

Study Design & Data Analysis

Prof. Dr. Dr. Carsten Röcker & Hitesh Dhiman, M.Sc.

Overview

- Variables and Constructs
- ▶ Scales of Measure
- ▶ Questionnaire
- ▶ Data Analysis
- ▶ Research Topic

Overview

- Variables and Constructs
- ▶ Scales of Measure
- ▶ Questionnaire
- ▶ Data Analysis
- ▶ Research Topic

Variables

Independent Variable (IV)

- characteristic changed to produce different conditions
- e.g., age, affinity towards technology

Dependent Variable (DV)

- characteristics measured in the experiment
- e.g., general attitude towards assistance systems

- hypothetical construct = explanatory variable that is not directly observable
 - e.g., intelligence, aggression, life satisfaction
- have to be operationalized in order to be measures
- requires to specify a measurement procedure

Example: Intelligence

- definition: "capacity for abstract thought, understanding, communication, reasoning, learning, planning and problem solving"
- measurement = e.g., the score obtained in Raven's Progressive Matrices Test
 - developed by John C. Raven (1936)
 - multiple choice test
 - 60 questions
 - scored automatically after 40 minutes

Example: Affinity towards Technology

- TA-EG Questionnaire
 (Fragebogen zur Technikaffinität: Einstellung zu und Umgang mit elektronischen Geräten)
- 19 items addressing affinity towards technology

		Trifft voll zu	Trifft eher zu	Teils /teils	Trifft eher nicht zu	Trifft gar nicht zu
1.	Ich liebe es, neue elektronische Geräte zu besitzen.					
2.	Elektronische Geräte machen krank.					
3.	lch gehe gern in den Fachhandel für elektronische Geräte.					
4.	lch habe bzw. hätte Verständnisprobleme beim Lesen von Elektronik- und Computerzeitschriften.					
5.	Elektronische Geräte ermöglichen einen hohen Lebensstandard.					
6.	Elektronische Geräte führen zu geistiger Verarmung.					
7.	Elektronische Geräte machen vieles umständlicher.					
8.	lch informiere mich über elektronische Geräte, auch wenn ich keine Kaufabsicht habe.					۵
9.	Elektronische Geräte machen unabhängig.					
10.	Es macht mir Spaß, ein elektronisches Gerät auszuprobieren.					
11.	Elektronische Geräte erleichtern mir den Alltag.					
12.	Elektronische Geräte erhöhen die Sicherheit.					
13.	Elektronische Geräte verringern den persönlichen Kontakt zwischen den Menschen.					
14.	Ich kenne die meisten Funktionen der elektronischen Geräte, die ich besitze.					۰
15.	lch bin begeistert, wenn ein neues elektronisches Gerät auf den Markt kommt.					
16.	Elektronische Geräte verursachen Stress.					۵
17.	Ich kenne mich im Bereich elektronischer Geräte aus.					
	Es fällt mir leicht, die Bedienung eines elektronischen Geräts zu lernen.			۰	٠	۵
19.	Elektronische Geräte helfen, an Informationen zu gelangen.					

Potential Problems

- operational definitions might
 - not accurately capture the intended construct
 - i.e. lack validity
 - be subjective
 - i.e. depends on how the construct is defined and measured

Overview

- Variables and Constructs
- Scales of Measure
- ▶ Questionnaire
- ▶ Data Analysis
- ▶ Research Topic

Scales of Measure

- used to classify variables
- four types
 - nominal
 - ordinal
 - interval
 - ratio
- qualitative: nominal
- quantitative: ordinal, interval, ratio

Nominal Scale

- possible to distinguish between items
- grouping according to names
- but: no order
- examples
 - gender (male, female)
 - place of birth (Lemgo, Detmold, etc.)

Nominal Scale: Analysis

- no mathematical operations possible
- but: descriptive statistics, e.g.,
 - comparisons (e.g., absolute and relative frequencies)
 - histograms, charts
 - mode (most common item)

Ordinal Scale

- rank order exist
- but: no relative degree of difference
- examples
 - school grade
 - very good, good, satisfactory, ...
 - satisfaction with a product
 - very satisfied, satisfied, unsatisfied, very unsatisfied
 - level of agreement with a statement
 - completely agree, mostly agree, mostly disagree, completely disagree

Ordinal Scale: Analysis

- all operations for nominal scale
- ranking (1st, 2nd, 3rd, ...)
- median (middle-ranked)

Interval Scale

- similar to ordinal scale
- but: relative degree of difference
- example: measurement of temperature on Celsius scale
 - zero point arbitrarily defined
 - ratios are not allowed
 - e.g., 20 °C not "twice as hot" as 10 °C

Interval Scale: Analysis

- all operations for ordinal scale
- mean
- standard deviation

Ratio Scale

- similar to interval scale
- but: non-arbitrary zero point
- examples
 - temperature measured in Kelvin
 - time measured in seconds
- mostly applies for measurements in natural sciences and engineering
 - e.g., distance A is "twice as long" as distance B
- interval and ratio scale subsumed as metric scales

Ratio Scale: Analysis

all statistical measures are allowed

Overview

- Variables and Constructs
- Scales of Measure
- Questionnaire
 - Types
 - Question Formats
 - Wording
 - ▶ Measuring Feedback: Likert Scale
- Data Analysis
- ▶ Research Topic

Questionnaire

- questionnaire = research instrument consisting of a series of questions
- designed for statistical analysis
- advantages
 - cheap
 - low effort (compared to verbal questioning in interviews)
 - standardized answers support data analysis
- disadvantages
 - standardized answers may frustrate users
 - respondents must be able to read

Overview

- Variables and Constructs
- Scales of Measure
- ▶ Questionnaire
 - ▶ Types
 - Question Formats
 - Wording
 - ▶ Measuring Feedback: Likert Scale
- Data Analysis
- ▶ Research Topic

Questionnaire: Test vs. Survey

Test

- assessment of an individual aspect
 - e.g., IQ test
- questions usually have one correct answer
 - Who was the first man on the moon?
- items are often aggregated into a scale or index

Questionnaire: Test vs. Survey

Survey

- aims at gathering opinions and information
 - often no correct or incorrect answer
 - e.g., What is your favorite food?
- feedback usually anonymous
- often measures separate variables
- presented as response statistics

Overview

- Variables and Constructs
- Scales of Measure
- ▶ Questionnaire
 - Types
 - Question Formats
 - Wording
 - ▶ Measuring Feedback: Likert Scale
- Data Analysis
- ▶ Research Topic

Five Basic Question Formats¹

- 1. Open-ended "The job tasks I enjoy most are _____."
- 2. Modified open-ended "I was _____ years old when I began my current job."

3. Closed-ended with ordered response choices "How would you rate your preferences for the following job tasks?"

Writing	□ Enjoy	□ Neutral	□ Dislike
Editing	□ Enjoy	□ Neutral	□ Dislike
Organizing	□ Enjoy	□ Neutral	□ Dislike

- 4. Closed-ended with unordered response choices "Which of the following job tasks do you like the most?"
 - □ Writing
 - □ Editing
 - □ Organizing

- 5. Partially close-ended "Which job task do you most enjoy doing?"
 - □ Writing
 - □ Editing
 - □ Organizing
 - □ Other (please specify) _____

Overview

- Variables and Constructs
- Scales of Measure
- ▶ Questionnaire
 - Types
 - Question Formats
 - Wording
 - ▶ Measuring Feedback: Likert Scale
- Data Analysis
- ▶ Research Topic

General Rules for Stating Questions¹

- be concise and unambiguous
- avoid double questions
- avoid questions involving negatives
- ask for precise answers
- avoid leading questions

Be Concise and Unambiguous

- make questions brief and clear
- avoid jargon and technical terms
 - avoid: "do you believe that the UK should have a bicameral parliament?"
 - instead: "do you believe that the UK should have upper and lower houses of parliament?"
- check for ambiguity
 - avoid: "have you been to the cinema recently"
 - instead: "have you been to the cinema in the last two weeks?"

Avoid Double Questions

- sometimes questions hide a dual question
- example: "Do you think the British should eat less and exercise more?"
- instead ask:

Do you think the British should eat less?	□ yes	□ no
Do you think the British should exercise more?	□ yes	□ no

Avoid Questions Involving Negatives

don't confuse the respondent by language like this:

Are you against a ban on smoking? □ yes □ no

Ask for Precise Answers

- ask for precise answers if you think
 - the information is available and
 - there are no other constraints (e.g., too intrusive on privacy)
- example: "Give your age on 1st January 2020: _____ years'
- instead of:

Are you □ under 18 □ 1	8 - 65
------------------------	--------

Ask for Precise Answers: Advantages

- less room for error
 - e.g., by ticking the wrong box
- exact answer may be re-coded
 - e.g., different age groups
- possible to compute statistical parameters
 - e.g., mean and standard deviation

Avoid Leading Questions

avoid phrasing questions like:

"Do you agree with the majority of people that the health service is failing?"

Overview

- Variables and Constructs
- Scales of Measure
- ▶ Questionnaire
 - Types
 - Question Formats
 - Wording
 - Measuring Feedback: Likert Scale
- Data Analysis
- ▶ Research Topic

Measuring Feedback: Likert Scale

- developed by psychologist Rensis Likert
- most widely used measuring scales for surveys
- respondents specify their level of agreement with a given statement

Measuring Feedback: Likert Scale

- example format of a typical five-level Likert item
 - strongly disagree
 - disagree
 - neither agree nor disagree
 - agree
 - strongly agree
- alternative: "forced choice" method
 - usage of an even-point scale
 - elimination of the middle/neutral option

Measuring Feedback: Likert Scale

Potential Problems

- respondents may...
 - avoid using extreme response categories (central tendency bias)
 - agree with presented statements (acquiescence bias)
 - provide socially accepted responses (social desirability bias)

Overview

- Variables and Constructs
- Scales of Measure
- ▶ Questionnaire
 - Types
 - Question Formats
 - Wording
 - ▶ Measuring Feedback: Likert Scale
- Data Analysis
- ▶ Research Topic

Main Statistical Methodologies

Descriptive Statistics

- aims at summarizing a sample
- goal: organization and presentation of empirical data

Inferential Statistics

applies statistical procedures to test hypotheses

Overview

- Variables and Constructs
- ▶ Scales of Measure
- ▶ Questionnaire
- ▶ Data Analysis
 - Descriptive Statistics
 - Inferential Statistics
- ▶ Research Topic

Descriptive Statistics

Two Sets of Properties

- Central Tendency
 - seeks to characterize the distribution's central or typical value
- Dispersion (or Variability)
 - characterizes the extent to which members of the sample depart from its center and each other

General Methods

- Tables
- Diagrams
- Indexes

Descriptive Statistics

Analyzing Empirical Data

- Counting Frequencies
- Drawing Diagrams
- Calculation of Mean Values
- Identification of Minimum and Maximum
- Calculation of Standard Deviation

Frequencies: Table

- counting of responses
- absolute frequency
- relative frequency

	Absolute Frequency	Relative Frequency		
strongly disagree	12	2.3 %		
disagree	67	12.7 %		
neither agree nor disagree	78	14.8 %		
agree	123	23.4 %		
strongly agree	246	46.8 %		

Frequencies: Histogramm

Histogramm = graphical representation of the frequency distribution

Frequencies: Charts

- pie charts
- bar chart

- describe the center of a distribution using a numerical value
- different measures
 - arithmetic mean
 - median
 - mode
- type of measure that should be used depends on the research question,
 the nature of data, and the scales of measurement

Arithmetic Mean

- the sum of all of the numbers in a sample divided by the number of items in that sample
- requires metric scale

Median

- numerical value separating the higher half of a data sample from the lower half
 - i.e. 50% of the data are above and the other 50% are below the median
- in case there is no middle value, the median is calculated as the arithmetic mean of the two middle values
- advantage: no influence of extreme values (outliers)

Mode

- value that appears most often in a set of data
- used for categorial variables

Standard Deviation

- measures the amount of variation from the average
 - low standard deviation: data points tend to be very close to the mean
 - high standard deviation: data points are spread out over a large range of values
- only usable for metric values

Standard Deviation: Example

Presentation of Results

- questionnaire uses mostly ordinal scales
- numerical coding "transforms" data to interval scale
- numerical operations become possible
 - e.g., mean, standard deviation

Presentation of Results in Written Form

- "... the importance was rated on a 5-point scale (not important at all = 1, very important = 5) ..."
- "... x was regarded as important (M=3.84, SD=1.23) ..."

Overview

- Variables and Constructs
- ▶ Scales of Measure
- Questionnaire
- ▶ Data Analysis
 - ▶ Descriptive Statistics
 - Inferential Statistics
- ▶ Research Topic

- correlation = linear association between two variables
- defines the nature and the strength of the relation between the variables

- correlation lies between -1 and +1
 - -1 = perfect negative correlation
 - 0 = no relation between variables
 - 1 = perfect positive correlation

- correlation coefficient = numerical measure of the correlation
- different measures for correlation exist

Pearson Correlation Coefficient

describes strength and direction of the relationship between two variables

$$\rho_{X,Y} = \frac{\text{COV}(X,Y)}{\sigma_X \sigma_Y}$$

cov = covariance σ_X = standard deviation of X σ_Y = standard deviation of Y

Degree of Correlation

Correlation Coefficient	Strength of Correlation		
0< r ≤ 0.19	Very Low Correlation		
0.2 ≤ r ≤ 0.39	Low Correlation		
$0.4 \le r \le 0.59$	Moderate Correlation		
0.6 ≤ r ≤ 0.79	High Correlation		
$0.8 \le r \le 1.0$	Very High Correlation		

- comparison of means
- restricted to 2 samples
 - for 3 or more samples use e.g. ANOVA
- two different types
 - independent samples t-test
 - for two independent groups
 - dependent t-test
 - if same people are in both groups

Example: Comparison of Mean Weight

- random sample of 10 female and 10 male participants
- weight measured in kg

Question

"Is the mean weight <u>significantly</u> different between female and male participants?"

Female	Male		
62	81		
68	76		
55	94		
84	55		
63	61		
62	72		
53	73		
72	71		
77	82		
48	64		
Mean = 64.4	Mean = 72.9		

P-Value

- provides probability that observed difference is statistically significant,
 i.e. is <u>not</u> observed by chance
- smaller p-values provide stronger evidence
- established conventions for interpretation of p-value
 - p > 0.10 => no significant difference
 - 0.05 marginally significant difference
 - 0.01 significant difference
 - $p \le 0.01 => highly significant difference$

Question

• "Is the mean weight <u>significantly</u> different between female and male participants?"

- independent sample t-test delivers p-value of p = 0.1073
- "The mean weight of female and male participants is not significantly different."

Female	Male		
62	81		
68	76		
55	94		
84	55		
63	61		
62	72		
53	73		
72	71		
77	82		
48	64		
Mean = 64.4	Mean = 72.9		

Chi-Squared Test

- data in form of frequency distributions
- comparison of two or more groups

Chi-Squared Test

Example: Social Media Usage

comparison of different age groups

	no usage	<5 hours /week	5 -10 hours /week	10 - 15 hours /week	>15 hours /week	Total
< 20 years	0	3	23	56	78	160
20 - 40 years	2	5	34	42	27	110
40 - 60 years	5	17	36	24	4	86
< 60 years	20	32	25	6	1	84
Total	27	57	118	128	110	440

Question

• "Is the distribution <u>significantly</u> different among the age groups?"

Tools for Statistical Analysis

- IBM SPSS
 - 30-day free trial period
- PSPP
 - free license
- JASP
 - free license
- Microsoft Excel

Additional Resources

- books
- lecture notes
- online courses
- video tutorials

Overview

- Variables and Constructs
- ▶ Scales of Measure
- ▶ Questionnaire
- ▶ Data Analysis
- ▶ Research Topic

Research Topic

please see separate slide set

Summary

- ▶ Variables and Constructs
- ▶ Scales of Measure
- ▶ Questionnaire
- ▶ Data Analysis
- ▶ Research Topic

