Tarefa 02 – Otimização de Sistemas

Pedro Miranda Rodrigues

```
No. 36
Q_n = 1010, D_1 = 8,06, D_2 = 7,53, Q_p = 900, Q^i = 900;
Q_n = 1250, D_1 = 8,13, D_2 = 7,74, Q_p = 1100, Q^i = 1100;
Q_n = 1610, D_1 = 10,30, D_2 = 8,91, Q_p = 1500, Q^i = 1200;
Q_n = 2000, D_1 = 14,10, D_2 = 11,80, Q_p = 1900, Q^i = 1200;
Q_{\Sigma} = 4400
```

DADOS DO PROBLEMA

- Função Objetivo (Minimizar Perdas DeltaP)
 - A fórmula de perdas para cada máquina é: Delta Pi = ai * xi + bi * xi^2
 Onde: ai = D1 / Qn bi = D2 / Qn^2
 - Calculando os coeficientes para cada máquina:
 - M1 (x1): Qn = 1010, D1 = 8.06, D2 = 7.53
 - a1 = 8.06 / 1010 = 0.007980
 - $b1 = 7.53 / (1010^2) = 0.00000738$
 - Delta P1 = $0.007980 \times 1 + 0.00000738 \times 1^2$
 - M2 (x2): Qn = 1250, D1 = 8.13, D2 = 7.74
 - a2 = 8.13 / 1250 = 0.006504
 - b2 = 7.74 / (1250^2) = 0.00000495
 - Delta P2 = $0.006504 \times 2 + 0.00000495 \times 2^2$
 - M3 (x3): Qn = 1610, D1 = 10.3, D2 = 8.91
 - a3 = 10.3 / 1610 = 0.006398
 - b3 = 8.91 / (1610^2) = 0.00000344
 - Delta P3 = $0.006398 \times 3 + 0.00000344 \times 3^2$
 - M4 (x4): Qn = 2000, D1 = 14.1, D2 = 11.8
 - a4 = 14.1 / 2000 = 0.007050
 - b4 = 11.8 / (2000^2) = 0.00000295
 - Delta P4 = $0.007050 \times 4 + 0.00000295 \times 4^2$

- Função Objetivo Total: F(x) = Delta P1 + Delta P2 + Delta P3 + Delta P4
 → min
- Restrições
 - Restrição de Igualdade: g(x) = x1 + x2 + x3 + x4 = 4400
 - Restrições Diretas
 - x1 = 900
 - x2 = 1100
 - 1200 <= x3 <= 1500
 - 1200 <= x4 <= 1900

MULTIPLICADORES DE LAGRANGE

- Etapa 1: Otimização Irrestrita (Ignorando Limites)
 - Construir a Função de Lagrange $\varphi(x, \lambda)$
 - $\varphi = F(x) + \lambda \cdot g(x)$
 - $\varphi = (0.007980 \text{ x}_1 + 0.00000738 \text{ x}_1^2) + (0.006504 \text{ x}_2 + 0.00000495 \text{ x}_2^2) + (0.006398 \text{ x}_3 + 0.00000344 \text{ x}_3^2) + (0.007050 \text{ x}_4 + 0.00000295 \text{ x}_4^2) + \lambda(\text{x}_1 + \text{x}_2 + \text{x}_3 + \text{x}_4 4400)$
 - Derivar e igualar a zero
 - $\partial \phi / \partial x_1 = 0.007980 + 2(0.00000738)x_1 + \lambda = 0 \Rightarrow 0.007980 + 0.00001476x_1 + \lambda = 0$
 - $\partial \phi / \partial x_2 = 0.006504 + 2(0.00000495)x_2 + \lambda = 0 \Rightarrow 0.006504 + 0.00000990x_2 + \lambda = 0$
 - $\partial \phi / \partial x_3 = 0.006398 + 2(0.00000344)x_3 + \lambda = 0 \Rightarrow 0.006398 + 0.00000688x_3 + \lambda = 0$
 - $\partial \phi / \partial x_4 = 0.007050 + 2(0.00000295)x_4 + \lambda = 0 \Rightarrow 0.007050 + 0.00000590x_4 + \lambda = 0$
 - $\partial \phi / \partial \lambda = x_1 + x_2 + x_3 + x_4 4400 = 0$
 - A condição de otimalidade é que o custo incremental (derivada)
 seja igual para todas as máquinas: -(a_i + 2b_ix_i) = λ
 - Resolver o sistema
 - Expressamos cada x_i em termos de λ :
 - $x_1 = (-\lambda 0.007980) / 0.00001476$
 - $x_2 = (-\lambda 0.006504) / 0.00000990$

- $x_3 = (-\lambda 0.006398) / 0.00000688$
- $x_4 = (-\lambda 0.007050) / 0.00000590$
- Substituindo na restrição de soma $(x_1 + x_2 + x_3 + x_4 = 4400)$:
 - $(-\lambda/0.00001476 540.6) + (-\lambda/0.00000990 657.0) +$ $(-\lambda/0.00000688 - 929.9) + (-\lambda/0.00000590 - 1194.9) = 4400$
- Agrupando λ
 - $(-67751 101010 145349 169492)\lambda 3322.4 = 4400$
 - $-483602\lambda = 7722.4$
 - $\lambda \approx -0.01597$
- Calculando os valores de x_iº
 - $x_1^0 = (-(-0.01597) 0.007980) / 0.00001476 \approx 541$
 - $x_2^0 = (-(-0.01597) 0.006504) / 0.00000990 \approx 956$
 - $x_3^0 = (-(-0.01597) 0.006398) / 0.00000688 \approx 1391$
 - $X_4^0 = (-(-0.01597) 0.007050) / 0.00000590 \approx 1512$
- Soma: 541 + 956 + 1391 + 1512 = 4400
- Etapa 2: Verificação das Restrições Diretas
 - x₁° = 541. Restrição: x₁ = 900. (FALHOU)
 - x₂° = 956. Restrição: x₂ = 1100. (FALHOU)
 - $x_3^0 = 1391$. Restrição: $1200 \le x_3 \le 1500$. (OK)
 - x₄° = 1512. Restrição: 1200 ≤ x₄ ≤ 1900. (OK)
- Etapa 3: Relaxamento
 - Fixar $x_1 = 900$
 - Fixar $x_2 = 1100$
- Etapa 4: Re-otimização do Subproblema
 - Nova restrição de soma:
 - $900 + 1100 + x_3 + x_4 = 4400 \Rightarrow x_3 + x_4 = 2400$
 - Nova Função Objetivo
 - $F(x_3, x_4) = (0.006398x_3 + 0.00000344x_3^2) + (0.007050x_4 + 0.00000295x_4^2) \rightarrow min$
 - Repetimos o processo de Lagrange
 - $\partial \phi / \partial x_3 = 0.006398 + 0.00000688x_3 + \lambda = 0$

- $\partial \phi / \partial x_4 = 0.007050 + 0.00000590x_4 + \lambda = 0$
- $X_3 + X_4 = 2400$
- Isolando x_3 e x_4 em termos de λ e somando
 - $x_3 = (-\lambda 0.006398) / 0.00000688$
 - $x_4 = (-\lambda 0.007050) / 0.00000590$
 - $(-\lambda/0.00000688 929.9) + (-\lambda/0.00000590 1194.9) = 2400$
 - $(-145349 169492)\lambda 2124.8 = 2400$
 - $-314841\lambda = 4524.8$
 - $\lambda \approx -0.01437$
- Calculando a solução do subproblema x₃°, x₄°
 - $x_3^0 = (-(-0.01437) 0.006398) / 0.00000688 \approx 1159$
 - $x_4^0 = (-(-0.01437) 0.007050) / 0.00000590 \approx 1241$
 - Soma: 1159 + 1241 = 2400
- Etapa 5: Verificação Final e Relaxamento
 - $x_3^0 = 1159$. Restrição: $1200 \le x_3 \le 1500$. (FALHOU, 1159 < 1200)
 - $x_4^0 = 1241$. Restrição: $1200 \le x_4 \le 1900$. (OK)
 - Fixar $x_3 = 1200$
 - Calcular x₄ usando a restrição do subproblema
 - $x_4 = 2400 x_3 \Rightarrow x_4 = 2400 1200 = 1200$
- Solução Final (Método de Lagrange)
 - $x_1 = 900$
 - $x_2 = 1100$
 - $x_3 = 1200$
 - $x_4 = 1200$
- Verificação Final da Solução
 - Soma: 900 + 1100 + 1200 + 1200 = 4400 (OK)
 - $x_1 = 900 (OK)$
 - $x_2 = 1100 (OK)$
 - $1200 \le 1200 \le 1500 \text{ (OK)}$
 - $1200 \le 1200 \le 1900 \text{ (OK)}$

MÉTODO 2: DESCIDA COORDENADA

- Variáveis Independentes: x1, x2, x3
- Variável Dependente: x4 = 4400 x1 x2 x3
- A condição de otimalidade (minimizando $F = \Delta P_i + \Delta P_4$) é $\partial \Delta P_i / \partial x_i = \partial \Delta P_4 / \partial x_4$
- Passo 0 Ponto Inicial
 - $x_1^{(0)} = 900$; $x_2^{(0)} = 1100$; $x_3^{(0)} = 1200$ (limite inferior); $x_4^{(0)} = 4400 900 1100 1200 = 1200$
 - Cálculo de F(p)
 - $\Delta P_1(900) = 0.007980(900) + 0.000000738(900^2) = 13.1598$
 - $\Delta P_2(1100) = 0.006504(1100) + 0.00000495(1100^2) = 13.1439$
 - $\Delta P_3(1200) = 0.006398(1200) + 0.00000344(1200^2) = 12.6312$
 - $\Delta P_4(1200) = 0.007050(1200) + 0.00000295(1200^2) = 12.7080$
 - $F^{(0)} = 13.1598 + 13.1439 + 12.6312 + 12.7080 = 51.6429$
 - Início do Ciclo 1
 - Passo 1 Otimizar x_1 (Fixos: $x_2 = 1100$, $x_3 = 1200$)
 - $x_4 = 4400 x_1 1100 1200 = 2100 x_1$
 - Condição: $\partial \Delta P_1/\partial x_1 = \partial \Delta P_4/\partial x_4$
 - $a_1 + 2b_1x_1 = a_4 + 2b_4x_4$
 - $0.007980 + 0.00001476x_1 = 0.007050 + 0.00000590(2100 x_1)$
 - $0.00002066x_1 = 12.38907$
 - $X_1^{(1)} \approx 599.7$
 - Verificação: restrição x₁ = 900. A solução 599.7 está fora →
 ótimo restrito é x₁¹¹¹ = 900.
 - O ponto não mudou.
 - Passo 2 Otimizar x_2 (Fixos: $x_1 = 900$, $x_3 = 1200$)
 - $x_4 = 4400 900 x_2 1200 = 2300 x_2$
 - Condição: $\partial \Delta P_2 / \partial x_2 = \partial \Delta P_4 / \partial x_4$
 - $a_2 + 2b_2x_2 = a_4 + 2b_4x_4$
 - $0.006504 + 0.00000990x_2 = 0.007050 + 0.00000590(2300 x_2)$
 - $0.0000158x_2 = 13.57055$

- $X_2^{(2)} \approx 858.9$
- Verificação: restrição x_2 = 1100. A solução 858.9 está fora \rightarrow ótimo restrito é $x_2^{(2)}$ = 1100.
- O ponto não mudou.
- Passo 3 Otimizar x_3 (Fixos: $x_1 = 900$, $x_2 = 1100$)
 - $x_4 = 4400 900 1100 x_3 = 2400 x_3$
 - Condição: $\partial \Delta P_3/\partial x_3 = \partial \Delta P_4/\partial x_4$
 - $a_3 + 2b_3x_3 = a_4 + 2b_4x_4$
 - $0.006398 + 0.00000688x_3 = 0.007050 + 0.00000590(2400 x_3)$
 - $0.00001278x_3 = 14.16065$
 - $x_3^{(3)} \approx 1108.0$
 - Verificação: restrição 1200 ≤ x₃ ≤ 1500. A solução 1108.0 está fora (menor que 1200) → ótimo restrito é x₃⁽³⁾ = 1200.
 - O ponto não mudou.
- Fim do Ciclo 1
 - Ponto inicial do ciclo (Passo 0): $x^{(0)} = (900, 1100, 1200)$
 - Ponto final do ciclo (Passo 3): $x^{(3)} = (900, 1100, 1200)$
 - Como o ponto não mudou após um ciclo completo, o critério de parada foi atingido. A solução ótima restrita foi encontrada.

Passo	x,(p)	$x_2(p)$	x₃(p)	x₄(p)	F(p)	Observação
0	900	1100.00	1200.00	1200.00	51.6429	Ponto Inicial
1	900	1100.00	1200.00	1200.00	51.6429	Otimiza x_1 (Sol. 599.7 < 900 \rightarrow Fixa em 900)
2	900	1100.00	1200.00	1200.00	51.6429	Otimiza x_2 (Sol. 858.9 < 1100 \rightarrow Fixa em 1100)
3	900	1100.00	1200.00	1200.00	51.6429	Otimiza x₃ (Sol. 1108.0 < 1200 → Fixa em 1200)

- Solução Final (Descida Coordenada)
 - x = (900, 1100, 1200, 1200)