Digital Image Processing COSC 6380/4393

Lecture – 29

Nov 28th, 2023

Pranav Mantini

What is color?

- Color is a psychological property of our visual experiences when we look at objects and lights, not a physical property of those objects or lights (S. Palmer, Vision Science: Photons to Phenomenology)
- Color is the result of interaction between physical light in the environment and our visual system

Motivation

Visual Descriptor (descriptions of the visual features of the contents)

- Visual Descriptor (descriptions of the visual features of the contents)
 - SHAPE

- Visual Descriptor (descriptions of the visual features of the contents)
 - SHAPE

- Visual Descriptor (descriptions of the visual features of the contents)
 - SHAPE
 - COLOR

- Visual Descriptor (descriptions of the visual features of the contents)
 - SHAPE
 - COLOR
 - Color is a powerful descriptor that often simplifies object identification and extraction from a scene.

- Visual Descriptor
 - SHAPE
 - COLOR
 - TEXTURE
 - MOTION

Discerning Color

Motivation

- Color is principal descriptor
- Ability to discern thousands of colors

- Two majors areas
 - Full color processing
 - Pseudocolor processing

- Two majors areas
 - Full color processing

- Two majors areas
 - Full color processing
 - Psuedocolor processing

- Two majors areas
 - Full color processing
 - Psuedocolor processing

Thermal Camera

- Two majors areas
 - Full color processing
 - Psuedocolor processing

Color fundamentals

- Physio-psychological phenomenon
 - How human brain perceive and interpret color?

- Physical phenomenon
 - Physical nature of color can be expressed on formal basis (using experiments and theoretical results)

Characterization of Light

- Acromatic light has only intensity (or amount)
 (void of color)
- Black and white television
- Gray level: scalar measure of intensity

Physical quantities to describe a chromatic light source

- Radiance: total amount of energy that flow from the light source, measured in watts (W)
- Luminance: amount of energy an observer perceives from a light source, measured in lumens (lm)
 - Far infrared light: high radiance, but 0 luminance
- Brightness: subjective descriptor that is hard to measure, similar to the achromatic notion of intensity

Color Fundamentals

Six broad regions, each blends into the next smoothly.

FIGURE 6.1 Color spectrum seen by passing white light through a prism. (Courtesy of the General Electric Co., Lamp Business Division.)

FIGURE 6.2 Wavelengths comprising the visible range of the electromagnetic spectrum. (Courtesy of the General Electric Co., Lamp Business Division.)

Color fundamentals (cont.)

 The color that human perceive in an object = the light reflected from the object

Color fundamentals (cont.)

- Balanced in all visible wavelengths → white
- Absorbs all light → black
- Limited range of visible spectrum → color shade

Color Fundamentals

- Cones are the sensors in the eye that are responsible for color vision
- 6 to 7 million cones in the human eye
- Can be divided into three principal sensing categories, corresponding roughly to red, green, and blue.

65%: red 33%: green 2%: blue (blue cones are the most sensitive)

Color Fundamentals

Primary colors

- Due to the absorption characteristics of human eye,
- Primary colors:
 - Red
 - Green
 - Blue
- Color: described as a variable combination of the primary colors
- In 1931, CIE(International Commission on Illumination) defines specific wavelength values to the primary colors
 - -B = 435.8 nm, G = 546.1 nm, R = 700 nm
 - However, we know that no single color may be called red, green, or blue

N

FIGURE 6.4

Primary and secondary colors of light and pigments. (Courtesy of the General Electric Co., Lamp Business Division.)

Primary colors of light v.s. primary colors of pigments

- Primary color of pigments
 - Color that subtracts or absorbs a primary color of light and reflects or transmits the other two

a b

FIGURE 6.4

Primary and secondary colors of light and pigments. (Courtesy of the General Electric Co., Lamp Business Division.)

11/28/2023

Application of additive nature of light colors

Color TV

Application of subtractive color model

- Printers: the usual primary colors are <u>cyan</u>, <u>magenta</u> and <u>yellow</u> (CMY)
- Cyan → serves as a filter that absorbs red
- Amount of cyan applied controls how much of the red in white light will be reflected back
- Cyan is completely transparent to green and blue light and has no effect on those parts of the <u>spectrum</u>

Application of subtractive color model

- Magenta is the complement of <u>green</u>, and yellow the complement of <u>blue</u>.
- Combinations of different amounts of the three can produce a wide range of colors with good <u>saturation</u>.

Why specify color numerically?

- Accurate color reproduction is commercially valuable
 - Many products are identified by color
- Few color names are widely recognized by English speakers -
 - About 10; other languages have fewer/more, but not many more.
 - It's common to disagree on appropriate color names.

- Color reproduction problems increased by prevalence of digital imaging - eg. digital libraries of art.
 - How do we ensure that everyone sees the same color?

Color matching experiment

4.10 THE COLOR-MATCHING EXPERIMENT. The observer views a bipartite field and adjusts the intensities of the three primary lights to match the appearance of the test light. (A) A top view of the experimental apparatus. (B) The appearance of the stimuli to the observer. After Judd and Wyszecki, 1975.

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995

Color matching experiment 1

The principle of trichromacy

- Experimental facts:
 - Three primaries will work for most people if we allow subtractive matching
 - Most people make the same matches.

Grassman's Laws

Color matching is (approximately) linear

– symmetry:
U=V <=>V=U

– transitivity: U=V and V=W => U=W

– proportionality: U=V <=> tU=tV

additivity: if any two (or more) of the statements

U=V,

W=X,

(U+W)=(V+X) are true, then so is the third

 These statements are as true as any biological law. They mean that color matching under these conditions is linear.

Measure color by color-matching paradigm

- Pick a set of 3 primary color lights.
- Find the amounts of each primary, e₁, e₂, e₃, needed to match some spectral signal, t.
- Those amounts, e₁, e₂, e₃, describe the color of t. If you have some other spectral signal, s, and s matches t perceptually, then e₁, e₂, e₃ will also match s.

CIE RGB

- Tri-stimulus values: Color defined by three value (R,G,B)
- The amount of Red, Green and Blue needed to form any particular color

CIE XYZ

- New color matching functions were to be everywhere greater than or equal to zero.
- For the constant energy white point, it was required that x = y = z = 1/3.

CIE XYZ model

RGB -> CIE XYZ model

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} 0.431 & 0.342 & 0.178 \\ 0.222 & 0.707 & 0.071 \\ 0.020 & 0.130 & 0.939 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Normalized tristimulus values

$$x = \frac{X}{X + Y + Z} \qquad y = \frac{Y}{X + Y + Z} \qquad z = \frac{Z}{X + Y + Z}$$

=> x+y+z=1. Thus, x, y (chromaticity coordinate) is enough to describe all colors

CIE XYZ model

Tristimulus

Red, green, and blue are denoted X, Y, and Z, respectively. A color is defined by its trichromatic coefficients, defined as

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$

$$z = \frac{Z}{X + Y + Z}$$