An Introduction to Fairness in Machine Learning Using Fairlearn

Hilde Weerts

Artificial Intelligence Engineer

Eindhoven University of Technology

Agenda

- Algorithmic Fairness
- Introduction to Tutorial

Introduction Algorithmic Fairness

Algorithmic Fairness

The idea that algorithmic systems should behave or treat people without unjust or prejudicial treatment on the grounds of sensitive characteristics.

Hiring

RETAIL OCTOBER 11, 2018 / 1:04 AM / UPDATED 2 YEARS AGO

Amazon scraps secret AI recruiting tool that showed bias against women

SAN FRANCISCO (Reuters) - Amazon.com Inc's <u>AMZN.O</u> machine-learning specialists uncovered a big problem: their new recruiting engine did not like women.

Source: https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G

Fraud Detection

XENOPHOBIC MACHINES

DISCRIMINATION THROUGH UNREGULATED USE OF ALGORITHMS IN THE DUTCH CHILDCARE BENEFITS SCANDAL

Source:

https://www.amnesty.nl/content/uploads/2021/10/2021 1014 FINAL Xenophobic-Machines.pdf?x42580

Translation

Source: https://qz.com/1141122/google-translates-gender-bias-pairs-he-with-hardworking-and-she-with-lazy-and-other-examples/

Types of Harm

Majority of fairness research focuses on these two harms

Allocation

The system extends or witholds opportunities, resources, or information.

Quality-of-Service

The system does not work equally well for all groups.

Representation

The development/usage of the system overrepresents or underrepresents certain groups.

Stereotyping

The system reinforces stereotypes.

> Most prevalent in unstructured data

Denigration

The system is actively derogatory or offensive. The system makes decisions in

a way that violates social norms.

Procedural

Closely related to interpretable machine learning

What are we optimizing for?

mizing for? What are we Does our problem formulation reflect the real-world context and our (moral) Does the values? Is the data a good system produce me Real World representation of fair outcomes? reality? Make **Decisions** Problem **Formulation** impact Collect Data Does the model Are we optimizing for make fair the right performance predictions? metric? The Modeled World Train Make Model **Predictions Training Data** Model **Predictions**

Group Fairness

Notions of fairness that **compare** the behavior or performance of a model across **sensitive groups**.

A group fairness metric measures the extent to which a particular group statistic differs across groups (e.g., maximum difference between groups).

Demographic Parity

Group 1 SR = 3/5 = 0.6

Group 2 SR = 2/3 = 0.67

Fairness criterion: equal selection rates

$$P(\hat{Y} = y | A = a) = P(\hat{Y} = y | A = a')$$

Measures: allocation harm

Main assumption: the target variable is not a good representation of reality and/or what we want reality to look like.

- predicted positive
- predicted negative

Equalized Odds

Group 1

FPR = 3 / (3+7) = 0.3FNR = 1 / (1+9) = 0.1

Group 2

FPR = 3 / (3+4) = 0.43FNR = 0 / (0+5) = 0

Fairness criterion: equal FPR and FNR

$$P(\hat{Y} = y | A = a, Y = y) = P(\hat{Y} = y | A = a', Y = y)$$

Measures: quality-of-service harm or allocation harm

Main assumptions:

- the target variable is a good representation of reality
- the data distribution may differ across groups, which could cause differences in predictive performance

$$\bigcirc$$
 \bigcirc \bigcirc

- true positive
- _ true negative

- (+) false negative
- false positive

Fairness-Aware Machine Learning

Fairness as an optimization problem: technical approaches towards optimizing for fairness.

- Preprocessing. Change the data such that the sensitive feature cannot be deduced from the data, but all other information is preserved as best as possible.
- Constrained learning ('in-processing'). Incorporate explicit fairness constraints in the learning algorithm.
- **Post-processing**. *Adjust* an existing machine learning model or its predictions such that it adheres to fairness constraints.

Conclusion

- Machine learning systems can reproduce, amplify, and introduce unfairness.
- There are different types of fairness-related harms, today we will focus on:
 - allocation harm
 - quality-of-service harm.
- Fairness-related harms can arise due to a mismatch between what we optimize for and what we actually value.
- Fairness metrics can be used to measure potential fairness-related harms.
- Fair-ml algorithms can be used to optimize for fairness metrics.


```
if questions:
    try:
        answer()
    except RuntimeError:
        pass
else:
    print("Thank You.")
```

Tutorial Pre-Trial Risk Assessment

Tutorial

Measuring Group Fairness in Pre-trial Risk Assessment

Tutorial.

- Goal: Measure notions of fairness using Fairlearn
- Case study: COMPAS recidivism prediction

Learning Objectives. After completing this tutorial, you will be able to:

- apply group fairness metrics in Python;
- explain several trade-offs between different group fairness criteria;
- explain how threats to construct validity may impact downstream fairness-related harms;

Context Pre-trial Risk Assessment in the United States

Propublica's Analysis of COMPAS

In 2017, Propublica found that **COMPAS**, a recidivism prediction algorithm used by judges in the United States, failed differently for African-American defendants compared to white Americans.

	White	African- American
False Positive	23.5%	44.9%
False Negative	47.7%	28.0%

Source: https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

