CIR1 - Mathématiques

DEVOIR SURVEILLÉ 3/11/2016

Consignes:

- Pour cette épreuve de 2 heures aucun document n'est autorisé et la calculatrice collège est tolérée.
- Les 4 exercices qu'il comporte sont indépendants.
- Expliquez vos raisonnements avec un maximum de clarté et avec le vocabulaire adapté.
- Une copie soignée est gage d'une bonne note!

Exercice 1. (Points 4)

Soient les propriétés suivantes, où $f: \mathbb{R} \to \mathbb{R}$:

- a) La fonction f est injective et b) La fonction f ne prend jamais la même valeur.
- 1. Éxprimer à l'aide de quantificateurs a) et b).
- 2. Donner à l'aide de quantificateurs leur négation.
- 3. Si f est définie par $f(x) = \frac{2x}{1+x^2}$, f est elle injective ? surjective ? bijective ? Pourquoi ?

Exercice 2. (Points 4)

Soit la somme
$$S_n = \sum_{k=0}^n (2k+1)^3$$
.

- 1. Écrire S_n sans utiliser de symbole somme. De combien de termes cette somme est-elle composée ?
- 2. Calculer S_n en développant $(2k+1)^3$, en sachant que $\sum_{k=0}^n k^3 = \left(\sum_{k=0}^n k\right)^2$.
- 3. On pose $T_n = \sum_{k=0}^{n} (2k)^3$ et $U_n = \sum_{k=0}^{2n+1} k^3$. Expliquer pourquoi $U_n = S_n + T_n$ (à l'aide d'une phrase si vous n'arrivez pas à le faire par le calcul!).
- 4. Calculer T_n et U_n .
- 5. Retrouver la valeur de S_n à l'aide des deux questions précédentes.

Exercice 3. (Points 6)

- 1. Déterminer les racines carrées de $-\mathrm{i}$ dans \mathbb{C} , sous forme exponentielle et sous forme algébrique.
- 2. Soit Δ le nombre complexe $\Delta = -50$ i. Déterminer les racines carrées de Δ dans $\mathbb C$ sous forme algébrique.
- 3. Déterminer, sous forme algébrique, les deux solutions complexes de l'équation :

$$z^2 + 3(1 - i)z + 8i = 0.$$

4. Soient A, B et C les points du plan complexe d'affixe : $z_A = 2 + 2i$, $z_B = 1 - i$ et $z_C = -4 + 4i$. Représenter les trois points A, B, C dans le plan complexe.

Démontrer que le triangle ABC est rectangle en A.

5. Soit O l'origine du plan complexe. Calculer les affixes des images de A, B, C par la rotation de centre O et d'angle $-\pi/4$.

Exercice 4. (Points 6)

Résoudre les équations différentielles

a)
$$y' + 2y = 4e^x + \frac{3}{4}\sin x$$
 et b) $y' + 2y = -\frac{1}{4}\sin 3x$.

En déduire la solution générale de l'équation $y' + 2y = 4e^x + \sin^3 x$.

Suggestion: pensez à linéariser $\sin^3 x$.