Table 1. Examples of Autoimmune Diseases Affecting Different Organs				
Primary Target Organ(s)	Disease	Prevalence ^a	Typical First Symptoms	Mechanism
Skin and Hair				
Skin	psoriasis	~2%–3%	skin redness, thickening, and scales	abnormal keratinocyte proliferation in the dermis and epidermis
Skin and oral mucosa	pemphigus vulgaris	~0.01%	blisters and erosions	loss of cell adhesion in stratified squamous epithelia
Skin	vitiligo	~0.5%–1%	milky white skin patches	destruction of melanocytes
Hair follicles	alopecia areata	~0.1%	patchy hair loss on the scalp	weakness in the hair shaft leading to hair shaft breaking
CNS				
Optic nerve, brain, spinal cord	multiple sclerosis	~0.1%	visual loss, numbness, tingling, paresis, and spasticity	destruction of myelin
Hypothalamus	narcolepsy	~0.03%	excessive daytime sleepiness, sleep attacks, sudden loss of muscular control	destruction of orexin-producing neurons
Optic nerve, spinal cord	neuromyelitis optica	~0.004%	resembles MS, but attacks are more severe	destruction of myelin, autoantibodies against aquaporin-4
Endocrine and Exocrine Glands				
Pancreas	type 1 diabetes	~0.4%	increased thirst, frequent urination, weight loss,	destruction of insulin- producing $\boldsymbol{\beta}$ cells
Γhyroid gland	Graves disease (hyperthyroidism)	~0.5%	anxiety, irritability, hand tremors, weight loss, enlarged thyroid gland, bulging eyes, palpitations	autoantibodies against the thyrotropin receptor on thyroid follicular cells leading to increased synthesis of thyroid hormone
Fhyroid gland	Hashimoto's disease (hypothyroidism)	~0.1%	many, changeable and unspecific, including fatigue, sensitivity to cold, puffy face, constipation, pale and dry skin	fibrosis and atrophy of thyrocytes leading to decreased synthesis of thyroid hormone
Tear and salivary glands	Sjögren's syndrome	~0.2%–1%	dry eyes and mouth	loss of function of exocrine glands
Sastrointestinal System				
Entire gastrointestinal tract, out especially the ileum, oatchy lesions	Crohn's disease	~0.2%–0.3%	diarrhea, abdominal pain, bloody stool, fever, fatigue	transmural inflammation
Rectum and sometimes also he colon, uninterrupted lesions	ulcerative colitis	~0.2%–0.4%	abdominal pain, rectal pain and bleeding, urgency but inability to defecate, fever, fatigue	mucosal inflammation
Small intestine	celiac disease	~0.7%	loose stools, abdominal discomfort	flattening of villi and elongation of crypts
stomach	autoimmune gastritis	uncertain	anemia, gastritis, vitamin B12 deficiency, and impaired food protein degradation	destruction of acid-producing parietal cells
iver	primary biliary cholangitis	~0.03%	tiredness, itching	destruction of small bile ducts
iver	autoimmune hepatitis	~0.02%	nonspecific, mild fatigue, often no symptoms of liver disease but elevation of liver enzymes in peripheral blood	destruction of hepatocytes
				(Continued on next no

(Continued on next page)

Figure 1. Examples of Abnormal Metabolic Pathways and Potential Targeting Strategies

The metabolic signature of CD4+ T cells in systemic lupus erythematosus (SLE) is elevated glycolysis, oxidative phosphorylation (OXPHOS), and enhanced mTOR activity (blue). Dual inhibition of OXPHOS by metformin and hexokinase/glycolysis by 2-deoxyglucose (2-DG) or inhibiting the glucose transporter by CG-5 inhibitor reverses SLE markers *in vitro* and *in vivo* (Yin et al., 2015). Metformin is also suggested to reduce mTOR overactivity through activation of 5' adenosine monophosphate-activated protein kinase (AMPK). Sirolimus, targeting mTOR, has shown clinical effects in SLE patients (Lai et al., 2018), and dimethyl fumarate, used to treat multiple sclerosis and psoriasis, has been shown recently to exert its effect through suppression of GADPH, leading to downregulation of aerobic glycolysis (Kornberg et al., 2018). In rheumatoid arthritis, CD4+ T cells show decreased 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK5B3) but enhanced glucose-6-phosphate dehydrogenase (G6PD) enzyme activity in addition to increased NADPH and glutathione (GSG), reflecting that glucose is diverted from glycolysis into the pentose phosphate pathway (PPP; red). Increased NADPH and GSG levels cause ROS depletion, which is linked to cell cycle regulation via the enzyme ataxia telangiectasia mutated (ATM) protein kinase, responsible for cell cycle arrest at the G2/M checkpoint. Thus, lack of ATM activity, as observed in rheumatoid arthritis T cells, can lead to hyperproliferation and maldifferentiation (Yang et al., 2016). Inhibitorion of G6PD with 6-aminonicotinamide (6-AN) rebalances glucose utilization, normalizes ROS levels, and reduces cell proliferation. Furthermore, replenishing ROS levels with oxidative agents such as vitamin K3 or buthionine sulfoximine (BOS) restores ATM activity and suppresses synovial inflammation in a mouse model. Notably, the rheumatoid arthritis and SLE CD4+ T cells in these examples were characterized at early disease stages, suggesting strategies for early disease intervention.

individual taxa of commensal gut bacteria, such as *Entero-coccus gallinarum* (Manfredo Vieira et al., 2018) and *Lactoba-cillus reuteri* (Zegarra-Ruiz et al., 2019), from the gut to secondary lymphoid organs has been linked to systemic lupus erythematosus-like disease in mice. This disease could be prevented by vaccination against *E. gallinarum* or by feeding *L. reuteri* with dietary resistant starch that induced expansion

of *Clostriales*, which is known for its capacity to produce short-chain fatty acids (SCFAs) by fermentation of dietary fiber. SCFAs are increasingly being recognized as important metabolites in intestinal immune homeostasis, and numerous studies have established divergent host effects, such as reducing intestinal permeability, inducing Tregs (Arpaia et al., 2013; Atarashi et al., 2013; Smith et al., 2013), and promoting long-term survival of