Frete

Nome do arquivo: frete.c, frete.cpp, frete.pas, frete.java, frete.js, frete.py2 ou frete.py3

O senhor Satoshi passou anos reclamando da empresa de correios do seu país, porque ela sempre transportava suas encomendas usando um caminho que passava pelo número mínimo de cidades entre a cidade onde o senhor Satoshi mora e a cidade destino da encomenda. A empresa alegava que essa estratégia levava ao menor tempo para a entrega final da encomenda. O problema é que ele notou que essa estratégia da empresa nem sempre levava ao menor preço para o frete total. Se ele pudesse escolher o caminho por onde a encomenda deveria passar para ir da sua cidade para a cidade destino, ele poderia economizar bastante com o frete, já que não havia muita urgência para a maioria de suas encomendas.

Depois de muita reclamação, a empresa finalmente está dando aos clientes a opção de determinar o caminho por onde a encomenda deve passar. O senhor Satoshi, feliz da vida, agora quer a sua ajuda para implementar um programa que, dado o custo de transporte de uma encomenda entre vários pares de cidades pelo país, para os quais a empresa realiza entregas diretas, determine qual é o preço total mínimo para o frete entre a cidade onde ele mora e a cidade destino da encomenda.

O país tem N cidades, identificadas pelos números de 1 a N. O senhor Satoshi mora na cidade 1 e o destino da encomenda será sempre a cidade N. É garantido que sempre haverá um caminho de 1 até N. No exemplo da figura, para N=5, o custo mínimo será 7, para o caminho $1 \to 2 \to 4 \to 5$.

Entrada

A primeira linha da entrada contém dois números inteiros N e M, representando o número de cidades e quantos pares de cidades possuem entrega direta de encomenda pela empresa. As M linhas seguintes contêm, cada uma, três inteiros A, B e C, indicando que a empresa realiza a entrega de uma encomenda diretamente entre as cidades A e B, cobrando o preço C.

Saída

Seu programa deve imprimir uma linha contendo um inteiro representando o preço mínimo total para o frete entre a cidade onde o senhor Satoshi mora, a cidade 1, e a cidade destino da encomenda, a cidade N.

Restrições

- $2 \le N \le 100 \text{ e } 1 \le M \le 1000$
- $1 \le A, B \le N \in A \ne B$
- $1 \le C \le 1000$

Exemplos

Entrada	Saída
5 6	7
1 2 4	
1 3 3	
4 3 6	
4 5 2	
2 4 1	
3 5 5	

Entrada	Saída
7 10	18
1 2 5	
3 1 32	
1 4 3	
2 3 4	
2 6 20	
6 3 1	
6 4 9	
6 5 6	
3 7 18	
5 7 2	

Chuva

Nome do arquivo fonte: chuva.c, chuva.cpp ou chuva.pas

A robótica causou uma grande revolução nos processos industriais no mundo todo; atualmente, vários tipos de robôs são usados na fabricação de carros, equipamentos eletrônicos e até mesmo utensílios domésticos.

Uma fábrica possui um robô de manutenção, que constantemente precisa ser deslocado entre setores diferentes para executar vários serviços. A movimentação do robô é feita por controle remoto: ele pode andar qualquer distância, mas apenas nas quatro direções cardeais (norte, sul, leste e oeste).

Robôs são feitos de metal, e por isso é ideal que eles evitem contato direto com a água. Assim, em dias chuvosos, é ideal que a trajetória do robô passe por dentro de galpões, debaixo de marquises e toldos, etc. para evitar sua exposição à chuva.

A sua tarefa é escrever um programa que, dadas as informações sobre as áreas cobertas e ponto inicial e final do robô, determine uma trajetória para o robô que minimize a porção do trajeto feita sob chuva.

Entrada

A entrada contém um único conjunto de testes, que deve ser lido do dispositivo de entrada padrão (normalmente o teclado). A primeira linha da entrada contém quatro inteiros X_i , Y_i , X_f e Y_f ($0 \le X_i, Y_i, X_f, Y_f \le 10^6$), indicando, respectivamente, a posição atual e a posição final do robô — o robô começa na posição (X_i, Y_i) e deve terminar na posição (X_f, Y_f).

A linha seguinte da entrada contém um único inteiro N ($0 \le N \le 1000$), indicando o número de áreas cobertas na fábrica. Cada uma das N linhas seguintes contém quatro inteiros X_1 , Y_1 , X_2 e Y_2 ($0 \le X_1 < X_2 \le 10^6$, $0 \le Y_1 < Y_2 \le 10^6$), indicando uma região coberta.

Uma região coberta é um retângulo de lados paralelos aos eixos tal que (X_1, Y_1) e (X_2, Y_2) são vértices opostos do retângulo. Duas áreas cobertas podem ter regiões comuns. O robô pode entrar e sair de uma área coberta por qualquer ponto de seu perímetro, e pode trafegar livremente dentro da área coberta.

Saída

Seu programa deve imprimir, na saída padrão, uma única linha, contendo um número inteiro indicando a menor distância que o robô precisa percorrer sob chuva.

Exemplo de entrada	Exemplo de saída
0 0 4 3	7
0	

Exemplo de entrada	Exemplo de saída
2 5 5 0	5
0 0 1 5	

Exemplo de entrada	Exemplo de saída
4 5 5 0	5
0 0 1 5 0 0 3 2	

Informações sobre a pontuação

- Em um conjunto de casos de teste que totaliza 30 pontos, $X_1,Y_1,X_2,Y_2,X_i,X_f,Y_i,Y_f \leq 10$ e $N \leq 5$.
- Em um conjunto de casos de teste que totaliza 55 pontos, $X_1,Y_1,X_2,Y_2,X_i,X_f,Y_i,Y_f \leq 1000$ e $N \leq 100$.

Cadeiras do auditório

Nome do arquivo fonte: cadeiras.c, cadeiras.cpp, ou cadeiras.pas

As cadeiras do auditório da escola são organizadas em um quadriculado com L linhas e C colunas. As linhas são numeradas de 1 a L, as colunas são numeradas de 1 a C, e as cadeiras são numeradas de 1 a $L \times C$, de tal modo que uma cadeira na linha i coluna j tem o número $(i-1) \times C + j$.

Durante a aula de teatro, a professora fez com que os alunos executassem uma sequência de mudanças na configuração da sala. Cada uma dessas mudanças intercambiou ou duas colunas ou duas linhas. A figura abaixo ilustra uma configuração original com três linhas e quatro colunas, a posição das cadeiras após uma mudança (intercâmbio das colunas 1 e 4), e a posição das cadeiras após mais uma mudança (intercâmbio das linhas 2 e 3).

Ao final da aula, como era de se esperar, a numeração das cadeiras ficou bem bagunçada. O problema é que a próxima aula é de Matemática, e o professor é muito exigente, e quer começar a aula com as cadeiras perfeitamente posicionadas da maneira original.

Tarefa

Sua tarefa é escrever um programa que, dada a posição de cada cadeira ao final da aula de teatro, determine qual é a menor sequência de mudanças que devem ser executadas para retornar as cadeiras aos seus devidos lugares, considerando que cada mudança faça o intercâmbio ou de duas linhas ou de duas colunas de cadeiras.

Entrada

A entrada contém um único conjunto de testes, que deve ser lido do dispositivo de entrada padrão (normalmente o teclado).

A primeira linha da entrada contém dois números inteiros L e C, representando respectivamente o número de linhas e o número de colunas de cadeiras do auditório ($1 \le L \le 200$ e $1 \le C \le 200$). Cada uma das L linhas seguintes contém C números inteiros entre 1 e $L \times C$, separados por um espaço em branco, indicando a posição das cadeiras ao final da aula de teatro. O j-ésimo número dado na linha i é o número da cadeira que se encontra na linha i e coluna j.

Saída

Seu programa deve imprimir, na $saída\ padrão$, na primeira linha um inteiro K representando o número de mudanças necessárias para retornar as cadeiras para sua posição original. Cada uma das K linhas seguintes contém a descrição de uma mudança, na forma de um caractere M (que pode ser 'L' ou 'C'), seguido de um espaço em branco, seguido de um inteiro X, seguido de um espaço em branco, seguido de um inteiro Y. Se o caractere descrevendo a mudança é 'L', X e Y representam linhas que devem ser intercambiadas; se o caractere descrevendo a mudança é 'C', X e Y representam colunas que devem ser intercambiadas.

Para todos os casos testes existe solução com $K \leq 1000$. Se mais de uma solução existe com o mesmo número de mudanças, imprima qualquer uma delas.

Informações sobre a pontuação

- $\bullet\,$ Em um conjunto de casos de teste que totaliza 30 pontos, $L \leq 10$ e $C \leq 10.$
- $\bullet\,$ Em um conjunto de casos de teste que totaliza 70 pontos, $L \leq 100$ e $C \leq 100.$

Exemplos

Entrada	Saída
2 2	2
4 3	L 1 2
2 1	C 1 2

Entrada	Saída
3 4 1 2 3 4 5 6 7 8 9 10 11 12	0