Упражнение 1. Убедиться, что алгебраическая система $(\mathbb{C} \times \mathbb{C}, +, \cdot)$ — кольчо, где

$$(z_1, z_2) + (z_3, z_4) = (z_1 + z_3, z_2 + z_4);$$

 $(z_1, z_2) \cdot (z_3, z_4) = (z_1 \cdot z_3, z_2 \cdot z_4), z_i \in \mathbb{C}.$

Найти все делители нуля этого кольца.

Упражнение 2. Доказать, что \mathbb{Z}_n — поле $\Leftrightarrow n$ — простое число.

Упражнение 3. Решить систему уравнений

$$\begin{cases} x + 2z = 1, \\ y + 2z = 2, \\ 2x + z = 1 \end{cases}$$

a) в поле \mathbb{Z}_3 ; b) в поле \mathbb{Z}_5 .

Упражнение 4. Доказать, что порядок единицы поля в группе по сложению либо бесконечен, либо просто число.

Упражнение 5. Доказать, что группа положительных рациональных чисел по умножению не изоморфна группе всех рациональных чисел по сложению.

Упражнение 6. Доказать, что группа положительных рациональных чисел по умножению не изоморфна группе всех рациональных чисел по сложению.

Упражнение 7. Доказать, что в кольце с единицей е коммутативность сложения вытекает из остальных аксиом кольца. Подсказка: рассмотрите выражение (a+b)(e+e).

Упражнение 8. Доказать, что любое подполе поля \mathbb{C} содержит подполе рациональных чисел. Подсказка: найдите в этом подполе единицу.