

AD-A204 827

THE ANTHRANILATE AMIDE OF "POLYETHYLENE CARBOXYLIC ACID" SHOWS
AN EXCEPTIONALLY LARGE CHANGE WITH pH IN ITS WETTABILITY BY WATER

Mark D. Wilson and George M. Whitesides*

Department of Chemistry
Harvard University
Cambridge MA 02138

(4)

Technical Report No. 13 (December 1988)

Interim Technical Report

(Accepted for publication in J. Am. Chem. Soc.)

PREPARED FOR DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
1400 Wilson Boulevard
Arlington VA 22209

DEPARTMENT OF THE NAVY
Office of Naval Research, Code 1130P
800 North Quincy Street
Arlington VA 22217-5000

ARPA Order No.: NR 356-856
Contract No.: N00014-85-K-0898
Effective Date: 85 September 01
Expiration Date: 89 May 31

Principal Investigator: George M. Whitesides
(617) 495-9430

The views and conclusions in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

This document has been approved
for public release and sale.
Distribution is unlimited.

DTIC
SELECTED
24 FEB 1989
S E D
E

89 2 24 055

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION Unclassified		1b. RESTRICTIVE MARKINGS	
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution unlimited	
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE			
4. PERFORMING ORGANIZATION REPORT NUMBER(S) Technical Report #13		5. MONITORING ORGANIZATION REPORT NUMBER(S)	
6a. NAME OF PERFORMING ORGANIZATION Harvard University	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION Office of Naval Research	
6c. ADDRESS (City, State, and ZIP Code) Office of Sponsored Research Holyoke Center, Fourth Floor Cambridge MA 02138-4993		7b. ADDRESS (City, State, and ZIP Code) Code 1130P 800 North Quincy Street Arlington VA 22217-5000	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION ONR/DARPA	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER	
8c. ADDRESS (City, State, and ZIP Code) 800 North Quincy Street Arlington VA 22217-5000		10. SOURCE OF FUNDING NUMBERS	
		PROGRAM ELEMENT NO. 85-K-0898	PROJECT NO. NR 356-856
		TASK NO.	WORK UNIT ACCESSION NO.

11. TITLE (Include Security Classification)
 "The Anthranilate Amide of 'Polyethylene Carboxylic Acid' Shows an Exceptionally Large Change with pH in its Wettability by Water"

12. PERSONAL AUTHOR(S)
 Mark D. Wilson and George M. Whitesides*

13a. TYPE OF REPORT Interim	13b. TIME COVERED FROM _____ TO _____	14. DATE OF REPORT (Year, Month, Day) December 1988	15. PAGE COUNT 8
--------------------------------	--	--	---------------------

16. SUPPLEMENTARY NOTATION

17. COSATI CODES			18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD	GROUP	SUB-GROUP	pH-dependant wettability polyethylene contact angles
			wettability interfacial acid-base behavior
			polymer surface modification

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The amide formed from polyethylene carboxylic acid (PE-CO₂H) and anthranilic acid shows an exceptionally large change in wettability by water with pH. The values of advancing contact angles θ_a are $\theta_a(\text{pH } 1) = 110^\circ$ and $\theta_a(\text{pH } 12) = 33^\circ$. Comparison of these values with those for corresponding amides of meta- and para-aminobenzoic acid and aniline suggest that both conformational mobility of the polar functional group at the solid-water interface and surface roughness contribute to this large value.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input checked="" type="checkbox"/> UNCLASSIFIED/UNLIMITED <input type="checkbox"/> SAME AS RPT <input type="checkbox"/> DTIC USERS	21. ABSTRACT SECURITY CLASSIFICATION
22a. NAME OF RESPONSIBLE INDIVIDUAL Dr. Joanne Milliken	22b. TELEPHONE (Include Area Code)
	22c. OFFICE SYMBOL

JA882292T
REVISED

The Anthranilate Amide of "Polyethylene Carboxylic Acid" Shows an Exceptionally Large Change with pH in Its Wettability by Water

Mark D. Wilson and George M. Whitesides*

Harvard University

Department of Chemistry

Cambridge MA 02138

deg's theta(a) deg's

Abstract. The amide formed from polyethylene carboxylic acid ($\text{PE}-\text{CO}_2\text{H}$) and anthranilic acid shows an exceptionally large change in wettability by water with pH. The values of advancing contact angles θ_a are $\theta_a(\text{pH } 1) = 110^\circ$ and $\theta_a(\text{pH } 12) = 33^\circ$. Comparison of these values with those for corresponding amides of meta- and para-aminobenzoic acid and aniline suggest that both conformational mobility of the polar functional group at the solid-water interface and surface roughness contribute to this large value.

Accession For	
NTIS GRA&I	
DTIC TAB	
Unannounced	
Justification	
By _____	
Distribution/	
Availability Codes	
Dist	Avail and/or
	Special
A-1	

The Anthranilate Amide of "Polyethylene Carboxylic Acid" Shows an Exceptionally Large Change with pH in Its Wettability by Water¹

Mark D. Wilson and George M. Whitesides*

Harvard University

Department of Chemistry

Cambridge MA 02138

"Polyethylene carboxylic acid" (PE-CO₂H) is a material prepared from low-density polyethylene film (PE-H) by generating carboxylic acid groups in a thin (≤ 2 nm) interfacial region using chromic acid solution as oxidant.²⁻⁶ This material is a convenient substrate with which to explore the physical-organic chemistry of organic surfaces. One interesting and analytically useful characteristic of PE-CO₂H is that its wettability by water depends on pH: for pH ≤ 4 , the carboxylic acid groups are protonated and the surface relatively hydrophobic (the advancing contact angle, θ_a , is $\sim 55^\circ$); for pH ≥ 10 , the carboxylic acid groups are present as the more hydrophilic carboxylate anions, and the contact angle drops to $\theta_a \approx 20^\circ$. Other acidic, surface-functionalized derivatives of PE-CO₂H also show a pH-dependent contact angle. In most cases the magnitude of the changes in $\cos \theta_a$ with pH are limited by the facts that derivatives of PE-CO₂H seldom show a value of θ_a less than -20° (independent of the relative hydrophilicity of the functional groups present at the polymer-water interface)⁶ and that most potentially ionizable derivatives are relatively hydrophilic at low values of pH.⁷

Here we report that the material 2 formed by reaction of PE-COCl with anthranilic acid⁸ shows a very large change in contact angle with pH: from $\theta_a \approx 110^\circ$ (more hydrophobic than unfunctionalized PE-H) at low pH to $\theta_a \approx 33^\circ$ at high pH (Figure 1).⁹

The value of $\theta_a \approx 119^\circ$ for the reference material 1 is independent of pH, and is also higher than that of PE-H. The difference in θ_a for 1 and PE-H cannot be interpreted directly in terms of hydrophobicity, since the surface of 2 is rougher than that of PE-H. Very hydrophobic derivatives of PE-CO₂H show values of $\theta_a \geq 130^\circ$ (for example, PE-OSi(CH₃)₃, $\theta_a = 130^\circ$; PE-CONHC₁₈H₃₇, $\theta_a \approx 132^\circ$). Nonetheless, 1 is unexpectedly hydrophobic. We interpret the

Figure 1. Variation in the advancing contact angle θ_a of water as a function of pH on several anilide derivatives of "polyethylene carboxylic acid", PE- CO_2H , PE-H, PE- CONHC_6H_5 , and PE- $\text{OSi}(\text{CH}_3)_3$ are given for reference.

$\theta_a \approx 132^\circ$). Nonetheless, 1 is unexpectedly hydrophobic. We interpret the hydrophobicity of this material as indicating that its phenyl groups are sufficiently large to shield the polar amide moieties from contact with water.

Introduction of a carboxylic acid moiety into the position ortho to the amide group of 1 produces only a modest decrease in the value of θ_a at low values of pH. At high pH, however, θ_a is much lower for 2 than for 1. The amides of meta- and para-aminobenzoic acids (3 and 4) have hydrophilicities similar to that of 2 at high pH, but are more hydrophilic at low pH and thus show less striking changes in θ_a with pH.

We have not rigorously identified the origin of the large change in θ_a with pH for 2, but we offer the hypothesis that it lies in a change in conformation of the acyl anthranilate moiety with respect to the surface (represented schematically by 6 \rightleftharpoons 7). We suggest that at low pH, 2 adopts a conformation that buries both the -CONH- and -CO₂H moieties; in this conformation, 2 resembles 1 from the vantage of the contacting water. At high pH, the carboxylic acid group ionizes and the free energy of solvation of the resulting carboxylate ion induces a change in conformation that exposes the CO₂⁻ group to water; in this conformation, the surface of 2 resembles that of PE-CO₂⁻. This hypothesized conformational change rationalizes the large change in θ_a with pH, but also leaves unanswered a question: Why should 2 adopt the orientation suggested by 6? By burying the carboxylic acid, conformation 6 sacrifices the polar interaction between the carboxylic acid and the contacting water. The similarity between the wettability of 1 and 2 at low pH does, however, argue for 6 or a similar conformation for 2. Intramolecular hydrogen bonding between the NH group of the amide and the carboxylic acid (carboxylate

anion) may be important, since the behavior of 5 (θ_a (pH 1) = 84°, θ_a (pH 12) = 30°) resembles that of 3 more closely than that of 2.

The large change in θ_a with pH for 2 suggests that the functional groups at the polyethylene-water interface are conformationally mobile with respect to that interface, and that this mobility, by burying or exposing polar functional groups, can strongly influence macroscopic properties of the interface such as wettability. The high hydrophobicity of 2 at low pH reemphasizes the effectiveness with which small, non-polar organic groups at an interface can shield underlying polar functionality from contact with water.¹⁰

References

- 1) The work was supported in part by the Office of Naval Research and the Defense Advanced Projects Research Agency. MDW held an IBM Predoctoral Fellowship in Polymer Science (1986-87).
- 2) Holmes-Farley, S.R.; Reamey, R.H.; McCarthy, T.J.; Deutch, J.; Whitesides, G.M. Langmuir 1985, 1, 725-740.
- 3) Holmes-Farley, S.R.; Whitesides, G.M. Langmuir 1986, 2, 266-281.
- 4) Holmes-Farley, S.R.; Whitesides, G.M. Langmuir 1987, 3, 62-76.
- 5) Holmes-Farley, S.R.; Reamey, R.H.; Nuzzo, R.; McCarthy, T.J. Langmuir 1987, 3, 799-815.
- 6) Holmes-Farley, S.R.; Bain, C.; Whitesides, G.M. Langmuir 1988, 4, 921-937.
- 7) Cos θ_a is proportional to interfacial free energy by Young's equation ($\gamma_{LV} \cos \theta = \gamma_{SV} - \gamma_{SL}$) and is thus a more useful parameter in physical-organic studies of wetting than is θ_a : Adamson, A.W. Physical Chemistry of Surfaces; Wiley Interscience: New York, 1967.

8. PE-COCl was placed in a flask containing a saturated solution (~0.2 M) of 2-aminobenzoic acid in dry diethyl ether under an atmosphere of N₂. After ~12 h the film was removed and soaked for 10 min alternately in acetone and water (four alternations). The material was dried in air (>30 min) before measuring θ_a .
9. All of the surfaces studied here show pronounced hysteresis. Values for receding contact angles θ_r are (at pH 1) PE-H 85°; 1, 15°; 2, 0°; 3, 0°; 4, 0°; 5, 0°. Although the origin of this hysteresis remains uncertain,^{3,5,6} it is clear that the values of θ_a do not reflect interfaces at thermodynamic equilibrium.
10. Bain, C.; Whitesides, G.M. J. Am. Chem. Soc. 1988, 110, 5897-5898.

Captions

Figure 1. Variation in the advancing contact angle θ_a of water as a function of pH on several anilide derivatives of "polyethylene carboxylic acid", PE-CO₂H. Data for PE-CO₂H, PE-H, PE-CONHC₆H₅, and PE-OSi(CH₃)₃ are given for reference.

CONTRACT DATA REQUIREMENTS LIST
INSTRUCTIONS FOR DISTRIBUTION
ARPA/ONRMINIMUM DISTRIBUTION OF TECHNICAL REPORTS

<u>ADDRESSEE</u>	DODAAD <u>CODE</u>	<u>NUMBER OF COPIES</u>	
		<u>UNCLASSIFIED/UNLIMITED</u>	<u>UNCLASSIFIED/LIMITED AND CLASSIFIED</u>
Director, Advanced Research Projects Agency 1400 Wilson Boulevard Arlington, Virginia 22209 ATTN: Program Management	HX1241	2	2
Scientific Officer Administrative Contracting Officer	N00014 N66016	3 1	3 1
Director, Naval Research Laboratory, ATTN: Code 2627 Washington, D. C. 20375	N00173	6	1
Defense Technical Information Center Bldg. 3, Cameron Station Alexandria, Virginia 22314	S47031	12	2

One (1) copy of each technical report resulting from work performed in the area of tactical technology shall be sent to:

TACTEC
 Battelle Memorial Institute
 505 King Avenue
 Columbus, Ohio 43201

<u>DODAAD CODE</u>
79986

MINIMUM DISTRIBUTION OF REPORTS WHICH ARE NOT TECHNICAL REPORTS

<u>ADDRESSEE</u>	DODAAD <u>CODE</u>	<u>NUMBER OF COPIES</u>	
		<u>UNCLASSIFIED/UNLIMITED</u>	<u>UNCLASSIFIED/LIMITED AND CLASSIFIED</u>
Director, Advanced Research Projects Agency 1400 Wilson Boulevard Arlington, Virginia 22209 ATTN: Program Management	HX1241	2	2
Scientific Officer Administrative Contracting Officer	N00014 N66016	3 1	3 1

If the Scientific Officer directs, the Contractor shall make additional distribution of technical reports and such other reports as may be specified by the Scientific Officer in accordance with a supplemental distribution list provided by the Scientific Officer.

DL/1113/87/2

ABSTRACTS DISTRIBUTION LIST, 356B

Professor T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Kurt Baum
Fluorochem, Inc.
680 S. Ayon Avenue
Azuza, California 91702

Dr. Ulrich W. Suter
Department of Chemical and Engineering
Massachusetts Institute of Technologies
Room E19-628
Cambridge, MA 02139-4309

Dr. William Bailey
Department of Chemistry
University of Maryland
College Park, Maryland 20742

Dr. J.C.H. Chien
Department of Polymer Science and
Engineering
University of Massachusetts
Amherst, MA 01003

Professor G. Whitesides
Department of Chemistry
Harvard University
Cambridge, Massachusetts 02138

Dr. K. Paciorek
Ultrasystems, Inc.
P.O. Box 19605
Irvine, California 92715

Dr. Ronald Archer
Department of Chemistry
University of Massachusetts
Amherst, Massachusetts 01002

Professor D. Seydel
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Professor J. Moore
Department of Chemistry
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. V. Percec
Department of Macromolecular
Science
Case Western Reserve University
Cleveland, Ohio 44106

Dr. Gregory Girolami
Department of Chemistry
University of Illinois
Urbana-Champaign, IL 61801

Dr. Ted Walton
Chemistry Division
Code 6120
Naval Research Lab
Washington D.C. 20375-5000

Professor Warren T. Ford
Department of Chemistry
Oklahoma State University
Stillwater, OK 74078

Professor H. K. Hall, Jr.
Department of Chemistry
The University Arizona
Tucson, Arizona 85721

Dr. Fred Wudl
Department of Chemistry
University of California
Santa Barbara, CA 93106

Professor Kris Matjaszewski
Department of Chemistry
Carnegie-Mellon University
4400 Fifth Avenue
Pittsburgh, PA 15213

Professor Richard Schrock
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, MA 02139

DL/1113/87/2

ABSTRACTS DISTRIBUTION LIST, 356B

Professor A. G. MacDiarmid
Department of Chemistry
University of Pennsylvania
Philadelphia, Pennsylvania 19174

Dr. E. Fischer, Code 2853
Naval Ship Research and
Development Center
Annapolis, Maryland 21402

Professor H. Allcock
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Professor R. Lenz
Department of Chemistry
University of Massachusetts
Amherst, Massachusetts 01002

Professor G. Wnek
Department of Chemistry
Rensselaer Polytechnic Institute
Troy, NY 12181

Professor C. Allen
Department of Chemistry
University of Vermont
Burlington, Vermont 05401

Dr. Ivan Caplan
DTNSRDC
Code 0125
Annapolis, MD 21401

Dr. R. Miller
Almaden Research Center
650 Harry Road K918801
San Jose, CA 95120

Dr. William B. Moniz
Chemistry Division
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Richard M. Laine
SRI International
333 Ravenswood Avenue
Menlo Park, California 94025

Dr. L. Buckley
Naval Air Development Center
Code 6063
Warminster, Pennsylvania 18974

Dr. James McGrath
Department of Chemistry
Virginia Polytechnic Institute
Blacksburg, Virginia 24061

Dr. Geoffrey Lindsay
Chemistry Division
Naval Weapons Center
China Lake, California 93555

Professor J. Salamone
Department of Chemistry
University of Lowell
Lowell, Massachusetts 01854

Dr. J. Griffith
Naval Research Laboratory
Chemistry Section, Code 6120
Washington, D. C. 20375-5000

Professor T. Katz
Department of Chemistry
Columbia University
New York, New York 10027

Dr. Christopher K. Ober
Department of Materials Science
and Engineering
Cornell University
Ithaca, New York 14853-1501