

Stream ciphers

Attacks on OTP and stream ciphers

Review

OTP:
$$E(k,m) = m \oplus k$$
 , $D(k,c) = c \oplus k$

Making OTP practical using a PRG: G: $K \rightarrow \{0,1\}^n$

Stream cipher:
$$E(k,m) = m \oplus G(k)$$
, $D(k,c) = c \oplus G(k)$

Security: PRG must be unpredictable (better def in two segments)

Attack 1: two time pad is insecure!!

Never use stream cipher key more than once!!

$$C_1 \leftarrow m_1 \oplus PRG(k)$$

$$C_2 \leftarrow m_2 \oplus PRG(k)$$

Eavesdropper does:

$$C_1 \oplus C_2 \rightarrow$$

$$m_1 \oplus m_2 \rightarrow m_1, m_2$$

Real world examples

Project Venona

• MS-PPTP (windows NT):

Need different keys for $C \rightarrow S$ and $S \rightarrow C$

Real world examples

802.11b WEP:

Length of IV: 24 bits

- Repeated IV after 2²⁴ ≈ 16M frames
- On some 802.11 cards: IV resets to 0 after power cycle

Avoid related keys

802.11b WEP:

key for frame #1: (1 ll k)

key for frame #2: (2 II k)

24 104 61.45 415

A better construction

⇒ now each frame has a pseudorandom key

better solution: use stronger encryption method (as in WPA2)

Yet another example: disk encryption

Two time pad: summary

Never use stream cipher key more than once!!

Network traffic: negotiate new key for every session (e.g. TLS)

Disk encryption: typically do not use a stream cipher

Attack 2: no integrity (OTP is malleable)

Modifications to ciphertext are undetected and have **predictable** impact on plaintext

Attack 2: no integrity (OTP is malleable)

Modifications to ciphertext are undetected and have predictable impact on plaintext

End of Segment