SEQUENCE LISTING

<110> Hanna, Michelle

- <120> Molecular Detection Systems Utilizing Reiterative Oligonucleotide Synthesis
- <130> 2072,0010000
- <140> US 09/984,664
- <141> 2001-10-30
- <160> 17
- <170> PatentIn version 3.0
- <210> 1
- <211> 30
- <212> DNA
- <213> Artificial
- <220>
- <223> methylated DNA template
- <220>
- <221> misc_feature
- <222> (2)..(2)
- <223> methylation
- <220>
- <221> misc_feature
- <222> (10)..(10)
- <223> methylation

```
<220>
```

<221> misc_feature

<222> (26)..(26)

<223> methylation

<400> 1 ccgcccaaac gggtccggag cgactcgtca

<210> 2

<211> 30

<212> DNA

<213> Artificial

<220>

<223> deaminated methylated DNA

<220>

<221> misc_feature

<222> (1)..(1)

<223> n is uracil

<220>

<221> misc_feature

<222> (4)..(6)

<223> n is uracil

<220>

<221> misc_feature

<222> (15) .. (16)

<223> n is uracil

<220>

<221> misc_feature

```
<222> (21)..(21)
```

<223> n is uracilí

<220>

<221> misc_feature

<222> (24)..(24)

<223> n is uracil

<220>

<221> misc_feature

<222> (29)..(29)

<223> n is uracil

<400> 2 ncgnnnaaac gggtnnggaa ngantcgtna

<210> 3

<211> 30

<212> DNA

<213> Artificial

<220>

<223> deaminated unmethylated DNA

<220>

<221> misc_feature

<222> (1)..(2)

<223> n is uraçil

<220>

<221> misc_feature

<222> (4)..(6)

<223> n is uracil

<220>

<221> misc_feature

<222> (10)..(10)

<223> n is uracil

<220>

<221> misc_feature

<222> (15)..(16)

<223> n is uracil

<220>

<221> misc_feature

<222> (21)..(21)

<223> n is uracil

<220>

<221> misc_feature

<222> (24)..(24)

<223> n is uracil

<220>

<221> misc_feature

<222> (26)..(26)

<223> n is uracil

<220>

<221> misc_feature

<222> (29)..(29)

<223> n is uracil

- <210> 4
- <211> 30
- <212> DNA
- <213> Artificial
- <220>
- <223> deaminated methylated DNA
- <220>
- <221> misc_feature
- <222> (1)..(1)
- <223> n is uracil
- <220>
- <221> misc_feature
- <222> (2)..(2)
- <223> methylation
- <220>
- <221> misc_feature
- <222> (4)..(6)
- <223> n is uracil
- <220>
- <221> misc_feature
- <222> (10)..(10)
- <223> methylation
- <220>
- <221> misc_feature
- <222> (15)..(16)

<223> n is uracil

<220>

<221> misc_feature

<222> (24)...(24)

<223> n is uracil

<220>

<221> misc_feature

<222> (26)..(26)

<223> n is uracil

<220>

<221> misc_feature

<222> (26)..(26)

<223> methylation

<220>

<221> misc_feature

<222> (29)..(29)

<223> n is uracil

<400> 4 ncgnnnaaac gggtnnggaa cgantngtna

30

<210> 5

<211> 30

<212> DNA

<213> Artificial

<220>

<223> deaminated unmethylated DNA

<220>

<221> misc_feature

<222> (1)..(2)

<223> n is uracil

<220>

<221> misc_feature

<222> (4)..(6)

<223> n is uracil

<220>

<221> misc_feature

<222> (10)..(10)

<223> n is uracil

. <220>

<221> misc_feature

<222> (15)..(16)

<223> n is uracil

<220>

<221> misc_feature

<222> (21)..(21)

<223> n is uracil

<220>

<221> misc_feature

<222> (24)..(24)

<223> n is uracil

```
<221> misc_feature
```

<223> n is uracil

<220>

<221> misc_feature

<222> (29)..(29)

<223> n is uracil

<400> 5 nnghnnaagn gggtnnggaa ngantngtna

J ----- 339 -- 35 -- 35 -- 35 -- 35 -- 35 -- 35 -- 35 -- 35 -- 35 -- 35 -- 35 -- 35 -- 35 -- 35 -- 35 -- 35 --

<210> 6

<211> 30

<212> DNA.

<213> Artificial

<220>

<223> deaminated target DNA

<220>

<221> misc_feature

<222> (1)..(1)

<223> n is uracil

<220>

<221> misc_feature

<222> (1)..(1)

<223> methylation

<220>

<221> misc_feature

<222> (4)..(6)

<223> n is uracil

<220>

<221> misc_feature

<222> (9)..(9)

<223> methylation

<220>

<221> misc_feature

<222> (15)..(16)

<223> n is uracil

<220>

<221> misc_feature

<222> (21)..(21)

<223> n is uracil

<220>

<221> misc_feature

<222> (24)..(24)

<223> n is uracil

(<220>

<221> misc_feature

<222> (25)..(25)

<223> methylation

<220>

<221> misc_feature

<222> (29)..(29)

<223> n is uracil

```
<400> 6
                                                                      30 '
ncgnnnaaac gggtnnggag ngantcgtna
<210>
<211>
      DÑA
<212>
<213> Artificial
<220>
<223> target site probe
<220>
<221> misc_feature
<222> (10)..(23)
<223> n is any nucleotide of a, g, t or c
<220>
<221> misc_feature
      (10)..(23)
<222>
       nucleotide residues may be between 8 and 14 n's in length
<400> 7
taacgaatcn nnnnnnnnn nnn
                                                                      23
<210> 8
<211>
      10
<212> DNA
<213> Artificial
<220>
<223> target site probe
<400> 8
                                                                      10
gtttaaacga
```

<210> 9

<211>	21	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	template strand	,
<400> cttcta	9 tagt gtcacctaaa t	21
<210>	10	
<211>	21	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	nontemplate strand	
<400> atttag	10 ggtga cactatagaa g	21
<210>	11	
<211>	12	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	telomerase capture probe	
<400> gggtta	11 agggt ta	12
<210>	12 ·	
<211>	30	
<212>	DNA	;

<213> Artificial

30

24

```
<220>
<223> telomerase capture probe
<400> 12
gggttagggt tagggttagg gťtagggtta
<210>
       13
<211>
       24
<212>
       DNA
<213> Artificial
<220>
<223>
       telomerase capture probe
<400>
       13
gggttagggt tagggttagg gtta
<210>
       14
<211>
<212>
       DNA
<213>
       Artificial
<220>
<223>
       complementary probe
<220>
<221> misc_feature
<222>
       (1)..(1)
<223>
       n is uracil
<220>
       misc_feature
<221>
<222>
       (7)..(7)
<223>
       n is uracil
```

<220>

<221> misc_feature <222> (13)..(13) <223> n is uracil <220> <221> misc_feature (19) . . (19) <222> <223> n is uracil <400> 14 naacccnaac ccnaacccna accc 24 <210> 15 <211> 3621 <212> DNA <213> Homo sapiens atatactggg tctacaaggt ttaagtcaac cagggattga aatataactt ttaaacagag 60 120 ctggattatc cagtaggcag attaagcatg tgcttaaggc atcagcaaag tctgagcaat ccattttta aaacgtagta catgtttttg ataagcttaa aaagtagtag tcacaggaaa 180 240 aattagaact tttacctcct tgcgcttgtt atactcttta gtgctgttta acttttcttt 300 gtaagtgagg gtggtggagg gtgcccataa tcttttcagg gagtaagttc ttcttggtct ttotttottt otttotttot tittitotig agaccaagit togototigt otoccaggot 360 ggagtgcaat ggcgcgatct cggctcactg caacctccgc cttctcctgg gttcaagcga 420 ttctcctaca tcagcctccg agtagctggg attacaggca tgcgccacca agccccgcta 480 attitigtatt tittagtaga gacagggttt cgccatgttg gtcaggcttg tctcgaactc 540 ctggcctcag gtgatccgcc tgtctcggcc tcccagaatg ctgggattat agacgtgagc 600 caccgcatcc ggactttcct tttatgtaat agtgataatt ctatccaaag cattttttt 660 tttttttgag tcggagtctc attctgtcac ccaggctgga gggtggtggc gcgatctcgg 720 cttactgcaa cctctgcctc ccgggttcaa gcgattctcc tgcctcagcc tcctgagtag 780 ctggaattac acacgtgcgc caccatggcc agctaatttt tgtatttta gtagagacgg 840

ggtgtcacca ttttggccaa gctggcctcg aactcctgac ctcaggtgat ctgcccgcct

cggcttccca	aagtgctggg	attacaggtg	tgagccaccg	cgtcctgctc	caaagcattt	960
tctttctatg	cctcaaaaca	agattgcaag	ccagtcctca	aagcggataa	ttcaagagct	1020
aacaggtatt	agcttaggat	gtgtggcact.	gttcttaagg	cttatatgta	ttaatacatc	1080
atttaaactc	acaacaaccc	ctataaagca	gggggcactc	atattccctt	cccctttat	1140
aattacgaaa	aatgcaaggt	attttcagta	ggaaagagaa	atgtgagaag	tgtgaaggag	1200
acaggacagt	atttgaagct	ggtctttgga	tcactgtgca	actctgcttc	tagaacactg	1260
agcacttttt	ctggtctagg	aattatgact	ttgagaatgg	agtccgtcct	tccaatgact	1320
ccctccccat	tttcctatct	gcctacaggc	agaattctcc	cccgtccgta	ttaaataaac	1380
ctcatctttt	cagagtctgc	tcttatacca	ggcaatgtac	acgtctgaga	aacccttgcc	1440
ccagacagcc	gttttacacg	caggaggga	aggggagggg	aaggagagag	cagtccgact	1500
ctccaaaagg	aatcctttga	actagggttt	ctgacttagt	gaaccccgcg	ctcctgaaaa	1560
tcaagggttg	agggggtagg	gggacacttt	ctagtcgtac	aggtgatttc	gattctcggt	1620
ggggctctca	caactaggaa	agaatagttt	tgctttttct	tatgattaaa	agaagaagcc	1680
atactttccc	tatgacacca	aacaccccga	ttcaatttgg	cagttaggaa	ggttgtatcg	1740
cggaggaagg	aaacggggcg	ggggcggatt	tctttttaac	agagtgaacg	cactcaaaca	1800
cgcctttgct	ggcaggcggg	ggagcgcggc	tgggagcagg	gaggccggag	ggcggtgtgg	1860
ggggcaggtg	gggaggagcc	cagtcctcct	tccttgccaa	cgctggctct	ggcgagggct	1920
gcttccggct	ggtgcccccg	ggggagaccc	aacctggggc	gacttcaggg	gtgccacatt	1980
cgctaagtgc	tcggagttaa	tagcacctcc	tccgagcact	cgctcacggc	gtccccttgc	2040
ctggaaagat	accgcggtcc	ctccagagga	tttgagggac	agggtcggag	ggggctcttc	2100
cgccagcacc	ggaggaagaa	agaggagggg	ctggctggtc	accagagggt	ggggcggacc	2160
gcgtgcgctc	ggcggctgcg	gagagggga	gagcaggcag	cgggcggcgg	ggagcagcat	2220
ggagccggcg	gcggggagca	gcatggagcc	ttcggctgac	tggctggcca	cggccgcggc	2280
ccggggtcgg	gtagaggagg	tgcgggcgct	gctggaggcg	ggggcgctgc	ccaacgcacc	2340
gaatagttac	ggtcggaggc	cgatccaggt	gggtagaggg	tctgcagcgg	gagcagggga	2400
tggcgggcga	ctctggagga	cgaagtttgc	aggggaattg	gaatcaggta	gcgcttcgat	2460
tctccggaaa	aaggggaggc	ttcctgggga	gttttcagaa	ggggtttgta	atcacagacc	2520
tcctcctggc	gacgccctgg	gggcttggga	agccaaggaa	gaggaatgag	gagccacgcg	2580
cgtacagatc	tctcgaatgc	tgagaagatc	tgaagggggg	aacatatttg	tattagatgg	2640
aagtatgctc	tttatcagat	acaaaattta	cgaacgtttg	ggataaaaag	ggagtcttaa	2700
agaaatgtaa	gatgtgctgg	gactacttag	cctccaattc	acagatacct	ggatggagct	2760

tatctttctt	actaggaggg	attatcagtg	gaaatctgtg	gtgtatgttg	gaataaatat	2820
cgaátataaa	ttttgatcga	áattattcag	aagcggccgg	gcgcggtgcc	tcacgccttg	2880
taatcccttc	actttgggag	atcaaggcgg	ggggaatcac	ctgaggtcgg	gagttcgaga	2940
ccagcctggc	caacaggtga	aacctcgcct	ctactaaaaa	tacaaaaagt	agccgggggt	3000
ggtggcaggc	gcctgtaatc	ccagctactc	gggaggttga	ggcaggagaa	tcgcttgaac	3060
ccgggaggct	gaggttgtag	tgaacagcga	gatggagcca	cttcactcca	gcctgggtga	3120
cagagtgaga	ctttgtcgaa	agaaagaaag	agagaaagag	agagagaaaa	attattcaga	3180
agcaactaca	tattgtgttt	atttttaact	gagtagggca	aataaatata	tgtttgctgt	3240
aggaacttag	gaaataatga	gccacattca	tgtgatcatt	ccagaggtaa	tatgtagtta	3300
ccattttggg	aatatctgct	aacatttttg	ctcttttact	atctttagct	tacttgatat	3360
agtttatttg	tgataagagt	tttcaattcc	tcatttttga	acagaggtgt	ttctcctctc	3420
cctactcctg	ttttgtgagg	gagttagggg-	aggatttaaa	agtaattaat	acatgggtaa	3480
cttagcatct	ctaaaatttt	gccaacagct	tgaacccggg	agtttggctt	tgtagtccta	3540
caatatctta	gaagagaccț	tatttgttta	aaaacaaaaa	ggaaaaagaa	aagtggatag	3600
ttttgacaat	ttttaatgga	g				3621

<210> 16

<211> 64

<212> DNA

<213> Artificial

<220>

<223> capture probe

<400> 16
atatactggg tctacaaggt ttaagtcaac cagggattga aatataactt ttaaacagag

ctgg 64

60

<210> 17

<211> 30

<212> DNA

<213> Artificial

<223> unmethylated DNA template
<400> 17
ccgcccaaac gggtccggag cgactcgtca