Trabajo Práctico 1

- 1. Determina si los vectores X, Y y Z son combinación lineal de los vectores del conjunto S. Expresa, cuando sea posible, al vector mencionado como combinación lineal de los vectores de cada conjunto:
 - a) $S_1 = \{(4,1), (-1,2)\} \subset \mathbb{R}^2$

i)
$$X = (-11, 4)$$

ii)
$$Y = (1, -2)$$

iii)
$$Z = (0,0)$$

b)
$$S_2 = \{(1, 1, -1), (2, 0, 2), (0, -1, 2)\} \subset \mathbb{R}^3$$

i)
$$X = (1, -1, 1)$$
 ii) $Y = (0, 0, 0)$

ii)
$$Y = (0, 0, 0)$$

iii)
$$Z = (2, 1, 0)$$

c)
$$S_3 = \left\{ \begin{pmatrix} 1 & 0 \\ -1 & -2 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 3 & 2 \end{pmatrix}, \begin{pmatrix} -2 & 1 \\ 0 & 3 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \right\} \subset \mathbb{R}^{2 \times 2}$$

i) $X = \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix}$
ii) $Y = \begin{pmatrix} 0 & 2 \\ 8 & 1 \end{pmatrix}$

d)
$$S_4 = \{(i, -i, 0, 0), (0, -1, 3i, 0), (-1, 1, -i, 0)\} \subset \mathbb{C}^4 \ (\mathbb{K} = \mathbb{C})$$

i)
$$X = (i, -3, 3i, 4)$$
 ii) $Y = (0, 0, 0, 0)$

ii)
$$Y = (0, 0, 0, 0)$$

iii)
$$Z = (-1, 0, 2i, 0)$$

2. Determina $k \in \mathbb{R}$ para que cada vector X dado cumpla con la condición:

a)
$$X = \begin{pmatrix} 5 \\ -3 \\ k \end{pmatrix}$$
 sea combinación lineal de los vectores $v_1 = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}, v_2 = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$ y $v_3 = \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} \in \mathbb{R}^{3 \times 1}$

- b) X = (2, k, 3k) pertenezca a $((1, 1, 2), (3, 0, 6)) \subset \mathbb{R}^3$.
- c) $X = (2, 2k, k^2 3)$ sea un punto del plano generado por (1, 1, 0) y (-1, 0, 1).
- 3. Determina explícitamente el subespacio generado por los vectores:

a)
$$v_1 = (1, 4, 0), v_2 = (1, 2, 1), v_3 = (0, -2, 1) \in \mathbb{R}^3$$

b)
$$v_1 = (1, -1), v_2 = (2, 1) \in \mathbb{R}^2$$

c)
$$v_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 1 & -4 \\ -1 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$

- 4. Sea $(V, +, \mathbb{K}, \cdot)$ espacio vectorial. Determina, en cada caso, si el conjunto W es subespacio vectorial de V, siendo $+ y \cdot$ las operaciones usuales en cada espacio. En caso de ser posible, grafica usando Geogebra los conjuntos W que son subespacios de V
 - a) $V = \mathbb{R}^3$, $\mathbb{K} = \mathbb{R}$

 - i) $W = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 = z\}$ ii) $W = \{(x, y, z) \in \mathbb{R}^3 / y x = z + 2x = 0\}$
 - b) $V = \mathbb{R}^{2 \times 2}$, $\mathbb{K} = \mathbb{R}$
 - i) $W = \{A \in \mathbb{R}^{2 \times 2} / A \text{ es inversible}\}$ ii) $W = \{A \in \mathbb{R}^{2 \times 2} / tr(A) = 0\}$

c) $V = \mathbb{C}^{3\times 2}$, $\mathbb{K} = \mathbb{C}$

i)
$$W = \left\{ \begin{pmatrix} x & y \\ z & 0 \\ 2y & t \end{pmatrix} \in \mathbb{C}^{3 \times 2} / t = x - z \right\}$$
 ii) $W = \left\{ \begin{pmatrix} x & y \\ 1 + i & -x \\ 0 & 2y \end{pmatrix} \in \mathbb{C}^{3 \times 2} \right\}$

- d) $V = \mathbb{C}, \mathbb{K} = \mathbb{C}$
 - i) $W = \{ z \in \mathbb{C} / ||z|| = 0 \}$
- ii) $W = \{z \in \mathbb{C} / \operatorname{Im}(z) = 2\operatorname{Re}(z)\}$

- e) $V = \mathbb{C}$, $\mathbb{K} = \mathbb{R}$
 - i) $W = \{ z \in \mathbb{C} / \text{Im}(z) = 1 \}$
- ii) $W = \{z \in \mathbb{C} / \operatorname{Im}(z) = 2\operatorname{Re}(z)\}$
- 5. Determina $a, b \in \mathbb{R}$ para que los siguientes conjuntos sean subespacios vectoriales de \mathbb{R}^3
 - a) $W = \{(x, y, z) \in \mathbb{R}^3 / ax y + b = 0\}$
 - b) $W = \{(x, y, z) \in \mathbb{R}^3 / x y = z bx = a\}$
- 6. Dados los conjuntos U y W, determina si $\langle U \rangle = \langle W \rangle$ siendo:
 - a) $U = \{(1,1,1), (0,1,0)\}, W = \{(2,3,2), (1,0,1)\} \subset \mathbb{R}^3$

b)
$$U = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 6 \end{pmatrix}, \begin{pmatrix} -2 \\ -4 \end{pmatrix} \right\}$$
 y $W = \left\{ \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} \subset \mathbb{R}^{2 \times 1}$.

- 7. Determina $\alpha, \beta \in \mathbb{R}$ para que $(\alpha, \beta, \beta, -1) \in ((2, -1, 3, 2), (-1, 1, 1, -3), (0, 1, 1, -4)) \subset \mathbb{R}^4$.
- 8. Sean $u = (1, 2, -1), v = (0, 1, 2), w = (1, 0, -5) \in \mathbb{R}^3$. Califica con verdadero o falso (V o F) las siguientes afirmaciones y justifica tus respuestas:

- i) (0,2,4) es combinación lineal de u,v
- a) $\langle u, v, w \rangle = \langle u, v \rangle$

ii) $(0,0,0) \notin \langle u,v,w \rangle$

iv) $\langle u, v, w \rangle = \mathbb{R}^3$

- iii) $w \in \langle u, v \rangle$
- 9. Una placa triangular de masa m=3g y con densidad y grosor uniformes tiene vértices en $v_1 = (1,0), v_2 = (4,2)$ y $v_3 = (10,1)$.
 - a) Grafica la situación.
 - b) Determina el centro de masa de la placa considerando que la misma es equivalente a un sistema de masas puntuales de 1g cada una que se ubican sobre los vértices de dicha placa.
 - c) ¿Es cierto que $(5,1) \in \langle v_1, v_2, v_3 \rangle$?
- 10. Una empresa minera posee en funcionamiento dos minas, M_1 y M_2 . La extracción diaria en la mina M_1 genera 4 toneladas de cobre y 1 tonelada de plata, mientras que la extracción diaria en la M_2 genera 3 toneladas de cobre y 500 kg de plata. Si $v_1 = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ y $v_2 = \begin{pmatrix} 3 \\ \frac{1}{2} \end{pmatrix}$ son las matrices de producción diaria de las minas M_1 y M_2 respectivamente:
 - a) ¿Cómo interpretas a los vectores $7v_1 + 7v_2$ y $15v_1 + 15v_2$?
 - b) ¿Qué ecuación (donde figuren v_1 y v_2) plantearías para saber la producción lograda en marzo si en ese mes la empresa sólo extrajo material de la M_2 ?
 - c) ¿Qué ecuación, donde figuren v_1 y v_2 , plantearías para saber la producción lograda en abril si en ese mes la mina M_2 trabajó la mitad del mes pero la M_1 trabajó el mes completo?
 - d) ¿Cuántos días deberá trabajarse en cada mina para lograr extraer 100 toneladas de cobre y 20 toneladas de plata?