# שיעור 4 מכונת טיורינג אי דטרמיניסטיתם

# 4.1 הגדרה של מכונת טיורינג אי-דטרמיניסטית

### הגדרה 4.1 מכונת טיורינג אי-דטרמיניסטית

מכונת טיורינג אי-דטרמיניסטית (מ"ט א"ד) היא שביעייה

$$M = (Q, \Sigma, \Gamma, \Delta, q_0, q_{\rm acc}, q_{\rm rei})$$

.(1.2 מוגדרים (ראו הגדרה  $Q, \Sigma, \Gamma, q_0, q_{
m acc}, q_{
m rej}$  כאשר מוגדרים מוגדרים מוגדרים מוגדרים כמו

היא פונקצית המעברים  $\Delta$ 

$$\Delta: (Q \setminus \{q_{acc}, q_{rej}\}) \times \Gamma \to P(Q \times \Gamma \times \{L, R, S\})$$
.

$$\Delta(q, a) = \{(q_1, a, S), (q_2, b, L), \ldots\}$$
.

. כלומר, לכל זוג  $q\in Q, \alpha\in \Gamma$  או יותר קלומר, לכל זוג ייתכן מספר מעברים אפשריים, או יותר

- קונפיגורציה של מ"ט א"ד זהה לקונפיגורציה של מ"ט דטרמיניסטית.
  - לכל קונפיגורציה ייתכן מספר קונפיגורציות עוקבות.
    - ייתכן מספר ריצות שונות:  $w \in \Sigma^*$  מילה
      - $.q_{
        m acc}$  -ריצות שמגיעות ל\*
      - $.q_{
        m rei}$  -ריצות שמגיעות ל\*
        - \* ריצות שלא עוצרות.
          - \* ריצות שנתקעות.

### <u>4.2 הגדרה</u>

 $q_{
m acc}$  -אם מתקבלת אחת אחת לפחות לפחות א"ד אם א"ד שם מילה  $w\in \Sigma^*$  מילה

השפה של מ"ט א"ד M היא

$$L(M) = \{ w \in \Sigma^* \mid \exists u, v \in \Gamma^* : q_0 w \vdash_* u q_{acc} v \}$$

כלומר,

.w את מקבלת Mשבה אחת ריצה ריצה קיימת  $w \in L(M)$ 

. או נתקעת, או או דוחה או אי על על M של ריצה בכל אם  $w\notin L(M)$ 

# L הגדרה 4.3 מ"ט א"ד המכריעה שפה

.תהיMמ"ט א"ד

 $w \in \Sigma^*$  אם לכל אם מכריעה שפה L מכריעה מ"ט א"ד

- w אם  $M \Leftarrow w \in L$  אם
  - w אם  $M \Leftarrow w \notin L$  אם •

## L מ"ט א"ד המקבלת שפה הגדרה 4.4 מ"ט

.תהי M מ"ט א"ד.

 $w \in \Sigma^*$  אם לכל שפה L מקבלת מקב M א"ד א"ד אומרים כי אומרים אומרים א

- w אם  $M \Leftarrow w \in L$  אם •
- w או M לא עוצרת על  $M \leftarrow w \notin L$  אם  $M \leftarrow w \notin L$  אם •

### דוגמה 4.1

נתונה השפה

$$L = \left\{ 1^n \mid$$
 אינו ראשוני  $n \right\} \;, \qquad \Sigma = \left\{ 1 
ight\} \;.$ 

## פתרון:

הרעיון

L אמכריעה את המכריעה את נבנה מ"ט א"ד

n את מחלק האם האם ותבדוק ותבדוק מספר א"ד מספר א תבחר תבחר אווו וותבדוק א"ד מספר אווו תבחר אווו וותב



#### תאור הבניה

$$w=1^n$$
 על קלט  $N$ 

#### שלב 1)

1 < t < n בוחרת באופן א"ד מספר א בוחרת אופן א

- 2 מעתיקה את w לסרט •
- עוברת על העותק משמאל לימין, ובכל תא מחליטה באופן א"ד האם להשאיר את ה- 1 או למחוק אותו ע"י X (לדאוג שהמספר שנבחר הוא לא 1 ולא n).
  - . בסוף המעבר המספר t שנבחר הוא כמות ה- t -ים שלא נמחקו.



n את מחלק שנבחר שלב N בודקת האם t בודקת את

- אם כן  $N \Leftarrow 0$  מקבלת.
- . אם לא  $N \Leftarrow N$  דוחה  $\bullet$

# 4.2 עץ החישוב של מ"ט א"ד

# הגדרה 4.5 עץ החישוב של מ""ט א"ד

יבושרש עץ מושרש ו- w ו- w ו- w ומילה w ומילה w ומילה w ומילה w ומילה ומילה ומילה שבו

- w על M על בחישוב על מתאר קונפיגורציה בחישוב על ניס כל (1
  - $q_0w$  שורש העץ מתאר את הקונפיגורציה ההתחלתית (2
- $_{
  m v}$  כל קדקוד  $_{
  m v}$  בעץ הבנים של  $_{
  m v}$  הם כל הקדקודים הנובעים מהקונפיגורציה המתוארת ע"י

### דוגמה 4.2





# 4.3 שקילות בין מ"ט א"ד למ"ט דטרמיניסטית

## RE -משפט 4.1 שקילות בין מ"ט א"ד למ"ט דטרמיניסטית

-לכל מ"ט א"ד N קיימת מ"ט דטרמיניסטית לכל מ

$$L(N) = L(D)$$
.

 $:w\in\Sigma^*$  כלומר לכל

- w אם  $N \leftarrow w$  מקבלת את אם  $N \leftarrow w$
- w אם N לא תקבל את  $D \Leftarrow w$  אם N לא מקבלת •

הוכחה: בהינתן מ"ט א"ד N נבנה מ"ט דטרמיניסטית הונכיח כי

$$L(N) = L(D)$$
.

## רעיון ההוכחה

בהינתן קלט  $W\in \Sigma^*$  על תבצע ריצה של כל החישובים האפשריים של א תבצע תבצע ריצה של כל החישובים האפשריים ב- א תעצור ותקבל.

מכיוון שייתכנו חישובים אינסופיים, לא נוכל לסרוק את עץ החישוב לעומק. במקום זה נסרוק את העץ מכיוון שייתכנו חישובים אינסופיים, לא נוכל לסרוק זה נבדוק את כל החישובים באורך 2, וכן הלאה. לרוחב. כלומר, נבדוק את כל החישובים באורך 2, ומעצור ותקבל. 2 עצור ותקבל.

#### תאור הבניה

 $: \alpha \in \Gamma$  ולכל ולכל שלכל מכיוון שלכל

$$\Delta(q,\alpha) \subseteq Q \times \Gamma \times \{L,R,S\} \ .$$

אזי

$$|\Delta(q,\alpha)| \leqslant |Q| \cdot |\Gamma| \cdot |\{L,R,S\}| = 3|Q| \cdot |\Gamma| .$$

נסמן:

$$C = 3|Q| \cdot |\Gamma| \ .$$

שרירותית  $\Delta(q,\alpha)$  -- ברים את מספר  $\alpha\in\Gamma$  אות לכל  $q\in Q$  שרירותית לכל •  $\{0,1,2,\cdots,C-1\}\;.$ 



ו,  $|\Delta(q, \alpha) = j < C$  אם  $j \leqslant k \leqslant C - 1$  אזי לכל  $k = (q_{\mathrm{rej}}, \alpha, S)$  נקבע



N נשים לב כי שינוי זה לא משנה את השפה של  $\bullet$ 



## קידום לקסיקוגרפי:

### D הבניה של

### 3 מכילה מכילה D



## :w על קלט " =D

- 0 -3 מאתחלת את המחרוזת בסרט 3 ל
  - 2 מעתיקה את w לסרט (2
- . עוצרת ומקבלת את אם  $D \Leftarrow w$  אם א סיבלה את אם סיבלה את
- מוחקת את סרט 2, מקדמת את המחרוזת בסרט 3 לקסיקוגרפית סרט 2, מקדמת את אחרת,  $\bullet$