Quiz 17.5 - Formation Reactions Name: Question 1 Copper(II) ions will form a Cu(NH₃)₄²⁺ complex ion with $K_f=1.7\times 10^{13}$ Find [Cu²⁺], [NH₃], and [Cu(NH₃)₄²⁺] for a solution which is 0.200~F in Cu²⁺ and 0.500~F in NH₃ (u a+ + 4 NH3 = (u(NH3)y d+ (ud+ 4 NH) = (u(NH3)y Question 2 Consider the formation of the complex ion Ag(CN)₂, with $(K_f = 1.0 \times 10^{21})$ Find $[Ag^+]$, $[CN^-]$, and $[Ag(CN)_2^-]$ in a solution prepared by mixing $25.00 \, ml$ of $0.075 \, M$ AgNO₃ with $40.00 \, ml$ \longrightarrow 65 μl kHz of 0.100 M NaCN - 0.0335M L>0.0288M At + 2CN = Ag(CN)2 $+ \lambda x$ -x $1.0 \cdot 10^{21} = 0.0192 - 0.0096+x)(0.0096$ A 0.0096 Question 3 PbI_2 is a sparingly soluble salt with $K_{sp}=9.8\times10^{-9}$, while PbI_4^{2-} is a complex ion with $K_f=3.0\times10^4$ What effect does the formation reaction have on the molar solubility of PbI,? (Bonus for the truly adventurous!: Find [Pb²⁺], [I⁻], and [PbI₂²⁻] if excess PbI₂(s) is placed in pure water) It will increase the Solubility as dissolved Pb and I are $(9.3.10^{-9} = (xy)(3x-7y)^2$ Consumed to produce Pb Iz PbIa(s) = Pbat + 2I Pbat + 4I = PbIy