

## Politechnika Wrocławska

## Faculty of Computer Science and Management

Field of study: COMPUTER SCIENCE Specialty: COMPUTER ENGEENERING

### **Master Thesis**

# Constructing a position finding system model for underground installations

Rafał Sztandera

keywords: underground indoor positioning smartphone

short summary:

Document investigates position finding system model based on network of reference points using Bluetooth Smart technology and consumer grade smartphones as a system clients in underground environment.

| Supervisor:                        | doc. dr inż.<br>Krzysztof Waśko |       |           |  |
|------------------------------------|---------------------------------|-------|-----------|--|
|                                    | Title/ degree/ name and surname | grade | signature |  |
| The final evaluation of the thesis |                                 |       |           |  |
| Przewodniczący                     |                                 |       |           |  |
| Komisji egzaminu                   |                                 |       |           |  |
| dyplomowego:                       | Title/ degree/ name and surname | grade | signature |  |

For the purposes of archival thesis qualified to:  $^{\ast}$ 

- a) Category A (perpetual files)
- b) Category BE 50 (subject to expertise after 50 years)

stamp of the faculty

<sup>\*</sup>Delete as appropriate

# Contents

| Chapte | er 1. Goals and thesis scope                                          | 1              |
|--------|-----------------------------------------------------------------------|----------------|
| Chapte | er 2. Underground envioronment description                            | 3              |
| -      | Underground installation characteristics                              | 3              |
| 2.2.   |                                                                       | 6              |
| 2.3.   | Positioning systems                                                   | 7              |
|        | 2.3.1. Safety aspect                                                  | 9              |
|        | 2.3.2. Business aspect                                                | 10             |
| 2.4.   | Usage of mobile devices in underground installations                  | 11             |
| Chapte | er 3. Position finding solutions for indoor environment               | 13             |
| _      | Wireless communication technology based solutions                     | 14             |
|        | 3.1.1. Signal strength analysis and fingerprinting techniques         | 15             |
|        | 3.1.2. Positioning with Beacons and Bluetooth technology              | 17             |
|        | 3.1.3. WSN based position finding systems                             | 20             |
| 3.2.   | 2 0                                                                   | 23             |
| 9.2.   | 3.2.1. Radio Frequency Identification tags                            | 23             |
|        | 3.2.2. Visible Light Based positioning system                         | $\frac{1}{24}$ |
| 3.3.   | Applicability of smartphones in position finding solutions            | 25             |
| 0.0.   | 3.3.1. Mobile device sensorics                                        | 26             |
|        | 3.3.2. Abilities and limitations of smartphone class mobile device in |                |
|        | context of available positioning methods                              | 28             |
|        | 3.3.3. Position finding basing on localization system and mobile      |                |
|        | device model                                                          | 30             |
| 3.4.   | Solution requirements                                                 | 30             |
| 9.2.   |                                                                       |                |
|        | er 4. Mobile device position finding algorithm                        | 35             |
| 4.1.   | Position finding requirements                                         | 35             |
| 4.2.   |                                                                       | 35             |
| 4.3.   | External solution infrastructure                                      | 39             |
| 4.4.   | Data processing and analysis                                          | 40             |
| 4.5.   | Position finding algorithm implementation                             | 44             |
| Chapte | er 5. Localization system tests                                       | 47             |
| 5.1.   | Tests criteria and assumptions                                        | 47             |
| 5.2.   | 0.0                                                                   | 51             |
| 5.3.   | Tests of wireless reference points in underground environment         | 55             |
|        | 5.3.1. Signal stability analysis                                      | 55             |

| CONTENTS                                               | iii             |
|--------------------------------------------------------|-----------------|
| 5.3.2. Robustness of received signal strenght measures | 66<br>68<br>70  |
| 5.6. Tests summary                                     | 70<br><b>71</b> |
| Bibliography                                           | 73              |

#### Streszczenie

Celem pracy jest stworzenie modelu systemu ustalania pozycji w instalacji podziemnej z poziomu osobistych urządzeń mobilnych klasy smartphone. System jest dedykowany osobom znajdującym się wewnątrz tej instalacji. W pracy omówiono kwestie wymagań wydajnościowych, niezawodności i precyzji systemu ustalania pozycji. Na bazie analizy dostępnych rozwiązań została zaproponowana koncepcja modelu wykorzystująca kilka źródeł danych dostępnych w korytarzach poziemnych obejmująca koncpecję nawigacji inercyjnej na bazie odczytów z sensorów urządzenia klasy smartphone oraz jej korekty na bazie odczytu mocy sygnału RSSI modułów radiowych w technologii Bluetooth Low Energy będących punktami odniesienia. W ramach pracy przeprowadzono próbną instalację zaproponowanego modelu w korytarzu dawnej kopalni węgla w Wałbrzychu i przeprowadzono testy.

#### Abstract

The purpose of the work is to create a model of position finding system for underground installations accessible from the level of personal smartphone devices. System is dedicated for people using customer class smartphone inside this installations. The paper discusses the issues of performance requirements, reliability and precision of the positioning system. Based on the analysis of available solutions, the concept of the model using several data sources available in the aboveground corridors has been proposed. Concept include inertial navigation based on smartphone device sensorics and signals strength analysis of Bluetooth Low Energy radio modules that are used as a reference points. As part of the work, a trial installation of the proposed model was carried out in the corridor of the former coal mine in Wałbrzych. Results from tests confirm correctness of assumptions stated in requirements.

## Chapter 1

## Goals and thesis scope

Following document investigates position finding system implementation basing on consumer grade smartphone and network of reference points using Bluetooth Low Energy technology.

As part of the work, there are presented currenty known position finding solutions within underground environment, available technologies and a method of position finding for consumer grade smartphones in underground installations is proposed. There are presented test cases and experiments supported by data analysis from measurements of given factors of the solution. Experiments are focused on stability, repeatability, accuracy and reliability factors. The work do not discuss the mining model representation but general architecture and data exchange model. but there are proposed soluin terms of the location of the reference points, the location of the miner (system user), the safety points and the evacuation exits. The model should allow both the user to navigate to the nearest safety point, taking into account the current state of the corridors, and to allow presentation of the current position in graphical form. As part of the work, a complete model of the solution are be proposed along with the prototype of application for the mobile device. Finally, there are proposed future works that would base on a concept of integration of the location system with the function of remotely updating corridors. There are be provided example use cases.

## Chapter 2

# Underground envioronment description

Underground installations are specific environment in terms of electromagnetic waves propagation, their diamensions, varying across the tunnels, large scale, weak light, available communication technologies, environmental parameters like humadity, temperature, substances that make up the atmosphere and safety restrictions that limits electronic equipment that can be used on site.

As for the position finding problem in indoor environments there were already developed successful solutions, the underground environment make some of assumptions no more valid. That is because of the propagation channel which is difficult to model due to the fact that signals are absorbed by earthen walls, bounce off uneven surfaces, and must pass equipment and other obstacles in corridors.

Description of:

- Construction (very briefly):
  - · how can look like: from complicated (room and phillar) to simple (tunneling)
  - · distances
  - · how big it is: corridor diamensions, room diamanesions, etc.
- Conditions in therms of light and air.
- What wireless communication methods are available?

Answer questions:

- if we need the navigation in whole installation? if yes, why?
- o if we need the navigation only in some places inside installation? if yes, why?
- what factors may require from navigation system its extensive lifetime?

## 2.1. Underground installation characteristics

This section covers a short description of underground installations in general that are the environment for the positioning system.

Underground installation therm is a general description of places such as tunnels and shafts that were digged into the earth in purpose of valuable material extraction, transportation, touristics or other reasons. The common phase in those installations is the phase of their creation. There is a need to digg tunnel or shaft at first in order to reach buried ore deposits or just remove not needed rock. Tunnels and shafts are

used in this phase to supply material needed to perform exchavation, for personel transportation and rock transportation to the surface. Mining installations are about continuous rock exchavation process (creation phase) while the others, like designed for transportation, ends creation phase and moves to the phase of use and maintenance. Underground installations that can be descibed as a gorup of laneways (main and branch tunnels) and in case of mine: mining areas and mined-out areas.

What is the common in underground installation is that there are no reference objects like plants, horizon or sun. Corridors and chambers are almost identical, in particular if there is room-and-pillar extraction method used. For orientation special numbering is introduced in order to identify corridor and given meter of the corridor. Symbols are painted on the walls with reflective paint and are regurally repainted. Dust combined from moisture deposit himself on a substrate, the walls and ceiling covering symbols describing the hallways. It worsens the orientation.

As the purpose of underground installation may be different, there are also different environmental characteristics such as diamensions, type of material (rock), amount of dust, how freqent is in use, what means of communication are placed into, what machines (if any) are being used inside. Along greater depths, the work conditions are decreasing. The probability of coal and gas outbursts increases because of bigger gas emission on deeper levels. Underground installations can be affected also by water leaks, coal dust explosions and rock bursts [55]. That is why underground installations are prepared for such disasters as floods, fire, high/low pressure, presence of gas, big carbon monoxide (CO) level, or enormous amount of dust. The another risk is connected to people and material transportation. Poor light and narrow working space causes underground car accidents.

Underground mines, which are characterized by their tough working conditions and hazardous environments, require reliable underground installation-wide communication systems in order to prevent from accident if possible or provide means of early warning of possible disaster [1]. Besides safety purpose, both analog and digital communication is used in order to ensure smooth functioning of workings. For example it is possible to save the machine breakdown time thanks to immediate messages passing from the vicinity of underground working area to the surface for day-to-day normal operations.

With respect of the areas of the underground working activity there are different communication system used. Because of the differences between onground and underground signal propagation environment there are also different communication systems being in use. Underground installations, like mines, use proprietary solutions, which are not standardized worldwide but solve similar problems and fulfills similiar requirements [39][54]. Communication technology in underground installations use wired transmission media (twisted pair, coaxial, trolley, leaky feeders, and fiber optic cables), wireless and through-the-earth (very low frequency radio methods) transmissions. In most cases the communication solutions are based on wired technologies. Wireless communication technologies are used in places that are inaccessible or in places affected by disaster where wired communication got broken. It is also havily used for communication purposes with modern underground equipment such as self-propelled mining machines. Wireless communication is installed also in underground installations where probability of disaser is low as an extension to wired technology. Commercial tunneling equip thier corridors with wireless communication technologies such as GSM and WiFi in order to

speed up communication between executives on tunel construction site and on surface. Tunneling is about digggin a corridors for transportation purposes in difficult terrains such as mountains or bellow the water. Operations that are performed it high latitudes where gas is not present are safer then in mines which operates deep under the surface.

There is no standard position marking convetion that are used accross the underground installations. Details about shape, size and current deep and length of corridors are often trated as a company secret as well as their labels. Generally speaking underground installactions are labeled with use of sector name, corridor name and a number of meters since beggining of the corridor. Position within given corridor can be labeled with use of corridor name and the meter, for example C1-25, where C1 denotes corridor name and 25 denotes number of meters. Corridor/meter pairs for denoting the position are suffincient in case of not complicated structure of corridors and shafts as well as in complex structured like in case of room and pillar layout. Example of room and pillar corridors layout is presented on the figure 2.1. A1 denotes transportation corridor. It can be used for example by drill rigs or load-haul-dump machines that are doing the excavation.  $S1, S2, S3, \ldots$  are corridor names within the production block. Entrance to the production block can be named with use of cardinal directions like south in case of the figure 2.1. Pillar diamensions may vary with respect of depth that works are being performed and the type of rock. Pillars can be 20 m - 40 m thick.



Figure 2.1. Naming convention in room and pillar production block.

Corridors layout can also invole different levels. Figure 2.2 depicts example of such layout. On each floor there are placed room and pillar production blocks. Naming convention for corridors are the same like in room and pillar case. The way down is also a kind of a corridor with a constant, steep angle. Device which is inside of such corridor can be located by the corridor name and the meter counted from the begging on a top level.



Figure 2.2. Multi-level corridors layout and example naming convention.

#### 2.2. Hardware and environmental constratins

Underground installations differ from onground environment because of the limited space – mainly tunnels, shafts and crossections. It affects communication methods that can be used because of the different propagation parameters, limited use of electrical and electronical equipment beacuse of hazardous environment which requires special equipment that is ignition—proove. Infrastructure inside tunnels must be suited for poor life conditions, working heavy machinery and possibly to be resistent to movements of the rock mass, vetilation ducts or water dam failures. Specific shape of the corridors and the materials used for walls and ceiling support causes wireless technologies behave differently than they were assumed to work in the onground conditions. That is why there is need to explicitly adjust existing technologies or even create new ones to make them useful for communication purposes in underground environment.

The wireless communication systems used on surface cannot be applied straight-away in underground mines due to high attenuation of radio waves in underground strata. Main elements that cause the task of communication and position finding in underground environment more difficult are [41]:

- uneven structure of the corridors: walls causes scattering and reflection phenomenas as well as different rock types causes different signal attenuations. Complex corridors topology and complex geological structures affects both ease of installation and signal link quality (in case wireless technology),
- poor line of sight: direct LOS is an ideal case for radio waves propagation when there is no obstacle on the transmission path between transmitter and receiver.
   In case of long corridors but with limited dimensions, the direct path is narrow and is affected by the large number of diffractions. Such LOS is denedent on each

element that is located inside the propagation area including the vehicles, people and equipment,

- noise: rock excavation equipment introduces electromagnetic distrortions during their work. Such distrotions may affect radio waves as well as signals in communication wires,
- tunnel as a Waveguide [20][15]: it is observed waveguide effect on electromagnetic waves at certain frequences what makes the wireless technology less predictable in terms of coverage area. It means that propagation models that applies to the signal in normal environment can not be used directly in underground environment. That makes the position finding solutions known from indoor environment navigation solutions that bases on wireless communication technologies questionable in terms of their applicability,
- o gaseous environment: causes that electric and electronical must be suited to work in conditions where air composition is diffrent than on surface, must be ignition safe and be aware of different radio wave propagation in different substances. Amount of dust present in the air also influences the radio propagation parameters.
- o warm conditions and humidity: it happens that humidity level can be high up to 90% 98% depending on the excavation type, ventilation and depth bellow the surface. Temperature can be as high as 40 celsius degree.

Phisics related to waves propagation in underground corridor are exampled in details in section 3.1.2 – distance model based on the received radio signal strength on example of Bluetooth technology, and in section 3.1.3 – electromagnetic propagation model on example of communication between WSN nodes.

In that context there can be formed following general requirements for any system dedicated for underground installation[1]:

- must be explosion proof and intrinsically safe,
- should be suited to the ingress protection (IP) standards,
- must have durable housing,
- must be size suited,
- must be complete in terms of design including: power supply unit, cables, base stations, etc
- must be inexpensive, robust, easy to expand.

## 2.3. Positioning systems

The position finding problem can be categorised with respect of the nature of those problems as well as related solution approaches.

In order to perform categorisation there is need to introduce terms of node, anchor and user. Node is an element of a network or infrastructure, that can take actively part in solving the problem of a localisation. Example of a node can be wireless device that is suited to be a part of WSN network. More details about WSN networks in section 3.1.3. Anchor is a node which position is already known. Anchor plays a role of a reference point that can be used for obtaining the position of nodes or users. User is a mobile entity that is not a part of a infrastructe but make use of it in order to obtain positioning information for himself.

Position finding problems are problems of:

- o nodes localisation, where the main interest is to obtain position of entities that build up infrastructure,
- users localisation, where the main interest is to obtain position of mobile entities basing on the infrastructure.
- o nodes and users localisation, where there is need to obtain position of nodes and users at the same time.

Figure 2.3 introduces also a categorisation with respect of the fact that position of anchors and nodes are static or can change in time. As it is depicted, localisation of users problem crossects with the localisation of nodes problem in cases where nodes are a mobile entities. Localisation of users and nodes at the same time is a problem which is mainly related to the filed of robotics where no information about the evironment are provided at once. There are investigated solutions for that sort of problems, called Simultaneous Localisation and Configuration (SLAC) and Simultaneous Localisation and Mapping (SLAM) [4].



Figure 2.3. Categorisation of localization problems and related solution approaches[4].

Within this paper there is investigated problem of user localisation only. Solutions for that problem are described in details in chapter 3.

There is need to highlight the fact that purpuse of gathering the position information can be different with respect of assumed application of that informations. There can be defined three main categories of positioning systems with respect of thier main applications:

- positioning systems that are dedicated to acquire and transfer information about objects position to systems on surface,
- systems that are dedicated for on site usage to locate the device inside the underground installation,
- hybrid systems, that combine on site usage of positioning informations and their propagation to the systems on surface.

This paper investiges "on site usage" of the positioning information under assumption that there is no ready to use technology capable for data transmission nor sharing the position information in the target environment.

Position finding in underground installations is a problem that arrised along with the advance in the available technologies. There is big demand on the market of underground installations for such functionality, There two main applications of position finding solutions:

- workers safety,
- extension to the task management, monitoring, resource planning and distribution tools

#### 2.3.1. Safety aspect

Protecting and rescueing people lifes are one of the most important challanges for the underground construction and mining industry since many years. In case of accident there is need to perform appropriate search and rescue actions immediatley as the survival rate decreases rapidly as time passes. As for underground construction and mining industry positioning systems are rather in research stage then in real use, executives doesn't know exact position af miners before accident and how many of them are trapped and how big is the scale of destruction. Currently used techniques for rescueing people after an accident requires to count people that came out to know how many people are trapped and then digg though the falled corridors and perform searching operations that rely on old low frequency technology like GLON. GLON is a polish old low frequency radio solution for finding signal emmitted from miners lamp, allowing on detection from a few meters [50]. Personal safety equipment consists of oxygen masks enabling to survive 50 minutes, and lamps with GLON transmitter. In case of accident in copper mine "Rudna" in Poland that had a place on 29'th November, 2016 [49] rescue action started 20 minutes after rock mass movement. Part corridor with chamber for mobile machines and excavation got collapsed. After 1,5 hour it was discovered that there are trapped miners. Rescue team had to dig fallen rocks from both sides of corridor without knowledge where trapped miners are because steel elements from collapsed corridor housing influenced the GLON system measures. Positioning system with online underground monitoring would give immediate information who and were was in time of accident and speed up rescueing operations. Unfortunately there was no such system. Current safety regulations does not take new technology into account. Mines do not know where exactly their miners are, they know only the region.

Modern emergency systems for underground installations provide a set of functions that improves safety and minimise loss in case of accident. Besides the means of emergency situation prevention like preditions of mass movements or presence of gasses, lots of them provide functions that help coordinate miners if they are in the isolated areas to meet each other, guide them to the emergency equipment, exit points or safe areas and ensure that nobody was left in danger place [35]. All of those functions requires good position finding solution in order to provide fast and realiable information even if connectivity is broken. Each communication system dedicated for underground installations cope with that problem involving wide spectrum of technologies in order to overcome limitations and increase robustness[54].

Positioning system can be used also by people working underground directly from their personal digital equipment[35] as a kind of navigation system which can help to evacuate from underground installation. It could provide information about their current position within mine and there would be given informations about dangerous areas and recommended escape paths in case of emergency.

Positioning systems dedicated to monitoring workers are called LAMPS – Location and Monitoring for Personal Safety systems.

## 2.3.2. Business aspect

Another use case for positioning system is that stakeholders want to know where the equipment is placed, how many time it needs to do it's operations, if there are some unplanned breakes in machine work. Delays in case of any underground operations are very costly. Resources monitoring can depict bootlenecks in machine operations may provide informations how to balance the workload in order to make operations smoother and more efficient. Data gathered by positioning systems can be also used in time and cost estimations. Mine stakeholders can see in real time what is the current distribution of equipment what enables them to perform real time coordination of ongoing process parts. In day to day operations information where are located operators and machines can increase production efficiency because of less time needed to spend on gethering information about machines position from reports. [47] The positioning systems are mainly used to deliver information to systems that operates above ground. Todays underground operations are partly or fully automated. The process of the operations is monitored and managed remotely from operation centers on surface. Supervior and control of such operations are similar to that known on above ground process plants which are controlled by SCADA – Supervisory Control And Data Acquisition software systems [35].

Underground construction industry use automation technology heavily in nearly all aspects: safety, work automation, work and environment monitoring, internal and external communication, transport, maintaining ventilation, power or fresh water supply and others. Automated solutions are also used for example to control access to mine like entries for cars and mobile mine machines or for safety purpose to quickly cut off rooms where petrol oil are stored in case of accident or fire detection. Those automated systems can be configured and controlled from places they are mounted under ground or from central systems located above ground where central monitoring and work control take a place. Such centers collect informations distributed by systems and provide information about envioronmental parameters or work performance. Devices and mobile machines that work underground are also connected to that system through means of onboard microcontrollers or computers and wireless network. Thanks to it it is possible to provide to central system work performance information or device health status that can be usefull for service during periodical device checks or repairs. Positioning systems implementations may work together with these devices which allows underground operation executives to have a up to date map of current works and processes being in progress. Positioning information can be used also by mobile devices by themselves. Example of devices that make use positioning data are modern mobile machine gateways devices [35] which are kind of black-box devices for big mining machines like loaders. Those devices can use positioning information as a trigger for reports of work efficiency expressed in load - unload cycles (IREDES Performance Profile report). Example use case for positioning information by LHD (Load Haul Dump truck) can be as follows:

- assumption 1: computer is able to recognise loading and dumping points by data provided by positioning system,
- assumption 2: full cycle is defined as a task of carrying the material from load to dump points plus travel from dump to load point,
- assumption 3: computer acumulates data about machine speed, distance traveled, time, amount of load that is carring,
- use case: computer creates the report that summaries machine's performance each full cycle detected.

Nowadays there are available positioning systems for underground installations that can provide approximate localization of people or equipment. Representative examples are discussed in chapter 3.

## 2.4. Usage of mobile devices in underground installations

Define 'mobile device'

Answer questions:

- If mobile device (smartphone class) can be used in undergorund installations?
- How usage of mobile device in underground installations may differ from usage in normal conditions (outside underground installation)?

## Chapter 3

# Position finding solutions for indoor environment

Underground installation is a specific case of an indoor environment. What is the characteristic for indoor environment is a large amount of signal diffractions and attenuarions by various materials, weaker signals of terrestial networks and global navigation sattelite systems and a need of more precise positioning information than in open space. Underground installations are completaly isolated from the wireless networks available on ground which is good because of lower radio noise. They are also limited in space what makes the diffraction happening as frequent as in ordinary indoor conditions. That arrises the question wether solutions that are working for indoor environments could be also applicable to the underground conditions. It is not obvious question as it is known that radio technologies behaves differently in underground corridors because of rock, steel, concrete, a hexahedral[2][20] alike shape and a working heavy machinery with powerfull motor engines that produce large amount of electromagnetic distortions.



Figure 3.1. Position finding approaches classification for smartphones.[13]

Smartphone based indoor positioning approaches can be classified as shown on figure 3.1. Signal processing is one of the most common used technique for positioning in mobile devices. They are equiped with radio transceivers that works on different frequencies and in different technologies when each of them are characterized with physical parameters that can be measured by the device and reuse for positioning purpose. More sophisticated signal solutions include techniques that provides additional

data that can be used for positioning purpose like in case of Global Navigation Sattelite Systems. Dead reckoning approach comes from the possibilty of measuring the physical state of the handheld device by a set of incorporated sensors such as accelerometer or gyroscpe. Vision based solutions take an advantage from having camera being mounted on the device in order to run pattern recognition algorithms that can map acquired image to the position.

In this chapter there are revieved successful approaches for indoor positioning including hardware devices and infrastructure related system architectures and algorithmic approaches that are suitable for smarpthone devices.

#### TODO:

- Advantages and disadvantages of solutions
- How the solutions fulfil given criteria (ex. how accurate given solution can be)
- o Inertial navi system

With respect of the necessity of data distribution accross the positioning system there are avilable different solution architectures. Approaches can be categorised in a following way:

- server client: positioning system infrastructure is capable for estimating the position of the system user. End user can fetch information about it's position from the server.
- client server: user of the system estimate his position himself and provide positioning information to the server,
- WSN and IoT approaches: user is treated as an extension of the positioning system infrastructure where infrastructure consists of a set of interconnected nodes that acquires the positioning related data and passes it through to the sink node while the user can listen to passing messages and interpret them,
- Peer-to-Peer: where user acquires available envioronmental data and passes it to the next user in range.

## 3.1. Wireless communication technology based solutions

Wireless communication technologies are used for positioning purposes because of the fact that use electromagnetic waves which parameters are easily measureable, are open for extensions and suitable for hazardous and changing envioronments and finally they work without wires which can be broken during the works inside the underground installation. Another advatange is the low price of wireless communication modules and the wide application of various wireless communication technologies in computers and mobile devices such as smartphones.

This section introduces existing solutions for position finding that base on the wirreless technologies.

Commonly used technologies for solving the problem of position finding in indoor environments are [28]:

- Bluetooth Low Energy,
- o ZigBee,
- o WiFi,
- Ultra-wideband (UWB).

Bluetooth, ZigBee and WiFi technologies are the common technologies used in Received Signal Strength (RSS) based positioning techniques.

### 3.1.1. Signal strength analysis and fingerprinting techniques

This section explains ideas behind Received Signal Strength analysis and fingerprinting techniches used for position finding solutions. Ideas are explained on example of WiFi wireless communication technology.

WiFi network infrastructure is a one of the available solutions that can be used as a source of information about current position of the device. The basic solution for positioning with use of this technology is about recognising wireless lan network access points by thier SSID or physical address of network cards [27]. As there exists working position finding solution that base on that technology the accuracy of the solution is about 100-300 meters [47].

What is specific for radio waves attenuation at 2,4 GHz frequency is that their signal is present from relative large distances in mine in compare to the same devices signal range in the open space environment. What is also characteristic is that the signal strength, after its peak close to the WiFi transceiver antenna its going to stabilize in distance about 10m from source and then the signal strength is residing on similar level up to distance around 300 meters from its source when it goes down [35].

Performance of WiFi link on distance up to



Figure 3.2. Wireless lan throughput and signal strength with respect of distance from the signal source (wireless access point) [35].

On figure 3.2 it is presented how wireless lan link parameters differs with respect of distance between client device and the network access point. Measures presented there are taken from 0 up to 50 meters from signal source. In case of this chart there were presented uplink and downlink throughput measured by amount of data gathered on each testing probe taken each meter distance from the signal source and the related signal strength expressed in dBm units. Values presented on chart are

medians of all gathered values and factors for given distance. Test was caried out in straight underground tunnel in the biggest coal mine in Slovenia: Premogovnik Velenje. Connection throughtput between client and server remains nearly the same for distances in range from 0 up to 50 meters. Signal strength is presented in logarithmic unit dBm. Signal strength falls significantly in first 10 meters from 0 to -40 dBm. After distance of 10 meteres value of signal strength is ranged in between -40 and -50 dBm with small and not regular diviations. After 45 meters from source the value drops slightly bellow -50 dBm.



Figure 3.3. Wireless lan range [35].

Figure 3.3 presents tests results performed on longer distance till connvectivity was not possible due to too low signal strength. On distances from 50 up to 240 meters parameters of link are similar. Down link data remains at 40 MB and at 38 after 140 meters with drops to 20 MB. Up link data measurments are more unstable than in case of down link in therms of drops in delivered amount of data, but trend seems to be steady on range from 50 till 220 meters from access point. Then both data uplink and down link drops by 10 MB. Speed of data transfer between access point and client device remain similar from very beggining till distance around 370 where signal is not enough to conduct connection. Signal strength is characteristic only for first 10 meters from signal source. Then signal strength oscilates between -40 and -60 dBm on distances 10 - 50 meters, between -50 and -80 dBm on distances 50 - 240meters, between -60 and -90 on distances 240 - 320 meres and between -80 and -90 on longer distances. Following data does not represent any straight forward solution to adjust positionion information to make positioning more precise and accurate. Only on distances close to the signal source it is possible to estimate more precise position while signal strength values differ significantly from the values that occurs on the rest of distances. There can be identified following range zones with respect of WiFi signal behaviour [35]:

1. near field zone: 0-40m distance from signal source where wave attenuation curve is similar to that in free field distribution,

- 2. coverage zone: 40 200m distance from signals source where can be identified symptoms of waveguide propagation and signal strength remain to be arround -50 dBm,
- 3. monitoring zone: distances since 200m from signals source where signal starts to vary from -75 up to -85 dBm and becomes to be unusable for communication purpose but client and access point are visible for each other,
- 4. out-of-range zone: where signal is too low and both client and access point are not visible for each other.

One of the approaches for the Wireless LAN based positionion system is to assume that given client is present in given area of underground installation if it is in coverage zone of one of Wireless LAN access point. Client can be registered by access point software and followed until he leave coverage zone. As the coverage zone is about 200 meter distance from access point then total accuracy of this solution is about 400 meters. Second approach assume positioning accuracy improvement by signal strength interpretation and recognistion if client is in near field zone. This approach is easy to be implemented as signal strength values in near field zone differs from values from the rest of zones. Such solutions are implemented in mines in Germany [35] and in Swedish Boliden's mines [47].

#### 3.1.2. Positioning with Beacons and Bluetooth technology

Beacons are transmitters that use Bluetooth low energy technology in order to send out small set of informations. They are designed to be small and energy efficient in order to allow them to be independent from the external power source. The main application of beacons are indoor positioning systems while beacons can be treated as a set of reference points building the static infrastructe of landmarks where the position is a funtion of received signal strength from beacons by the user. Beacons can be also attached to the non static objects or even user can emmit beacon information. Then the responsibility of position estimation lies on the infrastructure that gathers the signals.

Common way of estimating the position is taking into account the measure of received signal strength from the beacon transmitter called RSSI (received signal strength indicator). RSSI denotes the power of received radio signal measured in dBm (decibel-miliwatts). The measure is actually the raw value that express the powerd inducted on the receivers antenna as a result of transmission. None additional sensors are required to take that measure. Value is available on most of wireless technologies as a part of diagnotic report serving as indicator how good the connection is. The higher the RSSI value then the higher the signal strength so transmitter is closer to the receiver. Such relation between the RSSI value and the distance is known under a various of models that tries to describe the propagation of electromagnetic radio waves with use of some statistic and probabilitic distribution [43]. Such models are needed because of calculus complexity while using actual physical model of the phenomena. In order to perform physical calculus there is need detailed description of the envioronment including every element that may influence the radio wave propagation. Calculus could include d'Alembert equation for signal power density on limited space which requires 6 variables concerning distance and time in 3 axis. Calculus should take into account presence of radio wave diffractions and attenuations on materials present

in the indoor environment. As the propagation space is not ideal and the amount of elements influences the propagation is large such calculations are not being performed.

Example of statistically obtained model that describes relation between received signal strength is *Log-distance path loss model*:

$$RSSI = -10n\log_{10}(\frac{d}{d_0}) + A_0 \tag{3.1}$$

where d is the distance between the receiver and transmitter,  $A_0$  is a reference RSSI value measured at  $d_0$  distance from the transmitter, n is the signal propagation exponent. Taking the measure of RSSI  $(A_0)$  at a distance of one meter from the signal source  $(d_0 = 1)$  simplifies the equation. That is the common practise which was even implemented into iBeacon protocol developed by Apple company by attaching additional information about reference  $A_0$  RSSI value into the broadcast message of the beacon.

Log-distance path loss model states that the only variable that influence the RSSI value is the distance from the source. Such model has to treaten as a rough distance estimation as RSSI is not a stable measure. Bluetooth technology operates on a 2,4GHz frequency which means that the wavelength of the signal is equal to 12,5 cm. Such short wavelength is prone to distrortion such as multi-path reflections where signal bounce against objects and material attenuation what makes the resultant measures noisy[43].

Bluetooth technology was developed and is maintened by the Bluetooth Special Interest Group (Bluetooth SIG) which is the standard organisation capable for licensing the Bluetooth technologies and trademarks to the manufacturers. Bluetooth technology operates on frequencies from 2,4GHz to 2,4835GHZ which was devided into into 80 channels. In order to adopt transmission channel to the current load on given frequencies, Bluetooth implement a mechanism called Adaptive Frequency Hopping which allows to change channels being in use during the transmission without interrupting it. Subsequent Bluetooth technologies are aimed to ensure bigger data transfer, lower energy use and increase the transmission security. Since version 4.0 if Bluetooth standard there is availablable special protocol that is optimised for lower power consumption. This protocol is called Bluetooth Low Energy while the whole Bluetooth 4.0 standard including classic and high speed protocols is called Bluetooth Smart. Since 5.0 version of the standard the set of the protocols are called just Bluetooth 5. Market is dominated with Beacons that use Bluetooth Low Energy protocol in version 4.0 that is why this paper focuses only on this version of protocol.

Bluetooth is as set of profiles. Each version of the technology contain definitions of profiles that are up to date to that version and optionally are reverse compatible with older ones. Each profile describe what communication protocols and data format it use. Protocols available for the profiles are also defined by the Bluetooth technology. Bluetooth Low Energy protocol use *Generic Attribute Profile (GATT)* which is a set of services that can be used within the transaction between devices. Service is a name for collection of characteristics that express state of device. Bluetooth defines 59 services within the GATT such as TPS (Tx Power Service), IPS (Indoor Positioning Service) or HRS (Heart Rate Service). Services are idenfied by their UUID number which must be unique. Despite the defined service, there is a possibility to create own services.

Characteristics are defined with given format type, properties and security permissions. There are available such format types as signed or unsigned integer ranging between 1 and 8 bytes, float, string or a structure. Allowed properties of the characteristics describe if the value within the characteristic can be readed (read property), changed (write property), required acknowledgement (indicate property) or being in use just for notification purposes (notify property). There is possibility to add custom properties as well. Security persmissions part of the characteristic definition are about definining if given property can be executed with or without an authentication. For example Measurement Interval characteristic of the Health Thermometer Service is defined with Read, Indicate and Write properties and security permissions stating that there is not required any authentication for reading but it is needed for writing.

Broadcast messages are way how Bluetooth Low Energy devices communicate with them selves. It is called advertisment mode. In order to distinguish types of those messages (aka advertisement frames) they are different frame formats being in use. On the market of Beacons there are two major protocols that defines Beacons devices behavior, including broadcast frame format. The first -iBeacon – was developed by Apple and the second -Eddystone - was developed by Google. Those broadcast messages formats are the basis for creating "Ranges" definitions. Usage of ranges are explained further in section 3.3.2. In case of *iBeacon*, advertisement frame consists of 29 bytes. First 9 bytes are constant preamble, defined by the *iBeacon* protocol. First 3 bytes are standard Bluetooth Low Energy Flags. Next 6 bytes consists of type definition of the packet (in this case it is a Custom Manufacturer Packet), manufacturer ID (constant value that represents Apple company), subtype that indicates iBeacon compatible device and number of bytes that are attached to the *iBeacon* advertisement frame which is a constant number of 21 bytes. iBeacon specific data consists of Proximity UUID field which must be unique across different users, Major and Minor fields that gives the user possibility to differentiate Beacons that he own and the Signal Power field which denotes received signal strength observed at distance of 1 m from the Beacon transmitter. Signal Power value is commonly used to compute distance between receiver and transmitter using the Log-distance path loss model. Then Signal *Power* is assumed to be value of  $A_0$  variable within equation 3.1, where the  $d_0 = 1$ . That is why the model can be simplified and distance can cumputed quickly just after receiving the advertisement frame by issuing the following equation:

$$d = 10^{\frac{RSSI - A_0}{-10n}} \tag{3.2}$$

RSSI is a measure obtained during receiving process and n is a constance. Eddystone protocol introduce three types of advertisement frames. They differ from iBeacon by introducing seperate frame types for

- passing encrypted identification data,
- o passing information about Beacon state, aka telemetric frame,
- o passing address of a web site related to the Beacon.

There are available general concepts for positioning systems based on Bluetooth technology dedicated for underground environment [18][28][47], but their concepts were not verified in real environment or are not applicable to be used by smartphones.

## 3.1.3. WSN based position finding systems

There are proposals of position finiding and tracking systems based internet of things (IOT) soultions [30, 55]. The idea is to create means of wireless communication to locate miners during their daily basis. It is proposed to create a network of wireless nodes (WSN) that read signal from tag devices (RFID) carried by miners and transfer it through nodes network to sink nodes that are directly connected to the mine core data transfer installation such as industrial Ethernet. Miners position data is sent to acquisition server. Intermediate and nodes are directly connected one or more nodes laying in the range of their wireless communication module. They form together ad hoc, multi-hop, self-organizing network of nodes that is able to transfer data, reorganise its structure in case of mailfunction of one of the nodes and allow to configure nodes remotely due to the implemented wireless communication technology and dedicated routing protocol. Network of nodes can be easily expanded by adding new nodes. Due to the fact that communication is wireless, nodes can be placed also in danger or new areas where wired network devices are not allowed or the related infrastructure doesn't exists.

WSN and RFID based positioning system is designed to serve such functionalities as querying miner information, locating miner, tracking miner and managing tag and reader. It is proposed to use this system along with similarly implemented monitoring system that measure safety parameters in mine [55]. This positioning system is dedicated to used by production monitoring, production scheduling and emergency rescue mine departments located on surface. Bigger precision can achive by adding more nodes into the network. Technology that is used for wireless communication between WSN nodes can be a Bluetooth Low Energy, ZigBee (IEEE 802.15.4 based) or WiFi (IEEE 802.11). ZigBee technology is the most popular in WSN's as it supports variety of communication modes, contain out-of-box solutions for network topology management and support low energy solutions like sleep modes [24]. ZigBee protocol which is dedicated for ZigBee technology uses energy and computational efficient solutions for data collision avoidance which includes CSMA/CA techniques and time division concept [55, 37]. There are three main topologies forced by ZigBee technology that can be used in the WSN network: star topology, tree topology and mesh topology. Star topology limits the network to have all nodes directly connected to sink. Tree topology enables multihop functionalities but litmits network flexibility in therms of adopting routes in case of filure (doesn't support redundant connections between nodes). Mesh topology requires to store routing tables in each node but provides means of redundancy in therms of routing what makes the WSN network reliable and fault resistant [37]. The WSN positioning network proposal base on ZigBee technology and it's mesh topology. Placement of WSN nodes should guarantee signal coverage of RFID readers modules build into nodes. On order to achive that there are proposed variety of topologies that can be used on site during network installation. On image 3.4 it is presented the network topology proposal that introduces intermediate nodes – routing nodes – that gather information from sensor nodes and transfer it through network of routing nodes to server via sink node [55]. Due to the fact that WSN nodes are limited in energy supply, systems that base on that technology needs to be designed with aware of energy management and fault management. Idea of routing nodes deployment along the tunnel in two simmetrical lines comes from the need of link redundancy between nodes. Thanks to that even if some of routing nodes are down the information from sensors can be passed out through the other routing nodes that are in range. In order to limit power consumtion of reader nodes they were designed as Reduced Function Devices (RFD). These nodes do not take a part within information passing process. Reader nodes are designed only in purpose of reading signals from RFID tags and to send the information to the nearest routing node. In order to achive that the information will be sent only to the nearest reouting node there is performed initial configuration process that involve both reader nodes and route nodes in its signal propagation range. The process is such: reader node send the testing signal to all of the nodes. Nodes that were able to reiceve the signal, send responce with value of Received Signal Strength Indication (RSSI). Reader node limit its sending power according to the responces. Thanks to it power consumtion of reader node and interference with neighboring nodes are reduced.



Figure 3.4. Wireless Network Sensor topology in underground corridor example [55].

Network of wireless connected nodes needs be designed with respect of its maintability. There is need to assume that some nodes may fail during their operation. As the network consits of many nodes, where the number of nodes can be changed during thier operation, there is need to implement actions that will allow them to organize their topology automatically. Even if particural nodes will fail, the rest of nodes should be able to work and maintain communication with remote services. It is the role of implemented routing protocol. There are available solutions that allow network to adapt quickly to the changing environment [26], but in case of statically placed network elements the environment is not changing havily. As it is in common practise, routing nodes stores information about nodes that are used for network purposes in the routing tables. Rounting tables are created with the manner that there are promoted link to nodes that ensure the lowest cost (distance) of packet travel from given node to the sink node. Routing table can have many entries. In case of topology for underground installation there are suggested 3 entries: parent route, minimum route, backup route [55]. Parent route points to the parent node, minimum route points to the best node in therms of the most energy efficient way to the sink node and backup node that points to the second to the best routing node. Each entry consists of elements such as: number of hops (routing nodes from itself to the sink node), value expressing quality of link of the last communication, flag that describe the role of the entry (parent, minimum, backup route). Routing tables and interconnections between nodes are created during network installation process. The idea is that the sink node that is directly connected to external communication medium creates at first 1-node WSN. Rest of nodes organize themselves in manner that nodes broadcasts their physical and network addresses. Basing on information gathered during installation they are able to determine their position in the network, obtain network address, assign routing table entries and obtain hop number. The network topology can be build up and maintain after WSN installation process [24]. Nodes are able to pass information to sink node that contains it's routing tables. Thanks to that sink node is able to recreate network topology and then pass the information to the external server. In order to maintain the network there are implemented status messages that contain information about changes in nodes routing tables. They are usually pass through WSN along with data from periodic sensor readings.

Nodes are equiped with batteries that makes them independent from external power source. In order to save the energy and in order to prolong device live on the battery nodes works in energy efficient modes. In these modes nodes are turned into sleep for certain time. They woke up in order to perform tag readings and transfer the data to the external resources. In order to synchronize their operation, in each cycle the sink node broadcasts the initial message which is used to synchronize all of attached nodes. Power level of nodes batteries are monitored. Nodes can send information about their power level as a repsponce for appropriate request. There can be implemented special routines inside node that can cause sending the information about the low battery level in emergency mode, without any request from the sink node.

The crucial for the positioning system is to determine accurately exact position of given reader node inside the underground installations. Without information about readers placement positioning data obtained from them are not usefull. Solution for this problem in WSN positioning systems are solved by manual configuration. Each node have it's own identification number that is a part of it's initial configuration. This number is atteched into their housing also so given nodes can be identified directly during the installation or maintenance work in tunnel. As nodes deployment is regular it is assument in advance what will be the position of the node within the tunnel. In case of sudden failure of some node it is possible to determinate which of the node is broken by it's ID information, and check were the node is placed. WSN network should have possibility to report failure of its nodes. That is why WSN positioning systems are equiped with failure detection and reporting mechanism. Parent nodes like routing nodes against reader nodes, checks if child nodes responds to the requests. In case of having no response from given node for a given amount of subsequent requests then parent node issue status request command to the child node and wait given amount of time. If child node give an answer then it is assumed that the given child node is working correctly. In case of no response from child node, the parent node send information about failure to external service. As the readers nodes are connected stright to the parent node with no routing options then different policy for borken parent node must be applied. If the child node does not reiceve acknowledgement (ACK) frame from it's parent given amount of times then the node increase it's sending power and retrainsmits it's data again. If there is no result of increasing the power then node goes into network setup mode and scan channel to rejoin the network.

Positioning algorithm in WSN positioning system base on mine layout and assume

fixed position of nodes. Information about mine layout and nodes position wihin mine is stored in database on server above ground. Data transferred from nodes into acquisition server is a combination of three values: ID of a node, ID of acquired RFID tag in range of RFID reader module of that node, signal power of this RFID tag, and timestamp. Data is being stored in simplified relational database. This positioning system uses algorithm for finding exact position of RFID tag in dwo diamensional space (x, y). In order to do that algorithm search in database for 3 nodes that acquired given tag sinal with the biggest power. Then it uses simple free space electromagnetic waves propagation model (3.3) to compute distance between node and tag.

$$P_{ri} = \frac{P_t \cdot G_t \cdot G_{ri} \cdot \lambda^2}{4\pi D_i^2} \tag{3.3}$$

Parameters  $P_t$  (signal power generated by tag),  $G_t$  (tag antenna gain),  $G_{ri}$  (node reader antenna gain) and  $\lambda$  (electromagnetic wave length) are constant and known. Parameter  $P_{ri}$  (received signal power on reader's input) is the only variable in the equation that is needed to compute distance from tag to reader. Maximum likelihood estimation method that base on data from three nodes and thier values of reiceved signal power from given tag produces relative position of given tag in (x, y) coordinates. Suggested implementation [30] assume that nodes look for RFID nodes each 10 minutes.

#### 3.2. Other solutions

Position finding solutions use also other means of sensing the environmental parameters than those making use of wireless communication technologies modules. Potential positioning approaches for underground installations include:

- Passive RFID,
- Inertial Measurement Unit (IMU),
- Magnetic Field strength pattern matching,
- Very-low frequency (VLF) electromagnetic waves,
- Visible Light Communication (VLC).

In the underground installations image processing (aka computer vision) solutions for positioning systems and solutions concerning pattern recognition (like activity-based navigation [34], concept of reading 2D bar codes serving as environmental anchors – reference points [32] or methods for detecting small tabletop objects with use of RGB-D sensors [25]) are not investigated due to the poor visibility, lack of patterns that can identify current position admittedly as well as the fact that painted signs are quicly covered by the dust making them difficult to read.

#### 3.2.1. Radio Frequency Identification tags

RFID technology make use of electromagnetic field phenomena that allows to transfer information to reader from special component, RFID tag. Passive RFID tags are powered by readers though electromagnetic field; they do not use batteries or wired external supply. In order to acquire information from tag readers have to propagate electromagnetic waves. Tags cumulates power from electromagnetic field in capacitor. When tag have enough power then it transmits the response with tag's data to the

reader and goes to sleep for a given time. Reader get signal from tag and perform filtering and decoding operations on it in order to get tag's data. There are also available variants of active RFID tags wich use it's own power supply.

RFID technology is used in underground installations in certain locations to serve as check points. In this manner are monitored underground trains or dispatch of materials is being monitored. Passive RFID modules are installed on containers or mobile machines like trains. Those modules can be read by passive RFID readers that are connected to the mine network via dedicated control unit like Mining Infrastructure Computer [35]. Control unit is responsible for RFID reader configuration and translation of its readings into standarized positioning information format. It also supplement data from RFID reader with its identificator or coordinates which express position of a reader on mine model. RFID can operate at 868MHz band. RFID with 8dBi antenna is able to detect RFID passive tags at range of up to 3 meters.

There are known successfull implementations of positioning system which use RFID as a supplementary data – static anchors inside it's positioning system [14][31].

#### 3.2.2. Visible Light Based positioning system

Visible Light Communication (VLC) is a method for using visible spectrum of electromagnetic waves for exchanging the data. Communication system requires source of the light and light sensor which is able to detect light modulations. In case of simple signal modulations like PWM, camera of a smartphone – complementary metal-oxide-semiconductor (CMOS) image sensor can be also used effectively for receiving modulated data. Source of light in these systems are LEDs. LED is a semiconductor device that can be easily controllable by logical unit. LEDs are characterised with low latency during changing their state from on to off and vice versa. It was masured that rising and falling edges during switching the state are about 4s long [29]. Usage of these kind of medium for wireless communication purposes was already standarized by IEEE 802.15.7.

Advantage of VLC is that LED technology is commonly used as a light source in buildings and outdoors. If LED will be prepared for its unique ID transmission or transmission of its position expressed in 3D diamensions then the VLC system can be used as a positioning system with static anchors working as a beacons. Such positioning systems are called visible light positioning systems (VLP). All of them consists from three main components:

- light beaconing, which assigns special factor to the light source making it unique and distinguishable among others for the receiver,
- distance estimation, which can be obtained by taking the measure of a received signal strength and a signal strength based distance model,
- localization, which provides actual information about the position of a receiver.
   This can be obtain with use of trilateration, multirateration techniques or methods like angle of arrival.

Simple light sensor is the source of the received light information that is not aware about the light source relative position or angle but gives only the signal strength measure. CMOS sensor provide more information about acquired image beacase output consist of a two-dimentional map of sinal strengths. In this case it is possible to make use of an optic phisical laws in order to get relative position of a beacon. When there

are three or more light transmitters available then it is possible to obtain receiver position in 3-D coordinates.



Figure 3.5. Visible Light Positioning system principles. Diagram 1) presents concept of positioning system that make use of CMOS sensor [38]. Diagram 2) presents concept of positioning system that make use of simple received signal strength measures and related distance model [29].

There are investigated various modulation methods that tries to tackle with natural difficulties connected with visible light frequencies. Main of them are sun, ambient and fluoresecent light interferences with the carrier frequency and specular reflections [38]. As a modulation schemes there are being in use on-off keying, variable pulse-position modulation, color shift keying, binary frequency shift keying, channel hopping and pulse width modulation.

There is known a university project GoIn [3] that develop a concept of combining all of the sensorics available on the smartphone device in order to make accurate positioning solution for indoor environments.

## 3.3. Applicability of smartphones in position finding solutions

Todays smartphone class mobile device contains set of sensorics that can be used as a base for interial positioning system. In underground oprations industry this idea is not the newest as there were tryies of this technology implementations inside handheld devices for people working underground with use of semiconductor based MEMS gyroscopes [35]. Such devices were connected to the underground wireless network through access points which was responsible for transfering positioning information to the central systems above ground.

Smartphone class devices contains set of components that are treated as common in the industry. There is no strict definition what components should or should not the smartphone class mobile device contain as there is a strong competition in the market offering those devices in various configurations, shapes and fetures. This paper focus

on devices that are compliant with Android operating system, especially version 7.0 which is currently (in the middle of 2018), the most popular operating system on the market. [17]. Android operating system forces hardware manufactures to equip devices with at least a minimal set of components needed for the system normal operation and give recommendations of optional components that are natively supported by the system[17]. In this section there will be investigated only those technologies that are available for the basic handheld mobile device with Android 7.0.

Smartphone class mobile devices are treated in the engeener industry as a powerfull tool set helping the workers with their maintenance work on site and as a handy platform for wide scale of businesss oriented applications for task management and reporting. Factors that attract potential users of such smartphone based solutions are mainly connected with the price of those devices, ease of use, well described and supported programming frameworks and IDE, ready to use libraries, solved main power management and security issues, ease of maintenance, modularity, scalability, support for the most popular data exchange technologies, ease of extending the functionality by adding the support for external, wireless equipment. Smartphones that are available in the market are also equiped with the sensorics that allow the users to detect, record and recognise the phisical movements or orientation changes. It extends the positioning functionality making it more robust and acurate [8][32].

#### 3.3.1. Mobile device sensorics

There is no limitation in extending smartphones with internal sensorics. According to the Android 7.0 Compatibility Definition Document[17] there is no such sensoric that must be mounted and implemented into the Android system in order to be compatible with the operating system. It is also stated that device can contain as many various sensorics as producer wish under condition of having a compliant software implementation that deals with the sensorics. Although Android compatibility definition recognise some of them and recommends to be installed on the device. There are also technical requirements given under the sensorics recommendation in case of presence of such on the device.

In sake of simplicity Android defines all of components providing external information to the device as sensors. Thus components such as GPS signal receiver or a processed and filtered sensor fusion outcome like in case of rotation vector (fusion of accelerometer and gyroscope data) are recognised as different kinds of sensors. Such abstract definition comes from the Sensor Stack which is the part of Android framework.

Sensorics mentioned in the compatibility definition are:

- Accelerometer,
- Magnetometer,
- o GPS,
- Gyroscope,
- o Barometer,
- Thermometer,
- Photometer,
- Proximity Sensor,
- Fingerprint Sensor,
- 6-DOF Pose Sensor.

All of components listed above, except fignerprint sensor, thermometer and photometer, can be used within the position finding system in order to give extra information about current physical state of the device. Compatibility definition guarantee some quality parameters of sensorics mounted in the mobile phone.

3-axis accelerometer can be used to detect movement changes. It provides the information how big the change was in terms of force that the device was affected. Thanks to the information there can be identified if user made a step or to compute the speed of the user in some mean of transport like a robust car by computing integral function over time from detected acceleration. It is required from that sensor to raport events at least at 100 Hz frequency (recommended minimum frequency is 200 Hz), to detect forces in range of frefall case up to forces at value of four times the gravity (4g) or more on any axis, minimal outcome resolution is 12-bits (recommended minimum is 16-bits), should allow for online calibration and calibration parameters persistance, be temperature componsated and have a standard deviation no grated than  $0.05\frac{m}{s^2}$ . Document defines also the maximum accepted amount of power that the sensor can consume during its operation - not more than 4 mW (recommended values are bellow 2 mW during the operation and bellow 0.5 mW when the device is in static condition).

3-axis magnetometer (aka compass) provides the data concerning detected values of the magnetic field. Data available from the operating system level are expressed are in micro-Tesla( $\mu T$ ). Sensor must be able to measure between -900  $\mu T$  and +900  $\mu T$  on each axis before saturating with the resolution of 0.6  $\mu T$  (recommended 0.2  $\mu T$  or denser). Magnetometer have to compensate hard iron and soft iron effects where hard iron offset have to be less than 700  $\mu T$ . That value forces the producers to place the sensor in as far from current-induced and magnet-induced magnetic fields like speaker. Sensor installation have to support online calibration and compensation methods and store the parameters in persistent memory. It is required from the magnetometer to report at minimum frequency of 10 Hz (recommended 50 Hz).

GPS/GNSS receiver is not required component for a smartphone with Android 7.0 operating system. If the sensor is mounted then it is required to match set of time, reliability and accuracy requirements like:

- Fast time to first fix requirement sensor have to determine its position within maximum 10 seconds,
- Accuracy and responsiveness requirement position have to be determined at least 95% of the time under condition of acceleration up to  $1\frac{m}{s^2}$ , within 20m and speed  $0.5\frac{m}{s}$ .
- Robustness requitement have to be allowed to track at least 8 satelites from one constellation simultaneously (recommended 24 GPS satelites at the time and one from other global positioning satelite system like Glonass, Beidou or Galileo).

It is assumed that the outcome of GPS "sensor" can be supported by the information issued from the Internet such as information about current sattleites position and can be based on some assised or predicted GPS technique.

Gyroscope is an angular change sensor. If installed on the device it must be able to measure up to 1000 degree change per second, report at frequency not less than 100 Hz (recommended 200 Hz), provide information of 12-bit resolution (16-bits are recommended), be self calibrating and compensating during its work, march variance requirement defined as  $1e^7 \frac{rad^2}{s^2}$  per 1 Hz.

Barometer is an ambient air pressure sensor. It available is must report its measures at 5 Hz frequency, be temperature compensated and have "adequate precision" for altitude estimation.

Proximity sensor gives the proximity information of an object in the same direction as the screen. The required accuracy is at least 1-bit meaning that proximity sensor produces simple outcome that is interpreted as boolean value expressed state wether the user is close to the devices screen or not.

Pose sensor with 6 degrees of freedom (6-DOF) is an optional sensor that can be implemented in the Android compatible software. Sensor provides information about himself as part of the environment in perspective of end point of maniplator with 3 kinematic pairs, each with rotation possibilities. The method and related hardware is not discussed within the operating system compliance definition. The only rescriction stated to the sensor is that it have to be more accurate than rotation vector sensor. Basic implementation can make use of camera or depth sensor to compute the output value. Output is an quaretnion that express the rotation and a translation expressed in SI units. Sensor is used in virtual reality applications.

Android compliant definition strongly recommends the procudents to provide implementations of 'composite sensors' such as step detector, significant motion detector, gravity, linear acceleration, rotation vector. These measures are an efect of digital processing of data from single sensor like accelerometer in case of step detector or a sensor fusioning basing on multiple sensors like on megnetometer and gyroscope in case of rotation vector and accelerometer and magnetometer in case of geomagnetic rotation vector. The operating system recognise already filtered and processed data directly an outcome from an composite sensor which is actually a form of abstraction that hides the details of data processing.

Management of sensorics have to be implemented in a compliant manner in order to allow the operating system to interact with those sensorics. All of the sensor outcome are yet processed, normalized and expressed in a defined way like in case of an accelerometer and magnetometer where output is expressed within the "Android sensor coordinate system" format.

# 3.3.2. Abilities and limitations of smartphone class mobile device in context of available positioning methods

In sake of generalization this paper investigate case of regular consumer grade smartphone which are devices with a common setup compliant with Android 7.0 operating system. No specialized devices are taken into consideration.

Wireless technology is a common way for exchanging the data between the handheld mobile device and the envioronment. There are available GPS, Bluetooth, WiFi and terrestrial networks(GSM related) technologies. In case of underground each of these technologies has to be installed explicitly beacause bellow the ground none of these signals are available. GNSS (Global Navigation Satelite System) signal receiver is not usefull under the ground as there is no signal from sattelites available. There are tryies to make use of that technology by re-sending the acquired GNSS positioning data from sattelites in indoor environment by a set of transmitters that mimic sattelites [52] but it cannot be applied to the consumer grade smartphone as the Android applications have access to already processed pseudorange data into sattelite positions. Such so-

lution is called Glonal Navigation Satelite System based indoor positioning system (GNSS-IPS)[53]. Approach where transmitters places on ground fake sattelite signal is known as pseudolite. In case of indoor environment positioning data acquired from sattelites are drifted due to the fact of non-line-of-sight that is why position obtained indoor is called as pseudo-position. There are known tryies of using this approach in order to obtain positioning data but there is not known any successful implementation in underground environment.

Terrestrial networks, like GSM, can be also used as a source of positioning information but it requires some modification in order to shortcome problems with high variance of the signal. There is no possibility to do modification on that level to the Android software on devices available on the market nevertheless some prototype installations of extended terrestial network by positioning information were done and successful [10][33].

Smartphone class devices are equiped with cameras. Images that captured by the cameras can be used for positioning purposes. There are known solutions that make use of visible light [38] that recognise source of light like LED which are called LED beacons and compute the position basing on the angle-of-arrival (AOA) algorithm.

Thanks to the presence of intertial sensors such as accelerometers and gyroscopes there are known implementations inertial navigation. Pedestrian Dead Recokoning (PDR) is based on the measures from the accelerometer which allows for step detection and an estimation of a step length [12] [11] [13]. There are also developed probabilitic based methods for inertial odometry which aim to be more accurate and robust than PDR [44]. There are investigated various filtering and calibration methods for accelerometer and gyrosope outputs, dedicated to the smartphone class devices making use of Allan variance algorithm, Levenberg-Marquardt algorithm and Runge-Kutta Integration method [36][48]. Other approaches developes the recognition patterns that allows for distiction between transportation mean being in used. Such approaches were used for example in case of prototype navigation application in Chicago, London and Cologne subway [46] or inertial navigation for bikes [42]. There are known solutions for interial navigation improvment by aligning the outcome to the landmarks or map information [28].

Positioning techniques that invole following devices are not useful or cannot be connected to the mobile devices:

- laser scanner as long as it requires stable position for doing the environmental mapping and recognition and it needs to explicitly be extended to some wireless communication module,
- ultrasonic sensor as long as it requires stable position in order to measure signal travel time correctly and needs means of computational resources in order to process the raw data and send them thorugh some wireless connection to the mobile phone.

Smartphones provides support for Beacons - simple Bluetooth Low Energy devices. There are available libraries that allows monitoring of Bluetooth devices. There are available two modes for searching for Beacons: region monitoring and ranging. Region monitoring is an energy efficient way for searching for Beacons. It allows for long delays between consequent listening periods (like 10 seconds), turning receiver into sleep mode, and background service being active while the positioning application is

turned off. In case where positioning application is turned off, the background service inform user that his smartphone found himself in the range of given Beacon region and run the positioning application. Such functionality is often implemented by shopping malls official applications allowing for location aware push-messages. Such advertising technique is called *geofencing* [9]. Region monitoring gives a rough information wether there is or there is not any Beacon device being in range. On the other hand, ranging gives details about all devices being in range with details such as RSSI, name, and other, protocol dependent data. Ranging use more receiver power as listening time is bigger (like 1 second) and there are smaller time intervals between consequent listening sessions (like 10 milliseconds). As it was explained in section 3.1.2, Beacons communicate their presence by sending broadcast messages called advertisement frames. With respect of the type of protocol being used there are available different formats for advertisement frames known as beacon layouts. Layout denotes the constraints that characterise given advertisement frame as well as variables and fields that are being included into frame.

TODO - describe each of pros TODO - describe each of cons

- Which of them will be useful to increase positioning accuracy
- Why mobile device is good for positioning purposes? What are the factors?
- What means of communication (ex. wireless) can be used in context of positioning system
- Battery limitations
- Sensitivity of receivers

## 3.3.3. Position finding basing on localization system and mobile device model

Localization system choise (system based on beacons)

- Motivation
- Prototype system description
- Mobile device system interaction description
  - · Method of detecting reference points description
  - · What are the possibilities to improve positioning on your mobile device?
  - · How could the process of installing a localisation system in a mine look like?
  - · How the parameters of the environment (corridor height, corridor width, type of rock, type of corridor corridors, presence of other networks operating on similar frequencies (WiFi, GSM (harmonic frequencies)), others) affect reference point signal quality.

## 3.4. Solution requirements

Positioning system as such have to match requirements related to the reliability and robustness, accuracy, power efficiency, installation and maintenance effort and safety. As the smartphone device is also a part of the solution then proposed positioning system must be able to interact with this device.

Provided positioning solution should allow users to make use of it within the ordinary works as well as in case of an accident. The minimum time that the positioning

system should work without any external power supply is 72 hours. That value comes from a term of golden 72 hours which relates to the period of time after the accident, after which survival rate decreases rapidly [28]. System should work also in case when part of it's infrastructure is not working properly like in case of an accident where some corridors can be destroyed including the positioning system infrastructure.

Ease of maintenance in terms of semi-automated methods for detecting the pitfails or failures and posibility to fix broken positioning infrastructure without necessity of involving specialised engineers should be matched. Such requirement can be met for example by simplicity of the positioning system infrastructure or automated configuration methods that makes the infrastructure self-organising itself. Infrastructure should be also scallable as underground installations are likely to be extended during the excavation process. Infrastructure should be open for software and internal modules updates and extensions of already mounted devices. That allows the positioning system to be further developed.

Power efficiency is an requirement that causes the system to be more likely independent from the on-site power supply. Infrastructure can have own power source and set of methods that limits power consumption of its devices. Infrastructure can be also extended by some power harvesting methods such as thermoelectric or piezoelectric generators.

Smartphone must provide energy-efficient solution for exchanging the data with positioning system while there are no battery charging points in underground installations. Smartphone with positioning extension activated should be able to work at least for 8 hours and possibly 72 hours with a limited use of a positioning extension. 8 hours is the regular worker shift time in underground mines. Solution must be applicable for different models of smartphones.

Solution must be easy to use for the user. In particular it should be integrated into the user smartphone in such a way that the user will not have to handle it in a specific way in order to use the positioning system. For example solution must be suited to work while the users smartphone is kept in his pocket as well as hold by the user in hand in front of him. Solution must be suited to provide positioning information when the user is not moving as well as he is walking. There should be assumed walking pace as  $5\frac{km}{h}$ . Possibilities to adopt the solution to work with the higher speed of the user or, for example, users riding inside the vehicles are in plus.

Solution must be able to provide positioning information in real time manner. Under assumption that user of the system will be walking inside underground installation, there is need to ensure position update frequency of at least one per second. Position of the users should be provided with maximum drift of 10 meters.

Safety purpose of position finding system is very important for many countries [28]. European Union encourages to search for a good solution for the miners localization, which, in one of the postulates of its set of recommendations for the coal and steel sector ('Personnel Tracking' task). There are solutions for underground localisation but they allows only to approximate miner's position (error can be range from 300 m (range of a single radio receiver) to the distance to the next transmitter).

Underground position finding system must be compatible with mobile devices of smartphone class. Special mobile devices that were prepared to work in bad conditions like in coal or salt mines differs mainly with their housing in compare their non-commercial, personal-use equivalents. This assumption limits the range of available technologies that can be used in order to provide means of communication between mobile device and the environment.

Position finding system bases on idea of interaction between mobile device and the undeground environment. In case of the nessesity of extension that environment by electionic devices that will provide positioning data or means of connection with mine network there is need to state that such devices must be safe. Safety regulations in this matter differs with respect of the type of underground installation, the regional, country, or even association of countries [35]. The goal of this paper is not to provide solution that will be adjusted to each installation type or safety regulation, but to investigate possibilities and propose state of the art solution. As the environmental restrictions for devices and related infrastructure that can be needed for given solution there will be assumed general rules that are being in use in commercial tunneling [35].

Requirements summary stated for a positioning system and related infrastructure:

- Reliability / robustness
  - · must be able to work wihout external supply for at least 72 hours,
  - · must be able to work even in case where part of infstratructure is not available.
- Installation and maintenance
  - · semi-automated methods for monitoring the positioning system status,
  - · support for positioning infrastructure reperation by avoiding manual system reconfiguration,
  - · solution should be scallable in order to extend positioning system with the new corridors,
  - · infrastructure devices should be open for software and internal modules updates and extensions.
- Power efficiency
  - · Possibly self powered.
- Accuracy related
  - · responsiveness: position update with frequency least one per second,
  - · position error less or equal to 10m.
- Smartphone related
  - positioning system must be compliant with technologies supported by customer grade smartphone device,
  - · smartphone should be able to work continuously for the 8 hours with activated positioning module.
  - · recommended smartphone life time is 72 hours with limited power consumption and use of positioning module.
  - · solution applicable for different smartphone models.
- Usability
  - · Solution must allow the user to be able to use the solution without forcing him to handle his smartphone in a special way.
  - · Suited for the walking man.
  - $\cdot$  inftrastructure components must be size suited to the proposed mounting placement,
- Safety
  - · must be explosion proof and intrinsically safe,

- · should be suited to the ingress protection (IP) standards,
- · must have durable housing.

Requirements as the position of the mobile device will be determined by the environment model.

Define criteria that are the basis for position finding solutions comparison (existing or conceptual):

- How to save a corridor model in computer memory
- o wireless communication
- resistance to power outages and communications
- Do I need the ability to change configuration of reference points (configuration of devices that perform role of reference points)?
- What parameters can be read from the reference points (range, distance, ?)
- How long should the network work properly?
- How to detect irregularities in reference points?
- How to fix problems in reference points?
- What problems may occur with points of reference?
- If there are restrictions upon existing network topology (ex. in order to get access to servers located on surface)
- Can the mobile device be useful in case of lack of signal (GSM/Wi-Fi/BLE)?
- example: accuracy, durability, cost, maintability (energy, fault)

#### Chapter 4

# Mobile device position finding algorithm

\* Algorithm that will make use of chosen localization system and mobile device internal sensors.

#### 4.1. Position finding requirements

- Should repeat and answer requirements stated for localization system.
- example:
  - · Reading signal and its parameters from reference points;
  - · Identification of reference points
  - · Current location presentation on the environment model

#### 4.2. Solution architecture

General solution architecture for the prototype positioning system is presented on the figure 4.1. Solution consists of:

- reference system installation based on beacon devices,
- smartphone device with Bluetooth receiver and inertial sensorics (at least accelerometer),
- application for smartphone that process and combines the data from the environment and internal sensorics.

It is assumed that reference points infractructure is mounted in a way that each beacon is denoted in configuration file consisting of a list of beacons with placement position assigned. It is possible to make application more robust and underground installation site undepentent while position information can be provided by reference points itselves. This proposal rely on already defined beacon positionis as this approach allows each end-user application to work as a maintenance tool that is able to detect problems of the infrastructure including beacon failures. Proposal system does not include such maintenance feature but it may be an addon into the next release.

The core positioning information is gathered from the reference points. They have constat position and they are the most corelated with the physical layout of under-



Figure 4.1. General solution architecture. Position processing module gathers data from smartphone sensorics, data and acquired signal parameters from reference points and serves current position as an output.

ground installation. Having only this information it is possible to obtain positioning information as accurate as distance between subsequent beacons mounted on site. In order to make the position more accurate than in case of aligining the smartphone position to the position of the nearest beacon, there can be involved distance model that will allow for distance aproximation basing on the received signal strength value. As the signal strength in a tunnel varies havily there was no such model found or defined yet (refer to the section 3.1.2). Although there was proposed a solution that make positioning solution more accurate.

In order to maintain ability of determining the position by measuring received signal strength from beacons and provide long battery life of the beacon in the same time there were following beacon trasmission parameters assumed:

- beacon will send his advertisement frame once per second,
- o beacon will be set up with -16dBm transmitter power or equivalent that ensure beacon coverage of 20m in underground environment,
- $\circ$  beacons will be placed in 10m distances between each other,
- o beacons which advertisement messages were received with more than -85dBm RSSI are assumed to be *immediate* to the smartphone, those with more than -95dBm RSSi are assumed to be *near* to the smartphone, rest are assumed to be placed far,
- if there was found at least one *immediate* beacon then current smartphone position is assumed to be same as the beacon with the highest RSSI value.
- o if there are two or more near-placed beacons and if there was found similar

(+/-2dBm) RSSI values among them, the current smarthone position is assumed to be in a half way between beacons with these similar RSSI values.

Due to the fact that received signal strength has significantly bigger values within the area of 0m-2,5m from the transmitter then this distance was classified as im-mediate. RSSI values observed in immediate range were bigger than -85dBm. RSSI values lower than -95dBm are treated as a noise thus frames that were acquired with such RSSI value or lower are classified as far and are placed in 20m or more from the smartphone receiver. Signals with RSSI between -85dBm--95dBm are assumed that were sent by beacons which are classified as near, placed in range 2,5m-20m from smartphone.

In proposed solution each beacon is placed in 10m gaps. Each beacon is configured to cover distance of maximum 20m but minimum of 10m. Such assumptions causes redundancy where in the perfect scenario user that is staying immediate to the beacon is acquiring signals also from two other near beacons. In case when one of the beacons is not working there is still possibility to align current user position to the place where faulty beacon is mounted. That is possible due to the assumption that if smartphone detect two beacons that are near and received signal strength of their advertisement frames are similiar then smartphone is in the middle of the beacons. similiar signal strength means that the difference between each of them is less than 2dBm what is equal to 1,25m according to Log-distance path loss model.

Output of the intertial sensorics can produce missleading position information. For example basing on the accelereometer data only it may turn out that the user have changed direction of the movement while he is still moving forward. It may effect with worsen the positioning information instead of making the position more accurate.

Figure 4.2 presents the concept of the received signal strength based positioning solution for smartphones. As application of the distance models on the RSS values are questionable in underground installation environment, the proposed solution relies on predifined values expressing the distance class rather than on approximated distances based on exact received signal strenth analysis. Values used for the positioning system were computed from results obtained during the underground tests. Proposed algorithm for position approximation use three predefined values:

- 1. FAR threshold RSS value that describes minimum RSS that can be taken into consideration during approximate position evalutaion. Beacon that send signals with lower RSS than defined by "FAR" is categorised as "far beacon" and signal is treated as a noise.
- 2. IMMEDIATE threshold RSS value that descibes minimum RSS that comes from the beacon located "immediate" to the smarpthone. Signals with bigger RSS value indicates that beacon that emmitted those signals is an "immediate beacon". Signals with smaller RSS, but larger that defined by FAR threshold, indicates that beacon that emmitted those signals is a "near beacon",
- 3. DIFF value maximum accepted difference between obtained RSS values from signals sent by "near beacons" that allows to approximate the smartphone positinon in the middle of those "near beacons".

In simple case, where smartphone is away from corridor crossections, position finding algorithm is aware of two positioning senarios: smartphone is close ("immediate") to the beacon and smartphone is in between two near beacons. In order to determine



Figure 4.2. Porposed position aligning method based on the received signal strengths from reference points.

current scenario, algorithm computes RSS of all signals received and categories them with respect of thier values into two sets: "immediate" and "near". If there were found "immediate" classified beacons then algorithm set current smartphone position to the position of the "immediate" beacon with the biggest RSS value. In case where there are no "immediate" beacons but there were found at least two "near" beacons then the difference between their RSS values are evaluated. If difference is lower than DIFF value then the smartphone position is considered as in the middle of related beacons.

Is is possible that smartphone device is near the corridor crossection. In that case it is smartphone receive signals from beacons located in two or even more corridors (like in case of crossections in room-and-pillar production block – see figure 2.1). In such situation there is need to adjust algorithm to make use from informations from beacons labeled with different corridors names and meters related to the given corridors. Proposed solution is about finding the immediate beacon first. If there is no such beacon then RSS values from all "near" beacons are evaluated in order to check if there is possibility to estimate smartphone position as position in the middle of two nearby beacons. For that purpose beacons are grouped into sets that represents corridors they belong to. Sets with only one beacon are removed. Within all remaining sets algorithm look for a pair of similiar RSS values (difference must be smaller than DIFF threshold). If such pair was found then smartphone position is estimated as a position in the middle of beacons that emmits signals from pair.

#### 4.3. External solution infrastructure

Reference points infrastructure is a vital part of the proposed positioning system. In order to provide realiable reference information there is need ensure that installation is easily maintable, infrastructure parts are in good condition and were placed in defined way with accordance to the position, orientation and mounting recommendations. For this purpose installation step was defined as it is shown on figure 4.3. Prior to the works on site it is suggested to plan where beacons will be placed in the installation. Outcome of this plan should be a list of beacons names and the positions expressed in pairs of corridor name and a meter counted from the beggining of the corridor. Also a map with marked places where beacons will be mounted would be a good addon that will help the installation engineer with his works. Then each beacon should be labeled in accordance to the plan and configured with the name from label and recommeded transmitting power. Such preparation will shorten installation time and will avoid potential problems with missconfiguration.

There is need to mention in this secion

- Beacons choisen as the hardware equipment.
- Constraints assumed power settings, batteries sizes (capacities), distances, placement, etc
- Draw schematic way of infrastructure placement
- Mention someting about installation and maintenance procedure
- How beacons will be recognisable (names). What other parameters will they contain



Figure 4.3. Infrastructure installation procedure.

#### 4.4. Data processing and analysis

Proposed positioning system depends on inputs from the smartphone's wireless receiver. Raw data cannot be used directly by the positioning algorithm because of different nature of those signals and presence of high dirfts and noise levels that affects wireless transmission. In order to make signal useful there is need to apply filtering that will normalize the outcome of particular information source and possibly improve position estimation.

There were investigged four filtering methods:

- Kalman filter [5],
- Low-pass filter,
- RSSI smoothing approach [22],
- Median filter.

All filteres were applied to example signal strength waveform. Results are presented on figure 4.4.

Median filter is a non-linear moving N-order filter. N denotes number of frames within the sliding window what is directly proportional to the delay it introduces to the reslut. Aim of this filter is to obtain slow changing estimate of received signal strength curve. As the goal is to provide energy-efficient solution, the number of signal that are sent by the beacons are limited in order to safe energy. It was assumed that beacons will send signal two times per second. The value can be increased or decreased with respect of the experimentally obtained responsiveness of the positioning system and power consumption of beacons. For evaluation purposes N=4. As it can be observed, median filter (purple curve) doesnt fitered the RSS drop at about 30'th probe, but filtered most of the fluctuations arround 80'th probe. It is not accepted for

#### Filtering methods comparison



Figure 4.4. Porposed position aligning method based on the received signal strengths from reference points.

a filtering function to introduce such big delay without possibility to filter fluctuations like arround 30'th signal probe.

Smoothing RSSI approach [22] is a filtering method that introduces a weighted value parameter  $\alpha$  which can be any value from range 0 – 1. Equation that express the method is as follows:

$$RSSI_{smooth} = \alpha \cdot RSSI_n + (1 - \alpha) \cdot RSSI_{n-1}$$
(4.1)

For evaluation purposes  $\alpha$  parameter was set to 0.25. Curve obtained with use of that method was distinguished on figure 4.4 with blue color. It was observed that this method introduces a delay of arround 4 frames after the actual signal. Another observation is that the estimation slower than median filter reacts on the increasing and decreasing slopes of original signal: when the original curve goes up then estimate values are always bellow the original slope, when the curve goes down then estimate values are always above the original slope.

Low-pass filter is commonly used for removing short term variance from the signal. It is widely used in indoor navigation applications, mainly for inertial navigation and sensoric data analysis [16][19][7][21][40]. This approach uses cut-off parameter  $\alpha$ , similar to one from smoothing approach.

$$RSSI_{low-pass} = RSSI_n + \alpha \cdot (RSSI_{n-1} - RSSI_n) \tag{4.2}$$

For evaluation purposes  $\alpha$  parameter was set to 0.25. Low-pass filter introduce smaller delay than in case of smooth and median filters, about 2–3 frames. It filtered the signal drop arround 30'th signal probe and fluctuations arround 80'th probe. On figure 4.5 there are presented filtering results with use of different custom extensions to the filtering method.

Custom variations of low-pass filter are a try of adjusting the responsiveness of the filter and it's fluctuation filtering capabilities. On figure are presented following concepts: low-pass filter based on average and low-pass filter suplemented by average. Following equations describe each of them:

$$RSSI_{low-pass_{a}s} = AVG(RSSI_{n-3} : RSSI_n) + \alpha \cdot (RSSI_{n-1} - RSSI_n)$$
(4.3)

$$RSSI_{low-pass_{a}b} = RSSI_{n} + \alpha \cdot (RSSI_{n-1} - AVG(RSSI_{n-3} : RSSI_{n}))$$
(4.4)

AVG is an average function over window that consists of 4 frames.

Kalman filter is an extended filter that allows for sensor fusioning by defining observation and transition models, and controls. It is widely used for sensor fusion of inertial navigation purposes[13], also for smartphones [42][51][31] and Bluetooth technology [9][4][6][18]. Simplified Kalman filter assumes that beacons (signal transmitters) are not moving and do not change it's state thourgh consequitive RSS readings (transition model is expressed by identity matrices). There was recently proposed extended



### Figure 4.5. Porposed position aligning method based on the received signal strengths from reference points.

Number of probes

suplemeted by avg ---- based on avg

basic low-pass

Kalman filter for RSS signal filtering[5]. Simplified version of a filter can be described as follows:

$$C_{n} = P_{n-1} + PN$$

$$M_{n} = |RSSI_{n} - RSSIk_{n-1}|^{P} \cdot N + E$$

$$G_{n} = \frac{C_{n}}{C_{n} \cdot M_{n}}$$

$$P_{n} = \max\{PN, C_{n} - (G_{n} \cdot C_{n})\}$$

$$RSSIk_{n} = RSSIk_{n-1} + G_{n} \cdot (RSSI_{n} - RSSIk_{n-1})$$

$$(4.5)$$

Symbols used in equation 4.5:

-105

 $\circ$  RSSI $k_n$  – prediction for the the n'th signal probe (RSS),

raw RSS

- o  $G_n$  Kalman gain for the *n*'th signal probe,
- $\circ$  RSSI<sub>n</sub> real measurement of n'th signal probe,
- $\circ$   $C_n$  certainity of n'th signal measurement,
- $\circ$   $P_n$  prediction certainity of n'th signal probe,
- $\circ$   $M_n$  measurement noise for n'th signal probe,
- $\circ$  P measurement expotentional constraint,
- $\circ$  N measurement noise factor constraint,
- $\circ$  E measurement noise epsilon constraint,
- $\circ$  PN prediction process noise constraint.

Figure 4.6 presents Kalman filter applied on RSS values recorded experimenal session. With respect of chosen filter constraints it is possible to increase or decrease filter responsiveness. Increasing responsiveness cause filter faster response to changes but make it more sensitive for longer term fluctuations like in case one between 26 and 36



Figure 4.6. Application of Kalman filter. Red curve represent Kalman filter with E=3 noise constraint and P=0 expotentional constraint while yellow curve represent Kalman filter with E=3 noise constraint and P=0.6 expotentional constraint.

probe. Within this range red curve introduces delay of 3 frames but does not filter the fluctuation, while yellow curve filter the fluctuation with the same delay of 3 frames, but predicted value is about 5dBm lower than registered pick. Missconfigured Kalman filter overact on changes and introduces new fluctuations like it is presented on figure 4.7.

Values of signals strength cannot be used directly as an input for because models are sensitive on the provided signal strengths. That is why filtering techniques are needed in order to make the signal free from random changes and more robust in terms of environmental distortions. There are known other filtering approaches dedicated for RSS like Gaussian filter, distance weighted filter or propagation model training [23] — their applicability for underground environment will be evalueted in future works.

#### 4.5. Position finding algorithm implementation

Description of android framework, project components, problems occured, pitfails and remedies

#### Missconfigured Kalman filter evaluation



Figure 4.7. Application of Kalman filter. Red curve represent Kalman filter with E=0 noise constraint and P=0.2 expotentional constraint while yellow curve represent Kalman filter but with overlay

#### Chapter 5

### Localization system tests

In order to check if the proposed solution is good enough to estimate the position of the mobile phone there was performed tests of chosen hardware components as well as proposed infrastructure that extends the environment and serve as the referencing system. There were performed tests of inertial navigation part of the solution by reviewing the outcome of the internal sensorics of the chosen smartphone under perspective of thier applicability to the positioning estimation algorithm. Finally there were performed tests the prototype software application that combines both environmental information from the reference points and the inertial navigation in the real environment, in underground part of Stara Kopalnia museum placed on the site of the former Coal Mine in Wałbrzych.

#### 5.1. Tests criteria and assumptions

In order to test the reference system infrastructure there was need to test reference point device (Beacon transmitter) in context of interaction between this device and the receiver (Smartphone). For the hardware testing, there were following factors being specified:

- receiver distance from the transmitter,
- smartphone orientation,
- smartphone model,
- transmitter type,
- transmitter power,
- transmitter placement,
- transmitter antenna direction,
- distance between transmitters.

Those factors were assumed that impacts the final received signal strength value.

According to Log-distance path loss model [43] the distance between receiver and transmitter is the major factor that impacts on the signal strength. There was need to check how distance impacts on the signal strength in the desired environment in the underground corridor.

As the Beacon operates on the 2,4 GHz fequency then it is assumed that all of the transmission path elements can impact on the resultant power strength. That is why during the tests there was checked if different antenna orientations of the transmitter and receiver causes different results. In case of the transmitter antenna orientation there were tested two cases:

- 1. vertical orientation where antenna points to the floor,
- 2. horizontal orientation where antenna points to the wall (or the oposite wall in case of mounting the antenna on the wall).

During tests there were tested omni directional antennas build into Beacon and mobile phone hardware as they are commonly used in Beacons as well as in Smartphones devices. It was also experimentally proven that in case of 2,4 GHz wireless technologies in underground environment directional antennas do not increase usable coverage as well as sector annuennas [35].

As the proposed solution have to be applicable for different models of Smartphone devices it is not acceptable to force users to held their devices in a given position with respect of the direction of the Bluetooth antennas build into them. Producents are free in terms of designing the Smartphones main boards including the antennas placement. Such informations are not published. Even having the possibility to open the device and look for the antenna it is difficult to distinguish the antenna used for Bluetooth from the other used for example for terrestrial mobile networks. In case of Beacons, antenna placement is visible from the first sight. On figure 5.1 antenna placements was highlighted. In case of Beacon 1 and 3 there are mounted meander monopol antennas, in case of Beacon 2 there is mounted called meander "IFA" – *Inverted-F antenna*, in case of Beacon 4 antenna is not visible on the picture.

There are a few big microcontroller producents on the market that offers compound units having integrated computational resources, programming busses and data exchange solutions including Bluetooth Low Energy wireless module. The main three competitors are Nordic Semicondutor with NRF chips, Dialog Semicondutor with DA chips and Texas Instruments with TI and CC chips. They compete on fields of power consumtion, usability in terms of set of integrated modules, computational power and permanent storage size of their products. Those integrated circuts are used by Beacon producents as the main processing units with implemented Bluetooth protocols and stack and set of profiles that allows the users to configure Beacon parameters such as name or transmitter power and get information from extra sensorincs measures build into the Beacon like temperature or battery level. Integrated circuts are the part of PCB which also contains a battery slot, power circut and antenna circut. For tests there were chosen Beacons offered by the various producents form China thus their products were easily available via the Internet and they were cheaper than from producents from Europe or U.S. like Estimote or Texas Instruments [45]. Aim of tests with different Beacons was to check how much PCB design influences results in terms of antenna radiation, signal coverage and stability. In order to distinguish beacons during tests, each of them was labeled. There were used following beacons:

- 1. Wellcore beacon based on Nordic Semiconductor NRF51822 chip, with a 8500 mAh, 3,6V lithium battery (cost: 7\$, labeled as B1),
- 2. ByteReal beacon based on Dialog Semiconductor DA14580 chip, with a standard CR2477 battery (950 mAh, 3 V, cost: 8,25\$, labeled as B2),



Figure 5.1. Beacons transmitters used during tests. Beacon 1 is a Wellcore procduct based on Nordic Semiconductor NRF51822 chip, Beacon 2 is a ByteReal product based on Dialog Semiconductor DA14580 chip, Beacon 3 is a Wellcore product based on Nordic NRF51822 chip, Beacon 4 is a Radioland product based on Texas Instruments TI2640 chip. On pictures there are highlighted antennas placement.

- 3. Wellcore beacon based on Nordic Semiconductor NRF51822 chip, with two standard CR277 batteries (1900 mAh, 3 V, cost: 10\$, labeled as B3),
- 4. Radioland beacon based on Texas Instruments TI2640 chip, with a standard CR2032 battery (220 mAh, 3 V, cost: 6,78\$, labeled as B4).

During tests there were following smartphone related factors taken into consideration: smartphone orientation and smartphone model. There was tested how differs received signal strength with when smartphone is hold horizontally (screen points to the ceiling), vertically (screen points to the user) or is kept in the pocket. There were also performed beacon ranging tests with use of two different smarphone devices: Samsung Galaxy S7 and Blackberry Z10. Samsung is equiped with Bluetooth 4.1 while Blackberry is equiped with Bluetooth 4.0. The aim of this test was to compare the result in order to check how different construction impact on the received signal strength. There was need to verify assumption about having defined constraint values on received signal that regardless the smartphone model will allow to qualify distance from signal source basing on acquired signal value.

Hardware tests were designed in a manner that each of those factors were tested separately. There were performed following test cases:

- 1. Obtain signal attenuation curve with respect of the power of the transmitter by measuring the received signal strength at given distances from the signal source.
- 2. Signal range per given transmitter power setting and smartphone placed in the pocket. Dynamic tests performed on a distance of 5 meters.
- 3. Received signal strength per given transmitter power setting and different smartphone orientation. Static test performed directly under the transmitter.
- 4. Line of sight (LOS) test. Comparison of signal attenuation curve measured in a part of the corrdor where smartphone and transmitter were in line of sight and signal attenuation curve measured in a part of the corridor where corridor goes up and transmitter and smartphone are not in a line of sight.
- 5. Test of line of sight impact on the signal attenuation curve where user is and is not an obstacle between transmitter and smartphone.
- 6. Test how different antenna orientations of transmitter mounted on ceiling impacts on signal attenuation curve. Tested vertical and horizontal orientations.
- 7. Test how different antenna orientations of transmitter mounted on wall impacts on signal attenuation curve. Tested vertical and horizontal orientations.
- 8. Test how beacons from different vendors impacts on the signal attenuation curve. For this test beacons transmitting power was adjusted in order to obtain similar signal gain on the radio path.
- 9. Test how different smartphone models impact on the signal attenuation curve. Two different smatphones were used: Samsung Galaxy S7 with Bluetooth 4.1 and Blackberry Z10 with Bluetooth 4.0 module.
- 10. Walk scenario case test. Dynamic test with three beacons mounted on the wall while the user with a smartphone is walking along them. Tested two distancess between beacons: 10 m and 15 m.
- 11. Wall scenario case test. Dynamic test with three beacons mounted on the wall while the user with a smartphone is walking along them. Tested how smartphone kept in the pocket influence the attenuation curve.

- 12. Compare signal attenuation curve when transmitter is placed on the wall and when it is placed on the ceiling.
- Define factors that are important to state if solution is good or not
- Will allow to check if system fulfills requirements
- Test features stated in 'Localization system choise section'

#### 5.2. Tests metodology

Tests were performed in part of XVIII century exchavation corridor which is available for sighseeing as a part of Stara Kopalnia museum in Walbrzych in Poland. Corridor used during tests is placed 10 m bellow the ground and it is 185,7 m long. Corridor is 3,2 m high and 3,2 m wide. Corridors goes up on it's north side so this part of the corridor was used only once during line of sight test case. There is also one "T" shaped crossection with a similiar, perpendicular corridor that is 157 m meter length.



Figure 5.2. Test place scheme.

During the tests in the corridor there was 10°C and 71% of humadity. In order to avoid diffractions from corridors endings, beacons (Bluetooth transmitters) were placed in the middle of the corridor at it's 90m in case of sigle beacon test and in  $\pm 15m$  from this place in case of multiple beacons test.

During the test there was used

- measuring wheel for measuring the distance between subsequent distances taken into consideration for signal attenuation charts,
- smartphones with application that was collecting and storing the data (Bluetooth Low Energy receivers) and
- prepared beacons Bluetooth Low Energy transmitters.

Beacons were prepared in a manner that their names were changed into B1(1), B1(2), B1(3), B2, B3 and B4 in order to distinguish them during evaluation. Beacon names were included into advertisement frame, which were then written into log files from the signal recording sessions.

Scope of tests performed underground as well as the values of distinguished variables chosen for the tests, got summaried in the table 5.1.



Figure 5.3. Side view on the test place (at the end of the corridor) from perpendicular corridor perspective.

Symbols and terms used in the table 5.1 are following:

- Receiver smartphone device that listens to the messages sended by transmitters (beacons),
- Transmitter bluetooth low energy device that broadcasts "advertisment" messages (beacon),
- $\circ$  | receiver orientation: smartphone is held in a vertical position, display in front of an user, user is an obstacle on line of sight, smartphone is 1m above the ground,
- $\circ$  F- receiver orientation: smartphone is held in a horizontal position, display points to the ceiling (content is visible to the user), user is NOT an obstacle on line of sight, smartphone is 1m above the ground,
- $\circ$  **B** receiver orientation: smartphone is held in a horizontal position, display points to the ceiling (content is visible to the user), user is an obstacle on line of sight, smartphone is 1m above the ground,
- $\circ$  **P** receiver orientation: smartphone is held in an user pocket, smartphone is 1m above the ground,
- ∘ B smartphone "Blackberry Z10" device,
- S smartphone "Smasung Galaxy S7" device,
- **TEST** parameter that was evaluated during the test.

| Test<br>case<br>number | Description                                                                                                                                                                                         | Distance from transmitter                                          | Receive<br>r<br>orientati<br>on |        | Transmi<br>tter type | Transmi<br>tter<br>power | Transmi<br>tter<br>placeme<br>nt | directio        | Amount<br>of<br>transmit<br>ters | Distanc<br>e<br>between<br>transmit |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------|--------|----------------------|--------------------------|----------------------------------|-----------------|----------------------------------|-------------------------------------|
|                        |                                                                                                                                                                                                     | [m]                                                                | {  , F-, B-,<br>P}              | {B, S} | {B1, B2,<br>B3, B4}  | [dBm]                    | {Ceiling,<br>Wall}               | <b>n</b> {↓, →) | {1, 3}                           | ters<br>{-, 10m,<br>15m}            |
| 1                      | Obtain transmitters power attenuation curve                                                                                                                                                         | TEST                                                               | F-                              | S      | B1                   | TEST                     | Ceiling                          | ļ               | 1                                | -                                   |
| 1,1                    | * 4dBm transmitter power; power<br>density measured on discrete<br>distances from signal source                                                                                                     |                                                                    |                                 |        |                      | 4dBm                     |                                  |                 |                                  |                                     |
| 1,2                    | * -16dBm transmitter power; power<br>density measured on discrete<br>distances from signal source                                                                                                   |                                                                    |                                 |        |                      | -16dBm                   |                                  |                 |                                  |                                     |
| 2                      | Signal range per given tx power setting and rx in "pocket" orientation. Dynamic tests in a sequence: *5 sec under the tx, * move 5 meters away (actor is an obstacle), * 5 sec on 5 meters distance | {0m, 0-5m, 5m}                                                     | Р                               | S      | B1                   | TEST                     | Ceiling                          | 1               | 1                                | -                                   |
| 2,1                    | * -12dBm tx power                                                                                                                                                                                   |                                                                    |                                 |        |                      | -12dBm                   |                                  |                 |                                  |                                     |
| 2,2                    | * -16dBm tx power                                                                                                                                                                                   |                                                                    |                                 |        |                      | -16dBm<br>-20dBm         |                                  |                 |                                  | <del></del>                         |
| 2,3                    | * -20dBm tx power<br>* -30dBm tx power                                                                                                                                                              |                                                                    |                                 |        |                      | -20dBm                   |                                  |                 |                                  |                                     |
| 3                      | Singal range per given tx power setting and different rx orientation. Static test: directly under the tx                                                                                            | 0m                                                                 | TEST                            | s      | B1                   | TEST                     | Ceiling                          | 1               | 1                                | -                                   |
| 3,1                    | * -12dBm tx power; orientation: -                                                                                                                                                                   |                                                                    | B-                              |        |                      | -12dBm                   |                                  |                 |                                  |                                     |
| 3,2                    | * -12dBm tx power; orientation:                                                                                                                                                                     |                                                                    |                                 |        |                      | -12dBm                   |                                  |                 |                                  |                                     |
| 3,3                    | * -12dBm tx power; orientation: P                                                                                                                                                                   |                                                                    | P                               |        |                      | -12dBm                   |                                  |                 |                                  |                                     |
| 3,4                    | * -16dBm tx power; orientation: -  * -16dBm tx power; orientation:                                                                                                                                  |                                                                    | B-                              |        |                      | -16dBm                   |                                  |                 |                                  |                                     |
| 3,6                    | * -16dBm tx power; orientation: P                                                                                                                                                                   |                                                                    | P                               |        |                      | -16dBm                   |                                  |                 |                                  |                                     |
| 3,7                    | * -20dBm tx power; orientation: -                                                                                                                                                                   |                                                                    | B-                              |        |                      | -20dBm                   |                                  |                 |                                  |                                     |
| 3,8                    | * -20dBm tx power; orientation:                                                                                                                                                                     |                                                                    |                                 |        |                      | -20dBm                   |                                  |                 |                                  |                                     |
| 3,9                    | * -20dBm tx power; orientation: P                                                                                                                                                                   |                                                                    | P                               |        |                      | -20dBm                   |                                  |                 |                                  |                                     |
| 3,10                   | * -30dBm tx power; orientation: -                                                                                                                                                                   |                                                                    | B-                              |        |                      | -30dBm                   |                                  |                 |                                  |                                     |
| 3,11                   | * -30dBm tx power; orientation:                                                                                                                                                                     |                                                                    |                                 |        |                      | -30dBm                   |                                  |                 |                                  |                                     |
| 3,12                   | * -30dBm tx power; orientation: P                                                                                                                                                                   |                                                                    | P                               |        |                      | -30dBm                   |                                  |                 |                                  |                                     |
| 4                      | Line of sight (LOS) test. Tests performed with no LOS condition. Rest parameters same as in test 1,1. Test is designed to be compared with results of analogue test no. 1,1                         | TEST                                                               | F-                              | S      | B1                   | 4dBm                     | Ceiling                          | ţ               | 1                                | -                                   |
| 4,1                    | * With LOS (source not shadowed,<br>same as 1.1)<br>* Without LOS (source not visible due<br>to corridor shape)                                                                                     |                                                                    |                                 |        |                      |                          |                                  |                 |                                  |                                     |
| 5                      | Impact of actor position; obtain<br>attenuation curve in case where an<br>actor is an obstacle between                                                                                              | TEST                                                               | TEST                            | S      | B1                   | 4dBm                     | Ceiling                          | 1               | 1                                | -                                   |
| 5,1                    | transmitter and receiver  * 4dBm transmitter power; power density measured on discrete                                                                                                              |                                                                    | F-                              |        |                      |                          |                                  |                 |                                  |                                     |
| 5,2                    | distances from signal source  * 4dBm transmitter power; power density measured on discrete distances from signal source; actor in                                                                   |                                                                    | B-                              |        |                      |                          |                                  |                 |                                  |                                     |
| 6                      | an obstacle Obtain tx signal attenuation curve per different tx antenna directions for tx                                                                                                           | {0m, 1m, 2m, 3m, 4m, 6m, 8m, 10m, 12.5m,                           | F-                              | S      | B1                   | -16dBm                   | Ceiling                          | TEST            | 1                                | -                                   |
| 6,1                    | mounted on ceiling                                                                                                                                                                                  | 15m, 20m, 25m, 35m}                                                |                                 |        |                      |                          |                                  | 1               |                                  |                                     |
| 6,2                    | → direction                                                                                                                                                                                         |                                                                    |                                 |        |                      |                          |                                  | <b>→</b>        |                                  |                                     |
| 7                      | Obtain tx signal attenuation curve per<br>different tx antenna directions for tx<br>mounted on wall                                                                                                 | {0m, 1m, 2m, 3m, 4m,<br>6m, 8m, 10m, 12.5m,<br>15m, 20m, 25m, 35m} | F-                              | S      | B1                   | -16dBm                   | Wall                             | TEST            | 1                                |                                     |
| 7,1                    | ↓direction                                                                                                                                                                                          |                                                                    |                                 |        |                      |                          |                                  | ļ               |                                  |                                     |
| 7,2                    | → direction                                                                                                                                                                                         |                                                                    |                                 |        |                      |                          |                                  | -               |                                  |                                     |
| 8                      | Obtain tx signal attenuation curve for<br>different transmitters microcontrollers<br>and hardware                                                                                                   | {0m, 1m, 2m, 3m, 4m,<br>6m, 8m, 10m, 12.5m,<br>15m, 20m, 25m, 35m} | F-                              | S      | TEST                 | -16dBm                   | Wall                             | 1               | 1                                | -                                   |
| 8,1                    | * B1                                                                                                                                                                                                |                                                                    |                                 |        | B1                   |                          |                                  |                 |                                  |                                     |

| Test<br>case<br>number | Description                                                                                                                                                                                                                                                                                                 | Distance from transmitter                                    | Receive<br>r<br>orientati<br>on |      | Transmi<br>tter type | Transmi<br>tter<br>power | Transmi<br>tter<br>placeme<br>nt | Transmi<br>tter<br>antenna<br>directio<br>n | Amount<br>of<br>transmit<br>ters | Distanc<br>e<br>between<br>transmit<br>ters |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------|------|----------------------|--------------------------|----------------------------------|---------------------------------------------|----------------------------------|---------------------------------------------|
| 8,2                    | * B2 - default tx power (not changed for tests)                                                                                                                                                                                                                                                             |                                                              |                                 |      | B2                   |                          |                                  |                                             |                                  |                                             |
| 8,3                    | * B3 – was set to -8dBm, but result<br>was observable like -16dBm in B1                                                                                                                                                                                                                                     |                                                              |                                 |      | В3                   | -8dBm                    |                                  |                                             |                                  |                                             |
| 8,4                    | * B4                                                                                                                                                                                                                                                                                                        |                                                              |                                 |      | B4                   |                          |                                  |                                             |                                  |                                             |
| 9                      | Obtain tx signal attenuation curve for different reicevers (smartphones)                                                                                                                                                                                                                                    | {0m, 1m, 2m, 3m, 4m, 6m, 8m, 10m, 12.5m, 15m, 20m, 25m, 35m} | F-                              | TEST | B1                   | -16dBm                   | Wall                             | ļ                                           | 1                                | -                                           |
| 9,1                    | * Samsung Galaxy S7 (BLE 4.1)                                                                                                                                                                                                                                                                               |                                                              |                                 | S    |                      |                          |                                  |                                             |                                  |                                             |
| 9,2                    | * Blackberry Z10 (BLE 4.0)                                                                                                                                                                                                                                                                                  |                                                              |                                 | В    |                      |                          |                                  |                                             |                                  |                                             |
| 10                     | Dynamic tests with 3 beacons. Tested two distances between beacons. Tests start with 5s measurement of signal strength 20m before first transmitter, consists of walk along corridor (70/80m), ends with 5s measurement of signal strength 20m after last transmitter tx in 10m intervals (two tests: there | 20m before first tx –<br>20m after last tx<br>(beacon)       | F-/B-                           | S    | B1                   | -16dBm                   | Wall                             | 1                                           | 3                                | TEST                                        |
| 10,1                   | + way back)  * tx in 15m intervals (two test: there +                                                                                                                                                                                                                                                       |                                                              |                                 |      |                      |                          |                                  |                                             |                                  | 10m                                         |
| 10,2                   | way backs)                                                                                                                                                                                                                                                                                                  |                                                              |                                 |      |                      |                          |                                  |                                             |                                  | 15m                                         |
| 11                     | Dynamic tests with 3 beacons. Tested two orientations of receiver. Tests start with 5s measurement of signal strength 20m before first transmitter, consists of walk along corridor (70m), ends with 5s measurement of signal strength 20m after last transmitter                                           | 20m before first tx –<br>20m after last tx<br>(beacon)       | TEST                            | S    | B1                   | -16dBm                   | Wall                             | Ţ                                           | 3                                | 10m                                         |
| 11,1                   | * F-/B- (due to movement) rx orientation                                                                                                                                                                                                                                                                    |                                                              | F-/B-                           |      |                      |                          |                                  |                                             |                                  |                                             |
| 11,2                   | * P rx orientation                                                                                                                                                                                                                                                                                          |                                                              | Р                               |      |                      |                          |                                  |                                             |                                  |                                             |
| 12                     | Wall and ceiling tx placement comparison                                                                                                                                                                                                                                                                    | {0m, 1m, 2m, 3m, 4m, 6m, 8m, 10m, 12.5m, 15m, 20m, 25m, 35m} | F-                              | S    | B1                   | -16dBm                   | TEST                             | ţ                                           | 1                                | -                                           |
| 12,1                   | * tx on the ceiling                                                                                                                                                                                                                                                                                         |                                                              |                                 |      |                      |                          | Ceiling                          |                                             |                                  |                                             |
| 12,2                   | * tx on the wall                                                                                                                                                                                                                                                                                            |                                                              |                                 |      |                      |                          | Wall                             |                                             |                                  |                                             |

Table 5.1. List of test cases and related parameters.

# 5.3. Tests of wireless reference points in underground environment

The first series of tests were about observation how different factors influence the received signal strength. Factors taken into consideration, beacon and smartphone devices used during tests are listed in section 5.1.

#### 5.3.1. Signal stability analysis

As a test base there was taken a several probes of received signal strengths at different distances from the signal source. As it is shown on the figure 5.4, signal strengths are not stable in time. The general rule of *log-distance path loss model*3.1 where the short distance between transmitter and receiver causes biger signal strengths are observed, but there are strong fluctuations in time. Model was dicussed in section 3.1.2.



Figure 5.4. Received signal strengths measured each second at different distances between signal source and smarphone. Each line represents received signal strength obtained at given distance.

Basing on results from this test there was made observation about the relation between the distance and the scale of fluctuation affecting the signal strengths. The biggest fluctuations are present between 0 and 10 meters from the signal source. On the distance of 70 meters and more signal strengths got flatten thus also a standard deviation is low. This relation is depicted on the figure 5.5.

Log-distance path loss model assumes only one input (received signal strength) what is directly a basis for distance estimation. As the model is based on logarithm (see equation 3.1) then fluctuactions around reference value have smaller impact on the obtained distance approximation than the fluctuations around the values that are

#### Standard deviation of received signal strength values

#### with respect of the distance from transmitter



Figure 5.5. Standard deviation taken from received signal strengths measured each second at different distances between signal source and smarphone.

away from the reference value. In order to verify how model fits into the measures then distance approximations based on that model was computed on average values of the received signal strengths measured at given distances. There was more than 25 probes of the signal strengths taken to the average. Figure 5.6 depicts results of a approximating the distance from beacon placed on the ceiling with the highest possible signal strength of 4dBm on a range of 90m. X-axis described the actual distance, y-axis describes approximated distance – output of a model. Estimations in longer distances were not accurate – they error was about  $\pm 30m$  on a 20 meters distance and more.

Figure 5.7 focuses on range in between 0 and 20 meters from signal source. In this range approximation error was about  $\pm 1.5$  meters. Such result leads to the assumtion that on distances lower than 20m from the signal source, proposed model can provide approximation which fits to the required accuracy stated for the positioning system.

#### Log-distance path loss model application



Figure 5.6. Application of log-distance path loss model on received signal strengths measured at discrete distances from signal source at range of 90m.

#### Log-distance path loss model application



Figure 5.7. Application of log-distance path  $loss\ model$  on received signal strengths measured at discrete distances from signal source at range of 20m.

#### 5.3.2. Robustness of received signal strength measures

One of the objectives stated for tests was to check how placement, orientation and different models of the devices impacts the received signal strength values. List of variables taken into consideration with explanation were written in section 5.1. Pictures 5.8 and 5.9 presents how beacon was mounted on a ceiling with it's different orientations related to the antenna direction.





Figure 5.8. Beacon 1 mounterd on a ceiling Figure 5.9. Beacon 1 mounterd on a ceiling with horizontal antenna direction.

with vertical antenna direction.

In order to check what is the signal range of a single beacon device, there was performed a test in which there was taken a series of recived signal measures at given distances from the signal source. There were selected two transmitter power settings for the test: 4dBm which is the higher transmitter power setting and -16dBm which was taken experimentally. Distances were located at 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12,5, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90 meters in case of 4dBm setting and at 0, 1, 2, 3, 4, 6, 8, 10, 12, 5, 15, 20, 25, 35 meters in case of -16dBm setting. During the test there was used "B1" beacon mounted on the ceiling vertically. Figure 5.10 presents results of this tests.

Range of a beacon with the highest power setting available exceeds available space in a corridor, that is why data ends for 4dBm ends at 90m. Received signal strengths measured on distances larger than 20m from the source of the signal are getting stabilized while strengths mesured closer than 20m from the signal source are falling significantly. Measures taken between 20m - 90m from signal source are between -80dBm and -90dBm, while the drop on the first 5m from the signal source is about 15dBm. What is an interesting is that received signal strength values were not decreasing on distances between 50m and 90m. There was also observed that signal strengths get stabilized on larger distances what was depicted on figure 5.5 expressing standard deviation of received signals, as well on figure 5.4 where can be observed the cource of the received signal strength values. Observation matches with the observations about the log-distance path loss model.



#### Figure 5.10. Attenuation curve for 4dBm and -16dBm trasmitter power.

It is assumed that the solution should be suited for three possible smartphone orientations: smartphone handled in front of the user (vertivally and horizontally) and smartphone kept in the pocket. Figure 5.11 presents results of a dynamic, continous test that consisted of three phases:

- $\circ$  measure received signal strength for 5s directly under the transmitter,
- $\circ$  walk 5m away,
- $\circ$  measure signal for 5s on 5m distance from signal source.

Test was performed 4 times, each for different transmitter power values: -12dBm, -16dBm, -20dBm and -30dBm. Beacon was placed vertically on the ceiling.

Singal strengths received by the smartphone kept in the pocket are same or even lower at 0m distance (smartphone is directly under the beacon) than measured 5m away from signal source. Difference is not significant – in case of -16dBm and -20dBm transmiting power settings, received signal strength values remains the same for the whole test  $(\pm 3dBm)$ . In case of -12dBm transmitter power setting there was observed that received signal got stronger on a 5m distance than just bellow the transmitter  $(10\pm 4dBm \text{ change})$ . Received signal strengths of the beacon with -30dBm transmission power setting were low – signals received in smaller distance than 1m from the signal source were ommitted, rest were at the border of a noise level. That is why setting -30dBm was rejected as one that provides so week signal, that in case of smartphone kept in the pocket can be filtered out as a noise.

In latter test there were compared smartphone orientations in context of thier influence on the received signal strength value. As it is assumed that the crucial distance for the positioning system, that will allow for accuracy at least equal to the distance between beacons, tests were performed directly under the beacon. Beacon was placed on the ceiling with vertical anetenna direction. Test was a static test where at least 25 probes of the signal strength were taken at the same place. There were tested three

- \* -16dBm tx power ---- \* -20dBm tx power --- \* -30dBm tx power



### Figure 5.11. Received signal strength values measured by the smartphone kept in the pocket with respect of the trasmitter power and the distance from the signal source.

\* -12dBm tx power -

values of the transmitter power in order to see if the transmitter power impacts on the all of smartphone orientations equaly. Setting of -30dBm transmitter power was ommitted in the evaluation. Results are presented on figure 5.12.

#### Comparison of recived signal strength with respect of smartphone orientation



Figure 5.12. Received signal strength measured just under the beacon device mounted on the ceiling in vertical orientation. Tested three transmitter power values: -12dBm, -16dBm and -20dBm and the three smartphone orientations: vertical, horizontal and kept in the pocket.

Ideally, change of the transmission power expressed in dBm should cause the same chagne in the received signal strength. That was not observed on the results of performed experiment. Change of 4dBm and 8dBm caused following change in observed signal strengths per smartphone orienations:

- horizontally:  $7.3 \pm 2.4dBm$  and  $11.3 \pm 5.1dBm$ ,
- $\circ$  vertically:  $2 \pm 4dBm$  and  $8.5 \pm 5.1dBm$ ,
- $\circ$  kept in the pocket:  $4.5 \pm 4.8 dBm$  and  $7.1 \pm 3 dBm$ .

Received signal strengths obtained by the smartphone in horizontal and vertical orientation differs by 2dBm-4dBm while standard deviations taken from the set of probes are about 2.5dBm-5dBm. It means that in this test setup, horizontal and vertical orientations does not impact on the signal in an observable way. Fluctuations as well as obtained RSS value are on the same level. Significant difference is between horizontal or vertical orientation and the placement in the pocket. In all cases received signal strength was about  $18\pm 2dBm$  lower. It means that there is need to ensure such setup of the wireless reference point installation that will ensure such transmission power that allow for correct identification of the beacon with some safety factor, even the receiver is in the pocket—so reflecting additional 18dBm needed for this placement. Such safety factor is determined as a lowest acceptable value for the positioning system—every signal with a lower value is treated as a noise.

Another factor that influence radio frequency transmission is a presence of obstacles between transmitter and receiver. Situation where radio waves that can directly come from the signal source to the receiver without diffractions, in direct path, is called line-of-sight propagation. During the test session there was taken two types of obscuration taken into consideration: obscuration that results from the shape of the tunnel and user obscuration, when the user is in between the smartphone and the beacon. The first case is ilustrated on the figure 5.13.

Test consisted of taking probes of the received signal strengths at discrete distances from the signal source in the "southern" part of the corridor, labeled as **LOS** and in the "northern" part of the corridor, labeled as **NLOS** (refer to the test place scheme on the figure 5.2). Southern part of corridor is flat and there were no obstacles between the beacon and the smartphone during the test. Nothern part of the test place starts to go up at 61.5m from the signal source. Steep grade is about 17% so at 71.5m from the signal source there is no direct path between beacon and the smartphone. Smartphone was oriented horizontally, beacon was mounted vertically on the ceiling.

Despite fluctuation observed at 30m from the signal source in LOS session, the shape of both LOS and NLOS curves of received signal strengths with respect of the distance was comparable until the start of the steep part of the corridor. Then NLOS curve goes down so at 75m from the signal source the value of RSS is  $-98.8\pm2.1$  which is 18.6dBm lower than in case of RSS values observed at similiar distance in LOS case. It means that despite the wave guide effect that was supposed to be observed in case of electromagnetic waves in underground installations [20][15], the influence on the received signal strength is so high that have to be taken into consideration during system planning and installation. This effect can be effectively reduced by limitting the emitted signal power strength and populating the beacon devices.

On the figure 5.14 there are presented received signal strength values obtained within the test of the propagation path obscuration by the user.



Figure 5.13. Attenuation curve based on received signal strenght measured at dicrete distances from the signal source. Test taken in corridor which goes up starting from 61.5m from the signal source. Red remarks concerns NLOS propagation and highlights the meter since when steep part of the corridor starts.



Figure 5.14. Received signal strength with respect of the distance from the signal source and the LOS condition where user is an obstacle on the propagation path.

Test was performed two times: one session was about taking the measures while user was an obstacle in between the smartphone and the beacon (labeled on chart as "Obscured") and the second session which was about taking the measures while user was not an obstacle (labeled as "Not obscured"). Whole "Obscured" curve is bellow the "Not obscured". The difference between received signal strengths in both conditions is about the same in first 3m from the signal source, then is up to 10dBm lower, despite the fluctuations. It means that there is need to reflect the need of additional signal strength required in case of user obscuration into the power setting of the beacons.

The next test, depicted on the figure 5.16, is about checking how different beacon placement and its orientation impacts the received signal strength.



Figure 5.15. Beacon B3 mounted on the wall in its vertical orientation.

The goal of this test was to deduce the best mounting place and orientation of the beacon inside the underground corridor. There were taken into account four possibilities: placement on the ceiling, placement on the wall, with vertical and horizontal antenna directions. On figure 5.15 there is presented mounting point on the wall. The test was a static one, when probes were taken at discrete distances from the signal source. For test purposes transmitter power got reduced to value of -16dBm. Smartphone was oriented horizontally.

The biggest received signal strength values were obtained with the beacon mounted on the ceiling in horizontal antenna direction. Signal strengths were at least 7dBm higher for this setting than for any other. There was also observed the biggest signal coverage for this setting -35m. Vertical antenna orienations in both cases of mounting on the ceiling and the wall causes similiar  $(\pm 5dBm)$  RSS values measures, despite the pick on 2m from the signal source of beacon mounted on the wall. Both vertical and horizontal orientations of beacon mounted on the wall characterizes with the signal strength pick on 2m-3m distance from the signal source. Results of the tests points to the fact that beacon placement affects the signal strength as well as the coverage and the part of the fluctuations.

#### Attenuation curve with different tx placement and antenna direction



Figure 5.16. Transmitter position and orientation impact on the received signal strength.

Test of different beacon hardwares was difficult beacause of different electronic solutions being used inside them. Figure 5.17 presents result of this test.



Figure 5.17. Attenuation curve obtained with use of different beacons and their similar power setting.

There is no standard for creating beacon devices. As many beacons as many hard-

ware solutions for power management, additional sensorics mounted, and the antenna type and installation. In case of beacons that were bought in order to perform tests, each had to be individually configured in order to achive similiar coverage and received signal strengths. That is why value signal strength obtained during the test is not an object of investigation but the curve shape and fluctuations. There were tested beacons B1, B2, B3, B4. Details about the beacons are available in section 5.1.

All of the beacons were mounted on the wall, with verical antenna direction. Each of them was tested separately. What is characteristic for that placement is that received signal strength measured at 0m from the beacon is lower than 1–2 meters away. Each measure proves that such rule is true despite different transmitter hardware. There can be also observed that signal strength is the biggest near the source, then drops about 10dBm on a distance of 5m from the signal source. Situation repeates with smaller aplitudes till the minimum acceptable signal strength values. In case of beacon B1, B2 and B4 there were observed such values in the close distance to the signal source (about 0m-5m) that significantly differs from those observed in bigger distances. Only B3 beacon emmit it's signal on not disitinguishable power levels within the close range.

The next figure (5.18) presents results of test with different smartphones being used as receivers of the signal.

#### Received signal strength measured by different smartphone models



Figure 5.18. Comparison of received signal strength values caputered by two different smartphone models: Samsung Galaxy S7 and Blackberry Z10.

For this test there was used beacon B1 mounted vertically on the wall. There were performed measures of the RSS signal taken by two models of smartphones at 0, 1, 2, 3, 4, 6, 8, 10, 12.5, 15, 20, 25, 35 meters from the beacon. Curve shapes for both smartphones are moved with respect to each other by 5dBm on 0m-4m distances. Then the difference is about 2dBm. Difference may come from the type and the amount material that was used to cover antennas inside the devices. Despite slight differences between signal strength, the receives signal strength pick is distinguishable by both

smartphones. Bluetooth standard implemented by two smartphones also do not affect shape of attenuation curve. That means that the solution build on the Bluetooth technology based beacons behaves same for different types of smartphones being used.

#### 5.3.3. Real case scenario evaluation

Second part of the test session in the underground installation was devoted to check if proposed position fining system based on the wireless reference points (Bluetooth becons) can take received signal strength as a fator determining the distance between the user device and the reference point. Aim of tests was take strength values of signals from beacons during the walk along the tunnel with sample positioning infrastructure and check how the oberved values fits to the proposed positioning solution.



Figure 5.19. Signal strengths of the beacons placed 10m each, measured during the walk with smartphone hold in hand in it's horizontal orientation.

During tests there was 3 scenarios taken into consideration. One was about position of the smartphone: evalutaion of the signal strength values recorder by the smartphone carried in the pocket and smartphone held by the user in his hand (horizontal orientation). The second scenario consers distance between the reference points. There were evaluated 10m and 15m distances between the beacons. There were used three B1 beacons with -16dBm power setting placed vertically on the wall. The last scenario was about checking how direction of user movement impacts on the observed signal strength values. That case is a direct extension to the static tests of shadowing direct signal path by the user (see figure 5.14).

Each test that cover first and the second senario, was performed two times, named as: "way there" and "way back". That is how the third senarios was included into

two two first. That way creates the possibility to check if walking direction influence received signal strength. Each test round consisted of three phases: warm up, walk, settle down. Warm up phase was about capturing the signal strength values for 5s, 20m before first beacon. Walk was about making a distance of 70m in case of beacons mounted 10m each or a distance of 80m in case of beacons mounted 15m each. Settle down phase ends with 5s measurement of signal strength at distance of 20m after last beacon mounted on the wall.

Walking pace and speed was not arbitraty set and controlled during test. That is why distances assigned to given values are approximated under assumption that the pace was contant during the walk. Instead of matching distances to signal strength values picks there was evaluated how signal strenth values changes during the walk.

First test concernes walk with the smartphone hold in hand horizontally and beacons placed in 10m distances between each other. Figure 5.19 depicts RSS values recorded by the smartphone. Approximate placement of the reference point can be determined because of characterisic picks. There can be also observed that at level of -95dBm signals strength from beacons got sabilized. Because of the fluctuations these signal strength values are not usefull. Beacons emmit their signal with such power level that when the user was just under the second beacon B1(1) (about 35m on the chart) he was still received signals from the nearby beacons: B1(3) -95dBm, B1(2) -97dBm. It can be observed that in the middle of the distance between nearby beacons, they have similiar power values like in case of B1(3) and B1(1) at 31 meter: B1(3) -91,6dBm, B1(1) -91dBm.

### Walk in corridor with 3 beacons, 15m meters each



Figure 5.20. Attenuation curve with respect of the trasmitter power.

It can be observed that slope of the curve after reaching its peak is slighly smoother than just before the peak. There are possible two reasons of such results. Values could got smoothed during the signal processing by the hardware or software before value evaluation. It may also mean that the user presence on direct path between beacon and smartphone can ifluence the observed signal strengths.

Figure 5.20 presents values obtained during test with beacons placed 15m each. Absolute values recorded during the test are similiar to those from previous test. In test with 10m gaps, values in peaks were about -78dBm - -76dBm; in test with 15m gaps, values in peaks were about -75dBm - -74dBm. Also the RSS values in the middle of distances between two nearby beacons are similiar, about -95dBm.



Figure 5.21. Attenuation curve of three beacons with respect of the placement of the smartphone.

Figure 5.21 presents results of a test where beacons were placed 10m each and the smatphone was kept in the pocket. The main difference between signals recorded by smartphone in its horizontal orientation and when it was kept in the pocket is the strong fluctuation near the signal source. It is most visible on meter 35 and 38 where yellow cruve of RSS of beacon B1(1) drops from -79dBm to -92dBm and then goes up to -85dBm at 40 meter.

#### 5.4. Application of signal filtering

In order to improve the accuracy of the signal strength based positioning, there was applied low-pass filtering to the measures. Filtering aim is to limit signal strength fluctuations. Figure 5.22 presents filtered values obtained during dynamic test presented before on figure 5.19.

Low-pass filter does not smoothed the signal in a way that no fluctuactions can be observed but it limits their amplitude. For example drop at 23m of a RSS from beacon B1(3) got reduced from -2dBm to -0.3dBm.



Figure 5.22. Attenuation curve with respect of the trasmitter power.

#### Low-pass filtering evaluation



Figure 5.23. Comparison of raw and low-pass filtered RSS values of B1(3) taken from dynamic test with 3 beacons.

#### Low-pass filter data based distance approximation



10 8 6

-10

-15

-5



0

5

10

15

20

25

Drawback of such data filtering is that it introduces some delay to dynamically changing values. For example: RSS value pick of B1(3) beacon in not filtered data (fig. 5.23) was observed at 0m while pick on filtered data was observed 1m further (3 RSS probes later), assuming  $1.6\frac{km}{h}$  test device speed and 1Hz frequency of RSS probing. Problem may be overcome by increasing probing frequency but decreasing the beacon battery life.

Figure 5.24 presents how low-pass filter affects distance approximations of log-distance path loss model. Model was adjusted to match lower transmitter signal power (-16dBmused during the test). Filtering does not improve or decrease accuracy of the model, just smooth resulting values.

Low-pass filtering does not solve the problem of RSS values fluctuations but it is a good solution to limit effects of a random, highly different values of RSS happening during the measurement session.

#### 5.5. Mobile application

#### 5.6. Tests summary

- State if some factors have impact on signal quality
- State if some factors have impact on position finding

### Chapter 6

# Conclusions

### **Bibliography**

- [1] Bandyopadhyay L., Chaulya S., Mishra P. Wireless Communication in Underground Mines. New York, Springer Science+Business Media, 2010.
- [2] Bandyopadhyay L. K., Mishra P. K., Kumar S., Narayan A. Radio frequency communication systems in underground mines, 2005. Dhanbad, India.
- [3] Ben-Moshe B., Reisberg S., Shvalb N., Yozevitch R. GoIn An Accurate InDoor Navigation Framework for Mobile Devices. https://www.microsoft.com/en-us/research/wp-content/uploads/2015/10/ben-moshe.pdf, 2016. [Online; accessed 04-June-2018].
- [4] Bulten W. Human SLAM Simultaneous Localisation and Configuration (SLAC) of indoor Wireless Sensor Networks and their users. Master's thesis, Radboud University, 2015.
- [5] Castro-Arvizu J. M., Vilà-Valls J., Moragrega A., Closas P., Fernandez-Rubio J. A. Received signal strength-based indoor localization using a robust interacting multiple model-extended Kalman filter algorithm. International Journal of Distributed Sensor Networks, 2017, 13(8).
- [6] Chai S., An R., Du Z. An Indoor Positioning Algorithm Using Bluetooth Low Energy RSSI. In: International Conference on Advanced Material Science and Environmental Engineering (AMSEE 2016), Thailand, 2016. s. 331–343.
- [7] Chandgadkar A. An Indoor Navigation System For Smartphones. Master's thesis, Imperial College London, London, Great Britain, 2013.
- [8] Dabove P., Ghinamo G., Lingua A. M. Inertial sensors for smartphones navigation. SpringerPlus, 2015, 4(1):834.
- [9] Dahlgren E., Mahmood H. Evaluation of indoor positioning based on Bluetooth Smart technology. Master's thesis, Chalmers University of Technology, Göteborg, Sweden, 2014.
- [10] Deng Z., Mo J., Jia B., Bian X. An Acquisition Scheme Based on a Matched Filter for Novel Communication and Navigation Fusion Signals. Sensors, 2017, 17(2):1766.
- [11] Deng Z.-A., Wang G., Hu Y., Wu D. Heading Estimation for Indoor Pedestrian Navigation Using a Smartphone in the Pocket. Sensors, 2015, 15:21518–21536.

- [12] Diaz E. M. Inertial Pocket Navigation System: Unaided 3D Positioning. Sensors, 2015, 15:9156–9178.
- [13] Don R. L. H. Enhanced Indoor Localization System based on Inertial Navigation. Master's thesis, The University of Western Ontario, 2016.
- [14] fei Zhang K., Zhu M., jia Wang Y., jiang Fu E., Cartwright W. *Underground mining intelligent response and rescue systems*. Procedia Earth and Planetary Science, 2009, 1(1).
- [15] Forooshani A. E., Bashir S., Michelson D. G., Noghanian S. A Survey of Wireless Communications and Propagation Modeling in Underground Mines. IEEE Communications Surveys Tutorials, 2013, 15(4).
- [16] Glass R. B. Mobile Indoor Positioning for Augmented Reality Systems. Master's thesis, Virginia Commonwealth University, Richmond, Virginia, 2014.
- [17] Google I. Android 7.0 Compatibility Definition Document. https://source.android.com/compatibility/7.0/android-7.0-cdd.pdf, 2016. [Online; accessed 23-May-2018].
- [18] Hlophe K. An Embedded Underground Navigation System. Sensors, 2015, 15(9):24595–24614.
- [19] Holčík M. *Indoor Navigation for Android*. Master's thesis, Masaryk University, Brno, Czech Republic, 2012.
- [20] Ilic M., Ilic A., Notaros B. Higher Order Large-Domain FEM Modeling of 3-D Multiport Waveguide Structures With Arbitrary Discontinuities. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(6):1608–1614.
- [21] Infante E. Development and Assessment of Loosely-Coupled INS using. Smartphone Sensors. Master's thesis, University of New Brunswick, Fredericton, N.B. Canada, 2016.
- [22] Jayakody A., Lokuliyana S., Chathurangi D., Vithana D. *Indoor Positioning: Novel Approach for Bluetooth Networks using RSSI Smoothing*. International Journal of Computer Applications, 2016, 137(13):26–32.
- [23] jianyong Z., zili C., haiyong L., zhaohui L. RSSI based Bluetooth low energy indoor positioning. In: 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan, South Korea, 2014.
- [24] Kaushal K., Kaur T., Kaur J. ZigBee based Wireless Sensor Networks. International Journal of Computer Science and Information Technologies, 2014, 5(6):7752–7755.
- [25] Khoshelham K., Zlatanova S. Sensors for Indoor Mapping and Navigation. Sensors, 2016, 16(5):655.
- [26] Klempous R. Collective Behavior in Wireless Sensor Networks. Acta Polytechnica Hungarica, 2014, 14(4):101–118.
- [27] Li B., Wang Y., Lee H. K., Dempster A., Rizos C. A New Method for Yielding a Database of Location Fingerprints in WLAN. In: IEEE Proceedings-Communications, 2005.
- [28] Li B., Zhao K., Saydam S., Rizos C., Wang J., Wang Q. Third Generation Positioning System for Underground Mine Environments: An update on progress, 2016.

- [29] Li L., Hu P., Peng C., Shen G., Zhao F. *Epsilon: A Visible Light Based Positioning System.* In: Proceedings of the 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI '14)., Seattle, USA, 2014. s. 331–343.
- [30] li Ji W., Sun K. Locating and Tracking System of Underground Miner Based on IOT. In: International Conference on Applied Mathematics and Mechanics, 2016.
- [31] Loulier B. *Using smartphones for indoor navigation*. Master's thesis, Purdue University, West Lafayette, Indiana, USA, 2011.
- [32] Marotto V., Serra A., Carboni D., Sole M., Dessi T., Manchinu A. Orientation Analysis through a Gyroscope Sensor for Indoor Navigation Systems. In: SENSORDEVICES 2013
   The Fourth International Conference on Sensor Device Technologies and Applications, Pula, Italy, 2013.
- [33] Mo J., Deng Z., Jia B., Bian X. A Pseudorange Measurement Scheme Based on Snapshot for Base Station Positioning Receivers. Sensors, 2017, 17(12):2783.
- [34] Mulloni A., Seichter H., Schmalstieg D. Handheld augmented reality indoor navigation with activity-based instructions. In: MobileHCI '11 Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services, Stockholm, Sweden, 2011. s. 211–220.
- [35] Müller C. Applicability of Wired and Wireless Ethernet Networking Systems as Unified Safety Relevant Communication System in Underground Mines. PhD thesis, Universitatea Transilvania din Braşov, Brasov, Romania, 2013.
- [36] Niu X., Wang Q., Li Y., Li Q., Liu J. Using Inertial Sensors in Smartphones for Curriculum Experiments of Inertial Navigation Technology. Education Sciences, 2015, 5(1):26–46.
- [37] Pan M.-S., Tseng Y.-C. ZigBee Wireless Sensor Networks and Their Applications. National Chiao Tung University. not published.
- [38] Pan W., Hou Y., Xiao S. Visible light indoor positioning based on camera with specular reflection cancellation. In: 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2017.
- [39] Patri A., Nayak A., Jayanthu S. Wireless Communication Systems For Underground Mines A Critical Appraisal. International Journal of Engineering Trends and Technology(IJETT), 2013, 4(7):3149–3153.
- [40] Persa S.-F. Sensor Fusion in Head Pose Tracking for Augmented Reality. Master's thesis, Inginer Universitatea Tehnica din Cluj-Napoca, Cluj-Napoca, Romania, 2006.
- [41] Ranjan A., Sahu H. B. Advancements in communication and safety systems in underground mines: present status and future prospects. In: International Engineering Conference on Design and Innovation in Sustainability 2014, Amman, Jordan, 2014.
- [42] Rodrigues C. Smartphone-based Inertial Navigation System for Bicycles. Master's thesis, Universidade do Porto, Porto, Portugal, 2015.
- [43] Seidel S., Rappaport T. 914 MHz path loss prediction models for indoor wireless communications in multifloored building. IEEE Transactions on Antennas and Propagation, 1992, 40(2):207–217.

- [44] Solin A., Cortes S., Rahtu E., Kannala J. Inertial Odometry on Handheld Smartphones. CoRR, 2017, abs/1703.00154.
- [45] Stambulskyy O. System inteligentnej lokalizacji wykorzystujący technologię Bluetooth Smart dla zwiększenia bezpieczeństwa oraz zwiększenia wydajności w górnictwie podziemnym. Master's thesis, Politechnika Wrocławska, Wrocław, Poland, 2017.
- [46] Stockx T., Hecht B., Schöning J. SubwayPS: towards smartphone positioning in underground public transportation systems. In: SIGSPATIAL '14 Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Dallas, Texas, 2014. s. 93–102.
- [47] Svensson J. Investigation of Inertial Navigation for Localization in Underground Mines. Master's thesis, Uppsala University, Uppsala, Sweden, 2015.
- [48] Tedaldi D., Pretto A., Menegatti E. A Robust and Easy to Implement Method for IMU Calibration without External Equipments. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 2014. IEEE, s. 3042–3049.
- [49] Wilczyńska E. Strong shock at the KGHM Rudna mine. Eight miners are dead. Gazeta Wyborcza online: http://wroclaw.wyborcza.pl/wroclaw/1,35771,21049452, silny-wstrzas-w-kopalni-kghm-siedmiu-gornikow-wciaz-pod-ziemia.html, 2016. [Polish; Online; accessed 13-January-2018].
- [50] Wojaczek A. Application of leaky feeder in vehicle positioning system in mines. Przegląd Górniczy, 2014, 70(1):1–8.
- [51] Xin J. An Indoor Navigation System Using a Sensor Fusion Scheme on Android Platform. Master's thesis, Marquette University, Marquette, Wisconsin, USA, 2009.
- [52] Xu R., Chen W., Xu Y., Ji S. A New Indoor Positioning System Architecture Using GPS Signals. Sensors, 2015, 15(5):10074–10087.
- [53] Xu R., Chen W., Xu Y., Ji S., Liu J. Improved GNSS-based indoor positioning algorithm for mobile devices. GPS Solutions, 2017, 21(4):1721–1733.
- [54] Yarkan S., Guzelgoz S., Arslan H., Murphy R. R. Underground Mine Communications: A Survey. IEEE Communications Surveys Tutorials, 2009, 11(3):125–142.
- [55] Zhang Y., Yang W., Han D., Kim Y.-I. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring. Sensors, 2014, 14:13149—13170.