An Introduction to GBDT & XGBoost

wangfei 2015-07-17

- Gradient Boosting Decision Tree (GBDT)
- Gradient Boosting Model (GBM)
- Multiple Additive Regression Tree (MART)
- TreeNet

Summary

- What's the problem?
- How to solve it
- An user gender prediction example
- Xgboost's solution

A Little History

1984, Breiman et al. CART

1996, Freund and Schapire AdaBoost

2000, Friedman et al. boosting as minimization exponential error

2001, Friedman et al. gradient boosting machine

What's the Problem?

- We know how to growth trees (1984, CART)
- Trees can be combined to solve classification problem well (1996, 2000, Adaboost)
- To solve general supervised problem well: boosting + tree (2001, GBM)

Tree Model

- We love to growth trees:
 - somewhat interpretable
 - feature selection builtin
 - invariant under (strictly monotone) transformations
 - fast to train
- But it's inaccurate...
- Let's fix it.

A Peek at AdaBoost

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m=1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$\operatorname{err}_{m} = \frac{\sum_{i=1}^{N} w_{i} I(y_{i} \neq G_{m}(x_{i}))}{\sum_{i=1}^{N} w_{i}}.$$

- (c) Compute $\alpha_m = \log((1 \text{err}_m)/\text{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N$.
- 3. Output $G(x) = \text{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$.

Forward Stagewise Additive Modeling

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m=1 to M:
 - (a) Compute

$$(eta_m, \gamma_m) = rg \min_{eta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + eta b(x_i; \gamma)).$$

(b) Set
$$f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$$
.

$$(eta_m, G_m) = rg \min_{eta, G} \sum_{i=1}^N \exp[-y_i (f_{m-1}(x_i) + eta \, G(x_i))]$$

Examples

$$0bj^{(t)} = \sum_{i=1}^{n} [y_i - (\hat{y}_i^{(t-1)} + f_t(x_i))]^2$$

$$= \sum_{i=1}^{n} [(y_i - \hat{y}_i^{(t-1)}) - f_t(x_i)]^2$$

Steepest Gradient Descent

$$g_{im} = \left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x_i) = f_{m-1}(x_i)}$$

$$\rho_m = \arg\min_{\rho} L(\mathbf{f}_{m-1} - \rho \mathbf{g}_m)$$

$$\mathbf{f}_m = \mathbf{f}_{m-1} - \rho_m \mathbf{g}_m$$

Gradient Boosting

$$\tilde{\Theta}_m = \arg\min_{\Theta} \sum_{i=1}^{N} (-g_{im} - T(x_i; \Theta))^2$$

Gradient Boosting Tree Algo

Algorithm 10.3 Gradient Tree Boosting Algorithm.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m=1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}.$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

- (d) Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

Then We Can Do

Why Tree?

high order interaction

Regularization

- Tree size

• Shrinkage
$$f_m(x) = f_{m-1}(x) + \nu \cdot \sum_{j=1}^J \gamma_{jm} I(x \in R_{jm}).$$

Subsampling

Squared Relevance

$$\mathcal{I}_{\ell}^{2}(T) = \sum_{t=1}^{J-1} \hat{\imath}_{t}^{2} I(v(t) = \ell)$$

$$\mathcal{I}_\ell^2 = rac{1}{M} \sum_{m=1}^M \mathcal{I}_\ell^2(T_m)$$

Let's Predict User's Gender

- Candidate user: 205W
 - at least "rated" 10 movies
- User with gender: 5.5W (2.7%)

Features

0 24138:1 7892:1 59141:1 77344:1 38242:1 70871:1 50898:1 36490:1 17623:1 6224:1 6204:1 24664:1 117252:1 35247:1 102030:1 87637:1 86841:1 64991:1 22362:1 71879:1 23608:1 99369:1 114976:1 115829:1 96857:1 118737:1 8635:1 99861:1 3506:1 95318:1 43771:1 119943:1 538 28:1 32473:1 64490:1 13827:1 109631:1 115714:1 45390:1 61540:1 1958:1 113562:1 78255:1 61437:1 42807:1 78066:1 106786:1 25779:1 662 93:1 78234:1 43263:1 121721:1 50312:1 58719:1 13708:1 83253:1 80470:1 32124:1 26356:1 121865:1 46113:1 94926:1 40224:1 30640:1 2713 6:1 63234:1 37090:1 113451:1 79344:1 6916:1 90938:1 77534:1 47910:1 2265:1 82032:1 63515:1 30828:1 35914:1 69587:1 78513:1 122346:1 21415:1 82813:1 104133:1 63564:1 115264:1 50637:1 62922:1 118183:1 31384:1 120032:1 101359:1 90475:1 87534:1 56343:1 66132:1 12346 1:1 81811:1 9583:1 112810:1 69429:1 42944:1 85142:1 80949:1 117440:1 32594:1 9277:1 38325:1 32964:1 107414:1 57717:1 28797:1 110965 1 112013:1 6271:1 43772:1 18861:1 10200:1 55187:1 45275:1 64757:1 26218:1 32050:1 11998:1 113443:1 59937:1 49295:1 56215:1 60514:1 100767:1 3880:1 53643:1 123338:1 58356:1 50260:1 29561:1 6207:1 40139:1 105922:1 5910:1 25004:1 107624:1 113891:1 2859:1 36623:1 25720:1 87993:1 100596:1 77419:1 87523:1 8847:1

#feature: 12W

Results

```
49899x123785 matrix with 15350150 entries is loaded from /home2/alg/gender/data/movie/train.csv
5545x123784 matrix with 1677481 entries is loaded from /home2/alg/gender/data/movie/valid.csv
boosting round 0, 0 sec elapsed
tree prunning end, 1 roots, 276 extra nodes, 0 pruned nodes ,max_depth=8
       valid_data-auc:0.760207 valid_data-error:0.313616
                                                                train-auc:0.765531
                                                                                        train-error: 0.306118
boosting round 1, 0 sec elapsed
tree prunning end, 1 roots, 202 extra nodes, 0 pruned nodes ,max_depth=8
       valid_data-auc:0.802058 valid_data-error:0.283318
                                                                train-auc:0.812636
                                                                                        train-error:0.277200
boosting round 2, 0 sec elapsed
tree prunning end, 1 roots, 172 extra nodes, 0 pruned nodes ,max_depth=8
       valid_data-auc:0.822431 valid_data-error:0.270875
                                                                train-auc:0.836732
                                                                                        train-error: 0.259043
boosting round 3, 0 sec elapsed
tree prunning end, 1 roots, 132 extra nodes, 0 pruned nodes ,max_depth=8
       valid_data-auc:0.840676 valid_data-error:0.253201
                                                                train-auc: 0.853706
                                                                                         train-error:0.239323
```

[997] valid_data-auc:0.991235 valid_data-error:0.022904	train-auc:0.999725	train-error:0.006954
boosting round 998, 172 sec elapsed		
tree prunning end, 1 roots, 48 extra nodes, 0 pruned nodes	,max_depth=8	
<pre>[998] valid_data-auc:0.991237 valid_data-error:0.022723</pre>	train-auc:0.999728	train-error:0.006894
boosting round 999, 172 sec elapsed		
tree prunning end, 1 roots, 28 extra nodes, 0 pruned nodes	,max_depth=8	
<pre>[999] valid_data-auc:0.991203 valid_data-error:0.022904</pre>	train-auc:0.999729	train-error:0.006834

Interpretation

Top - 3

#M	#F	#M/SUM
1299	2741	0.3215
1970	834	0.7026
1538	2643	0.3679

Female Movies

#M	#F	#M/SUM
242	1031	0.1901
368	1210	0.2332
774	1797	0.3011

Male Movies

#M	#F	#M/SUM
2569	1470	0.6360
1170	538	0.6850
1755	680	0.7207

Not So Obvious

 #M	#F	#M/#F
3923	3808	0.5074

Gender Project

- repo: http://code.dapps.douban.com/gender
- prediction: /home2/alg/gender/gender.csv
 - 550W
 - movie, music, book, fm, group

XGBoost

- https://github.com/dmlc/xgboost
- Win a lot of kaggle competitions
- Features:
 - With python wrapper (also R, Julia)
 - Support external memory
 - Distributed with Hadoop (YARN), MPI...
 - Dump & load model (plain txt or binary)
 - •

Additive Training: A Second Look

$$\hat{y}_{i}^{(t)} = \hat{y}_{i}^{(t-1)} + f_{t}(x_{i})$$

$$Obj^{(t)} = \sum_{i=1}^{n} l\left(y_{i}, \hat{y}_{i}^{(t-1)} + f_{t}(x_{i})\right)$$

$$0bj^{(t)} = \sum_{i=1}^{n} \left[y_i - (\hat{y}_i^{(t+1)} + f_t(x_i)) \right]^2$$

$$= \sum_{i=1}^{n} \left[(y_i - \hat{y}_i^{(t+1)}) - f_t(x_i) \right]^2$$

$$= \sum_{i=1}^{n} \left[(y_i - \hat{y}_i^{(t+1)})^2 - 2 \cdot (y_i - \hat{y}_i^{(t+1)}) \cdot f_t(x_i) \right]$$

$$+ f_t^2(x_i) \right]$$

Taylor Expansion Approximation

$$f(x+\Delta x) \approx f(x) + f'(x) \cdot \Delta x + \frac{1}{2} f''(x) \cdot \Delta x^{2}$$

$$g_{i} = \partial_{g(x-1)} J(y_{i}, \hat{y}^{(t+1)}) = \partial_{g(x)} (\hat{y}^{(t+1)} - y_{i})^{2} = -2(y_{i} - \hat{y}^{(t+1)})$$

$$h_{i} = \partial_{g(x-1)}^{2} J(y_{i}, \hat{y}^{(t+1)}) = \partial_{g}^{2} (x_{i}) (\hat{y}^{(t+1)} - y_{i})^{2} = 2$$

$$Ob_{j}^{(t)} \approx \sum_{i=1}^{n} \left[J(y_{i}, \hat{y}^{(t+1)}) + g_{i} f_{t}(x_{i}) + \frac{1}{2} h_{i} f_{t}^{2}(x_{i}) \right]$$

New Objective

$$\sum_{i=1}^{n} \left[g_{i} f_{t}(x_{i}) + \frac{1}{2} h_{i} f_{t}(x_{i}) \right]$$

$$g_{i} = \partial g_{(t+1)} l(y_{i}, \hat{g}_{(t+1)})$$

$$h_{i} = \partial \tilde{g}_{(t+1)} l(y_{i}, \hat{g}_{(t+1)})$$

Revisit the Objective

$$f_{t}(x) = W_{q(x)}, W \in \mathbb{R}^{T}, q: \mathbb{R}^{d} \rightarrow \{1, 2, ... T\}$$

$$I_{j} = \{i \mid q(x_{i}) = j\}$$

$$Obj^{(t)} \simeq \frac{2}{\xi_{i}} \left[g_{i} f_{t}(x_{i}) + \frac{1}{2}h_{i} f_{t}^{2}(x_{i}) \right]$$

$$= \frac{2}{\xi_{i}} \left[g_{i} \cdot h_{q(x_{i})} + \frac{1}{2}h_{i} \cdot h_{q(x_{i})} \right]$$

$$= \frac{1}{\xi_{i}} \left[\left(\sum_{i \in I_{j}} g_{i} \right) \cdot h_{j} + \frac{1}{2} \left(\sum_{i \in I_{j}} h_{i} \right) \cdot h_{j}^{2} \right]$$

The Structure Score

$$G_{j} = \sum_{i \in I_{j}} J_{i}$$

$$H_{j} = \sum_{i \in I_{j}} h_{i}$$

$$Obj^{(h)} = \sum_{j=1}^{J} [G_{j} w_{j} + \frac{1}{2}H_{j} w_{j}]$$

$$argmin G_{x} + \frac{1}{2}H_{x}^{2}, H_{x}^{2}$$

$$x = -\frac{G}{H}$$

$$min_{x} G_{x} + \frac{1}{2}H_{x}^{2} = -\frac{1}{2}\frac{G^{2}}{H}$$

Let's Growth Trees

Gain =
$$\frac{G_L^2}{H_L} + \frac{G_R^2}{H_R} - \frac{(G_L + G_R)^2}{H_L + H_R}$$

See Some Code

```
inline void UpdateOneIter(int iter, const DMatrix &train) {
   if (seed_per_iteration != 0 || rabit::IsDistributed()) {
      random::Seed(this->seed * kRandSeedMagic + iter);
   }
   this->PredictRaw(train, &preds_);
   obj_->GetGradient(preds_, train.info, iter, &gpair_);
   gbm_->DoBoost(train.fmat(), this->FindBufferOffset(train), train.info.info, &gpair_);
}
```

Gradient Boosting is Gradient Descent in Function Space

Thank you + Q&A

Reference

- Introduction to Boosted Trees by tianqi chen
- The Elements of Statistical Learning, Chapter 9
- Greedy function approximation a gradient boosting machine. J.H. Friedman 1999
- Boosting Algorithms as Gradient Descent in Function Space. Mason, L.; Baxter, J.; Bartlett, P. L.; Frean, Marcus (May 1999).