procedure SGA($f : X \mapsto \mathbb{R}^+$, ps. cr) ▶ for maximization! $x_{\rm B} \leftarrow \emptyset$: $y_{\rm B} \leftarrow -\infty$: ▷ best-so-far solution for $j \in 1 \dots ps$ do randomly sample $S_0[j].x$ from X; $S_0[j].y \leftarrow f(S_0[j].x)$; if $S_0[j].y > y_B$ then $x_B \leftarrow S_0[j].x$; $y_B \leftarrow S_0[j].y$; for $i \in 0 \dots \infty$ do iterate "generations" for $i \in 1 \dots ps$ do \triangleright new pop. via mutation and crossover if $\mathfrak{R}_{0}^{1} < cr$ then $N_{i}[j].x \leftarrow \text{binary}(S_{i}[|\mathfrak{R}_{i}^{ps}|].x, S_{i}[|\mathfrak{R}_{i}^{ps}|].x);$ else $N_i[j].x \leftarrow move(S_i[|\mathfrak{R}_i^{ps}|].x)$; $N_i[i].y \leftarrow f(N_i[i].x)$: if $N_i[j].y > y_B$ then $x_B \leftarrow N_i[j].x$; $y_B \leftarrow N_i[j].y$; $S_{i+1} \leftarrow Roulette \ Wheel: select \ ps \ records \ from \ P_i = S_i \cup N_i$ such that, for each of the ps slots, the probability of $P_i[j]$ to be chosen is **proportional to P_i[j].y.** return $x_{\rm B}, y_{\rm B}$