Zavod za elektroniku, mikrelektroniku, računalne i inteligentne sustave

Duboko učenje

pismeni ispit

- 1. Razmatramo sigmoidalnu transformacije podataka u izlaznom sloju dubokog modela kojeg učimo optimiranjem i) kvadratnog gubitka ii) negativne log-izglednosti. Izvedite gradijente obaju gubitaka s obzirom na ulaze sigmoidalne funkcije. Koji od dvaju gubitaka je prikladniji za slučaj klasifikacije? Zašto? Napišite kod za računanje gradijenata pod numpyjem pod pretpostavkom da podatci dolaze u grupama proizvoljne veličine.
- 2. Razmatramo učenje višerazredne logističke regresije optimiranjem unakrsne entropije stohastičkim gradijentnim spustom uz zadanu stopu učenja $\delta=1$. Zadan je sljedeći skup za učenje: $x_1=(1,1,1,0),\ y_1=[1,0],\ x_2=(0,1,1,1),\ y_2=[0,1].$ Početno stanje matrice težina i vektora pomaka zadano je s $\mathbf{W}^0=\begin{bmatrix}0.5&-0.5&-0.5&0.5\\0.5&-0.5&0.5&-0.5\end{bmatrix},\ \mathbf{b}^0=\begin{bmatrix}0&0\end{bmatrix}.$
 - (a) Odredite jednadžbe gradijenata svih parametara.
 - (b) Provedite učenje podatkom (x_1, y_1) , bez korištenja ikakve regularizacije. Izračunajte gradijente i nove vrijednosti parametara.
 - (c) Provedite jednu epohu učenja počevši od \mathbf{W}^0 i \mathbf{b}^0 , uz regularizaciju ispuštanjem (engl. dropout) ulaznih značajki s vjerojatnošću $p(\mu_{x_i}) = 0.5, i = 1, 2, 3, 4$. Pretpostavite sljedeći raspored ispuštanja:
 - prva mini-grupa je (x_1, y_1) , ugašeni su 1. i 3. ulaz,
 - druga mini-grupa je (x_2, y_2) , ugašeni su 2. i 4. ulaz.

Izračunajte gradijente i nove vrijednosti parametara.

- (d) Izračunajte izlaz naučene mreže za ulaze $x_a = (0, 1, 0, 1)$ i $x_b = (1, 0, 1, 0)$.
- 3. Razmatramo ograničeni Boltzmannov stroj s dva elementa u vidljivom i tri elementa u skrivenom sloju. Gibbsovo uzorkovanje za mini-grupu od tri uzorka $v^{(1)}$, $v^{(2)}$ i $v^{(3)}$ prikazano je na slici. Potrebno je izračunati korekciju i) za težinu w_{13} koja povezuje elemente $v^{(1)}$ i $h^{(3)}$ te ii) za težinu w_{23} koja povezuje $v^{(2)}$ i $h^{(3)}$. U rješavanju koristite algoritam CD-3 i koeficijent učenja η =0.01

4. Za izlazni sloj varijacijskog autoenkodera odabrali smo Rayleighovu distribuciju:

$$p(x|\sigma) = \frac{x}{\sigma^2} e^{-x^2/(2\sigma^2)}$$

Izvedite izraz za drugu komponentu funkcije cilja varijacijskog autoenkodera:

$$\mathrm{E}_{q_{\varphi}(\mathbf{z}|\mathbf{x}^{(i)})} \left[\log(p_{\theta}(\mathbf{x}^{(i)}|\mathbf{z})) \right]$$

Pretpostavite da je dovoljno samo jednom uzorkovati skriveni sloj jer su mini-grupe dovoljno velike. Skicirajte odgovarajući dekoder.

5. Učiteljica Svjetlana suočena je s teškim problemom - učenici njenog 2.D razreda iznimno su nestašni. Naime, kad stanu u red za prebrojavanje koliko ih je prisutno na nastavi, neki od njih se nakon što su prebrojani vrate na kraj reda, te ih zbog svoje zaboravljivosti Svjetlana ponovno prebroji, i ponekad po kraju (dugotrajnog) brojanja izgleda kao da je mnogo više djece na nastavi nego što ih ima u razredu - što je stvarno nemoguće. Svjetlana je u novinama pročitala o novoj metodi povratnih neuronskih mreža, te ih je odlučila iskoristiti za svoj problem.

Zadatak je postavila kao u nastavku: svaki indeks skrivenog stanja povratne neuronske mreže odgovara jednom učeniku, te na tom indeksu želi imati informaciju je li se učenik pojavio taj dan ili nije (0 ako nije, 1 ako je). Osim toga, kako bi skratila vrijeme brojanja, želi da povratna mreža na izlazu ispiše (1 - broj učenika koji nedostaju). Dakle, u slučaju da su svi učenici prisutni na izlazu je 1, ako fali jedan učenik, na izlazu je 0 a ako fali dvoje učenika, na izlazu je -1 itd.

U Svjetlaninom razredu je troje učenika, te je svakom od njih dodijeljen one-hot kod. Na ulaz mreže u slijedu dolaze one-hot kodovi učenika. Radi jednostavnosti, prijenosna funkcija na izlazu je identitet (umjesto funkcije softmax), a dimenzionalnost izlaza je 1. Skriveno stanje mreže je inicijalizirano na vektor nula. Ukoliko je poznato da je matrica \mathbf{U} jedinična, matrica \mathbf{W} dijagonalna, odredite vektore pristranosti \mathbf{b} i \mathbf{c} , matrice težina \mathbf{W} i \mathbf{V} te prijenosnu funkciju skrivenog sloja f.