Математическая статистика.

Андрей Тищенко @AndrewTGk 2024/2025

Лекция 10 января

Преамбула

Статистика. Мнения о появлении этого слова:

- 1. Статистиками в Германии назывались люди, собирающие данные о населении и передающие их государству.
- 2. В определённый день в Венеции народ выстраивался для выплаты налогов (строго фиксированных, в зависимости от рода действий). Государство собирало данные обо всём населении. Это происходило до появления статистиков в Германии, поэтому мы будем считать, что статистика пошла из Венеции.

Задача статистики— по результатам наблюдений построить вероятностную модель наблюдаемой случайной величины.

Основные определения

Определение

<u>Однородной выборкой объёма n</u> называется случайный вектор $X=(X_1,\ldots,\ X_n)$, компоненты которого являются независимыми и одинаково распределёнными. Элементы вектора X называются <u>элементами</u> выборки.

Определение

Если элементы выборки имеют распределение $F_{\xi}(x)$, то говорят, что выборка соответствует распределению $F_{\xi}(x)$ или порождена случайной величиной ξ с распределением $F_{\xi}(x)$.

Определение

Детерминированный вектор $x=(x_1,\ldots,x_n)$, компоненты которого x_i являются реализациями соответствующих случайных величин X_i $(i=\overline{1,n})$, называется реализацией выборки.

Уточнение

Если X — однородная выборка объёма n, то его реализацией будет вектор x, каждый элемент x_i которого является значением соответствующей ему случайной величины (элемента выборки) X_i .

Определение

Выборочным пространством называется множество всех возможных реализаций выборки

$$X = (X_1, \ldots, X_n)$$

Пример

У вектора $X=(X_1,\ldots,X_{10})$ каждый элемент X_i которой порождён случайной величиной $\xi \sim U(0,\ 1)$, выборочным пространством является \mathbb{R}^{10} (так как X_i может принять любое значение на \mathbb{R})

Определение

Обозначим $x_{(i)} - i$ -ый по возрастанию элемент, тогда будет справедливо:

$$x_{(1)} \leqslant x_{(2)} \leqslant \dots \leqslant x_{(n)}$$

Обозначим $X_{(k)}$ случайную величину, реализация которой при каждой реализации x выборки X принимает значение $x_{(k)}$. Тогда последовательность $X_{(1)},\ldots,\ X_{(n)}$ называется вариационным рядом выборки.

Определение

Случайная величина $X_{(k)}$ называется k-ой порядковой статистикой выборки.

Определение

Случайные величины $X_{(1)},\ X_{(n)}$ называются <u>э</u>стремальными порядковыми статистиками.

Определение

Порядковая статистика $X_{([n\cdot p])}$ называется выборочной квантилью уровня p, где $p\in[0,\ 1]$

Определение

Пусть каждый элемент выборки X объёма n имеет распределение $F_{\xi}(x)$. Эмпирической функцией распределения такой выборки называется

$$\hat{F}_n(x) = \frac{1}{n} \sum_{k=1}^n I(X_k \leqslant x)$$

I — индикаторная функция. $I = egin{cases} 1, \ \text{если аргумент верен} \\ 0, \ \text{иначе} \end{cases}$

Пусть x_1, \ldots, x_n — реализация выборки X_1, \ldots, X_n

Свойства
$$\hat{F}_n(x)$$

1.
$$\forall x \in \mathbb{R}$$
 $E\hat{F}_n(x) = E\left(\frac{1}{n}\sum_{k=1}^n I(X_k \leqslant x)\right) = \frac{1}{n}\sum_{k=1}^n EI(X_k \leqslant x) = P(X_1 \leqslant x) = F_{\xi}(x)$

2. По усиленному закону больших чисел (УЗБЧ)

$$\forall x \in \mathbb{R} \quad \hat{F}_n(x) = \frac{1}{n} \sum_{k=1}^n I(X_k \leqslant x) \xrightarrow[n \to \infty]{\text{n. H.}} EI(X_k \leqslant x) = F_{\xi}(x)$$

Гистограмма

Разбить $\mathbb R$ на (m+2) непересекающихся интервала. Рассматриваются $x_{(1)},\ldots,\ x_{(m)}$

Название	Обозначение	Формула		
Количество	m			
интервалов	m	_		
Размах	an an	<i>x</i> - <i>x</i> · · · <i>x</i> · ·		
выборки	r	$r = x_{(m)} - x_{(1)}$		
Ширина	Λ	$\Lambda = r$		
интервала	Δ	$\Delta - \frac{1}{m}$		
Количество				
попаданий на	$ u_i $	_		
$\it i$ -ый интервал				
Частота				
попаданий на	h_i	$h_i = \frac{ u_i}{\Delta}$		
$\it i$ -ый интервал				

Лекция 17 января

Определение

Пусть $X_1,\ldots,\,X_n \sim F(x,\,\theta)$. k-ым начальным выборочным моментом называется

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n x_i^k, \ k \in \mathbb{N}$$

Выборочным средним называется:

$$\hat{\mu}_1 = \overline{X} = \frac{1}{n} \sum_{i=1}^n x_i$$

Определение

k-ым центральным выборочным моментом называется

$$\hat{\nu}_k = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{X})^k, \ k = 2, 3, \dots$$

$$\hat{
u}_2 = S^2 = rac{1}{n} \sum_{i=1}^n \left(x_i - \overline{X}
ight)^2$$
 называется выборочной дисперсией

Пусть $(x_1,\ y_1),\ldots,\ (x_n,\ y_n)$ соответствует распределению $F(x,\ y,\ heta)$

Определение

Выборочной ковариацией называется

$$\hat{K}_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{X})(y_i - \overline{Y})$$

Определение

Выборочным коэффициентом корреляции называется

$$\hat{\rho}_{xy} = \frac{\hat{K}_{xy}}{\sqrt{S_x^2 S_y^2}}$$

Свойства выборочных моментов

1.
$$E\hat{\mu}_k = E\left(\frac{1}{n}\sum_{i=1}^n X_i^k\right) = \frac{1}{n}\sum_{i=1}^n EX_i^k = EX_1^k = \mu_k$$

$$2. \ E\overline{X} = m_x$$

3.
$$\mathcal{D}\hat{\mu}_k = \mathcal{D}\left(\frac{1}{n}\sum_{i=1}^n x_i^k\right) = \frac{1}{n^2}\sum_{i=1}^n \mathcal{D}X_i^k = \frac{1}{n}\mathcal{D}X_i^k = \frac{1}{n}\left(EX_1^{2k} - \left(EX_1^K\right)^2\right) = \frac{1}{n}(\mu_{2k} - \mu_k^2)$$

4.
$$\mathcal{D}\overline{X} = \frac{\sigma_{x_1}^2}{n}$$

5. По УЗБЧ

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n x_i^k \xrightarrow[n\to\infty]{\text{п. н.}} E\hat{\mu}_k = \mu_k$$

$$\hat{\nu}_k \xrightarrow[n\to\infty]{\text{п. н.}} \nu_k$$

6. По ЦПТ

$$\frac{\hat{\mu}_k - \mu_k}{\sqrt{\frac{\mu_{2k} - \mu_k^2}{n}}} \xrightarrow{n \to \infty} \frac{1}{d} U, U \sim N(0, 1)$$

$$\frac{\sqrt{n}(\overline{X} - m_{x_1})}{\sigma} \xrightarrow{n \to \infty} U$$

7.
$$ES^{2} = E\left(\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\overline{X})^{2}\right) = \frac{1}{n}E\left(\sum_{i=1}^{n}\left(x_{i}^{2}-2x_{i}\overline{X}+\overline{X}^{2}\right)\right) = E(x^{2}) - \frac{2}{n}\sum_{i=1}^{n}E(x_{i}\overline{X}) + \frac{1}{n}\sum_{i=1}^{n}E\overline{X}^{2} = E(x^{2}) - \frac{2}{n}\sum_{i=1}^{n}Ex_{i}\sum_{j=1}^{n}x_{j} + \frac{1}{n}\sum_{i=1}^{n}E\left(\sum_{j=1}^{n}x_{j}\right)^{2} = E(x^{2}) - \frac{2}{n}E\sum_{i=1}^{n}x_{i}\sum_{j=1}^{n}x_{j} + \frac{n-1}{n}\sigma^{2}$$

8.
$$E\hat{K}_{xy} = \frac{n-1}{n} cov(x, y)$$

Определение

Оценкой $\hat{ heta}$ параметра heta, называется функция:

$$\hat{ heta} = T(x_1, \dots, \ x_n), \$$
не зависящая от $heta$

Например, отвратительная оценка среднего роста людей в аудитории.

$$\hat{m} = \frac{2x_2 + 5x_5 + 10x_{10}}{3}$$

Определение

Оценка $\hat{ heta}$ называется несмещённой, если $E\hat{ heta}= heta$ для любых возможных значений этого параметра.

Определение

Оценка $\hat{ heta}(x_1,\ldots,\,x_n)$ называется асимптотически несмещённой оценкой heta, если

$$\lim_{n\to\infty} E\hat{\theta}(x_1,\ldots,x_n) = \theta$$

$$\lim_{n\to\infty} ES^2 = \lim_{n\to\infty} \frac{n-1}{n} \sigma^2 = \sigma^2$$

Несмещённой выборочной (или исправленной) выборочной дисперсией называется

$$\tilde{S}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Оценки

$$\hat{m}_{1} = \frac{x_{1} + x_{2} + x_{3}}{3}$$

$$\hat{m}_{2} = \frac{\sum_{i=1}^{10} x_{i}}{10}$$

$$\hat{m}_{3} = \overline{x} = \frac{\sum_{i=1}^{n} x_{i}}{n}$$

Являются несмещёнными.

Определение

Оценка $\hat{\theta}(x_1,\ldots,\,x_n)$ называется: Состоятельной оценкой θ , если

$$\hat{\theta}(x_1,\ldots,x_n) \xrightarrow[n \to \infty]{p} \theta$$

Сильно состоятельной оценкой, если

$$\hat{\theta}(x_1,\ldots,x_n) \xrightarrow[n\to\infty]{\text{п. н.}} \theta$$

Определение

Пусть $\hat{\theta}$ — несмещённая оценка параметра θ . Если $\mathcal{D}\hat{\theta}\leqslant\mathcal{D}\theta^*$, где θ^* — любая несмещённая оценка параметра θ . Тогда $\hat{\theta}$ называется эффективной оценкой параметра θ .

R-эффективные оценки

Рассматриваем выборку $X_1, \ldots, X_n \sim f(x, \theta), \ \theta \in \Theta \subseteq \mathbb{R}^1$. Назовём модель $(S, f(x, \theta))$ регулярной, если она удовлетворяет следующим условиям:

1. $\forall x \in S$ функция $f(x, \theta) = f(x_1, \ldots, x_n, \theta) > 0$ и дифференцируема по θ .

2.
$$\begin{cases} \frac{\delta}{\delta\theta} \int_{S} f(x, \theta) dx = \int_{S} \frac{\delta}{\delta\theta} f(x, \theta) dx \\ \frac{\delta}{\delta\theta} \int_{S} T(x) f(x, \theta) dx = \int_{S} \frac{\delta}{\delta\theta} T(x) f(x, \theta) dx \end{cases}$$

Пусть $\hat{\theta} = T(x) = T(x_1, \dots, x_n)$ — несмещённая оценка параметра θ :

$$\int_{S} \frac{\delta}{\delta \theta} f(x, \theta) dx = \frac{\delta}{\delta \theta} \int_{S} f(x, \theta) dx = \frac{\delta}{\delta \theta} 1 = 0$$

$$\int_{S} \frac{\delta}{\delta \theta} T(x) f(x, \theta) dx = \frac{\delta}{\delta \theta} \int_{S} T(x) f(x, \theta) dx = \frac{\delta}{\delta \theta} ET(x) = \frac{\delta}{\delta \theta} \theta = 1$$

Определение

Информацией Фишера о параметре θ , содержащейся в выборке $X_1,\ldots,\,X_n$ называется величина

$$I_n(\theta) = E\left(\frac{\delta \ln \left(f(x, \theta)\right)}{\delta \theta}\right)^2 = \int_{S} \left(\frac{\delta \ln \left(f(x, \theta)\right)}{\delta \theta}\right)^2 f(x, \theta) dx$$

Неравенство Рао-Крамера

Если $S,\ f(x,\,\theta)$ — регулярная модель и $\hat{\theta}$ — несмещённая оценка θ , то

$$\mathcal{D}(\hat{\theta}) \geqslant \frac{1}{I_n(\theta)}$$

Доказательство

Выпишем некоторые равенства (пригодятся в доказательстве):

$$\int\limits_{S} \frac{\delta}{\delta \theta} f(x, \, \theta) \, dx = \int\limits_{S} \frac{\delta f(x, \, \theta)}{\delta \theta} \frac{f(x, \, \theta)}{f(x, \, \theta)} \, dx \stackrel{*}{=} \int\limits_{S} \frac{\delta \ln f(x, \, \theta)}{\delta \theta} f(x, \, \theta) \, dx = 0$$

Пояснение $\stackrel{*}{=}$. Логарифм — сложная функция. По правилу дифференцирования сложной функции:

$$\frac{\delta \ln f(x,\,\theta)}{\delta \theta} = \frac{1}{f(x,\,\theta)} \cdot \frac{\delta f(x,\,\theta)}{\delta \theta}$$

$$\int_{S} \frac{\delta}{\delta \theta} T(x) f(x,\,\theta) \, dx = \int_{S} T(x) \frac{\delta}{\delta \theta} f(x,\,\theta) \frac{f(x,\,\theta)}{f(x,\,\theta)} \, dx = \int_{S} T(x) \frac{\delta \ln f(x,\,\theta)}{\delta \theta} f(x,\,\theta) \, dx = 1$$

Чуть преобразуем последнее полученное равенство:

$$\int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx = \int_{S} T(x) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx - \theta \underbrace{\int_{S} \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx}_{=0} = 0$$

$$= \int_{S} \left(T(x) - \theta \right) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx = 1 \Rightarrow 1 = 1^{2} = \left(\int_{S} \left(T(x) - \theta \right) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx \right)^{2} dx$$

Далее нам понадобится неравенство Коши-Буняковского, которое выглядит так:

$$\left(\int \varphi_1(x)\varphi_2(x)\,dx\right)^2 \leqslant \int \varphi_1^2(x)\,dx\int \varphi_2^2(x)\,dx$$

Подгоним полученное равенство $\Big(f(x,\,\theta)>0\Rightarrow f(x,\,\theta)=\sqrt{f(x,\,\theta)}^2\Big)$:

$$\left(\int_{S} \left(T(x) - \theta\right) \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx\right)^{2} = \left(\int_{S} \underbrace{\left(T(x) - \theta\right) \sqrt{f(x, \theta)}}_{\varphi_{1}(x)} \cdot \underbrace{\frac{\delta \ln f(x, \theta)}{\delta \theta} \sqrt{f(x, \theta)}}_{\varphi_{2}(x)} dx\right)^{2} = 1$$

И применим неравенство Коши-Буняковского:

$$1 = \left(\int_{S} \underbrace{\left(T(x) - \theta \right) \sqrt{f(x, \theta)}}_{\varphi_{1}(x)} \cdot \underbrace{\frac{\delta \ln f(x, \theta)}{\delta \theta} \sqrt{f(x, \theta)}}_{\varphi_{2}(x)} dx \right)^{2} \leqslant$$

$$\leqslant \int_{S} \left((T(x) - \theta) \sqrt{f(x, \theta)} \right)^{2} dx \cdot \int_{S} \left(\frac{\delta \ln f(x, \theta)}{\delta \theta} \sqrt{f(x, \theta)} \right)^{2} dx =$$

$$= \int_{S} \left(T(x) - \theta \right)^{2} f(x, \theta) dx \cdot \int_{S} \left(\frac{\delta \ln \left(f(x, \theta) \right)}{\delta \theta} \right)^{2} f(x, \theta) dx$$

$$= D\hat{\theta}$$

$$= I_{n}(\theta)$$

Получаем:

$$1 \leqslant \mathcal{D}(\theta) \cdot I_n(\theta) \Rightarrow \mathcal{D}(\theta) \geqslant \frac{1}{I_n(\theta)}$$

Оценка $\hat{ heta}$ называется \underline{R} -эффективной, если $E\hat{ heta}= heta$ и $\mathcal{D}\hat{ heta}=rac{1}{I_n(heta)}$

Лекция 24 января

Замечание 1

$$I_n(\theta) = \mathcal{D}\left(\frac{\delta \ln f(x,\,\theta)}{\delta \theta}\right)$$

Замечание 2

$$\begin{split} &I_{n}(\theta) = nI_{1}(\theta) \\ &f(x,\,\theta) = f(x_{1},\,\ldots,\,x_{n},\,\theta) = \prod_{i=1}^{n} f(x_{i},\,\theta) \\ &E\left(\frac{\delta \ln f(x,\,\theta)}{\delta \theta}\right)^{2} = E\left(\sum_{i=1}^{n} \frac{\delta \ln f(x_{i},\,\theta)}{\delta \theta}\right)^{2} = \sum_{i \neq j} E\left(\frac{\delta \ln f(x_{i},\,\theta)}{\delta \theta} \cdot \frac{\delta \ln f(x_{j},\,\theta)}{\delta \theta}\right) + nE\left(\frac{\delta \ln f(x_{1},\theta)}{\delta \theta}\right)^{2} = \\ &= \sum_{i \neq j} \left(E\left(\frac{\delta \ln f(x_{i},\,\theta)}{\delta \theta}\right) \cdot E\left(\frac{\delta \ln f(x_{j},\,\theta)}{\delta \theta}\right)\right) + nE\left(\frac{\delta \ln f(x_{1},\theta)}{\delta \theta}\right)^{2} = nE\left(\frac{\delta \ln f(x_{1},\theta)}{\delta \theta}\right)^{2} = nI_{1}(\theta) \end{split}$$

Замечание 3

Пример: $X_1, \ldots, X_n \sim N(\theta, \sigma^2)$

Рассмотрим оценку
$$\hat{\theta}=\overline{X}$$
, её дисперсия $\mathcal{D}\overline{X}=\frac{\sigma^2}{n}$. Посчитаем информацию Фишера: $I_1(\theta)=E\left(\frac{\delta \ln f(x,\theta)}{\delta \theta}\right)^2=E\left(\frac{\delta}{\delta \theta} \ln \left(\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\theta)^2}{2\sigma^2}}\right)\right)^2=E\left(\frac{\delta}{\delta \theta} \ln \left(\frac{1}{\sqrt{2\pi}\sigma}-\frac{(x-\theta)^2}{2\sigma^2}\right)\right)^2=E\left(\frac{x-\theta}{\sigma^2}\right)^2=E\left(\frac{x-\theta}{\sigma^2}\right)^2=E\left(\frac{x-\theta}{\sigma^2}\right)^2=E\left(\frac{x-\theta}{\sigma^2}\right)^2=\frac{1}{\sigma^4}E(x-\theta)^2=\frac{\sigma^2}{\sigma^4}=\frac{1}{\sigma^2}\Rightarrow I_n(\theta)=\frac{n}{\sigma^2}$ Знаем, что $\mathcal{D}\hat{\theta}\geqslant \frac{1}{nI_1(\theta)}=\frac{\sigma^2}{n}=\mathcal{D}(\overline{X})\Rightarrow$ оценка $\hat{\theta}=\overline{X}$ является R-эффективной.

Критерий эффективности $X_1,\dots,\,X_n\sim F_\xi(x,\,\theta),\;\theta\in\Theta\subset\mathbb{R}^1$ выполнены условия регулярности, то есть

$$\int T(x) \frac{\delta f(x, \theta)}{\delta \theta} dx = \frac{\delta}{\delta \theta} \int T(x) f(x, \theta) dx = E \hat{\theta}$$

Определение

Функцией вклада выборки $X_1,\ldots,\,X_n$ называется

$$U(x, \ \theta) = \sum_{i=1}^{n} \frac{\delta \ln f(x_i, \ \theta)}{\delta \theta}$$

Пусть $0 < U(x, \theta) < \infty$.

 $\hat{ heta}=T(x_1,\ldots,x_n)$ — R-эффективная оценка $heta \Leftrightarrow \hat{ heta}- heta=a(heta)U(x,\, heta)$, где $a(heta)=\mathcal{D}\hat{ heta}$

Доказательство ⇒:

Пусть $\hat{\theta} - \theta = a(\theta)U(x,\;\theta) \Rightarrow \hat{\theta}$ — R-эффективная оценка $\theta.$

Посчитаем математическое ожидание частей равенства:

$$E(\hat{\theta} - \theta) = a(\theta)EU(x, \theta) = a(\theta)\int \frac{\delta \ln f(x, \theta)}{\delta \theta} f(x, \theta) dx = 0$$

Посчитаем дисперсию частей:

$$\mathcal{D}(\hat{\theta} - \theta) = a^2(\theta)\mathcal{D}U(x, \theta) = \underbrace{a^2(\theta)}_{=(\mathcal{D}(\hat{\theta}))^2} I_n(\theta) \Rightarrow \mathcal{D}(\hat{\theta}) = (\mathcal{D}(\hat{\theta}))^2 I_n(\theta) \Rightarrow 1 = \mathcal{D}(\theta)I_n(\theta)$$

Значит оценка является R-эффективной.

Доказательство ←:

Пусть $\hat{\theta}$ — R-эффективная оценка \Rightarrow $\hat{\theta}-\theta=a(\theta)U(x,\;\theta)$. Хотим доказать, что $\rho(\hat{\theta},\;U(x,\;\theta))=1$. Для подсчёта корреляции нужно посчитать ковариацию:

$$\operatorname{cov}(\hat{\theta},\ U(x,\ \theta)) = E(\hat{\theta} - \theta)U(x,\ \theta) = E\hat{\theta}U(x,\ \theta) - \theta\underbrace{EU(x,\ \theta)}_{0} =$$

$$= \int_{S} T(x)U(x, \theta)f(x, \theta) dx = \int_{S} T(x)\frac{\delta \ln f(x, \theta)}{\delta \theta}f(x, \theta) dx = 1$$

Так как $\hat{ heta}$ — R-эффективная оценка, то $\mathcal{D}\hat{ heta}=rac{1}{I_n(heta)}$. Знаем, что $\mathcal{D}U(x,\; heta)=I_n(heta)$, тогда:

$$\rho(\hat{\theta}, U(x, \theta)) = \frac{\operatorname{cov}(\hat{\theta}, U(x, \theta))}{\sqrt{\mathcal{D}\hat{\theta}\mathcal{D}U(x, \theta)}} = \frac{1}{\sqrt{\frac{I_n(\theta)}{I_n(\theta)}}} = 1 \Rightarrow$$
$$\Rightarrow \hat{\theta} = c_1 + c_2 U(x, \theta)$$

$$E\hat{ heta}=c_1+Ec_2U(x,\, heta)=c_1+0= heta$$
, так как оценка эффективная $\mathcal{D}\hat{ heta}=c_2^2I_n(heta)=rac{1}{I_n(heta)}\Rightarrow c_2^2=rac{1}{I_n^2}\Rightarrow c_2=rac{1}{I_n}=\mathcal{D}\hat{ heta}=a(heta).$ Итак, $\hat{ heta}= heta+a(heta)U(x,\, heta)\Rightarrow\hat{ heta}- heta=U(x,\, heta).$

Метод моментов

 $X_1, \ldots, X_n \sim F_{\xi}(x, \theta), \ \theta \in \Theta \subset \mathbb{R}^k$

$$\exists \mu_j < \infty, \ j = \overline{1, \ k} \quad \underbrace{\mu_j}_{=\mu_j(\theta)} = E\xi^j = \int_{-\infty}^{+\infty} x^j f(x, \ \theta) \, dx = 1$$

Тогда можно получить систему уравнений:

$$\begin{cases} \hat{\mu}_1 = \mu_1(\theta) \\ \vdots \\ \hat{\mu}_k = \mu_k(\theta) \end{cases} \tag{1}$$

Если система уравнений (1) однозначно разрешима относительно $\theta_1,\dots,\,\theta_k$, то решения $\hat{\theta_1},\dots,\,\hat{\theta_k}$ называется равной $\theta_1,\dots,\,\theta_k$ по методу моментов.

Пример

 $X_1, \ldots, \ X_n \sim N(heta_1, \ heta_2^2), \ heta = (heta_1, \ heta_2^2)$, тогда:

$$\begin{cases} \hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n x_i = \theta_1 \Rightarrow \hat{\theta}_1 = \overline{X} \\ \hat{\mu}_2 = \frac{1}{n} \sum_{i=1}^n x_i^2 = \theta_2^2 + \theta_1^2, \ \left(E\xi^2 = \mathcal{D}\xi + (E\xi)^2 \right) \Rightarrow \hat{\theta}_2^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 = \overline{X}^2 \end{cases}$$

Метод максимального правдоподобия (ММП)

Определение

Функцией правдоподобия для $X_1,\ldots,\,X_n$, порождённых случайной величиной ξ , называется функция

$$L(x_1,\dots,\,x_n,\,\theta)=egin{cases} \prod\limits_{i=1}^n f(x_i,\,\theta),\$$
если ξ — непрерывная случайная величина $\prod\limits_{i=1}^n P(\xi=x_i,\,\theta),\$ если ξ — дискретная случайная величина

Реализацией оценки максимального правдоподобия (ОМП) называется значение $\hat{\theta} \in \Theta$, такое что:

$$\hat{\theta} = \operatorname{argmax} L(x_1, \ldots, x_n, \theta)$$
, где $\theta \in \Theta$

Для нахождения точки максимума нужно взять частные производные по всем составляющим heta от функции правдоподобия. Однако считать производную произведения нам впадлу, поэтому мы введём следующую вещь:

Определение

Функция $\ln L(x_1,\ldots,\ x_n,\ heta)$ называется логарифмической функцией правдоподобия.

Итак, получаем систему уравнений:

$$\begin{cases} \frac{\delta \ln L(x_1, \dots, x_n, \theta)}{\delta \theta_1} = 0 \\ \vdots \\ \frac{\delta \ln L(x_1, \dots, x_n, \theta)}{\delta \theta_k} = 0 \end{cases}$$

Логарифм монотонный, поэтому его argmax совпадёт с argmax функции $L(x_1,\ldots,\,x_n,\,\theta)$ (НАУКА!).

Пример

Для Гауссовской величины $N(\theta_1, \ \theta_2^2)$:

$$L(x_1, \dots, x_n, \theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma^2} e^{-\frac{(x-\theta_1)^2}{2\theta_2^2}} = \left(\frac{1}{\sqrt{2\pi}}\right)^n \left(\frac{1}{\theta_2}\right)^n e^{-\frac{(x-\theta_1)^2}{2\theta_2^2}}$$

Логарифмируем:

$$\ln L(x_1, \dots, x_n, \theta) = \ln \left(\frac{1}{\sqrt{2\pi}}\right)^n - n \ln \theta_2 - \frac{\sum_{i=1}^n (x_i - \theta_1)^2}{2\theta_2^2}$$

Возьмём частные производные:

$$\begin{cases} \frac{\delta \ln L(x_1, \dots, x_n, \theta)}{\delta \theta_1} = \frac{\sum\limits_{i=1}^{n} (x_i - \hat{\theta}_1)}{\hat{\theta}_2^2} \\ \frac{\delta \ln L(x_1, \dots, x_n, \theta)}{\delta \theta_2} = -\frac{n}{\hat{\theta}_2} + \frac{\sum\limits_{i=1}^{n} (x_i - \hat{\theta}_1)^2}{\hat{\theta}_2^{-3}} \end{cases}$$

Посчитаем θ_1 , θ_2 :

$$\begin{cases} \sum_{i=1}^{n} (x_i - \hat{\theta}_1) = 0 \Rightarrow \hat{\theta}_1 = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{X} \\ -n\hat{\theta}_2^2 + \sum_{i=1}^{n} (x_i - \overline{x})^2 = 0 \Rightarrow \hat{\theta}_2^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 \end{cases}$$

Лекция 31 января.

Робастные оценки

От слова robust.

Определение

Пусть оценка $\hat{\theta}_n$ построена по выборке X_1,\ldots,X_n . Затем добавлено наблюдение x и построена оценка $\hat{\theta}_{n+1}$, тогда кривой чувствительности, изучающей влияние наблюдения x на оценку $\hat{\theta}$ называется функция:

$$SC_n(x) = \frac{\hat{\theta}_{n+1} - \hat{\theta}_n}{\frac{1}{n+1}} = (n+1)\left(\hat{\theta}_{n+1} - \hat{\theta}_n\right)$$

Оценка $\hat{\theta}$ называется B-робастной, если $SC_n(x)$ ограничена.

Пример

Пусть $\hat{\theta} = \overline{X}$

$$SC_n(x) = (n+1)\left(\frac{1}{n+1}\left(\sum_{i=1}^n (x_i) + x\right) - \frac{1}{n}\sum_{i=1}^n x_i\right) = \sum_{i=1}^n x_i + x - \left(\sum_{i=1}^n x_i + \frac{1}{n}\sum_{i=1}^n x_i\right) = x - \overline{X}$$

Это линейная функция от x, то есть кривая чувствительности неограничена.

Пусть $\hat{\theta} = \hat{\mu}$ (выборочная медиана)

$$\hat{\mu} = \begin{cases} X_{(k+1)}, & n = 2k+1 \\ \frac{X_{(k)} + X_{(k+1)}}{2}, & n = 2k \end{cases}$$

Определение

Пороговой точкой (ВР) $arepsilon_n^*$ оценки $\hat{ heta}$, построенной на выборке $X_1,\dots,\,X_n$ называется:

$$\varepsilon_n^* = \frac{1}{n} \max \left\{ m: \max_{i_1, \dots, \ i_m \ y_1, \dots, \ y_m} |\hat{\theta}(z_1, \dots, \ z_m)| < \infty \right\}$$

Где выборка $z_1,\ldots,\,z_m$ получена заменой значений $X_{i_1},\ldots,\,X_{i_m}$ на произвольные значения $y_1,\ldots,\,y_m$

Доверительные интервалы

Определение

Пусть для $X_1,\ldots,\,X_n\sim F(x,\,\theta),\,\theta\subset\Theta\subset\mathbb{R}^1$ построены статистики $T_1(x_1,\ldots,\,x_n)$ и $T_2(x_1,\ldots,\,x_n)$, такие что

$$\begin{cases} T_1(x) < T_2(x) \\ P(T_1(x) < \theta < T_2(x)) = 1 - \alpha, \ 0 < \alpha < 1 \end{cases}$$

Тогда интервал $\big(T_1(x),\ T_2(x)\big)$ называется доверительным интервалом уровня надёжности (доверия) $1-\alpha$ параметра θ .

Определение

Случайная функция $G(x_1,\dots,\,x_n,\,\theta)=G(x,\,\theta)$ называется центральной (опорной) статистикой, если

- 1. $G(x, \theta)$ непрерывна и монотонна по θ
- 2. $F_G(x)$ не зависит от θ

Односторонние доверительные интервалы:

$$P(G(x, \theta) < Z_{1-\alpha}) = 1 - \alpha$$
$$P(Z_{\alpha} < G(x, \theta)) = 1 - \alpha$$

Квантили не зависят от θ , с их помощью можно выразить односторонние доверительные интервалы. Центральным доверительным интервалом будет:

$$P(Z_{\frac{\alpha}{2}} < G(x, \theta) < Z_{1-\frac{\alpha}{2}}) = 1 - \alpha$$

Определение

Пусть случайные величины $\xi_1, \dots, \; \xi_m \sim N(0, \; 1)$ и независимы.

Тогда случайная величина $\eta = \sum\limits_{i=1}^m \xi_i^2 \sim \chi^2(m)$ (удовлетворяет распределению хи-квадрат (χ^2) с m степенями свободы).

Пусть $\xi_0,\ \xi_1,\dots,\ \xi_m\sim N(0,\ 1)$ и независимы. Тогда случайная величина $\zeta=\frac{\xi_0}{\sqrt{\frac{1}{m}\sum_{i=1}^m\xi_i^2}}\sim t(m)$ (распределение Стьюдента с m степенями свободы)

Определение

Пусть случайная величина $\xi_1 \sim \chi^2(m), \; \xi_2 \sim \chi^2(n)$ и ξ_1 и ξ_2 — независимы. Тогда случайная величина $F=\frac{\frac{1}{m}\xi_1}{\frac{1}{n}\xi_2} \sim F(m,\; n)$ (распредление Фишера со степенями свободы $n,\; m$)

Теорема Фишера

Пусть $X_1, \ldots, \ X_n$ порождены случайной величиной $X \sim N(m, \ \sigma^2)$, тогда:

- 1. $\frac{nS^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{x_i \overline{x}}{\sigma}\right)^2 \sim \chi^2(n-1)$ (так как мы знаем \overline{X} , и все наблюдения, а по n-1 наблюдению и \overline{X} можно восстановить последнее наблюдение)
- 2. \overline{X} и S^2 независимые случайные величины.

Пример 1

 $X_1,\ldots,\,X_n\sim N(heta,\,\sigma^2),\,\sigma^2$ — известно. Построить доверительный инртервал для heta

$$\hat{\theta} = \overline{X} \sim N(\theta, \frac{\sigma^2}{n})$$

$$\frac{\sqrt{n}(\overline{X} - \theta)}{\sigma} \sim N(0, 1)$$

$$P\left(Z_{\frac{\alpha}{2}} < \frac{\sqrt{n}(\overline{X} - \theta)}{\sigma} < Z_{1 - \frac{\alpha}{2}}\right) = 1 - \alpha$$

Поскольку по середине стоит стандартное гауссовское распределение: $Z_{\frac{\alpha}{2}}=-Z_{1-\frac{\alpha}{2}}$

$$P\left(-\frac{Z_{1-\frac{\alpha}{2}}\sigma}{\sqrt{n}} - \overline{X} < -\theta < \frac{Z_{1-\frac{\alpha}{2}}\sigma}{\sqrt{n}} - \overline{X}\right) = 1 - \alpha$$

$$P\left(\overline{X} - \frac{Z_{1-\frac{\alpha}{2}}\sigma}{\sqrt{n}} < \theta < \overline{X} + \frac{Z_{1-\frac{\alpha}{2}}\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

Итак, доверительный интервал: $\left(\overline{X}-\frac{Z_{1-\frac{\alpha}{2}}\sigma}{\sqrt{n}},\ \overline{X}+\frac{Z_{1-\frac{\alpha}{2}}\sigma}{\sqrt{n}}\right)$

Пример 2

 $X_1,\ldots,\ X_n \sim N(m,\ heta_2^2)$. Построить доверительный интервал для $heta_2^2$

$$\sum_{i=1}^{n} \left(\frac{x_i - m}{\theta_2}\right)^2 \sim \chi^2(n)$$

$$P\left(\chi_{n, \frac{\alpha}{2}}^2 < \frac{\sum_{i=1}^{n} (x_i - m)^2}{\theta_2^2} < \chi_{n, 1 - \frac{\alpha}{2}}^2\right) = 1 - \alpha$$

$$P\left(\frac{\sum_{i=1}^{n} (x_i - m)^2}{\chi_{n, 1 - \frac{\alpha}{2}}^2} < \theta_2^2 < \frac{\sum_{i=1}^{n} (x_i - m)^2}{\chi_{n, \frac{\alpha}{2}}^2}\right) = 1 - \alpha$$

Здесь $\chi^2_{n,\;\alpha}$ — квантиль уровня α распределения $\chi^2(n)$

Пример 3

Если нам неизвестны оба параметра $N(\theta_1, \theta_2^2)$. Заменяем m на \overline{X} : Доверительный интервал для θ_2 :

$$P\left(\frac{\sum_{i=1}^{n}(x_{i}-\overline{X})^{2}}{\chi_{n,\ 1-\frac{\alpha}{2}}^{2}} < \theta_{2}^{2} < \frac{\sum_{i=1}^{n}(x_{i}-\overline{X})^{2}}{\chi_{n,\ \frac{\alpha}{2}}^{2}}\right) = 1 - \alpha$$

Доверительный интервал для θ_1 :

$$\frac{\sqrt{n}\left(\frac{\overline{X}-\theta}{\sigma}\right)}{\sqrt{\frac{1}{n-1}\sum\left(\frac{(x_i-\overline{X})}{\sigma}\right)^2}} = \frac{\sqrt{n}(\overline{X}-\theta_1)}{\tilde{S}} \sim t(n-1)$$

Обозначим $t_{n,\;\alpha}$ квантиль уровня lpha распределения t(n), заметим, что $t_{n,\;1-lpha}=t_{n,\;1-rac{lpha}{2}}$

$$P(t_{n, 1-\frac{\alpha}{2}} < \frac{\sqrt{n}(\overline{X} - \theta_1)}{\tilde{S}} < t_{n, \frac{\alpha}{2}}) = 1 - \alpha$$

$$P(\overline{X} - \frac{\tilde{S} \cdot t_{n, 1-\frac{\alpha}{2}}}{\sqrt{n}} < \theta_1 < \overline{X} + \frac{\tilde{S} \cdot t_{n, 1-\frac{\alpha}{2}}}{\sqrt{n}}) = 1 - \alpha$$

Лекция 7 февраля

Задача

 $X_1,\dots,\,X_{n_1}\sim N(m_1,\,\sigma_1^2)$ и $Y_1,\dots,\,Y_{n_2}\sim N(m_2,\,\sigma_2^2)$. σ известны, m — неизвестны. $X_1,\dots,\,X_n$ и $Y_1,\dots,\,Y_n$ независимы. Доверительнный интервал для $\theta=m_1-m_2$

$$T(x, y) = \frac{\overline{X} - \overline{Y} - \theta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Задача

Пусть $X_1,\ldots,~X_{n_1} \sim N(m_1,~\sigma^2),~Y_1,\ldots,~Y_{n_2} \sim N(m_2,~\sigma^2).~\sigma$ неизвестна. Выборки независимы.

Утверждение

$$\frac{\sum_{i=1}^{n_1} (x_i - \overline{X})^2}{\sum_{i=1}^{n_2} (y_i - \overline{Y})^2} \sim F(n_1 - 1, n_2 - 1)$$

$$\frac{\overline{X} - \overline{Y} - (m_1 - m_2)}{\sqrt{\hat{\mathcal{D}}(\overline{X} - \overline{Y})}}$$

Посчитаем дисперсию в знаменателе:

$$\mathcal{D}(\overline{X} - \overline{Y}) = \mathcal{D}\overline{X} + \mathcal{D}\overline{Y} = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} = \sigma^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)$$
$$S^2 = \frac{\sum_{i=1}^{n_1} \left(x_i - \overline{X}\right)^2 + \sum_{i=1}^{n_2} \left(y_i - \overline{Y}\right)^2}{n_1 + n_2 - 2}$$

Тогда

$$\frac{\overline{X} - \overline{Y} - (m_1 - m_2)}{\sqrt{\hat{\mathcal{D}}(\overline{X} - \overline{Y})}} = \frac{\overline{X} - \overline{Y} - (m_1 - m_2)}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

Теперь можно построить доверительный интервал:

$$P\left(-t_{1-\alpha/2, n_1+n_2-2} < \frac{\overline{X} - \overline{Y} - \theta}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} < t_{1-\alpha/2, n_1+n_2-2}\right) = 1 - \alpha$$

$$P\left(-t_{1-\alpha/2, n_1+n_2-2} \cdot S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} - (\overline{X} - \overline{Y}) < -\theta < t_{1-\alpha/2, n_1+n_2-2} \cdot S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} - (\overline{X} - \overline{Y})\right) = 1 - \alpha$$

$$P\left((\overline{X} - \overline{Y}) - t_{1-\alpha/2, n_1+n_2-2} \cdot S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} < \theta < t_{1-\alpha/2, n_1+n_2-2} \cdot S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + (\overline{X} - \overline{Y})\right) = 1 - \alpha$$

Асимптотические доверительные интервалы

Пусть $X_1, \ldots, X_n \sim F(x, \theta), \ \theta \in \Theta \subset \mathbb{R}^1$ $\hat{\theta}$ — состоятельная оценка θ .

$$\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow[n \to \infty]{d} U, U \sim N(0, \sigma^2(\theta))$$

И $\sigma^2(\theta)$ непрерывна по θ .

$$P\left(Z_{\alpha/2} < \frac{\sqrt{n}(\hat{\theta}_n - \theta)}{\sigma(\hat{\theta}_n)} < Z_{1-\alpha/2}\right) \to 1 - \alpha$$

$$P\left(\hat{\theta}_n - \frac{\sigma(\hat{\theta}_n)Z_{1-\alpha/2}}{\sqrt{n}} < \theta < \frac{\sigma(\hat{\theta}_n)Z_{1-\alpha/2}}{\sqrt{n}} + \hat{\theta}_n\right)$$

Если \exists R-эффективная оценка $\hat{ heta}_n$, то выбирая её $\mathcal{D}\hat{ heta}_n=rac{1}{I_n(heta)}$, тогда $rac{\sigma(\hat{ heta}_n)}{\sqrt{n}}=\sqrt{\mathcal{D}\hat{ heta}_n}=rac{1}{\sqrt{nI_1(\hat{ heta}_n)}}$

$$P\left(\hat{\theta}_n - \frac{Z_{1-\alpha/2}}{\sqrt{nI_1(\hat{\theta}_n)}} < \theta < \hat{\theta}_n + \frac{Z_{1-\alpha/2}}{\sqrt{nI_1(\hat{\theta}_n)}}\right) \to 1 - \alpha$$

Пример

 $X_1, \ldots, X_n \sim Bi(1, \theta)$

АДИ для θ :

$$\hat{ heta} = rac{\sum_{i=1}^n x_i}{n}$$
 — несмещённая, состоятельная, R-эффективная

$$\mathcal{D}x_i = \theta(1-\theta).$$

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow[n \to \infty]{d} U, \ U \sim N(0, \ \theta(1 - \theta))$$

$$P\left(\hat{\theta} - Z_{1-\alpha/2}\sqrt{\frac{\hat{\theta}(1 - \hat{\theta})}{n}} < \theta < \hat{\theta} + Z_{1-\alpha/2}\frac{\sqrt{\hat{\theta}(1 - \hat{\theta})}}{\sqrt{n}}\right) \to 1 - \alpha$$

Определение

Основная (или нулевая) гипотеза H_0 , с ней конкурируют $H_1,\ H_2,\ldots,\ H_A$ (альтернативные гипотезы).

Определение

Сложной гипотезой называют гипотезу, которая не определяет параметры распределения или само распределение однозначно.

Например

$$H_1: \xi \sim N(m, \sigma^2)$$

$$H_2: \xi \sim N(5, \sigma^2)$$

Простая гипотеза определяет распределение однозначно, например:

$$H_3: \xi \sim N(5, 36)$$

Односторонние гипотезы выглядят так:

$$H_4: \xi m < 5$$

$$H_5: \xi m > 5$$

Двусторонние:

$$H_6: n \neq 5$$

$$H_7: m \in [1, 3]$$

А гипотеза $H_8:\{$ "Сегодня хорошая погода" $\}$ не является статистической, ведь не относится к распределению и параметрам.

Определение

Статистическим критерием называют правило, руководствуясь которым, на основании реализации $x_1,\ldots,\ x_n$ выборки $X_1,\ldots,\ X_n$ принимается решение о справедливости/несправедливости гипотезы H_0 . Делим множество реализаций выборки S на два множества $S_0,\ S_1$, такие что

$$S_0 \cdot S_1 = \emptyset$$

$$S_0 + S_1 = S$$

Назовём S_0 доверительной областью, а S_1 — критической областью. Если реализация попала в S_0 , то мы принимаем H_0 , иначе принимает альтернативную гипотезу.

Тогда ошибкой первого рода (уровнем значимости критерия) называется

$$P(X \in S_1 \mid$$
 верна $H_0) = \alpha$

Ошибкой второго рода называется

$$P(X \in S_0 \wedge \mathsf{верна}\ H_1) = 1 - \beta$$

Определение

Пусть критерий предназначен для проверки $H_0: \theta = \theta_0$ против альтернативы $H_1: \theta \neq \theta_0$, тогда функцией мощности критерия называется

$$\beta(\theta) = P(X \in S_1, \theta)$$

Критерий называется состоятельным, если при отдалении от θ_0 его функция мощности стремится к 1.

Лекция 13 февраля

Проверка статистических гипотез

Если β — функция мощности критерия проверки гипотезы $H_0: \theta = \theta_0$, тогда $\beta(\theta) = P(X \in S_1, \ \theta)$ и $\beta(\theta_0) = \alpha$, где α — вероятность ошибки первого рода.

Задача

 $H_0: \theta = \theta_0$ и $H_1: \theta \in \Theta_1$, $\theta_0 \notin \Theta_1$. Пусть зафиксировано $\alpha > 0$, тогда критерий называется несмещённым, если:

$$\beta(\theta) \leqslant \alpha$$
, если $\theta = \theta_0$

$$\beta(\theta) > \alpha$$
, если $\theta \in \Theta_1$

Критерий, предназначенный для проверки $H_0: \theta = \theta_0$ против $H_1: \theta \in \Theta_1$ называется состоятельным, если

$$\forall \theta \in \Theta_1 \quad \beta(\theta) \xrightarrow[n \to \infty]{} 1, \ \text{где } n$$
 — количество испытаний

Определение

Критерий eta_0 называется равномерно наиболее мощным, если среди всех критериев eta:

$$\forall \theta \in \Theta \quad \beta_0(\theta) \geqslant \beta(\theta)$$

Локально наиболее мощным, если

$$\forall \theta \in \Theta_1 \subseteq \Theta \quad \beta_0(\theta) \geqslant \beta(\theta)$$

Алгоритм проверки параметрических гипотез

- 1. Сформулировать проверяемую гипотезу H_0 и альтернативную к ней H_1 .
- 2. Выбрать уровень значимости lpha
- 3. Выбрать статистику T для проверки гипотезы H_0
- 4. Найти распределение $F(z \mid H_0)$ статистики T, при условии $\{$ " H_0 верна" $\}$
- 5. Построить, в зависимости от формулировки гипотезы H_1 и уровня значимости lpha, критическую область \overline{G}
- 6. Получить реализацию выборки наблюдений x_1, \ldots, x_n и вычислить реализацию $t = \varphi(x_1, \ldots, x_n)$ статистики T критерия
- 7. Принять статистическое решение на уровне доверия $1-\alpha$: если $t\in \overline{G}$, то отклонить гипотезу H_0 как не согласующуюся с результатами наблюдений, а если $t\in G$, то принять гипотезу H_0 как не противоречащую результатам наблюдений.

Задача

Дамы оценивают чай. Могут ли из двух чашек выбрать чашку с хорошим чаем? Проводятся наблюдения $X_1,\ldots,\,X_n\sim Bi(1,\,p)$

- 1. $H_0:\ p=p_0=0.5,\ H_1:p>0.5.$ То есть H_0 дамы не могут выбрать (просто пытаются угадать).
- 2. $\, \alpha = 0.05 \,$. Так как специально указано не было, берём стандартное значение.
- 3. $T(x) = \sum_{i=1}^{n} x_i$
- 4. $T(x\mid H_0) \sim Bi(n,\, \frac{1}{2})$. Если n велико:

$$\frac{T(x) - np_0}{\sqrt{np_0(1 - p_0)}} = \tilde{T}(x) \sim N(0, 1)$$

- 5. Доверительная область: $[0,\ Z_{0.95}]=[0,\ 1.65]$. Критическая область: $(1.65,\ +\infty)$
- 6. Пусть у нас есть данные $n=30, \; \sum_{i=1}^{30} x_i = 20 = T(x)$

$$\tilde{T}(x) = \frac{20 - 30 \cdot \frac{1}{2}}{\sqrt{30 \cdot 0.5 \cdot 0.5}} \approx 1.82574$$

7. Попали в критическую область, значит принимаем H_1 на уровне доверия $1-\alpha=0.95$

Задача

А если у нас есть две серии различных испытаний Бернулли?

Пусть $\xi_1 \sim Bi(n_1,\ p_1)$ и $\xi_2 \sim Bi(n_2,\ p_2)$. Хотим проверить $H_0: p_1=p_2$ против альтернатив $H_1: p_1 < p_2,\ H_2: p_1>p_2,\ H_3: p_1\neq p_2$.

Введём обозначение $\hat{p}_1=rac{\sum_{i=1}^{n_1}x_{i\,1}}{n_1},~\hat{p}_2=rac{\sum_{i=1}^{n_2}x_{i\,2}}{n_2}$, тогда:

$$\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\mathcal{D}(\hat{p}_1 - \hat{p}_2)}} \sim N(0, 1)$$

Посчитаем $\mathcal{D}(\hat{p}_1 - \hat{p}_2) = \mathcal{D}(\hat{p}_1) + \mathcal{D}(\hat{p}_2) - 2\underbrace{\mathsf{cov}(\hat{p}_1, \ \hat{p}_2)}_{=0} = \frac{p_1q_1}{n_1} + \frac{p_2q_2}{n_2} = pq\left(\frac{1}{n_1} + \frac{1}{n_2}\right).$

Oценим p:

$$\hat{p} = \frac{\sum_{i=1}^{n_1} x_{i1} + \sum_{i=1}^{n_2} x_{i2}}{n_1 + n_2}$$

Тогда $\tilde{T}(x)=rac{\hat{p}_1-\hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(rac{1}{n_1}+rac{1}{n_2}
ight)}}.$ По этой статистике уже можем принимать решения.

Лекция 21 февраля

Лемма Неймана-Пирсона

Пусть $X_1, \ldots, X_n \sim f(x, \theta)$, параметр θ неизвестен. Проверяется простая гипотеза $H_0: \theta = \theta_0$ против простой альтернативной гипотезы $H_1: \theta = \theta_1$ (БОО $\theta_1 > \theta_0$).

Существует наиболее мощный критерий для проверки H_0 против H_1 с критической областью $S_{1\alpha}^* = \{(x_1,\ldots,\ x_n) \mid T(x_1,\ldots,\ x_n) \geqslant c_\alpha\}$, где $T(x_1,\ldots,\ x_n) = \frac{L(x_1,\ldots,\ x_n,\ \theta_1)}{L(x_1,\ldots,\ x_n,\ \theta_0)} = \frac{\prod_{i=1}^n f(x_i,\ \theta_1)}{\prod_{i=1}^n f(x_i,\ \theta_0)}$, а c_α такое что $P_{\theta_0}(T(x) \geqslant c_\alpha) = \alpha$

Доказательство

Пусть есть критерий с критической областью $S_{1\,\alpha}$ лучше (более мощный) предложенного нашей леммой. Тогда (под x далее понимается вектор (x_1,\ldots,x_n)):

$$\beta(\theta_1, S_{1\alpha}) = \int_{S_{1\alpha}} \prod_{i=1}^n f(x_i, \theta_1) dx_1 \dots dx_n = \int_{S_{1\alpha}} L(x, \theta_1) dx = \int_{S_{1\alpha}S_{1\alpha}^*} L(x, \theta_1) dx + \int_{S_{1\alpha}\overline{S}_{1\alpha}^*} L(x, \theta_1) dx = \int_{S_{1\alpha}} \int_{S_{1\alpha}} \frac{1}{S_{1\alpha}^*} \int_{S_{1\alpha}^*} \frac{1}{S_{1\alpha}^*} \int_{S_{1\alpha}} \frac{1}{S_{1\alpha}^*} \int_{S_{1\alpha}} \frac{1}{S_{1\alpha}^*} \int_{S_{1\alpha}} \frac{1}{S_{1\alpha}^*} \int_{S_{1\alpha}} \frac{1}{S_{1\alpha}^*} \int_{S_{1\alpha}} \frac{1}{S_{1\alpha}^*} \int_{S_{1\alpha}^*} \frac{1}{S_{1\alpha}^*} \int_{S_{1\alpha}^$$

По определению функции T(x):

$$T(x) = \frac{L(x, \theta_1)}{L(x, \theta_0)} \Rightarrow T(x)L(x, \theta_0) = L(x, \theta_1)$$

Подставим это в сумму:

$$= \int_{S_{1\alpha}S_{1\alpha}^*} T(x)L(x, \, \theta_0) \, dx + \int_{S_{1\alpha}\overline{S}_{1\alpha}^*} T(x)L(x, \, \theta_0) \, dx$$

По определению $\beta(\theta, S_1) = P\left(X \in S_1, \theta\right)$ то есть правдоподобие попадания случайной величины в критическую область при заданном параметре.

$$\beta(\theta_1, S_{1\alpha}^*) = \int_{S_{1\alpha}^*} L(x, \theta_1) dx = \int_{S_{1\alpha}S_{1\alpha}^*} L(x, \theta_1) dx + \int_{\overline{S}_{1\alpha}S_{1\alpha}^*} L(x, \theta_1) dx =$$

$$= \int_{S_{1\alpha}S_{1\alpha}^*} T(x)L(x, \theta_0) dx + \int_{\overline{S}_{1\alpha}S_{1\alpha}^*} T(x)L(x, \theta_0) dx$$

Чуток пошаманим с выведенными формулами:

$$\beta(\theta_{1}, S_{1\alpha}) - \beta(\theta_{1}, S_{1\alpha}^{*}) = \left(\int_{S_{1\alpha}S_{1\alpha}^{*}} T(x)L(x, \theta_{0}) dx + \int_{S_{1\alpha}\overline{S}_{1\alpha}^{*}} T(x)L(x, \theta_{0}) dx\right) - \left(\int_{S_{1\alpha}S_{1\alpha}^{*}} T(x)L(x, \theta_{0}) dx + \int_{\overline{S}_{1\alpha}S_{1\alpha}^{*}} T(x)L(x, \theta_{0}) dx\right) \Rightarrow$$

$$\Rightarrow \beta(\theta_{1}, S_{1\alpha}) - \beta(\theta_{1}, S_{1\alpha}^{*}) = \int_{S_{1\alpha}\overline{S}_{1\alpha}^{*}} \underbrace{T(x)L(x, \theta_{0}) dx - \int_{S_{1\alpha}\overline{S}_{1\alpha}^{*}} \underbrace{T(x)L(x, \theta_{0}) dx}_{\geqslant c_{\alpha}}} \right) \Rightarrow$$

Теперь можно составить равенство:

$$\beta(\theta_1, S_{1\alpha}) = \beta(\theta_1, S_{1\alpha}^*) + \int_{S_{1\alpha}\overline{S}_{1\alpha}^*} \underbrace{T(x)}_{< c_{\alpha}} L(x, \theta_0) \, dx - \int_{S_{1\alpha}^*\overline{S}_{1\alpha}} \underbrace{T(x)}_{\geq c_{\alpha}} L(x, \theta_0) \, dx$$

Правый интеграл содержит область $S_{1\alpha}^*$, по заданию это множество таких точек, в которых $T(x) \geqslant c_{\alpha}$. Левый интеграл, наоборот, содержит $\overline{S}_{1\alpha}^*$, то есть все точки, в которых $T(x) < c_{\alpha}$. Значит будет справедливо неравенство:

$$\beta(\theta_1, S_{1\alpha}) < \beta(\theta_1, S_{1\alpha}^*) + c_{\alpha} \left(\int_{S_{1\alpha} \overline{S}_{1\alpha}^*} L(x, \theta_0) dx - \int_{S_{1\alpha}^* \overline{S}_{1\alpha}} L(x, \theta_0) dx \right)$$

Вероятность попадания в критическую область должна быть равна lpha, тогда верно:

$$\alpha = \int_{S_{1\alpha}} L(x, \, \theta_0) \, dx = \int_{S_*^*} L(x, \, \theta_0) \, dx$$

При этом

$$\int_{S_{1\alpha}} L(x, \, \theta_0) \, dx = \int_{S_{1\alpha}S_{1\alpha}^*} L(x, \, \theta_0) \, dx + \int_{S_{1\alpha}\overline{S}_{1\alpha}^*} L(x, \, \theta_0) \, dx$$

$$\int_{S_{1\alpha}^*} L(x, \, \theta_0) \, dx = \int_{S_{1\alpha}^*S_{1\alpha}} L(x, \, \theta_0) \, dx + \int_{S_{1\alpha}^*\overline{S}_{1\alpha}} L(x, \, \theta_0) \, dx$$

$$\int_{S_{1\alpha}} L(x, \, \theta_0) \, dx - \int_{S_{1\alpha}^*} L(x, \, \theta_0) \, dx = \int_{S_{1\alpha}\overline{S}_{1\alpha}^*} L(x, \, \theta_0) \, dx - \int_{S_{1\alpha}^*\overline{S}_{1\alpha}} L(x, \, \theta_0) \, dx = \alpha - \alpha = 0$$

Тогда в ранее записанном неравенстве:

$$c_{\alpha} \left(\int_{S_{1\alpha}\overline{S}_{1\alpha}^{*}} L(x, \, \theta_{0}) \, dx - \int_{S_{1\alpha}^{*}\overline{S}_{1\alpha}} L(x, \, \theta_{0}) \, dx \right) = 0 \Rightarrow$$

$$\Rightarrow \beta(\theta_{1}, \, S_{1\alpha}) < \beta(\theta_{1}, \, S_{1\alpha}^{*}) + 0 \Rightarrow \beta(\theta_{1}, \, S_{1\alpha}) < \beta(\theta_{1}, \, S_{1\alpha}^{*})$$

То есть всякая критическая область, отличная от $S_{1\,lpha}^*$, будет менее мощной.

Задача

 $X_1, \ldots, X_n \sim N(m, \sigma^2)$, дисперсия известна. Построить наиболее мощный критерий для проверки $H_0: m=m_0$ против $H_1: m=m_1>m_0$

Решение (моё)

По лемме Неймана-Пирсона критическая область необходимого нам критерия должна выглядеть так:

$$S_{1\alpha}^* = \{(x_1, \dots, x_n) \mid T(x) \ge c_\alpha\}, \ T(x) = \frac{L(x, m_1)}{L(x, m_0)} \ge c_\alpha, \ P_{m_0}(T(x) \ge c_\alpha) = \alpha$$

$$L(x, m_1) = \prod_{i=1}^n f(x_i, m_1) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n e^{-\sum_{i=1}^n \frac{(x_i - m_1)^2}{2\sigma^2}}$$

$$L(x, m_0) = \prod_{i=1}^n f(x_i, m_0) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n e^{-\sum_{i=1}^n \frac{(x_i - m_0)^2}{2\sigma^2}}$$

$$\frac{L(x, m_1)}{L(x, m_0)} = e^{\sum_{i=1}^n \frac{(x_i - m_0)^2 - (x_i - m_1)^2}{2\sigma^2}} = e^{\sum_{i=1}^n \frac{(m_0 - m_1)(2x_i - m_1 - m_2)}{2\sigma^2}}$$

Хотим найти такое c_{lpha} , что $P\left(T(x)\geqslant c_{lpha}\right)=lpha$, то есть хотим найти:

$$F_{T(x)}(c_{\alpha}) = \alpha \Rightarrow \int_{-\infty}^{c_{\alpha}} e^{\sum_{i=1}^{n} \frac{(m_0 - m_1)(2x_i - m_1 - m_2)}{2\sigma^2}} dx = \alpha$$

Ответ с лекции

$$S_{1\alpha}^*\{(x_1,\ldots,x_n) \mid \overline{X} \geqslant m_0 + \frac{Z_{1-\alpha}\sqrt{n}}{\sigma}\} = \{(x_1,\ldots,x_n) \mid \frac{(\overline{X}-m_0)\sqrt{n}}{\sigma} \geqslant Z_{1-\alpha}\}$$

Задача

Для проверки гипотезы $H_0: m=m_0$

$$T(x) = \frac{(\overline{X} - m_0)\sqrt{n}}{\sigma} \Rightarrow T(x)\big|_{H_0: m = m_0} \sim N(0, 1)$$

Против гипотезы $H_1: m > m_0$

Против гипотезы $H_2 : m < m_0$

Против гипотезы $H_3: m \neq m_0$

Пояснение: на рисунках зелёным обозначена доверительная область, красным обозначена критическая область.

Задача

Снова гауссовская выборка, но дисперсия неизвестна. Хотим проверить гипотезу $H_0: m=m_0$. Тогда нужно поменять статистику на:

$$T(x) = \frac{(\overline{X} - m_0)\sqrt{n}}{\tilde{S}} = \frac{(\overline{X} - m_0)\sqrt{n-1}}{S}$$
$$T(x)\big|_{H_0} \sim t(n-1)$$

Против гипотезы $H_1: m > m_0$

Против гипотезы $H_2 : m < m_0$

Против гипотезы $H_3: m \neq m_0$

Та же самая идея, только разделение идёт по квантилям распределения Стьюдента.

Задача

Теперь строим критерий для оценки дисперсии при известном математическом ожидании. Проверяем гипо-

тезу $H_0: \sigma = \sigma_0$:

$$T(x) = \frac{\sum_{i=1}^{n} (x_i - m)^2}{\sigma_0^2}$$
$$T(x)\big|_{H_0: \sigma = \sigma_0} \sim \chi^2(n)$$

Против гипотезы $H_1:\sigma<\sigma_0$

Против гипотезы $H_2:\sigma>\sigma_0$

Против гипотезы $H_3: \sigma \neq \sigma_0$

Задача

Если математическое ожидание неизвестно:

$$T(x) = \frac{\sum_{i=1}^{n} (x_i - \overline{X})^2}{\sigma_0^2}$$

$$T(x)\big|_{H_0:\sigma=\sigma_0} \sim \chi^2(n-1)$$

Против гипотезы $H_1:\sigma<\sigma_0$

Против гипотезы $H_2:\sigma>\sigma_0$

Против гипотезы $H_3:\sigma
eq \sigma_0$

Проверка гипотез о распределении случайных величин

Критерий Колмогорова (КАКОЙ ЖЕ ОН КРУТОЙ)

 $X_1,\ldots,\ X_n \sim F_\xi(x,\ heta_0) = F_0(x),\ heta_0$ известна. Проверяем гипотезу $H_0: \xi \sim F_0(x)$

Колмогоров предложил считать $D_n = \max_{1 \leqslant i \leqslant n} \left| \hat{F}_n(x_i) - F_0(x_i) \right|.$

Если $n o \infty$ (начиная с 20 уже хорошая апроксимация) и при условии верности H_0 получаем

$$\sqrt{n}D_n \sim K(t)$$

Функция распределения Колмогорова

$$K(t) = \sum_{j=-\infty}^{+\infty} (-1)^j \exp\{-j^2 t^2\}$$

Критерий хи-квадрат

 $X_1,\dots,\,X_n\sim F_\xi(x,\, heta_0)=F_0(x)$, $heta_0$ знаем. Проверяем гипотезу $H_0:\xi\sim F_0(x)$. Делим \mathbb{R}^1 на l+2 интервала, где $S_0=-\infty,\,S_{l+1}=+\infty$ тогда $\hat{p}_k=rac{n_k}{n},\,p_k^{(0)}=F_0(S_k)-F_0(S_{k-1})$, где $k=\overline{1,\,l+1}$. Здесь возникает $\hat{\chi}^2=\sum_{k=1}^{l+1}rac{n}{p_k^{(0)}}\left(\hat{p}_k-p_k^{(0)}
ight)^2$

Утверждение

Если $0 < p_k^{(0)} < 1$ для $\forall k = \overline{1,\; l+1},\; n o \infty$ и справедлива H_0 , то

$$\hat{\chi}^2 \sim \chi^2(l)$$

Тогда график будет выглядеть так

Задача

Проверяем теории из биологии

	$p_k^{(0)}$	n_k	$\hat{p}_k = \frac{n_k}{n}$
AB	$\frac{9}{16}$	315	0.556
Ab	$\frac{\frac{3}{16}}{3}$	108	0.194
аВ	$\frac{3}{16}$	101	0.182
ab	$\frac{1}{16}$	32	0.058

Теперь проверим $H_0: \vec{p}^{(0)} = \left(\frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16}\right)$

Применяя критерий хи-квадрат:

$$\hat{\chi}^2 = 0.49,\;$$
посчитали за кадром

$$\hat{\chi}^2|_{H_0} \sim \chi^2(3)$$

Тогда при параметрах $\alpha=0.05,\ \chi^2_{3,\ 0.95}=7.81\Rightarrow$ наш результат лежит в доверительной области.

Лекция 28 февраля

Критерий хи-квадрат Пирсона

Имеется выборка $X_1, \ldots, \ X_n \sim F_{\xi}(x, \ \theta), \ \theta \in \Theta \subset \mathbb{R}^n.$

Проверяем гипотезу $H_0: \xi \sim F_\xi^0(x,\,\theta)$ (здесь использован верхний индекс для указания на какое-то конкретное распределение).

- 1. Оценим вектор параметров $heta=(heta_1,\ldots,\ heta_m)$ по методу максимального правдоподобия.
- 2. Разбиваем \mathbb{R}^1 на (l+1) непересекающийся интервал.

3. Введём следующие обозначения:

$$\forall k \in [1,\; l-1] \cap \mathbb{Z} \quad \hat{p}_k = \frac{n_k}{n}$$
 $\forall k \in [0,\; l] \cap \mathbb{Z} \quad p_k^{(0)} (\hat{\theta}) = P_{H_0} \left(\xi \in \Delta_k \right), \text{ (вероятность } \xi \text{ попасть в } k$ -ый интервал при условии H_0) $p_k^{(0)} (\hat{\theta}) = F \left(s_{k+1},\; \hat{\theta} \right) - F \left(s_k,\; \hat{\theta} \right)$

Тогда справедливо

$$\hat{\chi}^2 = \sum_{k=0}^{l} \frac{n}{p_k^{(0)}(\hat{\theta})} \left(\hat{p}_k - \hat{p}_k^{(0)}(\hat{\theta}) \right)^2 = n p_0^{(0)}(\hat{\theta}) + \sum_{k=1}^{l-1} \frac{n}{p_k^{(0)}(\hat{\theta})} \left(\hat{p}_k - \hat{p}_k^{(0)}(\hat{\theta}) \right)^2 + n p_l^{(0)}(\hat{\theta})$$

Утверждение

При $n \to \infty$, $p_k^{(0)} > 0$, $\sum_{k=0}^l p_k^{(0)} = 1$ и соблюдении некоторых условий регулярности (про дифференцируемость и существование вторых производных) выполняется

$$\hat{\chi}^2|_{H_0} \sim \chi^2(l+1-1-m)$$

Здесь l+1 — количество интервалов, а m — количество оцененных параметров. Доверительным интервалом будет $(0,\ \chi^2_{1-\alpha,\ l-m})$

Определение

Выборки $X_1,\ldots,\ X_m \sim F_x(t)$ и $Y_1,\ldots,\ Y_m \sim F_y(t)$ называются однородными, если

$$\forall t \in \mathbb{R}^1 \quad F_x(t) \sim F_y(t)$$

Для доказательства однородности выборок следует проверять гипотезу $H_0: orall t \in \mathbb{R}^1$ $F_x(t) = F_y(t)$

Пример

Имеется две выборки $X_1,\ldots,\ X_m \sim F(t)$ и $Y_1,\ldots,\ Y_n \sim F(t-\theta)$. Пусть $|EX| < \infty$, тогда

$$EY_{1} = \int_{-\infty}^{+\infty} t f_{y}(t) dt = \int_{-\infty}^{+\infty} t f_{x}(t - \theta) dt = \left\langle t - \theta = z \right\rangle = \int_{-\infty}^{+\infty} (z + \theta) f_{x}(z), dz =$$

$$= \int_{-\infty}^{+\infty} z f_{x}(z) dz + \theta \int_{-\infty}^{+\infty} f_{x}(z) dz = EX + \theta$$

Тогда для проверки однородности могут быть использованы гипотезы:

$$H_0: \theta = m_y - m_x = 0, \;$$
 против $egin{bmatrix} H_1: heta < 0 \ (m_y < m_x) \ H_2: heta > 0 \ (m_y > m_x) \ H_3: heta
eq 0 \ (m_y \neq m_x) \end{pmatrix}$

Критерий Стьюдента

Есть две выборки $X_1, \ldots, X_m \sim N(m_x, \sigma^2)$ и $Y_1, \ldots, Y_n \sim N(m_y, \sigma^2)$. Выборки независимы и имеют одинаковые (но неизвестные нам) дисперсии.

Тогда для проверки гипотезы $H_0: m_y - m_x = 0$ подойдёт статистика:

$$T(x, y) = \frac{\overline{Y} - \overline{X}}{S\sqrt{\frac{1}{n} + \frac{1}{m}}}$$

Здесь $S^2=rac{\sum_{i=1}^m \left(x_i-\overline{X}
ight)^2+\sum_{i=1}^n \left(y_i-\overline{Y}
ight)^2}{m+n-2}.$ При верности гипотезы H_0 получаем

$$T(x, y)|_{H_0} \sim t(n+m-2)$$

Против гипотезы $H_1: \theta < 0$

Против гипотезы $H_2: \theta > 0$

Против гипотезы $H_3: \theta \neq 0$

Ранговые критерии

Определение

Рангом элемента выборки называется его номер в вариационном ряду:

$$R(x_{(k)}) = k$$

Процедура определения рангов элементов выборки называется ранжированием.

Определение

Связкой размера n называют n совпадающих элементов выборки.

 $\overline{\text{Если связке размера } m}$ предшествует k элементов, то все элементы связки получают один ранг, равный

$$\frac{1}{m} \sum_{i=k+1}^{m+k} i$$

Ранговый критерий Вилкоксона (1945)

Предполагается $X_1,\ldots,~X_m\sim F(t)$ и $Y_1,\ldots,~Y_n\sim F(t-\theta)$. Выборки независимы, F(t) — непрерывное распределение. Проверяем гипотезу $H_0:\theta=0$.

Интуитивно понятно, что в случае $\theta \ll 0$ (математическое ожидание Y сильно меньше, чем у X) элементы в вариационном ряду располагаются так:

$$y_{(1)}, \ldots, y_{(n)}x_{(1)}, \ldots, x_{(m)}$$

И в случае $\theta \gg 0$:

$$x_{(1)}, \ldots, x_{(m)}y_{(1)}, \ldots, y_{(n)}$$

Для проверки критерия введём следующую статистику:

$$W_{m,\;n} = \sum_{i=1}^n R_i,\;$$
где R_i — ранг Y_i в объединённой выборке

Тогда для случая $\theta \ll 0$

$$\min W_{m, n} = \sum_{i=1}^{n} R_i = (n+1)\frac{n}{2}$$

Для случая $\theta \gg 0$

$$\max W_{m, n} = \sum_{i=1}^{n} R_i = (n + 2m + 1) \frac{n}{2}$$

Если $\theta = 0$, то выборка должна быть перемешана, тогда для статистики справедливо.

$$EW_{m, n}|_{H_0} = (n + m + 1)\frac{n}{2}, \ \mathcal{D}W_{m, n} = \frac{mn}{12}(m + n + 1)$$

Лекция 7 марта

Разбираем пример на применение критерия Вилкоксона.

 $X_1,\ldots,\,X_m \sim F_x(t)$ и $Y_1,\ldots,\,Y_n \sim F_y(t- heta)$. Проверяем гипотезу $H_0: heta=0$.

$$W_{m, n} = \sum_{i=1}^{n} R_i$$

Пусть $m=4,\; n=2$, тогда есть $C_6^2=15$ способов расставить y. Пусть $(R_1,\;R_2)=(r_1,\;r_2)$, тогда:

(r_1, r_2)	$W_{4, 2}$	$P_{H_0}((R_1, R_2) = (r_1, r_2))$
(1, 2)	3	<u>1</u>
(1, 3)	4	15 15 15
(1, 4)	5	1 15
(1, 5)	6	$\frac{\widehat{1}}{15}$
(1, 6)	7	
(2, 3)	5	1 15
(2, 4)	6	15 1 15 1
(2, 5)	7	$\frac{1}{15}$
(2, 6)	8	$\frac{\widehat{1}}{15}$
(3, 4)	7	$ \begin{array}{r} \overline{15} \\ \underline{1} \\ \overline{15} \\ \underline{1} \\ \underline{1} \\ 1 \\ \underline{1} \\ 1 \end{array} $
(3, 5)	8	1 15
(3, 6)	9	15 1 15 1
(4, 5)	9	1 15
(4, 6)	10	$ \begin{array}{r} \overline{15} \\ \underline{1} \\ \overline{15} \\ 1 \end{array} $
(5, 6)	11	$\frac{1}{15}$

Теперь можем составить таблицу

$W_{4,2}$	3	4	5	6	7	8	9	10	11
P	$\frac{1}{15}$	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{2}{15}$	$\frac{3}{15}$	$\frac{2}{15}$	$\frac{2}{15}$	$\frac{1}{15}$	$\frac{1}{15}$

Получается симметричное распределение, его функция распределения в некоторых точках:

$$F_W(3) = \frac{1}{15}, F_W(4) = \frac{2}{15}$$

$$EW_{m, n} = (m + n + 1)\frac{n}{2} \Rightarrow EW_{4, 2} = 7$$

Распределение дискретное, поэтому квантиль считается так

$$Z_{\beta} = \min\{x \mid F(x) \geqslant \beta\}$$

Если $\min(m, n) \to \infty$, то

$$W^* = \left. \frac{W - EW_{m, n}}{\sqrt{\mathcal{D}W_{m, n}}} \right|_{H_0} \to N(0, 1)$$

Поправка на наличие связок. Имеется l связок и t_k — размер k-ой связки ($k=1,\ l$). Тогда

$$ilde{\mathcal{D}}W_{m,\;n}=\mathcal{D}W_{m,\;n}-rac{mn\sum_{i=1}^{l}t_{k}(t_{k}^{2}-1)}{12N(N-1)},$$
 где $N=m+n$

Далее идёт 10 минут обсуждения плюсов данного метода.

Проверка гипотезы об однородности против гипотезы о растяжении (сжатии)

$$\begin{split} X_1, \dots, X_m &\sim F(t-\mu) \text{ и } Y_1, \dots, Y_n \sim F\left(\frac{t-\mu}{\Delta}\right), \ \Delta > 0 \\ \text{Если} \int\limits_{-\infty}^{+\infty} t f(t) \, dt = 0 \text{ и } \exists \mathcal{D}X, \text{ то} \\ EX &= \int\limits_{-\infty}^{+\infty} t f(t-\mu) \, dt = \langle z = t-\mu \rangle = \int\limits_{-\infty}^{+\infty} (z+\mu) t(z) \, dz = \mu \\ \mathcal{D}X &= \int\limits_{-\infty}^{+\infty} (t-\mu)^2 f(t-\mu) \, dt = \int\limits_{-\infty}^{+\infty} z^2 \, f(z) \, dz \\ \mathcal{D}Y &= \int\limits_{-\infty}^{+\infty} (t-\mu)^2 \frac{1}{\Delta} f\left(\frac{t-\mu}{\Delta}\right) \, dt = \left\langle \frac{z = \frac{t-\mu}{\Delta}}{dz} \right\rangle \int\limits_{-\infty}^{+\infty} \Delta^2 z^2 f(z) \, dz = \Delta^2 \mathcal{D}X \Rightarrow \frac{\mathcal{D}Y}{\mathcal{D}X} = \Delta^2 \end{split}$$

Критерий Фишера

$$X_1, \ldots, X_m \sim N(m_1, \sigma_1^2), Y_1, \ldots, Y_n \sim N(m_2, \sigma_2^2)$$

 $X_1,\dots,\,X_m\sim N(m_1,\,\sigma_1^2),\,Y_1,\dots,\,Y_n\sim N(m_2,\,\sigma_2^2)$ Случайные величины независимы, параметры неизвестны. Проверяем гипотезу $H_0:\sigma_1^2=\sigma_2^2$

$$T(x,\ y) = rac{rac{1}{m-1} \sum_{i=1}^m \left(x_i - \overline{X}
ight)^2}{rac{1}{n-1} \sum_{i=1}^n \left(y_i - \overline{Y}
ight)^2} igg|_{H_0} \sim F(m-1,\ n-1), \ \mathsf{pac}$$
пределение Фишера

 $\xi \sim F(m,\ n) \Rightarrow rac{1}{\xi} \sim F(n,\ m)$. Тогда для квантилей справедливо:

 z_{eta} — квантиль уровня eta распределения $F(m,\ n), rac{1}{z_{eta}}$ — квантиль уровня (1-eta) распределения $F(n,\ m)$

$$\beta = P\left(\xi \leqslant z_{\beta}\right) = P\left(\frac{1}{\xi} \geqslant \frac{1}{z_{\beta}}\right) = 1 - \underbrace{P\left(\frac{1}{\xi} \leqslant \frac{1}{z_{\beta}}\right)}_{1 \text{ odd}}$$

$$H_1: \sigma_1^2 < \sigma_2^2$$

$$H_1:\sigma_1^2<\sigma_2^2\ ilde{S}_1^2> ilde{S}_2^2\Rightarrow$$
 принимаем H_0

$$ilde{S}_1^2 < ilde{S}_2^2, \ T(x,\ y) = rac{ ilde{S}_2^2}{ ilde{S}_1^2} \sim F(n-1,\ m-1) \Rightarrow$$
 на правом хвосте критическая область.

$$H_2: \sigma_1^2 > \sigma_2^2$$

$$H_2:\sigma_1^2>\sigma_2^2$$
 $ilde{S}_1^2< ilde{S}_2^2\Rightarrow$ принимаем H_0

 $ilde{S}_1^2 > ilde{S}_2^2, \ T(x,\,y) = rac{ ilde{S}_1^2}{ ilde{S}_2^2} \sim F(m\!-\!1,\,n\!-\!1) \Rightarrow$ снова на правом хвосте критическая область (поменяли числитель и знаменатель)

$$H_3:\sigma_1\neq\sigma_2$$

$$ilde{S}_1^2 < ilde{S}_2^2, \ T(x, \ y) = rac{ ilde{S}_2^2}{ ilde{S}_2^2} \sim F(n-1, \ m-1) \Rightarrow$$
 критическая область на правом хвосте.

$$ilde{S}_1^2 > ilde{S}_2^2, \ T(x, \ y) = rac{ ilde{S}_1^2}{ ilde{S}_2^2} \sim F(m-1, \ n-1) \Rightarrow$$
 на правом хвосте критическая область.

Критерий Ансари-Брэдли

$$X_1, \ldots, X_m \sim F(t - \mu)$$

 $Y_1, \ldots, Y_n \sim F\left(\frac{t - \mu}{\Delta}\right), \Delta > 0$

Предположения

Выборки независимы, $F(\mu) = 0.5$ Проверяем гипотезу $H_0: \Delta = 1$

Замечание 1

Если
$$\mathcal{D}X<\infty$$
 и $\int\limits_{-\infty}^{+\infty}tf(t)\,dt=0$, то $\Delta^2=\frac{\mathcal{D}Y}{\mathcal{D}X}$ Если $\mathcal{D}X=+\infty$, то $\begin{cases} \Delta<1\Rightarrow$ выборка Y сжата относительно X $\Delta>1\Rightarrow$ выборка Y растянута относительно X

Замечание 2

Если $X_1,\dots,\,X_m\sim F(t-\mu_1)$ и $Y_1,\dots,\,Y_n\sim F\left(\frac{t-\mu_2}{\Delta}\right)$ (то есть сдвиги $\mu_1,\,\mu_2$ различные), то рекомендуется найти выборочную медиану $\hat{\mu}_x$ и $\hat{\mu}_y$ и рассматривать выборки $x_1-\hat{\mu}_x,\dots,\,x_m-\hat{\mu}_x$ и $y_1-\hat{\mu}_y,\dots,\,y_n-\hat{\mu}_y$

Реально критерий Ансари-Бредли

Вводим обозначение m+n=N, а также статистика:

$$A_{m, n} = \sum_{i=1}^{m} \left(\frac{N+1}{2} - \left| R_i - \frac{N+1}{2} \right| \right)$$

Здесь R_i — ранг X_i в объединённой выборке. По своей сути $\left|R_i-\frac{N+1}{2}\right|$ есть расстояние до ближайшего конца выборки (если мы пронумеруем выборку в прямом и в обратном порядке, то каждый элемент получит минимальный из номеров).

Если $n+m\leqslant 20$, то существует таблица точных значений квантилей статистики A Если $\min(m,\,n)\to\infty$, то

$$A^* = \frac{A - EA_{m, n}}{\sqrt{\mathcal{D}A_{m, n}}} \bigg|_{H_0} \sim N(0, 1)$$

Свойства данной статистики:

$$EA_{m, n} = \begin{cases} \frac{m(N+2)}{4}, & N \equiv 0\\ \frac{m(N+1)^2}{4N}, & N \equiv 1 \end{cases}$$

$$\mathcal{D}A_{m, n} = \begin{cases} \frac{mn(N+2)(N-2)}{48(N-1)}, & N \equiv 0\\ \frac{mn(N^2+3)(N+1)}{48N^2}, & N \equiv 1 \end{cases}$$

Если проверяем гипотезу $H_0:\Delta=1$ (используем значение A^*)

Против гипотезы $H_1: \Delta < 1$

Против гипотезы $H_2: \Delta > 1$

Против гипотезы $H_3: \Delta \neq 1$

MAD оценка (Medium Absolute Deviation)

Оценка среднеквадратичного отклонения выборки с неизвестным распределением:

$$MAD = \underset{1 \leq i \leq n}{\mathsf{med}} \left| x_i - \underset{\hat{m}u}{\underbrace{\mathsf{med}(x_1, \dots, x_n)}} \right|$$

Это медиана модулей отклонения от выборочной медианы.

Критерий КОЛМОГОРОВА-Смирнова

Даны две выборки $X_1, \ldots, X_m \sim F(t)$ и $Y_1, \ldots, Y_n \sim G(t)$.

Предположения

Выборки независимые, F(t), G(t) непрерывные.

Применение

Проверяем гипотезу $H_0: \forall t \quad F(t) = G(t)$ против альтернативы общего вида: $H_1: \exists t \quad F(t) \neq G(t)$. Оцениваем функции распределения с помощью эмпирических функций распределения. Рассматривается статистика:

$$D_{m, n} = \max_{1 \leqslant i \leqslant m+n} \left| \hat{F}_m(z_i) - \hat{G}_n(z_i) \right|$$

Здесь $z=(z_1,\dots,\ z_{m+n})$ — объединённая выборка из $x_1,\dots,\ x_m,\ y_1,\dots,\ y_n$.

Если $m+n \leqslant 20$, то есть таблица с точными квантилями.

Если m+n>20, тогда хорошей апроксимацией будет:

$$D_{m,n} \sim K(t)$$
, (распределение Колмогорова)

Тогда прямая разбивается на следующие области (отрицательные):

 k_{α} — квантиль Колмогорова уровня α . Известная точка $k_{0.95}=1.36$

Данный критерий наименее мощный среди всех упомянутых ранее, поскольку является более общим. Если понятно, с чем связана неоднородность выборок, то стоит применять более специализированные критерии.

Однофакторный дисперсионный анализ

Определения

Фактор — какая-то переменная, которая по нашему мнению влияет на конечный результат.

Уровень фактора — значение переменной фактора (в задаче их должно быть конечное число).

Отклик:

1	2		k
x_{11}	x_{12}		x_{1k}
x_{21}	x_{22}		x_{2k}
:		٠.	:
$x_{n_1 1}$	$x_{n_2 2}$		$x_{n_k k}$

Столбцы — выборка, являющаяся результатом испытания с каким-то конкретным уровнем фактора (С ростом номера столбца переменная фактора растёт).

$$x_{ij} = \theta + \tau_j + \varepsilon_{ij}$$

 ε_{ij} — независимое одинаковое распределение случайной величины с $E\varepsilon_{ij}=0,~\mathcal{D}\varepsilon_{ij}=\sigma^2$ (дисперсия неизвестная).

 $H_0: \tau_1 = \cdots = \tau_k = 0$ против $H_1: \exists i: \tau_i \neq 0.$

Критерий Фишера

Обозначения

$$N = n_1 + \dots + n_k$$
$$\overline{X}_N = \frac{1}{N} \sum_{j=1}^k \sum_{i=1}^{n_j} x_{ij}$$

Предположения

$$\varepsilon_{i,i} \sim N(0, \sigma^2).$$

Формулировка

$$SS_{\text{oGul}} = \sum_{j=1}^{k} \sum_{i=1}^{n_j} \left(x_{ij} - \overline{X}_N \right)^2 = \sum_{j=1}^{k} \sum_{i=1}^{n_j} \left(X_{ij} \pm \overline{X}_{\bullet j} - \overline{X}_N \right) = \underbrace{\sum_{j=1}^{k} \sum_{i=1}^{n_j} \left(x_{ij} - \overline{X}_{\bullet j} \right)^2}_{SS_{\text{CЛуч.}}} + \underbrace{\sum_{j=1}^{k} \sum_{i=1}^{n_j} \left(x_{ij} - \overline{X}_{\bullet j} \right) \left(\overline{X}_{\bullet j} - \overline{X}_N \right)}_{SS_{\text{Vp.}\Phi.}} + \underbrace{\sum_{j=1}^{k} \sum_{i=1}^{n_j} \left(x_{ij} - \overline{X}_{\bullet j} \right) \left(\overline{X}_{\bullet j} - \overline{X}_N \right)}_{=0}$$

Лекция 21 марта

Напоминание

$$SS_{ ext{общ}} = \sum_{j=1}^k \sum_{i=1}^{n_j} \left(x_{i\,j} - \overline{X}_{ullet\,j}
ight)^2 + \sum_{j=1}^k \sum_{i=1}^{n_j} \left(\overline{X}_{ullet\,j} - \overline{X}_N
ight)^2 = \sum_{j=1}^k \sum_{i=1}^{n_j} \left(x_{i\,j} - \overline{X}_{ullet\,j}
ight)^2 + \sum_{j=1}^k n_j \left(\overline{X}_{ullet\,j} - \overline{X}_N
ight)^2 = SS_{ ext{случ.}} + SS_{ ext{ур.}\,\Phi}.$$

Из предположения о гауссовости $SS_{\text{случ.}}$:

$$\frac{SS_{\text{случ.}}}{\sigma^2} = \sum_{i=1}^k \sum_{i=1}^{n_j} \left(\frac{x_{ij} - \overline{X}_{\bullet j}}{\sigma}\right)^2 \sim \chi^2(N-k)$$

При справедливости гипотезы H_0 :

$$\frac{SS_{\text{yp.}\,\Phi}}{\sigma^2} = \sum_{j=1}^k n_j \left(\frac{\overline{X}_{\bullet j} - \overline{X}_N}{\sigma} \right)^2 \Big|_{H_0} \sim \chi^2(k-1)$$

Тогда про следующую статистику известно:

$$\frac{\frac{SS_{\text{yp.}\Phi.}}{\sigma^2(k-1)}}{\frac{SS_{\text{cnyu.}}}{\sigma^2(N-k)}} = \frac{\frac{SS_{\text{yp.}\Phi.}}{(k-1)}}{\frac{SS_{\text{cnyu.}}}{(N-k)}} \sim F(k-1,\ N-k)$$

Критической областью тогда будет $(F_{1-\alpha,\ k-1,\ N-k},\ +\infty)$. Если H_0 отвергается, то

$$\begin{split} x_{ij} &= \theta_j + \varepsilon_{ij}, \quad \varepsilon_{i,j} \sim N(0, \, \sigma^2) \\ \theta_j &= \theta + \tau_j, \quad j = \overline{1, \, k} \\ \hat{\theta}_j &= \overline{X}_{\bullet j} \\ \hat{\theta}_j &\sim N\left(\theta_j, \, \frac{\sigma^2}{n_j}\right), \, \text{T. K. } \frac{(\overline{X}_{\bullet j} - \theta_j)\sqrt{n_j}}{\sigma} \sim N(0, \, 1) \\ \mathcal{D}\hat{\theta}_j &= \mathcal{D}\left(\frac{1}{n_j} \sum_{i=1}^{n_j} X_{ij}\right) = \frac{\sigma^2}{n_j} \\ \hat{\sigma}^2 &= \frac{1}{N-k} \sum_{j=1}^k \sum_{i=1}^{n_j} \left(x_{ij} - \overline{X}_{\bullet j}\right)^2 \\ \frac{(\overline{X}_{\bullet j} - \theta_j)\sqrt{n_j}}{\hat{\sigma}} \sim t(N-k) \Rightarrow \\ \Rightarrow P\left(t_{\alpha/2, \, N-k} < \frac{(\overline{X}_{\bullet j} - \theta_j)\sqrt{n_j}}{\hat{\sigma}} < t_{1-\alpha/2, \, N-k}\right) = 1 - \alpha \Rightarrow \\ \Rightarrow P\left(\overline{X}_{\bullet j} - \frac{t_{1-\alpha, \, N-k}\hat{\sigma}}{\sqrt{n_j}} < \theta_j < \overline{X}_{\bullet j} + \frac{t_{1-\alpha, \, N-k}\hat{\sigma}}{\sqrt{n_j}}\right) = 1 - \alpha, \quad j = \overline{1, \, k} \end{split}$$

Определение

Контрастом γ параметров $\theta_j,\ j=\overline{1,\ k}$ в модели (*) называется:

$$\gamma = \sum_{j=1}^{k} c_j \theta_j$$

где константы c_j удовлетворяют $\sum_{j=1}^k c_j = 0$. Обычно берут две константы равные -1 и 1, остальные зануляют (в результате получаем, насколько контрастируют параметры конкретных столбов).

Определение

Оценкой контраста считается:

$$\hat{\gamma} = \sum_{j=1}^{k} c_j \hat{\theta}_j = \sum_{j=1}^{k} c_j \overline{X}_{\bullet j}$$

Параметры оценки:

$$\hat{\gamma} \sim N\left(\gamma, \sigma^2 \sum_{j=1}^k \frac{c_j^2}{n_j}\right)$$

$$\mathcal{D} \sum_{j=1}^k c_j \overline{X}_{\bullet j} = \sum_{j=1}^k c_j^2 \mathcal{D} \overline{X}_{\bullet j} = \sigma^2 \sum_{j=1}^k \frac{c_j^2}{n_j}$$

$$\frac{\hat{\gamma} - \gamma}{\sigma \sqrt{\sum_{j=1}^k \frac{c_j^2}{n_j}}} \sim t(N - k)$$

$$P\left(t_{\alpha/2, N-k} < \frac{\hat{\gamma} - \gamma}{\hat{\sigma} \sqrt{\sum_{j=1}^k \frac{c_j^2}{n_j}}} < t_{1-\alpha/2, N-k}\right) = 1 - \alpha$$

$$P\left(\hat{\gamma} - t_{1-\alpha/2, N-k} \hat{\sigma} \sqrt{\sum_{j=1}^k \frac{c_j^2}{n_j}} < \gamma < \hat{\gamma} + t_{1-\alpha/2, N-k} \hat{\sigma} \sqrt{\sum_{j=1}^k \frac{c_j^2}{n_j}}\right) = 1 - \alpha$$

Ранговый критерий Краскела-Уоллиса

Имееются выборки $z_1=(x_{1\,1},\ldots,\,x_{n_1\,1}),\ldots,\,z_k=(x_{1\,k},\ldots,\,x_{n_k\,k})$

Предположение

 $\left\{egin{aligned} & \mathsf{B}$ ыборки независимы, как и элементы в них. $x_{1\,1} \sim F(t- heta_1),\ldots,\,x_{i\,k} \sim F(t- heta_k),\; i=\overline{1,\;n_j} \ & \mathsf{P}$ аспределение F(t) непрерывное

Гипотезы

$$H_0: \theta_1=\dots=\theta_k=\theta,\; \theta$$
 — какое-то произовольное число для удобства обозначения $H_1: \exists j: \theta_i
eq \theta$

Обозначения

$$r_{ij}$$
 — ранг x_{ij} в объединённой выборке объёма $N=n_1+\cdots+n_k$ $\overline{r}_{ullet j}=rac{1}{n_i}\sum_{j=1}^{n_j}r_{ij}$

Идея критерия

Имеется таблица

1	2		k
r_{11}	r_{12}		r_{1k}
:	:	٠.	:
$r_{n_1 1}$	$r_{n_2 2}$		$r_{n_k k}$
$\overline{r}_{\bullet \ 1}$	$\overline{r}_{ullet 2}$		$\overline{r}_{\bullet k}$

Составим следующую статистику:

$$H = \frac{12}{N(N+1)} \sum_{j=1}^{k} n_j \left(\overline{r}_{\bullet j} - \frac{N+1}{2} \right)^2$$

Если $\min(n_1, \ldots, n_k) \to \infty$:

$$H\Big|_{H_0} \sim \chi^2(k-1)$$

Критерий выглядит вот так:

Замечание

Всё написанное выше работает для выборки без связок. Если связки всё-таки есть, то нужен поправочный коэффициент.

Ранговый критерий Джонкхиера

Условия совпадают с критерией Краскела-Уоллиса, но альтернативная гипотеза другая:

Гипотезы

 $H_0: \theta_1 = \cdots = \theta_k = \theta$ против $H_1: \theta_1 \leqslant \theta_1 \leqslant \cdots \leqslant \theta_k$, где хотя бы одно неравенство строгое. То есть предполагаем, что увеличение фактора ведёт к увеличению математического ожидания.

Идея критерия

Введём функцию:

$$\varphi(y, z) = \begin{cases} 1, & y < z \\ 0.5, & y = z \\ 0, & y > z \end{cases}$$

И функцию:

$$U_{l, m} = \sum_{i=1}^{n_l} \sum_{j=1}^{n_m} \varphi(x_{i \, l}, x_{j \, m})$$

Теперь возьмём статистику:

$$J = \sum_{1 \leqslant l < m \leqslant k} U_{l, m}$$

Если $\min(n_1,\ldots,n_k) \to \infty$:

$$J^* = \frac{J - EJ}{\sqrt{\mathcal{D}J}} \sim N(0, 1)$$

Параметры статистики J (запоминать необязательно):

$$EJ = \frac{1}{4} \left(N^2 - \sum_{i=1}^k n_i^2 \right)$$

$$\mathcal{D}J = \frac{1}{72} \left(N^2 (2N+3) - \sum_{i=1}^k n_i^2 (2n_i + 3) \right)$$

Заметим, что при k=2:

$$W = J + \frac{n_2(n_2 + 1)}{2}$$

Да и вообще статистика J является статистикой Вилкоксона с каким-то смещением, то есть все его свойства наследуются.

Лекция 4 апреля

Исследование зависимостей

Шкалы измерений

- 1. Количественная (насколько одно больше другого, операция вычитания)
- 2. Порядковая/ординальная (разделение на группы, операции больше или меньше)
- 3. Номинальная (можем только проверять равенство элементов)

Из более высокой шкалы можно перейти в более низкую, наоборот — нельзя. Если сравниваются две метрики, измеряемые в разных шкалах, то нужно перевести их в одну (низшую из них). Имеется две метрики:

$$A: A_1, \ldots, A_m$$

 $B: B_1, \ldots, B_k$

Можем составить гипотезу независимости

$$H_0: \forall i,\ j$$
 $P(A=A_i,\ B=B_j)=\underbrace{P(A=A_i)}_{=p_i}\cdot\underbrace{P(B=B_j)}_{=p_i},$ против $H_1: \exists (i,\ j)$ $P_{i\,j}\neq P(A=A_i)\cdot P(B=B_j)$

Работаем с номинальной шкалой

Определение

Таблицей сопряжённости коэффициентов называется:

$A \setminus B$	B_1		B_k	
A_1	n_{11}		n_{1k}	n_{1}
:	:	٠	:	:
A_m	n_{m1}		n_{mk}	$n_{m \bullet}$
	$n_{\bullet 1}$		$n_{\bullet k}$	n

Теперь можем построить оценки:

$$\hat{p}_{ij} = \frac{n_{ij}}{n} \xrightarrow[n \to \infty]{p} p_{ij}$$

$$\hat{p}_{i\bullet} = \frac{n_{i\bullet}}{n} \xrightarrow[n \to \infty]{p} p_{i\bullet}$$

$$\hat{p}_{\bullet j} = \frac{n_{\bullet j}}{n} \xrightarrow[n \to \infty]{p} p_{\bullet j}$$

Для выполнения независимости хотелось бы:

$$p_{ij} = p_{i \bullet} \cdot p_{\bullet j} \Rightarrow \hat{p}_{ij} = \hat{p}_{i \bullet} \cdot \hat{p}_{\bullet j} \Rightarrow \frac{n_{ij}}{n} \approx \frac{n_{i \bullet}}{n} \cdot \frac{n_{\bullet j}}{n}$$

Можем составить статистику:

$$\hat{\chi}^2 = \sum_{i=1}^m \sum_{j=1}^k \frac{n \cdot \left(n_{ij} - \frac{n_{i \bullet} n_{\bullet j}}{n}\right)^2}{n_{i \bullet} n_{\bullet j}}$$

При справедливости H_0 выполняется

$$\hat{\chi}^2 \sim \chi^2 ((m-1)(k-1))$$

Критическая область справа.

Частный случай

Для m=k=2 верно:

$$\hat{\chi}^2 = \frac{n(n_{11}n_{22} - n_{12}n_{21})^2}{n_{1 \bullet} n_{2 \bullet} n_{\bullet 1} n_{\bullet 2}}$$

Определение

Для таблиц 2×2 :

$A \setminus B$	1	0	
1	a	b	a+b
0	c	d	c+d
	a+c	b+d	

Определён коэффициент контингенции Φ :

$$\Phi = \frac{ad - bc}{\sqrt{(a+b)(c+d)(a+c)(b+d)}}$$

И коэффициент ассоциации Ю́ла Q:

$$Q = \frac{ad - bc}{ad + bc}$$

Для коэффециента контингенции выполняется неравенство:

$$-1 \leqslant \Phi \leqslant 1$$

Если $\Phi = 1$:

$A \backslash B$	1	0
1	a	0
0	0	d

Если $\Phi = -1$:

$A \setminus B$	1	0
1	0	b
0	c	0

Для коэффициента Юла также выполняется неравенство:

$$-1 \leqslant Q \leqslant 1$$

Если Q=1, тогда:

$A \setminus B$	1	0		$A \backslash B$	1	0		$A \backslash B$	1	0
1	a	0	, или	1	a	b	, или	1	a	0
0	0	d		0	0	d		0	c	d

Если Q = -1, тогда:

$A \setminus B$	1	0		$A \setminus B$	1	0		$A \backslash B$	1	0
1	0	b	, или	1	a	b	, или	1	0	b
0	c	0		0	c	0		0	c	d

Также справедливо:

$$|\Phi| \leqslant |Q|$$

Пример

Рассматривается связь между здоровьем зрения пациента до операции (A — число от 0 до 10) и наличием осложнений после операции (B — есть или нет). В результате испытаний была получена следующая таблица:

$A \setminus B$	нет	есть		
0 - 1	129	14	143	
2 - 10	807	4	811	
	936	18	954	

Проверяем $H_0: p_{ij} = p_{i \bullet} \cdot p_{\bullet j}$ против $H_1: p_{ij} \neq p_{i \bullet} \cdot p_{\bullet j}$.

$$\hat{\chi}^2 = \frac{954(129 \cdot 4 - 14 \cdot 807)^2}{143 \cdot 811 \cdot 936 \cdot 18} \approx 51.8$$

Должно выполняться

$$\left.\hat{\chi}^2\right|_{H_0} \sim \chi^2(1)$$

Знаем квантиль $\chi^2_{0.95,\ 1} pprox 3.84 \Rightarrow$ принимается альтернативная гипотеза.

Посчитаем коэффициенты контингенции и Юла:

$$\begin{cases} \Phi = -0.244 \\ Q = -0.91 \end{cases}$$

Коэффициент Юла близок к -1, то есть среди людей с осложнениями после операции больше людей с изначально плохим зрением.

Определение

Для таблиц произвольного размера определён коэффициент Пирсона:

$$P = \sqrt{\frac{\hat{\chi}^2}{\hat{\chi}^2 + n}}$$

Если таблица порождена гауссовскими случайными величинами $(X_1,\,Y_1),\ldots,\,(X_n,\,Y_n)$, то областью значений будет \mathbb{R}^2 , для построения таблицы стоит разбить плоскость на прямоугольники, значением в ячейке таблицы будет количество точек, попавших в соответствующий прямоугольник. При большом количестве точек и хорошем разбиении выполняется:

$$\frac{\hat{\chi}^2}{\hat{\chi}^2 + n} \xrightarrow[n \to \infty]{} \hat{\rho}_{XY}^2$$

Где $\hat{
ho}_{XY}^2$ — выборочный коэффициент корреляции.

Определение

Краммеру не понравилось, что коэффициент Пирсона никогда не равен 1 (а корреляция может быть 1), поэтому он придумал коэффициент Краммера:

$$C = \sqrt{\frac{\hat{\chi}^2}{n \cdot \min\{(k-1),\; (m-1)\}}}$$

Этот коэффициент уже может быть равен 1.

Лекция 11 апреля

Работаем с порядковыми величинами

Коэффициенты прогноза Гутмана λ -меры

Пример

Признак A — удовлетворённость уровнем жизни. B — материальное положение семьи.

$A \setminus B$	плохое	ниже сред.	сред.	выше сред.	отл.	Всего
удовл.	92	64	48	23	3	230
неудовл.	22	46	136	148	73	425
Всего	114	110	184	171	76	655

Делаем прогноз относительно материального положения нового респондента. Пусть первый прогноз мы сделаем без знания признака A, а второй со знанием. При таких раскладах в первом случае наилучшим прогнозом будет самая многочисленная категория (сред.), а во втором — при A= удовл. наилучшим прогнозом будет самая многочисленная категория среди удовлетворённых (плохое), при A= неудовл. — выше среднего. Тогда вероятности ошибки в первом и втором прогнозе величины B:

$$\hat{p}_1^{(B)} = 1 - \frac{184}{655}, \quad \hat{p}_2^B = 1 - \frac{92 + 148}{655} = 0.63$$

По этим вероятностям считается λ -мера (коэффициент Гутмана)

$$\lambda_B = \frac{\hat{p}_1^{(B)} - \hat{p}_2^{(B)}}{\hat{p}_1^{(B)}} \approx 0.119$$

 λ_B показывает, насколько увеличится вероятность угадывания, если будем учитывать знание значения другой категории.

Теперь попробуем спрогнозировать A (удовлетворённость) без знания значения B и с таким знанием:

$$\hat{p}_{1}^{(A)} = 1 - \frac{425}{655}, \quad \hat{p}_{2}^{(A)} = 1 - \frac{92 + 64 + 136 + 148 + 73}{655} \Rightarrow \lambda_{A} = \frac{\hat{p}_{1}^{(A)} - \hat{p}_{2}^{(B)}}{\hat{p}_{1}^{(A)}} \approx 0.378$$

Иногда используется такой коэффициент:

$$\lambda = \frac{\lambda_A + \lambda_B}{2}$$

Пояснение

Вероятности ошибок $\hat{p}_1^{(A)},~\hat{p}_1^{(B)}$ равны вероятности события {"Новый человек не принадлежит самой много-

численной категории"}, поэтому они так считаются. Вероятности ошибок $\hat{p}_2^{(A)},~\hat{p}_2^{(B)}$ равны вероятности события {"Новый человек не принадлежит самой многочисленной категории для своего уровня удовлетворённости/достатка"}.

Обощение

Теперь запишем формулу в общем виде:

$$\begin{split} \hat{\lambda}_B &= \frac{1 - \frac{\max n_{\bullet j}}{n} - 1 + \sum\limits_i \frac{\max n_{ij}}{n}}{1 - \frac{\max j n_{\bullet j}}{n}} = \frac{\sum\limits_i \max_j n_{ij} - \max_j n_{\bullet j}}{n - \max_j n_{\bullet j}} \\ \hat{p}_1^{(A)} &= 1 - \frac{\max\limits_i n_{i\bullet}}{n} \\ \hat{p}_2^{(A)} &= 1 - \frac{\sum\limits_j \max_i n_{ij}}{n} \\ \hat{\lambda}_A &= \frac{\sum\limits_j \max_i n_{ij} - \max_i n_{i\bullet}}{n - \max_i n_{i\bullet}} \end{split}$$

Критерий Спирмена

Применяется для выборок $(R_1, S_1), \ldots, (R_n, S_n)$, где R — ранжированные значения первой переменной, S— ранжированные значения второй переменной.

Пример

Исследовали способности детей к математике и музыки. Учителя соответствующих предметов ранжировали детей, получилась следующая таблица. Первая переменная — ранги по знанию математики первой переменной, вторая — ранг того же человека по музыке.

Математика	1	2	3	4	5	6	7	8	9	10
Музыка	6	5	1	4	2	7	8	10	3	9

$$S = \sum_{i=1}^{n} \left(R_i - S_i \right)^2$$

Если
$$\forall i = \overline{1, n} \quad R_i = S_i \Rightarrow S = 0$$

Если $\forall i=\overline{1,\ n}$ $R_i=S_i\Rightarrow S=0$ Если $\forall i=\overline{1,\ n}$ $S_i=n+1-R_i$ (то есть зависимость обратная), то $S=\frac{1}{3}\,(n^3-n).$

$$\rho_S = 1 - \frac{6 \cdot \sum_{i=1}^{n} (R_i - S_i)^2}{n^3 - n}$$
$$-1 \le \rho_S \le 1$$

Выборочный коэффициент корреляции:

$$\hat{\rho}_{XY} = \frac{\sum_{i=1}^{n} (x_i - \overline{X}) (y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{X})^2 \sum_{i=1}^{n} (y_i - \overline{Y})^2}}$$

Можно посчитать ранговую корреляцию:

$$\rho = \frac{\sum_{i=1}^{n} (R_i - \overline{R}) (S_i - \overline{S})}{\sqrt{\sum_{i=1}^{n} (R_i - \overline{R})^2 \sum_{i=1}^{n} (S_i - \overline{S})^2}}$$

$$\overline{R} = \overline{S} = \frac{n+1}{2} \Rightarrow \sum_{i=1}^{n} \left(i - \frac{n+1}{2}\right)^2$$

Если подставим числа, то получим ровно критерий Спирмена ρ_{S} .

Критерий Кендалла

Понятия

Имеется двумерная выборка $(X_1, Y_1), \ldots, (X_n, Y_n)$, порождённая случайной величиной z = (X, Y)

Определение

Параметром согласованности случайных величин X и Y называется

$$\tau_{xy} = 1 - 2P((x_2 - x_1)(y_2 - y_1) < 0) \Rightarrow -1 \leqslant \tau_{xy} \leqslant 1$$

Здесь взяли индексы 1 и 2, потому что величины одинаково распределены и все x независимы между собой (аналогично для y), то есть можем брать любые два различных элемента.

Если y=arphi(x) и arphi(x) строго возрастающая, то $au_{x\,y}=1$

Если y=arphi(x) и arphi(x) строго убывающая, то $au_{x\,y}=-1$

Если X, Y независимы, тогда:

$$\tau_{xy} = 1 - 2P((x_2 - x_1)(y_2 - y_1) < 0) =$$

$$= 1 - 2(P(x_2 - x_1 > 0)P(y_2 - y_1 < 0) + P(x_2 - x_1 < 0)P(y_2 - y_1 > 0)) = 1 - 2\left(\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}\right) =$$

$$= 0$$

Пример

 $X \sim R(-1, 1)$ $Y = X^2$. Посчитаем параметр согласованности:

$$\tau_{XY} = 1 - 2P\left((X_2 - X_1)(X_2^2 - X_1^2) < 0\right) = 1 - 2P\left((X_2 - X_1)^2(X_2 + X_1) < 0\right) = 1 - 2P(X_2 + X_1 < 0) = 0$$

Вероятность равна нулю, потому что плотность распределения суммы двух симметричных отностельно 0 равномерных величин также будет симметрична относительно нуля. Вот красивый рисунок:

График плотности распределения R(-1, 1) + R(-1, 1)

То есть в этом случае величины зависимы, но параметр согласованности равен 0, потому что он отлавливает только монотонные зависимости, а квадратичная зависимость такой не является.

Гипотезы

 $H_0: au_{XY} = 0$ против одной из $H_1: au_{XY} < 0, \ H_2: au_{XY} > 0, \ H_3: au_{XY} \neq 0$. Для других альтернатив критерий несостоятелен.

Пары (X_i, Y_i) и (X_i, Y_i) называются согласованными, если

$$sign(x_i - x_i)(y_i - y_i) = 1$$

И называются несогласованными, если:

$$sign(x_i - x_i)(y_i - y_i) = -1$$

Пусть в выборке есть Q согласованных и K несогласованных пар, рассмотрим следующую величину:

$$S = Q - K$$

Для этой неё выполняется неравенство:

$$-\frac{n(n-1)}{2} \leqslant S \leqslant \frac{n(n-1)}{2}$$

С помощью этой величины можно оценивать согласованность:

$$\hat{\tau}_{XY} = \frac{S}{\max S} = \frac{2(Q-K)}{n(n-1)} = \left\langle Q = \frac{n(n-1)}{2} - K \right\rangle = \frac{2\left(\frac{n(n-1)}{2} - K - K\right)}{n(n-1)} = 1 - \frac{4K}{n(n-1)}$$

Для $n\leqslant 40$ существует таблица квантилей $\hat{ au}_{XY}$ при справедливости $H_0.$

Если $n \to \infty$, выполняется:

$$\frac{3}{2}\sqrt{n}\hat{\tau}_{XY}\Big|_{H_0} \sim N(0, 1)$$

Возвращаемся к примеру

Решаем задачу про способности детей к математике и музыке. Проверяем гипотезу $H_0: au_{XY} = 0$ против $H_1: au_{XY} \neq 0$

Произведём расчёты:

$$\sum_{i=1}^{10} (R_i - S_i)^2 = 5^2 + 3^2 + 2^2 + 0 + 3^2 + 1 + 1 + 4 + 6^2 + 1 = 90$$

Посчитаем статистику:

$$\rho_S = 1 - \frac{6 \cdot 90}{10(10^2 - 1)} \approx 0.45$$

Пусть $\alpha=0.1$, нужен квантиль $\rho_{0,\ 0.95}=0.564$, доверительной областью является $(-0.564,\ 0.564)$, значит по критерию Спирмана опровергнуть H_0 мы не можем, однако это обозначает либо недостаток испытаний, либо отсутствие монотонной зависимости.

Попробуем применить критерий Кендалла.

Посчитаем количество несогласованных пар:

$$K = 5 + 4 + 0 + 2 + 0 + 1 + 1 + 2 = 15$$

Тогда оценка параметра согласованности:

$$\tau_{XY} = 1 - \frac{4 \cdot 15}{10 \cdot 9} = \frac{1}{3}$$

Точный квантиль $au_{10,\ 0.95}=0.422$, доверительной областью будет $(-0.422,\ 0.422)$, значит статистика попала в доверительный интервал. Критерий Кендалла также не позволил установить наличие монотонной зависимости, то есть данные необходимо отправить на дальнейшую проверку для установления зависимостей.

Исследование зависимости количественных показателей

Для начала поработаем с двумерными случайными величинами, имеющими гауссовское распределение. То есть рассматривается двумерная выборка $(X_1,\,Y_1),\ldots,\,(X_n,\,Y_n)$, порождённая случайной величиной $z=(X,\,Y)\sim N(m_z,\,k_z)$.

Воспоминание

Случайные величины $X,\ Y$ называются независимыми, если $\forall x,\ y\in\mathbb{R}^1:\quad F_z(x,\ y)=F_x(x)\cdot F_y(y).$

Ещё одно воспоминание

Если $z \sim N(m_z, k_z)$ и $\rho_{XY} = 0 \Rightarrow$ случайные величины X, Y независимы. Замечание: эта фишка работает только для гауссовских величин, в общем случае применять нельзя.

Доказательство

Если
$$ho_{XY}=0 \Rightarrow K_z=\begin{pmatrix}\sigma_x^2 & 0 \\ 0 & \sigma_y^2\end{pmatrix} \Rightarrow C=K_z^{-1}=\begin{pmatrix}\frac{1}{\sigma_x^2} & 0 \\ 0 & \frac{1}{\sigma_y^2}\end{pmatrix} \Rightarrow c_{1\,2}=c_{2\,1}=0.$$

Теперь распишем функцию плотности для величины z

$$f_z(x,\ y) = \frac{\sqrt{\det C}}{2\pi} \exp\left\{-\frac{1}{2}\left((x-m_x)^2c_{1\,1} + (y-m_y)^2c_{2\,2} + 2c_{1\,2}(x-m_x)(y-m_y)\right)\right\}$$

С нашей матрицей C плотность можно переписать в виде:

$$f_z(x,\,y) = \frac{1}{2\pi\sigma_x\sigma_y} \exp\left\{-\frac{(x-m_x)^2}{2\sigma_x^2} + \frac{(y-m_y)^2}{2\sigma_y^2}\right\} = \frac{1}{\sqrt{2\pi}\sigma_x} e^{-\frac{(x-m_x)^2}{2\sigma_x^2}} \frac{1}{\sqrt{2\pi}\sigma_y} e^{-\frac{(y-m_y)^2}{2\sigma_y^2}} = f_x(x)f_y(y)$$

Возможные гипотезы

Пусть $Z \sim N(m_z, K_z)$

Для гауссовских величин достаточно проверять гипотезу $H_0: \rho_{XY} = 0.$

Возможные альтернативы:

- 1. $H_1: \rho_{XY} < 0$, то есть при возрастании одного показателя, второй убывает.
- 2. $H_2:
 ho_{XY} > 0$, то есть при возрастании одного показателя, второй также возрастает.
- 3. $H_3: \rho_{XY} \neq 0$, то есть величины просто как-то зависимы.

Для оценки корреляции можно использовать выборочный коэффициент корреляции:

$$\hat{\rho}_{XY} = \frac{\sum_{i=1}^{n} (x_i - \overline{X}) (y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{X})^2 \sum_{i=1}^{n} (y_i - \overline{Y})^2}}$$

Умные люди придумали статистику и доказали для неё следующее:

$$\left. \frac{\sqrt{n-2}\hat{\rho}_{XY}}{\sqrt{1-\hat{\rho}_{XY}^2}} \right|_{H_0} \sim t(n-2)$$

В этом случае основной гипотезой будет $H_0: \rho_{XY} = 0$, против возможных альтернатив:

1. Против гипотезы $H_1: \rho_{XY} > 0$

2. Против гипотезы $H_2: \rho_{XY} < 0$

3. Против гипотезы $H_3: \rho_{XY} \neq 0$

При $n \to \infty$ справедливым будет:

$$\sqrt{n}\hat{\rho}_{XY}\Big|_{H_0} \sim N(0, 1)$$

Рассмотрим свойства выборочного коэффициента корреляции:

$$E\hat{\rho}_{XY} = \rho_{XY} - \rho_{XY} \frac{(1 - \rho_{XY}^2)}{2n}$$
$$\mathcal{D}\rho_{XY} = \frac{(1 - \rho_{XY}^2)^2}{n}$$

В этих величинах используется неизвестная нам настоящая корреляция, поэтому её придётся заменять на оценку. При $n \to \infty$:

$$\frac{\hat{\rho}_{XY} - E\hat{\rho}_{XY}}{\sqrt{\mathcal{D}\hat{\rho}_{XY}}} \sim N(0, 1)$$

z-преобразования Фишера (наш слон?)

Выглядят следующим образом (там гиперболический арктангенс):

$$z = \operatorname{arcth} \rho = \frac{1}{2} \ln \frac{1 + \rho_{XY}}{1 - \rho_{XY}}$$

В неё можно подставить выборочный коэффициент корреляции:

$$\hat{z} = \frac{1}{2} \ln \frac{1 + \hat{\rho}_{XY}}{1 - \hat{\rho}_{XY}}$$

Про параметры \hat{z} известно:

$$E\hat{z} = z + \frac{\rho_{XY}}{2(n-1)}$$

$$\mathcal{D}\hat{z} = \frac{1}{n-3}$$

При $n \to \infty$:

$$\frac{\hat{z} - E\hat{z}}{\sqrt{D\hat{z}}} \sim N(0, 1)$$

А ещё у величины z прикольный гиперболический тангенс:

th
$$z = \frac{e^z - e^{-z}}{e^z + e^{-z}} = \rho_{XY}$$

Сходимость к гауссовской величине здесь происходит быстрее, чем в предыдущем случае.

Адаптация критерия хи-квадрат

Для дискретных величин

Пусть случайная величина X дискретная и принимает значения a_1, \ldots, a_m Пусть случайная величина Y дискретная и принимает значения b_1, \ldots, b_k По дискретным величинам мы умеем составлять таблицы:

$X \setminus Y$	b_1		d_k	
a_1	n_{11}		n_{1k}	n_{1} .
•	:	•	•	:
a_m	n_{m1}		n_{mk}	n_{m} •
	n_{m} •		$n_{m \bullet}$	n

Для непрерывных величин

Если случайные величины X, Y имеют непрерывное распределение, то нужно разбить их пространство значений (в нашем случае плоскость) на несколько непересекающихся интервалов, обладающих свойствами:

$$\begin{cases} \forall i, \ j: \quad i \neq j \Rightarrow \Delta x_i \cap \Delta x_j = \emptyset \\ \bigcup_{i=1}^m \Delta x_i = \mathbb{R}^1 \\ \forall i, \ j: \quad i \neq j \Rightarrow \Delta y_i \cap \Delta y_j = \emptyset \\ \bigcup_{i=1}^k \Delta y_i = \mathbb{R}^1 \end{cases}$$

 $n_{i\,i}$ — количество наблюдений, попавших в прямоугольник $\Delta x_i \times \Delta y_i$. По полученным данным строим таблицу:

$X \setminus Y$	Δy_1		Δy_k	
Δx_1	n_{11}		n_{1k}	n_{1} •
:	:	٠	•••	:
Δx_m	n_{m1}		n_{mk}	n_{m} •
	n_{m} .		n_{m} •	n

Теперь к данным в таблицах можем применять уже известный нам критерий хи-квадрат для проверки гипотезы $H_0: \forall i=\overline{1,\ m}\ j=\overline{1,\ k}$ $P(X=a_i,\ Y=b_j)=P(X=a_{i\,j})P(y=b_j)$ Для проверки этой гипотезы можно использовать статистику:

$$\hat{\chi}^2 = \sum_{i=1}^m \sum_{j=1}^k \frac{\left(n_{ij} - \frac{n_{i \bullet} n_{\bullet j}}{n}\right)^2}{\frac{n_{i \bullet} n_{\bullet j}}{n}}$$

Для этой статистики выполняется:

$$\hat{\chi}^2 \Big|_{H_0} \sim \chi^2 \big((k-1)(m-1) \big)$$

Замечание: если в вашем разбиении получается так, что в каком-то из интервалов $\frac{n_i \bullet n \bullet j}{n} < 3$, то его рекомендуется объединить с соседним.

Теперь работаем с большим количеством переменных

Под большим количеством понимается число больше 2.

Мотивация: наличие корреляции между двумя величинами не означает наличие причинно-следственной связи между этими переменными (например, летом увеличивается количество мух и белых панамок, влияют ли панамки на мух?). Часто бывает так, что связь между исследуемыми нами переменными связана с изменением какой-то третьей (солнечной активности, в случае примера с мухами и панамками).

Определение

Частные коэффициенты корреляции для случайного вектора $z=(x_1,\ldots,\,x_l)$ записываются в виде корреляционно

$$R_z = \left(
ho_{i\,j}
ight)$$
 , где $orall i,\; j = \overline{1,\; l}$ $ho_{i\,j} =
ho_{x_i\,x_j}$

Определение

Частным коэффициентом корреляции случайных величин X_1, X_2 при фиксированных значениях X_3, \ldots, X_l называется:

$$\rho_{1\,2;\,3,\dots,\,l} = \frac{-\mathbb{R}_{1\,2}}{\sqrt{\mathbb{R}_{1\,1}\mathbb{R}_{2\,2}}}$$

Здесь \mathbb{R}_{ij} — алгебраическое дополнение элемента $(i,\ j)$ матрицы R_z

Пример

Пусть
$$z=(x_1,\ x_2,\ x_3),\ R_z=\begin{pmatrix} 1&\rho_{1\,2}&\rho_{1,\,3}\\ \rho_{1\,2}&1&\rho_{2,\,3}\\ \rho_{3\,1}&\rho_{1\,2}&1 \end{pmatrix}$$
, тогда:

$$\rho_{12;3} = \frac{\rho_{21} - \rho_{23}\rho_{31}}{\sqrt{(1 - \rho_{23}^2)(1 - \rho_{13}^2)}}$$

Оценка матрицы R_z — матрица $\hat{R}_z=(\hat{
ho}_{ij})$, состоящей из выборочных частных коэффициентов корреляции:

$$\hat{\rho}_{12; 3} = \frac{\hat{\rho}_{21} - \hat{\rho}_{23} \hat{\rho}_{31}}{\sqrt{(1 - \hat{\rho}_{23}^2)(1 - \hat{\rho}_{13}^2)}}$$

Лекция 25 апреля

Гипотезы

 $H_0: \rho_{1\,2;\;3...l}=0$ против аналогов

 $H_1: \rho_{1\,2;\,3...l} < 0,$ $H_2: \rho_{1\,2;\,3...l} > 0,$ $H_3: \rho_{1\,2;\,3...l} \neq 0$

Для их проверки существует статистика:

$$\left. \frac{\sqrt{n-2-a}\hat{\rho}_{1\,2;\,3...l}}{\sqrt{1-\hat{\rho}_{1\,2;\,3...l}^2}} \right|_{H_0} \sim t(n-2-a)$$

Здесь a — количетсво фиксированных элементов выборки, n — размер выборки.

Определение

Множественным коэффициентом корреляции вектора $\xi = (\xi_1, \dots, \, \xi_l)$ с корреляционной матрицей R_ξ называется:

$$R_{1\,(2,\ldots l)}=\sqrt{1-rac{\det R_{\xi}}{\mathbb{R}_{1\,1}}}$$

Здесь $\mathbb{R}_{1\,1}$ — алгебраическое дополнение к элементу $(1,\ 1)$ матрицы R_{ξ} . Заметим, что:

$$R_{1(2,...l)}^2 = 1 - (1 - \rho_{12}^2) (1 - \rho_{13;2}^2) \dots (1 - \rho_{1l;2,...l-1}^2)$$

Свойства

- 1. $R^2_{1\,(2,...l)}=1\Rightarrow\exists$ хотя бы одна единичная корреляция.
- 2. $R^2_{1\,(2,\ldots l)}=0\Rightarrow$ все корреляции равны нулю.
- 3. Пусть $l=2 \Rightarrow R_{1\,(2)}^2=\rho_{1\,2}^2$
- **4.** $R_{1(2)}^2 \le R_{1(2,3)}^2 \le \cdots \le R_{1(2,\ldots l)}^2$
- 5. Обозначим $I^{(j)}$ множество подмножеств $2,\ 3,\dots,\ l$, не включающих элемент j.

$$R_{1\,(2,\ldots l)}^2\geqslant \rho_{i\,j;\,I^{(j)}}^2$$

Гипотезы

 $H_0:R_{1\,(2,\ldots l)}=0$ против $H_1:R_{1\,(2,\ldots l)}>0.$

Оценить матрицу R_{ξ} :

$$\hat{R}_{\xi} \left(\hat{\rho}_{\xi_i \, \xi_j} \right)$$

Теперь хотим проверить насколько значимо $R^2_{1\,(2,...l)}$ отличается от 0. Для этого воспользуемся статистикой:

$$\left. \frac{\frac{1}{l-1} \hat{R}_{1(2,\dots l)}^2}{\frac{1}{n-l} \left(1 - R_{1(2,\dots l)}^2 \right)} \right|_{H_0} \sim F(l-1, n-l)$$

Критическая область здесь будет справа, начиная с точки $f_{1-\alpha,\ l-1,\ n-l}$ (здесь фокусов с делением большего на меньшее не делаем).

Коэффициент конкардации Кендалла

Имеется n объектов и m экспертов.

Обозначим $R_{i\,j}$ — ранг i-ого объекта, поставленный j-ым экспертом $(i=\overline{1,\;n},\;j=\overline{1,\;m}).$

Средний ранг, получаемый объектом от всех экспертов будет

$$m\frac{n+1}{2}$$

В идеальном случае (все ранги совпали) выполняется

$$\sum_{j=1}^{m} R_{1j} = m, \ \sum_{j=1}^{m} R_{2j} = 2m, \dots, \ \sum_{j=1}^{m} R_{nj} = mn$$

Рассмотрим сумму квадратов отклонений каждого из таких объектов от среднего будет:

$$\sum_{i=1}^{n} \left(\sum_{j=1}^{m} R_{ij} - m \frac{n+1}{2} \right)^{2} = \frac{m^{2}(n^{3} - n)}{12}$$

Кендалл предложил использовать следующую статистику:

$$\hat{W}(m) = \frac{12}{m^2(n^3 - n)} \sum_{i=1}^{n} \left(\sum_{j=1}^{m} R_{ij} - m \frac{n+1}{2} \right)^2$$

Для этой статистики верно неравенство:

$$0 \leqslant \hat{W}(m) \leqslant 1$$

Для формулировки гипотезы составим случайный вектор $\xi = (\xi_1, \dots, \ \xi_m)$ (мнения экспертов). Тогда гипотезу можно сформулировать следующим образом:

$$H_0: \forall x_1, \dots, x_m \in \mathbb{R}^1 \quad F_{\xi}(x_1, \dots, x_m) = \prod_{i=1}^m F_{\xi_i}(x_i)$$

$$H_1: \exists x_1, \dots, x_m \in \mathbb{R}^1 \quad F_{\xi}(x_1, \dots, x_m) \neq \prod_{i=1}^m F_{\xi_i}(x_i)$$

Если $3 \leqslant n \leqslant 7$ и $2 \leqslant m \leqslant 20$ есть таблица со значениями квантилей. При $n \to \infty$:

$$m(n-1)\hat{W}(m)\Big|_{H_0} \sim \chi^2(n-1)$$

Критическая область находится справа (от квантиля из таблицы или квантиля хи-квадрат).

Регрессионный анализ

Пусть проводится эксперимент, в котором мы по входным данным (регрессорам / входным переменным / факторам / независимым переменным) X_1, \ldots, X_p получаем на выход переменную (выходную переменную / отклик / зависимую переменную) Y. В ходе эксперимента в него может попасть какой-то шум ε

$$Y = f(x_1, \ldots, x_p, \theta) + \varepsilon$$

Работать будем с линейными по параметрам функциями:

1.
$$f(x_1, ..., x_p, \theta) = \theta_0 + \theta_1 x_1 + ... + \theta_p x_p$$

2.
$$f(x_1, \ldots, x_p, \theta) = \theta_0 + \sum_{i=1}^p \theta_i x_i + \sum_{j=1}^p \theta_{p+j} x_j^2 + \sum_{k=1}^p \theta_{2p+k} x_k^3 \ldots$$

3.
$$f(x_1, \ldots, x_p, \theta) = \prod_{i=1}^p x^{\theta_i} \Rightarrow \ln f(x_1, \ldots, x_p, \theta) = \sum_{i=1}^p \theta_i \ln x_i$$

4.
$$f(x_1,\ldots,x_p,\theta) = \exp\left(\sum_{i=1}^p x_i\theta_i\right) \Rightarrow \ln f(x_1,\ldots,x_p,\theta) = \sum_{i=1}^n x_i\theta_i$$

Есть ещё много других примеров.

Как выбирать функцию?

- 1. Физические соображения
- 2. Геометрические соображения

Простая парная линейная регрессия

$$y_i = \theta_0 + \theta_1 x_i + \varepsilon_i, \ i = \overline{1, \ n}$$

Предположим

- 1. $\varepsilon_1, \ldots, \varepsilon_n$ независимые случайные величины с одинаковым распределением.
- 2. $\forall i \quad E\varepsilon_i = 0, \ \mathcal{D}\varepsilon_i = \sigma^2$ (неизвестные, но одинаковые дисперсии)
- 3. (x_1, \ldots, x_n) не коллинеарны $(1, \ldots, 1)$

Функция потерь

Хотим минимизировать следующую функцию (пошёл ИАД):

$$S(\theta) = \sum_{i=1}^{n} (y_i - (\theta_0 + \theta_1 x_i))^2 \to \min_{\theta_0, \, \theta_1}$$

Из матанализа знаем, что надо дифференцировать эту функцию:

$$\begin{cases} \frac{\partial S(\theta)}{\partial \theta_0} = 0 \\ \frac{\partial S(\theta)}{\partial \theta_1} = 0 \end{cases} \Rightarrow \begin{cases} -2\sum_{i=1}^n \left(y_i - \hat{\theta}_0 - \hat{\theta}_1 x_i \right) = 0 \\ -2\sum_{i=1}^n x_i \left(y_i - \hat{\theta}_0 - \hat{\theta}_1 x_i \right) = 0 \end{cases}$$

Какой-то чемпион решил эту систему за нас, вот ответ:

$$\hat{\theta}_0 = \overline{Y} - \hat{\theta}_1 \overline{X}$$

$$\hat{\theta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{X}) (y_i - \overline{Y})}{\sum_{i=1}^n (x_i - \overline{X})^2} = \hat{\rho}_{xy} \frac{\hat{\sigma}_y}{\hat{\sigma}_x}$$

Лекция 16 мая

Описанная ранее функция потерь отлично работает, если погрешности гауссовские, однако крайне уязвима к выбросам. Скоро будем рассматривать робастные штуки для этой задачи.

Определение

Множественной линейной регрессией называется модель, в которой:

$$y_i = \theta_0 + \theta_1 x_{i1} + \dots + \theta_p x_{ip} + \varepsilon_i, \ i = \overline{1, \ n}$$
 Пусть $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \ \theta = \begin{pmatrix} \theta_0 \\ \vdots \\ \theta_p \end{pmatrix}, \ \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}, \ X = \begin{pmatrix} 1 & x_{11} & \dots & x_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{pmatrix}$ В матричном виде можно записать:
$$Y = X\theta + \varepsilon$$

Предположения

- 1. $E\varepsilon = 0$
- 2. $K_{\varepsilon} = \sigma_{\varepsilon}^2 I$
- 3. $\det(X^T X)^{-1} \neq 0$

МНК-оценка

(расшифровывается как метод наименьших квадратов)

$$S(\theta) = (Y - X\theta)^T (Y - X\theta)$$

Вспоминаем приколы из линейной алгебры:

$$\frac{\partial}{\partial \theta} A \theta = A$$
$$\frac{\partial}{\partial \theta} \theta^T A \theta = \theta^T (A + A^T)$$

Продифференцируем $S(\theta)$:

$$\frac{\partial}{\partial \theta} S(\theta) = (Y - X\theta)^T (I + I)(-X) = -2(Y - X\theta)^T X$$

Теперь надо приравнять производную к нулю:

$$(Y - X\hat{\theta})^T X = 0$$

$$Y^T X - \hat{\theta}^T X^T X = 0$$

$$Y^T X = \hat{\theta}^T X^T X$$

$$Y^T X (X^T X)^{-1} = \hat{\theta}^T$$

$$\hat{\theta} = (X^T X)^{-1} X^T Y$$

Свойства МНК-оценки

1. Несмещённость

$$E\hat{\theta} = E(X^TX)^{-1}X^TY = E(X^TX)^{-1}X^T(X\theta + \varepsilon) =$$

$$= \theta + E(X^TX)^{-1}X^T\varepsilon = \theta + (X^TX)^{-1}X^T\underbrace{E\varepsilon}_{=0} = \theta$$

2. Ковариационная матрица:

$$K_{\hat{\theta}} = E\left(\hat{\theta} - \theta\right) \left(\hat{\theta}\right)^{T} = E\left(\theta + \left(X^{T}X\right)^{-1}X^{T}\varepsilon - \theta\right) \left(\theta + \left(X^{T}X\right)^{-1}X^{T}\varepsilon - \theta\right)^{T} =$$

$$= E\left(X^{T}X\right)^{-1}X^{T}\varepsilon\varepsilon^{T}X(X^{T}X)^{-1} = \left(X^{T}X\right)^{-1}E\varepsilon\varepsilon^{T} = \left(X^{T}X\right)^{-1}K_{\varepsilon} = \sigma_{\varepsilon}^{2}\left(X^{T}X\right)^{-1}$$

В частности, если $y_1=\theta_0+\theta_1x_i+arepsilon_i,\ i=\overline{1,\ n}$, то в матричном виде это выглядит так:

$$X = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}, X^T = \begin{pmatrix} 1 & \dots & 1 \\ x_1 & \dots & x_n \end{pmatrix}$$

$$X^T X = \begin{pmatrix} n & \sum_{i=1}^n x_i \\ \sum_{i=1}^n x_i & \sum_{i=1}^n x_i^2 \end{pmatrix}$$

$$(X^T X)^{-1} = \frac{1}{n \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2} \begin{pmatrix} \sum_{i=1}^n x_i^2 & -\sum_{i=1}^n x_i \\ -\sum_{i=1}^n x_i & n \end{pmatrix}$$

$$\mathcal{D}\hat{\theta}_0 = \sigma_{\varepsilon}^2 \frac{\sum_{i=1}^n x_i^2}{n \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}$$

$$\mathcal{D}\hat{\theta}_1 = \sigma_{\varepsilon}^2 \frac{n}{n \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2} = \sigma_{\varepsilon}^2 \frac{1}{\sum_{i=1}^n (x_i - \overline{X})^2}$$

3. Если $n o \infty$, то ассимптотически выполняется:

$$\hat{\theta} \sim N\left(\theta, \ \sigma_{\varepsilon}^2 (X^T X)^{-1}\right)$$

4. $\hat{arepsilon}_i=y_i-\left(\hat{ heta}_0+\hat{ heta}_1x_{i\,1}+\cdots+\hat{ heta}_px_{i\,p}
ight)$, пользуясь этим можем составить оценку:

$$\sigma_{arepsilon}^2=rac{1}{n-(p+1)}\sum_{i=1}^n\hat{arepsilon}_i^2,\;$$
— несмещённая оценка $\sigma_{arepsilon}^2$

5. Теорема Гаусса-Маркова:

 $\hat{ heta}$ MHK-оценка $\Leftrightarrow \hat{ heta}$ является BLUE (best linear unbiased estimator, то есть наилучшая линейная по y несмещённая оценка).

В данном случае наилучшая обозначает:

$$\hat{ heta}$$
 — наилучшая $\Leftrightarrow orall ilde{ heta} \quad K_{ ilde{ heta}} - K_{\hat{ heta}},$ неотрицательно определённая

Доказательство

Пусть $\hat{\theta}$ — МНК-оценка, $\tilde{\theta}$ — несмещённая, линейная по y и претендует быть лучшей. Тогда справедливо следующее:

$$\begin{split} E\hat{\theta} &= E\tilde{\theta} = \theta \\ \hat{\theta} &= (X^TX)^{-1}X^TY = AY \\ \tilde{\theta} &= (A+C)Y \\ E\tilde{\theta} &= E(A+C)Y = E(A+C)(X\theta+\varepsilon) = E(AX\theta+CX\theta+(A+C)\varepsilon) = \theta+CX \Rightarrow CX = 0 \\ K_{\tilde{\theta}} &= E(\tilde{\theta}-\theta)\left(\tilde{\theta}-\theta\right)^T = E(A+C)\varepsilon\varepsilon^T\left(A+C^T\right) = (A+C)\left(A+C\right)^T\underbrace{E\varepsilon\varepsilon^T}_{K_\varepsilon} = \\ &= \sigma_\varepsilon^2\left(A+C\right)(A+C)^T = \sigma_\varepsilon^2\left(AA^T+CA^T+AC^T+CC^T\right) = \underbrace{\sigma_\varepsilon^2\left(X^TX\right)^{-1}}_{K_{\hat{\theta}}} + \sigma_\varepsilon^2CC^T \\ AA^T &= \left(X^TX\right)^{-1}X^TX\left(X^TX\right)^{-1} = \left(X^TX\right)^{-1} \\ CA^T &= CX\left(X^TX\right)^{-1} = 0 \end{split}$$

Итак, получили, что разность ковариационных матриц МНК-оценки и любой оценки будет неотрицательно определена (см. выражение $K_{\tilde{\theta}}$).

Дополнительное предположение

$$\varepsilon \sim N(0, \sigma^2 I)$$

Свойства МНК-оценки в гауссовской модели

1.
$$\hat{\theta} \sim N\left(\theta, \ \sigma_{\varepsilon}^2 \left(X^T X\right)^{-1}\right)$$

2.
$$\frac{\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}}{\sigma^{2}} \sim \chi^{2} (n - (p+1))$$

3. Пусть c — детерминированный веткор размера p+1, тогда:

$$\mathcal{D}c\hat{ heta}\leqslant\mathcal{D}c\tilde{ heta},$$
 где $\tilde{ heta}$ — любая несмещённая оценка

4. МНК-оценка $\hat{ heta}$ совпадает с оценкой максимального правдоподобия.

Применение при проверке гипотез (в гауссовской модели)

Пример 1

$$y_i = \theta_0 + \theta_1 x_{i1} + \dots + \theta_p x_{ip} + \varepsilon_i, \ i = \overline{1, n}$$

Хотим проверить гипотезу

$$H_0: heta_k = 0, ext{ против } H_1: heta_k
eq 0$$

Если верна H_0 , то показатель можно не включать в уравнение. Можем построить оценку МНК оценку $\hat{\theta}_k$, тогда:

$$\hat{\theta}_k \sim N(\theta_k, \ \sigma_{\epsilon}^2 C_{k+1, k+1})$$

Здесь $C_{k+1,\;k+1}$ — элемент $((k+1),\;(k+1))$ матрицы $\left(X^TX\right)^{-1}$ Центрируем, нормируем, получим статистику:

$$\frac{\hat{\theta}_k - \theta_k}{\sigma \sqrt{C_{k+1, k+1}}} \sim N(0, 1)$$

Дисперсию мы не знаем, поэтому её можно заменяем на оценку:

$$\hat{\sigma}^2 = \frac{1}{n - (p+1)} \sum_{i=1}^n \hat{\varepsilon}_i^2$$

Теперь получаем финальную версию статистики:

$$\frac{\hat{\theta}_k}{\hat{\sigma}_{\varepsilon}\sqrt{C_{k+1, k+1}}}\Big|_{H_0} \sim t(n - (p+1))$$

Доверительные и критические области будут выглядеть так:

Лекция 23 мая

Задача

Рассматриваем "длинную" модель:

$$Y_i = \theta_0 + \theta_1 x_{i1} + \dots + \theta_p x_{ip} + \varepsilon_i, \quad \varepsilon \sim N(0, \sigma^2 I)$$

И "короткую" модель:

$$Y_i = \theta_0 + \theta_1 x_{i1} + \dots + \theta_q x_{iq} + \varepsilon_i, \quad q < p$$

Проверяем гипотезу $H_0: \theta_{q+1}=\dots=\theta_p=0$ против $H_1: \exists j \in (q+1,\dots,\,p): \theta_j
eq 0$

Действия

Оцениваем с помощью МНК по "длинной" модели $\theta_0,\ldots,\;\theta_p$, получаем $\hat{\theta}_0,\ldots,\;\hat{\theta}_p$, считаем следующие величины:

$$SS_1 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y}_i = \hat{\theta}_0 + \sum_{i=1}^p \hat{\theta}_j x_{ij}$$

Оцениваем с помощью МНК по "короткой" модели $heta_0,\dots,\; heta_q$, получаем $ilde{ heta}_0,\dots,\; ilde{ heta}_q$, считаем величины:

$$SS_2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y}_i = \tilde{\theta}_0 + \sum_{i=1}^q \tilde{\theta}_j x_{ij}$$

Теперь составим статистику:

$$\frac{\frac{1}{p-q} \frac{SS_2 - SS_1}{\sigma_{\varepsilon}^2}}{\frac{1}{n-p-1} \frac{SS_1}{\sigma_{\varepsilon}^2}} = \frac{n-p-1}{p-q} \cdot \frac{SS_2 - SS_1}{SS_1} \bigg|_{H_0} \sim F(p-q, n-p-1)$$

Доверительной областью этой статистики является интервал $(0,\ f_{1-lpha,\ p-q,\ n-p-1})$

Задача

Рассматриваем "длинную" модель:

$$Y_i = \theta_0 + \theta_1 x_{i1} + \dots + \theta_p x_{ip} + \varepsilon_i, \quad \varepsilon \sim N(0, \sigma_{\varepsilon}^2 I)$$

И модель:

$$Y_i = \theta_0 + \varepsilon_i$$

Проверяем гипотезу $H_0: \theta_1 = \cdots = \theta_p = 0$ против $H_1: \exists j \neq 0 \theta_j \neq 0$

Действия

Считаем следующие штуки:

$$SS_{\text{общ}} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i \pm \hat{y}_i - \overline{Y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \overline{Y})^2 + 2\sum_{i=1}^{n} (y_i - \hat{y}_i) (\hat{y}_i - \overline{Y})$$

$$\sum_{i=1}^{n} (y_i - \hat{y}_i) (\hat{y}_i - \overline{Y}) = \sum_{i=1}^{n} \hat{\varepsilon}_i (\hat{\theta}_0 + \hat{\theta}_1 x_i - \overline{Y}) = \sum_{i=1}^{n} \hat{\varepsilon} (\overline{Y} - \hat{\theta}_1 \overline{X} + \hat{\theta}_1 x_i - \overline{Y}) = \hat{\theta}_1 \sum_{i=1}^{n} \hat{\varepsilon}_i (x_i - \overline{X}) = 0$$

$$\sum_{i=1}^{n} (y_i - \hat{y}_i) (x_i - \overline{X}) = \sum_{i=1}^{n} (y_i - \hat{\theta}_0 - \hat{\theta}_1 x_i) (x_i - \overline{X}) = \sum_{i=1}^{n} (y_i - \hat{\theta}_0 - \hat{\theta}_1 x_i) x_i + \overline{X} \sum_{i=1}^{n} (y_i - \hat{\theta}_0 - \hat{\theta}_1 x_i)$$

Итого, получаем:

$$SS_{ ext{oбщ}} = \underbrace{\sum_{i=1}^{n} \left(y_i - \hat{y}_i\right)^2}_{SS_{ ext{crtys.}}} + \underbrace{\sum_{i=1}^{n} \left(\hat{y}_i - \overline{Y}\right)^2}_{SS_{ ext{perp.}}}$$

Поработаем с частями этого равенства:

$$\begin{split} &\frac{SS_{\text{o6iii}}}{\sigma_{\varepsilon}^{2}} \sim \chi^{2} \left(n-1\right) \\ &\frac{SS_{\text{CЛУЧ}}}{\sigma_{\varepsilon}^{2}} \sim \chi^{2} \left(n-p-1\right) \\ &\frac{SS_{\text{perp.}}}{\sigma_{\varepsilon}^{2}} \Big|_{H_{0}} \sim \chi^{2}(p) \end{split}$$

Здесь p — количество оцененных параметров (размерность θ). С этими знаниями можно составить статистику:

$$\left. \frac{n-p-1}{p} \cdot \frac{SS_{\mathsf{perp.}}}{SS_{\mathsf{CЛУЧ.}}} \right|_{H_0} \sim F(p, \ n-p-1)$$

Доверительным интервалом будет $(0, f_{1-\alpha, p, n-p-1})$

Определение

Коэффициентом детерминации регрессии порядка $p\geqslant 1$ называется

$$\hat{R}^2 = 1 - rac{SS_{ exttt{cлуч.}}}{SS_{ exttt{ofw.}}}$$

Определение

Скорректированным коэффициентом детерминации называют:

$$R_{
m adj}^2 = 1 - rac{rac{1}{n-p-1} S S_{
m cлуч.}}{rac{1}{n-1} S S_{
m o 6 u.}}$$

title

Рассматривается парная регрессия:

$$y_i = \theta_0 + \theta_1 x_i + \varepsilon_i, \ \varepsilon \sim N(0, \ \sigma_{\varepsilon}^2 I)$$

Введём обозначение:

$$f(x, \theta) = \theta_0 + \theta_1 x$$

Построим доверительную область для $f(x, \theta)$.

Пусть $\hat{ heta}_0,~\hat{ heta}_1$ — МНК оценки параметров $heta_0,~ heta_1$ соответственно. Тогда:

$$\hat{f}(x, \theta) = \hat{\theta}_0 + \hat{\theta}_1 x
E\hat{f}(x, \theta) = \theta_0 + \theta_1 x
\mathcal{D}\hat{f}(x, \theta) = \mathcal{D}\left(\hat{\theta}_0 + \hat{\theta}_1 x\right) = \mathcal{D}\left(\overline{Y} - \hat{\theta}_1 \overline{X} + \hat{\theta}_1 x\right) = \mathcal{D}\left(\overline{Y} + \hat{\theta}_1 \left(x - \overline{X}\right)\right) =
= \frac{\sigma_{\varepsilon}^2}{n} + \left(x - \overline{X}\right)^2 \frac{\sigma_{\varepsilon}^2}{\sum_{i=1}^n \left(x_i - \overline{X}\right)^2} = \sigma_{\varepsilon}^2 \left(\frac{1}{n} + \frac{\left(x - \overline{X}\right)^2}{\sum_{i=1}^n \left(x_i - \overline{X}\right)^2}\right)$$

Теперь можно составить статистику:

$$\frac{\hat{f}(x, \theta) - f(x, \theta)}{\hat{\sigma}_{\varepsilon} \sqrt{\frac{1}{n} + \frac{(x - \overline{X})^2}{\sum_{i=1}^n (x_i - \overline{X})^2}}} \sim t(n - p - 1)$$

Теперь можно начинать строить доверительную область:

$$P\left(t_{\alpha/2, n-p-1} < \frac{\hat{f}(x, \theta) - f(x, \theta)}{\hat{\sigma}_{\varepsilon} \sqrt{\frac{1}{n} + \frac{(x-\overline{X})^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{X})^{2}}}} < t_{1-\alpha/2, n-p-1}\right) = 1 - \alpha$$

Умные люди за нас проделали преобразования и получили (обозначил $t=t_{\alpha/2,\;n-p-1}$):

$$P\left(\hat{f}(x, \theta) - t\hat{\sigma}_{\varepsilon}\sqrt{\frac{1}{n} + \frac{\left(x - \overline{X}\right)^{2}}{\sum_{i=1}^{n} \left(x_{i} - \overline{X}\right)^{2}}} < f(x, \theta) < \hat{f}(x, \theta) + t\hat{\sigma}_{\varepsilon}\sqrt{\frac{1}{n} + \frac{\left(x - \overline{X}\right)^{2}}{\sum_{i=1}^{n} \left(x_{i} - \overline{X}\right)^{2}}}\right) = 1 - \alpha$$

Полученная область не параллельна прямой, задаваемой $f(x,\,\theta)$ (нелинейно расширяется при удалении x от \overline{X})

Регрессионные модели с переменной структурой

При построении модели:

$$y_i = \theta_0 + \sum_{j=1}^p \theta_j x_{ij} + \varepsilon_i, \ i = \overline{1, n}$$

Могут понадобиться фиктивные переменные (dummy variables), например:

$$d_i = egin{cases} 0, \ \mbox{если} \ i$$
-ый респондент без высшего образования $1, \ \mbox{если} \ i$ -ый респондент с высшим образованием

То гда модель будет выглядеть так:

$$y_i = \theta_0 + \sum_{j=1}^{p} \theta_j x_{ij} + \delta d_i + \varepsilon_i, \ i = \overline{1, \ n}$$

Теперь нужно проверить гипотезу $H_0: \delta = 0$ против $H_1: \delta
eq 0$

Ввод нескольких фиктивных переменных

Пусть справедлива модель:

$$Y_t = heta_0 + heta_1 d_{1\,t} + heta_2 d_{2\,t} + heta_p d_{3\,t} + arepsilon_t$$
 $d_{1\,t} = egin{cases} 1, & ext{если } t - ext{зимний месяц} \ 0, & ext{иначе} \end{cases}$ $d_{2\,t} = egin{cases} 1, & ext{если } t - ext{весенний месяц} \ 0, & ext{иначе} \end{cases}$ $d_{3\,t} = egin{cases} 1, & ext{если } t - ext{летний месяц} \ 0, & ext{иначе} \end{cases}$

Структурный сдвиг

Первый случай

$$Y_t = \theta_0 + \theta_1 x_t + \theta_2 \delta_{t_0} + \varepsilon_{t_0}$$

$$\delta_{t_0} = \begin{cases} 0, & t \leq t_0 \\ 1, & t > t_0 \end{cases}$$

Второй случай

$$Y_t = \theta_0 + \theta_1 x_t + \theta_2 \delta_{t_0} + \theta_3 \delta_{t_0} x_t + \varepsilon_{t_0}$$

Третий случай

$$Y_t = \theta_0 + \theta_1 x_t + \theta_2 \delta_{t_0} (x_t - t_0) + \varepsilon_i$$

Критерий Чоу

Пусть для объединения двух выборок справедлива модель:

$$Y_i = \theta_0 + \theta_1 x_{i1} + \dots + \theta_p x_{ip} + \varepsilon_i, \ i = \overline{1, n+m}$$

Проверяем, стоит ли строить отдельные регрессии для каждой выборки, то есть:

$$Y_{0} = \tilde{\theta}_{0} + \tilde{\theta}_{1}x_{i1} + \dots + \tilde{\theta}_{p}x_{ip} + \tilde{\varepsilon}_{i}, \ i = \overline{1, n}$$

$$Y_{1} = \tilde{\tilde{\theta}}_{0} + \tilde{\tilde{\theta}}_{1}x_{i1} + \dots + \tilde{\tilde{\theta}}_{p}x_{ip} + \tilde{\tilde{\varepsilon}}_{i}, \ i = n + 1, \dots n + m$$

Гипотезы

$$H_0: \tilde{\theta}_0 = \tilde{\tilde{\theta}}_0, \dots, \ \tilde{\theta}_p = \tilde{\tilde{\theta}}_p$$
$$H_1: \exists j \in \overline{1, p}: \tilde{\theta}_i \neq \tilde{\tilde{\theta}}_i$$

Действия

1. Оценить по МНК параметры $heta_0,\dots,\, heta_p$ по объединённой выборке:

$$SS_{ extsf{cлуч.}} = \sum_{i=1}^{n+m} \left(y_i - \hat{y}_i
ight)^2$$

2. Оценить по МНК параметры $ilde{ heta}_0,\dots,\ heta_p$ по выборке 1:

$$SS^1_{ ext{cлуч.}} = \sum_{i=1}^n \left(y_i - \hat{y}_i \right)^2$$

3. Оценить по МНК параметры $ilde{ ilde{ heta}}_0,\dots,\, ilde{ ilde{ heta}}_p$ по выборке 2:

$$SS^2_{ exttt{cлуч.}} = \sum_{i=n+1}^{n+m} \left(y_i - \hat{y}_i\right)^2$$

4. Составить статистику:

$$\left. \frac{\frac{1}{p+1} \left(SS_{\text{случ.}} - \left(SS_{\text{случ.}}^1 + SS_{\text{случ.}}^2 \right) \right)}{\frac{1}{n+m-2p-2} \left(SS_{\text{случ.}}^1 + SS_{\text{случ.}}^2 \right)} \right|_{H_0} \sim F(p+1, \; n+m-2p-2)$$

При справедливости гипотезы значение статистики должно быть маленьким, то есть доверительной областью является $(0,\ f_{1-\alpha,\ p+1,\ n+m-2p-2})$

Гетеро- и гомоскедастичность моделей

Определение

Если ε в модели имеют разные дисперсии, то такая модель называется гетероскедастичной, иначе — гомоскедасти

Обозначения

Подразумевается, что справедлива модель:

$$Y_i = \theta_0 + \theta_1 x_{i1} + \dots + \theta_p x_{ip} + \varepsilon_i, \ i = \overline{1, n}$$

Пусть ковариационная матрица ε имеет вид:

$$K_{\varepsilon} = \begin{pmatrix} \sigma_1^2 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_n^2 \end{pmatrix}$$

Применим взвешенный МНК:

$$S(\theta) = \sum_{i=1}^{n} \frac{1}{w_i} \left(y_i - \sum_{j=1}^{p} \theta_j x_{ij} \right)^2, \ w_i = \sigma_i, \ i = \overline{1, n}$$

Теперь посчитаем оценку θ в этом случае:

$$V^{-1} = \begin{pmatrix} \frac{1}{\sigma_1^2} & 0 & \dots & 0\\ 0 & \frac{1}{\sigma_2^2} & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & \frac{1}{\sigma_n^2} \end{pmatrix}$$

$$V^{-\frac{1}{2}} = \begin{pmatrix} \frac{1}{\sigma_1} & 0 & \dots & 0\\ 0 & \frac{1}{\sigma_2} & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & \frac{1}{\sigma_n} \end{pmatrix}$$

$$X^* = V^{-\frac{1}{2}}X$$

$$Y^* = V^{-\frac{1}{2}}Y$$

$$\hat{\theta} = \left(X^{*T}X^*\right)^{-1}X^{*T}Y^*$$

Критерий Голдфельда-Квандта

Проверяется гипотеза $H_0: \sigma_1^2 = \dots = \sigma_n^2$ против $H_1: \sigma_i = \sigma x_{ij}, \ i = \overline{1, n}, \ j \in (1, \dots, p)$ (то есть пропорциональна одному из регрессоров)

Действия

- 1. Упорядочить наблюдения по убыванию регрессора x_i
- 2. Из "средней части" удалить d наблюдений. (удаляем примерно четверть наблюдений)
- 3. Построить регрессию по первым $rac{n-d}{2}$ наблюдениям и найти $\hat{arepsilon}_1^T\hat{arepsilon}_1=\sum_{i=1}^{rac{n-d}{2}}\hat{arepsilon}_i^2$
- 4. Построить регрессию по последним $rac{n-d}{2}$ наблюдениям и найти $\hat{arepsilon}_2^T\hat{arepsilon}_2=\sum_{i=rac{n+d}{2}}^n\hat{arepsilon}_i^2$

5. Рассматриваем F-статистику:

$$\hat{F} = \frac{\hat{\varepsilon}_1^T \hat{\varepsilon}_1}{\hat{\varepsilon}_2^T \hat{\varepsilon}_2} \bigg|_{H_0} \sim F\left(\frac{n-d}{2} - p, \frac{n-d}{2} - p\right)$$

Если оказались правее $f_{1-lpha,\,\frac{n-d}{2}-p,\,\frac{n-d}{2}-p}$, то гетероскедастичность имеется, значит всё уравнение нужно делить на X_i , чтобы нормализовать дисперсию.

Тест Бреуша-Пагана

Разбирался не очень подробно, используется для проверки гипотезы $H_0: \sigma_1^2 = \cdots = \sigma_n^2$ против альтернативы $H_1:$ дисперсия зависит от какой-то линейной комбинации регрессоров.

Робастные методы

Метод наименьших модулей (МНМ)

Оценкой МНМ в модели называется такое значения $\hat{ heta}$, при котором достигается минимум следующей функции потерь:

$$S(\theta) = \sum_{i=1}^{n} |Y_i - f(X_i \, 1, \dots, X_{i, p}, \, \theta)|$$

Проблема данного метода в том, что он не имеет аналитического решения (только численное, которое было на ИАДе, кстати)

Ранговая R-оценка

Ранговой оценкой параметров в модели называется такое значение $\hat{\theta}$, при котором достигается минимум следующей функции потерь (формулу не успел записать)

Семейство М-оценок

Идея в том, чтобы минимизировать некую выпуклую функцию ho(X) (МНК и МНМ являются М-оценками). Примеры M-оценок:

Оценка Тьюки

$$\rho(z) = \begin{cases} z, & |z| \le c \\ c|z| + c^2, & |z| > c \end{cases}$$

Оценка Хьюбера

$$\rho(z) = \begin{cases} 1, & |z| > c \\ 1 - \left(1 - \left(\frac{x}{c}\right)^2\right)^3, & |z| \le c \end{cases}$$