Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

, © CKE 2013	UZUP	EŁNIA ZDAJĄCY	Miejsce
graficzny	KOD	PESEL	Miejsce na naklejkę z kodem
Układ			

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY

CZĘŚĆ I

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, schematu blokowego lub języka programowania, który wybrałeś/aś na egzamin.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

13 MAJA 2019

Godzina rozpoczęcia: 14:00

WYBRANE:		
(środowisko)		
(kompilator)		
(nrogram użytkowy)		

Czas pracy: 90 minut

Liczba punktów do uzyskania: 20

MIN-R1 **1**P-192

Zadanie 1. Dwie tablice

Przeanalizuj poniższy algorytm, który dla dodatniej liczby całkowitej n i tablicy liczb całkowitych A[1..n] oblicza inną tablicę C[1..n]:

dla
$$i = 1, 2, ..., n$$
:
 $C[i] = 1$
dla $j = 1, 2, ..., i-1$:
 $\mathbf{je\acute{s}li} \ A[j] < A[i] \ \mathbf{oraz} \ C[j] + 1 > C[i]$:
 $C[i] = C[j] + 1$

Zadanie 1.1. (4 pkt)

Uzupełnij tabelę. Podaj zawartość tablicy C po wykonaniu powyższego algorytmu.

Tablica A	Tablica C	
[4,2,3,1,5]	[1,1,2,1,3]	
[3,3,3,3]	[1,1,1,1]	
[1,2,3,4]		
[1,3,2,5]		
[3,5,1,4,6,7,2,10,9,11]		
[3,1,4,2,6,5,7]		

Zadanie 1.2. (1 pkt)

Wybierz i zaznacz poprawną odpowiedź.

Podany algorytm jest

- **A.** liniowy.
- **B.** kwadratowy.
- C. sześcienny.
- **D.** wykładniczy.

Zadanie 1.3. (3 pkt)

Podaj przykładową zawartość ośmioelementowej tablicy A, dla której w tablicy C pojawi się przynajmniej raz liczba 6, ale nie pojawi się liczba 7.

Odpowiedź:

Miejsce na obliczenia:

	Nr zadania	1.1.	1.2.	1.3.
Wypełnia	Maks. liczba pkt.	4	1	3
egzaminator	Uzyskana liczba pkt.			

Zadanie 2. Test pierwszości

Zadanie 2.1. (2 pkt)

W wybranej przez siebie notacji (schemat blokowy, pseudokod, lista kroków, język programowania) napisz funkcję pot(a, k), której wynikiem jest $a^k \mod k$, gdzie a i k to liczby naturalne i $2 \le a < k$. Operacja mod oznacza resztę z dzielenia całkowitego.

Uwaga: W zapisie możesz wykorzystać tylko operacje dodawania, odejmowania, mnożenia, dzielenia, dzielenia całkowitego, reszty z dzielenia lub samodzielnie napisane funkcje.

Zadanie 2.2. (2 pkt)

Liczba pierwsza to liczba całkowita większa od 1, która ma dokładnie dwa dzielniki naturalne: jedynkę i siebie samą.

Test pierwszości Fermata polega na sprawdzeniu, czy dana liczba naturalna jest prawdopodobnie pierwsza.

Liczba całkowita k > 2 jest *prawdopodobnie pierwsza*, jeżeli dla każdego całkowitego a, gdzie $2 \le a < k$, spełniony jest warunek: $a^k \mod k = a$.

W wybranej przez siebie notacji (schemat blokowy, pseudokod, lista kroków, język programowania) napisz funkcję testF(k) (gdzie k to liczba całkowita większa od 2), której wynikiem jest 1, gdy liczba k jest prawdopodobnie pierwsza, a 0 gdy k nie jest prawdopodobnie pierwsza.

Uwaga: W zapisie możesz wykorzystać tylko operacje dodawania, odejmowania, mnożenia, dzielenia, dzielenia całkowitego, reszty z dzielenia, samodzielnie napisane funkcje oraz funkcję pot(a, k) opisaną w zadaniu 2.1.

	Nr zadania	2.1.	2.2.
Wypełnia	Maks. liczba pkt.	2	2
egzaminator	Uzyskana liczba pkt.		

Zadanie 2.3. (*4 pkt*)

Istnieją liczby złożone, które są liczbami *prawdopodobnie pierwszymi*. Takie liczby nazywane są liczbami Carmichaela.

W wybranej przez siebie notacji (schemat blokowy, pseudokod, lista kroków, język programowania) napisz funkcję czyLC(k), gdzie k to liczba całkowita większa od 2. Wynikiem funkcji czyLC(k) ma być 1, gdy liczba k jest liczbą Carmichaela, i 0 – w przeciwnym przypadku.

Uwaga: W zapisie możesz wykorzystać tylko operacje dodawania, odejmowania, mnożenia, dzielenia, dzielenia całkowitego, reszty z dzielenia, samodzielnie napisane funkcje oraz funkcję testF(k) opisaną w zadaniu 2.2.

Zadanie 3. Test

Oceń, czy poniższe zdania są prawdziwe. Zaznacz P, jeśli zdanie jest prawdziwe, albo F – jeśli zdanie jest fałszywe.

W każdym zadaniu cząstkowym punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

Zadanie 3.1. (*1 pkt*)

1.	DNS to skrót od Domain Name System.	P	F
2.	Do danego adresu IP może być przypisanych wiele różnych nazw.	P	F
3.	Przy zmianie adresu IP komputera pełniącego funkcję serwera WWW jest konieczna zmiana nazwy domeny internetowej.	P	F
4.	System DNS ma jedną centralną bazę danych adresów IP i nazw.	P	F

Zadanie 3.2. (1 pkt)

Po pomnożeniu dwóch liczb 11111102 oraz 1012 zapisanych w systemie dwójkowym otrzymamy:

1.	213124	P	F
2.	10010101102	P	F
3.	11668	P	F
4.	27616	P	F

Miejsce na obliczenia.

	Nr zadania	2.3.	3.1.	3.2.
Wypełnia	Maks. liczba pkt.	4	1	1
egzaminator	Uzyskana liczba pkt.			

Zadanie 3.3. (1 pkt)

1.	Adres IPv6 składa się z 64 bitów.	P	F
2.	Adres IPv6 składa się z 128 bitów.	P	F
3.	Adres IPv4 składa się z 64 bitów.	P	F
4.	Adres IPv4 składa się z 32 bitów.	P	F

Zadanie 3.4. (1 pkt)

Skrótem nazwy złącza, przez które można podłączyć urządzenia peryferyjne do komputera, jest

1.	USB	P	F
2.	FTP	P	F
3.	РНР	P	F
4.	HDMI	P	F

	Nr zadania	3.3.	3.4.
Wypełnia	Maks. liczba pkt.	1	1
egzaminator	Uzyskana liczba pkt.		

BRUDNOPIS (nie podlega ocenie)