FileBench

A Prototype Model Based Workload for File Systems

Work In Progress

Richard McDougall

Sun Microsystems

Benchmarks?

For Vendors

- Product characterization
- Product design goaling
- Benchmarketing

For Customers

- Purchasing Guide
- Configuration characterization/tuning/verification

Requirements for file-level benchmarking

- Represent Apps rather than I/Os
- Trace-derived synthesis
- Thread-level representation
- Inter-thread dependency/sync.
- Forward Path
- Extensible to new protocols

- Modular to include test of client: process/thread model, cpu efficiency etc...
- Pre-structuring/aging of file sets
- Scalable
 - Throughput, #Users
 - #Files/Directories
 - Working set size
 - #Clients
 - Client resources (mem/cpu)

What do we want to characterize?

Characterization Strategies

- I/O Microbenchmarking
 - Pros: Easy to run
 - Cons: Small test coverage, Hard to correlate to real apps
- Trace Capture/Replay
 - I/O Trace, NFS Trace, Application Trace
 - Pros: Accurate reconstruction of real application I/O mix
 - Cons: Large traces, difficult to reconstruct I/O dependencies
- Model Based
 - Distillation of trace into representive model
 - Probability based, Simulation based
 - Pros: Easy to run, Scalable in multiple dimensions
 - Cons: Care required to ensure accurate real-world representation

Model based methodology study

Model Allows Complex/Important Scaling Curves

- e.g.
 - Thoughput/Latency vs. Working set size
 - Thoughput/Latency vs. #users
 - CPU Efficiency vs. Thoughput
 - Caching efficiency vs. Workingset size/Memsize

Characterize and Simulate via Cascades of Workload Flows:

Flow States: Open Ended Flow

Copyright Sun Microsystems, 2004

Flow States: Synchronized Flow

Copyright Sun Microsystems, 2004

Examples of Per-flow Operations

- Types
 - Read
 - Write
 - Create
 - Delete
 - Append
 - Getattr
 - Setattr
 - Readdir
 - Semaphore block/post
 - Rate limit
 - Throughput limit

- Attributes
- Sync_Data
- Sync_Metadata
- IO Size
- I/O Pattern, probabilities
- Working set size
- Etc...

Simple Random I/O Workload Description

Random I/O - NFS V3

Random I/O Latency

Database Emulation Overview

Database Emulation Process Tree

User Process (Reads)

Simplified OLTP Database Program

```
define file name=logfile,path=$dir,size=1q,reuse,prealloc,paralloc
define file name=datafilea,path=$dir,size=$filesize,reuse,prealloc,paralloc
define process name=dbwr,instances=$ndbwriters
thread name=dbwr,memsize=$memperthread,useism
 flowop aiowrite name=dbaiowrite-a, filename=datafilea,
    iosize=$iosize,workingset=10g,random,dsync,directio,iters=10
 flowop hog name=dbwr-hog,value=10000
 flowop semblock name=dbwr-block, value=100, highwater=10000
 flowop aiowait name=dbwr-aiowait
define process name=lgwr,instances=1
thread name=lqwr,memsize=$memperthread,useism
 flowop write name=lq-write, filename=logfile,
    iosize=256k,workingset=1g,random,dsync,directio
 flowop semblock name=lg-block, value=320, highwater=1000
define process name=shadow,instances=$nshadows
thread name=shadow,memsize=$memperthread,useism
 flowop read name=shadowread-a, filename=datafilea,
  iosize=$iosize,workingset=10g,random,dsync,directio
 flowop hog name=shadowhog,value=$usermode
 flowop sempost name=shadow-post-lq,value=1,target=lq-block,blocking
 flowop sempost name=shadow-post-dbwr,value=1,target=dbwr-block,blocking
 flowop eventlimit name=random-rate
                                        Copyright Sun Microsystems, 2004
```


OLTP Program – Benchmark Result Detail

Flowop totals:

shadow-post-dbwr	4554ops/s	0.0mb/s	215.7ms/op	91us/op-cpu	
shadow-post-lg	4555ops/s	0.0mb/s	0.7ms/op	21us/op-cpu	
shadowhog	4546ops/s	0.0mb/s	2.5ms/op	111us/op-cpu	
shadowread	4455ops/s	0.9mb/s	23.2ms/op	89us/op-cpu	
lg-block	100ops/s	0.0mb/s	605.2ms/op	305us/op-cpu	•
lg-write	100ops/s	0.4mb/s	96.2ms/op	1962us/op-cpu	
dbwr-aiowait	4445ops/s	0.0mb/s	144.0ms/op	242us/op-cpu	•
dbwr-block	4445ops/s	0.0mb/s	9.6ms/op	44us/op-cpu	
dbwr-hog	4445ops/s	0.0mb/s	1.1ms/op	50us/op-cpu	
dbaiowrite	4449ops/s	0.9mb/s	0.2ms/op	17us/op-cpu	

IO Summary: 9087.7 ops/s, 4547/4496 r/w

18.0 mb/s,

129uscpu/op

NFS OLTP – IOPS Scaling

Workload Discussion

Fil				

Workload	File Size	# files	#Streams	Sharing		ek Mode	Access type mmap/posix
					Re	landom ead/10%	
Web Server	Small	Large	Large	Low	<5% 50r/50w, 1% large	equential Write	Both
Small DB	Large	Small	~100	High		6 Random	POSIX
Large DB	Large	Small	~1000	High		Random	POSIX
DB Mail Server	Large	Small	>1000	High	· ?		
NFS Mail Server	Moderate	Moderate	>10k	Low	? Se	equential	POSIX
HPTC	Huge	Small	Small	Low	50r/50w Se	equential	POSIX
SW Development Video Streaming	Small	Large	>1000	Low	5r/5w/90a Se	equential	POSIX

I/O Characteristics

Workload	App/IO CPU Content	Typical IOPS <1000 per	Data Set Size	Working Set Size	Typical I/O Size	Typical Bandwidth
Web Server	99/1	cient			<64k Random 2- 8k, 128k	<1MB/s
Small DB	90/10	~1000	1-10GB	50.00%	sequential Random 2- 8k, 128k	~10MB/s
Large DB DB Mail Server	80/20 90/10?	>10000	10GB-1TB	30.00%	sequential Small? Large reads,	50MB/s ?
NFS Mail Server	90/10?	Low			small writes	1-10MB/s >100MBs Client, 1GB/s
HPTC SW Development	80/20? 95/5?	~1000? ~1000			~1MB ~32k	Server ~100mb/s

Copyright Sun Microsystems, 2004

Example Composite

NAS Filer			
Workload	IOPS	BW	Weight
OLTP-Small	5123	40	30
OLTP-Large	2532	21	10
ERP	4928	25	10
Web Serving	3241	3.5	5
Data Warehouse	75	75	5
HPTC – Single Stream	89	89	10
HPTC – Multi Stream	120	120	5
Mail-DB	2132	2	5
Mail-NFS	781	50	5
SW Development	4123	10	10
Video Streaming	120	120	5

Filebench Achitecture

NFS Client Testing

NFS Client Testing

Running filebench...

```
Example varmail run:
filebench> load varmail
Varmail personality successfully loaded
Usage: set $dir=<dir>
        set $filesize=<size>
                                defaults to 16384
        set $nfiles=<value> defaults to 1000
        set $dirwidth=<value> defaults to 20
        set $nthreads=<value> defaults to 1
        set $meaniosize=<value> defaults to 16384
        run <runtime>
filebench> set $dir=/tmp
filebench> run 10
Fileset mailset: 1000 files, avg dir = 20, avg depth = 2.3, mbytes=15
Preallocated fileset mailset in 1 seconds
 Starting 1 filereader instances
 Starting 1 filereaderthread threads
Running for 10 seconds...
 IO Summary: 21272 iops 2126.0 iops/s, (1063/1063 r/w) 32.1mb/s,338us cpu/op, 0.3ms latency
```


Example Performance Comparison

• Throughput:

	operations/s		
	FS-A	FS-B	
copyfiles	1403	1431	+2.0%
createfiles	2433	2438	+0.2%
deletefiles	778	833	+7.1%
fileserver	4264	2202	-48.4%
oltp	16840	866	-94.9%
randomread	78	37	-53.3%
singlestreamread	35	36	+2.9%
multistreamread	50	60	+20.0%
varmail	2231	5591	+150.6%
webproxy	7781	2255	-71.0%
webserver	1885	2901	+53.9%

Example Performance Comparison

Client Microseconds per operation:

	uSec/op		
	FS-A	FS-B	
copyfiles	1076	2294	2.1x
createfiles	2131	8952	4.2x
deletefiles	1001	1999	2.0x
fileserver	3152	24994	7.9x
oltp	586	13557	23.1x
randomread	742	2329	3.1x
singlestreamread	16553	27372	1.7x
multistreamread	18001	25032	1.4x
varmail	1078	3168	2.9x
webproxy	4242	22418	5.3x
webserver	1247	10660	8.5x

Filebench Status

- Porting Status
 - S8, 10, x86, SPARC, Linux (2.6/Fedora)
- Early access workload models
 - Random Read/Write (Random block I/O)
 - Sequential I/O (single or multi-stream block I/O)
 - OLTP Database (Oracle Emulator)
 - File Server (Multi-user file intensive)
 - Varmail (Postmark style /var/mail emulation)
 - Webserver (Multi-threaded read + sequential weblog)
 - Webproxy (Multi-threaded read, create, write, delete)
 - Copyfiles (Copy a file tree)

From here...

- Develop more workloads
 - Validation is key
 - Collaborate with workload experts for validation
 - Open up framework
 - Futher develop client/server separation/synthesis
- Sun + 1 other vendor collaborating
- Investigating community development
 - Framework development
 - Workload development

r@sun.com

