Case de Otimização: MJV - Suzano

Alex Paranahyba Abreu abreualexp@gmail.com May 10, 2023.

Conteúdo

- 1. Descrição do problema
- 2. Formulação matemática
- 3. Implementação computacional

Descrição do problema

Contextualização

- Considere um conjunto de Unidades Produtivas (UP) associadas à diversas fazenda.
- Cada UP produz um certo volume de madeira que será colhido em um determinado período.
- A madeira deve ser transportada da UP para a fábrica por um transportador.
- Existem diversas restrições que devem ser considerada.
 - Restrições na fazenda/Unidade produtiva;
 - Restrições na fábrica;
 - Restrições na rota/frota.

Formulação matemática

Descrição de índices e conjuntos

Notação	Descrição
\overline{U}	Conjunto de Unidades Produtivas
K	Conjunto de Transportadores
T	Horizonte de Planejamento (períodos discretos)*
$u \in U$	Índice associado às Unidades Produtivas
$r \in K$	Índice associado ao Transportadores
$t \in T$	Índice associado ao Horizonte de Planejamento

^{*} Para fins de modelagem, convém considerar o conjunto T^0 que inicia no período artificial 0, o conjunto T' que inicia no período 2 e o conjunto T^{CL} contém os períodos denominados "ciclo lento" os quais possuem tempos de ciclo diferentes do usual.

Descrição de parâmetros: fazenda/Unidade Produtiva

Notação	Descrição	
up_u^{farm}	Indica a fazenda associada à Unidade Produtiva	
DB_u	Densidade básica (DB) da madeira em cada Unidade Pro-	
	dutiva	
vol_u	Volume de produção por Unidade Produtiva	
RSP_u	Qualidade RSP por Unidade Produtiva	
$colheita_u$	Período da colheita da madeira em cada Unidade Produtiva	

Descrição de parâmetros: rota/frota

Notação	Descrição	
K_r^{min}	Quantidade mínima de caminhões por transportador	
K_r^{max}	Quantidade máxima de caminhões por transportador	
n_r^{grua}	Quantidade máxima de gruas por transportador	
p_r^{min}	Porcentagem mínima de caminhões por grua	
cap_{ur}	Capacidade de carregamento por caminhão de cada trans-	
	portador a partir de cada Unidade Produtiva	
tc_{ur}	Tempo de ciclo de cada transportador a partir de cada	
	Unidade Produtiva*	
tc_{ur}^L	Tempo de ciclo de cada transportador a partir de cada	
	Unidade Produtiva nos períodos de ciclo lento	
up_{ur}^{transp}	Indica quais Unidades Produtivas podem ser atendidas por	
	cada transportador	

^{*} Para fins de modelagem, o tempo de ciclo será interpretado como a quantidade de entregas da fazenda para a fábrica que um caminhão realiza em um período. Dessa forma, será considerado o menor inteiro mais próximo do tempo de ciclo informado.

Descrição de parâmetros: fábrica

Notação	Descrição	
D_t^{min}	Demanda mínima da fábrica por período	
D_t^{max}	Demanda máxima da fábrica por período	
RSP_t^{min}	Qualidade RSP mínima da fábrica por período	
RSP_t^{max}	Qualidade RSP máxima da fábrica por período	

Descrição de variáveis

Notação	Tipo	Descrição
$Q_{r,u,t}$	Contínua	Quantidade de caminhões do transportador $\it r$
		alocado para a UP \boldsymbol{u} no período \boldsymbol{t}
$G_{r,u,t}$	Binária	Indica se alguma grua do transportador \boldsymbol{r} está
		alocada no UP \boldsymbol{u} no período \boldsymbol{t}
$v_{r,u,t}$	Contínua	Quantidade de material transportada por \boldsymbol{r} da
		$UP\ u$ no período t
$B_{u,t}$	Contínua	Quantidade de material disponível na UP \boldsymbol{u} no
		período t
DB_t^{dif}	Contínua	Diferença (MÁXIMO-MÍNIMO) de densidade
		básica dos materiais entregues em cada período
		t

$$\sum_{u \in U} G_{rut} \le n_r^{grua} \qquad \forall \ r \in K; t \in T$$
 (1)

O conjunto (1) de restrições garantem que o número total de gruas em operação não seja maior que o disponível em cada período.

$$G_{rut} + G_{rit} \le 1 \quad \forall u, i \in U; r \in K; t \in T; up_u^{farm} \ne up_i^{farm}$$
 (2)

As restrições (2) especificam que as gruas de um transportador devem estar nas Unidades Produtivas de uma mesma fazenda.

$$G_{rut} \ge \frac{B_{ut}}{vol_u} - (1 - G_{ru(t-1)}) \qquad \forall \ r \in K; u \in U; t \in T'$$
 (3)

As restrições (3) estabelecem que as gruas só poderão se movimentar entre Unidades Produtivas caso todo material da UP que ela estava foi completamente transferido.

$$\sum_{t \in T} G_{rut} \le H \times up_{ur}^{transp} \qquad \forall \ r \in K; u \in U$$
 (4)

As restrições (4) garantem que os transportadores poderão operar apenas nas Unidades produtivas permitidas.

$$K_r^{min} \le \sum_{u \in U} Q_{rut} \le Q^{extra} K_r^{max} \qquad \forall \ r \in K; t \in T$$
 (5)

As restrições (5) definem as quantidades mínima e máxima de veículos de cada transportador r no período t. Note que Q^{extra} é um parâmetro auxiliar que seu valor foi definido em 3 para garantir factibilidade do modelo.

$$Q_{rut} \leq G_{rut} u p_{ur}^{transp} Q^{extra} K_r^{max} \qquad \forall \ r \in K; u \in U; t \in T \qquad \textbf{(6)}$$

As restrições (6) vinculam as variáveis G_{rut} e Q_{rut} .

$$Q_{rut} \ge p_r^{min} \sum_{u \in U} Q_{rut} - Q^{extra} K_r^{max} (1 - G_{rut}) \quad \forall \ r \in K; u \in U; t \in T$$

$$(7)$$

As restrições (7) definem que, uma vez alocada a grua, deve haver ao menos p_r^{min} % do total de veículos de r na UP.

$$D_t^{min} \le \sum_{r \in K} \sum_{u \in U} v_{rut} \le D_t^{max} \qquad \forall \ t \in T$$
 (8)

As restrições (8) definem as quantidades mínima e máxima que devem ser transportadas em cada período.

$$\sum_{r \in K} v_{rut} = 0 \qquad \forall u \in U; t \in T^0; t < dia_u$$
 (9)

As restrições (9) fixam em 0 a quantidade transportada de uma UP nos períodos anteriores a colheita da mesma.

$$\sum_{r \in K} \sum_{tinT} v_{rut} = vol_u \qquad \forall u \in U$$
 (10)

As restrições (10) define que a quantidade total transportada de uma UP ao longo de todo horizonte é igual ao volume de material produzido pela mesma.

$$v_{rut} \le Q_{rut} t c_{ur} cap_{ur}$$
 $\forall r \in K; u \in U; t \in T$ (11)

$$v_{rut} \le vol_u G_{rut}$$
 $\forall r \in K; u \in U; t \in T$ (12)

$$v_{rut} \ge \frac{B_{ut}}{vol_u} - vol_u(1 - G_{rut}) \qquad \forall \ r \in K; u \in U; t \in T$$
 (13)

As restrições (11) até (13) vinculam as variáveis v_{rut} , G_{rut} , Q_{rut} e B_{ut} .

$$\sum_{r \in K} v_{rut} \le B_{ut} \qquad \forall u \in U; t \in T$$
 (14)

As restrições (14) estabelecem que a quantidade transportada de uma UP deve ser no máximo a quantidade disponível nela no início do período.

$$\sum_{r \in K} v_{ruH} = B_{uH} \qquad \forall u \in U$$
 (15)

As restrições (15) definem que o material de todas Unidades Produtivas devem ser totalmente transportados até o final do horizonte de planejamento.

$$B_{ut} = 0 \qquad \forall \ u \in U; t \in T^0; t < dia_u$$
 (16)

As restrições (16) fixam em 0 a quantidade de material disponível em uma UP em todos períodos antes do período de colheita.

$$B_{u,dia_u} = vol_u \qquad \forall \ u \in U \tag{17}$$

As restrições (17) definem que no dia de colheita de uma UP a quantidade de material disponível é igual ao volume de produção.

$$B_{ut} = B_{u,t-1} - \sum_{r \in K} v_{ru,t-1} \qquad \forall \ u \in U, t \in T'; t > dia_u$$
 (18)

As restrições (18) estabelecem que a quantidade de material disponível em uma UP no período t após o transporte.

$$DB_t^{dif} \ge DB_i \sum_{r \in K} G_{rit} - DB_u \sum_{r \in K} G_{rut} \quad \forall u, i \in U; t \in T$$
 (19)

As restrições (19) garantem que DB_t^{dif} assuma a maior diferença (ou seja, MÁXIMO-MÍNIMO) de densidade básica das madeiras entregues em cada período t.

Modelo matemático

$$Min \sum_{tinT} DB_t^{dif}$$

$$s.t. (1) - (19)$$

$$Q_{r,u,t} \ge 0 \qquad \forall r \in K; u \in U; t \in T$$

$$v_{r,u,t} \ge 0 \qquad \forall r \in K; u \in U; t \in T^0$$

$$B_{u,t} \ge 0 \qquad \forall u \in U; t \in T^0$$

$$DB_t^{dif} \ge 0 \qquad \forall t \in T$$

$$G_{r,u,t} \in \{0,1\} \qquad \forall r \in K; u \in U; t \in T$$

Implementação computacional

Configuração

- Os códigos foram implementados em Julia v1.8;
- O modelo foi resolvido com Gurobi v10 (licença acadêmica);
- Descrição dos pacotes utilizados:

Pacote	Descrição
XLSX.jl	Leitura dos dados do arquivo
DataFrames.jl	Facilitação na manipulação dos dados
Dates.jl	Auxílio na transformação de datas
JuMP.jl	Implementação da formulação matemática
Gurobi.jl	Resolução do modelo matemático
CSV.jl	Escrita da solução em CSV

Alex Paranahyba Abreu

abreualexp@gmail.com

