 3.92); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.556 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 11.17 V/m; Power Drift = -0.20 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.263 W/kg; SAR(10 g) = 0.065 W/kgMaximum value of SAR (measured) = 0.690 W/kg

Date: 2014/07/25

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1
Page : 82 of 186
FCC ID : YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11a 6Mbps Sub Ant Rear 0mm 5520MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W56); Frequency: 5520

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5520 MHz; $\sigma = 5.552$ S/m; $\varepsilon_r = 47.764$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(3.92, 3.92, 3.92); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.426 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 9.110 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.205 W/kg; SAR(10 g) = 0.068 W/kgMaximum value of SAR (measured) = 0.474 W/kg

Date: 2014/07/25

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 83 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11a 6Mbps Sub Ant Top 0mm 5520MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W56); Frequency: 5520

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5520 MHz; $\sigma = 5.552$ S/m; $\varepsilon_r = 47.764$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(3.92, 3.92, 3.92); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2.01 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 17.24 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 4.35 W/kg

SAR(1 g) = 0.886 W/kg; SAR(10 g) = 0.256 W/kgMaximum value of SAR (measured) = 2.03 W/kg

Date: 2014/07/25

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 84 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014
Revised date : September 2, 2014

WLAN 11n20 MCS0 Sub Ant Top 0mm 5500MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W56); Frequency: 5500

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz; $\sigma = 5.46$ S/m; $\varepsilon_r = 47.595$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(3.92, 3.92, 3.92); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2.40 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 21.617 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 4.63 W/kg

SAR(1 g) = 0.943 W/kg; SAR(10 g) = 0.246 W/kg Maximum value of SAR (measured) = 2.24 W/kg

Date: 2014/07/25

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1
Page : 85 of 186
FCC ID : YR7AERODRP5

Issued date : August 19, 2014
Revised date : September 2, 2014

WLAN 11a 6Mbps Sub Ant Top 0mm 5560MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W56); Frequency: 5560

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5560 MHz; $\sigma = 5.635 \text{ S/m}$; $\varepsilon_r = 47.792$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.85, 3.85, 3.85); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 3.01 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 16.32 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 4.62 W/kg

SAR(1 g) = 0.887 W/kg; SAR(10 g) = 0.225 W/kgMaximum value of SAR (measured) = 2.16 W/kg

Date: 2014/07/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1
Page : 86 of 186
FCC ID : YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11a 6Mbps Sub Ant Top 0mm 5640MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W56); Frequency: 5640

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5640 MHz; $\sigma = 5.838 \text{ S/m}$; $\varepsilon_r = 47.021$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.85, 3.85, 3.85); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2.74 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 21.09 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 5.03 W/kg

SAR(1 g) = 0.929 W/kg; SAR(10 g) = 0.226 W/kgMaximum value of SAR (measured) = 2.42 W/kg

Date: 2014/07/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 87 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014
Revised date : September 2, 2014

WLAN 11a 6Mbps Sub Ant Top 0mm 5700MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W56); Frequency: 5700

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5700 MHz; $\sigma = 5.824$ S/m; $\varepsilon_r = 47.374$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.85, 3.85, 3.85); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2.04 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 19.06 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 6.01 W/kg

SAR(1 g) = 0.654 W/kg; SAR(10 g) = 0.155 W/kgMaximum value of SAR (measured) = 1.61 W/kg

Date: 2014/07/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 88 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11n20 MCS0 Sub Ant Top 0mm 5560MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W56); Frequency: 5560

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5560 MHz; $\sigma = 5.635$ S/m; $\varepsilon_r = 47.792$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.85, 3.85, 3.85); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2.88 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 21.313 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 4.57 W/kg

SAR(1 g) = 0.857 W/kg; SAR(10 g) = 0.223 W/kgMaximum value of SAR (measured) = 2.03 W/kg

Date: 2014/07/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 89 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014
Revised date : September 2, 2014

WLAN 11n20 MCS0 Sub Ant Top 0mm 5640MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W56); Frequency: 5640

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5640 MHz; $\sigma = 5.838 \text{ S/m}$; $\varepsilon_r = 47.021$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.85, 3.85, 3.85); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2.94 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 21.761 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 4.79 W/kg

SAR(1 g) = 0.879 W/kg; SAR(10 g) = 0.216 W/kgMaximum value of SAR (measured) = 2.06 W/kg

Date: 2014/07/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 90 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11n20 MCS0 Sub Ant Top 0mm 5680MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W56); Frequency: 5680

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5680 MHz; $\sigma = 5.85 \text{ S/m}$; $\varepsilon_r = 47.319$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.85, 3.85, 3.85); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2.58 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 20.531 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 4.31 W/kg

SAR(1 g) = 0.772 W/kg; SAR(10 g) = 0.184 W/kgMaximum value of SAR (measured) = 1.74 W/kg

Date: 2014/07/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 91 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11n20 MCS0 Sub Ant Top 0mm 5500MHz - Repeat -

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W56); Frequency: 5500

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz; $\sigma = 5.557 \text{ S/m}$; $\varepsilon_r = 47.702$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.89, 3.89, 3.89); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2.85 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 22.666 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 5.11 W/kg

SAR(1 g) = 0.979 W/kg; SAR(10 g) = 0.258 W/kgMaximum value of SAR (measured) = 2.14 W/kg

Date: 2014/07/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1 Page: 92 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

v) WLAN Body 5.8GHz Band

WLAN 11a 6Mbps Main Ant Front 0mm 5825MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W58); Frequency: 5825

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5825 MHz; $\sigma = 5.823$ S/m; $\varepsilon_r = 46.592$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.05, 4.05, 4.05); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.683 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 15.53 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 2.62 W/kg

SAR(1 g) = 0.437 W/kg; SAR(10 g) = 0.105 W/kgMaximum value of SAR (measured) = 0.996 W/kg

Date: 2014/07/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 93 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11a 6Mbps Main Ant Rear 0mm 5825MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W58); Frequency: 5825

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5825 MHz; $\sigma = 5.823$ S/m; $\varepsilon_r = 46.592$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.05, 4.05, 4.05); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.166 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 5.507 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.450 W/kg

SAR(1 g) = 0.090 W/kg; SAR(10 g) = 0.047 W/kgMaximum value of SAR (measured) = 0.170 W/kg

Date: 2014/07/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 94 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11a 6Mbps Main Ant Bottom 0mm 5825MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W58); Frequency: 5825

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5825 MHz; $\sigma = 5.823$ S/m; $\varepsilon_r = 46.592$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.05, 4.05, 4.05); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.59 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 19.29 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 4.19 W/kg

SAR(1 g) = 0.688 W/kg; SAR(10 g) = 0.154 W/kgMaximum value of SAR (measured) = 1.56 W/kg

Date: 2014/07/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1
Page : 95 of 186
FCC ID : YR7AERODRP5

Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11n20 MCS0 Main Ant Bottom 0mm 5825MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W58); Frequency: 5825

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5825 MHz; $\sigma = 5.823$ S/m; $\varepsilon_r = 46.592$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.05, 4.05, 4.05); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.51 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 19.04 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 4.10 W/kg

SAR(1 g) = 0.689 W/kg; SAR(10 g) = 0.153 W/kgMaximum value of SAR (measured) = 1.66 W/kg

Date: 2014/07/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 96 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014
Revised date : September 2, 2014

WLAN 11a 6Mbps Main Ant Bottom 0mm 5745MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W58); Frequency: 5745

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5745 MHz; $\sigma = 6.087$ S/m; $\varepsilon_r = 46.779$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.05, 4.05, 4.05); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.881 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 13.25 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 2.21 W/kg

SAR(1 g) = 0.369 W/kg; SAR(10 g) = 0.087 W/kgMaximum value of SAR (measured) = 0.874 W/kg

Date: 2014/07/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1
Page : 97 of 186
FCC ID : YR7AERODRP5

Issued date : August 19, 2014
Revised date : September 2, 2014

WLAN 11a 6Mbps Main Ant Bottom 0mm 5805MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W58); Frequency: 5805

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5805 MHz; $\sigma = 6.068$ S/m; $\varepsilon_r = 47.086$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.05, 4.05, 4.05); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.22 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 17.52 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 3.62 W/kg

SAR(1 g) = 0.616 W/kg; SAR(10 g) = 0.140 W/kgMaximum value of SAR (measured) = 1.43 W/kg

Date: 2014/07/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 98 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

WLAN 11n20 MCS0 Main Ant Bottom 0mm 5745MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W58); Frequency: 5745

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5745 MHz; $\sigma = 6.087$ S/m; $\varepsilon_r = 46.779$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.05, 4.05, 4.05); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.834 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 13.40 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 2.12 W/kg

SAR(1 g) = 0.374 W/kg; SAR(10 g) = 0.087 W/kgMaximum value of SAR (measured) = 0.923 W/kg

Date: 2014/07/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 99 of 186
FCC ID: YR7AERODRP5

Issued date : August 19, 2014
Revised date : September 2, 2014

WLAN 11n20 MCS0 Main Ant Bottom 0mm 5805MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W58); Frequency: 5805

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5805 MHz; $\sigma = 6.068$ S/m; $\varepsilon_r = 47.086$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.05, 4.05, 4.05); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.40 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 17.45 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 3.76 W/kg

SAR(1 g) = 0.639 W/kg; SAR(10 g) = 0.140 W/kgMaximum value of SAR (measured) = 1.61 W/kg

Date: 2014/07/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 100 of 186
FCC ID: YR7AERODRP5
Issued date: August 19, 2014
Revised date: September 2, 2014

WLAN 11a 6Mbps Sub Ant Front 0mm 5825MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W58); Frequency: 5825

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5825 MHz; $\sigma = 5.96$ S/m; $\varepsilon_r = 47.52$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.05, 4.05, 4.05); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.181 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 6.879 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.459 W/kg

SAR(1 g) = 0.106 W/kg; SAR(10 g) = 0.040 W/kgMaximum value of SAR (measured) = 0.219 W/kg

Date: 2014/07/31

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 101 of 186
FCC ID: YR7AERODRP5
Issued date: August 19, 2014
Revised date: September 2, 2014

WLAN 11a 6Mbps Sub Ant Rear 0mm 5825MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W58); Frequency: 5825

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5825 MHz; $\sigma = 5.96$ S/m; $\varepsilon_r = 47.52$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.05, 4.05, 4.05); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.400 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 8.655 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.86 W/kg

SAR(1 g) = 0.177 W/kg; SAR(10 g) = 0.061 W/kgMaximum value of SAR (measured) = 0.359 W/kg

Date: 2014/07/31

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 102 of 186
FCC ID: YR7AERODRP5
Issued date: August 19, 2014
Revised date: September 2, 2014

WLAN 11a 6Mbps Sub Ant Top 0mm 5825MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W58); Frequency: 5825

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5825 MHz; $\sigma = 5.96$ S/m; $\varepsilon_r = 47.52$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.05, 4.05, 4.05); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.38 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 15.93 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 2.95 W/kg

SAR(1 g) = 0.512 W/kg; SAR(10 g) = 0.126 W/kgMaximum value of SAR (measured) = 1.24 W/kg

Date: 2014/07/31

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 103 of 186
FCC ID: YR7AERODRP5
Issued date: August 19, 2014
Revised date: September 2, 2014

WLAN 11n20 MCS0 Sub Ant Top 0mm 5825MHz

Communication System: UID 0, WLAN 11a/b/g/n (0); Communication System Band: 11a/n (W58); Frequency: 5825

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5825 MHz; $\sigma = 5.96$ S/m; $\varepsilon_r = 47.52$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.05, 4.05, 4.05); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.29 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 16.01 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 3.16 W/kg

SAR(1 g) = 0.489 W/kg; SAR(10 g) = 0.118 W/kgMaximum value of SAR (measured) = 1.12 W/kg

Date: 2014/07/31

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1

Page : 104 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014

Revised date : September 2, 2014

APPENDIX2: System Check

1. System check result Body 2450MHz

(1) Simulated Tissue Liquid Parameter confirmation

			DIELEC	CTRIC P	ARAMET	TERS MEA	SUREME	ENT RESU	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
1-Aug	24	42	MSL	23.5	2450	εr	52.7	50.7	-3.8	+/-5	*1
1-Aug	24	42	2450	25.5	2430	σ [mho/m]	1.95	2.02	3.6	+/-5	1

 $[\]epsilon r$: Relative Permittivity / σ : Coductivity

^{*1} The Target value is a parameter defined in KDB 865664D01.

	DIELECTRIC PARAMETERS MEASUREMENT RESULTS										
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
1 Αυσ	24	42	MSL	23.5	2450	εr	52.2	50.7	-2.9	+/-6	*2 *3
1-Aug	∠4	4-2	2450	23.3	2430	σ [mho/m]	2.00	2.02	1.0	+/-6	. 2 . 3

εr: Relative Permittivity / σ : Coductivity

(2) SAR correction for deviations of complex permittivity from target

 $\Delta SAR = c\epsilon \Delta \epsilon r + c\sigma \Delta \sigma$

<1g>

C_E=-7.854x10⁻⁴f³ +9.402x10⁻³f²-2.742x10⁻²f-0.2026 C_G=9.804x10⁻³f³ -8.661x10⁻²f²+2.981x10⁻²f+0.7829 <10g>

 $C\epsilon = 3.456 \times 10^{-3} f^3 - 3.531 \times 10^{-2} f^2 + 7.675 \times 10^{-2} f - 0.1860$ $C\sigma = 4.479 \times 10^{-3} f^3 - 1.586 \times 10^{-2} f^2 - 0.1972 f + 0.7717$

'f ' is the frequency in GHz.

The measured SAR results are corrected with target value of KDB865664D01.

Corrected SAR(1g) = Measured SAR(1g) x $(100-\triangle SAR)/100$

Date	:	1-Aug
	f(GHz)=	2.45
	∠ er(%)=	-3.8
	⊿ σ(%)=	3.6
1g	Ce=	-0.2249
	Сσ=	0.4802
	△ SAR(%)=	2.58
10g	Сε=	-0.1591
	Сσ=	0.2592
	∠ SAR(%)=	1.54

(3) System check result (for calibration by manufacture)

				S:	YSTEM CHECK				
	Date	Frequency [MHz]							
			Forward Po	wer 250mW	Conversion 1W	Target Value(1W)	Deviation	Limit	Remark
			Measured	∠SAR corrected	Calculation		[%]	[%]	
	1-Aug	2450.00	13.50	13.15	52.61	49.70	5.8	+/-10	*4

^{*4} The taget value is the parameter defined in SAR for nominal Body TSL parameters in manufacturer calibrated dipole (D5GHzV2 SN:1020) Please refer to "SAR result with Body TSL of Appendix 2 2. System Check Dipole (D5GHzV2,S/N: 1020)".

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2} The target value is the calibrated dipole Body TSL parameters. (D2450V2 SN:713, Measured Body TSL parameters)

^{*3} The limit is for deviation provided by manufacture.

Test report No. : 10279740H-A-R1
Page : 105 of 186
FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

Body 2450MHz System Check DATA / Dipole2450MHz / Forward Conducted Power: 250mW

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz;

Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ S/m}$; $\varepsilon_r = 50.71$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.36, 7.36, 7.36); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207; Type: QDOVA001BB; Serial: TP:1207

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 21.2 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.3 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 28.2 W/kg

SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.24 W/kg

Maximum value of SAR (measured) = 20.5 W/kg

Date: 2014/08/01

Ambient Temp.: 24.0 degree.C. Liquid Temp.: 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1
Page : 106 of 186
FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

Body 2450MHz System Check DATA / Dipole2450MHz / Forward Conducted Power: 250mW

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz;

Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ S/m}$; $\varepsilon_r = 50.71$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.36, 7.36, 7.36); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207; Type: QDOVA001BB; Serial: TP:1207

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Z Scan (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 12.8 W/kg

Date: 2014/08/01

Ambient Temp.: 24.0 degree.C. Liquid Temp.: 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1

: 107 of 186

: YR7AERODRP5 FCC ID **Issued date** : August 19, 2014

Revised date : September 2, 2014

System Check Dipole (D2450V2,S/N:713)

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

UL Japan (PTT)

Accreditation No.: SCS 108

S

С

Certificate No: D2450V2-713_Sep13

CALIBRATION CERTIFICATE Object D2450V2 - SN: 713

Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz

Calibration date: September 10, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Name Function Calibrated by: Israe El-Naoug Laboratory Technician Approved by: Katja Pokovic Technical Manager

Issued: September 10, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: D2450V2-713_Sep13

Page 1 of 8

Test report No.: 10279740H-A-R1

Page : 108 of 186

: YR7AERODRP5 FCC ID **Issued date** : August 19, 2014

Revised date : September 2, 2014

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-713_Sep13

Page 2 of 8

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1

Page : 109 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7	
Extrapolation	Advanced Extrapolation		
Phantom	Modular Flat Phantom		
Distance Dipole Center - TSL	10 mm	with Spacer	
Zoom Scan Resolution	dx, dy, dz = 5 mm		
Frequency	2450 MHz ± 1 MHz		

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.6 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.89 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.4 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-713_Sep13

Test report No. : 10279740H-A-R1

Page : 110 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$51.8 \Omega + 0.7 j\Omega$	
Return Loss	- 34.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$48.7 \Omega + 2.8 j\Omega$	
Return Loss	- 30.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.162 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	July 05, 2002	

Certificate No: D2450V2-713_Sep13

Page 4 of 8

Test report No.: 10279740H-A-R1 Page: 111 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

DASY5 Validation Report for Head TSL

Date: 10.09.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 713

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; σ = 1.83 S/m; ϵ_r = 39.4; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.095 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 26.7 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.05 W/kgMaximum value of SAR (measured) = 17.0 W/kg

0 dB = 17.0 W/kg = 12.30 dBW/kg

Certificate No: D2450V2-713_Sep13

Page 5 of 8

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1 Page : 112 of 186

FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

Impedance Measurement Plot for Head TSL

Test report No.: 10279740H-A-R1 Page: 113 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

DASY5 Validation Report for Body TSL

Date: 10.09.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 713

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2$ S/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.095 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.1 W/kg

SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.89 W/kgMaximum value of SAR (measured) = 16.7 W/kg

0 dB = 16.7 W/kg = 12.23 dBW/kg

Certificate No: D2450V2-713_Sep13

Test report No. : 10279740H-A-R1 Page : 114 of 186

FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

Impedance Measurement Plot for Body TSL

Test report No.: 10279740H-A-R1

Page : 115 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014

Revised date : September 2, 2014

3. System check result Body 5200MHz

(1) Simulated Tissue Liquid Parameter confirmation

	DIELECTRIC PARAMETERS MEASUREMENT RESULTS										
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
					3000	εr	52.0	-	-	-	*1
-	-	-	-	1	3000	σ [mho/m]	2.73	-	-	1	- 1
24-Jul	24	50	MBBL	23.5	5200	εr	49.0	48.0	-2.0	+/-5	*2
24-Jul	24	30	3.5-5.8	23.3	3200	σ [mho/m]	5.30	5.19	-2.0	+/-5	. 2
	_				5800	εr	48.2	-	-	-	*1
_	-	-	-	1	3800	σ [mho/m]	6.00	-	-	-	- 1

 $[\]epsilon$ r: Relative Permittivity / σ : Coductivity

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

	DIELECTRIC PARAMETERS MEASUREMENT RESULTS											
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark	
24-Jul	24	50	MBBL	23.5	5200	er	47.3	48.0	1.5	+/-6	*3*4	
24-Jul	24	50	3.5-5.8	3200	σ [mho/m]	5.44	5.19	-4.5	+/-6	3.4		

 $[\]epsilon r$: Relative Permittivity / σ : Coductivity

(2) SAR correction for deviations of complex permittivity from target

The measured SAR results are corrected with target value of KDB865664D01.

Corrected SAR(1g) = Measured SAR(1g) x $(100-\triangle SAR)/100$

ΔS	$SAR = c\varepsilon \Delta cr + c\sigma \Delta \sigma$
<1	g>
	$= -7.854 \times 10^{-4} \text{ f}^3 + 9.402 \times 10^{-3} \text{ f}^2 - 2.742 \times 10^{-2} \text{ f} - 0.2026$
Co	$5=9.804 \times 10^{-3} f^3 - 8.661 \times 10^{-2} f^2 + 2.981 \times 10^{-2} f + 0.7829$
	0g>
	$= 3.456 \times 10^{-3} \text{ f}^3 - 3.531 \times 10^{-2} \text{ f}^2 + 7.675 \times 10^{-2} \text{ f} - 0.1860$
Co	$5=4.479\times10^{-3}$ f ³ -1.586x10 ⁻² f ² -0.1972f+0.7717
'f	' is the frequency in GHz.

Date	,	24-Jul
	f(GHz)=	5.2
	∠ er(%)=	-2.0
	⊿ σ(%)=	-2.0
1g	Сε=	-0.2014
	Сσ=	-0.0255
	∠ SAR(%)=	0.45
10g	Сε=	-0.2557
	Сσ=	-0.0528
	∠ SAR(%)=	0.62

(3) System check result (for calibration by manufacture)

	SYSTEM CHECK											
	Frequency		SAR									
Date	[MHz]	Forward Po	wer 100mW	Conversion 1W	Target Value(1W)	Deviation	Limit	Remark				
	[MHZ]	Measured	∠SAR corrected	Calculation		[%]	[%]					
24-Jul	5200.00	7.68	7.65	76.45	75.80	0.9	+/-10	*5				

^{*5} The taget value is the parameter defined in SAR for nominal Body TSL parameters in manufacturer calibrated dipole (D5GHzV2 SN:1020) Please refer to "SAR result with Body TSL of Appendix 2 2. System Check Dipole (D5GHzV2,S/N: 1020)".

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*3} The target value is the calibrated dipole Body TSL parameters. (D5GHzV2 SN:1020, Measured Body TSL parameters)

^{*4} The limit is for deviation provided by manufacture.

Test report No. : 10279740H-A-R1
Page : 116 of 186
FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

Body 5200MHz System Check DATA / Dipole5GHz / Forward Conducted Power: 100mW

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5200

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 5.193 \text{ S/m}$; $\varepsilon_r = 48.009$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.38, 4.38, 4.38); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 16.2 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 61.005 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 29.0 W/kg

SAR(1 g) = 7.68 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 14.9 W/kg

Date: 2014/07/24

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1
Page : 117 of 186
FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

Body 5200MHz System Check DATA / Dipole5GHz / Forward Conducted Power: 100mW

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5200

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 5.193 \text{ S/m}$; $\varepsilon_r = 48.009$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.38, 4.38, 4.38); Calibrated: 2013/12/13;

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7331)

Z Scan (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 13.1 W/kg

Date: 2014/07/25

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 $Test\ report\ No.\ :\ 10279740H\text{-}A\text{-}R1$

Page : 118 of 186

FCC ID : YR7AERODRP5
Issued date : August 19, 2014

Revised date : September 2, 2014

4. System check result Body 5300MHz

(2) Simulated Tissue Liquid Parameter confirmation

			DIELEC	CTRIC P	PARAMET	TERS MEA	SUREME	ENT RESU	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
					3000	er	52.0	-	-	-	*1
-	_	-	1	1	3000	σ [mho/m]	2.73	-	-	-	1
25-Jul	24	50	MBBL	23.5	5300	er	48.9	48.0	-1.8	+/-5	*2
23-Jul	24	30	3.5-5.8	23.3	3300	σ [mho/m]	5.42	5.46	0.8	+/-5	. 2
				-	5800	εr	48.2	i	-	-	*1
_	_	-				σ [mho/m]	6.00	-	-	-	

 $[\]epsilon$ r: Relative Permittivity / σ : Coductivity

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

	DIELECTRIC PARAMETERS MEASUREMENT RESULTS											
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark	
25-Jul	24	50	MBBL	23.5	5300	er	47.2	48.0	1.7	+/-6	*3*4	
23-Jui	24	30	3.5-5.8	23.3	3300	σ [mho/m]	5.57	5.46	-1.9	+/-6	.3.4	

 $[\]epsilon$ r: Relative Permittivity / σ : Coductivity

(2) SAR correction for deviations of complex permittivity from target

The measured SAR results are corrected with target value of KDB865664D01.

Corrected SAR(1g) = Measured SAR(1g) x $(100-\triangle SAR)/100$

$\Delta SAR = c\epsilon \Delta \epsilon r + c\sigma \Delta \sigma$
<1g>
$C\varepsilon = -7.854 \times 10^{-4} f^3 + 9.402 \times 10^{-3} f^2 - 2.742 \times 10^{-2} f - 0.2026$
$C\sigma = 9.804 \times 10^{-3} f^3 - 8.661 \times 10^{-2} f^2 + 2.981 \times 10^{-2} f + 0.7829$
<10g>
$C\varepsilon = 3.456 \times 10^{-3} f^3 - 3.531 \times 10^{-2} f^2 + 7.675 \times 10^{-2} f - 0.1860$
$C_{\sigma}=4.479 \times 10^{-3} f^3 -1.586 \times 10^{-2} f^2 -0.1972 f +0.7717$
'f' is the frequency in GHz.

Date	;	25-Jul				
	f(GHz)=	5.3				
	∠ er(%)=	-1.8				
	⊿ σ(%)=	0.8				
1g	Сε=	-0.2008				
	Сσ=	-0.0324				
	∠ SAR(%)=	0.34				
10g	Сε=	-0.2566				
	Сσ=	-0.0521				
	∠ SAR(%)=	0.42				

(3) System check result (for calibration by manufacture)

	SYSTEM CHECK										
	Frequency										
Date	1 3	Forward Po	wer 100mW	Conversion 1W	Target Value(1W)	Deviation	Limit	Remark			
	[MHz]	Measured	∠SAR corrected	Calculation	· · ·	[%]	[%]				
25-Jul	5300.00	7.07	7.05	70.46	75.80	-7.0	+/-10	*5			

^{*5} The taget value is the parameter defined in SAR for nominal Body TSL parameters in manufacturer calibrated dipole (D5GHzV2 SN:1020) Please refer to "SAR result with Body TSL of Appendix 2 2. System Check Dipole (D5GHzV2,S/N: 1020)".

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*3} The target value is the calibrated dipole Body TSL parameters. (D5GHzV2 SN:1020, Measured Body TSL parameters)

^{*4} The limit is for deviation provided by manufacture.

Test report No.: 10279740H-A-R1
Page: 119 of 186
FCC ID: YR7AERODRP5
Issued date: August 19, 2014
Revised date: September 2, 2014

Body 5300MHz System Check DATA / Dipole5GHz / Forward Conducted Power: 100mW

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5300

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5300 MHz; $\sigma = 5.462$ S/m; $\varepsilon_r = 48.02$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.23, 4.23, 4.23); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 14.2 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 55.395 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 7.07 W/kg; SAR(10 g) = 1.98 W/kg

Maximum value of SAR (measured) = 13.8 W/kg

Date: 2014/07/25

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1
Page : 120 of 186
FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

Body 5300MHz System Check DATA / Dipole5GHz / Forward Conducted Power: 100mW

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5300

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5300 MHz; $\sigma = 5.462 \text{ S/m}$; $\varepsilon_r = 48.02$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.23, 4.23, 4.23); Calibrated: 2013/12/13;

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7331)

Z Scan (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 11.1 W/kg

Date: 2014/07/25

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1 Page : 121 of 186 : YR7AERODRP5 FCC ID Issued date : August 19, 2014

Revised date : September 2, 2014

System check result Body 5600MHz

(1) Simulated Tissua Liquid Parameter confirmation

(1) Simi	1) Simulated Lissue Liquid Parameter confirmation										
			DIELEC	CTRIC P	PARAMET	TERS MEA	SUREME	ENT RESU	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
					3000	er	52.0	-	-	-	*1
-	_	-	-	-	3000	σ [mho/m]	2.73	-	-	-	1
25-Jul	24	50	MBBL	23.5	5600	er	48.5	47.3	-2.5	+/-5	*2
23 - Jul	24	30	3.5-5.8	23.3		σ [mho/m]	5.77	5.67	-1.7	+/-5	2
27-Jul	24	61	MBBL	23.5	5600	εr	48.5	47.5	-2.1	+/-5	*2
2/ - Jul	24	01	3.5-5.8	23.3	3000	σ [mho/m]	5.77	5.87	1.7	+/-5	. 2
28-Jul	24	57	MBBL	23.5	5600	er	48.5	47.4	-2.2	+/-5	*2
20-Jul	24	37	3.5-5.8	23.3	3000	σ [mho/m]	5.77	5.73	-0.7	+/-5	*2
				5900	er	48.2	-	-	-	*1	
_	_	-	-	-	5800	σ [mho/m]	6.00	-	-	-	*1

			DIELEC	TRIC P	ARAME	TERS MEA	SUREMI	ENT RESU	ILTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
25-Jul	24	50	MBBL	23.5	5600	er	46.6	47.3	1.5	+/-6	*3*4
23 - Jul	24	30	3.5-5.8	23.3	3000	σ [mho/m]	5.98	5.67	-5.2	+/-6	3 4
27-Jul	24	61	MBBL	23.5	5600	er	46.6	47.5	1.9	+/-6	*3*4
2/-Jul	24	01	3.5-5.8	23.3	3000	σ [mho/m]	5.98	5.87	-1.8	+/-6	.3.4
28-Jul	20 1-1 24 5	. M	MBBL 22	23.5	5600	εr	46.6	47.4	1.8	+/-6	*3*4
20-Jul	24	57	3.5-5.8	23.3	3000	σ [mho/m]	5.98	5.73	-4.2	+/-6	. 3*4

 $[\]varepsilon$ r: Relative Permittivity / σ : Coductivity

(2) SAR correction for deviations of complex permittivity from target

The measured SAR results are corrected with target value of KDB865664D01.

Corrected SAR(1g) = Measured SAR(1g) x $(100-\triangle SAR)/100$

Date	e	25-Jul	27-Jul	28-Jul
	f(GHz)=	5.6	5.6	5.6
	∠ εr(%)=	-2.5	-2.10	-2.20
	⊿ σ(%)=	-1.7	1.70	-0.70
1g	Ce=	-0.1992	-0.1992	-0.1992
	Сσ=	-0.0445	-0.0445	-0.0445
	∠ SAR(%)=	0.57	0.34	0.47
10g	Сε=	-0.2566	-0.2566	-0.2566
	Сσ=	-0.0434	-0.0434	-0.0434
	/SAR(%)=	0.72	0.47	0.59

 $\Delta SAR = c\epsilon \Delta \epsilon r + c\sigma \Delta \sigma$

 $C\varepsilon = -7.854 \times 10^{-4} \text{ f}^3 + 9.402 \times 10^{-3} \text{ f}^2 - 2.742 \times 10^{-2} \text{ f} - 0.2026$ $C\sigma = 9.804x10^{-3}f^3 - 8.661x10^{-2}f^2 + 2.981x10^{-2}f + 0.7829$ <10g>

 $C\varepsilon = 3.456 \times 10^{-3} f^3 - 3.531 \times 10^{-2} f^2 + 7.675 \times 10^{-2} f - 0.1860$ $C\sigma = 4.479 \times 10^{-3} f^3 - 1.586 \times 10^{-2} f^2 - 0.1972 f + 0.7717$

'f' is the frequency in GHz.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*3} The target value is the calibrated dipole Body TSL parameters. (D5GHzV2 SN:1020, Measured Body TSL parameters)

^{*4} The limit is for deviation provided by manufacture.

Test report No.: 10279740H-A-R1

Page : 122 of 186

FCC ID : YR7AERODRP5 Issued date : August 19, 2014 Revised date : September 2, 2014

(3) System check result (for calibration by manufacture)

	SYSTEM CHECK											
	Frequency [MHz]											
Date		Forward Po	wer 100mW	Conversion 1W	on 1W Target Value(1W)		Limit	Remark				
		Measured	∠SAR corrected	Calculation		[%]	[%]					
25-Jul	5600.00	8.19	8.14	81.43	80.30	1.4	+/-10	*5				
27-Jul	5600.00	8.08	8.05	80.80	80.30	0.6	+/-10	*5				
28-Jul	5600.00	7.96	7.92	79.60	80.30	-0.9	+/-10	*5				

^{*5} The taget value is the parameter defined in SAR for nominal Body TSL parameters in manufacturer calibrated dipole (D5GHzV2 SN:1020) Please refer to "SAR result with Body TSL of Appendix 2 2. System Check Dipole (D5GHzV2,S/N: 1020)".

Test report No. : 10279740H-A-R1
Page : 123 of 186
FCC ID : YR7AERODRP5
Issued date : September 2, 2014
Revised date : September 2, 2014

Body 5600MHz System Check DATA / Dipole5GHz / Forward Conducted Power: 100mW

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5600

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5600 MHz; $\sigma = 5.674 \text{ S/m}$; $\varepsilon_r = 47.311$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(3.9, 3.9, 3.9); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 16.5 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 58.26 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 34.9 W/kg

SAR(1 g) = 8.19 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 16.3 W/kg

Date: 2014/07/25

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1
Page : 124 of 186
FCC ID : YR7AERODRP5
Issued date : September 2, 2014
Revised date : September 2, 2014

Body 5600MHz System Check DATA / Dipole5GHz / Forward Conducted Power: 100mW

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5600

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5600 MHz; $\sigma = 5.674 \text{ S/m}$; $\varepsilon_r = 47.311$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(3.9, 3.9, 3.9); Calibrated: 2013/12/13;

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7331)

Z Scan (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 12.6 W/kg

Date: 2014/07/25

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 125 of 186
FCC ID: YR7AERODRP5
Issued date: August 19, 2014
Revised date: September 2, 2014

Body 5600MHz System Check DATA / Dipole5GHz / Forward Conducted Power: 100mW

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5600

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5600 MHz; $\sigma = 5.868 \text{ S/m}$; $\varepsilon_r = 47.488$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.85, 3.85, 3.85); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 16.6 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 57.389 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 34.3 W/kg

SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.2 W/kgMaximum value of SAR (measured) = 16.1 W/kg

Date: 2014/07/27

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 126 of 186
FCC ID: YR7AERODRP5
Issued date: August 19, 2014
Revised date: September 2, 2014

Body 5600MHz System Check DATA / Dipole5GHz / Forward Conducted Power: 100mW

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5600

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5600 MHz; $\sigma = 5.868 \text{ S/m}$; $\varepsilon_r = 47.488$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.85, 3.85, 3.85); Calibrated: 2014/06/13;

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn1372; Calibrated: 2014/06/18 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7331)

Z Scan (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 13.5 W/kg

Date: 2014/07/27

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 127 of 186
FCC ID: YR7AERODRP5
Issued date: August 19, 2014
Revised date: September 2, 2014

Body 5600MHz System Check DATA / Dipole5GHz / Forward Conducted Power: 100mW

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5600

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5600 MHz; $\sigma = 5.728$ S/m; $\varepsilon_r = 47.418$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.85, 3.85, 3.85); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 16.1 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 56.646 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 34.6 W/kg

SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.2 W/kgMaximum value of SAR (measured) = 16.2 W/kg

Trimming value of State (measures) 10.2

Date: 2014/07/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1
Page : 128 of 186
FCC ID : YR7AERODRP5
Issued date : September 2, 2014

Body 5600MHz System Check DATA / Dipole5GHz / Forward Conducted Power: 100mW

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5600

MHz; Duty Cycle: 1:1

Medium parameters used: f = 5600 MHz; $\sigma = 5.728 \text{ S/m}$; $\varepsilon_r = 47.418$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.85, 3.85, 3.85); Calibrated: 2014/06/13;

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn1372; Calibrated: 2014/06/18 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7331)

Z Scan (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 12.5 W/kg

Date: 2014/07/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1

Page : 129 of 186

: YR7AERODRP5 FCC ID **Issued date** Revised date

: August 19, 2014 : September 2, 2014

System check result Body 5800MHz

(1) Simulated Tissue Liquid Parameter confirmation

<u> </u>	1) Simulated 115500 Elegate 1 arameter commination											
	DIELECTRIC PARAMETERS MEASUREMENT RESULTS											
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark	
30-Jul	24	60	0 MBBL 3.5-5.8	BL 23.5	5800	er	48.2	47.1	-2.3	+/-5	*1	
				23.3		σ [mho/m]	6.00	5.99	-0.2	+/-5		
31-Jul	24	24 50	24 59	MBBL 22.4	23.5	23.5 5800	er	48.2	46.9	-2.7	+/-5	*1
		24		3.5-5.8	23.3	3800	σ [mho/m]	6.00	5.90	-1.7	+/-5	. 1

 $[\]epsilon$ r: Relative Permittivity / σ : Coductivity

^{*1} The Target value is a parameter defined in KDB 865664D01.

	DIELECTRIC PARAMETERS MEASUREMENT RESULTS												
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark		
30-Jul	24	60	MBBL	23.5	5800	er	46.3	47.1	1.7	+/-6	*2 *3		
30-Jul			3	3.5-5.8	3.5-5.8	23.3 3800	σ [mho/m]	6.23	5.99	-3.9	+/-6	2 3	
31-Jul	24	24 59 MB	MBBL 22.5	23.5	5800	εr	46.3	46.9	1.3	+/-6	*2 *3		
		24	24	∠4 	24	39	3.5-5.8	23.3	3000	σ [mho/m]	6.23	5.90	-5.3

 $[\]epsilon$ r: Relative Permittivity / σ : Coductivity

(2) SAR correction for deviations of complex permittivity from target

The measured SAR results are corrected with target value of KDB865664D01.

Corrected SAR(1g) = Measured SAR(1g) x $(100-\triangle SAR)/100$

 $\Delta SAR = c\epsilon \Delta \epsilon r + c\sigma \Delta \sigma$ <1g>

 $C\varepsilon = -7.854 \times 10^{-4} f^3 + 9.402 \times 10^{-3} f^2 - 2.742 \times 10^{-2} f - 0.2026$ $C\sigma = 9.804 \times 10^{-3} f^3 - 8.661 \times 10^{-2} f^2 + 2.981 \times 10^{-2} f + 0.7829$

 $C\varepsilon = 3.456 \times 10^{-3} f^3 - 3.531 \times 10^{-2} f^2 + 7.675 \times 10^{-2} f - 0.1860$ $C\sigma = 4.479 \times 10^{-3} f^3 - 1.586 \times 10^{-2} f^2 - 0.1972 f + 0.7717$

'f' is the frequency in GHz.

Date	;	30-Jul	31-Jul		
	f(GHz)=	5.8	5.8		
	∠ er(%)=	-2.3	-2.7		
	⊿ σ(%)=	-0.2	-1.7		
1g	Сε=	-0.1986	-0.1986		
	Сσ=	-0.0449	-0.0449		
	△ SAR(%)=	0.47	0.61		
10g	Сε=	-0.2544	-0.2544		
	Сσ=	-0.0317	-0.0317		
	∠ SAR(%)=	0.59	0.74		

(3) System check result (for calibration by manufacture)

	SYSTEM CHECK											
		Frequency [MHz]	SAR 1g [W/kg]									
D	ate		Forward Power 100mW		Conversion 1W	Target Value(1W)	Deviation	Limit	Remark			
			Measured	∠SAR corrected	Calculation		[%]	[%]				
30)-Jul	5800.00	7.30	7.33	73.34	74.80	-1.9	+/-10	*4			
31	-Jul	5800.00	7.10	7.14	71.00	74.80	-5.1	+/-10	*4			

^{*4} The taget value is the parameter defined in SAR for nominal Body TSL parameters in manufacturer calibrated dipole (D5GHzV2 SN:1020) Please refer to "SAR result with Body TSL of Appendix 2 2. System Check Dipole (D5GHzV2,S/N: 1020)".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2} The target value is the calibrated dipole Body TSL parameters. (D5GHzV2 SN:1020, Measured Body TSL parameters)

^{*3} The limit is for deviation provided by manufacture.

Test report No. : 10279740H-A-R1
Page : 130 of 186
FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

Body 5800MHz System Check DATA / Dipole5GHz / Forward Conducted Power: 100mW

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5800

MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5800 MHz; $\sigma = 5.991 \text{ S/m}$; $\varepsilon_r = 47.055$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.05, 4.05, 4.05); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 14.4 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 55.17 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 31.9 W/kg

SAR(1 g) = 7.3 W/kg; SAR(10 g) = 2.01 W/kg

Maximum value of SAR (measured) = 14.6 W/kg

Date: 2014/07/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10279740H-A-R1
Page : 131 of 186
FCC ID : YR7AERODRP5
Issued date : August 19, 2014
Revised date : September 2, 2014

$Body\ 5800MHz\ System\ Check\ DATA\ /\ Dipole5GHz\ /\ Forward\ Conducted\ Power: 100mW$

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5800

MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5800 MHz; $\sigma = 5.991 \text{ S/m}$; $\varepsilon_r = 47.055$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.05, 4.05, 4.05); Calibrated: 2013/12/13;

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Z Scan (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 12.2 W/kg

Date: 2014/07/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 132 of 186
FCC ID: YR7AERODRP5
Issued date: August 19, 2014
Revised date: September 2, 2014

Body 5800MHz System Check DATA / Dipole5GHz / Forward Conducted Power: 100mW

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5800

MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5800 MHz; $\sigma = 5.901 \text{ S/m}$; $\varepsilon_r = 46.896$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.05, 4.05, 4.05); Calibrated: 2013/12/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 14.5 W/kg

Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 54.48 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 31.5 W/kg

SAR(1 g) = 7.1 W/kg; SAR(10 g) = 1.95 W/kg

Maximum value of SAR (measured) = 14.1 W/kg

Date: 2014/07/31

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10279740H-A-R1
Page: 133 of 186
FCC ID: YR7AERODRP5
Issued date: August 19, 2014
Revised date: September 2, 2014

Body 5800MHz System Check DATA / Dipole5GHz / Forward Conducted Power: 100mW

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5800

MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5800 MHz; $\sigma = 5.901$ S/m; $\varepsilon_r = 46.896$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(4.05, 4.05, 4.05); Calibrated: 2013/12/13;

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn518; Calibrated: 2013/10/14 Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1045

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Z Scan (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 12.6 W/kg

Date: 2014/07/31

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN