FINC460: Homework 5

Solution

1 Factor Models

1) Using the formula for covariances for a 2-factor model:

$$cov(R_i, R_j) = b_{i,1} b_{j,1} var(f_1) + b_{i,2} b_{j,2} var(f_2)$$

we obtain the following table

Asset	E(R)	$var(\epsilon)$	var(R)	R^2	Loadings		Covariance		
					b_1	b_2	A	В	\mathbf{C}
A	0.36	0.15	2.15	93.0%	2	4	2	1.4	0.6
В	0.225	0.28	1.58	82.3%	3	2	1.4	1.3	0.5
С	0.12	0.05	0.25	80.0%	1	1	0.6	0.5	0.2

2) To answer this question we need to construct a portfolio that has zero loadings on factors 1 and 2. Denote the weights on each asset as $[w_A, w_B, w_C]$, we have three equations in three unknowns

$$w_A + w_B + w_C = 1$$

$$2 w_A + 3 w_B + w_C = 0$$

$$4 w_A + 2 w_B + w_C = 0$$

The solution to these equations is [-20.0%, -40.0%, 160.0%] and the return on this portfolio equals 3%, which according to the APT must be the risk-free rate.

3) We use the formula for total variance:

$$var(R_i) = b_{i,1}^2 var(f_1) + b_{i,2}^2 var(f_2) + var(\epsilon_i)$$

and the formula for R^2 :

$$R^{2} = \frac{b_{i,1}^{2}var(f_{1}) + b_{i,2}^{2}var(f_{2})}{var(R_{i})}.$$

See the previous table for the results.

4) To answer this question we need to construct 2 portfolios that has zero loadings on factors 1 or 2 respectively. Denote the weights on each asset as $[w_A^k, w_B^k, w_C^k]$ for the k-factor mimicking portfolio. We have two sets of three equations in three unknowns

$$w_A^1 + w_B^1 + w_C^1 = 1$$

$$2 w_A^1 + 3 w_B^1 + w_C^1 = 1$$

$$4 w_A^1 + 2 w_B^1 + w_C^1 = 0$$

yielding $w_A^1 = -0.4$, $w_B^1 = 0.2$ and $w_C^1 = 1.2$.

Similarly

$$w_A^2 + w_B^2 + w_C^2 = 1$$

$$2w_A^2 + 3w_B^2 + w_C^2 = 0$$

$$4w_A^2 + 2w_B^2 + w_C^2 = 1$$

yielding $w_A^2 = 0.2$, $w_B^2 = -0.6$ and $w_C^2 = 1.4$.

Using these weights, the expected return of the 1-st factor-mimicking portfolio is 4.5% and the expected return on the 2-nd factor mimicking portfolio is 10.5%. Hence, their risk premia are $\lambda_1 = 1.5\%$ and $\lambda_1 = 7.5\%$

Last, to find their variances, I can use the fact that

$$var(R_1) = var(f_1) + (w_A^1)^2 var(\epsilon_A) + (w_B^1)^2 var(\epsilon_B) + (w_C^1)^2 var(\epsilon_C) = 0.2072$$

$$var(R_2) = var(f_2) + (w_A^2)^2 var(\epsilon_A) + (w_B^2)^2 var(\epsilon_B) + (w_C^2)^2 var(\epsilon_C) = 0.3048$$

The presence of idiosyncratic risk ϵ introduces additional variance into the factor mimicking portfolio than just the underlying factor.

- 5) We will use the markowitz spreadsheet in this exercise
 - (a) Plugging everything into Markowitz, yields

Number of securities: 3										
No	Name	Fraction	Expected Return	Standard Deviation		Correlations		2	3	
1	A	110%	0.36	147%						
	В	-21%	0.225	126%		1		0.7596	0.8184	
3	С	12%	0.12	50%		2		1	0.7956	
Port	folio's Expected Ro	1.00	0.3607			A B C	dings	YES 1 2 3 1	2 4 2 1	
Portfolio's Standard Deviation Risk Free Rate 0.0300				1.4607 P 1.673527 4.074899 Risk Aversion Coefficient: A= 2.00						
	Slope of CAL	0.2264	0.2264 Weight on optimal risky portfolio: x*= 7.75%							

(b) Introducing an additional constraint into Markowitz, namely that the loading of the portfolio on factor 2 is zero we get

Num	nber of securities	: 3						
No	Name	Fraction	Expected Return	Standard Deviation	Correlations	2	3	
1	A	-58%	0.36					
2	В	75%	0.225		1	0.7596	0.8184	
3	С	1.00	0.12	50%	2	YES	0.7956	
Portfolio's Expected Return Portfolio's Standard Deviation			0.0588 0.7822		Loadings A B C	1 2 3 1 1.91866	2 4 2 1 0	
	Risk Free Rate Slope of CAL	0.0300	Risk Aversion Coefficient: A= 2.00 Weight on optimal risky portfolio: x*= 2.35%					

(c) Choosing between the two factor mimicking portfolios, I get

$$x_1 = \frac{\lambda_1 var(R_2)}{\lambda_1 var(R_2) + \lambda_2 var(R_1)} = \frac{0.015 \times 0.3048}{0.015 \times 0.3048 + 0.075 \times 0.2072} = 0.2273$$

and
$$x_2 = 1 - 0.2273 = 0.7727$$

When we choose between the two factor mimicking portfolios only, we get a different answer. Why? The reason is that there is idiosyncratic risk ϵ that is not diversified away

6) The only way that the CAPM holds in this economy is if the market cap of A, B and C is proportional to the optimal portfolio weights in part (a) above