Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

$3^{\underline{a}}$ Lista - MAT 241 - Cálculo III - 2018/II

1. Em cada caso, esboce a região de integração e calcule a integral.

(a)
$$\int_0^1 \int_y^{\sqrt{y}} x^2 y^2 dx dy$$

(b)
$$\int_{-a}^{a} \int_{-\sqrt{a^2 - x^2}}^{\sqrt{a^2 - x^2}} (x + y) dy dx$$

(c)
$$\int_0^1 \int_{y-1}^0 e^{x+y} dx dy + \int_0^1 \int_0^{1-y} e^{x+y} dx dy$$

(d)
$$\int_0^2 \int_x^2 x \sqrt{1+y^3} dy dx$$

(e)
$$\int_0^2 \int_x^2 e^{-y^2} dy dx$$

(f)
$$\int_0^1 \int_y^1 \sin x^2 dx dy$$

(g)
$$\int_0^2 \int_{y^2}^4 \sqrt{x} \sin x dx dy$$

(h)
$$\int_0^1 \int_x^1 \frac{\sin y}{y} dy dx$$

2. Use uma integral dupla para encontrar o volume do sólido limitado pelos gráficos das equações dadas.

(a)
$$z = xy$$
, $z = 0$, $y = x$, $x = 1$ (primeiro octante)

(b)
$$x^2 + y^2 + z^2 = a^2$$
, $a > 0$

(c)
$$x^2 + z^2 = 1$$
, $y^2 + z^2 = 1$ (primeiro octante)

(d)
$$z = \frac{1}{1+u^2}$$
, $x = 0$, $x = 2$, $y \ge 0$.

3. Calcule, em coordenadas polares.

(a)
$$\int_0^3 \int_0^{\sqrt{9-x^2}} \arctan \frac{y}{x} dy dx$$

(b)
$$\int_0^2 \int_0^{\sqrt{2x-x^2}} xy dy dx$$

(c)
$$\int_{0}^{4} \int_{0}^{\sqrt{4y-y^2}} x^2 dx dy$$

4. Escreva a soma, das integrais abaixo, como uma única integral dupla usando coordenadas polares e calcule.

(a)
$$\int_0^2 \int_0^x \sqrt{x^2 + y^2} dy dx + \int_2^{2\sqrt{2}} \int_0^{\sqrt{8-x^2}} \sqrt{x^2 + y^2} dy dx$$
.

(b)
$$\int_{1/\sqrt{2}}^{1} \int_{\sqrt{1-x^2}}^{x} xydydx + \int_{1}^{\sqrt{2}} \int_{0}^{x} xydydx + \int_{\sqrt{2}}^{2} \int_{0}^{\sqrt{4-x^2}} xydydx.$$

5. Prove que
$$\int_0^1 \int_0^1 \frac{x-y}{(x+y)^3} dy dx = \frac{1}{2}$$
. E se a integração for primeiro em x ?

6. Use uma integral dupla em coordenadas polares para encontrar o volume de uma esfera de raio a.

7. Encontre k de modo que o volume dentro do hemisfério $z = \sqrt{16 - x^2 - y^2}$ e fora do cilindro $x^2 + y^2 = k^2$ seja a metade do volume do hemisfério.

1

8. Calcule o volume do sólido delimitado pelo elipsoide dado por $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, onde a, b, c > 0.

9. Em cada caso, use a mudança de variáveis indicada para calcular a integral dupla dada.

- (a) $\int \int_{R} \frac{\sqrt{x+y}}{x}$, x = u, y = uv, R é o triângulo com vértices em (0,0), (4,0), (4,4).
- (b) $\int \int_R y \sin(xy) dy dx$, $x = \frac{u}{v}$, y = v, R é a região entre os gráficos de xy = 1, xy = 4, y = 1, y = 4.
- 10. Considere a região R do plano xy dada por $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ e a transformação x = au, y = bv. Esboce a região R e sua imagem inversa S sob essa transformação, e encontre $\frac{\partial(x,y)}{\partial(u,v)}$.
- 11. Calcule o volume do sólido limitado superiormente pela superfície $z = 16 x^2 y^2$ e inferiormente pela região elíptica $\frac{x^2}{16} + \frac{y^2}{9} \le 1$.
- 12. Calcular, por dupla integração, a área da região acima do eixo x, limitada pela parábola semi-cúbica $y^2 = x^3$ e a reta y = x,
 - (a) integrando primeiro em relação a x;
 - (b) integrando primeiro em relação a y.
- 13. Achar o volume do sólido limitado pela superfície cilíndrica $x^2 + az = a^2$, a > 0 e pelos planos x + y = a, y = 0 e z = 0.
- 14. Descrever a imagem da circunferência $x^2 + y^2 = a^2$ pela transformação $T : \mathbb{R}^2 \to \mathbb{R}^2$ dada por $T(x,y) = \left(\frac{x}{4},y\right)$.
- 15. Descrever as imagens das retas x=c pela transformação $T\mathbb{R}^2 \to \mathbb{R}^2$ dada por $T(x,y)=(e^x\cos y,e^x\sin y)$. Esboce os gráficos de tais retas e de suas imagens.
- 16. Calcule o volume do sólido acima do cone $z^2 = x^2 + y^2$ e dentro da esfera $x^2 + y^2 + z^2 = z$.
- 17. Calcule o volume do sólido compreendido entre os paraboloides $z = 5x^2 + 5y^2$ e $z = 6 7x^2 y^2$
- 18. O volume V abaixo do paraboloide hiperbólico z=xye acima de uma região R no plano xy é dada por

$$V = \int_0^1 \int_0^y xy dx dy + \int_1^2 \int_0^{2-y} xy dx dy.$$

Esboce a região R do plano xy, expresse V como uma integral dupla na qual a ordem de integração é invertida e calcule V.

- 19. Calcule o volume do sólido que é imagem de uma bola de raio a pela transformação linear representada pela matriz $\begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & 5 \\ 0 & 0 & 7 \end{pmatrix}$.
- 20. Achar o volume do sólido removido quando se abre um furo de raio a em numa esfera de raio 2a, sendo o eixo do furo um diâmetro da esfera.
- 21. Sendo R a região limitada pelas retas y = x, y = 0 e x = 1, calcule a integral dupla

$$\iint\limits_{R} \frac{dxdy}{(1+x^2+y^2)^{3/2}}$$

- 22. Utilizando integração dupla, calcule a área do conjunto B dado
 - (a) $B = \{(x, y) \in \mathbb{R}^2; \ln x \le y \le 1 + \ln x, y \ge 0 \text{ e } x \le e\}$
 - (b) $B = \{(x, y) \in \mathbb{R}^2; x^3 \le y \le \sqrt{x}\}$
 - (c) B é determinado pelas desigualdades $xy \le 2, x \le y \le x+1$ e $x \ge 0$.
 - (d) $B = \{(x,y) \in \mathbb{R}^2; x > 0, \frac{4}{x} \le y \le -3x^2 + 7x\}$
- 23. Determine o volume do sólido
 - (a) Abaixo do paraboloide $z=x^2+y^2$ e acima da região delimitada por $y=x^2$ e $x=y^2$
 - (b) Abaixo da superfície z = xy e acima do triângulo com vértices (1,1), (4,1) e (1,2)
- 24. Calcule a integral trocando a ordem de integração

(a)
$$\int_0^1 \int_{3y}^3 e^{x^2} dx dy$$

(b)
$$\int_0^4 \int_{\sqrt{x}}^2 \frac{1}{y^3 + 1} dy dx$$

25. Calcule a integral dada, colocando-a em coordenadas polares

- (a) $\iint_D xydA$, onde D é o disco com centro na origem e raio 3
- (b) $\iint_R \cos(x^2 + y^2) dA$, onde R é a região à esquerda do eixo y e entre as circunferências $x^2 + y^2 = 1$ e $x^2 + y^2 = 4$.
- (c) $\iint_D e^{-x^2-y^2} dA$, onde D é a região delimitada pelo semicírculo $x = \sqrt{4-y^2}$ e o eixo y.

26. Calcule a integral iterada, convertendo-a antes para coordenadas polares

(a)
$$\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \sin(x^2 + y^2) dy dx$$

(b)
$$\int_0^1 \int_y^{\sqrt{2-y^2}} (x+y) dx dy$$

27. Expresse D como união de regiões do tipo I ou do tipo II e calcule a integral

(a)
$$\iint_D x^2 dA$$

(b)
$$\iint_D y dA$$

28. (a) Definimos a integral imprópria (sobre todo o plano \mathbb{R}^2)

$$I = \iint_{\mathbb{R}^2} e^{-(x^2+y^2)} dA = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)} dA = \lim_{a \to \infty} \iint_{D_a} e^{-(x^2+y^2)} dA,$$

onde D_a é o disco com raio a e centro na origem. Mostre que

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)} dA = \pi.$$

(b) Uma definição equivalente da integral imprópria acima é

$$I = \iint_{\mathbb{R}^2} e^{-(x^2 + y^2)} dA = \lim_{a \to \infty} \iint_{S_-} e^{-(x^2 + y^2)} dA,$$

onde S_a é o quadrado com vértices $(\pm a, \pm a)$. Use esse resultado para mostrar que

$$\left(\int_{-\infty}^{\infty} e^{-x^2} dx\right) \left(\int_{-\infty}^{\infty} e^{-y^2} dy\right) = \pi.$$

(c) Deduza que

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$$

3

(d) Fazendo a mudança de variável $t=\sqrt{2}x,$ mostre que

$$\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}.$$

- 29. Calcule $\iint_R x dA$, onde R é a região limitada por $x = \ln y$, x = 0 e y = e.
- 30. Use uma integral dupla para calcular a área da região, no primeiro quadrante, delimitada pela curva $y = \frac{1}{x}$, pela reta que passa pelos pontos (0,0) e (1,1), e pela reta que passa pelos pontos (0,0) e $\left(2,\frac{1}{2}\right)$.
- 31. Dada a soma de integrais $\int_{-4}^{0} \int_{-x}^{4} e^{x/y} dy dx + \int_{0}^{2} \int_{2x}^{4} e^{x/y} dy dx$, inverta a ordem de integração e calcule a integral.
- 32. Calcule o volume do sólido dado por $0 \le z \le \sqrt{9-x^2-y^2}$ e $x^2+y^2 \le 4$, com $y \ge 0$.
- 33. Calcule $\int\int\limits_{Q}\int 12xy^2z^3dV \text{ na caixa retangular } Q=\{(x,y,z)\in\mathbb{R}^3; -1\leq x\leq 2,\ 0\leq y\leq 3,\ 0\leq z\leq 2\}.$
- 34. Seja Q a cunha no primeiro octante seccionada do sólido cilíndrico $y^2+z^2\leq 1$ pelos planos y=x e x=0. Calcule $\iiint_{Q}zdV$
- 35. Use uma integral tripla para calcular o volume do sólido contido no cilindro $x^2 + y^2 = 9$ e entre os planos z = 1 e x + z = 5.
- 36. Reescreva a integral $\int_0^4 \int_0^{\frac{4-x}{2}} \int_0^{\frac{12-3x-6y}{4}} dz dy dx$ na ordem dy dx dz.
- 37. Calcule o volume sólido S dado por $S=\{(x,y,z)\in\mathbb{R}^3;z\geq\sqrt{x^2+y^2}\text{ e }x^2+y^2+z^2\leq z\}.$
- 38. Calcule $\int \int_{D} \int z dV$, onde D é o tetraedro de vértices (0,0,0), (1,1,0), (1,0,0), (1,0,1).
- 39. Use coordenadas cilíndricas para calcular $\int \int_S \int z \sqrt{x^2 + y^2} dV$, onde S é a metade do cone circular reto de vértice (0,0,h), com h>0 e base $x^2+y^2 \le a^2$ compreendido na parte $y\ge 0$.
- 40. Expresse $\int_0^3 \int_0^{\sqrt{9-x^2}} \int_0^{\sqrt{9-x^2-y^2}} (x^2+y^2+z^2)^3 dz dy dx$ em coordenadas esféricas e calcule.
- 41. Calcule o volume do sólido S, no primeiro octante, limitado pela esfera r=4, pelos planos coordenados, o cone $\varphi=\frac{\pi}{6}$ e o cone $\varphi=\frac{\pi}{3}$.
- 42. Usando coordenadas esféricas, calcule
 - (a) $\iiint_{\mathbb{R}} z dx dy dz$, onde B é o conjunto $1 \le x^2 + y^2 + z^2 \le 4$ e $z \ge 0$.
 - (b) $\iiint_B z dx dy dz$, onde B é o conjunto $z \ge \sqrt{x^2 + y^2}$ e $x^2 + y^2 + z^2 \le 1$.
 - (c) $\iiint_B z dx dy dz$, onde B é a interseção da semi-esfera $x^2 + y^2 + z^2 \le 4$ e $z \ge 0$ com o cilindro $x^2 + y^2 \le 1$.
- 43. Use uma integral tripla para determinar o volume
 - (a) Do tetraedro limitado pelos planos coordenados e o plano 2x + y + z = 4.
 - (b) Do sólido delimitado pelo cilindro elíptico $4x^2 + z^2 = 4$ e pelos planos y = 0 e y = z + 2.
 - (c) Do sólido limitado pelo cilindro $x=y^2$ e pelos planos z=0 e x+z=1.
- 44. Escreva as equações em coordenadas cilíndricas

- (a) $z = x^2 + y^2$
- (b) $x^2 + y^2 = 2y$
- 45. Dê o volume do sólido descrito, em coordenadas cilíndricas, pelas desigualdades $0 \le r \le 2$, $\pi/2 \le \theta \le \pi/2$ e $0 \le z \le 1$.
- 46. Calcule $\iiint_E xDV$, onde E está delimitado pelos planos z=0 e z=x+y+5 e pelos cilindros $x^2+y^2=4$ e $x^2+y^2=9$.
- 47. Calcule a integral $\int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \int_{\sqrt{x^2+y^2}}^{2} dV$ utilizando coordenadas cilíndricas.
- 48. Escreva, em coordenadas esféricas, as equações
 - (a) $z^2 = x^2 + y^2$
 - (b) $9 = x^2 + z^2$
- 49. Dê o volume do sólido descrito, em coordenadas esféricas, pelas desigualdades dadas
 - (a) $\rho \le 2$, $0 \le \varphi \le \frac{\pi}{2}$ e $0 \le \theta \le \frac{\pi}{2}$
 - (b) $\rho \le 1, \ 0 \le \theta \le 2\pi \ e^{\frac{3\pi}{4}} \le \varphi \le \pi$
- 50. Resolva, utilizando coordenadas esféricas
 - (a) $\iiint_B (x^2 + y^2 + z^2)^2 dV$, onde B é a bola centrada na origem de raio 5
 - (b) $\iiint_E z dV$, onde E está entre as esferas $x^2 + y^2 + z^2 = 1$ e $x^2 + y^2 + z^2 = 4$ no primeiro octante.
 - (c) $\iiint_E x^2 dV$, onde E é limitado pelo plano xz e pelos hemisférios $y = \sqrt{9 x^2 z^2}$ e $y = \sqrt{16 x^2 z^2}$.