Codeferno Bus Stops

Bus Stops

Problem ID: bus

Problem Statement

A school bus travels along a straight road with N bus stops, numbered from 1 to N. At each stop:

- First, some students get off the bus.
- Then, some students get on the bus.

The bus starts empty before stop 1. Your task is to determine the **maximum number** of students on the bus at any time.

In some subtasks, additional rules apply (such as bus capacity). Read the constraints carefully.

Input

- The first line contains an integer N ($1 \le N \le 1000$), the number of bus stops.
- The second line contains N integers on₁, on₂,..., on_N ($0 \le \text{on}_i \le 10^4$), where on_i is the number of students boarding at stop i.
- The third line contains N integers off₁, off₂,..., off_N ($0 \le \text{off}_i \le 10^4$), where off_i is the number of students getting off at stop i.
- The fourth line contains an integer C, the bus capacity. For subtasks where no capacity restriction applies, C will be very large (e.g. 10^9), so it does not affect the result.

Output

Print a single integer: the maximum number of students on the bus at any point in time. In subtasks requiring the stop index, print two integers: max_students stop_index.

Codeferno Bus Stops

Subtasks

Subtask	Constraints	Points
1	$N \le 3$, on _i , off _i ≤ 10 , $C = 10^9$	10
2	$N \le 100, \text{on}_i, \text{off}_i \le 100, C = 10^9$	20
3	$N \le 1000, \text{on}_i, \text{off}_i \le 10^4, C = 10^9$	20
4	Same as Subtask 3, but $C \leq 10^4$. If more students attempt to	30
	board than seats available, only as many as possible get on. The	
	rest are left behind permanently.	
5	Same as Subtask 3. Additionally, print the first stop index	20
	at which the maximum occupancy occurs. Output format: two	
	integers, max_students stop_index.	

Sample Input 1

5 0 3 4 0 2 0 0 2 3 4 10000000000

Sample Output 1

5

Explanation for Sample 1

- Stop 1: 0 off, 0 on \rightarrow 0
- Stop 2: 0 off, 3 on \rightarrow 3
- Stop 3: 2 off, 4 on \rightarrow 5
- Stop 4: 3 off, 0 on \rightarrow 2
- Stop 5: 4 off, 2 on \rightarrow 0

Maximum = 5.

Sample Input 2 (capacity example)

Sample Output 2

8

Explanation for Sample 2

- Stop 1: 5 board \rightarrow 5
- Stop 2: 5 try to board, but capacity is $8 \to 3$ board, 2 left behind \to total = 8
- Stops 3 and 4: bus remains full at 8

Maximum = 8.

Sample Input 3 (stop index example)

```
6
2 4 0 2 0 0
0 0 2 0 1 4
1000000000
```

Sample Output 3

6 2

Explanation for Sample 3

- Stop 1: 2 board \rightarrow 2
- Stop 2: 4 board \rightarrow 6
- Stop 3: 2 off $\rightarrow 4$
- Stop 4: 2 on \rightarrow 6
- Stop 5: 1 off \rightarrow 5
- Stop 6: 4 off \rightarrow 1

Maximum = 6 at stop 2, but maximum **after** that is 6 at stop 4. Since the first maximum is at stop 2, output is 6 2.