复旦大学数学科学学院 2021 ~2022 学年第 1 学期期末考试试卷

课程名称: 机器学习与神经网络导论 课程代码: MATH620165

 姓名:
 刘威
 学号:
 21210180060
 专业:
 应用统计

 题号
 1
 2
 3
 4
 5
 6
 7
 8
 总分

(共 8 题, 可选 6 题完成, 1-5 题为必选题, 6-8 题三选一,

一、(15分)叙述至少三种深度卷积神经网络训练的正则化方法

总分 100 分)

二、 (15分) 叙述三种以上集成学习方法,并逐个详细阐述。

三、 (15分)完整叙述并推导贝叶斯估计的最小最大原理。

四、 (15 分) 完整叙述并推导梯度提升树 (GBDT) 的原理与推导。

五、 (20分)完成叙述并推导结构风险最小化(Structural Risk Minimization) 准则与实现方法。

(以下为编程题目,每题 20 分,三选一,解答包含一个简要报告: 1. 数据处理与准备; 2. 模型构建; 3. 训练过程; 4. 测试集上结果汇报)

- 六、 通 过 预 测 用 户 对 电 影 评 级 。 实 验 数 据 库:
 http://grouplens.org/datasets/movielens/
 建议挑小的数据库。所有作业需要交叉验证来说明你的模型的效率。
- 七、 深证 B 股指数有大约 50 多家样本股的价格加权平均而得,请通过一段时间的历史数据,挑出尽量少的样本股精确估计该指数。数据来源: http://www.szse.cn
- 八、 设计神经网络模型完成附件 1 中的回归问题:最后一列是需要回归的数值型输出(表中 sheet1 用于训练; sheet2 用于测试);预测效果用在测试集的平方和相对误差来刻画。请报告误差的均值及其方差。

机器学习与神经网络导论

November 10, 2021

刘威

21210180060

问题 1. (15 分) 叙述至少三种深度卷积神经网络训练的正则化方法。

Solution.

1. 参数范数惩罚项。对目标函数 J 添加一个参数范数的惩罚项 $\omega(\theta)$,限制模型的学习能力。新的目标函数为

$$\hat{J}(\theta; X, y) = J(\theta; X, y) + \alpha \omega(\theta)$$

其中 $\alpha \in [0, +\infty)$ 为 0 时,没有正则化, α 越大正则化惩罚越大。

- 2. 提前终止。在每次验证集误差有所改善后,存储模型参数。当训练算法终止时,返回 改善后的参数而非最后一次训练时产生的参数。当验证集上的误差在事先指定的循环 次数内没有进一步改善时,提前终止训练。
- 3. dropout。假设一个掩码向量 μ 指定被包括的单元, $J(\theta,\mu)$ 是由参数 θ 和掩码 μ 定义的模型代价函数。dropout 训练的目标是最小化 $E_{\mu}J(\theta,\mu)$ 。
- 4. 数据增强。根据已有数据构造新的数据并添加到训练集中。例如图像识别中,镜面反射、图像像素级移动、缩放等。

问题 2. (15分) 叙述三种以上集成学习方法,并逐个详细阐述。

Solution.

1. Bagging

在 Bagging 方法中,利用 bootstrap 方法从整体数据集中采取有放回抽样得到 N 个数

据集,在每个数据集上学习出一个模型,最后的预测结果利用 N 个模型的输出得到。 具体地:分类问题采用 N 个模型预测投票的方式,回归问题采用 N 个模型预测平均的方式。

2. AdaBoost

是一种可以用来减小监督学习中偏差的机器学习算法。主要也是学习一系列弱分类器,并将其组合为一个强分类器。刚开始训练时对每一个训练例赋相等的权重,然后对训练集训练 t 轮,每次训练后,对错分类的训练例权重增大,对正确分类的训练样例权重减小。也就是让学习算法在每次学习以后更注意学错的样本,从而得到多个预测函数。

3. Stacking

Stacking 方法是指训练一个模型用于组合其他各个模型。首先我们先训练多个不同的模型,然后把之前训练的各个模型的输出为输入来训练一个模型,以得到一个最终的输出。理论上,Stacking 可以表示上面提到的两种 Ensemble 方法,只要我们采用合适的模型组合策略即可

4. GBDT

GBDT 也是一种 Boosting 方法,每个子模型是根据已训练出的学习器的性能(残差)训练出来的,子模型是串行训练获得,不易并行化。GBDT 基于残差学习的算,没有 AdaBoost 中的样本权重的概念。GBDT 结合了梯度迭代和回归树,准确率非常高,但 是也有过拟合的风险。GBDT 中迭代的残差的梯度,残差就是目前结合所有得到的训练器预测的结果与实际值的差值。

问题 3. (15 分) 完整叙述并推导贝叶斯估计的最小最大原理。

Solution.

贝叶斯估计的最小最大原理:

设 δ^* 为先验分布 $H(\theta)$ 下的贝叶斯估解,且 δ^* 的风险函数为常数 c,即对任意 $\theta \in \Theta$ 有 $R(\delta^*, \theta) = c$,则 δ^* 为一个最小最大解。其中 $R(\delta, \theta)$ 为风险函数。

证明:

反证法, 若不然, δ^* 不是最小最大解, 则存在估计量 δ 使得

$$\sup_{\theta \in \Theta} R(\delta, \theta) < \sup_{\theta \in \Theta} R(\delta^*, \theta) = c$$

故 $R(\delta,\theta) < c$ 对一切 $\theta \in \Theta$ 成立, 此时将两边关于 θ 的先验分布 $H(\theta)$ 求平均可得到

$$R_H(\theta) = \int_{\Theta} R(\delta, \theta) dH(\theta) < c \int_{\Theta} dH(\theta) = \int_{\Theta} R(\delta^*, \theta) dH(\theta) = R_H(\delta^*)$$

即 $R_H(\delta) < R_H(\delta^*)$,其中 $R_H(\delta)$ 为 δ 的 bayes 风险, $R_H(\delta^*)$ 为 δ^* 的 bayes 风险,这与 δ^* 是贝叶斯解矛盾。

问题 4. (15 分) 完整叙述并推导梯度提升树 (GBDT) 的原理与推导。

Solution.

GBDT 是使用了前向分布的迭代算法、弱学习器限定使用 CART 回归树模型。

输入: 训练数据集 $D = (x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$

输出:
$$f(x) = \sum_{m=1}^{M} \hat{c}_m I(x \in R_m)$$

每个树都是输入空间的一个划分,假设已经将输入空间划分为 M 个子集 $R_1, R_2, R_3 \dots R_m$,并且每个子集都有固定的输出值 c_m ,其中 I 为示性函数。

预测误差:
$$loss = \sum_{x_i \in R_m} (y - f(x_i))^2$$

假设我们前一轮迭代得到的强学习器是 $f_{t-1}(x)$, 损失函数是 $L(y, f_{t-1}(x))$, 我们本轮迭代的目标是找到一个 CART 回归树模型的弱学习器 $h_t(x)$, 让本轮的损失函数 $L(y, f_t(x)) = L(y, f_{t-1}(x) + h_t(x))$ 最小。也就是说,本轮迭代找到决策树,要让样本的损失尽量变得更小。

推导: 第 t 轮的第 i 个样本的损失函数的负梯度表示为

$$r_{ti} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x) = f_{t-1}(x)}$$

利用 (x_i, r_{ti}) (i = 1, 2, ...m), 可以你和 CART 回归树, 得到第 t 棵回归树, 其对应的叶节点

区域 R_{tj} , j=1,2,...,J, J 为叶子节点个数。针对每一个叶子节点的样本,得到你和叶子节点最好的输出值 c_{ti} ,

$$c_{tj} = argmin \sum_{x_i \in R_{tj}} L(y_i, f_{t-1}(x_i) + c)$$

本轮决策树拟合函数:

$$h_t(x) = \sum_{j=1}^{J} c_{tj} I(x \in R_{tj})$$

从而本轮的强学习器的表达式:

$$f_t(x) = f_{t-1}(x) + \sum_{j=1}^{J} c_{tj} I(x \in R_{tj})$$

问题 5. (20 分) 完成叙述并推导结构风险最小化 (Structural Risk Minimization) 准则与实现方法。

Solution. 结构风险最小化准则:

把函数集构造为一个函数子集序列, 使各个子集按照 VC 维的大小排列; 在每个子集中寻找最小经验风险, 在子集间折衷考虑经验风险和置信范围, 取得实际风险的最小。这种思想称作结构风险最小化 (Structural Risk Minimization), 即 SRM 准则。

Vapnik 给予了如下定理:

Theorem:

SRM 方法提供了一种风险 $R(\alpha_l^{n(l)})$ 的近似 $Q(z,\alpha_l^{n(l)})$,能够收敛至最小风险 $R(\alpha_0)=\inf_{\alpha}\int Q(z,\alpha)p(z)dz$,渐近收敛速率 $V(l)=r_{n(l)}+T_{n(l)}\sqrt{\frac{h_{n(l)}\ln l}{l}}$, $r_{n(l)}=R(\alpha_0^{n(l)}-R(\alpha_0)$ 。若 n(l) 满足 $\lim_{l\to\infty}\frac{T_{n(l)}^2h_{n(l)}\ln l}{l}=0$, (a) 对于有界结构函数, $T_n=B_n$,(b) 对于一个非负结构函数, $T_n=\tau_n$

推导:考虑 $T_n=B_n$ 即损失函数有界,此时对于 S_k 有: $R(\alpha_l^k) \leq R_{emp}(\alpha_l^k) + B_k \epsilon_k \dots$ 其中 $\epsilon_k = \sqrt{\frac{h_k(1+\ln{(2l/h_k)})+\ln{\delta/4}}{l}}$,对于 S_k 中的参数 α_0^k 有如下不等式:

$$R(\alpha_0^k) \le R_{emp}(\alpha_0^k) + B_k \sqrt{\frac{-\ln \delta}{2l}}$$

因此有:

$$\Delta(\alpha_l^0 = R(\alpha_l^k) - R(\alpha_0^k) \le B_k(\sqrt{\frac{-\ln \delta}{2l} + \epsilon_k})$$

从而有

$$R_{emp}(\alpha_l^k) \le R_{emp}(\alpha_0^k)$$

 $\diamondsuit k = n(l)$ 且 $\delta = 1/l^2$ 则有

$$R(\alpha_l^{n(l)}) - R(\alpha_0) \le r_{n(l)} + B_{n(l)}(\sqrt{\frac{2\ln l}{2l}} + \epsilon_{n(l)})$$

其中 $r_{n(l)} = R(\alpha_0^{n(l)} - R(\alpha_0),$

从而有 $\lim_{l\to\infty} r_{n(l)} = 0$, 定义

$$V(l) = r_{n(l)} + B_{n(l)} \left(\sqrt{\frac{2 \ln l}{2l}} + \sqrt{\frac{h_{n(l)} (1 + \ln (2l/h_{n(l)}) + 2 \ln 4l}{l}} \right)$$

若 $\lim_{l\to\infty} \frac{B_{n(l)}^2 h_{n(l)} \ln l}{l} = 0$,则 $\lim_{l\to\infty} V(l) = 0$ 改写下式

$$R(\alpha_l^{n(l)}) - R(\alpha_0) \le r_{n(l)} + B_{n(l)}(\sqrt{\frac{2\ln l}{2l}} + \epsilon_{n(l)})$$

为

$$Pr\{V^{-1}(l)(R(\alpha_l^{n(l)}) - R(\alpha_0)) > 1\} < \frac{2}{l^2}, forl > l0$$

从而有:

$$\sum_{l=1}^{\infty} \Pr\{V^{-1}(l)(R(\alpha_l^{n(l)}) - R(\alpha_0)) > 1\} < l_0 + \sum_{l=l_0+1}^{\infty} \frac{2}{l^2} < \infty$$

由 Borel-Cantelli 引理有:

$$\overline{\lim}_{l \to \infty} V^{-1}(l) (R(\alpha_l^{n(l)}) - R(\alpha_0)) \le 1$$

是一个有效的概率。

实现方法:

结构风险最小化准则认为经验风险最小的模型是最优模型。求最优模型就是找到一组 θ^* 使

结构风险损失函数取得最小值

$$\theta^* = \operatorname*{arg\,min}_{\theta} R_{srm}(\theta)$$

这时结构风险就是最优化的目标函数,监督学习优化问题转化为结构风险函数的最优化问题。

结构风险最小化也可以通过正则化方式实现。结构风险 = 经验风险 + 正则化项。在假设空间、损失函数以及训练集确定的情况下,结构风险的定义如下

$$R_{srm}(\theta) = R_{emp} + \lambda J(\theta) = \frac{1}{N} \sum_{n=1}^{N} L(y, f(x, \theta)) + \lambda J(\theta)$$

式中 $J(\theta)$ 为模型的复杂度,是定义在假设空间 F 上的泛函,常用的有 L_1 范数和 L_2 范数。 $J(\theta)$ 可以理解为对模型复杂度的惩罚项。 $\lambda>0$ 用来控制正则化强度,以权衡经验风险和模型复杂度。 \blacksquare

问题 6. (20 分)设计神经网络模型完成附件 1 中的回归问题:最后一列是需要回归的数值型输出(表中 sheet1 用于训练; sheet2 用于测试);预测效果用在测试集的平方和相对误差来刻画。请报告误差的均值及其方差。

1. 训练集、验证集、测试集划分

数据集总共包含 550 条训练数据 137 条测试集数据,在原本的训练数据上,我将之按照 4:1 划分为用于训练参数的测试集和用于超参选择的验证集。最终各个集合元素个数比为:

训练集: 验证集: 测试集 = 440:110:137 (约为 4:1:0.8)。

2. 数据分析与标准化

该问题训练集样本中包含两类解释变量: 30 个数值型 (第 0 列至第 29 列)、分类型 (第 30 列)。

(a) 数值型变量

我们已知数值型变量是指一些指标分数,可以推断出分数很可能是有界的,观察到这些解释变量 x_i 都是 1 到 7 之间的整数;

在表2a中,我们列出了数值型变量的数字特征,如均值、方差、最大最小值、分位数等。

结合实际意义和数字特征两方面,我采用了 MinMax 方法进行归一化处理。 公式如下,其中 $X=(x^{(1)},x^{(2)},...,x^{(n)})$, $x^{(i)}=(x_1^{(i)},x_2^{(i)},...,x_m^{(i)})^T$,n 为训练集样本数,m 为特征数。

$$x_{m:scaled}^{(i)} = \frac{x_m^{(i)} - \min_k(x_m^{(k)})}{\max_k(x_m^{(k)}) - \min_k(x_m^{(k)})}.$$

后续为了记号的简便,用同样的记号表示归一化后的数据, $x_m^{(i)}=x_{m:scaled}^{(i)}$

(b) 分类型变量

我们已经知道了第 30 列为所服药物,但是由于缺乏药物之间是否有相似作用或想反作用等先验知识,我们无法对该分类变量做有效的 Embidding, 因此, 为后续处理方便, 采用传统的 one-hot 编码形式对分类型变量处理。

将药物按照是否是(利培酮、喹硫平、奋乃静、奥氮平、氟哌啶醇、阿立哌唑、齐拉西酮)的顺序分别记为 $x_{c1},x_{c2},...,x_{c7},\;x_{ci}=1$ 表示处方为是第 i 个药物,否则 $x_{ci}=0$ 。

(c) 数值型被解释变量

根据训练集上的数值形式来看,被解释变量似乎不是有界的。因此使用最大最小的方法进行归一化或许会出现些许问题。这里我使用了 Z-score 方法,将被解释变量进行一个可逆的线性变换,这样保证了使用标准化后的模型的输出值可以唯

表 1: 训练集上数值型变量的数字特征

variance	mean	std	min	25%	50%	75%	max
0	5.163636	0.959568	2	5	5	6	7
1	3.6	1.404192	1	3	4	5	7
2	4.052273	1.772864	1	3	4	5	7
3	2.890909	1.476285	1	1	3	4	7
4	1.672727	1.175754	1	1	1	2	7
5	4.838636	1.094138	1	4	5	6	7
6	3.722727	1.394892	1	3	4	4	7
7	3.206818	1.375162	1	2	3	4	7
8	3.247727	1.391479	1	2	3	4	7
9	3.615909	1.301907	1	3	4	4	7
10	3.347727	1.379807	1	2	3	4	7
11	2.652273	1.44591	1	1	3	4	7
12	3.281818	1.405371	1	2	3	4	7
13	2.447727	1.440385	1	1	2	4	7
14	2.163636	1.303769	1	1	2	3	7
15	2.443182	1.246937	1	1	2	3	6
16	1.381818	0.818152	1	1	1	1	5
17	2.518182	1.310423	1	1	3	3	6
18	1.856818	1.235374	1	1	1	3	7
19	1.661364	0.940779	1	1	1	2	5
20	2.1	1.223908	1	1	2	3	6
21	3.434091	1.472673	1	2	3	4	7
22	3.934091	1.585159	1	3	4	5	7
23	1.295455	0.741836	1	1	1	1	5
24	2.763636	1.356179	1	1	3	4	7
25	5.529545	0.9101	1	5	6	6	7
26	3.072727	1.46615	1	2	3	4	7
27	2.879545	1.557271	1	1	3	4	7
28	2.856818	1.617092	1	1	3	4	7
29	3.386364	1.432075	1	3	4	4	7

一地回到对真实值的预测。公式如下,其中: μ 和 σ 分别表示训练集中,所有样本的被解释变量 y 的均值和方差。

$$y_{zs} = \frac{y - \mu}{\sigma}$$

表 2: 训练集上被解释变量的数字特征

variance	mean	std	min	25%	50%	75%	max
у	57.640909	19.238419	31	42	54	69	157

3. 网络模型

注意到实际意义中,医生结合前 30 个数值型变量开出处方药(第 31 列),再观察治疗后的综合指标。因此我将指标分数(数值型变量)和处方药(分类型变量)分开设计,通过两个不同阶段的模型来达到模拟医生开处方治疗的过程。

Step1,神经网络 Network-A 作用在 $x=(x_1,...x_{30})^T$ 三十个变量上,得到一个向量 $z=(z_1,...,z_m)^T$ 把它叫做诊断向量,其中 m 是一个超参数,表示 Network-A 的输出层维数。

Step2,对于分类变量 $x_{c0}, x_{c1}, ..., x_{c6}$,我们注意到不同的药物在不同的诊断向量 z 上的表现是不全相同的,这符合人的生活认知:不同的药物对生理指标起到的作用是不同的。因此,我们给出了如下假设:

不同药物之间对判断指标 z 的效果是独立的。

从而设计出神经网络 Network-B。他的作用是根据分类变量的某个满足 $x_{ci}=1, x_{cj}=0, \forall j\neq i$ 的分量 x_{ci} ,得到一个系数向量 $T\in \mathbb{M}(p,m), p$ 为正整数是一个超参,m 和诊断向量 z 的维数一致。

Step3,根据用药情况,诊断向量 z 会根据用药 x_{ci} 的不同受到不同的影响。我们假设这种影响是线性的。因此,一个新的维数 p 的向量 v。根据上述理念就有了如下表达式:

$$v = z + T$$

(这是因为: 对 v 的每个分量 $v_r = T_r + z_r, r \in \{1, 2, ..., p\}$)

Step4, 将 v 通过网络 Network-C 得到最后的预测结果输出 $\hat{f} \in \mathbb{R}^1$ 。

4. 损失函数

该模型是一个回归问题,我们采用了最常用的均方误差(MSELoss)作损失函数,并且予以一定正则化措施。

$$loss_{\theta}(\hat{F}, Y_{zs}) = \frac{1}{n} \|(\hat{F} - Y_{zs})\|_{2}^{2} + \lambda \|\theta\|_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} (\hat{f}^{(i)} - y_{zs}^{(i)})^{2} + \lambda \|\theta\|_{2}^{2}$$

其中, $\hat{F} = (\hat{f}^{(1)}, \hat{f}^{(2)}, ..., \hat{f}^{(n)})^T$, $Y_{zs} = (y_{zs}^{(1)}, y_{zs}^{(2)}, ..., y_{zs}^{(n)})^T$,n 为测试集样本数。

5. 优化器选择

在优化器选择上,我们选择了 Adam。Adam 是一种替代传统随机梯度下降过程的一阶优化算法,它能基于训练数据迭代地更新神经网络权重。此外, adam 的收敛速度更快。

6. 模型结构

模型分别对应 Network1, Network2, Network3.

```
MY MODEL(
  (Network1): ModuleList(
    (0): Sequential(
      (0): ResidualBlock(
        (ln1): Linear(in_features=30, out_features=32, bias=True)
        (dropout1): Dropout(p=0.1, inplace=False)
        (ln2): Linear(in_features=32, out_features=30, bias=True)
      (1): Linear(in_features=30, out_features=16, bias=True)
      (2): ResidualBlock(
        (ln1): Linear(in_features=16, out_features=10, bias=True)
        (dropout1): Dropout(p=0.1, inplace=False)
        (ln2): Linear(in_features=10, out_features=16, bias=True)
    )
 )
  (Network2): ModuleList(
    (0): Sequential(
      (0): Linear(in features=7, out features=16, bias=True)
      (1): ReLU()
      (2): Dropout(p=0.1, inplace=False)
    )
  (Network3): Sequential(
    (0): Linear(in_features=16, out_features=1, bias=True)
```

图 1: 模型结构与参数

7. 超参选择

正则化时超参数 λ 的选择可以改善模型的效果,根据验证集展现出的结果,我们取 $\lambda=0.10125$ 。

8. 训练过程

训练时 loss function 在训练集与验证集上的结果见图2,由于使用了 early stop 的方式,因此并非采取的最后一次的结果。

9. 结果分析

将模型输出的预测值 \hat{f} 做 Z-score 的逆映射并四舍五入取整,得到最终的预测值 \hat{y} ,

$$\hat{y} = \left[\sigma\hat{f} + \mu\right]$$

令 $e_i = \hat{y}_i - y_i$, 可以得到 e 相关信息:

• 均值 $\mu = -0.364964$;

图 2: 训练过程: Loss

- 标准差 std = 16.514645;
- 最小值为 -54, 最大值 32;
- 下四分位数 $Q_1 = -8$, 中位数 $Q_2 = 1$, 上四分位数 $Q_3 = 11$;
- |e| 的最大值为 54, 此时 $\hat{y}-y=-54$, 即 \hat{y} 低估了此时的样本。

在全体测试集上有:

- 均方误差 MSE = 270.8759;
- 平方和相对误差 $\sum \delta_i^2 = 12.08567$;
- 均方和相对误差 $\sum \delta_i^2/n = 0.08821$;
- 残差分布图见图3;
- 密度估计见图4。

这里给出了 \hat{y} 的残差图以及基于核密度方法的残差密度图像:

图 3: 残差图

图 4: 残差分布图与核密度估计