Обработка MSI данных

Данные в imzml не должны быть центроидными

В обработку MSI данных в данном пакете входят следующие шаги в порядке их применения:

- 1. Resample данных. Используется в основном для приведения данных к равномерной шкале между точками по mz и/или приведения к общей шкале mz .
- 2. Выравнивание спектров относительно референсных пиков (msalign). msalign хуже работает на неконтинуальных данных, строго рекомендуется провести resample данных.
- 3. Корректировка базовой линии пакетом pybaselines
- 4. Сглаживание. За основу взяты вырезки из кода mMass. Сглаживание происходит по алгоритмам moving average, Гауссианой и Савицкого-Голея
- 5. Peak-picking

Все шаги опциональны. В случае записи неконтинуальных масс спектров в hdf5, необходим resample данных.

Основные функции проведения обработки спектров MSI данных.

Краткое описание

- 1. draw_processing_example функция для подборки параметров обработки и получаемого пиклиста путём визуализации результатов. Обрабатывает один спектр из каждого roi. Функция необходима для предварительной оценки выбранных параметров обработки перед их применением на больших MSI данных.
- 2. Raw2peaklist полный цикл обработки данных от imzml до получение пиклиста. Итоговый пиклист записывается в HDF5.
- 3. Raw2proc Обработка спектров до сглаживания с последующей их записью в HDF5.
- 4. proc2peaklist peak-picking обработанных спектров, полученных после функции Raw2procc. Итоговый пиклист записывается в HDF5 .

Описание параметров функций

Функции выше имеют одни и те же параметры согласно шагам обработки:

- Параметры шага resample:
 - resample_to_dots кол-во точек, на которое равномерно разбивается шкала mz.

 Значение None (default) resample не производится
- Параметры выравнивания на основе чуть адаптированного msalign:
 - align_peaks список референсных пиков для выравнивания масс-спектров. В качестве референсных пиков рекомендуется использовать те, которые есть в каждом спектре.
 Значение None (default) выравнивание не производится
 - weights_list список весов пиков. Значение None (default) вес всех пиков одинаков и выравнивание производится относительно них эквивалентно.
- File failed to load: /extensions/MathZoom.js выоросы в размерах сдвига, особенно если в спектре не нашлось необходимого пика.

- Default 0.95
- only_shift определяет производится ли только линейный сдвиг или и rescale интенсивностей относительно шкалы mz (шкала остаётся неизменной). Рекомендуется ставить False только если список референсных пиков покрывает весь диапазон. Значение True (Default) - только сдвиг.
- params2align дополнительные параметры функции msalign в виде словаря. Default {}
- Корректировка базовой линии на основе пакета pybaselines:
 - baseliner_algo алгоритм коррекции базовой линии (алгоритмы). Default 'asls',
 - params2baseliner_algo параметры алгоритма, записанные в виде словаря (Параметры алгоритма можно найти в его описании). Default - {}

Данные теста по времени расчётов разными алгоритмами:

Baseline corr.	time, sec	std
penalized_poly	39.939660	0.333161
psalsa	68.164038	1.076445
asls	74.820824	2.491647
modpoly	90.877258	0.404573
imodpoly	92.366724	1.480368
pspline_asls	109.931471	2.996002
pspline_arpls	144.483299	0.545680
iasls	151.794079	2.079635
pspline_drpls	153.399234	0.979653
derpsalsa	158.482222	2.174172
mixture_model	160.452414	1.122949
mor	251.438342	0.157675
tophat	253.503103	3.782560
mwmv	253.705837	1.883491
mpls	263.834968	0.594738
iarpls	276.942958	2.358620
arpls	325.495197	2.785515
imor	375.992667	0.703071
jbcd	379.899568	2.547387
drpls	558.671277	29.941927
irsqr	697.559541	0.764044
quant_reg	779.191954	2.312255
mpspline	1560.948403	6.096026
goldindec	1890.570998	5.923874
aspls	2130.725385	31.169560

Самый быстрый - penalized_poly , но у данного алгоритма часто бывают отрицательные интенсивности у низкоинтенсивных пиков и при использовании фильтров во время обработки эти пики сразу отсекаются. По этой причине самый оптимальный asls, у которого данная

• Сглаживание:

- smooth_algo Типа алгоритма сглаживание:
 - o "MA" Moving Average filter
 - o "GA" Gaussian filter
 - "SG" savitzky-golay filter (Not implemented yet)
 - None сглаживание не производится (Default)
- smooth_window размер окна для сглаживания в mz. Default: 0.075
- smooth_cycles кол-во циклов сглаживания. Default: 1

• Peak-picking:

- noise est способ определения уровня шума:
 - "std" стандартное отклонение по всему "шумовому спектру" (это точки, которые не относятся ни к одному пику, признанным сигнальным) (Default)
 - "mad" медианное абсолютное отклонение по всему "шумовому спектру" (Not recommended).
- noise_est_iterations кол-во итераций определения точек принадлежащих сигнальным пикам. Default: 3
- SNR_threshold фильтр сигнальных пиков по отношению signal-to-noise ratio. Default: 3.5
- oversegmentationfilter фильтр близких сигнальных пиков друг к другу. Default: 0
- peaklocation параметр работает в связке с oversegmentationfilter . Определяет зону поиска предполагаемого положения пика вне дискретности шкалы mz, для вероятного более точного определения дистанции между соседними пиками. Default: 1.
- fwhhfilter фильтр по полуширине пика. Если значение одно число, то удаляются все пики с FWHM меньше этого значения, если кортеж, сохраняет пики с значением fwhm, находящимся в этом диапазоне. Default: 0
- heightfilter и rel_heightfilter фильтры по абсолютной и относительной высоте пиков. Относительная высота пиков должна быть от 0 до 1 и определяется для каждого спектра индивидуально относительно максимальной интенсивности пика в спектре.

 Default: 0

Examples

Подбор оптимальных параметров обработки с помощью draw processing example

Дополнительные параметры функции:

- data_obj_path задать путь к папке/файлу. Можно несколько путей списком: [path_1, path_2].
 - **•** Если нужно работать только с одним файлом в указанном пути, то лучше указать прямой путь к нему (example: r"D:\Testing\Metabolights\MTBLS176\3DMouseKidney.imzML").
 - **Е**сли необходимо выгрузить сразу несколько файлов, указав один путь, то можно указать путь к общей папке (example: r"D:\Testing\Metabolights" или если имеется несколько файлов "imzml" в одной папке, то сработает и путь r"D:\Testing\Metabolights\MTBLS176).
- mz_diap4draw с помощью кортежа указать нижний и верхний предел отрисовки графика, где будем оценивать результат обработки
- spec_num номер спектра для визуальной проверки. Если None , то ставит случайный спектр

```
In []: from ProcceMSI.pspectra import draw_processing_example
    # Path to imzml file
    path = r"D:\Testing\Our_data\Rapiflex\roi8_e040"
    # Func args
    diap = (875,900)
    num = 4200
    snr = 3.5
    oversegfil= 0.15
    print('First iteration')
    draw_processing_example(data_obj_path=path,spec_num=num,mz_diap4draw=diap,SNR_threshold=3)
    print(f'Second iteration. SNR filter is {snr}, and oversegmentationfilter is {oversegfil}')
    draw_processing_example(data_obj_path=path,spec_num=num,mz_diap4draw=diap,SNR_threshold=snr, opint('Third iteration. Data is resampled and smoothed')
    draw_processing_example(data_obj_path=path,spec_num=num,mz_diap4draw=diap,SNR_threshold=snr, opint('Third iteration. Data is resampled and smoothed')
```

First iteration Spectrum number: 4200

Second iteration. SNR filter is 3.5, and oversegmentationfilter is 0.15 Spectrum number: 4200

Third iteration. Data is resampled and smoothed Spectrum number: 4200

Пример подбора оптимальных параметров обработки для неконтинуальных данных Orbitrap анализатора.

С неконтинуальными данными орбитрепа имеются особенности обработки при выравнивании спектров по референсным пикам. Данная проблема предствлена ниже и является результатом неравномерности расположения точек на спектре и решается ресемплом данных.

```
In [ ]: from ProcceMSI.pspectra import draw_processing_example
import warnings # Используем только для отключения предупреждений
```

File failed to load: /extensions/MathZoom.js warnings():

```
warnings.simplefilter("ignore") # Используем только для отключения предупреждений # Path to imzml file
path = r"D:\Testing\Our_data\Orbitrap\4"
# Func args
diap = (798,802)
refpeaks_list = [798.5408,769.4779,769.5620,773.5092,496.3397]
num = 2542 # spectrum number

print('First iteration with alignment and without spectra resampling')
draw_processing_example(data_obj_path=path,spec_num=num,mz_diap4draw=diap,align_peaks=ref
print(f'Second iteration. Added spectra resampling with 50000 dots')
draw_processing_example(data_obj_path=path,spec_num=num,mz_diap4draw=diap,align_peaks=ref
print('Third iteration. Resampling with 300000 dots')
draw_processing_example(data_obj_path=path,spec_num=num,mz_diap4draw=diap,align_peaks=ref
print('Fourth iteration. Adjusted peak picking')
draw_processing_example(data_obj_path=path,spec_num=num,mz_diap4draw=diap,align_peaks=ref)
print('Fourth iteration. Adjusted peak picking')
draw_processing_example(data_obj_path=path,spec_num=num,mz_diap4draw=diap,align_peaks=ref)
```

First iteration with alignment and without spectra resampling Spectrum number: 2542

Second iteration. Added spectra resampling with 50000 dots Spectrum number: 2542

Third iteration. Resampling with 300000 dots Spectrum number: 2542

Fourth iteration. Adjusted peak picking

Получение пиклистов имаджа функцией Raw2peaklist.

Данный вариант обработки MSI данных проводится без промежуточной записи обработанных масс-спектров и записываются в файл hdf5 только пиклисты.

Pros:

- Работает и с континуальными и неконтинуальными данными с любой обработкой.
- Занимает значительно меньше места на жёстком диске.

Cons:

• Иногда обработка занимает больше времени.

Дополнительные параметры функции:

- data_obj_path путь к папке/файлу imzml . Возможно задать сразу несколько путей списком: [path_1, path_2].
 - Если нужно работать только с одним файлом в указанном пути, то лучше указать прямой путь к нему (example: r"D:\Testing\Metabolights\MTBL\$176\3DMouseKidney.imzML").
 - **Е**сли необходимо выгрузить сразу несколько файлов, указав один путь, то можно указать путь к общей папке (example: r"D:\Testing\Metabolights" или если имеется несколько файлов "imzml" в одной папке, то сработает и путь r"D:\Testing\Metabolights\MTBLS176).
- mz_diap4draw с помощью кортежа указать нижний и верхний предел отрисовки графика, где будем оценивать результат обработки
- draw Если True (default), то строит график результатов обработки случайного масс-спектра от каждого имаджа для визуальной оценки.
- Ram_GB ориентировочное максимальное задействование оперативной памяти при обработке в Гб (Default 1). Определяет на сколько батчей разбиваются все данные.
- h5chunk_size_MB задаёт размер разбивки матрицы пиклистов записываемой в hdf5 для частичной подгрузки данных на основе размера в M6 (default: 10)
- dtypeconv формат записываемых данных double , single и half (not recommended). Позволяет уменьшить занимаемое место датасетов пиклистов на жёстком диске, в ущерб точности знаков после запятой.
- free_cores кол-во ядер ЦПУ, неиспользуемых при рассчётах

Получим пиклисты наших данных с использованием подобранных ранее настроек обработки

Получение обработанных масс-спектров имаджа функцией Raw2proc и из этих же данных пиклисты функцией proc2peaklist.

Данный вариант обработки MSI данных делает только обработку спектров от выгрузки из imzml до сглаживания и сохраняет их в hdf5.

Pros:

• Использование обработанных масс-спектров для других вариантов подготовки и исследований.

Cons:

- Требует большого кол-ва места на жёстком диске.
- Нет возможности работы и сохранения неконтинуальных данных без ресемплинга.

Дополнительные параметры функций:

- data_obj_path путь к папке/файлу imzml для функции Raw2proc или hdf5 для функции proc2peaklist . Возможно задать сразу несколько путей списком: [path_1, path_2].
 - Если нужно работать только с одним файлом в указанном пути, то лучше указать прямой путь к нему (example: r"D:\Testing\Metabolights\MTBLS176\3DMouseKidney.imzML").
 - Если необходимо выгрузить сразу несколько файлов, указав один путь, то можно указать путь к общей папке (example: r"D:\Testing\Metabolights" или если имеется несколько файлов "imzml" в одной папке, то сработает и путь r"D:\Testing\Metabolights\MTBLS176).
- mz_diap4draw с помощью кортежа указать нижний и верхний предел отрисовки графика, где будем оценивать результат обработки
- draw Если True (default), то строит график случайного масс-спектра от каждого имаджа до и после обработки для визуальной оценки обработки.
- Ram_GB ориентировочное максимальное задействование оперативной памяти при обработке в Гб (Default 1). Определяет на сколько батчей разбиваются все данные.
- h5chunk_size_MB задаёт размер разбивки матрицы пиклистов записываемой hdf5 для частичной подгрузки данных на основе размера в M6 (default: 10)
- dtypeconv формат записываемых данных double , single и half (not recommended). Позволяет уменьшить занимаемое место датасетов масс-спектров на жёстком диске.
- free cores кол-во ядер ЦПУ, неиспользуемых при рассчётах

Получим обработанные масс-спектры с использованием подобранных ранее настроек обработки и после отдельно проведём пик-пикинг.

```
In []: from ProcceMSI.pspectra import Raw2proc,proc2peaklist
    path = r"D:\Testing\Our_data\Rapiflex\roi8_e040\roi8_e040.imzML"

File failed to load: /extensions/MathZoom.js le_to_dots=50000, smooth_algo='GA', smooth_window=0.2, mz_diap4draw=(800,900)
```

```
path = r"D:\Testing\Our_data\Rapiflex"
proc2peaklist(path,oversegmentationfilter=0.15,SNR_threshold=3.5, mz_diap4draw=(800,900),Ram_u
```

The Rapiflex raw spectra data is on progress.

Slide's Rapiflex spectra coordinates and metadata extraction for preparation parallel procces sing

Slide's Rapiflex spectra parallel proccessing

Batches progress: 0% | 0/38 [00:00<?, ?it/s]

Slide's Rapiflex spectra drawing results

Spectrum number: 13473

The Rapiflex processed spectra data is loaded from the hdf5 file.

Slide's Rapiflex spectra parallel peak picking

Batches progress: 0% | 0/424 [00:00<?, ?it/s]

Slide's Rapiflex spectra writing feature results

Spectrum number: 9913

Расположение обработанных данных.

Данные от функций выше записываются в файл hdf5 с названием "<folder_name>_specdata.hdf5" и находятся в папке выше от местонахождения самого файла imzml. Например, если path - путь к файлу r"D:\Testing\Our_data\Rapiflex\roi8_e040\roi8_e040\roi8_e040\inv

r"D:\Testing\Our_data\Rapiflex\roi8_e040" или r"D:\Testing\Our_data\Rapiflex", то файл сохранится в r"D:\Testing\Our_data\Rapiflex":

Если выгружаются сразу несколько файлов (example path: r"D:\Testing\Our_data\Rapiflex"), то все они будут храниться в одном файле "<folder_name>_specdata.hdf5" в папке выше от них (в примере выше в папке: Rapiflex_specdata.hdf5").

Если указан путь ещё выше (вплоть до "D:\ ") (example path: r"D:\Testing\ Our_data " or r"D:\Testing"), то функция найдёт все файлы imzml в подпапках и создаст несколько файлов "hdf5", в случае достаточно далеко отстоящих файлов согласно описанному выше.

Выгрузка обработанных данных

Выгрузка пиклистов и обработанных масс-спектров (после функции Raw2proc), производится функцией specdata_Load из модуля loaders. В функцию подаётся параметр path, в который можно задать прямой путь к файлу _specdata.hdf5 или к общей папке с другим файлом _specdata.hdf5 и загрузить таким образом несколько файлов. Также можно задать список путей: [path_1, path_2].

Работа с обработанными данными основана на объекте из hdf5py пакета (https://docs.h5py.org/en/stable/). Для выгрузки данных используется стандартная для словарей индексация к датасету имаджа.

Пример пути к датасету: HDF5File[Slide][sample][roi][dataset],

- где Slide это группа датасетов из одного hdf5 файла.
- sample это группа данных, в которую выгружены данные из одного imzml файла (название sample создаётся следующим образом: <название корневой папки imzml><_название файла imzml>, если <название корневой папки imzml> идентично <название файла imzml>, то sample записывается без дублированного названия и ' ' между)
- roi это группа данных, отвечающая за область измерения. В одном файле imzml может быть записано несколько областей с одного эксперимента (к примеру файлы от Rapiflex). Но для остальных приборов в основном там только одна область: "00"
- dataset название записанных данных:
 - mz одномерный вектор mz (1,N), где N кол-во точек спектра.
 - int матрица интенсивностей (M,N), где каждая строка М соответствует списку точек интенсивностей спектра, соответственно, в матрице записано М спектров, а N равно размеру- кол-во точек.
 - ху матрица координат (M,2), где каждая строка соответствует координатам спектра. 1- ая и 2-ая колонки х и у координаты, соответственно.
 - peaklists пиклист, где каждая строка это характеристики пика

Индексация датасета согласно numpy.array, за исключением, если необходимо выгрузить весь датасет разом - необходимо добавить "[:]". Например:

- Выгрузить весь датасет: HDF5File[Slide][sample][roi][dataset][:]
- Выгрузить несколько спектров из датасета: HDF5File[Slide][sample][roi][dataset][n:m,:]

```
In []: from ProcceMSI.loaders import specdata_Load import matplotlib.pyplot as plt path = r"D:\Testing\Our_data\Rapiflex"# data = specdata_Load(path)

#Чтобы узнать ключи каждой группы данных, необходимо ввести .keys() в конце print(f"Keys for Slide: {data.keys()}") print(f"Keys for Sample: {data['Rapiflex'].keys()}") print(f"Keys for roi: {data['Rapiflex']['roi8_e040'].keys()}") print(f"Keys for dataset: {data['Rapiflex']['roi8_e040']['00'].keys()}")

Keys for Slide: dict_keys(['Rapiflex']) Keys for Sample: <KeysViewHDF5 ['roi8_e040']> Keys for roi: <KeysViewHDF5 ['00']> Keys for dataset: «MeysViewHDF5 ['int', 'mz', 'peaklists', 'xy']>
```

```
In [ ]: |
        #Выгрузка датасета
        int_array_full = data['Rapiflex']['roi8_e040']['00']['int'][:]
        print(f"Intensity array shape: {int_array_full.shape}")
        spectra_mz = data['Rapiflex']['roi8_e040']['00']['mz'][:] #являются общими для всех для конти
        print(f"mz array shape: {spectra_mz.shape}")
        spectra_coords_full = data['Rapiflex']['roi8_e040']['00']['xy'][:]
        print(f"Coordinates array shape: {spectra_coords_full.shape}")
        #Выгрузим интенсивности масс-спектра из одной точки с его координатами
        spectrum_int = data['Rapiflex']['roi8_e040']['00']['int'][4242,:]
        spectrum_coords = data['Rapiflex']['roi8_e040']['00']['xy'][4242,:]
        #Построим масс-спектр
        plt.figure(figsize=(25,5))
        plt.plot(spectra_mz,spectrum_int)
        plt.title(f'Raw mass spectrum at dot x={spectrum_coords[0]}, y={spectrum_coords[1]}')
        plt.ylabel('Intensity')
        plt.xlabel('m/z')
        plt.xlim((min(spectra_mz),max(spectra_mz)))
        plt.show()
        Intensity array shape: (21158, 50000)
        mz array shape: (50000,)
        Coordinates array shape: (21158, 2)
                                               Raw mass spectrum at dot x=81160.0, y=-22305.0
        #Также можно выгрузить пиклисты
        peaklists = data['Rapiflex']['roi8_e040']['00']['peaklists'][:]
        print(peaklists)
        print(peaklists.shape)
        #Порядок столбцов
        print(data['Rapiflex']['roi8 e040']['00']['peaklists'].attrs['Column headers'])
        [[0.00000000e+00 1.12105209e+02 2.71695662e+00 ... 1.12156563e+02
          5.88245541e-02 1.29619002e-01]
         [0.00000000e+00 1.14067207e+02 5.84767246e+00 ... 1.14115845e+02
          5.88245541e-02 1.29619002e-01]
         [0.00000000e+00 1.17010193e+02 6.40522718e-01 ... 1.17065781e+02
          5.88245541e-02 1.29619002e-01]
         [2.11570000e+04 4.49207886e+02 8.46876383e-01 ... 4.49279114e+02
          5.97867817e-02 1.26902059e-01]
         [2.11570000e+04 4.81200409e+02 9.01544929e-01 ... 4.81268921e+02
          5.97867817e-02 1.26902059e-01]
         [2.11570000e+04 6.65367615e+02 6.92364752e-01 ... 6.65444275e+02
          5.97867817e-02 1.26902059e-01]]
        (2213141, 11)
         ['spectra_ind' 'mz' 'Intensity' 'Area' 'SNR' 'PextL' 'PextR' 'FWHML'
          'FWHMR' 'Noise' 'Mean noise']
        (2213141, 11)
         ['spectra_ind' 'mz' 'Intensity' 'Area' 'SNR' 'PextL' 'PextR' 'FWHML'
          'FWHMR' 'Noise' 'Mean noise']
        Где:
```

- Area площадь пика
- PextL и PextR, левое и правое основание пиков,
- а FWHML и FWHMR левое и правое положение ширины на полувысоте.
- Noise это шум, посчитанный (либо std , либо mad) по шумовым точкам спектра упрощённой функцией (для оптимизации) сразу по всему спектру.
- Mean noise То же, что и Noise , только посчитан функцией mean

Загрузка пиклистов функцией peak12DF

Вариант выгрузки пиклиста выше неудобен для работы. Более комфортный вариант для работы - это использование DataFrame от pandas.

Для этого есть функция peakl2DF в модуле loaders , которая выгружает пиклисты и преобразует в удобный формат для дальнейшей работы.

Пример пути к датасету: HDF5File[Slide][sample][roi][dataset],

- где Slide это группа датасетов из одного hdf5 файла.
- sample это группа данных, в которую выгружены данные из одного imzml файла (название sample создаётся следующим образом: <название корневой папки imzml><_название файла imzml>, если <название корневой папки imzml> идентично <название файла imzml>, то sample записывается без дублированного названия и '_' между)
- roi это группа данных, отвечающая за область измерения. В одном файле imzml может быть записано несколько областей с одного эксперимента (к примеру файлы от Rapiflex). Но для остальных приборов в основном там только одна область: "00"
- dataset название записанных данных:
 - ху матрица координат (M,2), где каждая строка соответствует координатам спектра. 1-ая и 2-ая колонки х и у координаты, соответственно.
 - peaklists пиклист, где каждая строка это характеристики одного пика из определённого спектра.

Индексация датасета согласно формату pandas DataFrame. Например:

- Выгрузить весь датасет: HDF5File[Slide][sample][roi][dataset]
- Выгрузить часть датасета:

HDF5File[Slide][sample][roi][dataset].guery('(mz>500) and (mz<900)')

или эквивалентное (быстрее, но менее читаемое):

HDF5File[Slide][sample][roi][dataset].loc[(HDF5File[Slide][sample][roi][dataset]["mz"] > 500) & (HDF5File[Slide][sample][roi][dataset]["mz"] < 900),:]

Параметры функции peak12DF:

- batch_path путь к папке/файлу hdf5 . Возможно задать сразу несколько путей списком: [path_1, path_2].
- Если нужно работать только с одним файлом в указанном пути, то лучше указать прямой File failed to load: /extensions/MathZoom.js >xample: r"D:\Testing\Our_data\Rapiflex\Rapiflex\Rapiflex_specdata.hdf5").

- **•** Если необходимо выгрузить сразу несколько файлов, указав один путь, то можно указать путь к общей папке (example: r"D:\Testing\ Our_data ").
- extr_columns какие именно столбцы выгружать.
 - Если None (Default), то выгружает все столбцы
 - если лист целых чисел, то выгружает следующие столбцы, соответствующие цифрам:

```
2 - "Intensity",
3 - "Area",
4 - "SNR",
5 - "PextL",
6 - "PextR", -
7 - "FWHML",
8 - "FWHMR",
9 - "Noise",
```

○ 10 - "Mean noise"

• extract_coords - Если True (default), то выгружает координаты масс-спектров имаджа.

Example:

```
In []: from ProcceMSI.loaders import peakl2DF, hdf5_close

path = r"D:\Testing\Our_data\Rapiflex"
ftable = peakl2DF(path,extr_columns=[2,3,4])

# Выгрузим пиклисм
display("Peaklist",ftable['Rapiflex']['roi8_e040']['00']['peaklists'])
# Выгрузим координамы спектров
display("Coordinates", ftable['Rapiflex']['roi8_e040']['00']['xy'])
```

Rapiflex, roi8_e040 and roi 00. x and y coordinates were extracted 'Peaklist'

	spectra_ind	mz	Intensity	Area	SNR
0	0	112.105209	2.716957	0.310652	46.187458
1	0	114.067207	5.847672	0.700583	99.408699
2	0	117.010193	0.640523	0.088918	10.888697
3	0	127.721077	0.769331	0.115011	13.078406
4	0	137.611130	0.693477	0.094207	11.788905
•••					
2213136	21157	401.199097	0.820536	0.172888	13.724378
2213137	21157	417.215363	0.656954	0.162805	10.988284
2213138	21157	449.207886	0.846876	0.144947	14.164944
2213139	21157	481.200409	0.901545	0.152532	15.079335
2213140	21157	665.367615	0.692365	0.128954	11.580565

2213141 rows × 5 columns

^{&#}x27;Coordinates'

	^	y
spectra_ind		
0	79580.0	-21525.0
1	79600.0	-21525.0
2	79620.0	-21525.0
3	79640.0	-21525.0
4	79660.0	-21525.0
		•••
21153	80680.0	-24325.0
21154	80700.0	-24325.0
21155	80720.0	-24325.0
21156	80740.0	-24325.0
21157	80760.0	-24325.0

21158 rows × 2 columns

Запись пиклистов в другой формат данных

Для записи пиклистов в другой формат можно использовать методы класса DataFrame.

Example

In []: ftable['Rapiflex']['roi8_e040']['00']['peaklists'].to_csv(r"D:\Testing\Our_data\Rapiflex\roi8

В масс-спектрах в имадже, даже после выравнивания, пики немного отличаются по абсолютным значениям и для дальнейшей работы с ними требуется пики сгруппировать.