Ориентированные графы и дискретная вероятность

Артём Максаев

Факультет компьютерных наук, Высшая Школа Экономики

Орграфы и дискретная вероятность

Ориентированные графы

Пути в ориентированных графах

Ориентированные ациклические графы

Сильная связность

Что такое вероятность?

Неравновероятная модель

Многошаговое задание распределений

Случайные величины

Математическое ожидание

 Не все задачи можно естественно описать теми графами, которые мы обсуждали

- Не все задачи можно естественно описать теми графами, которые мы обсуждали
- Если в социальной сети отношение «быть другом» взаимно, то описывается нашими графами

- Не все задачи можно естественно описать теми графами, которые мы обсуждали
- Если в социальной сети отношение «быть другом» взаимно, то описывается нашими графами
- А что если отношение не симметрично, например «быть подписанным»?

- Не все задачи можно естественно описать теми графами, которые мы обсуждали
- Если в социальной сети отношение «быть другом» взаимно, то описывается нашими графами
- А что если отношение не симметрично, например «быть подписанным»?
- Что если в нашей транспортной сети есть односторонние дороги?

- Не все задачи можно естественно описать теми графами, которые мы обсуждали
- Если в социальной сети отношение «быть другом» взаимно, то описывается нашими графами
- А что если отношение не симметрично, например «быть подписанным»?
- Что если в нашей транспортной сети есть односторонние дороги?
- Есть много других случаев, в которых отношения между объектами не симметричны

• Объекты изображаем точками — вершинами

- Объекты изображаем точками вершинами
- Связанные отношением соединяем стрелками ребрами

- Объекты изображаем точками вершинами
- Связанные отношением соединяем стрелками ребрами
- При изображении ребра могут пересекаться

- Объекты изображаем точками вершинами
- Связанные отношением соединяем стрелками ребрами
- При изображении ребра могут пересекаться
- Возможны ребра сразу в обе стороны

• Ориентированный граф — множество вершин, соединенных ориентированными ребрами

- Ориентированный граф множество вершин, соединенных ориентированными ребрами
- Множество вершин графа обычно обозначают буквой ${\cal V}$

- Ориентированный граф множество вершин, соединенных ориентированными ребрами
- Множество вершин графа обычно обозначают буквой ${\cal V}$
- Отдельные вершины часто обозначают буквами v и u

- Ориентированный граф множество вершин, соединенных ориентированными ребрами
- Множество вершин графа обычно обозначают буквой ${\cal V}$
- Отдельные вершины часто обозначают буквами v и u
- Множество ребер графа обозначают буквой ${\cal E}$

- Ориентированный граф множество вершин, соединенных ориентированными ребрами
- Множество вершин графа обычно обозначают буквой ${\cal V}$
- Отдельные вершины часто обозначают буквами v и u
- Множество ребер графа обозначают буквой ${\cal E}$
- Отдельные ребра часто обозначают буквой \boldsymbol{e}

• Допускаются ли петли?

- Допускаются ли петли?
- Допускаются ли кратные ребра?

- Допускаются ли петли?
- Допускаются ли кратные ребра?
- Можно допускать, можно нет

- Допускаются ли петли?
- Допускаются ли кратные ребра?
- Можно допускать, можно нет
- По умолчанию не допускаем

- Допускаются ли петли?
- Допускаются ли кратные ребра?
- Можно допускать, можно нет
- По умолчанию не допускаем
- Большинство результатов переносится и на эти случай

• Пусть \boldsymbol{v} вершина графа

- Пусть v вершина графа
- Входящей степенью v называется число ребер, входящих в v; обозначение: $d_+(v)$

- ullet Пусть v вершина графа
- Входящей степенью v называется число ребер, входящих в v; обозначение: $d_+(v)$
- Исходящей степенью v называется число ребер, исходящих из v; обозначение: $d_-(v)$

- ullet Пусть v вершина графа
- Входящей степенью v называется число ребер, входящих в v; обозначение: $d_+(v)$
- Исходящей степенью v называется число ребер, исходящих из v; обозначение: $d_-(v)$
- Например, $d_{+}(D) = 1$, $d_{-}(D) = 2$

Лемма

Сумма всех исходящих степеней вершин в графе равна сумме всех входящих степеней вершин и равна числу ребер

Или в виде формулы

$$\sum_{v\in V}d_+(v)=\sum_{v\in V}d_-(v)=|E|$$

Лемма

Сумма всех исходящих степеней вершин в графе равна сумме всех входящих степеней вершин и равна числу ребер

Или в виде формулы

$$\sum_{v\in V} d_+(v) = \sum_{v\in V} d_-(v) = |E|$$

Доказательство почти такое же, как для неориентированных графов

 Давайте посчитаем двумя способами число концов ребер

- Давайте посчитаем двумя способами число концов ребер
- С одной стороны, концов ребер столько же, сколько ребер

• С другой стороны, каждый конец ребра входит в какую-то вершину

- С другой стороны, каждый конец ребра входит в какую-то вершину
- В вершину v входит $d_+(v)$ концов, так что всего концов $\sum_{v \in V} d_+(v)$

• Получаем $\sum_{v \in V} d_+(v) = |E|$

- Получаем $\sum_{v \in V} d_+(v) = |E|$
- Аналогично можно посчитать двумя способами число начал ребер

- Получаем $\sum_{v \in V} d_+(v) = |E|$
- Аналогично можно посчитать двумя способами число начал ребер
- Получаем $\sum_{v \in V} d_-(v) = |E|$

Орграфы и дискретная вероятность

Ориентированные графы

Пути в ориентированных графах

Ориентированные ациклические графы

Сильная связность

Что такое вероятность?

Неравновероятная модель

Многошаговое задание распределений

Случайные величины

Математическое ожидание

Ориентированные пути

• Ориентированный путь это последовательность вершин в графе:

$$v_0, v_1, \dots, v_k$$

• Ориентированный путь это последовательность вершин в графе:

$$v_0, v_1, \dots, v_k$$

• Из каждой вершины есть ребро в следующую

• Ориентированный путь это последовательность вершин в графе:

$$v_0, v_1, \dots, v_k$$

- Из каждой вершины есть ребро в следующую
- Длина пути число шагов в нем, у нас k

• Ориентированный путь это последовательность вершин в графе:

$$v_0, v_1, \dots, v_k$$

- Из каждой вершины есть ребро в следующую
- Длина пути число шагов в нем, у нас k
- Вершины могут повторяться

• Ориентированный путь это последовательность вершин в графе:

$$v_0, v_1, \dots, v_k$$

- Из каждой вершины есть ребро в следующую
- Длина пути число шагов в нем, у нас k
- Вершины могут повторяться
- Если вершины не повторяются, то это простой путь

• Например, A,B,C,D,A,C — это ориентированный путь, но не простой путь

- Например, A,B,C,D,A,C это ориентированный путь, но не простой путь
- A, B, C, D, E простой ориентированный путь

- Например, A,B,C,D,A,C это ориентированный путь, но не простой путь
- A,B,C,D,E простой ориентированный путь
- A,C,E,D,A не является ориентированным путем: нет ребра (E,D)

Ориентированные циклы

• Если начальная вершина ориентированного пути совпадает с конечной, то это ориентированный цикл: $v_0, v_1, \dots, v_k = v_0$

Ориентированные циклы

- Если начальная вершина ориентированного пути совпадает с конечной, то это ориентированный цикл: $v_0, v_1, \dots, v_k = v_0$
- Длина цикла число шагов в нем (у нас k)

Ориентированные циклы

- Если начальная вершина ориентированного пути совпадает с конечной, то это ориентированный цикл: $v_0, v_1, \dots, v_k = v_0$
- Длина цикла число шагов в нем (у нас k)
- Например: A,B,C,D,A ориентированный цикл

Ориентация ребер

• С точки зрения путей в графах, неориентированные графы можно задать как ориентированные

Ориентация ребер

- С точки зрения путей в графах, неориентированные графы можно задать как ориентированные
- Просто раздваиваем ребра

Ориентация ребер

- С точки зрения путей в графах, неориентированные графы можно задать как ориентированные
- Просто раздваиваем ребра
- Все пути изначального графа остаются путями в ориентированном

• Вершина v достижима из вершины u, если есть ориентированный путь из u в v

- Вершина v достижима из вершины u, если есть ориентированный путь из u в v
- Это транзитивно: если v достижима из u, а w достижима из v, то w достижима из u

- Вершина v достижима из вершины u, если есть ориентированный путь из u в v
- Это транзитивно: если v достижима из u, а w достижима из v, то w достижима из u

• Это несимметрично: w достижима из u, а u не достижима из w

- Это несимметрично: w достижима из u, а u не достижима из w
- Действительно, нет ребер, входящих в \boldsymbol{u}

• Это отношение можно симметризовать!

- Это отношение можно симметризовать!
- Обсудим это чуть позже

Орграфы и дискретная вероятность

Ориентированные графы

Пути в ориентированных графах

Ориентированные ациклические графы

Сильная связность

Что такое вероятность?

Неравновероятная модель

Многошаговое задание распределений

Случайные величины

Математическое ожидание

Ориентированные ациклические графы

Граф называется ориентированным ациклическим, если в нем нет ориентированных циклов

Ориентированные ациклические графы

Граф называется ориентированным ациклическим, если в нем нет ориентированных циклов

Примеры

• Граф зависимостей курсов в университете

Примеры

- Граф зависимостей курсов в университете
- Граф зависимостей работ

• Пусть у нас есть n задач, между которыми есть зависимости: для некоторых задач A и B известно, что A нужно выполнить до B

- Пусть у нас есть n задач, между которыми есть зависимости: для некоторых задач A и B известно, что A нужно выполнить до B
- Мы хотим выполнять задачи одну за другой

- Пусть у нас есть n задач, между которыми есть зависимости: для некоторых задач A и B известно, что A нужно выполнить до B
- Мы хотим выполнять задачи одну за другой
- Построим граф: вершины задачи, ориентированные ребра — зависимости

 Хотим перенумеровать вершины так, чтобы ребра вели из вершин с меньшим номером в вершины с большим номером

- Хотим перенумеровать вершины так, чтобы ребра вели из вершин с меньшим номером в вершины с большим номером
- Когда это возможно?

 Очевидно, невозможно, если в графе есть ориентированный цикл

- Очевидно, невозможно, если в графе есть ориентированный цикл
- Оказывается, это единственное препятствие

Топологическая сортировка

 Топологическая сортировка — сортировка вершин графа так, что все ребра ведут из вершин с меньшим номером, в вершины с большим

Сортировка ациклических графов

Теорема

Всякий ориентированный ациклический граф можно топологически отсортировать

Сортировка ациклических графов

Теорема

Всякий ориентированный ациклический граф можно топологически отсортировать

 Мы докажем, что в каждом ациклическом графе есть сток — вершина, из которой не выходит ребер

Сортировка ациклических графов

Теорема

Всякий ориентированный ациклический граф можно топологически отсортировать

- Мы докажем, что в каждом ациклическом графе есть сток — вершина, из которой не выходит ребер
- Дальше берем сток и объявляем его последней вершиной

Сортировка ациклических графов

Теорема

Всякий ориентированный ациклический граф можно топологически отсортировать

- Мы докажем, что в каждом ациклическом графе есть сток — вершина, из которой не выходит ребер
- Дальше берем сток и объявляем его последней вершиной
- Удаляем сток и повторяем

C + B A

• Пусть стока нет: из каждой вершины выходит хотя бы одно ребро

- Пусть стока нет: из каждой вершины выходит хотя бы одно ребро
- Начнем ходить по вершинам графа:

- Пусть стока нет: из каждой вершины выходит хотя бы одно ребро
- Начнем ходить по вершинам графа:

- Пусть стока нет: из каждой вершины выходит хотя бы одно ребро
- Начнем ходить по вершинам графа:

- Пусть стока нет: из каждой вершины выходит хотя бы одно ребро
- Начнем ходить по вершинам графа:

- Пусть стока нет: из каждой вершины выходит хотя бы одно ребро
- Начнем ходить по вершинам графа:

- Пусть стока нет: из каждой вершины выходит хотя бы одно ребро
- Начнем ходить по вершинам графа:

- Пусть стока нет: из каждой вершины выходит хотя бы одно ребро
- Начнем ходить по вершинам графа:

- Пусть стока нет: из каждой вершины выходит хотя бы одно ребро
- Начнем ходить по вершинам графа:

- Пусть стока нет: из каждой вершины выходит хотя бы одно ребро
- Начнем ходить по вершинам графа:

• Противоречие!

- Пусть стока нет: из каждой вершины выходит хотя бы одно ребро
- Начнем ходить по вершинам графа:

- Противоречие!
- Итак, вершины ациклического графа можно топологически упорядочить

Орграфы и дискретная вероятность

Ориентированные графы

Пути в ориентированных графах

Ориентированные ациклические графы

Сильная связность

Что такое вероятность?

Неравновероятная модель

Многошаговое задание распределений

Случайные величины

Математическое ожидание

• Отношение достижимости несимметрично

- Отношение достижимости несимметрично
- Но его можно симметризовать

• Назовем вершину a сильно связанной с вершиной b, если из каждой из вершин есть путь в другую

• Например, вершины v и w сильно связаны

- Например, вершины v и w сильно связаны
- Есть путь из v в w

- Например, вершины v и w сильно связаны
- Есть путь из v в w
- Есть путь из w в v

- А вершины u и v не сильно связаны

- А вершины u и v не сильно связаны
- Нет пути из v в u

 Граф называется сильно связным, если из любой его вершины есть ориентированный путь в любую другую

- Граф называется сильно связным, если из любой его вершины есть ориентированный путь в любую другую
- Сильная связность бывает очень важна

- Граф называется сильно связным, если из любой его вершины есть ориентированный путь в любую другую
- Сильная связность бывает очень важна
- Для транспортной задачи говорит о ее разрешимости

- Граф называется сильно связным, если из любой его вершины есть ориентированный путь в любую другую
- Сильная связность бывает очень важна
- Для транспортной задачи говорит о ее разрешимости
- А что делать если граф не сильно связный?

Если граф не сильно связен, все его вершины распадаются на компоненты сильной связности:

Если граф не сильно связен, все его вершины распадаются на компоненты сильной связности:

• Каждая вершина лежит ровно в одной компоненте

Если граф не сильно связен, все его вершины распадаются на компоненты сильной связности:

- Каждая вершина лежит ровно в одной компоненте
- Любые вершины в одной компоненте сильно связаны

Если граф не сильно связен, все его вершины распадаются на компоненты сильной связности:

- Каждая вершина лежит ровно в одной компоненте
- Любые вершины в одной компоненте сильно связаны
- Вершины из разных компонент не сильно связаны

• Четыре компоненты связности

 Рассмотрим каждую компоненту как отдельную вершину

 Проведем ребра между компонентами, если есть хоть одно ребро между вершинами компонент

• Этот граф называется метаграфом

- Этот граф называется метаграфом
- Он ациклический!

Орграфы и дискретная вероятность

Ориентированные графы

Пути в ориентированных графах

Ориентированные ациклические графы

Сильная связность

Что такое вероятность?

Неравновероятная модель

Многошаговое задание распределений

Случайные величины

Математическое ожидание

• Что происходит, когда мы подбрасываем монетку?

wikimedia.org

- Что происходит, когда мы подбрасываем монетку?
- Теоретически мы можем все рассчитать и узнать, как она упадет

wikimedia.org

- Что происходит, когда мы подбрасываем монетку?
- Теоретически мы можем все рассчитать и узнать, как она упадет
- На практике это очень тяжело

wikimedia.org

• В такой ситуации мы говорим, что каждый исход происходит с той или иной вероятностью

wikimedia.org

- В такой ситуации мы говорим, что каждый исход происходит с той или иной вероятностью
- Это удобная модель в тех случаях, когда мы не можем просчитать все полностью

wikimedia.org

 Мы будем рассматривать случайные события с конечным множеством возможных исходов

- Мы будем рассматривать случайные события с конечным множеством возможных исходов
- Это называется дискретной моделью

- Мы будем рассматривать случайные события с конечным множеством возможных исходов
- Это называется дискретной моделью
- Пример: подбрасывание монетки

- Мы будем рассматривать случайные события с конечным множеством возможных исходов
- Это называется дискретной моделью
- Пример: подбрасывание монетки
- Пример: бросание кубика

Подбрасывание монетки

• Два возможных исхода, орел и решка

Подбрасывание монетки

- Два возможных исхода, орел и решка
- Каждый происходит с вероятностью 1/2

Бросание кубика

• У кубика 6 граней, на них написаны число от 1 до 6

Бросание кубика

- У кубика 6 граней, на них написаны число от 1 до 6
- Шесть возможных исходов: выпадает 1, 2, 3, 4, 5 или 6

Бросание кубика

- У кубика 6 граней, на них написаны число от 1 до 6
- Шесть возможных исходов: выпадает 1, 2, 3, 4, 5 или 6
- Каждый происходит с вероятностью 1/6

- Конечное множество исходов: u_1,\dots,u_n

- Конечное множество исходов: u_1,\dots,u_n
- Равновероятная модель: все исходы равноправны

- Конечное множество исходов: u_1,\dots,u_n
- Равновероятная модель: все исходы равноправны
- Вероятность каждого исхода равна 1/n

- Конечное множество исходов: u_1,\dots,u_n
- Равновероятная модель: все исходы равноправны
- Вероятность каждого исхода равна 1/n
- Пусть нас интересует, произошел ли один из исходов u_i для $i \in S$, где $S \subseteq \{1,\dots,n\}$

- Конечное множество исходов: u_1,\dots,u_n
- Равновероятная модель: все исходы равноправны
- Вероятность каждого исхода равна 1/n
- Пусть нас интересует, произошел ли один из исходов u_i для $i \in S$, где $S \subseteq \{1,\dots,n\}$
- Вероятность равна k/n, где |S|=k

Задача

Пусть мы бросаем кубик. Какова вероятность того, что выпадет четное число?

Задача

Пусть мы бросаем кубик. Какова вероятность того, что выпадет четное число?

• Всего шесть исходов

Задача

Пусть мы бросаем кубик. Какова вероятность того, что выпадет четное число?

- Всего шесть исходов
- Половина из них годится: 2, 4, 6

Задача

Пусть мы бросаем кубик. Какова вероятность того, что выпадет четное число?

- Всего шесть исходов
- Половина из них годится: 2, 4, 6
- Вероятность 1/2

Задача

Пусть мы бросаем кубик. Какова вероятность того, что выпадет число, делящееся на 3?

Задача

Пусть мы бросаем кубик. Какова вероятность того, что выпадет число, делящееся на 3?

• Всего шесть исходов

Задача

Пусть мы бросаем кубик. Какова вероятность того, что выпадет число, делящееся на 3?

- Всего шесть исходов
- Треть из них годится: 3 и 6

Задача

Пусть мы бросаем кубик. Какова вероятность того, что выпадет число, делящееся на 3?

- Всего шесть исходов
- Треть из них годится: 3 и 6
- Вероятность 1/3

Орграфы и дискретная вероятность

Ориентированные графы

Пути в ориентированных графах

Ориентированные ациклические графы

Сильная связность

Что такое вероятность?

Неравновероятная модель

Многошаговое задание распределений

Случайные величины

Математическое ожидание

Сложность

• Мы предполагали, что исходы равновероятны

Сложность

- Мы предполагали, что исходы равновероятны
- Но равновероятной модели не всегда достаточно

Сложность

- Мы предполагали, что исходы равновероятны
- Но равновероятной модели не всегда достаточно
- Что если мы подбрасываем несбалансированную или погнутую монету?

Сложность

- Мы предполагали, что исходы равновероятны
- Но равновероятной модели не всегда достаточно
- Что если мы подбрасываем несбалансированную или погнутую монету?
- Как обсуждать вероятности, когда исходы, это выигрыш или не выигрыш в лотерею?

 Пусть наша монета не идеальна, и орел и решка неравноправны

- Пусть наша монета не идеальна, и орел и решка неравноправны
- Как моделировать такую ситуацию?

- Пусть наша монета не идеальна, и орел и решка неравноправны
- Как моделировать такую ситуацию?
- Исходы: «решка»= 0, «орел»= 1

- Пусть наша монета не идеальна, и орел и решка неравноправны
- Как моделировать такую ситуацию?
- Исходы: «решка»= 0, «орел»= 1
- $\Pr[1] = p, \Pr[0] = 1 p$

- Пусть наша монета не идеальна, и орел и решка неравноправны
- Как моделировать такую ситуацию?
- Исходы: «решка»= 0, «орел»= 1
- $\bullet \ \Pr[1]=p, \Pr[0]=1-p$
- Здесь p может быть любым числом от 0 до 1

- Пусть наша монета не идеальна, и орел и решка неравноправны
- Как моделировать такую ситуацию?
- Исходы: «решка»= 0, «орел»= 1
- $\Pr[1] = p, \Pr[0] = 1 p$
- Здесь p может быть любым числом от 0 до 1
- Случай p=1/2 отвечает равновероятному случаю

- Пусть наша монета не идеальна, и орел и решка неравноправны
- Как моделировать такую ситуацию?
- Исходы: «решка»= 0, «орел»= 1
- $\Pr[1] = p, \Pr[0] = 1 p$
- Здесь p может быть любым числом от 0 до 1
- Случай p=1/2 отвечает равновероятному случаю
- Если p>1/2, выпадение орла более вероятно

• Исходы: u_1, \dots, u_n

- Исходы: u_1, \dots, u_n
- Каждому исходу \boldsymbol{u}_i приписана его вероятность \boldsymbol{p}_i

- Исходы: u_1, \dots, u_n
- Каждому исходу \boldsymbol{u}_i приписана его вероятность \boldsymbol{p}_i
- При этом $0 \leq p_i \leq 1$ и $\sum_{i=1}^n p_i = 1$

- Исходы: u_1, \dots, u_n
- Каждому исходу u_i приписана его вероятность \boldsymbol{p}_i
- При этом $0 \leq p_i \leq 1$ и $\sum_{i=1}^n p_i = 1$
- Пусть нас интересует, произошел ли один из исходов u_i для $i \in S$, где $S \subseteq \{1,\dots,n\}$

- Исходы: u_1, \dots, u_n
- Каждому исходу u_i приписана его вероятность \boldsymbol{p}_i
- При этом $0 \leq p_i \leq 1$ и $\sum_{i=1}^n p_i = 1$
- Пусть нас интересует, произошел ли один из исходов u_i для $i \in S$, где $S \subseteq \{1,\dots,n\}$
- Вероятность равна $\sum_{u_i \in S} p_i$

Лотерея

Лотерея

Пусть вероятность выиграть в лотерею 1000 рублей равна 0.01, а вероятность выиграть 100 рублей равна 0.1. Какова вероятность выиграть хоть что-то?

• Обозначим через a,b,c исходы «выиграть 1000 р.», «выиграть 100 р.», «не выиграть ничего», соответственно

Лотерея

- Обозначим через a,b,c исходы «выиграть 1000 р.», «выиграть 100 р.», «не выиграть ничего», соответственно
- $\Omega = \{a, b, c\}$, $\Pr[a] = 0.01$, $\Pr[b] = 0.1$

Лотерея

- Обозначим через a,b,c исходы «выиграть 1000 р.», «выиграть 100 р.», «не выиграть ничего», соответственно
- $\Omega = \{a, b, c\}$, $\Pr[a] = 0.01$, $\Pr[b] = 0.1$
- $\bullet \ \Pr[c] = 1 \Pr[a] \Pr[b] = 0.89$

Лотерея

- Обозначим через a,b,c исходы «выиграть 1000 р.», «выиграть 100 р.», «не выиграть ничего», соответственно
- $\Omega = \{a, b, c\}$, $\Pr[a] = 0.01$, $\Pr[b] = 0.1$
- $\bullet \ \Pr[c] = 1 \Pr[a] \Pr[b] = 0.89$
- $S = \{a, b\}$

Лотерея

- Обозначим через a,b,c исходы «выиграть 1000 р.», «выиграть 100 р.», «не выиграть ничего», соответственно
- $\Omega = \{a, b, c\}$, $\Pr[a] = 0.01$, $\Pr[b] = 0.1$
- $\Pr[c] = 1 \Pr[a] \Pr[b] = 0.89$
- $S = \{a, b\}$
- Pr[S] = 0.01 + 0.1 = 0.11

Орграфы и дискретная вероятность

Ориентированные графы

Пути в ориентированных графах

Ориентированные ациклические графы

Сильная связность

Что такое вероятность?

Неравновероятная модель

Многошаговое задание распределений

Случайные величины

Математическое ожидание

Задача

Случайная перестановка чисел 1, 2 и 3 выбирается следующим образом.

- Сначала выбирается случайно и равновероятно число на первую позицию
- Затем из двух оставшихся чисел случайно и равновероятно выбирается одно и ставится на вторую позицию
- Оставшееся число ставится на третью позицию

Какова вероятность, что на второй позиции стоит число 2?

 Прежде чем решать задачу, нам нужно разобраться, какое у нас задано вероятностное распределение

- Прежде чем решать задачу, нам нужно разобраться, какое у нас задано вероятностное распределение
- Распределение описано в виде процесса, с таким мы раньше не сталкивались

• Начинаем сверху

- Начинаем сверху
- Дальше три стрелки для шага 1

- Начинаем сверху
- Дальше три стрелки для шага 1
- Дальше по две стрелки для шага 2

Исходы — вершины внизу

Дальше по две стрелки

- Начинаем сверху
- Дальше три стрелки для шага 1
- Дальше по две стрелки для шага 2
- Дальше по одной стрелке для шага 3
- Исходы вершины внизу
- Как посчитать вероятность каждого исхода?

- Начинаем сверху
- Дальше три стрелки для шага 1
- Дальше по две стрелки для шага 2
- Дальше по одной стрелке для шага 3
- Исходы вершины внизу
- Как посчитать вероятность каждого исхода?
- Перемножить вероятности на стрелках

- Начинаем сверху
- Дальше три стрелки для шага 1
- Дальше по две стрелки для шага 2
- Дальше по одной стрелке для шага 3
- Вероятность каждого исхода $\frac{1}{3} \cdot \frac{1}{2} \cdot 1 = \frac{1}{6}$

- Начинаем сверху
- Дальше три стрелки для шага 1
- Дальше по две стрелки для шага 2
- Дальше по одной стрелке для шага 3
- Вероятность каждого исхода $rac{1}{3} \cdot rac{1}{2} \cdot 1 = rac{1}{6}$
- Такая диаграмма называется деревом событий

Задача

Случайная перестановка чисел 1, 2 и 3 выбирается следующим образом.

- Сначала выбирается случайно и равновероятно число на первую позицию
- Затем из двух оставшихся чисел случайно и равновероятно выбирается одно и ставится на вторую позицию
- Оставшееся число ставится на третью позицию

Какова вероятность, что на второй позиции стоит число 2?

- Вероятность каждого исхода равна 1/6

- Вероятность каждого исхода равна 1/6
- Интересующих нас исходов два: 123, 321

Сложные распределения

- Вероятность каждого исхода равна 1/6
- Интересующих нас исходов два: 123, 321
- Вероятность $\frac{2}{6} = \frac{1}{3}$

 Как подобные распределения могут возникать на практике?

- Как подобные распределения могут возникать на практике?
- Выбираем объект в данных

- Как подобные распределения могут возникать на практике?
- Выбираем объект в данных
- Переходим к случайному «соседнему» объекту

- Как подобные распределения могут возникать на практике?
- Выбираем объект в данных
- Переходим к случайному «соседнему» объекту
- Снова переходим к случайному «соседнему» объекту

- Как подобные распределения могут возникать на практике?
- Выбираем объект в данных
- Переходим к случайному «соседнему» объекту
- Снова переходим к случайному «соседнему» объекту
- И так несколько раз

- Как подобные распределения могут возникать на практике?
- Выбираем объект в данных
- Переходим к случайному «соседнему» объекту
- Снова переходим к случайному «соседнему» объекту
- И так несколько раз
- Получаем случайное распределение на объектах в наших данных

- Как подобные распределения могут возникать на практике?
- Выбираем объект в данных
- Переходим к случайному «соседнему» объекту
- Снова переходим к случайному «соседнему» объекту
- И так несколько раз
- Получаем случайное распределение на объектах в наших данных
- Такой процесс называется случайным блужданием

- Как подобные распределения могут возникать на практике?
- Выбираем объект в данных
- Переходим к случайному «соседнему» объекту
- Снова переходим к случайному «соседнему» объекту
- И так несколько раз
- Получаем случайное распределение на объектах в наших данных
- Такой процесс называется случайным блужданием
- Обсудим немного позже

Орграфы и дискретная вероятность

Ориентированные графы

Пути в ориентированных графах

Ориентированные ациклические графы

Сильная связность

Что такое вероятность?

Неравновероятная модель

Многошаговое задание распределений

Случайные величины

• Мы обсудили вероятностные распределения

- Мы обсудили вероятностные распределения
- Мы обсудили события (подмножества исходов) и их вероятности

- Мы обсудили вероятностные распределения
- Мы обсудили события (подмножества исходов) и их вероятности
- События соответствуют вопросам с ответом да или нет

- Мы обсудили вероятностные распределения
- Мы обсудили события (подмножества исходов) и их вероятности
- События соответствуют вопросам с ответом да или нет
- Но важно уметь работать с численными характеристиками вероятностных исходов

- Мы обсудили вероятностные распределения
- Мы обсудили события (подмножества исходов) и их вероятности
- События соответствуют вопросам с ответом да или нет
- Но важно уметь работать с численными характеристиками вероятностных исходов
- Для этого мы введем случайные величины

• Случайная величина f — это переменная, значение которой определяется вероятностным экспериментом

- Случайная величина f это переменная, значение которой определяется вероятностным экспериментом
- У нас есть вероятностное распределение на исходах u_1,\dots,u_n

- Случайная величина f это переменная, значение которой определяется вероятностным экспериментом
- У нас есть вероятностное распределение на исходах u_1,\dots,u_n
- Исходы имеют вероятности p_1,\dots,p_n

- Случайная величина f это переменная, значение которой определяется вероятностным экспериментом
- У нас есть вероятностное распределение на исходах u_1,\dots,u_n
- Исходы имеют вероятности p_1,\dots,p_n
- Чтобы определить f мы задаем число a_i для каждого исхода u_i

- Случайная величина f это переменная, значение которой определяется вероятностным экспериментом
- У нас есть вероятностное распределение на исходах u_1,\dots,u_n
- Исходы имеют вероятности p_1,\dots,p_n
- Чтобы определить f мы задаем число a_i для каждого исхода u_i
- Тогда f принимает значение a_i с вероятностью p_i

• Выглядит знакомо

- Выглядит знакомо
- Мы так уже делали!

- Выглядит знакомо
- Мы так уже делали!
- Исходам при бросании кубика присвоены числа

wikimedia.org

- Выглядит знакомо
- Мы так уже делали!
- Исходам при бросании кубика присвоены числа
- И мы оперировали с ними как с числами

wikimedia.org

Другие примеры:

• Подбрасывание монетки: решка=0, орел=1

- Подбрасывание монетки: решка=0, орел=1
- Возраст случайного человек на курсе

- Подбрасывание монетки: решка=0, орел=1
- Возраст случайного человек на курсе
- Оценка случайного человека по курсу

- Подбрасывание монетки: решка=0, орел=1
- Возраст случайного человек на курсе
- Оценка случайного человека по курсу
- Сумма исходов двух бросаний кубика

Орграфы и дискретная вероятность

Ориентированные графы

Пути в ориентированных графах

Ориентированные ациклические графы

Сильная связность

Что такое вероятность?

Неравновероятная модель

Многошаговое задание распределений

Случайные величины

• Рассмотрим случайную величину в общем виде

- Рассмотрим случайную величину в общем виде
- Пусть случайная величина f задана на распределении с 4 исходами

- Рассмотрим случайную величину в общем виде
- Пусть случайная величина f задана на распределении с 4 исходами
- Вероятности исходов равны p_1 , p_2 , p_3 , p_4

- Рассмотрим случайную величину в общем виде
- Пусть случайная величина f задана на распределении с 4 исходами
- Вероятности исходов равны p_1 , p_2 , p_3 , p_4
- Значения f равны a_1 , a_2 , a_3 , a_4 соответственно

- Рассмотрим случайную величину в общем виде
- Пусть случайная величина f задана на распределении с 4 исходами
- Вероятности исходов равны p_{1} , p_{2} , p_{3} , p_{4}
- Значения f равны a_1 , a_2 , a_3 , a_4 соответственно
- Повторим эксперимент много раз

- Повторяем n раз для большого числа n

- Повторяем n раз для большого числа n

- Повторяем n раз для большого числа n
- Чему равно среднее значение f в этих экспериментах?

• Мы провели n экспериментов, значение a_i встретилось примерно $p_i n$ раз

- Мы провели n экспериментов, значение a_i встретилось примерно $p_i n$ раз
- В среднем мы получили

$$\approx \frac{a_1p_1n + a_2p_2n + a_3p_3n + a_4p_4n}{n}$$

$$= a_1p_1 + a_2p_2 + a_3p_3 + a_4p_4$$

- Мы провели n экспериментов, значение a_i встретилось примерно $p_i n$ раз
- В среднем мы получили

$$\approx \frac{a_1p_1n + a_2p_2n + a_3p_3n + a_4p_4n}{n}$$

$$= a_1p_1 + a_2p_2 + a_3p_3 + a_4p_4$$

• Эта величина обозначается через $\mathsf{E} f$ и называется математическим ожиданием f или матожиданием f

- Мы провели n экспериментов, значение a_i встретилось примерно $p_i n$ раз
- В среднем мы получили

$$\approx \frac{a_1p_1n + a_2p_2n + a_3p_3n + a_4p_4n}{n}$$

$$= a_1p_1 + a_2p_2 + a_3p_3 + a_4p_4$$

- Эта величина обозначается через $\mathbf{E}f$ и называется математическим ожиданием f или матожиданием f
- Она не зависит от n

- Мы провели n экспериментов, значение a_i встретилось примерно $p_i n$ раз
- В среднем мы получили

$$\approx \frac{a_1p_1n + a_2p_2n + a_3p_3n + a_4p_4n}{n}$$

$$= a_1p_1 + a_2p_2 + a_3p_3 + a_4p_4$$

- Эта величина обозначается через $\mathbf{E}f$ и называется математическим ожиданием f или матожиданием f
- Она не зависит от n
- Она равна тому, что мы ожидаем получить в среднем при многократном повторении эксперимента

- В общем случае значения f равны a_1,\dots,a_k с вероятностями p_1,\dots,p_k

- В общем случае значения f равны a_1,\dots,a_k с вероятностями p_1,\dots,p_k
- Все рассуждения аналогичны

- В общем случае значения f равны a_1,\dots,a_k с вероятностями p_1,\dots,p_k
- Все рассуждения аналогичны
- Для вычисления математического ожидания надо перемножить $a_i \times p_i$ по всем i

- В общем случае значения f равны a_1,\dots,a_k с вероятностями p_1,\dots,p_k
- Все рассуждения аналогичны
- Для вычисления математического ожидания надо перемножить $a_i \times p_i$ по всем i
- И сложить результаты по i от 1 до k

- В общем случае значения f равны a_1,\dots,a_k с вероятностями p_1,\dots,p_k
- Все рассуждения аналогичны
- Для вычисления математического ожидания надо перемножить $a_i \times p_i$ по всем i
- И сложить результаты по i от 1 до k
- Математическое ожидание это число!

- В общем случае значения f равны a_1,\dots,a_k с вероятностями p_1,\dots,p_k
- Все рассуждения аналогичны
- Для вычисления математического ожидания надо перемножить $a_i \times p_i$ по всем i
- И сложить результаты по i от 1 до k
- Математическое ожидание это число!
- Это важная характеристика случайной величины

• Средний доход на душу населения

- Средний доход на душу населения
- Средняя продолжительность жизни

- Средний доход на душу населения
- Средняя продолжительность жизни
- Средняя оценка на курсе

- Средний доход на душу населения
- Средняя продолжительность жизни
- Средняя оценка на курсе
- Соответствующие случайные величины: берем случайного человека, смотрим на его доход/продолжительность жизни/оценку