Theorem 0.1

Every subgroup of a cyclic group G is cyclic

§0.1 Proof

Let $G = \langle x \rangle$. Let $H \subset G$ be a subgroup.

Show that $H = \langle y \rangle$ for some y.

If $H = \{e\}$ then $H = \langle e \rangle \checkmark$.

What is H contains an element $g \neq e$

Let $S = \{n > 0 : x^n \in H\}$

 $S \neq \emptyset$ because it at least must include (review this proof that $S \neq \emptyset$.

Next step:

By W.O.P, let m be the least element of S.

Claim: $H = \langle y \rangle$ where $y = x^m$

Proof of claim: Let $h \in H$ Show that $h \in \langle y \rangle$ which means $h = y^q$ for some q.

Since $h \in G = \langle x \rangle$, $h = x^a$ for some $a \in \mathbb{Z}$

By the division algorithm: a = mq + r where $0 \le r < m$

If r=0 then $h=x^a=x^{mq}=x^{m^q}=y^q$

If r > 0 the $hy^{-q} = x^{mq+r}x^{m^{-q}} = x^{mq+r}x^{-mq} = x^r$, but this would contradict that m

is least element of S because... i'm not sure why review this

Cor 4.11. Subgroups of \mathbb{Z} are $\langle n \rangle = n\mathbb{Z}$ (notation)

Prop 4.12. Let G by cyclic of order $n \Rightarrow x^n = e$. Suppose $G = \langle x \rangle$. This means that $(x^k = e) \Leftrightarrow n | k$.

Proof " \Leftarrow " If k = n * l, then x^k