Produit scalaire algébrique

Définition (Produit scalaire). Dans un repère <u>orthonormé</u>, si $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, alors on appelle **produit scalaire de** \vec{u} et \vec{v} et on note $\vec{u} \cdot \vec{v}$ le <u>nombre</u> défini par $\vec{u} \cdot \vec{v} = xx' + yy'$

Exemple. Le produit scalaire de $\vec{u} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} -3 \\ -5 \end{pmatrix}$ est $\vec{u} \cdot \vec{v} = (2) \times (-3) + (3) \times (-5) = -21$

Attention le produit scalaire · n'est pas une multiplication \times . \vec{u} et \vec{v} sont des vecteurs et pas des nombres.

Exemple.
$$\binom{5}{-1} \cdot \binom{3}{-2} = (5) \times (3) + (-1) \times (-2) = 15 + 2 = 17$$

Hypothèses. Soit \vec{u} , \vec{v} , \vec{w} trois vecteurs du plan, et k un réel.

Propriété. Le produit scalaire est commutatif. $\vec{u} \cdot \vec{v} = \vec{\imath}$

Exemple.
$$\binom{-4}{3} \cdot \binom{2,5}{-1} = (-4)(2,5) + (3)(-1) = -13$$
 $\binom{2,5}{-1} \cdot \binom{-4}{3} = (2,5)(-4) + (-1)(3) = -13$

Propriété. Le produit scalaire · est distributif sur +. $(\vec{a} + \vec{b}) \cdot (\vec{c} + \vec{d}) = \vec{a} \cdot \vec{c} + \vec{a} \cdot \vec{d} + \vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{d}$

Exemple.
$$\left(\binom{1}{0} + \binom{3}{-2} \right) \cdot \binom{2}{3} = \binom{1}{0} \cdot \binom{2}{3} + \binom{3}{-2} \cdot \binom{2}{3} = 2 + 0 + 6 - 6 = 2$$

Propriété. Dans un produit scalaire, les constantes peuvent être sorties devant

$$\vec{u} \cdot (k\vec{v}) = (k\vec{u}) \cdot \vec{v} = k(\vec{u} \cdot \vec{v})$$

Exemple.
$$\binom{5}{-1} \cdot 5 \binom{3}{-2} = 5 \left(\binom{5}{-1} \cdot \binom{3}{-2} \right) = 5 \times \left((5)(3) + (-1)(-2) \right) = 5(17) = 85$$

Rappel. La **norme** (ou **longueur**) d'un vecteur $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$, est définie par $\|\vec{u}\| = \sqrt{x^2 + y^2}$

Exemple. Soit $\vec{u} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$, alors $||\vec{u}|| = \sqrt{(3)^2 + (-4)^2} = 5$. \vec{u} est de longueur 5.

Propriété. Le carré scalaire est égal au carré de la norme. $\vec{u}^2 = \vec{u} \cdot \vec{u} = x^2 + y^2 = ||\vec{u}||^2$

Exemple. $\binom{4}{-3} \cdot \binom{4}{-3} = (4)(4) + (-3)(-3) = 25$. Aussi $\left\| \binom{4}{-3} \right\|^2 = \sqrt{(4)^2 + (-3)^2}^2 = (4)^2 + (-3)^2 = 25$

Attention: $\|\vec{u}\|$ est un nombre donc $\|\vec{u}\|^2 = \|\vec{u}\| \times \|\vec{u}\|$. Mais dans $\vec{u} \cdot \vec{u}$ il s'agit du produit scalaire et pas \times .

Corollaire. La norme d'un vecteur est la racine de son carré scalaire. $\|\vec{u}\| = \sqrt{\vec{u} \cdot \vec{u}} = \sqrt{x^2 + y^2}$

Propriété. 1ère identité remarquable vectorielle. $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 + 2\vec{u} \cdot \vec{v}$

Propriété. $2^{\text{ème}}$ identité remarquable vectorielle. $\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\vec{u} \cdot \vec{v}$

Preuve.
$$\left\| \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} x' \\ y' \end{pmatrix} \right\|^2 = \left\| \begin{pmatrix} x - x' \\ y - y' \end{pmatrix} \right\|^2 = (x - x')^2 + (y - y')^2 = x^2 + y^2 + x'^2 + y'^2 - 2xx' - 2yy'$$

Propriété. Dans un repère orthonormé, deux vecteurs sont orthogonaux ssi leur produit scalaire est nul.

$$\vec{u}$$
 et \vec{v} orthogonaux $\Leftrightarrow \|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 \Leftrightarrow \vec{u} \cdot \vec{v} = 0 \Leftrightarrow xx' + yy' = 0$.

Exemple. Montrer que $\vec{u} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} -3 \\ -2 \end{pmatrix}$ sont orthogonaux.

 $\vec{u} \cdot \vec{v} = (2) \times (-3) + (-3) \times (-2) = -6 + 6 = 0$ donc les vecteurs \vec{u} et \vec{v} sont orthogonaux.

Propriété. Soit A, B deux points distincts. Soit M un point.

M appartient au cercle de diamètre [AB] ssi $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$ ssi ABM est rectangle en M (quand $M \neq A, B$)

L'ensemble des points M tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$ est le cercle de diamètre [AB].

Exemple. Si A = (5, 4) et B = (1, 2), donner une équation du cercle de diamètre [AB] On note C ce cercle. Soit M = (x; y) un point du plan.

$$M \in C \Leftrightarrow \overrightarrow{MA} \cdot \overrightarrow{MB} = 0 \Leftrightarrow \begin{pmatrix} 5 - x \\ 4 - y \end{pmatrix} \cdot \begin{pmatrix} 1 - x \\ 2 - y \end{pmatrix} = 0 \Leftrightarrow (5 - x)(1 - x) + (4 - y)(2 - y) = 0$$

 $M \in \mathcal{C} \Leftrightarrow 5 - 5x - x + x^2 + 8 - 4y - 2y + y^2 = 0 \Leftrightarrow x^2 + y^2 - 6x - 6y + 13 = 0$

Propriété. Etant donné deux points A et B et leur milieu I, on a $\overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 - \frac{1}{4}AB^2$

Exemple. Soit A = (5, 4) et B = (1, 2), déterminer l'ensemble (E) des points M tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 8$.

On note *I* le milieu de [*AB*]. On a $I = (\frac{5+1}{2}; \frac{4+2}{2}) = (3; 3)$.

De plus $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = \sqrt{(-4)^2 + (-2)^2} = \sqrt{20}$

Soit M = (x; y) un point du plan.

 $M \in (E) \Leftrightarrow \overrightarrow{MA} \cdot \overrightarrow{MB} = 8 \Leftrightarrow MI^2 - \frac{1}{4}AB^2 = 8 \Leftrightarrow MI^2 - \frac{1}{4} \times 20 = 8 \Leftrightarrow MI^2 - 5 = 8 \Leftrightarrow MI^2 = 13 \Leftrightarrow MI = \sqrt{13}$

(E) est un cercle de centre I = (3,3) et de rayon $\sqrt{13}$.

Rappel. \vec{u} est un vecteur directeur de la droite (AB) ssi \vec{u} est colinéaire à \overrightarrow{AB} ssi $\det(\vec{u}; \overrightarrow{AB}) = 0$

Rappel. Un vecteur directeur d'une droite d'équation cartésienne " ax + by + c = 0 " est $\binom{-b}{a}$.

Définition. \vec{u} est un **vecteur normal à la droite** (AB) ssi \vec{u} est orthogonal à \overrightarrow{AB} ssi $\vec{u} \cdot \overrightarrow{AB} = 0$

Propriété. <u>Un</u> vecteur normal à une droite d'équation cartésienne " ax + by + c = 0 " est $\binom{a}{b}$.

Exemple. Les droites d_1 : 2x - 3y + 4 = 0 et 3x + 2y - 1 = 0 sont-elles perpendiculaires ?

Leurs vecteurs normaux sont $\overrightarrow{n_1} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ et $\overrightarrow{n_2} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, or $\overrightarrow{n_1} \cdot \overrightarrow{n_2} = 6 - 6 = 0$ donc $d_1 \perp d_2$.

On pouvait aussi utiliser les vecteurs directeurs. Pour traduire des situations avec des droites, on a souvent le choix entre vecteur directeur / vecteur normal, et entre produit scalaire nul / déterminant nul.

Définition. Le projeté orthogonal d'un point M sur une droite d est le point $H \in d$ tel que $(MH) \perp d$

Si on connait l'équation ax + by + c = 0 de d, c'est le point H t.q. $\begin{cases} ax_H + by_H + c = 0 \\ \overline{MH} \cdot {by_H + c = 0 \\ a = 0 \end{cases} = 0 \quad \left(\text{ou} \det \left(\overline{MH}; {a \choose b} \right) = 0 \right)$

Si on connait deux points A et B de d, c'est le point H tel que $\begin{cases} \det(\overrightarrow{AH}; \overrightarrow{AB}) = 0 \\ \overrightarrow{MH} \cdot \overrightarrow{AB} = 0 \end{cases}$

Exemple. Déterminer le projeté orthogonal H du point M = (7; -1) sur

la droite
$$(AB)$$
 où $A = (1;1)$ et $B = (3;2)$. $\overrightarrow{AB} = \begin{pmatrix} (3) - (1) \\ (2) - (1) \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

$$\det(\overrightarrow{AH}; \overrightarrow{AB}) = \begin{vmatrix} x_H - 1 & 2 \\ y_H - 1 & 1 \end{vmatrix} = (x_H - 1)(1) - (y_H - 1)(2)$$

$$\det(\overrightarrow{AH}; \overrightarrow{AB}) = x_H - 1 - 2y_H + 2 = x_H - 2y_H + 1 = 0$$

$$\overrightarrow{MH} \cdot \overrightarrow{AB} = \begin{pmatrix} x_H - (7) \\ y_H - (-1) \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix} = (x_H - 7)(2) + (y_H + 1)(1)$$

$$\overrightarrow{MH} \cdot \overrightarrow{AB} = 2x_H - 14 + y_H + 1 = 2x_H + y_H - 13 = 0$$

 $\overrightarrow{MH} \cdot \overrightarrow{AB} = 2x_H - 14 + y_H + 1 = 2x_H + y_H - 13 = 0$ On résout $\begin{cases} x - 2y + 1 = 0 \\ 2x + y - 13 = 0 \end{cases} \Leftrightarrow \cdots \Leftrightarrow \begin{cases} x = 5 \\ y = 3 \end{cases}$ Le projeté orthogonal de M sur (AB) est H = (5; 3).

