

Company Name Not Available Bedford, MA USA Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

# Workbook: Case (Main)

| 9<br>10  |                                                | Material Streams |        |          | Fluid Pkg: All |          |  |
|----------|------------------------------------------------|------------------|--------|----------|----------------|----------|--|
| 11       | Name                                           | 21002            | 21003* | 21003    | 2101124        | 21005    |  |
| 12       | Vapour Fraction                                | 0.0011           | 1.0000 | 0.0000   | 0.0000         | 1.0000   |  |
| 13       | Temperature (C)                                | 32.20 *          | 32.20  | 32.20    | 34.11          | 87.84    |  |
| 14       | Pressure (bar)                                 | 2.500 *          | 2.500  | 2.500    | 35.70          | 2.300    |  |
| 15       | Molar Flow (kgmole/h)                          | 318.3 *          | 0.3390 | 318.0    | 746.0          | 592.3    |  |
| 16       | Master Comp Mole Frac (Hydrogen)               | 0.0000 *         | 0.0000 | 0.0000   | 0.0000         | 0.0000   |  |
| 17       | Master Comp Mole Frac (Methane)                | 0.0000 *         | 0.0000 | 0.0000   | 0.0000         | 0.0000   |  |
| 18       | Master Comp Mole Frac (Nitrogen)               | 0.0020 *         | 0.9315 | 0.0010   | 0.0000         | 0.0128   |  |
| 19       | Master Comp Mole Frac (CO)                     | 0.0000 *         | 0.0000 | 0.0000   | 0.0000         | 0.6030   |  |
| 20       | Master Comp Mole Frac (CO2)                    | 0.0000 *         | 0.0000 | 0.0000   | 0.0001         | 0.0002   |  |
| 21       | Master Comp Mole Frac (Methanol)               | 0.9970 *         | 0.0685 | 0.9980   | 0.0020         | 0.1065   |  |
| 22       | Master Comp Mole Frac (CH3I)                   | 0.0000 *         | 0.0000 | 0.0000   | 0.0742         | 0.0497   |  |
| 23       | Master Comp Mole Frac (M-Acetate)              | 0.0000 *         | 0.0000 | 0.0000   | 0.0155         | 0.0076   |  |
| 24       | Master Comp Mole Frac (AceticAcid)             | 0.0000 *         | 0.0000 | 0.0000   | 0.2052         | 0.0713   |  |
| 25       | Master Comp Mole Frac (H2O)                    | 0.0009 *         | 0.0000 | 0.0009   | 0.7028         | 0.1485   |  |
| 26       | Master Comp Mole Frac (HI)                     | 0.0000 *         | 0.0000 | 0.0000   | 0.0002         | 0.0002   |  |
| 27       | Master Comp Mole Frac (C3oicAcid)              | 0.0000 *         | 0.0000 | 0.0000   | 0.0000         | 0.0000   |  |
| 28       | Master Comp Mole Frac (Ethanol)                | 0.0001 *         | 0.0000 | 0.0001   | 0.0000         | 0.0000   |  |
| 29       | Master Comp Mole Frac (KOH*)                   | 0.0000 *         | 0.0000 | 0.0000   | 0.0000         | 0.0000   |  |
| 30       | Master Comp Mole Frac (Rh*)                    | 0.0000 *         | 0.0000 | 0.0000   | 0.0000         | 0.0000   |  |
| 31       | Master Comp Molar Flow (Hy(thropognezhe)/h)    | 0.0000 *         | 0.0000 | 0.0000   | 0.0001         | 0.0277   |  |
| 32       | Master Comp Molar Flow (Me(thgme)e/h)          | 0.0000 *         | 0.0000 | 0.0000   | 0.0000         | 0.0000   |  |
| 33       | Master Comp Molar Flow (Nit(kogrero)e/h)       | 0.6470 *         | 0.3158 | 0.3312   | 0.0020         | 7.6102   |  |
| 34       | Master Comp Molar Flow (CQkgmole/h)            | 0.0000 *         | 0.0000 | 0.0000   | 0.0138         | 357.1496 |  |
| 35       | Master Comp Molar Flow (CQ@mole/h)             | 0.0000 *         | 0.0000 | 0.0000   | 0.0997         | 0.1236   |  |
| 36       | Master Comp Molar Flow (Me(tkgmot)e/h)         | 317.3481 *       | 0.0232 | 317.3248 | 1.4847         | 63.1003  |  |
| 37       | Master Comp Molar Flow (CH(8t)mole/h)          | 0.0000 *         | 0.0000 | 0.0000   | 55.3273        | 29.4377  |  |
| 38       | Master Comp Molar Flow (M-(kccetatice)h)       | 0.0000 *         | 0.0000 | 0.0000   | 11.5907        | 4.4807   |  |
| 39       | Master Comp Molar Flow (Ac(tiguAole))h)        | 0.0000 *         | 0.0000 | 0.0000   | 153.0623       | 42.2432  |  |
| 40       | Master Comp Molar Flow (H2(12)) mole/h)        | 0.2827 *         | 0.0000 | 0.2827   | 524.3157       | 87.9757  |  |
| 41       | Master Comp Molar Flow (HI)(kgmole/h)          | 0.0000 *         | 0.0000 | 0.0000   | 0.1308         | 0.1077   |  |
| 42       | Master Comp Molar Flow (C3(okig Axcitely)h)    | 0.0000 *         | 0.0000 | 0.0000   | 0.0142         | 0.0216   |  |
| 43       | Master Comp Molar Flow (Eth(kagori))le/h)      | 0.0222 *         | 0.0000 | 0.0222   | 0.0000         | 0.0044   |  |
| 44       | Master Comp Molar Flow (KQ <b>kl</b> ð)mole/h) | 0.0000 *         | 0.0000 | 0.0000   | 0.0000         | 0.0000   |  |
| 45       | Master Comp Molar Flow (Rh(t)gmole/h)          | 0.0000 *         | 0.0000 | 0.0000   | 0.0000         | 0.0000   |  |
| 46       |                                                |                  |        |          |                |          |  |
| 47       |                                                |                  |        |          |                |          |  |
| 48       |                                                |                  |        |          |                |          |  |
| 49       |                                                |                  |        |          |                |          |  |
| 50<br>51 |                                                |                  |        |          |                |          |  |
| 51       |                                                |                  |        |          |                |          |  |
| 52<br>53 |                                                |                  |        |          |                |          |  |
| 53       |                                                |                  |        |          |                |          |  |
| 54       |                                                |                  |        |          |                |          |  |
| 55       |                                                |                  |        |          |                |          |  |
| 56       |                                                |                  |        |          |                |          |  |
| 57       |                                                |                  |        |          |                |          |  |
| 58       |                                                |                  |        |          |                |          |  |
| 59       |                                                |                  |        |          |                |          |  |
| 60       |                                                |                  |        |          |                |          |  |
| 61       |                                                |                  |        |          |                |          |  |

\* Specified by user.



Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

#### Workbook: Case (Main) (continued)

| 9<br>10 | Material Streams (continued)                        |           |           |            |          | g: All   |
|---------|-----------------------------------------------------|-----------|-----------|------------|----------|----------|
| 11      | Name                                                | 21008     | 22013     | 22015      | 21012    | 21014*   |
| 12      | Vapour Fraction                                     | 0.0000    | 0.0000    | 0.0000     | 0.0000   | 0.0000   |
| 13      | Temperature (C)                                     | 87.84     | 70.35 *   | 20.00 *    | 72.01    | 60.74    |
| 14      | Pressure (bar)                                      | 2.300     | 39.90 *   | 35.70 *    | 31.00    | 31.00    |
| 15      | Molar Flow (kgmole/h)                               | 4242      | 184.7 *   | 561.3 *    | 316.2    | 1062     |
| 16      | Master Comp Mole Frac (Hydrogen)                    | 0.0000    | 0.0000 *  | 0.0000 *   | 0.0000   | 0.0000   |
| 17      | Master Comp Mole Frac (Methane)                     | 0.0000    | 0.0000 *  | 0.0000 *   | 0.0000   | 0.0000   |
| 18      | Master Comp Mole Frac (Nitrogen)                    | 0.0000    | 0.0000 *  | 0.0000 *   | 0.0010   | 0.0003   |
| 19      | Master Comp Mole Frac (CO)                          | 0.0001    | 0.0000 *  | 0.0000 *   | 0.0000   | 0.0000   |
| 20      | Master Comp Mole Frac (CO2)                         | 0.0000    | 0.0003 *  | 0.0001 *   | 0.0000   | 0.0001   |
| 21      | Master Comp Mole Frac (Methanol)                    | 0.1412    | 0.0026 *  | 0.0018 *   | 0.9980   | 0.2985   |
| 22      | Master Comp Mole Frac (CH3I)                        | 0.0105    | 0.2508 *  | 0.0160 *   | 0.0000   | 0.0521   |
| 23      | Master Comp Mole Frac (M-Acetate)                   | 0.0035    | 0.0330 *  | 0.0098 *   | 0.0000   | 0.0109   |
| 24      | Master Comp Mole Frac (AceticAcid)                  | 0.3782    | 0.1724 *  | 0.2159 *   | 0.0000   | 0.1441   |
| 25      | Master Comp Mole Frac (H2O)                         | 0.4662    | 0.5401 *  | 0.7563 *   | 0.0009   | 0.4939   |
| 26      | Master Comp Mole Frac (HI)                          | 0.0000    | 0.0007 *  | 0.0000 *   | 0.0000   | 0.0001   |
| 27      | Master Comp Mole Frac (C3oicAcid)                   | 0.0002    | 0.0001 *  | 0.0000 *   | 0.0000   | 0.0000   |
| 28      | Master Comp Mole Frac (Ethanol)                     | 0.0000    | 0.0000 *  | 0.0000 *   | 0.0001   | 0.0000   |
| 29      | Master Comp Mole Frac (KOH*)                        | 0.0000    | 0.0000 *  | 0.0000 *   | 0.0000   | 0.0000   |
| 30      | Master Comp Mole Frac (Rh*)                         | 0.0000    | 0.0000 *  | 0.0000 *   | 0.0000   | 0.0000   |
| 31      | Master Comp Molar Flow (Hy(droggente)/h)            | 0.0000    | 0.0001 *  | 0.0000 *   | 0.0000   | 0.0001   |
| 32      | Master Comp Molar Flow (Me(thgane)e/h)              | 0.0000    | 0.0000 *  | 0.0000 *   | 0.0000   | 0.0000   |
| 33      | Master Comp Molar Flow (Nit(hogneno)e/h)            | 0.0226    | 0.0020 *  | 0.0000 *   | 0.3293   | 0.3313   |
| 34      | Master Comp Molar Flow (CQkgmole/h)                 | 0.6011    | 0.0038 *  | 0.0100 *   | 0.0000   | 0.0138   |
| 35      | Master Comp Molar Flow (CQ@mole/h)                  | 0.0050    | 0.0497 *  | 0.0500 *   | 0.0000   | 0.0997   |
| 36      | Master Comp Molar Flow (Me(thganol)e/h)             | 599.2214  | 0.4846 *  | 1.0001 *   | 315.5796 | 317.0642 |
| 37      | Master Comp Molar Flow (CH(&b)mole/h)               | 44.7268   | 46.3266 * | 9.0006 *   | 0.0000   | 55.3273  |
| 38      | Master Comp Molar Flow (M-(kcetatile)/h)            | 14.7075   | 6.0903 *  | 5.5004 *   | 0.0000   | 11.5907  |
| 39      | Master Comp Molar Flow (Ac <b>(ttigr/Aolet</b> )/h) | 1604.3526 | 31.8537 * | 121.2086 * | 0.0000   | 153.0623 |
| 40      | Master Comp Molar Flow (H2(12/13) mole/h)           | 1977.7937 | 99.7855 * | 424.5303 * | 0.2812   | 524.5969 |
| 41      | Master Comp Molar Flow (HI)(kgmole/h)               | 0.0333    | 0.1308 *  | 0.0000 *   | 0.0000   | 0.1308   |
| 42      | Master Comp Molar Flow (C3(big-Ancilde)/h)          | 0.7635    | 0.0142 *  | 0.0000 *   | 0.0000   | 0.0142   |
| 43      | Master Comp Molar Flow (Eth(agol))le/h)             | 0.0521    | 0.0000 *  | 0.0000 *   | 0.0221   | 0.0221   |
| 44      | Master Comp Molar Flow (KQ <b>kʤ)</b> mole/h)       | 0.0000    | 0.0000 *  | 0.0000 *   | 0.0000   | 0.0000   |
| 45      | Master Comp Molar Flow (Rh(t)gmole/h)               | 0.0000    | 0.0000 *  | 0.0000 *   | 0.0000   | 0.0000   |
| 46      |                                                     |           |           |            |          |          |

\* Specified by user.



Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

#### Workbook: Case (Main) (continued)

| 9<br>10 |                                                  | Fluid Pk  | g: All      |            |           |          |
|---------|--------------------------------------------------|-----------|-------------|------------|-----------|----------|
| 11      | Name                                             | 21007     | 21010       | 22004      | 2103      | 21009    |
| 12      | Vapour Fraction                                  | 0.0000    | 0.0000      | 0.0000     | 0.0000    | 1.0000   |
| 13      | Temperature (C)                                  | 24.00 *   | 122.6 *     | 188.0 *    | 91.43     | 122.6    |
| 14      | Pressure (bar)                                   | 15.00 *   | 2.300 *     | 8.000 *    | 2.300     | 2.300    |
| 15      | Molar Flow (kgmole/h)                            | 26.37 *   | 3381 *      | 147.2 *    | 4390      | 1009     |
| 16      | Master Comp Mole Frac (Hydrogen)                 | 0.0000 *  | 0.0000 *    | 0.0000 *   | 0.0000    | 0.0000   |
| 17      | Master Comp Mole Frac (Methane)                  | 0.0000 *  | 0.0000 *    | 0.0000 *   | 0.0000    | 0.0000   |
| 18      | Master Comp Mole Frac (Nitrogen)                 | 0.0000 *  | 0.0000 *    | 0.0000 *   | 0.0000    | 0.0000   |
| 19      | Master Comp Mole Frac (CO)                       | 0.0010 *  | 0.0000 *    | 0.0000 *   | 0.0001    | 0.0006   |
| 20      | Master Comp Mole Frac (CO2)                      | 0.0000 *  | 0.0000 *    | 0.0000 *   | 0.0000    | 0.0000   |
| 21      | Master Comp Mole Frac (Methanol)                 | 0.2846 *  | 0.1001 *    | 0.0001 *   | 0.1365    | 0.2475   |
| 22      | Master Comp Mole Frac (CH3I)                     | 0.1061 *  | 0.0047 *    | 0.0072 *   | 0.0104    | 0.0317   |
| 23      | Master Comp Mole Frac (M-Acetate)                | 0.0182 *  | 0.0021 *    | 0.0033 *   | 0.0035    | 0.0083   |
| 24      | Master Comp Mole Frac (AceticAcid)               | 0.1916 *  | 0.4401 *    | 0.7604 *   | 0.3910    | 0.2466   |
| 25      | Master Comp Mole Frac (H2O)                      | 0.3982 *  | 0.4527 *    | 0.2283 *   | 0.4582    | 0.4651   |
| 26      | Master Comp Mole Frac (HI)                       | 0.0002 *  | 0.0000 *    | 0.0000 *   | 0.0000    | 0.0000   |
| 27      | Master Comp Mole Frac (C3oicAcid)                | 0.0001 *  | 0.0002 *    | 0.0007 *   | 0.0002    | 0.0001   |
| 28      | Master Comp Mole Frac (Ethanol)                  | 0.0000 *  | 0.0000 *    | 0.0000 *   | 0.0000    | 0.0000   |
| 29      | Master Comp Mole Frac (KOH*)                     | 0.0000 *  | 0.0000 *    | 0.0000 *   | 0.0000    | 0.0000   |
| 30      | Master Comp Mole Frac (Rh*)                      | 0.0000 *  | 0.0000 *    | 0.0000 *   | 0.0000    | 0.0000   |
| 31      | Master Comp Molar Flow (Hy(droggente)/h)         | 0.0000 *  | 0.0000 *    | 0.0000 *   | 0.0000    | 0.0000   |
| 32      | Master Comp Molar Flow (Me(thgane)e/h)           | 0.0000 *  | 0.0000 *    | 0.0000 *   | 0.0000    | 0.0000   |
| 33      | Master Comp Molar Flow (Nit(hogreno)e/h)         | 0.0012 *  | 0.0002 *    | 0.0000 *   | 0.0226    | 0.0225   |
| 34      | Master Comp Molar Flow (CQkgmole/h)              | 0.0275 *  | 0.0033 *    | 0.0000 *   | 0.6011    | 0.6005   |
| 35      | Master Comp Molar Flow (CQ@mole/h)               | 0.0006 *  | 0.0008 *    | 0.0000 *   | 0.0050    | 0.0050   |
| 36      | Master Comp Molar Flow (Me(thanol)e/h)           | 7.5055 *  | 338.3181 *  | 0.0221 *   | 599.2434  | 249.8143 |
| 37      | Master Comp Molar Flow (CH&b)mole/h)             | 2.7978 *  | 16.0394 *   | 1.0594 *   | 45.7862   | 32.0036  |
| 38      | Master Comp Molar Flow (M-(kccetatile)/h)        | 0.4800 *  | 7.1175 *    | 0.4811 *   | 15.1887   | 8.3460   |
| 39      | Master Comp Molar Flow (Ac <b>(tigr/Aold)</b> h) | 5.0536 *  | 1487.9139 * | 111.9541 * | 1716.3067 | 248.9391 |
| 40      | Master Comp Molar Flow (H2(12/13)) mole/h)       | 10.5017 * | 1530.6984 * | 33.6206 *  | 2011.4143 | 469.5093 |
| 41      | Master Comp Molar Flow (HI)(kgmole/h)            | 0.0041 *  | 0.0062 *    | 0.0002 *   | 0.0335    | 0.0303   |
| 42      | Master Comp Molar Flow (C3(bxig:Ancilde)/h)      | 0.0026 *  | 0.7682 *    | 0.1001 *   | 0.8636    | 0.1322   |
| 43      | Master Comp Molar Flow (Eth(agorl))le/h)         | 0.0005 *  | 0.0340 *    | 0.0000 *   | 0.0521    | 0.0181   |
| 44      | Master Comp Molar Flow (K <b>O∖kl</b> ǧ)nole/h)  | 0.0000 *  | 0.0000 *    | 0.0000 *   | 0.0000    | 0.0000   |
| 45      | Master Comp Molar Flow (Rh(t)gmole/h)            | 0.0000 *  | 0.0000 *    | 0.0000 *   | 0.0000    | 0.0000   |
| 46      |                                                  |           |             |            |           |          |



Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

# Workbook: Case (Main) (continued)

| 9<br>10 | Material Streams (continued)                      |           |           |         |         | g: All     |
|---------|---------------------------------------------------|-----------|-----------|---------|---------|------------|
| 11      | Name                                              | 21010.    | 23010     | 23012   | 23013   | 23008      |
| 12      | Vapour Fraction                                   | 0.0000    | 0.0000    | 1.0000  | 0.0000  | 0.0000     |
| 13      | Temperature (C)                                   | 122.6     | 43.35 *   | 43.49   | 50.41   | 43.35 *    |
| 14      | Pressure (bar)                                    | 2.300     | 33.90 *   | 28.50   | 28.60   | 33.90 *    |
| 15      | Molar Flow (kgmole/h)                             | 3380      | 35.90 *   | 43.63   | 36.97   | 145.5 *    |
| 16      | Master Comp Mole Frac (Hydrogen)                  | 0.0000    | 0.0000 *  | 0.0001  | 0.0000  | 0.0000 *   |
| 17      | Master Comp Mole Frac (Methane)                   | 0.0000    | 0.0000 *  | 0.0000  | 0.0000  | 0.0000 *   |
| 18      | Master Comp Mole Frac (Nitrogen)                  | 0.0000    | 0.0000 *  | 0.0207  | 0.0002  | 0.0000 *   |
| 19      | Master Comp Mole Frac (CO)                        | 0.0000    | 0.0000 *  | 0.9757  | 0.0070  | 0.0000 *   |
| 20      | Master Comp Mole Frac (CO2)                       | 0.0000    | 0.0000 *  | 0.0003  | 0.0001  | 0.0000 *   |
| 21      | Master Comp Mole Frac (Methanol)                  | 0.1034    | 0.0005 *  | 0.0000  | 0.0023  | 0.0005 *   |
| 22      | Master Comp Mole Frac (CH3I)                      | 0.0041    | 0.0047 *  | 0.0003  | 0.0241  | 0.0047 *   |
| 23      | Master Comp Mole Frac (M-Acetate)                 | 0.0020    | 0.0041 *  | 0.0001  | 0.0055  | 0.0041 *   |
| 24      | Master Comp Mole Frac (AceticAcid)                | 0.4341    | 0.9473 *  | 0.0026  | 0.9173  | 0.9473 *   |
| 25      | Master Comp Mole Frac (H2O)                       | 0.4562    | 0.0433 *  | 0.0003  | 0.0432  | 0.0433 *   |
| 26      | Master Comp Mole Frac (HI)                        | 0.0000    | 0.0000 *  | 0.0000  | 0.0002  | 0.0000 *   |
| 27      | Master Comp Mole Frac (C3oicAcid)                 | 0.0002    | 0.0000 *  | 0.0000  | 0.0000  | 0.0000 *   |
| 28      | Master Comp Mole Frac (Ethanol)                   | 0.0000    | 0.0000 *  | 0.0000  | 0.0000  | 0.0000 *   |
| 29      | Master Comp Mole Frac (KOH*)                      | 0.0000    | 0.0000 *  | 0.0000  | 0.0000  | 0.0000 *   |
| 30      | Master Comp Mole Frac (Rh*)                       | 0.0000    | 0.0000 *  | 0.0000  | 0.0000  | 0.0000 *   |
| 31      | Master Comp Molar Flow (Hy(thrograme)/h)          | 0.0000    | 0.0000 *  | 0.0033  | 0.0000  | 0.0000 *   |
| 32      | Master Comp Molar Flow (Me(thgme)e/h)             | 0.0000    | 0.0000 *  | 0.0000  | 0.0000  | 0.0000 *   |
| 33      | Master Comp Molar Flow (Nit(kogreno)e/h)          | 0.0000    | 0.0000 *  | 0.9039  | 0.0081  | 0.0000 *   |
| 34      | Master Comp Molar Flow (CQkgmole/h)               | 0.0007    | 0.0000 *  | 42.5716 | 0.2588  | 0.0000 *   |
| 35      | Master Comp Molar Flow (CQ@mole/h)                | 0.0001    | 0.0000 *  | 0.0112  | 0.0031  | 0.0000 *   |
| 36      | Master Comp Molar Flow (Me(thamol)e/h)            | 349.4291  | 0.0193 *  | 0.0003  | 0.0856  | 0.0784 *   |
| 37      | Master Comp Molar Flow (CH(&t)mole/h)             | 13.7825   | 0.1689 *  | 0.0111  | 0.8927  | 0.6844 *   |
| 38      | Master Comp Molar Flow (M-(krcgetatlee)h)         | 6.8426    | 0.1489 *  | 0.0028  | 0.2039  | 0.6035 *   |
| 39      | Master Comp Molar Flow (Ac <b>(tign/hole)</b> /h) | 1467.3676 | 34.0069 * | 0.1131  | 33.9095 | 137.8274 * |
| 40      | Master Comp Molar Flow (H2(12)) mole/h)           | 1541.9050 | 1.5560 *  | 0.0134  | 1.5980  | 6.3063 *   |
| 41      | Master Comp Molar Flow (HI)(kgmole/h)             | 0.0032    | 0.0000 *  | 0.0000  | 0.0088  | 0.0000 *   |
| 42      | Master Comp Molar Flow (C3(txig:Ancilde)/h)       | 0.7315    | 0.0000 *  | 0.0000  | 0.0000  | 0.0001 *   |
| 43      | Master Comp Molar Flow (Ethiagoli)le/h)           | 0.0340    | 0.0000 *  | 0.0000  | 0.0000  | 0.0000 *   |
| 44      | Master Comp Molar Flow (KO(kʤ)mole/h)             | 0.0000    | 0.0000 *  | 0.0000  | 0.0000  | 0.0000 *   |
| 45      | Master Comp Molar Flow (Rh(t)gmole/h)             | 0.0000    | 0.0000 *  | 0.0000  | 0.0000  | 0.0000 *   |
| 46      |                                                   |           |           |         |         |            |



Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

#### Workbook: Case (Main) (continued)

| 9<br>10 | Material Streams (continued)                      |         |          |            | Fluid Pkç | g: All   |
|---------|---------------------------------------------------|---------|----------|------------|-----------|----------|
| 11      | Name                                              | 23010.  | 23009.   | 23370      | 23372     | 23009    |
| 12      | Vapour Fraction                                   | 0.0000  | 0.0000   | 0.0000     | 0.0000    | 0.0000   |
| 13      | Temperature (C)                                   | 43.35   | 43.35    | 17.00 *    | 24.76     | 25.00 *  |
| 14      | Pressure (bar)                                    | 33.90   | 33.90    | 12.00 *    | 35.00 *   | 4.400 *  |
| 15      | Molar Flow (kgmole/h)                             | 35.94   | 109.6    | 388.6      | 388.6     | 109.6    |
| 16      | Master Comp Mole Frac (Hydrogen)                  | 0.0000  | 0.0000   | 0.0000 *   | 0.0000    | 0.0000   |
| 17      | Master Comp Mole Frac (Methane)                   | 0.0000  | 0.0000   | 0.0000 *   | 0.0000    | 0.0000   |
| 18      | Master Comp Mole Frac (Nitrogen)                  | 0.0000  | 0.0000   | 0.0000 *   | 0.0000    | 0.0000   |
| 19      | Master Comp Mole Frac (CO)                        | 0.0000  | 0.0000   | 0.0000 *   | 0.0000    | 0.0000   |
| 20      | Master Comp Mole Frac (CO2)                       | 0.0000  | 0.0000   | 0.0000 *   | 0.0000    | 0.0000   |
| 21      | Master Comp Mole Frac (Methanol)                  | 0.0005  | 0.0005   | 0.0000 *   | 0.0000    | 0.0005   |
| 22      | Master Comp Mole Frac (CH3I)                      | 0.0047  | 0.0047   | 0.0000 *   | 0.0000    | 0.0047   |
| 23      | Master Comp Mole Frac (M-Acetate)                 | 0.0041  | 0.0041   | 0.0000 *   | 0.0000    | 0.0041   |
| 24      | Master Comp Mole Frac (AceticAcid)                | 0.9473  | 0.9473   | 0.0000 *   | 0.0000    | 0.9473   |
| 25      | Master Comp Mole Frac (H2O)                       | 0.0433  | 0.0433   | 1.0000 *   | 1.0000    | 0.0433   |
| 26      | Master Comp Mole Frac (HI)                        | 0.0000  | 0.0000   | 0.0000 *   | 0.0000    | 0.0000   |
| 27      | Master Comp Mole Frac (C3oicAcid)                 | 0.0000  | 0.0000   | 0.0000 *   | 0.0000    | 0.0000   |
| 28      | Master Comp Mole Frac (Ethanol)                   | 0.0000  | 0.0000   | 0.0000 *   | 0.0000    | 0.0000   |
| 29      | Master Comp Mole Frac (KOH*)                      | 0.0000  | 0.0000   | 0.0000 *   | 0.0000    | 0.0000   |
| 30      | Master Comp Mole Frac (Rh*)                       | 0.0000  | 0.0000   | 0.0000 *   | 0.0000    | 0.0000   |
| 31      | Master Comp Molar Flow (Hy(drogogneathe)/h)       | 0.0000  | 0.0000   | 0.0000 *   | 0.0000    | 0.0000   |
| 32      | Master Comp Molar Flow (Me <b>(thgme)</b> e/h)    | 0.0000  | 0.0000   | 0.0000 *   | 0.0000    | 0.0000   |
| 33      | Master Comp Molar Flow (Nit(kog@eno)le/h)         | 0.0000  | 0.0000   | 0.0000 *   | 0.0000    | 0.0000   |
| 34      | Master Comp Molar Flow (CQkgmole/h)               | 0.0000  | 0.0000   | 0.0000 *   | 0.0000    | 0.0000   |
| 35      | Master Comp Molar Flow (CQ@mole/h)                | 0.0000  | 0.0000   | 0.0000 *   | 0.0000    | 0.0000   |
| 36      | Master Comp Molar Flow (Me(thganol)e/h)           | 0.0194  | 0.0590   | 0.0000 *   | 0.0000    | 0.0590   |
| 37      | Master Comp Molar Flow (CH&b)mole/h)              | 0.1690  | 0.5153   | 0.0000 *   | 0.0000    | 0.5153   |
| 38      | Master Comp Molar Flow (M-(Acceptablee)/h)        | 0.1491  | 0.4544   | 0.0000 *   | 0.0000    | 0.4544   |
| 39      | Master Comp Molar Flow (Ac <b>(tigr/Aolet</b> )h) | 34.0434 | 103.7840 | 0.0000 *   | 0.0000    | 103.7840 |
| 40      | Master Comp Molar Flow (H2(12g)mole/h)            | 1.5577  | 4.7487   | 388.5629 * | 388.5629  | 4.7487   |
| 41      | Master Comp Molar Flow (HI)(kgmole/h)             | 0.0000  | 0.0000   | 0.0000 *   | 0.0000    | 0.0000   |
| 42      | Master Comp Molar Flow (C3(xig:Ancite)/h)         | 0.0000  | 0.0000   | 0.0000 *   | 0.0000    | 0.0000   |
| 43      | Master Comp Molar Flow (Eth(agol))le/h)           | 0.0000  | 0.0000   | 0.0000 *   | 0.0000    | 0.0000   |
| 44      | Master Comp Molar Flow (KO( <b>kl</b> ǧ)nole/h)   | 0.0000  | 0.0000   | 0.0000 *   | 0.0000    | 0.0000   |
| 45      | Master Comp Molar Flow (Rh(t)gmole/h)             | 0.0000  | 0.0000   | 0.0000 *   | 0.0000    | 0.0000   |
| 46      |                                                   |         |          |            |           |          |

\* Specified by user.



Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

#### Workbook: Case (Main) (continued)

| 9<br>10 | Material Streams (continued)                     |          |        |          |         | g: All   |
|---------|--------------------------------------------------|----------|--------|----------|---------|----------|
| 11      | Name                                             | 22011    | 23014  | 23001    | 23002   | 23011*   |
| 12      | Vapour Fraction                                  | 1.0000   | 1.0000 | 0.0000   | 1.0000  | 0.0000   |
| 13      | Temperature (C)                                  | 16.56 *  | 25.82  | 35.17    | 33.96   | 35.24    |
| 14      | Pressure (bar)                                   | 2.100 *  | 2.000  | 2.100    | 2.000   | 6.000 *  |
| 15      | Molar Flow (kgmole/h)                            | 23.70 *  | 18.48  | 114.8    | 62.11   | 114.8    |
| 16      | Master Comp Mole Frac (Hydrogen)                 | 0.0578 * | 0.0741 | 0.0000   | 0.0221  | 0.0000   |
| 17      | Master Comp Mole Frac (Methane)                  | 0.0000 * | 0.0000 | 0.0000   | 0.0000  | 0.0000   |
| 18      | Master Comp Mole Frac (Nitrogen)                 | 0.1450 * | 0.1851 | 0.0001   | 0.0696  | 0.0001   |
| 19      | Master Comp Mole Frac (CO)                       | 0.4200 * | 0.5371 | 0.0003   | 0.8452  | 0.0003   |
| 20      | Master Comp Mole Frac (CO2)                      | 0.1739 * | 0.1895 | 0.0054   | 0.0566  | 0.0054   |
| 21      | Master Comp Mole Frac (Methanol)                 | 0.0000 * | 0.0000 | 0.0005   | 0.0000  | 0.0005   |
| 22      | Master Comp Mole Frac (CH3I)                     | 0.1669 * | 0.0016 | 0.0387   | 0.0006  | 0.0387   |
| 23      | Master Comp Mole Frac (M-Acetate)                | 0.0051 * | 0.0003 | 0.0050   | 0.0001  | 0.0050   |
| 24      | Master Comp Mole Frac (AceticAcid)               | 0.0001 * | 0.0105 | 0.9025   | 0.0049  | 0.9025   |
| 25      | Master Comp Mole Frac (H2O)                      | 0.0094 * | 0.0014 | 0.0431   | 0.0006  | 0.0431   |
| 26      | Master Comp Mole Frac (HI)                       | 0.0218 * | 0.0003 | 0.0045   | 0.0001  | 0.0045   |
| 27      | Master Comp Mole Frac (C3oicAcid)                | 0.0000 * | 0.0000 | 0.0000   | 0.0000  | 0.0000   |
| 28      | Master Comp Mole Frac (Ethanol)                  | 0.0000 * | 0.0000 | 0.0000   | 0.0000  | 0.0000   |
| 29      | Master Comp Mole Frac (KOH*)                     | 0.0000 * | 0.0000 | 0.0000   | 0.0000  | 0.0000   |
| 30      | Master Comp Mole Frac (Rh*)                      | 0.0000 * | 0.0000 | 0.0000   | 0.0000  | 0.0000   |
| 31      | Master Comp Molar Flow (Hy(droggente)/h)         | 1.3697 * | 1.3686 | 0.0011   | 1.3719  | 0.0011   |
| 32      | Master Comp Molar Flow (Me(thgane)e/h)           | 0.0000 * | 0.0000 | 0.0000   | 0.0000  | 0.0000   |
| 33      | Master Comp Molar Flow (Nit(hogreno)e/h)         | 3.4360 * | 3.4208 | 0.0152   | 4.3248  | 0.0152   |
| 34      | Master Comp Molar Flow (CQkgmole/h)              | 9.9548 * | 9.9247 | 0.0301   | 52.4963 | 0.0301   |
| 35      | Master Comp Molar Flow (CQ@mole/h)               | 4.1204 * | 3.5021 | 0.6183   | 3.5133  | 0.6183   |
| 36      | Master Comp Molar Flow (Me(thanol)e/h)           | 0.0005 * | 0.0006 | 0.0589   | 0.0009  | 0.0589   |
| 37      | Master Comp Molar Flow (CH&b)mole/h)             | 3.9551 * | 0.0287 | 4.4418   | 0.0397  | 4.4418   |
| 38      | Master Comp Molar Flow (M-(kccetatile)/h)        | 0.1211 * | 0.0057 | 0.5698   | 0.0085  | 0.5698   |
| 39      | Master Comp Molar Flow (Ac <b>(tigr/Aold)</b> h) | 0.0024 * | 0.1943 | 103.5921 | 0.3074  | 103.5921 |
| 40      | Master Comp Molar Flow (H2(12/13) mole/h)        | 0.2236 * | 0.0262 | 4.9460   | 0.0396  | 4.9460   |
| 41      | Master Comp Molar Flow (HI)(kgmole/h)            | 0.5164 * | 0.0053 | 0.5111   | 0.0054  | 0.5111   |
| 42      | Master Comp Molar Flow (C3(bxig:Ancilde)/h)      | 0.0000 * | 0.0000 | 0.0000   | 0.0000  | 0.0000   |
| 43      | Master Comp Molar Flow (Eth(agorl))le/h)         | 0.0000 * | 0.0000 | 0.0000   | 0.0000  | 0.0000   |
| 44      | Master Comp Molar Flow (K <b>O∖kl</b> ǧ)nole/h)  | 0.0000 * | 0.0000 | 0.0000   | 0.0000  | 0.0000   |
| 45      | Master Comp Molar Flow (Rh(t)gmole/h)            | 0.0000 * | 0.0000 | 0.0000   | 0.0000  | 0.0000   |
| 46      |                                                  |          |        |          |         |          |

\* Specified by user.



Company Name Not Available Bedford, MA USA Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

#### Workbook: Case (Main) (continued)

| 9<br>10 | Material Streams (continued)                       |          |        |          |            | j: All   |
|---------|----------------------------------------------------|----------|--------|----------|------------|----------|
| 11      | Name                                               | 23011    | 23003  | 23004    | 23301      | 23006*   |
| 12      | Vapour Fraction                                    | 0.0007   | 1.0000 | 0.0000   | 0.0000     | 0.0000   |
| 13      | Temperature (C)                                    | 39.26    | 112.0  | 140.9    | 1.000 *    | 43.00 *  |
| 14      | Pressure (bar)                                     | 6.000    | 2.100  | 2.200    | 15.00 *    | 15.00 *  |
| 15      | Molar Flow (kgmole/h)                              | 151.8    | 10.30  | 141.5    | 450.0 *    | 149.1    |
| 16      | Master Comp Mole Frac (Hydrogen)                   | 0.0000   | 0.0001 | 0.0000   | 0.0000 *   | 0.0000   |
| 17      | Master Comp Mole Frac (Methane)                    | 0.0000   | 0.0000 | 0.0000   | 0.0000 *   | 0.0000   |
| 18      | Master Comp Mole Frac (Nitrogen)                   | 0.0002   | 0.0023 | 0.0000   | 0.0000 *   | 0.0000   |
| 19      | Master Comp Mole Frac (CO)                         | 0.0019   | 0.0281 | 0.0000   | 0.0000 *   | 0.0000   |
| 20      | Master Comp Mole Frac (CO2)                        | 0.0041   | 0.0603 | 0.0000   | 0.0000 *   | 0.0000   |
| 21      | Master Comp Mole Frac (Methanol)                   | 0.0010   | 0.0056 | 0.0006   | 0.0000 *   | 0.0006   |
| 22      | Master Comp Mole Frac (CH3I)                       | 0.0352   | 0.4492 | 0.0050   | 0.5000 *   | 0.0047   |
| 23      | Master Comp Mole Frac (M-Acetate)                  | 0.0051   | 0.0125 | 0.0046   | 0.0000 *   | 0.0043   |
| 24      | Master Comp Mole Frac (AceticAcid)                 | 0.9061   | 0.3386 | 0.9474   | 0.0000 *   | 0.9448   |
| 25      | Master Comp Mole Frac (H2O)                        | 0.0431   | 0.0528 | 0.0424   | 0.5000 *   | 0.0456   |
| 26      | Master Comp Mole Frac (HI)                         | 0.0034   | 0.0505 | 0.0000   | 0.0000 *   | 0.0000   |
| 27      | Master Comp Mole Frac (C3oicAcid)                  | 0.0000   | 0.0000 | 0.0000   | 0.0000 *   | 0.0000   |
| 28      | Master Comp Mole Frac (Ethanol)                    | 0.0000   | 0.0000 | 0.0000   | 0.0000 *   | 0.0000   |
| 29      | Master Comp Mole Frac (KOH*)                       | 0.0000   | 0.0000 | 0.0000   | 0.0000 *   | 0.0000   |
| 30      | Master Comp Mole Frac (Rh*)                        | 0.0000   | 0.0000 | 0.0000   | 0.0000 *   | 0.0000   |
| 31      | Master Comp Molar Flow (Hy <b>(kro</b> ngnenhe)/h) | 0.0011   | 0.0011 | 0.0000   | 0.0000 *   | 0.0000   |
| 32      | Master Comp Molar Flow (Me(tkgme)e/h)              | 0.0000   | 0.0000 | 0.0000   | 0.0000 *   | 0.0000   |
| 33      | Master Comp Molar Flow (Nit(kognero)e/h)           | 0.0233   | 0.0233 | 0.0000   | 0.0000 *   | 0.0000   |
| 34      | Master Comp Molar Flow (CQkgmole/h)                | 0.2889   | 0.2889 | 0.0000   | 0.0000 *   | 0.0000   |
| 35      | Master Comp Molar Flow (CQkogmole/h)               | 0.6214   | 0.6214 | 0.0000   | 0.0000 *   | 0.0000   |
| 36      | Master Comp Molar Flow (Me <b>(kgmol)</b> e/h)     | 0.1445   | 0.0578 | 0.0867   | 0.0000 *   | 0.0867   |
| 37      | Master Comp Molar Flow (CH(&t)mole/h)              | 5.3344   | 4.6270 | 0.7075   | 225.0000 * | 0.7075   |
| 38      | Master Comp Molar Flow (M- <b>(kcgetatlæ)</b> h)   | 0.7737   | 0.1289 | 0.6448   | 0.0000 *   | 0.6448   |
| 39      | Master Comp Molar Flow (Ac <b>(tigr/Aole</b> )/h)  | 137.5015 | 3.4880 | 134.0135 | 0.0000 *   | 140.9138 |
| 40      | Master Comp Molar Flow (H2@mole/h)                 | 6.5441   | 0.5438 | 6.0002   | 225.0000 * | 6.7953   |
| 41      | Master Comp Molar Flow (HI)(kgmole/h)              | 0.5199   | 0.5199 | 0.0000   | 0.0000 *   | 0.0000   |
| 42      | Master Comp Molar Flow (C3(txigAxcite)/h)          | 0.0001   | 0.0000 | 0.0001   | 0.0000 *   | 0.0001   |
| 43      | Master Comp Molar Flow (Eth <b>(agol)</b> )le/h)   | 0.0000   | 0.0000 | 0.0000   | 0.0000 *   | 0.0000   |
| 44      | Master Comp Molar Flow (KQ <b>kt</b> j)nole/h)     | 0.0000   | 0.0000 | 0.0000   | 0.0000 *   | 0.0000   |
| 45      | Master Comp Molar Flow (Rh(h)gmole/h)              | 0.0000   | 0.0000 | 0.0000   | 0.0000 *   | 0.0000   |
| 46      |                                                    |          |        |          |            |          |



Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

#### Workbook: Case (Main) (continued)

| 9<br>10 | H Material Streams (continued)                   |          |          |        | Fluid Pkg: All |            |  |
|---------|--------------------------------------------------|----------|----------|--------|----------------|------------|--|
| 11      | Name                                             | 23302    | 23006    | 23007* | 23008*         | 22020      |  |
| 12      | Vapour Fraction                                  | 0.0000   | 0.0000   | 0.0000 | 0.0000         | 0.0000     |  |
| 13      | Temperature (C)                                  | 43.90    | 43.35    | 43.35  | 43.35          | 159.6 *    |  |
| 14      | Pressure (bar)                                   | 15.00    | 33.90 *  | 33.90  | 33.90          | 3.300 *    |  |
| 15      | Molar Flow (kgmole/h)                            | 450.0    | 149.1    | 2.237  | 146.9          | 332.8 *    |  |
| 16      | Master Comp Mole Frac (Hydrogen)                 | 0.0000   | 0.0000   | 0.0000 | 0.0000         | 0.0000 *   |  |
| 17      | Master Comp Mole Frac (Methane)                  | 0.0000   | 0.0000   | 0.0000 | 0.0000         | 0.0000 *   |  |
| 18      | Master Comp Mole Frac (Nitrogen)                 | 0.0000   | 0.0000   | 0.0000 | 0.0000         | 0.0000 *   |  |
| 19      | Master Comp Mole Frac (CO)                       | 0.0000   | 0.0000   | 0.0000 | 0.0000         | 0.0000 *   |  |
| 20      | Master Comp Mole Frac (CO2)                      | 0.0000   | 0.0000   | 0.0000 | 0.0000         | 0.0000 *   |  |
| 21      | Master Comp Mole Frac (Methanol)                 | 0.0000   | 0.0006   | 0.0006 | 0.0006         | 0.0000 *   |  |
| 22      | Master Comp Mole Frac (CH3I)                     | 0.5000   | 0.0047   | 0.0047 | 0.0047         | 0.0000 *   |  |
| 23      | Master Comp Mole Frac (M-Acetate)                | 0.0000   | 0.0043   | 0.0043 | 0.0043         | 0.0000 *   |  |
| 24      | Master Comp Mole Frac (AceticAcid)               | 0.0000   | 0.9448   | 0.9448 | 0.9448         | 0.9904 *   |  |
| 25      | Master Comp Mole Frac (H2O)                      | 0.5000   | 0.0456   | 0.0456 | 0.0456         | 0.0087 *   |  |
| 26      | Master Comp Mole Frac (HI)                       | 0.0000   | 0.0000   | 0.0000 | 0.0000         | 0.0000 *   |  |
| 27      | Master Comp Mole Frac (C3oicAcid)                | 0.0000   | 0.0000   | 0.0000 | 0.0000         | 0.0009 *   |  |
| 28      | Master Comp Mole Frac (Ethanol)                  | 0.0000   | 0.0000   | 0.0000 | 0.0000         | 0.0000 *   |  |
| 29      | Master Comp Mole Frac (KOH*)                     | 0.0000   | 0.0000   | 0.0000 | 0.0000         | 0.0000 *   |  |
| 30      | Master Comp Mole Frac (Rh*)                      | 0.0000   | 0.0000   | 0.0000 | 0.0000         | 0.0000 *   |  |
| 31      | Master Comp Molar Flow (Hy(drogogneathe)/h)      | 0.0000   | 0.0000   | 0.0000 | 0.0000         | 0.0000 *   |  |
| 32      | Master Comp Molar Flow (Me(tkgane)e/h)           | 0.0000   | 0.0000   | 0.0000 | 0.0000         | 0.0000 *   |  |
| 33      | Master Comp Molar Flow (Nit(kogeno)e/h)          | 0.0000   | 0.0000   | 0.0000 | 0.0000         | 0.0000 *   |  |
| 34      | Master Comp Molar Flow (CQkgmole/h)              | 0.0000   | 0.0000   | 0.0000 | 0.0000         | 0.0000 *   |  |
| 35      | Master Comp Molar Flow (CQR)mole/h)              | 0.0000   | 0.0000   | 0.0000 | 0.0000         | 0.0000 *   |  |
| 36      | Master Comp Molar Flow (Me(thganol)e/h)          | 0.0000   | 0.0867   | 0.0013 | 0.0854         | 0.0002 *   |  |
| 37      | Master Comp Molar Flow (CH(&t)mole/h)            | 225.0000 | 0.7075   | 0.0106 | 0.6969         | 0.0000 *   |  |
| 38      | Master Comp Molar Flow (M-(Acceptablee)h)        | 0.0000   | 0.6448   | 0.0097 | 0.6351         | 0.0000 *   |  |
| 39      | Master Comp Molar Flow (Ac <b>(tignAole</b> )/h) | 0.0000   | 140.9138 | 2.1137 | 138.8001       | 329.6079 * |  |
| 40      | Master Comp Molar Flow (H2(19)gmole/h)           | 225.0000 | 6.7953   | 0.1019 | 6.6933         | 2.8975 *   |  |
| 41      | Master Comp Molar Flow (HI)(kgmole/h)            | 0.0000   | 0.0000   | 0.0000 | 0.0000         | 0.0000 *   |  |
| 42      | Master Comp Molar Flow (C3(xigAncite)/h)         | 0.0000   | 0.0001   | 0.0000 | 0.0001         | 0.2945 *   |  |
| 43      | Master Comp Molar Flow (Eth(agol))le/h)          | 0.0000   | 0.0000   | 0.0000 | 0.0000         | 0.0000 *   |  |
| 44      | Master Comp Molar Flow (KO(kkg))nole/h)          | 0.0000   | 0.0000   | 0.0000 | 0.0000         | 0.0000 *   |  |
| 45      | Master Comp Molar Flow (Rh(t)gmole/h)            | 0.0000   | 0.0000   | 0.0000 | 0.0000         | 0.0000 *   |  |
| 46      |                                                  |          |          |        |                |            |  |

\* Specified by user.



Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

#### Workbook: Case (Main) (continued)

| 9<br>10 |                                                    | Fluid Pkç | g: All   |          |            |          |
|---------|----------------------------------------------------|-----------|----------|----------|------------|----------|
| 11      | Name                                               | koh       | 22068*   | 22068    | 22067      | 22069    |
| 12      | Vapour Fraction                                    | 0.0000 *  | 0.0000   | 0.0000 * | 0.0000     | 1.0000   |
| 13      | Temperature (C)                                    | 161.5 *   | 159.5    | 159.7    | 96.31 *    | 144.8 *  |
| 14      | Pressure (bar)                                     | 6.426     | 3.300    | 6.780 *  | 9.400 *    | 2.200 *  |
| 15      | Molar Flow (kgmole/h)                              | 0.2200 *  | 333.0    | 333.0    | 998.7 *    | 10.30 *  |
| 16      | Master Comp Mole Frac (Hydrogen)                   | 0.0000 *  | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * |
| 17      | Master Comp Mole Frac (Methane)                    | 0.0000 *  | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * |
| 18      | Master Comp Mole Frac (Nitrogen)                   | 0.0000 *  | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * |
| 19      | Master Comp Mole Frac (CO)                         | 0.0000 *  | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * |
| 20      | Master Comp Mole Frac (CO2)                        | 0.0000 *  | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * |
| 21      | Master Comp Mole Frac (Methanol)                   | 0.0000 *  | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * |
| 22      | Master Comp Mole Frac (CH3I)                       | 0.0000 *  | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * |
| 23      | Master Comp Mole Frac (M-Acetate)                  | 0.0000 *  | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * |
| 24      | Master Comp Mole Frac (AceticAcid)                 | 0.0000 *  | 0.9898   | 0.9898   | 0.8977 *   | 0.9461 * |
| 25      | Master Comp Mole Frac (H2O)                        | 0.9091 *  | 0.0093   | 0.0093   | 0.1023 *   | 0.0219 * |
| 26      | Master Comp Mole Frac (HI)                         | 0.0000 *  | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * |
| 27      | Master Comp Mole Frac (C3oicAcid)                  | 0.0000 *  | 0.0009   | 0.0009   | 0.0000 *   | 0.0320 * |
| 28      | Master Comp Mole Frac (Ethanol)                    | 0.0000 *  | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * |
| 29      | Master Comp Mole Frac (KOH*)                       | 0.0909 *  | 0.0001   | 0.0001   | 0.0000 *   | 0.0000 * |
| 30      | Master Comp Mole Frac (Rh*)                        | 0.0000 *  | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * |
| 31      | Master Comp Molar Flow (Hy <b>(krg)g</b> enh)/h)   | 0.0000 *  | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * |
| 32      | Master Comp Molar Flow (Me(tkgrne)e/h)             | 0.0000 *  | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * |
| 33      | Master Comp Molar Flow (Nit(hogreno)e/h)           | 0.0000 *  | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * |
| 34      | Master Comp Molar Flow (CQkgmole/h)                | 0.0000 *  | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * |
| 35      | Master Comp Molar Flow (CQ@mole/h)                 | 0.0000 *  | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * |
| 36      | Master Comp Molar Flow (Me(thganol)e/h)            | 0.0000 *  | 0.0002   | 0.0002   | 0.0082 *   | 0.0000 * |
| 37      | Master Comp Molar Flow (CH&b)mole/h)               | 0.0000 *  | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * |
| 38      | Master Comp Molar Flow (M-(kcetatile)/h)           | 0.0000 *  | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * |
| 39      | Master Comp Molar Flow (Ac <b>(ttigr/Aole)</b> /h) | 0.0000 *  | 329.6079 | 329.6079 | 896.5157 * | 9.7445 * |
| 40      | Master Comp Molar Flow (H2(12/13)) mole/h)         | 0.2000 *  | 3.0975   | 3.0975   | 102.1839 * | 0.2251 * |
| 41      | Master Comp Molar Flow (HI)(kgmole/h)              | 0.0000 *  | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * |
| 42      | Master Comp Molar Flow (C3(txig:Ancilde)/h)        | 0.0000 *  | 0.2945   | 0.2945   | 0.0000 *   | 0.3299 * |
| 43      | Master Comp Molar Flow (Eth(agorl))le/h)           | 0.0000 *  | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * |
| 44      | Master Comp Molar Flow (K <b>O∖kl</b> ǧ)nole/h)    | 0.0200 *  | 0.0200   | 0.0200   | 0.0000 *   | 0.0000 * |
| 45      | Master Comp Molar Flow (Rh(t)gmole/h)              | 0.0000 *  | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * |
| 46      |                                                    |           |          |          |            |          |



Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

#### Workbook: Case (Main) (continued)

| 9<br>10 | Material Streams (continued)                       |          |          |         |          | g: All     |
|---------|----------------------------------------------------|----------|----------|---------|----------|------------|
| 11      | Name                                               | 22051    | 22064    | 22052   | 22065    | 22306      |
| 12      | Vapour Fraction                                    | 1.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000     |
| 13      | Temperature (C)                                    | 132.6    | 137.7    | 145.6   | 70.09    | 4.000 *    |
| 14      | Pressure (bar)                                     | 1.700    | 1.851    | 2.220   | 4.351    | 1.000      |
| 15      | Molar Flow (kgmole/h)                              | 1015     | 315.9    | 10.82   | 315.9    | 500.0 *    |
| 16      | Master Comp Mole Frac (Hydrogen)                   | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000 *   |
| 17      | Master Comp Mole Frac (Methane)                    | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000 *   |
| 18      | Master Comp Mole Frac (Nitrogen)                   | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000 *   |
| 19      | Master Comp Mole Frac (CO)                         | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000 *   |
| 20      | Master Comp Mole Frac (CO2)                        | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000 *   |
| 21      | Master Comp Mole Frac (Methanol)                   | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000 *   |
| 22      | Master Comp Mole Frac (CH3I)                       | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000 *   |
| 23      | Master Comp Mole Frac (M-Acetate)                  | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000 *   |
| 24      | Master Comp Mole Frac (AceticAcid)                 | 0.8967   | 0.9980   | 0.9409  | 0.9980   | 0.0000 *   |
| 25      | Master Comp Mole Frac (H2O)                        | 0.1033   | 0.0019   | 0.0001  | 0.0019   | 1.0000 *   |
| 26      | Master Comp Mole Frac (HI)                         | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000 *   |
| 27      | Master Comp Mole Frac (C3oicAcid)                  | 0.0000   | 0.0000   | 0.0571  | 0.0000   | 0.0000 *   |
| 28      | Master Comp Mole Frac (Ethanol)                    | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000 *   |
| 29      | Master Comp Mole Frac (KOH*)                       | 0.0000   | 0.0000   | 0.0018  | 0.0000   | 0.0000 *   |
| 30      | Master Comp Mole Frac (Rh*)                        | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000 *   |
| 31      | Master Comp Molar Flow (Hy(drogomente)/h)          | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000 *   |
| 32      | Master Comp Molar Flow (Me(thgane)e/h)             | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000 *   |
| 33      | Master Comp Molar Flow (Nit(hogreno)e/h)           | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000 *   |
| 34      | Master Comp Molar Flow (CQkgmole/h)                | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000 *   |
| 35      | Master Comp Molar Flow (CQ@mole/h)                 | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000 *   |
| 36      | Master Comp Molar Flow (Me(thanol)e/h)             | 0.0084   | 0.0000   | 0.0000  | 0.0000   | 0.0000 *   |
| 37      | Master Comp Molar Flow (CH&b)mole/h)               | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000 *   |
| 38      | Master Comp Molar Flow (M-(kcetatile)/h)           | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000 *   |
| 39      | Master Comp Molar Flow (Ac <b>(ttigr/Aole)</b> /h) | 910.3982 | 315.2858 | 10.1841 | 315.2858 | 0.0000 *   |
| 40      | Master Comp Molar Flow (H2(12/13) mole/h)          | 104.8946 | 0.6103   | 0.0016  | 0.6103   | 500.0000 * |
| 41      | Master Comp Molar Flow (HI)(kgmole/h)              | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000 *   |
| 42      | Master Comp Molar Flow (C3(txig:Ancilde)/h)        | 0.0000   | 0.0059   | 0.6185  | 0.0059   | 0.0000 *   |
| 43      | Master Comp Molar Flow (Eth(agorl))le/h)           | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000 *   |
| 44      | Master Comp Molar Flow (K <b>O∖kl</b> ǧ)nole/h)    | 0.0000   | 0.0000   | 0.0200  | 0.0000   | 0.0000 *   |
| 45      | Master Comp Molar Flow (Rh(t)gmole/h)              | 0.0000   | 0.0000   | 0.0000  | 0.0000   | 0.0000 *   |
| 46      |                                                    |          |          |         |          |            |



Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

# Workbook: Case (Main) (continued)

| 9<br>10 | Material Streams (continued)                     |          |          |             |           | ı: All    |
|---------|--------------------------------------------------|----------|----------|-------------|-----------|-----------|
| 11      | Name                                             | 22307    | 22051*   | 22304       | 22305     | VAP22051* |
| 12      | Vapour Fraction                                  | 0.0000   | 0.0000   | 0.0000      | 0.0000    | 1.0000    |
| 13      | Temperature (C)                                  | 76.00 *  | 96.10 *  | 10.00 *     | 100.0 *   | 96.10     |
| 14      | Pressure (bar)                                   | 1.000 *  | 1.700    | 1.600 *     | 1.600     | 1.700     |
| 15      | Molar Flow (kgmole/h)                            | 500.0    | 1015     | 6419        | 6419      | 0.0000    |
| 16      | Master Comp Mole Frac (Hydrogen)                 | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 17      | Master Comp Mole Frac (Methane)                  | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 18      | Master Comp Mole Frac (Nitrogen)                 | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 19      | Master Comp Mole Frac (CO)                       | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 20      | Master Comp Mole Frac (CO2)                      | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 21      | Master Comp Mole Frac (Methanol)                 | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 22      | Master Comp Mole Frac (CH3I)                     | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 23      | Master Comp Mole Frac (M-Acetate)                | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 24      | Master Comp Mole Frac (AceticAcid)               | 0.0000   | 0.8967   | 0.0000 *    | 0.0000    | 0.8967    |
| 25      | Master Comp Mole Frac (H2O)                      | 1.0000   | 0.1033   | 1.0000 *    | 1.0000    | 0.1033    |
| 26      | Master Comp Mole Frac (HI)                       | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 27      | Master Comp Mole Frac (C3oicAcid)                | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 28      | Master Comp Mole Frac (Ethanol)                  | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 29      | Master Comp Mole Frac (KOH*)                     | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 30      | Master Comp Mole Frac (Rh*)                      | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 31      | Master Comp Molar Flow (Hy(krongnente)/h)        | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 32      | Master Comp Molar Flow (Me(thgme)e/h)            | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 33      | Master Comp Molar Flow (Nit(kogero)le/h)         | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 34      | Master Comp Molar Flow (CQkgmole/h)              | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 35      | Master Comp Molar Flow (COR)mole/h)              | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 36      | Master Comp Molar Flow (Me(thg:nol)e/h)          | 0.0000   | 0.0084   | 0.0000 *    | 0.0000    | 0.0000    |
| 37      | Master Comp Molar Flow (CH(&b)mole/h)            | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 38      | Master Comp Molar Flow (M-(Acceptablee)h)        | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 39      | Master Comp Molar Flow (Ac <b>(ttignAole)</b> h) | 0.0000   | 910.3982 | 0.0000 *    | 0.0000    | 0.0000    |
| 40      | Master Comp Molar Flow (H2@mole/h)               | 500.0000 | 104.8946 | 6418.6397 * | 6418.6397 | 0.0000    |
| 41      | Master Comp Molar Flow (HI)(kgmole/h)            | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 42      | Master Comp Molar Flow (C3(xigAxcite)/h)         | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 43      | Master Comp Molar Flow (Eth(lagori))le/h)        | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 44      | Master Comp Molar Flow (KO(Nd))nole/h)           | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 45      | Master Comp Molar Flow (Rh(1)gmole/h)            | 0.0000   | 0.0000   | 0.0000 *    | 0.0000    | 0.0000    |
| 46      |                                                  |          |          |             |           |           |



Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

# Workbook: Case (Main) (continued)

| 9<br>10 | Material Streams (continued)                     |          |          |          |         | g: All |
|---------|--------------------------------------------------|----------|----------|----------|---------|--------|
| 11      | Name                                             | 22066    | 22066*   | 22067*   | 22054   | 22060  |
| 12      | Vapour Fraction                                  | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 13      | Temperature (C)                                  | 96.10    | 96.31    | 96.31    | 96.31   | 96.31  |
| 14      | Pressure (bar)                                   | 1.700    | 9.400 *  | 9.400    | 9.400   | 9.400  |
| 15      | Molar Flow (kgmole/h)                            | 1015     | 1015     | 998.7    | 16.59   | 8.895  |
| 16      | Master Comp Mole Frac (Hydrogen)                 | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 17      | Master Comp Mole Frac (Methane)                  | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 18      | Master Comp Mole Frac (Nitrogen)                 | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 19      | Master Comp Mole Frac (CO)                       | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 20      | Master Comp Mole Frac (CO2)                      | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 21      | Master Comp Mole Frac (Methanol)                 | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 22      | Master Comp Mole Frac (CH3I)                     | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 23      | Master Comp Mole Frac (M-Acetate)                | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 24      | Master Comp Mole Frac (AceticAcid)               | 0.8967   | 0.8967   | 0.8967   | 0.8967  | 0.8967 |
| 25      | Master Comp Mole Frac (H2O)                      | 0.1033   | 0.1033   | 0.1033   | 0.1033  | 0.1033 |
| 26      | Master Comp Mole Frac (HI)                       | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 27      | Master Comp Mole Frac (C3oicAcid)                | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 28      | Master Comp Mole Frac (Ethanol)                  | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 29      | Master Comp Mole Frac (KOH*)                     | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 30      | Master Comp Mole Frac (Rh*)                      | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 31      | Master Comp Molar Flow (Hy(dropognente)/h)       | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 32      | Master Comp Molar Flow (Me(tkgrne)e/h)           | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 33      | Master Comp Molar Flow (Nit(hognero)e/h)         | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 34      | Master Comp Molar Flow (CQkgmole/h)              | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 35      | Master Comp Molar Flow (CQ@mole/h)               | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 36      | Master Comp Molar Flow (Me(tkgmol)e/h)           | 0.0084   | 0.0084   | 0.0082   | 0.0001  | 0.0001 |
| 37      | Master Comp Molar Flow (CH(&t)mole/h)            | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 38      | Master Comp Molar Flow (M-(Ncgetatilee)/h)       | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 39      | Master Comp Molar Flow (Ac <b>(tigrAole</b> )∫h) | 910.3982 | 910.3982 | 895.5223 | 14.8759 | 7.9756 |
| 40      | Master Comp Molar Flow (H2(Q)mole/h)             | 104.8946 | 104.8946 | 103.1806 | 1.7140  | 0.9189 |
| 41      | Master Comp Molar Flow (HI)(kgmole/h)            | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 42      | Master Comp Molar Flow (C3(big/Ancite)/h)        | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 43      | Master Comp Molar Flow (Eth(agoi))le/h)          | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 44      | Master Comp Molar Flow (KQ <b>kt</b> ðjmole/h)   | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 45      | Master Comp Molar Flow (Rh(h)gmole/h)            | 0.0000   | 0.0000   | 0.0000   | 0.0000  | 0.0000 |
| 46      |                                                  |          |          |          |         |        |



Company Name Not Available Bedford, MA USA Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

# Workbook: Case (Main) (continued)

| 9<br>10 |                                                      | Mat    | erial Streams (con | tinued) | Fluid Pk | g: All   |
|---------|------------------------------------------------------|--------|--------------------|---------|----------|----------|
| 11      | Name                                                 | 22055  | 22053              | 22070   | 25009    | 25009*   |
| 12      | Vapour Fraction                                      | 0.0000 | 0.0000             | 0.0000  | 1.0000   | 0.0000   |
| 13      | Temperature (C)                                      | 96.31  | 145.7              | 162.9   | 70.09    | 70.09    |
| 14      | Pressure (bar)                                       | 9.400  | 5.100 *            | 3.000   | 4.351    | 4.351    |
| 15      | Molar Flow (kgmole/h)                                | 7.695  | 10.82              | 0.7542  | 0.0000   | 315.9    |
| 16      | Master Comp Mole Frac (Hydrogen)                     | 0.0000 | 0.0000             | 0.0000  | 0.0000   | 0.0000   |
| 17      | Master Comp Mole Frac (Methane)                      | 0.0000 | 0.0000             | 0.0000  | 0.0000   | 0.0000   |
| 18      | Master Comp Mole Frac (Nitrogen)                     | 0.0000 | 0.0000             | 0.0000  | 0.0000   | 0.0000   |
| 19      | Master Comp Mole Frac (CO)                           | 0.0000 | 0.0000             | 0.0000  | 0.0000   | 0.0000   |
| 20      | Master Comp Mole Frac (CO2)                          | 0.0000 | 0.0000             | 0.0000  | 0.0000   | 0.0000   |
| 21      | Master Comp Mole Frac (Methanol)                     | 0.0000 | 0.0000             | 0.0000  | 0.0000   | 0.0000   |
| 22      | Master Comp Mole Frac (CH3I)                         | 0.0000 | 0.0000             | 0.0000  | 0.0000   | 0.0000   |
| 23      | Master Comp Mole Frac (M-Acetate)                    | 0.0000 | 0.0000             | 0.0000  | 0.0000   | 0.0000   |
| 24      | Master Comp Mole Frac (AceticAcid)                   | 0.8967 | 0.9409             | 0.5929  | 0.9980   | 0.9980   |
| 25      | Master Comp Mole Frac (H2O)                          | 0.1033 | 0.0001             | 0.0085  | 0.0019   | 0.0019   |
| 26      | Master Comp Mole Frac (HI)                           | 0.0000 | 0.0000             | 0.0000  | 0.0000   | 0.0000   |
| 27      | Master Comp Mole Frac (C3oicAcid)                    | 0.0000 | 0.0571             | 0.3721  | 0.0000   | 0.0000   |
| 28      | Master Comp Mole Frac (Ethanol)                      | 0.0000 | 0.0000             | 0.0000  | 0.0000   | 0.0000   |
| 29      | Master Comp Mole Frac (KOH*)                         | 0.0000 | 0.0018             | 0.0265  | 0.0000   | 0.0000   |
| 30      | Master Comp Mole Frac (Rh*)                          | 0.0000 | 0.0000             | 0.0000  | 0.0000   | 0.0000   |
| 31      | Master Comp Molar Flow (Hy(droggneath)/h)            | 0.0000 | 0.0000             | 0.0000  | 0.0000   | 0.0000   |
| 32      | Master Comp Molar Flow (Me(tkgme)e/h)                | 0.0000 | 0.0000             | 0.0000  | 0.0000   | 0.0000   |
| 33      | Master Comp Molar Flow (Nit(kognero)e/h)             | 0.0000 | 0.0000             | 0.0000  | 0.0000   | 0.0000   |
| 34      | Master Comp Molar Flow (CQkgmole/h)                  | 0.0000 | 0.0000             | 0.0000  | 0.0000   | 0.0000   |
| 35      | Master Comp Molar Flow (CQ@mole/h)                   | 0.0000 | 0.0000             | 0.0000  | 0.0000   | 0.0000   |
| 36      | Master Comp Molar Flow (Me(thgmol)e/h)               | 0.0001 | 0.0000             | 0.0000  | 0.0000   | 0.0000   |
| 37      | Master Comp Molar Flow (CH(&t)mole/h)                | 0.0000 | 0.0000             | 0.0000  | 0.0000   | 0.0000   |
| 38      | Master Comp Molar Flow (M- <b>(kicgetratile</b> )/h) | 0.0000 | 0.0000             | 0.0000  | 0.0000   | 0.0000   |
| 39      | Master Comp Molar Flow (Ac <b>(tigr/Aole)</b> /h)    | 6.9003 | 10.1841            | 0.4472  | 0.0000   | 315.2858 |
| 40      | Master Comp Molar Flow (H2(12g)mole/h)               | 0.7950 | 0.0016             | 0.0064  | 0.0000   | 0.6103   |
| 41      | Master Comp Molar Flow (HI)(kgmole/h)                | 0.0000 | 0.0000             | 0.0000  | 0.0000   | 0.0000   |
| 42      | Master Comp Molar Flow (C3(txig:Ancitet)/h)          | 0.0000 | 0.6185             | 0.2806  | 0.0000   | 0.0059   |
| 43      | Master Comp Molar Flow (Ethiagoli)ele/h)             | 0.0000 | 0.0000             | 0.0000  | 0.0000   | 0.0000   |
| 44      | Master Comp Molar Flow (KO( <b>k</b> ʤ)mole/h)       | 0.0000 | 0.0200             | 0.0200  | 0.0000   | 0.0000   |
| 45      | Master Comp Molar Flow (Rh(h)gmole/h)                | 0.0000 | 0.0000             | 0.0000  | 0.0000   | 0.0000   |
| 46      |                                                      |        |                    |         |          |          |



Company Name Not Available Bedford, MA USA Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

# Workbook: Case (Main) (continued)

| 9  |                                                   | Mat        | erial Streams (con | ntinued) | Fluid Pkç | g: All   |
|----|---------------------------------------------------|------------|--------------------|----------|-----------|----------|
| 11 | Name                                              | 22002      | 22003              | 22024    | 22004*    | 22009*   |
| 12 | Vapour Fraction                                   | 0.0000     | 0.0000             | 1.0000   | 0.0000    | 0.0000   |
| 13 | Temperature (C)                                   | 69.63 *    | 176.7 *            | 161.1    | 188.0     | 176.5    |
| 14 | Pressure (bar)                                    | 7.700 *    | 9.630 *            | 7.700    | 8.000     | 7.885    |
| 15 | Molar Flow (kgmole/h)                             | 485.0 *    | 70.00 *            | 969.6    | 147.2     | 559.1    |
| 16 | Master Comp Mole Frac (Hydrogen)                  | 0.0000 *   | 0.0000 *           | 0.0014   | 0.0000    | 0.0000   |
| 17 | Master Comp Mole Frac (Methane)                   | 0.0000 *   | 0.0000 *           | 0.0000   | 0.0000    | 0.0000   |
| 18 | Master Comp Mole Frac (Nitrogen)                  | 0.0000 *   | 0.0000 *           | 0.0036   | 0.0000    | 0.0000   |
| 19 | Master Comp Mole Frac (CO)                        | 0.0000 *   | 0.0000 *           | 0.0102   | 0.0000    | 0.0000   |
| 20 | Master Comp Mole Frac (CO2)                       | 0.0003 *   | 0.0001 *           | 0.0040   | 0.0000    | 0.0001   |
| 21 | Master Comp Mole Frac (Methanol)                  | 0.0026 *   | 0.0006 *           | 0.0025   | 0.0001    | 0.0006   |
| 22 | Master Comp Mole Frac (CH3I)                      | 0.2490 *   | 0.0380 *           | 0.2482   | 0.0072    | 0.0381   |
| 23 | Master Comp Mole Frac (M-Acetate)                 | 0.0328 *   | 0.0087 *           | 0.0326   | 0.0033    | 0.0087   |
| 24 | Master Comp Mole Frac (AceticAcid)                | 0.1761 *   | 0.6157 *           | 0.1625   | 0.7604    | 0.6143   |
| 25 | Master Comp Mole Frac (H2O)                       | 0.5385 *   | 0.3365 *           | 0.5339   | 0.2283    | 0.3378   |
| 26 | Master Comp Mole Frac (HI)                        | 0.0007 *   | 0.0000 *           | 0.0009   | 0.0000    | 0.0000   |
| 27 | Master Comp Mole Frac (C3oicAcid)                 | 0.0001 *   | 0.0004 *           | 0.0001   | 0.0007    | 0.0004   |
| 28 | Master Comp Mole Frac (Ethanol)                   | 0.0000 *   | 0.0000 *           | 0.0000   | 0.0000    | 0.0000   |
| 29 | Master Comp Mole Frac (KOH*)                      | 0.0000 *   | 0.0000 *           | 0.0000   | 0.0000    | 0.0000   |
| 30 | Master Comp Mole Frac (Rh*)                       | 0.0000 *   | 0.0000 *           | 0.0000   | 0.0000    | 0.0000   |
| 31 | Master Comp Molar Flow (Hy <b>(krongnerh)</b> /h) | 0.0004 *   | 0.0002 *           | 1.3993   | 0.0000    | 0.0012   |
| 32 | Master Comp Molar Flow (Me(thgane)e/h)            | 0.0000 *   | 0.0000 *           | 0.0000   | 0.0000    | 0.0000   |
| 33 | Master Comp Molar Flow (Nit(togreno)e/h)          | 0.0054 *   | 0.0009 *           | 3.4993   | 0.0000    | 0.0070   |
| 34 | Master Comp Molar Flow (CQkgmole/h)               | 0.0102 *   | 0.0017 *           | 9.8988   | 0.0000    | 0.0132   |
| 35 | Master Comp Molar Flow (CQRgmole/h)               | 0.1339 *   | 0.0054 *           | 3.8964   | 0.0000    | 0.0429   |
| 36 | Master Comp Molar Flow (Me(tkg:mol)e/h)           | 1.2630 *   | 0.0403 *           | 2.4574   | 0.0221    | 0.3239   |
| 37 | Master Comp Molar Flow (CH&gmole/h)               | 120.7531 * | 2.6567 *           | 240.6611 | 1.0594    | 21.2906  |
| 38 | Master Comp Molar Flow (M-(kcgetatlee)h)          | 15.8897 *  | 0.6085 *           | 31.6412  | 0.4811    | 4.8760   |
| 39 | Master Comp Molar Flow (Ac <b>(⊀igu⁄Aole</b> )jh) | 85.3996 *  | 43.0961 *          | 157.5191 | 111.9541  | 343.4269 |
| 40 | Master Comp Molar Flow (H2@mole/h)                | 261.1612 * | 23.5562 *          | 517.6620 | 33.6206   | 188.8388 |
| 41 | Master Comp Molar Flow (HI)(kgmole/h)             | 0.3454 *   | 0.0031 *           | 0.8632   | 0.0002    | 0.0251   |
| 42 | Master Comp Molar Flow (C3(txig:Axcite)/h)        | 0.0381 *   | 0.0310 *           | 0.0739   | 0.1001    | 0.2451   |
| 43 | Master Comp Molar Flow (Eth(agorl))le/h)          | 0.0000 *   | 0.0000 *           | 0.0000   | 0.0000    | 0.0000   |
| 44 | Master Comp Molar Flow (KQ <b>k</b> gmole/h)      | 0.0000 *   | 0.0000 *           | 0.0000   | 0.0000    | 0.0000   |
| 45 | Master Comp Molar Flow (Rh(t)gmole/h)             | 0.0000 *   | 0.0000 *           | 0.0000   | 0.0000    | 0.0000   |
| 46 |                                                   |            |                    |          |           |          |



Company Name Not Available Bedford, MA USA Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

# Workbook: Case (Main) (continued)

| 9<br>10 |                                                   | Mat        | erial Streams (con | tinued) | Fluid Pk | g: All      |
|---------|---------------------------------------------------|------------|--------------------|---------|----------|-------------|
| 11      | Name                                              | 21009*     | 22009              | 22003*  | 22008    | 22300       |
| 12      | Vapour Fraction                                   | 0.8461     | 0.0000             | 0.0000  | 1.0000   | 0.0000      |
| 13      | Temperature (C)                                   | 127.5 *    | 176.6              | 176.6   | 150.4    | 5.000 *     |
| 14      | Pressure (bar)                                    | 2.300 *    | 9.630 *            | 9.630   | 2.100    | 2.000 *     |
| 15      | Molar Flow (kgmole/h)                             | 1121 *     | 559.1              | 60.38   | 979.9    | 1000 *      |
| 16      | Master Comp Mole Frac (Hydrogen)                  | 0.0012 *   | 0.0000             | 0.0000  | 0.0014   | 0.0000 *    |
| 17      | Master Comp Mole Frac (Methane)                   | 0.0000 *   | 0.0000             | 0.0000  | 0.0000   | 0.0000 *    |
| 18      | Master Comp Mole Frac (Nitrogen)                  | 0.0031 *   | 0.0000             | 0.0000  | 0.0036   | 0.0000 *    |
| 19      | Master Comp Mole Frac (CO)                        | 0.0088 *   | 0.0000             | 0.0000  | 0.0104   | 0.0000 *    |
| 20      | Master Comp Mole Frac (CO2)                       | 0.0034 *   | 0.0001             | 0.0001  | 0.0046   | 0.0000 *    |
| 21      | Master Comp Mole Frac (Methanol)                  | 0.0013 *   | 0.0006             | 0.0006  | 0.0026   | 0.0000 *    |
| 22      | Master Comp Mole Frac (CH3I)                      | 0.1245 *   | 0.0381             | 0.0381  | 0.2503   | 0.0000 *    |
| 23      | Master Comp Mole Frac (M-Acetate)                 | 0.0183 *   | 0.0087             | 0.0087  | 0.0324   | 0.0000 *    |
| 24      | Master Comp Mole Frac (AceticAcid)                | 0.4322 *   | 0.6143             | 0.6143  | 0.1643   | 0.0000 *    |
| 25      | Master Comp Mole Frac (H2O)                       | 0.4063 *   | 0.3378             | 0.3378  | 0.5289   | 1.0000 *    |
| 26      | Master Comp Mole Frac (HI)                        | 0.0005 *   | 0.0000             | 0.0000  | 0.0014   | 0.0000 *    |
| 27      | Master Comp Mole Frac (C3oicAcid)                 | 0.0003 *   | 0.0004             | 0.0004  | 0.0001   | 0.0000 *    |
| 28      | Master Comp Mole Frac (Ethanol)                   | 0.0000 *   | 0.0000             | 0.0000  | 0.0000   | 0.0000 *    |
| 29      | Master Comp Mole Frac (KOH*)                      | 0.0000 *   | 0.0000             | 0.0000  | 0.0000   | 0.0000 *    |
| 30      | Master Comp Mole Frac (Rh*)                       | 0.0000 *   | 0.0000             | 0.0000  | 0.0000   | 0.0000 *    |
| 31      | Master Comp Molar Flow (Hy(thrograme)/h)          | 1.4000 *   | 0.0012             | 0.0001  | 1.4004   | 0.0000 *    |
| 32      | Master Comp Molar Flow (Me(tkgrne)e/h)            | 0.0000 *   | 0.0000             | 0.0000  | 0.0000   | 0.0000 *    |
| 33      | Master Comp Molar Flow (Nit(hogreno)e/h)          | 3.5000 *   | 0.0070             | 0.0008  | 3.5225   | 0.0000 *    |
| 34      | Master Comp Molar Flow (CQlkgmole/h)              | 9.9001 *   | 0.0132             | 0.0014  | 10.1877  | 0.0000 *    |
| 35      | Master Comp Molar Flow (CQRgmole/h)               | 3.8000 *   | 0.0429             | 0.0046  | 4.5178   | 0.0000 *    |
| 36      | Master Comp Molar Flow (Me(tkgmol)e/h)            | 1.5000 *   | 0.3239             | 0.0350  | 2.5152   | 0.0000 *    |
| 37      | Master Comp Molar Flow (CH(&t)mole/h)             | 139.6012 * | 21.2906            | 2.2994  | 245.2880 | 0.0000 *    |
| 38      | Master Comp Molar Flow (M-(krcgetatlee)h)         | 20.5002 *  | 4.8760             | 0.5266  | 31.7701  | 0.0000 *    |
| 39      | Master Comp Molar Flow (Ac <b>(tign/hole)</b> /h) | 484.4043 * | 343.4269           | 37.0901 | 161.0071 | 0.0000 *    |
| 40      | Master Comp Molar Flow (H2(12)) mole/h)           | 455.4041 * | 188.8388           | 20.3946 | 518.2058 | 1000.0000 * |
| 41      | Master Comp Molar Flow (HI)(kgmole/h)             | 0.5400 *   | 0.0251             | 0.0027  | 1.3831   | 0.0000 *    |
| 42      | Master Comp Molar Flow (C3(txig:Ancilde)/h)       | 0.3500 *   | 0.2451             | 0.0265  | 0.0739   | 0.0000 *    |
| 43      | Master Comp Molar Flow (Ethiagoli)le/h)           | 0.0000 *   | 0.0000             | 0.0000  | 0.0000   | 0.0000 *    |
| 44      | Master Comp Molar Flow (KO( <b>k</b> ģ்)nole/h)   | 0.0000 *   | 0.0000             | 0.0000  | 0.0000   | 0.0000 *    |
| 45      | Master Comp Molar Flow (Rh(t)gmole/h)             | 0.0000 *   | 0.0000             | 0.0000  | 0.0000   | 0.0000 *    |
| 46      |                                                   |            |                    |         |          |             |



Company Name Not Available Bedford, MA USA Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

# Workbook: Case (Main) (continued)

| 9<br>10 | H Material Streams (continued)                    |          |           |           |         | g: All  |
|---------|---------------------------------------------------|----------|-----------|-----------|---------|---------|
| 11      | Name                                              | 22008*   | 22301     | 22010     | 22011*  | 22012   |
| 12      | Vapour Fraction                                   | 1.0000   | 0.0000    | 1.0000    | 1.0000  | 0.0000  |
| 13      | Temperature (C)                                   | 114.0 *  | 29.31     | 69.50 *   | 16.56   | 16.56   |
| 14      | Pressure (bar)                                    | 2.100    | 2.000     | 2.100 *   | 2.100   | 2.100   |
| 15      | Molar Flow (kgmole/h)                             | 979.9    | 1000      | 146.0 *   | 24.44   | 121.5   |
| 16      | Master Comp Mole Frac (Hydrogen)                  | 0.0014   | 0.0000    | 0.0096 *  | 0.0573  | 0.0000  |
| 17      | Master Comp Mole Frac (Methane)                   | 0.0000   | 0.0000    | 0.0000 *  | 0.0000  | 0.0000  |
| 18      | Master Comp Mole Frac (Nitrogen)                  | 0.0036   | 0.0000    | 0.0242 *  | 0.1437  | 0.0002  |
| 19      | Master Comp Mole Frac (CO)                        | 0.0104   | 0.0000    | 0.0699 *  | 0.4160  | 0.0003  |
| 20      | Master Comp Mole Frac (CO2)                       | 0.0046   | 0.0000    | 0.0347 *  | 0.1737  | 0.0068  |
| 21      | Master Comp Mole Frac (Methanol)                  | 0.0026   | 0.0000    | 0.0007 *  | 0.0000  | 0.0009  |
| 22      | Master Comp Mole Frac (CH3I)                      | 0.2503   | 0.0000    | 0.6584 *  | 0.1672  | 0.7571  |
| 23      | Master Comp Mole Frac (M-Acetate)                 | 0.0324   | 0.0000    | 0.0394 *  | 0.0051  | 0.0464  |
| 24      | Master Comp Mole Frac (AceticAcid)                | 0.1643   | 0.0000    | 0.0126 *  | 0.0001  | 0.0151  |
| 25      | Master Comp Mole Frac (H2O)                       | 0.5289   | 1.0000    | 0.1383 *  | 0.0094  | 0.1643  |
| 26      | Master Comp Mole Frac (HI)                        | 0.0014   | 0.0000    | 0.0121 *  | 0.0276  | 0.0090  |
| 27      | Master Comp Mole Frac (C3oicAcid)                 | 0.0001   | 0.0000    | 0.0000 *  | 0.0000  | 0.0000  |
| 28      | Master Comp Mole Frac (Ethanol)                   | 0.0000   | 0.0000    | 0.0000 *  | 0.0000  | 0.0000  |
| 29      | Master Comp Mole Frac (KOH*)                      | 0.0000   | 0.0000    | 0.0000 *  | 0.0000  | 0.0000  |
| 30      | Master Comp Mole Frac (Rh*)                       | 0.0000   | 0.0000    | 0.0000 *  | 0.0000  | 0.0000  |
| 31      | Master Comp Molar Flow (Hy <b>(kro</b> ymenh)/h)  | 1.4004   | 0.0000    | 1.4007 *  | 1.3996  | 0.0011  |
| 32      | Master Comp Molar Flow (Me(tkgane)e/h)            | 0.0000   | 0.0000    | 0.0000 *  | 0.0000  | 0.0000  |
| 33      | Master Comp Molar Flow (Nit(hogreno)e/h)          | 3.5225   | 0.0000    | 3.5302 *  | 3.5116  | 0.0187  |
| 34      | Master Comp Molar Flow (CQkgmole/h)               | 10.1877  | 0.0000    | 10.2055 * | 10.1666 | 0.0389  |
| 35      | Master Comp Molar Flow (CQ@mole/h)                | 4.5178   | 0.0000    | 5.0687 *  | 4.2445  | 0.8241  |
| 36      | Master Comp Molar Flow (Me(tkgmol)e/h)            | 2.5152   | 0.0000    | 0.1063 *  | 0.0005  | 0.1058  |
| 37      | Master Comp Molar Flow (CH(&t)mole/h)             | 245.2880 | 0.0000    | 96.1046 * | 4.0852  | 92.0194 |
| 38      | Master Comp Molar Flow (M-(kcurtatile)/h)         | 31.7701  | 0.0000    | 5.7586 *  | 0.1241  | 5.6345  |
| 39      | Master Comp Molar Flow (Ac <b>(ttigrAole</b> )∕h) | 161.0071 | 0.0000    | 1.8407 *  | 0.0021  | 1.8385  |
| 40      | Master Comp Molar Flow (H2(12g)mole/h)            | 518.2058 | 1000.0000 | 20.1936 * | 0.2307  | 19.9629 |
| 41      | Master Comp Molar Flow (HI)(kgmole/h)             | 1.3831   | 0.0000    | 1.7680 *  | 0.6751  | 1.0929  |
| 42      | Master Comp Molar Flow (C3(txig:Ancite)/h)        | 0.0739   | 0.0000    | 0.0008 *  | 0.0000  | 0.0008  |
| 43      | Master Comp Molar Flow (Eth(agol))le/h)           | 0.0000   | 0.0000    | 0.0000 *  | 0.0000  | 0.0000  |
| 44      | Master Comp Molar Flow (KO( <b>k</b> ʤ)mole/h)    | 0.0000   | 0.0000    | 0.0000 *  | 0.0000  | 0.0000  |
| 45      | Master Comp Molar Flow (Rh(h)gmole/h)             | 0.0000   | 0.0000    | 0.0000 *  | 0.0000  | 0.0000  |
| 46      |                                                   |          |           |           |         |         |



Company Name Not Available Bedford, MA USA Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

| 9        |                                                                               | Mat      | erial Streams (cor | ntinued)           | Fluid Pkg: All    |                    |
|----------|-------------------------------------------------------------------------------|----------|--------------------|--------------------|-------------------|--------------------|
| 11       | Name                                                                          | 22026    | 22026*             | 22038*             | 22010**           | 22006*             |
| 12       | Vapour Fraction                                                               | 0.0000   | 0.0000             | 0.8999             | 1.0000            | 0.0000             |
| 13       | Temperature (C)                                                               | 40.00 *  | 16.36              | 108.8              | 69.50             | 69.50              |
| 14       | Pressure (bar)                                                                | 5.200 *  | 2.100              | 2.100              | 2.100             | 2.100              |
| 15       | Molar Flow (kgmole/h)                                                         | 4.300 *  | 125.8              | 1106               | 147.0             | 958.7              |
| 16       | Master Comp Mole Frac (Hydrogen)                                              | 0.0000 * | 0.0000             | 0.0013             | 0.0095            | 0.0000             |
| 17       | Master Comp Mole Frac (Methane)                                               | 0.0000 * | 0.0000             | 0.0000             | 0.0000            | 0.0000             |
| 18       | Master Comp Mole Frac (Nitrogen)                                              | 0.0000 * | 0.0001             | 0.0032             | 0.0240            | 0.0000             |
| 19       | Master Comp Mole Frac (CO)                                                    | 0.0000 * | 0.0003             | 0.0092             | 0.0694            | 0.0000             |
| 20       | Master Comp Mole Frac (CO2)                                                   | 0.0000 * | 0.0065             | 0.0032             | 0.0346            | 0.0003             |
| 21       | Master Comp Mole Frac (Methanol)                                              | 0.0000 * | 0.0008             | 0.0024             | 0.0007            | 0.0026             |
| 22       | Master Comp Mole Frac (CH3I)                                                  | 0.0000 * | 0.7313             | 0.3051             | 0.6591            | 0.2508             |
| 23       | Master Comp Mole Frac (M-Acetate)                                             | 0.0000 * | 0.0448             | 0.0338             | 0.0395            | 0.0330             |
| 24       | Master Comp Mole Frac (AceticAcid)                                            | 1.0000 * | 0.0488             | 0.0338             | 0.0393            | 0.0330             |
| 25       | Master Comp Mole Frac (H2O)                                                   | 0.0000 * | 0.1586             | 0.4867             | 0.1384            | 0.5401             |
| 26       | Master Comp Mole Frac (HI)                                                    | 0.0000 * | 0.1366             | 0.4667             | 0.1364            | 0.0007             |
| 27       | . ,                                                                           | 0.0000 * | 0.0087             |                    |                   |                    |
| 28       | Master Comp Mole Frac (C3oicAcid)                                             | 0.0000   | 0.0000             | 0.0001<br>0.0000   | 0.0000            | 0.0001<br>0.0000   |
| 29       | Master Comp Mole Frac (Ethanol)  Master Comp Mole Frac (KOH*)                 | 0.0000   | 0.0000             | 0.0000             | 0.0000            | 0.0000             |
| 30       | Master Comp Mole Frac (Roh*)                                                  | 0.0000   | 0.0000             | 0.0000             | 0.0000            | 0.0000             |
| 31       | Master Comp Molar Flow (Hythropopenha/h)                                      | 0.0000 * | 0.0000             | 1.4015             | 1.4010            | 0.0005             |
| 32       | Master Comp Molar Flow (Mathamele/h)                                          | 0.0000 * | 0.0000             | 0.0000             | 0.0000            | 0.0003             |
| 33       | Master Comp Molar Flow (Nit(hogeno)e/h)                                       | 0.0000 * | 0.0000             | 3.5412             | 3.5308            | 0.0104             |
| 34       |                                                                               | 0.0000 * |                    | 10.2267            |                   |                    |
| 35       | Master Comp Molar Flow (CQR mole/h)                                           | 0.0000   | 0.0389<br>0.8241   | 5.3419             | 10.2069<br>5.0843 | 0.0198<br>0.2577   |
| 36       | Master Comp Molar Flow (CQRgmole/h)                                           | 0.0000   |                    |                    |                   |                    |
| 37       | Master Comp Molar Flow (Me(tkganol)e/h)  Master Comp Molar Flow (CH&t)mole/h) | 0.0000   | 0.1058<br>92.0194  | 2.6210<br>337.3075 | 0.1069<br>96.8997 | 2.5141<br>240.4078 |
| 38       | Master Comp Molar Flow (M-(kgmole/n)                                          | 0.0000 * | 5.6345             | 37.4045            | 5.8000            | 31.6045            |
| 39       | Master Comp Molar Flow (AcettippAolet)h)                                      | 4.3000 * | 6.1385             | 167.1457           | 1.8493            | 165.2964           |
| 40       | Master Comp Molar Flow (H2(Q)mole/h)                                          | 0.0000 * | 19.9629            | 538.1687           | 20.3431           | 517.8257           |
| 41       | Master Comp Molar Flow (HI)(kgmole/h)                                         | 0.0000   | 1.0929             | 2.4760             | 1.7973            | 0.6787             |
| 42       | Master Comp Molar Flow (C3(big/Aucite)/h)                                     | 0.0000   | 0.0008             | 0.0747             | 0.0008            | 0.0739             |
| 43       | Master Comp Molar Flow (Ethagon) ple/h)                                       | 0.0000 * | 0.0008             | 0.0000             | 0.0000            | 0.0000             |
| 44       | Master Comp Molar Flow (KQlkdmole/h)                                          | 0.0000 * | 0.0000             | 0.0000             | 0.0000            | 0.0000             |
| 45       | Master Comp Molar Flow (Rh(t)gmole/h)                                         | 0.0000 * | 0.0000             | 0.0000             | 0.0000            | 0.0000             |
| 46       | waster comp word i low (ittilyginole/ii)                                      | 0.0000   | 0.0000             | 0.0000             | 0.0000            | 0.0000             |
| 47       |                                                                               |          |                    |                    |                   |                    |
| 48       |                                                                               |          |                    |                    |                   |                    |
| 49       |                                                                               |          |                    |                    |                   |                    |
| 50       |                                                                               |          |                    |                    |                   |                    |
| 50<br>51 |                                                                               |          |                    |                    |                   |                    |
| 52       |                                                                               |          |                    |                    |                   |                    |
| 52<br>53 |                                                                               |          |                    |                    |                   |                    |
| 54       |                                                                               |          |                    |                    |                   |                    |
| 55       |                                                                               |          |                    |                    |                   |                    |
| 56       |                                                                               |          |                    |                    |                   |                    |
| 57       |                                                                               |          |                    |                    |                   |                    |
| 57<br>58 |                                                                               |          |                    |                    |                   |                    |
| 59       |                                                                               |          |                    |                    |                   |                    |
| 60       |                                                                               |          |                    |                    |                   |                    |
| 61       |                                                                               |          |                    |                    |                   |                    |
| 01       |                                                                               |          |                    |                    |                   |                    |



Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

#### Workbook: Case (Main) (continued)

| 9<br>10 |                                                   | Fluid Pk | g: All   |          |          |          |
|---------|---------------------------------------------------|----------|----------|----------|----------|----------|
| 11      | Name                                              | 22006    | 22007    | 22002*   | 22001    | 22002/   |
| 12      | Vapour Fraction                                   | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 13      | Temperature (C)                                   | 69.50    | 69.50    | 69.50    | 69.50    | 69.63    |
| 14      | Pressure (bar)                                    | 2.100    | 2.100    | 2.100    | 2.100    | 7.700 *  |
| 15      | Molar Flow (kgmole/h)                             | 184.7    | 773.9    | 478.5    | 295.4    | 478.5    |
| 16      | Master Comp Mole Frac (Hydrogen)                  | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 17      | Master Comp Mole Frac (Methane)                   | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 18      | Master Comp Mole Frac (Nitrogen)                  | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 19      | Master Comp Mole Frac (CO)                        | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 20      | Master Comp Mole Frac (CO2)                       | 0.0003   | 0.0003   | 0.0003   | 0.0003   | 0.0003   |
| 21      | Master Comp Mole Frac (Methanol)                  | 0.0026   | 0.0026   | 0.0026   | 0.0026   | 0.0026   |
| 22      | Master Comp Mole Frac (CH3I)                      | 0.2508   | 0.2508   | 0.2508   | 0.2508   | 0.2508   |
| 23      | Master Comp Mole Frac (M-Acetate)                 | 0.0330   | 0.0330   | 0.0330   | 0.0330   | 0.0330   |
| 24      | Master Comp Mole Frac (AceticAcid)                | 0.1724   | 0.1724   | 0.1724   | 0.1724   | 0.1724   |
| 25      | Master Comp Mole Frac (H2O)                       | 0.5401   | 0.5401   | 0.5401   | 0.5401   | 0.5401   |
| 26      | Master Comp Mole Frac (HI)                        | 0.0007   | 0.0007   | 0.0007   | 0.0007   | 0.0007   |
| 27      | Master Comp Mole Frac (C3oicAcid)                 | 0.0001   | 0.0001   | 0.0001   | 0.0001   | 0.0001   |
| 28      | Master Comp Mole Frac (Ethanol)                   | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 29      | Master Comp Mole Frac (KOH*)                      | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 30      | Master Comp Mole Frac (Rh*)                       | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 31      | Master Comp Molar Flow (Hy <b>(krongnerh)</b> /h) | 0.0001   | 0.0004   | 0.0003   | 0.0002   | 0.0003   |
| 32      | Master Comp Molar Flow (Me <b>(tkgme)</b> e/h)    | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 33      | Master Comp Molar Flow (Nit(kogeno)e/h)           | 0.0020   | 0.0084   | 0.0052   | 0.0032   | 0.0052   |
| 34      | Master Comp Molar Flow (CQkgmole/h)               | 0.0038   | 0.0160   | 0.0099   | 0.0061   | 0.0099   |
| 35      | Master Comp Molar Flow (CQi <b>kỳ</b> mole/h)     | 0.0497   | 0.2080   | 0.1286   | 0.0794   | 0.1286   |
| 36      | Master Comp Molar Flow (Me(thanol)e/h)            | 0.4845   | 2.0297   | 1.2549   | 0.7747   | 1.2549   |
| 37      | Master Comp Molar Flow (CH(&t)mole/h)             | 46.3266  | 194.0812 | 120.0004 | 74.0808  | 120.0004 |
| 38      | Master Comp Molar Flow (M-(kcetatle)/h)           | 6.0902   | 25.5143  | 15.7755  | 9.7388   | 15.7755  |
| 39      | Master Comp Molar Flow (Ac <b>(±tigrAole</b> )jh) | 31.8526  | 133.4438 | 82.5083  | 50.9355  | 82.5083  |
| 40      | Master Comp Molar Flow (H2(Q)mole/h)              | 99.7850  | 418.0407 | 258.4745 | 159.5661 | 258.4745 |
| 41      | Master Comp Molar Flow (HI)(kgmole/h)             | 0.1308   | 0.5479   | 0.3388   | 0.2091   | 0.3388   |
| 42      | Master Comp Molar Flow (C3(bkig:Ancilde)/h)       | 0.0142   | 0.0596   | 0.0369   | 0.0228   | 0.0369   |
| 43      | Master Comp Molar Flow (Eth(agol))le/h)           | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 44      | Master Comp Molar Flow (KQ <b>kt</b> ǧ)nole/h)    | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 45      | Master Comp Molar Flow (Rh(t)gmole/h)             | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 46      |                                                   |          |          |          |          |          |



Company Name Not Available Bedford, MA USA Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

| 9        | ─────────────────────────────────────               |          |          |            |          |          |
|----------|-----------------------------------------------------|----------|----------|------------|----------|----------|
| 11       | Name                                                | 22023    | 22018    | 22022      | 22025    | 22019    |
| 12       | Vapour Fraction                                     | 0.0000   | 0.0000   | 0.0000     | 0.0000   | 1.0000   |
| 13       | Temperature (C)                                     | 176.6    | 174.6    | 62.16 *    | 32.20 *  | 133.4    |
| 14       | Pressure (bar)                                      | 9.630    | 9.400    | 10.50 *    | 3.300 *  | 2.700    |
| 15       | Molar Flow (kgmole/h)                               | 498.7    | 509.8    | 343.3 *    | 1.800 *  | 629.5    |
| 16       | Master Comp Mole Frac (Hydrogen)                    | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * | 0.0000   |
| 17       | Master Comp Mole Frac (Methane)                     | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * | 0.0000   |
| 18       | Master Comp Mole Frac (Nitrogen)                    | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * | 0.0000   |
| 19       | Master Comp Mole Frac (CO)                          | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * | 0.0000   |
| 20       | Master Comp Mole Frac (CO2)                         | 0.0001   | 0.0001   | 0.0001 *   | 0.0000 * | 0.0001   |
| 21       | Master Comp Mole Frac (Methanol)                    | 0.0006   | 0.0006   | 0.0073 *   | 1.0000 * | 0.0073   |
| 22       | Master Comp Mole Frac (CH3I)                        | 0.0381   | 0.0373   | 0.0664 *   | 0.0000 * | 0.0664   |
| 23       | Master Comp Mole Frac (M-Acetate)                   | 0.0087   | 0.0085   | 0.0152 *   | 0.0000 * | 0.0152   |
| 24       | Master Comp Mole Frac (AceticAcid)                  | 0.6143   | 0.6206   | 0.3187 *   | 0.0000 * | 0.3187   |
| 25       | Master Comp Mole Frac (H2O)                         | 0.3378   | 0.3324   | 0.5920 *   | 0.0000 * | 0.5920   |
| 26       | Master Comp Mole Frac (HI)                          | 0.0000   | 0.0000   | 0.0001 *   | 0.0000 * | 0.0001   |
| 27       | Master Comp Mole Frac (C3oicAcid)                   | 0.0004   | 0.0004   | 0.0000 *   | 0.0000 * | 0.0000   |
| 28       | Master Comp Mole Frac (Ethanol)                     | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * | 0.0000   |
| 29       | Master Comp Mole Frac (KOH*)                        | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * | 0.0000   |
| 30       | Master Comp Mole Frac (Rh*)                         | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * | 0.0000   |
| 31       | Master Comp Molar Flow (Hy(dropopeth)/h)            | 0.0011   | 0.0011   | 0.0013 *   | 0.0000 * | 0.0024   |
| 32       | Master Comp Molar Flow (Me(tkgrne)e/h)              | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * | 0.0000   |
| 33       | Master Comp Molar Flow (Nit(logero)e/h)             | 0.0063   | 0.0063   | 0.0075 *   | 0.0000 * | 0.0138   |
| 34       | Master Comp Molar Flow (CQkgmole/h)                 | 0.0118   | 0.0118   | 0.0141 *   | 0.0000 * | 0.0259   |
| 35       | Master Comp Molar Flow (CORmole/h)                  | 0.0383   | 0.0383   | 0.0459 *   | 0.0000 * | 0.0842   |
| 36       | Master Comp Molar Flow (Me(tkgrnol)e/h)             | 0.2889   | 0.2903   | 2.5067 *   | 1.8000 * | 4.5970   |
| 37       | Master Comp Molar Flow (CH&b)mole/h)                | 18.9912  | 19.0018  | 22.7876 *  | 0.0000 * | 41.7894  |
| 38       | Master Comp Molar Flow (M- <b>/k/cpetaclie</b> )/h) | 4.3494   | 4.3591   | 5.2276 *   | 0.0000 * | 9.5867   |
| 39       | Master Comp Molar Flow (Ac <b>(tignAole</b> ))h)    | 306.3368 | 316.4261 | 109.4123 * | 0.0000 * | 200.6448 |
| 40       | Master Comp Molar Flow (H2@mole/h)                  | 168.4442 | 169.4651 | 203.2294 * | 0.0000 * | 372.6945 |
| 41       | Master Comp Molar Flow (HI)kgmole/h)                | 0.0224   | 0.0224   | 0.0269 *   | 0.0000 * | 0.0493   |
| 42       | Master Comp Molar Flow (C3(big/Axcitel/h)           | 0.2186   | 0.2186   | 0.0067 *   | 0.0000 * | 0.0123   |
| 43       | Master Comp Molar Flow (Ethagon)e/h)                | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * | 0.0000   |
| 44       | Master Comp Molar Flow (KQlkg)mole/h)               | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * | 0.0000   |
| 45       | Master Comp Molar Flow (Rh(t)gmole/h)               | 0.0000   | 0.0000   | 0.0000 *   | 0.0000 * | 0.0000   |
| 46       |                                                     |          |          |            |          |          |
| 47       |                                                     |          |          |            |          |          |
| 48       |                                                     |          |          |            |          |          |
| 49       |                                                     |          |          |            |          |          |
| 50<br>51 |                                                     |          |          |            |          |          |
| 51       |                                                     |          |          |            |          |          |
| 52<br>53 |                                                     |          |          |            |          |          |
| 53       |                                                     |          |          |            |          |          |
| 54       |                                                     |          |          |            |          |          |
| 55       |                                                     |          |          |            |          |          |
| 56       |                                                     |          |          |            |          |          |
| 57<br>58 |                                                     |          |          |            |          |          |
| 58       |                                                     |          |          |            |          |          |
| 59       |                                                     |          |          |            |          |          |
| 60       |                                                     |          |          |            |          |          |
| 61       |                                                     |          |          |            |          |          |



Company Name Not Available Bedford, MA USA Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

# Workbook: Case (Main) (continued)

| 9<br>10 |                                                  | Mat      | erial Streams (con | tinued)    | Fluid Pkç | g: All |
|---------|--------------------------------------------------|----------|--------------------|------------|-----------|--------|
| 11      | Name                                             | 22020*   | 22019*             | 22302      | 22303     | VAP    |
| 12      | Vapour Fraction                                  | 0.0000   | 0.0000             | 0.0000     | 0.7868    | 1.0000 |
| 13      | Temperature (C)                                  | 160.0    | 62.00 *            | 0.0000 *   | 64.68     | 62.00  |
| 14      | Pressure (bar)                                   | 3.300    | 2.700              | 0.2500 *   | 0.2500    | 2.700  |
| 15      | Molar Flow (kgmole/h)                            | 225.4    | 629.5              | 700.0 *    | 700.0     | 0.0000 |
| 16      | Master Comp Mole Frac (Hydrogen)                 | 0.0000   | 0.0000             | 0.0000 *   | 0.0000    | 0.0000 |
| 17      | Master Comp Mole Frac (Methane)                  | 0.0000   | 0.0000             | 0.0000 *   | 0.0000    | 0.0000 |
| 18      | Master Comp Mole Frac (Nitrogen)                 | 0.0000   | 0.0000             | 0.0000 *   | 0.0000    | 0.0000 |
| 19      | Master Comp Mole Frac (CO)                       | 0.0000   | 0.0000             | 0.0000 *   | 0.0000    | 0.0000 |
| 20      | Master Comp Mole Frac (CO2)                      | 0.0000   | 0.0001             | 0.0000 *   | 0.0000    | 0.0001 |
| 21      | Master Comp Mole Frac (Methanol)                 | 0.0000   | 0.0073             | 0.0000 *   | 0.0000    | 0.0074 |
| 22      | Master Comp Mole Frac (CH3I)                     | 0.0000   | 0.0664             | 0.0000 *   | 0.0000    | 0.0661 |
| 23      | Master Comp Mole Frac (M-Acetate)                | 0.0000   | 0.0152             | 0.0000 *   | 0.0000    | 0.0152 |
| 24      | Master Comp Mole Frac (AceticAcid)               | 0.9991   | 0.3187             | 0.0000 *   | 0.0000    | 0.3212 |
| 25      | Master Comp Mole Frac (H2O)                      | 0.0000   | 0.5920             | 1.0000 *   | 1.0000    | 0.5898 |
| 26      | Master Comp Mole Frac (HI)                       | 0.0000   | 0.0001             | 0.0000 *   | 0.0000    | 0.0001 |
| 27      | Master Comp Mole Frac (C3oicAcid)                | 0.0009   | 0.0000             | 0.0000 *   | 0.0000    | 0.0000 |
| 28      | Master Comp Mole Frac (Ethanol)                  | 0.0000   | 0.0000             | 0.0000 *   | 0.0000    | 0.0000 |
| 29      | Master Comp Mole Frac (KOH*)                     | 0.0000   | 0.0000             | 0.0000 *   | 0.0000    | 0.0000 |
| 30      | Master Comp Mole Frac (Rh*)                      | 0.0000   | 0.0000             | 0.0000 *   | 0.0000    | 0.0000 |
| 31      | Master Comp Molar Flow (Hy <b>(kro)gent)</b> /h) | 0.0000   | 0.0024             | 0.0000 *   | 0.0000    | 0.0000 |
| 32      | Master Comp Molar Flow (Me(thgane)e/h)           | 0.0000   | 0.0000             | 0.0000 *   | 0.0000    | 0.0000 |
| 33      | Master Comp Molar Flow (Nit(togreno)e/h)         | 0.0000   | 0.0138             | 0.0000 *   | 0.0000    | 0.0000 |
| 34      | Master Comp Molar Flow (CQkgmole/h)              | 0.0000   | 0.0259             | 0.0000 *   | 0.0000    | 0.0000 |
| 35      | Master Comp Molar Flow (CO(R) mole/h)            | 0.0000   | 0.0842             | 0.0000 *   | 0.0000    | 0.0000 |
| 36      | Master Comp Molar Flow (Me(thanol)e/h)           | 0.0000   | 4.5970             | 0.0000 *   | 0.0000    | 0.0000 |
| 37      | Master Comp Molar Flow (CH(&t)mole/h)            | 0.0000   | 41.7894            | 0.0000 *   | 0.0000    | 0.0000 |
| 38      | Master Comp Molar Flow (M-(Accentable)/h)        | 0.0000   | 9.5867             | 0.0000 *   | 0.0000    | 0.0000 |
| 39      | Master Comp Molar Flow (Ac(HtiguAole))h)         | 225.1937 | 200.6448           | 0.0000 *   | 0.0000    | 0.0000 |
| 40      | Master Comp Molar Flow (H2(@gmole/h)             | 0.0000   | 372.6945           | 700.0000 * | 700.0000  | 0.0000 |
| 41      | Master Comp Molar Flow (HI)(kgmole/h)            | 0.0000   | 0.0493             | 0.0000 *   | 0.0000    | 0.0000 |
| 42      | Master Comp Molar Flow (C3(xigAncite)/h)         | 0.2130   | 0.0123             | 0.0000 *   | 0.0000    | 0.0000 |
| 43      | Master Comp Molar Flow (Eth(agol))le/h)          | 0.0000   | 0.0000             | 0.0000 *   | 0.0000    | 0.0000 |
| 44      | Master Comp Molar Flow (KO(klǧ)nole/h)           | 0.0000   | 0.0000             | 0.0000 *   | 0.0000    | 0.0000 |
| 45      | Master Comp Molar Flow (Rh(t)gmole/h)            | 0.0000   | 0.0000             | 0.0000 *   | 0.0000    | 0.0000 |
| 46      |                                                  |          |                    |            |           |        |



Company Name Not Available Bedford, MA USA Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

| 9        | ── Material Streams (continued)                  |          |          |          |          | g: All   |
|----------|--------------------------------------------------|----------|----------|----------|----------|----------|
| 11       | Name                                             | 22021    | 22021*   | 22022*   | 22014    | 22080    |
| 12       | Vapour Fraction                                  | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 13       | Temperature (C)                                  | 62.00    | 62.16    | 62.16    | 62.16    | 62.76    |
| 14       | Pressure (bar)                                   | 2.700    | 10.50 *  | 10.50    | 10.50    | 2.100    |
| 15       | Molar Flow (kgmole/h)                            | 629.5    | 629.5    | 343.3    | 286.2    | 581.7    |
| 16       | Master Comp Mole Frac (Hydrogen)                 | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 17       | Master Comp Mole Frac (Methane)                  | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 18       | Master Comp Mole Frac (Nitrogen)                 | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 19       | Master Comp Mole Frac (CO)                       | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 20       | Master Comp Mole Frac (CO2)                      | 0.0001   | 0.0001   | 0.0001   | 0.0001   | 0.0002   |
| 21       | Master Comp Mole Frac (Methanol)                 | 0.0073   | 0.0073   | 0.0073   | 0.0073   | 0.0049   |
| 22       | Master Comp Mole Frac (CH3I)                     | 0.0664   | 0.0664   | 0.0664   | 0.0664   | 0.1600   |
| 23       | Master Comp Mole Frac (M-Acetate)                | 0.0152   | 0.0152   | 0.0152   | 0.0152   | 0.0242   |
| 24       | Master Comp Mole Frac (AceticAcid)               | 0.3187   | 0.3187   | 0.3187   | 0.3187   | 0.2444   |
| 25       | Master Comp Mole Frac (H2O)                      | 0.5920   | 0.5920   | 0.5920   | 0.5920   | 0.5657   |
| 26       | Master Comp Mole Frac (HI)                       | 0.0001   | 0.0001   | 0.0001   | 0.0001   | 0.0004   |
| 27       | Master Comp Mole Frac (C3oicAcid)                | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 28       | Master Comp Mole Frac (Ethanol)                  | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 29       | Master Comp Mole Frac (KOH*)                     | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 30       | Master Comp Mole Frac (Rh*)                      | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 31       | Master Comp Molar Flow (Hy(throgomethe)/h)       | 0.0024   | 0.0024   | 0.0013   | 0.0011   | 0.0013   |
| 32       | Master Comp Molar Flow (Me(lkgrne)e/h)           | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 33       | Master Comp Molar Flow (Nit(hognero)e/h)         | 0.0138   | 0.0138   | 0.0075   | 0.0063   | 0.0095   |
| 34       | Master Comp Molar Flow (CQkgmole/h)              | 0.0259   | 0.0259   | 0.0141   | 0.0118   | 0.0179   |
| 35       | Master Comp Molar Flow (CQR)mole/h)              | 0.0842   | 0.0842   | 0.0459   | 0.0383   | 0.1177   |
| 36       | Master Comp Molar Flow (Me(thgmol)e/h)           | 4.5970   | 4.5970   | 2.5067   | 2.0902   | 2.8650   |
| 37       | Master Comp Molar Flow (CH(&b)mole/h)            | 41.7894  | 41.7894  | 22.7878  | 19.0016  | 93.0824  |
| 38       | Master Comp Molar Flow (M-Akcetatie)h)           | 9.5867   | 9.5867   | 5.2276   | 4.3591   | 14.0979  |
| 39       | Master Comp Molar Flow (Ac <b>(tignAole</b> )/h) | 200.6448 | 200.6448 | 109.4116 | 91.2332  | 142.1687 |
| 40       | Master Comp Molar Flow (H2(Q)mole/h)             | 372.6945 | 372.6945 | 203.2303 | 169.4642 | 329.0303 |
| 41       | Master Comp Molar Flow (HI)(kgmole/h)            | 0.0493   | 0.0493   | 0.0269   | 0.0224   | 0.2316   |
| 42       | Master Comp Molar Flow (C3(big:Axcitel/h)        | 0.0123   | 0.0123   | 0.0067   | 0.0056   | 0.0283   |
| 43       | Master Comp Molar Flow (Eth(agoi))le/h)          | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 44       | Master Comp Molar Flow (KQ <b>ld</b> ðj)nole/h)  | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 45       | Master Comp Molar Flow (Rh(t)gmole/h)            | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   |
| 46       |                                                  |          |          |          |          |          |
| 47       |                                                  |          |          |          |          |          |
| 48       |                                                  |          |          |          |          |          |
| 49       |                                                  |          |          |          |          |          |
| 50<br>51 |                                                  |          |          |          |          |          |
| 51       |                                                  |          |          |          |          |          |
| 52<br>53 |                                                  |          |          |          |          |          |
| 53       |                                                  |          |          |          |          |          |
| 54       |                                                  |          |          |          |          |          |
| 55       |                                                  |          |          |          |          |          |
| 56       |                                                  |          |          |          |          |          |
| 57<br>58 |                                                  |          |          |          |          |          |
| 58       |                                                  |          |          |          |          |          |
| 59       |                                                  |          |          |          |          |          |
| 60       |                                                  |          |          |          |          |          |
| 61       |                                                  |          |          |          |          |          |
| 100      |                                                  |          |          |          |          |          |



Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

# Workbook: Case (Main) (continued)

| 9  |                                                    | Fluid Pkç | g: All  |         |        |          |
|----|----------------------------------------------------|-----------|---------|---------|--------|----------|
| 11 | Name                                               | 22157     | 21006*  | 21007*  | 21083  | 21017*   |
| 12 | Vapour Fraction                                    | 0.0000    | 1.0000  | 0.0000  | 0.0000 | 0.0000   |
| 13 | Temperature (C)                                    | 62.91     | 24.00   | 24.00   | 32.60  | 32.60    |
| 14 | Pressure (bar)                                     | 10.00 *   | 15.00   | 15.00   | 33.00  | 33.00    |
| 15 | Molar Flow (kgmole/h)                              | 581.7     | 44.70   | 26.37   | 1.749  | 316.2    |
| 16 | Master Comp Mole Frac (Hydrogen)                   | 0.0000    | 0.0001  | 0.0000  | 0.0000 | 0.0000   |
| 17 | Master Comp Mole Frac (Methane)                    | 0.0000    | 0.0000  | 0.0000  | 0.0000 | 0.0000   |
| 18 | Master Comp Mole Frac (Nitrogen)                   | 0.0000    | 0.0204  | 0.0000  | 0.0010 | 0.0010   |
| 19 | Master Comp Mole Frac (CO)                         | 0.0000    | 0.9582  | 0.0010  | 0.0000 | 0.0000   |
| 20 | Master Comp Mole Frac (CO2)                        | 0.0002    | 0.0003  | 0.0000  | 0.0000 | 0.0000   |
| 21 | Master Comp Mole Frac (Methanol)                   | 0.0049    | 0.0015  | 0.2846  | 0.9980 | 0.9980   |
| 22 | Master Comp Mole Frac (CH3I)                       | 0.1600    | 0.0164  | 0.1061  | 0.0000 | 0.0000   |
| 23 | Master Comp Mole Frac (M-Acetate)                  | 0.0242    | 0.0013  | 0.0182  | 0.0000 | 0.0000   |
| 24 | Master Comp Mole Frac (AceticAcid)                 | 0.2444    | 0.0003  | 0.1916  | 0.0000 | 0.0000   |
| 25 | Master Comp Mole Frac (H2O)                        | 0.5657    | 0.0012  | 0.3982  | 0.0009 | 0.0009   |
| 26 | Master Comp Mole Frac (HI)                         | 0.0004    | 0.0002  | 0.0002  | 0.0000 | 0.0000   |
| 27 | Master Comp Mole Frac (C3oicAcid)                  | 0.0000    | 0.0000  | 0.0001  | 0.0000 | 0.0000   |
| 28 | Master Comp Mole Frac (Ethanol)                    | 0.0000    | 0.0000  | 0.0000  | 0.0001 | 0.0001   |
| 29 | Master Comp Mole Frac (KOH*)                       | 0.0000    | 0.0000  | 0.0000  | 0.0000 | 0.0000   |
| 30 | Master Comp Mole Frac (Rh*)                        | 0.0000    | 0.0000  | 0.0000  | 0.0000 | 0.0000   |
| 31 | Master Comp Molar Flow (Hy <b>(kroyg)ærh</b> )/h)  | 0.0013    | 0.0033  | 0.0000  | 0.0000 | 0.0000   |
| 32 | Master Comp Molar Flow (Me(tkgrne)e/h)             | 0.0000    | 0.0000  | 0.0000  | 0.0000 | 0.0000   |
| 33 | Master Comp Molar Flow (Nit(hognero)e/h)           | 0.0095    | 0.9120  | 0.0012  | 0.0018 | 0.3293   |
| 34 | Master Comp Molar Flow (CO(kgmole/h)               | 0.0179    | 42.8305 | 0.0275  | 0.0000 | 0.0000   |
| 35 | Master Comp Molar Flow (CO(R) mole/h)              | 0.1177    | 0.0143  | 0.0006  | 0.0000 | 0.0000   |
| 36 | Master Comp Molar Flow (Me(thganol)e/h)            | 2.8650    | 0.0666  | 7.5054  | 1.7453 | 315.5796 |
| 37 | Master Comp Molar Flow (CH(&t)mole/h)              | 93.0824   | 0.7349  | 2.7976  | 0.0000 | 0.0000   |
| 38 | Master Comp Molar Flow (M-(kcetatile)h)            | 14.0979   | 0.0577  | 0.4799  | 0.0000 | 0.0000   |
| 39 | Master Comp Molar Flow (Ac <b>(ttigr/Aole)</b> /h) | 142.1687  | 0.0156  | 5.0535  | 0.0000 | 0.0000   |
| 40 | Master Comp Molar Flow (H2(19)gmole/h)             | 329.0303  | 0.0554  | 10.5017 | 0.0016 | 0.2812   |
| 41 | Master Comp Molar Flow (HI)(kgmole/h)              | 0.2316    | 0.0088  | 0.0041  | 0.0000 | 0.0000   |
| 42 | Master Comp Molar Flow (C3(xigAncite)/h)           | 0.0283    | 0.0000  | 0.0026  | 0.0000 | 0.0000   |
| 43 | Master Comp Molar Flow (Eth(agni))le/h)            | 0.0000    | 0.0000  | 0.0005  | 0.0001 | 0.0221   |
| 44 | Master Comp Molar Flow (KO(klǧ)nole/h)             | 0.0000    | 0.0000  | 0.0000  | 0.0000 | 0.0000   |
| 45 | Master Comp Molar Flow (Rh(t)gmole/h)              | 0.0000    | 0.0000  | 0.0000  | 0.0000 | 0.0000   |
| 46 |                                                    |           |         |         |        |          |

\* Specified by user.



Company Name Not Available Bedford, MA USA Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

# Workbook: Case (Main) (continued)

| 9  |                                                    | Mat      | erial Streams (cor | ntinued) | Fluid Pkç    | j: All   |
|----|----------------------------------------------------|----------|--------------------|----------|--------------|----------|
| 11 | Name                                               | 21027    | 21013*             | 21017**  | 22375        | 22038*** |
| 12 | Vapour Fraction                                    | 0.0000   | 0.0000             | 0.0000   | 0.0000       | 0.1330   |
| 13 | Temperature (C)                                    | 32.60    | 32.60              | 32.60    | 0.0000 *     | 69.50 *  |
| 14 | Pressure (bar)                                     | 33.00 *  | 33.00              | 33.00    | 1.000e-002 * | 2.100    |
| 15 | Molar Flow (kgmole/h)                              | 318.0    | 210.8              | 105.4    | 1000 *       | 1106     |
| 16 | Master Comp Mole Frac (Hydrogen)                   | 0.0000   | 0.0000             | 0.0000   | 0.0000 *     | 0.0013   |
| 17 | Master Comp Mole Frac (Methane)                    | 0.0000   | 0.0000             | 0.0000   | 0.0000 *     | 0.0000   |
| 18 | Master Comp Mole Frac (Nitrogen)                   | 0.0010   | 0.0010             | 0.0010   | 0.0000 *     | 0.0032   |
| 19 | Master Comp Mole Frac (CO)                         | 0.0000   | 0.0000             | 0.0000   | 0.0000 *     | 0.0092   |
| 20 | Master Comp Mole Frac (CO2)                        | 0.0000   | 0.0000             | 0.0000   | 0.0000 *     | 0.0048   |
| 21 | Master Comp Mole Frac (Methanol)                   | 0.9980   | 0.9980             | 0.9980   | 0.0000 *     | 0.0024   |
| 22 | Master Comp Mole Frac (CH3I)                       | 0.0000   | 0.0000             | 0.0000   | 0.0000 *     | 0.3051   |
| 23 | Master Comp Mole Frac (M-Acetate)                  | 0.0000   | 0.0000             | 0.0000   | 0.0000 *     | 0.0338   |
| 24 | Master Comp Mole Frac (AceticAcid)                 | 0.0000   | 0.0000             | 0.0000   | 0.0000 *     | 0.1512   |
| 25 | Master Comp Mole Frac (H2O)                        | 0.0009   | 0.0009             | 0.0009   | 1.0000 *     | 0.4867   |
| 26 | Master Comp Mole Frac (HI)                         | 0.0000   | 0.0000             | 0.0000   | 0.0000 *     | 0.0022   |
| 27 | Master Comp Mole Frac (C3oicAcid)                  | 0.0000   | 0.0000             | 0.0000   | 0.0000 *     | 0.0001   |
| 28 | Master Comp Mole Frac (Ethanol)                    | 0.0001   | 0.0001             | 0.0001   | 0.0000 *     | 0.0000   |
| 29 | Master Comp Mole Frac (KOH*)                       | 0.0000   | 0.0000             | 0.0000   | 0.0000 *     | 0.0000   |
| 30 | Master Comp Mole Frac (Rh*)                        | 0.0000   | 0.0000             | 0.0000   | 0.0000 *     | 0.0000   |
| 31 | Master Comp Molar Flow (Hy <b>(krg)gneth</b> )/h)  | 0.0000   | 0.0000             | 0.0000   | 0.0000 *     | 1.4015   |
| 32 | Master Comp Molar Flow (Me(thgme)e/h)              | 0.0000   | 0.0000             | 0.0000   | 0.0000 *     | 0.0000   |
| 33 | Master Comp Molar Flow (Nit(kog)eno)e/h)           | 0.3312   | 0.2195             | 0.1098   | 0.0000 *     | 3.5412   |
| 34 | Master Comp Molar Flow (CQkgmole/h)                | 0.0000   | 0.0000             | 0.0000   | 0.0000 *     | 10.2267  |
| 35 | Master Comp Molar Flow (CQR)mole/h)                | 0.0000   | 0.0000             | 0.0000   | 0.0000 *     | 5.3419   |
| 36 | Master Comp Molar Flow (Me(thgmol)e/h)             | 317.3248 | 210.3653           | 105.2142 | 0.0000 *     | 2.6210   |
| 37 | Master Comp Molar Flow (CH(&t)mole/h)              | 0.0000   | 0.0000             | 0.0000   | 0.0000 *     | 337.3075 |
| 38 | Master Comp Molar Flow (M-(kacetatle)h)            | 0.0000   | 0.0000             | 0.0000   | 0.0000 *     | 37.4045  |
| 39 | Master Comp Molar Flow (Ac <b>(ttigr/Aole)</b> /h) | 0.0000   | 0.0000             | 0.0000   | 0.0000 *     | 167.1457 |
| 40 | Master Comp Molar Flow (H2(Q)mole/h)               | 0.2827   | 0.1874             | 0.0937   | 1000.0000 *  | 538.1687 |
| 41 | Master Comp Molar Flow (HI)(kgmole/h)              | 0.0000   | 0.0000             | 0.0000   | 0.0000 *     | 2.4760   |
| 42 | Master Comp Molar Flow (C3(txigAxcite)/h)          | 0.0000   | 0.0000             | 0.0000   | 0.0000 *     | 0.0747   |
| 43 | Master Comp Molar Flow (Eth(agol))le/h)            | 0.0222   | 0.0147             | 0.0074   | 0.0000 *     | 0.0000   |
| 44 | Master Comp Molar Flow (KQ <b>k</b> ǧ)nole/h)      | 0.0000   | 0.0000             | 0.0000   | 0.0000 *     | 0.0000   |
| 45 | Master Comp Molar Flow (Rh(h)gmole/h)              | 0.0000   | 0.0000             | 0.0000   | 0.0000 *     | 0.0000   |
| 46 |                                                    |          |                    |          |              |          |



Company Name Not Available Bedford, MA USA Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

| 9        |                                                  | tinued)    | ) Fluid Pkg: All |            |         |           |
|----------|--------------------------------------------------|------------|------------------|------------|---------|-----------|
| 11       | Name                                             | 22376      | 22370            | 22371      | 2201000 | 2103*     |
| 12       | Vapour Fraction                                  | 0.7015     | 0.0000           | 0.1777     | 0.1674  | 0.2300    |
| 13       | Temperature (C)                                  | 6.526      | 5.000 *          | 6.523      | 16.56 * | 122.6 *   |
| 14       | Pressure (bar)                                   | 1.000e-002 | 1.000e-002 *     | 1.000e-002 | 2.100   | 2.300 *   |
| 15       | Molar Flow (kgmole/h)                            | 1000       | 500.0 *          | 500.0      | 146.0   | 4390      |
| 16       | Master Comp Mole Frac (Hydrogen)                 | 0.0000     | 0.0000 *         | 0.0000     | 0.0096  | 0.0000    |
| 17       | Master Comp Mole Frac (Methane)                  | 0.0000     | 0.0000 *         | 0.0000     | 0.0000  | 0.0000    |
| 18       | Master Comp Mole Frac (Nitrogen)                 | 0.0000     | 0.0000 *         | 0.0000     | 0.0242  | 0.0000    |
| 19       | Master Comp Mole Frac (CO)                       | 0.0000     | 0.0000 *         | 0.0000     | 0.0699  | 0.0001    |
| 20       | Master Comp Mole Frac (CO2)                      | 0.0000     | 0.0000 *         | 0.0000     | 0.0347  | 0.0000    |
| 21       | Master Comp Mole Frac (Methanol)                 | 0.0000     | 0.0000 *         | 0.0000     | 0.0007  | 0.1365    |
| 22       | Master Comp Mole Frac (CH3I)                     | 0.0000     | 0.0000 *         | 0.0000     | 0.6584  | 0.0104    |
| 23       | Master Comp Mole Frac (M-Acetate)                | 0.0000     | 0.0000 *         | 0.0000     | 0.0394  | 0.0035    |
| 24       | Master Comp Mole Frac (AceticAcid)               | 0.0000     | 0.0000 *         | 0.0000     | 0.0126  | 0.3910    |
| 25       | Master Comp Mole Frac (H2O)                      | 1.0000     | 1.0000 *         | 1.0000     | 0.1383  | 0.4582    |
| 26       | Master Comp Mole Frac (HI)                       | 0.0000     | 0.0000 *         | 0.0000     | 0.0121  | 0.0000    |
| 27       | Master Comp Mole Frac (C3oicAcid)                | 0.0000     | 0.0000 *         | 0.0000     | 0.0000  | 0.0002    |
| 28       | Master Comp Mole Frac (Ethanol)                  | 0.0000     | 0.0000 *         | 0.0000     | 0.0000  | 0.0000    |
| 29       | Master Comp Mole Frac (KOH*)                     | 0.0000     | 0.0000 *         | 0.0000     | 0.0000  | 0.0000    |
| 30       | Master Comp Mole Frac (Rh*)                      | 0.0000     | 0.0000 *         | 0.0000     | 0.0000  | 0.0000    |
| 31       | Master Comp Molar Flow (Hy(tropomente)/h)        | 0.0000     | 0.0000 *         | 0.0000     | 1.4007  | 0.0000    |
| 32       | Master Comp Molar Flow (Me(tkgrne)e/h)           | 0.0000     | 0.0000 *         | 0.0000     | 0.0000  | 0.0000    |
| 33       | Master Comp Molar Flow (Nit(togen)e/h)           | 0.0000     | 0.0000 *         | 0.0000     | 3.5302  | 0.0226    |
| 34       | Master Comp Molar Flow (CQlkgmole/h)             | 0.0000     | 0.0000 *         | 0.0000     | 10.2055 | 0.6011    |
| 35       | Master Comp Molar Flow (CQR)mole/h)              | 0.0000     | 0.0000 *         | 0.0000     | 5.0687  | 0.0050    |
| 36       | Master Comp Molar Flow (Me(thgrnol)e/h)          | 0.0000     | 0.0000 *         | 0.0000     | 0.1063  | 599.2434  |
| 37       | Master Comp Molar Flow (CH&b)mole/h)             | 0.0000     | 0.0000 *         | 0.0000     | 96.1046 | 45.7862   |
| 38       | Master Comp Molar Flow (M-(Ncgrtatice)h)         | 0.0000     | 0.0000 *         | 0.0000     | 5.7586  | 15.1887   |
| 39       | Master Comp Molar Flow (Ac <b>(tignAold)</b> h)  | 0.0000     | 0.0000 *         | 0.0000     | 1.8407  | 1716.3067 |
| 40       | Master Comp Molar Flow (H2@mole/h)               | 1000.0000  | 500.0000 *       | 500.0000   | 20.1936 | 2011.4143 |
| 41       | Master Comp Molar Flow (HI)(kgmole/h)            | 0.0000     | 0.0000 *         | 0.0000     | 1.7680  | 0.0335    |
| 42       | Master Comp Molar Flow (C3(txigrAxcite)/h)       | 0.0000     | 0.0000 *         | 0.0000     | 0.0008  | 0.8636    |
| 43       | Master Comp Molar Flow (Eth( <b>ago</b> n)ple/h) | 0.0000     | 0.0000 *         | 0.0000     | 0.0000  | 0.0521    |
| 44       | Master Comp Molar Flow (KQ <b>kl</b> ǧ)mole/h)   | 0.0000     | 0.0000 *         | 0.0000     | 0.0000  | 0.0000    |
| 45       | Master Comp Molar Flow (Rh(h)gmole/h)            | 0.0000     | 0.0000 *         | 0.0000     | 0.0000  | 0.0000    |
| 46       |                                                  |            |                  |            |         |           |
| 47       |                                                  |            |                  |            |         |           |
| 48       |                                                  |            |                  |            |         |           |
| 49       |                                                  |            |                  |            |         |           |
| 50<br>51 |                                                  |            |                  |            |         |           |
| 51       |                                                  |            |                  |            |         |           |
| 52       |                                                  |            |                  |            |         |           |
| 52<br>53 |                                                  |            |                  |            |         |           |
| 54       |                                                  |            |                  |            |         |           |
| 55       |                                                  |            |                  |            |         |           |
| 56       |                                                  |            |                  |            |         |           |
| 57<br>58 |                                                  |            |                  |            |         |           |
| 58       |                                                  |            |                  |            |         |           |
| 59       |                                                  |            |                  |            |         |           |
| 60       |                                                  |            |                  |            |         |           |
| 61       |                                                  |            |                  |            |         |           |
| 160      |                                                  |            |                  |            |         |           |



Company Name Not Available Bedford, MA USA Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

# Workbook: Case (Main) (continued)

| 9<br>10 |                                                     | tinued)    | Fluid Pkg | j: All   |         |          |
|---------|-----------------------------------------------------|------------|-----------|----------|---------|----------|
| 11      | Name                                                | 21001      | 21005.    | TO FLARE | 21006   | 23004.   |
| 12      | Vapour Fraction                                     | 1.0000     | 1.0000    | 1.0000   | 1.0000  | 0.0000   |
| 13      | Temperature (C)                                     | 32.20 *    | 87.84     | 87.84    | 48.70 * | 138.8    |
| 14      | Pressure (bar)                                      | 32.00 *    | 2.300     | 2.300    | 28.60 * | 2.200    |
| 15      | Molar Flow (kgmole/h)                               | 365.6 *    | 71.07     | 521.2    | 44.70   | 149.1    |
| 16      | Master Comp Mole Frac (Hydrogen)                    | 0.0000 *   | 0.0000    | 0.0000   | 0.0001  | 0.0000   |
| 17      | Master Comp Mole Frac (Methane)                     | 0.0000 *   | 0.0000    | 0.0000   | 0.0000  | 0.0000   |
| 18      | Master Comp Mole Frac (Nitrogen)                    | 0.0200 *   | 0.0128    | 0.0128   | 0.0204  | 0.0000   |
| 19      | Master Comp Mole Frac (CO)                          | 0.9800 *   | 0.6030    | 0.6030   | 0.9582  | 0.0000   |
| 20      | Master Comp Mole Frac (CO2)                         | 0.0000 *   | 0.0002    | 0.0002   | 0.0003  | 0.0000   |
| 21      | Master Comp Mole Frac (Methanol)                    | 0.0000 *   | 0.1065    | 0.1065   | 0.0015  | 0.0006   |
| 22      | Master Comp Mole Frac (CH3I)                        | 0.0000 *   | 0.0497    | 0.0497   | 0.0164  | 0.0047   |
| 23      | Master Comp Mole Frac (M-Acetate)                   | 0.0000 *   | 0.0076    | 0.0076   | 0.0013  | 0.0043   |
| 24      | Master Comp Mole Frac (AceticAcid)                  | 0.0000 *   | 0.0713    | 0.0713   | 0.0003  | 0.9448   |
| 25      | Master Comp Mole Frac (H2O)                         | 0.0000 *   | 0.1485    | 0.1485   | 0.0012  | 0.0456   |
| 26      | Master Comp Mole Frac (HI)                          | 0.0000 *   | 0.0002    | 0.0002   | 0.0002  | 0.0000   |
| 27      | Master Comp Mole Frac (C3oicAcid)                   | 0.0000 *   | 0.0000    | 0.0000   | 0.0000  | 0.0000   |
| 28      | Master Comp Mole Frac (Ethanol)                     | 0.0000 *   | 0.0000    | 0.0000   | 0.0000  | 0.0000   |
| 29      | Master Comp Mole Frac (KOH*)                        | 0.0000 *   | 0.0000    | 0.0000   | 0.0000  | 0.0000   |
| 30      | Master Comp Mole Frac (Rh*)                         | 0.0000 *   | 0.0000    | 0.0000   | 0.0000  | 0.0000   |
| 31      | Master Comp Molar Flow (Hy <b>(krg)gnexh)</b> /h)   | 0.0000 *   | 0.0033    | 0.0244   | 0.0033  | 0.0000   |
| 32      | Master Comp Molar Flow (Me(tkgane)e/h)              | 0.0000 *   | 0.0000    | 0.0000   | 0.0000  | 0.0000   |
| 33      | Master Comp Molar Flow (Nit(hognero)e/h)            | 7.3000 *   | 0.9132    | 6.6970   | 0.9120  | 0.0000   |
| 34      | Master Comp Molar Flow (CQkgmole/h)                 | 358.3000 * | 42.8580   | 314.2917 | 42.8305 | 0.0000   |
| 35      | Master Comp Molar Flow (CO@mole/h)                  | 0.0000 *   | 0.0148    | 0.1088   | 0.0143  | 0.0000   |
| 36      | Master Comp Molar Flow (Me(tkganol)e/h)             | 0.0000 *   | 7.5720    | 55.5283  | 0.0666  | 0.0867   |
| 37      | Master Comp Molar Flow (CH(&t)mole/h)               | 0.0000 *   | 3.5325    | 25.9052  | 0.7349  | 0.7075   |
| 38      | Master Comp Molar Flow (M- <b>(kicgetautle</b> )/h) | 0.0000 *   | 0.5377    | 3.9430   | 0.0577  | 0.6448   |
| 39      | Master Comp Molar Flow (Ac <b>(ttigr/Aolet</b> )/h) | 0.0000 *   | 5.0692    | 37.1740  | 0.0156  | 140.9138 |
| 40      | Master Comp Molar Flow (H2(Q)mole/h)                | 0.0000 *   | 10.5571   | 77.4186  | 0.0554  | 6.7953   |
| 41      | Master Comp Molar Flow (HI)(kgmole/h)               | 0.0000 *   | 0.0129    | 0.0948   | 0.0088  | 0.0000   |
| 42      | Master Comp Molar Flow (C3(big/Ancile)/h)           | 0.0000 *   | 0.0026    | 0.0190   | 0.0000  | 0.0001   |
| 43      | Master Comp Molar Flow (Eth(kagonl))le/h)           | 0.0000 *   | 0.0005    | 0.0038   | 0.0000  | 0.0000   |
| 44      | Master Comp Molar Flow (KO(kkg)mole/h)              | 0.0000 *   | 0.0000    | 0.0000   | 0.0000  | 0.0000   |
| 45      | Master Comp Molar Flow (Rh(t)gmole/h)               | 0.0000 *   | 0.0000    | 0.0000   | 0.0000  | 0.0000   |
| 46      |                                                     |            |           |          |         |          |



Company Name Not Available Bedford, MA USA Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

| 9        |                                                  | Mat    | erial Streams (con | tinued) | Fluid Pkg   | g: All    |
|----------|--------------------------------------------------|--------|--------------------|---------|-------------|-----------|
| 11       | Name                                             | 22069. | 22071              | 22013.  | 21300       | 21301     |
| 12       | Vapour Fraction                                  | 1.0000 | 0.0000             | 0.0000  | 0.0000      | 0.0000    |
| 13       | Temperature (C)                                  | 144.8  | 95.00 *            | 70.35   | 5.000 *     | 22.64     |
| 14       | Pressure (bar)                                   | 2.200  | 5.200 *            | 39.90 * | 15.00 *     | 1.000 *   |
| 15       | Molar Flow (kgmole/h)                            | 10.30  | 0.2300 *           | 184.7   | 1000 *      | 1000      |
| 16       | Master Comp Mole Frac (Hydrogen)                 | 0.0000 | 0.0000 *           | 0.0000  | 0.0000 *    | 0.0000    |
| 17       | Master Comp Mole Frac (Methane)                  | 0.0000 | 0.0000 *           | 0.0000  | 0.0000 *    | 0.0000    |
| 18       | Master Comp Mole Frac (Nitrogen)                 | 0.0000 | 0.0000 *           | 0.0000  | 0.0000 *    | 0.0000    |
| 19       | Master Comp Mole Frac (CO)                       | 0.0000 | 0.0000 *           | 0.0000  | 0.0000 *    | 0.0000    |
| 20       | Master Comp Mole Frac (CO2)                      | 0.0000 | 0.0000 *           | 0.0003  | 0.0000 *    | 0.0000    |
| 21       | Master Comp Mole Frac (Methanol)                 | 0.0000 | 0.0000 *           | 0.0026  | 0.0000 *    | 0.0000    |
| 22       | Master Comp Mole Frac (CH3I)                     | 0.0000 | 0.0000 *           | 0.2508  | 0.0000 *    | 0.0000    |
| 23       | Master Comp Mole Frac (M-Acetate)                | 0.0000 | 0.0000 *           | 0.0330  | 0.0000 *    | 0.0000    |
| 24       | Master Comp Mole Frac (AceticAcid)               | 0.9453 | 0.0000 *           | 0.1724  | 0.0000 *    | 0.0000    |
| 25       | Master Comp Mole Frac (H2O)                      | 0.0219 | 1.0000 *           | 0.5401  | 1.0000 *    | 1.0000    |
| 26       | Master Comp Mole Frac (HI)                       | 0.0000 | 0.0000 *           | 0.0007  | 0.0000 *    | 0.0000    |
| 27       | Master Comp Mole Frac (C3oicAcid)                | 0.0328 | 0.0000 *           | 0.0001  | 0.0000 *    | 0.0000    |
| 28       | Master Comp Mole Frac (Ethanol)                  | 0.0000 | 0.0000 *           | 0.0000  | 0.0000 *    | 0.0000    |
| 29       | Master Comp Mole Frac (KOH*)                     | 0.0000 | 0.0000 *           | 0.0000  | 0.0000 *    | 0.0000    |
| 30       | Master Comp Mole Frac (Rh*)                      | 0.0000 | 0.0000 *           | 0.0000  | 0.0000 *    | 0.0000    |
| 31       | Master Comp Molar Flow (Hy(thropognethe)/h)      | 0.0000 | 0.0000 *           | 0.0001  | 0.0000 *    | 0.0000    |
| 32       | Master Comp Molar Flow (Me <b>(tkgme)</b> e/h)   | 0.0000 | 0.0000 *           | 0.0000  | 0.0000 *    | 0.0000    |
| 33       | Master Comp Molar Flow (Nit(togreno)e/h)         | 0.0000 | 0.0000 *           | 0.0020  | 0.0000 *    | 0.0000    |
| 34       | Master Comp Molar Flow (CQkgmole/h)              | 0.0000 | 0.0000 *           | 0.0038  | 0.0000 *    | 0.0000    |
| 35       | Master Comp Molar Flow (CQR)mole/h)              | 0.0000 | 0.0000 *           | 0.0497  | 0.0000 *    | 0.0000    |
| 36       | Master Comp Molar Flow (Me(tkgmol)e/h)           | 0.0000 | 0.0000 *           | 0.4845  | 0.0000 *    | 0.0000    |
| 37       | Master Comp Molar Flow (CH(&t)mole/h)            | 0.0000 | 0.0000 *           | 46.3266 | 0.0000 *    | 0.0000    |
| 38       | Master Comp Molar Flow (M-(Ncgetatile)h)         | 0.0000 | 0.0000 *           | 6.0902  | 0.0000 *    | 0.0000    |
| 39       | Master Comp Molar Flow (Ac <b>(ttgr/Aole)</b> h) | 9.7369 | 0.0000 *           | 31.8526 | 0.0000 *    | 0.0000    |
| 40       | Master Comp Molar Flow (H2(Q)mole/h)             | 0.2252 | 0.2300 *           | 99.7850 | 1000.0000 * | 1000.0000 |
| 41       | Master Comp Molar Flow (HI)(kgmole/h)            | 0.0000 | 0.0000 *           | 0.1308  | 0.0000 *    | 0.0000    |
| 42       | Master Comp Molar Flow (C3(big/Axcitel/h)        | 0.3379 | 0.0000 *           | 0.0142  | 0.0000 *    | 0.0000    |
| 43       | Master Comp Molar Flow (Eth(kgph))le/h)          | 0.0000 | 0.0000 *           | 0.0000  | 0.0000 *    | 0.0000    |
| 44       | Master Comp Molar Flow (KQ <b>kt</b> ǧ)mole/h)   | 0.0000 | 0.0000 *           | 0.0000  | 0.0000 *    | 0.0000    |
| 45       | Master Comp Molar Flow (Rh(t)gmole/h)            | 0.0000 | 0.0000 *           | 0.0000  | 0.0000 *    | 0.0000    |
| 46       |                                                  |        |                    |         |             |           |
| 47       |                                                  |        |                    |         |             |           |
| 48       |                                                  |        |                    |         |             |           |
| 49       |                                                  |        |                    |         |             |           |
| 50<br>51 |                                                  |        |                    |         |             |           |
| 51       |                                                  |        |                    |         |             |           |
| 52<br>53 |                                                  |        |                    |         |             |           |
| 53       |                                                  |        |                    |         |             |           |
| 54       |                                                  |        |                    |         |             |           |
| 55       |                                                  |        |                    |         |             |           |
| 56       |                                                  |        |                    |         |             |           |
| 57<br>58 |                                                  |        |                    |         |             |           |
| 58       |                                                  |        |                    |         |             |           |
| 59       |                                                  |        |                    |         |             |           |
| 60       |                                                  |        |                    |         |             |           |
| 61       |                                                  |        |                    |         |             |           |



Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

#### Workbook: Case (Main) (continued)

| 9<br>10        |                                                   | Mat     | erial Streams (con | itinued) | Fluid Pkg: | All |
|----------------|---------------------------------------------------|---------|--------------------|----------|------------|-----|
| 11             | Name                                              | 21005*  | 1                  | 21018    |            |     |
| 12             | Vapour Fraction                                   | 0.6289  | 0.0000             | 0.0000   |            |     |
| 13             | Temperature (C)                                   | 24.00 * | 20.00 *            | 147.4 *  |            |     |
| 14             | Pressure (bar)                                    | 15.00 * | 31.00 *            | 31.00 *  |            |     |
| 15             | Molar Flow (kgmole/h)                             | 71.07   | 105.4 *            | 105.4    |            |     |
| 16             | Master Comp Mole Frac (Hydrogen)                  | 0.0000  | 0.0000 *           | 0.0000   |            |     |
| 17             | Master Comp Mole Frac (Methane)                   | 0.0000  | 0.0000 *           | 0.0000   |            |     |
| 18             | Master Comp Mole Frac (Nitrogen)                  | 0.0128  | 0.0010 *           | 0.0010   |            |     |
| 19             | Master Comp Mole Frac (CO)                        | 0.6030  | 0.0000 *           | 0.0000   |            |     |
| 20             | Master Comp Mole Frac (CO2)                       | 0.0002  | 0.0000 *           | 0.0000   |            |     |
| 21             | Master Comp Mole Frac (Methanol)                  | 0.1065  | 0.9980 *           | 0.9980   |            |     |
| 22             | Master Comp Mole Frac (CH3I)                      | 0.0497  | 0.0000 *           | 0.0000   |            |     |
| 23             | Master Comp Mole Frac (M-Acetate)                 | 0.0076  | 0.0000 *           | 0.0000   |            |     |
| 24             | Master Comp Mole Frac (AceticAcid)                | 0.0713  | 0.0000 *           | 0.0000   |            |     |
| 25             | Master Comp Mole Frac (H2O)                       | 0.1485  | 0.0009 *           | 0.0009   |            |     |
| 26             | Master Comp Mole Frac (HI)                        | 0.0002  | 0.0000 *           | 0.0000   |            |     |
| 27             | Master Comp Mole Frac (C3oicAcid)                 | 0.0000  | 0.0000 *           | 0.0000   |            |     |
| 28             | Master Comp Mole Frac (Ethanol)                   | 0.0000  | 0.0001 *           | 0.0001   |            |     |
| 29             | Master Comp Mole Frac (KOH*)                      | 0.0000  | 0.0000 *           | 0.0000   |            |     |
| 30             | Master Comp Mole Frac (Rh*)                       | 0.0000  | 0.0000 *           | 0.0000   |            |     |
| 31             | Master Comp Molar Flow (Hy <b>(krg)gnezh)</b> /h) | 0.0033  | 0.0000 *           | 0.0000   |            |     |
| 32             | Master Comp Molar Flow (Me(tkgme)e/h)             | 0.0000  | 0.0000 *           | 0.0000   |            |     |
| 33             | Master Comp Molar Flow (Nit(hogreno)e/h)          | 0.9132  | 0.1098 *           | 0.1098   |            |     |
| 34             | Master Comp Molar Flow (CQkgmole/h)               | 42.8580 | 0.0000 *           | 0.0000   |            |     |
| 35             | Master Comp Molar Flow (CQ@mole/h)                | 0.0148  | 0.0000 *           | 0.0000   |            |     |
| 36             | Master Comp Molar Flow (Me(kganol)e/h)            | 7.5720  | 105.2142 *         | 105.2142 |            |     |
| 37             | Master Comp Molar Flow (CH(8t)mole/h)             | 3.5325  | 0.0000 *           | 0.0000   |            |     |
| 38             | Master Comp Molar Flow (M-(kcertatle)h)           | 0.5377  | 0.0000 *           | 0.0000   |            |     |
| 39             | Master Comp Molar Flow (Ac(tiguAole))h)           | 5.0692  | 0.0000 *           | 0.0000   |            |     |
| 40             | Master Comp Molar Flow (H2(Q)mole/h)              | 10.5571 | 0.0937 *           | 0.0937   |            |     |
| 41             | Master Comp Molar Flow (HI)(kgmole/h)             | 0.0129  | 0.0000 *           | 0.0000   |            |     |
| 42             | Master Comp Molar Flow (C3(xigAxcite)/h)          | 0.0026  | 0.0000 *           | 0.0000   |            |     |
| 43             | Master Comp Molar Flow (Ethagolole/h)             | 0.0005  | 0.0074 *           | 0.0074   |            |     |
| 44             | Master Comp Molar Flow (KQ(Hd)mole/h)             | 0.0000  | 0.0000 *           | 0.0000   |            |     |
| 45             | Master Comp Molar Flow (Rh(t)gmole/h)             | 0.0000  | 0.0000 *           | 0.0000   |            |     |
| 46             |                                                   |         |                    |          |            |     |
| 47<br>48       |                                                   |         |                    |          |            |     |
| -              |                                                   |         |                    |          |            |     |
| 49<br>50       |                                                   |         |                    |          |            |     |
| 51             |                                                   |         |                    |          |            |     |
| 52             |                                                   |         |                    |          |            |     |
| 52<br>53       |                                                   |         |                    |          |            |     |
| 54             |                                                   |         |                    |          |            |     |
| 54<br>55<br>56 |                                                   |         |                    |          |            |     |
| 56             |                                                   |         |                    |          |            |     |
| 57             |                                                   |         |                    |          |            |     |
| 58             |                                                   |         |                    |          |            |     |
| 58<br>59<br>60 |                                                   |         |                    |          |            |     |
| 60             |                                                   |         |                    |          |            |     |
| 61             |                                                   |         |                    |          |            |     |

\* Specified by user.



Company Name Not Available Bedford, MA USA Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

| 9  |                             |          | Compositions |          | Fluid Pk | g: All |
|----|-----------------------------|----------|--------------|----------|----------|--------|
| 11 | Name                        | 21002    | 21003*       | 21003    | 2101124  | 21005  |
| 12 | Comp Mole Frac (Hydrogen)   | 0.0000 * | 0.0000       | 0.0000   | 0.0000   | 0.0000 |
| 13 | Comp Mole Frac (Methane)    | 0.0000 * | 0.0000       | 0.0000   | 0.0000   | 0.0000 |
| 14 | Comp Mole Frac (Nitrogen)   | 0.0020 * | 0.9315       | 0.0010   | 0.0000   | 0.0128 |
| 15 | Comp Mole Frac (CO)         | 0.0000 * | 0.0000       | 0.0000   | 0.0000   | 0.6030 |
| 16 | Comp Mole Frac (CO2)        | 0.0000 * | 0.0000       | 0.0000   | 0.0001   | 0.0002 |
| 17 | Comp Mole Frac (Methanol)   | 0.9970 * | 0.0685       | 0.9980   | 0.0020   | 0.1065 |
| 18 | Comp Mole Frac (CH3I)       | 0.0000 * | 0.0000       | 0.0000   | 0.0742   | 0.0497 |
| 19 | Comp Mole Frac (M-Acetate)  | 0.0000 * | 0.0000       | 0.0000   | 0.0155   | 0.0076 |
| 20 | Comp Mole Frac (AceticAcid) | 0.0000 * | 0.0000       | 0.0000   | 0.2052   | 0.0713 |
| 21 | Comp Mole Frac (H2O)        | 0.0009 * | 0.0000       | 0.0009   | 0.7028   | 0.1485 |
| 22 | Comp Mole Frac (HI)         | 0.0000 * | 0.0000       | 0.0000   | 0.0002   | 0.0002 |
| 23 | Comp Mole Frac (C3oicAcid)  | 0.0000 * | 0.0000       | 0.0000   | 0.0000   | 0.0000 |
| 24 | Comp Mole Frac (Ethanol)    | 0.0001 * | 0.0000       | 0.0001   | 0.0000   | 0.0000 |
| 25 | Comp Mole Frac (KOH*)       | 0.0000 * | 0.0000       | 0.0000   | 0.0000   | 0.0000 |
| 26 | Comp Mole Frac (Rh*)        | 0.0000 * | 0.0000       | 0.0000   | 0.0000   | 0.0000 |
| 27 | Name                        | 21008    | 22013        | 22015    | 21012    | 21014* |
| 28 | Comp Mole Frac (Hydrogen)   | 0.0000   | 0.0000 *     | 0.0000 * | 0.0000   | 0.0000 |
| 29 | Comp Mole Frac (Methane)    | 0.0000   | 0.0000 *     | 0.0000 * | 0.0000   | 0.0000 |
| 30 | Comp Mole Frac (Nitrogen)   | 0.0000   | 0.0000 *     | 0.0000 * | 0.0010   | 0.0003 |
| 31 | Comp Mole Frac (CO)         | 0.0001   | 0.0000 *     | 0.0000 * | 0.0000   | 0.0000 |
| 32 | Comp Mole Frac (CO2)        | 0.0000   | 0.0003 *     | 0.0001 * | 0.0000   | 0.0001 |
| 33 | Comp Mole Frac (Methanol)   | 0.1412   | 0.0026 *     | 0.0018 * | 0.9980   | 0.2985 |
| 34 | Comp Mole Frac (CH3I)       | 0.0105   | 0.2508 *     | 0.0160 * | 0.0000   | 0.0521 |
| 35 | Comp Mole Frac (M-Acetate)  | 0.0035   | 0.0330 *     | 0.0098 * | 0.0000   | 0.0109 |
| 36 | Comp Mole Frac (AceticAcid) | 0.3782   | 0.1724 *     | 0.2159 * | 0.0000   | 0.1441 |
| 37 | Comp Mole Frac (H2O)        | 0.4662   | 0.5401 *     | 0.7563 * | 0.0009   | 0.4939 |
| 38 | Comp Mole Frac (HI)         | 0.0000   | 0.0007 *     | 0.0000 * | 0.0000   | 0.0001 |
| 39 | Comp Mole Frac (C3oicAcid)  | 0.0002   | 0.0001 *     | 0.0000 * | 0.0000   | 0.0000 |
| 40 | Comp Mole Frac (Ethanol)    | 0.0000   | 0.0000 *     | 0.0000 * | 0.0001   | 0.0000 |
| 41 | Comp Mole Frac (KOH*)       | 0.0000   | 0.0000 *     | 0.0000 * | 0.0000   | 0.0000 |
| 42 | Comp Mole Frac (Rh*)        | 0.0000   | 0.0000 *     | 0.0000 * | 0.0000   | 0.0000 |
| 43 | Name                        | 21007    | 21010        | 22004    | 2103     | 21009  |
| 44 | Comp Mole Frac (Hydrogen)   | 0.0000 * | 0.0000 *     | 0.0000 * | 0.0000   | 0.0000 |
| 45 | Comp Mole Frac (Methane)    | 0.0000 * | 0.0000 *     | 0.0000 * | 0.0000   | 0.0000 |
| 46 | Comp Mole Frac (Nitrogen)   | 0.0000 * | 0.0000 *     | 0.0000 * | 0.0000   | 0.0000 |
| 47 | Comp Mole Frac (CO)         | 0.0010 * | 0.0000 *     | 0.0000 * | 0.0001   | 0.0006 |
| 48 | Comp Mole Frac (CO2)        | 0.0000 * | 0.0000 *     | 0.0000 * | 0.0000   | 0.0000 |
| 49 | Comp Mole Frac (Methanol)   | 0.2846 * | 0.1001 *     | 0.0001 * | 0.1365   | 0.2475 |
| 50 | Comp Mole Frac (CH3I)       | 0.1061 * | 0.0047 *     | 0.0072 * | 0.0104   | 0.0317 |
| 51 | Comp Mole Frac (M-Acetate)  | 0.0182 * | 0.0021 *     | 0.0033 * | 0.0035   | 0.0083 |
| 52 | Comp Mole Frac (AceticAcid) | 0.1916 * | 0.4401 *     | 0.7604 * | 0.3910   | 0.2466 |
| 53 | Comp Mole Frac (H2O)        | 0.3982 * | 0.4527 *     | 0.2283 * | 0.4582   | 0.4651 |
| 54 | Comp Mole Frac (HI)         | 0.0002 * | 0.0000 *     | 0.0000 * | 0.0000   | 0.0000 |
| 55 | Comp Mole Frac (C3oicAcid)  | 0.0001 * | 0.0002 *     | 0.0007 * | 0.0002   | 0.0001 |
| 56 | Comp Mole Frac (Ethanol)    | 0.0000 * | 0.0000 *     | 0.0000 * | 0.0000   | 0.0000 |
| 57 | Comp Mole Frac (KOH*)       | 0.0000 * | 0.0000 *     | 0.0000 * | 0.0000   | 0.0000 |
| 58 | Comp Mole Frac (Rh*)        | 0.0000 * | 0.0000 *     | 0.0000 * | 0.0000   | 0.0000 |
| 59 |                             |          |              |          |          |        |
| 60 |                             |          |              |          |          |        |



Company Name Not Available Bedford, MA USA Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

| 9        |                             | Co       | empositions (conti | nued)    | Fluid Pk | g: All   |
|----------|-----------------------------|----------|--------------------|----------|----------|----------|
| 11       | Name                        | 21010.   | 23010              | 23012    | 23013    | 23008    |
| 12       | Comp Mole Frac (Hydrogen)   | 0.0000   | 0.0000 *           | 0.0001   | 0.0000   | 0.0000 * |
| 13       | Comp Mole Frac (Methane)    | 0.0000   | 0.0000 *           | 0.0000   | 0.0000   | 0.0000 * |
| 14       | Comp Mole Frac (Nitrogen)   | 0.0000   | 0.0000 *           | 0.0207   | 0.0002   | 0.0000 * |
| 15       | Comp Mole Frac (CO)         | 0.0000   | 0.0000 *           | 0.9757   | 0.0070   | 0.0000 * |
| 16       | Comp Mole Frac (CO2)        | 0.0000   | 0.0000 *           | 0.0003   | 0.0001   | 0.0000 * |
| 17       | Comp Mole Frac (Methanol)   | 0.1034   | 0.0005 *           | 0.0000   | 0.0023   | 0.0005 * |
| 18       | Comp Mole Frac (CH3I)       | 0.0041   | 0.0047 *           | 0.0003   | 0.0241   | 0.0047 * |
| 19       | Comp Mole Frac (M-Acetate)  | 0.0020   | 0.0041 *           | 0.0001   | 0.0055   | 0.0041 * |
| 20       | Comp Mole Frac (AceticAcid) | 0.4341   | 0.9473 *           | 0.0026   | 0.9173   | 0.9473 * |
| 21       | Comp Mole Frac (H2O)        | 0.4562   | 0.0433 *           | 0.0003   | 0.0432   | 0.0433 * |
| 22       | Comp Mole Frac (HI)         | 0.0000   | 0.0000 *           | 0.0000   | 0.0002   | 0.0000 * |
| 23       | Comp Mole Frac (C3oicAcid)  | 0.0002   | 0.0000 *           | 0.0000   | 0.0000   | 0.0000 * |
| 24       | Comp Mole Frac (Ethanol)    | 0.0000   | 0.0000 *           | 0.0000   | 0.0000   | 0.0000 * |
| 25       | Comp Mole Frac (KOH*)       | 0.0000   | 0.0000 *           | 0.0000   | 0.0000   | 0.0000 * |
| 26       | Comp Mole Frac (Rh*)        | 0.0000   | 0.0000 *           | 0.0000   | 0.0000   | 0.0000 * |
| 27       | Name                        | 23010.   | 23009.             | 23370    | 23372    | 23009    |
| 28       | Comp Mole Frac (Hydrogen)   | 0.0000   | 0.0000             | 0.0000 * | 0.0000   | 0.0000   |
| 29       | Comp Mole Frac (Methane)    | 0.0000   | 0.0000             | 0.0000 * | 0.0000   | 0.0000   |
| 30       | Comp Mole Frac (Nitrogen)   | 0.0000   | 0.0000             | 0.0000 * | 0.0000   | 0.0000   |
| 31       | Comp Mole Frac (CO)         | 0.0000   | 0.0000             | 0.0000 * | 0.0000   | 0.0000   |
| 32       | Comp Mole Frac (CO2)        | 0.0000   | 0.0000             | 0.0000 * | 0.0000   | 0.0000   |
| 33       | Comp Mole Frac (Methanol)   | 0.0005   | 0.0005             | 0.0000 * | 0.0000   | 0.0005   |
| 34       | Comp Mole Frac (CH3I)       | 0.0047   | 0.0047             | 0.0000 * | 0.0000   | 0.0047   |
| 35       | Comp Mole Frac (M-Acetate)  | 0.0041   | 0.0041             | 0.0000 * | 0.0000   | 0.0041   |
| 36       | Comp Mole Frac (AceticAcid) | 0.9473   | 0.9473             | 0.0000 * | 0.0000   | 0.9473   |
| 37       | Comp Mole Frac (H2O)        | 0.0433   | 0.0433             | 1.0000 * | 1.0000   | 0.0433   |
| 38       | Comp Mole Frac (HI)         | 0.0000   | 0.0000             | 0.0000 * | 0.0000   | 0.0000   |
| 39       | Comp Mole Frac (C3oicAcid)  | 0.0000   | 0.0000             | 0.0000 * | 0.0000   | 0.0000   |
| 40       | Comp Mole Frac (Ethanol)    | 0.0000   | 0.0000             | 0.0000 * | 0.0000   | 0.0000   |
| 41       | Comp Mole Frac (KOH*)       | 0.0000   | 0.0000             | 0.0000 * | 0.0000   | 0.0000   |
| 42       | Comp Mole Frac (Rh*)        | 0.0000   | 0.0000             | 0.0000 * | 0.0000   | 0.0000   |
| 43       | Name                        | 22011    | 23014              | 23001    | 23002    | 23011*   |
| 44       | Comp Mole Frac (Hydrogen)   | 0.0578 * | 0.0741             | 0.0000   | 0.0221   | 0.0000   |
| 45       | Comp Mole Frac (Methane)    | 0.0000 * | 0.0000             | 0.0000   | 0.0000   | 0.0000   |
| 46       | Comp Mole Frac (Nitrogen)   | 0.1450 * | 0.1851             | 0.0001   | 0.0696   | 0.0001   |
| 47       | Comp Mole Frac (CO)         | 0.4200 * | 0.5371             | 0.0003   | 0.8452   | 0.0003   |
| 48       | Comp Mole Frac (CO2)        | 0.1739 * | 0.1895             | 0.0054   | 0.0566   | 0.0054   |
| 49       | Comp Mole Frac (Methanol)   | 0.0000 * | 0.0000             | 0.0005   | 0.0000   | 0.0005   |
| 50       | Comp Mole Frac (CH3I)       | 0.1669 * | 0.0016             | 0.0387   | 0.0006   | 0.0387   |
| 51       | Comp Mole Frac (M-Acetate)  | 0.0051 * | 0.0003             | 0.0050   | 0.0001   | 0.0050   |
| 52       | Comp Mole Frac (AceticAcid) | 0.0001 * | 0.0105             | 0.9025   | 0.0049   | 0.9025   |
| 53       | Comp Mole Frac (H2O)        | 0.0094 * | 0.0014             | 0.0431   | 0.0006   | 0.0431   |
| 54       | Comp Mole Frac (HI)         | 0.0218 * | 0.0003             | 0.0045   | 0.0001   | 0.0045   |
| 55       | Comp Mole Frac (C3oicAcid)  | 0.0000 * | 0.0000             | 0.0000   | 0.0000   | 0.0000   |
| 56       | Comp Mole Frac (Ethanol)    | 0.0000 * | 0.0000             | 0.0000   | 0.0000   | 0.0000   |
| 57       | Comp Mole Frac (KOH*)       | 0.0000 * | 0.0000             | 0.0000   | 0.0000   | 0.0000   |
| 58       | Comp Mole Frac (Rh*)        | 0.0000 * | 0.0000             | 0.0000   | 0.0000   | 0.0000   |
| 59       |                             |          |                    |          |          |          |
| 59<br>60 |                             |          |                    |          |          |          |



Company Name Not Available Bedford, MA USA Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

# Workbook: Case (Main) (continued)

| ne mp Mole Frac (Hydrogen) np Mole Frac (Methane) np Mole Frac (Nitrogen) np Mole Frac (CO) np Mole Frac (CO2) np Mole Frac (Methanol) np Mole Frac (CH3I) np Mole Frac (M-Acetate) np Mole Frac (AceticAcid) np Mole Frac (AceticAcid) | 0.0000<br>0.0000<br>0.0002<br>0.0019<br>0.0041<br>0.0010<br>0.0352<br>0.0051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0001<br>0.0000<br>0.0023<br>0.0281<br>0.0603<br>0.0056<br>0.4492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23004<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23301<br>0.0000 *<br>0.0000 *<br>0.0000 *<br>0.0000 * | 23006*<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| np Mole Frac (Methane) np Mole Frac (Nitrogen) np Mole Frac (CO) np Mole Frac (CO2) np Mole Frac (Methanol) np Mole Frac (CH3I) np Mole Frac (M-Acetate) np Mole Frac (AceticAcid)                                                      | 0.0000<br>0.0002<br>0.0019<br>0.0041<br>0.0010<br>0.0352<br>0.0051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0000<br>0.0023<br>0.0281<br>0.0603<br>0.0056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0000 *<br>0.0000 *                                  | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| np Mole Frac (Nitrogen) np Mole Frac (CO) np Mole Frac (CO2) np Mole Frac (Methanol) np Mole Frac (CH3I) np Mole Frac (M-Acetate) np Mole Frac (AceticAcid)                                                                             | 0.0002<br>0.0019<br>0.0041<br>0.0010<br>0.0352<br>0.0051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0023<br>0.0281<br>0.0603<br>0.0056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0000 *                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| np Mole Frac (CO) np Mole Frac (CO2) np Mole Frac (Methanol) np Mole Frac (CH3I) np Mole Frac (M-Acetate) np Mole Frac (AceticAcid)                                                                                                     | 0.0019<br>0.0041<br>0.0010<br>0.0352<br>0.0051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0281<br>0.0603<br>0.0056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| np Mole Frac (CO2) np Mole Frac (Methanol) np Mole Frac (CH3I) np Mole Frac (M-Acetate) np Mole Frac (AceticAcid)                                                                                                                       | 0.0041<br>0.0010<br>0.0352<br>0.0051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0603<br>0.0056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000 *                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| np Mole Frac (Methanol) np Mole Frac (CH3I) np Mole Frac (M-Acetate) np Mole Frac (AceticAcid)                                                                                                                                          | 0.0010<br>0.0352<br>0.0051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| np Mole Frac (CH3I)<br>np Mole Frac (M-Acetate)<br>np Mole Frac (AceticAcid)                                                                                                                                                            | 0.0352<br>0.0051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000 *                                              | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| np Mole Frac (M-Acetate)<br>np Mole Frac (AceticAcid)                                                                                                                                                                                   | 0.0051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 4492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000 *                                              | 0.0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| np Mole Frac (AceticAcid)                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5000 *                                              | 0.0047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                         | 0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000 *                                              | 0.0043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| np Mole Frac (H2O)                                                                                                                                                                                                                      | 0.9061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000 *                                              | 0.9448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                         | 0.0431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5000 *                                              | 0.0456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| np Mole Frac (HI)                                                                                                                                                                                                                       | 0.0034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000 *                                              | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| np Mole Frac (C3oicAcid)                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000 *                                              | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| np Mole Frac (Ethanol)                                                                                                                                                                                                                  | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| np Mole Frac (KOH*)                                                                                                                                                                                                                     | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000 *                                              | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| np Mole Frac (Rh*)                                                                                                                                                                                                                      | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000 *                                              | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ne                                                                                                                                                                                                                                      | 23302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23007*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23008*                                                | 22020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| np Mole Frac (Hydrogen)                                                                                                                                                                                                                 | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| . , ,                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| . , ,                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| . , ,                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 0.9904 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| . ,                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 0.0087 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 0.0009 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ·                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ne                                                                                                                                                                                                                                      | koh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22068*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 22069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| np Mole Frac (Hydrogen)                                                                                                                                                                                                                 | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| np Mole Frac (Methane)                                                                                                                                                                                                                  | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000 *                                              | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| np Mole Frac (Nitrogen)                                                                                                                                                                                                                 | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000 *                                              | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| np Mole Frac (CO)                                                                                                                                                                                                                       | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000 *                                              | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| np Mole Frac (CO2)                                                                                                                                                                                                                      | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| np Mole Frac (Methanol)                                                                                                                                                                                                                 | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000 *                                              | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| np Mole Frac (CH3I)                                                                                                                                                                                                                     | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000 *                                              | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| np Mole Frac (M-Acetate)                                                                                                                                                                                                                | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000 *                                              | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| np Mole Frac (AceticAcid)                                                                                                                                                                                                               | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8977 *                                              | 0.9461 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| np Mole Frac (H2O)                                                                                                                                                                                                                      | 0.9091 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1023 *                                              | 0.0219 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| np Mole Frac (HI)                                                                                                                                                                                                                       | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000 *                                              | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| np Mole Frac (C3oicAcid)                                                                                                                                                                                                                | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000 *                                              | 0.0320 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| np Mole Frac (Ethanol)                                                                                                                                                                                                                  | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000 *                                              | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                         | 0.0909 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000 *                                              | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| np Mole Frac (Rh*)                                                                                                                                                                                                                      | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000 *                                              | 0.0000 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| . ,                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ווי און און איז                                                                                                                                                                                     | p Mole Frac (H2O) p Mole Frac (HI) p Mole Frac (C3oicAcid) p Mole Frac (Ethanol) p Mole Frac (Ethanol) p Mole Frac (KOH*) p Mole Frac (Rh*) e p Mole Frac (Hydrogen) p Mole Frac (Methane) p Mole Frac (Nitrogen) p Mole Frac (CO) p Mole Frac (CO2) p Mole Frac (CH3I) p Mole Frac (Methanol) p Mole Frac (M-Acetate) p Mole Frac (C3oicAcid) p Mole Frac (C3oicAcid) p Mole Frac (KOH*) p Mole Frac (Nitrogen) p Mole Frac (C3oicAcid) p Mole Frac (C3oicAcid) p Mole Frac (C3oicAcid) p Mole Frac (Nitrogen) p Mole Frac (Methanol) p Mole Frac (C3oicAcid) p Mole Frac (C3oicAcid) p Mole Frac (Methanol) p Mole Frac (Methane) p Mole Frac (Methane) p Mole Frac (Methane) p Mole Frac (CO2) p Mole Frac (CO2) p Mole Frac (CO3) p Mole Frac (CO3) p Mole Frac (C43I) p Mole Frac (C42O) p Mole Frac (C42O) p Mole Frac (C3oicAcid) p Mole Frac (C3oicAcid) p Mole Frac (Ethanol) p Mole Frac (Ethanol) p Mole Frac (Ethanol) p Mole Frac (Ethanol) | p Mole Frac (AceticAcid) p Mole Frac (H2O) p Mole Frac (H1) p Mole Frac (H1) p Mole Frac (C3oicAcid) p Mole Frac (C3oicAcid) p Mole Frac (Ethanol) p Mole Frac (KOH*) p Mole Frac (Rh*)  e 23302 p Mole Frac (Hydrogen) p Mole Frac (Nitrogen) p Mole Frac (Nitrogen) p Mole Frac (Note (CO) p Mole Frac (Note (CO) p Mole Frac (Methanol) p Mole Frac (CO) p Mole Frac (Methanol) p Mole Frac (Mole (C3oicAcid) p Mole Frac (C3oicAcid) p Mole Frac (C3oicAcid) p Mole Frac (KOH*) p Mole Frac (KOH*) p Mole Frac (Hydrogen) p Mole Frac (Hydrogen) p Mole Frac (Methanol) p Mole Frac (C3oicAcid) p Mole Frac (KOH*) p Mole Frac (CO) p Mole Frac (Methanol) p Mole Frac (CO) p Mole Frac (Methanol) p Mole Frac (CO) p Mole Frac (Methanol) p Mole Frac (Methanol) p Mole Frac (Methanol) p Mole Frac (CO) p Mole Frac (Methanol) p Mole Frac (Methanol) p Mole Frac (CO) p Mole Frac (Methanol) p Mole Frac (Methanol) p Mole Frac (Methanol) p Mole Frac (H2O) p Mole Frac (H2O) p Mole Frac (H1) p Mole Frac (Ethanol) p Mole Frac (Ethanol | p Mole Frac (AceticAcid) p Mole Frac (H2O) p Mole Frac (H2O) p Mole Frac (C3oicAcid) p Mole Frac (C3oicAcid) p Mole Frac (C3oicAcid) p Mole Frac (Ethanol) p Mole Frac (Ethanol) p Mole Frac (Ethanol) p Mole Frac (KOH*) p Mole Frac (Rh*) e e 23302 p Mole Frac (Kydrogen) p Mole Frac (Nitrogen) p Mole Frac (Methanol) p Mole Frac (Mole Nacetate) p Mole Frac (Nitrogen) p Mole Frac (Nitrogen) p Mole Frac (Nitrogen) p Mole Frac (Nitrogen) p Mole Frac (Mole Nacetate) p Mole Frac (Nitrogen) p Mole Frac (H2O) p Mole Frac (H2O) p Mole Frac (H2O) p Mole Frac (KoH*) p Mole Frac (Methanol) p Mole Frac (Methanol) p Mole Frac (Methanol) p Mole Frac (CO2) p Mole Frac (Methanol) p Mole Frac (CO2) p Mole Frac (Methanol) p Mole Frac (CO2) p Mole Frac (Methanol) p Mole Frac (CO3) p Mole Frac (CO3) p Mole Frac (CO3) p Mole Frac (CO3) p Mole Frac (Methanol) p Mole Frac (CO3) p Mole Frac (CO3) p Mole Frac (H2O) p Mole Frac (CO3) p Mole Frac (CO3) p Mole Frac (H2O) p M | p Mole Frac (H2O)                                     | p Mole Frac (AceticAcid) p Mole Frac (HZO) p Mole Frac (HI) p Mole Frac (HI) p Mole Frac (C3oicAcid) p Mole Frac (C3oicAcid) p Mole Frac (C3oicAcid) p Mole Frac (C3oicAcid) p Mole Frac (Ethanol) p Mole Frac (Hydrogen) p Mole Frac (Hydrogen) p Mole Frac (Hydrogen) p Mole Frac (Hydrogen) p Mole Frac (Methanol) p Mole Frac (Hydrogen) p Mole Frac (Methanol) p Mole Frac (Hydrogen) p Mole Frac (Methanol) p Mole Frac (Mydrogen) p Mole Frac (Mydrogen) p Mole Frac (Mydrogen) p Mole Frac (Mydrogen) p Mole Frac (Hydrogen) p Mole Frac |

Aspen HYSYS Version 10

Page 30 of 40



| 1        |                                                     |                          | Case Name:       | ACETIC ACID FIN.HSC     |          |                       |
|----------|-----------------------------------------------------|--------------------------|------------------|-------------------------|----------|-----------------------|
| 3        | edford, N                                           | Name Not Available<br>IA | Unit Set:        | Project                 |          |                       |
| 4        | USA                                                 |                          | Date/Time:       | Mon Dec 16 09:45:15 2   | 010      |                       |
| 5        |                                                     |                          | Date/Time.       | Widit Dec 16 09.45.15 2 |          |                       |
| 6        | <b>387</b> 11 1                                     | 0 (1.5                   | \                | •                       |          |                       |
| 7        | workbook                                            | : Case (Mai              | n) (continue     | ea)                     |          |                       |
| 8        |                                                     |                          |                  |                         |          |                       |
| 10       |                                                     | Co                       | mpositions (cont | inued)                  | Fluid Pk | g: All                |
| 11       | Name                                                | 22051                    | 22064            | 22052                   | 22065    | 22306                 |
| 12       | Comp Mole Frac (Hydrogen)                           | 0.0000                   | 0.0000           | 0.0000                  | 0.0000   | 0.0000 *              |
| 13       | Comp Mole Frac (Methane)                            | 0.0000                   | 0.0000           | 0.0000                  | 0.0000   | 0.0000 *              |
| 14       | Comp Mole Frac (Nitrogen)                           | 0.0000                   | 0.0000           | 0.0000                  | 0.0000   | 0.0000 *              |
| 15       | Comp Mole Frac (CO)                                 | 0.0000                   | 0.0000           | 0.0000                  | 0.0000   | 0.0000 *              |
| 16       | Comp Mole Frac (CO2)                                | 0.0000                   | 0.0000           | 0.0000                  | 0.0000   | 0.0000 *              |
| 17       | Comp Mole Frac (Methanol)                           | 0.0000                   | 0.0000           | 0.0000                  | 0.0000   | 0.0000 *              |
| 18       | Comp Mole Frac (CH3I)                               | 0.0000                   | 0.0000           | 0.0000                  | 0.0000   | 0.0000 *              |
| 19       | Comp Mole Frac (M-Acetate)                          | 0.0000                   | 0.0000           | 0.0000                  | 0.0000   | 0.0000 *              |
| 20       | Comp Mole Frac (AceticAcid)                         | 0.8967                   | 0.9980           | 0.9409                  | 0.9980   | 0.0000 *              |
| 21       | Comp Mole Frac (H2O)                                | 0.1033                   | 0.0019           | 0.0001                  | 0.0019   | 1.0000 *              |
| 22       | Comp Mole Frac (HI)                                 | 0.0000                   | 0.0000           | 0.0000                  | 0.0000   | 0.0000 *              |
| 23       | Comp Mole Frac (C3oicAcid)                          | 0.0000                   | 0.0000           | 0.0571                  | 0.0000   | 0.0000 *              |
| 24       | Comp Mole Frac (Ethanol)                            | 0.0000                   | 0.0000           | 0.0000                  | 0.0000   | 0.0000 *              |
| 25       | Comp Mole Frac (KOH*)                               | 0.0000                   | 0.0000           | 0.0018                  | 0.0000   | 0.0000 *              |
| 26<br>27 | Comp Mole Frac (Rh*)  Name                          | 0.0000                   | 0.0000           | 0.0000                  | 0.0000   | 0.0000 *<br>VAP22051* |
| 28       | Comp Mole Frac (Hydrogen)                           | 0.0000                   | 0.0000           | 0.0000 *                | 0.0000   | 0.0000                |
| 29       | Comp Mole Frac (Methane)                            | 0.0000                   | 0.0000           | 0.0000 *                | 0.0000   | 0.0000                |
| 30       | Comp Mole Frac (Nitrogen)                           | 0.0000                   | 0.0000           | 0.0000 *                | 0.0000   | 0.0000                |
| 31       | Comp Mole Frac (CO)                                 | 0.0000                   | 0.0000           | 0.0000 *                | 0.0000   | 0.0000                |
| 32       | Comp Mole Frac (CO2)                                | 0.0000                   | 0.0000           | 0.0000 *                | 0.0000   | 0.0000                |
| 33       | Comp Mole Frac (Methanol)                           | 0.0000                   | 0.0000           | 0.0000 *                | 0.0000   | 0.0000                |
| 34       | Comp Mole Frac (CH3I)                               | 0.0000                   | 0.0000           | 0.0000 *                | 0.0000   | 0.0000                |
| 35       | Comp Mole Frac (M-Acetate)                          | 0.0000                   | 0.0000           | 0.0000 *                | 0.0000   | 0.0000                |
| 36       | Comp Mole Frac (AceticAcid)                         | 0.0000                   | 0.8967           | 0.0000 *                | 0.0000   | 0.8967                |
| 37       | Comp Mole Frac (H2O)                                | 1.0000                   | 0.1033           | 1.0000 *                | 1.0000   | 0.1033                |
| 38       | Comp Mole Frac (HI)                                 | 0.0000                   | 0.0000           | 0.0000 *                | 0.0000   | 0.0000                |
| 39       | Comp Mole Frac (C3oicAcid)                          | 0.0000                   | 0.0000           | 0.0000 *                | 0.0000   | 0.0000                |
| 40       | Comp Mole Frac (Ethanol)                            | 0.0000                   | 0.0000           | 0.0000 *                | 0.0000   | 0.0000                |
| 41       | Comp Mole Frac (KOH*)                               | 0.0000                   | 0.0000           | 0.0000 *                | 0.0000   | 0.0000                |
| 42       | Comp Mole Frac (Rh*)                                | 0.0000                   | 0.0000           | 0.0000 *                | 0.0000   | 0.0000                |
| 43       | Name                                                | 22066                    | 22066*           | 22067*                  | 22054    | 22060                 |
| 44<br>45 | Comp Mole Frac (Methans)                            | 0.0000<br>0.0000         | 0.0000           | 0.0000<br>0.0000        | 0.0000   | 0.0000<br>0.0000      |
| 46       | Comp Mole Frac (Methane)  Comp Mole Frac (Nitrogen) | 0.0000                   | 0.0000           | 0.0000                  | 0.0000   | 0.0000                |
| 47       | Comp Mole Frac (CO)                                 | 0.0000                   | 0.0000           | 0.0000                  | 0.0000   | 0.0000                |
| 48       | Comp Mole Frac (CO2)                                | 0.0000                   | 0.0000           | 0.0000                  | 0.0000   | 0.0000                |
| 49       | Comp Mole Frac (Methanol)                           | 0.0000                   | 0.0000           | 0.0000                  | 0.0000   | 0.0000                |
| 50       | Comp Mole Frac (CH3I)                               | 0.0000                   | 0.0000           | 0.0000                  | 0.0000   | 0.0000                |
| 51       | Comp Mole Frac (M-Acetate)                          | 0.0000                   | 0.0000           | 0.0000                  | 0.0000   | 0.0000                |
| 52       | Comp Mole Frac (AceticAcid)                         | 0.8967                   | 0.8967           | 0.8967                  | 0.8967   | 0.8967                |
| 53       | Comp Mole Frac (H2O)                                | 0.1033                   | 0.1033           | 0.1033                  | 0.1033   | 0.1033                |
| 54       | Comp Mole Frac (HI)                                 | 0.0000                   | 0.0000           | 0.0000                  | 0.0000   | 0.0000                |
| 55       | Comp Mole Frac (C3oicAcid)                          | 0.0000                   | 0.0000           | 0.0000                  | 0.0000   | 0.0000                |
| 56       | Comp Mole Frac (Ethanol)                            | 0.0000                   | 0.0000           | 0.0000                  | 0.0000   | 0.0000                |
| 57       | Comp Mole Frac (KOH*)                               | 0.0000                   | 0.0000           | 0.0000                  | 0.0000   | 0.0000                |
| 58       | Comp Mole Frac (Rh*)                                | 0.0000                   | 0.0000           | 0.0000                  | 0.0000   | 0.0000                |
| 59       |                                                     |                          |                  |                         |          |                       |
| 60       |                                                     |                          |                  |                         |          |                       |



Company Name Not Available Bedford, MA USA Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

# Workbook: Case (Main) (continued)

| All      |
|----------|
| 25009*   |
| 0.0000   |
| 0.0000   |
| 0.0000   |
| 0.0000   |
| 0.0000   |
| 0.0000   |
| 0.0000   |
| 0.0000   |
| 0.9980   |
| 0.0019   |
| 0.0000   |
| 0.0000   |
| 0.0000   |
| 0.0000   |
| 0.0000   |
| 22009*   |
| 0.0000   |
| 0.0000   |
| 0.0000   |
| 0.0000   |
| 0.0001   |
| 0.0006   |
| 0.0381   |
| 0.0087   |
| 0.6143   |
| 0.3378   |
| 0.0000   |
| 0.0004   |
| 0.0000   |
| 0.0000   |
| 0.0000   |
| 22300    |
| 0.0000 * |
| 0.0000 * |
| 0.0000 * |
| 0.0000 * |
| 0.0000 * |
| 0.0000 * |
| 0.0000 * |
| 0.0000 * |
| 0.0000 * |
| 1.0000 * |
| 0.0000 * |
| 0.0000 * |
| 0.0000 * |
| 0.0000 * |
| 0.0000 * |
|          |
|          |

Aspen HYSYS Version 10



Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

# Workbook: Case (Main) (continued)

| 9<br>10  |                             | Co       | empositions (cont | inued)   | Fluid Pk | g: All |
|----------|-----------------------------|----------|-------------------|----------|----------|--------|
| 11       | Name                        | 22008*   | 22301             | 22010    | 22011*   | 22012  |
| 12       | Comp Mole Frac (Hydrogen)   | 0.0014   | 0.0000            | 0.0096 * | 0.0573   | 0.0000 |
| 13       | Comp Mole Frac (Methane)    | 0.0000   | 0.0000            | 0.0000 * | 0.0000   | 0.0000 |
| 14       | Comp Mole Frac (Nitrogen)   | 0.0036   | 0.0000            | 0.0242 * | 0.1437   | 0.0002 |
| 15       | Comp Mole Frac (CO)         | 0.0104   | 0.0000            | 0.0699 * | 0.4160   | 0.0003 |
| 16       | Comp Mole Frac (CO2)        | 0.0046   | 0.0000            | 0.0347 * | 0.1737   | 0.0068 |
| 17       | Comp Mole Frac (Methanol)   | 0.0026   | 0.0000            | 0.0007 * | 0.0000   | 0.0009 |
| 18       | Comp Mole Frac (CH3I)       | 0.2503   | 0.0000            | 0.6584 * | 0.1672   | 0.7571 |
| 19       | Comp Mole Frac (M-Acetate)  | 0.0324   | 0.0000            | 0.0394 * | 0.0051   | 0.0464 |
| 20       | Comp Mole Frac (AceticAcid) | 0.1643   | 0.0000            | 0.0126 * | 0.0001   | 0.0151 |
| 21       | Comp Mole Frac (H2O)        | 0.5289   | 1.0000            | 0.1383 * | 0.0094   | 0.1643 |
| 22       | Comp Mole Frac (HI)         | 0.0014   | 0.0000            | 0.0121 * | 0.0276   | 0.0090 |
| 23       | Comp Mole Frac (C3oicAcid)  | 0.0001   | 0.0000            | 0.0000 * | 0.0000   | 0.0000 |
| 24       | Comp Mole Frac (Ethanol)    | 0.0000   | 0.0000            | 0.0000 * | 0.0000   | 0.0000 |
| 25       | Comp Mole Frac (KOH*)       | 0.0000   | 0.0000            | 0.0000 * | 0.0000   | 0.0000 |
| 26       | Comp Mole Frac (Rh*)        | 0.0000   | 0.0000            | 0.0000 * | 0.0000   | 0.0000 |
| 27       | Name                        | 22026    | 22026*            | 22038*   | 22010**  | 22006* |
| 28       | Comp Mole Frac (Hydrogen)   | 0.0000 * | 0.0000            | 0.0013   | 0.0095   | 0.0000 |
| 29       | Comp Mole Frac (Methane)    | 0.0000 * | 0.0000            | 0.0000   | 0.0000   | 0.0000 |
| 30       | Comp Mole Frac (Nitrogen)   | 0.0000 * | 0.0001            | 0.0032   | 0.0240   | 0.0000 |
| 31       | Comp Mole Frac (CO)         | 0.0000 * | 0.0003            | 0.0092   | 0.0694   | 0.0000 |
| 32       | Comp Mole Frac (CO2)        | 0.0000 * | 0.0065            | 0.0048   | 0.0346   | 0.0003 |
| 33       | Comp Mole Frac (Methanol)   | 0.0000 * | 0.0008            | 0.0024   | 0.0007   | 0.0026 |
| 34       | Comp Mole Frac (CH3I)       | 0.0000 * | 0.7313            | 0.3051   | 0.6591   | 0.2508 |
| 35       | Comp Mole Frac (M-Acetate)  | 0.0000 * | 0.0448            | 0.0338   | 0.0395   | 0.0330 |
| 36       | Comp Mole Frac (AceticAcid) | 1.0000 * | 0.0488            | 0.1512   | 0.0126   | 0.1724 |
| 37       | Comp Mole Frac (H2O)        | 0.0000 * | 0.1586            | 0.4867   | 0.1384   | 0.5401 |
| 38       | Comp Mole Frac (HI)         | 0.0000 * | 0.0087            | 0.0022   | 0.0122   | 0.0007 |
| 39       | Comp Mole Frac (C3oicAcid)  | 0.0000 * | 0.0000            | 0.0001   | 0.0000   | 0.0001 |
| 40       | Comp Mole Frac (Ethanol)    | 0.0000 * | 0.0000            | 0.0000   | 0.0000   | 0.0000 |
| 41       | Comp Mole Frac (KOH*)       | 0.0000 * | 0.0000            | 0.0000   | 0.0000   | 0.0000 |
| 42       | Comp Mole Frac (Rh*)        | 0.0000 * | 0.0000            | 0.0000   | 0.0000   | 0.0000 |
| 43       | Name                        | 22006    | 22007             | 22002*   | 22001    | 22002/ |
| 44       | Comp Mole Frac (Hydrogen)   | 0.0000   | 0.0000            | 0.0000   | 0.0000   | 0.0000 |
| 45       | Comp Mole Frac (Methane)    | 0.0000   | 0.0000            | 0.0000   | 0.0000   | 0.0000 |
| 46       | Comp Mole Frac (Nitrogen)   | 0.0000   | 0.0000            | 0.0000   | 0.0000   | 0.0000 |
| 47       | Comp Mole Frac (CO)         | 0.0000   | 0.0000            | 0.0000   | 0.0000   | 0.0000 |
| 48       | Comp Mole Frac (CO2)        | 0.0003   | 0.0003            | 0.0003   | 0.0003   | 0.0003 |
| 49       | Comp Mole Frac (Methanol)   | 0.0026   | 0.0026            | 0.0026   | 0.0026   | 0.0026 |
| 50       | Comp Mole Frac (CH3I)       | 0.2508   | 0.2508            | 0.2508   | 0.2508   | 0.2508 |
| 51       | Comp Mole Frac (M-Acetate)  | 0.0330   | 0.0330            | 0.0330   | 0.0330   | 0.0330 |
| 52       | Comp Mole Frac (AceticAcid) | 0.1724   | 0.1724            | 0.1724   | 0.1724   | 0.1724 |
| 53       | Comp Mole Frac (H2O)        | 0.5401   | 0.5401            | 0.5401   | 0.5401   | 0.5401 |
| 54       | Comp Mole Frac (HI)         | 0.0007   | 0.0007            | 0.0007   | 0.0007   | 0.0007 |
| 55       | Comp Mole Frac (C3oicAcid)  | 0.0001   | 0.0001            | 0.0001   | 0.0001   | 0.0001 |
| 56       | Comp Mole Frac (Ethanol)    | 0.0000   | 0.0000            | 0.0000   | 0.0000   | 0.0000 |
| 57       | Comp Mole Frac (KOH*)       | 0.0000   | 0.0000            | 0.0000   | 0.0000   | 0.0000 |
| 58       | Comp Mole Frac (Rh*)        | 0.0000   | 0.0000            | 0.0000   | 0.0000   | 0.0000 |
| 59<br>60 |                             |          |                   |          |          |        |

Aspen HYSYS Version 10

Aspen Technology Inc.

Page 33 of 40



Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

# Workbook: Case (Main) (continued)

| 9<br>10 |                             | Co     | ompositions (cont | inued)   | Fluid Pk | g: All |
|---------|-----------------------------|--------|-------------------|----------|----------|--------|
| 11      | Name                        | 22023  | 22018             | 22022    | 22025    | 22019  |
| 12      | Comp Mole Frac (Hydrogen)   | 0.0000 | 0.0000            | 0.0000 * | 0.0000 * | 0.0000 |
| 13      | Comp Mole Frac (Methane)    | 0.0000 | 0.0000            | 0.0000 * | 0.0000 * | 0.0000 |
| 14      | Comp Mole Frac (Nitrogen)   | 0.0000 | 0.0000            | 0.0000 * | 0.0000 * | 0.0000 |
| 15      | Comp Mole Frac (CO)         | 0.0000 | 0.0000            | 0.0000 * | 0.0000 * | 0.0000 |
| 16      | Comp Mole Frac (CO2)        | 0.0001 | 0.0001            | 0.0001 * | 0.0000 * | 0.0001 |
| 17      | Comp Mole Frac (Methanol)   | 0.0006 | 0.0006            | 0.0073 * | 1.0000 * | 0.0073 |
| 18      | Comp Mole Frac (CH3I)       | 0.0381 | 0.0373            | 0.0664 * | 0.0000 * | 0.0664 |
| 19      | Comp Mole Frac (M-Acetate)  | 0.0087 | 0.0085            | 0.0152 * | 0.0000 * | 0.0152 |
| 20      | Comp Mole Frac (AceticAcid) | 0.6143 | 0.6206            | 0.3187 * | 0.0000 * | 0.3187 |
| 21      | Comp Mole Frac (H2O)        | 0.3378 | 0.3324            | 0.5920 * | 0.0000 * | 0.5920 |
| 22      | Comp Mole Frac (HI)         | 0.0000 | 0.0000            | 0.0001 * | 0.0000 * | 0.0001 |
| 23      | Comp Mole Frac (C3oicAcid)  | 0.0004 | 0.0004            | 0.0000 * | 0.0000 * | 0.0000 |
| 24      | Comp Mole Frac (Ethanol)    | 0.0000 | 0.0000            | 0.0000 * | 0.0000 * | 0.0000 |
| 25      | Comp Mole Frac (KOH*)       | 0.0000 | 0.0000            | 0.0000 * | 0.0000 * | 0.0000 |
| 26      | Comp Mole Frac (Rh*)        | 0.0000 | 0.0000            | 0.0000 * | 0.0000 * | 0.0000 |
| 27      | Name                        | 22020* | 22019*            | 22302    | 22303    | VAP    |
| 28      | Comp Mole Frac (Hydrogen)   | 0.0000 | 0.0000            | 0.0000 * | 0.0000   | 0.0000 |
| 29      | Comp Mole Frac (Methane)    | 0.0000 | 0.0000            | 0.0000 * | 0.0000   | 0.0000 |
| 30      | Comp Mole Frac (Nitrogen)   | 0.0000 | 0.0000            | 0.0000 * | 0.0000   | 0.0000 |
| 31      | Comp Mole Frac (CO)         | 0.0000 | 0.0000            | 0.0000 * | 0.0000   | 0.0000 |
| 32      | Comp Mole Frac (CO2)        | 0.0000 | 0.0001            | 0.0000 * | 0.0000   | 0.0001 |
| 33      | Comp Mole Frac (Methanol)   | 0.0000 | 0.0073            | 0.0000 * | 0.0000   | 0.0074 |
| 34      | Comp Mole Frac (CH3I)       | 0.0000 | 0.0664            | 0.0000 * | 0.0000   | 0.0661 |
| 35      | Comp Mole Frac (M-Acetate)  | 0.0000 | 0.0152            | 0.0000 * | 0.0000   | 0.0152 |
| 36      | Comp Mole Frac (AceticAcid) | 0.9991 | 0.3187            | 0.0000 * | 0.0000   | 0.3212 |
| 37      | Comp Mole Frac (H2O)        | 0.0000 | 0.5920            | 1.0000 * | 1.0000   | 0.5898 |
| 38      | Comp Mole Frac (HI)         | 0.0000 | 0.0001            | 0.0000 * | 0.0000   | 0.0001 |
| 39      | Comp Mole Frac (C3oicAcid)  | 0.0009 | 0.0000            | 0.0000 * | 0.0000   | 0.0000 |
| 40      | Comp Mole Frac (Ethanol)    | 0.0000 | 0.0000            | 0.0000 * | 0.0000   | 0.0000 |
| 41      | Comp Mole Frac (KOH*)       | 0.0000 | 0.0000            | 0.0000 * | 0.0000   | 0.0000 |
| 42      | Comp Mole Frac (Rh*)        | 0.0000 | 0.0000            | 0.0000 * | 0.0000   | 0.0000 |
| 43      | Name                        | 22021  | 22021*            | 22022*   | 22014    | 22080  |
| 44      | Comp Mole Frac (Hydrogen)   | 0.0000 | 0.0000            | 0.0000   | 0.0000   | 0.0000 |
| 45      | Comp Mole Frac (Methane)    | 0.0000 | 0.0000            | 0.0000   | 0.0000   | 0.0000 |
| 46      | Comp Mole Frac (Nitrogen)   | 0.0000 | 0.0000            | 0.0000   | 0.0000   | 0.0000 |
| 47      | Comp Mole Frac (CO)         | 0.0000 | 0.0000            | 0.0000   | 0.0000   | 0.0000 |
| 48      | Comp Mole Frac (CO2)        | 0.0001 | 0.0001            | 0.0001   | 0.0001   | 0.0002 |
| 49      | Comp Mole Frac (Methanol)   | 0.0073 | 0.0073            | 0.0073   | 0.0073   | 0.0049 |
| 50      | Comp Mole Frac (CH3I)       | 0.0664 | 0.0664            | 0.0664   | 0.0664   | 0.1600 |
| 51      | Comp Mole Frac (M-Acetate)  | 0.0152 | 0.0152            | 0.0152   | 0.0152   | 0.0242 |
| 52      | Comp Mole Frac (AceticAcid) | 0.3187 | 0.3187            | 0.3187   | 0.3187   | 0.2444 |
| 53      | Comp Mole Frac (H2O)        | 0.5920 | 0.5920            | 0.5920   | 0.5920   | 0.5657 |
| 54      | Comp Mole Frac (HI)         | 0.0001 | 0.0001            | 0.0001   | 0.0001   | 0.0004 |
| 55      | Comp Mole Frac (C3oicAcid)  | 0.0000 | 0.0000            | 0.0000   | 0.0000   | 0.0000 |
| 56      | Comp Mole Frac (Ethanol)    | 0.0000 | 0.0000            | 0.0000   | 0.0000   | 0.0000 |
| 57      | Comp Mole Frac (KOH*)       | 0.0000 | 0.0000            | 0.0000   | 0.0000   | 0.0000 |
| 58      | Comp Mole Frac (Rh*)        | 0.0000 | 0.0000            | 0.0000   | 0.0000   | 0.0000 |
| 59      |                             |        |                   |          |          |        |
| 60      |                             |        |                   |          |          |        |

Aspen HYSYS Version 10

Aspen Technology Inc.

Page 34 of 40



Company Name Not Available Bedford, MA USA Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

| 9  |                             | Co     | ompositions (conti | nued)   | Fluid Pkç | g: All   |
|----|-----------------------------|--------|--------------------|---------|-----------|----------|
| 11 | Name                        | 22157  | 21006*             | 21007*  | 21083     | 21017*   |
| 12 | Comp Mole Frac (Hydrogen)   | 0.0000 | 0.0001             | 0.0000  | 0.0000    | 0.0000   |
| 13 | Comp Mole Frac (Methane)    | 0.0000 | 0.0000             | 0.0000  | 0.0000    | 0.0000   |
| 14 | Comp Mole Frac (Nitrogen)   | 0.0000 | 0.0204             | 0.0000  | 0.0010    | 0.0010   |
| 15 | Comp Mole Frac (CO)         | 0.0000 | 0.9582             | 0.0010  | 0.0000    | 0.0000   |
| 16 | Comp Mole Frac (CO2)        | 0.0002 | 0.0003             | 0.0000  | 0.0000    | 0.0000   |
| 17 | Comp Mole Frac (Methanol)   | 0.0049 | 0.0015             | 0.2846  | 0.9980    | 0.9980   |
| 18 | Comp Mole Frac (CH3I)       | 0.1600 | 0.0164             | 0.1061  | 0.0000    | 0.0000   |
| 19 | Comp Mole Frac (M-Acetate)  | 0.0242 | 0.0013             | 0.0182  | 0.0000    | 0.0000   |
| 20 | Comp Mole Frac (AceticAcid) | 0.2444 | 0.0003             | 0.1916  | 0.0000    | 0.0000   |
| 21 | Comp Mole Frac (H2O)        | 0.5657 | 0.0012             | 0.3982  | 0.0009    | 0.0009   |
| 22 | Comp Mole Frac (HI)         | 0.0004 | 0.0002             | 0.0002  | 0.0000    | 0.0000   |
| 23 | Comp Mole Frac (C3oicAcid)  | 0.0000 | 0.0000             | 0.0001  | 0.0000    | 0.0000   |
| 24 | Comp Mole Frac (Ethanol)    | 0.0000 | 0.0000             | 0.0000  | 0.0001    | 0.0001   |
| 25 | Comp Mole Frac (KOH*)       | 0.0000 | 0.0000             | 0.0000  | 0.0000    | 0.0000   |
| 26 | Comp Mole Frac (Rh*)        | 0.0000 | 0.0000             | 0.0000  | 0.0000    | 0.0000   |
| 27 | Name                        | 21027  | 21013*             | 21017** | 22375     | 22038*** |
| 28 | Comp Mole Frac (Hydrogen)   | 0.0000 | 0.0000             | 0.0000  | 0.0000 *  | 0.0013   |
| 29 | Comp Mole Frac (Methane)    | 0.0000 | 0.0000             | 0.0000  | 0.0000 *  | 0.0000   |
| 30 | Comp Mole Frac (Nitrogen)   | 0.0010 | 0.0010             | 0.0010  | 0.0000 *  | 0.0032   |
| 31 | Comp Mole Frac (CO)         | 0.0000 | 0.0000             | 0.0000  | 0.0000 *  | 0.0092   |
| 32 | Comp Mole Frac (CO2)        | 0.0000 | 0.0000             | 0.0000  | 0.0000 *  | 0.0048   |
| 33 | Comp Mole Frac (Methanol)   | 0.9980 | 0.9980             | 0.9980  | 0.0000 *  | 0.0024   |
| 34 | Comp Mole Frac (CH3I)       | 0.0000 | 0.0000             | 0.0000  | 0.0000 *  | 0.3051   |
| 35 | Comp Mole Frac (M-Acetate)  | 0.0000 | 0.0000             | 0.0000  | 0.0000 *  | 0.0338   |
| 36 | Comp Mole Frac (AceticAcid) | 0.0000 | 0.0000             | 0.0000  | 0.0000 *  | 0.1512   |
| 37 | Comp Mole Frac (H2O)        | 0.0009 | 0.0009             | 0.0009  | 1.0000 *  | 0.4867   |
| 38 | Comp Mole Frac (HI)         | 0.0000 | 0.0000             | 0.0000  | 0.0000 *  | 0.0022   |
| 39 | Comp Mole Frac (C3oicAcid)  | 0.0000 | 0.0000             | 0.0000  | 0.0000 *  | 0.0001   |
| 40 | Comp Mole Frac (Ethanol)    | 0.0001 | 0.0001             | 0.0001  | 0.0000 *  | 0.0000   |
| 41 | Comp Mole Frac (KOH*)       | 0.0000 | 0.0000             | 0.0000  | 0.0000 *  | 0.0000   |
| 42 | Comp Mole Frac (Rh*)        | 0.0000 | 0.0000             | 0.0000  | 0.0000 *  | 0.0000   |
| 43 | Name                        | 22376  | 22370              | 22371   | 2201000   | 2103*    |
| 44 | Comp Mole Frac (Hydrogen)   | 0.0000 | 0.0000 *           | 0.0000  | 0.0096    | 0.0000   |
| 45 | Comp Mole Frac (Methane)    | 0.0000 | 0.0000 *           | 0.0000  | 0.0000    | 0.0000   |
| 46 | Comp Mole Frac (Nitrogen)   | 0.0000 | 0.0000 *           | 0.0000  | 0.0242    | 0.0000   |
| 47 | Comp Mole Frac (CO)         | 0.0000 | 0.0000 *           | 0.0000  | 0.0699    | 0.0001   |
| 48 | Comp Mole Frac (CO2)        | 0.0000 | 0.0000 *           | 0.0000  | 0.0347    | 0.0000   |
| 49 | Comp Mole Frac (Methanol)   | 0.0000 | 0.0000 *           | 0.0000  | 0.0007    | 0.1365   |
| 50 | Comp Mole Frac (CH3I)       | 0.0000 | 0.0000 *           | 0.0000  | 0.6584    | 0.0104   |
| 51 | Comp Mole Frac (M-Acetate)  | 0.0000 | 0.0000 *           | 0.0000  | 0.0394    | 0.0035   |
| 52 | Comp Mole Frac (AceticAcid) | 0.0000 | 0.0000 *           | 0.0000  | 0.0126    | 0.3910   |
| 53 | Comp Mole Frac (H2O)        | 1.0000 | 1.0000 *           | 1.0000  | 0.1383    | 0.4582   |
| 54 | Comp Mole Frac (HI)         | 0.0000 | 0.0000 *           | 0.0000  | 0.0121    | 0.0000   |
| 55 | Comp Mole Frac (C3oicAcid)  | 0.0000 | 0.0000 *           | 0.0000  | 0.0000    | 0.0002   |
| 56 | Comp Mole Frac (Ethanol)    | 0.0000 | 0.0000 *           | 0.0000  | 0.0000    | 0.0000   |
| 57 | Comp Mole Frac (KOH*)       | 0.0000 | 0.0000 *           | 0.0000  | 0.0000    | 0.0000   |
| 58 | Comp Mole Frac (Rh*)        | 0.0000 | 0.0000 *           | 0.0000  | 0.0000    | 0.0000   |
| 59 |                             |        |                    |         |           |          |



Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

| 7<br>8        | Workbook                                | : Case (Mai | n) (continue        | d)       |            |                      |
|---------------|-----------------------------------------|-------------|---------------------|----------|------------|----------------------|
| 9<br>10       |                                         | Co          | ompositions (conti  | nued)    | Fluid Pkç  | g: All               |
| 11            | Name                                    | 21001       | 21005.              | TO FLARE | 21006      | 23004.               |
| 12            | Comp Mole Frac (Hydrogen)               | 0.0000 *    | 0.0000              | 0.0000   | 0.0001     | 0.0000               |
| 13            | Comp Mole Frac (Methane)                | 0.0000 *    | 0.0000              | 0.0000   | 0.0000     | 0.0000               |
| 14            | Comp Mole Frac (Nitrogen)               | 0.0200 *    | 0.0128              | 0.0128   | 0.0204     | 0.0000               |
| 15            | Comp Mole Frac (CO)                     | 0.9800 *    | 0.6030              | 0.6030   | 0.9582     | 0.0000               |
| 16            | Comp Mole Frac (CO2)                    | 0.0000 *    | 0.0002              | 0.0002   | 0.0003     | 0.0000               |
| 17            | Comp Mole Frac (Methanol)               | 0.0000 *    | 0.1065              | 0.1065   | 0.0015     | 0.0006               |
| 18            | Comp Mole Frac (CH3I)                   | 0.0000 *    | 0.0497              | 0.0497   | 0.0164     | 0.0047               |
| 19            | Comp Mole Frac (M-Acetate)              | 0.0000 *    | 0.0076              | 0.0076   | 0.0013     | 0.0043               |
| 20            | Comp Mole Frac (AceticAcid)             | 0.0000 *    | 0.0713              | 0.0713   | 0.0003     | 0.9448               |
| 21            | Comp Mole Frac (H2O)                    | 0.0000 *    | 0.1485              | 0.1485   | 0.0012     | 0.0456               |
| 22            | Comp Mole Frac (HI)                     | 0.0000 *    | 0.0002              | 0.0002   | 0.0002     | 0.0000               |
| 23            | Comp Mole Frac (C3oicAcid)              | 0.0000 *    | 0.0000              | 0.0000   | 0.0000     | 0.0000               |
| 24            | Comp Mole Frac (Ethanol)                | 0.0000 *    | 0.0000              | 0.0000   | 0.0000     | 0.0000               |
| 25            | Comp Mole Frac (KOH*)                   | 0.0000 *    | 0.0000              | 0.0000   | 0.0000     | 0.0000               |
| 26            | Comp Mole Frac (Rh*)                    | 0.0000 *    | 0.0000              | 0.0000   | 0.0000     | 0.0000               |
| 27            | Name                                    | 22069.      | 22071               | 22013.   | 21300      | 21301                |
| 28            | Comp Mole Frac (Hydrogen)               | 0.0000      | 0.0000 *            | 0.0000   | 0.0000 *   | 0.0000               |
| 29            | Comp Mole Frac (Methane)                | 0.0000      | 0.0000 *            | 0.0000   | 0.0000 *   | 0.0000               |
| 30            | Comp Mole Frac (Nitrogen)               | 0.0000      | 0.0000 *            | 0.0000   | 0.0000 *   | 0.0000               |
| 31            | Comp Mole Frac (CO)                     | 0.0000      | 0.0000 *            | 0.0000   | 0.0000 *   | 0.0000               |
| 32            | Comp Mole Frac (CO2)                    | 0.0000      | 0.0000 *            | 0.0003   | 0.0000 *   | 0.0000               |
| 33            | ·                                       | 0.0000      | 0.0000 *            |          |            | 0.0000               |
| 34            | Comp Mole Frac (Methanol)               |             |                     | 0.0026   | 0.0000 *   |                      |
| $\overline{}$ | Comp Mole Frac (CH3I)                   | 0.0000      | 0.0000 *            | 0.2508   | 0.0000 *   | 0.0000               |
| 35<br>36      | Comp Mole Frac (M-Acetate)              | 0.0000      | 0.0000 *            | 0.0330   | 0.0000 *   | 0.0000               |
| 37            | Comp Mole Frac (AceticAcid)             | 0.9453      | 0.0000 *            | 0.1724   | 0.0000 *   | 0.0000               |
| $\overline{}$ | Comp Mole Frac (H2O)                    | 0.0219      | 1.0000 *            | 0.5401   | 1.0000 *   | 1.0000               |
| 38            | Comp Mole Frac (HI)                     | 0.0000      | 0.0000 *            | 0.0007   | 0.0000 *   | 0.0000               |
| 39            | Comp Mole Frac (C3oicAcid)              | 0.0328      | 0.0000 *            | 0.0001   | 0.0000 *   | 0.0000               |
| 40            | Comp Mole Frac (Ethanol)                | 0.0000      | 0.0000 *            | 0.0000   | 0.0000 *   | 0.0000               |
| 41            | Comp Mole Frac (KOH*)                   | 0.0000      | 0.0000 *            | 0.0000   | 0.0000 *   | 0.0000               |
| 42            | Comp Mole Frac (Rh*)                    | 0.0000      | 0.0000 *            | 0.0000   | 0.0000 *   | 0.0000               |
| 43            | Name                                    | 21005*      | 1                   | 21018    |            |                      |
| 44            | Comp Mole Frac (Hydrogen)               | 0.0000      | 0.0000 *            | 0.0000   |            |                      |
| 45            | Comp Mole Frac (Methane)                | 0.0000      | 0.0000 *            | 0.0000   |            |                      |
| 46            | Comp Mole Frac (Nitrogen)               | 0.0128      | 0.0010 *            | 0.0010   |            |                      |
| 47            | Comp Mole Frac (CO)                     | 0.6030      | 0.0000 *            | 0.0000   |            |                      |
| 48            | Comp Mole Frac (CO2)                    | 0.0002      | 0.0000 *            | 0.0000   |            |                      |
| 49            | Comp Mole Frac (Methanol)               | 0.1065      | 0.9980 *            | 0.9980   |            |                      |
| 50            | Comp Mole Frac (CH3I)                   | 0.0497      | 0.0000 *            | 0.0000   |            |                      |
| 51            | Comp Mole Frac (M-Acetate)              | 0.0076      | 0.0000 *            | 0.0000   |            |                      |
| 52            | Comp Mole Frac (AceticAcid)             | 0.0713      | 0.0000 *            | 0.0000   |            |                      |
| 53            | Comp Mole Frac (H2O)                    | 0.1485      | 0.0009 *            | 0.0009   |            |                      |
| 54            | Comp Mole Frac (HI)                     | 0.0002      | 0.0000 *            | 0.0000   |            |                      |
| 55            | Comp Mole Frac (C3oicAcid)              | 0.0000      | 0.0000 *            | 0.0000   |            |                      |
| 56            | Comp Mole Frac (Ethanol)                | 0.0000      | 0.0001 *            | 0.0001   |            |                      |
| 57            | Comp Mole Frac (KOH*)                   | 0.0000      | 0.0000 *            | 0.0000   |            |                      |
| 58            | Comp Mole Frac (Rh*)                    | 0.0000      | 0.0000 *            | 0.0000   |            |                      |
| 59<br>60      |                                         |             | Energy Streams      | S        | Fluid Pkç  | g: All               |
| 61            | Name                                    | e2301       | e23006              | e2205    | E 2207     | E P-2207             |
| 62            | Heat Flow (kcal/h)                      | 798.3       | 5052                | 2488     | 9.729e+006 | 1.435e+004           |
| 63            | Aspen Technology Inc.                   |             | Aspen HYSYS Version | n 10     |            | Page 36 of 40        |
| _             | Licensed to: Company Name Not Available |             |                     |          |            | * Specified by user. |



Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

# Workbook: Case (Main) (continued)

| 9<br>10 | ───────────────────────────────────── |          |            |            |            |            | g: All     |
|---------|---------------------------------------|----------|------------|------------|------------|------------|------------|
| 11      | Name                                  |          | E2211      | 03-E 2215  | E 2201     | E1         | E P2202    |
| 12      | Heat Flow                             | (kcal/h) | 66.83      | 9.117e+004 | 1.563e+006 | 1690       | 3397       |
| 13      | Name                                  |          | E 2204     | E P2204    | E P2206    | E 1        | E 2        |
| 14      | Heat Flow                             | (kcal/h) | 5.484e+006 | 5618       | 5515       | 1.272e+004 | 1.242e+007 |
| 15      | Name                                  |          | E 4        | E 11       | e 1        |            |            |
| 16      | Heat Flow                             | (kcal/h) | 7027       | 8852       | 4.897e+005 |            |            |

#### **Unit Ops**

| 18 |                                                             |                            |                  |           |         |               |  |  |
|----|-------------------------------------------------------------|----------------------------|------------------|-----------|---------|---------------|--|--|
| 19 | Operation Name                                              | Operation Type             | Feeds            | Products  | Ignored | Calc Level    |  |  |
| 20 | 03-d 2101                                                   | Tank                       | 21002            | 21003     | No      | 500.0 *       |  |  |
| 21 |                                                             | Tarix                      |                  | 21003*    | 110     |               |  |  |
| 22 | V-100                                                       | Tank                       | 22051*           | 22066     | No      | 500.0 *       |  |  |
| 23 | V-100                                                       | Tarik                      |                  | VAP22051* | 140     | 000.0         |  |  |
| 24 | 03-TK 2502 A-B                                              | Tank                       | 22065            | 25009*    | No      | 500.0 *       |  |  |
| 25 | 00-11( 2002 / 1-B                                           | Tank                       |                  | 25009     | 140     | 000.0         |  |  |
| 26 | D 2207                                                      | Tank                       | 22038***         | 22006*    | No      | 500.0 *       |  |  |
| 27 | D 2201                                                      | Tank                       |                  | 22010**   | 140     | 000.0         |  |  |
| 28 | V-101                                                       | Tank                       | 22019*           | 22021     | No      | 500.0 *       |  |  |
| 29 | V-101                                                       | Tank                       |                  | VAP       | NO      | 300.0         |  |  |
| 30 | d-2103                                                      | Tank                       | 2103*            | 21010.    | No      | 500.0 *       |  |  |
| 31 | u-2100                                                      | Tank                       |                  | 21009     | NO      |               |  |  |
| 32 | 03-p-2301                                                   | Pump                       | 23001            | 23011*    | No      | 500.0 *       |  |  |
| 33 | 00-p-2001                                                   | Tump                       | e2301            |           | NO      | 300.0         |  |  |
| 34 | P-100                                                       | Pump                       | 23006*           | 23006     | No      | 500.0 *       |  |  |
| 35 | F-100                                                       | Fullip                     | e23006           |           | NO      |               |  |  |
| 36 | P-101                                                       | Pump                       | 22068*           | 22068     | No      | 500.0 *       |  |  |
| 37 | F-101                                                       | Fullip                     | e2205            |           | NO      |               |  |  |
| 38 | 03-P 2207 A- B                                              | Pump                       | 22066            | 22066*    | No      | 500.0 *       |  |  |
| 39 | 03-F 2207 A- B                                              |                            | E P-2207         |           | NO      |               |  |  |
| 40 | 03-P 2211 A-B                                               | Pump                       | 22052            | 22053     | No      | 500.0 *       |  |  |
| 41 |                                                             |                            | E2211            |           | No      |               |  |  |
| 42 | D 0000                                                      | Pump                       | 22009*           | 22009     | No      | 500.0 *       |  |  |
| 43 | P 2203                                                      |                            | E1               |           | INO     |               |  |  |
| 44 | D 0000                                                      | Bump                       | 22002*           | 22002/    | No      | 500.0 *       |  |  |
| 45 | P 2202                                                      | Pump                       | E P2202          |           | INO     |               |  |  |
| 46 | P 2204                                                      | Diamen                     | 22021            | 22021*    | No.     | 500.0 *       |  |  |
| 47 | P 2204                                                      | Pump                       | E P2204          |           | No      |               |  |  |
| 48 | P 2206                                                      | Diamen                     | 22080            | 22157     | No      | 500.0 *       |  |  |
| 49 | P 2200                                                      | Pump                       | E P2206          |           | INO     | 500.0         |  |  |
| 50 | P-102                                                       | Diamen                     | 21003            | 21027     | No      | 500.0 *       |  |  |
| 51 | P-102                                                       | Pump                       | E 1              |           | No      | 500.0         |  |  |
| 52 | D 0004                                                      | Division                   | 22006            | 22013.    | N-      | 500.0 *       |  |  |
| 53 | P-2201                                                      | Pump                       | E 11             |           | No      | 500.0 *       |  |  |
| 54 |                                                             |                            | 21014*           | 21008     |         |               |  |  |
| 55 | CCTD 100                                                    | Cont Stirred Tank Deact-   | 21007            | 21005     | No      | E00.0 *       |  |  |
| 56 | CSTR-100                                                    | Cont. Stirred Tank Reactor | 21010            |           | No      | 500.0 *       |  |  |
| 57 |                                                             |                            | 21001            |           |         |               |  |  |
| 58 | B MIV 404                                                   | Mixer                      | 22013            | 2101124   | N1-     | 500.0 *       |  |  |
| 59 |                                                             |                            | 22015            |           | No      |               |  |  |
| 60 | MIV 400                                                     |                            | 21013*           | 21012     |         | 500.0 *       |  |  |
| 61 | MIX-100                                                     | Mixer                      | 21018            |           | No      |               |  |  |
| 62 | MIX-102                                                     | Mixer                      | 21012            | 21014*    | No      | 500.0 *       |  |  |
| 63 | Aspen Technology Inc.                                       |                            | Aspen HYSYS Vers |           |         | Page 37 of 40 |  |  |
| _  | Licensed to: Company Name Not Available * Specified by user |                            |                  |           |         |               |  |  |



Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

# Workbook: Case (Main) (continued)

#### **Unit Ops (continued)**

| 10       | Unit Ops (continued)                                                                                                       |                   |                |          |         |            |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|----------|---------|------------|--|--|
| 11       | Operation Name                                                                                                             | Operation Type    | Feeds          | Products | Ignored | Calc Level |  |  |
| 12       | MIX-102                                                                                                                    | Mixer             | 2101124        |          | No      | 500.0 *    |  |  |
| 13       | MIX-103                                                                                                                    | Mixer             | 22004          | 2103     | No      | 500.0 *    |  |  |
| 14       |                                                                                                                            |                   | 21008          |          | 110     |            |  |  |
| 15       | MIX-104                                                                                                                    | Mixer             | 23012          | 23002    | No      | 500.0 *    |  |  |
| 16       |                                                                                                                            |                   | 23014          |          |         |            |  |  |
| 17       | MIX-105                                                                                                                    | Mixer             | 23013          | 23011    | No      | 500.0 *    |  |  |
| 18       |                                                                                                                            |                   | 23011*         |          |         |            |  |  |
| 19       | MIX-106                                                                                                                    | Mixer             | koh            | 22068*   | No      | 500.0 *    |  |  |
| 20       |                                                                                                                            |                   | 22020          |          |         |            |  |  |
| 21       | MIX-108                                                                                                                    | Mixer             | 23003          | 22008    | No      | 500.0 *    |  |  |
| 22       |                                                                                                                            |                   | 22024          | 00000    |         |            |  |  |
| 23       | MIX-109                                                                                                                    | Mixer             | 22012          | 22026*   | No      | 500.0 *    |  |  |
| 24       |                                                                                                                            |                   | 22026          | 00000+   |         |            |  |  |
| 25       | MIX-110                                                                                                                    | Mixer             | 22026*         | 22038*   | No      | 500.0 *    |  |  |
| 26       |                                                                                                                            |                   | 22008*         | 00040    |         |            |  |  |
| 27<br>28 | MIN 444                                                                                                                    | A dissert         | 22023          | 22018    |         | 500 O *    |  |  |
| 29       | MIX-111                                                                                                                    | Mixer             | 23007*         |          | No      | 500.0 *    |  |  |
| 30       |                                                                                                                            |                   | 22060<br>22001 | 22000    |         |            |  |  |
| 31       | MIX-112                                                                                                                    | Mixer             | 22014          | 22080    | No      | 500.0 *    |  |  |
| 32       |                                                                                                                            |                   | 22055          | 23004.   |         |            |  |  |
| 33       | MIX-107                                                                                                                    | Mixer             | 23004          | 23004.   | No      | 500.0 *    |  |  |
| 34       |                                                                                                                            |                   | 23008          | 23010.   |         |            |  |  |
| 35       | TEE-101                                                                                                                    | Tee               | 23000          | 23009.   | No      | 500.0 *    |  |  |
| 36       |                                                                                                                            |                   | 23006          | 23007*   |         |            |  |  |
| 37       | TEE-102                                                                                                                    | Tee               | 20000          | 23008*   | No      | 500.0 *    |  |  |
| 38       |                                                                                                                            |                   | 22066*         | 22067*   |         |            |  |  |
| 39       | TEE-103                                                                                                                    | Tee               |                | 22054    | No      | 500.0 *    |  |  |
| 40       |                                                                                                                            |                   | 22054          | 22060    |         |            |  |  |
| 41       | TEE-104                                                                                                                    | Tee               | 22001          | 22055    | No      | 500.0 *    |  |  |
| 42       |                                                                                                                            |                   | 22009          | 22003*   |         |            |  |  |
| 43       | TEE-106                                                                                                                    | Tee               |                | 22023    | No      | 500.0 *    |  |  |
| 44       |                                                                                                                            | _                 | 22006*         | 22006    |         |            |  |  |
| 45       | TEE-109                                                                                                                    | Tee               |                | 22007    | No      | 500.0 *    |  |  |
| 46       | TEE 100                                                                                                                    | Too               | 22007          | 22002*   | NI-     | 500 0 *    |  |  |
| 47       | TEE-108                                                                                                                    | Tee               |                | 22001    | No      | 500.0 *    |  |  |
| 48       | TEE 110                                                                                                                    | Too               | 22021*         | 22022*   | No      | 500 O *    |  |  |
| 49       | TEE-110                                                                                                                    | Tee               |                | 22014    | No      | 500.0 *    |  |  |
| 50       | TEE-100                                                                                                                    | Tee               | 21027          | 21083    | No      | 500.0 *    |  |  |
| 51       | 1 LL-100                                                                                                                   | 166               |                | 21017*   | INO     | 300.0      |  |  |
| 52       | TEE-105                                                                                                                    | Tee               | 21017*         | 21013*   | No      | 500.0 *    |  |  |
| 53       | 1 LL-100                                                                                                                   | 166               |                | 21017**  | INO     | 300.0      |  |  |
| 54       | TEE-111                                                                                                                    | Tee               | 21005          | 21005.   | No      | 500.0 *    |  |  |
| 55       |                                                                                                                            |                   |                | TO FLARE | 110     |            |  |  |
| 56       | T 2301                                                                                                                     | Absorber          | 23010          | 23013    | No      | 2500 *     |  |  |
| 57       | . 2001                                                                                                                     |                   | 21006          | 23012    | 1.10    |            |  |  |
| 58       | T 2302                                                                                                                     | Absorber          | 23009          | 23001    | No      | 2500 *     |  |  |
| 59       | <del></del>                                                                                                                | 7.0301001         | 22011          | 23014    | 140     |            |  |  |
| 60       | 03-E-2302                                                                                                                  | 02 Heat Exchanger | 23009.         | 23009    | No      | 500.0      |  |  |
| 61       |                                                                                                                            |                   | 23370          | 23372    |         |            |  |  |
| 62       | E-101                                                                                                                      | Heat Exchanger    | 23004.         | 23006*   | No      | 500.0 *    |  |  |
| 63       | 3 Aspen Technology Inc. Aspen HYSYS Version 10 Page 38 of 40  Licensed to: Company Name Not Available  * Specified by user |                   |                |          |         |            |  |  |



Case Name: ACETIC ACID FIN.HSC

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

# Workbook: Case (Main) (continued)

#### Unit Ops (continued)

| 10       | 0                     |                      |                 |                 |         |                |
|----------|-----------------------|----------------------|-----------------|-----------------|---------|----------------|
| 11       | Operation Name        | Operation Type       | Feeds           | Products        | Ignored | Calc Level     |
| 12       | E-101                 | Heat Exchanger       | 23301           | 23302           | No      | 500.0 *        |
| 13<br>14 | 03-E 2209             | Heat Exchanger       | 22064<br>22306  | 22065<br>22307  | No      | 500.0          |
| 15       | 03-E 2208             | Hoot Evahangar       | 22051           | 22051*          | No      | 500.0 *        |
| 16       | 03-E 2200             | Heat Exchanger       | 22304           | 22305           | INO     | 500.0          |
| 17       | E 2202                | Heat Exchanger       | 22008           | 22008*          | No      | 500.0 *        |
| 18       |                       |                      | 22300           | 22301           |         |                |
| 19       | E-103                 | Heat Exchanger       | 22019           | 22019*          | No      | 500.0          |
| 20       |                       |                      | 22302           | 22303           |         |                |
| 21       | E 2206                | Heat Exchanger       | 22038*          | 22038***        | No      | 500.0 *        |
| 22<br>23 |                       |                      | 22375           | 22376           |         |                |
| 24       | E 2203                | Heat Exchanger       | 22010           | 2201000         | No      | 500.0 3        |
| 25       |                       |                      | 22370<br>21005. | 22371<br>21005* |         |                |
| 26       | E-104                 | Heat Exchanger       | 21300           | 21301           | No      | 500.0 3        |
| 27       |                       |                      | 23011           | 23004           |         |                |
| 28       | 03-T-2303             | Reboiled Absorber    | 23011           | 23003           | No      | 2500 3         |
| 29       |                       |                      | 22067           | 22052           |         |                |
| 30       |                       |                      | 22068           | 22052           |         | 2500 *         |
| 31       | 03-T 2203             | Reboiled Absorber    | 22069           | 22064           | No      |                |
| 32       |                       |                      | E 2207          | 22004           |         |                |
| 33       |                       |                      | 22053           | 22070           |         |                |
| 34       | 03-T 2206             | 06 Reboiled Absorber | 22071           | 22069.          | No      | 2500 *         |
| 35       | 00-1 2200             | Repoiled Absorber    | 03-E 2215       | 22009.          |         |                |
| 36       |                       | Reboiled Absorber    | 22002           | 22004*          |         | 2500 *         |
| 37       |                       |                      | 22003           | 22024           |         |                |
| 38       | T 2201                |                      | 21009*          | 22009*          | No      |                |
| 39       |                       |                      | E 2201          | 22003           |         |                |
| 40       |                       |                      | 22022           | 22020*          |         | 2500 *         |
| 41       |                       |                      | 22018           | 22019           |         |                |
| 42       | T 2202                | Reboiled Absorber    | 22025           | 22010           | No      |                |
| 43       |                       |                      | E 2204          |                 |         |                |
| 44       |                       |                      | 2201000         | 22012           |         |                |
| 45       | D 2208                | Separator            |                 | 22011*          | No      | 500.0 '        |
| 46       |                       |                      | 21005*          | 21007*          |         |                |
| 47       | V-102                 | Separator            |                 | 21006*          | No      | 500.0 3        |
| 48       |                       |                      | 2103            | 2103*           |         |                |
| 49       | E-102                 | Heater               | E 2             |                 | No      | 500.0 *        |
| 50       |                       |                      | 21006*          | 21006           |         |                |
| 51       | E-105                 | Heater               | E 4             |                 | No      | 500.0 *        |
| 52       | F 400                 |                      | 21017**         | 21018           |         | <b>500</b> 5 5 |
| 53       | E-100                 | Heater               | e 1             |                 | No      | 500.0 *        |
| 54       | RCY-1                 | Recycle              | 21010.          | 21010           | No      | 3500 *         |
| 55       | RCY-2                 | Recycle              | 21007*          | 21007           | No      | 3500 3         |
| 56       | RCY-3                 | Recycle              | 23010.          | 23010           | No      | 3500 3         |
| 57       | RCY-4                 | Recycle              | 23008*          | 23008           | No      | 3500 3         |
| 58       | RCY-5                 | Recycle              | 22011*          | 22011           | No      | 3500 3         |
| 59       | RCY-6                 | Recycle              | 22069.          | 22069           | No      | 3500 3         |
| 60       | RCY-7                 | Recycle              | 22020*          | 22020           | No      | 3500           |
| 61       | RCY-8                 | Recycle              | 22067*          | 22067           | No      | 3500           |
| 62       | RCY-9                 | Recycle              | 22004*          | 22004           | No      | 3500 *         |
| 63       | Aspen Technology Inc. |                      | Aspen HYSYS Ver | sion 10         |         | Page 39 of 40  |



Company Name Not Available Bedford, MA USA

ACETIC ACID FIN.HSC Case Name:

Unit Set: Project

Date/Time: Mon Dec 16 09:45:15 2019

#### Workbook: Case (Main) (continued)

#### **Unit Ops (continued)**

| 9  | Unit Ops (continued) |                |         |          |         |            |  |
|----|----------------------|----------------|---------|----------|---------|------------|--|
| 11 | Operation Name       | Operation Type | Feeds   | Products | Ignored | Calc Level |  |
| 12 | RCY-10               | Recycle        | 22002/  | 22002    | No      | 3500 *     |  |
| 13 | RCY-11               | Recycle        | 22013.  | 22013    | No      | 3500 *     |  |
| 14 | RCY-12               | Recycle        | 22003*  | 22003    | No      | 3500 *     |  |
| 15 | RCY-13               | Recycle        | 22010** | 22010    | No      | 3500 *     |  |
| 16 | RCY-14               | Recycle        | 22022*  | 22022    | No      | 3500 *     |  |
| 17 | RCY-15               | Recycle        | 21009   | 21009*   | No      | 3500 *     |  |