Sur le calcul des solutions efficaces du problème bi-objectif de localisation de services sans contrainte de capacité

S. Bourougaa, A. Derrien, A. Grimault, X. Gandibleux, A. Przybylski

Université de Nantes — LINA, UMR CNRS 6241 UFR Sciences – 2 rue de la Houssinière BP92208. F44322 Nantes cédex 03 – France

ROADEF'2012 – Sessions GUEPARD

13e conférence de la sociéte française de recherche opérationnelle et d'aide à la décision

Université Catholique de l'Ouest

Angers. 11-13 avril 2012

Contexte

Algorithme

- Expérimentations numériques
- Conclusion

1. Contexte

Optimisation combinatoire multiobjectif [Ehrgott et G. 2002]

Problèmes d'optimisation combinatoire multiobjectif (MOCO) :

$$\min \{ Cx : Ax \ge b, x \in \mathbb{Z}^n \}$$

- Prise en compte simultanée des objectifs
- Solutions efficaces X_E, points non-dominés Y_N (frontière efficace)
- Articulation a posteriori des préférences du décideur

1. Contexte

Problèmes multi-objectif de localisation de services

- Problèmes de localisation de services (FLP) avec plusieurs objectifs
- Littérature conséquente :
 - panorama des fonctions objectif [Eiselt et Laporte 1995]
 - o états de l'art [Nickel et al. 2005; Farahani et al. 2010]
- Quelques exemples de situation avec 2 ou 3 objectifs :
 - o réseau de producteurs de café en Colombie [Villegas et al 2006]
 - extension de réseau de communication [G. et Chamayou 2007]
 - logistique verte [Harris et al. 2009; 2011]
- Des résolutions approchées pour traiter des situations où la résolution exacte atteint ses limites

1. Contexte

Problèmes discret bi-objectif de localisation de services sans contrainte de capacité (bi-UFLP)

Variante particulière importante : cas discret sans contrainte de capacité (bi-UFLP)

$$\begin{bmatrix} v-\min & \left\{ z^k = \sum_{i \in I} \sum_{j \in J} c^k_{ij} x_{ij} + \sum_{j \in J} r^k_{j} s_j & k = 1,2 \right\} & (0) \\ s/c & \sum_{j \in J} x_{ij} = 1 & \forall i \in I & (1) \\ x_{ij} \leq s_j & \forall i \in I, \ \forall j \in J & (2) \\ x_{ij}, \ s_j \in \{0,1\} & \forall i \in I, \ \forall j \in J & (3) \end{bmatrix}$$

- version mono-objectif
 - NP-hard [Krarup et Pruzan, 1983]
 - nombreuses situations (exemple en télécom [Gourdin et al. 2002])
- version multi-objectif
 - algorithme exact pour des instances bi (multi) objectifs de petites tailles [Fernandez et Puerto 2003]

Contexte

2 Algorithme

- Expérimentations numériques
- Conclusion

Description

Résolution : un algorithme exact en deux étapes

- **Pavage** de Y_N (ensemble complet de solutions efficaces X_E)
 - ensemble de boîtes caractérisant rigoureusement l'existence potentielles de solutions efficaces
 - une boîte est définie par une unique combinaison de services ouverts

■ Génération

 \circ calcul des solutions efficaces X_E dans ces boîtes

Description

Résolution : un algorithme exact en deux étapes

- **Pavage** de Y_N (ensemble complet de solutions efficaces X_E)
 - ensemble de boîtes caractérisant rigoureusement l'existence potentielles de solutions efficaces
 - une boîte est définie par une unique combinaison de services ouverts
 - o Calcul d'un pavage initial à l'aide d'un branch and bound
 - o Décomposition du pavage par dichotomie et filtrage
 - o Recomposition du pavage par ensembles contigus

■ Génération

- calcul des solutions efficaces X_E dans ces boîtes
- o Calcul des points non-dominés par un label setting sur les boites.
- o Retourne un ensemble complet de solutions efficaces

Pavage: Définitions et notations

Soit $J_1 \subseteq J$, ensemble des indices des services ouverts

Boîte : Sous-espace de dimension 2 dans Y borné par (au plus) deux solutions admissibles correspondant aux solutions lexicographiquement optimales sur les deux objectifs pour J_1

Points remarquables relatifs à une boîte ${\cal B}$:

 $\diamond: z_{lex^1}(\mathcal{B}), z_{lex^2}(\mathcal{B})$, points lex-optimaux

 $\star: z_I(\mathcal{B})$, point idéal

 $+: Y_{ND}(\mathcal{B})$, points non dominés

(1) Principe du pavage

Soit 7 services potentiels 1...7.

- \circ : point correspondant à l'ouverture d'un service $\{1\}$
- : point correspondant à l'affectation de l'ensemble des clients au service ouvert.
 Il correspond aux performances d'une solution admissible.

(1) Principe du pavage

Ajout des points (symbole \circ) correspondant à l'ouverture de deux services $\{1,2\}$ à $\{1,7\}$.

(1) Principe du pavage

Examen du cône de dominance d'origine □

Test : ∃? point origine dominé par au moins une solution admissible

(1) Principe du pavage

Le point correspondant aux services ouverts $\{1,6\}$ est dominé. Inutile de le considérer dorénavant (domination par origine).

(1) Principe du pavage

Expansion du domaine sur les services ouverts $\{1,2\}$ ce qui produit une boîte.

Identification des deux solutions admissibles lexicographiquement optimales (\$\display\$) pour la boîte.

(1) Principe du pavage

Examen des cônes de dominance d'origine \diamond

Le point correspondant aux services ouverts $\{1,4\}$ est dominé. Inutile de le considérer dorénavant (domination par origine).

(1) Principe du pavage

Expansion du domaine sur les services ouverts restants, donnant un ensemble de boîtes.

Test : ∃? point idéal d'une boîte dominé par au moins une solution admissible

(1) Principe du pavage

Examen des cônes de dominance d'origine \diamond et \square

Les expansions d'origine $\{1,3\}$ et $\{1,7\}$ sont dominées. Inutile de les considérer dorénavant (domination par expansion).

(1) Principe du pavage

Ajout des points (symbole \circ) correspondant à l'ouverture de trois services $\{1,5,6\}$ et $\{1,5,7\}$.

(1) Principe du pavage

Examen des cônes de dominance d'origine \diamond

Les points correspondants aux services ouverts $\{1,5,6\}$ et $\{1,5,7\}$ sont dominés. Inutile de les considérer dorénavant (domination par origine).

(1) Principe du pavage

Pavage partiel résultant $\{1,2\}$ et $\{1,3\}$ sont à traiter

Résumé de l'algorithme de branch & bound pour le pavage

Parcours : largeur

■ **Séparation**: variables s_j

■ Filtrage : 3 tests de dominance

■ Résultats : sommets expansés non dominés

Pavage final

Instance avec 30 services et 90 clients

Génération

- Une boite est définie par l'ouverture de services : $J_1 = \{1, 3, 4\}$
- L'ensemble des indices des affectations de compromis : $I_c = \{2, 4, 9, 10\}$

Génération

Client 2 a trois affectations possibles :

- **[**2, 4]
- **[**3, 3]
- **[**7, 2]

Génération

Affectation du client 4 au service 3 est dominée. ⇒ supprime

- **[**2, 4]
- **[**3, 3]
- **[**7, 2]

Génération

A chaque solution déjà calculée, on ajoute les possibilités du client 4.

- **[**2, 4]
- **[**3, 3]
- **[**7, 2]

Génération

A chaque solution déjà calculée, on ajoute les possibilités du client 4.

[3, 6]

[5, 5]

4, 5

[7, 4]

[8, 4]

[10, 3]

Génération

A chaque solution déjà calculée, on ajoute les possibilités du client 4.

[3, 6]

[5, 5]

4, 5

[7, 4]

■ [8, 4]

[10, 3]

Génération

In fine : 6 solutions non dominées.

[7, 12] **[**14, 9]

■ [8, 11] **■** [6, 14]

■ [11, 10] **■** [5, 23]

Contexte

Algorithme

- 3 Expérimentations numériques
- Conclusion

instances

■ Batterie F [Fernandez et Puerto 2003]

```
28 instances
```

```
o source : collection résultant du collage paire UFLP mono-obj
```

```
taille : n=30; m=90
```

• corrélation des objectifs : ≈ 0.0

```
\bullet ranges : c_{ij}^k \in [0, 100]; r_j^k \in [200, 28000]
```

http://www-eio.upc.es/%7Eelena/sscplp/

■ Batterie H [Harris et al 2011]

```
5 instances
```

```
source : logistique verte (obj1 : coût; obj2 : CO<sub>2</sub>)
```

```
• taille: n=10; m=2000...10000
```

$$\circ$$
 corrélation des objectifs : $pprox 0.99$

• ranges :
$$c_{ii}^k \in [0, 43000]$$
; r_i^k unique $\forall j \in J$ par instance

http://users.cs.cf.ac.uk/C.L.Mumford/Research%20Topics/FLP/papers/data/

■ Disponibles bientôt sur la MCDMLib, section MOCOlib :

http:// http://mcdmsociety.org/MCDMlib.html

Frontière efficace (batterie F)

Calcul du pavage et de la génération

	Pavage			Génération	
	(1)	(2)	CPUt	(3)	CPUt
Н			ms		ms
min	1 023	11	411	13 412	104
moy	1 023	12	1 200	295 868	35 142
max	1 023	13	1 994	731 385	122 691
F					
min	280	3	1	3	<1
moy	8 885	18	53	421	6
max	48 741	152	399	1 229	29

(1) : boites expansées

(2) : boites expansées non-dominées

(3) : points non-dominés

Comparaison de performances

	(1)	(2)	(3)
Н		ms	ms
min	15h39min	-	515
moy	N.A.	-	36 342
max	N.A.	-	124 285
tot	N.A.	-	181 713
F	ms	ms	ms
min	1 000	59 000*	1
moy	94 428	97 200*	59
max	300 000	162 000*	428
tot	2 644 000	-	1 669

(1) : ϵ -contrainte à l'aide de Cplex

(2) : algorithme de Fernandez et Puerto [2003]

(3) : algorithme proposé (pavage + génération)

Contexte

Algorithme

- Expérimentations numériques
- 4 Conclusion

4. Conclusion

Bilan et perspectives

- proposé la notion de pavage rigoureux par boîtes en MOCO
- lacktriangle intérêt du pavage pour un décideur souhaitant naviguer sur Y_N
- montré l'efficacité de la proposition sur les benchmarks connus
- \blacksquare recueilli des Y_N avec des caractéristiques inédites
- ...
- enrichir l'algorithme lequel présente encore un caractère brute-force
- cerner les limites expérimentales de la proposition
- quid de la proposition pour des situations à plus de deux objectifs
- évolution de la proposition vers des situations avec capacités
- **...**

