Yanxiu's most dominant peaks algorithm was parallelized in the step of the code when the minimum distances, D_i s are computed for each peak. This is because the preceding and ensuing step (sorting by height and by D_i , respectively) were not only already parallelized above, but they also could run efficiently on a serial machine in $\Theta(N \lg N)$ time. The parallelization for the distances is as follows. Let there be N peaks, and these peaks be described by the set P = $\{P_0, P_1, \dots, P_{N-1}\}$. Then let there be M blocks and N threads such that N is a power of 2. The idea is that a block B_i calculates D for a set of points P_{B_i} , where P_{B_i} is either empty or nonempty, starting at P_1 . For example if M = N - 1, then $P_{B_i} = \{P_i\}$; if $M = \frac{N}{2} - 1$, then $P_{B_i} = \{P_i\}$ $\left\{P_i, P_{i+\frac{N}{n-1}}\right\}$. Each thread T_{k_i} in B_i represents a set of points $P_{T_{k_i}}$ that precede the current block's point P_{B_i} , where T_{k_i} is read as the k^{th} thread in the i^{th} block. If N=i, then $P_{T_{k_i}}=\{P_k\}$; if N=i $\frac{i}{2} - 1$, then $P_{T_{k_i}} = \left\{ P_k, P_{k + \frac{i}{2} - 1} \right\}$. The idea is that given a block point P_i , each thread T_{k_i} evaluates to D_{k_i} where D_{k_i} is the k^{th} thread's minimum distance of its set of points with respect to P_i . Specifically if we label the set $P_{T_{k_i}} = \{Q_0, Q_1, \dots Q_j\}$ where $Q_l \in P$, and if we define dist(A, B) as returning the square of the Euclidian distance of points A and B, then D_{k_i} $\min\left(dist(P_i,Q_0),dist(P_i,Q_1),...,dist(P_i,Q_j)\right)$. Each D_{k_i} is stored in the k^{th} index of a shared array called minArray. Note that for threads having an empty set of $P_{T_{k_i}}$ points, $minArray[k] = \infty$. After each element of minArray is calculated, the array is pair-wise reduced until a single element remains in minArray[0]; this value is the minimum distance of point P_i . This process continues inside the block until we reach the end of its P_{B_i} set, for all the blocks.