Problem 1: (2.4.7) $\dot{x} = ax - x^3$. Note that $\frac{df}{dx} = a - 3x^2$.

Case: a = 0. Then, $\dot{x} = x^3 = 0$. So the system has one fixed point at x = 0. $\frac{df}{dx} = 0 - 0 = 0$. So linear stability analysis fails. On a graphical inspection, x = 0 is a stable fixed point.

Case: a < 0. The system has one fixed point at x = 0. At x = 0, $\frac{df}{dx} = a < 0$, which shows that it is stable.

Case: a > 0. The system has three fixed points at $x = 0, \sqrt{a}, -\sqrt{a}$. At $x = 0, \frac{df}{dx} = a > 0$, so it is unstable.

At $x = \sqrt{a}$, $\frac{df}{dx} = a - 3(a) = -2a < 0$. So it is stable.

At $x = -\sqrt{a}$, $\frac{df}{dx} = a - 3(a) = -2a < 0$. So it is stable as well.

Problem 2: (3.2.1) $\dot{x} = rx + x^2$

$$\frac{df}{dx} = r + 2x = 0$$
$$r = -2x$$

$$\frac{dx}{dt} = rx + x^2 = x(r+x) = 0$$

So, x = -r and x = 0 are solutions of $\frac{dx}{dt} = 0$. Plugging in both, results in $r_c = 0$.

Problem 3: $(3.4.5) \dot{x} = r - 3x^2$.

Using a change of variables of $x = -\frac{1}{3}u$, we get $\frac{du}{dt} = -3r + u^2$, so this is a saddle node bifurcation.

$$\frac{dx}{dt} = r - 3x^2 = 0$$

$$r = 3x^2$$

$$\frac{df}{dx} = 6x = 0$$

$$r_2 = 0$$

