BRAC University

Department of Computer Science and Engineering

Midterm Exam
Full Marks: 15 x 3 = 45
Time: 1 hour 30 minutes
Date: 9th September 2022

Semester: **Summer 2022** Course Code: **CSE460** Course Title: **VLSI Design**

Set B

Student ID:	Name:	Section:
-------------	-------	----------

[Answer any **THREE** questions out of **FOUR**. Each question carries equal marks.]

[After the exam, the question paper should be turned in along with the answer script.]

1. (CO4, CO5)

Mr. Roosevelt is a VLSI engineer in a renowned chip manufacturing company. He sets the physical positions of all the components on a chip to optimize the delay and power consumption. Suppose, Mr. Roosevelt is working on a chip that consists of 6 nodes illustrated in the figure below. Firstly, he partitions the nodes into two equal-sized blocks, and then, using the Kernighan-Lin algorithm, he minimizes the number of connections between the blocks. After floor-planning, placement, and maintaining all other design considerations, Mr. Roosevelt can dispatch the chip to the fabrication unit.

The dotted line in the figure represents the initial partitioning with A (1,2,4) & B (3,5,6) blocks. For the *first* iteration, answer the following:

(a)	Draw the corresponding graph representation of the above circuit.	
(b)	Find the initial cut cost.	
(c)	Calculate the cost of each node.	
(d)	Evaluate necessary gains (Δ g) for the first iteration.	
(e)	Perform the first swap and compare the new cut cost with the initial one.	

2. (CO3)	the the	sider a CMOS inverter in a 45 nm 1 V process, where the pMOS transistor has 4 time width of the nMOS transistor. The ratio of electron mobility to hole mobility is 3:2, a threshold voltages are $ V_{tp} = V_{tn} = 0.15 \text{ V}$. Assume all other parameters are the same of the transistors.	and	
	(a)	Calculate the beta ratio (r) of the inverter.	3	
	(b)	Determine the inverter threshold voltage (V _{inv}).		
	(c)	Draw an approximate transfer characteristic curve (V _{out} vs V _{in}) for the inverter.		
	(d) Plot the I_{ds} vs. V_{ds} curve for the nMOS using the following values of V_{ds} . Given, $V_{gs} = 0.4$ V, and $\beta_n = 140 \ \mu\text{A/V}^2$. Evaluate $V_{ds(sat)}$ and show the value of $V_{ds(sat)}$ in the plot. [6]			
		V _{ds} 0.10 V 0.15 V 0.20 V 0.25 V		
3. (CO3)	same function in a 1 μm process (a) Identify and design the CMOS circuit (indicate both nMOS and pMOS networks). (b) Determine the individual transistor widths k_{nMOS} and k_{pMOS} to achieve the effective rise and fall resistance equal to that of a unit inverter, R , in the worst case.			
	(c) Sketch the simplified RC circuit. (d) Derive the expressions for t_{pdf} and t_{cdf} . (Sketch the corresponding RC net from part (c) to derive the expressions.)			
4. (CO3, CO4)	(a)	Consider the following logic circuit, which is being driven by a system frequency of 1 GHz and a supply voltage of 3.2 V . The inputs to the circuit are A , B , C , and D , while the output node is Y . N_1 and N_2 are two intermediate nodes. The activity factors of nodes N_1 , N_2 , and Y with respect to the system frequency are given in table 1 . The input and output capacitances of the individual logic gates are listed in table 2 . [continued to the next page]		

