

CONTACT

EDITORS

LEGAL NOTICE

COPYRIGHT NOTICE

1.	INTRODUCTION	6
1.1	STUDY OBJECTIVES	6
1.2	METHODOLOGY	7
1.3	TARGET AUDIENCE	7
1.4	USING THIS DOCUMENT	8
2.	SCENARIO DESCRIPTION	9
2.1	PURPOSE AND CONTEXT	10
2.2	HIGH-LEVEL DESCRIPTION	10
2.3	ACTORS AND ROLES	11
2.4	PROCESSED DATA	12
2.5	MACHINE LEARNING ALGORITHMS	14
2.6	ASSETS	14
2.7	OVERALL PROCESS	15
2.8	PRIVACY AND CYBERSECURITY REQUIREMENTS	20
3.	SECURITY AND PRIVACY THREATS AND VULNERABILITIES	24
3.1	THREAT CONTEXTUALISATION	24

4. CYBERSECURITY AND PRIVACY CONTROLS	33
4.1 IMPLEMENT A SECURITY BY DESIGN PROCESS	34
4.2 DOCUMENT THE ELECTRICAL FORECAST SYSTEM	34
4.3 CHECK THE VULNERABILITIES OF THE ML COMPONENTS AND IMPLEMENT PROCESSES	
TO MAINTAIN THEIR SECURITY LEVELS OVER TIME	35
4.4 CHOOSE AND DEFINE A MORE RESILIENT MODEL DESIGN	35
4.5 INTEGRATE POISONING CONTROL IN THE TRAINING DATASET	36
4.6 ENLARGE THE TRAINING DATASET	36
4.7 SECURE THE TRANSIT OF THE COLLECTED DATA	37
4.8 CONTROL ALL DATA USED BY THE ML MODEL	37
4.9 ENSURE RELIABLE SOURCES ARE USED	38
4.10 IMPLEMENT ACCESS RIGHT MANAGEMENT PROCESS	38
4.11 ENSURE ALL SYSTEMS AND DEVICES COMPLY WITH AUTHENTICATION, AND ACCESS	
CONTROL POLICIES	39
4.12 REDUCE THE AVAILABLE INFORMATION ABOUT THE MODEL	40
4.13 IDENTIFY A DATA CONTROLLER FOR THE ENERGY CONSUMPTION ANTICIPATION	
DATA PROCESSING	40
4.14 PROPERLY COLLECT AND MAINTAIN USER CONSENT WHEN NEEDED	
FOR DETAILED ENERGY CONSUMPTION USAGE	41
4.15 ANONYMIZE DATA COMING FROM THE CONCENTRATOR	41
4.16 GENERATE LOGS AND PERFORM INTERNAL AUDIT	42
4.17 PERFORM A PRIVACY IMPACT ASSESSMENT	42
4.18 DEFINE AND IMPLEMENT A DATA RETENTION POLICY	43
4.19 STUDY ON DATA FIELDS NECESSITY AND JUSTIFICATION IN THE PRIVACY POLICY	43
4.20 FORMALISE A LIA (LEGITIMATE INTEREST ASSESSMENT)	44
4.21 MINIMISE DATA AT EACH STEP OF THE PROCESSING; COLLECT ONLY WHAT IS NEEDED	
WHEN NEEDED	44
4 22 IMDI EMENT A DDIVACY BY DESIGN DDOCESS	15

4.23 RAISE AWARENESS OF SECURITY AND PRIVACY ISSUES AMONG ALL STAKEHOLDERS	45
4.24 SUMMARY	46
5. CONCLUSION	49
ANNEX I: SECURITY AND PRIVACY SCALES AND REQUIREMENTS	50
A.1 CYBERSECURITY AND PRIVACY SEVERITY SCALES	50
A.2 CYBERSECURITY SCALE OF IMPACT	51
A.3 PRIVACY SCALE OF IMPACT	51
A.4 PRIVACY REQUIREMENTS CRITERIA	52

Cybersecurity Challenges of Artificial Intelligence¹ Securing Machine Learning Algorithms²

This new

report analyses cybersecurity and privacy requirements and measures in use of Al in forecasting demand on electricity grids. The report describes the scenario fundamental principles (assets, actors processes etc.), identifies the security and privacy risks it poses, and finally cybersecurity and privacy controls, which counteract the identified risks.

1.1 STUDY OBJECTIVES

Forecasting Demand on Electricity Grids

•

•

1.2 METHODOLOGY
• •
1.2.1 Description of the scenario
• • • • • • • • • • • • •
1.2.2 Identification of cybersecurity and privacy threats and vulnerabilities
1.2.3 Identification of cybersecurity and privacy controls
•
1.3 TARGET AUDIENCE

All actors	(nrivato	or public)

- Al technical community, Al cybersecurity and privacy experts and Al experts
- Cybersecurity and privacy community

1.4 USING THIS DOCUMENT

•

•

•

Figure 1:

FORECAST DEMAND ON ELECTRICITY GRIDS

DATA

Input data

- Material characteristics of renewable electricity production means
- · High resolution weather data
- Demographics
- Current daily Energy consumption
- Calendar

Output data

- Energy production from renewable energies
- · Energy consumption

ACTORS

- Energy System Operator's teams
- · Electricity consumers
- · Open-data providers
- · Data scientists
- Developers and Data Engineers
- · System and communication network's administrator

CYBERSECURITY AND PRIVACY REQUIREMENTS

Cyber requirements

● Availability ● Integrity ● Confidentiality ● Traceability

Privacy Requirements

- Availability Integrity Confidentiality Traceability • Lawfulness
- Fairness Transparency
- · Purpose limitation,
- · Data minimization,

● Critical ● High ● Low

- Accurancy
- Storage limitation
- · Security of personal data
- · Database creation,
- · Compliance of the training model

ASSETS

- RNN & SARIMAX renewable energy & consumption forecast algorithms
- Data lake & Model server on premises
- Open Data provider APIs
- Smart Meter & Concentrator
- Operator's electrical grid
- Integrated Development Environment
- Communication protocols and network

2.1 PURPOSE AND CONTEXT

- •
- •
- •

- •
- •
- •

2.2 HIGH-LEVEL DESCRIPTION

supervised learning

collected in a data lake

Selected data are then used to create two machine learning models.

These two models

produce the following outputs

•

dashboard tool

Figure 2:

2.3 ACTORS AND ROLES

Figure 3:

Actor	Role	Description
Electricity supplier's teams	End Users and Data Owner (Data Controller)	
Electricity consumers	Data Provider	
Open-data providers	Data Provider	
Data scientists	Data scientist	
Developers and Data Engineers	Developers and Data Engineers	
System and communication network administrators	Network administrators	

2.4 PROCESSED DATA

Figure 4:

Data	Data type	Source / data provider	Data Procurement
		the electricity system electricity supplier	
		Open-data provider	
		i.e., the electricity system electricity supplier	

Figure 5:

Data	Data type	Source / data provider	Data Procurement
		Open- data provider	
		Open-data provider	
		the electricity system electricity suppliers	

Elamin, Niematallah et Fukushige, Mototsugu.

	the electricity system electricity suppliers	

2.5 MACHINE LEARNING ALGORITHMS

Figure 6:

Learning paradigm	Subtype	Algorithm	Type of data ingested	Description

2.6 ASSETS

Neda Tavakoli; Sima Siami-Namini; Akbar Siami Namin.

B, Prabadevi, et al.

Abualig, Laith, et al.

Figure 7:

Type of asset	Asset	Description
Models		
	on-premises	
Environment tools	premises on-	

2.7 OVERALL PROCESS

D . 4 .		
Data (COL	llection

(material characteristics, and production history electricity supplier

weather

data

meteorological services

This data is considered as open-data and is therefore non-proprietary and free to use.

electricity consumption of the inhabitants

The electricity supplier collects their electricity consumption from smart meters installed locally at the consumers' place 21

personal data

- •
- •
- •
- •

The default or detailed consumption values (if the consumer has agreed to share this information for the purpose of the processing) are kept and then aggregated (i.e., summed with all other consumption data) in a large consumption database

data. It	. This aggregated data does not allow for the retrieval of consume data. It is therefore anonymised data.			
		demographics	calendar	
Data cle	eaning and data pre-processing			
collecte	ed data cleaned	pre-processing		
Model o	design and implementation			
•	A Recurrent Neuronal Network (R	NN)		
•	A Seasonal AutoRegressive Integ variables (SARIMAX)	rated Moving Average w	vith eXogenous	

Brownlee, Jason.

Lee, Donghun and Kim, Kwanho.

Pavicevic, Milutin and Popovic, Tomo

Elamina, Niematallah et Fukushige, Mototsugu

Sim, Sze En, et al.

model's parameters

Model tra	ining, mod training n	g and opt	imisation

extreme weather conditions

Model Evaluation evaluate the model

Model Deployment model deployment

- •
- •

Monitoring and inference

Baheti, Pragati. v7labs.

monitoring

Figure 8:

Steps	Description	Actors	Assets
Data Collection			
Data Cleaning			
Data pre-processing			
Model design and implementation			
Model training			
Model testing			
Optimization			

Model evaluation		
Model deployment		
Monitoring and inference		

2.8 PRIVACY AND CYBERSECURITY REQUIREMENTS

Cybersecurity requirements

Figure 9:

	Level	Explanation
Availability	Low	every day half a week would be tolerable Longer unavailability
Integrity	Critical	accurate with a high level of quality large imbalance underproduction or an overproduction
Confidentiality	Critical	personal data (upstream of the concentrator)
Traceability	High	

Privacy requirements

It is important to note that the billing functions are not considered in our case, this topic being out of scope.

our scenario handles personal data in the data collection phase

The following data protection requirements and recommendations should be satisfied

Figure 10:

Requirements	Explanation
Lawfulness, fairness, and transparency ³⁰	Lawfulness Fairness: Transparency:
Purpose limitation	
Data minimisation	

Accuracy	
Storage limitation	
Security of personal data (Integrity and Confidentiality)	

Figure 11:

Recommendations	Explanation
Database creation	
Compliance of the training model (i.e. before production)	

Figure 12:

Criteria	Does it match the criteria?	Justification

Figure 13:

	Level	Explanation
Availability	Low	
Integrity	Low	
Confidentiality	Critical	
Traceability	High	

3.1 THREAT CONTEXTUALISATION

electrical production disruption

reputation degradation,

phishing

attempts or targeted advertising

robbery

, separation/divorce

, or job loss

significant feeling of invasion of privacy, feeling out of control of their personal data change in energy consumption billing

Figure 14:

COMPROMISE OF MACHINE LEARNING APPLICATION

PROD REP PHISH ROBB

- Poor access right management process
- Weak access control
- Use of vulnerable components

DATA DISCLOSURE

INV PHISH ROBB

- Poor access right management process
- Weak access control
- Poor data management

LACK OF TRANSPARENCY

MW CIME

- ข้องคราวดี กลาก เดือสาร์เกียดต - เรลล กิดตารทางโคร

และปางที่และที่ที่ของท่องทางทากลางของช่องท เขาทางข้องบลลากละครองทลลางสลาลา องกละของเ

Lett direaspeaenty

on the opurpose of the use-case.

NO RESPECT DE STORAGE LIMITATION

BRDE HEHE

.uaci (d. kaza) (esecitor) i neccisarisma .uaci (d. kaza) esecitori (d. kaza) d.

POISONING

PROD

- · Lack of control poisoning
- Lack of data for increasing robustness to poisoning
- Use of unsafe data or model

UNLAWFUL PROCESSING

INV PHISH ROBB

 Lack of practical means and justification for obtaining the consents of the electricity consumers concerned

UNFAIR PROCESSING

HUMAN ERROR

REP INV PHISH ROBB

Poor access rights

• Lack of documentation

management process

Lack of security by design

the Electrical forecast system

BILL INV PHI

- Absence of an identified data controller
- Lack of detail on the purposes and justification for their legitimacy
- Lack of traceability of actions and/or modifications made to the assets

DIVERSION OF PURPOSE

HIDS

Lacting control of Data processor Lacting controls to ressure that issued is used introdes the purposes resined.

Laction controls to easilize the arestication of the otumbse latticistic restings.

NO RESPECT DE DATA MINIMIZATION

WHEH! BRDS

Lett of inteasures to operent turther

(9559) 00 (955)001

และของกายของรอสทากสลอก องโยชิติโดตา

IMP/4CTS

PROD. Becomical production liberuption (RP) Repulsation Regradation PHEER Phierrns (attenuts, largesed

advertissnig B.L. Chariga od nodissumer bolling i 038: toppen, Jeparation evotro, probles W Spriftcart Jense of Invasion

O DITVAKV

COMF: Not opensy in control of personse (dasa

3.1.1 Compromise of ML application components

electrical production

disruption

electrical production disruption
reputation degradation
significant feeling of invasion of privacy, phishing attempts, or targeted advertising
robbery, separation/divorce, or job loss

3.1.2 Poisoning

data collection

historical consumption data

electrical production disruption.

having collected the data

electrical production disruption

3.1.3 Human error

reputation degradation privacy, phishing attempts, or targeted advertising or job loss

significant feeling of invasion of robbery, separation/divorce,

3.1.4 Data disclosure

reputation degradation.
significant feeling of invasion of privacy, phishing attempts, robbery, separation, or divorce and/or job loss.

 $targeted\ advertising,$

3.1.5 Unlawful Processing

significant sense of invasion of

privacy

a significant feeling of invasion of privacy

3.1.6 Unfair processing

unknowingly changing

their billing

3.1.7 Lack of transparency

feeling of being

not in control of personal data

3.1.8 Diversion of purpose

robbery, or separation/divorce, or job loss.

3.1.9 No respect of data minimisation

significant feeling of invasion of privacy separation/divorce, job loss in case of data leakage potential phishing attempts, targeted advertising, robbery.

3.1.10 No respect of storage limitation

separation/divorce, job loss, phishing attempts, targeted advertising, robbery.

3.1.11 Synthesis of possible impacts and associated threats

Figure 1:

Impact	Severity	Туре	Associated Threats
Electrical production disruption	High		
Reputation degradation	High		
Phishing attempts, targeted advertising	Moderate		

Robbery, Separation/divorce or job loss	High		
Significant feeling of invasion of privacy	Moderate		
Not being in control of personal data	Moderate		
Change of consumer billing	High		

3.2 VULNERABILITIES ASSOCIATED TO THREATS AND AFFECTED ASSETS

Figure 2:

Vulnerabilities	Threats	Actors	Assets involved
Absence of an identified data controller			
Absence of mechanisms to ensure that processing of consumer electricity affected by consent cannot be carried out without consent			
Disclosure of sensitive data for ML algorithm training			
Existing biases in the ML model or in the data			
Lack of anonymisation			
Lack of auditability of processing			

Lack of control for poisoning		
Lack of control of Data processor ³⁶		
Lack of controls to ensure that data is used only for the purposes defined		
Lack of controls to ensure the adequacy of the purpose and its current use		
Lack of data deletion mechanisms		
Lack of data for increasing robustness to poisoning		
Lack of data retention policy		
Lack of detail on the purposes and justification for their legitimacy		
Lack of documentation		
Lack of justification for the collection of individual personal data collected		
Lack of legal basis related to users' consent when their detailed consumption data (per hour or half hour) are processed or that legitimate interest related to the daily processing of the data is not properly justified or that no justification is provided at all		

Lack of measures to prevent further data collection		
Lack of necessary data selection		
Lack of practical means and justification for obtaining the consents of the electricity consumers concerned (those who have a half- hourly view of their electricity consumption)		
Lack of security by design		
Lack of privacy by design		
Lack of security process to maintain a good security level of the components of the Electrical forecast system		

Lack of traceability of actions and/or modifications made to the assets

extracted, and how they are processed.		
Lack of verification that		
the data is adequate, relevant and not excessive for the purpose		
of estimating electricity consumption		
Model easy to poison		
No detection of poisoned samples in the training dataset		
dataset		
Poor access rights management process		
Poor data management		
Excessive information		
available on the model		
Unprotected sensitive data on test environments		
Use of uncontrolled data		
Use of unsafe data or		
models (e.g., with transfer learning)		

Use of vulnerable components (Among the whole supply chain)		

Weak access protection

Figure 17:

Check the vulnerabilities of components

- IOT audits, Open Data providers audits
- Impact on the availability of the system

Chose and define a more resilient model

erformance impacts of

SPECIFIC CONTROLS

Ensure reliable data sources are used

- Audit Open Data providers, use several sources
- Performance impacts

Implement access right management process

• Consider smart meters access

coming from the concentrator • At the concentra

Anonymize data

 At the concentrator level the remaining fields should be [city, electricity consumption], Performance and security impacts

Study on data fields necessity and justification in the privacy கை சுத்து ரதுக்காளதுக்க

ure all systems and devices a (dëristorshollishy) of tilrean n<mark>aly salit frautihentitosiikan</mark>eend <u>ress.com rol policies.</u> ctive Director<u>y, MEA, Use of</u> Auth 2.0 <u>Minimize data at each ste</u>ps ivacy impacts A study on the necessity of collecting data at the hourly scale must be done and a proof of its perly collect and maintain ensent when neeseads assidente case. Si ziled energy cansumption deinileri energy consumptic ลมที่มีเล็กในสี รู้สี่เป็นโระกระไ pt in) to agree to provide heir Ealled Energy consumption

DONIEV

GENERIC CONTROLS

- Perform a privacy Impact assesment
- Define and implement a data retention policy
- Formalize a LIA

the model sumption

- Implement a privacy by design process
- Raise awareness of security and privacy issues among all stakeholders in the use-case
- Implement a security by design process
- Document the Electrical forecast system
- Control all data used by the ML Model
- Reduce all the available information about
- Identify a data controller for the energy cor anticipation
- Generate logs and perform internal audit

4.1 IMPLEMENT A SECURITY BY DESIGN PROCESS

Туре	Associated Vulnerabilities	Threats it mitigate
		•
		•
		•

4.2 DOCUMENT THE ELECTRICAL FORECAST SYSTEM

Туре	Associated Vulnerabilities	Threats it mitigate
		•
		•
		•
		•
		•

4.3 CHECK THE VULNERABILITIES OF THE ML COMPONENTS AND IMPLEMENT PROCESSES TO MAINTAIN THEIR SECURITY LEVELS OVER TIME

Туре	Associated Vulnerabilities	Threats it mitigate
	:	•
	·	•

4.4 CHOOSE AND DEFINE A MORE RESILIENT MODEL DESIGN

Туре	Associated Vulnerabilities	Threats it mitigate

4.5 INTEGRATE POISONING CONTROL IN THE TRAINING DATASET

Туре	Associated Vulnerabilities	Threats it mitigate
	•	
	•	

4.6 ENLARGE THE TRAINING DATASET

Туре	Associated Vulnerabilities	Threats it mitigate

4.7 SECURE THE TRANSIT OF THE COLLECTED DATA

Туре	Associated Vulnerabilities	Threats it mitigate

4.8 CONTROL ALL DATA USED BY THE ML MODEL

Туре	Associated Vulnerabilities	Threats it mitigate

•

•

4.9 ENSURE RELIABLE SOURCES ARE USED

Туре	Associated Vulnerabilities	Threats it mitigate

4.10 IMPLEMENT ACCESS RIGHT MANAGEMENT PROCESS

Туре	Associated Vulnerabilities	Threats it mitigate
		•
		•
		•
		•

4.11 ENSURE ALL SYSTEMS AND DEVICES COMPLY WITH AUTHENTICATION, AND ACCESS CONTROL POLICIES

Туре	Associated Vulnerabilities	Threats it mitigate
	•	•
	•	•
		•
		•

4.12 REDUCE THE AVAILABLE INFORMATION ABOUT THE MODEL

Туре	Associated Vulnerabilities	Threats it mitigate

4.13 IDENTIFY A DATA CONTROLLER FOR THE ENERGY CONSUMPTION ANTICIPATION DATA PROCESSING

Туре	Associated Vulnerabilities	Threats it mitigate
		•
		•
		•

4.14 PROPERLY COLLECT AND MAINTAIN USER CONSENT WHEN NEEDED FOR DETAILED ENERGY CONSUMPTION USAGE

Туре	Associated Vulnerabilities	Threats it mitigate
	•	
	•	

4.15 ANONYMIZE DATA COMING FROM THE CONCENTRATOR

Туре	Associated Vulnerabilities	Threats it mitigate

4.16 GENERATE LOGS AND PERFORM INTERNAL AUDIT

Туре	Associated Vulnerabilities	Threats it mitigate
		:
	•	•
	•	•
		•

4.17 PERFORM A PRIVACY IMPACT ASSESSMENT

Туре	Associated Vulnerabilities	Threats it mitigate
------	----------------------------	---------------------

•	
•	•
	•
•	•

4.18 DEFINE AND IMPLEMENT A DATA RETENTION POLICY

Туре	Associated Vulnerabilities	Threats it mitigate
	•	

4.19 STUDY ON DATA FIELDS NECESSITY AND JUSTIFICATION IN THE PRIVACY POLICY

Туре	Associated Vulnerabilities	Threats it mitigate
	•	•
	•	•
		•

4.20 FORMALISE A LIA (LEGITIMATE INTEREST ASSESSMENT)

Туре	Associated Vulnerabilities	Threats it mitigate

4.21 MINIMISE DATA AT EACH STEP OF THE PROCESSING; COLLECT ONLY WHAT IS NEEDED WHEN NEEDED

Туре	Associated Vulnerabilities	Threats it mitigate
	•	
	•	

4.22 IMPLEMENT A PRIVACY BY DESIGN PROCESS

Туре	Associated Vulnerabilities	Threats it mitigate
		•
		•
		•
		•
		•

4.23 RAISE AWARENESS OF SECURITY AND PRIVACY ISSUES AMONG ALL STAKEHOLDERS

Туре	Associated Vulnerabilities	Threats it mitigate
		•
		•
		•
		•
		•
		•

4.24 SUMMARY

Figure 18:

Control name and type	Associated Vulnerabilities	Threat mitigated	Privacy and security requirements addressed
Implement a Security by Design process			
Document the Electrical forecast system			
Check the vulnerabilities of the components used and Implement processes to maintain security levels of ML components over time			
Choose and define a more resilient model design			
Integrate poisoning control in the training dataset			
Enlarge the training dataset			
Secure the transit of the collected data			
Control all data used by the ML Model			
Ensure reliable sources are used			

Implement access right management process		
Ensure all systems and devices comply with authentication, and access control policies		
Reduce the available information about the model		
Identify a data controller for the energy consumption anticipation data processing		
Properly collect and maintain user consent when needed for detailed energy consumption usage		
Anonymise data coming from the concentrator		
Generate Log generation and perform Internal audit process		
Perform a privacy Impact Assessment		

Define and implement a data retention policy		
Study on data fields necessity and justification in the privacy policy		

forecasting demand on electricity grids

A.1 CYBERSECURITY AND PRIVACY SEVERITY SCALES

Availability	
Low	few days or less
Moderate	a day or less
High	half a day or less
Critical	few hours or less

Integrity			
Low	does not need to be identified or corrected		
Moderate	must be identified but not necessarily corrected		
High	must be identified and corrected		
Critical	No degradation		

Confidentiality		
Low	accessed by everyone	
Moderate	restricted to internal staff and trusted partners	
High	restricted to employees having an organisation or functional link with the process	
Critical	restricted to a very limited number of individuals	

Traceability					
Low	absence of traces			is acceptable	
Moderate	Actions identified		ed		
High	actions dated	imputable	actors	identified and	
Critical		actions probative valu	legally enforceable ue	time stamped	

A.2 CYBERSECURITY SCALE OF IMPACT

	Severity ⁴²
1 - Low	
2 - Moderate	
3 - High	
4 - Critical	

A.3 PRIVACY SCALE OF IMPACT

Severity ⁴³		
1 - Low		
2 - Moderate		
3 - High		
4 - Critical		

A.4 PRIVACY REQUIREMENTS CRITERIA

Requirements	Article	
Lawfulness, fairness and transparency		
Purpose limitation		
Data minimisation		
Accuracy		
Storage limitation		
Security of personal data (integrity and confidentiality)		

Recommendations	Details
Database creation	
Compliance of the training model (i.e. before production)	

