Билеты по Алгебре и теории чисел 19-... 3 семестр. МОиАИС.

Никита Якунцев, Андрей Сотников, Никита Хатеев, to be continued...

12 января 2014 г.

Содержание

1	Функции многих переменных															2										
	1.1	Билет 19														 										2
	1.2	Билет 20														 										3
	1.3	Билет 22																								4

1 Функции многих переменных

1.1 Билет 19

Евклидово пространство. Простейшие свойства.

E - вещественное линейное пространство называется евклидовым, если задана функция $E \times E \to \mathbb{R}$, называемая скалярным произведением (обозн. $\forall x,y \; \exists (x,y) \in \mathbb{R}$) и выполнено 4 аксиомы:

1.
$$\forall x, y \in E \ (x, y) = (y, x)$$

2.
$$\forall x_1, x_2, y \in E (x_1 + x_2, y) = (x_1, y) + (x_2, y)$$

3.
$$\forall \alpha \in \mathbb{R} \ \forall x, y \in E \ (\alpha x, y) = \alpha(x, y)$$

4.
$$\forall x \in E (x, x) > 0, x = 0 \Leftrightarrow (x, x) = 0$$

Свойства:

1. a)
$$(0,y) = 0 \ \forall y \in E$$

b)
$$(x,0) = 0 \ \forall x \in E$$

Доказательство: а)
$$\overset{3 \text{ axiom}}{\Rightarrow}$$
 при $\alpha = 0 \ (0x, y) = 0 \ (x, y) = (0, y) = 0, \ \forall y \in E$

2. a)
$$\forall n \in \mathbb{N}$$
, $\forall \alpha_1..\alpha_n \in \mathbb{R} \ \forall x_1..x_n, y \in E$

$$\left(\sum_{i=1}^{n} \alpha_{i} x_{i}, y\right) = \sum_{i=1}^{n} \alpha_{i} \left(x_{i}, y\right)$$

Доказательство:

b)
$$\forall m \in \mathbb{N} , \forall \beta_1 ... \beta_m \in \mathbb{R} , \forall y_1 ... y_m, x \in E$$

$$\underbrace{\left(x, \sum_{i=1}^{n} \beta_i, y_i\right)}_{= \sum_{i=1}^{n} \beta_i} \left(x, y_i\right)$$

Доказательство:

c)
$$\forall m, n \in \mathbb{N}$$
, $\forall \alpha_1..\alpha_n, \beta_1..\beta_m \in \mathbb{R}, \forall x_1..x_n, y_1..y_m \in E$

$$\left(\sum_{i=1}^{n} \alpha_i, x_i, \sum_{j=1}^{m} \beta_j, y_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i, \beta_j \left(x_i, y_i\right)$$

Доказательство:

3. Пусть

a)
$$(x,y) = 0, \forall y \in E \Rightarrow x = 0$$

a)
$$(x,y) = 0, \forall x \in E \Rightarrow y = 0$$

Доказательство: a)
$$(x,y)=0, \ \forall y$$
 пусть $y=x\Rightarrow (x,x)=0 \overset{4\ axiom}{\Rightarrow} x=0$

4. Тождество параллелограма

$$((x + y), (x + y)) + ((x - y), (x - y)) = 2(x, x) + 2(y, y)$$

Доказательство:

$$(x + y, x + y) + (x - y, x - y) = (x, x) + (x, y) + (y, x) + (y, y) + (x, x) - (x, y) - (y, x) + (y, y) = 2(x, x) + 2(y, y)$$

1.2 Билет 20

Неравенство Коши-Буняковского.

Теорема 1 $\forall x,y \in E$ - евкл. пр-во; $|(x,y)^2| \le (x,x)*(y,y) \Leftrightarrow (x,y)^2 \le (x,x)*(y,y)$ Доказательство

1.3 Билет 22

Ортогональность. Ортогональные системы векторов. Ортогонализация.

Def1: Пусть E - евклидово пространство

- а) Векторы $x,y\in E$ называются ортогональными $x\perp y,$ если (x,y)=0
- **b)** $x \in E$, $M \subset E$

Вектор x ортогонален множеству M, если $\forall y \in M$, $x \perp y \Leftrightarrow \forall y \in M$ (x,y) = 0 Обозначение: $x \perp M$

c) $M, P \subset E$

Множества M,P - ортогональны $(M\perp P)$, если $\forall x\in M$, $y\in P$ (x,y)=0 $x\perp E\Leftrightarrow x=0$

Теорема 1

Пусть $x \perp M \Leftrightarrow$ для любого базиса (e_1, e_k) в $M, x \perp e_i, i=1..k, \Leftrightarrow (x, e_i)=0, i=1..k$ Доказательство:

 \Rightarrow : $x\perp M\Leftrightarrow \forall y\in M\ x\perp y,\ \Leftrightarrow (x,y)=0\Rightarrow$ верно и для базисных $(e_1..e_k),\ y=e_i,\ i=1..k$

$$\Leftarrow: x \perp e_i, \ i=1..k, \ \forall y \in M$$
 разложим по базису $y=\sum\limits_{i=1}^k \alpha_i e_i$ $x \perp e_i \Rightarrow (x,e_i)=0, \ \forall i=1..k$ $(x,y)=(x,\sum\limits_{i=1}^k \alpha_i,e_i)=\sum\limits_{i=1}^k \alpha_i(x,e_i)=0, \ \forall y \in M \ \ (x,y)=0 \Rightarrow x \perp M$

Замечание: Если $M = L(e_1..e_k), x \perp e_i \ i = 1..k \Rightarrow x \perp M$

Def2:

- 1. Система векторов $\{x_{\alpha}\}$ из евклидового простраства называется ортогональной, если $x_{\beta}\perp x_{\alpha}\ for all \beta \neq \alpha$
- 2. Система векторов $\{x_{\alpha}\}$ из евклидового простраства называется нормированной, если $(x_{\alpha},x_{\alpha}=1,\ \forall \alpha)$
- 3. Система векторов $\{x_{\alpha}\}$ из евклидового простраства называется ортонормированной, если $1)\cap 2)$

Теорема 2

Ортогональная система из ненулевых векторов линейно независимая

Доказательство:

 $\{x_{\alpha}\}$ - ортогональная система. Докажем, что и конечная подсистема $x_{\alpha_1}..x_{\alpha_k}$ - ЛНЗ

Рассмотрим линейную комбинацию $\sum_{i=1}^{k} \beta_i x_{\alpha_i} = 0; \ \beta_i = 0-? \ i = 1..k$

Скалярно умножим $\sum\limits_{i=1}^k \beta_i x_{\alpha_i} = 0$ на вектор $x_{\alpha_j} \ \forall j=1..k$

$$\left(\sum_{i=1}^{k} \beta_i x_{\alpha_i}, x_{\alpha_j}\right) = (0, x_{\alpha_j}) = 0$$

$$\sum_{i=1}^{k} \beta_i(x_{\alpha_i}), x_{\alpha_j} = 0 \Rightarrow \beta_j(x_{\alpha_j}) = 0$$

$$x_{\alpha_j} = \begin{cases} 0, & i \neq j \\ (x_{\alpha_j}, x_{\alpha_j}), & i = j \end{cases} (x_{\alpha_j}, x_{\alpha_j}) \neq 0 \Rightarrow \beta_j = 0 \Rightarrow$$
 все $\beta_j = 0, \ j = 1..k \Rightarrow$ система ЛНЗ

Теорема 3(Метод Фурье)

Пусть $e_1..e_n$ ортогональная система из ненулевых векторов и $x = \sum_{i=1}^n \alpha_i e_i(*)$

Тогда $\alpha_i = \frac{(x,e_i)}{e_i,e_i}, \ i=1..n$

 α_i - коээфициенты Фурье (*)- формула Фурье

Доказательство:

Умножим (*) скалярно на e_j

$$(x, e_j) = \left(\sum_{i=1}^{n} \alpha_i e_i, e_j\right), \ (x, e_j) = \sum_{i=1}^{n} \alpha_i (e_i, e_j)$$

$$(e_i, e_j) = \begin{cases} 0, \ i \neq j \\ (e_j, e_j), \ i = j \end{cases} (x, e_j) = \alpha_j (e_j, e_j), \ \left| : (e_j, e_j) \neq 0 \right|$$

$$\alpha_i = \frac{(x, e_j)}{n}$$

Следствия

1.
$$x = \sum_{i=1}^{n} \frac{(x,e_i)}{e_i,e_i} e_i$$

2. Пусть
$$(e_1..e_n)$$
 - ортонормированная система $x = \sum_{i=1}^n \alpha_i e_i \Rightarrow \alpha_i = (x, e_i) \ i = 1..n$ $x = \sum_{i=1}^n (x, e_i) e_i$

Доказательство следствия 2:

$$(e_i, e_j) = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases} \Rightarrow (e_i, e_i) = 1 \Rightarrow e_i \neq 0$$

$$\alpha_i = \frac{(x, e_i)}{(e_i, e_i)} = (x, e_i)$$

Теорема 3(Грама-Шмидта)

Пусть $e_1..e_n$ ЛНЗ система в евклидовом пр-ве Е. Тогда существует ортогональная система $(f_1..f_n)$ для которых $L(e_1..e_k) = L(f_1..f_k), \forall k = 1..n$

Доказательство:

1) $f_1 = \frac{e_1}{||e_1||}$ - вектор единичной длины

$$(f_1, f_1) = \left(\frac{e_1}{\|e_1\|}, \frac{e_1}{\|e_1\|}\right) = 1 \frac{1}{\|e_1\|^2} (e_1, e_1) = \frac{\|e_1\|^2}{\|e_1\|^2} = 1$$

$$L(e_1) = L(f_1), \ f_1 = \alpha e_1, \ \alpha = \frac{1}{\|e_1\|}$$

2) Mujem $e'_1 = \alpha_1 f_1 + e_2(\alpha_1 - \text{Henge})$ tak utoбы $e'_1 + f_1$

2)Ищем
$$e_2' = \alpha_1 f_1 + e_2(\alpha_1$$
-неизв), так чтобы $e_2' \perp f_1$, $(e_2', f_1) = 0$ $(\alpha_1 f_1 + e_2, f_1) = 0$, $\alpha_1 (f_1, f_1) + (e_2, f_1) = 0$, т.к. $(f_1, f_1) = 1 \Rightarrow \alpha_1 = -(e_2, f_1) \Rightarrow e_2' = 0$

$$\begin{array}{l}
(-(e_2, f_1) f_1 + e_2 \\
-(e_2, f_1) f_1 + e_2 \\
f_2 = \frac{f'_2}{||e'_2||}, e'_2 \neq 0?
\end{array}$$

Предположим противное $e_2'=0, \ \alpha_1 f_1+e_2 0, \ f_1=\frac{e_1}{\|e_1\|}, \ \text{но} \ e_1,e_2$ -ЛНЗ

3) Пусть для m векторов gjcnhjtys f_1, f_m - удовл условию Т3

4)При m<n ищем вектор $f_{m+1},\ e'_{m+1}=\alpha_1e_1+..+\alpha_mf_m+e_{m+1},$ так чтобы e'_{m+1} был ортогонален $f_i,\ i=1..m,\ e'_{m+1}\perp f_i\Leftrightarrow (e'_{m+1},f_i)=0$

$$(e'_{m+1}, f_i) = 0 \Leftrightarrow \alpha_1(f_1, f_1) + \alpha_2(f_2, f_1) + \dots + \alpha_2(f_m, f_1) + \alpha_m(e_{m+1}, f_1)$$

$$(e'_{m+1}, f_m) = 0 \Leftrightarrow \alpha_1(f_1, f_m) + \alpha_2(f_2, f_m) + \dots + \alpha_m(f_m, f_m) + \alpha_2(e_{m+1}, f_m)$$

$$(f_i, f_j) = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$$

$$\alpha_1 = -(e_{m+1}, f_1)$$

.....

```
\alpha_m = -(e_{m+1}, f_m) (*) e'_{m+1} = \alpha_1 f_1 + ... + \alpha m f_m + e_{m+1}, \ \alpha_i = -(e_{m+1}, f_i), \ i = 1..m e'_{m+1} \neq 0 Предположим противное e'_{m+1} = 0 \Rightarrow f_1..f_m-выражаются через (e_1..e_m) получается нетривиальная линейная комбинация (e_1..e_{n+1}) f_{m+1} = \frac{e'_{m+1}}{||e'_{m+1}||} \Rightarrow ||f_{m+1}|| = 1 Построим ортогональную систему (*) \Rightarrow f_{m+1} - линейно выражается через (e_1..e_{m+1})
```