11.5: The Bionomial Theorem

Supplementary Notes

<u>Factorial function</u>: For positive integer n,

$$0! = 1$$

 $n! = n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1$ for $n \ge 2$

Binomial Coefficients: For positive integers n and k, the number of ways of choosing a subset of k elements from a set of n elements, pronounced n choose k is

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

where with $k \leq n$.

Pascal's Triangle:

<u>The Binomial Theorem</u>: For real numbers a, b and positive integer n,

$$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k}$$

$$= \binom{n}{0} a^{n} + \binom{n}{1} a^{n-1} b^{1} + \dots + \binom{n}{k} a^{n-k} b^{k} + \dots + \binom{n}{n-1} a b^{n-1} + \binom{n}{n} b^{n}$$

Exercises

- 1. Evaluate the binary coefficients $\binom{n}{0}$, $\binom{n}{1}$, $\binom{n}{n-1}$, and $\binom{n}{n}$.
- 2. Find the middle term of the expansion of $(x^{\frac{1}{2}} + y^{\frac{1}{2}})^8$, if the terms are arranged in decreasing powers of the first term.
- 3. Find the sixth term of the expansion of $(3a^2 \sqrt{b})^9$, if the terms are arranged in decreasing powers of the first term.

- 4. Find the sixth term of the expansion $(\frac{3}{c} + \frac{c^2}{4})^7$, if the terms are arranged in decreasing powers of the first term.
- 5. Find the term that does not contain x in the expansion $(3x \frac{1}{4x})^6$.
- 6. Find the term that does not contain y in the expansion $(xy 3y^{-3})^8$.