DATABASE IMAGE CONTENT EXPLORER: CARVING DATA THAT DOES NOT OFFICIALLY EXIST

James Wagner, Alexander Rasin, Jonathan Grier

Overvie

W

- Background (Database Carving and Database Storage)
- DICE
- Reconstructing 3 Flavors of Deleted Data
- Experiments
- Conclusion and Future Work

Database Carving

- Database specific storage models
- Database files do not have headers
- Record reconstruction
- Values are encoded with metadata

Database Carving is Reconstruction, not Recovery

- Doesn't rely on working database
- Evidence not found in backups
- Corrupt disk, deleted files, read-only

Database Structures

Table Customer				
Ι	I Nam Accoun Ag			
P	Craig	\$2000	40	
2	Clair \$5000		26	
3	е	\$1000	34	
4	Chris	\$4000	33	

Table Supplier				
I	Nam	City		
P	Steve	San Diego		
2	Sally	Springfield		
3	Sam	St. Louis		
4	Susy	Seattle		

Inde	X	
AgA	Pointer	
26	2	;
33	4	
34	3	
40	I	

SELECT Name, Account FROM Customer WHERE Account > 3000;

Materialized View C_Account				
Name	Account			
Claire	\$5000			
Carol	\$4000			

Database Storage:

Database Buffer

Query I modifies Page I and Page 2

Query2 reads Page4

Overvie

W

- Background (Database Carving and Database Storage)
- DICE
- Reconstructing 3 Flavors of Deleted Data
- Experiments
- Conclusion and Future Work

DICE: Database Image Content

Explorer

DICE: Parameter

Collector Iteratively load synthetic data **Database Parameter** Management **Detector** Capture DB storage **System** Generate DB config. file **DBMS** disk **DBMS RAM** snapshot image Data pages (tables & indexes) DB config. files Deleted data, etc. **Content Parser** Volatile user artifacts

Parameter Collection:

Dataty Desate it? Example: Integers

```
PostgreSQL(4 bytes): (256^{0} * B_{1}) + (256^{1} * B_{2}) + (256^{2} * B_{3}) + (256^{3} * B_{4})

I = I, 0, 0, 0

256 = 0, I, 0, 0

257 = I, I, 0, 0
```

Oracle: Uses zero compression.

• Datatype Detection. Example: PostgreSQL Integer of String?

ASCII	•	J	a	у
Decimal	3	74	97	121

DICE: Content

Parser

Parsing Example:

estgreSQL	. Value
Raw Data	2, 9, 24
Delimiter	
Raw Data	4
Position	
Number Storage	4
Number Method	PSQL
String X	2
StringY	3

 $\frac{\text{String Length}}{\frac{39-3}{2}} = 18$

CI = 1579(Integer)

C2 = Customer#000001579(String)

Overvie

W

- Background (Database Carving and Database Storage)
- DICE
- Reconstructing 3 Flavors of Deleted Data
- Experiments
- Conclusion and Future Work

Deleted

- Data No longer recoverable by the DBMS
- A delete only marks data, not overwrite.
- Unallocated storage
- Three types of deleted data DICE can reconstruct:
 - I. Rows
 - 2. Pages
 - 3. Values

Deleted Data:

- $\begin{array}{l} \text{Rows are the smallest unit of deletion or insertion in a RDMBS} \end{array}$
- Three possible page alterations:
 - I. Page Header
 - 2. Row Directory
 - 3. Row Data
- The page header checksum verifies data integrity

Deleted Data: Rows(2/4)

- Row directory address overwrite
- DB2 and SQL Server

Deleted Data:

Rows (3/4)

flag

I. MySQL or Oracle

2. PostgreSQL

3. SQLite

^{*}DB2 and SQL Server mark a deletion in the row directory

Deleted Data: Rows(4/4)

Updated Rows

- In-place or DELETE + INSERT
- A new row can overwrite an row of equal or smaller size

Transactional Effects

- Failed transactions: User perspective vs. storage
- Undone insert looks like a deleted row in the page

Deleted Data: Pages

- Drop Table
- SystemTables

Table Catalog Page

Customer Table Page ID 125 125 Structure ID Alex Dan Bill Fran Supplier Table Page Header 126 126 & Row Directory Alice Don Bob Eve

Deleted Data: Index Values

Overvie

W

- Background (Database Carving and Database Storage)
- Related Work (Carving Data and DICE)
- Reconstructing 3 Flavors of Deleted Data
- Experiments
- Conclusion and Future Work

Experiment 1: Reconstructing Deleted

Rawstion

- Lifetime of deleted rows
- Representative DBs
 Oracle Percent page utilization (39%)
 SQL Server Overwrite if there's space

Setup

- 2 tables: 20K random sized rows
- 85 rows/page, 236 pages
- Random & contiguous deletes
- Inserted rows were random size

		Oracle		SQLServer	
	Action	TI(Rand) T2(Cont)		TI(Rand)	T2(Cont)
	Delete IK	1000	1000	1000	1000
Step 2	Rows	1000	8	416	354
Step 3	Insert IK Rows	1000	8	394	12

Insert IK Rows

Experiment 1:

Experiment 2: Aborted Transaction

• Show that data inserted by aborted transactions still exists in storage

Procedure

- T0: Start with an unmodified table
- TI: Insert 1000 rows (~12 pages)
- T2: Abort the inserts
- T3: Flush buffer cache

Aborted Insert Location

Step	Disk	RAM	
T0	Ø	Ø	Ø Row does not exist
TI	Ø	✓	Row is marked as active
T2	Ø		☐ Row is marked as deleted
T3		_*	

*Flush cache command does not overwrite pages

Experiment 3: Table Rebuild

- Identify what's behind after a table rebuild
- Representative DB
 PostgreSQL Defragmentation command

Setup

- 2 tables: 20K random sized rows
- 85 rows/page, 236 pages
- Random & contiguous deletes

	Before Rel	build	After Rebuild	
Row Type	TI(Rand) T2(Cont)		TI(Rand)	T2(Cont)
Deleted	1000	1000	16	854
Active Duplicates	0	0	1134	182

Experiment 3:

Example

Sparse Delete Sparse Delete (Before Rebuild) (After Rebuild)

Dense Delete Dense Delete (Before Rebuild) (After Rebuild)

Row₁ Address Row₂ Address Row₃ Address

Row3

Row2

Row1

Row₁ Address
NULL
Row₃ Address

✓ Row3
✓ Row3
✓ Row1

Row₁ Address
Row₂ Address
Row₃ Address

* Row3
* Row2
* Row1

NULL
NULL
NULL
** Row3
** Row2
** Row1

Conclusio

- PDICE can reconstruct data that is outside of the user's view
- Three types of data in unallocated space: rows, pages, and values

Future

- Make RICE output user friendly
- Connect DICE output and other forensic tool output for meta-querying
- Audit query log consistency with disk and RAM

Question s

Generalizing

Parameters** **Firebird PostgreSQL** SQLite DB₂ **SQLServer** MySQL Apache Derby Structure Yes No Yes No Identifier Unique Yes No Page ID Row Dir. Top-to-bottom insertion Bottom-to-top insertion Sequence Row No No Yes Yes Identifier Column Yes No Yes No Yes Count Column Yes No Yes Sizes Column No Yes No Directory **Numbers**

No

Yes

5 | <mark>10</mark>John Smith | 11 | <u>5</u>Texas

w/Strings

1&3&5&15 || 5 | 11 | John Smith | Texas

Yes

Parameter Collection: Row Data

Example: MySQL primary key storage

DBMSes

Hard to get some older
DB versions

Different parameters

No Linux Support

DDMC V	Testing	Buffer	Page	
DBMS Version	os	Size(MB)	Size(KB)	
Apache Derby 10.10	Linux	400	4	
Apache Derby 10.5	Linux	400	4	
DB2 Express-C 10.5	Linux	400	4	
Firebird 2.5.1	Linux	400	8	
Firebird 2.1.7	Windows	400	8	
MySQL Server 5.1.73	Linux	800	16	
MySQL Server 5.6.1	Windows	800	16	
Oracle 11g R2	Windows	800	8	
Oracle 12c R1	Windows	1200	8	
PostgreSQL 7.3	Linux	400	8	
PostgreSQL 8.4	Linux	400	8	
PostgreSQL 9.3	Windows	800	8	
SQLite 3.8.6	Linux	2	1	
SQLite 3.8.7	Windows	2	1	
SQLServer 2008	Windows	800	8	
Enterprise	(Linux)	800	0	