Information Technology Education Department

NAME:	DATE:	SCORE:
PROFESSOR'S NAME:	SCHEDULE:	

Seatwork 1: PAGE REPLACEMENT TECHNIQUES (15pts)

1. Solve the given reference string below using 3 frames in the following page replacement algorithms:

95791104102820078141210

- A. FIFO (First-In, First-Out)
- B. OPTIMAL
- C. LRU (Least Recently Used)

11. I II O — pugo iduito	A.	FIFO =		page	faults
--------------------------	----	--------	--	------	--------

9	5	7	9	1	1	0	4	1	0	2	8	2	0	0	7	8	1	4	1	2	1	0

B. OPTIMAL = _____page faults

9	5	7	9	1	1	0	4	1	0	2	8	2	0	0	7	8	1	4	1	2	1	0

C. LRU = _____page faults

9	5	7	9	1	1	0	4	1	0	2	8	2	0	0	7	8	1	4	1	2	1	0

Information Technology Education Department

Seatwork 2: VIRTUAL MEMORY MAPPING (15pts)

α	•	
4 -1	T/OI	n•

Page or frame size = 2 bytes No. of process page = 8 pages No. of memory frames = 16 frames

Questions:

- A. What is the size of the Main Memory? ____ (2pts) ____(2pts)
- **B.** What is the size of the process?
- C. Draw your logical memory having the content of letters from A-P using 2 bytes per page. (5pts)

- D. What is the physical address of the following letters using the given page table below:
 - a.) C ____(2pts)
 - **b.**) **H** _(2pts)
 - c.) O _(2pts)

Page Table											
000	0111										
001	0011										
010	1001										
011	0101										
100	1111										
101	1000										
110	1101										
111	1010										

Information Technology Education Department

Seatwork No. 3: MEMORY MANAGEMENT (40pts)

Directions: Given each memory allocation scheme, analyze the problem then answer the questions that follow.

A. VARIABLE PARTITIONING WITHOUT COMPACTION (20pts)

Directions: Complete the table using Variable Partitioning without Compaction.

Given: OS size 56 K

Memory Size 200 K

Job #	Job Size	Arrival Time	Run Time (min)	Time Started	Time Finished	Waiting Time (mins)	Memory Available when job was allocated
1	60	10:00	10				
2	100	10:05	15				
3	50	10:05	20				
4	70	10:10	8				
5	30	10:15	15				

B. RELOCATABLE DYNAMIC PARTITIONING/VARIABLE PARTITIONING WITH COMPACTION (20pts)

Directions: Complete the table using Variable Partitioning using Allocation after Compaction.

Given: OS size 56 K Memory Size 200 K

10:15

15

5

30

Job Job Arrival Run Time Time Time **Waiting Time** Memory Available when # Size Time (min) **Started Finished** (mins) job was allocated 1 60 10:00 10 2 100 10:05 **15** 3 **50** 10:05 20 4 **70** 10:10 8