Geometria no Plano Projetivo

Versão atualizada em 6 de janeiro de $2022\,$

Sumário

l.	Abordagem sem Coordenadas	4
II.	Abordagem com Coordenadas	5
1.	Álgebra Linear	6
2.	Reta Projetiva	7
	2.1. Definição	
	2.2. Mudança de Base	
	2.3. Razão Cruzada	9
3.	Plano Projetivo	13
	3.1 Definição	13

Preâmbulo

Este livro de geometria projetiva é um compilado do aprendizado dos autores em diversos cursos de geometria projetiva lecionados pelo Prof. Luciano Guimarães Monteiro de Castro, tanto na Academia Matematicamente, quanto na Escola Eleva. É uma tentativa de continuação do artigo [1].

O foco desse livro é explorar as aplicações de geometria projetiva sobre espaços reais para resolver problemas de olimpíadas, para isso é necessário que o leitor tenha alguma familiaridade com álgebra linear.

Parte I. Abordagem sem Coordenadas

Parte II. Abordagem com Coordenadas

1. Álgebra Linear

Assumimos que o leitor esteja acostumado com conceitos relacionados à Álgebra Linear, especialmente em \mathbb{R}^2 e \mathbb{R}^3 . Definições e conceitos importantes incluem: corpo, espaço vetorial, combinação linear, independência linear, espaços gerados, base de um espaço vetorial, dimensão de um espaço vetorial. De qualquer modo, apresentaremos nesse capítulo um resumo desses conceitos.

Definição 1.1. Falamos que o vetor \mathbf{u} é uma combinação linear entre os vetores \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n , quando quando existem escalares $\alpha_1, \alpha_2, \ldots, \alpha_n$ tais que

$$\mathbf{u} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n. \tag{1.1}$$

Definição 1.2. Os vetores $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ são linearmente independentes quando, se α_1 , $\alpha_2, \ldots, \alpha_n$ são escalares satisfazendo

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n = 0, \tag{1.2}$$

então

$$\alpha_1 = \alpha_2 = \dots = \alpha_n = 0. \tag{1.3}$$

Definição 1.3. O espaço gerado pelos vetores $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ é o conjunto de todas as possíveis combinações lineares entre eles, denotado por $\langle \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \rangle$. Equivalentemente, é o menor subespaço vetorial contendo $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$.

Definição 1.4. Se $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in V$ são vetores linearmente independente tais que

$$\langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle = V, \tag{1.4}$$

então chamamos $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ de base de V.

Teorema 1.5. Dado um espaço vetorial V, todas as suas bases possuem a mesma cardinalidade.

Definição 1.6. Chamamos de dimensão de um espaço vetorial V o número de vetores em suas bases.

2. Reta Projetiva

2.1. Definição

Definição 2.1 (Reta Projetiva Real). A reta projetiva real $\mathbb{P}^1(\mathbb{R})$ é o conjunto das retas do \mathbb{R}^2 que passam pela origem. Elementos da reta projetiva real são chamados de pontos projetivos.

Figura 2.1.: Reta Projetiva Real

Como um abuso de notação, chamaremos a reta projetiva real somente de reta projetiva. Quando o significado estiver claro, podemos chamar a reta projetiva de reta, e o ponto projetivo de ponto.

Em termos de Álgebra Linear, os pontos da reta projetiva são os subespaços do \mathbb{R}^2 com dimensão 1.

Podemos inferir uma representação dos pontos projetivos da reta projetiva a partir dos vetores do \mathbb{R}^2 . Se $\mathbf{v} \neq (0,0)$, vamos chamar de $[\mathbf{v}]$ a única reta que passa pela origem e por \mathbf{v} . Lembre-se que uma reta no \mathbb{R}^2 é definida por dois pontos distintos; portanto, a reta $[\mathbf{v}]$ está bem definida.

De modo mais preciso, podemos concluir que $[\mathbf{v}]$ é o conjunto dos múltiplos reais de \mathbf{v} , isto é, é o conjunto $\{\lambda \mathbf{v} : \lambda \in \mathbb{R}\}$.

Porém, essa representação não é única. Por exemplo, [(1,2)], [(2,4)] e [(-1,-2)] representam o mesmo ponto projetivo, isto é, a mesma reta. De modo geral, se $\lambda \neq 0$, os pontos projetivos $[\mathbf{v}]$ e $[\lambda \mathbf{v}]$ são os mesmos.

Apesar da representação não ser única, temos que $[\mathbf{v}] = [\mathbf{u}]$ se, e somente se, \mathbf{u} é um múltiplo real de \mathbf{v} . Em outras palavras, $[\mathbf{v}] = [\mathbf{u}]$ se, e somente se, existe $\lambda \in \mathbb{R}$ tal que $\mathbf{u} = \lambda \mathbf{v}$.

Portanto, o sistema de coordenadas da reta projetiva é um pouco diferente do sistema que estamos acostumados, mas continua sendo útil mesmo assim. Chamamos sistemas como esse, em que múltiplicar por um escalar não muda o ponto, de sistema de coordenadas homogêneas.

Exemplo 2.1. Os pontos projetivos [1,0], [0,1], [1,1] e [2,1] correspondem respectivamente ao eixo x, ao eixo y, à reta y=x e à reta $y=\frac{1}{2}x$ do \mathbb{R}^2 .

Por que chamamos a reta projetiva de "reta"? Uma maneira de responder essa pergunta é, dada uma base do \mathbb{R}^2 , considerar a reta y=1. Note que essa reta não é um ponto projetivo, pois não passa pela origem. Com isso, podemos tomar como representante, para cada ponto projetivo, sua interseção com a reta y=1.

Figura 2.2.: Reta Projetiva Real e reta y = 1

Contudo, vemos que exatamente um dos pontos projetivos, a reta y = 0, não intersecta a reta y = 1. Para essa reta, vamos escolher o representante [(1,0)]. Portanto,

$$\mathbb{P}^{1}(\mathbb{R}) = \{ [(x,1)] : x \in \mathbb{R} \} \cup \{ [(1,0)] \}, \tag{2.1}$$

ou seja, podemos interpretar reta projetiva real como uma reta real com um ponto extra.

2.2. Mudança de Base

No \mathbb{R}^2 , temos liberdade para escolher dois vetores (linearmente independentes) $\mathbf{v_1}$ e $\mathbf{v_2}$ e chamá-los de (1,0) e (0,1), respectivamente. Feito isso, todos os outros vetores do \mathbb{R}^2 estão unicamente definidos.

Na reta projetiva, podemos fazer algo parecido. Dados dois pontos projetivos $A = [\mathbf{v_1}]$ e $B = [\mathbf{v_2}]$, podemos escolher uma base para o \mathbb{R}^2 de modo que $\mathbf{v_1}$ e $\mathbf{v_2}$ são representados por (1,0) e (0,1), respectivamente. Desse modo, A = [(1,0)] e B = [(0,1)].

Porém, se tivéssemos escolhido a base do \mathbb{R}^2 para serem os vetores $3\mathbf{v_1}$ e $5\mathbf{v_2}$; também concluiríamos que A = [(1,0)] e B = [(0,1)]. Parece que temos mais liberdade na reta projetiva do que em \mathbb{R}^2 . Com isso, estamos prontos para o primeiro teorema sobre a reta projetiva.

Teorema 2.2. Dados três pontos projetivos distintos A, B e C, podemos escolher uma base apropriada do \mathbb{R}^2 para a qual A = [(1,0)], B = [(0,1)] e C = [(1,1)].

Demonstração. Existem vetores $\mathbf{v_1}$, $\mathbf{v_2}$ e $\mathbf{v_3}$ no \mathbb{R}^2 para os quais $A = [\mathbf{v_1}]$, $B = [\mathbf{v_2}]$ e $C = [\mathbf{v_3}]$.

Considere a base $\beta = \{\mathbf{v_1}, \mathbf{v_2}\}$ do \mathbb{R}^2 . Nessa base, A = [(1,0)], B = [(0,1)] e $C = [(\lambda,1)],$ para algum $\lambda \in \mathbb{R}$.

Considere a base $\gamma = \{\lambda \mathbf{v_1}, \mathbf{v_2}\}$ do \mathbb{R}^2 . Nessa segunda base, A = [(1,0)], B = [(0,1)] e C = [(1,1)], como desejado.

2.3. Razão Cruzada

Nessa seção, vamos deixar o Teorema 2.2 um pouco mais forte: se adicionarmos um quarto ponto projetivo D, a representação dele em coordenadas estará unicamente definida (ignorando multiplicação por escalar).

Como abuso de notação, escreveremos [a,b] para querer dizer [(a,b)]. É importante lembrar que essa representação depende da base escolhida para \mathbb{R}^2 .

Teorema 2.3. Dados quatro pontos projetivos distintos A, B, C e D, existe um único $d \in \mathbb{R}$ tal que, se β é uma base do \mathbb{R}^2 satisfazendo A = [1,0], B = [0,1] e C = [1,1], então D = [d,1].

Demonstração. Suponha que $\beta = \{\mathbf{v_1}, \mathbf{v_2}\}$ e $\gamma = \{\mathbf{u_1}, \mathbf{u_2}\}$ são bases de \mathbb{R} satisfazendo as condições, isto é, tais que

$$A = [\mathbf{v_1}] = [\mathbf{u_1}],\tag{2.2}$$

$$B = [\mathbf{v_2}] = [\mathbf{u_2}],\tag{2.3}$$

$$C = [\mathbf{v_1} + \mathbf{v_2}] = [\mathbf{u_1} + \mathbf{u_2}]. \tag{2.4}$$

Isso implica que existem constantes reais a, b, c tais que

$$\mathbf{u_1} = a\mathbf{v_1},\tag{2.5}$$

$$\mathbf{u_2} = b\mathbf{v_2},\tag{2.6}$$

$$\mathbf{u_1} + \mathbf{u_2} = c\left(\mathbf{v_1} + \mathbf{v_2}\right). \tag{2.7}$$

Note que $(a-c)\mathbf{v_1} + (b-c)\mathbf{v_2} = \mathbf{0}$ e, como $\mathbf{v_1}$, $\mathbf{v_2}$ são linearmente independentes, temos que a=b=c.

Finalmente, se $D = [d\mathbf{v_1} + \mathbf{v_2}]$, concluímos que $D = [a(d\mathbf{v_1} + \mathbf{v_2})] = [d\mathbf{u_1} + \mathbf{u_2}]$. Portanto, D = [d, 1] em ambas as bases β e γ ; ou seja, independentemente da base, d está unicamente definido.

Definição 2.4 (Razão Cruzada). Dados quatro pontos projetivos A, B, C e D, a razão cruzada dos pontos <math>A, B, C e D, denotada por (A, B; C, D) é definida pelo número real d achado no Teorema 2.3.

Proposição 2.5. Se(A, B; C, D) = (A, B; C, E) = d, então D = E.

Demonstração. Escolha a base β como descrita no Teorema 2.3. Ambos pontos D e E são [d,1] na base β ; consequentemente D=E.

Exercício 2.6. Dada uma base β do \mathbb{R}^2 , considere os pontos projetivos $A = [x_A, y_A]$, $B = [x_B, y_B]$, $C = [x_C, y_C]$, $D = [x_D, y_D]$. Calcule (A, B; C, D).

Solução. Para calcular a razão cruzada, precisamos construir uma base do \mathbb{R}^2 de tal modo que o vetor (x_A, y_A) vá num múltiplo do vetor (1,0), o vetor (x_B, y_B) vá num múltiplo do vetor (0,1) e o vetor (x_C, y_C) vá num múltiplo do vetor (1,1). Portanto, queremos achar constantes reais α , β e γ , e uma matriz de mudança de base M, tais que

$$\alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} = M \begin{pmatrix} x_A \\ y_A \end{pmatrix}, \tag{2.8}$$

$$\beta \begin{pmatrix} 0 \\ 1 \end{pmatrix} = M \begin{pmatrix} x_B \\ y_B \end{pmatrix}, \tag{2.9}$$

$$\gamma \begin{pmatrix} 1 \\ 1 \end{pmatrix} = M \begin{pmatrix} x_C \\ y_C \end{pmatrix}. \tag{2.10}$$

Equações 2.8 e 2.9 implicam que

$$M\begin{pmatrix} \frac{1}{\alpha}x_A & \frac{1}{\beta}x_B\\ \frac{1}{\alpha}y_A & \frac{1}{\beta}y_B \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}. \tag{2.11}$$

Portanto, usando 2.10, temos que

$$M\begin{pmatrix} \frac{1}{\alpha}x_A & \frac{1}{\beta}x_B\\ \frac{1}{\alpha}y_A & \frac{1}{\beta}y_B \end{pmatrix} \gamma \begin{pmatrix} 1\\ 1 \end{pmatrix} = \gamma \begin{pmatrix} 1\\ 1 \end{pmatrix} = M\begin{pmatrix} x_C\\ y_C \end{pmatrix}. \tag{2.12}$$

Como M é uma matriz de mudança de base, concluímos que

$$\begin{pmatrix} x_A & x_B \\ y_A & y_B \end{pmatrix} \begin{pmatrix} \gamma/\alpha \\ \gamma/\beta \end{pmatrix} = \begin{pmatrix} \frac{1}{\alpha}x_A & \frac{1}{\beta}x_B \\ \frac{1}{\alpha}y_A & \frac{1}{\beta}y_B \end{pmatrix} \gamma \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} x_C \\ y_C \end{pmatrix}. \tag{2.13}$$

Resolvendo o sistema (por exemplo, usando a regra de Cramer), concluímos que

$$\frac{\gamma}{\alpha} = \frac{x_C y_B - x_B y_C}{x_A y_B - x_B y_A} e^{\frac{\gamma}{\beta}} = \frac{x_A y_C - x_C y_A}{x_A y_B - x_B y_A}.$$
 (2.14)

Com isso para simplificar a notação tome $\Delta PQ = x_P y_Q - x_Q y_P$, com isso,

$$\alpha = \gamma \frac{\Delta AB}{\Delta CB} e \beta = \gamma \frac{\Delta AB}{\Delta AC}.$$
 (2.15)

Com isso,

$$M = \begin{pmatrix} \frac{1}{\alpha} x_A & \frac{1}{\beta} x_B \\ \frac{1}{\alpha} y_A & \frac{1}{\beta} y_B \end{pmatrix}^{-1}$$
 usando 2.11 (2.16)

$$= \gamma \Delta AB \cdot \begin{pmatrix} \Delta CB \cdot x_A & \Delta AC \cdot x_B \\ \Delta CB \cdot y_A & \Delta AC \cdot y_B \end{pmatrix}^{-1}$$
 usando 2.15 (2.17)

$$= \frac{\gamma}{\Delta CB\Delta AC} \cdot \begin{pmatrix} \Delta AC \cdot y_B & -\Delta AC \cdot x_B \\ -\Delta CB \cdot y_A & \Delta CB \cdot x_A \end{pmatrix}. \tag{2.18}$$

Consequentemente, podemos calcular as coordenadas do vetor (x_D, y_D) na nova base.

$$M \begin{pmatrix} x_D \\ y_D \end{pmatrix} = \frac{\gamma}{\Delta C B \Delta A C} \cdot \begin{pmatrix} \Delta A C \cdot \Delta D B \\ \Delta C B \cdot \Delta A D \end{pmatrix}$$
 (2.19)

Com isso temos que o ponto projetivo D, na nova base, tem coordenadas

$$\begin{bmatrix} \Delta AC \cdot \Delta DB \\ \Delta CB \cdot \Delta AD \end{bmatrix} = \begin{bmatrix} \Delta AC \cdot \Delta DB / \Delta CB \cdot \Delta AD \\ 1 \end{bmatrix}, \tag{2.20}$$

e, portanto, a razão cruzada é

$$(A, B; C, D) = \frac{\Delta AC}{\Delta AD} / \frac{\Delta BC}{\Delta BD}. \qquad (2.21)$$

Corolário 2.7. Dada uma base β do \mathbb{R}^2 , considere os pontos projetivos $A = [x_A, 1]$, $B = [x_B, 1]$, $C = [x_C, 1]$, $D = [x_D, 1]$. Então,

$$(A, B; C, D) = \frac{(x_A - x_C)}{(x_A - x_D)} / \frac{(x_B - x_C)}{(x_B - x_D)}.$$
 (2.22)

3. Plano Projetivo

3.1. Definição

Definição 3.1 (Plano Projetivo Real). O plano projetivo real $\mathbb{P}^2(\mathbb{R})$ é o conjunto das retas do \mathbb{R}^3 que passam pela origem. Elementos do plano projetivo real são chamados de pontos projetivos.

Essa definição é completamente análoga à Definição 2.1; apenas aumentamos uma dimensão

Como um abuso de notação, chamaremos o plano projetivo real somente de plano projetivo. Quando o significado estiver claro, podemos chamar o plano projetivo de plano.

Em termos de Álgebra Linear, os pontos do plano projetivo são os subespaços do \mathbb{R}^3 com dimensão 1.

Podemos inferir uma representação dos pontos projetivos do plano projetivo a partir dos vetores do \mathbb{R}^3 , de modo completamente análogo ao que fizemos na Seção 2.1.

Se $\mathbf{v} \neq (0,0,0)$, vamos chamar de $[\mathbf{v}]$ a única reta que passa pela origem e por \mathbf{v} ; equivalentemente, também podemos definir $[\mathbf{v}]$ como $\langle v \rangle$, o subespaço do \mathbb{R}^3 gerado por \mathbf{v} . Podemos concluir que $[\mathbf{v}]$ é o conjunto dos múltiplos reais de \mathbf{v} , isto é, é o conjunto $\{\lambda \mathbf{v} : \lambda \in \mathbb{R}\}$.

Portanto, temos novamente que $[\mathbf{v}] = [\mathbf{u}]$ se, e somente se, \mathbf{u} é um múltiplo real de \mathbf{v} . Em outras palavras, $[\mathbf{v}] = [\mathbf{u}]$ se, e somente se, existe $\lambda \in \mathbb{R}$ tal que $\mathbf{u} = \lambda \mathbf{v}$.

Por que chamamos o plano projetivo de "plano"? Uma maneira de responder essa pergunta é, dada uma base do \mathbb{R}^3 , considerar o plano z=1. Com isso, podemos tomar como representante para cada ponto projetivo o vetor que leva da origem até sua interseção com o plano z=1.

Contudo, vemos que vários pontos projetivos não intersectam o plano z=1. Mais precisamente, as retas que passam pela origem e estão contidas no plano z=0 são os pontos projetivos que não possuem representante pela regra acima. Porém, o conjunto de pontos projetivos contidos em um plano real possui nome! Chamamos esses conjuntos de reta projetiva.

Portanto, podemos interpretar a reta projetiva real como um plano real com uma reta projetiva extra. Juntando com o que desenvolvemos na Seção 2.1, podemos dizer que a

3. Plano Projetivo

reta projetiva real é um plano real, mais uma reta real, mais um ponto extra. Podemos ver isso claramente em 3.1.

$$\mathbb{P}^{2}(\mathbb{R}) = \{ [x, y, 1] : x, y \in \mathbb{R} \} \cup \{ [x, 1, 0] : x \in \mathbb{R} \} \cup \{ [1, 0, 0] \}. \tag{3.1}$$

Exercício 3.2. Convença a si mesmo de que a igualdade de conjuntos em 3.1 é verdadeira.

Bibliografia

[1] Luciano Guimarães Monteiro de Castro. "Introdução à Geometria Projetiva". Em: Eureka! 8 (2000), pp. 16-27. URL: https://www.obm.org.br/content/uploads/2017/01/eureka8.pdf.