CASO PRÁCTICO 1

Ciencia y analítica de datos

Integrantes: CARLOS PADILLA & XAVIER ASMAL

Librerías

```
In []: # Cargamos Las Librerías necesarias

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

1. Carga y Visualización Inicial del Dataset

Propósito: Cargar el conjunto de datos data.csv y visualizar las primeras 10 filas para entender su estructura y contenido.

Interpretación: Permite verificar que los datos se han cargado correctamente y proporciona una visión preliminar de las columnas y algunos valores iniciales.

```
In []: # Cargar el conjunto de datos del Titanic del PC
    # titanic_df = pd.read_csv('titanic.csv')
    # titanic_df = sns.load_dataset("titanic")

# Colab
    # Montar Google Drive
    from google.colab import drive
    drive.mount('/content/drive')

# Ruta del archivo CSV
    file_path = '/content/data.csv'

# Leer el archivo CSV
    data = pd.read_csv(file_path)

# Ver Las primeras filas del conjunto de datos
    print(data.head())
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

	` '	_	,			
	id diagnos:	is radius_mean	texture_mean	perimeter_mean	area_mean	\
0	842302	M 17.99	10.38	122.80	1001.0	
1	842517	M 20.57	17.77	132.90	1326.0	
2	84300903	M 19.69	21.25	130.00	1203.0	
3	84348301	M 11.42	20.38	77.58	386.1	
4	84358402	M 20.29	14.34	135.10	1297.0	
	smoothness_mean	compactness_mea	an concavity_m	ean concave poi	.nts_mean \	
0	0.11840	0.277	60 0.3	001	0.14710	
1	0.08474	0.078	6.0	869	0.07017	
2	0.10960	0.1599	90 0.1	974	0.12790	
3	0.14250	0.2839	90 0.2	414	0.10520	
4	0.10030	0.132	30 0.1	980	0.10430	
	texture_wors	st perimeter_w	orst area_wors	t smoothness_wo	orst \	
0	17.3	33 184	1.60 2019.	0 0.1	.622	
1	23.4	41 158	3.80 1956.		.238	
2	25.!	53 152	2.50 1709.	0 0.1	.444	
3	26.!	50 98	3.87 567.	7 0.2	1098	
4	16.0	67 152	2.20 1575.	0 0.1	.374	
	compactness_wors		•	_		\
0	0.6656			0.2654	0.4601	
1	0.186			0.1860	0.2750	
2	0.424			0.2430	0.3613	
3	0.8663			0.2575	0.6638	
4	0.205	0.40	900	0.1625	0.2364	
_	fractal_dimension					
0		0.11890	NaN			
1			NaN			
2	0.08758		NaN			
3		0.17300	NaN			
4	(0.07678	NaN			

[5 rows x 33 columns]

2. Estadísticas Descriptivas

Propósito: Calcular estadísticas descriptivas de las variables numéricas y categóricas.

Interpretación: Proporciona un resumen de las principales métricas (como media, desviación estándar, mínimos, máximos, etc.) de las características numéricas y una vista general de las variables categóricas.

```
In []: # Estadísticas descriptivas
print(data.describe())

# Estadísticas de variables categóricas
print(data.describe(include=['object']))
```

count mean std min 25% 50% 75% max	3.037183e+07 14.1 1.250206e+08 3.5 8.670000e+03 6.9 8.692180e+05 11.7 9.060240e+05 13.3 8.813129e+06 15.7 9.113205e+08 28.1	00000 569.0000 27292 19.2896 24049 4.3010 81000 9.7100 00000 16.1700 70000 18.8400 80000 21.8000 10000 39.2800	569.000000 549 91.969033 24.298981 300 43.790000 75.170000 86.240000 104.100000 188.500000	569.000000 654.889104 351.914129 143.500000 420.300000 551.100000 782.700000 2501.000000
		_		ave points_mean \
count	569.000000	569.000000	569.000000	569.000000
mean	0.096360	0.104341	0.088799	0.048919
std	0.014064	0.052813	0.079720	0.038803
min	0.052630	0.019380	0.000000	0.000000
25%	0.086370	0.064920	0.029560	0.020310
50%	0.095870	0.092630	0.061540	0.033500
75%	0.105300	0.130400	0.130700	0.074000
max	0.163400	0.345400	0.426800	0.201200
count mean	symmetry_mean 569.000000 0.181162	texture_worst pe 569.000000 25.677223	569.000000 56	ea_worst \ 9.000000 0.583128
std	0.027414	6.146258		9.356993
min	0.106000	12.020000		5.200000
25%	0.161900	21.080000		5.300000
50%	0.179200	25.410000		6.500000
75%	0.195700	29.720000		4.000000
max	0.304000	49.540000		4.000000
	smoothness_worst co	mpactness_worst	concavity_worst \	
count	569.000000	569.000000	569.000000	
mean	0.132369	0.254265	0.272188	
std	0.022832	0.157336	0.208624	
min	0.071170	0.027290	0.000000	
25%	0.116600	0.147200	0.114500	
50%	0.131300	0.211900	0.226700	
75%	0.146000	0.339100	0.382900	
max	0.222600	1.058000	1.252000	
count	concave points_worst		fractal_dimension	_worst \ 000000
mean	0.114606			083946
std	0.065732		0.	018061
min	0.000000			055040
25%	0.064930			071460
50%	0.099930			080040
75%	0.161400			092080
max	0.291000			207500
	Unnamed: 32			
count	0.0			
mean	NaN			
std	NaN			
min	NaN			
25%	NaN			

3. Preprocesamiento de Datos

Propósito: Convertir la variable categórica diagnosis a numérica (1 para maligno y 0 para benigno) y descartar la columna de identificación id que no aporta información relevante para el análisis.

Interpretación: Facilita el análisis posterior, ya que la variable objetivo diagnosis está ahora en formato numérico, y elimina columnas innecesarias.

```
In []: # Sustituir 'M' por 1 y 'B' por 0
    data['diagnosis'] = data['diagnosis'].map({'M': 1, 'B': 0})

# Ver Las primeras filas del conjunto de datos
    print(data.head(10))

# Descartar La columna del identificador
    data = data.drop(columns=['id'])

# Ver Las primeras filas del conjunto de datos
    print(data.head(10))
```

4. Verificación de Datos Faltantes

Propósito: Verificar si hay valores faltantes en el conjunto de datos y eliminar la columna Unnamed: 32 que probablemente no contiene información útil.

Interpretación: Garantiza que no hay valores faltantes en el dataset, lo que es crucial para un análisis preciso y confiable.

```
In []: #Verifica los datos faltantes de los dataset
    print('Datos faltantes:')
    print(pd.isnull(data).sum())

data = data.drop(columns=['Unnamed: 32'])

#Verifica los datos faltantes de los dataset
    print('Datos faltantes:')
    print(pd.isnull(data).sum())
```

```
# Estadísticas descriptivas
statistics = data.describe()
```

5. Visualización de la Distribución de Diagnósticos

Propósito: Visualizar la distribución de casos benignos y malignos.

Interpretación: Muestra la proporción de casos benignos y malignos en el conjunto de datos, indicando si el dataset está equilibrado o no.

```
In [ ]: # Visualización de la distribución de la variable 'diagnosis'
   plt.figure(figsize=(6, 4))
   sns.countplot(x='diagnosis', data=data)
   plt.title('Distribución de Diagnósticos (0 = Benigno, 1 = Maligno)')
   plt.xlabel('Diagnóstico')
   plt.ylabel('Cantidad')
   plt.show()
```

6. Distribuciones de Características Específicas por Diagnóstico

Propósito: Visualizar la distribución de características específicas (radius_mean, texture_mean, smoothness_mean) según el diagnóstico.

Interpretación: Permite observar cómo estas características varían entre los tumores benignos y malignos, proporcionando pistas sobre su relevancia para la predicción del diagnóstico.

```
In [ ]: # Visualización de la Distribución de Radio Medio según Diagnóstico
        plt.figure(figsize=(10, 6))
        sns.histplot(data=data, x='radius_mean', hue='diagnosis', multiple='stack', bins=30
        plt.title('Distribución de Radio Medio según Diagnóstico')
        plt.xlabel('Radio Medio')
        plt.ylabel('Frecuencia')
        plt.show()
        # Visualización de la Distribución de Textura Media según Diagnóstico
        plt.figure(figsize=(10, 6))
        sns.histplot(data=data, x='texture_mean', hue='diagnosis', multiple='stack', bins=3
        plt.title('Distribución de Textura Media según Diagnóstico')
        plt.xlabel('Textura Media')
        plt.ylabel('Frecuencia')
        plt.show()
        # Visualización de la Distribución de Suavidad Media según Diagnóstico
        plt.figure(figsize=(10, 6))
```

```
sns.histplot(data=data, x='smoothness_mean', hue='diagnosis', multiple='stack', bin
plt.title('Distribución de Suavidad Media según Diagnóstico')
plt.xlabel('Suavidad Media')
plt.ylabel('Frecuencia')
plt.show()
```

7. Análisis de Correlación

Propósito: Calcular y visualizar las correlaciones entre las características más significativas y el diagnóstico.

Interpretación: Las matrices de correlación ayudan a identificar cuáles características están más fuertemente relacionadas con el diagnóstico de cáncer, proporcionando información valiosa para la selección de características y el desarrollo de modelos predictivos.

```
In [ ]: # Calcular la correlación de todas las variables con 'diagnosis'
        correlation_with_target = data.corr()['diagnosis'].sort_values(ascending=False)
        # Seleccionar las 10 variables más correlacionadas con 'diagnosis'
        top_10_features = correlation_with_target.head(11).index.tolist() # Incluye 'diagn
        top_10_features
        # Generar la matriz de correlación solo con las variables más significativas
        top_10_corr_matrix = data[top_10_features].corr()
        # crea una máscara para ocultar la parte superior de la matriz de correlación
        # con k=0 no incluye la diagonal principal y con k=1 si
        mask = np.triu(np.ones_like(top_10_corr_matrix, dtype=bool), k=1)
        # Crear un mapa de calor de correlación
        plt.figure(figsize=(10, 8))
        sns.heatmap(top_10_corr_matrix, mask=mask, annot=True, fmt='.2f', cmap='coolwarm',
        plt.title('Matriz de Correlación entre Variables Más significativas')
        plt.show()
        # Aplicar una máscara para mostrar solo correlaciones moderadas/altas mayores a 0.4
        mask = np.abs(top_10_corr_matrix) < 0.4</pre>
        top_10_corr_matrix[mask] = np.nan
        # Crear un mapa de calor de correlación con valores significativos
        plt.figure(figsize=(10, 8))
        sns.heatmap(top_10_corr_matrix, mask=mask, annot=True, fmt='.2f', cmap='coolwarm',
        plt.title('Matriz de Correlación (moderadas / altas)')
        plt.show()
```


Principales Observaciones de la Correlación:

Variables Altamente Correlacionadas con diagnosis:

- **Radio Medio (radius_mean):** Una alta correlación positiva con el diagnóstico indica que, a medida que aumenta el radio medio del tumor, es más probable que el tumor sea maligno.
- ** Perímetro Medio (perimeter_mean):** Similar al radio medio, el perímetro medio tiene una alta correlación positiva, sugiriendo que los tumores malignos tienden a tener perímetros más grandes.
- **Área Media (area_mean):** Los tumores malignos tienden a tener áreas más grandes, como lo indica la alta correlación positiva.
- **Suavidad Media (smoothness_mean):** Aunque con una menor correlación positiva, también sugiere que los tumores más suaves son más probablemente malignos.
- **Concavidad Media (concavity_mean) y Puntos Cóncavos Medios (concave points_mean):** Ambas características muestran alta correlación positiva con el diagnóstico maligno, lo que indica que

los tumores malignos tienden a tener más concavidades y puntos cóncavos.

Variables con Correlación Negativa o Baja:

Fractal Dimension Mean (fractal_dimension_mean): Tiene una baja correlación con el diagnóstico, lo que sugiere que no es un buen predictor del tipo de tumor.

Symmetry Mean (symmetry_mean): También tiene una correlación baja con el diagnóstico, indicando que la simetría no varía significativamente entre tumores benignos y malignos.

8. Visualización de Características Clave mediante Boxplots

Propósito: Visualizar la distribución de características clave (radius_mean, texture_mean, perimeter_mean, area_mean) según el diagnóstico usando boxplots.

Interpretación: Los boxplots permiten comparar la distribución de estas características entre los diagnósticos benignos y malignos, mostrando si hay diferencias significativas que podrían ser útiles para la predicción del diagnóstico.

```
In [ ]: # Visualización de algunas variables importantes
        plt.figure(figsize=(14, 6))
        sns.boxplot(x='diagnosis', y='radius_mean', data=data)
        plt.title('Distribución de Radio Medio según Diagnóstico')
        plt.show()
        # Distribución
        plt.figure(figsize=(14, 6))
        sns.boxplot(x='diagnosis', y='texture_mean', data=data)
        plt.title('Distribución de Textura Media según Diagnóstico')
        plt.show()
        plt.figure(figsize=(14, 6))
        sns.boxplot(x='diagnosis', y='perimeter_mean', data=data)
        plt.title('Distribución de Perímetro Medio según Diagnóstico')
        plt.show()
        plt.figure(figsize=(14, 6))
        sns.boxplot(x='diagnosis', y='area_mean', data=data)
        plt.title('Distribución de Área Media según Diagnóstico')
        plt.show()
```


Conclusión

Este análisis proporciona una comprensión detallada del dataset de cáncer de mama. A través de diversas técnicas de visualización y análisis estadístico, hemos identificado características clave que pueden ayudar en la predicción del diagnóstico de cáncer de mama. La correlación y los gráficos de distribución muestran que ciertas características tienen una relación significativa con el diagnóstico, lo cual es esencial para construir modelos predictivos eficaces.