Machine Learning applied to Planetary Sciences

PTYS 595B/495B Leon Palafox

PSA

- Homework will be posted by the end of the week.
 - It will be shorter than previous ones.
 - It will cover validation and applications.
- Final Quiz:
 - Unsupervised Learning
 - Date: 12/7 (Last Session)
- Final Project
 - Last day of classes: December 7th. (Only 4 sessions left)
 - Due Date: Either 12/12 or 12/14?
 - Groups?

Clustering

- Clustering algorithms group the data into K groups.
- While many algorithms need the number of groups K, there are some that find the best number.
- Popular Algorithms:
 - K-Means
 - Agglomerative Clustering
 - Density Estimation

Curse of dimensionality

- As we have more dimensions, finding the underlying manifold becomes more difficult
 - Also applies to classifiers
 - ConvNets are surprisingly robust to this problem.
- It affects the concept of Euclidean distance.
 - If you have an algorithm, or data processing technique that uses this, beware.

Curse of dimensionality

Imagine you want to train a classifier, and want to cover 20% of the population of cat's and dogs

Curse of dimensionality

How to alleviate?

- We need to do feature selection, or feature reduction techniques.
 - NN do this "automatically" since the dimension in each unit is reduced as we go deeper in the layers.
- Feature Reduction Techniques:
 - Principal Component Analysis.
 - Independent Component Analysis.

K-Means

- This is the most popular and most widely used algorithm.
- It has few (if none) parameters to tune and play around with.
- It suffers greatly from the curse of dimensionality.
- It still does a pretty solid job once the dimensions have been reduced.

K-Means

- 1. Initialize cluster centroids $\mu_1, \mu_2, \dots, \mu_k \in \mathbb{R}^n$ randomly.
- 2. Repeat until convergence: {

For every i, set

$$c^{(i)} := \arg\min_{j} ||x^{(i)} - \mu_j||^2.$$

For each j, set

$$\mu_j := \frac{\sum_{i=1}^m 1\{c^{(i)} = j\}x^{(i)}}{\sum_{i=1}^m 1\{c^{(i)} = j\}}.$$

}

What is it doing?

It's minimizing the objective function:

$$J(c,\mu) = \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

 Where J is a cost function between each point and its assigned centroid.

How do we evaluate K-Means

- If we have labels of what the clusters should be (at least some examples):
 - We can calculate TP, FP, TN and FN

$$RI = rac{TP + TN}{TP + FP + FN + TN}$$

This is our accuracy. (That Rand guy was nifty)

How do we evaluate K-Means

- If we don't have labels:
 - Davies-Boudin Index

$$DB = rac{1}{n} \sum_{i=1}^n \max_{j
eq i} \left(rac{\sigma_i + \sigma_j}{d(c_i, c_j)}
ight)$$

- $-\sigma$ is the average distance of the elements in the cluster to the centroid.
- -d(c,c) is distance between centroids.
- It provides low scores for low intra-disctance and high inter-distance.

How do we use K-Means

- Matlab:
 - -idx = kmeans(X,k)

- Python:
 - Kmeans(n_clusters, random_state)