Wayne State University - Department of Economics ECO 7110 (001) 11457 - Econometrics II (Fall 2019)

Instructor: Vitor Kamada

Class: MW, 12:30 - 02:10 pm in 8 PRENTIS

Office: 2139 Faculty Administration Building

E-mail: econometrics.methods@gmail.com

Cel: 678 644 5511

Office hours: MW, 2:00 – 2:30 pm in 8 Prentis

MW, 4:10 - 5:10 pm in my office, or by appointment.

1) Course Description

In the previous PhD course ECO 7100 Econometrics I, I taught Causal Inference topics such as Randomized Experiment and Matching Estimators. We also covered several Machine Learning techniques that complement and potentialize Causal Inference Methods. Now we are going to cover other Causal Inference methods, such Fuzzy Regression Discontinuity Design, Correlated Random Effects, Spatial Regression, and Bayesian Structural Time Series with Google Data. We are also going to cover Deep Learning (Neural Networks) and Sentiment Analysis.

It is worth mentioning that in 2019 (few months ago), Microsoft released EconML, a Python package, to estimate treatment effects from observational data via Machine Learning (https://github.com/microsoft/EconML). For example, EconML allows the combination of Instrumental Variables with Deep Learning. Keep in mind that we are in a process of "creative destruction", in which the traditional econometrics approach is becoming obsolete, and being substituted/complemented by "Data Science".

2) Learning Outcomes

Develop a solid understanding of several econometric methods useful to read empirical papers and carry out your own empirical research. Specifically, by the end of the course, you will be able to pursue your own empirical questions by choosing an appropriate research design and being aware of its strengths and limitations.

3) Recommended Textbooks

All textbooks below are open source or available online for free via Wayne Library or author website. Check the links:

Angrist, J. D. and Pischke, J. (2009). **Mostly Harmless Econometrics: An Empiricist's Companion**. Princeton University Press. https://ebookcentral.proquest.com/lib/wayne/detail.action?docID=475846

Chollet, F. (2019). **Deep Learning with Python**. Manning Publications. https://www.manning.com/books/deep-learning-with-python

Goodfellow, I., Bengio, Y., and Courville, A. (2016). **Deep Learning**. MIT Press. https://www.deeplearningbook.org/

Sargent, T. J. and Stachurski, J. (2018). **Lectures in Quantitative Economic**. Available for free at: https://lectures.quantecon.org/py/

Sheppard, K. (2018). **Introduction to Python for Econometrics, Statistics and Data Analysis**. Available for free at: https://www.kevinsheppard.com/Python for Econometrics

Wooldridge, J. (2010). **Econometric Analysis of Cross Section and Panel Data**. 2ed, Cambridge: MIT

https://ebookcentral.proquest.com/lib/wayne/detail.action?docID=3339196&query=Econometric+Analysis+of+Cross+Section+and+Panel+Data

Angrist and Pischke (2009) cover the intuition of modern experimentalist paradigm. Wooldridge (2010) covers several topics of this course, but is relatively more advanced, and discusses assumptions of models in more detail. Wooldridge (2010) is highly recommended for IV and panel data.

Goodfellow et al. (2016) provide rigorous theoretical/mathematical treatment for Deep Learning; whereas Chollet (2019), the creator of Keras, focus on application and coding aspects. If you want to learn Python, I recommend Sargent and Stachurski (2018) and Sheppard (2018). There is no reference for R, because I assume that you already learned from my previous PhD course: ECO 7100 Econometrics I.

4) Course Schedule

Date	Topics/Key Concepts	
Week 1	1) Quantile Regression	
Aug 28	Angrist and Pischke (2009): Ch 7	
	Wooldridge (2010): Ch 12.10	

144 1 0	
Week 2	Labor Day
Sep 2 Week 2	2.1) Omitted Veriables
	2.1) Omitted Variables
Sep 4	Wooldridge (2010): Ch 4.3
	2.2) Measurement Error
Mack 2	Wooldridge (2010): Ch 4.4
Week 3	3) Generalized Method of Moments (GMM)
Sep 9	Wooldridge (2010): Ch 8
Week 3	4.1) Proxy vs Indicator Variable
Sep 11	Wooldridge (2010): Ch 5.3
	4.2) Control Function Approach
14/	Wooldridge (2010): Ch 6.1, 6.2, and 6.3
Week 4	5) Sharp Regression Discontinuity Design
Sep 16	Cattaneo et al. (2018): Ch 2, 3, and 4. A Practical Introduction to Regression
	Discontinuity Designs: Volume I, Cambridge University Press.
Week 4	6) Fuzzy Regression Discontinuity Design
Sep 18	Cattaneo et al. (2018): Ch 5
	Angrist and Pischke (2009): Ch 6
Week 5	7) Difference-in-Difference (DiD)
Sep 23	Angrist and Pischke (2009): Ch 5.2
	Wooldridge (2010): Ch 6.5
Week 5	8.1) Correlated Random Effects
Sep 25	Wooldridge (2010): Ch 10.7
	8.2) Simultaneous Equations
	Wooldridge (2010): Ch 9
Week 6	9) Spatial Autoregressive (SAR) and Spatial Durbin Model (SDM)
Sep 30	LeSage (2008). Revue d'économie industrielle.
Week 6	10) Spatial Econometrics with PySAL
Oct 2	Rey and Arribas-Bel (2018). Geographic Data Science with PySAL.
Week 7	11) Poisson and Negative Binomial Regression
Oct 7	Wooldridge (2010): Ch 18.1 to 18.3
Week 7	12) Draft Research Proposal I
Oct 9	
Week 8	13.1) Seemingly Unrelated Regressions (SUR)
Oct 14	Wooldridge (2010): Ch 7.7
	13.2) Three-Stage Least Squares (3SLS)
	Wooldridge (2010): Ch 9
Week 8	14) Deep Learning and Neural Network
Oct 16	Goodfellow et al. (2016): Ch 1.
	Chollet (2018): Ch 1 and 2.1.
Week 9	15) Tensor Operations and Stochastic Gradient Descent (SGD)
Oct 21	Chollet (2018): Ch 2.
	Goodfellow et al. (2016): Ch 2, 4, and 8.

Week 9	16.1) Deep Feedforward Networks		
Oct 23	Goodfellow et al. (2016): Ch 6.		
000 25	16.2) Cross-Entropy, Sigmoid, and Softmax		
	Goodfellow et al. (2016): Ch 3 and 6.		
Week 10	17) Sentiment Analysis on Movie Reviews		
Oct 28	Chollet (2018): Ch 3.4.		
Week 10	18) Predicting House Prices with Neural Network		
Oct 30	Chollet (2018): Ch 3.6.		
Week 11	19) Convolutional Neural Networks Padding, Strides, Max-Pooling		
Nov 4	Chollet (2018): Ch 5.1		
	Goodfellow et al. (2016): Ch 9.		
Week 11	20.1) Training a Convnet on a Small Dataset		
Nov 6	Chollet (2018): Ch 5.2.		
	20.2) Using a Pretrained Convnet		
	Chollet (2018): Ch 5.3.		
Week 12	21) Working with Text Data Word Embedding		
Nov 11	Chollet (2018): Ch 6.1		
	Goodfellow et al. (2016): Ch 10.		
Week 12	22.1) Recurrent Neural Network (RNN) Long Short-Term Memory (LSTM)		
Nov 13	Chollet (2018): Ch 6.2		
	22.2) Sequence Processing with Convnets		
	Chollet (2018): Ch 6.4		
Week 13	23) Google Trends, Google Correlate, and Google Surveys		
Nov 18	Stephens-Davidowitz & Varian (2015). Working Paper.		
Week 13	24) Unreported Victims of an Economic		
Nov 20	Stephens-Davidowitz et al. (2013). Working Paper.		
Week 14	25) Super Returns to Super Bowl Ads		
Nov 25	Stephens-Davidowitz et al. (2017). Quant Mark Econ, 15:1-28.		
Week 14	Holiday - No Classes		
Nov 27			
Week 15	26) The Cost of Racial Animus on a Black Candidate Evidence using Google		
Dec 2	Search Data		
	Stephens-Davidowitz (2014). Journal of Public Economics.118, 26-40		
Week 15	27) Draft Research Proposal II		
Dec 4			
Week 16	Study Day		
Dec 9			
Week 16	Final Exam		
Dec 11	Research Proposal II		

5.1) Your final grade will be assessed as follows:

Assignment	Weight	Date
Surveys*	1%	Wednesday, Sep 25 (at 4:00 pm)
Homework	19%	Check on Canvas
Lab	40%	Check on Canvas
Research Proposal I	15%	Wednesday, Oct 16 (at 4:00 pm)
Research Proposal II	25%	Wednesday, Dec 11 (at 4:00 pm)
Total	100%	

^{*} You can answer the surveys "Demographics and Study Methodology" and "Early Course Evaluation" on Canvas.

Grading Scale

94+ = A	70+ = C-
90+ = A-	67+ = D+
87+ = B+	64+ = D
84+ = B	61+ = D-
80+ = B-	Below 61 = F
77+ = C+	
7/1+ - C	

5.2) Instructions for Surveys, Homework, Lab, and Research Proposal

Guidelines and detailed instructions about Surveys, Homework, Lab, Research Proposal are available on Canvas.

5.3) Makeup Policy for any Assignment

If you miss any Assignment, I will provide a makeup activity in the case of an excused and unavoidable absence. Then it is YOUR RESPONSIBILITY to provide satisfactory written documentation of an excused and unavoidable absence as soon as possible. For example, if you are ill — the accompanying doctor's note must say that you cannot (or could not) do the Homework or Lab. If the doctor's note does not state this clearly, your score will be zero.

6. Course Expectations

6.1) Clarifying Expectations

To succeed in this course, you'll need to invest a good amount of time and energy doing exercises outside the class time. If at any time you feel you're investing the required time and energy but aren't learning the material or improving your skills, contact me and I'll do my best to

help you and to suggest additional resources and options. If you have questions or concerns that you believe can be handled via e-mail, feel free to contact me that way. If I cannot adequately respond to your question via e-mail, I'll ask you to come to my regular office hours or make an

6.2) Academic Integrity

Wayne State University aims to cultivate a community based on trust, academic integrity, and honor. Students are expected to act according to the highest ethical standards. For information on Student Code of Conduct, please see https://doso.wayne.edu/conduct/codeofconduct.pdf. Students who commit or assist in committing dishonest acts are subject to sanctions described in the Student Code of Conduct.

6.3) Special Accommodations

If you have a documented disability that requires accommodations, you will need to register with Student Disability Services (SDS) for coordination of your academic accommodations. The Student Disability Services (SDS) office is located at 1600 David Adamany Undergraduate Library in the Student Academic Success Services department. SDS telephone number is 313-577-1851 or 313-577-3365 (TDD only). Once you have your accommodations in place, I will be glad to meet with you privately during my office hours to discuss your special needs. Student Disability Services' mission is to assist the university in creating an accessible community where students with disabilities have an equal opportunity to fully participate in their educational experience at Wayne State University.