PCT

75

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

(51) International Patent Classification ⁵ :		(11) International Publication Number: WO 04/21/7/			
C07K 13/00, C12P 21/00, C12N 5/00, 15/00	A1	(43) International Publication Date: 29 September 1994 (29.09.94			
(21) International Application Number: PCT/US (22) International Filing Date: 25 February 1994 ((81) Designated States: AU, BB, BG, BR, BY, CA, CN, CZ, FI HU, JP, KR, KZ, LK, LV, MG, MN, MW, NO, NZ, PL RO, RU, SD, SK, UA, US, UZ, European patent (AT, BE CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT				
(30) Priority Data: 038,769 25 March 1993 (25.03.93)	U				
(60) Parent Application or Grant (63) Related by Continuation US 038,7	Published With international search report.				
Filed on 25 March 1993 (2	25.03.93				
(71) Applicant (for all designated States except US): MI CO., INC. [US/US]; 126 East Lincoln Avenue, Rat 07065 (US).	ERCK of	t J			
(72) Inventors; and (75) Inventors/Applicants (for US only): KENDALL, Ric [US/US]; 5201 Stonehedge Road, Edison, NJ 088 THOMAS, Kenneth, A., Jr. [US/US]; 245 Wa Avenue, Chatham Borough, NJ 07928 (US).	.				
(74) Agent: WALLEN, John, W., III; 126 East Lincoln Rahway, NJ 07065 (US).	Avenue				
(54) Title: INHIBITOR OF VASCULAR ENDOTHELIA	L CELI	GROWTH FACTOR			
(57) Abstract		·			
The vascular endothelial cell growth factor (VEGF) inhibitors of the present invention are naturally occurring or recombinantly engineered soluble forms with or without a C-terminal transmembrane region of the receptor for VEGF, a very selective growth factor for endothelial cells. The soluble forms of the receptors will bind the growth factor with high affinity but do not result in signal transduction. These soluble forms of the receptor bind VEGF and inhibit its function.					

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑÜ	Australia	GE	Georgia	MW	Malawi
BB	Barbedos	GN	Guinea	NE	Niger
BE	Belgium .	GR	Greece	NL	Netherlands
BP	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	Œ	freland	NZ	New Zealand
BJ	Beain	П.	Italy	PL.	Poland
BR	Brazil	JР	Japan	PT	Portugal
BY	Beiarus	KE	Kettya	RO	Romania
CA	Capada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Kores	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	ш	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Mogaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	MIL	Mali	UZ.	Uzbekistan
FR	France	MN	Mongolia	VN	Vict Nam
GA	Gabon		<u>-</u>		

WO 94/21679 PCT/US94/01957

5

- 1 -

10 <u>TITLE OF THE DISCLOSURE</u>
INHIBITOR OF VASCULAR ENDOTHELIAL CELL GROWTH FACTOR

BACKGROUND OF THE DISCLOSURE

Recently a new class of cell-derived dimeric mitogens with selectivity for vascular endothelial cells has been identified and designated vascular endothelial cell growth factor (VEGF). VEGF has been purified from conditioned growth media of rat glioma cells [Conn et al., (1990), Proc. Natl. Acad. Sci.

- U.S.A., 87, pp 2628-2632]; and conditioned growth media of bovine pituitary folliculo stellate cells [Ferrara and Henzel, (1989), Biochem. Biophys. Res. Comm., 161, pp. 851-858; Gozpadorowicz et al., (1989), Proc. Natl. Acad. Sci. U.S.A., 86, pp. 7311-7315] and conditioned
- growth medium from human U937 cells [Connolly, D. T. et al. (1989), Science, 246, pp. 1309-1312]. VEGF is a dimer with an apparent molecular mass of about 46 kDa with each subunit having an apparent molecular mass of about 23 kDa.

VEGF has some structural similarities to platelet derived growth factor (PDGF), which is a mitogen for connective tissue cells but not mitogenic for vascular endothelial cells from large vessels.

The membrane-bound tyrosine kinase receptor, known as FLT, was shown to be a VEGF receptor [DeVries, C. et al., (1992), Science, 255, pp.989-991]. The FLT receptor specifically binds VEGF which induces

- mitogenesis. Another form of the VEGF receptor, designated KDR, is also known to bind VEGF and induce mitogenesis. The partial cDNA sequence and nearly full length protein sequence of KDR is known as well [Terman, B.I. et al., (1991) Oncogene 6, pp. 1677-1683;
- 15 Terman, B.I. et al., (1992) Biochem. Biophys. Res. Comm. 187, pp. 1579-1586].

Persistent angiogenesis may cause or exacerbate certain diseases such as psoriasis, rheumatoid arthritis, hemangiomas, angiofibromas,

diabetic retinopathy and neovascular glaucoma. An inhibitor of VEGF activity would be useful as a treatment for such diseases and other VEGF-induced pathological angiogenesis and vascular permeability conditions, such as tumor vascularization.

25

SUMMARY OF THE DISCLOSURE

A naturally-occurring FLT messenger RNA (mRNA) was identified and cloned from vascular endothelial cells. This mRNA is shown to encode most of the extracellular, or soluble, portion of the VEGF receptor, FLT. Soluble receptor molecules including

forms containing a C-terminal transmembrane region are also recombinantly engineered for this and other VEGF receptors. These soluble receptors, comprising

5 truncated and modified forms are expressed in recombinant host cells and have VEGF binding properties. The soluble receptor proteins are useful as inhibitors of VEGF activity since they will bind available VEGF preventing it from activating its

10 functional receptors on vascular endothelial cells and could form non-functional heterodimers with full-length membrane anchored VEGF receptors.

BRIEF DESCRIPTION OF THE DRAWINGS

15

20

30

Figure 1 - A schematic diagram of full length
VEGF receptors (FLT and KDR), the
soluble VEGF receptors (sVEGF-RI and
sVEGF-RII) and the soluble receptors
containing the C-terminal transmembrane
region (sVEGF-RTMI and sVEGF-RTMII) are
shown with the protein domains of each.

Figure 2 - The DNA sequence of the sVEGF-RI soluble VEGF receptor/VEGF inhibitor is shown.

.Figure 3 - The amino acid sequence of the sVEGF-RI soluble VEGF receptor/VEGF inhibitor is shown.

Figure 4 - Demonstration that recombinant host cells express sVEGF-RI is shown by

25

ز

5	the formation of high molecular weight complexes of sVEGF-RI and [125]VEGF and separated by size exclusion chromatography.
	Figure 5 - A 12.5% polyacrylamide
	electrophoretic gel is shown which
	demonstrates the high degree of purity
10	obtained for sVEGF-RI.
	Figure 6 - Cross-linked products of
	sVEGF-RI and $[^{125}$ I]VEGF are shown at
	about 145 kDa, and at about 245 kDa.
15	
	Figure 7A and 7B - Analysis of VEGF binding
	to sVEGF-RI (A) and corresponding
	Scatchard plot (B).
20	Figure 8 - Inhibition of [125]VEGF binding
	to HUVEC's by sVEGF-RI is demonstrated.
	Figure 9 - Inhibition of VEGF-mediated
	mitogenesis on HUVECs is shown using

Figure 10 - The nucleotide sequence encoding sVEGF-RII is shown.

Figure 11 - The amino acid sequence for sVEGF-RII is shown.

sVEGF-RI.

WO 94/21679 PCT/US94/01957

- 5 -

Figure 12 - The nucleotide sequence encoding sVEGF-RTMII is shown.

Figure 13 - The amino acid sequence for sVEGF-RTMII is shown.

Figure 14 - The nucleotide sequence encoding sVEGF-RTMI is shown.

10

Figure 15 - The amino acid sequence for sVEGF-RTMI is shown.

Figure 16 - A diagram of pmFLT is shown.

15

Figure 17 - A diagram of pKDRA is shown.

DETAILED DESCRIPTION OF THE DISCLOSURE

The present invention relates to cDNA

20 encoding a soluble VEGF receptor protein (sVEGF-R)
which is isolated from VEGF receptor producing cells or
is recombinantly engineered from VEGF receptor-encoding
DNA. sVEGF-R, as used herein, refers to a protein
which can specifically bind to a vascular endothelial

25 cell growth factor without stimulating mitogenesis of
vascular endothelial cells.

The amino acid sequence of FLT is known,
[Shibuya, M. et al., (1990), Oncogene, 5, pp.519-524]
and corresponds to the full length cell-associated VEGF
tyrosine kinase receptor. Other VEGF receptors are
known to exist. Other known VEGF receptors include,

but are not limited to KDR [Terman (1991), supra., and Terman (1992), supra.]. Mammalian cells capable of producing FLT, KDR and other VEGF receptors include,

- but are not limited to, vascular endothelial cells.

 Mammalian cell lines which produce FLT or KDR and other

 VEGF receptors include, but are not limited to, human

 endothelial cells. The preferred cells for the present

 invention include human umbilical vein endothelial
- 10 cells (HUVEC).

Other cells and cell lines may also be suitable for use to isolate sVEGF-R cDNA. Selection of suitable cells may be done by screening for sVEGF-R binding activity on cell surfaces, in cell extracts or

- conditioned medium or by screening for gene expression by PCR or hybridization. Methods for detecting soluble receptor activity are well known in the art [Duan, D-S. R. et al., (1991) J.Biol.Chem., 266, pp.413-418] and measure the binding of labelled VEGF. Cells which
- 20 possess VEGF binding activity in this assay may be suitable for the isolation of sVEGF-R cDNA.
 - HUVEC cells (American Type Culture Collection, ATCC CRL 1730) [Hoshi, H. and McKeehan, W.L., Proc. Natl. Acad.
- Sci. U.S.A., (1984) 81, pp. 6413-6417] are grown according to the recommended culture conditions of the ATCC. Full length FLT, and KDR VEGF receptors as well as extracellular region (sVEGF-RI and sVEGF-RII) and extracellular region plus transmembrane region forms
- 30 (sVEGF-RTMI and sVEGF-RTMII) are shown in Figure 1. The full length receptor has an extracellular ligand

binding region composed of about seven immunoglobulin-like domains, a membrane spanning sequence (transmembrane domain) and intracellular tyrosine kinase domains. The inhibitory forms of this receptor, which are the subject of the present invention, are also shown in Figure 1 and lack the intracellular kinase domains, and for some inhibitors, the transmembrane sequence and the C-terminal most Ig-like extracellular domain.

Any of a variety of procedures may be used to molecularly clone sVEGF-R cDNA. These methods include, but are not limited to, direct functional expression of the sVEGF-R gene following the construction of an sVEGF-R-containing cDNA library in an appropriate expression vector system.

Another method is to screen a sVEGF-R-containing cDNA library constructed in a bacteriophage or plasmid shuttle vector with a labelled oligonucleotide probe designed from the predicted amino acid sequence of sVEGF-R. The preferred method consists of screening a sVEGF-R-containing cDNA library constructed in a bacteriophage or plasmid shuttle vector with a partial cDNA encoding at least part of the full length FLT protein. This partial cDNA is obtained by the specific PCR amplification of sVEGF-R DNA fragments through the design of oligonucleotide primers from the known sequence of the full length FLT-encoding DNA.

It is readily apparent to those skilled in the art that other types of libraries, as well as

libraries constructed from other cells or cell types, may be useful for isolating sVEGF-R-encoding DNA.

Other types of libraries include, but are not limited to, cDNA libraries derived from other cells or cell lines other than HUVECs and genomic DNA libraries.

It is readily apparent to those skilled in the art that suitable cDNA libraries may be prepared from cells or cell lines which have sVEGF-R activity.

- The selection of cells or cell lines for use in preparing a cDNA library to isolate sVEGF-R cDNA may be done by first measuring secreted sVEGF-R activity using the VEGF binding assay described fully herein.
- Preparation of cDNA libraries can be

 15 performed by standard techniques well known in the art. Well known cDNA library construction techniques can be found for example, in Maniatis, T., Fritsch, E.F., Sambrook, J., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring

 20 Harbor, New York, 1982).

It is also readily apparent to those skilled in the art that DNA encoding sVEGF-R may also be isolated from a suitable genomic DNA library.

Construction of genomic DNA libraries can be performed by standard techniques well known in the art. Well known genomic DNA library construction techiques can be found in Maniatis, T., Fritsch, E.F., Sambrook, J. in Molecular Cloning: A Laboratory Manuel (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1982).

Another means of obtaining sVEGF-R molecules is to recombinantly engineer them from DNA encoding the

₹.

partial or complete amino acid sequence of a VEGF receptor. Examples of other VEGF receptors include, but are not limited to, KDR. Using recombinant DNA techniques, DNA molecules are constructed which encode at least a portion of the VEGF receptor capable of binding VEGF without stimulating mitogenesis. Standard recombinant DNA techniques are used such as those found in Maniatis, et al., supra.

- Using one of the preferred methods of the present invention, cDNA clones encoding sVEGF-R are isolated in a two-stage approach employing polymerase chain reaction (PCR) based technology and cDNA library screening. In the first stage, DNA oligonucleotides derived from the extracellular domain sequence information from the known full length FLT, KDR or other VEGF receptor is used to design degenerate oligonucleotide primers for the amplification of sVEGF-R-specific DNA fragments. In the second stage, these fragments are cloned to serve as probes for the isolation of complete sVEGF-R cDNA from a commercially
- These PCR derived products were used as

 25 hybridization probes for screening a lambda gt10 cDNA
 library derived from HUVECs (Clontech). Plating and
 plaque lifts of the library were performed by standard
 methods (T. Maniatis, E.F. Fritsch, J. Sambrook,
 Molecular Cloning: A Laboratory Manual (Cold Spring

 30 Harbor Laboratory, Cold Spring Harbor, New York,
 1982). The probes were random-primed labelled with

available lambda gt10 cDNA library (Clontech) derived

from HUVEC cells (ATCC CRL 1730).

32p-dCTP to high specific activity and a separate screening of the library (1 x 10⁶ plaques per screen) was conducted with each probe. The probes were added to hybridization buffer (50% formamide, 5% Denhardts, 6% SSC (1% SSC = 0.15 M NaCl, 0.015 M Na3citrate 2H₂O, pH 7.0), 0.1% SDS, 100 μg/ml salmon sperm DNA) at 1 x 10⁶ cpm/ml.

Four positively hybridizing phage were

10 detected using the flt-specific probe. These
positively hybridizing phage were observed to be less
than full length flt.

Two flt cDNA clones of about 2.0 kb and 2.7 kb in length were subcloned into pGEM vectors (Promega) and bi-directionally sequenced in their entirety by the chain termination method (Sanger et al., (1977) P.N.A.S. USA, 74, pp. 5463-5467,) and shown to contain a single open reading frame of about 569 amino acids. Sequence analysis demonstrated that a portion of the 5' flt coding region was missing from these clones. The remainder of the 5' end was cloned using PCR and combined with the DNA of the clones lacking the 5' end to yield a single open reading frame encoding about 687 amino acids.

The sequence for the cDNA encoding
flt-derived sVEGF-RI is shown in Table 1, and was
identified in clones 7 and 11. The deduced amino acid
sequence of sVEGF-RI from the cloned cDNA is shown in
Table 2. Inspection of the deduced amino acid sequence
reveals the presence of a single, large open reading
frame of 687 amino acids. By comparison with amino

acid sequence of the full length FLT VEGF receptor, 31 amino acids are encoded at the C-terminal end of the cDNA which are different from those of FLT.

- Using another of the preferred methods of the present invention, DNA encoding sVEGF-R is constructed from a DNA sequence encoding a VEGF receptor. For purposes of illustration, DNA encoding the VEGF receptor known as KDR was utilized. Using the receptor
- DNA sequence, a DNA molecule is constructed which encodes the extracellular domain of the receptor, or the VEGF binding domain only and is denoted sVEGF-RII.

 Restriction endonuclease cleavage sites are identified within the receptor DNA and can be utilized directly to
- excise the extracellular-encoding portion. In addition, PCR techniques as described above may be utilized to produce the desired portion of DNA. It is readily apparent to those skilled in the art that other techniques, which are standard in the art, may be
- utilized to produce sVEGF-R molecules in a manner analagous to those described above. Such techniques are found, for example, in Maniatis et al., supra.

Additional truncated forms of the VEGF receptor are constructed which contain the

- transmembrane region. Retention of the transmembrane may facilitate orientation of the inhibitor molecule at the target cell surface. Examples of transmembrane region containing inhibitor molecules include but are not limited to those shown in Figure 1. sVEGF-RTMI and
- 30 sVEGF-RTMII, as shown in Figure 1, are FLT-related and KDR-related, respectively, transmembrane region

containing receptor inhibitors. Construction of transmembrane region containing molecules, such as sVEGF-RTMI and sVEGF-RTMII, is done by standard techniques known in the art including but not limited to utilizing convenient restriction endonuclease cleavage sites or PCR techniques as described herein. It is readily understood by those skilled in the art that various forms of the inhibitors of a VEGF receptor, as disclosed herein, containing only the extracellular region or containing, in addition, the transmembrane region may be constructed which have substantially the same activity.

The cloned sVEGF-R cDNA obtained through the

15 methods described above may be recombinantly expressed
by molecular cloning into an expression vector
containing a suitable promoter and other appropriate
transcription regulatory elements, and transferred into
prokaryotic or eukaryotic host cells to produce

20 recombinant sVEGF-R. Techniques for such manipulations
are fully described in Maniatis, T, et al., supra, and
- are well-known-in-the-art.

Expression vectors are defined herein as DNA sequences that are required for the transcription of cloned copies of genes and the translation of their mRNAs in an appropriate host. Such vectors can be used to express eukaryotic genes in a variety of hosts such as bacteria, bluegreen algae, fungal cells, yeast cells, plant cells, insect cells and animal cells.

Specifically designed vectors allow the

Specifically designed vectors allow the shuttling of DNA between hosts such as bacteria-yeast

or bacteria-animal or bacteria-insect cells. An appropriately constructed expression vector should contain: an origin of replication for autonomous

5 replication in host cells, selectable markers, a limited number of useful restriction enzyme sites, a potential for high copy number, and active promoters. A promoter is defined as a DNA sequence that directs RNA polymerase to bind to DNA and initiate RNA

10 synthesis. A strong promoter is one which causes mRNAs to be initiated at high frequency. Expression vectors may include, but are not limited to, cloning vectors, modified cloning vectors, specifically designed plasmids or viruses.

- A variety of mammalian expression vectors may be used to express recombinant sVEGF-R in mammalian cells. Commercially available mammalian expression vectors which may be suitable for recombinant sVEGF-R expression, include but are not limited to, pMClneo (Stratagene), pXT1 (Stratagene), pSG5 (Stratagene), EBO-pSV2-neo (ATCC 37593) pBPV-1(8-2) (ATCC 37110), pdBPV-MMTneo(342-12) (ATCC 37224), pRSVgpt (ATCC 37199), pRSVneo (ATCC 37198), pSV2-dhfr (ATCC 37146), pUCTag (ATCC 37460), and gZD35 (ATCC 37565).
- DNA encoding sVEGF-R may also be cloned into an expression vector for expression in a recombinant host cell. Recombinant host cells may be prokaryotic or eukaryotic, including but not limited to bacteria, yeast, mammalian cells including but not limited to cell lines of human, bovine, porcine, monkey and rodent origin, and insect cells including but not limited to

drosophila, moth, mosquito and armyworm derived cell lines. Cell lines derived from mammalian species which may be suitable and which are commercially available,

- include but are not limited to, CV-1 (ATCC CCL 70), COS-1 (ATCC CRL 1650), COS-7 (ATCC CRL 1651), CHO-K1 (ATCC CCL 61), 3T3 (ATCC CCL 92), NIH/3T3 (ATCC CRL 1658), HeLa (ATCC CCL 2), C127I (ATCC CRL 1616), BS-C-1 (ATCC CCL 26) and MRC-5 (ATCC CCL 171). Insect cell
- lines which may be suitable and are commercially available include but are not limited to 3M-S (ATCC CRL 8851) moth (ATCC CCL 80) mosquito (ATCC CCL 194 and 195; ATCC CRL 1660 and 1591) and armyworm (Sf9, ATCC CRL 1711).
- The expression vector may be introduced into host cells via any one of a number of techniques including but not limited to transformation, transfection, liposome or protoplast fusion, and electroporation. The expression vector-containing
- cells are clonally propagated and individually analyzed to determine whether they produce sVEGF-R protein.
 Identification of sVEGF-R expressing host cell clones may be done by several means, including but not limited to immunological reactivity with anti-sVEGF-R
- 25 antibodies, binding to radiolabelled VEGF, and the presence of host cell-secreted sVEGF-R activity.

Expression of sVEGF-R DNA may also be performed using in vitro produced synthetic mRNA.

Synthetic mRNA can be efficiently translated in various cell-free systems, including but not limited to wheat germ extracts and reticulocyte extracts, as well as

5

efficiently translated in cell based systems, including but not limited to microinjection into frog oocytes, with microinjection into frog oocytes being preferred.

Levels of sVEGF-R protein produced by host cells may be quantitated by immunoaffinity and/or ligand affinity techniques. sVEGF-R-specific affinity beads or sVEGF-R-specific antibodies are used to isolate ³⁵S-methionine labelled or unlabelled sVEGF-R 10 protein. Labelled sVEGF-R protein is analyzed by SDS-PAGE. Unlabelled sVEGF-R protein is detected by Western blotting, ELISA or RIA assays employing sVEGF-R specific antibodies, or by ligand blotting with labelled VEGF.

15 Following expression of sVEGF-R in a recombinant host cell, sVEGF-R protein may be recovered to provide sVEGF-R in active form, capable of binding VEGF without stimulating mitogenesis. Several sVEGF-R purification procedures are available and suitable for 20 use. sVEGF-R may be purified from cell lysates and extracts, or from conditioned culture medium, by various combinations of, or individual application of salt fractionation, ion exchange chromatography, size exclusion chromatography, hydroxylapatite adsorption 25 chromatography, reversed phase chromatography, heparin sepharose chromatography, VEGF ligand affinity chromatography, and hydrophobic interaction chromatography.

In addition, recombinant sVEGF-R can be 30 separated from other cellular proteins by use of an immuno-affinity column made with monoclonal or

polyclonal antibodies specific for full length sVEGF-R, or polypeptide fragments of sVEGF-R.

- 5 Identification of sVEGF-RI In an attempt to clone the VEGF receptor cDNA (flt) a HUVEC λgt10 cDNA library was screened with a DNA probe derived from the extracellular domain of the membrane bound or full length form of this receptor as shown in Figure 1.
- 10 Four incomplete clones, all lacking various lengths of 5' coding sequence, were isolated from screening a total of 1×10^6 plaques. Two of these isolates represent partial clones that were identical to full length flt, one of which contained the complete 3'
- coding region of the form described by Shibuya et al., supra. The other two clones were identical to full length flt up to base pair number 2219 (Table 1 and Figure 2) where they then diverged from full length flt. These clones (clone 7 and 11) coded for an
- additional unique 31 amino acids before the open reading frame is terminated by a TAA codon (Table 2 and Figure 3).

Clone 7 and 11 coded for a protein with a predicted molecular mass of about 75 kDa containing 12
25 putative N-linked glycosylation sites. This version of the receptor was missing the transmembrane and intracellular kinase domains and thus coded for a natural soluble form of the VEGF receptor (sVEGF-RI). Further, the protein molecule predicted by sVEGF-RI has 30 only the first six Ig-like domains, missing the one closest to the transmembrane sequence (Figure 1). The

31 amino acids at the C-terminal end of sVEGF-RI contain two cysteine residues, but does not resemble an Ig domain.

5

1

Expression of sVEGF-RI in Sf9 cells - To analyze the binding and biological properties of this form of the receptor, the protein was expressed using a baculovirus expression system. Clone 7 was missing about 350 base 10 pairs of coding sequence at the 5' end. This region was cloned by PCR using the primers described above and in Example 1. A clone containing the complete coding region of sVEGF-RI was constructed by combining the 5' PCR fragment with sVEGF-RI clone 7 which overlapped at 15 a SacI site. The 5' EcoRI site was then changed to a BamHI site and the full length sVEGF-RI was cloned into pBluebac III (Invitrogen) as a BamHI/BamHI fragment. A recombinant baculovirus P-3 stock containing the sVEGF-RI gene 3' in relation to the polyhedrin promoter 20 was then prepared as described herein.

Culture media from small scale infections
were tested for the ability to form high molecular
weight complexes with [125]VEGF. The labeled ligand
and culture media from the baculovirus infected cells

25 were combined and incubated. The reactions were then
analyzed by size exclusion chromatography. When the
wild-type infected culture medium was mixed with the
radioactive ligand (Figure 4) a single radioactive peak
was observed. However, when the sVEGF-RI infected

30 culture medium was used, a high molecular weight
complex was formed, as evident by the appearance of a

second peak in this reaction eluting near the void volume of the column. This experiment showed that the natural soluble form of the FLT VEGF receptor,

sVEGF-RI, forms a high molecular weight complex with VEGF.

The recombinantly produced sVEGF-R is purified from the recombinant host cell extracts or cell culture fluid using heparin-sepharose column

10 chromatography which specifically binds the sVEGF-R protein. The heparin-sepharose bound VEGF-R column is washed using a suitable buffer containing between 0.1M and 0.6M NaCl which removes contaminating proteins without significant loss of sVEGF-R. The sVEGF-R is eluted from the heparin-sepharose column using a suitable buffer containing about 1M NaCl, yielding substantially purified sVEGF-R.

Binding of the sVEGF-RI to VEGF - The binding of

125I-labelled VEGF to sVEGF-RI was characterized by
crosslinking, and by complex formation with sVEGF-RI
absorbed to 96 well plates.

The crosslinked products are shown in Figure 6. The sVEGF-RI was cross-linked to [1251]VEGF (lane 2); in the presence of unlabelled VEGF (lane 2) and unlabelled bFGF (lane 3). Two high molecular weight bands (about 145 kDa and 245 kDa) were formed in the sVEGF-RI and [1251]VEGF containing reaction, and in the sVEGF-RI and [1251]VEGF plus an excess of unlabelled bFGF reaction. The two high molecular weight bands were not present when sVEGF-RI was

incubated with [125I]VEGF plus an excess of unlabelled VEGF, demonstrating the specificity of sVEGF-RI for VEGF, and the ability of sVEGF-RI to form a dimer. The 145 kDa band is presumably a crosslinked complex containing one receptor molecule (about 100 kDa) and a VEGF dimer (about 46 kDa). As shown in Figure 6 complexes containing two receptor molecules (about 245 kDA) were also observed. This suggests that each VEGF dimer can bind one or two receptor molecules and that the soluble form of the VEGF receptor may undergo ligand-induced dimerization.

The affinity of sVEGF-RI for VEGF was evaluated by absorbing sVEGF-RI to the surface of a 96 well plate, followed by blocking the nonspecific sites with 0.5% gelatin. Variable amounts of labeled ligand were added to each well. These results demonstrate that sVEGF-RI binds VEGF with high affinity with an apparent K_d of about 20pM (Figure 7). Since the soluble form of the receptor is missing the Ig domain closest to the transmembrane spanning region, this domain is not required for ligand binding.

The sVEGF-RI is shown to inhibit binding of VEGF to HUVECs by incubating cultured HUVECs with [1251]VEGF and various amounts of sVEGF-RI. Following incubation, the cells are washed to remove unbound [1251]VEGF. The cells are then solubilized and the amount of cell-associated 1251 is determined by gamma counter, which demonstrates the amount of [1251]VEGF which was capable of binding to the cellular VEGF receptor in the presence of sVEGF-RI. Using this

method, it is demonstrated that sVEGF-RI was capable of inhibiting [125 I]VEGF binding to HUVECs VEGF receptor (see Figure 8).

- Since sVEGF-RI was able to inhibit VEGF binding to cell receptors, it was then determined that sVEGF-RI could inhibit VEGF induced mitogenesis. Cells are preincubated with sVEGF-RI and then incubated with VEGF in the presence of [3H]thymidine. Following
- incubation, the amount of cellular DNA-incorporated [3H]thymidine is measured which indicates whether VEGF has induced mitogenesis and caused [3H]thymidine to be incorporated into cellular DNA. The presence of sVEGF-RI inhibits the ability of VEGF to stimulate
- 15 mitogenesis as shown in Figure 9.

The inhibitor of the present invention can be used for the inhibition of VEGF activity. The inhibitor can be used either topically or intravascularly. For topical applications the

- formulation would be applied directly at a rate of about 10 ng to about 1 mg/cm²/day. For intravaneous
 applications, the inhibitor is used at a rate of about 1 μg to about 10 mg/kg/day of body weight. For internal use, the formulation may be released directly
- into the region to be treated either from implanted slow release polymeric material or from slow release pumps or repeated injections. The release rate in either case is about 100 ng to about 100 $\mu g/day/cm^3$.

For non-topical application the VEGF

inhibitor is administered in combination with

pharmaceutically acceptable carriers or diluents such

as phosphate buffer, saline, phosphate buffered saline, Ringer's solution, and the like, in a pharmaceutical composition, according to standard pharmaceutical

- practice. For topical application, various pharmaceutical formulations are useful for the administration of the active compound of this invention. Such formulations include, but are not limited to, the following: ointments such as
- hydrophilic petrolatum or polyethylene glycol ointment; pastes which may contain gums such as xanthan gum; solutions such as alcoholic or aqueous solutions; gels such as aluminum hydroxide or sodium alginate gels; albumins such as human or animal albumins; collagens
- such as human or animal collagens; celluloses such as alkyl celluloses, hydroxy alkyl celluloses and alkylhydroxyalkyl celluloses, for example methylcellulose, hydroxyethyl cellulose, carboxymethyl cellulose, hydroxypropyl methylcellulose, and
- 20 hydroxypropyl cellulose; polyoxamers such as Pluronic® Polyols exemplified by Pluronic® F-127; tetronics such as tetronic 1508; and alginates such as sodium alginate.

The following examples are provided as illustrative of the present invention without, however,

25 limiting the same thereto.

EXAMPLE 1

Cloning flt-related sVEGF-RI - A 580 base pair DNA probe for flt was obtained by PCR of the HUVEC phage library using the primers 5' GCACCTTGGTTGTGGCTGAC 3'

(SEQ. ID. No.: 1) and 5' TGGAATTCGTGCTGCTTCCTGGTCC 3'(SEQ. ID. No.: 2). The resulting DNA fragment was cloned into pGEM3Z as a XbaI/EcoRI fragment. 5 probe was prepared by the random priming method [Feinberg, A.P. and Vogelstein, B., (1983) Anal.Biochem., 132, pp.6-13] using the megaprime kit (Amersham) at a specific activity of 1 X 10⁷ cpm/ng. The HUVEC cDNA library was plated at a density of 5 X 10⁴ plaques/150 cm plate then about 1 X 10⁶ plaques were screened by hybridization as previously described [Maniatis, T. et al., supra]. Briefly, following prehybridization at 42°C for 2 hours in 50% formamide. 5% SSC, 5% Denhardt's solution, 0.1% SDS, 100 ug/ml salmon sperm DNA (hybridization buffer) the filters were hybridized with the probe for 16 hours at 42°C in hybridization buffer. The filters were washed one time for 15 min at room temperature in 2X SSC then three times at 55°C in 0.1 X SSC. Four positive 20 plaques were identified and rescreened two additional times to obtain homogeneous isolates. Inserts were cloned into pGEM3Z for DNA sequence analysis. Two-ofthese clones were identified which contained less than the full length flt coding region. DNA sequence 25 analysis showed that these clones lacked the 5' coding region of flt. The DNA sequence is shown in Table 1 and Figure 2, and the deduced amino acid sequence is shown in Table 2 and Figure 3. The 5' end of flt was cloned by PCR using the primers 5' 30 GGAATTCCGCGCTCACCATGGTCAGC 3' (SEQ.ID.NO.:3) and 5' TTTGAATTCACCCGGCAGGGAATGACG 3' (SEQ.ID.NO.:4). The PCR fragment generated with this set of primers was

cloned into flt clone 7 as an EcoRI/SacI fragment.

- 23 -

TABLE 1

25

CAA TTC TGC AGT ACT TTA ACC TTG AAC ACA GCT CAA GCA AAC CAC

ACT GGC TTC TAC AGC TGC AAA TAT CTA GCT GTA CCT ACT TCA AAG

AAG AAG GAA ACA GAA TCT GCA ATC TAT ATA TTT ATT AGT GAT ACA

GGT AGA CCT TTC GTA GAG ATG TAC AGT GAA ATC CCC GAA ATT ATA

10 CAC ATG ACT GAA GGA AGG GAG CTC GTC ATT CCC TGC CGG GTT ACG

TCA CCT AAC ATC ACT GTT ACT TTA AAA AAG TTT CCA CTT GAC ACT

TTG ATC CCT GAT GGA AAA CGC ATA ATC TGG GAC AGT AGA AAG GGC

TTG ATC ATA TCA AAT GCA ACG TAC AAA GAA ATA GGG CTT CTG ACC

TGT GAA GCA ACA GTC AAT GGG CAT TTG TAT AAG ACA AAC TAT CTC

25

CCA CGC CCA GTC AAA TTA CTT AGA GGC CAT ACT CTT GTC CTC AAT

TGT ACT GCT ACC ACC CCC TTG AAC ACG AGA GTT CAA ATG ACC TGG

AGT TAC CCT GAT GAA AAA AAT AAG AGA GCT TCC GTA AGG CGA CGA

ATT GAC CAA AGC AAT TCC CAT GCC AAC ATA TTC TAC AGT GTT CTT

10 ACT ATT GAC AAA ATG CAG AAC AAA GAC AAA GAC AAA GGA CTT TAT ACT TGT

CGT GTA AGG AGT GGA CCA TCA TTC AAA TCT GTT AAC ACC TCA GTG

CAT ATA TAT GAT AAA GCA TTC ATC ACT GTG AAA CAT CGG CTC TCT

ATG AAA GTG AAG GCA TTT CCC TCG CCG GAA GTT GTA TGG TTA AAA

20 GAT GGG TTA CCT GCG ACT GAG AAA TCT GCT CGC TAT TTG ACT CGT

25

GGC TAC TCG TTA ATT ATC AAG GAC GTA ACT GAA GAG GAT GCA GGG

AAT TAT ACA ATC TTG CTG AGC ATA AAA CAG TCA AAT GTG TTT AAA

AAC CTC ACT GCC ACT CTA ATT GTC AAT GTG AAA CCC CAG ATT TAC

GAA AAG GCC GTG TCA TCG TTT CCA GAC CCG GCT CTC TAC CCA CTG

10 GGC AGC AGA CAA ATC CTG ACT TGT ACC GCA TAT GGT ATC CCT CAA

CCT ACA ATC AAG TGG TTC TGG CAC CCC TGT AAC CAT AAT CAT TCC

GAA GCA AGG GCT GAC AAC ATC GAC ACT TTT TCT GGA AAC ATT GAG AGC ATC ACT

CAG CGC ATG GCA ATA ATA GAA GGA AAC AAG AAT AAG ATG GCT AGC ACC

TTG GTT GTG GCT GAC TCT AGA ATT TCT GGA ATC TAC ATT TGC ATA

25

GCT TCC AAT AAA GTT GGG ACT GTG GGA AGA AAC ATA AGC TTT TAT

ATC ACA GAT GTG CCA AAT GGG TTT CAT GTT AAC TTG GAA AAA ATG

CCG ACG GAA GGA GAG GAC CTG AAA CTG TCT TGC ACA GTT AAC AAG

TTC TTA TAC AGA GAC GTT ACT TGG ATT TTA CTG CGG ACA GTT AAT

10 AAC AGA ACA ATG CAC TAC AGT ATT AGC AAG CAA AAA ATG GCC ATC

ACT AAG GAG CAC TCC ATC ACT CTT AAT CTT ACC ATC ATG AAT GTT

TCC CTG CAA GAT TCA GGC ACC TAT GCC TGC AGA GCC AGG AAT GTA

15 TAC ACA GGG GAA GAA ATC CTC CAG AAG AAA GAA ATT ACA ATC AGA

GGT GAG CAC TGC AAC AAA AAG GCT GTT TTC TCT CGG ATC TCC AAA

20 TTT AAA AGC ACA AGG AAT GAT TGT ACC ACA CAA AGT AAT GTA AAA

CAT TAA

25

- 28 -

AGGACTCATTAAAAAGTAACAGTTGTCTCATATCATCTTGATTTATTGTCACTGTTG

CTAACTTTCAGGCTCGGAGGAGATGCTCCTCCCAAAATGAGTTCGGAGATGATAGCA

GTAATAATGAGACCCCCGGGCTCCAGCTCTGGGCCCCCCATTCAGGCCGAGGGGGCT

GCTCCGGGGGGCCGACTTGGTGCACGTTTGGATTTGGAGGATCCCTGCACTGCCTTC

10 TCTGTGTTTGTTGCTCTTGCTGTTTTCTCCTGCCTGATAAACAACAACTTGGGATGA

TCCTTTCCATTTTGATGCCAACCTCTTTTTATTTTTAAGCGGCGCGCCCTATAGT

15

(SEQ. ID. NO.: 5)

20

25

- 29 -

TABLE 2

Met Val Ser Tyr Trp Asp Thr Gly Val Leu Leu

Cys Ala Leu Leu Ser Cys Leu Leu Leu Thr Gly Ser Ser Ser Gly

Ser Lys Leu Lys Asp Pro Glu Leu Ser Leu Lys Gly Thr Gln His

leu Met Gln Ala Gly Gln Thr Leu His Leu Gln Cys Arg Gly Glu

Ala Ala His Lys Trp Ser Leu Pro Glu Met Val Ser Lys Glu Ser

Glu Arg Leu Ser Ile Thr Lys Ser Ala Cys Gly Arg Asn Gly Lys

Gln Phe Cys Ser Thr Leu Thr Leu Asn Thr Ala Gln Ala Asn His

Thr Gly Phe Tyr Ser Cys Lys Tyr Leu Ala Val Pro Thr Ser Lys

Lys Lys Glu Thr Glu Ser Ala Ile Tyr Ile Phe Ile Ser Asp Thr

Gly Arg Pro Phe Val Glu Met Tyr Ser Glu Ile Pro Glu Ile Ile

25

His Met Thr Glu Gly Arg Glu Leu Val Ile Pro Cys Arg Val Thr

Ser Pro Asn Ile Thr Val Thr Leu Lys Lys Phe Pro Leu Asp Thr

Leu Ile Pro Asp Gly Lys Arg Ile Ile Trp Asp Ser Arg Lys Gly

Phe Ile Ile Ser Asn Ala Thr Tyr Lys Glu Ile Gly Leu Leu Thr

Cys Glu Ala Thr Val Asn Gly His Leu Tyr Lys Thr Asn Tyr Leu

Thr His Arg Gln Thr Asn Thr Ile Ile Asp Val Gln Ile Ser Thr

Pro Arg Pro Val Lys Leu Leu Arg Gly His Thr Leu Val Leu Asn

Cys Thr Ala Thr Thr Pro Leu Asn Thr Arg Val Gln Met Thr Trp

Ser Tyr Pro Asp Glu Lys Asn Lys Arg Ala Ser Val Arg Arg Arg

Ile Asp Gln Ser Asn Ser His Ala Asn Ile Phe Tyr Ser Val Leu

25

Thr Ile Asp Lys Met Gln Asn Lys Asp Lys Gly Leu Tyr Thr Cys

Arg Val Arg Ser Gly Pro Ser Phe Lys Ser Val Asn Thr Ser Val

His Ile Tyr Asp Lys Ala Phe Ile Thr Val Lys His Arg Lys Gln

Gln Val Leu Glu Thr Val Ala Gly Lys Arg Ser Tyr Arg Leu Ser

Met Lys Val Lys Ala Phe Pro Ser Pro Glu Val Val Trp Leu Lys

Asp Gly Leu Pro Ala Thr Glu Lys Ser Ala Arg Tyr Leu Thr Arg

Gly Tyr Ser Leu Ile Ile Lys Asp Val Thr Glu Glu Asp Ala Gly

Asn Tyr Thr Ile Leu Leu Ser Ile Lys Gln Ser Asn Val Phe Lys

Asn Leu Thr Ala Thr Leu Ile Val Asn Val Lys Pro Gln Ile Tyr

Clu Lys Ala Val Ser Ser Phe Pro Asp Pro Ala Leu Tyr Pro Leu

25

Pro Thr Ile Lys Trp Phe Trp His Pro Cys Asn His Asn His Ser

Glu Ala Arg Cys Asp Phe Cys Ser Asn Asn Glu Glu Ser Phe Ile

Leu Asp Ala Asp Ser Asn Met Gly Asn Arg Ile Glu Ser Ile Thr

10 Gln Arg Met Ala Ile Ile Glu Gly Lys Asn Lys Met Ala Ser Thr

Leu Val Val Ala Asp Ser Arg Ile Ser Gly Ile Tyr Ile Cys Ile

Ala Ser Asn Lys Val Gly Thr Val Gly Arg Asn Ile Ser Phe Tyr

Ile Thr Asp Val Pro Asn Gly Phe His Val Asn Leu Glu Lys Met

Pro Thr Glu Gly Glu Asp Leu Lys Leu Ser Cys Thr Val Asn Lys

Phe Leu Tyr Arg Asp Val Thr Trp Ile Leu Leu Arg Thr Val Asn

25

PCT/US94/01957 WO 94/21679

- 33 -

Asn Arg Thr Met His Tyr Ser Ile Ser Lys Gln Lys Met Ala Ile Thr Lys Glu His Ser Ile Thr Leu Asn Leu Thr Ile Met Asn Val 5 Ser Leu Gln Asp Ser Gly Thr Tyr Ala Cys Arg Ala Arg Asn Val Tyr Thr Gly Glu Glu Ile Leu Gln Lys Lys Glu Ile Thr Ile Arg 10 Gly Glu His Cys Asn Lys Lys Ala Val Phe Ser Arg Ile Ser Lys Phe Lys Ser Thr Arg Asn Asp Cys Thr Thr Gln Ser Asn Val Lys His ••• (SEQ. ID. NO.: 6)

15

EXAMPLE 2

Expression of sVEGF-RI in Sf9 insect cells - The full 20 length sequence encoding sVEGF-RI was cloned as an EcoRI/BamHI fragment into pGEM3Z. The EcoRI site was then modified to a BamHI site and cloned into pBlueBac III 3' of the polyhedrin promoter (psFLTblue). This plasmid was transfected into Sf9 armyworm cells using 25 liposomes. After 48 hours the medium from the transfected cells which contains recombinant polyhedrin virus particles, was harvested. Dilutions $(10^3 - 10^4)$ fold) of the virus were prepared and plaque purified in soft agar containing 150 μ g/ml 5-bromo-4-chloro-3-

indoly1-B-D-galactoside. Recombinant plaques were identified by blue color and used to infect Sf9 cells $(5 \times 10^5 \text{ cells/well})$ in 12 well plates. Medium (100) μ l) from polyhedrin minus infections was used to prepare P-2 viral stocks by infecting 2.5 % 106 cells in a T-25 flask. Large scale high titer P-3 viral stocks were then prepared by infecting Sf9 cells (500 ml at 2 \times 10⁶ cells/ml) with 5 ml of the P-2 stock then 10 incubating at 27°C for 5 - 6 days and the medium was harvested by centrifugation. Protein expression was accomplished by infecting cells at a density of 2-2.5 $\rm X~10^6~cells/ml$ with a multiplicity of infection of 5 -10. Twenty four hours after infection the cells were 15 changed to a serum free medium (SF900II, Gibco BRL), incubated for an additional 48 hours and the medium was collected. This conditioned medium contains the recombinantly expressed sVEGF-RI protein.

20

EXAMPLE 3

Iodination of VEGF - 125 I-labeled human-recombinant VEGF was prepared by the chloramine T method (Hunter, W.M. and Greenwood, F.C., (1962) Nature (London), 194, pp. 495-496). Briefly, 1 μg of VEGF in 30% acetonitrile/0.1% trifluroacetic acid was adjusted to pH 7.1 by the addition of 1/3 volume of 0.4 M sodium phosphate buffer, pH 7.1. Freshly dissolved chloramine T (4 μl of a 2 mg/ml stock in 0.1 M sodium phosphate buffer, pH 7.1) was added to the VEGF solution and reacted for 45 seconds at room temperature (total

volume of 150 μ l). The reaction was stopped by the addition of 50 μ l of 10 mM KI and 50 μ l of 2 mg/ml meta bisufite. The labeled ligand was separated from the free ¹²⁵I by gel filtration on a 0.7 X 15 cm Sephadex G-25 column equilibrated in PBS with 1 mg/ml gelatin. Fractions were counted in a Packard γ counter, aliquoted and stored at -70°C. VEGF was labeled to a specific activity of 5 x 10⁵ to 1 x 10⁶ cpm/ng.

10

Gel Filtration Chromatography - Receptor-ligand complex was formed by incubating 10 μl of ¹²⁵I-labeled VEGF (10⁵ cpm) with 100 μl of either wild-type or baculovirus sVEGF-RI-containing, infected Sf9 cell culture medium overnight at room temperature. The reaction products were separated on a Sephacryl S200 gel filtration column (0.7 % 25 cm) equilibrated in PBS, 1 mg/ml gelatin, at a flow rate of 15 ml/hr. Fractions (0.75 ml) were collected and analyzed in a γ counter. Receptor-ligand complexes pass quickly through the column while the free labelled VEGF passes through more slowly. The results of this experiment shown in Figure 4 demonstrate the formation of a high molecular weight complex between labelled VEGF and sVEGF-RI protein. This shows that sVEGF-RI binds VEGF.

Crosslinking - Purified sVEGF-RI (1-10ng) was added to 25 μ l of binding buffer (Dulbecco's Modified Eagle's medium (DME), 25 mM HEPES, pH 7.5, 0.3% gelatin), and 1 x 10⁵ cpm of [125 I]-VEGF was added (Figure 6, lane 1) with either 200ng of unlabelled VEGF (lane 2) or bFGF

(lane 3), then incubated 2 to 16 hours at room
temperature. Bis(sulfosuccinimidyl)suberate (Pierce)
crosslinker was added to a final concentration of 1

5 mM. The reaction was stopped after 15 min by the
addition of boiling SDS PAGE sample buffer. The
crosslinked products were separated by SDS PAGE on a
7.5% acrylamide gel and analyzed either by
autoradiography or a phosphoimager. The results are
10 shown in Figure 6 and demonstrate that sVEGF-RI binds
labelled VEGF by the appearance of two bands of about
145 kDa and 245 kDa. The 145 kDa band consists of one
sVEGF-RI molecule and one VEGF molecule (Monomer, M.).
The 245 kDa band apparently consists of two sVEGF-RI
15 molecules and one VEGF dimer (D). Free VEGF ligand (L)
dimers migrated at about 45 kDA.

Binding assay - The binding of sVEGF-RI to VEGF was analyzed using a 96 well plate assay as described by Duan, D-S. R. et al., supra. Briefly, sVEGF-RI, 50 to 200 μl partially purified by Mono Q chromatography (Pharmacia), was diluted to 10 ml in 25 mm TRIS, pH-7.4, 100 mm NaCl, 20 mm NH4HCO3. Aliquots (100 μl) were absorbed to the surface of a 96 well plate for 18 hours at 4°C, the plates were then washed twice with blocking buffer (DME, 25 mm HEPES, pH 7.5, 0.5% gelatin) and the nonspecific sites were blocked in the same buffer for 6 hours at 4°C. The plate was then washed twice in binding buffer. Various amounts of [125I]VEGF were added to the wells in a final volume of 100 μl/well and incubated for 2 hours at room

temperature. The wells were washed three times with 100 μl of binding buffer, the bound protein was solubilized with 100 μl of 1% SDS, 0.5% BSA and counted in a γ counter. The results, shown in Figure 7, were analyzed by the method of Scatchard [Scatchard, G., (1949) Ann. N.Y. Acad. Sci., 51, pp. 660-672]. The analysis demonstrates that sVEGF-RI retains high affinity binding for VEGF with a K_d value of about 20 pM. This clearly demonstrates that sVEGF-RI, lacking the transmembrane region and adjacent Ig-like domain, binds VEGF with high affinity and that these regions are not required for VEGF binding.

15 <u>EXAMPLE 4</u>

Inhibition of VEGF binding by sVEGF-RI - The ability of sVEGF-RI to inhibit VEGF binding to HUVECs was tested. HUVECs were plated at 50,000 cells/well in 24 well plates precoated with gelatin, and allowed to grow to confluence. A constant amount of [125]VEGF (100,000 cpm) was mixed with various amounts of partially purified sVEGF-RI in binding buffer, in a total volume of 200 μl and preincubated at room temperature for 1 hour. Samples were added to the cells and incubated

- hour. Samples were added to the cells and incubated for 4 hours at 4°C with shaking. The medium was then aspirated and the cells were washed three times with binding buffer. The bound radioactivity was solubilized with 50 mM TRIS-HC1, pH 8.0, 150 mM NaC1,
- 30 1% NP40, 1% BSA and counted in a γ counter.

The results are shown in Figure 8. At the highest concentration of sVEGF-RI, VEGF binding to HUVECs was reduced by 70%. It may, however, be difficult to completely inhibit binding to the cellular membrane bound receptor since one molecule of sVEGF-R bound to a VEGF dimer may be able to bind to cell associated receptor to form an inactive (sVEGF-RI)-VEGF-(membrane spanning VEGF receptor) complex.

10

EXAMPLE 5

Inhibition of VEGF mediated mitogenesis by sVEGF-RI Mitogenic inhibition - Since sVEGF-RI was able to 15 inhibit VEGF binding to endothelial cells, it was then determined that the soluble receptor could inhibit VEGF induced mitogenesis in HUVECs. HUVECs were plated in gelatin coated 96 well plates at a density of 4000 cells/well in 100 μ l of DME supplemented with 10% heat 20 inactivated fetal calf serum plus antibiotics (penicillin G, 100 units/ml; streptomycin sulfate, 100 ug/ml). After 16 hours the medium was changed and test - ---samples were added, cells were preincubated with a variable amount of purified sVEGF-RI for 15 minutes at 25 37°C before growth factor (10 ng/ml) was added. The cells were incubated for 24 hours then [methyl- 3 H]thymidine (0.8 μ Ci/well; 20 Ci/mmol: 1Ci = 37 GBq, final specific activity of 0.8 µCi/nmole) was added followed by incubated for an additional 72 hours 30 at 37°C under 5% CO_2 . The cells were then washed twice with Hank's balanced salt solution adjusted to pH 7.5

with 25 mM Hepes, 0.1% BSA. The cells were then lysed, the DNA was solubilized with 0.2 M Na₂CO₃, 0.1 M NaOH, and [³H]thymidine incorporation was quantified by scintillation counting. The results are shown in Figure 9. sVEGF-RI was able to completely inhibit VEGF induced [³H]thymidine incorporation in HUVECs.

EXAMPLE 6

10

Purification of baculovirus expressed sVEGF-RI from Sf9 cells - Culture medium from Sf9 cells infected with a baculovirus construct designed to express sVEGF-RI (Example 2) was chromatographed through a heparin

- Sepharose CL-6B (Pharmacia) column (0.7 X 4 cm). The column was washed with 5 volumes of 10 mM Na-phosphate buffer, pH 6.2, 0.1 M NaCl, followed by 6 ml of 10 mM Na-phosphate buffer, pH 6.2, 0.6 M NaCl. The sVEGF-RI was eluted with 10 mM Na-phosphate buffer, pH 6.2, 1.0
- M NaCl. Polyacrylamide gel electrophoresis was performed which demonstrated greater than 90% purity (as judged by coomassie blue staining) of the recombinantly produced sVEGF-R (Figure 5). The identity of the protein was confirmed by N-terminal
- protein sequence analysis. The actual N-terminus (Ser Lys Leu ...) of the recombinant protein differs by two amino acids from that predicted by Shibuya et al., supra. (Ser-Ser-Ser...). The peptidase cleavage site in sVEGF-RI produced in Sf9 cells was between residues
- 30 gly-26 and ser-27.

EXAMPLE 7

Construction of KDR-related sVEGF-R - Soluble forms of 5 KDR (a known VEGF receptor) [Terman, B.I. et al., (1991) Oncogene 6, pp. 1677-1683; Terman, B.I. et al., (1992) Biochem. Biophys. Res. Comm. <u>187</u>, pp. 1579-1586] may exist naturally but have not yet been identified. A soluble form of KDR is recombinantly constructed by 10 modifying its coding sequence by PCR using the primers 1) 5' TTTTGGATCCCTGCAGACAGATCTACGTTTGAGAACC 3' (SEQ. ID. NO.: 7) and 2) 5' TTTTGGATCCTTAACGCTCTAGGACTGTGAGC 3' (SEQ. ID. NO.: 8), and pKDRA (the Xho1/EcoR1 fragment coding for the extracellular and transmembrane 15 domain of KDR cloned into the EcoRI site of pGEM 7Z obtained from Promega) as a template (Figure 17). This generated a translation stop codon after amino acid residue number 663 of KDR which corresponds to the extracellular domain of full length KDR. This modified 20 fragment is then used to replace the Pst1/BamH1 fragment of pKDRA generating a truncated form of the KDR gene (Figure 10) which codes for a soluble receptor denoted sVEGF-RII (Figure 11). The Xhol site at base pair number 257 is then changed to a BamHl site by 25 standard cloning techniques. Another truncated form of the KDR receptor is created with primer 1 shown above, and primer 3) 5' TTTTGGATCCAACGGTCCCTAGGATGATGAC 3', (SEQ. ID. NO.: 9) (Figure 12). This form of KDR, denoted sVEGF-RTMII, is truncated at the C-terminal 30 side of the transmembrane domain and therefore retains the transmembrane region (Figure 13). A similar form

of the FLT receptor is generated by PCR using the

primers 4) 5' AGCACCTTGGTTGTGGCTGACTC 3' (SEQ. ID. NO.: 10) and 5) 5' TTTTGGATCCTTAGATAAGGAGGGTTAATAGG 3' (SEQ. ID. NO.: 11) and plasmid pmFLT (full length flt cloned into the EcoRI site of pGEM3Z obtained from Promega) as a template (Figure 16). The 780 base pair PCR fragment can then be cloned together with the EcoR1/Xba1 fragment from pmFLT to produce an EcoR1/BAMH1 fragment (Figure 14) encoding a truncated form of FLT (denoted 10 sVEGF-RTMI) which retains the transmembrane domain but lacks the cytoplasmic domain (Figure 15). The EcoRl site at the 5' end of the gene is then modified to a BamHl site. The resulting truncated forms of KDR and FLT are then cloned into pBluebacll1 (Stratagene) for 15 expression in Sf9 insect cells. Characterization of these constructed truncated forms of VEGF receptors is accomplished by the techniques used to characterize sVEGF-RI as in Examples 2, 3, 4, 5, and 6.

20

25

SEQUENCE LISTING

	•
5	(1) GENERAL INFORMATION:
	(i) APPLICANT: Thomas, Kenneth A.
10	Kendall, Richard L.
10	(ii) TITLE OF INVENTION: INHIBITOR OF VASCULAR ENDOTHELIAL CEL
15	(iii) NUMBER OF SEQUENCES: 18
	(iv) CORRESPONDENCE ADDRESS:
	(A) ADDRESSEE: Merck & Co., Inc.
	(B) STREET: P.O. Box 2000 126 E Lincoln Avenue
•	(C) CITY: Rahway
20	(D) STATE: NJ
	(E) COUNTRY: USA
-	(F) ZIP: 07065-0907
	(v) COMPUTER READABLE FORM:

25

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.25

- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:

- 43 -

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Wallen, John W.III

(B) REGISTRATION NUMBER: 35,403

5 (C) REFERENCE/DOCKET NUMBER: 18888

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: (908) 594-3905

(B) TELEFAX: (908) 594-4720

10

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

15 (A) LENGTH: 20 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

20 (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

25

GCACCTTGGT TGTGGCTGAC

20

(2) INFORMATION FOR SEQ ID NO:2:

30

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 25 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- 44 .

(ii) MOLECULE TYPE: cDNA

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

TGGAATTCGT GCTGCTTCCT GGTCC

25

10 (2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 26 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

20

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GGAATTCCGC GCTCACCATG GTCAGC

26

25

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 27 base pairs

30

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

WO 94/21679 PCT/US94/01957

- 45 -

(ii) MOLECULE TYPE: cDNA

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

TTTGAATTCA CCCGGCAGGG AATGACG

27

10 (2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2313 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

20

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GCGGACACTC CTCTCGGCTC CTCCCCGGCA GCGGCGGCGG CTCGGAGCGG GCTCCGGGGC 60

25

TCGGGTGCAG CGGCCAGCGG GCCTGGCGGC GAGGATTACC CGGGGAAGTG GTTGTCTCCT 120

GGCTGGAGCC GCGAGACGGG CGCTCAGGGC GCGGGGCCGG CGGCGGCGAA CGAGAGGACG 180

GACTCTGGCG GCCGGGTCGT TGGCCGGGGG AGCGCGGCA CCGGGCGAGC AGGCCGCGTC 240

GCGCTCACCA TGGTCAGCTA CTGGGACACC GGGGTCCTGC TGTGCGCGCT GCTCAGCTGT 300

	CTGCTTCTCA	CAGGATCTAG	TTCAGGTTCA	AAATTAAAAG	ATCCTGAACT	GAGTTTAAAA	360
5	GGCACCCAGC	ACATCATGCA	AGCAGGCCAG	ACACTGCATC	TCCAATGCAG	GGGGGAAGCA	420
	GCCCATAAAT	GGTCTTTGCC	TGAAATGGTG	AGTAAGGAAA	GCGAAAGGCT	GAGCATAACT	480
	AAATCTGCCT	GTGGAAGAAA	TGGCAAACAA	TTCTGCAGTA	CTTTAACCTT	GAACACAGCT	540
10	CAAGCAAACC	ACACTGGCTT	CTACAGCTGC	AAATATCTAG	CTGTACCTAC	TTCAAAGAAG	600
	AAGGAAACAG	AATCTGCAAT	CTATATATTT	ATTAGTGATA	CAGGTAGACC	TTTCGTAGAG	660
15	ATGTACAGTG	AAATCCCCGA	AATTATACAC	ATGACTGAAG	GAAGGGAGCT	CGTCATTCCC	720
	TGCCGGGTTA	CGTCACCTAA	CATCACTGTT	ACTTTAAAAA	AGTTTCCACT	TGACACTTTG	780
	ATCCCTGATG	GAAAACGCAT	AATCTGGGAC	AGTAGAAAGG	GCTTCATCAT	ATCAAATGCA	840
20	ACGTACAAAG	AAATAGGGCT	TCTGACCTGT	GAAGCAACAG	TCAATGGGCA	TTTGTATAAG	900
	ACAAACTATC	TCACACATCG ⁻	ACAAACCAAT	ACAATCATAG	ATGTCCAAAT	AAGCACACCA	-960
25	CGCCCAGTCA	AATTACTTAG	AGGCCATACT	CTTGTCCTCA	ATTGTACTGC	TACCACTCCC	1020
	TTGAACACGA	GAGTTCAAAT	GACCTGGAGT	TACCCTGATG	AAAAAATAA	GAGAGCTTCC	1080
	GTAAGGCGAC	GAATTGACCA	AAGCAATTCC	CATGCCAACA	TATTCTACAG	TGTTCTTACT	1140
30	ATTGACAAAA	TGCAGAACAA	AGACAAAGGA	CTTTATACTT	GTCGTGTAAG	GAGTGGACCA	1200
	TCATTCAAAT	CTGTTAACAC	CTCAGTGCAT	ATATATGATA	AAGCATTCAT	CACTGTGAAA	1260

	CATCGAAAAC	AGCAGGTGCT	TGAAACCGTA	GCTGGCAAGC	GGTCTTACCG	GCTCTCTATG	1320
5	AAAGTGAAGG	CATTTCCCTC	GCCGGAAGTT	GTATGGTTAA	AAGATGGGTT	ACCTGCGACT	1380
	GAGAAATCTG	CTCGCTATTT	GACTCGTGGC	TACTCGTTAA	TTATCAAGGA	CGTAACTGAA	1440
	GAGGATGCAG	GGAATTATAC	AATCTTGCTG	AGCATAAAAC	AGTCAAATGT	GTTTAAAAAC	1500
10	CTCACTGCCA	CTCTAATTGT	CAATGTGAAA	CCCCAGATTT	ACGAAAAGGC	CGTGTCATCG	1560
	TTTCCAGACC	CGGCTCTCTA	CCCACTGGGC	AGCAGACAAA	TCCTGACTTG	TACCGCATAT	1620
15	GGTATCCCTC	AACCTACAAT	CAAGTGGTTC	TGGCACCCCT	GTAACCATAA	TCATTCCGAA	1680
	GCAAGGTGTG	ACTTTTGTTC	CAATAATGAA	GAGTCCTTTA	TCCTGGATGC	TGACAGCAAC	1740
	ATGGGAAACA	GAATTGAGAG	CATCACTCAG	CGCATGGCAA	TAATAGAAGG	AAAGAATAAG	1800
20	ATGGCTAGCA	CCTTGGTTGT	GGCTGACTCT	AGAATTTCTG	GAATCTACAT	TTGCATAGCT	1860
	TCCAATAAAG	TTGGGACTGT	GGGAAGAAAC	ATAAGCTTTT	ATATCACAGA	TGTGCCAAAT	— ·1920
25	GGGTTTCATG	TTAACTTGGA	AAAAATGCCG	ACGGAAGGAG	AGGACCTGAA	ACTGTCTTGC	1980
•	ACAGTTAACA	AGTTCTTATA	CAGAGACGTT	ACTTGGATTT	TACTGCGGAC	AGTTAATAAC	2040
	AGAACAATGC	ACTACAGTAT	TAGCAAGCAA	AAAATGGCCA	TCACTAAGGA	GCACTCCATC	2100
30	ACTCTTAATC .	TTACCATCAT	GAATGTTTCC	CTGCAAGATT	CAGGCACCTA	TGCCTGCAGA	2160
	GCCAGGAATG	TATACACAGG	GGAAGAAATC	CTCCAGAAGA	AAGAAATTAC	AATCAGAGGT	2220

	GAGCACTG	CA AC	CAAA	AAGG	C TG	TTTT	стст	CGG	ATCT	CCA	AATT	TAAA	AG C	ACAA	GGAA	T	2280
5	GATTGTAC							TAA									2313
		SEQU						ς.									
	(,,	-				7 am											
10								ac 10	3								
						o ac		١.									
						SS: :	_	ıe									
		(U)	101	ULU	GY:	line	ar										
			·~. u =	• •	.		. • .										
15	(ii)	MULE	CULE	. 111	PE:	prot	ein										
	•																
	(xi)	SEQU	ENCE	DE	SCRI	PTIO	N: SI	EQ II	D NO:	:6:							
20		·										Ca	41-	Lau	1	£	
20	Met	SEQU Va1			Trp					Leu	Leu	Cys	Ala	Leu		Ser	
20		·									Leu	Cys	Ala	Leu	Leu 15	Ser	
 20	Met 1	Val	Ser	Tyr	Trp 5	Asp	Thr	G1 y	Val	Leu 10				. 	15		
 20	Met 1	·	Ser Leu	Tyr	Trp 5	Asp	Thr	G1 y	Val Ser	Leu 10				Lys	15		- · - · -
 20	Met 1	Val	Ser Leu	Tyr	Trp 5	Asp	Thr	G1 y	Val	Leu 10				. 	15		
 	Het 1 Cys	Val Leu	Ser Leu	Tyr Leu 20	Trp 5 Thr	Asp G1y	Thr Ser	G1y Ser	Val Ser 25	Leu 10 Gly	Ser	Lys	Leu	Lys 30	15 Asp	Pro	
 	Het 1 Cys	Val Leu	Ser Leu Ser	Tyr Leu 20	Trp 5 Thr	Asp G1y	Thr Ser	Gly Ser	Val Ser 25	Leu 10 Gly	Ser	Lys	Leu	Lys 30	15 Asp	Pro	- · - · -
 	Het 1 Cys	Val Leu	Ser Leu	Tyr Leu 20	Trp 5 Thr	Asp G1y	Thr Ser	G1y Ser	Val Ser 25	Leu 10 Gly	Ser	Lys	Leu	Lys 30	15 Asp	Pro	
 	Met 1 Cys	Val Leu Leu	Ser Leu Ser 35	Tyr Leu 20	Trp 5 Thr	G1y	Thr Ser Thr	Gly Ser Gln 40	Val Ser 25	Leu 10 Gly	Ser Met	Lys	Leu Ala 45	Lys 30 G1y	Asp G1n	Pro Thr	
 	Met 1 Cys G1u	Leu Leu	Ser Leu Ser 35	Tyr Leu 20	Trp 5 Thr	G1y	Thr Ser Thr	Gly Ser Gln 40	Val Ser 25	Leu 10 Gly	Ser Met	Lys G1n	Leu Ala 45	Lys 30 G1y	Asp G1n	Pro Thr	
 25	Met 1 Cys G1u	Val Leu Leu	Ser Leu Ser 35	Tyr Leu 20	Trp 5 Thr	G1y	Thr Ser	Gly Ser Gln 40	Val Ser 25	Leu 10 Gly	Ser Met	Lys	Leu Ala 45	Lys 30 G1y	Asp G1n	Pro Thr	
 25	Met 1 Cys G1u	Leu Leu His	Ser Leu Ser 35	Tyr Leu 20 Leu Gîn	Trp 5 Thr Lys	Gly Gry	Thr Ser Thr Gly 55	Gly Ser Gln 40	Val Ser 25 His	Leu 10 Gly Ile	Ser Met	Lys Gln Lys	Leu Ala 45	Lys 30 Gly	Asp G1n	Pro Thr	
 25	Met 1 Cys G1u	Leu Leu	Ser Leu Ser 35	Tyr Leu 20 Leu Gîn	Trp 5 Thr Lys	Gly Gry	Thr Ser Thr Gly 55	Gly Ser Gln 40	Val Ser 25 His	Leu 10 Gly Ile	Ser Met	Lys Gln Lys	Leu Ala 45	Lys 30 Gly	Asp G1n	Pro Thr	

	Cys	Gly	Arg	Asn	G1 y 85	Lys	Gln	Phe	Cys	Ser 90	Thr	Leu	Thr	Leu	Asn 95	Thr
5	Ala	G1 n	A1a	Asn 100	His	Thr	Gly	Phe	Tyr 1 0 5	Ser	Cys	Lys	Tyr	Leu 110	Ala	Val
10	Pro	Thr	Ser 115	Lys	Lys	Lys	G1 u	Thr 120	G1 u	Ser	Ala	Ile	Tyr 125	Ile	Phe	Ile
	Ser	Asp 130	Thr	Gly	Arg	Pro	Phe 135	Val	GΊυ	Met	Tyr	Ser 140	G1 u	Ile	Pro	G1 u
15	Ile 145	Ile	His	Met	Thr	G1 u 150	G1 y	Arg	G1 u	Leu	Va1 155	Ile	Pro	Cys	Arg	Va1 160
	Thr	Ser	Pro	Asn	I1e 165	Thr	Val	Thr	Leu	Lys 170	Lys	Phe	Pro	Leu	Asp 175	Thr
20	Leu	Ile	Pro	Asp 180	G1y 	Lys	Arg	Ile	Ile 185	Trp	Asp	Ser	Arg	Lys 190	G1 y	Phe
25	Ile	Ile	Ser 195	Asn	Ala	Thr	Tyr	Lys 200	G1 u	Ile	G1 y	Leu	Leu 205	Thr	Cys	Glu
	Ala	Thr 210	Val	Asn	G1 y	His	Leu 215	Tyr	Lys	Thr	Asn	Tyr 220	Leu	Thr	His	Arg
20	G1 n 225	Thr	Asn	Thr	Ile	Ile 230	Asp	Val	Gln	Ile	Ser 235	Thr	Pro	Arg		Va1 240
	Lys	Leu	Leu	Arg	G1 y 245	His	Thr	Leu	Val	Leu 250	Asn	Cys	Thr		Thr 255	Thr

	Pro	Lev	Asn	Thr	Arg	Val	G1 n	Met	Thr	Trp	Ser	Tyr	Pro	Asp	G1 u	Lys
				260					265					270		
5	Δen	lue	Arg	د14	Sor	۷a۱	Ara	Ara	Ara	I)e	Asp	Gln	Ser	Asn	Ser	His
		-,,	275	714	J		~. y	280	y			•	285			
			2/3					200					205			
					_	_				.,			M - 1	63 -		1
	Ala		Ile	Phe	lyr	Ser		Leu	Ihr	116	ASP		net	GIN	ASN	Lys
		290					295					300				
10																
	Asp	Lys	G1 y	Leu	Tyr	Thr	Cys	Arg	Val	Arg	Ser	G1 y	Pro	Ser	Phe	Lys
	305					310					315					320
	Ser	Va1	Asn	Thr	Ser	Val	His	Пe	Tyr	Asp	Lys	Ala	Phe	Ile	Thr	Val
15					325					330					335	
	Lys	His	Arg	Lys	Gln	G1n	Va1	Leu	Glu	Thr	Val	Ala	G1 y	Lys	Arg	Ser
				340					345					350		
20	Tvr	Ara	Leu	Ser	Met	Lvs	Val	Lvs	Ala	Phe	Pro	Ser	Pro	G1 u	Val	Va1
			355			-,-		360		_			365			
	Trn	i au	Lys	Δen	61 v	الم ا	Pro	Δla	The	G) ii	lve	Sar	Δla	Ara	Tur	ينم ا
		370	Lys	ush	u.,	Leu	375	710	••••	0.0	Lys	380		~. y	. ,.	Leo
25		3/0					3/5					300				
20				_									63	.		
		Arg	G1 y	lyr	Ser		Tie	ile	Lys	ASP		Inr	610	610	ASP	
	385					390					395					400
	G1 y	Asn	Tyr	Thr	Ile	Leu	Fen	Ser	Ile	Lys	Gln	Ser	Asn	Val	Phe	Lys
30					405					410					415	
	Asn	Leu	Thr	Ala	Thr	Leu	Ile	Val	Asn	۷a۱	Lys	Pro	Gln	Ne	Tyr	61 u
				420					425					430		

	Lys	Ala	Va1 435	Ser	Ser	Phe	Pro	Asp 440	Pro	Ala	Leu	Туг	Рго 445	Leu	G1 y	Ser
5	Arg	G1 n 450	Ile	Leu	Thr	Cys	Thr 455	Ala	Tyr	Gly	Ile	Pro 460	G1 n	Pro	Thr	Ile
10	Lys 465	Trp	Phe	Trp	His	Pro 470	Cys	Asn	His	Asn	His 475	Ser	G1 u	Ala	Arg	Cys 480
	Asp	Phe	Cys	Ser	Asn 485	Asn	Glu	Glu	Ser	Phe 490	Ile	Leu	Asp	Ala	Asp 495	Ser
15	Asn	Met	G1 y	Asn 500	Arg	Ile	Glu	Ser	Ile 505	Thr	G1 n	Arg	Met	A1a 510	Ile	Ile
	G1 u	G1 y	Lys 515	Asn	Lys	Met	Ala	Ser 520	Thr	Leu	Val	Val	A1a 525	Asp	Ser	Arg
20	Ile	Ser 530	61 y	Ile	Tyr	Ile	Cys 535	Ile	Ala	Ser	Asn	Lys 540	Val	G1 y	Thr	Val
	61 y 545		Asn	Ile	Ser	Phe 550	Tyr	Ile	Thr	Asp	Va1 555		Asn	G1 y	Phe	His
25	Val	Asn	Leu	G1u	Lys 565		Pro	Thr	Glu	G1 y 570		Asp	Leu	Lys	Leu 575	Ser
30	Cys	Thr	Val	Asn 580	Lys	Phe	Leu	Tyr	Arg 585		Val	Thr	Trp	I1e 590		Leu
	Arg	Thr	Val 595		Asn	Arg	Thr	Met		Tyr	Ser	Ile	Ser 605		Gln	Lys

36

- 52 -

Met Ala Ile Thr Lys Glu His Ser Ile Thr Leu Asn Leu Thr Ile Met 620 610 5 Asn Val Ser Leu Gln Asp Ser Gly Thr Tyr Ala Cys Arg Ala Arg Asn 625 630 Val Tyr Thr Gly Glu Glu Ile Leu Gln Lys Lys Glu Ile Thr Ile Arg 650 645 10 Gly Glu His Cys Asn Lys Lys Ala Val Phe Ser Arg Ile Ser Lys Phe 670 665 660 'Lys Ser Thr Arg Asn Asp Cys Thr Thr Gln Ser Asn Val Lys His 15 675 680 685 (2) INFORMATION FOR SEQ ID NO:7: (i) SEQUENCE CHARACTERISTICS: 20 (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS:-single-------(D) TOPOLOGY: linear 25 (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: 30

TTTTGGATCC CTGCAGACAG ATCTACGTTT GAGAAC

30

(2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: 5 (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 10 (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: 15 32 TTTTGGATCC TTAACGCTCT AGGACTGTGA GC (2) INFORMATION FOR SEQ ID NO:9: 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (C) STRANDEDNESS: single (D) TOPOLOGY: linear 25 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

TTTTGGATCC AACGGTCCCT AGGATGATGA C

30

- 54 -

(2) INFORMATION FOR SEQ ID NO:10: (i) SEQUENCE CHARACTERISTICS: 5 (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 10 (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10: 15 AGCACCTIGG TIGTGGCTGA CTC 23 (2) INFORMATION FOR SEQ ID NO:11: 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear **25** · (ii) MOLECULE TYPE: DNA (genomic)

TTTTGGATCC TTAGATAAGG AGGGTTAATA GG

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS: 5 (A) LENGTH: 661 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 10 (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12: 15 Ser Lys Leu Lys Asp Pro Glu Leu Ser Leu Lys Gly Thr Gln His Ile 10 15 Met Gln Ala Gly Gln Thr Leu His Leu Gln Cys Arg Gly Glu Ala Ala 20 20 35 25 Ser Ile Thr Lys Ser Ala Cys Gly Arg Asn Gly Lys Gln Phe Cys Ser 50 55 Thr Leu Thr Leu Asn Thr Ala Gln Ala Asn His Thr Gly Phe Tyr Ser 80 75 70 65 30 Cys Lys Tyr Leu Ala Val Pro Thr Ser Lys Lys Glu Thr Glu Ser

	Ala	Ile	Tyr	Ile	Phe	Ile	Ser	Asp	Thr	Gly	Arg	Pro	Phe	Va1	Glu	Met
				100					105					110		
5	Tyr	Ser	Glu	Ile	Pro	G1 u	Ile	Ile	His	Met	Thr	Glu	Gly	Arg	G1 u	Lec
	•		115					120					125	Ī		
	Val	Ile	Pro	Cys	Arg	Val		Ser	Pro	Asn	Ile		Va1	Thr	Leu	Lys
10		130					135					140				
10	lve	Phe	Pro	łeu	Δen	Thr	l eu	Tle	Pro	Aso	61 v	i vs	Ara	Ile.	Ile	Tro
	145				7.50	150					155	-,,-	9			160
	Asp	Ser	Arg	Lys	G1 y	Phe	Ile	Ile	Ser	Asn	Ala	Thr	Tyr	Lys	Glu	Пe
15					165					170					175	
	61	1	1	The	Cue	61. .	A1.	The	V-1	4-0	61	u: c	1 04	Tum	Lys	The
	919	reo	CEO	180	cys	GIU	AIG	1111	185	Mali	uiy	1113	Leu	190	Lys	1111
								٠.								
20	Asn	Tyr	Leu	Thr	His	Arg	Gln	Thr	Asn	Thr	Ile	Ile	Asp	Va1	Gln	Пe
			195					200					205			
	Ser		Pro	Ara	Pro	 Val	 I ve	 1 eu	Len		 61 v	 His	Thr	 Leu	Va1	 I eu
	•••	210		5			215			5	,	220	•			
25																
	Asn	Cys	Thr	Ala	Thr	Thr	Pro	Leu	Asn	Thr	Arg	Val	Gln	Met	Thr	Trp
	225					230					235					240
	Ser	Tur	Pro	Aen	61	lve	Aen	1 ve	Ara	Δla	Sor	Val	Ara	Ara	Arg	T l e
30	Je,	٠,,		vah	245	-,,	A311	-,,	~· y	250	J C.	٠	Al y	~· y	255	
	Asp	G1 n	Ser	Asn	Ser	His	Ala	Asn	Ile	Phe	Tyr	Ser	Val	Leu	Thr	Пe
				260					265					270		

	Asp	Lys	Met 275	G1 n	Asn	Lys	Asp	Lys 280	G1 y	Leu	Tyr	Thr	Cys 285	Arg	Val	Arg
5	Ser	G1 y 290	Pro	Ser	Phe	Lys	Ser 295	Val	Asn	Thr	Ser	Va1 300	His	Ile	Tyr	Asp
10	Lys 305	Ala	Phe	Ile	Thr	Va1 310	Lys	His	Arg	Lys	G1n 315	G1 n	Val	Leu	G1 u	Thr 320
	Val	Ala	G1 y	Lys	Arg 325	Ser	Tyr	Arg	Leu	Ser 330	Met	Lys	Val	Lys	A1a 335	Phe
15	Pro	Ser	Pro	G1 u 340	Val	Val	Trp	Leu	Lys 345	Asp	G1 y	Leu	Pro	A1a 350	Thr	G1u
	Lys	Ser	A1 a 355	Arg	Tyr	Leu	Thr	Arg 360	G1 y	Туг	Ser	Leu	I1e 365	Iìe	Lys	Asp
20	Va1	Thr 370	G1 u	61 u	Asp	Ala	G1 y 375	Asn	Tyr	Thr	ΙΊe	Leu 380	Leu	Ser	Ile	Lys
25	G1 n 385	Ser	Asn	Val	Phe	Lys 390	Asn	Leu	Thr	Ala	Thr 395	Leu	Ile	Val	Asn	Va1 400
	Lys	Pro	G1 n	Ile	Tyr 405		Lys	Ala	Val	Ser 410	Ser	Phe	Pro	Asp	Pro 415	Ala
30	Leu	Tyr	Pro	Leu 420	G1 y	Ser	Arg	Gln	Ile 425	Leú	Thr	Cys	Thr	A1a 430	Tyr	G1 y
	Ile	Pro	G1 n 435	Pro	Thr	Ile	Lys	Trp 440	Phe	Тгр	His	Pro	Cys 445	Asn	His	Asn

	His	Ser	Glu	Ala	Arg	Cys	Asp	Phe	Cys	Ser	Asn	Asn	Glu	Glu	Ser	Phe
		450					455					460				
5	Ile	Lev	Asp	Ala	Asp	Ser	Asn	Met	G1 y	Asn	Arg	Ile	Glu	Ser	Ile	Thr
	465					470					475				÷	480
	G1n	Ara	Met	Δla	Ile	Ile	Glu	G] v	Lvs	Asn	Lvs	Met	Ala	Ser	Thr	Leu
	. •	9			485		-;-	••,	-,,	490	-,-				495	
10								_			_		_			_
	Val	Val	Ala	Asp 500	Ser	Arg	Ile	Ser	G1 y 505	Ile	Tyr	Ile	Cys	Ile 510	Ala	Ser
15	Asn	Lys		G1 y	Thr	۷a۱	G1 y	-	Asn	Ile	Ser	Phe	-	Ile	Thr	Asp
13			515					520					525			
	Val	Pro	Asn	G1 y	Phe	His	Val	Asn	Leu	G1 u	Lys	Met	Pro	Thr	Glu	G1 y
		530					535					540				
20	Glu	Asp	Leu	Lys	Leu	Ser	Cys	Thr	Val	Asn	Lys	Phe	Leu	Tyr	Arg	Asp
	545					550					555					560
	Va1	 Thr	Trp	Ile	Leu	Leu	Arg	 Thr	Val	 Asn	Asn	Arg	Thr	Met	His	Tyr
					565					570					575	
25	· • • • • • • • • • • • • • • • • • • •	71.	Sa=	Lum	Cl-		Mak	A1-	710	Th -	1	61	u: •	°a=	714	Th.
	ser	116	эег	580	9111	Lys	net	MIG	585	105	Lys	010	П15	590	Ile	ınr
										,						
30	Leu	Asn		Thr	Ile	Met	Asn		Ser	Leu	G1 n	Asp		G1 y	Thr	Tyr
			595					600					605			
٠.	Ala	Cys	Arg	Ala	Arg	Asn	Val	Tyr	Thr	G1 y	Glu	G1 u	Ile	Leu	G1 n	Lys
		610					615					620				

Lys Glu Ile Thr Ile Arg Gly Glu His Cys Asn Lys Lys Ala Val Phe 625 630 5 Ser Arg Ile Ser Lys Phe Lys Ser Thr Arg Asn Asp Cys Thr Thr Gln 645 650 655 Ser Asn Val Lys His 660 10 (2) INFORMATION FOR SEQ ID NO:13: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 668 amino acids 15 (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13: 25 Ser Glu Gln Asn Met Gln Ser Lys Val Leu Leu Ala Val Ala Leu Trp 5 10 Leu Cys Val Glu Thr Arg Ala Ala Ser Val Gly Leu Pro Ser Val Ser 20 30 30 Leu Asp Leu Pro Arg Leu Ser Ile Gln Lys Asp Ile Leu Thr Ile Lys

	Ala	Asn 50	Thr	Thr	Leu	Gln	Ile 55	Thr	Cys	Arg	G1 y	G1 n 60	Arg	Asp	Leu	Asp
5	T r p 65	Leu	Trp	Pro	Asn	Asn 70	Gln	Ser	G1 y	Ser	G1u 75	Gìn	Arg	Val	Glu	Va1 80
10	Thr	G1 u	Cys	Ser	Asp 85	G1 y	Leu	Phe	Cys	Lys 90	Thr	Leu	Thr	Ile	Pro 95	Lys
·	Val	Ile	Gly	Asn 100	Asp	Thr	G1 y	Ala	Tyr 105	Lys	Cys	Phe	Tyr	Arg 110	Glu	Thr
15	Asp	Leu	Ala 115	Ser	Val	Ile	Tyr	Va1 120	Tyr	Val	Gln	Asp	Tyr 125	Arg	Ser	Pro
	Phe	Ile 130	Ala	Ser	Val	Ser	Asp 135	G1 n	His	G1 y	Va1	Va1 140	Tyr	Ile	Thr	Glu
20	Asn 145	Lys	Asn	Lys	Thr	Va1 150	Va1	Ile	Pro	Cys	Leu 155	G1 y	Ser	Ile	Ser	Asn 160
25	Leu	Asn	Va1	Ser	Leu 165	Cys	A1a	Arg	Tyr	Pro 170	Glu	Lys	Arg	Phe	Va1	Pro
	Asp	G1 y	Asn	Arg 180	Ile	Ser	Trp	Asp	Ser 185	Lys	Lys	G1 y	Phe	Thr 190	Ile	Pro
30	Ser	Tyr	Met 195	IJe	Ser	Tyr	Ala	G1 y 200	Met	Va1	Phe	Cys	G1 u 205	Ala	Lys	Ile
	Asn	Asp 210	Glu	Ser	Tyr	Gln	Ser 215	Ile	Met	Tyr	Ile	Va1 220	Val	Val	Va1	G1 y

	Tyr 225	Arg	Ile	Tyr	Asp	Va1 230	Val	Leu	Ser	Pro	Ser 235	His	Gly	Ile	Glu	Leu 240
5	Ser	Val	G1 y	G1 u	Lys 245	Leu	Val	Leu	Asn	Cys 250	Thr	Ala	Arg	Thr	G1 u 255	Leu
10	Asn	Val	G1 y	11e 260	Asp	Phe	Asn	Trp	G1 u 265	Tyr	Pro	Ser	Ser	Lys 270	His	Gln
	His	Lys	Lys 275	Leu	Val	Asn	Arg	Asp 280	Leu	Lys	Thr	Gln	Ser 285	G1 y	Ser	Glu
15	Met	Lys 290	Lys	Phe	Leu	Ser	Thr 295	Leu	Thr	Ile	Asp	G1 y 300	Va1	Thr	Arg	Ser
	Asp 305	Gln	G1 y	Leu	Tyr	Thr 310	Cys	Ala	Ala	Ser	Ser 315	61 y	Leu	Met	Thr	Lys 320
								•								
20	Lys	Asn	Ser	Thr	Phe 325	Va1	Arg	Val	His	G1 u 330	Lys	Pro	Phe	Val	A1a 335	Phe
20		Asn Ser			325					330	- -	·····			335	-
	G1 y		G1 y	Met 340	325 G1u	Ser	Leu	Val	G1u 345	330 Ala	Thr	Val	G1 y	G1 u 350	335 Arg	 Va1
	G1 y	Ser	G1 y Pro 355	Met 340 Ala	Glu Lys	Ser Tyr	Leu	Va1 G1y 360	Glu 345 Tyr	Ala Pro	Thr	Va1	G1 y G1 u 365	Glu 350	Arg Lys	Val Trp

	Thr	Val	Ile	Leu	Thr 405	Asn	Pro	Ile	Ser	Lys 410	Glu	Lys	G1n	Ser	His 415	
5	Val	Ser	Leu	Va1 420	Val	Tyr	Val	Pro	Pro 425	G1 n	Ile	G1 y	G1 u	Lys 430	Ser	Leu
10	Ile	Ser	Pro 435	Val	Asp	Ser	Tyr	G1n 440	Tyr	Gly	Thr	Thr	G1 n 445	Thr	Leu	Thr
	Cys	Thr 450	Val	Tyr	Ala	Ile	Pro 455	Pro	Pro	His	His	Ile 460	His	Trp	Tyr	Trp
15	G1 n 465	Lev	61 u	GΊυ	Glυ	Cys 470	Ala	Asn	Glu	Pro	Ser 475	Gln	Ala	Val	Ser	Va1 480
	Thr	Asn	Pro	Tyr	Pro 485	Cys	G1 u	G1 u	Trp	Arg 490	Ser	Val	G1 u	Asp	Phe 495	G1 n
20	G1 y	G1 y	Asn	Lys 500	Ile	Ala	Val	Asn	Lys 505	Asn	G1 n	Phe	Ala	Leu 510	Ile	G 1u
25	G1 y	Lys	Asn 515	Lys	Thr	Va1	Ser	Thr 520	Leu	Val	Ile	Gln	A1 a 525	Ala	Asn	Val
	Ser	A1a 530	Leu	Tyr	Lys	Cys	G1 u 535	Ala	Val	Asn	Lys	Va1 540	61 y	Arg	Gly	Glu
2.0	Arg 545	Va1	Ile	Ser	Phe	His 550	Val	Thr	Arg	Gly	Pro 555	G1 u	Ile	Thr	Leu	G1n 560
	Pro	Asp	Met	G1 n	Pro 565	Thr	G1 u	G1n	G1 u	Ser 570	Val	Ser	Leu	Тгр	Cys 575	Thr

- 63 -

Ala Asp Arg Ser Thr Phe Glu Asn Leu Thr Trp Tyr Lys Leu Gly Pro 590 5 Gin Pro Leu Pro Ile His Val Gly Glu Leu Pro Thr Pro Val Cys Lys 595 Asn Leu Asp Thr Leu Trp Lys Leu Asn Ala Thr Met Phe Ser Asn Ser 620 610 615 10 Thr Asn Asp Ile Leu Ile Met Glu Leu Lys Asn Ala Ser Leu Gln Asp 635 625 630 Gin Gly Asp Tyr Val Cys Leu Ala Gin Asp Arg Lys Thr Lys Lys Arg 15 650 His Cys Val Val Arg Gln Leu Thr Val Leu Glu Arg 660 20 (2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 780 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

30

- 64 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14: Met Val Ser Tyr Trp Asp Thr Gly Val Leu Leu Cys Ala Leu Leu Ser Cys Leu Leu Thr Gly Ser Ser Ser Gly Ser Lys Leu Lys Asp Pro Glu Leu Ser Leu Lys Gly Thr Gln His Ile Met Gln Ala Gly Gln Thr Leu His Leu Gln Cys Arg Gly Glu Ala Ala His Lys Trp Ser Leu Pro Glu Met Val Ser Lys Glu Ser Glu Arg Leu Ser Ile Thr Lys Ser Ala Cys Gly Arg Asn Gly Lys Gln Phe Cys Ser Thr Leu Thr Leu Asn Thr Pro Thr Ser Lys Lys Glu Thr Glu Ser Ala Ile Tyr Ile Phe Ile Ser Asp Thr Gly Arg Pro Phe Val Glu Met Tyr Ser Glu Ile Pro Glu

Ile Ile His Met Thr Glu Gly Arg Glu Leu Val Ile Pro Cys Arg Val

	Thr	Ser	Pro	Asn	Ile	Thr	Val	Thr	Leu	Lys	Lys	Phe	Pro	Leu	Asp	Thr
•					165					170					175	
•																
5	Leu	Пe	Pro	Asp	G1 y	Lys	Arg	Ile	Ile	Trp	Asp	Ser	Arg		G1 y	Phe
				180					185					1.90		
	Ile	Ile	Ser	Asn	Ala	Thr	Tyr	Lys	G1 u	Ile	G1 y	Leu		Thr	Cys	Glu
- 4			195					200					205			
10																•
	Ala	Thr	Val	Asn	Gly	His	Leu	Tyr	Lys	Thr	Asn	Туг	Leu	Thr	His	Arg
		210					215					220				
16	Gln	Thr	Asn	Thr	Ile	Ile	Asp	Val	Gin	Ile		Thr	Pro	Arg	Pro	
15	225					230					235					240
	Lys	Leu	Leu	Arg		His	Thr	Leu	Val		Asn	Cys	Thr	Ala	Thr	Thr
					245					250					255	
20			.	TL	4	V-1	C1-	M-A	Th	T	Ca=	Tun	Des	400	61	l ve
	rro	Leu	ASN		Arg	vai	6111	net	265	тър	Jer	יעי	FIU	270	Glu	Lys
				260							- -					
	Aen	lve	Ara	Δla	Ser	Val	Ara	Ara	Ara	Ile	Asp	G1n	Ser	Asn	Ser	His
	Asn	Lys	_	Ala	Ser	Val	Arg	Arg 280	Arg	Ile	Asp	G1n	Ser 285	Asn	Ser	His
25	Asn	Lys	Arg 275	Ala	Ser	Val	Arg		Arg	Ile	Asp	G1n		Asn	Ser	His
25			275					280					285			
25			275					280					285		Ser	
25		Asn	275				Val	280				Lys	285			
25	Ala	Asn 290	275 Ile	Phe	Tyr	Ser	Va1 295	280 Leu	Thr	Ile	Asp	Lys 300	285 Met	G1n		Lys
25 3 0	Ala	Asn 290	275 Ile	Phe	Tyr	Ser	Va1 295	280 Leu	Thr	Ile	Asp	Lys 300	285 Met	G1n	Asn	Lys
	Ala Asp	Asn 290	275 Ile	Phe	Tyr	Ser	Va1 295	280 Leu	Thr	Ile	Asp Ser	Lys 300	285 Met	G1n	Asn	Lys
	Ala Asp 305	Asn 290 Lys	275 Ile Gly	Phe Leu	Tyr Tyr	Ser Thr 310	Val 295 Cys	280 Leu Arg	Thr Val	Ile Arg	Asp Ser 315	Lys 300 G1y	285 Met	G1n Ser	Asn	Lys Lys 320

	Lys	His	Arg	Lys 340		Gln	Val	Leu	G1u 345		· Val	Ala	G1 y	Lys 350	_	Se:
5	Tyr	Arg	Leu 355	Ser	Met	Lys	Val	Lys 360		Phe	Pro	Ser	Pro 365		Val	Vai
10	Trp	Leu 370		Asp	G1 y	Leu	Pro 375	Ala	Thr	G1 u	Lys	Ser 380	Ala	Arg	Tyr	Leu
	Thr 385	Arg	Gly	Tyr	Ser	Leu 390	Ile	Ile	Lys	Asp	Va1 395		G1 u	G1 u	Asp	A1a 400
15	Gly	Asn	Tyr	Thr	Ile 405	Leu	Leu	Ser	Ile	Lys 410	G1n	Ser	Asn	Val	Phe 415	Lys
	Asn	Leu	Thr	A1 a 420	Thr	Leu	Ile	Va1	Asn 425	Val	Lys	Pro	G1 n	Ile 430	Tyr	G 1u
20	Lys	Ala	Va1 435	Ser	Ser	Phe	Pro	Asp 440	Pro	Ala	Leu	Tyr	Pro 445	Leu	61 y	Ser
· . 25	Arg	G1 n 450	Ile	Leu	Thr	Cys	Thr 455	Ala	Tyr	Gly	Ile	Pro 460	G1 n	Pro	Thr	Ile
	Lys 465	Trp	Phe	Trp		Pro 470	Cys	Asn	His	Asn	His 475	Ser	61u	Ala		Cys 480
30	Asp	Phe	Cys		Asn 485	Asn	G1 u	G1 u	Ser	Phe 490	Ile	Leu	Asp		Asp 495	Ser
	Asn	Met		Asn 500	Arg	Ile	G1 u		I1e		G1 n	Arg		Ala 510	Ile	Ile

	Glu	Gly	Lys 515	Asn	Lys	Met	Ala	Ser 520	Thr	Leu	Val	Val	A1a 525	Asp	Ser	Arg
5	Ile	Ser 530	G1 y	Ile	Tyr	Ile	Cys 535	Ile	Ala	Ser	Asn	Lys 540	Val	G1 y	Thr	Val
10	G1 y 545	Arg	Asn	Ile	Ser	Phe 550	Tyr	Ile	Thr	Asp	Va1 555	Pro	Asn	G1 y	Phe	His 560
	Val	Asn	Leu	G1 u	Lys 565	Met	Pro	Thr	Glu	G1 y 570	Glu	Asp	Leu	Lys	Leu 575	Ser
15	Cys	Thr	Val	Asn 580	Lys	Phe	Leu	Tyr	Arg 585	Asp	Va1	Thr	Trp	Ile 590	Leu	Leu
	Arg	Thr	Va1 595	Asn	Asn	Arg	Thr	Met 600	His	Tyr	Ser	Ile	Ser 605	Lys	G1 n	Lys
20	Met	A1a 610	Ile	Thr	Lys	G10	His 615	Ser	Ile	Thr	Lev	Asn 620	Leu	Thr	Ile	Met
25	Asn 625	Va1	Ser	Leu	Gln	Asp 630	Ser	G1 y	Thr	Tyr	A1a 635	Cys	Arg	Ala	_	Asn 640
	Val	Tyr	Thr	•	G1 u 645	Glu	Ile	Leu	61n	Lys 650	Lys	G1 u	Iìe	Thr	Ile 655	Arg
30	Asp	G1 n	G1 u	A1a 660	Pro	Tyr	Leu	Lev	'Arg 665	Asn	Leu	Ser	-	His 670	Thr	Val
	Ala	Ile	Ser	Ser	Ser	Thr			Asp	•	His		Asn 685	G1 y	Va1	Pro

Glu Pro Gln Ile Thr Trp Phe Lys Asn Asn His Lys Ile Gln Gln Glu 690 695 5 Pro Gly Ile Ile Leu Gly Pro Gly Ser Ser Thr Leu Phe Ile Glu Arg 710 715 705 Val Thr Glu Glu Asp Glu Gly Val Tyr His Cys Lys Ala Thr Asn Gln 735 725 730 10 Lys Gly Ser Val Glu Ser Ser Ala Tyr Leu Thr Val Gln Gly Thr Ser 750 Asp Lys Ser Asn Leu Glu Leu Ile Thr Leu Thr Cys Thr Cys Val Ala 15 755 760 765 . Ala Thr Leu Phe Trp Leu Leu Leu Thr Leu Leu Ile 780 775 770 20 (2) INFORMATION FOR SEQ ID NO:15:

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 788 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15: Met Gln Ser Lys Val Leu Leu Ala Val Ala Leu Trp Leu Cys Val Glu 5 15 Thr Arg Ala Ala Ser Val Gly Leu Pro Ser Val Ser Leu Asp Leu Pro 25 30 20 10 Arg Leu Ser Ile Gln Lys Asp Ile Leu Thr Ile Lys Ala Asn Thr Thr Leu Gln Ile Thr Cys Arg Gly Gln Arg Asp Leu Asp Trp Leu Trp Pro 50 55 15 Asn Asn Gln Ser Gly Ser Glu Gln Arg Val Glu Val Thr Glu Cys Ser 65 70 Asp Gly Leu Phe Cys Lys Thr Leu Thr Ile Pro Lys Val Ile Gly Asn 20 Asp Thr Gly Ala Tyr Lys-Cys-Phe-Tyr-Arg Glu-Thr-Asp. Leu Ala Ser 25 Val Ile Tyr Val Tyr Val Gln Asp Tyr Arg Ser Pro Phe Ile Ala Ser 115 120 125 Val Ser Asp Gln His Gly Val Val Tyr Ile Thr Glu Asn Lys Asn Lys 140 130 135 30 Thr Val Val Ile Pro Cys Leu Gly Ser Ile Ser Asn Leu Asn Val Ser

	Leu	Cys	Ala	Arg	Tyr 165	Pro	G1 u	Lys	Arg	Phe 170	Val	Pro	Asp	Gly	Asn 175	
5	Ile	Ser	Trp	Asp 180	Ser	Lys	Lys	G1 y	Phe 185	Thr	Ile	Pro	Ser	Tyr 190	Met	Ιlε
10	Ser	Tyr	A1a 195	G1 y	Met	Val	Phe	Cys 200	G1u	Ala	Lys	Ile	Asn 205	Asp	G1 u	Ser
	Tyr	G1n 210	Ser	Ile	Met	Tyr	I1e 215	Val	Val	Val	Val	G1 y 220	Tyr	Arg	Ile	Tyr
15	Asp 225	Val	Val	Leu	Ser	Pro 230	Ser	His	G1 y	Ile	G1 u 235	Leu	Ser	Val	Gly	G1 u 240
	Lys	Leu	Val	Leu	Asn 245	Cys	Thr	Ala	Arg	Thr 250	G1 u	Leu	Asn	Val	G1 y 255	Ile
20	Asp	Phe	Asn	Trp 260	G1u	Tyr	Pro	Ser	Ser 265	Lys	His	G1 n	His	Lys 270	Lys	Leu
25	Val	Asn	Arg 275	Asp	Leu	Lys	Thr	G1n 280	Ser	G1 y	Ser	G1 u	Met 285	Lys	Lys	Phe
	Leu	Ser 290	Thr	Leu	Thr	Ile	Asp 295	G1 y	Val	Thr	Arg	Ser 300	Asp	Gln	G1 y	Leu
30	Tyr 305	Thr	Cys	Ala	Ala	Ser 310	Ser	G1 y	Leu	Met	Thr 315	Lys	Lys	Asn	Ser	Thr 320
	Phe	Val	Arg	Va1	His	G1 u	Lys	Pro	Phe	Va1		Phe	Gly	Ser	G1 y	Met

	G1 u	Ser	Leu		GΊυ	Ala	Thr	Val	G1 y 345	Glu	Arg	Val	Arg	Ile 350	Pro	Ala
				340					343					330		
5	Lys	Tyr	Leu	G1 y	Tyr	Pro	Pro		G1 u	Ile	Lys	Trp		Lys	Asn	G1;
			355					360					365			
	Ile	Pro	Leu	Glu	Ser	Asn	His	Thr	Ile	Lys	Ala	G1 y	His	۷a۱	Leu	Thi
10		370					375					380				
	Ile	Met	Glu	Val	Ser	Glu	Arg	Asp	Thr	G1 y	Asn	Tyr	Thr	Val	Iìe	Lei
	385					390					395					400
	Thr	Asn	Pro	Ile	Ser	Lys	Glu	Lys	G1n	Ser	His	Val	Val	Ser	Leu	۷a۱
15					405					410					415	
	Va!	Tyr	Val	Pro	Pro	Gln	Ile	G1 y	G1 u	Lys	Ser	Leu	Ile	Ser	Pro	۷a۱
				420					425					430		
20	Asp	Ser	Tyr	G1n	Tyr	G1 y	Thr	Thr	G1 n	Thr	Leu	Thr	Cys	Thr	Val	Tyr
			435					440					445			
	Ala	Ile	Pro	Pro	Pro	His	His	Ile	 His	Trp	Tyr	Trp	G1n	Leu	Glu	 G1 t
ne ne		450					455					460				
25	G1 u	Cvs	Ala	Asn	G1 u	Pro	Ser	Gln	Ala	Val	Ser	Va1	Thr	Asn	Pro	Tyı
	465	-•-				470					475					480
	Dro	Cue	Glu	61	Trn	۸ra	Sor	Val	61	Δsn	Phe	Gla	G) v	G1 v	Asn	ive
30		cys	4,0	0.0	485	719	561	•••	0.0	490		• • • • • • • • • • • • • • • • • • • •	٠.,	,	495	-,.
	Ile	Ala	Val	Asn 500	Lys	Asn	Gin	Phe	A1a 505	Leu	116	610	uly	Lys 510	ASN	Ly:

	Thr	Val	Ser 515	Thr	Leu	Val	Ile	G1n 520	Ala	Ala	Asn	Val	Ser 525	Ala	Leu	Tyr
5	Lys	Cys 530	G1 u	Ala	Val	Asn	Lys 535	Val	G1 y	Arg	G1 y	G1 u 540	Arg	Va1	Ile	Ser
10	Phe 545	His	Val	Thr	Arg	G1 y 550	Pro	G1 u	Ile	Thr	Leu 555	Gìn	Pro	Asp	Met	G1n 560
	Pro	Thr	G1u	Gln	G1 u 565	Ser	Val	Ser	Leu	Trp 570	Cys	Thr	Ala	Asp	Arg 575	Ser
15	Thr	Phe	Glυ	Asn 580	Leu	Thr	Trp	Tyr	Lys 585	Lev	G1 y	Pro	Gln	Pro 590	Leu	Pro
	Ile	His	Va1 595	61 y	G1 u	Leu	Pro	Thr 600	Pro	Val	Cys	Lys	Asn 605	Leu	Asp	Thr
20	Leu	Trp 610	Lys	Lev	Asn	Ala	Thr 615	Met	Phe	Ser	Asn	Ser 620	Thr	Asn	Asp	Ile
25	Leu 625	Ile	Met	Glu	Leu	Lys 630	Asn	Ala	Ser	Leu	G1n 635	Asp	Gln	Gly	Asp	Tyr 640
	Val	Cys	Lev	Ala	G1n 645	Asp	Arg	Lys	Thr	Lys 650	Lys	Arg	His	Çys	Va1 655	Val
30	Arg	G1n	Leu	Thr 660	Va1	Leu	G1 u	Arg	Va1 665	Ala	Pro	Thr	Пe	Thr 670	G1 y	Asn
	Leu	Glu	Asn 675	Gln	Thr	Thr	Ser	Ile 680	Gly	G1 u	Ser	Ile	G1 u 685	Val	Ser	Cys

	Thr	A1a 690	Ser	G1 y	Asn	Pro	Pro 695	Pro	G1 n	Ile	Met	Trp 700	Phe	Lys	Asp	Asn
5	G1 u 705	Thr	Leu	Val	Glu	Asp 710	Ser	G1 y	Ile	Val	Leu 715	Lys	Asp	G1 y	Asn	Arg 720
10	Asn	Leu	Thr	Пe	Arg 725	Arg	Va1	Arg	Lys	G1 u 730	Asp	G1 u	G1 y	Leu	Tyr 735	Cys
10	Gln	Ala	Cys	Ser 740	Val	Leu	G1 y	Cys	A1a 745	Lys	Val	G1 u	Ala	Phe 750	Phe	Ile
15	Ile	Glu	G1 y 755	Ala	Gìn	G1 u	Lys	Thr 760	Asn	Leu	Glu	Ile	I1e 765	Ile	Leu	Val
	G1 y	Thr 770	Thr	Val	Ile	Ala	Met 775	Phe	Phe	Trp	Leu	Leu 780	Leu	Val	Ile	Ile
20	Leu 785	Gly	Thr	Val												

(2) INFORMATION FOR SEQ ID NO:16:

25 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2264 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

30

(i,i) MOLECULE TYPE: DNA (genomic)

- 74 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

5	GGTGTGGTCG	CTGCGTTTCC	TCTGCCTGCG	CCGGGCATCA	CTTGCGCGCC	GCAGAAAGTC	60
	CGTCTGGCAG	AG CCTGGATATC CTCTCCTACC GGCACCCGCA GACGCCCCTG CAGCCGCGGT GG GCTCCCTAGC CCTGTGCGCT CAACTGTCCT GCGCTGCGGG GTGCCGCGAG 18 CC GCGCCTCCTT CTCTAGACAG GCGCTGGGAG AAAGAACCGG CTCCCGAGTT 24 TC GCCCGGCTCG AGGTGCAGGA TGCAGAGCAA GGTGCTGCTG GCCGTCGCCC 36 TG CGTGGAGACC CGGGCCGCCT CTGTGGGTTT GCCTAGTGTT TCTCTTGATC 36 CT CAGCATACAA AAAGACATAC TTACAATTAA GGCTAATACA ACTCTTCAAA 42 AG GGGACAGAGG GACTTGGACT GGCTTTTGGCC CAATAATCAG AGTGGCAGTG 48 GT GGAGGTGACT GAGTGCAGCG ATGGCCTCTT CTGTAAGACA CTCACAATTC 54 AT CGGAAATGAC AGTGGAGCCT-ACAAGTGCTT-CTACCGGGAA ACTGACTTGG 66 AT TTATGTCTAT GTTCAAGATT ACAGATCTCC ATTTATTGCT TCTGTTAGTG 56 GA GTCGTGTAC ATTACTGAGA ACAAAAACAA AACTGTGGTG ATTCCATGTC 72 AT TTCAAATCTC AACGTGTCAC TTTGTGCAAG ATACCCAGAA AAGAGATTTG 78 GG TAACAGAATT TCCTGGGACA GCAAGAAGGG CTTTACTATT CCCAGCTACA 84	120				
	CGGCGCCCGG	GCTCCCTAGC	CCTGTGCGCT	CAACTGTCCT	GCGCTGCGGG	GTGCCGCGAG	180
10	TTCCACCTCC	GCGCCTCCTT	CTCTAGACAG	GCGCTGGGAG	AAAGAACCGG	CTCCCGAGTT	240
	CCGGCATTTC	GCCCGGCTCG	AGGTGCAGGA	TGCAGAGCAA	GGTGCTGCTG	GCCGTCGCCC	300
15	TGTGGCTCTG	CGTGGAGACC	CGGGCCGCCT	CTGTGGGTTT	GCCTAGTGTT	TCTCTTGATC	360
	TGCCCAGGCT	SECCEGE GETECETAGE CETGTGEGET CAACTGTEET GEGETGEGGG GTGCCGCGAG SECCECC GEGEETECTT CTCTAGACAG GEGETGGGAG AAAGAACEGG CTCCCGAGTT 24 CATTIC GECCEGGETEG AGGTGEAGGA TGCAGAGCAA GGTGETGCTG GECGTEGCEC 30 SECTETG CGTGGAGACE EGGGECGCET CTGTGGGTTT GECTAGTGTT TETETTGATE 36 CAGGET CAGCATACAA AAAGACATAC TTACAATTAA GGCTAATACA ACTETTCAAA 42 TGCAG GGGACAGAGG GACTTGGACT GGCTTTGGCE CAATAATCAG AGTGGCAGTG 48 CAGGGT GGAGGTGACT GAGTGCAGCG ATGGCCTCTT CTGTAAGACA CTCACAATTC 54 GGTGAT-CGGAAATGAC AGTGGAGCCT-ACAAGTGCTT-CTACCGGGAA ACTGACTTGG GGTCAT TTATGTCTAT GTTCAAGATT ACAGATCTCC ATTTATTGCT TCTGTTAGTG 66 CATGG AGTCGTGTAC ATTACTGAGA ACAAAAACAA AACTGTGGTG ATTCCATGTC 72 GTCCAT TTCAAATCTC AACGTGTCAC TTTGTGCCAAG ATACCCAGAA AAGAGATTTG 78 GATGG TAACAGAATT TCCTGGGACA GCAAGAAGGG CTTTACTATT CCCAGCTACA 84	420				
	TTACTTGCAG	GGGACAGAGG	GACTTGGACT	GGCTTTGGCC	CAATAATCAG	AGTGGCAGTG	480
20	AGCAAAGGGT	GGAGGTGACT	GAGTGCAGCG	ATGGCCTCTT	CTGTAAGACA	CTCACAATTC	540
	CAAAAGTGAT	CGGAAATGAC	-ACTGGAGCCT-	-ACAAGTGCTT-	-CTACCGGGAA.	ACTGACTTGG_	600_
25	CCTCGGTCAT	TTATGTCTAT	GTTCAAGATT	ACAGATCTCC	ATTTATTGCT	TCTGTTAGTG	660
	ACCAACATGG	AGTCGTGTAC	ATTACTGAGA	ACAAAAACAA	AACTGTGGTG	ATTCCATGTC	720
	TCGGGTCCAT	TTCAAATCTC	AACGTGTCAC	TTTGTGCAAG	ATACCCAGAA	AAGAGATTTG	780
30	TTCCTGATGG	TAACAGAATT	TCCTGGGACA	GCAAGAAGGG	CTTTACTATT	CCCAGCTACA	840
	TGATCAGCTA	TGCTGGCATG	GTCTTCTGTG	AAGCAAAAAT	TAATGATGAA	AGTTACCAGT	900

	CTATTATGTA	CATAGTTGTC	GTTGTAGGGT	ATAGGATTTA	TGATGTGGTT	CTGAGTCCGT	960
5	CTCATGGAAT	TGAACTATCT	GTTGGAGAAA	AGCTTGTCTT	AAATTGTACA	GCAAGAACTG	1020
	AACTAAATGT	TOT TOTAL CONTROL OF THE CONTROL OF	1080				
	AACTTGTAAA	CCGAGACCTA	AAAACCCAGT	CTGGGAGTGA	GATGAAGAAA	TTTTTGAGCA	1140
10	CCTTAACTAT	AGATGGTGTA	ACCCGGAGTG	ACCAAGGATT	GTACACCTGT	GCAGCATCCA	1200
	GTGGGCTGAT	GACCAAGAAG	AACAGCACAT	TTGTCAGGGT	CCATGAAAAA	CCTTTTGTTG	1260
15	CTTTTGGAAG	TGGCATGGAA	TCTCTGGTGG	AAGCCACGGT	GGGGGAGCGT	GTCAGAATCC	1320
	CTGCGAAGTA	CCTTGGTTAC	CCACCCCCAG	AAATAAAATG	GTATAAAAAT	GGAATACCCC	1380
	TTGAGTCCAA	TCACACAATT	AAAGCGGGGC	ATGTACTGAC	GATTATGGAA	GTGAGTGAAA	1440
20	GAGACACAGG	AAATTACACT	GTCATCCTTA	CCAATCCCAT	TTCAAAGGAG	AAGCAGAGCC	1500
	ATGTGGTCTC-	TCTGGTTGTG	TATGTCCCAC	-CCCAGATTGG	_TGAGAAAT.CT_	CTAATCTCTC	<u>1560</u>
25	CTGTGGATTC	CTACCAGTAC	GGCACCACTC	AAACGCTGAC	ATGTACGGTC	TATGCCATTC	1620
	CTCCCCCGCA	TCACATCCAC	TGGTATTGGC	AGTTGGAGGA	AGAGTGCGCC	AACGAGCCCA	1680
	GCCAAGCTGT	CTCAGTGACA	AACCCATACC .	CTTGTGAAGA	ATGGAGAAGT	GTGGAGGACT	1740
30	TCCAGGGAGG	AAATAAAATT	GCCGTTAATA	AAAATCAATT	TGCTCTAATT	GAAGGAAAAA	1800
	ACAAAACTGT	AAGTACCCTT	GTTATCCAAG	CGGCAAATGT	GTCAGCTTTG	TACAAATGTG	1860
	AAGCGGTCAA	CAAAGTCGGG	AGAGGAGAGA	GGGTGATCTC	CTTCCACGTG	ACCAGGGGTC	1920

PCT/US94/01957

- 76 -

	CTGAAATTAC TITGCAACCT GACATGCAGC CCACTGAGCA GGAGAGCGTG TCTTTGTGGT	1980
5	GCACTGCAGA CAGATCTACG TTTGAGAACC TCACATGGTA CAAGCTTGGC CCACAGCCTC	2040
,	TGCCAATCCA TGTGGGAGAG TTGCCCCACAC CTGTTTGCAA GAACTTGGAT ACTCTTTGGA	2100
	AATTGAATGC CACCATGTTC TCTAATAGCA CAAATGACAT TTTGATCATG GAGCTTAAGA	2160
10	ATGCATCCTT GCAGGACCAA GGAGACTATG TCTGCCTTGC TCAAGACAGG AAGACCAAGA	2220
	AAAGACATTG CGTGGTCAGG CAGCTCACAG TCCTAGAGCG TTAA	2264
15	(2) INFORMATION FOR SEQ ID NO:17:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2352 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
20	(D) TOPOLOGY: linear	
	(-i-i-)MOLECULE_TYPE: DNA (genomic)	
•		
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
		60
	GCGCTCACCA TGGTCAGCTA CTGGGACACC GGGGTCCTGC TGTGCGCGCT GCTCAGCTGT	60
30	CTGCTTCTCA CAGGATCTAG TTCAGGTTCA AAATTAAAAG ATCCTGAACT GAGTTTAAAA	120
	GGCACCCAGC ACATCATGCA AGCAGGCCAG ACACTGCATC TCCAATGCAG GGGGGAAGCA	180
	GCCCATAAAT GGTCTTTGCC TGAAATGGTG AGTAAGGAAA GCGAAAGGCT GAGCATAACT	240

	AAATCTGCCT	GTGGAAGAAA	TGGCAAACAA	TTCTGCAGTA	CTTTAACCTT	GAACACAGCT	300
5	CAAGCAAACC	ACACTGGCTT	CTACAGCTGC	AAATATCTAG	CTGTACCTAC	TTCAAAGAAG	360
	AAGGAAACAG	AATCTGCAAT	CTATATATTT	ATTAGTGATA	CAGGTAGACC	TTTCGTAGAG	420
	ATGTACAGTG	AAATCCCCGA	AATTATACAC	ATGACTGAAG	GAAGGGAGCT	CGTCATTCCC	480
10	TGCCGGGTTA	CGTCACCTAA	CATCACTGTT	ACTTTAAAAA	AGTTTCCACT	TGACACTTTG	540
	ATCCCTGATG	GAAAACGCAT	AATCTGGGAC	AGTAGAAAGG	GCTTCATCAT	ATCAAATGCA	600
15	ACGTACAAAG	AAATAGGGCT	TCTGACCTGT	GAAGCAACAG	TCAATGGGCA	TTTGTATAAG	660
	ACAAACTATC	TCACACATCG	ACAAACCAAT	ACAATCATAG	ATGTCCAAAT	AAGCACACCA	720
	CGCCCAGTCA	AATTACTTAG	AGGCCATACT	CTTGTCCTCA	ATTGTACTGC	TACCACTCCC	780
20	TTGAACACGA	GAGTTCAAAT	GACCTGGAGT	TACCCTGATG	AAAAAAATAA	GAGAGCTTCC	840
 	GTAAGGCGAC	GAATTGACCA	-AAGCAATTEC	-CATGCCAACA	TATT.CTACAG	TGTTCTTACT	900
25	ATTGACAAAA	TGCAGAACAA	AGACAAAGGA	CTTTATACTT	GTCGTGTAAG	GAGTGGACCA	960
	TCATTCAAAT	CTGTTAACAC	CTCAGTGCAT	ATATATGATA	AAGCATTCAT	CACTGTGAAA	1020
	CATCGAAAAC	AGCAGGTGCT	TGAAACCGTA	GCTGGCAAGC	GGTCTTACCG	GCTCTCTATG	1080
30	AAAGTGAAGG	CATTTCCCTC	GCCGGAAGTT	GTATGGTTAA	AAGATGGGTT	ACCTGCGACT	1140
	GAGAAATCTG	CTCGCTATTT	GACTCGTGGC	TACTCGTTAA	. TTATCAAGGA	CGTAACTGAA	1200
			AATCTTCCTC	ACCATAAAAC	ACTCAAATGT	GTTTAAAAAC	1260

	CTCACTGCCA	CTCTAATTGT	CAATGTGAAA	CCCCAGATTT	ACGAAAAGGC	CGTGTCATCG	1320
5	TTTCCAGACC	CGGCTCTCTA	CCCACTGGGC	AGCAGACAAA	TCCTGACTTG	TACCGCATAT	1380 .
	GGTATCCCTC	AACCTACAAT	CAAGTGGTTC	TGGCACCCCT	GTAACCATAA	TTG TACCGCATAT 1: TAA TCATTCCGAA 14 TGC TGACAGCAAC 1! AGG AAAGAATAAG 1: CAT TTGCATAGCT 1: AGA TGTGCCAAAT 1: GAA ACTGTCTTGC 1: GAC AGTTAATAAC 1: CTA TGCCTGCAGA 1: TAC AATCAGAGAT 1: CAT CAGCAGTTCC 2: CTG GTTTAAAAAAC 2: CAG CACGCTGTTT 2: CAC CAACCAGAAG 2: CAC CAACCAGAAG 2:	1440
	GCAAGGTGTG	ACTTTTGTTC	CAATAATGAA	GAGTCCTTTA	TCCTGGATGC	TGACAGCAAC	1500
10	ATGGGAAACA	GAATTGAGAG	CATCACTCAG	CGCATGGCAA	TAATAGAAGG	AAAGAATAAG	1560
	ATGGCTAGCA	CCTTGGTTGT	GGCTGACTCT	AGAATTTCTG	GAATCTACAT	TTGCATAGCT	1620
15	TCCAATAAAG	TTGGGACTGT	GGGAAGAAAC	ATAAGCTTTT	ATATCACAGA	TGTGCCAAAT	1680
	GGGTTTCATG	TTAACTTGGA	AAAAATGCCG	ACGGAAGGAG	AGGACCTGAA	ACTGTCTTGC	1740
	ACAGTTAACA	AGTTCTTATA	CAGAGACGTT	ACTTGGATTT	TACTGCGGAC	AGTTAATAAC	1800
20	AGAACAATGC	ACTACAGTAT	TAGCAAGCAA	AAAATGGCCA	TCACTAAGGA	GCACTCCATC	1860
	.ACTCTTAATC.	TTACCATCAT_	<u>GAATGTTTCC</u>	CTGCAAGATT	CAGGCACCTA	TGCCTGCAGA	1920
25	GCCAGGAATG	TATACACAGG	GGAAGAAATC	CTCCAGAAGA	AAGAAATTAC	AATCAGAGAT	1980
	CAGGAAGCAC	CATACCTCCT	GCGAAACCTC	AGTGATCACA	CAGTGGCCAT	CAGCAGTTCC	2040
	ACCACTTTAG	ACTGTCATGC	TAATGGTGTC	CCCGAGCCTC	AGATCACTTG	GTTTAAAAAC .	2100
30	AACCACAAAA	TACAACAAGA	GCCTGGAATT	ATTTTAGGAC	CAGGAAGCAG	CACGCTGTTT	2160
	ATTGAAAGAG	TCACAGAAGA	GGATGAAGGT	GTCTATCACT	GCAAAGCCAC	CAACCAGAAG	2220
	CCCTCTCTCC	AAAGTTCAGC	ATACCTCACT	CTTCAAGGAA	CCTCGGACAA	GTCTAATCTG	2280

PCT/US94/01957

- 79 -

	GAGCTGATCA CTCTAACATG CACCTGTGTG GCTGCGACTC TCTTCTGGCT CCTATTAACC	2340
, 5	CTCCTTATCT AA	2352
	(2) INFORMATION FOR SEQ ID NO:18:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2383 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: DNA (genomic)	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18: CTCGAGGTGC AGGATGCAGA GCAAGGTGCT GCTGGCCGTC GCCCTGTGGC TCTGCGTGGA	60
	-GACCCGGGCC-GCCTCTGTGG_GTTTGCCTAG. TGTTTCTCTT_GATCTGCCCA_GGCTCAGCAT_	120
25	ACAAAAAGAC ATACTTACAA TTAAGGCTAA TACAACTCTT CAAATTACTT GCAGGGGACA	180
	GAGGGACTTG GACTGGCTTT GGCCCAATAA TCAGAGTGGC AGTGAGCAAA GGGTGGAGGT	240
	GACTGAGTGC AGCGATGGCC TCTTCTGTAA GACACTCACA ATTCCAAAAG TGATCGGAAA	300
30	TGACACTGGA GCCTACAAGT GCTTCTACCG GGAAACTGAC TTGGCCTCGG TCATTTATGT	360
	CTATGTTCAA GATTACAGAT CTCCATTTAT TGCTTCTGTT AGTGACCAAC ATGGAGTCGT	420
	GTACATTACT GAGAACAAAA ACAAAACTGT GGTGATTCCA TGTCTCGGGT CCATTTCAAA	480

5

	TCTCAACGTG	TCACTTTGTG	CAAGATACCC	AGAAAAGAGA	TTTGTTCCTG	ATGGTAACAG	540
5	AATTTCCTGG	GACAGCAAGA	AGGGCTTTAC	TATTCCCAGC	TACATGATCA	GCTATGCTGG	600
	CATGGTCTTC	TGTGAAGCAA	AAATTAATGA	TGAAAGTTAC	CAGTCTATTA	TGTACATAGT	660
	TGTCGTTGTA	GGGTATAGGA	TTTATGATGT	GGTTCTGAGT	CCGTCTCATG	GAATTGAACT	720
10	ATCTGTTGGA	GAAAAGCTTG	TCTTAAATTG	TACAGCAAGA	ACTGAACTAA	ATGTGGGGAT	780
	TGACTTCAAC	TGGGAATACC	CTTCTTCGAA	GCATCAGCAT	AAGAAACTTG	TAAACCGAGA	840
15	CCTAAAAACC	CAGTCTGGGA	GTGAGATGAA	GAAATTTTTG	AGCACCTTAA	CTATAGATGG	900
	TGTAACCCGG	AGTGACCAAG	GATTGTACAC	CTGTGCAGCA	TCCAGTGGGC	TGATGACCAA	960
	GAAGAACAGC	ACATTTGTCA	GGGTCCATGA	AAAACCTTTT	GTTGCTTTTG	GAAGTGGCAT	1020
20	GGAATCTCTG	GTGGAAGCCA	CGGTGGGGGA	GCGTGTCAGA	ATCCCTGCGA	AGTACCTTGG	1080
	TTACCCACCC	.CCAGAAATAA	.AATGGTATAA	AAATGGAATA	CCCCTTGAGT	CCAATCACAC	1140
25	AATTAAAGCG	GGGCATGTAC	TGACGATTAT	GGAAGTGAGT	GAAAGAGACA	CAGGAAATTA	1200
	CACTGTCATC	CTTACCAATC	CCATTTCAAA	GGAGAAGCAG	AGCCATGTGG	TCTCTCTGGT	1260
	TGTGTATGTC	CCACCCCAGA	TTGGTGAGAA	ATCTCTAATC	TCTCCTGTGG	ATTCCTACCA	1320
30	GTACGGCACC	ACTCAAACGC	TGACATGTAC	GGTCTATGCC	ATTCCTCCCC	CGCATCACAT	1380
	CCACTGGTAT	TGGCAGTTGG	AGGAAGAGTG	CGCCAACGAG	CCCAGCCAAG	CTGTCTCAGT	1440
	GACAAACCCA	TACCCTTGTG	AAGAATGGAG	AAGTGTGGAG	GACTTCCAGG	GAGGAAATAA	1500

	AATTGCCGTT	AATAAAAATC	AATTTGCTCT	AATTGAAGGA	AAAAACAAAA	CTGTAAGTAC	1560
5	CCTTGTTATC	CAAGCGGCAA	ATGTGTCAGC	TTTGTACAAA	TGTGAAGCGG	TCAACAAAGT	1620
	CGGGAGAGGA	GAGAGGGTGA	TCTCCTTCCA	CGTGACCAGG	GGTCCTGAAA	TTACTTTGCA	1680
	ACCTGACATG	CAGCCCACTG	AGCAGGAGAG	CGTGTCTTTG	TGGTGCACTG	CAGACAGATC	1740
10	TACGTTTGAG	AACCTCACAT	GGTACAAGCT	TGGCCCACAG	CCTCTGCCAA	TCCATGTGGG	1800
	AGAGTTGCCC	ACACCTGTTT	GCAAGAACTT	GGATACTCTT	TGGAAATTGA	ATGCCACCAT	1860
15	GTTCTCTAAT	AGCACAAATG	ACATTTTGAT	CATGGAGCTT	AAGAATGCAT	CCTTGCAGGA	1920
	CCAAGGAGAC	TATGTCTGCC	TTGCTCAAGA	CAGGAAGACC	AAGAAAAGAC	ATTGCGTGGT	1980
	CAGGCAGCTC	ACAGTCCTAG	AGCGTGTGGC	ACCCACGATC	ACAGGAAACC	TGGAGAATCA	2040
20	GACGACAAGT	ATTGGGGAAA	GCATCGAAGT	CTCATGCACG	GCATCTGGGA	ATCCCCCTCC	2100
	-ACAGATCATG	-T GGTTTAA AG	- ATAATGAGAC	CCTTGTAGAA	.GACT.CAGGCA	TTGTATTGAA_	2160
25	GGATGGGAAC	CGGAACCTCA	CTATCCGCAG	AGTGAGGAAG	GAGGACGAAG	GCCTCTACAC	2220
	CTGCCAGGCA	TGCAGTGTTC	TTGGCTGTGC	AAAAGTGGAG	GCATTTTCA	TAATAGAAGG	2280
	TGCCCAGGAA	AAGACGAACT	TGGAAATCAT	TATTCTAGTA	GGCACGACGG	TGATTGCCAT	2340
30	GTTCTTCTGG	CTACTTCTTG	TCATCATCCT	AGGGACCGTT	TAA		2383

WHAT IS CLAIMED IS:

- A soluble VEGF inhibitor in substantially pure form
 which specifically binds VEGF and inhibits cellular VEGF receptor activity.
- 2. The soluble VEGF inhibitor according to Claim 1 wherein the soluble VEGF receptor is selected from the group consisting of sVEGF-RI, sVEGF-RII, sVEGF-RTMI and sVEGF-RTMII.
- 3. The soluble VEGF inhibitor of Claim 2 corresponding to sVEGF-RI comprising the amino acid sequence:

15

Met Val Ser Tyr Trp Asp Thr Gly Val Leu Leu

Cys Ala Leu Leu Ser Cys Leu Leu Leu Thr Gly Ser Ser Ser Gly

20 Ser Lys Leu Lys Asp Pro Glu Leu Ser Leu Lys Gly Thr Gln His

Ile Met Gln Ala Gly Gln Thr Leu His Leu Gln Cys Arg Gly Glu

Ala Ala His Lys Trp Ser Leu Pro Glu Met Val Ser Lys Glu Ser 25 Glu Arg Leu Ser Ile Thr Lys Ser Ala Cys Gly Arg Asn Gly Lys

Gln Phe Cys Ser Thr Leu Thr Leu Asn Thr Ala Gln Ala Asn His

Thr Gly Phe Tyr Ser Cys Lys Tyr Leu Ala Val Pro Thr Ser Lys

Lys Lys Glu Thr Glu Ser Ala Ile Tyr Ile Phe Ile Ser Asp Thr

Gly Arg Pro Phe Val Glu Met Tyr Ser Glu Ile Pro Glu Ile Ile

10 His Met Thr Glu Gly Arg Glu Leu Val Ile Pro Cys Arg Val Thr

Ser Pro Asn Ile Thr Val Thr Leu Lys Lys Phe Pro Leu Asp Thr

Leu Ile Pro Asp Gly Lys Arg Ile Ile Trp Asp Ser Arg Lys Gly

Phe Ile Ile Ser Asn Ala Thr Tyr Lys Glu Ile Gly Leu Leu Thr

Cys Glu Ala Thr Val Asn Gly His Leu Tyr Lys Thr Asn Tyr Leu

20 Thr His Arg Gln Thr Asn Thr Ile Ile Asp Val Gln Ile Ser Thr

25

· 5

10

15

20

Pro Arg Pro Val Lys Leu Leu Arg Gly His Thr Leu Val Leu Asn
Cys Thr Ala Thr Thr Pro Leu Asn Thr Arg Val Gln Met Thr Trp
Ser Tyr Pro Asp Glu Lys Asn Lys Arg Ala Ser Val Arg Arg Arg
Ile Asp Gln Ser Asn Ser His Ala Asn Ile Phe Tyr Ser Val Leu
Thr Ile Asp Lys Met Gln Asn Lys Asp Lys Gly Leu Tyr Thr Cys
Arg Val Arg Ser Gly Pro Ser Phe Lys Ser Val Asn Thr Ser Val
His Ile Tyr Asp Lys Ala Phe Ile Thr Val Lys His Arg Lys Gln
Gln Val Leu Glu Thr Val Ala Gly Lys Arg Ser Tyr Arg Leu Ser
Met Lys Val Lys Ala Phe Pro Ser Pro Glu Val Val Trp Leu Lys
Asp Gly Leu Pro Ala Thr Glu Lys Ser Ala Arg Tyr Leu Thr Arg

25

Gly Tyr Ser Leu Ile Ile Lys Asp Val Thr Glu Glu Asp Ala Gly

Asn Tyr Thr Ile Leu Leu Ser Ile Lys Gln Ser Asn Val Phe Lys

Asn Leu Thr Ala Thr Leu Ile Val Asn Val Lys Pro Gln Ile Tyr

Glu Lys Ala Val Ser Ser Phe Pro Asp Pro Ala Leu Tyr Pro Leu

Gly Ser Arg Gln Ile Leu Thr Cys Thr Ala Tyr Gly Ile Pro Gln

Pro Thr Ile Lys Trp Phe Trp His Pro Cys Asn His Asn His Ser

Glu Ala Arg Cys Asp Phe Cys Ser Asn Asn Glu Glu Ser Phe Ile

Leu Asp Ala Asp Ser Asn Met Gly Asn Arg Ile Glu Ser Ile Thr

Gln Arg Met Ala Ile Ile Glu Gly Lys Asn Lys Met Ala Ser Thr

Leu Val Val Ala Asp Ser Arg Ile Ser Gly Ile Tyr Ile Cys Ile

25

20

10

15

Ala Ser Asn Lys Val Gly Thr Val Gly Arg Asn Ile Ser Phe Tyr

Ile Thr Asp Val Pro Asn Gly Phe His Val Asn Leu Glu Lys Met

Pro Thr Glu Gly Glu Asp Leu Lys Leu Ser Cys Thr Val Asn Lys

Phe Leu Tyr Arg Asp Val Thr Trp Ile Leu Leu Arg Thr Val Asn

Asn Arg Thr Met His Tyr Ser Ile Ser Lys Gln Lys Met Ala Ile

Thr Lys Glu His Ser Ile Thr Leu Asn Leu Thr Ile Met Asn Val

Ser Leu Gln Asp Ser Gly Thr Tyr Ala Cys Arg Ala Arg Asn Val

Tyr Thr Gly Glu Glu Ile Leu Gln Lys Lys Glu Ile Thr Ile Arg

Gly Glu His Cys Asn Lys Lys Ala Val Phe Ser Arg Ile Ser Lys

Phe Lys Ser Thr Arg Asn Asp Cys Thr Thr Gln Ser Asn Val Lys

His. (SEQ. ID. NO.: 6)

25

- 4. The soluble VEGF inhibitor of Claim 2 corresponding to sVEGF-RI comprising the amino acid sequence:
- Ser Lys Leu Lys Asp Pro Glu Leu Ser Leu Lys Gly Thr Gln His

 Ile Met Gln Ala Gly Gln Thr Leu His Leu Gln Cys Arg Gly Glu

 Ala Ala His Lys Trp Ser Leu Pro Glu Met Val Ser Lys Glu Ser

 Glu Arg Leu Ser Ile Thr Lys Ser Ala Cys Gly Arg Asn Gly Lys

 Gln Phe Cys Ser Thr Leu Thr Leu Asn Thr Ala Gln Ala Asn His

 Thr Gly Phe Tyr Ser Cys Lys Tyr Leu Ala Val Pro Thr Ser Lys

 Lys Lys Glu Thr Glu Ser Ala Ile Tyr Ile Phe Ile Ser Asp Thr

 Gly Arg Pro Phe Val Glu Met Tyr Ser Glu Ile Pro Glu Ile Ile

 His Met Thr Glu Gly Arg Glu Leu Val Ile Pro Cys Arg Val Thr

25

Ser Pro Asn Ile Thr Val Thr Leu Lys Lys Phe Pro Leu Asp Thr

Leu Ile Pro Asp Cly Lys Arg Ile Ile Trp Asp Ser Arg Lys Cly

Phe Ile Ile Ser Asn Ala Thr Tyr Lys Clu Ile Cly Leu Leu Thr

Cys Clu Ala Thr Val Asn Cly His Leu Tyr Lys Thr Asn Tyr Leu

10 Thr His Arg Cln Thr Asn Thr Ile Ile Asp Val Cln Ile Ser Thr

Pro Arg Pro Val Lys Leu Leu Arg Cly His Thr Leu Val Leu Asn

Cys Thr Ala Thr Thr Pro Leu Asn Thr Arg Val Cln Met Thr Trp

Ser Tyr Pro Asp Clu Lys Asn Lys Arg Ala Ser Val Arg Arg Arg

Ile Asp Cln Ser Asn Ser His Ala Asn Ile Phe Tyr Ser Val Leu

20 Thr Ile Asp Lys Met Cln Asn Lys Asp Lys Cly Leu Tyr Thr Cys

25

Arg Val Arg Ser Gly Pro Ser Phe Lys Ser Val Asn Thr Ser Val

His Ile Tyr Asp Lys Ala Phe Ile Thr Val Lys His Arg Lys Gln

Gln Val Leu Glu Thr Val Ala Gly Lys Arg Ser Tyr Arg Leu Ser

Met Lys Val Lys Ala Phe Pro Ser Pro Glu Val Val Trp Leu Lys

10 Asp Gly Leu Pro Ala Thr Glu Lys Ser Ala Arg Tyr Leu Thr Arg

Gly Tyr Ser Leu Ile Ile Lys Asp Val Thr Glu Glu Asp Ala Gly

Asn Tyr Thr Ile Leu Leu Ser Ile Lys Gln Ser Asn Val Phe Lys

Asn Leu Thr Ala Thr Leu Ile Val Asn Val Lys Pro Gln Ile Tyr

Glu Lys Ala Val Ser Ser Phe Pro Asp Pro Ala Leu Tyr Pro Leu

20 Gly Ser Arg Gln Ile Leu Thr Cys Thr Ala Tyr Gly Ile Pro Gln

25

5

Pro Thr Ile Lys Trp Phe Trp His Pro Cys Asn His Asn His Ser Glu Ala Arg Cys Asp Phe Cys Ser Asn Asn Glu Glu Ser Phe Ile Leu Asp Ala Asp Ser Asn Met Gly Asn Arg Ile Glu Ser Ile Thr Gln Arg Met Ala Ile Ile Glu Gly Lys Asn Lys Met Ala Ser Thr 10 Leu Val Val Ala Asp Ser Arg Ile Ser Gly Ile Tyr Ile Cys Ile Ala Ser Asn Lys Val Gly Thr Val Gly Arg Asn Ile Ser Phe Tyr Ile Thr Asp Val Pro Asn Gly Phe His Val Asn Leu Glu Lys Met 15 Pro Thr Glu Gly Glu Asp Leu Lys Leu Ser Cys Thr Val Asn Lys Phe Leu Tyr Arg Asp Val Thr Trp Ile Leu Leu Arg Thr Val Asn 20 Asn Arg Thr Met His Tyr Ser Ile Ser Lys Gln Lys Met Ala Ile

25

Thr Lys Glu His Ser Ile Thr Leu Asn Leu Thr Ile Met Asn Val

Ser Leu Gln Asp Ser Gly Thr Tyr Ala Cys Arg Ala Arg Asn Val

Tyr Thr Gly Glu Glu Ile Leu Gln Lys Lys Glu Ile Thr Ile Arg

Gly Glu His Cys Asn Lys Lys Ala Val Phe Ser Arg Ile Ser Lys

Phe Lys Ser Thr Arg Asn Asp Cys Thr Thr Gln Ser Asn Val Lys

His. (SEQ. ID. NO.: 12)

5. The soluble VEGF inhibitor of Claim 2 corresponding 15 to sVEGF-RII comprising the amino acid sequence:

MQSKVLLAVALWLCVETRAASVGLPSVSLDLPRLSIQKDILTIKANTTLQITCRGQR DLDWLWPNNQSGSEQRVEVTECSDGLFCKTLTIPKVIGNDTGAYKCFYRETDLASVI YVYVQDYRSPFIASVSDQHGVVYITENKNKTVVIPCLGSISNLNVSLCARYPEKRFV

- PDGNRISWDSKKGFTIPSYMISYAGMVFCEAKINDESYQSIMYIVVVVGYRIYDVVL
 SPSHGIELSVGEKLVLNCTARTELNVGIDFNWEYPSSKHQHKKLVNRDLKTQSGSEM
 KKFLSTLTIDGVTRSDQGLYTCAASSGLMTKKNSTFVRVHEKPFVAFGSGMESLVEA
 TVGERVRIPAKYLGYPPPEIKWYKNGIPLESNHTIKAGHVLTIMEVSERDTGNYTVI
 LTNPISKEKQSHVVSLVVYVPPQIGEKSLISPVDSYQYGTTQTLTCTVYAIPPPHHI
- 25 HWYWQLEEECANEPSQAVSVTNPYPCEEWRSVEDFQGGNKIAVNKNQFALIEGKNKT VSTLVIQAANVSALYKCEAVNKVGRGERVISFHVTRGPEITLQPDMQPTEQESVSLW CTADRSTFENLTWYKLGPQPLPIHVGELPTPVCKNLDTLWKLNATMFSNSTNDILIM ELKNASLQDQGDYVCLAQDRKTKKRHCVVRQLTVLER. (SEQ.ID.NO.: 13)

- 6. The soluble VEGF inhibitor of Claim 2 corresponding to sVEGF-RTMI comprising the amino acid sequence:
- 5 MVSYWDTGVLLCALLSCLLLTGSSSGSKLKDPELSLKGTQHIMQAGQTLHLQCRGEA
 AHKWSLPEMVSKESERLSITKSACGRNGKQFCSTLTLNTAQANHTGFYSCKYLAVPT
 SKKKETESAIYIFISDTGRPFVEMYSEIPEIIHMTEGRELVIPCRVTSPNITVTLKK
 FPLDTLIPDGKRIIWDSRKGFIISNATYKEIGLLTCEATVNGHLYKTNYLTHRQTNT
 IIDVQISTPRPVKLLRGHTLVLNCTATTPLNTRVQMTWSYPDEKNKRASVRRIDQS
- 10 NSHANIFYSVLTIDKMQNKDKGLYTCRVRSGPSFKSVNTSVHIYDKAFITVKHRKQQ VLETVAGKRSYRLSMKVKAFPSPEVVWLKDGLPATEKSARYLTRGYSLIIKDVTEED AGNYTILLSIKQSNVFKNLTATLIVNVKPQIYEKAVSSFPDPALYPLGSRQILTCTA YGIPQPTIKWFWHPCNHNHSEARCDFCSNNEESFILDADSNMGNRIESITQRMAIIE GKNKMASTLVVADSRISGIYICIASNKVGTVGRNISFYITDVPNGFHVNLEKMPTEG
- 15 EDLKLSCTVNKFLYRDVTWILLRTVNNRTMHYSISKQKMAITKEHSITLNLTIMNVS LQDSGTYACRARNVYTGEEILQKKEITIRDQEAPYLLRNLSDHTVAISSSTTLDCHA NGVPEPQITWFKNNHKIQQEPGIILGPGSSTLFIERVTEEDEGVYHCKATNQKGSVE SSAYLTVQGTSDKSNLELITLTCTCVAATLFWLLLTLLI. (SEQ. ID. NO.: 14)

- 7. The soluble VEGF inhibitor of Claim 2 corresponding to svEGF-RTMII comprising the amino acid sequence:
- MQSKVLLAVALWLCVETRAASVGLPSVSLDLPRLSIQKDILTIKANTTLQITCRGQR
 25 DLDWLWPNNQSGSEQRVEVTECSDGLFCKTLTIPKVIGNDTGAYKCFYRETDLASVI
 YVYVQDYRSPFIASVSDQHGVVYITENKNKTVVIPCLGSISNLNVSLCARYPEKRFV
 PDGNRISWDSKKGFTIPSYMISYAGMVFCEAKINDESYQSIMYIVVVVGYRIYDVVL
 SPSHGIELSVGEKLVLNCTARTELNVGIDFNWEYPSSKHQHKKLVNRDLKTQSGSEM
 KKFLSTLTIDGVTRSDQGLYTCAASSGLMTKKNSTFVRVHEKPFVAFGSGMESLVEA
 30 TVGERVRIPAKYLGYPPPEIKWYKNGIPLESNHTIKAGHVLTIMEVSERDTGNYTVI
 LTNPISKEKOSHVVSLVVYVPPQIGEKSLISPVDSYQYGTTQTLTCTVYAIPPPHHI

HWYWQLEEECANEPSQAVSVTNPYPCEEWRSVEDFQGGNKIAVNKNQFALIEGKNKT
VSTLVIQAANVSALYKCEAVNKVGRGERVISFHVTRGPEITLQPDMQPTEQESVSLW
CTADRSTFENLTWYKLGPQPLPIHVGELPTPVCKNLDTLWKLNATMFSNSTNDILIM
5 ELKNASLQDQGDYVCLAQDRKTKKRHCVVRQLTVLERVAPTITGNLENQTTSIGESI
EVSCTASGNPPPQIMWFKDNETLVEDSGIVLKDGNRNLTIRRVRKEDEGLYCQACSV
LGCAKVEAFFIIEGAQEKTNLEIIILVGTTVIAMFFWLLLVIILGTV. (SEQ.
ID. NO.: 15)

- 10 8. An expression vector comprising a promoter, and a DNA sequence encoding a soluble VEGF inhibitor for expression in recombinant host cells wherein the soluble VEGF inhibitor is selected from the group consisting of sVEGF-RI, sVEGF-RII, sVEGF-RTMI and sVEGF-RTMII.
 - 9. The expression vector of Claim 8 wherein the DNA encoding the sVEGF-RI comprises the nucleotide sequence:
- 20 GCGGACACTCCTCTCGCCTCCCCGGCAGCGGCGCGCGCGGCTCGGAGCGGGCTCCGGGG

CTCGGGTGCAGCGGCCAGCGGCCTGCCGCCAGGATTACCCGGGGAAGTGGTTGTCTC_

CTGGCTGGAGCCGCGAGACGGGCGCTCAGGGCGCGGGGCGGCGGCGGCGAACGAGAGG

25

ACGGACTCTGGCGGCCGGGTCGTTGGCCGGGGGAGCGGGGGCACCGGGCGAGCAGGCCG

TGC GCG CTG CTC AGC TGT CTG CTT CTC ACA GGA TCT AGT TCA GGT

TCA AAA TTA AAA GAT CCT GAA CTG AGT TTA AAA GGC ACC CAG CAC

ATC ATG CAA GCA GGC CAG ACA CTG CAT CTC CAA TGC AGG GGG GAA

10 GCA GCC CAT AAA TGG TCT TTG CCT GAA ATG GTG AGT AAG GAA AGC

GAA AGG CTG AGC ATA ACT AAA TCT GCC TGT GGA AGA AAT GGC AAA

CAA TTC TGC AGT ACT TTA ACC TTG AAC ACA GCT CAA GCA AAC CAC

ACT GGC TTC TAC AGC TGC AAA TAT CTA GCT GTA CCT ACT TCA AAG

AAG AAG GAA ACA GAA TCT GCA ATC TAT ATA TTT ATT AGT GAT ACA

25

TCA CCT AAC ATC ACT GTT ACT TTA AAA AAG TTT CCA CTT GAC ACT

TTG ATC CCT GAT GGA AAA CGC ATA ATC TGG GAC AGT AGA AAG GGC

TTC ATC ATA TCA AAT GCA ACG TAC AAA GAA ATA GGG CTT CTG ACC

10 TGT GAA GCA ACA GTC AAT GGG CAT TTG TAT AAG ACA AAC TAT CTC

ACA CAT CGA CAA ACC AAT ACA ATC ATA GAT GTC CAA ATA AGC ACA

CCA CGC CCA GTC AAA TTA CTT AGA GGC CAT ACT CTT GTC CTC AAT

TGT ACT GCT ACC ACT CCC TTG AAC ACG AGA GTT CAA ATG ACC TGG

AGT TAC CCT GAT GAA AAA AAA AAT AAG AGA GCT TCC GTA AGG CGA CGA

25

WO 94/21679 PCT/US94/01957

- 96 -

ACT ATT GAC AAA ATG CAG AAC AAA GAC AAA GGA CTT TAT ACT TGT

CGT GTA AGG AGT GGA CCA TCA TTC AAA TCT GTT AAC ACC TCA GTG

CAT ATA TAT GAT AAA GCA TTC ATC ACT GTG AAA CAT CGA AAA CAG

CAG GTG CTT GAA ACC GTA GCT GGC AAG CGG TCT TAC CGG CTC TCT

10 ATG AAA GTG AAG GCA TTT CCC TCG CCG GAA GTT GTA TGG TTA AAA

GAT GGG TTA CCT GCG ACT GAG AAA TCT GCT CGC TAT TTG ACT CGT

AAT TAT ACA ATC TTG CTG AGC ATA AAA CAG TCA AAT GTG TTT AAA

AAC CTC ACT GCC ACT CTA ATT GTC AAT GTG AAA CCC CAG ATT TAC

20 GAA AAG GCC GTG TCA TCG TTT CCA GAC CCG GCT CTC TAC CCA CTG

25

GGC AGC AGA CAA ATC CTG ACT TGT ACC GCA TAT GGT ATC CCT CAA

CCT ACA ATC AAG TGG TTC TGG CAC CCC TGT AAC CAT AAT CAT TCC

GAA GCA AGG TGT GAC TTT TGT TCC AAT AAT GAA GAG TCC TTT ATC

CTG GAT GCT GAC AGC AAC ATG GGA AAC AGA AAT GAA ATT GAG AGC ATC ACT

10 CAG CGC ATG GCA ATA ATA GAA GGA AAT TCT GGA ATC ATC TGG ATC TTC TCT GGA AAC ATA AAC ATT TGC ATA

TTG GTT GTG GCT GAC TCT AGA ATT TCT GGA AAC ATA AGC TTT TAT

ATC ACA GAT GTG CCA AAT GGG TTT CAT GTT AAC TTG GAA AAA ATG

CCG ACG GAA GGA GAG GAC GTT ACT TGG ATT TTA CTG CGG ACA GTT AAC AAG

25

AAC AGA ACA ATG CAC TAC AGT ATT AGC AAG CAA AAA ATG GCC ATC

ACT AAG GAG CAC TCC ATC ACT CTT AAT CTT ACC ATC ATG AAT GTT

TCC CTG CAA GAT TCA GGC ACC TAT GCC TGC AGA GCC AGG AAT GTA

TAC ACA GGG GAA GAA ATC CTC CAG AAG AAA GAA ATT ACA ATC AGA

10 GGT GAG CAC TGC AAC AAA AAG GCT GTT TTC TCT CGG ATC TCC AAA

TTT AAA AGC ACA AGG AAT GAT TGT ACC ACA CAA AGT AAT GTA AAA

CAT TAA AGGACTCATTAAAAAAGTAACAGTTGTCTCATATCATCTTGATTTATTGTCA

CTGTTGCTAACTTTCAGGCTCGGAGGACATGCTCCTCCCCAAAAATGAGTTCGGAGATGAT

AGCAGTAATAATGAGACCCCCCGGGCTCCAGCTCTGGGCCCCCCATTCAGGCCGGAGGGGG

25

20

⁵ (SEO. ID. NO.: 5)

10. The expression vector of Claim 8 wherein the DNA encoding the sVEGF-RII comprises the nucleotide sequence:

10

GGTGTGGTCGCTGCGTTTCCTCTGCCTGCGCCGGGCATCACTTGCGCGCCGCAGAA AGTCCGTCTGGCAGCCTGGATATCCTCTCCTACCGGCACCCGCAGACGCCCCTGCA GCCGCGGTCGGCGCCCGGGCTCCCTAGCCCTGTGCGCTCAACTGTCCTGCGCTGCG GGGTGCCGCGAGTTCCACCTCCGCGCCTCCTTCTCTAGACAGGCGCTGGGAGAAAG AACCGGCTCCCGAGTTCCGGCATTTCGCCCGGCTCGAGGTGCAGGATGCAGAGCAA GGTGCTGCCGCCGTCGCCCTGTGGCTCTGCGTGGAGACCCGGGCCGCCTCTGTGG GTTTGCCTAGTGTTTCTCTTGATCTGCCCAGGCTCAGCATACAAAAAGACATACTT ACAATTAAGGCTAATACAACTCTTCAAATTACTTGCAGGGGACAGAGGGACTTGGA CTGGCTTTGGCCCAATAATCAGAGTGGCAGTGAGCAAAGGGTGAGGTGACTGAGT GCAGCGATGGCCTCTTCTGTAAGACACTCACAATTCCAAAAGTGATCGGAAATGAC ACTGGAGCCTACAAGTGCTTCTACCGGGAAACTGACTTGGCCTCGGTCATTTATGT CTATGTTCAAGATTACAGATCTCCATTTATTGCTTCTGTTAGTGACCAACATGGAG TCGTGTACATTACTGAGAACAAAACAAAACTGTGGTGATTCCATGTCTCGGGTCC ATTTCAAATCTCAACGTGTCACTTTGTGCAAGATACCCAGAAAAGAGATTTGTTCC ²⁵ TGATGGTAACAGAATTTCCTGGGACAGCAAGAAGGGCTTTACTATTCCCAGCTACA TGATCAGCTATGCTGGCATGGTCTTCTGTGAAGCAAAAATTAATGATGAAAGTTAC CAGTCTATTATGTACATAGTTGTCGTTGTAGGGTATAGGATTTATGATGTGGTTCT GAGTCCGTCTCATGGAATTGAACTATCTGTTGGAGAAAAGCTTGTCTTAAATTGTA

CAGCAAGAACTGAACTAAATGTGGGGATTGACTTCAACTGGGAATACCCTTCTTCG AAGCATCAGCATAAGAAACTTGTAAACCGAGACCTAAAAACCCAGTCTGGGAGTGA GATGAAGAAATTTTTGAGCACCTTAACTATAGATGGTGTAACCCGGAGTGACCAAG GATTGTACACCTGTGCAGCATCCAGTGGGCTGATGACCAAGAAGAACAGCACATTT GTCAGGGTCCATGAAAAACCTTTTGTTGCTTTTGGAAGTGGCATGGAATCTCTGGT GGAAGCCACGGTGGGGAGCGTGTCAGAATCCCTGCGAAGTACCTTGGTTACCCAC CCCCAGAAATAAAATGGTATAAAAATGGAATACCCCTTGAGTCCAATCACACAATT AAAGCGGGGCATGTACTGACGATTATGGAAGTGAGTGAAAGAGACACAGGAAATTA CACTGTCATCCTTACCAATCCCATTTCAAAGGAGAAGCAGAGCCATGTGGTCTCTC TGGTTGTGTATGTCCCACCCCAGATTGGTGAGAAATCTCTAATCTCTCCTGTGGAT TCCTACCAGTACGGCACCACTCAAACGCTGACATGTACGGTCTATGCCATTCCTCC CCCGCATCACATCCACTGGTATTGGCAGTTGGAGGAAGAGTGCGCCAACGAGCCCA GCCAAGCTGTCTCAGTGACAAACCCATACCCTTGTGAAGAATGGAGAAGTGTGGAG GACTTCCAGGGAGGAAATAAAATTGCCGTTAATAAAAATCAATTTGCTCTAATTGA AGGAAAAAACAAAACTGTAAGTACCCTTGTTATCCAAGCGGCAAATGTGTCAGCTT TGTACAAATGTGAAGCGGTCAACAAAGTCGGGAGAGGAGAGAGGGTGATCTCCTTC CACGTGACCAGGGGTCCTGAAATTACTTTGCAACCTGACATGCAGCCCACTGAGCA GGAGAGCGTGTCTTTGTGGTGCACTGCAGACAGATCTACGTTTGAGAACCTCACAT GGTACAAGCTTGGCCCACAGCCTCTGCCAATCCATGTGGGAGAGTTGCCCACACCT GTTTGCAAGAACTTGGATACTCTTTGGAAATTGAATGCCACCATGTTCTCTAATAG CACAAATGACATTTTGATCATGGAGCTTAAGAATGCATCCTTGCAGGACCAAGGAG ACTATGTCTGCCTTGCTCAAGACAGGAAGACCAAGAAAAGACATTGCGTGGTCAGG CAGCTCACAGTCCTAGAGCGTTAA. (SEQ. ID. NO.: 16)

- 11. The expression vector of Claim 8 wherein the DNA encoding the sVEGF-RTMI comprises the nucleotide sequence:

GTTTAAAAGGCACCCAGCACATCATGCAAGCAGGCCAGACACTGCATCTCCAATGC AGGGGGGAAGCAGCCCATAAATGGTCTTTGCCTGAAATGGTGAGTAAGGAAAGCGA AAGGCTGAGCATAACTAAATCTGCCTGTGGAAGAAATGGCAAACAATTCTGCAGTA 5 CTTTAACCTTGAACACAGCTCAAGCAAACCACACTGGCTTCTACAGCTGCAAATAT CTAGCTGTACCTACTTCAAAGAAGAAGGAAACAGAATCTGCAATCTATATATTTAT TAGTGATACAGGTAGACCTTTCGTAGAGATGTACAGTGAAATCCCCGAAATTATAC ACATGACTGAAGGAAGGGAGCTCGTCATTCCCTGCCGGGTTACGTCACCTAACATC ACTGTTACTTTAAAAAAGTTTCCACTTGACACTTTGATCCCTGATGGAAAACGCAT AATCTGGGACAGTAGAAAGGGCTTCATCATATCAAATGCAACGTACAAAGAAATAG **GGCTTCTGACCTGTGAAGCAACAGTCAATGGGCATTTGTATAAGACAAACTATCTC** ACACATCGACAAACCAATACAATCATAGATGTCCAAATAAGCACACCACGCCCAGT CAAATTACTTAGAGGCCATACTCTTGTCCTCAATTGTACTGCTACCACTCCCTTGA GTAAGGCGACGAATTGACCAAAGCAATTCCCATGCCAACATATTCTACAGTGTTCT TACTATTGACAAAATGCAGAACAAAGACAAAGGACTTTATACTTGTCGTGTAAGGA ATCACTGTGAAACATCGAAAACAGCAGGTGCTTGAAACCGTAGCTGGCAAGCGGTC TTACCGGCTCTCTATGAAAGTGAAGGCATTTCCCTCGCCGGAAGTTGTATGGTTAA AAGATGGGTTACCTGCGACTGAGAAATCTGCTCGCTATTTGACTCGTGGCTACTCG TTAATTATCAAGGACGTAACTGAAGAGGATGCAGGGAATTATACAATCTTGCTGAG CATAAAACAGTCAAATGTGTTTAAAAACCTCACTGCCACTCTAATTGTCAATGTGA AACCCCAGATTTACGAAAAGGCCGTGTCATCGTTTCCAGACCCGGCTCTCTACCCA CTGGGCAGCAGACAAATCCTGACTTGTACCGCATATGGTATCCCTCAACCTACAAT 25 CAAGTGGTTCTGGCACCCCTGTAACCATAATCATTCCGAAGCAAGGTGTGACTTTT GTTCCAATAATGAAGAGTCCTTTATCCTGGATGCTGACAGCAACATGGGAAACAGA ATTGAGAGCATCACTCAGCGCATGGCAATAATAGAAGGAAAGAATAAGATGGCTAG CACCTTGGTTGTGGCTGACTCTAGAATTTCTGGAATCTACATTTGCATAGCTTCCA ATAAAGTTGGGACTGTGGGAAGAAACATAAGCTTTTATATCACAGATGTGCCAAAT 30 GGGTTTCATGTTAACTTGGAAAAAATGCCGACGGAAGGAGGAGGACCTGAAACTGTC

TTGCACAGTTAACAAGTTCTTATACAGAGACGTTACTTGGATTTTACTGCGGACAG

TTAATAACAGAACAATGCACTACAGTATTAGCAAGCAAAAAAATGGCCATCACTAAG
GAGCACTCCATCACTCTTAATCTTACCATCATGAATGTTTCCCTGCAAGATTCAGG
CACCTATGCCTGCAGAGCCAGGAATGTATACACAGGGGAAGAAATCCTCCAGAAGA

AAGAAATTACAATCAGAGATCAGGAAGCACCATACCTCCTGCGAAACCTCAGTGAT
CACACAGTGGCCATCAGCAGTTCCACCACTTTAGACTGTCATGCTAATGGTGTCCC
CGAGCCTCAGATCACTTGGTTTAAAAAACAACCACAAAATACAACAAGAGCCTGGAA
TTATTTTAGGACCAGGAAGCAGCACGCTGTTTATTGAAAGAGTCACAGAAGAGT
GAAGGTGTCTATCACTGCAAAGCCACCAACCAGAAGGGCTCTGTGGAAAGTTCAGC

10
ATACCTCACTGTTCAAGGAACCTCGGACAAGTCTAATCTGGAGCTGATCACTCTAA
CATGCACCTGTTGGGCTGCGACTCTCTTCTGGCTCCTATTAACCCTCCTTATCTAA
. (SEO. ID. NO.: 17)

12. The expression vector of Claim 8 wherein the DNA encoding the sVEGF-RTMII comprises the nucleotide sequence:

CTCGAGGTGCAGGATGCAGAGCAAGGTGCTGCTGGCCGTCGCCCTGTGGCTCTGCG
TGGAGACCCGGGCCGCCTCTGTGGGTTTGCCTAGTGTTTCTCTTGATCTGCCCAGG
CTCAGCATACAAAAAGACATACTTACAATTAAGGCTAATACAACTCTTCAAATTAC
TTGCAGGGGACAGAGGGACTTGGACTGGCTTTGGCCCAATAATCAGAGTGGCAGTG
AGCAAAGGGTGGAGGTGACTGAGTGCAGCGATGGCCTCTTCTGTAAGACACTCACA
ATTCCAAAAGTGATCGGAAATGACACTGGAGCCTACAAGTGCTTCTACCGGGAAAC
TGACTTGGCCTCGGTCATTTATGTCTATGTTCAAGATTACAGATCTCCATTTATTG

CTTCTGTTAGTGACCAACATGGAGTCGTGTACATTACTGAGAACAAAAACAAAACT
GTGGTGATTCCATGTCTCGGGTCCATTTCAAATCTCAACGTGTCACTTTGTGCAAG
ATACCCAGAAAAGAGATTTGTTCCTGATGGTAACAGAATTTCCTGGGACAGCAAGA
AGGGCTTTACTATTCCCAGCTACATGATCAGCTATGCTGGCATGGTCTTCTGTGAA
GCAAAAATTAATGATGAAAAGTTACCAGTCTATTATGTACATAGTTGTCCTTGTAGG
GTATAGGATTTATGATGTGGTTCTGAGTCCGTCTCATGGAATTGAACTATCTGTTG
GAGAAAAGCTTGTCTTAAATTGTACAGCAAGAACTGAACTAAATGTGGGGATTGAC

TTCAACTGGGAATACCCTTCTTCGAAGCATCAGCATAAGAAACTTGTAAACCGAGA CCTAAAAACCCAGTCTGGGAGTGAGATGAAGAAATTTTTGAGCACCTTAACTATAG ATGGTGTAACCCGGAGTGACCAAGGATTGTACACCTGTGCAGCATCCAGTGGGCTG ATGACCAAGAAGAACAGCACATTTGTCAGGGTCCATGAAAAACCTTTTGTTGCTTT TGGAAGTGGCATGGAATCTCTGGTGGAAGCCACGGTGGGGGAGCGTGTCAGAATCC CTGCGAAGTACCTTGGTTACCCACCCCCAGAAATAAAATGGTATAAAAATGGAATA CCCCTTGAGTCCAATCACACAATTAAAGCGGGGCATGTACTGACGATTATGGAAGT GAGTGAAAGAGACACAGGAAATTACACTGTCATCCTTACCAATCCCATTTCAAAGG 10 AGAAGCAGAGCCATGTGGTCTCTCTGGTTGTGTATGTCCCACCCCAGATTGGTGAG AAATCTCTAATCTCTCCTGTGGATTCCTACCAGTACGGCACCACTCAAACGCTGAC ATGTACGGTCTATGCCATTCCTCCCCCGCATCACATCCACTGGTATTGGCAGTTGG AGGAAGAGTGCGCCAACGAGCCCAGCCAAGCTGTCTCAGTGACAAACCCATACCCT TGTGAAGAATGGAGAAGTGTGGAGGACTTCCAGGGAGGAAATAAAATTGCCGTTAA TCCAAGCGGCAAATGTGTCAGCTTTGTACAAATGTGAAGCGGTCAACAAAGTCGGG AGAGGAGAGGGTGATCTCCTTCCACGTGACCAGGGGTCCTGAAATTACTTTGCA ACCTGACATGCAGCCCACTGAGCAGGAGAGCGTGTCTTTGTGGTGCACTGCAGACA GATCTACGTTTGAGAACCTCACATGGTACAAGCTTGGCCCACAGCCTCTGCCAATC 20 CATGTGGGAGAGTTGCCCACACCTGTTTGCAAGAACTTGGATACTCTTTGGAAATT GAATGCCACCATGTTCTCTAATAGCACAAATGACATTTTGATCATGGAGCTTAAGA ATGCATCCTTGCAGGACCAAGGAGACTATGTCTGCCTTGCTCAAGACAGGAAGACC AAGAAAAGACATTGCGTGGTCAGGCAGCTCACAGTCCTAGAGCGTGTGGCACCCAC GATCACAGGAAACCTGGAGAATCAGACGACAAGTATTGGGGAAAGCATCGAAGTCT CATGCACGGCATCTGGGAATCCCCCTCCACAGATCATGTGGTTTAAAGATAATGAG ACCCTTGTAGAAGACTCAGGCATTGTATTGAAGGATGGGAACCGGAACCTCACTAT CCGCAGAGTGAGGAAGGACGAAGGCCTCTACACCTGCCAGGCATGCAGTGTTC TTGGCTGTGCAAAAGTGGAGGCATTTTTCATAATAGAAGGTGCCCAGGAAAAGACG AACTTGGAAATCATTATTCTAGTAGGCACGACGGTGATTGCCATGTTCTTCTGGCT

ACTTCTTGTCATCATCCTAGGGACCGTTTAA. (SEQ. ID. NO.: 18)

WO 94/21679 PCT/US94/01957

- 104 -

- 13. A recombinant host cell containing the expression vector of Claim 8.
- 14. A method for inhibiting VEGF receptor function comprising the administration of the VEGF inhibitor of Claim 1 in an amount sufficient to inhibit VEGF receptor function.
- 10 15. The method of Claim 14 wherein the VEGF inhibitor is selected from the group consisting of sVEGF-RI, sVEGF-RII, sVEGF-RTMI, and sVEGF-RTMII.
- 16. A pharmaceutical composition comprising the inhibitor of Claim 1 and a pharmaceutically acceptable carrier.
- 17. The pharmaceutical composition of Claim 16 wherein the inhibitor is selected from the group consisting of sVEGF-RI, sVEGF-RII, sVEGF-RTMI, and sVEGF-RTMII.
 - 18. A method for inhibiting angiogenesis comprising the administration of the VEGF inhibitor of Claim 1 in an amount sufficient to inhibit angiogensis.

SUBSTITUTE SHEET (RULE 26)

AGCTGTCTGCTTCTCACAGGATCTAGTTCAGGTTCAAAATTAAAAGATCCTGAACTGAGTTTA AAAGGCACCCAGCACATCATGCAAGCAGGCCAGACACTGCATCTCCAATGCAGGGGGAAG **AAATCTGCCTGTGGAAGAAATGGCAAACAATTCTGCAGTACTTTAACCTTGAACACAGGTCAA** TGAAATCCCCGAAATTATACACATGACTGAAGGAAGGGAGCTCGTCATTCCCTGCCGGGTTA CGTCACCTAACATCACTGTTACTTTAAAAAGTTTCCACTTGACACTTTGATCCCTGATGGAA **CGACAAACCAATACAATCATAGATGTCCAAATAAGCACACCACCCCAGTCAAATTACTTA**G **AGGCCATACTCTTGTCCTCAATTGTACTGCTACCACTCCCTTGAACACGGAGAGTTCAAATGAC** CTGGAGTTACCCTGATGAAAAAATAAGAGAGCTTCCGTAAGGCGACGAATTGACCAAAGCA GACTITATACTIGICGIGIAAGGAGIGGACCATCATICAAAICIGITAACACCICAGIGCATA IATATGATAAAGCATICATCACIGIGAAACATCGAAAACAGCAGGIGCTIGAAACCGIAGCI **GCGGACACTCCTCTCGGCTCCTCCCCGGCAGCGGCGGCGGCTCGGAGCGGGCTCCGGGG** CTGGCTGGAGCCGCGAGACGGGCGCTCAGGGCGCGGGGGGCGGCGGCGGCGGCGAACGAGA GCAAACCACACTGGCTTCTACAGCTGCAAATATCTAGCTGTACCTACTTCAAAGAAGAAGGA **AACAGAATCTGCAATCTATATTTATTAGTGATACAGGTAGACCTTTCGTAGAGATGTACAG ATTCCCATGCCAACATATTCTACAGTGTTCTTACTATTGACAAAATGCAGAACAAAGACAAAG** GACGGACTCTGGCGGCCGGGTCGTTGGCCGGGGAGCGCGGGCACCGGGCGAGCAGGC CGCGTCGCGCTCACCATGGTCAGCTACTGGGACACCGGGGGTCCTGCTGTGCGCGCTGCTC CAGCCCATAAATGGTCTTTGCCTGAAATGGTGAGTAAGGAAAGCGAAAGGCTGAGCATAAC **GGGCTTCTGACCTGTGAAGCAACAGTCAATGGGCATTTGTATAAGACAAACTATCTCACACA** CTCGGGTGCAGCGGCCAGCGGGCCTGGCGGCGAGGATTACCCGGGGAAGTGGTTGTCTC **AACGCATAATCTGGGACAGTAGAAAGGGCTTCATCATATCAAATGCAACGTACAAAGAAATA** 3GCAAGCGGTCTTACCGGCTCTCTATGAAAGTGAAGGCATTTCCCTCGCCGGAAGTTGTAT

F16. 21

CCAAATGGGTTTCATGTTAACTTGGAAAAATGCCGACGGAAGGAGGAGGACCTGAAACTGTC ACACAAAGTAATGTAAAACATTAAAGGACTCATTAAAAAGTAACAGTTGTCTCATATCATCTTG BAGATGATAGCAGTAATAATGAGACCCCGGGCTCCAGCTCTGGGCCCCCCATTCAGGCCG TAATTATCAAGGACGTAACTGAAGAGGATGCAGGGAATTATACAATCTTGCTGAGCATAAAA <u> GGTTAAAAGATGGGTTACCTGCGACTGAGAAATCTGCTCGCTATTTGACTCGTGGCTACTCG</u> CAGTCAAATGTGTTTAAAAACCTCACTGCCACTCTAATTGTCAATGTGAAACCCCAGATTTAC CTCTTAATCTTACCATCATGAATGTTTCCCTGCAAGATTCAGGCACCTATGCCTGCAGAGCC/ 'GCAACAAAAAGGCTGTTTTCTCTCGGATCTCCAAATTTAAAAGCACAAGGAATGATTGTACC AGGGGGCTGCTCCGGGGGGCCGACTTGGTGCACGTTTGGATTTGGAGGATCCCTGCACTG GAAAAGGCCGTGTCATCGTTTCCAGACCCGGCTCTCTACCCACTGGGCAGCAGAAATCC CAGAACAATGCACTACAGTATTAGCAAGCAAAAATGGCCATCACTAAGGAGCACTCCATCA GCTGACAGCAACATGGGAAACAGAATTGAGAGCATCACTCAGCGCATGGCAATAATAGAAG GAAAGAATAAGATGGCTAGCACCTTGGTTGTGGCTGACTCTAGAATTTCTGGAATCTACATT TGCACAGTTAACAAGTTCTTATACAGAGGTTACTTGGATTTTACTGCGGACAGTTAATAA **CCTTCTCTGTGTTTGTTGCTCTTGCTGTTTTCTCCTGCCTGATAAACAACAACTTGGGATGAT** IGACTTGTACCGCATATGGTATCCCTCAACCTACAATCAAGTGGTTCTGGCACCCCTGTAAC CATAATCATTCCGAAGCAAGGTGTGACTTTTGTTCCAATAATGAAGAGTCCTTTATCCTGGA1 GCATAGCTTCCAATAAAGTTGGGACTGTGGGAAGAACATAAGCTTTTATATCACAGATGTG **ATTTATTGTCACTGTTGCTAACTTTCAGGCTCGGAGGAGATGCTCCTCCCAAAATGAGTTCG** SCTTTCCATTTTGATGCCAACCTCTTTTTATTTTTAAGCGGCGCCTATAGT

FIG. 2B

YITDVPNGFHVNLEKMPTEGEDLKLSCTVNKFLYRDVTWILLRTVNNRTMHYSIS **ADSNMGNRIESITORMAIIEGKNKMASTLVVADSRISGIYICIASNKVGTVGRNISF** KOKMAITKEHSITLNLTIMNVSLODSGTYACRARNVYTGEEILOKKEITIRGEHCN RGEAAHKWSLPEMVSKESERLSITKSACGRNGKQFCSTLTLNTAQANHTGFYS NITVTLKKFPLDTLIPDGKRIIWDSRKGFIISNATYKEIGLLTCEATVNGHLYKTNYL **DPALYPLGSRQILTCTAYGIPQPTIKWFWHPCNHNHSEARCDFCSNNEESFILD** CKYLAVPTSKKKETESAIYIFISDTGRPFVEMYSEIPEIIHMTEGRELVIPCRVTSP DKAFITVKHRKQQVLETVAGKRSYRLSMKVKAFPSPEVVWLKDGLPATEKSAR YLTRGYSLIIKDVTEEDAGNYTILLSIKQSNVFKNLTATLIVNVKPQIYEKAVSSFP **THROTINIIDVOISTPRIVKLLRGHTLYLNCTATTPLNTRYOMTWSYPDEKNKR MVSYWDTGVLLCALLSCLLLTGSSSGSKLKDPELSLKGTQHIMQAGQTLHLQC ASVRRRIDOSNSHANIFYSVLTIDKMONKDKGLYTCRVRSGPSFKSVNTSVHIY** KKAVFSRISKFKSTRNDCTTQSNVKH (SEQ. ID. NO.: 6)

F16. 3

SUBSTITUTE SHEET (RULE 26)

FIG. 5

FIG. 6

PCT/US94/01957

FIG. 7B SUBSTITUTE SHEET (RULE 26)

FIG. 8

FIG. 9 SUBSTITUTE SHEET (RULE 26)

SAAAAGCTTGTCTTAAATTGTACAGCAAGAACTGAACTAAATGTGGGGATTGACTTCAACTGG GTAGGGTATAGGATTTATGATGTGGTTCTGAGTCCGTCTCATGGAATTGAACTATCTGTTGGA CGGCGCCCGGGCTCCCTAGCCCTGTGCGCTCAACTGTCCTGCGCTGCGGGGTGCCGCGAG ATTTATGTCTATGTTCAAGATTACAGATCTCCATTTATTGCTTCTGTTAGTGACCAACATGGAG ATCTCAACGTGTCACTTTGTGCAAGATACCCAGAAAAGAGATTTGTTCCTGATGGTAACAGAA 3GGAGTGAGATGAAGAAATTTTTGAGCACCTTAACTATAGATGGTGTAACCCGGAGTGACCA **GCAGGGGACAGAGGGACTTGGACTGGCTTTGGCCCAATAATCAGAGTGGCAGTGAGCAAA** CGTGTACATTACTGAGAACAAAACAAAACTGTGGTGATTCCATGTCTCGGGTCCATTTCAA TTCCTGGGACAGCAAGAGGGCTTTACTATTCCCAGCTACATGATCAGCTATGCTGGCATG SGGCATTTCGCCCGGCTCGAGGTGCAGGATGCAGAGGCAAGGTGCTGCTGGCGTCGCCCT GTGGCTCTGCGTGGAGACCCGGGCCGCCTCTGTGGGTTTGCCTAGTGTTTCTCTTGATCTG GATCGGAAATGACACTGGAGCCTACAAGTGCTTCTACCGGGAAACTGACTTGGCCTCGGTC GGTGTGGTCGCTGCGTTTCCTCTGCCTGCGCCGGGCATCACTTGCGCGCCGCCGCAGAAGTC **SGTCTGGCAGCCTGGATATCCTCCTACCGGCACCCGCAGACGCCCCTGCAGCCGCGG**1 **SCCAGGCTCAGCATACAAAAAGACATACTTACAATTAAGGCTAATACAACTCTTCAAATTAC**1 **GGGTGGAGGTGACTGAGTGCAGCGATGGCCTCTTCTGTAAGACACTCACAATTCCAAAAG**1 **STCTTCTGTGAAGCAAAATTAATGATGAAGTTACCAGTCTATTATGTACATAGTTGTCGT**

FIG. 104

ATGTGAAGCGGTCAACAAAGTCGGGAGAGAGAGAGGGGTGATCTCCTTCCACGTGACCAGG **AGGAAAAAACAAAACTGTAAGTACCCTTGTTATCCAAGCGGCAAATGTGTCAGCTTTGTACAA GGTCCTGAAATTACTTTGCAACCTGACATGCAGCCCACTGAGCAGGAGAGCGTGTCTTTGTG** GTGCACTGCAGACAGATCTACGTTTGAGAACCTCACATGGTACAAGCTTGGCCCACAGCCTC **AGGATTGTACACCTGTGCAGCATCCAGTGGGCTGATGACCAAGAAGAACAGCACATTTGTCA** GGTCCATGAAAAACCTTTTGTTGCTTTTGGAAGTGGCATGGAATCTCTGGTGGAAGCCACG **ATTATGGAAGTGAAAGAGACACAGGAAATTACACTGTCATCCTTACCAATCCCATTTCA** GTGGAGGACTTCCAGGGAGGAATAAAATTGCCGTTAATAAAAATCAATTTGCTCTAATTGA GGTATAAAAATGGAATACCCCTTGAGTCCAATCACACAATTAAAGCGGGGCATGTACTGACG GCCAATCCATGTGGGAGAGTTGCCCACACCTGTTTGCAAGAACTTGGATACTCTTTGGAAA TGAATGCCACCATGTTCTCTAATAGCACAAATGACATTTTGATCATGGAGCTTAAGAATGCA **AAGGAGAAGCAGAGCCATGTGGTCTCTGGTTGTGTATGTCCCACCCCAGATTGGTGAGA** AATCTCTAATCTCCTGTGGATTCCTACCAGTACGGCACCACTCAAACGCTGACATGTACG GTCTATGCCATTCCTCCCCGGCATCACATCCACTGGTATTGGCAGTTGGAGGAAGAGTGCG CCAACGAGCCCAGCCAAGGTGTCTCAGTGACAAACCCATACCCTTGTGAAGAATGGAGAAG CCTTGCAGGACCAAGGAGACTATGTCTGCCTTGCTCAAGACAGGAAGAGACCAAGAAAAGAC **ATTGCGTGGTCAGGCAGCTCACAGTCCTAGAGCGTTAA**

F1G. 10B

GGGNKIAVNKNQFALIEGKNKTVSTLVIQAANVSALYKCEAVNKVGRGERVISFH RDLKTOSGSEMKKFLSTLTIDGVTRSDQGLYTCAASSGLMTKKNSTFVRVHEK PFVAFGSGMESLVEATVGERVRIPAKYLGYPPPEIKWYKNGIPLESNHTIKAGHV MQSKVLLAVALWLCVETRAASVGLPSVSLDLPRLSIQKDILTIKANTTLQITCRGQ RDLDWLWPNNQSGSEQRVEVTECSDGLFCKTLTIPKVIGNDTGAYKCFYRETD LASVIYVYVQDYRSPFIASVSDQHGVVYITENKNKTVVIPCLGSISNLNVSLCARY PEKRFVPDGNRISWDSKKGFTIPSYMISYAGMVFCEAKINDESYQSIMYIVVVVG **TIMEVSERDTGNYTVILTNPISKEKQSHVVSLVVYVPPQIGEKSLISPVDSYQYG VTRGPEITLOPDMQPTEQESVSLWCTADRSTFENLTWYKLGPQPLPIHVGELPT TOTLTCTVYAIPPPHHIHWYWQLEEECANEPSQAVSVTNPYPCEEWRSVEDF** PVCKNLDTLWKLNATMFSNSTNDILIMELKNASLQDQGDYVCLAQDRKTKKRH YRIYDVVLSPSHGIELSVGEKLVLNCTARTELNVGIDFNWEYPSSKHQHKKLVN CVVRQLTVLER...

F16. 11

Ĺ

GAAAAGCTTGTCTTAAATTGTACAGCAAGAACTGAACTAAATGTGGGGATTGACTTCAACTGG **AGGATTGTACACCTGTGCAGCATCCAGTGGGCTGATGACCAAGAAGAACAGCACATTTGTCA** SGGTCCATGAAAAACCTTTTGTTGCTTTTGGAAGTGGCATGGAATCTCTGGTGGAAGCCACG ATCTCAACGTGTCACTTTGTGCAAGATACCCAGAAAAGAGATTTGTTCCTGATGGTAACAGAA **GTAGGGTATAGGATTTATGATGTGGTTCTGAGTCCGTCTCATGGAATTGAACTATCTGTTGGA** GGGAGTGAGATGAAGAATTTTTGAGCACCTTAACTATAGATGGTGTAACCCGGAGTGACCA 2GGCGCCCGGGCTCCCTAGCCCTGTGCGCTCAACTGTCCTGCGCTGCGGGGTGCCGCGAG TCGTGTACATTACTGAGAACAAAACAAAACTGTGGTGATTCCATGTCTCGGGTCCATTTCAA GAATACCCTTCTTCGAAGCATCAGCATAAGAAACTTGTAAACCGAGACCTAAAAACCCAGTC **ATTTATGTCTATGTTCAAGATTACAGATCTCCATTTATTGCTTCTGTTAGTGACCAACATGGAG** TTCCTGGGACAGCAAGAGGGCTTTACTATTCCCAGCTACATGATCAGCTATGCTGGCATG GCAGGGGACAGAGGGACTTGGACTGGCTTTGGCCCAATAATCAGAGTGGCAGTGAGAAA STGGCTCTGCGTGGAGACCCGGGCCGCCTCTGTGGGTTTGCCTAGTGTTTCTCTTGATCTG **3ATCGGAAATGACACTGGAGCCTACAAGTGCTTCTACCGGGAAACTGACTTGGCCTCGGTC SCCAGGCTCAGCATACAAAAGACATACTTACAATTAAGGCTAATACAACTCTTCAAATTACT 3GGTGGAGGTGACTGAGTGCAGCGATGGCCTCTTCTGTAAGACACTCACAATTCCAAAAGT** SGTCTGGCAGCCTGGATATCCTCTCCTACCGGCACCCGCAGACGCCCCTGCAGCCGCGGT CGGCATTTCGCCCGGCTCGAGGTGCAGGATGCAGAGCAAGGTGCTGCTGGCCGTCGCCCT GTCTTCTGTGAAGCAAAAATTAATGATGAAAGTTACCAGTCTATTATGTACATAGTTGTCGTT **3GTGTGGTCGCTGCGTTTCCTCTGCCTGCGCCGGCCATCACTTGCGCGCCGCGCAGAAGTC**

F16. 12A

AGGAAAAACAAAACTGTAAGTACCCTTGTTATCCAAGCGGCAAATGTGTCAGCTTTGTACAA ATGTGAAGCGGTCAACAAAGTCGGGAGAGAGAGAGGGTGATCTCCTTCCACGTGACCAGG GTGCACTGCAGACAGATCTACGTTTGAGAACCTCACATGGTACAAGCTTGGCCCACAGCCTC **AAGGTGCCCAGGAAAAGACGAACTTGGAAATCATTATTCTAGTAGGCACGACGGTGATTGCC GGTCCTGAAATTACTTTGCAACCTGACATGCAGCCCACTGAGCAGGAGAGCGTGTCTTTGTG** TATGGAAGTGAGTGAAAGAGACACAGGAAATTACACTGTCATCCTTACCAATCCCATTTCA TGAATGCCACCATGTTCTCTAATAGCACAAATGACATTTTGATCATGGAGCTTAAGAATGCA CTACACCTGCCAGGCATGCAGTGTTCTTGGCTGTGCAAAAGTGGAGGCATTTTTCATAATAG 3GTATAAAAATGGAATACCCCTTGAGTCCAATCACACAATTAAAGCGGGGCATGTACTGACG CCAACGAGCCCAGCCAAGCTGTCTCAGTGACAAACCCATACCCTTGTGAAGAATGGAGAAG GTGGAGGACTTCCAGGGAGGAATAAAATTGCCGTTAATAAAAATCAATTTGCTCTAATTGA IGCCAATCCATGTGGGAGAGTTGCCCACACCTGTTTGCAAGAACTTGGATACTCTTTGGAAA **ATTGCGTGGTCAGGCTCACAGTCCTAGAGCGTGTGGCACCCACGATCACAGGAAACCT VAGGAGAAGCAGAGCCATGTGGTCTCTCTGGTTGTGTATGTCCCACCCCAGATTGGTGAGA** AATCTCTAATCTCCTGTGGATTCCTACCAGTACGGCACCACTCAAACGCTGACATGTACG STCTATGCCATTCCTCCCCGGCATCACATCCACTGGTATTGGCAGTTGGAGGAAGAGTGCG **GGAGAATCAGACGACAAGTATTGGGGAAAGCATCGAAGTCTCATGCACGGCATCTGGGAAT** SCCCCTCCACAGATCATGTGGTTTAAAGATAATGAGACCCTTGTAGAAGACTCAGGCATTGT **ATGITCTTCTGGCTACTTCTTGTCATCATCCTAGGGACCGTTTAA**

F1G. 12B

MQSKVLLAVALWLCVETRAASVGLPSVSLDLPRLSIQKDILTIKANTTLQITCRGQ RDLDWLWPNNQSGSEQRVEVTECSDGLFCKTLTIPKVIGNDTGAYKCFYRETD LASVIYVYVQDYRSPFIASVSDQHGVVYITENKNKTVVIPCLGSISNLNVSLCARY PEKRFVPDGNRISWDSKKGFTIPSYMISYAGMVFCEAKINDESYQSIMYIVVVVG YRIYDVVLSPSHGIELSVGEKLVLNCTARTELNVGIDFNWEYPSSKHQHKKLVN RDLKTQSGSEMKKFLSTLTIDGVTRSDQGLYTCAASSGLMTKKNSTFVRVHEK PFVAFGSGMESLVEATVGERVRIPAKYLGYPPPEIKWYKNGIPLESNHTIKAGHV LTIMEVSERDTGNYTVILTNPISKEKQSHVVSLVVYVPPQIGEKSLISPVDSYQYG TTQTLTCTVYAIPPPHHIHWYWQLEEECANEPSQAVSVTNPYPCEEWRSVEDF QGGNKIAVNKNQFALIEGKNKTVSTLVIQAANVSALYKCEAVNKVGRGERVISFH VTRGPEITLQPDMQPTEQESVSLWCTADRSTFENLTWYKLGPQPLPIHVGELPT PVCKNLDTLWKLNATMFSNSTNDILIMELKNASLQDQGDYVCLAQDRKTKKRH CVVRQLTVLERVAPTITGNLENQTTSIGESIEVSCTASGNPPPQIMWFKDNETLV EDSGIVLKDGNRNLTIRRVRKEDEGLYTCQACSVLGCAKVEAFFIIEGAQEKTNL EIIILVGTTVIAMFFWLLLVIILGTV··· (SEQ. ID. NO.: 15)

FIG. 13

ATCCCCGAAATTATACACATGACTGAAGGAAGGGAGCTCGTCATTCCCTGCCGGGTTACGTC TCTGACCTGTGAAGCAACAGTCAATGGGCATTTGTATAAGACAAACTATCTCACACATCGAC CATACTCTTGTCCTCAATTGTACTGCTACCACTCCCTTGAACACGAGAGTTCAAATGACCTGG **AGCGGTCTTACCGGCTCTCTATGAAAGTGAAGGCATTTCCCTCGCCGGAAGTTGTATGGTTA** SCATGCCAACATATTCTACAGTGTTCTTACTATTGACAAAATGCAGAACAAAGACAAAGGACT **AGTTACCCTGATGAAAAAAAAAAGAGCTTCCGTAAGGCGACGAATTGACCAAAGCAATTC** GATAAAGCATTCATCACTGTGAAACATCGAAAACAGCAGGTGCTTGAAACCGTAGCTGGCA CTGCTTCTCACAGGATCTAGTTCAGGTTCAAAATTAAAAGATCCTGAACTGAGTTTAAAAGGC CATAAATGGTCTTTGCCTGAAATGGTGAGTAAGGAAAGCGAAAGGCTGAGCATAACTAAATC ACCACACTGGCTTCTACAGCTGCAAATATCTAGCTGTACCTACTTCAAAGAAGAAGGAAACA GAATCTGCAATCTATATTTATTAGTGATACAGGTAGACCTTTCGTAGAGATGTACAGTGAA **ACCTAACATCACTGTTACTTTAAAAAAGTTTCCACTTGACACTTTGATCCCTGATGGAAAACG** SATAATCTGGGACAGTAGAAAGGGCTTCATCATATCAAATGCAACGTACAAAGAAATAGGGC TATACTTGTCGTGTAAGGAGTGGACCATCATTCAAATCTGTTAACACCTCAGTGCATATATA AAACCAATACAATCATAGATGTCCAAATAAGCACACCCCCCCAGTCAAATTACTTAGAGGC WAGATGGGTTACCTGCGACTGAGAAATCTGCTCGCTATTTGACTCGTGGCTACTCGTTAAT **ACCCAGCACATCATGCAAGCAGGCCAGACACTGCATCTCCAATGCAGGGGGGAAGCAGCC** GCCTGTGGAAGAAATGGCAAACAATTCTGCAGTACTTTAACCTTGAACACAGCTCAAGCAA CGCTCACCATGGTCAGCTACTGGGACACCGGGGTCCTGCTGTGCGCGCTGCTCAGCTGT

FIG. 14A

)

AATGCACTACAGTATTAGCAAGCAAAAATGGCCATCACTAAGGAGCACTCCATCACTCTTAA CATGCTAATGGTGTCCCCGAGCCTCAGATCACTTGGTTTAAAAACAACCACAAAATACAACA **AGAGCCTGGAATTATTTTAGGACCAGGAAGCAGCACGCTGTTTATTGAAAGAGTCACAGAAG GGGTTTCATGTTAACTTGGAAAAATGCCGACGGAAGGAGGAGGACCTGAAACTGTCTTGCAC** 'ATACACAGGGGAAGAAATCCTCCAGAAGAAAGAAATTACAATCAGAGATCAGGAAGCACCA ACCTCCTGCGAAACCTCAGTGATCACAGTGGCCATCAGCAGTTCCACCACTTTAGACTG TGTACCGCATATGGTATCCCTCAACCTACAATCAAGTGGTTCTGGCACCCCTGTAACCATAA TCATTCCGAAGCAAGGTGTGACTTTTGTTCCAATAATGAAGAGTCCTTTATCCTGGATGCTGA CAGCAACATGGGAAACAGAATTGAGAGCATCACTCAGGGCATGGCAATAATAGAAGGAAAG **AATAAGATGGCTAGCACCTTGGTTGTGGCTGACTCTAGAATTTCTGGAATCTACATTTGCATA** ICTTACCATCATGAATGTTTCCCTGCAAGATTCAGGCACCTATGCCTGCAGAGCCAGGAATG GCTTCCAATAAAGTTGGGACTGTGGGAAGAAACATAAGCTTTTATATCACAGATGTGCCAAA1 **AGTTAACAAGTTCTTATACAGAGACGTTACTTGGATTTTACTGCGGACAGTTAATAACAGAAC** AGGATGAAGGTGTCTATCACTGCAAAGCCACCAACCAGAAGGGCTCTGTGGAAAGTTCAGC **ATACCTCACTGTTCAAGGAACCTCGGACAAGTCTAATCTGGAGCTGATCACTCTAACATGCA** SCTGTGTGGCTGCGACTCTCTTCTGGCTCCTATTAACCCTCCTTATCTAA (SEQ. ID. NO.: 17) **AGGCCGTGTCATCGTTTCCAGACCCGGCTCTCTACCCACTGGGCAGCAGAAAATCCTGAC** CAAATGTGTTTAAAAACCTCACTGCCACTCTAATTGTCAATGTGAAACCCCAGATTTACGAAA 'ATCAAGGACGTAACTGAAGAGGATGCAGGGAATTATACAATCTTGCTGAGCATAAAACAGI

-16. 14B

MVSYWDTGVLLCALLSCLLLTGSSSGSKLKDPELSLKGTQHIMQAGQTLHLQC RGEAAHKWSLPEMVSKESERLSITKSACGRNGKQFCSTLTLNTAQANHTGFYS CKYLAVPTSKKKETESAIYIFISDTGRPFVEMYSEIPEIIHMTEGRELVIPCRVTSP NITVTLKKFPLDTLIPDGKRIIWDSRKGFIISNATYKEIGLLTCEATVNGHLYKTNYL THRQTNTIIDVQISTPRPVKLLRGHTLVLNCTATTPLNTRVQMTWSYPDEKNKR ASVRRRIDQSNSHANIFYSVLTIDKMQNKDKGLYTCRVRSGPSFKSVNTSVHIY DKAFITVKHRKQQVLETVAGKRSYRLSMKVKAFPSPEVVWLKDGLPATEKSAR YLTRGYSLIIKDVTEEDAGNYTILLSIKQSNVFKNLTATLIVNVKPQIYEKAVSSFP DPALYPLGSRQILTCTAYGIPQPTIKWFWHPCNHNHSEARCDFCSNNEESFILD ADSNMGNRIESITQRMAIIEGKNKMASTLVVADSRISGIYICIASNKVGTVGRNISF YITDVPNGFHVNLEKMPTEGEDLKLSCTVNKFLYRDVTWILLRTVNNRTMHYSIS KQKMAITKEHSITLNLTIMNVSLQDSGTYACRARNVYTGEEILQKKEITIRDQEAP YLLRNLSDHTVAISSSTTLDCHANGVPEPQITWFKNNHKIQQEPGIILGPGSSTLF IERVTEEDEGVYHCKATNQKGSVESSAYLTVQGTSDKSNLELITLTCTCVAATLF WLLLTLLI (SEQ. ID. NO.:14)

FIG. 15

FIG. 16

FIG. 17

X	Further documents are listed in the continuation of Box (:. 🔲	See patent family annex.	
•	Special categories of cited documents:	·T·	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the	
.w.	document defining the general state of the art which is not considered to be part of particular relevance		principle or theory underlying the invention	
•Е•	carlier document published on or after the international filing date	ж.	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step	
.r.	document which may throw doubts on priority claim(s) or which is		when the document is taken alone	
	cited to establish the publication date of another citation or other special reason (as specified)	·Y•	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is	
.0.	document referring to an oral disclosure, use, exhibition or other means		combined with one or more other such documents, such combination being obvious to a person skilled in the art	
•P•	document published prior to the international filing data but later than the priority date claimed	.\$.	document member of the same patent family	
Date of the actual completion of the international search		Date of mailing of the international search report		
		∣ J	UN 03 1994	
12	MAY 1994	•		
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231		Authorized officer Sally P. Teng Telephone No. (703) 308-0196		
Facs	imile No. (703) 305-3230	Telepho	ne No. (703) 308-0196	

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH - REPORT-

International application No. PCT/US94/01957

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Ÿ	Oncogene, Volume 5, issued 1990, Shibuya et al, "Nucleotide Sequence and Expression of a Novel Human Receptor-Type Tyrosine Kinase Gene (flt) Closely Related to the fms Family", pages 519-524, see abstract and page 521.	1-18
Y	Biochemical and Biophysical Research Communications, Volume 187, Number 3, issued 30 September 1992, Terman et al, "Identification of the KDR Tyrosine Kinase as a Receptor for Vascular Endothelial Cell Growth Factor", pages 1579-1586, see summary and page 1583.	1-18
	·	
,		

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*