Caractérisation de la borne supérieure

Soit m un majorant d'une partie $A \subseteq \mathbb{R}$, montrons que:

$$m = \sup(A) \iff \forall \varepsilon > 0 \; \exists a \in A \; ; \; m - \varepsilon < a$$

Soit $\varepsilon > 0$, supposons que m soit la borne supérieure de A et montrons qu'il existe bien un élément de A tel que $m - \varepsilon$ ne soit pas un majorant. On sait que m est le plus petit majorant, donc en particulier $m - \varepsilon$ est plus petit que m et n'est donc pas un majorant, ce qui signifie par définition qu'il existe $a \in A$ tel que $m - \varepsilon < a$.

Réciproquement supposons qu'il existe $a \in A$ tel que $m - \varepsilon < a$, montrons alors par l'absurde que m est le plus petit des majorants. Supposons qu'il ne soit pas le plus petit, alors il existerait un m' < m tel que m' soit le plus petit des majorants¹.

Mais alors m' = m - (m - m'), ie $m' = m - \varepsilon_0$ ce qui est absurde car notre hypothèse nous assure de l'existence d'un $a \in A$ tel que $m' = m - \varepsilon_0 < a$ ce qui contredit le fait que m' soit un majorant.

Le corps des réels est Archimédien

Soit $x, y \in \mathbb{R}^{+*}$, montrons par l'absurde que :

$$\exists n \in \mathbb{N} \; ; \; nx > y$$

On a donc $\forall n \in \mathbb{N}$; $nx \leq y$, en particulier la partie $E := \{nx ; n \in \mathbb{N}\}$ est majorée par y et elle admet donc une borne supérieure $\sup(E)$.

On sait que x > 0 donc on sait que $\sup(E) - x$ n'est pas un majorant??, ce qui par définition signifie que qu'il existe $m \in \mathbb{N}$ tel que:

$$\sup(E) - x < mx \iff \sup(E) < (m+1)x$$

Or $(m+1)x \in E$ et donc $\sup(E)$ ne serait pas un majorant, ce qui est absurde.

Existence de la partie entière

Soit $y \in \mathbb{R}$, on veut montrer qu'il existe un entier relatif noté |y| tel que:

$$|y| \le y < |y| + 1$$

Considérons l'ensemble $E:=\big\{n\in\mathbb{Z}\;;\;n\leq y\big\},$ on va montrer que la partie entière est le maximum de cet ensemble.

Supposons que cette ensemble soit vide, alors pour tout entier relatif $n \in \mathbb{Z}$, on aurait y < n et donc \mathbb{Z} serait minoré, ce qui est absurde. Donc E est non-vide.

Aussi, la propriété d'Archimède nous donne l'existence?? d'un $m \in \mathbb{N}$ tel que m > y. Donc E est majoré par m.

On définit alors $|y| = \max(E)$.

 $^{^{1}}$ Pourquoi ?

Densité de $\mathbb Q$ dans $\mathbb R$

Soit $x,y\in\mathbb{R}$, supposons sans perte de généralité que y>x. Alors la propriété d'Archimède nous donne l'existence d'un $n\in\mathbb{N}$ tel que:

$$n(y-x) > 1$$

Alors en partant de cette inégalité 1 et de cet entier n , on obtient:

$$ny > nx + 1$$

$$\geq \lfloor nx + 1 \rfloor$$
 (Par définition de la partie entière)
$$= \lfloor nx \rfloor + 1$$
 (Propriété élémentaire de la partie entière)
$$> nx$$
 (Par définition de la partie entière)

En conclusion on a:

$$ny > \lfloor nx \rfloor + 1 > nx$$

La division par n conclut et exhibe un rationnel qui convient².

 $^{^{1}\}mathrm{Pourquoi}$ choisit-on 1 en particulier ? Interprétation géométrique ?

²Pourquoi la densité de \mathbb{Q} dans \mathbb{R} rend-elle la démonstration de la densité de $\mathbb{R}\setminus\mathbb{Q}$ dans \mathbb{R} "évidente" ?