IEEE International Symposium on Multimedia 2012

A Variational Bayesian Inference Framework for Multiview Depth Image Enhancement

Pravin Kumar Rana, Jalil Taghia, and Markus Flierl

School of Electrical Engineering KTH Royal Institute of Technology Stockholm, Sweden

December 10, 2012

Background and motivation

Conclusions

Future directions

Background

Multiview video imagery

Multiview video imagery

Depth image based rendering

Depth image based rendering

Far

- Depth pixels represent shortest distance between object points and the camera plane
- To be estimated from multiview imagery

Depth image based rendering

- Depth pixels represent shortest distance between object points and the camera plane
- To be estimated from multiview imagery

Near

Far

Virtual view

Depth estimation

MPEG Depth Estimation Reference Software

Depth estimation

MPEG Depth Estimation Reference Software

View (n-1)

View (n-1) View (n)

View (n-1) View (n) View (n+1)

View (n-1) View (n) View (n+1)

Note: we assume a 1D-parallel camera arrangement

Prior work on depth enhancement

1. Existing methods warp depth images from multiple viewpoints to a common viewpoint for spatial alignment ([2], [3])

2. Warping errors due to the discrete values in depth maps affects enhancement algorithms

negatively

New depth enhancement framework

Background

Overview of new depth enhancement framework

- Concatenation of view imagery
- Multiview color classification
- Multiview depth classification
- Depth image enhancement

Concatenation of view imagery

- The captured MVV imagery of the scene has inherent inter-view similarity
- To have a unique model for the captured natural scene,

The MVV inter-view similarity is exploited by concatenating views from multiple viewpoints

Concatenation of view imagery

- The captured MVV imagery of the scene has inherent inter-view similarity
- To have a unique model for the captured natural scene,

The MVV inter-view similarity is exploited by concatenating views from multiple viewpoints

Multiview color classification

Gaussian mixture model with variational Bayes inference

- The goal of classification is to partition an image into regions each of which has a reasonably homogeneous visual appearance
- Usually, classification algorithm, such as expectation-maximization for Gaussian mixtures, suffers from two main drawbacks:
 - model over-fitting and
 - the number of clusters has to be known, (similar to the K-means algorithm)
- The Gaussian mixture model is used with variational Bayes inference [4] because
 - no model over-fitting and
 - the number of clusters is treated as a random variable

[4] C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed. New York: Springer, 2006.

Multiview color classification

Gaussian mixture model with variational Bayes inference

[4] C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed. New York: Springer, 2006.

Multiview color classification

Color classification input

Multiview color classification

Color classification input

Multiview color classification

Color classification input

Multiview depth classification

Exploiting the per-pixel association between color and depth

View image

Depth image

Concatenated view imagery

Concatenated depth imagery

Multiview depth classification

Depth clusters

Difference between color and depth clusters

Members have similar colors pixels

Members may have different depth values

Difference between color and depth clusters

Members have similar colors pixels

Members may have different depth values

- Why?
 - Due to foreground and background depth difference
 - Due to inter-view inconsistency

Difference between color and depth clusters

Members have similar colors pixels

Members may have different depth values

- Why?
 - Due to foreground and background depth difference
 - Due to inter-view inconsistency
- Our approach: K-means sub-clustering
 - Computationally fast
 - Assigns the mean to depth pixels irrespective of the originating viewpoints
 - Usually, Bayesian approaches imply higher computational complexity

Example: Balloons

MPEG depth maps

Enhanced depth maps

Example: Balloons

MPEG depth maps

Enhanced depth maps

Multiview depth enhancement

Example: Balloons

MPEG depth maps

Experimental setup

MPEG 3DTV multiview data set

Newspaper (1024 X 768)

Lovebird1 (1024 X 768)

Kendo (1024 X 768)

Balloons (1024 X 768)

Poznan street (1920 X 1088)

MPEG View Synthesis Reference Software (VSRS) 3.5

Enhanced depth map

Enhanced depth map

MPEG View Synthesis Reference Software (VSRS) 3.5

Enhanced depth map

Left

Reference view

Enhanced depth map

Right

3D warping

MPEG View Synthesis Reference Software (VSRS) 3.5

3D warping

3D warping

Warped view

Reference view

Enhanced depth map

Right

Reference view

Warped view

MPEG View Synthesis Reference Software (VSRS) 3.5

Right

Left

MPEG View Synthesis Reference Software (VSRS) 3.5

3D warping

3D warping

Enhanced depth map

Reference view

Warped view

Virtual intermediate view

Enhanced depth map

Reference view

Warped view

Right

MPEG View Synthesis Reference Software (VSRS) 3.5

Enhanced depth map

3D warping

3D warping

Warped view

Reference view

Hole filling & inpainting

Virtual intermediate view

Enhanced depth map

Reference view

Warped view

Original camera view

Right

MPEG View Synthesis Reference Software (VSRS) 3.5

Enhanced depth map

3D warping

Warped view

Y-PSNR (dB)

Reference view

Hole filling & inpainting

Virtual intermediate view

Enhanced depth map

Reference view

3D warping

Warped view

Original camera view

Right

Left

Test sequence	Sequence resolution	Input views	Virtual view	MPEG VSRS views Y-PSNR 3.5 [dB]	
				MPEG depth maps	Enhanced depth maps
Newspaper	1024 X 768	4,6	5	31.98	32.10
Kendo	1024 X 768	3,5	5	36.54	36.72
Poznan Street	1920 X 1088	3,5	4	35.56	35.58
Lovebird1	1024 X 768	6,8	7	28.50	28.68
Balloons	1024 X 768	3,5	4	35.68	35.93

- Color classification
 - Initial number of color clusters: 50
- K-means sub-clustering
 - Number of cluster: 12

Test sequence	Sequence resolution	Input views	Virtual view	MPEG VSRS views Y-PSNR 3.5 [dB]	
				MPEG depth maps	Enhanced depth maps
Newspaper	1024 X 768	4,6	5	31.98	32.10
Kendo	1024 X 768	3,5	5	36.54	36.72
Poznan Street	1920 X 1088	3,5	4	35.56	35.58
Lovebird1	1024 X 768	6,8	7	28.50	28.68
Balloons	1024 X 768	3,5	4	35.68	35.93

- Color classification
 - Initial number of color clusters: 50
- K-means sub-clustering
 - Number of cluster: 12

Test sequence	Sequence resolution	Input views	Virtual view	MPEG VSRS views Y-PSNR 3.5 [dB]	
				MPEG depth maps	Enhanced depth maps
Newspaper	1024 X 768	4,6	5	31.98	32.10
Kendo	1024 X 768	3,5	5	36.54	36.72
Poznan Street	1920 X 1088	3,5	4	35.56	35.58
Lovebird1	1024 X 768	6,8	7	28.50	28.68
Balloons	1024 X 768	3,5	4	35.68	35.93

- Color classification
 - Initial number of color clusters: 50
- K-means sub-clustering
 - Number of cluster: 12

Test sequence	Sequence resolution	Input views	Virtual view	MPEG VSRS 3.5 [dB]	
				MPEG depth maps	Enhanced depth maps
Newspaper	1024 X 768	4,6	5	31.98	32.10
Kendo	1024 X 768	3,5	5	36.54	36.72
Poznan Street	1920 X 1088	3,5	4	35.56	35.58
Lovebird1	1024 X 768	6,8	7	28.50	28.68
Balloons	1024 X 768	3,5	4	35.68	35.93

- Color classification
 - Initial number of color clusters: 50
- K-means sub-clustering
 - Number of cluster: 12

Sequence: Newspaper

With MPEG depth

With enhanced depth

Sequence: Newspaper

With MPEG depth

With enhanced depth

Sequence: Newspaper

Original

With MPEG depth

With enhanced depth

Sequence: Kendo

With MPEG depth

With enhanced depth

Sequence: Kendo

With MPEG depth

With enhanced depth

Sequence: Kendo

Original

With MPEG depth

With enhanced depth

With MPEG depth

With enhanced depth

With MPEG depth

With enhanced depth

With MPEG depth

With enhanced depth

With MPEG depth

With enhanced depth

Original

With MPEG depth

With enhanced depth

Sequence: Balloons

With MPEG depth

With enhanced depth

Sequence: Balloons

With MPEG depth

With enhanced depth

Sequence: Balloons

Original

With MPEG depth

With enhanced depth

Sequence: Poznan Street

With MPEG depth

With enhanced depth

Sequence: Poznan Street

With MPEG depth

With enhanced depth

Sequence: Poznan Street

Original

With MPEG depth

With enhanced depth

Conclusions

- We improved the inter-view depth consistency and hence, enhanced the visual experience of free-viewpoint television
- For that, we exploited the per-pixel association between depth and color by classification
- Color classification is accomplished by variational Bayesian inference
- Then, color classes are used for depth classification
- Effectiveness of our approach is demonstrated by both objective and subjective results

Future directions

- Improve temporal depth consistency
- Improve color classification by using other mixture models
- Improve computational efficiency of color classification

Thank you

- Initialize number of clusters
- Initialize hyper-parameters
- Initialize responsibilities

