Математические структуры.

Кузнецов Владимир Михайлович, ФКН.

Контрольная работа 2. Вариант 2.

Задача 1. Верно ли, что $K \leq_m P = \{n \in \mathbb{N} | n \text{ простое} \}$,где $K = \{n \in \mathbb{N} | \varphi_n(n) \downarrow \}$?

Нет, не верно. Знаем, что если существуют два множества $A,B\subseteq\mathbb{N}$ таких что $A\leq_m B$ и B рекурсивно $\Rightarrow A$ рекурсивно. При этом достаточно просто видно, что множество P- рекурсивно, так как явно можем описать $\chi_P(x)\iff \neg(\exists y\neq x,z\neq x:y\cdot z=x)$, но при этом про нерекурсивность множества K мы знаем с лекций, а значит, если бы существовала такая функция f(x), что $x\in K\iff f(x)\in P$, то мы бы приходили к противоречию.

Задача 2. Расставьте все скобки в следующих λ -термах и выполните подстановку M[x:=N], предварительно переименовав связанные переменные (если потребуется) так, чтобы подстановка стала допустимой:

$$M = (\lambda y. x(\lambda xz. xxz)(yx))(\lambda yz. xz(\lambda x. x))z, \quad N = x(\lambda z. zy).$$

$$\begin{split} M &= (\lambda y. \, x(\lambda xz. \, xxz)(yx))(\lambda yz. \, xz(\lambda x. \, x))z = \\ &= \left(\left(\left(\lambda y. \Big(\big(x(\lambda x. \, (\lambda z. \, ((xx)z))) \big)(yx) \Big) \Big) \Big(\lambda y. \, (\lambda z. \, ((xz)(\lambda x. \, x))) \Big) \right)z \right) = \\ &= \left(\left(\left(\lambda u. \Big(\big(x(\lambda x. \, (\lambda v. \, ((xx)v))) \big)(ux) \Big) \Big) \Big(\lambda y. \, (\lambda v. \, ((xv)(\lambda x. \, x))) \Big) \right)z \right), \\ N &= x(\lambda z. \, zy) \Rightarrow N = \Big(x(\lambda z. \, (zy)) \Big). \end{split}$$

Теперь выполним подстановку, но будем выполнять поочереди, а то совсем помрём. Зададим

$$P = \Big(\lambda u. \Big(ig(x(\lambda x. \, (\lambda v. \, ((xx)v))) ig) (ux) \Big) \Big), \quad Q = \Big(\lambda y. \, (\lambda v. \, ((xv)(\lambda x. \, x))) \Big).$$

Заметим, что M=((PQ)z), тогда M[x:=N]=((P[x:=N]Q[x:=N])z). Теперь отдельно рассмотрим P[x:=N] и Q[x:=N]:

$$P[x := N] = \left(\lambda u. \left(\left(x(\lambda x. (\lambda v. ((xx)v))) \right) (ux) \right) \right) [x := N] =$$

$$= \left(\lambda u. \left(\left(x(\lambda x. (\lambda v. ((xx)v))) \right) (ux) \right) [x := N] \right) =$$

$$= \left(\lambda u. \left(\left(x(\lambda x. (\lambda v. ((xx)v))) \right) [x := N] (ux) [x := N] \right) \right) =$$

$$= \left(\lambda u. \left(\left(x(\lambda x. (\lambda v. ((xx)v))) (x := N]) (ux) \right) \right) =$$

$$= \left(\lambda u. \left(\left(x(\lambda x. (\lambda v. ((xx)v))) (x := N]) (ux) \right) \right) =$$

$$= \left(\lambda u. \left(\left(x(\lambda x. (xv. ((xx)v))) (x := N]) (ux) \right) \right) \right),$$

$$Q[x := N] = \left(\lambda y. (\lambda v. ((xv)(\lambda x. x))) (x := N] \right) =$$

$$= \left(\lambda y. (\lambda v. ((xv)(\lambda x. x))) [x := N] \right) =$$

$$= \left(\lambda y. (\lambda v. ((xv)(\lambda x. x)) [x := N]) \right) =$$

$$= \left(\lambda y. (\lambda v. ((xv)(\lambda x. x)) [x := N]) \right) =$$

$$= \left(\lambda y. (\lambda v. ((xv)(\lambda x. x)) [x := N]) \right) =$$

$$= \left(\lambda y. (\lambda v. ((xv)(\lambda x. x)) [x := N]) \right) =$$

$$= \left(\lambda y. (\lambda v. ((xv)(\lambda x. x)) (x := N]) \right) =$$

$$= \left(\lambda y. (\lambda v. ((xv)(\lambda x. x)) (x := N]) \right) =$$

$$= \left(\lambda y. (\lambda v. ((xv)(\lambda x. x)) (x := N]) \right) =$$

$$= \left(\lambda y. (\lambda v. ((xv)(\lambda x. x)) (x := N]) \right) =$$

$$= \left(\lambda y. (\lambda v. ((xv)(\lambda x. x)) (x := N]) \right) =$$

$$= \left(\lambda y. (\lambda v. ((xv)(\lambda x. x)) (x := N]) \right) =$$

$$= \left(\lambda y. (\lambda v. ((xv)(\lambda x. x)) (x := N]) \right) =$$

$$= \left(\lambda y. (\lambda v. ((xv)(\lambda x. x)) (x := N]) \right) =$$

$$= \left(\lambda y. (\lambda v. ((xv)(\lambda x. x)) (x := N]) \right) =$$

$$= \left(\lambda y. (\lambda v. ((xv)(\lambda x. x)) (x := N]) \right) =$$

$$= \left(\lambda y. (\lambda v. ((xv)(\lambda x. x)) (x := N]) (x := N] \right) =$$

$$= \left(\lambda y. (\lambda v. ((xv)(\lambda x. x)) (x := N]) (x := N] \right) =$$

$$= \left(\lambda y. (\lambda v. ((xv)(\lambda x. x)) (x := N]) (x := N] (x :=$$

А значит, можем записать итоговый результат в виде:

$$M[x:=N] = \Bigg(\bigg(\lambda u. \Big(\big(\Big(x \big(\lambda z. \, (zy) \big) \Big) \big(\lambda x. \, (\lambda v. \, ((xx)v))) \big) \big) \bigg(u \Big(x \big(\lambda z. \, (zy) \big) \Big) \big) \bigg) \Bigg) \bigg(\lambda y. \, \big(\lambda v. \, \big(\big(\Big(x \big(\lambda z. \, (zy) \big) \Big) v \big) (\lambda x. \, x)) \big) \bigg) z \Bigg).$$

Задача 3. Приведите λ -терм SS(SK), где $S=\lambda xyz.\,xz(yz)$ и $K=\lambda xy.\,x$, к β -нормальной форме.

Имеем
$$SS(SK) = ((SS)(SK))$$
, где $S = (\lambda x. (\lambda y. (\lambda z. ((xz)(yz)))))$ и $K = (\lambda x. (\lambda y. x))$. Давайте изначально отдельно рассмотрим SS , потом SK , а потом $((SS)(SK))$.
$$SS = (\lambda x. \underbrace{(\lambda yz. xz(yz))}_{M})\underbrace{(\lambda xyz. xz(yz))}_{N} \rightarrow_{\beta} (\lambda uv. xv(uv))[x := \lambda xyz. xz(yz)] = \underbrace{\lambda uv. ((\lambda x. \underbrace{(\lambda yz. xz(yz))}_{M})\underbrace{v}_{N})(uv) \rightarrow_{\beta} \lambda uv. \underbrace{((\lambda y. \underbrace{(\lambda z. vz(yz))}_{M})\underbrace{(uv)}_{N})}_{N} \rightarrow_{\beta} \lambda uvz. vz(uvz),$$

$$SK = (\lambda x. \underbrace{(\lambda yz. xz(yz))}_{M})\underbrace{(\lambda xy. x)}_{N} \rightarrow_{\beta} (\lambda uz. xz(uz))[x := \lambda xy. x] = \underbrace{\lambda uz. ((\lambda x. \underbrace{(\lambda y. x)}_{N})\underbrace{z}_{N}(uz))}_{N} \rightarrow_{\beta} \lambda uz. \underbrace{\lambda v. \underbrace{(\lambda y. x)}_{N}}_{N}\underbrace{v. \underbrace{(\lambda y. x)}_{N}}_{N} \rightarrow_{\beta} \lambda uz. z.$$

А это значит, что

$$SS(SK) \twoheadrightarrow_{\beta} (\lambda u. \underbrace{(\lambda vz. \, vz(uvz))}_{M}) \underbrace{(\lambda uz. \, z)}_{N} \rightarrow_{\beta} \lambda va. \, va(((\lambda u. \underbrace{(\lambda z. \, z))}_{M} \underbrace{v}_{N})a) \rightarrow_{\beta} \\ \rightarrow_{\beta} \lambda va. \, va((\lambda z. \underbrace{z}_{M}) \underbrace{a}_{N}) \rightarrow_{\beta} \lambda va. \, vaa = (\lambda v. \, (\lambda a. \, ((va)a))).$$

Задача 4. Докажите, что λ -терм $\lambda xy.$ (M(Nxy)), где $M=\lambda zxy.$ zyx и $N=\lambda xy.$ xyx, представляет булеву функцию $f(x,y)=\neg(x\wedge y).$

 $ightarrow ext{ Тактика в этом номере проста. Изначально введём два комбинатора <math>F=\lambda xy.\ y=(0)^*$ и $T=\lambda xy.\ x=(1)^*$. Теперь рассмотрим ((Nx)y), приведём его к β -нормальной форме, а дальше продолжим работу с $\lambda xy.\ (M(Nxy))$.

$$egin{aligned} Nxy &= ((\lambda x.\,(\lambda y.\,xyx))x)y)
ightarrow_{eta}\,(\lambda y.\,xyx)y
ightarrow_{eta}\,xyx \Rightarrow \ &\Rightarrow M(Nxy)
ightarrow_{eta}\,M(xyx) = (\lambda z.\,(\lambda xy.\,zyx))(xyx)
ightarrow_{eta}\,\lambda uv.\,xyxvu. \end{aligned}$$

Теперь нам надо исследовать термы вида $(\lambda xyuv.(xyxvu))PQ woheadrightarrow_{eta} \lambda uv. PQPvu$, где $P,Q \in \{\mathrm{T},\mathrm{F}\}$. Теперь давайте рассмотрим все четыре случая, но изначально выполним подгоовительную работу:

$$TTT = (\lambda xy. x)TT \twoheadrightarrow_{\beta} T, \quad FFF = (\lambda xy. y)FF \twoheadrightarrow_{\beta} F,$$

$$TFT = (\lambda xy. x)FT \twoheadrightarrow_{\beta} F, \quad FTF = (\lambda xy. y)TF \twoheadrightarrow_{\beta} F.$$

Наконец-то, мы готовы осуществить финальное доказательство!

$$\begin{split} \lambda xy.\ M(Nxy)\mathrm{TT} \twoheadrightarrow_{\beta} \lambda uv.\ \mathrm{TTT}vu \twoheadrightarrow_{\beta} \lambda uv.\ \mathrm{T}vu &= \lambda uv.\ ((\lambda xy.\ x)v)u \to_{\beta} \lambda uv(\lambda y.\ v)u \to_{\beta} \lambda uv.\ v = \mathrm{F} = (0)^*,\\ \lambda xy.\ M(Nxy)\mathrm{TF} \twoheadrightarrow_{\beta} \lambda uv.\ \mathrm{TFT}vu \twoheadrightarrow_{\beta} \lambda uv.\ \mathrm{F}vu &= \lambda uv.\ (\lambda xy.\ y)vu \to_{\beta} \lambda uv.\ (\lambda y.\ y)u \to_{\beta} \lambda uv.\ u = \mathrm{T} = (1)^*,\\ \lambda xy.\ M(Nxy)\mathrm{FT} \twoheadrightarrow_{\beta} \lambda uv.\ \mathrm{FTF}vu \twoheadrightarrow_{\beta} \lambda uv.\ \mathrm{F}vu \twoheadrightarrow_{\beta} \mathrm{T} = (1)^*,\\ \lambda xy.\ M(Nxy)\mathrm{FF} \twoheadrightarrow_{\beta} \lambda uv.\ \mathrm{FFF}vu \twoheadrightarrow_{\beta} \lambda uv.\ \mathrm{F}vu \twoheadrightarrow_{\beta} \mathrm{T} = (1)^*. \end{split}$$

Мы получили таблицу истинности функции f. \square

