

128K x 8 HIGH-SPEED CMOS STATIC RAM 3.3V REVOLUTIONARY PINOUT

DECEMBER 2005

FEATURES

- High-speed access times:
 8, 10, 12 ns
- High-performance, low-power CMOS process
- Multiple center power and ground pins for greater noise immunity
- Easy memory expansion with CE and OE options
- **CE** power-down
- Fully static operation: no clock or refresh required
- · TTL compatible inputs and outputs
- Single 3.3V power supply
- Packages available:
 - 32-pin 300-mil SOJ
 - 32-pin 400-mil SOJ
 - 32-pin TSOP (Type II)
 - 32-pin STSOP (Type I)
 - 36-pin BGA (8mmx10mm)
- Lead-free Available

DESCRIPTION

The *ISSI* IS63LV1024/IS63LV1024L is a very high-speed, low power, 131,072-word by 8-bit CMOS static RAM in revolutionary pinout. The IS63LV1024/IS63LV1024L is fabricated using *ISSI*'s high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields higher performance and low power consumption devices.

When $\overline{\text{CE}}$ is HIGH (deselected), the device assumes a standby mode at which the power dissipation can be reduced down to 250 μ W (typical) with CMOS input levels.

The IS63LV1024/IS63LV1024L operates from a single 3.3V power supply and all inputs are TTL-compatible.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION 32-Pin SOJ

PIN CONFIGURATION 32-Pin TSOP (Type II) (T) 32-Pin STSOP (Type I) (H)

PIN DESCRIPTIONS

A0-A16	Address Inputs
CE	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input
I/O0-I/O7	Data Inputs/Outputs
VDD	Power
GND	Ground

PIN CONFIGURATION 36-mini BGA (B) (8 mm x 10 mm)

TRUTH TABLE

Mode	WE	CE	ŌĒ	I/O Operation	VDD Current	
Not Selected (Power-down)	Χ	Н	Χ	High-Z	ISB1, ISB2	
Output Disabled	Н	L	Н	High-Z	lcc1, lcc2	
Read	Н	L	L	D оит	Icc1, Icc2	
Write	Ĺ	L	Χ	Din	Icc1, Icc2	

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit	
VTERM	Terminal Voltage with Respect to GND	-0.5 to V _{DD} + 0.5	V	
Тѕтс	Storage Temperature	-65 to +150	°C	
Рт	Power Dissipation	1.0	W	

Notes:

OPERATING RANGE

Range	Ambient Temperature	V _{DD}
Commercial	0°C to +70°C	$3.3V \pm 0.3V$
Industrial	-40°C to +85°C	3.3V ± 0.15V

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	$V_{DD} = Min., I_{OH} = -4.0 \text{ mA}$		2.4	_	V
Vol	Output LOW Voltage	V _{DD} = Min., I _{OL} = 8.0 mA		_	0.4	V
VIH	Input HIGH Voltage			2.2	VDD + 0.3	V
VIL	Input LOW Voltage(1)			-0.3	0.8	V
lu	InputLeakage	$GND \leq Vin \leq Vdd$	Com.	-1 -5	1 5	μΑ
ILO	Output Leakage	GND ≤ Vout ≤ Vdd, Outputs Disabled	Com.	-1 -5	1 5	μΑ

^{1.} Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

^{1.} $V_{IL} = -3.0V$ for pulse width less than 10 ns.

IS63LV1024 POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Symbol	Parameter	Test Conditions		-8 Min.	ns Max.	-10 Min.		-12 Min.		Unit
lcc1	VDD Operating	VDD = Max., \overline{CE} = VIL	Com.	_	160	_	150	_	130	mA
	Supply Current	IOUT = 0 mA, f = Max.	Ind.	_	170	_	160	_	140	
			typ.(2)	_	105	_	95	_	75	
		Ind. (@15 ns)					_	90	
IsB	TTL Standby	VDD = Max.,	Com.	_	55	_	45	_	40	mA
	Current	VIN = VIH or VIL	Ind.	_	55	_	45	_	40	
	(TTL Inputs)	$\overline{\textbf{CE}} \ge V_{IH}, f = Max$								
ISB1	TTL Standby	VDD = Max.,	Com.	_	25	_	25	_	25	mA
	Current	VIN = VIH or VIL	Ind.	_	30	_	30	_	30	
	(TTL Inputs)	$\overline{CE} \ge V_{IH}, f = 0$								
IsB2	CMOS Standby	VDD = Max.,	Com.	_	5	_	5	_	5	mA
	Current	$\overline{CE} \ge V_{DD} - 0.2V$,	Ind.	_	10	_	10	_	10	
			typ.(2)	_	0.5	_	0.5	_	0.5	
	(CMOS Inputs)	$V_{IN} \ge V_{DD} - 0.2V, \text{ or } $ $V_{IN} \le 0.2V, f = 0$								

Notes:

- 1. At f = fmax, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.
- 2. Typical values are measured at VDD = 3.3V, TA = 25°C. Not 100% tested.

IS63LV1024L POWER SUPPLY CHARACTERISTICS(1) (Over Operating Range)

Symbol	Parameter	Test Conditions		Mi	-8 in.	ns Max.	-10 Min.	ns Max.	-12 Min.	ns Max.	Unit
lcc1	VDD Operating Supply Current	$V_{DD} = Max., \overline{CE} = V_{IL}$ $I_{OUT} = 0 \text{ mA}, f = Max.$	Com. Ind. typ. ⁽²⁾	- - -	_	100 110 75	_ _ _	95 105 70	_ _ _	90 100 65	mA
ISB	TTL Standby Current (TTL Inputs)	$V_{DD} = Max.,$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $\overline{CE} \ge V_{IH}, f = Max$	Com. Ind.	_	-	35 40	_	30 35	_	25 30	mA
ISB1	TTL Standby Current (TTL Inputs)	$V_{DD} = Max.,$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $\overline{CE} \ge V_{IH}, f = 0$	Com. Ind.	-	_	15 20	_	15 20	_	15 20	mA
ISB2	CMOS Standby Current	$V_{DD} = Max.,$ $\overline{CE} \ge V_{DD} - 0.2V,$	Com. Ind. typ. ⁽²⁾	_ _ _	-	1 1.5 0.05	_ _ _	1 1.5 0.05	_ _ _	1 1.5 0.05	mA
	(CMOS Inputs)	$\label{eq:Vdd} \begin{split} V &\text{IN} \geq V &\text{Dd} - 0.2 V, \text{ or} \\ &V &\text{IN} \leq 0.2 V, f = 0 \end{split}$									

Notes:

- 1. At f = fmax, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.
- 2. Typical values are measured at $V_{DD} = 3.3V$, $T_A = 25$ °C. Not 100% tested.

CAPACITANCE(1,2)

Symbol	Parameter	Conditions	Max.	Unit
Cin	Input Capacitance	VIN = 0V	6	pF
CI/O	Input/Output Capacitance	VOUT = 0V	8	pF

- 1. Tested initially and after any design or process changes that may affect these parameters.
- 2. Test conditions: $TA = 25^{\circ}C$, f = 1 MHz, VDD = 3.3V.

READ CYCLE SWITCHING CHARACTERISTICS(1) (Over Operating Range)

		-8	ns	-10	-10 ns		-12 ns	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
trc	Read Cycle Time	8	_	10	_	12	_	ns
taa	Address Access Time	_	8	_	10	_	12	ns
t oha	Output Hold Time	2	_	2	_	2	_	ns
tace	CE Access Time	_	8	_	10	_	12	ns
tDOE	OE Access Time	_	4	_	5	_	6	ns
tlzoe(2)	OE to Low-Z Output	0	_	0	_	0	_	ns
thzoe(2)	OE to High-Z Output	0	4	0	5	0	6	ns
tLZCE ⁽²⁾	CE to Low-Z Output	3	_	3	_	3	_	ns
thzce(2)	CE to High-Z Output	0	4	0	5	0	6	ns
tpu	CE to Power Up Time	0	_	0	_	0	_	ns
t PD	CE to Power Down Time		8	_	10	_	12	ns

Notes:

AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	3 ns
Input and Output Timing and Reference Levels	1.5V
Output Load	See Figures 1 and 2

AC TEST LOADS

317 Ω 3.3V O

OUTPUT O

5 pF

Including jig and scope =

351 Ω

Figure 1 Figure 2

^{1.} Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V loading specified in Figure 1.

^{2.} Tested with the loading specified in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

AC WAVEFORMS READ CYCLE NO. 1(1,2)

READ CYCLE NO. 2(1,3)

- 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 3. Address is valid prior to or coincident with $\overline{\textbf{CE}}$ LOW transitions.

WRITE CYCLE SWITCHING CHARACTERISTICS(1,3) (Over Operating Range)

		-8	ns	-10	ns	-12 ns			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
twc	Write Cycle Time	8	_	10	_	12	_	ns	
tsce	CE to Write End	7	_	7	_	8	_	ns	
taw	Address Setup Time to Write End	8	_	8	_	8	_	ns	
tна	Address Hold from Write End	0	_	0	_	0	_	ns	
tsa	Address Setup Time	0	_	0	_	0	_	ns	
t PWE ₁ ⁽¹⁾	WE Pulse Width (OE High)	7	_	7	_	8	_	ns	
t PWE ₂ ⁽²⁾	WE Pulse Width (OE Low)	8	_	10	_	12	_	ns	
tsp	Data Setup to Write End	5	_	5	_	6	_	ns	
t HD	Data Hold from Write End	0	_	0	_	0	_	ns	
thzwe ⁽²⁾	WE LOW to High-Z Output	_	4	_	5	_	6	ns	
tLZWE ⁽²⁾	WE HIGH to Low-Z Output	3	_	3	_	3	_	ns	

Notes:

- 1. Test conditions assume signal transition times of 3ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.
- 2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 3. The internal write time is defined by the overlap of $\overline{\textbf{CE}}$ LOW and $\overline{\textbf{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.

AC WAVEFORMS

WRITE CYCLE NO. $1^{(1,2)}$ (\overline{CE} Controlled, \overline{OE} = HIGH or LOW)

AC WAVEFORMS

WRITE CYCLE NO. $2^{(1)}$ (WE Controlled, \overline{OE} = HIGH during Write Cycle)

WRITE CYCLE NO. 3 (WE Controlled: OE is LOW During Write Cycle)

- 1. The internal write time is defined by the overlap of $\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
- 2. I/O will assume the High-Z state if $\overline{\text{OE}}$ > VIH.

DATA RETENTION SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Condition	Options	Min.	Typ.(1)	Max.	Unit
V _{DR}	VDD for Data Retention	See Data Retention Waveform		2.0	_	3.6	V
IDR	Data Retention Current	$V_{DD} = 2.0V, \overline{CE} \ge V_{DD} - 0.2V$	IS63LV1024	_	0.5	10	mA
			IS63LV1024L	_	0.05	1.5	
tsdr	Data Retention Setup Time	See Data Retention Waveform		0	_	_	ns
t RDR	Recovery Time	See Data Retention Waveform		t rc	_	_	ns

Note 1: Typical values are measured at VDD = 3.0V, $TA = 25^{\circ}C$ and not 100% tested.

DATA RETENTION WAVEFORM (CE Controlled)

IS63LV1024 ORDERING INFORMATION

Commercial Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package
8	IS63LV1024-8K IS63LV1024-8KL	400-mil Plastic SOJ 400-mil Plastic SOJ, Lead-free
10	IS63LV1024-10T IS63LV1024-10J IS63LV1024-10K	TSOP (Type II) 300-mil Plastic SOJ 400-mil Plastic SOJ
12	IS63LV1024-12T IS63LV1024-12J IS63LV1024-12KL	TSOP (Type II) 300-mil Plastic SOJ 400-mil Plastic SOJ, Lead-free

Industrial Range: -40°C to +85°C

Speed(ns)	Order Part No.	Package
8	IS63LV1024-8KI	400-mil Plastic SOJ
10	IS63LV1024-10KI	400-mil Plastic SOJ
12	IS63LV1024-12TI	TSOP (Type II)

IS63LV1024L ORDERING INFORMATION

Commercial Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package
8	IS63LV1024L-8T	TSOP (Type II)
	IS63LV1024L-8B	mBGA (8mmx10mm)
10	IS63LV1024L-10T IS63LV1024L-10TL IS63LV1024L-10HL	TSOP (Type II) TSOP (Type II), Lead-free sTSOP (Type I) (8mm x13.4mm), Lead-free
12	IS63LV1024L-12T IS63LV1024L-12H IS63LV1024L-12J IS63LV1024L-12JL IS63LV1024L-12B	TSOP (Type II) sTSOP (Type I) (8mm x13.4mm) 300-mil Plastic SOJ 300-mil Plastic SOJ, Lead-free mBGA (8mmx10mm)

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
8	IS63LV1024L-8TI IS63LV1024L-8JI IS63LV1024L-8KI IS63LV1024L-8BI	TSOP (Type II) 300-mil Plastic SOJ 400-mil Plastic SOJ mBGA (8mmx10mm)
10	IS63LV1024L-10HI IS63LV1024L-10JLI IS63LV1024L-10KLI IS63LV1024L-10TLI	sTSOP (Type I) (8mm x13.4mm) 300-mil Plastic SOJ, Lead-free 400-mil Plastic SOJ, Lead-free TSOP (Type II), Lead-free
12	IS63LV1024L-12BI IS63LV1024L-12BLI	mBGA (8mmx10mm) mBGA (8mmx10mm), Lead-free

400-mil Plastic SOJ Package Code: K

	Millim	eters	Inche	es	Millim	eters	Inche	es	Millin	neters	Inch	es
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
No. Leads	(N)	28				32	2				36	
Α	3.25	3.75	0.128	0.148	3.25	3.75	0.128	0.148	3.25	3.75	0.128	0.148
A1	0.64	_	0.025	_	0.64	_	0.025	_	0.64	_	0.025	_
A2	2.08	_	0.082	_	2.08	_	0.082	_	2.08	_	0.082	_
В	0.38	0.51	0.015	0.020	0.38	0.51	0.015	0.020	0.38	0.51	0.015	0.020
b	0.66	0.81	0.026	0.032	0.66	0.81	0.026	0.032	0.66	0.81	0.026	0.032
С	0.18	0.33	0.007	0.013	0.18	0.33	0.007	0.013	0.18	0.33	0.007	0.013
D	18.29	18.54	0.720	0.730	20.82	21.08	0.820	0.830	23.37	23.62	0.920	0.930
Е	11.05	11.30	0.435	0.445	11.05	11.30	0.435	0.445	11.05	11.30	0.435	0.445
E1	10.03	10.29	0.395	0.405	10.03	10.29	0.395	0.405	10.03	10.29	0.395	0.405
E2	9.40	BSC	0.370) BSC	9.40	BSC	0.370) BSC	9.40	BSC	0.370	BSC
е	1.27	BSC	0.05	0 BSC	1.27 E	3SC	0.050	BSC	1.27	BSC	0.050) BSC

	Millim	eters	Inche	S	Millim	eters	Inche	es	Millin	neters	Inch	es
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
No. Leads	(N)	4)			42	2				44	
A	3.25	3.75	0.128	0.148	3.25	3.75	0.128	0.148	3.25	3.75	0.128	0.148
A1	0.64	_	0.025	_	0.64	_	0.025	_	0.64	_	0.025	_
A2	2.08	_	0.082	_	2.08	_	0.082	_	2.08	_	0.082	_
В	0.38	0.51	0.015	0.020	0.38	0.51	0.015	0.020	0.38	0.51	0.015	0.020
b	0.66	0.81	0.026	0.032	0.66	0.81	0.026	0.032	0.66	0.81	0.026	0.032
С	0.18	0.33	0.007	0.013	0.18	0.33	0.007	0.013	0.18	0.33	0.007	0.013
D	25.91	26.16	1.020	1.030	27.18	27.43	1.070	1.080	28.45	28.70	1.120	1.130
Е	11.05	11.30	0.435	0.445	11.05	11.30	0.435	0.445	11.05	11.30	0.435	0.445
E1	10.03	10.29	0.395	0.405	10.03	10.29	0.395	0.405	10.03	10.29	0.395	0.405
E2	9.40	BSC	0.370	BSC	9.40	BSC	0.370) BSC	9.40	BSC	0.370) BSC
е	1.27	BSC	0.050	BSC	1.27 E	3SC	0.050	BSC	1.27	BSC	0.050) BSC

300-mil Plastic SOJ Package Code: J

	MILL	IMET	ERS	11	INCHES			
Sym.	Min.	Тур.	Max.	Min.	Тур.	Max.		
N0.								
Leads		24/26						
Α	_	_	3.56	_		0.140		
A1	0.64	_	_	0.025	_	_		
A2	2.41	_	2.67	0.095	_	0.105		
b	0.41	_	0.51	0.016	_	0.020		
В	0.66	_	0.81	0.026	_	0.032		
С	0.20	_	0.25	0.008	_	0.010		
D	17.02	_	17.27	0.670	_	0.680		
E	8.26	_	8.76	0.325	_	0.345		
E1	7.49	_	7.75	0.295	_	0.305		
E2	6.27	_	7.29	0.247	_	0.287		
е	1	.27 BS	С	0.0	050 B	sc		

Notes:

- Controlling dimension: inches, unless otherwise specified.
- 2. BSC = Basic lead spacing between centers.
- Dimensions D and E1 do not include mold flash protrusions and should be measured from the bottom of the package.
- 4. Formed leads shall be planar with respect to one another within 0.004 inches at the seating plane.

300-mil Plastic SOJ Package Code: J

	MILL	IMET	ERS	INCHES			
Sym.	Min.	Тур.	Max.	Min.	Тур.	Max.	
N0. Leads		28					
Leaus		20					
Α	_	_	3.56	_		0.140	
A1	0.64	_	_	0.025	_	_	
A2	2.41	_	2.67	0.095	_	0.105	
b	0.41	_	0.51	0.016	_	0.020	
В	0.66	_	0.81	0.026	_	0.032	
С	0.20	_	0.25	0.008	_	0.010	
D	18.29	_	18.54	0.720	_	0.730	
E	8.26	_	8.76	0.325	_	0.345	
E1	7.49	_	7.75	0.295	_	0.305	
E2	6.27	_	7.29	0.247	_	0.287	
е	1	.27 BS	С	0.0	050 BS	SC	

	MILL	IMET	ERS	I	INCHES			
Sym.	Min.	Тур.	Max.	Min.	Тур.	Max.		
N0. Leads		32						
Α	_	_	3.56	_	_	0.140		
A1	0.64	_	_	0.025	_	_		
A2	2.41	_	2.67	0.095	_	0.105		
b	0.41	_	0.51	0.016	_	0.020		
В	0.66	_	0.81	0.026	_	0.032		
С	0.20	_	0.25	0.008	_	0.010		
D	20.83	_	21.08	0.820	_	0.830		
E	8.26	_	8.76	0.325		0.345		
E1	7.49	_	7.75	0.295	_	0.305		
E2	6.27	_	7.29	0.247	_	0.287		
e	1	.27 BS	C	0.	050 B	SC		

Plastic STSOP - 32 pins Package Code: H (Type I)

	Plast	tic STSC)P (H - 1	Гуре	I)	
	Millim	eters		hes		
Symbol	Min	Max	M	in	Max	
Ref. Std.						
N			32			
Α	_	1.25	-	_	0.049	
A1	0.05	_	0.0	002	_	
A2	0.95	1.05	0.0)37	0.041	
b	0.17	0.23	0.0	007	0.009	
С	0.14	0.16	0.0	055	0.0063	
D	13.20	13.60	0.5	520	0.535	
D1	11.70	11.90	0.4	161	0.469	
Е	7.90	8.10	0.3	311	0.319	
е	0.50	BSC		0.020	BSC	
L	0.30	0.70	0.0)12	0.028	
S	0.28	Тур.		0.011	Тур.	
α	0°	5°	()°	5°	

- Controlling dimension: millimeters, unless otherwise specified.
- 2. BSC = Basic lead spacing between centers.
- Dimensions D1 and E do not include mold flash protrusions and should be measured from the bottom of the package.
- 4. Formed leads shall be planar with respect to one another within 0.004 inches at the seating plane.

Mini Ball Grid Array Package Code: B (36-pin)

mBGA - 6mm x 8mm

	MILI	IMET	ERS	INCHES
Sym.	Min.	Тур.	Max.	Min. Typ. Max.
N0. Leads		36		36
A		_	1.20	— — 0.047
A1	0.24	_	0.30	0.009 — 0.012
A2	0.60	_	_	0.024 — —
D	7.90	8.00	8.10	0.311 0.315 0.319
D1	5	.25BS	2	0.207BSC
E	5.90	6.00	6.10	0.232 0.236 0.240
E1	3	.75BS	<u> </u>	0.148BSC
е	0	.75BS	0	0.030BSC
b	0.30	0.35	0.40	0.012 0.014 0.016

mBGA - 8mm x 10mm

	MIL	LIMET	ER	INCHES
Sym.	Min.	Тур.	Max.	Min. Typ. Max.
N0. Leads		36		36
Α	_	_	1.20	— — 0.047
A1	0.24	_	0.30	0.009 — 0.012
A2	0.60	_	_	0.024 — —
D	9.90	10.00	10.10	0.390 0.394 0.398
D1	5	.25BSC)	.207BSC
E	7.90	8.00	8.10	0.311 0.315 0.319
E1	3	3.75BS0)	0.148BSC
е	C	.75BS0	2	0.030BSC
b	0.30	0.35	0.40	0.012 0.014 0.016

Plastic TSOP

Package Code: T (Type II)

Notes:

- Controlling dimension: millimieters, unless otherwise specified.
- 2. BSC = Basic lead spacing between centers.
- Dimensions D and E1 do not include mold flash protrusions and should be measured from the bottom of the package.
- Formed leads shall be planar with respect to one another within 0.004 inches at the seating plane.

Plastic TSOP (T - Type II)													
	Millim	eters	ers Inches		es Millim		eters Inch		Millin	Millimeters		Inches	
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Ref. Std.													
No. Leads (N)		32				44				50			
Α	_	1.20	_	0.047	_	1.20	_	0.047	_	1.20	_	0.047	
A1	0.05	0.15	0.002	0.006	0.05	0.15	0.002	0.006	0.05	0.15	0.002	0.006	
b	0.30	0.52	0.012	0.020	0.30	0.45	0.012	0.018	0.30	0.45	0.012	0.018	
С	0.12	0.21	0.005	0.008	0.12	0.21	0.005	0.008	0.12	0.21	0.005	0.008	
D	20.82	21.08	0.820	0.830	18.31	18.52	0.721	0.729	20.82	21.08	0.820	0.830	
E1	10.03	10.29	0.391	0.400	10.03	10.29	0.395	0.405	10.03	10.29	0.395	0.405	
Е	11.56	11.96	0.451	0.466	11.56	11.96	0.455	0.471	11.56	11.96	0.455	0.471	
е	1.27 BSC		0.050	0.050 BSC		0.80 BSC		0.032 BSC		0.80 BSC		0.031 BSC	
L	0.40	0.60	0.016	0.024	0.41	0.60	0.016	0.024	0.40	0.60	0.016	0.024	
ZD	0.95 REF		0.037	0.037 REF		0.81 REF		0.032 REF		0.88 REF		0.035 REF	
α	0°	5°	0°	5°	0°	5°	0°	5°	0°	5°	0°	5°	